OBJECTIFS 👌

- Connaître la notion de base orthonormée. Savoir y lire les coordonnées d'un vecteur et donner l'expression de la norme d'un vecteur.
- Représenter un vecteur dont on connaît les coordonnées. Lire les coordonnées d'un vecteur.
- Connaître l'expression des coordonnées de \overrightarrow{AB} en fonction de celles de A et de B.
- Savoir calculer les coordonnées du milieu d'un segment.
- Savoir calculer le déterminant de deux vecteurs dans une base orthonormée, et connaître le lien avec la colinéarité.
- Résoudre des problèmes en utilisant la représentation la plus adaptée des vecteurs.

Repères du plan

1. Bases du plan

À RETENIR 99

Définitions

Soient \vec{i} et \vec{j} deux vecteurs non colinéaires. Le couple $(\vec{i};\vec{j})$ forme une **base** du plan.

- Si les directions de \vec{i} et \vec{j} sont perpendiculaires, la base $(\vec{i}; \vec{j})$ est dite **orthogonale**.
- Si de plus $\|\vec{i}\| = \|\vec{j}\|$, la base $(\vec{i}; \vec{j})$ est dite **orthonormée**.

EXERCICE 1

Parmi les bases ci-dessous, dire lesquelles sont orthogonales, orthonormées ou ne le sont pas.

1.
$$\vec{j}$$

3.
$$\vec{j}$$

4.
$$\int_{\vec{i}}$$

.....

♥Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/geometrie-reperee/#correction-1.

2. Coordonnées d'un vecteur

À RETENIR 👀

Propriété

Soit $(\vec{i};\vec{j})$ une base du plan. Tout vecteur \vec{u} du plan se décompose de manière unique sous la forme

$$\vec{u} = x\vec{i} + y\vec{j}$$

où x et y sont deux nombres réels. $\begin{pmatrix} x \\ y \end{pmatrix}$ (parfois également noté (x;y)) sont les **coordonnées** de \vec{u} . Deux vecteurs sont égaux s'ils ont les mêmes coordonnées.

EXERCICE 2

1. Pour chacun des vecteurs ci-dessous, lire ses coordonnées dans la base (i; j).

a. \vec{a} : **c.** \vec{i} :

2. Représenter le vecteur $\vec{c} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

3. Coordonnées d'un point

À RETENIR 99

Définitions

- On appelle **repère cartésien** un triplet $(O; \vec{i}; \vec{j})$ constitué par les vecteurs d'une base $(\vec{i}; \vec{j})$ et par un point O du plan appelé **origine**.
- Si la base $(\vec{i}; \vec{j})$ est orthonormée, le repère $(O; \vec{i}; \vec{j})$ est également qualifié d'**orthonormé**.
- La droite (\overrightarrow{Oi}) est l'axe des **abscisses** et (\overrightarrow{Oj}) est l'axe des **ordonnées**.
- Les **coordonnées** d'un point M du plan sont les coordonnées du vecteur \overrightarrow{OM} dans la base $(\vec{i}; \vec{j})$.

Pour toute la suite, sauf mention contraire, on se place dans un repère cartésien $(O; \vec{i}; \vec{j})$.

EXEMPLE 🔋

Dans le repère orthonormé ci-contre (où l'on a indiqué l'origine, l'axe des abscisses et l'axe des ordonnées), les coordonnées du vecteur \overrightarrow{OM} sont $\begin{pmatrix} -2\\1 \end{pmatrix}$, donc les coordonnées du point M sont (-2;1).

À RETENIR 99

Propriétés

Soient $A(x_A; x_B)$ et $B(x_B; y_B)$ deux points du plan.

1. Le milieu du segment [AB] a pour coordonnées

$$\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$$

2. Le vecteur \overrightarrow{AB} a pour coordonnées

$$\begin{pmatrix}
x_B - x_A \\
y_B - y_A
\end{pmatrix}$$

EXERCICE 3
Soient $A(3;5)$, $B(2;-1)$, $C(-2;-4)$ et $D(-1;2)$.
1. a. Calculer les coordonnées de <i>E</i> , milieu de [<i>AB</i>]
b. Calculer les coordonnées de F , milieu de $[CD]$
2. Montrer que <i>EFDA</i> est un parallélogramme.

Utilisation des coordonnées

1. Opérations sur les vecteurs

À RETENIR 99

Propriété

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$, $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs du plan et k un nombre réel. Les coordonnées de $\vec{u} + \vec{v}$ sont $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$ et celles de $k\vec{u}$ sont $\begin{pmatrix} kx \\ ky \end{pmatrix}$.

EXERCICE 4

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/geometrie-reperee/#correction-4.

2. Calcul de la norme

À RETENIR 99

Propriété

Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur du plan. On suppose le repère (O, \vec{i}, \vec{j}) orthonormé. Alors,

$$\|\vec{u}\| = \sqrt{x^2 + y^2}$$

EΧ	Ξ	\sim	CE	 =

3. Condition de colinéarité

À RETENIR 99

Définition

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$, $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs du plan. On appelle **déterminant** de \vec{u} et \vec{v} le nombre

$$\det(\vec{u}; \vec{v}) = xy' - x'y$$

EXEMPLE 🔋

Par exemple, avec $\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ -6 \end{pmatrix}$, on a

$$\det(\vec{u}; \vec{v}) = \det\left(\begin{pmatrix} -1\\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 2\\ -6 \end{pmatrix}\right)$$
$$= -1 \times (-6) - 2 \times 3$$
$$= 0$$

Il s'agit d'une sorte de « généralisation » du produit en croix.

À RETENIR 👀

Propriété

Soient \vec{u} , \vec{v} deux vecteurs du plan. Alors \vec{u} et \vec{v} sont colinéaires si et seulement si $\det(\vec{u}; \vec{v}) = 0$.

EXERCICE 6

1.	Dans	le	repère	ci-contre,	placer	les	points				
	A(-2;-1), $B(2;-3)$, $C(-4;4)$ et $D(4;0)$.										

2. Montrer que les droites (AB) et (CD) sont parallèles

.....

3. Les points *A*, *B* et *C* sont-ils alignés? Justifier par un calcul.

