Chapitre 14

Continuité

TABLE DES MATIÈRES

I		2
II	Continuité uniforme	12
III	Fonctions à valeurs dans $\mathbb C$	17
IV	Anneve	10

Première partie

Soit
$$f: x \mapsto \begin{cases} \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
.

 $\lim_{x\to 0} f(x)$ n'existe pas.

$$\ell = \bigcap_{V \in \mathscr{V}_\ell} V$$

Si ℓ existe, alors $\ell = f(0)$.

Or, $0 \neq \lim_{x \to 0} f(x)$

Preuve (de la proposition 1.10):

$$\ell = \lim_{x \to a} \text{ et } a \in \mathscr{D}$$

On sait que

$$\forall V \in \mathscr{V}_{\ell}, \exists W \in \mathscr{V}_{a}, \forall x \in W \cap \mathscr{D}, f(x) \in V$$

Soit $V \in \mathcal{V}_{\ell}$. Alors, $f(a) \in V$.

$$f(a) \in \bigcap_{V \in \mathcal{Y}_{\ell}} V = \begin{cases} \{\ell\} & \text{si } \ell \in \mathbb{R} \\ \emptyset & \text{si } \ell = \pm \infty \end{cases}$$

Donc $\ell \in \mathbb{R}$ et $\ell = f(a)$

Remarque:

De même si $a \in \mathscr{D}$ et si $\lim_{\substack{x \to a \\ \leqslant}} f(x)$ existe (resp. $\lim_{\substack{x \to a \\ \leqslant}} f(x)$) alors $f(a) = \lim_{\substack{x \to a \\ \leqslant}} f(x)$ (resp $f(a) = \lim_{\substack{x \to a \\ \leqslant}} f(x)$) $\lim_{\substack{x \to a \\ \geqslant}} f(x))$

 $\lim_{x\to 0} \sigma(x)$ n'existe pas

 $\lim_{x\to 0^+} \sigma(x)$ et $\lim_{x\to 0^-}$ n'existent pas non plus.

$$\lim_{\substack{x \to 0 \\ \neq}} \sigma(x)$$

$$\lim_{\substack{x \to 0 \\ <}} \sigma(x) = 0, \lim_{\substack{x \to 0 \\ >}} \sigma(x) = 0$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{\substack{x \to a \\ \neq a}} \frac{f(x) - f(a)}{x - a}$$

Définition: Soit f définie sur \mathscr{D} et $a \in \mathscr{D}$. On dit que f est continue en a si $\lim_{x \to a} f(x)$ existe ou si $\lim_{x \to a} f(x) = f(a)$.

Exemple: Soit
$$f: x \mapsto \begin{cases} \frac{\sin(x)}{x} & \text{ si } x \neq 0 \\ 1 & \text{ si } x = 0 \end{cases}$$

$$\lim_{\substack{x \to 0 \\ \neq}} f(x) = \lim_{x \to 0} \frac{\sin(x)}{x} = 1 = f(0)$$

Donc f est continue en 0.

Proposition: f est continue en a si et seulement si

$$\lim_{\substack{x \to a \\ <}} f(x) = \lim_{\substack{x \to a \\ >}} = f(a)$$

Preuve (unicité de la limite):

On suppose que $f(x) \xrightarrow[x \to u]{} a$, $f(x) \xrightarrow[x \to u]{} b$ avec $a \neq b$. Soient V et W conne dans le lemme (suivant),

$$\begin{cases} \exists W_1 \in \mathcal{V}_u, \forall x \in W_1 \cap \mathcal{D}, f(x) \in V \\ \exists W_2 \in \mathcal{V}_u, \forall x \in W_2 \cap \mathcal{D}, f(x) \in W \end{cases}$$

Donc

$$\forall x \in \underbrace{W_1 \cap W_2 \cap \mathcal{D}}_{\neq \varnothing \text{ car } W_1 \cap W_2 \in \mathcal{Y}_u} f(x) \in V \cap W = \varnothing$$

Lemme: Soient $a \neq b$ deux éléments de $\overline{\mathbb{R}}$ Alors $\exists V \in \mathscr{V}_a, \exists W \in \mathscr{V}_b, V \cap W = \varnothing$

Preuve: Cas 1 $(a,b) \in \mathbb{R}^2$. On suppose que a < b. On pose $\varepsilon = \frac{b-a}{2}$,

On pose
$$\varepsilon = \frac{b-a}{2}$$

$$\begin{cases} V =]a - \varepsilon; a + \varepsilon[\\ W =]b - \varepsilon; b + \varepsilon[\end{cases}$$

On vérifie que $V\cap W=\varnothing$

Cas 2 $a \in \mathbb{R}$ et $b = +\infty$

$$\begin{cases} V =]a-1; a+1[\\ W =]a+2; +\infty[\end{cases}$$

$$\begin{cases} V =]-\infty; 0[\\ W =]0; +\infty[\end{cases}$$

Théorème: Soit f définie sur \mathscr{D} et $a \in \overline{\mathscr{D}}, \, \ell \in \overline{\mathbb{R}}$

$$f(x) \xrightarrow[x \to a]{} \ell \iff \forall (x_n) \in \mathscr{D}^{\mathbb{N}} \left(x_n \xrightarrow[n \to +\infty]{} a \implies f(x_n) \xrightarrow[n \to +\infty]{} \ell \right)$$

$$\forall x \in W \cap \mathscr{D}, f(x) \in V$$

 $x_n \xrightarrow[n \to +\infty]{} a$ donc il existe $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, x_n \in W \cap \mathscr{D}$$

Donc

$$\forall n \geqslant N, f(x_n) \in V$$

D'où,
$$f(x_n) \xrightarrow[n \to +\infty]{} \ell$$

" \longleftarrow " On suppose que $f(x) \xrightarrow{r \to a} \ell$

$$\exists V \in \mathscr{V}_{\ell}, \forall W \in \mathscr{V}_{a}, \exists x \in W \cap \mathscr{D}, f(x) \not\in V$$

Soit V comme ci dessus. Soit $W_1 \in \mathscr{V}_a$.

Cas 1 $a \in \mathcal{D}$ et $\forall x \in W \cap \mathcal{D} \setminus \{a\}, f(x) \in V$. On le prouve par la contraposée. On suppose $f(x) \xrightarrow[x \to a]{} \ell \in \mathbb{R}$

$$\exists \varepsilon > 0, \forall \eta > 0, \exists x \in]a - \eta, a + \eta[, |f(x) - \ell| > \varepsilon$$

On considère un tel ε donc

$$\forall n \in \mathbb{N}_*, \exists x_n \in \left] a - \frac{1}{n}, a + \frac{1}{n} \right[, |f(x_n) - \ell| > \varepsilon$$

Par encadrement, $x_n \xrightarrow[n \to +\infty]{} a$ et $f(x_n) \xrightarrow[n \to +\infty]{} \ell$ Cas 2 Soit $x_1 \in W_1 \cap \mathscr{D}$ tel que $f(x_1) \notin V$

$$\begin{cases} x_1 \in \mathcal{D} \\ a \notin \mathcal{D} \end{cases} \quad \text{donc } x_1 \neq a$$

Cas 3 $\exists x \in W_1 \cap \mathscr{D} \setminus \{a\}, f(x) \not\in V$ Soit x_1 un tel élément :

$$x_1 \in W_1 \cap \mathscr{D}$$
$$x_1 \neq a$$
$$f(x_1) \notin V$$

Dans les cas 2 et 3, on pose $W_2 \in \mathcal{V}_a$ tel que

$$W_2 \subset W_1 \setminus \{x_1\}$$

En itérant ce procédé, on construit une suite (x_n) qui tend vers a et telle que

$$\forall n \in \mathbb{N}, f(x_n) \notin V$$

et donc
$$f(x_n) \xrightarrow[n \to +\infty]{} \ell$$

Proposition: Si $f(x) \xrightarrow[x \to a]{} \ell$ et $g(x) \xrightarrow[x \to a]{} \ell_2$

1.
$$f(x) + g(x) \longrightarrow \ell_1 + \ell_2$$

2.
$$f(x) \times g(x) \xrightarrow{x \to a} \ell_1 \times \ell_2$$

Proposition: Si
$$f(x) \xrightarrow[x \to a]{} \ell$$
 ealors

1. $f(x) + g(x) \xrightarrow[x \to a]{} \ell_1 + \ell_2$

2. $f(x) \times g(x) \xrightarrow[x \to a]{} \ell_1 \times \ell_2$

3. Si $\ell_2 \neq 0$, $\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} \frac{\ell_1}{\ell_2}$

Preuve: 1. Soit (x_n) une suite qui tends vers a alors $f(x_n) \xrightarrow[n \to +\infty]{} \ell_1$ et $g(x_n) \xrightarrow[n \to +\infty]{}$

$$\ell_2$$
Donc, $f(x_n) + g(x_n) \xrightarrow[n \to +\infty]{} \ell_1 + \ell_2$
Donc $f(x) + g(x) \xrightarrow[n \to +\infty]{} \ell_1 + \ell_2$

Proposition: Si $f(x) \xrightarrow[x \to a]{} \ell_1$ et $g(x) \xrightarrow[x \to \ell_1]{} \ell_2$ alors $g(f(x)) \xrightarrow[x \to a]{} \ell_2$

Soit
$$(x_n)$$
 une suite qui tend vers a . Alors, $f(x_n) \xrightarrow[n \to +\infty]{} \ell_1$ donc $g(f(x_n)) \xrightarrow[n \to +\infty]{} \ell_2$ donc $g(f(x)) \xrightarrow[x \to a]{} \ell_2$

Corollaire: Une somme, un produit, une composée de fonctions continues sont continues.

Pour démontrer que f(x) n'a pas de limite quands x tend vers a. On cherche deux suites (x_n)

et (y_n) de limite a avec

$$\begin{cases} f(x_n) \longrightarrow \ell_1 \\ f(y_n) \longrightarrow \ell_2 \\ \ell_1 \neq \ell_2 \end{cases}$$

Exemple:

$$\forall n \in \mathbb{N}, \sin(2\pi n) = 0 \xrightarrow[n \to +\infty]{} 0$$
$$\sin\left(\frac{\pi}{2} + 2\pi n\right) = 1 \xrightarrow[n \to +\infty]{} 1$$

Or,

$$2\pi n \xrightarrow[n \to +\infty]{} +\infty$$

$$\frac{\pi}{2} + 2\pi n \xrightarrow[n \to +\infty]{} +\infty$$

Donc, sin n'a pas de limite en $+\infty$

Théorème (Limite monotone): Soit f une fonction croissante sur]a,b[avec $a\neq b\in\overline{\mathbb{R}}.$

1. Si f est majorée,

$$\exists M \in \mathbb{R}, \forall x \in]a, b[, f(x) \leqslant M$$

alors
$$\lim_{\substack{x \to b \\ <}} f(x) = \sup_{x \in]a,b[} f(x) \in \mathbb{R}$$

2. Si f n'est pas majorée,

$$\lim_{x \to b} f(x) = +\infty$$

3. Si f est minorée,

$$\exists m \in \mathbb{R}, \forall x \in]a, b[, f(x) \leqslant m$$

alors
$$\lim_{\substack{x \to a \\ >}} f(x) = \inf_{]a,b[} f \in \mathbb{R}$$

4. Si f n'est pas minorée, $\lim_{\substack{x \to a \\ >}} f(x) = -\infty$

Preuve: 1. $\sup_{[a,b[} f \text{ existe }]$

$$\forall \varepsilon > 0, \exists x \in]a, b[, f(x) > \sup_{]a, b[}(f) - \varepsilon$$

donc

$$\forall \varepsilon > 0, \exists x \in]a,b[,\forall y \in [x,b[,\sup_{]a,b[}(f)-\varepsilon < f(y) \leqslant \sup_{]a,b[}(f) < \sup_{]a,b[}(f)+\varepsilon$$

donc
$$f(x) \xrightarrow[<]{x \to b} \sup_{[a,b[}(f)$$

 $2.\ f$ n'est pas majorée

$$\forall M \in \mathbb{R}, \exists x \in]a, b[, f(x) > M$$

donc

$$\forall M \in \mathbb{R}, \exists x \in]a, b[, \forall y \in [x, b[, f(y) \in [M, +\infty[$$

Remarque:

Avec les hypothèses ci-dessus, pour tout $x \in]a, b[$,

f est croissante sur]a,x[, et majorée par f(x) donc $\lim_{t\to x}f(t)\in\mathbb{R}$

f est croissante sur]x,b[et minorée par f(x) donc $\lim_{t\to x}f(t)\in\mathbb{R}$

$$\lim_{\substack{t \to x \\ <}} f(t) \leqslant f(x) \leqslant \lim_{\substack{t \to x \\ >}} f(t)$$

Théorème (Théorème des valeurs intermédiaires): Soit f une fonction continue sur un intervalle I, a < b deux éléments de I.

$$\forall y \in [f(a),f(b)] \cup [f(b),f(a)]\,, \ \exists x \in [a,b], \ y = f(x)$$

Lemme: Soit f une fonction continue sur un intervalle I, a < b deux éléments de Itels que $f(a) \leqslant 0 \leqslant f(b)$. Alors,

$$\exists x \in [a, b], f(x) = 0$$

 $\begin{array}{l} \textit{Preuve} \ (\text{du lemme}) \colon \\ \text{On pose} \ A = \{x \in [a,b] \mid f(x) \leqslant 0\} \\ A \neq \varnothing \ \text{car} \ a \in A \ \text{et} \ A \ \text{est major\'ee par} \ b. \\ \text{On pose} \ u = \sup(A). \ \text{Soit} \ (x_n) \in A^{\mathbb{N}} \ \text{qui converge vers} \ u. \end{array}$

$$\forall n \in \mathbb{N}, x_n \in A \text{ donc } \forall n \in \mathbb{N}, \begin{cases} a \leqslant x_n \leqslant b \\ f(x_n) \leqslant 0 \end{cases}$$
 On sait que $x_n \longrightarrow u$ et $f(x_n) \longrightarrow f(u)$ par continuité de f .

Donc,
$$\begin{cases} a \leqslant u \leqslant b \\ f(u) \leqslant 0 \end{cases} \quad (\mathrm{donc} \ u = \mathrm{max}(A))$$

$$\forall x \in]u,b], f(x) > 0$$

donc

$$\begin{cases} \lim_{x \to u} f(x) = f(u) \\ > \\ \lim_{x \to u} f(x) \ge 0 \\ > \end{cases}$$

Donc, $f(u) \ge 0$ donc f(u) = 0

Preuve (du théorème):

On pose $g: x \mapsto f(x) - y$. g est continue sur I.

$$\begin{array}{l} \underline{\mathrm{Si}}\; f(a) < f(b) \; \mathrm{alors} \; \begin{cases} g(a) \leqslant 0 \\ g(b) \geqslant 0 \end{cases} \\ \mathrm{D'après} \; \mathrm{le} \; \mathrm{lemme}, \; \mathrm{il} \; \mathrm{existe} \; x \in [a,b] \; \mathrm{tel} \; \mathrm{que} \; g(x) = 0 \; \mathrm{et} \; \mathrm{donc} \; f(x) = y \end{array}$$

$$\underline{\mathrm{Si}} \ f(a) < f(b) \ \mathrm{alors} \ \begin{cases} h(a) \leqslant 0 \\ h(b) \geqslant 0 \end{cases} \quad \text{où } h: x \mapsto -g(x) = y - f(x) \ \mathrm{est \ continue}$$
 D'après le lemme, il existe $x \in [a,b]$ tel que $h(x) = 0$ et donc $f(x) = y$

Corollaire: Soit f continue sur un intervalle I. Alors, f(I) est un intervalle.

Preuve:

Montrons que f(I) est convexe

Soit $\alpha \in f(I)$, $\beta \in f(I)$ avec $\alpha < \beta$. Montrons que

$$\forall \gamma \in [\alpha,\beta], f(\gamma) \in f(I)$$

Ι

Or,
$$\begin{cases} \alpha \in f(I) & \exists a \in I, \alpha = f(a) \\ \beta \in f(I) & \exists b \in I, \beta = f(b) \end{cases}$$
 D'après le théorème des valeurs intermédiaires, il existe $x \in [a,b]$ tel que $\gamma = f(x)$ donc, $f(\gamma) \in f(I)$

Théorème (Théorème de la bijection): Soit f continue, strictement monotone sur un intervalle I. Alors, J = f(I) est un intervalle de même nature (ouvert, semi-ouvert ou fermé) et f établit une bijection de I sur J.

Preuve.

D'après le théorème des valeurs intermédiaires, J est un intervalle. f est strictement monotone donc f injective. Donc f établit une bijection de I sur J.

Cas 1 I=[a,b] et f croissante $\forall x \in I, a \leqslant x \leqslant b$ $\operatorname{donc} \forall x \in I, f(a) \leqslant f(x) \leqslant f(b)$ $\operatorname{donc} J \subset [f(a),f(b)]$ Or, $[f(a),f(b)] \subset J$ d'après le théorème des valeurs intermédiaires $\operatorname{Donc} J = [f(a),f(b)]$

Les autres cas se démontrent de la même façon.

Théorème: Soit f continue sur un segment [a,b]. Alors, f est bornée et atteint ses bornes, i.e.

$$\exists (m, M) \in \mathbb{R}^2, f([a, b]) = [m, M]$$

Preuve:

On suppose que f n'est pas majorée :

$$\forall M \in \mathbb{R}, \exists x \in [a, b], f(x) \geqslant M$$

En particulier,

$$\forall n \in \mathbb{N}, \exists x_n \in [a, b], f(x_n) \geqslant n$$

Donc,
$$f(x_n) \xrightarrow[n \to +\infty]{} +\infty$$

Donc, $f(x_n) \xrightarrow[n \to +\infty]{} +\infty$ La suite $(x_n)_{n \in \mathbb{N}}$ est minorée apr a et majorée par b donc bornée. D'après le théorème de Bolzano-Weierstrass, il existe $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $(x_{\varphi(n)})_{\in \mathbb{N}}$ converge. On pose $\ell = \lim_{n \to +\infty} x_{\varphi(n)}$. On a bien $\ell \in [a,b]$ et $f(\ell) =$

 $\lim_{n \to +\infty} f\left(x_{\varphi(n)}\right) \text{ par continuité de } f.$

Or, $(f(x_{\varphi(n)}))_{n\in\mathbb{N}}$ est une sous-suite de $(f(x_n))$ donc $f(x_{\varphi(n)}) \xrightarrow[n\to+\infty]{} +\infty$: une contradiction

Donc f est majorée et on pose

$$M = \sup_{a \leqslant x \leqslant b} f(x)$$

On prouve de même que f est minorée. On pose donc

$$m = \inf_{a \leqslant x \leqslant b} f(x)$$

Soit $(y_n) \in [a,b]^{\mathbb{N}}$ telle que $f(y_n) \xrightarrow[n \to +\infty]{} M$.

 (y_n) est bornée donc il existe une sous-suite $(y_{\psi(n)})$ de (y_n) convergente. On pose $y = \lim_{n \to +\infty} y_{\psi(n)} \in [a, b]$

Comme f continue sur y,

$$f(y) = \lim_{n \to +\infty} f\left(y_{\psi(n)}\right)$$

Or, $(f(y_{\psi(n)}))$ est une sous-suite de $(f(y_n))$ donc

$$M = \lim_{n \to +\infty} f\left(y_{\psi(n)}\right)$$

Par unicité de la limite, M=f(y) Donc, $M=\max_{a\leqslant x\leqslant b}f(x)$. De même, $m\in f([a,b])$

Enfin, en posant $\begin{cases} M = f(y) & \text{avec } y \in [a,b] \\ m = f(z) & \text{avec } z \in [a,b] \end{cases}, \text{ on obtient}$

$$[m,M] = [f(z),f(y)] \underbrace{\hspace{0.5cm}}_{f([a,b])} \underbrace{\hspace{0.5cm}}_{m \text{ minimum}} [m,M]$$
 théorème des valeurs intermédiaires

donc f([a,b]) = [m,M]

Deuxième partie

Continuité uniforme

II

Remarque:

 $f: \mathbb{R} \to \mathbb{R}$ continue,

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists \eta > 0, \forall y \in]x - \eta, x + \eta[, |f(x) - f(y)| \leq \varepsilon$$

Ici, η dépend de ε et de x

Dans certaines situations, il serait préférable d'avoir

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (x,y) \in \mathbb{R}^2, |x-y| \leqslant \eta \implies |f(x) - f(y)| \leqslant \varepsilon$$

Lemme: Soit f uniformément continue sur un intervalle I. Soient $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ deux suites d'éléments dans I telles que $x_n-y_n\xrightarrow[n\to+\infty]{}0$. Alors, $\lim_{n\to+\infty}(f(x_n)-f(y_n))=0$

Alors,
$$\lim_{n \to +\infty} (f(x_n) - f(y_n)) = 0$$

Exemple:

$$f: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

On pose $\forall n \in \mathbb{N}_*, \begin{cases} x_n = n \\ y_n = n + \frac{1}{n} \end{cases}$. On a bien $\forall n \in \mathbb{N}_*, x_n - y_n = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0.$

$$\forall n \in \mathbb{N}_*, x_n^2 - y_n^2 = n^2 - n^2 - \frac{1}{n^2} - 2 \xrightarrow[n \to +\infty]{} -2 \neq O$$

Donc, f n'est pas uniformément continue.

Théorème (Théorème de Heine): Soit f une function continue sur [a,b]. Alors, f est uniformément continue sur [a,b].

Preuve:

On suppose f continue sur [a,b] mais pas uniformément continue.

$$\exists \varepsilon > 0, \forall \eta > 0, \exists (x,y) \in [a,b]^2 \text{ avec } |x-y| \leqslant \eta \text{ et } |f(x)-f(y)| > \varepsilon$$

Soit $\varepsilon > 0$ comme ci-dessus. Alors,

$$\forall n \in \mathbb{N}, \exists (x_n, y_n) \in [a, b]^2 \text{ avec } \left| x_n - y_n \leqslant \frac{1}{n+1} \right| \text{ et } |f(x_n) - f(y_n)| > \varepsilon$$

 (x_n) est bornée donc il existe une sous-suite $(x_{\varphi(n)})$ de (x_n) convergente. On note $\ell = \lim_{n \to +\infty} x_{\varphi(n)} \in [a,b]$ $(y_{\varphi(n)})$ est bornée, $(y_{\varphi(n)})$ a une sous-suite $(y_{\varphi(\psi(n))})$ convergente.

On pose $\ell' = \lim_{n \to +\infty} y_{\varphi(\psi(n))} \cdot (x_{\varphi(\psi(n))})_{n \in \mathbb{N}}$ est une autre sous-suite de $(x_{\varphi(n)})$ donc $x_{\varphi(\psi(n))} \xrightarrow[n \to +\infty]{} \ell$.

De plus,

$$\forall n \in \mathbb{N}, \left| x_{\varphi(\psi(n))} - y_{\varphi(\psi(n))} \right| \leqslant \frac{1}{\varphi(\psi(n)) + 1}$$

On a vu que

$$\forall n \in \mathbb{N}, \varphi(\psi(n)) \geqslant n$$

car $\varphi \circ \psi$ est strictement croissante à valeurs dans \mathbb{N} .

Donc, $x_{\varphi(\psi(n))} - y_{\varphi(\psi(n))} \xrightarrow[n \to +\infty]{} 0.$

On en déduit que $\ell - \ell' = 0$. De plus

$$\forall n \in \mathbb{N}, \left| f\left(x_{\varphi(\psi(n))}\right) - f\left(x_{\varphi(\psi(n))}\right) \right| > \varepsilon$$

En passant à la limite,

$$0 = |f(\ell) - f(\ell)| > \varepsilon > 0$$

car f continue en ℓ

On a obtenu une contradiction. 4

$$\begin{cases} \eta > 0 \\ \varepsilon > 0 \end{cases}$$

$$\begin{cases} |x - y| \leqslant \eta \\ |f(x) - f(y)| \leqslant \varepsilon \end{cases}$$

Définition: Soit $f:I\to\mathbb{R}$ où I est un intervalle et $k\in\mathbb{R}$. On dit que f est k-lipschitzienne si

$$\forall (x,y) \in I^2, |f(x) - f(y)| \leqslant k |x - y|$$

On dit que f est <u>lipschitzienne</u> s'il existe $k \in \mathbb{R}$ tel que f soit k-lipschitzienne.

Proposition: Soit f une fonction lipschitzienne sur I. Alors, f est uniformément continue sur I donc continue sur I.

Preuve:

Soit $k \in \mathbb{R}$ tel que

$$\forall (x,y) \in I^2, |f(x) - f(y)| \leqslant k |x - y|$$

Si k=0 alors f est constante donc uniformément continue.

On suppose $k \neq 0$. Soit $\varepsilon > 0$. On pose $\eta = \frac{\varepsilon}{k} > 0$ car k > 0. Soit $(x,y) \in I^2$. On suppose $|x-y \leqslant \eta|$. Alors,

$$|f(x) - f(y)| \le k|x - y| \le k\eta = \varepsilon$$

Exemple:

 $x \mapsto |x|$ est 1-lipschitzienne sur \mathbb{R} .

$$\forall (x,y) \in \mathbb{R}^2, ||x| - |y|| \leqslant |x - y|$$

(inégalité triangulaire)

Théorème: Soit $f:I\to\mathbb{R}$ dérivable sur I telle qu'il existe $M\in\mathbb{R}$ vérifiant

$$\forall x \in I, |f'(x)| \leqslant M$$

Alors

$$\forall (a,b) \in I^2, |f(a) - f(b)| \leqslant M |a - b|$$

donc f est M-lipschitzienne.

Corollaire: Soit f de classe \mathscr{C}^1 sur [a,b]. Alors f est lipschitzienne.

Preuve:

f' est continue sur un segment donc bornée.

Exemple:

$$f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$$
$$x \longmapsto \sqrt{x}$$

$$\forall x > 0, \left| f'(x) \right| = \frac{1}{2\sqrt{x}} \xrightarrow[x \to 0^+]{} + \infty$$

Par contre,

$$\forall x \geqslant 1, |f'(x)| \leqslant \frac{1}{2}$$

Donc f est $\frac{1}{2}$ -lipschitzienne sur $[1, +\infty[$ donc uniformément continue sur $[1, +\infty[$. f est continue sur [0,1] donc uniformément continue sur [0,1] (théorème de Heine). Soit $\varepsilon > 0$. Soient $\eta_1, \eta_2 \in \mathbb{R}^+_*$ tels que

$$\begin{cases} \forall (x,y) \in [0,1]^2, |x-y| \leqslant \eta_1 \implies \left| \sqrt{x} - \sqrt{y} \right| \leqslant \frac{\varepsilon}{2} \\ \forall (x,y) \in [1,+\infty[^2,|x-y| \leqslant \eta_2 \implies \left| \sqrt{x} - \sqrt{y} \right| \leqslant \frac{\varepsilon}{2} \end{cases}$$

On pose $\eta = \min(\eta_1, \eta_2)$. Soient $(x, y) \in (\mathbb{R}^+)^2$. On suppose $|x - y| \leqslant \eta$ Cas 1 $\begin{cases} x \leqslant 1 \\ y \leqslant 1 \end{cases}$ Alors, $|x - y| \leqslant \eta \leqslant \eta_1$ donc $|\sqrt{x} - \sqrt{y} \leqslant \varepsilon_2| \leqslant \varepsilon$

Cas 1
$$\begin{cases} x \leqslant 1 \\ y \leqslant 1 \end{cases}$$

Cas 2
$$\begin{cases} x \geqslant 1 \\ y \geqslant 1 \end{cases}$$

$$|y| \ge 1$$

Alors, $|x - y| \le \eta \le \eta_2$ donc $|\sqrt{x} - \sqrt{y} \le \frac{\varepsilon}{2} \le \varepsilon|$

Cas 3 $x \leqslant 1 \leqslant y$

$$\begin{aligned} \left| \sqrt{x} - \sqrt{y} \right| &= \left| \sqrt{x} - \sqrt{1} + \sqrt{1} - \sqrt{y} \right| \\ &\leq \left| \sqrt{x} - \sqrt{1} \right| + \left| \sqrt{y} - \sqrt{1} \right| \end{aligned}$$

$$|x-1| \leqslant |x-y| \leqslant \eta \leqslant \eta_1 \text{ donc } \left| \sqrt{x} - \sqrt{1} \right| \leqslant \frac{\varepsilon}{2}$$

 $|y-1| \leqslant |x-y| \leqslant \eta \leqslant \eta_2 \text{ donc } \left| \sqrt{y} - \sqrt{1} \right| \leqslant \frac{\varepsilon}{2}$

Donc
$$\left| \sqrt{x} - \sqrt{y} \right| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Troisième partie

Fonctions à valeurs dans $\mathbb C$

Proposition: Soit $f: I \to \mathbb{C}$ et $a \in I$, $\ell \in \mathbb{C}$.

$$f(x) \xrightarrow[x \to a]{} \ell \iff \begin{cases} \mathfrak{Re}(f(x)) \xrightarrow[x \to a]{} \mathfrak{Re}(\ell) \\ \mathfrak{Im}(f(x)) \xrightarrow[x \to a]{} \mathfrak{Im}(\ell) \end{cases}$$

Remarque (Rappel):

On dit que : $I \to \mathbb{C}$ est bornée s'il existe $M \in \mathbb{R}$ tel que

$$\forall x \in I, |f(x)| \leqslant M$$

Quatrième partie

Annexe

IV Annexe

Théorème: Théorème 2.11 $f:I\to J$ bijective monotone avec I et J deux intervalles. Alors, f^{-1} est continue (et f aussi)

Preuve:

f monotone donc f(I) = Jdonc f continue (d'après 2.10). f^{-1} monotone, $f^{-1}(J) = I$ donc f^{-1} est continue

 $\mbox{\bf D\'efinition:} \ \ \mbox{Un $\underline{$hom\'eomorphisme}$ est une application bijective, continue dont la r\'eciproque est continue. }$

Remarque:

Preuve du programme de colle

Preuve:

$$\exists \eta > 0, \forall h \in]-\eta, +\eta[, f(a) \geqslant f(a+h)$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{\substack{h \to 0 \\ h \to 0}} \frac{f(a+h) - f(a)}{h} \le 0$$
$$= \lim_{\substack{h \to 0 \\ h \to 0}} \frac{f(a+h) - f(a)}{h} \ge 0$$

Donc, f(a) = 0