Advanced Course Computer Science

Music Processing

Summer Term 2010

Meinard Müller, Peter Grosche

Saarland University and MPI Informatik meinard@mpi-inf.mpg.de

Tempo and Beat Analysis

Introduction

Musical Properties:

- Harmony
- Melody
- Rhythm
- Timbre

Introduction

Musical Properties:

- Harmony
- Melody
- Rhythm: Tempo and beat analysis
- Timbre

Introduction

Example 1: Britney Spears - Oops!...I Did It Again

Tempo: 100 BPM

Introduction

Example 2: Queen – Another One Bites The Dust

Tempo: 110 BPM

Introduction

Example 3: Burgmueller - Op100-2

Tempo: 130 BPM

Introduction

Example 4: Chopin - Mazurka Op. 68-3

Tempo:

Introduction

Example 4: Chopin – Mazurka Op. 68-3

Tempo: 50-200 BPM

Introduction

Example 5: Borodin - String Quartet No. 2

Tempo: 120-140 BPM (roughly)

Introduction

Given a recording of a musical piece

determine the periodic sequence of beat positions:

Tapping the foot to a piece of music

Introduction

Given a recording of a musical piece

determine the periodic sequence of beat positions:

Tapping the foot to a piece of music

Introduction

Introduction

- 1. Note onset detection
- 2. Tempo estimation
- Beat tracking

Introduction

- 1. Note onset detection
- 2. Tempo estimation

Tempo (BPM) := 60 / period (seconds)

Introduction

- 1. Note onset detection
- 2. Tempo estimation

3. Beat tracking

Introduction

Beat

Sequence of equally spaced impulses, which periodically occur in music. The perceptually most salient pulse (foot tapping rate).

Tempo

The tempo of a piece is the inverse of the beat period. Instead of frequency in Hz, we think beats per minute (BPM).

Introduction

- Tempo and beat are fundamental properties of music
- The beat provides the temporal framework of music (musical meaningful time axis)
- Beat-synchronous audio features
- Rhythmic similarity for music recommendation, genre classification, music segmentation
- Music transcription
- Commercial applications
 - automatic DJ / mixing
 - light effects

Introduction

Tasks

- 1. Note onset detection
- 2. Tempo estimation
- 3. Beat tracking

Overview

Tasks

- 1. Note onset detection
- 2. Tempo estimation
- 3. Beat tracking

Challenges

- Non-percussive music
- Soft note onsets
- Time-varying tempo

Overview

Tasks

- 1. Note onset detection
- 2. Tempo estimation
- Beat tracking

Challenges

- Non-percussive music
- Soft note onsets
- Time-varying tempo

Note Onset Detection

- Finding perceptually relevant impulses in a music signal
- Musical accents, note onsets

Onset:

- . The exact time, a note is hit
- One of the three parameters defining a note (pitch, onset, duration)

- Change of properties of sound:
 - Energy or Loudness
 - Pitch or Harmony
 - Timbre

[Bello et al. 2005]

Note Onset Detection

- Finding perceptually relevant impulses in a music signal
- Musical accents, note onsets

Onset:

- The exact time, a note is hit
- One of the three parameters defining a note (pitch, onset, duration)

- Change of properties of sound:
 - Energy or Loudness
 - Pitch or Harmony
 - Timbre

[Bello et al. 2005]

Note Onset Detection

- Amplitude Squaring
- Windowing
- Differentiation
- Half wave rectification

Note Onset Detection

- Amplitude Squaring
- Windowing
- Differentiation
- Half wave rectification

Note Onset Detection

- Amplitude Squaring
- Windowing
- Differentiation
- Half wave rectification

Note Onset Detection

- Amplitude Squaring
- Windowing
- Differentiation
- Half wave rectification

capture energy changes

Note Onset Detection

- Amplitude Squaring
- Windowing
- Differentiation
- Half-wave rectification

only energy increases are relevant for note onsets

Note Onset Detection

Time (seconds)

Note Onset Detection

Onset Detection

- Energy curves only work for percussive music
- Many instruments have weak note onsets (strings)
- No energy increase observable in complex mixtures
- More refined methods addressing different signal properties:
 - Change of spectral content
 - Change of pitch
 - Change of harmony

Onset Detection

- Energy curves only work for percussive music
- Many instruments have weak note onsets (strings)
- No energy increase observable in complex mixtures
- More refined methods addressing different signal properties:
 - Change of spectral content
 - Change of pitch
 - Change of harmony

Onset Detection

Steps:

- 1. Spectrogram (STFT)
- allows for detecting local energy increases in certain frequency ranges
- pitch, harmony, or timbre changes are

[Bello et al. 2005]

Onset Detection

- 1. Spectrogram (STFT)
- 2. Logarithmic intensity
- $Y = \log(1 + C \cdot |X|)$
- follows the human sensation of intensity dynamic range compression
- enhances low intensity values
 reduces influence of amplitude

[Bello et al. 2005]

Onset Detection

Steps:

- 1. Spectrogram (STFT)
- 2. Logarithmic intensity
- 3. Differentiation
- first-order temporal difference captures changes of the spectral content
- · only positive intensity changes

[Bello et al. 2005]

Onset Detection

Steps:

- 1. Spectrogram (STFT)
- 2. Logarithmic intensity
- 3. Differentiation
- 4. Accumulation
- for each time step, accumulate all positive intensity changes
- encodes changes of the spectral content

Novelty curve

[Bello et al. 2005]

Onset Detection

Steps:

- 1. Spectrogram (STFT)
- 2. Logarithmic intensity
- 3. Differentiation
- 4. Accumulation

Onset Detection

Steps:

- 1. Spectrogram (STFT)
- 2. Logarithmic intensity
- 3. Differentiation
- 4. Accumulation

Onset Detection

Steps:

- 1. Spectrogram (STFT)
- 2. Logarithmic intensity
- 3. Differentiation
- 4. Accumulation
- 5. Mean Subtraction

Onset Detection

Steps:

- 1. Spectrogram (STFT)
- 2. Logarithmic intensity
- 3. Differentiation
- 4. Accumulation
- 5. Mean Subtraction

Onset Detection

Logarithmic compression is essential

Onset Detection

Logarithmic compression is essential

Onset Detection

Logarithmic compression is essential

42

Onset Detection

Logarithmic compression is essential

Onset Detection

Compressed Spectrogram $Y := \log(1 + C \cdot |X|)$ C > 1

• Novelty curve $\Delta: [1:T-1] \to \mathbb{R}$:

 $\Delta(t) := \sum_{k=1}^K |Y(t+1,k) - Y(t,k)|_{\geq 0}$

Onset Detection

- Peaks of the novelty curve are note onset candidates
- Extraction of note onsets by peak-picking methods (thresholding)

[Bello et al. 2005]

Onset Detection

- Peaks of the novelty curve are note onset candidates
- Extraction of note onsets by peak-picking methods (thresholding)
- Peak-picking is a very fragile step in particular for soft onsets (strings)
- How to distinguish between true onset peaks and spurious peaks?

[Bello et al. 2005]

Onset Detection

Onset Detection

Drumbeat

Going Home

Lyphard melodie

Por una cabeza

Donau

Onset Detection, Summary

- Compute a novelty curve that captures changes of certain signal properties
 - Energy
 - Spectrum
 - Pitch, harmony, timbre
- Energy based methods work for percussive music only
- Peaks of the novelty curve indicate note onset candidates
- Extraction of note onsets by peak-picking methods (thresholding)
- Peak-picking is a very fragile step in particular for soft onsets (strings)

[Bello et al. 2005]

Overview

Tasks

- 1. Note onset detection
- 2. Tempo estimation
- 3. Beat tracking

Tempo Estimation

[Peeters 2007]

- The beat is a *periodic* sequence of impulses
- Reveal periodic structure of the note onsets
- Avoid the explicit determination of note onsets (no peak picking)
- Analyze the novelty curve with respect to periodicities

Methods for frequency / tempo estimation:

- 1. Fourier Transform
- 2. Autocorrelation

Fourier-Tempogram

[GroscheMueller 2009]

[Peeters 2007]

- A time / tempo representation that encodes the local tempo of the piece
- A spectrogram (STFT) of the novelty curve
- Frequency axis is interpreted as tempo in BPM instead of frequency in Hz
- Reveals periodicities of the note onsets

Autocorrelation-Tempogram

Fourier-Tempogram

[GroscheMueller 2009]

- Fourier coefficient $\mathcal{F}(t,\omega) = \sum_{n \in \mathbb{Z}} \Delta(n) \cdot W(n-t) \cdot e^{-2\pi i \omega n}$ window function $\,W:\mathbb{Z} \to \mathbb{R}\,$ centered at $\,t=0\,$
- Fourier tempogram $T: [1:T] \times \Theta \rightarrow \mathbb{C}$ $\mathcal{T}^{\mathrm{F}}(t,\tau) = \mathcal{F}(t,\tau/60)$

for the tempo parameter $\quad \tau=60\cdot\omega$ in BPM and the set of tempo parameters $\Theta\subset\mathbb{R}_{>0}$

Autocorrelation-Tempogram

[Peeters 2007]

 $\Theta = [30:600]$

Compare the novelty curve with time-shifted copies of itself

Autocorrelation-Tempogram

[Peeters 2007]

Windowed Autocorrelation

Autocorrelation-Tempogram

[Peeters 2007]

- High values for time lags with high correlation
- Reveals periodic self-similarities
- Maximum for a lag of zero (no shift)

Autocorrelation-Tempogram

[Peeters 2007]

- High values for time lags with high correlation
- Reveals periodic self-similarities
- Maximum for a lag of zero (no shift)
- Time-lag is not intuitive for music signals

Autocorrelation-Tempogram

[Peeters 2007]

1. Convert time-lag into tempo in BPM

Tempo (in BPM) = 60 / Lag (in sec)

Autocorrelation-Tempogram

[Peeters 2007]

- 1. Convert time-lag into tempo in BPM

 Tempo (in BPM) = 60 / Lag (in sec)
- Still not a meaningful tempo axis

Autocorrelation-Tempogram

[Peeters 2007]

- 1. Convert time-lag into tempo in BPM Tempo (in BPM) = 60 / Lag (in sec)
- 2. Interpolate to a linear tempo axis in a musically meaningful tempo range

Time - Lag is not musically meaningful

Autocorrelation-Tempogram

[Peeters 2007]

- $\textbf{Autocorrelation} \qquad \mathcal{A}(t,\ell) = \sum_{n \in \mathbb{Z}} \Delta(n) \Delta(n+\ell) \cdot W(n-t)$ window function $W: \mathbb{Z} \to \mathbb{R}$ centered at t=0 $\ell \in [0:N]$
- Autocorrelation tempogram

$$\mathcal{T}^{\mathrm{A}}(t,\tau) = \mathcal{A}(t,\!60/\tau)$$

Tempogram

[Peeters 2007]

Time-tempo representations that encode the local tempo of the piece over time

Fourier

nare the novelty cur

- Compare the novelty curve with templates consisting of sinusoidal kernels each representing a specific tempo
- Reveals periodic sequences of peaks
- Emphasizes harmonics, i.e. multiples of the tempo: Tatum - Level

Autocorrelation

- Compare the novelty curve with time-shifted copies of itself
- Reveals periodic self-similarities
- Emphasizes subharmonics, i.e. fractions of the tempo:

 Measure Level

Tempo Estimation

[Peeters 2007]

Extract musically meaningful tempo from tempograms

Local maximum of tempogram is correct in many cases

What if the pulse level is changing?

Tempo Estimation

[Peeters 2007]

Prevent pulse level changes:

Assuming smooth tempo changes: the tempo of a piece will not change abruptly

Compute a tempo curve that constrains the local tempo estimates to a single pulse level

Tempo Estimation

[Peeters 2007]

Prevent pulse level changes:

Assuming smooth tempo changes: the tempo of a piece will not change abruptly
Compute a tempo curve that constrains the local tempo

estimates to a single pulse level and finds the best sequence of local tempi

Tempo Estimation

[Peeters 2007]

- Boundary conditions: find path from (1,1) to (M,N)
- Monotonicity: monotone in both axes
- Step size condition: from (n,m) only to (n+1,m), (n,m+1) or (n+1, m+1)

Tempo Estimation

[Peeters 2007]

- Boundary conditions: find path from (1,.) to (M,.)
- Monotonicity: monotone in time axis
- Step size condition: depending on allowed tempo change

Overview

Tasks

- 1. Note onset detection
- 2. Tempo estimation
- 3. Beat tracking

Beat Tracking

[GroscheMueller 2009]

- Given the tempo, find the best sequence of beats
- Complex Fourier tempogram contains magnitude and phase information
- The magnitude encodes how well the novelty curve resonates with a periodicity kernel of a tempo
- The phase aligns the periodicity kernels with the peaks of the novelty curve

Brahms Hungarian Dance No. 5 Water State of the State of

Beat Tracking

Beat Tracking

[GroscheMueller 2009]

Local tempo at time t : $au_t \in \Theta$

 $\Theta =$ [60:240] BPM

• Phase $\varphi_t := rac{1}{2\pi} \arccos\left(rac{\operatorname{Re}(\mathcal{T}(t, au_t))}{|\mathcal{T}(t, au_t)|}
ight)$

Sinusoidal kernel $\kappa_t: \mathbb{Z} \to \mathbb{R}$

 $\kappa_t(n) := W(n-t)\cos(2\pi(\tau_t/60\cdot n - \varphi_t)) \qquad \qquad n \in \mathbb{Z}$

Periodicity curve $\Gamma: [1:T] \to \mathbb{R}_{\geq 0}$

$$\Gamma(n) = \left| \sum_{t \in [1,T]} \kappa_t(n) \right| \qquad n \in [1:T]$$

Summary

1. Onset Detection

- Novelty curve (something is changing)
- Indicates note onset candidates
- · Hard task for non-percussive instruments (strings)

2. Tempo Estimation

- Fourier tempogram
 Autocorrelation tempogram
 Musical knowledge (tempo range, continuity)

- Beat tracking
 Find most likely beat positions
 Exploiting phase information from Fourier tempogram

References

[GroscheMueller 2009]

Computing predominant local periodicity information in music recordings.

Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, New York, USA, 2009.

[Peeters 2007]

Geoffroy Peeters
Template-based estimation of time-varying tempo
Eurasip Journal on Applied Signal Processing,(Special Issue on Music Information Retrieval Based on Signal Processing) 2007.

[Bello et al. 2005]

J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, M. B. and Sandler A tutorial on onset detection in music signals. IEEE Transactions on Speech and Audio Processing, 2005.

Introduction

Introduction

Beat Tracking

Switching of predominant pulse level

Beat Tracking

Beat Tracking

- Queen Another One Bites The Dust

Shostakovich – 2nd Waltz

- Queen - Another One Bites The Dust

Examples: Strong or weak rhythm?

Shostakovich – 2nd Waltz

Beethoven – Symphony No. 5

- Beethoven - Pathetique

Borodin – String Quartet No. 2

- Beethoven Symphony No. 5
- Borodin String Quartet No. 2