# SCALING OF PERCOLATION TRANSITIONS ON ERDÖS-RÉNYI NETWORKS UNDER CENTRALITY-BASED ATTACKS<sup>1</sup> PROCESOS DINÁMICOS EN REDES COMPLEJAS

Nicolás Vazquez

<sup>&</sup>lt;sup>1</sup>Almeira, N., Billoni, O. V., & Perotti, J. I. (2020). Physical Review E, 101(1), 1–9.

#### ¿POR QUÉ ELEGÍ ESTE ARTÍCULO?

#### PHYSICAL REVIEW E 101, 012306 (2020)

#### Scaling of percolation transitions on Erdös-Rényi networks under centrality-based attacks

Nahuel Almeira <sup>0,1,2,4</sup> Orlando Vito Billoni <sup>0,1,2,4</sup> and Juan Ignacio Perotti <sup>0,2</sup>
<sup>1</sup> Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba
Ciudad Universitatic, 5000 Córdoba, Argentina

<sup>2</sup>Instituto de Física Enrique Gaviola (IFEG-CONICET) Ciudad Universitaria, 5000 Córdoba, Argentina

(Received 30 July 2019; revised manuscript received 11 November 2019; published 21 January 2020)

The study of network robustness focuses on the way the overall functionality of a network is affected as some of its constituent parts fail. Failures can occur at random or be part of an intentional attack and, in general, networks behave differently against different removal strategies. Although much effort has been put on this topic, there is no unified framework to study the problem. While random failures have been mostly studied under percolation theory, targeted attacks have been recently restated in terms of network dismantling. In this work, we link these two approaches by performing a finite-size scaling analysis to four dismantling strategies over Erdös-Rényi networks: initial and recalculated high degree removal and initial and recalculated high betweenness removal. We find that the critical exponents associated with the initial attacks are consistent with the ones corresponding to random percolation. For recalculated high degree, the exponents seem to deviate from mean field, but the evidence is not conclusive. Finally, recalculated betweenness produces a very abrupt transition with a hump in the cluster size distribution near the critical point, resembling some explosive percolation processes.

DOI: 10.1103/PhysRevE.101.012306

- 1. Buen desarrollo de la metodología empleada para hacer análisis de escala a tamaño finito (FSSA) → Útil para mi trabajo de tesis doctoral.
- 2. Estudio computacional intensivo y reproducible.
- 3. Abordaje de una pregunta nueva, sobre un problema interesante.

#### INTRODUCCIÓN

¿POR QUÉ ELEGÍ ESTE ARTÍCULO?

#### ¿De qué trata el artículo?

- Estudio de robustez de una red → Cómo se ve afectada la funcionalidad frente al fallo de sus componentes.
  - Fallas aleatorias
  - Ataques dirigidos
- ► Estudio cuantitativo del efecto de 4 estrategias de ataque distintas sobre redes Erdös-Rényi (ER), basadas en diferentes métricas de centralidad.
  - Grado → Medida local
  - Betweenness → Medida global
- Estimación de exponentes críticos que caracterizan la transición de fase.

#### MOTIVACIÓN Y APLICACIONES

- ► Transiciones de percolación: Se observan en redes complejas sociales, biológicas y tecnológicas.
  - $\rightarrow$  Conectadas al estudio de la funcionalidad de sistemas asociados con redes. Fallas y ataques  $\rightarrow$  Remoción de nodos²



La efectividad de la estrategia de ataque depende de las características topológicas de la red, así como del tipo de ataque.

#### EL ARTÍCULO EN CONTEXTO

- ► Trabajos previos: *Holme et al.*<sup>3</sup>, *Wandert et al.*<sup>4</sup>.
- ▶ Se espera que las redes *homogéneas* (ER) sean robustas frente a ataques dirigidos <sup>5</sup>.
- Watts-Strogatz : Dist. de grado homogénea, pero frágil en escenario de cascada<sup>6</sup>
   → Distribución de betweenness heterogénea.
- ER tiene distribución homogénea de grado y betweenness → Se espera que el ataque dirigido no tenga un desempeño superior frente a otras estrategias.
   El artículo muestra que esto no es así → El ataque por betweenness recalculado es comparable con los mejores métodos para desmantelar redes<sup>7</sup>: "Percolación explosiva".

<sup>&</sup>lt;sup>3</sup>P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, Phys. Rev. E 65, 056109 (2002).

<sup>&</sup>lt;sup>4</sup>S. Wandelt, X. Sun, D. Feng, M. Zanin, and S. Havlin, Sci. Rep. 8, 13513 (2018).

<sup>&</sup>lt;sup>5</sup>P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda, Phys. A Stat. Mech. Its Appl. 340, 388 (2004).

<sup>&</sup>lt;sup>6</sup>Y. Xia, J. Fan, and D. Hill, Phys. A Stat. Mech. Its Appl. 389, 1281 (2010).

<sup>&</sup>lt;sup>7</sup>A. Braunstein, L. Dall'Asta, G. Semerjian, and L. Zdeborová, Proc. Natl. Acad. Sci. 113, 12368 (2016).

#### CONCEPTOS CLAVE

#### (Muy) breve reseña sobre percolación<sup>8</sup>

- ▶ ¿Cuál es la relación entre la estructura de una red y su funcionalidad?
  - → No existe teoría unificada!
- Avances: Estudio del fenómeno de percolación.

Consideremos una red conexa de N nodos, de la cual se ha removido una fracción f. La red podrá mantener su funcionalidad mientras exista una componente  $S_1$  ("gigante")  $\sim N$ 

► En el límite  $N \to \infty$ , aparece una transición de fase continua a una *fracción crítica* de nodos removidos  $f_c$  (umbral de percolación)

$$S_1 = \begin{cases} 0, & f < f_c, \\ a(f_c - f)^{\beta}, & f \ge f_c \end{cases}$$

<sup>&</sup>lt;sup>8</sup>D. Stauffer and A. Aharony, Introduction To Percolation Theory (Taylor & Francis, 2018).

#### **CONCEPTOS CLAVE**

#### (Muy) breve reseña sobre percolación

Otras cantidades manifiestan este comportamiento crítico cerca del umbral de percolación.

ightharpoonup Distribución de componentes  $n_s$ :

$$n_s \sim s^{-\tau} e^{-s/s^*}, \qquad f = f_c \to n_s \sim s^{-\tau}$$

▶ Tamaño medio de componente  $\langle s \rangle$  (susceptibilidad):

$$\langle s \rangle = \frac{\sum_{s}' s^{2} n_{s}}{\sum_{s}' s n_{s}} \sim |f - f_{c}|^{-\gamma}$$

- ▶ Longitud de correlación  $\xi \sim |f_c f|^{-\nu}$
- $\blacktriangleright$   $\beta$ ,  $\tau$ ,  $\gamma$ ,  $\nu$ : Exponentes críticos

$$au = 2 + rac{eta}{\gamma + eta}, \qquad rac{2}{d
u} + rac{\gamma}{d
u} = 1$$

#### CONCEPTOS CLAVE<sup>9</sup>

#### Métricas de centralidad en redes

- ► **Grado:** Nro. de enlaces de un nodo.
  - Bajo costo computacional ( $\mathcal{O}(\langle k \rangle)N$ )
  - Medida de caracter local.
  - Distribución de grado P(k): Distribución de probabilidad asociada al grado.
- ▶ **Betweenness:** Frecuencia con la que un nodo está ubicado sobre caminos que unen a otros nodos.

$$b_i = \sum_{s \neq t} \frac{\sigma_i(s, t)}{\sigma(s, t)}$$

- Alto costo computacional ( $\mathcal{O}(NM)$ )
- Medida de caracter global.

#### Redes aleatorias: Modelo de Erdös-Rényi

▶ Ensamble G(N, p) de redes de tamaño N en las cuales cada enlace posible está presente con probabilidad p.

$$P(k) \approx \frac{e^{-\langle k \rangle} \langle k \rangle^k}{k!}, \qquad \langle k \rangle \approx Np$$

#### ANÁLISIS DE ESCALA A TAMAÑO FINITO

- La determinación analítica de los exponentes críticos es una tarea difícil.
  - ightarrow Aproximación del valor real mediante simulaciones numéricas.

Consideremos un sistema de tamaño  $N=L^d$ , y X una variable termodinámica del sistema. En un entorno cercano a la transición de percolación:

$$X \sim g(t, L), \qquad t = \frac{f - f_c}{f_c}$$

#### Hipótesis de escala:

$$\lambda g(t, L) = g(\lambda^{-\omega}t, \lambda^{-\alpha}L)$$

Tomando  $\lambda^{\alpha} = L$ , y definiendo G(x) := g(x, 1), queda

$$g(t, L) = L^{-1/\alpha}G(L^{-\omega/\alpha}t) = L^{-1/\alpha}G(L^{-\omega/\alpha}\xi^{-\nu}), \qquad (\xi \sim t^{-1/\nu})$$

El argumento de G debe ser adimensional, por lo tanto  $\frac{\omega}{\alpha} + \nu = 0$ .

#### ANÁLISIS DE ESCALA A TAMAÑO FINITO

Definimos ahora  $F(x) := G(x\nu)$ ,

$$X \sim g(t, L) \sim L^{-\omega/\nu} F(Lt^{1/\nu})$$

Por último, si tomamos el límite termodinámico mientras nos mantenemos cerca de la transición ( $N \to \infty \mid Lt^{1/\nu} = 0$ ), y empleando la escala para la longitud de correlación, se ve que

$$X \sim L^{-\omega/\nu} \sim \xi^{-\omega/\nu} \sim t^{\omega}$$

En términos del tamaño *N* del sistema,

$$\left|X \sim N^{-\omega/\bar{\nu}} F(Nt^{1/\bar{\nu}})\right| \qquad \bar{\nu} = d\nu$$

#### DETALLES TÉCNICOS

- ► Medidas de centralidad estudiadas: Grado y betweenness, inicial y recalculado (ID,IB,RD,RB)
- ► Los nodos son ordenados en orden decreciente de acuerdo a la medida de centralidad, y son removidos progresivamente.
- ► Redes Erdös-Rényi:  $N \sim 10^3 10^4$ ,  $\langle k \rangle = 5$ .
- ightharpoonup Estadística realizada sobre  $\sim 10^3 10^4$  realizaciones en cada caso.

#### Transición de percolación: Parámetro de orden





$$S_i(f.N) \sim N^{-\beta/\nu} \tilde{S}_i[(f-f_c)N^{1/\bar{\nu}}]$$

#### Transición de percolación: Umbral de percolación

Empleo del crossing point method:

$$S_{ic} := S_i(f_c, N), \qquad rac{S_{1c}(N)}{S_{2c}(N)} \sim rac{ ilde{S}_1(0)}{ ilde{S}_2(0)}$$

 $\rightarrow$  Las curvas  $S_1/S_2$  se intersectan en  $f=f_c$ , independientemente de N



#### Susceptibilidad y tamaño de la segunda componente más grande



$$NS_i(f.N) \sim N^{1-\beta/\nu} \tilde{S}_i[(f-f_c)N^{1/\bar{\nu}}]$$



$$\langle s \rangle \sim N^{\gamma/\bar{\nu}} \tilde{S}[(f-f_c)N^{1/\bar{\nu}}]$$

#### AJUSTES: ESTIMACIÓN DE EXPONENTES CRÍTICOS



**FRAMES** 

Unless the user enters their own custom frame titles and subtitles, Elegant Slides automatically inserts the section title and, if specified, the subsection title as frame titles and frame subtitles.

**CUSTOM SUBSECTION** 

This frame has a custom subtitle. The frame title is automatically inserted and corresponds to the section title.

## **CUSTOM TITLE**

**CUSTOM SUBSECTION WITH FOOTNOTE** 

This frame has a custom title and a custom subtitle. 10

 $<sup>^{10}</sup>$ This is a footnote. See also Author (2022).

#### **TYPOGRAPHICS**

## These examples follow the Metropolis Theme

- ► Regular
- ► Alert
- ► Italic
- ► Bold

LISTS

#### **Items**

- ► Cats
  - British Shorthair
- ► Dogs
- ► Birds

#### **Enumerations**

- 1. First
  - 1.1 First subpoint
- 2. Second
- 3. Last

#### **Descriptions**

Apples Yes

Oranges No

Grappes No

TABLE

#### Cuadro. Largest cities in the world (source: Wikipedia)

| City        | Population |
|-------------|------------|
| Mexico City | 20,116,842 |
| Shanghai    | 19,210,000 |
| Peking      | 15,796,450 |
| Istanbul    | 14,160,467 |

| City        | Population |
|-------------|------------|
| Mexico City | 20,116,842 |
| Shanghai    | 19,210,000 |
| Peking      | 15,796,450 |
| Istanbul    | 14,160,467 |

#### **FIGURES**





**BLOCKS** 

#### **Default**

Block content.

#### **Alert**

Block content.

## Example

Block content.

## MATHS EQUATIONS

► A numbered equation:

$$y_t = \beta x_t + \varepsilon_t \tag{1}$$

► Another equation:

$$\mathbf{Y} = \boldsymbol{\beta}\mathbf{X} + \boldsymbol{\varepsilon}_t$$

#### MATHS THEOREM

► Theorems are numbered consecutively.

## Theorem 1 (Example Theorem)

Given a discrete random variable X, which takes values in the alphabet  $\mathcal{X}$  and is distributed according to  $p: \mathcal{X} \to [0,1]$ :

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
 (2)



▶ Definition numbers are prefixed by the section number in the respective part.

## **Definition 5.1 (Example Definition)**

Given a discrete random variable X, which takes values in the alphabet  $\mathcal{X}$  and is distributed according to  $p: \mathcal{X} \to [0,1]$ :

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
(3)



Examples are numbered as definitions.

## **Example 5.1 (Example Theorem)**

Given a discrete random variable X, which takes values in the alphabet  $\mathcal{X}$  and is distributed according to  $p : \mathcal{X} \to [0,1]$ :

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
(4)

#### REFERENCES I

Author, Example (2022). "Reference Title". En: Journal of Examples 0.0, págs. 1-10.