Discrete Mathematics Handout

1 Laws of Logic

For any primitive statements $p,\ q,\ r,$ any tautology $T_0,$ and any contradiction $F_0,$

$\neg\neg p \Leftrightarrow p$	Double Negation Law
$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	DeMorgan's Laws
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$	
$p \lor q \Leftrightarrow q \lor p$	Commutative Laws
$p \wedge q \Leftrightarrow q \wedge p$	
$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$	Associative Laws
$p \land (q \land r) \Leftrightarrow (p \land q) \land r$	
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	Distributive Laws
$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	
$p \lor p \Leftrightarrow p$	Idempotent Laws
$p \land p \Leftrightarrow p$	
$p \vee F_0 \Leftrightarrow p$	Identity Laws
$p \wedge T_0 \Leftrightarrow p$	
$p \vee \neg p \Leftrightarrow T_0$	Inverse Laws
$p \land \neg p \Leftrightarrow F_0$	
$p \vee T_0 \Leftrightarrow T_0$	Domination Laws
$p \wedge F_0 \Leftrightarrow F_0$	
$p \lor (p \land q) \Leftrightarrow p$	Absorption Laws
$p \land (p \lor q) \Leftrightarrow p$	
$\neg p \lor q \Leftrightarrow p \to q$	(Equivalence)
$p \to q \Leftrightarrow \neg q \to \neg p$	Contrapositive

2 Laws of Set Theory

For any sets A, B, and C, taken from a universe \mathcal{U} ,

, , ,	,
$\overline{\overline{A}} = A$	Double Comp.
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	DeMorgan's Laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
$A \cup B = B \cup A$	Commutative Laws
$A \cap B = B \cap A$	_
$A \cup (B \cup C) = (A \cup B) \cup C$	Associative Laws
$A \cap (B \cap C) = (A \cap B) \cap C$	T
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive Laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	T.1 T
$A \cup A = A$	Idempotent Laws
$A \cap A = A$	T.1 T
$A \cup \emptyset = A$	Identity Laws
$A \cap \mathcal{U} = A$	Т Т
$A \cup A = \mathcal{U}$ $A \cap \overline{A} = \emptyset$	Inverse Laws
$A \cap A = \emptyset$ $A \cup \mathcal{U} = \mathcal{U}$	Domination Laws
$A \cap \mathcal{U} = \mathcal{U}$ $A \cap \emptyset = \emptyset$	Domination Laws
$A \cap \emptyset = \emptyset$ $A \cup (A \cap B) = A$	Absorption Laws
$A \cap (A \cup B) = A$ $A \cap (A \cup B) = A$	Absorption Laws
D = D	

3 Rules of Inference

Rule of Inference	Name of the Rule
$\begin{array}{ c c }\hline 1) & p \\ \hline & p \to q \\ \hline & \ddots & q \\ \hline \end{array}$	Rule of Detachment (Modus Ponens)
$ \begin{array}{c} p \to q \\ 2) q \to r \\ \hline \vdots p \to r \\ \hline p \to q \\ \end{array} $	Law of Syllogism
$ \begin{array}{c c} p \to q \\ \hline 3) & \neg q \\ \hline \vdots & \neg p \end{array} $	Modus Tollens
$\begin{array}{c} p \\ 4) \underline{q} \\ \hline \therefore p \land q \\ \hline p \lor q \end{array}$	Rule of Conjunction
$ \begin{array}{c c} p \lor q \\ \hline 5) & \neg p \\ \hline \vdots & q \\ \hline 6) & \neg p \to F_0 \\ \hline \vdots & p \\ \hline \end{array} $	Rule of Disjunctive Syllogism
$6) \xrightarrow{\neg p \to F_0}$	Rule of Contradiction
$7) \frac{p \wedge q}{\therefore p}$	Rule of Conjunctive Simplification
$8) \frac{p}{\therefore p \vee q}$	Rule of Disjunctive Amplification
$ \begin{array}{c c} \hline p \land q \\ p \rightarrow (q \rightarrow r) \\ \hline \vdots r \end{array} $	Rule of Conditional Proof
$ \begin{array}{c} p \to r \\ 10) q \to r \\ \hline \therefore (p \lor q) \to r \end{array} $	Proof by Cases
$ \begin{array}{c c} p \to q \\ r \to s \\ p \lor r \\ \hline \therefore q \lor s \end{array} $	Rule of the Constructive Dilemma
$ \begin{array}{c} $	Rule of Destructive Dilemma

4 Quantifier Rules

Rule	Name of the Rule
1) $\frac{\forall x \ p(x)}{\therefore p(a) \text{ [arbitrary a]}}$	Rule of Universal Specification
$2) \frac{p(a) \text{ [arbitrary a]}}{\therefore \forall x \ p(x)}$	Rule of Universal Generalization
3) $\exists x \ p(x)$ $\therefore p(a)$ [particular a]	Rule of Existential Specification
4) $\frac{p(a) \text{ [particular a]}}{\therefore \exists x \ p(x)}$	Rule of Existential Generalization