Lecture 7

Operations on functions 2

* Restriction: $f: A \to B$ and $C \subset A$, then

 $f|_C$ is the function

$$f|_C: C \to B; x \to f(x)$$

* Composition: $f: A \to B$ and $g: B \to C$

$$g^{\circ}f: A \to C; x \to g(f(x))$$

* Quotient of two functions

$$f: D \to R$$
 and $g: D \to R \setminus \{0\}$

$$\frac{f}{g}: D \to R; x \to \frac{f(x)}{g(x)}$$

Remark:

 $f^{\circ}g \neq g^{\circ}$ in general

Examples

$$h: R \setminus \{0\} \to R \setminus \{0\}; x \to \frac{1}{x}$$

let
$$D = \{x \in R \mid x > 0\}$$

 $h|_D$ has a graph which is part of that of f

$$f: R \to R; x \to sin(x)$$
 and $g: R \to R; x \to x^2 + 1$

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{\sin(x)}{x^2 + 1}$$

We can also write $f.(h^\circ)$ for $\frac{f}{g}$

$$(f.(h^{\circ}g))(x) = f(x).(h^{\circ}g)(x)$$

$$= f(x).\,h(g(x))$$

$$= f(x). \frac{1}{g(x)} = \frac{f(x)}{g(x)}$$

so $f.(h^{\circ}g) = \frac{f}{g}$ if 0 is not in the range of g

Intervals

These are subsets $I \subset R$ such that:

if $a \in I$, $b \in I$, $c \in R$ between a and b

then $c \in I$.

Examples

- * $\{x \in R \mid x > 0 \text{ and } x < 2\}$
- * $\{x \in R \mid x \ge -1 \text{ and } x \le 1\}$
- * $\{x \in R \mid x > 0\}$
- * $\{x \in x^2 > 1\}$ not an interval

Above can be expressed as the union of the 2 intervals

$$x < -1 \text{ and } x > 1$$

For $a \in R$ and $b \in R$ and a < b:

$$(a,b) = \{x \in R \mid x > a \text{ and } x < b\}$$
 open interval

$$[a,b] = \{x \in R \mid x \ge a \text{ and } x \le b\}$$
 closed interval

$$[a,b) = \{x \in R \mid x \ge a \text{ and } x < b\} \frac{1}{2} \text{ open}$$

$$(a,b] = \{x \in R \mid x > a \text{ and } x \le b\} \frac{1}{2} \text{ open}$$

When a = b: $[a, a] = \{a\}$ contains a single point.

$$(-\infty, a) = \{ x \in R \mid x < a \}$$

$$(-\infty, a] = \{ x \in R \mid x \le a \}$$

$$(a, \infty) = \{ x \in R \mid x > a \}$$

$$[a, \infty) = \{x \in R \mid x \ge a\}$$

$$[-\infty, \infty) = R$$

Remark:

 ∞ and $-\infty$ are not real numbers so they are <u>never</u> included in any interval (or any other subset of *R*).