Билет 8. Сила сухого трения, закон Кулона-Амонтона. Движение твердых тел в вязкой жидкости или газе.

Трение — один из видов взаимодействия тел.

Возникает при движении поверхности одного тела по поверхности другого.

Причина возникновения: трение возникает вследствие шероховатости поверхностей.

Трение подчиняется 3-му закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю противонаправленная сила действует на другое тело.

Виды трения

- 1. Трение покоя
- 2. Трение скольжения
- 3. Трение качения
- 4. Вязкое трение

Силы сухого трения — силы, возникающие при соприкосновении двух тел при отсутствии между ними жидкости или газообразной прослойки. Они направлены по касательной к соприкасающимся поверхностям.

Сила трения покоя — сила, возникающая при относительном покое между поверхностями соприкосновения тел и препятствующая началу движения.

Величина зависит от условий покоя тела

Направление — против предположительного движения

Точка приложения — поверхность тела

Сила трения покоя равна по модулю и противонаправлена силе, приложенной к телу параллельно поверхности соприкосновения его с другим телом.

Максимальное значение сила трения, при котором скольжение еще не наступает, называется максимальной силой трения покоя.

Закон Кулона-Амонтона — максимальное значение сила трения покоя прямо пропорционально модулю силы реакции опоры.

$$F_{\text{мах}} = \mu N$$
 μ -коэфициент трения покоя

Сила трения и μ не зависят от площади соприкосновения.

Сила трения скольжения — сила, возникающая между поверхностями и препятствующая скольжению.

Величина зависит от относительной скорости движения

Направление — против направления движения

Точка приложения — поверхность тела

Сила трения качения — сила, возникающая между поверхностями и препятствующая вращательному движению тел.

$$F_{\mathit{mp.\kappa aq}} = \frac{k}{R} \cdot N$$
 $R-\mathit{paduyc}$ тела , $k-\mathit{коэфициент}$ трения качения $F_{\mathit{mp.\kappa aq}} < F_{\mathit{mp.ck}}$

Во время качения колесо и поверхность деформируются. При качении АТТ по АТП $F_{mn,\kappa ay} = 0$

Сила вязкого трения — сила, возникающая между

При вязком трении нет трения покоя.

Величина зависит от формы, размеров, состояния поверхности тела, вязкости среды, относительной скорости движения тела и среды

Направление — против движения тела

Зависимость от формы

При падении тел в воздухе сила сопротивления становится пропорциональной квадрату скорости практически с самого начала.

При движении тела в жидкости или газе за ним образуется область пониженного давления. Поэтому на тело действует сила лобового сопротивления, которая зависит от формы тела. Форма капли гарантирует минимизацию силы лобового сопротивления. Из-за этого такую форму имеют ракеты, самолеты, гоночные автомобили, пули.

Рассмотрим человека, спрыгивающего с самолета.

В некоторый момент человек будет двигаться равномерно со скоростью $\,\,\,v\,\,$.

$$mg = k v^2 \Rightarrow v = \sqrt{\frac{mg}{k}}$$

Без парашюта
$$k_1 = 0.2 \frac{H \cdot c}{M^2}$$
 , с парашютом $k_1 = 2 \frac{H \cdot c}{M^2}$

Тогда
$$v_{\delta e s} = \sqrt{\frac{10 \cdot 70}{0.2}} = 59,16 \frac{M}{c}$$
 , a $v_c = \sqrt{\frac{10 \cdot 70}{2}} = 18,7 \frac{M}{c}$

При небольших скоростях движение тел шарообразной формы подчиняется закону Стокса:

$$F_{conp} = 6\pi \beta r v$$

 β — коэфициент вязкости, r — радиус v — скорость в жидкости (газе)