Error correcting codes: combinatorics

- 1. Show that a code with minimal distance d can fix up to d-1 erasures unknown bits at fixed positions.
- **2.** Are there exists $(n, k, d)_q$ -codes as follows (recall that q is alphabet size, n is block size, k is number of information symbols, d is the minimal distance):

 - a) $[n, n, 1]_q$; b) $[n, n 1, 2]_q$; c) $[11, 5, 5]_2$; d) $[20, 7, 5]_2$; e)* $[22, 15, 3]_2$?

- **3.** Find $(n, k, d)_q$ satisfying Hamming condition but with d > n k + 1
- 4. Propose a $(n, n-1, 2)_q$ -code that can detect transposition of any pair of symbols (when symbols exchange their places).
- **5.** Suppose $C \subset V = \mathbb{F}_q^n$ be a linear code. By dual code denote $C^* = \mathrm{Ann}(C) \subset V^*$. So if C is $(n,k,d)_q$ -code, then C^* is $(n, n - k, d')_q$ -code for some d'.
- a) Show that for natural dual bases we have generator and parity check matrices for C^* coincide with parity check and generator matrices for C respectively.
 - b) Show that group of repeating symbol corresponds to check sum of this group in the dual code.
 - c) Find a minimal distance for the code, dual to Hamming code.
- d) Suppose that C is a cyclic polynomial $(n, k, d)_{\sigma}$ -code generated by a polynomial g(x). Show that C^* is a cyclic code generated by a polynomial $x^k h(x^{-1})$, where $h(t) = (t^n - 1)/g(x)$.
 - e) Is dual to polynomial code always polynomial?
- 6. For a given graph with m vertices and n edges we associate $(n, n-m, d)_q$ code as follows. Bits are enumerated by edges, a vector is a code word iff sum of bits for all edges with a common vertex is zero.
 - a) Find a graph associated with repeating code.
 - b) Find minimal distance of the code associated with n-gone.
 - c) Find minimal distance of the code associated with a simplex on m vertices.
 - d) Find minimal distance of the code associated with Petersen graph

