Aplicación de Programación Lineal en la Optimización de Mezclas para Adoquines

Angello Zamora Valencia
Vto Semestre
Métodos de Optimización
Universidad Nacional del Altiplano
Facultad de Ingeniería Estadística e Informática

7 de mayo de 2025

Introducción

- Problema: Optimizar la mezcla de agregados (arena, grava, polvo de piedra) para producción de adoquines de concreto
- Objetivo: Minimizar costos manteniendo calidad según normas técnicas (ABNT NBR 9781)
- Requisitos:
 - Resistencia a compresión ¿ 35 MPa (vehículos ligeros)
 - Absorción de agua 6 %
 - Calidad visual (bordes regulares, sin defectos)
- Método: Programación Lineal aplicada al problema de mezclas

Modelo Matemático

Formulación del problema de optimización:

$$Min \sum_{j} c_j x_j$$

Sujeto a:

- Restricción de proporciones: $\sum_{i} x_{i} = 1$
- Límites de calidad: $LI_i \leq \sum_j a_{ij} x_j \leq LS_i$
- No negatividad: $x_j \ge 0$

Donde:

- x_j : Cantidad de ingrediente j
- c_j: Costo unitario del ingrediente j
- a_{ij} : Fracción del componente i en el ingrediente j
- LI_i, LS_i: Límites inferior/superior para componente i

Implementación

- Variables: 7 agregados (gravas, arenas, polvo de piedra)
- Parámetros:
 - Costos por kg de cada material
 - Curva granulométrica ideal (análisis de tamices)
 - Requisitos físicos/mecánicos
- Software: Solver de Excel®
- Modelos comparados:
 - AA: Reemplazo de arena gruesa por grava
 - BB: Reemplazo de arena media por grava

Resultados

- Reducción de costos:
 - Modelo AA: 6.5 % (R\$ 1,420/mes)
 - Modelo BB: 2.5 % (R\$ 560/mes)
- Resistencia a compresión:
 - A los 8 días: AA (+33 %), BB (+25 %) vs mezcla actual
 - Cumplimiento de norma NBR 9781 (80 % de fpk antes de 28 días)
- Calidad visual:
 - Modelo AA: calidad aceptable
 - Modelo BB: problemas por exceso de humedad
- Validación: Pruebas de laboratorio a 8, 15 y 25 días

Conclusiones

- La PL demostró ser efectiva para optimizar mezclas de adoquines:
 - Reducción de costos significativa
 - Mantenimiento de estándares de calidad
- Ventajas del método:
 - Implementación accesible (Excel)
 - Adaptable a diferentes materiales y requisitos
- Limitaciones:
 - No se evaluó absorción de agua ni resistencia a abrasión
- Trabajo futuro:
 - Ampliar análisis a otros productos de concreto
 - Estudiar sensibilidad a variaciones en costos de materiales