

Lista de Exercícios - Módulo 2 - Lista 1

1) Dizemos que um número r é raiz de uma função f(x) quando f(r) = 0. Nesse exercício vamos considerar um procedimento para obter uma raiz de uma função f por aproximações sucessivas, conhecido como método de Newton. Ele fornece, a partir de uma dada aproximação x_n da raiz, uma nova aproximação x_{n+1} dada pela interseção do eixo x com a reta tangente à f em x_n .

- a) Usando a equação da reta tangente à f em x_n , mostre que $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.
- b) Suponha que f(x) e f'(x) são funções contínuas. Mostre que, se $\lim x_n = r$, então r é uma raiz de f.
- c) Aplicando o primeiro item para a função $f(x) = x^2 2$, mostre que $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$. Quais raízes que estamos aproximando nesse caso?
- d) No item anterior, começando da aproximação inical $x_1 = 2$, obtenha as 4 aproximações seguintes.
- 2) O objetivo desse exercício é mostrar que $\lim \frac{n!}{n^n} = 0$.
 - a) Verifique que

$$\frac{n!}{n^n} = \frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \cdots \frac{3}{n} \frac{2}{n} \frac{1}{n}$$

- **b)** Usando o item anterior, mostre que $0 < \frac{n!}{n^n} \le \frac{1}{n}$.
- c) Usando o item anterior, mostre que $\lim \frac{n!}{n^n} = 0$.
- 3) O objetivo desse exercício é mostrar que lim $\sqrt[n]{n} = 1$.
 - a) Verifique que $\log (\sqrt[n]{n}) = \frac{\log(n)}{n}$.
 - **b)** Usando o item anterior, verifique que $\sqrt[n]{n} = \exp\left(\frac{\log(n)}{n}\right)$.
 - c) Usando o item anterior, mostre que lim $\sqrt[n]{n} = 1$.
- 4) O objetivo desse exercício é mostrar que $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$.

- a) Verifique que $\log\left(\left(1+\frac{1}{n}\right)^n\right) = \frac{\log\left(1+\frac{1}{n}\right)}{\frac{1}{n}}$.
- **b)** Usando o item anterior, verifique que $\left(1 + \frac{1}{n}\right)^n = \exp\left(\frac{\log\left(1 + \frac{1}{n}\right)}{\frac{1}{n}}\right)$.
- c) Usando o item anterior, mostre que $\lim \left(1 + \frac{1}{n}\right)^n = e$.
- 5) (Desafio) A sequência r_n da razões dos termos consecutivos da sequência de Fibonacci satisfazem $r_1=1$ e a equação de recorrência

$$r_{n+1} = 1 + \frac{1}{r_n}$$

Por outro lado, a razão áurea $\varphi>1$ satisfaz uma equação parecida

$$\varphi = 1 + \frac{1}{\varphi}$$

O objetivo desse exercício é mostrar que

$$\lim_{n\to\infty} r_n = \varphi$$

a) Subtraindo as equações acima, mostre que

$$r_{n+1} - \varphi = \frac{\varphi - r_n}{r_n \varphi}$$

para todo n.

b) Usando o item anterior e que $r_n \ge 1$, mostre que

$$\frac{|r_{n+1} - \varphi|}{|r_n - \varphi|} \le \frac{1}{\varphi}$$

para todo n.

c) Usando o item anterior repetidas vezes, mostre que

$$|r_{n+1} - \varphi| \le \frac{1}{\varphi^n} |r_1 - \varphi|.$$

d) Utilizando o item anterior, conclua que $\lim r_n = \varphi$.

Lista de Exercícios - Módulo 2 - Lista 2

1) Vamos investigar a dinâmica, num dado país, da relação entre a renda Y_n produzida no ano n e o capital K_n acumulado até o ano n através de um modelo bem simples. Temos que a renda anual cresce a uma taxa constante positiva g, de modo que

$$Y_{n+1} = (1+g)Y_n$$

e que o capital se acumula por uma taxa de poupança contante positiva s e se deprecia a uma taxa constante positiva d, de modo que

$$K_{n+1} - K_n = sY_n - dK_n$$

Denotando a razão capital pela renda no ano n por $\beta_n = K_n/Y_n$ e o seu limite quando n tende por infinito por β , responda os seguintes itens.

- a) Mostre que $\beta_{n+1} = \frac{s}{1+g} + \frac{1-d}{1+g}\beta_n$.
- b) Use o item anterior para mostrar que

$$\beta_m = \frac{s}{1+g} \left(1 + \frac{1-d}{1+g} + \left(\frac{1-d}{1+g} \right)^2 + \dots + \left(\frac{1-d}{1+g} \right)^{m-1} \right) + \left(\frac{1-d}{1+g} \right)^m \beta_0$$

- c) Conclua que $\beta = \frac{s}{g+d}$.
- 2) Para cada série telescópica abaixo, escreva a série com a notação de somatório, encontre uma fórmula fechada para suas somas parciais e use-a para encontrar o valor da série.

a)
$$\frac{5}{1\cdot 2} + \frac{5}{2\cdot 3} + \frac{5}{3\cdot 4} + \dots + \frac{5}{n(n+1)} + \dots$$

b)
$$\log\left(\frac{k}{k+1}\right) + \log\left(\frac{k+1}{k+2}\right) + \log\left(\frac{k+2}{k+3}\right) + \dots + \log\left(\frac{n}{n+1}\right) + \dots$$

- 3) Escreva as expressões abaixo como séries de potências da forma $\sum_{n=0}^{\infty} c_n x^n$, determinando seus coeficientes c_n .
 - a) A expressão $(1-x)\sum_{n=0}^{\infty} \frac{1}{n!}x^n$.
 - **b)** A expressão $(1-x)\sum_{n=0}^{\infty} (n+1)x^n$.
 - c) A expressão $(1-x^2)\sum_{n=0}^{\infty} \frac{1}{n!}x^n$.

d) A expressão
$$(1-x^2) \sum_{n=0}^{\infty} (n+2)(n+1)x^n$$
.

- 4) Nos itens abaixo, determine se a afirmação é verdadeira ou falsa. Se for verdadeira, demonstre porque. Se for falsa, dê um exemplo que prove sua falsidade.
 - a) Se a série $\sum_{n=0}^{\infty} a_n$ converge, então $\lim a_n = 0$.
 - **b)** Se $\lim a_n = 0$, então a série $\sum_{n=0}^{\infty} a_n$ converge.
 - c) Se as séries $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ divergem, então $\sum_{n=0}^{\infty} (a_n + b_n)$ diverge.
 - d) Se $0 \le a_n \le b_n$ e a série $\sum_{n=0}^{\infty} b_n$ diverge, então a série $\sum_{n=0}^{\infty} a_n$ diverge.
- 5) O objetivo desse exercício é descobrir para que valores de p a série p-harmônica

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^p$$

converge ou diverge.

- a) Mostre que, para qualquer p, o teste da raiz e o teste da razão são inconclusivos.
- b) Para p > 1, use o teste da integral para mostrar que a série converge.
- c) Para 0 , use o teste da integral para mostrar que a série diverge. Essa é uma outra forma de mostrar que a série harmônica <math>(p = 1) é divergente.
- **6)** (**Desafio**) O tapete de Sierpinski ¹ é a figura geométrica S construída a partir de um limite passo-a-passo da seguinte maneira:

 S_0 : Começamos com um quadrado S_0 de lado 1 (preenchido de preto).

- S_1 : Do centro do quadrado S_0 retiramos um quadrado menor de lado 1/3 (preenchido de branco), obtendo assim a figura S_1 , formada por 8 quadrados (preenchidos de preto).
- S_2 : Do centro de cada um dos 8 quadrados de S_1 retiramos um quadrado menor de lado $(1/3)^2 = 1/9$ (preenchidos de branco), obtendo assim a figura S_2 , formada por $8^2 = 64$ quadrados (preenchidos de preto).
- S_3 : Do centro de cada um dos 8^2 quadrados de S_2 retiramos um quadrado menor de lado $(1/3)^3$ (preenchidos de branco), obtendo assim a figura S_3 , formada por 8^3 quadrados (preenchidos de preto).

¹Matemático polonês que inventou essa figura em 1915.

. . .

O tapete de Sierpinski S é a figura limite obtida ao final desse processo. Vamos mostrar que essa figura tem área 0 e perímetro infinito: é portanto uma região de área zero que precisa de uma cerca de comprimento infinito para cercá-la. Observe que o perímetro de S é o comprimento da fronteira entre a região preenchida de preto e a região preenchida de branca, portanto é o perímetro do quadrado inicial somado aos perímetros de todos os quadrados retirados.

a) Mostre que o perímetro de S é dado pela soma infinita

$$P = 4 + 4(1/3) + 8 \cdot 4(1/3)^{2} + 8^{2} \cdot 4(1/3)^{3} + 8^{3} \cdot 4(1/3)^{4} + \cdots$$

- b) Conclua que $P = \infty$.
- c) Mostre que a área de S é dada pela soma infinita

$$A = 1 - [(1/3)]^2 - 8[(1/3)^2]^2 - 8^2[(1/3)^3]^2 - 8^3[(1/3)^4]^2 - \cdots$$

d) Conclua que A = 0.

Observação: podemos pensar que o tapete de Sierpinski é uma maneira de, ocupando uma área pequena, descrever um perímetro grande. Seu análogo tridimensional, o cubo de Sierpinski, é construído à partir de um cubo e possui volume zero e área da superfície infinita. É uma maneira de, ocupando um volume pequeno, descrever uma área de superfície grande. Os galhos de uma árvore e os álvéolos de um pulmão, por exemplo, parecem seguir esse tipo de figura para -ocupando o mínimo de volume no espaço- obter uma grande superfície de absorção de gases (e também de luz, no caso da árvore). Esse tipo de figura é hoje conhecida como fractal. Para mais sobre isso, leia o artigo "Intuições fractais", de João Moreira Salles na revista Piauí, Edição 50, Novembro de 2010.

Lista de Exercícios - Módulo 2 - Lista 3

1) Para cada série de potências abaixo, expanda os primeiros quatro termos não nulos e descubra para quais valores de $x \in \mathbb{R}$ a série converge.

$$\mathbf{a)} \ \sum_{n=1}^{\infty} \frac{1}{n} x^n.$$

$$\mathbf{b)} \sum_{n=0}^{\infty} \frac{1}{n!} x^n.$$

c)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$
.

d)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}.$$

2) Nos itens abaixo, determine se a afirmação é verdadeira ou falsa. Se for verdadeira, demonstre porque. Se for falsa, dê um exemplo que prove sua falsidade.

a) Se
$$\sum_{n=0}^{\infty} |a_n|$$
 converge, então $\sum_{n=0}^{\infty} (a_n)^2$ também converge.

b) Se
$$\sum_{n=0}^{\infty} (a_n)^2$$
 converge, então $\sum_{n=0}^{\infty} |a_n|$ também converge.

c) Se lim
$$\sqrt[n]{|a_n|} < 1$$
, então lim $a_n = 0$.

d) Para cada
$$x \in \mathbb{R}$$
, temos que $\lim \frac{x^n}{n!} = 0$.

e) Se
$$\lim \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, então $\sum_{n=0}^{\infty} a_n$ converge.

f) Se
$$\lim \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, então $\sum_{n=0}^{\infty} a_n$ diverge.

g) Se o limite
$$\lim_{x\to c} \sum_{n=0}^{\infty} c_n x^n$$
 existe, então ele é igual a $\sum_{n=0}^{\infty} c_n c^n$.

3) O objetivo desse exercício é apresentar séries de potências que possuem o mesmo raio de convergência, mas com domínios diferentes. Verifique as seguintes afirmações.

a) O domínio de
$$\sum_{n=0}^{\infty} \frac{1}{2^n} x^n$$
 é o intervalo aberto $(-2,2)$ com raio 2.

b) O domínio de
$$\sum_{n=1}^{\infty} \frac{1}{n2^n} x^n$$
 é o intervalo $[-2,2)$ com raio 2.

c) O domínio de
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} x^n$$
 é o intervalo $(-2,2]$ com raio 2.

- d) O domínio de $\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} x^n$ é o intervalo fechado [-2,2] com raio 2.
- e) O domínio de $\sum_{k=1}^{\infty} \frac{(-1)^k}{k4^k} x^{2k}$ é o intervalo fechado [-2,2] com raio 2.
- 4) O objetivo desse exercício é apresentar algumas séries de potências que naturalmente possuem raio de convergência diferente de zero, de um e de infinito.
 - a) Considere f_n a sequência de Fibonacci. Utilizando o teste da razão, mostre que o raio de convergência de

$$\sum_{n=1}^{\infty} f_n x^n$$

é igual dado por $R = 1/\phi$, onde ϕ é a razão áurea.

b) Utilizando o teste da raiz, mostre que o raio de convergência de

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^{n^2} x^n$$

é dado por R = 1/e.

c) Utilizando o teste da razão, mostre que o raio de convergência de

$$\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n$$

é dado por R = 1/e.

- 5) Nos itens abaixo, determine se a afirmação é verdadeira ou falsa. Se for verdadeira, demonstre porque. Se for falsa, dê um exemplo que prove sua falsidade.
 - a) Se a_n é positiva e a série $\sum_{n=0}^{\infty} a_n$ converge, então a série $\sum_{n=0}^{\infty} (-1)^n a_n$ converge.
 - **b)** Se a série $\sum_{n=0}^{\infty} |a_n|$ diverge, então a série $\sum_{n=0}^{\infty} a_n$ diverge.
 - c) Toda série alternada converge.
 - d) Todo polinômio é uma série de potências com raio de convergência infinito.
 - e) Se uma série de potências $\sum_{n=0}^{\infty} c_n x^n$ tem raio de convergência R=1 então seu domínio é (-1,1).

Lista de Exercícios - Módulo 2 - Lista 4

1) Considere as funções

$$y(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$$

е

$$z(x) = \sum_{k=0}^{\infty} (-4)^k \frac{x^{2k}}{(2k)!}$$

definidas para todo $x \in \mathbb{R}$.

- a) Calcule y'(x).
- **b)** Verifique que y'(x) + y(x) = 0.
- c) Calcule z''(x).
- d) Verifique que z''(x) + 4z(x) = 0.
- 2) Considere $y(x) = \sum_{n=0}^{\infty} c_n x^n$ e escreva as expressões abaixo como séries de potências da forma $\sum_{n=0}^{\infty} d_n x^n$, determinando seus coeficientes d_n .
 - a) A expressão -2xy'(x).
 - **b)** A expressão xy''(x).
 - c) A expressão (1-x)y''(x).
 - d) A expressão $(1-x^2)y''(x)$.
- 3) O objetivo desse exercício é analisar as séries de Taylor das funções seno e cosseno.
 - a) Mostre que

$$sen^{(n)}(x) = \begin{cases} (-1)^k sen(x), & n = 2k \\ (-1)^k cos(x), & n = 2k + 1 \end{cases}$$

e que

$$\cos^{(n)}(x) = \begin{cases} (-1)^k \cos(x), & n = 2k \\ -(-1)^k \sin(x), & n = 2k + 1 \end{cases}$$

- b) Determine as séries de Taylor de sen(x) e de cos(x).
- c) Sabendo que sen(x) e de cos(x) coincidem com suas séries de Taylor, determine as séries de Taylor de $\int sen(x^2) dx$ e de $\int cos(x^2) dx$.
- 4) O objetivo desse exercício é analisar as séries de Taylor das funções seno e cosseno hiperbólicos, dadas por

$$senh(x) = \frac{e^x - e^{-x}}{2}$$
 e $cosh(x) = \frac{e^x + e^{-x}}{2}$

a) Verifique que

$$senh(0) = 0 e cosh(0) = 1$$

e que

$$senh'(x) = cosh(x)$$
 e $cosh'(x) = senh(x)$

b) Mostre que

$$senh^{(n)}(x) = \begin{cases} senh(x), & n = 2k \\ cosh(x), & n = 2k + 1 \end{cases}$$

e que

$$\cosh^{(n)}(x) = \begin{cases}
\cosh(x), & n = 2k \\
\sinh(x), & n = 2k + 1
\end{cases}$$

- c) Determine as séries de Taylor de senh(x) e de cosh(x).
- d) Sabendo que $\operatorname{senh}(x)$ e de $\cosh(x)$ coincidem com suas séries de Taylor, determine as séries de Taylor de $\int \operatorname{senh}(x^2) dx$ e de $\int \cosh(x^2) dx$.
- 5) O objetivo deste exercício é mostrar que uma série de potências que que define uma função par ou ímpar só possui, respectivamente, potências pares ou ímpares.

Seja $f(x) = \sum_{n=0}^{\infty} c_n x^n$ uma série de potências com raio de convergência R > 0.

a) Se f(x) é uma função par, isto é

$$f(-x) = f(x)$$

mostre que a série de potências só possui potências pares.

b) Se f(x) é uma função ímpar, isto é

$$f(-x) = -f(x)$$

mostre que a série de potências só possui potências ímpares.

- 6) Nos itens abaixo, determine se a afirmação é verdadeira ou falsa. Se for verdadeira, demonstre porque. Se for falsa, dê um exemplo que prove sua falsidade.
 - a) Se o domínio de $\sum_{n=0}^{\infty} c_n x^n$ é (-1,1], então o domínio de $\sum_{n=0}^{\infty} \frac{c_n}{R^n} x^n$ é (-R,R].
 - b) Se $\sum_{n=0}^{\infty} c_n x^n$ converge para x=2, então também converge para x=-2.
 - c) Se $\sum_{n=0}^{\infty} c_n x^n$ converge para x=2, então também converge para x=-1.
 - d) Se a derivada de $\sum_{n=0}^{\infty} c_n x^n$ em x=c existe, então ela é igual a $\sum_{n=0}^{\infty} c_n n c^{n-1}$.

Lista de Exercícios – Módulo 2 – Lista 5

1) A descrição quântica dos fenômenos subatômicos é probabilística. Considere um oscilador harmônico quântico unidimensional, onde partícula subatômica de massa m se movimenta no eixo x sob a ação de um potencial da forma $V(x) = m\omega^2 x^2/2$, que é o potencial do sistema massa-mola com frequência ω .

A probabilidade de encontrarmos a partícula no intervalo (x_1, x_2) é proporcional à integral

$$\int_{x_1}^{x_2} X(x)^2 \, dx$$

onde a função X(x) satisfaz a equação de Schrödinger

$$-\frac{\hbar^2}{2m}X''(x) + \frac{m\omega^2}{2}x^2X(x) = EX(x)$$

onde \hbar é a constante de Planck dividida por 2π e E é a energia do oscilador. Por simplicidade, vamos supor que $m=\hbar=\omega=1$ de modo que

$$X''(x) + (2E - x^2)X(x) = 0$$

Escrevendo $X(x) = e^{-x^2/2}y(x)$, vimos que y(x) satisfaz $y''(x) - 2xy'(x) + 2\lambda y(x) = 0$, conhecida como equação de Hermite, onde $\lambda = E - 1/2$

- a) Escrevendo $y(x) = \sum_{n=0}^{\infty} c_n x^n$, determine, em função dos coeficientes c_n , os coeficientes p_n da série $-2xy'(x) = \sum_{n=0}^{\infty} p_n x^n$. Use a equação de Hermite para obter a equação de recorrência satisfeita pelos c_n .
- b) Para $\lambda = 6$, determine os coeficientes das soluções canônicas $y_1(t)$ e $y_2(t)$ e decida qual delas é não é polinômio. Essa solução é uma função par ou ímpar? Determine seu raio de convergência.
- c) Para $\lambda = 7$, determine os coeficientes das soluções canônicas $y_1(t)$ e $y_2(t)$ e decida qual delas não é polinômio. Essa solução é uma função par ou ímpar? Determine seu raio de convergência.
- 2) Vimos no exercício anterior que, para descrever a posição do elétron no átomo de hidrogênio, precisamos resolver a equação de Laguerre

$$xy''(x) + (1-x)y'(x) + (\nu + \lambda)y(x) = 0$$

O objetivo desse exercício é investigar as soluções dessa equação usando séries de potências.

a) Escrevendo $y(x) = \sum_{n=0}^{\infty} c_n x^n$, determine, em função dos coeficientes c_n , os coeficientes p_n e q_n das séries $(1-x)y'(x) = \sum_{n=0}^{\infty} p_n x^n$ e também $xy''(x) = \sum_{n=0}^{\infty} q_n x^n$.

- b) Use o item anterior e a equação de Laguerre para obter a equação de recorrência satisfeita pelos c_n .
- c) Verifique que, quando $\nu + \lambda$ não é um inteiro e y(0) = 1, então y(x) não é um polinômio, mas seu raio de convergência de y(x) é infinito.
- 3) Vimos no exercício anterior que, para descrever a posição do elétron no átomo de hidrogênio, precisamos resolver a equação de Legendre

$$(1 - x^2)y''(x) - 2xy'(x) + \lambda(\lambda + 1)y(x) = 0$$

O objetivo desse exercício é investigar as soluções dessa equação usando séries de potências.

- a) Escrevendo $y(x) = \sum_{n=0}^{\infty} c_n x^n$, determine, em função dos coeficientes c_n , os coeficientes p_n e q_n das séries $-2xy'(x) = \sum_{n=0}^{\infty} p_n x^n$ e também $(1-x^2)y''(x) = \sum_{n=0}^{\infty} q_n x^n$.
- b) Use o item anterior e a equação de Legendre para obter a equação de recorrência satisfeita pelos c_n .
- c) Para $\lambda = 6$, determine os coeficientes das soluções canônicas $y_1(t)$ e $y_2(t)$ e decida qual delas é não é polinômio. Essa solução é uma função par ou ímpar? Determine seu raio de convergência.
- d) Para $\lambda = 7$, determine os coeficientes das soluções canônicas $y_1(t)$ e $y_2(t)$ e decida qual delas não é polinômio. Essa solução é uma função par ou ímpar? Determine seu raio de convergência.
- 4) A temperatura de equilíbrio T(P) em um ponto P de uma chapa elíptica feita com um material uniforme pode ser escrita em função das coordenadas elípticas confocais (x,t) de P dadas por

$$x = \frac{d_A - d_B}{d} \qquad t = \frac{d_A + d_B}{d},$$

onde d é a distância entre os focos A e B da elipse, d_A é a distância entre P e A e d_B é a distância entre P e B.

Temos que x varia em [-1,1] e que t varia em [1,2R/d], onde R é o raio maior da elipse. Note que o conjunto dos pontos tais que t é constante formam uma elipse. Escrevendo a temperatura em P como produto de duas funções T(P) = y(x)z(t), é possível mostrar que as funções y(x) e z(t) satisfazem as seguintes equações diferenciais

$$\frac{(1-x^2)y''(x) - xy'(x)}{-y(x)} = \lambda^2 = \frac{(1-t^2)z''(t) - rz'(t)}{-z(t)}$$

onde λ é um inteiro positivo. Segue que y(x) satisfaz a equação Tchebychev

$$(1 - x^2)y''(x) - xy'(x) + \lambda^2 y(x) = 0$$

- a) Escrevendo $y(x) = \sum_{n=0}^{\infty} c_n x^n$, determine, em função dos coeficientes c_n , os coeficientes p_n e q_n das séries $-xy'(x) = \sum_{n=0}^{\infty} p_n x^n$ e também $(1-x^2)y''(x) = \sum_{n=0}^{\infty} q_n x^n$.
- **b)** Use o item anterior e a equação de Tchebychev para obter a equação de recorrência satisfeita pelos c_n .
- c) Para $\lambda = 6$, determine os coeficientes das soluções canônicas $y_1(t)$ e $y_2(t)$ e decida qual delas é não é polinômio. Essa solução é uma função par ou ímpar? Determine seu raio de convergência.
- d) Para $\lambda = 7$, determine os coeficientes das soluções canônicas $y_1(t)$ e $y_2(t)$ e decida qual delas não é polinômio. Essa solução é uma função par ou ímpar? Determine seu raio de convergência.