Name :	\ <u>\</u>
Roll No.:	
Inviailator's Signature:	

2011 CONTROL SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) In terms of Bode plot, the system is stable if
 - a) both gain margin & phase margin are positive
 - b) both gain margin & phase margin are negative
 - c) gain margin is positive & phase margin is negative
 - d) gain margin is negative & phase margin is positive.
- ii) AC servo motor is a
 - a) 3 phase induction motor
 - b) 2 phase induction motor
 - c) 1 phase induction motor
 - d) 2 phase synchronous motor.

4202 [Turn over

a) 4.5 s

b) 3.5 s

c) 3·14 s

d) 1 s.

iv) A series circuit containing R, L & C is excited by a step voltage input. The voltage across the capacitance exhibits oscillation. Damping co-efficient of this circuit is given by

a) $\frac{R}{2\sqrt{LC}}$

b) $\frac{R}{LC}$

c) $\frac{R}{2\sqrt{C/L}}$

d) $\frac{R}{2\sqrt{L/C}}$.

v) If the Nyquist plot cuts the negative real axis at a distance of 0.4, then the gain margin of the system is

a) 0.4

b) - 0.4

c) 4%

d) 2.5.

vi) The root locus of a system line 4 separate root loci. The system can have

- a) four poles & four zeros
- b) four poles or four zeros
- c) six poles & two zeros
- d) two poles & two zeros.

- vii) The value of A matrix in $\frac{dx}{dt}$ = Ax for the described by the differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 3y = 0 \text{ is}$
 - a) $\begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$

 - c) $\begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ -3 & -2 \end{bmatrix}$.
- viii) Addition of a pole to the closed loop transfer function
 - a) increases rise time
- b) decreases rise time
- increases overshoot c)
- d) has no effect.
- With a derivative feedback control ix)
 - a second order system is converted into a first a) order
 - a second order system is converted into a third b) order system
 - c) natural frequency of the oscillation changes
 - damping ratio is increased. d)
- Type of a system depends on the x)
 - a) number of its poles
 - b) difference between the number of poles & zeros
 - c) number of its real poles only
 - number of poles it has at the origin. d)

xi) The impulse response of a system is given b $c(t) = \frac{1}{2} e^{-t/2}$

Which one of the following is its unit step response?

- a) $1 e^{-t/2}$
- b) $1 e^{-t}$

c) $2e^{-t}$

- d) $1 e^{-2t}$.
- xii) A transfer function of a two port passive network may have
 - a) poles in right half of s plane
 - b) both zeros & poles in right half of s plane
 - c) poles restricted solely to left hand half of s plane & nowhere else
 - d) zeros in right hand half of s plane.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. Find the transfer function of the circuit given:

4202

3. The block diagram of an electronic pacemaker is given in figure below, where K = 400.

- i) Calculate the output c (t) for a unit step input
- ii) Determine the steady state error for unit ramp input.
- 4. Find state variable model of the system governed by the differential equation $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 2\frac{du}{dt} + 6u$.
- 5. A second order system has 40% peak overshoot & settling time of 2 seconds for unit step input. Find resonant peak gain & resonant frequency.
- 6. Determine the stability of a closed loop control system whose characteristic equation is given by

 $s^5 + s^4 + 2 s^3 + 2 s^2 + 11S + 10 = 0$ using Routh-Hurwitz criterion.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. Draw the root locus of the unity feedback system whose open loop transfer function is $G(s) = \frac{k(s+4)}{s(s+5)(s^2+5s+25)}$. Show

all relevant steps.

8. a) Sketch the Bode plots of the following function showing the magnitude in decibels & phase angle in degrees.

Determine the gain crossover frequency.

G (s) =
$$\frac{20}{s(1+0.5 s)(1+0.25s)}$$
.

b) From the plot shown determine the transfer function.

10 + 5

- 9. a) State & explain Nyquist stability criteria.
 - b) For the open loop transfer function of a unity feedback system

G (s) =
$$\frac{k}{(s+2)(s+5)}$$
, draw the Nyquist plot of the closed loop system and comment on the system stability. 5+10

10. a) Draw the signal flow graph & obtain the transfer function of the system shown:

4202

- b) Show that a unity feedback control system having open loop transfer function G (s) H (s) = $\frac{1}{(s-1)^2}$ can not be stabilized by using PI controller. 8+7
- 11. a) Find the Z-transform of ke^{-3k} .
 - b) Discuss what is meant by
 - i) Absoute & relative stability
 - ii) Sample & hold circuit.

5 + (5 + 5)

4202 7 [Turn over