Funktionen

Eine Funktion f ist eine eindeutige Zuordnung zwischen zwei Werten. Für jeden zulässigen Eingabewert x legt sie eindeutig einen Funktionswert y fest.

Unabhängige Variable: *x*

Abhängige Variable (hängt von x ab): y

Definitionsmenge D_f : Menge aller zulässigen Eingabewerte x für eine Funktion f.

Wertemenge W_f : Menge aller auftretenden y Werte einer Funktion f.

Funktionen können als Funktionsterm (Funktionsgleichung), als Wertetabelle oder als Funktionsgraph dargestellt werden.

Funktionsgleichung:

y = f(x) (y ist gleich f von x).

oder

 $f: x \to y$ (f bildet Werte aus der Menge aller x auf die Menge aller y ab).

Wertetabelle: Gegenüberstellung aller x mit allen y Werte in einer Tabelle.

Funktionsgraph: graphische Darstellung der Funktion in einem Koordinatensystem.

Nullstelle: eine Stelle einer Funktion, an welcher f(x)=0 (die Funktion schneidet die x-Achse)

Spurpunkt: jene Stellen einer Funktion, an welcher die Funktion eine der beiden Achsen schneidet (x-Achse oder y-Achse).

Fixpunkt: eine Stelle einer Funktion, an welcher f(x)=x. In diesem Punkt (z.B. $(0 \mid 0)$, $(3 \mid 3)$) schneidet die Funktion die 1. Mediane (y = x).

Steigung: jener Wert, um welcher sich y für jeden Anstieg in x erhöht. Veränderung der y-Werte relativ zu einander. Berechenbar als $\frac{\Delta y}{\Delta x}$ (Differenzenquotient).

Monotonie: das Steigungsverhalten einer Funktion.

- **1. Monoton wachsend/steigend:** wenn $x_1 < x_2$ und gilt: $f(x_1) \le f(x_2)$
- **2. Streng monoton wachsend/steigend:** wenn $x_1 < x_2$ und $f(x_1) < f(x_2)$
- **3. Monoton fallend:** wenn $x_1 < x_2$ und $f(x_1) \ge f(x_2)$
- **4. Streng monoton fallend:** wenn $x_1 < x_2$ und $f(x_1) > f(x_2)$

Extrempunkt: eine Stelle einer Funktion, an welcher sich das Monotonieverhalten verändert. Es gibt Hochpunkte (Maxima) und Tiefpunkte (Minima). An einem Extrempunkt ist die Steigung k gleich 0 und daher erhält man in diesem Punkt eine waagrechte Tangente.

Krümmung: Veränderung der Steigung, wobei die Funktion sein kann:

- 1. Positiv bzw. linksgekrümmt
- 2. Negativ bzw. rechtsgekrümmt

Wendepunkt: eine Stelle einer Funktion, an welcher sich die Krümmung ändert. In genau diesem Punkt ist die Krümmung gleich 0.

Sattel- bzw. Terassenpunkt: eine Stelle einer Funktion, die sowohl Extrempunkt als auch Wendepunkt ist.

Symmetrie:

- **1. Gerade bzw. Achsensymmetrisch:** wenn gilt f(-x)=f(x) , die Funktion ist also an der y-Achse gespiegelt.
- **2. Ungerade bzw. Punktsymmetrisch:** wenn gilt f(-x) = -f(x)

Links: Achsensymmetrisch. Rechts: Punktsymetrisch.

Periodizität: Eine Funktion heißt periodisch mit Periode p, wenn sich ihre Werte in einem Abstand p wiederholen, sodass gilt: f(x)=f(x+p)

Sinus- und Cosinusfunktion, jeweils mit Periode $p = 2\pi$

Asymptote: jene Gerade, der der Funktionsgraph beliebig nahe kommt, ohne sie jemals zu berühren.

Bijektivität: eine Funktion kann sein:

1. Injektiv: jeder y Wert kommt höchstens ein Mal vor.

2. Surjektiv: jeder y Wert kommt kommt mindestens ein Mal vor.

3. Bijektiv: jeder y Wert kommt **genau** ein Mal vor.

Links: Gar nichts. Rechts: Surjektiv.

Links: Injektiv. Rechts: Bijektiv.

Lineare Funktionen

Allgemeine Form: y = kx + d

Beispiele: f(x)=2x+1 oder f(x)=x+6

Homogene lineare Funktion (x und y sind **direkt proportional**): y=kx

Inhomogene lineare Funktion: y = kx + d

Wobei k die Steigung ist und bestimmt wie steil oder flach die Funktion ist und d der Abstand von der x-Achse bzw. der Abstand vom Ursprung ist.

Eine lineare Funktion hat ihre **Spurpunkte** bei $(0 \mid d)$ (y-Achse) und $(-\frac{d}{k} \mid 0)$ (x-Achse).

Für eine lineare Funktion mit der Steigung k gilt: f(x+1)=f(x)+k

Potenzfunktionen

Allgemeine Form: 1≤ Anzahl der Nullstellen≤n

Wenn gilt: $z \in Z \land z > 0$:

Beispiele: $f(x) = 2x^4 + 2$ oder $f(x) = x^3 - 1$

Wobei der Koeffizient a die Breite der Funktion, der Exponent z auch die Breite bzw. anfängliche Abflachung (wenn x < 1) und b den Abstand vom Ursprung bestimmt.

Hierbei gilt dass wenn der Exponent z gerade ist, die Funktion gerade bzw. achsensymmetrisch ist und wenn ungerade die Funktion ungerade bzw. punktsymmetrisch ist.

Wenn gilt: $z \in Z \land z < 0$:

Allgemein der Form: $f(x) = ax^{-b} + c$ bzw. $f(x) = \frac{a}{x^b} + c$

Beispiele: $f(x) = x^{-2} + 3$ oder $f(x) = 3x^{-1}$

Man spricht von einer **indirekt proportionalen** Funktion.

Alle indirekt proportionalen Potenzfunktionen haben eine Asymtote, da die Funktion für x=0 nicht definiert ist.

Wenn gilt: $z \in R$

Allgemein der Form: $f(x) = ax^{\frac{b}{c}} + d$ bzw. $a\sqrt[c]{x^b} + d$

Beispiele: $f(x) = x^{\frac{1}{2}} + 2$ oder $f(x) = 3x^{\frac{2}{3}}$

Hier spricht man von einer Wurzelfunktion.

Polynomfunktionen

Allgemeine Form: $f(x) = (\sum_{i=0}^{n} a_i x^i) + b$

Beispiele: $f(x)=2x^3+x^2+5x-3$ oder $f(x)=x^3+2x$

Zusammenhänge für eine Polynomfunktion n -ten Grades

 $0 \le Anzahl der Nullstellen \le n$ Wenn n gerade, sonst $1 \le Anzahl der Nullstellen \le n$

 $1 \le Anzahl der Extremstellen \le n-1$

 $0 \le Anzahl der Wendepunkte \le n-2$

Man beachte bei obiger Funktion die Zusammehänge. Die Funktion ist 5. Grades und hat 5 Nullstellen, also stimmt $0 \le Anzahl \, der \, Nullstellen \le n$, hat 4 Extrema, also stimmt $1 \le Anzahl \, der \, Extremstellen \le n-1$ und hat 3 Wendepunkte, also stimmt.

 $0 \le Anzahl der Wendepunkte \le n-2$.

Exponentialfunktionen

Allgemeine Form: $f(x)=ab^x+c$

Wobei a die Breite der Funktion und den Abstand vom Ursprung, b die Steigung und c auch den Abstand vom Ursprung bestimmt.

Da *b* die Steigung bestimmt, gilt für Exponentialfunktionen: f(x+1)=f(x)*b

Beweis für $f(x)=2^x$ und x=9 : $2^{10}=2^9*2$

Wenn gilt: $b \in Q \land b \ge 1$

Beispiele: $f(x)=3^{x}-2$ oder $f(x)=2*4^{x}+3$

Hierbei wird, der Koeffizient a vernachlässigt, y mit steigendem x größer.

Wenn gilt: $b \in Q \land 0 \le b < 1$

Beispiele: $f(x) = (\frac{1}{2})^x$ oder $f(x) = (\frac{2}{3})^x + 5$

Hierbei wird, der Koeffizient a vernachlässigt, y mit steigendem x kleiner, da eine rationale Zahl zwischen 0 und 1, mit sich selbst multipliziert, kleiner wird. $0.5^2 = 0.5*0.5 = 0.25$

Wenn gilt: b=e (Euler'sche Zahl, 2.718...)

Allgemein angegeben als: $f(x) = a * e^{\lambda * x} + b$

Beispiele: $f(x) = e^2 + 3$ oder $f(x) = 5e^4 - 3$

Hierbei ist λ die Wachstums- bzw. Zerfallskonstante.

Eigenschaft: $(e^x)' = e^x$

Halbwertszeit: x-Wert bzw., wenn auf der x-Achse t (Zeit) ist, Zeit nach welcher sich ein ursprünglicher Wert f(x) halbiert hat, sodass $f(Halbwertszeit) = \frac{f(Anfang)}{2}$

Verdoppelungszeit: x-Wert nach dem sich ein ursprünglicher Wert verdoppelt hat.

Sinus- und Cosinusfunktionen

Allgemeine Form: $f(x) = a \sin(bx) + c$ bzw. $f(x) = a \cos(bx) + c$

Hierbei bestimmt a die Amplitude (Maximaler Wert für y) und b die Breite bzw. Frequenz bzw. Periode der Funktion.

Eigenschaft: $\sin(90+x) = \cos(x)$ bzw. $\cos(90-x) = \sin(x)$.

Man bemerke: $90 \degree = \frac{\pi}{2} Radien$.

Eigenschaft: Beide Funktionen haben eine Periode p von 2π .

Eigenschaft: $[\sin(x)]' = \cos(x)$ und $[\cos(x)]' = -\sin(x)$.

Eigenschaft (Kettenregel): $[\sin(kx)]' = k\cos(x)$ und $[\cos(kx)]' = -k\sin(x)$.

Extremstellen: Periodisch mit $p=\pi$.

Nullstellen für Sinusfunktion: Periodisch mit $p=k*\pi$.

Nullstellen für Cosinusfunktion: Periodisch mit $p = \frac{\pi}{2} + k * \pi$.

