12. Sea $A \in \mathbb{R}^{n \times n}$ una matriz no necesariamente simétrica.
a) Probar que A es definida positiva si y sólo si A^t lo es. $A \perp A^t$
b) Probar que A es definida positiva si y sólo si $\frac{A+A^t}{2}$ es simétrica definida positiva.
c) Sea $b \in \mathbb{R}^n$ no nulo y $M \in \mathbb{R}^{(n+1)\times(n+1)}$ una matriz definida como:
$M = \begin{pmatrix} AA^t & 2b \\ 0^t & 1 \end{pmatrix}$
Probar que si A es inversible y $ A^{-1}b _2^2 < 1$, entonces M es definida positiva.
(a)
$QVQ: A dp \Leftrightarrow A^T dp$
$\alpha \alpha \alpha \beta \Rightarrow A \beta \beta$
$x^TAx = (x^TAx)^T = x^T(x^TA)^T = x^TA^T(x^T)^T = x^TA^Tx$ EIR el traspuesto de un número es ese mismo número
EIR el traspuesto de un número es ese mismo número
$\Rightarrow \times^T A \times = \times^T A^T \times$
T_0
$X^{T}A \times > O \forall X \neq O \iff X^{T}A^{T} \times > O \forall X \neq O$
$\therefore A dp \iff A^T dp$
ы
$QVQ: A dp \iff \frac{1}{2}(A+A^T) \leq dp$
QVQ: A dp <=> 2(A+A) Sdp
$x^{T} \stackrel{!}{\stackrel{!}{\stackrel{!}{\stackrel{!}{\stackrel{!}{\stackrel{!}{\stackrel{!}{!$
$inciso a: x^{T}Ax = x^{T}A^{T}x$
$\Rightarrow \times^{T} (A + A^{T}) \times = \times^{T} A \times$
$x^{T} \stackrel{!}{=} (A + A^{T}) \times > O \forall x \neq o \iff x^{T} A \times > O \forall x \neq o$
A ZINTA JA / U IX + U IZ / X AX Y U VX + U
$\therefore A dp \iff \frac{1}{2}(A+A^T) dp$

Falta ver que Adp =>	±(A+AT) simétrica.	
$QVQ: \frac{1}{2}(A+A^T) = \frac{1}{2}(A+A^T)$	suma de Matrices conmutativ	a
,	$= \frac{1}{2}(A^T + A) = \frac{1}{2}(A + A^T)$	
: \frac{1}{z}(A+A^T) es simétrico	a sin ninguna hipótesis sobre A.	
Usanda incisa b) basta ve	ver que ½ (M+MT) es sdp y entonces	
M resulta dp. (AA'	$(T)^{T} = AA^{T}$	
$\frac{1}{Z}(M+M^{T}) = \frac{1}{Z} \cdot \begin{pmatrix} AA^{T} & Zb \\ O^{T} & 1 \end{pmatrix}$	$\begin{vmatrix} b & + & AA^T & O \\ & Zb^T & 1 \end{vmatrix} = \begin{vmatrix} \frac{1}{Z} & 2AA^T & 2b \\ & Zb^T & Z \end{vmatrix} = \begin{vmatrix} AA^T & b \\ & b^T & 1 \end{vmatrix}$	
: {\frac{1}{2}(M+M^T)} es simétrico	.a.	
	es dp vamos a buscar la factorizació ntonces ½ (M+M ^T) es sdp y luego M dp.	
$\frac{1}{z}(M+M^{T}) = LL^{T} \iff$	$\begin{bmatrix} AA^T & b \\ b^T & 1 \end{bmatrix} = \begin{bmatrix} \widetilde{L} & O \\ \chi^T & \alpha \end{bmatrix} \cdot \begin{bmatrix} \widetilde{L}^T & Q \\ O^T & \alpha \end{bmatrix} \xrightarrow{\text{nxn}} \xrightarrow{\text{nx}}$	-
Lell tri. inf. con di		
$\hat{L} \in \mathbb{R}^{n \times n}$ tri. inf. con dia $k \in \mathbb{R}^n$ $k \in \mathbb{R}$	iagonal > 0	
V. 5 //×		