

Global United Technology Services Co., Ltd.

Report No.: GTS201611000003E03

FCC Report (Bluetooth)

Applicant: SHENZHEN GIEC DIGITAL CO., LTD

Address of Applicant: No.1 Building, Factory, No.7 District, Dayang Development

Areas, FuYong Street, Baoan, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: TM101W635L, GK-MER1027, TM101W638L, GK-MEV1027

FCC ID: 2AHYK-TM101W638L

FCC CFR Title 47 Part 15.247:2016 **Applicable standards:**

Date of sample receipt: January 10, 2017

Date of Test: January 10-13, 2017

Date of report issued: January 16, 2017

PASS * Test Result:

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	January 16, 2017	Original

Prepared By:	Tigor Chan	Date:	January 16, 2017
	Project Engineer		
Check By:	Reviewer	Date:	January 16, 2017

3 Contents

			Page
1	COV	VER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4		ST SUMMARY	
7			
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	7
6	TES	ST INSTRUMENTS LIST	8
7	TES	ST RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	_
	7.6. ² 7.6.2		
	7.0. <u>2</u>	Spurious Emission	
	7.7.		
	7.7.2		
8	TES	ST SETUP PHOTO	31
9	FUT	CONSTRUCTIONAL DETAILS	32

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

Measurement Uncertainty

•						
Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 26.5GHz	1GHz ~ 26.5GHz ± 4.68dB				
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.			

5 General Information

5.1 Client Information

Applicant:	SHENZHEN GIEC DIGITAL CO., LTD
Address of Applicant:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen,China
Manufacturer/ Factory:	SHENZHEN GIEC DIGITAL CO., LTD
Address of Manufacturer/ Factory:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen,China

5.2 General Description of EUT

Product Name:	Tablet PC
Model No.:	TM101W635L, GK-MER1027, TM101W638L, GK-MEV1027
Test Model:	TM101W635L
	identical in the same PCB layout, interior structure and electrical circuits. el name and battery capacity for commercial purpose.
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB antenna
Antenna Gain:	2.0dBi
Power Supply:	Quick Charger:
	Model:A68-502000
	Input: AC 100-240V, 50/60Hz, 0.35A
	Output: DC 5V, 2A
	or
	DC 3.7V 6000mAh Li-ion Battery for TM101W635L and GK-MER1027
	DC 3.7V 6800mAh Li-ion Battery for TM101W638L and GK-MEV1027

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
•			. !	•	. !		. !
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Description of Support Units

None

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 29 2016	June 28 2017		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2016	June 28 2017		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 29 2016	June 28 2017		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2016	June 28 2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 29 2016	June 28 2017		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	June 29 2016	June 28 2017		
10	Coaxial Cable	GTS	N/A	GTS211	June 29 2016	June 28 2017		
11	Coaxial cable	GTS	N/A	GTS210	June 29 2016	June 28 2017		
12	Coaxial Cable	GTS	N/A	GTS212	June 29 2016	June 28 2017		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 29 2016	June 28 2017		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 29 2016	June 28 2017		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 29 2016	June 28 2017		
16	Band filter	Amindeon	82346	GTS219	June 29 2016	June 28 2017		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 29 2016	June. 28 2017		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 29 2016	June. 28 2017		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 29 2016	June. 28 2017		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 29 2016	June. 28 2017		

Gen	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 2.0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
Limit:	Fraguency range (MUZ) Limit (dBuV)						
	Prequency range (MHz) Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm of the frequency.						
Test setup:	Reference Plane						
	AUX Filter AC power Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
Test Instruments:	Refer to section 6.0 for details	;					
Test mode:	Refer to section 5.3 for details	·					
Test results:	Pass						

Measurement data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 LINE

Job No. : 0003

Test mode : Bluetooth4.0 mode

Test Engineer: Boy

lest	Engineer.	DUY							
		Read	LISN	Cable		Limit	Over		
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
	•								
	MHz	<u>dBuV</u>	dB	dB	dBuV	dBuV	dB		•
1	0.156	40.62	0.42	0.12	41.16	65.69	-24.53	QP	
2	0.233	37.42	0.43						
2			0.28						
4	2.809	39.44	0.20	0.15	39.79	56.00	-16.21	QP	
5	12.516	42.14	0.22	0.21	42.57	60.00	-17.43	QP	
6	17, 199				42, 96				

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 NEUTRAL

Job No. : 0003

Test mode : Bluetooth4.0 mode

Test Engineer: Boy

Fre	Read q Level	LISN Factor				Over Limit	Remark
MF	Iz dBuV	dB	dB	dBuV	dBuV	dB	
1 0.15 2 0.23 3 0.56		0.42	0.12 0.12 0.12	37.39	62.35	-24.96	QP
4 0.71 5 1.76	2 39.27 52 38.32 51 43.13	0. 24 0. 20	0.13 0.14 0.22	39.64 38.66	56.00 56.00	-16.36 -17.34	QP QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	3.86		
Middle	Middle 5.03		Pass
Highest	5.45		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	700.625			
Middle	681.212	>500	Pass	
Highest	696.429			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Measurement Data

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	3.54		
Middle	4.83	8.00	Pass
Highest	3.18		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Test plot as follows:

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.20	9 and 15.205				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement D						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
, , , , , , , , , , , , , , , , , , ,		Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	3MHz	Average		
Limit:	Frequency Limit (dBuV/m @3m) Value						
	Above 1GHz 54.00 Average 74.00 Peak						
	Tum Table	?		Antenna-	r+		
Test Procedure:	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Ba 6. If the emission the limit spec of the EUT w have 10dB m peak or avera sheet. 7. The radiation	t a 3 meter case position of the position of t	amber. The tale he highest race away from the ted on the top ed from one reaximum value arizations of the ted. Otherwise the could be ted. Otherwise pe re-tested on the term of the tested of the tes	ble was rotated attion. The interference of a variable of a variable of the field state antenna at the arranged has from 1 magrees to 360 at Detect Furd Mode. The mode was 10 stopped and the emission of the mode was 10 at the reportmed in X, Y, 2 and then reportmed in X, Y, 2 and the mode in X, Y, 2 and X, Y, X, X, X, X, Y, X,	ed 360 degrees to be-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find anction and DdB lower than the peak values ons that did not ing peak, quasi-		

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	48.98	27.59	5.38	30.18	51.77	74.00	-22.23	Horizontal
2400.00	56.64	27.58	5.39	30.18	59.43	74.00	-14.57	Horizontal
2390.00	50.11	27.59	5.38	30.18	52.90	74.00	-21.10	Vertical
2400.00	56.33	27.58	5.39	30.18	59.12	74.00	-14.88	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	38.15	27.59	5.38	30.18	40.94	54.00	-13.06	Horizontal
2400.00	39.75	27.58	5.39	30.18	42.54	54.00	-11.46	Horizontal
2390.00	38.53	27.59	5.38	30.18	41.32	54.00	-12.68	Vertical
2400.00	41.98	27.58	5.39	30.18	44.77	54.00	-9.23	Vertical

Test channel:	Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.81	27.53	5.47	29.93	54.88	74.00	-19.12	Horizontal
2500.00	49.82	27.55	5.49	29.93	52.93	74.00	-21.07	Horizontal
2483.50	53.67	27.53	5.47	29.93	56.74	74.00	-17.26	Vertical
2500.00	51.40	27.55	5.49	29.93	54.51	74.00	-19.49	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	40.05	27.53	5.47	29.93	43.12	54.00	-10.88	Horizontal
2500.00	38.18	27.55	5.49	29.93	41.29	54.00	-12.71	Horizontal
2483.50	39.77	27.53	5.47	29.93	42.84	54.00	-11.16	Vertical
2500.00	38.61	27.55	5.49	29.93	41.72	54.00	-12.28	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Test plot as follows:

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209				
Test Method:	ANSI C63.10:201	13				
Test Frequency Range:	30MHz to 25GHz	<u> </u>				
Test site:	Measurement Dis	stance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak	
	Ab 2112 401 le	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Average	1MHz	3MHz	Average	
Limit:	Frequer	псу	Limit (dBuV	/m @3m)	Value	
	30MHz-88	MHz	40.0	0	Quasi-peak	
	88MHz-216	6MHz	43.5	0	Quasi-peak	
	216MHz-96	60MHz	46.0	0	Quasi-peak	
	960MHz-1	GHz	54.0	0	Quasi-peak	
	Above 10	> ⊔-	54.0	0	Average	
	Above 10	3NZ	74.0	0	Peak	
Test setup:	Below 1GHz	EUT+		Antenna 4m >	fier-	
	Above 1GHz					

	Turn Table* EUT+ < lm 4m >** Turn Table* Furn Receiver* Preamplifier* Preamplif
Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8 meters below 1G and 1.5 meters above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
36.25	51.13	14.63	0.62	30.06	36.32	40.00	-3.68	Vertical
57.59	51.26	14.85	0.84	29.94	37.01	40.00	-2.99	Vertical
172.60	53.81	11.16	1.70	29.31	37.36	43.50	-6.14	Vertical
268.49	51.48	14.34	2.21	29.79	38.24	46.00	-7.76	Vertical
422.06	50.98	17.48	2.96	29.45	41.97	46.00	-4.03	Vertical
537.59	44.30	19.36	3.47	29.30	37.83	46.00	-8.17	Vertical
59.86	50.65	14.71	0.86	29.92	36.30	40.00	-3.70	Horizontal
96.10	48.17	14.90	1.16	29.72	34.51	43.50	-8.99	Horizontal
172.60	56.32	11.16	1.70	29.31	39.87	43.50	-3.63	Horizontal
239.99	55.20	14.09	2.07	29.56	41.80	46.00	-4.20	Horizontal
287.99	48.72	14.84	2.31	29.92	35.95	46.00	-10.05	Horizontal
422.06	47.83	17.48	2.96	29.45	38.82	46.00	-7.18	Horizontal

■ Above 1GHz

Test channel	Test channel: Lowest								
Peak value:				•					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4804.00	37.30	31.78	8.60	32.09	45.59	74.00	-28.41	Vertical	
7206.00	31.83	36.15	11.65	32.00	47.63	74.00	-26.37	Vertical	
9608.00	31.46	37.95	14.14	31.62	51.93	74.00	-22.07	Vertical	
12010.00	*					74.00		Vertical	
14412.00	*					74.00		Vertical	
4804.00	41.58	31.78	8.60	32.09	49.87	74.00	-24.13	Horizontal	
7206.00	33.58	36.15	11.65	32.00	49.38	74.00	-24.62	Horizontal	
9608.00	30.89	37.95	14.14	31.62	51.36	74.00	-22.64	Horizontal	
12010.00	*					74.00		Horizontal	
14412.00	*					74.00		Horizontal	
Average val	IIE.	•	•				•		

Average var	uc.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	26.11	31.78	8.60	32.09	34.40	54.00	-19.60	Vertical
7206.00	20.51	36.15	11.65	32.00	36.31	54.00	-17.69	Vertical
9608.00	19.59	37.95	14.14	31.62	40.06	54.00	-13.94	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.34	31.78	8.60	32.09	38.63	54.00	-15.37	Horizontal
7206.00	22.69	36.15	11.65	32.00	38.49	54.00	-15.51	Horizontal
9608.00	19.32	37.95	14.14	31.62	39.79	54.00	-14.21	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channe	: Middle								
Peak value:			1	T	1		1		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	36.77	31.85	8.67	32.12	45.17	74.00	-28.83	Vertical	
7320.00	31.48	36.37	11.72	31.89	47.68	74.00	-26.32	Vertical	
9760.00	31.15	38.35	14.25	31.62	52.13	74.00	-21.87	Vertical	
12200.00	*					74.00		Vertical	
14640.00	*					74.00		Vertical	
4880.00	40.95	31.85	8.67	32.12	49.35	74.00	-24.65	Horizontal	
7320.00	33.18	36.37	11.72	31.89	49.38	74.00	-24.62	Horizontal	
9760.00	30.52	38.35	14.25	31.62	51.50	74.00	-22.50	Horizontal	
12200.00	*					74.00		Horizontal	
14640.00	*					74.00		Horizontal	
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	25.70	31.85	8.67	32.12	34.10	54.00	-19.90	Vertical	
7320.00	20.23	36.37	11.72	31.89	36.43	54.00	-17.57	Vertical	
9760.00	19.34	38.35	14.25	31.62	40.32	54.00	-13.68	Vertical	
12200.00	*					54.00		Vertical	
14640.00	*					54.00		Vertical	
4880.00	29.87	31.85	8.67	32.12	38.27	54.00	-15.73	Horizontal	
7320.00	22.37	36.37	11.72	31.89	38.57	54.00	-15.43	Horizontal	
9760.00	19.03	38.35	14.25	31.62	40.01	54.00	-13.99	Horizontal	
12200.00	*					54.00		Horizontal	
14640.00	*					54.00		Horizontal	

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	l: Highest							
Peak value:			1	Ī			1	_
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	35.86	31.93	8.73	32.16	44.36	74.00	-29.64	Vertical
7440.00	30.87	36.59	11.79	31.78	47.47	74.00	-26.53	Vertical
9920.00	30.61	38.81	14.38	31.88	51.92	74.00	-22.08	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	39.85	31.93	8.73	32.16	48.35	74.00	-25.65	Horizontal
7440.00	32.50	36.59	11.79	31.78	49.10	74.00	-24.90	Horizontal
9920.00	29.90	38.81	14.38	31.88	51.21	74.00	-22.79	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.99	31.93	8.73	32.16	33.49	54.00	-20.51	Vertical
7440.00	19.75	36.59	11.79	31.78	36.35	54.00	-17.65	Vertical
9920.00	18.91	38.81	14.38	31.88	40.22	54.00	-13.78	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.06	31.93	8.73	32.16	37.56	54.00	-16.44	Horizontal
7440.00	21.83	36.59	11.79	31.78	38.43	54.00	-15.57	Horizontal
9920.00	18.53	38.81	14.38	31.88	39.84	54.00	-14.16	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201611000003E01

-----End-----