# EFFECTS OF PUNISHMENT REGIMES ON CRIME RATES

You

July 1, 2017

#### Abstract

Your abstract.

### 1 Introduction

Your introduction goes here! Some examples of commonly used commands and features are listed below, to help you get started. If you have a question, please use the help menu ("?") on the top bar to search for help or ask us a question.

## 2 Problematic

Historically, the use of different forms of punishment is driven by a range of social, cultural and political factors, often quite unrelated to the effectiveness of these sanctions for crime control. There is by now a vast literature of empirical research on the deterrent effect of capital punishment, often pointing to quite opposite conclusions. Some of the research studies involve statistical models that are highly technical and inaccessible to the general reader. The sheer volume of publications on the topic is itself a barrier to an informed public opinion on the research evidence. It is generally agreed that a legitimate reason for the existence of governments is to procure for the citizenry the safety and security of their persons and possessions. Unfortunately, governments are never fully successful in this regard, with the result that they have as a major problem the task of reducing dangerous crime. Many public officials in the United States have advocated the use of more severe penal sanctions as a means of deterring crime. Unfortunately, very little research has been conducted to ascertain the deterrent effect of criminal sanctions, or to determine the possible impact of longer prison sentences on levels of serious crime. The preponderance of arguments both for and against punitive sanctions are founded on ethical grounds or "common sense," and generally have been advanced without scientific support. Deterrence, in its simplest definition, is an effect where a threat of punishment causes individuals who would have committed the threatened behavior to refrain from doing so. Different forms of multivariate analysis, some with and some without economic modeling, have continued to be employed in an attempt to reach a definitive answer regarding the deterrent effect of capital punishment. Primarily, the case for executions deterring further offenses is made by studies which adopt econometric models of analysis. These research papers have become highly technical, typically identifying problems with previous studies before positing a new technique or modified model [NSW, 2004].

## 3 Methodology

To achieve the proposed objectives, we are using a purely additive multiple linear regression problem. We hypothesize according to the summary results. It is important to know that there are an infinite number of ways to plan an hypothesis. In fact, we produced two more purely additive models but will only use the one mentioned above. Of the models produced, in the second one we subtracted some variables we thought were not needed; In the third one, even though we also used a purely additive model we also applied a logarithm to the variables. We are using data from Vandaele(1978) which was an study that re-analyzed Isaac Ehrlich's 1960 cross-section data on the relationship between aggregate levels of punishment and crime rates. It provides alternative model specifications and estimations. The study examined the deterrent effects of punishment on seven FBI index crimes: murder, rape, assault, larceny, robbery, burglary, and auto theft. Socio-economic variables include family income, percentage of families earning below half of the median income, unemployment rate for urban males in the age groups 14-24 and 35-39, labor force participation rate, educational level, percentage of young males and non-whites in the population, percentage of population in the SMSA, sex ratio, and place of occurrence. Two sanction variables are also included: 1) the probability of imprisonment, and 2) the average time served in prison when sentenced (severity of punishment). Also included are: per capita police expenditure for 1959 and 1960, and the crime rates for murder, rape, assault, larceny, robbery, burglary, and auto theft.

### 4 Results and Discussion



Figure 1: Nota de imagen.

From the figure 1, we can visualize that there is not a somewhat strong relationship between the probability of imprisonment and the crimes rate, i.e. The lower the probability of imprisonment increases the greater the crimes rate. That is because the probability of imprisonment is given by the ratio of number of commitments to number of offenses. We can note some outliers in the plot, which means significant change in the estimation.

From the figure 2, we can visualize that there is not a somewhat strong relationship between the income inequality and the crimes rate, i.e. The lower the income inequality increases the greater the crimes rate. We can note that regression line is not so steep. We can note some outliers in the plot near to 2000 in the crimes rate, which means significant change in the estimation.

From the figure 3, we can visualize that there is not a somewhat strong relationship between the schooling population and the crimes rate, i.e. The greater the schooling population increases the greater the crimes rate. We can note that regression line has a positive slope. We can note



Figure 2: Nota de imagen.



Figure 3: Nota de imagen.

some outliers in the plot near to 2000 in the crimes rate, which means significant change in the estimation

|           | Estimate      | Std. Error             | t value | $\Pr(> \mathrm{t} )$ |
|-----------|---------------|------------------------|---------|----------------------|
| Intercept | -5.984e+03    | $1.628e{+03}$          | -3.675  | 0.000893             |
| M         | $8.783e{+01}$ | $4.171e{+01}$          | 2.106   | 0.043443             |
| So        | -3.803e+00    | 1.488e+02              | -0.026  | 0.979765             |
| Ed        | 1.883e+02     | $6.209\mathrm{e}{+01}$ | 3.033   | 0.004861             |
| Po1       | 1.928e+02     | $1.061\mathrm{e}{+02}$ | 1.817   | 0.078892             |
| Po2       | -1.094e+02    | 1.175e + 02            | -0.931  | 0.358830             |
| LF        | -6.638e+02    | 1.470e + 03            | -0.452  | 0.654654             |
| M.F       | $1.741e{+01}$ | $2.035e{+01}$          | 0.855   | 0.398995             |
| Pop       | -7.330e-01    | $1.290\mathrm{e}{+00}$ | -0.568  | 0.573845             |
| NW        | 4.204 e + 00  | 6.481e+00              | 0.649   | 0.521279             |
| U1        | -5.827e+03    | $4.210e{+03}$          | -1.384  | 0.176238             |
| U2        | 1.678e + 02   | $8.234e{+01}$          | 2.038   | 0.050161             |
| Wealth    | 9.617e-02     | 1.037e-01              | 0.928   | 0.360754             |
| Ineq      | 7.067e + 01   | $2.272e{+01}$          | 3.111   | 0.003983             |
| Prob      | -4.855e+03    | 2.272e+03              | -2.137  | 0.040627             |
| Time      | -3.479e+00    | 7.165e+00              | -0.486  | 0.630708             |

Table 1: Summary of model 1

From the table 1, in the column estimate, we can see the estimation for each variable which indicate the increasing of crimes rate by variable. The first row, intercept, is essentially the expected value of the crimes rate when we consider the average of all the variables in the dataset. The second column is the standard error, which measures the average amount that the coefficient estimates vary from the actual average value of our response variable. We can see that there are values of e+03 which is large. In the third column, the t-statistic values are relatively close to zero and are small relative to the standard error, which could indicate a strong relationship does not exist. In the fourth column we can see the p-value which should be small, but we have in our model some cases like So (indicator variable for a southern state) where the p-value is close to 1. However, in the intercept row we have a p-value less than 0.05 then we can say that we reject the null hypothesis. Furthermore, Using the R application we can say that the variables M (percentage of males aged 14–24 in total state population), Ed (mean years of schooling of the population aged 25 years or over), Ineq (income inequality) and Prob (probability of imprisonment) represent a highly significant p-value.

| Multiple R-squared | 0.8031 |
|--------------------|--------|
| Adjusted R Squared | 0.7078 |

Table 2: Nombre sin definir

|   | Res.Df | RSS     | Df | Sum of Sq | F      | Pr(>F)    |
|---|--------|---------|----|-----------|--------|-----------|
| 1 | 46     | 6880928 |    |           |        |           |
| 2 | 31     | 1354946 | 15 | 5525982   | 8.4286 | 3.539e-07 |

Table 3: Overall Regression

From the table 3 we can see that the p-value of our overall regression is lower than 0.05, then we reject the null hypothesis.

|   |   | Res.Df | RSS     | Df | Sum of Sq | F      | $\Pr(>F)$ |
|---|---|--------|---------|----|-----------|--------|-----------|
| ſ | 1 | 32     | 1757063 |    |           |        |           |
|   | 2 | 31     | 1354946 | 1  | 402117    | 9.2001 | 0.004861  |

Table 4: Hyphotesis Test. Ed=0

From the table 4 we can see that if our null hypothesis is that Ed (mean years of schooling of the population aged 25 years or over) is equal to zero, then the p-value of our regression is lower than 0.05, hence we reject the null hypothesis.

|   |   | Res.Df | RSS     | Df | Sum of Sq | F      | Pr(>F)   |
|---|---|--------|---------|----|-----------|--------|----------|
| ĺ | 1 | 33     | 2038089 |    |           |        |          |
|   | 2 | 31     | 1354946 | 2  | 683143    | 7.8149 | 0.001786 |

Table 5: Hyphotesis Test. Ed=Ineq=0

From the table 5 we can see that if our null hypothesis is that Ed (mean years of schooling of the population aged 25 years or over) is equal to Ineq (income inequality) and these are equal to zero, then the p-value of our regression is lower than 0.05, hence we reject the null hypothesis.

|   | Res.Df | RSS     | Df | Sum of Sq | F      | Pr(>F)    |
|---|--------|---------|----|-----------|--------|-----------|
| 1 | 34     | 2303529 |    |           |        |           |
| 2 | 31     | 1354946 | 3  | 948583    | 7.2343 | 0.0008141 |

Table 6: Hyphotesis Test. Ed=Ineq=Prob=0

From the table 6 we can see that if our null hypothesis is that Ed (mean years of schooling of the population aged 25 years or over) is equal to Ineq (income inequality) and these are equal to Prob (probability of imprisonment) and these are equal to zero, then the p-value of our regression is lower than 0.05, hence we reject the null hypothesis.

|   | Res.Df | RSS     | Df | Sum of Sq | F     | Pr(>F)  |
|---|--------|---------|----|-----------|-------|---------|
| 1 | 32     | 1533405 |    |           |       |         |
| 2 | 31     | 1354946 | 1  | 178459    | 4.083 | 0.05203 |

Table 7: Hyphotesis Test. Ed+Ineq+Prob=0

From the table 7 we can see that if our null hypothesis is that Ed (mean years of schooling of the population aged 25 years or over) plus Ineq (income inequality) and plus Prob (probability of imprisonment) and this sum is equal to zero, then the p-value of our regression is greater than 0.05, hence we do not reject the null hypothesis.

|   |   | Res.Df | RSS     | Df | Sum of Sq | F      | Pr(>F)  |
|---|---|--------|---------|----|-----------|--------|---------|
| ĺ | 1 | 32     | 1779121 |    |           |        |         |
|   | 2 | 31     | 1354946 | 1  | 424176    | 9.7048 | 0.00394 |

Table 8: Hyphotesis Test. Wealth-Ineq=0

From the table 8 we can see that if our null hypothesis is that Wealth (median value of transferable assets or family income) minus Ineq (income inequality) and this subtraction is equal to zero, then the p-value of our regression is lower than 0.05, hence we reject the null hypothesis.

## References

[Ehrlich, 1973] Ehrlich, I. (1973). Participation in illegitimate activities: a theoretical and empirical investigation. *Political Economy*, (81):521–565.

[NSW, 2004] NSW (2004). The deterrent effect of capital punishment: A review of the research evidence. *Crime and Justice*, (84):1–11.

[Vandaele, 1978] Vandaele, W. (1978). Participation in illegitimate activities: Ehrlich revisited. In Deterrence and Incapacitation. *National Academy of Sciences*, pages 270–335.

## 5 Anexes

|      | So | Ed   | Po1  | Po2  | LF    | M.F   | Pop | NW   | U1    | U2  | Wealth | Ineq | Prob     | Time    | Crime |
|------|----|------|------|------|-------|-------|-----|------|-------|-----|--------|------|----------|---------|-------|
| 15.1 | 1  | 9.1  | 5.8  | 5.6  | 0.51  | 95    | 33  | 30.1 | 0.108 | 4.1 | 3940   | 26.1 | 0.084602 | 26.2011 | 791   |
| 14.3 | 0  | 11.3 | 10.3 | 9.5  | 0.583 | 101.2 | 13  | 10.2 | 0.096 | 3.6 | 5570   | 19.4 | 0.029599 | 25.2999 | 1635  |
| 14.2 | 1  | 8.9  | 4.5  | 4.4  | 0.533 | 96.9  | 18  | 21.9 | 0.094 | 3.3 | 3180   | 25   | 0.083401 | 24.3006 | 578   |
| 13.6 | 0  | 12.1 | 14.9 | 14.1 | 0.577 | 99.4  | 157 | 8    | 0.102 | 3.9 | 6730   | 16.7 | 0.015801 | 29.9012 | 1969  |
| 14.1 | 0  | 12.1 | 10.9 | 10.1 | 0.591 | 98.5  | 18  | 3    | 0.091 | 2   | 5780   | 17.4 | 0.041399 | 21.2998 | 1234  |
| 12.1 | 0  | 11   | 11.8 | 11.5 | 0.547 | 96.4  | 25  | 4.4  | 0.084 | 2.9 | 6890   | 12.6 | 0.034201 | 20.9995 | 682   |
| 12.7 | 1  | 11.1 | 8.2  | 7.9  | 0.519 | 98.2  | 4   | 13.9 | 0.097 | 3.8 | 6200   | 16.8 | 0.0421   | 20.6993 | 963   |
| 13.1 | 1  | 10.9 | 11.5 | 10.9 | 0.542 | 96.9  | 50  | 17.9 | 0.079 | 3.5 | 4720   | 20.6 | 0.040099 | 24.5988 | 1555  |
| 15.7 | 1  | 9    | 6.5  | 6.2  | 0.553 | 95.5  | 39  | 28.6 | 0.081 | 2.8 | 4210   | 23.9 | 0.071697 | 29.4001 | 856   |
| 14   | 0  | 11.8 | 7.1  | 6.8  | 0.632 | 102.9 | 7   | 1.5  | 0.1   | 2.4 | 5260   | 17.4 | 0.044498 | 19.5994 | 705   |
| 12.4 | 0  | 10.5 | 12.1 | 11.6 | 0.58  | 96.6  | 101 | 10.6 | 0.077 | 3.5 | 6570   | 17   | 0.016201 | 41.6    | 1674  |
| 13.4 | 0  | 10.8 | 7.5  | 7.1  | 0.595 | 97.2  | 47  | 5.9  | 0.083 | 3.1 | 5800   | 17.2 | 0.031201 | 34.2984 | 849   |
| 12.8 | 0  | 11.3 | 6.7  | 6    | 0.624 | 97.2  | 28  | 1    | 0.077 | 2.5 | 5070   | 20.6 | 0.045302 | 36.2993 | 511   |
| 13.5 | 0  | 11.7 | 6.2  | 6.1  | 0.595 | 98.6  | 22  | 4.6  | 0.077 | 2.7 | 5290   | 19   | 0.0532   | 21.501  | 664   |
| 15.2 | 1  | 8.7  | 5.7  | 5.3  | 0.53  | 98.6  | 30  | 7.2  | 0.092 | 4.3 | 4050   | 26.4 | 0.0691   | 22.7008 | 798   |
| 14.2 | 1  | 8.8  | 8.1  | 7.7  | 0.497 | 95.6  | 33  | 32.1 | 0.116 | 4.7 | 4270   | 24.7 | 0.052099 | 26.0991 | 946   |
| 14.3 | 0  | 11   | 6.6  | 6.3  | 0.537 | 97.7  | 10  | 0.6  | 0.114 | 3.5 | 4870   | 16.6 | 0.076299 | 19.1002 | 539   |
| 13.5 | 1  | 10.4 | 12.3 | 11.5 | 0.537 | 97.8  | 31  | 17   | 0.089 | 3.4 | 6310   | 16.5 | 0.119804 | 18.1996 | 929   |
| 13   | 0  | 11.6 | 12.8 | 12.8 | 0.536 | 93.4  | 51  | 2.4  | 0.078 | 3.4 | 6270   | 13.5 | 0.019099 | 24.9008 | 750   |
| 12.5 | 0  | 10.8 | 11.3 | 10.5 | 0.567 | 98.5  | 78  | 9.4  | 0.13  | 5.8 | 6260   | 16.6 | 0.034801 | 26.401  | 1225  |
| 12.6 | 0  | 10.8 | 7.4  | 6.7  | 0.602 | 98.4  | 34  | 1.2  | 0.102 | 3.3 | 5570   | 19.5 | 0.0228   | 37.5998 | 742   |
| 15.7 | 1  | 8.9  | 4.7  | 4.4  | 0.512 | 96.2  | 22  | 42.3 | 0.097 | 3.4 | 2880   | 27.6 | 0.089502 | 37.0994 | 439   |
| 13.2 | 0  | 9.6  | 8.7  | 8.3  | 0.564 | 95.3  | 43  | 9.2  | 0.083 | 3.2 | 5130   | 22.7 | 0.0307   | 25.1989 | 1216  |
| 13.1 | 0  | 11.6 | 7.8  | 7.3  | 0.574 | 103.8 | 7   | 3.6  | 0.142 | 4.2 | 5400   | 17.6 | 0.041598 | 17.6    | 968   |
| 13   | 0  | 11.6 | 6.3  | 5.7  | 0.641 | 98.4  | 14  | 2.6  | 0.07  | 2.1 | 4860   | 19.6 | 0.069197 | 21.9003 | 523   |
| 13.1 | 0  | 12.1 | 16   | 14.3 | 0.631 | 107.1 | 3   | 7.7  | 0.102 | 4.1 | 6740   | 15.2 | 0.041698 | 22.1005 | 1993  |
| 13.5 | 0  | 10.9 | 6.9  | 7.1  | 0.54  | 96.5  | 6   | 0.4  | 0.08  | 2.2 | 5640   | 13.9 | 0.036099 | 28.4999 | 342   |
| 15.2 | 0  | 11.2 | 8.2  | 7.6  | 0.571 | 101.8 | 10  | 7.9  | 0.103 | 2.8 | 5370   | 21.5 | 0.038201 | 25.8006 | 1216  |
| 11.9 | 0  | 10.7 | 16.6 | 15.7 | 0.521 | 93.8  | 168 | 8.9  | 0.092 | 3.6 | 6370   | 15.4 | 0.0234   | 36.7009 | 1043  |
| 16.6 | 1  | 8.9  | 5.8  | 5.4  | 0.521 | 97.3  | 46  | 25.4 | 0.072 | 2.6 | 3960   | 23.7 | 0.075298 | 28.3011 | 696   |
| 14   | 0  | 9.3  | 5.5  | 5.4  | 0.535 | 104.5 | 6   | 2    | 0.135 | 4   | 4530   | 20   | 0.041999 | 21.7998 | 373   |
| 12.5 | 0  | 10.9 | 9    | 8.1  | 0.586 | 96.4  | 97  | 8.2  | 0.105 | 4.3 | 6170   | 16.3 | 0.042698 | 30.9014 | 754   |
| 14.7 | 1  | 10.4 | 6.3  | 6.4  | 0.56  | 97.2  | 23  | 9.5  | 0.076 | 2.4 | 4620   | 23.3 | 0.049499 | 25.5005 | 1072  |
| 12.6 | 0  | 11.8 | 9.7  | 9.7  | 0.542 | 99    | 18  | 2.1  | 0.102 | 3.5 | 5890   | 16.6 | 0.040799 | 21.6997 | 923   |
| 12.3 | 0  | 10.2 | 9.7  | 8.7  | 0.526 | 94.8  | 113 | 7.6  | 0.124 | 5   | 5720   | 15.8 | 0.0207   | 37.4011 | 653   |
| 15   | 0  | 10   | 10.9 | 9.8  | 0.531 | 96.4  | 9   | 2.4  | 0.087 | 3.8 | 5590   | 15.3 | 0.0069   | 44.0004 | 1272  |
| 17.7 | 1  | 8.7  | 5.8  | 5.6  | 0.638 | 97.4  | 24  | 34.9 | 0.076 | 2.8 | 3820   | 25.4 | 0.045198 | 31.6995 | 831   |
| 13.3 | 0  | 10.4 | 5.1  | 4.7  | 0.599 | 102.4 | 7   | 4    | 0.099 | 2.7 | 4250   | 22.5 | 0.053998 | 16.6999 | 566   |
| 14.9 | 1  | 8.8  | 6.1  | 5.4  | 0.515 | 95.3  | 36  | 16.5 | 0.086 | 3.5 | 3950   | 25.1 | 0.047099 | 27.3004 | 826   |
| 14.5 | 1  | 10.4 | 8.2  | 7.4  | 0.56  | 98.1  | 96  | 12.6 | 0.088 | 3.1 | 4880   | 22.8 | 0.038801 | 29.3004 | 1151  |
| 14.8 | 0  | 12.2 | 7.2  | 6.6  | 0.601 | 99.8  | 9   | 1.9  | 0.084 | 2   | 5900   | 14.4 | 0.0251   | 30.0001 | 880   |
| 14.1 | 0  | 10.9 | 5.6  | 5.4  | 0.523 | 96.8  | 4   | 0.2  | 0.107 | 3.7 | 4890   | 17   | 0.088904 | 12.1996 | 542   |
| 16.2 | 1  | 9.9  | 7.5  | 7    | 0.522 | 99.6  | 40  | 20.8 | 0.073 | 2.7 | 4960   | 22.4 | 0.054902 | 31.9989 | 823   |
| 13.6 | 0  | 12.1 | 9.5  | 9.6  | 0.574 | 101.2 | 29  | 3.6  | 0.111 | 3.7 | 6220   | 16.2 | 0.0281   | 30.0001 | 1030  |
| 13.9 | 1  | 8.8  | 4.6  | 4.1  | 0.48  | 96.8  | 19  | 4.9  | 0.135 | 5.3 | 4570   | 24.9 | 0.056202 | 32.5996 | 455   |
| 12.6 | 0  | 10.4 | 10.6 | 9.7  | 0.599 | 98.9  | 40  | 2.4  | 0.078 | 2.5 | 5930   | 17.1 | 0.046598 | 16.6999 | 508   |
| 13   | 0  | 12.1 | 9    | 9.1  | 0.623 | 104.9 | 3   | 2.2  | 0.113 | 4   | 5880   | 16   | 0.052802 | 16.0997 | 849   |
|      |    |      |      |      |       |       |     |      |       |     |        |      |          | -       |       |

Table 9: Data Table-Effect of Punishment Regimes on Crime Rates