Dimostrazione numero 1

Teorema di Lagrange

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che f sia continua su A e derivabile su (a,b).

Tesi

$$\exists x_0 \in (a,b) \mid f'(x_0) = \frac{f(b) - f(a)}{b - a} = m$$

dove m è il coefficiente angolare della retta passante per a e b.

Dimostrazione

Introduco una funzione ausiliaria g(x) così definita:

$$g(x) = f(x) - \left[f(a) + \frac{f(b) + f(a)}{b - a} (x - a) \right]$$

Notiamo che g ha la regolarità di f su A:

- 1. è continua su A;
- 2. derivabile su (a, b).

Notiamo anche che:

$$g(a) = f(a) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (a - a) \right]$$

= $f(a) - [f(a) + 0]$
= $f(a) - f(a) = 0$

$$g(b) = f(b) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (b - a) \right]$$

= $f(b) - [f(a) + f(b) - f(a)]$
= $f(b) - f(b) = 0$

Da cui g(a) = g(b).

Posso quindi applicare il teorema di Rolle su A:

$$\exists x_0 \in (a,b) \mid g'(x_0) = 0$$

Calcolo quindi g'(x):

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$g'(x_0) = 0$$

$$f'(x_0) - \frac{f(b) - f(a)}{b - a} = 0$$

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

 ${\rm c.v.d.}$