Apellidos:	GRUP0:
Nombre:	. D.N.I.:

ALEM, Examen final

03 de febrero de 2016

1. Sea X un conjunto y A, B, $C \in \mathcal{P}(X)$. Decide razonadamente si es necesariamente cierta la siguiente igualdad:

$$(A\cap \overline{C})\cap \overline{B\cap \overline{C}}=A\cap \overline{B}\cap \overline{C}$$

2. Sea $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y R la relación de equivalencia en X definida por:

$$xRy$$
 si $4 \mid x + 3y$

Calcula el conjunto cociente, dando explícitamente todos sus elementos.

3. Dado el sistema de congruencias:

$$15x \equiv 7 \pmod{16}$$

$$30x \equiv 38 \pmod{56}$$

estudia si tiene solución y en caso afirmativo, da todas las soluciones comprendidas entre -100 y 100.

- 4. En este ejercicio trabajamos en \mathbb{Z}_{53} .
 - a) Calcula 247^{3645} .
 - b) Resuelve la ecuación 17x 32 = 43 (5x 8).
- 5. Dados los polinomios $p(x) = x^5 + 2x^4 + 2x^3 + 2x^2 + 2x + 2$ y $q(x) = x^4 + x^3 + x + 2$ con coeficientes en \mathbb{Z}_3 :
 - a) Calcula mcd(p(x), q(x)).
 - b) Calcula las raíces de p(x).
 - c) Encuentra una factorización de p(x) como producto de irreducibles.
- 6. Disponemos de 14 caramelos para repartir entre 4 niños. Da razonadamente el número de formas de repartir los caramelos entre los niños en cada uno de los siguientes supuestos:
 - a) Cada niño debe recibir al menos un caramelo.
 - b) Ningún niño puede recibir más caramelos que los otros tres compañeros juntos.
 - c) El número de caramelos que ha de recibir cada niño es par.

Examen final ALEM

7. Dado el siguiente sistema de ecuaciones con coeficientes en \mathbb{Z}_5

$$2x + y + 3z = 2$$

 $x + y + z + t = 4$
 $x + 2y + t = 4$
 $x + y + z + 3t = 0$

calcula todas sus soluciones.

- 8. Sea $B = \{(1,1,-2); (3,1,2); (4,2,-1)\}$ un subconjunto de \mathbb{Q}^3 y sea B_c la base canónica de dicho espacio vectorial.
 - a) Comprueba que B es una base.
 - b) Calcula las matrices del cambio de base de B a B_c y de B_c a B.
 - c) Calcula las coordenadas del vector v = (3, -1, 2) en la base B.
- 9. Sea $V=(\mathbb{Z}_7)^3$ y las aplicaciones lineales f, g: $V\longrightarrow V$ definidas por las siguientes iqualdades:

$$f(x, y, z) = (3x + 4y + 2z, 5x + y + 3z, 4y + 6z)$$

$$g(x, y, z) = (2x + y, x + z, 6y + 2z)$$

Sea U = N(g) y W = Im(f). Entonces:

- a) Calcula una base de U + W. ¿Es dicha suma directa?
- b) ¿Cuál es la dimensión de Im(g)?
- 10. Dada la matriz

$$A = \begin{pmatrix} 0 & 2 & 2 & 2 \\ 1 & 2 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix} \in M_4(\mathbb{Z}_3)$$

estudia si A es o no diagonalizable, y en caso afirmativo, encuentra una matriz regular P tal que $P^{-1} \cdot A \cdot P$ sea una matriz diagonal D y di cuál es la matriz D.

(2) 03 de febrero de 2016