타이타닉 승객 정보를 이용한 생존자 예측

4조

김동규, 김채윤, 문희원, 이주환, 이중기

목차

- 1. 목적
- 2. 데이터 프로파일링
- 3. 데이터 전처리
- 4. 주성분 분석
- 5. 러닝 모델
- 6. 데이터 분석
- 7. 결론 및 요약

1. 목적

• 데이터를 통해 생존자의 생사여부와 다른 데이터들 간의 연관성을 분석하여 생존에 영향을 미치는 요소를 찾아내는 것.

2. 데이터 프로파일링 리포트

Overview

Dataset info

Number of variables 12 Number of observations 891 Missing cells 866 (8.1%) **Duplicate rows** 0 (0.0%) 83.6 KiB Total size in memory Average record size in memory 96.1 B

Numeric

Variables types

Categorical Boolean Date URL Text (Unique) Rejected Unsupported

5

0

Warnings

Age has 177 (19.9%) missing values

Cabin has a high cardinality: 148 distinct values

Cabin has 687 (77.1%) missing values

Fare has 15 (1.7%) zeros Parch has 678 (76.1%) zeros SibSp has 608 (68.2%) zeros

Ticket has a high cardinality: 681 distinct values

- 결측치 채우기
- 불필요한 열 제거하기
- 텍스트로 되어있는 요소는 숫자로 바꿔주기
- 실수 범위를 구간 범위로 바꿔주기
- 정규화

결측치 채우기

```
1 x_data['Age'].isnull().sum()

177

Age 요소에 비어 있는 값이 존재
```

```
mean_age = x_data['Age'].median(skipna=True)
x_data['Age'] = x_data['Age'].fillna(mean_age)
```



```
1 x_data['Age'].isnull().sum()
0
```

• 텍스트로 되어있는 요소는 숫자로 바꿔주기

x_data['Sex'] = x_data['Sex'].apply(lambda x: 0 if x == 'male' else 1)

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	C85	С
2	3	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.1000	C123	S
4	5	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500	NaN	S
886	887	2	Montvila, Rev. Juozas	0	27.0	0	0	211536	13.0000	NaN	S
887	888	1	Graham, Miss. Margaret Edith	1	19.0	0	0	112053	30.0000	B42	S
888	889	3	Johnston, Miss. Catherine Helen "Carrie"	1	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	Behr, Mr. Karl Howell	0	26.0	0	0	111369	30.0000	C148	С
890	891	3	Dooley, Mr. Patrick	0	32.0	0	0	370376	7.7500	NaN	Q

• 실수 범위를 구간 범위로 바꿔주기

```
Sex Age SibSp Parch Age_group
                             Pclass
x data.loc[ x_data['Ac 0
                                    0 22.0
                                 3
                                                          3.0
x_data.loc[(x_data['Aq
                                                                   'Age group'] = 1
                                      38.0
                                                          6.0
x_data.loc[(x_data['Ac
                                                                   'Age group'] = 2
                                      26.0
                                                          3.0
                                 3
                                             0
                                                  0
                                                                   'Age_group'] = 3
x_data.loc[(x_data['Ac
                                      35.0
                                                  0
x_data.loc[(x_data['Ac
                                                                   'Age_group'] = 4
                                                                   'Age_group'] = 5
x data.loc[(x data['Ac
                                    0 35.0
                                                          5.0 36),
                                             0
x_data.loc[(x_data['Ac
                                                                   'Age group'] = 6
x_data.loc[(x_data['Ac 886
                                                                   'Age group'] = 7
                                    0 27.0
                                                  0
x data.loc[(x data['Ag
                                                                   'Age group'] = 8
                                    1 19.0
                                             0
                                                          2.0
                                                  0
                                                                   'Age group'] = 9
x data.loc[(x data['Ac
                                    1 28.0
                                                          4.0
                                                  2
x_data.loc[ x_data['Ac 888
                          889
                                      26.0
                                             0
                                                          3.0
                                 3
                                    0 32.0
                                                          5.0
                          890
                                             0
```

• 불필요한 열 제거하기

	Passengerld	Pclass			Pclass	Sex	Age	SibSp	Parch	Parch	Ticket	Fare	Cabin	Embarked
0	1	3		0	3	0	22.0	1	0	0	A/5 21171	7.2500	NaN	S
1	2	1	Cumings, Mrs. John	1	1	1	38.0	1	0	0	PC 17599	71.2833	C85	С
2	3	3		2	3	1	26.0	0	0)	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	Futrelle, Mrs.	3	1	1	35.0	1	0	0	113803	53.1000	C123	S
4	5	3		4	3	0	35.0	0	0)	0	373450	8.0500	NaN	S
886	887	2		886	2	0	27.0	0	0)	0	211536	13.0000	NaN	S
887	888	1		887	1	1	19.0	0	0)	0	112053	30.0000	B42	S
888	889	3	Johnston,	888	3	1	28.0	1	2	2	W./C. 6607	23.4500	NaN	S
889	890	1		889	1	0	26.0	0	0)	0	111369	30.0000	C148	С
890	891	3		890	3	0	32.0	0	0)	0	370376	7.7500	NaN	Q

4. 주성분 분석

 주성분 분석은 데이터의 분산을 최대한 보존 하면서 서로 직교하는 새 기저를 찾아, 고차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법

modelp = decomposition.PCA(n_components=3)

print(modelp.explained_variance_ratio_)
print(np.sum(modelp.explained variance ratio_))

[0.35181484 0.32182483 0.15948981] 0.8331294777381699

5. 머신러닝 모델

5. 로지스틱 회귀(Logistic Regression)

Train_Accuracy: 0.797752808988764 Test_Accuracy: 0.7910447761194029

AUC 0.85

5. 서포트 벡터 머신(SVM)

5. 의사결정 트리(Decision Tree)와 에이다부스트(AdaBoost)

• 에이다부스트(Adaboost)란 ?

간단한 약분류기들을 상호보완 하도록 단계적으로 학습시킨 후, 이들을 조합하여 최종 강분류기의 성능을 증 폭 DTree_train_score 0.7046548956661316 DTree_test_score 0.7089552238805971

Ada_train_score 0.8362760834670947 Ada_test_score 0.746268656716418

5. 그래디언트 부스팅 분류기 (GradientBoostingClassifier)

train_score: 0.7736757624398074 test_score: 0.7649253731343284

5. 랜덤 포레스트

3. Create model instance variable (동시에 여러 모델을 다른 이름으로 만들 수 있습니다.)

```
feature = ['Pclass', 'SibSp', 'Parch', 'Sex_clean', 'Family', 'Solo', 'Age_clean']
label = ['Survived']

from sklearn.model_selection import KFold, cross_val_score
from sklearn.ensemble import RandomForestClassifier

x = x_data[feature]
y = y_data[label]

x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, test_size=0.3, random_state=0)

k_fold = KFold(n_splits=10, shuffle=True, random_state=0)

clf = RandomForestClassifier(n_estimators=50, max_depth=4, power random_state=0)

# n_estimators = 의사결정트리의 제수
cross_val_score(clf, x_train, y_train, cv=k_fold, scoring='accuracy', ).mean()
# Accuracy

0.8282642089093702
```

4. Train the model

```
clf.fit(x_train,y_train)
print(clf.score(x_train,y_train))
print(clf.score(x_test,y_test))

0.8362760834670947

0.8134328358208955
```

5. 랜덤 포레스트

AUC 0.87

6. 데이터 분석

7. 결론

• 1. 머신 러닝 모델 중에서 다른 모델보다 랜덤 포레스트와 서포 트 벡터 머신이 점수가 높았고 두 모델 점수는 약 0.81이다.

 2. 시작할 때 중요하다고 생각했던 열은 성별, 나이, 좌석등급이 었고 모델에 따라서 중요한 열이 달랐다.

• 3. 머신러닝을 사용하지 않은 데이터 분석에서 성별과 좌석등급 이 생존에 큰 영향을 미쳤다.