

Introducción a la Modelización Estadística

Antonio Pita Lozano

Máster en Data Science

Modelización Estadística Regresión Lineal

- 1. Componentes
- 2. Supuestos de la Regresión Lineal
- 3. Interpretación de Coeficientes
- 4. Evaluación de los modelos
- 5. Multicolinealidad y Análisis de Residuos
- 6. CInterpretación en R
- 7. Análisis de Cambios Estructurales

Las técnicas de modelización estadística buscan encontrar la distribución estadística que mejor representa a los datos para estudiar las relaciones entre las variables.

Principales técnicas:

Regresión Lineal (LM) – Series Temporales

Modelos Lineales Generalizados (GLM) – Logística, Poisson, GAM...

Modelos Lineales Robustos

Modelos Gráficos Probabilísticos (PGM)—Redes Bayesianas, Redes de Markov

Objetivo

Estimar la relación entre una variable dependiente (variable explicada) y varias variables independientes (variables explicativas) mediante una expresión lineal en coeficientes con el objetivo de contrastar teorías y estimar efectos entre las variables.

Desarrollo

Para la estimación de una relación líneas es necesario establecer el modelo a estimar, que será una combinación lineal de los regresores. La diferencia con la variable dependiente (que debe ser numérica real) se denomina residuo:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon$$

La estimación se realiza utilizando el estimador MCO y las estimaciones se obtienen resolviendo un sistema de ecuaciones.

La solución obtenidas es el mínimo global que minimiza la suma de los residuos al cuadrado

(*) en esta sesión sólo se considerará el modelo con término constante

Regresión Lineal: Componentes

Del Dato al Conocimiento

Datos

Modelo

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$

Función de coste
$$g(\beta_0, \beta_1, \dots, \beta_m) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - a - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2$$

Algoritmo estimador

Mínimos Cuadrados Ordinarios (MCO)

Regresión Lineal: Teorema de Gauss-Markov

Supuestos ampliados de la Regresión Lineal Múltiple (RLM)

- RLM 1. Modelo lineal en parámetros
- RLM 2. Muestreo aleatorio
- * RLM 3. Media condicionada nula $E(\epsilon_i \, \big| x_{11}, x_{21}, \cdots, x_{(k-1)N}, x_{kN}) = E(\epsilon_i) \quad \forall i = 1, \cdots, N$

- RLM 4. No multicolinealidad perfecta
- RLM 5. Homocedasticidad

$$V(\epsilon_{_{i}}\left|\boldsymbol{x}_{_{11}},\boldsymbol{x}_{_{21}},\cdots,\boldsymbol{x}_{_{(k-1)N}},\boldsymbol{x}_{_{kN}}\right.)=V(\epsilon_{_{i}})=\sigma^{2}$$

Los estimadores son los estimadores lineales insesgados óptimos (ELIO)

Insesgado: La esperanza del estimador coincide con el valor poblacional Óptimo: El estimados es el de menor varianza entre los insesgados lineales

Regresión Lineal: Asunciones débiles

Supuestos de la Regresión Lineal Múltiple (RLM)

- RLM 1. Modelo lineal en parámetros
- RLM 2. Muestreo aleatorio
- * RLM 3. Media condicionada nula $E(\epsilon_i \, \middle| x_{11}, x_{21}, \cdots, x_{(k-l)N}, x_{kN}) = E\left(\epsilon_i\right) \ \ \, \forall i=1,\cdots,N$
- RLM 4. No multicolinealidad perfecta

Los estimadores son insesgados (no tienen sesgo)

Supuestos débiles la Regresión Lineal Múltiple (RLM)

- RLM 1. Modelo lineal en parámetros
- RLM 3'. Exogeneidad débil $E(\epsilon_i | x_{1i}, x_{2i}, \dots, x_{ki}) = E(\epsilon_i) \ \forall i \ \text{con } i = 1, \dots, N$
- RLM 4. No multicolinealidad perfecta

Los estimadores son consistente (en el límite no tienen sesgo)

Big Data

Sesgo despreciable y varianza casi nula

Regresión Lineal: Interpretación de Coeficientes

Los coeficientes son efectos ceteris paribus si se cumple el supuesto de media condicionada nula:

$$E(\varepsilon/x_1, x_2, ..., x_k) = E(\varepsilon) = 0$$

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + \epsilon$$

Incremento de y al incrementar 1 unidad de x_i manteniendo el resto de variables dependientes constantes.

Regresión Lineal: Modelos en Niveles y Logaritmos

Se pueden estudiar efectos diferentes utilizando otras construcciones lineales

Modelo	Variable Dependiente	Variable Independiente	Interpretación
Regresión Level-Level $y=eta_0+ar{eta_1}x+\epsilon$	у		Un aumento de 1 unidad en x se corresponde con un aumento de beta unidades en y. (efecto marginal)
Regresión Log-Level $ln(y)=eta_0+eta_1x+\epsilon$	ln(y)	х	Un aumento de 1 unidad en x se corresponde con un aumento del 100*beta% en y. (semielasticidad)
Regresión Level-Log $y=eta_0+ar{eta}_1\cdot ln(x)+\epsilon$	у	ln(x)	Un aumento del 1% en x se corresponde con un aumento de beta/100 unidades en y.
Regresión Log-Log $ln(y) = eta_0 + eta_1 \cdot ln(x) + \epsilon$	In(y)	` '	Un aumento del 1% en x se corresponde con un aumento de beta% en y. (elasticidad)

Regresión Lineal: Descomposición de la Varianza

$$STC = \sum_{i=1}^{N} (y_i - \overline{y})^2$$

$$SCE = \sum_{i} e_{i}^{2}$$

$$SCE = \sum_{i=1}^{N} e_i^2$$

$$SCR = \sum_{i=1}^{N} (\hat{y}_i - \overline{\hat{y}})^2 = \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2$$

SCR

SCE

Varianza Total

Varianza Explicada

Varianza Residual

Coeficiente de Determinación

$$R^2 = \frac{SCR}{SCR}$$

Regresión Lineal: Overfitting

Con el objetivo de aumentar la varianza explicada por la regresión, podemos introducir nuevas variables, pero tenemos que tener cuidado que no produzcan sobre-ajustar (overfitting) y aumento de la varianza de los

estimadores.

Bias - Variance Tradeoff

Low Variance High Variance

Datos reales

Regresión Lineal: Comparativa de Modelos

Comparativa de Modelos:

Existen diferentes técnicas para comparar modelos lineales en función a sus características.

Estas métricas tratan de penalizar la mejora del modelo al introducir una variable irrelevante.

RELATIVOS

 $R^{2} = 1 - \frac{SCF}{STC} = \frac{SCR}{STC}$

R^2 ajustado

$$R_a^2 = 1 - \frac{N-1}{N-K} \frac{SCE}{STC}$$

Se elige el modelo con valor más alto

ABSOLUTOS

BIC Bayesian Information Criterion

-2 Ln(likelihood) + 2K* Ln(N)

Se elige el modelo con valor más bajo

AIC Akaike Information Criterion

-2 Ln(likelihood) + 2K

Se elige el modelo con valor más bajo

COMPARATIVO

$$F = \frac{\left(SCE_{R} \text{-}SCE_{NR}\right) / q}{SCE_{NR} / (N\text{-}K)}$$

Se elige el modelo NR si se rechaza el test

Regresión Lineal: Multicolinealidad

Cuando dos de los variables explicativas están muy correlacionados entre sí puede provocar el aumento de la Varianza de los coeficientes estimados del modelo y la no convergencia del estimador.

Como detectarlo:

- Coeficientes demasiado elevados sin interpretación.
- ❖ Falta de convergencia de los parámetros.
- Correlación elevada entre variables explicativas.

Regresión Lineal: Análisis de los residuos

Análisis de Residuos:

Si la distribución de los residuos no es una normal con media cero existen factores a introducir en el modelo que aportan información.

Esto disminuye la varianza y aparentemente las estimaciones son más precisas.

Regresión Lineal: Interpretación en R

Del Dato al Conocimiento

Coeficientes estimados

```
Call: 
lm(formula = Cantidad ~ Precio, data = Ventas)
```

Residuals:

Min 1Q Median 3Q Max -560.1 -127.6 -14.7 123.9 629.8

Coefficients:

Estimate 3304.878 | 15.778 | 209.5 | <2e-16 ***
Precio | -251.793 | 2.494 | -101.0 | <2e-16 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 192.5 on 2188 degrees of freedom

Multiple R-squared: 0.8233, Adjusted R-squared: 0.8232

F-statistic: 1.019e+04 on 1 and 2188 DF, p-value: < 2.2e-16

Contraste t:

$$t = \frac{\hat{\beta}_{j}}{\sqrt{\hat{V}(\hat{\beta}_{j})}}$$

Determinación:

$$R^2 = 1 - \frac{SCE}{STC} = \frac{SCR}{STC}$$

$$R_a^2 = 1 - \frac{N-1}{N-K} \frac{SCE}{STC}$$

$$F = \frac{(SCE_R - SCE_{NR})/q}{SCE_{NR}/(N-K)}$$

Donde NR es el modelo no restringido y R el modelo restringido. N el tamaño total de la muestras, K el número de parámetros del modelo NR y q el número de restricciones. En ejemplo: q=K y SCE(R)=

Regresión Lineal: Análisis de Cambios Estructurales

Existe cambio estructural cuando los valores numéricos de los parámetros poblacionales no son iguales en submuestras diferentes.

$$\begin{aligned} y_i &= \beta_0^{(1)} + \beta_1^{(1)} x_{1i}^{} + \ldots + \beta_k^{(1)} x_{ki}^{} + \epsilon_i^{} \\ y_i &= \beta_0^{(2)} + \beta_1^{(2)} x_{1i}^{} + \ldots + \beta_k^{(2)} x_{ki}^{} + \epsilon_i^{} \\ H_0 &: \beta_0^{(1)} = \beta_0^{(2)}, \ldots, \beta_k^{(1)} = \beta_k^{(2)} \\ H_1 &: No \ H_0^{} \end{aligned}$$

Test de Chow

i ES UN CONTRASTE F!

Del Dato al Conocimiento

al Conocimiento

Del Dato

https://antoniopita.blog

Introducción a la Modelización Estadística

Antonio Pita Lozano

Máster en Data Science

