EZcomm

EZcomm Technology Co., Ltd.

捷揚電通股份有限公司

Product Specification

Product Name: EZ2625

NBIoT / GPS Module

Version: 1.3

Doc No:

Date : Jul 22nd, 2019

DOCUMENT HISTORY

The next table gives an overview of the changes to the document

DATE	VERSION	CHANGE	AUTHOR
2019-01-03	1.0	Preliminary	Vic Yang
2019-01-07	1.1	Update Table 1-4	Vic Yang
2019-07-12	1.2	Add the Content of Chapter 9	Vic Yang
2019-07-22	1.3	Update Table 5-10	Vic Yang

TERMS AND ABBREVIATION

Abbreviation	Description		
3GPP	Third Generation Partnership Project		
ADC	Analog-to-Digital Converter		
BER	Bit Error Rate		
BDS	BeiDou Navigation Satellite System		
CEP	Circular Error of Probability		
DCE	Data Communication Equipment		
DL	Downlink		
DTE	Data Terminal Equipment		
eDRX	Extended Discontinuous Reception		
EMC	Electromagnetic Compatibility		
ESD	Electro-Static Discharge		
E-UTRA	Evolved Universal Terrestrial Radio Access		
H-FDD	Half Frequency Division Duplexing		
GNSS	Global Navigation Satellite System		
GPIO	General Purpose I/O		
GPS	Global Positioning System		
I2C	Inter-Integrated Circuit		
NB-IoT	Narrow Band Internet of Things		
LED	Light Emitting Diode		
LGA	Land Grid Array		
LTE	Long Term Evolution		
M2M	Machine to Machine		
MCS	Modulation and Coding Scheme		
MO	Mobile Origination Cell		
MT	Mobile Termination Cell		
NC	Not Connect		
PCB	Printed Circuit Board		
PDN	Packet Data Network		
PDU	Protocol Data Unit		
PMU	Power Management Unit		
PPP	Precise Point Positioning		
PSM	Power Saving Mode		
PTW	Paging Time Window		
RF	Radio Frequency		

DIICD	Dight Hand Circular Delarization	
RHCP	Right Hand Circular Polarization	
RTC	Real Time Clock	
RX	Receive Direction	
SMS	Short Message Service	
SPI	Serial Peripheral Interface	
TAU	Tracking Area Update	
TTFF	Time To First Fix	
TVS	Transient Voltage Suppressor	
TX	Transmit Direction	
UART	Universal Asynchronous Receiver & Transmitter	
UL	Uplink	
USB	Universal Serial Bus	
USIM	Universal Subscriber Identity Module	
VSWR	Voltage Standing Wave Ratio	

CONTENTS

1			/IEW	
	1.1	Introd	UCTION	9
	1.2	KEY FEA	ATURES	10
	1.3	A PPLICA	NTION	11
	1.4	FUNCTIO	ONAL BLOCK DIAGRAM	12
	1.5		ING MODES	
	1.6	Power	SAVING TECHNOLOGIES	14
		1.6.1	Power Saving Mode (PSM)	14
		1.6.2	Extended Discontinuous Reception (eDRX)	
2			FINITION	
	2.1		TLINE	
	2.2		CRIPTION	
3			RICAL SPECIFICATION	
	3.1		TE MAXIMUM RATING	
	3.2		nmental Requirement	
	3.3		OTECTION	
	3.4	RECOM	mended Operation Rating	
		3.4.1	Power Supply	
		3.4.2	UART Interface	
		3.4.3	USIM Interface	
		3.4.4	USB Interface	
		3.4.5	SPI Interface	
		3.4.6	I2C Interface	
		3.4.7	System Control Interface	
		3.4.8	GPIO Interface	
	3.5		T CONSUMPTION	
4			CCIFICATION	
	4.1		IITTER OUTPUT POWER	
	4.2		ER SENSITIVITY	
	4.3		PECIFICATION	
	4.4		ia Requirement	
5			N RECOMMENDATION	
	5.1	A PPLICA	ATION CIRCUIT OF BATTERY OPERATION	
		5.1.1	Li-ion Battery for EZ2625	
		5.1.2	Li-MnO2 or 2S Alkaline Battery for EZ2625	
	5.2	Power	Supply	
		5.2.1	Power Supply by Using Li-ion Battery	
		5.2.2	Power Supply by Using Li-MnO2 or 2S Alkaline Battery (1.8V USIM)	
		5.2.3	Power Supply by Using Li-MnO2 or 2S Alkaline Battery (3V USIM)	32
	5.3		NTERFACE	
		5.3.1	Application of 2-Wire UART Main Port	
		5.3.2	Application of 4-Wire UART Main Port	
		5.3.3	Application of UART Debug Port	
	5.4		NTERFACE	
		5.4.1	Application of Internal e-SIM Chip	
		5.4.2	Application of External USIM Socket	36

		5.4.3	SIM Card Holder	37
5.5	5	USB INT	ГЕRFACE	37
5.6	6	SPI Inti	ERFACE	39
5.7	7	I2C Inti	ERFACE	39
5.8	8	ADC In	TERFACE	40
5.9	9	System	CONTROL	
		5.9.1	Power On / Power off	41
		5.9.2	RESET	43
		5.9.3	WAKEUP_IN	44
5.2	10	GPIO IN	VTERFACE	
		5.10.1	WAKEUP_OUT	
		5.10.2	SYS_STATUS	
		5.10.3	GPIO	
5.2	11		ERFACE	
		5.11.1	Antenna Interface	
		5.11.2	Antenna Design Guide	
		5.11.3	RF Transmission Line Design Guide	
6			ANICAL SPECIFICATIONS	
6.2			al Dimensions	
6.2	2		IG INFORMATION	
7			ENCE PCB DESIGN	
7.2	_		ND PATTERN DESIGN	
7.2	2		MASK DESIGN	
8			MMENDED REFLOW PROFILE	
8.2	_		PROFILE	
8.2	2	_	K GUIDELINE	
9			AND REEL INFORMATION	
10			LING MOISTURE SENSITIVITY	
10			RE SENSITIVITY LEVEL	
10			E CONDITION	
10			-Bang Duration	
10).4	BAKING	REQUIREMENT	57

TABLE INDEX

Table 1-1: E-UTRA Operating Bands of EZ2625 Series	9
Table 1-2: GNSS Operating Bands of EZ2625 Series	9
Table 1-3: Product Selector of EZ2625 Series Modules	10
Table 1-4: Key Features of EZ2625 Series	10
Table 1-5: Overview of Operating Modes	13
Table 2-1: Pin Definition and Description	17
Table 2-2 : I/O Definition	20
Table 3-1 : Absolute Maximum Ratings	21
Table 3-2: Environment Requirement	21
Table 3-3: Maximum ESD Rating	
Table 3-4: DC Characteristics of Power Supply	22
Table 3-5: DC Characteristics of UART Interface	22
Table 3-6: DC Characteristics of USIM Interface	
Table 3-7 : DC Characteristics of USB Interface	23
Table 3-8: DC Characteristics of SPI Interface	
Table 3-9 : DC Characteristics of I2C Interface	
Table 3-10: DC Characteristics of System Control Interface	
Table 3-11 : DC Characteristics of GPIO Interface	
Table 3-12 : Current Consumption @ 3.3V	
Table 4-1 : Transmitter Output Power	
Table 4-2: Maximum Power Reduction (MPR) for Power Class 3	
Table 4-3 : Receiver Sensitivity	
Table 4-4: Electrical Characteristics of GNSS	
Table 4-5 : LTE Antenna Requirement	
Table 4-6: GNSS Antenna Requirement	
Table 5-1 : Power Interface	
Table 5-2 : UART Interface	
Table 5-3 : USIM Interface	
Table 5-4: Pin Definition of Nano-SIM Card Holder	
Table 5-5 : USB Interface	
Table 5-6 : SPI Interface	
Table 5-7: I2C Interface	
Table 5-8 : ADC Interface	
Table 5-9: Power on/off Interface	
Table 5-10: Timing Sequence Parameters	
Table 5-11: Reset Interface	
Table 5-12: WAKEUP_IN Interface	
Table 5-13: WAKEUP_OUT Interface	
Table 5-14 : SYS_STATUS Interface Table 5-15 : GPIO Interface	
Table 5-15: GP10 Interface	
Table 6-1 : Dimension of Mechanical Outline	
Table 6-1 : Dimension of Mechanical Outline	
Table 8-2 : EZ2625 Markings	
Table 10-1 : Moisture Sensitivity Level	
Table 10-1 - Moisture bensitivity bever	

Figure index

Figure 1-1: Functional Diagram of EZ2625 Series	12
Figure 1-2 : The Operation of PSM	
Figure 1-3: The Operation of eDRX	
Figure 2-1: Pin Assignment (TOP VIEW)	
Figure 5-1: Reference Design of External Buck Converter	29
Figure 5-2: Reference Design of External Boost Converter	
Figure 5-3: Power Supply with Li-ion battery and 1.8V/3V USIM	
Figure 5-4: Power Supply with Li-MnO2/2S Alkaline Battery and 1.8V USIM	
Figure 5-5: Power Supply with Li-MnO2/2S Alkaline Battery and 3V USIM	
Figure 5-6: Application Circuit with 2-Wire UART and 1.8V DTE	33
Figure 5-7: Application Circuit with 2-Wire UART and 3.3V DTE	33
Figure 5-8: Application Circuit with 4-Wire UART and 1.8V DTE	
Figure 5-9: Application Circuit with 4-Wire UART and 3.3V DTE	34
Figure 5-10: Application Circuit of Internal e-SIM Chip	36
Figure 5-11: Application Circuit of External USIM Socket	
Figure 5-12: An Example of Nano-SIM Card Holder	37
Figure 5-13: Application Circuit of USB Interface	38
Figure 5-14: Application Circuit of SPI Interface	
Figure 5-15: Application Circuit of I2C Interface	40
Figure 5-16: Power On/Off Circuit with Transistor	41
Figure 5-17: Power On/Off Circuit with Tact Switch	
Figure 5-18: Power on/off Timing Sequence	42
Figure 5-19: Reset Circuit with Transistor	43
Figure 5-20: Reset Circuit with Tact Switch	44
Figure 5-21 : Application Circuit of WAKEUP_IN	45
Figure 5-22: Application Circuit of SYS_STATUS	46
Figure 5-23: Application Circuit of Antenna RF Interface	48
Figure 5-24: Example of 50Ω Transmission Line Design for 4-Layer PCB Stack-up	49
Figure 6-1: Module Mechanical Outline	50
Figure 7-1 : Recommended PCB Land Design	
Figure 7-2: Recommended Solder Mask Design	54
Figure 8-1 : Reflow Profile	55
Figure 9-1 : Tape and Reel Dimension	56

1 OVERVIEW

This document describes the hardware interface of EZ2625 series modules to help users quickly understand the interface specification, electrical characteristics, mechanical dimensions and other related information of EZ2625 series modules.

1.1 Introduction

EZ2625 series is NB-IoT module compliant with 3GPP R13/R14 of CAT-NB1/NB2 standard and it includes GNSS and e-SIM designed for IoT/M2M application. It is the smallest LTE CAT-NB1/NB2 module in the market and meet the essential LTE connectivity with the network operator's infrastructure.

It features ultra-compact size, ultra-low power consumption, extended coverage and enhanced RF performances with the miniature LGA form factor ($14.0 \times 14.0 \times 1.85$ mm, 52-pin). It provides the cost effective and size sensitive solution to help users to quick develop their devices for the strong growth in the NB-IoT market.

EZ2625 series modules include multiple sub-models and support E-UTRA operating bands B1/B3/B5/B8/B20/B28 and GNSS (GPS/GLONASS/BDS/Galileo) technology. User can select a specific type based on wireless network and required functions.

Table 1-1: E-UTRA Operating Bands of EZ2625 Series

LTE Band	UL (MHz)	DL (MHz)	DUPLEX MODE	
1	1920 - 1980	2110 – 2170	H-FDD	
3	1710 -1785	1805 - 1880	H-FDD	
5	824 - 849	869 - 894	H-FDD	
8	880 - 915	925 - 960	H-FDD	
20	832 - 862	791 – 821	H-FDD	
28	703 - 748	758 - 803	H-FDD	

Table 1-2: GNSS Operating Bands of EZ2625 Series

Frequency (MHz)
1575.42 +/- 1.023
1561.098 +/- 2.046
1602.5625 +/- 4
1575.42 +/- 1.023

Table 1-3: Product Selector of EZ2625 Series Modules

MODEL	PID	NB-IoT	Band	GNSS	e-SIM
EZ2625	A01	V	B1/B3/B5/B8/B20/B28	V	V
	G01	\checkmark	B1/B3/B5/B8/B20/B28	\checkmark	
	E01	V	B1/B3/B5/B8/B20/B28		V
	L01	V	B1/B3/B5/B8/B20/B28		

1.2 KEY FEATURES

Table 1-4: Key Features of EZ2625 Series

Item	Description	Specification	
Form Factor	LGA	52-PIN	
	Dimension	14.0mm x 14.0mm x 1.85mm	
Physical Features	Weight	< 1g	
LTE Operating Frequency	Band	B1/B3/B5/B8/B20/B28	
GNSS Operating Frequency	Band	GPS / BeiDou / GLONASS ¹ / Galileo ¹	
Data Rate	Single-Tone (NB1)	Max. DL: 26Kbps / UL: 16Kbps	
Data Nate	Multi-Tone (NB1)	Max. DL: 26Kbps / UL: 62Kbps	
	USIM	 Support external 3V/1.8V USIM card Supply VBAT_PA with 3.3 ~ 3.6V if 3V USIM is required 	
Application Interface	UART	 Main port UART1: 4-wires interface, supporting RTS/CTS flow control AT command and data transmission Default baud rate is 115200bps Debug port UART0: 2-wires interface Debug and upgrade firmware Default baud rate is 115200bps 	
	USB	 USB 1.1 interface Capture debug log. Logging channel can be selected by AT command. 	

SPI	Support slave interface, 1/2-bit mode, clock up to 52MHz	
I2C	Support master mode, up to 3.4Mbps	
ADC	10-bit ADC. The maximum input voltage is 1.4V.	
RESET	System reset control, active low	
PWRKEY	System power on/off control, active low	
Antenna	$\begin{array}{ll} \text{MAIN_ANT:} \\ \text{-} & \text{Connect to LTE antenna terminal with} \\ 50\Omega \text{ impedance control} \\ \text{GNSS_ANT:} \\ \text{-} & \text{Connect to GNSS antenna terminal with} \\ 50\Omega \text{ impedance control} \end{array}$	
Internet Protocol	IPv4/IPv6TCP/UDP/CoAP/MQTT/LWM2MHTTP/HTTPS	
SMS	MT, MO, Text and PDU	
Firmware Upgrade	Debug port UART0	
VBAT	2.1V ~ 3.6V, typical 3.3V	
Active	 B1: 130mA @ 23dBm B3: 120mA @ 23dBm B5: 110mA @ 23dBm B8: 130mA @ 23dBm B20: 110mA @ 23dBm B28: 130mA @ 23dBm 	
IDLE	5mA	
Light Sleep (eDRX)	0.2mA	
Deep Sleep (PSM)	3.5uA	
OFF	2.5uA	
Operating Temperature	-30 ~ 75℃	
Extend Temperature	-40 ~ 85℃	
	I2C ADC RESET PWRKEY Antenna Internet Protocol SMS Firmware Upgrade VBAT Active IDLE Light Sleep (eDRX) Deep Sleep (PSM) OFF Operating Temperature	

^{1:} By default, EZ2625 module is configured to receive GPS and Beidou signals in parallel. For other system configurations, it is under development.

1.3 APPLICATION

- Smart Grid
- Smart Metering
- Smart Parking

- Traffic Management and Monitoring
- Security and Asset Tracking
- Home and Industrial Automation
- Agricultural and Environmental Monitors

1.4 FUNCTIONAL BLOCK DIAGRAM

The functional block diagram and interfaces of EZ2625 series are illustrated in the figure below. The major functional units of EZ2625 series contain the following parts.

- Main chip: Baseband controller, Power Management Unit, RF transceiver and Memory
- RFFE: RF switch, transmitter filter, receiver filter, power amplifier and RF matching circuit
- Clock unit: 26MHz crystal oscillator and 32.768kHz crystal oscillator
- Dotted line: Functional blocks of GNSS and e-SIM

Figure 1-1: Functional Diagram of EZ2625 Series

1.5 OPERATING MODES

EZ2625 series has various operating modes, which determine available functionality for different levels of power-saving. The table below summarizes the various operating modes.

Table 1-5: Overview of Operating Modes

Operating Mode	Function Description
ACTIVE	In ACTIVE mode, all functionality of module is available. Radio transmission and reception is performed whilst in this mode. Power consumption is related to data rate of uplink/ downlink, power control level and etc.
IDLE	In IDLE mode, the PMU keeps current voltage and all processors and peripherals are in the idle state. In this mode, module is registered to the network and paging reception.
FLIGHT	Send AT command "AT+CFUN=4" to enter the FLIGHT mode. In this mode, Radio transmission and reception is disable, but communication interface is accessible.
PSM	Send AT command to enter the PSM mode and it is exited by WAKEUP_IN or PWRKEY event. In this mode, all functionality is not unavailable except the RTC function. Meanwhile, RTC_GPIO0 will change state from low to high if WAKEUP_IN receive interrupt event.
OFF	Send AT command "AT+TPWROFF" or pull down PWRKEY to enter the OFF mode and it is exited by WAKEUP_IN or PWRKEY event. In this mode, PMU is shut down and communication interface is not accessible.

1.6 Power Saving Technologies

Many IoT device are battery-operated and required to last for as long as possible on a single charge. To achieve this, NB-IoT introduces two new low-power enhancements: Power Saving Mode (PSM) and Extended Discontinuous Reception (eDRX) to further reduce power consumption and extend battery life

1.6.1 Power Saving Mode (PSM)

The PSM process starts after a data link is terminated or after the periodic tracking area update (TAU) procedure completes. The device first goes into the idle mode and remains reachable via paging. After timer T3324 expires, the power saving mode is entered. PSM time is the difference between these timers (T3412-T3324). In this mode, the device remains registered with the network and there is no need to re-attach or re-establish PDN connections, but the device is not reachable in PSM Mode until until a mobile originated transaction (e.g. periodic TAU, uplink data transmission) requires it to initiate any procedure towards the network.

The power saving features PSM applicable for NB-IoT is illustrated in the figure below.

Figure 1-2: The Operation of PSM

1.6.2 Extended Discontinuous Reception (eDRX)

The eDRX is an another technology for reducing the power consumption. With the eDRX, the time interval is extended the modem goes into receive mode to receive paging messages and system status information. The eDRX timer determines how often this occurs. The eDRX cycle length duration can be configured by timer, ranging from 20.48 seconds to 2.92 hours. The paging time window (PTW) can be configured by a timer, ranging from 2.56s to 40.96s.

The power saving features eDRX applicable for NB-IoT is illustrated in the figure below.

Figure 1-3: The Operation of eDRX

2 PIN DEFINITION

2.1 PIN OUTLINE

EZ2625 series is a LGA package and equipped with 52 pins. The system interfaces are illustrated in the figure below.

Figure 2-1: Pin Assignment (TOP VIEW)

2.2 PIN DESCRIPTION

The system interface of EZ2625 series is through the LGA pad on the bottom of the PCB. The following table indicates the pin definition and description.

Table 2-1: Pin Definition and Description

Table 2-1 : Pili	Table 2-1: Pin Definition and Description						
Pin Name	Pin No.	Type	Description	Note			
Power Supply							
VBATSNS	15	PI	Battery sensing input	The maximum input voltage is 5.2V. The ratio of divider resistor is 4.			
VBAT_PA	16,	PI	Main power supply input. Voltage range is 2.1V-3.6V, typically 3.3V.	Supply VBAT_PA with 3.3V-3.6V if 3V USIM is required.			
VBAT_BB	17	PI	Main power supply input. Voltage range is 2.1V-3.6V, typically 3.3V.				
VDD18_OUT	13	РО	1.8V power supply output for external circuit, such as level shift circuit.	Leave it open if not used			
GND	14,18,35, 36,38,39, 46,48	GND	Ground connection	Must be connected to ground			
UART Interface							
UART1_CTS	1	DI	UART1 clear to send				
UART1_RTS	2	DO	UART1 request to send	Used for AT command and data transmission. 1.8V power			
UART1_TXD	3	DO	UART1 transmit data	domain. Recommend to reserve test point.			
UART1_RXD	4	DI	UART1 receive data	reserve test position			
UARTO_TXD	40	DO	UART0 transmit data	Used for debug and upgrade firmware. 1.8V power domain.			
UARTO_RXD	41	DI	UART0 receive data	Recommend to reserve test point.			
USIM Interface							
eSIM_RST	21	DO	eSIM reset signal	 EZ2625-A01: Connect with USIM_RST EZ2625-E01: Connect with USIM_RST EZ2625-G01: Keep it open EZ2625-L01: Keep it open 			
USIM_DAT	22	DIO	USIM data signal	Connect with a TVS diode for ESD protection - EZ2625-A01: Keep it open - EZ2625-E01: Keep it open			

23	DO	USIM clock signal	Connect with a TVS diode for ESD protection
	20	0011101011011011	EZ2625-A01: Keep it openEZ2625-E01: Keep it open
24	DO	USIM reset signal	Connect with a TVS diode for ESD protection - EZ2625-A01: Connect with eSIM_RST - EZ2625-E01: Connect with eSIM_RST
25	PO	USIM power supply output. Output voltage is dependent on SIM card type.	Connect with a TVS diode for ESD protection. - EZ2625-A01: Connect with 0.1uF decoupling capacitor - EZ2625-E01: Connect with 0.1uF decoupling capacitor
26	DI	USIM detect signal	If used, pull up to VDD18_OUT with 10Kohm EZ2625-A01: Keep it open - EZ2625-E01: Keep it open
27	PI	3.3V USB power supply input	3.3V power domain. Used for debug.
28	DIO	Positive line of USB differential signal.	90ohm differential impedance is required.
29	DIO	differential signal	90ohm differential impedance is required.
30	DI	selection. Do not pull down before power on.	GND: USB download mode 1.8V: No USB download mode. Leave it open if not used.
port Slave	e Mode)		
49	DI	SPI chip select signal	1.8V power domain. Leave it open if not used.
50	DO	SPI master in and slave out	1.8V power domain. Leave it open if not used.
51	DI	SPI master out and slave in	1.8V power domain. Leave it open if not used.
52	DI	SPI clock input	1.8V power domain. Leave it open if not used.
42	DIO	I2C serial clock signal	1.8V power domain. Pull up to 1.8V with 2.2Kohm if used. Leave it open if not used.
43	DIO	I2C serial data signal	1.8V power domain. Pull up to 1.8V with 2.2Kohm if used. Leave it open if not used.
31	AI	Analog-to-digital converter input	1.8V power domain. 10-bit ADC. The maximum input
	25 26 27 28 29 30 port Slave 49 50 51 52 42 43	24 DO 25 PO 26 DI 27 PI 28 DIO 29 DIO 30 DI port Slave Mode) 49 DI 50 DO 51 DI 52 DI 42 DIO 43 DIO	24 DO USIM reset signal 25 PO USIM power supply output. Output voltage is dependent on SIM card type. 26 DI USIM detect signal 27 PI 3.3V USB power supply input 28 DIO differential signal. 29 DIO Adifferential signal USB download mode selection. Do not pull down before power on. port Slave Mode) 49 DI SPI chip select signal 50 DO SPI master in and slave out 51 DI SPI clock input 42 DIO I2C serial clock signal 43 DIO I2C serial data signal

				voltage is 1 AV I serve it even if
				voltage is 1.4V. Leave it open if not used.
ADC1	32	AI	Analog-to-digital converter input	1.8V power domain. 10-bit ADC. The maximum input voltage is 1.4V. Leave it open if not used.
ADC2	33	AI	Analog-to-digital converter input	1.8V power domain. 10-bit ADC. The maximum input voltage is 1.4V. Leave it open if not used.
ADC3	34	AI	Analog-to-digital converter input	1.8V power domain. 10-bit ADC. The maximum input voltage is 1.4V. Leave it open if not used.
RF Interface				
MAIN_ANT	37	AIO	LTE antenna port	50Ω impedance control is required. Connect with a TVS diode for ESD protection
GNSS_ANT	47	AI	GNSS antenna port	 50Ω impedance control is required. Connect with a TVS diode for ESD protection. EZ2625-E01: Keep it open EZ2625-L01: Keep it open
System Control				
RESET	19	DI	System reset control, active low.	VBAT power domain. Internal pull high with 40Kohm.
PWRKEY	20	DI	System power on/off control, active low.	VBAT power domain. Internal pull high with 40Kohm.
WAKEUP_IN	11	DI	Dedicate external interrupt input in RTC	VBAT power domain. It is the wake up source for exiting PSM. Pull up to VBAT with 10Kohm if used.
RTC_GPIO0	12	DO	External boost control in RTC	VBAT power domain. In PSM, it will change state from low to high if WAKEUP_IN receive interrupt event.
GPIO Interface				
GPIO2	5	DIO	General purpose input/output	1.8V power domain. Leave it open if not used.
SYS_STATUS	6	DO	The indication of network status	1.8V power domain. Leave it open if not used.
AP_READY	7	DO	The indication of operating status. High level: Power on and F/W ready Low level: Power off	1.8V power domain. Leave it open if not used.
WAKEUP_OUT	8	DO	Module wake up the host	1.8V power domain. Leave it open if not used.
GPIO4	9	DIO	General purpose input/output	1.8V power domain. Leave it open if not used.

GPI03	10	DIO	General purpose input/output	1.8V power domain. Leave it open if not used.
GPI00	44	DIO	General purpose input/output	1.8V power domain. Leave it open if not used.
GPIO1	45	DIO	General purpose input/output	1.8V power domain. Leave it open if not used.

Table 2-2: I/O Definition

Туре	Description
AIO	Analog input and output
AI	Analog input
AO	Analog output
DIO	Digital input and output
DI	Digital input
DO	Digital output
PI	Power input
PO	Power output
GND	Ground

3 ELECTRICAL SPECIFICATION

3.1 ABSOLUTE MAXIMUM RATING

Table 3-1: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
Voltage to VBAT_PA/VBAT_BB	-0.3	+3.63	V
Voltage to VBATSNS	-0.3	+5.5	V
Voltage to VUSB	-0.3	+3.63	V
Voltage to USIM_VDD	-0.3	+3.63	V
Voltage to Digital Pins (UART/SPI/I2C/GPIO)	-0.3	+1.98	V
Voltage to USIM Pins	-0.3	+3.63	V
Voltage to Control Pins (RESET/PWRKEY/WAKEUP_IN/RTC_GPIO0)	-0.3	+3.63	V

3.2 Environmental Requirement

Table 3-2: Environment Requirement

Parameter	Min.	Max.	Unit
Normal Operating Temperature Range	-30	+75	$^{\circ}\! \mathbb{C}$
Extended Operating Temperature Range	-40	+85	$^{\circ}\! {\mathbb C}$
Storage Temperature	-40	+90	$^{\circ}\! \mathbb{C}$
Operating Humidity	10	85	%
Storage Humidity	5	90	%

- Normal Operating Temperature Range: The functionality of module is met the 3GPP specification across the specified temperature range.
- Extended Operating Temperature Range: The functionality of module is normal across the specified temperature range. The deviation from 3GPP specification may occur.

3.3 ESD PROTECTION

Table 3-3: Maximum ESD Rating

Parameter	Min.	Тур.	Max.	Unit
All Pins (Contact Discharge)			±2	kV
All Pins (Air Discharge)			±4	kV

- The module is sensitive to ESD. Require special precautions when handling.

3.4 RECOMMENDED OPERATION RATING

3.4.1 Power Supply

Table 3-4: DC Characteristics of Power Supply

Tuble 5 112 d distributes of 1 ower supply						
Parameter	Min.	Тур.	Max.	Unit		
VBAT_PA/VBAT_BB	2.1	3.3	3.6	V		
VBATSNS	0	-	5.2	V		
VDD18_OUT	1.7	1.8	1.9	V		
VUSB	3.2	3.3	3.4	V		
USIM_VDD (1.8V)	1.7	1.8	1.9	V		
USIM_VDD (3.0V)	2.9	3.0.	3.1	V		

3.4.2 UART Interface

Table 3-5: DC Characteristics of UART Interface

Parameter	Description	Min.	Тур.	Max.	Unit
DVDDIO	Power Domain		1.8		V
VOH	High Level Output	0.85*DVDDIO	-	-	V
VOL	Low Level Output	-	-	0.15*DVDDIO	V
VIH	High Level Input	0.75*DVDDIO	-	DVDDIO	V
VIL	Low Level Input	0	-	0.25*DVDDIO	V
IL	Leakage Current	-5		+5	μΑ

3.4.3 USIM Interface

Table 3-6: DC Characteristics of USIM Interface

Parameter	Description	Min.	Тур.	Max.	Unit
USIM_VDD	Power Domain		1.8/3.0		V
VOH	High Level Output	0.85* USIM_VDD	-	-	V
VOL	Low Level Output	-	-	0.15* USIM_VDD	V
VIH	High Level Input	0.75* USIM_VDD	-	USIM_VDD	V
VIL	Low Level Input	0	-	0.25* USIM_VDD	V
IL	Leakage Current	-5		+5	μΑ

3.4.4 USB Interface

Table 3-7: DC Characteristics of USB Interface

Parameter	Description	Min.	Тур.	Max.	Unit
VUSB	Power Domain		3.3		V
VOH	High Level Output	0.85* VUSB	-	1.1* VUSB	V
VOL	Low Level Output	0	-	0.1* VUSB	V
VDI	Differential Input Sensitivity	0.2	-	-	V
VCM	Differential Common Mode Range	0.8	-	2.5	V

3.4.5 SPI Interface

Table 3-8: DC Characteristics of SPI Interface

Parameter	Description	Min.	Тур.	Max.	Unit
DVDDIO	Power Domain		1.8		V
VOH	High Level Output	0.85*DVDDIO	-	-	V
VOL	Low Level Output	-	-	0.15*DVDDIO	V
VIH	High Level Input	0.75*DVDDIO	-	DVDDIO	V
VIL	Low Level Input	0	-	0.25*DVDDIO	V
IL	Leakage Current	-5		+5	μΑ

3.4.6 I2C Interface

Table 3-9: DC Characteristics of I2C Interface

Parameter	Description	Min.	Тур.	Max.	Unit
DVDDIO	Power Domain		1.8		V
VOH	High Level Output	0.85*DVDDIO	-	-	V
VOL	Low Level Output	-	-	0.15*DVDDIO	V
VIH	High Level Input	0.75*DVDDIO	-	DVDDIO	V
VIL	Low Level Input	0	-	0.25*DVDDIO	V
IL	Leakage Current	-5		+5	μΑ

3.4.7 System Control Interface

Table 3-10: DC Characteristics of System Control Interface

Parameter	Description	Min.	Тур.	Max.	Unit
VBAT	Power Domain	2.1	3.3	3.6	V
VOH	High Level Output	0.85*VBAT	-	-	V
VOL	Low Level Output	-	-	0.15*VBAT	V
VIH	High Level Input	0.75*DVDDIO	-	VBAT	V
VIL	Low Level Input	0	-	0.25*VBAT	V
IL	Leakage Current	-5		+5	μΑ

3.4.8 GPIO Interface

Table 3-11: DC Characteristics of GPIO Interface

Parameter	Description	Min.	Тур.	Max.	Unit
DVDDIO	Power Domain		1.8		V
VOH	High Level Output	0.85*DVDDIO	-	-	V
VOL	Low Level Output	-	-	0.15*DVDDIO	V
VIH	High Level Input	0.75*DVDDIO	-	DVDDIO	V
VIL	Low Level Input	0	-	0.25*DVDDIO	V
IL	Leakage Current	-5		+5	μΑ

3.5 CURRENT CONSUMPTION

The supply current for various modes with operation at 25°C and VBAT = 3.3V.

Table 3-12: Current Consumption @ 3.3V

Operating Mode	D	escription	Тур.	Unit
OFF	Leakage current		2.5	μΑ
PSM	PSM supply curre	ent	3.5	μΑ
eDRX	PTW=10.24s, eDI	RX=81.92s, DRX=2.56s	146	μΑ
	PTW=10.24s, eDI	RX=163.84s, DRX=1.28s	83	μΑ
	PTW=20.48s, eDI	RX=163.84s, DRX=2.56s	120	μΑ
	PTW=40.96s, eDI	RX=327.68s, DRX=2.56s	116	μΑ
Idle	Idle Mode		0.8	mA
	B1	Transmit at 23dBm Transmit at 10dBm Transmit at 0dBm	140 40 25	mA
	В3	Transmit at 23dBm Transmit at 10dBm Transmit at 0dBm	115 40 25	mA
	B5	Transmit at 23dBm Transmit at 10dBm Transmit at 0dBm	115 40 30	mA
Active	B8	Transmit at 23dBm Transmit at 10dBm Transmit at 0dBm	140 40 30	mA
	B20	Transmit at 23dBm Transmit at 10dBm Transmit at 0dBm	115 40 30	mA
	Transmit at 3dBm B28 Transmit at 10dBm Transmit at 0dBm		115 35 25	mA
	B1/B3/B5/B8 B20/B28 Receive		18	mA

4 RF SPECIFICATION

4.1 TRANSMITTER OUTPUT POWER

Table 4-1: Transmitter Output Power

Band	Max.	Min.
B1	23dBm±2dB	<-40dBm
B3	23dBm±2dB	< -40dBm
B5	23dBm±2dB	<-40dBm
B8	23dBm±2dB	< -40dBm
B20	23dBm±2dB	<-40dBm
B28	23dBm±2dB	< -40dBm

Table 4-2: Maximum Power Reduction (MPR) for Power Class 3

Tones	Allocation	Modulation	MPR (dB)
3	0 - 2	QPSK	≤ 0.5
3	3 – 5	QPSK	0
3	6 – 7	QPSK	0
3	9 - 11	QPSK	≤ 0.5
6	0 - 5	QPSK	≤ 1.0
6	6 - 11	QPSK	≤ 1.0
12	0 - 11	QPSK	≤ 2.0

4.2 RECEIVER SENSITIVITY

Table 4-3: Receiver Sensitivity

Band	Condition	Тур.
		-131dBm±1dB
В3	MCS-1, 95% Throughput with Repetitions	-131dBm±1dB
B5		-131dBm±1dB

B8	-131dBm±1dB	
B20	-131dBm±1dB	
B28	-131dBm±1dB	

4.3 GNSS SPECIFICATION

Table 4-4: Electrical Characteristics of GNSS

Parameter	GPS	Beidou	GLONASS
Acquisition Sensitivity	-147dBm	-145dBm	-145dBm
Tracking Sensitivity	-160dBm	-160dBm	-159dBm
TTFF (Cold Start)	< 30sec		
TTFF (Hot Start)	<1sec		
PPP		< 2.0m CEP	
D-GNSS	< 1.0m CEP		
Speed Accuracy	0.1m/s		

4.4 ANTENNA REQUIREMENT

The antenna is the most critical component, and depending on the design and application of the terminal device. There are different antenna types. The following antenna requirements, external antenna is used as reference for LTE antenna, patch antenna is used as reference for GNSS antenna.

Table 4-5: LTE Antenna Requirement

Parameter		Requirement	Unit	
P	Low Band	703 ~ 960	MII-	
Frequency Range	High Band	1710 ~ 2200	MHz	
VSWR		< 3		
Antenna Efficiency		50	%	
Polarization		Linear		
Radiation Pattern		Omni-directional		
Input Impedance		50	Ω	

Table 4-6: GNSS Antenna Requirement

Parameter	GPS L1	Beidou B1	GLONASS G1	Unit
Frequency Range	1575.42 +/- 1.023	1561.098 +/- 2.046	1602.5625 +/- 4	MHz
VSWR	< 2			
Axial Ratio	< 3		dB	
Peak Gain	> 3			dBi
Antenna Efficiency	> 70			%
Polarization	RHCP			
Radiation Pattern	Omni-directional			
Input Impedance	50			Ω

5 DESIGN RECOMMENDATION

5.1 APPLICATION CIRCUIT OF BATTERY OPERATION

EZ2625 series module is suitable for the operation of different battery types, such as Li-ion battery, Li-MnO2 battery, Alkaline Battery and so on. To meet the operation of different battery types, an external power circuit, like bulk or boost converter is needed to output a specific voltage level for powering the module.

5.1.1 Li-ion Battery for EZ2625

When using Li-ion battery as power source (VBAT_IN), an external buck converter circuit is required. The reference design of external buck converter circuit is shown in the figure below. In addition, a TVS diode close to battery connector, power switch or USB connector is recommended for ESD protection.

Figure 5-1: Reference Design of External Buck Converter

5.1.2 Li-MnO2 or 2S Alkaline Battery for EZ2625

When using Li-MnO2 or 2S Alkaline battery as power source (VBAT_IN), an external boost converter circuit is required or not depending on the USIM types.

- Using 1.8V USIM: No need to add an external boost converter circuit
- Using 3V USIM: Need to add an external boost converter circuit. The reference design is shown in the figure below. In addition, a TVS diode close to battery connector, power switch or USB connector is recommended for ESD protection.

Figure 5-2: Reference Design of External Boost Converter

5.2 POWER SUPPLY

EZ2625 series module is powered via VBAT_PA and VBAT_BB pins. The voltage ranges from 2.1 ~ 3.6 V with a typical 3.3V operation and is required at least 0.5A current capability. In addition, the module has a LDO power output named as VDD18_OUT. The output voltage is 1.8V.

Table 5-1: Power Interface

Pin Name	Pin No.	Comment		
VBATSNS	15	Battery sensing input. The maximum input voltage is 5.2V		
VBAT_PA	16	Voltage range is 2.1V-3.6V, typically 3.3V. Supply VBAT_PA with 3.3V-3.6V if 3V USIM is required.		
VBAT_BB	17	Voltage range is 2.1V-3.6V, typically 3.3V.		
VDD18_OUT	13	1.8V power supply output for external circuit. Leave it open if not used.		
GND	14,18,35,36,38, 39,46,48	Ground connection		

To avoid the voltage drop caused by peak current and lower the radio interference from a given circuit, it is recommended to have the following suggestions.

- A 100uF Tantalum capacitor with low ESR is recommended.
- Add 33pF \ 0.1uF \ 10uF decoupling capacitors as close as possible to VBAT_PA and VBAT BB pins from small capacitance to large capacitance.
- Add a TVS diode for ESD protection.

Keep VBAT trace as wider as possible.

5.2.1 Power Supply by Using Li-ion Battery

The reference design of power supply circuit is shown in the figure below. Refer to the Figure 5-1 for the connections between VBAT_PA / VBAT_BB / VBATSNS and VBAT / VBAT_IN.

Figure 5-3: Power Supply with Li-ion battery and 1.8V/3V USIM

5.2.2 Power Supply by Using Li-MnO2 or 2S Alkaline Battery (1.8V USIM)

Connect VBAT_PA, VBAT_BB and VBATSNS pins with the positive terminal of battery directly when using 1.8V USIM. The reference design of power supply circuit is shown in the figure below.

Figure 5-4: Power Supply with Li-MnO2/2S Alkaline Battery and 1.8V USIM

5.2.3 Power Supply by Using Li-MnO2 or 2S Alkaline Battery (3V USIM)

Supply VBAT_PP with 3.3V-3.6V when using 3V USIM. The reference design of power supply circuit is shown in the figure below. Refer to the Figure 5-2 for the connections between VBAT_PA / VBAT_BB / VBATSNS and VBAT / VBAT_IN.

Figure 5-5: Power Supply with Li-MnO2/2S Alkaline Battery and 3V USIM

5.3 UART INTERFACE

EZ2625 series module features two UART interfaces for communication. UART1 is main port used for sending AT command and data transmission. UART0 is debug port used for collecting debugging and upgrade firmware. Support baud rates from 9600 to 921600bps.

Table 5-2: UART Interface

Pin Name	Pin No.	Comment	
UART1_CTS	1		
UART1_RTS	2	1.8V power domain. Used for AT command and data transmission. Default baud rate is 115200bps	
UART1_TXD	3		
UART1_RXD	4		
UARTO_TXD	40	1.8V power domain.	
UARTO_RXD	41	Used for debug and upgrade firmware. Default baud rate is 115200bps	

The connections between the module (DCE, Data Communication Equipment) and application processor (DTE, Data Terminal Equipment) are illustrated in the figures below. It is recommended to have the following suggestions.

- Note that the UART logic level in circuit design.
- Note that the UART connections between EZ2625 and application processor.
- Add 0Ω resistors and test points for the consideration of signal integrity.
- Recommend to reserve test point.

5.3.1 Application of 2-Wire UART Main Port

- If 1.8V application processor is used, the circuit is illustrated in the figure below.

Figure 5-6: Application Circuit with 2-Wire UART and 1.8V DTE

- If 3.3V application processor is used, the level shifter circuit is required for voltage-level matching. A bidirectional voltage-level translator (TXB0102DCUR) is recommended. The circuit is illustrated in the figure below.

Figure 5-7: Application Circuit with 2-Wire UART and 3.3V DTE

5.3.2 Application of 4-Wire UART Main Port

- If 1.8V application processor is used, the circuit is illustrated in the figure below.

Figure 5-8: Application Circuit with 4-Wire UART and 1.8V DTE

- If 3.3V application processor is used, the level shifter circuit is required for voltage-level matching. A bidirectional voltage-level translator (TXB0104PWR) is recommended. The circuit is illustrated in the figure below.

Figure 5-9: Application Circuit with 4-Wire UART and 3.3V DTE

5.3.3 Application of UART Debug Port

UART debug port (UART0) is used for debugging and firmware upgrade. It is recommended to reserve test points or pin header for application.

5.4 USIM INTERFACE

EZ2625-A01 and EZ2625-E01 feature one e-SIM chip inside the module. EZ2625-G01 and EZ2625-L01 feature one USIM card interface compatible with the ISO/IEC 7816-3 standard. The USIM interface is powered by USIM_VDD. It is 3.0V or 1.8V typically.

Table 5-3: USIM Interface

Pin Name	Pin No.	Comment
eSIM_RST	21	 EZ2625-A01: Connect with USIM_RST EZ2625-E01: Connect with USIM_RST EZ2625-G01: Keep it open EZ2625-L01: Keep it open
USIM_DAT	22	Connect with a TVS diode for ESD protection - EZ2625-A01: Keep it open - EZ2625-E01: Keep it open
USIM_CLK	23	Connect with a TVS diode for ESD protectionEZ2625-A01: Keep it openEZ2625-E01: Keep it open
USIM_RST	24	Connect with a TVS diode for ESD protection - EZ2625-A01: Connect with eSIM_RST - EZ2625-E01: Connect with eSIM_RST
USIM_VDD	25	 1.8V or 3V power domain, depending on VBAT_PA. Connect with a TVS diode for ESD protection. EZ2625-A01: Connect with 0.1uF decoupling capacitor EZ2625-E01: Connect with 0.1uF decoupling capacitor
USIM_DET	26	If used, pull up to VDD18_OUT with 10Kohm EZ2625-A01: Keep it open - EZ2625-E01: Keep it open

For EZ2625-A01 and EZ2625-E01, it is required to have the following suggestions.

- eSIM RST and USIM RST have to be connected.
- Add a 0.1uF decoupling capacitor as close as possible to USIM_VDD.

For EZ2625-G01 and EZ2625-L01, it is recommended to have the following suggestions.

- Place USIM card holder close to the module and keep signal trace length less than 50mm.
- Keep the signal traces of USIM socket as far away from any RF trace and VBAT
- Keep 3W spacing rule and use ground or guard traces between USIM_CLK and USIM_DAT to minimize cross talk.
- Add TVS diodes for ESD protection and place it as close as possible to USIM socket.
- Add 22Ω resistors in series connection between the module and USIM socket for signal integrity.
- Add 22pF capacitors and place it as close as to USIM socket for reducing EMI.

- Add a 20KΩ pull-up resistor between USIM_DAT and USIM_VDD to enhance USIM stability.
- If USIM_DET is used, it is required to pull up to VDD18_OUT with a $10K\Omega$ resistor.

5.4.1 Application of Internal e-SIM Chip

- If EZ2625-A01 or EZ2625-E01 is used, the application circuit is illustrated in the figure below.

Figure 5-10: Application Circuit of Internal e-SIM Chip

5.4.2 Application of External USIM Socket

- If EZ2625-G01 or EZ2625-L01 is used, the application circuit is illustrated in the figure below.

Figure 5-11: Application Circuit of External USIM Socket

5.4.3 SIM Card Holder

It is recommended to have the 6-pin SIM socket for design application. A Nano-SIM card holder, 693043020611 produced by Wurth Electronics is given for reference.

Table 5-4: Pin Definition of Nano-SIM Card Holder

Pin Name	Pin No.	Comment
VCC	C1	Supply voltage. Connect to USIM_VDD.
RST	C2	Reset signal. Connect to USIM_RST.
CLK	С3	Clock signal. Connect to USIM_RCLK
GND	C4	Connect to ground
VPP	C5	Keep it open
I/0	C6	Data signal. Connect to USIM_DAT

Figure 5-12: An Example of Nano-SIM Card Holder

5.5 USB INTERFACE

EZ2625 series module features one USB interface compliant with USB1.1 specification. It is mainly used to capture debug log. There will be 2 virtual port, debug and modem port after installing USB driver. Contact Connegence support team for more details.

Table 5-5: USB Interface

Pin Name	Pin No.	Comment
VUSB	27	3.3V USB power supply input.
USB_DM	28	USB data line D 90ohm differential impedance is required.
USB_DP	29	USB data line D+. 90ohm differential impedance is required.
USB_DL	30	USB download mode selection. Leave it open if not used.

The application circuit is illustrated in the figures below. It is recommended to have the following suggestions.

- Add TVS diodes for ESD protection and place it as close as possible to USB connector. The maximum junction capacitance of TVS must be less than 2pF for ESD protection.
- Add 0Ω resistors in series connection with D+ and D- for the consideration of signal integrity.
- Route D+ and D- as 90 ohm differential pair.
- Provide a good return path (ground) for current. Do not route over a gap in the reference plane.
- Route D+ and D- on the top as short as reasonably possible and length mismatch must not exceed 50 mil.
- Keep USB trace as far away from any susceptible trace, such as clock trace, high speed trace and noisy power traces.
- If not used, it is strongly recommend to reserve test point or pin header.

Figure 5-13: Application Circuit of USB Interface

5.6 SPI INTERFACE

EZ2625 series module feature one SPI slave controller to receive and transmit device data using single and dual SPI protocol. The SPI controller can communicate at up to 52Mbps.

Table 5-6: SPI Interface

Pin Name	Pin No.	Comment
SPI_CS	49	1.8V power domain. Leave it open if not used.
SPI_MISO	50	1.8V power domain. Leave it open if not used.
SPI_MOSI	51	1.8V power domain. Leave it open if not used.
SPI_CLK	52	1.8V power domain. Leave it open if not used.

The application circuit is illustrated in the figure below. It is recommended to have the following suggestions.

- Note that the SPI logic level in circuit design.
- Keep 3W spacing rule between SPI_CLK and other signal to minimize cross talk.
- Avoid SPI CLK crossing a split ground plane.
- Route SPI_CLK, SPI_MOSI, SPI_MISO with controlled impedance and identical length.
- Minimize the use of vias to reduce PCB trace impedance changes.

Figure 5-14: Application Circuit of SPI Interface

5.7 I2C Interface

EZ2625 series module feature one I2C master controller. There are three types of speed modes, including standard mode (100kbps), fast mode (400kbps) and high-speed mode (3.4Mbps).

Table 5-7: I2C Interface

Pin Name	Pin No.	Comment
I2C_SCL	42	1.8V power domain. Pull up to 1.8V with 2.2Kohm if used. Leave it open if not used.
I2C_SDA	43	1.8V power domain. Pull up to 1.8V with 2.2Kohm if used. Leave it open if not used.

The application circuit is illustrated in the figure below. It is recommended to have the following suggestions.

- Note that the I2C logic level in circuit design.
- Add a $2.2K\Omega$ pull-up resistor to enhance I2C stability.
- Keep 3W spacing rule between I2C_SCL and other signal to minimize cross talk.
- Avoid I2C_SCL crossing a split ground plane.
- Route I2C_SDA and I2C_SCL with controlled impedance and identical length.

Figure 5-15: Application Circuit of I2C Interface

5.8 ADC INTERFACE

EZ2625 series module features four channels of 10-bit ADC with maximum input voltage 1.4V for auxiliary analog function monitoring.

Table 5-8: ADC Interface

Pin Name	Pin No.	Comment
ADC0	31	1.8V power domain. 10-bit ADC. The maximum input voltage is 1.4V. Leave it open if not used.
ADC1	32	1.8V power domain. 10-bit ADC. The maximum input voltage is 1.4V. Leave it open if not used.

ADC2	33	1.8V power domain. 10-bit ADC. The maximum input voltage is 1.4V. Leave it open if not used.
ADC3	34	1.8V power domain. 10-bit ADC. The maximum input voltage is 1.4V. Leave it open if not used.

5.9 System Control

5.9.1 Power On / Power off

EZ2625 series module is powered on/off via PWRKEY pin. It is equipped with an internal active pull-up resistor; an external pull-up resistor is not required.

Table 5-9: Power on/off Interface

Pin Name	Pin No.	Comment
PWRKEY	20	VBAT power domain. Active low. Internal pull high with 40Kohm - Power on: PWRKEY is keep low for 2 sec. - Power off: PWRKEY is keep low for 8 sec (default).

The application circuits are illustrated in the figure below. One is controlled by transistor circuit and another is controlled by a tact switch. It is recommended to have the following suggestions.

- Note that the logic level in circuit design.
- Add 0.1uF decoupling capacitor and a TVS diode for ESD protection

Figure 5-16: Power On/Off Circuit with Transistor

Figure 5-17: Power On/Off Circuit with Tact Switch

The power on/off timing sequence is illustrated in the figure below.

Figure 5-18: Power on/off Timing Sequence

Table 5-10: Timing Sequence Parameters

Symbol	Parameter	Min.	Тур.	Max.	Unit
Ton	The time of power on the module	240	800	-	ms
Ton(AP)	The time from power on to AP ready	-	800	-	ms
Ton(UART)	The time from power on to UART interface ready	-	-	1	S
Ton(USB)	The time from power on to USB interface ready	-	-	1	S
$T_{ m off}$	The time of power off the module	6	7	8	S
Toff(AP)	The time from power off to AP ready	-	-	500	ms
Toff(UART)	The time from power off to UART	-	-	1	S

	interface ready				
Toff(USB)	The time from power off to USB interface ready	-	-	1	S
Toff-on	The buffer time from power off to power on	3	-	-	S

5.9.2 RESET

EZ2625 series module can be reset by holding the RSTB pin low. The RSTB pin has an internal active pull-up resistor; an external pull-up resistor is not required. Note that the RSTB pin is ineffective in the power off mode.

Table 5-11: Reset Interface

Pin Name	Pin No.	Comment
RESET	19	VBAT power domain. Active low. Internal pull high with 40Kohm. Reset time > 100ms

The application circuits are illustrated in the figure below. One is controlled by transistor circuit and another is controlled by a tact switch. It is recommended to have the following suggestions.

- Note that the logic level in circuit design.
- Add 0.1uF decoupling capacitor and a TVS diode for ESD protection

Figure 5-19: Reset Circuit with Transistor

Figure 5-20: Reset Circuit with Tact Switch

5.9.3 WAKEUP_IN

EZ2625 series module can be waken up by external MCU through WAKEUP_IN pin. After the module enters the PSM mode, it can only wake up the module through PWRKEY or WAKEUP_IN event.

Table 5-12: WAKEUP_IN Interface

Pin Name	Pin No.	Comment
WAKEUP_IN	11	VBAT power domain. Active low. It is the wake up source for exiting PSM. Pull up to VBAT with 10Kohm if used.

The application circuit is illustrated in the figure below. Note that the logic level is used in circuit design.

Figure 5-21: Application Circuit of WAKEUP_IN

5.10 GPIO INTERFACE

5.10.1 WAKEUP_OUT

EZ2625 series module has a WAKEUP_OUT pin to wake up the external MCU.

Table 5-13: WAKEUP_OUT Interface

Pin Name	Pin No.	Comment
WAKEUP_OUT	8	1.8V power domain. Leave it open if not used.

5.10.2 SYS_STATUS

EZ2625 series module has a SYS_STATUS pin to indicate the network status. The different blinking modes of the LED is indicated the different network status.

Table 5-14: SYS_STATUS Interface

Pin Name	Pin No.	Comment
SYS_STATUS	6	1.8V power domain. The indication of network status. Leave it open if not used.LED blinking mode:Power OFF/PSM Mode: OFF

	-	Search Network: 1Hz, 50% duty cycle.
	-	Register Network: 0.3Hz, 10% duty cycle.
	_	Data Transmit: 10Hz, 50% duty cycle.

The application circuit is illustrated in the figure below. Note that it is not recommended to apply the LED indication circuit if low power consumption is concerned.

Figure 5-22: Application Circuit of SYS_STATUS

5.10.3 GPIO

EZ2625 series module has 5 GPIO pins for design application.

Table 5-15: GPIO Interface

Pin Name	Pin No.	Comment
GPIO0	44	
GPIO1	45	
GPIO2	5	1.8V power domain. Leave it open if not used.
GPIO3	10	
GPIO4	9	

5.11 RF INTERFACE

5.11.1 Antenna Interface

EZ2625 series module has 2 RF interfaces for connecting the external or internal integrated antennas. One is MAIN_ANT pin connected to LTE antenna and another is GNSS_ANT connected to GNSS antenna. The MAIN_ANT and GNSS_ANT pins have a nominal characteristic impedance 50Ω and must be connected to the physical antenna through 50Ω transmission line.

Table 5-16: Antenna RF Interface

Pin Name	Pin No.	Comment
MAIN_ANT	37	50Ω impedance control is required. Connect with a TVS diode for ESD protection
GNSS_ANT	47	 50Ω impedance control is required. Connect with a TVS diode for ESD protection. EZ2625-E01: Keep it open EZ2625-L01: Keep it open

5.11.2 Antenna Design Guide

The antenna is the most critical component and easily be influenced by surroundings, such as system ground plane, nearby components, mechanical parts, human or animal body. The application circuit is illustrated in the figure below. It is recommended to have the following suggestions.

- The RF signals should be routed using trace with a characteristic impedance of 50Ω . The 50Ω characteristic impedance can be calculated with a simulation tool, such as APPCAD.
- The RF trace between RF and antenna port should be as short and straight as possible.
- Place π -network mating circuit as close as possible to the antenna terminal.
- There should be a solid ground below RF trace. Do not route any signals under the RF trace.
- Keep RF trace as far away from any susceptible trace, such as clock trace, high speed trace and noisy power traces.
- Do not use right angles in the RF trace, it is better to use 45°bend or radius to change direction.
- In a good board design, drop as many ground vias as possible in the RF circuitry section.
- Add a ESD protection diode with ultra-low capacitance.

Figure 5-23: Application Circuit of Antenna RF Interface

5.11.3 RF Transmission Line Design Guide

Any RF transmission line must be designed with a characteristic impedance of 50Ω , such as the RF traces from MAIN_ANT pin to antenna connector or to internal integrated antenna. The 50Ω characteristic impedance can be calculated with a simulation tool, such as APPCAD from Agilent or Si9000 from Polar Instruments. An example of 4-layer PCB stack-up is illustrated in the figure below for design reference.

To achieve a 50Ω characteristic impedance, the width of RF transmission line must be chosen depending on:

- The dielectric thickness between the TOP layer implementing RF transmission line and L2 layer implementing reference ground plane. (e.g. H1=9mil in the Figure 5-24)
- The dielectric constant of dielectric material. (e.g. Er1=4.3 in the Figure 5-24)
- The dielectric constant of coating material. (e.g. CEr=4.0 in the Figure 5-24)
- The dielectric thickness of coating material. (e.g. C1=C2=C3=1mil in the Figure 5-24)
- The ground strip separation. (e.g. D1=20mil in the Figure 5-24)
- The copper thickness of the RF transmission line. (e.g. T1=1.4mil in the Figure 5-24)

LAYER NO.	STRUCTURE	MATERIAL	THICKNESS (MIL)
		SR	f
TOP		COPPER	1.4
]		PREPREG	9
L2		COPPER	1.4
]		CORE	35
L3		COPPER	1.4
]		PREPREG	9
воттом		COPPER	1.4
		SR	ſ
FINISHED THICKNESS			60.6

Figure 5-24: Example of 50Ω Transmission Line Design for 4-Layer PCB Stack-up

6 MECHANICAL SPECIFICATIONS

6.1 PHYSICAL DIMENSIONS

Figure 6-1: Module Mechanical Outline

Table 6-1: Dimension of Mechanical Outline

Crombol	Dimension (mm)			
Symbol	Min.	Typ.	Max.	
A	1.80	1.85	1.90	
A1		1.60		
A2		0.25		
b	0.35	0.40	0.45	
D	13.90	14.00	14.10	
Е	13.90	14.00	14.10	
e		0.90		
L	0.45	0.50	0.55	
g		1.40		
aaa		0.10		
bbb		0.10		
ddd		0.10		
eee		0.10		

6.2 Marking Information

Figure 6-2: EZ2625 Markings

Table 6-2: EZ2625 Markings

8		
Marking	Description	
EZ2625	Model name	
EZ2625-HLB-01	Hardware version	
1850NT	Date code and manufacturer code	
A01 G01 E01 L01	Product identification	

7 REFERENCE PCB DESIGN

7.1 PCB LAND PATTERN DESIGN

Unit: mm

TOP VIEW

Figure 7-1: Recommended PCB Land Design

7.2 SOLDER MASK DESIGN

Unit: mm

TOP VIEW

Figure 7-2: Recommended Solder Mask Design

8 RECOMMENDED REFLOW PROFILE

8.1 REFLOW PROFILE

Figure 8-1: Reflow Profile

Table 8-1: Temperature Value for Reflow Profile

Parameter	Value
Preheat Ramp-up Rate	125°C to 217°C < 1°C /sec
Time at T > 217°C	60 sec to 90 sec
Peak Temperature	245°C
Cooling Ramp-down Rate	<1°C / sec
Time From 25°C to peak	240 to 360 sec

Note 1: The peak temperature of reflow profile should be less than 250°C.

Note 2: If the PCB is required double-sided soldering, it is strongly suggested that the module is mounted at the second side of PCB after completing soldering profile for the first side of PCB.

8.2 REWORK GUIDELINE

Reference guideline was listed below for de-mount process from PCB.

- PCBA should be baked for 24 hours at 125°C.
- De-mount EZ2625 module from PCB with hot air gun. Heat air should be less than 380 °C, 30 seconds.

9 TAPE AND REEL INFORMATION

Figure 9-1: Tape and Reel Dimension

10 HANDLING MOISTURE SENSITIVITY

10.1 Moisture Sensitivity Level

Follow the latest IPC/JEDEC J-STD-020 standard revision for moisture sensitivity qualification. EZ2625 series is classified as MSL3.

Table 10-1: Moisture Sensitivity Level

Moisture Sensitivity Level	Condition	Floor Life
1	≦30°C and 85%RH	Unlimited
2	≦30°C and 60%RH	1 year
3	≦30°C and 60%RH	168 hours
4	≦30°C and 60%RH	72 hours
5	≦30°C and 60%RH	48 hours
6	≦30°C and 60%RH	6 hours

10.2 STORAGE CONDITION

EZ2625 series, as delivered in tape-and-reel carrier, must be stored in a vacuum-sealed bag. Shelf life is 12 months. This is required an ambient temperature less than $40\,^{\circ}$ C and relative humidity less than 90%.

10.3 Out-of-Bang Duration

EZ2625 series can be exposed for 168 hours to an environment with a maximum temperature of 30°C and a maximum relative humidity of 60%.

10.4 BAKING REQUIREMENT

After bag is opened, module that will be subjected to reflow solder or other high temperature process must be

- Mounted within: 168 hours of factory condition ≤30°C/60%RH,
- Stored at $\leq 30^{\circ}$ C/10%RH.

Module require bake before mounting, if Humidity Indicator Card reads > 10% when read at 23±5°C. If baking is required, following baking condition should be used.

- 24 hours at 125 ±5°C.