

CLOUD COMPUTING APPLICATIONS

Apache Spark

Roy Campbell & Reza Farivar

Apache Spark

- Extend the MapReduce model to better support two common classes of analytics apps:
 - Iterative algorithms (machine learning, graphs)
 - Interactive data mining
- Enhance programmability:
 - Integrate into Scala programming language
 - Allow interactive use from Scala interpreter

Motivation

Most current cluster programming models are based on *acyclic* data flow from stable storage to stable storage

Motivation

Most current cluster programming models are based on *acyclic* data flow from stable storage to stable storage

Motivation

- Acyclic data flow is inefficient for applications that repeatedly reuse a working set of data:
 - Iterative algorithms (machine learning, graphs)
 - Interactive data mining tools (R, Excel, Python)
- With current frameworks, apps reload data from stable storage on each query

Solution: Resilient Distributed Datasets (RDDs)

- Allow apps to keep working sets in memory for efficient reuse
- Retain the attractive properties of MapReduce
 - Fault tolerance, data locality, scalability
- Support a wide range of applications

Programming Model

- Resilient distributed datasets (RDDs)
 - Immutable, partitioned collections of objects
 - Created through parallel *transformations* (map, filter, groupBy, join, ...) on data in stable storage
 - Can be cached for efficient reuse
- Actions on RDDs
 - Count, reduce, collect, save, ...