Intermediate Microeconomics Spring 2025

Week 13b: Uncertainty and Risk Aversion (II)

Yuanning Liang

The State-Preference Approach

□ The approach taken in this chapter up to this point has not used the basic model of utilitymaximization subject to a budget constraint.

☐ We will develop new techniques to incorporate the standard choice-theoretic framework

States of the World

- Outcomes of any random event can be categorized into a number of states of the world
 - "good times" or "bad times"
- Contingent commodities are goods delivered only if a particular state of the world occurs
 - "\$1 in good times" or "\$1 in bad times"
- It is conceivable that an individual could purchase a contingent commodity
 - buy a promise that someone will pay you \$1 if tomorrow turns out to be good times
 - this good will probably cost less than \$1

Utility Analysis

- ☐ Assume that there are two contingent goods
 - wealth in good times (W_g) and wealth in bad times (W_b)
 - Individual believes the probability that good times will occur is π

Utility Analysis

☐ The expected utility associated with these two contingent goods is

$$V(W_g, W_b) = \pi U(W_g) + (1 - \pi)U(W_b)$$

 \square This is the value that the individual wants to maximize given his initial wealth (W)

Prices of Contingent Commodities

- Assume that the person can buy \$1 of wealth in good times for p_g and \$1 of wealth in bad times for p_b
- ☐ His budget constraint is

$$W = p_q W_q + p_b W_b$$

 \square The price ratio p_g/p_b shows how this person can trade dollars of wealth in good times for dollars in bad times

Fair Markets for Contingent Goods

- If markets for contingent wealth claims are well-developed and there is general agreement about π , prices for these goods will be actuarially fair
 - that is, they will equal the underlying probabilities:

$$p_{q} = \pi \text{ and } p_{b} = (1 - \pi)$$

☐ The price ratio will reflect the odds in favor of good times

$$\frac{p_g}{p_b} = \frac{\pi}{1-\pi}$$

- ☐ If contingent claims markets are fair, a utility-maximizing individual will opt for a situation in which $W_q = W_b$
- □ he will arrange matters so that the wealth obtained is the same no matter what state occurs
- can also show the math...

Maximization of utility subject to a budget constraint requires that

$$MRS = \frac{\partial V / \partial W_g}{\partial V / \partial W_b} = \frac{\pi U'(W_g)}{(1 - \pi)U'(W_b)} = \frac{p_g}{p_b}$$

 \Box If markets for contingent claims are fair, $\frac{p_g}{p_b} = \frac{\pi}{1-\pi}$

$$\frac{U'(W_g)}{U'(W_b)} = 1$$

$$W_g = W_b$$

- Consider two people, each of whom starts with an initial wealth of W*
- Each seeks to maximize an expected utility function of the form

$$V(W_g, W_b) = \pi \frac{W_g^R}{R} + (1 - \pi) \frac{W_b^R}{R}$$

This utility function exhibits constant relative risk aversion

$$V(W_g, W_b) = \pi \frac{W_g^R}{R} + (1 - \pi) \frac{W_b^R}{R}$$

- ☐ The parameter *R* determines both the degree of risk aversion and the degree of curvature of indifference curves implied by the function
 - a very risk averse individual will have a large negative value for R

- □ Consider a person with wealth of \$100,000 who faces a 25% chance of losing his automobile worth \$20,000
 - wealth with no theft $(W_g) = \$100,000$ and probability of no theft = 0.75
 - wealth with a theft $(W_b) = \$80,000$ and probability of a theft = 0.25

☐ If we assume logarithmic utility, then

$$E(U) = 0.75U(W_g) + 0.25U(W_b)$$

 $E(U) = 0.75 \ln W_g + 0.25 \ln W_b$
 $E(U) = 0.75 \ln (100,000) + 0.25 \ln (80,000)$
 $E(U) = 11.45714$

☐ The budget constraint is written in terms of the prices of the contingent commodities

$$p_g W_g^* + p_b W_b^* = p_g W_g + p_b W_b$$

Assuming that these prices equal the probabilities of these two states

$$0.75(100,000) + 0.25(80,000) = 95,000$$

 \square The expected value of wealth = \$95,000

□ The individual will move to the certainty line and receive an expected utility of

$$E(U) = \ln 95,000 = 11.46163$$

- □ to be able to do so, the individual must be able to transfer \$5,000 = -(95,000-100,000) in extra wealth in good times into \$15,000 = 95,000-80,000 of extra wealth in bad times
 - □ a fair insurance contract will allow this
 - □ the wealth changes promised by insurance (dW_b/dW_g) = 15,000/-5,000 = -3

A Policy with a Deductible

□ Suppose that the insurance policy costs \$4,900, but requires the person to incur the first \$1,000 of the loss

$$W_g = 100,000 - 4,900 = 95,100$$

 $W_b = 80,000 - 4,900 + 19,000 = 94,100$
 $E(U) = 0.75 \ln 95,100 + 0.25 \ln 94,100$
 $E(U) = 11.46004$

The policy still provides higher utility than doing nothing

- \square π = probability of accident,
- \square W = income,
- \Box L = loss if the accident happened,
- \square M = amount insured,
- \square θ = premium percentage, then insurance premium = θM .
- There are two parties in the insurance market: insured (i.e., consumer) and insurer (i.e., insurance company)

- □ Insured
 - wealth at good times =
 - wealth at bad times =
 - The insured's objective is to choose *M* to maximize expected utility:

- To the insured, π , W, θ , and L are exogenous (i.e., given).
- To maximize utility, the first-order condition is

- □ Insured
 - wealth at good times =
 - wealth at bad times =
 - The insured's objective is to choose *M* to maximize expected utility:

$$\max_{M} \pi U(W - \theta M - L + M) + (1 - \pi)U(W - \theta M)$$

- To the insured, π , W, θ , and L are exogenous (i.e., given).
- The first-order condition is $\pi(1-\theta)U'(W-\theta M-L+M)-(1-\pi)\theta U'(W-\theta M)=0$

□ Example: If $U(W) = \log W$, then the optimal M^* is given by

 \square Example: If $U(W) = \log W$, then the optimal M^* is given by

$$M^* = \frac{(1-\pi)\theta L + (\pi-\theta)W}{(1-\theta)\theta}$$

- ☐ To the insurer,
 - revenue = θM ,
 - Cost = $\pi M + (1 \pi)0 = \pi M$,
 - Hence, expected profit = $\theta M \pi M$.
 - If insurance is actuarially fair (e.g., the insurance market is perfectly competitive), then the expected profit = 0, which implies $\theta = \pi$.
 - As a result, the premium percentage = probability of payout to the insured.

- □ Back to the insured,
- □ If the insurance is actuarially fair, then substituting $\theta = \pi$ into the first-order condition,
- One obtains

$$\pi(1-\pi)U'(W-\pi M - L + M) - (1-\pi)\pi U'(W-\pi M) = 0$$

$$U'(W-\pi M - L + M) = U'(W-\pi M)$$

☐ This equation means that the insured will achieve an optimum by choosing *M* to equalize the marginal utility of income across the two states (the accident state and the no-accident state).

- \square From mathematics, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$ if f(x) is a monotonic function.
- Assuming U''< 0, U' is thus monotonic, hence $W \pi M L + M = W \pi M$, which implies that M = L. The insured is fully insured because M = L.

- \square From mathematics, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$ if f(x) is a monotonic function.
- Assuming U''< 0, U' is thus monotonic, hence $W \pi M L + M = W \pi M$, which implies that M = L. The insured is fully insured because M = L.
- □ As $\theta = \pi$ and M = L; the insured's utility = $\pi U(W \theta M L + M) + (1 \pi)U(W \theta M) = U(W \pi L)$.
- □ Regardless of whether the accident occurs, the insured receives $U(W \pi L)$ with certainty. Insurance essentially removes uncertainty!
- \square Example: If $U(W) = \log W$, and $\theta = \pi$, then $M^* = L$.

Methods for Reducing Uncertainty and Risk

- □ Four different methods that individuals can take to mitigate the problem of risk and uncertainty:
 - Insurance
 - Diversification
 - Flexibility
 - Information

- ☐ Two firms, A and B.
- ☐ Shares cost \$10.
- □ With prob. 1/2 A's profit is \$100 and B's profit is \$20.
- □ With prob. 1/2 A's profit is \$20 and B's profit is \$100.
- □ You have \$100 to invest.
- ☐ How?

- □ (1) Buy only firm A's stock?
- \square \$100/10 = 10 shares.
- ☐ You earn \$1000 with prob. 1/2 and \$200 with prob. 1/2.
- \square Expected earning: \$500 + \$100 = \$600

- □ (2) Buy only firm B's stock?
- \square \$100/10 = 10 shares.
- ☐ You earn \$1000 with prob. 1/2 and \$200 with prob. 1/2.
- \square Expected earning: \$500 + \$100 = \$600

- □ (3) Buy 5 shares in each firm?
- ☐ You earn \$600 for sure.
- □ Diversification has maintained expected earning and lowered risk.
- □ Typically, diversification lowers expected earnings in exchange for lowered risk.

Flexibility

- □ Flexibility
 - Allows the person to adjust the initial decision depending on how the future unfolds
 - The more uncertain the future, the more valuable this flexibility
 - Keeps the decision-maker from being tied to one course of action
 - □ And instead provides a number of options

- ☐ Financial option contract
 - Offers the right, but not the obligation, to buy or sell an asset
 - □ During some future period
 - □ At a certain price
- □ Real option
 - An option arising in a setting outside of financial markets

- ☐ All options share three fundamental attributes
 - Specify the underlying transaction
 - Specify a period over which the option may be exercised
 - Specifies a price

- Model of real options
 - Let x embody all the uncertainty in the economic environment
 - The individual has some number, i = 1,...,n, of choices currently available
 - $O_i(x)$ = payoffs provided by choice i
 - \square (x) allows each choice to provide a different pattern of returns depending on how the future turns out

- Model of real options
 - No flexibility
 - ☐ Choose the single alternative that is best on average
 - □ Expected utility from this choice: $\max\{E[U(O_1)],...,E[U(O_n)]\}$
 - Flexibility
 - □ Choose the best alternative
 - \square Expected utility: $E\{max[U(O_1),...,U(O_n)]\}$

The Nature of a Real Option

- Panel (a) shows the payoffs and panel (b) shows the utilities provided by two alternatives across states of the world (x).
- If the decision has to be made upfront, the individual chooses the single curve having the highest expected utility.
- If the real option to make either decision can be preserved until later, the individual can obtain the expected utility of the upper envelope of the curves, shown in bold.

- More options are better (generally)
 - Options give the holder the right—but not the obligation—to choose them

More Options Cannot Make the Individual Decision-Maker Worse Off

- The addition of a third alternative to the two drawn in the previous figure is valuable in (a) because it shifts the upper envelope (shown in bold) of utilities up.
- The new alternative is worthless in (b) because it does not shift the upper envelope, but the individual is not worse off for having it.

- Computing the value of a real option
 - Let F be the fee that has to be paid
 - ☐ For the ability to choose the best alternative *after* x has been realized instead of *before*
 - The individual would be willing to pay the fee as long as:

```
E\{max[U(O_1(x)-F),...,U(O_n(x)-F)]\} \ge max\{E[U(O_1(x)],...,E[U(O_n(x)]\}
```

Practice example: Value of a Flexible-Fuel Car

- \square $O_1(x)=1-x$
 - The payoff from a fossil-fuel-only car
- $\square \ O_2(x) = x$
 - The payoff from a electric-only car
- ☐ State of the world, x
 - Reflects the relative importance of electricity compared with fossil fuels over the car's lifespan
 - Random variable, uniformly distributed between 0 and 1

- \square Probability density function (PDF) is f(x) = 1
 - When the uniform random variable ranges between 0 and 1
- □ Suppose first that the car buyer is risk neutral
 - Utility level = payoff level
 - Forced to choose a electric vehicle
 - Expected utility:

$$E[O_2] = \int_0^1 O_2(x) f(x) dx = \frac{1}{2}$$

with $f(x) = 1$

☐ Risk neutrality

- Flexible-fuel car is available
- Buyer: either $O_1(x)$ or $O_2(x)$, whichever is higher under the latter circumstances
- Expected utility:

$$E[\max(O_1, O_2)] = \int_0^1 \max(1 - x, x) f(x) dx =$$

$$= \int_0^{1/2} (1 - x) dx + \int_{1/2}^1 x dx = 3 / 4$$

This individual is willing to pay 0.25 for the flexible-fuel car.

- \square Risk aversion, $U(x) = \sqrt{x}$
 - Expected utility from an electric vehicle:

$$E[U(O_2)] = \int_0^1 \sqrt{O_2(x)} f(x) dx = \int_0^1 x^{1/2} dx = 2/3$$

- Expected utility from a fossil-fuel car; $E[U(O_1)]=2/3$
- Expected utility from a flexible-fuel car that costs F more than a single-fuel car:

$$E\{\max[U(O_1(x)-F),U(O_2(x)-F)]\} =$$

$$= \int_0^1 \max(\sqrt{1-x-F},\sqrt{x-F})f(x)dx = \int_0^{1/2} \sqrt{1-x-F}dx + \int_{1/2}^1 \sqrt{x-F}dx$$

Graphical Method for Computing the Premium for a Flexible-Fuel Car

To find the maximum premium F that the risk-averse buyer would be willing to pay for the flexible-fuel car, we plot the expected utility from a single-fuel car and from the flexible-fuel car, and see the value of F where the curves cross.

- \square we see that this value of F is slightly less than 0.3 (0.294 to be more precise).
- ☐ Therefore, the risk-averse buyer is willing to pay a premium of 0.294 for the flexible-fuel car, which is also the option value of this type of car.
- ☐ Scaling up by \$10,000 for more realistic monetary values, the price premium would be \$2,940.
- ☐ This is \$440 more than the risk-neutral buyer was willing to pay. Thus, the option value is greater in this case for the risk-averse buyer.