PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 7: Vector multiplication

Learning goals for today

- Head tail rule 1 Add by components
- Summarize vector addition
- Vector multiplications

Example 1

(omponents

Goal: C= A+B

(a) In unit-vector notation, what is the sum of
$$\vec{a} = (3.7 \text{ m})\hat{i} + (1.7 \text{ m})\hat{j}$$
 and $\vec{b} = (-12.0 \text{ m})\hat{i} + (6.8 \text{ m})\hat{j}$. What are

(b) the magnitude and **(c)** the direction of $\vec{a} + \vec{b}$ (relative to \hat{i})?

(b) the magnitude and (c) the direction of
$$a + b$$
 (relative to i)?

$$C = a + b = (a_x + b_x) + (a_y + b_y)$$

$$= (3.7 m - 12.0 m) + (1.7 m + 6.8 m)$$

b) Sketch
$$c_{7/7}$$
 = $-8.3 \, \text{mi}$ + $8.5 \, \text{m}$ c_{7} c_{7}

$$|C| = \sqrt{(\chi^2 + (\chi^2)^2 + (8.3m)^2 + (8.5m)^2} = 11.9m$$

c)
$$9^{\circ} < \theta < |8^{\circ}|$$
, range of atan is $(=9^{\circ}, 9^{\circ})$: $\theta = |8^{\circ} + atan \frac{C_g}{C_g} = |34^{\circ}|$

Properties of vector addition: I

Vector addition is commutative:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

You get the same vector result for either order of adding vectors.

Properties of vector addition: II

Vector addition is associative

$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

You get the same vector result for any order of adding the vectors.

• What is the vector sum of vectors \vec{l}_1 , \vec{l}_2 ,..., \vec{l}_4 above: $\sum_{i=1}^{i=4} \vec{l}_i$?

Vector addition summary

- Vector addition by head-tail convention
- Vector addition by components
- Properties of vector addition
 - Commutative: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
 - Associative: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

Chapter 3.2: Vector multiplication

- Multiply a vector by a scalar
- Dot product
- Cross product

Motivation

Re: Dot Product Applications

by duckshirt » Sun Apr 18, 2010 12:43 pm UTC

Yesterday I used dot products when programming a 3D-ish game. As far as I know, it's the easiest way to find the angle between two vectors; since M•N = |M||N|cos(theta), theta = arccos(M•N / [|M||N|]). And the cross product came up even more often. Just another example in case you weren't convinced already...

How to determine the aiming angle, θ , given \vec{x} and \vec{y} ?

Dot product

Dot Product (or scalar product): creates a new scalar.

For example: a.b

- In terms of vector components:

Scalar
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

 $(\ln 2D, a_z = b_z = 0)$

- In terms of geometry:

 $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta \quad \text{angle between } \overrightarrow{a} \quad \& \overrightarrow{b}$ magnitude magnitudeof \overrightarrow{a} of \overrightarrow{b} $\frac{A|\cos\theta}{A\cdot B} = \frac{A|B|}{\cos\theta}$

Clicker question 1 $\overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| |\cos \theta$

• Which of the following is true regarding the dot product between vectors \vec{r}_1 and \vec{r}_2 below? Here $\theta < 90^{\circ}$.

• Which of the following is true regarding the dot product between vectors \vec{r}_1 and \vec{r}_2 below? Here $\theta > 90^\circ$.

Example 2

Goal: 9 between a 2 6

• What's the angle between the two vectors \vec{a} and \vec{b} ,where $\vec{a}=5.00\hat{\imath}+9.00\hat{\jmath}+1.00\hat{k}$, \vec{b}

= $2.00\hat{i} + 8.00\hat{j} + 3.00\hat{k}$? (Assume the angle is between 0° and 180°) Step! $\overrightarrow{a} \cdot \overrightarrow{b} \rightarrow 0$ components: $\overrightarrow{a} \cdot \overrightarrow{b} = 0 \times b \times t + 0 \times b \times$

Seap2:
$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}||cos\theta \rightarrow cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{85}{\sqrt{107}\sqrt{11}} \approx 0.936$$

$$|\vec{a}| = \sqrt{\alpha_x^2 + \alpha_y^2 + \alpha_y^2} = \sqrt{5.05 + 9.05 + 9.05} = \sqrt{107}$$

$$|\vec{b}| = \sqrt{b_x^2 + b_y^2 + b_y^2} = \sqrt{2.05 + 8.05 + 3.05} = \sqrt{71}$$

$$\theta = a\cos 0.936 \approx 20.5^{\circ}$$

Calculator set up: Rad or degree?

Depends on what the question is asking for

If you are unsure if your calculator is in rad or degree mode, do simple calculations to validate!

Cross product

Why is the cross-product useful?

Vector multiplication: Cross product

• Cross Product: Creates a new vector.

Method \

- In terms of vector components:

Vector
$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y) \hat{i} + (a_z b_x - a_x b_z) \hat{j} + (a_x b_y - a_y b_x) \hat{k}$$

You don't have to memorize everything, remember the mnemonics instead! Step 2: Peterminant $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} & \hat{i} & \hat{j} \\ a_x & a_y & a_z & a_y \end{vmatrix}$ Red terms are negative Step 2: (1) Ist b_x b_y b_z b_x b_y Blue terms are positive b_x b_y Sep 3: are + / are -

Vector multiplication: Cross product

- Cross Product: Creates a new vector.
 - In terms of vector components:

Cross product: Right-hand rule

Z H B

The direction of cross product can be determined by right-hand rule

 $\vec{a} \times \vec{b}$

- 1. Point your 4 fingers to the 1st vector;
- 2. Curl the 4 fingers towards the 2nd vector;
- 3. The thumb points to the cross product.

The order matters!

• Given that the cross product $\vec{r}_1 imes \vec{r}_2 = \vec{a}$,what is the cross product $\vec{r}_2 imes \vec{r}_1$?

Hint: Think about right hand rule.

$$\vec{r}_2 \times \vec{r}_1 = \vec{a}$$

$$)\vec{r}_2 \times \vec{r}_1 = -\vec{a}$$

$$\vec{r}_2 \times \vec{r}_1 = \vec{r}_2$$

$$\vec{r}_2 \times \vec{r}_1 = 0$$

axb = (a/b/sin0) u
RHR
angle
between
a XJ

• Vectors
$$\vec{a}=5.00\hat{\imath}$$
 , $\vec{b}=8.00\hat{\imath}$, what is $\vec{a}\times\vec{b}$?

 $40.0 \hat{k}$

 $-40.0 \hat{k}$

 $40.0 \hat{i}$

$$0 = 0$$

$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \, \hat{u}$$

Group activity

- The magnitude of \vec{r}_1 is $|\vec{r}_1|=2.0$, and \vec{r}_1 is in the xy plane and is $\theta=60^\circ$ counterclockwise from the x-axis; the magnitude of \vec{r}_2 is $|\vec{r}_2|=1.0$, and \vec{r}_2 is along the +x direction.
 - What is the magnitude and direction of $\vec{r}_1 \times \vec{r}_2$?
 - Please express $\vec{r}_1 \times \vec{r}_2$ in unit vector notation.

Properties of vector multiplication

Vector scaling, dot product and cross product are distributive over addition:

$$c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$$

$$\vec{c} \cdot (\vec{a} + \vec{b}) = \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b}$$

$$\vec{c} \times (\vec{a} + \vec{b}) = \vec{c} \times \vec{a} + \vec{c} \times \vec{b}$$

• Dot product is commutative

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

Cross product is neither commutative or associative

$$\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$$
, but $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
 $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$

Practice questions

• A vector, \vec{r} , has a magnitude of 3.50 units, and is in the direction of 300° as measured counterclockwise from the positive x axis. Please find the x and y components of \vec{r} , r_x and r_y .

$$\vec{r} = 3.03\hat{\imath} + 1.75\hat{\jmath}$$

$$\vec{r} = 1.75\hat{\imath} + 3.03\hat{\jmath}$$

$$\vec{r} = 1.75\hat{\imath} + (-3.03)\hat{\jmath}$$

$$\vec{r} = 3.03\hat{\imath} + (-1.75)\hat{\jmath}$$

Which of the following is correct?

The duck is 35° to the east of north from the cat.

The duck is 35° to the north of east from the cat.

The duck is 35° to the south of east from the cat.

The duck is 35° to the west of north from the cat.

Which of the following is correct?

The duck is 35° to the south of east from the cat.

The duck is 35° to the east of north from the cat.

The duck is 35° to the north of east from the cat.

The duck is 35° to the west of north from the cat.

Summary of chapter 3

- Learning objectives
 - Vectors: Magnitude (size) and direction
 - Vector decomposition
 - Vector addition, vector scaling
 - Properties of vector addition: Commutative and associative
 - Vector multiplication:
 - Vector scaling, vector multiplied by a scalar;
 - \diamond dot product, $vector_1 \cdot vector_2$;
 - \diamond cross product, $vector_1 \times vector_2$
 - Properties of dot product: Commutative
 - Properties of cross product: Anti-commutative, and not associative

Homework

- Homework assignment in Module 3.4: assignment, due in a week

Pre-lecture survey for Chapter 4, Section 1

• Pre-lecture survey: Module 4.1.1 (before the next lecture)