Asilomar 2014

On the Capacity of String-Duplication Systems and Genomic Duplication

F. Farnoud, M. Schwartz, and J. Bruck

California Institute of Technology

Ben-Gurion University of Negev

Repeated Sequences in Human Genome

- * The majority of the human genome consists of repeated sequences.
 - * Tandem repeats: TCATCATGCA
 - * Transposon-driven repeats: TCATGCCATA
- * Repeats provide a record of evolution and may cause chromosome fragility, expansion diseases, gene silencing, etc.

- Transposons-driven repeats
- Tandem repeats
- Other repeats
- Unique

Expressive Power of Repetitions

* "Much of the remaining 'unique' DNA must also be derived from ancient transposable element copies that have diverged too far to be recognized as such." [Lander et al. Nature 2001]

* Is it possible to generate a diverse family of sequences by duplication?

* Information theoretic view: capacity of string duplication systems.

- * String system: starting string, (duplication) rule
- Example:
 - * starting string = AGT
 - duplication rule: a substring of length 2 may be repeated in tandem

AGT

- * String system: starting string, (duplication) rule
- * Example:
 - * starting string = AGT
 - duplication rule: a substring of length 2 may be repeated in tandem

- * String system: starting string, (duplication) rule
- * Example:
 - * starting string = AGT
 - duplication rule: a substring of length 2 may be repeated in tandem

- * String system: starting string, (duplication) rule
- * Example:
 - * starting string = AGT
 - duplication rule: a substring of length 2 may be repeated in tandem

String Duplication Systems

- * s: starting string from an alphabet A
- * *F*: family of duplication rules
- * S=(s,F): sequences obtained by starting with s and applying functions $f \in F$.
- * The *capacity* of *S* is given by

$$cap(S) = \frac{1}{\log \delta(s)} \limsup_{n \to \infty} \frac{\log |S \cap A^n|}{n}$$

* $\delta(s)$: #distinct symbols in s

* Duplication rules:

- * Duplication rules:
 - * End duplication: $TCATGC \rightarrow TCATGCCAT$

- Duplication rules:
 - * End duplication: $TCATGC \rightarrow TCATGCCAT$
 - * Tandem duplication: T<u>CAT</u>GC → T<u>CATCAT</u>GC

- Duplication rules:
 - * End duplication: $TCATGC \rightarrow TCATGCCAT$
 - * Tandem duplication: T<u>CAT</u>GC → T<u>CATCAT</u>GC
 - Reversed tandem duplication: T<u>CAT</u>GC→ T<u>CATTAC</u>GC

- Duplication rules:
 - * End duplication: $TCATGC \rightarrow TCATGCCAT$
 - * Tandem duplication: T<u>CAT</u>GC → T<u>CATCAT</u>GC
 - Reversed tandem duplication: T<u>CAT</u>GC→ T<u>CATTAC</u>GC
 - ♦ Duplication with a gap: T<u>CAT</u>GC → T<u>CAT</u>G<u>CAT</u>C

- Duplication rules:
 - * End duplication: $TCATGC \rightarrow TCATGCCAT$
 - * Tandem duplication: T<u>CAT</u>GC → T<u>CATCAT</u>GC
 - Reversed tandem duplication: T<u>CAT</u>GC→ T<u>CATTAC</u>GC
 - Duplication with a gap: T<u>CAT</u>GC→ T<u>CAT</u>G<u>CAT</u>C
- * Parameters: length of duplicate *k*, gap *k'*

- Duplication rules:
 - * End duplication: $TCATGC \rightarrow TCATGCCAT$
 - * Tandem duplication: T<u>CAT</u>GC → T<u>CATCAT</u>GC
 - Reversed tandem duplication: T<u>CAT</u>GC→ T<u>CATTAC</u>GC
 - ♦ Duplication with a gap: T<u>CAT</u>GC → T<u>CAT</u>G<u>CAT</u>C
- * Parameters: length of duplicate k, gap k'
- * Tandem duplication studied in literature: [Dassow'99,'02], [Leupold'04,'05]: Concerned with position in Chomsky hierarchy of formal languages.

- Duplication rules:
 - * End duplication: $TCATGC \rightarrow TCATGCCAT$
 - * Tandem duplication: T<u>CAT</u>GC → T<u>CATCAT</u>GC
 - Reversed tandem duplication: T<u>CAT</u>GC → T<u>CATTAC</u>GC
 - Duplication with a gap: T<u>CAT</u>GC→ T<u>CAT</u>G<u>CAT</u>C
- Parameters: length of duplicate k, gap k'
- * Tandem duplication studied in literature: [Dassow'99,'02], [Leupold'04,'05]: Concerned with position in Chomsky hierarchy of formal languages.
- * Study of these fundamental systems is a step towards modeling complex biological systems.

End Duplication

- * $F_{k,end}$: set of functions duplicating a k-substring and appending it to the end
 - * $TCATGC \rightarrow TCATGCCAT$ (k=3)

End Duplication

- * $F_{k,end}$: set of functions duplicating a k-substring and appending it to the end
 - * $TCATGC \rightarrow TCATGCCAT$ (k=3)

Theorem: For any positive integer k, and $S=(s,F_{k,\mathrm{end}})$, we have $\mathrm{cap}(S)=1$.

End Duplication: Proof

Theorem: For any positive integer k, and $S=(s,F_{k,end})$, cap(S)=1.

- * If k=1, every symbol can be appended to the end \Rightarrow cap(S) = 1
 - * eg. $s=ACG \rightarrow ACGA \rightarrow ACGAGG \rightarrow ACGAGG \rightarrow ...$
- * Proof outline:
 - * Generate a string containing all possible *k*-substrings
 - * s=ACG, k=2:

ACG AC GA AC GA CG GA GA AC AC AC CG...

* Now in each duplication step, any *k*-substring can be duplicated.

Tandem Duplication

- * $F_{k,\text{tan}}$: set of functions duplicating a k-substring and insert the duplicate immediately after original copy.
 - * $TCATGC \rightarrow TCATCATGC (k=3)$
- Capacity in complete contrast to end-duplication

Tandem Duplication

- * $F_{k,\text{tan}}$: set of functions duplicating a k-substring and insert the duplicate immediately after original copy.
 - * $TCATGC \rightarrow TCATCATGC (k=3)$
- Capacity in complete contrast to end-duplication

Theorem: For any positive integer k, and $S=(s,F_{k,\text{tan}})$, we have $\operatorname{cap}(S)=0$.

Tandem Duplication: Proof

Theorem: For any positive integer k, and $S=(s,F_{k,tan})$, cap(S)=0.

- * Proof outline for s=GCATGC and k=3
 - * Map strings to sequence of circular *k*-substring:

$$GCATGC \longrightarrow A C A C A C G$$

* Duplication becomes repetitions of circular elements:

$$GCATCATGC \longrightarrow A C A C A C A C A C A C G$$

* Polynomial growth.

Tandem Duplication with Variable Length

- * $F_{\geq k, \tan} = \{F_{i, \tan} : i \geq k\}.$
 - * $TCATGC \rightarrow TCATCATGC \rightarrow TCATCTCATGC (k=2)$

Theorem: For a nontrivial string s, let $S=(s,F_{\geq k,\text{tan}})$ and $S'=(s,F_{\geq 1,\text{tan}})$. We have $\operatorname{cap}(S)>0$ and $\operatorname{cap}(S')\geq \log_2(r+1)/\log_2\delta(s)$, where r is the largest (real) root of

$$x^{\delta(s)} - \sum_{i=0}^{\delta(s)-2} x^i$$

$\delta(s)$	2	3	4	5
$cap(S') \ge$	1	0.77	0.65	0.58

Tandem Duplication with Variable Length

- Outline of proof:
 - * S' has a regular sub-language.
 - Capacity of sub-language is a lower bound.
 - the regular sub-language. * Number length *n* words in sub-language equals number of length n paths in the automaton.
 - * Capacity of sub-language is largest eigenvalue of adjacency matrix of automaton.

Reverse Tandem Duplication

- * $F_{k,rt}$: set of functions duplicating a k-substring and inserting it immediately after original copy in *reverse*.
 - * $TCATGC \rightarrow TCATTACGC (k=3)$
- * Reversing the copy is seemingly a small change, but leads to nonzero capacity:

Theorem: For any positive integer k>1, and $S=(s,F_{k,rt})$, we have $\operatorname{cap}(S)>0$,

unless $\delta(s)=1$.

Furthermore, capacity depends on s, only through $\delta(s)$.

(Reverse) Tandem Duplication

* The main difference between tandem and reverse tandem duplication is that the former leads to nearperiodic behavior with period *k*, but the latter does not.

Duplication with Gap

- * $F_{k,k',gap}$: set of functions duplicating a k-substring and inserting it k positions after original copy.
 - * $TCATGC \rightarrow TCATGCATC (k=3,k'=1)$

Duplication with Gap

Theorem: The capacity of $S=(s, F_{k,k',gap})$ is zero if and only if s is periodic with period gcd(k,k').

- * "if" direction:
 - * If *s* is periodic with period gcd(*k*,*k*′), then so is every other string in *S*:
 - * k=2, k'=4, $s=AGAGAGAG \Rightarrow S=\{(AG)^m: m \ge 4\}$

Duplication with Gap

Theorem: There are strings s such that for $S=(s, F_{k,k',gap})$ we have 0 < cap(S) < 1.

Theorem: If gcd(k,k')=1, then the capacity of $S=(s, F_{k,k',gap})$ depends on s only through $\delta(s)$.

Summary of Results

	0	$0 < \operatorname{cap}(S) < 1$	1	
End Duplication	×	×	√	
Tandem	✓	×	×	
Tandem ≥k	×	?	?	
Reverse Tandem	×	?	?	
Gap (<i>k</i> , <i>k</i> ′)	✓	✓	?	

Conclusion

- * Studied expressive power of languages generated by different duplication rules from an information theoretic point of view.
- * Except in very restrictive cases, duplication systems have nonzero capacity.
- * These results *suggest* that it is plausible to generate diverse genomic sequences using duplications.