Teorija brojeva

Filip Najman

3 predavanje

22.3.2021.

Digresija u algebrarske strukture

Grupa je skupG skupa s binarnom operacijom $+:G\times G\to G$ takvom da je

- 1. + asocijativno
- 2. postoji neutralni element $e \in G$ takav da je

$$e + x = x + e = x$$
, $\forall x \in G$

3. $\forall x \in G$ postoji $y \in G$ takav da je x + y = y + x = e.

Primjeri: $(\mathbb{Z}, +)$, svaki vektorski prostoj je s opercaijom zbrajanja grupa.

Klase ekivalencije ostataka modulo m možemo zbrajati na očiti način i tako definirana struktura će biti grupa.

Zadnji put smo radili:

Teorem

Neka su a i m prirodni, te b cijeli broj. Kongruencija ax \equiv b (mod m) ima rješenja ako i samo ako d = (a, m) dijeli b. Ako je ovaj uvjet zadovoljen, onda gornja kongruencija ima točno d rješenja modulo m.

Iz prethodnog Teorema slijedi da ako je p prost broj i a nije djeljiv s p, onda kongruencija $ax \equiv b \pmod{p}$ uvijek ima rješenje i to rješenje je jedinstveno.

Kako riješiti jednadžbu $ax \equiv b \pmod{m}$, gdje je (a, m) = 1? Budući da je (a, m) = 1, postoje brojevi $u, v \in \mathbb{Z}$ takvi da je au + mv = 1 i u, v se mogu naći pomoću Euklidovog algoritma.

Sada je $au \equiv 1 \pmod m$, pa je $a(ub) \equiv b \pmod m$, tj. $x \equiv ub \pmod m$ je rješenje.

Zadatak: Nadite rješenje od $13x \equiv 8 \pmod{17}$.

Teorem (Kineski teorem o ostatcima)

Neka su m_1, m_2, \ldots, m_r u parovima relativno prosti prirodni brojevi, te neka su a_1, a_2, \ldots, a_r cijeli brojevi. Tada sustav kongruencija

$$x \equiv a_1 \pmod{m_1}, \quad x \equiv a_2 \pmod{m_2}, \quad \dots, \quad x \equiv a_r \pmod{m_r}$$

$$(1)$$
 $ima\ rješenja.\ Ako\ je\ x_0\ jedno\ rješenje,\ onda\ su\ sva\ rješenja\ od\ (1)$
 $dana\ sa\ x \equiv x_0 \pmod{m_1m_2\cdots m_r}.$

Dokaz: Neka je $m=m_1m_2\cdots m_r$, te neka je $n_j=\frac{m}{m_j}$ za $j=1,\ldots,r$.

Tada je $(m_j, n_j) = 1$, pa postoji cijeli broj x_j takav da je $n_j x_j \equiv a_j \pmod{m_i}$.

Promotrimo broj

$$x_0 = n_1 x_1 + \cdots + n_r x_r.$$

Za njega vrijedi: $x_0 \equiv 0 + \cdots + 0 + n_j x_j + 0 + \cdots + 0 \equiv a_j \pmod{m_i}$.

Prema tome, x_0 je rješenje od (1).

Ako su sada x, y dva rješenja od (1), onda je $x \equiv y \pmod{m_j}$ tj. m_j dijeli x - y, za j = 1, ..., r, pa jer su m_j u parovima relativno prosti, dobivamo da je $x \equiv y \pmod{m}$.

Zadatak: Nađite rješenje od

$$x \equiv 3 \pmod{5}$$
, $x \equiv 2 \pmod{3}$, $x \equiv 11 \pmod{14}$.

Definicija

Reducirani sustav ostataka modulo m je skup cijelih brojeva r_i sa svojstvom da je $(r_i, m) = 1$, $r_i \not\equiv r_j \pmod{m}$ za $i \not= j$, te da za svaki cijeli broj x takav da je (x, m) = 1 postoji r_i takav da je $x \equiv r_i \pmod{m}$.

Jedan reducirani sustav ostataka modulo m je skup svih brojeva $a \in \{1, 2, ..., m\}$ takvih da je (a, m) = 1.

Jasno je da svi reducirani sustavi ostataka modulo m imaju isti broj elemenata. Taj broj označavamo s $\varphi(m)$, a funkciju φ zovemo Eulerova funkcija.

Drugim riječima, $\varphi(m)$ je broj brojeva u nizu 1, 2, ..., m koji su relativno prosti sa m.

Zadatak: Reducirani sustav ostataka modulo *m* s operacijom "množenje modulo *m*" čini grupu.

Teorem

Neka je $\{r_1,\ldots,r_{\varphi(m)}\}$ reducirani sustav ostataka modulo m, te neka je (a,m)=1. Tada je $\{ar_1,\ldots,ar_{\varphi(m)}\}$ također reducirani sustav ostataka modulo m.

Dokaz: Primjetimo da ako je $(r_i, m) = 1$ i (a, m) = 1, tada je $(ar_i, m) = 1$.

Također imamo da ako je $ar_i \equiv ar_j \pmod{m}$ tada je $r_i \equiv r_j \pmod{m}$.

Dakle $\{ar_1,\ldots,ar_{\varphi(m)}\}$ i $\{r_1,\ldots,r_{\varphi(m)}\}$ imaju isti broje elemenata i svi elementi u prvom skupu su relativno prosti s m.

Ovo pak povlači da skup ostataka $\{0, 1, \dots, p-1\}$ pri dijeljenju sa

što je $\{0, 1, \ldots, p-1\}$ s operacijom zbrajanja modulo p grupa, da

- je $\{1, \ldots p-1\}$ s operacijom množenja modulo p također grupa.

To polje se obično označava sa $\mathbb{Z}/p\mathbb{Z}$ ili \mathbb{F}_p .

- p, uz zbrajanje i množenje (mod p), čini polje, što znači da je osim

Teorem (Eulerov teorem)

Ako je (a, m) = 1, onda je $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Dokaz: Neka je $\{r_1, r_2, \ldots, r_{\varphi(m)}\}$ reducirani sustav ostataka modulo m.

Budući da je, po ranije dokazanom, $\{ar_1, ar_2, \ldots, ar_{\varphi(m)}\}$ također reducirani sustav ostataka modulo m, zaključujemo da je

$$\prod_{j=1}^{\varphi(m)}(ar_j)\equiv\prod_{i=1}^{\varphi(m)}r_i\pmod{m},$$

odnosno,

$$a^{\varphi(m)}\prod_{i=1}^{\varphi(m)}r_i\equiv\prod_{i=1}^{\varphi(m)}r_i\pmod{m}.$$

Kako je $(r_i, m) = 1$, možemo "dijeliti" s r_i , dobivamo $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Teorem (Mali Fermatov teorem)

Neka je p prost broj. Ako $p \nmid a$, onda je $a^{p-1} \equiv 1 \pmod{p}$. Za svaki cijeli broj a vrijedi $a^p \equiv a \pmod{p}$.

Dokaz: Očito je $\varphi(p)=p-1$, pa tvrdnja teorema slijedi iz prolog teorema.

Primjer

Odredite ostatak od 7⁶⁰⁰¹ pri dijeljenju s 9.

Imamo da je $\phi(9) = 6$

$$7^{6001} = 7^{6000} \cdot 7 = (7^{\phi(9)})^{1000} \cdot 7 \equiv 1^{1000} \cdot 7 \equiv 7 \pmod{9}.$$

Zadatak

Odredite ostatak od $(11^5)^6$ pri dijeljenju s 21.

Zadatak

Odredite ostatak od (301⁵⁰⁰⁵³) pri dijeljenju s 30.

Zadatak

Odredite ostatak od 4037⁶⁰⁰² pri dijeljenju s 55. Uputa: upotrijebite kineski teorem o ostacima.

Zadatak

Dokažite da ako je (x, 6) = 1 da je tada $x^2 \equiv 1 \pmod{24}$.

Definicija

Funkciju $\vartheta: \mathbb{N} \to \mathbb{C}$ za koju vrijedi

- 1) $\vartheta(1) = 1$,
- 2) $\vartheta(mn) = \vartheta(m)\vartheta(n)$ za sve m, n takve da je (m,n) = 1, zovemo multiplikativna funkcija.

Teorem

Eulerova funkcija φ je multiplikativna.

Dokaz: Neka su m, n relativno prosti prirodni brojevi, te neka a i b prolaze skupom svih reduciranih ostataka modulo m, odnosno modulo n. Naš je cilj pokazati da tada an + bm prolazi skupom svih reduciranih ostataka modulo mn.

Ako to pokažemo, dobit ćemo da je $\varphi(m)\varphi(n)=\varphi(mn)$.

Budući da je (a, m) = 1 i (n, m) = 1 imamo da (an + bm, m) = (an, m) = 1.

Analogno dokažemo da je (an + bm, n) = 1, pa je i (an + bm, mn) = 1.

Tvrdimo da su svaka dva broja gornjeg oblika su međusobno nekongruentni modulo *mn*.

Pretpostavimo da je $an + bm \equiv a'n + b'm \pmod{mn}$.

Slijedi da je $(a - a')n \equiv (b' - b)m \pmod{mn}$.

Odavde slijedi da mn|(a-a')n-(b'-b)m, pa i m|(a-a')n-(b'-b)m, pa zaključujemo da m|(a-a')n.

Pošto je (m, n) = 1, slijedi m | (a - a'), tj. $a \equiv a' \pmod{m}$.

Pošto smo pretpostavili da su a i a' iz reduciranog sustava ostataka, slijedi a=a'.

Potpuno analogno dobijemo b = b'.

Dakle za različite parove (a, b) gdje a iz RSOM m, b iz RSOM n, vrijednosti an + bm su različiti elementi iz RSOM mn.

Dakle $\phi(m)\phi(n) \leq \phi(mn)$.

Ostaje pokazati da ako je (c, mn) = 1, onda je $c \equiv an + bm \pmod{mn}$ za neke a, b, takve da (a, m) = 1 i (b, n) = 1.

Budući je (m, n) = 1, postoje cijeli brojevi x, y takvi da je mx + ny = 1.

Imamo da je (c, mn) = 1, pa je (c, m) = 1. Također imamo (y, m) = 1, pa je (cy, m) = 1.

Analogno je (cx, n) = 1.

Sada brojevi a i b definirani sa $cx \equiv a \pmod{m}$, $cy \equiv b \pmod{n}$ zadovoljavaju

$$ma + nb \equiv m(cx) + n(cy) \equiv c(mx + ny) \equiv c \pmod{mn}$$

imaju tražena svojstva.

Dakle $\phi(m)\phi(n) \geq \phi(mn)$, pa uz prethodno dokazano imamo da je.

Dakle $\phi(m)\phi(n) = \phi(mn)$.

Teorem

Za svaki prirodan broj n > 1 vrijedi $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$.

Neka je $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$.

Jedini brojevi u nizu $1, 2, \ldots, p_i^{\alpha_i}$ koji nisu relativno prosti s $p_i^{\alpha_i}$ su brojevi $p_i, 2p_i, \ldots, p_i^{\alpha_i-1} \cdot p_i$.

Stoga je
$$\varphi(p_i^{\alpha_i})=p_i^{\alpha_i}-p_i^{\alpha_i-1}=p_i^{\alpha_i}(1-rac{1}{p_i}).$$

Zbog multiplikativnosti od φ , imamo

$$\begin{split} \varphi(n) &= \varphi(\prod_{i=1}^k p_i^{\alpha_i}) = \prod_{i=1}^k \varphi(p_i^{\alpha_i}) = \prod_{i=1}^k p_i^{\alpha_i} \left(1 - \frac{1}{p_i}\right) \\ &= n \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right). \end{split}$$