Algorithmes stochastiques

A. Godichon-Baggioni

Introduction

111

I. Cadre

CADRE

Objectif: minimiser la fonction $G : \mathbb{R}^d \longrightarrow \mathbb{R}$ définie par

$$G(h) := \mathbb{E}\left[g(X, h)\right]$$

où X est une variable aléatoire à valeurs dans un espace \mathcal{X} .

Cadre : On supposera que *G* est convexe et on considèrera deux cas

- ► *G* est fortement convexe
- ► *G* est strictement convexe

FONCTIONS FORTEMENT CONVEXES

Moyenne d'une variable aléatoire : Soit X un vecteur aléatoire de \mathbb{R}^d . Sa moyenne minimise la fonction G définie par

$$G(h) = \frac{1}{2}\mathbb{E}\left[\|X - h\|^2 - \|X\|^2\right].$$

Modèle linéaire : On considère le modèle

$$Y = \theta^T X + \epsilon$$

avec X,ϵ des vecteurs aléatoires de \mathbb{R}^d indépendants et $\mathbb{E}\left[\epsilon\right]=0.$ Le paramètre θ est un minimiseur de la fonction

$$G(h) = \frac{1}{2} \mathbb{E} \left[\left(Y - h^T X \right)^2 \right].$$

FONCTIONS STRICTEMENT CONVEXES

Régression logistique : Soit (X, Y) vérifiant

$$Y|X \sim \mathbb{B}\left(\pi\left(\theta^T X\right)\right)$$

avec $\pi(x) = \frac{\exp(x)}{1 + \exp(x)}$. Alors θ est un minimiseur de la fonction

$$G(h) = \mathbb{E}\left[\log\left(1 + \exp\left(h^{T}X\right)\right) - h^{T}XY\right]$$

Médiane d'une variable aléatoire : Soit X à valeurs dans \mathbb{R} . Sa médiane minimise la fonction

$$G(h) = \mathbb{E}[|X - h|]$$

Médiane géométrique : Soit X à valeurs dans \mathbb{R}^d . Sa médiane géométrique est un minimum de la fonction

$$G(h) = \mathbb{E}[||X - h|| - ||X||]$$

II. M-estimateurs

DÉFINITION

Soient X_1, \ldots, X_n des variables aléatoires i.i.d de même loi que X. On considère la fonction empirique

$$G_n(h) = \frac{1}{n} \sum_{k=1}^n g(X_k, h)$$

Un M-estimateur est un minimiseur \hat{m}_n de G_n .

EXEMPLES

Moyenne d'un vecteur aléatoire : On a

$$G_n(h) = \frac{1}{2n} \sum_{i=1}^{n} ||X_i - h||^2 - ||X_i||^2$$

et on retrouve $\hat{m}_n = \overline{X}_n$.

Modèle linéaire : On a

$$G_n(h) = \frac{1}{2n} \sum_{i=1}^n (Y_i - X_i^T h)^2$$

on obtient l'estimateur des moindres carrés $\hat{\theta}_n = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\mathbf{Y}$.

Médiane d'une variable aléatoire : On a

$$G_n(h) = \frac{1}{n} \sum_{i=1}^n |X_i - h|$$

on retrouve la médiane empirique $\hat{m}_n = X_{(\lceil \frac{n}{2} \rceil)}$.

"CONTRE-EXEMPLES"

Régression logistique : On a

$$G_n(h) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp\left(h^T X_i\right)\right) - h^T X_i Y_i.$$

► Algorithme de gradient

Médiane géométrique : On a

$$G_n(h) = \frac{1}{n} \sum_{i=1}^n ||X_i - h||$$

► Algorithme de Weiszfeld

UN RÉSULTAT DE CONVERGENCE

Théorème

On suppose que les hypothèses suivantes sont vérifiées :

- \hat{m}_n converge en probabilité vers m.
- Pour presque tout x, la fonction g(x, .) est deux fois continument différentiable.
- Pour presque tout x, la fonction $\nabla^2_h g(x,.)$ est L(x)-lipschitz, i.e

$$\forall h, h', \quad \left\| \nabla^2 g(x, h) - \nabla^2 g(X, h') \right\|_{on} \leq L(x) \left\| h - h' \right\|.$$

- ► L(X) et $\nabla^2 g(X, m)$ admettent des moments d'ordre 2.
- $ightharpoonup H := \nabla^2 G(m)$ est inversible.

Alors, en notant
$$\Sigma = \mathbb{E}\left[\nabla_{h}g\left(X,m\right)\nabla_{h}g\left(X,m\right)^{T}\right]$$
, on a

$$\sqrt{n} (\hat{m}_n - m) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N} (0, H^{-1}\Sigma H^{-1}).$$

ESTIMATION EN LIGNE

On considères des variables aléatoires $X_1, \ldots, X_n, X_{n+1}, \ldots$ arrivant de manière séquentielle.

Objectifs : Mettre à jours les estimateurs avec le moins de calculs possibles.

Estimation de la moyenne : On a

$$\overline{X}_{n+1} = \overline{X}_n + \frac{1}{n+1} \left(X_{n+1} - \overline{X}_n \right)$$

Estimateur sans biais de la variance : On a

$$\Sigma_{n+1}^{2} = \Sigma_{n}^{2} + \frac{1}{n+1} \left(X_{n+1} X_{n+1}^{T} - \Sigma_{n}^{2} \right)$$

$$S_{n+1}^{2} = \frac{n+1}{2} \sum_{n+1}^{2} -\frac{n+1}{2} \overline{X}_{n+1} \overline{X}_{n+1}^{T}$$

III. Algorithmes de gradient stochastiques

ALGORITHME DE GRADIENT

On cherche à minimiser la fonction convexe G définie par

$$G(h) = \mathbb{E}\left[g\left(X,h\right)\right].$$

L'algorithme de gradient est défini de manière itérative par

$$m_{t+1} = m_t - \gamma_t \nabla G(m_t)$$

où η_t est une suite de pas positifs.

m

 m_1

γ₁grad

m

ALGORITHMES DE GRADIENT STOCHASTIQUES

L'algorithme de gradient stochastique est défini de manière récursive pour tout $n \ge 0$ par

$$m_{n+1} = m_n - \gamma_{n+1} \nabla_h g\left(X_{n+1}, m_n\right)$$

avec m_0 borné et (γ_n) une suite de pas positifs vérifiant

$$\sum_{n\geq 1} \gamma_n = +\infty \qquad \text{et} \qquad \sum_{n\geq 1} \gamma_n^2 < +\infty.$$

EXEMPLES

Régression linéaire : On a

$$\theta_{n+1} = \theta_n + \gamma_{n+1} \left(Y_{n+1} - \theta_n^T X_{n+1} \right).$$

Régression logistique : On a

$$\theta_{n+1} = \theta_n + \gamma_{n+1} \left(Y_{n+1} - \pi \left(\theta_n^T X_{n+1} \right) \right) X_{n+1}.$$

Médiane géométrique : On a

$$m_{n+1} = m_n + \gamma_{n+1} \frac{X_{n+1} - m_n}{\|X_{n+1} - m_n\|}.$$

APPROCHE NON ASYMPTOTIQUE

On prend $\gamma_n = c_\gamma n^{-\alpha}$ avec $c_\gamma > 0$ et $\alpha \in (1/2,1)$ et on suppose que les hypothèses suivantes sont vérifiées :

- 1. Il existe un minimiseur *m* de la fonction *G*.
- 2. La fonction G est μ -fortement convexe : pour tout $h \in \mathbb{R}^d$,

$$\langle \nabla G(h), h - m \rangle \ge \mu \|h - m\|^2$$
.

(PS0) Il existe $C \ge 0$ tel que pour tout $h \in \mathbb{R}^d$,

$$\mathbb{E}\left[\left\|\nabla_{h}g\left(X,h\right)\right\|^{2}\right] \leq C\left(1+\left\|h-m\right\|^{2}\right).$$

Alors, en notant $C' = \max\{C, 2\mu^2\}$, pour tout $n \ge 1$,

$$\mathbb{E}\left[\|m_n - m\|^2\right] \le 2 \exp\left(C' c_\gamma^2 \frac{2\alpha}{2\alpha - 1}\right) \exp\left(-\frac{\mu c_\gamma}{4} n^{1 - \alpha}\right) \left(\mathbb{E}\left[\|m_0 - m\|^2\right] + 1\right) + \frac{2c_\gamma C}{\mu n^\alpha}$$

PREUVE

La preuve repose sur le lemme suivant (admis) :

Lemme

Soit (δ_n) une suite positive vérifiant

$$\delta_{n+1} \le \left(1 - 2\mu\gamma_{n+1} + 2L^2\gamma_{n+1}^2\right)\delta_n + 2\sigma^2\gamma_{n+1}^2$$

avec $\gamma_n = c_{\gamma} n^{-\alpha}$, c_{γ} , $L \ge \mu > 0$, $\sigma^2 \ge 0$ et $\alpha \in (1/2, 1)$. Alors pour tout n > 1,

$$\delta_n \le 2 \exp\left(-\frac{\mu}{4} n^{1-\alpha}\right) \exp\left(2L^2 c_\gamma^2 \frac{2\alpha}{2\alpha - 1}\right) \left(\delta_0 + \frac{\sigma^2}{L^2}\right) + \frac{4c_\gamma \sigma^2}{\mu n^\alpha}$$

APPLICATION À LA RÉGRESSION LINÉAIRE

On suppose

- ightharpoonup $\mathbb{E}\left[\epsilon^2\right]<+\infty.$
- ightharpoonup $\mathbb{E}\left[X^4\right]<+\infty$
- ▶ La matrice $\mathbb{E}\left[XX^T\right]$ est définie positive et on note μ sa plus petite valeurs propre.

On a alors

$$\begin{split} \mathbb{E}\left[\left\|\theta_{n}-\theta\right\|^{2}\right] &\leq 2\exp\left(Cc_{\gamma}^{2}\frac{2\alpha}{2\alpha-1}\right)\exp\left(-\frac{\mu c_{\gamma}}{4}n^{1-\alpha}\right)\left(\mathbb{E}\left[\left\|m_{0}-m\right\|^{2}\right]+1\right) \\ &+\frac{2c_{\gamma}C}{\mu n^{\alpha}} \end{split}$$

$$\operatorname{avec} C = \max \Big\{ 2\mathbb{E} \left[\epsilon^2 \right] \mathbb{E} \left[\|X\|^2 \right], 2\mathbb{E} \left[\|X\|^4 \right] \Big\}.$$

APPLICATION À LA RÉGRESSION LINÉAIRE

FIGURE – Evolution de l'erreur quadratique moyenne de θ_n en fonction de la taille d'échantillon n dans le cadre de la régression linéaire.

UNE PROPOSITION UTILE

Proposition

Soit δ_n , γ_n deux suites positives telles que

- $\gamma_n = c_{\gamma} n^{-\alpha}$ avec $c_{\gamma} > 0$ et $\alpha \in (1/2, 1)$.
- Il existe un rang n_0 , une constante $c_0 \in (0, \gamma_{n_0}^{-1})$ et une suite positive v_n telle que pour tout $n \ge n_0$,

$$\delta_{n+1} \le (1 - c_0 \gamma_{n+1}) \, \delta_n + \gamma_{n+1} v_{n+1}.$$

Alors pour tout $n \geq 2n_0$,

$$\delta_n \le \exp\left(-\frac{c_0 c_{\gamma}}{4} n^{1-\alpha}\right) \left(\delta_{n_0} + \sum_{k=n_0}^{n/2-1} \gamma_{k+1} v_{k+1}\right) + \max_{n/2 \le k+1 \le n-1} v_{k+1}$$

POUR SIMPLIFIER

Corollaire

Soit δ_n , γ_n deux suites positives telles que

- $\gamma_n = c_{\gamma} n^{-\alpha}$ avec $c_{\gamma} > 0$ et $\alpha \in (1/2, 1)$.
- Il existe un rang n_0 , une constante $c_0 \in (0, \gamma_{n_0}^{-1})$ et une suite positive v_n telle que pour tout $n \ge n_0$,

$$\delta_{n+1} \le (1 - c_0 \gamma_{n+1}) \, \delta_n + \gamma_{n+1} v_{n+1}.$$

 $Si v_n = C_v(\ln n)^{\beta} n^v \ avec \ \beta, v \in \mathbb{R}$, alors

$$\delta_n = O(v_n)$$
.