Diagrams in involutive residuated lattices

Isis A. Gallardo (Advisor: Nick Galatos)

University of Denver

June 10, 2024

ℓ -groups: $\mathbf{Aut}(\mathbb{Q})$

ℓ-groups

The collection of the order preserving permutations of $\mathbb Q$ i.e. strictly increasing invertible functions from $\mathbb Q$ to itself forms an algebra under composition, meet, join and inverse, and we will denote it by $\mathbf{Aut}(\mathbb Q)$. For example:

ℓ -groups: $\mathbf{Aut}(\mathbb{Q})$

ℓ-groups

The collection of the order preserving permutations of $\mathbb Q$ i.e. strictly increasing invertible functions from $\mathbb Q$ to itself forms an algebra under composition, meet, join and inverse, and we will denote it by $\mathbf{Aut}(\mathbb Q)$. For example:

ℓ-groups

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- \bullet $(A, \cdot, ^{-1}, 1)$ is a group,
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

ℓ-groups

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, ^{-1}, 1)$ is a group,
- \bullet (A, \vee, \wedge) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of ℓ -groups forms an equational class that we denote by LG.

ℓ-groups

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- \bullet $(A, \cdot, ^{-1}, 1)$ is a group,
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of ℓ -groups forms an equational class that we denote by LG.

Examples: $\mathbf{Aut}(\Omega)$ on a chain Ω , under functional composition and pointwise order. For example, the symmetric ℓ -groups: $\mathbf{Aut}(\mathbb{N})$, $\mathbf{Aut}(\mathbb{Z})$, $\mathbf{Aut}(\mathbb{Q})$.

ℓ-groups

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- \bullet $(A, \cdot, ^{-1}, 1)$ is a group,
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of ℓ -groups forms an equational class that we denote by LG.

Examples: $\mathbf{Aut}(\Omega)$ on a chain Ω , under functional composition and pointwise order. For example, the symmetric ℓ -groups: $\mathbf{Aut}(\mathbb{N})$, $\mathbf{Aut}(\mathbb{Z})$, $\mathbf{Aut}(\mathbb{Q})$.

Fact: The lattice reduct of an ℓ-group is distributive, meaning join distributes over meet.

ℓ -groups

ℓ-groups

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, ^{-1}, 1)$ is a group,
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of ℓ -groups forms an equational class that we denote by LG.

Examples: $\mathbf{Aut}(\Omega)$ on a chain Ω , under functional composition and pointwise order. For example, the symmetric ℓ -groups: $\mathbf{Aut}(\mathbb{N})$, $\mathbf{Aut}(\mathbb{Z})$, $\mathbf{Aut}(\mathbb{Q})$.

Fact: The lattice reduct of an ℓ -group is distributive, meaning join distributes over meet.

Theorem (Cayley's Theorem)

Every group can be embedded in a group of permutations.

ℓ -groups

ℓ-groups

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- \bullet $(A, \cdot, ^{-1}, 1)$ is a group,
- \bullet (A, \vee, \wedge) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of ℓ -groups forms an equational class that we denote by LG.

Examples: $\mathbf{Aut}(\Omega)$ on a chain Ω , under functional composition and pointwise order. For example, the symmetric ℓ -groups: $\mathbf{Aut}(\mathbb{N})$, $\mathbf{Aut}(\mathbb{Z})$, $\mathbf{Aut}(\mathbb{Q})$.

Fact: The lattice reduct of an ℓ -group is distributive, meaning join distributes over meet.

Theorem (Cayley's Theorem)

Every group can be embedded in a group of permutations.

Theorem (Holland's embedding theorem)

Every ℓ -group can be embedded $\operatorname{Aut}(\Omega)$, for some chain Ω .

ℓ-groups 000•00000

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group.

ℓ-groups 000•00000

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group.

We can transform ε to an equation of the form $1 \leq w_1 \vee \ldots \vee w_n$ where the w's are group words.

ℓ-groups 000000000

> Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group.

We can transform ε to an equation of the form $1 \leq w_1 \vee \ldots \vee w_n$ where the w's are group words.

Then, by Holland's embedding theorem ε fails in $\mathbf{Aut}(\mathbf{\Omega})$ for some chain Ω .

ℓ-groups

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group.

We can transform ε to an equation of the form $1 \leqslant w_1 \lor \ldots \lor w_n$ where the w's are group words.

Then, by Holland's embedding theorem ε fails in $\mathbf{Aut}(\Omega)$ for some chain Ω .

For example consider commutativity xy = yx,

we can re-formulate it as two inequalities
$$1 \leqslant x^{-1}y^{-1}xy$$
 and $1 \leqslant y^{-1}x^{-1}yx$.

ℓ-groups

000000000

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group.

We can transform ε to an equation of the form $1 \leqslant w_1 \lor \ldots \lor w_n$ where the w's are group words.

Then, by Holland's embedding theorem ε fails in $\mathbf{Aut}(\Omega)$ for some chain Ω .

For example consider commutativity xy = yx,

we can re-formulate it as two inequalities
$$1 \leqslant x^{-1}y^{-1}xy$$
 and $1 \leqslant y^{-1}x^{-1}yx$.

Let us focus on $1 \leq y^{-1}x^{-1}yx$.

Suppose
$$f,g\in F(\Omega)$$
 and

$$1 \leqslant g^{-1} f^{-1} g f$$

ℓ-groups

$$\Delta = \{g^{-1}f^{-1}gf(p)$$

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group.

We can transform ε to an equation of the form $1 \leq w_1 \vee \ldots \vee w_n$ where the w's are group words.

Then, by Holland's embedding theorem ε fails in $\mathbf{Aut}(\Omega)$ for some chain Ω .

For example consider commutativity xy = yx,

we can re-formulate it as two inequalities $1\leqslant x^{-1}y^{-1}xy$ and $1\leqslant y^{-1}x^{-1}yx$.

Let us focus on $1 \leq y^{-1}x^{-1}yx$.

Suppose $f,g\in F(\mathbf{\Omega})$ and

$$1 \leqslant g^{-1}f^{-1}gf$$

ℓ-groups 0000€0000

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

000000000

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

$$\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}\$$

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

$$\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$$

we have an order for $|\Delta|$,

$$gf(p)$$
 •

$$f^{-1}gf(p)$$
 •

$$p = f(p) \bullet$$

$$g^{-1}f^{-1}gf(p) \, \bullet \,$$

ℓ-groups

000000000

ℓ-groups

$$gf(p) \bullet gf(p)$$

$$f^{-1}gf(p) \bullet f^{-1}gf(p)$$

$$p = f(p) \bullet p = f(p)$$

$$g^{-1}f^{-1}gf(p) \bullet g^{-1}f^{-1}gf(p)$$

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

$$\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$$
 we have an order for $|\Delta|$,

and given the labels we can form

two relations (magenta and blue)

ℓ-groups

000000000

$$gf(p) \bullet \qquad \qquad \bullet \qquad gf(p)$$

$$f^{-1}gf(p) \bullet \qquad \qquad \bullet \qquad f^{-1}gf(p)$$

$$p = f(p) \bullet \qquad \qquad \bullet \qquad p = f(p)$$

$$g^{-1}f^{-1}gf(p) \bullet \qquad \qquad \bullet \qquad g^{-1}f^{-1}gf(p)$$

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

$$\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$$
 we have an order for $|\Delta|$

and given the labels we can form two relations (magenta and blue)

ℓ-groups

000000000

 $gf(p) \bullet gf(p)$ $f^{-1}gf(p) \bullet f^{-1}gf(p)$ $p = f(p) \bullet p = f(p)$ $g^{-1}f^{-1}gf(p) \bullet g^{-1}f^{-1}gf(p)$

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

$$\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$$

we have an order for $|\Delta|$, and given the labels we can form two relations (magenta and blue)

ℓ-groups 0000€0000

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

$$\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$$
 we have an order for $|\Delta|$,

and given
the labels we can form
two relations (magenta and blue) such that:

- they are order preserving partial functions and.
- they are injective.

Building a diagram

ℓ-groups 00000•000

Given an equation $1 \leq y^{-1}x^{-1}yx$,

Building a diagram

ℓ-groups 00000•000

Given an equation
$$1 \leqslant y^{-1}x^{-1}yx$$
,

$$\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$$

Consider

$$\Delta_{\varepsilon} = \{1, x, yx, x^{-1}yx, y^{-1}x^{-1}yx\}$$

given that
$$|\Delta_\varepsilon|\leqslant |\varepsilon|$$
 we know that
$$|\Delta_\varepsilon|<\infty$$

Building a diagram

ℓ-groups 00000•000

Given an equation $1 \leqslant y^{-1}x^{-1}yx$,

$$\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$$

Consider

$$\Delta_{\varepsilon} = \{1, x, yx, x^{-1}yx, y^{-1}x^{-1}yx\}$$

given that $|\Delta_\varepsilon|\leqslant |\varepsilon|$ we know that $|\Delta_\varepsilon|<\infty$

More formally $|\Delta_{\varepsilon}|$ with the order on the graphic, $|\Delta_{\varepsilon}|$ controlled, satisfying that g_x , g_y order preserving, injective, partial functions, satisfies

$$y^{-1}x^{-1}yx < 1$$

so ε fails.

ℓ-groups 000000●00

From a failure in a diagram to a failure in $\mathbf{Aut}(\mathbb{Q})$

Given a diagram in which an equation ε fails, we would like to extend the injective partial functions g_x,g_y to $\mathbb Q$ in an order preserving and bijective manner

000000000

From a failure in a diagram to a failure in $\mathbf{Aut}(\mathbb{Q})$

Given a diagram in which an equation ε fails, we would like to extend the injective partial functions g_x,g_y to $\mathbb Q$ in an order preserving and bijective manner

Using the fact that $\mathbf{Aut}(\mathbb{Q})$ is n-transitive, we can extend this partial functions to order preserving bijections in \mathbb{Q} .

Theorem (Holland)

ℓ-groups 00000000

If an equation ε fails in an ℓ -group, it fails in a diagram of size at most $|\varepsilon|$.

Theorem (Holland)

If an equation ε fails in a diagram, it fails in $\mathbf{Aut}(\mathbb{Q})$.

Theorem (Holland - McCleary, 1979)

The equational class LG is decidable

Theorem (Holland, 1976)

ℓ-groups 00000000

The equational class LG can be generated by $\mathbf{Aut}(\mathbb{Q})$.

An ℓ -group is an algebra $(A,\cdot,^{-1},1,\vee,\wedge)$ such that:

- $\bullet \ (A,\cdot,^{-1},1)$ is a group $(x^{-1}x=1=xx^{-1})$,
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order.

An ℓ -group is an algebra $(A,\cdot,^{-1},1,\vee,\wedge)$ such that:

- $\bullet \ (A, \cdot, ^{-1}, 1) \text{ is a group } (x^{-1}x = 1 = xx^{-1}), \\$
- \bullet (A, \vee, \wedge) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A,\cdot,^{\ell},^{r},1,\vee,\wedge)$ such that:

- ullet $(A,\cdot,1)$ is a monoid,
- \bullet (A, \lor, \land) is a lattice.
- multiplication preserves the order and

$$x^{\ell}x \leqslant 1 \leqslant xx^{\ell}$$
 and $xx^{r} \leqslant 1 \leqslant x^{r}x$

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,^{-1},1)$ is a group ($x^{-1}x=1=xx^{-1}$),
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A,\cdot,^{\ell},^{r},1,\vee,\wedge)$ such that:

- ullet $(A,\cdot,1)$ is a monoid,
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order and

$$x^{\ell}x \leqslant 1 \leqslant xx^{\ell}$$
 and $xx^{r} \leqslant 1 \leqslant x^{r}x$

Introduced by Lambek in mathematical linguistics (both in natural languages and context-free grammar).

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,^{-1},1)$ is a group $(x^{-1}x=1=xx^{-1})$,
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A,\cdot,^{\ell},^{r},1,\vee,\wedge)$ such that:

- ullet $(A,\cdot,1)$ is a monoid,
- (A, \vee, \wedge) is a lattice.
- multiplication preserves the order and

$$x^{\ell}x \leqslant 1 \leqslant xx^{\ell}$$
 and $xx^{r} \leqslant 1 \leqslant x^{r}x$

Introduced by Lambek in mathematical linguistics (both in natural languages and context-free grammar).

We denote the equational class of ℓ -pregroups by LP.

ℓ -groups and ℓ -pregroups

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,^{-1},1)$ is a group ($x^{-1}x=1=xx^{-1}$),
- \bullet (A, \vee, \wedge) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A,\cdot,^\ell,^r,1,\vee,\wedge)$ such that:

- $\bullet \ (A,\cdot,1) \ \text{is a monoid,}$
- $\bullet \ (A, \vee, \wedge) \text{ is a lattice}.$
- multiplication preserves the order and

$$x^{\ell}x \leqslant 1 \leqslant xx^{\ell}$$
 and $xx^{r} \leqslant 1 \leqslant x^{r}x$

Introduced by Lambek in mathematical linguistics (both in natural languages and context-free grammar).

We denote the equational class of ℓ -pregroups by LP.

Open problem: Are all ℓ -pregroups distributive (join distributes over meet)?

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,^{-1},1)$ is a group ($x^{-1}x=1=xx^{-1}$),
- \bullet (A, \vee, \wedge) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A,\cdot,^{\ell},^{r},1,\vee,\wedge)$ such that:

- ullet $(A,\cdot,1)$ is a monoid,
- $\bullet \ (A, \vee, \wedge) \text{ is a lattice}.$
- multiplication preserves the order and

$$x^{\ell}x \leqslant 1 \leqslant xx^{\ell}$$
 and $xx^{r} \leqslant 1 \leqslant x^{r}x$

Introduced by Lambek in mathematical linguistics (both in natural languages and context-free grammar).

We denote the equational class of ℓ -pregroups by LP.

Open problem: Are all ℓ -pregroups distributive (join distributes over meet)? **Conjecture:** No.

ℓ -groups and ℓ -pregroups

An ℓ -group is an algebra $(A, \cdot, ^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, ^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$,
- \bullet (A, \vee, \wedge) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A, \cdot, \ell, r, 1, \vee, \wedge)$ such that:

- \bullet $(A, \cdot, 1)$ is a monoid,
- \bullet (A, \vee, \wedge) is a lattice.
- multiplication preserves the order and

$$x^{\ell}x \leqslant 1 \leqslant xx^{\ell}$$
 and $xx^{r} \leqslant 1 \leqslant x^{r}x$

Introduced by Lambek in mathematical linguistics (both in natural languages and context-free grammar).

We denote the equational class of ℓ -pregroups by LP.

Open problem: Are all ℓ -pregroups distributive (join distributes over meet)? Conjecture: No.

We will focus for now on distributive ℓ -pregroups, the equational class they form is denoted by DLP.

ℓ-pregroups

 $\mathbf{F}(\mathbb{Z})$ denotes the ℓ -pregroup of the finite-to-one order preserving functions from \mathbb{Z} to itself together with composition, meet and join and the operations $^\ell$ and r given by:

 $\mathbf{F}(\mathbb{Z})$ denotes the ℓ -pregroup of the finite-to-one order preserving functions from \mathbb{Z} to itself together with composition, meet and join and the operations $^\ell$ and r given by:

$$f^{\ell}(a) = \min\{x \mid a \leqslant f(x)\}\$$

 $\mathbf{F}(\mathbb{Z})$ denotes the ℓ -pregroup of the finite-to-one order preserving functions from \mathbb{Z} to itself together with composition, meet and join and the operations ℓ and r given by:

$$f^{\ell}(a) = \min\{x \mid a \leq f(x)\}\$$

$$f^{r}(a) = \max\{x \mid f(x) \leq a\}\$$

 $\mathbf{F}(\mathbb{Z})$ denotes the ℓ -pregroup of the finite-to-one order preserving functions from \mathbb{Z} to itself together with composition, meet and join and the operations $^{\ell}$ and r given by:

$$f^{\ell}(a) = \min\{x \mid a \le f(x)\}\$$

$$f^{r}(a) = \max\{x \mid f(x) \le a\}\$$

In general, given a chain Ω , we denote by $\mathbf{F}(\Omega)$, the collection of all order preserving functions f from Ω to itself such that $f^\ell, f^{\ell\ell}, f^{\ell\ell\ell}, \ldots$ and $f^r, f^{rr}, f^{rrr}, \ldots$ exist.

 $\mathbf{F}(\mathbb{Z})$ denotes the ℓ -pregroup of the finite-to-one order preserving functions from \mathbb{Z} to itself together with composition, meet and join and the operations $^{\ell}$ and r given by:

$$f^{\ell}(a) = \min\{x \mid a \leqslant f(x)\}\$$

$$f^{r}(a) = \max\{x \mid f(x) \leqslant a\}\$$

In general, given a chain Ω , we denote by $\mathbf{F}(\Omega)$, the collection of all order preserving functions f from Ω to itself such that $f^\ell, f^{\ell\ell}, f^{\ell\ell\ell}, \ldots$ and $f^r, f^{rr}, f^{rrr}, \ldots$ exist.

Theorem (Representation: Galatos-Horcik, 2013)

Every distributive ℓ -pregroup can be embedded in $\mathbf{F}(\Omega)$ for some chain Ω .

The equation $1 \leq x^{\ell}x$ fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

The equation
$$1 \leq x^{\ell}x$$
 fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

We restrict f and f^ℓ to partial functions g and $g^{[\ell]}$ on the chain $7, f(7) = 5, f^\ell f(7) = 4$ by g(7) = 5 and $g^{[\ell]}(5) = 4$.

The equation
$$1 \leq x^{\ell}x$$
 fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

We restrict f and f^ℓ to partial functions g and $g^{\lfloor \ell \rfloor}$ on the chain $7, f(7) = 5, f^\ell f(7) = 4$ by g(7) = 5 and $g^{\lfloor \ell \rfloor}(5) = 4$.

To translate $g^{[\ell]}(5) = 4$ into information about g, we need a *formal definition* of $g^{[\ell]}$ for a partial function g on a finite chain.

The equation
$$1 \le x^{\ell}x$$
 fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

We restrict f and f^ℓ to partial functions g and $g^{[\ell]}$ on the chain $7, f(7) = 5, f^\ell f(7) = 4$ by g(7) = 5 and $g^{[\ell]}(5) = 4$.

To translate $g^{[\ell]}(5) = 4$ into information about g, we need a *formal definition* of $g^{[\ell]}$ for a partial function g on a finite chain.

Also, to make sure that $g^{[\ell]}(5) = 4$ is computed correctly, we need to

- include more elements in the chain
- define q on some of these elements
- mark some covers: 3 < 4.

To ensure g(7) = 5 we include the elements

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

To ensure g(7) = 5 we include the elements

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

To ensure $g^{[\ell]}(5) = 4$ we need to include g(4) = f(4) = 5 and g(3) = f(3) = 2, together with the covering relation 3 < 4.

To ensure g(7) = 5 we include the elements

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

To ensure $g^{[\ell]}(5) = 4$ we need to include g(4) = f(4) = 5 and g(3) = f(3) = 2, together with the covering relation 3 < 4.

So, in terms of the original point 7, g needs to be defined on $4=f^\ell f(7)$ and on $3=-f^\ell f(7)$, and it yields the values $5=ff^\ell f(7)$ and $2=f-f^\ell f(7)$.

To ensure g(7) = 5 we include the elements

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

To ensure $g^{[\ell]}(5) = 4$ we need to include g(4) = f(4) = 5 and g(3) = f(3) = 2, together with the covering relation 3 < 4.

So, in terms of the original point 7, g needs to be defined on $4=f^\ell f(7)$ and on $3=-f^\ell f(7)$, and it yields the values $5=ff^\ell f(7)$ and $2=f-f^\ell f(7)$.

$$\Delta_{f,1}^{f(7)} := \{ f(7), f^{\ell}f(7), -f^{\ell}f(7), ff^{\ell}f(7), ff^{\ell}f(7), ff^{\ell}f(7) \} = \{ 5, 4, 3, 5, 2 \}$$

A *c-chain* is a triple $(\Delta, \leqslant, \prec)$, consisting of a finite chain (Δ, \leqslant) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, f_1, \ldots, f_n)$, consists of a finite c-chain Δ and order-preserving partial functions f_1, \ldots, f_n on Δ , where $n \in \mathbb{N}$.

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, f_1, \ldots, f_n)$, consists of a finite c-chain Δ and order-preserving partial functions f_1, \ldots, f_n on Δ , where $n \in \mathbb{N}$.

Notation: if a has a lower cover, we denote it by (-1)a; 1a denotes the upper cover of a, when it exists. Also, we write 0a for a.

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, f_1, \ldots, f_n)$, consists of a finite c-chain Δ and order-preserving partial functions f_1, \ldots, f_n on Δ , where $n \in \mathbb{N}$.

Notation: if a has a lower cover, we denote it by (-1)a; 1a denotes the upper cover of a, when it exists. Also, we write 0a for a.

Given an integral chain Ω , $f \in F(\Omega)$, $a \in \Omega$ and $m \in \mathbb{N}$, we define the sets:

$$\Delta_{f,m}^{a} := \{a\} \cup \bigcup_{j=0}^{m} \{\sigma_{j} f^{(j)} \dots \sigma_{m} f^{(m)}(a) : \sigma_{j}, \dots, \sigma_{m} \in \{-1, 0\}, \sigma_{0} = 0\}$$

$$\Delta_{f,-m}^{a} := \{a\} \cup \bigcup_{j=0}^{m} \{\sigma_{j} f^{(-j)} \dots \sigma_{m} f^{(-m)}(a) : \sigma_{j}, \dots, \sigma_{m} \in \{1, 0\}, \sigma_{0} = 0\}$$

$$\Lambda_{f,m}^{a} := \{\sigma_{1} f^{(1)} \dots \sigma_{m} f^{(m)}(a) : \sigma_{1}, \dots, \sigma_{m} \in \{-1, 0\}\}$$

$$\Lambda_{f,-m}^{a} := \{\sigma_{1} f^{(-1)} \dots \sigma_{m} f^{(-m)}(a) : \sigma_{1}, \dots, \sigma_{m} \in \{1, 0\}\}$$

A *c-chain* is a triple $(\Delta, \leqslant, \prec)$, consisting of a finite chain (Δ, \leqslant) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, f_1, \ldots, f_n)$, consists of a finite c-chain Δ and order-preserving partial functions f_1, \ldots, f_n on Δ , where $n \in \mathbb{N}$.

Notation: if a has a lower cover, we denote it by (-1)a; 1a denotes the upper cover of a, when it exists. Also, we write 0a for a.

Given an integral chain Ω , $f \in F(\Omega)$, $a \in \Omega$ and $m \in \mathbb{N}$, we define the sets:

$$\Delta_{f,m}^{a} := \{a\} \cup \bigcup_{j=0}^{m} \{\sigma_{j} f^{(j)} \dots \sigma_{m} f^{(m)}(a) : \sigma_{j}, \dots, \sigma_{m} \in \{-1, 0\}, \sigma_{0} = 0\}$$

$$\Delta_{f,-m}^{a} := \{a\} \cup \bigcup_{j=0}^{m} \{\sigma_{j} f^{(-j)} \dots \sigma_{m} f^{(-m)}(a) : \sigma_{j}, \dots, \sigma_{m} \in \{1, 0\}, \sigma_{0} = 0\}$$

$$\Lambda_{f,m}^{a} := \{\sigma_{1} f^{(1)} \dots \sigma_{m} f^{(m)}(a) : \sigma_{1}, \dots, \sigma_{m} \in \{-1, 0\}\}$$

$$\Lambda_{f,-m}^{a} := \{\sigma_{1} f^{(-1)} \dots \sigma_{m} f^{(-m)}(a) : \sigma_{1}, \dots, \sigma_{m} \in \{1, 0\}\}$$

Lemma: If Ω is a chain, $f \in F(\Omega)$, $a \in \Omega$, $m \in \mathbb{Z}$, Δ is a sub c-chain of $(\Omega, <)$ containing $\Delta^a_{f,m}$, and g is an order-preserving partial function over Δ such that $g|_{\Lambda^a_{f,m}} = f|_{\Lambda^a_{f,m}}$, then $g^{[m]}(a) = f^{(m)}(a)$.

Given the equation $1 \leq x^{\ell}x$

Given the equation $1 \leqslant x^{\ell}x$

$$\Delta_{f,0}^7 := \{7, f(7)\} = 7, 5$$

Given the equation $1 \leqslant x^{\ell}x$

$$\Delta_{f,0}^7 := \{7, f(7)\} = 7, 5$$

$$\begin{split} \Delta_{f,1}^{f(7)} &= \{5,4,3,5,2\} = \\ \{f(7),f^{\ell}f(7),-f^{\ell}f(7),ff^{\ell}f(7),f-f^{\ell}f(7)\} \end{split}$$

Given the equation $1 \leqslant x^{\ell}x$

$$\Delta_{f,0}^7 := \{7, f(7)\} = 7, 5$$

$$\begin{split} \Delta_{f,1}^{f(7)} &= \{5,4,3,5,2\} = \\ \{f(7),f^{\ell}f(7),-f^{\ell}f(7),ff^{\ell}f(7),f-f^{\ell}f(7)\} \end{split}$$

More formally we get the diagram with set Δ_{ε} :

$$\Delta_{x,0}^{1} = \{1, x\}$$

$$\Delta_{x,1}^{x} = \{x, x^{\ell}x, -x^{\ell}x, xx^{\ell}x, x - x^{\ell}x\}$$

$$\Delta_{\varepsilon} = \Delta_{x,0}^{1} \cup \Delta_{x,1}^{x}$$

Given the equation $1 \leqslant x^{\ell}x$

$$\Delta_{f,0}^7 := \{7, f(7)\} = 7, 5$$

$$\begin{split} \Delta_{f,1}^{f(7)} &= \{5,4,3,5,2\} = \\ \{f(7),f^{\ell}f(7),-f^{\ell}f(7),ff^{\ell}f(7),f-f^{\ell}f(7)\} \end{split}$$

More formally we get the diagram with set Δ_{ε} :

$$\Delta_{x,0}^{1} = \{1, x\}$$

$$\Delta_{x,1}^{x} = \{x, x^{\ell}x, -x^{\ell}x, xx^{\ell}x, x - x^{\ell}x\}$$

$$\Delta_{\varepsilon} = \Delta_{x,0}^{1} \cup \Delta_{x,1}^{x}$$

with the ordering on the left, $|\Delta_{\varepsilon}|$ controlled, satisfying a set of compatibility conditions $x^{\ell}x < 1$, so the equation fails.

Embedding $\mathbf{F}(\mathbf{\Omega})$ into $\mathbf{F}(\overline{\mathbf{\Omega}})$

c •

b •

a • .

: α •

γ

3 • .

Ω

```
c \bullet
b •
                              a \bullet
a •
                   (-1, a) \bullet
                   (-2,a) •
                              \alpha •
\alpha •
                      (1,\gamma):
                                  \overline{\Omega}
    Ω
```

Embedding $\mathbf{F}(\mathbf{\Omega})$ into $\mathbf{F}(\overline{\mathbf{\Omega}})$

Embedding $\mathbf{F}(\Omega)$ into $\mathbf{F}(\overline{\Omega})$

Embedding $\mathbf{F}(\Omega)$ into $\mathbf{F}(\overline{\Omega})$

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \times \mathbb{Z}$.

Embedding $\mathbf{F}(\Omega)$ into $\mathbf{F}(\overline{\Omega})$

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \times \mathbb{Z}$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Embedding $\mathbf{F}(\mathbf{\Omega})$ into $\mathbf{F}(\overline{\mathbf{\Omega}})$

Observe that $\overline{\Omega}$ is locally isomorphic to $\mathbb Z$ so, there exists a chain J such that $\Omega \cong J \overrightarrow{\times} \mathbb Z$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem (Galatos - G.)

For every chain Ω , the assignment $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

Embedding $\mathbf{F}(\mathbf{\Omega})$ into $\mathbf{F}(\mathbf{\Omega})$

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \times \mathbb{Z}$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem (Galatos - G.)

For every chain Ω , the assignment $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

The proof that $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is a lattice homomorphism complicated and requires a good understanding of the behavior of functions at limit points.

Embedding $\mathbf{F}(\mathbf{\Omega})$ into $\mathbf{F}(\overline{\mathbf{\Omega}})$

Observe that $\overline{\Omega}$ is locally isomorphic to $\mathbb Z$ so, there exists a chain J such that $\Omega \cong J \overrightarrow{\times} \mathbb Z$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem (Galatos - G.)

For every chain Ω , the assignment $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

The proof that $\overline{\,}: F(\Omega) \to F(\overline{\Omega})$ is a lattice homomorphism complicated and requires a good understanding of the behavior of functions at limit points.

Corollary

Every distributive ℓ -pregroup can be embedded in $\mathbf{F}(\mathbf{J}\overrightarrow{\times}\mathbb{Z})$, for some chain \mathbf{J} .

Embedding $\mathbf{F}(\mathbf{\Omega})$ into $\mathbf{F}(\mathbf{\Omega})$

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \times \mathbb{Z}$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem (Galatos - G.)

For every chain Ω , the assignment $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

The proof that $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is a lattice homomorphism complicated and requires a good understanding of the behavior of functions at limit points.

Corollary

Every distributive ℓ -pregroup can be embedded in $\mathbf{F}(\mathbf{J}\overrightarrow{\times}\mathbb{Z})$, for some chain \mathbf{J} .

Corollary

If an equation fails in DLP, then it fails in $\mathbf{F}(\mathbf{J}\overrightarrow{\times}\mathbb{Z})$, for some chain \mathbf{J} .

From a failure to $\mathbf{F}(\mathbb{Z})$

From a failure to $\mathbf{F}(\mathbb{Z})$

From a failure to $\mathbf{F}(\mathbb{Z})$

If an equation ε fails in an ℓ -pregroup, it fails in a diagram of size at most $2^{|\varepsilon|}|\varepsilon|^4$.

If an equation ε fails in an ℓ -pregroup, it fails in a diagram of size at most $2^{|\varepsilon|}|\varepsilon|^4$.

Theorem (Galatos - G.)

If an equation ε fails in a diagram, it fails in $\mathbf{F}(\mathbb{Z})$, in $\mathbf{F}_{fs}(\mathbb{Z})$, and in $\mathbf{F}_n(\mathbb{Z})$ for some $n \in \mathbb{Z}$.

If an equation ε fails in an ℓ -pregroup, it fails in a diagram of size at most $2^{|\varepsilon|}|\varepsilon|^4$.

Theorem (Galatos - G.)

If an equation ε fails in a diagram, it fails in $\mathbf{F}(\mathbb{Z})$, in $\mathbf{F}_{fs}(\mathbb{Z})$, and in $\mathbf{F}_n(\mathbb{Z})$ for some $n \in \mathbb{Z}$.

The equational class DLP is decidable.

The equational class DLP is decidable.

Theorem (Galatos - G.)

The equational class DLP can be generated by $\mathbf{F}(\mathbb{Z})$, $\mathbf{F}_{fs}(\mathbb{Z})$, or $\{\mathbf{F}_n(\mathbb{Z}) \mid n \in \mathbb{N}\}$.

A function in $F(\Omega)$ is n-periodic if it satisfies the equation $x^{\ell^{2n}} = x$.

Set of all n-periodic functions of $\mathbf{F}(\Omega)$ forms a subalgebra that we denote by $\mathbf{F}_n(\Omega)$.

A function in $F(\Omega)$ is *n*-periodic if it satisfies the equation $x^{\ell^{2n}} = x$.

Set of all *n*-periodic functions of $\mathbf{F}(\Omega)$ forms a subalgebra that we denote by $\mathbf{F}_n(\mathbf{\Omega})$.

> The equational class of n-periodic ℓ -pregroups will be denoted by LP_n.

A function in $F(\Omega)$ is *n*-periodic if it satisfies the equation $x^{\ell^{2n}} = x$.

Set of all *n*-periodic functions of $\mathbf{F}(\Omega)$ forms a subalgebra that we denote by $\mathbf{F}_n(\mathbf{\Omega})$.

> The equational class of n-periodic ℓ -pregroups will be denoted by LP_n.

A function in $F(\Omega)$ is *n*-periodic if it satisfies the equation $x^{\ell^{2n}} = x$.

Set of all *n*-periodic functions of $\mathbf{F}(\Omega)$ forms a subalgebra that we denote by $\mathbf{F}_n(\mathbf{\Omega})$.

> The equational class of n-periodic ℓ -pregroups will be denoted by LP_n.

Theorem (Galatos - Jipsen, 2012)

All periodic ℓ -pregroups are distributive.

A function in $F(\Omega)$ is n-periodic if it satisfies the equation $x^{\ell^{2n}}=x.$

Set of all n-periodic functions of $\mathbf{F}(\Omega)$ forms a subalgebra that we denote by $\mathbf{F}_n(\Omega)$.

The equational class of n-periodic ℓ -pregroups will be denoted by LP_n .

Theorem (Galatos - Jipsen, 2012)

All periodic ℓ-pregroups are distributive.

Theorem (Galatos - G.)

Every n-periodic ℓ -pregroup embeds in $\mathbf{F}_n(\overrightarrow{\mathbf{J} \times \mathbb{Z}})$, for some chain \mathbf{J} .

A function in $F(\Omega)$ is n-periodic if it satisfies the equation $x^{\ell^{2n}}=x.$

Set of all n-periodic functions of $\mathbf{F}(\Omega)$ forms a subalgebra that we denote by $\mathbf{F}_n(\Omega)$.

The equational class of n-periodic ℓ -pregroups will be denoted by LP_n .

Theorem (Galatos - Jipsen, 2012)

All periodic ℓ -pregroups are distributive.

Theorem (Galatos - G.)

Every n-periodic ℓ -pregroup embeds in $\mathbf{F}_n(\overrightarrow{\mathbf{J}}\overrightarrow{\times}\mathbb{Z})$, for some chain \mathbf{J}

Theorem (Galatos - G.)

For any $n \in \mathbb{Z}$, the equational class LP_n is not generated by $\mathbf{F}_n(\mathbb{Z})$.

Theorem (Galatos - G.)

A function $f \in \mathbf{F}_n(\overrightarrow{\mathbf{J} \times \mathbb{Z}})$ decomposes into: a bijection $\widetilde{f} : \mathbb{Z} \to \mathbb{Z}$ and, $\overline{f} : J \to F_n(\mathbb{Z})$, such that $f(j,r) = (\widetilde{f}(j), \overline{f}_j(r))$ for all $(j,r) \in J \times \mathbb{Z}$.

Theorem (Galatos - G.)

For every chain \mathbf{J} and $n \in \mathbb{Z}^+$, $\mathbf{F}_n(\mathbf{J} \overrightarrow{\times} \mathbb{Z}) \cong \mathbf{Aut}(\mathbf{J}) \wr \mathbf{F}_n(\mathbb{Z})$. Therefore, every n-periodic ℓ -pregroup can be embedded in a wreath product of an ℓ -group and the simple n-periodic ℓ -pregroup $\mathbf{F}_n(\mathbb{Z})$.

We need a distancing for the diagram, and it must work for all the partial functions involved. The algorithm needs to know a bound on the distancing. How can we get decidability?

We need a distancing for the diagram, and it must work for all the partial functions involved. The algorithm needs to know a bound on the distancing. How can we get decidability?

Theorem

If an equation fails in a diagram+distancing, there exists a short distancing for the diagram in which ε fails.

We need a distancing for the diagram, and it must work for all the partial functions involved. The algorithm needs to know a bound on the distancing. How can we get decidability?

Theorem

If an equation fails in a diagram+distancing, there exists a short distancing for the diagram in which ε fails.

Proof sketch: Each function is decomposed into $f = f^{\circ} \circ f^*$ where f^* is what we call a flat function and a bijective map f° . We use linear programming to shorten the maps f° .

We need a distancing for the diagram, and it must work for all the partial functions involved. The algorithm needs to know a bound on the distancing. How can we get decidability?

Theorem

If an equation fails in a diagram+distancing, there exists a short distancing for the diagram in which ε fails.

Proof sketch: Each function is decomposed into $f = f^{\circ} \circ f^*$ where f^* is what we call a flat function and a bijective map f° . We use linear programming to shorten the maps f° .

A diagram+short distancing is called n-short n-periodic diagram. Given a finite set, there exist finitely many diagrams+short distancings over it.

We need a distancing for the diagram, and it must work for all the partial functions involved. The algorithm needs to know a bound on the distancing. How can we get decidability?

Theorem

If an equation fails in a diagram+distancing, there exists a short distancing for the diagram in which ε fails.

Proof sketch: Each function is decomposed into $f = f^{\circ} \circ f^*$ where f^* is what we call a flat function and a bijective map f° . We use linear programming to shorten the maps f° .

A diagram+short distancing is called n-short n-periodic diagram. Given a finite set, there exist finitely many diagrams+short distancings over it.

Theorem

An equation ε fails in $\mathbf{F}_n(\mathbb{Z})$ iff fails in an n-periodic n-short diagram over $|\Delta_{\varepsilon}|$.

We need a distancing for the diagram, and it must work for all the partial functions involved. The algorithm needs to know a bound on the distancing. How can we get decidability?

Theorem

If an equation fails in a diagram+distancing, there exists a short distancing for the diagram in which ε fails.

Proof sketch: Each function is decomposed into $f = f^{\circ} \circ f^*$ where f^* is what we call a flat function and a bijective map f° . We use linear programing to shorten the maps f° .

A diagram+short distancing is called n-short n-periodic diagram. Given a finite set, there exist finitely many diagrams+short distancings over it.

Theorem (Galatos - G.)

The equation class generated by $\mathbf{F}_n(\mathbb{Z})$ is decidable.

Because functions in $\mathbf{F}_n(\mathbf{J} \overrightarrow{\times} \mathbb{Z})$ decompose into a global and a local component, the diagram can also be decomposed into a partition of the points, where the partitions are connected in an injective way (global component).

Because functions in $\mathbf{F}_n(\mathbf{J} \times \mathbb{Z})$ decompose into a global and a local component, the diagram can also be decomposed into a partition of the points, where the partitions are connected in an injective way (global component).

This type of diagram is called a n-short n-periodic partition diagram.

Periodic ℓ-pregroups

00000000

Because functions in $\mathbf{F}_n(\mathbf{J} \times \mathbb{Z})$ decompose into a global and a local component, the diagram can also be decomposed into a partition of the points, where the partitions are connected in an injective way (global component).

This type of diagram is called a n-short n-periodic partition diagram.

And we consider the maps on the local components.

Periodic ℓ-pregroups

00000000

Because functions in $\mathbf{F}_n(\mathbf{J} \overrightarrow{\times} \mathbb{Z})$ decompose into a global and a local component, the diagram can also be decomposed into a partition of the points, where the partitions are connected in an injective way (global component).

This type of diagram is called a n-short n-periodic partition diagram.

And we consider the maps on the local components. There is n-short distancing for the local components.

Periodic ℓ-pregroups

00000000

Because functions in $\mathbf{F}_n(\mathbf{J} \overrightarrow{\times} \mathbb{Z})$ decompose into a global and a local component, the diagram can also be decomposed into a partition of the points, where the partitions are connected in an injective way (global component).

This type of diagram is called a n-short n-periodic partition diagram.

And we consider the maps on the local components. There is n-short distancing for the local components.

- Global component extends to a bijection on \mathbb{O} .
- The local components extend to functions in $\mathbf{F}_n(\mathbb{Z})$

If an equation ε fails in an n-periodic ℓ -pregroup, it fails in a n-short n-periodic partition diagram.

Theorem (Galatos - G.)

If an equation ε fails in a n-short n-periodic partition diagram, it fails in $\mathbf{F}_n(\mathbb{Q} \overrightarrow{\times} \mathbb{Z})$.

Failure in LP_n

The equational class LP_n is decidable.

Theorem (Galatos - G.)

The equational class LP_n is generated by $\mathbf{F}_n(\mathbb{Q}\overrightarrow{\times}\mathbb{Z})$.

An involutive residuated lattice (InRL) is an algebra $\mathbf{A}=(A,\wedge,\vee,\cdot,1,{}^\ell,{}^r)$ where (A,\wedge,\vee) is a lattice, $(A,\cdot,1)$ is a monoid and for all $a,b,c\in A$,

$$a \cdot b \le c \Leftrightarrow b \le a^r + c \Leftrightarrow a \le c + b^\ell$$

where $(a \cdot b)^r = b^r + a^r$ and $a^{\ell r} = a = a^{r\ell}$.

An involutive residuated lattice (InRL) is an algebra $\mathbf{A}=(A,\wedge,\vee,\cdot,1,{}^\ell,{}^r)$ where (A,\wedge,\vee) is a lattice, $(A,\cdot,1)$ is a monoid and for all $a,b,c\in A$,

$$a \cdot b \le c \Leftrightarrow b \le a^r + c \Leftrightarrow a \le c + b^\ell$$

where $(a \cdot b)^r = b^r + a^r$ and $a^{\ell r} = a = a^{r\ell}$.

A InRL is cyclic (CyInRL) iff $x^{\ell} = x^{r}$, for all x

An involutive residuated lattice (InRL) is an algebra $\mathbf{A}=(A,\wedge,\vee,\cdot,1,{}^\ell,{}^r)$ where (A,\wedge,\vee) is a lattice, $(A,\cdot,1)$ is a monoid and for all $a,b,c\in A$,

$$a \cdot b \le c \Leftrightarrow b \le a^r + c \Leftrightarrow a \le c + b^\ell$$

where $(a \cdot b)^r = b^r + a^r$ and $a^{\ell r} = a = a^{r\ell}$.

A InRL is cyclic (CyInRL) iff $x^{\ell} = x^{r}$, for all x

• ℓ -groups are precisely the CyInRLs where x+y=xy. (Also, $1^r=1^\ell=1$.)

An involutive residuated lattice (InRL) is an algebra $\mathbf{A}=(A,\wedge,\vee,\cdot,1,{}^\ell,{}^r)$ where (A,\wedge,\vee) is a lattice, $(A,\cdot,1)$ is a monoid and for all $a,b,c\in A$,

$$a \cdot b \le c \Leftrightarrow b \le a^r + c \Leftrightarrow a \le c + b^\ell$$

where $(a \cdot b)^r = b^r + a^r$ and $a^{\ell r} = a = a^{r\ell}$.

A InRL is cyclic (CyInRL) iff $x^{\ell} = x^{r}$, for all x

- ℓ -groups are precisely the CyInRLs where x+y=xy. (Also, $1^r=1^\ell=1$.)
- ℓ -pregroups are precisely the InRLs where x+y=xy. (Also, $1^r=1^\ell=1$.)
- So, the cyclic ℓ -pregroups are precisely the ℓ -groups.

An involutive residuated lattice (InRL) is an algebra $\mathbf{A}=(A,\wedge,\vee,\cdot,1,{}^\ell,{}^r)$ where (A,\wedge,\vee) is a lattice, $(A,\cdot,1)$ is a monoid and for all $a,b,c\in A$,

$$a \cdot b \le c \Leftrightarrow b \le a^r + c \Leftrightarrow a \le c + b^\ell$$

where $(a \cdot b)^r = b^r + a^r$ and $a^{\ell r} = a = a^{r\ell}$.

A InRL is cyclic (CyInRL) iff $x^{\ell} = x^{r}$, for all x

- ℓ -groups are precisely the CyInRLs where x+y=xy. (Also, $1^r=1^\ell=1$.)
- ℓ -pregroups are precisely the InRLs where x+y=xy. (Also, $1^r=1^\ell=1$.)
- So, the cyclic ℓ-pregroups are precisely the ℓ-groups.

• A Boolean algebra is exactly a CyInRL where $x \cdot y = x \wedge y$ and $x^{\ell} = x^r := \neg x$.

An involutive residuated lattice (InRL) is an algebra $\mathbf{A}=(A,\wedge,\vee,\cdot,1,{}^\ell,{}^r)$ where (A,\wedge,\vee) is a lattice, $(A,\cdot,1)$ is a monoid and for all $a,b,c\in A$,

$$a \cdot b \le c \Leftrightarrow b \le a^r + c \Leftrightarrow a \le c + b^\ell$$

where $(a \cdot b)^r = b^r + a^r$ and $a^{\ell r} = a = a^{r\ell}$. A InRL is cyclic (CyInRL) iff $x^{\ell} = x^r$, for all x

- ℓ -groups are precisely the CyInRLs where x+y=xy. (Also, $1^r=1^\ell=1$.)
- ℓ -pregroups are precisely the InRLs where x+y=xy. (Also, $1^r=1^\ell=1$.)
- So, the cyclic ℓ -pregroups are precisely the ℓ -groups.

- A Boolean algebra is exactly a CyInRL where $x \cdot y = x \wedge y$ and $x^{\ell} = x^r := \neg x$.
- A relation algebra is exactly an algebra $(L, \wedge, \vee, \top, \neg, \cdot, 1, +, \sim)$ where $(L, \wedge, \vee, \top, \neg)$ is a Boolean algebra, $(L, \wedge, \vee, \cdot, 1, +, \sim)$ is a CylnRL and $\neg (x + y) = \neg x \cdot \neg y$.

Involutive Residuated Lattice

An involutive residuated lattice (InRL) is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, 1, \stackrel{\ell}{\cdot}, \stackrel{r}{\cdot})$ where (A, \land, \lor) is a lattice, $(A, \cdot, 1)$ is a monoid and for all $a, b, c \in A$,

$$a \cdot b \le c \Leftrightarrow b \le a^r + c \Leftrightarrow a \le c + b^\ell$$

where $(a \cdot b)^r = b^r + a^r$ and $a^{\ell r} = a = a^{r\ell}$. A InRL is cyclic (CyInRL) iff $x^{\ell} = x^{r}$, for all x

- ℓ-groups are precisely the CyInRLs where x + y = xy. (Also, $1^r = 1^{\ell} = 1$.)
- ℓ -pregroups are precisely the InRLs where x + y = xy. (Also, $1^r = 1^{\ell} = 1$.)
- So, the cyclic ℓ -pregroups are precisely the ℓ -groups.

- A Boolean algebra is exactly a CyInRL where $x \cdot y = x \wedge y$ and $x^{\ell} = x^r := \neg x$.
- A relation algebra is exactly an algebra $(L, \land, \lor, \top, \neg, \cdot, 1, +, \sim)$ where $(L, \wedge, \vee, \top, \neg)$ is a Boolean algebra, $(L, \land, \lor, \cdot, 1, +, \sim)$ is a CylnRL and $\neg(x+y) = \neg x \cdot \neg y$.

Residuated lattices include: Heyting algebras, ideal lattices of rings, power sets of monoids. Also, residuated lattices are algebraic semantics for substructural logics.

Given a poset $P = (P, \leq)$, we define the set of weakening relations on P:

$$Wk(\mathbf{P}) = \{ R \subseteq P \times P \mid \leqslant \circ R \circ \leqslant \subseteq R \}$$

00000000

Weakening relations

Given a poset $P = (P, \leq)$, we define the set of weakening relations on P:

$$Wk(\mathbf{P}) = \{ R \subseteq P \times P \mid \leqslant \circ R \circ \leqslant \subseteq R \}$$

The set $Wk(\mathbf{P})$ forms a cyclic involutive residuated lattice under union, intersection, relational composition, the identity being the ≤ relation, complement-converse. The induced algebra Wk(P) is called the *full weakening relation algebra on the poset* P.

$\mathbf{Res}(\mathbf{P})$

We need to find the correct functional algebras to describe $\mathbf{W}\mathbf{k}(\mathbf{P}).$

Res(P)

We need to find the correct functional algebras to describe $\mathbf{Wk}(\mathbf{P})$.

Given a complete join semilattice \mathbf{L} , $\mathbf{Res}(\mathbf{L})$ denotes the residuated lattice of all residuated maps on \mathbf{L} where $f:L\to L$ is called *residuated* if there exists a map $f^r:L\to L$ such that for all $x,y\in L$:

$$f(x) \leqslant y \Leftrightarrow x \leqslant f^r(y)$$

Res(P)

We need to find the correct functional algebras to describe $\mathbf{Wk}(\mathbf{P})$.

Given a complete join semilattice \mathbf{L} , $\mathbf{Res}(\mathbf{L})$ denotes the residuated lattice of all residuated maps on \mathbf{L} where $f:L\to L$ is called *residuated* if there exists a map $f^r:L\to L$ such that for all $x,y\in L$:

$$f(x) \leqslant y \Leftrightarrow x \leqslant f^r(y)$$

Observe that while f^r must exist, it may not belong to Res(L).

Res(P)

We need to find the correct functional algebras to describe $\mathbf{Wk}(\mathbf{P})$.

Given a complete join semilattice \mathbf{L} , $\mathbf{Res}(\mathbf{L})$ denotes the residuated lattice of all residuated maps on \mathbf{L} where $f:L\to L$ is called *residuated* if there exists a map $f^r:L\to L$ such that for all $x,y\in L$:

$$f(x) \leqslant y \Leftrightarrow x \leqslant f^r(y)$$

Observe that while f^r must exist, it may not belong to $\mathbf{Res}(\mathbf{L})$.

Theorem (Galatos - Jipsen, 2020)

Given a poset P we have $\mathbf{Wk}(P) \cong \mathbf{Res}(\mathcal{O}(\mathbf{P}^{\partial}))$ with the correct operations.

Where $\mathcal{O}(\mathbf{P}^{\partial})$ denotes the down sets of the inverted poset P.

Then we will focus on Res(L) for perfect chains L: chains $\mathbf{L} \cong \mathcal{O}(P)$ for a chain P or equivalently complete chains such that the set $\mathcal{J}(\mathbf{L})$ of join irreducible elements of L is join-dense in L.

Then we will focus on $\mathbf{Res}(\mathbf{L})$ for perfect chains \mathbf{L} : chains $\mathbf{L}\cong\mathcal{O}(P)$ for a chain P or equivalently complete chains such that the set $\mathcal{J}(\mathbf{L})$ of join irreducible elements of \mathbf{L} is join-dense in \mathbf{L} . Given \mathbf{L} a perfect chain, $f\in Res(\mathbf{L})$:

$$f'(a) = \bigvee \{y \in L \mid f(y) < a\}$$

Then we will focus on Res(L) for perfect chains L: chains $\mathbf{L} \cong \mathcal{O}(P)$ for a chain P or equivalently complete chains such that the set $\mathcal{J}(\mathbf{L})$ of join irreducible elements of L is join-dense in L. Given L a perfect chain, $f \in Res(\mathbf{L})$:

$$f'(a) = \bigvee \{ y \in L \mid f(y) < a \}$$

Remark: If $f \in Res(\mathbf{L})$, f preserves arbitrary joins but not necessarily meets. Different to the $F(\Omega)$.

Then we will focus on $\mathbf{Res}(\mathbf{L})$ for perfect chains \mathbf{L} : chains $\mathbf{L}\cong\mathcal{O}(P)$ for a chain P or equivalently complete chains such that the set $\mathcal{J}(\mathbf{L})$ of join irreducible elements of \mathbf{L} is join-dense in \mathbf{L} . Given \mathbf{L} a perfect chain, $f\in Res(\mathbf{L})$:

$$f'(a) = \bigvee \{ y \in L \mid f(y) < a \}$$

Remark: If $f \in Res(\mathbf{L})$, f preserves arbitrary joins but not necessarily meets. Different to the $F(\Omega)$. For example:

$$g'((3,0)) = \bigvee \{y \in L \mid f(y) < (3,0)\} = (3,0)$$

Depends on an "infinite" behavior of g.

Then we will focus on $\mathbf{Res}(\mathbf{L})$ for perfect chains \mathbf{L} : chains $\mathbf{L}\cong\mathcal{O}(P)$ for a chain P or equivalently complete chains such that the set $\mathcal{J}(\mathbf{L})$ of join irreducible elements of \mathbf{L} is join-dense in \mathbf{L} . Given \mathbf{L} a perfect chain, $f\in Res(\mathbf{L})$:

$$f'(a) = \bigvee \{ y \in L \mid f(y) < a \}$$

Remark: If $f \in Res(\mathbf{L})$, f preserves arbitrary joins but not necessarily meets. Different to the $F(\Omega)$. For example:

$$g'((3,0)) = \bigvee \{y \in L \mid f(y) < (3,0)\} = (3,0)$$

Depends on an "infinite" behavior of g. Fortunately this behavior is unique and can be identified by the expression:

$$gg'(a) = a$$

Every equation in the language of involutive residuated lattices can be written as $1 \leq w_1 \vee \ldots \vee w_n$ where every w is a term using only multiplication and negation.

Every equation in the language of involutive residuated lattices can be written as $1 \leqslant w_1 \lor \ldots \lor w_n$ where every w is a term using only multiplication and negation. However, they can not be simplified completely.

Every equation in the language of involutive residuated lattices can be written as $1 \leq w_1 \vee \ldots \vee w_n$ where every w is a term using only multiplication and negation. However, they can not be simplified completely.

Example:

$$((x'\cdot y')'\cdot z')'\cdot (w'\cdot x)'$$

So the set Δ_{ϵ} is much more complex.

Every equation in the language of involutive residuated lattices can be written as $1 \leq w_1 \vee \ldots \vee w_n$ where every w is a term using only multiplication and negation. However, they can not be simplified completely.

Example:

$$((x'\cdot y')'\cdot z')'\cdot (w'\cdot x)'$$

So the set Δ_{ϵ} is much more complex. We will build it by closing the set $\{w_1, \dots w_n\}$ under the rules:

- (i) For all $x \in Var$, we have $1, \lambda, \top, \bot, x\top, x\bot \in \Delta_{\varepsilon}$.
- (ii) If $tu \in \Delta_{\varepsilon}$, then $u \in \Delta_{\varepsilon}$
- (iii) If $(tr)'u \in \Delta_{\varepsilon}$, then $r't'u \in \Delta_{\varepsilon}$.
- (iv) If $(tr)''u \in \Delta_{\varepsilon}$, then $ru \in \Delta_{\varepsilon}$.
- $(\vee) \ \ \text{If} \ (tr)'u \in \Delta_{\varepsilon} \text{, then} \ r(tr)'u, r\mathbf{s}(tr)'u \in \Delta_{\varepsilon}.$

Every equation in the language of involutive residuated lattices can be written as $1 \le w_1 \lor \ldots \lor w_n$ where every w is a term using only multiplication and negation. However, they can not be simplified completely.

Example:

$$((x'\cdot y')'\cdot z')'\cdot (w'\cdot x)'$$

So the set Δ_{ϵ} is much more complex. We will build it by closing the set $\{w_1, \dots w_n\}$ under the rules:

- (i) For all $x \in Var$, we have $1, \lambda, \top, \bot, x\top, x\bot \in \Delta_{\varepsilon}$.
- (ii) If $tu \in \Delta_{\varepsilon}$, then $u \in \Delta_{\varepsilon}$
- (iii) If $(tr)'u \in \Delta_{\varepsilon}$, then $r't'u \in \Delta_{\varepsilon}$.
- (iv) If $(tr)''u \in \Delta_{\varepsilon}$, then $ru \in \Delta_{\varepsilon}$.
- $(\vee) \ \text{ If } (tr)'u \in \Delta_{\varepsilon} \text{, then } r(tr)'u, r\mathbf{s}(tr)'u \in \Delta_{\varepsilon}.$

Lemma

Given an equation ε in intentional form, Δ_{ε} is finite.

Then we define partition diagrams over Δ_{ε} that satisfy certain complex conditions.

Extending partition diagrams

Partition diagrams can be extended to functions in $\mathbf{Res}(\overrightarrow{\mathbf{J} \times}_{\top} \mathbb{N})$ by taking special care of the "limit points from below".

Extending partition diagrams

Partition diagrams can be extended to functions in $\mathbf{Res}(\mathbf{J}\overrightarrow{\times}_{\top}\mathbb{N})$ by taking special care of the "limit points from below".

If a diagram identifies xx'v and v for any term v, this means that the points corresponding to v and x'v must be limit points, with a special behavior, then the diagram must be extended in a very special way:

Extending partition diagrams

Partition diagrams can be extended to functions in $\mathbf{Res}(\overrightarrow{\mathbf{J}\times}_{\top}\mathbb{N})$ by taking special care of the "limit points from below".

If a diagram identifies xx'v and v for any term v, this means that the points corresponding to v and x'v must be limit points, with a special behavior, then the diagram must be extended in a very special way:

Theorem (Galatos - G.)

If an equation ε fails in $\mathbf{Res}(\mathbf{J}\overrightarrow{\times}_{\top}\mathbb{N})$ where \mathbf{J} where is a well-ordered chain, it fails in a diagram with at most $\min\{|J|, |\Delta_{\varepsilon}|\}$ partitions.

Theorem (Galatos - G.)

If an equation ε fails in a partition diagram, it fails in $V(\mathbf{Res}(\mathbb{N} \times \mathbb{T} \mathbb{N}))$.

Theorem (Galatos - G.)

The equational class V_{∞} is decidable.

Theorem (Galatos - G.)

The equational class LP_n can be generated by $\operatorname{Res}(\mathbb{N} \overrightarrow{\times}_{\top} \mathbb{N})$.

Conjecture: The equational class consisting of $\mathbf{Res}(\Omega)$ s.t. Ω is a perfect chain is decidable and generated by one such algebra.

 $\mathbf{Res}(\mathbb{N}_n\overrightarrow{\times}_{\top}\mathbb{N})$

Theorem (Galatos - G.)

The equational class generated by $\operatorname{Res}(\mathbb{N}_n \overrightarrow{\times}_\top \mathbb{N})$ is decidable for each $n \in \mathbb{N}$.

 $\mathbf{Res}(\mathbb{N}_n\overrightarrow{\times}_{\top}\mathbb{N})$

Theorem (Galatos - G.)

The equational class generated by $\operatorname{Res}(\mathbb{N}_n \overrightarrow{\times}_\top \mathbb{N})$ is decidable for each $n \in \mathbb{N}$.

The case n=1 yields the recently published result for the time warp algebra $(\mathbf{Res}(\mathbb{N}^{\top}))$

 $\mathbf{Res}(\mathbb{N}_n \overrightarrow{\times}_{\top} \mathbb{N})$

Theorem (Galatos - G.)

The equational class generated by $\operatorname{Res}(\mathbb{N}_n \overrightarrow{\times}_\top \mathbb{N})$ is decidable for each $n \in \mathbb{N}$.

The case n=1 yields the recently published result for the time warp algebra $(\mathbf{Res}(\mathbb{N}^{\perp}))$

Theorem (Van gool - Guatto - Metcalfe - Santschi, 2023)

The time warp algebra is decidable.

$\mathbf{Res}(\mathbb{N}_n \overrightarrow{\times}_{\top} \mathbb{N})$

Theorem (Galatos - G.)

The equational class generated by $\operatorname{Res}(\mathbb{N}_n \overrightarrow{\times}_\top \mathbb{N})$ is decidable for each $n \in \mathbb{N}$.

The case n=1 yields the recently published result for the time warp algebra $(\mathbf{Res}(\mathbb{N}^{\perp}))$

Theorem (Van gool - Guatto - Metcalfe - Santschi, 2023)

The time warp algebra is decidable.

Theorem (Galatos - G.)

The variety V_{∞} can be generated by the class $\{\operatorname{\mathbf{Res}}(\mathbb{N}_n\overrightarrow{\times}_{\top}\mathbb{N})\mid n\in\mathbb{N}\}.$

A lattice (L, \vee, \wedge) is said to be distributive if for all $x, y \in L$:

$$x \mathrel{\wedge} (y \mathrel{\vee} z) = (x \mathrel{\wedge} y) \mathrel{\vee} (x \mathrel{\wedge} z)$$

A lattice (L, \vee, \wedge) is said to be distributive if for all $x, y \in L$:

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

Theorem

A lattice L is distributive iff N_5 and M_3 are not sublattices of L.

A lattice (L, \vee, \wedge) is said to be distributive if for all $x, y \in L$:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

Theorem

A lattice L is distributive iff N_5 and M_3 are not sublattices of L.

Theorem (Galatos - Jipsen - Kinyon - Prenosil, 2023)

Every ℓ -pregroup is semi-distributive.

A lattice (L, \vee, \wedge) is said to be distributive if for all $x, y \in L$:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

Theorem

A lattice L is distributive iff N_5 and M_3 are not sublattices of L.

Theorem (Galatos - Jipsen - Kinyon - Prenosil, 2023)

Every ℓ -pregroup is semi-distributive.

Corollary

If L is an ℓ -pregroup, M_3 is not a sublattice of L.

A lattice (L, \vee, \wedge) is said to be distributive if for all $x, y \in L$:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

Theorem

A lattice L is distributive iff \mathbf{N}_5 and \mathbf{M}_3 are not sublattices of L.

Theorem (Galatos - Jipsen - Kinyon - Prenosil, 2023)

Every ℓ-pregroup is semi-distributive.

Corollary

If L is an ℓ -pregroup, M_3 is not a sublattice of L.

Theorem (Kinyon)

If L is an ℓ -pregroup, with a sublattice N_5 , then a=1 or b=1.

Our candidate is an amalgamated product A * A in the language $(\cdot, 1, ')$.

Our candidate is an amalgamated product A * A in the language $(\cdot, 1, ')$.

We chose $\mathbf{F}_{fs}(\mathbb{Z})$ because:

- There are no finite ℓ -pregroups.
- $\mathbf{F}_{fs}(\mathbb{Z})$ has no non-trivial invertible elements.

Our candidate is an amalgamated product A * A in the language $(\cdot, 1, ')$.

We chose $\mathbf{F}_{fs}(\mathbb{Z})$ because:

- There are no finite ℓ -pregroups.
- $\mathbf{F}_{fs}(\mathbb{Z})$ has no non-trivial invertible elements.

Lemma

The algebra $\mathbf{F}_{fs}(\mathbb{Z})$ is generated by the element a using only the monoidal operations, in fact, $\mathbf{F}_{fs}(\mathbb{Z})$ is generated by any of its non-identity elements.

Our candidate is an amalgamated product A * A in the language $(\cdot, 1, ')$.

We chose $\mathbf{F}_{fs}(\mathbb{Z})$ because:

- There are no finite \(\ell\)-pregroups.
- $\mathbf{F}_{fs}(\mathbb{Z})$ has no non-trivial invertible elements.

Lemma

The algebra $\mathbf{F}_{fs}(\mathbb{Z})$ is generated by the element a using only the monoidal operations, in fact, $\mathbf{F}_{fs}(\mathbb{Z})$ is generated by any of its non-identity elements.

We consider
$$\mathbf{F}(a, f) := \mathbf{F}_{sf}(\mathbb{Z}) * \mathbf{F}_{sf}(\mathbb{Z})$$
.

To do this, we consider T(a, f) the monoid of all the terms of over the variables $\{a, f\}$ and $T(a, f) / \equiv$ were \equiv is the equivalence relation obtained from the monoidal structure.

Now, to define an order we use that $x \leq y \leftrightarrow 1 \leq x^r y$.

Now, to define an order we use that $x \leqslant y \leftrightarrow 1 \leqslant x^r y$.

Then we define the positive elements of $\mathbf{T}(a, f)$ is a set P such that:

- 1. $1 \in P$.
- 2. For all $x \in \{a^{(n)}, f^{(n)} \mid n \in \mathbb{Z}\}$, we have $x^r x \in P$.
- 3. If $p, q \in P$, then $pq \in P$.
- 4. If $p_1p_2, q \in P$, then $p_1qp_2 \in P$.
- 5. If $p \in P$ and $p \equiv q$, then $q \in P$.

Now, to define an order we use that $x \leqslant y \leftrightarrow 1 \leqslant x^r y$.

Then we define the positive elements of $\mathbf{T}(a, f)$ is a set P such that:

- 1. $1 \in P$.
- 2. For all $x \in \{a^{(n)}, f^{(n)} \mid n \in \mathbb{Z}\}$, we have $x^r x \in P$.
- 3. If $p, q \in P$, then $pq \in P$.
- 4. If $p_1p_2, q \in P$, then $p_1qp_2 \in P$.
- 5. If $p \in P$ and $p \equiv q$, then $q \in P$.

Lemma

The relation \leq induced by P on $\mathbf{F}(a,f)$ is reflexive, transitive and compatible with multiplication. Also, residuation holds.

Now, to define an order we use that $x \leqslant y \leftrightarrow 1 \leqslant x^r y$.

Then we define the positive elements of T(a, f) is a set P such that:

- 1. $1 \in P$.
- 2. For all $x \in \{a^{(n)}, f^{(n)} \mid n \in \mathbb{Z}\}$, we have $x^r x \in P$.
- 3. If $p, q \in P$, then $pq \in P$.
- 4. If $p_1p_2, q \in P$, then $p_1qp_2 \in P$.
- 5. If $p \in P$ and $p \equiv q$, then $q \in P$.

Lemma

The relation \leq induced by P on $\mathbf{F}(a,f)$ is reflexive, transitive and compatible with multiplication. Also, residuation holds.

The subset of P_0 of P is the set created only by the rules 1-4; the elements of P_0 are called obviously positive.

Lemma

For every element $x \in \mathbf{T}(a,f)$, if x is obviously positive and x^{ℓ} obviously positive, then x=1.

Lemma

For every element $x \in \mathbf{T}(a, f)$, if x is obviously positive and x^{ℓ} obviously positive, then x = 1.

Lemma

For every element $x \in \mathbf{T}(a, f)$, if x is obviously positive and x^{ℓ} obviously positive, then x = 1.

We conjecture that the above ideas can be extended to yield a complete proof of antisymmetry of the ordering relation. If this is established, the resulting structure is automatically a pregroup. The final step is to show that it is also lattice-ordered, which we also conjecture to be true.

Lemma

For every element $x \in \mathbf{T}(a, f)$, if x is obviously positive and x^{ℓ} obviously positive, then x = 1.

We conjecture that the above ideas can be extended to yield a complete proof of antisymmetry of the ordering relation. If this is established, the resulting structure is automatically a pregroup. The final step is to show that it is also lattice-ordered, which we also conjecture to be true.

Conjecture: The structure F(a, f) is a non-distributive ℓ -pregroup.

Thank you for your attention!!