

Intro & Team

A quick overview of our topic and our team.

Data

Dataset of credit granting for different applicants:

Gender, Marital Status, Dependents, Self Employed, Education, Applicant & Co

Appliant Income, Property Area, Loan Amount, Loan Amount Term, Credit History,

Loan Status (target)

Task

Treating gender fairness in a credit granting model.

Team

Ruslan – Test Engineer
Isabella – Finance Consultant

Mentor

Patrick - Data Scientist

Goal

No gender biases in terms of fairness when granting credit.

Data

A deeper look into our dataset.

data

Our approach to solve the problem.

Preparation

Analysis of the dataset and Hyperparameter dividing it into training and test

- Using different methods and comparing the results
- Utilizing **Random Forest** as our Method
- Selecting Positive Prediction Ratio (PPR) as fairness measure (proportion of positive predictions for each group)

Modeling

- optimization and crossvalidation
- Accuracy is not a suitable metric because the data is not balanced
- Training of the model to get the best **F1 Score** (balance of precision and recall)
- Determine the **PPR scores** for men and women

$$F1 Score = \frac{TP}{TP + 0.5(FP + FN)}$$

$$PPR = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

• Treating the unfairness of the model ex-post by **changing** the models default threshold

Fairness Analyzation

• Adjusting the threshold can minimize the difference between ppr_male and ppr_female and **improve** fairness in the results

Conclusion

Our findings and learnings.

- The data is unbalanced, and we assume there is bias in the data, as 81% of applicants in the dataset are male
- A balanced model in terms of performance does not mean
 fairness across different groups in the results
- We have the smallest difference in the ppr score for female and male applicants by using a threshold of 0.44
- Increasing the fairness between gender affects the performance of the model

	Optimized Performance	Optimized Fairness
Threshold	0.5	0.44
F1 Score	0.852	0.846
PPR Male	0.804	0.855
PPR Female	0.767	0.867
Difference in PPR	0.037	0.012

