Exercício Algoritmo Estruturado II –valor (2 pontos)

Aluno(a):	Data: 06/04/2021
Aluno(a):	
Professor.: Ronilson R. Pinho	
 Quantas unidades de tempo são nece abaixo? Qual a ordem de complexidade d 	ssárias para rodar o algoritmo e tempo?
inicio	
i, j: inteiro	
A: vetor inteiro de n posições i = 1 → →	
enquanto (i < n) faca	
A[i] = 0	
fimenquanto	
para i = 1 ate n faca para j = 1 ate n faca	
A[i] = A[i] + (i*i)	L※ N
Fimpara	(n-1) + n- S=n2+n-1
fimpara $N^2 + N^+$	n - 3) = 1 2
Algoritimo	
Var lista: vetor [1n] de inteiro chave, n, i, fim, pos: inteiro	
troca: boleano	
Inicio	
troca=verdadeiro fim=n-1	
pos=1	
enquanto troca=verdadeiro faça	
troca=falso > N - 1	
para i de 1 ate fim faça ∠ ✓ se v[i]>v[i+1] entao → バ-	1
chave = v[i]; -> N.	- 1
v[i]=v[i+1]; → n - 」	
v[i+1]=chave; -> ハー, pos=l; -> ハー _	1
troca=verdadeiro	n-1
fimse	
fimpara	
fim=pos-1 -> \(\gamma - \Lambda\) fim enquanto	, , , , , , , , ,
fim $\left(\frac{5(n-1)}{2(n-1)}\right)$	+3 = (5n-5)(2n-2)+3
Jon	2-10n+10n°-30+3=
2	on 2-10n-7
	Ovelen = n2

- 3) Escreva um algoritmo recursivo capaz de gerar todos os elementos do conjunto potência dado um conjunto formado por letras.
- Caso base? 2^{} = {}
- Passo da recursão:

```
2{a,b,c} = 2{b,c} \cup {a} \times 2{b,c}
```

Exemplo: $X=\{a,b,c\}$ então $2^X=\{\{\},\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}\}$

4) [Análise de Algoritmo] Analise o algoritmo abaixo, escrito em C, que recebe dois arrays, a e b, de tamanhos iguais n. Determine:

- a) O maior limite assintótico inferior para o melhor caso em função do parâmetro n.
- b) O menor limite assintótico superior para o pior caso em função do parâmetro n.
- c) As condições que o array a deve satisfazer para caracterizar o melhor caso