The University of Melbourne — School of Mathematics and Statistics MAST30012 Discrete Mathematics — Semester 2, 2021

Practice Class 9: Permutations – Solutions

Q1: (a)
$$264351 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 4 & 3 & 5 & 1 \end{pmatrix} = (126)(34) = (16)(12)(34)$$

(b) $315642 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 5 & 6 & 4 & 2 \end{pmatrix} = (135462) = (12)(16)(14)(15)(13)$

Q2: (a) An r-cycle σ can be written as the product of r-1 2-cycles τ_i . Hence

$$\operatorname{sgn}(\sigma) = \operatorname{sgn}(\tau_1 \circ \tau_2 \circ \cdots \circ \tau_{r-1}) = \operatorname{sgn}(\tau_1) \cdot \operatorname{sgn}(\tau_2) \cdots \operatorname{sgn}(\tau_{r-1}) = (-1)^{r-1},$$

since $\operatorname{sgn}((i j)) = -1.$

(b)
$$\sigma = 87654321 = (18)(27)(36)(45), \qquad \tau = 46213875 = (14)(26853).$$

(c)
$$\operatorname{sgn}(\sigma) = (-1)^4 = +1$$
, $\operatorname{sgn}(\tau) = -1 \cdot (-1)^{5-1} = -1$.

(d) (156Assignment 4Projet Exam Help

$$\begin{array}{c} \text{(1587)(23)(46)} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 2 & 9 & 8 & 4 & 1 & 7 \\ \textbf{powcoder.com} \end{array}$$

Q3:

Add We Chat powcoder

$$= (56)(45)(34)(12)(23)(12)$$

$$= (16543)(2)$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 1 & 3 & 4 & 5 \end{pmatrix}$$

$$\tau = s_4 s_3 s_4 s_3 s_5 s_4 s_5
= (45)(34)(45)(34)(56)(45)(56)
= (1)(2)(3465)
= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 6 & 3 & 5 \end{pmatrix}$$

Q4:
$$(123)(234)(324) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$$
 $(213)(324)(324) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$.

Q5: (a)
$$A_n(x) = \sum_{k=0}^n S_1(n,k)x^k$$
$$= \sum_{k=0}^n ((n-1)S_1(n-1,k) + S_1(n-1,k-1))x^k$$
$$= (n-1)\sum_{k=0}^n S_1(n-1,k)x^k + \sum_{k=0}^n S_1(n-1,k-1)x^k.$$

Now

$$\sum_{k=0}^{n} S_1(n-1,k)x^k = \sum_{k=0}^{n-1} S_1(n-1,k)x^k \quad \text{(since } S_1(n-1,n) = 0\text{)}$$
$$= A_{n-1}(x),$$

$$\sum_{k=0}^{n} S_1(n-1,k-1)x^k = \sum_{k=1}^{n} S_1(n-1,k-1)x^k \quad \text{(since } S_1(n-1,-1)=0)$$

$$= S_1(n-1,0)x + S_1(n-1,1)x^2 + \dots + S_1(n-1,n-1)x^n$$

$$= xA_{n-1}(x).$$

So Assignment Project Exam Help

 $A_{\mathbf{r}}(x) = (n-1)A_{n-1}(x) + xA_{n-1}(x) = (x+n-1)A_{n-1}(x).$ **https://powcoder.com**

(b)
$$A_0(x) = S_1(0,0) = 1$$

 $A_1(x) = A_0(x)$ = $A_1(x) = A_1(x)$ = $A_2(x) = A_1(x)$ = $A_1(x) = (x+2)A_2(x) = (x+2)(x+1)x$
 \vdots
 $A_n(x) = (x+n-1)A_{n-1}(x) = (x+n-1)(x+n-2)\cdots(x+2)(x+1)x$

Q6: We have to seat n people at n-2 tables. There are two cases:

Case 1: Three people are seated at one table the remaining n-3 people must then be seated one each at the remaining n-3 tables. We can choose the 3 people in $\binom{n}{3}$ ways and there are (3-1)!=2 ways to seat the 3 people (k people can be seated at a table in (k-1)! ways since person 1 can be seated anywhere and then there are (k-1)! arrangements of the remaining k-1 people). So all in all $2\binom{n}{3}$ seating arrangements for this case.

Case 2: Two people each are seated at two of the tables with the remaining n-4 seated one each at the remaining n-4 tables. The four people at the two tables can be chosen in $\binom{n}{2}\binom{n-2}{2}$ ways. However, we don't care about the ordering of the two tables so we divide by the 2! ways of arranging the two tables. So $\frac{1}{2}\binom{n}{2}\binom{n-2}{2}$ seating arrangements for this case.

Putting everything together we have: $S_1(n, n-2) = 2\binom{n}{3} + \frac{1}{2}\binom{n}{2}\binom{n-2}{2}$.