Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Інститут прикладного системного аналізу Кафедра математичних методів системного аналізу

3BIT

про виконання лабораторної роботи №5 з дисципліни «Інтелектуальний аналіз даних»

Виконала:

Студентка III курсу Групи КА-76 Хиленко В.В.

Перевірила: Недашківська Н.І.

Задача лабораторной работы - это првести анализ рыночной корзины (Market Basket Analysis).

Анализ рыночной корзины — процесс поиска наиболее типичных шаблонов покупок в супермаркетах. Он производится путем анализа баз данных транзакций с целью определения комбинаций товаров, связанных между собой.

Теоритечиские данные

Ассоциативные правила представляют собой механизм нахождения логических закономерностей между связанными элементами (событиями или объектами). Пусть имеется $\mathbf{A}=\{a_1,a_2,a_3,\ldots,a_n\}$ - конечное множество уникальных элементов (list of items). Из этих компонентов может быть составлено множество наборов T (sets of items), т.е. $\mathbf{T}\subseteq\mathbf{A}$.

Поиск ассоциативных правил обычно выполняют в два этапа:

- ullet в пуле имеющихся признаков A находят наиболее часто встречающиеся комбинации элементов T;
- из этих найденных наиболее часто встречающихся наборов формируют ассоциативные правила.

Для оценки полезности и продуктивности перебираемых правил используются различные частотные критерии, анализирующие встречаемость кандидата в массиве экспериментальных данных. Важнейшими из них являются поддержка (support) и достоверность (confidence).

1. Правило $\mathcal{A} o \mathcal{T}$ имеет поддержку s, если оно справедливо для s взятых в анализ случаев:

$$\operatorname{support}(\mathcal{A} o \mathcal{T}) = P(\mathcal{A} \cup \mathcal{T})$$

2. Достоверность правила показывает, какова вероятность того, что из наличия в рассматриваемом случае условной части правила следует наличие заключительной его части (т.е. из A следует T):

$$\operatorname{confidence}(\mathcal{A} \to \mathcal{T}) = P(\mathcal{A} \cup \mathcal{T})/P(\mathcal{A}) = \operatorname{support}(\mathcal{A} \to \mathcal{T})/\operatorname{support}(\mathcal{A}).$$

Алгоритмы поиска ассоциативных правил отбирают тех кандидатов, у которых поддержка и достоверность выше некоторых наперед заданных порогов: min support и min confidence.

Используются и другие показатели - лифт (lift), которая показывает, насколько повышается вероятность нахождения T в анализируемом случае, если в нем уже имеется A:

$$\operatorname{lift}(\mathcal{A} \to \mathcal{T}) = \operatorname{confidence}(\mathcal{A} \to \mathcal{T}) / \operatorname{support}(\mathcal{T})$$

Начальные данные: Var_1_BreadBasket_DMS

Набор данных состоит из 21293 наблюдений из пекарни. Файл данных содержит четыре переменные: Date , Time , Transaction ID и Item . Идентификатор транзакции варьируется от 1 до 9684.

1. Взяти файл з даними у відповідності з варіантом.

```
In [2]: import pandas as pd
import time
import numpy as np
import matplotlib.pyplot as plt

In [3]: df = pd.read_csv('../Desktop/Var_1_BreadBasket_DMS.csv')
df.head(10)
```

Out[3]:

	Date	Time	Transaction	Item
0	2016-10-30	09:58:11	1	Bread
1	2016-10-30	10:05:34	2	Scandinavian
2	2016-10-30	10:05:34	2	Scandinavian
3	2016-10-30	10:07:57	3	Hot chocolate
4	2016-10-30	10:07:57	3	Jam
5	2016-10-30	10:07:57	3	Cookies
6	2016-10-30	10:08:41	4	Muffin
7	2016-10-30	10:13:03	5	Coffee
8	2016-10-30	10:13:03	5	Pastry
9	2016-10-30	10:13:03	5	Bread

Построим диаграмму которая показывает 20 наиболее продаваемых товаров.

```
In [4]: fig, ax=plt.subplots(figsize=(16,7))
    color_rectangle = np.random.rand(7, 3)  # RGB
    df['Item'].value_counts().sort_values(ascending=False).head(20).plot.bar(width=0.5, color = color_rectangle, a
    lign='center',linewidth=1)
    plt.xlabel('Food Item',fontsize=20)
    plt.ylabel('Number of transactions',fontsize=17)
    ax.tick_params(labelsize=20)
    plt.title('20 Most Sold Items at the Bakery',fontsize=20)
    plt.grid()
    plt.goff()
```


2, 4. Побудувати часті набори та асоціативні правила (АП), використовуючи алгоритм Apriori.

Дослідити множини АП залежно від параметрів побудови АП:

- мінімальної підтримки,
- мінімальної достовірності,
- максимальної потужності частих наборів.

Підібрати значення параметрів алгоритму Аргіогі, які призводять до значущих АП. АП R_k вважати значущим, якщо покращення (improvement або ліфт (lift)): $Improv(R_k) > 1$.

Алгоритм Apriori

Простой алгоритм Apriori состоит из трех шагов:

- 1. Объединение. Просмотр базы данных и определение частоты вхождения отдельных товаров.
- 2. Отсечение. Те наборы, которые удовлетворяют поддержке и достоверности, переходят на следующую итерацию с двухкомпонентными наборами,
- 3. Повторение. Предыдущие два шага повторяются для каждой величины набора, пока не будет повторно получен ранее определенный размер.

 L_k - множество k- элементных частых наборов).

 C_k - множество кандидатов в k-элементные частые наборы, полученная путем связывания множества L_{k-1} с собой.

Формальное определения алгоритма Apriori:

- 1. Построение множества одноэлементных частых наборов: $L_1=$ $\{i|i\in I, Supp(i)\geq Supp_{min}\};$
- 2. Для всех $k=2,\ldots,n$ генерируем k-элементные частые наборы $L_k=\{F\cup \{i\}\ | F\in L_{k-1}, i\in L_1\ F, Supp(F\cup \{i\})\geq Supp_{min}\};$
- 3. Если $L_k=\emptyset$, то выходим из цикла по k.

На первом шаге берем одноэлементные частые наборы L_1 . Далее добавляем к ним по одному объекта, то есть формируем двухэлементные множества и так далее. Редкие наборы мы отвергаем и так постепенно наращиваем мощность наборов, фильтруя от нечастых наборов.

Объем перебора существенно зависит от параметра $Supp_{min}$: если значение $Supp_{min}$ уменьшаем, то количество частых наборов будет больше, если $Supp_{min}$ увеличиваем - то меньше. На втором шаге ищем частые наборы мощностью k, при условии, что частые наборы мощности k - 1 нам известны. Берем по одному элементу F с k-1 -елементного частого набора L_{k-1} , и по одному объекту i из множества L_1 без F и стараемся их объединить. Если $Supp(F \cup \{i\}) \geq Supp_{min}$, то записываем это объединение в L_k .

На третьем шаге, если не нашли частого набора мощности k, то выходим из цикла по k, так как уже частого набора в дальнейшем не получим.

```
In [5]: from mlxtend.frequent_patterns import apriori, fpgrowth
from mlxtend.frequent_patterns import association_rules
```

Приведем все данные к бинарному виду.

Нормализованный вид базы данных транзакций. Количество столбцов в таблице равно количеству элементов, присутствующих во множестве транзакций. Каждая запись соответствует транзакции, где в соответствующем столбце стоит 1, если элемент присутствует в транзакции, и 0 — в противном случае.

```
In [9]: basket_sets = basket.applymap(encode_units)
basket_sets
```

Out[9]:

Item	Adjustment	Afternoon with the baker	Alfajores	Argentina Night	Art Tray	Bacon	Baguette	Bakewell	Bare Popcorn	Basket	 The BART	The Nomad	Tiffin	Toast	Truffles
Transaction															
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
9680	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
9681	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	1
9682	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
9683	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
9684	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0

9531 rows × 95 columns

```
In [10]: frequent_itemsets = apriori(basket_sets, min_support=0.01, use_colnames=True)
    rules = association_rules(frequent_itemsets, metric='lift', min_threshold=1)
    rules.sort_values('confidence', ascending = False, inplace = True)
    rules.head(10)
```

Out[10]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
33	(Toast)	(Coffee)	0.033365	0.475081	0.023502	0.704403	1.482699	0.007651	1.775789
30	(Spanish Brunch)	(Coffee)	0.018046	0.475081	0.010807	0.598837	1.260494	0.002233	1.308493
19	(Medialuna)	(Coffee)	0.061379	0.475081	0.034939	0.569231	1.198175	0.005779	1.218561
25	(Pastry)	(Coffee)	0.085510	0.475081	0.047214	0.552147	1.162216	0.006590	1.172079
1	(Alfajores)	(Coffee)	0.036093	0.475081	0.019515	0.540698	1.138116	0.002368	1.142861
17	(Juice)	(Coffee)	0.038296	0.475081	0.020460	0.534247	1.124537	0.002266	1.127031
22	(NONE)	(Coffee)	0.079005	0.475081	0.042073	0.532537	1.120938	0.004539	1.122908
27	(Sandwich)	(Coffee)	0.071346	0.475081	0.037981	0.532353	1.120551	0.004086	1.122468
7	(Cake)	(Coffee)	0.103137	0.475081	0.054349	0.526958	1.109196	0.005350	1.109667
29	(Scone)	(Coffee)	0.034309	0.475081	0.017941	0.522936	1.100729	0.001642	1.100310

Варіювання параметрів алгоритму Apriori

Параметри:

- min_support минимальное пороговое значение поддержки Supp
- max_len максимальная длина набора при поиске частых наборов (мощность)
- min confidence минимальное пороговое значение достоверность Conf

Out[14]:

min_support	max_len	min_confidences	Num with lift>1	time
0.001000	2	0.300000	336	0.207853
0.001000	2	0.400000	336	0.171289
0.001000	2	0.500000	336	0.181009
0.001000	3	0.300000	1152	0.683623
0.001000	3	0.400000	1152	0.653267
0.001000	3	0.500000	1152	0.655203
0.001000	4	0.300000	1230	1.028225
0.001000	4	0.400000	1230	1.019393
0.001000	4	0.500000	1230	1.033211
0.005000	4	0.500000	124	0.197777
0.005000	4	0.400000	124	0.198048
0.005000	4	0.300000	124	0.198149
0.005000	3	0.500000	124	0.193328
0.005000	3	0.400000	124	0.192990
0.005000	3	0.300000	124	0.197768
0.005000	2	0.500000	90	0.088081
0.005000	2	0.400000	90	0.087156
0.005000	2	0.300000	90	0.091385
0.010000	2	0.300000	38	0.063534
0.010000	2	0.400000	38	0.063744
0.010000	2	0.500000	38	0.063775
0.010000	3	0.300000	40	0.096281
0.010000	3	0.400000	40	0.096464
0.010000	3	0.500000	40	0.096256
0.010000	4	0.300000	40	0.096150
0.010000	4	0.400000	40	0.096366
0.010000	4	0.500000	40	0.096684

Видно подтверждение *свойства антимонотонности*: с увеличением параметров $Supp_{min}$ и $Conf_{min}$ количество значимых АП уменьшается. Аналогичная ситуация наблюдается и со временем построения АП: чем больше найдено частых наборов, тем больше АП, а, следовательно, больше время их построения. Параметр max_len влияет на количество найденных АП прямопропорционально, из-за чего увеличеваеться время работы.

Так как высокое количество значимых правил не является мерой качества алгоритма с соответствующими параметрами, то выберем параметры, для которых время работы наименьшее (для последующих пунктов работы). Итого значения:

- min_support = 0.01min_confidences = 0.3
- max len = 2

Time: 0.069097

Количество найденных АП: 38

3, 4. Побудувати часті набори та множину АП, використовуючи алгоритм FP-росту.

Дослідити множини АП залежно від параметрів побудови АП:

- мінімальної підтримки,
- мінімальної достовірності,
- максимальної потужності частих наборів.

Підібрати значення параметрів алгоритму Аргіогі, які призводять до значущих АП. АП R_k вважати значущим, якщо покращення (improvement або ліфт (lift)): $Improv(R_k)>1$.

Алгоритм FPG

В основе метода лежит предобработка базы транзакций, в процессе которой эта база данных преобразуется в компактную древовидную структуру, называемую Frequent-Pattern Tree — дерево популярных предметных наборов (откуда и название алгоритма).

В дальнейшем для краткости будем называть эту структуру FP-дерево G . Его вершины - объекты $i\in I$, причем различные вершины деревья могут содержать одни и те же объекты. Путь от корня g_0 до вершины g - набор объектов $F\subseteq I$. $G(i)=g\in G:g=i$ - множество вершин для объекта i. $Supp(i)=\Sigma_{g\in G(i)}Supp(g)$ - поддержка объекта i. Различные дерева соответствуют объектам по убыванию Supp(i), причем $Supp(i)\geq Supp_{min}$, то есть имеем порядок на множестве объектов.

Алгоритм FPG состоит из двух этапов и одного предыдущего этапа.

Предварительный этап. Сортировка БД и создание словаря элементов Первый раз проходим БД транзакций и подсчитываем поддержку каждого объекта. Сортируем объекты по убыванию величины поддержки. Сортируем БД транзакций. Элементы отсортированного БД могут рассматриваться как слова или споварь.

Этап 1. Построение FP-дерева

```
Дано D=T_1,\ldots,T_n - множество транзакций (обучающая выборка).
```

Необходимо найти дерево $G = \{g | g = (Name(g), Supp(g), Child(g))\}.$

Узел FP-дерева - это структура, которая сохраняет значение узла Name, значение его поддержки *Supp*, а также ссылки на все его дочерние элементы *Child*. Для каждого элемента каждой отсортированного транзакции из входного набора строятся узлы по следующему правилу:

- если для очередного элемента в текущем узле есть наследник, содержащий этот элемент, то новый узел не создается, а поддержка этого потомка увеличивается на 1;
- в противном случае создается новый узел-потомок с поддержкой 1. Текущим узлом при этом становится найден или построен узел.

Этап 2. Поиск частых наборов в FP-дереве

Дано FP-дерево G, набор объектов F. Необходимо найти частые наборы для F.

 $F = \emptyset$

Процедура FP(G,F):

- 1. $orall i \in I: G(i)
 eq \emptyset$ по уровням снизу вверх. Если $Supp(i) \geq Supp_{min}$, то
 - 1.1. $F' \coloneqq F \cup i$ частый набор;
- 1.2 Построить условное FP-дерево G^\prime по объекту і;
- 1.3. FP(G',F') найти частые наборы за деревом G' для частого набора F' , в котором есть объект і.

```
In [15]: frequent_itemsets = fpgrowth(basket_sets, min_support=0.01, use_colnames=True)
    rules = association_rules(frequent_itemsets, metric='lift', min_threshold=1)
    rules.sort_values('confidence', ascending = False, inplace = True)
    rules.head(10)
 Out[15]:
```

antecedents consequents antecedent support consequent support support confidence lift leverage conviction

35	(Toast)	(Coffee)	0.033365	0.475081	0.023502	0.704403	1.482699	0.007651	1.775789
38	(Spanish Brunch)	(Coffee)	0.018046	0.475081	0.010807	0.598837	1.260494	0.002233	1.308493
15	(Medialuna)	(Coffee)	0.061379	0.475081	0.034939	0.569231	1.198175	0.005779	1.218561
9	(Pastry)	(Coffee)	0.085510	0.475081	0.047214	0.552147	1.162216	0.006590	1.172079
31	(Alfajores)	(Coffee)	0.036093	0.475081	0.019515	0.540698	1.138116	0.002368	1.142861
21	(Juice)	(Coffee)	0.038296	0.475081	0.020460	0.534247	1.124537	0.002266	1.127031
16	(NONE)	(Coffee)	0.079005	0.475081	0.042073	0.532537	1.120938	0.004539	1.122908
29	(Sandwich)	(Coffee)	0.071346	0.475081	0.037981	0.532353	1.120551	0.004086	1.122468
23	(Cake)	(Coffee)	0.103137	0.475081	0.054349	0.526958	1.109196	0.005350	1.109667
37	(Scone)	(Coffee)	0.034309	0.475081	0.017941	0.522936	1.100729	0.001642	1.100310

Варіювання параметрів алгоритму FPG

```
t = time.process_time()
                           frequent_itemsets = fpgrowth(basket_sets, min_support = sup, max_len = leng, use_colnames=Tru
          e)
                            rules = association_rules(frequent_itemsets, metric='lift', min_threshold=1)
                           fin_time = time.process_time() - t
ms.append(sup)
                           ml.append(leng)
                           mc.append(conf)
              time_hist.append(fin_time)
    results.append(np.where(np.array(rules.lift) > 1, 1, 0).sum())
return pd.DataFrame({"min_support": ms, "max_len": ml, "min_confidences": mc, "Num with lift>1": results,
          "time": time_hist})
```

```
In [17]: min_support = [0.001, 0.005, 0.01]
max_len = [2, 3, 4]
min_confidence = [0.3, 0.4, 0.5]
variate_params_fpg(min_support, max_len, min_confidence).sort_values('min_support').style.hide_index()
```

Out[17]:

min_support	max_len	min_confidences	Num with lift>1	time
0.001000	2	0.300000	336	0.227843
0.001000	2	0.400000	336	0.308204
0.001000	2	0.500000	336	0.226361
0.001000	3	0.300000	1152	0.210308
0.001000	3	0.400000	1152	0.216047
0.001000	3	0.500000	1152	0.210440
0.001000	4	0.300000	1230	0.207268
0.001000	4	0.400000	1230	0.263382
0.001000	4	0.500000	1230	0.208783
0.005000	4	0.500000	124	0.170074
0.005000	4	0.400000	124	0.233213
0.005000	4	0.300000	124	0.170157
0.005000	3	0.500000	124	0.175059
0.005000	3	0.400000	124	0.175795
0.005000	3	0.300000	124	0.171259
0.005000	2	0.500000	90	0.169156
0.005000	2	0.400000	90	0.168107
0.005000	2	0.300000	90	0.172249
0.010000	2	0.300000	38	0.160086
0.010000	2	0.400000	38	0.161994
0.010000	2	0.500000	38	0.160567
0.010000	3	0.300000	40	0.159930
0.010000	3	0.400000	40	0.163060
0.010000	3	0.500000	40	0.161918
0.010000	4	0.300000	40	0.160874
0.010000	4	0.400000	40	0.161278
0.010000	4	0.500000	40	0.161996

Аналогично алгоритму Аргіогі видно подтверждение свойства антимонотонности.

Аналогичная ситуация наблюдается и со временем построения АП: чем больше найдено частых наборов, тем больше АП, а, следовательно, больше время их построения. Параметр max_len влияет на количество найденных АП прямопропорционально, из-за чего увеличеваеться время работы.

Так как высокое количество значимых правил не является мерой качества алгоритма с соответствующими параметрами, то выберем параметры, для которых время работы наименьшее (для последующих пунктов работы). Итого значения:

- min_support = 0.01
- min_confidences = 0.3
- max_len = 4

Time: 0.160564

Количество найденных АП: 40

Но в целом значения времени стали меньше, поэтому можно сделать вывод, что алгоритм FPG лучше в плане скорости.

5. Знайти значення прогнозу на основі побудованої множини правил.

Алгоритм Apriori

```
In [20]: frequent_itemsets_apr = apriori(basket_sets, min_support = 0.01, max_len = 2, use_colnames=True)
rules_apr = association_rules(frequent_itemsets_apr, metric='lift', min_threshold=0.3)
           get_recommendations(rules_apr, {"Cookies"})
           With this product people usually buy
                         antecedent support consequent support support confidence
                                                                                        lift leverage conviction
            consequents
                                  0.054034
                                                     0.475081 0.028014
                                                                         0.518447 1.091280 0.002343
                 (Coffee)
                                  0.054034
                                                     0.324940 0.014374
                                                                         0.919725
In [21]: get_recommendations(rules_apr, {"Sandwich"})
           With this product people usually buy
                         antecedent support consequent support support confidence
                                                                                       lift leverage conviction
            consequents
                 (Coffee)
                                  0.071346
                                                     0.475081 0.037981
                                                                         0.532353 1.120551 0.004086
                                                                                                       1.122468
```

Алгоритм FPG

```
In [22]: frequent_itemsets_fpg = fpgrowth(basket_sets, min_support = 0.01, max_len = 5, use_colnames=True)
    rules_fpg = association_rules(frequent_itemsets_fpg, metric='lift', min_threshold=0.3)
    get_recommendations(rules_fpg, {"Tea"})
```

0.236765 0.728642 -0.006291

0.200000 1.412000 0.004164

0.884472

1.072946

0.324940 0.016892

0.141643 0.014269

With this product people usually buy

0.071346

0.071346

(Bread)

(Tea)

		antecedent support	consequent support	support	confidence	lift	leverage	conviction
	consequents							
	(Coffee)	0.141643	0.475081	0.049523	0.349630	0.735936	-0.017769	0.807107
	(Bread)	0.141643	0.324940	0.027909	0.197037	0.606380	-0.018117	0.840712
	(Cake)	0.141643	0.103137	0.023607	0.166667	1.615972	0.008999	1.076235
	(NONE)	0.141643	0.079005	0.018256	0.128889	1.631394	0.007066	1.057264
	(Sandwich)	0.141643	0.071346	0.014269	0.100741	1.412000	0.004164	1.032688
In [23]:	get_recomm	endations(rules	s_fpg, {"Cake"})					

With this product people usually buy

		antecedent support	consequent support	support	confidence	lift	leverage	conviction
_	consequents							
	(Coffee)	0.103137	0.475081	0.054349	0.526958	1.109196	0.005350	1.109667
	(Tea)	0.103137	0.141643	0.023607	0.228891	1.615972	0.008999	1.113146
	(Bread)	0.103137	0.324940	0.023187	0.224822	0.691888	-0.010326	0.870846
	(Hot chocolate)	0.103137	0.057916	0.011331	0.109868	1.897010	0.005358	1.058364

6. Порівняти результати, отримані алгоритмами Apriori та FP-росту.

Итак, в результате выполненных исследований, можно сделать вывод, что результаты, полученные с помощью использования обоих алгоритмов, являются идентичными.

Однако отличаеться время для формирования частых наборов.

Покажем это с помощью построения графика затраченного времени на построение АП для случайного подмножества данных.

```
In [24]: def association_rules_time(dataset, ms, ml, mc, apr = True):
    t = time.process_time()
    if apr == True:
        frequent_itemsets = apriori(dataset, min_support=ms, max_len=ml, use_colnames=True)
    else:
        frequent_itemsets = fpgrowth(dataset, min_support=ms, use_colnames=True, max_len=ml)
    rules = association_rules(frequent_itemsets, metric='lift', min_threshold=mc)
    return time.process_time() - t
```

```
In [25]: apriori_time, fpgrowth_time = [], []
    some_samples = range(700, basket_sets.shape[0], 700)
    for samples in some_samples:
        a_time = association_rules_time(dataset = basket_sets, ms=0.001, ml=4, mc=0.4)
        apriori_time.append(a_time)
        fp_time = association_rules_time(dataset = basket_sets, ms=0.001, ml=4, mc=0.4, apr=False)
        fpgrowth_time.append(fp_time)

    plt.figure(figsize=(10, 7))
    plt.plot(some_samples, np.array(apriori_time), c='r', label='apriori', linewidth=2)
    plt.plot(some_samples, np.array(fpgrowth_time), c='g', label='fpgrowth', linewidth=2)
    plt.legend(fontsize=17)
    plt.xlabel('Training samples', fontsize=15)
    plt.ylabel('Elapsed time, sec', fontsize=15)
    plt.title('Time for fitting to training samples', size='xx-large')
```

Out[25]: Text(0.5, 1.0, 'Time for fitting to training samples')

Результат подтверждает: алгоритм FPG значительно быстрее алгоритма Apriori.

Вывод

В процессе выполнения данного практикума я исследовала два алгоритма: Apriori и FP-Growth, которые используются для построения частых наборов товаров по заданным транзакциями, чтобы, использовав эти данные, построить ассоциативные правила, которые позволяют понять, какие товары покупаются вместе

В первую очередь это полезно маркетологам интернет-магазинов для принятия взвешенных решений, направленных на проработку сценариев взаимодействия с пользователями. Стоит также отметить, что такой анализ будет полезен интернет-магазинам, где в «чеке», как правило, не один товар, а набор различных товаров – например, любой продуктовый ритейл.

Целью применения анализа рыночной корзины в розничной торговле обычно являются:

- создание бизнес-шаблонов покупок;
- оптимизация ассортимента товаров и их запасов;
- оптимизация размещения товаров на витринах и в торговых залах (чтобы товары из одного шаблона размещались рядом друг с другом);
- повышение эффективности маркетинговых компаний и промоакций (например, предлагать скидку на все товары из шаблонов);
- снижение стоимость рекламных компаний с целью сделать их более целенаправленными.