Statistical Methods in Artificial Intelligence CSE471 - Monsoon 2016 : Lecture 08

Avinash Sharma CVIT, IIIT Hyderabad

Lecture Plan

- Recap
- Backpropagation as Feature Mapping
- Practical Aspects of Backpropagation
- Additional Networks
 - Deep Learning & Convolution Networks (ConvNet)
 - Recurrent Networks
 - RBF Networks

Backpropagation in NN

Backpropagation in Neural Networks

•
$$J(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{c} (t_k - z_k)^2 = \frac{1}{2} ||\mathbf{t} - \mathbf{z}||^2$$

•
$$\Delta \mathbf{w} = -\eta \frac{\partial J}{\partial \mathbf{w}}$$
, $\Delta w_{pq} = -\eta \frac{\partial J}{\partial w_{pq}}$

•
$$\Delta w_{kj} = \eta \delta_k y_j = \eta (t_k - z_k) f'(net_k) y_j$$

•
$$\Delta w_{ji} = \eta \delta_j x_i = \eta \left[\sum_{k=1}^c w_{kj} \delta_k \right] f'(net_j) x_i$$

Modelling the Non-linearity

Backpropagation as Feature Mapping

- Output of hidden layers turns out to be linearly separable.
- Input-hidden layer achieves non-linear transform.
- Hidden-output layer feed forward only achieves a linear classification.

Backpropagation as Feature Mapping

- Output of hidden layers turns out to be linearly separable.
- Input-hidden layer achieves non-linear transform.
- Hidden-output layer feed forward only achieves a linear classification.
- Therefore, adding more hidden units might improve the performance

Backpropagation as Feature Mapping

- Activation Function
 - $-f(\cdot)$ should be **Non-linear**
 - $-f(\cdot)$ should **Saturate**
 - $-f(\cdot)$ should be **Continuous & Smooth**
 - $-f'(\cdot)$ should be **Defined**
 - $-f(\cdot)$ can have **Monotonicity**
 - $-f(\cdot)$ can be *linear for small values of net*

Scaling of Input

$$- X = [x_1, \cdots, x_m]^T_{m \times d}$$

$$-\widetilde{X} = X - mean(X)$$
 (Centering of Data)

$$-X_{Norm}=\widetilde{X}/\sigma$$
 (Colu

(Column-wise division by Standard Deviation of each dimension)

Scaling of Input

```
-X = [x_1, \cdots, x_m]^T_{m \times d}
-\widetilde{X} = X - mean(X) (Centering of Data)
-X_{Norm} = \widetilde{X}/\sigma (Column-wise division by Standard Deviation of each dimension)
```

Target Values

- Use +1 and -1 or any real value in this range as output
- Related to saturation value of the activation function

Training with Noise

 Add random noise to original training samples for generating more training samples

Manufacturing Data

 Add translation and rotation transforms to original training data to generate more rich training data samples

Number of Hidden Units

- Too few leads to high test error due to lack of expressibility
- Too many leads to overfitting to training data
- Choose such that total number of weights = m/10.

Weight Initialization

- Do not initialize with zero weights
- Use both random positive & negative weights as data is standardized

$$-1/\sqrt{d} < w_{ji} < +1/\sqrt{d}$$
 and $-1/\sqrt{nH} < w_{kj} < +1/\sqrt{nH}$

Learning Rates

- For quadratic error criterion function J:

$$\eta_{opt} = \left(\frac{\partial^2 J}{\partial \mathbf{w}^2}\right)^{-1}$$

Learning Rates

For quadratic error criterion function *J* :

$$\eta_{opt} = \left(\frac{\partial^2 J}{\partial \mathbf{w}^2}\right)^{-1}$$

Momentum

- Continue with inertia in each weight update
- $-\mathbf{w}(m+1) = \mathbf{w}(m) + (1-\alpha)\Delta\mathbf{w}(m) + \alpha\Delta\mathbf{w}(m-1)$

Learning Rates

– For quadratic error criterion function *J* :

$$\eta_{opt} = \left(\frac{\partial^2 J}{\partial \mathbf{w}^2}\right)^{-1}$$

Momentum

Continue with inertia in each weight update

$$-\mathbf{w}(m+1) = \mathbf{w}(m) + (1-\alpha)\Delta\mathbf{w}(m) + \alpha\Delta\mathbf{w}(m-1)$$

Weight Decay

- $-w_{new} = w_{old}(1 \epsilon)$
- Weights that do not affect the error function will eventually become zero.

Hints

- Add ancillary units to output only for training phase.
- In testing phase remove these extra units and related weights.

Hints

- Add ancillary units to output only for training phase.
- In testing phase remove these extra units and related weights

Online/Batch/Stochastic Training

- Stochastic training is mostly preferred over batch
- Online is rarely used for tasks where storing all data samples if prohibitive

Hints

- Add ancillary units to output only for training phase.
- In testing phase remove these extra units and related weights

Online/Batch/Stochastic Training

- Stochastic training is mostly preferred over batch
- Online is rarely used for tasks where storing all data samles if prohibitive

Stopped Training

- Excessive training can lead to poor generalization
- Stopping training before low error reached is good to avoid overfitting

- Number of Hidden Layers
 - Depends on complexity of classification problem
 - Unnecessary layers can cause minimization to caught into local minima
- Criterion Function
 - Entropy based information theoretic error functions
 - Minkowski error function (generalization of sum of squared error)

More suitable for image data.

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Live Demo at http://cs231n.stanford.edu/

- **INPUT** [32x32x3] will hold the raw pixel values of the image,.
- CONV [32x32x12] layer will compute the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and the region they are connected to in the input volume.
- RELU layer will apply an elementwise activation function
- **POOL** [16x16x12] layer will perform a downsampling operation along the spatial dimensions (width, height).
- **FC** (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of the 10 numbers correspond to a class score.

Recurrent Networks

Useful for time-dependent signals with short periodic structures

RBF Networks

- Radial functions are a special class of function
- Their characteristic feature is that their response decreases (or increases) monotonically with distance from a center point
- The center, the distance scale, and the precise shape of the radial function are parameters of the model.

RBF Networks

RBF Networks

•
$$z_k(\mathbf{x}) = \sum_{j=1}^{nH} w_{kj} \varphi_j(\mathbf{x})$$

• Let
$$oldsymbol{\Phi}_{m imes nH} = egin{bmatrix} \varphi_1(oldsymbol{x}_1) & \dots & \varphi_{nH}(oldsymbol{x}_1) \\ \vdots & \dots & \vdots \\ \varphi_1(oldsymbol{x}_m) & \dots & \varphi_{nH}(oldsymbol{x}_m) \end{bmatrix}$$

• Let
$$T_{m \times 1} = [t_1 \ ... \ t_m]^T$$

•
$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} ||z_i - t_i||^2$$

•
$$\Phi^T \Phi W^T = \Phi^T T$$

•
$$W^T = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T T = \boldsymbol{\Phi}^{\dagger} T$$

• BP can be used if $z_k(\mathbf{x}) = f\left(\sum_{j=1}^{nH} w_{kj} \varphi_j(\mathbf{x})\right)$ for any non-linear f