FORM-PTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMA IRev. 12-29-99

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)

001560-387 U.S. APPLICATION NO. (If known, see 37 C.F.R 1.5)

CONCERNING A FILING UNDER 35 U.S.C. 371 INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PCT/JP00/00876 16 February 2000

PRIORITY DATE CLAIMED 16 February 1999

TITLE OF INVENTION

GENE ENCODING A PROTEIN HAVING A GLYCOSYL TRANSFERASE ACTIVITY TO AURONES

APPLICANT(S) FOR DO/EO/US

Keiko SAKAKIBARA, Yuko FUKUI, Yoshikazu TANAKA, Takaaki KUSUMI, and Takafumi YOSHIKAWA

App	licant	here	with s	submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:								
1.	\boxtimes	This	is a l	FIRST submission of items concerning a filing under 35 U.S.C. 371.								
2.		This	is a	SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.								
. 3.	×	This unti	is ar	express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination expiration of the applicable time limit set in 35 U.S.C. 371(b) and the PCT Articles 22 and 39(1).								
4.		Ар	A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.									
5. [×	Αc	A copy of the International Application as filed (35 U.S.C. 371(c)(2))									
1		a.		is transmitted herewith (required only if not transmitted by the International Bureau).								
*	į.	b.	\boxtimes	has been transmitted by the International Bureau.								
100		c.		is not required, as the application was filed in the United States Receiving Office (RO/US)								
6.		A tı	ansla	tion of the International Application into English (35 U.S.C. 371(c)(2)).								
7. 🐒		Am	endm	ents to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))								
1		a.		are transmitted herewith (required only if not transmitted by the International Bureau).								
7	à.	b.		have been transmitted by the International Bureau.								
1	4	c.		have not been made; however, the time limit for making such amendments has NOT expired.								
-		d.	×	have not been made and will not be made.								
8.		A tı	ansla	tion of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).								
9.	\boxtimes	An	oath o	or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).								
10.		A ti	ansla	tion of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).								
Item	ıs 11.	to 1	6. bel	low concern other document(s) or information included:								
11.	\boxtimes	An	Inforn	nation Disclosure Statement under 37 CFR 1.97 and 1.98.								
12	\boxtimes	An	assigr	ment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.								
13.	\boxtimes	ΑF	IRST	preliminary amendment.								
•		A S	ECON	ID or SUBSEQUENT preliminary amendment.								
14.		A s	ubstit	ute specification.								

16. Other items or information:

PCT Notice Informing the Applicant of the Communication of the International Application to the Designated Offices (Form PCT/IB/308) Cover page of published PCT international application (Publication No. WO 00/49155)

PCT Request Form(Japanese) Sequence Listing (attached to Preliminary Amendment)

15. A change of power of attorney and/or address letter.

529 Rec'd PCT/PTO 16 OCT 2000

U.S. APPLICA	TION NO. (If known	97673300	PCT/JP00/00876	ON NO.	POI/I	ATTOR	NEY'S DOCKET NUMBE 560-387
17. 🛛 -	The following fe	es are submitted:		***************************************	CALCULA	TIONS	PTO USE ONLY
		R 1.492(a)(1)-(5)):					
nor int	ternational sear	oreliminary examination fee ch fee (37 CFR 1.445(a)(2 rch Report not prepared by	a (37 CFR 1.482))) paid to USPTO the EPO or JPO	\$1,000.00 (960)			
Interna USPT	ational prelimina O but Internatio	ary examination fee (37 CF nal Search Report prepared	R 1.482) not paid to d by the EPO or JPO	\$860.00 (970)			
Interna but int	ational prelimina ternational sear	ary examination fee (37 CF ch fee (37 CFR 1.445(a)(2	R 1.482) not paid to USPTO }) paid to USPTO	\$710.00 (958)			
Interna but all	ational prelimina I claims did not	ary examination fee paid to satisfy provisions of PCT	USPTO (37 CFR 1.482) Article 33(1) (4)	\$690.00 (956)			
Internation	ational prelimina I claims satisfie	ary examination fee paid to d provisions of PCT Article	USPTO (37 CFR 1.482) 33(1)-(4)	\$100.00 (962)			
		ENTER	APPROPRIATE BASIC F	EE AMOUNT =		30.00	
Surcharge of months from	of \$130.00 (15 m the earliest c	4) for furnishing the oath o laimed priority date (37 CF	or declaration later than R 1.492(e)).	20 🗆 30 🗆	\$		
Cla	aims	Number Filed	Number Extra	Rate			
Total Claim	18	12 -20 =	0	X\$18.00 (966)	\$		
Independer	nt Claims	1 -3 =	0	X\$80.00 (964)	\$		
	pendent claim(s	(if applicable)		+ \$270.00 (968)	\$		
1.3			TOTAL OF ABOVE CA	ALCULATIONS =	\$ 86	30.00	
Reduction 1	for 1/2 for filing	by small entity, if applical	ole. Verified Small Entity stat	ement must also be	\$		
Se 30°	e 37 CFR 1.9, 1	1.27, 1.20).		SUBTOTAL =	\$ 80	30.00	
5 de						30.00	
Processing months fro	fee of \$130.00 m the earliest o) (156) for furnishing the E laimed priority date (37 CF	nglish translation later than R 1.492(f)).	20 🛘 30 🖯	\$		
(F)			TOTAL N	NATIONAL FEE =	\$ 80	60.00	
Fee for rec	ording the enclo	osed assignment (37 CFR 1 (37 CFR 3.28, 3.31). \$4	1.21(h)). The assignment mu: 10.00 (581) per property +	st be accompanied by	\$	40.00	
			TOTAL FE	ES ENCLOSED =	\$ 9	00.00	
						nt to be: efunded	\$
						charged	\$
a. 🛛	A abook in the	amount of \$ 900.00 to c	over the above fees is enclose	ed			
ь. 🗆		· · · · · · · · · · · · · · · · · · ·	2-4800 in the amount of \$		ve fees. A d	uplicate (copy of this sheet
c. 🛛	The Commission	oner is hereby authorized to 2-4800. A duplicate copy	o charge any additional fees v	which may be required,	, or credit an	y overpa	yment to Deposit
NOT must	E: Where an ar		37 CFR 1.494 or 1.495 has n	not been met, a petition		,	
SEND ALL	CORRESPOND	DENCE TO:	V	I. U Cata	R	39. J.	118 118
	Ronald Grud Burns, Doa	dziecki ne, Swecker & mathis	i, L.L.P. SIG	MY / UU NATURE	MUY	- 1-1	.2 .
	P.O. Box 14		Tak'n	nna M. Meuth			
	Alexandria, (703) 836-6	Virginia 22313-1404 5620	NAI NAI				
			36.	,607			
Date: O	ctober 16, 2	000	REC	SISTRATION NUMBER			

09/673300 529 Rec'd PCT/PTO 16 OCT 2000

Patent Attorney's Docket No. 001560-387

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)	
Keiko SAKAKIBARA et al) Group Art Unit: Unassign	ned
Application No.: Unassigned Corresponding to PCT/JP00/00876) Examiner: Unassigned)	
Filed: October 16, 2000)	
For: GENE ENCODING A PROTEIN HAVING A GLYCOSYL TRANSFER- ASE ACTIVITY TO AURONES)))	

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents

Washington, D.C. 20231

Sir:

Prior to examination on the merits, please amend the above identified application as follows:

IN THE SPECIFICATION:

In compliance with 37 C.F.R. § 1.823(a), please insert the attached copy of the "Sequence Listing" after page 19 and before the claims of the instant application, and renumber the pages accordingly.

IN THE CLAIMS:

Please amend claims 5, 7, 9 and 12 as follows:

- (Amended) A vector comprising a gene according to [any one of the claims
 to 4] claim 1.
- (Amended) A protein encoded by a gene according to [any one of the claims 1 to 4] <u>claim 1</u>.

- 9. (Amended) A plant into which a gene according to [any one of the claims 1 to 4] <u>claim 1</u> has been introduced, and a progeny and a tissue thereof having the same property as said plant.
- 12. (Amended) A method of stabilizing aurones in the plant body which method comprises introducing the gene according to [any one of the claims 1-4] claim 1 into the plant body, allowing said gene to be expressed, and using the protein produced therein to transfer a glycosyl group to aurones in the plant body.

REMARKS

Entry of the foregoing and examination of the above-identified application is respectfully requested.

The paper copy of the Sequence Listing for the subject application, is by this amendment, added after page 19 and before the claims of the instant application. Please renumber the pages accordingly.

Claims 5, 7, 9 and 12 have been amended to eliminate the multiple dependency of the claims. New claims 12-20 have been added, directed to preferred embodiments of the invention. These claims are supported by the original claims 1-11. No new matter has been added by these amendments.

Early and favorable action in the form of a Notice of Allowance is respectfully requested.

In the event that there are any questions relating to this amendment or the application in general, it would be appreciated if the Examiner would contact the undersigned attorney be telephone so that prosecution would be expedited.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

By: Donna M. Meuth

Registration No. 36,607

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

Date: October 16, 2000

DESCRIPTION

GENE ENCODING A PROTEIN HAVING A GLYCOSYL TRANSFERASE ACTIVITY TO AURONES

Technical Field

5

10

15

20

25

30

35

The present invention relates to a gene encoding a protein having a glycosyl transferase activity to aurones, said protein, and the uses thereof.

Background Art

The color of flowers are mainly based on three pigments: flavonoids, carotenoids, and betalains. Yellow colors are mostly derived from carotenoids and betalains, but in some plants they are derived from flavonoids. Among the flavonoid pigments, major pigments that are thought to be associated with the development of yellow flowers are divided into three groups: chalcones, aurones, and yellow flavonols (Saito, Biohorti 1, pp. 49-57, 1990)

Aurones are substances in which two phenyl groups are joined together through three carbon atoms of dihydrofuran. As aurones, there are known 4,6,4'trihydroxy aurone, aureusidin, sulfuretin, bracteatin, and the like. For example, aureusidin and bracteatin are contained in snapdragons, aureusidin is contained in limoniums, aureusidin is contained in morning glories, sulfuretin is contained in dahlias, bracteatin is contained in Helichrysum bracteatum, and sulfuretin is contained in Helianthus tuberosus.

Flavonoids have generally been modified by acylation, glycosilation, methylation and the like, and carotenoids and betalains have also been glycosilated in many cases. Among various modifications, glycosilation plays an important role in the color of flowers such as (1) contribution to enhancing the stability and solubility of pigments, (2) the presence as a step

10

15

20

25

30

35

preceding acylation that greatly affects the hue of colors, and (3) copigmentation effects by the glycosilated flavonoids, and the like.

It has been reported that, in snapdragon, a yellow pigment aurones (aureusidin, bracteatin), a kind of flavonoid, is present in a glycosilated at its position 6 corresponding to position 7 of flavonoids, and since aurones are present as glycosides in other auronecontaining plants as well, it has been considered that glycosilation is essential for the stability of aurones.

There are many reports on the genes for glycosyl transferases derived from plants that transfer a glycosyl group to flavonoids and on the activities of those enzymes.

By way of example, genes encoding UDP-glucose: flavonoid 3-glucosyl transferases (3GT) that transfer a glycosyl group to the position 3 of flavonoids have been obtained from many plants including corn, barley, and snapdragon, and has been analyzed in detail (The Flavonoids: Advanced in Research Since 1986. Published by Chapman & Hall, 1993).

Also, genes encoding UDP-glucose: flavonoid 5-glucosyl transferases (5GT) that transfer a glycosyl group to the position 5 of flavonoids have been cloned from perillas, torenias, and verbenas (International Patent Publication No. WO 99/05287).

However, as to the gene encoding UDP-glucose: flavonoid 7-glucosyl transferase (7GT) that transfers a glycosyl group to the position 7 of flavonoids, there is only one report on the purification of flavanone-specific 7-glucosyl transferase in grapefruits (Archives of Biochemistry and Biophysics 282, 1: 50-57, 1990).

With regard to enzymes that transfer a glycosyl group to the position 6 of aurones, there is a report on the measurement of a reaction that transfers a glycosyl group to the position 6 of sulfuretin, a kind of aurone (Plant Science 122: 125-131, 1997), but this only studied

10

15

20

25

30

35

the enzymatic property using a partially purified product, and has not been purified in a pure form.

On the other hand, there is a report on the isolation of a glycosyl transferase, pS.b UFGT1, that has an activity of transferring glucose to the position 7 of baicaleins, a kind of flavone, from the hairy roots of a Labuatae, Scutellaria baicalensis (1997, presented at the Fifteenth annual meeting of Japanese Society of Plant Cell and Molecular Biology). The gene product is also reported to be capable of transferring a glycosyl group to the position 7 of anthocyanidins and flavonols, but not reported on aurones (presented at the Fifteenth annual meeting of Japanese Society of Plant Cell and Molecular Biology).

As genes having a high homology to pS.b UFGT1, tabacco-derived IS10a and IS5a have been reported (Plant Molecular Biology, 31: 1061-1072, 1996), but its activity of transferring a glycosyl group to position 7 (7GT activity) has not been studied.

Reports to date teach that the glycosyl transferases that use flavonoids as substrates have a great variation in substrate specificity even among flavonoids. For example, when the gene of flavonoid-3-glycosyl transferase derived from gentians were cloned, expressed in <u>E. coli</u>, and the activity was determined, it was found to exhibit a 61% activity to cyanidins, a 38% activity to pelargonidins, and a good activity to anthocyanins relative to a 100% glycosyl transferase activity to delphinidins. On the other hand, it only shows an activity of 7.0%, 6.5%, and 4.4% to kaempferol, quercetin, and myricetin, respectively. Furthermore, it does not transfer a glycosyl group to dihydroflavonols (Tanaka et al., Plant Cell Physiol. 37: 711, 1996).

Also, when the gene of flavonoid-3-glycosyl transferase derived from grapes was cloned and the activity was determined in <u>E. coli</u>, its Km was 30 µM and Vmax was 905 nkatals/mg to cyanidins, whereas to

quercetins the Km was 15 μ M and Vmax was 18.9 nkatals/mg, exhibiting a great difference in reaction rates (Ford et al., J. Biol. Chem. 273: 9224, 1998).

These reports indicate that glycosyl transferases can distinguish the kinds of flavonoids and that the glycosyl transferase activity to a flavonoid does not readily permit the estimation of the glycosyl transferase activity to another flavonoids.

Disclosure of the Invention

As hereinabove described, glycosyl transferases using flavonoids as substrates have a great variation in substrate specificity and the estimation of a glycosyl transferase activity to a specific flavonoid cannot be easily made based on known glycosyl transferases.

Thus, the present inventors have attempted to obtain a gene encoding a protein having a glycosyl transferase activity to aurones among the flavonoid pigments, and thereby have completed the present invention.

The present inventors have demonstrated that a gene product of the pS.b UFGT1 gene derived from <u>Scutellaria baicalensis</u> has an activity of transferring a glycosyl group to aurones, and, using this gene as a probe, have obtained a gene encoding a protein having an activity of transferring a glycosyl group to aurones from snapdragons (Antirthinum majus).

Also, using said gene obtained from snapdragons (Antirrhinum majus) as a probe, the present inventors have further obtained two genes encoding a protein having an activity of transferring a glycosyl group to aurones from a petunia (Petunia hybrida).

Thus, the present invention provides a gene encoding a protein having an activity of transferring a glycosyl group to aurones. Furthermore, the present invention provides a gene encoding a protein having the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 and having an activity of transferring a glycosyl group to

20

25

3.0

35

10

aurones.

5

10

15

2.0

25

30

The present invention further provides a gene encoding a protein that has an amino acid sequence modified by the addition, deletion and/or substitution with other amino acids of one or more amino acids in the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, and that has an activity of transferring a glycosyl group to aurones.

The present invention further provides a gene encoding a protein that hybridizes to a nucleic acid having a nucleotide sequence encoding the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 or a portion thereof under a stringent condition, and that has an activity of transferring a glycosyl group to aurones.

The present invention also provides a vector comprising said gene.

The present invention further provides a host transformed with said vector. The host may be a microorganism, plant cells, animal cells, or plants.

The present invention also provides a method of producing a protein having an activity of transferring a glycosyl group to aurones, by culturing, cultivating or breeding said host.

The present invention also provides a method of stabilizing aurones in the plant, said method comprising introducing said gene into the plant having aurones, allowing said gene to be expressed, and transferring a glycosyl group to aurones in the plants with a protein thus produced.

In cases where a new flower color is to be created by introducing and expressing the gene of an aurone synthase in plants that have no aurones, aurones can be stably expressed therein by expressing the gene obtained by the present invention.

Brief Description of Drawings

Figure 1 shows a process of constructing the plasmid

pESBGT-1.

5

10

15

20

25

30

35

Figure 2 shows a process of constructing the plasmid peTAmGT1.

Embodiments for Carrying out the Invention

First, a cDNA library is prepared from the petals of a yellow snapdragon. The cDNA library thus obtained is screened using ps.b UFGT1, a flavonoid-7-glycosyl transferase gene derived from <u>Scutellaria baicalensis</u>, and then a clone is obtained. The plasmid obtained from the clone is isolated and its nucleotide sequence is determined.

It is known that enzymatically active proteins have regions essential for the enzymatic activity and regions non-essential for the activity, and that the enzymatic activity is retained even when the non-essential regions are modified by the addition, deletion and/or substitution with other amino acids of one or more amino acids. Thus, the present invention encompasses not only a protein having an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, but also a protein having an amino acid sequence modified by the addition, deletion and/or substitution with other amino acids of one or more amino acids in the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, and that having an activity of transferring a glycosyl group to aurones, and a gene encoding said protein.

The number of amino acids to be modified is, for example, 50 or less, and preferably 30 or less, for example 20 or less or 10 or less.

The gene encoding the protein having an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 can be obtained as cDNA or genomic DNA from snapdragons or petunias. The method of cloning cDNA is specifically described in Examples 2, 3 and 6. In order to obtain genomic DNA, a genomic library is constructed based on the standard method from snapdragons or petunias and then

10

15

20

25

30

35

screened using said cDNA or a fragment thereof according to the standard method.

A gene encoding a protein having an amino acid sequence modified in the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 can be constructed by modifying a nucleotide sequence of a DNA, for example cDNA, encoding a protein having an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, by a standard method for manipulating genes such as site-directed mutagenesis and the PCR method.

Once a gene encoding a protein having the enzymatic activity has been cloned, the nucleic acid that hybridizes to said gene or a portion thereof encodes, in most cases, an amino acid sequence that exhibits the enzymatic activity and that is similar to the original protein. Thus the present invention provides a gene that hybridizes to a nucleic acid having a nucleotide sequence encoding an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 or a portion thereof under a stringent condition, and that encodes a protein having an activity of transferring a glycosyl group to aurones.

In the above hybridization condition, the washing condition is preferably 5 \times SSC, 0.1% SDS and 50°C, more preferably 2 \times SSC, 0.1% SDS and 50°C, and more preferably 0.1 \times SSC, 0.1% SDS and 50°C.

In the above hybridization, when a nucleic acid having a portion of the nucleotide sequence encoding an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 is used, the length of the nucleic acid is preferably at least 17 base pairs long, and more preferably at least 100 base pairs long. As target nucleic acids to be hybridized, there can be used nucleic acids prepared from Scutellaria baicalensis, snapdragons, petunias, limoniums, mornig glories, dahlias, Helichrysum bracteatum, Helianthus tuberosus, and the like, and preferably genomic DNA libraries are

used.

5

10

15

20

25

30

35

The present invention also provides a method of producing the above protein having an activity of transferring a glycosyl group to aurones. The method comprises introducing a vector comprising DNA encoding said protein into a host, culturing or growing said host, and recovering said protein as desired. The host may be host cells or plants, etc.

As the host cells, there can be used prokaryotic cells, particularly bacteria cells such as cells of Escherichia coli, a bacterium belonging to the genus Bacillus such as Bacillus subtilis and Bacillus brevis, lower eukaryotes such as fungi, for example yeast such as a yeast belonging to the genus Saccharomyces, for example Saccharomyces cerevisiae, or filamentous fungi such as the genus Aspergillus, for example Aspergillus oryzae and Aspergillus niger, and the like.

Furthermore, as higher eukaryotic hosts, there can be mentioned insect cells such as cells of silkworm, animal cells such as CHO cells, cultured human cells such as HeLa cells, and the like.

The gene of the present invention may also be expressed in an organism of, for example, a plant and so on.

Vectors comprising the DNA of the present invention, expression vectors in particular, may contain expression regulatory regions, and the expression regulatory regions depend on the host cell. For example, as promoters for bacterial expression vectors, there can be mentioned commonly used promoters such as the trc promoter, the tac promoter, the lac promoter, the T7 promoter and the like; as promoters for yeast expression vectors, there can be used the promoters of the genes of the glycolytic pathway such as glyceraldehyde-3-phosphate dehydrogenase promoter, galactokinase promoter, and the like; and as promoters for animal cell expression vectors, viral promoters can be used.

In order to recover proteins having an activity of transferring a glycosyl group to aurones, methods commonly used for isolation and purification of protein can be used such as liquid chromatography, and affinity chromatography.

With the current state in the art, it is possible to further ligate the cDNA under the control of a constitutive or inducible promoter, and introduced into a plant such as petunia, rose, carnation, chrysanthemum, torenia, verbena, gerbera, tobacco, strawberry, lisianthus, gentian, gladiolus, and tulip in a system utilizing Agrobacterium, particle guns, or electroporation, and to express the gene encoding the protein having an activity of transferring a glycosyl group to aurones in flower petals.

It is expected that in the flower petals in which a protein having an activity of transferring a glycosyl group to aurones was expressed, the aurones are glycosilated, and thereby are stabilized. The plants thus obtained can provide flowers having a hue of color that cannot be found in the conventional varieties.

In plants having no aurones, an aurone synthase gene are introduced, expressed, and at the same time a gene of the present invention encoding the protein having an activity of transferring a glycosyl group to aurones can be introduced and expressed, so that aurones can be stably expressed and new plants having a yellow hue can be provided. As the above plants having no aurones, there can be mentioned petunias, torenias, and tobaccoes.

30

35

5

10

15

20

25

Examples

The present invention will now be explained in further details with reference to the following Examples.

Example 1. Measurement of the activity of transferring a glycosyl group to aurones of a product of the ps.b UFGT1 gene derived from Scutellaria baicalensis

10

15

20

25

The activity of the pS.b UFGTl gene derived from Scutellaria baicalensis of transferring a glycosyl group to aurones was determined using an expression vector pESBGT-1 in <u>E. coli</u> prepared by the following method.

First, the pS.b UFGT1 gene was subjected to a PCR reaction using two primers to introduce NdeI and BamHI sites.

5'-ATA ACT ACA TAT GGG ACA ACT CCAC-3' (SEQ ID NO:

3)
5'-CAG AAC AGG ATC CAC ACG TAA TTT A-3' (SEQ ID NO:
4)

The PCR reaction mixture was prepared in a total volume of 50 μl comprising 300 ng of pSBGT-1, 1 \times Native Pfu DNA polymerase reaction buffer (Stratagene), 0.2 mM dNTPs, 4 pg/ μl each of the primers, and 2.5 U of Native Pfu DNA polymerase. The reaction was carried out, after 3 minutes at 95°C, for 30 cycles with one cycle comprising 95°C for 1 minute, 50°C for 2 minutes, and 72°C for 2 minutes, and finally was treated at 72°C for 7 minutes.

The PCR product was digested with NdeI and BamHI, and then was ligated to the NdeI- and BamHI-digested pET-3a vector (Stratagene) to construct pESBGT-1 (Figure 1). Using each of pESBGT-1 and pET-3a vector, it was transformed into Epicurian Coli BL21 (DE3) (Stratagene). The transformants were incubated overnight at 37°C in 3 ml of a LB medium containing 50 μ g/ml of ampicillin. The preculture (500 μ l) was added to 50 ml of a LB medium containing 50 μ g/ml of ampicillin, and cultured until A600 reached 0.6-1.0. Then isopropyl- β -D-

thiogalactopyranoside (IPTG) was added thereto to a final concentration of 0.5 mM, which was cultured at $28\,^{\circ}\text{C}$ for 4 hours and centrifuged (5000 rpm, 10 minutes, $4\,^{\circ}\text{C}$) to collect the cells.

The pellets were suspended in 5 ml of the buffer (10

35

10

15

20

25

30

mM sodium phosphate, pH 6.5, 1 mM β -mercaptoethanol (2-ME)). After the <u>E. coli</u> cells were disrupted by a sonicator, it was centrifuged (15,000 rpm, 5 minutes, 4°C), and the supernatant obtained was used as a crude enzyme solution for the next enzyme reaction.

In addition to aureusidin, the enzymatic activity was determined using naringenin or luteolin as the substrate.

For aureusidin, the enzymatic activity was determined as follows:

To 50 μ l of the crude enzyme solution were added 0.1 M Tris-HCl, pH 8.0, and 150 μ l of 0.05% 2-ME, and then incubated at 30°C for 10 minutes. Then 5 μ l of 4.66 mM aureusidin and 50 μ l of 5 mM UDP-glucose were added thereto, and was allowed to react at 30°C for 1 hour. After the reaction was stopped by adding 200 μ l of 90% accetonitrile containing 5% trifluoroacetic acid (TFA), it was centrifuged at 15,000 rpm and 4°C for 3 minutes. The supernatant thus obtained was filtered (pore size 0.45 μ m, 4 mm Millex-LH, Millipore) to remove insoluble substances. The filtrate was analyzed by high performance liquid chromatography.

The analytical condition was as follows: The column used was Asahipak-ODP-50 (4.6 mm $\phi \times 250$ mm, Showa Denko). The mobile phase comprised water containing 0.1% TFA as solution A and 90% CH₃CN containing 0.1% TFA as solution B. After a linear gradient from 20% solution B to 100% solution B for 20 minutes, 100% solution B was retained for 5 minutes. The flow rate was 0.6 ml/min. Detection used A380 nm, and an absorption spectrum at 250-400 nm using Shimadzu PDA detector SPD-M6A.

For a reaction of the crude extract of \underline{E} , \underline{coli} cells in which pESBGT-1 was expressed, new substances were detected that eluted at 9.7, 12.0, and 13.1 minutes in addition to the substrate aureusidin (retention time 18.1

10

15

20

25

30

minutes). Since they were not detected in a reaction of the crude extract similarly prepared from <u>E. coli</u> cells in which the pET-3a vector was expressed, they were considered to be products resulting from the protein derived from pESBGT-1. The substance that eluted at 12.0 minutes among the products had the same retention time and the same absorption spectrum as that of aureusidin 6-glycoside. Other products also are considered to be aureusidin glycosides based on the absorption spectra.

For naringenin and luteolin, the enzymatic activity was determined as follows.

To 20 μ l of the crude enzyme solution were added 25 μ l of 0.1 M citric acid-phosphate buffer, pH 6.5, 5 μ l each of 5 μ M substrate, and 25 μ l of 5 mM UDP-glucose in a total volume of 250 μ l, and then incubated at 30°C for 30 minutes. After the reaction was stopped by adding 200 μ l of 90% acetonitrile containing 5% TFA, it was centrifuged at 15,000 rpm and 4°C for 3 minutes. The supernatant thus obtained was filtered (pore size 0.45 μ m, 4 mm Millex-LH, Millipore) to remove insoluble substances. The filtrate was analyzed by high performance liquid chromatography.

The analytical condition for naringenin was follows: The column used was YMC J's sphere ODS-M80 (4.6 mm $\phi \times 150$ mm, YMC). The mobile phase comprised water containing 0.1% TFA as solution A and 90% CH_3CN containing 0.1% TFA as solution B. After a linear gradient from 20% solution B to 80% solution B for 10 minutes, 80% solution B was retained for 5 minutes. The flow rate was 0.6 ml/min. Detection used A290 nm, and an absorption spectrum at 250-400 nm using Shimadzu PDA detector SPD-M6A.

The analytical condition for luteolin was as follows: The column used was YMC J's sphere ODS-M80 (4.6 mm ϕ x 150 mm, YMC). The mobile phase comprised water

containing 0.1% TFA as solution A and 90% CH3CN containing 0.1% TFA as solution B. After a linear gradient from 20% solution B to 80% solution B for 10 minutes, 80% solution B was retained for 5 minutes. The flow rate was 0.6 ml/min. Detection used A330 nm, and an absorption spectrum at 250-400 nm using Shimadzu PDA detector SPD-M6A.

When naringenin was used as the substrate, a new substance was detected that eluted at 6.9 minutes in addition to the naringenin (retention time 9.7 minutes). The substance was not detected in a reaction of the crude extract similarly prepared from E. coli in which the pET-3a vector was expressed. It had the same retention time as naringenin 7-glycoside but a different absorption spectrum, suggesting that a plurality of naringenin glycosides are present each at a trace amount.

When luteolin was used as the substrate, new substances were detected that eluted at 6.4, 7.7, and 8.0 minutes that were not be detected in a reaction of the crude extract similarly prepared from E. coli in which the pET-3a vector was expressed. The substance that eluted at 6.4 minutes among them had the same retention time as luteolin 7-glycoside.

The above result indicated that the pS.b UFGT1 gene derived from Scutellaria baicalensis is an enzyme that can glycosilate aureusidin. It was also demonstrated that it can glycosilate luteolin but had very little effect on naringenin.

It has already been shown that baicalein can be glycosilated at the position 7. After the reaction is complete for baicalein, almost 100% is detected as a 7 glycoside, but no reaction occurred to naringenin indicating that the expression product of the Scutellaria baicalensis-derived pS.b UFGT1 gene has a high substrate specificity.

Example 2. Construction of cDNA library of snapdragon petals

Safe Ball Town Same Steel 1 200

5

10

15

20

2.5

30

10

15

20

25

30

A cDNA library of the petals was prepared as follows: From 5 g of fresh petals of a yellow snapdragon (yellow butterfly), RNA was obtained using a method of employing guanidine thiocyanate and cesium chloride as described in detail in Method in Molecular Biology, Vol. 2, (Humana Press Inc., 1984) by R. McGookin et al., and polyA+RNA was purified therefrom using Oligotex dT30 (Nippon Roche). From the polyA+RNA, cDNA library was constructed using the cDNA synthesis kit, Uni-XR vector kit (Stratagene). The library obtained comprised 1.6 × 105 plaque forming units (pfu).

Example 3. Collection of the full-length aurone glycosyl transferase

The snapdragon cDNA library obtained in Example 2 was screened using the full-length pS.b UFGT1, a hairy root-derived flavonoid-7-glycosyl transferase. The library was screened using a non-radio system DNA detection kit (Boehringer). Hybridization was carried out overnight at 37° C. Washing filter was carried out at $5 \times SSC$, 0.1% SDS and 50° C for 30 minutes. About 200,000 plaques were screened to finally obtain 2 clones. The method was based on Molecular Cloning (Sambrook et al., Cold Spring Harbour Laboratory Press, 1989).

Since the two clones encoded the sequences having the completely same length, one was designated as pAmGT1 and nucleotide sequence was determined.

The nucleotide sequence was determined by synthesizing an oligonucleotide primer and using DNA Sequencer model 310 (Applied Biosystems). The nucleotide sequence and the deduced amino acid sequence are shown in SEQ ID NO: 1 in the sequence listing.

pAmGT1 contained a 1751 bp gene AmGT1 encoding a protein of a molecular weight 53.9 kDa comprising 481 amino acids.

35 Example 4. Expression of the AmGT1 cDNA in E. coli

The expression of the AmGT1 cDNA was carried out

10

15

2.0

25

3.0

35

using the pET System (Stratagene).

First, in order to introduce NdeI and BamHI sites, the following 2 primers pETAmGT5' and pETAmGT3' were used in a PCR reaction.

petamgt5': 5'-ata act aca tat ggg aaa act tca c-3' (SEO ID No: 5)

petamgt3': 5'-gaa cag gat cca cac act aga agt ca-3' (Seq ID NO: 6)

The PCR reaction mixture was prepared in a total volume of 100 μl comprising 100 ng of pAmGT1, the 1 \times the cloned Pfu DNA polymerase reaction buffer (Stratagene), 0.2 mM dNTPs, 0.5 pmol/ μl each of the primers, and 5.0 U of the cloned Pfu DNA polymerase. The reaction was carried out, after 45 seconds at 95°C, for 25 cycles with one cycle comprising 95°C for 45 seconds, 50°C for 45 seconds, and 72°C for 2 minutes, and was finally treated at 72°C for 10 minutes. The PCR product obtained was subcloned into the pCR2.1 TOPO vector (INVITROGEN).

Some of the clones of the plasmid pTOPO-ETAmGT1 thus obtained were reacted using M13 Reverse Primer and M13(-20) primer (TOYOBO) using ABI PRISM[™] BigDye[™] Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems), and the nucleotide sequences on both ends were confirmed using DNA Sequencer model 310 (Applied Biosystems). An about 2.7 Kb fragment obtained by digesting pTOPO-ETAmGT1 with NdeI, BamHI and ScaI was ligated to the NdeI and BamHI sites of the pET-3a vector (Stratagene) to obtain plasmid pETAmGT1 (Figure 2). Using pETAmGT1, it was transformed into Epicurian Coli BL21 (DE3) (Stratagene). Example 5. Measurement of the qlycosyl transferase

Example 5. Measurement of the glycosyl transferase activity of the AmGTl cDNA recombinant protein

The transformant obtained in Example 4 was cultured, extracted and the enzymatic activity was measured as in Example 1.

When aureusidin was used as the substrate, new

10

15

20

25

30

35

substances were detected that eluted at 10.98, 11.27, and 11.85 minutes in addition to aureusidin (retention time 16.6 minutes). Since the substances were not detected in a reaction of the crude extract similarly prepared from E. coli in which the pET-3a vector was expressed, they were believed to be products that resulted from pESBGT-1-derived protein.

Among the products, the substance that eluted at 10.98 minutes had the same retention time as aureusidin 6-glycoside, and the one that eluted at 11.85 minutes had the same retention time as aureusidin 4-glycoside.

The above results indicated that AmGT1 can transfer a glycosyl group to the positions 6 and 4 of aureusidin. The substance that eluted at 11.27 minutes is also believed to be aureusidin glycoside based on the absorption spectra.

Example 6. Preparation of the gene of aurone glycosyl transferase derived from petunias

A cDNA library obtained from petals of a petunia variety "Old Glory Blue" (Nature 366: 276-279, 1993) was screened with the full-length AmCT1 gene obtained in Example 3. The library was screened using a non-radio system DNA detection kit (Boehringer). Hybridization was carried out overnight at 37°C . Washing filter was carried out at $5 \times \text{SSC}$, 0.1% SDS, and 50°C for 30 minutes. About 200,000 plaques were screened to finally obtain 2 clones. The method was based on Molecular Cloning (Sambrook et al., Cold Spring Harbour Laboratory Press, 1989).

The two clones were designated as pPh7GTa and pPh7GTb, respectively, and the nucleotide sequences were determined. The nucleotide sequence was determined by synthesizing an oligonucleotide primer and using DNA Sequencer model 310 (Applied Biosystems). The nucleotide sequence at the insertion site of pPh7GTa and the deduced amino acid sequence are shown in SEQ ID NO: 7 and 8, respectively, and the nucleotide sequence at the

10

15

20

25

3.0

insertion site of pPh7GTb and the deduced amino acid sequence are shown in SEQ ID NO: 9 and 10, respectively.

Example 7. Structural analysis of the gene of aurone glycosyl transferase

pPh7GTa contained a 1750 bp gene, Ph7GTa, encoding a protein comprising 488 amino acids, and pPh7GTb contained a 1669 bp gene, Ph7GTb, encoding a protein comprising 476 amino acids. Using the deduced amino acid sequences obtained, they were compared with the AmGTI gene derived from Snapdragon obtained Example 3 and the pS.b UFGT1 gene derived from Scutellaria baicalensis. Accordingly, it was found that Ph7GTa had a 50% and 51% homology with AmGT1 and pS.b UFGT1, respectively. When compared with IS5a and IS10a derived from tobaccoes that are already reported to be genes having a high homology with pS.b UFGT1, they have exhibited homologies of 59% and 60%, respectively. Similarly, Ph7GTb had homologies of 59% and 56% with AmGT1 and pS.b UFGT1, respectively, and homologies of 88% and 86% with IS5a and IS10a derived from tabaccoes, respectively.

On the other hand, they only had a homology of about 20 to 25% with the gene of an enzyme (Tanaka et al. (1996) Plant Cell and Physiology 37: 711-716; Frutek D, Schiefelbein JW, Johnston F, Nelson Jr. OE (1988) Plant Molecular Biology 11: 473-481, Wise RP, Rohde W, Salamini F. (1990) Plant Molecular Biology 14: 277-279) that glycosilates the position 3 of flavonoids and the gene of an enzyme (WO 99/05287) that glycosilates the position 5 of flavonoids, and therefore, it was estimated that both of Ph7GTa and Ph7GTb are the genes of flavonoid-7-glycosyl transferase as are pS.b UFGT1 and AmGT1.

Example 8. Expression of Ph7GTa and Ph7TGTb cDNA in E. coli

The Ph7GTa gene was expressed using the pET System (Stratagene). First, in order to introduce NdeI and BamHI sites, the following 2 primers pETPh7GTa5' [5'-ATA ACT ACA TAT GGC TAT TCC CAC A-3' (SEQ ID NO: 11)] and

10

15

20

25

35

pETPh7GTa3' [5'-GAA CAG GAT CCT AAA AGG ACC T-3' (SEQ ID NO: 12)] were used in a PCR reaction.

The PCR reaction mixture was prepared in a total volume of 100 μl comprising 100 ng of pAmGT1, the 1 \times the cloned Pfu DNA polymerase reaction buffer (Stratagene), 0.2 mM dNTPs, 0.5 pmol/ μ l each of the primers, and 5.0 Units of the cloned Pfu DNA polymerase. The reaction was carried out, after 45 seconds at 95°C, for 25 cycles with one cycle comprising $95\,^{\circ}\text{C}$ for 45 seconds, $50\,^{\circ}\text{C}$ for 45seconds, and 72°C for 2 minutes, and was finally treated at 72°C for 10 minutes. The PCR product obtained was subcloned into the pCR2.1 TOPO vector (INVITROGEN). Some of the clones of the plasmid pTOPO-ETPh7GTa thus obtained were reacted using ABI PRISM™ BigDye™ Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems), and the entire nucleotide sequences were confirmed using DNA Sequencer model 310 (Applied Biosystems). An about 1.7 Kb fragment obtained by digesting pTOPO-ETPh7GTa with NdeI and BamHI was ligated to the NdeI and BamHI sites of the pET-3a vector (Stratagene) to obtain plasmid pETPhGTa.

Using pETPhGTa, it was transformed into Epicurian Coli BL21 (DE3) (Stratagene).

For Ph7GTb also, in order to introduce NdeI and BamHI sites, the following 2 primers pETPh7GTb5' [5'-ATA ACT ACA TAT GGG TCA GCT CCA-3' (SEQ ID NO: 13)] and pETPh7GTb3' [5'-CTC GTA CCA TGG AAA ACT ATT CT-3' (SEQ ID NO: 14)] were used in a PCR reaction and then plasmid pETPhGTb was obtained.

30 Example 9. Measurement of the glycosyl transferase
activity of Ph7GTa, Ph7GTb cDNA recombinant
proteins

The transformants obtained in Example 8 were cultured, extracted and the enzymatic activity was measured as in Example 1. The enzymatic activity was measured using aureusidin as the substrate. The

10

15

enzymatic activity was measured as described in Example 1. For Ph7GTa and Ph7GTb, a peak was obtained that had the same retention time and the same spectrum as aureusidin 6-glycoside as a reaction product. For Ph7GTa also, one peak, that is estimated to be an aurone glycoside from the absorption spectrum, was obtained, and for Ph7GTb two such peaks were obtained.

The foregoing results revealed that Ph7GTa and Ph7GTb encode enzymes having an activity of glycosilating aureusidin.

Industrial Applicability

Using the gene expression products obtained in the present invention, it was possible to glycosilate aurones. This enabled a stable expression of aurones in plant cells.

10

15

20

30

35

CLAIMS

- 1. A gene encoding a protein having an activity of transferring a glycosyl group to aurones.
- 2. The gene according to claim 1 encoding a protein that has an amino acid sequence as set forth in SEQ ID NO: 2, 8, and 10, and that has an activity of transferring a glycosyl group to aurones.
- 3. The gene according to claim 1 encoding a protein that has an amino acid sequence modified by the addition, deletion and/or substitution with other amino acids of one or a plurality of amino acids in the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, and that has an activity of transferring a glycosyl group to aurones.
- 4. The gene according to claim 1 that hybridizes to a nucleic acid having a nucleotide sequence encoding an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 or a portion thereof under a stringent condition, and that encodes a protein having an activity of transferring a glycosyl group to aurones.
- 5. A vector comprising a gene according to any one of the claims 1 to 4.
- 6. A host transformed with a vector according to claim 5.
- 25 7. A protein encoded by a gene according to any one of the claims 1 to 4.
 - 8. A method of producing a protein having an activity of transferring a glycosyl group to aurones, said method comprising culturing, cultivating, or breeding a host according to claim 6 and recovering said protein from said host.
 - 9. A plant into which a gene according to any one of the claims 1 to 4 has been introduced, and a progeny and a tissue thereof having the same property as said plant.
 - 10. A cut flower of the plant according to claim 9, or a progeny thereof having the same property as said

plant.

5

- 11. A method of stabilizing aurones which method comprises allowing the protein according to claim 7 to act on aurones thereby to transfer a glycosyl group to aurones.
- 12. A method of stabilizing aurones in the plant body which method comprises introducing the gene according to any one of the claims 1-4 into the plant body, allowing said gene to be expressed, and using the protein produced therein to transfer a glycosyl group to aurones in the plant body.

along the series of the species of the series of the serie

5

10

ABSTRACT

There is provided a gene encoding a protein derived from, for example, snapdragons and petunias, said protein having an amino acid sequence as set forth in SEQ ID NO: 2, 8, and 10, and having an activity of transferring a glycosyl group to aurones, and a method of producing said protein using said gene. By introducing this gene into plants that do not have said gene, a yellow pigment aurone can be stabilized and plants having yellow flowers can be obtained.

Fig.1

, 2

PTO/SE/106 (8-95)

Approved for use through 9/2008. 0, 0,880 651-0325

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless & displays a valid OMB control number.

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

口卡茲安哥弗

下での氏名の発明者として、私は以下の通り宣言します	As a below named inventor, I hereby decia: 'hat:
私の住所、私書箱、国籍は下記の私の氏名の後に記載さ 通りです。	My residence, post office address and citizenship are as stated next to my name.
下記の名称の発明に関して請求範囲に記載され、特許出 ている発明内容について、私が最初かつ唯一の発明者 2の氏名が一つの場合)もしくは最初かつ共同発明者であ	(下 Is listed below) or an original, first and joint inventor (if plura
: (下記の名称が寝蛩の場合) 信じています。	for which a patent is sought on the invention entitled
	GENE ENCODING A PROTEIN HAVING
	A GLYCOSYL TRANSFERASE
	II GELOGOTE TITELDE TERROR
	ACTIVITY TO AURONES
上記発明の明細音(下記の欄でx印がついていない場合 むちに終付)は、	ACTIVITY TO AURONES
	ACTIVITY TO AURONES it: the specification of which is attached hereto unless the following box is checked:
* 古に抵付)は、	ACTIVITY TO AURONES it: the specification of which is attached hereto unless the following box is checked: was filed onFebruary 16, 2000 as united States Application Number or PCT International Application Number FCT/JF00/00876 and was amended on

Burden Hour Statement: This form is estimated to take 0.4 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the annuar of time your are required to complete this form should be sent to the Chief Information Officer, Petert and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner of Horters and Trademark; Washington, DC 20231.

Japanese Language Declaration (日本語宣言書)

私は、米国社典第35編119条(a)・(d) 項又は365条(b) 項に基金下記の、米 国以外の国の少なくとも一ヵ国を指している特許協力条約365(a) 領に蓋すて国際出版、又は外国での特許出版もしては美明が在欧出版でいての外国 佐天権をことに・田野づるともに、任死権を主張している、本出版の前に出版された特許または乗明が紅の外国出版を以下に 始内をマークすることで、赤しています。

Prior Foreign Application(s)

A 100

14

外国での先行出版 11-36801 (Pat. Appln.)	Japan
(Number) (番号)	(Country) (闰名)
(Number)	(Country)
(番号)	(国名)

私に、第35編米国法典119条 (e) 項に基いて下記の米 国特許出顧規定に記載された権利をここに主張いたします。

(Application No.) (Filing Date) (出類音)

(Application No.) (Filing Date) (出版日)

(Application No.) (Filing Date) (出版日)

私は、私信食の知識に基寸いて本宣言者中で私が行なう姿 辨が真実であり、かつ起の入土に情報と私の体にるところ に基寸く素明が全て真実であると信じていること、さらに故 窓になされた成偽の表明及びそれと同今の行為は主義等 の両方により処罰されること、そしてそのような故意による 確偽の声明を行えば、出版した、又は既に許可された特別 の有効性が失われることを認識し、よってここに上記のごと く覧響を数します。 I hereby claim foreign priority under Title 35, United States Code, Section 119 (a)-(d) or 35(b) of any foreign application(s) for patent or inventor's certificate, or 35(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or invenior's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed 優先権主張なし

16/February/1999	DEJUNE TORY
(Day/Month/Year Filed) (出駁年月日)	0
(Day/Month/Year Filed)	0

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

> (Application No.) (Filing Date) (出顧番号) (出顧日)

I hereby claim the benefit under Title 15, United States Code, Section 120 of any United States application(s), or 365(c) of any PCT International application designating the United States, Risted below and, insolar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose Information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of application.

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済) (Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the fike so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may leopardize the validity of the application or any patent issued

Japanese Language Declaration (日本語宣言書)

委任状: 私は下記の発明者として、本出額に関する一切の 子続きを米特許商標局に対して遂行する弁理士または代理人 として、下記の者を指名いたします。(弁護士、または代理 人の氏名及び登録番号を明記のこと)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

William L. Mathis Peter H. Smolka Robert S. Swecker Platon N. Mandros Benton S. Duffett, Jr. Joseph R. Magnone Norman H. Stepno Romald L. Grudziechi Frederick G. Michaud, Jr. Alan E. Kopecki Regis E. Sluter, III Sampel C. Miller, III Ralph L. Freeland, Jr.	17,337 15,913 19,885 22,124 22,030 24,239 22,716 24,970 26,003 25,813 26,999 27,360 16,110	Robert G. Multai George A. Howance, Ir. James A. LaBarre E. Joseph Gess R. Damy Huntington Eric H. Weisblatt James W. Peterson Robert E. Krebs William C. Rowland T. Gene Dillahunty Patrick C. Keane Bruce J. Boggs, Jr.	28,531 28,223 28,632 28,510 27,903 30,505 26,057 30,427 25,885 30,888 25,423 32,858 32,344	William H. Benz Peter K. Skiff Richard J. McGrath Matthew I. Schneider Michael G. Savage Gendt F. Savige Gendt F. Wieland III Bruce T. Wieder Todd R. Walters	25,952 31,917 29,195 32,814 32,594 30,113 33,089 33,089 33,815 34,040
--	--	--	--	---	--

杏類送付先

36

1 12

54

Send Correspondence to:

Ronald L. Grudziecki BURNS, DOANE, SWECKER & MATHIS, L.L.P. P.O. Box 1404

Alexandria, Virginia 22313-1404

Direct Telephone Calls to: (name and telephone number) 直接電話連絡先: (名前及び電話番号)

> Ronald L. Grudziecki at (703) 836-6620

衛一または第一発明者名		Full name of sole or first inventor Keiko Sakakibara
発明者の署名	月付	Inventor's signature Date 标中序、 主子 October 10, 2000
住所		Residence Muko-shi, Kyoto, Japan ⊃ ⊃ ×
国籍		Ckizenship Japanese
私查箱		Post Office Address 3—1—327, Nishitanakase, Terado—cho,
		Muko-shi, Kyoto 617-0002, Japan
第二共同発明者		Full name of second joint inventor, if any $2-\infty$ Yuko Fukui
第二共同発明者	目付	Second inventor's signature Date 入局并 拍子 October 10, 2000
住所		Residence Mishima-gun, Osaka, Japan 🖵 🗁 🗙
国格		Ckizenship Japanese
私書籍		Post Office Address 2-8-2-907, Minase, Shimamoto-cho,
		Mishima-gun, Osaka 617-0002, Japan

(第三以降の共同発明者についても同様に記載し、署名をす

(Supply similar information and signature for third and subsequent joint inventors.)

ること)

		•
第三共同発明者		Full name of third joint inventor.if any ろ-マロ Yoshikazu Tanaka
第三共同発明者	日付	Third inventor's signature Date 田中 良和 October 10, 2000
住 所		Residence Otsu-shi, Shiga, Japan $\Box ho_{\mathcal{X}}$
国籍		Citizenship Japanese
私書箱		Post Office Address 2-7-4, Ohginosato, Otsu-shi, Shiga 520-0240
		Japan
第四共同発明者		Full name of fourth joint inventor, if any ————————————————————————————————————
第四共同発明者	日付	Fourth inventor's signature Date 7 1 2 0 October 10, 2000
住 所		Residence <u>Suita-shi</u> , Osaka, Japan ゴ <i>ロ</i> ×
国 籍		Citizenship Japanese
私書箱		Post Office Address 2-12-21-402, Yamate-cho, Suita-shi,
		Osaka 564-0073, Japan

第五共同発明者		Full name of fifth joint inventor, if any Takafumi Yoshikawa
第五共同発明者	日付	Fifth inventor's signature Date
住 .所		Residence <u>Chigasaki-shi</u> , Kanagawa, Japan <u>ゴラ</u> ン
国 籍		Citizenship Japanese
私書箱		Post Office Address 6-31, Heiwa-cho, Chigasaki-shi,
		Kanagawa 253-0024, Japan
第六共同発明者		Full name of sixth joint inventor, if any
第六共同発明者	日付	Sixth inventor's signature Date
生所		Residence
国 籍		Citizenship .
私書箱		Post Office Address

(第七以降の共同発明者についても同様に 記載し、署名をすること)

(Supply similar information and signature for seventh and subsequent joint inventors.)

SEQUENCE LISTING

<110>	SUNTORY	LIMITE	D				
<120>	Gene co to auro	-	r a pro	otein h	aving gl	lycosyl transf	erase
<160>	6						
<210>	1						
<211>	1751						
<212>	DNA						
<213>	Antirrh	inum ma	jus				
<220>							
<223>	Nucleot	ide seq	uence	coding	for a p	rotein having	
	glycosy	l trans	ferase	to aur	one		
<400>	_						
14002	1						
		aacac aa	aactgaga	a accette	aaa ttto	cacttg atcatattca	. 60
ctcact	tagt actaa					cacttg atcatattca ttt cca gtt atg	60
ctcact	tagt actaa	atg gga	aaa cti	t cac att	gcc tta		
ctcact	tagt actaa	atg gga	aaa cti	t cac att	gcc tta	ttt cca gtt atg	111
ctcact	tagt actaa	atg gga Met Gly 1 atg atc	aaa cti Lys Leu cca atg	t cac att 1 His Ile 5 ttg gac	gcc tta Ala Leu atg gcc a	ttt cca gtt atg Phe Pro Val Met 10 aag ctc ttt acc	
ctcact	tagt actas	atg gga Met Gly 1 atg atc	Lys Lev cca atg	t cac att 1 His Ile 5 ttg gac	gcc tta Ala Leu atg gcc a	Phe Pro Val Met 10 aag ctc ttt acc Lys Leu Phe Thr	111
gct car	ettt taaaa ettt taaaa e ggt cac s Gly His 15	atg gga Met Gly 1 atg atc Met Ile	Lys Lew cca atg Pro Met	t cac att 1 His Ile 5 ttg gac Leu Asp	gcc tta Ala Leu atg gcc a Met Ala I	Phe Pro Val Met 10 aag ctc ttt acc Lys Leu Phe Thr 25	111
get car Ala His	tagt actas cttt taaas t ggt cac s Gly His 15 a ggc ata	Met Gly 1 atg atc Met Ile caa aca	Lys Let cca atg Pro Met 20 aca atc	t cac att His Ile 5 ttg gac Leu Asp	gcc tta Ala Leu atg gcc a Met Ala I	the coa get atg Phe Pro Val Met 10 ang ofto the acc Lys Leu Phe Thr 25 good the got gat	111
get car Ala His tca aga	tagt actas cttt taaas t ggt cac s Gly His 15 a ggc ata g Gly Ile	Met Gly 1 atg atc Met Ile caa aca	cca atg Pro Met 20 aca atc	t cac att His Ile 5 ttg gac Leu Asp	atg gcc at Met Ala I	Phe Pro Val Met 10 aag ctc ttt acc Lys Leu Phe Thr 25	111
get ca Ala Hi: tca agg Ser Arg	eagt actas bett taaas E ggt cac E Gly His 15 a ggc ata g Gly Ile	Met Gly 1 atg atc Met Ile caa aca Gln Thr	cca atg Pro Met 20 aca atc Thr Ile	t cac att His Ile 5 ttg gac Leu Asp att tcg Ile Ser	atg gcc at Met Ala I act ctc q	ttt coa gtt atg Phe Pro Val Met 10 aag ctc ttt acc Lys Leu Phe Thr 25 gcc ttc gct gat Ala Phe Ala Asp	111 159 207
get car Ala His tea aga Ser Arg	eagt actas bettt taaas E ggt cac E Gly His 15 a ggc ata g Gly Ile	Met Gly 1 atg atc Met Ile caa aca Gln Thr	cca atg Pro Met 20 aca atc Thr Ile 35 gat tcg	t cac att this Ile 5 ttg gac Leu Asp att tcg Ile Ser	atg gcc at atg gcc at Met Ala I act ctc g	Phe Pro Val Met 10 aag ctc ttt acc Lys Leu Phe Thr 25 gcc ttc gct gat Ala Phe Ala Asp	111
get car Ala His tea aga Ser Arg	eagt actas bettt taaas E ggt cac E Gly His 15 a ggc ata g Gly Ile	Met Gly 1 atg atc Met Ile caa aca Gln Thr	cca atg Pro Met 20 aca atc Thr Ile 35 gat tcg	t cac att this Ile 5 ttg gac Leu Asp att tcg Ile Ser	atg gcc at atg gcc at Met Ala I act ctc g	ttt coa gtt atg Phe Pro Val Met 10 aag ctc ttt acc Lys Leu Phe Thr 25 gcc ttc gct gat Ala Phe Ala Asp	111 159 207
get car Ala His toa agg Ser Arg Geg at: Pro II.	eggt cac cggt cac cGly His 15 a ggc ata gGly Ile) a aac aaa e Asn Lys	Met Gly 1 atg atc Met Ile caa aca Gln Thr gct cgt Ala Arg 50	cca atg Pro Met 20 aca atc Thr Ile 35 gat tcg Asp Ser	t cac att His Ile 5 ttg gac Leu Asp att tcg Ile Ser ggc ctc Gly Leu	atg gcc atg gcc a Met Ala I act ctc g Thr Leu I 40 gat att g Asp Ile (Phe Pro Val Met 10 aag ctc ttt acc Lys Leu Phe Thr 25 gcc ttc gct gat Ala Phe Ala Asp gga cta agc atc Sly Leu Ser Ile	111 159 207

70

75

ctt	gat	cta	gtt	act	gaa	gat	tgg	ctc	cca	aag	ttt	gtt	gag	tca	tta	351
Leu	Asp	Leu	Val	Thr	Glu	Asp	Trp	Leu	Pro	Lys	Phe	Val	Glu	Ser	Leu	
			80					85					90			
gtc	tta	tta	caa	gag	cca	gtt	gag	aag	ctt	atc	gaa	gaa	cta	aag	ctc	399
Val	Leu	Leu	Gln	Glu	Pro	Val	Glu	Lys	Leu	Ile	Glu	Glu	Leu	Lys	Leu	
		95					100					105				
gac	tgt	ctc	gtt	tcc	gac	atg	ttc	ttg	cct	tgg	aca	gtc	gat	tgt	gcg	447
Asp	Cys	Leu	Val	Ser	Asp	Met	Phe	Leu	Pro	Trp	Thr	Val	Asp	Cys	Ala	
	110					115					120					
gct	aag	ttc	ggt	att	ccg	agg	ttg	gtt	ttc	cac	gga	acg	agc	aac	ttt	495
Ala	Lys	Phe	Gly	Ile	Pro	Arg	Leu	Val	Phe	His	Gly	Thr	Ser	Asn	Phe	
125					130					135					140	
gcg	ttg	tgt	gct	tcg	gag	caa	atg	aag	ctt	cac	aag	cct	tat	aag	aat	543
Ala	Leu	Cys	Ala	Ser	Glu	Gln	Met	Lys	Leu	His	Lys	Pro	Tyr	Lys	Asn	
				145					150					155		
gta	act	tct	gat	act	gag	aca	ttt	gtt	ata	ccg	gat	ttc	ccg	cat	gag	591
Val	Thr	Ser	Asp	Thr	Glu	Thr	Phe	Val	Ile	Pro	Asp	Phe	Pro	His	Glu	
			160					165					170			
ctg	aag	ttt	gtg	agg	act	caa	gtg	gct	ccg	ttt	cag	ctt	gcg	gaa	acg	639
Leu	Lys	Phe	Val	Arg	Thr	Gln	Val	Ala	Pro	Phe	Gln	Leu	Ala	Glu	Thr	
		175					180					185				
gag	aat	gga	ttc	tca	aag	ttg	atg	aaa	cag	atg	acg	gag	tct	gtt	ggt	687
Glu		Gly	Phe	Ser	Lys		Met	Lys	Gln	Met		Glu	Ser	Val	Gly	
	190					195					200					
										tat						735
	Ser	Tyr	Gly	Val		Val	Asn	Ser	Phe	Tyr	Glu	Leu	Glu	Ser		
205					210					215					220	=
										aga						783
Tyr	Val	Asp	Tyr	-	Arg	Glu	Val	Leu	-	Arg	Lys	Ser	Trp		Ile	
				225					230					235		
		_	-							gag	-					831
GIĀ	Pro	Leu		Leu	Ser	Asn	Asn		Asn	Glu	GIu	Lys		GIn	Arg	
			240					245					250	to to		070
	_	-					-		-	tgc	_	-				879
GTĀ	ьys	GIU	ser	ALA	тте	GTĀ	GIU	nıs	GIU	Cys	ьeu	ALA	LLD	ьeu	asn	

t	cc	aag	aag	cag	aat	tcg	gtt	gtt	tac	gtt	tgt	ttt	gga	agt	atg	gcg	927
s	er	Lys	Lys	Gln	Asn	Ser	Val	Val	Tyr	Val	Cys	Phe	${\tt Gly}$	Ser	Met	Ala	
		270					275					280					
a	ct	ttt	act	cca	gcg	cag	ttg	cgc	gaa	act	gcg	att	gga	ctc	gag	gaa	975
T	hr	Phe	Thr	Pro	Ala	Gln	Leu	Arg	Glu	Thr	Ala	Ile	${\tt Gly}$	Leu	Glu	Glu	
2	85					290					295					300	
t	ca	ggc	caa	gag	ttc	att	tgg	gta	gtt	aaa	aag	gcc	aaa	aac	gaa	gaa	1023
s	er	${\tt Gly}$	Gln	Glu	Phe	Ile	Trp	Val	Val	Lys	Lys	Ala	Lys	Asn	Glu	Glu	
					305					310					315		
g	aa	gga	aaa	gga	aaa	gaa	gaa	tgg	ctg	cca	gaa	aat	ttt	gag	gaa	aga	1071
G	lu	Gly	Lys	Gly	Lys	Glu	Glu	Trp	Leu	Pro	Glu	Asn	Phe	Glu	Glu	Arg	
				320					325					330			
g	tg	aaa	gat	aga	ggc	ttg	atc	ata	aga	gga	tgg	gcg	ccg	caa	ttg	ttg	1119
V	al	Lys	Asp	Arg	Gly	Leu	Ile	Ile	Arg	${\tt Gly}$	Trp	Ala	Pro	Gln	Leu	Leu	
			335					340					345				
a	ta	ctc	gat	cat	cct	gcg	gta	gga	gct	ttc	gtg	acg	cat	tgt	gga	tgg	1167
I	le	Leu	Asp	His	Pro	Ala	Val	Gly	Ala	Phe	Val	Thr	His	Cys	Gly	Trp	
		350					355					360					
a	at	tcg	acg	ttg	gaa	gga	ata	tgc	gcc	ggt	gtg	cct	atg	gtg	act	tgg	1215
A	sn	Ser	Thr	Leu	Glu	Gly	Ile	Cys	Ala	Gly	Val	Pro	Met	Val	Thr	Trp	
3	65					370					375					380	
С	ca	gtt	ttc	gca	gag	cag	ttt	ttc	aat	gag	aag	ttt	gtg	aca	gag	gtt	1263
P	ro	Val	Phe	Ala	Glu	Gln	Phe	Phe	Asn	Glu	Lys	Phe	Val	Thr	Glu	Val	
					385					390					395		
t	tg	ggg	acc	ggt	gtt	tcg	gtt	ggg	aat	aag	aag	tgg	cta	agg	gca	gca	1311
L	eu	${\tt Gly}$	Thr	${\tt Gly}$	Val	Ser	Val	Gly	Asn	Lys	Lys	Trp	Leu	Arg	Ala	Ala	
				400					405					410			
a	gt	gaa	ggt	gtg	tcg	agg	gag	gca	gtg	acg	aac	gcg	gtg	cag	cgt	gtt	1359
s	er	Glu	\mathtt{Gly}	Val	Ser	Arg	Glu	Ala	Val	Thr	Asn	Ala	Val	Gln	Arg	Val	
			415					420					425				
a	tg	gtg	gga	gaa	aat	gcg	tcg	gag	atg	aga	aag	cga	gcg	aag	tat	tat	1407
M	et	Val	Gly	Glu	Asn	Ala	Ser	Glu	Met	Arg	Lys	Arg	Ala	Lys	$\mathbf{T}_{\mathbf{Y}^{\mathbf{r}}}$	Tyr	
		430					435					440					
a	ag	gaa	atg	gcg	agg	cgg	gcg	gtt	gag	gaa	ggc	ggt	tcg	tct	tat	aat	1455
L	ys	Glu	Met	Ala	Arg	Arg	Ala	Val	Glu	Glu	Gly	Gly	Ser	Ser	Tyr	Asn	
4	45					450					455					460	

ggt ttg aat gag atg ata gag gat ttg agt gtg tac cgt gct cca gaa 1503 Gly Leu Asn Glu Met Ile Glu Asp Leu Ser Val Tyr Arg Ala Pro Glu aaa caa gac tta aac tagattotta tagatgactt ctagtgtgac aattgtaatt 1558 Lys Gln Asp Leu Asn 480 ttttgccttt tattcaagtt tcctcattag tgttgagagc tttccctgta ttttcagaat 1618 tggtttgttc aatttttaca tgatttgtga tagatagctg catagtttct agctgttaac 1678 attgtttgat catattgagt tgatttaaaa tgagagtagc atgtgatctt cagattaaaa 1738 aaaaaaaaa aaa 1751 <210> 2 <211> 481 <212> PRT <213> Antirrhinum majus <220> <223> Amino acid sequence of a protein having glycosyl transferase to aurone <400> 2 Met Gly Lys Leu His Ile Ala Leu Phe Pro Val Met Ala His Gly His 1 5 10 Met Ile Pro Met Leu Asp Met Ala Lys Leu Phe Thr Ser Arg Gly Ile 25 Gln Thr Thr Ile Ile Ser Thr Leu Ala Phe Ala Asp Pro Ile Asn Lys 40 45 Ala Arg Asp Ser Gly Leu Asp Ile Gly Leu Ser Ile Leu Lys Phe Pro 55 60 Pro Glu Gly Ser Gly Ile Pro Asp His Met Val Ser Leu Asp Leu Val 70 75 Thr Glu Asp Trp Leu Pro Lys Phe Val Glu Ser Leu Val Leu Leu Gln 85 90

Glu Pro Val Glu Lys Leu Ile Glu Glu Leu Lys Leu Asp Cys Leu Val

Ser Asp Met Phe Leu Pro Trp Thr Val Asp Cys Ala Ala Lys Phe Gly

120

105

110

125

100

115

Ile	Pro	Arg	Leu	Val	Phe	His	Gly	Thr	Ser	Asn	Phe	Ala	Leu	Cys	Ala
	130					135					140				
Ser	Glu	Gln	Met	Lys	Leu	His	Lys	Pro	Tyr	Lys	Asn	Val	Thr	Ser	Asp
145					150					155					160
Thr	Glu	Thr	Phe	Val	Ile	Pro	Asp	Phe	Pro	His	Glu	Leu	Lys	Phe	Val
				165					170					175	
Arg	Thr	Gln	Val	Ala	Pro	Phe	Gln	Leu	Ala	Glu	Thr	Glu	Asn	Gly	Phe
			180					185					190		
Ser	Lys	Leu	Met	Lys	Gln	Met	Thr	Glu	Ser	Val	Gly	Arg	Ser	Tyr	Gly
		195					200					205			
Val	Val	Val	Asn	Ser	Phe	Tyr	Glu	Leu	Glu	Ser	Thr	Tyr	Val	Asp	Tyr
	210					215					220				
Tyr	Arg	Glu	Val	Leu	Gly	Arg	Lys	Ser	Trp	Asn	Ile	Gly	Pro	Leu	Leu
225					230					235					240
Leu	Ser	Asn	Asn	Gly	Asn	Glu	Glu	Lys	Val	Gln	Arg	Gly	Lys	Glu	Ser
				245					250					255	
Ala	Ile	Gly		His	Glu	Cys	Leu		Trp	Leu	Asn	Ser	Lys	Lys	Gln
			260					265					270		
Asn	Ser		Val	Tyr	Val	Cys		Gly	Ser	Met	Ala		Phe	Thr	Pro
		275					280					285			
Ala		Leu	Arg	Glu	Thr		Ile	Gly	Leu	Glu		Ser	Gly	Gln	Glu
	290					295					300				
	Ile	Trp	Val	Val		Lys	Ala	Lys	Asn		Glu	Glu	Gly	Lys	
305					310					315					320
Lys	Glu	Glu	Trp		Pro	Glu	Asn	Phe		Glu	Arg	Val	Lys	_	Arg
	_			325		_		_	330	_	_		_	335	
GIĄ	Leu	ITe		Arg	Gly	Trp	Ala		Gln	Leu	Leu	Ile	Leu	Asp	His
_			340					345					350	_	_
Pro	Ala		Gly	Ala	Phe	Val		His	Cys	Gly	Trp		Ser	Thr	Leu
		355	_				360				_	365			
Glu		Ile	Cys	Ala	Gly		Pro	Met	Val	Thr		Pro	Val	Phe	Ala
	370			_	~-	375					380	_			
	Gin	Pne	Pne	Asn		rys	Phe	Val	Thr		Va⊥	Leu	Gly	Thr	_
385	C	77-7	G1		390	T	m	Ŧ		395			a1	01	400
varT	ser	val	GIĀ	405	тĀг	ьys	Trp	Leu	_	АТА	ALA	ser	Glu	_	val
0	A me-	G1v:	11-		ml	3	37.	177	410	3	77-7	1 /-1	77-7	415	G1.
ser.	Arg	GIU	420	٧al	rnr	ASN	мта	Val 425	GIN	Arg	val	Met	Val	чΥУ	GIU
			-4 Z U					423					42U		

```
Asn Ala Ser Glu Met Arg Lys Arg Ala Lys Tyr Tyr Lys Glu Met Ala
                          440
Arg Arg Ala Val Glu Glu Gly Gly Ser Ser Tyr Asn Gly Leu Asn Glu
    450
                       455
                                         460
Met Ile Glu Asp Leu Ser Val Tyr Arg Ala Pro Glu Lys Gln Asp Leu
465
                  470
                                     475
                                                         480
Asn
<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400>
ataactacat atgggacaac tccac
                                                                25
<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 4
cagaacagga tccacacgta attta
                                                                25
<210> 5
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

<400> 5	
ataactacat atgggaaaac ttcac	25
<210> 6	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
(220)	
<220>	
<223> Primer	
<400> 6	
gaacaggatc cacacactag aagtca	26
<210> 7	
<211> 1750	
<212> DNA	
<213> Petunia hybrida	
<220>	
<223> Nucleotide sequence coding for a protein having	
glycosyl transferase to aurone	
<400> 7	
ccaaattoto tgatotttoo actaataatt tooca atg got att coc aca gtg	53
Met Ala Ile Pro Thr Val 1 5	
caa cca cat ttt gtg ctg ctt cct ttc atg gca caa ggc cat aca aat	101
Gln Pro His Phe Val Leu Leu Pro Phe Met Ala Gln Gly His Thr Asn	101
10 15 20	
ccc atg att gac atc gca cgc cta ttg gca caa cgc gga gtt ata atc	149
Pro Met Ile Asp Ile Ala Arg Leu Leu Ala Gln Arg Gly Val Ile Ile	
25 30 35	
ace att ett act aca cae ttt aat gee act aga tte aag aca gte gtt	197
Thr Ile Leu Thr Thr His Phe Asn Ala Thr Arg Phe Lys Thr Val Val	
40 45 50	

gat	cgg	gca	gta	gtg	gca	gca	cta	aag	att	cag	gta	gtt	cac	ctc	tat	245
Asp	Arg	Ala	Val	Val	Ala	Ala	Leu	Lys	Ile	Gln	Val	Val	His	Leu	Tyr	
55					60					65					70	
ttt	cca	agc	tta	gag	gct	gga	cta	cct	gaa	ggg	tgt	gaa	gct	ttc	gac	293
Phe	Pro	Ser	Leu	Glu	Ala	Gly	Leu	Pro	Glu	Gly	Cys	Glu	Ala	Phe	Asp	
				75					80					85		
atg	ctt	cct	tca	atg	gat	ttc	gca	atg	aaa	ttc	ttt	gat	gct	acc	agt	341
Met	Leu	Pro	Ser	Met	Asp	Phe	Ala	Met	Lys	Phe	Phe	Asp	Ala	Thr	Ser	
			90					95					100			
agg	ctt	caa	cca	caa	gtg	gaa	gaa	atg	ctt	cat	gaa	ctg	caa	ccg	tca	389
Arg	Leu	Gln	Pro	Gln	Val	Glu	Glu	Met	Leu	His	Glu	Leu	Gln	Pro	Ser	
		105					110					115				
cca	agt	tgc	ata	ata	tct	gat	atg	tgt	ttt	cca	tgg	aca	act	aat	gtt	437
Pro	Ser	Cys	Ile	Ile	Ser	Asp	Met	Cys	Phe	Pro	\mathtt{Trp}	Thr	Thr	Asn	Val	
	120					125					130					
gca	caa	aaa	ttc	aac	att	cct	agg	ctt	gtt	ttt	cat	ggg	atg	tgc	tgt	485
Ala	Gln	Lys	Phe	Asn	Ile	Pro	Arg	Leu	Val	Phe	His	Gly	Met	Cys	Cys	
135					140					145					150	
ttt	tct	tta	ttg	tgc	ttg	cac	aat	ttg	aga	gat	tgg	aag	gag	ttg	gag	533
Phe	Ser	Leu	Leu	Cys	Leu	His	Asn	Leu	Arg	Asp	Trp	Lys	Glu	Leu	Glu	
				155					160					165		
tct	gat	ata	gaa	tat	ttt	caa	gtt	cca	gga	tta	cat	gac	aaa	att	gaa	581
Ser	Asp	Ile	Glu	\mathtt{Tyr}	Phe	Gln	Val	Pro	Gly	Leu	His	Asp	Lys	Ile	Glu	
			170					175					180			
tta	aac	aaa	gct	cag	ctt	tca	aat	att	gtt	aag	cca	aga	ggt	cct	gat	629
Leu	Asn	Lys	Ala	Gln	Leu	Ser	Asn	Ile	Val	Lys	Pro	Arg	Gly	Pro	Asp	
		185					190					195				
tgg	aat	gaa	ttt	gca	gat	caa	ctg	aag	aaa	gca	gaa	gaa	gaa	gct	tat	677
${\tt Trp}$	Asn	Glu	Phe	Ala	Asp	Gln	Leu	Lys	Lys	Ala	Glu	Glu	Glu	Ala	Tyr	
	200					205					210					
ggg	ata	gta	gct	aat	agc	ttt	gaa	gag	tta	gaa	cca	gaa	tat	gtc	aag	725
Gly	Ile	Val	Ala	Asn	Ser	Phe	Glu	Glu	Leu	Glu	Pro	Glu	Tyr	Val	Lys	
215					220					225					230	
gga	ttg	gaa	aag	gca	aaa	ggc	ttg	aaa	att	tgg	cca	att	ggt	cct	gtt	773
${\tt Gly}$	Leu	Glu	Lys	Ala	Lys	Gly	Leu	Lys	Ile	Trp	Pro	Ile	Gly	Pro	Val	
				235					240					245		

tct	ttg	tgc	aac	aaa	gag	aaa	cag	gac	aag	gct	gaa	aga	gga	aac	aag	821
Ser	Leu	Cys	Asn	Lys	Glu	Lys	Gln	Asp	Lys	Ala	Glu	Arg	Gly	Asn	Lys	
			250					255					260			
gct	tca	att	gat	gaa	cac	cag	tgt	cta	aaa	tgg	cta	gat	tct	tgg	gga	869
Ala	Ser	Ile	Asp	Glu	His	Gln	Cys	Leu	Lys	Trp	Leu	Asp	Ser	Trp	Gly	
		265					270					275				
gca	aac	tct	gta	ctc	ttt	gta	tgt	ctc	ggg	agc	cta	tcg	cgc	ctt	cca	917
Ala	Asn	Ser	Val	Leu	Phe	Val	Cys	Leu	Gly	Ser	Leu	Ser	Arg	Leu	Pro	
	280					285					290					
acg	cca	caa	atg	ata	gag	ctg	gga	ctt	ggc	tta	gaa	teg	teg	aaa	aga	965
Thr	Pro	Gln	Met	Ile	Glu	Leu	Gly	Leu	Gly	Leu	Glu	Ser	Ser	Lys	Arg	
295					300				-	305				_	310	
ccc	ttt	att	tgg	gtt	gtt	aga	cac	aag	tca	gat	gaa	ttt	aaa	agt	tgg	1013
										Asp						
				315		_			320	_			_	325	-	
cta	gtt	gaa	gaa	aat	ttt	gag	gaa	aga	gtt	aaa	gga	caa	gga	ctt	tta	1061
										Lys						
			330					335		_	_		340			
atc	cat	ggt	tgg	gca	cca	caa	gta	cta	ata	tta	tct	cac	act	tca	att	1109
Ile	His	Gly	Trp	Ala	Pro	Gln	Val	Leu	Ile	Leu	Ser	His	Thr	Ser	Ile	
		345	_				350					355				
gga	gga	ttc	ttg	act	cat	tqt	qqa	taa	aat	tcg	aqt	atc	gaa	qqa	ata	1157
										Ser						
	360					365	-	-			370			-		
tct	gca	ggc	gtt	cca	atg	atc	act	taa	cca	atg	ttt	act	gaa	caa	ttc	1205
										Met		-	-			
375		_			380			-		385					390	
tgt	aat	gaa	agg	cta	ata	gtg	aat	gta	ctg	aag	aca	qqa	qta	aaq	qct	1253
										Lys			-	-	-	
				395					400	-		-		405		
gga	att	gag	aat	cct	gtt	atq	ttt	qqa	qaq	gaa	gaa	aaa	att	gga	gca	1301
										Glu						
			410					415				_	420	-		
caa	gtg	agc	aaa	gat	gat	att	aag	atg	gtt	att	gaa	aga	qtc	ato	qqc	1349
										Ile						
		425		-	-		430					125			-	

gaa gaa gag gaa gct gaa atg aga aga aaa aga gca aaa gag tta gga 133 Glu Glu Glu Glu Ala Glu Met Arg Arg Lys Arg Ala Lys Glu Leu Gly 440 450 450 450 450 Gaa aag gct atg gag gag ggt tcc tca cac ttc aac 144 Glu Lys Ala Lys Arg Ala Met Glu Gly Gly Ser Ser His Phe Asn 455 460 465 470
440 445 450 gaa aag gca aag agg gct atg gag gaa ggg ggt tcc tca cac ttc aac 144 Glu Lys Ala Lys Arg Ala Met Glu Glu Gly Gly Ser Ser His Phe Asn
gaa aag gca aag agg gct atg gag gaa ggg ggt tcc tca cac ttc aac 144 Glu Lys Ala Lys Arg Ala Met Glu Glu Gly Gly Ser Ser His Phe Asn
Glu Lys Ala Lys Arg Ala Met Glu Glu Gly Gly Ser Ser His Phe Asn
455 460 465 470
ttg aca cag ttg att caa gat gtc act gag caa gca aat att tta aaa $$ 145
Leu Thr Gln Leu Ile Gln Asp Val Thr Glu Gln Ala Asn Ile Leu Lys
475 480 485
tcc atc taggattata aagtcgattc caagttcctt ttacgatcaa tttctaacca 154
Ser Ile
totactagag atggtaacaa tocaaactgc goottttttg cacaataatt attgttttat 160
gttcagctag cacaaaaagt ttactattag tagaaatatt tcagctggaa ctgccgaact 166
gotatgtaca ctgatggaac aatgtatgte atgetattea aattaactet gagetgaaaa 172
tatcatatag gagctgattt t 175
<210> 8
<211> 488
<212> PRT
<213> Petunia hybrida
<220>
<223> Amino acid sequence of a protein having glycosyl
transferase to aurone
<400> 8
Met Ala Ile Pro Thr Val Gln Pro His Phe Val Leu Leu Pro Phe Met
1 5 10 15
Ala Gln Gly His Thr Asn Pro Met Ile Asp Ile Ala Arg Leu Leu Ala
20 25 30
Gln Arg Gly Val Ile Ile Thr Ile Leu Thr Thr His Phe Asn Ala Thr
35 40 45
Arg Phe Lys Thr Val Val Asp Arg Ala Val Val Ala Ala Leu Lys Ile
50 55 60
Gln Val Val His Leu Tyr Phe Pro Ser Leu Glu Ala Gly Leu Pro Glu
65 70 75 80
Gly Cys Glu Ala Phe Asp Met Leu Pro Ser Met Asp Phe Ala Met Lys

90

95

85

Phe	Phe	Asp	Ala	Thr	Ser	Arg	Leu	Gln	Pro	Glr	Val	Glu	Glu	Met	: Le
			100					105					110)	
His	Glu	Leu	Gln	Pro	Ser	Pro	Ser	Cys	Ile	Ile	Ser	Asp	Met	: Cys	Phe
		115					120					125			
Pro			Thr	Asn	Val			Lys	Phe	Asr	Ile	Pro	Arg	Leu	[Va]
	130					135					140				
		Gly	Met	Cys			Ser	Leu	Leu			His	Asr	Lev	Arg
145		_			150					155					160
Asp	Trp	Lys	Glu			Ser	Asp	Ile			Phe	Gln	Val		_
T	774 .			165		_		_	170		_			175	
пец	nis	Asp	Lys 180	TTE	GIU	Leu	Asn	185		. Gin	Leu	Ser			Val
Taze	Pro	Arm	Gly	Dro	Aen	Trn	7 an			21-	3	O1-	190		T
,		195	Gry	110	nop	111	200	GIU	File	ALA	Asp	205		туѕ	гуг
Ala	Glu		Glu	Ala	Tvr	Glv		Va l	Ala	Asn	Ser			Glu	T.e.:
	210				•	215					220				
Glu	Pro	Glu	Tyr	Val	Lys	Gly	Leu	Glu	Lvs	Ala			Leu	Lvs	Ile
225					230				_	235	-	-		-	240
Trp	Pro	Ile	Gly	Pro	Val	Ser	Leu	Cys	Asn	Lys	Glu	Lys	Gln	Asp	Lys
				245					250					255	
Ala	Glu	Arg	Gly	Asn	Lys	Ala	Ser	Ile	Asp	Glu	His	Gln	Cys	Leu	Lys
			260					265					270		
Trp	Leu		Ser	Trp	Gly	Ala	Asn	Ser	Val	Leu	Phe	Val	Cys	Leu	Gly
		275					280					285			
Ser		Ser	Arg	Leu	Pro		Pro	Gln	Met	Ile		Leu	Gly	Leu	Gly
	290		_	_		295					300				
ьеи 305	Glu	Ser	Ser	Lys		Pro	Phe	Ile	Trp		Val	Arg	His	Lys	
	Clu	Dha	T	c	310	T	** *	61	~-	315				_	320
asp	GIU	Pne	Lys	325	Trp	Leu	Val	Glu		Asn	Phe	Glu	Glu		Val
Lve	Glv	Gln	Gly		T 011	T1.0	u.	C1	330		D	G1		335	
,	019	01	340	пец	шец	116	nis	345	rrp	Ата	PIO	GIN	350	Leu	ITE
Leu	Ser	His	Thr	Ser	Ile	Glv	Glv		Len	Thr	Hie	Cva		Trm.	Δen
		355				2	360					365	O-y		7.511
Ser	Ser	Val	Glu	Gly	Ile	Ser	Ala	Gly	Val	Pro	Met		Thr	Trp	Pro
	370					375		-			380			•	
Met.	Phe	Ala	Glu	Gln	Phe	Cys	Asn	Glu	Arg	Leu	Ile	Val	Asn	Val	Leu
385					390					395					400

35

Lys	Thi	Gly	Val	Lys	Ala	Gly	Ile	Glu	Asn	Pro	Val	Met	Phe	Gly	Glu	
				405					410					415		
Glu	Glu	Lys	Val	Gly	Ala	Gln	Val	Ser	Lys	Asp	Asp	Ile	Lys	Met	Val	
			420					425					430			
Ile	Glu	Arg	Val	Met	Gly	Glu	Glu	Glu	Glu	Ala	Glu	Met	Arg	Arg	Lys	
		435					440					445				
Arg	Ala	Lys	Glu	Leu	Gly	Glu	Lys	Ala	Lys	Arg	Ala	Met	Glu	Glu	Gly	
	450)				455					460					
Gly	Ser	Ser	His	Phe	Asn	Leu	Thr	Gln	Leu	Ile	Gln	Asp	Val	Thr	Glu	
465					470					475					480	
Gln	Ala	Asn	Ile	Leu	Lys	Ser	Ile									
				485												
<21	10>	9														
<21	11>	166	9													
<21	12>	DNA														
<21	13>	Peti	ınia	hy	brio	la										
				-												
<22	20>															
<22	23>	Nuc:	leot	ide	sec	uen	ce (cod:	ina	for	a t	orot	ein	hav	ving	
		glyd														
		J 1														
< 40	0>	9														
atc	tata	tct (ctct	etce	toraa	aaaga	aaco	c cac	caaco	aatt.	tta	etta:	taa :	tttt	gttttc	60
		tac ·														116
-	•				•										Met.	
														•	1	
aat	cag	ctc	cat	ttt	ttc	ttc	ttt	GGG	ato	ato	act	cat	aac	cac		164
		Leu													-	10.
2			5					10	-100	1100	ALG	1113	15		Mec	
att	cct	aca		as c	a to	ac+	224		++0	~a+	+					212
		Thr										-		-	-	212
	-10	20					25	eu	1116	ATA	Ser	30	Gry	val	тÃЗ	
acc	acc	ata	atc	act	act	cct		+	732	tos	~++		+00		~a+	260
		Ile							-		_				-	200

45

40

att	gaa	aga	aac	aag	cat	gaa	att	gac	atc	cgt	ttg	atc	aaa	ttc	caa	308
Ile	Glu	Arg	Asn	Lys	His	Glu	Ile	Asp	Ile	Arg	Leu	Ile	Lys	Phe	Gln	
50					55					60					65	
gct	gtt	gaa	aat	ggc	ttg	cct	gaa	ggt	tgt	gag	cgt	att	gat	ctt	atc	356
Ala	Val	Glu	Asn	Gly	Leu	Pro	Glu	Gly	Cys	Glu	Arg	Ile	Asp	Leu	Ile	
				70					75					80		
cct	tct	gat	gac	aag	ctt	tcc	aat	ttt	ttg	aaa	gct	gca	gct	atg	atg	404
Pro	Ser	Asp	Asp	Lys	Leu	Ser	Asn	Phe	Leu	Lys	Ala	Ala	Ala	Met	Met	
			85					90					95			
caa	gaa	cca	ctt	gag	cag	ctt	att	gaa	gaa	tgt	cat	ccc	aat	tgt	ctt	452
Gln	Glu	Pro	Leu	Glu	Gln	Leu	Ile	Glu	Glu	Cys	His	Pro	Asn	Cys	Leu	
		100					105					110				
gtt	tct	gat	atg	ttc	ctt	cct	tgg	act	act	gat	act	gca	gcc	aag	ttt	500
Val	Ser	Asp	Met	Phe	Leu	Pro	Trp	Thr	Thr	Asp	Thr	Ala	Ala	Lys	Phe	
	115					120					125					
aac	att	cca	aga	ata	gtt	ttc	cat	ggt	acg	agt	ttc	ttt	gca	ctt	tgt	548
Asn	Ile	Pro	Arg	Ile	Val	Phe	His	Gly	Thr	Ser	Phe	Phe	Ala	Leu	Cys	
130					135					140					145	
gta	gag	aat	agt	aac	agg	act	aat	aag	cca	ttc	aag	aac	gtc	tct	tct	596
Val	Glu	Asn	Ser	Asn	Arg	Thr	Asn	Lys	Pro	Phe	Lys	Asn	Val	Ser	Ser	
				150					155					160		
gat	tct	gaa	act	ttt	gtt	gta	cca	aat	ttg	cct	cac	gaa	atc	agg	cta	644
Asp	Ser	Glu	Thr	Phe	Val	Val	Pro	Asn	Leu	Pro	His	Glu	Ile	Arg	Leu	
			165					170					175			
act	aga	aca	caa	ttg	tct	ccg	ttt	gag	caa	tca	ttg	gaa	gag	aca	cca	692
Thr	Arg	Thr	Gln	Leu	Ser	Pro	Phe	Glu	Gln	Ser	Leu	Glu	Glu	Thr	Pro	
		180					185					190				
atg	tcc	cga	atg	ata	aaa	gca	gtt	agg	gaa	tcg	gac	gcg	aag	agt	tat	740
Met	Ser	Arg	Met	Ile	Lys	Ala	Val	Arg	Glu	Ser	Asp	Ala	Lys	Ser	Tyr	
	195					200					205					
gga	gtt	atc	ttc	aac	agc	ttc	tat	gag	ctt	gaa	tca	gat	tat	gtt	gaa	788
${\tt Gly}$	Val	Ile	Phe	Asn	Ser	Phe	Tyr	Glu	Leu	Glu	Ser	Asp	Tyr	Val	Glu	
210					215					220					225	
cat	tat	acc	aag	gtt	ctt	ggt	aga	aag	tct	tgg	gct	att	ggc	ccg	ctt	836
His	Tyr	Thr	Lys	Val	Leu	Gly	Arg	Lys	Ser	Trp	Ala	Ile	Gly	Pro	Leu	
				230					235					240		

tct	ttg	tgc	aat	agg	gac	att	gaa	gat	aaa	gct	gaa	aga	ggg	aag	att	884
Ser	Leu	Cys	Asn	Arg	Asp	Ile	Glu	Asp	Lys	Ala	Glu	Arg	Gly	Lys	Ile	
			245					250					255			
tcc	tct	att	gat	aaa	cat	gag	tgt	ttg	aat	tgg	ctt	gat	tca	aag	aaa	932
Ser	Ser	Ile	Asp	Lys	His	Glu	Cys	Leu	Asn	Trp	Leu	Asp	Ser	Lys	Lys	
		260					265					270				
cca	agt	tcc	att	gtt	tat	gtt	tgc	ttc	ggg	agc	gta	gca	gat	ttc	act	980
Pro	Ser	Ser	Ile	Val	Tyr	Val	Cys	Phe	Gly	Ser	Val	Ala	Asp	Phe	Thr	
	275					280					285					
gca	gca	caa	atg	cgt	gaa	ctt	gca	ttg	gga	att	gaa	gca	tct	gga	caa	1028
Ala	Ala	Gln	Met	Arg	Glu	Leu	Ala	Leu	Gly	Ile	Glu	Ala	Ser	${\tt Gly}$	Gln	
290					295					300					305	
gaa	ttc	att	tgg	gct	gtt	aga	aga	ggc	aaa	gag	gaa	caa	gac	aat	gaa	1076
Glu	Phe	Ile	Trp	Ala	Val	Arg	Arg	Gly	Lys	Glu	Glu	Gln	Asp	Asn	Glu	
				310					315					320		
gag	tgg	ttg	cct	gaa	gga	ttc	gag	gaa	aga	acg	aaa	gaa	aaa	ggt	cta	1124
Glu	Trp	Leu	Pro	Glu	${\tt Gly}$	Phe	Glu	Glu	Arg	Thr	Lys	Glu	Lys	Gly	Leu	
			325					330					335			
att	att	aga	gga	tgg	gcg	ccc	caa	gtg	cta	att	ctt	gat	cac	caa	gct	1172
Ile	Ile	Arg	Gly	Trp	Ala	Pro	Gln	Val	Leu	Ile	Leu	Asp	His	Gln	Ala	
		340					345					350				
gtg	gga	gct	ttt	gtc	act	cat	tgt	ggt	tgg	aat	tca	acg	ctt	gaa	gga	1220
Val	${\tt Gly}$	Ala	Phe	Val	Thr	His	Cys	Gly	Trp	Asn	Ser	Thr	Leu	Glu	Gly	
	355					360					365					
gta	tca	gca	ggg	gtg	cct	atg	gtg	acc	tgg	cct	gtg	ttt	gca	gag	caa	1268
Val	Ser	Ala	Gly	Val	Pro	Met	Val	Thr	Trp	Pro	Val	Phe	Ala	Glu	Gln	
370					375					380					385	
ttt	ttc	aat	gaa	aag	ttg	gtg	act	gag	gtt	ttg	aga	act	ggg	gct	ggt	1316
Phe	Phe	Asn	Glu	Lys	Leu	Val	Thr	Glu	Val	Leu	Arg	Thr	Gly	Ala	Gly	
				390					395					400		
gtt	ggt	tca	atg	caa	tgg	aaa	aga	tca	gct	agc	gag	gga	gta	aaa	agg	1364
Val	Gly	Ser	Met	Gln	\mathtt{Trp}	Lys	Arg	Ser	Ala	Ser	Glu	${\tt Gly}$	Val	Lys	Arg	
			405					410					415			
gaa	gca	ata	gct	aag	gca	ata	aag	aga	gtc	atg	gtg	agt	gaa	gaa	gca	1412
Glu	Ala	Ile	Ala	Lys	Ala	Ile	Lys	Arg	Val	Met	Val	Ser	Glu	Glu	Ala	
		420					425					430				

```
gag gga ttc aga aac cga gct aaa gcc tac aaa gag atg gca aaa caa
                                                                 1460
Glu Gly Phe Arg Asn Arg Ala Lys Ala Tyr Lys Glu Met Ala Lys Gln
gct att gaa gaa gga tct tct tac tct gga ttg act act ttg cta
                                                                1508
Ala Ile Glu Glu Gly Gly Ser Ser Tyr Ser Gly Leu Thr Thr Leu Leu
450
                    455
                                        460
                                                            465
caa gat ata agt aca tat agt tcc aaa agt cat taactgcaca actaaaaaaa 1561
Gln Asp Ile Ser Thr Tyr Ser Ser Lys Ser His
                470
                                    475
tgtagtgttg ttctatacaa tttttatqct tttttatqcq tqtactaatt taaacatqqa 1621
tttagtgaca gcactttttg ttacttctta taatgacatt tcggatgg
<210> 10
<211> 476
<212> PRT
<213> Petunia hybrida
<220>
<223> Amino acid sequence of a protein having glycosyl
       transferase to aurone
<400> 10
Met Gly Gln Leu His Phe Phe Phe Pro Met Met Ala His Gly His
  1
                  5
                                    10
                                                        15
Met Ile Pro Thr Leu Asp Met Ala Lys Leu Phe Ala Ser Arg Gly Val
             20
                                25
Lys Ala Thr Ile Ile Thr Thr Pro Leu Asn Glu Ser Val Phe Ser Lys
         35
                             40
                                                45
Ala Ile Glu Arg Asn Lys His Glu Ile Asp Ile Arg Leu Ile Lys Phe
                         55
Gln Ala Val Glu Asn Gly Leu Pro Glu Gly Cys Glu Arg Ile Asp Leu
 65
                    70
Ile Pro Ser Asp Asp Lys Leu Ser Asn Phe Leu Lys Ala Ala Ala Met
                                    90
Met Gln Glu Pro Leu Glu Gln Leu Ile Glu Glu Cys His Pro Asn Cys
            100
                               105
Leu Val Ser Asp Met Phe Leu Pro Trp Thr Thr Asp Thr Ala Ala Lys
        115
                           120
                                               125
```

Phe	Asn	Ile	Pro	Arg	Ile	Val	Phe	His	Gly	Thr	Ser	Phe	Phe	Ala	Leu
	130					135					140				
Cys	Val	Glu	Asn	Ser	Asn	Arg	Thr	Asn	Lys	Pro	Phe	Lys	Asn	Val	Ser
145					150					155					160
Ser	Asp	Ser	Glu	Thr	Phe	Val	Val	Pro	Asn	Leu	Pro	His	Glu	Ile	Arg
				165					170					175	
Leu	Thr	Arg	Thr	Gln	Leu	Ser	Pro	Phe	Glu	Gln	Ser	Leu	Glu	Glu	Thr
			180					185					190		
Pro	Met	Ser	Arg	Met	Ile	Lys	Ala	Val	Arg	Glu	Ser	Asp	Ala	Lys	Ser
		195					200					205			
Tyr	${\tt Gly}$	Val	Ile	Phe	Asn	Ser	Phe	Tyr	Glu	Leu	Glu	Ser	Asp	Tyr	Val
	210					215					220				
Glu	Hıs	Tyr	Thr	Lys	Val	Leu	Gly	Arg	Lys	Ser	Trp	Ala	Ile	${\tt Gl}_{\tt Y}$	Pro
225					230					235					240
Leu	Ser	Leu	Cys	Asn	Arg	Asp	Ile	Glu	Asp	Lys	Ala	Glu	Arg	${\tt Gly}$	Lys
				245					250					255	
Ile	Ser	Ser	Ile	Asp	Lys	His	Glu	Cys	Leu	Asn	Trp	Leu	Asp	Ser	Lys
			260					265					270		
Lys	Pro	Ser	Ser	Ile	Val	\mathtt{Tyr}	Val	Cys	Phe	Gly	Ser	Val	Ala	Asp	Phe
		275					280					285			
Thr	Ala	Ala	Gln	Met	Arg	Glu	Leu	Ala	Leu	Gly	Ile	Glu	Ala	Ser	Gly
	290					295					300				
Gln	Glu	Phe	Ile	\mathtt{Trp}	Ala	Val	Arg	Arg	${\tt Gly}$	Lys	Glu	Glu	Gln	Asp	Asn
305					310					315					320
Glu	Glu	Trp	Leu	Pro	Glu	Gly	Phe	Glu	Glu	Arg	Thr	Lys	Glu	Lys	Gly
				325					330					335	
Leu	Ile	Ile	Arg	Gly	Trp	Ala	Pro	Gln	Val	Leu	Ile	Leu	Asp	His	Gln
			340					345					350		
Ala	Val	Gly	Ala	Phe	Val	Thr	His	Суз	Gly	Trp	Asn	Ser	Thr	Leu	Glu
		355					360					365			
Gly	Val	Ser	Ala	Gly	Val	Pro	Met	Val	Thr	Trp	Pro	Val	Phe	Ala	Glu
	370					375					380				
Gln	Phe	Phe	Asn	Glu	Lys	Leu	Val	Thr	Glu	Val	Leu	Arg	Thr	${\tt Gl}_{\tt Y}$	Ala
385					390					395					400
Gly	Val	Gly	Ser	Met	Gln	Trp	Lys	Arg	Ser	Ala	Ser	Glu	Gly	Val	Lys
				405					410					415	
Arg	Glu	Ala	Ile	Ala	Lys	Ala	Ile	Lys	Arg	Val	Met	Val	Ser	Glu	Glu
			420					425					430		

```
Ala Glu Gly Phe Arg Asn Arg Ala Lys Ala Tyr Lys Glu Met Ala Lys
                          440
Gln Ala Ile Glu Glu Gly Gly Ser Ser Tyr Ser Gly Leu Thr Thr Leu
    450
                      455
                                         460
Leu Gln Asp Ile Ser Thr Tyr Ser Ser Lys Ser His
465
                   470
                                     475
<210> 11
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 11
ataactacat atggctattc ccaca
                                                               25
<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 12
gaacaggatc ctaaaaggac ct
                                                               22
<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

<400> 13	
ataactacat atgggtcagc toca	2
<210> 14	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 14	
ctcgtaccat ggaaaactat tct	2