

Université Sultan Moulay Slimane Ecole Supérieure de Technologie Département Mécatronique

Electronique Numérique

Chapitre 5 : Les circuits séquentiels

I. Circuits Séquentiels : Définition 😉

- Circuits combinatoires
 - Les sorties ne dépendent que des valeurs des entrées
- Circuits séquentiels
 - Ajout des notions d'état et de mémoire
 - Ajout de la notion de temps (horloge)
- Les valeurs de sorties du circuit séquentiels dépendent
 - Des valeurs en entrée
 - De valeurs calculées précédemment
 - De l'état dans lequel on se trouve

1. FLIP-FLOP ou Mémoire RS

Par mémoire, on entend, des configurations permettant de stocker des informations binaires pendant une durée indéterminée et dans le contenu peut-être lu au moment voulu.

Le FLIP-FLOP est capable de mémoriser un bit

Si S=1 et R=0 "SET" ou mise à un

$$\rightarrow Q = 1 \ et \ \overline{Q} = 0$$

Si S=0 et R=1 "RESET" ou mise à zéro

$$\rightarrow Q = 0 \ et \ \overline{Q} = 1$$

Une mémoire RS peut-être construite avec des composants NOR ou NAND

a. Mémoire RS fabriquée à l'aide de porte NOR

S	R	\overline{Q}	Q	Commentaire
0	0	\overline{Q}	Q	Mémorisation
0	1	1	0	Mise à zéro
1	0	0	1	Mise à un
1	1	0	0	Cas irrégulier

b. Mémoire RS fabriquée à l'aide de porte NAND

S	R	\overline{Q}	Q	Commentaire
0	0	1	1	Cas irrégulier
0	1	1	0	Mise à zéro
1	0	0	1	Mise à un
1	1	\overline{Q}	Q	Mémorisation

2. Mémoire D commandée par impulsion d'Horloge

CL K	D	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	Q_n	$\overline{Q_n}$
0	1	Q_n	$\overline{Q_n}$
1	0	0	1
1	1	1	0

Logigramme:

II. Les mémoires

J	K	Q_{n+1}	$\overline{\mathbf{Q}_{\mathrm{n+1}}}$	Commentaire
0	0	Q_n	$\overline{Q_n}$	Mémorisation
0	1	0	1	Mise à zéro
1	0	1	0	Mise à un
1	1	$\overline{Q_n}$	Q_n	Basculement

- Entrées synchrones : J, K
- Entrées asynchrones : CLR et PRE

Si
$$\overline{CLR} = 0$$
 $\Rightarrow Q = 0 \text{ et } \overline{Q} = 1$

Si
$$\overline{PRE} = 0$$
 $\rightarrow Q = 1 \text{ et } \overline{Q} = 0$

III. Les Compteurs Asynchrones 😉

- a. Diviseur de fréquence par deux : Bascule JKH
 - J = K = 1 (Vcc) : Bascule JKH en mode Basculement

III. Les Compteurs Asynchrones 😉

b. Compteur et décompteur 3 bits à cycle complet

$$000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$$
(0) (1) (2) (3) (4) (5) (6) (7)

III. Les Compteurs Asynchrones

