TEMPORAL PROBABILITY MODELS

Chapter 15, Sections 1–5

Outline

- ♦ Time and uncertainty
- ♦ Inference: filtering, prediction, smoothing
- ♦ Hidden Markov models
- ♦ Dynamic Bayesian networks

Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

 $\mathbf{X}_t = \text{set of unobservable state variables at time } t$ e.g., $BloodSugar_t$, $StomachContents_t$, etc.

 $\mathbf{E}_t = \text{set of observable evidence variables at time } t$ e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$

This assumes discrete time; step size depends on problem

Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents? CPTs?

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents? CPTs?

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$ Second-order Markov process: $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-2},\mathbf{X}_{t-1})$

Stationary process: transition model $P(\mathbf{X}_t|\mathbf{X}_{t-1})$ fixed for all t

Hidden Markov Model (HMM)

Sensor Markov assumption: $P(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{1:t-1}) = P(\mathbf{E}_t|\mathbf{X}_t)$

Stationary process: transition model $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$ and sensor model $\mathbf{P}(\mathbf{E}_t|\mathbf{X}_t)$ fixed for all t

HMM is a special type of Bayes net, X_t is single discrete random variable:

with joint probability distribution

$$\mathbf{P}(X_{0:t}, E_{1:t}) = ?$$

Hidden Markov Model (HMM)

Sensor Markov assumption: $P(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{1:t-1}) = P(\mathbf{E}_t|\mathbf{X}_t)$

Stationary process: transition model $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$ and sensor model $\mathbf{P}(\mathbf{E}_t|\mathbf{X}_t)$ fixed for all t

HMM is a special type of Bayes net, X_t is single discrete random variable:

with joint probability distribution

$$\mathbf{P}(X_{0:t}, E_{1:t}) = \mathbf{P}(X_0) \prod_{i=1}^{t} \mathbf{P}(X_i | X_{i-1}) \mathbf{P}(E_i | X_i)$$

Example

First-order Markov assumption not exactly true in real world!

Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Example: robot motion.

Augment position and velocity with $Battery_t$

Inference tasks

Filtering: $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$ belief state—input to the decision process of a rational agent

Prediction: $\mathbf{P}(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k > 0 evaluation of possible action sequences; like filtering without the evidence

Smoothing: $\mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t})$ for $0 \le k < t$ better estimate of past states, essential for learning

Most likely explanation: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$ speech recognition, decoding with a noisy channel

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

I.e., prediction + estimation. Prediction by summing out X_t :

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}, \mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

I.e., prediction + estimation. Prediction by summing out X_t :

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}, \mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Filtering example

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

R_{t-1}	$P(R_t)$
t	0.7
f	0.3

R_t	$P(U_t)$
t	0.9
f	0.2

Most likely explanation

Most likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1}

= most likely path to some x_t plus one more step

$$\max_{\mathbf{x}_1...\mathbf{x}_t} \mathbf{P}(\mathbf{x}_1, \dots, \mathbf{x}_t, \mathbf{X}_{t+1} | \mathbf{e}_{1:t+1})$$

$$= \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} P(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{x}_t | \mathbf{e}_{1:t}) \right)$$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1, \ldots, \mathbf{x}_{t-1}, \mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state i. Update has sum replaced by max, giving the Viterbi algorithm:

$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{X}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$$

Viterbi example

Implementation Issues

Viterbi message: $\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$

or filtering update: $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$

What is $10^{-6} \cdot 10^{-6} \cdot 10^{-6}$?

Implementation Issues

Viterbi message: $\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$

or filtering update: $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$

What is $10^{-6} \cdot 10^{-6} \cdot 10^{-6}$?

What is floating point arithmetic precision?

Implementation Issues

Viterbi message: $\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$

or filtering update: $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$

What is $10^{-6} \cdot 10^{-6} \cdot 10^{-6}$?

What is floating point arithmetic precision?

$$10^{-6} \cdot 10^{-6} \cdot 10^{-6} = 0$$

Answer?

Use either:

- Rescaling, multiply values by a (large) constant
- logsum trick (Assignment 5)

log is monotone increasing, so:

$$arg max f(x) = arg max log f(x)$$

Also,

$$\log(a \cdot b) = \log a + \log b$$

Therefore, work with sums of logarithms of probabilities, rather than products of probabilities:

$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$$

$$\rightarrow \log \mathbf{m}_{1:t+1} = \log \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) + \max_{\mathbf{x}_t} (\log \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) + \log \mathbf{m}_{1:t})$$

Hidden Markov models

 X_t is a single, discrete variable (usually E_t is too) Domain of X_t is $\{1, \ldots, S\}$

Transition matrix
$$\mathbf{T}_{ij} = P(X_t = j | X_{t-1} = i)$$
, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor matrix O_t for each time step, diagonal elements $P(e_t|X_t=i)$

e.g., with
$$U_1 = true$$
, $\mathbf{O}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward messages as column vectors:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$

Dynamic Bayesian networks

 X_t , E_t contain arbitrarily many variables in a replicated Bayes net

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need

- transition model $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$
- sensor model $\mathbf{P}(\mathbf{E}_t|\mathbf{X}_t)$

Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used for speech recognition

Dynamic Bayes nets subsume HMMs; exact update intractable

Example Umbrella Problems

Filtering:

$$\mathbf{f}_{1:t+1} := \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

Viterbi:
$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$$

R_{t-1}	$P(R_t = t)$	$P(R_t = f)$
t	0.7	0.3
f	0.3	0.7

R_t	$P(U_t = t)$	$P(U_t = f)$
t	0.9	0.1
f	0.2	0.8

$$\mathbf{P}(R_3|\neg u_1, u_2, \neg u_3) = ?$$

$$\arg \max_{R_{1:3}} \mathbf{P}(R_{1:3}|\neg u_1, u_2, \neg u_3) = ?$$