第 9 章 g: 多元函数的极值

数学系 梁卓滨

2017.07 暑期班

回忆一元函数的极值点、驻点、最值点

假设 y = f(x) 定义在区间 [a, b] 上,如图

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	×
X	x_2	极大值点	×(不可导)	×
	X 3	极小值点	✓	×
	X 4	极大值点	√	最大值点
	b			最小值点

多元函数的极值、极值点

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0), \quad \text{Ḥ} \Phi(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

• 极大、极小值点统称极值点; 极大、极小值统称极值。

例

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy点 $p_0(0, 0)$ 是 不是极值点。

问题

- z = xy 是否有极值点?
- 是否有一般方法求出函数的极值点? 如:

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

定理 设 z = f(x, y) 在内点 (x_0, y_0) 处存在偏导数,则 (x_0, y_0) 是极值点的必要条件是

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \big|_{y=y_0} = 0$$

定义 使偏导数为零的点, 称为驻点

注 如果函数存在偏导数,则 {极值点} ⊂ {驻点}

例 1 点 (0, 0) 是 $z = x^2 + y^2$ 的极小值点,从而也是驻点。直接验证 (0, 0) 是驻点,则如下:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0,0) 是驻点:

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

但点 (0,0) 不是极值点。

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 (-3, 2) (1, 2)
 $y = 0$ (-3, 0) (1, 0)
 $x = -3$ $x = 1$

例 求 $z = x^3 + y^3 - 3xy$,求驻点。

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

例 设 $z = x^3 + y^3 - 3xy$,求驻点。

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

所以驻点为 (1, 1), (0, 0)

$$z = x^3 + y^3 - 3xy$$

• 问题 如何从驻点中判别哪些是极值点?

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^{2}$$

结论是:

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
 - 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)
 - 2. 通过 $P(x_0, y_0)$ 辨别驻点 (x_0, y_0) 是否极值点

例 求 $z = x^3 - v^3 + 3x^2 + 3v^2 - 9x$ 的极值点。

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	×

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

例 求 $z = x^3 + y^3 - 3xy$ 的极值点。

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

3. 结论

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	×

$$z = x^3 + y^3 - 3xy$$

三元函数的极值点

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_X(x_0, y_0, z_0) = 0$$
, $f_Y(x_0, y_0, z_0) = 0$, $f_Z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定是驻点
- 如何进一步判别哪些驻点为极值点? 考虑矩阵

$$\begin{pmatrix}
f_{xx} & f_{xy} & f_{xz} \\
f_{yx} & f_{yy} & f_{yz} \\
f_{zx} & f_{zy} & f_{zz}
\end{pmatrix}_{(x_0, y_0, z_0)}$$

- 如果是正定矩阵,则 (x₀, y₀, z₀) 是极小值点
- 如果是负定矩阵,则 (x₀, y₀, z₀) 是极大值点

