

# RECORRÊNCIA E RECURSIVIDADE

UMA RELAÇÃO RECORRENTE É UMA EQUAÇÃO QUE DEFINE UMA SEQUÊNCIA BASEADA EM UMA REGRA QUE DETERMINA O PRÓXIMO TERMO COMO FUNÇÃO DE TERMOS ANTERIORES

UMA FUNÇÃO RECURSIVA É UMA FUNÇÃO QUE CHAMA A SI MESMA.

UMA RELAÇÃO RECORRENTE USA A RECURSÃO PARA CRIAR UMA SEQUÊNCIA.

### SEQUÊNCIA DEFINIDA POR RECORRÊNCIA

Uma sequência infinita 5 será uma lista de artefatos indexados em uma determinada ordem. Tal que:

 $S_1, S_2, S_3, ... S_k$ 

UMA SEQUÊNCIA PODE SER DEFINIDA POR RECORRÊNCIA SE CONHECEMOS ALGUNS DOS VALORES INICIAIS E A EQUAÇÃO DE RECORRÊNCIA.

# RECORRÊNCIA (EXEMPLO 1)

#### **EXEMPLO 1**

Considere a sequência S definida por recorrência por

1. 
$$S(1) = 2$$

2. 
$$S(n) = 2S(n-1)$$
 para  $n \ge 2$ 

Pela proposição 1, S(1), o primeiro objeto em S, é 2. Depois, pela proposição 2, o segundo objeto em S é S(2) = 2S(1) = 2(2) = 4. Novamente pela proposição 2, S(3) = 2S(2) = 2(4) = 8. Continuando desse modo, vemos que a sequência S é

### **EXERCÍCIO**

### A SEQUÊNCIA DE FIBONACCI, F, É DADA POR:

$$F_1 = 1$$

$$F_2 = 1$$

$$F_n = F_{n-2} + F_{n-1} para n > 2$$

ESCREVA OS OITO PRIMEIROS ITENS DA SEQUÊNCIA DE FIBONACCI.

### CONJUNTOS E RECORRÊNCIA

CONJUNTOS SÃO PRIMITIVOS MATEMÁTICOS ONDE NÃO EXISTEM REPETIÇÕES OU ORDENS EXPLICITADAS.

CONJUNTOS TAMBÉM PODEM SER DEFINIDOS DE FORMA RECORRENTE.

### RECORRÊNCIA (EXEMPLO 2)

#### **EXEMPLO 5**

Na Seção 1.1, notamos que certas cadeias de letras de proposição, conectivos lógicos e parênteses, tais como (*A* Λ *B*)' ν *C*, são consideradas legítimas, enquanto outras, como Λ Λ *A*" *B*, não o são. A sintaxe para arrumar tais símbolos constitui a definição do conjunto de fórmulas proposicionais bem formuladas e é uma definição por recorrência.

- 1. Qualquer letra de proposição é uma fbf.
- 2. Se P e Q são fbfs, então  $(P \land Q)$ ,  $(P \lor Q)$ ,  $(P \to Q)$ , (P'), e  $(P \leftrightarrow Q)$  também o são.<sup>2</sup>

Usando as prioridades para os conectivos lógicos estabelecidas na Seção 1.1, podemos omitir os parênteses quando isso não causar confusão. Assim, podemos escrever ( $P \ V \ Q$ ) como  $P \ V \ Q$ , ou (P') como P'; as novas expressões, tecnicamente, não são fbfs pela definição que acabamos de dar, mas representam, sem ambiguidades, fbfs.

Começando com letras de proposição e usando, repetidamente, a regra 2, podemos construir todas as fbfs proposicionais. Por exemplo, A, B e C são fbfs pela regra 1. Pela regra 2,

$$(A \land B) \in (C')$$

são, ambas, fbfs. Novamente pela regra 2,

$$((A \land B) \rightarrow (C'))$$

é uma fbf. Aplicando a regra 2 mais uma vez, obtemos a fbf

$$(((A \land B) \rightarrow (C))')$$

Eliminando alguns parênteses, podemos escrever essa fbf como

$$((A \land B) \rightarrow C')' \bigcirc$$

### RECORRÊNCIA (EXEMPLO 2)

O CONJUNTO DE TODOS OS STRINGS POSSÍVEIS DE UM ALFABETO  $\Sigma$  É INDICADO POR  $\Sigma^*$ . A DEFINIÇÃO RECORRENTE DE  $\Sigma^*$  É DADA POR:

- 1. O STRING VAZIO  $\varepsilon$  PERTENCE A  $\Sigma^*$ ;
- 2. UM ELEMENTO  $s \in \Sigma$  ENTÃO  $s \in \Sigma^*$ ;
- 3. SE s E t SÃO st ENTÃO A CONCATENAÇÃO  $st \in \Sigma^*$ .

As regras 1 e 2 definem os casos base desta definição enquanto a regra três define o caso indutivo de tal forma que para qualquer  $s \in \Sigma^*$  teremos  $s\varepsilon = \varepsilon s = s$ 

# RECORRÊNCIA (EXEMPLO 3)

#### **EXEMPLO 9**

Uma definição recorrente da operação de potenciação a<sup>n</sup> de um número real não nulo a, em que n é um inteiro não negativo, é

- 1.  $a_0 = 1$
- 2.  $a_n = (a^n 1)a$  para  $n \ge 1$

#### **EXEMPLO 10**

Uma definição recorrente para a multiplicação de dois inteiros positivos *m* e *n*.

- 1. m(1) = m
- 2. m(n) = m(n) 1 + m para  $n \ge 2$

### **ALGORITMOS**

#### **ALGORITMO INTERATIVO**

```
S(inteiro positivo n)
//função que calcula iterativamente o valor S(n)
//para a sequência S do Exemplo 1
Variáveis locais:
           //indice do laço
inteiro i
ValorAtual
              //valor atual da função S
    se n = 1 então
       retorne 2
    senão
       i = 2
       ValorAtual = 2
       enquanto i < = n faça
       ValorAtual = 2 * ValorAtual
       i = i + 1
    fim do enquanto
   //agora ValorAtual tem o valor S(n)
   retorne ValorAtual
fim do se
fim da função S
```

### RETIRADO DO EXEMPLO 1

1. 
$$S(1) = 2$$
  
2.  $S(n) = 2S(n-1)$  para  $n \ge 2$ 

### ALGORITMO RECURSIVO

```
S(inteiro positivo n)

//função que calcula o valor S(n) de forma recorrente

//para a sequência S do Exemplo 1

se n = 1 então
   retorne 2

senão
   retorne 2 * S(n - 1)

fim do se

fim da função S
```

# DEFINIÇÃO DE ALGORITMOS RECURSIVOS

- UMA FUNÇÃO RECURSIVA É UMA FUNÇÃO QUE CHAMA A SI MESMO:
- 1. UM CASO BASE, NÃO RECURSIVO;
- 2. UM CASO RECURSIVO.

SEMPRE, USE O CASO RECURSIVO COMO A ÚLTIMA DECLARAÇÃO DA FUNÇÃO (TAIL RECURSION).

### RECURSÃO (EXEMPLO 3)

#### CONSIDERE:

$$fatorial(0) = 1$$
  
 $fatorial(n) = n \times fatorial(n-1)$ 

TERÍAMOS:

$$fatorial (4) = 4 \times fatorial (3)$$

$$fatorial (4) = 4 \times (3 \times fatorial (2))$$

$$fatorial (4) = 4 \times (3 \times (2 \times fatorial (1)))$$

$$fatorial (4) = 4 \times (3 \times (2 \times (1 \times fatorial (0))))$$

$$fatorial (4) = 4 \times \left(3 \times \left(2 \times (1 \times (1))\right)\right)$$

$$fatorial (4) = 24$$

USANDO O SITE REPL.IT, IMPLEMENTE UMA FUNÇÃO EM PYTHON CAPAZ DE CALCULAR O FATORIAL DE 20 DE FORMA RECURSIVA.

### RECURSÃO EXERCÍCIO

ESCREVA, EM PYTHON, UMA FUNÇÃO RECURSIVA CAPAZ DE APRESENTAR OS 20 PRIMEIROS ELEMENTOS DE CADA UMA DAS SEQUÊNCIAS APRESENTADAS NA TABELA A SEGUIR. ALTERNATIVAMENTE, VOCÊ PODE FAZER O ALGORITMO EM PSEUDOCÓDIGO.

| Relações de Recorrência | Valores iniciais      | Sequência        |
|-------------------------|-----------------------|------------------|
| Fn = Fn-1 + Fn-2        | a1 = a2 = 1           | Fibonacci number |
| Fn = Fn-1 + Fn-2        | $a_1 = 1$ , $a_2 = 3$ | Lucas Number     |
| Fn = Fn-2 + Fn-3        | $a_1 = a_2 = a_3 = 1$ | Padovan sequence |
| Fn = 2Fn-1 + Fn-2       | $a_1 = 0$ , $a_2 = 1$ | Pell number      |

