Inhaltsverzeichnis

1	Natur	2
2	Nährwertangaben	2
3	Matrizen in der Physik	3

Schlechte Tabellen*

Jakob Hollweck

10. Oktober 2017

1 Natur

Die Natur beeindruckt durch ihre Vielfalt!

Bergketten	Flüsse	Seen	Strände und Wüsten
2011	schnell	stehend	sandig
rau	Rehe	Vögel	Würmer

2 Nährwertangaben

Die Tabelle ist einer Packung Eiersalat-Brotaufstrich entnommen (leicht verändert):

Nährwerte	pro 100	$(\%)^1$
Brennwert	1.176 kJ	14%
	284 kcal	
Fett	25,7g	37 %
davon gesättigte Fettsäuren	3,4g	17%
Kohlenhydrate	5,0g	2%
davon Zucker	3,0g	3%
Eiweiß	7,8g	16%
Salz	1,35g	23%
Plutonium	hoffentlich	n keins

^{*}Danke an John Wigg

 $^{^1\}mathrm{Referenzmenge}$ für einen durchschnittlichen Erwachsenen (8.400 kJ/2.000 kcal)

Eine etwas ansprechendere Form der gleichen Tablle könnte z.B. so aussehen:

Nährwerte	pro 100	$(\%)^1$
Brennwert	1.176 kJ/284 kcal	14~%
Fett	25,7g	37~%
davon gesättigte Fettsäuren	3,4g	17%
Kohlenhydrate	5.0g	2%
davon Zucker	3.0g	3%
Eiweiß	7,8g	16%
Salz	1,35g	23%
Plutonium	hoffentlich kein	ns

3 Matrizen in der Physik

An vielen Stellen in der Physik benutzt man Matrizen. Die folgende Tabelle zeigt zwei Beispiele, die bei Koordinatentransformationen wichtig sind. Jede Spalte ist 6cm breit:

Jacobi	Lorentz
Um das Flächenelement in Polarkoordinaten zu erhalten, benötigt man die entsprechende Jacobi-Determinante J : $\mathrm{d}x\mathrm{d}y=J\mathrm{d}r\mathrm{d}\phi$	Lorentz-Transformationen werden in der relativistischen Physik benötigt um zwischen verschiedenen, gleichförmig bewegten Koordinatensystem hin und her zu wechseln. Ein einfaches Beispiel ist eine Rotation in der x-y Ebene:
Die Jacobi-Determinante ist die Determinante der Jacobi-Matrix: $J = \left\ \frac{\partial x}{\partial r} \frac{\partial x}{\partial \phi} \right\ $ $F \ddot{\mathbf{u}} \mathbf{r} \text{eine} \text{allgemeine} \text{Funktion}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \vartheta & \sin \vartheta & 0 \\ 0 & -\sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ oder ein Boost in x-Richtung:
$f(x_1, \dots, x_n)$ mit m Komponenten sieht die Jacobi-Matrix folgendermaßen aus: $\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$	$\begin{pmatrix} \cos \vartheta & -\sin \vartheta & 0 & 0 \\ -\sin \vartheta & \cos \vartheta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

 $^{^1\}mathrm{Referenzmenge}$ für einen durchschnittlichen Erwachsenen (8.400 kJ/2.000 kcal)

Andere Konstrukte, die als Matrix gesetzt werden, sind z. B. $\it Wigner-6j-Symbole, z.\,B.$ in der folgenden Gleichung:

$$C_3 = (-1)^{\phi} [J, T']^{\frac{1}{2}} \begin{cases} k & J' & J \\ j & T & T' \end{cases}$$

In der relativistischen Quantenmechanik ersetzt man die Quantenzahl ℓ,j oft durch die relativistische Drehimpulsquantenzahl (auch: Dirac-Quantenzahl) κ . Sie ist definiert als

$$\kappa = \begin{cases} -(\ell+1) & \text{für } j = \ell + \frac{1}{2} \\ \ell & \text{für } j = \ell - \frac{1}{2}. \end{cases}$$