Единая фазовая модель атомных и ядерных структур $(SU(2) \text{ на } S^3)$ Часть І — Теория

Дмитрий Шурбин 13 Сентября, 2025

© 2025 Dmitry Shurbin All rights reserved

Содержание

1	Введение и краткое резюме		
2	Обозначения, единицы и размерностный анализ 2.1 Единицы и конверсии 2.2 Геометрия и переменные 2.3 Поля и нормировки 2.4 Функционал энергии и размерности коэффициентов 2.5 Электростатика на S³: функция Грина и размерности 2.6 Квантовые величины и их размерности 2.7 Формфакторы и радиусы (определения с размерностями) 2.8 Солитонный масштаб	44 44 55 55 56 66 66	
3	Геометрия: $S^3 \subset \mathbb{R}^4$ и стереографическая проекция 3.1 Координаты на S^3 , метрика и оператор Лапласа—Бельтрами	6 6 7	
4	$SU(2)$ -фазовое поле и функционал энергии 4.1 Поле $\Phi(x) \in SU(2)$ и энергетический функционал	8 8 8	
5	Функция Грина на S^3 и эффективный кулоновский потенциал 5.1 Фундаментальное решение уравнения Пуассона на S^3 5.2 Проекция в \mathbb{R}^3 и локальный предел	8 8 9 9	
6	Одночастичная квантовая динамика на S^3 6.1 Уравнение Шрёдингера на S^3	9 9 10	
7	Нуклоны как солитоны $\pi_3(S^3)$: протон и нейтрон 7.1 Анзац «hedgehog» и барионное число	10 10 10 11 11	
8	Конечный размер протона и мюонный водород 8.1 Связь $\langle r_p^2 angle$ и лэмбовского сдвига		
9	Ядро на S^3 : оболочки, спин-орбита и устойчивость 9.1 Среднее поле ⇒ осциллятор на S^3 и пред-магические числа	12 12 12 12 13	

10	Атомная и молекулярная связь в одной S^3	13
	10.1 Принцип: общая фаза \Rightarrow ков. связь	13
	10.2 Водородная молекула H_2 : вариационная схема Хайтлера–Лондона	13
	10.3 Корреляции и условия Kato-cusp	13
11	Предсказания и экспериментальные тесты	14
	11.1 Поправки компактности S^3 и нижняя граница на R	14
	11.2 Конечный размер протона и Земах-радиус	14
	11.3 Ядерные тесты: магические числа и долина стабильности	14
12	Численные методы и воспроизводимость	14
	12.1 Базисы на S^3 и вариационные схемы	14
	12.2 Проверки размерностей и константы	15
	12.3 Тесты: водород и μp	15
13	Технический аппарат	15
14	Калибровка параметров модели и связь с наблюдаемыми	16
	14.1 Масштаб солитона а из вариационного принципа	16
	14.2 Набор реперов для калибровки	16
	14.3 Магнитный масштаб и Земах-радиус	16
15	Происхождение сильной LS -связи: из фазовой кривизны и редукции	1
	Паули	17
16	Бета-распад как фазовое перестроение	17
17	Ограничения, границы применимости и открытые вопросы	17
18	Сопоставление со стандартной теорией	18
19	Фальсифицируемые тесты и предсказания	18
	19.1 Поправка компактности S^3 к линиям атомов	18
	19.2 Изотопные сдвиги и King-плоты	19
	19.3 Единый солитонный масштаб a в трёх наборах данных	19
	19.4 Предсказание «дипольной массы» из r_p	19
	19.5 Магнитный масштаб и гипертонкая структура	19
	19.6 Масштаб спин-орбиты как функция геометрии ядра	19
	19.7 Граница снизу на R из мюонных систем	20
20	Выволы	20

1 Введение и краткое резюме

Идея. Атом (ядро+электроны) описывается как $e\partial u$ ная фазовая конфигурация на компактном многообразии $S^3 \subset \mathbb{R}^4$ с полем $\Phi(x) \in SU(2)$. Глобальная геометрия даёт правильную локальную электростатику (кулоновский закон), дискретный спектр и оболочечную структуру, а также естественно вводит спин, принцип Паули и механизм ядерной устойчивости.

Ключевые следствия.

- Эффективный кулон. Функция Грина на S^3 даёт потенциал $V(\chi) = \frac{Z\alpha}{R}\cot\chi$, который при стереографической проекции $r = 2R\tan(\chi/2)$ даёт локально $V(r) \simeq \frac{Z\alpha}{r} \frac{Z\alpha}{4}\frac{r}{R^2} + \dots$
- Kвантовая динамика. Уравнение Шрёдингера на S^3 с V(r) воспроизводит водородоподобные уровни; серия Бальмера и константа Ридберга выходят геометрически.
- Нуклоны как солитоны. Протон/нейтрон локализованные солитоны класса $\pi_3(S^3) = \mathbb{Z}$ (анзац «hedgehog»). Заряд протона проекция на электромагнитную фазу; нейтрон альтернативная ориентация с нулевой суммарной зарядовой проекцией.
- Конечный размер протона. Один солитонный масштаб a задаёт $\langle r_p^2 \rangle = 12a^2$, наклон $G_E'(0) = -\langle r_p^2 \rangle/6$, вклад $\Delta E_{\rm fs}$ в μp и земаховский радиус r_Z .
- Ядро и устойчивость. Среднее поле на $S^3 \Rightarrow$ осцилляторная оболочечная структура; сильная спин-орбита (фазовая кривизна) даёт реальные магические числа. Нейтроны стабилизируют много-протонные конфигурации, уменьшая фазовое напряжение.

Математический язык. Для компактности используется геометрическая (Клиффордова) алгебра Cl(4,0): роторы (Spin(4)), бивекторы (поле F), согласование с SU(2). Все размерности тщательно фиксированы в разд. 2.

2 Обозначения, единицы и размерностный анализ

2.1 Единицы и конверсии

Во всех выводах используем натуральные единицы $\hbar=c=1$ (Heaviside–Lorentz), где

$$[длина] = [время] = [энергия]^{-1}.$$

Для численных оценок переводим в ядерные/SI:

$$\hbar c = 197.3269804 \text{ MeV} \cdot \text{fm}, \qquad 1 \text{ fm}^{-1} = 197.3269804 \text{ MeV}.$$

Элементарный заряд в этих единицах: $\alpha \equiv e^2/(4\pi) \approx 1/137.035999$ (безразмерная).

2.2 Геометрия и переменные

• S^3 радиуса R вложена в \mathbb{R}^4 . Геодезический угол $\chi \in [0,\pi]$ связан со стереографическим радиусом r:

$$r = 2R \tan \frac{\chi}{2}, \qquad \chi = 2 \arctan \frac{r}{2R}.$$

- Метрика S^3 : $ds^2 = R^2 (d\chi^2 + \sin^2 \chi \, d\Omega_2^2)$. Лаплас-Бельтрами Δ_{S^3} имеет собственные значения $\ell(\ell+2)/R^2$.
- Потенциал $V(\chi)$ имеет размер энергии; при $r \ll R \ V(r) \simeq Z\alpha/r.$

2.3 Поля и нормировки

- Фазовое поле: $\Phi(x) \in SU(2), \Phi^{\dagger}\Phi = 1$. В натуральных единицах Φ безразмерно.
- Нотация следа: $\operatorname{Tr}(\sigma_a \sigma_b) = 2\delta_{ab}$.
- Калибровка (электромагнетизм): 4-потенциал A_{μ} имеет размер энергии, $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$ имеет размер [энергия]².
- Ток Нётера J^{μ} (зарядовый) имеет размер плотности: $[J^0] = [$ длина $]^{-3}$ (заряд безразмерен).

2.4 Функционал энергии и размерности коэффициентов

Используем *сигма-модель* с скайрмовским стабилизатором:

$$\mathcal{L} = \frac{\kappa}{2} \operatorname{Tr}(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi) + \lambda \operatorname{Tr} \Big([\Phi^{\dagger} \partial_{\mu} \Phi, \ \Phi^{\dagger} \partial_{\nu} \Phi]^{2} \Big),$$

где ∂ имеет размер [энергия]. Требование $[S] = [\int d^4x \mathcal{L}]$ безразмерно $\Rightarrow [\mathcal{L}] = [$ энергия] 4 . Отсюда:

$$[\kappa] = [$$
энергия $]^2, \qquad [\lambda] = [$ энергия $]^0$ (безразмерна).

Статическая энергия $E = \int d^3x \, \mathcal{H}$ имеет размер [энергия], как и должно быть.

2.5 Электростатика на S^3 : функция Грина и размерности

Скалярный потенциал V решает (с нормировкой на компактном многообразии)

$$\Delta_{S^3} V(\chi) = -Z\alpha \,\delta_{S^3}(\chi) + \frac{Z\alpha}{\operatorname{Vol}(S^3)}, \quad \operatorname{Vol}(S^3) = 2\pi^2 R^3.$$

Решение (с произвольной константой сдвига):

$$V(\chi) = \frac{Z\alpha}{R} \cot \chi + \mathrm{const}, \qquad [V] = [$$
энергия],

так как 1/R имеет размер энергии. Через стереографию при $r \ll R$:

$$\cot \chi = \frac{R}{r} - \frac{r}{4R} + \mathcal{O}\left(\frac{r^3}{R^3}\right), \quad \Rightarrow \quad V(r) = \frac{Z\alpha}{r} - \frac{Z\alpha}{4}\frac{r}{R^2} + \dots$$

Каждый член имеет размер [энергия] (так как $1/r \sim$ [энергия], $r/R^2 \sim$ [энергия]).

2.6 Квантовые величины и их размерности

- ullet Приведённая масса: $m_r=rac{m_e M}{m_e+M},\ [m_r]=[$ энергия].
- Боровский радиус: $a_0 = \frac{1}{Z\alpha m_r}$ ([длина]); в SI $a_0 = \frac{\hbar}{Z\alpha m_r c}$.
- nS-плотность в нуле: $|\psi_{nS}(0)|^2 = \frac{(Z\alpha m_r)^3}{\pi n^3}$ ([длина]⁻³).
- Вклад конечного размера (лэмбовский сдвиг):

$$\Delta E_{\rm fs}(nS) = \frac{2}{3} (Z\alpha)^4 \frac{m_r^3}{n^3} \langle r_p^2 \rangle,$$

где $\langle r_p^2 \rangle$ в [длина]²; вся правая часть [энергия].

2.7 Формфакторы и радиусы (определения с размерностями)

• Зарядовый форм-фактор (нормировка $G_E(0)=1$):

$$G_E(Q^2) = rac{1}{e} \int d^3 r \, e^{i \mathbf{q} \cdot \mathbf{r}} \,
ho_E(r), \qquad Q^2 = \mathbf{q}^2, \quad [Q^2] = [$$
длина $]^{-2}.$

- Радиус: $\langle r_p^2 \rangle = -6 \, \frac{dG_E}{dQ^2} \big|_{Q^2=0} \, ([$ длина $]^2).$
- Земах-радиус:

$$r_Z = -rac{4}{\pi} \int_0^\infty rac{dQ}{Q^2} \left(G_E(Q^2) rac{G_M(Q^2)}{\mu_n} - 1
ight), \qquad [r_Z] = [$$
длина].

2.8 Солитонный масштаб

В минимальной (дипольной) аппроксимации солитона $\rho_E(r) \propto e^{-r/a}$ (эквивалентно $G_E = (1+Q^2a^2)^{-2})$:

$$\langle r_p^2 \rangle = 12 \, a^2, \qquad [a] = [$$
длина].

Один и тот же a будет использоваться далее для сшивки атомных и рассеятельных наблюдаемых.

3 Геометрия: $S^3 \subset \mathbb{R}^4$ и стереографическая проекция

${f 3.1}$ – Координаты на $S^3,$ метрика и оператор Лапласа–Бельтрами

Рассмотрим S^3 радиуса R как множество точек $X=(X^1,X^2,X^3,X^4)\in\mathbb{R}^4$ с $X\cdot X=R^2$. В гиперсферических координатах (χ,θ,φ) :

$$X^{4} = R\cos\chi, \qquad (X^{1}, X^{2}, X^{3}) = R\sin\chi\,\hat{\mathbf{n}}(\theta, \varphi),$$

$$\hat{\mathbf{n}} \cdot \hat{\mathbf{n}} = 1, \quad \chi \in [0, \pi], \ \theta \in [0, \pi], \ \varphi \in [0, 2\pi).$$

6

Индуцированная метрика:

$$ds^{2} = R^{2} \left(d\chi^{2} + \sin^{2}\chi \left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2} \right) \right) = R^{2} \left(d\chi^{2} + \sin^{2}\chi \, d\Omega_{2}^{2} \right).$$

Объём и элемент объёма:

$$Vol(S^3) = 2\pi^2 R^3, \qquad dV = R^3 \sin^2 \chi \sin \theta \, d\chi \, d\theta \, d\varphi.$$

Оператор Лапласа-Бельтрами:

$$\Delta_{S^3} = \frac{1}{R^2} \left[\frac{1}{\sin^2 \chi} \, \partial_\chi \left(\sin^2 \chi \, \partial_\chi \right) + \frac{1}{\sin^2 \chi} \, \Delta_{S^2} \right],$$

с собственными значениями $-\ell(\ell+2)/R^2, \ell=0,1,2,\dots$ (размерность $[\Delta]=[$ длина $]^{-2}).$

3.2 Стереографическая проекция: связь $\chi \leftrightarrow r,$ якобиан, область применимости

Стереографическая проекция с «южного полюса» $(\chi = \pi)$ в \mathbb{R}^3 :

$$r = 2R \tan \frac{\chi}{2}, \qquad \chi = 2 \arctan \frac{r}{2R}, \qquad r \in [0, \infty).$$

Якобиан проекции для скалярной интеграции:

$$dV = \left(\frac{2R}{R^2 + r^2/4}\right)^3 d^3r = \frac{8R^3}{\left(R^2 + r^2/4\right)^3} d^3r.$$

Малые расстояния $r \ll R$ соответствуют малым углам $\chi \ll 1$:

$$\cot \chi = \frac{R}{r} - \frac{r}{4R} + \mathcal{O}\left(\frac{r^3}{R^3}\right).$$

Все формулы согласованы по размерности: [R] = [длина], [r] = [длина], dV имеет размер $[длина]^3$.

3.3 Клиффордова алгебра Cl(4,0) и связь с SU(2)

Алгебра Cl(4,0) порождена ортонормированным базисом $\{e_{\mu}\}_{\mu=1}^4$ с $e_{\mu}e_{\nu}+e_{\nu}e_{\mu}=2\delta_{\mu\nu}$. Пространство роторов $Spin(4)\subset Cl_{4,0}^+$ изоморфно $SU(2)_L\times SU(2)_R$:

$$Spin(4) \cong SU(2)_L \times SU(2)_R, \qquad S^3 \cong SU(2).$$

Векторы имеют размер [длина] 0 (в чисто алгебраической записи), а производные ∇ — [длина] $^{-1}$. Бивекторы (плоскости вращения) формируют поле F электродинамики при проекции:

$$F = \nabla \wedge A \in Cl_{4,0}^2$$
, $[A] = [$ энергия $], [F] = [$ энергия $]^2$.

Это позволяет компактно записывать вращения (роторы), кручение и поля в единой геометрической нотации, согласованной с SU(2)-фазой.

4 SU(2)-фазовое поле и функционал энергии

4.1 Поле $\Phi(x) \in SU(2)$ и энергетический функционал

Берём $\Phi: S^3 \to SU(2), \Phi^{\dagger}\Phi = \mathbf{1}$. Лагранжиан (натуральные единицы $\hbar = c = 1$):

$$\mathcal{L} = \frac{\kappa}{2} \operatorname{Tr} \left(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \right) + \lambda \operatorname{Tr} \left(\left[\Phi^{\dagger} \partial_{\mu} \Phi, \ \Phi^{\dagger} \partial_{\nu} \Phi \right]^{2} \right),$$

где $[\kappa]=[$ энергия $]^2,\,[\lambda]=1.$ Для статических конфигураций $(\partial_0\Phi=0)$ энергия

$$E[\Phi] = \int_{S^3} dV \left(\frac{\kappa}{2} \operatorname{Tr} \left(\partial_i \Phi^{\dagger} \, \partial_i \Phi \right) + \lambda \operatorname{Tr} \left([\Phi^{\dagger} \partial_i \Phi, \, \Phi^{\dagger} \partial_j \Phi]^2 \right) \right),$$

имеет размер [энергия] (так как $[dV] = [длина]^3$, $[\partial_i] = [длина]^{-1}$).

4.2 Калибровочная связь с электромагнетизмом и токи Hëтера

Пусть Φ минимально взаимодействует с U(1)-полевым потенциалом A_{μ} через фазовую проекцию (эмбеддинг $U(1)\subset SU(2)$). Варируя действие по A_{μ} , получаем ток J^{μ} :

$$\partial_{\mu}F^{\mu\nu} = J^{\nu}, \qquad J^{\nu} = rac{\delta \mathcal{L}}{\delta A_{
u}}, \qquad [F^{\mu
u}] = [\mathrm{энергия}]^2, \ [J^{
u}] = [\mathrm{длина}]^{-3}.$$

Нормировка выбирается так, чтобы $\int d^3x J^0 = Ze$ для протона (заряд безразмерен в HL-единицах, а e входит в $\alpha = e^2/(4\pi)$).

4.3 Размерностные проверки

Каждый член $E[\Phi]$ масштабно согласован: градиент даёт [длина] $^{-1}$, след — безразмерен, интеграл по dV возвращает [энергия]. Калибровочная связь с A_μ не нарушает размерностей: $[A_\mu] = [$ энергия], минимальная связь $\partial_\mu \to D_\mu = \partial_\mu - iqA_\mu$ несёт правильные единицы.

5 Функция Грина на S^3 и эффективный кулоновский потенциал

5.1 Фундаментальное решение уравнения Пуассона на S^3

Для скалярного потенциала V на компактном S^3 с источником (и фоном, обеспечивающим интегральную нейтральность):

$$\Delta_{S^3}V(\chi) = -Z\alpha\,\delta_{S^3}(\chi) + \frac{Z\alpha}{\operatorname{Vol}(S^3)}.$$

Решение с правильной сингулярностью при $\chi \to 0$:

$$V(\chi) = \frac{Z\alpha}{R} \cot \chi + \mathrm{const}, \qquad [V] = [$$
энергия].

При $\chi \to 0$ имеем $V \sim \frac{Z\alpha}{R} \frac{1}{\chi}$, что согласуется с 1/r после стереографии.

5.2 Проекция в \mathbb{R}^3 и локальный предел

Через $r = 2R \tan(\chi/2)$:

$$\cot \chi = \frac{1 - \tan^2(\chi/2)}{2\tan(\chi/2)} = \frac{R}{r} - \frac{r}{4R},$$

и потому

$$V(r) = \frac{Z\alpha}{r} - \frac{Z\alpha}{4} \frac{r}{R^2} + \mathcal{O}\left(\frac{r^3}{R^4}\right).$$

Первый член — точный кулоновский потенциал в HL-единицах; второй — универсальная поправка компактности S^3 . Размерности: [1/r] = [энергия $], [r/R^2] = [$ энергия].

5.3 Оценка применимости и малости поправок

Для атомных масштабов $r \sim a_0 = (Z\alpha m_r)^{-1}$ требуем $a_0 \ll R$, т.е.

$$(Z\alpha m_r)^{-1} \ll R \implies \frac{\delta V}{V} \sim \frac{(r/R)^2}{4} \ll 1.$$

Поскольку R — глобальный радиус фазовой сферы (космологического масштаба), поправки $\propto r/R^2$ микроскопически малы в атомных задачах и контролируемо отбрасываются.

6 Одночастичная квантовая динамика на S^3

6.1 Уравнение Шрёдингера на S^3

Для редуцированной массы m_r и скалярного потенциала $V(\chi)$ динамика на S^3 задаётся

$$-\frac{\hbar^2}{2m_{\pi}} \, \Delta_{S^3} \psi(\chi, \theta, \varphi) + V(\chi) \, \psi(\chi, \theta, \varphi) = E \, \psi(\chi, \theta, \varphi),$$

где Δ_{S^3} — оператор Лапласа—Бельтрами с размерностью $[\Delta_{S^3}]=[$ длина $]^{-2}$. В натуральных единицах $\hbar=c=1$:

$$-rac{1}{2m_r}\Delta_{S^3}\psi + V\,\psi = E\,\psi, \qquad [m_r] = [$$
энергия $], \ [V] = [E] = [$ энергия $].$

Сферические гармоники на S^3 являются собственными функциями Δ_{S^3} с собственными значениями $-\ell(\ell+2)/R^2, \ \ell=0,1,2,\dots$

6.2 Локальный предел $r \ll R$: водородоподобный спектр

Используя $r=2R\tan(\chi/2)$ и разложение $V(\chi)=\frac{Z\alpha}{R}\cot\chi=\frac{Z\alpha}{r}-\frac{Z\alpha}{4}\frac{r}{R^2}+\dots$, получаем в локальном приближении movino кулоновский потенциал:

$$V(r)\simeq rac{Zlpha}{r}, \qquad [1/r]=[$$
энергия $],$

и уравнение Шрёдингера на малых r сводится к стандартному водородоподобному, откуда

$$E_n = -\frac{Z^2 \alpha^2 m_r}{2 n^2} \quad (n = 1, 2, ...), \qquad a_0 = \frac{1}{Z \alpha m_r}.$$

Все величины имеют корректные размерности: $[E_n] = [$ энергия $], [a_0] = [$ длина]. Поправка компактности S^3 к энергиям подавлена фактором $(a_0/R)^2$:

$$\frac{\delta E_n}{E_n} \sim \mathcal{O}((a_0/R)^2) \ll 1$$
 при $a_0 \ll R$.

6.3 Нейтральность, ионы и равенство модулей зарядов

Уравнение Пуассона на компактном S^3 требует интегральной нейтральности источников:

$$\int_{S^3} \Delta_{S^3} V \, dV = 0 \Rightarrow \sum (\text{заряды}) = 0.$$

Отсюда в атоме число электронных вихрей должно компенсировать Z протонных источников (нейтральность). Удаление/добавление электронного вихря даёт ионы. Равенство модулей $|e_p| = |e_e|$ следует из того, что оба являются минимальными SU(2)-дефектами (одного топологического индекса); знак определяется ориентацией вихря.

7 Нуклоны как солитоны $\pi_3(S^3)$: протон и нейтрон

7.1 Анзац «hedgehog» и барионное число

Пусть $\Phi: S^3 \to SU(2)$ с анзацем

$$\Phi(\mathbf{r}) = \cos f(r) + i \,\hat{\mathbf{r}} \cdot \boldsymbol{\sigma} \, \sin f(r), \qquad f(0) = \pi, \quad f(\infty) = 0,$$

где r — стереографический радиус, [f] = 1 (безразмерно), $\hat{\mathbf{r}}$ — единичный вектор. Топологическое (барионное) число

$$B = -\frac{1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \, \text{Tr}(L_i L_j L_k), \qquad L_i = \Phi^{\dagger} \partial_i \Phi,$$

безразмерно и принимает целые значения; конфигурация B=1 интерпретируется как нуклон.

7.2 Электромагнитная проекция и зарядовая плотность протона

Электромагнитный U(1)-ток получается как Нётеров ток при локальной фазовой трансформации в выбранной $U(1) \subset SU(2)$. Для статических полей $J^0(\mathbf{r}) \equiv \rho_E(\mathbf{r})$ имеет размер $[\rho_E] = [длина]^{-3}$ и нормируется

$$\int d^3r \, \rho_E(\mathbf{r}) = e.$$

Величины, чувствительные к распределению, задаются формфакторами

$$G_E(Q^2) = \frac{1}{e} \int d^3r \, e^{i\mathbf{q}\cdot\mathbf{r}} \, \rho_E(r), \qquad \langle r_p^2 \rangle = -6 \, \frac{dG_E}{dQ^2} \Big|_{Q^2=0}.$$

В минимальной одношкальной (солитонной) аппроксимации удобно использовать эквивалентную при малых Q^2 форму

$$G_E(Q^2) = \frac{1}{\left(1 + Q^2 a^2\right)^2}, \qquad \langle r_p^2 \rangle = 12 \, a^2, \quad [a] = [$$
длина $],$

которая согласуется по наклону с геджхог-профилями.

7.3 Нейтрон как альтернативная ориентация

Нейтрон соответствует той же топологической конфигурации B=1, но с такой ориентацией внутренней SU(2)-фазы, что интегральная электромагнитная проекция компенсируется:

$$\int d^3r \, \rho_E^{(n)}(\mathbf{r}) = 0,$$

при этом сохраняются магнитные и спиновые свойства (магнитный момент, спин 1/2) как следствия распределения токов и коллективного вращения солитона.

7.4 Проверка размерностей

Ток J^{μ} имеет размер [длина]⁻³ (временная компонента — плотность заряда), G_E — безразмерен, Q^2 — [длина]⁻², отсюда $\langle r^2 \rangle$ — [длина]². Солитонный масштаб a — длина, энергия солитона $E[\Phi]$ — [энергия], как и требуется.

8 Конечный размер протона и мюонный водород

8.1 Связь $\langle r_p^2 \rangle$ и лэмбовского сдвига

Для nS-состояний вклад конечного размера ядра равен

$$\Delta E_{\rm fs}(nS) = \frac{2}{3} (Z\alpha)^4 \frac{m_r^3}{n^3} \langle r_p^2 \rangle,$$

в натуральных единицах ($\hbar = c = 1$). Здесь $[m_r] = [$ энергия], $[\langle r_p^2 \rangle] = [$ длина $]^2$, так что правая часть имеет размерность энергии. Для перевода в meV удобно использовать $\hbar c = 197.3269804 \; {\rm MeV} \cdot {\rm fm} \;$ и 1 fm $^{-1} = 197.3269804 \; {\rm MeV} :$

$$\Delta E \left[\mathrm{MeV} \right] = \frac{2}{3} (Z\alpha)^4 \frac{\left(m_r \left[\mathrm{fm}^{-1} \right] \right)^3}{n^3} \left\langle r_p^2 \right\rangle \left[\mathrm{fm}^2 \right] \times (\hbar c) \left[\mathrm{MeV} \cdot \mathrm{fm} \right].$$

8.2 Земаховский радиус и двухфотонный вклад

Земах-радиус

$$r_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left(G_E(Q^2) \frac{G_M(Q^2)}{\mu_p} - 1 \right),$$

имеет размер длины; при дипольной аппроксимации $G_{E,M}=(1+Q^2a_{E,M}^2)^{-2}$ зависит от солитонных масштабов a_E,a_M . Двухфотонные поправки к гипертонкой структуре выражаются через r_Z без введения новых размерных параметров, если $G_{E,M}$ заданы.

9 Ядро на S^3 : оболочки, спин-орбита и устойчивость

9.1 Среднее поле \Rightarrow осциллятор на S^3 и пред-магические числа

Вблизи минимума фазового функционала (4) эффективный однонуклонный потенциал в среднем поле аппроксимируется локально квадратичным (осцилляторным) на S^3 :

$$H_0 \simeq -rac{1}{2m_N}\Delta_{S^3} \,+\, rac{1}{2}m_N\omega^2\,
ho^2 \quad (
ho \ll R), \qquad [\omega] = [$$
энергия $]$,

где ρ — локальная радиальная координата. Как и в трёхмерном осцилляторе, уровни группируются по мажорному квантовому числу $N=0,1,2,\ldots$ с суммарной вместимостью по одной нуклонной компоненте (только p или только n)

$$g_N = (N+1)(N+2),$$

дающей накопленные числа 2, 8, 20, 40, 70,... при учёте спина 1/2. Это и есть nped-магические числа без учёта LS-связи.

9.2 Сильная спин-орбитальная связь от фазовой кривизны

Фазовая кривизна и кручение SU(2)-поля на S^3 индуцируют эффективную LS-связь

$$H_{LS} = \lambda_{LS} \mathbf{L} \cdot \mathbf{S} = \frac{\lambda_{LS}}{2} \left(j(j+1) - l(l+1) - \frac{3}{4} \right), \qquad [\lambda_{LS}] = [$$
энергия],

с отрицательным $\lambda_{LS} < 0$ (уровни j = l + 1/2 опускаются). Масштабно $\lambda_{LS} \sim \eta \, \kappa / (m_N R_{\rm nuc}^2)$, где $R_{\rm nuc}$ — эффективный ядерный радиус (размерность [энергия] восстанавливается за счёт m_N^{-1}), η — безразмерный коэффициент геометрии/куплинга. Эта перестановка уровней приводит к реальным магическим числам:

что согласуется с экспериментом. Размерности согласованы: H_{LS} — энергия.

9.3 Нейтроны как фазовые стабилизаторы и энергия Вейцзеккера

Чисто протонная конфигурация на S^3 несёт избыточную фазовую напряжённость и кулоновское отталкивание. Введение нейтронов (тот же солитон B=1, но с нулевой интегральной зарядовой проекцией) экранирует часть градиентов, снижая энергию. На макроскопическом уровне это даёт полуклассическую (Вейцзеккера) форму энергии связи:

$$E(A,Z) = -\underbrace{a_v A}_{\text{объём}} + \underbrace{a_s A^{2/3}}_{\text{поверхность}} + \underbrace{a_c \frac{Z(Z-1)}{A^{1/3}}}_{\text{Кулон}} + \underbrace{a_a \frac{(A-2Z)^2}{A}}_{\text{асимметрия}} \pm \underbrace{a_p A^{-1/2}}_{\text{спаривание}},$$

где все a_i имеют размер [энергия]. Здесь $a_v \sim$ объёмная выгода от когерентной фазы (из κ), a_s — цена фазовой фрустрации на «поверхности», a_c исходит из кулона $V \sim 1/r$, a_a — цена несоответствия p/n-ориентаций (нейтронный стабилизатор), a_p — топологическое спаривание $(p \leftrightarrow n)$.

9.4 Критерии устойчивости и долина стабильности

Связанность ядра:

$$B(A,Z) \equiv -E(A,Z) > 0$$

Локальная устойчивость к испарению:

$$S_n(A,Z) = B(A,Z) - B(A-1,Z) > 0, \quad S_p(A,Z) = B(A,Z) - B(A-1,Z-1) > 0$$

Долина β -стабильности при фиксированном A из $\partial E/\partial Z=0$:

$$\frac{\partial E}{\partial Z} = a_c \frac{2Z - 1}{A^{1/3}} - 4a_a \frac{A - 2Z}{A} \approx 0 \Rightarrow Z^*(A) \simeq \frac{A}{2 + \frac{a_c}{a_a} A^{2/3}}$$

(размерности корректны: Z^* безразмерна). Это даёт $N \approx Z$ для малых A и N > Z для тяжёлых ядер, отражая роль нейтронов в стабилизации.

10 Атомная и молекулярная связь в одной S^3

10.1 Принцип: общая фаза \Rightarrow ков. связь

Два протонных солитона (Z=1+1) и два электронных вихря на общей S^3 минимизируют фазовую энергию за счёт делокализации электронных мод между ядрами (уменьшение $\int |\nabla \theta|^2$). Локально это даёт стандартную ковалентную связь через эффективный кулон $V \sim 1/r$.

10.2 Водородная молекула H₂: вариационная схема Хайтлера–Лондона

В атомных единицах (а.u.: $\hbar=m_e=e=4\pi\epsilon_0=1$) пробная волновая функция (синглет)

$$\Psi_{\rm HL} = \mathcal{N} \left[\phi_A(1)\phi_B(2) + \phi_B(1)\phi_A(2) \right] \chi_{\rm singlet}, \quad \phi_{A/B}(\mathbf{r}) = \frac{1}{\sqrt{\pi}} e^{-r_{A/B}},$$

даёт энергию

$$E(R) = \frac{2H_{AA} + 2H_{AB} + J(R) + K(R)}{1 + S(R)^2} + \frac{1}{R},$$

где R в a_0 , S, H_{AB} , J, K — стандартные перекрытия/интегралы кулоновского типа (размерность энергии). В этой геометрии их происхождение естественно из $V(\chi)$ и стереографии; численно получаются правильные масштабы R_e и D_e уже на базовом уровне. Все члены имеют размер [энергия].

10.3 Корреляции и условия Kato-cusp

Электрон-электронная корреляция вводится множителем $f(r_{12})=1+\lambda r_{12}$ (безразмерный), что улучшает асимптотику при $r_{12}\to 0$ (условия Kato). На S^3 это естественно формулируется через гиперсферические координаты; размерности сохраняются $(r_{12}-$ длина).

11 Предсказания и экспериментальные тесты

11.1 Поправки компактности S^3 и нижняя граница на R

Из §5: $V(r)=\frac{Z\alpha}{r}-\frac{Z\alpha}{4}\frac{r}{R^2}+\dots$ В первом порядке относительная поправка к водородоподобным уровням масштабно

$$\frac{\delta E_n}{E_n} \sim \mathcal{O}\left(\frac{a_0^2}{R^2}\right).$$

Если точность спектроскопии задаёт предел $|\delta E_n/E_n| \le \varepsilon$, получаем нижнюю оценку на радиус фазовой сферы:

$$R \gtrsim \frac{a_0}{\sqrt{\varepsilon}}, \qquad a_0 = \frac{1}{Z\alpha m_r}$$

(размерность длины). Для мюонных систем a_0 существенно меньше, значит они сильнее ограничивают R.

11.2 Конечный размер протона и Земах-радиус

Один солитонный масштаб а предсказывает

$$\langle r_p^2 \rangle = 12a^2, \quad G_E'(0) = -\frac{\langle r_p^2 \rangle}{6}, \quad \Delta E_{\rm fs}(nS) = \frac{2}{3}(Z\alpha)^4 \frac{m_r^3}{n^3} \langle r_p^2 \rangle,$$

и при дипольных $G_{E,M}$ даёт земах-радиус

$$r_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left(\frac{1}{(1 + Q^2 a_E^2)^2} \cdot \frac{1}{(1 + Q^2 a_M^2)^2} - 1 \right),$$

что обеспечивает безновых-параметров связь $\{\langle r_p^2 \rangle, G_E'(0), \Delta E_{\rm fs}, r_Z \}$.

11.3 Ядерные тесты: магические числа и долина стабильности

Сильная LS-связь от фазовой кривизны на S^3 воссоздаёт магические числа 2,8,20,28,50,82,126. Макроэнергия $\S 9$ с критериями $B>0,\ S_{n,p}>0$ и $Z^*(A)$ описывает долину стабильности ($N\approx Z$ для малых A и N>Z для тяжёлых). Все коэффициенты a_i имеют размер энергии и могут быть выражены через параметры поля (κ,λ) и ядерный масштаб R_{nuc} .

12 Численные методы и воспроизводимость

12.1 Базисы на S^3 и вариационные схемы

Используем гиперсферические гармоники $Y_{\ell m}(\chi, \theta, \varphi)$ как ортонормированный базис для разложений одночастичных и двухчастичных задач. Процедура Rayleigh–Ritz:

$$\psi(\mathbf{x}) = \sum_{k=1}^{M} c_k \, \varphi_k(\mathbf{x}), \quad \mathbf{Hc} = E \, \mathbf{Sc},$$

где матрицы \mathbf{H}, \mathbf{S} имеют размерность энергии и безразмерную нормировку, соответственно. Конвергенция проверяется по $M \to \infty$.

12.2 Проверки размерностей и константы

Все интегральные элементы (кинетические/потенциальные) проверяются на размерность энергии. Для численной работы фиксируются константы: α , $\hbar c$ в MeV · fm, массы (m_e, m_μ, m_p) , перевод единиц (1 fm⁻¹ = 197.3269804 MeV). Для атомных задач удобно использовать а.u., переводя обратно на финальной стадии.

12.3 Тесты: водород и μp

Контрольные расчёты:

- Водородоподобные уровни: $E_n = -Z^2 \alpha^2 m_r/(2n^2)$ и волновые функции (локально).
- Вклад конечного размера в μp : формула для $\Delta E_{\rm fs}(2S)$ должна воспроизводить значение при заданном $\langle r_p^2 \rangle$.
- Земах-радиус r_Z при дипольных $G_{E,M}$ как независимая проверка без новых параметров.

13 Технический аппарат

Вывод функции Грина на S^3 и проверка размерностей: На компактном S^3 фундаментальное решение Пуассона требует добавки фонового члена $+Q/{\rm Vol}(S^3)$ для интегральной нейтральности. Разложение по гармоникам $-\Delta_{S^3}Y_{\ell m} = \ell(\ell+2)Y_{\ell m}/R^2$ даёт

$$V(\chi) = \sum_{\ell=1}^{\infty} \frac{Q}{\ell(\ell+2)} \, \mathcal{P}_{\ell}(\cos \chi) \, \frac{1}{R},$$

что суммируется в $\frac{Q}{R} \cot \chi$ (с константой). Размерность 1/R — энергия.

Формулы стереографической проекции и их разложения:

$$r = 2R \tan \frac{\chi}{2}$$
, $\cot \chi = \frac{R}{r} - \frac{r}{4R} + \mathcal{O}\left(\frac{r^3}{R^3}\right)$, $dV = \frac{8R^3}{(R^2 + r^2/4)^3} d^3r$.

Мини-справочник по Cl(4,0) и связи с SU(2): Базис e_{μ} , бивекторы $e_{\mu} \wedge e_{\nu}$, роторы $R = \exp(-\frac{1}{2}B)$, $\mathrm{Spin}(4) \cong SU(2)_L \times SU(2)_R$, $F = \nabla \wedge A$.

Размерности, единицы и конверсии: подробная таблица: Таблично: $[E] = \text{MeV}, [r] = \text{fm}, [\kappa] = \text{MeV}^2, [\lambda] = 1, [A_{\mu}] = \text{MeV}, [F] = \text{MeV}^2, [J^0] = \text{fm}^{-3},$ и т.д.

Формфакторы, радиусы и земах-интегралы: Определения $G_{E,M}(Q^2)$, радиусы $\langle r^2 \rangle$, r_Z ; при $G_{E,M} = (1 + Q^2 a_{E,M}^2)^{-2}$ интеграл для r_Z сходится быстро (в Q-представлении), размерность — длина.

Вариационные базисы на S^3 и условия на границах: Ортонормировка на S^3 , граничные условия для солитонов $(f(0) = \pi, f(\infty) = 0)$, антисимметризация спиновых состояний, проверка L^2 -норм и размерностей в матричных элементах.

14 Калибровка параметров модели и связь с наблюдаемыми

14.1 Масштаб солитона а из вариационного принципа

Для геджхог-анзаца вводим безразмерные интегралы

$$\mathcal{I}_2[f] = \int d^3 \tilde{x} \operatorname{Tr}(\partial_i \Phi^{\dagger} \partial_i \Phi), \qquad \mathcal{I}_4[f] = \int d^3 \tilde{x} \operatorname{Tr}([\Phi^{\dagger} \partial_i \Phi, \Phi^{\dagger} \partial_j \Phi]^2),$$

где $\tilde{x} = x/a$ безразмерна. Масштабная оценка статической энергии:

$$E(a) = \kappa \, a \, \mathcal{I}_2[f] + \frac{\lambda}{a} \, \mathcal{I}_4[f], \qquad [\kappa] = [$$
энергия $]^2, \ [\lambda] = 1, \ [a] = [$ длина $].$

Минимизация по *а* даёт

$$a_* = \sqrt{\frac{\lambda \mathcal{I}_4}{\kappa \mathcal{I}_2}}, \qquad E_* = 2\sqrt{\kappa \lambda \mathcal{I}_2 \mathcal{I}_4},$$

и, следовательно,

$$\boxed{\langle r_p^2 \rangle \ = \ 12 \, a_*^2 \ = \ 12 \, \frac{\lambda \, \mathcal{I}_4}{\kappa \, \mathcal{I}_2}} \,.$$

Размерности согласованы: правая часть — длина².

14.2 Набор реперов для калибровки

Фиксируем (κ, λ) по двум независимым наблюдаемым, например:

$$E_*\stackrel{!}{=} M_N, \qquad \mu_p$$
 или g_A (магн./осевой куплинги),

после чего без подгонки предсказываются r_p , $G_E'(0)$, $\Delta E_{\rm fs}$ и r_Z . В атомных задачах удобно использовать также $\Delta E_{\rm fs}(2S)$ в μp :

$$\Delta E_{\rm fs}(2S) = \frac{2}{3} \alpha^4 \, m_r^3 \, \langle r_p^2 \rangle = \frac{2}{3} \alpha^4 \, m_r^3 \cdot 12 \, \frac{\lambda \mathcal{I}_4}{\kappa \mathcal{I}_2}.$$

Правая часть имеет размер энергии (см. §2).

14.3 Магнитный масштаб и Земах-радиус

Аналогично вводим магнитный масштаб a_M через нормированный $G_M/\mu_p=(1+Q^2a_M^2)^{-2},$ тогда

$$r_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left(\frac{1}{(1 + Q^2 a_E^2)^2} \cdot \frac{1}{(1 + Q^2 a_M^2)^2} - 1 \right),$$

что при $a_M \approx a_E$ даёт $r_Z \sim 1.04$ fm (при $r_p \approx 0.841$ fm). Размерность r_Z — длина.

15 Происхождение сильной LS-связи: из фазовой кривизны и редукции Паули

Нерелятивистская редукция уравнения для спинора на S^3 с U(1)-потенциалом даёт стандартный вклад

$$H_{LS}^{(\text{\tiny 3M})} \simeq \frac{1}{2m_N^2 r} \frac{dV}{dr} \mathbf{L} \cdot \mathbf{S}, \quad V(r) \approx \frac{Z\alpha}{r},$$

и дополнительный геометрический вклад от кривизны фазового многообразия:

$$H_{LS}^{(\text{geom})} \simeq \xi \frac{\kappa}{m_N} \frac{1}{R_{\text{nuc}}^2} \mathbf{L} \cdot \mathbf{S},$$

где ξ — безразмерная константа, зависящая от профиля, а $R_{\rm nuc}$ — ядерный масштаб. Итоговая $\lambda_{LS} = \langle H_{LS}^{\rm (9M)} + H_{LS}^{\rm (geom)} \rangle$ естественно отрицательна (уровни j=l+1/2 опускаются), что и формирует магические числа. Все члены имеют размер энергии.

16 Бета-распад как фазовое перестроение

Нейтрон рассматривается как ориентационно отличающееся B=1-состояние. Его распад $n \to p + e^- + \bar{\nu}_e$ интерпретируется как туннелирование в более низкоэнергетическую конфигурацию с отделением электронного вихря и излучением лептонной моды. Схематично:

$$\Delta E = E[\Phi_n] - E[\Phi_p] - E_e - E_{\bar{\nu}} > 0,$$

где $E[\Phi_{n,p}]$ — энергии солитонов (размер энергии), $E_e, E_{\bar{\nu}}$ — энергии излучённых мод. Правила отбора (спин/паритет) следуют из симметрий SU(2) и спинорной структуры на S^3 .

17 Ограничения, границы применимости и открытые вопросы

- Локальность кулона. При $r \ll R$ потенциал $V \simeq Z\alpha/r$; поправки $\propto r/R^2$ подавлены как $(a_0/R)^2$.
- Ядерные масштабы. Осцилляторная аппроксимация и эффективная LS-связь валидны для низкоэнергетических мод; высокоэнергетические возбуждения требуют явного учёта нелинейных членов функционала.
- **КХД-аспекты.** Связь с SU(3) и конфайнментом трактуется через внутренние моды солитона; полная калибровка по спектру барионов отдельная задача.
- Молекулы многотельные. Точное аналитическое решение отсутствует (как и в стандартной QM); модель даёт систематические вариационные схемы в базисах на S^3 .

18 Сопоставление со стандартной теорией

В этом разделе сведём «словарь соответствий» между стандартной картиной и геометрической моделью на S^3 с SU(2)-фазой (в нотации Cl(4,0)).

Стандартная теория	Модель на S^3 ($SU(2), Cl(4,0)$)		
Евклидово пространство \mathbb{R}^3	Фазовая арена $S^3 \subset \mathbb{R}^4$, стереография $r \leftrightarrow \chi$		
Кулоновский потенциал $Zlpha/r$	Функция Грина на S^3 : $V(\chi) = \frac{Z\alpha}{R} \cot \chi \implies V(r)$ с		
ЭМ-поле $F_{\mu\nu}$	Бивектор $F = \nabla \wedge A \in Cl^2_{4,0}; \ U(1) \subset SU(2)$ -проек		
Электрон — элементарная частица, спин 1/2	Минимальный $SU(2)$ -вихрь (ротора $Spin(4)$), спи		
Протон/нейтрон (нуклоны)	Солитоны класса $\pi_3(S^3)$ с $B=1$; протон — заряж		
Радиус протона r_p и формфактор G_E	Одна длина солитона $a: G_E(Q^2) \approx (1 + Q^2 a^2)^{-2}$, «		
Земах-радиус r_Z	Интеграл от G_E и G_M/μ_p ; при диполях зависит с		
Уравнение Шрёдингера	$\left -\frac{1}{2m_r}\Delta_{S^3}\psi + V\psi = E\psi,$ локально даёт стандартн		
Принцип Паули, спин-орбита, оболочки	Γ армоники на S^3+ сильная LS -связь фазовой кр		
Семейство Вейцзеккера (SEMF)	Объём/поверхность/Кулон/асимметрия/спарива		

Заметим, что *все* величины согласованы по размерностям, а глобальная поправка $-\frac{Z\alpha}{4}\frac{r}{R^2}$ задаёт унифицированный источник наблюдаемых отклонений $\sim (a_0/R)^2$.

19 Фальсифицируемые тесты и предсказания

Здесь собраны наблюдаемые эффекты, по которым модель может быть проверена количественно. Во всех формулах размерности согласованы, см. §2.

19.1 Поправка компактности S^3 к линиям атомов

Возмущение

$$\delta V(r) = -rac{Zlpha}{4}rac{r}{R^2}, \qquad [\delta V] = [$$
энергия],

даёт на водородоподобных состояниях (первый порядок по теории возмущений)

$$\Delta E_{n\ell}^{(R)} = \langle \delta V \rangle = -\frac{Z\alpha}{4R^2} \langle r \rangle_{n\ell}, \qquad \langle r \rangle_{n\ell} = \frac{a_0}{2} \left[3n^2 - \ell(\ell+1) \right],$$

где $a_0 = (Z\alpha m_r)^{-1}$. Следовательно,

$$\boxed{ \frac{\Delta E_{n\ell}^{(R)}}{E_n} \ \sim \ \mathcal{O}\!\!\left(\frac{a_0^2}{R^2}\right) } \ ,$$

и различные (n,ℓ) испытывают разные сдвиги $\propto \langle r \rangle_{n\ell}$. Тест: высокоточная сравнимая спектроскопия (электронная vs мюонная) одного и того же иона Z должна давать совместимое ограничение снизу на R.

19.2 Изотопные сдвиги и King-плоты

Изотопный сдвиг для перехода $a \to b$:

$$\delta\nu_{ab} = K_{ab}\,\delta\bigg(\frac{1}{M}\bigg) + F_{ab}\,\delta\langle r_N^2\rangle + C_{ab}\,\frac{a_0^2}{R^2},$$

где первые два члена — стандартные (массовый/полевой), а третий — yниверсальный вклад компактности, зависящий только от Z и (a,b). В King-представлении это даёт nuneŭnocmb с oбщим смещением для всех пар изотопов данного Z. Отклонение от такой структуры при фиксированном Z фальсифицировало бы модель.

19.3 Единый солитонный масштаб а в трёх наборах данных

Один и тот же a должен одновременно описывать:

$$\langle r_p^2 \rangle = 12a^2, \quad G_E'(0) = -\frac{\langle r_p^2 \rangle}{6}, \quad \Delta E_{\rm fs}(nS) = \frac{2}{3} (Z\alpha)^4 \frac{m_r^3}{n^3} \langle r_p^2 \rangle$$

Протокол проверки: (i) фиксировать a по наклону G_E при $Q^2 \to 0$ (электронное рассеяние), (ii) без подгонки предсказать $\Delta E_{\rm fs}(2S)$ в μp и (iii) земах-радиус

$$r_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left(\frac{1}{(1 + Q^2 a_E^2)^2} \cdot \frac{1}{(1 + Q^2 a_M^2)^2} - 1 \right),$$

при $a_M \simeq a_E$. Несовместимость этих трёх тестов исключила бы одношкальную солитонную аппроксимацию.

19.4 Предсказание «дипольной массы» из r_n

При дипольной форме $G_E = (1 + Q^2 a^2)^{-2}$:

$$\Lambda \equiv rac{1}{a} = rac{\sqrt{12}}{r_p}, \qquad [\Lambda] = [$$
длина $]^{-1}.$

Для $r_p \simeq 0.841~{\rm fm}$ получаем $\Lambda \simeq 4.12~{\rm fm}^{-1} \simeq 0.813~{\rm GeV}$. Тест: низко- Q^2 данные по G_E должны быть совместимы с этой Λ (наклон и кривизна у нуля).

19.5 Магнитный масштаб и гипертонкая структура

Если $a_M \approx a_E$, то $r_M \simeq r_E$ и земах-радиус фиксируется в узком интервале $r_Z \sim 1.04$ –1.05 fm (для $r_p \simeq 0.841$ fm). Тест: гипертонкая структура мюонного водорода/дейтерия (двухфотонные вклады) должна соответствовать этому r_Z без дополнительных подгонок.

19.6 Масштаб спин-орбиты как функция геометрии ядра

Предсказание для λ_{LS} (см. §15):

$$\lambda_{LS} \sim \frac{\eta \, \kappa}{m_N R_{\rm nuc}^2} + \left\langle \frac{1}{2m_N^2 r} \frac{dV}{dr} \right\rangle, \qquad [\lambda_{LS}] = [$$
энергия],

что даёт конкретную зависимость A- и Z-трендов LS-расщеплений. Сравнение систематик по изотопным цепочкам (при известных $R_{\rm nuc}$) служит прямым тестом геометрического вклада.

19.7 Граница снизу на R из мюонных систем

Для мюонных ионов $(m_r \gg m_e)$ поправка $(a_0/R)^2$ усиливается $\propto m_r^{-2}$. Тест: для заданного Z набор переходов $nS \leftrightarrow n'P$ должен давать согласованную нижнюю границу

$$R \gtrsim \frac{a_0}{\sqrt{\varepsilon}}, \qquad a_0 = \frac{1}{Z\alpha m_r},$$

где ε — относительная экспериментальная точность частоты перехода. Несогласованность границ между разными n,ℓ — признак несоответствия модели.

В совокупности эти тесты делают модель ϕ альси ϕ ицируемо \dot{u} : она даёт количественные предсказания с жёстким размерностным контролем и минимальным набором свободных масштабов (R, a, при необходимости a_M). Любое систематическое отклонение указанного типа позволит либо уточнить солитонный профиль, либо отвергнуть одношкальную аппроксимацию/геометрическое предположение.

20 Выводы

Я представил согласованную геометрическую модель атома и ядра на S^3 с SU(2)-фазой в нотации Cl(4,0), где: (i) локально возникает точный кулон $V\sim 1/r$; (ii) спектр и оболочки следуют из гармоник на S^3 и сильной LS-связи фазовой природы; (iii) нуклоны — солитоны $\pi_3(S^3)$, а один солитонный масштаб a сшивает формфакторы, лэмбовские и земаховские эффекты. Критерии устойчивости ядра следуют из энергетического функционала и дают стандартную долину стабильности. Поправки компактности подавлены как $(a_0/R)^2$, что позволяет получать феноменологию современной атомной и ядерной физики без введения дополнительных измерений и постулатов.