Licence 1 – Algèbre linéaire

R. Abdellatif

TD 0 – Révisions sur les espaces vectoriels

I) Démonstration de quelques résultats généraux

Dans toute cette partie, \mathbb{K} désignera \mathbb{Q} , \mathbb{R} ou \mathbb{C} (ou plus généralement un corps quelconque).

Exercice 1. —

- 1. Montrer que tout ℂ-espace vectoriel est naturellement muni d'une structure de ℝ-espace vectoriel.
- 2. Montrer que tout \mathbb{R} -espace vectoriel est naturellement muni d'une structure de \mathbb{Q} -espace vectoriel.
- 3. Plus généralement, démontrer que si \mathbb{K}' est un corps contenu dans \mathbb{K} , alors tout \mathbb{K} -espace vectoriel est naturellement muni d'une structure de \mathbb{K}' -espace vectoriel.

Exercice 2. — Soit E un \mathbb{K} -espace vectoriel et soient F, G deux sous-espaces vectoriels de \mathbb{K} .

- 1. Démontrer que $F \cap G$ et F + G sont des K-sous-espaces vectoriels de E.
- 2. Déterminer une condition nécessaire et suffisante pour que $F \cup G$ soit un \mathbb{K} -sous-espace vectoriel de E.
- 3. Démontrer que F + G est le plus petit K-sous-espace vectoriel de E contenant F et G.

Exercice 3. —

- 1. Montrer que toute sous-famille d'une famille libre est encore une famille libre.
- 2. Montrer que toute famille de vecteurs contenant une sous-famille liée est elle aussi liée.

Exercice 4. —

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$.

- 1. Démontrer que toute famille libre de E contient au plus n éléments, avec égalité ssi cette famille est une base de E.
- 2. Démontrer que toute famille génératrice de E contient au moins n éléments, avec égalité ssi cette famille est une base de E.

Exercice 5. —

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$ et soient F et G deux \mathbb{K} -sous-espaces vectoriels de E.

- 1. Démontrer que F et G sont nécessairement de dimension finie inférieure ou égale à n.
- 2. Démontrer que dim F = n ssi F = E.
- 3. Démontrer que $\dim(F+G) = \dim F + \dim G \dim(F \cap G)$.
- 4. En déduire que $\dim(F+G) = \dim F + \dim G$ ssi F et G sont en somme directe.
- 5. Exprimer uniquement en termes d'égalités de dimensions le fait que F et G sont supplémentaires dans E.

Licence 1 – Algèbre linéaire

R. Abdellatif

TD 0 – Révisions sur les espaces vectoriels

II) Quelques exemples concrets

Exercice 6. —

Notons $\mathcal{F}(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions définies sur \mathbb{R} à valeurs réelles.

- 1. Montrer que $\mathcal{F}(\mathbb{R}, \mathbb{R})$ est un espace vectoriel réel. Est-il de dimension finie?
- 2. Notons l'ensemble E des solutions de l'équation différentielle y' 2y = 0. Est-ce un \mathbb{R} -sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$? Si oui, est-il de dimension finie?

Exercice 7. —

Parmi les espaces suivants, lesquels sont des sous-espaces vectoriels de \mathbb{R}^3 ?

$$F:=\left\{(x,y,z)\in\mathbb{R}^3\mid y=2x\text{ et }z=0\right\}\;;\;G:=\left\{(x,y,z)\in\mathbb{C}^3\mid x^2=y^2=z^2=1\right\}\;;\;H:=\left\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\;\text{ et }x-y-z=0\right\}\;.$$

Exercice 8. —

Parmi les espaces suivants, lesquels sont des sous-espaces vectoriels de $\mathbb{R}[X]$?

$$F := \{ P \in \mathbb{R}[X] \mid P(X+1) = 2P(X) \} \; ; \; G := \{ P \in \mathbb{R}[X] \mid P'(X) = 2P(X) \} \; ; \\ H := \{ P \in \mathbb{R}[X] \mid P(-1) = P(1) = 0 \} \; .$$

Exercice 9. —

Parmi les familles suivantes, lesquelles sont des familles libres (resp. génératrices) de \mathbb{R}^4 ?

$$\mathcal{F}_{1} := \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}; \ \mathcal{F}_{2} := \left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 0 \\ -1 \end{pmatrix} \right\}$$

$$\mathcal{F}_{3} := \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 0 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 0 \\ -3 \end{pmatrix} \right\}; \ \mathcal{F}_{4} := \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Exercice 10. —

Pour chaque famille donnée dans l'Exercice 9, déterminer la dimension du sous-espace vectoriel de \mathbb{R}^4 qu'elle engendre, puis en exhiber une base.

Exercice 11. —

On considère les sous-espaces vectoriels suivants de \mathbb{Q}^3 :

$$F := \{(x, y, z) \in \mathbb{Q}^3 \mid x + y + z = 0\} \text{ et } G := \text{Vect}((1, 2, 3); (2, 1, 3); (6, 6, 0); (0, 0, 1))$$

- 1. Est-ce que F et G sont supplémentaires dans \mathbb{Q}^3 ?
- 2. Déterminer la dimension de l'espace vectoriel réel F + G, puis en donner une base.