PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-226487

(43)Date of publication of application: 12.08.2004

(51)Int.CI.

G02B 13/00

G02B 13/18

(21)Application number: 2003-011239

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

20.01.2003

(72)Inventor: MATSUO EIKI

(54) IMAGING LENS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a bright small-sized inexpensive imaging lens system capable of attaining a viewing angle of >30°, whose whole length is shortened, and wherein various kinds of aberration are satisfactorily corrected.

SOLUTION: The imaging lens is constituted of a 1st positive lens convex to the object side, an aperture diaphragm arranged on the object side or on the image side of the 1st lens, a meniscus 2nd lens concave to the object side, and a meniscus 3rd lens convex to the object side in this order from the object side, besides, at least one of the 1st lens and the 2nd lens includes an aspherical surface, and both surfaces of the 3rd lens are aspherical. Besides, the 2nd lens has a paraxial focal distance whose sign is different from that of the 3rd lens, and when the maximum Abbe's number in the lenses is expressed by vmax and the minimum Abbe's number is expressed by vmin, 1.25<vmax/vmin is satisfied.

LEGAL STATUS

[Date of request for examination]

26.01.2004

[Date of sending the examiner's decision of

30.09.2005

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許厅(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2004-226487 (P2004-226487A)

(43) 公開日 平成16年8月12日(2004.8.12)

(51) Int.Cl.⁷

FΙ

テーマコード (参考)

GO2B 13/00 GO2B 13/18 GO2B 13/00 GO2B 13/18 2H087

審査請求 有 請求項の数 9 OL (全 17 頁)

(21) 出願番号

特願2003-11239 (P2003-11239)

(22) 出願日

平成15年1月20日 (2003.1.20)

(71) 出願人 000002369

セイコーエプソン株式会社

東京都新宿区西新宿2丁目4番1号

(74) 代理人 100095728

弁理士 上柳 雅管

(74)代理人 100107076

弁理士 藤綱 英吉

(74) 代理人 100107261

弁理士 須澤 修

(72) 発明者 松尾 栄樹

長野県諏訪市大字上諏訪6666-235

F ターム (参考) 2H087 KA03 PA03 PA17 PB03 QA02

QA06 QA12 QA14 QA21 QA22 QA25 QA26 QA32 QA37 QA41 QA42 QA45 RA05 RA12 RA13

RA34 RA42 UA01

(54) 【発明の名称】 撮像レンズ

(57)【要約】

【課題】30°を越える画角も可能で、全長が短く、諸 収差が良好に補正された明る く小型で安価な撮像レ ンズ系を提供する。

【解決手段】撮像レンズを物体側より、物体側に凸の正の第1レンズ、前記第1レンズの物体側又は像側に設けられた開口絞り、物体側凹のメニスカス第2レンズ、物体側凸のメニスカス第3レンズより構成し、更に第1レンズあるいは第2レンズの少なくとも一方に非球面を含むとともに、第3レンズを両面非球面とする。また、第2レンズと第3レンズとが異なる符号の近軸焦点距離を有し、各レンズ中で最大のアッベ数を v m a x 、最小のアッベ数を v m i n とする時、1.25 < v m a x / v m i n を満足する。

【選択図】

図 1

【特許請求の範囲】

【請求項1】

物体側より,物体側に凸の正の第1レンズ,前記第1レンズの物体側又は像側に設けられ た開口絞り、物体側に凹のメニスカス第2レンズ、物体側に凸のメニスカス第3レンズか ら構成されるレンズ*系において、第1、第2レンズの少なくとも一方が非球面を含み、 第3レンズが両面非球面レンズ、第2レンズと第3レンズとが異なる符号の近軸焦点距離 を有するとともに.各レンズの中で最大のアッベ数をvmax.最小のアッベ数をvmi nとする時、次の条件を満足することを特徴とする撮像レンズ。

1. 25 < vmax / vmin

【請求項2】

前記レンズ系の第1レンズまたは第2レンズの少なくとも一方が両面非球面であることを 特徴とする請求項1記載の撮像レンズ。

【請求項3】

前記レンズ系の両面非球面レンズの少なくとも1つのレンズに関し、光線が通過する有効 径内で光軸に平行に測った厚さの最も薄い部分をtmin.最も厚い部分をtmaxとす るとき下記の条件を満足することを特徴とする請求項1記載の撮像レンズ。

1. 0 < t m a x / t m i n < 1. 4

【請求項4】

前記レンズ系の両面非球面を有するレンズのいずれかの非球面に関し,光線が通過する有 効径内で複数の変曲点を有することを特徴とする請求項1記載の撮像レンズ。

【請求項5】

前記レンズ系の開口絞りが第1レンズより物体側に設けられていることを特徴とする請求 項1記載の撮像レンズ。

【請求項6】

前記レンズ系が少なくとも1枚の樹脂レンズを含むことを特徴とする請求項1記載の撮像 レンズ。

【請求項7】

前記レンズ系の全長をL,全系の焦点距離をfとする時,下記の条件を満足することを特 徴とする請求項1記載の撮像レンズ。

L/f < 2.0

【請求項8】

物体側より、開口絞り、両凸で正の第1レンズ、物体側に凹の負メニスカス第2レンズ、 物体側に凸の正メニスカス第3レンズとから構成され,第1,第2レンズの少なくとも一 方が非球面を含み、第3レンズが両面非球面レンズより構成されるとともに、各レンズの アッベ数をv1、v2、v3とする時、次の条件を満足することを特徴とする撮像レンズ

2. 5 < (v 1 + v 3) / v 2

【請求項9】

物体側より、開口絞り、物体側凸で正の第1レンズ、物体側に凹の正メニスカス第2レン ズ、物体側に凸の負メニスカス第3レンズとから構成され、第1、第2レンズの少なくと 40 も一方が非球面を含み,第3レンズが両面非球面レンズより構成されるとともに,第3レ ンズのアッベ数をv3とする時,次の条件を満足することを特徴とする撮像レンズ。 v 3 < 45

【発明の詳細な説明】

[0001]

【発明が属する技術分野】

本発明は、被写体を受像面上に結像させる撮像レンズに関する。

[00002]

【従来の技術】

近年,撮影用カメラモジュールが携帯電話を初めとする携帯用端末にも搭載されるように 50

10

なってきた。これらの機器においては、その携帯性を高めるため、光学系・撮像素子・画像処理装置を含むカメラモジュール全体の小型化が必須条件である。CCDやCMOS等の撮像素子に関しては、1画素の大きさが縮小され、高解像でしかも小型の撮像素子が急速に普及しつつある。これに対応する光学系には、小型・安価・高解像・優れた光学性能といった全ての条件を満たす光学系が要求される。

[0003]

このような光学系に求められる具体的要件としては、大きく分けて次のような項目があげられる。

- ・安価(枚数が少ない・樹脂を利用できる・成形しやすい・組立て易い等)
- ・明るい (小さなFno)

* *

- ・小さい (特にレンズ先端から撮像素子までの長さが短い)
- ・比較的大きな画角
- ・均一な像面照度(ケラレが少ない・撮像素子への入射角度を小さい)
- ・高い解像度 (球面収差,コマ収差,像面湾曲,非点収差,色収差等の基本的な収差が 良好に補正されている)
- ・優れた描写力(歪曲が無い・フレアが少ない等)

上記全ての条件を満足する光学系が、少ない構成枚数で実現できれば、その適用範囲は大きく広がる。一方、携帯用端末等に使用する撮像素子は、近年急速にその高密度化が進んでおり、初期の段階で使用された1~2枚で構成されるレンズ系では設計の自由度が不足し、要求される仕様を満足できない状況となってきた。

[0004]

2枚構成に関しては、物体側から「負・正」の構成が収差補正的には有利であるが、小型化には限界がある。2枚構成レンズで全長を短くするには「正・正」、あるいは「正・負」の構成が望ましい。また撮像素子への入射角度を比較的小さく保つためには、最も物体側に開口絞りを有する「前置絞り」のタイプが望ましい。これまで提案された中で、このような構成要件を満たす2枚構成のレンズの例としては、特開平01-245211、特開平04-211214、及び本発明者の提案による正レンズと物体側凹メニスカスレンズを組み合わせた例等がある。

[0005]

図16は特開平01-245211の断面図であるが、両凸の正の第1レンズと像側が凹 ³⁰ 面の負メニスカスの第2レンズとから構成されている。この例の場合、第2レンズのパワーが相対的に強く、かつ像面側が凹面のため、撮像素子への入射角度が大きくなりやすい。そのため、画角を大きくするのが困難となり、実施例においても、画角20°程度と比較的小さな値に留まっている。

[0006]

図17は特開平04-211214の断面図であるが、物体側に設けられた撮像レンズ10と、その像側に設けられた補正レンズ20とから構成される。この例では、全系のパワーの殆どを物体側の撮像レンズ10が受け持ち、像側に置かれた補正レンズ20を両面非球面とすることで、像高収差を補正し、画角を大きくする際の各収差のバランスを図るものである。この構成では、物体側レンズ10が基本的な結像作用を担当するため、物体側レンズを単レンズで構成する場合、撮像素子への入射角度を小さくしながら、補正レンズ20だけで像高収差のバランスを取ることに限界がある。更に、色収差の効果的な補正も難しいため、広角化には限界がある。

[0007]

図18は、本発明者提案による正レンズと物体側凹メニスカスレンズを組み合わせたものであるが、2枚構成にしては収差のバランスが取れ、小型化も可能である。しかし、更なる高解像化に対応するためには、設計の自由度が不足している。

[0008]

【発明が解決しようとする課題】

30°を越える画角にも対応可能で、高い解像力の要求に答えるとともに、全長が短く諸 50

収差が良好に補正された明るく小型で安価な撮像レンズ系を提供する。

[0009]

【課題を解決するための手段】

本発明において、上記の目的を達成するため以下の構成を採る。

まず、請求項1によれば、本発明の撮像レンズは、物体側より、物体側に凸の正の第1レ ンズ,前記第1レンズの物体側又は像側に設けられた開口絞り,物体側に凹のメニスカス 第2レンズ,物体側に凸のメニスカス第3レンズから構成される。また,第1,第2レン ズの少なくとも一方が非球面、第3レンズが両面非球面レンズで構成され、第2レンズと 第3レンズとが異なる符号の近軸焦点距離を有する。更に、各レンズの中で最大のアッベ 数をvmax、最小のアッベ数をvminとする時、1.25<vmax/vminを満 10 足する。

[0010]

請求項2によれば,本発明の撮像レンズは,第1レンズまたは第2レンズの少なくとも一 方が両面非球面より構成される。

[0011]

請求項3によれば、本発明の撮像レンズは、両面非球面を有するレンズの少なくとも1つ のレンズに関し, 光線が通過する有効径内で光軸に平行に測った厚さの最も薄い部分を t min, 最も厚い部分をtmaxとするとき、1.0<tmax/tmin<1.4を満 足する。

[0012]

請求項4によれば、本発明の撮像レンズは、両面非球面を有するレンズのいずれかの非球 面に関し、光線が通過する有効径内で複数の変曲点を有する。

請求項5によれば、開口絞りが第1レンズより物体側に設けられている。

[0014]

請求項6によれば、本発明の撮像レンズは、少なくとも1枚の樹脂レンズを含む。

[0015]

請求項7によれば、本発明の撮像レンズは、全長をL、全系の焦点距離をfとする時、L /f<2.0を満足する。

[0016]

請求項8によれば、本発明の撮像レンズは、物体側より、開口絞り、両凸で正の第1レン ズ、物体側に凹の負メニスカス第2レンズ、物体側に凸の正メニスカス第3レンズとから 構成される。また、第1、第2レンズの少なくとも一方が非球面を含み、第3レンズが両 面非球面レンズより構成される。更に、各レンズのアッベ数を v 1, v 2, v 3とする時 , 2.5< (v1+v3) / v2を満足する。

[0017]

請求項9によれば、本発明の撮像レンズは、物体側より、開口絞り、物体側凸で正の第1 レンズ、物体側に凹の正メニスカス第2レンズ、物体側に凸の負メニスカス第3レンズと から構成される。また、第1、第2レンズの少なくとも一方が非球面を含み、第3レンズ が両面非球面レンズより構成される。更に、第3レンズのアッベ数をv3とする時、v3 40 < 4 5 を満足する。

[0018]

以上の構成を採ることにより、目的の撮像レンズ系が提供できる。

[0019]

【発明の実施の形態】

次に具体的な構成例を基にして、本発明の実施の形態について説明する。

図1は本発明による撮像レンズの代表的構成例を示す断面図である。物体側より入射する 光東は、最も物体側に設けられた開口絞り1,両凸で正の第1レンズ2,物体側に凹で負 のメニスカス第2レンズ3,物体側に凸で正のメニスカス第3レンズ4を順次通過して, 撮像素子5の受光面に集光される。第3レンズ4と撮像素子5との間には、必要に応じて 50

カバー硝子またはローパスフィルタ等が設けられる。

まず、開口絞り1を最も物体側あるいは第1レンズ2の直後に置くことは、全長を短く保 ちながら撮像素子5への入射角度を比較的小さくするための条件である(但し、入射角を 小さく保つ条件は、周辺光量低下を小さくする上での好ましい条件ではあるが、撮像素子 や処理装置側での対応も可能であるため、必須条件ではない)。本発明は、上記のように 3枚のレンズから構成されるが、便宜的に前後群に分けた時、前群が正の群、後群が負も しくは正の群であることが全長を短く保つための条件となる。このため、第1レンズ2は 必然的に正レンズとなるが、第2、第3レンズには組合せの自由度が残る。全ての組合せ を列挙すると、第1レンズ2から順に、正負正、正正負、正負負、正正正の4つの組合せ 10 が残る。この中の最後の組合せは、通常の硝子の組合せでは色消しが出来ないため対象外 となる。また、正負負とした場合、相対的に後群の負のパワーが強まり、全長は短くでき るが撮像素子5への入射角が大きくなる。また、第1レンズ2のパワーも相対的に強くな り、収差補正にとって不利となる。以上から、正負正、または正正負の構成が望ましい構 成であることが分かる。

[0021]

以上で基本となる構成が決定されるが、更に各レンズの形状と配置に関する要件の考察を 行う。正負正の構成に関しては、その設計の考え方の出発点として、本発明者が提案した 正の第1レンズと物体側凹のメニスカス第2レンズの2枚構成レンズに加え、自由度を付 加するため像側に正の第3レンズを設ける構成が自然な拡張として考えられる。このよう な自由度付加の考え方としては、特開平04-211214に開示されるように、基本と なる単レンズに補正レンズを付加するやり方がある。本発明では、自由度確保のために導 入した第3レンズ4をこのような補正レンズとしてではなく、レンズ系を構成する大きな パワーを負担する構成要素として積極的に利用する。これにより、最小限の枚数の増加で . 高解像度化に対応できる自由度の確保が可能となる。

[0022]

次に各レンズの形状の基本について説明する。まず、第1レンズ2は比較的強い正のパワ ーを有するため、基本的には両凸形状となる。但し、正正負の構成の場合は、第1レンズ 2の正のパワーが弱まるため,メニスカス形状を取ることも可能である。次に,第2レン ズ3について考える。第2レンズ3より物体側に開口絞り1があり、しかも大きな入射角 を有するため,第2レンズ3の像側に凹面を配置した場合,全反射が起こりやすく,設計 の自由度が狭められる。そのため、第2レンズ3の正、負に関わらず、像側に凸面を向け た形状とするのが好ましい。更に、第3レンズ4について、その自由度を最大限活用する ためには、物体側凸形状とすることが望ましい。これは、物体側に開口絞り1があり、第 3レンズ4では各光束が比較的小さく絞られ、また各像高に向かう光束が第3レンズ4の 面上で分離する。従って、物体側に凸とすることで、その面上での分離効果が大きくなり ,第3レンズ4の両面を非球面とすることと併せて,各光束の像高収差を効果的に補正す ることが可能となる。

[0023]

以上により基本的な形状・配置の骨組みができるが、次に高解像化に不可欠な色消しにつ 40 いて考える。これについては,定石どおり,負レンズにアッベ数の小さな硝子を配置する ことで可能となる。正負正の場合第2レンズ3に、正正負の場合第3レンズ4にその様な 硝子を採用する。その際、負レンズのアッベ数と、正レンズの最大アッベ数とに関し

1. 25 < vmax/vmin

を満たすことが色消しを効果的に行う上で望ましい。

[0024]

以上が本発明の基本的構成要件の説明であるが、次に小型で安価な撮像レンズを提供する ための付帯条件に関する説明を行う。

上記の様に第3レンズ4を両面非球面とすることが収差補正を効率よく行うためには必須 事項であるが,更に仕様をバランス良く満たすためには,他の非球面を効果的に配置する 50

ことが必須事項となる。そのような非球面の配置としては、第1レンズまたは第2レンズ に少なくとも1面の非球面を配置する/第1レンズまたは第2レンズの少なくとも一方を 両面非球面とする等の組合せが考えられる。

[0025]

更に、少なくとも1枚の両面非球面のレンズ形状に関し、最も薄い部分 t m i n と、最も厚い部分 t m a x について、1.0 < t m a x / t m i n < 1.4 を満たすことで、像高収差を効果的に補正するとともに、成形しやすいレンズ形状とすることができる。これに加えて、光線が通過する有効径内で複数の変曲点を有する形状とすることで、その効果が補強できる。このような形状は、レーザプリンタ等の走査光学系の走査断面形状において、良く採用される形状である。F n o は小さいが、役割的に類似する部分もある。

[0026]

レンズ系に少なくとも1枚の樹脂レンズを含むことは,安価な撮像レンズを提供する上で 重要な要件であるが,上記のような肉厚差の少ない形状は,成形上も好ましい形状である

[0027]

次に、正正負の構成の場合も、各レンズの基本的な形状に関する要件は大きく変わらない。但し、第3レンズ4が負レンズの場合、そのパワーが強くなるに従って、アッベ数の小さな硝子を選択する必要がある。それに対し、正のパワーを有する第2レンズ3には相対的に大きなアッベ数を有する硝子を使用するのが望ましい。

[0028]

【実施例】

次に、本発明の実施例を、具体的な数値例と共に示す。

[0029]

【表 1】

)

7		曲率半径		間隔		屈折率	分散		
		施例1	go	0.245					
1	RI	2.769	d1	1,261	n1	1.533	υ ₁	55.3	
2	R2	-1.702	d2	0.528	n2	1.000	υ2		
3		-0.764	d3	0.700	n3	1.935	$\frac{v_2}{v_3}$	20.9	
4	_R3 _R4	-1.699	63	0,100	n4	1.300	υ4	20.0	
5	R5	1.177	d5	0.990	n5	1.533	υ5	55.3	
6	R6	1.944	d6	0.526	113	1.000	00	00.0	
7	R7	0.000	d7	0.550		硝子			
8	R8	0.000	d8	0.500		- FO 3			
۳		施例2	ďO	0.245	-				
1				1.274	n1	1.533	υ1	55.3	
2	R2	-1,426	d1 d2	0.504	n2	1.000	υ2		
3	R3	-0.683	d3	0.700	п3	1.935	ν3	20.9	
4	R4	-1.622	d4	0.100	n4	1,000	υ4		
5	R5	1.182	d5	0,897	n5	1,533	υ5	55.3	
6	R6	2.813	d6	0.381					
7	R7	0.000	d7	1.500		水晶			
8	R8	0.000	48	0.400	<u> </u>	- 2 - 190-4			
		建施例3	40	0.272					
1	R1	2,234	d1	1.355	n1	1.494	υ1	57.4	
2	R2	-1.601	d2	0.334	n2		υ2		
3	R3	-0.591	d3	0.700	n3	1.591	υ3	29.9	
4	R4	-1.500	d4	0.100	n4		U4		
5	R5	1,191	d5	0.998	n5	1.494	υ5	57.4	
6	R6	2.217	d6	0.592					
7	R7	0.000	d7	0.550		硝子			
8	R8	0.000	d8	0.500					
	3	₹施例4	90	0.279					
1	R1	2.531	d1	1,412	n1	1,494	υ1	57.4	
2	R2	-1.210	d2	0.269	n2		υ2		
3	R3	-0.513	d3	0.700	n3	1.591	υ3	29.9	
4	R4	-1.791	d4	0,100	n4		υ4		
5	R5	1.041	d5	0.943	n5	1,494	υ5	57.4	
6	R6	3.482	d6	0.397			L		
7	R7	0.000	d7	1.500	_	水晶	<u> </u>		
8	R8	0.000	d8	0.400	_				
		医施例5	d0	0.162	<u> </u>	7.55		07.0	
1	_	3.783	<u>d1</u>	1,438	n1	1.560	υ1	67.3	
2	R2	-2.512	d2	0.864	n2	1005	υ2	20.0	
3	R3	-1.076	d3	0.743	n3	1.935	υ3	20.9	
4	R4	-2.028	d4	0.100	n4	1767	υ4 ** 5	40.2	
5	R5	2.116	d5	1.343	n5	1.747	υ5	49.3	
6	R6	2.707	d6	0.500	 	787			
7	R7	0.000	d7	0.550	-	硝子	 		
8	R8	0.000	d8	0.500			<u> </u>	L	

20

30

40

[0030]

表1は、本発明の実施例1~5の構成を示す一覧表である。表の左端の番号は各レンズ面 に対応する番号である。番号の1,2は第1レンズ2の第1と第2面,3,4が第2レン ズ3の第1と第2面、5、6が第3レンズ4の第1面と第2面にそれぞれ対応する。7、 8は、カバー硝子や水晶フィルタに対応するが、基本的な要件ではない。更に、Rが曲率 半径, dが間隔, nが屈折率, vが分散にそれぞれ対応する。d0は前置絞りの場合, 開 口絞りと第1レンズの第1面までの間隔を示す。また、撮像素子5は表には示していない 50

が、8面の後に空気間隔 d 8を持って設けられる。

[0031]

表 2 は同じ実施例 1 ~ 5 の各面の非球面係数を表す一覧表である。本発明の非球面は,便 宜的に式 1 で表される非球面を使用しているが,特にこのタイプに限定される訳ではなく ,面の自由度増加が肝要である。

【0032】 【式1】

$$z = \frac{ch^2}{1 + \sqrt{1 - (1 + k)c^2h^2}} + A_4h^4 + A_6h^6 + A_8h^8 + \dots + A_{26}h^{26}$$

[0033]

なお、式1のzは、非球面の頂点と接する基準平面からの光軸方向の深さである。また、cは面の曲率半径Rの逆数、hは面の光軸からの高さを表している。kは2次曲面を表す円錐定数、 $A_4 \sim A_2$ 。は非球面補正係数である。

【0034】 【表2】

	円錐定数	A4	A6	A8	A10	
-	実施例1			Î		
1	5.362	-7.3826E-02	-5.0942E-02	9.6256E-03	-2.3069E-02	
2	-0.610	1.0463E-02	-8.2613E-02	7.6919E-02	-2.3103E-02	
3	-3.801	-1.7693E-01	2.3600E-01	-7.5670E-02	5.8149E-03	
4	-0.864	3.1700E-02	1.7762E-02	7.3159E-03		
5	-4.765	-2.9100E-02	-3.9565E-03	-6.4199E-04		
6	-5.481	-2.5241E-02	-3.7595E-03			
7						
8						10
	実施例2					20
1	7.259	-7.2313E-02	-3.4592E-02	-3.5803E-03	-5.7549E-03	
2	-0.966	2.4995E-02	-9.0525E-02	8.4082E-02	-2.4110E-02	
3	-3.150	-1.8020E-01	2.3327E-01	-7.1303E-02	4.9074E-03	
4	-0.659	2.1339E-02	2.1011E-02	2.6381E-03)/
5	-4.883	-2.0930E-02	-4.3335E-03	-7.9044E-04		ı
6	-1.166	-4.0212E-02	-9.7669E-04		-	
_7						, I
8						
	実施例3					l
1_	2.551	-4.9813E-02	-3.0579E-02	-1.2902E-02	1.5992E-03	20
2	-0.312	-3.0082E-02	-5.2543E-02	6.6327E-02	-2.9310E-03	
3	-2.421	-2.6712E-01	3.3888E-01	-1.3097E-01	2.6653E-02	
4	-0.855	2.6529E-02	6.8041E-02	-1.1766E-02		
5	-4.823	-2.7589E-03	-4.1527E-03	1.9328E-04		
6	-6.073	-5.7519E-03	-3.4220E-03			
7						
8						
	実施例4					
1	0.701	-1.6366E-02		3.4752E-02	-3.2382E-02	
2	-1.118	8.0036E-02	-2.5596E-01	1.1574E-01	3.5640E-02	
3	-2.258	-1.4258E-01	-9.4048E-02	1.6586E-01	-1.4416E-02	30
4	-1.304	-1.1503E-02	1.7890E-02	1.2420E-03		
5	-4.565	-5.5246E-03	-3.3679E-03	-2.9066E-03		
6	1.889	-1.2921E-02	-1.0671E-02			
7 8						
*	97.96.794.6					
-	実施例5	_2 67055_00	-6.5976E-03	-1.3121E-02	4.4209E-03	
1	2.875 0.000	-3.6795E-02 -1.7248E-02		7.3658E-03		
3	-4.439	-1.7248E-02 -1.0134E-01	1.0158E-01	-2.8541E-02	3.0232E-03	•
4	-4.439 -0.971	1.7402E-02		2.5044E-03	0.V2V2L 00	ļ
5	-9.853	-1.7358E-02		3.4205E-04		
6	-9.040	-1.6385E-02		0.7200L 04		40
7	-9.040	-1.030JE 02	0.2022L 04			
8	 		 			
ட	<u> </u>	l	<u> </u>			a .

[0035]

)

以上5つの実施例全てが前置絞りで、正負正の構成を持ち、レンズ全てが両面非球面である。実施例のうち、第1・第2実施例では第1、3レンズが樹脂、第3・第4実施例では全てのレンズが樹脂、第5実施例は全て硝子で構成されている。第2実施例は像面の前にローパスフィルタを有している。

[0036]

20

30

40

次に、表 3 は本発明の実施例 $6 \sim 10$ の構成パラメータを示す一覧表である。 【0037】

【表 3】

		曲率半径		間隔		屈折率	分散			
	1	実施例6	dО	0.100						
1	R1	2.936	d1	2.058	n1	1.747	υ1	49.3		
2	R2	-5.997	d2	0.323	n2		υ2			
3	R3	-1.526	d3	0.800	n3	1.935	υ3	20.9		
4	R4	-3.108	d4	0.100	n4		υ4			
5	R5	2.247	d5	1.474	n5	1.533	υ5	55.3		
6	R6	4.186	d6	0.296						
7	R7	0.000	d7	0.550		硝子				
8	R8	0.000	d8	0.500						
	5	実施例7	фO	0.298						
1	R1	2.084	d1	1.576	n1	1.499	υ1	81.6		
2	R2	-5.581	d2	0.440	n2		υ2			
3	R3	-0.996	d3	0.800	n3	1.653	υ3	33.8		
4	R4	-1.629	d4	0.100	n4		υ4			
5	R5	1.949	d5	1.250	n5	1.533	υ5	55.3		
6	R6	2.224	d6	0.551						
7	R7	0.000	d7	0.550		硝子				
8	R8	0.000	d8	0.500						
		支施例8	90	0.287						
1	R1	2.096	d1	1.700	n1	1.533	<u>v1</u>	55.3		
2	R2	-5.900	d2	0.411	n2		υ2			
3	R3	-1.044	d3	0.800	n3	1.935	υ3	20.9		
4	R4	-1.842	d4	0.100	n4		υ4			
5	R5	1.674	d5	1.200	n5	1.533	υ5	55.3		
6	R6	2.365	d6	0.653		eral) era				
7	R7	0.000	d7	0.550		子 子				
8	R8	0.000	q8	0.500	\vdash					
_		契施例9	90	0.101						
1	R1	4.917	<u>d1</u>	0.960	n1	1.533	υ1	55.3		
3	R2 R3	-2.751 -1.792	d2	0.278	n2	1 005	υ2			
4	R4	-1.782 -3.437	d3	0.800	n3 n4	1.935	υ3	20.9		
5	R5	1.388	d4 d5	0.100 1.200	n4 n5	1 522	υ4 115			
6	R6	1.617	d6	1.354	713	1.533	υ ₅	55.3		
7	R7	0.000	d7	0.550		硝子				
' 8	R8	0.000	48	0.500						
<u>~</u>		施例10	90	0.515						
1	Rí	3.214	d1	1.737	n1	1.810	υ1	39.6		
2	R2	-1.104	d2	0.137	n2	1.010	v 2			
3	R3	-0.621	d3	0.883	n3	1.935	v3	20.9		
4	R4	-2.247	d4	0.303	n4	1.000	υ4	20.5		
5	R5	1.429	d5	1.098	n5	1.533	υ5	55.3		
6	R6	2.515	d6	0.476		1.000	-	- 00.5		
·						硝子				
7	R7	0.000	d7	0.550		93 T 1				

[0038]

Ì

表 4 は、表 3 の実施例 6 ~ 1 0 に対応する非球面係数を示す一覧表である。 【 0 0 3 9】

【表 4 】

	円錐定数	A4	A6	A8	A10
	実施例6		T T	The state of the s	
1	0.660	-8.8836E-03	-5.7558E-03	1.4681E-02	-1.3476E-02
2	-4.691	-1.0595E-01	6.2849E-02	-6.1002E-02	1.6064E-02
3					
4					
5	-23.521	8.8784E-02	-1.1321E-01	5.3276E-02	-1.2695E-02
6	-8.250	3.7613E-03	2.3259E-04	-2.6444E-03	3.0056E-04
7					
8					
	実施例7				
1_					
2	0.000	7 15505 00	E 1626F 02	-4.9006E-03	-2.7308E-03
3	-2.922 -1.603	-7.1558E-02 1.1023E-02	5.1636E-02 8.1925E-03	3.2431E-03	-Z./300E-US
<u>4</u> 5	-1.603 -5.436	-1.4588E-02	-1.9811E-03	9.0889E-05	
_ ა 6	-5.436 -5.301	-1.4388E-02	-1.3507E-03	3.0003L 03	
7	-0.301	1.23316-02	1.000/12 00		
8					
<u> </u>	実施例8			-	
1	X1007-				
2					
3	-3.331	-7.5100E-02	4.9618E-02	-2.2415E-03	-3.3791E-03
4	-1.809	5.4701E-03	6.4511E-03	2.7194E-03	
5	-4.658	-4.0256E-03	-1.5632E-03	1.1699E-04	
6	-5.171	-6.3851E-03	-1.3832E-03		
7_					
8					
	実施例9		0.41675.00		
1	-32.376	-4.8001E-02	-6.4167E-02		
.2	0.000	-1.3043E-01	4.2167E-02 7.0982E-03	8.0073E-02	-4.7735E-02
3	-7.014 -4.112	5.2237E-03 2.0779E-02	2.3514E-02	1.2526E-03	4.7730E UZ
5	-4.112 -4.035	1.4910E-02	-9.5681E-03	1.8989E-03	
<u>5</u>	-4.035 -1.553	-2.2334E-02	4.1634E-04	6.7091E-04	-7.0422E-05
7	1.000	E.LUUTE UE		000101.	
8					
_	実施例10				
1	-0.977	2.7064E-03	-1.6052E-02		
2	-4.088	3.8682E-02			
3	-2.936	-5.9906E-02	-2.0033E - 03		
4	-8.182	-4.4737E-02			
5			-3.0238E-03		
6	-2.687	-3.8208E-02	-7.8511E-04		
_7				ļ	
8	1			<u> </u>	

[0040]

Ì

第6 -第10実施例のうち,第6実施例は第2レンズ,第7,8実施例では第1レンズが球面で構成される。また,全ての実施例が樹脂を含む。更に第9実施例では,開口絞りは第2レンズの直後にあり,第9実施例のd0は絞りではなくダミー面との距離である。

次の表 5 は本発明の実施例 1 1 \sim 1 5 の構成パラメータを示す一覧表である。 【表 5 】

20

30

40

	曲率半径			間隔		屈折率		分散
	3	施例11	фO	0.299				
1	R1	1.910	d1	1.403	n1	1.494	บา	57.4
2	R2	-1.439	d2	0.235	n2		υ2	
3	R3	-0.561	d3	0.700	n3	1.659	υ3	39.7
4	R4	-1.524	d4	0.100	n4		U 4	- 55.7
5	R5	1.149	d5	1.029	n5	1.494	υ5	57.4
6	R6	2.347	d 6	0.619				
7	R7	0.000	d7	0.550	—	硝子		
8	R8	0.000	d 8	0.500				
-	身	萨例12	40	0.430				
1	R1	2.796	d1	1.634	n1	1.494	υ ₁	57.4
2	R2	-1.163	d2	0.324	n2		υ2	57.4
3	R3	-0.456	d3	0.700	n3	1.591	υ3	29.9
4	R4	-2.632	d4	0.100	n4		υ4	20.0
5	R5	0.846	d5	1.225	n5	1.494	υ5	57.4
6	R6	12.446	d6	0.338				57.4
7	R7	0.000	d7	1.500		硝子		
8	R8	0.000	d8	0.400				
	美	施例13	90	0.622				
1	RI	2.490	d1	1.381	n1	1.606	บ1	65.5
2	R2	-113.237	d2	0.588	n2		υ2	
3	R3	-1.452	d3	0.800	n3	1.935	υ3	20.9
4	R4	-2.317	d4	0.100	n4		υ4	
5	R5	1.669	d5	1.200	n5	1.606	υ5	65.5
6	R6	2.168	46	0.826				
7	R7	0.000	d7	0.550		硝子		
8	R8	0.000	48	0.500				
	美	施例14	d 0	0.536				
1	R1	2.192	d1	1.581	n1	1.499	υ1	81.6
2	R2	-5.484	d2	0.501	n2		υ2	
3	R3	-1.057	d 3	0.800	n3	1.591	υ3	29.9
4	R4	-1.169	d4	0.152	n4		υ4	
5	R5	3.946	d5	1.199	n5	1.591	υ5	29.9
6	R6	1.709	d6	0.397				
7	R7	0.000	d7	0.550		硝子		
8	R8	0.000	d8	0.500				
	奏	施例15	90	0.712				
1	R1	2.561	d1	1.591	n1	1.499	υ1	81.6
2	R2	127.840	d2	0.664	n2		υ2	
3	R3	-3.026	d3	0.724	n3	1.747	υ3	49.3
4	R4	-1.307	d4	0.100	n4		υ4	
5	R5	12.888	d 5	0.990	n5	1.935	υ5	20.9
6	R6	1.911	d6	0.668				
7	R7	0.000	d7	0.550		硝子		
8	R8	0.000	d8	0.500				

[0042]

表 6 は、表 5 の実施例 1 1 ~ 1 5 に対応する非球面係数を示す一覧表である。 【 0 0 4 3】

【表 6】

)

	円錐定数	A4	A6	A8	A10
H	実施例11				
1	2.112	-4.9972E-02	-2.1125E-02	-2.1498E-02	-1.0551E-02
2	-0.261	-3.2111E-02	-9.9061E-02	7.7325E-02	3.6413E-02
3	-2.240	-2.9392E-01	3.1603E-01	-1.3578E-01	5.0040E-02
4	-0.855	2.6745E-02		-1.2164E-02	0.0040L 0L
5	-4.637	2.1345E-03		3.1099E-04	
6	-5.563	-3.4191E-03	-2.8100E-03		
7					
8					
	実施例12				
1	1.086	-1.1186E-02	-2.7202E-02	2.8928E-02	-2.3129E-02
2	-1.575	9.2259E-02	-2.6806E-01	1.0345E-01	2.9389E-02
3	-2.310	-1.5993E-01	-1.0088E-01	1.6131E-01	-2.0008E-02
4	0.477	-4.1031E-02	3.1040E-02	-7.7272E-04	
5	-4.061	8.7774E-03		-8.5303E-04	
6	26.328	2.4053E-02	-7.5315E-03		
7					
B	実施例13				
1		-4.3621E-03	6 26705 04	5 OCE 15 OA	
2	-0.240 0.000	2.6236E-03	6.3679E-04 -5.3920E-03	-5.0651E-04 4.8614E-04	
3	-6.332	-4.6225E-02	5.8746E-02	-2.0659E-02	2.6978E-03
4	-0.601	2.0408E-02	1.5446E-02	-3.2338E-04	2.03702 03
5	-5.502	6.0663E-03		5.0939E-05	-
6	-6.116	-2.6399E-03	4.7710E-04	0.00002 00	
7					
8					
	実施例14				
1	-0.315	-6.8595E-04	-1.5149E-03		
2	0.000	-7.8916E-03	-4.5607E-03		
3	-2.215	-4.5827E-02	5.0657E-02	-8.5412E-03	-9.7903E-04
4	-1.864	1.3840E-02	1.1774E-02	3.3646E-03	
5	-8.283	-1.8540E-02	-2.4519E-03	7.6150E-05	
6	-8.338	-1.1582E-02	-1.0508E-03		
7					
8	実施例15				
1		0.25005 02	1 05505 00	4.00005 04	0.05005.04
2	-0.899 0.000	-8.3599E-03 -1.3908E-02		-4.8662E-04 -9.7822E-04	-3.9500E-04
3	-2.579	-3.9990E-02		-9.1653E-03	5.5428E-04
4	-2.572	-8.6580E-03		3.6826E-03	J.J420E 04
5	4.320	5.5607E-03	-1.0275E-02	8.3805E-04	
6	-8.046	-1.4456E-02	-2.7133E-04	3.3003 <u>L</u> 04	
7	0.0.0		2 1302 34		
8					
لت					

[0044]

第14実施例と第15実施例は,正正負の構成の例である。両方の例とも,第3レンズが小さなアッベ数を有する硝子から構成される。

[0045]

最後に、表7に実施例1~15に関する焦点距離や各パラメータの関係等を一覧表として示す。表中で、入射角は最大画角の光線の主光線がレンズ系に入射する角度、射出角は同じ光線がレンズ系から射出する角度を示す。fは焦点距離、f1,f2,f3は第1,第50

2, 第3レンズの各焦点距離、v1, v2, v3は同レンズのアッベ数, Lはレンズの先端 (前置絞りの場合は開口絞り) から撮像面までの全長, tmx/tmn#2は第2レンズの肉厚比, tmx/tmn#3は第3レンズの肉厚比を示している。

[0046]

【表7】

要抱雷号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fno	2.74	2.75	2.74	2.75	2.50	2.55	2.49	2.49	2,70	2.79	3.00	3.02	2.52	2.77	2.77
焦点距離	3.28	3.28	3.28	3.28	3.88	3.83	3.88	3.89	3,93	3.30	3,28	3.28	3.89	3.93	3.89
入射角	32.5	32.5	32.5	32.5	32.5	32.5	32.5	32.5	32.5	31.9	32.5	32.5	32.5	32.5	32.5
射出角	18.7	19.5	20.0	18.7	20.0	20.0	20.0	18.3	39.4	20.0	20.0	8.9	20.0	22.0	27.0
fl	2.19	2.08	2.14	1.89	2.94	2.93	3.27	3,13	3.48	1.24	1.93	1,92	4.04	3.37	5.22
f2	-2.33	-1.97	-2.31	-1.53	-3.93	-4.24	-7.83	-5.00	-5,16	-1.24	-1.89	-1.06	-7.52	11.26	2.61
f3	3.86	3.21	3.94	2.66	6.57	7.20	11.45	6.70	6.52	4.59	3.55	1.78	6.28	-6.38	-2.51
f/f1	1.50	1.58	1.54	1.73	1.32	1.31	1.19	1.24	1,14	2.67	1.70	1.70	0.96	1.17	0.75
f/f2	-1.41	-1.67	-1.42	-2.14	-0.99	-0.90	-0.50	-0.78	-0.78	-2.65	-1.73	-3.09	-0.52	0.35	1.49
f/f3	0.85	1.02	0.83	1.23	0.59	0.53	0.34	0.58	0.60	0.72	0.92	1.85	0.62	-0.62	-1.55
12/13	-1.68	-1.63	-1.71	-1.74	-1.67	-1.70	-1.46	-1.34	-1.26	-3.69	-1.88	-1.67	~0.83	-0.57	-0.96
v3	55.3	55.3	57.4	57.4	49.3	55.3	55.3	_ 55,3	55.3	55.3	57.4	57.4	65.5	29.9	20.9
(v1+v3)/v2	5.29	5.29	3,84	3.84	5.58	5.00	4.05	5,29	5.29	4.54	2.89	3.84	6.27	3.73	2.08
vmax/vmin	2.65	2.65	1.92	1.92	3.22	2.65	2,41	2.65	2,65	2.65	1.45	1.92	3,13	2.73	3.90
L/f	1.59	1.67	1,59	1.68	1.55	1.57	1.52	1.55	1.44	1.82	1.60	1.88	1.64	1.54	1.62
tmx/tmn#2	1.23	1.21	1.45	1.44	1.24	1.20	_1.33	1.26	1.09	1.38	1.48	1.65	1.24	1.38	1.52
tmx/tmn#3	1,24	1.28	1.25	1.35	1,11	1,11	1,13	1.26	1.08	1,03	1.28	2.22	1,30	1.14	1.30

20

10

[0047]

【発明の効果】

本発明により、30°を越える画角を有しながら、撮像素子への入射角が小さく全長が短い、小型で安価な撮像レンズ系が実現可能となる。

【図面の簡単な説明】

- 【図1】撮像レンズの実施形態を表す断面図である。
- 【図2】実施例2の光学断面図である。
- 【図3】実施例2の像高収差図である。
- 【図4】実施例4の光学断面図である。
- 【図5】実施例4の像高収差図である。
- 【図6】 実施例6の光学断面図である。
- 【図7】 実施例6の像高収差図である。
- 【図8】 実施例9の光学断面図である。
- 【図9】 実施例9の像高収差図である。
- 【図10】実施例12の光学断面図である。
- 【図11】実施例12の像高収差図である。
- 【図12】実施例14の光学断面図である。
- 【図13】実施例14の像高収差図である。
- 【図14】実施例15の光学断面図である。
- 【図15】実施例15の像高収差図である。
- 【図16】特開平01-245211の断面図である。
- 【図17】特開平04-211214の断面図である。
- 【図18】正レンズと物体側凹メニスカスレンズから構成される2枚構成の断面図である

【符号の説明】

- 1 開口絞り
- 2 第1レンズ
- 3 第2レンズ
- 4 第3レンズ
- 5 撮像素子

40

30

R1, R2 各レンズの曲率半径 d 0, d 1 各レンズの間隔 (d 0 は前置絞りの場合, 開口絞りと第1レンズの間隔) n 1, n 2 各レンズの屈折率 各レンハン川 各レンズの分散 ν 1 , ν 2 f 撮像レンズの焦点距離 第1レンズの焦点距離 f 1 f 2 第2レンズの焦点距離

第3レンズの焦点距離 L レンズ先端から撮像素子までの全長

10

f 3

【図9】

【図13】

【図14】

【図10】

【図11】

【図12】

【図15】

【図16】

【図17】

【図18】

)

)

•

.