

INFORME PLENA CARGA DE UN MOTOR DIESEL LABORATORIO DE MÁQUINAS

Alumno: Carlos Aguilar Pinto

Asignatura: ICM557-3

Fecha: 03/10/2020

Profesores: Cristóbal Galleguillos Ketterer

Tomas Herrera Muñoz

Contenido

INTRODUCCIÓN.	
OBJETIVOS.	
DESARROLLO.	IV
PROCEDIMIENTO DEL LABORATORIO	IV
TABLA DE DATOS Y PROCESO DE CALCULO	V
ANÁLISIS DE RESULTADOS	VI
1. POTENCIA EFECTIVA, PRESIÓN MEDIA EFECTIVA, TORQUE Y CONSUMO ESPECIFICO	VI
2. GRÁFICOS OBTENIDOS POR EL FABRICANTE Y DATOS	
CONCLUSIÓN.	x
DECEDENCIAS	VI

Introducción.

La potencia indicada se define como la energía que se genera al interior del cilindro. Esta potencia no es totalmente transmitida al cilindro, existirán perdidas en el proceso de distintos tipos.

Con esto dicho podemos decir que el motor de combustión tiene una potencia efectiva, que es la potencia aprovechable que se transmite al eje.

Objetivos.

- Analizar el comportamiento de los parámetros obtenidos de la experiencia: Potencia efectiva, presión media efectiva, torque, consumo especifico, presión de admisión, temperatura del aceite y gases de escape en función de las revoluciones del motor.
- Comparar los valores y curvas obtenidas con las obtenidas por el fabricante del motor.

Desarrollo.

Procedimiento del laboratorio

1. Identificación del motor

• Marca: Deutz

• Modelo: F3L912W

• Detalles: Encendido por compresión, 4T, enfriado por aire.

• Cilindrada: 2827 cm3

• N° Cilindros: 3

Diámetro: 100 mm

• Carrera:120 mm

• Potencia Máxima:

• Torque Máximo:

2. Poner en funcionamiento el registrador de temperaturas

- 3. Poner en marcha el motor y paulatinamente acelerarlo y poniendo carga hasta llegar a la plena carga a 1000RPM. Tolerancia de velocidad de rotación +/- 5 RPM y el acelerador permanece fijo a fondo durante el ensayo.
- 4. Iniciar primera ronda de mediciones. Las lecturas instantáneas: velocidad de rotación, indicación de la balanza del dinamómetro, y temperaturas, se deben tomar una vez que se haya consumido la mitad del volumen de la probeta de combustible.
- 5. Una vez tomadas las lecturas quitar la carga de forma que el motor se acelere a 1.100 +/-5 RPM tomas las lecturas de acuerdo con el procedimiento del punto anterior.
- 6. Continuar el ensayo aumentando la velocidad en 100 +/- 5 RPM. Continuar hasta llegar a la velocidad en que la potencia cae notoriamente
- 7. Formulas a utilizar:
 - a. Potencia efectiva: $P_e = \frac{w*N}{200} [CV]$
 - b. Presión Media Efectiva (p_{me}): $p_{me} = 1.59 * w [\frac{Kg_f}{cm^2}]$

IV

c. Consumo específico de combustible (c_e): $c_e = \frac{379800}{t_{cons}*P_e} \; [\frac{g}{CV*h}]$

Tabla de datos y proceso de calculo

Va	Valores Medidos									
N °	Velocidad Referencia	Velocida d Real	Carga Freno	Vco mb	tco ns	Ta mb	Tad m	Tace ite	Te sc	Δpadm
	[rpm]	[rpm]	[-]	[cm^ 3]	[s]	[°C]	[°C]	[°C]	[°C	[mmH2 0]
1	1000	1002	4,55	125	99	18	29	72	46 8	76
2	1100	1102	4,6	125	88	18	29	74	48 2	79
3	1400	1402	4,84	125	65	18	27	88	55 0	102
4	1500	1500	4,81	125	62	18	28	91	55 1	110
5	1600	1598	4,74	125	61	18	29	93	54 9	116
6	2100	2098	4,27	125	50	20	29	99	53 0	188
7	2200	2198	3,96	125	50	20	29	99	51 4	200

Utilizando las fórmulas expuestas en el punto referido al procedimiento, y realizando las siguientes conversiones de unidades, procedemos a analizar los valores obtenidos.

- 1[CV] = 0.7457[kW]
- $1[kg_f] = 1[N]$

Datos técnicos

Tipo de motor		F3L912
Número de cilindros		3
Oficio / carrera	mm	102 / 132
Cilindrada		3,23
Régimen nominal máximo	min ⁻¹	2500
Potencias ¹⁾		F3L912
Potencia según ISO 14396	kW	40
para revoluciones	min ⁻¹	2500
Par máx.	Nm	185
para revoluciones	min ⁻¹	1450
Mínimo relantí	min ⁻¹	650
Consumo específico de combustible ²⁾	g/kWh	225
Peso según a DIN 70020, parte 7A3)	kg	277

Ilustración 1:Datos Técnicos Motor

análisis de Resultados

1. Potencia efectiva, presión media efectiva, torque y consumo especifico.

Datos	Pe	Pme	Ce	Т	Pe	Т
-	[CV]	[Kgf/cm2]	[g/CV*h]	[Kgf*m]	[kW]	[N*m]
1	22,7955	7,2345	168,29478	16,32085	16,998604	160,10754
2	25,346	7,314	170,27969	16,5002	18,900512	161,86696
3	33,9284	7,6956	172,21787	17,36108	25,300408	170,31219
4	36,075	7,6479	169,80752	17,25347	26,901128	169,25654
5	37,8726	7,5366	164,39932	17,00238	28,241598	166,79335
6	44,7923	6,7893	169,58272	15,31649	33,401618	150,25477
7	43,5204	6,2964	174,53884	14,20452	32,453162	139,34634

Ahora bien, con estos datos obtenidos se graficarán y se compararán con la información dada por el fabricante.

Ilustración 2: Grafico torque vs RPM

Ilustración 3:Grafico Consumo especifico vs RPM

Ilustración 4:Grafico potencia vs Torque

Ilustración 5:Grafico Temperatura vs RPM

Ilustración 6:Grafico Presión media efectiva vs RPM

2. Gráficos obtenidos por el fabricante y datos

Ahora se adjuntan los gráficos dados por el fabricante específicamente para el motor a estudiado F3L 912

Ilustración 7:Grafico obtenido por fabricante

Datos técnicos

Tipo de motor		F3L912
Número de cilindros		3
Oficio / carrera	mm	102 / 132
Cilindrada	1	3,23
Régimen nominal máximo	min ⁻¹	2500
Potencias ¹⁾		F3L912
Potencia según ISO 14396	kW	40
para revoluciones	min ⁻¹	2500
Par máx.	Nm	185
para revoluciones	min ⁻¹	1450
Mínimo relantí	min ⁻¹	650
Consumo específico de combustible ²⁾	g/kWh	225
Peso según a DIN 70020, parte 7A3)	kg	277

Ilustración 8:Datos técnicos

Ahora bien, con toda esta información obtenida podemos observar claramente el comportamiento de la potencia y el torque según vamos aumentando las RPM, con ello vamos viendo el estado del motor.

De los primeros gráficos a analizar son los comparativos:

• Del grafico de Torque vs RPM podemos observar una clara similitud en los gráficos obtenidos cotejados con los del fabricante, esto nos indica una buena salud del

- motor ya que con el mismo ensayo se pueden obtener valores bastante cercanos a cuando estaba nuevo, esto implica que el motor sigue rindiendo bien.
- El otro grafico a comparar es el de Potencia vs Torque que nuevamente podemos observar valores bastante similares, lo que nos indica claramente una buena salud del motor y un buen rendimiento.

Ahora bien de los otros gráficos obtenidos primero que nada el grafico de consumo especifico tiene un aspecto bastante raro del cual cuesta es complicado sacar conclusiones, si lo comparamos con los datos del fabricante con respecto al consumo especifico vemos una gran variabilidad pero que tiene una tendencia a estar cercano al valor dado por el fabricante, aun así el grafico esta mal o hubo un error humano de algún tipo para tener una gran variedad como esta aun cuando los otros gráficos comparativos son similares.

Ahora bien, tenemos los gráficos de Pme y T°esc, estos gráficos nos indican los parámetros de la presión a la que se mantiene dentro de los pistones durante el ensayo y el rango de temperaturas a las que está funcionando el motor.

Con estos datos podemos verificar la salud del motor al encontrarse dentro de rangos normales para este tipo de motor.

Conclusión.

Con los datos registrados y los instrumentos de medición, se pudieron realizar mediciones de los parámetros necesarios para el calculo de las variables del motor.

Estos resultados se pusieron en contraste con los valores indicados por el fabricante para así poder saber el estado de motor actualmente.

Referencias.

https://www.deutzusa.com/fileadmin/contents/usa/Spanish_Brochures/Tier_2/F4L9 12-F6L912_es.pdf