通过模拟物理退火过程的随机搜索与概率接受机制,在决策变量的可行域内寻找使有效遮蔽时间 Δt 最大化的最优解,具体步骤如下:

步骤 1 初始化参数

- 初始解生成: 在决策变量可行域内随机生成初始解 $S_0 = (\alpha_0, v_{\text{FY1,0}})$, 其中 $\alpha_0 \in [0, 2\pi]$, $v_{\text{FY1,0}} \in [70, 140]$;
- 初始温度 T_0 : 设定较高的初始温度(如 $T_0 = 100$),确保算法初期能接受较差解,扩大搜索范围;
- **降温系数** k: 设定降温速率(如 k = 0.95),控制温度随迭代逐步降低;
- 终止温度 T_{end} : 设定停止阈值 (如 $T_{\text{end}} = 10^{-5}$), 当温度低于此值时终止迭代;
- **迭代次数** L: 每轮温度下的迭代步数(如 L = 50),确保在当前温度下充分搜索邻域。

步骤 2 目标函数计算(核心步骤)对任意解 $S = (\alpha, v_{\text{FY1}})$,计算其对应的有效遮蔽时间 Δt ,步骤如下:

- 无人机运动模拟:根据 α 和 v_{FY1} ,计算无人机在投放时刻 t_1 的位置 $(x_{\text{FY1},t_1},y_{\text{FY1},t_1},z_{\text{FY1},t_1})$;
- 烟幕弹起爆位置计算: 基于 $t_2 = t_1 + \Delta t_{\text{delay}}$ (Δt_{delay} 为烟幕弹飞行时间,固定参数),计算起爆位置 ($x_{\text{FYII},t_2}, y_{\text{FYII},t_2}, z_{\text{FYII},t_2}$),其中 $x \times y$ 方向按无人机速度惯性运动 ($\lambda = \alpha$,与无人机同方向),z 方向受重力下落;
- 烟幕云团位置随时间变化:对 $t \in [t_2, t_2 + \Delta t_0]$,计算云团中心坐标 $(x_{\text{FY}11,t}, y_{\text{FY}11,t}, z_{\text{FY}11,t})$,其中 z 方向以 v_1 下沉;
- **真目标采样**:在圆柱面(真目标)上均匀采样若干点(如不同角度和高度),覆盖目标关键区域;
- **遮挡时间判定**: 对每个采样点,结合导弹飞行轨迹(预设参数),通过判别式 $\Delta \geq 0$ 判断 t 时刻是否遮挡,记录所有有效遮挡的时间区间,总时长即为 Δt 。

步骤 3 邻域解生成

为当前解 $S = (\alpha, v_{\text{FY1}})$ 生成邻域解 $S' = (\alpha', v'_{\text{FY1}})$, 确保新解在可行域内:

- $\alpha' = \alpha + \Delta \alpha$, 其中 $\Delta \alpha$ 为随机扰动 (如 ±0.1 弧度), 若 α' 超出 [0, 2π] 则取模调整;
- $v'_{\text{FY1}} = v_{\text{FY1}} + \Delta v$,其中 Δv 为随机扰动(如 ± 5 m/s),若 v'_{FY1} 超出 [70, 140] 则截断 至边界。

步骤 4 判断准则 (接受/拒绝新解)

- 计算新解与当前解的目标函数差值: $\Delta E = \Delta t(S') \Delta t(S)$;
- 若 $\Delta E > 0$ (新解更优): 直接接受 S' 作为当前解;
- 若 $\Delta E \leq 0$ (新解较差): 以概率 $P = \exp\left(\frac{\Delta E}{T}\right)$ 接受 S',其中 T 为当前温度。温度越高,接受较差解的概率越大,利于跳出局部最优。

步骤 5 降温与迭代

- 每完成 L 次迭代后,接 $T = k \cdot T$ 降低温度;
- 重复 "邻域搜索 \rightarrow 接受准则 \rightarrow 降温"过程,直至温度 $T \leq T_{\text{end}}$ 。

步骤 6 终止与最优解输出

迭代终止后,输出历史最优解 $S^*=(\alpha^*,v_{\mathrm{FY1}}^*)$ 及其对应的最大有效遮蔽时间 Δt^* 。按照上述算法思路,利用 Python 求解得

图 1