In []:

In [16]: | #importing libraries for our purpose

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv('netflix.csv')

df.head()

Out[16]:

	show_id	type	title	director	cast	country	date_added	release_year	ratir
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	2020	P(
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	T N
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2021	T N
3	s 4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	September 24, 2021	2021	T N
4	s 5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	September 24, 2021	2021	T N

In [17]: #length of data

len(df)

Out[17]: 8807

```
In [6]: #checking datatypes
df.dtypes
```

Out[6]: show id object object type title object director object object cast country object date_added object release_year int64 rating object duration object listed in object description object dtype: object

In [7]: #number of unique values in our data
for i in df.columns:
 print(i,':',df[i].nunique())

show_id : 8807
type : 2
title : 8807
director : 4528
cast : 7692
country : 748
date_added : 1767
release_year : 74
rating : 17
duration : 220
listed_in : 514
description : 8775

In [8]: #checking null values in every column of our data df.isnull().sum()

```
Out[8]: show_id
                              0
         type
                              0
         title
                              0
         director
                          2634
         cast
                           825
                           831
         country
         date_added
                             10
                              0
         release_year
                              4
         rating
         duration
                              3
                              0
         listed in
         description
                              0
         dtype: int64
```

```
In [9]: #checking the occurences of each of the ratings
        df['rating'].value_counts()
```

```
Out[9]: TV-MA
                      3207
         TV-14
                      2160
         TV-PG
                       863
                       799
         R
         PG-13
                       490
         TV-Y7
                       334
         TV-Y
                       307
         PG
                       287
         TV-G
                       220
         NR
                         80
                         41
         G
         TV-Y7-FV
                          6
                          3
         NC-17
         UR
                          3
                          1
         66 min
         74 min
                          1
         84 min
                          1
```

Name: rating, dtype: int64

```
In [10]: #unnesting the directors column, i.e- creating separate lines for e
         constraint1=df['director'].apply(lambda x: str(x).split(', ')).toli
         df new1=pd.DataFrame(constraint1,index=df['title'])
         df_new1=df_new1.stack()
         df_new1=pd.DataFrame(df_new1.reset_index())
         df_new1.rename(columns={0:'Directors'},inplace=True)
         df_new1.drop(['level_1'],axis=1,inplace=True)
         df new1.head()
```

Out [10]:

	title	Directors
0	Dick Johnson Is Dead	Kirsten Johnson
1	Blood & Water	nan
2	Ganglands	Julien Leclercq
3	Jailbirds New Orleans	nan
4	Kota Factory	nan

```
In [11]: #unnesting the cast column, i.e- creating separate lines for each c
    constraint2=df['cast'].apply(lambda x: str(x).split(', ')).tolist()
    df_new2=pd.DataFrame(constraint2,index=df['title'])
    df_new2=df_new2.stack()
    df_new2=pd.DataFrame(df_new2.reset_index())
    df_new2.rename(columns={0:'Actors'},inplace=True)
    df_new2.drop(['level_1'],axis=1,inplace=True)
    df_new2.head()
```

Out[11]:

	title	Actors
0	Dick Johnson Is Dead	nan
1	Blood & Water	Ama Qamata
2	Blood & Water	Khosi Ngema
3	Blood & Water	Gail Mabalane
4	Blood & Water	Thabang Molaba

```
In [12]: #unnesting the listed_in column, i.e- creating separate lines for e
    constraint3=df['listed_in'].apply(lambda x: str(x).split(', ')).tol
    df_new3=pd.DataFrame(constraint3,index=df['title'])
    df_new3=df_new3.stack()
    df_new3=pd.DataFrame(df_new3.reset_index())
    df_new3.rename(columns={0:'Genre'},inplace=True)
    df_new3.drop(['level_1'],axis=1,inplace=True)
    df_new3.head()
```

Out[12]:

	title	Genre
0	Dick Johnson Is Dead	Documentaries
1	Blood & Water	International TV Shows
2	Blood & Water	TV Dramas
3	Blood & Water	TV Mysteries
4	Ganglands	Crime TV Shows

```
In [13]: #unnesting the country column, i.e- creating separate lines for eac
    constraint4=df['country'].apply(lambda x: str(x).split(', ')).tolis
    df_new4=pd.DataFrame(constraint4,index=df['title'])
    df_new4=df_new4.stack()
    df_new4=pd.DataFrame(df_new4.reset_index())
    df_new4.rename(columns={0:'country'},inplace=True)
    df_new4.drop(['level_1'],axis=1,inplace=True)
    df_new4.head()
```

Out[13]:

	title	country
0	Dick Johnson Is Dead	United States
1	Blood & Water	South Africa
2	Ganglands	nan
3	Jailbirds New Orleans	nan
4	Kota Factory	India

In [14]: #merging the unnested director data with unnested actors data dfx

```
NameError Traceback (most recent c all last)
```

<ipython-input-14-adcc85c528a1> in <module>

 $oldsymbol{1}$ #merging the unnested director data with unnested actors d ata

----> 2 dfx

NameError: name 'dfx' is not defined

	df_final.head()										
Out[15]:		title	Actors	Directors	Genre	country	show_id	type	date_added	relea	
	0	Dick Johnson Is Dead	Unknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021		
	1	Blood & Water	Ama Qamata	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021		
	2	Blood & Water	Ama Qamata	Unknown Director	TV Dramas	South Africa	s2	TV Show	September 24, 2021		
	3	Blood & Water	Ama Qamata	Unknown Director	TV Mysteries	South Africa	s2	TV Show	September 24, 2021		
	4	Blood & Water	Khosi Ngema	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021		
In []:	#now checking rdf_final.isnul										
Out[16]:	Ac Di Ge co sh ty da re ra du	tle tors rectors nre untry ow_id pe te_adde lease_y ting ration ype: in	d ear	0 0 0 11897 0 0 158 0 67							

In duration column, it was observed that the nulls had values which were written in corresponding ratings column, i.e- you can't expect ratings to be in min. So the duration column nulls are replaced by corresponding values in ratings column

```
In [ ]: |df_final.loc[df_final['duration'].isnull(),'duration']=df_final.loc
         df_final.loc[df_final['rating'].str.contains('min', na=False),'rati
         df_final.isnull().sum()
Out[17]: title
                              0
         Actors
                              0
         Directors
                              0
         Genre
                              0
                          11897
         country
         show_id
                              0
                              0
         type
         date_added
                            158
         release_year
                              0
                             67
         rating
         duration
                              0
         dtype: int64
```

```
In []: #Ratings can't be in min, so it has been made NR(i.e- Non Rated)
    df_final.loc[df_final['rating'].str.contains('min', na=False),'rati
    df_final['rating'].fillna('NR',inplace=True)
    pd.set_option('display.max_rows',None)
```

In []: #just an attempt to observe nulls in date_added column df_final[df_final['date_added'].isnull()].head()

\mathbf{a}		[10]	Ι.
u	HT	1191	
•	u c		

	title	Actors	Directors	Genre	country	show_id	type	date_added	re
136893	A Young Doctor's Notebook and Other Stories	Daniel Radcliffe	Unknown Director	British TV Shows	United Kingdom	s6067	TV Show	NaN	
136894	A Young Doctor's Notebook and Other Stories	Daniel Radcliffe	Unknown Director	TV Comedies	United Kingdom	s6067	TV Show	NaN	
136895	A Young Doctor's Notebook and Other Stories	Daniel Radcliffe	Unknown Director	TV Dramas	United Kingdom	s6067	TV Show	NaN	
136896	A Young Doctor's Notebook and Other Stories	Jon Hamm	Unknown Director	British TV Shows	United Kingdom	s6067	TV Show	NaN	
136897	A Young Doctor's Notebook and Other Stories	Jon Hamm	Unknown Director	TV Comedies	United Kingdom	s6067	TV Show	NaN	

In []: e added column is imputed on the basis of release year, i.e- suppose n release year was 2013. So below piece of code just checks the mode d imputes in place of nulls the corresponding mode

i in df_final[df_final['date_added'].isnull()]['release_year'].uniquedf_final[df_final['release_year']==i]['date_added'].mode().values_final.loc[df_final['release_year']==i,'date_added']=df_final.loc[df_final.loc[df_final.loc]

```
#country column is imputed on the basis of director,i.e- suppose th
#when we have a director whose other movies have a country given.So
#country for the director
# and imputes in place of nulls the corresponding mode

for i in df_final[df_final['country'].isnull()]['Directors'].unique
    if i in df_final[
    imp=df_final[df_final['country'].isnull()]['Directors'].unique
    imp=df_final[df_final['Directors']==i]['country'].mode().values
    df_final.loc[df_final['Directors']==i, 'country']=df_final.loc[d
```

So we imputed the country column on the basis of directors whose other movie titles had countries given. But there might be directors who have only one occurence in our data. In that scenario, I have used Actors as a basis. i.e- for this Actor majorly acts in movies of which country? Imputation has been done on this basis. For remaining rows, country has been filled as Unknown Country

```
In []: for i in df_final[df_final['country'].isnull()]['Actors'].unique():
    if i in df_final[~df_final['country'].isnull()]['Actors'].unique(
        imp=df_final[df_final['Actors']==i]['country'].mode().values[0]
        df_final.loc[df_final['Actors']==i,'country']=df_final.loc[df_f
    #If there are still nulls, I just replace it by Unknown Country
    df_final['country'].fillna('Unknown Country',inplace=True)
    df_final.isnull().sum()
```

```
Out[22]: title
          Actors
                           0
          Directors
                           0
          Genre
          country
          show_id
                           0
          type
                           0
          date added
          release_year
          rating
          duration
          dtype: int64
```

In []: df_final.head()

Out[23]:		title	Actors	Directors	Genre	country	show_id	type	date_added	relea
	0	Dick Johnson Is Dead	Unknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021	
	1	Blood & Water	Ama Qamata	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	
	2	Blood & Water	Ama Qamata	Unknown Director	TV Dramas	South Africa	s2	TV Show	September 24, 2021	
	3	Blood & Water	Ama Qamata	Unknown Director	TV Mysteries	South Africa	s2	TV Show	September 24, 2021	
	4	Blood & Water	Khosi Ngema	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	

In []: df_final['duration'].value_counts()

Out[24]:

1 Season	35035
2 Seasons	9559
3 Seasons	5084
94 min	4343
106 min	4040
97 min	3624
95 min	3560
96 min	3484
93 min	3480
90 min	3305
105 min	3209
107 min	3103
101 min	3048
102 min	3017
103 min	2985
98 min	2984
99 min	2956
91 min	2915
92 min	2863
101 min	ากาา

In []: #removing mins from data df_final['duration']=df_final['duration'].str.replace(" min","") df_final.head()

Out[25]:		title	Actors	Directors	Genre	country	show_id	type	date_added	relea
	0	Dick Johnson Is Dead	Unknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021	

In []: df_final['duration'].unique()

Out[26]: array(['90', '2 Seasons', '1 Season', '91', '125', '9 Seasons', '1 04', '127', '4 Seasons', '67', '94', '5 Seasons', '161', '61', ' 166', '147', '103', '97', '106', '111', '3 Seasons', '110', '105' '124', '116', '98', '23', '115', '122', '99', '88', '100', '6 Seasons', '102', '93', '95', '85', '83', '113', '13', '1 82', '48', '145', '87', '92', '80', '117', '128', '119', '143', '114', '118', '108', '63', '121', '142', '154', '120', '82', '109' , '101', '86', '229', '76', '89', '156', '112', '107', '129', '135', '136', '165', '150', '133', '70', '84', '140', '78', '7 Seasons', '64', '59', '139', '69', '148', '189', '141', '130', '138', '81', '132', '10 Seasons', '123', '65', '68', '66', '62', '74', '131', ' 39', '46', '38', '8 Seasons', '17 Seasons', '126', '155', '159', '137', '12', '273', '36', '34', '77', '60', '49', '58', '72', '204 '212', '25', '73', '29', '47', '32', '35', '71', '149', '33 ', '15' '54', '224', '162', '37', '75', '79', '55', '158', '164', ' 173', '181', '185', '21', '24', '51', '151', '42', '22', '134', ' 177', '13 Seasons', '52', '14', '53', '8', '57', '28', '50', '9', '26', '45', '171', '27', '44', '146', '20', '157', '17', '203', ' 41', '30', '194', '15 Seasons', '233', '237', '230', '195', '253 '152', '190', '160', '208', '180', '144', '5', '174', '170' , '192' '209', '187', '172', '16', '186', '11', '193', '176', '56', '169', '40', '10', '3', '168', '312', '153', '214', '31', '163', ' 19', '12 Seasons', '179', '11 Seasons', '43', '200', '196', '167 '178', '228', '18', '205', '201', '191'], dtype=object)

```
In [ ]:
            df_final['duration_copy']=df_final['duration'].copy()
            df final1=df final.copy()
 In [ ]: df_final1.loc[df_final1['duration_copy'].str.contains('Season'),'du
df_final1['duration_copy']=df_final1['duration_copy'].astype('int')
            df final1.head()
Out [28]:
                    title
                           Actors
                                   Directors
                                                            country
                                                                    show_id
                                                                                type date_added relea
                                                     Genre
                    Dick
                         Unknown
                                      Kirsten
                                                              United
                                                                                       September
                Johnson
                                              Documentaries
                                                                               Movie
                             Actor
                                    Johnson
                                                              States
                                                                                         25, 2021
                 Is Dead
                Blood &
                             Ama
                                    Unknown
                                                International
                                                              South
                                                                                       September
                                                  TV Shows
                                                              Africa
                                                                               Show
                                                                                         24, 2021
                  Water
                           Qamata
                                     Director
                                    Unknown
                                                                                       September
                Blood &
                             Ama
                                                              South
                                                                                 TV
                                                 TV Dramas
                                                                           s2
                                                              Africa
                                                                               Show
                                                                                         24, 2021
                  Water
                           Qamata
                                     Director
                                                                                 TV
                Blood &
                             Ama
                                   Unknown
                                                              South
                                                                                       September
             3
                                               TV Mysteries
                                                                               Show
                  Water
                                                              Africa
                                                                                         24, 2021
                           Qamata
                                     Director
                Blood &
                            Khosi
                                    Unknown
                                                International
                                                              South
                                                                                 TV
                                                                                       September
                  Water
                           Ngema
                                     Director
                                                  TV Shows
                                                              Africa
                                                                               Show
                                                                                         24, 2021
 In [ ]: |df_final1['duration_copy'].describe()
Out[29]: count
                        201991.000000
            mean
                             77.152789
            std
                             52,269154
            min
                               0.000000
            25%
                               0.000000
            50%
                             95.000000
            75%
                            112.000000
                            312.000000
            max
            Name: duration_copy, dtype: float64
```

0.... [24] -

```
In []: import seaborn as sns
    sns.distplot(df_final1['duration_copy'], hist=True, kde=True,
    bins=int(36), color = 'darkblue',
    hist_kws={'edgecolor':'black'},
    kde_kws={'linewidth': 4})
    plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:26
19: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msq, FutureWarning)

OUT[31]:	title	Actors	Directors	Genre country	show_id	type	date_added	relea
	Dick	Linknown	Kireton	Unito	ı		Sontombor	

C	Dick Johnson Is Dead	Unknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021	
1	Blood & Water	Ama Qamata	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	
2	Blood & Water	Ama Qamata	Unknown Director	TV Dramas	South Africa	s2	TV Show	September 24, 2021	
3	Blood & Water	Ama Qamata	Unknown Director	TV Mysteries	South Africa	s2	TV Show	September 24, 2021	
4	Blood & Water	Khosi Ngema	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	

Out[32]:		title	Actors	Directors	Genre	country	show_id	type	date_added	relea
	0	Dick Johnson Is Dead	Unknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021	
	1	Blood & Water	Ama Qamata	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	
	2	Blood & Water	Ama Qamata	Unknown Director	TV Dramas	South Africa	s2	TV Show	September 24, 2021	
	3	Blood & Water	Ama Qamata	Unknown Director	TV Mysteries	South Africa	s2	TV Show	September 24, 2021	
	4	Blood & Water	Khosi Ngema	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	
In []:[df_final1['duration'].value_counts()									
Out[33]:	10 1	–100 0–120 Season 0–150	529 487 350 260	724						

Name: duration, dtype: int64

```
In []: from datetime import datetime
    from dateutil.parser import parse
    arr=[]
    for i in df_final1['date_added'].values:
        dt1=parse(i)
        arr.append(dt1.strftime('%Y-%m-%d'))
    df_final1['Modified_Added_date'] = arr
    df_final1['Modified_Added_date']=pd.to_datetime(df_final1['Modified_df_final1['Modified_Added_date'].dt.month
    df_final1['week_Added']=df_final1['Modified_Added_date'].dt.week
    df_final1['year']=df_final1['Modified_Added_date'].dt.year
    df_final1.head()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:10: F utureWarning: Series.dt.weekofyear and Series.dt.week have been de precated. Please use Series.dt.isocalendar().week instead. # Remove the CWD from sys.path while we load stuff.

Out[34]:	Actors Directors		Genre	country	show_id	type	date_added	release_year	rating
	nknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021	2020	PG- 13
	Ama Qamata	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	2021	TV- MA
	Ama Qamata	Unknown Director	TV Dramas	South Africa	s2	TV Show	September 24, 2021	2021	TV- MA
	Ama Qamata	Unknown Director	TV Mysteries	South Africa	s2	TV Show	September 24, 2021	2021	TV- MA
	Khosi Ngema	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	2021	TV- MA

In []: #Titles such as Bahubali(Hindi Version), Bahubali(Tamil Version) wer
#presence of brackets and content between brackets is removed.
df_final1['title']=df_final1['title'].str.replace(r"\(.*\)","")
df_final1.head()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: Fu tureWarning: The default value of regex will change from True to F alse in a future version.

This is separate from the ipykernel package so we can avoid doin g imports until

Out[35]:

	title	Actors	Directors	Genre	country	show_id	type	date_added	rele
0	Dick Johnson Is Dead	Unknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021	
1	Blood & Water	Ama Qamata	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	
2	Blood & Water	Ama Qamata	Unknown Director	TV Dramas	South Africa	s2	TV Show	September 24, 2021	
3	Blood & Water	Ama Qamata	Unknown Director	TV Mysteries	South Africa	s2	TV Show	September 24, 2021	
4	Blood & Water	Khosi Ngema	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	

Univariate Analysis in terms of counts of each column

```
In [ ]: #number of distinct titles on the basis of genre
df_final1.groupby(['Genre']).agg({"title":"nunique"})
```

title

Out [36]:

Genre	
Action & Adventure	854
Anime Features	71
Anime Series	176
British TV Shows	253
Children & Family Movies	639
Classic & Cult TV	28
Classic Movies	116
Comedies	1673
Crime TV Shows	470
Cult Movies	71
Documentaries	869

395	Docuseries
2418	Dramas
65	Faith & Spirituality
353	Horror Movies
756	Independent Movies
2738	International Movies
1351	International TV Shows
451	Kids' TV
151	Korean TV Shows
102	LGBTQ Movies
57	Movies
372	Music & Musicals
255	Reality TV
615	Romantic Movies
370	Romantic TV Shows
243	Sci-Fi & Fantasy
92	Science & Nature TV
174	Spanish-Language TV Shows
219	Sports Movies
343	Stand-Up Comedy
56	Stand-Up Comedy & Talk Shows
168	TV Action & Adventure
581	TV Comedies
763	TV Dramas
75	TV Horror
98	TV Mysteries
84	TV Sci-Fi & Fantasy
16	TV Shows
57	TV Thrillers
69	Teen TV Shows
573	Thrillers

```
In []: df_genre=df_final1.groupby(['Genre']).agg({"title":"nunique"}).rese
    plt.figure(figsize=(15,8))
    plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
    plt.xlabel('Frequency of Genres')
    plt.ylabel('Genres')
    plt.show()
```


International Movies, Dramas and Comedies are the most popular.

```
In []: #number of distinct titles on the basis of type
df_final1.groupby(['type']).agg({"title":"nunique"})
```

Out [38]:

title

type

Movie 6115

TV Show 2676

```
In []: df_type=df_final1.groupby(['type']).agg({"title":"nunique"}).reset
    plt.pie(df_type['title'],explode=(0.05,0.05), labels=df_type['type
    plt.show()
```


We have 70:30 ratio of Movies and TV Shows in our data

```
In []: #number of distinct titles on the basis of country
df_final1.groupby(['country']).agg({"title":"nunique"})
```

Jordan	10
Kazakhstan	1
Kenya	6
Kuwait	9
Latvia	1
Lebanon	33
Liechtenstein	1
Lithuania	1
Luxembourg	12
Malawi	1
Malaysia	26
Malta	3

The above dataframe shows a flaw in which we are seeing countries, such as Cambodia and Cambodia, or United States and United States, are shown as different countries. They should have been same

Out [41]:

	title	Actors	Directors	Genre	country	show_id	type	date_added	relea
0	Dick Johnson Is Dead	Unknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021	
1	Blood & Water	Ama Qamata	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	
2	Blood & Water	Ama Qamata	Unknown Director	TV Dramas	South Africa	s2	TV Show	September 24, 2021	
3	Blood & Water	Ama Qamata	Unknown Director	TV Mysteries	South Africa	s2	TV Show	September 24, 2021	
4	Blood & Water	Khosi Ngema	Unknown Director	International TV Shows	South Africa	s2	TV Show	September 24, 2021	

Out [42]:

title

country	
	3
Afghanistan	1
Albania	1
Algeria	3
Angola	2
Argentina	94
Armenia	1
Australia	162
Austria	12
Azerbaijan	1

Now it looks great.

```
In []: df_country=df_final1.groupby(['country']).agg({"title":"nunique"}).
    plt.figure(figsize=(15,8))
    plt.barh(df_country[::-1]['country'], df_country[::-1]['title'],col
    plt.xlabel('Titles by Countries')
    plt.ylabel('Countries')
    plt.show()
```


US,India,UK,Canada and France are leading countries in Content Creation on Netflix

In []: #number of distinct titles on the basis of rating
df_final1.groupby(['rating']).agg({"title":"nunique"})

Out[44]:

rating	
G	41
NC-17	3
NR	87
PG	287
PG-13	490
R	799
TV-14	2151
TV-G	220
TV-MA	3204
TV-PG	863
TV-Y	305
TV-Y7	334
TV-Y7-FV	6
UR	3

title

```
In []: df_rating=df_final1.groupby(['rating']).agg({"title":"nunique"}).res
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=|
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```


Most of the highly rated content on Netflix is intended for Mature Audiences, R Rated, content not intended for audience under 14 and those which require Parental Guidance

In []: #number of distinct titles on the basis of duration
df_final1.groupby(['duration']).agg({"title":"nunique"})

Out[46]:

title

duration	
1 Season	1793
1-50	287
10 Seasons	7
100-120	1671
11 Seasons	2
12 Seasons	2
120-150	891
13 Seasons	3
15 Seasons	2
150-200	222
17 Seasons	1
2 Seasons	425
200-315	19
3 Seasons	199
4 Seasons	95
5 Seasons	65
50-80	808
6 Seasons	33
7 Seasons	23
8 Seasons	17
80-100	2220
9 Seasons	9

The duration of Most Watched content in our whole data is 80-100 mins. These must be movies and Shows having only 1 Season.

- A Boogie Wit tha Hoodie 1
 - A. Murat Özgen 1
 - A.C. Peterson 1
 - A.D. Miles 3
 - A.J. Cook 2
 - A.J. Johnson
 - A.J. LoCascio 3
 - A.K. Hangal
 - A.R. Rahman
 - A.S. Sasi Kumar
 - AC Lim
 - AFRA 1

1

```
In []: df_actors=df_final1.groupby(['Actors']).agg({"title":"nunique"}).re
    df_actors=df_actors[df_actors['Actors']!='Unknown Actor']
    plt.figure(figsize=(15,8))
    plt.barh(df_actors[::-1]['Actors'], df_actors[::-1]['title'],color=
    plt.xlabel('Number of Movies')
    plt.ylabel('Popular Actors')
    plt.show()
```


Anupam Kher, SRK, Julie Tejwani, Naseeruddin Shah and Takahiro Sakurai occupy the top stop in Most Watched content.

```
In []: #number of distinct titles on the basis of Actors
         df_final1.groupby(['Directors']).agg({"title":"nunique"})
                               A. L. Vijay
                            A. Raajdheep
                                            1
                               A. Salaam
                         A.R. Murugadoss
                                            2
                          Aadish Keluskar
                                            1
                             Aamir Bashir
                             Aamir Khan
                              Aanand Rai
                                            1
                             Aaron Burns
                                            1
                            Aaron Hancox
                             Aaron Hann
                                            1
                             Aaron Lieber
```

2

Aaron Moorhead

Rajiv Chilaka, Jan Suter and Raul Campos are the most popular directors across Netflix

```
In [ ]: #number of distinct titles on the basis of year
df_final1.groupby(['year']).agg({"title":"nunique"})
```

Out [52]: title

year	
2008	2
2009	2
2010	1
2011	13
2012	3
2013	11
2014	24
2015	82
2016	432
2017	1185
2018	1650
2019	2012
2020	1877
2021	1498

The Amount of Content across Netflix has increased from 2008 continuously till 2019. Then started decreasing from here(probably due to Covid)

```
In []: #number of distinct titles on the basis of week
df_final1.groupby(['week_Added']).agg({"title":"nunique"})
```

Out [54]:

	title
week_Added	
1	372
2	108
3	113
4	88
5	208
6	97
7	147
8	110
9	254
10	135
11	163
12	109
13	250
14	173
15	153
16	160
17	154
18	234
19	116
20	130
21	117
22	206
23	151
24	164
25	143
26	269

27 241

- 131
- 140
- 160
- 269
- 118
- 153
- 139
- 265
- 142
- 183
- 139
- 165
- 287
- 116
- 133
- 116
- 318
- 98
- 134
- 120
- 200
- 140
- 189
- 137
- 132
- 104

```
In []: df_week=df_final1.groupby(['week_Added']).agg({"title":"nunique"}).
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```


Most of the Content across Netflix is added in the first week of the year and it follows a bit of a cyclical pattern

```
In [ ]: #number of distinct titles on the basis of week
df_final1.groupby(['month_added']).agg({"title":"nunique"})
```

Out [56]:

title

month_added

- **1** 738
- **2** 563
- **3** 742
- 4 765
- **5** 631
- **6** 726
- **7** 832
- **8** 748
- 9 771
- **10** 758
- **11** 706
- **12** 813

Most of the content is added in the first and last months across Netflix(reinstating what we observed for first week in baove plot)

```
In []: df_release_year=df_final1[df_final1['release_year']>=1980].groupby(
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```


Net content release which are later uploaded to Netflix has increased since 1980 till 2020 though later reduced certainly due to COVID-19

Univariate Analysis separately for shows and movies

```
In [ ]: df_shows=df_final1[df_final1['type']=='TV Show']
df_movies=df_final1[df_final1['type']=='Movie']
```

```
In []: df_genre=df_shows.groupby(['Genre']).agg({"title":"nunique"}).reset
    plt.figure(figsize=(15,8))
    plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
    plt.xlabel('Frequency of Genres')
    plt.ylabel('Genres')
    plt.show()
```


International TV Shows, Dramas and Comedy Genres are popular across TV Shows in Netflix

```
In []: df_genre=df_movies.groupby(['Genre']).agg({"title":"nunique"}).rese
    plt.figure(figsize=(15,8))
    plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
    plt.xlabel('Frequency of Genres')
    plt.ylabel('Genres')
    plt.show()
```


International Movies, Dramas and Comedy Genres are popular followed by Documentaries across Movies on Netflix

```
In []: df_country=df_shows.groupby(['country']).agg({"title":"nunique"}).r
    plt.figure(figsize=(15,8))
    plt.barh(df_country[::-1]['country'], df_country[::-1]['title'],col
    plt.xlabel('Titles by Countries')
    plt.ylabel('Countries')
    plt.show()
```



```
In [ ]: df_country=df_movies.groupby(['country']).agg({"title":"nunique"}).
    plt.figure(figsize=(15,8))
    plt.barh(df_country[::-1]['country'], df_country[::-1]['title'],col
    plt.xlabel('Titles by Countries')
    plt.ylabel('Countries')
    plt.show()
```


United States is leading across both TV Shows and Movies, UK also provides great content across TV Shows and Movies. Surprisingly India is much more prevalent in Movies as compared TV Shows.

Moreover the number of Movies created in India outweigh the sum of TV Shows and Movies across UK since India was rated as second in net sum of whole content across Netflix.

```
In []: df_rating=df_shows.groupby(['rating']).agg({"title":"nunique"}).res
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```



```
In []: df_rating=df_movies.groupby(['rating']).agg({"title":"nunique"}).re
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```


So it seems plaussible to conclude that the popular ratings across Netflix includes Mature Audiences and those appropriate for over 14/over 17 ages.

Moreover there are no TV Shows having a rating of R

```
In []: df_duration=df_shows.groupby(['duration']).agg({"title":"nunique"})
    plt.figure(figsize=(15,8))
    plt.barh(df_duration[::-1]['duration'], df_duration[::-1]['title'],
    plt.xlabel('Frequency by Duration')
    plt.ylabel('Duration')
    plt.show()
```


Across TV Shows, shows having only 1 Season are common as soon as the season length increases, the number of shows decrease and this definitely sounds as expected

```
In []: df_duration=df_movies.groupby(['duration']).agg({"title":"nunique"}
    plt.figure(figsize=(15,8))
    plt.barh(df_duration[::-1]['duration'], df_duration[::-1]['title'],
    plt.xlabel('Frequency by Duration')
    plt.ylabel('Duration')
    plt.show()
```


Across movies 80-100,100-120 and 120-150 is the ranges of minutes for which most movies lie. So quite possibly 80-150 mins is the sweet spot we would be wanting for movies.

Takahiro Sakurai, Yuki Kaji and other South Korean/Japanese actors are the most popular actors across TV Shows

```
In []: df_actors=df_movies.groupby(['Actors']).agg({"title":"nunique"}).re
    df_actors=df_actors[df_actors['Actors']!='Unknown Actor']
    plt.figure(figsize=(15,8))
    plt.barh(df_actors[::-1]['Actors'], df_actors[::-1]['title'],color=
    plt.xlabel('Number of Movies')
    plt.ylabel('Popular Actors')
    plt.show()
```


Our bollywood actors such as Anupam Kher, SRK, Naseeruddin Shah are very much popular acrossmovies on Netflix

Ken Burns, Alastair Fothergill, Stan Lathan, Joe Barlinger are popular directors across TV Shows on Netflix

Rajiv Chilka, Jan Suter, Raul Campos, Suhas Kadav are popular directors across movies

Till 2019, overall content across Netflix was increasing but due to Covid in 2020, though TV Shows didn't take a hit then Movies did take a hit. Well later in 2021, content across both was reduced significantly

```
In []: df_week=df_shows.groupby(['week_Added']).agg({"title":"nunique"}).r
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```



```
In []: df_week=df_movies.groupby(['week_Added']).agg({"title":"nunique"}).
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```


TV Shows are added in Netflix by a tremendous amount in mid weeks/months of the year, i.e- July

Movies are added in Netflix by a tremendous amount in first week/last month of current year and first month of next year

```
In []: df_release_year=df_movies[df_movies['release_year']>=1980].groupby(
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```



```
In []: df_release_year=df_movies[df_movies['release_year']>=1980].groupby(
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```


Actual Releases of both TV Shows and Movies have taken a hit after 2020

Questions to be Explored Now for Recommendations

- 1) So this time, the granularity level is country and analysis of TV Shows/Movies the country brings. I am going to consider only the top countries individually for TV Shows and Movies. There are definitely some common countries too which bring out quality content in both TV Shows and Movies.
- 2) Which Genres do these countries offer and what are the intended audiences(Ratings) which are popular in Netflix?
- 3)In case of Movies, what is the duration/length of movies which makes them special and depicts attention span?
- 4) Who are the popular actors/directors across TV Shows and Movies in these countries?
- 5)In what time of the year, people tend to watch movies and shows in these countries?
- 6)Popular Actor and Director Combinations in these countries

```
In []: #below countries will be analyzed for both shows and movies
shows_and_movies=['United States','India','United Kingdom']
#below countries will be only analyzed on basis of shows
only_shows=['Japan','South Korea']
```

Univariate Analysis separately for shows and movies in USA

```
In [ ]: for both shows and movies
         f_final1[df_final1['country'] == 'United States'][df_final1[df_final1|
         df_final1[df_final1['country'] == 'United States'][df_final1[df_final1
In [ ]: | df_genre=df_usa_shows.groupby(['Genre']).agg({"title":"nunique"}).r
          plt.figure(figsize=(15,8))
          plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
          plt.xlabel('Frequency of Genres')
          plt.ylabel('Genres')
          plt.show()
                   TV Comedies
                   TV Dramas
                   Docuseries
                 Crime TV Shows
                    Reality TV
                Romantic TV Shows
               TV Action & Adventure
              anish-Language TV Shows
```

Dramas, Comedy, Kids 'TV Shows, International TV Shows and Docuseries, Genres are popular in TV Series in USA

TV Mysteries

Stand-Up Comedy & Talk Shows

```
In []: df_genre=df_usa_movies.groupby(['Genre']).agg({"title":"nunique"}).
    plt.figure(figsize=(15,8))
    plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
    plt.xlabel('Frequency of Genres')
    plt.ylabel('Genres')
    plt.show()
```


Dramas, Comedy, Documentaries, Family Movies and Action Genres in Movies are popular in USA

```
In [ ]: df_rating=df_usa_shows.groupby(['rating']).agg({"title":"nunique"})
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```



```
In []: df_rating=df_usa_movies.groupby(['rating']).agg({"title":"nunique"}
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```


So it seems plaussible to conclude that the popular ratings across Netflix includes Mature Audiences and those appropriate for over 14/over 17 ages in both Movies and TV Shows in USA

```
In []: df_duration=df_usa_movies.groupby(['duration']).agg({"title":"nuniq
    plt.figure(figsize=(15,8))
    plt.barh(df_duration[::-1]['duration'], df_duration[::-1]['title'],
    plt.xlabel('Frequency by Duration')
    plt.ylabel('Duration')
    plt.show()
```


Across movies 80-100,100-120 is the ranges of minutes for which most movies lie. So quite possibly 80-120 mins is the sweet spot we would be wanting for movies in USA

Vincent Tong, Grey Griffin and Kevin Richardson are the most popular actors across TV Shows in USA

Samuel Jackson, Adam Sandler, James Franco and Nicolas Cage are very much popular across movies on Netflix in USA

Ken Burns, Stan Lathan, Joe Barlinger are popular directors across TV Shows on Netflix in USA

Jay Karas, Marcus Raboy, Martin Scorcese and Jay Chapman are popular directors across movies in USA

```
In []: df_year=df_usa_shows.groupby(['year']).agg({"title":"nunique"}).res
    sns.lineplot(data=df_year, x='year', y='title')
    plt.ylabel("Shows Released in the Year")
    plt.xlabel("Year")
    plt.show()
```


In USA, number of shows remained the same in 2021 as they were in 2020 while number of movies declined:

```
In [ ]: df_week=df_usa_shows.groupby(['week_Added']).agg({"title":"nunique"
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```



```
In []: df_week=df_usa_movies.groupby(['week_Added']).agg({"title":"nunique
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```


TV Shows are added in Netflix by a tremendous amount in July and September in USA

Movies are added in Netflix in USA by a tremendous amount in first week/last month of current year and first month of next year

```
In []: df_release_year=df_usa_movies[df_usa_movies['release_year']>=1980].
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```



```
In []: df_release_year=df_usa_shows[df_usa_shows['release_year']>=1980].gr
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```


In USA, though both Movies and Shows have reduced in 2021, the amount of decrease in number of TV Shows is small as compared to Movies

In []: df_usa_movies.head()

()	ш	+	ΙC	J)	u I	
v	u		L s	,	J.	

	title	Actors	Directors	Genre	country	show_id	type	date_added
0	Dick Johnson Is Dead	Unknown Actor	Kirsten Johnson	Documentaries	United States	s1	Movie	September 25, 2021
159	My Little Pony: A New Generation	Vanessa Hudgens	Robert Cullen	Children & Family Movies	United States	s7	Movie	September 24, 2021
160	My Little Pony: A New Generation	Vanessa Hudgens	José Luis Ucha	Children & Family Movies	United States	s7	Movie	September 24, 2021
161	My Little Pony: A New Generation	Kimiko Glenn	Robert Cullen	Children & Family Movies	United States	s7	Movie	September 24, 2021
162	My Little Pony: A New Generation	Kimiko Glenn	José Luis Ucha	Children & Family Movies	United States	s7	Movie	September 24, 2021

In []: #Analysing a combination of actors and directors
 df_usa_movies['Actor_Director_Combination'] = df_usa_movies.Actors.
 df_usa_movies_subset=df_usa_movies[df_usa_movies['Actors']!='Unknow
 df_usa_movies_subset=df_usa_movies_subset[df_usa_movies_subset['Dir
 df_usa_movies_subset.head()

Out[100]:

	title	Actors	Directors	Genre	country	show_id	type	date_added	releas
159	My Little Pony: A New Generation	Vanessa Hudgens	Robert Cullen	Children & Family Movies	United States	s7	Movie	September 24, 2021	
160	My Little Pony: A New Generation	Vanessa Hudgens	José Luis Ucha	Children & Family Movies	United States	s7	Movie	September 24, 2021	
161	My Little Pony: A New Generation	Kimiko Glenn	Robert Cullen	Children & Family Movies	United States	s7	Movie	September 24, 2021	
162	My Little Pony: A New Generation	Kimiko Glenn	José Luis Ucha	Children & Family Movies	United States	s7	Movie	September 24, 2021	
163	My Little Pony: A New Generation	James Marsden	Robert Cullen	Children & Family Movies	United States	s7	Movie	September 24, 2021	

In []: df_usa_shows['Actor_Director_Combination'] = df_usa_shows.Actors.st
 df_usa_shows_subset=df_usa_shows[df_usa_shows['Actors']!='Unknown A
 df_usa_shows_subset=df_usa_shows_subset[df_usa_shows_subset['Direct
 df_usa_shows_subset.head()

Out [101]:

	title	Actors	Directors	Genre	country	show_id	type	date_added	release_y
111	Midnight Mass	Kate Siegel	Mike Flanagan	TV Dramas	United States	s6	TV Show	September 24, 2021	2(
112	Midnight Mass	Kate Siegel	Mike Flanagan	TV Horror	United States	s6	TV Show	September 24, 2021	2(
113	Midnight Mass	Kate Siegel	Mike Flanagan	TV Mysteries	United States	s6	TV Show	September 24, 2021	2(
114	Midnight Mass	Zach Gilford	Mike Flanagan	TV Dramas	United States	s6	TV Show	September 24, 2021	2(
115	Midnight Mass	Zach Gilford	Mike Flanagan	TV Horror	United States	s6	TV Show	September 24, 2021	2(

```
In []: df_actors_directors=df_usa_shows_subset.groupby(['Actor_Director_Co
plt.figure(figsize=(15,8))
    plt.barh(df_actors_directors[::-1]['Actor_Director_Combination'], d
    plt.xlabel('Number of Shows')
    plt.ylabel('Popular Actor-Director Combination')
    plt.show()
```



```
In [ ]: | df_actors_directors[::-1]['Actor_Director_Combination'].values
Out[183]: array(['Rory Markham and Mike Gunther', 'Erin Mathews and Steve Ba
          ll',
                  'Danny Trejo and Robert Rodriguez',
                  'Jeff Dunham and Michael Simon', 'Smith Foreman and Stanley
          Moore',
                  'Marlon Wayans and Michael Tiddes', 'Adam Sandler and Steve
          Brill',
                 'Maisie Benson and Stanley Moore', 'Ashleigh Ball and Ishi
          Rudell'
                  'Tara Strong and Ishi Rudell', 'Rebecca Shoichet and Ishi R
          udell',
                  'Kerry Gudjohnsen and Alex Woo',
                  'Kerry Gudjohnsen and Stanley Moore', 'Paul Killam and Alex
          Woo',
                 'Paul Killam and Stanley Moore', 'Andrea Libman and Ishi Ru
          dell',
                  'Kevin Hart and Leslie Small', 'Maisie Benson and Alex Woo'
                  'Alexa PenaVega and Robert Rodriguez',
                  'Tabitha St. Germain and Ishi Rudell'], dtype=object)
```

The Most Popular Actor Director Combination in Movies Across USA are:-

```
'Smith Foreman and Stanley Moore',
'Marlon Wayans and Michael Tiddes',
'Adam Sandler and Steve Brill',
'Maisie Benson and Stanley Moore',
'Ashleigh Ball and Ishi Rudell',
'Tara Strong and Ishi Rudell',
'Rebecca Shoichet and Ishi Rudell',
'Kerry Gudjohnsen and Alex Woo',
'Kerry Gudjohnsen and Stanley Moore'.
'Paul Killam and Alex Woo',
'Paul Killam and Stanley Moore',
'Andrea Libman and Ishi Rudell',
'Kevin Hart and Leslie Small'.
'Maisie Benson and Alex Woo',
'Alexa PenaVega and Robert Rodriguez'.
'Tabitha St. Germain and Ishi Rudell'
```

The Second Most Popular Actor Director Combination in Movies Across USA are:-

```
'Rory Markham and Mike Gunther',
'Erin Mathews and Steve Ball',
'Danny Trejo and Robert Rodriguez',
```

'Jeff Dunham and Michael Simon'

Univariate Analysis separately for shows and movies in India

```
In []: #Analyzing India for both shows and movies
          df_india_shows=df_final1[df_final1['country']=='India'][df_final1[d
          df india movies=df final1[df final1['country']=='India'][df final1[
In [ ]: |df_genre=df_india_shows.groupby(['Genre']).agg({"title":"nunique"})
          plt.figure(figsize=(15,8))
          plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
          plt.xlabel('Frequency of Genres')
          plt.ylabel('Genres')
          plt.show()
            International TV Shows
                TV Dramas
                  Kids' TV
             Romantic TV Shows
                Docuseries
              Crime TV Shows
                 TV Horror
             TV Sci-Fi & Fantasy
                TV Thrillers
              British TV Shows
                TV Mysteries
```

Dramas, Comedy, Kids 'TV Shows and International TV Shows Genres are popular in TV Series in India

```
In []: df_genre=df_india_movies.groupby(['Genre']).agg({"title":"nunique"}
    plt.figure(figsize=(15,8))
    plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
    plt.xlabel('Frequency of Genres')
    plt.ylabel('Genres')
    plt.show()
```


International Movies, Drama, Comedy, Indpeendent Movies and Action, Romance Genres are prevalent in India

```
In []: df_rating=df_india_shows.groupby(['rating']).agg({"title":"nunique"
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```



```
In []: df_rating=df_india_movies.groupby(['rating']).agg({"title":"nunique
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```


So it seems plaussible to conclude that the popular ratings across Netflix includes Mature Audiences in TV Shows and those appropriate for people over 14 in Movies in India.

Now this indeed seems to be the case. Indian TV Shows in Netflix are without a shadow of doubt intended for Mature Audiences while Movies for over 14 years of age.

```
In []: df_duration=df_india_movies.groupby(['duration']).agg({"title":"nun
    plt.figure(figsize=(15,8))
    plt.barh(df_duration[::-1]['duration'], df_duration[::-1]['title'],
    plt.xlabel('Frequency by Duration')
    plt.ylabel('Duration')
    plt.show()
```


Across movies ranges of minutes in India are comparatively greater than USA with a sweet spot at 120-150 mins.

Popular Actors in TV Shows in India are:-

```
'Rajesh Kava',
'Nishka Raheja',
'Prakash Raj',
'Sabina Malik',
'Anjali',
'Aranya Kaur',
'Sonal Kaushal',
'Chandan Anand',
```

'Danish Husain'

```
In []: df_actors=df_india_movies.groupby(['Actors']).agg({"title":"nunique
    df_actors=df_actors[df_actors['Actors']!='Unknown Actor']
    plt.figure(figsize=(15,8))
    plt.barh(df_actors[::-1]['Actors'], df_actors[::-1]['title'],color=
    plt.xlabel('Number of Movies')
    plt.ylabel('Popular Actors')
    plt.show()
```


In []: df_actors['Actors'].values

Popular actors across Movies in India:-

```
'Anupam Kher',
'Shah Rukh Khan',
'Naseeruddin Shah',
'Akshay Kumar',
'Om Puri',
'Paresh Rawal',
'Julie Tejwani',
'Amitabh Bachchan',
'Boman Irani',
'Rupa Bhimani',
'Kareena Kapoor',
'Ajay Devgn',
```

'Rajesh Kava', 'Kay Kay Menon'

Popular Directors Across Movies in India:-

```
'Gautham Vasudev Menon',
```

'Abhishek Chaubey',

'Sudha Kongara',

'Rathindran R Prasad',

'Sankalp Reddy',

'Sarjun',

'Soumendra Padhi',

'Srijit Mukherji',

'Tharun Bhascker Dhaassyam'

```
In []: df_directors=df_india_movies.groupby(['Directors']).agg({"title":"n
    df_directors=df_directors[df_directors['Directors']!='Unknown Direc
    plt.figure(figsize=(15,8))
    plt.barh(df_directors[::-1]['Directors'], df_directors[::-1]['title
    plt.xlabel('Number of Movies')
    plt.ylabel('Popular Directors')
    plt.show()
```


Popular directors across movies in India:-

```
'Rajiv Chilaka',
```

'Suhas Kadav',

'David Dhawan',

'Umesh Mehra',

'Anurag Kashyap',

'Ram Gopal Varma',

'Dibakar Banerjee',

'Zoya Akhtar',

'Tilak Shetty',

'Rajkumar Santoshi',

'Priyadarshan',

'Sooraj R. Barjatya',

'Ashutosh Gowariker',

'Milan Luthria'

In India,TV Shows were increasingly being added till 2020, though the addition of shows reduced in 2021.

In India, Movies were increasingly added till 2018 but it has been a huge downhill since then. Now that's preposterous, since and soemthing has to be recommended to the Netflix Team with regards to that.

```
In []: df_week=df_india_shows.groupby(['week_Added']).agg({"title":"nuniqu
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```



```
In []: df_week=df_india_movies.groupby(['week_Added']).agg({"title":"nuniq
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```


TV Shows are added in Netflix by a tremendous amount in April in India

Movies are added in Netflix in India by a tremendous amount in first week/last month of current year and first month of next year

```
In []: df_release_year=df_india_movies[df_india_movies['release_year']>=19
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```



```
In []: df_release_year=df_india_shows[df_india_shows['release_year']>=1980
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```


The understandable trend amongs movies and TV Shows across India in Netflix is the reduction of movies after 2020

In []: #Analysing a combination of actors and directors df_india_movies['Actor_Director_Combination'] = df_india_movies.Act df_india_movies_subset=df_india_movies[df_india_movies['Actors']!=' df_india_movies_subset=df_india_movies_subset[df_india_movies_subset]

Out[127]:

	title	Actors	Directors	Genre	country	show_id	type	date_
621	Avvai Shanmughi	Kamal Hassan	K.S. Ravikumar	Comedies	India	s23	Movie	Sep. 2
622	Avvai Shanmughi	Kamal Hassan	K.S. Ravikumar	International Movies	India	s23	Movie	Sep. 2
629	Avvai Shanmughi	Nassar	K.S. Ravikumar	Comedies	India	s23	Movie	Sep 2
630	Avvai Shanmughi	Nassar	K.S. Ravikumar	International Movies	India	s23	Movie	Sep 2
631	Avvai Shanmughi	S.P. Balasubrahmanyam	K.S. Ravikumar	Comedies	India	s23	Movie	Sep. 2

In []: df_india_shows['Actor_Director_Combination'] = df_india_shows.Actor
 df_india_shows_subset=df_india_shows[df_india_shows['Actors']!='Unk
 df_india_shows_subset=df_india_shows_subset[df_india_shows_subset['
 df_india_shows_subset.head()

Out[128]:

		title	Actors	Directors	Genre	country	show_id	type	date_added	release
_	7005	Navarasa	Suriya	Bejoy Nambiar	TV Shows	India	s298	TV Show	August 6, 2021	
,	7006	Navarasa	Suriya	Priyadarshan	TV Shows	India	s298	TV Show	August 6, 2021	
,	7007	Navarasa	Suriya	Karthik Narain	TV Shows	India	s298	TV Show	August 6, 2021	
,	7008	Navarasa	Suriya	Vasanth Sai	TV Shows	India	s298	TV Show	August 6, 2021	
,	7009	Navarasa	Suriya	Karthik Subbaraj	TV Shows	India	s298	TV Show	August 6, 2021	

```
In []: df_actors_directors=df_india_shows_subset.groupby(['Actor_Director_
    plt.figure(figsize=(15,8))
    plt.barh(df_actors_directors[::-1]['Actor_Director_Combination'], d
    plt.xlabel('Number of Shows')
    plt.ylabel('Popular Actor-Director Combination')
    plt.show()
```


In []:	df_india	_movies[d	lf_india_	_movies['Direct	ors']=='	Rajiv	Chilak	a']
	10067	Bheem & Ganesh	Rupa Bhimani	Hajiv Chilaka	& Family Movies	India	s408	Movie	July 22, 2021
	10068	Chhota Bheem & Ganesh	Jigna Bhardwaj	Rajiv Chilaka	Children & Family Movies	India	s408	Movie	July 22, 2021
	10069	Chhota Bheem & Ganesh	Rajesh Kava	Rajiv Chilaka	Children & Family Movies	India	s408	Movie	July 22, 2021
	10070	Chhota Bheem & Ganesh	Mousam	Rajiv Chilaka	Children & Family Movies	India	s408	Movie	July 22, 2021
	10071	Chhota Bheem & Ganesh	Swapnil	Rajiv Chilaka	Children & Family Movies	India	s408	Movie	July 22, 2021
		Chhota			Children				

It seems that Rajiv Chilaka has worked on Chota Bheem and has been able to create some good content in its movies. He can be relied on for more Chota Bheem stories

The Most Popular Actor Director Combination in Movies Across India are:-

- 'Rajesh Kava and Rajiv Chilaka',
- 'Julie Tejwani and Rajiv Chilaka',
- 'Rupa Bhimani and Rajiv Chilaka',
- 'Jigna Bhardwaj and Rajiv Chilaka',
- 'Vatsal Dubey and Rajiv Chilaka',
- 'Mousam and Rajiv Chilaka',
- 'Swapnil and Rajiv Chilaka',

plt.show()

- 'Saurav Chakraborty and Suhas Kadav',
- 'Smita Malhotra and Tilak Shetty',
- 'Anupam Kher and David Dhawan',
- 'Salman Khan and Sooraj R. Barjatya',

Univariate Analysis separately for shows and movies in United Kingdom

```
In []: #Analyzing India for both shows and movies
    df_uk_shows=df_final1[df_final1['country']=='United Kingdom'][df_fi
    df_uk_movies=df_final1[df_final1['country']=='United Kingdom'][df_f]

In []:    df_genre=df_uk_shows.groupby(['Genre']).agg({"title":"nunique"}).re
    plt.figure(figsize=(15,8))
    plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
    plt.xlabel('Frequency of Genres')
    plt.ylabel('Genres')
```


British TV Shows, International TV Shows, Docuseries, Crime, Comedy are widely watched Genres in TV Shows in UK

```
In []: df_genre=df_uk_movies.groupby(['Genre']).agg({"title":"nunique"}).r
    plt.figure(figsize=(15,8))
    plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
    plt.xlabel('Frequency of Genres')
    plt.ylabel('Genres')
    plt.show()
```


International Movies, Drama, Comedy, Indpeendent Movies and Action, Romance Genres in Movies are prevalent in UK

```
In [ ]: df_rating=df_uk_shows.groupby(['rating']).agg({"title":"nunique"}).
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```



```
In []: df_rating=df_uk_movies.groupby(['rating']).agg({"title":"nunique"})
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```


So it seems plaussible to conclude that the popular ratings across Netflix includes Parental Guidance and Mature Audiences in TV Shows and R Rated+MA Rated in Movies in UK

```
In []: df_duration=df_uk_movies.groupby(['duration']).agg({"title":"nuniqu
    plt.figure(figsize=(15,8))
    plt.barh(df_duration[::-1]['duration'], df_duration[::-1]['title'],
    plt.xlabel('Frequency by Duration')
    plt.ylabel('Duration')
    plt.show()
```


Across movies ranges of minutes in UK have a sweet spot at 80-120 mins.

```
In []: df_actors=df_uk_shows.groupby(['Actors']).agg({"title":"nunique"}).
    df_actors=df_actors[df_actors['Actors']!='Unknown Actor']
    plt.figure(figsize=(15,8))
    plt.barh(df_actors[::-1]['Actors'], df_actors[::-1]['title'],color=
    plt.xlabel('Number of Shows')
    plt.ylabel('Popular Actors')
    plt.show()
```


Popular Actors in TV Shows in UK are:-

```
'David Attenborough',
'Terry Jones',
'Graham Chapman',
'John Cleese',
'Eric Idle',
'Michael Palin',
'Terry Gilliam',
'Teresa Gallagher',
'Harriet Walter'
```

```
In []: df_actors=df_uk_movies.groupby(['Actors']).agg({"title":"nunique"})
    df_actors=df_actors[df_actors['Actors']!='Unknown Actor']
    plt.figure(figsize=(15,8))
    plt.barh(df_actors[::-1]['Actors'], df_actors[::-1]['title'],color=
    plt.xlabel('Number of Movies')
    plt.ylabel('Popular Actors')
    plt.show()
```


Popular actors across Movies in UK:-

```
'John Cleese',
'Michael Palin',
'Judi Dench',
'Keith Wickham',
'Eric Idle',
'Brendan Gleeson',
'Terry Gilliam',
'Terry Jones',
'Helena Bonham Carter',
'Graham Chapman',
'Samuel West',
'Eddie Marsan',
'James Cosmo',
```

'Rob Rackstraw'


```
In [ ]: df_directors['Directors'].values
```



```
In [ ]: df_directors['Directors'].values
```

Popular directors across movies in UK:-

'Joey So',

'Edward Cotterill'


```
In [ ]: df_year=df_uk_shows.groupby(['year']).agg({"title":"nunique"}).rese
    sns.lineplot(data=df_year, x='year', y='title')
    plt.ylabel("Movies Released in the Year")
    plt.xlabel("Year")
    plt.show()
```


In terms of TV Shows, UK saw a downfall in 2018 from 2017, then a great increase in 2019 but has been reducing since then.

In terms of Movies, the number of popular movies in UK increased till 2019, since then it's decreasing.

```
In []: df_week=df_uk_shows.groupby(['week_Added']).agg({"title":"nunique"}
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Shows Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```



```
In [ ]: df_week=df_uk_movies.groupby(['week_Added']).agg({"title":"nunique"
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```


TV Shows are added in Netflix by a tremendous amount in March in UK

Movies are added in Netflix in India by a tremendous amount in first week/last month of current year and first month of next year

```
In []: df_release_year=df_uk_shows[df_uk_shows['release_year']>=1980].grou
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```


Same trend of reduction in movies and shows after 2020.

In []: #Analysing a combination of actors and directors df_uk_movies['Actor_Director_Combination'] = df_uk_movies.Actors.st df_uk_movies_subset=df_uk_movies[df_uk_movies['Actors']!='Unknown A df_uk_movies_subset=df_uk_movies_subset[df_uk_movies_subset['Direct df_uk_movies_subset.head()

Out[154]:

	title	Actors	Directors	Genre	country	show_id	type	date_added	re
18	2 Sankofa	Kofi Ghanaba	Haile Gerima	Dramas	United Kingdom	s8	Movie	September 24, 2021	
18	3 Sankofa	Kofi Ghanaba	Haile Gerima	Independent Movies	United Kingdom	s8	Movie	September 24, 2021	
19	1 Sankofa	Kofi Ghanaba	Haile Gerima	International Movies	United Kingdom	s8	Movie	September 24, 2021	
20) Sankofa	Oyafunmike Ogunlano	Haile Gerima	Dramas	United Kingdom	s8	Movie	September 24, 2021	
20	Sankofa	Oyafunmike Ogunlano	Haile Gerima	Independent Movies	United Kingdom	s8	Movie	September 24, 2021	

In []: df_uk_shows['Actor_Director_Combination'] = df_uk_shows.Actors.str.
 df_uk_shows_subset=df_uk_shows[df_uk_shows['Actors']!='Unknown Acto
 df_uk_shows_subset=df_uk_shows_subset[df_uk_shows_subset['Directors
 df_uk_shows_subset.head()

Out[155]:

	title	Actors	Directors	Genre	country	show_id	type	date_added	release_ye
323	The Great British Baking Show	Mel Giedroyc	Andy Devonshire	British TV Shows	United Kingdom	s9	TV Show	September 24, 2021	20
324	The Great British Baking Show	Mel Giedroyc	Andy Devonshire	Reality TV	United Kingdom	s9	TV Show	September 24, 2021	20
325	The Great British Baking Show	Sue Perkins	Andy Devonshire	British TV Shows	United Kingdom	s 9	TV Show	September 24, 2021	20
326	The Great British Baking Show	Sue Perkins	Andy Devonshire	Reality TV	United Kingdom	s9	TV Show	September 24, 2021	20
327	The Great British Baking Show	Mary Berry	Andy Devonshire	British TV Shows	United Kingdom	s 9	TV Show	September 24, 2021	20

```
In []: df_actors_directors=df_uk_shows_subset.groupby(['Actor_Director_Com
    plt.figure(figsize=(15,8))
    plt.barh(df_actors_directors[::-1]['Actor_Director_Combination'], d
    plt.xlabel('Number of Shows')
    plt.ylabel('Popular Actor-Director Combination')
    plt.show()
```



```
In [ ]: |df_actors_directors['Actor_Director_Combination'].values
Out[158]: array(['Keith Wickham and Joey So', 'Rob Rackstraw and Joey So',
                  'Simon Greenall and Blair Simmons',
                 'Rachael Stirling and Edward Cotterill',
                 'Joey King and Vince Marcello',
                  'Teresa Gallagher and Blair Simmons',
                  'Paul Panting and Blair Simmons',
                  'Molly Ringwald and Vince Marcello',
                  'Keith Wickham and Blair Simmons',
                 'Michael Murphy and Blair Simmons', 'Jo Wyatt and Blair Sim
          mons',
                  'Joel Courtney and Vince Marcello',
                 'Jacob Elordi and Vince Marcello',
                 'Rob Rackstraw and Blair Simmons', 'Ashley Chin and Femi Oy
          eniran'],
                dtype=object)
```

The Most Popular Actor Director Combination in Movies Across UK are:-

'Keith Wickham and Joey So', 'Rob Rackstraw and Joey So'

Univariate Analysis separately for shows in Japan

```
In []: #Analyzing India for both shows and movies
    df_japan_shows=df_final1[df_final1['country']=='Japan'][df_final1[d
```

```
In [ ]: df_genre=df_japan_shows.groupby(['Genre']).agg({"title":"nunique"})
    plt.figure(figsize=(15,8))
    plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
    plt.xlabel('Frequency of Genres')
    plt.ylabel('Genres')
    plt.show()
```


International TV Shows and Anime Genres are popular in TV Shows in Japan

```
In [ ]: df_rating=df_japan_shows.groupby(['rating']).agg({"title":"nunique"
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```


So it seems plaussible to conclude that the popular ratings across Netflix includes TV-14 Mature Audiences in TV Shows

```
In []: df_actors=df_japan_shows.groupby(['Actors']).agg({"title":"nunique"
    df_actors=df_actors[df_actors['Actors']!='Unknown Actor']
    plt.figure(figsize=(15,8))
    plt.barh(df_actors[::-1]['Actors'], df_actors[::-1]['title'],color=
    plt.xlabel('Number of Shows')
    plt.ylabel('Popular Actors')
    plt.show()
```



```
In [ ]: df_actors['Actors'].values
```

Popular Actors in TV Shows in Japan are:-

```
'Takahiro Sakurai',
'Yuki Kaji',
'Daisuke Ono',
'Junichi Suwabe',
'Ai Kayano',
'Yuichi Nakamura',
'Yoshimasa Hosoya',
'Jun Fukuyama',
'Hiroshi Kamiya',
'Kana Hanazawa'
```


All Directors are one time directors only

```
In []: df_year=df_japan_shows.groupby(['year']).agg({"title":"nunique"}).r
    sns.lineplot(data=df_year, x='year', y='title')
    plt.ylabel("Movies Released in the Year")
    plt.xlabel("Year")
    plt.show()
```


In Japan, TV Shows have diminished in 2017 from 2016 and then increased till 2020 after which it has reduced in 2021.

```
In []: df_week=df_japan_shows.groupby(['week_Added']).agg({"title":"nuniqu
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```


TV Shows are added in Netflix by significant numbers in April and January in Japan

```
In []: df_release_year=df_japan_shows[df_japan_shows['release_year']>=1980
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```


Reduction in TV Shows after 2019 in Japan

Univariate Analysis separately for shows in South Korea

```
In [ ]: #Analyzing India for both shows and movies
          df_sk_shows=df_final1[df_final1['country']=='South Korea'][df_final
In [ ]: | df_genre=df_sk_shows.groupby(['Genre']).agg({"title":"nunique"}).re
          plt.figure(figsize=(15,8))
          plt.barh(df_genre[::-1]['Genre'], df_genre[::-1]['title'],color=['o
          plt.xlabel('Frequency of Genres')
          plt.ylabel('Genres')
          plt.show()
                International TV Shows
                    ntic TV Shows
                     TV Dramas
                  Crime TV Shows
                TV Action & Adventure
                     Reality TV
            Stand-Up Comedy & Talk Shows
                    TV Mysteries
                     TV Thrillers
                                                         80
Frequency of Genres
```

International TV Shows, Romantic TV Shows, Drama, Crime and Comedy Genres are popular in TV Shows in S. Korea.

Only S.Korea has Romance as a top 3 favorable genre which depicts an inclination of their audience

```
In []: df_rating=df_sk_shows.groupby(['rating']).agg({"title":"nunique"}).
    plt.figure(figsize=(15,8))
    plt.barh(df_rating[::-1]['rating'], df_rating[::-1]['title'],color=
    plt.xlabel('Frequency by Ratings')
    plt.ylabel('Ratings')
    plt.show()
```


So it seems plaussible to conclude that the popular ratings across Netflix includes TV-14 and Mature Audiences in TV Shows

Popular Actors in TV Shows in South Korea are:-

```
'Sung Dong-il',
```

'Kim Won-hae',

'Cho Seong-ha',

'Nam Joo-hyuk'

Two directors have directed 2 shows and rest all Directors are one time directors only

```
In []: df_year=df_sk_shows.groupby(['year']).agg({"title":"nunique"}).rese
    sns.lineplot(data=df_year, x='year', y='title')
    plt.ylabel("Movies Released in the Year")
    plt.xlabel("Year")
    plt.show()
```


In South Korea, number of TV Shows reduced in 2018 from 2017, then increased till 2019 but have been on a heavy downfall since then

```
In [ ]: df_week=df_sk_shows.groupby(['week_Added']).agg({"title":"nunique"}
    plt.figure(figsize=(15,8))
    sns.lineplot(data=df_week, x='week_Added', y='title')
    plt.ylabel("Movies Released in the Week")
    plt.xlabel("Week No.")
    plt.show()
```


TV Shows are added in Netflix by significant numbers in May and January in South Korea

```
In []: df_release_year=df_sk_shows[df_sk_shows['release_year']>=1980].grou
    sns.lineplot(data=df_release_year, x='release_year', y='title')
    plt.ylabel("Movies Actual Release Date")
    plt.xlabel("Year")
    plt.show()
```


The number of TV Shows in S.Korea reached peak in 2016. It then reached a second peak in 2019. It has reduced in 2021 from 2020.

Recommendations

- 1) The most popular Genres across the countries and in both TV Shows and Movies are Drama, Comedy and International TV Shows/Movies, so content aligning to that is recommended.
- 2)Add TV Shows in July/August and Movies in last week of the year/first month of the next year.
- 3)For USA audience 80-120 mins is the recommended length for movies and Kids TV Shows are also popular along with the genres in first point, hence recommended.
- 4)For UK audience, recommended length for movies is same as that of USA (80-120 mins)
- 5)The target audience in USA and India is recommended to be 14+ and above ratings while for UK, its recommended to be completely Mature/R content.
- 6)Add movies for Indian Audience, it has been declining since 2018.
- 7)Anime Genre for Japan and Romantic Genre in TV Shows for South Korean audiences is recommended.
- 8) While creating content, take into consideration the popular actors/directors for that country. Also take into account the director-actor combination which is highly recommended.

In []:	
In []:	

In []:	
In []:	

In []:	
In []:	