Matemática Finita / Discreta

Exercícios Resolvidos 2 - Teorema Fundamental da Aritmética, Indução, Representação de inteiros

1. Seja $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ o coeficiente binomial, para $n \ge k \ge 0$ [Por convenção, 0! = 0]. Mostre que, se $k \mid n$, então $\frac{n}{k} \mid \binom{n}{k}$.

Resolução: Uma vez que $k \mid n, \frac{n}{k} = a \in \mathbb{N}$, ou seja n = ak. Vamos usar a seguinte propriedade dos factoriais: $n! = n \cdot (n-1)!$. Podemos então desenvolver:

$$\binom{n}{k} = \binom{ak}{k} = \frac{(ak)!}{k! (ak - k)!} = \frac{ak \cdot (ak - 1)!}{k(k - 1)! (ak - k)!} =$$
$$= a \frac{(ak - 1)!}{(k - 1)! (ak - k)!} = a \binom{ak - 1}{k - 1}$$

Logo $\binom{n}{k}$ é múltiplo de a ou seja, $a = \frac{n}{k} \mid \binom{n}{k}$, como pretendido.

2. Seja $n \in \mathbb{N}$. Mostre que \sqrt{n} ou é um número natural ou é um número irracional. Por outras palavras, se \sqrt{n} é racional, então tem que ser natural.

Resolução: Vamos supor que \sqrt{n} é um número racional, e portanto podemos escrevê-lo na forma:

$$\sqrt{n} = \frac{a}{b} = \frac{p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}}{q_1^{l_1} q_2^{l_2} \cdots q_s^{l_s}}$$

onde usamos factorizações em primos distintos $a, b \in \mathbb{N}$, e podemos assumir que $\frac{a}{b}$ é uma fracção irredutível, ou seja, não há primos coincidentes em a e em b. Assim,

$$q_1^{2l_1}q_2^{2l_2}\cdots q_s^{2l_s}\cdot n=p_1^{2k_1}p_2^{2k_2}\cdots p_r^{2k_r}.$$

Isto significa que $q_i \mid q_1^{2l_1}q_2^{2l_2}\cdots q_s^{2l_s}$, o que implica $q_i \mid q_1^{2l_1}q_2^{2l_2}\cdots q_s^{2l_s}\cdot n=p_1^{2k_1}p_2^{2k_2}\cdots p_r^{2k_r}$, para qualquer $i=1,\cdots,r$. Mas isto é uma contradição pois os únicos divisores de $p_1^{2k_1}p_2^{2k_2}\cdots p_r^{2k_r}$ são produtos de potências dos p_j 's e o q_i não é nenhum deles. Esta contradição mostra que b não é divisível por nenhum primo, pelo que b=1, ou seja:

$$n = p_1^{2k_1} p_2^{2k_2} \cdots p_r^{2k_r}$$

o que mostra que $\sqrt{n}=a=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$ é um natural.

3. Seja $\frac{a}{b}$ uma fracção irredutível, $a, b \in \mathbb{N}$ com $b = 2^c 5^d$, com $c, d \in \mathbb{N}_0$. Mostre que, na representação decimal, $\frac{a}{b}$ é uma dízima finita.

1

Resolução: Podemos escrever

$$\frac{a}{b} = \frac{p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}}{2^c 5^d},$$

e (uma vez que a fracção é irredutível) nenhum dos p_i é 2 ou 5. Temos que $\frac{1}{2} = 0, 5$ e $\frac{1}{5} = 0, 2$. Como $\frac{a}{b}$ é obtido por multiplicação de um natural por vários $\frac{1}{2}$'s e vários $\frac{1}{5}$'s, e a multiplicação de dízimas finitas é uma dízima finita, concluímos que $\frac{a}{b}$ é uma dízima finita.

4. Represente 379 na forma hexadecimal (base m=16, com os símbolos A a F, representando os naturais de 10 a 15, respectivamente) e na base 7.

Resolução: Usa-se sucessivamente a divisão inteira pela base; sendo m=16 temos:

$$379 = 23 \cdot 16 + 11 = (1 \cdot 16 + 7) \cdot 16 + 11 = 16^2 + 7 \cdot 16 + 11,$$

logo $379 = [17B]_{16}$. Na base m = 7 temos:

$$379 = 54 \cdot 7 + 1 = (7 \cdot 7 + 5) \cdot 7 + 1 = 7^3 + 5 \cdot 7 + 1,$$

 $\log 379 = [1051]_7.$

5. Seja $[a_k a_{k-1} \cdots a_1 a_0]_b$ a representação, na base b, do número $b^n - 1$, onde $n \in \mathbb{N}$. Mostre que todos os algarismos a_j são iguais a b - 1.

Resolução: O polinómio $x^n - 1$ tem a raíz x = 1, pelo que $x^n - 1$ é sempre divisível por x - 1 (como polinómios). Assim, temos:

$$b^{n} - 1 = (b-1)(b^{n-1} + b^{n-2} + \dots + b^{1} + b^{0}) =$$

= $(b-1)b^{n-1} + (b-1)b^{n-2} + \dots + (b-1)b + (b-1).$

Como a representação em base b é única, e b-1 é um algarismo nesta base, vemos que $[b^n-1]_b = [(b-1)(b-1)\cdots(b-1)]_b$ como pretendido. Mostrámos, além disso que k=n-1.

6. Seja $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ o coeficiente binomial, para $n \ge k \ge 0$ [Por convenção, assumimos que, para outros valores inteiros de n e k, $\binom{n}{k} = 0$]. Mostre, por indução, que

$$\binom{n}{k} = \sum_{j=0}^{n-1} \binom{j}{k-1}.$$

Resolução: Vamos fixar um $k \in \mathbb{N}$. Seja P(n,k) a equação acima, que se pretende mostrar. Seja n = k. Então, a equação fica $\binom{n}{n} = \sum_{j=0}^{n-1} \binom{j}{n-1} = 0 + \cdots + 0 + \binom{n-1}{n-1}$, (são n-1 parcelas nulas, quando j < n-1) que equivale a 1 = 1 (pois 0! = 1). Assim, mostrámos o passo base da indução.

2

Assumimos agora que a fórmula é válida para $n \geq k$. Temos então:

$$\binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!} = \frac{(n+1)\,n!}{k!(n+1-k)!} = \frac{(n+1-k)n! + k\,n!}{k!(n+1-k)!} =$$

$$= \frac{(n+1-k)n!}{k!(n+1-k)!} + \frac{k\,n!}{k!(n+1-k)!} =$$

$$= \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n+1-k)!} =$$

$$= \binom{n}{k} + \binom{n}{k-1} = \left[\sum_{j=0}^{n-1} \binom{j}{k-1}\right] + \binom{n}{k-1} =$$

$$= \sum_{j=0}^{n} \binom{j}{k-1},$$

onde a hipótese de indução foi usada na igualdade da penúltima linha.

7. Seja n um natural e sejam b_1, \dots, b_n números reais positivos. Mostre, por indução, que a sua *média aritmética* é superior ou igual á sua *média geométrica*, isto é:

$$\frac{b_1 + \dots + b_n}{n} \ge (b_1 \dots b_n)^{\frac{1}{n}}.$$

Resolução: Para n=1 temos um número real $b=b_1$. A desigualdade fica, $\frac{b}{1} \geq (b)^1$ que é verdadeira. Assumimos agora que a desigualdade acima é válida para quaisquer b_1, \dots, b_n reais positivos.

Consideremos então a_1, \dots, a_{n+1} reais positivos arbitrários. Seja $A := (a_1 \dots a_{n+1})^{\frac{1}{n+1}}$, ou seja $A^{n+1} = a_1 \dots a_{n+1}$. Assim, existe pelo menos um par de índices distintos, $i, j \in [n+1] = \{1, \dots, n+1\}$ tais que $a_i \geq A \geq a_j > 0$. Sem perda de generalidade, podemos assumir que esses índices são $n \in n+1$, ou seja, $a_n \geq A \geq a_{n+1} > 0$. Isto significa que

$$0 \ge \frac{1}{A}(a_n - A)(a_{n+1} - A) = \frac{a_n a_{n+1}}{A} + A - (a_n + a_{n+1}) \tag{1}$$

Seja $b_1 := a_1,..., b_{n-1} := a_{n-1}$, mas agora $b_n := \frac{a_n a_{n+1}}{A}$. Então, usando a equação (1) na segunda linha:

$$a_{1} + \dots + a_{n+1} = a_{1} + \dots + a_{n-1} + a_{n} + a_{n+1} \ge$$

$$\ge a_{1} + \dots + a_{n-1} + \frac{a_{n}a_{n+1}}{A} + A =$$

$$= b_{1} + \dots + b_{n} + A \ge n(b_{1} \dots b_{n})^{\frac{1}{n}} + A =$$

$$= n(a_{1} \dots a_{n-1} \frac{a_{n}a_{n+1}}{A})^{\frac{1}{n}} + A = n(A^{n+1} \frac{1}{A})^{\frac{1}{n}} + A =$$

$$= nA + A = (n+1)A = (n+1)(a_{1} \dots a_{n+1})^{\frac{1}{n+1}}$$

como queriamos provar (o passo de indução é usado na terceira linha).

8. Considere a seguinte afirmação, evidentemente falsa, em geral:

$$P(n): \sum_{k=0}^{n} k = \frac{n^2 + n + 1}{2}.$$

Vamos assumir que a proposição é válida para um dado natural n. Então

$$\sum_{k=0}^{n+1} k = (n+1) + \sum_{k=0}^{n} k = n+1 + \frac{n^2+n+1}{2} = \frac{n^2+3n+3}{2} = \frac{(n+1)^2+(n+1)+1}{2},$$

que é a afirmação P(n+1). Uma vez que o princípio de indução foi correctamente aplicado, porque é que P(n) não é verdadeira para todo o natural n?

Resolução: Porque não começámos a indução num certo $P(n_0)$ que fosse verdadeiro. De facto, por exemplo P(1) significaria que $\sum_{k=0}^{1} k = 0 + 1 = \frac{1^2+1+1}{2} = \frac{3}{2}$, o que é falso. Da mesma forma, P(2) é falsa, etc, pelo que não conseguimos encontrar o natural n_0 a partir do qual podemos aplicar a indução.