EXPERIMENTS IN MODERN AND APPLIED PHYSICS 387/388/506

- Web page: http://www.physics.rutgers.edu/ugrad/389/
 - Instructor:

Prof. Eva Y. Andrei

- eandrei@physics.rutgers.edu
- TA:

Phil Rechani

phillipmyinbox@gmail.com

Pre-requisite -326/27or or equivalent course

My Research

Experimental research in condensed matter physics

- Graphene
- One-atom thick Carbon crystal: in which electrons behave like ultrarelativistic massless particles

http://www.physics.rutgers.edu/~eandrei/

Your TA: Phil Rechani

Recent Graduate of Physics

Honors Thesis Consisted of Wrestling Equations to understand gold particles probed by relativistic electrons. Understands boats better.

Interests in Academia:

- Simplifying physics in my mind, and hopefully in others
- Understanding many aspects of mathematics and how it relates to physics
- Understanding weird concepts like intrinsic variables in quantum theory, the validity of point particles, and annihilation
- AVOIDING IMPENETRABLE SOLUTIONS

Course Materials

- Textbook: Experiments in Modern Physics, by A.C.
 Melissinos and J. Napolitano, 2'nd edition
- Taylor, "Introduction to Error Analysis"
- Bevington "Data reduction and error analysis for physical sciences"
- Web, textbooks, journals

Outline

- Objectives
- Course structure
- Student responsibilities
- Course policies and grading
- Getting started

Objectives

- Reproduce experiments that led to major advances in science – a journey of discovery
- Refine your scientific skills
 - 1. Theoretical background
 - 2. Collect data
 - 3. Document work
 - 4. Analyze Data Estimate errors
 - 5. Report
 - 6. Presentation
- As close to real life as possible

EM Spectrum Covered by our Experiements

The Experiments

The Experiments

You will learn / measure

Splitting of atomic levels in magnetic

field

Cosmic radiation

Lifetime of muons

Photoelectric effect

Compton effect

Pair creation

Periodic structure of crystals

Identify materials by crystal structure

Wave (classical) or

Quantum

Quantum

Quantum

wave nature

Quantum

	spectrum	particle (quantum)?	
Speed of Light	Visible	Measure speed of EM wave	 Manipulate, chop, split, polarize and detect light
Electromagnetic Boundary conditions	Visible	 Interaction of light with mater wave nature of light 	 Maxwell Equations Fresnel' equations Snell's law Total internal reflection Brewster angle
Interferometry	Visible	Wave nature of light	Michelson interferometer
Photoelectric effect	Visible	Interaction of light with materQuantum	Planck constantWork function of metal
Franck Hertz	Visible	Interaction of electrons with materQuantum nature	Quantization of atomic levels
Zeeman Effect	Visible	Interaction of electrons with mater	Electron spin

Interaction of electrons with mater

nuclear moment with radiation

Interaction of EM radiation with mater

Interaction of EM radiation with mater

EM

Visible

X-ray

Microwave

Gamma ray

Experiments

Muon decay

NMR

X-rays

Gamma Decay

EXPERIMENTS IN MODERN AND APPLIED PHYSICS

- Objectives
- Course structure
- > Student responsibilities
- Course policies and grading
- Getting started

1)	homework assignment	5%
2)	4 Preparatory question sets	15%
3)	4 experiments (group)	15%
4)	Maintain lab book	10%
5)	4 lab reports (group)	30%
6)	1 Oral presentation	25%

Prior to Starting a New Experiment

Understand

physics, equipment, procedure

- Theoretical background
 - Lab writeup
 - Supplementary material
- Preparatory questions
 - Work out in notebook before each experiment.
 - Hand in to TA before touching equipment
- Permission to start new experiment.
 - Request permission from TA

Prior to Starting a New Experiment

- Lab book entry: objectives and procedures
 - ⇒ State the physics idea to be tested.
 - ⇒ List experimental procedures and their relation to the physical principle to be tested.
 - ⇒ To-do list: calibrations; data collection plan
 - ⇒ Assign tasks, plan lab time with your partners

Running the experiment

- Understand and set-up equipment
- ⇒ Read manuals
- ⇒ Supplementary material
- ⇒ Figure out how equipment works

Lab computers:

Username: student

Passwd: modernphysicslab

- Troubleshooting, equipment problems.
 - 1. Stay calm!
 - 2. Check: power, cable connections, batteries, switches...
 - 3. Read and follow directions in manual and lab writeup
 - 4. Consult with a group who ran experiment before
 - 5. If all else fails ask TA

Running the experiment

Taking data and keeping records.

- ⇒ Keep detailed and dated records in your notebook
 - Record procedures, equipment and software settings
 - Paste pictures of the equipment, scope displays, etc in
- ⇒ Keep data organized and accessible to the team
- ⇒ Preliminary data analysis in class is KEY to catching mistakes, fill in missing points etc

Writing the Report

Format

- Length ~ 3200 words Phy. Rev. Lett. format.
- Author order should reflect the group effort. If equal contributions list names in alphabetic order.

Sections.

- 1. Abstract (~200 words)
- Introduction (purpose, theory, approach)
- 3. Apparatus
- 4. Data presentation
- 5. Analysis and Results (graphs, calculations, answers)
- 6. Discussion (measurement uncertainties)
- 7. Conclusions
- 8. Bibliography
- 9. Appendix

Final Presentation

Conference Format

- ⇒ Orals are designed as a mini conference
- ⇒ One team of presenters per oral session
- ⇒ Present findings and answer audience questions
 - Topic: 4'th experiment of the semester
 - Each partner presents (Theory, apparatus and data, analysis)
 - Length: 12-15 minutes with an additional 10 minutes for Q&A.
 - Format: Power point
- ⇒ Each group will attend all classes during orals
 - When not presenting groups will participate as Questioners.

<u>Logistics</u>

- ⇒ Last 4 classes of the semester
- ⇒ 2 parallel sessions in rooms 112W and 401W
- ⇒ Each group will be assigned time/place slots
 - for their presentation.
 - for attending other presentations.
- ⇒ Schedule posted on the course website

Due date

- ⇒ Email presentation file to the instructor
- ⇒ 24 hours (at the latest) prior to the scheduled talk

The Scientific Method

The Scientific Method

EXPERIMENTS IN MODERN AND APPLIED PHYSICS

- Objectives
- Course structure
- Student responsibilities
- Course policies and grading
- Getting started

Student responsibilities

- > Team Work:
- Each member must share responsibility and contribute to the team effort:
- 1. Collect data
- 2. Notebook
- 3. Data Analysis
- 4. Report
- 5. Final presentation

- Keep work area clean and tidy!
- No Food
- No Drink
- No Newspapers
- Return reference material and tools at the end of each lab.

Student responsibilities

Plan your time

- ⇒ The equipment is reserved for your group during the allotted time slot. You may use it any time during this period but not beyond.
- ⇒ Start writing report early– theory, apparatus, procedure, data analysis during class.
- ⇒ If you need to work after hours contact Stefanie Miller to program your card: Serin W221, 848-445-9034, smiller@physics.rutgers.edu

EXPERIMENTS IN MODERN AND APPLIED PHYSICS

- Objectives
- Course structure
- Student responsibilities
- Course policies and grading
- Getting started

Policies

Ethics in Science

Do not Plagiarize

- Use of web and other resources is encouraged as long as it is properly cited.
- You may receive outside help as long as their contribution is acknowledged

Do not Fabricate or Falsify

- document everything as you go (Notebook) including mistakes
- Comparison to known values is ok, but not substitution or modification of the data

▶ DATA FABRICATION = F

Rutgers policy on academic integrity
 http://academicintegrity.rutgers.edu/integrity.shtm

Policies

Grading

- Attendance is mandatory.
 - Unexcused absence = -10%
- Grades:
 - Class work 15%
 - Preparatory questions and homework 20%
 - Notebook 10%
 - Lab reports 30% (late report deduction 4pt/day)
 - Oral presentation 25%

Policies

How to Succeed in this course

- Attend all classes
- Be punctual, plan your time, start writing report early
- Do your own work
- No Food, no Drink, no Newspapers in the lab
- Leave your work area CLEANER than you found it
- Have FUN!

EXPERIMENTS IN MODERN AND APPLIED PHYSICS

- Objectives
- Course structure
- Student responsibilities
- Course policies and grading
- Getting started

Getting started

- Preliminary work Jan 17 22
 - Meet your lab partners
- Homework
 - Go over reading assignment and do homework
- Prepare for first experiment
 - Read course information on the course webpage
 - Study lab writeup and reading
 - Answer preparatory questions
 - Obtain Lab book
- First lab meeting: January 23

Tour of course webpage

group	partners	What they look like
1	COULTER JENNIFER B HENDRIK BOSTELMANN-ARP HOANG KINH	
2	PATEL DHRUVIT P ASLAM FAZAL R WU PEIJIN	
3	TERRIS SYDNEY MIRKOVIC VLADIMIR KWIETNIAK MARC	
4	RITCHIE GRAHAM N LAU CHUN K DUDEK DAVID R	
5	ELLSWORTH BRIAN CHATTERJEE SIDHARTH PATEL ROCKIE	
7	HOWARD JOEL PARETS PERIS LAIA ZHOU BOJUN	
8	CLAVIJO ALEXIS RAMDIN DARAM FRANK MAXIMILIAN	