Assignment 1

21 September, 2022

Due date: 4 October, by 13:20 in class

Instructions

- If you write your solutions by hand, please ensure your handwriting is legible. We may subtract marks for hard-to-read solutions.
- Submit a hardcopy of your assignment in class.
- After 13:20, an assignment will be accepted only with an MSAF.
- Name your Matlab files **exactly** as specified.
- Do not submit zipped files to Avenue. We will **ignore any compressed file** containing your files.
- Submit only what is required.

Problem 1 [2 points] (p. 32, exercise 25) For small x, the approximation $\sin x \approx x$ is often used. For what range of x is this good to a relative accuracy of $\frac{1}{2}10^{-14}$?

Problem 2 [4 points] (p. 33, exercise 41) Write the Taylor series for

a. e^{x+2h}

b. $\sin(x-3h)$

Problem 3 [3 points] Suppose you approximate e^x by its truncated Taylor series. For given x = 0.5, derive how many terms of the series are needed to achieve accuracy of 10^{-10} .

Problem 4 [2 points] Consider the expression (1 - a)(1 + a). In double precision, for what values of a does this expression evaluate to 1?

Problem 5 [2 points] Give an example in base-10 computer arithmetic when

a.
$$(a+b) + c \neq a + (b+c)$$

b.
$$(a * b) * c \neq a * (b * c)$$

Problem 6 [8 points] Suppose you need to generate n + 1 equally spaced points in the interval [a, b] with spacing h = (b - a)/n, n > 1. You can use either

$$x_0 = a, \quad x_i = x_{i-1} + h, \quad i = 1, \dots, n \quad \text{or}$$
 (1)

$$x_i = a + ih, \quad i = 0, \dots, n. \tag{2}$$

Denote by \widetilde{x}_i the computed value in (1) and by \widehat{x}_i the computed value in (2).

- a. [2 points] Which of $|x_i \widetilde{x}_i|$ and $|x_i \widehat{x}_i|$ is more accurate? Explain why.
- b. [2 points] Write a MATLAB program that implements both methods and illustrates the difference between them.

Submit to Avenue your Matlab code under file name spacing.m and also include this file in your hardcopy.

Problem 7 [6 points] Consider the approximation, h > 0

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}.$$

Assume that f'''(x) in continuous on [x, x + h].

a. [2 points] If we approximate f'(x) by (f(x+h) - f(x-h))/(2h), what is the truncation error of this approximation?

- b. [2 points] When evaluated on a computer, for what value of h the error of this approximation is the smallest?
- c. [2 points] For the function $f(x) = \sin x e^{\cos x}$ plot the error

$$\left| f'(x) - \frac{f(x+h) - f(x-h)}{2h} \right|$$

versus h for appropriate values of h. Plot on a loglog scale. Submit your plot in the hardcopy. How does the error match your derivation in the previous part?

Problem 8 [4 points] Consider

$$f(x) = \frac{e^x - x - 1}{x^2}.$$

When evaluated with |x| < 1, the relative error can be large.

- a. [1 point] Explain why this error can be large.
- b. [3 points] Write a MATLAB function

```
function y = expm1mx(x) % Evaluates (\exp(x) - 1 - x)/x^2 accurately for |x| < 1.
```

that evaluates f(x) as accurately as possible when |x| < 1. You must use only double precision and must not use any of the MATLAB's built-in functions. Store your function in a file with name expm1mx.m and submit it to Avenue and also include it in your hardcopy.

Then run the Matlab script

```
clear all; close all;
f = 0(x) (exp(x)-1-x)./x.^2;
N = [-16:1:0];
x = 10.^N;
% compute accurate values in higher precision
accurate = f(vpa(x));
% relative error in f(x)
error_f = abs((f(x)-accurate)./accurate);
loglog(x,error_f, 'o--');
y = expm1mx(x);
% relative error in expm1mx
error = abs((accurate-y)./accurate);
hold on;
loglog(x,error, 'o--');
legend("rel. error in f(x)", "rel. error in expm1mx")
print("-depsc2", "expm1mx.eps")
```

and submit the produced plot in your hard copy.

Problem 9 [8 points] The following MATLAB script

```
g = 0(x) (exp(x)-1-x)./x.^2;
h = 0(x) (exp(x)-x-1)./x.^2;
x = 1e-10;
fprintf('x=\%.16e\ng(x)=\%.16e\nh(x)=\%.16e\n', x, g(x), h(x))
x = 2^{(-33)};
fprintf('x=\%.16e\ng(x)=\%.16e\nh(x)=\%.16e\n', x, g(x), h(x))
```

produces (on my machine)

```
\begin{array}{l} x=1.000000000000000000-10\\ g(x)=8.2740370962658164e+02\\ h(x)=0.0000000000000000e+00\\ x=1.1641532182693481e-10\\ g(x)=0.0000000000000000e+00\\ h(x)=0.00000000000000000e+00 \end{array}
```

(3, 2, 1, 1 points) Explain the values for each of the g(x) and h(x).