REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PRIORITY DOCUMENT

REC'D 17 JUL 1995 WIPO PCT

BREVETS D'INVENTION

CERTIFICATS D'UTILITÉ - CERTIFICATS D'ADDITION

Copie officielle

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme, d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris le ______ 5 JUL 1905

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef de Division

Yves CAMPENON

03 50 30

CAMPENON

Best Available Copy

This Page Blank (uspto)

LA DATE DE DEPÓT -----DEMONSOR WITTONSHAR 0.04036703 WITCHE RESIDENCE OF THE PROPERTY OF :1

15 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE NOM ET QUALITE DU SIGNATAIRE

SIGNATURE OU PREPOSE A LA RECEPTION

SIGNATURE APRES ENGEGISTPEMENT DE LA GEMANDE A L'AIPP

CABINET LEMOINE ET

BERNASCONI (l'un deux)

INPI INSTITUTI NATIONAL DE LA PROPRETE PROJETIFIELLE

Division Administrative des Brevets

DÉSIGNATION DE L'INVENTEUR

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

N° d'enregistrement national

94 06594

Titre de l'invention:

FRAGMENTS Tbp2 DE NEISSERIA MENINGITIDIS.

Le (s) soussigné (s)

CABINET BERNASCONI ET VIGIER 13 BLD DES BATIGNOLLES 75008 PARIS (FRANCE)

désigne (nt) en tant qu'inventeur (s) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

- QUENTIN épouse MILLET Marie-José, Bernadette, Jacqueline
 Cours Emile Zola
 69100 VILLEURBANNE, FRANCE
- 2) KANG épouse LISSOLO Ling 691 rue du Vallon 69280 MARCY L'ETOILE (FRANCE)
- 3) MAZARIN Véronique
 11 rue Pouteau
 69001 LYON (FRANCE)
- 4) LEGRAIN Michèle 107 Grande Rue 67120 DORLISHEIM (FRANCE)

SUITE

NOTA : A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

PARIS LE 16 jui 1994

CABINET BERNASCONI ET VIGIER (1'un deux)

DOCUMENT COMPORTANT DES MODIFICATIONS PAGE(S) DE LA DESCRIPTION OU DES REVENDI- CATIONS OU PLANCHE(S) DE DESSIN difide(s) Supprimée(s) Ajoutée(s) R.M.* DATE DE LA CORRESPONDANCE CORRECTEUR							
DOCUMENT COMPORTANT DES MODIFICATIONS PAGE(S) DE LA DESCRIPTION OU DES REVENDI-	1	1		R.M.*	DE LA	DU	
	PAGE(S) DE LA	A DESCRIPTION OU	DES REVENDI-		DATE	TAMPONIOA	TELIA
		DOC	CUMENT COMPO	ORTANT	DES MODIFICATION	DNS	
	•						· · ·
	er finansk state	Description of the second seco					
						The state of the s	
		·	.				
							•
				·		المارية المعادم والمارية والمعادرة المعادية السابيتين	
				· · · · · · · · · · · · · · · · · · ·			

PAGE(S) DE LA DESCRIPTION OU DES REVENDI- CATIONS OU PLANCHE(S) DE DESSIN		R.M.*	DATE DE LA	TAMPON DATEUR	
difiée(s)	Supprimée(s)	Ajoutée(s)		CORRESPONDANCE	DU CORRECTEUR
74			Q	24/08/14	= 8 SEP 1994 CJ
			·		

Un changement apporté à la rédaction des revendications d'origine, sauf si celui-ci découle des dispositions de l'article 28 du décret du 19 septembre 1979, est signalé par la mention "R.M." (revendications modifiées).

La présente invention a pour objet des polypeptides dérivés de la sous-unité Tbp2 du récepteur transferrine de Neisseria meningitidis, leur utilisation à titre thérapeutique notamment vaccinal, ainsi que les fragments d'ADN codant pour ces polypeptides.

5

D'une manière générale, les méningites sont soit d'origine virale, soit d'origine bactérienne. Les bactéries principalement responsables sont : *N. meningitidis* et *Haemophilus influenzae*, respectivement impliquées dans environ 40 et 50 % des cas de méningites bactériennes.

10

15

20

25

30

35

On dénombre en France, environ 600 à 800 cas par an de méningites à N. meningitidis. Aux Etats-Unis, le nombre de cas s'élève à environ 2 500 à 3 000 par an.

L'espèce N. meningitidis est subdivisée en sérogroupes selon la nature des polysaccharides capsulaires. Bien qu'il existe une douzaine de sérogroupes, 90 % des cas de méningites sont attribuables à 3 sérogroupes : A, B et C.

Il existe des vaccins efficaces à base de polysaccharides capsulaires pour prévenir les méningites à N. meningitidis sérogroupes A et C. Ces polysaccharides tels quels ne sont que peu ou pas immunogéniques chez les enfants de moins de 2 ans et n'induisent pas de mémoire immunitaire. Toutefois, ces inconvénients peuvent être surmontés en conjuguant ces polysaccharides à une protéine porteuse.

Par contre, le polysaccharide de N. meningitidis groupe B n'est pas ou peu immunogène chez l'homme, qu'il soit sous forme conjuguée ou non. Ainsi, il apparait hautement souhaitable de rechercher un vaccin à l'encontre des méningites induites par N. meningitidis notamment du sérogroupe B autre qu'un vaccin à base de polysaccharide.

A cette fin, différentes protéines de la membrane externe de N. meningitidis ont déjà été proposées. Il s'agit en particulier du récepteur membranaire de la transferrine humaine.

D'une manière générale, la grande majorité des bactéries ont besoin de fer pour leur croissance et elles ont développé des systèmes spécifiques d'acquisition de ce métal. En ce qui concerne notamment N. meningitidis qui est un pathogène strict de l'homme, le fer ne peut être prélevé qu'à partir de protéines humaines de transport du fer telles que la transferrine et la lactoferrine puisque la quantité de fer sous forme libre est négligeable chez

l'homme (de l'ordre de 10⁻¹⁸ M), en tout cas insuffisante pour permettre la croissance bactérienne.

Ainsi, N. meningitidis possède un récepteur de la transferrine humaine et un récepteur de la lactoferrine humaine qui lui permettent de fixer ces protéines chélatrices du fer et de capter par la suite le fer nécessaire à sa croissance.

Le récepteur de la transferrine de la souche N. meningitidis B16B6 a été purifié par Schryvers et al (WO 90/12591) à partir d'un extrait membranaire. Cette protéine telle que purifiée apparait essentiellement constituée de 2 types de polypeptides : un polypeptide d'un poids moléculaire apparent élevé de 100 kD et un polypeptide d'un poids moléculaire apparent moindre d'environ 70 kD, telles que révélés après électrophorèse sur gel de de polyacrylamide en présence de SDS.

Le produit de la purification notamment mise en oeuvre par Schryvers est par définition arbitraire et pour les besoins de la présente demande de brevet, appelé récepteur de la transferrine et les polypeptides le constituant, des sous-unités. Dans la suite du texte, les sous-unités de poids moléculaire élevé et de poids moléculaire moindre sont respectivement appelées Tbp1 et Tbp2.

20

25

30

15

5

10

D'autre part, depuis les travaux pionniers de Schryvers et al, on a découvert qu'il existait en fait au moins 2 types de souches qui diffèrent par la constitution de leurs récepteurs de la transferrine respectifs. Ceci a été mis en évidence en étudiant des extraits membranaires de plusieurs dizaines de souches de N. meningitidis d'origines variées. Ces extraits membranaires ont tout d'abord été soumis à une électrophorèse sur gel de polyacrylamide en présence de SDS, puis électrotransférés sur feuilles de nitrocellulose. Ces feuilles de nitrocellulose ont été incubées :

- a) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche N. meningitidis B16B6, aussi appelée IM2394;
- b) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche N. meningitidis M982, aussi appelée IM2169; ou
- c) en présence de la transferrine humaine conjuguée à la peroxydase.

En ce qui concerne a) et b), la reconnaissance des sous-unités du récepteur de la transferrine est révélée par addition d'un anticorps anti-immunoglobulines de lapin couplé à la peroxydase, puis par addition du substrat de cette enzyme.

Les tableaux I et II ci-dessous indiquent le profil de certaines souches représentatives tel qu'il apparait sur gel de polyacrylamide à 7,5 % après électrophorèse en présence de SDS; les bandes sont caractérisées par leur poids moléculaires apparents exprimés en kilodaltons (kD):

	Souches		
Tableau I	2394 (B; 2a; P1.2:L2,3) 2228 (B; nd) 2170 (B; 2a:P1.1:L3)	2234 (Y; nd) 2154 (C; nd) 2448 (B; nd)	550 (C; 2a:) 179 (C; 2a:P1.2)
Détection avec l'antisérum anti-récepteur 2394	93 68	93 69	99 69
Détection avec l'antisérum anti-récepteur 2169	93	93	99
Détection avec la transferrine peroxydase	68	69	69

N.B.: Entre parenthèses sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

					Souches		·	٠.	
	0316	0001	1604	132	1001	876	1951	2449	198
I ableau II	(B:9:P1.9	(B:nd)	(B:nd)	(C:15:P1.16)	(A:4:P1.9)	(C:15:P1.16) (A:4:P1.9) (B:19:P1.6) (A:nd)	(A:nd)	(B:nd)	(B:2b:P1.2)
Détection avec						`	2	5	03
l'antisérum anti-	96	86	86	86	8 6	9	*	,	<u> </u>
récepteur 2394									3
Détection avec	96	86	86	86	86	96	96	94	56
l'antisérum anti-					•	Ġ	0	8	8
récepteur 2169	87	85	83	81	6/	88	6	6	8
Détection avec la				,		ç	67	8	 8
transferrine	87	82	&	≅	<u> </u>	o 	ò .	5	3 .
peroxydase									

N.B.: Entre parenthèses sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

Les résultats répertoriés dans les 2 premières lignes des tableaux montrent qu'il existe 2 types de souches :

Le premier type (Tableau I) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2394 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2169.

5

15

25

30

35

Le second type (Tableau II) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2169 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2394.

En conséquence, il existe une diversité antigénique au niveau de la sous-unité de moindre poids moléculaire. Cette diversité est toutefois restreinte puisqu'elle se résout en 2 grands types, contrairement à ce qui est suggéré par Griffiths et al, FEMS Microbiol. Lett. (1990) 69: 31.

Conformément à cela, il sera fait référence dans la suite du texte à des souches de 20 type IM2169 ou de type IM2394.

Outre les souches cités dans le tableau II, des souches de type IM2169 sont par exemples les souches S3032 (12, P 1.12.16), 6940 (19, P 1.6), M978 (8, P 1.1, 7), 2223 (B:nd), 1610 (B:nd), C708 (A:4, P 1.7), M981 (B:4), aussi appelée 891, et 2996 (B:2b, P 1.2). Le déposant a reçu, par envoi gracieux, les souches S3032, M978 et M981 du Dr. J. Poolman (RIVM, Bilthoven, Pays-Bas), et la souche C708 du Dr. Achtman (Max Plank Institute, Berlin, Allemagne).

La souche IM2154 (sérogroupe C) est citée à titre d'exemple comme étant de type IM2394.

En vertu des précédentes constatations, on pouvait supposer qu'un vaccin efficace à l'encontre de toutes les infections à N. meningitidis pourrait être constitué de manière suffisante, de la sous-unité de haut poids moléculaire, quelle que soit la souche d'origine du récepteur, puisque cette dernière est reconnue par les 2 types d'antisérums. Toutefois, il semble que cela ne puisse être le cas dans la mesure où la sous-unité de haut poids

- 6 -

moléculaire ne serait pas capable d'induire la production d'anticorps de type neutralisant. Seule la plus petite des 2 sous-unités du récepteur (Tbp2) serait capable de remplir cette fonction:

Les séquences en acides aminés des sous-unités Tbp2 des souches IM2169 et IM2394 ont été divulguées dans la demande de brevet EPA 586 266 (publiée le 9 Mars 1994) ainsi que les fragments d'ADN correspondants. Ces séquences sont reprises dans les SEQ ID NO 1 à 4 de la présente demande.

Dans les SEQ ID NO 5 à 10 sont présentées les séquences des sous-unités Tbp2 des souches de type IM2169, soient les souches M978, 6940 et S3032.

On indique de plus que la séquence de la sous-unité Tbp2 IM2154 (type IM2394) différe par deux acides aminés de la séquence de la sous-unité Tbp2 IM2394, en positions 306 et 510.

15

20

25

On a maintenant trouvé qu'une sous-unité Tbp2 quelque soit la souche d'origine, présentait en termes de structures, trois domaines principaux associés pour au moins l'un d'entre eux à des propriétés particulières. Par définition, les domaines de Tbp2 IM2169 et Tbp2 IM2394 ont été fixés comme le montre le tableau ci-après, en indiquant la position des acides aminés, bornes incluses des différents domaines, et par référence à la numérotation apparaissant dans les SEQ ID NO 1 et 3.

	Tbp2 IM2169	Tbp2 IM2394
Domaine N-terminal ou premier domaine	1-345	1-325
Domaine charnière ou deuxième domaine	346-543	326-442
Domaine C-terminal ou troisième domaine	544-691	443-579

Cette définition s'applique de même à toutes les Tbp2 de type IM2169 ou IM2394, après alignement d'une séquence type IM2169 ou IM2394 sur la séquence de référence, au maximum d'homologie. Ainsi, à titre d'exemple et par référence à la Figure 1, on indique la position des domaines de la sous-unité Tbp2 de M978 comme suit : premier domaine (1 - 346), deuxième domaine (347 - 557) et troisième domaine (558 - 705).

- 7 -

D'autre part, on a aussi trouvé que le domaine N-terminal ou premier domaine et/ou le nomaine charnière ou deuxième domaine pourrait être nécessaire et suffisant, en vue d'induire un effet vaccinal chez les humains; en conséquence de quoi, il ne serait pas indispensable d'utiliser une Tbp2 sous une forme complète. On a en particulier trouvé que le premier domaine contenait dans sa quasi intégralité le site de liaison à la transferrine, se trouvait donc très vraisemblablement exposé vers l'extérieur et par conséquent constituait un élément de choix à des fins vaccinales.

Enfin, on a trouvé que certaines régions du deuxième domaine des Tbp2 de type IM2169 étaient assez généralement variables et immunodominantes. Deux approches sont donc possibles, en vue d'un vaccin : soit on considère que les épitopes immunodominants peuvent masquer d'autres épitopes d'intérêt vaccinal et par conséquent, on les délète, soit on se sert de cette variabilité, pour ne conserver que ces régions dans un vaccin.

15

20

10

5

C'est pourquoi l'invention fournit un polypeptide ayant une séquence en acides aminés qui dérive de celle d'une sous-unité Tbp2 du récepteur transferrine d'une souche de N. meningitidis de type IM2169 ou IM2394 dont le premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394 à condition que le premier et deuxième domaines ne soient pas simultanément et totalement délétés.

25

Par "séquence qui dérive d'une autre séquence" on entend bien évidemment une séquence issue par processus intellectuel de cette autre séquence.

De manière plus particulière, un polypeptide selon l'invention possède une séquence d'acides aminés qui dérive d'une sous-unité Tbp2 de type IM2169 ou IM2394 :

30

(i) notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 sélectionné parmi les deuxième et troisième domaines; de préférence par délétion totale ou partielle du troisième domaine ou des deuxième et troisième domaines;

35

(ii) notamment par délétion totale des premier et troisième domaines, ou

(iii) notamment par délétion intégrale du troisième domaine et par délétion partielle du premier domaine, optionellement par délétion partielle du deuxième domaine.

5

D'une manière avantageuse, un polypeptide selon l'invention présente une délétion partielle, quasi totale ou totale du troisième domaine, de préférence totale. Dans ce cas là, le premier ainsi que le deuxième domaine peuvent être maintenus dans leur intégralité, partiellement ou totalement délété; ceci indépandemment l'un de l'autre.

10

25

30

35

Sont possibles les combinaisons suivantes (sachant que les premier, deuxième et troisième domaines dans leur intégralité sont respectivement représentés par 1, 2 et 3, et que O et Δ signifient de manière respective, partiellement et totalement délété):

```
15 1, 2, Δ3; 1, O2, Δ3; 1, Δ2, Δ3;

O1, 2, Δ3; O1, O2, Δ3; O1, Δ2, Δ3;

Δ1, 2, Δ3; Δ1, O2, Δ3;

1, 2, O3; 1, O2, O3; 1, Δ2, O3;

O1, 2, O3; O1, O2, O3; O1, Δ2, O3;

Δ1, 2, O3; Δ1, O2, O3;
```

Est aussi d'intérêt, un polypeptide selon l'invention dérivé d'une sous-unité Tbp2 de type IM2169 par délétion partielle du deuxième domaine, qui comporte dans leur intégralité ou quasi intégralité le premier et troisième domaines; soit la combinaison 1, O2, 3. (Par "domaine maintenu dans sa quasi-intégralité" on entend ici et dans la suite du texte, un domaine modifié en un très faible nombre de positions, environ 5 maximum.) Un polypeptide selon l'invention peut aussi répondre à la combinaison O1, O2, 3, la délétion partielle du premier domaine portant avantageusement sur la région homologue de celle de Tbp2 IM2169 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 40.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion partielle du deuxième domaine d'une sous-unité Tbp2 de type IM2169, cette délétion partielle porte avantageusement sur une ou des régions du deuxième domaine qui est (sont) l'(les) homologue(s) des régions de la séquence IM2169 allant :

- (i) de l'acide aminé en position 362 à l'acide aminé en position 379;
- (ii) de l'acide aminé en position 418 à l'acide aminé en position 444;
- (iii) de l'acide aminé en position 465 à l'acide aminé en position 481; et
- (iv) de l'acide aminé en position 500 à l'acide aminé en position 520.
- De préférence, la délétion partielle porte simultanément sur les quatre régions (i) à (iv) sus-décrites.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion intégrale du troisième domaine et délétion quasi intégrale du deuxième domaine d'une sous-unité Tbp2 de type IM2169 et comporte l'intégralité du premier domaine ou dérive en outre par délétion de la partie N-terminale du premier domaine, la délétion quasi intégrale du deuxième domaine s'étend sur la région qui :

- dans le cas d'un polypeptide dérivé d'une sous-unité Tbp2 de type IM2169, est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2169 allant de l'acide aminé dans l'une des positions 346 à 361 à l'acide aminé en position 543;
- dans le cas d'un polypeptide dérivé d'une sous-unité Tbp2 de type IM2394, est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2394 allant de l'acide aminé dans l'une des positions 326 à 341 à l'acide aminé en position 442.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion partielle du premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394, cette délétion partielle porte avantageusement sur tout ou partie de la région :

(i) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281; ou

5

20

15

25

(ii) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé en position 266.

A titre d'exemple de ce qui précède, on cite une délétion d'intérêt portant sur la région :

5

10

15

20

25

30

35

- (i) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 40; ou
- (ii) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 45.

La séquence de type IM2169 ou IM2394 à partir de laquelle est dérivée celle d'un polypeptide selon l'invention présente un degré d'homologie avec la séquence de référence respective, IM2169 ou IM2394, avantageusement d'au moins 75%, de préférence d'au moins 80%, de manière plus particulièrement préférée d'au moins 90%.

Selon un mode de réalisation tout particulièrement préféré, un polypeptide selon l'invention possède une séquence dérivée de celle de la sous-unité Tbp2 IM2169 ou IM2394.

Le degré d'homologie peut être aisément calculé en alignant les séquences de manière à obtenir le degré maximal d'homologie; pour ce faire, il peut être nécessaire d'introduire artificiellement des emplacements vacants, comme cela est illustré dans les Figures 1 à 4. Une fois que l'alignement optimal est réalisé, le degré d'homologie est établi en comptabilisant toutes les positions dans lesquelles les acides aminés des deux séquences se retrouvent à l'identique, par rapport au nombre total de positions.

Il serait fastidieux de décrire des séquences homologues autrement que de manière générique, en raison du trop grand nombre de combinaisons. L'homme du métier connaît toutefois les règles générales qui permettent de remplacer un acide aminé par un autre sans abolir la fonction biologique ou immunologique d'une protéine.

A titre d'exemple préféré, on cite un polypeptide selon l'invention dont la séquence possède au moins 75%, de manière avantageuse au moins 80%, de préférence au moins 90%, de manière tout à fait préférée 100% d'homologie avec :

5

10

20

25

30

35

- (i) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 345;
- (ii) la séquence telle que montrée dans l'ID SEQ NO 3, de l'acide aminé en position 1 à l'acide aminé en position 325 ou 442;
- (iii) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691 ou 543, délétée des régions 362-379, 418-444, 465-481 et 500-520;
- 15 (iv) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 346 à l'acide aminé en position 543.

Des polypeptides répondant à la définition donnée au paragraphe précédent sont illustrés comme suit :

- (i) Un polypeptide selon l'invention dont la séquence est substantiellement telle que montrée dans l'ID SEQ NO 1, 5, 7 ou 9, de l'acide aminé en position 1 à l'acide aminé en position 350, 351, 354 ou 358 respectivement;
- (ii) Un polypeptide selon l'invention dont la séquence est substantiellement telle que montrée dans l'ID SEQ NO 3 de l'acide aminé en position 1 à l'acide aminé en position 330;
- (iii) Un polypeptide selon l'invention dont la séquence est substantiellement telle que montrée dans :
 - l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691, délétée des régions 362-379, 418-444, 465-481 et 500-520;
- l'ID SEQ NO 5, de l'acide aminé en position 1 à l'acide aminé en position 705, délétée des régions 365-382, 421-453, 474-495 et 514-534;

- l'ID SEQ NO 7, de l'acide aminé en position 1 à l'acide aminé en position 693, délétée des régions 366-383, 422-448, 469-485 et 504-524; ou
- I'ID SEQ NO 9, de l'acide aminé en position 1 à l'acide aminé en position 699, délétée des régions 372-389, 428-454, 475-491 et 510-529 ; et
- (iv) Un polypeptide selon l'invention dont la séquence est substantiellement telle que montrée dans :
 - l'ID SEQ NO 1, de l'acide aminé en position 346 à l'acide aminé en position 543,
 - l'ID SEQ NO 5, de l'acide aminé en position 347 à l'acide aminé en position 557,
 - l'ID SEQ NO 7, de l'acide aminé en position 350 à l'acide aminé en position 557, ou
 - l'ID SEQ NO 9, de l'acide aminé en position 354 à l'acide aminé en position 551,

Des polypeptides particuliers répondant aux définitions données aux points (i) à (iv) sont décrits dans les exemples qui suivent.

Un polypeptide selon l'invention possède une séquence d'acide aminés qui comprend au moins 10, avantageusement au moins 20, de préférence au moins 50, de manière tout à fait préférée au moins 100 acides aminés.

Bien évidemment, un polypeptide selon l'invention peut aussi comprendre de manière additionnelle, une séquence d'acides aminés qui ne présente pas d'homologie avec les séquences des sous-unités Tbp2 des souches IM2169 et IM2394; séquences qui sont montrées dans les ID SEQ NO 1 et 3 de l'acide aminé en position 1 à l'acide aminé en position C-terminale.

30

5

10

15

20

D'une manière générale, une séquence additionnelle peut être celle de tout autre polypeptide à l'exclusion de Tbp2.

Par exemple, une séquence additionnelle peut être celle d'un peptide signal localisée en position N-terminale d'un polypeptide selon l'invention. Des exemples de séquence signal sont montrés dans les ID SEQ NO 1 à 4. D'autre part, on indique qu'une séquence signal hétérologue appropriée peut être une séquence signal d'un gène codant pour une lipoprotéine.

L'invention a aussi pour objet:

- (i) un fragment d'ADN isolé codant pour un polypeptide selon l'invention;
- (ii) une cassette d'expression qui comprend au moins un fragment d'ADN selon l'invention, placé sous le contrôle d'éléments capables d'assurer son expression dans une cellule-hôte appropriée ; et
- (iii) un procédé de production d'un polypeptide selon l'invention, selon lequel on cultive une cellule-hôte comportant une cassette d'expression selon l'invention.

Par "fragment d'ADN isolé", on signifie qu'un fragment d'ADN selon l'invention n'est pas intégré dans un fragment d'ADN codant pour une sous-unité Tbp2 complète.

Dans la cassette d'expression, le fragment d'ADN selon l'invention peut être ou non associé à un bloc d'ADN codant pour un peptide signal hétérologue ou non, au polypeptide codé par ledit fragment d'ADN, selon que l'on recherche ou non la sécrétion du polypeptide. De préférence, cette sécrétion sera recherchée.

Des éléments tels qu'un bloc d'ADN codant pour un peptide signal hétérologue (région signal) ou un promoteur existent déjà en assez grand nombre et sont connus de l'homme du métier. Ses compétences générales lui permettront de choisir une région signal ou un promoteur particulier qui seront adaptés à la cellule-hôte dans laquelle il envisage l'expression.

30

5

10

15

20

Aux fins du procédé selon l'invention, la cellule-hôte peut être une cellule de mammifère, une bactérie ou une levure ; ces deux dernières étant préférées. Là aussi, le choix d'une lignée particulière est à la portée de l'homme du métier.

L'invention concerne également un anticorps monoclonal :

5

10

15

25

- (i) capable de reconnaître un épitope présent dans le premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394; ledit épitope ayant une séquence homologue à celle présente dans le premier domaine de la sous-unité Tbp2 de la souche IM2394 et sélectionnée parmi YKGTW (SEQ ID NO 32), EFEVDFSDKTIKGTL (ID SEQ NO 33), EGGFYGPKGEEL (ID SEQ NO 34) et AVFGAK (ID SEQ NO 35); et de manière optionnelle,
- (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, dont la séquence est homologue à celle de l'épitope du premier domaine qui est reconnu.

Afin d'illustrer le point (ii) précédent, on indique à titre d'exemple que les séquences du troisième domaine de la sous-unité Tbp2 IM2394 homologues deux à deux à celles du premier domaine se trouvent respectivement en position 443 - 447, 472 - 485, 537 - 548 et 568 - 573;

De préférence, un monoclonal selon l'invention est :

- (i) capable de reconnaître la région présente dans le premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394 dont la séquence est homologue à la séquence EGGFYGPKGEEL présente dans le premier domaine de la sous-unité Tbp2 de la souche IM2394; et de manière optionnelle,
- (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, épitope équivalent de celui qui est reconnu, dont la séquence est homologue à la séquence SGGFYGKNAIEM présente dans le troisième domaine de la sous-unité Tbp2 de la souche IM2394.

Un monoclonal préféré est :

- . (i) capable de reconnaître l'épitope GFYGPK, présent dans le premier domaine d'une sous-unité Tbp2 de la souche IM2394; et
 - (ii) incapable de reconnaître l'épitope équivalent présent dans le troisième domaine de ladite sous-unité Tbp2 IM2394.

En effet, un tel monoclonal a été reconnu comme bactéricide et par conséquent on peut envisager de l'utiliser comme principe actif dans une composition pharmaceutique, en immunothérapie passive pour combattre une infection à N. meningitidis.

Enfin, l'invention concerne également une composition pharmaceutique comprenant à titre de principe actif, au moins un polypeptide selon l'invention.

15

5

Une composition pharmaceutique selon l'invention est notamment utile pour induire une réponse immunitaire chez les humains à l'encontre de N. meningitidis, entre autre un effet vaccinal de manière à protéger les humains contre des infections à N. meningitidis, en prévention ou en thérapie.

20

25

30

35

Une composition selon l'invention comprend avantageusement, à titre de principe actif, au moins deux polypeptides selon l'invention; soit au moins un premier polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type IM2169 et au moins un deuxième polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type IM2394. De manière alternative, une composition selon l'invention peut aussi contenir au moins un polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type IM2169 et au moins une sous-unité Tbp2 de type IM2394.

Pour ce qui concerne le polypeptide de type IM2394, élément de la composition pharmaceutique, il est très préférable que celui-ci comporte tout ou partie de la séquence qui est homologue à celle du premier domaine de la sous-unité Tbp2 IM2394 dont il est dérivé. La partie de la séquence qui doit de préférence, être maintenue est l'homologue de la région de la sous-unité Tbp2 IM2394 allant de l'acide aminé en position 267 à l'acide aminé en position 325. La séquence d'un tel polypeptide peut dériver de celle d'une sous-unité Tbp2 de type IM2394 notamment par délétion totale ou partielle de la région du deuxième ou troisième domaine de la sous-unité Tbp2 de type IM2394.

Ainsi, en vue d'une composition pharmaceutique à deux types d'éléments (type IM2394 et type IM2169), sont plus particulierement préférés les polypeptides de type IM2394 suivants :

5

```
1, 2, 03; 1, 2, \Delta3; 1, 02, \Delta3; 1, \Delta2, \Delta3
01, 2, 03; 01, 2, \Delta3; 01, 02, \Delta3; 01, \Delta2, \Delta3.
```

Pour ce qui concerne le polypeptide de type IM2169, élément de la composition pharmaceutique, deux approches préférées sont possibles :

(A) - Soit associer au polypeptide de type IM2394, un polypeptide qui comporte tout ou partie de la séquence qui est homologue à celle du premier domaine de la sous-unité Tbp2 IM2169 dont il est dérivé. Dans ce cas là, la partie de la séquence qui doit de préférence, être maintenue est l'homologue de la région de la sous-unité Tbp2 IM2169 allant de l'acide aminé en position 282 à l'acide aminé en position 345. La séquence d'un tel polypeptide peut dériver de celle d'une sous-unité Tbp2 de type IM2169 notamment par délétion totale ou partielle de la région du deuxième ou troisième domaine de la sous-unité Tbp2 de type IM2169.

20

35

15

Ainsi, selon cette alternative et en vue d'une composition pharmaceutique à deux types d'éléments (type IM2394 et type IM2169), sont plus particulierement préférés les polypeptides de type IM2169 suivants :

25 1, 2, 03; 1, 2, Δ3; 1, 02, Δ3; 1, Δ2, Δ3 01, 2, 03; 01, 2, Δ3; 01, 02, Δ3; 01, Δ2, Δ3.

1, 02, 3; 01, 02, 3.

Pour ce qui concerne les deux dernières possibilités (1, O2, 3; O1, O2, 3), la délétion partielle du deuxième domaine peut très avantageusement porter sur une ou des régions du deuxième domaine qui est (sont) l'(les) homologue(s) des régions de la séquence IM2169 allant :

(i) de l'acide aminé en position 362 à l'acide aminé en position 379;

- (ii) de l'acide aminé en position 418 à l'acide aminé en position 444;
- . (iii) de l'acide aminé en position 465 à l'acide aminé en position 481; et
 - (iv) de l'acide aminé en position 500 à l'acide aminé en position 520.

5

20

25

30

De préférence, la délétion partielle porte simultanément sur les quatre régions (i) à (iv) sus-décrites.

(B) - Soit associer au polypeptide de type IM2394, un polypeptide dont la séquence dérive par délétion partielle du deuxième domaine et par délétion totale ou quasi totale du premier ou troisième domaine de la sous-unité Tbp2 de type IM2169 et comporte le deuxième domaine dans son intégralité (Δ1, 2, Δ3). Dans cette alternative, la composition pharmaceutique à deux types d'éléments (type IM2394 et type IM2169), peut avantageusement contenir plusieurs polypeptides (Δ1, 2, Δ3) de type IM2169; par exemple deux ou plus des polypeptides sélectionnés parmi (Δ1, 2, Δ3) IM2169, M978, 6940 et S3032.

Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier on associe le ou les polypeptide(s) selon l'invention avec un adjuvant, un diluant ou un support acceptable d'un point de vue pharmaceutique. Une composition selon l'invention peut être administrée par n'importe quelle voie conventionnelle en usage dans le domaine des vaccins, en particulier par voie sous-cutanée, par voie intra-musculaire ou par voie intra-veineuse, par exemple sous forme de suspension injectable. L'administration peut avoir lieu en dose unique ou répétée une ou plusieurs fois après un certain délai d'intervalle. Le dosage approprié varie en fonction de divers paramètres, par exemple, de l'individu traité ou du mode d'administration.

Afin de déterminer l'objet de la présente invention, on précise que les souches de N. meningitidis IM2394 et IM2169 sont publiquement disponibles auprès de la Collection Nationale de Culture des Microorganismes (CNCM), Institut Pasteur, 25 rue du Dr Roux 75015 Paris sous les numéros d'enregistrement respectifs LNP N 1511 et LNP N 1520.

L'invention est décrite plus en détails dans les exemples ci-après et par référence aux Figures 1 à 7.

Les Figures 1 à 3 présentent respectivement les alignements des séquences Tbp2, M978, 6940 et S3032 avec la séquence Tbp2 IM2169, au maximum d'homologie. Les degrés d'homologies respectifs sont de 78.9, 81.2 et 79.6%.

La Figure 4 présente les alignements au maximum d'homologie des séquences des domaines charnières (deuxième domaine) de Tbp2 IM2169 (1), 6940 (2), 2223 (3), C708 (4), M978 (5), 1610 (6), 867 (7), S3032 (8) et M981 (9). En italiques est donnée la numérotation de la séquence de Tbp2 IM2169, telle qu'elle apparaît dans ID SEQ NO 1. En gras apparaissent les séquences que l'on peut déléter selon un mode préféré. (C) indique la séquence consensus.

Les Figures 5 à 7 illustrent respectivement la construction des plasmides pTG5782, pTG5755 et pTG5783.

15

5

10

EXEMPLE 1: Polypeptide T/2169 (1, O2, Δ3; 1-350) dont la séquence telle que montrée dans l'ID SEQ NO 1 (IM2169), de l'acide aminé en position 1 à l'acide aminé en position 350.

20

25

1A - Préparation du fragment d'ADN codant pour T/2169 (1-350) : Construction du vecteur pTG 5782.

A partir du plasmide pTG3721 décrit dans la demande EPA 586 266, on introduit, par mutagénèse dirigée, un site de restriction *HindIII* en aval de la séquence codant pour Tbp2, pour générer le plasmide pTG4704.

A partir du plasmide pTG3721, on amplifie par PCR, à l'aide des amorces OTG4915 et OTG4651, un fragment comportant la séquence codant pour le signal de sécrétion de RlpB et du début de la séquence codant pour Tbp2 mature jusqu'au site *Hae*II interne.

OTG4915 : AAACCCGGATCCGTTGCCAGCGCTGCCGT

HaeII

OTG4651:

BspHI

TTTTTTCATG AGA TAT CTG GCA ACA TTG TTG TTA TCT CTG

Met Arg Tyr Leu Ala Thr Leu Leu Leu Ser Leu

5

GCG GTG TTA ATC ACC GCC GGG TGC CTG GGT GGC

Ala Val Leu Ile Thr Ala Gly Cys Leu Gly ...

_clivage du peptide signal

10

GGC GGC AGT TTC

Le fragment PCR est ensuite digéré par BspHI et HaeII et inséré simultanément avec le fragment HaeII-HindIII de pTG4704 qui comporte la partie 3' de la région codant pour Tbp2, dans le plasmide pTG3704 décrit dans la demande EPA 586 266, digéré par NcoI et HindIII, pour générer le plasmide pTG5768.

A partir de plasmide pTG3721, on amplifie par PCR, à l'aide des amorces OTG4928 et OTG5011, un fragment comportant la séquence codant pour la partie N-terminale de Tbp2.

20

15

SphI
OTG4928 : GTG TTT TTG TTG AGT GCA TGC CTG GGT GGC
Val Phe Leu Leu Ser Ala Cys Leu Gly Gly
Clivage du peptide

25

OTG5011 : TGCGCAAGCTTACAGTTTGTCTTTGGTTTTCGCGCTGCCG
HindIII

signal

30

Ce fragment PCR est digéré par SphI et HindIII, puis cloné dans le plasmide pTG4710 décrit dans la demande EPA 586 266; on génère ainsi le plasmide pTG5740.

35

Le fragment HaeII-HindIII de pTG5740 comportant la partie 3' de la séquence codant pour le domaine de liaison à la transferrine humaine (hTf) (3' de la région codant pour le premier domaine) est inséré dans le plasmide pTG3704 digéré par

BamHI et HindIII, simultanément avec le fragment BamHI-HaeII de pTG5768 comportant le promoteur araB, la séquence signal rlpB et le début de la séquence codante de Tbp2; on génère ainsi le plasmide pTG5782. Ce vecteur comporte le promoteur araB, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2 (1 - 350).

1B - Production et purification de T/2169 (1-350)

Une souche d'E. coli (Xac-I) est transformée par pTG5782. Les transformants sont mis en culture à 37°C en milieu M9 + succinate 0,5% + arginine 50µg/ml + ampicilline100 µg/ml. En phase exponentielle, on ajoute 0,2% d'arabinose (inducteur). Après une heure d'induction, on prélève des cellules et des extraits sont préparés. Une analyse en Western Blot suivie d'une révélation par la hTF-peroxidase permet de détecter une bande majoritaire dont le P.M. correspond à celui attendu pour cette forme tronquée de Tbp2.

Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93) T/2169 purifié se révèle capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.

20

15

5

· 10

EXEMPLE 2: Polypeptide T/2394 (1, O2, Δ3; 1-340) dont la séquence telle que montrée dans l'ID SEQ NO 2 (IM2394), de l'acide aminé en position 1 à l'acide aminé en position 340.

25

2A - Préparation du fragment d'ADN codant pour T/2394 (1-340) : Construction du vecteur pTG 5755

A partir du plasmide pTG4710 décrit dans la demande EPA 586 266, on amplifie par PCR, à l'aide des amorces OTG4873 et OTG4877, un fragment comportant la région codant pour la partie C-terminale du domaine de liaison à la hTf. Ce fragment est ensuite digéré par MluI et HindIII.

OTG4873 : AAAAAGCATGCATAAAAACTACGCGTTACACCATTCAAGC
MluI

35

OTG4877 :TATATAAGCTTACGTTGCAGGCCCTGCCGCGTTTTCCCC HindIII

Le plasmide pTG4710 est digéré par MluI et HindIII. Le fragment MluI-HindIII comportant la partie 3' de la séquence codant pour Tbp2 est remplacé par le fragment PCR codant pour la partie C-terminale du domaine de liaison à la hTf. On génère ainsi le plasmide pTG5707. On remplace ensuite dans le plasmide pTG5707, un fragment BamHI-MluI comportant le promoteur araB et le début de la séquence codant pour Tbp2, par un fragment BamHI-MluI de pTG4764 décrit dans la demande EPA 586 266 qui comporte le promoteur araB, la séquence codant pour le signal de sécrétion RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2. On génère ainsi le plasmide pTG5755. Ce vecteur comporte le promoteur araB, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2 (1 - 340).

15

5

10

2B - Production et purification de T/2394 (1-340)

T/2394 (1-340) est produit et purifié tel que décrit dans l'Exemple 1B.

20

Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93) T/2394 purifié se révèle capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.

25 <u>EXEMPLE 3</u>: Polypeptide D4/2169 (1, O2, 3) dont la séquence est identique à celle telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691, délétée des régions 362-379, 418-444, 465-481 et 500-520.

3A - Préparation du fragment d'ADN codant pour D4/2169

1.1. Clonage du fragment d'ADN.

Le fragment d'ADN codant pour la sous-unité Tbp2 de la souche de N. meningitidis IM2169 est amplifié par PCR (Polymerase chain reaction) à l'aide d'amorces spécifiques complémentaires des régions 5' et 3', (respectivement A5'

35

et A3') sur 10 ng d'ADN génomique extrait d'une culture de bactéries de la souche IM2169.

A5' : 5' CCCGAATTCTGCCGTCTGAAGCCTTATTC 3'

A3' : 5' CCCGAATTCTGCTATGGTGCTGCCTGTG 3'

Un fragment d'ADN est ainsi obtenu et après digestion par EcoRI, il compte 2150 nt. Ce fragment EcoRI est ensuite ligué aux extrémités EcoRI déphosphorylées du phagemide pBluescriptSK(-) (Stratagene) pour donner le phagemide recombinant pSK/2169tbp2.

1.2. Mise en oeuvre des délétions.

Le clone pSK/2169tbp2 contenant les séquences *tbp2* de la souche M982 est délété par la technique de Kunkel, PNAS (1985) <u>82</u> : 448.

En bref, la forme phagique du phagemide recombinant pSK/2169tbp2 est obtenue après sauvetage par le phage "helper" VCS M13 selon la technique décrite par Stratagene, fournisseur du vecteur de base, et utilisée pour infecter la souche bactérienne CJ236. Les mutations dut et ung portées par la souche CJ236 ont pour conséquence la synthèse de molécules d'ADN ayant incorporé le précurseur nucléotidique dUTP.

Les phages sont récoltés et l'ADN simple brin est extrait par un mélange phénol/chloroforme. Cet ADN est hybridé dans les conditions classiques, aux oligonucléotides suivants :

2169d1 : 5' CGCATCCAAAACCGTACCTGTGCTGCCTGA 3'

2169d2 : 5' TTTATCACTTTCCGGGGGCAGGAGCGGAAT 3'

2169d3 : 5' GTTGGAACAGCAGCAGCGGTTTGCGCCCC 3'

2169d4 : 5' GAACATACTTTGTTCGTTTTTGCGCGTCAA 3'

La réaction d'hybridation est poursuivie 30 min, en température décroissante à partir de 70°C jusqu'à 30°C.

5

10

15

20

25

30

Le second brin complémentaire est ensuite achevé par synthèse complète en présence des quatre desoxynucléotides, de la T4 DNA polymérase et de la T4 DNA ligase, selon les conditions classiques.

5

La souche *E. coli* SURE (Stratagene) est transformée par l'ADN ainsi obtenu. Dans cette souche, les molécules porteuses de dUTP, c'est-à-dire non-mutées, sont détruites.

10

Les phages obtenus sont analysés par les techniques classiques de préparation rapide d'ADN plasmidique et de digestion par les enzymes de restriction appropriées. La présence de la mutation recherchée est ensuite vérifiée par séquençage nucléotidique.

15

Le clone pSK2169#7, porteur des quatre mutations Δ 1203-1256, Δ 1371-1451, Δ 1512-1562, et Δ 1617-1679 est sélectionné.

3B - Construction du vecteur d'expression pTG5783

20

25

Le plasmide pTG5768 décrit précédemment est digéré par *Hpa*I et *Xcm*I. On insère simultanément dans ce vecteur un fragment *Xcm*I-*Xcm*I de pTG5768 et le fragment *Hpa*I-*Xcm*I du plasmide pSK/2169ed#7, pour générer le plasmide pTG5783. Ce vecteur comporte le promoteur *ara*B, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence *tbp*2 modifiée (délétions d1 à d4).

3C - Préparation et purification de D4/2169.

D4/2169 est produit et purifié selon l'Exemple 1B.

30

Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93) D4/2169 purifié s'est révélé capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.

EXEMPLES 4 à 8 : Polypeptides 4) C/2223 (1-340), 5) C/M981 (1-340), 6) C/1610 (1-340), 7) C/2996 (1-340) et 8) C/C708(1-340).

Les fragments d'ADN codant pour les Tbp2 des souches de N. meningitidis 2223, M981, 1610, 2996 et C708 ont été clonés par amplification PCR comme décrit dans l'exemple 3A, en utilisant les deux même amorces. De même, ces fragments ont été insérés aux sites EcoRI ou EcoRI/BamHI du phagemide pBluescriptSK(-).

5

30

10 <u>EXEMPLE 9</u>: Composition vaccinale (T/2169 - T/2394) destinée à prévenir des infections à N. meningitidis

Des solutions stériles de T/2169 et T/2394 tels que purifiés dans les exemples 1B et 2B sont décongelées. Afin de préparer un litre de vaccin renfermant 100 μg/ml de chacun des principes actifs, on mélange stérilement les solutions suivantes :

	- Solution de T/2394 à 1 mg/ml dans du tampon C (tampon phosphate 500 mM, pH8, Sarkosyl 0,05 %)	100 ml
20	- Solution de T/2169 à 1mg/ml dans du tampon C	100 ml
	- Eau physiologique tamponnée (PBS)) pH 6.0	300 ml
	- Hydroxyde d'aluminium à 10 mg Al+++/ml	50 ml
25	- Merthiolate à 1 % (p/v) dans du PBS	10 ml
	- PBS qsp	1.000 ml

EXEMPLE 10: Composition vaccinale (D4/2169 - Tbp2/2394) destinée à prévenir des infections à N. meningitidis

Une solution stérile de D4/2169 tel que purifié dans l'exemple 3C est décongelée. On fait de même avec une solution stérile de Tbp2/2394 tel que préparé et purifié dans

l'exemple 3 de EPA 586 266. Afin de préparer un litre de vaccin renfermant 100 μg/ml de chacun des principes actifs, on mélange stérilement les solutions suivantes :

_	- Solution de Tbp2/2394 à 1 mg/ml dans du tampon C	100 ml
5	- Solution de D4/2169 1mg/ml dans du tampon C	100 ml
	- Eau physiologique tamponnée (PBS)) pH 6.0	300 ml
10	- Hydroxyde d'aluminium à 10 mg Al ⁺⁺⁺ /ml	50 ml
	- Merthiolate à 1 % (p/v) dans du PBS	10 mi
	- PBS qsp	1.000 ml

EXEMPLE 11: Obtention d'un anticorps capable de reconnaître l'épitope GFYGPKGE du premier domaine de Tbp2 IM2394.

20 11A -Immunisation des souris et production des hybridomes

Des souris MRL/Lpr-Lpr connues pour produire plus d'IgG2a, IgG2b et IgG3 que les souris Balb/C (J. Immunol. Methods (1991) 144 : 165) reçoivent une première injection intrapéritonéale de 50 µg de la fraction membranaire IM2394 en présence d'adjuvant complet de Freund. La fraction membranaire que l'on utilise est préparée comme suit :

La souche IM2394 conservée sous forme lyophilisée est reprise et cultivée sur gélose Mueller - Hinton pendant une nuit à 37°C dans une atmosphère contenant 20% de CO₂. La nappe est reprise et sert à ensemenser un erlen-meyer contenant du bouillon Mueller - Hinton additionné de 30 µM EDDA (ethylene diamine di orthohydroxy acetic acid - Sigma). Après 5 heures d'incubation à 37°C sous agitation rotative, la culture est centrifugée. Le culot est repris par du tampon Tris-HCl pH 8 et la suspension est lysée dans un appareil à ultrasons fonctionnant à haute pression (Rannie, modèle 8.30H). La suspension obtenue est centrifugée à basse vitesse pour éliminer les débris cellulaires et les membranes sont recueillies par ultracentrifugation

25

30

35

(140 000 xg, 75 min, 4°C). La fraction membranaire est finalement reprise en tampon Tris-HCl 50 mM pH 8 et sa concentration protéique déterminée.

Cette première injection est suivie de deux injections de rappel 21 et 49 jours plus tard. Les doses de rappel contiennent 25 µg de la protéine Tbp2 telle que purifiée dans l'Exemple 3 de EPA 586 266, sous la forme d'une émulsion dans l'adjuvant incomplet de Freund.

56 jours après, la souris ayant développé le titre en anticorps le plus élevé (contrôle des immunsérums par ELISA) est sélectionnée pour la production d'anticorps monoclonaux spécifiques. Celle-ci reçoit une dernière injection de rappel (78 jours après l'injection initiale) en inoculant 25 µg de la protéine Tbp2 telle que purifiée dans l'Exemple 3 de EPA 586 266 à la fois par voie intraveineuse et par voie intrapéritonéale. 3 jours après, la rate de l'animal est prélevée et les splénocytes sont fusionnés avec les cellules myélomateuses murines P3 x 63 Ag 8653 dans un rapport d'une cellule myélomateuse pour 4 cellules spléniques. Le protocole de fusion utilisé est dérivé de celui décrit initialement par G. Köhler et C. Milstein, Nature (1975) 256 : 495. Après fusion, les cellules sont disposées dans des micropuits stériles (Nunc) recouverts d'un "feeder" nourricier à raison de 100 000 cellules par puits dans un volume de 200 µl de milieu sélectif [milieu D.M.E.M contenant 20% de SVF et un mélange hypoxanthine - azaserine - thymidine à 2% (V/V) (Gibco. Réf 043-01060H)]. Le milieu sélectif est remplacé 6 jours après, par un milieu non sélectif [milieu D.M.E.M contenant 20% de SVF et un mélange hypoxanthine - thymidine à 2% (V/V) (Gibco. Réf 043-01065H)].

11B - Criblage des hybridomes

Les surnageants de culture des hybridomes sont testés par ELISA selon la méthode suivante :

Dans des micropuits de plaque ELISA "sensibilisés" pendant une nuit à +4°C par 100 µl d'une solution à 5 µg/ml de RT 2394 en tampon carbonate (50 mM pH 9,6), puis saturés pendant 1 heure à 37°C avec 200 µl d'un tampon phosphate 0,1 M contenant 1% de sérum albumine bovine (poids/volume) (PBS-AB), sont déposés 100 µl de surnageant de culture d'hybridomes (ou les dilutions d'immunsérums effectuées en tampon PBS-AB contenant 0,05% de Tween 20) (PBS-T-AB). Après une nouvelle

30

35

25

5

10

15

incubation de 1h30 à 37°C suivie de 5 lavages en PBS-Tween, les puits sont recouverts par 100 μl d'une solution mixte d'anticorps conjugués à la phosphatase alcaline (PA) spécifiques des isotypes IgG_{2a}, IgG_{2b} et IgG₃ murins de façon à ne sélectionner que les hybridomes sécrétant des anticorps spécifiques et fonctionnels dans le test de bactéricidie. La solution mixte d'anticorps conjugués est préparée en diluant les 3 immunsérums de chèvre suivants : chèvre anti IgG_{2a} - PA (Caltag), chèvre anti IgG_{2b} -PA (Caltag), chèvre anti IgG₃-PA (Caltag) au 1/1500è en tampon PBS-T-AB. Après incubation de la solution d'anticorps conjugués 1h30 à 37°C, suivie de 5 lavages, la réaction enzymatique est révélée par 100 μl d'une solution de paranitrophényl phosphate à 5 mg/ml en tampon diéthanolamine 0,1 M, pH 9,8. Le développement de la réaction est arrêté au bout de 30 min. en rajoutant 50 μl de soude 1N avant analyse au spectrophotomètre à 405 nm.

Les clones positifs après ce premier criblage sont analysés pour leur capacité à reconnaître la sous-unité Tbp2 par Western blot.

Pour ce faire, les récepteurs transferrine IM2394 (0,863 mg/ml) et IM2169 (0,782 mg/ml) tels que préparés dans les exemples 1 et 2 de WO93/6861, sont dilués au 1/10 dans un tampon Tris 1 M pH 6,8, puis dénaturés en ajoutant 10% (V/V) d'une solution de SDS à 25% dans un tampon TE (Tris/HCl 100 mM, EDTA 10 mM) pH 8,0 et 5% (V/V) de β-mercaptoéthanol. Après un traitement de 15 min à 56°C, un aliquot de 110 μl contenant le récepteur transferrine dénaturé IM2394 ou IM2169, est déposé sur un gel de polyacrylamide à 7,5%. Après migration (1 heure sous 200 volts dans une cuve Biorad), les protéines sont électrotransférées sur une membrane de nitrocellulose (100 volts pendant 50 min.). La membrane est saturée pendant 1 nuit à température ambiante dans un tampon Tris 20 mM, NaCl 137 mM pH 7,6 (TBS) contenant 5% (P/V) de poudre de lait écrémé puis montée sur miniblotter. Les anticorps que l'on teste sont ajustés à la concentration de 25 μg/ml en tampon TBS contenant 1% (P/V) de poudre de lait avant d'être déposés à raison de 50 μl par canal.

Après 45 min. d'incubation, suivies de rinçages en tampon TBS/lait 1%, 50 μl d'un immunsérum de lapin anti IgG.A.M de souris (Zymed) conjugué à la phosphatase alcaline préalablement dilué 1000 fois en tampon TBS/lait 1% sont déposés dans chaque canal.

35

30

5

10

15

20

Après une nouvelle incubation de 45 min. suivie de rinçages, la réaction enzymatique est révélée à l'aide d'un substrat chromogénique (B.C.I.P/NBT (Sigma Fast R). La réaction est arrêtée au bout de 15 min. par trempage dans l'eau distillée. Les clones positifs sont caractérisés par leur capacité à révéler une bande correspondant à une protéine d'environ 69 kD (sous-unité Tbp2) après électrotransfert du récepteur transferrine IM2394 sur membrane de nitrocellulose.

A l'issue de ce second criblage par Western blot, les clones sont analysés pour leur capacité à produire une immunoglobuline réagissant avec la séquence peptidique GFYGPKGE dans un système ELISA; la méthodologie est identique à celle décrite ci-dessus à l'exception de la sensibilisation des plaques qui est réalisée par addition dans chaque puits de $100~\mu l$ d'une solution de peptide GFYGPKE à $2~\mu g/m l$.

Parmi les hybridomes que l'on teste, on en sélectionne un qui se révèle capable de réagir avec le peptide; puis on le stabilise par clonage successifs (au moins 2) à raison de 5 cellules/puits lors du premier clonage, de une cellule/puits lors des suivants.

11C -Production et purification de l'anticorps monoclonal

5

10

15

20

25

30

35

L'anticorps monoclonal est produit en ascite de souris Nude swiss males.

15 jours après injection de 500 µl de pristane par voie intrapéritonéale, les souris nudes reçoivent une deuxième injection intrapéritonéale de 7 millions de cellules provenant de l'hybridome.

Les liquides d'ascites sont prélevés stérilement puis purifiés par chromatographie d'affinité sur une colonne de protéine G. L'ascite diluée au 1/5è dans un tampon phosphate 0,1M pH 7,4 et filtrée sur filtre millipore 0,22 µ est passée au travers d'une colonne de protéine G préalablement équilibrée dans le même tampon phosphate, à raison de 40 ml/heure.

Les anticorps fixés sur la colonne sont élués à l'aide d'un tampon glycine 0,1M pH 2,7. Les fractions éluées sont immédiatement neutralisées à l'aide d'un tampon Tris 1 M pH 8,0 (à raison de 1 volume de Tris pour 10 volumes d'éluat).

L'éluat est ensuite dialysé une nuit à +4°C dans un tampon phosphate 0,1M pH 7,4, aliquoté et conservé congelé.

La pureté de l'anticorps est contrôlée par électrophorèse sur gel de polyacrylamide à 7,5% et par chromatographie de perméation sur Superose 12. Le taux de pureté généralement est supérieur à 95%.

En appliquant le protocole décrit ci-dessus et en criblant environ 800 hybridomes, on a notamment sélectionné un monoclonal capable de réagir avec l'épitope GFYGPKGE du premier domaine de Tbp2 IM2394 et incapable de réagir avec l'épitope correspondant situé dans le troisième domaine (soit GFYGKNAI).

Ce monoclonal (appelé 475E₇) est une IgG_{2b}, de point isoélectrique compris entre 7,8 et 8,1, et possède un titre bactéricide de 512.

Ce titre a été déterminé comme suit :

5

10

15

20

25

30

A partir d'une solution de Mab 475 E₇, des dilutions de raison deux sont réalisées et incubées en présence de 50 μl d'une suspension de méningocoques à 1.10⁴ CFU/ml et de 50 μl de complément de lapereau [la suspension bactérienne est obtenue par culture de la souche *N. meningitidis* B16B6 à 37°C pendant 5 heures dans le bouillon Mueller-Hinton-Difco contenant 30 μM d'EDDA (éthylène diamine di ortho hydroxyphenyl acetic acid - Sigma)].

Après une heure d'incubation à 37°C, 25 µl de mélange sont prélevés et cultivés sur gélose Mueller-Hinton supplémentée. Les boîtes de gélose sont incubées une nuit à 37°C sous une atmosphère contenant 10 % de CO₂. Les colonies sont numérées et le titre bactéricide est exprimé comme l'inverse de la dernière dilution en présence de laquelle on observe 50% ou plus de lyse des bactéries par rapport au contrôle.

Dans ces conditions, il a été déterminé que le Mab 475 E7 possédait un titre bactéricide de 512.

SEQ ID NO	Nom du projet	Séquence
1, 2	IM2169-2	Tbp2 IM2169 complète
3, 4	IM2394-2	Tbp2 IM2394 complète
5, 6	M978	Tbp2 M978 complète
7, 8	6940	Tbp2 6940 complète
9, 10	S3032	Tbp2 S3032 complète
11	2D IM2169	2ième domaine de Tbp2 IM2169
12	2D 6940	2ième domaine de Tbp2 6940
13	2D 2223	2ième domaine de Tbp2 2223
14	2D C708	2ième domaine de Tbp2 C708
15	2D M978	2ième domaine de Tbp2 M978
16	2D 1610	2ième domaine de Tbp2 1610
17	2D 867	2ième domaine de Tbp2 867
18	2D S3032	2ième domaine de Tbp2 S3032
19	2D 891	2ième domaine de Tbp2 M981
20	OTG 4915	OTG 4915
21	OTG 4651	OTG 4651
22	OTG 4928	OTG 4928
23	OTG 5011	OTG 5011
24	OTG 4873	OTG 4873
25	OTG 4877	OTG 4877
26	A 5'	A 5'
27	A 3'	A 3'
28	2169 D1	2169D1
29	2169 D2	2169D2
30	2169 D3	2169D3
31	2169 D4	2169D4
32	MAB1	lère boîte du 1er domaine de Tbp2 IM 2169
33	MAB2	2ième boîte du 1er domaine de Tbp2 IM 2169
34	MAB3	3ième boîte du 1er domaine de Tbp2 IM 2169
35	MAB4	4ième boîte du 1er domaine de Tbp2 IM 2169

LISTE DE SEQUENCES

(1) INFORMATION GENERALE:

- (i) DEPOSANT:
 - (A) NOM: Pasteur Merieux serums et vaccins
 - (B) RUE: 58, avenue leclerc
 - (C) VILLE: Lyon
 - (E) PAYS: France
 - (F) CODE POSTAL: 69007
 - (A) NOM: Transgene
 - (B) RUE: 11, rue de Molsheim
 - (C) VILLE: Strasbourg
 (E) PAYS: France

 - (F) CODE POSTAL: 67000
- (ii) TITRE DE L' INVENTION: Fragments Tbp2 de N. meningitidis
- (iii) NOMBRE DE SEQUENCES: 35
- (iv) FORME LISIBLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Tape
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 - (D) LOGICIEL: PatentIn Release #1.0, Version #1.25 (OEB)

(2) INFORMATION POUR LA SEQ ID NO: 1:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 2230 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (vi) ORIGINE:
 - (A) ORGANISME: Neisseria meningitidis
 - (B) SOUCHE: IM2169
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: sig_peptide
 - (B) EMPLACEMENT: 60..119
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: mat_peptide
 - (B) EMPLACEMENT: 120..2192
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 60..2192
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 120..1154
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc feature
 - (B) EMPLACEMENT: 1155..1748

(ix) CARACTERISTIQUE ADDITIONELLE:
(A) NOM/CLE: misc_feature
(B) EMPLACEMENT: 1749..2192

(ix) CARACTERISTIQUE ADDITIONELLE: (A) NOM/CLE: misc_binding (B) EMPLACEMENT: 2371169	•
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:	
ATTTGTTAAA AATAAATAAA ATAATAATCC TTATCATTCT TTAATTGAAT TGGGTTTAT	59
ATG AAC AAT CCA TTG GTA AAT CAG GCT GCT ATG GTG CTG CCT GTG TTT	107
Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe -20 -15 -10 -5	
TTG TTG AGT GCC TGT CTG GGC GGC GGC AGT TTC GAT CTT GAT TCT Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser 1 5	155
GTC GAT ACC GAA GCC CCG CGT CCC GCG CCA AAG TAT CAA GAT GTT TCT Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser 15 20 25	203
TCC GAA AAA CCG CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala 30 35 40	251
ATG AGG TTG AAA CGG AGG AAT TGG TAT CCG GGG GCA GAA GAA AGC GAG Met Arg Leu Lys Arg Arg Asn Trp Tyr Pro Gly Ala Glu Glu Ser Glu 45 50 55 60	299
GTT AAA CTG AAC GAG AGT GAT TGG GAG GCG ACG GGA TTG CCG ACA AAA Val Lys Leu Asn Glu Ser Asp Trp Glu Ala Thr Gly Leu Pro Thr Lys 65 70 75	347
CCC AAG GAA CTT CCT AAA CGG CAA AAA TCG GTT ATT GAA AAA GTA GAA Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu 80 85 90	395
ACA GAC GGC GAC AGC GAT ATT TAT TCT TCC CCC TAT CTC ACA CCA TCA Thr Asp Gly Asp Ser Asp Ile Tyr Ser Ser Pro Tyr Leu Thr Pro Ser 95 100 105	443
AAC CAT CAA AAC GGC AGC GCT GGC AAC GGT GTA AAT CAA CCT AAA AAT Asn His Gln Asn Gly Ser Ala Gly Asn Gly Val Asn Gln Pro Lys Asn 110 115 120	491
CAG GCA ACA GGT CAC GAA AAT TTC CAA TAT GTT TAT TCC GGT TGG TTT Gln Ala Thr Gly His Glu Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe 125	539
TAT AAA CAT GCA GCG AGT GAA AAA GAT TTC AGT AAC AAA AAA ATT AAG Tyr Lys His Ala Ala Ser Glu Lys Asp Phe Ser Asn Lys Lys Ile Lys 145 150	587
TCA GGC GAC GAT GGT TAT ATC TTC TAT CAC GGT GAA AAA CCT TCC CGA Ser Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg 160 165 170	635
CAA CTT CCT GCT TCT GGA AAA GTT ATC TAC AAA GGT GTG TGG CAT TTT Gln Leu Pro Ala Ser Gly Lys Val Ile Tyr Lys Gly Val Trp His Phe 175 180 185	683

GTA Val	ACC Thr 190	GAT Asp	ACA Thr	AAA Lys	AAG Lys	GGT Gly 195	CAA Gln	GAT Asp	TTT Phe	CGT Arg	GAA Glu 200	ATT Ile	ATC Ile	CAG Gln	CCT Pro	731
TCA Ser 205	AAA Lys	AAA Lys	CAA Gln	GGC Gly	GAC Asp 210	AGG Arg	TAT Tyr	AGC Ser	GGA Gly	TTT Phe 215	TCT Ser	GGT Gly	GAT Asp	GGC GLy	AGC Ser 220	779
GAA Glu	GAA Glu	TAT Tyr	TCC Ser	AAC Asn 225	AAA Lys	AAC Asn	GAA Glu	TCC Ser	ACG Thr 230	CTG Leu	AAA Lys	GAT Asp	GAT Asp	CAC His 235	GAG Glu	827
GGT Gly	TAT Tyr	GGT Gly	TTT Phe 240	ACC Thr	TCG Ser	AAT Asn	TTA Leu	GAA Glu 245	GTG Val	GAT Asp	TTC Phe	GGC Gly	AAT Asn 250	AAG Lys	AAA Lys	875
TTG Leu	ACG Thr	GGT Gly 255	AAA Lys	TTA Leu	ATA Ile	CGC Arg	AAT Asn 260	AAT Asn	GCG Ala	AGC Ser	CTA Leu	AAT Asn 265	AAT Asn	AAT Asn	ACT Thr	923
AAT Asn	AAT Asn 270	GAC Asp	AAA Lys	CAT His	ACC Thr	ACC Thr 275	CAA Gln	TAC Tyr	TAC Tyr	AGC Ser	CTT Leu 280	GAT Asp	GCA Ala	CAA Gln	ATA Ile	971
ACA Thr 285	Gly	AAC Asn	CGC Arg	TTC Phe	AAC Asn 290	Gly	ACG Thr	GCA Ala	ACG Thr	GCA Ala 295	ACT Thr	GAC Asp	AAA Lys	AAA Lys	GAG Glu 300	1019
AAT Asn	GAA Glu	ACC Thr	AAA Lys	CTA Leu 305	His	CCC Pro	TTT Phe	GTT Val	TCC Ser 310	GAC Asp	TCG Ser	TCT Ser	TCT Ser	TTG Leu 315	AGC Ser	1067
GGC	GGC Gly	TTT Phe	TTC Phe 320	Gly	CCG Pro	CAG Gln	GGT Gly	GAG Glu 325	Glu	TTG Leu	GGT Gly	TTC Phe	CGC Arg 330	TTT Phe	TTG Leu	1115
AGC Ser	GAC Asp	GAT Asp 335	Gln	AAA Lys	GTT Val	GCC Ala	GTT Val 340	Val	GGC Gly	AGC Ser	GCG Ala	AAA Lys 345	The	AAA Lys	GAC Asp	1163
AAA Lys	CTG Leu 350	Glu	AAT Asn	GGC Gly	GCG Ala	GCG Ala 355	Ala	TCA Ser	GGC Gly	AGC Ser	Thr 360	: GIA	GCG Ala	GCA Ala	GCA Ala	1211
TCG Ser 365	Gly	GGI Gly	GCG Ala	GCA Ala	GGC Gly 370	Thr	TCG	TCT Ser	GAA	AAC Asn 375	Sei	Lys	CTG Leu	ACC	ACG Thr 380	1259
GT'I Val	TTC Lev	GAT Asp	GCG Ala	GTT Val 385	. Glu	TTG Leu	ACA Thi	CTA	AAC Asr 390	Asp	AAC Lys	F AAA B Lys	ATC Ile	Lys 395	AAT Asn	1307
CT(Lev	GAC 1 Asp	AA C Ası	TTC n Phe 400	Se i	AAT Ası	GCC n Ala	GC0	C CAA a Glr 405	ı Lei	GT1	GT(C GAC l Asp	GGC Gly 410	TTe	T ATG Met	1355
AT'	CCC Pro	G CTO Lev 41	ı Lev	G CCC	C AAG b Lys	GAT B Asp	TC0 Sei 420	r Glu	A AGO	GGG Gly	AA Y Asi	C ACT	GII	GC/	A GAT a Asp	1403
AA: Ly:	A GG s Gl 43	y Ly	A AA(s Ası	C GGG	C GG/ y Gl	A ACA y Thi 435	c Gl	A TT	r ACC e Th	C CGG	E AA g Ly 44	s Pne	r GAÆ ≘ Glu	A CAG	C ACG s Thr	1451

CCG Pro 445	GAA Glu	AGT Ser	GAT Asp	AAA Lys	AAA Lys 450	GAC Asp	GCC Ala	CAA Gln	GCA Ala	GGT Gly 455	ACG Thr	CAG Gln	ACG Thr	AAT Asn	GGG Gly 460	1499
GCG Ala	CAA Gln	ACC Thr	GCT Ala	TCA Ser 465	AAT Asn	ACG Thr	GCA Ala	GGT Gly	GAT Asp 470	ACC Thr	AAT Asn	GGC	AAA Lys	ACA Thr 475	AAA Lys	1547
ACC Thr	TAT Tyr	GAA Glu	GTC Val 480	GAA Glu	GTC Val	TGC Cys	TGT Cys	TCC Ser 485	AAC Asn	CTC Leu	AAT Asn	TAT Tyr	CTG Leu 490	AAA Lys	TAC Tyr	1595
GGA Gly	ATG Met	TTG Leu 495	ACG Thr	CGC Arg	AAA Lys	AAC Asn	AGC Ser 500	AAG Lys	TCC Ser	GCG Ala	ATG Met	CAG Gln 505	GCA Ala	GGA Gly	GGA Gly	1643
AAC Asn	AGT Ser 510	AGT Ser	CAA Gln	GCT Ala	GAT Asp	GCT Ala 515	AAA Lys	ACG Thr	GAA Glu	CAA Gln	GTT Val 520	GAA Glu	CAA Gln	AGT Ser	ATG Met	1691
TTC Phe 525	CTC Leu	CAA Gln	GGC Gly	GAG Glu	CGT Arg 530	ACC Thr	GAT Asp	GAA Glu	AAA Lys	GAG Glu 535	ATT Ile	CCA Pro	ACC	GAC Asp	CAA Gln 540	1739
AAC Asn	GTC Val	GTT Val	TAT Tyr	CGG Arg 545	Gly	TCT Ser	TGG Trp	TAC Tyr	GGG Gly 550	UTR	ATT	GCC	AAC Asn	GGC Gly 555	ACA	1787
AGC Ser	TGG Trp	AGC Ser	GGC Gly 560	Asn	GCT Ala	TCT Ser	GAT Asp	AAA Lys 565	GLU	GGC Gly	GGC	AAC Asr	AGG Arg 570	, ,,,,,,,	GAA Glu	1835
TTT Phe	ACT Thr	GTG Val	Asn	TTI Phe	GCC Ala	GAT Asp	AAA Lys 580	гЛa	ATT	ACC Thr	GGC Gly	AAC Lys 585		ACC Thi	GCT Ala	1883
GAA Glu	AAC Asn 590	Arg	G CAG	GCG Ala	G CAP	ACC Thr 595	: Phe	ACC Thi	C ATT	GAG Glu	GGA Gly 600	Me	ATT	CAC Gli	G GGC	1931
AAC Asn 605	Gly	TTT Phe	GA/	A GGT	T ACC y Thi 610	: Ala	AAA Lys	A ACT	r GCT	GAG Glu 615	1 261	A GG'	r TT	r GA' e As	r CTC p Leu 620	1979
GAT Asp	CA/	A AA/	A AA' s Asi	r ACC n Th	r Th	C CGC	Thi	G CC'	T AAG o Ly: 63	s wre	А ТАЗ а Ту	r AT	C AC	A GA' r As 63	T GCC p Ala 5	2027
AAC Lys	GTA Val	A AA	G GG s Gl 64	y Gl	T TT' y Ph	TAC E Ty	C GGG	G CC y Pr 64	о гА	A GCO s Ala	C GAM	A GA u Gl	G TT u Le 65		C GGA y Gly	2075
TG(Tr	TT' Ph	T GC e Al 65	а Ту	T CC r Pr	G GG o Gl	C GA y As	T AA p Ly 66	S GI	A AC n Th	G GA	A AA u Ly	G GC s Al 66	<u> </u>	A GC	T ACA a Thr	2123
TC Se	C AG r Se 67	r As	T GG p Gl	A AA y As	T TC n Se	A GC r Al 67	a Se	C AG	c GC r Al	G AC	C GT r Va 68	T 40	A TI	C GG e Gl	T GCG y Ala	2171
AA Ly 68	s Ar	C CA	A CA n Gl	G CC	T GT o Va 69	1 GI	A TA n	AGCA	ACGGT	TGC	CGAA	CAA	TCA	\GAA1	AA	2222

GGCTTCAG 2230

- (2) INFORMATION POUR LA SEQ ID NO: 2:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 711 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: protéine
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe
-20 -15 -10 -5

Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser 1 5 10

Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser 15 20 25

Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala 30 40

Met Arg Leu Lys Arg Arg Asn Trp Tyr Pro Gly Ala Glu Glu Ser Glu 45 50 55 60

Val Lys Leu Asn Glu Ser Asp Trp Glu Ala Thr Gly Leu Pro Thr Lys 65 70 75

Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu 80 85 90

Thr Asp Gly Asp Ser Asp Ile Tyr Ser Ser Pro Tyr Leu Thr Pro Ser 95 100 105

Asn His Gln Asn Gly Ser Ala Gly Asn Gly Val Asn Gln Pro Lys Asn 110 115 120

Gln Ala Thr Gly His Glu Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe 125 130 135 140

Tyr Lys His Ala Ala Ser Glu Lys Asp Phe Ser Asn Lys Lys Ile Lys 145 150 150

Ser Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg 160 165 170

Gln Leu Pro Ala Ser Gly Lys Val Ile Tyr Lys Gly Val Trp His Phe 175 180 185

Val Thr Asp Thr Lys Lys Gly Gln Asp Phe Arg Glu Ile Ile Gln Pro 190 195 200

Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Gly Ser 205 210 215

Glu Glu Tyr Ser Asn Lys Asn Glu Ser Thr Leu Lys Asp Asp His Glu 225 230 235

Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Asn Lys Lys 245 240 Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Ser Leu Asn Asn Asn Thr 260 Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile 275 Thr Gly Asn Arg Phe Asn Gly Thr Ala Thr Ala Thr Asp Lys Lys Glu Asn Glu Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser 310 Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asp Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp Lys Leu Glu Asn Gly Ala Ala Ala Ser Gly Ser Thr Gly Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn 390 Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr Gln Ala Asp 420 Lys Gly Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly 450 Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr 485 Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly 500 Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Thr Asp Gln 535 Asn Val Val Tyr Arg Gly Ser Trp Tyr Gly His Ile Ala Asn Gly Thr Ser Trp Ser Gly Asn Ala Ser Asp Lys Glu Gly Gly Asn Arg Ala Glu

565

560

Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr Gly Lys Leu Thr Ala 575 580 585

Glu Asn Arg Gln Ala Gln Thr Phe Thr Ile Glu Gly Met Ile Gln Gly 590 595 600

Asn Gly Phe Glu Gly Thr Ala Lys Thr Ala Glu Ser Gly Phe Asp Leu 605 610 615 620

Asp Gln Lys Asn Thr Thr Arg Thr Pro Lys Ala Tyr Ile Thr Asp Ala 625 630 635

Lys Val Lys Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly 640 645

Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Glu Lys Ala Thr Ala Thr 655 660 665

Ser Ser Asp Gly Asn Ser Ala Ser Ser Ala Thr Val Val Phe Gly Ala 670 675 680

Lys Arg Gln Gln Pro Val Gln 685 690

(2) INFORMATION POUR LA SEQ ID NO: 3:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 1808 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: IM2394
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: sig_peptide
 - (B) EMPLACEMENT: 1..60
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: mat_peptide
 - (B) EMPLACEMENT: 61..1797
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..1797
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 61..1035
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 1036..1386
- (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 1387..1797
- (ix) CARACTERISTIQUE ADDITIONELLE:

(A) NOM/CLE: misc_binding (B) EMPLACEMENT: 46..1050

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:

	(XI)						_									
ATG Met -20	AAC Asn	AAT Asn	CCA Pro	TTG Leu	GTA Val -15	AAT Asn	CAG Gln	GCT Ala	GCT Ala	ATG Met -10	GTG Val	CTG Leu	Pro	GTG Val	TTT Phe -5	48
TTG Leu	TTG Leu	AGT Ser	GCT Ala	TGT Cys 1	CTG Leu	GGT Gly	GGC Gly	GGC Gly 5	GGC Gly	AGT Ser	TTC Phe	GAT Asp	TTG Leu 10	GAC Asp	AGC Ser	96
GTG Val	GAA Glu	ACC Thr 15	GTG Val	CAA Gln	GAT Asp	ATG Met	CAC His 20	TCC Ser	AAA Lys	CCT Pro	AAG Lys	TAT Tyr 25	GAG Glu	GAT Asp	GAA Glu	144
AAA Lys	AGC Ser 30	CAG Gln	CCT Pro	GAA Glu	AGC Ser	CAA Gln 35	CAG Gln	GAT Asp	GTA Val	TCG Ser	GAA Glu 40	AAC Asn	AGC Ser	GGC Gly	GCG Ala	192
GCT Ala 45	Tyr	GGC Gly	TTT Phe	GCA Ala	GTA Val 50	AAA Lys	CTA Leu	CCT Pro	CGC Arg	CGG Arg 55	AAT Asn	GCA Ala	CAT His	TTT Phe	AAT Asn 60	240
CCT Pro	AAA Lys	TAT Tyr	AAG Lys	GAA Glu 65	Lys	CAC His	AAA Lys	CCA Pro	TTG Leu 70	GGT Gly	TCA Ser	ATG Met	GAT Asp	TGG Trp 75	AAA Lys	288
AAA Lys	CTG Leu	CAA Gln	AGA Arg	Gly	GAA Glu	CCA Pro	TAA Asn	AGT Ser 85	rne	AGT Ser	GAG Glu	AGG Arg	GAT Asp 90		TTG Leu	336
GAA Glu	AAA Lys	AAA Lys	Arg	GGT Gly	AGT Ser	TCT Ser	GAA Glu 100	Leu	ATT	GAA Glu	TCA Ser	AAA Lys 105		GAA Glu	GAT Asp	384
GGG Gly	CAP Glr	Sei	r CGT	r GTA y Val	GTT Val	GGT Gly 115	туг	ACA Thr	AAT Asn	TTC Phe	ACT Thr	y-	GTC Val	CGT	TCG Ser	432
GG# Gly 125	Ty	GT:	r TAC l Ty	C CTI	AAT Asr 130	Lys	AA Z Asr	AAT Asi	T ATT	GAT Asp 135	, 114	r AAG e Lys	AAT Asi	AA! Ası	T ATA 1 Ile 140	480
		r TT'	r GG e Gl	A CCT y Pro	o Asp	GGA Gly	TA:	r CT	TAC u Ty:	LIA	r AAi c Ly:	A GGG	AA Y Ly:	A GAN	A CCT u Pro 5	528
TC Se	C AAG	G GA s Gl	G CT u Le 16	u Pro	A TCC	G GA/	A AA	G AT	e 111.	TAT	r AA r Ly	A GG' s Gl	r AC y Th 17		G GAT p Asp	576
TA Ty	T GT r Va	T AC 1 Th 17	r As	T GC p Al	T ATO	G GA	A AA u Ly 18	s GI	A AG n Ar	G TT'	T GA e Gl	A GG. u Gl 18	, 20	G GG u Gl	T AGT y Ser	624
GC Al	A GC a Al 19	a Gl	A GG .y Gl	A GA y As	T AA p Ly	A TC s Se 19	r Gl	g gc y Al	G TT a Le	G TC u Se	T GC r Al 20	a DC	A GA u Gl	A GA u Gl	A GGG u Gly	672
GT Va 20	l Le	G CG	ST AF	AT CA	G GC n Al 21	a GI	G GC u Al	A TC	A TC	C GG r Gl 21	A	T AC	C GA	T TI	T GGT Le Gly 220	

Met	ACT Thr	Ser	Glu	Phe 225	Glu	Val	Asp	Pne	230	ASP .	гуз	1111	116	235	017	768
ACA Thr	CTT Leu	TAT Tyr	CGT Arg 240	AAC Asn	AAC Asn	CGT Arg	ATT Ile	ACT Thr 245	CAA Gln	AAT . Asn .	AAT Asn	AGT Ser	GAA Glu 250	AAC Asn	AAA Lys	816
CAA Gln	ATA Ile	AAA Lys 255	ACT Thr	ACG Thr	CGT Arg	TAC Tyr	ACC Thr 260	ATT Ile	CAA Gln	GCA Ala	ACT Thr	CTT Leu 265	CAC His	GGC Gly	AAC Asn	864
CGT Arg	TTC Phe 270	AAA Lys	GGT Gly	AAG Lys	GCG Ala	TTG Leu 275	GCG Ala	GCA Ala	GAT Asp	AAA Lys	GGT Gly 280	GCA Ala	ACA Thr	AAT Asn	GGA Gly	912
AGT Ser 285	CAT His	CCC Pro	TTT Phe	ATT Ile	TCC Ser 290	GAC Asp	TCC Ser	GAC Asp	AGT Ser	TTG Leu 295	GAA Glu	GGC Gly	GGA Gly	TTT Phe	TAC Tyr 300	960
GGG Gly	CCG Pro	AAA Lys	GGC Gly	GAG Glu 305	GAA Glu	CTT Leu	GCC Ala	GGT Gly	AAA Lys 310	TTC Phe	TTG Leu	AGC Ser	AAC Asn	GAC Asp 315		1008
AAA Lys	GTT Val	GCA Ala	GCG Ala 320	GTG Val	TTT Phe	GGT Gly	GCG Ala	AAG Lys 325	GIN	AAA Lys	GAT Asp	AAG Lys	AAG Lys 330	Y.O.D	GGG Gly	1056
GAA Glu	AAC Asn	GCG Ala 335	Ala	GGG Gly	CCT Pro	GCA Ala	ACG Thr 340	GIU	ACC Thr	GTG Val	ATA Ile	GAT Asp 345	, ALG	TAC Tyr	CGT	1104
ATT Ile	ACC Thr	Gly	GAG Glu	GAG Glu	TTT Phe	AAG Lys 355	Lys	GAG Glu	CAA Gln	ATA	GAC Asp 360	Ser	TTT Phe	GGA Gly	GAT Asp	1152
GT0 Val 365	Lys	AAG Lys	CTG Leu	CTG Lev	GTT Val 370	Asp	GGA Gly	GTG Val	GAG Glu	CTT Leu 375	Ser	CTC Leu	CTC	CCC Pro	S TCT Ser 380	1200
GA(GG(CAA: Asi	AAG Lys	GCG Ala	ı Ala	TTI Phe	CAG Glr	CAC His	GAG Glu 390	TTE	GAC	G CA/	A AA(n Ası	39	C GTG y Val 5	1248
AAG Ly:	G GC/ s Ala	A ACC	G GT G r Val	Cys	r TGI s Cys	TCC Sei	AA C	TTC Lev 40	n wat	TAC Tyr	ATC	G AG' t Se	r TT' r Pho 41		G AAG y Lys	1296
CT(Le	G TC	A AAA r Ly: 41	s Glu	AA A	r AA/ n Ly:	A GA(GAS As 42	p we	G TTO	C CTO	G CA	A GG n Gl 42	,	C CG 1 Ar	C ACT g Thr	1344
CC. Pr	A GT. o Va 43	l Se	C GA' r Ası	r GT p Va	G GCO	G GC a Ala 43	a Ar	G AC g Th	G GAG	G GC/ u Ala	A AA a As 44		C AA a Ly	A TA s Ty	T CGC	1392
GG G1 44	y Th	T TG r Tr	G TA	C GG r Gl	A TA' y Ty 45	r II	T GC e Al	C AA a As	C GG n Gl	C ACA y Th: 45		C TG	G AG	C GG	C GAA y Glu 460	1440
GC Al	C TC a Se	C AA r As	T CA n Gl	G GA n Gl 46	u Gl	T GG y Gl	T AA y As	T AG n Ar	G GC g Al 47	a GI	G TT u Ph	T GA	C GI sp Va	G GA 1 As 47	AT TTT sp Pho 75	r 1488 e

TCC Ser	ACT - Thr	AAA Lys	AAA Lys 480	ATC Ile	AGT Ser	GGC Gly	ACA Thr	CTG Leu 485	ACG Thr	GCA Ala	AAA Lys	GAC Asp	CGT Arg 490	ACG Thr	TCT Ser	,	1536
CCT Pro	GCG Ala	TTT Phe 495	ACT Thr	ATT Ile	ACT Thr	GCC Ala	ATG Met 500	ATT Ile	AAG Lys	GAC Asp	AAC Asn	GGT Gly 505	TTT Phe	TCA Ser	GGT Gly		1584
GTG Val	GCG Ala 510	AAA Lys	ACC ¹	GGT Gly	GAA Glu	AAC Asn 515	GGC Gly	TTT Phe	GCG Ala	CTG Leu	GAT Asp 520	CCG Pro	CAA Gln	AAT Asn	ACC Thr		1632
GGA Gly 525	AAT Asn	TCC Ser	CAC His	TAT Tyr	ACG Thr 530	CAT His	ATT Ile	GAA Glu	GCC Ala	ACT Thr 535	GTA Val	TCC Ser	GGC Gly	GGT Gly	TTC Phe 540		1680
TAC Tyr	GGC Gly	AAA Lys	AAC Asn	GCC Ala 545	Ile	GAG Glu	ATG Met	GGC Gly	GGA Gly 550	Ser	TTC Phe	TCA Ser	TTT Phe	CCG Pro 555	GGA Gly		1728
AAT Asn	GCA Ala	CCA Pro	GAG Glu 560	Gly	AAA Lys	CAA Gln	GAA Glu	AAA Lys 565	ALA	TCG Ser	GTG Val	GTA Val	TTC Phe 570	O- 1	GCG Ala		1776
AAA Lys	CGC Arg	CAA Gln 575	Gln	CTT Leu	GTG Val	CAA Gln	TAA	GCAC	GGC	T .				-		-	1808

(2) INFORMATION POUR LA SEQ ID NO: 4:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 599 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:

Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe

Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser 10

Val Glu Thr Val Gln Asp Met His Ser Lys Pro Lys Tyr Glu Asp Glu 15 20 25

Lys Ser Gln Pro Glu Ser Gln Gln Asp Val Ser Glu Asn Ser Gly Ala

Ala Tyr Gly Phe Ala Val Lys Leu Pro Arg Arg Asn Ala His Phe Asn 45 50 55 60

Pro Lys Tyr Lys Glu Lys His Lys Pro Leu Gly Ser Met Asp Trp Lys 65 70 75

Lys Leu Gln Arg Gly Glu Pro Asn Ser Phe Ser Glu Arg Asp Glu Leu 80 85 90

Glu Lys Lys Arg Gly Ser Ser Glu Leu Ile Glu Ser Lys Trp Glu Asp 95 100 105 Gly Gln Ser Arg Val Val Gly Tyr Thr Asn Phe Thr Tyr Val Arg Ser Gly Tyr Val Tyr Leu Asn Lys Asn Asn Ile Asp Ile Lys Asn Asn Ile Val Leu Phe Gly Pro Asp Gly Tyr Leu Tyr Tyr Lys Gly Lys Glu Pro 150 Ser Lys Glu Leu Pro Ser Glu Lys Ile Thr Tyr Lys Gly Thr Trp Asp Tyr Val Thr Asp Ala Met Glu Lys Gln Arg Phe Glu Gly Leu Gly Ser Ala Ala Gly Gly Asp Lys Ser Gly Ala Leu Ser Ala Leu Glu Glu Gly 200 Val Leu Arg Asn Gln Ala Glu Ala Ser Ser Gly His Thr Asp Phe Gly Met Thr Ser Glu Phe Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly Thr Leu Tyr Arg Asn Asn Arg Ile Thr Gln Asn Asn Ser Glu Asn Lys Gln Ile Lys Thr Thr Arg Tyr Thr Ile Gln Ala Thr Leu His Gly Asn 260 Arg Phe Lys Gly Lys Ala Leu Ala Ala Asp Lys Gly Ala Thr Asn Gly Ser His Pro Phe Ile Ser Asp Ser Asp Ser Leu Glu Gly Phe Tyr 285 Gly Pro Lys Gly Glu Glu Leu Ala Gly Lys Phe Leu Ser Asn Asp Asn 310 Lys Val Ala Ala Val Phe Gly Ala Lys Gln Lys Asp Lys Asp Gly Glu Asn Ala Ala Gly Pro Ala Thr Glu Thr Val Ile Asp Ala Tyr Arg Ile Thr Gly Glu Glu Phe Lys Lys Glu Gln Ile Asp Ser Phe Gly Asp Val Lys Lys Leu Leu Val Asp Gly Val Glu Leu Ser Leu Leu Pro Ser Glu Gly Asn Lys Ala Ala Phe Gln His Glu Ile Glu Gln Asn Gly Val 390 Lys Ala Thr Val Cys Cys Ser Asn Leu Asp Tyr Met Ser Phe Gly Lys 405 Leu Ser Lys Glu Asn Lys Asp Asp Met Phe Leu Gln Gly Val Arg Thr 420 Pro Val Ser Asp Val Ala Ala Arg Thr Glu Ala Asn Ala Lys Tyr Arg 430

Gly Thr Trp Tyr Gly Tyr Ile Ala Asn Gly Thr Ser Trp Ser Gly Glu 445 Ala Ser Asn Gln Glu Gly Gly Asn Arg Ala Glu Phe Asp Val Asp Phe Ser Thr Lys Lys Ile Ser Gly Thr Leu Thr Ala Lys Asp Arg Thr Ser Pro Ala Phe Thr Ile Thr Ala Met Ile Lys Asp Asn Gly Phe Ser Gly 505 Val Ala Lys Thr Gly Glu Asn Gly Phe Ala Leu Asp Pro Gln Asn Thr Gly Asn Ser His Tyr Thr His Ile Glu Ala Thr Val Ser Gly Gly Phe 530 525 Tyr Gly Lys Asn Ala Ile Glu Met Gly Gly Ser Phe Ser Phe Pro Gly 550 Asn Ala Pro Glu Gly Lys Gln Glu Lys Ala Ser Val Val Phe Gly Ala Lys Arg Gln Gln Leu Val Gln 575 (2) INFORMATION POUR LA SEQ ID NO: 5: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 2255 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (génomique) (vi) ORIGINE: (A) ORGANISME: N. meningitidis (B) SOUCHE: M978 (ix) CARACTERISTIQUE ADDITIONELLE: (A) NOM/CLE: mat_peptide (B) EMPLACEMENT: 1..2115 (ix) CARACTERISTIQUE ADDITIONELLE: (A) NOM/CLE: CDS (B) EMPLACEMENT: 1..2115 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5: TGT CTG GGT GGC GGC ACG TTC GAT CTT GAT TCT GTC GAT ACC GAA 48 Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu GCC CCG CGT CCC GCC CCA AAA TAT CAA GAT GTT TCT TCC GAA AAA CCG 96 Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro 20 CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCA ATG CGC CTC AAG 144 Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys 35

CGG Arg	CGG Arg 50	AAT Asn	TGG Trp	CAT His	CCG Pro	CAG Gln 55	GCA Ala	AAT Asn	CCT Pro	AAA Lys	GAA Glu 60	GAT Asp	GAG Glu	ATA Ile	AAA Lys	192
CTT Leu 65	TCT Ser	GAA Glu	AAT Asn	GAT Asp	TGG Trp 70	GAG Glu	GCG Ala	ACA Thr	GGA Gly	TTG Leu 75	CCA Pro	GGC Gly	AAT Asn	CCC Pro	AAA Lys 80	240
AAC Asn	TTA Leu	CCT Pro	GAG Glu	CGA Arg 85	CAG Gln	AAA Lys	TCG Ser	GTT Val	ATT Ile 90	GAA Glu	AAA Lys	GTA Val	AAA Lys	ACA Thr 95	GGC Gly	288
AGC Ser	GAC Asp	AGC Ser	AAT Asn 100	ATT Ile	TAT Tyr	TCT Ser	TCC Ser	CCC Pro 105	TAT Tyr	CTC Leu	ACG Thr	CAA Gln	TCA Ser 110	AAC Asn	CAT His	336
CAA Gln	AAC Asn	GGC Gly 115	AGT Ser	GCA Ala	AAC Asn	CAA Gln	CCA Pro 120	AAA Lys	AAT Asn	GAA Glu	GTA Val	AAA Lys 125	GAT Asp	TAT Tyr	AAA Lys	384
GAG Glu	TTC Phe 130	Lys	TAT Tyr	GTT Val	TAT Tyr	TCC Ser 135	GGT Gly	TGG Trp	TTT Phe	TAC Tyr	AAA Lys 140	CAC His	GCT Ala	AAA Lys	CTC Leu	432
GAA Glu 145	Ile	ATA Ile	AAA Lys	GAA Glu	AAC Asn 150	AAC Asn	TTA Leu	ATT	AAG Lys	GGT Gly 155	GCA Ala	AAG Lys	AGC Ser	GGC	GAC Asp 160	480
GAC Asp	GGT Gly	TAT Tyr	ATC Ile	TTT Phe 165	TAT Tyr	CAC His	GGT Gly	GAA Glu	AAA Lys 170	Pro	TCC Ser	CGA Arg	CAA Gln	CTT Leu 175	PLO	528
GTT Val	TCT Ser	GGA Gly	GAA Glu 180	GTT Val	ACC Thr	TAC Tyr	AAA Lys	GGC Gly 185	Val	TGG Trp	CAT His	TTT Phe	GTA Val 190	ACC	GAT Asp	576
ACG Thr	AAA Lys	CAG Gln 195	Gly	CAA Gln	AAA Lys	TTT Phe	AAC Asn 200	Asp	ATT	CTT Leu	GGA Gly	ACC Thr 205	Ser	AAA Lys	AAA Lys	624
CAA Gln	GGC Gly 210	Asp	AGG Arg	TAT	AGC Ser	GGA Gly 215	Phe	CCG Pro	GGT Gly	GAT Asp	GAC Asp 220	CT3	GAA Glu	GAA Glu	TAT Tyr	672
TCC Ser 225	: Asr	AA/	A AAT s Asn	GAA Glu	GCG Ala 230	Thr	TTA Lev	A CAP	GGC	AGT Ser 235	GII	A GAG n Glu	GGT Gly	TAT	GGT Gly 240	720
TTI Phe	ACC Thi	TC/	A AAT r Asr	TTA Lev 245	ı Lys	GTG Val	GAT Asp	r TTC p Phe	250	r PA:	AAI Ly:	A AAA	TTC Lev	ACC Thi 25	G GGT Gly	768
GA/ Gl	A TT(ATA	A CGC e Arg 260	J Asi	TAAT Asr	AGA	A GTT J Val	r ACA 1 Thi 26	r Ası	GCT Ala	r AC'	r GC	7 AAC a Asr 270	ı Ası	r AAA p Lys	816
TAC Ty:	C ACC	C AC	r Gli	A TAT	TAC	AGC Se	CT' Let 28	u Gl	G GC	r CAI	A GT. n Va	A AC 1 Th 28	r GI	AA As:	c CGC n Arg	864
TT(Ph	c AA e As 29	n Gl	C AAG y Ly:	G GCA	A ACC	G GC/ c Ala 29	a Th	C GA	C AA	A CC' s Pr	r GG o Gl 30	y In	r GG r Gl	A GA y Gl	A ACC u Thr	912

								•	- 44 -	•								
AAA Lys 305	CAA Gln	CAT His	CCC Pro	TTT Phe	GTT Val 310	TCC Ser	GAC Asp	TCG Ser	TCT Ser	TCT Ser 315	TTG Leu	A(GC (GGC Gly	GG(G1 ₃		TT he 20	960
	GGC Gly	CCG Pro	AAG Lys	GGT Gly 325	GAG Glu	GAA Glu	TTG Leu	GGT Gly	TTC Phe 330	CGC Arg	TTI Phe	T T	TG i	AGC Ser	AAG Asi 33	-	AT Asp	1008
CAA Gln	AAA Lys	GTT Val	GCC Ala 340	GTT Val	GTC Val	GGC Gly	AGC Ser	GCG Ala 345	AAA Lys	ACC Thr	CA/ Glr	A G	P	AAA Lys 350	GC:	C G a F	CA la	1056
AAT Asn	GGC Gly	AAT Asn 355	ACT Thr	GCG Ala	GCG Ala	GCT Ala	TCA Ser 360	GGC Gly	GGC Gly	ACA Thr	GA:		CG la 65	GCA Ala	GC Al	A ?	rca Ser	1104
AAC Asn	GGT Gly 370	Ala	GCA Ala	GGC Gly	ACG Thr	TCG Ser 375	TCT Ser	GAA Glu	AAC Asn	AGT Ser	AA Ly 38	-	TG .eu	ACC Thr	AC Th	G (GTT Val	1152
TTG Leu 385	GAT Asp	GCG Ala	GTT Val	GAA Glu	TTG Leu 390	Thr	CTA Leu	AAC Asn	GAC Asp	AAG Lys 395	ע בי	A A	ATC []e	AAA Lys	AA As	n	CTC Leu 400	1200
GAC Asp	AAC Asn	TTC Phe	AGC Ser	AAT Asn 405	Ala	GCC	CAA Gln	CTG Leu	GT1 Val 410	. val	C GA L As	p (GGC Gly	ATT Ile	' AT ' Me 41	t L5	ATT Ile	1248
CCC	CTC	CTG Leu	CCC Pro 420	Glu	ACT Thr	TCC Ser	GAA Glu	AGT Ser 425	GI	AGC Sei	C AA	T (CAG Gln	GCA Ala 430		T/ SP	AAA Lys	1296
GG!	r AAA Y Lys	AAA Lys 435	Gly	AAA Lys	AAQ S Asi	GGT Gly	AAA Lys 440	AST	GGG Gly	C GG Y Gl	A AC	•-	GAC Asp 445	TT?	T A	CC hr	TAC Tyr	1344
Ly	A ACA s Thi	Thi	с Туз	c Thi	r Pro	459	a Asi	ı ASI	, אם	צם ק	4(50					•	1392
Th 46		y Ala	a Ala	a Gl	y Se 47	r Se: 0	r GI	y AI	a Gi	47	5	Jp				•	480	1440
GA As	C GT p Va	r AAG 1 Asi	c GG n Gl	C GG y Gl 48	ÃГΆ	G GC s Al	A GA a Gl	A AC u Th	A AA r Ly 49	3 III	C T.	AT yr	GAA Glu	GT Va	C G 1 G 4	AA 1u 195	GTC Val	1488
Cy	s Cy	s Se	r As 50	n Le O	u As	n Ty	r Le	u Ly 50	5 Ty	r Gi	Ly M		Det	51	.0	9	AAA Lys	1536
As	n Se	r Ly 51	s Se 5	r Al	a Me	et GI	n A1	a G1	y G	Ly A.	311 ~		52	5			GAT Asp	1584
A.	la Ly 53	s Th	r Gl	.u GJ	ln Va	53	.u G. 35	.n se	el M	SC I		540			•		G CGT	1632
T	CC G/ hr A: 45	AT GA	A A/Lu Ly	AA GA Ys G	lu I.	TT CO le Pi 50	CA A/ co A:	AC G/	AC C	TII W	AC (sn ' 55	STC Val	GT Va	T T	AT yr	CG(Ar	G GGG G Gly 560	1680

TCT Ser	TGG Trp	TAC Tyr	GGG Gly	CAT His 565	ATT Ile	GCC Ala	AGC Ser	AGC Ser	ACA Thr 570	AGC Ser	TGG Trp	AGC Ser	GGC Gly	AAT Asn 575	GCT Ala	1728
TCC Ser	AAT Asn	GCA Ala	ACG Thr 580	AGT Ser	GGC Gly	AAC Asn	AGG Arg	GCG Ala 585	GAA Glu	TTT Phe	ACT Thr	GTG Val	AAT Asn 590	TTC Phe	GAT Asp	1776
ACG Thr	AAA Lys	AAA Lys 595	ATT .Ile	AAC Asn	GGC Gly	ACG Thr	TTA Leu 600	ACC Thr	GCT Ala	GAA Glu	AAC Asn	AGG Arg 605	CAG Gln	GAG Glu	GCA Ala	1824
ACC Thr	TTT Phe 610	ACC Thr	ATT Ile	GAT Asp	GGT Gly	AAG Lys 615	ATT Ile	GAG Glu	GGC Gly	AAC Asn	GGT Gly 620	TTT Phe	TCC Ser	GGT Gly	ACG Thr	1872
GCA Ala 625	AAA Lys	ACT Thr	GCT Ala	GAC Asp	TTA Leu 630	GGT Gly	TTT Phe	GAT Asp	CTC Leu	GAT Asp 635	CAA Gln	AGC Ser	AAT Asn	ACC Thr	ACC Thr 640	1920
GGC Gly	ACG Thr	CCT Pro	AAG Lys	GCA Ala 645	TAT Tyr	ATC Ile	ACA Thr	GAT Asp	GCC Ala 650	Lys	GTG Val	CAG Gln	GGC Gly	GGT Gly 655	TTT Phe	1968
TAC Tyr	GGG Gly	CCT Pro	AAA Lys 660	Ala	GAA Glu	GAG Glu	TTG Leu	GGC Gly 665	GGA Gly	TGG Trp	TTT Phe	GCC Ala	TAT Tyr 670	CCG Pro	GGC Gly	2016
GAT Asp	AAA Lys	CAA Gln 675	Thr	GAA Glu	AAG Lys	GCA Ala	ACG Thr 680	GTT Val	GCA Ala	TCC Ser	GGC Gly	GAT Asp 685	GGA Gly	AAT Asn	TCA Ser	2064
GCA Ala	AGC Ser 690	Ser	GCG Ala	ACC Thr	GTG Val	GTA Val 695	TTC Phe	GGT Gly	GCG Ala	AAA Lys	CGC Arg 700	Gln	CAG Gln	CCT Pro	GTG Val	2112
CAA Gln 705		CTAA	ATG	AAGT	TGTC	TG G	GTGG	CGGC	G GC	ACGT	TCGA	TCT	TGAT	TCT		2165
GTC	GATA	.CCG	AAGC	ccc	CG T	CCCG	cccc	A AA	ATAT	CAAG	ATG	TTTC	TTC	CGAA	AAACCG	2225
CAA	GCCC	AAA	AAGA	CCAA	.GG C	GGAT	ACGG	т								2255

(2) INFORMATION POUR LA SEQ ID NO: 6:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 705 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:

Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu
10 15

Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro 20 25 30

Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys

Arg Arg Asn Trp His Pro Gln Ala Asn Pro Lys Glu Asp Glu Ile Lys Leu Ser Glu Asn Asp Trp Glu Ala Thr Gly Leu Pro Gly Asn Pro Lys Asn Leu Pro Glu Arg Gln Lys Ser Val Ile Glu Lys Val Lys Thr Gly Ser Asp Ser Asn Ile Tyr Ser Ser Pro Tyr Leu Thr Gln Ser Asn His 105 Gln Asn Gly Ser Ala Asn Gln Pro Lys Asn Glu Val Lys Asp Tyr Lys 120 Glu Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Lys Leu Glu Ile Ile Lys Glu Asn Asn Leu Ile Lys Gly Ala Lys Ser Gly Asp 150 Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg Gln Leu Pro Val Ser Gly Glu Val Thr Tyr Lys Gly Val Trp His Phe Val Thr Asp 180 Thr Lys Gln Gly Gln Lys Phe Asn Asp Ile Leu Gly Thr Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Pro Gly Asp Asp Gly Glu Glu Tyr Ser Asn Lys Asn Glu Ala Thr Leu Gln Gly Ser Gln Glu Gly Tyr Gly 230 Phe Thr Ser Asn Leu Lys Val Asp Phe Asn Lys Lys Leu Thr Gly 250 Glu Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Thr Ala Asn Asp Lys Tyr Thr Thr Gln Tyr Tyr Ser Leu Glu Ala Gln Val Thr Gly Asn Arg 280 Phe Asn Gly Lys Ala Thr Ala Thr Asp Lys Pro Gly Thr Gly Glu Thr Lys Gln His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe 315 Phe Gly Pro Lys Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asn Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Gln Asp Lys Ala Ala Asn Gly Asn Thr Ala Ala Ala Ser Gly Gly Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val 375 370

Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn Leu 390 Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile 410 Pro Leu Leu Pro Glu Thr Ser Glu Ser Gly Ser Asn Gln Ala Asp Lys 420 Gly Lys Lys Gly Lys Asn Gly Lys Asn Gly Gly Thr Asp Phe Thr Tyr Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala Gln Thr Gly Ala Ala Gly Ser Ser Gly Ala Gln Thr Asp Leu Gly Lys Ala Asp Val Asn Gly Gly Lys Ala Glu Thr Lys Thr Tyr Glu Val Glu Val 490 Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly Asn Ser Ser Gln Ala Asp 520 Ala Lys Thr Glu Gln Val Glu Gln Ser Met Phe Leu Gln Gly Glu Arg 535 Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln Asn Val Val Tyr Arg Gly 550 555 Ser Trp Tyr Gly His Ile Ala Ser Ser Thr Ser Trp Ser Gly Asn Ala 570 Ser Asn Ala Thr Ser Gly Asn Arg Ala Glu Phe Thr Val Asn Phe Asp Thr Lys Lys Ile Asn Gly Thr Leu Thr Ala Glu Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly Lys Ile Glu Gly Asn Gly Phe Ser Gly Thr Ala Lys Thr Ala Asp Leu Gly Phe Asp Leu Asp Gln Ser Asn Thr Thr Gly Thr Pro Lys Ala Tyr Ile Thr Asp Ala Lys Val Gln Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Glu Lys Ala Thr Val Ala Ser Gly Asp Gly Asn Ser 680 Ala Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg Gln Gln Pro Val

Gln 705

(2) INFORMATION POUR LA SEQ ID NO: 7: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 2114 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (génomique) (vi) ORIGINE: (A) ORGANISME: N. meningitidis (B) SOUCHE: 6940 (ix) CARACTERISTIQUE ADDITIONELLE: (A) NOM/CLE: mat_peptide (B) EMPLACEMENT: 1..2079 (ix) CARACTERISTIQUE ADDITIONELLE: (A) NOM/CLE: CDS (B) EMPLACEMENT: 1..2079 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7: TGT TTG GGT GGC GGC ACG TTC GAT CTT GAT TCT GTC GAT ACC GAA 48 Cys Leu Gly Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu 10 GCC CCG CGT CCC GAC CCA AAG TAT CAA GAT GTT TCT TCC GAA AAA CCG 96 Ala Pro Arg Pro Asp Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro 25 CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG ATG AGG TTG AAA 144 Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys 40 CGG AGG AAT TGG TAT TCC GCA GCA AAA GAA GAC GAG GTT AAA CTG AAC 192 Arg Arg Asn Trp Tyr Ser Ala Ala Lys Glu Asp Glu Val Lys Leu Asn GAG AGT GAT TGG GAG ACG ACA GGA TTG CCG ACA GAA CCC AAG AAA CTG 240 Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Thr Glu Pro Lys Lys Leu CCA TTA AAA CAA GAA TCC GTC ATT TCA AAA GTA CAA GCA AAC AAT GGC 288 Pro Leu Lys Gln Glu Ser Val Ile Ser Lys Val Gln Ala Asn Asn Gly 90 85 GAC AAC AAT ATT TAC ACT TCC CCC TAT CTC ACG CAA TCA AAC CAT CAA 336 Asp Asn Asn Ile Tyr Thr Ser Pro Tyr Leu Thr Gln Ser Asn His Gln 110 100 AAT AGC AGC ATT AAT GGC GGT GCA AAC CTG CCA AAA AAC GAA GTA ACA 384 Asn Ser Ser Ile Asn Gly Gly Ala Asn Leu Pro Lys Asn Glu Val Thr 115 AAT TAT AAA GAT TTC AAA TAT GTT TAT TCC GGC TGG TTT TAT AAA CAT 432 Asn Tyr Lys Asp Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His 135 130

GCT AAA AAC GAA ATC ATA AGA GAA AAC AGC TCA ATT AAG GGT GCA AAG

Ala Lys Asn Glu Ile Ile Arg Glu Asn Ser Ser Ile Lys Gly Ala Lys

150

155

480

AAC Asn	GGC Gly	GAC Asp	GAC Asp	GGC Gly 165	TAT Tyr	ATC Ile	TTT Phe	TAT Tyr	CAC His 170	GGC Gly	AAA Lys	GAA Glu	CCT Pro	TCC Ser 175	CGA Arg	528
CAA Gln	CTT Leu	CCC Pro	GCT Ala 180	TCT Ser	GGA Gly	ACA Thr	GTT Val	ACC Thr 185	TAT Tyr	AAA Lys	GGT Gly	GTG Val	TGG Trp 190	CAT His	TTT Phe	576
GCG Ala	ACC Thr	GAT Asp 195	GTC Val	AAA Lys	AAA Lys	TCC Ser	CAA Gln 200	AAT Asn	TTT Phe	CGC Arg	GAT Asp	ATT Ile 205	ATC Ile	CAG Gln	CCT Pro	624
TCG Ser	AAA Lys 210	AAA Lys	CAA Gln	GGC Gly	GAC Asp	AGG Arg 215	TAT Tyr	AGC Ser	GGA Gly	TTT Phe	TCG Ser 220	GGC Gly	GAT Asp	GAT Asp	GAT Asp	672
GAA Glu 225	CAA Gln	TAT Tyr	TCT Ser	AAT Asn	AAA Lys 230	AAC Asn	GAA Glu	TCC Ser	ATG Met	CTG Leu 235	AAA Lys	GAT Asp	GGT Gly	CAA Gln	GAG Glu 240	720
GGT Gly	TAT Tyr	GGT Gly	TTT Phe	ACC Thr 245	TCG Ser	AAT Asn	TTA Leu	GAA Glu	GTG Val 250	GAT Asp	TTC Phe	GGC Gly	AGT Ser	AAA Lys 255	AAA Lys	768
TTG Leu	ACG Thr	GGT Gly	AAA Lys 260	TTA Leu	ATA Ile	CGC Arg	AAT Asn	AAT Asn 265	AGA Arg	GTT Val	ACA Thr	AAC Asn	GCT Ala 270	CCT Pro	ACT Thr	816
AAC Asn	GAT Asp	AAA Lys 275	TAC Tyr	ACC Thr	ACC Thr	CAA Gln	TAC Tyr 280	TAC Tyr	AGC Ser	CTT Leu	GAT Asp	GCC Ala 285	CAA Gln	ATA Ile	ACA Thr	864
GGC Gly	AAC Asn 290	CGC Arg	TTC Phe	AAC Asn	GGT Gly	AAG Lys 295	GCG Ala	ATA Ile	CGG Arg	ACC Thr	GAC Asp 300	AAA Lys	CCC Pro	GAC Asp	ACT Thr	912
GGA Gly 305	GGA Gly	ACC Thr	AAA Lys	CTA Leu	CAT His 310	CCC Pro	TTT Phe	GTT Val	TCC Ser	GAC Asp 315	Ser	TCT Ser	TCT Ser	TTG Leu	AGC Ser 320	960
GGC Gly	GGC Gly	TTT Phe	TTC Phe	GGT Gly 325	Pro	AAG Lys	GGT Gly	GAG Glu	GAA Glu 330	Leu	GGT Gly	TTC Phe	CGC Arg	TTT Phe 335	TTG Leu	1008
AGC Ser	GAC Asp	GAT Asp	AAA Lys 340	Lys	GTT Val	GCG Ala	GTT Val	GTC Val 345	GGC	AGC Ser	GCG Ala	AAA Lys	ACC Thr 350	ьys	GAC Asp	1056
AAA Lys	ACG Thr	GAA Glu 355	Asn	GGC Gly	GCG Ala	GTG Val	GCT Ala 360	Ser	GGC Gly	GGC	ACA Thr	GAT Asp 365	Ala	GCA Ala	GCA Ala	1104
TCA Ser	AAC Asn 370	Gly	GCG Ala	GCA Ala	GGC Gly	ACG Thr 375	Ser	TCT Ser	GAA Glu	AAC Ran	AGT Ser 380	Lys	CTG Leu	ACC Thr	ACG Thr	1152
GTT Val 385	Leu	GAT Asp	GCG Ala	GTC Val	GAG Glu 390	Lev	AAA Lys	TTC Lev	GGC Gly	GAT Asp 395	. Lys	GAA Glu	GTC Val	CAF Glr	AAG Lys 400	1200
CTC Leu	GAC Asp	AAC Asr	TTC Phe	AGC Sei 405	Asn	GCC Ala	GCC Ala	CA/	A CTG 1 Leu 410	ı Val	GT(GAC L Asp	GGC Gly	ATT 7 Ile 415	ATG Met	1248

ATT Ile	CCG Pro	CTC Leu	TTG Leu 420	CCC Pro	GAG Glu	GCT Ala	TCC Ser	GAA Glu 425	AGT Ser	GGG Gly	AAC Asn	AAT Asn	CAA Gln 430	GCC Ala	AAT Asn	,	1296
CAA Gln	GGT Gly	ACA Thr 435	AAT Asn	GGC Gly	GGA Gly	ACA Thr	GCC Ala 440	TTT Phe	ACC Thr	CGC Arg	AAA Lys	TTT Phe 445	GAC Asp	CAC His	ACG Thr		1344
CCG Pro	GAA Glu 450	^GT Ser	GAŢ Asp	AAA Lys	AAA Lys	GAC Asp 455	GCC Ala	CAA Gln	GCA Ala	GGT Gly	ACG Thr 460	CAG Gln	ACG Thr	AAT Asn	GGG Gly		1392
GCG Ala 465	CAA Gln	ACC Thr	GCT Ala	TCA Ser	AAT Asn 470	ACG Thr	GCA Ala	GGT Gly	GAT Asp	ACC Thr 475	AAT Asn	GGC Gly	AAA Lys	ACA Thr	AAA Lys 480		1440
ACC Thr	TAT Tyr	GAA Glu	GTC Val	GAA Glu 485	GTC Val	TGC Cys	TGT Cys	TCC Ser	AAC Asn 490	CTC Leu	AAT Asn	TAT Tyr	CTG Leu	AAA Lys 495	TAC Tyr		1488
GGA Gly	ATG Met	TTG Leu	ACG Thr 500	CGC Arg	AAA Lys	AAC Asn	AGC Ser	AAG Lys 505	TCC Ser	GCG Ala	ATG Met	CAG Gln	GCA Ala 510	GGA Gly	GAA Glu		1536
AGC Ser	AGT Ser	AGT Ser 515	CAA Gln	GCT Ala	GAT Asp	GCT Ala	AAA Lys 520	ACG Thr	GAA Glu	CAA Gln	GTT Val	GAA Glu 525	CAA Gln	AGT Ser	ATG Met		1584
TTC Phe	CTC Leu 530	CAA Gln	GGC Gly	GAG Glu	CGC Arg	ACC Thr 535	GAT Asp	GAA Glu	AAA Lys	GAG Glu	ATT Ile 540	CCA Pro	AGC Ser	GAG Glu	CAA Gln		1632
AAC Asn 545	ATC Ile	GTT Val	TAT Tyr	CGG Arg	GGG Gly 550	TCT Ser	TGG Trp	TAC Tyr	GGA Gly	TAT Tyr 555	ATT Ile	GCC Ala	AAC Asn	GAC Asp	AAA Lys 560		1680
AGC Ser	ACA Thr	AGC Ser	TGG Trp	AGC Ser 565	GGC Gly	AAT Asn	GCT Ala	TCC Ser	AAT Asn 570	GCA Ala	ACG Thr	AGT Ser	GGC	AAC Asn 575	AGG Arg		1728
GCG Ala	GAA Glu	TTT Phe	ACT Thr 580	GTG Val	AAT Asn	TTT Phe	GCC Ala	GAT Asp 585	Lys	AAA Lys	ATT Ile	ACT Thr	GGT Gly 590	ACG Thr	TTA Leu		1776
ACC Thr	GCT Ala	GAC Asp 595	AAC Asn	AGG Arg	CAG Gln	GAG Glu	GCA Ala 600	Thr	TTT Phe	ACC Thr	ATT Ile	GAT Asp 605	Gly	AAT Asn	ATT Ile		1824
AAG Lys	GAC Asp 610	Asn	GGC Gly	TTT Phe	GAA Glu	GGT Gly 615	ACG Thr	GCG Ala	AAA Lys	ACT	GCT Ala 620	GLu	TCA Ser	GGT Gly	TTT Phe		1872
GAT Asp 625	Leu	GAT Asp	CAA Gln	AGC Ser	AAT Asn 630	Thr	ACC	CGC Arg	ACG Thr	Pro 635	Lys	GCA Ala	TAT Tyr	ATC	ACA Thr 640		1920
GAT Asp	GCC Ala	AAG Lys	GTG Val	CAG Gln 645	Gly	GGT Gly	TTT Phe	TAC Tyr	GGG Gly 650	Pro	AAA Lys	GCC Ala	GAA Glu	GA0 G1u 655	TTG Leu		1968
GGC Gly	GGA Gly	TGG Trp	TTT Phe 660	Ala	TAT Tyr	Pro	GGC Gly	GAT Asp 665	. Lys	CAA Gln	ACG Thi	AAA Lys	AAT Asr 670	LAL	A ACA A Thr		2016

2064

2114

AAT GCA TCC GGC AAT AGC AGT GCA ACT GTC GTA TTC GGT GCG AAA CGC Asn Ala Ser Gly Asn Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg 685 680 675 CAA CAG CCT GTG CGA TAACGCAAGC CCAAAAAGAC CAAGGCGGAT ACGGT Gln Gln Pro Val Arg 690 (2) INFORMATION POUR LA SEQ ID NO: 8: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 693 acides aminés (B) TYPE: acide aminé (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: protéine (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8: Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu Ala Pro Arg Pro Asp Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys Arg Arg Asn Trp Tyr Ser Ala Ala Lys Glu Asp Glu Val Lys Leu Asn Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Thr Glu Pro Lys Lys Leu Pro Leu Lys Gln Glu Ser Val Ile Ser Lys Val Gln Ala Asn Asn Gly Asp Asn Asn Ile Tyr Thr Ser Pro Tyr Leu Thr Gln Ser Asn His Gln Asn Ser Ser Ile Asn Gly Gly Ala Asn Leu Pro Lys Asn Glu Val Thr Asn Tyr Lys Asp Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Lys Asn Glu Ile Ile Arg Glu Asn Ser Ser Ile Lys Gly Ala Lys 145 Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Glu Pro Ser Arg 170 Gln Leu Pro Ala Ser Gly Thr Val Thr Tyr Lys Gly Val Trp His Phe 185 Ala Thr Asp Val Lys Lys Ser Gln Asn Phe Arg Asp Ile Ile Gln Pro Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Asp Asp Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met Leu Lys Asp Gly Gln Glu 235 230

Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Ser Lys Lys Leu Thr Gly Lys Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Pro Thr 265 Asn Asp Lys Tyr Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile Thr Gly Asn Arg Phe Asn Gly Lys Ala Ile Arg Thr Asp Lys Pro Asp Thr Gly Gly Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Lys Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asp Asp Lys Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu Val Gln Lys 395 Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met 405 Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn Gln Ala Asn 420 Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe Asp His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly 455 Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Glu Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Ser Glu Gln Asn Ile Val Tyr Arg Gly Ser Trp Tyr Gly Tyr Ile Ala Asn Asp Lys Ser Thr Ser Trp Ser Gly Asn Ala Ser Asn Ala Thr Ser Gly Asn Arg 565

Ala Glu Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr Gly Thr Leu Thr Ala Asp Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly Asn Ile Lys Asp Asn Gly Phe Glu Gly Thr Ala Lys Thr Ala Glu Ser Gly Phe Asp Leu Asp Gln Ser Asn Thr Thr Arg Thr Pro Lys Ala Tyr Ile Thr Asp Ala Lys Val Gln Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Lys Asn Ala Thr 660 Asn Ala Ser Gly Asn Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg 680 Gln Gln Pro Val Arg 690 (2) INFORMATION POUR LA SEQ ID NO: 9: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 2114 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (génomique) (vi) ORIGINE: (A) ORGANISME: N. meningitidis (B) SOUCHE: \$3032 (ix) CARACTERISTIQUE ADDITIONELLE: (A) NOM/CLE: mat_peptide (B) EMPLACEMENT: 1..2097 (ix) CARACTERISTIQUE ADDITIONELLE: (A) NOM/CLE: CDS (B) EMPLACEMENT: 1..2097 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9: TGT TTG GGC GGA GGC GGC AGT TTC GAT CTT GAT TCT GTC GAT ACC 48 Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser Val Asp Thr GAA GCC CCG CGT CCC GCG CCA AAG TAT CAA GAT GTT TCT TCC GAA AAA 96 Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys 25 CCG CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG ATG AGG TTG 144 Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu 40 192 AAA CGG AGG AAT TGG TAT CCG TCG GCA AAA GAA AAC GAG GTT AAA CTG Lys Arg Arg Asn Trp Tyr Pro Ser Ala Lys Glu Asn Glu Val Lys Leu

55

50

AAT Asn 65	GAG Glu	AGT Ser	GAT Asp	TGG Trp	GAG Glu 70	ACG Thr	ACA Thr	GGA Gly	TTG Leu	CCA Pro 75	AGC Ser	AAT Asn	CCC Pro	AAA Lys	AAC Asn 80		240
TTA Leu	CCT Pro	GAG Glu	CGA Arg	CAG Gln 85	AAA Lys	TCG Ser	GTT Val	ATT Ile	GAT Asp 90	CAA Gln	GTA Val	GAA Glu	ACA Thr	GAT Asp 95	G] À GCC	٠	288
GAC Asp	AGC Ser	AAT Asn	AAC Asn 100	AGC Ser	AAT Asn	ATT Ile	TAT Tyr	TCT Ser 105	TCC Ser	CCC Pro	TAT Tyr	CTC Leu	ACG Thr 110	CAA Gln	TCA Ser		336
AAC Asn	CAT His	CAA Gln 115	AAC Asn	GGC Gly	AAC Asn	ACT Thr	GGC Gly 120	AAC Asn	GGT Gly	GTA Val	AAC Asn	CAA Gln 125	CCA Pro	AAA Lys	AAC Asn		384
GAA Glu	GTA Val 130	ACA Thr	GAT Asp	TAC Tyr	AAA Lys	AAT Asn 135	TTT Phe	AAA Lys	TAT Tyr	GTT Val	TAT Tyr 140	TCC Ser	GGC	TGG Trp	TTT Phe		432
TAC Tyr 145	AAA Lys	CAC His	GCC Ala	AAA Lys	CGA Arg 150	GAG Glu	GTT Val	AAC Asn	TTA Leu	GCG Ala 155	GTG Val	GAA Glu	CCT Pro	AAA Lys	ATT Ile 160		480
GCA Ala	AAA Lys	AAC Asn	GGC Gly	GAC Asp 165	Asp	GGT Gly	TAT Tyr	ATC Ile	TTC Phe 170	TAT Tyr	CAC His	GGT Gly	AAA Lys	GAC Asp 175	CCT Pro		528
TCC Ser	CGA Arg	CAA Gln	CTT Leu 180	CCC Pro	GCT Ala	TCT Ser	GGA Gly	AAA Lys 185	ATT Ile	ACC Thr	TAT Tyr	AAA Lys	GGT Gly 190	GTG Val	TGG Trp		576
CAT His	TTT Phe	GCG Ala 195	Thr	GAT Asp	ACA Thr	AAA Lys	AGG Arg 200	Gly	CAA Gln	AAA Lys	TTT Phe	CGT Arg 205	GAA Glu	ATT	ATC Ile		624
CAA Gln	CCT Pro 210	Ser	AAA Lys	AAT Asn	CAA Gln	GGC Gly 215	Asp	AGA Arg	TAT	AGC Ser	GGA Gly 220	rne	TCG Ser	GGT Gly	GAT Asp		672
GAT Asp 225	Asp	GAA Glu	CAA Gln	TAT	TCT Ser 230	Asn	AAA Lys	AAC Asn	GAA Glu	TCC Ser 235	Met	CTG Leu	AAA Lys	GAT	GGT Gly 240		720
CAT His	GAA Glu	GGT Gly	TAT Tyr	GGT Gly 245	, Phe	GCC Ala	TCG	AAT Asr	TTA Leu 250	GIU	GTC Val	GAT L Asp	TTC Phe	GAC Asp 255	AAT Asn		768
AAA Lys	AAA Lys	TTG Lev	ACC Thr 260	: Gl	AAA Lys	TTA Leu	ATA Ile	CGC Arg 265	j Asn	AAT Asn	GCC Ala	AAC AAST	CAA Gln 270	. ASI	TAAT n Asn		816
AA1 Asr	ACT Thi	AA1 Asr 275	Asr	GAC Asp	C AAA	CAC His	ACC Thr 280	Th	C CAF	TAC Tyr	TAC Ty:	C AGO Sei 285	Let	GA:	C GCG		864
AC(Thi	CT: Lev 29	ı Ly:	G GGA G Gly	AAQ Ası	c cgo	295	Sei	C GGZ	A AAA y Lys	A GCC s Ala	G GA G1 30	u Ala	A ACC	GA(C AAA p Lys		912
CC0 Pro 305	b Ly	AAA S Ası	C GA(C GGG	GAV Glv 310	ı Thi	C AAG	G GA	A CAS	CCC S Pro 31	o Ph	T GT e Va	r TCC	C GA	C TCG p Ser 320		960

TCT Ser	TCT Ser	TTG Leu	AGC Ser	GGC Gly 325	GGC Gly	TTT Phe	TTC Phe	GGC Gly	CCG Pro 330	CAG Gln	GGT Gly	GAG Glu	GAA Glu	TTG Leu 335	GGT Gly	1008
TTC Phe	CGC Arg	TTT Phe	TTG Leu 340	AGC Ser	AAC Asn.	GAT Asp	CAA Gln	AAA Lys 345	GTT Val	GCC Ala	GTT Val	GTC Val	GGC Gly 350	AGC Ser	GCG Ala	1056
AAA Lys	ACC Thr	AAA Lys 355	Asp	AAA Lys	CCC Pro	GCA Ala	AAT Asn 360	GGC Gly	AAT Asn	ACT Thr	GCG Ala	GAG Glu 365	GCT Ala	TCA Ser	GGC	1104
GGC Gly	ACA Thr 370	GAT Asp	GCG Ala	GCA Ala	GCA Ala	TCG Ser 375	GGC Gly	GGT Gly	GCG Ala	Ala	GGC Gly 380	ACG Thr	TCG Ser	TCT Ser	GAA Glu	1152
AAC Asn 385	AGT Ser	AAG Lys	CTG Leu	ACC Thr	ACG Thr 390	GTT Val	TTG Leu	GAT Asp	GCG Ala	GTC Val 395	GAG Glu	CTG Leu	ACG Thr	CAC His	GGC Gly 400	1200
GGC Gly	ACA Thr	GCA Ala	ATC Ile	AAA Lys 405	AAT Asn	CTC Leu	GAC Asp	AAC Asn	TTC Phe 410	AGC Ser	AAT Asn	GCC Ala	GCC Ala	CAA Gln 415	CTG Leu	1248
GTT Val	GTC Val	GAC Asp	GGC Gly 420	ATT Ile	ATG Met	ATT Ile	CCG Pro	CTC Leu 425	CTG Leu	CCT Pro	CAA Gln	AAT Asn	TCA Ser 430	ACA Thr	GLA	1296
AAA Lys	AAT Asn	AAT Asn 435	CAG Gln	CCC Pro	GAT Asp	CAA Gln	GGT Gly 440	AAA Lys	AAC Asn	GGC Gly	GGA Gly	ACA Thr 445	GCC Ala	TTT Phe	ATC Ile	1344
TAT Tyr	AAA Lys 450	ACG Thr	ACC Thr	TAC Tyr	ACG Thr	CCG Pro 455	AAA Lys	AAC Asn	GAT Asp	GAC Asp	AAA Lys 460	GAT Asp	ACC Thr	AAA Lys	GCC Ala	1392
CAA Gln 465	Thr	GTC Val	ACG Thr	GGC Gly	GGC Gly 470	ACG Thr	CAA Gln	ACC Thr	GCT Ala	TCA Ser 475	AAT Asn	ACG Thr	GCA Ala	GGT Gly	GAT Asp 480	1440
GCC Ala	AAT Asn	GGC	AAA Lys	ACA Thr 485	Lys	ACC Thr	TAT Tyr	GAA Glu	GTC Val 490	GAA Glu	GTC Val	TGC Cys	TGT Cys	TCC Ser 495	AAC Asn	1488
CTC Leu	AAT Asn	TAT Tyr	CTG Leu 500	Lys	TAC Tyr	GGG Gly	TTG Leu	CTG Leu 505	Thr	CGC Arg	AAA Lys	ACT	GCC Ala 510	GTA	AAC Asn	1536
ACG Thr	GTG Val	GGA Gly 515	Ser	GGC	AAC Asn	AGC Ser	AGC Ser 520	Pro	ACC Thr	GCC Ala	GCC Ala	GCC Ala 525	Gln	ACG Thr	GAC Asp	1584
GCG Ala	CAG Gln 530	Ser	ATG Met	TTC Phe	CTC Leu	CAA Gln 535	Gly	GAG Glu	CGC Arg	ACC Thr	GAT Asp 540	Glu	AAC Asn	AAG Lys	ATT Ile	1632
CCA Pro 545	Ser	GAG Glu	CAA Gln	AAC Asn	GTC Val 550	Val	TAT Tyr	CGG	GGG GGG	TCT Ser 555	Trp	TAC Tyr	GGG Gly	CAT His	Ile 560	1680
GCC Ala	AGC Ser	AGC Ser	ACA Thr	AGC Ser 565	Trp	AGC Ser	GGC Gly	: AA1 · Asr	GCT Ala 570	Ser	GAT Asp	Lys	GAG	GGC Gly 575	GGC Gly	1728

AAC Asn	AGG Arg	GCG Ala	GAA Glu 580	TTT Phe	ACT Thr	GTG Val	AAT Asn	TTT Phe 585	GGC Gly	GAG Glu	AAA Lys	AAA Lys	ATT Ile 590	ACC Thr	GGC Gly	1776
ACG Thr	TTA Leu	ACC Thr 595	GCT Ala	GAA Glu	AAC Asn	AGG Arg	CAG Gln 600	GAG Glu	GCA Ala	ACC Thr	TTT Phe	ACC Thr 605	ATT Ile	GAT Asp	GGT Gly	1824
AAG Lys	ATT Ile 610	GAG Glu	GGC Gly	AAC Asn	GGT Gly	TTT Phe 615	TCC Ser	GGT Gly	ACG Thr	GCA Ala	AAA Lys 620	ACT Thr	GCT Ala	GAA Glu	TTA Leu	1872
GGT Gly 625	TTT Phe	GAT Asp	CTC Leu	GAT Asp	CAA Gln 630	AAA Lys	AAT Asn	ACC Thr	ACC Thr	CGC Arg 635	ACG Thr	CCT Pro	AAG Lys	GCA Ala	TAT Tyr 640	1920
ATC Ile	ACA Thr	GAT Asp	GCC Ala	AAG Lys 645	GTA Val	AAG Lys	GGC Gly	GGT Gly	TTT Phe 650	TAC Tyr	GGG Gly	CCC	AAA Lys	GCC Ala 655	GAA Glu	1968
GAG Glu	TTG Leu	GGC Gly	GGA Gly 660	Trp	TTT Phe	GCC Ala	TAT Tyr	TCG Ser 665	GAC Asp	GAT Asp	AAA Lys	CAA Gln	ACG Thr 670	ьys	AAT Asn	2016
GCA Ala	ACA Thr	GAT Asp 675	Ala	TCC Ser	GGC Gly	AAT Asn	GGA Gly 680	Asn	TCA Ser	GCA Ala	AGC Ser	AGT Ser 685	ALA	ACT Thr	GTC Val	2064
GTA Val	TTC Phe 690	Gly	GCG Ala	AAA Lys	. CGC Arg	CAA Gln 695	Gln	CCT Pro	GTG Val	CAA Gln	TAA	ACCA	AGG	CGGA	TAC	2114

(2) INFORMATION POUR LA SEQ ID NO: 10:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 699 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:
- Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser Val Asp Thr 1 5 10 15
- Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys 20 25 30
- Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu 35 40 45
- Lys Arg Arg Asn Trp Tyr Pro Ser Ala Lys Glu Asn Glu Val Lys Leu
 50 55 60
- Asn Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Ser Asn Pro Lys Asn 65 70 75 80
- Leu Pro Glu Arg Gln Lys Ser Val Ile Asp Gln Val Glu Thr Asp Gly 85 90 95

Asp Ser Asn Asn Ser Asn Ile Tyr Ser Ser Pro Tyr Leu Thr Gln Ser 105 Asn His Gln Asn Gly Asn Thr Gly Asn Gly Val Asn Gln Pro Lys Asn Glu Val Thr Asp Tyr Lys Asn Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Lys Arg Glu Val Asn Leu Ala Val Glu Pro Lys Ile Ala Lys Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Asp Pro Ser Arg Gln Leu Pro Ala Ser Gly Lys Ile Thr Tyr Lys Gly Val Trp His Phe Ala Thr Asp Thr Lys Arg Gly Gln Lys Phe Arg Glu Ile Ile Gln Pro Ser Lys Asn Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Asp Asp Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met Leu Lys Asp Gly His Glu Gly Tyr Gly Phe Ala Ser Asn Leu Glu Val Asp Phe Asp Asn 250 Lys Lys Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Asn Gln Asn Asn Asn Thr Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala 280 Thr Leu Lys Gly Asn Arg Phe Ser Gly Lys Ala Glu Ala Thr Asp Lys Pro Lys Asn Asp Gly Glu Thr Lys Glu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Gln Gly Glu Leu Gly Phe Arg Phe Leu Ser Asn Asp Gln Lys Val Ala Val Val Gly Ser Ala 350 Lys Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly Gly Thr Asp Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly 395 390 Gly Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu 410 405 Val Val Asp Gly Ile Met Ile Pro Leu Leu Pro Gln Asn Ser Thr Gly 425 420

 Lys
 Asn
 Asn
 Gln
 Pro
 Asp
 Gln
 Gly
 Lys
 Asn
 Gly
 Thr
 Ala
 Phe
 Ile

 Tyr
 Lys
 Thr
 Thr
 Tyr
 Thr
 Pro
 Lys
 Asn
 Asp
 Lys
 Asp
 Lys
 Thr
 Lys
 Ala

 Gln
 Thr
 Val
 Thr
 Gly
 Gly
 Thr
 Glu
 Thr
 Ala
 Ser
 Asn
 Thr
 Ala
 Gly
 Asp
 Asp
 Asp
 Asp
 Thr
 Ala
 Gly
 Asp
 Thr
 Ala
 Asp
 Asp
 Lys
 Thr
 Lys
 Asp
 A

565 570 575

Asn Arg Ala Glu Phe Thr Val Asn Phe Gly Glu Lys Lys Ile Thr Gly 580 585 590

Thr Leu Thr Ala Glu Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly 595 600 605

Lys Ile Glu Gly Asn Gly Phe Ser Gly Thr Ala Lys Thr Ala Glu Leu 610 620

Gly Phe Asp Leu Asp Gln Lys Asn Thr Thr Arg Thr Pro Lys Ala Tyr 625 630 635

Ile Thr Asp Ala Lys Val Lys Gly Gly Phe Tyr Gly Pro Lys Ala Glu 645 650 655

Glu Leu Gly Gly Trp Phe Ala Tyr Ser Asp Asp Lys Gln Thr Lys Asn 660 665 670

Ala Thr Asp Ala Ser Gly Asn Gly Asn Ser Ala Ser Ser Ala Thr Val

Val Phe Gly Ala Lys Arg Gln Gln Pro Val Gln 690 695

(2) INFORMATION POUR LA SEQ ID NO: 11:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: IM2169

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:

Thr Lys Asp Lys Leu Glu Asn Gly Ala Ala Ala Ser Gly Ser Thr Gly 1 5 10

Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys 20 25 30

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys 35 40 45

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp 50 60

Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr 65 70 75 80

Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe 85 90 95

Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln 100 105 110

Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly 115 120 125

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 140

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 145 150 155 160

Ala Gly Gly Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 185 190

Thr Asp Gln Asn Val Val 195

(2) INFORMATION POUR LA SEQ ID NO: 12:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 6940
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:

Thr Lys Asp Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp 1 10 15

Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys 20 25 30 Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu 35 40 45

Val Gln Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp 50 55 60

Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn 65 70 75 80

Gln Ala Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe 85 90 95

Asp His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln 100 105 110

Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly 115 120 125

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 135 140

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 145 150 155 160

Ala Gly Glu Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 185 190

Ser Glu Gln Asn Ile Val 195

(2) INFORMATION POUR LA SEQ ID NO: 13:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 2223
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:

Thr Lys Asp Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp 1 5 10 15

Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys 20 25 30

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu 35 40 45

Val Gln Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp
50 55 60

Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn 65 70 75 80

Gln Ala Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe 85 90 95

Asp His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln 100 105 110

Ala Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly 115 120 125

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 140

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 145 150 155 160

Ala Gly Glu Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Gly 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 185 190

Ser Glu Gln Asn Ile Val 195

(2) INFORMATION POUR LA SEQ ID NO: 14:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: C708
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:

Thr Gln Asp Lys Pro Arg Asn Gly Ala Val Ala Ser Gly Gly Thr Gly 1 5 10 15

Ala Ala Arg Ser Asn Gly Ala Ala Gly Gln Ser Ser Glu Asn Ser Lys 20 25 30

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys 35 40 45

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp 50 55 60

Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Lys Asn 65 70 75 80

Gln Ala Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe 85 90 95

Asn His Thr Pro Lys Ser Asp Glu Lys Asp Thr Gln Ala Gly Thr Ala 100 105 110

Glu Asn Gly Asn Pro Ala Ala Ser Asn Thr Ala Gly Asp Ala Asn Gly
115 120 125

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 135 140

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 145 150 155 160

Ala Gly Glu Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Gly 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 185 190

Asn Asp Gln Asn Val Val 195

(2) INFORMATION POUR LA SEQ ID NO: 15:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 211 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: M978
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:

Thr Gln Asp Lys Ala Ala Asn Gly Asn Thr Ala Ala Ala Ser Gly Gly 1 5 10 15

Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn 20 25 30

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp 35 40 45

Lys Lys Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val 50 55 60

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Glu Thr Ser Glu Ser Gly 65 70 75 80

Ser Asn Gln Ala Asp Lys Gly Lys Lys Gly Lys Asn Gly Lys Asn Gly 85 90 95

Gly Thr Asp Phe Thr Tyr Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp 100 105 110

Lys Asp Thr Lys Ala Gln Thr Gly Ala Ala Gly Ser Ser Gly Ala Gln 115 120 125

Thr Asp Leu Gly Lys Ala Asp Val Asn Gly Gly Lys Ala Glu Thr Lys 130 135 140

Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr 145 150 155 160

Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly 165 170 175

Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met 180 185 190

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln 195 200 205

Asn Val Val 210

(2) INFORMATION POUR LA SEQ ID NO: 16:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 200 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 1610
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:

Lys Arg Asp Lys Ala Glu Ser Gly Gly Gly Asn Gly Ala Ser Gly Gly
1 10 15

Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn 20 25 30

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Ser Gly Gly 35 40 45

Lys Glu Val Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly 65 70 75 80

Asn Thr Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Lys Phe Thr Arg

Lys Phe Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly 100 105 110

Thr Gln Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr 115 120 125

Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu 130 135 140

Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr 145 150 155 160

Gly Glu Gly Gly Asn Gly Ser Gln Thr Ala Ala Ala Gln Thr Ala Gln 165 170 175

Gly Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu 180 185 190

Ile Pro Ser Glu Gln Asn Val Val 195 200

(2) INFORMATION POUR LA SEQ ID NO: 17:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 200 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 867
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17:

Thr Lys Asp Lys Pro Arg Asn Gly Ala Val Ala Ser Gly Gly Thr Asp 1 5 10 15

Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Gly Lys
20 25 30

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys 35 40 45

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Ser 50 55 60

Gly Ile Met Ile Pro Leu Met Pro Glu Thr Ser Glu Ser Gly Asn Asn 65 70 75 80

Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe 85 90 95

Asp His Thr Pro Lys Ser Asp Glu Lys Asp Thr Gln Ala Gly Thr Pro 100 105 110

Thr Asn Gly Ala Gln Thr Ala Ser Gly Thr Ala Gly Val Thr Gly Gly 115 120 125

Gln Ala Gly Lys Thr Tyr Ala Val Glu Val Cys Cys Ser Asn Leu Asn 130 135 140

Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Asp Asn Thr Val 145 150 155 160

Gly Ser Gly Asn Gly Ser Ser Thr Ala Ala Ala Gln Thr Ala Gln Gly 165 170 175

Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile 180 185 190

Pro Lys Glu Gln Gln Asp Ile Val 195 200

(2) INFORMATION POUR LA SEQ ID NO: 18:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide

- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: S3032
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18:

Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly Gly
1 5 10 15

Thr Asp Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn 20 25 30

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly Gly 35 40 45

Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val 50 55 60

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Gln Asn Ser Thr Gly Lys 65 70 75 80

Asn Asn Gln Pro Asp Gln Gly Lys Asn Gly Gly Thr Ala Phe Ile Tyr 85 90 95

Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala Gln
100 105 110

Thr Val Thr Gly Gly Thr Gln Thr Ala Ser Asn Thr Ala Gly Asp Ala 115 120 125

Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu 130 135 140

Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr 145 150 155 160

Val Gly Ser Gly Asn Ser Ser Pro Thr Ala Ala Ala Gln Thr Asp Ala 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Asn Lys Ile Pro 180 185 190

Ser Glu Gln Asn Val Val 195

(2) INFORMATION POUR LA SEQ ID NO: 19:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 195 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 891
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 19:

Thr Lys Asp Lys Pro Gly Asn Gly Ala Arg Leu Gln Ala Ala Arg Cys
1 10 15

Gly Thr Ser Asn Gly Ala Ala Gly Gln Ser Ser Glu Asn Ser Lys Leu Thr Thr Val 35 Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu Val Gln Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly 60 Leu Val Val Asp Gly 65 Leu Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Lys Asn Gln 80

Ala Asp Lys Gly Lys Asn Gly Glu Thr Glu Phe Thr Arg Lys Phe Glu 85 90 95

His Thr Pro Glu Ser Asp Glu Lys Asp Ala Gln Ala Gly Thr Pro Ser 100 105 110

Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys 115 120 125

Thr Lys Thr Tyr Glu Val Asn Leu Cys Ser Asn Leu Asn Tyr Leu Lys 130 135 140

Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr Gly Glu Gly Gly 145 150 155 160

Asn Ser Ser Pro Thr Ala Ala Gln Thr Ala Gln Gly Ala Gln Ser Met 165 170 175

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln 180 185 190

Asn Val Val 195

(2) INFORMATION POUR LA SEQ ID NO: 20:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 29 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 20:

AAACCCGGAT CCGTTGCCAG CGCTGCCGT

(2) INFORMATION POUR LA SEQ ID NO: 21:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 85 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN. (génomique)
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 21:

29

TTTTTTCATG AGATATCTGG CAACATTGTT GTTATCTCTG GCGGTGTTAA TCACCGCCGG	60
GTGCCTGGGT GGCGGCGCA GTTTC	85
(2) INFORMATION POUR LA SEQ ID NO: 22:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 22:	
GTGTTTTGT TGAGTGCATG CCTGGGTGGC	30
(2) INFORMATION POUR LA SEQ ID NO: 23:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 40 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 23:	
TGCGCAAGCT TACAGTTTGT CTTTGGTTTT CGCGCTGCCG	40
(2) INFORMATION POUR LA SEQ ID NO: 24:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 40 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 24:	
AAAAAGCATG CATAAAAACT ACGCGTTACA CCATTCAAGC	40
(2) INFORMATION POUR LA SEQ ID NO: 25:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 39 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 25:	
TATATAAGCT TACGTTGCAG GCCCTGCCGC GTTTTCCCC	39

(2) INFORMATION POUR LA SEQ ID NO: 26:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 29 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 26:	
CCCGAATTCT GCCGTCTGAA GCCTTATTC	29
(2) INFORMATION POUR LA SEQ ID NO: 27:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 28 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 27:	
CCCGAATTCT GCTATGGTGC TGCCTGTG	28
(2) INFORMATION POUR LA SEQ ID NO: 28:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 28:	
CGCATCCAAA ACCGTACCTG TGCTGCCTGA	30
(2) INFORMATION POUR LA SEQ ID NO: 29:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 29:	
TTTATCACTT TCCGGGGGCA GGAGCGGAAT	30

(2) INFORMATION POUR LA SEQ ID NO: 30:

	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: ADN (génomique)	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 30:	
GTT	GAAC	AG CAGACAGCGG TTTGCGCCCC	30
(2)	INFO	RMATION POUR LA SEQ ID NO: 31:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: ADN (génomique)	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 31:	
GAA	CATAC'	TT TGTTCGTTTT TGCGCGTCAA	30
(2)	INFO	RMATION POUR LA SEQ ID NO: 32:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 5 acides aminés (B) TYPE: acide aminé (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: peptide	
	(vi)	ORIGINE: (A) ORGANISME: N. meningitidis (B) SOUCHE: IM2394	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 32:	
	Tyr 1	Lys Gly Thr Trp 5	-
(2)	INFO	RMATION POUR LA SEQ ID NO: 33:	-
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 15 acides aminés (B) TYPE: acide aminé (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: peptide	
	(vi)	ORIGINE: (A) ORGANISME: N. meningitidis (B) SOUCHE: IM2394	
		DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 33:	
	Glu 1	Phe Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly Thr Leu 5 10 15	

(2) INFORMATION POUR LA SEQ ID NO: 34:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 12 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: IM2394
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 34:

Glu Gly Gly Phe Tyr Gly Pro Lys Gly Glu Glu Leu 1 5 10

(2) INFORMATION POUR LA SEQ ID NO: 35:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 6 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: IM2394
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 35:

Ala Val Phe Gly Ala Lys

1

Revendications

- 1. Un polypeptide ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 du récepteur transferrine d'une souche de Neisseria meningitidis de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394, telle que montrée dans l'ID SEQ NO 1 ou 3, notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, à condition que le premier et deuxième domaine ne soient pas simultanément et totalement délétés.
- 2. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion partielle du troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 3. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion totale du troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 4. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; et qui comporte dans son intégralité, le deuxième domaine de la séquence dont elle est dérivée.
- 5. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum

d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394, notamment par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.

- 6. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion totale du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 7. Un polypeptide selon la revendication 4, 5 ou 6, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; et qui comporte dans son intégralité, le premier domaine de la séquence dont elle est dérivée.
- 8. Un polypeptide selon la revendication 4, 5 ou 6, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; par délétion partielle du premier domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 9. Un polypeptide selon la revendication 4 ou 5, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; par délétion totale du premier domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 10. Un polypeptide selon les revendications 2 ou 3, 4 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.

- 11. Un polypeptide selon les revendications 2 ou 3, 4 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 12. Un polypeptide selon les revendications 2 ou 3, 4 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 13. Un polypeptide selon les revendications 2 ou 3, 4 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 14. Un polypeptide selon les revendication 12, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169 par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.
- 15. Un polypeptide selon la revendication 13, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2394 par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé en position 266.
- 16. Un polypeptide selon les revendications 2 ou 3, 4 et 9, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 17. Un polypeptide selon les revendications 2 ou 3, 4 et 9, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 18. Un polypeptide selon la revendications 2 ou 3, 5 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 19. Un polypeptide selon les revendications 2 ou 3, 5 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.

- 20. Un polypeptide selon les revendications 2 ou 3, 5 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 21. Un polypeptide selon les revendications 2 ou 3, 5 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 22. Un polypeptide selon la revendication 18 ou 20, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement, au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169, par délétion de la région du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2169 allant de l'acide aminé dans l'une des positions 346 à 361 à l'acide aminé en position 543.
- 23. Un polypeptide selon la revendication 19 ou 21, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement, au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2394, par délétion de la région du deuxième domaine de ladite sous-unité Tbp2 de type IM2394 qui est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2394 allant de l'acide aminé dans l'une des positions 326 à 341 à l'acide aminé en position 442.
- 24. Un polypeptide selon la revendication 18 ou 20, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant :
 - (i) de l'acide aminé en position 362 à l'acide aminé en position 380;
 - (ii) de l'acide aminé en position 418 à l'acide aminé en position 454;
 - (iii) de l'acide aminé en position 465 à l'acide aminé en position 481; et

- (iv) de l'acide aminé en position 500 à l'acide aminé en position 520.
- 25. Un polypeptide selon la revendication 24, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues desdites régions (i) à (iv) de la sous-unité Tbp2 IM2169.
- 26. Un polypeptide selon les revendications 20 et 24 ou 25, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.
- 27. Un polypeptide selon les revendications 3, 6 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 28. Un polypeptide selon les revendications 3, 6 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 29. Un polypeptide selon les revendications 3, 6 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 30. Un polypeptide selon les revendications 3, 6 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 31. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169; par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169, notamment par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité

Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant :

- (i) de l'acide aminé en position 362 à l'acide aminé en position 379,
- (ii) de l'acide aminé en position 418 à l'acide aminé en position 444,
- (iii) de l'acide aminé en position 465 à l'acide aminé en position 481, et
- (iv) de l'acide aminé en position 500 à l'acide aminé en position 520; et

qui comporte dans leur intégralité, le premier et troisième domaine de la séquence dont elle est dérivée.

- 32. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169; par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169, notamment par délétion partielle du premier domaine et par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant:
 - (i) de l'acide aminé en position 362 à l'acide aminé en position 379,
 - (ii) de l'acide aminé en position 418 à l'acide aminé en position 444,
 - (iii) de l'acide aminé en position 465 à l'acide aminé en position 481, et
 - (iv) de l'acide aminé en position 500 à l'acide aminé en position 520; et

qui comporte dans son intégralité, le troisième domaine de la séquence dont elle est dérivée.

33. Un polypeptide selon la revendication 32, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et

troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.

- 34. Un polypeptide selon l'une des revendication 31 à 33, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, telle que montrée dans l'ID SEQ NO 1, par délétion des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues desdites régions (i) à (iv) de la sous-unité Tbp2 IM2169.
- 35. Un polypeptide selon l'une des revendications 10, 12, 14, 16, 18, 20, 22, 24 à 27, 29, et 31 à 33, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2169.
- 36. Un polypeptide selon l'une des revendications 11, 13, 15, 17, 19, 21, 23, 28 et 30, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2394.
- 37. Un polypeptide selon l'une des revendications 1 à 36, ayant une séquence qui comprend au moins 50 acides aminés.
- 38. Un fragment d'ADN isolé codant pour un polypeptide selon l'une des revendications 1 à 37.
- 39. Une composition pharmaceutique pour induire une réponse immunitaire à l'encontre de N. meningitidis, comprenant à titre de principe actif, au moins un polypeptide selon l'une des revendications 1 à 37.
- 40. Une composition pharmaceutique selon la revendication 39, qui comprend à titre de principe actif, au moins un premier et au moins un deuxième polypeptides selon l'une des revendications 1 à 37; ledit premier polypeptide ayant une séquence qui dérive de celle d'une sous-unité Tbp2 de type IM2169 et ledit deuxième polypeptide ayant une séquence qui dérive de celle d'une sous-unité Tbp2 de type IM2394.

- 41. Une composition pharmaceutique selon la revendication 40, dans laquelle ledit au moins un deuxième polypeptide est selon l'une des revendications 11, 13, 15, 19, 21, 23, 28 et 30.
- 42. Une composition pharmaceutique selon la revendication 41, dans laquelle ledit au moins un deuxième polypeptide est selon l'une des revendications 11, 19, 23 et 28.
- 43. Une composition pharmaceutique selon la revendication 40, 41 ou 42, dans laquelle ledit au moins un deuxième polypeptide a une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2394.
- 44. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 10, 12, 14, 18, 20, 22, 27 et 29.
- 45. Une composition pharmaceutique selon la revendication 44, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 10, 18, 22 et 27.
- 46. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 31 à 34.
- 47. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un un premier polypeptide est selon la revendication 16.
- 48. Une composition pharmaceutique selon l'une des revendications 44 à 47, dans laquelle ledit au moins un premier polypeptide a une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2169.
- 49. Une composition pharmaceutique selon la revendication 47, qui comprend au moins un troisième polypeptide qui est selon la revendication 16.
- 50. Un anticorps monoclonal:
 - (i) capable de reconnaître un épitope présent dans le premier domaine d'une sousunité Tbp2 de type IM2169 ou IM2394; ledit épitope ayant une séquence homologue à celle présente dans le premier domaine de la sous-unité Tbp2 de

la souche IM2394 et sélectionnée parmi YKGTW, EFEVDFSDKTIKGTL, EGGFYGPKGEEL et AVFGAK; et de manière optionnelle,

- (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, dont la séquence est homologue à celle de l'épitope du premier domaine qui est reconnu.
- 51. Un anticorps monoclonal selon la revendication 50,
 - (i) capable de reconnaître la région présente dans le premier domaine d'une sousunité Tbp2 de type IM2169 ou IM2394 dont la séquence est homologue à la séquence EGGFYGPKGEEL présente dans le premier domaine de la sousunité Tbp2 de la souche IM2394; et de manière optionnelle,
 - (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, épitope équivalent de celui qui est reconnu, dont la séquence est homologue à la séquence SGGFYGKNAIEM présente dans le troisième domaine de la sous-unité Tbp2 de la souche IM2394.
- 52. Un anticorps monoclonal selon la revendication 51,
 - (i) capable de reconnaître l'épitope GFYGPK, présent dans le premier domaine d'une sous-unité Tbp2 de la souche IM2394; et
 - (ii) incapable de reconnaître l'épitope équivalent présent dans le troisième domaine de ladite sous-unité Tbp2 IM2394.
- 53. Une composition pharmaceutique pour traiter par immunothérapie passive une infection à N. meningitidis, qui comprend à titre de principe actif, un anticorps monoclonal selon l'une des revendications 50 à 52.

EEUILLE GECTIFIÉE

1 1-11-

TT.

- T.

- 20. Un polypeptide selon les revendications 2 ou 3, 5 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 21. Un polypeptide selon les revendications 2 ou 3, 5 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 22. Un polypeptide selon la revendication 18 ou 20, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement, au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169, par délétion de la région du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2169 allant de l'acide aminé dans l'une des positions 346 à 361 à l'acide aminé en position 543.
- 23. Un polypeptide selon la revendication 19 ou 21, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement, au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2394, par délétion de la région du deuxième domaine de ladite sous-unité Tbp2 de type IM2394 qui est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2394 allant de l'acide aminé dans l'une des positions 326 à 341 à l'acide aminé en position 442.
- Un polypeptide selon la revendication 18 ou 20, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant :
 - (i) de l'acide aminé en position 362 à l'acide aminé en position 379 ;
 - (ii) de l'acide aminé en position 418 à l'acide aminé en position 444 ;
 - (iii) de l'acide aminé en position 465 à l'acide aminé en position 481; et

IM2169 ===== M978

10 CLGGGGSFDL	20 DSVDTEAPRPA		KPQAQKDQ			60 ESEVKLNESDW
CLGGGGTFDL	DSVDTEAPRPA 20		KPQAQKDQ	GYGFAMRLK	RRNWHPQANPK	EDEIKLSENDW
	ELPKRQKSVII	EKVETDGDSD				130 GHENFQYVYSG
			IYSSPYLT	SNHQNGSA-1		DYKEFKYVYSG 130
WFYKHAASE-					190 GVWHFVTDTKK	200 GQDFREIIQPS
WFYKHAKLEI						GQKFNDILGTS 200
	220 SGDGSEEYSNI		240 EGYGFTSNI		260 Igklirnnasl =======	270 NNNTNNDKHTT
			EGYGFTSNI 240	LKVDFNKKKL 250	IGELIRNN-RV 260	TNATANDKYTT 270
_	290 GNRFNGTATA'					340 DDQKVAVVGSA
			QHPFVSDSS 310	SSLSGGFFGP 320	KGEELGFRFLS 330	NDQKVAVVGSA 340
					400 DKKIKNLDNFS	410 NAAQLVVDGIM
						NAAQLVVDGIM 410
420 IPLLPKDSES		NGG-TE -== =-=-			460 QAGTQ-TNGAQ =-= ===	470 TASNTAGDTNG
IPLLPETSES 420				PKNDDKDTKA 460	QTGAAGSSGAQ 470	TDLGKADVNGG 480
480 KTKTYEVE	490 VCCSNLNYLK	500 YGMLTRKNSK	51(SAMQAGGN:		VEQSMFLQGE	540 RTDEKEIPTDQN
KAETKTYEVE 490	VCCSNLNYLK 500	YGMLTRKNSK 510	SAMQAGGN: 520	SSQADAKTEQ 530	VEQSMFLQGEF 540	RTDEKEIPNDQN 550

Taring in the second se

690 FGAKRQQPVQ ======= FGAKRQQPVQ 700

IM2169 ====== 6940

CLGGGG				40 QKDQGGYGFAM			
CLGGGG				QKDQGGYGFAM 40			
				110 YLTPSNHQNGS			YVYSGW
				YLTQSNHQNSS 110			TYVYSGW 140
FYKHAA:	150 SEKDFSN = =		170 GYIFYHGEKP ========	SRQLPASGKVI	190 YKGVWHFVTI		IIQPSK
FYKHAKI	NEIIRENSS 150	SIKGAKNGDD 160	GYIFYHGKEP 170	SRQLPASGTVT 180	YKGVWHFATI 190	VKKSQNFRD 200	DIIQPSK 210
210 KQGDRY		230 EEYSNKNEST		250 TSNLEVDFGNK			
KQGDRY				TSNLEVDFGSK 250			DKYTTQ
280 YYSLDA	290 QITGNRFNO	300 STATATDKKE		0 320 SDSSSLSGGFF	GPQGEELGFF	RFLSDDQKVA	VVGSAK
YYSLDA	QITGNRFNO 290	SKAIRTDKPD 300	IGGTKLHPFV 310	SDSSSLSGGFF 320	GPKGEELGFF 330	RFLSDDKKVA 340	
350 TKDKLEI	290 360 NGAAASGS1	300 37 IGAAASGGAA	310 0 38 GTSSENSKLT	SDSSSLSGGFF 320 0 390 TVLDAVELTLN	330 400 DKKIKNLDNI	340	.0 GIMIPL
350 TKDKLEI	290 360 NGAAASGST	300 37 GAAASGGAA = ==== ===	310 0 38 GTSSENSKLT	SDSSSLSGGFF 320 0 390	330 400 DKKIKNLDNI	340) 41 FSNAAQLVVI	.0 OGIMIPL
350 TKDKLEI ==== =: TKDKTEI	290 360 NGAAASGST === ===== NGAVASGGT 360 430 SGNTQADKO	300 37 TGAAASGGAA = ==== === TDAAASNGAA 370 344 GKNGGTEFTR	310 0 38 GTSSENSKLT GTSSENSKLT 380 0 45 KFEHTPESDK	SDSSSLSGGFF 320 0 390 TVLDAVELTLN TVLDAVELKLG 390 0 460 KKDAQAGTQTNG	330 400 DKKIKNLDNE == - ==== DKEVQKLDNE 400 470 AQTASNTAGE	340) 41 FSNAAQLVVI FSNAAQLVVI 410) 48	O DGIMIPL DGIMIPL
350 TKDKLEI TKDKTEI 420 LPKDSE	290 360 NGAAASGS7 HE H	300 37 GAAASGGAA TDAAASNGAA 370 44 GKNGGTEFTR	310 0 38 GTSSENSKLT GTSSENSKLT 380 0 45 KFEHTPESDK	SDSSSLSGGFF 320 0 390 TVLDAVELTLN TVLDAVELKLG 390	400 DKKIKNLDNI == - ==== DKEVQKLDNI 400 470 AQTASNTAGI	340) 41 FSNAAQLVVI FSNAAQLVVI 410) 48 DTNGKTKTYE	O OGIMIPL OGIMIPL
350 TKDKLEI TKDKTEI 420 LPKDSE: LPEASE: 490 NLNYLK	290 360 NGAAASGST HE NGAVASGGT 360 430 SGNTQADKO HE SGNNQANQO 430 500 YGMLTRKNS	300 37 GAAASGAA TGAAASNGAA 370 370 44 GKNGGTEFTR TTNGGTAFTR 440 51 SKSAMQAGGN	310 0 38 GTSSENSKLT GTSSENSKLT 380 0 45 KFEHTPESDK = KFDHTPESDK 450 0 52 SSQADAKTEQ	SDSSLSGGFF 320 0 390 TVLDAVELTLN TVLDAVELKLG 390 0 460 KKDAQAGTQTNG 460 KKDAQAGTQTNG 460 0 530 EVEQSMFLQGER	400 DKKIKNLDNE DKEVQKLDNE 400 470 AQTASNTAGE AQTASNTAGE 470 540	340) 41 FSNAAQLVVI FSNAAQLVVI 410) 48 DTNGKTKTYE 2TNGKTKTYE 480) 55	O COUNTY OF THE PROPERTY OF TH
350 TKDKLEI TKDKTEI 420 LPKDSE: LPEASE: 490 NLNYLK	290 360 MGAAASGST 360 430 SGNTQADKO SGNTQADKO 430 500 430	300 37 GAAASGAA TDAAASNGAA 370 370 44 GKNGGTEFTR THRGTAFTR 440 51 GKSAMQAGGN	310 0 38 GTSSENSKLT GTSSENSKLT 380 0 45 KFEHTPESDK 450 0 52 SSQADAKTEQ	SDSSLSGGFF 320 0 390 TVLDAVELTLN TVLDAVELKLG 390 0 460 KKDAQAGTQTNG 460 KKDAQAGTQTNG 460	400 DKKIKNLDNE DKEVQKLDNE 400 470 AQTASNTAGE 470 540 TTDEKEIPTO	340) 41 FSNAAQLVVE FSNAAQLVVE 410) 48 DTNGKTKTYE 2TNGKTKTYE 480) 55	O O O O O O O O O O O O O O O O O O O
350 TKDKLEI ====================================	290 360 NGAAASGST 360 430 SGNTQADKO 430 500 YGMLTRKNS SGMLTRKNS 500 0 SGNASDKEGO	300) 37 IGAAASGGAA = ==== ============================	310 0 38 GTSSENSKLT GTSSENSKLT 380 0 45 KFEHTPESDK 450 0 52 SSQADAKTEQ 520 580 ADKKITGKLT	SDSSLSGGFF 320 0 390 TVLDAVELTLN TVLDAVELKLG 390 0 460 KKDAQAGTQTNG 460 KKDAQAGTQTNG 460 VEQSMFLQGER 530	330 400 DKKIKNLDNE ————— DKEVQKLDNE 400 470 AQTASNTAGI 470 540 TDEKEIPTO 540 540 600 EGMIQGNGFI	340) 41 FSNAAQLVVI 410) 48 OTNGKTKTYE 480) 55 ONVVYRGSWY 550	O O O O O O O O O O O O O O O O O O O

1.22 .25

22270 5

IM2169 ====== S3032

10 CLGGGG-SFDLI	20 SVDTEAPRPAP	30 KYQDVSSEKP	40 QAQKDQGGYO			
CLGGGGGSFDLI	SVDTEAPRPAP 20	KYQDVSSEKP 30	QAQKDQGGY(40		YPSAKENEVK 60	
80 ATGLPTKPKELE	90 PKRQKSVIEKVE		YSSPYLTPS	VHQNGSAGNGV		-
TTGLPSNPKNLI						KNFKYVY 140
140 SGWFYKHAASER			170 EKPSRQLPA:	180 SGKVIYKGVWH ===- =====		200 FREIIQP
SGWFYKHAKREN 150	NLAVEPKIAKN 160	GDDGYIFYHG 170	KDPSRQLPA: 180	SGKITYKGVWI 190	IFATDTKRGQK 200	FREIIQP 210
210 SKKQGDRYSGFS	SGDGSEEYSNKN				LIRNNASLNNN	270 TNNDKHT
SKNQGDRYSGFS					LIRNNANQNNN 270	TNNDKHT 280
280 TQYYSLDAQITO		300 K-KEN-ETKL = = === :		320 LSGGFFGPQGI	330 EELGFRFLSDD	340 QKVAVVG
TQYYSLDATLKO				LSGGFFGPQGI 330	EELGFRFLSND 340	QKVAVVG 350
350 SAKTKDKLENG-	360 -AA-ASGSTGAA		380 Ensklttvl		400 KIKNLDNFSNA	410 AQLVVDG
SAKTKDKPANGE 360	NTAEASGGTDAA 370				AIKNLDNFSNA 410	AQLVVDG 420
420 IMIPLLPKDSES	430 SGNTQADKGKNG		450 TPESDKKDA	460 QAGTQTNGAQ	470 TASNTAGDTNG	480 KTKTYEV
IMIPLLPQNSTO				KAQTVTGGTQ 470	TASNTAGDANG 480	KTKTYEV 490
490 EVCCSNLNYLK	500 YGMLTRKNSKSA	510 MQAGGNSSQA	520 DAKTEQVEQ	530 SMFLQGERTD	540 EKEIPTDQNVV = =====	
EVCCSNLNYLKY 500	==-=== YGLLTRKTAGNT 510	= = = VGSGNSSPTA 520	=	SMFLQGERTD	ENKIPSEQNVV 550	
560 HIANGTSWSGN	570 ASDKEGGNRAEF	580 TVNFADKKIT	590 GKLTAENRQ	600 AQTFTIEGMI	610 QGNGFEGTAKT	620 AESGFDL
HIASSTSWSGN	ASDKEGGNRAEF	TVNFGEKKIT 590	GTLTAENRQ 600	EATFTIDGKI		

630	640	650	660	670	680	690
DOKNTTRTPKAYI	TDAKVKGGFYGP	KAEELGGWFA	YPGDKQTEK	ATATSSDGNS.	ASSATVVFGA	KRQQPVQ
			= ==== =	== -=-===		======
DOKNTTRTPKAYI	TDAKVKGGFYGP	KAEELGGWFA	YSDDKQTKN/	atdasgngns.	ASSATVVFGA	KRQQPVQ
640	650	660	670	680	690	

19712 --

	10 20 30 40 50 60	
3	346 361 380	
1	TKDKLENGAAASGSTG AAASGGAAGTSSENSKLT TVLDAVELTLNDKKIKNLDNFSNA	58
2	TKDKTENGAVASGGTD AAASNGAAGTSSENSKLT TVLDAVELKLGDKEVQKLDNFSNA	58
3	TKDKTENGAVASGGTDAAASNGAAGTSSENSKLTTVLDAVELKLGDKEVQKLDNFSNA	58
4	TQDKPRNGAVASGGTG AARSNGAAGQSSENSKLT TVLDAVELTLNDKKIKNLDNFSNA	58
5	TQDKAANGNTAAASGGTD AAASNGAAGTSSENSKLT TVLDAVELTLNDKKI KNLDNFSNA	60
6	KRDKAESGGGNGASGGTD AAASNGAAGTSSENSKLT TVLDAVELKSGGKEVKNLDNFSNA	60
7	TKDKPRNGAVASGGTDAAASNGAAGTSSENGKLTTVLDAVELTLNDKKI KNLDNFSNA	58
8	TKDKPANGNTAEASGGTDAAASGGAAGTSSENSKLTTVLDAVELTHGGTAI KNLDNFSNA	60
9 C	TKDKPGNGARLQAARCGTSNGAAGQSSENSKLTTVLDAVELKLGDKEVQKLDNFSNA	57
C	*+DK::*G+:+:*****+S+GAAG+SSEN*KLTTVLDAVEL:+:+*::++LDNFSNA	
	70 80 90 100 110 120	
	417 445	
1	AQLVVDGIMIPLLPKDSESGNTQADKGKNGGTEFTRKFEHTPESDKKDAQAGTQ	112
2	AQLVVDGIMIPLLPEASESGNNQANQGTNGGTAFTRKFDHTPESDKKDAQAGTQ	112
3	AQLVVDGIMIPLLPEASESGNNQANQGTNGGTAFTRKFDHTPESDKKDAQAGTQ	112
4	AQLVVDGIMIPLLPEASESGKNQANQGTNGGTAFTRKFNETPKSDEKDTQAGTA	112
5	AQLVVDGIMIPLLPETSESGSNQADKGKKGKNGKNGGTDFTYKTTYTPKNDDKDTKAQTG	120
6	AQLVVDGIMIPLLPKDSESGNTQADKGKNGGTKFTRKFEHTPESDKKDAQAGTQ	114
7	AQLVVSGIMIPLMPETSESGNNQADKGKNGGTAFTRKFDETPKSDEKDTQAGTP	112
8	AQLVVDGIMIPLLPQNSTGKNNQPDQGKNGGTAFIYKTTYTPKNDDKDTKAQTV	114
9	AQLVVDGIMIPLLP KDSESGKNQADKGKNGETEFTRKFEHT PESDEKDAQAGTP	111
С	AQLVV*GIMIPL*P:.S***++Q*+:G: NG*T:F*+K+.+TP:+D:KD:+A+T:	
	130 140 150 160 170 180	
	465 482 499	
1	TNGAQTASNTAGDTNGRTRTYEVEVCCSNLNYLKYGMLTRKNSRSAMQAGGNSSQ	167
2	TNGAQTASNTAGDTNGKTKTYEVEVCCSNLNYLKYGMLTRKNSKSAMQAGESSSQ	167
3	ANGAQTASNTAGDTNGKTKTYEVEVCCSNLNYLKYGMLTRKNSKSAMQAGESSSQ	167
4	ENGNPAASNTAGDANGRTRTYEVEVCCSNLNYLKYGMLTRKNSKSAMQAGESSSQ	167
5	AAGSSGAQTDLGKADVNGGKAETKTYEVEVCCSNLNYLKYGMLTRKNSKSAMQAGGNSSQ	180
6	TNGAQTASNTAGDTNGKTKTYEVEVCCSNLNYLKYGLLTRKTAGNTGEGGNGSQT	169
7	TNGAQTASGTAGVTGGQAGKTYAVEVCCSNLNYLKYGLLTRKTADNTVGSGNGSST	168
8	TGGTQTASNTAGDANGKTKTYEVEVCCSNLNYLKYGLLTRKTAGNTVGSGNSSPT	169
9	SNGAQTASNTAGDTNGRTRTYEVNLC-SNLNYLKYGLLTRKTAGNTGEGGNSSPT	165
С	:+G+++A*+**G+++*++. KTY*V**C*SNLNYLKYG:LTRK:::::::G::S+:	
	190 200 210	
	521	
1	ADAKTEQVEQSMFLQGERTDEKEI PTDQ-NVV	198
2	ADAKTEQVEQSMFLQGERTDEKEIPSEQ-NIV	198
3	ADAKTEQVGQSMFLQGERTDEKEIPSEQ-NIV	198
4	ADAKTEQVGQSMFLQGERTDEKEIPNDQ-NVV	198
5	ADAKTEQVEQSMFLQGERTDEKEIPNDQ-NVV	211
6	AAAQTAQGAQSMFLQGERTDEKEIPSEQ-NVV	200
7	AAAQTAQG AQSMFLQGERTDEKEIPKEQQDIV	200
8	AAAQTDAQSMFLQGERTDENKIPSEQ-NVV	198
9	AA-QTAQGAQSMFLQGERTDEKEIPNDQ-NVV	195
С	A:*:T:*::QSMFLQGERTDE**IP::Q *+V	

BERNASCONI et VIGIER
13, bd des Batignolles
75.037.035

Figure 5

:3

Figure 6

BERNASCONI et VIGIER
13, bd des Batignolles
75008 PARIS

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
DEBLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)