Lecture 2 Basic Laws & Circuit Analysis

Outline

- Terminology: Branches, Nodes, and Loops
- Kirchhoff's Laws
 - KCL
 - KVL
- Circuit Analysis
 - Nodal Analysis
 - Mesh Analysis

Terminology: Branches, Nodes, and Loops

- Branch: represents a single element;
- Node: a point of connection between two or more branches;
- Loop: Any closed path in a circuit.

Loop, Independent Loop, Mesh

- A loop is a closed path with no node passed more than once.
- A loop is <u>independent</u> if it contains at least one branch which is <u>not a</u> <u>part of any other independent loop</u>.
- A mesh is a loop that does not contain any other loop within it.

- b number of branches
- n number of nodes
- l_{ind} number of ind. loops

$$l_{ind} = b - (n-1)$$

Kirchhoff's Laws

- Kirchhoff's Current Law (KCL):
 - The algebraic sum of all the currents entering any node in a circuit equals zero.
 - Why?

Gustav Robert Kirchhoff 1824-1887

A Major Implication of KCL

 KCL tells us that all of the elements that are connected in series carry the same current.

Current entering node = Current leaving node

Generalization of KCL

- The sum of currents entering/leaving a closed surface is zero.
 - Circuit branches can be inside this surface, i.e. the surface can enclose more than one node!

This could be a big chunk of a circuit, e.g. a "black box"

Generalized KCL Examples

Notation: Node and Branch Voltages

- Use one node as the reference (the "common" or "ground" node) – label it with a symbol.
- The voltage drop from node x to the reference node is called the node voltage V_x.
- The voltage across a circuit element is defined as the difference between the node voltages at its terminals.

Kirchhoff's Voltage Law (KVL)

- The algebraic sum of all the voltages around any loop in a circuit equals zero.
- · Why?

KVL Example

Three closed paths:

Path 1:

Path 2:

Path 3:

A Major Implication of KVL

- KVL tells us that any set of elements which are connected at both ends carry the same voltage.
- We say these elements are connected in parallel.

Voltage Division

Three-terminal rheostat

Voltage Divider

Parallel Resistors/Current Division

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Summary

KCL and KVL

$$\sum_{n=1}^{N} i_n = 0$$

$$\sum_{m=1}^{M} v_m = 0$$

Circuit Analysis

- Two techniques will be presented in this part:
 - Nodal analysis, which is based on KCL
 - Used in SPICE, the internal engine of circuit simulators.
 - Mesh analysis, which is based on KVL
- The analysis will result in a set of simultaneous equations

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/http://www.ni.com/white-paper/5413/zhs/

Nodal Analysis – Three Steps

- Given a circuit with n nodes, the nodal analysis is accomplished via three steps:
 - 1. <u>Select a node as the reference (i.e., ground) node</u>. Assign the node voltages to the remaining *(n-1)* nodes. Voltages are relative to the reference node.
 - 2. Apply KCL to the *(n-1)* nodes, expressing branch current in terms of the node voltages (using the *I-V* relationships of branch elements).
 - 3. <u>Solve the resulting simultaneous equations</u> to obtain the unknown node voltages.

Nodal Analysis Example #1

Nodal Analysis: Example #2

Nodal Analysis with Voltage Sources

Case I:

Nodal Analysis: Supernode

Case II

A "floating" voltage source is one for which neither side is connected to the reference node, e.g. V_{LL} in the circuit below:

A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it.

Exercise

Find the power supplied by the voltage source.

[Source: Berkeley] Lecture 2

Mesh Analysis

 Another general procedure for analyzing circuits is to use the mesh currents as the circuit variables.

Mesh analysis uses KVL to find unknown currents.

Mesh Analysis Steps

- Mesh analysis follows these steps:
 - 1. Assign mesh currents $i_1, i_2, ... i_x$ to the x meshes
 - 2. Apply KVL to each of the *x* mesh currents.
 - 3. Solve the resulting *x* simultaneous equations to get the mesh currents.

Example

Lecture 1 26

Mesh Analysis with Current Sources

- The presence of a current source makes the mesh analysis simpler in that it reduces the number of equations.
 - If the current source is located on only one mesh, the current for that mesh is defined by the source. For example:

Supermesh

Summary

- Node Analysis
 - Node voltage is the unknown
 - Solve by KCL
 - Special case: Floating voltage source

- Mesh Analysis
 - Loop current is the unknown
 - Solve by KVL
 - Special case: Current source

DC model of a BJT

 The figure below shows the equivalent DC model for a BJT in active mode.

$$I_C = \beta I_B$$

Setting up a BJT circuit

Circuit for nodal analysis