ОСНОВАНИЯ ТИПЫ РЕАКЦИЙ

окислитель + восстановитель

(+ среда) - ОВР ПРИМЕРЫ:

1) Fe + Cl, = FeCl,

2) Na,SO, + H,O, = Na,SO, + H,O

более сильный ВЫТЕСНЯЕТ

более слабого - вытеснение ПРИМЕРЫ:

1) Fe + 2HCl = FeCl, + H,

2) Fe + CuSO, = FeSO, + Cu

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

1) Na,0 + CO, = Na,CO,

2) NaOH + HCl = NaCl + H,O

электролит + электролит (p-p) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

1) NaOH + HCl = NaCl + H₂O

2) KCl + AgNO, = KNO, + AgI

КЛАССИФИКАЦИЯ ОСНОВАНИЙ

Me^{+1,+2} + OH⁻, кроме Zn(OH)₂, Be(OH)₂, Sn(OH)₂, Pb(OH)₂

К основаниям относят гидроксиды металлов с степенях окисления +1, +2, кроме $Zn(OH)_2$, $Be(OH)_2$, $Sn(OH)_2$, $Pb(OH)_2$ Классифицировать основания можно по растворимости, кислотности (!) и силе.

по растворимости

растворимые

NH, ОН и щёлочи - гидроксиды Щ/Щ3 Ме

НЕрастворимые

все остальные $Fe(OH)_2$, $Cu(OH)_2$ и т.д.

по кислотности

однокислотные КОН, LiOH, NaOH двухкислотные Ca(OH)₂, Ba(OH)₂, Fe(OH)₂,

по силе

сильные

щёлочи и АдОН

слабые все остальные

РЯД АКТИВНОСТИ ОСНОВАНИЙ

CsOH - RbOH - KOH - NaOH - LiOH - Ba(OH)₂ - Sr(OH)₂ - Ca(OH)₂ - Mg(OH)₂ - Fe(OH)₂ - NH₄OH - Zn(OH)₂ - Al(OH)₃ - Fe(OH)₃

сила гидроксидов убывает...

ОКРАШИВАНИЕ ИНДИКАТОРОВ

Растворимые основания, кроме NH,OH, - щёлочи - СИЛЬНЫЕ электролиты -> диссоциируют в растворах на Meⁿ⁺ и OH⁻ -> имеют щелочную среду, а значит, окрашивают индикаторы.

НЕрастворимые основания - не диссоциируют - не окрашивают.

NaOH + фф = малиновый KOH + лакмус = синий Fe(OH)₂ + мо = оранжевый Ca(OH)₂ + лакмус = синий CsOH + мо = жёлтый Ba(OH)₂ + фф = малиновый Cu(OH)₂ + лакмус = фиолетовый

РЕАКЦИИ ИОННОГО ОБМЕНА

Основания являются электролитами, поэтому вступают в РИО с кислотами и солями. СИЛЬНЫЕ ОСНОВАНИЯ - ЩЁЛОЧИ

РАСТВОРИМОЕ ОСНОВАНИЕ

РАСТВОРИМАЯ СОЛЬ

РАСТВ/НЕРАСТВ ОСНОВАНИЕ **РАСТВОРИМАЯ КИСЛОТА**

ГАЗ ОСАДОК СЛ. ЭЛЕКТРОЛИТ (ВОДА)

КИСЛОТНОЕ в избытке - КИСЛАЯ соль, ОСНОВНОЕ - ОСНОВНАЯ ИЛИ СРЕДНЯЯ.

NaOH + HCl = NaCl + H₂O RbOH + H₂SO₄(и36) = RbHSO₄ + H2O Cu(OH)₂ + HBr = CuBr₂ + H₂O Ca(OH)₂ + H₃PO₄(и36) = Ca(H₂PO₄)₂ + H₂O NH₄OH + H₂SO₄ = (NH₄)₂SO₄ + H₂O NH₄OH + H₂SO₄(и36) = NH₄HSO₄ + H₂O Fe(OH)₂ + HCl = FeCl₅ + H₂O

NaHCO $_3$ + NaOH = Na $_2$ CO $_3$ + H $_2$ O Ca(H $_2$ PO $_4$) $_2$ + Ca(OH) $_2$ = Ca $_3$ (PO $_4$) $_2$ + H $_2$ O CuSO $_4$ + NaOH = Na $_2$ SO $_4$ + Cu(OH) $_2$ Fe(NO $_3$) $_2$ + Ca(OH) $_2$ = Ca(NO $_3$) $_2$ + Fe(OH) $_2$ BaSO $_4$ + NaOH = реакция не идёт NaOH + KCl = реакция не идёт Ba(OH) $_2$ + NH $_4$ Cl = BaCl $_2$ + NH $_3$ + H $_2$ O

ОСНОВНО-КИСЛОТНЫЕ ВЗАИМОДЕЙСТВИЯ

OH

КИСЛОТНОЕ в избытке -КИСЛАЯ соль, ОСНОВНОЕ -ОСНОВНАЯ ИЛИ СРЕДНЯЯ.

ОСНОВАНИЕ основные св-ва

Реакции протекает: в растворе - КОМПЛЕКС, в расплаве - СРЕДНЯЯ СОЛЬ.

КИСЛОТА кислотные св-ва

РИО: кислота Р, основание Р/Н, в продуктах Н,О

кислотный оксид кислотные св-ва

не идёт, если основание Н, а кислотный оксид - газ

АМФ ОКСИД амфотерные св-ва

реакция идёт только со щелочами!

АМФ ГИДРОКСИД амфотерные св-ва

реакция идёт только со щелочами!

 $NaOH + SO_3 = Na_2SO_4 + H_2O$

NaOH + SO, = NaHSO, $NH_{\downarrow}OH + P_{2}O_{5} = (NH_{\downarrow})_{3}PO_{\downarrow} + H_{2}O$

Ca(OH), + CO, = CaCO, + H,O

Fe(OH)₂ + SO₂ = реакция не идёт

 $Fe(OH)_2 + SO_3 = FeSO_4 + H_2O$ Fe(OH), + HCl = FeCl, + H, O

 $Sr(OH)_{1} + P_{2}O_{5}(M36) = Sr(H_{2}PO_{2})_{1}$ $NaOH + Al_{2}O_{3}(t) = NaAlO_{2} + H2O$ $NaOH + Al(OH)_3 (p-p) = Na[Al(OH)_2]$ NaOH + CO, = NaHCO, KOH + NO, = KNO, + KNO, + H,O $KOH + ZnO(t) = K_{x}ZnO_{x} + H_{y}O$ $Ba(OH)_1 + Zn(OH)_2 = Ba[Zn(OH)_2]$

овр с основаниями

ОСНОВАНИЕ ЩЁЛОЧЬ

НЕМЕТАЛЛ S, P, Cl₂, Br₂, I₂, F₂, Si

диспропорционирование (кроме Si и F,)

МЕТАЛЛ Al, Zn, Be

раствор - комплексная соль, расплав - средняя соль

 $NaOH + Cl_{2}(xon) = NaCl + NaClO + H_{2}O$

NaOH + Cl, (rop) = NaCl + NaClO, + H,O $NaOH + Br_2(xoл) = NaBr + NaBrO + H_2O$

NaOH + Br, (rop)= NaBr + NaBrO, + H,O

NaOH + I, = NaI + NaIO, + H,O

NaOH + F₂ = NaF + OF₂ + H₂O + (O₂)

NaOH + S = Na,S + Na,SO, + H,O

 $NaOH + P + H_{,O} = PH_{,} + NaH_{,}PO_{,}$

NaOH + Si = Na,SiO, + H,

Ca(OH), + S = CaS + CaSO, + H,O

Ba(OH), + I, = Bal, + Ba(IO,), + H,O

Fe(OH), + S = реакция не идёт

 $KOH + Al + H_0 = K[Al(OH)_1] + H_1$ $KOH + Al(t) = KAlO_1 + K_2O + H_3$

 $KOH + Zn + H_0 = K_1[Zn(OH)_1] + H_1$ $KOH + Zn(t) = K_{,}ZnO_{,} + H_{,}$

 $KOH + Be + H_{,O} = K_{,[Be(OH)_{,i}]} + H_{,i}$

 $KOH + Be(t) = K_BeO_ + H_$

Fe(OH), + Al (t) = реакция не идёт

 $Fe(OH)_2 + O_2 + H_2O = Fe(OH)_3$

Большинство оснований также разлагается при нагревании, но это будет подробно разобрано далее, в главе "ОБЩЕЕ СВОЙСТВО ОСНОВАНИЙ И АМФОТЕРНЫХ ГИДРОКСИДОВ".

OH

АМФОТЕРНЫЕ ГИДРОКСИДЫ

Me^{+3,+4} + OH⁻/Zn(OH)₂, Be(OH)₂, Sn(OH)₂, Pb(OH)₂

С солями, металлами, неметаллами, амфотерными оксидами и гидроксидами, а также с большинством кислотных оксидов амфотерные гидроксиды не взаимодействуют!

$$Al(OH)_3 + Na_2O (t) = NaAlO_2 + H_2O$$

 $Al(OH)_3 + Na_2O + H_2O = Na[Al(OH)_4]$
 $Zn(OH)_2 + KOH = K_2[Zn(OH)_4]$
 $Zn(OH)_2 + KOH (t) = K_2ZnO_2 + H_2O$

$$Zn(OH)_2 + SO_2 =$$
 реакция не идёт $Zn(OH)_2 + H_2SO_4 = ZnSO_4 + H_2O$ $Al(OH)_3 + HCl = AlCl_3 + H_2O$ $Fe(OH)_3 + NaNO_3 =$ реакция не идёт

ОБЩЕЕ СВОЙСТВО ОСНОВАНИЙ И АМФОТЕРНЫХ ГИДРОКСИДОВ ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ

ВСЕ основания и амфотерные гидроксиды разлагаются при нагревании -> при этом образуется соответствующий оксид и вода; НЕ РАЗЛАГАЮТСЯ ЛИШЬ ГИДРОКСИДЫ ЩЕЛОЧНЫХ МЕТАЛЛОВ ЗА ИСКЛЮЧЕНИЕМ LiOH); NH_2OH , AgOH, $Hg(OH)_2$ - при комнатной t.

NaOH (t) = реакция не идёт $Al(OH)_3$ (t) = $Al_2O_3 + H_2O$ $Fe(OH)_2$ (t) = $FeO + H_2O$ $Fe(OH)_3$ (t) = $Fe_2O_3 + H_2O$ $Hg(OH)_2$ (t) = $HgO + H_2O$ CsOH (t) = Peakur He u Teau Te

Ba(OH), (t) = BaO + H, O

БУДЬ ВНИМАТЕЛЬНЫМ!

Если в продуктах образовался гидроксид, который РАЗЛАГАЕТСЯ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ, то будь добр - разложи его.