Predicting heart disease

none

12/13/2021

Class imbalance

```
df %>%
    count(HeartDisease) %>%
    pander()
```

HeartDisease	n
0	410
1	508

First of all, this is a balance dataset. We will perform the explonatory data analysis now.

```
skimr::skim(df) %>%
    select(-c(n_missing, character.min, character.max, character.empty)) %>%
    filter(skim_variable != "HeartDisease")
```

Data summary

Name	df
Number of rows	918
Number of columns	12
Column type frequency:	
character	5
numeric	6
Group variables	None

Variable type: character

skim_variable	complete_rate	n_unique	whitespace
Sex	1	2	0
ChestPainType	1	4	0
RestingECG	1	3	0
ExerciseAngina	1	2	0
ST_Slope	1	3	0

Variable type: numeric

skim_variable	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
Age	1	53.51	9.43	28.0	47.00	54.0	60.0	77.0	_
RestingBP	1	132.40	18.51	0.0	120.00	130.0	140.0	200.0	
Cholesterol	1	198.80	109.38	0.0	173.25	223.0	267.0	603.0	-II
FastingBS	1	0.23	0.42	0.0	0.00	0.0	0.0	1.0	I
MaxHR	1	136.81	25.46	60.0	120.00	138.0	156.0	202.0	
Oldpeak	1	0.89	1.07	-2.6	0.00	0.6	1.5	6.2	_===

This dataset total contains 918 rows and 12 columns. Among those 12 columns 1 is outcome variable and 11 is predictor. 5 of those predictors are character and 6 of those predictors are numeric. The source of the data is {**Kaggle**}

[https://www.kaggle.com/fedesoriano/heart-failure-prediction].

Train test split

```
df_split <-
    df %>%
    initial_split(prop = .9 ,strata = "HeartDisease")

df <- training(df_split)</pre>
```

Boxplot for the categorical variables

```
df %>%
    select(is.character, HeartDisease) %>%
    pivot_longer(-HeartDisease) %>%
    group_by(name, value) %>%
    summarise_all(mean) %>%
    ungroup() %>%
    mutate(value = tidytext::reorder_within(value,by = HeartDisease, within = name)) %>%
    ggplot(aes(value, HeartDisease)) +
    geom_col(fill = "lightgreen", col = "darkgreen") +
    tidytext::scale_x_reordered() +
    facet_wrap(~name, scales = "free") +
    labs(title = "Barplot for the categorical variables")
```

Barplot for the categorical variables

So, we can see that for variable

- ExerciseAngina level (N) has lower chance of heart disease.
- ChestPain Type level (ATA, NAP, TA) has lower chance of heart disease.
- SEX level (F) has lower chance of heart disease.
- ST_Slope Level (Up) has lower chance of heart disease.

So those categorical variables could be good predictor for the heart disease.

Density plot for the numeric variables

```
df %>%
    select(is.numeric) %>%
    pivot_longer(-HeartDisease) %>%
    mutate(HeartDisease = factor(HeartDisease, 0:1, c("NO", "Yes"))) %>%
    ggplot(aes(value, fill = HeartDisease)) +
    geom_density(alpha = .7) +
    facet_wrap(~name, scales = "free") +
    labs(title = "Density plot for categorical variables")
```

Density plot for categorical variables

From

this plot we can see that the variables like

- Age
- MaxHR
- Oldpeak

may be some good predictor canditate.

Correlation among the numeric predictor

There is not much correlation exists among the predictor variables.

Modeling

Defining the models

```
models <- list()</pre>
models$1r specs <-</pre>
    logistic_reg(mode = "classification") %>%
    set_engine("glm")
models$spline_specs <-</pre>
    mars(
        mode = "classification",
        num_terms = tune(),
        prod_degree = tune(),
        prune_method = tune()
    ) %>%
    set_engine("earth")
models$rf_specs <-</pre>
    rand_forest(
        mode = "classification",
        trees = 1000,
        min_n = tune()
    set_engine("randomForest")
models$bt_specs <-</pre>
    boost_tree(
        mode = "classification",
        trees = 1000,
        min_n = tune(),
        tree_depth = tune(),
        learn_rate = tune()
    ) %>%
    set_engine("xgboost")
models$svm_specs <-</pre>
    svm_rbf(
        mode = "classification",
        cost = tune(),
        rbf_sigma = tune(),
        margin = tune()
    ) %>%
    set_engine("kernlab")
```

Cross validation and recipe

```
df_recipe <-
    df %>%
    recipe(HeartDisease ~ .) %>%
    step_string2factor(all_nominal()) %>%
    step_mutate(HeartDisease = factor(HeartDisease, 0:1, c("No", "Yes"))) %>%
    step_normalize(all_numeric(), - all_outcomes()) %>%
    prep()

set.seed(123)
df_cv <-
    df_recipe %>%
    juice() %>%
    vfold_cv(6)
```

Function for model fitting

```
model_fit <-</pre>
  function(x) {
    set.seed(123)
    if (nrow(parameters(x)) != 0) {
      vlu_fw <-
        workflow() %>%
        add_model(x) %>%
        add_formula(formula(df_recipe))
      print("hyperParameter Training")
      x <-
        vlu fw %>%
        tune_grid(
          resamples = df_cv,
          grid = grid_latin_hypercube(parameters(x), size = 25),
          metrics = metric_set(roc_auc)
      print("Model Training")
      x <-
        vlu_fw %>%
        finalize_workflow(select_best(x)) %>%
        fit(juice(df_recipe))
    } else {
      print("Model Training")
      x <-
        workflow() %>%
        add_model(x) %>%
        add_formula(formula(df_recipe)) %>%
        fit(juice(df_recipe))
    }
```

```
return(x)
}
```

Model fitting

```
# fit_models <- list()
# for (i in 1:length(models)) {
# fit_models[[i]] <- model_fit(models[[i]])
# }
fit_models <- readRDS("fitted.Rds")</pre>
```

Predicting the test dataset

Roc AUC curve

```
x %>%
   group_by(model) %>%
   roc_curve(test, .pred_No) %>%
   autoplot()
```


From this graph it is not clear that which model is performing better. SO we will find the value of area under the curve.

Area under curve

```
x %>%
   group_by(model) %>%
   roc_auc(test, .pred_No) %>%
   arrange(-.estimate) %>%
   pander()
```

model	.metric	.estimator	.estimate
rf_specs	roc_auc	binary	0.9931
bt_specs	roc_auc	binary	0.9837
lr_specs	roc_auc	binary	0.946
svm_specs	roc_auc	binary	0.9407
spline_specs	roc_auc	binary	0.8984

So, the models svm, logistic regression and random forest provide almost equal performance. So we will choose any of those 3 as our final model.

Accuracy

model	.metric	.estimator	.estimate
rf_specs	accuracy	binary	0.9565
bt_specs	accuracy	binary	0.9348
lr_specs	accuracy	binary	0.9022
svm_specs	accuracy	binary	0.8913
spline_specs	accuracy	binary	0.837

From here we can choose Ranndomforest for our desiarable model since it has the highest accuracy.

Variable importance

```
fit_models[[3]] %>%
  pull_workflow_fit() %>%
  vip::vip()
```


According to this variance importance graph, varaibles "ST_Slope", "ChestPainType" and "Oldpeak" are the most 3 important variables.

Confusion matrix of the test set