מועד הגשה: 7.06.04

(1)

עוצמות הרעש X ו- Y הנמדדות בשתי נקודות A ו- B בהתאמה מהוות וקטור אקראי בעל צפיפות אחידה במשולש אשר קודקודיו הם $(0,0),\ (2,0)$ ו- (1,2).

- f_Y -ו f_X א. מצאו את
- $:\;B$ -ב. מהי ההסתברות שעוצמת הרעש בA קטנה מזו שב
- ג. מהי ההסתברות שסכום עוצמות הרעש גדול מיחידה החת י
 - $f_{X|Y}$ מהי ההסתברות המותנת

(2)

ומשתנה אקראי Y=|X| משתנה אקראי, $N(0,\sigma^2),\;\sigma>0$ ומשתנה X

$$Z = sign(X) = \begin{cases} 1, & X > 0 \\ 0, & X = 0, \\ -1, & X < 0 \end{cases}$$

האם Y ו-Z בלתי תלויים! נמקו!

(3)

המיקום של חלקיק הוא נקודה אקראית $R_3 \in R_3$, כך ש- X_1, X_2 מ.א. בלתי תלויים המפולגים לפי אותה התפלגות מעריכית עם פרמטר 2, וההתפלגות של מ.א. בלתי תלויים המפולגים לפי אותה $X_1+x_2=x_1$ היא מעריכית עם הפרמטר $X_1+x_2=x_2$ בהנתן $X_1+x_2=x_1$ היא מעריכית של $X_1+x_2=x_2$ מה הן פונקציות הצפיפות וההתפלגות של $X_1+x_1=x_1$ חשבו $X_1+x_2=x_2$

יהי M>3 מתוך מספר תלקיקים בתא מספר תאים. המוגדר כמספר המוגדר מספר תלקיקים בתא תשבו תשבו

$$(i)p_{(X_1,X_2,X_3)}$$
 $(ii)p_{X_1|X_2,X_3}$ $(iii)EX_j$

עבור שני מקרים הבאים:

א. m חלקיקים מפולגים באופן אקראי בין m תאים.

ב. כל אחד מn חלקיקים אשר נפלטים ממקור קרינה נלכד באחד מm תאים, ב. כל אחד מ1/m ובאופן בלתי תלוי זה בזה.

(5)

 X_n יהי $X_0 \sim U[0,1]$. ניצור סידרה אינדוקטיבית יורדת של מספרים ע"י הגרלת $X_0 \sim U[0,1]$ יהי הארלת מתוך הקטע $[0,X_{n-1}]$ לכל

- X_1 א. מהי הצפיפות המשותפת של (X_0,X_1) , ומהן הצפיפויות של X_1 של אושל X_2 ושל
 - ב. נחש, מתוך סעיף (א), את הנוסחה של $f_{X_n}(x)$ עבור n כללי.
 - ג. חשב את EX_n (ניתן לחשב אותו מתוך סעיף (ב) או בלעדיו; השווה).

 $f_{X_{n-1}|X_n}(x|y)$ ד. מצא את הצפיפות המותנית

(6)

 $,\!f_{X|Y}$ -ש , 0 < y < 1עבור אוג פרמטרים (X,Y) עבור אקראיים עבור אוג פרמטרים ($y \in (0,1)$ לכל ($y \in (0,1)$, לכל אחידה אפיפות אחידה אפיפות אחידה ($y \in (0,1)$

- $f_{X}(x)$ א. מצא את $f_{X,Y}(x,y)$ ואת
- E(Y|X) ואת ואת E(X|Y) ב. מצא את

בהצלתהיי