Practical-1,2

Abhinav Sharma

Objective

The aim is to build some good linear models to analyze the swiss data where Fertility is used as the response.

Initial Data Analysis

Dataset Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888.

Dataset Format

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

- [,1] Fertility Ig, 'common standardized fertility measure'
- [,2] Agriculture % of males involved in agriculture as occupation
- [,3] Examination % draftees receiving highest mark on army examination
- [,4] Education % education beyond primary school for draftees.
- [,5] Catholic % 'catholic' (as opposed to 'protestant').
- [,6] Infant.Mortality live births who live less than 1 year.

All variables but 'Fertility' give proportions of the population.

Analysis

```
# loading data
data(swiss)

# summary of data
summary(swiss)
```

```
Fertility
##
                     Agriculture
                                      Examination
                                                       Education
##
           :35.00
                           : 1.20
                                           : 3.00
                                                             : 1.00
                    Min.
                                                     Min.
                    1st Qu.:35.90
                                     1st Qu.:12.00
##
    1st Qu.:64.70
                                                     1st Qu.: 6.00
##
   Median :70.40
                    Median :54.10
                                     Median :16.00
                                                     Median: 8.00
##
           :70.14
                           :50.66
                                            :16.49
                                                             :10.98
  Mean
                    Mean
                                     Mean
                                                     Mean
    3rd Qu.:78.45
                    3rd Qu.:67.65
                                     3rd Qu.:22.00
                                                     3rd Qu.:12.00
##
           :92.50
                           :89.70
                                            :37.00
                                                             :53.00
   {\tt Max.}
                    Max.
                                     Max.
                                                     Max.
       Catholic
                      Infant.Mortality
##
##
                              :10.80
          : 2.150
                      Min.
  \mathtt{Min}.
   1st Qu.: 5.195
                      1st Qu.:18.15
## Median : 15.140
                      Median :20.00
## Mean
          : 41.144
                      Mean
                            :19.94
  3rd Qu.: 93.125
##
                      3rd Qu.:21.70
##
  Max.
           :100.000
                      Max.
                             :26.60
```

1. Distribution of response variable

histogram plot

hist(swiss\$Fertility,main="Fertility",xlab="Fertility")

Fertility

density plot
plot(density(swiss\$Fertility),main="Fertility")
rug(swiss\$Fertility)

Fertility

- ullet Plot is little right skewed
- Fertility rates are mostly between 60-90%

2. Analyzing predictor variables

boxplot analysis boxplot(swiss)

- Catholic variable covers wide range of values
- Infant.Mortality variable is very condensed
- Education seems to have some outliers

correlation analysis cor(swiss)

```
Catholic
##
                     Fertility Agriculture Examination
                                                          Education
## Fertility
                     1.0000000 0.35307918
                                             -0.6458827 -0.66378886
                                                                     0.4636847
## Agriculture
                     0.3530792
                                1.00000000
                                             -0.6865422 -0.63952252
                                                                     0.4010951
## Examination
                    -0.6458827 -0.68654221
                                              1.0000000 0.69841530 -0.5727418
## Education
                    -0.6637889 -0.63952252
                                              0.6984153
                                                        1.00000000 -0.1538589
                     0.4636847 0.40109505
                                             -0.5727418 -0.15385892
## Catholic
                                                                     1.0000000
##
  Infant.Mortality
                     0.4165560 -0.06085861
                                             -0.1140216 -0.09932185
                                                                     0.1754959
##
                    Infant.Mortality
## Fertility
                          0.41655603
## Agriculture
                         -0.06085861
## Examination
                         -0.11402160
## Education
                         -0.09932185
## Catholic
                          0.17549591
## Infant.Mortality
                          1.0000000
```

- All correlations with Fertility are less than 0.8, indicating no signs of strong multicollinearity.
- Correlations are between 0.3-0.8, indicating mild multicollinearity.

correlation analysis plot pairs(swiss)

- Plot shows linear relationship between Agriculture and Examination.
- Also, between Examination and Education.
- Interpretation of coefficients will be affected.

Fitting a linear Model

```
# basic linear model with all variables
model <- lm(Fertility ~ Agriculture + Examination + Education +
              Catholic + Infant.Mortality, swiss)
summary(model)
##
## Call:
## lm(formula = Fertility ~ Agriculture + Examination + Education +
##
       Catholic + Infant.Mortality, data = swiss)
##
## Residuals:
##
       Min
                  1Q
                       Median
  -15.2743 -5.2617
                       0.5032
##
                                4.1198 15.3213
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    66.91518
                               10.70604
                                          6.250 1.91e-07 ***
## Agriculture
                    -0.17211
                                0.07030 -2.448 0.01873 *
## Examination
                    -0.25801
                                0.25388 -1.016 0.31546
## Education
                    -0.87094
                                0.18303
                                         -4.758 2.43e-05 ***
## Catholic
                     0.10412
                                0.03526
                                         2.953 0.00519 **
```

```
## Infant.Mortality 1.07705  0.38172  2.822  0.00734 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.165 on 41 degrees of freedom
## Multiple R-squared: 0.7067, Adjusted R-squared: 0.671
## F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10
```

Transformations

We can use box-cox transformation method to understand if response variable transformation is needed or not.

```
# box-cox transformation for response variable
library(MASS)
box <- boxcox(
Fertility ~ Agriculture + Examination +Education+ Catholic +
Infant.Mortality, data = swiss,
lambda = seq(from = -3, to = 3, length = 50)
)</pre>
```


• $\lambda=1$ lies in 95% confidence interval, so we can say that no transformation is needed for response variable. Transformations of predictors can also be achieved - ?? Maybe polynomials ??

Variable Selection

```
# stepwise selection using AIC
model2 <- step(model,trace=FALSE)
model2
##
## Call:
## lm(formula = Fertility ~ Agriculture + Education + Catholic +</pre>
```

```
##
       Infant.Mortality, data = swiss)
##
## Coefficients:
                                                                Catholic
##
        (Intercept)
                        Agriculture
                                             Education
##
            62.1013
                             -0.1546
                                               -0.9803
                                                                   0.1247
## Infant.Mortality
##
            1.0784
  • The final AIC of model achieved = 189.86
  • Final Model: Fertility ~ Agriculture + Education + Catholic + Infant.Mortality
# backward elimination using F-test
drop1(model,test='F')
## Single term deletions
##
## Model:
## Fertility ~ Agriculture + Examination + Education + Catholic +
##
       Infant.Mortality
##
                   Df Sum of Sq
                                   RSS
                                          AIC F value
                                 2105.0 190.69
## <none>
## Agriculture
                    1
                       307.72 2412.8 195.10 5.9934 0.018727 *
## Examination
                         53.03 2158.1 189.86 1.0328 0.315462
                    1
## Education
                    1
                       1162.56 3267.6 209.36 22.6432 2.431e-05 ***
## Catholic
                    1 447.71 2552.8 197.75 8.7200 0.005190 **
## Infant.Mortality 1 408.75 2513.8 197.03 7.9612 0.007336 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

    Backward elimination using F-test also suggest removal of Examination term as p-value is extremely
```

- Backward elimination using F-test also suggest removal of Examination term as p-value is extremely large (0.315462 > 0.05).
- Final Model is same as selected using stepwise.

Diagnostics

```
# Basic diagnostic plots
par(mfrow=c(2,2))
plot(model2)
```


- From residual plot, there is no pattern observed so constant variance assumption holds.
- From QQ plot, we don't see heavy tails so normality assumption also holds.
- Some extreme values are observed in cook's distance plot, indicating outliers and influential points in the data.

top influential points swiss[cooks.distance(model2) > 0.1,]

```
Fertility Agriculture Examination Education Catholic
##
                     76.1
                                                             7
                                                                   90.57
## Porrentruy
                                  35.3
                                                  9
                     92.2
                                  84.6
                                                  3
                                                             3
                                                                   99.46
## Sierre
                                  27.7
                                                                   58.33
## Rive Gauche
                     42.8
                                                 22
                                                            29
##
                Infant.Mortality
                             26.6
## Porrentruy
## Sierre
                             16.3
```

```
## Rive Gauche
                            19.3
# possible outliers
library(faraway)
```


swiss[influence(model2)\$hat>0.3,]

```
Fertility Agriculture Examination Education Catholic
##
## La Vallee
                      54.3
                                   15.2
                                                            20
                                                                   2.15
                                                 31
                      35.0
                                                 37
                                                                  42.34
## V. De Geneve
                                    1.2
                                                            53
                 Infant.Mortality
## La Vallee
                             10.8
                             18.0
## V. De Geneve
```

- We can handle this by either removing outliers points from the dataset and then proceed with least squares.
- We can also perform robust regression that downweights the effects of larger errors.

```
# Robust regression
library(MASS)
rlmodel <- rlm(Fertility ~ Agriculture + Examination + Education +</pre>
              Catholic + Infant.Mortality, swiss)
summary(rlmodel)
## Call: rlm(formula = Fertility ~ Agriculture + Examination + Education +
       Catholic + Infant.Mortality, data = swiss)
##
## Residuals:
        Min
                                             Max
##
                  1Q
                       Median
                                     3Q
## -16.0173 -5.0005
                       0.3231
                                 4.0905 16.1854
##
## Coefficients:
##
                             Std. Error t value
                    Value
```

```
## (Intercept)
                   65.4851 10.9074
                                       6.0037
                   -0.1933 0.0716
## Agriculture
                                      -2.6994
## Examination
                   -0.2869 0.2587
                                      -1.1091
## Education
                   -0.8495 0.1865
                                      -4.5558
## Catholic
                    0.1049 0.0359
                                       2.9209
## Infant.Mortality 1.2184 0.3889
                                       3.1330
## Residual standard error: 6.633 on 41 degrees of freedom
```

Predictions

Suppose we assume following data for a particular region:

- [,2] Agriculture 70 % of males involved in agriculture as occupation
- [,3] Examination 20 % draftees receiving highest mark on army examination
- [,4] Education 30 % education beyond primary school for draftees.
- [,5] Catholic 10 % 'catholic' (as opposed to 'protestant').
- [,6] Infant.Mortality 28 live births who live less than 1 year

```
# input data
data <- data.frame(Agriculture=70,Examination=20,Education=30,</pre>
                   Catholic=10, Infant.Mortality=28)
# predict fertility rate for a region using full model
predict(model, newdata=data)
##
          1
## 54.77734
# predict fertility rate using stepwise model
predict(model2, newdata=data)
##
          1
## 53.31322
# predict fertility rate using robust regression model
predict(rlmodel, newdata=data)
##
```

Interpretation

55.89241

Let's use summary statistics of different variables to get different values of predictions and then interpret results for fertility.

```
# input data
data <- data.frame(</pre>
  Agriculture=c(1.20,35.90,50.66,67.95,89.70),
  Examination=c(3,12,16.49,22,37),
  Education=c(1,6,10.98,12,53),
  Catholic=c(2.150,5.195,41.144,93.125,100),
  Infant.Mortality=c(10.80,18.15,19.94,21.70,26.60)
# using full model to get complete interpretation
data$pp <- predict(model,newdata=data)</pre>
matplot(data,type='o',ylab='Fertility',xlab='Variables')
```


Here:

- 1-Agriculture
- 2-Examination
- 3-Education
- 4-Catholic
- 5-Infant.Mortality
- 6-Fertility

Interpretation:

- Fertility goes down as other predictor variables % increases
- $\bullet\,$ Fertility is highly affected by ${\tt Agriculture}$ and ${\tt Catholic}$ variables.