Lecture 15: Source Coding

Prof. Deniz Gunduz

Department of Electrical & Electronic Engineering Imperial College London

Outline

- Average codeword length
- Fixed and variable length coding
- Source coding theorem
- Huffman coding
- Reference
 - ✓ [Haykin] Chapter 10

Source Entropy

ullet If symbol s_n has occurred, this corresponds to

$$I(s_n) = \log_2 \frac{1}{p_n} = -\log_2 p_n$$
 bits of information

ullet For random variable S, expected value of I(S) over the source alphabet

$$\mathbb{E}\{I(S)\} = \sum_{n=1}^{N} p_n I(s_n) = -\sum_{n=1}^{N} p_n \log_2 p_n$$

Source entropy: average amount of information per source symbol

$$H(S) = -\sum_{n=1}^{N} p_n \log_2 p_n$$

Units: bits/symbol

Example

Three-Symbol Alphabet

- A: occurs with probability 0.7
- B: occurs with probability 0.2
- C: occurs with probability 0.1
- Source entropy:

$$H(S) = -0.7\log_2(0.7) - 0.2\log_2(0.2) - 0.1\log_2(0.1) = 1.157 \text{ bits/symbol}$$

- How can we encode these symbols in order to transmit them?
- We need 2 bits/symbol if encoded as

$$A=00, B=01, C=10 \quad \text{(fix-length coding)}$$

- Entropy prediction: the average amount of information is only 1.157 bits/symbol
- We are wasting bits!

Source Coding Theory

- Source encoding: concerned with minimizing the actual number of source bits that are transmitted to the user
- Channel encoding: concerned with introducing redundant bits to enable the receiver to detect and possibly correct errors that are introduced by the channel.
- What is the minimum number of bits required to transmit a particular symbol?
- How can we encode symbols so that we achieve (or at least come arbitrarily close to) this limit?

Example

Information Content of English

- Encoding English Words Letter-by-Letter
 - ✓ In English, on average there are 4.5 letters per word
 - √ With space (ignoring punctuation and capitalization) we need 5.5 characters per word
 - ✓ We need 5 bits to encode each letter (26 letters)
 - √ We need 27.5 bits per word
- Encoding English Words Word-by-Word
 - √ Assume 171,476 English words (from Google)
 - \checkmark Equivalent to 18 bits per word ($2^{18} = 262, 144$)
- Encoding English Semantically
 - √ ... more efficient!

Frequencies of Words in English

1	the	26	they				
2	be	27	we	51	when	76	come
3	to	28	say	52	make	77	its
4	of	29	her	53	can	78	over
5	and	30	she	54	like	79	think
6	a	31	or	55	time	80	also
7	in	32	an	56	no	81	back
8	that	33	will	57	just	82	after
9		34	my	58	him	83	use
ha	ve	35	one	59	know	84	two
10	1	36	all	60	take	85	how
11	it	37		61		86	our
12	for	WOL	uld	peo	ple	87	work
13	not	38	there	62	into	88	first
14	on	39	their	63	year	89	well
15		40	what	64	your	90	way
wit	th	41	SO	65	good	91	even
16	he	42	up	66	some	92	new
17	as	43	out	67	could	93	want
18	you	44	if	68	them	94	
19	do	45		69	see	bec	ause
20	at	abo	ut	70	other	95	any
21	this	46	who	71	than	96	these
22	but	47	get	72	then	97	give
23	his	48		73	now	98	day
24	by	whi	ch	74	look	99	most
25		49	go	75	only	100	us
fro	m	50	me				

Considering most frequent 8727 words ($\log_2(8727)=14.4$ bits), the entropy of English word is found to be only 9.14 bits/word.

Can we reach this or beyond?

Average Codeword Length

- Definitions
 - \checkmark l_n : number of bits used to code the n-th symbol
 - \checkmark N: total number of symbols
 - $\checkmark p_n$: probability of occurrence of symbol n
- Average codeword length

$$\bar{L} = \sum_{n=1}^{N} p_n l_n$$

- An idea to reduce average codeword length:
 - √ symbols that occur often should be encoded with short codewords
 - √ symbols that occur rarely may be encoded using long codewords
- Make sure that the codewords are uniquely decodable!

Codeword Length

- In a system with 2 symbols that are equally likely:
 - ✓ Probability of each symbol to occur: p = 1/2, H(p) = 1 bit
 - \checkmark Best one can do: encode each with 1 bit only (0 or 1), $\bar{L}=1=H(p)$ bit
- In a system with 2 symbols that are unequally likely:
 - $\checkmark H(p) < 1$ bit
 - \checkmark Encode each with 1 bit only (0 or 1), $\bar{L}=1>H(p)$ bit
- A system with N ($N=2^k$ for some integer k) symbols that are equally likely:
 - \checkmark Probability of each symbol to occur: p = 1/N
 - \checkmark One needs $\bar{L} = \log_2 N = k \; (= -\log_2 p)$ bits to represent the symbols
 - \checkmark For example, N=4 requires L=2 bits
- What is the minimum average codeword length for a particular source?

Fixed Length Coding

Fixed length code: the same codeword length of different codewords.

Example: 4-symbol source $p(a_1) = 1/2$, $p(a_2) = 1/4$, $p(a_3) = p(a_4) = 1/8$

Symbol (codeword)	Prob	Code I	Code II	Code III
a_1	1/2	00	0	0
a_2	1/4	01	10	11
a_3	1/8	10	110	110
a_4	1/8	11	111	111

For example, using Code I:

$$a_1 a_3 a_4 a_3 \to 00, 10, 11, 10 \to 00101110$$

 $10110100 \to 10, 11, 01, 00 \to a_3 a_4 a_2 a_1$

- Source entropy: $H(S) = \frac{1}{2} \log_2 2 + \frac{1}{4} \log_2 4 + 2 \times \frac{1}{8} \log_2 8 = 1.75$ bits
- \bullet Average length of codewords: $\bar{L}=2>H(S)=1.75$

Fixed length coding is always **uniquely decodable** as long as you assign different symbols to different codewords!

Variable Length Coding

Variable length code: codewords may have different lengths

Example: 4-symbol source $p(a_1) = 1/2$, $p(a_2) = 1/4$, $p(a_3) = p(a_4) = 1/8$

Symbol (codeword)	Prob	Code I	Code II	Code III
a_1	1/2	00	0	0
a_2	1/4	01	10	11
a_3	1/8	10	110	110
a_4	1/8	11	111	111

Using Code II:

- Encoding: $a_1a_3a_4a_1 \to 0, 110, 111, 0 \to 01101110$
- Decoding: $011011110 \rightarrow 0, 110, 111, 0 \rightarrow a_1a_3a_4a_1$

Using code III:

- Encoding: $a_1a_3a_4a_1 \to 0, 110, 111, 0 \to 01101110$
- Decoding:
 - $\checkmark 01101110 \rightarrow 0, 110, 111, 0 \rightarrow a_1 a_3 a_4 a_1$
 - $\sqrt{01101110} \rightarrow 0, 11, 0, 111, 0 \rightarrow a_1 a_2 a_1 a_4 a_1$

Not uniquely decodable!

Some variable length codes are not uniquely decodable, and we only consider **uniquely decodable** coding subsequently.

Source Coding Theorem

Source Coding Theorem

Given a discrete memoryless source of entropy H(S), average codeword length \bar{L} for any uniquely decodable source coding scheme is (lower) bounded by H(S), that is,

$$\bar{L} \ge H(S)$$

Huffman Coding

- Basic Idea: choosing codeword lengths so that more-probable sequences have shorter codewords
- Code Construction:
 - √ Sort source symbols in order of decreasing probability
 - \checkmark Take two smallest $p(x_i)$ and assign each a different bit (i.e., 0 or 1), then merge into a single symbol
 - √ Repeat until only one symbol remains
- Properties:
 - \checkmark Huffman Coding (among other algorithms): uniquely decodable with average coding length satisfying $H(S) \leq \bar{L} < H(S) + 1$
 - √ The shortest average codeword length
 - ✓ Easy to implement this algorithm: used in JPEG, MP3, ...

Example

Compound Symbol using Huffman Coding

- Two symbol source: two symbols s_1 , s_2
 - ✓ probabilities $Pr(s_1) = p_1$, $Pr(s_2) = p_2$
 - $\checkmark H_1(S) = -p_1 \log_2 p_1 p_2 \log_2 p_2$
 - \checkmark Average length of Huffman code: $H_1(S) \leq \bar{L}_1 < H_1(S) + 1$
- Compound-symbol source by combining every two symbols:
 - \checkmark Four compound symbols s_1s_1 , s_1s_2 , s_2s_1 , s_2s_2
 - √ Probabilities

$$\Pr(s_1s_1) = p_1^2, \Pr(s_1s_2) = \Pr(s_2s_1) = p_1p_2, \Pr(s_2s_2) = p_2^2$$

√ Compound-symbol source entropy

$$\begin{split} H_2(S) &= -\sum_{i,j} p_i p_j \log(p_i p_j) = -\sum_{i,j} p_i p_j \log(p_i) - \sum_{i,j} p_i p_j \log(p_j) \\ &= -\sum_i p_i \log(p_i) - \sum_j p_j \log(p_j) \\ &= 2H_1(S) \end{split}$$

 \checkmark Average length of Huffman code per the compound-symbol: $ar{L}_2$

$$H_2(S) \le \bar{L}_2 < H_2(S) + 1$$

 \checkmark Average length per symbol: $\bar{L}_2/2$

$$2H_1(S) \le \bar{L}_2 < 2H_1(S) + 1 \Rightarrow H_1(S) \le \frac{\bar{L}_2}{2} < H_1(S) + \frac{1}{2}$$

Compound Symbol using Huffman Coding

- Compound-symbol source by combining K symbols:
 - \checkmark Probability $\Pr(s_{n_1}s_{n_2}\dots s_{n_K}) = p_{n_1}p_{n_2}\dots p_{n_K} = \prod_{k=1}^K p_{n_k}$
 - √ Compound-symbol source entropy

$$H_K(S) = KH_1(S)$$

 \checkmark Average length of Huffman code per the compound-symbol: $ar{L}_K$

$$H_K(S) \le \bar{L}_K < H_K(S) + 1$$

 \checkmark Average length per symbol: \bar{L}_K/K

$$H_1(S) \le \frac{\bar{L}_K}{K} < H_1(S) + \frac{1}{K}$$

• When $K \to \infty$,

$$H_1(S) \le \lim_{K \to \infty} \frac{\bar{L}_K}{K} \le H_1(S) + \lim_{K \to \infty} \frac{1}{K}$$

Average length per symbol:

$$\lim_{K \to \infty} \frac{\bar{L}_K}{K} = H_1(S)$$

Application: File Compression

- A drawback of Huffman coding: requiring knowledge of a probabilistic model, which is not always available a priori.
- Lempel-Ziv coding overcomes this practical limitation and has become the standard algorithm for file compression.
 - ✓ In principle it 'learns' the distribution of a file in an online fashion
 - ✓ compress, gzip, GIF, TIFF, PDF, modem, ...
 - √ A text file can typically be compressed to half of its original size.

Note