Семинар 3

Опять немного теории множеств

Определение 3.1. Пусть A и B – некоторые множества. Отображение (не обязательно линейное) $f: A \to B$ называется *инъективным*, или *инъекцией*, если оно переводит разные элементы в разные, т.е. $\forall a_1, a_2 \in A \ a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$.

Определение 3.2. Отображение $f: A \to B$ называется *сюръективным*, или *сюръекцией*, если множество его значений есть всё B, т.е. $\forall b \in B \ \exists a \in A: f(a) = b$.

Определение 3.3. Отображение $f: A \to B$, которое одновременно является инъекцией и сюръекцией, называется биекцией, или взаимо однозначным соответствием.

Немного теории групп

Определение 3.4. *Группой* называется множество G с определённой на нём бинарной операцией $\cdot: G \times G \to G$ такой, что:

- 1. $\forall a, b, c \in G : a(bc) = (ab)c$.
- 2. $\exists e \in G : \forall a \in G : ae = ea = a$ (элемент e называется нейтральным).
- 3. $\forall a \in G \ \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e \ ($ элемент aa^{-1} называется обратным).

Упражнение 3.1. Осознать, что линейное пространство является группой относительно операции сложения векторов.

Определение 3.5. Пусть заданы две группы (G, \cdot) и (H, *). Гомоморфизмом этих групп называется функция $h: G \to H$ такая, что $\forall u, v \in G \ h(u \cdot v) = h(u) * h(v)$. Проще говоря, гомоморфизм h сохраняет групповую структуру.

Упражнение 3.2. Доказать, что гомоморфизм переводит нейтральный элемент в нейтральный, а обратные – в обратные.

Определение 3.6. Изоморфизмом называется биективный гомоморфизм. Группы G и H называются изоморфными, если существует соответствующий изоморфизм.

Утверждение 3.1. φ – инъективный гомоморфизм \Leftrightarrow Ker $\varphi = \{e\}$. (Докажите это!)

Возвращаемся к линейной алгебре

Определение 3.7. *Изоморфизмом* линейных пространств U и V называется биективное отображение $\varphi: U \to V$, удовлетворяющее свойствам:

1.
$$\forall u_1, u_2 \in U : \varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2).$$

2. $\forall \alpha \in \mathbb{R} \ \forall u \in U : \varphi(\alpha u) = \alpha \varphi(u)$.

Пространства U и V называются uзомор ϕ нымu, если между ними существует изоморфизм.

Утверждение 3.2. Линейные пространства одной размерности являются изоморфными.

Утверждение 3.3. Изоморфизм есть отошение эквивалентности.

Сумма и пересечение подпространств

В целом с подпространствами и их пересечениями всё очевидно :)

Определение 3.8. Пусть V – линейное пространство, U_1, U_2 – подпространства V. Cуммой пространств U_1 и U_2 называется следующее множество:

$$U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}$$

Аналогично определяется сумма k подпространств $U_1, ..., U_k \leq V$.

Замечание. Определить сумму $U_1 + ... + U_k$ можно и другим эквивалентным способом:

$$U_1 + \ldots + U_k = \langle U_1 \cup \ldots \cup U_k \rangle$$

Определение 3.9. Пусть V – линейное пространство, $U_1,...,U_k \leq V$. Сумма этих подпространств называется npsmoù (обозн.: $U = U_1 \oplus ... \oplus U_k$), если для любого вектора $u \in U$ существует единственный набор векторов $u_1 \in U_1,...,u_k \in U_k$ такой, что $u = u_1 + ... + u_k$. **Теорема 3.1.** Пусть V – линейное пространство, $U_1,...,U_k \leq V$. Тогда сумма $U_1 + ... + U_k$ – прямая \Leftrightarrow для любого $i \in \{1,...,k\}$ выполнено равенство:

$$U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k) = {\overline{0}}$$

Упражнение 3.3. Доказать, что *n*-мерное линейное пространство является прямой суммой подпространства векторов, все координаты которых равны между собой, и подпространства векторов, сумма координат которых равна 0.

<u>Решение</u>: для краткости обозначим исходное пространство за L_n , первое подпространство за U, второе за V. Нужно проверить, что:

- 1. U и V это действительно подпространства.
- 2. $U \cap V = \{0\}.$

1. Пусть
$$u \in U \Rightarrow u = (u_1, u_2, ..., u_n)^T = (u_1, u_1, ..., u_1)^T$$
 и $y \in U \Rightarrow y = (y_1, y_1, ..., y_1)^T$.

Очевидно, что сумма $u+y=(u_1+y_1,...,u_1+y_1)^T$ лежит в U. Несложно проверить, что $\alpha u \in U \ \forall \alpha$. Значит U – действительно подпространство. Аналогично для V.

2. Рассмотрим $x \in U \cap V$. Так как $x \in U$, то $x = (x_1, ..., x_1)$. С другой стороны, $x \in V \Rightarrow \sum_{i=1}^n x_i = nx_1 = 0 \Rightarrow x_1 = 0 \Rightarrow x = (0, ..., 0)$. А значит $U \cap V = \{0\}$.

Сопряжённое пространство

Определение 3.10. Пусть V — линейное пространство. Множество линейных функционалов на V называется *пространством*, *сопряжённым* κ V. Обозн.: V^* .

На V^* определены операции сложения и умножения на скаляр:

- $\forall f, g \in V^* \ \forall v \in V \ (f+g)(v) = f(v) + g(v).$
- $\forall \alpha \in \mathbb{R} \ \forall f \in V^* \ \forall v \in V \ (\alpha f)(v) = \alpha f(v).$

Утверждение 3.4. V^* также является линейным пространством.

Пусть V – линейное пространство, $e=(e_1,...,e_n)$ – базис в V. Тогда для каждого $i\in\{1,...,k\}$ определим $f_i\in V^*$ следующим образом: $\forall v\in V: v=\sum_{i=1}^n\alpha_ie_i\to f_i(v)=\alpha_i$.

Утверждение 3.5. Пусть V – линейное пространство, $e = (e_1, ..., e_n)$ – базис в V. Тогда $(f_1, ..., f_n)$ – базис в V^* .

Следствие. Если V – линейное пространство, то dim $V^* = \dim V$.

Определение 3.11. Пространством, дважды сопряжённым κ V называется $V^{**} := (V^*)^*$.

Теорема 3.2. Отображение $\varphi: V \to V^{**}$ такое, что $\varphi(v) = v^{**}$ для любого $v \in V$, является изоморфизмом линейных пространств V и V^{**} .

Пространство линейных операторов

Определение 3.12. Множество линейных отображений из U в V обозначается как $\mathcal{L}(U,V)$. Множество линейных преобразований пространства V обозначается $\mathcal{L}(V)$.

Упражнение 3.4. Доказать, что отображение $\psi: \mathcal{L}(U,V) \to M_{n\times k}(\mathbb{R})$, где $k=\dim U$, $n=\dim V$, биективно.

По сути упражнение доказывает, что каждому линейному отображению из пространства U размерности k в пространство V размерности n соответствует своя матрица $A \in M_{n \times k}(\mathbb{R})$.