Предел последовательности

Число A является npedenom последовательности (a_n) , если

$$\forall \, \varepsilon > 0 \,\, \exists \, N \in \mathbb{N} : n \geqslant N \Rightarrow |a_n - A| \leqslant \varepsilon \,\, \stackrel{\text{outp}}{\Longleftrightarrow} \,\, \lim_{n \to +\infty} a_n = A.$$

- 1. Сформулируйте определения $\lim_{n\to+\infty}a_n=\pm\infty$ и ∞ .
- 2. Докажите, что $\lim_{n \to +\infty} b + bq + \ldots + bq^{n-1} = \frac{b}{1-q}$ при |q| < 1.
- 3. Докажите, что сходящаяся последовательность ограничена и что у любой ограниченной последовательности есть сходящаяся подпоследовательность.
- 4. Докажите, сходимость последовательности $(a_n) \subset \mathbb{R}$, такой что $\forall \varepsilon > 0 \ \exists \ N : |a_n a_m| < \varepsilon \ \forall m, n \geqslant N$.
- 5. Вычислите следующие пределы, считая, что фиксировано некоторое число $a \in (1, +\infty)$:
 - (a) $\lim_{n \to +\infty} \frac{1}{a^n}$; (b) $\lim_{n \to +\infty} \sqrt[n]{a}$; (c) $\lim_{n \to +\infty} \frac{n}{a^n}$; (d) $\lim_{n \to +\infty} \frac{a^n}{n!}$.
- 6. Вычислите предел $\lim_{n\to+\infty} \sqrt[n]{n}$.
- 7. Докажите, что последовательность $(1+\frac{1}{n})^n$ сходится.
- 8. Вычислите следующие пределы:
 - (a) $\lim_{n \to +\infty} \frac{n^2 + 1}{n^3 20}$; (b) $\lim_{n \to +\infty} \frac{3n^2 + 5^n + 4^n}{n + 5^n + 2 \cdot 3^n}$;
 - (c) $\lim_{n \to +\infty} (\sqrt{n+2025} \sqrt{n});$ (d) $\lim_{n \to +\infty} (\sqrt{n^2 + 2025n} n);$
 - (e) $\lim_{n \to +\infty} (1 \frac{1}{n})^n$; (f) $\lim_{n \to +\infty} (\frac{n}{n+3})^n$; (g) $\lim_{n \to +\infty} (\frac{3^n + n}{3^n})^{\frac{3^n}{2n-1}}$.
- 9. Докажите, что последовательности (x_n) , заданные следующими рекуррентными соотношениями сходятся и найдите их пределы
 - (a) $x_1 = \frac{1}{2}, x_{n+1} = \frac{1}{2} + \frac{x_n^2}{2};$ (b) $x_1 = 1, x_{n+1} = 1 + \frac{1}{x_n};$ (c) $x_1 = \sqrt{3}, x_{n+1} = \sqrt{3 + x_n}.$
- 10. Последовательности $a_n = x_n + y_n$ и $b_n = x_n \cdot y_n$ сходятся. Обязательно ли (x_n) и (y_n) тоже сходятся?
- 11. Обязательно ли сходится последовательность (x_n) , такая что (a) $\lim_{n\to\infty} x_{n+1}-x_n=0$; (b) $\lim_{n\to\infty} x_{n+1}-2x_n=0$?