TP3 Niveau DR

I. Réglage du transmetteur

1) Procéder au réglage du transmetteur de pression, pour avoir la relation suivante entre la mesure de pression X et le niveau L2. On donnera la procédure utilisée.

J'ai inverser la une est la deux

2) Compléter le schéma suivant représentant la relation entre L1 et X.

3) Compléter le schéma suivant représentant le relation entre les niveaux L1 et L2.

4) En déduire le relation mathématique entre L1 et L2.

La relation est que quand L1 augmente L2 baisse et inversement

II. Boucle ouverte

Remplir le réservoir R2 au maximum, puis fermer la vanne V1.

1) Calculer la commande en % correspondant à un courant de 9 mA. On notera cette valeur Y9 .

$$X - 0 / 100 - 0 = 9 - 4 / 20 - 4$$

 $X = 5 / 16 * 100$
 $X = 31,25\%$

2) Relever la réponse du système à une augmentation de commande de 0 à Y9. On donnera l'évolution des niveaux L1 et L2 des deux réservoirs.

DE 0 A Y9

3) Le procédé est-il stable ou instable ?

Le procédé est instable

4) Le procédé est-il intégrateur ?

Oui le procédé est intégrateur car la courbe est croissante

5) Mesurer le temps de réponse à ± 10 %.

Temps de réponse : 1min30

III. Régulation du niveau L2

Remplir le réservoir R2 au maximum, puis fermer la vanne V1.

1) Régler le régulateur pour afficher le niveau L2. On donnera les valeurs de VALL et VALH.

Nom	Description	Adresse	Valeur
inPt	Type de linéarisation	12290	VOLT (12) ▼
inPL	Valeur d'entrée basse	12307	1.00
inPH	Valeur d'entrée haute	12306	5.00
VALL	Lecture affichée basse	12303	0.00
VALH	Lecture affichée haute	12302	100.00
imP	Impédance de rupture du caj	578	ARRET (0)
mGH	Limite haute valeur procédé	12	100.00
mGL	Limite basse valeur procédé	11	0.00
Nom	Description	Adresse	Valeur
PV	Variable de process	1	99.54
юP	Puissance de sortie cible sou	3	0.00
W_SP	Consigne de travail	5	32.50
tSP	Consigne cible	2	32.50
m-A	Sélection auto/manuel	273	MAN (1) ▼
diSP	Configuration de l'affichage (i	106	STD (0) 💌
Cid	Identificateur défini par l'utilis	629	0

2) Déterminer le sens d'action du régulateur.

Procédé inverse, sens du régulateur direct car quand on augmente le débit L2 diminue

3) Procéder au réglage de celui-ci, avec les valeurs ci-dessous.

Nom	Description	Adresse	Valeur
PB	Bande proportionnelle	6	10.00
Ti	Temps d'intégrale	8	30s ···
Td	Temps de dérivée	9	ARRET (0)
Lcb	Cutback bas	17	AUTO (0) ▼
Hcb	Cutback Haut	18	AUTO (0) ▼

4) Relever la réponse indicielle en boucle fermée du système. La consigne passera de 100 à 50%

5) Donner la valeur de l'erreur statique.

L'erreur statique est de 2%

6) Mesurer le temps de réponse à ± 10 %.

Temps de réponse a + ou - 10% est de 2min 15 sec

IV. Régulation du niveau L1

Remplir le réservoir R2 au maximum, puis fermer la vanne V1.

1) Régler le régulateur pour afficher le niveau L1. On donnera les valeurs de VALL et VALH.

	Nom	Description	Adresse	Valeur
Ø	inPt	Type de linéarisation	12290	VOLT (12) ▼
Ø	inPL	Valeur d'entrée basse	12307	1.00
Ø	inPH	Valeur d'entrée haute	12306	5.00
Ø	VALL	Lecture affichée basse	12303	0.00
Ø	VALH	Lecture affichée haute	12302	100.00
Ø	imP	Impédance de rupture du caj	578	ARRET (0) 💌
Ø	rnGH	Limite haute valeur procédé	12	100.00
	rnGL	Limite basse valeur procédé	11	0.00

Nom	Description	Adresse	Valeur
PV	Variable de process	1	99.54
юP	Puissance de sortie cible sou	3	0.00
W_SP	Consigne de travail	5	32.50
tSP	Consigne cible	2	32.50
m-A	Sélection auto/manuel	273	MAN (1) ▼
diSP	Configuration de l'affichage (i	106	STD (0)
Cid	Identificateur défini par l'utilis	629	0

2) Déterminer le sens d'action du régulateur.

Procédé direct, sens du régulateur inverse car quand on augmente le débit L2 diminue

3) Procéder au réglage de celui-ci, avec les valeurs ci-dessous.

Nom	Description	Adresse	Valeur
PB	Bande proportionnelle	6	10.00
Ti	Temps d'intégrale	8	30s ···
Td	Temps de dérivée	9	ARRET (0) ····
Lcb	Cutback bas	17	AUTO (0) ▼
Hcb	Cutback Haut	18	AUTO (0) ▼

4) Relever la réponse indicielle en boucle fermée du système. La consigne passera de 100 à 50%.

5) Donner la valeur de l'erreur statique.

L'erreur statique est de 2,2%

6) Mesurer le temps de réponse à ± 10 %.

Temps de réponse a + ou - 10% est de 2min 40 sec