Билет 89

Автор1,, АвторN
22 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0.1	Билет 89:	Теорема об о	обратной	функции.	· · · · · · · · · · · · · · · · · · ·

Билет 89 СОДЕРЖАНИЕ

0.1. Билет 89: Теорема об обратной функции.

Теорема 0.1 (Теорема об обратной функции).

 $f: D \to R^n, D \subset R^n$ открытое, $x_0 \in D, f$ непрерывно дифференцируема в окрестности $(\cdot)x_0$ и $y_0 = f(x_0)$, матрица $A := f'(x_0)$ обратима. Тогда существуют окрестности U точки x_0, V окрестность $(\cdot)y_0$, т.ч. $f: U \to V$ — обратима и $f^{-1}: V \to U$ — непрерывна.

Доказательство.

$$G_y(x) := x + A^{-1}(y - f(x))$$

Выберем $B_r(x_0)$, т.ч. $||A^{-1}|| ||A - f'(x)|| \leqslant \frac{1}{2}$ при $x \in B_r(x_0)$

Тогда f'(x) при $x \in B_r(x_0)$ - обратимое отображение

$$||G'_y(x)|| = ||E + A^{-1}(-f'(x))|| = ||E - A^{-1}f'(x)|| = ||A^{-1}(A - f'(x))|| \le$$

 $\le ||A^{-1}|| ||A - f'(x)|| \le \frac{1}{2} \text{ при } x \in B_r(x_0)$

$$||G_y(x) - G_y(\tilde{x})|| \leqslant \frac{1}{2}||x - \tilde{x}||$$
 при $x, \tilde{x} \in B_r(x_0) \implies G_y$ – сжатие

подберем $B_r(y_0)$ так, чтобы $G_u(B_r(x_0)) \subset B_r(x_0)$

$$||G_y(x) - x_0|| \le ||G_y(x_0) - x_0|| + ||G_y(x_0) - G_y(x)|| = ||A^{-1}(y - f(x_0))|| + ||G_y(x_0) - G_y(x)|| \le$$

$$\le ||A^{-1}|| ||y - y_0|| + \frac{1}{2}||x - x_0|| < ||A^{-1}|| \cdot R + \frac{r}{2} < r$$

по т. Банаха у G_y есть неподвижная точка т.е.

$$x \in B_r(x_0)$$
, т.ч. $x = G_y(x) = x + A^{-1}(y - f(x)) \implies A^{-1}(y - f(x)) = 0 \implies y = f(x)$ \implies если $y \in B_r(y_0)$, то найдется $x \in B_r(x_0)$ т.ч. $y = f(x)$

 $U := f^{-1}(V), V := B_r(y_0), f : U \to V$ биекция, осталось доказать непрерывность f^{-1}

$$f(x) = y, f(\tilde{x}) = \tilde{y}, G_y(x) = x, G_{\tilde{y}}(\tilde{x}) = \tilde{x}$$

$$||f^{-1}(y) - f^{-1}(\tilde{y})|| = ||x - \tilde{x}|| \leq 2||G_y(x) - G_{\tilde{y}}(x)|| =$$

$$= 2||x - A^{-1}(y - f(x)) - (x - A^{-1}(\tilde{y} - f(x)))|| = 2||A^{-1}(\tilde{y} - f(x) - (y - f(x)))|| =$$

$$= 2||A^{-1}(\tilde{y} - y)|| \leq 2||A^{-1}|| ||\tilde{y} - y||$$

Отсюда видно, что если \tilde{y} близко к y, то $f^{-1}(\tilde{y})$ близко к $f^{-1}(y)$, и значит у нас есть непрерывность