9. 设 $\int_0^\infty f(x)dx$ 收敛, 且 f(x) 在 $[0,\infty)$ 上一致连续, 则

$$\lim_{x \to +\infty} f(x) = 0.$$

证明: 因为 f(x) 在 $[0,\infty)$ 上一致连续,因此对于任意 $\varepsilon > 0$,存在 $\delta(\varepsilon) > 0$,使得只要 $x_1, x_2 \in [0,\infty), |x_1 - x_2| \le \delta$,便有 $|f(x_1) - f(x_2)| < \varepsilon/2$,于是对于任意 $x \ge 0$

$$(f(x) - \varepsilon/2) \cdot \delta \le \int_{x}^{x+\delta} f(u)du \le (f(x) + \varepsilon/2) \cdot \delta,$$

即

$$f(x) - \varepsilon/2 \le \frac{1}{\delta} \int_x^{x+\delta} f(u) du \le f(x) + \varepsilon/2,$$

也即

$$\left| f(x) - \frac{1}{\delta} \int_{x}^{x+\delta} f(u) du \right| \le \frac{\varepsilon}{2}. \tag{9.1}$$

对于上述 $\delta(\varepsilon)$, 因为 $\int_0^\infty f(x)dx$ 收敛, 由 Chauchy 收敛准则知 $\lim_{x\to +\infty} \frac{1}{\delta} \int_x^{x+\delta} f(u)du = 0$, 因此存在 $A(\varepsilon) > 0$, 使得当 x > A 时有

$$\left| \frac{1}{\delta} \int_{x}^{x+\delta} f(u) du \right| < \frac{\varepsilon}{2}. \tag{9.2}$$

于是当 x>A 时由 (9.1),(9.2) 知 $|f(x)|<\varepsilon$, 即 $\lim_{x\to +\infty}f(x)=0$. 证毕。