

TCOM SISO algorithm 연산 개수 세기

2021.12.16

1.1.4, 1.1.5, 1.2.3 수정 및 Appendix 추가: 2021.12.20

Contents

1. 연산 개수 세기	
1.1 E ^p (D) 계산	3
1.1.1 Pout = $1 - e^{-(2^R - 1)/SNR}$	3
$1.1.2 f^p(x) = 2^{-\alpha x}$	3
$1.1.3 b_i = max_pkt_size \times R_i/R_max$	3
1.1.4 $(p_i + f^p(b_i)(1 - p_i) \times constant)$ of ith packet	4
1.1.5 $E^p(D)$	4
1.2 E(D) 계산	5
1.2.1 Pout = $1 - e^{-(2^R - 1)/SNR}$	5
$\textbf{1.2.2}\ b(u_i) = max_pkt_size \times u_i/R_max$	5
1.2.3 <i>E</i> (<i>D</i>)	6
1.3 TCOM algorithm 의 연산 갯수 정리: 일반화	8
1.3.1 division	8
1.3.2 mult	9
1.3.3 add	10
1.3.4 exponent	11
1.3.5 조건문	11
1.4 TCOM algorithm 의 연산 갯수 정리: 구체화	12
1.4.1 division	12
1.4.2 mult	12
1.4.3 add	13
1.4.4 exponent	13
1.4.5 조건문	14
2. APPENDIX	15
2.1 APPENDIX A (1.2.3-1)의 연산 개수 계산 과정)	15
3. Conclusions	18

1. 연산 개수 세기

the number of packets = N_{pkt} the number of spectral efficiency R candidates = N_R the number of test samples = N_{sample} the number of alphas = N_{α}

1.1 $E^p(D)$ 계산

1.1.1 Pout = $1 - e^{-(2^R - 1)/SNR}$

Pout	TCOM
divide	1
mult	0
add	2
exponential	2
조건문(if)	0

1.1.2 $f^p(x) = 2^{-\alpha x}$

$f^p(x)=2^{-\alpha x}$	TCOM
divide	0
mult	1
add	0
exponential	1
조건문(if)	0

$1.1.3 b_i = max_pkt_size \times R_i/R_max$

b_i	TCOM
divide	1
mult	1
add	0
exponential	0
조건문(if)	0

1.1.4 $(p_i + f^p(b_i)(1 - p_i) \times constant)$ of ith packet

	TCOM
divide	0
mult	2
add	2
exponential	0
조건문(if)	0
Pout $(= p_i)$	2
$f^p(x)=2^{-\alpha x}$	1
b_i	1

1.1.5 $E^p(D)$

$$\begin{split} &= P_1 + f^p(b_1)(1-P_1) \big\{ P_2 + f^p(b_2)(1-P_2) \{ P_3 + f^p(b_3)(1-P_3) \} \big\} \\ &= P_1 + 2^{-\alpha b_1}(1-P_1) \left\{ P_2 + 2^{-\alpha b_2}(1-P_2) \{ P_3 + 2^{-\alpha b_3}(1-P_3) \} \right\} \end{split}$$

	TCOM
$R^* = \underset{R}{\operatorname{argmin}} E^p(D)$ 찾기	N_{lpha}
divide	0
mult	0
add	0
exponential	0
조건문(if)	$N_{pkt} \cdot (N_R - 1)$
$p_i + f^p(b_i)(1-p_i) \times C$ $ith\ packet$	$N_{pkt} \cdot N_R$

$$\rightarrow$$
 min($p_i + f^p(b_i)(1 - p_i) \times constant$)

1.2 E(D) 계산

$$\alpha = 1 => u_1^*, u_2^*, u_3^*$$

 $\alpha = 2 => u_1^*, u_2^*, u_3^*$
 $\alpha = 3 => u_1^*, u_2^*, u_3^*$
.....

1.2.1 Pout = $1 - e^{-(2^R - 1)/SNR}$

Pout	TCOM
divide	1
mult	0
add	2
exponential	2
조건문(if)	0

$\textbf{1.2.2}\ b(u_i) = max_pkt_size \times u_i/R_max$

$b(u_i)$	TCOM
divide	1
mult	1
add	0
exponential	0
조건문(if)	0

1.2.3 E(D)

$$= f(0)P_1 + \sum_{n=1}^{N_{pkt}-1} f\left(\sum_{i=1}^n b(u_i)\right) P(u_{n+1}) \prod_{i=1}^n \left(1 - P(u_i)\right) + f\left(\sum_{i=1}^{N_{pkt}} b(u_i)\right) \prod_{i=1}^{N_{pkt}} \left(1 - p(u_i)\right)$$

$$= f(0)P_1 + f\left(b(u_1)\right) (1 - P_1)P_2 + f\left(b(u_1) + b(u_2)\right) (1 - P_1) (1 - P_2)P_3$$

$$+ f\left(b(u_1) + b(u_2) + b(u_3)\right) (1 - P_1) (1 - P_2) (1 - P_3)$$

1.2.3-1)

$$f(0)P_1 + \sum_{n=1}^{N_{pkt}-1} f\left(\sum_{i=1}^n b(u_i)\right) P(u_{n+1}) \prod_{i=1}^n (1 - P(u_i))$$

	TCOM
	TCOM
divide	0
mult	$\frac{\left(N_{pkt}+1\right)N_{pkt}}{2}$
add	$(N_{pkt}-1)N_{pkt}$
exponential	0
조건문(if)	0
Pout	$\frac{\left(N_{pkt}+1\right)N_{pkt}}{2}$
$b(u_i)$	$\frac{\left(N_{pkt}-1\right)N_{pkt}}{2}$

연산 개수 계산 과정 Appendix 2.1 참고

1.2.3-2)

$$f\left(\sum_{i=1}^{N_{pkt}}b(u_i)\right)\prod_{i=1}^{N_{pkt}}\left(1-p(u_i)\right)$$

	TCOM
divide	0
mult	N_{pkt}
add	$2 \cdot N_{pkt} - 1$
exponential	0
조건문(if)	0
Pout	N_{pkt}
$b(u_i)$	N_{pkt}

1.2.3-3) E(D)

E(D)	TCOM
divide	0
mult	0
add	1
exponential	0
조건문(if)	0
3-1)	1
3-2)	1

	TCOM
$\alpha^* = \underset{\alpha}{\operatorname{argmin}} E(D)$ 찾기	N_{sample}
divide	0
mult	0
add	0
exponential	0
조건문(if)	$N_{\alpha}-1$
E(D)	N_{lpha}

1.3 TCOM algorithm 의 연산 갯수 정리: 일반화

1.3.1 division

(1) $E^p(D)$ 계산 시 나눗셈 개수

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot (\text{Pout} \times 2 + f^{p}(x) \times 1 + b_{i} \times 1)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot (1 \times 2 + 0 \times 1 + 1 \times 1)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot 3$$

(2) E(D) 계산 시 나눗셈 개수

$$= N_{sample} \cdot N_{\alpha} \cdot \left(\text{Pout} \times \frac{\left(N_{pkt} + 1\right)N_{pkt}}{2} + b(u_{i}) \times \frac{\left(N_{pkt} - 1\right)N_{pkt}}{2} + \text{Pout} \times N_{pkt} + b(u_{i}) \times N_{pkt} \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot \left(1 \times \frac{\left(N_{pkt} + 1\right)N_{pkt}}{2} + 1 \times \frac{\left(N_{pkt} - 1\right)N_{pkt}}{2} + 1 \times N_{pkt} + 1 \times N_{pkt} \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot \left(\frac{\left(N_{pkt} + 1\right)}{2} + \frac{\left(N_{pkt} - 1\right)}{2} + 2 \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot \left(N_{pkt} + 2\right)$$

 $\left(E^{p}(\mathbf{D})\right)$ 계산 시 나눗셈 갯수 $+\left(E(\mathbf{D})\right)$ 계산 시 나눗셈 갯수 $+\left(E(\mathbf{D})\right)$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot 3 + N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot (N_{pkt} + 2)$$

1.3.2 mult

(1) $E^p(D)$ 계산 시 곱셈 갯수

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot (2 + \text{Pout} \times 2 + f^{p}(x) \times 1 + b_{i} \times 1)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot (2 + 0 \times 2 + 1 \times 1 + 1 \times 1)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot 4$$

(2) E(D) 계산 시 곱셈 개수

$$= N_{sample} \cdot N_{\alpha} \cdot \left(\frac{(N_{pkt} + 1)N_{pkt}}{2} + \text{Pout} \times \frac{(N_{pkt} + 1)N_{pkt}}{2} + b(u_i) \times \frac{(N_{pkt} - 1)N_{pkt}}{2} + N_{pkt} + \text{Pout} \times N_{pkt} \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot \left(\frac{(N_{pkt} + 1)N_{pkt}}{2} + 0 \times \frac{(N_{pkt} + 1)N_{pkt}}{2} + 1 \times \frac{(N_{pkt} - 1)N_{pkt}}{2} + N_{pkt} + 0 \times N_{pkt} \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot \left(\frac{(N_{pkt} + 1)N_{pkt}}{2} + \frac{(N_{pkt} - 1)N_{pkt}}{2} + 2 \times N_{pkt} \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot \left(\frac{(N_{pkt} + 1)N_{pkt}}{2} + \frac{(N_{pkt} - 1)N_{pkt}}{2} + 2 \times N_{pkt} \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot (N_{pkt} + 2)$$

$$\left(E^p(D)$$
계산 시 곱셈 갯수 $\right) + \left(E(D)$ 계산 시 곱셈 갯수 $\right)$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot 4 + N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot \left(N_{pkt} + 2\right)$$

1.3.3 add

(1) $E^p(D)$ 계산 시 덧셈 갯수

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot (2 + \text{Pout } \times 2 + f^{p}(x) \times 1 + b_{i} \times 1)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot (2 + 2 \times 2 + 0 \times 1 + 0 \times 1)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot 6$$

(2) E(D) 계산 시 덧셈 갯수

$$= N_{sample} \cdot N_{\alpha} \cdot \left(1 + (N_{pkt} - 1)N_{pkt} + \text{Pout} \times \frac{(N_{pkt} + 1)N_{pkt}}{2} + b(u_i) \times \frac{(N_{pkt} - 1)N_{pkt}}{2} + 2 \times N_{pkt} - 1\right)$$

$$+ \text{Pout} \times N_{pkt} + b(u_i) \times N_{pkt}$$

$$= N_{sample} \cdot N_{\alpha} \cdot \left(1 + (N_{pkt} - 1)N_{pkt} + 2 \times \frac{(N_{pkt} + 1)N_{pkt}}{2} + 0 \times \frac{(N_{pkt} - 1)N_{pkt}}{2} + 2 \times N_{pkt} - 1\right)$$

$$+ 2 \times N_{pkt} + 0 \times N_{pkt}$$

$$= N_{sample} \cdot N_{\alpha} \cdot \left(2 \cdot N_{pkt} \cdot N_{pkt} + 4 \cdot N_{pkt}\right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot 2 \cdot N_{pkt} \cdot (N_{pkt} + 2)$$

$$\left(\mathbf{E}^{p}(\mathbf{D})$$
 계산 시 덧셈 갯수 $\right) + \left(\mathbf{E}(\mathbf{D})$ 계산 시 덧셈 갯수 $\right)$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot 6 + N_{sample} \cdot N_{\alpha} \cdot 2 \cdot N_{pkt} \cdot \left(N_{pkt} + 2\right)$$

1.3.4 exponent

(1) $E^p(D)$ 계산 시 exponent 개수

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot (\text{Pout} \times 2 + f^{p}(x) \times 1 + b_{i} \times 1)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot (2 \times 2 + 1 \times 1 + 0 \times 1)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot 5$$

(2) **E(D)** 계산 시 exponent 갯수

$$= N_{sample} \cdot N_{\alpha} \cdot \left(\text{Pout} \times \frac{\left(N_{pkt} + 1\right)N_{pkt}}{2} + b(u_i) \times \frac{\left(N_{pkt} - 1\right)N_{pkt}}{2} + \text{Pout} \times N_{pkt} + b(u_i) \times N_{pkt} \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot \left(2 \times \frac{\left(N_{pkt} + 1\right)N_{pkt}}{2} + 0 \times \frac{\left(N_{pkt} - 1\right)N_{pkt}}{2} + 2 \times N_{pkt} + 0 \times N_{pkt} \right)$$

$$= N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot \left(N_{pkt} + 3\right)$$

$$\left(\mathbf{E}^{p}(\mathbf{D}) \text{ 계산 A exponent 갯수}\right) + \left(\mathbf{E}(\mathbf{D}) \text{ 계산 A exponent 갯수}\right)$$

$$= N_{\alpha} \cdot N_{pkt} \cdot N_{R} \cdot 5 + N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot \left(N_{pkt} + 3\right)$$

1.3.5 조건문

(1) $E^p(D)$ 계산 시 조건문 개수

$$= N_{\alpha} \cdot N_{pkt} \cdot (N_R - 1)$$

(2) E(D) 계산 시 조건문 갯수

$$= N_{sample} \cdot (N_{\alpha} - 1)$$

 $(E^p(D)$ 계산 시 exponent 갯수) + (E(D) 계산 시 exponent 갯수)

$$= N_{\alpha} \cdot N_{pkt} \cdot (N_R - 1) + N_{sample} \cdot (N_{\alpha} - 1)$$

1.4 TCOM algorithm 의 연산 갯수 정리: 구체화

1.4.1 division

(1) $E^p(D)$ 계산 시 나눗셈 개수

$$= N_{\alpha} \cdot N_{pkt} \cdot N_R \cdot 3$$

$$= 30 \cdot 128 \cdot 4 \cdot 3$$

- = 46,080
- (2) **E(D)** 계산 시 나눗셈 개수

$$= N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot (N_{pkt} + 2)$$

$$= 100 \cdot 30 \cdot 128 \cdot 130$$

= 49,920,000

 $\left(E^{p}(\mathbf{D})$ 계산 시 나눗셈 갯수 $\right) + \left(E(\mathbf{D})$ 계산 시 나눗셈 갯수 $\right)$

= 46,080 + 49,920,000 = 49,966,080

1.4.2 mult

(1) $E^p(D)$ 계산 시 곱셈 갯수

$$= N_{\alpha} \cdot N_{pkt} \cdot N_R \cdot 4$$

$$= 30 \cdot 128 \cdot 4 \cdot 4$$

- = 61,440
- (2) E(D) 계산 시 곱셈 개수

$$= N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot (N_{pkt} + 2)$$

$$= 100 \cdot 30 \cdot 128 \cdot 130$$

= 49,920,000

 $\left(E^p(D) \$ 계산 시 곱셈 갯수 $\right) + \left(E(D) \$ 계산 시 곱셈 갯수 $\right)$

= 61,440 + 49,920,000 = 49,981,440

1.4.3 add

(1) $E^p(D)$ 계산 시 덧셈 갯수

$$= N_{\alpha} \cdot N_{pkt} \cdot N_R \cdot 6$$

$$= 30 \cdot 128 \cdot 4 \cdot 6$$

- = 92,160
- (2) E(D) 계산 시 덧셈 갯수

$$= N_{sample} \cdot N_{\alpha} \cdot 2 \cdot N_{pkt} \cdot (N_{pkt} + 2)$$

$$= 100 \cdot 30 \cdot 2 \cdot 128 \cdot 130$$

= 99,840,000

$$\left(E^{p}(\mathbf{D}) \text{ 계산 시 덧셈 갯수} \right) + \left(E(\mathbf{D}) \text{ 계산 시 덧셈 갯수} \right)$$

$$= 92,160 + 99,840,000 = 99,932,160$$

1.4.4 exponent

(1) $E^p(D)$ 계산 시 exponent 개수

$$= N_{\alpha} \cdot N_{pkt} \cdot N_R \cdot 5$$

$$= 30 \cdot 128 \cdot 4 \cdot 5$$

- = 76,800
- (2) **E(D)** 계산 시 exponent 갯수

=
$$N_{sample} \cdot N_{\alpha} \cdot N_{pkt} \cdot (N_{pkt} + 3)$$

$$=100\cdot 30\cdot 128\cdot 131$$

= 50,304,000

 $(E^p(D)$ 계산 시 exponent 갯수) + (E(D) 계산 시 exponent 갯수)

$$= 76,800 + 50,304,000 = 50,380,800$$

1.4.5 조건문

(1) $E^p(D)$ 계산 시 조건문 개수

$$=N_{\alpha}\cdot N_{pkt}\cdot (N_R-1)$$

$$=30\cdot 128\cdot 3$$

- = 11,520
- (2) E(D) 계산 시 조건문 갯수

$$=N_{sample}\cdot (N_{\alpha}-1)$$

$$= 100 \cdot 29$$

$$= 2,900$$

 $\left(E^p(\textbf{\textit{D}}) \ \mbox{계산 시 exponent 갯수} \right) + \left(E(\textbf{\textit{D}}) \ \mbox{계산 시 exponent 갯수} \right)$

$$= 11,520 + 2,900 = 14,420$$

2. APPENDIX

2.1 APPENDIX A (1.2.3-1)의 연산 개수 계산 과정)

$$f(0)P_1 + \sum_{n=1}^{N_{pkt}-1} f\left(\sum_{i=1}^n b(u_i)\right) P(u_{n+1}) \prod_{i=1}^n (1 - P(u_i))$$

$f(0)P_1$	1
$\sum_{n=1}^{N_{pkt}-1} f\left(\sum_{i=1}^{n} b(u_i)\right) P(u_{n+1}) \prod_{i=1}^{n} (1 - P(u_i))$	2
① + ②	3

1. mult

$$= \sum_{n=1}^{N_{pkt}-1} (n-1+2) = \sum_{n=1}^{N_{pkt}-1} (n+1)$$
$$= \frac{(2+N_{pkt})(N_{pkt}-1)}{2}$$

$$(① 계산 시 곱셈 갯수) + (② 계산 시 곱셈 갯수)$$

$$= 1 + \frac{(2 + N_{pkt})(N_{pkt} - 1)}{2}$$

$$=\frac{\left(N_{pkt}+1\right)N_{pkt}}{2}$$

- 2. add
 - (1) ① 계산 시 덧셈 개수 = 0
 - (2) ② 계산 시 덧셈 개수

$$= \sum_{n=1}^{N_{pkt}-1} (n-1+n) + (N_{pkt}-2) = \sum_{n=1}^{N_{pkt}-1} (2n-1) + (N_{pkt}-2)$$

$$= 2 \times \frac{(N_{pkt}-1)N_{pkt}}{2} - (N_{pkt}-1) + (N_{pkt}-2)$$

$$= (N_{pkt}-1)N_{pkt} - 1$$

- (3) ③ 계산 시 덧셈 개수 = 1
- (① 계산 시 덧셈 갯수) + (② 계산 시 덧셈 갯수) + (③ 계산 시 덧셈 개수)= $(N_{pkt} - 1)N_{pkt}$

3. Pout

(2) ② 계산 시 Pout 개수

$$=\sum_{n=1}^{N_{pkt}-1}(n+1)$$

$$=\frac{\left(2+N_{pkt}\right)\left(N_{pkt}-1\right)}{2}$$

(① 계산 시 Pout 갯수) + (② 계산 시 Pout 갯수)

$$= 1 + \frac{(2 + N_{pkt})(N_{pkt} - 1)}{2}$$

$$=\frac{\left(N_{pkt}+1\right)N_{pkt}}{2}$$

4. $b(u_i)$

(1) ① 계산 시
$$b(u_i)$$
 개수 = 0

(2) ② 계산 시 $b(u_i)$ 개수

$$=\sum_{n=1}^{N_{pkt}-1}n$$

$$=\frac{\left(N_{pkt}-1\right)N_{pkt}}{2}$$

 $(① 계산 시 <math>b(u_i)$ 갯수 $) + (② 계산 시 <math>b(u_i)$ 갯수)

$$=\frac{\left(N_{pkt}-1\right)N_{pkt}}{2}$$

3. Conclusions