

DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

NJM 2115 is a low operating Voltage (±1.0 V min.) and low saturation output voltage (±2.0 V p-p at supply voltage ±2.5V) operational amplifier. It is applicable to HANDY TYPE CD, RADIO CASSETE CD, and PORTABLE DAT, that are digital audio apparatus which require the 5V single supply operation and high output voltage. The NJM2115 is improved version of the NJM2100 about BIAS-CIRCUIT. So, NJM2115 is low saturation compared to the NJM2100 under the condition of low supply voltage ($<\pm2.5$ V). The NJM2115 is stable about the oscillation compared to the NJM2100 under the condition of $V^+/V^- > 2.5V$.

FEATURES

Operating Voltage

Low Saturation Output Voltage

Slew Rate

Unity Gain Bandwidth

Package Outline

Bipolar Technology

 $(\pm 1V \sim \pm 7V)$

 $(\pm 2.0 V_{P-P} @ V^+ = \pm 2.5 V)$

 $(4V/\mu s typ.)$

DIP8, DMP8, SIP8, SSOP8

(12MHz typ.)

■ PACKAGE OUTLINE

NJM2115D

NJM2115M

NJM2115V

NJM2115L

PIN CONFIGURATION

PIN FUNCTION

1. A OUTPUT -INPUT +INPUT 3. A 5. B +INPUT 6. B -INPUT 7. B OUTPUT

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	±7.0	V ·	
Differential Input Voltage	V _{ID}	±14	٧	
Power Dissipation	PD	(DIP8) 500		
		(DIM8) 300	mW	
		(SIP8) 800	mW	
		(SSOP8) 250	mW	
Operating Temperature Range	Topr	−40∼+85		
Storage Temperature Range	T _{stg}	40~+125	r	

■ ELECTRICAL CHARACTERISTICS

 $(V^+/V^- = \pm 2.5V, Ta = 25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION .	MIN.	TYP.	MAX.	UNIT [.]
Input Offset Voltage	V _{IO}	R _S ≤10kΩ		1	6	m V
Input Bias Current	IB		-	100	300	nΑ
Large Signal Voltage Gain	Av	$R_L \ge 10k\Omega$	60	80	_	dB
Maximum Output Voltage Swing	V _{OM}	$R_L \ge 2.5 k\Omega$	±2	±2.2	—	v
Input Common Mode Voltage Range	V _{ICM}		±1.5		-	v ·
Common Mode Rejection Ratio	CMR		60	74	l —	dB
Supply Voltage Rejection Ratio	SVR		60	80		dB
Operating Current	Icc	$V_{1N}=0, R_L=\infty$	_	3.5	5	mA
Slew Rate	SR	$A_U=1, V_{IN}=\pm 1V$	_	4	l —	V/µs
Gain Bandwidth product	GB	f=10kHz	-	12		MHz

(note 1)Applied circuit voltage gain is desired to be operated within the range of 3 dB to 30 dB.

(note 2)Special care being required for input common mode voltage range and the oscillation due to the capacitive load when operating follower.

TYPICAL CHARACTERISTICS

Operating Current vs. Temperature

Input Bias Current vs. Temperature

Input Offset Voltage vs. Temperature

Maximum Output Voltage Swing vs. Temperature

4

■ TYPICAL CHARACTERISTICS

Voltage Gain vs. Frequency

Voltage Gain, Phase vs. Frequency

Total Harmonic Distortion vs. Output Voltage

Equivalent Input Noise Voltage vs. Source Resistance

Maximum Output Voltage Swing vs. Load Resistance

Maximum Output Voltage Swing vs. Frequency

■ TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage

Maximum Output Voltage Swing vs. Operating Voltage

Input Offset Voltage vs. Operating Voltage

Input Bias Current vs. Operating Voltage

NJM2115

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.