Paper solutions

Exam TDDE07 2020 06/04

1 a)

2 d) Method T: Novad approximation
Method 7: Normal approximation One can approximate the posteror distrusive N(θ, J'(θ)) where θ: Posterior mode and J = negative (g) d ² log(p(θ x))(β) (seend derivate of log posterior likelihood) at θ = θ. The posterior mode can be found by optimizing max log(p(θ x), using optim in R for instance; Same with J. Method 2! Hamiltonian monte carlog which adds momentum to the sampling distrustation, akin to a physics simulation, using expressions for kinetic and potential energy of the posterion. 7. Sample from momentum to begin 2. Simulate new theth proposal and momentum (using leapthag algorithm) 3. compute acceptance probability α = min(i, p(Σ θ)p(θ, j), p(Φp))
Of = min(1, $P(y \theta_p)p(\theta_p)$ $P(\phi_p)$) (θ_p : theta proposar, $P(y \theta_p)p(\theta_p)$) 4. With Probability an, set θ_p : momentum proposar) θ_p : θ_p : momentum proposar) θ_p : $\theta_$

4,6) At length = x n N(Vmc, 23) om = 2
P(NMLIX) & P(XINML) P(NML) &
7; Uniform prion
$\propto \exp\left(-\left(\frac{N_{\text{INC}}-\overline{X}}{2}\right)^{\frac{3}{2}}\right) \sim N\left(\frac{\overline{X}}{2}\right)^{\frac{3}{2}}$
/n=4/
PML = X + E // E ~ N(0, 22) =>
Yrred = NML + V // V n N(0, 22)
Ypred = X + E+V ~ N (X, 22(1+4))=
Ypred = N(12,5)
predictive variance = population variance + posterior variance