Import all modules

In [63]:

import os import pydotplus import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm import matplotlib.pyplot as plt from sklearn import tree from IPython.display import Image from sklearn.datasets import load_iris from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.model selection import train test split from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.tree.export import export_text from sklearn.tree import export_graphviz from sklearn.metrics import accuracy score from sklearn.externals.six import StringIO

Read training

Read data from training set.

In [27]:

```
training_set = pd.read_csv("adult.data")
training_set = training_set[~(training_set.eq(' ?')).any(1)]
training_set
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\ops\array_ops.py:253: Future Warning: elementwise comparison failed; returning scalar instead, but in the future will per form elementwise comparison

res_values = method(rvalues)

Out[27]:

	age	workclass	fnlwgt	education	education- num	marital- status occupation		relationship	race
0	39	State-gov	77516	Bachelors	13	Never- Adm- married clerical		Not-in-family	White
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse Exec- managerial		Husband	Whit€
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Blacl
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Blacl
32556	27	Private	257302	Assoc- acdm	12	Married- civ- spouse	Tech- support	Wife	Whit€
32557	40	Private	154374	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband	Whit€
32558	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White
32559	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-child	White
32560	52	Self-emp- inc	287927	HS-grad	9	Married- civ- spouse	Exec- managerial	Wife	White
30162 rows × 15 columns									
4									

Read test

Read data from test set, and get rid of unknown('?') values.

In [28]:

```
test_set = pd.read_csv("adult.test")
test_set = test_set[~(test_set.eq(' ?')).any(1)]
test_set
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\ops\array_ops.py:253: Future Warning: elementwise comparison failed; returning scalar instead, but in the future will per form elementwise comparison res_values = method(rvalues)

Out[28]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	ra
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Bla
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	Wh
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	Wh
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Bla
5	34	Private	198693	10th	6	Never- married	Other- service	Not-in-family	Wh
16275	33	Private	245211	Bachelors	13	Never- married	Prof- specialty	Own-child	Wh
16276	39	Private	215419	Bachelors	13	Divorced	Prof- specialty	Not-in-family	Wh
16278	38	Private	374983	Bachelors	13	Married- civ- spouse	Prof- specialty	Husband	Wh
16279	44	Private	83891	Bachelors	13	Divorced	Adm- clerical	Own-child	Asia Pa Island
16280	35	Self-emp- inc	182148	Bachelors	13	Married- civ- spouse	Exec- Husban managerial		Wh
15060	rows :	× 15 columr	ne						
13000	0000	· 10 COIUIIII	13						
4									•

Preprocess the training set data and test set data

Change string to number using label encoder.

In [29]:

```
lba = LabelEncoder()
workclass = training_set['workclass']
lba.fit(workclass)
training set['workclass'] = lba.transform(training set['workclass'])
lbatest = LabelEncoder()
workclass = test_set['workclass']
lbatest.fit(workclass)
test_set['workclass'] = lbatest.transform(test_set['workclass'])
lbb = LabelEncoder()
education = training set['education']
lbb.fit(education)
training_set['education'] = lbb.transform(training_set['education'])
lbbtest = LabelEncoder()
workclass = test set['education']
lbbtest.fit(education)
test set['education'] = lbbtest.transform(test set['education'])
lbc = LabelEncoder()
marital status = training set['marital-status']
lbc.fit(marital status)
training_set['marital-status'] = lbc.transform(training_set['marital-status'])
lbctest = LabelEncoder()
marital status = test set['marital-status']
lbctest.fit(marital status)
test set['marital-status'] = lbctest.transform(test set['marital-status'])
lbd = LabelEncoder()
occupation = training_set['occupation']
lbd.fit(occupation)
training set['occupation'] = lbd.transform(training set['occupation'])
lbdtest = LabelEncoder()
occupation = test_set['occupation']
lbdtest.fit(occupation)
test_set['occupation'] = lbdtest.transform(test_set['occupation'])
lbe = LabelEncoder()
relationship = training_set['relationship']
lbe.fit(relationship)
training_set['relationship'] = lbe.transform(training_set['relationship'])
lbetest = LabelEncoder()
relationship = test_set['relationship']
lbetest.fit(relationship)
test_set['relationship'] = lbetest.transform(test_set['relationship'])
lbf = LabelEncoder()
race = training_set['race']
lbf.fit(race)
training_set['race'] = lbf.transform(training_set['race'])
lbftest = LabelEncoder()
race = test_set['race']
lbftest.fit(race)
test_set['race'] = lbftest.transform(test_set['race'])
```

```
lbg = LabelEncoder()
sex = training_set['sex']
lbg.fit(sex)
training_set['sex'] = lbg.transform(training_set['sex'])
lbgtest = LabelEncoder()
sex = test_set['sex']
lbgtest.fit(sex)
test_set['sex'] = lbgtest.transform(test_set['sex'])
lbh = LabelEncoder()
nativecountry = training_set['native-country']
lbh.fit(nativecountry)
training_set['native-country'] = lbh.transform(training_set['native-country'])
lbhtest = LabelEncoder()
nativecountry = test_set['native-country']
lbhtest.fit(nativecountry)
test_set['native-country'] = lbhtest.transform(test_set['native-country'])
lbi = LabelEncoder()
income = training_set['income']
lbi.fit(income)
training_set['income'] = lbi.transform(training_set['income'])
lbitest = LabelEncoder()
income = test_set['income']
lbitest.fit(income)
test_set['income'] = lbitest.transform(test_set['income'])
```

Load training data and test data

In [36]:

X_train = training_set.iloc[:,:-1] X_train

Out[36]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race
0	39	5	77516	9	13	4	0	1	4
1	50	4	83311	9	13	2	3	0	4
2	38	2	215646	11	9	0	5	1	4
3	53	2	234721	1	7	2	5	0	2
4	28	2	338409	9	13	2	9	5	2
32556	27	2	257302	7	12	2	12	5	4
32557	40	2	154374	11	9	2	6	0	4
32558	58	2	151910	11	9	6	0	4	4
32559	22	2	201490	11	9	4	0	3	4
32560	52	3	287927	11	9	2	3	5	4
30162 rows × 14 columns								>	

Y_train

In [33]:

```
Y_train = training_set.iloc[:,-1:]
Y_train
```

Out[33]:

	income
0	0
1	0
2	0
3	0
4	0
32556	0
32557	1
32558	0
32559	0
32560	1

30162 rows × 1 columns

X_test

In [34]:

X_test = test_set.iloc[:,:-1] X_test

Out[34]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race
0	25	2	226802	1	7	4	6	3	2
1	38	2	89814	11	9	2	4	0	4
2	28	1	336951	7	12	2	10	0	4
3	44	2	160323	15	10	2	6	0	2
5	34	2	198693	0	6	4	7	1	4
16275	33	2	245211	9	13	4	9	3	4
16276	39	2	215419	9	13	0	9	1	4
16278	38	2	374983	9	13	2	9	0	4
16279	44	2	83891	9	13	0	0	3	1
16280	35	3	182148	9	13	2	3	0	4
15060 rows × 14 columns								•	

Y_test

In [35]:

```
Y_test = test_set.iloc[:,-1:]
Y_test
```

Out[35]:

	income
0	0
1	0
2	1
3	1
5	0
16275	0
16276	0
16278	0
16279	0
16280	1

15060 rows × 1 columns

Naive Bayes

In [43]:

Total points: 15060 Mislabeled points: 3184

Gini

In [67]:

```
clf = tree.DecisionTreeClassifier(criterion='gini')
clf.fit(X_train,Y_train)
Y_predict = clf.predict(X_test)
accuracy_score(Y_test,Y_predict)
```

Out[67]:

0.8027888446215139

Entropy

In [68]:

```
clf1 = tree.DecisionTreeClassifier(criterion='entropy')
clf1.fit(X_train,Y_train)
Y_predict1 = clf1.predict(X_test)
accuracy_score(Y_test,Y_predict1)
```

Out[68]:

0.8067065073041169

The Correlation

```
In [66]:
stats = sm.add_constant(X_train)
model = sm.OLS(Y_train, stats).fit()
prediction = model.predict(stats)
summary model = model.summary()
DF = pd.DataFrame(X train.describe())
print(DF,"\n")
print(prediction,"\n")
print(training_set.corr())
summary_model
             workclass
                           fnlwgt
                                   education education-num \
        age
count 30162.000000 30162.000000 3.016200e+04 30162.000000 30162.000000
        38.437902
                     2.199324 1.897938e+05
                                              10.333764
                                                           10.121312
mean
                                                         2.549995
                                             3.812292
std
      13.134665
                   0.953925 1.056530e+05
min
       17.000000
                   0.000000 1.376900e+04
                                             0.000000
                                                         1.000000
25%
       28.000000
                    2.000000 1.176272e+05
                                              9.000000
                                                          9.000000
50%
                    2.000000 1.784250e+05
       37.000000
                                             11.000000
                                                          10.000000
75%
       47.000000
                    2.000000 2.376285e+05
                                             12.000000
                                                          13.000000
       90.000000
                    6.000000 1.484705e+06
                                             15.000000
                                                          16.000000
max
   marital-status occupation relationship
                                              race
                                                       sex \
```

count 30162.000000 30162.000000 30162.000000 30162.000000 30162.000000 mean 2.580134 5.959850 1.418341 3.678602 0.675685 1.498016 4.029566 1.601338 0.834709 0.468126 std min 0.000000 0.000000 0.000000 0.000000 0.000000 25% 2.000000 0.000000 4.000000 2.000000 0.000000 50% 2.000000 6.000000 1.000000 4.000000 1.000000 75% 4.000000 9.000000 3.000000 4.000000 1.000000 6.000000 13.000000 5.000000 4.000000 max 1.000000

capital-gain capital-loss hours-per-week native-country count 30162.000000 30162.000000 30162.000000 30162.000000 mean 1092.007858 88.372489 40.931238 36.382567 std 7406.346497 404.298370 11.979984 6.105372 min 0.000000 0.000000 1.000000 0.00000 25% 0.000000 0.000000 40.000000 38.000000 50% 0.000000 0.000000 40.000000 38.000000 75% 0.000000 0.000000 45.000000 38.000000 99.000000 40.000000 99999.000000 4356.000000 max

```
0 0.350397
1 0.375028
```

2 0.276567

3 0.233115

4 0.207117

32556 0.161495 32557 0.253743 32558 0.072231 32559 -0.006412

32560 0.253604

Length: 30162, dtype: float64

age workclass fnlwgt education education-num \
age 1.000000 0.080540 -0.076511 -0.001111 0.043526
workclass 0.080540 1.000000 -0.032493 0.017855 0.037833
fnlwgt -0.076511 -0.032493 1.000000 -0.027102 -0.044992
education -0.001111 0.017855 -0.027102 1.000000 0.345410
education-num 0.043526 0.037833 -0.044992 0.345410 1.000000

marital-status -0.276373 -0.034241 0.032163 -0.040664 -0.063419 occupation -0.005682 0.015572 0.000204 -0.038212 0.087717 relationship -0.246456 -0.067417 0.009298 -0.012717 -0.091935 0.023374 0.044731 -0.023895 0.011154 race 0.032805 0.081993 0.074973 0.025362 -0.027888 0.006157 capital-gain 0.080154 0.035350 0.000422 0.030575 0.124416 capital-loss 0.060165 0.007204 -0.009750 0.015028 0.079646 hours-per-week 0.101599 0.050724 -0.022886 0.059887 0.152522 native-country -0.001905 0.007668 -0.066717 0.078790 0.091555 income 0.335286

marital-status occupation relationship race sex \ -0.276373 -0.005682 -0.246456 0.023374 0.081993 age -0.034241 0.015572 -0.067417 0.044731 0.074973 workclass 0.032163 0.000204 0.009298 -0.023895 0.025362 fnlwgt -0.040664 -0.038212 -0.012717 0.011154 -0.027888 education education-num -0.063419 0.087717 -0.091935 0.032805 0.006157 1.000000 0.022655 marital-status 0.177964 -0.068627 -0.119813 0.022655 1.000000 -0.053727 0.000717 0.062313 occupation relationship 0.177964 -0.053727 1.000000 -0.117143 -0.584876 -0.117143 1.000000 0.089186 -0.068627 0.000717 race sex -0.119813 0.062313 -0.584876 0.089186 1.000000 -0.058259 0.014353 0.048814 capital-gain -0.042418 0.022162 -0.035203 0.014607 -0.063567 0.023517 0.047011 capital-loss -0.189003 0.018365 -0.257850 0.048532 0.231268 hours-per-week native-country -0.025902 -0.003483 -0.010809 0.124514 0.000618 income

capital-gain capital-loss hours-per-week native-country \ -0.001905 0.080154 0.060165 0.101599 age workclass 0.035350 0.007204 0.050724 0.007668 fnlwgt 0.000422 -0.009750 -0.022886 -0.066717 0.030575 0.015028 0.059887 0.078790 education 0.124416 0.079646 0.152522 education-num 0.091555 -0.042418 -0.035203 -0.189003 marital-status -0.025902 occupation 0.022162 0.014607 0.018365 -0.003483relationship -0.058259 -0.063567 -0.257850 -0.010809 race 0.014353 0.023517 0.048532 0.124514 0.048814 0.047011 0.231268 0.000618 sex capital-gain 1.000000 -0.032229 0.080432 0.008530 capital-loss -0.032229 1.000000 0.052417 0.009386 0.080432 0.052417 1.000000 0.008408 hours-per-week native-country 0.008530 0.009386 0.008408 1.000000 0.221196 income 0.150053 0.229480 0.023268

income 0.241998 age workclass 0.018044 fnlwgt -0.008957 education 0.078987 education-num 0.335286 marital-status -0.193518 occupation 0.051577 relationship -0.251003 0.071658 race 0.216699 sex capital-gain 0.221196 capital-loss 0.150053 hours-per-week 0.229480 native-country 0.023268 1.000000 income

Out[66]:

OLS Regression Results

Dep. Variable	:	income	R-s	quared:	0.2	62	
Model	:	OLS		quared:	0.20	62	
Method	: Least	Squares	F-9	statistic:	tatistic: 766.4		
Date	: Thu, 09	Apr 2020	Prob (F-s	tatistic):	0.0	00	
Time	:	03:08:49 Log-Likelihood:			-1291	-12918.	
No. Observations	:	30162		AIC:	2.587e+	04	
Df Residuals	:	30147		BIC:	2.599e+	04	
Df Model	:	14					
Covariance Type	: n	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.5826	0.023	-25.267	0.000	-0.628	-0.537	
age	0.0052	0.000	29.600	0.000	0.005	0.006	
workclass	-0.0148	0.002	-6.568	0.000	-0.019	-0.010	
fnlwgt	7.129e-08	2.04e-08	3.497	0.000	3.13e-08	1.11e-07	
education	-0.0035	0.001	-5.772	0.000	-0.005	-0.002	
education-num	0.0485	0.001	52.600	0.000	0.047	0.050	
marital-status	-0.0230	0.002	-15.169	0.000	-0.026	-0.020	
occupation	0.0012	0.001	2.198	0.028	0.000	0.002	
relationship	-0.0160	0.002	-9.254	0.000	-0.019	-0.013	
race	0.0152	0.003	5.815	0.000	0.010	0.020	
sex	0.1117	0.006	19.524	0.000	0.100	0.123	
capital-gain	9.192e-06	2.93e-07	31.378	0.000	8.62e-06	9.77e-06	
capital-loss	0.0001	5.33e-06	21.203	0.000	0.000	0.000	
hours-per-week	0.0035	0.000	18.179	0.000	0.003	0.004	
native-country	-0.0006	0.000	-1.657	0.098	-0.001	0.000	
Omnibus:	2688.738	Durbin-	-Watson:	2.00	03		
Prob(Omnibus):	0.000	Jarque-B	era (JB):	3229.70	01		
Skew:	0.779	P	rob(JB):	0.0	00		
Kurtosis: 2.624 C		ond. No.	2.35e+06				

Warnings:

Tree diagram

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 2.35e+06. This might indicate that there are strong multicollinearity or other numerical problems.

In [64]:

plt.figure()
plot_tree(clf, filled=True)
plt.show()

In []: