U.S.N.					

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E. Semester: II
Branch: CS, CS-BS, CS-DS, CS-IOT, AI-ML, AI-DS, IS and BT
Course Code: 23MA2BSMCS / 22MA2BSMCS
Max Marks: 100

Course: Mathematical Foundation for Computer Science Stream -2

Instructions:

1. All units have internal choice, answer one complete question from each unit.

2. Missing data, if any, may be suitably assumed.

lank			UNIT - 1	со	PO	Marks
the remaining bl	1	a)	With usual notations, prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	1	1	6
		b)	Evaluate $\iint_R x y dx dy$ over the region R in the first quadrant bounded	1	1	7
s on e.			by $y = x^2$, $y = 0$ and $y = 4$.			
ss lines practice		c)	Find the volume of the sphere $x^2 + y^2 + z^2 = 9$ using triple integration.	1	1	7
nal croas as malg			OR			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Prove that $\int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta \times \int_{0}^{\pi/2} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi$ using Beta and Gamma functions.	1	1	6
		b)	Evaluate $\int_0^2 \int_x^{\sqrt{8-x^2}} \left(\frac{1}{5+x^2+y^2}\right) dy dx$ by changing into polar coordinates.	1	1	7
		c)	Change the order of integration and hence evaluate $\int_{0}^{2a} \int_{0}^{x^{2}/2a} xy dy dx$.	1	1	7
our a			UNIT - 2			
tant Note: Completing ye Revealing of identification	3	a)	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = \vec{r} $ then show that $\frac{\vec{r}}{r^3}$ is solenoidal.	1	1	6
		b)	Obtain an angle between the surfaces $4x^2y + z^3 = 4$ and $5x^2 - 2yz = 9x$ at the point $(1, -1, 2)$.	1	1	7
		c)	Express the vector $\vec{f} = y\hat{\imath} - z\hat{\jmath} + x\hat{k}$ in spherical polar coordinates.	1	1	7
tant Rev			OR			
Import pages.	4	a)	If $\vec{F} = (x+y+1)\hat{i} + j - (x+y)k$ show that $\vec{F} \cdot curl \vec{F} = 0$.	1	1	6

	b)	If the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ at $(-1, 1, 2)$ has maximum magnitude of 32 units in the direction parallel to y -axis find a,b and c .	1	1	7
	c)	Prove that the cylindrical polar coordinate system is orthogonal curvilinear coordinate system.	1	1	7
		UNIT - 3			
5	a)	Express the vector $(3, -7,6)$ as a linear combination of the vectors $\{(1, -3,2), (2,4,1), (1,1,1)\}$ in \mathbb{R}^3 .	1	1	6
	b)	Show that the set $B = \{(1,1), (1,-1)\}$ is a basis of the vector space \mathbb{R}^2 .	1	1	7
	c)	Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that $T(2,1) = (3,1,4)$ and $T(3,2) = (4,1,6)$. Hence find $T(1,1)$.	1	1	7
		OR			
6	a)	Show that the subset $W = \{(x_1, x_2, x_3) x_1 + x_2 + x_3 = 0\}$ of the vector space \mathbb{R}^3 is a subspace of \mathbb{R}^3 .	1	1	6
	b)	Determine the basis and dimension of the subspace spanned by $(1,2,3,2)$, $(3,1,0,4)$, $(-2,1,3,4)$ and $(2,4,6,10)$ in \mathbb{R}^4 .	1	1	7
	c)	Let $T: V \to W$ be a linear transformation defined by $T(x,y,z) = (x + y,x - y,2x + z)$. Find the range space, null space and hence verify the rank-nullity theorem.	1	1	7
		UNIT - 4			
7	a)	Apply Lagrange's interpolation formula to find y at $x = 10$ given $\begin{bmatrix} x & 5 & 6 & 9 & 11 \\ y & 12 & 13 & 14 & 16 \end{bmatrix}$	1	1	6
	b)	The following table gives the temperature θ of a cooling body at different instant of time t (in seconds) t 1 3 5 7 9 θ 85.3 74.5 67 60.5 54.3 Calculate θ at $t = 2$ using Newton's forward interpolation formula.	2	1	7
	c)	Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos(x)} dx$ by dividing the interval into six equal parts using Simpson's $3/8^{\text{th}}$ rule.	1	1	7
		OR			
8	a)	Apply Newton-Raphson method to find an approximate root of the equation $3x = \cos x + 1$ near $x = 0.5$. Perform three iterations.	1	1	6

	b)	From the following data estimate the number of students who have scored less than 70 marks using backward interpolation formula.	2	1	7
		Marks 0-20 20-40 40-60 60-80 80-100 No. of Students 41 62 65 50 17			
	c)	Apply Simpson's $(1/3)^{rd}$ rule to compute the area bounded by the curve $y = f(x)$, x-axis and the extreme ordinates from the following	2	1	7
		table.			
		UNIT - 5			
9 a) Employ Taylor's series method to obtain the approximate value of y at $x = 0.1$ for the differential equation $\frac{dy}{dx} = x^2y - 1$, $y(0) = 1$ considering terms up to third degree.					6
	1	1	7		
	c)	Apply Milne's predictor – corrector method to find the solution of the differential equation $\frac{dy}{dx} = x^2 - y$ at $x = 0.4$ given $y(0) = 1$, $y(0.1) = 0.9051$, $y(0.2) = 0.8212$ and $y(0.3) = 0.7491$.	1	1	7
		OR			
10	a)	1	1	6	
	b)	Apply Runge-Kutta method to solve the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ at $x = 0.2$ taking $y(0) = 1$ and $h = 0.2$.	1	1	7
<	c)	Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The governing differential equation is $\frac{dy}{dt} = -ky$, where $k = 0.01, t_0 = 0, y_0 = 100g$. Determine how much substance will remain at the moment $t = 50$ sec by Modified Euler's	2	1	7
		method with $h = 25$. Perform two iterations.			
