Part IA - Probability Definitions

Lectured by R. Weber Lent 2015

Basic concepts

Classical probability, equally likely outcomes. Combinatorial analysis, permutations and combinations. Stirling's formula (asymptotics for $\log n!$ proved). [3]

Axiomatic approach

Axioms (countable case). Probability spaces. Inclusion-exclusion formula. Continuity and subadditivity of probability measures. Independence. Binomial, Poisson and geometric distributions. Relation between Poisson and binomial distributions. Conditional probability, Bayes's formula. Examples, including Simpson's paradox. [5]

Discrete random variables

Expectation. Functions of a random variable, indicator function, variance, standard deviation. Covariance, independence of random variables. Generating functions: sums of independent random variables, random sum formula, moments.

Conditional expectation. Random walks: gambler's ruin, recurrence relations. Difference equations and their solution. Mean time to absorption. Branching processes: generating functions and extinction probability. Combinatorial applications of generating functions.

Continuous random variables

Distributions and density functions. Expectations; expectation of a function of a random variable. Uniform, normal and exponential random variables. Memoryless property of exponential distribution. Joint distributions: transformation of random variables (including Jacobians), examples. Simulation: generating continuous random variables, independent normal random variables. Geometrical probability: Bertrand's paradox, Buffon's needle. Correlation coefficient, bivariate normal random variables. [6]

Inequalities and limits

Markov's inequality, Chebyshev's inequality. Weak law of large numbers. Convexity: Jensen's inequality for general random variables, AM/GM inequality.

Moment generating functions and statement (no proof) of continuity theorem. Statement of central limit theorem and sketch of proof. Examples, including sampling. [3]

Contents

1	Intr	roduction	3
2		Classical probability	
	2.1	Classical probability	4
	2.2	Sample space and events	4

1 Introduction

2 Classical probability

2.1 Classical probability

Definition (Classical probability). *Classical probability* applies in a situation when there are a finite number of equally likely outcome.

2.2 Sample space and events

Definition (Sample space). The set of all possible outcomes is the *sample space*, Ω . We can lists the outcomes as $\omega_1, \omega_2, \dots \in \Omega$. Each $\omega \in \Omega$ is an *outcome*.

Definition (Event). A subset of Ω is called an *event*.

Definition (Set notations). Given any two events $A, B \subseteq \Omega$,

- The complement of A is $A^C = A' = \bar{A} = \omega \setminus A$.
- "A or B" is the set $A \cup B$.
- "A and B" is the set $A \cap B$.
- A and B are mutually exclusive or disjoint if $A \cap B = \emptyset$.
- $-A \subseteq B \text{ means } A \Rightarrow B.$

Definition (Probability). Suppose $\Omega = \{\omega_1, \omega_2, \cdots, \omega_N\}$. Let $A \subseteq \Omega$ be an event. Then the *probability* of A is

$$P(A) = \frac{\text{Number of outcomes in } A}{\text{Number of outcomes in } \omega} = \frac{|A|}{N}$$