## Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks

Hadi Abdi Khojasteh

hadi.abdikhojasteh@ **deltatre**.com September 16th, 2023





### Overview







Variations



Implementation



### Introduction







## Deep Neural Network Demonstration





# Transfer Learning





# Transfer Learning





### Overview



Introduction



Variations



Implementation



# Knowledge Transfer





Neural Network



# Knowledge Transfer





Student Network













### Overview



Introduction



Variations



Implementation



## Distillation Learning in Action

First, we import the TensorFlow library:

```
# Importing libraries
import tensorflow as tf
```



```
0000000000
 2 2 2 2 2 2 2 2 2 2
333333333333
  55855555
コチャリソワククワワ
8888888888
999999999
```

Then load MNIST dataset and normalize the data:

```
# Loading the data
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# Preprocessing the data
x_{train} = x_{train.reshape}(-1, 784).astype('float32') / 255
x_{test} = x_{test.reshape}(-1, 784).astype('float32') / 255
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
```





Next, we define the teacher model:

```
# Defining the teacher model (More complex and larger neural network)
class TeacherModel(tf.keras.Model):
   def init (self):
       super(TeacherModel, self).__init__()
       self.layer1 = tf.keras.layers.Dense(512, input_shape=(784,), activation='relu')
       self.layer2 = tf.keras.layers.Dense(256, activation='relu')
       self.layer3 = tf.keras.layers.Dense(128, activation='relu')
       self.layer4 = tf.keras.layers.Dense(64, activation='relu')
       self.last = tf.keras.layers.Dense(10, activation='softmax')
   def call(self, x):
       # Defining the forward pass
       x = self.layer1(x)
       x = self.layer2(x)
       x = self.layer3(x)
       x = self.layer4(x)
       return self.last(x)
```

Teacher Network



And an student model which is shallower than teacher model:

```
# Defining the student model (More efficient and smaller neural network)
class StudentModel(tf.keras.Model):
   def __init__(self):
       super(StudentModel, self).__init__()
       self.layer1 = tf.keras.layers.Dense(512, input_shape=(784,), activation='relu')
       self.layer2 = tf.keras.layers.Dense(256, activation='relu')
       self.last = tf.keras.layers.Dense(10, activation='softmax')
   def call(self, x):
       # Defining the forward pass
       x = self.layer1(x)
       x = self.layer2(x)
       return self.last(x)
```

Student Network



Afterward we call and load the teacher model first, define some of its hyperparameters and finally train it as follows:

```
# Loading the teacher model
teacher_model = TeacherModel()

# Defining the loss function and optimizer
loss_fn = tf.keras.losses.CategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()
```



```
Epoch 1/5 1875/1875 - loss: 0.2074 - accuracy: 0.9377 - val_loss: 0.1059 - val_accuracy: 0.9694

Epoch 2/5 1875/1875 - loss: 0.0941 - accuracy: 0.9717 - val_loss: 0.0878 - val_accuracy: 0.9736

Epoch 3/5 1875/1875 - loss: 0.0675 - accuracy: 0.9795 - val_loss: 0.0722 - val_accuracy: 0.9773

Epoch 4/5 1875/1875 - loss: 0.0530 - accuracy: 0.9842 - val_loss: 0.0808 - val_accuracy: 0.9776

Epoch 5/5 1875/1875 - loss: 0.0445 - accuracy: 0.9864 - val_loss: 0.0813 - val_accuracy: 0.9782
```



When teacher model training is done, we freeze teacher model layers to be able to use it in the student model:

```
student_model = StudentModel()

# Freezing the teacher model layers
for layer in teacher_model.layers:
    layer.trainable = False
```

# Loading the student model





The loss function for student model is calculated with respect to the teacher model output not the true values from the training data:

```
# Defining the distillation loss function
temp = 5
def distillation_loss(y_true, y_pred):
    y_true = tf.nn.softmax(y_true / temp)
    y_pred = tf.nn.softmax(y_pred / temp)
    return tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true, y_pred))

# Train the student model
student_model.compile(optimizer=optimizer, loss=distillation_loss, metrics=['accuracy'])
student_model.fit(x_train, teacher_model.predict(x_train), epochs=5, batch_size=32,
validation_data=(x_test, y_test))
```







```
1875/1875

Epoch 1/5 - loss: 2.3008 - accuracy: 0.9404 - val_loss: 2.3007 - val_accuracy: 0.9643

Epoch 2/5 - loss: 2.3007 - accuracy: 0.9741 - val_loss: 2.3007 - val_accuracy: 0.9721

Epoch 3/5 - loss: 2.3007 - accuracy: 0.9796 - val_loss: 2.3007 - val_accuracy: 0.9719

Epoch 4/5 - loss: 2.3007 - accuracy: 0.9837 - val_loss: 2.3007 - val_accuracy: 0.9761

Epoch 5/5 - loss: 2.3007 - accuracy: 0.9862 - val_loss: 2.3007 - val_accuracy: 0.9760

#loss: 0.0445 - accuracy: 0.9864 - val_loss: 0.0813 - val_accuracy: 0.9782
```

#### Finally, we run the inference on the dataset:

```
# Evaluate the student model
test_loss, test_acc = student_model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)
```





#### Overview



Introduction



Variations



Implementation



#### Further References

Below are the recommended researches for a comprehensive exploration and indepth understanding of the topic:

KD++ Improving Knowledge Distillation via Regularizing Feature Norm and Direction, 2023

Closer Look A closer look at the training dynamics of knowledge distillation, 2023

DIST Knowledge Distillation from A Stronger Teacher, 2022

ADLIK-Faster Focal and Global Knowledge Distillation for Detectors, 2021

LSHFM Distilling Knowledge by Mimicking Features, 2020

ADLIK-MO-P25 Ensemble Knowledge Distillation for Learning Improved and Efficient Networks, 2019

KD/ADLIK-MO Distilling the Knowledge in a Neural Network, 2015



#### Further References

**torchdistill** (formerly kdkit) simplifies knowledge distillation through declarative config files, eliminating the need for extensive code. It also supports reproducible deep learning studies and offers flexibility for various experiments.

```
# Fine-tune Transformer models for GLUE CoLA task
!accelerate launch torchdistill/examples/legacy/hf_transformers/text_classification.py \
    --config torchdistill/configs/legacy/sample/glue/cola/ce/bert_base_uncased.yaml \
    --task cola \
    --log log/glue/cola/ce/bert_base_uncased.txt \
    --private_output leaderboard/glue/standard/bert_base_uncased/
```



### Thank you for your attention :)

Distillation Unleashed:

Domain Knowledge Transfer with Compact Neural Networks

You can find me in in 🕥 😯









Presentation will be available online.





# Transfer Learning



