Real numbers and least upper bounds

Cliff Sun

April 10, 2024

Definition 0.1. Let $A \in \mathbb{R}$, then

- 1. If there is some real number b such that $\forall a \in A, \ a < b$, then we say that b is an <u>upper bound</u> of A and A is bounded above.
- 2. If $\exists b \in \mathbb{R}$, such that $b \leq a$, $\forall a \in A$, then we say that b is a <u>lower bound</u> of A and A is <u>bounded below</u>.
- 3. A is bounded if it is bounded above and below.

Axiom 0.2. Every nonempty $A \subseteq \mathbb{R}$ which is bounded above has a <u>least</u> upper bound.

Definition 0.3. A <u>Least Upper Bound</u> is defined as b' such that for all $b \in B$ where B is the set of all upperbounds, $b' \leq \overline{b}$.

The reason why this axiom is called completeness is because it tells us that the real numbers has no "holes".

Notation

We call the least upper bound of set A its supremum, or $\sup A$. Similarly, the greatest lower bound of a set A its infimum or $\inf A$.