Search for chargino and neutralino production in final states with two same-sign leptons, jets and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector

Samuel Lo ¹

 1 The University of Hong Kong

February 28, 2019

Oral Presentation 1 / 53

Introduction

Experimental Setup

Challenges

Signal Region

Backup "N-1" plots Introduction

Introduction

Standard Model: Fundamental Particles

▶ Standard Model(SM) is the current mainstream theory to describe the electromagnetic force, weak force and strong force.

Standard Model of Elementary Particles

Figure: The "periodic" table for all fundamental particles in SM.

Standard Model: Fundamental Interaction

Figure: All allowed fundamental higgs-related Feynman vertices in SM.

Figure: All allowed fundamental Feynman vertices in SM, except higgs-related vertices.

X is a W- or a Z-boson

Standard Model: Limitation

- ► SM cannot explain gravity.
- SM cannot explain the nature of dark matter.
- ► The hierarchy problem
 - ▶ Why the weak force is stronger than the gravity by 10^{24} .
 - ▶ Why the Higgs mass is much lighter than the Planck mass.
 - At very high energy scale, the Higgs boson mass is strongly sensitive to quantum corrections.

Supersymmetry

- Supersymmetry(SUSY) is a theoretical extension of the Standard Model.
- ▶ It is one of the most promising theory.
- ▶ It can solve the hierarchy problem of Higgs mass.
- ► It can explain the nature of dark matter.

Supersymmetry: MSSM

- ▶ Minimal Supersymmetric Standard Model(MSSM) is the simplest realization of the supersymmetry.
- ▶ It predicts that each particle in the Standard Model has its own partner particle, called the superpartner.
- ► The spin of the superpartner will differ from the Standard Model particle by 1/2.
- ► A symmetry between the fermions and bosons.

Figure: The particles in Standard Model and their corresponding superpartners and their names.

8 / 53

Supersymmetry: Superpartners

- ▶ In the MSSM, one more neutral Higgs filed H and two more charged Higgs fileds H^+ , H^- needed to be introduced.
- ▶ In SM electro-weak bosons, there are in total 4 neutral bosons: γ , Z, h and H, and 4 charged bosons: W^+ , W^- , H^+ and H^- .
- The superpartners of the 4 neutral bosons together form 4 mass eigenstates, called neutralinos: $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$ and $\tilde{\chi}_4^0$.
- ▶ The superpartners of the 4 charged bosons together form two mass eigenstates with electric charge ± 1 , called charginos: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{\pm}$.

Type	SM particle	Symbol	Spin	R-parity	Superpartner	Symbol	Spin	R-parity
Fermions	Quark	q	$\frac{1}{2}$	+1	Squark	\tilde{q}	0	-1
	Lepton	l	1/2	+1	Slepton	ĩ	0	-1
Gluon	Gluon	g	1	+1	Gluino	\tilde{g}	1/2	-1
Neutral EW Bosons	Photon	γ	1	+1				
	Z Boson	Z	1	+1	Neutralinos	$\tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{2}^{0}$, $\tilde{\chi}_{3}^{0}$, $\tilde{\chi}_{4}^{0}$	1/2	-1
	Neutral Higgs	$_{h,H}$	0	+1			2	
Charged EW Bosons	W Boson	W^{+}, W^{-}	1	+1	Charginos	$\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$	$\frac{1}{2}$	-1
	Charged Higgs	H^{+}, H^{-}	0	+1			<u>=</u>	

Table: The spin and R-parity for the Standard Model particles and their superpartners.

Supersymmetry: R-parity

- ▶ The baryon number B is defined by $\frac{1}{3}(n_q n_{\bar{q}})$, where n_q is the number of quarks and $n_{\bar{q}}$ is the number of anti-quarks.
- ▶ The lepton number L is defined by $n_l n_{\bar{l}}$, where n_l is the number of leptons and $n_{\bar{l}}$ is the number of anti-leptons.
- ▶ In SM, (B L) is conserved. But in MSSM, it is no longer conserved.
- ▶ To keep (B L) conservation and prevent the proton decay, the R-parity P_R is introduced.

$$P_R = (-1)^{3(B-L)-2s}$$

where s is the spin.

Oral Presentation

Supersymmetry: R-parity

- ▶ All SM particles have R-parity +1, while all SUSY particles have R-parity −1.
- ▶ If the R-parity is conserved, the lightest supersymmetric particle (LSP) cannot decay and is stable.
- ▶ If the LSP is electrically neutral and interacts with matter only by the weak interaction and gravity, it could be a candidate for dark matter, for example the lightest neutralinos $\tilde{\chi}_1^0$.
- ▶ In this thesis, the R-parity is assumed to be conserved, and the lightest neutralino $\tilde{\chi}_1^0$ is assumed to be the LSP.
- ▶ Due to the conservation of R-parity, the supersymmetric particles can only be pair-produced, and will eventually decay into SM particles and the lightest neutralino $\tilde{\chi}_1^0$ (i.e. LSP).

Our Signal Scenario: Motivation

- ▶ In the recent searches for the squarks (\tilde{q}) and gluinos (\tilde{g}) , the masses of gluinos and the first and second generation squarks are suggested to be larger than 1 TeV, while the masses of the third generation squarks are still allowed to be below 1 TeV.
- ▶ In this case, the direct pair production of $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ may be the dominant SUSY production process at the LHC, if the masses of them are below 1 TeV.
- ▶ In this thesis, their masses are assumed to be the same, and denoted by $m_{\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0}$.

Oral Presentation

Our Signal Scenario: Decay Processes

- ▶ If all the slepton (\tilde{l}) are heavier than $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$:
 - 1. $\tilde{\chi}_1^{\pm}$ will decay to W boson and $\tilde{\chi}_1^0$: $\tilde{\chi}_1^{\pm} \to W^{\pm} + \tilde{\chi}_1^0$
 - 2. $\tilde{\chi}_2^0$ will decay to the lightest MSSM Higgs boson h and $\tilde{\chi}_1^0$: $\tilde{\chi}_2^0 \to h + \tilde{\chi}_1^0$

Figure: The Feynman diagram for our Wh same-sign signal scenario.

Our Signal Scenario : Decay Processes

- The W boson will further to one lepton (electron or muon) and one neutrino with the SM branching ratio : $W^{\pm} \rightarrow \ell^{\pm} + \nu$
- ▶ The Higgs boson h will eventually decay to one lepton (electron or muon), quarks (i.e. jets) and neutrino(s) by various decay modes with the SM branching ratios. (For example, $h \to W^+W^-$ and $h \to \tau^+\tau^-$)
- From now on, a lepton ℓ^{\pm} only refer to an electron or muon, but not τ lepton or neutrino.

Oral Presentation 14 / 53

Our Signal Scenario: Signal Signature in the Final State

- ▶ In this thesis, we only search for two same-sign(SS) leptons, in order to suppress the SM backgrounds.
- A large missing energy is expected, due to the undetected neutralinos $\tilde{\chi}_1^0$ and neutrinos ν .
- Each quark will eventually become a particle shower within a narrow cone, called a jet, by the process of hadronization.
- ▶ The mass difference between the two lightest neutralinos $(m_{\tilde{\chi}^0_2} m_{\tilde{\chi}^0_1})$ should be larger than the Higgs mass (~ 125 GeV).

Our Signal Scenario: Sensitive Region

- ▶ If the mass difference $(m_{\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0} m_{\tilde{\chi}_1^0})$ is slightly larger than the Higgs mass, it is called the compressed region.
- ▶ In the compressed region, one of the lepton may have low energy, due to the low momentum of the Higgs boson, and hence it may not be detected.
- ▶ In this case, there may be originally 3 leptons, but only 2 leptons are detected.
- ▶ This allows more decay modes for Higgs boson, which produce two leptons. (For example, $h \to ZZ$)
- ▶ Hence, the signal will be more sensitive in the compressed region.

Oral Presentation

Experimental Setup

Experimental Setup: LHC

- ▶ The Large Hadron Collider (LHC) is the most powerful circular particle accelerator in the world.
- ▶ Its circumference is 27 km.
- ► Two beams of protons will be accelerated in opposite direction to centre-of-mass energy 13 TeV.
- ► They will be finally collided at the ATLAS detector.

Experimental Setup: ATLAS detector

Experimental Setup: ATLAS detector

- ▶ The ATLAS detector consists of 3 main components:
 - 1. Inner detector: It is a particle tracker. It measures the tracks of charged particles.
 - 2. Calorimeter: It measures the energy of the particle and stops the particle. It consists of electromagnetic and hadronic calorimeters.
 - 3. Muon spectrometer: It is a particle tracker for muons.

Challenges

Challenges

Estimation of the signal sensitivity

- ightharpoonup Cross section for our signal $\sim 0.1~\mathrm{pb}$
- ▶ Total luminosity in one year $\sim 10^4 \text{ pb}^{-1}$
- Expected number of signal events in one year $\sim 10^3$
- ightharpoonup Time interval between each collision = 25 ns
- ▶ Total number of events in one year $\sim 10^{15}$
- ▶ The probability to have a signal event $\sim 10^{-12}$
- ► Conclusion: the SUSY signal is very rare.

Strategy

In order to extract the signal, the following strategies are used.

- ▶ A hardware trigger system are used when taking the data (online), to only store the interested events in the disk. (40 MHz \rightarrow 100 kHz \rightarrow 1 kHz)
- ▶ Some discriminant variables (based on the kinematic variables) are defined, to help distinguish the signal and the background (i.e. noise).
- ▶ Two dedicated signal regions are defined based on the discriminant variables, to maximize signal sensitivity (like the signal-to-noise ratio).

Signal Region

Signal Region: Basic kinematic variables

- ▶ The z-axis is in the proton beam direction.
- ▶ The direction of the momentum **p** of the particle can by specified by the azimuthal angle ϕ and the polar angle θ , as usual in the spherical coordinate system.
- \triangleright The transverse momentum $\mathbf{p_T}$ is the projection of \mathbf{p} onto the x-y plane. The magnitude of $\mathbf{p_T}$ is denoted by p_T

$$p_T = \sqrt{p_x^2 + p_y^2}$$

Signal Region: Basic kinematic variables

▶ The pseudorapidity η is defined by

$$\eta = -\ln\left(\tan\frac{\theta}{2}\right)$$

- The values of pseudorapidity η have reflective symmetry about the x-y plane. (Negetive value for $90^{\circ} < \theta < 180^{\circ}$)
- ▶ The angle separation ΔR of two particles is defined as:

$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = \sqrt{(\phi_2 - \phi_1)^2 + (\eta_2 - \eta_1)^2}$$

▶ The missing momentum \mathbf{p}^{miss} due to undetected particle is defined by

$$\mathbf{p}^{\mathrm{miss}} = -\sum_{\mathrm{All\ detected\ particles}} \mathbf{p}$$

▶ The transverse missing erengy, denoted by E_T^{miss} or MET, is defined by

$$E_T^{\mathrm{miss}} = |\mathbf{p}_T^{\mathrm{miss}}| = \sqrt{(p_x^{\mathrm{miss}})^2 + (p_y^{\mathrm{miss}})^2}$$

▶ p_T^1 and p_T^2 are p_T of the two leptons, with $p_T^1 \ge p_T^2$. The lepton with larger p_T is called the leading lepton, while the lepton with smaller p_T is called the sub-leading lepton.

- \triangleright n_{jets} : Number of signal jets:
- $ightharpoonup n_{b-jets}$: Number of *b*-jets (jet from b quark).

$$\Delta \eta_{ll} = |\eta_1 - \eta_2|$$

$$m_{\text{eff}} = p_T^1 + p_T^2 + E_T^{\text{miss}} + \sum_{\text{signal jets}} p_T$$

▶ m_{ll} : The invariant mass of the 4-momentum sum of the two leptons

$$(m_{ll})^2 = (p_1 + p_2)^2$$

 $ightharpoonup m_T$: It is designed to reconstruct the mass of the W boson.

$$m_T = \sqrt{2p_T^1 E_T^{\text{miss}} (1 - \cos \Delta \phi)}$$

where $\Delta \phi$ is the azimuthal angle between the leading lepton and the missing transverse momentum.

 $ightharpoonup m_{T2}$: It is designed to set a lower bound on the masses of the unseen pair of charginos $\tilde{\chi}_1^{\pm}$ and neutralinos $\tilde{\chi}_2^0$.

$$m_{T2} = \min_{\mathbf{q}_T} \left[\max \left(m_T(\mathbf{p}_T^1, \mathbf{q}_T), m_T(\mathbf{p}_T^2, \mathbf{p}_T^{\text{miss}} - \mathbf{q}_T) \right) \right]$$
$$m_T(\mathbf{p}_T, \mathbf{q}_T) = \sqrt{2p_T q_T (1 - \cos \Delta \phi)}$$

4□ > 4□ > 4□ > 4□ > □ ● 900

 $ightharpoonup m_{lj}$: It is designed to reconstruct the mass of the Higgs boson.

$$p_{\text{jet-system}} = \begin{cases} p_{\text{jet1}} & \text{for SRjet1} \\ p_{\text{jet1}} + p_{\text{jet2}} & \text{for SRjet23} \end{cases}$$

$$p_{\text{closest-lepton}} = \begin{cases} p_{\ell 1} & \text{if } \Delta R(p_{\ell 1}, p_{\text{jet-system}}) \leq \Delta R(p_{\ell 2}, p_{\text{jet-system}}) \\ p_{\ell 2} & \text{if } \Delta R(p_{\ell 1}, p_{\text{jet-system}}) > \Delta R(p_{\ell 2}, p_{\text{jet-system}}) \end{cases}$$

$$(m_{lj(j)})^2 = (p_{\text{closest-lepton}} + p_{\text{jet-system}})^2$$

$$(m_{lj(j)})^2 = (p_{\text{closest-lepton}} + p_{\text{jet-system}})^2$$

Signal Region : Pre-selection

- ➤ Signal Region(SR) is a set of cuts of the discriminant variables, such that the signal sensitivity is high.
- ▶ By trying different sets of cuts, the signal region with the highest signal sensitivity can be found. This process is called the signal region optimization. The following cuts are the pre-selection, before the signal region optimization.

Pre-selection:

- ▶ Exactly 2 leptons with $p_T > 25$ GeV.
- ▶ The two leptons are same-sign in electric charge (SS).
- $ightharpoonup n_{\text{b-jets}} = 0$, to reduce the SM background from top quark.
- ▶ Two signal regions: SRjet1 with $n_{\text{jets}} = 1$, SRjet23 with $n_{\text{jets}} = 2$ or 3.

Signal Region : cut result

	SRjet1	SRjet23
n_{jets}	1	2 or 3
Leading lepton p_T [GeV]	≥ 25	≥ 25
Sub-leading lepton p_T [GeV]	≥ 25	≥ 25
$ \Delta\eta_{ll} $	< 1.5	-
$E_{\mathrm{T}}^{\mathrm{miss}} \; [\mathrm{GeV}]$	≥ 100	≥ 100
$m_{\rm eff} \ [{ m GeV}]$	≥ 260	≥ 240
$m_{\mathrm{T}}^{l1} \; [\mathrm{GeV}]$	≥ 140	≥ 120
m_{lj}/m_{ljj} [GeV]	< 180	< 130
$m_{T2} [{ m GeV}]$	≥ 80	≥ 70

Backup

Pre-selection plots

Yields in pre-selection

	Number of events
Fakes	$11580.965417 \pm 45.775452 (107219)$
charge flip	$3622.756937 \pm 2.810481 \ (3375964)$
WZ	$691.333566 \pm 34.238864 \ (68626)$
ZZ	$66.945860 \pm 1.049840 \ (21749)$
Rare	$47.371873 \pm 4.082859 (1662)$
WW	$38.128141 \pm 0.388221 \ (15666)$
$t\bar{t} + V$	$1.971267 \pm 0.138488 (671)$
Total BG	$16049.473060 \pm 57.389305 (3591557)$
(225.0,75.0)	$33.08 \pm 1.57 (676)$
(187.5,37.5)	$62.09 \pm 3.13 (568)$
(175.0,0.0)	$74.30 \pm 3.57 (556)$

Table: Yields in SRjet1

	Number of events
Fakes	$6848.284248 \pm 36.074557 (66096)$
charge flip	$2074.427691 \pm 2.680118 (1679673)$
WZ	$776.282836 \pm 5.978666 \ (147413)$
WW	$153.455294 \pm 0.679752 (72175)$
Rare	$92.181843 \pm 6.338615 (3011)$
ZZ	$62.932966 \pm 1.198123 (35945)$
$t\bar{t} + V$	$16.375388 \pm 0.359456 \ (6082)$
Total BG	$10023.940266 \pm 37.235816 (2010395)$
(225.0,75.0)	$45.01 \pm 1.76 (937)$
(187.5,37.5)	$86.02 \pm 3.84 \ (754)$
(175.0,0.0)	$107.96 \pm 5.14 (743)$

Table: Yields in SRjet23

$|\Delta\eta_{ll}|$

$E_{\mathrm{T}}^{\mathrm{miss}}$

 $m_{
m eff}$

m_{lj}/m_{ljj}

m_{T2}

N-1 plots

Yields in SR

	Number of events	Significance
Fakes	3.295434 ± 0.819175 (24)	
WZ	2.176292 ± 0.397871 (257)	
charge flip	0.472185 ± 0.052737 (265)	
Rare	$0.443536 \pm 0.111301 (56)$	
WW	0.165504 ± 0.023455 (67)	
$t\bar{t} + V$	0.124898 ± 0.046227 (36)	
ZZ	0.055330 ± 0.027713 (31)	
Total BG	6.733178 ± 0.920855 (736)	
(225.0,75.0)	$3.33 \pm 0.60 (60)$	0.74
(187.5, 37.5)	3.77 ± 0.95 (31)	0.86
(175.0,0.0)	4.29 ± 0.73 (36)	0.98

	Number of events	Significance
WZ	$1.848838 \pm 0.273025 (319)$	
Fakes	1.764693 ± 0.709215 (20)	
Rare	0.731015 ± 0.195114 (48)	
WW	0.514488 ± 0.036878 (235)	
charge flip	$0.267485 \pm 0.029086 (274)$	
$t\bar{t} + V$	0.141679 ± 0.030772 (67)	
ZZ	0.067226 ± 0.024995 (24)	
Total BG	$5.335425 \pm 0.787005 (987)$	
(225.0,75.0)	$2.35 \pm 0.34 (58)$	0.57
(187.5,37.5)	$4.72 \pm 0.74 (47)$	1.26
(175.0,0.0)	$8.60 \pm 1.51 (58)$	2.24

Table: Yields in SRjet1

Table: Yields in SRjet23

$|\Delta\eta_{ll}|$

m_{lj}/m_{ljj}

m_{T2}

