

A.T.L.A.S.

IES - 2024

Diogo Fernandes 114137 Henrique Oliveira 113585 Mateus Rocha 122949 Raquel Vinagre 113736

TABLE OF CONTENTS

O1
INTRODUCTION

What is A.T.L.A.S?

O3ARCHITECTURE

Main components and module interactions

U2 PRODUCT CONCEPT

Personas, User Stories and Features

O4 DEMO

Product in action

INTRODUCTION

Advanced Tracking Legendary Automated Spaceship

Software application developed for the efficient monitoring and analysis of spaceship operations.

The app leverages real-time tracking of data, emitting useful alerts.

With a Greek mythology-based name, A.T.L.A.S. revolutionizes space exploration.

PERSONAS

Melon Usk

CEO

Lua Dipa

Aerospace Engineer

Juan Direction

Astronaut

Mona Luísa

Flight Director

USER STORIES

1 - Lua Dipa should receive real-time alerts on subsystem anomalies during the mission

2- Mona Luísa wants to know the evolution of the time a message from HQ takes to reach the spaceship.

3 - Juan Direction should be notified on crew members' low oxygen levels

4 - Melon Usk can find specific data regarding aspects of the system

5 - Mona Luísa should be able to, based on a specific time period, get the summarized data of the spaceship.

Check system status

Cabin pressure, ship velocity, power...

Check crew vitals

Oxygen levels, body temperature...

Messages

Check response time and user messages

Real-time alerts

From all the crew and spaceship sensors

Generate reports

And export them as a PDF

Data evolution

In the form of dynamic graphs

ARCHITECTURE

Microservices Architecture

Traffic management between services - with **NGINX**

Asynchronous Communication

- with **Kafka**

Backend Communication

- via **REST**

Data Flow from Data to Frontend

- via WebSockets

•

COMMUNICATIONS

POWER SYSTEM

A.T.L.A.S. OVERVIEW

CABIN TEMP

=

Inertial Velocity 4317.07 km/s 26586 km Altitude Apogee 334050.66 km Perigee 253747.83 km Inclination 88.22° Range to ISS 0 km

WHAT'S NEXT?

Where is A.T.L.A.S. going 👀

