Introdução Otimização Combinatória usando Linguagem de Programação Julia

Amanda Ferreira de Azevedo

Universidade Federal do Rio de Janeiro

13 de setembro de 2021

$$\min \{cx : Ax \le b, x \ge 0\}$$

- ► Função objetivo
- Restrições
- Variáveis de decisão

Definição

$$\min \{cx : Ax \le b, x \ge 0\}$$

- ► Função objetivo
- Restrições
- ▶ Variáveis de decisão

Definição

$$\min \{cx : Ax \le b, x \ge 0\}$$

- Função objetivo
- Restrições
- Variáveis de decisão

Definição

$$\min \{cx : Ax \le b, x \ge 0\}$$

- Função objetivo
- Restrições
- Variáveis de decisão

Definição

$$\min \{cx : Ax \le b, x \ge 0\}$$

- Função objetivo
- Restrições
- Variáveis de decisão

Definição

Programação Inteira

Definição

COP pode ser formulada como um problema de programação inteira (linear) ou programação inteira binária.

$$\max x + y$$

$$x - y < 0$$

$$-x + 3 \ge 0$$

$$x \ge 0, y \ge 0, x, y \in Z$$

Definição

O problema das N-Rainhas envolve colocar N rainhas em um tabuleiro de xadrez N \times N de forma que nenhuma das rainhas ataque a outra.

- Número total de rainhas: N
- Movimentos: vertical, horizontal e diagonal

Definição

O problema das N-Rainhas envolve colocar N rainhas em um tabuleiro de xadrez N \times N de forma que nenhuma das rainhas ataque a outra.

- Número total de rainhas: N
- Movimentos: vertical, horizontal e diagonal

Definição

O problema das N-Rainhas envolve colocar N rainhas em um tabuleiro de xadrez N \times N de forma que nenhuma das rainhas ataque a outra.

- Número total de rainhas: N
- Movimentos: vertical, horizontal e diagonal

Figure 1: Solução ótima: tabuleiro 8×8

N-Queens

Figure 2: Restrições

Motivação

1	1	1
2	0	0
3	0	0
4	1	2
5	2	10
6	1	4
7	6	40
8	12	92
9	46	352
10	92	724
11	341	2,680
12	1,787	14,200
13	9,233	73,712
14	45,752	365,596
15	285,053	2,279,184
16	1,846,955	14,772,512
17	11,977,939	95,815,104
18	83,263,591	666,090,624
19	621,012,754	4,968,057,848
20	4,878,666,808	39,029,188,884

 Soluções fundamentais: sem simetrias (rotação e reflexão)

Problemas Relacionados

- Usar outras peças de xadrez;
- Resolver o problema do quadrado mágico
- Problema de dominação: número mínimo para ocupar e atacar todos os possíveis espaço.

Problemas Relacionados

- Usar outras peças de xadrez;
- Resolver o problema do quadrado mágico;
- Problema de dominação: número mínimo para ocupar e atacar todos os possíveis espaço.

Problemas Relacionados

- Usar outras peças de xadrez;
- Resolver o problema do quadrado mágico;
- Problema de dominação: número mínimo para ocupar e atacar todos os possíveis espaço.

▶ Variável $X_{ij} \in \{0,1\}$: 1 se uma rainha estiver na posição (i,j), 0 caso contrário.

Variável $X_{ij} \in \{0,1\}$: 1 se uma rainha estiver na posição (i,j), 0 caso contrário.

Variável $X_{ij} \in \{0,1\}$: 1 se uma rainha estiver na posição (i,j), 0 caso contrário.

Variável $X_{ij} \in \{0,1\}$: 1 se uma rainha estiver na posição (i,j), 0 caso contrário.

		₩	
₩			
			₩
	₩		

$$\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)$$

► Função Objetivo: Maximizar o número de rainhas em um tabuleiro *N* × *N*.

$$\max \sum_{i=1}^{N} \sum_{i=1}^{N} X_{ij}$$

► Função Objetivo: Maximizar o número de rainhas em um tabuleiro *N* × *N*.

$$\max \ \sum_{i=1}^N \sum_{j=1}^N X_{ij}$$

▶ Só podemos ter exatamente uma rainha na horizontal

$$\sum_{i=1}^{N} X_{ij} \le 1 \qquad j = 1, \dots, N$$

$$\sum_{i=1}^{N} X_{ij} \le 1 \qquad i = 1, \dots, N$$

▶ Só podemos ter exatamente uma rainha na horizontal

$$\sum_{i=1}^{N} X_{ij} \le 1 \qquad j = 1, \dots, N$$

$$\sum_{i=1}^{N} X_{ij} \le 1 \qquad i = 1, \dots, N$$

Só podemos ter exatamente uma rainha na horizontal

$$\sum_{i=1}^{N} X_{ij} \le 1 \qquad j = 1, \dots, N$$

$$\sum_{i=1}^{N} X_{ij} \le 1 \qquad i = 1, \dots, N$$

▶ Só podemos ter exatamente uma rainha na horizontal

$$\sum_{i=1}^{N} X_{ij} \leq 1 \qquad j = 1, \dots, N$$

$$\sum_{j=1}^{N} X_{ij} \le 1 \qquad i = 1, \dots, N$$

▶ Só podemos ter exatamente uma rainha na diagonal positiva

$$\underbrace{\sum_{i=1}^{N}\sum_{j=1}^{N}X_{ij}}_{i-j=k}X_{ij}\leq 1 \qquad k=-(N-2),\ldots,N-2$$

		k =	= i-j =	= -	2	k =	= i-j	= -1		k = i - j = 2			2
Γ0	0	1	0^{-}	` 	0	0	1	0 -]	Г Ó	0	1	0
1	0	0	0		1	0	0	0 0		1	0	0	0
0	0	0	1		0	0	0	1)		0	0	0	1
0	1	0	0		0	1	0	0		0	1	0	0

▶ Só podemos ter exatamente uma rainha na diagonal negativa

$$\sum_{\substack{i=1\\i+j=k}}^{N}\sum_{j=1}^{N}X_{ij}\leq 1 \qquad k=3,\ldots,2N-1$$

k = i +	k	k =			
Γ <u>0</u> 0	1	0	٦	[0	0
1/0	0	0		1	0
0 0	0	1		0	0
0 1	0	0		[0	1

$$\begin{bmatrix} k = i+j = 4 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} k = i+j = 7 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$