Linked List (I)

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Linked List

- Singly Linked List and Chains
- Representing Chains in C
- 3 Linked Stacks and Queues

- Singly Linked List and Chains
- 2 Representing Chains in C
- 3 Linked Stacks and Queues

Definition

- We have learned array and sequential mapping (e.g., polynomial ADT).
 - Successive nodes of the data objects are stored in a fixed distance.

Definition

- We have learned array and sequential mapping (e.g., polynomial ADT).
 - Successive nodes of the data objects are stored in a fixed distance.
- Issue: When a sequential mapping is used for ordered lists:
 - no more available storage
 - waste of storage

Definition

- We have learned array and sequential mapping (e.g., polynomial ADT).
 - Successive nodes of the data objects are stored in a fixed distance.
- **Issue:** When a sequential mapping is used for ordered lists:
 - no more available storage
 - waste of storage
 - Excessive data movement is required for deletions and insertions.

Alan	Bill	Carter	David	Elvis	Frank	

• Insert "Charlie" after Carter.

Fall 2024

Alan	Bill	Carter	David	Elvis	Frank	
				l		

• Insert "Charlie" after Carter.

Alan	Bill	Carter	Charlie	David	Elvis	Frank

Alan	Bill	Carter	David	Elvis	Frank	
					1	

• Insert "Charlie" after Carter.

Alan Bi	I Carter	Charlie	David	Elvis	Frank
---------	----------	---------	-------	-------	-------

Three elements are moved.

Alan	Bill	Carter	Charlie	David	Elvis	Frank

• Delete "Carter" after Bill.

Alan	Bill	Carter	Charlie	David	Elvis	Frank

• Delete "Carter" after Bill.

Alan	Bill	Charlie	David	Elvis	Frank	

Fall 2024

Alan	Bill	Carter	Charlie	David	Elvis	Frank

• Delete "Carter" after Bill.

Alan	Bill	Charlie	David	Elvis	Frank	

Four elements are moved.

Solution: linked presentation

- Singly Linked List and Chains
- Representing Chains in C
- 3 Linked Stacks and Queues

Stack Implementation: Array

 The easiest way to implement the stack ADT is using one-dimensional array.

• An example in C++

9/12

Stack Implementation: Array

 The easiest way to implement the stack ADT is using one-dimensional array.

• An example in C++ (another way: using a linked list; will be introduced in the future).

- Singly Linked List and Chains
- 2 Representing Chains in C
- 3 Linked Stacks and Queues

Linked List Linked Stacks and Queues

TBD

Discussions

