DE 198 29 095 A

BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift

(5) Int. Cl.⁷: **B** 41 **F** 25/00 B 41 F 21/00

DEUTSCHES PATENT- UND MARKENAMT _® DE 198 29 095 A 1

(21) Aktenzeichen:

198 29 095.0

② Anmeldetag:

30. 6. 1998

(3) Offenlegungstag:

5. 1.2000

(7) Anmelder:

MAN Roland Druckmaschinen AG, 63075 Offenbach, DE

(12) Erfinder:

Lang, Erich, 63791 Karlstein, DE; Kemmerer, Klemens, 63500 Seligenstadt, DE; Haas, Hanns-Otto, 63150 Heusenstamm, DE

56 Entgegenhaltungen:

196 11 590 C1 DE DE-PS 15 61 043 DE-AS 20 26 355 DE 44 13 089 A1 DE 297 21 184 U1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Bogenführungseinrichtung in einer Druckmaschine
- Die Erfindung betrifft eine Bogenführungseinrichtung in einer Druckmaschine. Es ist Aufgabe der Erfindung eine Bogenführungseinrichtung zu schaffen, die eine gleichmäßige Führung des Bedruckstoffes auf einem Bogenführungszylinder gestattet und eine in verbesserten Einlauf des Bedruckstoffes in einen Druckspalt gewährleistet. Die Aufgabe wird dadurch gelöst, indem die Bogenführungseinrichtung 6 wenigstens eine Kammer mit Öffnungen für einen diffusen Blasluftaustritt aufweist und zumindest diese Kammer einem dem Bogenführungszylinder 1 benachbarte Führungsfläche 10 aus einem porösen Material aufweist.

Beschreibung

Die Erfindung betrifft eine Bogenführungseinrichtung in einer Druckmaschine nach dem Oberbegriff des Hauptanspruches.

[Stand der Technik]

Es ist eine in Förderrichtung des Bedruckstoffes vor dem Druckspalt von Gummituchzylinder und Druckzylinder an- 10 geordnete Blasvorrichtung bekannt, die von der MAN Roland Druckmaschinen AG in der Baureihe Roland 800, einer Rotationsdruckmaschine nach dem Fünfzylinderprinzip, in den Jahren 1978 bis 1995 realisiert und verkauft wurde. Diese Blasvorrichtung ist aus einer Mehrzahl zueinander in 15 Zylinderachsrichtung beabstandeten und der Krümmung der gegenüberliegenden Druckzylindermantelfläche angepassten Führungselementen gebildet, wobei jedes Führungselement einen hohlzylindrischen Querschnitt aufweist. Ein jedes Führungselement besitzt in der Wandung schräg ange- 20 ordnete, gegen den Druckzylinder und die Förderrichtung des Bedruckstoffes gerichtete Blasluftöffnungen, welche ein Anheben des Bogens von der Druckzylindermantelfläche vermeiden. Das Innere des hohlzylindrischen Führungselementes stellt die Blasluftkammer dar, die mit einem Pneu- 25 matiksystem für die Blasluftversorgung gekoppelt ist.

Eine weitere Bogenführungseinrichtung ist aus der DE 39 20 730 C2 bekannt. Um ein Glattstreichen von Bogen zu erzielen, wird eine Blasdüse benutzt, die einen Luftstrom auf das auf dem Druckzylinder geführte Bogenmaterial richtet und hierdurch einen Streicheffekt erzielt. Da die Blasdüse vor dem Druckspalt vor- und zurückpendelnd gelagert ist, ist ein Entspannen des Bogenmaterials und damit ein ungleiches Aufliegen, insbesondere bei dünnen Bedruckstoffen, nicht mit Sicherheit gewährleistet.

Eine weitere Einrichtung dieser Art ist aus der EP 0 306 682 A2 bekannt. Die Einrichtung besteht im wesentlichen aus zwei mit Blasluft beaufschlagten Blasleisten, die vor und nach dem durch einen Gummituchzylinder und einen Druckzylinder gebildeten Druckspalt über die Zylin- 40 derbreite achsparallel angeordnet sind. Die in Förderrichtung vordere Blasleiste ist im zwickelförmigen Raum oberhalb des einlaufenden Bogens zwischen Gummituchzylinder und Druckzylinder angeordnet. Der Blasluftstrom ist dabei auf den Gummituchzylinder, in die Druckzone selbst so- 45 wie auf die Oberseite des auf dem Druckzylinder im Greiferschluß geführten Bogens gerichtet. Die in Förderrichtung nach der Druckzone angeordnete hintere Blasleiste erzielt einen Blasluftstrom, welcher auf die Oberseite des auf dem Druckzylinder geführten Bogens und auf dem Gummituch- 50 zylinder entgegen der Förderrichtung gerichtet ist.

[Aufgabe der Erfindung]

Der Erfindung liegt die Aufgabe zugrunde eine Bogenführungseinrichtung in einer Druckmaschine zu schaffen, die die genannten Nachteile vermeidet, die insbesondere eine gleichmäßigere Führung des Bedruckstoffes auf dem Bogenführungszylinder, insbesondere einem Druckzylinder gestattet, und einen verbesserten Einlauf des Bedruckstoffes 60 in einen Druckspalt gewährleistet.

Die Aufgabe wird durch die Ausbildungsmerkmale des Hauptanspruches gelöst. Weiterbildungen ergeben sich aus den Unteransprüchen.

Die Erfindung geht davon aus, daß der Bedruckstoff 65 durch die pneumatische Bogenführungseinrichtung mittels diffuser Blasluft auf einem Bogenführungszylinder geführt wird, wobei die Bogenführungseinrichtung selbst mit gerin-

gem Aufwand herstellbar ist. Die Bogenführungseinrichtung erstreckt sich vorzugsweise über die maximale Formatbreite des Bedruckstoffes. Um ein Abheben des bogenförmigen Bedruckstoffes von der Mantelfläche des Bogenführungszylinders sowie ein Umknicken der Enden der Bedruckstoffhinterkante zu verhindern, ist die Bogenführungseinrichtung im Bereich des Druckspaltes derart ausgebildet, daß insbesondere im Bereich vor dem Druckspalt diffuse Blasluftströmungen über die Formatbreite auf die Bedruckstoffoberseite wirken. Die Bogenführungseinrichtung ist vor dem Druckspalt derart angeordnet, daß zwischen Unterseite (Führungsfläche) der Bogenführungseinrichtung und der Bogenführungszylindermantelfläche ein Einlaufspalt gebildet ist, der in Förderrichtung zum Druckspalt hin einen sich verjüngenden Verlauf aufweist. Die diffusen Blasluftströmungen über die maximale Formatbreite erzielen einen im wesentlichen gleichmäßigen Austritt der Blasluft aus der Bogenführungseinrichtung. Dabei werden die diffusen Blasluftströmungen durch eine Vielzahl von Öffnungen in der luftdurchlässigen Führungsfläche gebildet. Die luftdurchlässige Führungsfläche ist dabei bevorzugt aus einem porösen Material gebildet. In einer Weiterbildung ist das poröse Material ein mikroporöses Material. Alternativ eignet sich als luftdurchlässige Führungsfläche auch beispielsweise eine gitterartige oder ähnliche Struktur, die das Erzeugen diffuser Blasluftströmungen gestattet.

In einer weiteren Ausbildung ist neben der in Förderrichtung vor dem Druckspalt angeordneten ersten Bogenführungseinrichtung eine weitere baugleiche zweite Bogenführungseinrichtung nach dem Druckspalt, sich ebenso über die maximale Formatbreite erstreckend, angeordnet. Diese nachgeordnete Bogenführungseinrichtung ist spiegelbildlich zur bereits beschriebenen vorgeordneten Bogenführungseinrichtung angeordnet und dient der Führung des Bedruckstoffes beim Verlassen des Druckspaltes. Die diffusen Blasluftströmungen treten über die maximale Formatbreite aus und erzielen einen im wesentlichen gleichmäßigen Austritt der Blasluft aus der Bogenführungseinrichtung. Zwischen der Unterseite (Führungsfläche) der zweiten Bogenführungseinrichtung und der Bogenführungszylindermantelfläche ist ein Auslaufspalt gebildet, der ausgehend vom Druckspalt, in Förderrichtung sich erweitert.

Beide Bogenführungseinrichtungen sind bevorzugt um jeweils eine Achse schwenkbar angeordnet, so daß der Einlaufspalt und/oder der Auslaufspalt im Abstand zum Bogenführungszylinder einzeln einstellbar ist.

In bevorzugter Ausbildung ist die luftdurchlässige Führungsfläche in eine Krümmung der vom Druckspalt abgewandten Rückwand der Bogenführungseinrichtung integriert. Dies hat den Vorteil, daß insbesondere beim Einlaufen in den Druckspalt ein mögliches Umschlagen von Ecken der Bedruckstoffhinterkante vermeidbar ist, da auch aus der Krümmung der Rückwand eine diffuse Blasluftströmung austritt. Beim Auslaufen aus dem Druckspalt wird dadurch die Führung der Bedruckstoffhinterkante verbessert.

In einer Weiterbildung ist die luftdurchlässige Führungsbahn in eine in den Druckspalt ragende Vorderwand integriert. Damit ist insbesondere bei einem nicht am Druck beteiligten Druckwerk bzw. Lackwerk (Druckab-Stellung) die kontaktlose Führung des Bedruckstoffes im Druckspalt realisierbar.

Durch die diffusen Blasluftströmungen bildet sich ein Luftpolster zwischen Bedruckstoffoberseite und der Unterseite sowie der Rückwand der Bogenführungseinrichtung aus, um das Abschmieren des bogenförmigen Bedruckstoffes zu vermeiden. Durch die im wesentlichen gleichmäßig auf den Bedruckstoff wirkenden diffusen Blasluftströmungen wird dieser auch gleichmäßig, ohne Wellen zu schlagen

3

oder zu Flattern, auf dem Bogenführungszylinder geführt. Die Erfindung soll an einem Ausführungsbeispiel näher erläutert werden, dabei zeigen schematisch:

Fig. 1 eine Bogenrotationsdruckmaschine,

Fig. 2 Bogenführungseinrichtungen im Bereich des 5 Druckspaltes.

[Beispiele]

Reihenbauweise dargestellt. Dabei sind mehrere Druckwerke 14 mit Druckzylindern 1 aneinandergereiht und untereinander mittels Transfertrommeln 17, dies schließt auch Wendesysteme (z. B. Eintrommel- oder Dreitrommel-Wendung) ein, verbunden. Die Transfertrommeln 17 weisen zu- 15 geordnete Bogenleiteinrichtungen auf. Dem letzten Druckwerk 14 ist in Förderrichtung 5 ein erstes Lackwerk 15 und ein zweites Lackwerk 16 nachgeordnet. Dem Lackwerk 16 ist ein Ausleger 18 nachgeordnet, welcher den Bedruckstoff mittels umlaufender Fördersysteme 19 in Förderrichtung 5 20 an Bogenleiteinrichtungen entlang transportiert und auf einem Auslegerstapel ablegt. Zwischen dem ersten Lackwerk 15 und dem zweiten Lackwerk 16 ist vorzugsweise ein Trocknersystem 20 angeordnet. Jedes Druckwerk 14 besteht in bekannter Weise aus einem Druckzylinder 1, einem Gum- 25 mituchzylinder 12 und einem Plattenzylinder 13. Dem Plattenzylinder 13 ist ein Farbwerk und ggf. ein Feuchtwerk zugeordnet, auf dieses hier nicht näher eingegangen werden soll.

Bei Bogenrotationsdruckmaschinen in Reihenbauweise 30 sind für die Inline-Veredelung bekanntlich auch ein oder mehrere Lackwerke 15, 16 den Druckwerken 14 zuordbar, wobei ein Lackwerk 15 oder 16 dabei mit einem Druckwerk 14 vergleichbar ist. Der Gummituchzylinder 12 des Druckwerkes 14 entspricht dann bekanntlich einem Formzylinder 35 2 des jeweiligen Lackwerkes 15 bzw. 16. Der Formzylinder 2 ist mit einer Auftragwalze 3 sowie einem Dosiersystem 4, z. B. einem Kammerrakel, einer weiteren Walze mit von oben in den Walzenspalt einspeisender Fluidzufuhr oder einer Tauchwalze, in Funktionsverbindung. Der Druckzylin- 40 der 1 übernimmt auch im Lackwerk 15 bzw. 16 die Funktion des Bogenführungszylinders. Gummituch-/Formzylinder 12, 2 sowie Druckzylinder 1 bilden einen Druckspalt 22, durch den in Druckan-Stellung der bogenförmige Bedruckstoff transportiert und bedruckt bzw. lackiert wird. Alterna- 45 tiv kann in Druckab-Stellung, z. B. bei Kontrolle des Papierlaufes oder falls ein Druckwerk 14 bzw. Lackwerk 15 oder 16 nicht benötigt wird, der auf der Mantelfläche des Druckzylinders 1 aufliegende Bedruckstoff kontaktlos zum abgestellten Gummituch-/Formzylinder 12, 2 den Druckspalt 22 50 passieren.

In Förderrichtung 5 ist in erster Ausbildung dem Druckspalt 22 eine erste Bogenführungseinrichtung 6 vorgeordnet. Die Bogenführungseinrichtung 6 weist ein im wesentlichen kastenförmiges Gehäuse 11 mit einem annähernd keilförmigen Querschnitt auf, das sich vorzugsweise über die maximale Formatbreite des zu verarbeitenden Bedruckstoffes bzw. die Breite des Bogenführungszylinders, hier des Druckzylinders 1, erstreckt und mit einem Pneumatiksystem für die Blasluftversorgung gekoppelt ist. Die Bogenführungseinrichtung 6 ragt in den zwickelförmigen Raum des Druckspaltes 22, gebildet durch den Gummituch- bzw. Formzylinder 12, 2 und Druckzylinder 1, hinein und weist im Innenraum wenigstens eine Kammer 23 auf. Die Kammer 23 ist leitungsseitig mit dem Pneumatiksystem für die Blasluftversorgung in Funktionsverbindung. Das Gehäuse 11 der Bogenführungseinrichtung 6 weist eine luftdurchlässige, poröse Führungsfläche 10 an der Unterseite des Gehäu4

ses 11 auf, welche insbesondere dem bogenführenden Druckzylinder 1 gegenüber angeordnet ist. Die poröse Führungsfläche 10 ist durch eine Vielzahl von relativ kleinen Öffnungen gebildet und besteht im vorliegenden Beispiel aus einem mikroporösen Sintermaterial. Die luftdurchlässige poröse Führungsfläche 10 bewirkt eine gleichmäßige Luftverteilung über die Formatbreite sowie über die Formatlänge.

Eine Bogenrotationsdruckmaschine ist gemäß Fig. 1 in bevorzugter Ausbildung ist die poröse Führungsfläche 10 auch in eine Krümmung 9 der dem Druckspalt 22 abgeeihenbauweise dargestellt. Dabei sind mehrere Druckspalt 22 abgewandten Rückseite des Gehäuses 11 integriert.

In einer Weiterbildung ist die luftdurchlässige Führungsbahn 10 aus einem porösen Material in eine in den Druckspalt 22 ragende Vorderwand 21 des Gehäuses 11 integriert. Diese Ausführung ist insbesondere bei Druckab-Stellung von Vorteil, da damit die diffuse Blasluftströmung- bei einem nicht am Druck beteiligten Gummituchzylinder 12 oder Formzylinder 2 – die Bogenführung im Druckspalt 22 verbessert. Speziell der Kontakt eines möglicherweise bereits bedruckten Bedruckstoffes mit dem Gummituch-/Formzylinder 12,2 ist somit vermeidbar.

In Förderrichtung 5 ist in zweiter Ausbildung eine weitere, zweite Bogenführungseinrichtung 7 – mit zur Bogenführungseinrichtung 6 gleicher Ausführung – zur Führung des Bedruckstoffes nach dem Druckspalt 22 angeordnet. Die nachgeordnete zweite Bogenführungseinrichtung 7 ist im wesentlichen spiegelbildlich zu der dem Druckspalt 22 vorgeordneten ersten Bogenführungseinrichtung 6 ausgebildet und ist vorzugsweise in je einem Drehgelenk 8 in den Seitengestellen gelagert.

In einer weiteren Ausbildung ist die poröse Führungsfläche 10 auch in eine in den Druckspalt 22 ragende Vorderwand 21 integriert. Jede Bogenführungseinrichtung 6, 7 ist beidseitig in Seitengestellen gelagert. Bevorzugt ist die Lagerung in den gestellfesten Drehgelenken 8, derart, daß jede Bogenführungseinrichtung 6 bzw. 7 in einem definierten Winkel um die jeweilige Drehachse schwenkbar ist. Damit ist die Bogenführungseinrichtung 6 bzw. 7, z. B. abhängig vom Flächengewicht der zu verarbeitenden Bedruckstoffe und/oder vom Drucksujet, in ihrem Abstand zum Druckzylinder 1 einstellbar. Dieser Abstand stellt bei der ersten Bogenführungseinrichtung 6 einen Einlaufspalt und bei der zweiten Bogenführungseinrichtung 7 einen Auslaufspalt dar, der unabhängig von der Schwenkbarkeit der jeweiligen Bogenführungseinrichtung 6 bzw. 7 stets in Richtung zum Druckspalt 22 sich verjüngend angeordnet ist. Die Führungsfläche 10 der zweiten Bogenführungseinrichtung 7 bildet somit mit dem Bogenführungszylinder 1 in Förderrichtung 5, ausgehend vom Druckspalt 22, einen sich erweiternden Auslaufspalt.

Die Wirkungsweise ist wie folgt: In Druckan-Stellung (Gummituch-/Formzylinder 12, 2 ist mit Druckzylinder 1 in Druckkontakt) wird von der Transfertrommel 17 der bogenförmige Bedruckstoff an den Druckzylinder 1 übergeben und auf diesem im Greiferschluß in Förderrichtung 5 transportiert. Die dem Druckspalt 22 vorgeordnete Bogenführungseinrichtung 6 erzeugt bei eingeschalteter Druckmaschine ständig diffuse Blasluftströmungen an den Öffnungen der mikroporösen Führungsfläche 10. Bei Druckab-Stellung (Gummituch-/Formzylinder 12, 2 ist mit dem Druckzylinder 1 außer Kontakt), d. h. es ist im Druckspalt 22 ein Freiraum zwischen Gummituch-/Formzylinder 12, 2 und Druckzylinder 1 z. B. von 2 mm Abstand, wird die diffuse Blasluftströmung aufrechterhalten. Der Druckzylinder 1 führt weiterhin im Greiferschluß den Bedruckstoff an der aktivierten vorgeordneten Bogenführungseinrichtung 6 in Förderrichtung 5 vorbei.

Ist die zweite Bogenführungseinrichtung 7 dem Druck-

15

20

25

30

35

40

6

spalt 22 nachgeordnet, so wirkt diese analog zur vorgeordneten Bogenführungseinrichtung 6. Beim Auslaufen des Bedruckstoffes aus dem Druckspalt 22 wird der Bereich der Hinterkante durch die aus der Führungsfläche 10 und der Krümmung 9 austretenden Blasluftströmungen abschmierfrei geführt.

In bevorzugter Ausbildung ist zumindest die poröse Führungsfläche 10 – in einer Weiterbildung ist dabei die Krümmung 9 bzw. die Vorderwand 21 eingeschlossen – mit dem Gehäuse 11 lösbar verbunden. Dadurch sind Führungsfläche 10 und Krümmung 9 leicht von anhaftendem Papierstaub, Farbe oder sonstigen Partikeln (z. B. Puder) zu reinigen.

Bezugszeichenliste

- 1 Druckzylinder
- 2 Formzylinder
- 3 Auftragwalze
- 4 Dosiersystem
- 5 Förderrichtung
- 6 Bogenführungseinrichtung
- 7 Bogenführungseinrichtung
- 8 Drehgelenk
- 9 Krümmung
- 10 mikroporöse Führungsfläche
- 11 Gehäuse
- 12 Gummituchzylinder
- 13 Plattenzylinder
- 14 Druckwerk
- 15 erstes Lackwerk
- 16 zweites Lackwerk
- 17 Transfertrommel
- 18 Ausleger
- 19 Fördersystem
- 20 Trocknersystem
- 21 Vorderwand
- 22 Druckspalt
- 23 Kammer

Patentansprüche

- 1. Bogenführungseinrichtung in einer Druckmaschine, die im zwickelförmigen Raum eines durch Formzylinder oder Gummituchzylinder und Bogenführungszylinders gebildeten Druckspaltes achsparallel zu einem Bogenführungszylinder angeordnet sowie mit einem Pneumatiksystem für die Luftversorgung gekoppelt ist und mit einer Kammer mit Öffnungen zum Führen des Bedruckstoffes mittels Blasluft auf der zugeordneten Mantelfläche des Bogenführungszylinders, dadurch gekennzeichnet, daß die mit dem Pneumatiksystem gekoppelte Kammer (23) eine dem Bogenführungszylinder (1) benachbarte luftdurchlässige Führungsfläche (10) aus einem porösen Material aufweist und daß mittels der luftdurchlässigen, porösen Führungsfläche (10) 55 diffuse Blasluftströmungen erzeugbar sind.
- 2. Bogenführungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die luftdurchlässige, poröse Führungsfläche (10) in eine Krümmung (9) der vom Druckspalt (22) abgewandten Rückwand integriert ist. 60 3. Bogenführungseinrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet daß die luftdurchlässige po-
- dadurch gekennzeichnet, daß die luftdurchlässige, poröse Führungsfläche (10) in eine in den Druckspalt (22) ragende Vorderwand (21) integriert ist.
- 4. Bogenführungseinrichtung nach wenigstens Anspruch 1, dadurch gekennzeichnet, daß vor dem Druckspalt (23) eine erste Bogenführungseinrichtung (6) angeordnet ist und daß nach dem Druckspalt (22) eine

baugleiche zweite Bogenführungseinrichtung (7) spiegelbildlich zur ersten Bogenführungseinrichtung (6) angeordnet ist.

- 5. Bogenführungseinrichtung nach wenigstens Anspruch 1, dadurch gekennzeichnet, daß die Führungsfläche (10) der ersten Bogenführungseinrichtung (6) mit dem Bogenführungszylinder (1) in Förderrichtung (5) einen sich zum Druckspalt (22) hin verjüngenden Einlaufspalt bildet.
- 6. Bogenführungseinrichtung nach wenigstens Anspruch 1, dadurch gekennzeichnet, daß die Führungsfläche (10) der zweiten Bogenführungseinrichtung (7) mit dem Bogenführungszylinder (1) in Förderrichtung (5), ausgehend vom Druckspalt (22), einen sich erweiternden Auslaufspalt bildet.
- 7. Bogenführungseinrichtung nach wenigstens Anspruch 1, dadurch gekennzeichnet, daß die Führungsfläche (10) mit dem Gehäuse (11) lösbar verbunden ist.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 198 29 095 A1 B 41 F 25/005. Januar 2000

Sheet guide device for printing press

Publication number: DE19829095

Publication date: 2000-01-05

Inventor: LANG ERICH (DE); KEMMERER KLEMENS (DE); HAAS HANNS-OTTO (DE)

Applicant: ROLAND MAN DRUCKMASCH (DE)

Applicant: ROLAND Classification:

- international: B41F21/00; B41F25/00; B41F21/00; B41F25/00; (IPC1-7): B41F25/00; B41F21/00

- European: 841F21/00; B41F25/00
Application number: DE19981029095 19980630
Priority number(s): DE19981029095 19980630

Report a data error here

Abstract of DE19829095

The guide device (6) has at least one chamber connected to a pneumatic system, with apertures for a diffuse blowing air output. This chamber has a guide surface adjacent to the sheet guide cylinder (1) which is air permeable and is made of porous material. This guide surface may be integrated into the curvature of the rear wall facing away from the printing gap.

Data supplied from the esp@cenet database - Worldwide