Algoritmo de agrupamento Expectation-Maximization

Seminário de Fundamento de Sistemas Inteligentes

Antônio Carlos Junior 16/0112745 Mayara C. Marinho 18/0025210

Visão geral

- **Expectation Maximization (EM)**: Método iterativo para estimar parâmetros em modelos estatísticos. Foi pensado para ser utilizado em dados multidimensionais.
- Gaussian Mixture Model (GMM): Modelo que assume que todos os pontos são gerados como uma mistura de um número finito de distribuições Gaussianas.
- Utilizado na prática como algoritmo de aprendizado não supervisionado de clusterização como o K-Means.
- Hard-Cluster (K-Means) x Soft Cluster (EM)

GMM

1 Dimensão

Gráfico de um MMG com 3 componentes

Fonte: Medium.

Múltiplas Dimensões

Fonte: Scikit Learn.

Problema

- GMM por si só não tem os parâmetros necessários para definir a distribuição de gaussianas que melhor definem os dados.
- EM surge como uma solução para este problema, por meio da definição de parâmetros co-dependentes das gaussianas.
- Quais são os parâmetros necessários?
 - Pesos de cada gaussiana; φ_j.
 - \circ Médias das gaussianas; μ_j
 - o Covariância das gaussianas; Σ_i

$$p(x) = \sum_{j=1}^{k} \phi_j \mathcal{N}(x; \mu_j, \Sigma_j)$$
$$\sum_{j=1}^{k} \phi_j = 1$$

Metodologia EM

1. Inicializar aleatoriamente os parâmetros μ 's, Σ 's, e ϕ 's;

2. Passo E:

Computar a probabilidade de cada ponto x_i ter sido gerado por uma gaussiana k, usando os parâmetros μ , Σ , e ϕ .

3. Passo M:

Atualizar os parâmetros μ , Σ , and ϕ , utilizando as probabilidades obtidas no passo E.

4. Repetir os passos 2 e 3 até que não haja mudança significativa na função da esperança do logaritmo da verossimilhança.

Expectation Maximization for Old Faithful Eruption Data (Wikipedia)

Vantagens

- 1) Fornece informações de dispersão dos clusters;
- 2) Processo "generativo": descreve como os dados foram gerados, por meio de uma distribuição;
- 3) Pode ser utilizado para preencher dados ausentes em uma amostra;
- 4) Pode ser utilizado para definir variáveis latentes (definidas por um modelo matemático).

Desvantagens

- 1) O Algoritmo EM é bastante sensível à inicialização dos parâmetros;
- 2) A complexidade computacional do EM é maior que a do K-Means;
- 3) O EM demora para convergir em relação ao K-Means;
- 4) Requer uma configuração manual do número de clusters.

Visualizações

Principais referências

- https://medium.com/b2w-engineering/o-racioc%C3%ADonio-por-tr%C3%A1s-do-algoritmo-expectation-maximization-91d4a8588778
- https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4
 342fdbb1
- https://pythonmachinelearning.pro/clustering-with-gaussian-mixture-models/
- https://www.cs.toronto.edu/~hinton/absps/emk.pdf
- https://pt.wikipedia.org/wiki/Algoritmo de maximiza%C3%A7%C3%A3o de expectativa