Programming Assignment-2

Abhinav Ujjawal (2021120) & Nikhil Suri (2021268)

Data Encryption Standard (Project-0)

<u>DES</u> (Data Encryption Standard) operates on fixed-size blocks of data, specifically 64 bits. Each 64-bit block of plaintext is processed through a series of permutations and substitutions.

DES uses a 56-bit key, where 8 bits are used for parity checking. The effective key size is 56 bits, making it susceptible to exhaustive key search attacks.

Encryption and decryption

Encryption

Iterate over the list of plaintexts and keylists. Let's say the current iteration has plaintext and key [p,k]. DES involves key permutations, initial and final permutations, substitution boxes (S-boxes), and a Feistel network with 16 rounds.

The algorithm uses two main permutations: Initial Permutation (IP) and Final Permutation (FP) DES employs a key generation process to create 16 subkeys from the original 56-bit key. Subkeys are derived using permutations (PC1 and PC2) and left circular shifts. Each round of DES involves a Feistel network that includes expansion, XOR, substitution, and permutation operations.

Decryption

Initial Permutation (IP):

Ciphertext undergoes initial permutation using table IP.

Feistel Rounds:

Ciphertext halves (L0, R0) are processed through 16 rounds.

Each round involves expansion, XOR with subkey, substitution, permutation, and swapping.

Final Permutation (FP):

After rounds, left/right halves are swapped.

Final permutation using table FP yields decrypted plaintext.

Output:

Decrypted plaintext is obtained by converting bits back to characters.

Documentation for methods used

- permute(data, permutation): Performs permutation on the given data based on the specified permutation list. Returns a list of permuted elements.
- hex_to_bits(hex_number): Converts a hexadecimal number to a list of bits (0s and 1s).
- initial_permutation(block): Applies the initial permutation (IP) on the block.
- final permutation(block): Applies the final permutation (FP) on the block.
- permutation(block): Performs permutation on the given block using the P permutation list
- generate subkeys(key): Generates a list of subkeys for the DES algorithm.
- feistel_network(right_half, subkey): Implements the Feistel network, a fundamental part of DES.
- des_encrypt(plaintext, key): Encrypts the plaintext using the DES algorithm with the provided key.
- des_decrypt(ciphertext, key): Decrypts the ciphertext using the DES algorithm with the provided key.
- permute(data, permutation): Utility function for permutation, similar to the first one.
- rotate_left(data, count): Rotates the elements in the data list to the left by the specified count
- xor(a, b): Performs bitwise XOR operation on two lists a and b.
- expansion_permutation(block): Performs expansion permutation on the given block.
- substitute(data): Implements the substitution step using the S-boxes.
- input_to_8_bit_string(s): Converts a string into a list of 8-bit binary strings.
- convert to 56 bit key(key): Converts the key to a 56-bit binary string.
- hex_to_bits(hex_number): Converts a hexadecimal number to a list of bits.
- listOfBits(key, plaintext): Converts the key and plaintext to a list of bits.
- bits to char(ciphertext): Converts a list of bits to a string of characters.

Constraints

- Plaintext
 - Plaintext must be 64 bits long (since DES takes 64-bit input)
 - We have taken a list of 5 plaintexts that have 8 characters. Each character is converted to 8 bits using the character's ASCII value (adding 0s as padding in-front of the MSB if ASCII value < 256)
- Key
 - Key must be 64 bits long.
 - We have taken a list of 5 keys. Each character in a key is converted to 8 bits, using the same logic described above

Sample Inputs & Outputs

```
PS C:\Users\abhin\Downloads\IIITD\Semester 6\NSC\Assignment-2> python -u "c:\Users\abhin\Downloads\IIITD\Semester 6\NSC\Assignment-2\main.py
Test Case 1 starting...
                               Plaintext is - AbhinavU
Key is - NikhilSu
                              Starting encryption of plaintext...
Encryption of plaintext done!
Encrypted plaintext: <sup>39</sup>_s{OM<sup>-</sup>
                              Starting decryption of ciphertext.

Decryption of ciphertext done!

Decrypted ciphertext: AbhinavU

Round 1 - LE1: ~LR RE1

Round 2 - LE2: $\forallow{0} RE2

Round 3 - LE3: \dof{RE3}

Round 4 - LE4: T*c RE4

Round 5 - LE5: \ddot{AU}

ROUND 6 - LE5: \ddot{AU}

RE5

ROUND 6 - LE5: \ddot{AU}

RE5
                                                                                                                            RE1: ¢Ò-

RE2: ¤dG[

RE3: Tac

RE4: äÄÜ

RE5: <4

RE6: d«4!!

RE7: &è

RE8: (oJÌ

RE9: Zg·f

RE10: b0ô

RE11: ËÊV
                                                                                                                                                                           LD1: Õß¶¹
LD2: ὑμ¿
LD3: ⅙ Θ
LD4: F3♣
LD5: ËÊV
                                                                                                                                                                                                                           RD1: úμ¿
RD2: ½ß Θ
RD3: F3♣
RD4: ËÊV
RD5: b0ό
                                                                                                                                                                            LD5: EEV
LD6: b06
LD7: Zg-£
LD8: (oJ1
LD9: &è
LD10: «4!!
LD11: <4
LD12: äÄÜ
LD13: T³c
LD14: ¤dG[
LD15: ¢Ò-
LD16: ~LR
                                                                             LE5: aAU
LE6: <4
LE7: d«4!!
LE8: &è
LE9: (oJÌ
LE10: Zg-f
LE11: b0ó
LE12: ËÊV
LE13: F3+
LE14: %B 0
                                                                                                                                                                                                                           RD6: Zg·£
RD7: (oJÌ
RD8: &è
RD9: d«4!!
RD10: <4
RD11: äÄÜ
                                Round 6 -
Round 7 -
Round 8 -
                                  Round 11 -
                                                                                                                                                                                                                           RD11: aAU
RD12: T²c
RD13: ¤dG[
RD14: ¢Ò=
RD15: ~LR
RD16: ÿÀĐ©
                                                                                                                             RE12: F3+
RE13: %ß Θ
                                                                                                                             RE14: úµ¿
RE15: Õß¶¹
RE16: (▼ð»
                                 Round 14 -
                                 Round 15 -
Round 16 -
                                                                             LE15: úμ¿
LE16: Õß¶¹
                              Decrypted ciphertext is same as original Plaintext
Output of the 1st encryption round is same as output of the 15th decryption round - \simLR¢Ò^- [ length of string = 8 ]
Output of the 14th encryption round is same as output of the 2nd decryption round - \%B 0Úµ¿ [ length of string = 8 ]
1.
                               Test Case 2 starting...
                              Plaintext is - Firewall
Key is - Vaulting
                              Starting encryption of plaintext...
Encryption of plaintext done!
@ÅVD pted plaintext: b
```

```
Test Case 2 starting...

Plaintext is - Firewall

Key is - Vaulting

Starting encryption of plaintext...

Encryption of plaintext done!

6MVD pted plaintext: b

Starting decryption of ciphertext.

Decryption of ciphertext done!

6MVD pted plaintext: b

Starting decryption of ciphertext.

Decryption of ciphertext done!

8DU pted ciphertext (Firewall

8DU pted ciphertext
```