COMP90051 Statistical Machine Learning

Workshop Week 11

Xudong Han

https://github.com/HanXudong/COMP90051_Workshops

Reference

 https://people.eecs.berkeley.edu/~jordan/prelims/ chapter3.pdf Assume we observe all the variables X1 = x1, X2 = x2, . . . , X6 = x6 in the TANB above. What is the classification rule for the TANB? Your answer should be in terms of the prior probabilities and conditional probabilities in the TANB.

Specify an elimination order that is efficient for the query p(Y | X5 = x5) in the TANB above. How many variables are in the biggest factor induced by variable elimination with your ordering? Which variables are they?

6.

Elimination algorithm

Eliminate (Graph G, Evidence nodes E, Query nodes Q) Choose node ordering I such that Q appears last 2. Initialise empty list active initialise For each node X_i in GAppend $Pr(X_i | parents(X_i))$ to active For each node X_i in EAppend $\delta(X_i, X_i)$ to active $\gamma \in \mathcal{A}$ in $\gamma \in \mathcal{A}$ evidence For each i in Lpotentials \subseteq Remove tables referencing X_i from active N_i = nodes other than X_i referenced by tables in polon alc b) marginalise Table $\phi_i(X_i, X_{N_i})$ = product of tables $\uparrow \gamma$ Table $m_i(X_{N_i}) = \sum_{X_i} \phi_i(X_i, X_{N_i})$ Append $m_i(X_{N_i})$ to active

Return $\Pr(X_0|X_E = x_E) = \phi_0(X_0)/\sum_{X_O} \phi_0(X_0)$

normalise

Specify an elimination order that is efficient for the query $p(Y|X_5=x_5)$ in the TANB above. How many variables are in the biggest factor induced by variable elimination with your ordering? Which variables are they?

•
$$p(Y|X_5 = x_5)$$

- Evidence nodes E
- Query nodes Q
- Elimination ordering

Some functions in our algorithm

- $\delta(X_i, x_i)$: evidence potential, a function whose value is one if $X_i = x_i$ and zero otherwise.
- Given E is a set of indices of evidence nodes,

$$\delta(X_E, x_E) = \prod_{i \in E} \delta(X_i, x_i)$$

- $\phi_4(x_2, x_4) = p(X_4|X_2, Y)p(x_5|X_4, Y)$
- $m_4(X_2) = \sum_{X_4} \phi_4(x_2, x_4)$