Types, Expressions, and Arrays

CS 536: Science of Programming, Fall 2022

v2: 2022-08-30

A. Why?

- · Expressions represent values relative to a state.
- Types describe common properties of sets of values.
- The value of an array is a function value from index values to array values.

B. Outcomes

At the end of this class, you should

- · Know what expressions and their values we'll be using in our language
- Know how states are expanded to include values of arrays

C. Types and Expressions

- Let's start looking at programming language we'll be using.
- The *datatypes* will be pretty simple (no records or function types, for example).
 - Primitive types: *int* (integers) and *bool* (boolean). We can add other types like characters, strings, and floating-point numbers, but for what we're doing, integers and booleans are enough.
 - Composite types: Multi-dimensional arrays of primitive types of values, with integer indexes.
- Expressions are built from
 - *Constants*: Integers (0, 1, -1, ...) and boolean constants (*T*, *F*).
 - Simple variables of primitive types.
 - Operations
 - On integers: Binary +, -, *, /, min, max, %, =, ≠, <, ≤, >, ≥, divides, Unary -, sqrt.
 - / and sqrt truncate toward zero, to an integer. E.g., 13 / 3 = 4, 13 / -3 = -4, and sqrt(17) = 4. Division and mod (%) by zero and sqrt of negative values generate runtime errors.
 - On booleans: \neg , \land , \lor , \rightarrow , \leftrightarrow , =, \neq (note = and \leftrightarrow mean the same thing).
 - On arrays: size and array element selection.
 - · Conditional expressions
 - if B then e_1 else e_2 fi. Semantically, if B evaluates to true, then evaluate e_1 ; if B evaluates to false, then evaluate e_2 . The C / Java syntax (B? e_1 : e_2) is also okay.

• Restrictions: To ensure that the entire conditional expression has a consistent type, e_1 and e_2 must have the same type. (This is sometimes called "balancing".) The type must also be simple (not an array type or function type.

Arrays

- As usual, b[e] is array element selection. size(b) gives the length of b. For multi-dimensional arrays, we have $b[e_1][e_2]...[e_n]$ and size1(b), size2(b), etc. Arrays are zero-origin and fixed-size.
- You can have array parameters with functions and predicates (as in *size(b)*).
- **Restrictions:** No array assignments, no expressions of type array; this includes array slices $(b[e_1]$ of a two-dimensional array, for example). To support these, we'd need identifiers to map to memory locations, with a separate function mapping locations to values. (This is also why we don't have pointers.)

• General restrictions

- No expressions with functional or array values. (So they all have primitive types.)
 - Example: if B then f(x) else g(x) fi is legal; if B then f else g fi g(x) is not.
- We don't have assignment expressions (we'll see later how to simulate them).
- We don't have records (adding them isn't that hard, but they don't really add much. theoretically speaking).
- We won't explicitly declare variables; we will assume we can infer the types. The default type is integer.
- [2022-08-30] **Notation**: α and α are constants; α and α are general expressions; α and α are boolean expressions, α and α are array names, and α , α , etc. are variables. Greek letters like α and α stand for semantic values.

D. Examples of Expressions

- **Example 1**: **if** x < 0 **then** 0 **else** sqrt(x) **fi** yields 0 if *i* is negative, otherwise it yields the square root of x.
- [2022-08-30] (Fix paren) **Example 2: if** x < 0 **then** x + y **else** x * y + z **fi** means "If x < 0 evaluates to true, then we evaluate x + y and add the result to z, otherwise evaluate x * y and add the result to z." (x, y, and z must all be integers.)
- [2022-08-30] *Example 3*: *if* i < 0 *then* b[0] *else if* $i \ge size(b)$ *then* b[size(b)-1] *else* b[i] *fi* yields b[i] if i is in range; if i is negative, it yields b[0]; if i is too large, it yields the last element of b.
- Example 4: b[if i < 0 then 0 else i ≥ size(b) then size(b)-1 else i fi] yields the same value as Example 3, but it does this by calculating the index first.
- **Example 5:** A (conditional) expression can't yield a function, so **if** B **then** f(x) **else** g(x) **fi** is legal; **if** B **then** f **else** g **fi** (x) is not.
- [2022-08-30] (Fix paren) **Example 6**: We can't have array-valued expressions, so (assuming *a* and *b* are 1-dimensional arrays), **if** *x* **then** *a*[0] **else** *b*[0] **fi** is legal, **if** *x* **then** *a* **else** *b* **fi**[0] is not.

E. Syntactic Values and Semantic Values

- When we discuss the meanings of programs, some of the items are syntactic (like expressions) and some items are semantic (values, states). So there's a problem with symbols like "2" or "+". Sometimes we use them in our programs; this is a syntactic use. But sometimes we mean a mathematical value, the thing denoted by "2" or "two" or "plus" or so on.
- In general, the context tells you whether something is syntactic or semantic. E.g.,
 - **Example 7:** In "Does *x* occur in the predicate *p*?" since *p* is a predicate, it is syntactic, so for *x* to occur in it, *x* must be syntactic also.
 - **Example 8:** In z = 2+2, the = symbol is for syntactic equality, so both z and 2+2 are syntactic.
 - **Example 9:** In " σ (2+2) = 2+2 = 4, the σ is semantic (a state) and the first 2+2 is syntactic, since we're looking for its value in σ . The second 2+2 is semantic because σ takes expressions and returns semantic values. (Hence the second + sign is semantic). The result 4 is also semantic. Also, the two equal signs are semantic equality.
 - **Example 10:** "The value in σ of 2+2 is two plus two, which is four" is the same as Example 9 but it uses English to write out the semantic values and operations.
- Notation: If I really want to emphasize that something is semantic, I'll underline it.
- **Example 11:** Rewriting Examples 9 and 10: $\sigma(2+2) = \underline{2+2} = \underline{4}$ or: the value in σ of 2+2 is two plus two, which is four. Technically, the equality tests could be underlined, but $\sigma(2+2) = \underline{2+2} = \underline{4}$ really seems like more trouble than it's worth. Furthermore, $\underline{=}$ (underlined equal) looks a lot like $\underline{=}$ (syntactic equality).
- **Example 12:** If σ is the state that maps x to $\underline{5}$, we could rewrite " $\sigma = \{x = 5\}$ " as " $\sigma = \{x = \underline{5}\} = \{(x, \underline{5})\}$ ".

F. Values of Expressions

- In general, expressions have values relative to a state. E.g., relative to $\{x = 1, y = 2\}$, the expression x+y has the value $\underline{3}$. Recall that we write $\sigma(x)$ for the value of the variable x and extend this to $\sigma(e)$ for the value of the expression e.
- The value of $\sigma(e)$ depends on what kind of expression e is, so we use recursion on the structure of e (the base cases are variables and constants and we recursively evaluate subexpressions).
 - $\sigma(x)$ = the value that σ binds variable x to
 - $\sigma(c)$ = the value of the constant c. E.g., $\sigma(2) = \underline{2}$. (Note σ is irrelevant here.)
 - $\sigma(e_1 + e_2) = \sigma(e_1)$ plus $\sigma(e_2)$ [and similar for –, *, etc.] [2022-08-30] Added some underlines in next 3 lines
 - $\sigma(e_1 < e_2) = \underline{T}$ iff $\sigma(e_1)$ is less than $\sigma(e_2)$ [similar for \leq , =, etc].
 - $\sigma(e_1 \land e_2) = \underline{\mathsf{T}}$ iff $\sigma(e_1)$ and $\sigma(e_2)$ are both $=\underline{\mathsf{T}}$ [similar for \lor , etc].
 - $\sigma(\mathbf{if} B \mathbf{then} e_1 \mathbf{else} e_2 \mathbf{fi}) = \sigma(e_1) \text{ if } \sigma(B) = \underline{\mathsf{T}}. \text{ It } = \sigma(e_2) \text{ if } \sigma(B) = \underline{\mathsf{F}}.$

- We'll put off the $\sigma(b[e])$ case, the value of the array indexing expression b[e], for just a bit until we look at the value of an array variable.
- **Example 13**: Let $\sigma = \{x = 1\}$, let $\tau = \sigma \cup \{y = 1\}$, and let e = (x = if y > 0 then 17 else y fi).
 - [2022-08-30] To calculate $\tau(e)$, first we look up $\tau(x)$ and get $\underline{1}$. (Since τ extends σ with a binding for y, τ behaves like σ except on y.)
 - Now we need τ (*if* y > 0 *then* 17 *else* y *fi*).
 - $\tau(y > 0)$ means "Is $\tau(y)$ greater than zero?" Since $\tau(y) = \underline{1}$, the answer is \underline{T} .
 - [2022-08-30] $\tau(y > 0) = \underline{T}$, so $\tau(if y > 0 then 17 else y fi) = \tau(17)$. I.e., since the test evaluates to T, the value of the conditional is the value of the constant 17.
 - $\tau(17) = 17$, of course.
 - So τ (*if* y > 0 *then* 17 *else* y *fi*) = <u>17</u>.
 - For the overall expression, we're comparing $\tau(x)$ and $\tau(ify > 0 then 17 else y fi)$ for equality. I.e., we test $\underline{1} = \underline{17}$ and we get \underline{F} .
 - So $\tau(e) = \underline{F}$.
- **The empty state**: Since a state is a set of bindings, the empty set \emptyset is a state (the empty state). It's proper for any expression or predicate that doesn't include variables. E.g., In state \emptyset , the expression 2+2 evaluates to four. (In fact, since we don't care about bindings for variables that don't appear in an expression, we can say that in any state σ , 2+2 evaluates to 4.
- **Example 14**: Let $\sigma = \emptyset$ (the empty state) then
 - $\sigma(2+2=4) = \sigma(2+2)$ equals $\sigma(4) = ... = 4$ equals 4 = T.
- With operators, you have to distinguish the syntactic symbol from the semantic symbol. So $\sigma(v+w) = \sigma(v) + \sigma(w)$ is correct: The second plus is the semantic meaning of the syntactic symbol +. You could also write $\sigma(v+w) = \sigma(v)$ plus $\sigma(w)$; here, plus has a semantic meaning. (Note $\sigma(v)$ plus $\sigma(v)$ only works if "plus" is a binary operator in the language.)

G. Arrays and Their Values

• Compare the usual way we write states on the blackboard. Below, the left state is $\sigma = \{x = 1, y = F\} = \{(x, 1), (y, F)\}$. The right one, τ , defines an array variable b and an integer x.

- We'll take the value of an array to be a function from index values to stored values, so $\tau(b[0]) = 3$, $\tau(b[1]) = 5$, and $\tau(b[2]) = 9$. We could write $\tau = \{b[0] = \underline{3}, b[1] = \underline{5}, b[2] = \underline{9}, x = \underline{5}\} = \{(b[0], 3), (b[1], 5), (b[2], 9), (x, 5)\}$, but a more convenient notation would be nice.
- **Notation**: Let β be the function with $\beta(\underline{0}) = \underline{3}$, $\beta(\underline{1}) = \underline{5}$, $\beta(\underline{2}) = \underline{9}$, then we can say $\tau = \{b = \beta, x = 5\} = \{(b, \beta), (x, 5)\}$. (I'm using a greek letter β because the function is semantic, taking index values to memory values.). Since a function is a set of ordered pairs, we can also write $\beta = \{(0, 3), (1, 5), (2, 9)\}$. Since β is actually a sequence, let's allow ourselves to abbreviate this to $\beta = (3, 5, 9)$. (Note this last notation looks like the graphical picture of τ .)
- We we have a number of ways to express τ, all valid. Going from shortest to longest we have

```
• \tau = \{b = \beta, x = 5\} where \beta = (3, 5, 9)
```

•
$$\tau = \{b[0] = 3, b[1] = 5, b[2] = 9, x = 5\}$$

•
$$\tau = \{b = \beta, x = 5\}$$
 where $\beta = \{(0, 3), (1, 5), (2, 9)\}$

•
$$\tau = \{b = \beta, x = 5\}$$
 where $\beta(0) = 3$, $\beta(1) = 5$, $\beta(2) = 9$

H. Value of An Array Indexing Expression

- Going back to the definition of the value of an expression in a state, here's the array case:
- $\sigma(b[e]) = \beta(\alpha)$ where $\beta = \sigma(b)$ and $\alpha = \sigma(e)$. The variable b is an array name, so $\sigma(b) = a$ function we're calling β . We call β on the **value** of the index expression e, hence $\alpha = \sigma(e)$, and the value $\beta(\alpha)$ is the meaning of b[e].
- You can also write $\sigma(b[e]) = (\sigma(b))(\sigma(e))$ if you don't want to define α and β . Function application is left-associative, so $\sigma(b)(\sigma(e)) = (\sigma(b))(\sigma(e))$. I.e., $\sigma(b)$ is a function we're applying to $\sigma(e)$.
- So another way to write the definition is $\sigma(b[e]) = \sigma(b)(\sigma(e)) = \beta(\alpha)$ where $\beta = \sigma(b)$ and $\alpha = \sigma(e)$.
- With our earlier example then, $\sigma(b[x-4]) = \sigma(b)(\sigma(x-4)) = \beta(\sigma(x))$ minus four) = $\beta(5)$ minus four) = $\beta(1)$ = 5, where β is as described earlier, $\beta = (3, 5, 9)$.
- **Example 15**: Let $\sigma = \{x = 1, b = \alpha\}$ where $\alpha = (2, 0, 4)$. Then
 - $\sigma(x) = 1$
 - $\sigma(x+1) = \sigma(x) + \sigma(1) = 1+1 = 2$
 - $\sigma(b) = \alpha$
 - $\sigma(b[x+1]) = (\sigma(b))(\sigma(x+1)) = \alpha(2) = 4$
 - If we don't want to write out the intermediate steps first, we could write
 - $\sigma(b[x+1]) = (\sigma(b))(\sigma(x+1)) = \alpha(\underline{\sigma(x)+1}) = \alpha(\underline{1+1}) = \alpha(\underline{2}) = \underline{4}$.
- **Example 16**: Let $\sigma = \{x = 1, b = \alpha\}$ where $\alpha = (2, 0, 4)$, then
 - $\sigma(b[x+1]-2) = \sigma(b[x+1]) \sigma(2) = (\sigma(b))(\sigma(x+1)) \underline{2}$
 - $= (\sigma(b))(\underline{\sigma(x)+1}) \underline{2}$
 - $= \alpha(1+1) 2$
 - $= \alpha(2)-2 = 4-2 = 2.$