

Mid-Term Examination

Sept, 2019 QUESTION PAPER-201909

Programme: B.E (Electronics CE)

Course Name: Basic Electrical Sciences

Maximum Marks: 60

Notes:

Year/Semester: 2019/3rd Course Code: ESC 206 Time allowed: 1.5 Hours

(1) All questions are compulsory.

(2) Unless stated otherwise, the symbols have their usual meanings in context with subject. Assume suitably and state, additional data required, if any.

(3) The candidates, before starting to write the solutions, should please check the question paper for any discrepancy, and also ensure that they have been delivered the question paper of right course code,

Q. No								
1.	a)	State and illustrate Kirchhoff's Laws through a suitable example. Also give their areas of application and advantages, disadvantages if any.						
	b)		(10)					
		Determine the current in the Branch AB, using Superposition Theorem. A A A A A A A A A A A A A A A A A A A	4					
	1	$40V = 4\Omega$ 4Ω 5Ω						
2.	a)	Prove mathematically how maximum power can be transmitted to the load by a DC source. List advantages/ disadvantages; also mention its scope of application.						
	b)	Explain how the given network can be reduced to a single source with interpretation resistance. Also determine I _L in the resistance 200 ohms across AB. Also determine to						
		value of RAB for maximum power transfer and its magnitude.						
		Take E1 = 150V						
		100Ω 200Ω 200Ω						
		200Ω IL B						
		Topic Communications and American State Communication and American						

3.	(a)	In an electrical circuit a capacitor connected to a supply voltage $v = V_m \sin(\omega t)$. Derive					
-		an expression for current-voltage relationship and plot voltage, current, power					
		waveforms. List the inferences drawn from these waveforms. Visualize the effect of					
	2,	varying supply frequency from zero to infinite value on circuit characteristics.					
	b)	An electrical circuit comprising of series combination of an incandescent lamp wit					
	100W, 250V rating and a pure coil of 50mH inductance, is connected to sit						
		AC supply of 250V, 50Hz. Draw circuit diagram for power measurement with the help					
		of Wattmeter, Voltmeter, ammeter. Determine the reading of Wattmeter, value of					
		power factor. (Hint: may use $W = \frac{V^2}{R}$)	and any low over				

Course Instructor: Dr. Balwinder Singh Surjan, Electrical Engineering Department.

End-Term Examination

Nov, 2019 QUESTION PAPER-201911

Programme: B.E (Electronics CE)
Course Name: Basic Electrical Sciences

Maximum Marks: 100

Year/Semester: 2019/3rd Course Code: ESC 206 Time allowed: 3.0 Hours

Notes:

(1) All questions are compulsory.

(2) Unless stated otherwise, the symbols have their usual meanings in context with subject. Assume suitably and state, additional data required, if any.

(3) The candidates, before starting to write the solutions, should please check the question paper for any discrepancy, and also ensure that they have been delivered the question paper of right course code.

Q. 1	No		Marks				
	a)	Analyze the effect of variation in flux on speed of a DC motors.					
-	b)	Apply Nodal Analysis method through a suitable example. Also mention its advantages, disadvantages if any.					
	c)						
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				
		$50V = 4\Omega$ $50Q$ $50Q$					
	a)	Draw and analyse phasor diagram of C-L series network energized with AC supply $v = V_m \sin(\omega t)$ supply.					
	b)	Derive relationship between phase and line quantities in a three-phase balanced delta connected network.					
	č)	impedance of $40 \angle 60^{\circ}$ Ω . Determine (i) the line voltage and currents (ii) the phase voltage and currents, (iii) phasor diagram showing voltages and currents.					
3.	a)						
	b)	transformer. Draw circuit diagram to conduct O.C. test also					
	(c)	The following test data is obtained through open-circuit test and short-circuit test on a 230/115V 2.3 kVA, 50Hz, single-phase transformer:					

			Test	Voltage (Volt)	Current (Ampere)	Power (Watts)	Remarks		
-			O.C.	115	0.4	40	Test conducted on LV side	4 4 5 T	
			S.C.	10	20	80	Test conducted on LV side		
	engi'	Determine equivalent circuit parameters; construct equivalent circuit referred to High Voltage side.							
4	a)	speed; also mention importance of back e.m.f.						(6)	
	b)	LDC to the and evaluate with the ((6)
	c)	a la sto octivit. The amenture winding ((08)	
5	a)	1 - I - I - I - I - I - I - I - I - I -						(6)	
	b)	b) A 6-pole, 50Hz, 3-phase, Induction Motor running on full-load with 4% slip develops a torqu of 149.3 N-m at its shaft. The friction and windage losses are 200W and the stator copper an iron losses equals 1620W. Determine (a) output power, (b) the rotor copper losses and (c) the rotor and overall efficiency at full load.							(8)
	c)	to the state of th							(6)

Course Instructor: Dr. Balwinder Singh Surjan, Electrical Engineering Department.