返回

Class NP:

NP is a class of languages that are nondeterministic polynomial time on a non – deterministic single – tape Turing Machine.

From the definition 7.19 NP is the class of languages that have polynomial time verifies

Consider the given expression:

 $ISO = \{ \langle G, H \rangle | G \text{ and } H \text{ are isomorphic graphs} \}$

- If the nodes of G may be reordered so that it is identical to H then Graphs G and H are said to be isomorphic.
- Now it must be proved that ISO∈ NP
- Let $G = (V_G, E_G)$ and $H = (V_H, E_H)$ be the two graphs
- Let $V_G = \{u_1, u_2, ... u_m\}$, $V_H = \{v_1, v_2, ... v_n\}$ be the sets of vertices of G and H.

Isomorphism:

An isomorphism is defined by a mapping $f: V_G \to V_H$ with the property that it is a one – to –one correspondence. That means it is both one – to – one and onto.

- This one to one correspondence is possible only if m=n and for all $u,v\in V_G$ we have $(v,v)\in E_G$ if and only if $(f(u),f(v))\in E_H$.
- Thus, the correspondence takes edges into edges and non edges into non edges.
- A mapping f can be represented. By a sequence $S = (S_1, S_2, ... S_m)$ of indices with the property that $f(u_i) = v_{s_i}$, that is i^{th} point of G is mapped into the S_i^{th} point of H.
- This sequence S can be taken as certificate.

Now N is the non – deterministic Turing machine (NTM) that decides ISO in polynomial time.

$$N = \text{"On input}(\langle G, H \rangle, S)$$
:

Where G and H are graph as defined above S is the certificate.

- 1. Check whether G and H have same number of points.
- 2. If G and H have same number of points then checks that for each pair i, j

$$\Rightarrow (v_{S_i}, v_{S_i}) \in E_U$$
(1)

i. E_{U} can be derived from the above mapping procedure, \Rightarrow $\Big(u_{i},u_{j}\Big)$ \in E_{U} (2) From (1) and (2)

$$\Rightarrow (u_i, u_j) \in E_U$$
(2)

$$f(u_i) = v_{s_i} = E_U$$

- ii. have $S_i \neq S_j$ and that $(u_i, u_j) \in E_U$ if and only if $(v_{S_i}, v_{S_j}) \in E_U$
- iii. If the above condition satisfies, then "accept".
- 3. Otherwise "reject".

All these checking can be done in time $O(m^2)$, so in time polynomial in the description of (G, H). Therefore $ISO \in NP$.