

Data Mining in Action

Лекция 4 Признаки и метрики

ML: ожидание

```
clf = XGBClassifier()
clf.fit(X_train, y_train)
labels = clf.predict(X_test)
```

ML: реальность

На этой лекции

- I. Работа с признаками
 - 1. Предобработка данных
 - 2. Категориальные признаки
 - 3. Разреженные признаки
- II. Метрики качества моделей
 - 1. Применение алгоритмов и целевые функции
 - 2. Метрики для регрессии
 - 3. Метрики для классификации

Признаки

Почему работа с признаками важна?

- Хорошие алгоритмы для обучения у вас и так уже есть
- Garbage in garbage out
- Признаки это тоже модели

Одномерные преобразования

• Масштабирование признаков

$$\tilde{x} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

$$\tilde{x} = \frac{x - \bar{x}}{\sigma_{x}}$$

$$\tilde{\chi} = \frac{x - q_{\alpha}(x)}{q_{1-\alpha}(x) - q_{\alpha}(x)}$$

Регуляризация Меры близости Начальные веса Интерпретация

$$\tilde{x} = \min(100500, \max(x, 0))$$

$$\tilde{x} = \log(1 + x)$$

$$\tilde{x} = rank(x)$$

Может сделать распределение более симметричным

Заполнение пропусков (imputation)

- Откладывание
 - Заполняем необычным значением (-999999)
 - Заполняем нулём, оставляем бинарную метку
- Одномерное заполнение
 - Среднее, медиана, мода
 - Предыдущее значение ряда
- Моделирование
 - Заполнить по ближайшим соседям
 - Предсказать какой-нибудь регрессией
 - Надёргать из условного совместного распределения

Отсутствие информации – это тоже информация!

Feature engineering

- Многомерные преобразования (любые функции N переменных)
 - Отношения, min/max
- «Признаки признаков»
 - Part-of-speech для слов
 - Классификация высокого уровня (большой город/маленький город/село)
- Учёт динамики
 - Лаги
 - Скользящие средние
- Играйтесь!

Иерархические признаки

- Данные бывают вложенными
- Агрегация:
 - Количество, сумма
 - Среднее и т.п.
 - Минимум, максимум
- Сложные признаки
 - Тренды
 - Подмодели по одному объекту
 - Эмбеддинги нейросетями

Шкалы

• Номинальная

 $(=, \neq)$

Категориальные признаки

• Порядковая

(>,<)

По ситуации

• Интервальная

Числовые признаки

• Шкала отношений

(+, -) (×,÷)

Категориальные признаки

- Кодирование номером
- Двоичное кодирование (one-hot-encoding)
- Кодирование средним значением целевой переменной
 - Чтобы не переобучиться, нужно брать среднее с другого фолда
 - Если есть ось времени, можно брать среднее из прошлого
 - Именно так работает CatBoost

Разреженные признаки

- Разреженное хранение
- Hashing trick
 - быстрое и неаккуратное сокращение размерности
 - Удивительно, на часто спасает
- Латентные признаки
 - Разложение матриц
 - Эмбеддинги из других моделей (например word2vec)
- Вспомогательные признаки
 - Кодирование средним всем (не только целевой переменной)

Метрики

Целевая функция

- На основе моделей принимаем решение
- Решение приносит пользу
 - Например, увеличение прибыли

- Неправильное решение приводит к потерям
- Хотим прогноз, который минимизирует потери!

Вероятностный подход

- Мы пытаемся прогнозировать Y, но он случаен
- Будем прогнозировать распределение p(Y|X)!
- Правдоподобие: $Likelihood = p(y_1, ... y_n | x_1, ... x_n)$
- Если наблюдения независимы: $Likelihood = \prod_{i=1}^{n} p(y_i|x_i)$
- На практике почти всегда работают с суммой логарифмов
- Правдоподобие порождает привычные функции потерь

• Например, если
$$p(y|\hat{y}) \sim \mathcal{N}(0,\sigma^2)$$
, то логарифм правдоподобия равен $\log L = -n\log\sqrt{2\pi}\sigma - \sum_{i=1}^n \frac{(y-\hat{y})^2}{2\sigma^2} = a-b \times MSE$

Принятие решений

• Могут быть важны вероятности и потери

Денежные результаты

Заемщик	Хороший	Плохой
Одобрили	0	-100 000
Отказали	-5 000	0

Статистика по заявкам

Заемщик	Хороший	Плохой
Одобрили	48%	2%
Отказали	50%	

Алгоритм машинного обучения

Модель ML можно разложить на три компоненты

- 1. Функциональная форма
 - Линейная, дерево, композиция...
- 2. Целевая функция
 - Разница прогноза и факта, доля ошибок, отступ, правдоподобие...
- 3. Метод оптимизации
 - Линейное программирование, градиентный спуск, генетические алгоритмы....

Иерархия метрик

- Бизнес-метрики (онлайн)
 - То, ради чего вы работаете (прибыль, счастье пользователя, ...)
- Прокси-метрики (онлайн, но быстрее)
 - То, что можно измерить быстро (конверсия, средний чек, ...)
- Меры качества (оффлайн, для выбора гиперпараметров)
 - Доля верных/неверных прогнозов, ...
- Функции потерь (оффлайн, для подгона основных парамеров)
 - Правдоподобие, MSE, ...
 - Должны быть гладкими и быстро вычисляться

Хотелось бы жить ближе к бизнес-метрикам, но это не всегда удаётся

Офлайн-метрики для регрессии

Mean Absolute Error

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y_i}|$$

Лучшее константное предсказание - медиана

Данные:

X	Υ
-1	0
-1	1
-1	1

Минимизация ошибки:

Input interpretation:

minimize	function	$\frac{1}{3} \left(0-x + 1-x + 1-x \right)$
	domain	$0 \le x \le 1$

2

Global minimum:

$$\min\left\{\frac{1}{3}\left(|0-x|+|1-x|+|1-x|\right)\,\Big|\,\,0\le x\le 1\right\}=\frac{1}{3}\ \ \text{at}\ \ x=1$$

Plot:

Root Mean Squared Error

Минимизация ошибки:

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Лучшее константное предсказание - среднее

Данные:

X	Υ
-1	0
-1	1
-1	1

Input interpretation:

minimize	function	$\frac{1}{3}\left((0-x)^2+(1-x)^2+(1-x)^2\right)$
minimize		$0 \le x \le 1$

Global minimum:

$$\min\left\{\frac{1}{3}\left((0-x)^2+(1-x)^2+(1-x)^2\right)\,\Big|\,\,0\leq x\leq 1\right\}=\frac{2}{9}\ \ \text{at}\ \ x=\frac{2}{3}$$

Plot:

Root Mean Squared Logarithmic Error

$$RMSLE_{\delta} = \frac{1}{n} \sum_{i=1}^{n} (\log(\hat{y} + \delta) - \log(y + \delta))^{2}$$

Лучшее константное предсказание - среднее геометрическое для $y+\delta$

Mean average percentage error

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{y_i}$$

Минимизирует непонятно что

- Интуитивная
- Несимметрично штрафует положительные и отрицательные выбросы
- Может быть $[0, +\infty)$
- ullet Очень чувствительна к маленьким y

Symmetric mean average percentage error

$$SMAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{(y_i + \hat{y}_i)/2}$$

Минимизирует непонятно что

- Более «справедливая», чем МАРЕ
- Может быть [0, 200%]
- Тоже несимметричная

Офлайн-метрики для классификации

Accuracy

```
Accuracy = np.mean(ytrue == ypred)
Лучшее константное решение - самый часто встречающийся класс
```

Пример с несбалансированными классами:

```
y=\{0,1\}; np.mean(y) == 0.99
Accuracy = np.mean(ytrue == 1) = 0.99
```

Precision and recall

False Positive - ошибка I рода (ложное срабатывание)

False Negative - ошибка II рода (объект пропущен)

Precision and recall

$$egin{aligned} \mathbf{Precision} &= rac{tp}{tp+fp} \end{aligned} egin{aligned} \mathsf{Сколько} \ \mathsf{хорошиx} \ \mathsf{клиентов} \ \mathsf{среди} \ \mathsf{одобренныx} \end{aligned} \ \mathbf{Recall} &= rac{tp}{tp+fp} \end{aligned} egin{aligned} \mathsf{Какой} \ \mathsf{доле} \ \mathsf{всеx} \ \mathsf{хорошиx} \ \mathsf{мы} \ \mathsf{дали} \ \mathsf{кредит} \end{aligned}$$

Disambiguation

- Accuracy = точность
- Recall = полнота
- Precision = тоже точность

Будьте бдительны!

F-score

$$F1 = 2 * \frac{precision * recall}{precision + recall}$$

F-score

$$F1 = 2 * \frac{precision * recall}{precision + recall}$$

F-score

$$F_{\beta} = (1 + \beta^2) * \frac{\text{precision* recall}}{(\beta^2 * \text{precision}) + \text{recall}}$$

при $0 < \beta < 1$ предпочтение отдаётся точности при $\beta > 1$ больший вес приобретает полнота

Кредитный скоринг: бинарной оценки мало

Нужно уметь *ранжировать* клиентов

Хорошее ранжирование + калибровка = точная оценка вероятности

Какой порог выставить?

- \widetilde{p} вероятность дефолта
- Отказывать, если:
- $\tilde{p} > 50\%$?
- $\tilde{p} > 10\%$?

- $\tilde{p} \times \mathbb{E}(profit|bad) + (1 \tilde{p})\mathbb{E}(profit|good) < 0$
- Как оценить качество, ещё не зная порога отказа?

ROC-кривая

Как будет меняться TPR в зависимости от TPR при смене порога?

Доля правильно отранжированных пар: ypred_i > ypred_j если ytrue_i > ytrue_j

Или площадь под кривой: Receiver operating characteristic example 1.0 0.8 True Positive Rate .0 9.0 Идеальный алгоритм 0.6 Бесполезный алгоритм 0.2 ROC curve (AUC = 0.79) 0.0 0.2 0.4 8.0 0.6 1.0 False Positive Rate

```
Доля правильно отранжированных пар:
ypred_i > ypred_j IF ytrue_i > ytrue_j

To же самое:
ypred_i > ypred_j IF ytrue_i == 1 and ytrue_j == 0
```

То же самое (с точностью до линейного преобразования): Средняя по всем порогам доля хороших среди одобренных

Пример: построить ROC-кривую для предсказаний двух алгоритмов

Пример: построить ROC-кривую для предсказаний двух алгоритмов

Logloss

$$ext{LogLoss} = -rac{1}{n}\sum_{i=1}^n \left[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)
ight]$$

Прогноз - действительное число от 0 до 1

Лучшее константное предсказание - среднее, то есть частота класса 1

Выгодней сделать много незначительно отличающихся от истины предсказаний, чем мало, отличающихся значительно

Это средний логарифм бинарного правдоподобия ☺

По X: abs(ytrue - ypred)

По У: LogLoss

Многоклассовая классификация

- Accuracy, Logloss обобщаются
- Precision, Recall, F1, ROC AUC не обобщаются
 - Можно усреднить по классам
 - Усреднять можно с весами
 - Можно смотреть на confusion matrix глазами
 - Можно наложить свои потери за каждый вид ошибки

Офлайн-метрики обучения без учителя

Кодер-декодер

Можно сравнить любой метрикой для регрессии

Сжатые данные

Восстановленные данные

Сокращение размерности

$$x_i = (x_1, \dots, x_m)_i$$

Латентные компоненты

$$z_i = (z_1, \dots z_k)_i$$

Обратная проекция

$$\tilde{x}_i = (\tilde{x}_1, \dots, \tilde{x}_m)_i$$

Кластеризация

$$x_i = (x_1, \dots, x_m)_i$$

Кластер

$$c_i \in [1, ... k]$$

Центр кластера

$$\tilde{x}_i = (x_{1,c_i}, \dots x_{m,c_i})$$

Измерение плотности распределения

- Кластеризация поиск областей высокой плотности
- Сокращение размерности поиск подпространства высокой плотности
- Поиск аномалий поиск объектов в области низкой плоскости

• Всё зависит от качества оценки плотности!

• Это качество измеряется правдоподобием наблюдений

Итог

• Качество модели часто определяется качеством признаков

• Для регрессии меряем «расстояние» от цели до прогноза

• Для классификации меряем долю верных ответов и качество ранжирования

• Полезно следить за метриками разной природы