

Engineering Mathematics

Complex Analysis

By-Rahul Sir

Lecture No. 06

Calculus of Residues

Cauchy Residue theorem

Problems based on residue and residue theorem

Calculus of Residues:

If Z=Zois a Simple Order Role

f(z)dz = 6 p(z)

[2-20) (2-22) (2-22) (2-24)

Z=7/2, Z/, 1/2 - Zn Are Simple order

Roles

= Isolated

Smogularity

N=f(z)
Ry
max/
min
No. of
cuts

Rendues - Remain der

Contentating Residue (for Simple Order Role;

 $for Z=Z_0$

If simple order are given Then

Residues Ro = Lt (z-zo) f(z)

for $Z=Z_1$ $R_1 = 1$ $R_2 = 1$ $R_3 = 1$ $R_4 = 1$ $R_$

 $Z=Z_2$ $R_2=Jt(z-Z_2)f(z)$

for any Smylle order Pole

$$R_i = \mathcal{U}_{z \to z_i}(z-z_i)f(z)$$

Smolphe order. Pole

Order

Role.

 $\operatorname{Rus}\left(f(z);z=z_{0}\right)=\frac{1}{(N-1)!}\underbrace{At}_{Z\to Z_{0}}\underbrace{d^{N-1}_{Z-Z_{0}}}^{N-1}\left(z-z_{0}\right)^{N}f(z)$ Thouse
Fole

Cauchy Residues Theorem;

Camely Integral formula Canely renderes
Theorem

f(z)dz = 2Ti[svmof residues] = 2TTi[Re+R+R2+-+Rm] Integral formula

of (z)dz = 2TTi Enhi

$$\int \frac{1-2z}{z(z-1)(z-2)} dz$$

(a)
$$\frac{1}{2}$$
, $-\frac{1}{2}$ and 1

(b)
$$\frac{1}{2}, \frac{1}{2} \text{ and } -1$$

(c)
$$\frac{1}{2}$$
, 1 and $-\frac{3}{2}$

(d)
$$\frac{1}{2}$$
, -1 and -

$$X(Z) = \frac{|-2Z|}{|z|(z-1)|z-2|}$$

$$X(Z) = \frac{1-2Z}{Z(Z-1)(Z-2)}$$

Run at
$$[f(z); z=z_0] = \lim_{z\to z} (z-z_0)f(z)$$

Rund
$$[f(z)|z=0] = It(z-0) \cdot [-2z]$$
 $|z|=0$

$$\frac{1}{2}, -1 \text{ and } -\frac{3}{2} \text{ Matrix}(z) | z = 1 = 1 + (z - 1) \cdot (1 - 2z) = -1$$

$$R : 1$$

$$Z = (z - 1)(z - 2) = -1$$

 $\overline{z(z-1)(z-2)}$ at its poles are

$$R_{2} = \frac{1}{2} \frac{1 - 2z}{z(z-1)|z-z|}$$

$$R_{1} = +\frac{1}{2} R_{2} = 1 R_{2} = -\frac{3}{2}$$

$$\frac{\int |-2z|}{|z|=3}$$

$$\oint f(z)dz = 2\pi i \left(\text{SVM of neadmen} \right)$$

$$= 2\pi i \left[\text{Ro+R+R}_{2} \right]$$

$$= 2\pi i \left[\frac{1}{2} + 1 - \frac{3}{2} \right] = 0$$

\ Im(z)

Zzok

#Q. The integral $\oint f(z)dz$ evaluated around the unit circle on the complex plane

for
$$f(z) = \frac{\cos z}{z}$$
 is

for
$$f(z) = \frac{\cos z}{z}$$
 is $f(z) = \int \frac{\cos z}{z} dz$

$$Ros\left(f(z);z=0\right) = At_{z+0}\left(z-0\right)\cdot Lsz - 1$$

(c)
$$-2\pi i$$

$$= 2\pi i \left[1\right] = 2\pi i$$

$$\oint \frac{CBZ}{(Z-D)} = \left(\frac{p(z)}{(Z-ZO)} = 2\pi i \ p(ZO)\right) \qquad \text{Canchy} \\
= 2\pi i \left[CBZ\right]_{Z=D} \qquad \text{Inlegal formula} \\
= 2\pi i$$

Real

In

#Q. Given
$$X(z) = \frac{z}{(z-a)^2}$$
 with $|z| > a$, the residue of $X(z)$ z^{n-1} at $z = a$ for $n \ge 0$ will be

(a)
$$a^{n-1}$$
 $|z| = \frac{z}{|z-a|^2}$ rusidne of $x(z)z^{n-1}$ $= \frac{z}{|z-a|^2}z^{n-1}$

Res
$$\{f(z), z=z_0\}$$
 = $\frac{1}{2}$ It $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ order fole $\frac{1}{2}$ $\frac{1}{2}$

 $\int (z) = \frac{z^n}{(z-a)^2}$ 1=2 Res $[f(z); z=a] = \frac{1}{(z-1)!} \text{ It } \frac{d}{dz^{2-1}} |z-a|^2 \cdot z^n$ I that dz zn = It dzn ztadz = It nzn-1 Zta Res [f(z);za= = nan-1

#Q. The residue of the function
$$f(z) = \frac{1}{(z+2)^2(z-2)^2}$$
 at $z = 2$ is

(a)
$$-\frac{1}{32}$$

(b)
$$-\frac{1}{16}$$

(c)
$$\frac{1}{16}$$

(d)
$$\frac{1}{32}$$

Res [f(z); z=2]
$$= \frac{1}{(2-1)!} \text{ lt } \frac{d^{2-1}}{dz^{2-1}} (z-2) \cdot \frac{1}{(z+2)^2 (z-2)^2}$$

$$= 11 \quad z_{+2} dz (z_{+2})^{2}$$

#Q. If
$$f(z) = c_0 + c_1 z^{-1}$$
, then $\oint_{unit} \frac{1+f(z)}{z} dz$ is given by

$$Res[f(z);z=0]$$

(a)
$$2\pi c_1$$

(b)
$$2\pi (1 + c_0)$$

(c)
$$2\pi jc_1$$

(d)
$$2\pi i (1+c_0)$$
 =

$$f(z) = c_0 + c_1$$

$$1 + c_0 + c_1$$

$$z$$
vmt crule

$$\frac{Z^{2}}{Z|=1}$$

$$\frac{Z+C_{0}Z+C_{1}}{(Z-0)^{2}}$$

#Q. If C denotes the counter clockwise unit circle, the value of the contour integral

$$\frac{1}{2\pi j} \oint_C Re\{z\} dz$$
 is ____.

The residues of the function $f(z) = \frac{1}{(z-4)(z+1)^3}$, are

7 38d order fale

$$Ro[f(z);z=y] = It(z-y) \cdot 1 = 1$$
 $(z-y)(z+1)^3 = 125$

$$= \int \{(z) | z = -1 \} = \int \{(z - 1) | z - 1 \} dz = \int \{(z - 1) | z - 1 \}$$

$$\frac{2^{2}-3z+2}{z^{2}-3z+2} = \frac{2^{2}-2z-z+2}{z(z-2)-1(z-2)}$$

- #Q. If C is a circle |Z| = 4 and $f(z) = \frac{z^2}{(z^2 3z + 2)^2}$, then $\oint_C f(z) dz$ is
- (a) 1
- (b) (
- (c) -1
- (d) -

$$\int \frac{Z^2}{(z-1)^2|z-2|^2} = 2\pi i \left[\text{sum of residues} \right]$$

#Q. The value of the contour integral

$$\frac{1}{2\pi j} \oint_{c} \left(z + \frac{1}{z} \right)^{2} dz$$

Evaluated over the unit circle |z| = 1 is

$$\frac{|z|=1}{-1(0)1} = \frac{\text{Res}\left(f(z);z=0\right)}{z+1}$$

$$=\frac{1}{2}$$

$$=\frac{1}{2}$$

$$=\frac{1}{2}$$

$$=\frac{1}{2}$$

$$=\frac{1}{2}$$

$$=\frac{1}{2}$$

$$=\frac{1}{2\pi i} \oint \frac{2+1}{2\pi i}$$

$$=\frac{1}{2\pi i} \underbrace{2\pi i}_{=\pi}$$

$$=\frac{1}{2\pi i} \underbrace{2\pi i}_{=\pi}$$

