MASS65 Numerical Analysis HW 1

202/8/25 242/4

2.3. Fix any $\overline{a} \in [-1,1]$. First suppose that $\overline{a} \neq a_0$ and $\overline{a} \neq a_1$. The interpolating polynomial p(a) is

Consider a fundion g:[-1,1] -> R Lethred as

then clearly, $g(\pi_0) = g(\pi_1) = g(\pi_1) = 0$. Since π_0, π_1 , and π ove all in [-1,1], applying the Mean Value Theorem there exist two points yo and y_1 in [-1,1] such that $g'(y_0) = g'(y_1) = 0$, and again applying the Mean Value Theorem there exists some point $c \in [-1,1]$ such that g''(c) = 0. Meanwhile, $p(\pi)$ is linear, so a direct computation shows that

$$g''(x) = f''(x) - 2 \cdot \frac{f(x) - p(x)}{(x - x)(x - x)}$$

and, in turn, substituting as a we obtain

$$0 = g''(c) = f''(c) - 2 - \frac{f(\pi) - p(\pi)}{(\pi - n)(\pi - n_1)}$$

=)
$$f(\bar{n}) - p(\bar{n}) = \frac{1}{2} f''(c) \cdot (\bar{n} - n_0)(\bar{n} - n_0)$$
. (*)

It is clear that (+) holds also when size or 7=1, as both rider of (+) become zero. Therefore

 $|f(x)-p(x)| \leq \frac{1}{2} \max_{\xi \in I} |f''(\xi)| \max_{\xi \in I} |f(x-x)(x-x)|$ = α ,

for any $n \in I$. Therefore d is indeed the upper bound for the maximum absolute interpolation error.

To minimize d, we should minimize $\max_{n \in I} |(n-n_0)(n-n_1)|$. We claim that $(n, n_1) = \{-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\}$ is the minimizer. To show this claim, we show the stronger stedement; we show that for any $a, b \in \mathbb{R}$, it holds that

max | (1-1) (1+1=) = max | 1= = | = max | 1= = = | = = = | = = = | = = = | = = = | = = = | = = = | = = | = = = | =

Let $T(a)=d^2-\frac{1}{2}$, $g(a)=a^2+aa+b$. It is clear that $\max_{a\in \mathbb{Z}} \lfloor d^2-\frac{1}{2}\rfloor=\frac{1}{2}$, so for the sake of contradiction suppose that $\max_{a\in \mathbb{Z}} \lfloor g(a)\rfloor < \frac{1}{2}$. Then we would have

$$T(1) - g(1) = \frac{1}{2} - g(1) > 0,$$

$$T(0) - g(0) = -\frac{1}{2} - g(1) < 0,$$

$$T(-1) - g(-1) = \frac{1}{2} - g(-1) > 0$$

hence by the intermediate Value Theorem, T(x)-g(x) has at least two zeros in I. But T(x)-g(x) is also a number polynomial of degree at most 1, which is absurd therefore indeed $\{x_0, x_1, x_2 = 1 - \frac{1}{6}, \frac{1}{3}\}$ minimizes x_1 .

Now, let 6= cos-12, then

 $\cos(2\cos^{-1}a) = \cos 2\theta = 2\cos^{2}\theta - 1 = 2a^{2} - 1$ so we have the relation, $(n-nb)(a-a_{1}) = \frac{1}{2}\cos(2a)s^{-1}a$) for the minimizing d.

2.4. We know that the error of the polynomial interplation is given by, for some $\xi \in [a,b]$, $f(x) = \frac{f(x+y)}{(x+y)!} (x-x_0) - (x-x_0).$

Since If (n+1)(E) | EM for any n=1N and E=[a,b], we have

 $\|f(a) - p(b)\|_{\infty} \le \frac{1}{(n+1)!} \max_{\xi \in (a,b)} |f^{(n+1)}(\xi)| |(a-b)-(a-a_n)|$ $\le \frac{M}{(n+1)!} |a-a_0| - |a-a_n|$ $\le \frac{M}{(n+1)!} (b-a)^{n+1}.$

As b-a is a fixed constant we have $\lim_{n\to\infty} \frac{(b-\omega)^{n+1}}{(n+1)!} = 0$, hercefurth $\lim_{n\to\infty} \|f(x) - P_n(x)\|_{\infty} = 0$.

That is, Pala) converges uniformly on [a, b] to flat as n-200.

2.16. The following lemma will be useful to solve this problem

Lemma. Let N be any positive integer, and for an integer j, $0 \le j \le N-1$, let $x_j = \frac{2\pi i j}{N}$. Then

$$\sum_{j=0}^{N-1} \cos(ka_j) = \begin{cases} N & \neq & k \equiv 0 \mod N \\ 0 & \neq & k \not\equiv 0 \mod N \end{cases}$$

$$\sum_{j=0}^{N-1} \operatorname{dia}(ka_j) = 0.$$

pd) If $k\equiv 0$ and N then $kn_i=2\pi j\cdot \frac{k}{N}$ is always an integer multiple. In the assertion follows. Hence we are left with the case where $k\equiv 0$ and N. If this is the case, $e^{2\pi k i N} \neq 1$ but $\left(e^{2\pi k i N}\right)^N=1$, so we have

$$1 + e^{2\pi ki/N} + e^{4\pi ki/N} + \dots + e^{2(N-1)\pi ki/N} = \frac{1 - e^{2\pi ki/N}}{1 - e^{2\pi ki/N}} = 0$$
. --- (**)

Taking the real parts of (xxx) from both sides we get

while taking the imaginary parts we get

$$\sin 0 + \sin \frac{2\pi k}{N} + \dots + \sin \frac{2(N-1)\pi k}{N} = \sum_{j=0}^{N-1} \sin(k\alpha_j) = 0$$
.

By theorem 2.3.1.12, under the assumption that $2(\pi k) = f(\pi k) = : f_{ik}$, we have the relations

$$\begin{cases} A_{k} = \frac{2}{N} \sum_{j=0}^{N-1} f_{j} \cos k \alpha_{j} \\ B_{k} = \frac{2}{N} \sum_{j=0}^{N-1} f_{j} \sin k \alpha_{j} \end{cases}$$
 for $k = 0, 1, \dots, 2m$.

By the absolute convergence we have

fi = f(ni) = = = a0 + = (an cos (nai) + bn sin(mi)).

Hence if we set N=2m+1, for k=0,1,--, m we get

Ax = 2 \frac{2}{2} \left\ \frac{2}{2} + \frac{2}{2} \left\ (a_n \cos(nag) + b_n \sin(nag)) \cos(kay) $=\frac{7}{N}\sum_{j=0}^{N-1}\frac{a_{j}}{2}cus(kn_{j})+\frac{2}{N}\sum_{n=1}^{\infty}\left(\sum_{j=0}^{N-1}a_{n}cos(nn_{j})cus(kn_{j})\right)+\frac{2}{N}\sum_{n=1}^{\infty}\left(\sum_{j=0}^{N-1}b_{n}sin(nn_{j})cos(kn_{j})\right)$ $=\sum_{j=0}^{M}\frac{a_{0}}{N}\cos(kn_{j})+\sum_{n=1}^{\infty}\sum_{j=0}^{N-1}\frac{a_{n}}{N}\left(\cosh(kn_{j})n_{j}+\cosh((n-k)n_{j})\right)+\sum_{n=1}^{\infty}\sum_{j=0}^{M-1}\frac{b_{n}}{N}\left(\sinh((n+k)n_{j})+\sinh((n-k)n_{j})\right).$

By the Lemma, the flat term is as only when been and otherwise 0, third term clusys vanishes, and the second term is nonzero when $n\geq 1$ and $n\equiv \pm k$ (mod 2m+1) and otherwise $\pm em$. Hence $A_k = a_k + \sum_{p=1}^{\infty} \left(a_p(2m+1) + k + a_p(2m+1) - k \right)$

Similarly for k=1, --, m we get $B_{k} = \frac{2}{N} \sum_{i=0}^{N-1} \left[\frac{a_{0}}{2} + \sum_{n=1}^{\infty} (a_{n} \cos(n a_{j}) + b_{n} \sin(n a_{j})) \right] \sin(k a_{j})$ $=\frac{2}{N}\sum_{j=0}^{N-1}\frac{\alpha_0}{2}\sin(k\alpha_j)+\frac{2}{N}\sum_{n=1}^{\infty}\left(\sum_{j=0}^{N-1}a_ncos(n\alpha_j)\sin(k\alpha_j)\right)+\frac{2}{N}\sum_{n=1}^{\infty}\left(\sum_{j=0}^{N-1}b_n\sin(n\alpha_j)\sin(k\alpha_j)\right)$ $=\sum_{j=0}^{N-1}\frac{\alpha_0}{N}\sin(k\alpha_j)+\sum_{n=1}^{\infty}\sum_{j=0}^{N-1}\frac{\alpha_n}{N}\left(\sin((kn)\alpha_j)+\sin((kn)\alpha_j)\right)+\sum_{n=1}^{\infty}\sum_{j=0}^{N-1}\frac{b_n}{N}\left(\cos((n-k)\alpha_j)-\cos((n+k)\alpha_j)\right).$

This time, by the Lemma, the first and second terms vanish. The inner sum of the third term is by if n=k mod 2m+1, and -bn if n=-k mid 2m+1. Hence

Bk = bk + \(\sum_{p=1}^{00} \left(\bp(\text{2m+1}) + k - \bp(\text{2m+1}) - k \right).