SPO2 Project Muhammad Athar & **Jason Huang**

Brief Overview

- ☐ Requirements and Constraints
- ☐ High Level Model
- ☐ Individual Subcircuits
- □ Arduino
- Validation

SpO2 Sensor Pinout

Final Working Product

Design Requirements & Constraints

Requirements

Display the hea<mark>rtbeat wavef</mark>orm, BPM, and % SPO2 of an individual on an OLED Display.

Constraints

- Use of Nellcor Ds-100A SpO₂ sensor, DB9 breakout board, OLED display, and CD₄053BE analog multiplexer IC.
- ☐ Limit LED current to < 15mA.
- ☐ Reverse-Biased Photodiode.

High Level Model

Transimpedance Amplifier

- □ Converts photodiode-produced current from alternating LEDs (500hz) into voltage.
- $\Box \quad \text{Gain} = R_f = 6.8 \text{k}$
- □ Output is the input to **MUX**.

TIA Schematic

TIA Output

Multiplexer

- ☐ 3x 2-1 Multiplexers
- □ Splits the circuit into Red & Infrared Sections.
- ☐ Alternate signals at 500 Hz

MUX Output

MUX Schematic

INPUT STATES				
INHIBIT	С	В	A	ON CHANNEL(S)
D4051B			•	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	X	X	X	None
D4052B				
0		0	0	0x, 0y
0		0	1	1x, 1y
0		1	0	2x, 2y
0		1	1	3x, 3y
1		X	X	None
D4053B	•			
0	X	X	0	ax
0	Х	Х	1	ay
0	X	0	X	bx
0	X	1	X	by
0	0	X	X	CX
0	1	Х	х	су
1	X	X	X	None

MUX Truth Table

AC Filtration Circuit

- **LPF** (Reduces Signal Noise)
 - ☐ Break Frequency @ 5 Hz.
 - \bigcirc 0.67 Hz < f < 2 Hz.
 - \Box Gain = 50.
 - ☐ Keeps Harmonics.
 - Attenuates 6ohz human noise.
- ☐ HPF (Centers Signal)
 - Removes any DC offset.
 - □ Break Frequency @ o.5 Hz.
 - \Box Gain = 60.
 - Only passes heart-rate frequencies.
 - Output is the input to Clipper & Clamper Circuit.

Spectrum before AC Filtration

Spectrum after AC Filtration

Clipper & Clamper

☐ Clipper shifts signal above 0V

☐ Clamper clamps signal at +5V

☐ Safeguards the Arduino

Output is the input to **Arduino**

Clipper & Clamper Schematic

Input vs Output

DC Circuit ===

- □ Passes only Ohz.
- Stems from AC LPF.
- ☐ Required to compute R.
- □ DCRed & DCIred are outputted.
- Output is an input to **Arduino**.

Discharging DC

AC vs DC Components

DC Output

Arduino

- Reads the AC & DC output components.
- ☐ Computes R & % SpO₂.
 - \square % SpO₂ = 110-25R
- Outputs to OLED Display
 - ☐ Heartbeat Signal
 - □ BPM (beats per minute)
 - SPO₂

$$R = \frac{\frac{AC_{red}}{DC_{red}}}{\frac{AC_{ired}}{DC_{ired}}},$$

$$R = \frac{R equation}{R}$$

OLED Display

AC Inputs to Arduino

Validation Tests

- □ Comparisons between Nellcor Ds-100A and Commercial SpO₂.
- BPM and waveform are consistent.
- □ SpO₂ value is close, with minimal margins of error.
 - **3** 80-100%
- Overall, it fulfilled the requirements under the given constraints!

Nellcor vs Commercial Sensor

Thanks For Listening!