Chapter 9 Parameter Estimation

► Goldberger, Ch. 11

Yale Note Ch. 13, 14

Wackerly et al. Ch. 8

1. Estimation

- Random sample (y_1, y_2, \dots, y_n) drawn from $f(y; \theta)$, where θ denotes parameter.
- ▶ Our interest: parameter θ .

(Example)
$$\theta = \mu$$
, σ^2 , σ_{XY} , α , β .

- ► Our task: estimate θ , $\hat{\theta} = h(y_1, \dots, y_n)$.
- What function of $h(\cdot)$ shall we take?
- ► $\mathbf{Y} = (Y_1, \dots, Y_n)$: random vector.
- ► $\mathbf{y} = (y_1, \dots, y_n)$: sample data.
- ightharpoonup T = h(Y): estimator.
- ► t = h(y): estimate.

- All we know about θ : θ is an element of the parameter space Ω .
- ► Information: $\theta \in \Omega$ (Ω : parameter space).
- ightharpoonup Estimation: an attempt to elicit information about θ .
- ► <u>Estimator</u>: a function of random variable $(T = h(Y) \Rightarrow \hat{\theta} = h(Y_1, \dots, Y_n))$.
- ► *Estimate*: a realization of $\hat{\theta}$ (t = h(y)).
- Chief question: how to choose the function $h(\cdot)$.

2. Analogy Principle

- Since a population parameter is a feature of population,
 to estimate parameter, use the corresponding features of the sample.
- ► Most natural rule for selecting an estimator.
- ① To estimate population moment, use the corresponding sample moment. (Example)

For
$$\theta = \mu$$
, use $\hat{\theta} = \overline{Y}$.

For
$$\theta = \sigma^2$$
, use $\hat{\theta} = S^2$.

② To estimate a function of population moment, use a function of sample moment.

(Example 1)

For the population BLP slope, $\beta = \frac{\sigma_{XY}}{\sigma_X^2}$, use $\hat{\beta} = \frac{s_{XY}}{s_X^2}$.

For the population BLP intercept, $\alpha = \mu_Y - \beta \mu_Y$, use $\hat{\alpha} = \overline{Y} - \hat{\beta} \overline{X}$.

(Example 2) For multivariate BLP, $E(\mathbf{X}_2|\mathbf{X}_1) = \alpha + B'\mathbf{X}_1$ with $B = \Sigma_{11}^{-1}\Sigma_{12}$, $\alpha = \mu_2 - B'\mu_1$

Analogue estimation: $\hat{E}(\mathbf{X}_2|\mathbf{X}_1) = \hat{\alpha} + \hat{B}'\mathbf{X}_1$ with $\hat{B} = \hat{\Sigma}_{11}^{-1}\hat{\Sigma}_{12}$, $\hat{\alpha} = \hat{\mu}_2 - \hat{B}'\hat{\mu}_1$

- ③ To estimate $F(c) = P(Y \le c)$, use $\hat{F}(c) = \frac{\# \ of \ Y_i \le c}{\# \ of \ drawings}$.
- ④ To estimate population median, use the sample median.
- \emptyset = maximum, $\hat{\theta}$ = sample maximum.

3. Criterion for an Estimator

- Let $T = h(Y_1, \dots, Y_n)$ be a sample statistic with a pdf g(t) and moments E(T), V(T).
- Choosing an estimator $T \Rightarrow$ choosing a sampling distribution of T.
 - ▶ We would like $T = \theta$, but that ideal is unattainable.
 - ▶ Maybe, we ask T be close to θ .

(Definition) If $E(T) = \theta$, T is an <u>unbiased</u> estimator of θ .

- ► Even though $T \neq \theta$, in average $T = \theta$.
- ► Bias of $T = E(T) \theta$.

(Definition) An unbiased estimator $\hat{\theta}_1$ is <u>more efficient</u> than an unbiased estimator $\hat{\theta}_2$ if $V(\hat{\theta}_1) < V(\hat{\theta}_2)$.

(Example) $\theta = \mu$.

Estimator 1: X_1 .

Estimator 2: \bar{X} .

 $E(X_1) = E(\overline{X}) = \mu$: both are unbiased.

$$V(X_1) = \sigma^2, \quad V(\overline{X}) = \frac{\sigma^2}{n}.$$

So, \overline{X} is more efficient than X_1 .

► Efficient estimators are also refined to as <u>best unbiased estimators</u> or more precisely as <u>minimum variance unbiased estimators</u>.

(Definition) T is a <u>minimum variance unbiased estimator</u>(MVUE) of θ iff

- ① $E(T-\theta)=0$ for all θ .
- ② $V(T) \le V(T^*)$ for all T^* such that $E(T^* \theta) = 0$.
- Uniformly Minimum Variance Unbiased(UMVU) estimator.
- Cramer-Rao Lower Bound(Cramer Rao Inequality)

- In general, there might be a trade-off between bias and variance.
- ► A natural measure of distance between the random variable T and the parameter θ : mean squared error(MSE).

(Definition) The *mean squared error*(MSE) of an estimator is:

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^{2}\right]$$
$$= V\left(\hat{\theta}\right) + \left\{Bias\left(\hat{\theta}\right)\right\}^{2}$$

► For unbiased estimator, MSE = Variance.

• Often, we are finding the minimum variance estimator <u>among linear function</u> of sample observations.

(Definition) An estimator $\hat{\theta}$ is a <u>linear estimator</u> if it is a linear function of sample observations, $\hat{\theta} = \sum_{i=1}^{n} a_i Y_i$.

(Definition) Let $\hat{\theta}$ be an estimator of θ of the form $\hat{\theta} = \sum_{i=1}^{n} a_i Y_i$ where a_i 's are constant. If $E(\hat{\theta}) = \theta$, and $V(\hat{\theta}) \leq V(\tilde{\theta})$ when $\tilde{\theta}$ is any other linear and unbiased estimator, then $\hat{\theta}$ is the <u>best linear unbiased</u> estimator(BLUE) of θ or <u>minimum</u> <u>variance linear unbiased estimator</u>(MVLUE) of θ .

(Example 1) (Population mean) Let Y_1, Y_2, \dots, Y_n be a random sample from a population with $E(Y_i) = \mu$, $V(Y_i) = \sigma^2$. Find MVLUE of μ .

(Sol) MVLUE(BLUE) of μ : $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \overline{Y}$.

(Exercise) Prove that \overline{X} is MVLUE of μ .

(Theorem) In random sampling, sample size n, from any population, the sample mean is the minimum variance linear unbiased estimator(MVLUE) of the population mean.

(Example) (Population raw moment) Similarly, $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Y_i^s$ is the MVLUE of $\theta = E(Y^s)$.

(Definition) Robustness

An estimator is <u>robust</u> if its sampling distribution is <u>not</u> affected by violations of the underlying assumption.

(Examples of violations)

① Outlier in the data: $Mean(\overline{X})$ vs. $Median(\overline{M})$:

Note
$$V(\bar{X}) = \frac{\sigma^2}{n}$$
, $V(\bar{M}) = \frac{1}{n4\{f(0)\}^2}$.

So, if
$$\sigma^2 > \frac{1}{4\{f(0)\}^2}$$
, prefer median and if $\sigma^2 < \frac{1}{4\{f(0)\}^2}$, prefer mean.

- 2 Misspecification of p.d.f.
- 3 Heterogeneity or dependence in the data.

4. Asymptotic Criteria

(Definition) T_n is a <u>consistent</u> estimator of θ if $T_n \xrightarrow{p} \theta(p \lim T_n = \theta)$.

(Definition) T_n is <u>asymptotically unbiased</u> if $\lim E(T_n) = \theta$.

(Definition) T_n is <u>asymptotically efficient</u> if other asymptotic variance exceeds the asymptotic variance of T_n .

(Definition) T_n is <u>best asymptotically normal</u>(BAN) estimator of θ iff

①
$$T_n \stackrel{a}{\sim} N\left(\theta, \frac{\phi^2}{n}\right)$$
, and

②
$$\phi^2 \le \phi^{*2}$$
 for all T_n^* such that $T_n^* \stackrel{a}{\sim} N\left(\theta, \frac{\phi^2}{n}\right)$.

BAN criterion is the asymptotic version of the MVUE criterion.

5. Interval Estimation

- For a specific sample, the single value obtained for $\hat{\theta}$ is called a *point estimate*.
- ► So far, we have been concerned with point estimation of population parameter.
- ► One difficulty with point estimators: they do not convey a sense of the precision of the estimator.
- ► It can be useful to provide interval estimators based on the sampling distribution of the estimator.
 - ► $\mu \in \overline{X} \pm \text{sampling error}$
- ► The estimate obtained will vary from sample to sample.
 - ► There is some probability that it will be quite erroneous.

- The logic behind the interval estimate:
 - ► Use the sample data to construct an interval.
- ► Expect this interval to contain the true parameter in some specified proportion of samples, or equivalently, with some desired level of confidence.

(1) Estimation of Means

Case 1: $(y_1, \dots, y_n) \sim N(\mu, \sigma^2)$ with known variance σ^2 .

Then the sampling distribution of the sample mean \bar{Y} is,

$$Z = \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$$

Let
$$A = \{ |Z| \le 1.96 \}$$
,

so,
$$P(A) = \Phi(1.96) - \Phi(-1.96) = 0.975 - 0.025 = 0.95$$
.

 \Rightarrow

$$A = \left\{ \left| \overline{Y} - \mu \right| \le 1.96 \ \sigma / \sqrt{n} \right\}$$
$$= \left\{ \overline{Y} - 1.96 \ \sigma / \sqrt{n} \le \mu \le \overline{Y} + 1.96 \ \sigma / \sqrt{n} \right\}$$

- ► "The parameter μ lies in the interval $\bar{Y} \pm 1.96 \, \sigma / \sqrt{n}$ " is true with probability 95%.
- $ightharpoonup ar{Y} \pm 1.96 \, \sigma / \sqrt{n}$ is 95% confidence interval for the parameter μ .

• $100(1-\alpha)\%$ confidence interval for μ : $\overline{Y} \pm z_{\alpha/2} \, \sigma / \sqrt{n}$.

$$\alpha = 0.05 \implies z_{\alpha/2}$$

$$\alpha = 0.10 \implies z_{\alpha/2}$$

$$\alpha = 0.01 \implies z_{\alpha/2}$$

(Definition) The random interval $\left[\overline{Y} - z_{\alpha/2} \, \sigma / \sqrt{n} \,, \overline{Y} + z_{\alpha/2} \, \sigma / \sqrt{n}\right]$ is an <u>interval</u> <u>estimator</u> of μ .

(Definition) If we replace the random variable \bar{Y} with an estimate based on the values of a particular sample, we obtain an <u>interval estimate</u>.

(Remark) A common mistake is to say that "the <u>interval estimate</u> contains the true value μ with probability $1-\alpha$." Note that once this particular interval estimate has been constructed, the true value μ must be either inside or outside the interval with certainty, so the statement cited does NOT make any sense.

► Rather the interval estimate is one realization of the interval estimator which we constructed to include μ in repeated trials with probability $1-\alpha$.

Case 2: $(y_1, \dots, y_n) \sim N(\mu, \sigma^2)$ with <u>unknown</u> variance σ^2 .

Then,

(a)
$$Z = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
.

(b)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
.

 \bigcirc \overline{Y} and S^2 are statistically independent.

Thus,

$$t = \frac{\frac{\overline{Y} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / (n-1)}} = \frac{\overline{Y} - \mu}{S / \sqrt{n}} \sim t(n-1).$$

• The corresponding interval estimator is $\left[\overline{Y} - t_{(n-1:\alpha/2)} s / \sqrt{n}, \overline{Y} + t_{(n-1;\alpha/2)} s / \sqrt{n}\right]$.

- $ightharpoonup s/\sqrt{n}$: standard error of \overline{Y} .
- $ightharpoonup \sigma/\sqrt{n}$: standard deviation of \overline{Y} .

Case 3: (y_1, \dots, y_n) : random sample from <u>unknown</u> distribution(unknown mean μ , unknown variance σ^2) with large sample.

• Since
$$Z = \frac{\overline{Y} - \mu}{s/\sqrt{n}} \xrightarrow{d} N(0,1)$$
,

the corresponding approximate $100(1-\alpha)\%$ confidence interval is

$$\left[\overline{Y} - z_{\alpha/2} s / \sqrt{n}, \overline{Y} + z_{\alpha/2} s / \sqrt{n}\right]$$
.

► s/\sqrt{n} : asymptotic standard error of \overline{Y} .

(2) Estimation of Variances

Case 1:
$$(y_1, \dots, y_n) \sim N(\mu, \sigma^2)$$
.

Since
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,

$$P\left[\chi^{2}_{(n-1;\alpha/2)} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi^{2}_{(n-1;1-\alpha/2)}\right] = 1 - \alpha.$$

So, the interval estimator is $\left[\frac{(n-1)s^2}{\chi^2_{(n-1;1-\alpha/2)}}, \frac{(n-1)s^2}{\chi^2_{(n-1;\alpha/2)}}\right]$.

Case 2: $(y_1, \dots, y_n) \sim \text{unknown distribution.}$

• If the underlying distribution is not normal, the finite sample distribution of s^2 is unknown. However, we can use the asymptotic normal distribution of s^2 . So,

$$\frac{\sqrt{n}\left(s^2 - \sigma^2\right)}{\left(\hat{\mu}_4 - s^4\right)^{1/2}} \xrightarrow{d} \frac{\sqrt{n}\left(s^2 - \sigma^2\right)}{\left(\hat{\mu}_4 - \sigma^4\right)^{1/2}} \xrightarrow{d} N(0,1),$$

Where $\hat{\mu}_4 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^4$.

• Report $\left[s^2\pm 1.96 \left(\hat{\mu}_4-s^4\right)^{1/2}\Big/\sqrt{n}\right]$ as the approximate 95% confidence interval for σ^2 .