OMG's Model Driven Architecture

1. Introduction 2. MDA Overview - 3. Developing in MDA 4. MDA in the Practice

A heterogeneous world...

- Programming languages: (see also: the DoD survey)
 - ~3 million COBOL Programmers
 - ~1.6 million VB Programmers
 - ~1.1 million C/C++ Programmers
- Operating systems:
 - Unix, MacOS, Windows(3.1->XP), PalmOS
 - Embedded devices
- Networks:
 - Ethernet, IP, USB, FireWire
 - Bluetooth, 802.11b, HomeRF

Where can we agree?

- Hetereogenity hinders the development of enterprise distributed systems
- There will not be consensus on
 - Hardware
 - Operating systems
 - Network protocols
 - Programming languages
- We can agree at an higher level
 - Middleware

Middleware

- A software layer that masks hetereogeneity
- Placed between operating systems and application components

Middleware proliferation

- Middleware itself has proliferated:
 - CORBA
 - COM / DCOM / MTS(Microsoft Transaction Server)
 - Java / EJB
 - XML / SOAP
 - C# / .NET
- None of them prevails over the others
- The problem remains

The Object Management Group (OMG)

- An open membership and no-profit consortium
- Produces and mantains computer
 industry specifications for interoperable
 enterprise applications

Who are OMG?

OMG's Milestones

MDA

2001

What is the MDA?

- An approach to IT system specification that separates the specification of system functionality from the specification of the implementation of that functionality on a particular technology platform
- "Design once, build it on any platform"

Basic concepts of MDA

- A model is a formal specification of the function, structure and/or behaviour of a system
 - Examples:
 - Source code is a model
 - An UML-based specification is a model
- Models of different systems are structured explicitly into:
 - Platform Independent Models (PIM)
 - Platform Specific Models (PSM)

Platform Independent Model (PIM)

- A "formal" specification of the structure and function of a system that abstracts away technical detail

Expressed using UML

PIM: an example

<<business entity>>
Account

<<Uniqueld>> number : Integer balance : Float

--English number must be between 1000 and 9999

--OCL inv:

number >= 1000

and

number <= 9999

Platform Specific Model (PSM)

- Specifies how the functionality specified in a PIM is realized on a particular platform
- Expressed using UML extended with platform specific <u>UML profiles</u>

PSM: an example

<<CORBA Interface>> CosLifeCycle::GenericFactory

<<CORBA Interface>> Session::BaseBusinessObject

<<CORBA Interface>> AccountInstanceManager

create_account(in number : unsigned long) : Account find_account(in number : unsigned long) : Account

+manager <<CORBA Interface>>
Account

number : short balance : float

--English number must be between 1000 and 9999

--OCL inv:

number >= 1000 and number <= 9999

MDA in a Snapshot

3. Developing in MDA

System Development Lifecycle and the MDA approach

UML MOF CWM

PSM to PSM mappings

PIM to PIM mappings

PIM to PSM mappings (projection on a specific platform)

Developing in MDA – Step 1: the PIM (1/2)

- All MDA development projects start with the creation of a PIM
- PIM at this level represents business functionality and behaviour, undistorted by technology details
- MDA application-modeling tools contain representations of Pervasive Services and Domain Facilities allowing them to be used and/or incorporated in the application via a menu selection

Developing in MDA – Step 1: the PIM (2/2)

Developing in MDA – Step 2: the PSM (1/2)

- Once the first iteration is complete, the PIM is input to the mapping step which will produce a PSM
- Code is partially automatic and partially hand-written
- PIM can be mapped either to a single platform or to multiple platforms

Developing in MDA – Step 2: the PSM (2/2)

PIM Maps to Maps to Maps to **CORBA** Java/EJB

Model

Model

Other Model

Developing in MDA – Step 3: Generating Application (1/2)

- An MDA tool generates all or most of the implementation code for the deployment technology selected by the developer
- Re-integration on new platforms can be done by reverse engineering the existing application into a model and redeploy

Developing in MDA – Step 3: Generating Application (2/2)

MDA Adoption Status

- Adoption of MDA is at an early stage
- UML profiles underway:
 - CORBA (adopted)
 - EJB (adopted)
 - SOAP/XML (in process)
 - .NET (to be started)
- UML 2.0 in process

Future Trends

- "A market for MDA will be created as OO modeling and development tool vendors incorporate MDA into their offerings"
- "It will be two or three years before mature MDA tools emerge"
- "This is the most exciting enterprise software initiative I've seen since UML"
 (Paul Harmon, Senior consultant and Market Analyst, CUTTER consortium, 2001)

Early Adopters

- Interactive Objects Software GmbH
 - ArcStyler
- Kennedy Carter
 - · iUML, iCCG
- Kabira
 - Adaptive Realtime Infrastructure
- Secant technologies
 - Model-Driven Infrastructure
- Sun's NetBeans was added to this list on May 7th 2002
 - ...stay tuned!

Conclusions (1/2)

- Abstracting out the structure and behaviour of a system in the PIM makes easier:
 - To validate the correctness of the model
 - To produce implementations on different platforms
 - The application of tool supported solutions

Conclusions (2/2)

- The major drawback is that MDA does not provide a standard for the specification of mappings
 - Different implementation of mappings can generate very different code or models
 - This can create dependencies between the software and the mapping solution used

Platform

 Technological and engineering details that are irrelevant to the fundamental functionality of a software component

UML Profile

- A standardized set of extensions (stereotypes and tagged values)
- Defines an UML environment tailored to a particular use, such as modeling for a specific platform
 - UML profile for CORBA was standardized in
 2000

MOF (Meta Object Facility)

- OMG's standard for defining metamodels
- Provides standard modeling and interchange constructs used in MDA
- UML are defined in terms of MOF constructs
- The three main metadata modeling constructs provided by the MOF are:
 - Class
 - Association
 - Package

Mappings

- Mapping is defined as a set of rules and techniques used to modify one model in order to get another model
- Mappings are described using UML

Refining

- Makes a model less abstract
- Permits "zooming" in (and out of) a model:

PIM to PIM mapping

- Used when models are enhanced,
 refined or filtered during the
 development lifecycle without needing
 any platform dependant information
 - Example: analysis to design models transformation

PIM to PSM mapping (1/3)

- This transformation is used when the PIM is projected to the execution infrastructure
- Projection is based on platform characteristics
- These characteristics should be described using a UML description (and eventually a profile for describing common platform concepts)
- There are multiple ways to transform a PIM into a corresponding PSM

More on mapping

PIM to PSM mapping: techniques (2/3)

- A human could study the PIM and:
 - Manually construct a platform-specific model
 - Utilize models of known refinement patterns to reduce the burden in constructing the PSM

PIM to PSM mapping: techniques (3/3)

- An algorithm could:
 - Be applied to the PIM and create a skeleton of the PSM to be manually enhanced by hand
 - Create a complete platform specific model from a complete platform independent model, explicitly or implicitly recording the relation for use by other automated tools

PSM to PSM mapping

- This transformation is needed for component realization and deployment
- Generally related to platform dependent model refinement

PSM to PIM refactoring

- This transformation is required for abstracting models of existing implementations in a particular technology into a platform independent model
- Represents a "mining" process hard to be fully automated
- Result of this transformation will match the corresponding PIM to PSM mapping

Infrastructure

A set of software or hardware pieces assumed to be already present by some stakeholders when he/she develops a software artifact

Core models

- The core target platforms of the MDA:
 - CORBA
 - Java/EJB
 - C#/.NET
 - XML/SOAP
- MDA provides UML profiles for these target platforms

Pervasive Services

- Essential services for many applications
 - transactions
 - directory services
 - security
 - persistance
 - others...
- OMG will define them at PIM level

Some of the OMG members:

- AT&T
- BEA
- Borland
- Boeing
- CA
- Citigroup
- Compaq
- Ericsson
- Ford
- Fujitsu

- Glaxo
- HP
- Hitachi
- Hyperion
- IBM
- IONA
- io Software
- Kabira
- KC
- John Deere

- Microsoft
- MITRE
- MSC Soft
- NASA
- NEC
- NetGenics
- NTT
- OASIS
- Oracle
- Pfizer

- Rational
- SAGA
- SAP
- SAS
- Secant
- Siemens
- Sprint
- Sun
- Unisys
- Vertel

IoSoftware's ArcStyler

Rational Unified Process

System Definition (Analysis, Design)

System Development

Verification / Test / Deployment

ArcStyler Success Story

- Deutsche Bank Bauspar AG used ArcStyler to embed existing COBOL mainframe application into modern web-based system
- A customized Cartridge was created

The KC's xMDA approach

xMDA: eXecutable UML + MDA

xMDA Success story

- Lockheed Martin used MDA to develop the F-16 Modular Mission Computing software
- They used the KC's iUML tool and more recently iCCG (intelligent Configurable Code Generator) to specify an Ada code generator which can automatically generate 100% of the implementation

