Bad Tournaments

Eugene Francisco advised by Maya Sankar

- A tournament on n players T_n is a type of directed graph.
- Every vertex has exactly one directed edge to every other (distinct) vertex. So either $v \to u$ or $u \to v$ but not both.

- A tournament on n players T_n is a type of directed graph.
- Every vertex has exactly one directed edge to every other (distinct) vertex. So either $v \to u$ or $u \to v$ but not both.
- If $v \rightarrow u$, then v "beats" u.

- A tournament on n players T_n is a type of directed graph.
- Every vertex has exactly one directed edge to every other (distinct) vertex. So either $v \to u$ or $u \to v$ but not both.
- If $v \rightarrow u$, then v "beats" u.

- A tournament on n players T_n is a type of directed graph.
- Every vertex has exactly one directed edge to every other (distinct) vertex. So either $v \to u$ or $u \to v$ but not both.
- If $v \rightarrow u$, then v "beats" u.

Rankings

• A ranking π is just an ordering of the vertices.

Rankings

- A ranking π is just an ordering of the vertices.
- (A > B > C > D) is one possible ranking.
- So is (B > D > A > C).

Consistencies

- Let T_n be a tournament and π a ranking of the tournament.
- If $v \to u$ in the tournament, and v before u in π , then the edge (v, u) is consistent with π .

Consistencies

• Let T_n be a tournament and π a ranking of the tournament.

• If $v \to u$ in the tournament, and v before u in π , then the edge (v, u) is consistent with π .

• If $\pi = (A > B > C > D)$, then the pair (B, D) is consistent, because $B \to D$ in the graph.

A Best Ranking?

Let $c(\pi, T_n)$ be the number of edges in T_n that are consistent with π .

And let $c(T_n) = \max_{\pi} c(\pi, T_n)$ be the most consistencies any of the rankings have.

A Best Ranking?

Let $c(\pi, T_n)$ be the number of edges in T_n that are consistent with π .

And let $c(T_n) = \max_{\pi} c(\pi, T_n)$ be the most consistencies any of the rankings have.

We claim
$$c(T_n) \ge \frac{1}{2} \binom{n}{2}$$

In English: "For any tournament you give me, I can find a a ranking that gives better than $\frac{1}{2} \binom{n}{2}$ consistencies."

A Best Ranking?

We claim $c(T_n) \ge \frac{1}{2} \binom{n}{2}$

$$c(T_n) = \max_{\pi} c(\pi, T_n)$$

Proof: If $\pi = (\pi_1, ..., \pi_n)$, and (π_i, π_i) is inconsistent in π , then (π_i, π_i) must be consistent in $\pi' = (\pi_n, \pi_{n-1}, ..., \pi_1)$.

$c(T_n) = \max_{\pi} c(\pi, T_n)$

A Best Ranking?

We claim
$$c(T_n) \ge \frac{1}{2} \binom{n}{2}$$

Proof: If $\pi=(\pi_1,\ldots,\pi_n)$, and (π_i,π_j) is inconsistent in π , then (π_i,π_j) must be consistent in $\pi'=(\pi_n,\pi_{n-1},\ldots,\pi_1)$.

So
$$c(\pi, T_n) + c(\pi', T_n) = \binom{n}{2}$$
.

$c(T_n) = \max_{\pi} c(\pi, T_n)$

A Best Ranking?

We claim
$$c(T_n) \ge \frac{1}{2} \binom{n}{2}$$

Proof: If $\pi = (\pi_1, ..., \pi_n)$, and (π_i, π_j) is inconsistent in π , then (π_i, π_j) must be consistent in $\pi' = (\pi_n, \pi_{n-1}, ..., \pi_1)$.

So
$$c(\pi, T_n) + c(\pi', T_n) = \binom{n}{2}$$
.

So
$$c(T_n) \ge \frac{1}{2} \binom{n}{2}$$
.

Bad Tournaments

We know
$$c(T_n) \ge \frac{1}{2} \binom{n}{2}$$
 for any tournament.

Question: Can we make a tournament where rankings can't get much better than this?

Bad Tournaments

We know
$$c(T_n) \ge \frac{1}{2} \binom{n}{2}$$
 for any tournament.

Question: Can we make a tournament where rankings can't get much better than this?

Goal:
$$c(T_n) \le \frac{1}{2} \binom{n}{2} + something small$$

In English: "I want a tournament where the best ranking I can manage is only slightly better than what I'm guaranteed."

Goal:
$$c(T_n) \le \frac{1}{2} \binom{n}{2} + something small$$

One Construction: Pick a prime p (for technical reasons, $p \equiv 3 \mod 4$). Let the vertices of T_p be $\{1,\ldots,p-1\}$ and have $x \to y$ in T_p precisely when x-y is a square mod p.

Goal:
$$c(T_n) \le \frac{1}{2} \binom{n}{2} + something small$$

One Construction: Pick a prime p (for technical reasons, $p \equiv 3 \mod 4$). Let the vertices of T_p be $\{0,\ldots,p-1\}$ and have $x \to y$ in T_p precisely when x-y is a square mod p.

The Big Theorem:
$$c(T_p) \le \frac{1}{2} \binom{p}{2} + O(p^{3/2} \log p)$$

In English: "The best ranking I can manage on these tournaments is only slightly better than what I can guarantee."

Adjacency Matrix: Let D be the $p \times p$ matrix defined by

$$D_{ij} = \begin{cases} 1 & i-j \text{ a square,} \\ -1 & i-j \text{ not a square,} \\ 0 & i=j. \end{cases}$$

The entries of D tell us what the tournament looks like. D is called the adjacency matrix of our tournament $T_{\it p}$.

First, some setup: Let $A,B\subset\{0,\ldots,p-1\}$ be two subsets of vertices. Define e(A,B) as the number of edges in T_p which go from A to B. By construction,

$$e(A,B) - e(B,A) = \sum_{i \in A} \sum_{j \in B} D_{ij}$$

First, some setup: Let $A,B\subset\{0,\ldots,p-1\}$ be two subsets of vertices. Define e(A,B) as the number of edges in T_p which go from A to B. By construction,

$$e(A,B) - e(B,A) = \sum_{i \in A} \sum_{j \in B} D_{ij}$$

$$1 \text{ when } -1 \text{ when}$$

$$0 \rightarrow 0 \text{ is } 0$$

First, some setup: Let $A,B\subset\{0,\ldots,p-1\}$ be two subsets of vertices. Define e(A,B) as the number of edges in T_p which go from A to B. By construction,

$$e(A,B) - e(B,A) = \sum_{i \in A} \sum_{j \in B} D_{ij}$$

$$1 \text{ when } -1 \text{ when}$$

$$0 \rightarrow 0 \quad 0 \quad 0$$

Lemma 2:
$$|e(A, B) - e(B, A)| = \left| \sum_{i \in A} \sum_{j \in B} D_{ij} \right| \le \sqrt{|A| |B| p}$$

Lemma 2: $|e(A,B) - e(B,A)| \le \sqrt{|A||B|p}$

In English: (Roughly) the difference in the number of edges that go from $A \to B$ against $B \to A$ is at most proportional to the product of their sizes.

Lemma 2:
$$|e(A,B) - e(B,A)| \le \sqrt{|A||B|p}$$

In English: (Roughly) the difference in the number of edges that go from $A \to B$ against $B \to A$ is at most proportional to the product of their sizes.

Proof: We don't have time.

The important thing is that **we get to choose** A **and** B however we like, and we know the number of edges between A and B is **controlled by how many vertices** A **and** B have.

The Big Theorem:
$$c(T_p) \le \frac{1}{2} \binom{p}{2} + O(p^{3/2} \log p)$$

Proof: Let π be a ranking. Let A_1 be the first half of π and A_2 be the second half of π .

Important: $e(A_1, A_2)$ counts the edges between A_1, A_2 that are consistent with π (!) And $e(A_2, A_1)$ counts the edges between A_1, A_2 consistent with π' !

The Big Theorem:
$$c(T_p) \le \frac{1}{2} \binom{p}{2} + O(p^{3/2} \log p)$$

If r is the smallest integer with $2^r \ge p$, since A_1, A_2 partition the vertex set in half, we have $|A_1|, |A_2| \le 2^{r-1}$. Using **Lemma 2**:

$$e(A_1, A_2) - e(A_2, A_1) \le |A_1|^{1/2} |A_2|^{1/2} p^{1/2}$$

$$\le 2^{r-1} p^{1/2}$$

The Big Theorem:
$$c(T_p) \le \frac{1}{2} \binom{p}{2} + O(p^{3/2} \log p)$$

Now repeat the process on A_1 and A_2 . Let A_{11} , A_{12} partition A_1 in half. And correspondingly for A_{21} , A_{22} .

Again, $e(A_{11}, A_{12})$ counts the edges between A_{11}, A_{12} that are consistent in π . Meanwhile $e(A_{12}, A_{11})$ are all the edges consistent in π' .

The Big Theorem:
$$c(T_p) \le \frac{1}{2} \binom{p}{2} + O(p^{3/2} \log p)$$

In general, on the kth step, we partition π into 2^k chunks, with 2^{k-1} consecutive blocks of the form $A_{\epsilon 1}, A_{\epsilon 2}$. The sum over all 2^{k-1} of these $e(A_{\epsilon 1}, A_{\epsilon 2}) - e(A_{\epsilon 2}, A_{\epsilon 1})$ is then at most

The Big Theorem:
$$c(T_p) \le \frac{1}{2} \binom{p}{2} + O(p^{3/2} \log p)$$

Important: Notice that each edge in T_p shows up in **precisely one** A_{e1}, A_{e2} for some $k \in \{1, \ldots, r\}$. It's like we are binary searching for that edge! So the sum over all $k \in \{1, \ldots, r\}$ of all the $e(A_{e1}, A_{e2}) - e(A_{e2}, A_{e1})$ is precisely

$$c(\pi, T_p) - c(\pi', T_p) \le 2^{r-1} p^{1/2} r$$

 $< p^{3/2} \log p$

