INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme care învață singure

– kNN si programare genetică –

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Reţele neuronale artificiale
 - kNN
 - Algoritmi evolutivi
 - Maşini cu suport vectorial
- Sisteme bazate pe reguli
- Sisteme hibride
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

Materiale de citit și legături utile

- capitolul 15 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- capitolul VI (18) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 10 și 11 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- capitolul 3 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Sisteme inteligente

Sisteme inteligente – SIS – Învățare automată

Tipologie

- În funcție de experiența acumulată în timpul învățării:
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcție de modelul învățat (algoritmul de învățare):
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial (MSV)
 - Algoritmi evolutivi
 - kNN
 - Arbori de decizie
 - Modele Markov ascunse

Materiale de citit și legături utile

- capitolul VI (18) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 10 și 11 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- capitolul 3 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Sisteme inteligente – SIS – Învățare automată

Tipologie

- În funcție de experiența acumulată în timpul învățării:
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcție de modelul învățat (algoritmul de învățare):
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial (MSV)
 - Algoritmi evolutivi
 - Modele Markov ascunse

- Maşini cu suport vectorial (MSV)
 - Definire
 - Tipuri de probleme rezolvabile
 - Avantaje
 - Dificultăţi
 - Tool-uri

Definire

- Dezvoltate de Vapnik în 1970
- Popularizate după 1992
- Clasificatori liniari care identifică un hiperplan de separare a clasei pozitive de clasa negativă
- Au o fundamentare teoretică foarte riguroasă
- Funcţionează foarte bine pentru date de volum mare (analiza textelor, analiza imaginilor)

Reamintim

- □ Problemă de învăţare supervizată în care avem un set de date de forma:
 - (x^d, t^d), cu:
 - $X^{d} \in \mathbb{R}^{m} \rightarrow X^{d} = (X^{d}_{1}, X^{d}_{2}, ..., X^{d}_{m})$
 - $t^d \in \mathbb{R} \rightarrow t^d \in \{1, -1\}, 1 \rightarrow \text{clasă pozitivă}, -1 \rightarrow \text{clasă negativă}$
 - cu d = 1,2,...,n,n+1,n+2,...,N
- Primele n date (se cunosc x^d şi t^d) vor fi folosite drept bază de antrenament a MSV
- Ultimele N-n date (se cunosc doar x^d, fără t^d) vor fi folosite drept bază de testare a MSV

Definire

■ MSV găseşte o funcție liniară de forma $f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$, $(\mathbf{w} - \text{vector pondere})$ a.î.

$$y_i = \begin{cases} 1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 0 \\ -1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b < 0 \end{cases}$$

■ $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$ → hiperplanul de decizie care separă cele 2 clase

Definire

- Pot exista mai multe hiperplane
 - Care este cel mai bun hiperplan?
- MSV caută hiperplanul cu cea mai largă margine (cel care micşorează eroarea de generalizare)
 - Algoritmul SMO (Sequential minimal optimization)

- Tipuri de probleme rezolvabile
 - Probleme de clasificare → Cazuri de date
 - Liniar separabile
 - Separabile
 - Eroarea = 0

- Ne-separabile
 - Se relaxează constrângerile → se permit unele erori
 - C coeficient de penalizare

Cazuri de date

- Non-liniar separabile
 - Spaţiul de intrare se transformă într-un spaţiu cu mai multe dimensiuni (feature space), cu ajutorul unei funcţii kernel, unde datele devin liniar separabile

- Kernele posibile
 - Clasice
 - Polynomial kernel: $K(\mathbf{x}_1, \mathbf{x}_2) = (\langle \mathbf{x}_1, \mathbf{x}_2 \rangle + 1)^d$
 - RBF kernel: $K(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\sigma |\mathbf{x}_1 \mathbf{x}_2|^2)$
 - Kernele multiple
 - Liniare: $K(\mathbf{x}_1, \mathbf{x}_2) = \sum w_i K_i$
 - Ne-liniare
 - Fără coeficienți: $K(\mathbf{x}_1, \mathbf{x}_2) = K_1 + K_2 * exp(K_3)$
 - Cu coeficienţi: $K(\mathbf{x}_1, \mathbf{x}_2) = K_1 + c_1 * K_2 * exp(c_2 + K_3)$

Configurarea MSV

- Parametrii unei MSV
 - Coeficientul de penalizare C
 - C mic → convergenţă lentă
 - C mare → convergenţă rapidă
 - Parametrii funcţiei kernel (care kernel şi cu ce parametri)
 - Dacă m (nr de atribute) este mult mai mare decât n (nr de instanţe)
 - MSV cu kernel liniar (MSV fără kernel) \rightarrow K(\mathbf{x}^{d1} , \mathbf{x}^{d2}) = \mathbf{x}^{d1} , \mathbf{x}^{d2}
 - Dacă m (nr de atribute) este mare, iar n (nr de instanţe) este mediu
 - MSV cu kernel Gaussian $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \exp(-||\mathbf{x}^{d1} \mathbf{x}^{d2}||^2/2\sigma^2)$
 - σ dispersia datelor de antrenament
 - Atributele instanţelor trebuie normalizate (scalate la (0,1))
 - m (nr de atribute) este mic, iar n (nr de instanţe) este mare
 - Se adaugă noi atribute, iar apoi
 - MSV cu kernel liniar

- MSV pentru probleme de clasificare supervizate cu mai mult de 2 clase
 - Una vs. restul (one vs. all)

- MSV structurate
 - Învăţare automată
 - □ Normală $f: \mathcal{X} \rightarrow \mathbb{R}$
 - Intrări de orice fel
 - Ieşiri numerice (naturale, întregi, reale)
 - □ Structurată: X → y
 - Intrări de orice fel
 - Ieşiri de orice fel (simple sau structurate)
 - Informaţii structurate
 - Texte şi hiper-texte
 - Molecule şi structuri moleculare
 - Imagini

MSV structurate

- Aplicaţii
 - Procesarea limbajului natural
 - Traduceri automate (ieşiri → propoziţii)
 - Analiza sintactică şi/sau morfologică a propoziţiilor (ieşiri -> arborele sintactic şi/sau morfologic)
 - Bioinformatică
 - Predicţia unor structuri secundare (ieşirile → grafe bi-partite)
 - Predicţia funcţionării unor enzime (ieşirile → path-uri în arbori)
 - Procesarea vorbirii
 - Transcrieri automate (ieşiri → propoziţii)
 - Transformarea textelor în voce (ieşiri → semnale audio)
 - Robotică
 - Planificare (ieşirile → secvenţe de acţiuni)

Avantaje

- Pot lucra cu orice fel de date (liniar separabile sau nu, distribuit uniform sau nu, cu distribuţie cunoscută sau nu)
 - □ Funcţiile kernel care crează noi atribute (features) → straturile ascunse dintr-o RNA
- Dacă problema e convexă oferă o soluție unică → optimul global
 - RNA pot asocia mai multe soluţii → optime locale
- Selectează automat mărimea modelului învăţat (prin vectorii suport)
 - În RNA straturile ascunse trebuie configurate de către utilizator apriori
- Nu învaţă pe derost datele (overfitting)
 - RNA se confruntă cu problema overfitting-ului chiar şi cand modelul se învață prin validare încrucişată

Dificultăţi

- Doar atribute reale
- Doar clasificare binară
- Background matematic dificil

Tool-uri

- LibSVM → http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Weka → SMO
- SVMLight → http://svmlight.joachims.org/
- SVMTorch → http://www.torch.ch/
- http://www.support-vector-machines.org/

Cursul următor

A. Scurtă introducere în Inteligența Artificială (IA)

B. Sisteme inteligente

- Sisteme care învață singure
 - Arbori de decizie
 - Rețele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
- Sisteme bazate pe reguli
- Sisteme hibride

C. Rezolvarea problemelor prin căutare

- Definirea problemelor de căutare
- Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

Cursul următor – Materiale de citit și legături utile

- capitolul 15 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop