

Fundamentos de Arquitetura de Infraestrutura de Aplicações

BLOCO: ARQUITETURA DE INFRAESTRUTURA DE APLICAÇÕES

PROF. RODRIGO EIRAS, M.SC.

[ETAPA 5] AULA 2 - DATASTORES & STORAGE

Na aula anterior...

- Melhores práticas até aqui
- Exercício conceitual

Agenda

- Armazenamento virtual
- FreeNAS / TrueNAS Core

- . Conforme você viu nas etapas anteriores, o armazenamento local disponível em nossos hosts ESXi é automaticamente particionado e disponibilizado para você como um *datastore* chamado "Datastore1".
- II. Datastores são containers lógicos, análogos a um sistema de arquivos como aqueles presentes dentro das nossas VMs.
- III. Datastores escondem as especificidades dos dispositivos de armazenamento e provêem um modelo uniforme para o armazenamento das VMs.
- IV. Você viu também que é possível usá-los para armazenar imagens ISO, máquinas virtuais e até imagens de disquete!

- I. Além disso, também observou que é uma boa prática nomear os objetos armazenados em nosso datastore com base na função que eles vão desempenhar:
 - Criar um diretório "ISO" para guardar imagens de disco, nomear pastas de VMs com o mesmo nome da própria VM, etc.
 - II. É possível inclusive usar a interface vCenter para renomear nossos datastores, e pode ser uma boa ideia fazê-lo também de acordo com suas funções, como podemos ver na imagem a seguir:

- Assim, o número de *datastores* de que você vai necessitar em um host depende de quão diversificado será o seu uso.
- II. Em outras palavras, você pode querer criar tantos *datastores* quantos forem os diferentes tipos de VM que você tiver.
- Essa abordagem será especialmente útil se os discos usados para cada datastore também diferirem em performance, o que é bastante provável.

- Você pode agrupar os datastores em pastas, também nomeadas de acordo com a categoria de recurso que oferecem.
- I. Isso também tornará possível atribuir permissões e alarmes no nível das pastas (agrupamento de datastores), reduzindo o esforço administrativo (dá pra saber que está acabando o espaço nos seus discos SSD ao invés de exibir um alerta genérico).
- III. Além disso, é possível criar perfis de storage, que vão garantir que cada VM tenha o tipo de disco correto atendendo-a.

VMFS Is a Cluster Filesystem

- I. O formato usado para "formatar" os *datastores* é o VMFS, cuja última versão é o VMFS-6.
- II. Hosts ESX e ESXi versões 3.5 e 4.x conseguem usar apenas a versão legal, a VMFS-3, enquanto o VMFS-5 é suportado a partir das versões 5.0 e posteriores.
- III. Na verdade, com o vSphere 6 em diante, só é possível formatar seus *datastores* como VMFS-5!
- IV. Ainda é possível fazer upgrade de VMFS-3 para 5 (uma operação que não provoca paralisações e é bastante segura), mas não é possível criar novos datastores VMFS-3.

Feature	VMFS 5	VMFS 6
Access for ESXi 6.0 and earlier	YES	NO
Access for ESXi 6.5 hosts	YES	YES
Automatic Space Reclamation	NO	YES
Manual space reclamation	YES (via ESXCLI)	YES (via ESXCLI)
Space reclamation from guest OS	Limited	YES
GPT storage device partitioning	YES	YES
MBR storage device partitioning Block size	YES (For a VMFS5 datastore which is upgraded from VMFS3) 1 MB	NO 1 MB
Default snapshots Max RDM Size	VMFSsparse (VMDK size < 2 TB) SEsparse (VMDK size > 2 TB) 62 TB	Sesparse 62 TB
In-place Upgrade from Earlier Version	YES (VMFS 3 to VMFS 5)	Not Supported
Support of small files of 1 KB	YES	YES
Support for 512n storage devices	YES (default)	YES
Support for 512e storage devices	Yes. Not supported on local 512e devices	YES (default)
Virtual disk emulation type	512n	512n

- . O VMFS-6 tem capacidades que excedem em muito as da versão anterior, e permitem um uso mais eficiente do storage e maior flexibilidade para os administradores.
- II. A seguir, temos uma lista parcial das capacidades do VMFS-5 e o benefício associado a cada uma delas:
 - I. Suporte a dispositivos de mais de 2TB para cada extent VMFS
 - II. Tamanho de bloco de sistema de arquivos de 1MB, e suporte a discos virtuais de 62TB (com VMs versão 10 ou superiores)
 - III. Suporte para discos de mais de 2TB nos RDMs de modo de compatibilidade física
 - IV. Possibilidade de upgrade online, in-place

- I. Para deletar um datastore, simplesmente nos logos em nosso cliente vSphere, navegamos da área "Home" para "Datastore", clicamos com o botão direito no datastore que pretendemos deletar e selecionamos a opção "Delete Datastore"
- II. Decidir-se por deletar um datastore pode requerer uma quantidade significativa de planejamento e trabalho
- III. Algumas vezes, é até melhor apenas desconectar o dispositivo de armazenamento (operação de "desmontagem"/"umount"), mas deixar os dados armazenados nele intactos

Estendendo datastores VMFS

- Estender um datastore significa adicionar uma outra unidade de armazenamento (LUN, na terminologia SCSI) a ele.
- II. Nas versões antigas do software VMware (anteriores ao vSphere 4), esta era a única opção quando se tratava de aumentar um datastore.
- III. Agora você também tem a opção de expandi-lo, mas a opção de estendê-lo pode ser a escolha mais adequada dependendo da situação.
- IV. Se seu administrador de storage estiver usando apenas LUNs relativamente pequenas (600GB ou menores), estender pode ser a melhor alternativa.

Estendendo datastores VMFS

- Neste momento podemos fazer uma simulação deste processo em nosso laboratório, desligando nossa VM ESXi e adicionando um disco virtual de 20GB a ela.
 - I. Dentro do cliente vSphere, vá até a área de "Datastores".
 - II. Clique com o botão direito sobre o datastore que você pretende aumentar e escolha a opção "Increase Datastore Capacity".
 - III. Selecione o disco que você pretende usar para a extensão.
 - IV. Selecione a opção "Use All Available Partitions", e então selecione a porção do disco que você pretende utilizar, ou mova o controle até o fim de utilize todo o espaço da nova LUN.
 - Em ambientes corporativos, tipicamente usamos todo o espaço disponível.

Estendendo datastores VMFS

- I. Neste momento podemos fazer uma simulação deste processo em nosso laboratório, desligando nossa VM ESXi e adicionando um disco virtual de 20GB a ela.
 - I. Na página "Ready To Complete", exibida a seguir, confira suas configurações e clique "Finish" para efetivar o processo.

- 1. FreeNAS é um servidor de arquivos em rede, suportando: CIFS (Samba), FTP, NFS, rsync, protocolo AFP, iSCSI, S.M.A.R.T., autenticação local de usuários, e RAID (0,1,5) via software, com uma configuração baseada em internet.
- Usa menos que 64MB de espaço para a instalação em um CompactFlash, disco rígido ou pen drive USB.
- 3. Atualmente distribuído em forma de imagem ISO e código fonte.

- Protocolos: CIFS (via Samba), TFTP, FTP, NFS, SSH, rsync, AFP, UPnP, BitTorrent, e iTunes.
- 2. Extensões (plug-ins) para: SlimServer, Xbox Media Stream Protocol, rsync servidor, cliente e sincronizador local.
- 3. Disco rígido: P-ATA/S-ATA, SCSI, iSCSI, USB e FireWire.
- 4. Partições maiores que 2 TB GPT/EFI.
- 5. Placas de Rede: Todas as placas suportadas pelo FreeBSD

and TrueNAS Software Process FreeNAS*

FreeNAS (TrueNAS)

- Boot do HDD, CompactFlash, CD-ROM + disquete, ou Pen Drive USB.
- 2. RAID via hardware: Todas as placas suportadas pelo FreeBSD
- Gerenciamento de grupos e usuários (Autenticação de usuário local ou Domínios Microsoft).
- 4. Envio de syslog remote.
- 5. SNMP monitoring (Netgraph and MibII).
- 6. Registro e notificações via e-mail.
- Suporte a VLAN.

- 1. Atualmente, no nosso lab, estamos acoplando no mesmo hardware duas funções bastante distintas:
 - 1. A computação (atendida pelo virtualizador)
 - O armazenamento (atendida nesse caso pelos discos internos)
- 2. A forma mais comum de prover armazenamento nos grandes datacenters é pelo uso de equipamentos de armazenamento dedicados, os storages.
- 3. Esses equipamentos concentram os discos onde os dados do virtualizada serão armazenados, e são acessados via rede.

Copyright © 2020 iXsystems. All rights reserved.

 Usaremos o TrueNAS para testes de armazenamento de rede.

INSTALAÇÃO

