Table Contents

Date:23/7/2021

USCSP301: USCS303-Operating System(OS)

SJF (with no pre-emption scheduling Algorithm)	1
Aim	2
Algorithm	3
Example of SJF	4
Gnatt Chart	5
Implementation	6
Input	7
Output	
Sample Output	

Practical aim: Non-Preemtive CPU Schedualing algorithm where each process with the smallest burst time is executed time.

Algorithm:

CPU scheduling algorithm are used for scheduling different process present in the ready queue with available resource in an optimal way so that each and every process get execute by CPU

Scheduling algorithm are broadly classified into two main type namely preemptive and non-preemptive .

FIRST COME FIRST OUT(FCFS) is also know as FIRST IN FIRST OUT (FIFO) SCHEDUAL algorithm is the and simplest

CPU.

A process scheduling different process to be assigned to the CPU based on particular scheduling algorithm .there are six popular process scheduling algorithm which we are going to discuss in this chapter FIRST COME FIRST OUT(FCFS) scheduling.

Example 1: Consider the following example contain five processes .

Process Id	Burst Time
P0	6
P1	3
P2	8
P3	3
P4	4

Step 1: Processes get execute according to their lowest burst time first .

Process Id	Burst Time
P0	6
P1	3
P2	8
P3	3
P4	4

Step 2: Following shows the scheduling and execution of processes

Step 2.1: At start P1 shortest execution time which is 0-3 second.

System time	0
Processes scheduling finish time	P1
Finish time	0+3=3
Wating time	3-3=0
Turn Around time	3-0=3

Step 2.2: next shortest execution time is for process P3 for duration 3-6 second.

System time	6
Processes scheduling finish time	P1,p3
Finish time	3+3=6
Wating time	6-3=3
Turn Around time	6-0=6

Step 2.3: Next job with shortest execution time is P4 for a duration 6-10 second.

System time	10
Processes scheduling finish time	P1,p3'p4
Finish time	6+4=10
Wating time	10-4=6
Turn Around time	10-0=10

Step 2.4: Next job with shortest execution time is p0 for duration of 10-16 second.

System time	10
Processes scheduling finish time	P1,p3,p3,p4,p0
Finish time	10+6=16
Wating time	16-6=10
Turn Around time	16-0=16

Step 2.5: Similarly next job with shortest execution time is P2 for duration of 16-24 second.

System time	16
Processes scheduling finish time	P1,p3,p3,p4,p0,p2

Finish time	16+8=24	
	1010-24	
Wating time	24-8=16	
wating time	24-0-10	
Turn Around time	24-0=24	
Turn Around time	24-0=24	

Step 3: Calculate average wating time and average turn

Gnatt Chart

Step 4: After scheduling of all provided processes.

Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
P1	3	0	0+3=3	3-0=3	3-3=0
P3	3	0	3+3=6	6-0=6	6-3=3
P4	4	0	6+4=10	10-0=10	10-4=6
PO	6	0	10+6=16	16-0=16	16-6=10
P2	8	0	16+8=24	24-0=24	24-8=16
Average				11.8000000	7.000000

P1	P3	P4	PO	P2
0	3	6	10	16 24

Example 7: Consider	the following example	e containing five processes	arrive at same time
Example El Consider	the following example	c containing nive processes	arrive at same time.

Processes ID	Burst Time
PO	2
P1	1
P2	6

Gnatt Chart

Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
P1	1	0	1	1	1
PO	2	0	3	3	3
P2	6	0	9	9	9
Average				4.33333	1.33333

Example 3: Consider the following example contain five processes arrive at same time.

Process ID	Burst time
P0	25
P1	15
P2	10
P3	25
P4	10
P5	25

Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
P2	10	0	10	10	0
P4	10	0	20	20	10
P1	15	0	35	35	20
PO	25	0	60	60	35
P3	25	0	85	85	60

	25	0	110	110	85
5					
erage				53.3333	35.000000
J					

Process id	Burst time	Arrival time	Finish time	Turn Aroun dtime	Wating time
P2	10	0	10	10	0
P4	10	0	20	20	10
P1	15	0	35	35	20
P0	25	0	60	60	35
P3	25	0	85	85	60
P5	25	0	110	110	85
Average				53.3333	35.000000
P2	P4	P1	PO	P3	P5
0	10 2	20	35	60	85 11C

Example 4: Consider the following example contain five processes arrive at same time.

Process Id	Burst Time
P0	7
P1	3
P2	2
P3	10
P4	8

Step 4: After scheduling of all provided processes.

Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
P2	2	0	2	2	0
P1	3	0	5	5	2
PO	7	0	12	12	5
P4	8	0	20	20	12
Р3	10	0	30	30	20

				13.80000	7.800000
natt chart:					
Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
22	2	0	2	2	0
P1	3	0	5 5		2
PO	7	0	12	12	5
P4	8	0	20	20	12
P3	10	0	30	30	20
Average				13.80000	7.800000
P2	P1	PO	F	24	P3
	2	5	12	2	0 3

```
Implementation:
*Name: Gaurang Sanyasi
*Batch:B2
*PRN:2020016400785461
*Date:23/7/2021
*Prac-02: SJF(with no preemption)Algorithm
import java.util.Scanner;
public class P2_SJF_PD
int burstTime[];
int arrivalTime[]={0};
String[] processId;
int numberOfProcess:
void getProcessData(Scanner input){
System.out.println("enter the number of process for Scheduling:");
int inputNumberOfProcess=input.nextInt();
numberOfProcess=inputNumberOfProcess;
burstTime=new int[numberOfProcess];
arrivalTime=new int[numberOfProcess];
processId=new String[numberOfProcess];
String st="p";
for(int i=0;i < numberOfProcess;i++){</pre>
processId[i]=st.concat(Integer.toString(i));
System.out.print("enter the burst time for process-"+(i)+":");
burstTime[i]=input.nextInt();
```

```
}
void sortAccordingBurstTime(int[] at,int[] bt,String[] pid){
boolean swapped;
int temp;
String stemp;
for (int i=0;i<numberOfProcess;i++){</pre>
swapped=false;
for (int j = 0;j<numberOfProcess-i-1;j++){</pre>
if(bt[j]>bt[j+1]){
temp=bt[j];
bt[j]=bt[j+1];
bt[j+1]=temp;
temp=at[j];
at[j]=at[j+1];
at[j+1]=temp;
stemp=pid[j];
pid[j]=pid[j+1];
pid[j+1]=stemp;
swapped=true;
}
}
if(swapped==false){
break;
}
}
}
void shortestJobFirstNPAlgorithm(){
int finishTime[]=new int[numberOfProcess];
int bt[]=burstTime.clone();
```

```
int at[]=arrivalTime.clone();
String pid[]=processId.clone();
int waitingTime[]=new int[numberOfProcess];
int turnAroundTime[]=new int[numberOfProcess];
sortAccordingBurstTime(at,bt,pid);
finishTime[0]=at[0]+bt[0];
turnAroundTime[0]=finishTime[0]-at[0];
waitingTime[0]=turnAroundTime[0]-bt[0];
for(int i=1;i<numberOfProcess;i++){</pre>
finishTime[i]=bt[i]+finishTime[i-1];
turnAroundTime[i]=finishTime[i]-at[i];
waitingTime[i]=turnAroundTime[i]-bt[i];
}
float sum=0;
for(int n:waitingTime){
sum+=n;
}
float averageWaitingTime=sum/numberOfProcess;
sum=0;
for(int n:turnAroundTime){
sum+=n;
}
float averageTurnAroundTime=sum/numberOfProcess;
System.out.println("SJF (with no preemption) Scheduling Algorithm:");
System.out.format("%20s%20s%20s%20s%20s%20s\n","ProcessId","BurstTime"
,"ArrivalTime","FinishTime","TurnAroundTime","WatingTime");
for(int i=0;i<numberOfProcess;i++){
System.out.format("%20s%20d%20d%20d%20d%20d\n",pid[i],bt[i],at[i]
,finishTime[i],turnAroundTime[i],waitingTime[i]);
```

```
}
System. out. format ("\%80s\%20f\%20f\n", "Average", average Turn Around Time, average Waiting Time);
}
public static void main(String[] args){
Scanner input=new Scanner(System.in);
P2_SJF_PD obj=new P2_SJF_PD();
obj.getProcessData(input);
obj.shortestJobFirstNPAlgorithm();
}
}
```


Input:

```
enter the burst time for process-0:25
enter the burst time for process-1:15
enter the burst time for process-2:10
enter the burst time for process-3:25
enter the burst time for process-4:10
enter the burst time for process-5:25
SJF (with no preemption) Scheduling Algorithm :
```

Output:

CIE /with	no programation)	Scheduling Algorithm :					
31 (MICH							
	ProcessId	BurstTime	ArrivalTime	FinishTime	TurnAroundTime	WatingTime	
	p2	10	0	10	10	0	
	p4	10	0	20	20	10	
	p1	15	0	35	35	20	
	p0	25	0	60	60	35	
	р3	25	0	85	85	60	
	p5	25	0	110	110	85	
				Average	53.333332	35.000000	
C.\IIsans\	SD CONSULTANTS	OneDrive\Deckton\					

Sample output 4:

