Name: Sabyr Kabylbek

Batch code: LISUM01

Submission Date: 04.07.2021

Submitted to: Data Glacier

1. The toy data selected.

The toy data selected is the electricity consumption of a city in Kazakhstan between 2019 and 2021, which I have already analyzed at my work (I am a Data Scientist in local company).

	У	tempC	FeelsLikeC	ds	dayofweek	quarter	month	dayofmonth	dayofyear	weekofyear	hour	isholidays
0	2286.0	-19	-27	2019-01-01 00:00:00	1	1	1	1	1	1	0	1
1	2297.0	-20	-28	2019-01-01 01:00:00	1	1	1	1	1	1	1	1
2	2300.0	-20	-29	2019-01-01 02:00:00	1	1	1	1	1	1	2	1
3	2342.0	-21	-29	2019-01-01 03:00:00	1	1	1	1	1	1	3	1
4	2271.0	-21	-29	2019-01-01 04:00:00	1	1	1	1	1	1	4	1

For this assignment I have used FBprophet model to make a prediction for TIME-SERIES data. I have dropped all columns except "ds" and "y" – which is necessary for Fbprophet model training. "ds" is date time and "y" is electricity consumption per hour

2. Saving the Model

→ Save model to file [] m = Prophet(
growth = "linear",
seasonality_mode = "multiplicative",
changepoint_prior_scale = 30,
seasonality_prior_scale = 35,
daily_seasonality = False,
weekly_seasonality = False,
yearly_seasonality = False,
) [] import pickle pickle.dump(m, open('model.pkl','wb')) m.fit(sdata) Test saved model Prepare future dataset # create future dataset future = m.make_future_dataframe(periods=96, freq="H", include_history=False) print(future.shape) Load saved model (96, 1) Forecast # read the Prophet model object with open("model.pkl", 'rb') as f: [] # predict next n-hours in future forecast = m.predict(future) m = pickle.load(f)

3. Deployment Process

Firstly, I have created python file in order to apply Flask library for my saved model:

Secondly, I have created index.html and style.css files so it can be integrated flask python file:

Thirdly, the request python file was created to integrate flask python file and API's

The result of the deployment process:

In my prediction I ask user to enter the step for future prediction, so after getting the future steps from the user, the model provides the predicted value at that step of future.

