Примена машинског учења у статичкој верификацији софтвера

Семинарски рад у оквиру курса Методологија стручног и научног рада Математички факултет

Лазар Ранковић, Немања Мићовић, Урош Стегић lazar.rankovic@outlook.com, nmicovic@outlook.com, mi10287@alas.matf.bg.ac.rs

Абстракт

Верификација софтвера постаје све битнија дисциплина (реф). Класични приступи су добри, имају супер резултате (реф). Машинско учење постаје све популарније. Показаћемо преглед радова који примењују алгоритме машинског учења у циљу убрзања процеса верификације (реф).

Садржај

1	Uvod	2
2	Верификација софтвера	2
3	Технике статичке верификације	2
4	3	2 2 3 4
5	Одабрани проблеми статичке верификације	5
6	Неке примене техника машинског учења у статичкој верификацији 6.1 Проналажење интерполанти	7
7	Закључак	8
Li	teratura	8

1 Uvod

Увод ћемо пред крај писати.

2 Верификација софтвера

Питања се извлаче из Милениног доктората или пронаћи неки рад чисто о верификацији.

Одговара се на питања:

- Шта је верификација
- Зашто је важна
- Уопштено како се ради

По пар реченица за ове пасусе:

Динамичка верификација Ово не радимо у раду, само треба кратак опис. Није довољно прецизна (реф.)

Статичка верификација Овиме се бавимо и поента је што је она прецизна

3 Технике статичке верификације

Општа прича, које су врсте (набројати макар три :Р) и за сваки тип по један параграф. Постоје:

- Апстрактна интерпретација
- Симболичко израчунавање
- Проверавање ограничених модела (енг. Bounded model checking)

Литература: A Survey of Static Program Analysis Techniques [12] A Survey of Automated Techniques for Formal Software Verification [4] Миленин докторат (ово је још и најбоље)

4 Машинско учење

У претходним поглављима смо представили увод у статичку верификацију софтвера. Показана је важност те области и изложене су технике верификације. Овим поглављем ћемо представити област машинског учења. Описаћемо главне аспекте ове дисциплине, показаћемо њену битност и даћемо преглед важних концепата о којима ће бити више речи у поглављу 6.

4.1 Основе машинског учења

Дефиниција 1. "За програм кажемо да учи из искуства Е кроз обављање задатка Т са мером квалитета P, ако повећањем искуства Е расте мера P за обављен задатак Т."

— Tom M. Mitchell [7]

Машинско учење можемо посматрати као област рачунарства која се бави анализом алгоритама који генерализују. Са практичног аспекта, генерализација може значити уопштавање закона над датим подацима.

Машинско учење се дели на три подобласти: надгледано учење, ненадгледано учење и учење условљавањем. Подаци из којих алгоритми машинског учења уче, могу бити обележени, необележени и могу се генерисати у фази учења. Оваква природа података је основ за разликовање три наведене подобласти.[7].

Међу многим проблемима над којима су често примењивани алгоритми машинског учења, издвојићемо проблем регресије и проблем класификације. Ови проблеми су релевантни за теме којих ћемо се дотаћи у овом раду. Под проблемом класификације подразумевамо испитивање инстанце датог објекта и одређивање класе којој он припада на основу његових својстава (атрибута). Типичан пример класификације је одређивање порекла тумора (испитивање да ли је тумор малигни или бенигни) на основу његове величине. Проблем регресије представља предикцију неког параметра популације за дати објекат на основу осталих атрибута тог објекта. Као пример можемо узети предикцију цене стамбеног објекта на основу његове величине, броја соба и разних других релевантних карактеристика.

Пре примене машинског учења потребно је проучити проблем који се решава, уочити његове специфичности и припремити и анализирати податке из којих ће алгоритми учити. Након детаљне анализе, врши се одабир одговарајућег математичког модела који ће нам дати одговор на проблем који решавамо. Када смо изабрали модел, вршимо његово тренирање на инстанцама припремљених података. Тренинг радимо тако што довољан број пута пуштамо модел да решава наш проблем и меримо успешност тј. грешку коју тај модел прави. Након сваког мерења, у зависности од алгоритма који примењујемо, вршимо корекцију модела у циљу минимизације грешке.

Општи опис који смо сада представили ће у даљем тексту бити детаљније образложен. Приказаћемо конкретне алгоритме и дискутовати о њиховим својствима. Алгоритме које ћемо посматрати су од велике важности за примену у статичкој верификацији, па је с тога важно њихово потпуно разумевање. Пре него што дамо преглед тих алгоритама, покушаћемо да приближимо значај машинског учења уопштено као и његов значај у статичкој верификацији.

4.2 Значајност машинског учења

Конвенционалан начин решавања проблема у рачунарству се своди на формално дефинисање низа корака који улазне параметре трансформишу не би ли дошли до резултата. Овакав приступ је користан у ситуацијама када је потребно решити проблеме који су човеку изазовни, као што су компликоване рачунске операције, сортирање великих низова и томе слично. Поставља се питање: како написати програм који би обављао задатке које човек свакодневно лако обавља? На пример, да ли је могуће написати програм који би био у стању да препознаје објекте са фотографија?

Рачунарски вид (енг. computer vision) је дисциплина која се бави овим проблемом.[3]. Алгоритми који су примењивани пре раста популарности машинског учења нису показали значајне резултате. Могли су да генеришу једноставне геометријске моделе који нису давали

задовољавајуће резултате. Дубоке неуронске мреже су алгоритами машинског учења који су показали значајне напретке у овој области [1].

Класификација дела програма на валидна стања и она која могу резултовати грешком је од кључног значаја за ефикасност алата за верификацију [2] [5]. Конкретним проблемима и њиховим решењима ћемо се бавити у наредним поглављима.

4.3 Технике машинског учења

Оптшу слику о томе како се примењују алгоритми машинског учења смо дали у уводном делу овог поглавља. Сада ћемо видети неке конкретне алгоритме и њихове особине. Како је проблем класификације централни проблем над којиме се примењује машинско учење у статичкој верификацији, описаћемо два алгоритма који решавају тај проблем. Зарад потпуности, описаћемо и један алгоритам решавања регресионих проблема.

Линеарна регресија

Као што је речено у уводном делу, регресиони проблем представља предвиђање циљне променљиве непознате инстанце на основу осталих њених атрибута. Означимо са y_i циљну променљиву, а са $\vec{x}=(x_1,x_2,...,x_n)$ вектор атрибута које посматрамо. У примеру предикције вредности куће то могу бити број соба, квадратура куће итд. Инстанцу из скупа података онда представљамо уређеним паром (\vec{x}_i,y_i) . Модел линеарне регресије, параметризован вектором w, који описује законитост је следећи:

$$h(\vec{x}_i) = w^T \cdot \vec{x}_i \tag{1}$$

Грешка коју модел прави можемо представити погодним избором функције грешке L(w). Чест избор ове функције је средњеквадратна грешка коју модел прави над свим инстанцама из тренинг скупа.

$$L(w) = \frac{1}{N} \sum_{i=1}^{N} (h(\vec{x}_i) - y_i)^2$$
 (2)

Тренинг вршимо тако што одређеном оптимизационом техником вршимо минимизацију функције грешке по параметрима w.

Стабла одлучивања

Стабла одлучивања представљају један од основних метода класификације. Употребу стабала одлучивања оправдава њихова висока интерпретабилност [9]. У листовима стабла одлучивања се налазе вредности циљне променљиве, односно у случају класификације, класе којима инстанца може припасти. Чворови стабла представљају атрибуте по којима се врши подела. Када су ти атрибути категоричког типа, потомци датог чвора су добијени из свих могућих вредности које тај категорички атрибут може имати. У случају да је атрибут некатегоричког типа, најчешће се врши подела могућих вредности на дисјунктне интервале тако да свако дете тог чвора одговара једном од интервала. Слика 1 приказује једно могуће стабло одлучивања добијено на основу података.

Training Data Model: Decision Tree

Слика 1: Стабло одлучивања

Метода потпорних вектора

Проблем класификације можемо посматрати на следећи начин. Инстанце које класификујемо представљамо тачкама у неком високодимензионалном простору. Бинарни класификатор који тренирамо је хиперраван која дели простор на два дела, тако да се у једном делу простора нађу све инстанце које припадају једној класи, а у другом делу ће се наћи оне које припадају другој класи. Раздвајајућих хиперравни може бити више, па је зато потребно одабрати хиперраван која боље описује поделу међу подацима [8].

Маргина класификације је најмање растојање између тачака које се налазе у различитим потпросторима. Слика 2 приказује хиперравни B_1 и B_2 . Интуитивно видимо да ће прва хиперраван боље раздвојити податке. Маргина (b_11,b_12) је значајно већа од маргине (b_{21},b_{22}) и то је оно што први класификатор чини знатно бољим.

Максимизацијом маргине добијамо класификатор који боље описује поделу. Зарад конвенције, проблем максимизације сводимо на проблем минимизације, те добијамо следећи оптимизациони проблем:

$$\min_{w,w_0} \frac{\left\|w\right\|^2}{2} \tag{3}$$

Пошто смо видели основне алгоритме машинског учења, у следећем поглављу ћемо описати везу измећу статичке верификације и машинског учења. Бавићемо се проблемима статичке верификације који су погодни за решавање техникама машинског учења.

5 Одабрани проблеми статичке верификације

До сада смо видели стандардне проблеме и технике статичке верификације и машинског учења. У овом поглављу ћемо издвојити значајне проблеме верификације на које су, применама алгоритама машинског учења постигнути значајнији резултати.

Слика 2: Приказ различитих хиперравни

Статичка верификација мора бити у стању да разликује позитивна стања програма од негативних. Негативна су она која доводе програм до грешке. *Интерполантама* (енг. interpolants) називамо предикате који раздвајају позитивна од негативних стања. У статичкој верификацији се коришћењем оваквих интерполанти гради даљи доказ. Показано је да се ове интерполанте могу интерпретирати као бинарни класификатори. Проблем који се овде јавља је генерисање интерполанти, тј проналажење одговарајућег класификатора [10]. У делу 6.1 детаљније је описан приступ коришћен у [10].

Поред итерполанти, могуће је препознати нетривијална својства програма која даље резултују грешком. Грађењем класификатора нетачне инваријанте (енг. False Invariant Classifier) је могуће рангирати својства програма по томе колику вероватноћу за грешком та својства проузрокују. Одређивање нетривијалног својства датог програма је у општем случају неодлучив проблем [11][2].

Код апстрактне интерпретације је остварив баланс између прецизности изгенерисане инваријанте и скалабилности система за верификацију. Овај баланс је последица детаљне анализе апстрактног синтаксног стабла. Одабир инваријанте је тежак проблем и показано је да се може утврдити тестирањем.[10] [5].

Проблеми које смо представили овим поглављем су решена користећи одговарајуће технике машинског учења. У наредом поглављу ћемо се бавити тим решењима, даћемо увид у начине на који су та решења примењена и покушати да одговоримо на питање како наставити усавршавање тих техника.

6 Неке примене техника машинског учења у статичкој верификацији

Ово је есенција. Одабирају се проблеми из претходног поглавља и показује се како се решава. Прво иде неки уводни део, онда из литературе се покупе те технике и таксативно се наводе (принцип проблем-решење).

6.1 Проналажење интерполанти

Неформално говорећи, интерполанта представља предикат који раздваја позитивна стања програма од негативних. Примена машинског учења у проналажењу интерполанти огледа се у добијању модела који представља саму интерполанту.

Нека су A и B формуле у теорији линеарне аритметике [6].

$$\phi ::= w^{T}x + d \ge 0 \mid true \mid false \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \tag{4}$$

При чему је $\vec{w}=(w_1,...,w_n)^T\in R^n$ вектор константи у простору $R^n;$ $\vec{x}=(x_1,...,x_n)^T$ вектор променљивих из простора $R^n.$

Дефиниција 2. Интерполанта за пар формула (A, B) тако да $A \land B \equiv \bot$ је формула I која задовољава $A \Rightarrow I, I \land B \equiv \bot$ при чему формула I садржи само променљиве које се јављају у формулама A и B.

На слици 3 приказан је програмски код који ће бити корићен као илустрација. Функција непознат број пута инкрементира променљиве x и y, потом их декрементира све док променљива x не постане 0. Коначно, уколико је $y\neq 0$ онда програм одлази у стање грешке. Приметимо да је инваријанта x=y довољна да се докаже да програм никад неће доћи у стање грешке.

Слика 3: Пример кода

Претпоставимо да је ток извршавања функције foo() следећи: (1,2,3,2,4,5,4,6,7) који води у стање грешке. Поделимо ток на два скупа, A и B и пронађимо интерполанте за наведени ток.

Скуп А садржи вредности x и y које се добијају након извршавања линија 1, 2 и 3. У скупу В се налазае оне вредности x и y које би се добиле уколико би програм извршио линије 4, 5, 6 и 7 чиме би програм дошао завршно стање.

Имамо да $A \wedge B \equiv \bot$ при чему важи:

$$A \equiv x_1 = 0 \land y_1 = 0 \land if_then_else(b, \ x = x_1 \land y = y_1, \ x = x_1 + 1 \land y = y_1 + 1)$$

$$B \equiv if_then_else(x = 0, \ x_2 = x \land y_2 = y, \ x_2 = x - 1 \land y_2 = y - 1) \land x_2 = 0 \land \neg(y_2 = 0)$$

A представља скуп достижних стања док B представља скуп стања која воде у стање грешке. Интерполанта је доказ да су скупови A и B дисјунктни и изражава се користећи заједничке променљиве из скупова A и B. Затим, помоћу доказивача теорема се рачунају вредности за (x,y) које задовољавају формуле A и B [10].

Добијене вредности представљају скуп инстанци над којим се може тренирати класификациони модел (попут логистичке регресије или потпорних вектора). Позитивне инстанце представљају вредности променљивих које задовољавају формулу A и аналогно, негативне инстанце представљају вредности променљивих које задовољавају формулу B.

Слика 4: Класификација у тражењу интерполанти

Слика 4 приказује вредности променљивих (x,y) за A као плусеве (тачке (0,0) и (1,1)) и B као кружиће (тачке (1,0) и (0,1)). Приказани модел је добијен коришћењем метода потпорних вектора. Резултујуће праве одговарају једначинама:

$$e_1 : 2y = 2x + 1$$

 $e_2 : 2y = 2x - 1$

Интерполанта која се одавде може извести је

$$2y \le 2x + 1 \ \land 2y \ge 2x - 1$$

Овај предикат представља инваријанту чијим доказивањем се показује да програм не може доћи у стање грешке. Једноставнија интерполанта x=y се може добити транислирањем добијених правих што ближе позитивним истанцама, докле год се одржава сепарабилност позитивних и негативних инстанци.

Dodati zakljucak za metod i tabelu sa rezultatima.

7 Закључак

Овде машти на вољу.. :)

Литература

- [1] Deep image: Scaling up image recognition. CoRR, abs/1501.02876, 2015. Withdrawn.
- [2] Yuriy Brun. Finding latent code errors via machine learning over program executions, 2004.
- [3] Christopher M. Brown Dana H. Ballard. Computer vision. Prenice-Hall, Inc., 1982.
- [4] Vijay D'Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated techniques for formal software verification. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)*, 27(7):1165–1178, July 2008.
- [5] Siddharth Krishna, Christian Puhrsch, and Thomas Wies. Learning invariants using decision trees. CoRR, abs/1501.04725, 2015.
- [6] Daniel Kroening and Ofer Strichman. Linear Arithmetic, pages 111–147. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
- [7] Tom M. Mitchell. Machine Learning, volume 1. McGraw Hill, 1997.
- [8] John Shawe-Taylor Nello Christianini. An introduction to support vector machines, volume 1. Cambridge university press, 2000.
- [9] David Landgrebe S. Rasoul Safavian. A survey of decision tree classifier methodology, 1991.
- [10] Rahul Sharma, Aditya V. Nori, and Alex Aiken. Interpolants as classifiers.
- [11] Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.
- [12] Wolfgang Wögerer and Technische Universität Wien. A survey of static program analysis techniques, 2005.