Návrh a Konstrukce Antén BOM17NKA

Úvodní informace

Milan Polívka a kol. ČVUT v Praze, FEL B2-639, l. 2270, 5801 polivka@fel.cvut.cz

zima 2023/24

Podmínky zápočtu

- Rozsah: 2 + 2, z, zk, 6 kr.
- Podmínky zápočtu:
 - 1. vypracování 4 projektových úloh
 - (2 početní: návrh patche a reflektorové antény,
 - 2 návrhově-realizační: antény mobil. telefonu)
 - protokoly elektronicky, odevzdání průběžné,
 nejpozději do 10.1.2022 (14. týden)
 - 2. účast na cvičení, přednášky velmi doporučené
 - doplňkový obsah,
 - obsahují vše nezbytné k úspěšnému zvládnutí zkoušky,
 - max. omluvené 3 absence.
- Zkouška:

písemný test (10 otázek), výsledná známka tvořena

40 % projekty 60 % testem

Náplň předmětu

Přednáška - středa, 9:15, místn. č. B2-621 cvičení - středa, 11:00, místn. č. B2-621

týden	datum př./cv.	přednáška (st)	cvičení (st)	projekt	kdo (př., cv.)
1.	27.9.	Mikropáskové antény	Výpočet Zvst (Matlab)	1. Patchová anténa	Polívka, Švanda
2.	4.10.	Malé antény I principiální limity	EM modelování (MWS)		Polívka, Švanda
3.		Malé antény II návrhové aspekty	Řešení projektů (MWS)	23. Vícepásmová anténa mobilního telefonu, více variant	Polívka, Švanda
4.	18.10.	Symetrizační a transformační členy v anténní technice	Řešení projektů (MWS)		Polívka, Švanda
5.		Antény pro RFID a nositelné antény	Řešení projektů (MWS)		Švanda, Švanda
6.	1.11.	Antény automobilové a antény pro automobilové radarové senzory	Realizace a měření Zvst antén projektové úlohy		Švanda, Švanda
7.	8.11.	Reflektorové antény	projektové příklady	4. Reflektorová anténa	Mazánek, Mazánek
8.	15.11.	Šroubovicové antény	projektové příklady		Mazánek, Mazánek
9.	22.11.	Elektromagnetické modelování vyzařujících struktur	EM modelování (MWS)		Hazdra, Hazdra
10.	29.11.	Teorie charakt. módů, činitel jakosti antén	Matlab, modely		Hazdra, Hazdra
11.	6.12.	Anténní systémy pro sítě 5G	Diferenční měření, Matlab		Polívka, Švanda
12.		Bezdrátové napájení a "vytěžování" energie	Demonstrace bezdrátového napájení		Švanda, Švanda
13.	20.12.	Širokopásmové antény - spirálové, kuželové dipóly	MWS/Matlab		Polívka, Švanda
14.		Širokopásmové trychtýřové antény	Přednáška protažená		Hradecký, Hradecký*

Návrh a Konstrukce Antén A0M17NKA

Mikropáskové antény

Milan Polívka ČVUT v Praze, FEL B2-639, l. 2270, 5801 polivka@fel.cvut.cz

Osnova – co se dozvíte?

- Mikropáskové antény (microstrip antennas, MA)
 - klasifikace, původ a vývoj, vlastnosti, způsoby napájení, použití
- Metody analýzy a návrhu
 - model vedení, dutinový model, numer. metody ...
 - návrhové vztahy, způsoby napájení, šířka pásma, směrové diagramy, ..
- Metody vylepšování vlastností
 - zvětšení šířka pásma,
 - vícepásmovost,
 - miniaturizace,
 - kruhová polarizace,
 - zvýšení zisku, řady.

Mikropásková patchová/flíčková anténa (MPA)

Planární vyzařující rezonátor (ploška, dipól, štěrbina)

- vodivý motiv nad zemní rovinou
- dielektrický nebo vzduchový substrát
- napájení mikropáskové, koaxiální, vazební štěrbinou, kapacitní vazbou, ...

Klasifikace mikropáskových antén

Patchové (flíčkové) antény

Antény s postupnou vlnou

Planární dipóly a štěrbiny

Rectangular Slot with Microstrip Feed

Annular Slot with Microstrip Feed

Rectangular Slot with CPW Feed

Annular Slot with CPW Feed

Původ a vývoj MA

- 1950-60 nová technologie páskových vedení (filtry, koncept MPA)
- 1953 návrh první MPA (Munson)
- 1970-80 MA se stávají populárními (nízkoztrátové materiály, vývoj metod analýzy, specializované knihy, ...), vhodné jako antény pro letadla, rakety, ...

- 1990-2000 vývoj EM simulátorů pro analýzu MA, miniaturizační a vícepásmové techniky (s rozvojem mobilních komunikací)
- 2000 použití uměle vytvářených EM materiálů pro vylepšování vlastností MA, MPA (potlačení povrchových vln, fokusaci energie, ..)
- 2010 pokročilá miniaturizace, principiální limity/dosažitelné parametry

Vlastnosti MPA

Výhodné

- malá hmotnost, nízký profil, konformní tvar
- integrovatelné na DPS s aktivními prvky (on-chip antennas and flexible antennas)
- lineární i kruhová polarizace
- elektricky zmenšené a vícepásmové
- nízké výrobní náklady

Nevýhodné

- nižší účinnost
- nižší výkonová zatížitelnost
- úzká šířka pásma (vyšší Q)
- horší polarizační čistota

Napájení

koaxiální

mikropáskové

Napájení

vazební štěrbinou (Pozar, 1985)

Napájení

kapacitní vazbou (1987)

Metody analýzy

Analytické:

- Model vedení MPA jako úsek vedení s vyzařujícími štěrbinami, jednoduchý, méně přesný, dobrý fyzikální náhled na princip činnosti
- Dutinový model MPA jako dutina, složitější, přesnější

Numerické:

 Vlnová analýza (full-wave) – proudy/intenzity polí na/kolem na MPA, přesná, nutnost implementovat numerické řešení integrálních nebo diferenciálních rovnic (MoM, FDTD, FEM, hybridní metody), komerční simulátory pole (FEKO, CST MWS, Zeland IE3D, Ansoft HFSS, WIPL, ...)

Model vedení (Transmission line model, TLM)

MPA může být modelována jako dvojice vyzařujících štěrbin spojených širokým úsekem mikropáskového vedení délky $L \sim \lambda_g/2$

Rozložení E-pole

Rozměry, návrhové vztahy

$$L = \frac{c}{2\sqrt{\varepsilon_{ef}}f_r} - 2dl$$

 $L + 2dl = \lambda_g / 2$

$$W = \frac{c}{2f_r} \sqrt{\frac{2}{\varepsilon_r + 1}}$$

Model vedení (TLM)

MPA může být modelována jako dvojice vyzařujících štěrbin spojených širokým úsekem mikropáskového vedení délky $L \sim \lambda_g/2$

Vstupní impedance -

transformací impedancí $Z_{\check{S}}$ obou štěrbin podél úseků vedení L_1 a L_2 do napájecího bodu

$$\Rightarrow Z_{in} = 1/(1/Z_1 + 1/Z_2)$$

$$Z_{1} = Z_{c} \frac{Z_{s} + jZ_{c} \tan \beta L_{1}}{Z_{c} + jZ_{s} \tan \beta L_{1}}$$

$$Z_{2} = Z_{c} \frac{Z_{s} + jZ_{c} \tan \beta L_{2}}{Z_{c} + jZ_{s} \tan \beta L_{2}}$$

$$\beta = \frac{2\pi \sqrt{\varepsilon_{re}}}{\lambda_{o}}$$

Model vedení (TLM)

Charakteristická admitance mikropáskového vedení

$$Z_{c} = \begin{cases} \frac{60}{\sqrt{\varepsilon_{re}}} \ln \left[\frac{8h}{W} + \frac{W}{4h} \right] & \frac{W}{h} \leq 1 \\ \frac{120\pi}{\sqrt{\varepsilon_{re}} \left[\frac{W}{h} + 1.393 + 0.667 \ln \left(\frac{W}{h} + 1.444 \right) \right]} & \frac{W}{h} \leq 1 \end{cases}$$

$$\varepsilon_{re} = \frac{\varepsilon_{r} + 1}{2} + \frac{\varepsilon_{r} - 1}{2} \left(1 + \frac{10h}{W} \right)^{-1/2} \qquad \frac{d\ell}{h} = 0.412 \frac{\left(\varepsilon_{re} + 0.3 \right) \left(\frac{W}{h} + 0.264 \right)}{\left(\varepsilon_{re} - 0.258 \right) \left(\frac{W}{h} + 0.813 \right)}$$

¹⁾ Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 1997

Model vedení (TLM)

Vyzařující štěrbina je reprezentována admitancí $Y_{\S} = 1/Z_{\S} = G + jB$

kde *G* - vyzařovací ztráty

B - energie akumulovaná v rozptylovém poli, též kapacitní prodloužení rezonanční délky

Empirické vztahy pro G, B 1)

$$G = G_1 = G_2 = \frac{W}{120\lambda_o} \left[1 - \frac{1}{24} (k_o h)^2 \right]$$

$$B = B_1 = B_2 = \frac{W}{120\lambda_o} \left[1 - 0.636 \ln(k_o h) \right]$$

$$0,35 < W/\lambda_0 < 2$$

¹⁾ Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 1997

Vstupní impedance (TLM)

Typický průběh Z_{vst} a koeficientu odrazu

Vstupní impedance vs. frekvence

MS₁₁ vs. frekvence

Vstupní impedance (TLM)

V rezonanci je $Z_{in} = R_{in}$

$$R_{in}(x = L_1) = R_{in}(x = 0)\cos^2\left(\frac{\pi L_1}{L}\right) = \frac{1}{2G_1}\cos^2\left(\frac{\pi L_1}{L}\right)$$

Typické hodnoty R_{in} ($L_1 = 0$) ~ 100 až 300 Ω dle W, h, ...

Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 1997

Dutinový model MPA

Výška substrátu h malá ($h << \lambda$, h << W, L)

E pole se nemění s výškou h => $E = E_z(x, y), H = H_{xy}(x, y) - TM_{nm} \text{ módy}$

Hraniční podmínky:

shora, zdola (PEC)
$$E_t = 0$$
 $H_n = 0$

boční stěny (PMC)
$$H_t = 0$$
 $E_n = 0$

Z vlnové rovnice pro E rozložení pole v dutině

$$E_{z}(x,y) = \frac{j\omega\mu_{0}I_{0}}{L\cdot W} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\cos\left(\frac{m\pi x_{0}}{L}\right)\cos\left(\frac{n\pi y_{0}}{W}\right)\cos\left(\frac{m\pi x}{L}\right)\cos\left(\frac{n\pi y}{W}\right)}{k_{0}^{2}\varepsilon_{r}(1-j\operatorname{tg}\delta_{eff})-k_{mn}^{2}} \qquad k_{mn}^{2} = \left(\frac{m\pi}{L}\right)^{2} + \left(\frac{n\pi}{W}\right)^{2}$$

$$k_{mn}^2 = \left(\frac{m\pi}{L}\right)^2 + \left(\frac{n\pi}{W}\right)^2$$

Rezonanční frekvence

$$f_{R,mn} = \frac{1}{2\pi\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m\pi}{L}\right)^2 + \left(\frac{n\pi}{W}\right)^2}$$

Zohlednění rozptylového pole efektivními rozměry: $W_{\rm ef}$, $L_{\rm ef}$ místo W, L

Dominantní módy

Dva módy s nejnižší rezonanční frekvencí - dominantní módy

$$\mathsf{TM}_{10} \qquad \left(f_r\right)_{10} = \frac{c}{2L\sqrt{\varepsilon_r}}$$

$$TM_{10} \qquad (f_r)_{10} = \frac{c}{2L\sqrt{\varepsilon_r}}$$

$$TM_{01} \qquad (f_r)_{01} = \frac{c}{2W\sqrt{\varepsilon_r}}$$

Intenzita elektrického pole E

Proudová hustota J

Dutinový model MPA

Vstupní impedance - dutinový model (40 módů) a komerční MoM simulátor

$$\begin{split} Z_{in}(x_0, y_0) &= -j\omega\mu_0 h \sum_m \sum_n \frac{\left\langle E_{z,n}(x, y), J_z(x_0, y_0) \right\rangle^2}{\left\langle E_{z,n}(x, y), E_{z,n}(x, y) \right\rangle} \frac{1}{\left(k_0^2 \varepsilon_r (1 - j \operatorname{tg} \delta_{eff}) - k_n^2\right)} = \\ &= -\frac{j\omega\mu_0 h}{L \cdot W} \sum_m \sum_n \frac{\cos^2\left(\frac{m\pi x_0}{L}\right) \cos^2\left(\frac{n\pi y_0}{W}\right) \operatorname{sinc}^2\left(\frac{n\pi W_p}{2}\right) \kappa_m \kappa_n}{\left(k_0^2 \varepsilon_r (1 - j \operatorname{tg} \delta_{eff}) - k_n^2\right)} \end{split}$$

$$W_p = r e^{3/2}$$

Mazánek, M. Pechač, P., Šíření elektromagnetických vln a antény, skriptum ČVUT, 2008

Vyzařování z aperturové teorie

Zdrojové oblasti vyzařování – štěrbiny s el. polem

- štěrbiny #1, #2 hlavní zdroj vyzařování (ekviv. mag. proud. hustota M)
- štěrbiny #3, #4 vyzařování lze zanedbat, **M** v protifázi
- dvojice zářičů (štěrbin) vzdálených ~ $\lambda_{\rm g}/2$
- maximum vyzařování ve směru normály k ploše

$$\mathbf{M} = -2\hat{\mathbf{n}} \times \mathbf{E}$$

Vzdálené pole, směrová charakteristika

El. pole ve vzdálené oblasti

Směrové diagramy

Příklad měřených charakteristik patche

Parametry:

$$f_0 = 10 \text{ GHz}$$

$$\varepsilon_{\rm r}$$
 = 2,2

h = 1,6 mm

L = 9,06 mm

W = 10,68 mm

E-rovina

H-rovina

Šířka pásma

Impedanční šířka pásma (BW) je frekvenční rozsah, ve kterém je poměr stojatých vln *PSV* na vstupní bráně lepší než zvolená hodnota dané veličiny. (typ. $PSV \le 2$, u precizních měřících antén zpravidla $PSV \le 1,5$ event. 1,2; v mobilních komunikacích naopak i horší $PSV \le 3$)

$$BW = \frac{PSV - 1}{Q_T \sqrt{PSV}} \cdot 100$$
 [%], pro $PSV = 2$ je $BW = \frac{1}{\sqrt{2}Q_T} \cdot 100$ [%]

$$Q_T = \frac{\omega \cdot W_T}{P_T} = 1 / \left(\frac{1}{Q_d} + \frac{1}{Q_c} + \frac{1}{Q_r} \right) = \frac{1}{tg \delta_{ef}} \qquad Q_d = \frac{\omega \cdot W_T}{P_d} = \frac{1}{tg \delta}$$

Typická $BW \approx 1$ až 3 % pro $h \approx 0.02 \lambda_0$, s výškou lineárně roste.

Dominantní vliv má Q_r – je nejnižší.

$$Q_c = \frac{\omega \cdot W_T}{P_c} = \sqrt{\pi f \mu_0 \sigma t}$$

$$Q_r = \frac{\omega \cdot W_T}{P_r} = c \frac{\sqrt{\varepsilon_r}}{4f h}$$

Metody rozšíření šířky pásma

- 1. Snížením činitele jakosti Q
 - použití malé ε_r , vzduchový substrát (BW < 10%)
 - zvýšením výšky h substrátu (L-napájecí sonda, BW = 35 ~ 50 %)

$$BW \sim 1/Q_T \qquad Q_r = \frac{\omega \cdot W_T}{P_r} = c \frac{\sqrt{\varepsilon_r}}{4f h^{-1}}$$

- 2. Vícenásobnými blízkými rezonancemi
 - multimódový provoz patchů (BW = 20 ~ 30 %)
 - parazitní prvky kapacitně vázané k patchi (koplanární, vrstvené)

Směrovost, účinnost

- Lineární polarizace
- Směrovost $\approx 6 10 \text{ dBi}$
- Účinnost:

$$\eta = \frac{P_{vyz}}{P_{vyz} + P_{vod} + P_{diel} + P_{povrch}}$$

141,0 x 61,5 x 3,0 mm, $\varepsilon_{\rm r} = 3,05$, $tg\delta = 0,003$ $h/\lambda_0 \sim 0,009$, $\eta \sim 60$ %

- Pokles účinnosti pro velmi nízké h/ λ_0 (< 0,01)
- Ztráty
 - vyzařovací
 - vodivostní
 - o dielektrické
 - o povrchovými vlnami

Techniky zmenšování a vícepásmového provedení

Tvarovou úpravou motivů zkratováním a použitím zářezů a štěrbin

Vícepásmové MPA

 PIFA (Planar Inverted F Antenna) mobilního telefonu tvarovaný multirezonátor – znázornění intenzity elektrického pole

Nokia 8810 (1998) a 3210 (1999)

Motorola Razr V3 (2004)

Apple iPhone 4/4S (2010)

The antenna locations are defined in the sketch below. The view of the phone is from the back side, with Primary Antenna and the 30-pin connector at the bottom of the phone.

iPhone 4S

Samsung Galaxy S5 (2014)

Pásma:

GSM 850, 900, 1 800, 1 900 MHz WCDMA (3G) 850, 900, 1 700, 1 900, 2 100 MHz LTE (4G)

Wi-Fi 802.11 a/ac/b/g/n

Bluetooth 4.0

NFC

Vícepásmové MPA – technologie výroby

Dříve – DPS

Dnes – laserové přímé strukturování (Laser direct structuring, LDS), vodivý povrch slinován laserem (či ohřevem) na termoplastický substrát

Vícepásmové antény MT - technologie

 Molded interconnect device (MID) ¹⁾ – vstřikovaný/lisovaný tvarovaný termoplast s integrovanými elektronickými obvody

• Laser Direct Structuring (LDS) ²⁾ – přímé laserové strukturování vodivých tras, termoplast dotován vodivě-plastovými aditivy, které jsou aktivovány laserem

Vícepásmové antény MT - historický vývoj

Samsung Galaxy S8 (2017)

Pásma:

GSM: 850, 900, 1800, 1900 MHz

W-CDMA (3G): 850, 900, 1900, 2100 MHz

LTE (4G): 700 / 800 / 850 / 900 / 1700 / 1800 / 1900 / 2100 / 2600 MHz

Data: Wi-Fi 802.11 a/ac/b/g/n, Bluetooth 5.0, NFC

Poloha:

GPS

GLONASS

https://mobilenet.cz/katalog/samsung-galaxy-s8/specifikace

Vícepásmové antény MT - historický vývoj

Samsung Galaxy S10 (2019), S23 (2023)

Pásma:

GSM: 850, 900, 1800, 1900 MHz

W-CDMA (3G): 850, 900, 1900, 2100 MHz

LTE (4G): 700 / 800 / 850 / 900 / 1700 / 1800 / 1900 / 2100 / 2600 MHz

5G: ne (S10) / ano (S23)

Data: Wi-Fi 802.11 a/ac/b/g/n, Bluetooth 5.0, NFC

Poloha:

GPS

GLONASS

BEIDOU

GALILEO

Elektronický kompas

Vícepásmové antény MT - historický vývoj

Apple iPhone 13 (2020), 14 (2022)

Pásma:

GSM: 850, 900, 1800, 1900 MHz

W-CDMA (3G): 850, 900, 1900, 2100 MHz

LTE (4G): 700 / 800 / 850 / 900 / 1700 / 1800 / 1900 / 2100 / 2600 MHz

5G: ano

(28 GHz mmWave only servised by Verzion in the US in limited areas)

Data: Wi-Fi 802.11 a/ac/b/g/n, Bluetooth 5.0, NFC

Poloha:

GPS,

Glonass,

Beidou,

Galileo,

Elektronický

kompas,

UWB

https://mobilenet.cz/katalog/apple-iphone-13/specifikace

Kruhově polarizované MPA

Vybuzení dvou kolmých módů s fází posunutou o 90°

Zvýšení zisku – anténní řadou

Paralelní uspořádání zářičů

Zvýšení zisku – anténní řadou

Seriové uspořádání zářičů

Anténní řada radarového senzoru

Velká anténní řada s tvarovaným svazkem (Toyota)

Signal processing in baseband (ESPRIT etc...)

Zvýšení zisku - kolineární MPA

- Původní nápad Franklin, 1924 ¹⁾
- Soufázové buzení vyzařovacích elementů
- Implementace v koaxiálním ²⁾, mikropáskovém ^{3,4)} vedení a
- ve struktuře patchové antény ⁵⁾

Kolineární MPA

- MPA pracující na vyšších módech
- Použití poruchových prvků (PP) ve formě $\lambda_{\rm g}/2$ štěrbin
- PP eliminují vyzařování z nefázových zdrojových proudů (sudých půlvln)

Kolineární MPA

Rozměry:
patch 189 x 222 mm,
štěrbiny 56 mm,
zářezy 28 mm,
zemní rovina 240 x 260 mm,
výška substrátu 5 mm,
koaxiální napájení

 $G_{sim} \sim 15.4 \text{ dBi},$ $G_{meas} \sim 14.6 \text{ dBi}$ BW $\sim 7.1 \%$

Úroveň postranních smyček cca -10 dB

PZ poměr cca -20 dB

Anténní řada MPA s vychylovaným svazkem

- Plošná třísektorová anténa Závodný, V. (DIP 2002)
 - Cíl: plošná anténa se skloněným maximem směrové charakteristiky do tří sektorů podle volby vstupního konektoru (3 vstupy)
 - Metoda:
 - použití 4-prvkové uniformně buzené anténní řady patchových zářičů
 - realizace fázového posunu napájecích proudů pomocí Butlerovy matice

Obr. 4.16: Upravená napájecí síť

$I_n(-)$	$Out_5(^{\circ})$	$Out_6(^{\circ})$	$Out_7(^{\circ})$	$Out_8(^{\circ})$	$\theta_0(^\circ)$
1	0	90	180	270	-30
2	0	0	0	0	0
3	270	180	90	0	30

Tab. 4.5: Fázové posuvy upravené Butlerovy matice

47

Plošná třísektorová anténa

Návrh dílčích komponent antény

4-prvková řada patchů

Plošná třísektorová anténa

Směrové charakteristiky

a) Měřeno na portu In2

