doi:10.5550/sgia.161201.se.KSCP UDK:796.41.015.1-055.2 COBISS.RS-ID 6755096

ANALIZA RAZLIKA EFEKATA 6-MJESEČNOG PROGRAMA STEP AEROBIKA KOD STUDENTICA KOJE VJEŽBAJU I STUDENTICA KOJE NEMAJU ORGANIZIRANO TJELESNO VJEŽBANJE.

Natalija Kurtović¹, Nijaz Skender¹, Naim Ćeleš¹ i Adi Palić²

¹ Pedagoški fakultet Bihać, Bosna i Hercegovina

² Nastavnički fakultet Univerziteta Džemal Bijedić u Mostaru, Bosna i Hercegovina

Originalni naučni članak

SAŽETAK

Na uzorku od 100 studentica Visoke zdravstvene škole Univerziteta u Bihaću je urađen eksperiment u trajanju od 6 mjeseci s ciljem utvrđivanja razlika između dvije grupe ispitanika i to jedne koja je radila step aerobik dva puta nedjeljno i druge kontrolne koja nije imala organizovano tjelesno vježbanje. Na osnovu t-testa i diskriminacijske analize utvrđeno je da je došlo do statistički značajnih razlika između ove dvije grupe ispitanika. Rezultati pokazuju da je došlo do promjena kod ispitanika eksperimentalne grupe između inicijalnog i finalnog mjerenja a također se to odrazilo i na razlike između eksperimentalne i kontrolne grupe. Izolovana je jedna diskriminaciona funkcija koja ima vrlo visoku statističku značajnost.

Na osnovu dobijenih rezultata može se potvrditi da je došlo do poboljšanja rezultata morfoloških karakteristika kod studentkinja, iako su vježbale samo dva puta nedjeljno. Pokazalo se da je došlo i do redistribucije sastava tijela na račun poboljšanja volumena a na štetu masnog tkiva.

Ključne reči: step aerobik, morfološke karakteristike

UVOD

Aerobik predstavlja jedinstven fenomen u sportu a ubraja se među sportove nastale u posljednjih 25 godina. Nastao je u Americi i počeo se širiti kasnih 70-tih godina a usmjerena je različitim uzrasnim dobima, (u početku, ženama) a kasnije i svima ostalim. Aerobnim vježbanjem se nastoje povećati sposobnosti koje se u modernom sportu definišu kao aerobni fitness (Sharkey, 1991) u smislu aerobne snage ili aerobnog kapaciteta što je indikator sposobnosti uzimanja, transporta i iskorištenja kiseonika. U aerobiku vrlo važnu ulogu ima savladavanje određenih motoričkih programa. Danas se zna da se pod upravljanjem pokretima, podrazumijeva stalna "komunikacija" između središnjeg živčanog sustava (SŽS) i perifernog sistema, za izvođenje pokreta, a zajedno s perifernim dotokom vrši korekciju pokreta pri čemu SŽS planira, programira i šalje ekstrmitetima naredbu (Mirkov, 2011). U aerobiku postoji beskonačan broj elementa pokreta i njihovih kombinacija (Zagorc, 1996). Većina dosadašnjih istraživanja koja se bave

funkcionalnim, motoričkim i morfološkim karakteristikama studentkinja (Skender, Kendić, Tabaković i Dujisić, 2002), kao i uticajem pojedinih programa aerobika (Đug i Mikić, 2007), govore o pozitivnom uticaju transformacionih programa na uzorku ispitanika starosti 19 do 21 godine. Na osnovu prezentiranih rezultata na početku i na kraju provedenog fitness programa step aerobika u periodu od dva mjeseca sa frekvencijom 2 puta nedjeljno, te na osnovu značajnosti promjena testiranih T-testom, došli su do rezultata da je primjenjivani program step aerobika, kod grupe od 21 studenata kod primjenjivanih antropometrijskih varijabli proizveo značajne parcijalne promjene-efekte. U istraživanju (Oreb, Blarežina i Gošnik-Oreb, 1997) su došli do rezultata da nakon sprovođenja tromjesečnog programa plesnog aerobika u okviru nastave tielesnog odgoja u trajanju po dva sata nedjeljno, utvrđena je izuzetna utilitarnost plesnog aerobika, posebno u poboljšanju ritmičnosti, frekvencije pokreta, eksplozivne snage i koordinacije. U jednom drugom istraživanju (Đug, Mikić i Mačković, 2008) gdje se utvrđivao nivo tranformacionih procesa morfoloških karakteristika kao posljedica šestomjesečnog programiranog fitness programa kod studentica prve i druge godine studija Univerziteta u Tuzli koji su pohađali izbornu nastavu iz predmeta Fitness. Starost ispitanika je 19-21 godine a istraživanjem je obuhvaćeno 199 studentica. Fitness program TBC-total body condition, koji je proveden sa drugom grupom ispitanika proizveo je značajne parcijalne efekte i to na smanjenju tjelesne mase i smanjenju potkožnog masnog tkiva što je jedan od osnovnih zadataka ovog fitness programa. Struktura tijela (tjelesna građa) procjenjuje se na taj način što električni signal prolazi lakše kroz dijelove tijela koji sadrže vodu (krv, urin, mišići) iz razloga što imaju bolju provodljivost, nego kroz kosti ili masno tkivo. Što je veća količina bezmasnog tkiva veća je provodljivost i manji je otpor. Kombinujući bioelektričnu imepedancu sa ostalim faktorima kao što su visina, težina, godine dobijaju se podaci o strukturi tjelesne mase (Nešić, Ostojić, Đokić i Šeper, 2012). Osnovni cili ovog istraživanja je utvrđivanje efekata 6-mjesečnog programa Step aerobika u nekim antropološkim obilježjima kod studentica Univerziteta u Bihaću. Sekundarni cilj je analiza razlika efekata 6-mjesečnog programa Step aerobika nekih antropoloških obilježja kod studentica Univerziteta u Bihaću i studentica koji nisu imali organizovano tjelesno vežbanje.

METODE

Uzorak ispitanika činilo je 100 studentica Univerziteta u Bihaću podijeljenih u dvije grupe - eksperimentalnu i kontrolnu grupu. Eksperimentalnu grupu (E), koja je radila po modelu step aerobika, činilo je 50 studentica, a kontrolnu grupu (K) koja nije bila podvrgnuta organizovanim programom vježbanja činilo je 50 studentica. Ispitanice Eksperimentalne grupe su radile 6 mjeseci po dva puta sedmično program Step aerobika koji je obilovao aerobnim vježbanjem u trajanju od najmanje 60 minuta. Struktura pokreta u Step aerobiku se odnosi na stalne promjene ritma i tempa kao i promjene potrošnje energije upotrebom stepera. Ispitanice koje su radile po programu STEP aerobika izvodile su pokrete koji su se sastojali od mnogobrojnih skokova, poskoka, koraka i okreta koreografijom uklopljenom u jednu cjelinu koja liči na moderni ples, ali i nakon svake koreografije radile su vježbe oblikovanja koje su izvodile

za pojedinačne mišićne grupe. U istraživanju antropoloških obilježja uzorka obje grupe ispitanica primijenjene su dvije baterije testova za procjenu sljedećih antropoloških obilježja:

- AGE- Hronološka starost
- AVIS Tjelesna visina se mjeri antropometrom po Martinu. Ispitanik je na čvrstoj vodoravnoj podlozi u uspravnom stavu. Glava ispitanika treba da bude u takvom položaju da je frankfurtska ravan horizontalna. Ispitanik ispravlja leđa koliko je moguće, a stopala sastavlja. Ispitivač stoji sa lijeve strane ispitanika i kontroliše da mu je atropometar postavljen neposredno duž zadnje strane tijela i vertikalno, a zatim spušta metalni prsten klizač da horizontalna ploča dođe na glavu ispitanika. Čita se rezultat na skali u visini gornje stranice trouglog proreza prstena klizača. Rezultat se čita sa tačnošću od 0,1 cm.
- AMAS- Masa tijela se mjeri vagom postavljenom na vodoravnu, čvrstu podlogu. Ispitanik bos stoji na sredini vage mirno, sve dok se cifre na vagi ne umire. Rezultat se očitava sa tačnošću od 0,1 kg.
- BMI Body mass index je odnos visine i težine
- BMR- Basal metabolic rate je osnovna metabolička stopa predstavlja ukupnu energiju koja se oslobađa iz tijela da bi se održala normalna funkcija tijela u fazi mirovanja kao što je disanje i cirkulacija. (1kcal = 4.184 kJ)
- OTPOR- Impedance očitava prisutni tjelesni otpor na električnu struju. Mišić se ponaša kao provodnik električne energije, a dipozno tkivo se ponaša kao otpornik.
- FAT % Procenat masti
- FAT MASS- Ukupna težina mase masnoće (u kg, lb) u tijelu
- FFM- Fat free mass se sastojala od mišića, kosti, tkiva, vode i ostale mase oslobođene masti u tijelu.
- TBW Total body water je količina vode u tijelu

Za mjerenje tjelesnog sastava korišten je aparat body composition monitor model: Tanita BC-540. Ovaj aparat, u obliku portabl vage, pomoću instaliranog softvera mjeri bioelektričnu impedansu i tjelesnu težinu, a zatim, na osnovu izmjerenih podataka i unijetih parametara (pol, godine, tjelesna visina) izračunava procentualni udio masti u strukturi sastava tijela, mišićnu masu u kilogramima, procentualni udio vode u strukturi sastava tijela, tzv. fizički rejting (na skali od 1 do 9), bazalni metabolizama (BMR) u kilokalorijama i džulima, metaboličku starost i težinu kostiju. Za obradu podataka su uzete samo tri veličine (procenat masti, mišićna masa i procenat vode) kao najznačajnije za istraživanje. Uzorak varijabli za procjenu morfoloških karakteristika (Skender, 2008.) bio je:

- AOBGRU Obim grudnog koša
- AOBNAD Obim nadlaktice
- AOBTRB Obim stomaka
- AOBNAT Obim natkoljenice
- ANABTR Kožni nabor stomaka
- ANABNAD Kožni nabor nadlaktice
- ANABLE Kožni nabor leđa.

Za mjerenje antropometrijskih karakteristika korišteni su antropometar po Martinu s preciznošću skale od 0,1 cm, centimetarska traka dužine 1500 mm i kaliper. Mjerenja mofoloških karakteristika su mjerena po IBP (International Biological Program). Mjerenja obima su vršena centimetarskom vrpcom. Kožni nabori su mjereni kaliperom. Mjerenja su izvršena u jutarnjim satima u inicijalnom i finalnom mjerenju. Mjerenja je izvršio isti mjerilac da bi se moguće greške u načinu mjerenja smanjile na najmanju moguću mjeru.

Rezultati mjerenja su obrađeni statističkim programom SPSS 17. Nakon što je provjerom normalnosti distribucije utvrđeno da podaci imaju normalnu distribuciju urađeni su T-test i diskriminativna analiza.

REZULTATI

Tabela 1. Deskriptivna statistika svih varijabli na inicijalnom mjerenju kod obje grupe ispitanika

grupe	Varijable	N	Mean	SD	KS test
	AVISTJ	50	164,50	5,79	0,23
	AMASTJ	50	59.64	10,29	0,58
	BMI	50	21.78	3,83	0,19
	BMR	50	6049.68	426,42	0,26
	OTPOR	50	597.32	69,92	0,31
	FAT%	50	15.53	7,46	0,87
	FAT MASS	50	44.09	3,25	0,40
Е	FFM	50	32.28	2,37	0,36
Ľ	TBW	50	84.97	6,48	0,39
	AOBGRU	50	24.48	2,91	0,54
	AOBNAD	50	74.37	8,34	0,28
	AOBTRB	50	50.80	4,71	0,65
	AOBNAT	50	1,76	0,61	0,91
	ANABTR	50	1,58	0,48	0,32
	ANABNAD	50	1,20	0,52	0,12
	ANABLE	50	1,20	0,52	0,45
	AVISTJ	50	164,32	5,06	0,28
	AMASTJ	50	61,17	10,05	0,65
	BMI	50	21,84	5,47	0,91
	BMR	50	6085,76	414,62	0,32
	OTPOR	50	572,38	106,82	0,12
	FAT%	50	16,19	7,68	0,45
	FAT MASS	50	44,38	3,57	0,87
K	FFM	50	32,48	2,60	0,40
K	TBW	50	84,73	6,42	0,36
	AOBGRU	50	24,70	2,89	0,39
	AOBNAD	50	75,32	7,58	0,65
	AOBTRB	50	50,95	5,20	0,91
	AOBNAT	50	1,85	0,55	0,32
	ANABTR	50	1,57	0,47	0,12
	ANABNAD	50	1,28	0,59	0,45
	ANABLE	50	1,28	0,59	0,57

Tabela 2. Deskriptivna statistika svih varijabli na finalnom mjerenju kod obje grupe ispitanika

grupe	Varijable	N	Mean	SD	KS test
	AVISTJ	50	165,54	5,79	0,65
	AMASTJ	50	59,81	10,88	0,91
	BMI	50	20,60	4,21	0,32
	BMR	50	5917,00	452,63	0,12
	OTPOR	50	559,00	56,84	0,45
	FAT%	50	22,95	7,85	0,57
	FAT MASS	50	44,15	3,48	0,12
Е	FFM	50	32,35	2,55	0,45
E	TBW	50	86,10	6,89	0,28
	AOBGRU	50	25,20	3,26	0,65
	AOBNAD	50	68,00	6,86	0,91
	AOBTRB	50	52,45	5,13	0,32
	AOBNAT	50	1,54	0,64	0,12
	ANABTR	50	1,54	0,64	0,45
	ANABNAD	50	1,28	0,47	0,87
	ANABLE	50	1,27	0,59	0,28
	AVISTJ	50	164,32	5,06	0,65
	AMASTJ	50	61,79	9,90	0,91
	BMI	50	22,97	3,80	0,32
	BMR	50	6109,46	407,30	0,12
	OTPOR	50	543,06	64,53	0,45
	FAT%	50	25,32	6,69	0,12
	FAT MASS	50	45,65	3,53	0,45
K	FFM	50	33,42	2,58	0,28
K	TBW	50	88,74	6,27	0,65
	AOBGRU	50	26,48	3,34	0,91
	AOBNAD	50	72,40	7,56	0,32
	AOBTRB	50	54,26	5,23	0,12
	AOBNAT	50	1,76	0,58	0,45
	ANABTR	50	1,76	0,58	0,87
	ANABNAD	50	1,28	0,47	0,28
	ANABLE	50	1,27	0,59	0,65

U okviru ove analize utvrđivane su statističke značajnosti razlika primijenjenih varijabli prije i nakon realizovanog STEP programa. U tabeli br. 3 su prikazane vrijednosti T-testa zavisnog uzorka za procjenu statističke značajnosti razlika u prostoru morfoloških karakteristika i sastava tijela. Radi bolje razumljivosti tabela, varijable su označavane tako što se u različitim vremenskim tačkama za inicijalno mjerenje na kraju dodavao sufiks I a za finalno mjerenje dodavao sufiks F.

Analizom tabele 3 uočene su statistički zanačajne promjene kod sljedećih varijabli morfoloških karakteristika: impedance, fat free mass, total body water, obima grudnog koša, nadlaktice, stomaka, natkoljenice i kožni nabor leđa.

Tabela 3. .T-test u prostoru morfoloških karakteristika i sastava tijela eksperimentalne grupe E2 u inicijalnom i finalnom mjerenju

WARMARI E		Std.	Std. Error	95% Confidence		t d	Аf	Sig.	
VARIJABLE	Mean	Deviation	Mean	Interval of the Diff.			at	(tail)	
AMASI - AMASF	-,64898	2,38049	,34007	Upper -1,33274	Lower	1 000	48	,062	
BMII - BMIF	<i>'</i>		*		,03478	-1,908		-	
	-1,12800	4,42512	,62581	-2,38560	,12960	-1,802	49	,078	
BMRI - BMRF	-23,70000	99,94350	14,13415	-52,10363	4,70363	-1,677	49	,100	
OTPORI- OTPORF	29,32000	91,21704	12,90004	3,39640	55,24360	2,273	49	,027	
FATPROI - FATPROF	,67000	3,72626	,52697	-,38899	1,72899	1,271	49	,210	
FATMASI-FATMASF	-,10200	2,65756	,37584	-,85727	,65327	-,271	49	,787	
FFMI-FFMF	-1,26600	1,17606	,16632	-1,60023	-,93177	-7,612	49	,000	
TBWI - TBWF	-,93600	,85589	,12104	-1,17924	-,69276	-7,733	49	,000	
AOBGRUI - AOBGRUF	-4,01000	4,40682	,62322	-5,26241	-2,75759	-6,434	49	,000	
AOBNADI - AOBNADF	-1,77200	1,40117	,19816	-2,17021	-1,37379	-8,942	49	,000	
AOBTRBI-AOBTRBF	2,91600	6,80952	,96301	,98076	4,85124	3,028	49	,004	
AOBNATI-AOBNATF	-3,31000	3,17749	,44936	-4,21303	-2,40697	-7,366	49	,000	
ANABTRI-ANABTRF	,08800	,46979	,06644	-,04551	,22151	1,325	49	,191	
ANABNADI - ANABNADF	-,03360	,33154	,04689	-,12782	,06062	-,717	49	,477	
ANABLEI-ANABLEF	,15040	,45446	,06427	,02124	,27956	2,340	49	,023	

Tabela 4. T-test u prostoru morfoloških karakteristika i sastava tijela eksperimnentalne i kontrolne grupe inicijalno mjerenje

VARIJABLE	Mean	Std. Dev	Std. Err Mean	95% Cor Inte. of the		t	df	Sig. (2-tai)
AMAS	-2,0606	8,09297	1,40881	-4,9302	,80904	-1,463	32	,153
BMI	-1,12800	4,42512	,62581	-2,38560	,12960	-1,802	49	,078
BMR	-23,70000	99,94350	14,13415	-52,10363	4,70363	-1,677	49	,100
OTPOR	1,73939	9,14730	1,59234	-1,504	4,9828	1,092	32	,283
FATPRO	,67000	3,72626	,52697	-,38899	1,72899	1,271	49	,210
FATMAS	-,10200	2,65756	,37584	-,85727	,65327	-,271	49	,787
FFM	-1,12800	4,42512	,62581	-2,38560	,12960	-1,802	49	,078
TBW	-23,70000	99,94350	14,13415	-52,10363	4,70363	-1,677	49	,100
AOBGRU	1,17879	4,23916	,73794	-,324	2,6819	1,597	32	,120
AOBNAD	1,73939	9,14730	1,59234	-1,504	4,9828	1,092	32	,283
AOBTRB	1,17879	4,23916	,73794	-,324	2,6819	1,597	32	,120
AOBNAT	-2,0606	8,09297	1,40881	-4,9302	,80904	-1,463	32	,153
ANABTR	-1,12800	4,42512	,62581	-2,38560	,12960	-1,802	49	,078

ANABNAD	,21121	,89753	,15624	-,1070	,5294	1,352	32	,186
ANABLE	-,04152	,74377	,12947	-,3052	,2222	-,321	32	,751
AMAS	-,10200	2,65756	,37584	-,85727	,65327	-,271	49	,787

U tabeli br. 5 prikazane su razlike između Eksperimentalne i Kontrolne grupe u morfološkim karakteristikama i sastavu tijela u finalnom mjerenju. Utvrđene su vrijednosti razlika u sljedećim varijablama: masa tijela, body mass index, basal metabolic rate, otpor, procenat masti, ukupna težina mase masnoće (u kg, lb) u tijelu, fat free mass, total body water, kožni nabor leđa, obim natkoljenice i obim trbuha. Posebno je značajna razlika koja je ostvarena u morfološkoj dimenziji masa tijela gdje je utvrđena statistički značajna razlika na nivou 0.5 %. Ukoliko bi analizirali i varijable strukture tijela ukupna težina mase masnoće (u kg, lb) u tijelu i fat free mass, vidi se da su i one pokazale statistički značajne razlike ovih grupa ispitanika pogotovo sa aspekta što one kao ovakve učestvuju u masi tijela, kao i u potkožnom masnom tkivu.

Tabela 5.T-test u prostoru morfoloških karakteristika i sastava tijela eksperimnentalne i kontrolne grupe finalno mjerenje

Varijable	Mean	Std. Dev	Std. Err Mean	95% Co		t	df	Sig. (2-tai)
		Dev	ivican	uper	lower			(2 tai)
AMASK - AMASE	-2,0606	8,09297	1,40881	-4,9302	,80904	-1,463	32	,153
BMIK - BMIE	6,34242	12,38901	2,15665	1,9494	10,735	2,941	32	,006
BMRK - BMRE	2,89697	4,26889	,74312	1,3832	4,4106	3,898	32	,000
OTPORK- OTPORE	253,181	522,873	91,02064	67,778	438,58	2,782	32	,009
FATPROK - FATPROE	-35,121	91,64598	15,95352	-67,61	-2,624	-2,201	32	,035
FATMASK-FATMASE	4,80303	8,99908	1,56654	1,6121	7,9939	3,066	32	,004
FFMK-FFME	4,60606	8,40992	1,46398	1,6240	7,5880	3,146	32	,004
TBWK - TBWE	1,77576	4,62264	,80470	,1366	3,4148	2,207	32	,035
AOBGRUK - AOBGRUE	1,30000	3,39273	,59060	,0969	2,5030	2,201	32	,035
AOBNADK - AOBNADE	1,73939	9,14730	1,59234	-1,504	4,9828	1,092	32	,283
AOBTRBK-AOBTRBE	1,17879	4,23916	,73794	-,324	2,6819	1,597	32	,120
AOBNATK-AOBNATE	5,02727	10,84811	1,88841	1,180	8,8738	2,662	32	,012
ANABTRK-ANABTRE	2,79091	6,54529	1,13939	,470	5,1117	2,449	32	,020
ANABNADK - ANABNADE	,21121	,89753	,15624	-,1070	,5294	1,352	32	,186

ANABLEK-ANABLEE	-,04152	,74377	,12947	-,3052	,2222	-,321	32	,751
AMASK - AMASE	,20939	,57657	,10037	,0049	,4138	2,086	32	,045

U ovoj podsekciji su analizirane kvantitativne promjene morfoloških karakteristika kod ekspreminetalne grupe E (grupa koja je radila STEP aerobik) nakon završenog programa u trajanju od 6 mjeseci. Analizom tabele 6 vidi se da je u ovom prostoru došlo do kvantitativnih promjena. Došlo je do formiranja jedne značajne diskriminativne funkcije visine, .776 a koja ukazuje na vrlo visoku statističku značajnost od 0,01 % što ukazuje na vrlo visok koeficijent značajnosti.

Tabela 6.Značajnost izoliranih diskriminativnih funkcija morfoloških karakteristika i sastava tijela

eksperimetalne grupe u inicijalnom i finalnom mjerenju

Function	Eigenvalue	% of Variance	Cumulative	% Canonical Correlation	Wilks' Lambda	Chi-square	df	Sig.
1	1,513(a)	100,0	100,0	,776	,398	86,163	9	,000

Tabela 7. Struktura diskriminativne funkcije

	1
AOBNAT	,255
AOBGRU	,253
AOBNAD	,227
OTPORI(a)	-,205
AOBTRB	-,155
FFM(a)	,145
TBW	,145
ANABLE	-,116
AVIS(a)	-,085
FATPRO(a)	-,059
ANABNAD(a)	,052
ANABTR(a)	,042
FATMAS(a)	-,034
AMAS	,031
BMR(a)	,027
BMI(a)	,005

Tabela 8.Centroidi grupa

grupa	Function
·	1
1,00	-1,246
2,00	1,246

U ovoj podsekciji su analizirane kvantitativne promene morfoloških karakteristika između ekspreminetalne grupe E i kontrolne grupe K nakon završenog programa, naglašavajući da je kod eksperimentalne grupe sproveden program step aerobika u trajanju od 6 mjeseci dok kontrolna grupa nije imala organizovano tjelesno vježbanje.

Analizirajući tabelu br. 9 u morfološkom prostoru došlo je do značajnih kvantitatitvnih promjena kod većine ispitanika, što je bilo i očekivano. Vidi se da je došlo do formiranja jedne značajne diskriminativne funkcije .633 a koja ukazuje u kojoj je korelaciji skup podataka na osnovu kojih sme vršila diskriminativna analiza sa diskriminativnom funkcijom. Statistička značajnost ove kanoničke koleracije je na nivou 0,01 % što ukazuje na vrlo visoku vezu.

Tabela 9. Značajnost izolovanih diskriminativnih funkcija

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation	Wilks' Lambda	Chi-square	df	Sig.
1	,754(a)	100,0	100,0	,656	,570	41,578	14	,000

Tabela 10.Struktura diskriminativne funkcije

	Function
	1
BMI	-,441
FATMAS(a)	-,434
FATPROC	-,428
AMASTJ	-,422
BMR	-,404
AOBTRB	-,348
FFM	-,341
TBW(a)	-,339

AOBNAT	-,307
OTPOR	,281
ANABLE	-,269
ANABTR	-,215
AOBNAD	-,185
AOBGRU	-,172
ANABNAT	,118
AVIS	,073

Tabela 11.Centroidi grupa

grupa	rupa Function	
	1	
1,00	-,697	
2,00	1,056	

DISKUSIJA

Sagledavajući rezultate istraživanja za eksperimentalnu grupu može se konstatovati da su ostvarene statistički značajne razlike pod uticajem STEP programa što je vidljivo iz tabela 3 i 5. Ostvarene razlike su značajne u 8 varijabli morfoloških karakteristika i sastava tijela. Analizom tabele br.7 (struktura diskriminativne funkcije) najveći doprinos diskriminativnoj funkciji imaju testovi AOBNAT, AOBGRU i AOBNAD. U step programu pokreti koje su izvodile ispitanice u ovoj eksperimentalnoj grupi su se sastojali od mnogobrojnih skokova, poskoka, koraka i okreta koreografijom uklopljenom u jednu cjelinu koja liči na moderni ples, ali i nakon svake koreografije radile su vježbe oblikovanja koje su izvodile za pojedinačne mišićne grupe. Efekti step vježbanja su: jačanje mišića nogu i donjeg dijela leđa, zatezanje muskulature i povećanja vitalnosti cjelokupnog organizma. Analizirajući program vidi se da su ispitanice radile 2 puta nedjeljno u trajanju od jednog sata. Iz tih razloga je došlo do značajanih promjena na ovoj morfološkoj manifestaciji te su rezultati na ovoj diskriminativnoj funkciji pokazali da je program step statistički značajno uticao na poboljšanje dimenzija voluminoznosti tijela kroz manifestacije obim grudi, obim natkoljenice i obim nadlaktice. U tabeli br. 8 u kojoj su prikazani centroidi

grupa vidi se da su napravili jasnu polarizaciju rezultata u inicijalnom i finalnom mjerenju kao i u prethodnoj grupi samo manjeg intenziteta.

Može se konstatovati da je program statistički značajno uticao na redistribuciju masti, voluminoznosti i obima skeleta, adipoziteta kod studentica eksperimentalne grupe. Razlog tome može se pronalaziti u programu koji su radile studentice eksperimentalne grupe. Naime program Step aerobika koji se izvodio 6 mjeseci po dva puta sedmično je obilovao aerobnim vježbanjem u trajanju od najmanje 60 minuta. Struktura pokreta u Step aerobiku se odnosi na stalne promjene ritma i tempa kao i promjene potrošnje energije upotrebom stepera. Ispitanice koje su radile po programu STEP aerobika izvodile su pokrete koji su se sastojali od mnogobrojnih skokova, poskoka, koraka i okreta koreografijom uklopljenom u jednu cjelinu koja liči na moderni ples, ali i nakon svake koreografije radile su vježbe oblikovanja koje su izvodile za pojedinačne mišićne grupe. Efekti step vježbanja su: jačanje mišića nogu i donjeg dijela leđa, zatezanje muskulature i povećanja vitalnosti cjelokupnog organizma.

U tabeli 5 je utvrđeno da je došlo do statistički zanačajnih razlika između dvije grupe ispitanika, (eksperimentalne i kontrolne). Na osnovu diskriminativne analize utvrđena je jedna diskriminativna funkcija koja ima vrlo visoku statističku značajnost.

Analizirajući tabelu 10 u kojoj je prikazana struktura diskriminativne funkcije vidi se da dosta veliki doprinos diskriminativnoj funkciji imaju varijable AMASTJ, AOBTRB, AOBNAT, ANABLE i ANABTR. To je iz razloga što su u Step aerobik programu pokreti koje su izvodile ispitanice u ovoj eksperimentalnoj grupi između ostalog značajno opteretile mišiće donjih ekstremiteta a rezultati su se odrazili i na nabor leđa i nabor trbuha. Pokreti koji se izvode u step aerobiku značajno opterećuju i mišiće trbuha jer kod različitih pokreta penjanja u vertikalnoj ili horizontalnoj ravni mišići trbuha igraju veoma važnu ulogu i konstantno su aktivni. Naravno da se program odrazio i na smanjenje mase kod eksperimentalne grupe što je direktna posljedica programa Step aerobika. Ovim se potvrđuje da je Step aerobik program kao aerobno vježbanje statistički značajno uticao na smanjenje mase i potkožnog masnog tkiva kao i obima trbuha kod ispitanica eksperimentalne grupe što je i cilj aerobika kao takve. Ovu konstataciju potvrđuju i centroidi grupa koji pokazuju i razliku u polu i velikoj udaljenosti između grupa. Kontrolna grupa nije imala nikakav organizovani program ali nije se moglo uticati i izvršiti potpunu kontrolu

provođenja njihovog slobodnog vremena. Ipak su rezultati diskriminativne analize pokazali da su ove 4 varijable napravile najveću diskriminaciju između ove dvije grupe ispitanika.

Na osnovu dobijenih rezultata u ovom istraživanju može se potvrditi da je step aerobik vrlo značajno uticao na poboljšanje morfoloških karakteristika kod studentica Univerziteta u Bihaću. Iako su vježbale samo dva puta nedjeljno pokazalo se da je značajan uticaj ostvaren u većini varijabli morfološkog prostora i da je izvršena redistribucija sastava tijela na račun poboljšanja volumena a na štetu masnog tkiva. Vjerovatno bi rezultati u motoričkim sposobnostima pokazali značajno bolje rezultate no, na žalost, to ovde nije istraživano.

ZAKLJUČAK

Rezultati do kojih se došlo u istraživanju primijenjenom na uzorku od 100 ispitanika studentske populacije Univerziteta u Bihaću govore u prilog tome da je step aerobik vrlo podesan oblik aktivnosti i sporta primjeren ovom uzrastu. T-testom je utvrđena razlika između aritmetičkih sredina eksperimentalne i kontrolne grupe u gotovo svim karakteristikama morfoloških osobina i sastava tijela. Rezultati diskriminativne analize ukazuju na to da je izlovana jedna diskriminativna funkcija vrlo visoke značajnosti. Također analizirajući rezlike između inicijalnog i finalnog mjerenja kod eksperimentalne grupe vidljivo je da je program prouzrokovao značajne statističke promjene u domenu većine morfoloških karakteristika i nekih varijabli strukture tijela. To govori u prilog konstataciji da je došlo do redistribucije u sastavu tijela u korist stvaranja muskulature u odnosu na količinu masti što je prouzrokovao program koji je obilovao aerobnim vježbanjem, raznim vrstama skokova, preskoka i step koraka. U ovom istraživanju je potrvđeno da je step aerobik vrlo značajan sport koji treba upražnjavati u studentskom uzrastu. Naime, studentice su opterećene predavanjima, nastavom, učenjem, pa se to sasvim sigurno negativno odrazi na njihove morfološke karakteristike, a samim tim i na strukturu sastava tijela kao i na druga antropološka obilježja.

LITERATURA

- Đug, M. & Mikić, B., (2007): Uticaj step aerobika na transformaciju antropometrijskih karakteristika i motoričkih sposobnosti studenata. *Sport u 21 vijeku, Sport Mont*, 129-133.
- Đug, M., Mikić, B. & Mačković, S. (2008): Efekti transformacionih procesa antropoloških karakteristika studentica pod uticajem modelovanog programa aerobika. *Zbornik apstrakata "Ekologija, zdravlje, rad, sport"*, (pp. 124-130). Banja Luka, BIH: Univerzitet u Banjoj Luci.
- Mirkov, D. M. (2011): Motorička kontrola: Znanstveno područje, kratak pregled pojmova i metoda. In I. Jukić, C. Gregov, S. Šalaj, L. Milanović, T. Troš-Bobić i D. Bok (Ed.), *Zbornik radova 9. Medjunarodna konferencija "Kondicijska priprema sportaša 2011"*, (pp. 21-27), Zagreb, RH: Kineziološki fakultet Sveučilišta u Zagrebu, Udruga kondicionih trenera Hrvatske.
- Nešić, N., Ostojić., S., Đokić, Z. & Šeper, V. (2012): Razlike u regionalnoj mišićnoj distribuciji kod fudbalera. *Tims Acta*, 6(2), 43-56.
- Oreb, G., Blarežina, Đ. & Gošnik-Oreb, J. (1997): Utjecaj plesne aerobike na motoričke sposobnosti studentica. In D. Milanović (Ed.), *1. Međunarodna konferencija* "*Kineziologija Sadašnjost i budućnost*" (pp 56-59), Zagreb, RH: Fakultetu za fizičku kulturu Sveučilišta u Zagrebu.
- Skender, N., S. Kendić., M. Tabaković. & N. Dujisić. (2002): Utjecaj nekih antropometrijskih parametara na motoričke sposobnsoti studentica Pedagoškog fakulteta Univerziteta u Bihaću. *Homosportikus*, (½), 113 117.
- Skender, N. (2008). *Transformacioni procesi antropolokih obilježja pod utjecajem posebnog kineziološkog programa*. Bihać, BIH: Pedagoškli fakultet Bihać.
- Sharkey, B.J. (1991): New dimensions in aerobic fitness. Champaing: Human Kinetics Books.
- Zagorc, M. (1996): Klasifikacija nekih struktura pokreta u aerobici. *Kineziologija*, 28(1), 29 35.

Primljeno: 23.06.2017. Odobreno: 26.06.2017.

Korespodencija: Mr Natalija Kurtović J.U. Pedagoški fakultet u Bihaću Luke Marjanovića b.b. 77000 Bihać tel: 037/229-850 fax: 037/229-878

natalijakurtovic@yahoo.com