ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Twelfth Week Due Date: Monday, Nov. 14, 2016

P1. (10 points)

Briefly explain the major difference between a Moore state machine and a Mealy state machine.

Solution:

The output of a Moore state machine only depends on the value of current state. On the other hand, the output of a Mealy state machine depends on the values of both the current state and the current input.

P2. (25 points)

A FSM with an input w and an output z has the following state table.

Present	Next State		Output z	
State	w=0	w=1	w=0	w=1
A	A	В	0	1
В	C	В	1	0
С	В	A	0	0

- a) (5 points) Draw the state diagram based on the state table.
- b) (5 points) Complete the state-assigned table based on the state table.
- c) (5 points) Find the simplified SOP expressions for Y_1 , Y_0 , and z.
- d) (5 points) Draw the circuit diagram using D flip-flops and any other required gates.
- e) (5 points) Is this a Moore machine or a Mealy machine? Why?

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

A B

Synchronous Sequential Circuits Assigned Date: Twelfth Week Due Date: Monday, Nov. 14, 2016

b)

Present	Next State		Output z	
State	w=0	w=1	w=0	w=1
y_1y_0	Y_1Y_0	Y_1Y_0	Z	z
0 0	0 0	0 1	0	1
0 1	1 0	0 1	1	0
1 0	0 1	0 0	0	0

c)

w	y_1	y_0	Y_1	Y_0	Z
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	0	1	0
0	1	1	D	D	D
1	0	0	0	1	1
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	D	D	D

$$Y_1 = wy_0$$
 $Y_0 = wy_1 + wy_1 = w \oplus y_1$ $z = wy_0 + wy_1y_0$

d)

e) Mealy state machine because the output value is associated with the current state and the input value.

Cpr E 281 HW10

ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Twelfth Week Due Date: Monday, Nov. 14, 2016

P3. (15 points)

A FSM has two D flip-flops, an input w, and an output z. The circuit diagram is shown below.

- a) (5 points) Find the logic expressions of Y_1 , Y_0 , and the output z.
- b) (5 points) Show the state-assigned table of the FSM.
- c) (5 points) Draw the state diagram of the FSM.

Solution:

a)
$$Y_1 = \overline{y_0}$$

$$Y_1 = \overline{y_0} \qquad Y_0 = w \oplus y_1 \qquad z = y_0 + y_1$$

$$z = y_0 + y_1$$

b)

Present	Next State		Output
State	w=0	w=1	Output
$y_1 y_0$	Y_1Y_0	Y_1Y_0	Z
0 0	1 0	1 1	0
0 1	0 0	0 1	1
1 0	1 1	1 0	1
1 1	0 1	0 0	1

c)

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Twelfth Week Due Date: Monday, Nov. 14, 2016

P4. (10 points)

A two-bit counter has the following circuit diagram. The output is $z_1z_0 = y_1y_0$.

- a) (5 points) Draw the state diagram of the counter.
- b) (5 points) What is the repeated counting sequence of this counter?

Solution:

From the circuit, we have

$$T_1 = y_1 + y_0$$
 and $T_0 = \overline{y_1} + y_0$.

We can construct the following state-assigned table, which leads to the state diagram below.

	Present State	Flip-Flop	Next State	Output
	y_1y_0	T_1T_0	Y_1Y_0	$z_1 z_0$
A	0 0	0 1	0 1	0 0
В	0 1	1 1	1 0	0 1
C	1 0	1 0	0 0	1 0
D	1 1	1 1	0 0	1 1

a)

b) The repeated counting sequence is 00-01-10-00.

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Twelfth Week Due Date: Monday, Nov. 14, 2016

P5. (30 points)

Consider the following state table for a FSM.

Present	Next State		Output
State	w=0	w=1	z
A	A	В	0
В	В	С	1
С	С	D	0
D	D	A	1

- a) (5 points) Draw the state diagram of the FSM.
- b) (5 points) Draw the circuit diagram of FSM using D flip-flops.
- c) (5 points) Perform state minimization to minimize the number of states. Show your partitions in the procedure.
- d) (5 points) Draw the new state diagram of the minimized FSM.
- e) (5 points) Draw the circuit diagram of the minimized FSM using D flip-flops.
- f) (5 points) Compare the circuits in (b) and (e), what is the benefit of state minimization?

Solution: a) w=0 A/0 w=1 w=1 w=0 D/1 w=1 C/0 w=0

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Twelfth Week Due Date: Monday, Nov. 14, 2016

b)

Present	Next State		Output
State	w=0	w=1	Output
y_1y_0	Y_1Y_0	Y_1Y_0	Z
00	00	01	0
01	01	10	1
10	10	11	0
11	11	00	1

$$Y_1 = \overline{wy_1} + y_1 \overline{y_0} + w \overline{y_1} y_0$$
 $Y_0 = \overline{wy_0} + w \overline{y_0} = w \oplus y_0$ $z = y_0$

c)

Initial partition: $P_1 = (ABCD)$

Group by output: $P_2 = (AC)(BD)$

Check 0-successors and 1-successors: $P_3 = (AC)(BD) = P_2$

Therefore, AC can be merged into one state and BD can be merged into another state.

	Present	Next State		Outout
	State	w=0		Output
	у	Y	Y	Z
A	0	0	1	0
В	1	1	0	1

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Twelfth Week Due Date: Monday, Nov. 14, 2016

P6. (10 points)

Bob needs to use a 3-bit up-counter. However, he only has a 4-bit synchronous down-counter and several NOT gates. He is NOT allowed to modify the internal structure of the down-counter. How can he construct the 3-bit up-counter using only the devices that he has?

