Best Response, Nash Equilibrium

By Marzie Nilipour Spring 2023

	X	Y	Z
A	2, 1	0, 1	1,0
B	0, 1	2, 1	1,0
C	1,1	1,0	0,0
D	1,0	0, 1	0,0

- Weakly Dominated strategy for player1?
- Weakly Dominated strategy for player2?

	X	Y	Z
A	2, 1	0, 1	1,0
B	0, 1	2, 1	1,0
C	1, 1	1,0	0,0
D	1,0	0, 1	0,0

- Weakly Dominated strategy for player1? D is Weakly Dominated by A.
- Weakly Dominated strategy for player2? Z is Weakly Dominated by X or Y.

After elimination D,Z:

$$egin{array}{c|cccc} X & Y \\ A & 2,1 & 0,1 \\ B & 0,1 & 2,1 \\ C & 1,1 & 1,0 \\ \hline \end{array}$$

- Now, Weakly Dominated strategy for player1?
- Weakly Dominated strategy for player2?

After elimination D,Z:

$$egin{array}{c|cccc} X & Y \\ A & 2,1 & 0,1 \\ B & 0,1 & 2,1 \\ C & 1,1 & 1,0 \\ \hline \end{array}$$

- Now, Weakly Dominated strategy for player1? No
- Weakly Dominated strategy for player2? Y is W.D by X

• After elimination Y:

$$\begin{array}{c|c}
X \\
A & 2, 1 \\
B & 0, 1 \\
C & 1, 1
\end{array}$$

- Now, Weakly Dominated strategy for player1?
- Weakly Dominated strategy for player2?

After elimination Y:

$$\begin{array}{c|c}
X \\
A & 2,1 \\
B & 0,1 \\
C & 1,1
\end{array}$$

- Now, Weakly Dominated strategy for player1? B is W.D by A, then C is W.D by A.
- Weakly Dominated strategy for player2? No
- Finally, the reduced game is X $A \quad \boxed{2,1}$

- Reward for packet delivering to destination: 1
- Cost of packet forwarding: c
- $0 < c \ll 1$

Model this situation in normal form game.

- Reward for packet delivering to destination: 1
- Cost of packet forwarding: c
- $0 < c \ll 1$

• Model this situation in normal form game.

Gree	n	
Blue	Forward	Drop
Forward	(1-c, 1-c)	(-c, 1)
Drop	(1, -c)	(0, 0)

• Is it a symmetric game?

• Is it a symmetric game? Yes

• Is it a symmetric game? Yes

- What is best responses?
 - For player1:
 - For player2:

• Is it a symmetric game? Yes

- What is best responses?
 - For player1: br_1 (Forward) = Drop and br_1 (Drop) = Drop
 - For player2: $br_2(Forward) = Drop$ and $br_2(Drop) = Drop$

- Is it a symmetric game? Yes
- What is best responses?
 - For player1: br_1 (Forward) = Drop and br_1 (Drop) = Drop
 - For player2: br_2 (Forward) = Drop and br_2 (Drop) = Drop
- Similar to witch previous games?

- Is it a symmetric game? Yes
- What is best responses?
 - For player1: br_1 (Forward) = Drop and br_1 (Drop) = Drop
 - For player2: br_2 (Forward) = Drop and br_2 (Drop) = Drop
- Similar to witch previous games?
 - Prisoner's Dilemma

Best Response

Definition: Best Response

Player i's strategy \hat{s}_i is a BR to strategy s_{-i} of other players if:

$$u_i(\hat{s}_i, s_{-i}) \ge u_i(s'_i, s_{-i})$$
 for all s'_i in S_i or \hat{s}_i solves $\max u_i(s_i, s_{-i})$

• Question: This definition is similar to which of the previous definitions?

Reminder

Definition: Best Response

Player i's strategy \hat{s}_i is a BR to strategy s_{-i} of other players if:

$$u_i(\hat{s}_i, s_{-i}) \ge u_i(s'_i, s_{-i})$$
 for all s'_i in S_i or \hat{s}_i solves $max \ u_i(s_i, s_{-i})$

Definition: Strict dominance

We say player i's strategy s_i' is strictly dominated by player i's strategy s_i if:

$$u_{i}(s_{i}, s_{-i}) > u_{i}(s_{i}', s_{-i})$$
 for all s_{-i}

Best response vs. Strict dominance

- $S_{-i} = [S_1, ..., S_{i-1}, S_{i+1}, ..., S_n]$
- $S = [S_{-i}, S_i]$

- S.D: for all other players strategies (S_{-i})
- BR: for all player i's strategies $(S'_i in S_i)$

Main Lesson

Rational players don't choose a strategy that is never a Best Response!

About Nash

- John Nash (1928, 2015)
- Princeton Mathematics Department
- Economic Nobel prize at 1994
- Abel Prize at 2015

Nash Equilibrium

All players simultaneously play best response to others

Definition (1): Nash Equilibrium

A strategy profile $(s_1^*, s_2^*, ..., s_N^*)$ is a **Nash Equilibrium (NE)** if, for each i, her choice s_i^* is a best response to the other players' choices s_{i}^*

Nash Equilibrium = Mutual best responses

Nash Equilibrium

Definition (2): Nash Equilibrium

At Nash Equilibrium no player can increase its payoff by deviating unilaterally.

No regret for every player!

Nash Equilibrium

Definition (3): Nash Equilibrium

Strategy profile s* constitutes a **Nash Equilibrium** if, for each player *i*,

Where: $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*), \forall s_i \in S_i$

 $u_i \in U$ utility function of player i

 $s_i \in S_i$ strategy of player i

Challenges

Does any game have a Nash equilibrium?

• Is there a game with more than one Nash equilibrium?

		Player 2		
		I	С	r
	U	0,4	4,0	5,3
Player 1	М	4,0	0,4	5,3
	D	3,5	3,5	6,6

• NE=?

			Player 2	
		I	С	r
	U	0,4	4,0	5,3
Player 1	M	4,0	0,4	5,3
	D	3,5	3,5	6,6

Definition1: What is best responses?

$$\Rightarrow$$
 BR₁(I) = BR₂(U) =
 \Rightarrow BR₁(c) = BR₂(M) =
 \Rightarrow BR₁(r) = BR₂(D) =

Definition1: What is best responses?

$$\Leftrightarrow BR_1(I) = M$$
 $BR_2(U) = I$
 $\Leftrightarrow BR_1(c) = U$ $BR_2(M) = c$
 $\Leftrightarrow BR_1(r) = D$ $BR_2(D) = r$

• NE = (D,r)

		1	Player 2	r
	U	0,4	4,0	5,3
Player 1	М	4,0	0,4	5,3
	D	3,5	3,5	6,6

- Definition2: deviation unilaterally?
 - If $s^* = (U, l)$, then deviation is profitable?
 - If $s^* = (U, c)$, then deviation is profitable?
 - If $s^* = (U, r)$, then deviation is profitable?
 - •
 - If $s^* = (D, c)$, then deviation is profitable?
 - If $s^* = (D, r)$, then deviation is profitable?

		1	Player 2	r
	U	0,4	4,0	5,3
Player 1	М	4,0	0,4	5,3
	D	3,5	3,5	6,6

- Definition2: deviation unilaterally?
 - If $s^* = (U, l)$, then deviation is profitable? Yes
 - If $s^* = (U, c)$, then deviation is profitable? Yes
 - If $s^* = (U, r)$, then deviation is profitable? Yes
 - •
 - If $s^* = (D, c)$, then deviation is profitable? Yes
 - If $s^* = (D, r)$, then deviation is profitable? No for each player

NE for Prisoner's Dilemma game?

• NE for Driving game (coordination game)?

	C	D		Left	Right
C	-1, -1	-4,0	Left	1,1	0,0
D	0, -4	-3, -3	Right	0,0	1,1

- NE for Prisoner's Dilemma game?
 - NE = (D,D)
- NE for Driving game (coordination game)?
 - NE = (Left, Left) and (Right, Right)

- Pick a number game
- What is NE for n players?
 - NE = (1,1,...,1)

- Matching Penny game
 - One player wants to match, other player wants to mismatch
- What is NE?

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

- Matching Penny game
- What is NE?
 - No pure NE

- Battle of the sexes (BS) game
- What is NE?

- Battle of the sexes (BS) game
- What is NE?
 - NE = (B, B) and (F, F)

First Theorem

• Iterated Elimination of Strictly Dominated Strategies (IESDS)

If G is a finite game and solved by IESDS, then the resulting outcome is unique NE of G. (order independent)

Second Theorem

Iterated Elimination of Weakly Dominated Strategies (IEWDS)

If G is a finite game and solved by IEWDS, then the resulting outcome is a Nash equilibria of G.

This outcome does not need to be unique. (order dependent)

Third Theorem

Iterated Elimination of Never Best Responses (IENBR)

If G is a finite game and solved by IENBR, then the resulting outcome is unique NE. (order independent)

Analyzing Games

• From the point of view of an outside observer, can some strategy profiles of a game be said to be better than others?

Are there ways to prefer one profile to another?

Pareto Optimality

Informal Definition

Definition

A strategy profile is pareto optimal if it is not possible to increase the payoff of any player without decreasing the payoff of another player.

- Driving game
- Is there any pareto optimal?

	Left	Right
Left	1,1	0,0
Right	0,0	1,1

- Driving game
- Is there any pareto optimal?
 - PO = (left,left) and (right,right)

- PD game
- Is there any pareto optimal?

$$\begin{array}{c|cc} C & D \\ \hline C & -1, -1 & -4, 0 \\ \hline D & 0, -4 & -3, -3 \end{array}$$

- PD game
- Is there any pareto optimal?
 - PO = (C,C) and (C,D) and (D,D)

Pareto Dominance

• Sometimes, one strategy profile s is at least as good for every agent as another profile s', and there is some agent who strictly prefers s to s'.

• In this case, it seems reasonable to say that s is better than s' we say that s Pareto-dominates s'.

Pareto Optimality

Formal Definition

Definition (Pareto Optimality)

A profile s^* Pareto-optimal if there is no other profile that Pareto-dominates it.