Name:	•••••	MatrNr.:	•••••

Klausur: Grundlagen der Elektronik SS 18

Kurzfragen ohne Unterlagen (Bearbeitungszeit: 30 min)

- 1) Die Steilheit eines MOSFETs kann erhöht werden, wenn man (richtige ankreuzen)
- 2) Welche der Aussagen zu einem Halbleiter mit der Eigenleitungskonzentration n_i im thermodynamischen Gleichgewicht sind richtig?
- 3) Um welche digitale Grundschaltung handelt es sich bei dem Bild rechts unten?
- 4) Welche der Aussagen zur Kapazität C einer pn-Diode mit abruptem Übergang sind zutreffend?
- 5) Ergänzen Sie in dem Diagramm (rechts) den Verlauf der Leitungs- und Valenzbandkanten eines homogenen Halbleiters mit angelegter Spannung U < 0. Beachten Sie die Pfeilrichtung und beschriften Sie die Bandkanten. Randeffekte sollen vernachlässigt werden.
- 6) Gegeben ist das Bändermodell W(x) von Si. Markieren Sie für den Fall der n-Dotierung das Ferminiveau W_F . Skizzieren Sie die Zustandsdichten der Elektronen im Leitungsband und der Löcher im Valenzband D(W) in parabolischer Näherung, sowie bei Raumtemperatur die Fermi-Verteilung f(W) und die Elektronen- und Löcherkonzentrationen im Leitungs- bzw. Valenzband n(W), p(W) in den vorbereiteten Koordinatensystemen.
- 7) Ergänzen Sie die folgenden Aussagen zu den Eigenschaften zweier bis auf ihre effektive Elektronenmasse im Leitungsband $(m^*_{L,A} > m^*_{L,B})$ identischer Halbleiter A und B in den punktierten Bereichen durch ">", "<" oder "=".
- 8) Welche der Aussagen zu dem gezeigten Bändermodell mit den Bandkanten $W_{\rm V}$ und $W_{\rm L}$ sind richtig? Markieren Sie an den Pfeilen das Quasi-Ferminiveau $W_{\rm Fn}$ für die Elektronen bzw. $W_{\rm Fp}$ für die Löcher.
- 9) Gegeben ist eine ideale Metall-Isolator-Halbleiter-Struktur (Bild a) mit gleichen Austrittsarbeiten von Halbleiter und Metall sowie in den Bildern c bis e die zugehörigen Bändermodelle für drei Arbeitspunkte. Um welchen Halbleitertyp handelt es sich? Zeichnen Sie für niedrige Frequenzen den $C(U_g)/C_i$ -Verlauf in das Diagramm (Bild b). Markieren Sie die Arbeitspunkte der drei angegebenen Bändermodelle mit dem zugehörigen Buchstaben (c bis e) in der $C(U_g)/C_i$ -Kennlinie.
- 10) Wie groß ist in einem Diamantgitter mit der Gitterkonstante a = 0,6 nm der Abstand zweier nächstbenachbarter Gitteratome (Formel und Zahlenwert)?die Konzentration der Gitteratome (Formel und Zahlenwert)?

Klausur: Grundlagen der Elektronik SS 18

Aufgaben ohne Unterlagen (Bearbeitungszeit: 2 Std.)

Bemerkung: Bei Berechnungen ist grundsätzlich auch der Rechenweg nachvollziehbar anzugeben.

Konstanten: $q = 1,6 \cdot 10^{-19}$ As; $k = 1,38 \cdot 10^{-23}$ J/K = $8,6 \cdot 10^{-5}$ eV/K; $m_0 = 9,1 \cdot 10^{-31}$ kg; $c = 3 \cdot 10^8$ m/s; $h = 6,63 \cdot 10^{-34}$ Js; $\epsilon_0 = 8,85 \cdot 10^{-12}$ As/(Vm); $\mu_0 = 1,26 \cdot 10^{-6}$ Vs/(Am); $N_A = 6,02 \cdot 10^{23}$ Atome/mol.

1) Ein Halbleiter ist homogen mit Akzeptoren der Konzentration $N_{\rm A}$ dotiert ($N_{\rm D}=0$) und die effektiven Zustandsdichten sind gleich groß, also $N_{\rm V}=N_{\rm L}=N$ mit $N_0=8,5\cdot10^{18}$ cm⁻³.

$$\begin{split} N &= N_0 \bigg(\frac{T}{T_0}\bigg)^{3/2}; \quad n_{\rm i}^2 = np = N_{\rm L} N_{\rm V} {\rm exp} \bigg(-\frac{W_{\rm G}}{{\rm k}T}\bigg); \quad n + N_{\rm A}^- = p + N_{\rm D}^+ \\ N_{\rm A}^- &= N_{\rm A} \bigg(\frac{p_1}{p + p_1}\bigg); \quad p_1 = \frac{N \big(T_0\big)}{4} \bigg(\frac{T}{T_0}\bigg)^{3/2} {\rm exp} \bigg(-\frac{W_{\rm A} - W_{\rm V}}{{\rm k}T}\bigg) \; . \end{split}$$

Die gemessene Löcherkonzentration $p(T_0/T)$ ist in Abb. 1 dargestellt ($T_0 = 300 \text{ K}$).

Abb. 1

a) Markieren Sie in Abb. 1, links die Temperaturbereiche, in denen die Akzeptoren vollständig $(N_A^- = N_A)$ oder unvollständig $(N_A^- \ll N_A)$ ionisiert sind, bzw. der Halbleiter eigenleitend ist $(p = n_i)$. Nähern Sie den Verlauf $p(T_0/T)$ durch drei Geraden und skizzieren diese in Abb. 1, links. In der vergrößerten Darstellung des Bereichs hoher Temperaturen soll die entsprechende Gerade noch einmal skizziert werden (Abb. 1, rechts).

- b) Geben Sie im Bereich der Eigenleitung die Abhängigkeit der Löcherkonzentration $p(T_0/T)$ explizit an. Bestimmen Sie aus der entsprechenden Gerade in Abb. 1 den Bandabstand W_G (Formel und Zahlenwert).
- c) Ermitteln Sie nun p für den Bereich $T_0/T > 1.5$. Nutzen Sie hierfür die Elektroneutralitätsgleichung. Vereinfachen Sie diese mit Hilfe der gegebenen Annahmen sowie einer größenordnungsmäßigen Abschätzung der Elektronenkonzentration n im Vergleich mit p. Berechnen Sie hierfür beispielhaft n für $T_0/T = 1,5$.
- d) Nutzen Sie die oben angegebene Gleichung für N_A , um aus c) eine quadratische Gleichung für p aufzustellen und lösen Sie diese anschließend (Formel).
- e) Im Bereich mittlerer Temperaturen gilt $4N_A \ll p_1$. Vereinfachen Sie die Lösung aus d) und bestimmen Sie hiermit aus Abb. 1 im Bereich 1,5 $< T_0/T < 6$ die Akzeptorkonzentration N_A (Zahlenwert). (Hinweis: $[1+\varepsilon]^{0.5} \approx 1+0.5\varepsilon \text{ mit } \varepsilon \ll 1$)
- f) Im Bereich niedriger Temperaturen gilt $2(N_A)^{1/2} \gg (p_1)^{1/2}$. Vereinfachen Sie die Lösung aus d) entsprechend und geben Sie $p(T_0/T)$ explizit an. Bestimmen Sie hiermit aus Abb. 1 im Bereich 15 $< T_0/T < 30$ die Akzeptor-Ionisierungsenergie W_A - W_V (Zahlenwert).
- 2) Abb. 2 zeigt eine ideale Metall-Oxid-n-Halbleiter (MOS)-Struktur mit am Gate anliegender Spannung U_g . Gehen Sie, wie bei 300 K üblich, davon aus, dass die Dotierstoffe vollstän- Metall Oxid dig ionisiert sind $(N_D^+ = N_D = 10^{17} \text{ cm}^{-3})$ und die beweglichen Ladungsträger in der Sperrschicht $(0 \le x \le w)$ keine Rolle spielen. Für den Kapazitätsbelag der HfO2-Oxidschicht $C_{\rm ox} = \varepsilon_{\rm ox} \varepsilon_{\rm o}/d$ und der Sperrschicht $C_{\rm S} = \varepsilon_{\rm S} \varepsilon_{\rm o}/w$ mit den relativen Dielektrizitätskonstanten $\varepsilon_{\rm s}$ und ε_{ox} sowie den Dicken d und w sind folgende Daten gegeben: d = 3 nm; $\varepsilon_{ox} = 25$; $\varepsilon_{\rm S} = 11.7$; $n_{\rm i} = 10^{10} \, {\rm cm}^{-3}$.

- a) Skizzieren Sie das vereinfachte Kapazitäts- Abb. 2 Ersatzschaltbild der MOS-Struktur. Ermitteln Sie den Gesamtkapazitätsbelag der Struktur C bezogen auf C_{ox} in Abhängigkeit von der Sperrschichtausdehnung w. Skizzieren Sie für niedrige (durchgezogen) und hohe (gestrichelt) Frequenzen den Verlauf von C/C_{ox} in Abhängigkeit von U_{g} . Markieren Sie die Bereiche der Anreicherung, Verarmung und Inversion sowie den Flachbandfall (C/Cox)FB.
- b) Skizzieren Sie in der Vorlage die Verläufe der Raumladung ρ , der elektrischen Feldstärke E und der Bandkantenenergien $W_{\rm L}$ und $W_{\rm V}$ für den Fall des Einsetzens der

- schwachen Inversion (1) mit der Bandaufwölbung $W_s = W_F W_i$ (W_F : Fermienergie im Halbleiter, W_i : Eigenleitungsniveau) und
- starken Inversion (2) mit $W_s = 2(W_F W_i)$.
- (1) Einsetzen der schwachen Inversion

(2) Einsetzen der starken Inversion

Markieren Sie W_s , W_i , W_L und W_V sowie die Fermienergie im Metall $W_{F,M}$.

c) Bestimmen Sie W_s in Abhängigkeit von N_D und n_i (Formel) unter Annahme der Boltzmann-Näherung für die Elektronenkonzentration:

$$n = N_{\rm L} \exp \left(\frac{W_{\rm F} - W_{\rm L}}{kT} \right)$$

d) Bei starker Inversion (2) gilt für die maximale Ausdehnung der Sperrschicht $w = w_{\text{max}}$ mit

$$w_{\text{max}} = \sqrt{\frac{2 \, \varepsilon_{\text{S}} \, \varepsilon_{\text{0}} \, W_{\text{s}}}{q^2 N_{\text{D}}}}$$

und für die Ausdehnung im Flachbandfall (FB) $w = L_D$ mit:

$$L_{\rm D} = \sqrt{\frac{\varepsilon_{\rm S} \varepsilon_0 k T}{q^2 N_{\rm D}}}$$

Bestimmen Sie für die MOS-Struktur in <u>Abb.2</u> w_{max} und L_{D} und hieraus die minimale Kapazität $(C/C_{\text{ox}})_{\text{min}}$ bzw. die Flachbandkapazität $(C/C_{\text{ox}})_{\text{FB}}$. Geben Sie jeweils Formeln und Zahlenwerte an.

3) Analysieren Sie die Schaltung in <u>Abb. 3a</u>. Der Transistor ist durch das Kennlinienfeld in <u>Abb. 3b</u> charakterisiert. Im Arbeitspunkt sind folgende Betriebsparameter gegeben: $U_{\rm B}=12~{\rm V},~U_{\rm ce}=5~{\rm V},~U_{\rm be}=0.7~{\rm V},~V_5=2~{\rm V},~I_{\rm b}=2.5~{\rm \mu A},~I_{\rm q}=9\times I_{\rm b},~R_4=0.7~{\rm k}\Omega,~R_{\rm G}=4~{\rm k}\Omega,~R_{\rm L}=22~{\rm k}\Omega.$

- a) Welcher Transistortyp liegt vor? Zeichnen Sie das Gleichstromersatzschaltbild. Ermitteln Sie den Arbeitspunkt (U_{ce}, I_c) und die Widerstände R_1, R_2, R_3 und R_5 . Wie groß ist I_c $(U_{ce} = 0)$? Tragen Sie Arbeitspunkt und -gerade in das Kennlinienfeld ein.
- b) Führen Sie eine Wechselstromanalyse durch. Zeichnen Sie hierzu die Ersatzschaltung unter Verwendung des vereinfachten Kleinsignal-Ersatzschaltbildes für den Transistor (Abb. 3c) mit den Parametern $g_{\rm m} = 20$ mS und $r_{\rm be} = 5$ k Ω . Die Kondensatoren C_1 , C_2 und C_3 sind im betrachteten Frequenzbereich kurzgeschlossen.
- c) Bestimmen Sie aus b) mit Hilfe der in a) ermittelten Werte den Eingangswiderstand $R_{\rm e} = u_1/i_1$, die Stromverstärkung $v_{\rm i} = i_2/i_1$, die Leerlaufspannungsverstärkung $v_{\rm uL} = u_2/u_1$ ($i_2 = 0$) und die Spannungsverstärkung $v_{\rm u} = u_2/u_{\rm G}$ ($i_2 \neq 0$) der Schaltung formel- und zahlenmäßig. Nutzen Sie bei der Herleitung der Formeln sich entsprechend der genannten Zahlenwerte ergebende, sinnvolle Näherungen.

$$\begin{array}{l} \text{Ab} \ \ P(\frac{T_{0}}{T_{0}}) = n_{1} \left(\frac{T_{0}}{T_{0}}\right) = N_{0} \left(\frac{T}{T_{0}}\right)^{3/2} \exp\left(-\frac{W_{0}}{2kT_{0}} \frac{T_{0}}{T_{0}}\right) & \frac{T_{0}}{T_{0}} \\ \frac{P(T_{0}/T_{0})}{P(T_{0}/T_{0})} = \left(\frac{T_{0}/T_{0}}{T_{0}/T_{0}}\right)^{\frac{3}{2}} \exp\left[-\frac{W_{0}}{2kT_{0}} \left(\frac{T_{0}}{T_{0}} - \frac{T_{0}}{T_{0}}\right)\right] & \frac{Q_{0}4P}{Q_{0}4P} & \frac{3 \cdot 10^{14}}{3 \cdot 10^{14}} \\ \text{Is} \ W_{0} = -\frac{2kT_{0}}{T_{0}} \cdot \ln \frac{P(T_{0}/T_{0})}{P(T_{0}/T_{0})} + \frac{P(T_{0}/T_{0})}{P(T_{0}/T_{0})} = \frac{Q_{0}43 \text{ eV}}{Q_{0}46 \text{ eV}} \\ \text{C)} \ n + NA = p + M_{0} + M_{0}^{2} = 0 & \frac{P(T_{0}/T_{0})}{P(T_{0}/T_{0})} = \frac{P_{0}}{P(T_{0}/T_{0})} = \frac{P_{0}}{P(T$$

do)
$$\begin{array}{l}
\log \left(\frac{1}{2}\right) = \frac{1}{C_{0}} + \frac{1}{C_{0}} = \frac{1}{1 + \frac{C_{0}}{C_{0}}} = \frac{$$

3a) upn-Trauments and Kennelini:
$$I_{c} = 0.5$$
 with $R_{3} = \frac{U_{8} - U_{ce} - V_{5}}{I_{c}} = 10 \text{ kg}$
 $I_{c} = 0.0$ I_{c