

GOODWILLIE'S CALCULUS VIA RELATIVE HOMOLOGICAL ALGEBRA. THE ABELIAN CASE

TEIMURAZ PIRASHVILI

1. INTRODUCTION

We will explain how elementary concepts of relative homological algebra yield the Taylor tower for functors from pointed categories to abelian groups recovering the constructions of Johnson and McCarthy [2],[3].

Let \mathbf{C} , \mathbf{D} be abelian categories with enough projective objects. Let $i_* : \mathbf{C} \rightarrow \mathbf{D}$ and $i^* : \mathbf{D} \rightarrow \mathbf{C}$ be functors, such that i^* is left adjoint to i_* . We will assume that i_* is full and faithful and exact. After taking the left derived functors one obtains a pair of adjoint functors $(L(i^*) \vdash L(i_*))$ between the derived categories $D^-(\mathbf{D})$ and $D^-(\mathbf{C})$. In general, $L(i_*) : D^-(\mathbf{C}) \rightarrow D^-(\mathbf{D})$ is not a full embedding. Instead one defines a full subcategory $D_C^-(\mathbf{D})$ of $D^-(\mathbf{D})$ by

$$D_C^-(\mathbf{D}) = \{X_* \in D^-(\mathbf{D}) \mid H_n(X_*) \in \mathbf{C}, n \in \mathbb{Z}\}.$$

Denote by $j_* : D_C^-(\mathbf{D}) \rightarrow D^-(\mathbf{D})$ the full inclusion. Then the functor $L(i_*)$ factors through j_* . In the favourable cases the functor j_* has left adjoint j^* , however we do not know whether j^* always exists. In the next section we will construct the functor j^* under certain circumstances. Our construction is based on the elementary results of the relative homological algebra [1] and is probably well-known. In the last section we explain how the results of Section 2 imply the main results of [2],[3].

In [4] we will extend our method from abelian to nonabelian case.

2. THE MAIN CONSTRUCTION

Let \mathcal{A} be an abelian category with coproducts and let \mathcal{P} be a set of objects in \mathcal{A} such that each $P \in \mathcal{P}$ is projective. Define the following full subcategory

$$\mathcal{B} = \mathcal{P}^\perp = \{A \in \mathcal{A} \mid \text{Hom}_{\mathcal{A}}(P, A) = 0, P \in \mathcal{P}\}.$$

It is clear that \mathcal{B} is a thick subcategory of \mathcal{A} . That is, \mathcal{B} is closed under taking kernels, cokernels and extensions. In particular, \mathcal{B} is also abelian. Denote by $i_* : \mathcal{B} \rightarrow \mathcal{A}$ the inclusion. Then i_* is exact.

For any $A \in \mathcal{A}$ one puts

$$\Phi(A) = \bigoplus_{f:P \rightarrow A} P.$$

Here P runs through all objects of \mathcal{P} . For a morphism $f : P \rightarrow A$ we let $\text{inf} : P \rightarrow \Phi(A)$ be the standard inclusion. Define $\epsilon_A : \Phi(A) \rightarrow A$ by $\epsilon_A \circ \text{inf} = f$ and denote $\text{Coker}(\epsilon_A)$ by $i^*(A)$. Since $\text{Hom}_{\mathcal{A}}(P, \epsilon_A)$ is surjective one sees that $i^*(A) \in \mathcal{B}$. In this way one obtains a functor $i^* : \mathcal{A} \rightarrow \mathcal{B}$ which is left adjoint to i_* .

A morphism $f : X \rightarrow Y$ in \mathcal{A} is called \mathcal{P} -epimorphism provided $\text{Hom}_{\mathcal{A}}(P, f) : \text{Hom}_{\mathcal{A}}(P, X) \rightarrow \text{Hom}_{\mathcal{A}}(P, Y)$ is surjective. For example, for any object $A \in \mathcal{A}$ the morphism $\epsilon_A : \Phi(A) \rightarrow A$ is a \mathcal{P} -epimorphism. Hence \mathcal{P} is a projective class in the sense of [1] and therefore by [1, Proposition 3.1] any object A has a \mathcal{P} -projective resolution. Thus there is a chain complex (X_*, d) such that $X_n = 0$ if $n < -1$, $X_{-1} = A$, $X_n \in \mathcal{P}$ for any $n \geq 0$ and for any $P \in \mathcal{P}$ the following sequence is exact:

$$\cdots \rightarrow \text{Hom}_{\mathcal{A}}(P, X_n) \rightarrow \cdots \rightarrow \text{Hom}_{\mathcal{A}}(P, X_0) \rightarrow \text{Hom}_{\mathcal{A}}(P, X_{-1}) \rightarrow 0.$$

It follows that $X_* \in D_B^-(\mathcal{A})$. By the standard properties of \mathcal{P} -projective resolutions the assignment $A \mapsto X$ extends to a functor $j^* : D^-(\mathcal{A}) \rightarrow D_B^-(\mathcal{A})$ which turns to be left adjoint to j_* .

Assume now that instead of a single set \mathcal{P} , a descending sequence of sets

$$\cdots \subset \mathcal{P}_n \subset \mathcal{P}_{n-1} \subset \cdots \subset \mathcal{P}_1$$

is given, each of which satisfies the assumptions made in the beginning of Section 2. One obtains abelian categories $B_n = \mathcal{P}_n^\perp$ and functors $i_{n*}, i_n^*, j_{n*}, j_n^*$. Clearly, $B_1 \subset B_2 \subset B_3 \subset \cdots \subset \mathcal{A}$ and for any object $A \in \mathcal{A}$ one obtains the towers of epimorphisms

$$A \rightarrow \cdots \rightarrow i_* i_n^*(A) \rightarrow i_* i_{n-1}^*(A) \rightarrow \cdots \rightarrow i_* i_2^*(A) \rightarrow i_* i_1^*(A)$$

and of morphisms in $D^-(\mathcal{A})$

$$A \rightarrow \cdots \rightarrow j_* j_n^*(A) \rightarrow j_* j_{n-1}^*(A) \rightarrow \cdots \rightarrow j_* j_2^*(A) \rightarrow j_* j_1^*(A).$$

3. APPLICATIONS TO GOODWILLIE'S CALCULUS

Let \mathbf{M} be a small category with zero object 0 and finite coproduct \vee . We let \mathcal{A} be the category of all functors from \mathbf{M} to the category of abelian groups. Then \mathcal{A} is an abelian category with enough projective objects. The functors h_a are small projective generators of \mathcal{A} . Here a is running through all objects of the category \mathbf{M} and $h_a \in \mathcal{A}$ is given by $h_a = \mathbb{Z}[\text{Hom}_{\mathbf{M}}(a, -)]$. The obvious maps $a \rightarrow 0 \rightarrow a$ yield a splitting $h_a = \bar{h}_a \oplus \mathbb{Z}$, where $\mathbb{Z} = h_0$ is the constant functor with values equal to \mathbb{Z} . Thus the collections \bar{h}_a , $a \in \mathbf{M}$ together with \mathbb{Z} also form a family of small projective generators. Clearly $h_{a \vee b} = h_a \otimes h_b$. It follows that the level-wise tensor product of projective objects is again a projective object. For any natural number $n \geq 1$ we let \mathcal{P}_n be the collection of projective objects of the form $\bar{h}_{a_1} \otimes \cdots \otimes \bar{h}_{a_k}$, $k > n$. One easily checks that the corresponding category $B_n = \mathcal{P}_n^\perp$ is the category of functors of degree $\leq n$ (in the sense of Eilenberg-MacLane), while $D_{B_n}^-(\mathcal{A})$ is equivalent to the category of functors from \mathbf{M} to the category of chain complexes of abelian groups of degree $\leq n$ (in the sense of Goodwillie). This follows from the fact that $\text{Hom}_{\mathcal{A}}(\bar{h}_{a_1} \otimes \cdots \otimes \bar{h}_{a_k}, T) = cr_k T(a_1 \cdots, a_k)$, where cr_k is the k -th crossed-effect [3]. The last isomorphism is a trivial consequence of the Yoneda lemma and the decomposition rule: $h_{a \vee b} = h_a \otimes h_b$. It follows that in this situation the towers constructed in Section 2 and the ones constructed in [2],[3] are equivalent.

REFERENCES

- [1] S. EILENBERG and J. C. MOORE. Foundations of relative homological algebra. Mem. Amer. Math. Soc. No. 55 (1965), 39.
- [2] B. JOHNSON and R. McCARTHY, Taylor towers for functors of additive categories. J. Pure Appl. Algebra 137 (1999), 253-284.
- [3] B. JOHNSON and R. McCARTHY, Derived calculus with cotriples. Trans. Amer. Math. Soc. 356(2003) 757-803.
- [4] T. PIRASHVILI. Goodwillie's calculus via relative homotopical algebra. (In preparation).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LEICESTER, UNIVERSITY ROAD, LEICESTER, LE1 7RH, UK

E-mail address: tp59-at-le.ac.uk