Predicting using unsupervised ML

Problem:

From the given 'Iris' dataset, predict the optimum number of clusters and represent it visually.

1. Importing Libraries

```
In [16]:  #Importing libraries
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  from sklearn.cluster import KMeans
```

2. Loading data

```
In [17]: # Reading data file
my_data=pd.read_csv("iris.csv")
my_data.head(5)
```

Out[17]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

3. Defining predictors

4. Elbow method to find best number for clusters

5. K-Means Clustering

6. Visualizing clustering results

```
In [75]:  #Visualising the clusters
plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c = 'red', lab
plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 100, c = 'blue', la
plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 100, c = 'green', l

#Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s =
plt.legend()
```

Out[75]: <matplotlib.legend.Legend at 0x1ed9adcd788>

