

Martin's axiom and the continuum hypothesis

 ${\bf Canonical\ name} \quad {\bf Martins Axiom And The Continuum Hypothesis}$

Date of creation 2013-03-22 12:55:05 Last modified on 2013-03-22 12:55:05

Owner Henry (455) Last modified by Henry (455)

Numerical id 4

Author Henry (455)

Entry type Result Classification msc 03E50

MA_{\aleph_0} always holds

Given a countable collection of dense subsets of a partial order, we can selected a set $\langle p_n \rangle_{n < \omega}$ such that p_n is in the *n*-th dense subset, and $p_{n+1} \leq p_n$ for each *n*. Therefore CH implies MA.

If MA_{κ} then $2^{\aleph_0} > \kappa$, and in fact $2^{\kappa} = 2^{\aleph_0}$

 $\kappa \geq \aleph_0$, so $2^{\kappa} \geq 2^{\aleph_0}$, hence it will suffice to find an surjective function from $P(\aleph_0)$ to $P(\kappa)$.

Let $A = \langle A_{\alpha} \rangle_{\alpha < \kappa}$, a sequence of infinite subsets of ω such that for any $\alpha \neq \beta$, $A_{\alpha} \cap A_{\beta}$ is finite.

Given any subset $S \subseteq \kappa$ we will construct a function $f : \omega \to \{0, 1\}$ such that a unique S can be recovered from each f. f will have the property that if $i \in S$ then f(a) = 0 for finitely many elements $a \in A_i$, and if $i \notin S$ then f(a) = 0 for infinitely many elements of A_i .

Let P be the partial order (under inclusion) such that each element $p \in P$ satisfies:

- p is a partial function from ω to $\{0,1\}$
- There exist $i_1, \ldots, i_n \in S$ such that for each $j < n, A_{i_j} \subseteq \text{dom}(p)$
- There is a finite subset of ω , w_p , such that $w_p = \text{dom}(p) \bigcup_{i < n} A_{i_j}$
- For each j < n, p(a) = 0 for finitely many elements of A_{i_j}

This satisfies ccc. To see this, consider any uncountable sequence $S = \langle p_{\alpha} \rangle_{\alpha < \omega_1}$ of elements of P. There are only countably many finite subsets of ω , so there is some $w \subseteq \omega$ such that $w = w_p$ for uncountably many $p \in S$ and $p \upharpoonright w$ is the same for each such element. Since each of these function's domain covers only a finite number of the A_{α} , and is 1 on all but a finite number of elements in each, there are only a countable number of different combinations available, and therefore two of them are compatible.

Consider the following groups of dense subsets:

• $D_n = \{ p \in P \mid n \in \text{dom}(p) \}$ for $n < \omega$. This is obviously dense since any p not already in D_n can be extended to one which is by adding $\langle n, 1 \rangle$

- $D_{\alpha} = \{ p \in P \mid \text{dom}(p) \supseteq A_{\alpha} \}$ for $\alpha \in S$. This is dense since if $p \notin D_{\alpha}$ then $p \cup \{ \langle a, 1 \rangle \mid a \in A_{\alpha} \setminus \text{dom}(p) \}$ is.
- For each $\alpha \notin S$, $n < \omega$, $D_{n,\alpha} = \{p \in P \mid m \geq n \land p(m) = 0\}$ for some $m < \omega$. This is dense since if $p \notin D_{n,\alpha}$ then $\operatorname{dom}(p) \cap A_{\alpha} = A_{\alpha} \cap \left(w_p \cup \bigcup_j A_{i_j}\right)$. But w_p is finite, and the intersection of A_{α} with any other A_i is finite, so this intersection is finite, and hence bounded by some m. A_{α} is infinite, so there is some $m \leq x \in A_{\alpha}$. So $p \cup \{\langle x, 0 \rangle\} \in D_{n,\alpha}$.

By MA_{κ} , given any set of κ dense subsets of P, there is a generic G which intersects all of them. There are a total of $\aleph_0 + |S| + (\kappa - |S|) \cdot \aleph_0 = \kappa$ dense subsets in these three groups, and hence some generic G intersecting all of them. Since G is directed, $g = \bigcup G$ is a partial function from ω to $\{0,1\}$. Since for each $n < \omega$, $G \cap D_n$ is non-empty, $n \in \text{dom}(g)$, so g is a total function. Since $G \cap D_{\alpha}$ for $\alpha \in S$ is non-empty, there is some element of G whose domain contains all of A_{α} and is 0 on a finite number of them, hence g(a) = 0 for a finite number of $a \in A_{\alpha}$. Finally, since $G \cap D_{n,\alpha}$ for each $n < \omega$, $\alpha \notin S$, the set of $n \in A_{\alpha}$ such that g(n) = 0 is unbounded, and hence infinite. So g is as promised, and $2^{\kappa} = 2^{\aleph_0}$.