

2-3 tree

Allow 1 or 2 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.

2-3 tree

Allow 1 or 2 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from root to null link has same length.

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

2-3 tree demo

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree construction demo

insert S

2-3 tree

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case:
- Best case:

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case: lg *N*. [all 2-nodes]
- Best case: $\log_3 N \approx .631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

implementation	worst-case cost (after N inserts)			average case (after N random inserts)			ordered	key
	search	insert	delete	search hit	insert	delete	iteration?	interface
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()

2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.