

BFS Capstone Project

SUBMISSION

Submitted By:

- l. Aakanksha Maurya
- 2. Snehalakshmi Balasubramanian
- 3. Udaya Prakash ST

CredX, a leading credit card provider wants to minimize credit loss by acquiring the 'right' customers

Current State

- •The acquisition team of CredX is responsible for identifying the right prospects to target and provide suitable product(s)
- In the past few years, CredX has experienced an increase in Credit Loss
- •CredX wants to determine the factors affecting credit risk,and create strategies to mitigate the risk and assess the financial benefit of the risk model.

Questions:

- 1. What are the key factors that impact credit risk?
- 2. What are the steps to be taken to mitigate credit risk
- 3. How demographic attributes of a customer impact credit risk?

Data Available

- Demographics/Application Data: provided by the applicants at the time of credit card application. It contains customer-level information on age, gender, income, marital status, etc.
- Credit bureau: Taken from the credit bureau and contains variables such as 'number of times 30 DPD or worse in last 3/6/12 months', 'outstanding balance', 'number of trades', etc.

Desired Future State

CredX acquires the right customer base using the risk model, leading to overall decrease in credit loss

Executive Summary

Actions

- 1. Identify the top variables impacting the likelihood of default?
- Build an application scorecard to identify the likely defaulters at applications stage using predictive models
- 3. Estimate the potential financial benefits of using the models for auto approval of credit cards

Insights & Recommendations

- 1. Predictive modelling should be used for auto approval of applicants
 - Credit loss can be reduced from 4.4% to 1.65%. (2.75% saved)
 - A revenue loss of 36% might occur if the model is used for auto approval
- 2. Significant variables from logistic regression model indicate the behavior of defaulting customers is indicated by recent interactions with bank

High level process flow

Detailed analytical process flow

Data understanding and preparation

- Understand different attributes of customer and demographics data
- Remove duplicates
- Perform univariate and multivariate analysis
- Outlier treatment
- Null Value treatment

IV and WOE analysis

- Bin/Bucket continuous variables
- Compute WOE and IV
- Label the predictive power of variables using the IV values

Model Building
And Evaluation

- Build simplistic logistic regression model
- Compute model evaluation metrics
- Build Decision trees/Random forests if logistic regression model evaluation results are not satisfactory
- Evaluate model metrics of Decision trees/Random forests.

Application Score card and Financial Benefits assessment

- Build application score card by comparing the predicted scores of approved and rejected customers
- Find optimum rejection score eliminating maximum rejected applicants
- Assess financial benefit of the model assessing revenue and credit loss

Data understanding and preparation

Data Sources	Short Description	Primary Key
Demographics data	Obtained from the information provided by the applicants at the time of credit card application. It contains customer-level information on age, gender, income, marital status, etc.	ApplicationID
Credit Bureau	Taken from the credit bureau and contains variables such as 'number of times 30 DPD or worse in last 3/6/12 months', 'outstanding balance', 'number of trades', etc.	ApplicationID

Demographic(Columns)				
Application ID				
Age				
Gender				
Marital Status (at the time of application)				
No of dependents				
Income				
Education				
Profession				
Type of residence				
No of months in current residence				
No of months in current company				
Performance Tag				

redit Bureau(Columns)
oplication ID
o of times 90 DPD or worse in last 6 months
o of times 60 DPD or worse in last 6 months
o of times 30 DPD or worse in last 6 months
o of times 90 DPD or worse in last 12 months
o of times 60 DPD or worse in last 12 months
o of times 30 DPD or worse in last 12 months
vgas CC Utilization in last 12 months
o of trades opened in last 6 months
o of trades opened in last 12 months
o of PL trades opened in last 6 months
o of PL trades opened in last 12 months
o of Inquiries in last 6 months (excluding home auto loans)
o of Inquiries in last 12 months (excluding ome & auto loans)
resence of open home loan
utstanding Balance
otal No of Trades
resence of open auto loan
erformance Tag

Data cleaning involved deduplication and removing NA and blank values across the UpGrad dataset

- There are 3 identical duplicate application IDs in both the datasets (765011468, 653287861, 671989187). Since they are less than 10% of records, they are discarded. Post that the datasets are merged.
- 2. There are 3031 Missing values in the dataset.
- 3. Following are the columns having NA values:
 - No of dependents 3
 - Performance tag 1425 (Indicates rejection)
 - Average credit card utilization in last 6 Months 1058
 - No of trades opened in last 6 months 1
 - Presence of open home loan 272
 - Outstanding balance 272
- Rule Defined(If missing NA values less than 10% of observations, discard the data).
- Both files have a Synonym field "Performance Tag". Hence we can use only one column

Weight Of Evidence and IV analysis - Process Flow

Weight Of Evidence and IV analysis suggest that demographic variables hold very little predictive power

Variables	Demographics/CreditBureau?	Information Value Predictive Power
1No.of.Inquiries.in.last.12.monthsexcluding.homeauto.loans.	Credit Bureau	0.35 Highly Predictive
² No.of.trades.opened.in.last.12.months	Credit Bureau	0.33 Highly Predictive
³ Avgas.CC.Utilization.in.last.12.months_bucket	Credit Bureau	0.32 Highly Predictive
4No. of . PL. trades. opened. in. last. 12. months	Credit Bureau	0.30 Highly Predictive
5Outstanding.Balance_bucket	Credit Bureau	0.26Highly Predictive
6No.of.times.30.DPD.or.worse.in.last.6.months	Credit Bureau	0.24Highly Predictive
⁷ Total.No.of.Trades_bucket	Credit Bureau	0.23 Highly Predictive
8No.of.PL.trades.opened.in.last.6.months	Credit Bureau	0.22 Highly Predictive
⁹ No.of.times.30.DPD.or.worse.in.last.12.months	Credit Bureau	0.22 Highly Predictive
10No.of.times.90.DPD.or.worse.in.last.12.months	Credit Bureau	0.22 Highly Predictive
11No.of.times.60.DPD.or.worse.in.last.6.months	Credit Bureau	0.21 Highly Predictive
12No.of.Inquiries.in.last.6.monthsexcluding.homeauto.loans.	Credit Bureau	0.21 Highly Predictive
13 No. of . trades . opened. in. last . 6. months	Credit Bureau	0.20 Highly Predictive
14No.of.times.60.DPD.or.worse.in.last.12.months	Credit Bureau	0.20Highly Predictive
L5No.of.times.90.DPD.or.worse.in.last.6.months	Credit Bureau	0.16Highly Predictive
16Income_bucket	Demographics	0.04Somewhat Predictiv
17No.of.months.in.current.company_bucket	Demographics	0.02Not Predictive
18 Presence. of . open. home. loan	Credit Bureau	0.02Not Predictive
19Profession	Demographics	0.02Not Predictive
²⁰ No.of.months.in.current.residence_bucket	Demographics	0.01Not Predictive
21Type.of.residence	Demographics	0.01Not Predictive
²² Marital. Statusat. the. time. of. application.	Demographics	0.01Not Predictive
23age_bucket	Demographics	0.00Not Predictive
24 No. of. dependents	Demographics	0.00Not Predictive
25Gender	Demographics	0.00Not Predictive
26Presence.of.open.auto.loan	Credit Bureau	0.00Not Predictive
27 Education	Demographics	0.00Not Predictive

EDA plots – I Demographic attributes - Default rate do not vary much across Gender , Marital Status, No of dependents and Education

EDA plots – I Demographic attributes: Default rate do not vary much across Age income and number of months in current company and residence

0 -

EDA plots – II Credit Bureau: Higher the number of times 30,60,90 DPD in last 6 months, higher the risk of defaults

10000 -

0.09

0.11

No.of.times.90.DPD.or.worse.in.last.6.months

No.of.times.60.DPD.or.worse.in.last.6.months

0.10

0.09

0.08

Avg Credit Utilisation in last 6 months

EDA plots – II Credit Bureau: Higher the outstanding balance higher the risk of default

Model developed using only the demographic attributes have very low accuracy, sensitivity and specificity.

- I. Sample imbalance problem was observed as number of defaulters in the dataset is low.
- II. Model was built using both unbalanced and smote sampled data.
- III. Maximum accuracy achieved is 51%

Sample Selected	Accuracy	Sensitivity	Specificity
Unbalanced Sample	51.0%	61.8%	50.5%
Smote Sample	50.0%	49.1%	50.1%

Final model was developed using both the demographics and credit bureau data

- I. Sample imbalance problem was observed as number of defaulters in the dataset is low.
- II. Model was built using both unbalanced and smote sampled data.
- III. Both logistic and random forest models were created and optimized for maximum accuracy
- IV. Even though accuracy and sensitivity are the best for Random forest, specificity is less than
 - 1 %. Therefore Logistic Regression Model is chosen to be the final model

Model Type	Sample Selected	Accuracy	Sensitivity	Specificity
Logistic Regression	Unbalanced Sample	63%	61%	63%
Random Forest	Unbalanced Sample	95.8%	100.0%	0.1%
Random Forest	Smote Sample	95.30%	99.48%	0.45%

Significant variables from logistic regression model indicate the behavior of defaulting customers is indicated by recent interactions with bank

Significant variables

No.of.times.30.DPD.or.worse.in.last.6.months

No.of.Inquiries.in.last.6.months..excluding.home...auto.loans.

No.of.Inquiries.in.last.12.months..excluding.home...auto.loans.

Total.No.of.Trades

Avgas.CC.Utilization.in.last.12.months

Outstanding Balance

Income

No.of.months.in.current.residence_bucket

age

Education(Others)

Logistic Regression model identifies 76% of the defaulters in top 3 deciles of the population

bucket	total	Defaulters	Cumulative Defaulters	Gain	Cumlift
1	7,102	7,102	7,102	25.59	2.56
2	7,101	7,101	14,203	51.18	2.56
3	7,101	7,101	21,304	76.77	2.56
4	7,102	6,447	27,751	100.00	2.50
5	7,101	0	27,751	100.00	2.00
6	7,101	0	27,751	100.00	1.67
7	7,102	0	27,751	100.00	1.43
8	7,101	0	27,751	100.00	1.25
9	7,101	0	27,751	100.00	1.11
10	7,101	0	27,751	100.00	1.00

Score card is developed based on probability scores of all the observations(Approved and Rejected)

Score card calculation:

- Points to double the odds = 20, Base Score=400 & odds = 10
- Score = Offset + { Factor* log(Odds) }

where

```
Factor = 20/log(2) = 28.8539

Offset = 400 - (28.8539*log(10)) = 333.5614

log(odds) = log(odds(good)) = log(probability(0)/probability(1))
```

A cut off score will be defined above below which the applicants would be rejected.

Score varies between 352 and 465 and average score of 'rejected' population is very UpGrad low as compared to average score of approved population

- Cut off is defined at 405, Model predicts 77.12% of the rejected population correctly based on cutoff score
- Rejected by Bank: **1425**, Identified correctly by Model at cutoff **1099**

A credit loss of 2.75% can be saved if the model is used for auto approval of applications

Credit Loss is the loss occurred from bad customers.

Credit Loss with no model in place: **4.4%** (2939/66649)

Credit Loss with model in place: 1.65%

Credit Loss Saved: 2.75%

A revenue loss of 36% might occur if the model is used for auto approval

Revenue loss is the loss incurred by wrongly identified "bad" to the good customers.

Revenue with no model: 100%

Revenue Loss: 36%

Revenue with model: 64%

