Pismeni ispit

10. rujna 2015.

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (11 bodova)

Istosmjerni motor s nezavisnom uzbudom za pogon namatača žice, prema Sl.1, ima slijedeće podatke: $P_n=2.2\,\mathrm{kW},\ U_{an}=120\,\mathrm{V},\ I_{an}=22.5\,\mathrm{A},\ n_n=390\,\mathrm{min}^{-1},\ R_a=0.7\,\Omega.$ Motor ima moment inercije $J_{MN}=0.05\,\mathrm{kg}$ m² i preko malog zupčanika momenta inercije $J_{mz}=0.015\,\mathrm{kgm}^2$ pogoni drugu osovinu s većim zupčanikom ukupnog momenta inercije $J_{b+vz}=J_b+J_{vz}=1.3\,\mathrm{kg}$ m². Na drugoj osovini nalazi se bubanj namatača na kojeg se namata žica, koja djele silom $F=1300\,\mathrm{N}$ na bubanj u smjeru prikazanom polici od prekomenta province na slici. Omjer reduktora iznosi i=20. Korisnost zupčanog prijenosa iznosi $\eta_{zp}=0.8$, a korisnost prijenosa bubanj-zica $\eta_b=0.95$. Polumjer bubnja iznosi $0.6\,\mathrm{m}$. Ulaz istosmjernog pretvarača spojen je na istosmjerni izvor napona $U=120\,\mathrm{V}$

Slika 1: Pogon namatača žice realiziran s istosmjernim motorom

- a) (6 bodova) Odrediti ukupan moment inercije sustava i moment tereta reduciran na osovinu motora.
- b) (3 boda) Istosmjerni motor s nezavisnom uzbudom napaja se iz 4-kvadrantnog čopera. Uz faktor vođenja D=0.75 i bipolarnu modulaciju, odrediti brzinu namatanja žice. U obzir uzeti gubitke trenja
- $\varepsilon)$ (2 boda) Nacrtati valni oblik napona na motoru uz faktor vođenja D=0.8.

2. zadatak (11 bodova)

Asinkroni motor nazivnih podataka: $U_n=400\,\mathrm{V},\,P_n=5\,\mathrm{kW},\,n_n=1430\,\mathrm{min}^{-1},\,f_n=50\,\mathrm{Hz},\,M_\mathrm{pr}/M_\mathrm{m}=1430\,\mathrm{min}^{-1}$ 3, namot u spoju zvijezda, skalarno je upravljan \mathbf{U}/\mathbf{f} metodom u otvorenoj petlji. Motor pokreće stroj za obradu metala čija je momentna karakteristika dana izrazom $M_t=k/n$ Nm. Gubici trenja i ventilacije motora se zanemaruju. Pri nazivnom naponu i nazivnoj frekvenciji motor je opterećen s 50% nazivnog momenta.

a) (6 bodova) Odrediti zadanu (referentnu) frekvenciju uz koju bi brzina vrtnje motora bila n = 900 min -1. Koliki je moment tereta pri novoj referentnoj frekvenciji? Na istom grafu nacrtati momentne karakteristike motora i tereta, te naznačiti karakteristične točke (prekretni moment i klizanje, sinkronu brzinu i radnu točku).

- b) (1 bod) Kolika je minimalna dozvoljena referentna frekvencija s kojom opisani pogon može trajno raditi? Obrazložil
- e) (4 boda) Nacrtati funkcijsku blok shemu skalarnog upravljanja asinkronog motora u otvorenoj i zatvorenoj petliji.

3. zadatak (8 bodova)

Vektorski upravljan asinkroni motor ima strukturu upravljanja prikazanu na slici 2. Motor se vrti brzinom $n=1.1\,n_n$ i opterećen je s 30% nazivnog momenta. Kvalitativno skicirati odzive struja $i_{mr}(t)$ i $i_{sq}(t)$, te brzine vrtnje $\omega(t)$ za slučaj da se motoru skokovito smanji referentna vrijednost brzine na $n=0.9\,n_n$ pri čemu moment tereta ostane nepromijenjen.

Slika 2: Sustav za regulaciju brzine s vektorski upravljanim asinkronim motorom

4. zadatak (15 bodova)

Kaskadna struktura upravljanja brzinom istosmjernog motora prikazana je na slici 3, pri čemu pojedini parametri iznose: $K_a=4.5\,A/V$, $T_a=0.025\,\mathrm{s}$, $K=1.33\,\mathrm{Vs/rad}$, $K_t=44$, $T_{mi}=1.66\,\mathrm{ms}$, $K_i=0.1\,\mathrm{V/A}$, $T_{fi}=2\,\mathrm{ms}$, $K_b=0.0318$, $T_{fb}=15\,\mathrm{ms}$, $J=2.4\,\mathrm{kg}$ m².

Slika 3: Blokovska shema kaskadnog upravljanja brzinom DC motora s nezavisnom uzbudom

Potrebno je:

- a) (4 boda) Projektirati PI regulator struje armature $G_{R1}(s)$ prema tehničkom optimumu kao i prefilt referentne vrijednosti struje armature $G_{pf1}(s)$.
 - (3 boda) Ukoliko se promjeni nadomjesno mrtvo vrijeme pratvarača na $T_{mi}=3ms$, uz param regulatora određene u a) dijelu zadatka, koliko će pri iznositi karakteristični faktor prigušenja C
- b) (5 bodova) Izračunati parametre modificiranog PI regulatora brzine vrtnje motora prema simetri optimumu tako da fazno osiguranje iznosi $\gamma=45^\circ$. Projektirati prefiltar u referentnoj grani vrtnje $G_{pf2}(s)$.

c) (3 boda) Ukoliko zamjenimo mjerni član brzine, mjernim članom koji ima bržu dinamiku $T_{fb}=0.5ms$, kobko će tada iznositi fazno osiguranje uz parametre regulatora određene u b) dijelu zadatka? Napomena: Nagib karakteristike amplitudno frekvencijske karakteristike otvorenog kruga u okolini presječne frekvencije iznosi -20 dB/dek.

5. zadatak (15 bodova)

Nadređena petlja upravljanja brzinom vrtnje istosmjernog motora s nezavisnom i konstantnom uzbudom prikazana je blokovskom shemom na slici 4. Pritom su: $K_i=1, T_{ei}=5$ ms, K=1.33 Vs/rad i J=3 kgm²,

Slika 4: Blokovska shema upravljanja brzinom DC motora s nezavisnom uzbudom

- a) (4 boda) Odrediti prijenosnu funkciju zatvorenog kruga.
- b) (5 bodova) Odrediti parametre modificiranog PI regulatora brzine vrtuje tako da nadomjesna vremenska konstanta zatvorenog kruga iznosi $T_e=0.1s$, a karakteristični odnos $D_2=0.5$.
- c) (3 boda) Odrediti prefiltar u grani referentne vrijednosti brzine vrtnje kojim se krate neželjene nule.
- d) (3 boda) Odrediti prefiltar u grani referentne vrijednosti brzine vrtnje (umjesto prefiltra određenog u c) dijelu zadatka) kojim se osigurava točnost slijeđenja linearno rastuće referentne veličine.

$$\frac{J1R_{-2015}}{P_{n} = 2.2 \text{ LW}} \longrightarrow M_{n}$$

$$U_{m} = 120 \text{ V}$$

$$I_{n} = 22.5 \text{ A}$$

$$M_{n} = 390 \text{ min}^{3}$$

$$P_{n} = 0.7 \text{ L}$$

$$M_{n} = 0.05 \text{ by } m^{2}$$

$$M_{n} = 0.05 \text{ by } m^{2}$$

$$M_{n} = \frac{P_{n}}{w_{n}} = 53.87 \text{ Vm}$$
 $Ce = \frac{U_{n} - J_{n}P_{n}}{w_{n}} = 2.5526$
 $M_{am_{n}} = J_{n} \cdot c_{m} = 57.43$
 $M_{cr_{n}}v_{n} = M_{em_{n}} - M_{n} = 3.57 \text{ Nm}$

$$J_{M} = 0.05 \text{ by } m^{2}$$
 $J_{M2} = 0.015 \text{ by } m^{2}$
 $J_{M02} = J_{0} + J_{02} = 1.3 \text{ by } m^{2}$
 $F = 1300 \text{ N}$
 $i = 20$
 $N_{20} = 0.8$
 $N_{0} = 0.35$
 $R_{0} = 0.6 \text{ m}$

a)
$$P_{\epsilon} = F v = F P_{\epsilon} w_{\epsilon}$$
 $P_{\epsilon} = N_{2P} N_{\epsilon} P_{\epsilon} = N_{2P} N_{\epsilon} M_{\epsilon}^{*} w_{\epsilon}$
 $w_{\epsilon} = i w_{\epsilon}$
 $v_{2P} N_{\epsilon} M_{\epsilon}^{*} w_{\epsilon} i = F N_{\epsilon} w_{\epsilon}$
 $M_{\epsilon}^{*} = \frac{F N_{\epsilon}}{N_{2P} N_{\epsilon} i} = \sum_{i=1}^{N_{\epsilon}} \frac{M_{\epsilon}^{*} = 51.32 \text{ Nm}}{N_{\epsilon}^{*} N_{\epsilon}^{*} N_{\epsilon}^{*} N_{\epsilon}^{*} N_{\epsilon}^{*} N_{\epsilon}^{*}}$

$$-\frac{\int_{av2}^{b} \cdot w_{u}^{2}}{2} = \frac{\int_{av2}^{b} \frac{\int_{av2}^{b} w_{m}^{2}}{2}}{2}$$

$$\int_{av2}^{b} = \frac{\int_{av2}^{b} + v_{2}}{v_{2p}} = 4.0625.10^{-3} \text{ Jg m}^{2}$$

$$\frac{m v^2}{2} = N_{2p} k_{\perp} \frac{J_k^* w_m^2}{2}$$

$$J_{k}^{*} = \frac{F R_{k}^{2} R_{k}}{v_{2} v_{3} v_{4} v_{4}^{2}} = 0.156983 \text{ lag m}^{2}$$

$$D = \frac{U + U_{\infty}}{2U_{0L}} \Rightarrow U_{\alpha} = 60V$$

$$J_a = \frac{M_s^* + M_{eriory}}{C_{am}} = 21.5 \text{ A}$$

$$w_m = \frac{U_0 - J_0 R_u}{Ce} = 17.61 \text{ mod/s}$$

JIR_2015

- 2. Um = 400 V
 - Pm = 5 kW
 - Mm = 1430 min-1
 - fm = 50H2
 - Mpc = 3 Mm
 - Me = le
 - Men = 0.5 Mm

- -> Ms = 1500 min -1
 - $M_n = \frac{P_m}{\omega_n} = 33.39 \text{ Nm}$
 - Men = Ms Mn -> M, = 1465 min 1
 - l= Ma. M = 24457.55

- a) MA = 900 min
 - Mex = L ->
- Mex = 27.18 Nm
- $\frac{M_{4A}}{M_{4A}} = \frac{M_{5A} M_{4}}{M_{5A} M_{1}} \implies M_{A} = 956.97$
 - MA = 30 fA
 - fx = 31.9 Hz

$$H_{eg} = \frac{2}{M_{eg}} - M_{eg} = \frac{1}{M_{eg}} - M_{e$$

POGON MOZE TRAJNO RADITI ZA OPTERECENSE NAZIVMM MOMENTOM NA FREKU. FB.

C) SHEMA SKALARNOG UPR. AS U OTVORENOS PETEST:

SHEMA SKALARHOG UPR AS U ZATVOREHOJ PETCIL:

$$G_{s_i}(s) = \frac{K_{s_i}}{\left(1 + \overline{I}_{s_i} s\right) \left(1 + \overline{I}_{s_i} s\right)}$$

$$> \frac{1}{\omega_n^2} = 2i_{\mathcal{Z}_1}i_{\mathcal{Z}_1}^* > \omega_n = \frac{1}{\sqrt{2i_{\mathcal{Z}_1}i_{\mathcal{Z}_1}^*}}$$

$$> \frac{29}{\omega_m} = 27i_1 \implies \hat{J} = \sqrt{\frac{t_{i1}}{2T_{i1}}}$$

Ks1 = K+ K4 K1 = 19.8

Tz1 = Tm + Tfe = 3.66 ms

1.

$$G_{r_1}(s) = \frac{1}{2T_{\epsilon_1}^2 s^2 + 2T_{\epsilon_1} s + 1} \approx \frac{1}{1 + 2T_{\epsilon_1} s}$$

$$T_{\bar{1}1} = a^2 T_{21} \Rightarrow T_{\bar{1}1} = 130.09 \text{ ms}$$
 $T_{\bar{2}2} = 2T_{21} + T_{pb} = 22.32 \text{ ms}$

> PEDOMINANTHE VEEM, KONSTANTE TEI 1 TAN MOGU SE NADOMJESTITI S II = Tei + iper

b)
$$T_e = 0.1s$$

 $D_z = 0.5$

$$\Rightarrow$$
 $\alpha_2 = D_2 Te^2 \Rightarrow Ke = \frac{J}{D_2 Te K K K K E} \Rightarrow Ka = 45.1128$

c)
$$G_{PP}(s) = \frac{1}{1 + ipr s}$$

Jú.