Then it is easy to see that we can compute b and δ using the following averaging formulae:

$$b = w^{\top} \left(\left(\sum_{i \in I_{\lambda}} u_i \right) / |I_{\lambda}| + \left(\sum_{j \in I_{\mu}} v_j \right) / |I_{\mu}| \right) / 2$$
$$\delta = w^{\top} \left(\left(\sum_{i \in I_{\lambda}} u_i \right) / |I_{\lambda}| - \left(\sum_{j \in I_{\mu}} v_j \right) / |I_{\mu}| \right) / 2.$$

As we said earlier, the hypotheses of Theorem 50.17(2) hold, so if the primal problem (SVM_{s1}) has an optimal solution with $w \neq 0$, then the dual problem has a solution too, and the duality gap is zero. Therefore, for optimal solutions we have

$$L(w, \epsilon, \xi, b, \delta, \lambda, \mu, \alpha, \beta, \gamma) = G(\lambda, \mu, \alpha, \beta, \gamma),$$

which means that

$$-\delta + K \left(\sum_{i=1}^{p} \epsilon_i + \sum_{j=1}^{q} \xi_j \right) = - \left(\begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \right)^{1/2},$$

so we get

$$\delta = K \left(\sum_{i=1}^{p} \epsilon_i + \sum_{j=1}^{q} \xi_j \right) + \left(\begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \right)^{1/2}.$$

Therefore, we confirm that $\delta \geq 0$.

It is important to note that the objective function of the dual program

$$-G(\lambda,\mu) = \left(\begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \right)^{1/2}$$

only involves the inner products of the u_i and the v_j through the matrix $X^{\top}X$, and similarly, the equation of the optimal hyperplane can be written as

$$\sum_{i=1}^{p} \lambda_i u_i^{\mathsf{T}} x - \sum_{j=1}^{q} \mu_j v_j^{\mathsf{T}} x - \left(\begin{pmatrix} \lambda^{\mathsf{T}} & \mu^{\mathsf{T}} \end{pmatrix} X^{\mathsf{T}} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \right)^{1/2} b = 0,$$

an expression that only involves inner products of x with the u_i and the v_j and inner products of the u_i and the v_j .

As explained at the beginning of this chapter, this is a key fact that allows a generalization of the support vector machine using the method of kernels. We can define the following "kernelized" version of Problem (SVM_{s1}):