SF1626 Flervariabelanalys Föreläsning 1

Henrik Shahgholian

Vid Institutionen för matematik, KTH

VT 2018, Period 3

SF1626 Flervariabelanalys

Välkomna till kursen!

Föreläsare: Henrik Shahgholian,

Examinator: Henrik Shahgholian

Biträdande Examinator: Hans Thunberg

Hemsida All information finns på Canvas: https://kth.instructure.com/courses/2523

Ni ska aktiv ta del av den information som finns där.

SF1626 Flervariabelanalys

Rekommenderad Studieteknik för kursen

- Innan föreläsningen: Läs aktuella avsnittet samt se film på http://www.matematikblogg.se/video.html Komplettera gärna med andra web-filmer om flervariabel.
- Under föreläsningen: Genomgång och aktivt deltagande av studenter (quizzes).
- Efter föreläsningen: Arbete med uppgifter i boken, samt förståelse.
- Rekommenderas aktiv använding av: http://demonstrations.wolfram.com/
- Under övningarna: Se föreslagna uppgifter
- Bouns frå Seminarier kan avgöra er betyg (livslina).

SF1626 Flervariabelanalys

Vad handlar kursen om och vad ska vi lära oss

- En fortsättning på Envariabelanalys
- Funktioner av flera variabler samt vektorvärda funktioner.
- Gränsvärde i olika riktningar (samt kontinuitet)
- Derivering i olika riktningar
- Integration i planet och rymden (area, volym, massa)
- Tilämpningar: optimeringsproblem, flödesberäkningar, Arbete, ...

Nödvändiga förkunskaper

Mycket goda kunskaper i Envariabel och Linjär algebra.

De euklidiska¹ rummen \mathbb{R}^n . (I de flesta fallen är $n \leq 3$)

Euklidisk geometri i \mathbb{R}^n : Begrepp som ska kunnas

- Standardbas: Boken använder i, j, k, Lämpligare för tavelpresentation är $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, ...$
- Punkter i \mathbb{R}^n , $x = (x_1, x_2, \dots, x_n)$
- Avstånd $\|\overrightarrow{P_2P_1}\| = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
- Skalärprodukt $\mathbf{v} \cdot \mathbf{u} = v_1 u_1 + v_2 u_2 + \cdots + v_n u_n$
- Norm/Längd/Absolutbelopp $\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + \cdots + u_n^2}$
- Ortogonalitet $\mathbf{v} \cdot \mathbf{u} = 0$
- Kryssprodukt (vektorprodukt)
- Linjer och plan

¹Varför kallas det euklidiska? Vad finns det för annat rum som inte är euklidiska?

Exempel:

Vi ritar grafisk de punkter som representerar

1)
$$y = 2x - 1$$
 i *xy*-planet.

2)
$$y = 2x - 1$$
 i $xyz - rummet$.

Figur: y = 2x - 1 i planet.

Figur: y = 2x - 1 i rummet. Här finns även z-riktningen.

Som bekant ges ekvationen för en linje i planet genom

$$ax + by = d$$
.

Samma ekvation betraktad i rummet representerar ett plan! (Även om *z*-variablen saknas i ekvationen.)

Ekvation för plan i rummet ges allmänt genom

$$ax + by + cz = d$$
.

Vad representerar ekvationen

$$2x = 5$$
 i \mathbb{R}^2 ? i \mathbb{R}^3 ?

Topologiska begrepp i \mathbb{R}^n , sidan 569

- i) Omgivning / Öppen boll. $B_r(\mathbf{a}) = {\mathbf{x} : |\mathbf{x} \mathbf{a}| < r}$
- ii) En punkt **a** sägs vara en **inre punkt** till en mängd *M* om **a** har en omgivning som ligger helt i *M*.
- iii) En punkt **a** sägs vara en **yttre punkt** till en mängd *M* om **a** har en omgivning som ligger helt utanför *M*.
- iv) En punkt a sägs vara en randpunkt till en mängd M om varje omgivning till a både innehåller punkter som ligger i M och punkter som inte ligger i M.
- v) En mängd M sägs vara öppen om varje punkt a ∈ M har en omgivning som ligger helt i M (alla punkter i M är då inre punkter)
- vi) En mängd *M* är sägs vara **sluten** om dess komplement är en öppen mängd (alla randpunkter tillhör då *M*)

Vi ritar nedanstående mängder i \mathbb{R}^2

- $B = \{(x, y) \in \mathbb{R}^2 : x < 1\}.$
- $C = \{(x, y) \in \mathbb{R}^2 : y = x^2\}.$
- $D = \{(x, y) \in \mathbb{R}^2 : y > x^2, y < x + 1\}.$

Vilka av dessa mängder är öppna/slutna/ingendera? Bestäm även randpunkter.

Exempel på Andragradskurvor (några exempel)

Rita bild:

- Parabel $y = x^2$,
- Ellips $\frac{x^2}{9} + \frac{y^2}{4} = 1$
- $\blacksquare \text{ Hyperbel } \frac{x^2}{9} \frac{y^2}{4} = 1$

Quiz (hemma):

För alla $a \in \mathbb{R}$ (positiv, negativ, noll) illustrera med bild mängden

$$y^2 - x^2 = a.$$

Polära koordinater

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \qquad \text{där} \qquad \begin{cases} r = \sqrt{x^2 + y^2} \\ 0 \le \theta < 2\pi \end{cases}$$

r är avståndet till origo och θ är vinkeln med positiva x-axeln.

Quiz (här): Beskriv i polära koordinater området som ges av

1)
$$x^2 + y^2 < 1$$
, 2) $x^2 - 2x + y^2 = 3$.

Quiz (utmaning): Rita området och beskriv det i polära Koord.

$$\{(x,y): x^2+y^2 \le 1, x \le |y|, y > 0\}.$$

Quiz (hemma): Rita dessa områden

i)
$$1 \le x^2 + y^2 \le 2$$
, ii) $y \ge |x|$,
iii) $\{(x,y): x^2 + y^2 \le 1, x \ge |y|\}$.

parametrisering: Några exempel

Ex1) Kurvan $y = 2x^2 + 1$, -2 < x < 2 kan parametriseras genom valet t = x och

$$(x,y) = (t,2t^2+1)$$
 $-2 < t < 2.$

Ex2) Kurvan $x^2 + 2x + y^2 - 4y = 4$ parametriseras genom att först kvadratkomplettera: $(x + 1)^2 + (y - 2)^2 = 9$ och sen använda polära koordinater

$$\begin{cases} x+1=r\cos\theta\\ y-2=r\sin\theta \end{cases} \qquad \text{där} \qquad \begin{cases} x=1+r\cos\theta\\ y=2+r\sin\theta \end{cases}$$

där r = 3 (obs $r^2 = 9$) och $0 \le \theta < 2\pi$. Rita bild!

Dagens minitenta.

Rita mängderna i \mathbb{R}^2 och avgör huruvida de är öppna/slutna/ingendera.

$$A = \{(x, y) : |x + 2y| \le 1\}$$

$$B = \{(x, y) : 0 \le x \le y \le 1\}$$

$$C = \{(x, y) : x < y < 1, x < 0\}$$

$$D = \{(x, y): 2x^2 + 5y^2 \le 6\}$$

Något att tänka på!

Ge ett exempel på en Clopen mängd (både öppen och sluten).

Andragradsytor (några exempel)

1) Paraboloid:
$$z = 3x^2 + 2y^2$$

2) Ellipsoid:
$$\frac{x^2}{7} + \frac{y^2}{3} + \frac{z^2}{2} = 1$$

3) Cylinder:
$$x^2 + 2y^2 = 3$$

4) Hyperboloid:
$$\frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{3} = 1$$

Nya koordinater i \mathbb{R}^3

Cylindriska koordinater

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2} \text{ avståndet till } z - \text{axeln} \\ \theta \text{ är vinkeln med positiva x-axeln} \\ \text{i xy-planet} \end{cases}$$

Se: http://demonstrations.wolfram.com/CylindricalCoordinates/

Nya koordinater i \mathbb{R}^3

Sfäriska koordinater

Se http://demonstrations.wolfram.com/SphericalCoordinates/

$$\begin{cases} x = R \sin \phi \cos \theta \\ y = R \sin \phi \sin \theta \\ z = R \cos \phi \end{cases} \qquad \text{där} \qquad \begin{cases} R = \sqrt{x^2 + y^2 + z^2} \\ 0 \le \theta < 2\pi \\ 0 \le \phi \le \pi \end{cases}$$

Exempel i \mathbb{R}^3

Beskriv följande områden med föreslagen koordinatsystem.

- 1) Cylindriska koordinater: $r \le 2$, x = y.
- 2) Cylindriska koordinater:

$$x^2 + y^2 \le 1$$
, $x \ge 0$, $y \ge 0$, $-1 \le z \le 1$.

- 3) Sfäriska koordinater: $R \le 2$, z = 1.
- 4) Sfäriska koordinater:

$$x^2 + y^2 + z^2 \le 1$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

Läxa till nästa gång

Gör detta idag:

- Registrera er på kursen
- Fixa konto på scalable, kursnyckel: BSLXN-72840
- Se film och svara på frågor
- Titta igenom kapitel 10 i kursboken, några nyckelord: omgivning, öppen, sluten, rand, polära, cylindriska och sfäriska koordinater, parametrisering
- Lär er ekvationerna för ellipsoid, paraboloid, hyperboloid, kon och cylinder
- Räkna några av de rekommenderade uppgifterna: kapitel 10.1 nr 11, 25, 27, 29, 31, 33, 35, 37, 39 kapitel 10.6 nr 3, 5, 9, 13
- Gör uppgift 1 till Seminarium 1