Math 55a, Assignment #3, October 3, 2003

Problem 1. (Problem 3 on Page 78 in Rudin's book) If $s_1 = \sqrt{2}$, and

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} \quad (n = 1, 2, 3, \dots),$$

prove that $\{s_n\}$ converges and that $s_n < 2$ for $n = 1, 2, 3, \cdots$.

Problem 2. (Problem 4 on Page 78 in Rudin's book) Find the upper and lower limits of the sequence $\{s_n\}$ defined by

$$s_1 = 0$$
; $s_{2m} = \frac{s_{2m-1}}{2}$; $s_{2m+1} = \frac{1}{2} + s_{2m}$.

Problem 3. For any real number x show that

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$$

Problem 4. (Problem 22 on Page 82 in Rudin's book) Suppose X is a nonempty complete metric space, and $\{G_n\}_{n\in\mathbb{N}}$ is a sequence of dense open subsets of X. Prove Baire's theorem, namely, that $\bigcap_{n=1}^{\infty}G_n$ is not empty. (In fact, it is dense in X.) (Hint: Find a shrinking sequence of neighborhoods E_n such that $\overline{E_n} \subset G_n$, and apply the statement that, if $\{F_n\}$ is a sequence of closed nonempty and bounded subsets in a complete metric space with $F_n \supset F_{n+1}$ and $\lim_{n\to\infty} \operatorname{diam} F_n = 0$, then $\bigcap_{n=1}^{\infty} F_n$ consists of exactly one point.)

 $Problem\ 5.$ (Problem 24 on Page 82 in Rudin's book) Let X be a metric space.

(a) Call two Cauchy sequences $\{p_n\}$, $\{q_n\}$ in X equivalent if

$$\lim_{n \to \infty} d\left(p_n, q_n\right) = 0.$$

Prove that this is an equivalent relation.

(b) Let X^* be the set of all equivalent classes so obtained. If $\mathbf{P} \in X^*$, $\mathbf{Q} \in X^*$, $\{p_n\} \in \mathbf{P}$, $\{q_n\} \in \mathbf{Q}$, define

$$\Delta\left(\mathbf{P},\mathbf{Q}\right) = \lim_{n \to \infty} d\left(p_n, q_n\right).$$

Show that the number $\Delta(\mathbf{P}, \mathbf{Q})$ is unchanged if $\{p_n\}$ and $\{q_n\}$ are replaced by equivalent sequences, and hence Δ is a distance function in X^* .

- (c) Prove that the resulting metric space X^* is complete.
- (d) For each $p \in X$, there is a Cauchy sequence all of whose terms are p; let \mathbf{P}_p be the element of X^* which contains this sequence. Prove that

$$\Delta\left(\mathbf{P}_{p},\mathbf{P}_{q}\right)=d\left(p,q\right)$$

for all $p, q \in X$. In other words, the mapping φ defined by $\varphi(p) = \mathbf{P}_p$ is an isometry (*i.e.*, a distance-preserving mapping) of X into X^* .

(e) Prove that $\varphi(X)$ is dense in X^* , and that $\varphi(X) = X^*$ if X is complete. By (d), we may identify X and $\varphi(X)$ and thus regard X as embedded in the complete metric space X^* . We call X^* the *completion* of X.

Problem 6. Let $\gamma > 1$ and let A be any nonempty set. Let X be the subset of the set $A^{\mathbb{Z}}$ of all maps from \mathbb{Z} to A, which is defined as follows. A map $f: \mathbb{Z} \to A$ belongs to X if and only there exists some $\ell \in \mathbb{Z}$ such that f(n) = 0 for $n < \ell$. Define the following metric $d_X(\cdot, \cdot)$ on X. For $f, g \in X$, the distance $d_X(f, g)$ is equal to $\gamma^{-\ell}$ where ℓ is the largest integer such that f(n) = g(n) for $n < \ell$. Show that X is complete with respect to the metric $d_X(\cdot, \cdot)$. In other words, every Cauchy sequence in the metric space X has a limit in X.

Problem 7. Let p be a prime number. In Problem 6, let $\gamma = p$ and $A = \{0, 1, \dots, p-1\}$ and let X be the metric space constructed in Problem 6 with metric $d_X(\cdot, \cdot)$. Let Y be the set of all rational numbers of the form $\frac{m}{p^k}$ with $m, k \in \mathbb{Z}$. When m is not divisible by p, let $\left\|\frac{m}{p^k}\right\|_p = p^k$. Define the metric $d_Y(\cdot, \cdot) = \|a - b\|_p$ for $a, b \in Y$. For any $a \in Y$ there exist uniquely $b_k, b_{k+1}, \dots, b_\ell \in A$ with $k \leq \ell$ in \mathbb{Z} such that $a = \sum_{j=k}^\ell b_j p^j$. Define the map $\Phi: Y \to X$ by $\Phi(a): \mathbb{Z} \to A$ with $(\Phi(a))(n) = b_n$ for $k \leq n \leq \ell$ and $(\Phi(a))(n) = 0$ for n < k or $n > \ell$. Show that the map Φ is distance-preserving and that X is the completion of Y (when Y is embedded into X by Φ).

Problem 8. Let p be a prime number and let Y be the set of all rational numbers of the form $\frac{m}{r^k}$ with $m, k \in \mathbb{Z}$. Define a metric $d(\cdot, \cdot)$ in Y by

$$d(a,b) = \frac{|a-b|}{1+|a-b|}.$$

Here |a-b| means the usual absolute value of the difference between a and b as elements of \mathbb{Q} . What is the completion of Y? (*Hint:* consider \mathbb{R} .)

Problem 9. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series of real numbers. Let

$$b_1 \ge b_2 \ge \dots \ge b_k \ge \dots \ge 0$$

be a non-increasing sequence of non-negative numbers. Prove that $\sum_{n=1}^{\infty} a_n b_n$ is a convergent series. (*Hint:* use the following discrete analogue of "integration by parts":

$$A_1B_1 + A_2B_2 + \dots + A_nB_n$$

= $S_1(B_1 - B_2) + S_2(B_2 - B_3) + \dots + S_{n-1}(B_{n-1} - B_n) + S_nB_n$,

where $S_n = A_1 + \cdots + A_n$.)

Problem 10. Let a_n be a sequence of complex numbers with $a_n \neq -1$ for each $n \in \mathbb{N}$. Assume that the sequence $\prod_{k=1}^n (1+|a_k|)$ approaches some nonzero real number as its limit as $n \to \infty$. Show that the sequence of complex numbers $\prod_{k=1}^n (1+a_k)$ approaches some nonzero complex number as its limit as $n \to \infty$. (Hint: use

$$e^{\alpha_1 + \dots + \alpha_n} \ge (1 + \alpha_1) \cdots (1 + \alpha_n) \ge \alpha_1 + \dots + \alpha_n$$

for nonnegative real numbers $\alpha_1, \cdots, \alpha_n$ and consider the convergence behavior of $\sum_{n=1}^{\infty} |a_n|$.)