GEOMETRÍA COMPUTACIONAL EN EL PLAND

Celia Rubio Madrigal

Métodos Algorítmicos de Resolución de Problemas Universidad Complutense de Madrid

2019-20

DOS SEGMENTOS

PROPIEDADES BÁSICAS

Producto vectorial

Intersección de dos segmentos

INTERSECCIÓN DE SEGMENTOS

BARRIDO HORIZONTAL

Barrido

$$P_0 = \{x_0, \ C, \ y_0, \ a\}$$
 $P_1 = \{x_1, \ C, \ y_1, \ b\}$ \cdots

Barrido Barrid

- Ordeno los puntos.
- Recorro los puntos:
 - Es comienzo de un nuevo segmento?
 - Encuentro su lugar con respecto al resto de comienzos.
 - ¿Interseca con el de arriba o con el de abajo?
 - Vistazo a sus puntos finales.
 - ¿Es final de un segmento?
 - Encuentro dónde está su comienzo y dejo su hueco.
 - ¿Intersecan el de arriba y el de abajo del hueco?
 - Vistazo a sus puntos finales.

- Ordeno los puntos. $\mathcal{O}(nlog(n))$
- Recorro los puntos: $\mathcal{O}(nlog(n))$ $(\mathcal{O}(n) * dentro)$
 - Es comienzo de un nuevo segmento?
 - Encuentro su lugar con respecto al resto de comienzos. $\mathcal{O}(\log(n))$
 - ¿Interseca con el de arriba o con el de abajo?
 - Vistazo a sus puntos finales. $\mathcal{O}(1)$
 - ¿Es final de un segmento?
 - Encuentro dónde está su comienzo y dejo su hueco. $\mathcal{O}(\log(n))$
 - ¿Intersecan el de arriba y el de abajo del hueco?
 - Vistazo a sus puntos finales. $\mathcal{O}(1)$

Buscar, insertar y borrar en $\mathcal{O}(log(n))$:

Árboles AVL, rojinegros, etc.

ENVOLTURA CONVEXA

Consideraciones

- Los puntos son únicos.
- Hay al menos 3 puntos no colineales.
- El método de Graham opera en $\mathcal{O}(nlog(n))$. Hay otros algoritmos:
 - Método de Jarvis: $\mathcal{O}(nh)$, con h el tamaño de la solución.
 - Con búsqueda y poda, se puede llegar a $\mathcal{O}(nlog(h))$.

PUNTOS MÁS CERCANOS

DIVIDE Y VENCERÁS

Algoritmo

Guardo los puntos en dos vectores ordenados: por su x y por su y.

Algoritmo

- Ordeno los puntos por su x(X) y por su y(Y).
- Llamadas recursivas:
 - Divido X por la mitad y lo uso para dividir Y.
 - Obtengo recursivamente las soluciones de ambas partes. Tomo la menor, δ , como cota superior.
 - Quedan por comprobar las parejas con un punto en cada mitad.
 - Tomo puntos dentro de una franja de 2δ (ordenados por y).
 - Para cada punto de la franja, solo tengo que comprobar máximo sus 7 puntos inferiores más cercanos.
- Caso base cuando n < 3.

- Ordeno los puntos por su x (X) y por su y (Y). $\mathcal{O}(nlog(n))$
- Llamadas recursivas: $T(n) = 2T(\frac{n}{2}) + \mathcal{O}(n) \in \mathcal{O}(nlog(n))$
 - Divido X por la mitad y lo uso para dividir Y. $\mathcal{O}(n)$
 - Obtengo recursivamente las soluciones de ambas partes. Tomo la menor, δ , como cota superior. $2T(\frac{n}{2})$
 - Quedan por comprobar las parejas con un punto en cada mitad.
 - Tomo puntos dentro de una franja de 2δ (ordenados por y). $\mathcal{O}(n)$
 - Para cada punto de la franja, solo tengo que comprobar máximo sus 7 puntos inferiores más cercanos. $\mathcal{O}(n)$
- Caso base cuando n < 3.

¿Por qué solo necesito comprobar 7 puntos?
Esta es la peor situación posible, donde los puntos intermedios son dobles y cada uno pertenece a una mitad:

