

PATENT ABSTRACTS OF JAPAN

(11) Publication number : **05-200858**
(43) Date of publication of application : **10.08.1993**

(51) Int.Cl.

B29C 55/02

C08J 5/18

// **B29K 25:00**

B29L 7:00

C08L 25:00

(21) Application number : **04-040344**

(71) Applicant : **TOYOB CO LTD**

(22) Date of filing : **29.01.1992**

(72) Inventor : **ITO KATSUYA
HAMANO AKITO**

(54) SYNDIOTACTIC POLYSTYRENIC FILM

(57) Abstract:

PURPOSE: To provide a base material excellent not only in electric characteristics, transparency and mechanical strength required for industrial products, packing, a magnetic tape or a condenser but also in flatness, printability and heat resistance by optimizing the stretching condition of a polystyrene film having a syndiotactic structure.
CONSTITUTION: A film formed by stretching a polystyrenic polymer mainly composed of a syndiotactic structure at least in a uniaxial direction is characterized by that the refractive index Nz in the thickness direction of the film is 1.6200 or more and the heat shrinkage factor thereof at 150°C is below 3%.

LEGAL STATUS

[Date of request for examination] **30.03.1995**

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] **2546222**

[Date of registration] **08.08.1996**

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-200858

(43)公開日 平成5年(1993)8月10日

(51)Int.Cl ⁵	識別記号	序内整理番号	F 1	技術表示箇所
B 29 C 55/02		7258-4F		
C 08 J 5/18	C E T	9267-4F		
// B 29 K 25:00				
B 29 L 7:00		4F		
C 08 L 25:00				

審査請求 未請求 請求項の数 1(全 7 頁)

(21)出願番号	特願平4-40344	(71)出願人	000003160 東洋紡績株式会社 大阪府大阪市北区堂島浜2丁目2番8号
(22)出願日	平成4年(1992)1月29日	(72)発明者	伊藤 勝也 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内
		(72)発明者	濱野 明人 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内

(54)【発明の名称】 シンジオタクティックポリスチレン系フィルム

(57)【要約】

【目的】 本発明のシンジオタクティック構造ポリスチレンフィルムは延伸条件を最適化することにより工業用、包装用、磁気テープ用、コンデンサ用などに要求される電気的特性、透明性や機械的強度のみならず平面性、印刷性、耐熱性などに優れた基材を提供せんとするものである。

【構成】 主としてシンジオタクティック構造からなるポリスチレン系重合体における少なくとも1軸方向に延伸された、フィルムの厚み方向の屈折率Nzが1.6200以上でありかつ150°Cの熱収縮率が3%未満であることを特徴とするフィルム。

1

【特許請求の範囲】

【請求項1】主としてシンジオタクティック構造からなるポリスチレン系重合体における少なくとも1軸方向に延伸された、フィルムの厚み方向の屈折率N_zが1.6200以上でありかつ150°Cの熱収縮率が3%未満であることを特徴とするシンジオタクティックポリスチレン系フィルム。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、包装材料、工業用材料、磁気テープ、コンデンサなどに用いる際、平面性、印刷性、耐熱性に優れた、シンジオタクティック構造を有するスチレン系樹脂からなるフィルムに関する。

【0002】

【従来の技術】近年、シンジオタクティック構造を有するスチレン系重合体が開発され（特開昭62-104818号公報）、またこれらを用いた延伸フィルムの開発も行われている（特開平1-110122号、同1-168709号、同1-182346号、同2-279731号、同3-74437号、同3-109453号、同3-99828号、同3-124427号、同3-131644号など）これらのシンジオタクティックポリスチレン系フィルムは機械的特性、透明性、耐薬品性、誘電損失や誘電率などの電気的特性が優れているため、各種工業用、包装用フィルムに展開されることが期待されている。しかしこれまでのシンジオタクティックポリスチレン系フィルムは、平面性、印刷性、耐熱性の点で満足のいくものではなかったため、非常に限られた用途展開しか行われなかつた。

【0003】

【発明が解決しようとする課題】本発明は、前期の欠点、即ち、平面性、印刷性、耐熱性に優れかつ機械的、電気的特性、透明性、耐薬品性の満足する基材を提供せんとするものである。

【0004】

【課題を解決するための手段】すなわちこれらを解決するための手段としての本発明の主旨は、主としてシンジオタクティック構造を有するポリスチレン系重合体において少なくとも1軸方向に延伸され、フィルムの厚み方向の屈折率N_zが1.6200以上でありかつ150°Cの熱収縮率が3%以下であることを特徴とするフィルムに関する。本発明におけるシンジオタクティック構造を有するポリスチレンとは、立体規則性がシンジオタクティック構造すなわち、炭素-炭素結合からなる形成された主鎖に対して側鎖であるフェニル基や置換フェニル基が交互に反対方向に位置する立体構造を持つものである。

【0005】本発明におけるスチレン重合体は、分子量については特に制限はないが、重量平均分子量が1万以上300万以下が望ましい（特開平3-124427号

2

公報）。本発明の基材には静電密着性、易滑性、延伸性、加工適性などを向上させるためや粗面化、不透明化、空洞化、軽量化などの理由により他の樹脂、無機粒子、耐候剤、蛍光剤、紫外線吸収剤、酸化防止剤、可塑剤、相溶化剤、着色剤、帯電防止剤などを添加してもよい。これらは特開平3-124427号公報はじめこれまでに開示されている方法により、シンジオタクティックポリスチレン系フィルムのもつ特徴を著しく落とさない範囲で、ポリスチレン基材のフィルムのみならずボリ

10 エステル、ポリオレフィン、ポリアミド、ポリアクリルなどの熱可塑性樹脂フィルムに用いられた技術を用いることができる。またこれらの添加剤はシンジオタクティックポリスチレン系フィルムのもつ特徴を著しく落とさない範囲で添加する方法は限定されない。よって、重合時添加でも、重合後にマスター・バッチとして予備混練しても、また溶融押しだし時に直接投入しても構わない。こうして得た重合体混合物は、以下に例示する方法で延伸フィルムを得るが、後で述べる特性を満足するものであればここに示された方法に限定されるものではない。

20 まずシンジオタクティック構造ポリスチレンを主とする重合体混合物を好ましくは3時間以上100~150°Cで乾燥し、290~350°Cで溶融押しだしし、エアーナイフ法、水冷法、静電密着法などにより樹脂を冷却して、未延伸シートを得る。ここで用いる押出機は、特に限定されるものではなく、1軸押出機、2軸押出機でも、またペントあり、なしいずれも、またタンデム型でもシングルでも構わない。

【0006】得られた未延伸シートは少なくとも1軸に延伸する。その方法は速度差をもったロール間での延伸

30 （ロール延伸）やクリップに把持して拡げていくことによる延伸（テンター延伸）や空気圧によって拡げることによる延伸（インフレーション延伸）などいずれでも構わない。しかし、機械的特性などから考えると、最初にフィルムの流れ方向にあたる縦方向（または横方向）に延伸し、次に横方向（または縦方向）に延伸する逐次2軸延伸が好ましい。この縦、横方向の順に延伸する逐次二軸延伸を例にとって、具体的に説明するが後のフィルムの特性を満足するものであれば以下の方法に限定されるものではない。

40 【0007】まず縦延伸はロール延伸により行う。この時の延伸倍率は1.2~6.0倍、延伸温度は90~140°Cの範囲で実施することが望ましい。延伸倍率が1.2倍未満であると機械的強度が不足し、また6.0倍を超えると後の横延伸が困難になり平面性に優れたフィルムが得られない。延伸温度が90°C未満であるとシートが軟化せず延伸が困難であり、140°Cを超えると結晶化度が高くなりすぎ後の横延伸が困難になる。延伸時のシートの加熱方法は、加熱したロールでも、赤外線による加熱でも、またその他の方法でも構わない。また予熱、延伸ロールの任意の場所にガイドロールまたは二

50 50 予熱、延伸ロールの任意の場所にガイドロールまたは二

ップロールを用いてもよい。続く横延伸においてはテンターレンジ延伸が望ましい。また縦延伸は2回以上続けて行うことが後に述べる特性を満足するためにも好ましい。この時の延伸倍率は1.2~6.0倍、延伸温度は100~140°Cの範囲で実施するのが望ましい。延伸倍率が1.2倍未満であると機械的強度が不足し、また6.0倍を越えると破断が生じやすくなる。延伸温度が100°C未満であるとシートが軟化せず延伸が困難であり、140°Cを越えると結晶化度が高くなりすぎ破断が生じやすくなる。さらに横延伸終了後に縦または横方向に1回以上再延伸することによりその方向の機械的強度を高くすることも可能である。また先に横延伸をした後に縦延伸をする方法(たとえば特開昭64-5819号、特開平1-188322号公報など)やフィルムの端部と中央部の物性差をなくすための方法(たとえば特開平3-158225号公報など)を用いることもできる。

【0008】以上の条件に加えて本発明において特に重要な点は、少なくとも1回は95~115°Cの範囲で延伸速度10000%/分、好ましくは15000%/分、さらに好ましくは20000%/分以上で延伸する工程を含むことである。延伸速度が10000%/分未満の場合フィルムの厚み方向の屈折率Nzを1.6200以上とすることが困難になり、機械的強度や特に平面性に優れたフィルムを得ることが困難になる。特にこのシンジオタクティックポリスチレン系フィルムは延伸時にフィルムにかかる応力がポリエチレンテレフタレートなどに比べて低くなるため、平面性を良好にするためには延伸時の温度、速度などの条件が重要になる。この条件を満たせば延伸方法は特に限定されるものではないが延伸速度が高くするため、ロール延伸法による縦延伸時にこの条件を満たすようにし、好ましくはこの縦延伸を2回以上続けて行うことが重要である。

【0009】また本発明においては、延伸終了後に170~270°C、好ましくは200~270°Cにおいて熱処理する。この時縦および/または横方向に2%以上緩和させながら熱処理することにより、より熱収縮率の小さいものが得られる。このようにして得られたフィルムは厚み方向の屈折率が1.6200以上、好ましくは1.6210以上、さらに好ましくは1.6220以上、より好ましくは1.6230以上でなくてはならない。シンジオタクティックポリスチレンは側鎖にベンゼン環があるため、分子の配向度が高くなるほどフィルムの厚み方向の屈折率は上がる。よって1.6200未満では特に平面性、印刷性を良好にすることはできない。

【0010】また熱収縮率は3%好ましくは好ましくは2%、さらに好ましくは1%未満であることが好ましい。3%以上では、乾熱転写、OHP、グラビア印刷などで印刷のピッチずれやコピー機、転写機内でつまりが生じ、好ましくない。このようにして得られたフィルムは平面性、印刷性、耐熱性に優れかつ機械的、電気的特

性、透明性、耐薬品性の満足するため、工業用、包装用、磁気テープ、コンデンサ用テープ、金属化用フィルムなどあらゆる用途に展開できる。特にこれらの用途に展開するためにこれまでに開示されているポリエステル、ポリオレフィンその他のフィルムの知見を応用することにより、本発明のシンジオタクティックポリスチレン系フィルムの特徴をあわせて持つ、きわめて付加価値の高いフィルムが得られることがわかった。たとえば工業用においては、制電性フィルム(たとえば特公昭64-10136号公報)、紫外線吸収フィルム(たとえば特開昭59-98109号、同60-54865号公報)、高透明フィルム(たとえば特開昭60-85925号公報)、粗面化フィルム(たとえば特公昭49-49180号、同54-44031号公報)、空洞含有フィルム(たとえば特開昭49-134755号公報)、白色フィルム(たとえば特開昭62-241928号公報)、透明導電性フィルム(たとえば特開平2-63736号公報)など、包装用においては熱接着性フィルム(たとえば特公昭52-30028号公報)、熱収縮性フィルム(たとえば特公昭57-31975号公報)、易切断性フィルム(たとえば特公昭55-19167号公報)、易印刷性フィルム(たとえば特開昭63-286346号公報)、防暴性フィルム(たとえば特公平1-14252号公報)、金属蒸着フィルム(たとえば特公昭62-54671号公報)、ひねり包装フィルム(たとえば特公昭56-52748号公報)など、磁気テープ用(たとえば特開昭61-112629号、同61-170518号、同62-196121号公報)、コンデンサ用(たとえば特公平1-28493号、同2-39855号公報など)などの技術が応用できる。

【0011】さらにフィルム表面に塗布層を設けることによって、インキやコーティング剤などの塗れ性や接着性が改良される(たとえば特開昭60-19522号公報)。該塗布層を構成する化合物としては、ポリエステル系樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリル系樹脂、ポリスチレン系樹脂、オレフィン系樹脂、ゴム系樹脂などの接着性を向上させる手段として開示させている化合物が適用可能である。また塗布層を設ける方法としては、グラビアコート方式、キスコート方式、ディップ方式、スプレイコート方式、カーテンコート方式、エナノイフコート方式、ブレードコート方式、リバースロールコート方式など通常用いられている方法が適用できる。塗布する段階としては、配向処理を行う前の混合重合体物表面にあらかじめ塗布する方法、1軸方向に配向した空洞含有フィルム表面に塗布し、それを更に直角方向に配向させる方法、配向処理の終了した空洞含有フィルム表面に塗布する方法などのいずれの方法も可能である。本発明においては、必要に応じて表層と中心層を積層したいわゆる複合フィルムとしても構わない。その方法は特に限定されるものではない。しか

し生産性を考慮すると、表層と中心層の原料は別々の押出機から押し出し、1つのダイスに導き未延伸シートを得た後、少なくとも1軸に配向させる、いわゆる共押出法による積層がもっとも好ましい。これらはこれまで例示した添加物などを表層かつ／または中心層に添加してもよい。また表層と中心層の添加剤の量かつ／または種類をそれぞれ変えることによりフィルムの特性を変えることも可能である。

【0012】

【作用】本発明において、主としてシンジオタクティック構造を持つポリスチレンを用いるのは、平面性、印刷性、耐熱性に優れかつ機械的、電気的特性、透明性、耐薬品性の満足する基材を提供せんとするためである。本発明において、該重合体を少なくとも一軸に配向するのは、機械的強度や平面性、耐熱性を良好にするためである。特に本発明において、フィルムの厚み方向の屈折率N_zを1.6200以上にするのは平面性、機械的強度を良好にするためであり、熱収縮率を3%未満にするのは耐熱性を良好にするためである。かくして得られたシンジオタクティック構造ポリスチレンフィルムは工業用、包装用、磁気テープ用、コンデンサ用などに要求される電気的特性、透明性や機械的強度に優れ、かつ、平面性、印刷性、耐熱性などに優れるものとなった。

【0013】

【実施例】次に本発明の実施例および比較例を示す。本発明に用いる測定・評価方法を以下に示す。

1) フィルムの厚み方向の屈折率N_z

アタゴ光学社製アッペ屈折計を用いて、接眼レンズに偏光板を取り付け、偏光板の向きおよびフィルムの向きを厚み方向に合わせて屈折率を測定した。

【0014】2) 熱収縮率

フィルムを幅10mm、長さ250mmとり、200mm間隔で印をつけ5gの一定張力下で固定し印の間隔Aを測る。続いて、無荷重で30分間、150°C空気中のオープンにいれた後の印の間隔Bを求め、以下の式により熱収縮率とした。

$$(A - B) / A \times 100 (\%)$$

【0015】3) 初期弾性率

フィルムを幅10mm、長さ間隔40mmにおいて引っ張り試験機（島津製作所製オートグラフ）に取付け、200mm/分の速度で引っ張り、立ち上がりの伸びに対する強度をkg/mm²単位で求めた。

【0016】4) 光線透過率

JIS-K6714に準じ、ポイック積分球式H.T.Rメーター（日本精密光学社製）を用い、フィルムの光線透過率を測定した。

【0017】5) ヘイズ

JIS-K6714に準じ、ポイック積分球式H.T.Rメーター（日本精密光学社製）を用い、フィルムのヘイズを測定した。

【0018】6) 表面粗さ

JIS-B0601-1982に準じ、サーフコム300A型表面粗さ計（東京精密社製）を用い、中心線平均厚さ、最大粗さを測定した。

【0019】7) フィルムの加工性

フィルムを細幅にスリットしたテープ状ロールを金属ガイドロールにこすりつけて高速、長時間走行させると、一定の供給張力に対してガイドロール掠過後のテープ張力の大小およびガイドロール表面に発生する白粉量の多少をそれぞれ5段階に評価し次のランク付けで表す。

(イ) 滑り性

- 1級・・・張力大（擦り傷多い）
- 2級・・・張力やや大（擦り傷かなり多い）
- 3級・・・張力中（擦り傷ややあり）
- 4級・・・張力やや小（擦り傷ほとんどなし）
- 5級・・・張力小（擦り傷まったくなし）

(ロ) 耐摩耗性

- 1級・・・白粉発生非常に多い
- 2級・・・白粉発生多い
- 3級・・・白粉発生ややあり
- 4級・・・白粉発生ほとんどなし
- 5級・・・白粉発生なし

【0020】8) 耐久走行性能

図1に示した装置を用い、23°C、相対湿度65°Cの空気下にフィルムの粗面側の面のステンレス製ピンとの摩擦係数で評価する。

【0021】9) 電磁変換特性

得られたフィルムを磁気塗工し、0.5インチ幅のビデオテープを得た後、S/Nの測定には、（株）シバソク製TG-7/1形NTSC-TV試験信号発生器および925D/1形NTSCカラーテレビノイズ測定器を用い、標準テープに対するクロマS/Nを3段階に評価し、次のランク付けで表す。

- 1級・・・-1dB以下
- 2級・・・-1dB～+1dB
- 3級・・・+1dB以上

【0022】実施例1

重量平均分子量43万の主としてシンジオタクティック構造をとるポリスチレンに平均粒径0.3μmのシリカを1000ppm添加したものをスクリュー径30mmの2軸押出機で310°CでT-ダイより押し出した。この溶融押し出したシートを静電印荷法により55°Cの冷却ロールに密着させ、冷却固化させることにより120μmの実質的に非晶質で無配向のシートを得た。このシートをロール周速度を変えることにより約95°Cで予熱した後すぐに縦方向に約103°Cで1.4倍に延伸し続けて約106°Cで縦方向に2.15倍延伸した。この時の延伸速度は約3万%/分であった。続いてテンターで110°Cで予熱した後すぐに横方向に120°Cで3.

3倍延伸し、次に5%縦、横方向にリラックスさせながら 260°C で10秒間熱処理したところ $12\ \mu\text{m}$ の透明性に優れたフィルムが得られた。得られたフィルムをグラビア印刷したところ、印刷のヌケやゆがみ、ピッチずれなどは起らなかった。

【0023】比較例1

実施例1において縦延伸の延伸速度を5000%/分にした以外はまったく同様の方法において、2軸延伸フィルムを得、グラビア印刷を行った。 N_z が1.6200に満たないため平面性が不良で、印刷のヌケやゆがみが生じ、印刷性が不良であった。

【0024】比較例2

実施例1において熱処理の温度を 140°C に変更した以外はまったく同様の方法において2軸延伸フィルムを得、グラビア印刷を行った。熱収縮率が大きいため特に印刷のピッチずれが起ってしまい印刷性が不良であった。

【0025】実施例2

実施例1において最終フィルムの厚みが $188\ \mu\text{m}$ になるようにした以外はまったく同様の方法において2軸延伸フィルムを得た。このフィルムを $5\times5\text{ m}$ の大きさに切り、平面なガラス板の上に広げたところ、フィルム全体をガラス板に密着させることができた。平面性に優れたフィルムとなった。またこのフィルムをA4版の大きさに切り、OHPコピーをしたところ平面性、耐熱性に優れるため、複写機の中に詰まることなくコピーできた。たとえばポリエチレンテレフタレートに比べ延伸応力が低くなり、条件を最適化することにより平面性を良好にしやすいことがわかった。

【0026】比較例3、4

それぞれ比較例1、2において最終フィルムの厚みが $188\ \mu\text{m}$ になるようにした以外はまったく同様の方法において2軸延伸フィルムを得た。このフィルムを実施例2と同様の試験をしたところ、厚み方向の N_z が1.6200未満の場合、平面性に劣るためフィルム全面のうち約5%がガラス板に密着させることができなかった。またOHPコピーではフィルム送りが不良であった。ま

た熱処理温度が低い場合、OHPコピーの際に複写機内の高温のかかる部分でつまりが生じた。

【0027】実施例3

実施例1において、添加物として平均粒径 $0.3\ \mu\text{m}$ のシリコン粒子を $1000\ \text{ppm}$ 使用し、最終フィルムの厚みが $3\ \mu\text{m}$ になるようにした以外はまったく同様の方法において2軸延伸フィルムを得た。このフィルムにアルミニウムを真空中で蒸着してコンデンサを作ったところ常温、高温での誘電特性 $\tan\delta$ 、絶縁破壊電圧などが良好であった。特に $\tan\delta$ はポリエチレンテレフタレートフィルムよりも低くて良好である。また厚みムラが少ないため場所による誘電特性や絶縁破壊電圧の差がほとんどなかった。

【0028】実施例4

実施例1において、添加物として球状シリカを $2500\ \text{ppm}$ 使用し、最終フィルムの厚みが $9\ \mu\text{m}$ になるようにした以外はまったく同様の方法において2軸延伸フィルムを得た。このフィルムは滑り性、耐摩耗性および耐久走行性が良好であった。またニッケルーコバルトで磁性層をフィルム上に設け電磁変換特性を調べたところ良好であった。

【0029】

【発明の効果】本発明のシンジオタクティック構造ポリスチレンフィルムは工業用、包装用、磁気テープ用、コンデンサ用などに要求される電気的特性、透明性や機械的強度に優れ、かつ、延伸条件の最適化により平面性、印刷性、耐熱性などに優れるものとなった。

【0030】

【図面の簡単な説明】

30 図1はフィルムの耐久性、走行性を測定する装置であり、1はクランク、2、4、6、8はフリーロール、3、7は張力検出装置、9は荷重、5は市販VTRガイドを表す。

【0031】

【図1】

【0032】

【表1】

	厚み (μm)	屈折率 Nz (-)	熱収縮率 (%)	初期弾性率 縦/横 (kg/mm ³)	光線透過率 (%)	ヘイズ (%)
実施例1	12.0±0.2	1.6230	0.4	430/410	93	0.5
比較例1	12.4±2.7	1.6181	0.6	400/410	93	0.4
比較例2	12.2±0.3	1.6120	5.1	450/420	93	0.5
	R _a (μm)	R _t (μm)	印刷性			
			対、ゆがみ	ピッチずれ		
実施例1	0.010	0.11	なし	なし		
比較例1	0.018	0.17	あり	なし		
比較例2	0.016	0.16	なし	あり		

【0033】

* * 【表2】

	厚み (μm)	屈折率 Nz (-)	熱収縮率 (%)	初期弾性率 縦/横 (kg/mm ³)	光線透過率 (%)	ヘイズ (%)
実施例2	188±1	1.6235	0.3	435/410	91	0.7
比較例3	188±25	1.6178	0.7	400/410	91	0.6
比較例4	188±2	1.6127	5.1	460/420	91	0.5
	R _a (μm)	R _t (μm)	平面性	コピー内で のトラブル		
実施例2	0.011	0.10	良	なし		
比較例3	0.020	0.26	不良	あり		
比較例4	0.014	0.16	良	あり		

【0034】

* * 【表3】

	厚み (μm)	屈折率 Nz (-)	熱収縮率 (%)	初期弾性率 縦/横 (kg/mm ³)	光線透過率 (%)	ヘイズ (%)	R _a (μm)	R _t (μm)
実施例3	3.0±0.1	1.6241	0.3	430/410	94	0.3	0.011	0.10
実施例4	8.0±0.3	1.6239	0.4	430/410	93	0.3	0.020	0.26

【0035】

【表4】

実施例3		
$\tan\delta$	20°C (-)	0.002
	150°C (-)	0.002
絶縁破壊電圧 (kV/mm)		322

* [0036]
[表5]

*

実施例4		
滑り性		5級
耐摩耗性		5級
耐久走行性 μ_{ks}/μ_{kd}	(初期)	0.19/0.19
	(200回)	0.24/0.24
電磁変換特性		3級

【図1】

