CLAIMS

What is claimed is:

1	1. A method, comprising:
2	directing an optical beam into a first end of an optical path having the first end and a
3	second end disposed in a semiconductor substrate;
4	reflecting a first portion of the optical beam having a first center wavelength back out
5	from the first end of the optical path; and
6	tuning the optical path to reflect a second portion of the optical beam having a second
7	center wavelength back out from the first end of the optical path.
1	2. The method of claim 1 further comprising confining the optical beam to remain
2	within the optical path between the first and second ends with an optical waveguide disposed
3	in the semiconductor substrate between the first and second ends.
1	3. The method of claim 1 wherein tuning the optical path comprises adjusting an
2	effective index of refraction of the optical path through the semiconductor substrate along the
3	optical path.
1	4. The method of claim 1 wherein tuning the optical path comprises adjusting a
2	temperature of the semiconductor substrate with a heater disposed proximate to the optical
3	nath through the semiconductor substrate.

2

3

1

2

3

1

2

3

- 5. The method of claim 1 wherein tuning the optical path comprises modulating charge in the optical path through the semiconductor substrate in response to a modulating signal.
- 6. The method of claim 5 wherein in modulating charge in the optical path comprises modulating a voltage of the modulation signal applied to a conductive element of a conductor-insulator-semiconductor structure included along the optical path.
 - 7. The method of claim 1 wherein reflecting the first portion of the optical beam comprises perturbing an effective index of refraction a plurality of times along the optical path to form a Bragg grating.
 - 8. The method of claim 7 wherein perturbing the effective index of refraction the plurality of times along the optical path comprises periodically or quasi-periodically disposing silicon and polysilicon in the semiconductor substrate along the optical path.
 - 9. The method of claim 7 wherein perturbing the effective index of refraction the plurality of times along the optical path comprises periodically or quasi-periodically changing a geometry of the optical path along the optical path.
- 1 10. An apparatus, comprising:
- 2 a semiconductor substrate;

2

1

2

3

a heater disposed proximate to the semiconductor substrate;

an optical path through the semiconductor substrate, wherein a temperature of the

semiconductor substrate including the optical path is responsive to the heater; and

a plurality of perturbations of a refractive index of the semiconductor substrate along

the optical path, the refractive index of the semiconductor substrate responsive to the

temperature of the semiconductor substrate.

- 1 11. The apparatus of claim 10 further comprising an optical waveguide disposed in 2 the semiconductor substrate, the optical waveguide including the optical path.
 - 12. The apparatus of claim 11 wherein the optical waveguide disposed in the semiconductor substrate comprises an optical rib waveguide.
 - 13. The apparatus of claim 10 further comprising:
 - a first optical confinement layer disposed proximate to the semiconductor substrate layer; and
- a second optical confinement layer disposed proximate to the semiconductor substrate layer such that the semiconductor substrate layer is disposed between the first and second optical confinement layers.
- 1 14. The apparatus of claim 13 further comprising a second semiconductor substrate
 2 layer disposed proximate to the second optical confinement layer such that the second optical
 3 confinement layer is disposed between the semiconductor substrate layer and the second
 4 semiconductor substrate layer.

2

1

2

3

4

1

1

- 1 15. The apparatus of claim 14 wherein the semiconductor substrate, the second semiconductor substrate, the first optical confinement layer and the second optical confinement layer are included in a silicon-on-insulator wafer.
- 1 16. The apparatus of claim 10 wherein the plurality of perturbations of the refractive
 2 index of the semiconductor substrate along the optical path are provided with periodic
 3 regions of silicon and polysilicon disposed in the semiconductor substrate along the optical
 4 path.
 - 17. The apparatus of claim 16 wherein the periodic regions of silicon and polysilicon provide a uniform Bragg grating disposed in the semiconductor substrate.
 - 18. The apparatus of claim 10 wherein the plurality of perturbations of the refractive index of the semiconductor substrate along the optical path are provided with quasi-periodic regions of silicon and polysilicon disposed in the semiconductor substrate along the optical path.
- 1 19. The apparatus of claim 18 wherein the quasi-periodic regions of silicon and polysilicon provide an apodized Bragg grating disposed in the semiconductor substrate.
 - 20. The apparatus of claim 10 wherein the heater comprises a thin-film heater.
 - 21. An apparatus, comprising:

2	a semiconductor substrate;
3	an optical path through the semiconductor substrate; and
4	a plurality of perturbations of a refractive index of the semiconductor substrate along
5	the optical path; and
6	a plurality of charge modulated regions disposed in the optical path.
1	22. The apparatus of claim 21 further comprising an optical waveguide disposed in
2	the semiconductor substrate, the optical waveguide including the optical path.
1	23. The apparatus of claim 22 wherein the optical waveguide disposed in the
2	semiconductor substrate includes an optical rib waveguide.
1	24. The apparatus of claim 21 further comprising:
2	an insulating layer disposed proximate to the semiconductor substrate; and
3	a plurality of conductive elements disposed proximate to the insulating layer such that
4	the insulating layer is disposed between the plurality of conductive elements and the
5	semiconductor layer, the plurality of conductive elements coupled to receive a modulation
6	signal, the plurality of charge modulated regions coupled to be modulated in response to the
7	modulation signal.
1	25. The apparatus of claim 24 further comprising first and second optical
2	confinement layers, the semiconductor substrate disposed between the first and second

optical confinement layers, the first optical confinement layer including the insulating layer.

- 1 26. The apparatus of claim 21 wherein the plurality of perturbations of the refractive
- 2 index of the semiconductor substrate along the optical path are provided with periodic
- 3 changes in a geometry of the optical path in the semiconductor substrate along the optical
- 4 path.
- 1 27. The apparatus of claim 26 wherein the periodic regions of silicon and polysilicon
- 2 provide a uniform Bragg grating disposed in the semiconductor substrate.
- 1 28. The apparatus of claim 21 wherein the plurality of perturbations of the refractive
- 2 index of the semiconductor substrate along the optical path are provided with quasi-periodic
- 3 changes in a geometry of the optical path in the semiconductor substrate along the optical
- 4 path.
- 1 29. The apparatus of claim 28 wherein the quasi-periodic changes in a geometry of
 - the optical path provide an apodized Bragg grating disposed in the semiconductor substrate.