

Written assessment, June 10, 2024

Last name, First name ____

Exercise 1 (value 9)

Un partito politico deve decidere come allocare i suoi candidati ai collegi elettorali. Il partito ha un insieme D di candidati, ogni candidato $i \in D$ ha un numero di voti atteso pari a r_i , indipendente dal collegio in cui si candida. I collegi elettorali sono dati dall'insieme C e per ogni collegio $j \in C$ il numero di votanti attesi nel collegio é v_j . Il partito puó assegnare al massimo θ candidati ad ogni collegio, ed un candidato può essere assegnato a piú collegi. I voti ricevuti dal partito in un collegio sono la somma dei voti ricevuti da tutti i suoi candidati. Il partito "conquista" un collegio j se i suoi candidati ricevono piú del 50% dei voti v_j . Si scriva un modello matematico lineare per aiutare il partito ad assegnare i candidati ai collegi in modo che tutti i candidati siano assegnati ad almeno un collegio e sia massimizzato il numero atteso dei collegi "conquistati"

Exercise 2 (value 9)

Dato il seguente LP

$$z = \min$$
 $x_1 + 2x_2 + 2x_3$
 $x_1 + x_2 + x_3 \ge 10$
 $2x_2 - x_3 \le 20$
 $x_1, \dots, x_3 \ge 0$

- Scrivere il problema duale.
- Risolverlo con un metodo grafico.
- Risolvere il problema primale con le condizioni di ortogonalità

Exercise 3 (value 9)

Si consideri il problema knapsack con p = (10, 10, 20, 11), pesi w = (10, 20, 50, 30), e capacitá dello zaino c = 100. Si calcoli la soluzione ottima usando il metodo branch-and-bound.

Written assessment, June 10, 2024

Solution sketch

Exercise 1

Variables

 $x_{ij}=1$ se il candidato i é asegnato al collegio $j,\,0$ altrimenti $y_j=1$ se il partito "conquista" il collegio j

$$\max \sum_{j \in C} y_{j} \\ \sum_{i \in D} x_{ij} \ge 1 \qquad i \in D \\ \sum_{i \in D} x_{ij} \le \theta \qquad j \in C \\ \frac{v_{j}}{2} y_{j} + 1 \le \sum_{i \in D} r_{i} x_{ij} \quad j \in C \\ x_{ij} \in \{0, 1\} \qquad i \in D, j \in C \\ y_{j} \in \{0, 1\} \qquad j \in C$$

Exercise 2

$$z_P = \min$$
 $x_1 + 2x_2 + 2x_3$ $x_1 + x_2 + x_3 \ge 10$ $x_1 + x_2 + x_3 \ge -20$ $x_1, x_2, x_3 \ge 0$ $z_D = \max$ $10u_1 - 20u_2$ $u_1 \le 1$ $u_1 - 2u_2 \le 2$ $u_1 + u_2 \le 2$ $u_1, u_2 \ge 0$

Soluzione duale ottima $u = (1, 0), z_D = 10$

Complementary slackness

$$\begin{cases} (x_1 + x_2 + x_3 - 10)u_1 = 0\\ (-2x_2 + x_3 - 20)u_2 = 0\\ (u_1 - 1)x_1 = 0\\ (u_1 - 2u_2 - 2)x_2 = 0\\ (u_1 + u_2 - 2)x_3 = 0 \end{cases} \Rightarrow \begin{cases} (x_1 + x_2 + x_3 - 10) = 0\\ 0 = 0\\ (0)x_1 = 0\\ (-1)x_2 = 0\\ (-1)x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 10\\ 0 = 0\\ x_1 \ge 0\\ x_2 = 0\\ x_3 = 0 \end{cases}$$

Soluzione primale ottima $x = (1, 0, 0), z_P = 10$

X

Exercise 3

 $p_j = (10, 10, 20, 11)$ $w_j = (10, 20, 50, 30),$ c = 100 The objects are sorted correctly.

Soluzione ottima in P_5 (oppure in P_6) z=41, x=(1,0,1,1)