Evolution de la population d'Homo Néanderthal

Y. Adimy M. Simon H. Vassal

INSA Lyon - Bioinformatique et Modélisation

13 Juin 2016

- Introduction
- Cadre général
- Croissance logistique
 - Présentation du modèle
 - Analyse mathématique
 - Simulations numériques
- Effet Allee
 - Présentation du modèle
 - Analyse mathématique
 - Simulations numériques
- Système de Lotka-Volterra
 - Présentation du modèle
 - Analyse mathématique

 - Simulations numériques
- Conclusion

Introduction

Introduction

Contexte biologique

??? peut-être pas besoin de slide... le slide avec le titre intro peut suffire

Cadre général

Cadre général

Modèle général

$$\frac{\partial u(t,x)}{\partial t} = f(u(t,x)) + d\Delta u(t,x), \quad t \in \mathbb{R}, x \in \mathbb{R}$$
 (1)

u(t,x) : Densité de population $\in [0,1]$

d : Constante de diffusion

Croissance logistique

Présentation du modèle

Croissance Logistique

$$\frac{\partial u(t,x)}{\partial t} = f(u(t,x)) + d\Delta u(t,x)$$
$$f(u(t,x)) = \alpha u(1 - \frac{u}{K})$$

K : Capacité de transport

 α : Taux de croissance maximum

Analyse mathématique

- Équilibres : u = 0 et u = K
- MONOSTABLE
- Vitesse minimale $c_0 = 2\sqrt{\alpha}$

Propagation 1D

FIGURE: Propagation du front d'onde en 1D avec une petite perturbation initiale

Propagation 2D

FIGURE: Propagation du front d'onde en 2D

Propagation 2D vu de haut

Propagation de l'onde avec une croissance logistique K =0.5, α =0.5, u_{α} =0.5 et d =0.5

FIGURE: Propagation du front d'onde en 2D

Effet d'une barrière géographique franchissable

FIGURE: Diffusion 2D de la population face à une montagne

Effet d'une barrière géographique franchissable

FIGURE: Diffusion 2D de la population face à une montagne

Effet d'une barrière géographique infranchissable

FIGURE: Diffusion 2D

Effet d'une barrière géographique infranchissable

FIGURE: Diffusion 2D

Effet Allee

Présentation du modèle

Modèle Allee

$$\frac{\partial u(t,x)}{\partial t} = f(u(t,x)) + d\Delta u(t,x)$$
$$f(u(t,x)) = ku(1-u)(u-A)$$

k : Taux de croissance normalisé constant

A: Densité critique

$$k=\frac{4}{(1-A)^2}$$

Analyse mathématique

- Équilibres : u = 0, u = A et u = 1
- BISTABLE
- 2 scénarios selon la valeur de A :
 - *A* < 0.5 : *c* > 0 → "1 envahit 0"
 - A > 0.5 : $c < 0 \rightarrow$ "0 envahit 1"

$$d = 0.5, A = 0.25(k = 64), u_0 = 0.1$$

$$d = 0.5, A = 0.25(k = 64), u_0 = 0.5$$

$$d = 0.5, A = 0.75(k = 7.1), u_0 = 0.5$$

$$d = 0.5, A = 0.75(k = 7.1), u_0 = 0.9$$

$$d = 0.5, A = 0.5(k = 16), u_0 = 0.1$$

$$d = 0.5, A = 0.5(k = 16), u_0 = 0.9$$

Système de Lotka-Volterra

Présentation du modèle

Modèle de compétition

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = f(u,v) + d_1 \Delta u \\ \frac{\partial v(t,x)}{\partial t} = g(u,v) + d_2 \Delta v \end{cases}$$
$$f(u,v) = \alpha_1 u \left(1 - \frac{u}{K_1} - \gamma_1 \frac{v}{K_1} \right), g(u,v) = \alpha_2 v \left(1 - \frac{v}{K_2} - \gamma_2 \frac{u}{K_2} \right)$$

u(t,x) : Densité de population des Hommes Modernes

v(t,x) : Densité de population des Hommes de Néanderthal

 K_1 et K_2 : Capacités d'accueil du milieu

 γ_1 et γ_2 : Coefficients de compétition

 α_1 et α_2 : Taux de croissance

Analyse mathématique

- On prend $\gamma_1 < \frac{K_1}{K_2}$ et $\gamma_2 > \frac{K_2}{K_1}$
- Trois équilibres (0,0), (0, K₂), (K₁,0).
- En posant $\alpha = \alpha_1 = \alpha_2$, $K = K_1 = K_2$, $D = d_1 = d_2$ et $\gamma_1 + \gamma_2 = 2$: existence de fronts d'ondes reliant 0 et K.
- $c_{min} = 2\sqrt{\alpha D(1-\gamma_1)}$

Front d'ondes

FIGURE: Evolution des fronts d'onde au cours du temps

Diffusion 1D

FIGURE: Diffusion 1D

Conclusion

