ECE 8843-A HOMEWORK-1

Submitted by:

Name: ANIRUDHA

SUNDARESAN

GT ID: 903301401

Date: September 1, 2017

20- prazza registered.

Machines are omnipresent and continue to have an increasing role in our decision making processes mainly because they can analyse a lot of data better and more effectively than we can. Everything that we will be doing in the future, will depend on machines. Self-driving cars which utilise the concepts of machine learning with artificial intelligence (AI) are already on the market now. In the future, everything around us will be automated and hence we will come to a point where we will have to rely on machines for basic tasks (Haven't we already!). The main questions that machine learning deals with are these: Given a set of input points and their corresponding output points, can the machine correctly guess the output for an input point not specified in the initial set of input points? Also, if only a set of data points are given, will the machine be able to correctly guess the pattern governing these data points?

What we are learning right now in this course is the mathematical foundations required for machine learning. Machine learning algorithms help the machine learn the input data in an effective way to make decisions. These type of algorithms usually use the probabilistic modelling and the geometric modelling. Both models provide a concise way of representing data points. We need to cover basic mathematical concepts centred on probability, statistics and linear algebra to work with these models. In the first week, we have begun to address the main questions by analysing how a function can be fit to a set of data points. Many problems can then be replaced by this function for further calculations and data modelling. Polynomial curve fitting comes in handy here and we can use the Lagrange interpolation (although limited to lower orders) and Spline polynomial basis functions for this. Using Taylor's expansion formula, any function (originally, not a polynomial) can be expressed as the sum of polynomials. Fourier series converts any random non periodic function to the sum of periodic/harmonic functions. A polynomial function is easily computable using basic mathematical operators. It is infinitely smooth and also easy to visualize graphically. Hence, polynomial representation of functions is highly preferred. ML will come to play a huge role in a variety of applications.

What makes machine learning so ubiquitous is that it can be used with many other existing branches. For example, in the case of image analysis and pattern recognition, ML algorithms can be used to develop a system to classify unknown images. Such a system is highly useful in making diagnoses and prognoses in the field of healthcare. (http://web.mit.edu/profit/PDFS/EdwardTolson.pdf). Machine learning to be used in the field of trading is highly popular nowadays. Combining ML algorithms with High frequency trading algorithms will effectively decide the number of stocks to buy and also at what price it will yield highest profits. Decision making processes will heavily depend on ML in the years to come. Combining this with AI, a machine can learn to do something of its own accord, the only input needed are some initial state conditions.

```
function ftl = piecepoly2(t,alpha)
t gets an input time vector t.
t gets an input alpha vector alpha.

* The fellowing lines of code are written:

* slpha = [-1 3 2 -1 4] or any alpha you want.

* t = linspace (-5,7,10000) or any time vector you want. The third

* parameter in linspace command gives the sampling rate/ number of samples.

* Higher the value of the rate, smoother is the curve.

* ft = piecepoly2(t,alpha) to get samples of ft as per the question.

* plot(t,ft); xlabel('t'); ylabel('ft') for getting the smooth curve.

for i=1:length(t)
    ftl(i) = alpha(1)*funcb2(t(i)) + alpha(2)*funcb2(t(i)-1) + alpha(3)*funcb2(t(i)-2)*

* + alpha(4)*funcb2(t(i)-3) + alpha(5)*funcb2(t(i)-4);
end
end
```

function b2 = funcb2(t)

latted by preceptly2.m

this function calculates the b2(t) according to the question based on the if (t >=-1.5) && (t<=-0.5) b2 = $((t + 1.5)^2)/2$.

1f (t >=-1.5) && (t<=-0.5) b2 = ((t + 1.5)^2)/2; else if (t>=-0.5) && (t<=0.5) b2 = 0.75 - (t^2); else if (t>=0.5) && (t<=1.5) b2 = ((t-1.5)^2)/2; else b2 = 0; end end end

This code calculates:

$$\frac{5(t)}{52(t)} = \begin{cases} (t+3|2)^{2}/2 & \frac{-3}{2} \le t \le -1/2 \\ -t^{2}+3/4 & -1/2 \le t \le 1/2 \end{cases}$$

$$(t-3|2)^{2}/2 \quad 1/2 \le t \le 3/2$$

$$0 \quad |t| \ge 3/2$$

Scanned by CamScanner

2(1)	$f(0) = 1$ $f(1) = \frac{1}{2}$ $f(2) = -2$ $f(3) = -3$ $f(4) = -1$
200	wild the contract wilds the also made
	From the question we know that I (t) is a second order spline that is defined by the overlap of 5B oplines.
	that is defined by the overlap of 5B-oplines.
	4
	$f(t) = \sum_{k=0}^{4} a_k b_2 (t-k)$
	7581 1 - K=0 1 - A - A - A - A - A - A - A - A - A -
	b2(t) = \((t+3/2)^2/2 -3/2 \leq t \leq -1/2
	-t2+3/4 -1/2 \le \frac{1}{2}
	2 2/2 11 4 + 4 3/2
	$\frac{(t-3/2)^{2}/2}{(t-3/2)^{2}/2} \qquad \frac{1}{2} \leq t \leq 3/2$ $\frac{1}{2} \leq $
	D (t) ≥ 3/2
	3 (c) Generalizado 3(D.
	Alo) - 1 = an b 2 (0) + a, b2 (-1) + a2 b2 (-2) + a3 b2 (-3) + a4 b2 (-4)
	(a) 1 (b) = (b) = (c) (c) (c)
	f(1) = 1/2 = a0 b2 (1) + a, b2 (0) + a2 b2 (-1) + a3 b2 (-2) + a4 b2 (-3)
7	f(2) = -2 = ab b2(2) + ar b2(1) + a2 b2(0) + a3 b2(4) + a4 b2(-2)
((1-10) -) 44	f(2) = -2 - (6) 62(2) + (1) 02(1) + -22(3) + -32(3) + -402(
100 C) at	f(3) = -3 = ao b2(3) + a, b2(2) + a2 b2(1) + a3 b2(0) + a4 b2(-1)
	f(4) = -1 = a0 b2 (4) +a1 b2 (3) +a2 b2 (2) +a3 b2 (1) +a4 b2 (0)
/. \	
(-)	Using the fine is in from 2(a), we get:
	$b_2(-4) = b_2(-3) = b_2(-2) = b_2(2) = b_2(3) = b_2(4) = 0$
	b2(1) = 0.125 = b2(+)
	10° 10° Andrew A see
4.	On substitution: [fmatrix] = [B2 malrix] [alpha]
	1010 341 345
	(1) (0.75 0.125 0 0 0) (ao
	0.5 = 0.125 0.75 0.125 00 01
1	1 2 0 0.125 0 0.125 0 125
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N-WI	
pleys wester	Kindson A 5 windows 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 (-(N-1)) : Amatrix = $b_2(0)$ $b_2(1)$. . . $b_2(-(N-1))$ $b_2(0)$ $b_2(0)$ $b_2(0)$ b2 (N-2) b2 (N-3) - b2 (-1)
b2 (N-1) b2 (N-2) - - b2 (0) 52(0) Suppose that f(t) = S and f(t) = 0Early Infinite scaveru of numbers Replace t by n for more clarification So, equation (1): $f(n) = \sum_{i=-\infty}^{\infty} a_i b_2(n-i) - (2)$ Given: $s(n) = \sum_{k=0}^{\infty} h_k a_{n-k}$ Let k=n-k=0 k=n-kChanging limits from k to k. L) (k) with (k) Expanding (2), f(n) = - + 20b2(n) + a, b2(n+) + - a, b2(n+1) Expanding (3 +(n) = . I ho (an) + h, an + + ...

In comparing coefficients:

hn (a) + hn + a,

hn = hr (n); hn = br (n) and

sh on Herre Jones John Prez (b2(n)) . b2(t) as defined i

Scanned by CamScanner

(a) For doing this, I used the polytick godyval comb We get the polynomial as: [nim thorder m] 0.001 x⁹ - 0.6037 x⁸ + 0.0427 x⁷ - 0.1616 x - 0.7653 x⁸

+ 9.8373 x⁴ - 38.9988 x³ + 71.9967 x² - 57.80761

+ 13.6239

The exact Lagrangian interpolator (a function that I wook in MAR de).

[minthorderlag.m] The graphs obtained in both the cases are circular and poss through all the points. The second of the second second 4(b) Uses Juncham, piecepolya (t, algha) on baptimen.m. Please see codes and graphs in the following pages. to () do a () edo do a wall of Stated of State of the same of the

(a) Using Lagrangian algorithm.

```
Finally it should be linspace T and plot T vs f(t) and a(m+1) vector is the y vector.
T = linspace (0,10,100);
x=1;
num =1;
den =1;
for i=1:length(T)
    f(i) = 0;
for m=0:9
    for k=0:9
        if (m\sim=k)
         b(k+1) = (t(m+1)-t(k+1));
         x(k+1) = T(i) - t(k+1);
         else b(k+1)=1;
            x(k+1)=1;
         end
     den = cumprod(b);
     num = cumprod(x);
     p(m+1) = num(10)/den(10);
  for m=0:9
     f(i) = f(i) + a(m+1)*p(m+1);
 plot(T,f);
 xlabel('t--->');
 ylabel('y--->');
 hold on
 plot(t, y, '*');
 hold off
```



```
F:\Fall 2017\Math Foundatio...\bsplinex.m
function ft = bsplinex(t,y)
       d = zeros(10,10);
for i=1:length(t)
   d(i,1) = funcb2(t(i));
   d(i,2) = funcb2(t(i)-1);
   d(i,3) = funcb2(t(i)-2);
   d(i,4) = funcb2(t(i)-3);
   d(i,5) = funcb2(t(i)-4);
   d(i,6) = funcb2(t(i)-5);
   d(i,7) = funcb2(t(i)-6);
   d(i,8) = funcb2(t(i)-7);
   d(i,9) = funcb2(t(i)-8);
   d(i,10) = funcb2(t(i)-9);
   D = d^{(-1)};
   a = D*y;
   % calculting the alpha vector.
 T = linspace (0, 10, 10000);
 for j=1:length(T)
     ft(j) = [a(1)*funcb2(T(j)) + a(2)*funcb2(T(j)-1) + a(3)*funcb2(T(j)-2) + a(4) \checkmark
*funcb2(T(j)-3) + a(5)*funcb2(T(j)-4) + a(6)*funcb2(T(j)-5) + a(7)*funcb2(T(j)-6) + a \checkmark
(8)*funcb2(T(j)-7)+a(9)*funcb2(T(j)-8)+a(10)*funcb2(T(j)-9)];
plot(T,ft);
xlabel('t--->');
ylabel('y--->');
hold on
plot(t, y, '*');
```

H

11:36

Scanned by CamScanner

Sence of (x) = |x| for pz1 T'(X) = p |x| P-1 x = p|x| P-2 x [] P=1 | + "(6) = +'(0) 7 6>a, then 3 cases = a, b >0 f'(b) > f'(a) < :. f((b) > f'(a) for all b> a Now, let us assume a point c in between the points a & b Then, by MVT and because f!(b) > f'(a) (ma) (a) 12 (m) - (m) (m) (m) (m) (m) 2 Then $f(b)-f(a+b) \geq f(a+b)-f(a)$ > f(b)-f(a+b) > f(a+b)-f(a) [b>a] f(b) + f(a) > f(a+b)Rearranging

Since both $f(a) \in f(b)$ them f(c)f(a+b) < f(a) + f(b) greater than f(c) (A) HENCE PROYED Hence, CONVEX. This is valid only for a f(b) f(c) = f (a+6)

Scanned by CamScanner

95(b) Let s be the set of all linginite length) sequences Sp = $\left\{ \left\{ 2n_{n=1}^{\infty} \left(\frac{2}{2} |2n_{n}|^{2} \right)^{n} < \infty \right\} \right\}$ Show that s is indeed a linear vector space. For s to be a linear vector space, it should be ilsed under bealer multiplication and vector addition. Hxyes ant by Es, Ha, b, EF. then s is a linear vector space over the field F. Let us take one sample sequence and their, the condition is. equi @ powerps |21/2 + |23/2 + - + |200/2 | 20 P21

Likewise, another sample sequence follows the unalition:

(|y,|| + |y2|| + |y5|| + - + |y00||). | 20

equation @ power p, |y,|| + |y1|| + |y00|| 20

From part(a) of 5th question, a, B just scalars [xx1] + [By] + 2 | xx1+ By | 7 -0 Likewite

[xxz]P+ [Byz]P = [xxz+ byz]P

2 Finally, [xxxx] + [Byxx] > | xxxx + Byxx] - 60

Adding equations O D [xx,18+ [xx2] + 1 | xx2] + + + 1 | xx2) | > = = [| xx + 1 y 1 | + + 1841/4 1842/ + --+ [B 400] [ack + Ayof] a liver with your it should be also From equation @ and B L.H.S & 00 Powa (1/p) on both cides to yield

[[xx + By | P + | xx + By | P + - + | xx x + By x | P | 2 00 [N=1 PXNIP) PZ 00 Thus, with one Emit at conditions with a as rector space we have proved that the main condition satisfies Thus, 'S is indeted a linear vector space. for the formal total 1000 + 100 1 ×