Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 7: Teoría de Rentas o Anualidades

Solución de Ejercicio Nº4

e-financebook

- 4. La KURRAZAO ofrece a la venta un TV LED SANSUMG, cuyo precio de venta es de S/. 4,199.00, con el pago de una cuota inicial de 20%, 36 cuotas mensuales a una tasa efectiva mensual (TEM) de 1.99% y una cuota final equivalente al 10% del precio de venta.
 - a) Construya un gráfico con el flujo de pagos mencionado.
 - b) ¿Cuál será el monto de dicha cuota, si se paga al final de cada mes?
 - c) ¿Cuál será el valor de la cuota, si el estilo de pago es adelantado?

Respuestas: b) S/. 123.49, c) S/. 121.08

DATOS		
Nombre	Descripcion	Valor
PV	Precio de venta de TV LED	4,199.00
CI	Porcentaje de cuota inicial	20%
CF	Porcentaje de cuota final	10%
TE	Tasa de Interés Efectiva Mensual (TEM)	1.99%
n	Número total de cuotas	36
f	Frecuencia de pago	mensual

FÓRMULAS		
Número	Fórmula	
49	$R = C * \left(\frac{TEP * (1+TEP)^{n}}{(1+TEP)^{n}-1}\right)$	
55	$Ra = \frac{R}{1 + TEP}$	

$$PV = \%CI*PV + \\ R*\left(\frac{(1+TEP)^{n}-1}{TEP*(1+TEP)^{n}}\right) + \\ Re*\left(\frac{(1+TEPe)^{ne}-1}{TEPe*(1+TEPe)^{ne}}\right) + \\ \frac{PP1}{(1+TEP)^{k1}} + \frac{PP2}{(1+TEP)^{k2}} + \frac{PP3}{(1+TEP)^{k3}} + \\ \frac{\%CF*PV}{(1+TEP)^{n}}$$

SOLUCIÓN

b) Utilizando la fórmula general Nº66 para una forma de pago mixta, con cuotas ordinarias regulares (R), cuota inicial (CI) y cuota final (CF) y tasa efectiva del periodo (TEP) expresada como mensual (TEM):

$$PV = CI + R * \left(\frac{(1 + TEP)^{n} - 1}{TEP * (1 + TEP)^{n}} \right) + \frac{CF}{(1 + TEP)^{n}}$$

$$PV = \%CI * PV + R * \left(\frac{(1 + TEM)^{n} - 1}{TEM * (1 + TEM)^{n}} \right) + \frac{\%CF * PV}{(1 + TEM)^{n}}$$

$$4,199.00 = 20\% * 4,199.00 + R * \left(\frac{(1 + 1.99\%)^{36} - 1}{1.99\% * (1 + 1.99\%)^{36}} \right) + \frac{10\% * 4,199.00}{(1 + 1.99\%)^{36}}$$

$$4,199.00 = 839.80 + 25.52982454 * R + 206.57$$

$$R = \frac{4,199.00 - 839.80 - 206.57}{25.52982454}$$

$$R = 123.49$$

SOLUCIÓN

c) Aplicamos la fórmula que convierte una cuota vencida en anticipada o adelantada:

Ra =
$$\frac{R}{1 + TEP}$$

Ra = $\frac{R}{1 + TEM}$
Ra = $\frac{123.49}{1 + 1.99\%}$
Ra = 121.08