Interférences et diffraction de la lumière

Rapport du Laboratoire

Liviu Arsenescu, Cătălin Bozan 28.05.2024

1 Buts

- Étudier le caractère ondulatoire de la lumière
- Observer la diffraction de la lumière
- Observer les interférences
- Utiliser des objets ordinaires (cheveux) pour provoquer les deux effets

2 Comment atteindre les buts

- On fait passer un laser à travers une fente simple, puis on mesure les 8 premièrs couples de (m, y) pour enfin calculer la longueur d'onde de la lumière de laser
- On fait passer un laser à travers une fente double, puis on mesure les 8 premièrs couples de (m, y), et enfin, avec la longueur d'onde calculé avant, on calcule la distance d entre les deux fentes
- On fait passer le laser à travers un cheveux, puis on calcule son diamètre avec les cinq premièrs couples de (m, y), et la longuer d'onde λ_{exp}

3 Résultats

	1. Single Slit	2. Double Slit	3. Cheveux
m	y (mm)	y (mm)	y (mm)
1	2.2	1.4	5
2	4.5	3	10.5
3	7	4.3	16
4	10.4	5.9	21.3
5	11.6	7.4	27
6	14	9.1	
7	16.4	10.4	
8	18.9	12.3	
	$\lambda \text{ (nm)}$	d (mm)	$a (\mu m)$
	688	0.25	69
	$\Delta\lambda$ (nm)	$\Delta d \text{ (mm)}$	$\Delta a \; (\mu \mathrm{m})$
	63	0.03	7

4 Conclusions

On peut constater que les résultats se situent dans les fourchettes attendues ($\lambda_{exp} \in (650 \pm 20)$ nm, $d \in (0.25 \pm 0.01)$ mm, $a \in [40; 100] \mu m$).

On peut donc conclure que les objectifs ont été atteints, et que les lois données par la théorie ont été démontrées avec succès.