Sur une mesure f des matrices binaires

Le Fay Yvann

Juin 2018

L'objet de ce document est d'étudier les propriétés d'une fonction mesurant en quelque sorte une difficulté (on détaillera à la suite ce que l'on entend par là) d'une matrice binaire.

1 Outils préalables

1.1 Fonction de padding p

Il nous sera nécessaire d'introduire une notation correspondant à un processus de padding d'une matrice carrée $\bf A$ d'ordre n.

$$\mathfrak{p}: \mathcal{M}_{n^2} \to \mathcal{M}_{(n+2)^2}$$

$$: \mathbf{A} = \begin{bmatrix} a_{n1} & \dots & a_{nn} \\ \vdots & \ddots & \vdots \\ a_{11} & \dots & a_{1n} \end{bmatrix}_{n \times n} \mapsto \begin{bmatrix} 0 & \dots & 0 \\ \vdots & \mathbf{A} & \vdots \\ 0 & \dots & 0 \end{bmatrix}_{(n+2) \times (n+2)}.$$

Une autre manière d'écrire \mathfrak{p} est $\mathfrak{p}((a_{i,j})_{(i,j)\in [1:n]^2}) = ((\mathbb{1}_{(i,j)\in [1:n]^2}a_{i,j})_{(i,j)\in [0:n+1]^2}).$

1.2 Fonction des vosins d'ordre K, \mathfrak{v}

On définit la fonction de voisinage $\mathfrak v$ d'ordre K de (i,j) d'une matrice carrée $\mathbf A$ de la manière suivante

$$\mathfrak{v}((i,j),\mathbf{A},K) = (a_{i+n,j+m})_{(n,m)\in[-K;K]^2} \in \mathcal{M}_{(2K+1)^2}.$$

La matrice créee a alors pour taille de structure (c'est-à-dire que ces coefficients peuvent ne pas être définis ces dimensions), $(2K+1)^2$. Si l'on ne renseigne aucune coordonnées alors on prend par défaut le centre de la matrice carrée comme étant les coordonnées de départ, noté c = (n/2, n/2), le centre de la matrice créée est (i, j).

1.3 Notion de sous-matrice

On appelle une sous-matrice \mathbf{A}^* de \mathbf{A} , une matrice qui a pour éléments de l'ensemble de coefficients des coefficients de \mathbf{A} à coordonnées incluses dans $\mathfrak{C}(\mathbf{A})$, ainsi

$$\mathbf{A}^* \subset (\mathbf{A} = (a_{ij})_{(ij) \in \mathfrak{C}(\mathbf{A})}) \iff \mathbf{A}^* = (a_{ij})_{(ij) \in \mathfrak{C}(\mathbf{A}^*) \subset \mathfrak{C}(\mathbf{A})}.$$

Ainsi on a par exemple $\mathbf{A} \subset \mathfrak{p}(\mathbf{A})$, une notion assez naturelle.

1.4 Coordonnées d'une matrice

On déclare la fonction \mathfrak{C} qui à une matrice $(a_{ij})_{(i,j)\in C}$ renvoit C.

1.5 Fonction OU σ d'une matrice

La fonction OU de $\mathbf{A} = (a_{ij})_{(ij) \in \mathfrak{C}(\mathbf{A})}$ n'est rien d'autre que la somme des coefficients a_{ij} ,

$$\sigma(\mathbf{A}) = \sum_{(ij) \in \mathfrak{C}(\mathbf{A})} a_{ij}$$
$$= \operatorname{tr}(\mathbf{A}^{\top} \mathbf{A}), \quad \forall \mathbf{A} \in \mathcal{M}_{n \times n} \{0, 1\}.$$

1.6 Fonction ET π d'une matrice

La fonction ET de A n'est rien d'autre que le produit des coefficients de A,

$$\pi(\mathbf{A}) = \prod_{a_{ij} \in \mathbf{A}} a_{ij}.$$

1.7 Fonction de concaténation & de matrices

On définit la fonction $\mathfrak k$ de concaténation de j^2 fois la matrice carrée d'ordre $n, \mathbf A$ comme étant

$$\mathbf{f}: \mathcal{M}_{n^2} \to \mathcal{M}_{(nj)^2}$$

$$: \mathbf{A} = \begin{bmatrix} a_{n1} & \dots & a_{nn} \\ \vdots & \ddots & \vdots \\ a_{11} & \dots & a_{1n} \end{bmatrix}_{n \times n} \mapsto \begin{bmatrix} \mathbf{A} & \dots & \mathbf{A} \\ \vdots & \mathbf{A} & \vdots \\ \mathbf{A} & \dots & \mathbf{A} \end{bmatrix}_{(nj) \times (nj)}.$$

$2 \quad \mathfrak{g} \text{ et } \mathfrak{R}$

2.1 L'ensemble $\mathfrak R$ des matrices binaires $\mathfrak g$ -équivalentes de degré n

2.1.1 Définitions

On introduit ici un ensemble de matrices binaires très intéressant dans le cadre de l'étude de \mathfrak{g} . On note $\mathfrak{R}(n)$, l'ensemble des matrices binaires \mathfrak{g} -équivalentes de degré n, il est défini par

$$\Re(n) = \{ \mathbf{A} \in \mathcal{M}_{3\times 3}\{0,1\} : a_{ij}\sigma(\mathbf{A} \circ \mathbf{C}_{+}) = n \}, \quad \text{où } \mathbf{C}_{+} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

2

2.1.2 Les ensembles

Ici \star dénote un nombre dans $\{0,1\}$, à chaque apparition, elle est indépendante par rapport aux autres apparitions (i.e ce n'est pas la même \star).

$$\mathfrak{R}(0) = \left\{ \begin{bmatrix} \star & \star & \star \\ \star & 0 & \star \\ \star & \star & \star \\ \end{bmatrix} \right\}, \, \mathfrak{R}(1) = \left\{ \begin{bmatrix} \star & 0 & \star \\ 0 & 1 & 0 \\ \star & 0 & \star \\ \end{bmatrix} \right\}, \\ \mathfrak{R}(2) = \left\{ \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 0 \\ \star & 0 & \star \\ \end{bmatrix} \right\}, \, \begin{bmatrix} \star & 0 & \star \\ 1 & 1 & 0 \\ \star & 0 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 0 & \star \\ 0 & 1 & 1 \\ \star & 0 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 0 & \star \\ 0 & 1 & 1 \\ \star & 0 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 0 & \star \\ 0 & 1 & 1 \\ \star & 0 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 1 \\ \star & 0 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 1 \\ \star & 1 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 0 & \star \\ 1 & 1 & 1 \\ \star & 0 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 0 & \star \\ 1 & 1 & 0 \\ \star & 1 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 1 \\ \star & 1 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 0 & \star \\ 0 & 1 & 1 \\ \star & 1 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 1 \\ \star & 1 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 1 \\ \star & 1 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 1 \\ \star & 1 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 1 \\ \star & 1 & \star \\ \end{bmatrix}, \, \begin{bmatrix} \star & 1 & \star \\ 0 & 1 & 1 \\ \star & 1 & \star \\ \end{bmatrix}, \, \forall n \geq 6, \mathfrak{R}(n) = \{ \}.$$

2.1.3 Quelques propriétés

Proposition 1.

$$\forall \mathbf{A}, \mathbf{B} \in \mathfrak{R}(n), a_{ij}\sigma(\mathbf{AC}_{+}) = b_{ij}\sigma(\mathbf{BC}_{+}) = n.$$

Preuve. D'après la définition de $\Re(n)$.

Remarque. Si l'on se place dans le cas $n \le 0$, on peut se débarasser du coefficient du centre de la matrice devant sigma.

Proposition 2.

$$\forall \mathbf{A} \in \mathfrak{R}(n), n < \sigma(\mathbf{A}) < n + 4.$$

Preuve.

$$\forall \mathbf{A} \in \mathfrak{R}(n), n = a_{ij}\sigma \begin{bmatrix} 0 & a_{i+1j} & 0 \\ a_{ij-1} & a_{ij} & a_{ij+1} \\ 0 & a_{i-1j} & 0 \end{bmatrix} \le a_{ij}\sigma(\mathbf{A}) \le a_{ij}\sigma \begin{bmatrix} 1 & a_{i+1j} & 1 \\ a_{ij-1} & a_{ij} & a_{ij+1} \\ 1 & a_{i-1j} & 1 \end{bmatrix} = n+4.$$

Proposition 3.

$$\mathcal{M}_{3\times 3}\{0,1\} = \bigcup_{i=0}^{5} \Re(i).$$

Preuve. Il suffit de raisonner sur les cardinalités en remarquant que par définition, les $\Re(i)$ sont disjoints et inclus dans $\mathcal{M}_{3\times3}\{0,1\}, \, \forall 0 \leq n \neq m \leq 5, \Re(n) \cap \Re(m) = \{\}.$

$$|\bigcup_{i=0}^{5} \Re(i)| = \sum_{i=0}^{5} |\Re(i)| = 2^{8} + 2^{4} + 4 \times 2^{4} + 6 \times 2^{4} + 4 \times 2^{4} + 2^{4} = 2^{9}$$
$$= |\mathcal{M}_{3\times3}\{0,1\}|.$$

2.2 Mesure macroscopique $\mathfrak g$ d'une matrice binaire carrée d'ordre 3

2.2.1 Définition

On définit une première mesure \mathfrak{g} , appelée mesure macroscopique, puisqu'intervenant que sur des matrices carrée binaire d'ordre 3 (i.e, image de \mathfrak{v} d'ordre 1), qui nous permettra ensuite de définir la mesure \mathfrak{f} pour une matrice binaire carrée d'ordre n. On décide de 5 coefficients positifs α_i (on pourrait travailler sur les négatifs, mais ça rendrait impossible la formulation certaines inégalités).

$$\mathfrak{g}: \mathcal{M}_{3\times 3}\{0,1\} \to \mathbb{R}$$

$$: \mathbf{A} = \begin{bmatrix} a_{i+1j-1} & a_{i+1j} & a_{i+1j+1} \\ a_{ij-1} & a_{ij} & a_{ij+1} \\ a_{i-1j-1} & a_{i-1j} & a_{i-1j+1} \end{bmatrix} \mapsto \mathfrak{g}(\mathbf{A}).$$

 $\mathfrak{g}(\mathbf{A})$ peut s'écrire de plein de manières différentes et les fonctions que nous avons introduites vont nous permettre de mieux apercevoir les propriétés de \mathfrak{g} .

$$\mathfrak{g}(\mathbf{A}) = a_{ij}(\alpha_1 + \alpha_2(a_{ij+1} + a_{ij-1} + a_{i+1j} + a_{i-1j}) + \alpha_3(a_{i-1j}(a_{i+1j} + a_{ij-1} + a_{ij+1}) + a_{i+1j}(a_{ij-1} + a_{ij+1}) + a_{ij+1}a_{ij-1}) + \alpha_4(a_{i-1j}(a_{ij+1}(a_{ij-1} + a_{i+1j}) + a_{i+1j}a_{ij-1}) + a_{i+1j}a_{ij-1}a_{ij+1}) + \alpha_5 a_{i-1j}a_{i+1j}a_{ij-1}a_{ij+1}).$$

2.2.2 Propriétés

Proposition 4.

$$\forall \mathbf{A}, \mathbf{B} \in \mathfrak{R}(n), \mathfrak{g}(\mathbf{A}) = \mathfrak{g}(\mathbf{B}).$$

Preuve. L'un remarquera premièrement que \mathfrak{g} ne dépend pas des termes aux sommets, ainsi il suffit d'étudier respectivement, pour n=0,1,2,3,4,5, les 1,1,4,6,4,1 cas. On vérifiera que pour chaque n, l'expression de \mathfrak{g} pour chacun des cas correspondant, reste inchangée. L'expression de \mathfrak{g} a en fait été construite pour respecter cette propriété, en effet, les termes des a_{ij} permutent autour du centre sans passer par les sommets.

Proposition 5.

$$\forall \mathbf{A} \in \mathfrak{R}(n), \mathfrak{g}(\mathbf{A}) = \sum_{i=1}^{n} \alpha_i \binom{n-1}{i-1}.$$

Preuve. Par la proposition 4, il suffit de calculer $\mathfrak g$ pour une matrice $\mathbf A$ dans chacun des $\mathfrak R(i)$.

Proposition 6. \mathfrak{g} est une fonction croissante de n.

Preuve. Proposition 5.
$$\Box$$

Preuve. Remarquons que puisque les $a_{ij} \geq 0$ et que $n = a_{ij}(a_{i+1j} + a_{ij+1} + a_{ij-1} + a_{i-1j})$, n est une fonction croissante des a_{ij} (i.e de tous les a_{ij} , et inversement, les a_{ij} croient quand n croit), et plus particulièrement de ceux n'étant pas sur les sommets, or \mathfrak{g} est croissante de ces mêmes a_{ij} , donc \mathfrak{g} est croissante de n.

Proposition 7.

$$\forall \mathbf{A}^* \subset \mathbf{A}, \mathfrak{g}(\mathbf{A}^*) \leq \mathfrak{g}(\mathbf{A}).$$

Preuve. Il suffit de définir, artificiellement $a_{ij}^* = 0$ si $(ij) \in \mathfrak{C}(\mathbf{A}) - \mathfrak{C}(\mathbf{A}^*)$, afin de pouvoir poser \mathfrak{g} même si \mathbf{A}^* n'est pas remplie,

$$\forall \mathbf{A}^* \subset \mathbf{A}, \mathbf{A}^* = (a_{ij}^*)_{(ij) \in \mathfrak{C}(\mathbf{A}^*)} = \left(\left. \left\{ \begin{array}{ll} a_{ij} & \mathrm{si} \ (ij) \in \mathfrak{C}(\mathbf{A}^*) \\ 0 & \mathrm{sinon.} \end{array} \right. \right)_{(ij) \in \mathfrak{C}(\mathbf{A})}.$$

Finalement, on a $\forall (ij) \in \mathfrak{C}(\mathbf{A}) - \mathfrak{C}(\mathbf{A}^*), a_{ij}^* = 0 \leq a_{ij} \leq 1$, or \mathfrak{g} est une fonction croissante des a_{ij} (et a_{ij}^*), d'où l'inégalité voulue.

Remarque. L'égalité a lieu si et seulement si les coefficients dont a été privée \mathbf{A}^* sont sur les sommets ou si \mathbf{A}^* , $\mathbf{A} \in \mathfrak{R}(n)$.

2.3 Mesure globale \mathfrak{f} d'une sous matrice d'une matrice binaire carrée d'ordre n selon \mathfrak{g} d'ordre 3

2.3.1 Définitions

On définit \mathfrak{f} de \mathbf{A}^* dans l'environnement \mathbf{A} comme étant la somme des mesures macroscopiques \mathfrak{g} des matrices voisines d'ordre 1 aux coordonnées de \mathbf{A}^* .

$$f(\mathbf{A}^* \subset \mathbf{A}, \mathbf{A}) = \sum_{(i,j) \in \mathfrak{C}(\mathbf{A}^*)} \mathfrak{g}(\mathfrak{v}((i,j), \mathbf{A}, 1)).$$

Par soucis d'écriture, quand on notera $f(\mathbf{A})$, on entendra $f(\mathbf{A}, \mathfrak{p}(\mathbf{A}))$.

2.3.2 Propriétés

Proposition 8.

$$\mathfrak{f}(\mathbf{A}^*,\mathbf{A}) = \sum_{(i,j) \in \mathfrak{C}(\mathbf{A}^*)} \mathfrak{g}(\mathfrak{v}((i,j),\mathbf{A}\mathbf{C}_+,1)).$$

Preuve. L'opération \mathbf{AC}_+ consiste à mettre à 0 les coefficients des sommets, or \mathfrak{g} ne dépend pas des sommets, d'où l'égalité.

Remarque. On peut absolument remplacer C_+ par toute matrice carrée d'ordre 3 telle $\begin{pmatrix} 1 & 1 \end{pmatrix}$

que
$$\begin{pmatrix} 1 \\ 1 & 1 \\ 1 \end{pmatrix}$$
 soit incluse dans cette matrice.

Proposition 9. Pour toute matrice carrée **A** d'ordre n,

$$f(\mathbf{A}) \le f((1)_{(i,j) \in [1;n]^2})$$

$$= (n-2)^2(\alpha_1 + 4\alpha_2 + 6\alpha_3 + 4\alpha_4 + \alpha_5) + 4(n-2)(\alpha_1 + 3\alpha_2 + 3\alpha_3 + \alpha_4) + 4(\alpha_1 + 2\alpha_2 + \alpha_3).$$

Proposition 10.

$$f(\mathbf{A}^*, \mathbf{A}) + f(\mathbf{A} - \mathbf{A}^*, \mathbf{A}) = f(\mathbf{A}).$$

Preuve. Par la définition de \mathfrak{f} en remarquant que $\mathfrak{C}(\mathbf{A}) = \mathfrak{C}(\mathbf{A}^*) \sqcup \mathfrak{C}(\mathbf{A} - \mathbf{A}^*)$.

Proposition 11.

$$n\mathfrak{f}(\mathbf{A}) \leq \mathfrak{f}(\mathfrak{k}(\mathbf{A},n))$$

Remarque. Il y a égalité lorsque A a été paddée, $A = \mathfrak{p}(B)$.