

BOOSTING IN COX REGRESSION

a comparison among the classical statistics-based, the likelihood-based and the model-based approaches

Created by Yue Xiong | Data Science

OUTLINE

- Introduction to the COX regression model
 - Background (Survival Analysis)
 - The COX model
 - FGD Boosting
- Application with the three approaches
 - Flexible boosting with the <u>AFT model</u>
 - mboost: model-based boosting in the COX model
 - CoxBoost: offset-based boosting in the COX model
- Comparison
- Allowing for mandatory variables
- Incorporating the pathway information
- Application with the mlr3 learner

INTRODUCTION TO THE COX REGRESSION MODEL (10MIN)

WHAT IS SURVIVAL ANALYSIS

THE COX MODEL

FGD BOOSTING

WHAT IS SURVIVAL ANALYSIS

- statistics for analyzing the expected duration of time until one or more events of interest happen
 - e.g. death, failure in a mechanical system
- term
 - event
 - time: t
 - lacktriangle censoring observation: δ (missing data)
 - <u>right</u>-censoring
 - <u>left</u>-censoring

THE COX MODEL

- <u>intuition</u>: for quantitive predictor variables, we use the COX PH hazard regression model
- hazard function λ
 - def: event rate at time t conditional or survival until time t or later
 - consider the time-to-event data (t, x, δ)
 - the hazard function $\lambda(t|X) = \lambda_0(t)exp(X^T\beta) = \lambda_0(t)exp(\beta_1X_{i1} + \ldots + \beta_pX_{ip})$
- estimator for β
 - by maximizing the partial log-likelihood (MPLE)
 - $pl(\beta) = \sum_{i=1}^{n} \delta_i(X_i^T)\beta \log(\sum_{l \in R_i} exp\{(X_l^T\beta)\}$

FGD BOOSTING

- intuition: at each iteration, a weak learner is fitted on the modified version of data with the goal of minimizing the empirical loss function
- motivation: we will use boosting techniques when
 - the number of covariates is large or
 - it is hard to directly derive the partial log-likelihood

FGD BOOSTING

semi-parametric boosting

• given: L(y, F(X)) is a generic loss function and F(x) is a statistical model.

• goal: to estimate F(X) by iteratively updating its value through a base learner h(y,X)

FGD BOOSTING

semi-parametric boosting

- algorithm
 - 1. initialize the estimate, e.g., $\hat{F}(X) = constant$;
 - 2. compute the pseudo-residual vector, $u = -\frac{\partial L(y,F(X))}{\partial F(X)}$, where $F(X) = \hat{F}(X)$;
 - 3. compute the update by:
 - 1. fit the base learner to the pseudo-residual vector, $\hat{h}(u, X)$;
 - 2. penalize the value, $\hat{f}(X) = v\hat{h}(u, X)$;
 - 4. update the estimate, $\hat{F}(X) = \hat{F}(X) + \hat{f}(X)$

FGD BOOSTING

parametric boosting

- given: F(X) is a parameterized class of functions, $F(X, \beta)$.
- ullet the update process involves the estimate of the parameter, i.e. the regression coefficient eta

FGD BOOSTING

parametric boosting

- algorithm
 - 1. initialize the estimate, e.g., $\hat{\beta} = (0, \dots, 0)$;
 - 2. compute the pseudo-residual vector, $u = -\frac{\partial L(y, F(X, \beta))}{\partial F(X, \beta)}$, where $\beta = \hat{\beta}$;
 - 3. compute the possible updates by:
 - 1. fit the base learner to the pseudo-residual vector, $\hat{h}(u, X_j)$;
 - 2. penalize the value, $\hat{b}_j = v\hat{h}(u, X_j)$;
 - 4. select the best update j^*
 - 5. update the estimate, $\hat{\beta}_{j^*} = \hat{\beta}_{j^*} + \hat{b}_j$

FGD BOOSTING

boosting with the <u>regularized</u> empirical risk function

- ullet penalize over the empirical risk function by adding $\lambda \cdot J(f)$
 - the complexity control parameter λ
 - the complexity penalty J(f)
- algorithm

??

APPLICATIONS WITH THE THREE APPROACHES (6MIN)

$$log(T) = f(X) + \sigma \cdot w$$

OBJECTIVE: TO FIT THE ACCELARATED FAILURE TIME MODEL

$$log(T) = f(X) + \sigma \cdot w$$

1. f is an unknown predictor function of log(T),

OBJECTIVE: TO FIT THE ACCELARATED FAILURE TIME MODEL

$$log(T) = f(X) + \sigma \cdot w$$

1. f is an unknown <u>predictor function</u> of log(T), e.g. linear or additive function of covariates X;

$$log(T) = f(X) + \sigma \cdot w$$

- 1. f is an unknown <u>predictor function</u> of log(T), e.g. linear or additive function of covariates X;
- 2. σ is an unknown <u>scale parameter</u>

$$log(T) = f(X) + \sigma \cdot w$$

- 1. f is an unknown <u>predictor function</u> of log(T), e.g. linear or additive function of covariates X;
- 2. σ is an unknown <u>scale parameter</u> which controls the amount of noise added to f;

$$log(T) = f(X) + \sigma \cdot w$$

- 1. f is an unknown <u>predictor function</u> of log(T), e.g. linear or additive function of covariates X;
- 2. σ is an unknown <u>scale parameter</u> which controls the amount of noise added to f;
- 3. w is a noise variable

$$log(T) = f(X) + \sigma \cdot w$$

- 1. f is an unknown <u>predictor function</u> of log(T), e.g. linear or additive function of covariates X;
- 2. σ is an unknown <u>scale parameter</u> which controls the amount of noise added to f;
- 3. w is a <u>noise variable</u> whose distribution function determines the distribution form of survival time T.

$$log(T) = f(X) + \sigma \cdot w$$

- 1. f is an unknown <u>predictor function</u> of log(T), e.g. linear or additive function of covariates X;
- 2. σ is an unknown <u>scale parameter</u> which controls the amount of noise added to f;
- 3. w is a <u>noise variable</u> whose distribution function determines the distribution form of survival time T.
- * If fully specified, we refer to it as a <u>parametric</u> AFT model.

$$log(T) = f(X) + \sigma \cdot w$$

- 1. f is an unknown <u>predictor function</u> of log(T), e.g. linear or additive function of covariates X;
- 2. σ is an unknown <u>scale parameter</u> which controls the amount of noise added to f;
- 3. w is a <u>noise variable</u> whose distribution function determines the distribution form of survival time T.
- * If fully specified, we refer to it as a <u>parametric</u> AFT model.
- * Otherwise, it is named a <u>semi-parametric</u> AFT model

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

Similarly,

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

Similarly,

1. Initialize with f

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

Similarly,

- 1. Initialize with f
- 2. Compute the negative gradient vector <u>predictor function</u> of log(T);

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

Similarly,

- 1. Initialize with f
- 2. Compute the negative gradient vector <u>predictor function</u> of log(T);
- 3. Fit the negative gradient vector to each covariate of \boldsymbol{X} seperately by \boldsymbol{p} times

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

- 1. Initialize with f
- 2. Compute the negative gradient vector <u>predictor function</u> of log(T);
- 3. Fit the negative gradient vector to each covariate of X seperately by p times using a simple linear regression estimator;

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

- 1. Initialize with f
- 2. Compute the negative gradient vector <u>predictor function</u> of log(T);
- 3. Fit the negative gradient vector to each covariate of X seperately by p times using a simple linear regression estimator;
- 4. Select the best-fitted component of X,

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

- 1. Initialize with f
- 2. Compute the negative gradient vector <u>predictor function</u> of log(T);
- 3. Fit the negative gradient vector to each covariate of X seperately by p times using a simple linear regression estimator;
- 4. Select the best-fitted component of X, according to a pre-specified goodness of fit criterion;

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

- 1. Initialize with f
- 2. Compute the negative gradient vector <u>predictor function</u> of log(T);
- 3. Fit the negative gradient vector to each covariate of X seperately by p times using a simple linear regression estimator;
- 4. Select the best-fitted component of X, according to a pre-specified goodness of fit criterion;
- 5. Update with the real-valued step length factor *v*

FGD BOOSTING WITH THE SEMI-PARAMETRIC AFT MODEL

- 1. Initialize with f
- 2. Compute the negative gradient vector <u>predictor function</u> of log(T);
- 3. Fit the negative gradient vector to each covariate of X seperately by p times using a simple linear regression estimator;
- 4. Select the best-fitted component of X, according to a pre-specified goodness of fit criterion;
- 5. Update with the real-valued step length factor v and iterate m_{stop} times.

FGD BOOSTING WITH THE PARAMETRIC AFT MODEL

FGD BOOSTING WITH THE PARAMETRIC AFT MODEL

Apart from f , we are also estimating for the scale parameter σ

FGD BOOSTING WITH THE PARAMETRIC AFT MODEL

Apart from f , we are also estimating for the scale parameter σ

model-based approach where the loss function $L(\cdot)$ can be specified

model-based approach where the loss function $L(\cdot)$ can be specified

suppose we are using the L2-loss function,

model-based approach where the loss function $L(\cdot)$ can be specified

suppose we are using the L2-loss function, then the estimator for β is $(X^TX)^{-1}X^Tu$

model-based approach where the loss function $L(\cdot)$ can be specified

suppose we are using the L2-loss function, then the estimator for β is $(X^TX)^{-1}X^Tu$

e.g. *glmboost*

model-based approach where the loss function $L(\cdot)$ can be specified

suppose we are using the L2-loss function, then the estimator for β is $(X^TX)^{-1}X^Tu$

e.g. glmboost

algorithm

model-based approach where the loss function $L(\cdot)$ can be specified

suppose we are using the L2-loss function, then the estimator for β is $(X^TX)^{-1}X^Tu$

e.g. *glmboost*

algorithm (<u>initialize</u>,

model-based approach where the loss function $L(\cdot)$ can be specified

suppose we are using the L2-loss function, then the estimator for β is $(X^TX)^{-1}X^Tu$

e.g. *glmboost*

algorithm (<u>initialize</u>, <u>compute and fit</u>,

model-based approach where the loss function $L(\cdot)$ can be specified

suppose we are using the L2-loss function, then the estimator for β is $(X^TX)^{-1}X^Tu$

e.g. glmboost

algorithm (<u>initialize</u>, <u>compute and fit</u>, <u>select the best update</u>,

model-based approach where the loss function $L(\cdot)$ can be specified

suppose we are using the L2-loss function, then the estimator for β is $(X^TX)^{-1}X^Tu$

e.g. glmboost

algorithm (<u>initialize</u>, <u>compute and fit</u>, <u>select the best update</u>, <u>update</u> the estimate)

offset-based approach and derive the penalized MPLE

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in penalized log-likelihood estimation

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in <u>penalized log-likelihood estimation</u>

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in <u>penalized log-likelihood estimation</u>

e.g. add the <u>L2-penalty</u>

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in penalized log-likelihood estimation

e.g. add the <u>L2-penalty</u>

$$pl_{pen}(\beta) = pl(\beta) + \lambda \|\beta\|_{2}^{2} = pl(\beta) - 0.5\lambda \beta^{T} P\beta$$

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in <u>penalized log-likelihood estimation</u>

e.g. add the <u>L2-penalty</u>

$$pl_{pen}(\beta) = pl(\beta) + \lambda \|\beta\|_2^2 = pl(\beta) - 0.5\lambda \beta^T P\beta$$

an offset term $\hat{\eta} = X^T \hat{\beta}$ is added to the above log-likelihood to save the iterative updates of the parameter estimate

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in <u>penalized log-likelihood estimation</u>

e.g. add the <u>L2-penalty</u>

$$pl_{pen}(\beta) = pl(\beta) + \lambda \|\beta\|_2^2 = pl(\beta) - 0.5\lambda \beta^T P\beta$$

an offset term $\hat{\eta}=X^T\hat{\beta}$ is added to the above log-likelihood to save the iterative updates of the parameter estimate

algorithm

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in <u>penalized log-likelihood estimation</u>

e.g. add the <u>L2-penalty</u>

$$pl_{pen}(\beta) = pl(\beta) + \lambda \|\beta\|_2^2 = pl(\beta) - 0.5\lambda \beta^T P\beta$$

an offset term $\hat{\eta}=X^T\hat{\beta}$ is added to the above log-likelihood to save the iterative updates of the parameter estimate

algorithm (initialize,

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in <u>penalized log-likelihood estimation</u>

e.g. add the <u>L2-penalty</u>

$$pl_{pen}(\beta) = pl(\beta) + \lambda ||\beta||_2^2 = pl(\beta) - 0.5\lambda \beta^T P\beta$$

an offset term $\hat{\eta} = X^T \hat{\beta}$ is added to the above log-likelihood to save the iterative updates of the parameter estimate

algorithm (initialize, compute updates with the penalized MPLE and fit,

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in <u>penalized log-likelihood estimation</u>

e.g. add the <u>L2-penalty</u>

$$pl_{pen}(\beta) = pl(\beta) + \lambda ||\beta||_2^2 = pl(\beta) - 0.5\lambda \beta^T P\beta$$

an offset term $\hat{\eta} = X^T \hat{\beta}$ is added to the above log-likelihood to save the iterative updates of the parameter estimate

algorithm (<u>initialize</u>, <u>compute updates with the penalized MPLE and fit</u>, <u>select the best update</u>,

offset-based approach and derive the penalized MPLE

in each boosting step, the previous step are incorporated as an offset in <u>penalized log-likelihood estimation</u>

e.g. add the <u>L2-penalty</u>

$$pl_{pen}(\beta) = pl(\beta) + \lambda ||\beta||_2^2 = pl(\beta) - 0.5\lambda \beta^T P\beta$$

an offset term $\hat{\eta} = X^T \hat{\beta}$ is added to the above log-likelihood to save the iterative updates of the parameter estimate

algorithm (<u>initialize</u>, <u>compute updates with the penalized MPLE and fit</u>, <u>select the best update</u>, <u>update</u> the estimate)

COMPARISON (5MIN)

MBOOST

1. σ and w

MBOOST

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

1. user-defined loss function

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

- 1. user-defined loss function
- 2. MPLE

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

- 1. user-defined loss function
- 2. MPLE

COXBOOST

1. user-defined loss function

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

- 1. user-defined loss function
- 2. MPLE

- 1. user-defined loss function
- 2. restricted MPLE

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

- 1. user-defined loss function
- 2. MPLE

- 1. user-defined loss function
- 2. restricted MPLE
- 3. flexible penalty structure

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

- 1. user-defined loss function
- 2. MPLE

- 1. user-defined loss function
- 2. restricted MPLE
- 3. flexible penalty structure (variable selection,

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

- 1. user-defined loss function
- 2. MPLE

- 1. user-defined loss function
- 2. restricted MPLE
- 3. flexible penalty structure (variable selection, mandatory variables,

- 1. σ and w
- 2. semi-parametric and parametric

MBOOST

- 1. user-defined loss function
- 2. MPLE

- 1. user-defined loss function
- 2. restricted MPLE
- 3. flexible penalty structure (<u>variable selection</u>, <u>mandatory variables</u>, <u>correlated covariates</u>)

The three approaches are identical when

*f is set to be a linear regression model

- *f is set to be a linear regression model
- * $L(\cdot)$ is defined as the same loss function (e.g. L2-Loss)

- *f is set to be a linear regression model
- * $L(\cdot)$ is defined as the same loss function (e.g. L2-Loss)
- * As for the AFT model: w is not specified

- *f is set to be a linear regression model
- * $L(\cdot)$ is defined as the same loss function (e.g. L2-Loss)
- * As for the AFT model: w is not specified
- * As for the CoxBoost: λ is set to zero (no penalty is added)

The previous remark is also true for suitable values of v and λ

The previous remark is also true for suitable values of v and λ

The previous remark is also true for suitable values of v and λ

with standardized X

The previous remark is also true for suitable values of ν and λ

with standardized X

*
$$\lambda = n(1 - v)/v$$

The previous remark is also true for suitable values of ν and λ

with standardized X

*
$$\lambda = n(1 - v)/v$$

or

The previous remark is also true for suitable values of ν and λ

with standardized X

*
$$\lambda = n(1 - v)/v$$

or

$$\star \lambda = \frac{X_j^T X_j + vpl_{\beta_j}(0|\hat{\beta})}{v}$$

The <u>learning path</u> of the three different approach-based boosting procedures may differ due to different choice of which dimension should be updated at each boosting step

The <u>learning path</u> of the three different approach-based boosting procedures may <u>differ</u> due to different choice of which dimension should be updated at each boosting step

The <u>learning path</u> of the three different approach-based boosting procedures may <u>differ</u> due to different choice of which dimension should be updated at each boosting step

in the AFT model

The <u>learning path</u> of the three different approach-based boosting procedures may <u>differ</u> due to different choice of which dimension should be updated at each boosting step

in the AFT model

* extra paticipation of σ

The <u>learning path</u> of the three different approach-based boosting procedures may <u>differ</u> due to different choice of which dimension should be updated at each boosting step

in the AFT model

* extra paticipation of σ

in glmboost

The <u>learning path</u> of the three different approach-based boosting procedures may <u>differ</u> due to different choice of which dimension should be updated at each boosting step

in the AFT model

* extra paticipation of σ

in glmboost

 * the choice is based on the residuals of the regression of u on X_{j}

The <u>learning path</u> of the three different approach-based boosting procedures may <u>differ</u> due to different choice of which dimension should be updated at each boosting step

in the AFT model

* extra paticipation of σ

in glmboost

 * the choice is based on the residuals of the regression of u on X_{j}

in CoxBoost

The <u>learning path</u> of the three different approach-based boosting procedures may <u>differ</u> due to different choice of which dimension should be updated at each boosting step

in the AFT model

* extra paticipation of σ

in glmboost

 * the choice is based on the residuals of the regression of u on X_{j}

in CoxBoost

* dimension is selected with the largest decrease of the penalized partial log-likelihood function

ALLOWING FOR MANDATORY VARIABLES (3MIN)

FAVORING STRATEGY IN THE AFT MODEL

FAVORING STRATEGY IN THE AFT MODEL

* LASSO regression approach

FAVORING STRATEGY IN THE AFT MODEL

* LASSO regression approach

FAVORING STRATEGY IN glmboost

FAVORING STRATEGY IN THE AFT MODEL

* LASSO regression approach

FAVORING STRATEGY IN glmboost

* The covariates are divided into the mandatory and the non-mandatory groups

FAVORING STRATEGY IN THE AFT MODEL

* LASSO regression approach

FAVORING STRATEGY IN glmboost

- * The covariates are divided into the mandatory and the non-mandatory groups
- * the penalization with v is applied only to the non-mandatory components

FAVORING STRATEGY IN THE AFT MODEL

* LASSO regression approach

FAVORING STRATEGY IN glmboost

- * The covariates are divided into the mandatory and the non-mandatory groups
- * the penalization with v is applied only to the non-mandatory components

FAVORING STRATEGY IN CoxBoost

FAVORING STRATEGY IN THE AFT MODEL

* LASSO regression approach

FAVORING STRATEGY IN glmboost

- * The covariates are divided into the mandatory and the non-mandatory groups
- * the penalization with v is applied only to the non-mandatory components

FAVORING STRATEGY IN CoxBoost

1. configure the penalty matrix P

FAVORING STRATEGY IN THE AFT MODEL

* LASSO regression approach

FAVORING STRATEGY IN glmboost

- * The covariates are divided into the mandatory and the non-mandatory groups
- * the penalization with v is applied only to the non-mandatory components

FAVORING STRATEGY IN CoxBoost

- 1. configure the penalty matrix P
- 2. mandatory variables can be introduced by updating their parameters before each step of componentwise CoxBoost

INCORPORATING PATHWAY INFORMATION (1MIN)

* correlated microarray features

- * correlated microarray features
- * trade-off between model complexity and the representation power

- * correlated microarray features
- * trade-off between model complexity and the representation power

OBJECTIVE: DISCOURAGING THE SELECTION OF SINGLE MICROARRAY FEATURES

- * correlated microarray features
- * trade-off between model complexity and the representation power

OBJECTIVE: DISCOURAGING THE SELECTION OF SINGLE MICROARRAY FEATURES

1. increasing the penalty for a selected covariate

- * correlated microarray features
- * trade-off between model complexity and the representation power

OBJECTIVE: DISCOURAGING THE SELECTION OF SINGLE MICROARRAY FEATURES

- 1. increasing the penalty for a selected covariate
- 2. decreasing the penalty for connected covariates

APPLICATION WITH THE MLR3 LEARNER

 a^2