Objective:

Develop an AI-based multi-agent system that can detect, prevent, and respond to cybersecurity threats within an organization. The system should simulate various attack scenarios, defense mechanisms, and response strategies.

1. Input Data Details

Primary Data:

- Network Traffic Data: Logs capturing network flows, packet details, and anomalies.
- System Event Logs: OS logs, application logs, and security logs indicating suspicious activities.
- Threat Intelligence Feeds: Indicators of compromise (IOCs), known attack signatures, and vulnerability data.
- User Behavior Data: Login patterns, access logs, and behavioral anomalies.
- **Configuration Data:** System and network configurations, patch levels, and security policies.

Preparation Tips:

- Use simulated or anonymized logs to mimic real-world attack and defense scenarios.
- Label data with attack types, threat levels, or anomalies for supervised learning.

2. Expected Outputs

Primary Goals:

• Threat Detection:

- o Input: Network/system logs and threat intelligence.
- o Output: Alerts or labels indicating potential threats or anomalies.

• Automated Response Strategies:

 Recommendations or automated actions such as isolating systems, blocking IPs, or initiating scans.

• Adaptive Learning:

o The system should improve over time by learning from new threats and responses.

Additional Outputs:

Visual dashboards showing threat levels, attack vectors, and response status.

Reports summarizing incidents and system health.

3. Key Requirements & Guidelines

Data Handling:

- Use labeled datasets for supervised learning where possible.
- Incorporate unsupervised anomaly detection for unknown threats.

Modeling Approaches:

- Use multi-agent architectures with specialized agents for detection, response, and learning.
- Techniques: Deep learning (e.g., LSTM, CNN), anomaly detection, reinforcement learning.

Features to Consider:

- Network flow features (source/destination IPs, ports, packet sizes).
- System event features (login times, failed attempts, privilege escalations).
- o Threat intelligence indicators.
- o Behavioral patterns.

Evaluation Metrics:

- Detection accuracy, precision, recall.
- o Response effectiveness (e.g., time to contain threats).
- False positive/negative rates.

• Deliverables:

- Prototype multi-agent system with code/scripts.
- Demonstration of threat detection and response.
- o Documentation explaining architecture, data used, and results.

4. Additional Datasets & Resources Needed

- Simulated Network Traffic & Logs: For attack and normal behavior.
- Threat Intelligence Data: Sample IOC feeds or simulated threat signatures.
- Vulnerability Data: Common vulnerabilities and exposures (CVEs).

•	Behavioral Data: Simulated user activity logs.