数理方程经典问题专题整理

定解问题书写(微元法分析)

数理方程主要研究由物理问题抽象得到的数学模型,其中一个重要问题在于建模的过程。一般来讲,在这门课程的考核过程中,对于这一考点,主要是考察对于数理方程的基本概念的理解以及对于三类重要方程的掌握,即大多数情况下,掌握三类重要方程的书写及其物理意义即可。但是从根本上讲,建模的过程涉及微元法的应用,其具体操作可以概况为:选择合适的坐标系,选取微元结合物理学定律进行分析,结合小量近似方法构造方程,结合物理意义书写定解条件。这里通过一道例题说明其中微元法分析的过程。

试推导均匀弹性杆的微小纵振动方程,设杆的杨氏模量为 E, 密度为 ρ , 作用于单位长度杆上的外力为 F(x,t) 。

解: 首先选取合适的坐标系

一维问题, 取 x 轴沿杆的轴线方向, 以 u(x,t) 表示 x 点, t 时刻的纵向位移。

选取合适的微元,利用物理学定律进行分析,建立等式

考虑杆上的一小段 $[x, x + \Delta x]$ 的运动情况. 以 $\sigma(x, t)$ 记杆上 x 点、t 时刻的应力 (杆在伸缩过程中各点相互之间单位截面上的作用力), 其方向沿 x 轴,现在求杆上 x 点,t 时刻的应变 (相对伸长)。

如图所示,A'B' 表示 AB 段 (平衡位置) 在 t 时刻所处的位置,则 AB 段的相对伸长是

$$\frac{A'B' - AB}{AB} = \frac{u(x + \Delta x, t) - u(x, t)}{\Delta x}$$

图 1: 微元法分析

而 x 点的应变则是

$$\lim_{ax\to 0} \frac{u(x+\Delta x,t) - u(x,t)}{\Delta x} = \frac{\partial u(x,t)}{\partial x}$$

由于振动是微小的 (不超过杆的弹性限度),由 Hooke 定律有

$$\sigma(x,t) = E \frac{\partial u(x,t)}{\partial x}$$

整理等式建立方程

设杆的横截面面积为 S(设为常数),则由 Newton 第二定律可知, $[x, x + \Delta x]$ 段的运动方程是

$$\begin{split} \rho S \Delta x \frac{\partial^2 u(\xi,t)}{\partial^2 t} \bigg|_{\xi=x+\theta_1 \Delta x} &= \sigma(x+\Delta x,t) S - \sigma(x,t) S + F\left(x+\theta_2 \Delta x,t\right) S \Delta x \\ &= \left. E S \frac{\partial u(\xi,t)}{\partial \xi} \right|_{\xi=x+\Delta x} - \left. E S \frac{\partial u(\xi,t)}{\partial \xi} \right|_{\varepsilon=x} + F\left(x+\theta_2 \Delta x,t\right) S \Delta x \\ &\approx \left. E S \frac{\partial^2 u(\xi,t)}{\partial \xi^2} \right|_{\xi=x} \Delta x + F\left(x+\theta_2 \Delta x,t\right) S \Delta x \end{split}$$

其中常数 θ_1, θ_2 满足 $0 \le \theta_i \le 1$ (i = 1, 2). 这里利用了 Hooke 定律式,而且将函数 $\frac{\partial u(\xi,t)}{\partial \xi}\Big|_{\xi=x+\Delta x}$ 在 $\xi=x$ 处展开为泰勒级数并取了前两项. 以 $S\Delta x$ 除上式的两端后,令 $\Delta x \to 0$ 取极限,得到

$$\rho u_{tt}(x,t) = E u_{xx}(x,t) + F(x,t)$$

记

$$a = \sqrt{\frac{E}{\rho}}, \quad f(x,t) = \frac{F(x,t)}{\rho}$$

整理得到方程

$$u_{tt}(x,t) = a^2 u_{xx}(x,t) + f(x,t)$$