1.1) The Experimental Ideal

Vitor Kamada

December 2018

Reference

Tables, Graphics, and Figures from:

Mostly Harmless Econometrics

By Angrist and Pischke (2009): Ch 2

2005 The National Health Interview Survey (NHIS)

1 to poor health and a 5 to excellent health

Group	Sample Size	Mean Health Status	Std. Error
Hospital	7,774	3.21	0.014
No hospital	90,049	3.93	0.003

Potential Outcomes

$$Y_i = egin{cases} Y_{1i} & \textit{if } D_i = 1 \\ Y_{0i} & \textit{if } D_i = 0 \end{cases}$$

$$Y_{0i} + (Y_{1i} - Y_{0i})D_i$$

Average Treatment Effect on the Treated + Selection Bias

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

$$= E[Y_{1i}|D_i = 1] - E[Y_{0i}|D_i = 1] + E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]$$

4□ ► 4□ ► 4 = ► 4 = ► 9 Q @

5 / 10

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

$$= E[Y_{1i}|D_i = 1] - E[Y_{0i}|D_i = 1]$$

$$= E[Y_{1i} - Y_{0i}|D_i = 1]$$

$$= E[Y_{1i} - Y_{0i}]$$

Comparison of treatment and control characteristics in the Tennessee STAR experiment

		Class	Size	<i>P</i> -value for equality	
Variable	Small	Regular	Regular/Aide	across groups	
Free lunch	.47	.48	.50	.09	
White/Asian	.68	.67	.66	.26	
Age in 1985	5.44	5.43	5.42	.32	
Attrition rate	.49	.52	.53	.02	
Class size in kindergarten	15.10	22.40	22.80	.00	
Percentile score in kindergarten	54.70	48.90	50.00	.00	

Krueger (1999)

7/10

Experimental estimates of the effect of class size on test scores

Explanatory Variable	(1)	(2)	(3)	(4)
Small class	4.82 (2.19)	5.37 (1.26)	5.36 (1.21)	5.37 (1.19)
Regular/aide class	.12 (2.23)	.29 (1.13)	.53 (1.09)	.31 (1.07)
White/Asian	_	_	8.35 (1.35)	8.44 (1.36)
Girl	_	_	4.48 (.63)	4.39
Free lunch	_	_	-13.15 (.77)	(.63) -13.07 (.77)
White teacher	_	_	_	(.77) 57 (2.10) 26 (10)
Teacher experience	_	_	_	.26 (.10) X
Teacher Master's degree	_	_	_	-0.51 (1.06) Yes
School fixed effects	No	Yes	Yes	Yes 5
R^2	.01	.25	.31	.31 ග

Regression Analysis of Experiments

$$Y_i = \alpha + \rho D_i + \eta_i$$

$$Y_i = E(Y_{0i}) + (Y_{1i} - Y_{0i})D_i + Y_{0i} - E(Y_{0i})$$

$$Y_{i} = \alpha + \rho D_{i} + X_{i}' \gamma + \eta_{i}$$

9 / 10

Vitor Kamada ECO 7100 Econometrics I December 2018

Conditional Expectation

$$Y_i = \alpha + \rho D_i + \eta_i$$
 $E[Y_i|D_i = 1] = \alpha + \rho + E[\eta_i|D_i = 1]$
 $E[Y_i|D_i = 0] = \alpha + E[\eta_i|D_i = 0]$

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

= $\rho + E[\eta_i|D_i = 1] - E[\eta_i|D_i = 0]$

Vitor Kamada ECO 7100 Econometrics I December 2018 10 / 10