数字逻辑 Digital Logic Circuit

丁贤庆

ahhfdxq@163.com

Home work (P218)

- 1、下周三的课上会有一次10分钟的随堂测验。
- 2、今天的作业:
 - **4.4.14**
 - **4.4.20**
 - **4.4.26**
 - 4.4.36
 - **4.4.37**

第4章 组合逻辑电路

Combinational Logic Circuit

4.4 若干典型的组合逻辑电路

- 4.4.1 编码器
- 4.4.2 译码器/数据分配器
- 4.4.3 数据选择器
- 4.4.4 数值比较器
- 4.4.5 算术运算电路

4.4 若干典型的组合逻辑集成电路

4.4.1 编码器 Encoders

1、编码器 (Encoder)的定义与分类

编码: 赋予二进制代码特定含义的过程称为编码。

如: 8421BCD码中,用1000表示数字8

如: ASCII码中, 用1000001表示字母A等

编码器:具有编码功能的逻辑电路。

编码器能将每一个编码输入信号变换为不同的二进制的代码输出。

1、编码器 (Encoder)的分类

按照编码器的编码进制来分,有:

- BCD编码器:将10个编码输入信号分别编成10个4位码输出。

8线-3线编码器:将8个输入的信号分别编成8个3位二进制数码输出。

按照优先级来分: 普通编码器和优先编码器。

普通编码器和优先编码器的区别:

普通编码器:任何时候只允许输入一个有效编码信号,否则输出就会发生混乱。

L.优先编码器:允许同时输入两个以上的有效编码信号。当同时输入几个有效编码信号时,优先编码器能按预先设定的优先级别,只对其中优先权最高的一个进行编码。

普通编码器电路

注意: 此电路任意时刻只允许一个输入信号 为有效信号,输出对这个输入信号编码。

问题: 同时为低,编码混乱。

2、编码器的工作原理

普通二进制编码器

二进制编码器的结构框图

2、编码器的工作原理

(1) 4线-2线普通二进制编码器(设计)(2)逻辑功能表

(a) 逻辑框图

$$Y_{1} = \bar{I}_{0}\bar{I}_{1}I_{2}\bar{I}_{3} + \bar{I}_{0}\bar{I}_{1}\bar{I}_{2}I_{3}$$

$$Y_{0} = \bar{I}_{0}I_{1}\bar{I}_{2}\bar{I}_{3} + \bar{I}_{0}\bar{I}_{1}\bar{I}_{2}I_{3}$$

I_0	I_1	I_2	I_3	Y_1	Y_0
(1)	0	0	0		
0	\bigcirc 1	0	0		
0	0		0		
0	0	0			
0	0	0	0	0 _	0 _
				0	0
1	1	1	1	0	0

编码器的输入为高电平有效。

上述是将输入的其它12种组合对 应的输出看做0。如果看做无关项, 则表达式为

$$Y_1 = I_2 + I_3$$

 $Y_0 = I_1 + I_3$

(2) 逻辑功能表

	I_0	I_1	I_2	I_3	Y_1	Y_0
(1	0	0	0		
	0		0	0		·
	0	0	1	0		
	0	0	0	(1)		
	0	0	0	0		
			•••			
	1	1	1	1		_

若有2个以上的输入为有效信号?

当只有 I_3 为1时, $Y_1Y_0=?$ $Y_1Y_0=11$ 第 $I_1=I_2=1$, $I_0=I_3=0$ 时, $I_1=I_2=1$, $I_0=I_3=1$ 第 $I_1=I_2=1$, $I_0=I_3=1$ 第 $I_1=I_2=1$, $I_0=I_3=1$ 第 $I_1=I_2=1$ 第 $I_1=1$ 第 $I_1=1$ 第 $I_1=1$ 第 $I_1=1$ 第 $I_1=1$ 第

无法输出有效编码。

结论: 普通编码器不能同时输入两个以上的有效编码信号

3. 优先编码器

实际应用中,经常有两个或更多输入编码信号同时有效。

必须根据轻重缓急,规定好这些外设允许操作的先后次 序,即优先级别。

识别多个编码请求信号的优先级别,并进行相应编码的逻辑部件称为优先编码器。

(2)优先编码器线(4-2 线优先编码器)(设计)输入为编码信号 $I_3 \sim I_0$ 输出为 $Y_1 Y_0$

输入编码信号高电平有效,输出为二进制代码

输入编码信号优先级从高到低为 $I_3 \sim I_0$

(1) 列出功能表

	输	λ		输	出
I_0	I_1	I_2	I_3	Y_1	Y_0
1	0	0	0	0	0
X		0	0	0	\bigcirc
X	X	1	0	Θ	0
X	×	X	1		
低			高		,

(2) 写出逻辑表达式

$$Y_1 = I_2 \overline{I_3} + I_3$$

$$Y_0 = I_1 I_2 I_3 + I_3$$

(3) 画出逻辑电路(略)

2 典型编码器电路

优先编码器CD4532的示意框图

8-3 线优先编码器, 真值表如下页所示。

当EI为	70时,	不论 7~	10怎样	变化,	GS=0,I	EO=0	当EI	为1时,	如 !7~ !	0中有-	一个1,	则GS=	=1,EO=0
				优分	上编码	马器 C	D453	2功能	能表				
			箱	入							输	7	
EI	I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	Y_2	<i>Y</i> ₁	Y_0		EO
0	×	×	×	×	×	×	×	×	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1
/1\		×	×	×	×	×	×	×	1	1	1	1	
1	0		×	×	×	×	×	×	1	1	0	1	0
1	0	0		X	×	×	×	×	1	0	1	1	0
1	0	0	0		×	×	×	×	1	0	0	1	0
1	0	0	0	0		×	×	×	0	1	1	1	0
1	0	0	0	0	0		×	×	0	1	0	1	0
1	0	0	0	0	0	0		×	0	0	1	1	0
1/	0	0	0	0	0	0	0		0	0	0	1	0

为什么要设计GS、EO输出信号? GS、EO输出信号常用多个芯片的级联

(了解) 若有效电平输入即I₁₅~I₈中有一个为1;

哪块芯片的优先级高?

2.8421BCD码编码器功能表

				输		λ					箱	Ì	出		
\overline{S}_0	\overline{S}_1	\overline{S}_2	$\overline{S_3}$	\overline{S}_4	\overline{S}_5	\overline{S}_6	\overline{S}_7	\overline{S}_8	$\overline{S_9}$	A	В	C	D	GS	
1	1	1	1	1	1	1	1	1	1						
1	1	1	1	1	1	1	1	1	0						
1	1	1	1	1	1	1	1	0	1						
1	1	1	1	1	1	1	0	1	1						
1	1	1	1	1	1	0	1	1	1						
1	1	1	1	1	0	1	1	1	1						
1	1	1	1	0	1	1	1	1	1						
1	1	1	0	1	1	1	1	1	1						
1	1	0	1	1	1	1	1	1	1						
1	0	1	1	1	1	1	1	1	1						
0	1	1	1	1	1	1	1	1	1						

该编码器为输入低电平有效,输出高电平有效,GS为标志位。

4.4 若干典型的组合逻辑电路

- 4.4.1 编码器
- 4.4.2 译码器/数据分配器
- 4.4.3 数据选择器
- 4.4.4 数值比较器
- 4.4.5 算术运算电路

4.4.2 译码器/数据分配器

Decoders

1 译码器的定义与分类

译码:译码是编码的逆过程,它能将二进制码翻译成代表某一特定含义的信号.(即电路的某种状态)

译码器: 具有译码功能的逻辑电路称为译码器。

译码器的分类:

地址译码器将一系列代码转换成与之一一对应的有效信号。

代码变换器 将一种代码转换成另一种代码。

常见的地址译码器:

二进制译码器

→ 二—十进制译码器

显示译码器

2. 典型译码器电路及应用

(1) 二进制译码器

设输入端的个数为n,输出端的个数为M则有 $M=2^n$

在使能信号E=1的情况下,四个输出全部为1。(静态电流比较小,功耗比较小) 在使能信号有效(E=0)的情况下,对应的输出中,只有1个为0,其它输出全部为1。

说明: 当电路的输出状态变化时,静态电流比较大,漏电流比较大,功耗比较大。

2线 - 4线译码器的逻辑电路(分析) 低电平有效标识

対能表 輸入 類出 \overline{E} A_1 A_0 \overline{Y}_0 \overline{Y}_1 \overline{Y}_2 \overline{Y}_3 $1 \times \times \times 1 \ 1 \ 1 \ 1 \ 1$ $0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1$ $0 \ 1 \ 1 \ 0 \ 1 \ 1$ $0 \ 1 \ 1 \ 1 \ 0 \ 1$

根据真值表中输出F=1的情况 能够写出F的最小项表达式。

根据真值表中输出F=0的情况 能够写出F的最小项表达式。

$$\overline{Y}_{0} = \overline{E}\overline{A}_{1}\overline{A}_{0}$$

$$\overline{Y}_{1} = \overline{E}\overline{A}_{1}A_{0}$$

$$\overline{Y}_{2} = \overline{E}A_{1}\overline{A}_{0}$$

$$\overline{Y}_{3} = \overline{E}A_{1}A_{0}$$

不考虑使能信号E的情况下,译码器 的每个输出是一个最小项的非。

数字逻辑电路

(a) 2线-4线译码器(74HC139芯片)

逻辑符号框外部的符号,表示外部输入或输出信号名称,字母上面的"—"号说明该输入或输出是低电平有效。在推导表达式的过程中,表示低有效的输入或输出变量(如)上面的"—"号只是一个提示符,不是"非",不能参与运算。

(b) 3线-8线译码器(74HC138芯片)

低电平有效标识

3线-8线译码器	(74HC138芯片)	功能表
		77 70 70

	低电	平有效	标识									低电	平有效
	输			入				输			出		
E_3	\overline{E}_2	\overline{E}_1	A_2	A_1	A_0	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	Y ₅	$\overline{\overline{Y}}_6$	Y ₇
X	1	×	×	X	X								
X	X	1	×	X	×								
0	×	X	X	×	X				-				
1	0	0	0	0	0								
1	0	0	0	0	1								
1	0	0	0	1	0								
1	0	0	0	1	1								
1	0	0	1	0	0								
1	0	0	1	0	1								
1	0	0	1	1	0								
1	0	0	1	1	1								

根据真值表中输出F=1的情况 能够写出F的最小项表达式。

$$\overline{Y}_0 = \overline{\overline{A}_2 \cdot \overline{A}_1 \cdot \overline{A}_0};$$

根据真值表中输出F=0的情况 能够写出F的最小项表达式。 计算机学院

数字逻辑电

 $\overline{Y}_0 = \overline{\overline{A}_2 \cdot \overline{A}_1 \cdot \overline{A}_0}; \ \overline{Y}_1 = \overline{\overline{A}_2 \cdot \overline{A}_1 \cdot A_0}; \ \overline{Y}_2 = \overline{\overline{A}_2 \cdot A_1 \cdot \overline{A}_0}; \ \overline{Y}_3 = \overline{\overline{A}_2 \cdot A_1 \cdot A_0};$

 $\overline{Y}_4 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}}; \quad \overline{Y}_5 = \overline{A_2 \cdot \overline{A_1} \cdot A_0}; \quad \overline{Y}_6 = \overline{A_2 \cdot A_1 \cdot \overline{A_0}}; \quad \overline{\overline{Y}}_7 = \overline{A_2 \cdot A_1 \cdot A_0};$

	输			λ				输			出		
E_3	\overline{E}_2	\overline{E}_1	A_2	A_1	A_0	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	\overline{Y}_6	\overline{Y}_7
×	1	×	×	×	×	1	1	1	1	1	1	1	1
X	X	1	×	×	X	1	1	1	1	1	1	1	1
0	×	×	×	×	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1 (0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	9	1	1	1	1
1	0	0	1	0	0	1	1	1	1 (0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	9

不考虑使能信号E的情况下,译码器的每个输出是一个最小项的非。

2、用译码器实现逻辑函数。

当 $\mathbf{E}_3=1$, $\mathbf{E}_2=\mathbf{E}_1=0$ 时,如果A2、A1、A0分别连接A、B、C三路信号。则:

3线-8线译码器的 $\overline{Y}_0 \sim \overline{Y}_7$ 是三变量最小项的非.

基于这一点用该器件能够方便地实现三变量逻辑函数。

例:用一片74HC138和与非门实现函数

 $L = \overline{A}\overline{C} + AB$

解答: 首先将函数式变换为最小项之和的形式

在译码器的输出端加一个与非门,即可实现给定的组合逻辑函数.

下图所示的电路,输出L对应的表达式,正确的是()

$$L=\overline{m}_1+\overline{m}_2+\overline{m}_5+\overline{m}_6$$

$$D L = \overline{m_1 + m_2 + m_5 + m_6}$$

提交

(2) 二-十进制译码器的真值表

对于BCD代码以外的伪码(1010~1111这6个代码) $Y_0 \sim Y_0$ 均 为高电平。 0 0 0 9 0

每种输入,对应的输出中,只有1位输出为0,其它位输出全部为1。

二-十进制译码器

功能:将8421BCD码译成为10个状态输出。

(3) 显示译码器

b

(1) 最常用的显示器有: 半导体发光二极管和液晶显示器。

当共阳极接0V时,共阳极显示器不亮。

当共阴极接5V时,共阴极显示器不亮。

1. 七段显示译码器

The BCD-to-7-Segment Decoder

(1) 最常用的显示器有: 半导体发光二极管和液晶显示器。

常用的集成七段显示译码器

-----CMOS七段显示译码器74HC4511

显示译码器与显示器的连接方式

74HC4511输入与输出

CMOS七段显示译码 器74HC4511功能表

 f
 g
 b
 f
 g
 b

 e
 C
 e
 C

 显示 "0" 字形
 显示 "1" 字形

 输出

十进			箱	介入						车	俞 出				
制或功能	LE	\overline{BL}	LT	D_3	D ₂	D_1	D_0	a	b	c	d	e	f	g	字形
0	0	1	1	0	0	0	0								
1	0	1	1	0	0	0	1	ļ							-
2	0	1	1	0	0	1	0								2
3	0	1	1	0	0	1	1								3
4	0	1	1	0	1	0	0								닉
5	0	1	1	0	1	0	1								5
6	0	1	1	0	1	1	0								Ь
7	0	1	1	0	1	1	1								
8	0	1	1	1	0	0	0								8
9	0	1	1	1	0	0	1								9

CMOS七段显示译码器74HC4511功能表(续)

						输	入					输出				
计算机	十进 J或功能	<u>LE</u>	BL	LT	D ₃	D_2	D_1	D_0	а	b	c	d	e	$\int f$	g	字形
学院	10	0	1	1	1	0	1	0	0	0	0	0	0	0	0	熄灭
	11	0	1	1	1	0	1	1	0	0	0	0	0	0	0	熄灭
	12	0	1	1	1	1	0	0	0	0	0	0	0	0	0	熄灭
	13	0	1	1	1	1	0	1	0	0	0	0	0	0	0	熄灭
	14	0	1	1	1	1	1	0	0	0	0	0	0	0	0	熄灭
127	15	0	1	1	1	1	1	1	0	0	0	0	0	0	0	熄灭
数字逻	灯 测 试	×	×	0	×	×	×	×	1	1	1	1	1	1	1	00
辑电路	灭 灯	×	0	1	×	×	×	×	0	0	0	0	0	0	0	熄灭
路	锁存	1	1	1	×	×	×	×				*				*

例 由译码器、显示译码及4个七段显示器构成的4位<mark>动态显示</mark> 电路如图所示,试分析工作原理。

位选择信号A1、A0控制 $\overline{Y_3} \sim \overline{Y_0}$ 依次产生低电平,使4个显示器轮流显示。要显示的数据组依次送到 $D_3D_2D_1D_0$ 分别在4个显示器上显示。利用人的视觉暂留时间,可以看到稳定的数字。 $25\text{Hz} < f_{\text{C}} < 100\text{Hz}$

用74HC138组成数据分配器

Demultiplexers

数据分配器示意图

数据分配器:相当于多输出的单刀多掷开关,是将公共数据线上的数据按需要送到不同的通道上去的逻辑电路。

$$\overline{Y_2} = \overline{E_3}\overline{E_2}\overline{DABC}$$

当
$$ABC = 010$$
 时, $\overline{Y}_2 = D$

74HC138译码器作为数据分配器时的功能表

	输			λ				输			出		
$\mathbf{E_3}$	E ₂	E ₁	A ₂	\mathbf{A}_{1}	$\mathbf{A_0}$	$\overline{\overline{\mathbf{Y}}}_{0}$	$\overline{\mathbf{Y}}_{1}$	$\overline{\mathbf{Y}}_{2}$	$\overline{\mathbf{Y}}_{3}$	$\overline{\mathbf{Y}}_{4}$	$\overline{\mathbf{Y}}_{5}$	$\overline{\mathbf{Y}}_{6}$	$f{f Y}_7$
0	0	X	X	X	X	1	1	1	1	1	1	1	1
1	0	D	0	0	0	D	1	1	1	1	1	1	1
1	0	D	0	0	1	1	D	1	1	1	1	1	1
1	0	D	0	1	0	1	1	D	1	1	1	1	1
1	0	D	0	1	1	1	1	1	D	1	1	1	1
1	0	D	1	0	0	1	1	1	1	D	1	1	1
1	0	D	1	0	1	1	1	1	1	1	D	1	1
1	0	D	1	1	0	1	1	1	1	1	1	D	1
1	0	D	1	1	1	1	1	1	1	H	1	1	D

例: 试用门电路设计一个具有低电平使能控制的1线-4线数据分配器,使能信号无效时,电路所有的输出为高阻态。当通道选择信号将1路输入信号连接到其中1路输出端时,其他输出端为高阻状态。

1. 列真值表 输出端有3种状态 (0、1、z),输出 级是4个三态门组成。 其控制信号由Ē、S1、 S0共同作用产生。

	输入			输	出	
\overline{E}	S_1	S_0	Y_3	Y_2	Y_1	Y_0
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	X	X				

2. 写出4个三态门控制端的逻辑表达式(见下页图)

$$C_{0} = \overline{\overline{E}} \cdot \overline{S_{1}} \cdot \overline{S_{0}} ; \qquad C_{1} = \overline{\overline{E}} \cdot \overline{S_{1}} \cdot S_{0} ; C_{2} = \overline{\overline{E}} \cdot S_{1} \cdot \overline{S_{0}} ; \qquad C_{3} = \overline{\overline{E}} \cdot S_{1} \cdot S_{0} ;$$

