Theorem 1 (Robert Gerbicz) Let q > 3 prime and $p = W(q) = \frac{2^q + 1}{3}$ is also prime (Wagstaff prime), then for the sequenc $S_0 = \frac{3}{2}$, $S_{k+1} = S_k^2 - 2$ it is true that $S_q - S_1$ is divisible by p.

It is the same as the original conjecture for $U_0 = \frac{1}{4}$, $U_{k+1} = U_k^2 - 2$, because in our sequence $S_1 = U_0$ and the recursion is the same, so $U_{q-1} - U_0 = S_q - S_1$.

It is known that $T = Q[\sqrt{-7}] = Q[\sqrt{7} * I]$ is a prime factorization field.

Lemma: Suppose that p is an odd positive prime in \mathbb{Z} , different from 7, aand b are integers in Z, let $z = \frac{a+b\sqrt{7}*I}{4}$ then if $(\frac{-7}{p}) = 1$ and gcd(z,p) = 1 then $z^{p-1} \equiv 1 \mod p$. If $(\frac{-7}{p}) = -1$ then $z^{p+1} \equiv norm(z) \mod p$.

Proof: use Fermat's little theorem and that binomial(p,k) is divisible by p if 0 < k < p.

 $(4z)^p \equiv 4^p z^p \equiv 4z^p \mod p$.

 $(4z)^p \equiv (a+b\sqrt{7}I)^p \equiv a^p + b^p\sqrt{7}^p I^p \equiv a+b7^{\frac{p-1}{2}}\sqrt{7}(-1)^{\frac{p-1}{2}}I \equiv a+b(\frac{-7}{p})\sqrt{7}I$ mod p

so $4z^p \equiv 4z$ or $4\overline{z} \mod p$.

First part: let $\left(\frac{-7}{p}\right) = 1$ then we can write: $4z^p \equiv 4z \mod p$ if gcd(z,p) = 1then $z^{p-1} \equiv 1 \mod p$.

Second part: let $(\frac{\overline{-7}}{p}) = -1$ then $4z^p \equiv 4\overline{z} \mod p$, multiple this by z, we get: $4z^{p+1} \equiv 4norm(z) \mod p$, so $z^{p+1} \equiv norm(z) \mod p$ is also true. Proof of the lemma is complete.

Proof of the theorem 1: Let $\omega = \frac{3+\sqrt{7}I}{4}$ an element in the field. Let $S_0 = \frac{3}{2}$ and $S_{k+1} = S_k^2 - 2$, by induction it is easy to see, that $S_k = \omega^{2^k} + \overline{\omega}^{2^k}$, for this use that $norm(\omega) = 1$

If q > 3 prime then q = 6k + -1, so $p = W(q) = \frac{2^{q}+1}{3} \equiv 11$ or 15 mod 28, using this we can get that $\left(\frac{-7}{p}\right) = 1$. Use the lemma for $z = \omega$ and for p=W(q) prime, we obtain: $\omega^{W(q)-1}\equiv 1 \text{ mod p}$

 $\omega^{\frac{2^q-2}{3}} \equiv 1 \bmod p \text{ raise it to cube:}$ $\omega^{2^q-2} \equiv 1 \bmod p \text{ multiple it by } \omega^2$

 $\omega^{2^q} \equiv \omega^2 \mod p$, conjugate it:

 $\overline{\omega}^{2^q} \equiv \overline{\omega}^2 \mod p$ Adding these two lines: $S_q = \omega^{2^q} + \overline{\omega}^{2^q} \equiv \omega^2 + \overline{\omega}^2 = S_1$ mod p, so $S_q - S_1$ is divisible by p, proof is complete.

Theorem 2 (Robert Gerbicz) Let $S_0 = -\frac{3}{2}$ and $S_{k+1} = S_k^2 - 2$ sequence. If $p = F(n) = 2^{2^n} + 1$ is a Fermat prime then $S_{2^n} - S_1$ is divisible by p.

This is almost the original conjecture (that was: $S_{2^n-1} - S_0$ is divisible by

Proof of the theorem 2:

For n = 0 it is true. Now suppose that n > 0 and replace S_0 by $-S_0$, and by this we get the same sequence for S_k , if k > 0. But this sequence is the same as the S sequence was for the Wagstaff primes. $p = F_n \equiv 5$ or 17 mod 28, using this it is easy to see, that $(\frac{-7}{p}) = -1$, norm(omega) = 1, gcd(norm(omega), p) = gcd(1, p) = 1, using the lemma:

 $\omega^{p+1} \equiv 1 \text{ mod p}$

 $\omega^{2^{2^n}+2} \equiv 1 \mod p$, multiple it by $\overline{\omega}^2$

 $\omega^{2^{2^{n}}} \equiv \overline{\omega}^{2} \mod p, \text{ conjugate it:}$ $\overline{\omega}^{2^{2^{n}}} \equiv \omega^{2} \mod p$

Add the two lines: $S_{2^n} = \omega^{2^{2^n}} + \overline{\omega}^{2^{2^n}} \equiv \overline{\omega}^2 + \omega^2 = S_1 \mod p$. So $S_{2^n} - S_1$ is divisible by p. The proof is complete.