

Application No. 09/489,144

Su2

1. (Amended) An electroluminescent device comprised of an anode and a cathode, and situated therebetween said anode and said cathode at least one electron transport layer comprised of a triazine of the formula

(I)

wherein A is a monovalent or a multivalent aromatic group which contains at least two conjugate-linked or at least two fused aromatic rings; Ar¹ and Ar² are each independently aryl or aliphatic; and m represents the number of repeating segments and further containing a light emitting layer situated between the hole transport layer and the electron transport layer wherein the light emitting layer contains a fluorescent dye selected from the group consisting of coumarins, quinacridones, and aromatic hydrocarbon fluorescent dyes and wherein said fluorescent dye is present in an amount of from about 10^{-3} to about 10 mole percent based on the moles of said light emitting layer material.

B2

12. (Amended) An electroluminescent device in accordance with claim 10 wherein A is an aromatic group which comprises a biphenyl, a naphthyl or a terphenyl; Ar¹ and Ar² are each independently an aryl group selected from the group consisting of a phenyl, a biphenylyl, a naphthyl, and a stilbenyl; wherein said aryl group optionally further contains a substituent selected from the group consisting of hydrogen, an alkyl group, an alkoxy group, a halogen, and a cyano group.

Please cancel claims 20-24

Application No. 09/489,144

29. (Amended) An organic electroluminescent device comprising in the following sequence an anode comprised of indium tin oxide in a thickness of from about 90 to about 500 nanometers, an optional buffer layer comprised of a phthalocyanine or a stabilized tertiary aromatic amine and which buffer layer is of a thickness of from about 90 to about 300 nanometers, a hole transport layer comprised of a tertiary aromatic amine and which layer is of a thickness of about 90 to about 200 nanometers, a triazine electron transport layer of a thickness of from about 5 to about 300 nanometers, and a cathode comprised of a low work function metal and which cathode is of a thickness of from about 10 to about 800 nanometers and wherein said triazine is of the formula

(I)

wherein A is aromatic which contains at least two conjugate-linked or two fused aromatic rings; Ar^1 and Ar^2 are each independently aryl or aliphatic; and m represents the number of repeating segments and further containing a light emitting layer situated between the hole transport layer and the electron transport layer wherein the light emitting layer contains a fluorescent dye selected from the group consisting of coumarins, quinacridones, and aromatic hydrocarbon fluorescent dyes and wherein said fluorescent dye is present in an amount of from about 10^{-3} to about 10 mole percent based on the moles of said light emitting layer material.

Application No. 09/489,144

b3
Confidential

30. (Amended) An organic electroluminescent device in accordance with **claim 29** wherein said anode is of a thickness of from about 90 to about 100 nanometers, said buffer layer is present and is comprised of a phthalocyanine or a stabilized tertiary aromatic amine and which layer is of a thickness of from about 90 to about 200 nanometers, a light emitting layer in contact with said hole transport layer and comprised of an 8-hydroxyquinoline metal chelate or a stilbene derivative and which layer is of a thickness of from about 1 to about 500 nanometers.

Application No. 09/489,144

*Sub
pt*

31. (Amended) An organic electroluminescent device comprised of an anode, an organic luminescent medium, and a cathode, wherein the organic luminescent medium contains a triazine layer in contact with the cathode, which layer is comprised of the triazine compounds of Formula (I), and wherein said triazine functions as an electron transport, an electron injector, or simultaneously as an electron transport and an electron injector

(I)

wherein A is a monovalent or a multivalent aromatic group which contains at least two conjugate-linked or at least two fused aromatic rings; Ar¹ and Ar² are each independently aryl or aliphatic; and m represents the number of repeating segments and further containing a light emitting layer situated between the hole transport layer and the electron transport layer wherein the light emitting layer contains a fluorescent dye selected from the group consisting of coumarins, quinacridones, and aromatic hydrocarbon fluorescent dyes and wherein said fluorescent dye is present in an amount of from about 10⁻³ to about 10 mole percent based on the moles of said light emitting layer material.

Application No. 09/489,144

Suji PS

35. (Amended) An electroluminescent device comprised of an anode, a cathode, and a triazine compound of the formula

b4

wherein A is a monovalent aromatic group or a multivalent aromatic group which contains from about 2 to about 15 two conjugate-linked or from about 2 to about 15 fused aromatic rings; Ar¹ and Ar² are each independently aryl or aliphatic; and m represents the number of repeating segments and is a number of from 1 to about 4, and wherein said triazine functions as an electron transport, an electron injector, or simultaneously as an electron transport and an electron injector and further containing a light emitting layer situated between the hole transport layer and the electron transport layer wherein the light emitting layer contains a fluorescent dye selected from the group consisting of coumarins, quinacridones, and aromatic hydrocarbon fluorescent dyes and wherein said fluorescent dye is present in an amount of from about 10⁻³ to about 10 mole percent based on the moles of said light emitting layer material.

Application No. 09/489,144

*B4
B6
Cited*

36. (Amended) An organic electroluminescent device in accordance with **claim 29** wherein said anode is of a thickness of from about 90 to about 100 nanometers, said buffer layer is of a thickness of from about 90 to about 100 nanometers, said hole transport is of a thickness of from about 5 to about 100 nanometers, said triazine electron transport layer is of a thickness of from about 10 to about 100 nanometers, and said cathode is of a thickness of from about 50 to about 500 nanometers, and wherein said low work function metal is from about 2 to about 4 electron volts, and wherein Ar¹ and Ar² are each independently aryl.

37. (Amended) An organic electroluminescent device in accordance with **claim 29** wherein said anode is of a thickness of from about 90 to about 100 nanometers, said buffer layer is of a thickness of from about 90 to about 100 nanometers, said hole transport layer is comprised of a tertiary aromatic amine in a thickness of about 90 to about 100 nanometers, thereover a light emitting layer comprised of an 8-hydroxyquinoline metal chelate or a stilbene derivative of a thickness of from about 10 to about 100 nanometers, said triazine electron transport layer is of a thickness of about 10 to about 100 nanometers, and said cathode is of a thickness of from about 50 to about 500 nanometers.

REMARKS

CLAIM REJECTIONS – 35 U.S.C. §112 Rejections

Claims 12 and 36 have been amended which changes do not relate to patentability and which changes do not affect the scope of the claims.
