Kx Blood Group System

Number of antigens 1

High prevalence Kx

Terminology

ISBT symbol (number) XK (019)

History Named in 1990 when the Kx antigen was assigned

system status. XK was used as the ISBT symbol

after the gene name.

Expression

Tissues Fetal liver, adult skeletal muscle, brain, pancreas,

heart, low levels in adult liver, kidney, spleen

Gene

Chromosome Xp21.1 Name XK

Organization 3 exons; sizes of introns have not been determined

Product Xk protein

Database accession numbers

GenBank NM_021083 (mRNA); Z32684 (gene)

Entrez Gene ID 7504

Molecular bases of silencing of XK (McLeod phenotype)

Homozygosity or compound heterozygosity leads to the Kx- phenotype (McLeod phenotype). Reference allele *XK*01* (Accession number

 NM_021083) encodes XK1 (Kx). Nucleotide differences from reference allele, and amino acids affected, are given.

Allele name	Exon (intron)	Nucleotide change [†]	Amino acid change	Ethnicity (prevalence)
XK*01N.01	1–3	Deletion of gene	del exons 1–3	(Rare)
XK*01N.02	1	del exon 1	del exon 1	(Rare)
XK*01N.03	1	del promoter + exon 1	del exon 1	(Rare)
XK*01N.04	2	del exon 2	del 82–170	(Rare)
XK*01N.05	3	del intron 2 & exon 3	del 170–444	(Rare)
XK*01N.06	1	-272_119del	del 1-40fs	(Rare)
XK*01N.07	1	172delG	Val58fs+Leu129X	(Rare)
XK*01N.08	2	269delA	Tyr90fs	(Rare)
XK*01N.09	2	268delT	Tyr90fs	(Rare)
XK*01N.10	2	451insC	Pro150fs	(Rare)
XK*01N.11	3	686_687delTT	Phe229fs+Pro264X	(Rare)
XK*01N.12	3	771delG	Trp257fs+Ile267X	(Rare)
XK*01N.13	3	856_860delCTCTA	Leu286fs+Lys301X	(Rare)
XK*01N.14	3	938_951del	Asn313fs+Tyr336X	(Rare)
XK*01N.15	3	1013delT	Phe338fs+Ile408X	Japanese (Rare)
XK*01N.16	1	107G>A	Trp36X	(Rare)
XK*01N.17	2	397C>T	Arg133X	(Rare)
XK*01N.18	2	463C>T	Gln155X	(Rare)
XK*01N.19	3	707G>A	Trp236X	(Rare)
XK*01N.20	3	895C>T	Gln299X	(Rare)
XK*01N.21	3	941G>A	Trp314X	(Rare)
XK*01N.22	Intron 1	IVS1+1g>c	Alternative splicing	(Rare)
XK*01N.23	Intron 1	IVS1–1g>a	Alternative splicing	(Rare)
XK*01N.24	Intron 2	IVS2+1g>a	Alternative splicing	(Rare)
XK*01N.25	Intron 2	IVS2+5g>a	Alternative splicing	(Rare)
XK*01N.26	Intron 2	IVS2-1g>a	Alternative splicing	(Rare)
XK*01N.27	3	664C>G	Arg222Gly	(Rare)
XK*01N.28	3	880T>C	Cys294Arg	(Rare)
XK*01N.29	3	979G>A	Glu327Lys	(Rare)
XK*01N.30	2	452insC	151fs	Japanese (Rare)

 $^{^{\}dagger}$ Nucleotide 1 is the first nucleotide of the translation-initiation codon, which is 82 bp downstream of the first nucleotide in earlier reports.

X

Amino acid sequence¹

Note: the amino acid residues 204 and 205 listed here are the corrected data from those that are in GenBank accession number Z32684.

MKFPASVLAS	VFLFVAETTA	ALSLSSTYRS	GGDRMWQALT	LLFSLLPCAL	50
VQLTLLFVHR	DLSRDRPLVL	LLHLLQLGPL	FRCFEVFCIY	FQSGNNEEPY	100
VSITKKRQMP	KNGLSEEIEK	EVGQAEGKLI	THRSAFSRAS	VIQAFLGSAP	150
QLTLQLYISV	MQQDVTVGRS	LLMTISLLSI	VYGALRCNIL	AIKIKYDEYE	200
VKVKPLAYVC	IFLWRSFEIA	TRVVVLVLFT	SVLKTWVVVI	ILINFFSFFL	250
YPWILFWCSG	SPFPENIEKA	LSRVGTTIVL	CFLTLLYTGI	NMFCWSAVQL	300
KIDSPDLISK	SHNWYQLLVY	YMIRFIENAI	LLLLWYLFKT	DIYMYVCAPL	350
LVLQLLIGYC	TAILFMLVFY	QFFHPCKKLF	SSSVSEGFQR	WLRCFCWACR	400
QQKPCEPIGK	EDLQSSRDRD	ETPSSSKTSP	EPGQFLNAED	LCSA	444

Carrier molecule¹

A multipass membrane protein.

In the RBC membrane, XK protein is covalently linked at Cys72 to Cys347 of the Kell glycoprotein.

$M_{\rm r}$ (SDS-PAGE)	37,000
Glycosylation	None
Cysteine residues	16
Copies per RBC	1,000

Function

Not known, but XK has structural characteristics of a membrane transport protein, and a homolog, ced-8, is involved in regulating cell death in *C. elegans*². Involved in maintenance of normal cell membrane integrity.

Disease association

Absence of XK protein is associated with acanthocytosis and the McLeod syndrome, which manifests a compensated hemolytic anemia, elevated serum creatinine kinase, and neuromuscular disorders including chorea, areflexia, skeletal muscle atrophy, and cardiomyopathy^{3,4}.

Some males with the McLeod phenotype have X-linked CGD.

Phenotypes

Null McLeod (RBCs express Kell antigens weakly)
Unusual Kx antigen has an increased expression on RBCs

that lack or have a reduced expression of Kell antigens; see tables in Kell blood group system

section

Comments

Very weak expression of Kx antigen (resembling a McLeod phenotype) together with extreme depression of Kell system antigens on the RBCs of a German proband were caused by the simultaneous presence of a single base change in the donor splice site of XK, and homozygosity for KEL*02.03 (Kp^a at the KEL locus)⁵.

References

- ¹ Ho, M., et al., 1994. Isolation of the gene for McLeod syndrome that encodes a novel membrane transport protein. Cell 77, 869–880.
- ² Stanfield, G.M., Horvitz, H.R., 2001. The ced-8 gene controls the timing of programmed cell deaths in *C. elegans*. Mol Cell 5, 423–433.
- ³ Danek, A., et al., 2001. McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol 50, 755–764.
- ⁴ Lee, S., et al., 2000. The Kell blood group system:Kell and XK membrane proteins. Semin Hematol 37, 113–121.
- ⁵ Daniels, G.L., et al., 1996. A combination of the effects of rare genotypes at the *XK* and *KEL* blood group loci results in absence of Kell system antigens from the red blood cells. Blood 88, 4045–4050.

Kx Antigen

Terminology

ISBT symbol (number) XK1 (019001 or 19.1)

Obsolete names 006015; K15

History Named in 1975 when Kx was shown to be

associated with the Kell blood group system, but controlled by a gene on the X chromosome.

X

Occurrence

All populations 100%

Expression

Cord RBCs Expressed

Altered Weak on RBCs of common Kell phenotype

Expression of Kx antigen is enhanced on RBCs with reduced expression of Kell [K_0 , K_{mod} , thiol-treated RBCs, Kp(a+b-)], even though levels of XK protein

may be reduced1

Molecular basis associated with Kx antigen

For molecular basis associated with a lack of Kx antigen, see table in System pages.

Effect of enzymes and chemicals on Kx antigen on intact RBCs

DTT 200 mM Resistant (enhanced)

In vitro characteristics of alloanti-Kx

Immunoglobulin class IgG Optimal technique IAT

Clinical significance of alloanti-Kx

Transfusion reaction Mild/delayed

Autoanti-Kx

One example reported in a man with common Kell phenotype.

Comments

Anti-Km is made by non-CGD McLeod males; both McLeod and K_0 blood will be compatible.

Anti-Kx+anti-Km (sometimes called anti-KL) is made by males with the McLeod phenotype and CGD; only McLeod blood will be compatible.

Anti-Kx has been made by one non-CGD McLeod male².

Anti-Kx can be prepared by adsorption of anti-Kx+anti-Km (anti-KL) onto, and elution from, K_0 RBCs.

<u></u>

XK is subject to X chromosome inactivation, and female carriers of alleles that encode CGD have a mixed population of normal and acanthocytic RBCs. The range has been as much as 99%, and as few as 1% McLeod RBCs.

References

- ¹ Lee, S., et al., 2000. The Kell blood group system: Kell and XK membrane proteins. Semin Hematol 37, 113–121.
- ² Russo, D.C., et al., 2000. First example of anti-Kx in a person with McLeod phenotype and without chronic granulomatous disease. Transfusion 40, 1371–1375.