# Lecture 3: Empirical Processes

## Tianpei Xie

## Feb. 1st., 2023

## ${\bf Contents}$

| 1        | Uniform Law of Large Numbers             |                                                    |   |
|----------|------------------------------------------|----------------------------------------------------|---|
|          | 1.1                                      | Motivations                                        | 2 |
|          | 1.2                                      | Glivenko-Cantelli Theorem                          | 3 |
| <b>2</b> | Empirical Processes                      |                                                    |   |
|          | 2.1                                      | Definitions                                        | 3 |
|          | 2.2                                      | Glivenko-Cantelli Class                            | 6 |
|          | 2.3                                      | Tail bounds for Empirical Processes                | 7 |
|          | 2.4                                      | Maximal Inequalities                               | 8 |
| 3        | Variance of Suprema of Empirical Process |                                                    |   |
|          | 3.1                                      | General Upper Bounds for the Variance              | 8 |
|          | 3.2                                      | Symmetrization and Contraction Principle           | 9 |
|          | 3.3                                      | Bounding the Weak Variance via Wimpy Variance      |   |
|          | 3.4                                      | Rademacher Complexity and Gaussian Complexity      |   |
| 4        | Exp                                      | pected Value of Suprema of Empirical Process       | 9 |
|          | 4.1                                      | Covering Number, Packing Number and Metric Entropy | 9 |
|          | 4.2                                      | Chaining and Dudley's Entropy Integral             |   |
|          | 4.3                                      | Vapnik-Chervonenkis Class                          |   |
|          |                                          | Comparison Theorems                                | 9 |

## 1 Uniform Law of Large Numbers

#### 1.1 Motivations

### • Remark (Unbiased Estimator of Cumulative Distribution Function)

The law of any scalar random variable X can be fully specified by its *cumulative distribution function (CDF)*, whose value at any point  $t \in \mathbb{R}$  is given by  $F(t) := \mathcal{P}[X \leq t]$ . Now suppose that we are given a collection  $\{X_i\}_{i=1}^n$  of n i.i.d. samples, each drawn according to the law specified by F. A natural *estimate* of F is **the empirical CDF** given by

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,t]}(X_i), \tag{1}$$

where  $\mathbb{1}_{(-\infty,t]}(x)$  is a  $\{0,1\}$ -valued indicator function for the event  $\{x \leq t\}$ . Since **the population CDF** can be written as  $F(t) = \mathbb{E}\left[\mathbb{1}_{(-\infty,t]}(X)\right]$ , the empirical CDF is an **unbiased** estimate.

For each  $t \in \mathbb{R}$ , the strong law of large numbers suggests that

$$\widehat{F}_n(t) \to F(t)$$
, a.s.

A natural goal is to strengthen this pointwise convergence to a form of uniform convergence. The reason why uniform convergence of  $\widehat{F}_n(t)$  to F(t) is important is that it can be used to prove the consistency of plug-in estimator for functionals of distribution function.

### • Example (Expectation Functionals)

Given some integrable function g, we may define the expectation functional  $\gamma_g$  via

$$\gamma_g(F) := \int g(x)dF(x). \tag{2}$$

For any g, the plug-in estimate is given by  $\gamma_g(\widehat{F}_n) = \frac{1}{n} \sum_{i=1}^n g(X_i)$ , corresponding to **the** sample mean of g(X).

### • Example (Quantile Functionals)

For any  $\alpha \in [0,1]$ , the quantile functional  $Q_{\alpha}$  is given by

$$Q_{\alpha}(F) := \inf \left\{ t \in \mathbb{R} : F(t) > \alpha \right\}. \tag{3}$$

The **median** corresponds to the special case  $\alpha = 0.5$ . The plug-in estimate is given by

$$Q_{\alpha}(\widehat{F}_n) := \inf \left\{ t \in \mathbb{R} : \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty, t]}(X_i) \ge \alpha \right\}$$
 (4)

and corresponds to estimating the  $\alpha$ -th quantile of the distribution by the  $\alpha$ -th sample quantile. In the special case  $\alpha = 0.5$ , this estimate corresponds to the sample median. In this case,  $Q_{\alpha}(\hat{F}_n)$  is a fairly complicated, nonlinear function of all the variables, so that this convergence does not follow immediately by a classical result such as the law of large numbers.

### • Example (Goodness-of-fit Functionals)

It is frequently of interest to test the hypothesis of whether or not a given set of data has

been drawn from a known distribution  $F_0$ . Such tests can be performed using functionals that **measure the distance** between F and the target CDF  $F_0$ , including the sup-norm distance  $||F - F_0||_{\infty}$ , or other distances such as **the Cramer-von Mises criterion** based on the functional

$$\gamma_g(F) := \int_{-\infty}^{+\infty} (F(x) - F_0(x))^2 dF_0(x)$$

• Remark (Consistency of Plug-In Estimate)

For any **plug-in estimator**  $\gamma_g(\overline{F_n})$ , an important question is to understand when it is **consistent** – that is, when does  $\gamma_g(\widehat{F_n})$  converge to  $\gamma_g(F)$  in **probability** (or almost surely)?

We can define the **continuity** of a **functional**  $\gamma$  with respect to the supremum norm: more precisely, we say that the functional  $\gamma$  is **continuous** at F in the **sup-norm** if, for all  $\epsilon > 0$ , there exists a  $\delta > 0$  such that

$$||G - F||_{\infty} := \sup_{t \in \mathbb{R}} |G(t) - F(t)| \le \delta$$
 implies that  $|\gamma(G) - \gamma(F)| \le \epsilon$ .

Thus for any *continuous functional*, it reduces the *consistency* question for the plug-in estimator  $\gamma_g(\hat{F}_n)$  to the issue of whether or not the random variable  $\|\hat{F}_n - F\|_{\infty}$  converges to zero.

### 1.2 Glivenko-Cantelli Theorem

• Theorem 1.1 (Glivenko-Cantelli Theorem) [Wellner et al., 2013, Wainwright, 2019, Giné and Nickl, 2021]
For any distribution, the empirical CDF

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,t]}(X_i)$$

is a **strongly consistent estimator** of the population CDF in **the uniform norm**, meaning that

$$\left\| \widehat{F}_n - F \right\|_{\infty} := \sup_{t \in \mathbb{R}} \left| \widehat{F}_n(t) - F(t) \right| \to 0, \ a.s.$$
 (5)

## 2 Empirical Processes

#### 2.1 Definitions

• **Definition** (*Empirical Measure*) [Wellner et al., 2013, Giné and Nickl, 2021] Let  $(\mathcal{X}, \mathcal{F}, \mathcal{P})$  be a probability space, and let  $X_i, i \in \mathbb{N}$ , be the coordinate functions of the infinite product probability space  $(\Omega, \mathcal{B}, \mathbb{P}) := (\mathcal{X}^{\infty}, \mathcal{F}^{\infty}, \mathcal{P}^{\infty}), X_i : \mathcal{X}^{\infty} \to \mathcal{X}$ , which are independent identically distributed  $\mathcal{X}$ -valued random variables with law  $\mathcal{P}$ . <u>The empirical measure</u> corresponding to the 'observations'  $X_1, \ldots, X_n$ , for any  $n \in \mathbb{N}$ , is defined as the <u>random</u> discrete probability measure

$$\mathcal{P}_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i} \tag{6}$$

where  $\delta_x$  is *Dirac measure* at x, that is, unit mass at the point x. In other words, for each event A,  $\mathcal{P}_n(A)$  is the **proportion** of **observations**  $X_i$ ,  $i = 1, \ldots, n$ , that fall in A; that is,

$$\mathcal{P}(A) = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{X_i \in A\}, \quad A \in \mathscr{F}.$$

• Remark (*Probability Measure with Operator Notation*) [Wellner et al., 2013, Giné and Nickl, 2021]

For any measure  $\mu$  and  $\mu$ -integrable function f, we will use the following <u>operator notation</u> for the integral of f with respect to  $\mu$ :

$$\mu f \equiv \mu(f) = \int_{\Omega} f d\mu.$$

This is valid since there exists an isomorphism between the space of probability measure and the space of bounded linear functional on  $C_0(\Omega)$  by Riesz-Markov representation theorem (assuming  $\Omega$  is locally compact). By this notion the expectation  $\mathcal{P}f = \mathbb{E}_{\mathcal{P}}[f]$ .

• **Definition** (*Empirical Process*) [Wellner et al., 2013, Giné and Nickl, 2021] Let  $\mathcal{F}$  be a *collection of*  $\mathcal{P}$ -integrable functions  $f: \mathcal{X} \to \mathbb{R}$ , usually infinite. For any such class of functions  $\mathcal{F}$ , the empirical measure defines a stochastic process

$$f \to \mathcal{P}_n f, \quad f \in \mathcal{F}$$
 (7)

which we may call <u>the empirical process indexed by  $\mathcal{F}$ </u>, although we prefer to reserve the notation 'empirical process' for the <u>centred</u> and <u>normalised</u> process

$$f \to \nu_n(f) := \sqrt{n} \left( \mathcal{P}_n f - \mathcal{P} f \right), \quad f \in \mathcal{F}.$$
 (8)

• Remark An explicit notion of (centered and normalized) empirical process is

$$\sqrt{n}\left(\mathcal{P}_n f - \mathcal{P} f\right) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(f(X_i) - \mathbb{E}_{\mathcal{P}}\left[f(X)\right]\right), \quad f \in \mathcal{F}.$$

where  $X_1, \ldots, X_n \sim \mathcal{P}$  are i.i.d random variables. Note that it is a stochastic process since the function f is changing in  $\mathcal{F}$ , i.e. the process  $(\mathcal{P}_n - \mathcal{P})$  f is indexed by function  $f \in \mathcal{F}$  not finite dimensional variable.

• Remark (Random Measure)

Normally we assume that data are sampled from some distribution  $\mathcal{P}$  and the data itself is random. However, the empirical measure

$$\mathcal{P}_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

itself is considered as a random probability measure. That is, the sampling mechanism itself contains randomness and it is not sampling from one distribution but a system of distributions depending on the choice of dataset  $X_1, \ldots, X_n$ , which in turn were sampled from some  $prior \mathcal{P}$ . Due to this randomness,  $\mathcal{P}_n f = \mathbb{E}_{\mathcal{P}_n}[f]$  is not a fixed expectation number but a random variable. In fact, this is the empirical mean (i.e. sample mean)

$$\mathcal{P}_n f = \mathbb{E}_{\mathcal{P}_n} [f] = \frac{1}{n} \sum_{i=1}^n f(X_i).$$

The critical difference between mean of empirical measure vs. sample mean is that we now assume that f is **not** fixed.

## • Remark (Object of Empirical Process Theory)

The **object** of empirical process theory is to study the **properties** of the **approximation** of  $\mathcal{P}f$  by  $\mathcal{P}_nf$ , uniformly in  $\mathcal{F}$ , concretely, to obtain both **probability estimates** for the random quantities

$$\|\mathcal{P}_n - \mathcal{P}\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |\mathcal{P}_n f - \mathcal{P} f|$$

and *probabilistic limit theorems* for the processes  $\{(\mathcal{P}_n - \mathcal{P})(f) : f \in \mathcal{F}\}.$ 

Note that the quantity  $\|\mathcal{P}_n - \mathcal{P}\|_{\mathcal{F}}$  is a *random variable* since  $\mathcal{P}_n$  is a *random measure*.

## $\bullet \ \ \mathbf{Remark} \ \ (\textbf{\textit{Measurability Problem}})$

There may be a *measurability problem* for

$$\|\mathcal{P}_n - \mathcal{P}\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |\mathcal{P}_n f - \mathcal{P} f|$$

since the uncountable suprema of measurable functions may not be measurable.

However, there are many situations where this is actually a *countable supremum*. For instance, for probability distribution on  $\mathbb{R}$ 

$$\left\|\mathcal{P}_{n}-\mathcal{P}\right\|_{\infty}:=\sup_{t\in\mathbb{R}}\left|\left(\mathcal{P}_{n}-\mathcal{P}\right)\left(-\infty,t\right)\right|=\sup_{t\in\mathbb{Q}}\left|F_{n}(t)-F(t)\right|=\sup_{t\in\mathbb{Q}}\left|\left(\mathcal{P}_{n}-\mathcal{P}\right)\left(-\infty,t\right)\right|$$

where  $F(t) = \mathcal{P}(-\infty, t)$  is the cumulative distribution function. If  $\mathcal{F}$  is *countable* or if there exists  $\mathcal{F}_0$  countable such that

$$\|\mathcal{P}_n - \mathcal{P}\|_{\mathcal{F}} = \|\mathcal{P}_n - \mathcal{P}\|_{\mathcal{F}_0}, \quad \text{a.s.}$$

then the measurability problem disappears.

For the next few sections we will simply assume that the class  $\mathcal{F}$  is *countable*.

#### • Remark (Bounded Assumption)

If we assume that

$$\sup_{f \in \mathcal{F}} |f(x) - \mathcal{P}f| < \infty, \quad \forall x \in \mathcal{X}, \tag{9}$$

then the maps from  $\mathcal{F}$  to  $\mathbb{R}$ ,

$$f \to f(x) - \mathcal{P}f, \quad x \in \mathcal{X},$$

are **bounded functionals** over  $\mathcal{F}$ , and therefore, so is  $f \to (\mathcal{P}_n - \mathcal{P})(f)$ . That is,

$$\mathcal{P}_n - \mathcal{P} \in \ell_{\infty}(\mathcal{F}),$$

where  $\ell_{\infty}(\mathcal{F})$  is **the space of bounded real functionals** on  $\mathcal{F}$ , a Banach space if we equip it with the supremum norm  $\|\cdot\|_{\mathcal{F}}$ .

A large literature is available on *probability in separable Banach spaces*, but unfortunately,  $\ell_{\infty}(\mathcal{F})$  is *only separable* when the class  $\mathcal{F}$  is *finite*, and *measurability problems* arise because the probability law of the process  $\{(\mathcal{P}_n - \mathcal{P})(f) : f \in \mathcal{F}\}$  does not extend to the Borel  $\sigma$ -algebra of  $\ell_{\infty}(\mathcal{F})$  even in simple situations.

- Remark This chapter addresses three main questions about the empirical process:
  - 1. The first question has to do with <u>concentration</u> of  $\|\mathcal{P}_n \mathcal{P}\|_{\mathcal{F}}$  about its <u>mean</u> when  $\mathcal{F}$  is <u>uniformly bounded</u>. Recall that  $\|\mathcal{P}_n \mathcal{P}\|_{\mathcal{F}}$  is a random variable itself, due to randomness of the empirical measure. We mainly use the <u>non-asymptotic analysis</u> to obtain the exponential bound for concentration.
  - 2. The second question is do **good estimates** for **mean**  $\mathbb{E}[\|\mathcal{P}_n \mathcal{P}\|_{\mathcal{F}}]$  exist? We will examine two main techniques that give answers to this question, both related to **metric entropy** and **chaining**. One of them, called **bracketing**, uses **chaining** in combination with truncation and Bernstein's inequality. The other one applies to **Vapnik-Cervonenkis** (VC) classes of functions.
  - 3. Finally, the last question about the empirical process refers to <u>limit theorems</u>, mainly <u>the uniform law of large numbers</u> and the <u>central limit theorem</u>, in fact, the analogues of the classical Glivenko-Cantelli and Donsker theorems for the empirical distribution function.

Formulation of the central limit theorem will require some more measurability because we will be considering convergence in law of random elements in not necessarily separable Banach spaces.

#### 2.2 Glivenko-Cantelli Class

• **Definition** (*Glivenko-Cantelli Class*) [Wellner et al., 2013, Wainwright, 2019, Giné and Nickl, 2021]

We say that  $\mathcal{F}$  is a **Glivenko-Cantelli class** for  $\mathcal{P}$  if

$$\|\mathcal{P}_n - \mathcal{P}\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |\mathcal{P}_n f - \mathcal{P} f| \to 0$$

in probability as  $n \to \infty$ .

This notion can also be defined in a *stronger* sense, requiring *almost sure convergence* of  $\|\mathcal{P}_n - \mathcal{P}\|_{\mathcal{F}}$ , in which case we say that  $\mathcal{F}$  satisfies a *strong Glivenko-Cantelli law*.

• Example (*Empirical CDFs and Indicator Functions*)
Consider the function class

$$\mathcal{F} := \left\{ \mathbb{1}_{(-\infty,t]}(\cdot), t \in \mathbb{R} \right\} \tag{10}$$

where  $\mathbb{1}_{(-\infty,t]}$  is the  $\{0,1\}$ -valued indicator function of the interval  $(-\infty,t]$ . For each fixed  $t \in \mathbb{R}$ , we have the equality  $\mathbb{E}\left[\mathbb{1}_{(-\infty,t]}(X)\right] = \mathcal{P}[X \leq t] = F(t)$ , so that the classical Glivenko-Cantelli theorem is equivalent to a **strong uniform law** for the class (10),

## 2.3 Tail bounds for Empirical Processes

• Remark Consider the suprema of empirical process:

$$Z := \sup_{f \in \mathcal{F}} \{ \mathcal{P}_n f \} = \sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^n f(X_i) \right\}$$
 (11)

where  $(X_1, \ldots, X_n)$  are independent random variables drawn from  $\mathcal{P} := \bigotimes_{i=1}^n \mathcal{P}_i$ , each  $\mathcal{P}_i$  is supported on some set  $\mathcal{X}_i \subseteq \mathcal{X}$ .  $\mathcal{F}$  is a family of real-valued functions  $f : \mathcal{X} \to \mathbb{R}$ . The primary goal of this section is to derive a number of *upper bounds* on the tail event  $\{Z \geq \mathbb{E} [Z] + t\}$ .

• Theorem 2.1 (Functional Hoeffding Inequality) [Wainwright, 2019, Boucheron et al., 2013]

For each  $f \in \mathcal{F}$  and i = 1, ..., n, assume that there are real numbers  $a_{i,f} \leq b_{i,f}$  such that  $f(x) \in [a_{i,f}, b_{i,f}]$  for all  $x \in \mathcal{X}_i$ . Then for all  $t \geq 0$ , we have

$$\mathcal{P}\left\{Z \ge \mathbb{E}\left[Z\right] + t\right\} \le \exp\left(-\frac{nt^2}{4L^2}\right) \tag{12}$$

where  $Z := \sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right\}$ , and  $L^2 := \sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (a_{i,f} - b_{i,f})^2 \right\}$ .

• Theorem 2.2 (Functional Bernstein Inequality, Talagrand Concentration for Empirical Processes) [Wainwright, 2019, Boucheron et al., 2013]

Consider a countable class of functions  $\mathcal{F}$  uniformly bounded by b. Then for all t > 0, the suprema of empirical process Z as defined in (11) satisfies the upper tail bound

$$\mathcal{P}\left\{Z \ge \mathbb{E}\left[Z\right] + t\right\} \le \exp\left(-\frac{nt^2}{8e\Sigma^2 + 4bt}\right) \tag{13}$$

where  $\Sigma^2 := \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left\{\frac{1}{n} \sum_{i=1}^n f^2(X_i)\right\}\right]$  is the weak variance.

- Remark As opposed to control only in terms of **bounds** on the **function values**, the inequality (13) **also** brings a notion of **variance** into play.
- **Remark** We will prove the bound in next section:

$$\Sigma^2 \le \sigma^2 + 2b\mathbb{E}\left[Z\right]$$

where  $\sigma^2 := \sup_{f \in \mathcal{F}} \mathbb{E}\left[f^2(X)\right]$ . Then, the functional Bernstein inequality (13) can be formulated as

$$\mathcal{P}\left\{Z \ge \mathbb{E}\left[Z\right] + c_0 \gamma \sqrt{t} + c_1 bt\right\} \le e^{-nt} \tag{14}$$

for some constant  $c_0, c_1$  and  $\gamma^2 := \sigma^2 + 2b\mathbb{E}[Z]$ . We can have an alternative form of this bound (14) for any  $\epsilon > 0$ ,

$$\mathcal{P}\left\{Z \ge (1+\epsilon)\mathbb{E}\left[Z\right] + c_0\sigma\sqrt{t} + (c_1 + c_0^2/\epsilon)bt\right\} \le e^{-nt}.$$
 (15)

• Theorem 2.3 (Bousquet's Inequality, Functional Bennet Inequality) [Boucheron et al., 2013]

Let  $X_1, \ldots, X_n$  be **independent identically distributed** random vectors. Assume that  $\mathbb{E}[f(X_i)] = 0$ , and that  $f(X_i) \leq 1$  for all  $f \in \mathcal{F}$ . Let

$$\gamma^2 = \sigma^2 + 2\mathbb{E}\left[Z\right],$$

where  $\sigma^2 := \sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[ f^2(X_i) \right] \right\}$  is **the wimpy variance**. Let  $\phi(u) = e^u - u - 1$  and  $h(u) = (1+u) \log(1+u) - u$ , for  $u \ge -1$ . Then for all  $\lambda \ge 0$ ,

$$\log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] \le n\gamma^2\phi(\lambda).$$

Also, for all  $t \geq 0$ ,

$$\mathcal{P}\left\{Z \ge \mathbb{E}\left[Z\right] + t\right\} \le \exp\left(-n\gamma^2 h\left(\frac{t}{\gamma^2}\right)\right). \tag{16}$$

## 2.4 Maximal Inequalities

## 3 Variance of Suprema of Empirical Process

## 3.1 General Upper Bounds for the Variance

• Definition (Variances of Empirical Process)

Let  $X_1, \ldots, X_n$  be independent random variables taking values in  $\mathcal{X}$ . Depending on **ordering** of the **expectation**, **suprema** and **summation** operator, we define three different types of **variance** associated with empirical process

$$\mathcal{P}_n f = \mathbb{E}_{\mathcal{P}_n} [f] = \frac{1}{n} \sum_{i=1}^n f(X_i).$$

1. **The strong variance** is defined as

$$V := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[ \sup_{f \in \mathcal{F}} f^{2}(X_{i}) \right]$$
 (17)

2. The weak variance is defined as

$$\Sigma^2 := \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^n f^2(X_i) \right\} \right]$$
 (18)

3. **The wimpy variance** is defined as

$$\sigma^2 := \sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[ f^2(X_i) \right] \right\}$$
 (19)

By Jensen's inequality,

$$\sigma^2 \le \Sigma^2 \le V$$

In general, there may be significant gaps between any two of these quantities. A notable difference is the case of **Rademacher averages** when  $\sigma^2 = \Sigma^2$ .

- 3.2 Symmetrization and Contraction Principle
- 3.3 Bounding the Weak Variance via Wimpy Variance
- 3.4 Rademacher Complexity and Gaussian Complexity
- 4 Expected Value of Suprema of Empirical Process
- 4.1 Covering Number, Packing Number and Metric Entropy
- 4.2 Chaining and Dudley's Entropy Integral
- 4.3 Vapnik-Chervonenkis Class
- 4.4 Comparison Theorems

## References

- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.
- Evarist Giné and Richard Nickl. *Mathematical foundations of infinite-dimensional statistical models*. Cambridge university press, 2021.
- Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.
- Jon Wellner et al. Weak convergence and empirical processes: with applications to statistics. Springer Science & Business Media, 2013.