

SEMANA 3 – MOL

EXERCÍCIOS COM GABARITO – VAMOS EXERCITAR?

Caro Estudante,

Logo abaixo estão disponibilizados vários exercícios para vocês testar seus conhecimentos. Procure respondê-los integralmente e somente depois acesse o gabarito no final da página de cada questão.

Se houver dúvida, poste no Fórum de Dúvidas desta semana, ok!

Bons estudos!

1. (Uece 2018) Um estudante encontrou, no laboratório, um frasco que continha uma solução 3,0 M de certo hidróxido cujo nome não constava no rótulo, que apresentava poucas indicações do conteúdo. Usando 200 mL dessa solução e evaporando todo o líquido, ele obteve 33,6 g de hidróxido de:

[Dados:
$$O = 16$$
; $H = 1$; $K = 39$; $Na = 23$; $Ca = 40$; $Mg = 24$.]

- a) potássio.
- b) sódio.
- c) cálcio.
- d) magnésio.

Resposta da questão 1: [A]

2. (Uece 2018) A má alimentação é responsável por diversos problemas de saúde no ser humano como, por exemplo, a obesidade. Para contornar, em parte, essa situação, a indústria alimentícia produz alimentos classificados como "light", que apresentam uma diferença para menos de 25% no valor energético ou de nutrientes do produto original, e os que são classificados como "diet", formulados com modificações no conteúdo de nutrientes. O aspartame é utilizado como adoçante artificial tanto nos alimentos "light" quanto nos alimentos "diet".

Assinale a opção que apresenta correta e respectivamente a fórmula molecular e a massa molar aproximada do aspartame. Dados: C = 12; H = 1; N = 14; O = 16

- a) $C_{14}H_{16}N_2O_5$ e 292 g/mol.
- b) $C_{13}H_{18}N_2O_5$ e 282 g/mol.
- c) $C_{14}H_7N_2O_5$ e 283 g/mol.
- d) $C_{14}H_{18}N_2O_5$ e 294 g/mol.

Resposta da questão 2: [D]

$$C_{14}H_{18}N_2O_5 = 14\times12+18\times1+2\times14+5\times16$$

$$C_{14}H_{18}N_2O_5 = 294$$

$$M_{C_{14}H_{18}N_2O_5} = 294 \text{ g/mol}$$

3. (Uerj 2019) Considere as informações a seguir sobre a perfluorodecalina, substância utilizada no preparo de sangue artificial.

Fórmula mínima: C₅F₉.

Massa molar: 462 g/mol.

C = 12; F = 19.

Sua fórmula molecular é representada por:

- a) $C_{25}F_{45}$
- b) $C_{20}F_{36}$
- c) C₁₅F₂₇
- d) $C_{10}F_{18}$

Resposta da questão 3: [D]

$$C = 12; F = 19$$

$$M_{C_5F_9} = 462 \text{ g/mol}$$

$$MM_{C_5F_9}\,=462$$

$$n(C_5F_9) = 462$$

$$n(5 \times 12 + 9 \times 19) = 462$$

$$n = \frac{462}{231} = 2$$

Fórmula molecular = $\left(C_5F_9\right)_2$

Fórmula molecular = $C_{10}F_{18}$

4. (Uepa 2014) O processo de lavagem a seco ocorre sob uma determinada temperatura, e isso está diretamente relacionado ao solvente utilizado. Por exemplo, quando o solvente é o tetracloroeteno ($C_2C\ell_4$), comercialmente conhecido como percloroetileno, é usado largamente na indústria de lavagem a seco como agente de limpeza, a melhor temperatura para aquecer o ar que circula no tambor da máquina é de 60° C. Se essa temperatura não for alcançada, algumas roupas podem não ficar completamente secas ao final do processo; se ficar acima, a roupa poderá enrugar, e alguns tecidos mais sensíveis poderão ser danificados.

Quando os vapores de percloroetileno são expostos a situações de elevada temperatura, acima de 600° C, na presença de oxigênio e água, observa-se a formação das espécies $HC\ell$, CO_2 , CO e $C\ell_2$, representadas pelas equações:

$$\begin{split} &C_2C\ell_{\,4(g)} + O_{2(g)} + H_2O_{(g)} \to 2HC\ell_{(g)} + CO_{(g)} + CO_{2(g)} + C\ell_{2(g)} \\ &CO_{(g)} + C\ell_{2(g)} \to COC\ell_{2(g)} \end{split}$$

Dados:

H =
$$1g \cdot \text{mol}^{-1}$$
; C = $12g \cdot \text{mol}^{-1}$;
O = $16g \cdot \text{mol}^{-1}$; C ℓ = $35,5g \cdot \text{mol}^{-1}$

Marque a alternativa correta:

- a) $C_2C\ell_{4(g)} + O_{2(g)} + H_2O_{(g)} \rightarrow 2HC\ell_{(g)} + CO_{(g)} + CO_{2(g)} + C\ell_{2(g)}$ é uma reação de síntese.
- b) O monóxido de carbono é um óxido básico, enquanto que CO₂ é um óxido ácido.
- c) A reação: $CO_{(q)} + C\ell_{2(q)} \rightarrow COC\ell_{2(q)}$ corresponde a uma reação de dupla troca.
- d) O Cl₂ é formado tanto por ligação covalente, quanto por ligação iônica.
- e) As espécies C₂Cℓ₄; O₂ e H₂O possuem massas moleculares, respectivamente: 166; 32 e 18g·mol⁻¹.

Resposta da questão 4: [E]

- [A] Incorreta. Reações de síntese formam apenas um só produto.
- [B] Incorreta. O monóxido de carbono é um óxido neutro.
- [C] Incorreta. A reação: $CO_{(g)} + C\ell_{2(g)} \to COC\ell_{2(g)}$ é uma reação de síntese, onde dois ou mais reagentes formam apenas um único produto.
- [D] Incorreta. O $C\ell_2$ é formado pelo compartilhamento de elétrons, ou seja, apenas por ligação covalente.
- [E] Correta.

$$C_2C\ell_4 = (12 \cdot 2) + (35, 5 \cdot 4) = 166 \text{ g· mol}^{-1}$$
 $O_2 = (16 \cdot 2) = 32 \text{ g· mol}^{-1}$
 $H_2O = (1 \cdot 2) + 16 = 18 \text{ g· mol}^{-1}$

Fluminense

Campus Macaé

Sais de lítio, como o Li₂CO₃, são utilizados no tratamento de doenças depressivas, com uma dose total de até 30·10⁻³ mol por dia. Se em uma prescrição médica essa dosagem deva ser atingida pela ingestão de duas drágeas ao dia, a massa (em gramas) de carbonato de lítio que cada cápsula deve conter é de aproximadamente

Dados: Massas molares $(g mol^{-1})$: Li = 6,94; C = 12,01; O = 16,00.

- a) 0,15.
- b) 0,30.
- c) 0,75.
- d) 1,10.
- e) 2,20.

Resposta da questão 5: [D]

Para a ingestão de 2 drágeas:

$$D_L = 30 \cdot 10^{-3} \text{mol} \div 2 = 15 \cdot 10^{-3} \text{mol}$$

1 mol de Li₂CO₃ ----- 73,88 g

$$15 \cdot 10^{-3} \text{mol} - x$$

$$x = 1,10 g$$

6. (Uel 2019) Os cosméticos, como batons e rímeis, buscam realçar o encanto da beleza. Porém, o uso desses produtos pode, também, causar desencantamento em função dos constituintes químicos tóxicos que possuem. Em batons, pode haver presença de cádmio, chumbo, arsênio e alumínio. A FDA (*Food and Drug Administration*) e a ANVISA (Agência Nacional de Vigilância Sanitária) preconizam limites máximos de metais apenas para corantes orgânicos artificiais utilizados como matéria-prima na fabricação de cosméticos.

Considerando que um determinado batom possua concentração de chumbo igual a 1,0 mg·Kg⁻¹ e que a estimativa máxima de utilização deste cosmético ao longo do dia seja de 100 mg, assinale a alternativa que representa, correta e aproximadamente, o número de átomos de chumbo em contato com os lábios ao longo de um dia.

Dados:

Massa molar de chumbo = 207 g mol^{-1}

Constante de Avogadro = $6.0 \times 10^{23} \text{ mol}^{-1}$

- a) 1.2×10^8
- b) 2.9×10^{14}
- c) 4.5×10^{30}
- d) 5.1×10^{25}
- e) 6.8×10^4

Resposta da questão 6: [B]

1,0 mg·kg⁻¹ =
$$\frac{1,0 \text{ mg de Pb}}{1,0 \text{ kg de batom}} = \frac{1,0 \text{ mg de Pb} \times 10^{-4}}{1000 \text{ g de batom} \times 10^{-4}} = \frac{10^{-4} \text{ mg de Pb}}{100 \text{ mg de batom}}$$

$$m_{Pb} {=} \, 10^{-4} \ mg = 10^{-4} \times 10^{-3} \ g = 10^{-7} \ g$$

$$M_{Pb}=207~g\!\cdot\! mol^{-1}$$

$$n_{Pb} = \frac{m_{Pb}}{M_{Pb}} = \frac{10^{-7} \text{ g}}{207 \text{ g} \cdot \text{mol}^{-1}} = \frac{1}{207} \times 10^{-7} \text{ mol}$$

$$N_A = 6.0 \times 10^{23} \text{ mol}^{-1}$$

Número de átomos de chumbo =
$$\frac{1}{207} \times 10^{-7} \text{ mol} \times 6,0 \times 10^{23} \text{ mol}^{-1}$$

Número de átomos de chumbo =
$$0.02898 \times 10^{16} \approx 2.9 \times 10^{14}$$

7. (Ufpr 2017) Em momentos de estresse, as glândulas suprarrenais secretam o hormônio adrenalina, que, a partir da aceleração dos batimentos cardíacos, do aumento da pressão arterial e da contração ou relaxamento de músculos, prepara o organismo para a fuga ou para a defesa.

 $Dados - M (g \cdot mol^{-1})$: H = 1; C = 12; N = 14; O = 16.

Qual é o valor da massa molar (em g·mol⁻¹) desse composto?

- a) 169.
- b) 174.
- c) 177.
- d) 183.
- e) 187.

Resposta da questão 7: [D]

Fórmula molecular da adrenalina: C₉H₁₃NO₃.

 $M_{C_9H_{13}NO_3} = 9 \times 12 + 13 \times 1 + 1 \times 14 + 3 \times 16 = 183 \ g \cdot \text{mol}^{-1}.$

8. (Uemg 2017) O Diesel S-10 foi lançado em 2013 e teve por objetivo diminuir a emissão de dióxido de enxofre na atmosfera, um dos principais causadores da chuva ácida. O termo S-10 significa que, para cada quilograma de Diesel, o teor de enxofre é de 10 mg. Considere que o enxofre presente no Diesel S-10 esteja na forma do alótropo S₈ e que, ao sofrer combustão, forme apenas dióxido de enxofre.

O número de mols de dióxido de enxofre, formado a partir da combustão de 1.000 L de Diesel S-10, é, aproximadamente,

Dado: Densidade do Diesel S-10 = 0.8 kg/L; S = 32.

- a) 2,48 mol.
- b) 1,00 mol.
- c) 0,31 mol.
- d) 0,25 mol.

Resposta da questão 8: [D]

S-10: 1kg de Diesel tem 10 mg de enxofre.

S-10 = 0,8
$$\frac{kg}{I}$$

S-10 = 0,8
$$\frac{(10 \text{ mg de enxofre})}{1}$$

$$S-10 = \frac{(8 \text{ mg de enxofre})}{I}$$

S-10 =
$$\frac{1.000 \times (8 \text{ mg de enxofre})}{1.000 \text{ L}} = \frac{8 \text{ g}}{1.000 \text{ L}}$$

$$m_{enxofre} = 8 g$$

$$n_{enxofre} = \frac{m_{enxofre}}{M_{enxofre}} = \frac{8}{32} = 0,25 \text{ mol}$$

9. (Ufrgs 2016) O sal rosa do Himalaia é um sal rochoso muito apreciado em gastronomia, sendo obtido diretamente de uma reserva natural aos pés da cordilheira. Apresenta baixo teor de sódio e é muito rico em sais minerais, alguns dos quais lhe conferem a cor característica.

Considere uma amostra de 100g de sal rosa que contenha em sua composição, além de sódio e outros minerais, os seguintes elementos nas quantidades especificadas:

Magnésio = 36 mg

Potássio = 39mg

Cálcio = 48mg

Os elementos, colocados na ordem crescente de número de mols presentes na amostra, são

- a) K, Ca, Mg.
- b) K, Mg, Ca.
- c) Mg, K, Ca.
- d) Ca, Mg, K.
- e) Ca, K, Mg.

Resposta da questão 9: [A]

Cálculo do número de mols de elementos presentes na amostra:

Magnésio (Mg):
$$n = \frac{m}{M} = \frac{36 \times 10^{-3} \text{ g}}{24 \text{ g.mol}^{-1}} = 1,5 \text{ mol}$$

Potássio (K):
$$n = \frac{m}{M} = \frac{39 \times 10^{-3} \text{ g}}{39 \text{ g.mol}^{-1}} = 1,0 \text{ mol}$$

Cálcio (Ca):
$$n = \frac{m}{M} = \frac{48 \times 10^{-3} \text{ g}}{40 \text{ g.mol}^{-1}} = 1,2 \text{ mol}$$

$$\underbrace{1,0 \; mol}_{K} < \underbrace{1,2 \; mol}_{Ca} < \underbrace{1,5 \; mol}_{Mg}$$