

CSCI 544 Applied Natural Language Processing

Mohammad Rostami USC Computer Science Department

Recurrent Neural Networks

- We can consider NL data as sequential data points, where the current word depends on the previous words in the sequence:
 - 1 2 3 4 5 6 7 8 9 10 11
- Ex: Today, I want to play football and then watch a movie.
- Learning representations by back-propagating errors, 1986
- Core Idea: the function approximator can receive the input word by word such that its output depend on the history, i.e., relying on a notion of memory

FNN
$$y = f(x)$$
RNN $y_t = f(x_t, h_{t-1})$
output input memory

Recurrent Neural Networks

Equipping perceptron with memory

- x_t: Input at time t
- h_{t-1}: State at time t-1

$$h_t = f(W_x x_t + W_h h_{t-1}), W_x \in \mathbb{R}^{M*N}, W_h \in \mathbb{R}^{H*H}$$

- Unfolding RNN
- We can make the unit multi-layer

Recurrent Neural Networks

- The weight matrices are shared across time
- multi-output

$$L = L_1 + L_2 + L_3$$
$$L = \sum_{t=1}^{T} L_t$$

$$y_t = f(x_t, h_{t-1})$$

$$L_t = l(y, \hat{y_t})$$

- Sequential processing
- Hard to train
- Long range dependencies

Attention Mechanism

Images

Indian Spot-billed Duck

Mandarin Duck

Text

Deep Learning

- Table of Contents
- Acknowledgements
- Notation
- 1 Introduction
- Part I: Applied Math and Machine Learning Basics
 - o 2 Linear Algebra
 - 3 Probability and Information Theory
 - o 4 Numerical Computation
 - o 5 Machine Learning Basics
- · Part II: Modern Practical Deep Networks
 - o 6 Deep Feedforward Networks
 - 7 Regularization for Deep Learning
 - 8 Optimization for Training Deep Models
 - o 9 Convolutional Networks
 - o 10 Sequence Modeling: Recurrent and Recursive Nets
 - o 11 Practical Methodology
 - 12 Applications
- Part III: Deep Learning Research
 - o 13 Linear Factor Models
 - 14 Autoencoders
 - 15 Representation Learning
 - 16 Structured Probabilistic Models for Deep Learning
 - 17 Monte Carlo Methods
 - 18 Confronting the Partition Function
 - 19 Approximate Inference
 - 20 Deep Generative Models

Convolutional Neural Networks: Motivation

- Some differentiating patterns are local
- What is a bird?
- We should attend to smaller locations to perform a task

Convolutional Neural Networks: Motivation

Local pattern appears in different places.

Solution: training a lot of "local" detectors and move around each detector to make the model spatially invariant.

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

These are the network parameters to be learned.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

$$F \circ I(x,y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i,j)I(x+i,y+j)$$

1	-1	-1	
-1	1	-1	
-1	-1	1	

Filter 1

-1	1	-1	
-1	1	-1	
-1	1	-1	

Filter 2

: :

Each filter detects a small pattern (3 x 3).

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Convolutional vs FCL

Max Pooling

Subsampling pixels will not change the object

- fewer parameters to characterize the image

Max Pooling Layer

Filter 1

Filter 2

 -1
 -1
 -1

 -1
 -1
 -2
 1

 -1
 -1
 -2
 1

 -1
 0
 -4
 3

Max Pooling Layer

is a channel

Flattening

Revolutionized Computer Vision!

Convolutional Neural Networks

Revolutionized Computer Vision!

Attention in CNNs

 The network learns to attend to the proper spatial location to perform a downstream task

(a) Original image

(b) Attention map

CNNs for Text Classification

Sentence Sizes are different

Transformers: intuition

Context Matters

- Example:
- I swam across the river to get to the other bank
- I drove across the road to get to the other **bank**
- Can we build an architecture that weighs neighboring words to understand meaning of words?

Transformers: Attention Mechanism Basics

Transformers

- Attention over entire input: path lengths between words become constant
- Parallelization

- Inputs: word vectors
- Source sentence
- Input sentence produced so far
- Output: word vectors
- Probability distribution for the next word
- Position Encoding

Transformers

Embeddings and Softmax

Share embedding weights and the pre-softmax linear transformation

Repetitive Blocks

Attention Blocks

We maximize the probability of the next output token

Figure 1: The Transformer - model architecture.

Transformers: Attention Mechanism

Which word in the source sentence we should pay more attention at each step?

Queries: Target Sentence

Keys: Source Sentence

Values: Source Sentence

Three inputs

Scaled Dot-Product Attention: it selects the most important word in the source

Similarity

Q: queries

K: keys

V: values

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Scaled Dot-Product Attention

Transformers: Attention Mechanism

Transformers: Attention Mechanism

Multi-Head Attention: Learn **h** attention heads to learn different representation simultaneously so each head pays to different types of things

For projecting back to the input dimension

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

Transformers: Positional Encoding

How do we take words orders into accounts?

- Augment the embeddings with a position identifier

Reason: no RNN to model the sequence position

Two types:

• learned positional embeddings Sinusoid:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

- Bounded, Periodic, Unique

Figure 1: The Transformer - model architecture.

Transformers

Position-Wise Feed-Forward Networks

 $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$

Figure 1: The Transformer - model architecture.

Transformers: Decoder

Masked Multihead Attention: limits decencies only to prior words

Attention
$$(Q, K, V) = \operatorname{softmax}(\mathbf{Mask} + \frac{QK^T}{\sqrt{d_k}})V$$

Improvements over LSTM:

- The source languages and their semantics and grammars are analyzed
- Mapping to the source language is learned separately

Figure 1: The Transformer - model architecture.

Performance Comparison

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [17]	23.75				
Deep-Att + PosUnk [37]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [36]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [31]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [37]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [36]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$		
Transformer (big)	28.4	41.0	2.3 ·	10^{19}	

GPTs and BERT

- A transformer uses Encoder stack to model input, and uses
 Decoder stack to model output (using input information
 from encoder side).
- If we do not have input and just want to model the "next word", we can get rid of the Encoder side of a transformer and output "next word" one by one. This gives us GPTs.
 - Application: question answering, summarization
- If we are only interested in training a model for the input for some other tasks, then we do not need the Decoder of the transformer, that gives us BERT.
 - Application: classification

GPT and BERT

Two steps:

- Pretraining using self-supervised learning
- Finetuning

Tasks: classification, similarity, multiple choice, next word

Tasks: masking, next sentence prediction

GPT Versions

GPT: released Jun 2018

GPT-2: released Nov 2019 with 1.5B parameters

GPT-3: released Jun 2020 with 175B parameters trained on 45TB texts

Model Dimensionality: 1024 345M

Model Dimensionality: 1280 762M

Model Dimensionality: 1600 1542M

Visual Transformer

Idea: Representing an image as a sequence

Similar performance to CNNs with less computational load

Visual Language Transformer

Representing coupled vision-language data with a single integrated embedding

- Application: question answering, caption generation

Figure 3. Model overview. Illustration inspired by Dosovitskiy et al. (2020).