Sampling recovery of functions from reproducing kernel Hilbert spaces in the uniform norm

Kateryna Pozharska

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

joint work with Tino Ullrich Technische Universität Chemnitz, Germany

Point Distributions Webinar

September 29, 2021

$$f: D \subset \mathbb{R}^d \to \mathbb{C}$$
 $f(\mathbf{X}): f(\mathbf{x}^1), \dots, f(\mathbf{x}^n)$

Reconstruct f from samples

$$f: D \subset \mathbb{R}^d \to \mathbb{C}$$

$$f(\mathbf{X})$$
: $f(\mathbf{x}^1), \dots, f(\mathbf{x}^n)$

Reconstruct f from samples

$$f: D \subset \mathbb{R}^d \to \mathbb{C}$$

$$f(\mathbf{X})$$
: $f(\mathbf{x}^1), \ldots, f(\mathbf{x}^n)$

Reconstruct f from samples

- The sampling nodes should work for a class of functions simultaneously
- H(K) is a reproducing kernel Hilbert space (RKHS)
- Control the worst-case error

$$\sup_{\|f\|_{H(K)} \leq 1} \|f - S_{\mathbf{X}}^m f\|_{\ell_{\infty}(D)}$$

- Discuss the power of standard information in the uniform norm
- Obtain new recovery guarantees for concrete Sobolev type spaces

Linear information: Gelfand numbers / widths, approximation numbers / linear widths

$$a_n(\operatorname{Id}: H(K) \to F) := \inf_{\substack{A \in \mathcal{L}(H(K), F) \ \text{van} \ k A < n}} \sup_{\|f\|_{H(K)} \le 1} \|f - Af\|_F \tag{1}$$

Standard information: sampling numbers

$$g_n\left(\operatorname{Id}: H(K) \to F\right) := \inf_{\mathbf{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^n\}} \inf_{R \in \mathcal{L}(\mathbb{C}^n, F)} \sup_{\|f\|_{H(K)} \le 1} \|f - R(f(\mathbf{X}))\|_F$$
(2)

$$a_n(\mathrm{Id}) \leq g_n(\mathrm{Id})$$

$$||f||_{L_2(D,\varrho_D)} = \left(\int_D |f(\mathbf{x})|^2 d\varrho_D(\mathbf{x})\right)^{1/2}$$
$$||f||_{\ell_\infty(D)} = \sup_{\mathbf{x} \in D} |f(\mathbf{x})|$$

$$\forall f \in H(K), \ \forall x \in D \qquad f(x) = (f, K(\cdot, x))_{H(K)}$$

$$\|K\|_{\infty}^2 := \sup_{\mathbf{x} \in D} K(\mathbf{x}, \mathbf{x}) < \infty \tag{3}$$

$$||f||_{\ell_{\infty}(D)} \le ||K||_{\infty} \cdot ||f||_{H(K)}$$

$$\operatorname{tr} K := \|K\|_2^2 = \int_D K(x, x) d\varrho_D(x) < \infty \tag{4}$$

$$\forall f \in H(K), \ \forall x \in D \qquad f(x) = (f, K(\cdot, x))_{H(K)}$$

$$\mathrm{Id} \colon H(K) \to L_2(D,\varrho_D), \qquad W_{\varrho_D} = \mathrm{Id}^* \circ \mathrm{Id} \colon H(K) \to H(K),$$
 where $(f,\mathrm{Id}g)_{L_2(D,\varrho_D)} = (\mathrm{Id}^*f,g)_{H(K)}.$

$$(\lambda_n)_{n=1}^{\infty}$$
 — rearrangement of eigenvalues of W_{ϱ_D} , $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$, $(\sigma_n)_{n=1}^{\infty}$ — set of singular values, i.e., $\sigma_j = \sqrt{\lambda_j}$, $j=1,2,\ldots$,

$$(e_n(\mathbf{x}))_{n=1}^{\infty} \subset H(K)$$
 — set of right singular functions, $(\eta_n(\mathbf{x}))_{n=1}^{\infty} = (\sigma_n^{-1}e_n(\mathbf{x}))_{n=1}^{\infty} \subset L_2(D,\varrho_D)$.

Mercer kernel

$$K(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{\infty} \overline{e_k(\mathbf{y})} e_k(\mathbf{x}), \qquad \mathbf{x}, \mathbf{y} \in D$$
 (5)

Least squares algorithm

- D. Krieg, M. Ullrich Function values are enough for L_2 -approximation, Found. Comp. Math., 21: 1141–1151, 2021.
- L. Kämmerer, T. Ullrich, T. Volkmer Worst case recovery guarantees for least squares approximation using random samples, *Constr. Approx.*, 2021.

Recovery operator
$$S_{\mathbf{X}}^m := \sum\limits_{k=1}^{m-1} c_k \eta_k$$

$$\mathbf{f} := (f(\mathbf{x}^1), \dots, f(\mathbf{x}^n))^\top, \ \mathbf{c} := (c_1, \dots, c_{m-1})^\top, \ (\eta_k(\mathbf{x}))_{k=1}^\infty = (\sigma_k^{-1} e_k(\mathbf{x}))_{k=1}^\infty$$

$$\mathbf{L}_{n,m} := \mathbf{L}_{n,m}(\mathbf{X}) = \begin{pmatrix} \eta_1(\mathbf{x}^1) & \eta_2(\mathbf{x}^1) & \cdots & \eta_{m-1}(\mathbf{x}^1) \\ \vdots & \vdots & \ddots & \vdots \\ \eta_1(\mathbf{x}^n) & \eta_2(\mathbf{x}^n) & \cdots & \eta_{m-1}(\mathbf{x}^n) \end{pmatrix}$$
(6)

Solve the over-determined linear system

$$\mathbf{L}_{n,m} \cdot \mathbf{c} = \mathbf{f}$$

via least squares, i.e., compute

$$\mathbf{c} = (\mathbf{L}_{n,m}^* \mathbf{L}_{n,m})^{-1} \mathbf{L}_{n,m}^* \cdot \mathbf{f}$$
 (7)

Weighted least squares regression

Input:
$$\mathbf{X} = (\mathbf{x}^1, ..., \mathbf{x}^n) \in D^n$$
 set of distinct sampling nodes, $\mathbf{f} = (f(\mathbf{x}^1), ..., f(\mathbf{x}^n))^{\top}$ samples of f evaluated at the $m \in \mathbb{N}$ $m < n$ such that the matrix $\widetilde{\mathbf{L}}_t$

 $f = (f(x^1), ..., f(x^n))^{\top}$ samples of f evaluated at the nodes from X, m < n such that the matrix $\hat{\mathbf{L}}_{n,m}$ has full (column) rank.

Compute reweighted samples $\mathbf{g} := (g_i)_{i=1}^n$ with

$$g_j := \begin{cases} 0, & \varrho_m(\mathbf{x}^j) = 0, \\ f(\mathbf{x}^j) / \sqrt{\varrho_m(\mathbf{x}^j)}, & \varrho_m(\mathbf{x}^j) \neq 0. \end{cases}$$

Solve the over-determined linear system $\widetilde{\mathbf{L}}_{n,m}\cdot(\widetilde{c}_1,...,\widetilde{c}_{m-1})^{\top}=\mathbf{g}$,

$$\widetilde{\mathbf{L}}_{n,m} := \left(l_{j,k}\right)_{j=1,k=1}^{n,m-1}, \quad l_{j,k} := \begin{cases} 0, & \varrho_m(\mathbf{x}^j) = 0, \\ \eta_k(\mathbf{x}^j)/\sqrt{\varrho_m(\mathbf{x}^j)}, & \varrho_m(\mathbf{x}^j) \neq 0, \end{cases}$$

via least squares, i.e., compute $(\tilde{c}_1,...,\tilde{c}_{m-1})^{\top}:=(\widetilde{\mathbf{L}}_{n.m}^*\widetilde{\mathbf{L}}_{n.m})^{-1}\,\widetilde{\mathbf{L}}_{n.m}^*\cdot\mathbf{g}$. **Output**: $\tilde{\mathbf{c}} = (\tilde{c}_1, ..., \tilde{c}_{m-1})^{\top} \in \mathbb{C}^{m-1}$ coefficients of the approximant

$$\widetilde{S}_{\mathbf{X}}^m f := \sum_{k=1}^{m-1} \widetilde{c}_k \eta_k \,.$$

D. Krieg, M. Ullrich Function values are enough for L_2 -approximation, *Found. Comp. Math.*, 21: 1141–1151, 2021.

A. Cohen, G. Migliorati Optimal weighted least-squares methods. SMAI J. Comput. Math., 3: 181–203, 2017.

V. N. Temlyakov On optimal recovery in L_2 . J. Complexity, 65, 2021.

$$\varrho_m(\mathbf{x}) = \frac{1}{2} \left(\frac{1}{m-1} \sum_{k=1}^{m-1} |\eta_k(\mathbf{x})|^2 + \frac{1}{\sum_{k=m}^{\infty} \lambda_k} \sum_{k=m}^{\infty} |e_k(\mathbf{x})|^2 \right)$$
(8)

$$\varrho'_{m}(\mathbf{x}) = \frac{1}{2(m-1)} \sum_{k=1}^{m-1} |\eta_{k}(\mathbf{x})|^{2} + \frac{1}{2}$$
 (9)

 $\mathbf{X} = (\mathbf{x}^1, ..., \mathbf{x}^n)$ are drawn i.i.d. with respect to $\varrho_m(\cdot) d\varrho_D$

For every $f \in H(K)$ with a Mercer kernel K, it holds

$$f(\mathbf{x}) = \sum_{k=1}^{\infty} (f, e_k)_{H(K)} e_k(\mathbf{x}).$$

Let

$$P_m f := \sum_{k=1}^m (f, e_k)_{H(K)} e_k(\cdot)$$

be the projection onto the space span $\{e_1(\cdot),...,e_m(\cdot)\}$.

$$||f - \widetilde{S}_{\mathbf{X}}^m f||_{\ell_{\infty}(D)} \le ||f - P_{m-1}f||_{\ell_{\infty}(D)} + ||P_{m-1}f - \widetilde{S}_{\mathbf{X}}^m f||_{\ell_{\infty}(D)}$$

For every $f \in H(K)$ with a Mercer kernel K, it holds

$$f(\mathbf{x}) = \sum_{k=1}^{\infty} (f, e_k)_{H(K)} e_k(\mathbf{x}).$$

Let

$$P_m f := \sum_{k=1}^m (f, e_k)_{H(K)} e_k(\cdot)$$

be the projection onto the space span $\{e_1(\cdot),...,e_m(\cdot)\}$.

$$||f - \widetilde{S}_{\mathbf{X}}^m f||_{\ell_{\infty}(D)} \le ||f - P_{m-1}f||_{\ell_{\infty}(D)} + ||P_{m-1}f - \widetilde{S}_{\mathbf{X}}^m f||_{\ell_{\infty}(D)}$$

$$\sup_{\|f\|_{H(K)} \le 1} \|f - P_{m-1}f\|_{\ell_{\infty}(D)} \le \sqrt{2 \sum_{k \ge \lfloor m/4 \rfloor} \frac{N_{K,\varrho_{D}}(4k)\sigma_{k}^{2}}{k}}, \tag{10}$$

where

$$N_{K,\varrho_D}(m) := \sup_{\mathbf{x} \in D} N_{K,\varrho_D}(m,\mathbf{x}) = \sup_{\mathbf{x} \in D} \sum_{k=1}^{m-1} |\eta_k(\mathbf{x})|^2.$$

$$\sup_{\|f\|_{H(K)} \le 1} \|f - P_{m-1}f\|_{\ell_{\infty}(D)}^{2} = \sup_{\mathbf{x} \in D} \sum_{k \ge m} |e_{k}(\mathbf{x})|^{2}$$

$$\le \sup_{\mathbf{x} \in D} \sum_{l=|\log_{2} m|} \sum_{2^{l} \le k \le 2^{l+1}} |\sigma_{k} \eta_{k}(\mathbf{x})|^{2}$$

For all
$$2^l \leq k < 2^{l+1}$$
 it holds $\sigma_k^2 \leq \frac{1}{2^{l-1}} \sum_{2^{l-1} \leq j < 2^l} \sigma_j^2$

$$\leq \sum_{l=\lfloor \log_2 m \rfloor}^{\infty} \frac{N_{K,\varrho_D}(2^{l+1})}{2^{l-1}} \sum_{2^{l-1} \leq j < 2^l} \sigma_j^2 \leq \cdots \leq 2 \sum_{k \geq \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k) \sigma_k^2}{k}$$

$$\begin{aligned} \|P_{m-1}f - \widetilde{S}_{X}^{m}f\|_{\ell_{\infty}(D)} &= \|\widetilde{S}_{X}^{m}(f - P_{m-1}f)\|_{\ell_{\infty}(D)} = \left\|\sum_{k=1}^{m-1} \tilde{c}_{k}\eta_{k}(x)\right\|_{\ell_{\infty}(D)} \\ &\leq \sqrt{N_{K,\varrho_{D}}(m) \cdot \sum_{k=1}^{m-1} |\tilde{c}_{k}|^{2}} \end{aligned}$$

$$\|P_{m-1}f - \widetilde{S}_{X}^{m}f\|_{\ell_{\infty}(D)} = \|\widetilde{S}_{X}^{m}(f - P_{m-1}f)\|_{\ell_{\infty}(D)} = \left\|\sum_{k=1}^{m-1} \tilde{c}_{k}\eta_{k}(x)\right\|_{\ell_{\infty}(D)}$$

$$\leq \sqrt{N_{K,\varrho_{D}}(m) \cdot \sum_{k=1}^{m-1} |\tilde{c}_{k}|^{2}}$$

$$(\tilde{c}_{1},...,\tilde{c}_{m-1})^{\top} = (\widetilde{\mathbf{L}}_{n,m}^{*}\widetilde{\mathbf{L}}_{n,m})^{-1}\widetilde{\mathbf{L}}_{n,m}^{*} \cdot \mathbf{g}, \quad \mathbf{g} = (g_{j})_{j=1}^{n} \text{ with}$$

$$\mathbf{g}_{j} := \begin{cases} 0, & \varrho_{m}(\mathbf{x}^{j}) = 0, \\ (f - P_{m-1}f)(\mathbf{x}^{j}) / \sqrt{\varrho_{m}(\mathbf{x}^{j})}, & \varrho_{m}(\mathbf{x}^{j}) \neq 0. \end{cases}$$

$$(11)$$

N. Nagel, M. Schäfer, T. Ullrich A new upper bound for sampling numbers. Found. Comp. Math., 2021.

$$N(m) \le n/(10r \log n), \ r > 1 \implies \|(\mathbf{L}_{n,m}^* \mathbf{L}_{n,m})^{-1} \mathbf{L}_{n,m}^*\|_{2 \to 2} \le \sqrt{2/n}$$

$$\varrho_{m}(\mathbf{x}) = \frac{1}{2} \left(\frac{1}{m-1} \sum_{k=1}^{m-1} |\eta_{k}(\mathbf{x})|^{2} + \frac{1}{\sum_{k=m}^{\infty} \lambda_{k}} \sum_{k=m}^{\infty} |e_{k}(\mathbf{x})|^{2} \right)$$
$$\widetilde{N}(m) := \sup_{\mathbf{x} \in D} \sum_{k=1}^{m-1} \frac{|\eta_{k}(\mathbf{x})|^{2}}{\varrho_{m}(\mathbf{x})} \leq 2(m-1)$$

For systems $(\eta_k(\mathbf{x}))_{k=1}^{\infty}$, where for all $k \in \mathbb{N}$

$$\|\eta_k\|_{\ell_\infty(D)} \leq B,$$

we have

$$N_{K,\varrho_D}(m) \le (m-1)B^2 \tag{12}$$

Theorem (Moeller, Ullrich' 21)

Let \mathbf{y}^i , $i=1,\ldots,n$, be i.i.d random sequences from ℓ_2 . Let further $n\geq 3$, r>1, M>0 such that $\|\mathbf{y}^i\|_2\leq M$ for all $i=1,\ldots,n$ almost surely and $\mathbb{E}\mathbf{y}^i\otimes\mathbf{y}^i=\mathbf{\Lambda}$ for $i=1,\ldots,n$ with $\|\mathbf{\Lambda}\|_{2\to 2}\leq 1$. Then

$$\mathbb{P}\left(\left\|\frac{1}{n}\sum_{i=1}^n\mathbf{y}^i\otimes\mathbf{y}^i-\mathbf{\Lambda}\right\|_{2\to 2}\geq F\right)\leq 2^{3/4}n^{1-r}\,,$$

where $F:=\max\left\{rac{8r\log n}{n}M^2\kappa^2,\|\mathbf{\Lambda}\|_{2 o 2}
ight\}$ and $\kappa=rac{1+\sqrt{5}}{2}.$

Focus here on **infinite** random matrices, complements earlier results by Kämmerer, Ullrich, Volkmer, Tropp, Rauhut, Pajor, Mendelson, Oliveira...

$$\mathbf{y}^{i} := \frac{1}{\sqrt{\rho_{m}(\mathbf{x}^{i})}} (e_{m}(\mathbf{x}^{i}), e_{m+1}(\mathbf{x}^{i}), \dots)^{\top}, i = 1, \dots, n$$

$$\|\mathbf{y}^i\|_2^2 \le \sup_{\mathbf{x} \in D} \sum_{k=m}^{\infty} \frac{|e_k(\mathbf{x})|^2}{\varrho_m(\mathbf{x})} \le 2 \sum_{k=m}^{\infty} \lambda_k =: M^2$$

$$\mathbf{\Lambda} := \operatorname{diag}(\sigma_m^2, \sigma_{m+1}^2, \dots), \|\mathbf{\Lambda}\|_{2 \to 2} = \sigma_m^2$$

Theorem (P., Ullrich' 21)

- ullet H(K) RKHS on a compact domain $D\subset\mathbb{R}^d$
- ullet $K: D imes D o \mathbb{C}$ continuous and bounded kernel
- ullet $arrho_D$ finite Borel measure with full support on D
- $(\sigma_n)_{n=1}^{\infty}$, $\sigma_1 \geq \sigma_2 \geq \cdots$, singular values of Id: $H(K) \to L_2(D, \varrho_D)$
- $m := \lfloor n/(c_1 r \log n) \rfloor, r > 1$

$$\sup_{\|f\|_{H(K)} \le 1} \|f - \widetilde{S}_{\mathbf{X}}^m f\|_{\ell_{\infty}(D)}^2 \le c_3 \max \left\{ \frac{N_{K,\varrho_D}(m)}{m} \sum_{k \ge \lfloor m/2 \rfloor} \sigma_k^2, \sum_{k \ge \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k)\sigma_k^2}{k} \right\}$$
(13)

with probability larger than $1-c_2n^{1-r}$, where $\mathbf{X}=(\mathbf{x}^1,...,\mathbf{x}^n)$ are drawn i.i.d. with respect to $\varrho_m(\cdot)d\varrho_D$, $N_{K,\varrho_D}(m)=\sup_{\mathbf{x}\in D}\sum_{k=1}^{m-1}\left|\sigma_k^{-1}e_k(\mathbf{x})\right|^2$, $(e_n(\mathbf{x}))_{n=1}^\infty\subset H(K)$.

Theorem (P., Ullrich' 21)

- ullet H(K) RKHS on a compact domain $D\subset \mathbb{R}^d$
- ullet $K \colon D \times D \to \mathbb{C}$ continuous and bounded kernel
- ullet $arrho_D$ finite Borel measure with full support on D
- $(\sigma_n)_{n=1}^{\infty}$, $\sigma_1 \geq \sigma_2 \geq \cdots$, singular values of $\mathrm{Id} \colon H(K) \to L_2(D, \varrho_D)$
- $m := \lfloor n/(c_1 r \log n) \rfloor, r > 1$

$$\sup_{\|f\|_{H(K)} \le 1} \|f - \widetilde{S}_{\mathbf{X}}^m f\|_{\ell_{\infty}(D)}^2 \le c_3 \max \left\{ \frac{N_{K,\varrho_D}(m)}{m} \sum_{k \ge \lfloor m/2 \rfloor} \sigma_k^2, \sum_{k \ge \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k)\sigma_k^2}{k} \right\}$$
(13)

with probability larger than $1-c_2n^{1-r}$, where $\mathbf{X}=(\mathbf{x}^1,...,\mathbf{x}^n)$ are drawn i.i.d. with respect to $\varrho_m(\cdot)d\varrho_D$, $N_{K,\varrho_D}(m)=\sup_{\mathbf{x}\in D}\sum_{k=1}^{m-1}\left|\sigma_k^{-1}e_k(\mathbf{x})\right|^2$, $(e_n(\mathbf{x}))_{n=1}^\infty\subset H(K)$.

$$c_2=3,\ c_3=4(\sqrt{2}+8(1+\sqrt{5})/\sqrt{2\,c_1})^2$$
 Arbitrary ONS $(\eta_k(\mathbf{x}))_{k=1}^\infty$
$$\|\eta_k\|_{\ell_\infty(D)}\leq 1,\ k\in\mathbb{N}$$
 $c_1=20,\ c_3=122$
$$c_1=10,\ c_3=208$$

$$\sup_{\|f\|_{H(K)} \le 1} \|f - \widetilde{S}_{\mathbf{X}}^m f\|_{\ell_{\infty}(D)}^2 \le c_3 \max \left\{ \frac{N_{K,\varrho_D}(m)}{m} \sum_{k \ge \lfloor m/2 \rfloor} \sigma_k^2, \sum_{k \ge \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k) \sigma_k^2}{k} \right\}$$

If $N_{K,\varrho_D}(k) = \mathcal{O}(k)$, it holds

$$\sup_{\|f\|_{H(K)} \le 1} \|f - \widetilde{S}_{\mathbf{X}}^m f\|_{\ell_{\infty}(D)}^2 \le C_{\varrho_D, K} \sum_{k > \lfloor m/4 \rfloor} \sigma_k^2 \le C_{\varrho_D, K} a_{\lfloor m/4 \rfloor} (\mathrm{Id}_{K, \infty})^2$$
(14)

F. Cobos, T. Kühn, W. Sickel Optimal approximation of multivariate periodic Sobolev functions in the sup-norm. *J. Funct. Anal.*, 270(11): 4196–4212, 2016.

$$m := |n/(c_1 r \log n)|, \quad r > 1$$

$$\varrho_{m}(\mathbf{x}) = \frac{1}{2} \left(\frac{1}{m-1} \sum_{k=1}^{m-1} \left| \eta_{k}(\mathbf{x}) \right|^{2} + \frac{1}{\sum_{k=m}^{\infty} \lambda_{k}} \sum_{k=m}^{\infty} \left| e_{k}(\mathbf{x}) \right|^{2} \right)$$

$$\sup_{\|f\|_{H(K)} \leq 1} \|f - \widetilde{S}_{\mathbf{X}}^{m} f\|_{\ell_{\infty}(D)}^{2} \leq c_{3} \max \left\{ \frac{N_{K, \ell_{D}}(m)}{m} \sum_{k \geq \lfloor m/2 \rfloor} \sigma_{k}^{2}, \sum_{k \geq \lfloor m/4 \rfloor} \frac{N_{K, \ell_{D}}(4k) \sigma_{k}^{2}}{k} \right\}$$

$$\begin{split} \varrho_m'(\mathbf{x}) &= \frac{1}{2(m-1)} \sum_{k=1}^{m-1} |\eta_k(\mathbf{x})|^2 + \frac{1}{2} \\ \sup_{\|f\|_{H(K)} \leq 1} \|f - \widetilde{S}_\mathbf{X}^m f\|_{\ell_\infty(D)}^2 \leq c_3 \max \Big\{ \frac{N_{K,\varrho_D}(m)}{m} \sum_{k \geq \lfloor cm \rfloor} \frac{N_{K,\varrho_D}(4k) \sigma_k^2}{k}, \sum_{k \geq \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k) \sigma_k^2}{k} \Big\} \end{split}$$

$$m:=\lfloor n/(c_1r\log n)\rfloor,\quad r>1$$

$$\varrho_m(\mathbf{x}) = \frac{1}{2} \left(\frac{1}{m-1} \sum_{k=1}^{m-1} |\eta_k(\mathbf{x})|^2 + \frac{1}{\sum_{k=m}^{\infty} \lambda_k} \sum_{k=m}^{\infty} |e_k(\mathbf{x})|^2 \right)$$

$$\sup_{\|f\|_{H(K)} \le 1} \|f - \widetilde{S}_{\mathbf{X}}^m f\|_{\ell_{\infty}(D)}^2 \le c_3 \max \left\{ \frac{N_{K,\varrho_D}(m)}{m} \sum_{k \ge \lfloor m/2 \rfloor} \sigma_k^2, \sum_{k \ge \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k) \sigma_k^2}{k} \right\}$$

$$\begin{split} \varrho_m'(\mathbf{x}) &= \frac{1}{2(m-1)} \sum_{k=1}^{m-1} |\eta_k(\mathbf{x})|^2 + \frac{1}{2} \\ \sup_{\|f\|_{H(K)} \leq 1} \|f - \widetilde{S}_\mathbf{X}^m f\|_{\ell_\infty(D)}^2 \leq c_3 \max \Big\{ \frac{N_{K,\varrho_D}(m)}{m} \sum_{k \geq \lfloor cm \rfloor} \frac{N_{K,\varrho_D}(4k) \sigma_k^2}{k}, \sum_{k \geq \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k) \sigma_k^2}{k} \Big\} \end{split}$$

 m^* is the largest number such that $N_{K,\varrho_D}(m) \leq n/(10r\log n)$

$$\sup_{\|f\|_{H(K)} \le 1} \|f - S_{\mathbf{X}}^{m^*} f\|_{\ell_{\infty}(D)}^2 \le C \sum_{k > \lfloor m^*/4 \rfloor} \frac{N_{K,\varrho_D}(4k)\sigma_k^2}{k}$$
 (15)

$$\mathbf{L}_{n,m} := \mathbf{L}_{n,m}(\mathbf{X}) = egin{pmatrix} \eta_1(\mathbf{x}^1) & \eta_2(\mathbf{x}^1) & \cdots & \eta_{m-1}(\mathbf{x}^1) \ & & \ddots & & \vdots \ \eta_1(\mathbf{x}^n) & \eta_2(\mathbf{x}^n) & \cdots & \eta_{m-1}(\mathbf{x}^n) \end{pmatrix}$$

Above approach requires $n = \mathcal{O}(m \log m)$ samples.

We "shrink" the matrix $\mathbf{L}_{n,m}$ to $\mathcal{O}(m)$ lines applying a modification of the Weaver sub-sampling strategy.

$$\widetilde{S}^m_{\mathbf{X}},\ \mathbf{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^n\} \quad \Longrightarrow \quad \widetilde{S}^m_{\boldsymbol{J}},\ \# \boldsymbol{J} = \mathcal{O}(m),\ (\mathbf{x}^i)_{i \in \boldsymbol{J}}\ \subset \mathbf{X}$$

- N. Nagel, M. Schäfer, T. Ullrich A new upper bound for sampling numbers. *Found. Comp. Math.*, 2021.
- S. Nitzan, A. Olevskii, A. Ulanovskii Exponential frames on unbounded sets. *Proc. Amer. Math. Soc.*, 144(1):109–118, 2016.
- I. Limonova, V. N. Temlyakov On sampling discretization in L_2 . arXiv: math/2009.10789v1, 2020.

Theorem (Nitzan, Olevskii, Ulanovskii' 16, Limonova, Temlyakov' 20, Nagel, Schäfer, Ullrich' 20)

Let $k_1, k_2, k_3 > 0$ and $\mathbf{u}_1, ..., \mathbf{u}_n \in \mathbb{C}^m$ with $\|\mathbf{u}_i\|_2^2 \leq k_1 \frac{m}{n}$ for all i = 1, ..., n and

$$|k_2||\mathbf{w}||_2^2 \le \sum_{i=1}^n |\langle \mathbf{w}, \mathbf{u}_i \rangle|^2 \le k_3 ||\mathbf{w}||_2^2, \quad \mathbf{w} \in \mathbb{C}^m$$

 $\implies \exists J \subseteq \{1,\ldots,n\}, \ \#J \leq C_1 m$:

$$C_2 \cdot \frac{m}{n} \|\mathbf{w}\|_2^2 \le \sum_{i \in I} |\langle \mathbf{w}, \mathbf{u}_i \rangle|^2 \le C_3 \cdot \frac{m}{n} \|\mathbf{w}\|_2^2, \quad \mathbf{w} \in \mathbb{C}^m$$

More precisely, we can choose

$$C_1 = 1642 \frac{k_1}{k_2} \,, \quad C_2 = (2 + \sqrt{2})^2 k_1 \,, \quad C_3 = 1642 \frac{k_1 k_3}{k_2}$$

in case $\frac{n}{m} \geq 47 \frac{k_1}{k_2}$. In the regime $1 \leq \frac{n}{m} < 47 \frac{k_1}{k_2}$ one may put $C_1 = 47 \frac{k_1}{k_2}$, $C_2 = k_2$, $C_3 = 47 \frac{k_1 k_3}{k_2}$.

[Theorem (P., Ullrich' 21)

For Id: $H(K) \rightarrow \ell_{\infty}(D)$, $\exists b, c_4, c_5, c_6 > 0$:

$$g_{\lfloor bm\log m\rfloor}(\mathrm{Id})^2 \leq c_3 \max \Big\{ \frac{N_{K,\varrho_D}(m)}{m} \sum_{k \geq \lfloor m/2 \rfloor} \sigma_k^2 \, , \sum_{k \geq \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k)\sigma_k^2}{k} \Big\}$$

$$g_{m}(\mathrm{Id})^{2} \leq c_{4} \max \Big\{ \frac{N_{K,\varrho_{D}}(m) \log m}{m} \sum_{k \geq \lfloor c_{5} m \rfloor} \sigma_{k}^{2}, \sum_{k \geq \lfloor c_{5} m \rfloor} \frac{N_{K,\varrho_{D}}(4k) \sigma_{k}^{2}}{k} \Big\}$$

The measure ϱ_D is at our disposal.

Theorem (P., Ullrich' 21)

For Id: $H(K) \rightarrow \ell_{\infty}(D)$, $\exists b, c_4, c_5, c_6 > 0$:

$$g_{\lfloor bm\log m\rfloor}(\mathrm{Id})^2 \leq c_3 \max \Big\{ \frac{N_{K,\varrho_D}(m)}{m} \sum_{k \geq \lfloor m/2 \rfloor} \sigma_k^2 \, , \sum_{k \geq \lfloor m/4 \rfloor} \frac{N_{K,\varrho_D}(4k)\sigma_k^2}{k} \Big\}$$

$$g_m(\mathrm{Id})^2 \leq c_4 \max \Big\{ \frac{N_{K,\varrho_D}(m) \log m}{m} \sum_{k \geq \lfloor c_5 m \rfloor} \sigma_k^2, \sum_{k \geq \lfloor c_5 m \rfloor} \frac{N_{K,\varrho_D}(4k) \sigma_k^2}{k} \Big\}$$

The measure ϱ_D is at our disposal.

If
$$N_{K,arrho_D}(k)=\mathcal{O}(k)$$
 we obtain

$$g_m(\mathrm{Id}) \le C_{\varrho_D,K} \min\{a_{\lfloor m/(c_6 \log m)\rfloor}(\mathrm{Id}), \sqrt{\log m} \cdot a_{\lfloor c_5 m\rfloor}(\mathrm{Id})\}$$
 (16)

The power of standard information

Id:
$$H(K) \rightarrow F$$

$$egin{aligned} q_F^{ ext{lin}} &:= \sup \left\{ q \geq 0 : & \lim_{n o \infty} n^q a_n(ext{Id}) = 0
ight\} \ q_F^{ ext{std}} &:= \sup \left\{ q \geq 0 : & \lim_{n o \infty} n^q g_n(ext{Id}) = 0
ight\} \end{aligned}$$

$$F = L_2(D, \varrho_D) \implies q_{2,\varrho_D}^{\mathrm{lin}} := q_{L_2(D,\varrho_D)}^{\mathrm{lin}}, \ q_{2,\varrho_D}^{\mathrm{std}} := q_{L_2(D,\varrho_D)}^{\mathrm{std}}$$
 $F = \ell_{\infty}(D) \implies q_{\infty}^{\mathrm{lin}} := q_{\ell_{\infty}(D)}^{\mathrm{lin}}, \qquad q_{\infty}^{\mathrm{std}} := q_{\ell_{\infty}(D)}^{\mathrm{std}}$

For $a_n(\mathrm{Id})$ one can take $F=L_\infty(D)$

E. Novak, H. Woźniakowski Tractability of multivariate problems. Volume III: Standard information for operators, volume 18 of *EMS Tracts in Mathematics*. European Mathematical Society (EMS), Zürich, 2012.

Assumptions

- (i) $N_{K,\varrho_D}(k) = \mathcal{O}(k^u)$;
- (ii) $\exists p > 1/2, \ C_2 > 0: \ \sigma_j \leq C_2 j^{-p}, \ j = 1, 2, \dots$

$$u := \inf \{ u \colon N_{K,\varrho_D}(k) = \mathcal{O}(k^u) \},$$

 $p := \sup \{ p \colon \sigma_j \le C_2 j^{-p}, j = 1, 2, \dots \}.$

Assumptions

- (i) $N_{K,\varrho_D}(k) = \mathcal{O}(k^u)$;
- (ii) $\exists p > 1/2, \ C_2 > 0: \quad \sigma_j \leq C_2 j^{-p}, \ j = 1, 2, \dots$

$$u := \inf \{ u \colon N_{K, \varrho_D}(k) = \mathcal{O}(k^u) \},$$

 $p := \sup \{ p \colon \sigma_j \le C_2 j^{-p}, j = 1, 2, \dots \}.$

F. Kuo, G. W. Wasilkowski, H. Woźniakowski

- Multivariate L_{∞} approximation in the worst case setting over reproducing kernel Hilbert spaces. *J. Approx. Theory*, 152(2):135–160, 2008.
- On the power of standard information for multivariate approximation in the worst case setting. J. Approx. Theory, 158(1):97-125, 2009.
- (i') $\exists C_1 > 0$ $\|\eta_j\|_{\ell_{\infty}(D)} \le C_1, j = 1, 2, ...$ $N_{K,\varrho_D}(k) = \sup_{\mathbf{x} \in D} \sum_{i=1}^{k-1} |\eta_i(\mathbf{x})|^2 = \mathcal{O}(k), \ \eta_i(\mathbf{x}) = \sigma_i^{-1} e_i(\mathbf{x})$

The power of standard information

- (i) $N_{K,\varrho_D}(k) = \mathcal{O}(k^u)$;
- (i') $\exists C_1 > 0$: $\|\eta_j\|_{\ell_{\infty}(D)} \leq C_1$, j = 1, 2, ...
- (ii) $\exists p > 1/2, \ C_2 > 0: \ \sigma_j \leq C_2 j^{-p}, \ j = 1, 2, \dots$

(ii)
$$\Longrightarrow$$
 $q_{2,\varrho_D}^{\text{lin}} = p$
(i')/(i) & (ii) \Longrightarrow $q_{\infty}^{\text{lin}} = q_{2,\varrho_D}^{\text{lin}} - 1/2 = p - 1/2$
(i') & (ii) \Longrightarrow $q_{\infty}^{\text{std}} \in \left[\frac{2p}{2p+1}\left(p-\frac{1}{2}\right), p-\frac{1}{2}\right]$

Corollary (P., Ullrich' 21)

(i) & (ii),
$$2p > u$$

$$q_{\infty}^{\text{std}} \geq p - u/2$$

In case u = 1 we have

$$q_{\infty}^{\mathrm{std}} = q_{\infty}^{\mathrm{lin}} = p - 1/2$$

Examples. Sobolev type spaces.

 H^w , $w(\mathbf{k}) > 0$, $\mathbf{k} \in \mathbb{Z}^d$

$$||f||_{H^{w}(\mathbb{T}^{d})}^{2} = \sum_{\mathbf{k} \in \mathbb{Z}^{d}} (w(\mathbf{k}))^{2} |c_{\mathbf{k}}(f)|^{2} < \infty$$
(17)

 $c_{\boldsymbol{k}}(f) = (2\pi)^{-d} \int_{\mathbb{T}^d} f(\mathbf{x}) e^{-i\boldsymbol{k}\cdot\mathbf{x}} d\mathbf{x}, \quad \boldsymbol{k} \in \mathbb{Z}^d, \ \mathbb{T}^d = [0, 2\pi]^d$

$$H^w(\mathbb{T}^d) \hookrightarrow L_\infty(\mathbb{T}^d) \quad \Longleftrightarrow \quad \sum_{\mathbf{k} \in \mathbb{Z}^d} (w(\mathbf{k}))^{-2} < \infty$$

F. Cobos, T. Kühn, W. Sickel Optimal approximation of multivariate periodic Sobolev functions in the sup-norm. *J. Funct. Anal.*, 270(11):4196–4212, 2016.

$$K_{w}(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \frac{e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}}{(w(\mathbf{k}))^{2}}$$
(18)

$$H^w(\mathbb{T}^d) \hookrightarrow \ell_\infty(\mathbb{T}^d)$$

Sampling recovery. Sobolev type spaces.

$$g_n(\mathsf{I}_w\colon H^w(\mathbb{T}^d)\to L_\infty(\mathbb{T}^d))\leq C\min\left\{a_{\lfloor n/b\log n\rfloor}(\mathsf{I}_w)\,,\sqrt{\log n}\cdot a_{\lfloor cn\rfloor}(\mathsf{I}_w)\right\}$$

Note that

$$a_n(\mathsf{I}_w)^2 = \sum_{k \ge n+1} \tau_k^2 \,,$$

where
$$(\tau_n)_{n\in\mathbb{N}}=(1/w(\pmb{k}))_{\pmb{k}\in\mathbb{Z}^d}, \quad au_1\geq au_2\geq \dots$$

$$g_m(\mathsf{I}_w) \le C \log m \cdot \mathsf{a}_{\lfloor m/\log m \rfloor}(\mathsf{I}_w) \tag{19}$$

- **L. Kämmerer** Multiple lattice rules for multivariate L_{∞} approximation in the worst-case setting. arXiv: math/1909.02290v1, 2019.
- L. Kämmerer, T. Volkmer Approximation of multivariate periodic functions based on sampling along multiple rank-1 lattices. *J. Approx. Theory*, 246:1–27, 2019.

$$H^{s,\#}_{\mathrm{mix}}(\mathbb{T}^d) := \left\{ f \in L_2(\mathbb{T}^d) \colon \|f\|^2_{H^{s,\#}_{\mathrm{mix}}(\mathbb{T}^d)} = \sum_{k \in \mathbb{Z}^d} |c_k(f)|^2 \prod_{j=1}^d (1 + |k_j|)^{2s} < \infty \right\}$$

$$H^{s,+}_{\mathrm{mix}}(\mathbb{T}^d) := \left\{ f \in L_2(\mathbb{T}^d) \colon \|f\|^2_{H^{s,+}_{\mathrm{mix}}(\mathbb{T}^d)} = \sum_{k \in \mathbb{Z}^d} |c_k(f)|^2 \prod_{j=1}^d \left(1 + |k_j|^2\right)^s < \infty \right\}$$

T. Kühn, W. Sickel, T. Ullrich Approximation of mixed order Sobolev functions on the *d*-torus: asymptotics, preasymptotics and *d*-dependence. *Constr. Approx.*, 42:353–398, 2015.

Id:
$$H^s_{\min}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)$$
, $\sigma_n \lesssim_{s,d} n^{-s} (\log n)^{s(d-1)}$

Theorem (P., Ullrich' 21)

Let s > 1/2, r > 1, $m = \lfloor n/(c_1 r \log n) \rfloor$, $c_1 > 0$. Then

$$\sup_{\|f\|_{H^{s}_{\infty;\infty}(\mathbb{T}^d)} \le 1} \|f - S_X^m f\|_{L_{\infty}(\mathbb{T}^d)} \lesssim_{s,d,r} n^{-s+1/2} (\log n)^{sd-1/2}$$
 (20)

is true as $n \to \infty$ with probability larger than $1 - 3n^{1-r}$.

$$g_{\lfloor bm\log m\rfloor}(\operatorname{Id}: H^{s}_{\operatorname{mix}}(\mathbb{T}^{d}) \to L_{\infty}(\mathbb{T}^{d})) \lesssim_{s,d} m^{-s+1/2} (\log m)^{s(d-1)}$$
(21)
$$g_{\lfloor cn\rfloor}(\operatorname{Id}: H^{s}_{\operatorname{mix}}(\mathbb{T}^{d})) \to L_{\infty}(\mathbb{T}^{d})) \lesssim_{s,d} n^{-s+1/2} (\log n)^{s(d-1)+1/2}$$
(22)

$$s(d-1) + 1/2 < s(d-1) + s - 1/2$$
 if $s > 1$

For sparse grids

$$g_n(\operatorname{Id}: H^s_{\operatorname{mix}}(\mathbb{T}^d) \to L_\infty(\mathbb{T}^d)) \asymp_{s,d} n^{-s+1/2} (\log n)^{(d-1)s}, \quad s > 1/2$$

V. N. Temlyakov On approximate recovery of functions with bounded mixed derivative. J. Complexity, 9(1):41-59, 1993.

$$\sigma_n^{\#} \le \left(\frac{16}{3n}\right)^{\frac{s}{1 + \log_2 d}} , \quad n \ge 6$$

T. Kühn New preasymptotic estimates for the approximation of periodic Sobolev functions. In 2018 MATRIX annals, volume 3 of MATRIX Book Ser., pages 97–112. Springer, Cham., 2020.

Theorem (P., Ullrich' 21)

- $s > (1 + \log_2 d)/2$, $\beta := 2s/(1 + \log_2 d) > 1$, r > 1
- $n \in \mathbb{N}$, $n \ge 3$, $m \in \mathbb{N}$ $m = \lfloor n/(10r \log n) \rfloor$

$$\sup_{\|f\|_{H^{5,\#}_{\min}(\mathbb{T}^d)} \le 1} \|f - S_{\mathbf{X}}^m f\|_{L_{\infty}(\mathbb{T}^d)}^2 \le 832 \left(\frac{16}{3}\right)^{\beta} \frac{\beta}{\beta - 1} \left(\frac{m}{4} - 1\right)^{-\beta + 1} \tag{23}$$

$$\sigma_n^{\#} \le \left(\frac{16}{3n}\right)^{\frac{s}{1 + \log_2 d}} , \quad n \ge 6$$

T. Kühn New preasymptotic estimates for the approximation of periodic Sobolev functions. In 2018 MATRIX annals, volume 3 of MATRIX Book Ser., pages 97–112. Springer, Cham., 2020.

Theorem (P., Ullrich' 21)

- $s > (1 + \log_2 d)/2$, $\beta := 2s/(1 + \log_2 d) > 1$, r > 1
- $n \in \mathbb{N}$, $n \ge 3$, $m \in \mathbb{N}$ $m = \lfloor n/(10r \log n) \rfloor$

$$\sup_{\|f\|_{H_{\min}^{5,\#}(\mathbb{T}^d)} \le 1} \|f - S_{\mathbf{X}}^m f\|_{L_{\infty}(\mathbb{T}^d)}^2 \le 832 \left(\frac{16}{3}\right)^{\beta} \frac{\beta}{\beta - 1} \left(\frac{m}{4} - 1\right)^{-\beta + 1} \tag{23}$$

$$\sigma_n^+ \le \left(\frac{C(d)}{n}\right)^{\frac{s}{2(1+\log_2(d-1))}},$$
 (24)

$$s > 0$$
, $d \ge 3$, $n \ge 2$, $C(d) = \left(1 + \frac{1}{d-1}\left(1 + \frac{2}{\log_2(d-1)}\right)\right)^{d-1}$

T. Kühn, W. Sickel, T. Ullrich How anisotropic mixed smoothness affects the decay of singular numbers for Sobolev embeddings. *J. Complexity*, 63, 2021.

General results

For Id: $H(K) \to \ell_{\infty}(D)$, $\exists b, c_4, c_5, c_6 > 0$:

$$g_{\lfloor bm\log m\rfloor}(\mathrm{Id})^2 \leq c_3 \max\Big\{\frac{N_{K,\varrho_D}(m)}{m} \sum_{k \geq \lfloor m/2\rfloor} \sigma_k^2 \, , \sum_{k \geq \lfloor m/4\rfloor} \frac{N_{K,\varrho_D}(4k)\sigma_k^2}{k} \Big\}$$

$$g_{\textit{m}}(\mathrm{Id})^2 \leq c_4 \max \Big\{ \frac{\textit{N}_{\textit{K},\varrho_{\textit{D}}}(\textit{m}) log\,\textit{m}}{\textit{m}} \sum_{\textit{k} \geq \lfloor \textit{c}_5 \textit{m} \rfloor} \sigma_{\textit{k}}^2 \, , \sum_{\textit{k} \geq \lfloor \textit{c}_5 \textit{m} \rfloor} \frac{\textit{N}_{\textit{K},\varrho_{\textit{D}}}(4\textit{k}) \sigma_{\textit{k}}^2}{\textit{k}} \Big\}$$

A univariate example

D = [-1, 1], the uniform measure dx on D

$$Af(x) = -((1-x^2)f')'$$
 $H(K_s) := \{ f \in L_2(D) \colon A^{s/2}f \in L_2(D) \}, \quad s > 1$

$$K_s(x,y) = \sum_{k \in \mathbb{N}} (1 + (k(k+1))^s)^{-1} \mathcal{P}_k(x) \mathcal{P}_k(y)$$

 $\mathcal{P}_k \colon D \to \mathbb{R}, \ k \in \mathbb{N}, \ \text{are} \ L_2(D)$ -normalized Legendre polynomials $\mathcal{P}_k(x)$

- $\bullet \ (\eta_k)_{k=1}^{\infty} = (\mathcal{P}_k)_{k=1}^{\infty}$
- $(e_k)_{k=1}^{\infty} = ((1 + (k(k+1))^s)^{-1/2} \mathcal{P}_k)_{k=1}^{\infty}$
- $\sigma_k = ((1 + (k(k+1))^s)^{-1/2}$

$$N(m) = \mathcal{O}(m^2)$$

P. G. Nevai Orthogonal polynomials. Mem. Amer. Math. Soc., 18(213), 1979.

$$g_n(\mathrm{Id}) \lesssim_s n^{-s+1} (\log n)^{\min\{s-1,1/2\}}$$
 (25)

A univariate example

$L_2(D)$, Gauss points

C. Bernardi, Y. Maday Polynomial interpolation results in Sobolev spaces. *J. Comput. Appl. Math.*, 43(1):53–80, 1992.

 $L_2(D)$, worst case error estimates with high probability

L. Kämmerer, T. Ullrich, T. Volkmer Worst case recovery guarantees for least squares approximation using random samples, *Constr. Approx.*, 2021.

$$\sup_{\|f\|_{\mathcal{H}(K_s)} \leq 1} \|f - \widetilde{S}_{\mathbf{X}}^m f\|_{L_{\infty}(D)} \lesssim_s m^{-s+1} \lesssim n^{-s+1} (\log n)^{s-1}$$

$$\varrho_m(\mathbf{x}) = \frac{1}{2} \left(\frac{1}{m-1} \sum_{k=1}^{m-1} |\eta_k(\mathbf{x})|^2 + \frac{1}{\sum_{k=m}^{\infty} \lambda_k} \sum_{k=m}^{\infty} |e_k(\mathbf{x})|^2 \right)$$
(26)

$$\sup_{\|f\|_{H(K_s)} \le 1} \|f - \widetilde{S}_{\mathbf{X}}^m f\|_{L_{\infty}(D)} \lesssim_s n^{-s+3/2} (\log n)^{s-3/2}$$

$$\varrho'_m(\mathbf{x}) = \frac{1}{2(m-1)} \sum_{k=1}^{m-1} |\eta_k(\mathbf{x})|^2 + \frac{1}{2}$$
(27)

$$\sup_{\|f\|_{H(K_s)} \le 1} \|f - S_X^m f\|_{L_{\infty}(D)} \lesssim_s n^{-(s-1)/2} (\log n)^{(s-1)/2}$$

Figure 1: Sampling errors (Wiener algebra norm) for non-periodic test function $f \in \hat{H}^{3/2-\varepsilon}_{\mathrm{mix}}([-1,1]^d), m := |n/(4\log n)|$.

Made by T. Volkmer (Technische Universität Chemnitz)

Thank you for your attention!