UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CÂMPUS CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

Notas de aula

CCR: GEX101 - Lingu	agens formais e autôm	Criado em: 09/08/21	Alterado em:09/08/21		
Turma : 31508	Turno: Vespertino	Ano/Sem : 2021/1			
Encontro síncrono: 09/08/2021		Período Assíncrono: de 10			
Carga horária da sem	ana: 5ha		Professor: Braulio Mello		

Conteúdo: Autômato Finito (AFD e AFND), Teorema de determinização e minimização (Projeto: implementar gerador de AFD. Entrada: Gramática regular e/ou tokens. Saída: Autômato finito determinístico. Tema pode ser substituído ao longo do semestre). Apresentação Projeto até a penúltima semana letiva de aula. Sinc(5h)

Material de apoio

Aula síncrona na quarta dia 11/08: projeto prático

Discussão AvPEA-2

```
1) L(G) = \{x \mid x \in a^i b^j d^k \text{ onde } i, j, k > 0, i > k\}
S := aSd \mid aAd
A ::= aA \mid aB
B ::= bB | b
S \rightarrow aSd
   \rightarrow aaSdd
  → aaaAddd
  → aaaaBddd
2) L(G) = \{x \mid x \in (se, então, senao, op, opl, faça, até, \{,\})^* \text{ onde a linguagem permita estruturas}\}
    aninhadas de condição e repetição)}
EST ::= se opl então { EST } | se opl então { EST } senão { EST } | faça { EST } até opl | op
se opl então {
        se opl então { op } senão {
                 faça {
                         se opl então { op }
                 } até opl
```

```
}

EST → se opl então { EST }

→ se opl então { se opl então { EST } senão { EST } }

→ se opl então { se opl então { op } senão { EST } }

→ se opl então { se opl então { op } senão { EST } }

→ se opl então { se opl então { op } senão { faça { EST } até opl } }

→ se opl então { se opl então { op } senão { faça { se opl então { EST } } até opl } }

→ se opl então { se opl então { op } senão { faça { se opl então { op } } até opl } }
```

Determinização e minimização (eliminação de inalcançáveis e mortos, elasse de equivalência) de AFs

```
S ::= aB | aC | bD | cC | d
A ::= bC | aD | aB
B ::= bD | cC | ε
C ::= dD
D ::= bB | bC
```

Determinização do AFND

AFND					AFD				
δ	a	b	С	d	δ	a	b	С	d
S	B, C	D	С	X	S	[BC]	D	С	X
*X	-	-	-	-	*[BC]	-	D	С	D
A	D, B	Е	-	1	D	-	[BC]	-	-
*B	-	D	С	-	С	-	-	-	D
С	-	_	-	D	*X	_	-	_	-
D	-	В,С	-	-					

Inalcançáveis: não são alcançados, pelo fecho transitivo, a partir de S

mortos: A partir do estado A, não alcançam estados finais e A não é final. (pag 24 apostila)

S ::= $0B | 1A | 1 | \epsilon$ A ::= $0B | \epsilon$ B ::= 0C | 0 | 1DC ::= 0B | 1A | 1

 $D := 1C \mid 1$

AFND AFD

1 11 1 12			 				
δ	0	1		δ	0	1	
* → S	В	A,X		* - S	В	[AX]	
*X	-	1		В	[CY]	D	
*A	В	ı		*[AX]	В	-	
В	C, Y	D		*[CY]	В	[AZ]	
*Y	-	1		D	1	[CW]	
С	В	A,Z		*[AZ]	В	-	
*Z	-	-		*[CW]	В	[AZ]	
D	-	C, W					
*W	-	-					

Construir AFND, eliminar inalcançáveis e mortos, e determinizar alcançáveis:

S {B, A, X, C, Y, D, W, Z

A {B

B {C, Y, D

 $C \{B, A, Z\}$

D {C, W

Vivos:

B {C, Y, D, B, A, Z, ... (caso não houvesse estado final nos alcançaveis de B, os alcançáveis de C também são de B)

Atividade orientada

Objetivo: Compreensão do processo de determinização e minimização de AF's

Construir o AF para cada uma das gramáticas a seguir, eliminar estados mortos e inalcançáveis e determinizar os AFNDs:

(1)

 $S := aS \mid aB$

 $A := aC \mid bA$

B := aS

 $C := bA \mid a$

S ::= a

 $S := aB \mid cC \mid dC$

 $A := bC \mid aE$

 $B ::= bD \mid cC \mid dC$

 $C := dD \mid \varepsilon$

 $D := bB \mid bC$

 $E := bB \mid cA$

Data/horário limite para entrega (upload no Moodle):

Entrega até 15/08/21 as 23h em arquivo pdf (upload moodle).

Atividade Avaliativa

PROJETO PRÁTICO:

Construção de uma aplicação para construção, determinização e minimização (eliminação de mortos e inalcançáveis) de autômatos finitos.

Objetivo:

Compreender o processo de determinização/minimização de AFND's. Implementar funcionalidade a ser utilizada na disciplina de compiladores para implementação de analisador léxico.

Descrição:

Entrada: arquivo com a relação de tokens e/ou GRs dos tokens de uma linguagem hipotética.

Saída: Autômato Finito Determinístico (AFD) e livre de estados mortos e inalcançáveis.

A aplicação executa a carga de tokens (palavras reservadas, operadores, símbolos especiais, ...) e Gramáticas Regulares (GR) a partir de um arquivo fonte (texto). Exemplo de arquivo de entrada:

Usar notação BNF para as GRs.

Para cada token e gramática, a aplicação gera o conjunto de transições rotuladas em um único AF durante o procedimento de carga. No AF, apenas o estado inicial é compartilhado entre diferentes tokens/gramáticas. Os demais estados são exclusivos para as transições dos demais símbolos dos tokens e/ou estados das GRs.

O AF será indeterminístico quando ocorrer uma ou mais situações em que dois tokens ou sentenças definidas por GR iniciam pelo mesmo símbolo.

Para os tokens e GR acima exemplificados, teremos o seguinte AFND:

δ	S	e	n	t	a	0	i	u
S	A, H	C, M			M	M	M	M
A		В						
*B								
С			D					
D				E				
E					F			
F						G		
*G								
Н		I						
I			J					
J					K			
K						L		
*L								
*M		M			M	M	M	M

Neste AF exemplo, os estados finais e respectivos tokens são:

B: se G: entao L: senao M: variavel

Determinização:

Aplicar o teorema de determinização para obter o AFD. A aplicação deve permitir o acompanhamento do processo de determinização e a visualização do AFD gerado.

Minimização:

O AFD resultante deve ser submetido ao processo de minimização. No AFD final os estados podem ser representados por números. Os símbolos podem ser representados pelo correspondente numérico de acordo com a tabela ASCII.

Estado de erro:

Ao final da minimização, acrescentar um último estado final. Este será o estado de erro. Todas as células da tabela de transição (AFD) não mapeadas devem ser ajustadas para levar (transição) ao estado de erro. Todas as transições a partir do estado de erro pernanecem no estado de erro.

Entrega (até penúltima semana letiva de aula):

- Código fonte da aplicação

- Relatório, em formato de artigo, contendo: identificação autores, resumo, introdução, referencial teórico básico (conceitos essenciais para compreensão do trabalho e trabalhos correlatos), especificação e implementação da solução para gerar AFDs, conclusão e referencial bibliográfico.
- upload no moodle em arquivo único antes da apresentação
- a penúltima semana letiva de aula é a data limite para apresentação. O trabalho pode ser apresentado assim que estiver pronto no decorrer do semestre.
- a última semana letiva de aula pode ser utilizada para apresentar o trabalho como oportunidade de recuperação de rendimento.

Apresentação e avaliação:

- Trabalho individual ou em duplas
- Aplicação em funcionamento e artigo: 50% da nota
- Apresentação (demonstração da aplicação e arguição): 50% da nota
- Resultados mínimos para que o trabalho possa ser apresentado: composição do AFND, determinização e relatório no formato de artigo.
- Qualidade da solução, requisitos contemplados, domínio do processo de especificação e implantação da aplicação, teor/clareza/conteúdo do artigo são os principais referenciais para composição da nota.

Avaliação:

Obrigatório: Construção e determinização do AF: 9,0

Minimização (funcionalidade para eliminar estados mortos e inalcançáveis): 1,0

Data/horário limite para entrega (upload no Moodle) e apresentação em sessão síncrona:

Entrega e apresentação até 13/10/21 às 23h.

Entrega e apresentação até 20/10/21 às 23h na modalidade de recuperação de rendimento.