

Introduzione e modellistica dei sistemi

Modellistica dei sistemi dinamici meccanici

Modellistica dei sistemi dinamici meccanici

- Sistemi meccanici in traslazione: elementi base
- Sistemi in traslazione: equazioni del moto
- Sistemi in traslazione: rappresentazione di stato
- Sistemi in traslazione: esempi di rappresentazione
- Sistemi meccanici in rotazione: elementi base
- Sistemi in rotazione: equazioni del moto
- Sistemi in rotazione: rappresentazione di stato
- Sistemi in rotazione: esempi di rappresentazione

Modellistica dei sistemi dinamici meccanici

Sistemi meccanici in traslazione: elementi base

Corpo puntiforme in traslazione

➤ Corpo puntiforme in traslazione di massa *M*

$$F_{1} \qquad M\ddot{p}(t) = F_{1}(t) - F_{2}(t)$$

La II legge di Newton dà l'equazione del moto:

$$M\ddot{p}(t) = M\frac{d^2p(t)}{dt^2} = F(t) = \sum_i F_i(t)$$

in cui $F_i(t)$ sono le forze esterne agenti sul corpo:

- Positive se concordi con il sistema di riferimento
- Negative altrimenti

Unità di misura: [F] = N, [p] = m, [M] = kg

Molla ideale

➤ Molla ideale di coefficiente di elasticità K

La forza elastica della molla è data da:

$$F(t) = K \left[p_{+}(t) - p_{-}(t) \right]$$

 \Rightarrow è proporzionale allo spostamento relativo delle due estremità della molla (p_+ e p_- sono le posizioni delle due estremità rispetto alla posizione di riposo)

Unità di misura: [F] = N, [p] = m, [K] = N/m

Smorzatore ideale

ightharpoonup Smorzatore ideale di smorzamento β

La forza di attrito dovuta allo smorzatore vale:

$$F(t) = \beta \left[v_{+}(t) - v_{-}(t) \right] = \beta \left[\dot{p}_{+}(t) - \dot{p}_{-}(t) \right]$$

⇒ è proporzionale alla velocità relativa dei due elementi che compongono lo smorzatore stesso

Unità di misura: [F] = N, $[\dot{p}] = m/s$, $[\beta] = Ns/m$

Modellistica dei sistemi dinamici meccanici

Sistemi in traslazione: equazioni del moto

Equazioni del moto per sistemi in traslazione

Si introducono assi di riferimento concordi fra loro per indicare le posizioni di ogni corpo in traslazione

y(t) = Cx(t)

Per ogni massa M_i (o punto materiale in traslazione avente $M_i = 0$), con posizione p_i e velocità $v_i = \dot{p}_i$, vale la seconda legge di Newton espressa come:

$$M_j \ddot{p}_j(t) = \sum_k F_k^{est}(t) - \sum_j^{j \neq i} F_{ij}^{int}(t)$$

- Le **forze esterne** F_k^{est} tengono conto dell'azione del mondo esterno sull'elemento M_i e compaiono con
 - Segno positivo se concordi con gli assi di riferimento
 - Segno negativo altrimenti

Equazioni del moto per sistemi in traslazione

Si introducono assi di riferimento concordi fra loro per indicare le posizioni di ogni corpo in traslazione

y(t) = Cx(t)

Per ogni massa M_i (o punto materiale in traslazione avente $M_i = 0$), con posizione p_i e velocità $v_i = \dot{p}_i$, vale la seconda legge di Newton espressa come:

$$M_j \ddot{p}_j(t) = \sum_k F_k^{est}(t) - \sum_j^{j \neq i} F_{ij}^{int}(t)$$

• Le **forze interne** F_{ij}^{int} tengono conto dell'interazione tra l'elemento M_i considerato e gli altri corpi M_i tramite:

Molle ideali
$$K_{ij}$$
 $\Rightarrow F_{ij}^{int}(t) = K_{ij} [p_i(t) - p_j(t)]$

$$igoplus$$
Smorzatori ideali $eta_{ij} \Rightarrow F_{ij}^{int}(t) = eta_{ij} \left[\dot{p}_i(t) - \dot{p}_j(t) \right]$

Interpretazione delle equazioni del moto

Nell'equazione del moto dell'elemento M_i

$$M_{i}\ddot{p}_{i}(t) = \sum_{k} F_{k}^{est}(t) - \sum_{j}^{j \neq i} F_{ij}^{int}(t)$$

- Le forze esterne F_k^{est} trasmettono direttamente il moto a $M_i \Rightarrow$ ne incrementano o riducono la forza d'inerzia, a seconda del loro verso di applicazione
- Le forze interne F_{ij}^{int} trasmettono invece il moto agli altri corpi M_j tramite molle o smorzatori ⇒ riducono la forza d'inerzia di M_i

Modellistica dei sistemi dinamici meccanici

Sistemi in traslazione: rappresentazione di stato

Rappresentazione in variabili di stato (1/2)

- Si scrivono le **equazioni del moto** per ogni corpo puntiforme di massa M_i (eventualmente nulla) in traslazione, avente posizione p_i e velocità $v_i = \dot{p}_i$
- ightharpoonup Si introducono due **variabili di stato** per ogni elemento M_i in traslazione, scegliendo in particolare
 - \bullet La posizione p_i
 - La velocità p_i

Tale scelta permette di trasformare ogni equazione del moto (equazione differenziale del II ordine) in una coppia di equazioni differenziali del I ordine

Si associa una variabile di ingresso ad ogni forza esterna applicata al sistema meccanico in traslazione

Rappresentazione in variabili di stato (2/2)

Si ricavano le equazioni di stato del tipo

$$\dot{X}_{i}(t) = \frac{dX_{i}(t)}{dt} = f_{i}(t, X(t), U(t))$$

a partire dalle precedenti equazioni del moto, esprimendo \dot{x}_{i} soltanto in funzione di variabili di stato e di ingresso, se necessario esplicitando il legame di derivazione temporale fra variabili di stato

Si ricavano le equazioni di uscita del tipo

$$y_k(t) = g_k(t, x(t), u(t))$$

esprimendo ogni variabile di interesse y_k soltanto in funzione di variabili di stato e di ingresso

Modellistica dei sistemi dinamici meccanici

Sistemi in traslazione: esempi di rappresentazione

Esempio #1 di rappresentazione (1/10)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico in traslazione, in cui le variabili di interesse sono le posizioni p_1 e p_2

Equazioni del moto:

1)
$$M_1\ddot{p}_1 = 0 - [K_1(p_1-0) + \beta_1(\dot{p}_1-0) + K_{12}(p_1-p_2) + \beta_{12}(\dot{p}_1-\dot{p}_2)]$$

2)
$$M_2\ddot{p}_2 = F - [K_2(p_2 - 0) + \beta_2(\dot{p}_2 - 0) + K_{12}(p_2 - p_1) + \beta_{12}(\dot{p}_2 - \dot{p}_1)]$$

Esempio #1 di rappresentazione (2/10)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico in traslazione, in cui le variabili di interesse sono le posizioni p_1 e p_2

Variabili di stato:

$$X(t) = [p_1(t) \ p_2(t) \ \dot{p}_1(t) \ \dot{p}_2(t)]^T = [x_1(t) \ x_2(t) \ x_3(t) \ x_4(t)]^T$$

Esempio #1 di rappresentazione (3/10)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico in traslazione, in cui le variabili di interesse sono le posizioni p_1 e p_2

y(t) = Cx(t)

Variabile di ingresso:

$$u(t) = [F(t)]$$

Esempio #1 di rappresentazione (4/10)

Equazioni del moto:

1)
$$M_1\ddot{p}_1 = 0 - \left[K_1(p_1-0) + \beta_1(\dot{p}_1-0) + K_{12}(p_1-p_2) + \beta_{12}(\dot{p}_1-\dot{p}_2)\right]$$

2)
$$M_2\ddot{p}_2 = F - \left[K_2(p_2 - 0) + \beta_2(\dot{p}_2 - 0) + K_{12}(p_2 - p_1) + \beta_{12}(\dot{p}_2 - \dot{p}_1)\right]$$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} p_1(t) \\ p_2(t) \\ \dot{p}_1(t) \\ \dot{p}_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix}, \qquad u(t) = [F(t)]$$

$$\dot{x}_1 = dp_1/dt = \dot{p}_1 = x_3 = f_1(t, x, u)$$

 $\dot{x}_2 = dp_2/dt = \dot{p}_2 = x_4 = f_2(t, x, u)$

Esempio #1 di rappresentazione (5/10)

Equazioni del moto:

1)
$$M_1\ddot{p}_1 = 0 - \left[K_1(p_1-0) + \beta_1(\dot{p}_1-0) + K_{12}(p_1-p_2) + \beta_{12}(\dot{p}_1-\dot{p}_2)\right]$$

y(t) = Cx(t)

2)
$$M_2\ddot{p}_2 = F - \left[K_2(p_2 - 0) + \beta_2(\dot{p}_2 - 0) + K_{12}(p_2 - p_1) + \beta_{12}(\dot{p}_2 - \dot{p}_1)\right]$$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} p_1(t) \\ p_2(t) \\ \dot{p}_1(t) \\ \dot{p}_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix}, \qquad u(t) = [F(t)]$$

$$\dot{X}_{3} = d\dot{p}_{1}/dt = \ddot{p}_{1} = -\frac{1}{M_{1}} \left[K_{1}p_{1} + \beta_{1}\dot{p}_{1} + K_{12}(p_{1} - p_{2}) + \beta_{12}(\dot{p}_{1} - \dot{p}_{2}) \right] = \\
= -\frac{K_{1} + K_{12}}{M_{1}} X_{1} + \frac{K_{12}}{M_{1}} X_{2} - \frac{\beta_{1} + \beta_{12}}{M_{1}} X_{3} + \frac{\beta_{12}}{M_{1}} X_{4} = f_{3}(t, x, u)$$

Esempio #1 di rappresentazione (6/10)

Equazioni del moto:

1)
$$M_1\ddot{p}_1 = 0 - \left[K_1(p_1-0) + \beta_1(\dot{p}_1-0) + K_{12}(p_1-p_2) + \beta_{12}(\dot{p}_1-\dot{p}_2)\right]$$

2)
$$M_2\ddot{p}_2 = F - \left[K_2(p_2 - 0) + \beta_2(\dot{p}_2 - 0) + K_{12}(p_2 - p_1) + \beta_{12}(\dot{p}_2 - \dot{p}_1)\right]$$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} p_1(t) \\ p_2(t) \\ \dot{p}_1(t) \\ \dot{p}_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix}, \qquad u(t) = [F(t)]$$

$$\dot{x}_{4} = d\dot{p}_{2} / dt = \ddot{p}_{2} = \frac{F}{M_{2}} - \frac{1}{M_{2}} \left[K_{2} p_{2} + \beta_{2} \dot{p}_{2} + K_{12} (p_{2} - p_{1}) + \beta_{12} (\dot{p}_{2} - \dot{p}_{1}) \right] = \frac{K_{12}}{M_{2}} x_{1} - \frac{K_{2} + K_{12}}{M_{2}} x_{2} + \frac{\beta_{12}}{M_{2}} x_{3} - \frac{\beta_{2} + \beta_{12}}{M_{2}} x_{4} + \frac{1}{M_{2}} u = f_{4} (t, x, u)$$
20

Esempio #1 di rappresentazione (7/10)

Equazioni del moto:

1)
$$M_1\ddot{p}_1 = 0 - \left[K_1(p_1-0) + \beta_1(\dot{p}_1-0) + K_{12}(p_1-p_2) + \beta_{12}(\dot{p}_1-\dot{p}_2)\right]$$

2)
$$M_2\ddot{p}_2 = F - \left[K_2(p_2-0) + \beta_2(\dot{p}_2-0) + K_{12}(p_2-p_1) + \beta_{12}(\dot{p}_2-\dot{p}_1)\right]$$

Variabili di stato e di ingresso:

$$X(t) = \begin{bmatrix} \rho_1(t) \\ \rho_2(t) \\ \dot{\rho}_1(t) \\ \dot{\rho}_2(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \\ X_3(t) \\ X_4(t) \end{bmatrix}, \qquad u(t) = [F(t)]$$

Equazioni di uscita:

$$y_1 = p_1 = x_1 = g_1(t, x, u)$$

 $y_2 = p_2 = x_2 = g_2(t, x, u)$ $y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$

Esempio #1 di rappresentazione (8/10)

ightharpoonup Equaz. di stato: $(\dot{x}_1 = x_3)$

$$\begin{cases} \dot{X}_{1} = X_{3} \\ \dot{X}_{2} = X_{4} \\ \dot{X}_{3} = -\frac{K_{1} + K_{12}}{M_{1}} X_{1} + \frac{K_{12}}{M_{1}} X_{2} - \frac{\beta_{1} + \beta_{12}}{M_{1}} X_{3} + \frac{\beta_{12}}{M_{1}} X_{4} \\ \dot{X}_{4} = \frac{K_{12}}{M_{2}} X_{1} - \frac{K_{2} + K_{12}}{M_{2}} X_{2} + \frac{\beta_{12}}{M_{2}} X_{3} - \frac{\beta_{2} + \beta_{12}}{M_{2}} X_{4} + \frac{1}{M_{2}} U \end{cases}$$

- Equaz. di uscita: $\begin{cases} y_1 = x_1 \\ y_2 = x_2 \end{cases}$
- Se M_1 , M_2 , K_1 , K_2 , K_{12} , β_1 , β_2 e β_{12} sono costanti \Rightarrow il sistema è LTI e ha rappresentazione di stato

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = C x(t) + D u(t)$$

Esempio #1 di rappresentazione (9/10)

Se M_1 , M_2 , K_1 , K_2 , K_{12} , β_1 , β_2 e β_{12} sono costanti \Rightarrow il sistema è LTI e ha rappresentazione di stato

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$0 \qquad 1 \qquad 0$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{K_1 + K_{12}}{M_1} & \frac{K_{12}}{M_1} & -\frac{\beta_1 + \beta_{12}}{M_1} & \frac{\beta_{12}}{M_1} \\ \frac{K_{12}}{M_2} & -\frac{K_2 + K_{12}}{M_2} & \frac{\beta_{12}}{M_2} & -\frac{\beta_2 + \beta_{12}}{M_2} \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{M_2} \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Esempio #1 di rappresentazione (10/10)

Nota: si può modellizzare il fenomeno dell'attrito mediante uno **smorzatore equivalente** avente un'estremità fissa e lo smorzamento β_i uguale al coefficiente d'attrito viscoso; il sistema considerato in quest'esempio è infatti equivalente al seguente:

Esempio #2 di rappresentazione (1/5)

Ricavare la rappresentazione in variabili di stato del seguente **levitatore magnetico**, in cui y(t) = p(t) e l'elettromagnete genera la forza $f(t)=k_i i^2(t)/p^2(t)$

y(t) = Cx(t)

Equazione del moto:

$$M\ddot{p}(t) = Mg - f(t) = Mg - k_i i^2(t)/p^2(t)$$

Esempio #2 di rappresentazione (2/5)

Ricavare la rappresentazione in variabili di stato del seguente **levitatore magnetico**, in cui y(t) = p(t) e l'elettromagnete genera la forza $f(t) = k_i i^2(t)/p^2(t)$

y(t) = Cx(t)

> Variabili di stato:
$$x(t) = \begin{bmatrix} p(t) \\ \dot{p}(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Esempio #2 di rappresentazione (3/5)

Ricavare la rappresentazione in variabili di stato del seguente **levitatore magnetico**, in cui y(t) = p(t) e l'elettromagnete genera la forza $f(t) = k_i i^2(t)/p^2(t)$

y(t) = Cx(t)

> Variabile di ingresso: u(t) = [i(t)]

Esempio #2 di rappresentazione (4/5)

Equazione del moto:

$$M\ddot{p}(t) = Mg - k_i i^2(t) / p^2(t)$$

Variabili di stato e di ingresso:

$$X(t) = \begin{bmatrix} p(t) \\ \dot{p}(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \end{bmatrix}, \qquad U(t) = [i(t)]$$

$$\dot{X}_1 = dp/dt = \dot{p} = X_2 = f_1(t, X, U)$$

$$\dot{x}_2 = d\dot{p}/dt = \ddot{p} = g - \frac{k_i}{M} \frac{\dot{j}^2}{p^2} = g - \frac{k_j}{M} \frac{u^2}{x_1^2} = f_2(t, x, u)$$

Equazione di uscita:

$$y'=p=X_1=g(t,X,U)$$

Esempio #2 di rappresentazione (5/5)

- Equazioni di stato: $\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = g (k_i/M)u^2/x_1^2 \end{cases}$
- **Equazione di uscita:** $y = x_1$
- ➤ Il sistema risulta non lineare, a causa della forza di attrazione f dell'elettromagnete di tipo non lineare
- Il sistema è inoltre dinamico, a tempo continuo, a dimensione finita (n=2), SISO (p=q=1), proprio, stazionario nel caso k_i e M siano costanti
- La forza peso Mg è esterna al sistema ma costante \Rightarrow non compare nel vettore di ingresso u ma solo con il termine costante g nelle equazioni di stato

Esempio #3 di rappresentazione (1/10)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico, in cui $y(t) = v(t) = \dot{p}(t)$

y(t) = Cx(t)

Equazioni del moto:

1)
$$M_A \ddot{p}_A = 0 \cdot \ddot{p}_A = 0 - \left[\beta (\dot{p}_A - \dot{p}) + K(p_A - 0) \right]$$

2)
$$M\ddot{p} = F - \left[\beta(\dot{p} - \dot{p}_A)\right]$$

Esempio #3 di rappresentazione (2/10)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico, in cui $y(t) = v(t) = \dot{p}(t)$

Variabili di stato:

Stato:

$$x(t) = \begin{bmatrix} p_{A}(t) \\ p(t) \\ \dot{p}_{A}(t) \end{bmatrix} = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ x_{4}(t) \end{bmatrix}$$

Esempio #3 di rappresentazione (3/10)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico, in cui $y(t) = v(t) = \dot{p}(t)$

y(t) = Cx(t)

Variabile di ingresso:

$$U(t) = \lceil F(t) \rceil$$

Esempio #3 di rappresentazione (4/10)

Equazioni del moto:

1)
$$0 = -\beta(\dot{p}_{\Delta} - \dot{p}) - Kp_{\Delta}$$
 2) $M\ddot{p} = F - \beta(\dot{p} - \dot{p}_{\Delta})$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} \rho_{A}(t) \\ \rho(t) \\ \dot{\rho}_{A}(t) \\ \dot{\rho}(t) \end{bmatrix} = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ x_{4}(t) \end{bmatrix}, \qquad u(t) = [F(t)]$$

$$\dot{x}_1 = dp_A/dt = \dot{p}_A = x_3 = f_1(t, x, u)$$

 $\dot{x}_2 = dp/dt = \dot{p} = x_4 = f_2(t, x, u)$
 $\dot{x}_3 = d\dot{p}_A/dt = \ddot{p}_A = ?$ (conseguenza di $M_A = 0$ nell'equaz. 1)
 $\Rightarrow \dot{p}_A$ non è una variabile di stato e non compare in x

Esempio #3 di rappresentazione (5/10)

Equazioni del moto:

1)
$$0 = -\beta(\dot{p}_A - \dot{p}) - Kp_A$$
 2) $M\ddot{p} = F - \beta(\dot{p} - \dot{p}_A)$

Variabili di stato e di ingresso:

abili di stato e di ingresso:
$$x(t) = \begin{bmatrix} p_{A}(t) \\ p(t) \\ \dot{p}_{A}(t) \\ \dot{p}(t) \end{bmatrix} = \begin{bmatrix} p_{A}(t) \\ p(t) \\ \dot{p}(t) \end{bmatrix} = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \end{bmatrix}, \quad u(t) = [F(t)]$$

$$\dot{X}_{1} = dp_{A}/dt = \dot{p}_{A} = \dot{p} - \frac{K}{\beta}p_{A} = -\frac{K}{\beta}X_{1} + X_{3} = f_{1}(t, X, U)$$

$$\dot{X}_{2} = dp/dt = \dot{p} = X_{3} = f_{2}(t, X, U)$$

Esempio #3 di rappresentazione (6/10)

Equazioni del moto:

1)
$$0 = -\beta(\dot{p}_A - \dot{p}) - Kp_A$$
 2) $M\ddot{p} = F - \beta(\dot{p} - \dot{p}_A)$

Variabili di stato e di ingresso:

abili di stato e di ingresso:
$$x(t) = \begin{bmatrix} p_{A}(t) \\ p(t) \\ p(t) \\ p(t) \end{bmatrix} = \begin{bmatrix} p_{A}(t) \\ p(t) \\ p(t) \end{bmatrix} = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \end{bmatrix}, \quad u(t) = [F(t)]$$

$$\dot{X}_{3} = d\dot{p}/dt = \ddot{p} = \frac{F}{M} - \frac{\beta}{M}(\dot{p} - \dot{p}_{A}) = \frac{1}{M}u - \frac{\beta}{M}(X_{3} - \dot{X}_{1}) =$$

$$= \frac{1}{M}u - \frac{\beta}{M}\left[X_{3} - \left(-\frac{K}{\beta}X_{1} + X_{3}\right)\right] = -\frac{K}{M}X_{1} + \frac{1}{M}u = f_{3}(t, X, u)$$

Esempio #3 di rappresentazione (7/10)

Equazioni del moto:

1)
$$0 = -\beta(\dot{p}_{\Delta} - \dot{p}) - Kp_{\Delta}$$
 2) $M\ddot{p} = F - \beta(\dot{p} - \dot{p}_{\Delta})$

Variabili di stato e di ingresso:

bili di stato e di ingresso:
$$x(t) = \begin{bmatrix} \rho_{A}(t) \\ \dot{\rho}(t) \\ \dot{\dot{\rho}}(t) \end{bmatrix} = \begin{bmatrix} \rho_{A}(t) \\ \dot{\rho}(t) \\ \dot{\dot{\rho}}(t) \end{bmatrix} = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \end{bmatrix}, \quad u(t) = [F(t)]$$

Equazione di uscita:

$$y = \dot{p} = X_3 = g(t, X, U)$$

Esempio #3 di rappresentazione (8/10)

Equazioni di stato:
$$\begin{cases} \dot{x}_1 = -\frac{K}{\beta} x_1 + x_3 \\ \dot{x}_2 = x_3 \\ \dot{x}_3 = -\frac{K}{M} x_1 + \frac{1}{M} u \end{cases}$$

- \rightarrow Equazione di uscita: $y = x_3$
- Poiché $x_2 = p$ non compare nelle equazioni di stato o di uscita ⇒ si può semplificare il vettore di stato

$$x(t) = \begin{bmatrix} p_{A}(t) \\ p(t) \end{bmatrix} = \begin{bmatrix} p_{A}(t) \\ \dot{p}(t) \end{bmatrix} = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} \implies \begin{cases} \dot{x}_{1} = -\frac{K}{\beta}x_{1} + x_{2} \\ \dot{x}_{2} = -\frac{K}{M}x_{1} + \frac{1}{M}u \\ \dot{x}_{3} = -\frac{K}{M}x_{1} + \frac{1}{M}u \end{cases}$$

$$y = x_{2}$$

Esempio #3 di rappresentazione (9/10)

Equazioni di stato:

$$\begin{cases} \dot{X}_1 = -\frac{K}{\beta} X_1 + X_2 \\ \dot{X}_2 = -\frac{K}{M} X_1 + \frac{1}{M} U \\ V = X_2 \end{cases}$$

- **Equazione di uscita:** $y = x_2$
- Se M, K e β sono costanti, il sistema è LTI \Rightarrow ha come rappresentazione in variabili di stato

y(t) = Cx(t)

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$A = \begin{bmatrix} -\frac{K}{\beta} & 1 \\ -\frac{K}{M} & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad D = 0$$

Esempio #3 di rappresentazione (10/10)

- Le due semplificazioni in x sono di natura diversa
 - \dot{p}_A non è una variabile di stato indipendente, poiché l'equazione del moto del punto materiale A di massa nulla lega \dot{p}_A ad altre due variabili di stato

$$0 = -\beta(\dot{p}_{A} - \dot{p}) - Kp_{A} \Rightarrow \dot{p}_{A} = \dot{p} - \frac{K}{\beta}p_{A} = x_{2} - \frac{K}{\beta}x_{1}$$

(in analogia col caso delle reti elettriche degeneri)

• p non compare nelle equazioni di stato o di uscita, per cui la rappresentazione minima in variabili di stato non ne richiede la presenza (diverso sarebbe stato ad esempio il caso in cui $y(t) = p(t) \dots$)

Modellistica dei sistemi dinamici meccanici

Sistemi meccanici in rotazione: elementi base

Corpo puntiforme in rotazione

Corpo puntiforme in rotazione di inerzia J

y(t) = Cx(t)

La II legge di Newton dà l'equazione del moto:

$$J\ddot{\theta}(t) = J\frac{d^2\theta(t)}{dt^2} = T(t) = \sum_i T_i(t)$$

in cui $T_i(t)$ sono le coppie esterne agenti sul corpo:

- Positive se concordi con il sistema di riferimento
- Negative altrimenti

Unità di misura: [T] = N m, $[\theta] = rad$, $[J] = kg m^2$

Molla ideale

➤ Molla ideale di coefficiente di elasticità torsionale K

La coppia elastica della molla è data da:

y(t) = Cx(t)

$$\mathcal{T}(t) = K \left[\theta_{+}(t) - \theta_{-}(t) \right]$$

 \Rightarrow è proporzionale alla rotazione relativa delle due estremità della molla (θ_+ , θ_- sono le posizioni angolari delle due estremità rispetto alla posizione di riposo) Unità di misura: [T] = N m, [θ] = rad, [K] = N m/rad

Smorzatore ideale

ightharpoonup Smorzatore ideale di smorzamento β

y(t) = Cx(t)

La coppia di attrito dovuta allo smorzatore vale:

$$T(t) = \beta \left[\omega_{+}(t) - \omega_{-}(t) \right] = \beta \left[\dot{\theta}_{+}(t) - \dot{\theta}_{-}(t) \right]$$

 \Rightarrow è proporzionale alla velocità angolare relativa dei due elementi che compongono lo smorzatore Unità di misura: [T] = Nm,[$\dot{\theta}$] = rad/s,[β] = Nms/rad

Modellistica dei sistemi dinamici meccanici

Sistemi in rotazione: equazioni del moto

Equazioni del moto per sistemi in rotazione

- Si introducono sistemi di riferimento (e quindi versi di rotazione) concordi fra loro per indicare le posizioni angolari di ogni corpo in rotazione
- Per ogni corpo J_i (o punto materiale in rotazione con $J_i = 0$), con posizione angolare θ_i e velocità angolare $\omega_i = \dot{\theta}_i$, vale la seconda legge di Newton nella forma:

$$J_{i}\ddot{\theta}_{i}(t) = \sum_{k} T_{k}^{est}(t) - \sum_{l}^{l \neq i} T_{il}^{int}(t)$$

- Le **coppie esterne** T_k^{est} tengono conto dell'azione del mondo esterno sull'elemento J_i e compaiono con
 - Segno positivo se concordi con i sistemi di riferimento
 - Segno negativo altrimenti

Equazioni del moto per sistemi in rotazione

- Si introducono sistemi di riferimento (e quindi versi di rotazione) concordi fra loro per indicare le posizioni angolari di ogni corpo in rotazione
- Per ogni corpo J_i (o punto materiale in rotazione con $J_i = 0$), con posizione angolare θ_i e velocità angolare $\omega_i = \dot{\theta}_i$, vale la seconda legge di Newton nella forma:

$$J_{i}\ddot{\theta}_{i}(t) = \sum_{k} T_{k}^{est}(t) - \sum_{l}^{l \neq i} T_{il}^{int}(t)$$

• Le **coppie interne** T_{il}^{int} tengono conto dell'interazione tra l'elemento J_i considerato e gli altri corpi J_l tramite:

Molle ideali
$$K_{il}$$
 $\Rightarrow T_{il}^{int}(t) = K_{il}[\theta_i(t) - \theta_l(t)]$

lacktriangle Smorzatori ideali $eta_{il} \Rightarrow T_{il}^{int}(t) = eta_{il} \left[\dot{\theta}_i(t) - \dot{\theta}_l(t) \right]$

Interpretazione delle equazioni del moto

ightharpoonup Nell'equazione del moto dell'elemento J_i

y(t) = Cx(t)

$$J_{i}\ddot{\theta}_{i}(t) = \sum_{k} T_{k}^{est}(t) - \sum_{l}^{l \neq i} T_{il}^{int}(t)$$

- Le coppie esterne T_k^{est} trasmettono direttamente il moto a $J_i \Rightarrow$ ne incrementano o riducono la coppia d'inerzia, a seconda del loro senso di rotazione
- Le coppie interne $T_{i/l}^{int}$ trasmettono invece il moto agli altri corpi J_l tramite molle o smorzatori \Rightarrow riducono la coppia d'inerzia di J_i

Modellistica dei sistemi dinamici meccanici

Sistemi in rotazione: rappresentazione di stato

Rappresentazione in variabili di stato (1/2)

- Si scrivono le **equazioni del moto** per ogni corpo in rotazione di inerzia J_i (eventualmente nulla), con posizione angolare θ_i e velocità angolare $\omega_i = \dot{\theta}_i$
- ightharpoonup Si introducono due **variabili di stato** per ogni elemento J_i in rotazione, scegliendo in particolare
 - \bullet La posizione angolare θ_i
 - ullet La velocità angolare $\dot{\theta}_i$

Tale scelta permette di trasformare ogni equazione del moto (equazione differenziale del II ordine) in una coppia di equazioni differenziali del I ordine

Si associa una variabile di ingresso a ogni coppia esterna applicata al sistema meccanico in rotazione

Rappresentazione in variabili di stato (2/2)

Si ricavano le equazioni di stato del tipo

$$\dot{X}_{j}(t) = \frac{dX_{j}(t)}{dt} = f_{j}(t, X(t), U(t))$$

a partire dalle precedenti equazioni del moto, esprimendo \dot{x}_i soltanto in funzione di variabili di stato e di ingresso, se necessario esplicitando il legame di derivazione temporale fra variabili di stato

Si ricavano le equazioni di uscita del tipo

$$Y_k(t) = g_k(t, x(t), u(t))$$

esprimendo ogni variabile di interesse y_k soltanto in funzione di variabili di stato e di ingresso

Modellistica dei sistemi dinamici meccanici

Sistemi in rotazione: esempi di rappresentazione

Esempio #1 di rappresentazione (1/9)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico in rotazione, in cui le variabili di interesse sono θ_2 e $\omega_2 = \dot{\theta}_2$

y(t) = Cx(t)

1)
$$J_1\ddot{\theta}_1 = T_m - \left[\beta_1(\dot{\theta}_1 - 0) + K_{12}(\theta_1 - \theta_2) + \beta_{12}(\dot{\theta}_1 - \dot{\theta}_2)\right]$$

2)
$$J_2\ddot{\theta}_2 = -T_r - \left[K_{12}(\theta_2 - \theta_1) + \beta_{12}(\dot{\theta}_2 - \dot{\theta}_1) \right]$$

Esempio #1 di rappresentazione (2/9)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico in rotazione, in cui le variabili di interesse sono θ_2 e $\omega_2 = \dot{\theta}_2$

y(t) = Cx(t)

Variabili di stato:

$$X(t) = \begin{bmatrix} \theta_1(t) \\ \theta_2(t) \\ \dot{\theta}_1(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \\ X_3(t) \\ X_4(t) \end{bmatrix}$$

Esempio #1 di rappresentazione (3/9)

Ricavare la rappresentazione in variabili di stato del seguente sistema meccanico in rotazione, in cui le variabili di interesse sono θ_2 e $\omega_2 = \dot{\theta}_2$

y(t) = Cx(t)

Variabili di ingresso:

$$u(t) = \begin{bmatrix} T_m(t) \\ T_r(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Esempio #1 di rappresentazione (4/9)

Equazioni del moto:

1)
$$J_1\ddot{\theta}_1 = T_m - \left[\beta_1(\dot{\theta}_1 - 0) + K_{12}(\theta_1 - \theta_2) + \beta_{12}(\dot{\theta}_1 - \dot{\theta}_2)\right]$$

2)
$$J_2\ddot{\theta}_2 = -T_r - \left[K_{12}(\theta_2 - \theta_1) + \beta_{12}(\dot{\theta}_2 - \dot{\theta}_1) \right]$$

Variabili di stato e di ingresso:

$$X(t) = \begin{bmatrix} \theta_1(t) \\ \theta_2(t) \\ \dot{\theta}_1(t) \\ \dot{\theta}_2(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \\ X_3(t) \\ X_4(t) \end{bmatrix}, \qquad u(t) = \begin{bmatrix} T_m(t) \\ T_r(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\dot{x}_1 = d\theta_1/dt = \dot{\theta}_1 = x_3 = f_1(t, x, u)$$

$$\dot{x}_2 = d\theta_2/dt = \dot{\theta}_2 = x_4 = f_2(t, x, u)$$

Esempio #1 di rappresentazione (5/9)

Equazioni del moto:

1)
$$J_1\ddot{\theta}_1 = T_m - \left[\beta_1(\dot{\theta}_1 - 0) + K_{12}(\theta_1 - \theta_2) + \beta_{12}(\dot{\theta}_1 - \dot{\theta}_2)\right]$$

y(t) = Cx(t)

2)
$$J_2\ddot{\theta}_2 = -T_r - \left[K_{12}(\theta_2 - \theta_1) + \beta_{12}(\dot{\theta}_2 - \dot{\theta}_1) \right]$$

Variabili di stato e di ingresso:

$$X(t) = \begin{bmatrix} \theta_1(t) \\ \theta_2(t) \\ \dot{\theta}_1(t) \\ \dot{\theta}_2(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \\ X_3(t) \\ X_4(t) \end{bmatrix}, \qquad u(t) = \begin{bmatrix} T_m(t) \\ T_r(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\dot{X}_{3} = d\dot{\theta}_{1}/dt = \ddot{\theta}_{1} = T_{m}/J_{1} - \left[\beta_{1}\dot{\theta}_{1} + K_{12}(\theta_{1} - \theta_{2}) + \beta_{12}(\dot{\theta}_{1} - \dot{\theta}_{2})\right]/J_{1} = -\frac{K_{12}}{J_{1}}X_{1} + \frac{K_{12}}{J_{1}}X_{2} - \frac{\beta_{1} + \beta_{12}}{J_{1}}X_{3} + \frac{\beta_{12}}{J_{1}}X_{4} + \frac{U_{1}}{J_{1}} = f_{3}(t, x, u)$$
56

Esempio #1 di rappresentazione (6/9)

Equazioni del moto:

1)
$$J_1\ddot{\theta}_1 = T_m - \left[\beta_1(\dot{\theta}_1 - 0) + K_{12}(\theta_1 - \theta_2) + \beta_{12}(\dot{\theta}_1 - \dot{\theta}_2)\right]$$

2)
$$J_2\ddot{\theta}_2 = -T_r - \left[K_{12}(\theta_2 - \theta_1) + \beta_{12}(\dot{\theta}_2 - \dot{\theta}_1) \right]$$

Variabili di stato e di ingresso:

$$X(t) = \begin{bmatrix} \theta_1(t) \\ \theta_2(t) \\ \dot{\theta}_1(t) \\ \dot{\theta}_2(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \\ X_3(t) \\ X_4(t) \end{bmatrix}, \qquad u(t) = \begin{bmatrix} T_m(t) \\ T_r(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\dot{X}_{4} = d\dot{\theta}_{2}/dt = \ddot{\theta}_{2} = -T_{r}/J_{2} - \left[K_{12}(\theta_{2} - \theta_{1}) + \beta_{12}(\dot{\theta}_{2} - \dot{\theta}_{1})\right]/J_{2} = \frac{K_{12}}{J_{2}}X_{1} - \frac{K_{12}}{J_{2}}X_{2} + \frac{\beta_{12}}{J_{2}}X_{3} - \frac{\beta_{12}}{J_{2}}X_{4} - \frac{u_{2}}{J_{2}} = f_{4}(t, x, u)$$

Esempio #1 di rappresentazione (7/9)

Equazioni del moto:

1)
$$J_1\ddot{\theta}_1 = T_m - \left[\beta_1(\dot{\theta}_1 - 0) + K_{12}(\theta_1 - \theta_2) + \beta_{12}(\dot{\theta}_1 - \dot{\theta}_2)\right]$$

2)
$$J_2\ddot{\theta}_2 = -T_r - \left[K_{12}(\theta_2 - \theta_1) + \beta_{12}(\dot{\theta}_2 - \dot{\theta}_1) \right]$$

Variabili di stato e di ingresso:

$$X(t) = \begin{bmatrix} \theta_1(t) \\ \theta_2(t) \\ \dot{\theta}_1(t) \\ \dot{\theta}_2(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \\ X_3(t) \\ X_4(t) \end{bmatrix}, \qquad u(t) = \begin{bmatrix} T_m(t) \\ T_r(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Equazioni di uscita:

$$y_1 = \theta_2 = X_2 = g_1(t, x, u)$$

 $y_2 = \dot{\theta}_2 = X_4 = g_2(t, x, u)$
 $y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$

Esempio #1 di rappresentazione (8/9)

y(t) = Cx(t)

ightharpoonup Equaz. di stato: $(\dot{x}_1 = x_3)$

$$\begin{cases} \dot{X}_{1} = X_{3} \\ \dot{X}_{2} = X_{4} \\ \dot{X}_{3} = -\frac{K_{12}}{J_{1}}X_{1} + \frac{K_{12}}{J_{1}}X_{2} - \frac{\beta_{1} + \beta_{12}}{J_{1}}X_{3} + \frac{\beta_{12}}{J_{1}}X_{4} + \frac{1}{J_{1}}U_{1} \\ \dot{X}_{4} = \frac{K_{12}}{J_{2}}X_{1} - \frac{K_{12}}{J_{2}}X_{2} + \frac{\beta_{12}}{J_{2}}X_{3} - \frac{\beta_{12}}{J_{2}}X_{4} - \frac{1}{J_{2}}U_{2} \end{cases}$$

- Equaz. di uscita: $\begin{cases} y_1 = x_2 \\ y_2 = x_4 \end{cases}$
- Se $J_1, J_2, K_{12}, \beta_1$ e β_{12} sono costanti, il sistema è LTI \Rightarrow ha come rappresentazione in variabili di stato

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = C x(t) + D u(t)$$

Esempio #1 di rappresentazione (9/9)

Se $J_1, J_2, K_{12}, \beta_1$ e β_{12} sono costanti, il sistema è LTI \Rightarrow ha come rappresentazione in variabili di stato

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{K_{12}}{J_1} & \frac{K_{12}}{J_1} & -\frac{\beta_1 + \beta_{12}}{J_1} & \frac{\beta_{12}}{J_1} \\ \frac{K_{12}}{J_2} & -\frac{K_{12}}{J_2} & \frac{\beta_{12}}{J_2} & -\frac{\beta_{12}}{J_2} \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{1}{J_1} & 0 \\ 0 & -\frac{1}{J_2} \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Esempio #2 di rappresentazione (1/10)

Ricavare la rappresentazione in variabili di stato del seguente **pendolo inverso** di lunghezza / e massa M, in cui le variabili di interesse sono θ e $\omega = \dot{\theta}$

■ Ipotesi: l'asta è rigida e di massa trascurabile ⇒ il pendolo ha momento d'inerzia pari a quello di una massa puntiforme M su un'orbita circolare di raggio /

$$J = M/^2$$

Esempio #2 di rappresentazione (2/10)

Ricavare la rappresentazione in variabili di stato del seguente **pendolo inverso** di lunghezza / e massa M, in cui le variabili di interesse sono θ e $\omega = \dot{\theta}$

$$J\ddot{\theta} = T_{F_o} + \dots = IF_o^o \cos \theta + \dots$$

Esempio #2 di rappresentazione (3/10)

Ricavare la rappresentazione in variabili di stato del seguente **pendolo inverso** di lunghezza / e massa M, in cui le variabili di interesse sono θ e $\omega = \dot{\theta}$

$$J\ddot{\theta} = T_{F_o} + T_{F_v} + \dots =$$

$$= IF_o \cos \theta + IF_v \sin \theta + \dots$$

Esempio #2 di rappresentazione (4/10)

Ricavare la rappresentazione in variabili di stato del seguente **pendolo inverso** di lunghezza / e massa M, in cui le variabili di interesse sono θ e $\omega = \dot{\theta}$

$$J\ddot{\theta} = T_{F_o} + T_{F_v} + T_{Mg} - \left[\dots = \frac{IF_o \cos \theta + IF_v \sin \theta + IMg \sin \theta - \dots}{IF_o \cos \theta + IF_v \sin \theta + IMg \sin \theta - \dots} \right]$$

Esempio #2 di rappresentazione (5/10)

Ricavare la rappresentazione in variabili di stato del seguente **pendolo inverso** di lunghezza / e massa M, in cui le variabili di interesse sono θ e $\omega = \dot{\theta}$

y(t) = Cx(t)

$$J\dot{\theta} = T_{F_o} + T_{F_v} + T_{Mg} - \left[K(\theta - 0) + \beta(\dot{\theta} - 0)\right] =$$

$$= IF_o \cos \theta + IF_v \sin \theta + IMg \sin \theta - K\theta - \beta\dot{\theta}$$

Esempio #2 di rappresentazione (6/10)

Ricavare la rappresentazione in variabili di stato del seguente **pendolo inverso** di lunghezza / e massa M, in cui le variabili di interesse sono θ e $\omega = \dot{\theta}$

y(t) = Cx(t)

Variabili di stato:

$$X(t) = \begin{bmatrix} \theta(t) \\ \dot{\theta}(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \end{bmatrix}$$

Esempio #2 di rappresentazione (7/10)

Ricavare la rappresentazione in variabili di stato del seguente **pendolo inverso** di lunghezza / e massa M, in cui le variabili di interesse sono θ e $\omega = \dot{\theta}$

y(t) = Cx(t)

Variabili di ingresso:

$$u(t) = \begin{bmatrix} F_o(t) \\ F_V(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Esempio #2 di rappresentazione (8/10)

Equazione del moto:

$$J\ddot{\theta} = IF_o \cos \theta + IF_v \sin \theta + IMg \sin \theta - K\theta - \beta \dot{\theta}, J = MI^2$$

Variabili di stato e di ingresso:

$$X(t) = \begin{bmatrix} \theta(t) \\ \dot{\theta}(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \end{bmatrix}, \qquad u(t) = \begin{bmatrix} F_o(t) \\ F_v(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\dot{x}_{1} = d\theta/dt = \dot{\theta} = x_{2} = f_{1}(t, x, u)$$

$$\dot{x}_{2} = d\dot{\theta}/dt = \ddot{\theta} = \frac{1}{M!^{2}} \left[IF_{o}\cos\theta + IF_{v}\sin\theta + IMg\sin\theta - K\theta - \beta\dot{\theta} \right] =$$

$$= \frac{1}{M!} u_{1}\cos x_{1} + \frac{1}{M!} u_{2}\sin x_{1} + \frac{g}{I}\sin x_{1} - \frac{K}{M!^{2}}x_{1} - \frac{\beta}{M!^{2}}x_{2} = f_{2}(t, x, u)$$

Esempio #2 di rappresentazione (9/10)

y(t) = Cx(t)

Equazione del moto:

$$J\ddot{\theta} = IF_{o}\cos\theta + IF_{v}\sin\theta + IMg\sin\theta - K\theta - \beta\dot{\theta}, J = MI^{2}$$

Variabili di stato e di ingresso:

$$X(t) = \begin{bmatrix} \theta(t) \\ \dot{\theta}(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \end{bmatrix}, \qquad u(t) = \begin{bmatrix} F_o(t) \\ F_v(t) \end{bmatrix} = \begin{bmatrix} U_1(t) \\ U_2(t) \end{bmatrix}$$

Equazioni di uscita:

$$y_1 = \theta = x_1 = g_1(t, x, u)$$

 $y_2 = \dot{\theta} = x_2 = g_2(t, x, u)$
 $y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$

Esempio #2 di rappresentazione (10/10)

- Equaz. di stato: $\begin{cases} \dot{X}_1 = X_2 \\ \dot{X}_2 = \frac{u_1 \cos X_1}{MI} + \frac{u_2 \sin X_1}{MI} + \frac{g}{I} \sin X_1 + \frac{g}{MI^2} \frac{\beta X_2}{MI^2} \end{cases}$
- Equaz. di uscita: $\begin{cases} y_1 = x_1 \\ y_2 = x_2 \end{cases}$
- Il sistema è non lineare, a causa dei vari termini trigonometrici e dei prodotti incrociati stati-ingressi
- Il sistema è inoltre dinamico, a tempo continuo, a dimensione finita (n=2), MIMO (p=q=2), proprio, stazionario se M, I, K, β e g sono costanti
- ► La forza peso Mg è esterna al sistema ma costante ⇒ non compare nel vettore di ingresso u