Comparative with IHDELS and IHSHADELS (and versions)

Daniel Molina Cabrera

 dmolina@decsai.ugr.es ${\tt January~13,~2018}$

Contents

1	Original version IHDELS-CEC2015 1.1 Comparison against MOS	
2	IHDELS-CEC2015 vs IHDELS-Restart2.1 Differences	1 1 2 2
3	New proposal: IHDELS vs IHSHADELS	2
1	Original version IHDELS-CEC2015	
1.	1 Comparison against MOS	
1.	2 Conclusions	
	• MOS improve in 12 of 15 functions.	
	• IHDELS is not competitive.	
2	IHDELS-CEC2015 vs IHDELS-Restart	
2.	1 Differences	
	• Changed the selection of LS method.	

Function IHDELS MOS IHDELS MOS IHDELS 1.29E+001 1.77E+003 2.00E+001 1.77E+010 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_{10} 0.00E + 000 8.36E + 0022.99E + 00738E+000 1.81E-0234.80E-029 1.27E+003 2.00E+001 2.24E+009 $2.59E \pm 0.03$ $^{1.27\mathrm{E}+003}_{2.00\mathrm{E}+001}$ $1.77E \pm 0.03$ 7.77E + 0004.09E-011 9.10E-013 3.58E+010 6.80E+006 3.11E+005 3.28E+008 3.72E+014 2.46E+009 6.79E+006 1.39E+005 8.07E+006 8.56E+013 9.10E-013 1.56E+008 6.79E+006 1.39E+005 1.62E+004 3.09E + 0083.09E+008 9.68E+006 1.03E+004 1.36E+012 7.12E+008 9.19E+007 9.87E+006 5.16E+002 4.02E+006 1.48E+007 1.12E+007 1.05E+006 1.02E+007 1.04E+006 2.86E+008 6.90E + 0061.74E+014 7.34E+008 9.39E+007 7.15E+009 1.82E+003 1.70E+008 7.24E+008 9.35E+007 4.55E+008 1.24E+003 $8.08E \pm 0.12$ f4.32E+008 1.24E+006 2.78E+009 3.89E + 0083.87E + 0081.18E+006 7.79E+008 2.02E+003 1.18E+006 4.48E+007 $F_{11} F_{12}$ 1.02E + 0042.46E + 0021.20E+010 6.81E+010 7.64E+008 1.24E+008 F_{13} $\bf 7.34E \! + \! 009$ 7.32E + 0083.30E+006 2.42E+007 F_{14} $4.46E \pm 0.10$ $1.53E \pm 0.08$ 1.43E + 0071.72E + 0072.38E + 0063.13E + 006 F_{15}

• Changed the restart, the original did not applied restart in many function, and never improve.

2.2 Comparison

- Improve in 10 of 15 functions.
- Improve specially in more difficult problems.

2.3 Comparison against MOS

- Now IHDELS_{restart} improve in 7 of 15 functions.
- Improve specially in more difficult ones.
- In several functions: F11, F13 the improvement is several order of magnitud.

3 New proposal: IHDELS vs IHSHADELS

Table 2: Results IHDELS vs IHDELS_restart

Functions	Function	IHDELS	$\overline{\text{IHDELS}_restart}$
Separable	$F_1 \\ F_2 \\ F_3$	4.80e-29 1.27e+03 2.00e+01	$4.53\text{e-}24 \\ \textbf{1.26e+}03 \\ 2.01\text{e+}01$
Partially Separable	$F_4 \\ F_5 \\ F_6 \\ F_7$	3.09e+08 $\mathbf{9.68e+06}$ 1.03e+06 3.18e+04	$\begin{array}{c} \textbf{2.55e} \!+\! \textbf{08} \\ 1.18e \!+\! \textbf{07} \\ 1.03e \!+\! \textbf{06} \\ \textbf{5.83e} \!+\! \textbf{02} \end{array}$
Partially Separable II	F_8 F_9 F_{10} F_{11}	$\begin{array}{c} \textbf{1.36e+12} \\ 7.12e+08 \\ 9.19e+07 \\ 9.87e+06 \end{array}$	$2.19\mathrm{e}{+12} \\ \mathbf{5.14e}{+08} \\ \mathbf{9.16e}{+07} \\ \mathbf{2.77e}{+06}$
With overlapping	$F_{12} \\ F_{13} \\ F_{14}$	$\begin{array}{c} 5.16\mathrm{e}{+02} \\ 4.02\mathrm{e}{+06} \\ 1.48\mathrm{e}{+07} \end{array}$	$\substack{1.32\mathrm{e}+02\\6.29\mathrm{e}+05\\1.01\mathrm{e}+07}$
Non separable	F_{15}	$3.13\mathrm{e}{+06}$	${\bf 1.35e\!+\!06}$

Table 3: Results IHDELS_restart vs MOS

Grupo de Funciones	Función	Propuesta	MOS
	F_1	4.53e-24	$0.00 \mathrm{e} {+00}$
Separable	F_2	$1.26\mathrm{e}{+03}$	$8.36\mathrm{e}{+02}$
	F_3	$2.01\mathrm{e}{+01}$	9.10e-13
	F_4	$2.55\mathrm{e}{+08}$	$1.56\mathrm{e}{+08}$
Parcialmente	F_5	$1.18\mathrm{e}{+07}$	$6.79\mathrm{e}{+06}$
Separable	F_6	$1.03\mathrm{e}{+06}$	$1.39\mathrm{e}{+05}$
	F_7	$5.83\mathrm{e}{+02}$	$1.62\mathrm{e}{+04}$
	F_8	$2.19\mathrm{e}{+12}$	$8.08\mathrm{e}{+12}$
Partially	F_9	$5.14\mathrm{e}{+08}$	$3.87\mathrm{e}{+08}$
Separable II	F_{10}	$9.16\mathrm{e}{+07}$	$1.18\mathrm{e}{+06}$
	F_{11}	$2.77\mathrm{e}{+06}$	$4.48\mathrm{e}\!+\!07$
With overlapping	F_{12}	$1.32 \mathrm{e}{+02}$	$2.46\mathrm{e}{+02}$
	F_{13}	$6.29\mathrm{e}{+05}$	$3.30\mathrm{e}{+06}$
	F_{14}	$1.01\mathrm{e}{+07}$	$2.42 \mathrm{e}{+07}$
Non separable	F_{15}	$1.35\mathrm{e}{+06}$	$2.38\mathrm{e}{+06}$