

This Unit

- Intro
- Application Protocols
 - HTTP
 - Support services

Application Architectures

- Client-server
- Peer-to-peer (P2P)
- Hybrid of client-server and P2P peer-peer

- Server:
 - Always-on host
 - Permanent IP address
- Clients:
 - May have dynamic IP addresses

Application Layer Protocol Defines

- Types of messages exchanged,
 - e.g., request, response
- Message syntax
 - what fields in messages
- Message semantics
 - meaning of information in fields
- Rules: when and how processes send & respond to messages

Application

Transport

Network

Data Link

Physical

Application Layer

- The application layer specifies
 - Supported functions
 - Commands to accomplish these functions
- Public-domain protocols:
 - Defined in RFCs
 - Allows for interoperability
 - e.g., HTTP
- Proprietary protocols:
 - e.g., Skype

Application vs. Lower Layers

 Unlike lower layers, each supported end-user task has a different application layer protocol associated with it

- HTTP for web
- SMTP for email
- FTP file sharing
- ...Many others

Example: Web Application

- The web consists of pages
- Pages are linked to each other through hyperlinks
 - Linked pages can be anywhere in the world
 - Hence the name: World Wide Web
- Web pages are written in hypertext markup language (HTML)

Web Page Example

```
+ > 1 2 ? 🚔 🟦 http://www.ismlab.usf.edu/html101.html
< h + m >
                                Welcome to html page at <u>USF</u>
                                Please check back later
   <head>
   <title>HTML 101</title>
   </head>
   <body>
   <h1>Welcome to html page at
   <a href = "www.usf.edu">USF</a> </h1>
   Please check back later
  </body>
</html>
```

How the Web Works?

- Each client has application software package called Web browser
 - Such as Microsoft Internet Explorer
- Each server has an application software package called Web server
 - such as those produced by Microsoft or Apache
- For a client to get to a sever, it uses a Uniform Resource Locator (URL) for the page
 - The URL specified the address of the Web server
 - RFC 1738, 1994

How the Web Works?

- For the request from the Web browser to be understood by the Web server, they must use the same standard **protocol** (same language)
 - If there is no standard language, it will be impossible to have Microsoft browser to communicate with Apache server
- The standard protocol for communication between browser and server is Hypertext Transfer Protocol (HTTP).

Defined in <u>RFC 2616</u> (1999)

Based on request/response

- Client sends request to server
 - E.g. GET, POST, DELETE, CONNECT
- Server responds with status code, metainformation and data

Hypertext Transfer Protocol (HTTP)

HTTP Request and Response

HTTP Request

Request line: command (GET), provides web page, HTTP version number used by browser

Request header: number of optional information, such as browser used and date.

Referrer: reflects that user obtained the URL of this page by clicking on a click on another page

There could be request body if a user fill a form for example.

200

OK

Date: Mon 03 Jan 2011 17:36:02 GMT

HTTP/1.1

Response status

Response header

HTTP Response

Status code 200 means success

Header contains information about server

The response body is the webpage

```
Server: Apache
Location: http://www.kelley.indiana.edu/ardennis/home.htm
Content-Type: text/html
<html>
<head>
                                              Response body
<title>Alan R. Dennis</title>
</head>
<body>
<H2>Alan R. Dennis </H2>
<P>Welcome to the home page of Alan Dennis
</body>
</html>
```

Support Services

- How does a device get an IP address when it joins a network?
 - Through DHCP application protocol
- How can a host know the IP address of the server?
 - DNS application protocol

DHCP: Dynamic Host Configuration Protocol

- How does a device get an IP address when it joins a network?
 - Can be configured
 manually,
 however more often this
 task is done automatically
 using DHCP.
 - DHCP: Defined in RFC 2131 (March 1997)

DHCP

- DHCP is a client-server protocol
- DHCP server manages the pool of available IP addresses in a network
 - There is typically one DHCP server in each subnet
 - At home, the router acts as DHCP server

DHCP

- DHCP server can allocate addresses in 3 ways:
 - Manual: permanent assignment
 - The IP address assigned is not necessary the first available IP address (could be an easy to remember address)
 - Assigned by network administrator
 - Popular for support devices such as printers
 - Automatic: Permanent assignment
 - Addresses allocated by DHCP server on a first-come first served basis.
 - Once allocated it will be always assigned
 - Popular for servers, wireless APs, etc.
 - Dynamic: Leased for short time from address pool
 - Assign any address in the pool
 - Allows address reuse
 - Popular in LANs and ISP

Server Setting Example

Service										
IP Address Distribution:		DHCP	DHCP Server ▼							
DHCP Server										
Start IP Address:		192].	168].	1		1		
End IP Address:		192		168].	1		150		
Subnet Mask:		255].	255		255].	0		
WINS Server:		0].	0		0].	0		
Lease Time in Minutes:		1440								
Provide Host Nan	ne If Not Specified by Clien	t								
		. co (v		Clace	Tda	entifia	·r)			
TP Address Distrib	ution usina DHCP Ontior	i bu i veni			IP Range					
IP Address Distrib Vendor ID			JOF	Class					QoS	

Setting of a server. Start IP address and End IP address specify range of available addresses

DHCP Dynamic Assignment

- IP address is leased for a certain time, called lease time
- When a host leaves the network, its address is returned to the pool of addresses
 - Useful when computers will only be connected intermittently to the network (not servers)
 - Considered as a solution to IP address shortage

- 1. DHCP server discovery: client broadcast message to find a DHCP server (DHCP server is at UDP port 67)
- 2. <u>DHCP server offer:</u> **broadcast** message,
 that client receives
 with suggested IP
 address and lease
 duration
 - Multiple servers may respond
- 3. <u>DHCP request:</u> client choose server and respond to offer
 - Broadcast so other servers know
- 4. <u>DHCP ACK:</u> server confirms

"yiaddr" your Internet address = address allocated to newly arriving client

DHCP: Network Information

- The DHCP server provides an IP address for a fixed duration (lease time) in response to a client's DHCP request
- The client can request the DHCP server for an extension of the lease before the lease expires
 - Attempts to provide same address as before if possible
- The DHCP server also provides to the client:
 - Subnet mask
 - Default gateway (router):
 - that is how we know the IP address of the router
 - Then we use ARP to get its MAC address
 - Address of local DNS server
 - DNS next

Support Services

- How does a device get an IP address when it joins a network?
 - Through DHCP application protocol
- How can a host know the IP address of the server?
 - DNS application protocol

The need for a Name Service

- How to get the IP address of server (destination)?
- Initially, the Internet was small, and all users maintained a <u>hosts file</u> to translate names to IP addresses
 - Entries appeared as follows:
 - 131.247.222.249 www.usf.edu
 - But, as more users came online, it became difficult for endusers to maintain hosts file
- The need was recognized for a system
 - that maintains accurate name-IP address mappings
 - easy to maintain
 - easy to use

Domain Name System (DNS)

 The domain name system is the set of databases that performs the correspondence between domain names and IP addresses

 Domains: part of a naming system that is administered by an entity

DNS: <u>RFC 1034</u>, <u>RFC 1035</u>

Simplified Example: IP Addresses and Domain Names

DNS

- Why not a centralize DNS?
 - Single point of failure, Traffic volume, Maintenance
- Domain names are arranged hierarchically:
 - Root name server: DNS originate from a common root
 - Top level domains
 - Sub-domains

DNS: Root Name Servers

- https://www.iana.org/domains/root/servers
- Root name servers: have addresses of TLD
 - 13 named authorities for "root server"
 - Redundant servers for each for reliability under failure
- Contacts authoritative name server if name mapping (IP address from URL) is not known

Top level domains

- A number of top-level domains (TLD) have been created
 - Maintained by Internet Assigned Number Authority (IANA) in ICANN (Internet Corporation for Assigned Names and Numbers)
- Open domains:
 - Anybody can register: .com, .org, .net,
- Limited domains
 - Conditions must be satisfied for membership
 - .edu (education), .gov (government), .mil (military)

Domain Hierarchy

- Each domain is responsible to translating its immediate sub-domain names to IP addresses
 - Domain "edu" has IP addresses of:
 - Pitt.edu, cmu.edu, usf.edu,...
 - Each of these is also a domain and include IP addresses of their subdomains

- **Pitt.edu** include IP addresses of:
 - library.pitt.edu, engineering.pitt.edu,...

Distributed, Hierarchical Database

Distributed, Hierarchical Database

Client wants IP for www.amazon.com

- Client queries a "root" server to find "com" DNS server
- Client queries com DNS server to get amazon.com DNS server
- 3. Client queries **amazon.com** DNS server to get IP address for server www.amazon.com
 - Note that the first part of url address is the machine name, the rest is the domain name

Local Name Server is Contacted First

- Each ISP, company, university has one local DNS.
 - also called "default name server"

- When host makes DNS query, query is sent to its local DNS server
 - Local DNS server then forwards query into hierarchy
 - DNS queries and responses are on port 53 using UDP
- Home networking, router acts as local DNS server

Recursive DNS Query Resolution

DNS: Caching and Updating Records

 Once a name server learns mapping (name to IP address), it caches it

- Cache entries timeout (disappear) after some time
- TLD servers typically cached in local name servers
 - Thus, root name servers not often visited
- Update mechanisms design by IETF
 - RFC 2136

Anatomy of a web request

Key takeaways

- Application layer protocols specify format and sequence of messages exchanged
 - HTTP is used for web requests
 - Support services
 - DHCP
 - DNS