PANC: Projeto e Análise de Algoritmos

Aula 13: Grafos

Breno Lisi Romano

http://sites.google.com/site/blromano

Instituto Federal de São Paulo – IFSP São João da Boa Vista Bacharelado em Ciência da Computação – 3º Semestre

Sumário

- Introdução
- Exemplos
- Terminologia
- Noções Básicas de Grafos
- Representações Computacionais de Grafos
- Busca em Grafos
 - Busca em Profundidade
 - Busca em Largura

Grafos - Motivações

- Grafos são estruturas abstratas que podem modelar diversos problemas do mundo real
- Por exemplo, um grafo pode representar conexões entre cidades por estradas ou uma rede de computadores
- O interesse em estudar algoritmos para problemas em grafos é que conhecer um algoritmo para um determinado problema em grafos pode significar conhecer algoritmos para diversos problemas reais

Exemplos de Grafos – Mapa Rodoviário do Estado de SP

Exemplos de Grafos – Estações de Metrô da cidade de São Paulo

Exemplos de Grafos – Rede de Relacionamentos

Exemplos de Grafos – Mapa Hidrográfico do Rio Amazonas

Exemplos de Grafos – Projeto de Redes de Computadores

Algoritmos em Grafos - Aplicações

- Caminho mínimo: dado um conjunto de cidades, as distâncias entre elas e duas cidades A e B,
 determinar um caminho (trajeto) mais curto de A até B
- Árvore Geradora de Peso Mínimo: dado um conjunto de computadores, onde cada par de computadores pode ser ligado usando uma quantidade de fibra ótica, encontrar uma rede interconectando-os que use a menor quantidade de fibra ótica possível
- Emparelhamento máximo: dado um conjunto de pessoas e um conjunto de vagas para diferentes empregos, onde cada pessoa é qualificada para certos empregos e cada vaga pode ser ocupada por uma pessoa, encontrar um modo de empregar o maior número possível de pessoas
- Problema do Caixeiro Viajante: dado um conjunto de cidades, encontrar um passeio que sai de uma cidade, passa por todas as cidades e volta para a cidade inicial tal que a distância total a ser percorrida seja menor possível
- Problema Chinês do Correio: dado o conjunto das ruas de um bairro, encontrar um passeio que passa por todas as ruas voltando ao ponto inicial tal que a distância total a ser percorrida seja menor possível

Grafos – História (1)

- Um grafo é uma estrutura de abstração muito útil na representação e solução de problemas computacionais, por representarem relações de interdependência entre elementos de um conjunto
- O primeiro registro de uso data de 1736, por Euler
- O problema era encontrar um caminho circular por Königsberg (atual Kaliningrado) usando cada uma das pontes sobre o rio Pregel (o Pregolya, Pregola) exatamente uma vez

Grafos – História (2)

- 1736: Euler e as Pontes de Konigsberg:
 - Pergunta: Partindo de uma das margens, pode-se encontrar um percurso que passe somente uma vez em cada ponte e retorne ao ponto de partida?

- Modelo Proposto por Euler para tentar resolver o problema:
 - Cada vértice é uma área de terra firme
 - Cada aresta representa uma ponte

Grafos - História (2)

1736: Euler e as Pontes de Konigsberg:

- Se houvesse solução, ela deveria partir de um vértice qualquer e passar pelas arestas que o conectam
 - Cada vez que ele passa por uma aresta conectada a este vértice, temos:
 - 1. Se estávamos no vértice, então saímos dele
 - 2. Se não estávamos no vértice, então entramos nele
- Como saímos de um vértice, temos que se o número de vezes que passamos por arestas conectadas ao vértice for ímpar, então terminaremos fora deste vértice
 - Por outro lado, se o número de vezes que passamos por arestas conectadas ao vértice for par, voltamos a este vértice
- Observe então que no problema proposto, todos os vértices possuem um número ímpar de arestas, e o problema pede que comece e termine no mesmo vértice
 - Se passamos por todas as arestas, então passamos por uma quantidade ímpar de arestas conectadas àquele vértice, logo devemos estar fora do vértice → Não existe solução para este problema
- Caminhos que viabilizam sair de um vértice, percorrer todas as arestas apenas uma vez cada e retornar para o vértice original, são chamados de Grafos Eulerianos

Grafos: Definição

- Definição Formal:
 - Grafo é um par G = (V, A), em que:
 - V é um conjunto finito com n vértices ou nós → V = {a, b, c, d, e}
 - A conjunto finito de pares não-ordenados de vértices chamados de arestas ou arcos → A = {(a, b), (a, c), (b, c), (b, d), (c, d), (c, e), (d, e)}

Grafos Orientados

 Um grafo orientado (direcionado) é definido de forma semelhante, com a diferença que as arestas consistem de pares ordenados de vértices

Exemplo:

 As vezes, para enfatizar, dizemos grafo não-orientado em vez de simplesmente grafo

Grafos Ponderados

 Um grafo (orientado ou não) é ponderado se cada aresta a o grafo está associado um valor real c(a), o qual denominamos custo (ou peso) da aresta

Exemplo:

Grafos: Terminologia (1)

Laços:

 Uma aresta cujas duas extremidades incidem em um mesmo vértice

Grafos: Terminologia (2)

Arestas Paralelas:

Mais de uma aresta associada ao mesmo par de vértices

Grafos: Terminologia (3)

Grafo Simples:

Grafo que não possui laços e nem arestas paralelas

Grafos: Terminologia (4)

Vértices Adjacentes:

- Vértices que são os pontos finais de uma mesma aresta
- A função Γ(i) retorna o conjunto de vértices adjacentes ao vértice i

Grafos: Terminologia (5)

Grau de um Vértice:

- O grau (d(i)) de um vértice i em um grafo não direcionado é igual o número de arestas incidentes a i
- O grau de entrada (d⁻(i)) de um vértice i em um grafo direcionado é igual o número de arestas que entram em i
- O grau de saída (d⁺(i)) de um vértice i em um grafo direcionado é igual o número de arestas que saem de i

Grafo Não Direcionado

Grafos: Terminologia (6)

Grafo Completo:

 Um grafo completo com n vértices, denominado K_n é um grafo simples contendo exatamente uma aresta para cada par de vértices distintos

Grafos: Terminologia (7)

Grafo Regular:

- Grafo no qual todos os vértices possuem o mesmo grau
- Obs: qualquer grafo completo é regular

Grafos: Terminologia (8)

Vértice Isolado:

Vértice com nenhuma aresta incidente

Grafos: Terminologia (9)

Grafo Conexo:

Para todo par de vértices i e j de G existe pelo menos um caminho entre i e j

Grafo Desconexo:

Consiste de 2 ou mais grafos conexos, chamados de componentes

Grafos: Terminologia (10)

Árvore:

- Um grafo G é uma árvore se é conexo e acíclico.
- As seguintes afirmações são equivalentes:
 - G é uma árvore
 - G é conexo e possui exatamente |V| 1 arestas
 - G é conexo e a remoção de qualquer aresta desconecta o grafo
 - Para todo par de vértices (v₁ e v₂) de G, existe um único caminho de v₁ a v₂ em G

Grafos: Terminologia (11)

Subgrafos:

- **Definição:** Um grafo $G_s = (V_s, A_s)$ é dito ser um subgrafo de um grafo G = (V, A) se todos os vértices e todas as arestas de G_s estão em G, ou seja, se $V_s \subseteq V$ e $A_s \subseteq A$
 - Um subgrafo gerador de G é um subgrafo G_s com V_s = V

Observações:

- Todo grafo é subgrafo de si próprio
- O subgrafo G_{s2} de um subgrafo G_s de G também é subgrafo de G
- Um vértice simples de G é um subgrafo de G
- Uma aresta simples de G (juntamente com suas extremidades) é um subgrafo de G

Grafos: Terminologia (12)

Passeio:

- Um passeio é uma sequência finita de vértices e arestas
- Cada vértice da sequência é incidente a aresta que o precede e a aresta seguinte
- Essa sequência deve acabar e iniciar em um vértice (não necessariamente os mesmos)

 Aberto: quando inicia e acaba em vértices diferentes (o caso acima)

(o caso acima)
Fechado: quando inicia e acaba no mesmo vértice.
Ex.: 1-2-3-4-3-5-3-1

Grafos: Terminologia (13)

Cadeia:

- Um passeio que não repete arestas
- Exemplo: Ex.: 4 3 2 1 3 5

Caminho:

- Uma cadeia sem repetição de vértices
- Pode ser:
 - Aberto: quando inicia e acaba em vértices diferentes.
 Ex.: 1-2-3-5
 - Fechado: quando inicia e acaba no mesmo vértice.

Ex.: 1-2-3-1

 Comprimento: o comprimento de um caminho é o número de arestas que o mesmo inclui

Grafos: Terminologia (14)

Ciclos:

- Um ciclo é um caminho fechado
- Alguns autores, utilizam o termo circuito para o caso de grafos orientados
- Grafo Ciclo: Um grafo ciclo C_n é um grafo com n vértices formado por apenas um ciclo passando por todos os vértices

Alguns Exemplos de Grafos

- Floresta: grafo acíclico (não precisa ser conexo). Cada componente é uma árvore
- Grafo completo: para todo par de vértices u e v, a aresta (u, v)
 pertence ao grafo
- Grafo bipartido: possui uma bipartição (A, B) do conjunto de vértices tal que toda aresta tem um extremo em A e outro em B
- Grafo planar: pode ser desenhado no plano de modo que arestas se interceptam apenas nos extremos

Grafos – Representações Computacionais

 A complexidade dos algoritmos para soluções de problemas modelados por grafos depende fortemente da sua representação interna

- Existem duas representações canônicas:
 - Matriz de Adjacência
 - Listas de Adjacência
- O uso de uma ou de outra num determinado algoritmo depende da natureza das operações que ditam a complexidade do algoritmo

Grafos – Matriz de Adjacências (1)

Matriz A_{nxn}, sendo que:

$$a_{ij} = \begin{cases} 1 & \text{se existe a aresta/arco} (v_i, v_j) \\ 0 & \text{caso contrário} \end{cases}$$

- Propriedades:
 - Simétrica para grafos não direcionados
 - Consulta existência de uma aresta/arco com um acesso à memória: O(1)
 - Ocupa Θ(n²) de espaço mesmo para grafos esparsos

Grafos – Matriz de Adjacências (2)

Para o grafo não ordenado, definir a matriz de adjacência:

Nós	1	2	3	4	5	6
1	0	0	0	1	0	0
2	0	0	1	1	0	0
3	0	1	0	1	0	0
4	1	1	1	0	1	1
5	0	0	0	1	0	1
6	0	0	0	1	1	0

Matriz de Adjacência

Grafos – Matriz de Adjacências (3)

Para o grafo ordenado, definir a matriz de adjacência:

Nós	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	1	0	0	0	0
4	1	1	1	0	0	0
5	0	0	0	1	0	1
6	0	0	0	1	0	0

Matriz de Adjacência

Grafos – Lista de Adjacências (1)

- Usa n listas, uma para cada vértice
- Lista de v_i (o *i*-ésimo vértice) contém todos os vértices adjacentes a
 ele
 - Para cada vértice v, temos uma lista ligada Adj[v] dos vértices adjacentes a v, ou seja, w aparece em Adj[v] se (v, w) é uma aresta de G
 - Os vértices podem estar em qualquer ordem na lista

Propriedades:

- Ocupa menos memória: O(m)
- No entanto, a complexidade da operação para determinar uma adjacência é limitada por O(n)

Grafos – Lista de Adjacências (2)

Para o grafo não ordenado, definir a lista de adjacência:

Grafos – Lista de Adjacências (2)

Para o grafo ordenado, definir a lista de adjacência:

Grafos – Matriz x Lista de Adjacências

- Quanto a pesquisa:
 - Matriz de Adjacência: é fácil verificar se (i, j) é uma aresta de G
 - Lista de Adjacência: é fácil descobrir os vértices adjacentes a um dado vértice (ou sejam listar Adj[v])
- Quanto ao espaço:
 - Matriz de Adjacência: espaço Θ(|V|²) → Adequada grafos densos
 - Lista de Adjacência: espaço Θ(|V|+|A|) → Adequada a grafos esparsos

Grafos – Extensões das Representações

Existem outras alternativas para representar grafos, mas matrizes e
 listas de adjacências são as mais utilizadas

 Elas podem ser adaptadas para representar grafos ponderados, grafos com laços e arestas múltiplas, grafos com pesos nos vértices etc.

 Para determinados problemas, é essencial ter estruturas de dados adicionais para melhorar a eficiência dos algoritmos Estudando... **BUSCA EM GRAFOS**

Busca em Grafos

- Dependendo do critério utilizado para escolha dos vértices e arestas a serem visitados, diferentes tipos de buscas são desenvolvidos a partir da busca genérica
- Grafos são estruturas mais complicadas do que listas, arrays e árvores binárias → Precisa-se de métodos para explorar/percorrer um grafo
- Basicamente, duas buscas completas em grafos são essenciais:
 - Busca em Profundidade (ou DFS Depth-First Search)
 - Busca em Largura (ou BFS Breadth-First Search)
- Para denotar complexidades nas expressões com O ou Θ, utiliza-se V e A
 em vez de |V [G]| ou |A[G]|
 - Por exemplo: $\Theta(V + A)$ ou $O(V^2)$

Busca em Profundidade - DFS

- A Busca em Profundidade visita todos os vértices de um grafo, usando como critério os vizinhos do vértice visitado mais recentemente
 - A estratégia consiste em pesquisar o grafo o mais "profundamente" sempre que possível
- Aplicável tanto a grafos orientados quanto não orientados
- Possui um número enorme de aplicações:
 - Determinar os componentes de um grafo
 - Ordenação topológica
 - Determinar componentes fortemente conexos
 - Subrotina para outros algoritmos
- Característica Principal:
 - Utiliza uma pilha explícita ou recursividade para guiar a busca

Busca em Profundidade – DFS Algoritmo Recursivo (1)

- Recebe um grafo G = (V, A) (representado por listas de adjacências)
- A busca inicia-se em um vértice qualquer
- Busca em profundidade como um método recursivo:
 - 1. Suponha que a busca atingiu um vértice u.
 - 2. Escolhe-se um vizinho não visitado v de u para prosseguir a busca
 - 3. "Recursivamente" a busca em profundidade prossegue a partir de v
 - 4. Quando esta busca termina, tenta-se prosseguir a busca a partir de outro vizinho de u. Se não for possível, ela retorna (*backtracking*) ao nível anterior da recursão

Busca em Profundidade – DFS Algoritmo Recursivo (2)

```
Entrada: Grafo G=(V, A), vértice inicial v
1 Marque o vértice v como visitado;
2 enquanto existir w vizinho de v faça
      se w é marcado como não visitado então
          Visite a aresta \{v, w\};
          Marque w como visitado;
          BP(G, w);//chamada recursiva da função
 6
      fim
      senão
          se {v, w} não foi visitada ainda então
             Visite \{v, w\};
10
          fim
11
      fim
12
13 fim
```


Busca em Profundidade – DFS Algoritmo com Pilha Explícita

- Outra forma de entender Busca em Profundidade é imaginar que os vértices são armazenados em uma pilha à medida que são visitados
 - Posteriormente: Compare isto com a Busca em Largura onde os vértices são armazenados em uma fila
- Busca em profundidade com o uso de uma Pilha Explícita:
 - 1. Suponha que a busca atingiu um vértice u
 - 2. Escolhe-se um vizinho não visitado v de u para prosseguir a busca
 - 3. Empilhe v e repete-se o passo anterior com v
 - 4. Se nenhum vértice não visitado foi encontrado, então desempilhe um vértice da pilha, digamos u, e volte ao primeiro passo

Busca em Profundidade – DFS Classificação de Arestas

- Ao explorar um grafo G conexo usando a DFS, pode-se categorizar as arestas:
 - Arestas de Árvore: Satisfazem ao primeiro se do algoritmo recursivo (linha 3),
 ou seja, levam à visitação de vértices ainda não visitados
 - Arestas de Retorno: Demais arestas
 - Formam ciclos, pois levam a vértices já visitados

Árvore de Profundidade:

 A subárvore de G formada pelas arestas de árvore é chamada de Árvore de Profundidade de G

Busca em Profundidade – DFS Exemplo (1)

Grafo Não Ordenado

Busca em Profundidade (DFS)

Resultado da Busca - Arestas: (1, 2)

Busca em Profundidade – DFS Exemplo (2)

Grafo Não Ordenado

Busca em Profundidade (DFS)

Resultado da Busca - Arestas: (1, 2) - (2, 3)

Busca em Profundidade – DFS Exemplo (3)

Grafo Não Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (3, 1) -$$

Busca em Profundidade – DFS Exemplo (4)

Grafo Não Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (3, 1) - (3, 4)$$

Busca em Profundidade – DFS Exemplo (5)

Grafo Não Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (3, 1) - (3, 4) - (4, 5)$$

Busca em Profundidade – DFS Exemplo (6)

Grafo Não Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (3, 1) - (3, 4) - (4, 5) - (5, 3)$$

Busca em Profundidade – DFS Exemplo (7)

Grafo Não Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (3, 1) - (3, 4) - (4, 5) - (5, 3) - (3, 6)$$

Busca em Profundidade – DFS Exemplo (8)

Grafo Não Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (3, 1) - (3, 4) - (4, 5) - (5, 3) - (3, 6) - (3, 7)$$

Busca em Profundidade – DFS Exemplo (9)

Grafo Não Ordenado

Busca em Profundidade – DFS Complexidade

Para cada vértice do grafo, a DFS percorre todos os seus vizinhos.
 Cada aresta é visitada duas vezes

 Se representarmos o grafo por uma lista de adjacências, a DFS tem complexidade O(V + A)

Busca em Profundidade – DFS Grafos Ordenados (1)

- A aplicação da DFS em grafos direcionados é essencialmente igual à aplicação em grafos não direcionados
- No entanto, mesmo o grafo ordenado sendo conexo, a DFS pode precisar ser chamada repetidas vezes enquanto houver vértices não visitados, retornando uma floresta
- Este é o mesmo caso quando a DFS é aplicada a um Grafo Não Ordenado Desconexo

```
Entrada: Grafo G=(V, A)

1 enquanto existir v \in V não visitado faça

2 | BP(G, v);

3 fim
```


Busca em Profundidade – DFS Grafos Ordenados (2)

- Ao explorar um grafo G ordenado usando a DFS, pode-se categorizar as arestas
- Sejam o vértice v a origem da aresta e o vértice w o destino da mesma:
 - Arcos de Avanço: Caso w seja descendente de v na floresta
 - Arcos de Retorno: Caso v seja descendente de w na floresta
 - Arcos de Cruzamento: Caso w não seja descendente de v e v não seja descendente de w

Busca em Profundidade – DFS Exemplo – Grafo Ordenado (1)

Grafo Ordenado

Busca em Profundidade (DFS)

Resultado da Busca - Arestas: (1, 2)

Busca em Profundidade – DFS Exemplo – Grafo Ordenado (2)

Grafo Ordenado

Busca em Profundidade (DFS)

Resultado da Busca - Arestas: (1, 2) - (2, 3)

Busca em Profundidade – DFS Exemplo – Grafo Ordenado (3)

Grafo Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (2, 6) - (6, 2)$$

Busca em Profundidade – DFS Exemplo – Grafo Ordenado (4)

Grafo Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (2, 6) - (6, 2) - (1, 3)$$

Busca em Profundidade – DFS Exemplo – Grafo Ordenado (5)

Grafo Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (2, 6) - (6, 2) - (1, 3) - (4, 3)$$

Busca em Profundidade – DFS Exemplo – Grafo Ordenado (6)

Grafo Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (2, 6) - (6, 2) - (1, 3) - (4, 3) - (4, 5)$$

Busca em Profundidade – DFS Exemplo – Grafo Ordenado (7)

Grafo Ordenado

Busca em Profundidade (DFS)

$$(1, 2) - (2, 3) - (2, 6) - (6, 2) - (1, 3) - (4, 3) - (4, 5) - (5, 3)$$

Busca em Profundidade – DFS Exemplo – Grafo Ordenado (8)

Grafo Ordenado

Busca em Profundidade (DFS)

Floresta de Profundidade

Busca em Largura – BFS

- A Busca em Largura visita todos os vértices de um grafo, usando como critério o vértice visitado menos recentemente e cuja vizinhança ainda não foi explorada
- Característica Principal: utiliza uma fila guiar a busca
- Atuação em camadas:
 - Inicialmente são considerados os vértices com distância 0 do vértice inicial
 - Na iteração 1 são visitados os vértices com distância 1; prosseguindo, de modo genérico, na iteração d será adicionada uma camada com todos os vértices com distância d do vértice inicial
 - Cada novo vértice visitado é adicionado no final de uma fila Q
 - Cada vértice da fila é removido depois que toda a vizinhança for visitada
 - A busca termina quando a fila se torna vazia

Busca em Largura – BFS Algoritmo

```
Entrada: Grafo G=(V, A), vértice inicial v
1 Crie uma fila Q vazia;
2 Marque v como visitado;
3 Insira v \in Q:
4 enquanto Q \neq \emptyset faça
       v \leftarrow remove elemento de Q;
       para todo vértice w vizinho de v faça
            se w é marcado como não visitado então
                Visite a aresta \{v, w\};
 8
                Insira w \in Q;
                Marque w como visitado;
10
            fim
11
            senão
12
                se {v, w} não foi visitada ainda então
13
                     Visite \{v, w\};
14
                fim
15
            fim
16
       fim
17
18 fim
```


Busca em Largura – BFS Exemplo (1)

Grafo Não Ordenado

Busca em Largura (BFS)

1

Resultado da Busca: Q (Fila) = {1} Arestas: -

Busca em Largura – BFS Exemplo (2)

Grafo Não Ordenado

Busca em Largura (BFS)

Resultado da Busca: Q (Fila) = {2}

Arestas: (1, 2)

Busca em Largura – BFS Exemplo (3)

Grafo Não Ordenado

Busca em Largura (BFS)

Resultado da Busca:

Q (Fila) = $\{2, 3\}$

Arestas: (1, 2) - (1, 3)

Busca em Largura – BFS Exemplo (4)

Grafo Não Ordenado

Busca em Largura (BFS)

Resultado da Busca:

Q (Fila) = $\{3\}$

Arestas: (1, 2) - (1, 3) - (2, 3)

Busca em Largura – BFS Exemplo (5)

Grafo Não Ordenado

Busca em Largura (BFS)

Resultado da Busca:

Q (Fila) =
$$\{3, 4\}$$

Arestas: (1, 2) - (1, 3) - (2, 3) - (3, 4)

Busca em Largura – BFS Exemplo (6)

Grafo Não Ordenado

Busca em Largura (BFS)

Q (Fila) =
$$\{4, 5\}$$

Arestas:
$$(1, 2) - (1, 3) - (2, 3) - (3, 4) - (3, 5)$$

Busca em Largura – BFS Exemplo (7)

Grafo Não Ordenado

Busca em Largura (BFS)

Q (Fila) =
$$\{4, 5, 6\}$$

Arestas:
$$(1, 2) - (1, 3) - (2, 3) - (3, 4) - (3, 5) - (3, 6)$$

Busca em Largura – BFS Exemplo (8)

Grafo Não Ordenado

Busca em Largura (BFS)

Q (Fila) =
$$\{4, 5, 6, 7\}$$

Arestas:
$$(1, 2) - (1, 3) - (2, 3) -$$

$$(3, 4) - (3, 5) - (3, 6) - (3, 7)$$

Busca em Largura – BFS Exemplo (9)

Grafo Não Ordenado

Busca em Largura (BFS)

Q (Fila) =
$$\{5, 6, 7\}$$

Arestas:
$$(1, 2) - (1, 3) - (2, 3) - (3, 4) - (3, 5) - (3, 6) - (3, 7) - (4, 5)$$

Busca em Largura – BFS Exemplo (10)

Grafo Não Ordenado

Árvore de Largura

Busca em Largura – BFS Complexidade

- Cada vértice só entra na fila uma vez
- Inserir e remover na fila possuem complexidade constante, realizadas
 |V| vezes cada
- A lista de adjacências de cada vértice é examinada apenas uma vez,
 e a soma dos comprimentos de todas as listas é Θ(A)
- Logo, se representarmos o grafo por uma lista de adjacências, a BFS tem complexidade O(V + A)

DFS vs. BFS

DFS - Busca em Profundidade:

- Incursões profundas no grafo, voltando somente quando não existem mais vértices desconhecidos pela frente
- Marca o vértice antes de visitar toda sua vizinhança
- Uso de pilha

BFS - Busca em Largura:

- Busca progride em "largura": certifica-se de que vizinhos próximos sejam visitados primeiro a partir de v;
- Marca o vértice depois de visitar toda sua vizinhança
- Uso de fila
- Visualização dos algoritmos: https://visualgo.net/

PANC: Projeto e Análise de Algoritmos

Aula 13: Grafos

Breno Lisi Romano

Dúvidas???

http://sites.google.com/site/blromano

Instituto Federal de São Paulo – IFSP São João da Boa Vista Bacharelado em Ciência da Computação – 3º Semestre

EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO