Clustering validation

Is there any real clustering? How good is it?

- Book: Chapter 6.9
- External material: Halkidi et al. (2002): Cluster Validity Methods: Part I. ACM SIGMOD Record 31(2): 40–45. https://doi.org/10.1145/565117.565124

Three similar problems

- 1. Clustering tendency: is there any clustering in data presented with certain features?
- 2. Determining number of clusters (or other parameters)
- 3. Evaluating goodness of clustering
 - compare different methods
 - compare against classification

All three depend on the clustering objective!

- assumptions on clusters (e.g., compactness, shape)
- separation between clusters

Evaluating goodness of clustering

1. Internal criteria

- validity indices, similar to objective functions
- do not work, if clustering had a different objective!
- can be used to i) evaluate a single clustering or ii) compare clusterings (as relative indices)

2. External criteria

- compare clustering to a predefined classification
- classes may not reflect natural clusters

3. Statistical hypothesis testing

 maybe the most sound approach, but computationally demanding

Internal validity indices

- indices assume some clustering objective → reward methods with the same objective
 - even a good clustering can get a bad score if a different objective!
 - many indices assume/favor spherical or convex clusters
- best for comparing similar algorithms and tuning parameters
- Some popular indices:
 - Average silhouette
 - Calinski-Harabasz index
 - Davies-Bouldin index

Silhouette index

Silhouette of a point x is

$$S(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \text{ a cluster of its own} \\ \frac{b-a}{\max\{a,b\}} & \text{otherwise} \end{cases}$$

$$a = avg\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C, \mathbf{y} \in C\}$$

$$b = \min_{q} avg\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C, \mathbf{y} \in C_q, C \neq C_q\}$$

 \approx how closely x matches its own cluster and how loosely the neighbouring cluster

- $S(\mathbf{x}) \in [-1, 1]$, high values good
- Average silhouette describes goodness of entire clustering
- flexible: any distance function *d*

Example: Silhouette of points

What negative values mean?

$$S(\mathbf{x}) = \begin{cases} 0 & \text{if singleton} \\ \frac{b-a}{\max\{a,b\}} & \text{otherwise} \end{cases}$$

$$\begin{aligned} a &= avg\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C, \mathbf{y} \in C\} \\ b &= \min_{q} avg\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C, \mathbf{y} \in C\} \\ C_q, C \neq C_q \} \end{aligned}$$

image source http://www.sthda.com/
english/wiki/wiki.php?id_contents=7952

Calinski-Harabasz index

$$S_{CH} = \frac{(n-K)B}{(K-1)W}$$

- between-cluster variance $B = \sum_{i=1}^{K} |C_i| L_2^2(\mathbf{c}_i, \mathbf{m})$, where \mathbf{m} is the mean of the whole data
- within-cluster variance $W = \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} L_2^2(\mathbf{x}, \mathbf{c}_i)$
- requires $K \ge 2$
- range $[0, \infty[$, high values good
- When could you get value 0?

Calinski-Harabasz index (cont'd)

$$S_{CH} = \frac{(n-K)B}{(K-1)W} = \frac{(n-K)\sum_{i=1}^{K} |C_i| L_2^2(\mathbf{c}_i, \mathbf{m})}{(K-1)\sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} L_2^2(\mathbf{x}, \mathbf{c}_i)}$$

Note: $W = SSE(\mathbf{C})$. K-means criterion minimizes $W \Rightarrow$ maximizes B, because

$$\sum_{\mathbf{x} \in \mathcal{D}} L_2^2(\mathbf{x}, \mathbf{m}) = \sum_{i=1}^K \sum_{\mathbf{x} \in C_i} L_2^2(\mathbf{x}, \mathbf{c}_i)^2 + \sum_{i=1}^K |C_i| L_2^2(\mathbf{c}_i, \mathbf{m})$$

 \Rightarrow S_{CH} favours especially K-means!

Important: need to use L_2 in clustering!

Davies-Bouldin index

$$S_{DB} = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \frac{S_i + S_j}{D_{ij}} \quad \text{, where}$$

- $S_i = \left(\frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} L_p^q(\mathbf{x}, \mathbf{c}_i)\right)^{\frac{1}{q}}$ measures dispersion of C_i
 - usually q = 2 (stdev of distances)
 - if q = 1, average distances
- $D_{ij} = L_p(\mathbf{c}_i, \mathbf{c}_j)$ measures separation between C_i and C_j
- max: for each C_i , evaluate relation to most problematic C_j
- possible to take avg instead of max

Important: use the same L_p as the clustering algorithm!

Davies-Bouldin index (cont'd)

$$S_{DB} = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \frac{S_i + S_j}{D_{ij}}$$
, where

$$S_i = \left(\frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} L_p^q(\mathbf{x}, \mathbf{c}_i)\right)^{\frac{1}{q}} \text{ and } D_{ij} = L_p(\mathbf{c}_i, \mathbf{c}_j)$$

- range $[0, \infty[$, small values good
- When could you get value 0?

Possible strategies when S_{DB} used to determine K:

- restrict number of singletons (e.g., 0 or a few)
- define $S_i = a$ for some large a, when $|C_i| = 1$

External validation: Compare clustering against predefined classification

A confusion matrix: clustering vs. classification

	Class 1	Class 2	Class 3	
Cluster 1	n_{11}	n ₁₂	n ₁₃	m_1
Cluster 2	n ₂₁	n ₂₂	n ₂₃	m_2
Cluster 3	n ₃₁	n ₃₂	n ₃₃	m_3
	c_1	c ₂	<i>c</i> ₃	n

image source Cunnigham https://slideplayer.com/slide/14318989/

External validation

Given clustering C_1, \ldots, C_K and classification D_1, \ldots, D_q . Many validation indices! E.g.,

purity

$$Pur(C) = \frac{1}{n} \sum_{i=1}^{K} \max_{j} |C_i \cap D_j|$$

- be careful! (increases with K)
- normalized mutual information NMI (robust, independent of K)
- Rand index

Normalized mutual information

Normalized mutual information by Strehl and Ghosh (2003):

$$NMI = \frac{I(C, D)}{\sqrt{H(C)H(D)}}$$

mutual information $I = \sum_{C_i \in C} \sum_{D_j \in D} P(C_i, D_j) \log \frac{P(C_i, D_j)}{P(C_i)P(D_j)}$ entropy $H(C) = -\sum_{C_i \in C} P(C_i) \log P(C_i)$

- + does not depend on the number of clusters
- many singleton clusters can cause problems

Note: Also other variants of normalized mutual information, give always equation and/or reference what you use!

Statistical hypothesis testing: motivation

SI can be pretty good even for random data!

- each feature generated independently from uniform distribution
- 100 randomizations
- K-means repeated 100 times \rightarrow best result for each K

Experiment by Georgy Ananov for MDM 2023

Statistical hypothesis testing

Procedure:

- 1. decide a null hypothesis H_0 to test
 - describes the state where there isn't any clustering
 - e.g., H_0 : All sets of n locations in certain region are equally likely.
- 2. decide a test statistic *T*
 - may be a validity index
- 3. What is the probability to obtain at least as good test statistic values as in data (where T = t) if H_0 was true?

Statistical hypothesis testing

Assume that large T value good

Idea: If $P(T \ge t)$ very small \Rightarrow unlikely that the observed clustering had occurred by chance

• $P(T \ge t)$ is the **p-value** that can be used as a significance measure

Statistical hypothesis testing

Problem: How to evaluate p-value? (T's distribution seldom known!)

- often by Monte Carlo experiments (randomization tests):
 - generate random data sets fulfilling H_0 , cluster them and evaluate T
 - p-value \approx proportion of random sets that obtained $T \ge t$ (if large T good)
- computationally demanding (a lot of simulations!)
- many alternatives for H_0 s and Ts

Other evaluation: What the clustering reveals?

- Look at cluster sizes (e.g., C_1 : n-2 data points and C_2 : 2 points likely outliers!)
- How do the clusters differ? (selected and external features)
 - e.g., rats clustered by body measurements (weight, tail and body length, organ weights)
 - 2 clusters: big and small rats
 - vs. 3 clusters: C_1 : young or sick rats, C_2 : pregnant or nursing females, C_3 : other adults
- Are all clusters clear? (e.g., C_1 and C_3 intermingled, C_2 separate)

Summary

- Remember validation, but be cautious!
 - even random data can produce clusterings, but they seldom pass validation
 - problem: indices biased or do not reflect the underlying clustering
 - try always more than one validation technique
- Objective, distance measure, clustering method and validation should match!

Sources and further reading

- Halkidi et al. (2001): On clustering validation techniques, Journal of Intelligent Information Systems 17: 107–145. https://www.researchgate.net/
 publication/2500099_On_Clustering_Validation_
 Techniques
- Jain and Dubes (1988): Algorithms for clustering data,
 Ch 4.
- Gan, Ma, Wu (2007): Data clustering theory, algorithms, and applications, Ch 17, https://www.researchgate.net/publication/ 220694937_Data_Clustering_Theory_Algorithms_and _Applications

Sources and further reading

 Vargha, Bergman, Takacs: Performing Cluster Analysis Within a Person-Oriented Context: Some Methods for Evaluating the Quality of Cluster Solutions. Journal of Person-Oriented Research, 2: 78-86, 2016.

Spectral clustering

Contents:

- Matrices from the similarity graph
- 1D spectral embedding & clustering
- Unnormalized and normalized spectral clustering
- Important choices

Book: Sections 2.4.4.3, 6.7, 19.3.4

Recommended external material:

von Luxburg (2007): A Tutorial on Spectral Clustering.

Presemo: https://presemo.aalto.fi/mdm2023

Recap: How could you cluster these?

Images: White (2019) https://www.markhw.com/blog/word-similarity-graphs, Cooper (2021) https://spin.atomicobject.com/2021/09/07/spectral-clustering/, Park & Kim (2020) https://doi.org/10.1115/DETC2020-22642, Scikit-learn documentation https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/auto_examples/cluster/plot_cluster_comparison.html

General idea of graph-based clustering

- 1. Present data as a similarity (neighbourhood) graph G
- 2. Cluster nodes of *G* with a network clustering or community detection algorithm
- + can detect arbitrary-shaped clusters
- + even varying cluster densities (given *k* nearest neighbour similarity graph)
- + for any data type (if pairwise similarity/distance defined)
- computationally costly
- many parameter choices

Spectral clustering: Idea

- 1. Create similarity graph G
 - node v_i for the *i*th data point (i = 1, ..., n)
 - edge weight w_{ij} = similarity between nodes v_i and v_j
- 2. Present data in (low-dimensional) vector space (i.e., find vectors y_1, \ldots, y_n) such that local similarity/clustering structure is preserved
 - idea: choose Y to minimize $cost(\mathbf{G}, \mathbf{Y}) = \sum \sum w_{ij}L_2^2(\mathbf{y}_i, \mathbf{y}_j)$
 - intuition: large w_{ij} tends to produce small $d(\mathbf{y}_i, \mathbf{y}_j)$
 - → easy after reformulation with a Laplacian matrix
- 3. Cluster y_i s with K-means (etc.)

What is needed?

From **G** derive:

- 1. weight matrix W
- 2. diagonal degree matrix Λ
- 3. Laplacian matrix $L = \Lambda W$
- 4. normalized Laplacian matrices L_{rw} , L_{sym} if desired)

Similarity graph and weight matrix W

0.00	0.00	1.00	0.00	0.33	0.00
0.00	0.00	0.00	0.33	0.60	0.33
1.00	0.00	0.00	0.00	0.33	0.00
0.00	0.33	0.00	0.00	0.00	0.33
0.33	0.60	0.33	0.00	0.00	0.00
0.00	0.33	0.00	0.33	0.00	0.00

- W adjacency matrix of a weighted graph
- $W_{ij} = w_{ij}$ (similarity between nodes v_i and v_j)
- if unweighted graph, use weights 1 (edge) or 0

Diagonal degree matrix Λ ($\Lambda_{ii} = \sum_{j=1}^{n} W_{ij}$)

$$\Lambda = \begin{bmatrix}
1.33 & 0 & 0 & 0 & 0 & 0 \\
0 & 1.26 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.33 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.66 & 0 & 0 \\
0 & 0 & 0 & 0 & 1.26 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.66
\end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} 0.00 & 0.00 & 1.00 & 0.00 & 0.33 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.33 & 0.60 & 0.33 \\ 1.00 & 0.00 & 0.00 & 0.00 & 0.33 & 0.00 \\ 0.00 & 0.33 & 0.00 & 0.00 & 0.00 & 0.33 \\ 0.33 & 0.60 & 0.33 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.33 & 0.00 & 0.33 & 0.00 & 0.00 \end{bmatrix}$$

(Unnormalized) Laplacian matrix $L = \Lambda - W$

$$\mathbf{L} = \begin{bmatrix} 1.33 & 0.00 & -1.00 & 0.00 & -0.33 & 0.00 \\ 0.00 & 1.26 & 0.00 & -0.33 & -0.60 & -0.33 \\ -1.00 & 0.00 & 1.33 & 0.00 & -0.33 & 0.00 \\ 0.00 & -0.33 & 0.00 & 0.66 & 0.00 & -0.33 \\ -0.33 & -0.60 & -0.33 & 0.00 & 1.26 & 0.00 \\ 0.00 & -0.33 & 0.00 & -0.33 & 0.00 & 0.66 \end{bmatrix}$$

- ⇒ normalized Laplacian matrices:
 - Random-walk Laplacian $\mathbf{L}_{rw} = \mathbf{\Lambda}^{-1} \mathbf{L}$
 - Symmetric Laplacian $L_{sym} = \Lambda^{-0.5} L \Lambda^{-0.5}$

Idea of 1D spectral embedding & clustering

Goal: find embedding $\mathbf{y} = (y_1, \dots, y_n)^T$, where each y_i corresponds v_i and $cost(G, \mathbf{y})$ minimal.

$$cost(G, \mathbf{y}) = \sum \sum w_{ij}(y_i - y_j)^2 = 2\mathbf{y}^T \mathbf{L}\mathbf{y}$$

- we want to avoid trivial solution $\forall i: y_i = 0 \rightarrow$
- scaling constraint (e.g.) $\mathbf{y}^T \mathbf{y} = 1$ (i.e., $\sum_i y_i^2 = 1$)
- L is positive semidefinite (eigenvalues λ_i real, $\lambda_i \geq 0$)
- solution smallest non-trivial eigenvector of L

Extra: Why eigenvectors y of L would be the solution?

Task: Find y such that $2y^T L y$ minimal given constraint $y^T y = 1$

Method of Lagrange multipliers:

- 1. Reformulate as a Lagrangian function $\mathcal{L}(\mathbf{y}, \lambda) = \mathbf{y}^T \mathbf{L} \mathbf{y} \lambda (\mathbf{y}^T \mathbf{y} 1)$
- 2. Set the partial derivatives (with respect to y and λ) as 0
- 3. Reduces to Ly = λ y Eigenvalue & -vector definition!

Idea of 1D spectral embedding & clustering

- solution smallest non-trivial eigenvector y of L
- $cost = 2\mathbf{y}^T \mathbf{L} \mathbf{y} = 2\mathbf{y}^T \lambda \mathbf{y} = 2\lambda(y_1^2 + \dots + y_n^2) = 2\lambda (\lambda \text{ eigenvalue})$
- cost minimal, when λ minimal (recall $\mathbf{y}^T\mathbf{y} = 1$)
- but skip trivial solution $\lambda = 0$ with y (proportional to) $\mathbf{1} = (1, ..., 1)^T$
 - exists always when G connected
- ullet optimal solution eigenvector corresponding to the 2nd smallest λ
- cluster elements of y with K-means

Example

Unnormalized Laplacian L

1.33	0.00	-1.00	0.00	-0.33	0.00
0.00	1.26	0.00	-0.33	-0.60	-0.33
-1.00	0.00	1.33	0.00	-0.33	0.00
0.00	-0.33	0.00	0.66	0.00	-0.33
-0.33	-0.60	-0.33	0.00	1.26	0.00
0.00	-0.33	0.00	-0.33	0.00	0.66

Eigenvalues:

 \approx 0, 0.20, 0.99, 0.99, 1.99, 2.33 *

Second smallest eigenvector:

 $(0.48, -0.19, 0.48, -0.48, 0.19, -0.48)^T$

The new representation can be clustered by K-means:

^{* 1}st eigenvalue 1.9e-16 due to imprecision (should be 0)

Another example with 1D embedding

Fully connected weighted graph.

Eigenvector:

 $(0.32, 0.34, 0.28, 0.34, 0.29, -0.32, -0.27, -0.31, -0.36, -0.31)^T$

n = 10

Example by Bruno Ordozgoiti, MDM 2020

Generalization with multidimensional embedding

Unnormalized spectral clustering Input: Graph G with adjacency matrix W, number of clusters K.

- 1. Compute the Laplacian $L = \Lambda W$
- 2. Compute the eigenvectors $y_1, ..., y_k$ of L corresponding to the k smallest eigenvalues (excluding $\lambda = 0$)
- 3. Present the data as matrix \mathbf{Y} whose columns are $\mathbf{y}_1, \dots, \mathbf{y}_k$.
- 4. Cluster Y with K-means.

Note: Usually k = K or k < K. Eigengap $|\lambda_{k+1} - \lambda_k|$ can be used to choose k.

Eigengap heuristic for choosing k

Choose k such that $\lambda_1, \ldots, \lambda_k$ small but λ_{k+1} relatively large.

Image source: Fig 4 by von Luxburg (2006)

Normalized spectral clustering using random walk Laplacian L_{rw}

Input: Graph G with adjacency matrix W, number of clusters K.

- 1. Compute the random walk Laplacian $L_{rw} = \Lambda^{-1}L$
- 2. Compute the right eigenvectors $\mathbf{y}_1, \dots, \mathbf{y}_k$ of \mathbf{L}_{rw} corresponding to the k smallest eigenvalues (excluding $\lambda = 0$)
- 3. Present the data as matrix \mathbf{Y} whose columns are $\mathbf{y}_1, \dots, \mathbf{y}_k$.
- 4. Normalize the columns of Y to unit norm.
- 5. Cluster Y with K-means.

Normalized spectral clustering using symmetric normalized Laplacian \mathbf{L}_{sym}

Input: Graph G with adjacency matrix W, number of clusters K.

- 1. Compute the symmetric normalized Laplacian $\mathbf{L}_{sym} = \mathbf{\Lambda}^{-1/2} L \mathbf{\Lambda}^{-1/2}$
- 2. Compute the eigenvectors $\mathbf{y}_1, \dots, \mathbf{y}_k$ of \mathbf{L}_{sym} corresponding to the k smallest eigenvalues (excluding $\lambda = 0$)
- 3. Present the data as matrix \mathbf{Y} whose columns are $\mathbf{y}_1, \dots, \mathbf{y}_k$.
- 4. Normalize the rows of Y to unit norm.
- 5. Cluster Y with K-means.

Important choices

- Method: Unnormalized, random walk or symmetric normalized?
 - Usually normalization helps. Suggestion: try random walk first.
- Similarity measure
 - should measure local similarity reliably (close neighbours)
 - for numeric data, Gaussian similarity $exp\left(\frac{-||\mathbf{x}_i-\mathbf{x}_j||^2}{2\sigma^2}\right)$ often used
- Similarity graph and its parameters
 - this has a strong effect on results!

Common choices for the similarity graph

General goal: sparse but connected graph (or number of connected components << K)

- 1. ϵ -neighbourhood graph: keep only $w_{ij} \geq \epsilon$
 - problems if clusters of different densities
- 2. k-nearest neighbour graph: v_i among k nearest neighbours of v_j or vice versa
 - often a good first choice
 - can break the graph into disconnected components
- 3. mutual k-nearest neighbour graph: v_i among k nearest neighbours of v_j and vice versa

Similarity graph examples (von Luxburg, Fig 3)

Similarity graph (cont)

4. fully connected graph

- often with Gaussian similarity $\kappa(\mathbf{x}_i, \mathbf{x}_j) = exp\left(\frac{-||\mathbf{x}_i \mathbf{x}_j||^2}{2\sigma^2}\right)$ (radial basis function, RBF)
- how to choose σ ?
- Note: in scikitlearn parameter $\gamma = \frac{1}{2\sigma^2}$
- graph not sparse → heavy computation

Choice of parameters (ϵ, k, σ) affects a lot, too!

Example: neighbourhood with $\kappa(\mathbf{x}_i, \mathbf{x}_j) = exp\left(\frac{-||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma^2}\right)$

Image source: Bruno Ordozgoiti, MDM 2020 slides

Example: Different clustering results with different similarity graphs

Parameters: k=2, $\epsilon=0.3$, RBF with $\gamma=10$ (i.e., $\sigma=\sqrt{5}$) Experiment by Lai Khoa for MDM 2023

Summary

Idea: similarity graph \rightarrow low-dimensional VS presentation (eigenvectors) \rightarrow clustering (K-means etc.)

- + very powerful (virtually any datatype, arbitrary shapes)
- computationally expensive
 - creating similarity graph $O(n^2)$, spectral decomposition $O(n^3)$
- many important parameter choices

Further reading

von Luxburg: A Tutorial on Spectral Clustering. Statistics and Computing, vol. 17, pp. 395–416, 2007.

Reading guide: Sec 2 overview, 2.2, Sec 3 overview + definitions of Laplacian matrices from 3.1-3.2, Sec 4, Sec 5 overview, (possibly Sec 6 overview), Sec 8.

[9]

^asection overview = text before subsections