Baseline 1.6 Simulation Framework, and Plans for Baseline 2.0

Dark SHINE Seasonal Workshop

Yulei Zhang¹, Yifan Zhu¹, Qibin Liu², and <u>Xuliang Zhu²</u>
4/24/2024

Outline

- 1. Overview
- 2. From Baseline 1.0 to 1.6: Detector Construction
- 3. From Baseline 1.0 to 1.6: Versions and Milstones
- 4. CI/CD Pipeline and Validation
- 5. CPU Performance and Event Storage
- 6. Sample Production
- 7. Tracking
- 8. Calorimetry
- 9. Future Plans and Timeline

Overview

DarkSHINE Software is a software package, including five parts: DSimu, DAna, DDis, and DPlot.

- DSimu is the simulation program based on Geant4, characterized by Dark SHINE detector, controlled by yaml configuration.
- DAna is a framework for the analysis and reconstruction tools. It requires the output ROOT file (involving Geometry, DMagnet and DEvent) from DSimu.
- DDis is the event display for DSS.
 (requires Geometry and DEvent)
- DPlot is a quick plotting program for newbies and lazy man.
- DEvent is the generic data structure in DSS.

Detector Construction Overview

Tracking System

Baseline 1.6 Tracker uses Si micro-strip ($30\mu m$) and non-uniform magnetic field, while Baseline 1.0 uses non-strip (truth hit) and uniform magnetic field.

Baseline		Magnetic Field	Component	Material	Center Z (mm)	Size (mm)	Layer Number
			Tagging Tracker	Si	-607.83 ~ -7.83	100, 200, 0.1	7x2
1.0	/////	$B_y=-1.5\mathrm{T}$	Target	W	0	100, 200, 0.35	1
			Recoil Tracker	Si	7.73 ~ 180.23	100~250, 200, 0.1	6x2
		E 0	Tagging Tracker	Si	-607.83 ~ -7.83	201, 100, 0.15	7x2
1.6	1144	-0.8 -0.8 -1 -1.2	Target	W	0	200, 100, 0.35	1
		-1.4	Recoil Tracker	Si	7.73 ~ 180.23	201~501, 200, 0.15	6x2

ECAL

Baseline	Configuration	Cell Number	Cell Gap	Gap Material	Cell Components	Material	Size (cm)
1.0	Cubic	20, 20, 11	0.1 mm	CarbonFiber	Wrapper APD Scintillator	Al Si LYSO	2.53, 2.53, 4.13 1, 1, 0.1 2.5, 2.5, 4.0
1.6	Staggered	21, 21, 11	0.1 mm	CarbonFiber	Wrapper APD Scintillator	C Si LYSO	2.53, 2.53, 4.13 1, 1, 0.1 2.5, 2.5, 4.0

HCAL

In Baseline 1.6, The Design of HCAL is optimized. SideHCAL is added around the 4 sides of ECAL.

Baseline	Configuration	Cell Gap	Module Gap	Gap Material	Cell Components	Material	Size (cm)
1.0	XY-Abs-XY	0	0.5 mm	CarbonFiber	Wrapper APD Scintillator	Al Si Polystyrene	1.03, 5.03, 100.7 0.3, 0.3, 0.1 1, 5, 100.57
1.6	X-Abs-Y	0.1 mm	0.5 mm	CarbonFiber	Wrapper APD Scintillator Fiber Clad Fiber	C Si Polystyrene Polystyrene PMMA	1.03, 5.03, 75.55 0.3, 0.3, 0.1 1, 5, 75.42 r=1.2 mm r=1.176 mm

From Baseline 1.0 to 1.6: Versions and Milstones

Many functions and optimizations have been added to the software since 2020.

CI/CD Pipeline and Validation

Pipeline to build and draw validation plots will be triggered in each commit to master branch.

Or with keyword [CI] or [VIP] in the commit message

Validation plots in the pipeline artifacts, and can be posted on wiki.

CPU Performance and Event Storage

DSimu (Simulation)

Current Simulation Speed is x21 faster than Baseline 1.0 (900ms)

Storage: $60KB / event \rightarrow 14 KB / event$

DAna (Reconstruction)

~9ms per event

```
Execution Time / Event [sec]
Digitizer
                                         0.00011327
MCTruthAnalysis
                                         0.00000786
Tracking
                                         0.00073550
                                         0.00468526
ActsSequencer
RecECAL
                                         0.00206078
RecHCAL
                                         0.00000159
CutFlowAnalysis
Total Processed Event(s): 100000
Total Processing Time:
```

Sample Production

Name	Process Branching Ratio	Biasing Factor	Filter Efficiency	Equivalent Event Number	Beam On Number	Estimate Time [16000 core hour]	Time per Event [ms]
Inclusive	1.00E+00	1E+00	100%	-	-	-	79.19
Inclusive w/ ECAL trigger	1.00E+00	1E+00	100%	1E+11	1.00E+11	66.620	38.37
Inclusive w/ ECAL+missP trigger	1.00E+00	1E+00	100%	1E+12	1.00E+12	90.592	5.22
GMM Target (with hardbrem) w/ ECAL+missP trigger	1.50E-08	1E+08	6.557%	₹ 1E+14	1.53E+07	0.001	3.17
GMM ECAL (with hardbrem) w/ ECAL+missP trigger	1.63E-06	1E+07	16.333%	₹ 1E+14	6.12E+07	0.005	4.47
PN Target (with hardbrem) w/ ECAL+missP trigger	1.37E-06	1E+06	6.466%	₹ 1E+14	1.55E+09	0.128	4.75
PN ECAL (with hardbrem) w/ ECAL+missP trigger	2.31E-04	1E+05	16.446%	▼ 1E+14	6.08E+09	0.737	6.98
EN Target (E > 4GeV) w/ ECAL+missP trigger	5.10E-07	1E+05	1.47%	₹ 1E+14	6.08E+10	1.646	1.39
EN ECAL (E > 4GeV) w/ ECAL+missP trigger	3.25E-06	1E+05	0.56%	₹ 1E+14	1.79E+11	1.025	0.33

Tracking

Dark SHINE Tracking Package:

- Track Finding
 - Greedy algorithm
 - Future ML method
- Fitting
 - Kalman filter
 - Riemann filter
- Output
 - Seed for Tracker-ECAL PFA
 - Vertex for visible decay
 - **.**..

Acts Sequencer:

- SeedingAlgorithm
 - Default Seeding
 - Truth Seeding
- Track Finding & Fitting
 - CombinatorialKalmanFilter
- Output
 - Vertex for visible decay
 - Seed for Tracker-ECAL PFA [WIP]

Tracking

Filter Efficiency and Resolution (Truth Seeding)

Efficiency	Inclusive	Signal 5 MeV
Tagging	99.94%	99.94%
Recoil	99.76%	80.49 %

Calorimetry

(For ECAL Clustering etc., see Qibin & Zhiyu's Talk)

ECAL Smearing method

The smearing of ECAL is done in reconstruction/analysis level. For each ECAL cell, the energy of hits are summed, then Gaussian function is used to do the smearing, with the mean value set to truth energy and sigma from the formula $\frac{\sigma}{E} = \frac{A}{\sqrt{E}} + B + \frac{C}{E}$. The A B C parameters are extracted from standalone simulation with optical process enabled.

Smearing parameter used in analysis

	$A\sqrt{MeV}$	$A\sqrt{GeV}$	B	C/MeV
R90_LYSO	31.62%	1.00%	0.00%	0.0000
R10_LYSO	211.69%	6.69%	0.00%	0.0851
R90_S9_PWO4	134.56%	4.26%	0.70%	0.0001
R90_S36_PWO4	73.32%	2.32%	0.17%	0.7051

Detailed plots: set1

Future Plans and Timeline

Thanks

Documentations / Git Repo