WO03082290

Publication Title:

4-(N-PHENYLAMINO)-QUINAZOLINES / QUINOLINES AS TYROSINE KINASE INHIBITORS

Abstract:

Abstract of WO03082290

The invention relates to the bicyclic heterocycles of the general formula (I), wherein R&It;a>, R&It;b>, R&It;c>, R&It;d> and X are defined as in claim 1, the tautomers, stereoisomers, mixtures and salts thereof, especially the physiologically acceptable salts thereof with inorganic or organic acids, which have valuable pharmacological properties, especially an inhibitory effect on tyrosine kinase-mediated signal transduction. The invention also relates to the use of the bicyclic heterocycles in the treatment of diseases, especially cancer diseases and of benign prostate hyperplasia (BPH), of diseases of the lung and the respiratory system, and further to the production of the bicyclic heterocycles. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 9. Oktober 2003 (09.10.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/082290 A1

- (51) Internationale Patentklassifikation⁷: A61K 31/517, C07D 239/94, 405/12, 401/12, 413/12, 403/12, 498/08, 491/08, A61P 35/00
- (21) Internationales Aktenzeichen: PCT/EP03/03062
- (22) Internationales Anmeldedatum:

25. März 2003 (25.03.2003)

(25) Einreichungssprache:

Dentsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 14 412.5 30. März 2002 (30.03.2002) DE 102 31 711.9 13. Juli 2002 (13.07.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG [DE/DE]; Binger Strasse 173, 55216 Ingelheim am Rhein (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HIMMELSBACH, Frank [DE/DE]; Ahornweg 16, 88441 Mittelbiberach (DE). JUNG, Birgit [DE/DE]; Schossäcker 9, 88471

Laupheim (DE). SOLCA, Flavio [CH/AT]; Gesslgassc 10/6, A-1230 Wien (AT).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), curasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), curopäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: 4-(N-PHENYLAMINO)-QUINAZOLINES / QUINOLINES AS TYROSINE KINASE INHIBITORS
- (54) Bezeichnung: 4- (N-PHENYLAMINO) CHINAZOLINE/CHINOLINE ALS TYROSINKINASEINHIBITOREN

- (57) Abstract: The invention relates to the bicyclic heterocycles of the general formula (I), wherein R^a, R^b, R^c, R^d and X are defined as in claim 1, the tautomers, stereoisomers, mixtures and salts thereof, especially the physiologically acceptable salts thereof with inorganic or organic acids, which have valuable pharmacological properties, especially an inhibitory effect on tyrosine kinase-mediated signal transduction. The invention also relates to the use of the bicyclic heterocycles in the treatment of diseases, especially cancer diseases and of benign prostate hyperplasia (BPH), of diseases of the lung and the respiratory system, and further to the production of the bicyclic heterocycles.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft bicyclische Heterocyclen der allgemeinen Formel (I), in der R³, Rb, Rc, Rd und X wie im Anspruch I definiert sind, deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion, deren Verwendung zur Behandlung von Krankheiten, insbesondere von Tumorerkrankungen sowie der benignen Prostatahyperplasie (BPH), von Erkrankungen der Lunge und der Atemwege und deren Herstellung.

WO 03/082290 PCT/EP03/03062

4-(N-PHENYLAMINO)-CHINAZOLINE/CHINOLINE ALS TYROSINKINASEINHIBITOREN

5 Gegenstand der vorliegenden Erfindung sind bicyclische Heterocyclen der allgemeinen Formel

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion, deren Verwendung zur Behandlung von Krankheiten, insbesondere von Tumorerkrankungen sowie der benignen Prostatahyperplasie (BPH), von Erkrankungen der Lunge und der Atemwege und deren Herstellung.

In der obigen allgemeinen Formel I bedeutet

20 R^a ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe,

30

R^b eine Phenyl- oder 1-Phenylethylgruppe, in denen der Phenylkern jeweils durch die Reste R¹ bis R³ substituiert ist, wobei

25 R¹ und R², die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom,

eine C₁₋₄-Alkyl-, Hydroxy-, C₁₋₄-Alkoxy-, C₂₋₃-Alkenyl- oder C₂₋₃-Alkinylgruppe,

eine Aryl-, Aryloxy-, Arylmethyl- oder Arylmethoxygruppe,

15

20

25

30

eine Heteroaryl-, Heteroaryloxy-, Heteroarylmethyl- oder Heteroarylmethoxy-gruppe,

eine durch 1 bis 3 Fluoratome substituierte Methyl- oder Methoxygruppe oder eine Cyano-, Nitro- oder Aminogruppe, und

R³ ein Wasserstoff-, Fluor-, Chlor- oder Bromatom oder

eine Methyl- oder Trifluormethylgruppe darstellen,

R^c eine Cyclobutyl-, Cyclopentyl- oder Cyclohexylgruppe, die jeweils durch eine Gruppe R⁴-N-R⁵ substituiert ist. wobei

 $\ensuremath{\mathsf{R}}^4$ ein Wasserstoffatom oder eine $C_{1\text{-}3}\text{-}\ensuremath{\mathsf{Alkylgruppe}}$ und

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

eine Aminocarbonyl-C₁₋₃-alkyl-, C₁₋₃-Alkylaminocarbonyl-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)aminocarbonyl-C₁₋₃-alkyl-, Pyrrolidin-1-ylcarbonyl-C₁₋₃-alkyl-, Piperidin-1-ylcarbonyl-C₁₋₃-alkyl-, Morpholin-4-ylcarbonyl-C₁₋₃-alkyl-, Homomorpholin-4-ylcarbonyl-C₁₋₃-alkyl-, Piperazin-1-ylcarbonyl-C₁₋₃-alkyl-, 4-C₁₋₃-Alkyl-piperazin-1-ylcarbonyl-C₁₋₃-alkyl-, Homopiperazin-1-ylcarbonyl-C₁₋₃-alkyl- oder eine 4-C₁₋₃-Alkyl-homopiperazin-1-ylcarbonyl-C₁₋₃-alkyl- gruppe,

eine Hydroxy- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkyloxy- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot4}$ -Alkyloxy-carbonylamino- $C_{2\cdot4}$ -alkyl-, Amino- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkylamino- $C_{2\cdot4}$ -alkyl-, Di-($C_{1\cdot3}$ -alkyl)amino- $C_{2\cdot4}$ -alkyl-, Aminocarbonylamino- $C_{2\cdot4}$ -alkyl-, C_{1\cdot3}-Alkylaminocarbonylamino- $C_{2\cdot4}$ -alkyl-, Di-($C_{1\cdot3}$ -alkyl)amino-carbonylamino- $C_{2\cdot4}$ -alkyl-, Pyrrolidin-1-ylcarbonylamino- $C_{2\cdot4}$ -alkyl-, Piperidin-1-ylcarbonylamino- $C_{2\cdot4}$ -alkyl-, Morpholin-4-ylcarbonylamino- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkylsulfonyl- $C_{2\cdot4}$ -alkyl- oder eine $C_{1\cdot3}$ -Alkylsulfonylamino- $C_{2\cdot4}$ -alkylgruppe,

10

15

20

25

30

eine (2-Oxo-pyrrolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxopiperidin-1-yl)- C_{2-4} -alkyl-, (3-Oxomorpholin-4-yl)- C_{2-4} -alkyl-, (2-Oxo-imidazolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxo-hexahydropyrimidin-1-yl)- C_{2-4} -alkyl- oder eine (2-Oxo-3- C_{1-3} -alkyl-hexahydropyrimidin-1-yl)- C_{2-4} -alkylgruppe,

eine C_{1-4} -Alkylsulfonyl-, Chlor- C_{1-4} -alkylsulfonyl-, Brom- C_{1-4} -alkylsulfonyl-, Amino- C_{1-4} -alkylsulfonyl-, C_{1-3} -Alkylamino- C_{1-4} -alkylsulfonyl-, Di-(C_{1-3} -alkyl)amino- C_{1-4} -alkylsulfonyl-, (Piperidin-1-yl)- C_{1-4} -alkylsulfonyl-, (Piperidin-1-yl)- C_{1-4} -alkylsulfonyl-, (Morpholin-4-yl)- C_{1-4} -alkylsulfonyl-, (Morpholin-4-yl)- C_{1-4} -alkylsulfonyl-, (Piperazin-1-yl)- C_{1-4} -alkylsulfonyl-, (Piperazin-1-yl)- C_{1-4} -alkylsulfonyl-, (Homopiperazin-1-yl)- C_{1-4} -alkylsulfonyl-, (Homopiperazin-1-yl)- C_{1-4} -alkylsulfonyl- oder eine (4- C_{1-3} -Alkyl-homopiperazin-1-yl)- C_{1-4} -alkylsulfonyl- nylgruppe,

eine C₁₋₄-Alkyloxycarbonylgruppe,

C₁₋₄-Alkyl-carbonyl-, eine Formyl-, C₁₋₃-Alkyloxy-C₁₋₄-alkyl-carbonyl-, Tetrahydrofuranylcarbonyl-, Tetrahydropyranylcarbonyl-, Amino-C₁₋₄-alkylcarbonyl-, C₁₋₃-Alkylamino-C₁₋₄-alkyl-carbonyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₄-alkylcarbonyl-, Pyrrolidin-1-yl-C₁₋₄-alkyl-carbonyl-, Piperidin-1-yl-C₁₋₄-alkyl-carbonyl-, (Homopiperidin-1-yl)-C₁₋₄-alkyl-carbonyl-, Morpholin-4-yl-C₁₋₄-alkyl-carbonyl-, (Homomorpholin-4-yl)-C₁₋₄-alkyl-carbonyl-, (Piperazin-1-yl)-C₁₋₄-alkyl-carbonyl-, $(4-C_{1-3}-Alkyl-piperazin-1-yl)-C_{1-4}-alkyl-carbonyl-, (Homopiperazin-1-yl)-C_{1-4}-alkyl-p$ carbonyl-, (4-C₁₋₃-Alkyl-homopiperazin-1-yl)-C₁₋₄-alkyl-carbonyl-C₁₋₃-Alkylsulfonyl-C₁₋₄-alkyl-carbonylgruppe,

eine Cyano-, Aminocarbonyl-, C_{1-3} -Alkyl-aminocarbonyl-, Di- $(C_{1-3}$ -alkyl)aminocarbonyl-, $(C_{1-3}$ -Alkyloxy- C_{2-4} -alkyl)aminocarbonyl-, N- $(C_{1-3}$ -Alkyl)-N- $(C_{1-3}$ -alkyloxy- C_{2-4} -alkyl)aminocarbonyl-, Arylaminocarbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1-ylcarbonyl-, Morpholin-4-ylcarbonyl-, Homomorpholin-4-ylcarbonyl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-ylcarbonyl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-ylcarbonyl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3-ylcarbonyl-, Piperazin-1-ylcarbonyl-, 4- C_{1-3} -Alkyl-piperazin-1-ylcarbonyl-,

Homopiperazin-1-ylcarbonyl-, 4-C₁₋₃-Alkyl-homopiperazin-1-ylcarbonyl-, C₁₋₃-Alkyl-aminosulfonyl-, Di-(C₁₋₃-alkyl)amino-sulfonyl-, Aminosulfonyl-, Piperidin-1-vlsulfonyl-, Homopiperidin-1-vlsulfonyl-, Pyrrolidin-1-yl-sulfonyl-, Morpholin-4-ylsulfonyl-, Homomorpholin-4-ylsulfonyl-, Piperazin-1-ylsulfonyl-, 4-C₁₋₃-Alkyl-piperazin-1-ylsulfonyl-, Homopiperazin-1-ylsulfonyl- oder eine 4-C₁₋₃-Alkyl-homopiperazin-1-ylsulfonylgruppe darstellen,

eine Cyclobutyl-, Cyclopentyl- oder Cyclohexylgruppe, die jeweils durch eine Gruppe R⁶ substituiert ist, wobei

10

5

R⁶ eine 2-Oxo-pyrrolidin-1-yl-, 2-Oxopiperidin-1-yl-, 3-Oxo-morpholin-4-yl-, 2-Oxo-imidazolidin-1-yl-, 2-Oxo-3-C₁₋₃-alkyl-imidazolidin-1-yl-, 2-Oxo-hexahydro-2-Oxo-3-C₁₋₃-alkyl-hexahydropyrimidin-1-ylgruppe pyrimidin-1-yl- oder eine darstellt,

15

eine Azetidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist.

20

eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

eine Piperidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

25

eine Piperidin-4-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

oder eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe,

30

R^d ein Wasserstoffatom oder ein Fluor-, Chlor- oder Bromatom,

eine Hydroxygruppe,

eine C₁₋₄-Alkyloxygruppe,

eine durch 1 bis 3 Fluoratome substituierte Methoxygruppe,

5 eine durch 1 bis 5 Fluoratome substituierte Ethyloxygruppe,

eine C₂₋₄-Alkyloxygruppe, die durch einen Rest R⁶ oder R⁷ substituiert ist, wobei

R⁶ wie vorstehend erwähnt definiert ist und

10

15

20

 R^7 eine Hydroxy-, C_{1-3} -Alkyloxy-, C_{3-6} -Cycloalkyloxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Bis-(2-methoxyethyl)-amino-, Pyrrolidin-1-yl-, Piperidin-1-yl-, Homopiperidin-1-yl-, Morpholin-4-yl-, Homomorpholin-4-yl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-yl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-yl-, 8-Oxa-3-aza-bicyclo-[3.2.1]oct-3-yl-, Piperazin-1-yl-, 4- C_{1-3} -Alkyl-piperazin-1-yl-, Homopiperazin-1-yl-oder C_{1-3} -Alkyl-homopiperazin-1-ylgruppe, oder

eine Formylamino-, C_{1-4} -Alkylcarbonylamino-, C_{1-3} -Alkyloxy- C_{1-3} -alkylcarbonylamino-, C_{1-4} -Alkyloxycarbonylamino-, Aminocarbonylamino-, C_{1-3} -Alkylaminocarbonylamino-, Di-(C_{1-3} -alkyl)aminocarbonylamino-, Pyrrolidin-1-ylcarbonylamino-, Piperidin-1-ylcarbonylamino-, Piperazin-1-ylcarbonylamino-, 4- C_{1-3} -Alkyl-piperazin-1-ylcarbonylamino-, Morpholin-4-ylcarbonylamino- oder eine C_{1-4} -Alkylsulfonylamino-Gruppe darstellt,

eine C₃₋₇-Cycloalkyloxy- oder C₃₋₇-Cycloalkyl-C₁₋₄-alkyloxygruppe,

eine Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy- oder Tetrahydropyran-4-yloxy-gruppe,

30 eine Tetrahydrofuranyl-C₁₋₄-alkyloxy- oder Tetrahydropyranyl-C₁₋₄-alkyloxygruppe,

eine C₁₋₄-Alkoxygruppe, die durch eine in 1-Stellung durch den Rest R⁸ substituierte Pyrrolidinyl-, Piperidinyl- oder Homopiperidinylgruppe substituiert ist, wobei

R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

5

10

15

20

25

30

oder eine C₁₋₄-Alkoxygruppe, die durch eine in 4-Stellung durch den Rest R⁸ substituierte Morpholinylgruppe substituiert ist, wobei R⁸ wie vorstehend erwähnt definiert ist, und

X eine durch eine Cyanogruppe substituierte Methingruppe oder ein Stickstoffatom bedeuten, und

wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen jeweils eine Phenylgruppe zu verstehen ist, die durch R⁹ mono- oder disubstituiert ist, wobei die Substituenten gleich oder verschieden sein können und

R⁹ ein Wasserstoffatom, ein Fluor-, Chlor-, Brom- oder lodatom oder eine C₁₋₃-Alkyl-, Hydroxy-, C₁₋₃-Alkyloxy-, Difluormethyl- Trifluormethyl-, Difluormethoxy-, Trifluormethoxy- oder Cyanogruppe darstellt,

unter den bei der Definition der vorstehend genannten Reste erwähnten Heteroarylgruppen eine Pyridyl-, Pyridazinyl-, Pyrimidinyl- oder Pyrazinylgruppe zu verstehen ist, wobei die vorstehend erwähnten Heteroarylgruppen jeweils durch den Rest R⁹ mono- oder disubstituiert sind, wobei die Substituenten gleich oder verschieden sein können und R⁹ wie vorstehend erwähnt definiert ist, und

die vorstehend erwähnten Pyrrolidinyl-, Piperidinyl-, Piperazinyl- und Morpholinylgruppen jeweils durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein können, und

soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen geradkettig oder verzweigt sein können,

mit der Maßgabe, daß die Verbindung 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-hydroxy-chinazolin ausgeschlossen ist.

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

WO 03/082290

7

Ra ein Wasserstoffatom,

R^b eine durch die Reste R¹ bis R³ substituierte Phenylgruppe, wobei

5

R¹ ein Wasserstoff-, Fluor-, Chlor- oder Bromatom,

eine Methyl-, Trifluormethyl- oder Ethinylgruppe,

10

eine Phenyloxy- oder Phenylmethoxygruppe, wobei der Phenylteil der vorstehend erwähnten Gruppen gegebenenfalls durch ein Fluor- oder Chloratom substituiert ist, oder

15

eine Pyridyloxy- oder Pyridinylmethoxygruppe, wobei der Pyridinylteil der vorstehend erwähnten Gruppen gegebenenfalls durch eine Methyl- oder Trifluormethylgruppe substituiert ist,

R² ein Wasserstoff-, Fluor- oder Chloratom oder eine Methylgruppe und

20

R³ ein Wasserstoffatom darstellen,

R^c eine Cyclopentylgruppe, die in 3-Stellung durch eine Gruppe R⁴-N-R⁵ substituiert ist, wobei

25

R⁴ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe und

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

30

eine Aminocarbonyl-C₁₋₃-alkyl-, C₁₋₃-Alkylaminocarbonyl-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)aminocarbonyl-C₁₋₃-alkyl-, Pyrrolidin-1-ylcarbonyl-C₁₋₃-alkyl-, Piperidin-1-ylcarbonyl-C₁₋₃-alkyl-, Piperazin-1-ylcarbonyl-C₁₋₃-alkyl-, 4-C₁₋₃-Alkyl-piperazin-1-ylcarbonyl-C₁₋₃-alkyl- oder Morpholin-4-ylcarbonyl-C₁₋₃-alkylgruppe,

eine Hydroxy- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkyloxy- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot4}$ -Alkyloxy-carbonylamino- $C_{2\cdot4}$ -alkyl-, Amino- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkylamino- $C_{2\cdot4}$ -alkyl-, Di-($C_{1\cdot3}$ -alkyl)amino- $C_{2\cdot4}$ -alkyl-, Aminocarbonylamino- $C_{2\cdot4}$ -alkyl-, C₁₋₃-Alkylaminocarbonylamino- $C_{2\cdot4}$ -alkyl-, Di-($C_{1\cdot3}$ -alkyl)amino-carbonylamino- $C_{2\cdot4}$ -alkyl-, Morpholin-4-ylcarbonylamino- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkylsulfonyl- $C_{2\cdot4}$ -alkyl-oder $C_{1\cdot3}$ -Alkylsulfonylamino- $C_{2\cdot4}$ -alkylgruppe,

eine (2-Oxo-pyrrolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxopiperidin-1-yl)- C_{2-4} -alkyl-, (3-Oxomorpholin-4-yl)- C_{2-4} -alkyl-, (2-Oxo-imidazolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxo-3-methyl-imidazolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxo-hexahydropyrimidin-1-yl)- C_{2-4} -alkyl- oder (2-Oxo-3-methyl-hexahydropyrimidin-1-yl)- C_{2-4} -alkylgruppe,

eine C_{1-3} -Alkylsulfonyl-, Chlor- C_{2-4} -alkylsulfonyl-, Brom- C_{2-4} -alkylsulfonyl-, Amino- C_{2-4} -alkylsulfonyl-, C_{1-3} -Alkylamino- C_{2-4} -alkylsulfonyl-, Di- $(C_{1-3}$ -alkyl)amino- C_{2-4} -alkylsulfonyl-, (Pyrrolidin-1-yl)- C_{2-4} -alkylsulfonyl-, (Piperidin-1-yl)- C_{2-4} -alkylsulfonyl- oder (Morpholin-4-yl)- C_{2-4} -alkylsulfonylgruppe,

eine C₁₋₄-Alkyloxy-carbonylgruppe,

5

10

15

20

25

30

eine Formyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkyloxy-C₁₋₃-alkyl-carbonyl-, Tetrahydrofuranylcarbonyl-, Tetrahydropyranylcarbonyl-, Amino-C₁₋₃-alkyl-carbonyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-carbonyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-carbonyl-, Piperidin-1-yl-C₁₋₃-alkyl-carbonyl-, Piperazin-1-yl-C₁₋₃-alkyl-carbonyl-, A-C₁₋₃-Alkyl-piperazin-1-yl-C₁₋₃-alkyl-carbonyl-, Morpholin-4-yl-C₁₋₃-alkyl-carbonyl- oder eine C₁₋₃-Alkylsulfonyl-C₁₋₃-alkyl-carbonylgruppe,

eine Cyano-, Aminocarbonyl-, C_{1-3} -Alkyl-aminocarbonyl-, Di- $(C_{1-3}$ -alkyl)aminocarbonyl-, $(C_{1-3}$ -Alkyloxy- C_{2-4} -alkyl)aminocarbonyl-, N- $(C_{1-3}$ -Alkyl)-N- $(C_{1-3}$ -Alkyloxy- C_{2-4} -alkyl)aminocarbonyl-, Phenylaminocarbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl-, C_{1-3} -Alkyl-morpholin-4-ylcarbonyl-, Di- $(C_{1-3}$ -alkyl)morpholin-4-ylcarbonyl-, Homomorpholin-4-ylcarbonyl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-ylcarbonyl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-ylcarbonyl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3-ylcarbonyl-,

WO 03/082290 PCT/EP03/03062 9

Piperazin-1-ylcarbonyl-, $4-(C_{1.3}-alkyl)$ -piperazin-1-ylcarbonyl-, Aminosulfonyl-, C₁₋₃-Alkyl-aminosulfonyl-, Di-(C₁₋₃-alkyl)amino-sulfonyl-, Pyrrolidin-1-yl-sulfonyl-, Piperidin-1-ylsulfonyl- oder eine Morpholin-4-ylsulfonylgruppe darstellen, oder

eine Cyclopentylgruppe, die in 3-Stellung durch eine Gruppe R⁶ substituiert ist, wobei 5

> eine 2-Oxo-pyrrolidin-1-yl-, 2-Oxopiperidin-1-yl-, 3-Oxo-morpholin-4-yl-, 2-Oxo-imidazolidin-1-yl-, 2-Oxo-3-methyl-imidazolidin-1-yl-, 2-Oxo-hexahydropyrimidin-1-yl- oder eine 2-Oxo-3-methyl-hexahydropyrimidin-1-ylgruppe darstellt,

eine Cyclohexylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Gruppe R4-N-R5 substituiert ist, wobei R⁴ und R⁵ wie vorstehend erwähnt definiert sind,

eine Cyclohexylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Gruppe R⁶ substituiert ist, wobei R⁶ wie vorstehend erwähnt definiert ist,

eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

eine Piperidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ 20 wie vorstehend erwähnt definiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist, oder

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe,

R^d ein Wasserstoffatom.

eine C₁₋₃-Alkyloxygruppe, 30

10

15

25

eine Methoxygruppe, die durch ein bis drei Fluoratome substituiert ist,

10

15

eine Ethyloxygruppe, die in 2-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ wie vorstehend erwähnt definiert ist und

 R^7 eine Hydroxy-, C_{1-3} -Alkyloxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Bis-(2-methoxyethyl)-amino-, Pyrrolidin-1-yl-, Piperidin-1-yl-, Morpholin-4-yl-, Homomorpholin-4-yl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-yl-, 3-Oxa-8-aza-bicyclo-[3.2.1]oct-8-yl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3-yl-, Piperazin-1-yl- oder eine 4- C_{1-3} -Alkyl-piperazin-1-ylgruppe, oder

eine Formylamino-, C₁₋₄-Alkylcarbonylamino-, C₁₋₃-Alkyloxy-C₁₋₃-alkylcarbonylamino-, C₁₋₄-Alkyloxycarbonylamino-, Aminocarbonylamino-, C₁₋₃-Alkylaminocarbonylamino-, Di-(C₁₋₃-alkyl)aminocarbonylamino-, Pyrrolidin-1-ylcarbonylamino-, Piperazin-1-ylcarbonylamino-, Piperazin-1-ylcarbonylamino-, 4-C₁₋₃-Alkyl-piperazin-1-ylcarbonylamino- Morpholin-4-ylcarbonylamino- oder eine C₁₋₄-Alkylsulfonylamino-Gruppe darstellt,

eine Propyloxygruppe, die in 3-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ und R⁷ wie vorstehend erwähnt definiert sind, oder

eine Butyloxygruppe, die in 4-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ und R⁷ wie vorstehend erwähnt definiert sind, und

X ein Stickstoffatom bedeuten,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen geradkettig oder verzweigt sein können,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

30 Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

R^a ein Wasserstoffatom,

WO 03/082290 PCT/EP03/03062

R^b eine 3-Ethinylphenyl-, 3-Bromphenyl-, 3,4-Difluorphenyl- oder 3-Chlor-4-fluorphenylgruppe,

eine 3-Chlor-4-benzyloxy-phenyl-, 3-Chlor-4-[(3-fluor-benzyl)oxy]-phenyl-, 4-(Pyridin-3-yloxy)-phenyl-, 4-[(6-Methyl-pyridin-3-yl)oxy]-phenyl-, 3-Methyl-4-[(6-methyl-pyridin-3-yl)oxy]-phenyl-, 3-Chlor-4-(pyridin-3-yloxy)-phenyl- oder 3-Chlor-4-[(6-methyl-pyridin-3-yl)oxy]-phenyl-Gruppe,

R^c eine Cyclohexylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Gruppe
10 R⁴-N-R⁵ substituiert ist, wobei

R⁴ ein Wasserstoffatom, eine Methyl- oder Ethylgruppe und

5

15

20

25

30

R⁵ ein Wasserstoffatom, eine Methyl-, Aminocarbonylmethyl-, Methylaminocarbonylmethyl-, Dimethylaminocarbonylmethyl-, Pyrrolidin-1-ylcarbonylmethyl-, Piperidin-1-ylcarbonylmethyl-, 4-Methylpiperazin-1-ylcarbonylmethyl-, Morpholin-4-ylcarbonylmethyl-, 2-(Morpholin-4-ylcarbonyl)ethyl- oder 3-(Morpholin-4-yl-carbonyl)propylgruppe,

eine Ethyl-, Propyl-, 2-Hydroxyethyl-, 3-Hydroxypropyl-, 2-Methoxyethyl-, 3-2-(Butyloxycarbonylamino)-ethyl-, Methoxypropyl-, 2-Aminoethyl-, 3-Aminopropyl-, 2-(Acetylamino)ethyl-, 3-(Acetylamino)propyl-, 2-(Ethylcarbonylamino)ethyl-, 3-(Ethylcarbonylamino)propyl-, 2-(Propylcarbonylamino)ethyl-, 3-(Propylcarbonylamino)propyl-, 2-3-(Ethylaminocarbonylamino)propyl-, (Ethylaminocarbonylamino)ethyl-, 2-(Dimethylaminocarbonylamino)ethyl-, 3-(Dimethylaminocarbonylamino)propyl-, 2-(Morpholin-4-ylcarbonylamino)ethyl-, 3-(Morpholin-4-ylcarbonylamino)propyl-, 2-(Methylsulfonyl)ethyl-, 3-(Methylsulfonyl)propyl-, 2-(Methylsulfonylamino)ethyloder eine 3-(Methylsulfonylamino)propylgruppe.

eine 2-(2-Oxo-pyrrolidin-1-yl)ethyl-, 2-(2-Oxopiperidin-1-yl)ethyl-, 2-(3-Oxomorpholin-4-yl)ethyl-, 2-(2-Oxo-imidazolidin-1-yl)ethyl-, 2-(2-Oxo-3-methyl-imidazolidin-1-yl)ethyl-, 2-(2-Oxo-hexahydropyrimidin-1-yl)ethyl- oder eine 2-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)ethylgruppe,

10

15

20

25

eine 3-(2-Oxo-pyrrolidin-1-yl)propyl-, 3-(2-Oxopiperidin-1-yl)propyl-, 3-(3-Oxo-3-(2-Oxo-imidazolidin-1-yl)propyl-, 3-(2-Oxo-3-methylmorpholin-4-yl)propyl-, imidazolidin-1-yl)propyl-, 3-(2-Oxo-hexahydropyrimidin-1-yl)propyl- oder eine 3-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)propylgruppe.

eine Methylsulfonyl-, Ethylsulfonyl-, 3-Chlorpropylsulfonyl-, 2-(Morpholin-4-yl)ethylsulfonyl- oder eine 3-(Morpholin-4-yl)-propylsulfonylgruppe,

eine Propyloxycarbonyl- oder Butyloxycarbonylgruppe,

eine Formyl-, Acetyl-, Ethylcarbonyl-, Propylcarbonyl-, Methoxyacetyl-, (2-Tetrahydrofuran-2-Methoxyethyl)carbonyl-, (3-Methoxypropyl)carbonyl-, ylcarbonyl-, Tetrahydropyran-4-ylcarbonyl-, Aminoacetyl-, Methylaminoacetyl-, Dimethylaminoacetyl-, Morpholin-4-ylacetyl-, [2-(Morpholin-4-yl)ethyl]carbonyl-, [3-(Morpholin-4-yl)propyl]carbonyl- oder eine Methylsulfonylacetylgruppe,

eine Cyano-, Aminocarbonyl-, Methylaminocarbonyl-, Dimethylaminocarbonyl-, Propylaminocarbonyl-, (2-Ethylaminocarbonyl-, Diethylaminocarbonyl-, Methoxyethyl)aminocarbonyl-, N-Methyl-N-(2-methoxyethyl)-aminocarbonyl-, (3-Methoxypropyl)aminocarbonyl-, N-Methyl-N-(3-methoxypropyl)aminocarbonyl-, Phenylaminocarbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1ylcarbonyl-, Morpholin-4-ylcarbonyl-, 2-Methylmorpholin-4-ylcarbonyl-, Dimethylmorpholin-4-ylcarbonyl-, Homomorpholin-4-ylcarbonyl-, 2-Oxa-5-azabicyclo[2.2.1]hept-5-ylcarbonyl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-ylcarbonyl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3-ylcarbonyl-, 4-Methylpiperazin-1-ylcarbonyl-, Methylaminosulfonyl-, Dimethylaminosulfonyl-Aminosulfonyl-, oder eine Morpholin-4-ylsulfonylgruppe darstellen,

eine Cyclohexylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Gruppe R⁵ 30 substituiert ist, wobei

WO 03/082290 PCT/EP03/03062 13

R⁶ eine 2-Oxo-pvrrolidin-1-yl-, 2-Oxopiperidin-1-yl-, 3-Oxo-morpholin-4-yl-, 2-Oxo-imidazolidin-1-vl-, 2-Oxo-3-methyl-imidazolidin-1-vl-, 2-Oxo-hexahydropyrjmidin-1-yl- oder eine 2-Oxo-3-methyl-hexahydropyrimidin-1-ylgruppe darstellt.

eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ 5 wie vorstehend erwähnt definiert ist,

eine Piperidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist.

10

eine Piperidin-4-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe,

15

R^d ein Wasserstoffatom,

eine Methoxy-, Difluormethoxy- oder Ethyloxygruppe,

eine Ethyloxygruppe, die in 2-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist. 20 wobei R⁶ wie vorstehend erwähnt definiert ist und

> R⁷ eine Hydroxy-, Methoxy-, Ethoxy-, Amino-, Dimethylamino-, Diethylamino-, Bis-(2-methoxyethyl)-amino-, Pyrrolidin-1-yl-, Piperidin-1-yl-, Morpholin-4-yl-, Homomorpholin-4-vl-. 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-yl-, 3-Oxa-8-azabicyclo[3.2.1]oct-8-yl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3-yl-, Piperazin-1-yl-, 4-Methylpiperazin-1-yl- oder 4-Ethylpiperazin-1-ylgruppe, oder

30

25

eine Acetylamino-, Ethylcarbonylamino-. Propylcarbonylamino-, Butylcarbonylamino-, Methoxyacetylamino-, Butyloxycarbonylamino-. Ethylaminocarbonylamino-, Dimethylaminocarbonylamino-, Pyrrolidin-1ylcarbonylamino-, Piperidin-1-ylcarbonylamino-, Morpholin-4-ylcarbonylamino-, Methylsulfonylamino-. Ethylsulfonylamino- oder Butylsulfonylamino-Gruppe darstellt,

WO 03/082290 PCT/EP03/03062 14

eine Propyloxygruppe, die in 3-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ und R⁷ wie vorstehend erwähnt definiert sind, oder

eine Butyloxygruppe, die in 4-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ und R⁷ wie vorstehend erwähnt definiert sind, und

X ein Stickstoffatom bedeuten,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen 10 geradkettig oder verzweigt sein können,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

Ganz besonders bevorzugte Verbindungen der allgemeinen Formel I sind diejenigen, in 15 denen

R^a ein Wasserstoffatom,

25

30

R^b eine 3-Bromphenyl-, 3.4-Difluorphenyl-, 3-Chlor-4-fluor-phenyl- oder eine 3-20 Ethinylphenylgruppe, oder

eine 3-Chlor-4-benzyloxy-phenyl-, 3-Chlor-4-[(3-fluorbenzyl)oxy]-phenyl-, 4-(Pyridin-3-4-[(6-Methyl-pyridin-3-yl)oxy]-phenyl-, 3-Methyl-4-(pyridin-3-yloxy)yloxy)-phenyl-, phenyl-, 3-Methyl-4-[(6-methyl-pyridin-3-yl)oxy]-phenyl-, 3-Chlor-4-(pyridin-3-yloxy)phenyl- oder 3-Chlor-4-[(6-methyl-pyridin-3-yl)oxy]-phenyl-Gruppe,

R^c eine Cyclohexylgruppe, die in 3-Stellung durch eine Amino-, Acetylamino-, tert.-Butyloxycarbonylamino- oder Methylsulfonylaminogruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine Amino-, Methylamino-, Ethylamino, Aminocarbonylmethylamino-, Methylaminocarbonylmethylamino-. Dimethylamino-. Dimethylaminocarbonylmethylamino-, Morpholin-4-ylcarbonylmethylamino-, [3-[2-(Methylsulfonyl)ethyl]amino-, (Morpholin-4-ylcarbonyl)propyl]amino-, [3WO 03/082290 PCT/EP03/03062

(Methylsulfonyl)propyl]amino- oder [2-(Methylsulfonylamino)ethyl]amino-Gruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine [2-(2-Oxo-pyrrolidin-1-yl)ethyl]amino-, [2-(2-Oxo-pyrrolidin-1-yl)ethyl]amino-, [2-(2-Oxo-imidazolidin-1-yl)ethyl]amino-, [2-(2-Oxo-3-methyl-imidazolidin-1-yl)ethyl]amino-, [2-(2-Oxo-hexahydropyrimidin-1-yl)ethyl]amino- oder [2-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)ethyl]amino-Gruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine [3-(2-Oxo-pyrrolidin-1-yl)propyl]amino-, [3-(2-Oxo-pyrrolidin-1-yl)propyl]amino-, [3-(2-Oxo-imidazolidin-1-yl)propyl]amino-, [3-(2-Oxo-a-methyl-imidazolidin-1-yl)propyl]amino-, [3-(2-Oxo-a-methyl-imidazolidin-1-yl)propyl]amino- oder [3-(2-Oxo-a-methyl-hexahydropyrimidin-1-yl)propyl]amino-Gruppe substituiert ist,

15

20

25

30

5

eine Cyclohexylgruppe, die in 4-Stellung durch eine Acetylamino-, N-(Acetyl)methylamino-. Aminomethylcarbonylamino-. Methylaminomethylcarbonylamino-, Dimethylaminomethylcarbonylamino-, Morpholin-4-ylmethylcarbonylamino-, N-(Methoxyacetyl)-methylamino-. Tetrahvdropyran-4-Methoxyacetylamino-. ylcarbonylamino-, N-(Tetrahydropyran-4-ylcarbonyl)-methylamino-, tert.-Butyloxycarbonylamino-, N-(tert.-Butyloxycarbonyl)-methylamino-, Aminocarbonylamino-, Methylaminocarbonylamino-. N-(Ethylaminocarbonyl)methylamino-, Dimethylaminocarbonylamino-, N-(Dimethylaminocarbonyl)methylamino-, N-(Piperidin-1-ylcarbonyl)-methylamino-, Morpholin-4-ylcarbonylamino-, N-(Morpholin-4-ylcarbonyl)-methylaminooder N-(4-Methylpiperazin-1-ylcarbonyl)methylamino-Gruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine 2-Oxo-pyrrolidin-1-yl-, 2-Oxopiperidin-1-yl-, 3-Oxo-morpholin-4-yl-, 2-Oxo-imidazolidin-1-yl-, 2-Oxo-3-methyl-imidazolidin-1-yl-, 2-Oxo-hexahydropyrimidin-1-yl- oder eine 2-Oxo-3-methyl-hexahydropyrimidin-1-yl-Gruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine Methylsulfonylamino-, N-(Methylsulfonyl)-methylamino-, Ethylsulfonylamino-, N-(Ethylsulfonyl)-methylamino-,

Dimethylaminosulfonylamino-, N-(Dimethylaminosulfonyl)-methylamino-, Morpholin-4-ylsulfonylamino-, N-(Morpholin-4-ylsulfonyl)-methylamino- 3-Chlorpropylsulfonylamino-, [2-(Morpholin-4-yl)-ethyl]sulfonylamino- oder [3-(Morpholin-4-yl)-propyl]sulfonylamino-gruppe substituiert ist,

5

10

15

20

25

eine Pyrrolidin-3-ylgruppe,

eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch eine Methyl-, Acetyl-, Methoxyacetyl-, tert.-Butyloxycarbonyl-, Morpholin-4-ylcarbonyl- oder Methylsulfonylgruppe substituiert ist.

eine Piperidin-3-ylgruppe,

eine Piperidin-3-ylgruppe, die in 1-Stellung durch eine Methyl-, Acetyl-, Methoxyacetyl-, tert.-Butyloxycarbonyl-, Morpholin-4-ylcarbonyl- oder Methylsulfonylgruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Methyl-, Ethyl-, Propyl-, Isopropyl-, 2-Hydroxyethyl-, 2-Methoxyethyl-, 3-Methoxypropyl-, 2-(Methylsulfonyl)ethyl-, 3-(Methylsulfonyl)-propyl-, 2-(tert.-Butyloxycarbonylamino)-ethyl-, 2-Aminoethyl-, 2-(Acetylamino)-ethyl-, 2-(Ethylcarbonylamino)-ethyl-, 2-(Propylcarbonylamino)-ethyl-, 2-(Ethylaminocarbonylamino)-ethyl-, 2-(Dimethylaminocarbonylamino)-ethyl-, 2-(Morpholin-4-ylcarbonylamino)-ethyl-, 3-(Acetylamino)-propyl-, 3-(Ethylcarbonylamino)propyl-, 3-(Propylcarbonylamino)-propyl-, 3-(Ethylaminocarbonylamino)-propyl-, 3-(Dimethylaminocarbonylamino)-propyl-, 3-(Morpholin-4-ylcarbonylamino)-propyl-, (Methylsulfonylamino)-ethyl-, 3-(Methylsulfonylamino)-propyl-, (Aminocarbonyl)methyl-, (Methylaminocarbonyl)methyl-, (Dimethylaminocarbonyl)methyl-, ylcarbonyl)methyl-, (Morpholin-4-ylcarbonyl)methyl-, 2-(Morpholin-4-ylcarbonyl)-ethyloder 3-(Morpholin-4-ylcarbonyl)-propyl-Gruppe substituiert ist,

30

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine 2-(2-Oxo-pyrrolidin-1-yl)-ethyl-, 2-(2-Oxopiperidin-1-yl)-ethyl-, 2-(3-Oxomorpholin-4-yl)-ethyl-, 2-(2-Oxo-imidazolidin-1-yl)-ethyl-, 2-(2-Oxo-3-methyl-imidazolidin-1-yl)-ethyl-, 2-(2-Oxo-hexahydropyrimidin-1-yl)-ethyl- oder 2-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)-ethyl-Gruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine 3-(2-Oxo-pyrrolidin-1-yl)-propyl-. 3-(2-Oxopiperidin-1-yl)-propyl-, 3-(3-Oxomorpholin-4-yl)-propyl-, 3-(2-Oxo-imidazolidin-3-(2-Oxo-3-methyl-imidazolidin-1-yl)-propyl-, 1-yl)-propyl-, 3-(2-Oxohexahydropyrimidin-1-yl)-propyloder 3-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)propyl-Gruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Formyl-, Acetyl-, Methoxyacetyl-, (2-Methoxyethyl)carbonyl-, (3-Methoxypropyl)carbonyl-, Methylsulfonylacetyl-, Aminoacetyl-, Methylaminoacetyl-, (Dimethylamino)acetyl-, (Morpholin-4-yl)acetyl-, [2-10 (Morpholin-4-yl)-ethyl]carbonyl-, [3-(Morpholin-4-yl)-propyl]carbonyl-, Tetrahydrofuran-2ylcarbonyl- oder Tetrahydropyran-4-ylcarbonyl-Gruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Cyano-, Aminocarbonyl-, Methylaminocarbonyl-, (2-Methoxyethyl)aminocarbonyl-, N-15 Methyl-N-(2-methoxyethyl)-aminocarbonyl-, (3-Methoxypropyl)aminocarbonyl-, N-Methyl-N-(3-methoxypropyl)-aminocarbonyl-, Isopropylaminocarbonyl-. Phenylaminocarbonyl-, Dimethylaminocarbonyl-, Diethylaminocarbonyl-, Pyrrolidin-1ylcarbonyl-, Piperidin-1-ylcarbonyl-, Morpholin-4-ylcarbonyl-, 2-Methylmorpholin-4ylcarbonyl-, 2,6-Dimethylmorpholin-4-ylcarbonyl-, Homomorpholin-4-ylcarbonyl-, 20 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-ylcarbonyl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8ylcarbonyl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3-ylcarbonyl-, 4-Methylpiperazin-1ylcarbonyl-, Isopropyloxycarbonyl- oder tert.-Butyloxycarbonyl-Gruppe substituiert ist.

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Methylsulfonyl-, Ethylsulfonyl-, [2-25 (Morpholin-4-yl)-ethyl]sulfonyl-, [3-(Morpholin-4-yl)-propyl]sulfonyl-, Aminosulfonyl-, Methylaminosulfonyl-, Dimethylaminosulfonyloder Morpholin-4-ylsulfonylgruppe substituiert ist, oder

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe, 30

R^d ein Wasserstoffatom.

eine Methoxy-, Difluormethoxy- oder Ethyloxygruppe,

20

eine 2-(Morpholin-4-yl)ethyloxy-, 3-(Morpholin-4-yl)propyloxy- oder 4-(Morpholin-4yi)butyloxygruppe,

eine 3-(Dimethylamino)propyloxy-, 3-(Diethylamino)propyloxy-, 3-[Bis-(2-methoxyethyl)-5 amino]propyloxy-, 3-(Piperazin-1-yl)propyloxy-, 3-(4-Methylpiperazin-1-yl)propyloxyoder 3-(4-Ethylpiperazin-1-yl)propyloxy-Gruppe,

eine 3-(Homomorpholin-4-yl)-propyloxy-, 3-(2-Oxa-5-aza-bicyclo[2.2.1]hept-5-yl)-10 3-(3-Oxa-8-aza-bicyclo[3.2.1]oct-8-yl)-propyloxy- oder 3-(8-Oxa-3-azabicyclo[3.2.1]oct-3-yl)-propyloxy-Gruppe,

2-(2-Oxo-pyrrolidin-1-yl)-ethyloxy-, 2-(2-Oxopiperidin-1-yl)-ethyloxy-, 2-(3eine Oxomorpholin-4-yl)-ethyloxy-, 2-(2-Oxo-imidazolidin-1-yl)-ethyloxy-, 2-(2-Oxo-3-methylimidazolidin-1-vl)-ethyloxy-, 2-(2-Oxo-hexahydropyrimidin-1-vl)-ethyloxy- oder 2-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)-ethyloxy-Gruppe,

3-(2-Oxo-pyrrolidin-1-yl)-propyloxy-, 3-(2-Oxopiperidin-1-yl)-propyloxy-. eine 3-(3-Oxomorpholin-4-yl)-propyloxy-, 3-(2-Oxo-imidazolidin-1-yl)-propyloxy-, 3-(2-Oxo-3methyl-imidazolidin-1-yl)-propyloxy-, 3-(2-Oxo-hexahydropyrimidin-1-yl)-propyloxy- oder 3-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)-propyloxy-Gruppe,

2-(tert.-Butyloxycarbonylamino)-ethyloxy-, eine 2-(Methoxy)-ethyloxy-, 2-(Amino)-2-(Acetylamino)-ethyloxy-, 2-(Ethylcarbonylamino)-ethyloxy-, 2ethyloxy-, 2-(Isobutylcarbonylamino)-ethyloxy-. 2-(Propylcarbonylamino)-ethyloxy-, 25 2-(Methoxyacetylamino)-ethyloxy-, 2-(Ethylaminocarbonylamino)-ethyloxy-, (Dimethylaminocarbonylamino)-ethyloxy-, 2-(Pyrrolidin-1-ylcarbonylamino)-ethyloxy-, 2-(Piperidin-1-ylcarbonylamino)-ethyloxy-, 2-(Morpholin-4-ylcarbonylamino)-ethyloxy-, (Methylsulfonylamino)-ethyloxygruppe, 2-(Ethylsulfonylamino)-ethyloxyoder 2-(Butylsulfonylamino)-ethyloxy-Gruppe, oder 30

eine 3-(tert.-Butyloxycarbonylamino)-propyloxy-, 3-(Amino)-propyloxy-, 3-(Acetylamino)propyloxy- oder 3-(Methylsulfonylamino)-propyloxy-Gruppe,

WO 03/082290 PCT/EP03/03062 19

und

X ein Stickstoffatom bedeuten,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

5

Insbesondere bevorzugte Verbindungen der allgemeinen Formel I sind diejenigen, in denen

R^a ein Wasserstoffatom,

10

15

20

25

R^b vorzugsweise 3-Chlor-4-fluor-phenylgruppe 3eine oder auch eine Ethinylphenylgruppe,

R^c eine Cyclohexylgruppe, die in 3-Stellung durch eine Amino-, Acetylamino-, tert.-Butyloxycarbonylamino- oder Methylsulfonylaminogruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine Amino-, Methylamino-, Dimethylamino-, Acetylamino-, N-(Acetyl)-methylamino-, Methoxyacetylamino-, N-Tetrahydropyran-4-ylcarbonylamino-, N-(Methoxyacetyl)-methylamino-, (Tetrahydropyran-4-ylcarbonyl)-methylamino-, tert.-Butyloxycarbonylamino-, N-(tert.-Butyloxycarbonyl)-methylamino-, N-(Ethylaminocarbonyl)-methylamino-, Dimethylaminocarbonylamino-, N-(Dimethylaminocarbonyl)-methylamino-, N-(Piperidin-1-ylcarbonyl)-methylamino-, Morpholin-4-ylcarbonylamino-, N-(Morpholin-4-ylcarbonyl)methylamino-, N-(4-Methylpiperazin-1-ylcarbonyl)-methylamino-, Methylsulfonylamino-, N-(Methylsulfonyl)-methylamino-, Ethylsulfonylamino-, N-(Ethylsulfonyl)-methylamino-, Dimethylaminosulfonylamino-, N-(Dimethylaminosulfonyl)-methylamino-, Morpholin-4ylsulfonylamino-, N-(Morpholin-4-ylsulfonyl)-methylamino-, 3-Chlorpropylsulfonylamino-, oder [3-(Morpholin-4-yl)-propyl]sulfonylaminogruppe substituiert ist,

eine Pyrrolidin-3-ylgruppe, 30

> eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch eine tert.-Butyloxycarbonyl- oder Methylsulfonylgruppe substituiert ist,

WO 03/082290 PCT/EP03/03062 20

eine Piperidin-3-ylgruppe.

eine Piperidin-3-ylgruppe, die in 1-Stellung durch eine tert.-Butyloxycarbonyl- oder Methylsulfonylgruppe substituiert ist,

eine Piperidin-4-ylgruppe,

5

30

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Methyl-, (Aminocarbonyl)methyl-, (Dimethylaminocarbonyl)methyl-, (Morpholin-4-ylcarbonyl)methyl-, 2-(tert.-Butyloxycarbonylamino)ethyl-, 2-Aminoethyl-, 2-(Acetylamino)ethyl-, 2-10 (Methylsulfonylamino)ethyl-, Cyano-, Acetyl-, Methoxyacetyl-, (Dimethylamino)acetyl-, (Morpholin-4-yl)acetyl-, Tetrahydropyran-4-ylcarbonyl-, Ethylaminocarbonyl-, Isopropylaminocarbonyl-, Phenylaminocarbonyl-, Dimethylaminocarbonyl-, Diethylaminocarbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1-ylcarbonyl-, Morpholin-4-2-Methylmorpholin-4-ylcarbonyl-, 2,6-Dimethylmorpholin-4-ylcarbonyl-, 15 Homomorpholin-4-ylcarbonyl-, 4-Methylpiperazin-1-ylcarbonyl-, Isopropyloxycarbonyl-, tert.-Butyloxycarbonyl-, Methylsulfonyl-, Dimethylaminosulfonyl- oder Morpholin-4ylsulfonylgruppe substituiert ist, oder

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe, 20

R^d ein Wasserstoffatom.

eine Methoxy- oder Ethyloxygruppe,

25

eine 2-(Morpholin-4-yl)ethyloxy-, 3-(Morpholin-4-yl)propyloxy- oder 4-(Morpholin-4yl)butyloxygruppe,

eine 2-(3-Methyl-2-oxo-hexahydropyrimidin-1-yl)-ethyloxygruppe,

eine 2-(Methoxy)-ethyloxy-, 2-(tert.-Butyloxycarbonylamino)-ethyloxy-, 2-Aminoethyloxy-, 2-(Acetylamino)-ethyloxy- oder 2-(Methylsulfonylamino)-ethyloxygruppe oder

eine 3-(tert.-Butyloxycarbonylamino)-propyloxy-, 3-Amino-propyloxy-, 3-(Acetylamino)-propyloxy- oder 3-(Methylsulfonylamino)-propyloxygruppe,

PCT/EP03/03062

und

5

20

30

X ein Stickstoffatom bedeuten,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

- 10 Unter den vorstehend beschriebenen bicyclischen Heterocyclen der allgemeinen Formel I sowie den jeweils als bevorzugt, besonders bevorzugt, ganz besonders bevorzugt und insbesondere bevorzugt gekennzeichneten Untergruppen sind jeweils diejenigen Verbindungen besonders hervorzuheben, in denen
- 15 (a) R^c eine in 4-Stellung substituierte Cyclohexylgruppe darstellt,
 - (b) R^c eine gegebenenfalls in 1-Stellung substituierte Pyrrolidin-3-ylgruppe darstellt,
 - (c) R^c eine gegebenenfalls in 1-Stellung substituierte Piperidin-3-ylgruppe darstellt,
 - (d) R^c eine gegebenenfalls in 1-Stellung substituierte Piperidin-4-ylgruppe darstellt,
 - (e) R^c eine Tetrahydrofuran-3-ylgruppe darstellt,
- 25 (f) R^c eine Tetrahydropyran-3-ylgruppe darstellt, oder
 - (g) R^c eine Tetrahydropyran-4-ylgruppe darstellt,

wobei R^a , R^b , R^d und X jeweils wie vorstehend erwähnt definiert sind.

Beispielsweise seien folgende besonders bevorzugte Verbindungen der allgemeinen Formel I erwähnt:

WO 03/082290 PCT/EP03/03062

- (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((*S*)-tetrahydrofuran-3-yloxy)-7-methoxy-chinazolin,
- (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-methoxychinazolin,
 - (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((*R*)-tetrahydrofuran-3-yloxy)-7-methoxy-chinazolin,
- 10 (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-amino-cyclohexan-1-yloxy)-7-methoxy-chinazolin,

15

20

- (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-methansulfonylamino-cyclohexan-1-yloxy)-7-methoxy-chinazolin,
- (6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin,
- (7) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methansulfonyl-piperidin-4-yloxy)-7-methoxy-chinazolin,
- (8) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{[3-(morpholin-4-yl)-propyl]sulfonyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin,
- (9) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-3-yloxy)-7-methoxychinazolin,
 - (10) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-{[3-(morpholin-4-yl)-propyl]sulfonyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin,
- 30 (11) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methyl-piperidin-4-yloxy)-7-methoxy-chinazolin,
 - (12) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonyl]-piperidin-4-yl-oxy}-7-methoxy-chinazolin,

- (13) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(methoxymethyl)carbonyl]-piperidin-4-yl-oxy}-7-methoxy-chinazolin,
- (14) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-cyano-piperidin-4-yloxy)-7-methoxy-chinazolin,
 - (15) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)sulfonyl]-piperidin-4-yl-oxy}-7-methoxy-chinazolin,
- 10 (16) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-acetylamino-ethyl)-piperidin-4-yloxy]-7-methoxy-chinazolin,
 - (17) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(dimethylamino)sulfonylamino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin,
 - (18) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(morpholin-4-yl)carbonylamino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin,
- (19) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(morpholin-4-yl)sulfonylamino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin,
 - (20) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-acetylamino-ethoxy)-chinazolin,
- 25 (21) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-methansulfonylamino-ethoxy)-chinazolin und
 - (22) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-methoxy-ethoxy)-chinazolin,

sowie deren Salze.

15

30

Die Verbindungen der allgemeinen Formel I lassen sich beispielsweise nach folgenden Verfahren herstellen:

a) Umsetzung einer Verbindung der allgemeinen Formel

5

in der

 R^{a} , R^{b} , R^{d} und X wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

10

20

25

$$Z^1 - R^c$$
 ,(III)

in der

R^c wie eingangs erwähnt definiert ist und Z¹ eine Austrittsgruppe wie ein Halogenatom, z.B. ein Chlor- oder Bromatom, eine Sulfonyloxygruppe wie eine Methansulfonyloxyoder p-Toluolsulfonyloxygruppe oder eine Hydroxygruppe darstellt.

Mit einer Verbindung der allgemeinen Formel III, in der Z¹ eine Hydroxygruppe darstellt, wird die Umsetzung in Gegenwart eines wasserentziehenden Mittels, vorzugsweise in Gegenwart eines Phosphins und eines Azodicarbonsäurederivates wie z.B. Triphenylphosphin/Azodicarbonsäurediethylester, zweckmäßigerweise in einem Lösungsmittel wie Methylenchlorid, Acetonitril, Tetrahydrofuran, Dioxan, Toluol oder Ethylenglycoldiethylether bei Temperaturen zwischen -50 und 150°C, vorzugsweise jedoch bei Temperaturen zwischen -20 und 80°C, durchgeführt.

b) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^d eine der eingangs erwähnten, gegebenenfalls substituierten Alkyloxygruppen darstellt:

Umsetzung einer Verbindung der allgemeinen Formel

$$R^{a}$$
 N
 R^{b}
 O
 R^{c}
 $O-H$
 O

in der R^a , R^b , R^c und X wie eingangs erwähnt definiert, sind mit einer mit einer Verbindung der allgemeinen Formel

5

10

15

20

25

$$Z^2 - R^{d'}$$
 ,(V)

in der R^d eine C_{1-4} -Alkylgruppe, eine durch 1 bis 3 Fluoratome substituierte Methylgruppe, eine durch 1 bis 5 Fluoratome substituierte Ethylgruppe, eine durch einen Rest R^6 oder R^7 substituiert C_{2-4} -Alkylgruppe, wobei R^6 und R^7 wie eingangs erwähnt definiert sind, eine C_{1-4} -Alkylgruppe, die durch eine in 1-Stellung durch den Rest R^8 substituierte Pyrrolidinyl-, Piperidinyl- oder Homopiperidinylgruppe substituiert ist, oder eine C_{1-4} -Alkylgruppe, die durch eine in 4-Stellung durch den Rest R^8 substituierte Morpholinylgruppe substituiert ist, wobei R^8 jeweils wie eingangs erwähnt definiert ist, darstellt und

Z² eine Austrittsgruppe wie ein Halogenatom, eine Alkylsulfonyloxy-, Arylsulfonyloxy- oder eine Hydroxygruppe darstellt.

Handelt es sich bei der Austrittsgruppe um ein Halogenatom wie ein Chlor-, Brom- oder lodatom oder um eine Alkylsulfonyloxy- oder Arylsulfonyloxygruppe wie die die Methansulfonyloxy oder p-Toluolsulfonyloxygruppe, wird die Reaktion vorzugsweise in Gegenwart einer organischen oder anorganischen Base wie Kaliumcarbonat, Natriumhydrid oder N-Ethyl-diisopropylamin durchgeführt. Handelt es sich bei der Austrittsgruppe um eine Hydroxygruppe, so wird die Umsetzung in Gegenwart eines wasserentziehenden Mittels, vorzugsweise in Gegenwart eines Phosphins und eines Azodicarbonsäurederivates wie z.B. Triphenylphosphin/Azodicarbonsäurediethylester durchgeführt.

c) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^d eine der eingangs erwähnten Alkyloxygruppen darstellt, die durch eine gegebenenfalls substituierte Amino-, Alkylamino- oder Dialkylaminogruppe oder durch eine gegebenenfalls substituierte, über ein Iminostickstoffatom gebundene heterocyclischen Gruppe substituiert ist:Umsetzung einer Verbindung der allgemeinen Formel

5

10

15

25

$$R^a$$
 R^b
 O
 R^c
 $O-(CH_2)_{2.4}-Z^3$ (VI)

in der R^a, R^b, R^c und X wie eingangs erwähnt definiert sind und Z³ eine Austrittsgruppe wie ein Halogenatom, z.B. ein Chlor- oder Bromatom oder eine Sulfonyloxygruppe wie eine Methansulfonyloxy- oder p-Toluolsulfonyloxygruppe darstellt, mit

Ammoniak, einem entsprechenden, gegebenenfalls substituierten Alkylamin, Dialkylamin oder einer Iminoverbindung oder deren geeigneten Salzen oder Derivaten, wie beispielsweise Morpholin.

- d) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^d eine Hydroxygruppe darstellt:
- 20 Abspaltung eines Schutzrestes von einer Verbindung der allgemeinen Formel

in der R^a, R^b, R^c und X wie eingangs erwähnt definiert sind und R^{d^m} eine in eine Hydroxygruppe überführbare Gruppe darstellt, beispielsweise eine gegebenenfalls substituierte Benzyloxygruppe, eine Trimethylsilyloxy-, Acetyloxy-, Benzoyloxy-, Methoxy-, Ethoxy-, tert-Butoxy- oder Trityloxygruppe.

Die Abspaltung des Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

5

30

- Die Abspaltung eines Benzyl- oder Methoxybenzylrestes erfolgt beispielsweise 10 hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in geeigneten Lösungsmittel wie Methanol, einem Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 15 bar. Die Abspaltung vorzugsweise jedoch von 3 bis 5 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.
- Die Abspaltung eines tert.-Butyl- oder Benzylrestes erfolgt beispielsweise durch Behandlung mit einer Säure wie Trifluoressigsäure, Salzsäure oder Bromwasserstoffsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.
- e) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^c eine –NH-Gruppe enthält:

Abspaltung eines Schutzrestes von einer Verbindung der allgemeinen Formel

in der R^a , R^b , R^d und X wie eingangs erwähnt definiert sind und R^c mit der Maßgabe die eingangs für R^c erwähnten Bedeutungen besitzt, daß R^c ein geschütztes Stickstoffatom enthält.

- Ubliche Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe sind beispielsweise die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.-Butoxycarbonyl-, Benzyloxycarbonyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe , wobei für die Aminogruppe zusätzlich die Phthalylgruppe in Betracht kommt.
- Die Abspaltung des Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

20

25

30

Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran bei Temperaturen zwischen 0 und 50°C.

- Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C.
- f) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^c eine durch eine gegebenenfalls substituierte Amino-, Alkylamino- oder Dialkyaminogruppe oder durch eine über ein Stickstoffatom gebundenene, gegebenenfalls substituierte heterocyclische Gruppe substituierte Alkylgruppe enthält:
- 15 Umsetzung einer Verbindung der allgemeinen Formel

20

25

$$R^a$$
 R^b
 R^c
 Z^3
 R^d
 (IX)

in der R^a , R^b , R^d und X wie eingangs erwähnt definiert sind, Z^3 eine Austrittsgruppe darstellt, beispielsweise ein Halogenatom wie ein Chlor- oder Bromatom, oder eine Sulfonyloxygruppe wie eine Methansulfonyloxy- oder p-Toluolsulfonyloxygruppe, und $R^{c''}$ mit der Maßgabe, daß ein an ein aliphatisches Kohlenstoffatom gebundenes Wasserstoffatom durch die Gruppe Z^3 ersetzt ist, die für R^c eingangs erwähnten Bedeutungen besitzt,

mit Ammoniak, einem entsprechenden, gegenenfalls substituierten Alkylamin, Dialkylamin oder einer Iminoverbindung oder deren geeigneten Salzen oder Derivaten, wie beispielsweise Morpholin.

Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, so kann diese mittels Acylierung, Cyanierung oder Sulfonylierung in eine entsprechende Acyl-, Cyano- oder Sulfonylverbindung der allgemeinen Formel I übergeführt werden, wobei als Acylierungsmittel beispielsweise Isocyanate, Carbamoylchloride, Carbonsäureanhydride Carbonsäuren Carbonsäurehalogenide. und mit Aktivierungsmitteln wie N,N'-Carbonyldiimidazol, N,N'-Dicyclohexylcarbodiimid oder O-(Benzotriazol-1-yl)-N,N,N'N'-tetramethyluronium-tetrafluoroborat. als Sulfonylierungsmittel Sulfonylhalogenide und als Cyanierungsmittel Chlor- oder Bromcyan in Frage kommen, und/oder

eine Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, so kann diese mittels Alkylierung oder reduktiver Alkylierung in eine entsprechende Alkylverbindung der allgemeinen Formel I übergeführt werden und/oder

10

15

20

25

30

eine Verbindung der allgemeinen Formel I, die eine Chlor- C_{1-4} -alkylsulfonyl- oder Brom- C_{1-4} -alkylsulfonylgruppe enthält, so kann diese durch Umsetzung mit einem Amin in eine entsprechende Amino- C_{1-4} -alkylsulfonylverbindung übergeführt werden und/oder

eine Verbindung der allgemeinen Formel I, die eine tert.-Butyloxycarbonylamino-, N-Alkyl-N-(tert.-butyloxycarbonyl)amino- oder eine N-tert.-Butyloxycarbonyliminogruppe enthält, so kann diese mittels Behandlung mit einer Säure wie Salzsäure oder Trifluoressigsäure in eine entsprechende Amino-, Alkylamino- oder Iminoverbindung der allgemeinen Formel I übergeführt werden.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommen als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe in Betracht.

Als Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe kommen beispielsweise die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.-Butoxycarbonyl-, Benzyloxycarbonyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

10

25

30

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran oder Methanol bei Temperaturen zwischen 0 und 50°C.

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise cis-/trans-Gemische in ihre cis- und trans-Isomere, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre cis- und trans-Isomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971)) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

10

15

20

25

30

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Äpfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise (+)-oder (-)-Menthyloxycarbonyl in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren

kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis IX sind teilweise literaturbekannt oder können nach an sich literaturbekannten Verfahren (siehe Beispiele I bis XXII) oder den vorstehend beschriebenen Verfahren, gegebenenfalls unter zusätzlicher Einführung von Schutzresten (z.B. Verbindungen der Formel IV bzw. VII und VIII), erhalten werden.

10

15

Wie bereits eingangs erwähnt, weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze wertvolle pharmakologische Eigenschaften auf, insbesondere eine Hemmwirkung auf die durch den Epidermal Growth Factor-Rezeptor (EGF-R) vermittelte Signaltransduktion, wobei diese beispielsweise durch eine Inhibition der Ligandenbindung, der Rezeptordimerisierung oder der Tyrosinkinase selbst bewirkt werden kann. Außerdem ist es möglich, daß die Signalübertragung an weiter abwärtsliegenden Komponenten blockiert wird.

Die biologischen Eigenschaften der neuen Verbindungen wurden wie folgt geprüft:

20

25

30

Die Hemmung der humanen EGF-Rezeptorkinase wurde mit Hilfe der cytoplasmatischen Tyrosinkinase-Domäne (Methionin 664 bis Alanin 1186 basierend auf der in Nature 309 (1984), 418 publizierten Sequenz) bestimmt. Hierzu wurde das Protein in Sf9 Insektenzellen als GST-Fusionsprotein unter Verwendung des Baculovirus-Expressionssystems exprimiert.

Die Messung der Enzymaktivität wurde in Gegenwart oder Abwesenheit der Testverbindungen in seriellen Verdünnungen durchgeführt. Das Polymer pEY (4:1) von SIGMA wurde als Substrat verwendet. Biotinyliertes pEY (bio-pEY) wurde als Tracer-Substrat zugesetzt. Jede 100 μl Reaktionslösung enthielt 10 μl des Inhibitors in 50% DMSO, 20 μl der Substrat-Lösung (200 mM HEPES pH 7.4, 50 mM Magnesiumacetat, 2.5 mg/ml poly(EY), 5 μg/ml bio-pEY) und 20 μl Enzympräparation. Die Enzymreaktion wurde durch Zugabe von 50μl einer 100 μM ATP Lösung in 10 mM Magnesiumchlorid gestartet. Die Verdünnung der Enzympräparation wurde so eingestellt, daß der

Phosphat-Einbau in das bio-pEY hinsichtlich Zeit und Enzymmenge linear war. Die Enzympräparation wurde in 20 mM HEPES pH 7.4, 1 mM EDTA, 130 mM Kochsalz, 0.05% Triton X-100, 1 mM DTT und 10% Glycerin verdünnt.

Die Enzymassays wurden bei Raumtemperatur über einen Zeitraum von 30 Minuten ausgeführt und durch Zugabe von 50 μl einer Stopplösung (250 mM EDTA in 20 mM HEPES pH 7.4) beendet. 100 μl wurden auf eine Streptavidin-beschichtete Mikrotiterplatte gebracht und 60 Minuten bei Raumtemperatur inkubiert. Danach wurde die Platte mit 200 μl einer Waschlösung (50 mM Tris, 0.05% Tween 20) gewaschen. Nach Zugabe von 100 μl eines HRPO-gelabelten anti-PY Antikörpers (PY20H Anti-PTyr:HRP von Transduction Laboratories, 250 ng/ml) wurde 60 Minuten inkubiert. Danach wurde die Mikrotiterplatte dreimal mit je 200 μl Waschlösung gewaschen. Die Proben wurden dann mit 100 μl einer TMB-Peroxidase-Lösung (A:B = 1:1, Kirkegaard Perry Laboratories) versetzt. Nach 10 Minuten wurde die Reaktion gestoppt. Die Extinktion wurde bei OD_{450nm} mit einem ELISA-Leser gemessen. Alle Datenpunkte wurden als Triplikate bestimmt.

Die Daten wurden mittels einer iterativen Rechnung unter Verwendung eines Analysenprogrammes für sigmoidale Kurven (Graph Pad Prism Version 3.0) mit variabler Hill-Steigung angepaßt. Alle freigegebenen Iterationsdaten wiesen einen Korrelationskoeffizienten von über 0.9 auf und die Ober- und Unterwerte der Kurven zeigten eine Spreizung von mindestens einem Faktor von 5. Aus den Kurven wurde die Wirkstoffkonzentration abgeleitet, die die Aktivität der EGF-Rezeptorkinase zu 50% hemmt (IC_{50}).

25

5

10

15

20

Folgende Ergebnisse wurden erhalten:

Verbindung	Hemmung der EGF-
(Beispiel Nr.)	Rezeptorkinase
	IC ₅₀ [nM]
1	0.13
1(1)	0.12
1(2)	2

Verbindung	Hemmung der EGF-
(Beispiel Nr.)	Rezeptorkinase
	IC ₅₀ [nM]
1(3)	1.1.
1(4)	0.6
1(5)	0.6
1(6)	0.69
1(7)	1.6
2	4.5
2(1)	0.16
2(2)	0.22
3	0.9
3(1)	0.14
3(2)	0.22
3(7)	0.7
3(8)	0.6
3(9)	0.2
3(11)	0.1
3(15)	1
3(16)	1
3(17)	0.3
3(18)	0.4
3(20)	1
3(21)	0.4
4	0.41
4(1)	0.16
7(5)	1

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I hemmen somit die Signaltransduktion durch Tyrosinkinasen, wie am Beispiel des humanen EGF-Rezeptors gezeigt wurde, und sind daher nützlich zur Behandlung pathophysiologischer Prozesse, die durch Überfunktion von Tyrosinkinasen hervorgerufen werden. Das sind z.B. benigne oder maligne Tumoren, insbesondere Tumoren epithelialen und neuro-

epithelialen Ursprungs, Metastasierung sowie die abnorme Proliferation vaskulärer Endothelzellen (Neoangiogenese).

Die erfindungsgemäßen Verbindungen sind auch nützlich zur Vorbeugung und Behandlung von Erkrankungen der Atemwege und der Lunge, die mit einer vermehrten oder veränderten Schleimproduktion einhergehen, die durch Stimulation von Tyrosinkinasen hervorgerufen wird, wie z.B. bei entzündlichen Erkrankungen der Atemwege wie chronische Bronchitis, chronisch obstruktive Bronchitis, Asthma, Bronchiektasien, allergische oder nicht-allergische Rhinitis oder Sinusitis, zystische Fibrose, α1-Antitrypsin-Mangel, oder bei Husten, Lungenemphysem, Lungenfibrose und hyperreaktiven Atemwegen.

Die Verbindungen sind auch geeignet für die Behandlung von Erkrankungen des Magen-Darm-Traktes und der Gallengänge und -blase, die mit einer gestörten Aktivität der Tyrosinkinasen einhergehen, wie sie z.B. bei chronisch entzündlichen Veränderungen zu finden sind, wie Cholezystitis, M. Crohn, Colitis ulcerosa, und Geschwüren im Magen-Darm-Trakt oder wie sie bei Erkrankungen des Magen-Darm-Traktes, die mit einer vermehrten Sekretion einhergehen, vorkommen, wie M. Ménétrier, sezernierende Adenome und Proteinverlustsyndrome.

20

25

30

5

10

15

Außerdem können die Verbindungen der allgemeinen Formel I und deren physiologisch verträglichen Salze zur Behandlung anderer Krankheiten verwendet werden, die durch aberrante Funktion von Tyrosinkinasen verursacht werden, wie z.B. epidermaler Hyperproliferation (Psoriasis), benigner Prostatahyperplasie (BPH), inflammatorischer Prozesse, Erkrankungen des Immunsystems, Hyperproliferation hämatopoetischer Zellen, der Behandlung von Nasenpolypen, etc..

Auf Grund ihrer biologischen Eigenschaften können die erfindungsgemäßen Verbindungen allein oder in Kombination mit anderen pharmakologisch wirksamen Verbindungen angewendet werden, beispielsweise in der Tumortherapie in Monotherapie oder in Kombination mit anderen Anti-Tumor Therapeutika, beispielsweise in Kombination mit Topoisomerase-Inhibitoren (z.B. Etoposide), Mitoseinhibitoren (z.B. Vinblastin), mit Nukleinsäuren interagierenden Verbindungen (z.B. cis-Platin, Cyclophosphamid, Adriamycin), Hormon-Antagonisten (z.B. Tamoxifen),

Inhibitoren metabolischer Prozesse (z.B. 5-FU etc.), Zytokinen (z.B. Interferonen), Antikörpern etc. Für die Behandlung von Atemwegserkrankungen können diese Verbindungen allein oder in Kombination mit anderen Atemwegstherapeutika, wie z.B. sekretolytisch (z.B. Ambroxol, N-acetylcystein), broncholytisch (z.B. Tiotropium oder Ipratropium oder Fenoterol, Salmeterol, Salbutamol) und/oder entzündungshemmend (z.B. Theophylline oder Glucocorticoide) wirksamen Substanzen angewendet werden. Für die Behandlung von Erkrankungen im Bereich des Magen-Darm-Traktes können diese Verbindungen ebenfalls alleine oder in Kombination mit Motilitäts- oder Sekretions-beeinflussenden Substanzen gegeben werden. Diese Kombinationen können entweder simultan oder sequentiell verabreicht werden.

Die Anwendung dieser Verbindungen entweder alleine oder in Kombination mit anderen Wirkstoffen kann intravenös, subkutan, intramuskulär, intraperitoneal, intranasal, durch Inhalation oder transdermal oder oral erfolgen, wobei zur Inhalation insbesondere Aerosolformulierungen geeignet sind.

Bei der pharmazeutischen Anwendung werden die erfindungsgemäßen Verbindungen in der Regel bei warmblütigen Wirbeltieren, insbesondere beim Menschen, in Dosierungen von 0.01-100 mg/kg Körpergewicht, vorzugsweise bei 0.1-15 mg/kg verwendet. Zur Verabreichung werden diese mit einem oder mehreren üblichen inerten Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Stearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen, Lösungen, Sprays oder Zäpfchen eingearbeitet.

Die nachfolgenden Beispiele sollen die vorliegende Erfindung näher erläutern ohne diese zu beschränken:

Herstellung der Ausgangsverbindungen:

Beispiel I

10

15

20

25

30

10

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-benzyloxy-chinazolin-hydrochlorid

Ein Gemisch aus 10.84 g 4-Chlor-6-(tetrahydropyran-4-yloxy)-7-benzyloxy-chinazolin und 4.50 g 3-Chlor-4-fluoranilin in 300 ml Isopropanol wird vier Stunden unter Rückfluß erhitzt und anschließend über Nacht bei Raumtemperatur stehengelassen. Der entstandene Niederschlag wird abgesaugt, mit Isopropanol nachgewaschen und mit 150 ml Methanol verrührt. Die Suspension wird noch eine halbe Stunde bei Raumtemperatur gerührt und anschließend abgesaugt. Der Filterkuchen wird mehrfach mit Methanol nachgewaschen und getrocknet.

Ausbeute: 9.07 g (60 % der Theorie)

RrWert: 0.27 (Kieselgel, Cyclohexan/Essigester = 1:1)

Massenspektrum (ESI $^{-}$): m/z = 478, 480 [M-H] $^{-}$

- 15 Analog Beispiel I werden folgende Verbindungen erhalten:
 - (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-benzyloxy-chinazolin-hydrochlorid

R_f-Wert: 0.34 (Kieselgel, Cyclohexan/Essigester = 1:1)

- 20 Massenspektrum (ESI $^+$): m/z = 466, 468 [M+H] $^+$
 - (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-trifluoracetyl-piperidin-4-yloxy)-chinazolin-hydrochlorid

RrWert: 0.17 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/

25 Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^{+}$): m/z = 469, 471 [M+H] $^{+}$

- (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-trifluoracetyl-piperidin-4-yloxy)-7-acetoxy-chinazolin-hydrochlorid
- 30 R_F-Wert: 0.70 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 527, 529 [M+H] $^+$

(4) 4-[(3-Ethinyl-phenyl)amino]-6-acetoxy-7-methoxy-chinazolin

WO 03/082290 PCT/EP03/03062 39

R-Wert: 0.59 (Kieselgel, Essigester)

Massenspektrum (ESI*): m/z = 334 [M+H]*

Beispiel II

5

4-Chlor-6-(tetrahydropyran-4-yloxy)-7-benzyloxy-chinazolin

Hergestellt durch Umsetzung von 6-(Tetrahydropyran-4-yloxy)-7-benzyloxy-3Hchinazolin-4-on mit Thionylchlorid in Gegenwart von N,N-Dimethylformamid in Acetonitril unter Rückfluß.

R_f-Wert: 0.90 (Kieselgel, Essigester/Methanol = 9:1) 10

Analog Beispiel II werden folgende Verbindungen erhalten:

- (1) 4-Chlor-6-((S)-tetrahydrofuran-3-yloxy)-7-benzyloxy-chinazolin
- R_r-Wert: 0.85 (Kieselgel, Essigester/Methanol = 9:1) 15
 - (2) 4-Chlor-6-(1-trifluoracetyl-piperidin-4-yloxy)-chinazolin R_f-Wert: 0.92 (Kieselgel, Essigester)
- (3) 4-Chlor-6-(1-trifluoracetyl-piperidin-4-yloxy)-7-acetoxy-chinazolin 20

Beispiel III

6-(Tetrahydropyran-4-yloxy)-7-benzyloxy-3*H*-chinazolin-4-on

- Ein Gemisch aus 15.08 g 2-Amino-4-benzyloxy-5-(tetrahydropyran-4-yloxy)-benzoe-25 säure und 14.40 g Formamidinacetat in 250 ml absolutem Ethanol wird über Nacht unter Rückfluß erhitzt. Das abgekühlte Reaktionsgemisch wird mit 250 ml Wasser versetzt. Der ausgefallene Niederschlag wird abgesaugt und bei 70°C im Trockenschrank getrocknet.
- Ausbeute: 10.00 g (65 % der Theorie) 30

R_FWert: 0.40 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/

Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 353 [M+H] $^+$

Analog Beispiel III werden folgende Verbindungen erhalten:

(1) 6-((S)-Tetrahydrofuran-3-yloxy)-7-benzyloxy-3H-chinazolin-4-on

R_FWert: 0.60 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/

5 Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 339 [M+H] $^+$

(2) 6-[1-(tert.-Butyloxycarbonyl)-piperidin-4-yloxy]-3*H*-chinazolin-4-on

R-Wert: 0.48 (Kieselgel, Essigester/Methanol = 9:1)

- 10 Massenspektrum (ESI $^+$): m/z = 346 [M+H] $^+$
 - (3) 6-[1-(tert.-Butyloxycarbonyl)-piperidin-4-yloxy]-7-hydroxy-3*H*-chinazolin-4-on R_F-Wert: 0.35 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI †): m/z = 362 [M+H] †

Beispiel IV

15

2-Amino-4-benzyloxy-5-(tetrahydropyran-4-yloxy)-benzoesäure

16.40 g 2-Nitro-4-benzyloxy-5-(tetrahydropyran-4-yloxy)-benzoesäure werden in
 Gegenwart von 1.64 g Raney-Nickel in 800 ml Methanol bei 55°C hydriert, bis die berechnete Menge Wasserstoff aufgenommen ist. Der Katalysator wird abfiltriert und das Filtrat eingeengt, wobei das gewünschte Produkt auskristallisiert.

Ausbeute: 15.08 g (100 % der Theorie)

R_FWert: 0.60 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ 25 Trifluoressigsäure = 50:50:1)

Analog Beispiel IV werden folgende Verbindungen erhalten:

- (1) 2-Amino-4-benzyloxy-5-((S)-tetrahydrofuran-3-yloxy)-benzoesäure-benzylester
 R_f-Wert: 0.70 (Kieselgel, Cyclohexan/Essigester = 1:1)
 Massenspektrum (ESI⁺): m/z = 420 [M+H]⁺
 - (2) 2-Amino-5-[1-(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-benzoesäure R_F-Wert: 0.43 (Kieselgel, Methylenchlorid/Methanol = 9:1)

WO 03/082290 41

Massenspektrum (ESI⁺): m/z = 337 [M+H]⁺

(3) 2-Amino-4-hydroxy-5-[1-(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-benzoesäure R_FWert: 0.23 (Kieselgel, Methylenchlorid/Methanol/Essigsäure = 90:10:1)

PCT/EP03/03062

Beispiel V

5

10

20

25

30

2-Nitro-4-benzyloxy-5-(tetrahydropyran-4-yloxy)-benzoesäure

Hergestellt durch Verseifung von 2-Nitro-4-benzyloxy-5-(tetrahydropyran-4-yloxy)-benzoesäure-benzylester mit 1 N Natronlauge in Methanol bei Raumtemperatur.

 R_f -Wert: 0.20 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI⁺): m/z = 374 [M+H]⁺

15 Beispiel VI

2-Nitro-4-benzyloxy-5-(tetrahydro-pyran-4-yloxy)-benzoesäure-benzylester

Zu 38 ml Tetrahydrofuran-4-ol in 228 ml N,N-Dimethylformamid werden unter Eisbad-Kühlung 42.60 g Kalium-tert.-butanolat gegeben. Das Gemisch wir eine Stunde bei Raumtemperatur gerührt, dann werden 22.90 g 6-Nitro-benzo[1,3]dioxol-5-carbonsäure zugegeben. Nach 1.5 Stunden ist die Umsetzung laut Dünnschichtchromatogramm vollständig und es werden 28.94 ml Benzylbromid unter Eisbad-Kühlung zugetropft. Das Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt, mit 100 ml 10%iger Zitronensäure versetzt und einen weiteren Tag bei Raumtemperatur gerührt. Anschließend wird das Reaktionsgemisch im Vakuum bei 60 °C eingeengt und auf 800 ml Eiswasser gegeben. Die wässrige Phase wird mit Essigester extrahiert und die vereinten Extrakte werden mit Wasser und gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt.

Der Rückstand wird mit Diethylether verrührt, wobei als Nebenprodukt 2-Nitro-4-benzyloxy-5-(tetrahydropyran-4-yloxy)-benzoesäure auskristallisiert. Diese wird abfiltriert und das Filtrat eingeengt. Als Hauptprodukt bleibt 2-Nitro-4-benzyloxy-5-(tetrahydro-pyran-4-yloxy)-benzoesäure-benzylester zurück, welcher ohne weitere Reinigung zur Carbonsäure verseift wird (siehe Beispiel V).

Analog Beispiel VI werden folgende Verbindungen erhalten:

- (1) 2-Nitro-4-benzyloxy-5-((S)-tetrahydrofuran-3-yloxy)-benzoesäure-benzylester R_FWert: 0.75 (Kieselgel, Cyclohexan/Essigester = 1:1)
- 5 Massenspektrum (ESI*): m/z = 450 [M+H]*
 - (2) 2-Nitro-4-hydroxy-5-[1-(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-benzoesäure Auf die Umsetzung mit Benzylbromid wird verzichtet.

R_FWert: 0.40 (Kieselgel, Methylenchlorid/Methanol/Essigsäure = 90:10:1)

10 Massenspektrum (ESI⁻): m/z = 381 [M-H]⁻

Beispiel VII

15

20

25

30

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[2-(tert.-butyloxycarbonylamino)-ethyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Ein Gemisch aus 410 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin-dihydrochlorid, 240 mg N-(tert.-Butyloxycarbonyl)-2-brom-ethylamin und 360 mg Kaliumcarbonat in 5 ml N,N-Dimethylformamid wird über Nacht bei Raumtemperatur gerührt. Dann werden nochmals 80 mg N-(tert.-Butyloxycarbonyl)-2-brom-ethylamin zugesetzt und das Reaktionsgemisch wird weitere vier Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung wird es mit Wasser verdünnt und mit Essigester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird über eine Kieselgelsäule mit Essigester/Methanol (95:5 auf 90:1) als Laufmittel chromatographiert.

Ausbeute: 370 mg (79 % der Theorie)

R_f-Wert: 0.33 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI): m/z = 544, 546 [M-H]

Analog Beispiel VII wird folgende Verbindung erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[2-(tert.-butyloxycarbonylamino)-ethyl]-piperidin-4-yloxy}-chinazolin

PCT/EP03/03062 43

R-Wert: 0.38 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 516, 518 [M+H] $^+$

Beispiel VIII 5

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin-dihydrochlorid

von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(tert.-Behandlung Hergestellt durch 10 butyloxycarbonyl)-piperidin-4-yloxy]-7-methoxy-chinazolin mit konzentrierter Salzsäure in Dioxan bei Raumtemperatur.

R_f-Wert: 0.53 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 403, 405 [M+H] $^+$

15

Analog Beispiel VIII werden folgende Verbindungen erhalten:

- (1) 6-(Piperidin-4-yloxy)-3*H*-chinazolin-4-on x 2 Trifluoressigsäure Durchführung mit Trifluoressigsäure in Methylenchlorid.
- Massenspektrum (ESI $^+$): m/z = 246 [M+H] $^+$ 20
 - (2) 6-(Piperidin-4-yloxy)-7-hydroxy-3*H*-chinazolin-4-on Durchführung mit Trifluoressigsäure in Methylenchlorid.

R_rWert: 0.60 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ 25 Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI⁺): $m/z = 262 [M+H]^+$

Beispiel IX

4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-7-30 methoxy-chinazolin

Zu einem Gemisch aus 10.00 g 4-[(3-Chlor-4-fluor-phenyl)amino]-6-hydroxy-7-methoxychinazolin und 9.40 g 1-(tert.-Butyloxycarbonyl)-4-hydroxy-piperidin und 12.40 g Triphenylphosphin in 400 ml Methylenchlorid wird bei Raumtemperatur eine Lösung aus WO 03/082290 PCT/EP03/03062

7.80 ml Azodicarbonsäurediethylester in 100 ml Methylenchlorid getropft. Die Suspension wird drei Tage bei Raumtemperatur gerührt und anschließend abgesaugt. Das Filtrat wird eingeengt und über eine Kieselgelsäule mit Methylenchlorid/Methanol (98:2 auf 95:5) als Laufmittel chromatographiert. Das erhaltene Rohprodukt wird mit Diisopropylether versetzt, über Nacht darin gerührt, abgesaugt und getrocknet.

Ausbeute: 5.34 g (34 % der Theorie)

Rr-Wert: 0.46 (Kieselgel, Essigester/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 503, 505 [M+H] $^+$

10 Beispiel X

30

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(4-brom-butyloxy)-chinazolin

Ein Gemisch aus 500 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)7-hydroxy-chinazolin, 165 µl 1-Brom-4-chlor-propan und 360 mg Kaliumcarbonat in 5 ml
N,N-Dimethylformamid wird über Nacht bei 80°C gerührt. Zur Aufarbeitung wird das
Reaktionsgemisch mit Wasser verdünnt und mit Essigester extrahiert. Die vereinigten
organischen Phasen werden mit gesättigter Natriumchloridlösung gewaschen, über
Magnesiumsulfat getrocknet und eingeengt. Das Rohpodukt wird ohne weitere
Reinigung weiter umgesetzt.

Ausbeute: 650 mg (97 % der Theorie)

Analog Beispiel X werden folgende Verbindungen erhalten:

25 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-(4-brom-butyloxy)-chinazolin

Rr-Wert: 0.84 (Kieselgel, Essigester/Methanol = 9:1)

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-trifluoracetyl-piperidin-4-yloxy)-7-ethoxy-chinazolin

Massenspektrum (ESI $^+$): m/z = 513, 515 [M+H] $^+$

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-trifluoracetyl-piperidin-4-yloxy)-7-(2-methoxy)-chinazolin

45

PCT/EP03/03062

ReWert: 0.38 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 543, 545 [M+H] $^+$

Beispiel XI

5

1-(2-Hydroxy-ethyl)-3-methyl-tetrahydropyrimidin-2-on

Hergestellt durch hydrogenolytische Spaltung von 1-(2-Benzyloxy-ethyl)-3-methyltetrahydropyrimidin-2-on in Gegenwart von Palladium auf Aktivkohle in Methanol bei Raumtemperatur.

R_FWert: 0.23 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI⁺): m/z = 159 [M+H]⁺

Beispiel XII

15 1-(2-Benzyloxy-ethyl)-3-methyl-tetrahydropyrimidin-2-on

Hergestellt durch Umsetzung von 1-(2-Benzyloxy-ethyl)-tetrahydropyrimidin-2-on mit Methyliodid in Gegenwart von Kalium-tert.-butanolat in N,N-Dimethylformamid bei Raumtemperatur.

R_CWert: 0.62 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 249 [M+H] $^+$

Beispiel XIII

1-(2-Benzyloxy-ethyl)-tetrahydropyrimidin-2-on

Hergestellt durch Behandeln von 1-(2-Benzyloxy-ethyl)-3-(3-chlor-propyl)-harnstoff mit Kalium-tert.-butanolat in N,N-Dimethylformamid bei Raumtemperatur.

 R_f -Wert: 0.42 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI $^+$): $m/z = 235 [M+H]^+$

30 Beispiel XIV

1-(2-Benzyloxy-ethyl)-tetrahydropyrimidin-2-on

Hergestellt durch Umsetzung von 2-Benzyloxy-ethylamin mit 3-Chlor-propyl-isocyanat in Tetradydrofuran.

WO 03/082290 PCT/EP03/03062

R_FWert: 0.73 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI⁺): m/z = 271, 273 [M+H]⁺

Beispiel XV

5

3-(tert.-Butyloxycarbonylamino)-cyclohexanol

Hergestellt durch Umsetzung von 3-Amino-cyclohexanol mit Pyrokohlensäure-di-tert.butylester in Gegenwart von Triethylamin in einem Gemisch aus Dioxan/Wasser (2:1) bei 50°C.

10 R_f-Wert: 0.34 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI⁻): m/z = 214 [M-H]⁻

Analog Beispiel XV werden folgende Verbindungen erhalten:

15

(1) cis-4-[N-(tert.-Butyloxycarbonyl)-N-methyl-amino]-cyclohexanol

Die Umsetzung erfolgt in Methanol.

RrWert: 0.70 (Kieselgel, Essigester)

Massenspektrum (ESI⁺): m/z = 230 [M+H]⁺

20

25

Beispiel XVI

6-(1-Trifluoracetyl-piperidin-4-yloxy)-3*H*-chinazolin-4-on

Hergestellt durch Umsetzung von 6-(Piperidin-4-yloxy)-3*H*-chinazolin-4-on x 2 Trifluoressigsäure mit Trifluoressigsäureanhydrid in Gegenwart von Triethylamin in Tetrahydrofuran.

R_r-Wert: 0.48 (Kieselgel, Essigester/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 342 [M+H] $^+$

- 30 Analog Beispiel XVI werden folgende Verbindungen erhalten:
 - (1) 6-(1-Trifluoracetyl-piperidin-4-yloxy)-7-hydroxy-3*H*-chinazolin-4-on Durchführung mit Trifluoressigsäuremethylester in Gegenwart von Hünigbase in Methanol.

WO 03/082290 47

RrWert: 0.80 (Kieselgel, Methylenchlorid/Methanol = 4:1)

Massenspektrum (ESI $^+$): m/z = 358 [M+H] $^+$

Beispiel XVII

5

10

15

25

2-Nitro-5-[1-(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-benzoesäure

Zu 25.14 g 1-(tert.-Butyloxycarbonyl)-piperidin-4-ol in 120 ml N,N-Dimethylformamid werden unter Eisbad-Kühlung portionsweise 21.00 g Kalium-tert.-butanolat gegeben, wobei die Temperatur unter 10 °C gehalten wird. Das Gemisch wird noch 30 Minuten unter Eisbad-Kühlung nachgerührt, dann werden 11.60 g 5-Fluor-2-nitro-benzoesäure zugegeben. Nach weiteren drei Stunden wird das Reaktionsgemisch auf Wasser gegossen, mit konz. Salzsäure auf pH 1 eingestellt und mit Essigester extrahiert. Die vereinigten organischen Phasen werden mit verdünnter Zitronensäure-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird mit Diethylether verrieben, abgesaugt und getrocknet. Aus dem Filtrat kristallisiert nach längerem Stehenlassen weiteres Produkt aus, welches ebenfalls abgesaugt und getrocknet wird.

PCT/EP03/03062

Ausbeute: 9.58 g (42 % der Theorie)

R_FWert: 0.43 (Kieselgel, Methylenchlorid/Methanol/Essigsäure = 90:10:1)

20 Massenspektrum (ESI †): m/z = 367[M+H] †

Beispiel XVIII

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-bromacetyl-piperidin-4-yloxy)-chinazolin und 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-chloracetyl-piperidin-4-yloxy)-chinazolin

Hergestellt durch Umsetzung von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-chinazolin mit Bromessigsäurechlorid in Gegenwart von Hünigbase in Tetrahydrofuran bei Raumtemperatur. Man erhält ein Gemisch aus Brom- und Chlor-Verbindung.

30 R_FWert: 0.43 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI⁺): $m/z = 493, 495, 497 [M1+H]^{+} und 449, 451, 453 [M2+H]^{+}$

Analog Beispiel XVIII werden folgende Verbindungen erhalten:

PCT/EP03/03062 WO 03/082290 48

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-chloracetyl-piperidin-4-yloxy)-7-methoxychinazolin

Die Umsetzung erfolgt mit Chloracetylchlorid.

R_r-Wert: 0.59 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^-$): m/z = 477, 479, 481 [M-H] $^-$

Beispiel XIX

1-Methyl-3-[([1,4]oxazepan-4-yl)carbonyl]-3H-imidazol-1-ium-iodid

Hergestellt durch Umsetzung von 3-[([1,4]Oxazepan-4-yl)carbonyl]-3H-imidazol mit 10 Methyliodid in Acetonitril bei Raumtemperatur. Das Rohprodukt wird ohne weitere Reinigung weiter umgesetzt.

Analog Beispiel XIX werden folgende Verbindungen erhalten:

- (1) 1-Methyl-3-[(cis-2,6-dimethyl-morpholin-4-yl)carbonyl]-3H-imidazol-1-ium-iodid R-Wert; 0.12 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)
- (2) 1-Methyl-3-[(2-methyl-morpholin-4-yl)carbonyl]-3H-imidazol-1-ium-iodid R_cWert: 0.02 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) 20

Beispiel XX

15

3-[([1,4]Oxazepan-4-yl)carbonyl]-3H-imidazol

Hergestellt durch Umsetzung von [1,4]Oxazepan mit N,N'-Carbonyldiimidazol in 25 Gegenwart von Triethylamin in Tetrahydrofuran bei Raumtemperatur.

R_f-Wert: 0.30 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI⁺): m/z = 196 [M+H]⁺

- Analog Beispiel XX werden folgende Verbindungen erhalten: 30
 - (1) 3-[(cis-2,6-Dimethyl-morpholin-4-yl)carbonyl]-3*H*-imidazol R_f-Wert: 0.46 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

WO 03/082290 PCT/EP03/03062

(2) 3-[(2-Methyl-morpholin-4-yl)carbonyl]-3H-imidazol

R_FWert: 0.43 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

Beispiel XXI

5

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-trifluoracetyl-piperidin-4-yloxy)-7-hydroxy-chinazolin

Hergestellt durch Behandlung von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-trifluoracetyl-piperidin-4-yloxy)-7-acetoxy-chinazolin-hydrochlorid mit gesättigter Natriumhydrogen-carbonat-Lösung in Methanol bei Raumtemperatur. Neben dem gewünschten Produkt wird als Nebenprodukt auch etwas 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-hydroxy-chinazolin isoliert.

R_f-Wert: 0.20 (Kieselgel, Methylenchlorid/Methanol = 20:1)

Massenspektrum (ESI⁻): m/z = 483, 485 [M-H]⁻

15

10

Analog Beispiel XXI werden folgende Verbindungen erhalten:

(1) 4-[(3-Ethinyl-phenyl)amino]-6-hydroxy-7-methoxy-chinazolin

Durchführung mit 40 %iger Natronlauge in Ethanol.

20 R_f-Wert: 0.32 (Kieselgel, Essigester)

Massenspektrum (ESI⁺): m/z = 292 [M+H]⁺

Beispiel XXII

25 6-(1-Trifluoracetyl-piperidin-4-yloxy)-7-acetoxy-3*H*-chinazolin-4-on

Hergestellt durch Umsetzung von 6-(1-Trifluoracetyl-piperidin-4-yloxy)-7-hydroxy-3*H*-chinazolin-4-on mit Acetanhydrid in Pyridin bei 80°C.

Rr-Wert: 0.60 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 400 [M+H] $^+$

30

Herstellung der Endverbindungen:

Beispiel 1

4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-methoxy-chinazolin

50

5 300 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-hydroxy-7-methoxy-chinazolin in 6 ml Acetonitril werden mit 114 μl (*R*)-3-Hydroxy-tetrahydrofuran und 370 mg Triphenyl-phosphin versetzt. Anschließend werden 234 μl Azodicarbonsäurediethylester zugegeben und das Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch filtriert und das Filtrat im Vakuum eingeengt.

Das Rohprodukt wird chromatographisch über eine Kieselgelsäule mit Essigester/-Methanol (95:5) als Laufmittel gereinigt.

Ausbeute: 53 mg (15 % der Theorie)

Schmelzpunkt: 178°C

Massenspektrum (ESI $^+$): m/z = 390, 392 [M+H] $^+$

15

Analog Beispiel 1 werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-methoxy-chinazolin

20

R_r-Wert: 0.54 (Kieselgel, Essigester/Methanol = 9:1)

Massenspektrum (ESI †): m/z = 404, 406 [M+H] †

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(tert.-butyloxycarbonylamino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin

- 5 R_r-Wert: 0.70 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI⁺): m/z = 517, 519 [M+H]⁺
 - (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((*R*)-tetrahydrofuran-3-yloxy)-7-methoxy-chinazolin

10

R_f-Wert: 0.64 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI⁺): m/z = 390, 392 [M+H]⁺

15 (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[trans-4-(tert.-butyloxycarbonylamino)-cyclo-hexan-1-yloxy]-7-methoxy-chinazolin

 R_f -Wert: 0.65 (Kieselgel, Essigester/Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 517, 519 [M+H] $^{+}$

(5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-7-methoxy-chinazolin

10 Schmelzpunkt: 184°C

Massenspektrum (ESI $^{+}$): m/z = 503, 505 [M+H] $^{+}$

(6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-3-yloxy)-7-methoxy-chinazolin

5

R_FWert: 0.52 (Kieselgel, Methylenchlorid/Methanol = 9:1) Massenspektrum (ESI⁺): m/z = 404, 406 [M+H]⁺

(7) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methyl-piperidin-4-yloxy)-7-methoxy-chinazolin

Schmelzpunkt: 218°C

Massenspektrum (ESI $^+$): m/z = 417, 419 [M+H] $^+$

10

30

5

(8) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(S)-1-(tert.-butyloxycarbonyl)-pyrrolidin-3-yloxy]-7-methoxy-chinazolin

Durchführung mit Azodicarbonsäurediisopropylester in Methylenchlorid.

R_FWert: 0.51 (Kieselgel, Methylenchlorid/Methanol = 9:1)

- 15 Massenspektrum (ESI⁺): $m/z = 489, 491 [M+H]^+$
 - (9) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(tert.-butyloxycarbonyl)-piperidin-3-yloxy]-7-methoxy-chinazolin

Durchführung mit Azodicarbonsäurediisopropylester in Methylenchlorid.

20 RrWert: 0.56 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI): m/z = 501, 503 [M-H]

- (10) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-[2-(3-methyl-2-oxo-hexahydropyrimidin-1-yl)-ethoxy]-chinazolin
- 25 Durchführung mit Azodicarbonsäurediisopropylester in Methylenchlorid.

Schmelzpunkt: 235°C

Massenspektrum (ESI †): m/z = 516, 518 [M+H] †

(11) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[3-(tert.-butyloxycarbonylamino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin

Durchführung mit Azodicarbonsäurediisopropylester in Methylenchlorid.

R_FWert: 0.68 (Kieselgel, Essigester/Methanol = 9:1)

Massenspektrum (ESI $^{-}$): m/z = 515, 517 [M-H] $^{-}$

5 (12) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{cis-4-[N-(tert.-butyloxycarbonyl)-N-methyl-amino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin

Durchführung mit Azodicarbonsäurediisopropylester in Methylenchlorid.

R_EWert: 0.37 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 531, 533 [M+H] $^{+}$

10

20

(13) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[N-(tert.-butyloxycarbonyl)-N-methyl-amino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin

Durchführung mit Azodicarbonsäurediisopropylester in Methylenchlorid.

Schmelzpunkt: 231°C

15 Massenspektrum (ESI⁺): m/z = 531, 533 [M+H]⁺

Beispiel 2

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-amino-cyclohexan-1-yloxy)-7-methoxy-chinazolin x Trifluoressigsäure

Hergestellt durch Behandlung von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(tert.butyloxycarbonylamino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin mit Trifluoressigsäure in Methylenchlorid bei Raumtemperatur.

Schmelzpunkt: 221°C

Massenspektrum (ESI⁺): m/z = 417, 419 [M+H]

30 Analog Beispiel 2 werden folgende Verbindungen erhalten:

Χ

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-amino-cyclohexan-1-yloxy)-7-methoxy-chinazolin

5

Massenspektrum (ESI †): m/z = 417, 419 [M+H] †

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin Trifluoressigsäure

10

20

Schmelzpunkt: 232°C

Massenspektrum (ESI⁺): m/z = 403, 405 [M+H]⁺

15 Beispiel 3

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-methansulfonylamino-cyclohexan-1-yloxy)-7-methoxy-chinazolin

PCT/EP03/03062 WO 03/082290 56

Hergestellt durch Umsetzung von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-aminocyclohexan-1-yloxy)-7-methoxy-chinazolin x Trifluoressigsäure mit Methansulfonsäurechlorid in Gegenwart von Hünigbase in Tetrahydrofuran bei Raumtemperatur.

ReWert: 0.77 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 40:10:1)

Massenspektrum (ESI $^+$): m/z = 495, 497 [M+H] $^+$

Analog Beispiel 3 werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-methansulfonylamino-cyclohexan-1yloxy)-7-methoxy-chinazolin

RrWert: 0.20 (Kieselgel, Essigester)

Massenspektrum (ESI $^+$): m/z = 495, 497 [M+H] $^+$

15

10

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methansulfonyl-piperidin-4-yloxy)-7methoxy-chinazolin

- 20 R_f-Wert: 0.59 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI †): m/z = 481, 483 [M+H] †
 - (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{cis-4-[(3-chlor-propyl)sulfonylamino]cyclohexan-1-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit 3-Chlorpropansulfonylchlorid.

RrWert: 0.79 (Kieselgel, Essigester/Methanol = 9:1)

- 5 Massenspektrum (ESI'): m/z = 555, 557, 559 [M-H]'
 - (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(3-chlor-propyl)sulfonylamino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin

10

Die Umsetzung erfolgt mit 3-Chlorpropansulfonylchlorid.

RrWert: 0.42 (Kieselgel, Essigester)

Massenspektrum (ESI $^{+}$): m/z = 557, 559, 561 [M+H] $^{+}$

15 (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methylcarbonyl-piperidin-4-yloxy)-7-methoxy-chinazolin

Die Umsetzung erfolgt mit Acetanhydrid.

20 Schmelzpunkt: 216°C

Massenspektrum (ESI †): m/z = 445, 447 [M+H] †

(6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(dimethylamino)carbonyl]-piperidin-4-yl-oxy}-7-methoxy-chinazolin

58

5

Die Umsetzung erfolgt mit N,N-Dimethylcarbamoylchlorid.

R_f-Wert: 0.28 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI⁺): m/z = 474, 476 [M+H]⁺

10

(7) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonyl]-piperidin-4-yl-oxy}-7-methoxy-chinazolin

15 Die

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid in Acetonitril.

R_F-Wert: 0.37 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 516, 518 [M+H] $^+$

20 (8)

(8) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(methoxymethyl)carbonyl]-piperidin-4-yl-oxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit Methoxyessigsäurechlorid.

R_FWert: 0.80 (Kieselgel, Methylenchlorid/Methanol = 9:1)

- Massenspektrum (ESI*): m/z = 475, 477 [M+H]*
 - (9) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-cyano-piperidin-4-yloxy)-7-methoxy-chinazolin

10

Die Umsetzung erfolgt mit Bromcyan in Methylenchlorid.

R_FWert: 0.40 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^{+}$): m/z = 428, 430 [M+H] $^{+}$

15

(10) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(dimethylamino)sulfonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

20 Die Umsetzung erfolgt mit N,N-Dimethylsulfamoylchlorid in Acetonitril.

60

ReWert: 0.24 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 510, 512 [M+H] $^+$

(11) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)sulfonyl]-piperidin-4-yloxy}-5 7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)sulfonylchlorid in Acetonitril.

R-Wert: 0.29 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ 10 Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 552, 554 [M+H] $^+$

(12) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methansulfonyl-piperidin-3-yloxy)-7methoxy-chinazolin 15 ·

R-Wert: 0.33 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 481, 483 [M+H] $^+$

(13) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-1-methansulfonyl-pyrrolidin-3-yloxy)-7-20 methoxy-chinazolin

Schmelzpunkt: 249°C

Massenspektrum (ESI †): m/z = 467, 469 [M+H] †

(14) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-methansulfonylamino-ethyl)-piperidin-4-25 yloxy]-7-methoxy-chinazolin

R_f-Wert: 0.49 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

WO 03/082290 PCT/EP03/03062 61

Massenspektrum (ESI †): m/z = 524, 526 [M+H] †

- (15) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-acetylamino-ethyl)-piperidin-4-yloxy]-7methoxy-chinazolin
- Die Umsetzung erfolgt mit Acetanhydrid. 5

Rr-Wert: 0.51 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI⁺): m/z = 488, 490 [M+H]⁺

(16) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(dimethylamino)sulfonylamino]-10 cyclohexan-1-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit N,N-Dimethylsulfamoylchlorid in Acetonitril.

R_f-Wert: 0.69 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI †): m/z = 524, 526 [M+H] †

15

(17) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(morpholin-4-yl)carbonylamino]cyclohexan-1-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid in Acetonitril.

RrWert: 0.38 (Kieselgel, Essigester/Methanol = 9:1)

- Massenspektrum (ESI $^{+}$): m/z = 530, 532 [M+H] $^{+}$ 20
 - (18) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(morpholin-4-yl)sulfonylamino]cyclohexan-1-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)sulfonylchlorid in Acetonitril.

Schmelzpunkt: 237°C 25

Massenspektrum (ESI $^{-}$): m/z = 564, 566 [M-H] $^{-}$

- (19) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(3-methansulfonylamino-cyclohexan-1-yloxy)-7-methoxy-chinazolin
- R_r-Wert: 0.66 (Kieselgel, Essigester/Methanol = 9:1) 30

Massenspektrum (ESI $^-$): m/z = 493, 495 [M-H] $^-$

(20) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-acetylaminoethoxy)-chinazolin

Die Umsetzung erfolgt mit Acetylchlorid in Acetonitril.

Schmelzpunkt: 224°C

WO 03/082290

Massenspektrum (ESI+): m/z = 475, 477 [M+H]+

(21) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-5 methansulfonylamino-ethoxy)-chinazolin

Schmelzpunkt: 227°C

Massenspektrum (ESI $^+$): m/z = 511, 513 [M+H] $^+$

(22) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-3-acetylamino-cyclohexan-1-yloxy)-7-10 methoxy-chinazolin

Die Umsetzung erfolgt mit Acetylchlorid in Acetonitril. Cis- und trans-Isomer werden chromatographisch über eine Kieselgelsäule getrennt.

R_{r-Wert: 0.43} (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1) 15

62

Massenspektrum (ESI⁺): m/z = 459, 461 [M+H]⁺

- (23) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-3-acetylamino-cyclohexan-1-yloxy)-7methoxy-chinazolin
- Die Umsetzung erfolgt mit Acetylchlorid in Acetonitril. Cis- und trans-Isomer werden 20 chromatographisch über eine Kieselgelsäule getrennt.

RrWert: 0.49 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 459, 461 [M+H] $^+$

25

(24) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(3-acetylaminopropyloxy)-chinazolin

Die Umsetzung erfolgt mit Acetylchlorid.

Schmelzpunkt: 225°C

- Massenspektrum (ESI $^{+}$): m/z = 489, 491 [M+H] $^{+}$ 30
 - (25) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(3methansulfonylamino-propyloxy)-chinazolin

Schmelzpunkt: 222°C

Massenspektrum (ESI $^{+}$): m/z = 525, 527 [M+H] $^{+}$

(26) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methansulfonyl-piperidin-4-yloxy)-chinazolin

R_cWert: 0.44 (Kieselgel, Methylenchlorid /Methanol = 9:1)

- 5 Massenspektrum (ESI $^+$): m/z = 451, 453 [M+H] $^+$
 - (27) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonyl]-piperidin-4-yloxy}-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid in Acetonitril.

10 R_CWert: 0.40 (Kieselgel, Methylenchlorid /Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 486, 488 [M+H] $^+$

- (28) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-acetyl-piperidin-4-yloxy)-chinazolin Die Umsetzung erfolgt mit Acetanhydrid.
- 15 R_cWert: 0.50 (Kieselgel, Methylenchlorid /Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 415, 417 [M+H] $^{+}$

- (29) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(dimethylamino)carbonyl]-piperidin-4-yloxy}-chinazolin
- 20 Die Umsetzung erfolgt mit N,N-Dimethylcarbamoylchlorid.

Rr-Wert: 0.47 (Kieselgel, Methylenchlorid /Methanol = 9:1)

Massenspektrum (ESI †): m/z = 444, 446 [M+H] †

(30) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-acetylamino-cyclohexan-1-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit Acetanhydrid.

25

Rr-Wert: 0.50 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 459, 461 [M+H] $^+$

30 (31) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(dimethylamino)carbonylamino]cyclohexan-1-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit N,N-Dimethylcarbamoylchlorid.

R_F-Wert: 0.40 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 488, 490 [M+H] $^+$

(32) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[trans-4-(2-methoxy-acetylamino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin

Die Umsetzung erfolgt mit Methoxyessigsäurechlorid.

R_f-Wert: 0.35 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI⁺): $m/z = 489, 491 [M+H]^+$

- (33) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-methoxy-acetyl)-piperidin-4-yloxy]-chinazolin
- 10 Die Umsetzung erfolgt mit Methoxyessigsäurechlorid.

Rr-Wert: 0.41 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 445, 447 [M+H] $^{+}$

(34) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-isopropyloxycarbonyl-piperidin-4-yloxy)-7-methoxy-chinazolin

Die Umsetzung erfolgt mit Chlorameisensäureisopropylester.

R_f-Wert: 0.67 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 98:2:1) Massenspektrum (ESI⁺): m/z = 489, 491 [M+H]⁺

20 (35) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-cyano-piperidin-4-yloxy)-chinazolin Die Umsetzung erfolgt mit Bromcyan in Methylenchlorid.

RrWert: 0.49 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^{\circ}$): m/z = 396, 398 [M-H] $^{\circ}$

25 (36) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(dimethylamino)sulfonyl]-piperidin-4-yloxy}-chinazolin

Die Umsetzung erfolgt mit N,N-Dimethylsulfamoylchlorid in Acetonitril.

Rr-Wert: 0.34 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 480, 482 [M+H] $^+$

30

15

(37) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)sulfonyl]-piperidin-4-yloxy}-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)sulfonylchlorid in Acetonitril.

RrWert: 0.15 (Kieselgel, Cyclohexan/Essigester = 1:1)

Massenspektrum (ESI $^+$): m/z = 522, 524 [M+H] $^+$

- (38) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-acetylamino-ethyl)-piperidin-4-yloxy]-chinazolin
- 5 Die Umsetzung erfolgt mit Acetanhydrid in Acetonitril.

Schmelzpunkt: 221°C

Massenspektrum (ESI $^+$): m/z = 458, 460 [M+H] $^+$

(39) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(diethylamino)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit N,N-Diethylcarbamoylchlorid.

R_f-Wert: 0.40 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 95:5:1) Massenspektrum (ESI⁺): m/z = 502, 504 [M+H]⁺

15 (40) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(piperidin-1-yl)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Piperidin-1-yl)carbonylchlorid.

R_f-Wert: 0.51 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 95:5:1)

Massenspektrum (ESI^{*}): m/z = 512, 514 [M-H]^{*}

20

10

(41) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(pyrrolidin-1-yl)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Pyrrolidin-1-yl)carbonylchlorid.

Schmelzpunkt: 237°C

- 25 Massenspektrum (ESI⁺): m/z = 500, 502 [M+H]⁺
 - (42) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(4-methyl-piperazin-1-yl)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (4-Methyl-piperazin-1-yl)carbonylchlorid-hydrochlorid.

30 R_FWert: 0.28 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^{\circ}$): m/z = 527, 529 [M-H] $^{\circ}$

(43) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(N-methansulfonyl-N-methyl-amino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin

Die Umsetzung erfolgt in Methylenchlorid.

Rr-Wert: 0.71 (Kieselgel, Essigester/Methanol = 9:1)

- 5 Massenspektrum (ESI $^+$): m/z = 509, 511 [M+H] $^+$
 - (44) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(N-acetyl-N-methyl-amino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin

Die Umsetzung erfolgt mit Acetanhydrid.

10 Schmelzpunkt: 234°C

Massenspektrum (ESI $^+$): m/z = 473, 475 [M+H] $^+$

- (45) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{cis-4-[N-(2-methoxy-acetyl)-N-methyl-amino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin
- 15 Die Umsetzung erfolgt mit Methoxyessigsäurechlorid.

R_EWert: 0.40 (Kieselgel, Essigester/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 503, 505 [M+H] $^+$

(46) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(N-dimethylaminocarbonyl-N-methyl-amino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin

Die Umsetzung erfolgt mit N,N-Dimethylcarbamoylchlorid.

RrWert: 0.51 (Kieselgel, Essigester/Methanol = 9:1)

Massenspektrum (ESI †): m/z = 502, 504 [M+H] †

25 (47) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(morpholin-4-yl)carbonyl]-N-methyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid.

Rr-Wert: 0.50 (Kieselgel, Essigester/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 544, 546 [M+H] $^+$

30

20

(48) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(morpholin-4-yl)sulfonyl]-N-methyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)sulfonylchlorid in Acetonitril.

R-Wert: 0.24 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/

Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 580, 582 [M+H] $^+$

5 (49) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(N-dimethylaminosulfonyl-N-methyl-amino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin

Die Umsetzung erfolgt mit N,N-Dimethylsulfamoylchlorid in Acetonitril.

R_f-Wert: 0.53 (Kieselgel, Essigester)

Massenspektrum (ESI $^+$): m/z = 538, 540 [M+H] $^+$

10

(50) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-ethansulfonylamino-cyclohexan-1-yloxy)-7-methoxy-chinazolin

Die Umsetzung erfolgt mit Ethansulfonsäurechlorid in Methylenchlorid.

R_f-Wert: 0.41 (Kieselgel, Essigester)

- 15 Massenspektrum (ESI $^+$): m/z = 509, 511 [M+H] $^+$
 - (51) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonyl]-piperidin-4-yloxy}-7-ethoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid.

20 RrWert: 0.48 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 530, 532 [M+H] $^{+}$

- (52) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methansulfonyl-piperidin-4-yloxy)-7-ethoxychinazolin
- 25 R_FWert: 0.50 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 495, 497 [M+H] $^{+}$

- (53) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-methoxy-acetyl)-piperidin-4-yloxy]-7-ethoxy-chinazolin
- 30 Die Umsetzung erfolgt mit Methoxyessigsäurechlorid.

R_f-Wert: 0.40 (Kieselgel, Methylenchlorid/Methanol = 20:1)

Massenspektrum (ESI⁺): $m/z = 489, 491 [M+H]^+$

WO 03/082290 PCT/EP03/03062 68

(54) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methansulfonyl-piperidin-4-yloxy)-7-(2methoxy-ethoxy)-chinazolin

Rr-Wert: 0.47 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 525, 527 [M+H] $^{+}$

5

25

(55) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonyl]-piperidin-4yloxy}-7-(2-methoxy-ethoxy)-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid.

RrWert: 0.48 (Kieselgel, Methylenchlorid/Methanol = 9:1)

- Massenspektrum (ESI $^+$): m/z = 560, 562 [M+H] $^+$ 10
 - (56) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-methoxy-acetyl)-piperidin-4-yloxy]-7-(2methoxy-ethoxy)-chinazolin

Die Umsetzung erfolgt mit Methoxyessigsäurechlorid.

R_f-Wert: 0.48 (Kieselgel, Methylenchlorid/Methanol = 9:1) 15

Massenspektrum (ESI $^+$): m/z = 519, 521 [M+H] $^+$

- (57) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-acetylamino-cyclohexan-1-yloxy)-7methoxy-chinazolin
- Die Umsetzung erfolgt mit Acetanhydrid. 20

Schmelzpunkt: 281°C

Massenspektrum (ESI $^+$): m/z = 459, 461 [M+H] $^+$

(58) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(2-methoxy-acetylamino)-cyclohexan-1yloxy]-7-methoxy-chinazolin

Die Umsetzung erfolgt mit Methoxyessigsäurechlorid.

Schmelzpunkt: 264°C

Massenspektrum (ESI $^+$): m/z = 489, 491 [M+H] $^+$

(59) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(piperidin-1-yl)carbonyl]-N-methyl-30 amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Piperidin-1-yl)carbonylchlorid.

Schmelzpunkt: 253°C

Massenspektrum (ESI $^{+}$): m/z = 542, 544 [M+H] $^{+}$

WO 03/082290 PCT/EP03/03062 69

(60) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(4-methyl-piperazin-1-yl)carbonyl]-Nmethyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (4-Methyl-piperazin-1-yl)carbonylchlorid-hydrochlorid.

Schmelzpunkt: 262°C 5

Massenspektrum (ESI*): m/z = 557, 559 [M+H]*

- (61) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(N-ethansulfonyl-N-methyl-amino)cyclohexan-1-yloxy]-7-methoxy-chinazolin
- Die Umsetzung erfolgt mit Ethansulfonsäurechlorid in Methylenchlorid. 10

R_FWert: 0.19 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^{+}$): m/z = 523, 525 [M+H] $^{+}$

(62) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{cis-4-[(morpholin-4-yl)carbonylamino]-15 cyclohexan-1-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid.

Rr-Wert: 0.33 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

- Massenspektrum (ESI $^{+}$): m/z = 530, 532 [M+H] $^{+}$ 20
 - (63) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{cis-4-[(morpholin-4-yl)sulfonylamino]cyclohexan-1-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)sulfonylchlorid in Acetonitril.

RrWert: 0.81 (Kieselgel, Essigester/Methanol = 9:1) 25

- Massenspektrum (ESI †): m/z = 566, 568 [M+H] †
- (64) 4-[(3-Ethinyl-phenyl)amino]-6-(1-acetyl-piperidin-4-yloxy)-7-methoxy-chinazolin Die Umsetzung erfolgt mit Acetanhydrid.
- Rr-Wert: 0.30 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) 30 Massenspektrum (ESI †): m/z = 417 [M+H] †
 - (65) 4-[(3-Ethinyl-phenyl)amino]-6-[1-(2-methoxy-acetyl)-piperidin-4-yloxy]-7-methoxychinazolin

Die Umsetzung erfolgt mit Methoxyessigsäurechlorid.

R_F-Wert: 0.37 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 447 [M+H] $^+$

5

(66) 4-[(3-Ethinyl-phenyl)amino]-6-(1-methansulfonyl-piperidin-4-yloxy)-7-methoxychinazolin

R_f-Wert: 0.59 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI⁺): m/z = 453 [M+H]⁺

10

(67) 4-[(3-Ethinyl-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid.

R_f-Wert: 0.43 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

15 Massenspektrum (ESI †): m/z = 488 [M+H] †

(68) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[trans-4-(N-methansulfonyl-N-methyl-amino)-cyclohexan-1-yloxy]-7-methoxy-chinazolin

Rr-Wert: 0.50 (Kieselgel, Methylenchlorid /Methanol = 9:1)

20 Massenspektrum (ESI⁺): m/z = 509, 511 [M+H]⁺

(69) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-{N-[(morpholin-4-yl)carbonyl]-N-methyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

Die Umsetzung erfolgt mit (Morpholin-4-yl)carbonylchlorid.

25 R_FWert: 0.54 (Kieselgel, Methylenchlorid /Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 544, 546 [M+H] $^+$

Beispiel 4

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{[3-(morpholin-4-yl)-propyl]sulfonylamino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

Zu 60 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{cis-4-[(3-chlor-propyl)sulfonylamino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin in 2 ml Acetonitril werden 23 µl Morpholin gegeben und das Reaktionsgemisch wird über Nacht unter Rückfluß erhitzt. Zur Aufarbeitung wird das Gemisch in Essigester aufgenommen und mit Wasser gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird über eine Kieselgelsäule mit Methylenchlorid/Methanol (9:1) als Laufmittel gereinigt.

10 Ausbeute: 18 mg (27% der Theorie)

R_f-Wert: 0.36 (Kieselgel, Methylenchlorid /Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 608, 610 [M+H] $^{+}$

Analog Beispiel 4 werden folgende Verbindungen erhalten:

15

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-{[3-(morpholin-4-yl)-propyl]sulfonyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

- 20 R_f-Wert: 0.16 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

 Massenspektrum (ESI⁺): m/z = 608, 610 [M+H]⁺
 - (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-[4-(morpholin-4-yl)-butyloxy]-chinazolin

Durchführung in Gegenwart von Natriumcarbonat und Natriumiodid in N-Methylpyrrolidon bei 100°C.

R_FWert: 0.18 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 40:10:0.5) Massenspektrum (ESI⁺): m/z = 531, 533 [M+H]⁺

5

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((*S*)-tetrahydrofuran-3-yloxy)-7-[4-(morpholin-4-yl)-butyloxyl-chinazolin

Durchführung in Gegenwart von Natriumcarbonat und Natriumiodid in N-Methylpyrrolidon bei 100°C.

- R_FWert: 0.32 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 80:20:1)

 Massenspektrum (ESI⁺): m/z = 517, 519 [M+H]⁺
 - (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)acetyl]-piperidin-4-yloxy}-chinazolin
- Durchführung in Gegenwart von Hünigbase in Tetrahydrofuran bei Raumtemperatur.

 R_f-Wert: 0.30 (Kieselgel, Methylenchlorid /Methanol = 9:1)

 Massenspektrum (ESI⁺): m/z = 500, 502 [M+H]⁺
- (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-dimethylaminoacetyl-piperidin-4-yloxy)chinazolin

Durchführung in Gegenwart von Hünigbase in Tetrahydrofuran bei Raumtemperatur.

R_f-Wert: 0.11 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 458, 460 [M+H] $^+$

25

(6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-dimethylaminoacetyl-piperidin-4-yloxy)-7-methoxy-chinazolin

Durchführung in Gegenwart von Hünigbase in Tetrahydrofuran bei Raumtemperatur.

R_EWert: 0.19 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

- 30 Massenspektrum (ESI $^+$): m/z = 488, 490 [M+H] $^+$
 - (7) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)acetyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Durchführung in Gegenwart von Hünigbase in Tetrahydrofuran bei Raumtemperatur.

Massenspektrum (ESI $^+$): m/z = 530, 532 [M+H] $^+$

Beispiel 5

5 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-pyrrolidin-3-yloxy)-7-methoxy-chinazolin-dihydrochlorid

Eine Lösung aus 370 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(S)-1-(tert.-butyloxy-carbonyl)-pyrrolidin-3-yloxy]-7-methoxy-chinazolin in 5 ml Dioxan wird mit 0.32 ml konzentrierter Salzsäure versetzt und über Nacht bei Raumtemperatur gerührt. Der ausgefallene Niederschlag wird abgesaugt und mit reichlich Dioxan nachgewaschen. Das Rohprodukt wird in wenig Methanol gelöst und durch Zugabe der gleichen Menge Essigester wieder ausgefällt. Der so erhaltene weiße Feststoff wird abgesaugt und getrocknet.

Ausbeute: 200 mg (57 % derTheorie)

15 Schmelzpunkt: 281°C

Massenspektrum (ESI †): m/z = 389, 391 [M+H] †

Analog Beispiel 5 werden folgende Verbindungen erhalten:

20 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-3-yloxy)-7-methoxy-chinazolin-dihydrochlorid

Schmelzpunkt: 263°C

Massenspektrum (ESI $^+$): m/z = 403, 505 [M+H] $^+$

25 (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-amino-ethyl)-piperidin-4-yloxy]-7-methoxy-chinazolin-dihydrochlorid

Schmelzpunkt: 277°C

Massenspektrum (ESI †): m/z = 446, 448 [M+H] †

30 (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(3-amino-cyclohexan-1-yloxy)-7-methoxy-chinazolin-dihydrochlorid

Massenspektrum (ESI †): m/z = 417, 419 [M+H] †

(4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-amino-ethoxy)-chinazolin-dihydrochlorid

Durchführung mit isopropanolischer Salzsäure (5-6 M) in Methylenchlorid.

R_FWert: 0.58 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^{+}$): m/z = 433, 435 [M+H] $^{+}$

- (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(3-amino-propyloxy)-chinazolin-dihydrochlorid
- Durchführung mit isopropanolischer Salzsäure (5-6 M) in Methylenchlorid.

R_f-Wert: 0.44 (Reversed Phase DC-Fertigplatte (E. Merck), Methanol/5%ige wässrige Natriumchlorid-Lösung = 7:3)

Massenspektrum (ESI $^+$): m/z = 447, 449 [M+H] $^+$

15 (6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-amino-ethyl)-piperidin-4-yloxy]-chinazolin-dihydrochlorid

R_r-Wert: 0.50 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^+$): m/z = 416, 418 [M+H] $^+$

20

25

(7) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-methylamino-cyclohexan-1-yloxy)-7-methoxy-chinazolin-dihydrochlorid

Durchführung mit isopropanolischer Salzsäure (5-6 M) in Methylenchlorid.

RrWert: 0.35 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^{+}$): m/z = 431, 433 [M+H] $^{+}$

- (8) 4-[(3-Ethinyl-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin-dihydrochlorid
- 30 Durchführung mit isopropanolischer Salzsäure (5-6 M) in Methylenchlorid.

R_f-Wert: 0.50 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI⁺): m/z = 375 [M+H]⁺

WO 03/082290 PCT/EP03/03062

(9) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-methylamino-cyclohexan-1-yloxy)-7methoxy-chinazolin-dihydrochlorid

Schmelzpunkt: 251°C

Massenspektrum (ESI †): m/z = 431, 433 [M+H] †

5

10

15

Beispiel 6

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-hydroxy-chinazolin

Ein Gemisch aus 9.00 g 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-benzyloxy-chinazolin-hydrochlorid und 50 ml Trifluoressigsäure wird 1.5 Stunden auf 100°C erhitzt. Anschließend wird das Reaktionsgemisch eingeengt und der Rückstand in 10 ml Acetonitril aufgenommen. Diese Lösung wird unter kräftigem Rühren auf 100 ml gesättigte Natriumhydrogencarbonat-Lösung getropft. Nach 1.5 Stunden wird der entstandene Niederschlag abgesaugt und mehrmals mit Wasser nachgewaschen. Das Rohprodukt wird mit Diethylether verrührt, abgesaugt und getrocknet.

Ausbeute: 5.90 g (87 % der Theorie)

R_f-Wert: 0.21 (Kieselgel, Essigester)

Massenspektrum (ESI †): m/z = 390, 392 [M+H] †

- 20 Analog Beispiel 6 werden folgende Verbindungen erhalten:
 - (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-hydroxychinazolin

RrWert: 0.44 (Kieselgel, Essigester/Methanol = 9:1)

25 Massenspektrum (ESI $^+$): m/z = 376, 378 [M+H] $^+$

Beispiel 7

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-[3-(morpholin-4-yl)-

propyloxy]-chinazolin 30

> Ein Gemisch aus 300 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-hydroxy-chinazolin, 130 mg 3-(Morpholin-4-yl)-propylchlorid und 530 Kaliumcarbonat in 5 ml N,N-Dimethylformamid wird über Nacht bei 80°C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 25 ml Wasser verdünnt und mit Essigester

extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird mit Diethylether verrührt, abgesaugt und getrocknet.

Ausbeute: 250 mg (63 % der Theorie)

5 Schmelzpunkt: 205°C

20

25

30

Massenspektrum (ESI $^{+}$): m/z = 517, 519 [M+H] $^{+}$

Analog Beispiel 7 werden folgende Verbindungen erhalten:

10 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-[2-(morpholin-4-yl)-ethoxy]-chinazolin

R_r-Wert: 0.33 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 40:10:0.5) Massenspektrum (ESI⁺): m/z = 503, 505 [M+H]⁺

- 15 (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-ethoxy-chinazolin R_f-Wert: 0.76 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI⁺): m/z = 418, 420 [M+H]⁺
 - (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-[3-(morpholin-4-yl)-propyloxy]-chinazolin

 R_r -Wert: 0.20 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI⁻): m/z = 501, 503[M-H]⁻

(4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-[2-(morpholin-4-yl)-ethoxy]-chinazolin

R_f-Wert: 0.19 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI⁺): m/z = 489, 491 [M+H]⁺

(5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-methoxy-ethoxy)-chinazolin

R_FWert: 0.57 (Kieselgel, Methylenchlorid /Methanol = 9:1) Massenspektrum (ESI⁺): m/z = 448, 450 [M+H]⁺ WO 03/082290 PCT/EP03/03062 77

(6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-[2-(tert.butyloxycarbonylamino)-ethoxy]-chinazolin

R_{r-Wert: 0.64 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 95:5:0.1)} Massenspektrum (ESI †): m/z = 533, 535 [M+H] †

5

(7) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-[3-(tert.butyloxycarbonylamino)-propyloxy]-chinazolin

R_{r-Wert: 0.74 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 95:5:0.1)} Massenspektrum (ESI $^+$): m/z = 547, 549 [M+H] $^+$

10

15

Beispiel 8

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-chinazolin

Eine Lösung aus 4.55 g 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-trifluoracetyl-piperidin-4yloxy)-chinazolin-hydrochlorid in 35 ml Methanol wird mit 13 ml 3 N Natronlauge versetzt und ca. eine halbe Stunde bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit Wasser verdünnt und mit Essigester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird mit Diethylether verrührt, abgesaugt und getrocknet.

Ausbeute: 3.00 q (89 % der Theorie)

Rr-Wert: 0.48 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^{+}$): m/z = 373, 375 [M+H] $^{+}$

25

30

20

Analog Beispiel 8 werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-ethoxy-chinazolin Rr-Wert: 0.20 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^{+}$): m/z = 417, 419 [M+H] $^{+}$

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-(2-methoxy-ethoxy)chinazolin

R_r-Wert: 0.10 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 447, 449 [M+H] $^+$

5 Beispiel 9

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(ethylamino)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Hergestellt durch Umsetzung von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin mit Ethylisocyanat in Tetrahydrofuran bei Raumtemperatur. R_F-Wert: 0.53 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI⁺): m/z = 474, 476 [M+H]⁺

Analog Beispiel 9 werden folgende Verbindungen erhalten:

15

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(isopropylamino)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Schmelzpunkt: 236°C

Massenspektrum (ESI⁻): m/z = 486, 488 [M-H]⁻

20

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(phenylamino)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

R_f-Wert: 0.70 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 95:5:0.1) Massenspektrum (ESI⁺): m/z = 522, 524 [M+H]⁺

25

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(ethylamino)carbonyl]-N-methyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

R_FWert: 0.38 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^{+}$): m/z = 502, 504 [M+H] $^{+}$

30

Beispiel 10

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(dimethylamino)carbonylmethyl]-piperidin-4-yloxy}-chinazolin

PCT/EP03/03062 WO 03/082290 79

Hergestellt durch Umsetzung von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4yloxy)-chinazolin mit 2-Chlor-N,N-dimethylacetamid in Gegenwart von Kaliumcarbonat in N,N-Dimethylformamid bei Raumtemperatur.

R_r-Wert: 0.24 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 458, 460 [M+H] $^+$

Analog Beispiel 10 werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonylmethyl]-piperidin-4-yloxy}-chinazolin 10

R_FWert: 0.42 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI †): m/z = 500, 502 [M+H] †

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-aminocarbonylmethyl-piperidin-4-yloxy)-7-15 methoxy-chinazolin

Schmelzpunkt: 251°C

Massenspektrum (ESI $^+$): m/z = 460, 462 [M+H] $^+$

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(dimethylamino)carbonylmethyl]-piperidin-20 4-yloxy}-7-methoxy-chinazolin

Schmelzpunkt: 233°C

Massenspektrum (ESI †): m/z = 488, 490 [M+H] †

(4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonylmethyl]-piperidin-25 4-yloxy}-7-methoxy-chinazolin

Schmelzpunkt: 245°C

Massenspektrum (ESI $^+$): m/z = 530, 532 [M+H] $^+$

30 Beispiel 11

> 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(tetrahydropyran-4-yl)carbonyl]-piperidin-4yloxy}-7-methoxy-chinazolin

PCT/EP03/03062

Zu einem Gemisch aus 300 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin-dihydrochlorid, 82 mg Tetrahydropyran-4-carbonsäure und 0.54 ml Hüniqbase in 5 ml N.N-Dimethylformamid werden 90 mg 1-Hydroxy-1*H*-benzotriazol 2-(1*H*-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluoroborat und 250 ma gegeben. Das Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird es mit 25 ml Essigester versetzt und mit Wasser, 10%iger Kaliumcarbonat-Lösung und gesättigter Natriumchlorid-Lösung gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird mit wenig Essigester verrührt, abgesaugt und getrocknet.

Ausbeute: 250 mg (77 % der Theorie) 10

> R_FWert: 0.43 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI $^+$): m/z = 515, 517 [M+H] $^+$

Analog Beispiel 11 werden folgende Verbindungen erhalten:

15

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(tetrahydropyran-4-yl)carbonylamino]cyclohexan-1-yloxy}-7-methoxy-chinazolin

R_FWert: 0.44 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI $^+$): m/z = 529, 531 [M+H] $^+$

20

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(tetrahydropyran-4-yl)carbonyl]-Nmethyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin

RrWert: 0.31 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI $^{+}$): m/z = 543, 545 [M+H] $^{+}$

25

Beispiel 12

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[([1,4]oxazepan-4-yl)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Zu 900 mg 1-Methyl-3-[([1,4]oxazepan-4-yl)carbonyl]-3H-imidazol-1-ium-iodid in 10 ml 30 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-Methylenchlorid werden methoxy-chinazolin-dihydrochlorid und 1.05 ml Triethylamin gegeben. Die gelbliche Suspension wird ca. 24 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 50 ml Methylenchlorid versetzt und mit Wasser sowie

10%iger Zitronensäure extrahiert. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird über eine Kieselgelsäule mit Methylenchlorid/Methanol/konz. Ammoniak als Laufmittel chromatographiert. Das gewünschte Produkt wird mit Diethylether verrührt, abgesaugt und getrocknet.

Ausbeute: 800 mg (80 % der Theorie)

R_FWert: 0.30 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI †): m/z = 530, 532 [M+H] †

10

Analog Beispiel 12 werden folgende Verbindungen erhalten:

- (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(cis-2,6-dimethyl-morpholin-4-yl)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin
- R_f-Wert: 0.41 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1)

 Massenspektrum (ESI⁺): m/z = 544, 546 [M+H]⁺
 - (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(2-methyl-morpholin-4-yl)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin
- 20 R_f-Wert: 0.50 (Kieselgel, Essigester/Methanol/konz. wässriges Ammoniak = 90:10:1) Massenspektrum (ESI⁺): m/z = 530, 532 [M+H]⁺

Beispiel 13

4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methyl-piperidin-4-yloxy)-7-ethoxy-chinazolin Zu 175 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-ethoxy-chinazolin in 1 ml Tetrahydrofuran werden 35 µl 37 %ige wässrige Formalinlösung und 110 mg Natriumtriacetoxyborhydrid gegeben. Das Reaktionsgemisch wird ca. vier Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung werden 5 ml gesättigte Natriumhydrogen-carbonat-Lösung zugegeben und das Gemisch wird gründlich durchgerührt. Dann werden 20 ml Essigester zugegeben und die wässrige Phase wird abgetrennt. Die organische Phase wird mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird mit Diisopropylether verrührt, abgesaugt und getrocknet.

Ausbeute: 144 mg (80 % der Theorie)

RrWert: 0.80 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak =

82

60:10:1)

Massenspektrum (ESI $^{+}$): m/z = 431, 433 [M+H] $^{+}$

5

15

Analog Beispiel 13 werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methyl-piperidin-4-yloxy)-7(2-methoxy-ethoxy)-chinazolin

10 R_f-Wert: 0.85 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 60:10:1)

Massenspektrum (ESI $^{+}$): m/z = 461, 463 [M+H] $^{+}$

(2) 4-[(3-Ethinyl-phenyl)amino]-6-(1-methyl-piperidin-4-yloxy)-7-methoxy-chinazolin-hydrochlorid

RrWert: 0.26 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI⁺): m/z = 389 [M+H]⁺

20 (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-dimethylamino-cyclohexan-1-yloxy)-7-methoxy-chinazolin

RrWert: 0.80 (Aluminiumoxid, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI †): m/z = 445, 447 [M+H] †

25 Beispiel 14

30

4-[(3-Ethinyl-phenyl)amino]-6-[1-(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-7-methoxy-chinazolin

Ein Gemisch aus 3.00 g 4-[(3-Ethinyl-phenyl)amino]-6-hydroxy-7-methoxy-chinazolin, 4.50 g 1-(tert.-Butyloxycarbonyl)-4-(p-toluolsulfonyloxy)-piperidin und 2.90 g Kalium-carbonat in 30 ml N,N-Dimethylformamid wird zwei Tage bei 60 °C gerührt. Zur Aufarbeitung wird das Gemisch mit 200 ml Essigester versetzt und mit Wasser extrahiert. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird

WO 03/082290 PCT/EP03/03062

über eine Kieselgel-Säule mit Methylenchlorid/Methanol/konz. Ammoniak als Laufmittel gereinigt.

Ausbeute: 3.25 g (67 % der Theorie)

R-Wert: 0.25 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 95:5:1)

Massenspektrum (ESI $^+$): m/z = 475 [M+H] $^+$

Analog Beispiel 14 werden folgende Verbindungen erhalten:

(1) 4-[(3-Ethinyl-phenyl)amino]-6-(tetrahydropyran-4-yloxy]-7-methoxy-chinazolin 10 RrWert: 0.40 (Kieselgel, Methylenchlorid/Methanol/konz. wässriges Ammoniak = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 376 [M+H] $^+$

15 Beispiel 15

20

25

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[2-(tert.-butyloxycarbonylamino)-ethyl]-piperidin-4-yloxy}-7-methoxy-chinazolin

Ein Gemisch aus 410 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7methoxy-chinazolin-dihydrochlorid, 240 mg N-(tert.-Butyloxycarbonyl)-2-brom-ethylamin und 360 mg Kaliumcarbonat in 5 ml N,N-Dimethylformamid wird über Nacht bei Raumtemperatur gerührt. Dann werden nochmals 80 mg N-(tert.-Butyloxycarbonyl)-2brom-ethylamin zugesetzt und das Reaktionsgemisch wird weitere vier Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung wird es mit Wasser verdünnt und mit Essigester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird über eine Kieselgelsäule mit Essigester/Methanol (95:5 auf 90:1) als Laufmittel chromatographiert.

Ausbeute: 370 mg (79 % der Theorie)

Rr-Wert: 0.33 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ 30 Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^{-}$): m/z = 544, 546 [M-H] $^{-}$

Analog Beispiel 15 wird folgende Verbindung erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[2-(tert.-butyloxycarbonylamino)-ethyl]-piperidin-4-yloxy}-chinazolin

RrWert: 0.38 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/ Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI $^{+}$): m/z = 516, 518 [M+H] $^{+}$

5

Analog den vorstehend genannten Beispielen und anderen literaturbekannten Verfahren können auch folgende Verbindungen hergestellt werden:

Beispiel-Nr.	Struktur
(1)	
(2)	
(3)	
(4)	
(5)	

Beispiel-Nr.	Struktur
(6)	
(7)	
(8)	
(9)	ci Ton O
(10)	
(11)	CI NO
(12)	
(13)	

Beispiel-Nr.	Struktur
(14)	
(15)	
(16)	
(17)	
(18)	
(19)	
(20)	
(21)	

Beispiel-Nr.	Struktur
(22)	
(23)	
(24)	
(25)	
(26)	
(27)	CI C
(28)	
(29)	

Beispiel-Nr.	Struktur
(30)	
(31)	
(32)	
(33)	c To
(34)	
(35)	
(36)	
(37)	CI N N N N N N N N N N N N N N N N N N N

Beispiel-Nr.	Struktur
(38)	
(39)	
(40)	
(41)	
(42)	
(43)	
(44)	
(45)	c ₁ C

Beispiel-Nr.	Struktur
(46)	
(47)	
(48)	
(49)	
(50)	
(51)	
(52)	
(53)	

Beispiel-Nr.	Struktur
(54)	CI N N N N N N N N N N N N N N N N N N N
(55)	
(56)	
(57)	
(58)	
. (59)	
(60)	
(61)	

Beispiel-Nr.	Struktur
(62)	
(63)	
(64)	
(65)	
(66)	
(67)	
(68)	
(69)	

Beispiel-Nr.	Struktur
(70)	
(71)	
(72)	
(73)	
(74)	
(75)	
(76)	CI CI N N N
(77)	CI N N N N N N N N N N N N N N N N N N N

Beispiel-Nr.	Struktur
(78)	
(79)	
(80)	
(81)	c: I N
(82)	
(83)	
(84)	
(85)	

Beispiel-Nr.	Struktur
(86)	
(87)	
(88)	
(89)	
(90)	
(91)	
(92)	
(93)	CI C

Beispiel-Nr.	Struktur
(94)	
(95)	
(96)	
(97)	
(98)	
(99)	Br Co
(100)	

Beispiel-Nr.	Struktur
(101)	
(102)	
(103)	
(104)	
(105)	
(106)	
(107)	
(108)	

Beispiel-Nr.	Struktur
(109)	
(110)	
(111)	
(112)	
(113)	c, The second se
(114)	
(115)	
(116)	

Beispiel-Nr.	Struktur
(117)	
(118)	
(119)	
(120)	
(121)	
(122)	
(123)	

Beispiel-Nr.	Struktur
(124)	
(125)	
(126)	
(127)	
(128)	F CI N N N N N N N N N N N N N N N N N N
(129)	
(130)	

Beispiel-Nr.	Struktur
(131)	
(132)	G T N N N N N N N N N N N N N N N N N N
(133)	
(134)	F CI N N N N N N N N N N N N N N N N N N
(135)	
(136)	
(137)	F CI N N N N N N N N N N N N N N N N N N

Beispiel-Nr.	Struktur
(138)	
(139)	F CI N CI N N F F F
(140)	
(141)	
(142)	
(143)	F CI N N N N N N N N N N N N N N N N N N
(144)	CI N N N N N N N N N N N N N N N N N N N

Beispiel-Nr.	Struktur
(145)	
(146)	
(147)	
(148)	
(149)	F CI N N N N N N N N N N N N N N N N N N
(150)	
(151)	

Beispiel-Nr.	Struktur
(152)	
(153)	
(154)	
(156)	
(157)	F CI NH N N N N N N N N N N N N N N N N N N
(158)	F CI NH NH N N N N N N N N N N N N N N N N
(159)	F CI NH NH N N N N N N N N N N N N N N N N

Beispiel-Nr.	Struktur
(160)	
(161)	
(162)	
(163)	
(164)	
(165)	CI NH
(166)	

Beispiel-Nr.	Struktur
(167)	CI NH
(168)	CI N O O O O
(169)	CI N N N N N N N N N N N N N N N N N N N
(170)	
(171)	F CI N N N N N N N N N N N N N N N N N N
(172)	

Beispiel-Nr.	Struktur
(173)	
(174)	
(175)	F CI N N N N N N N N N N N N N N N N N N
(176)	
(178)	
(179)	F CI N CO N O O
(180)	

Beispiel-Nr.	Struktur
(181)	
(182)	
(183)	
(184)	
(185)	
(186)	F CI NH CI N

PCT/EP03/03062

Beispiel 16

Dragées mit 75 mg Wirksubstanz

5 Zusammensetzung:

1 Dragéekern enthält:

Wirksubstanz	75.0	mg
Calciumphosphat	93.0	mg
Maisstärke	35.5	mg
Polyvinylpyrrolidon	10.0	mg
Hydroxypropylmethylcellulose	15.0	mg
Magnesiumstearat	1.5	mg
	230.0	mg

15 Herstellung:

10

20

Die Wirksubstanz wird mit Calciumphosphat, Maisstärke, Polyvinylpyrrolidon, Hydroxypropylmethylcellulose und der Hälfte der angegebenen Menge Magnesiumstearat gemischt. Auf einer Tablettiermaschine werden Preßlinge mit einem Durchmesser von ca. 13 mm hergestellt, diese werden auf einer geeigneten Maschine durch ein Sieb mit 1.5 mm-Maschenweite gerieben und mit der restlichen Menge Magnesiumstearat vermischt. Dieses Granulat wird auf einer Tablettiermaschine zu Tabletten mit der gewünschten Form gepreßt.

Kerngewicht:

230 mg

25 Stempel:

9 mm, gewölbt

Die so hergestellten Dragéekerne werden mit einem Film überzogen, der im wesentlichen aus Hydroxypropylmethylcellulose besteht. Die fertigen Filmdragées werden mit Bienenwachs geglänzt.

30

Dragéegewicht: 245 mg.

Beispiel 17

Tabletten mit 100 mg Wirksubstanz

Zusammensetzung:

	1	Tablette enthält:	
5		Wirksubstanz	100.0 mg
		Milchzucker	80.0 mg
		Maisstärke	34.0 mg
		Polyvinylpyrrolidon	4.0 mg
		Magnesiumstearat	2.0 mg
10			220.0 mg

Herstellungverfahren:

Wirkstoff, Milchzucker und Stärke werden gemischt und mit einer wäßrigen Lösung des Polyvinylpyrrolidons gleichmäßig befeuchtet. Nach Siebung der feuchten Masse (2.0 mm-Maschenweite) und Trocknen im Hordentrockenschrank bei 50°C wird erneut gesiebt (1.5 mm-Maschenweite) und das Schmiermittel zugemischt. Die preßfertige Mischung wird zu Tabletten verarbeitet.

Tablettengewicht: 220 mg

Durchmesser: 10 mr

10 mm, biplan mit beidseitiger Facette

und einseitiger Teilkerbe.

Beispiel 18

15

20

25

Tabletten mit 150 mg Wirksubstanz

Zusammensetzung:

7	i ablette enthalt:
	Wirksuhstanz

	Wirksubstanz	150.0	mg
30	Milchzucker pulv.	89.0	mg
	Maisstärke	40.0	mg
	Kolloide Kieselgelsäure	10.0	mg
	Polyvinylpyrrolidon	10.0	mg
	Magnesiumstearat	1.0	mg

111

300.0 mg

Herstellung:

Die mit Milchzucker, Maisstärke und Kieselsäure gemischte Wirksubstanz wird mit einer 20%igen wäßrigen Polyvinylpyrrolidonlösung befeuchtet und durch ein Sieb mit 1.5 mm-Maschenweite geschlagen.

Das bei 45°C getrocknete Granulat wird nochmals durch dasselbe Sieb gerieben und mit der angegebenen Menge Magnesiumstearat gemischt. Aus der Mischung werden Tabletten gepreßt.

10

Tablettengewicht: 300 mg

Stempel: 10 mm, flach

Beispiel 19

15

Hartgelatine-Kapseln mit 150 mg Wirksubstanz

Zusammensetzung:

1 Kapsel enthält:

20 Wirkstoff

stoff 150.0 mg

Maisstärke getr. ca. 180.0 mg

Milchzucker pulv. ca. 87.0 mg

Magnesiumstearat 3.0 mg

ca. 420.0 mg

25

Herstellung:

Der Wirkstoff wird mit den Hilfsstoffen vermengt, durch ein Sieb von 0.75 mm-Maschenweite gegeben und in einem geeigneten Gerät homogen gemischt.

Die Endmischung wird in Hartgelatine-Kapseln der Größe 1 abgefüllt.

30 Kapselfüllung: ca. 320 mg

Kapselhülle: Hartgelatine-Kapsel Größe 1.

Beispiel 20

Suppositorien mit 150 mg Wirksubstanz

Zusammensetzung:

1 Zäpfchen enthält:

Wirkstoff 150.0 mg
Polyäthylenglykol 1500 550.0 mg
Polyäthylenglykol 6000 460.0 mg
Polyoxyäthylensorbitanmonostearat 840.0 mg
2000.0 mg

10

5

Herstellung:

Nach dem Aufschmelzen der Suppositorienmasse wird der Wirkstoff darin homogen verteilt und die Schmelze in vorgekühlte Formen gegossen.

15 Beispiel 21

Suspension mit 50 mg Wirksubstanz

Zusammensetzung:

20 100 ml Suspension enthalten:

Wirkstoff	1.00	g
Carboxymethylcellulose-Na-Salz	0.10	g
p-Hydroxybenzoesäuremethylester	0.05	g
p-Hydroxybenzoesäurepropylester	0.01	g
Rohrzucker	10.00	g
Glycerin	5.00	g
Sorbitlösung 70%ig	20.00	g
Aroma	0.30	g
Wasser dest.ad 100.00 ml		

30

25

Herstellung:

Destilliertes Wasser wird auf 70°C erhitzt. Hierin wird unter Rühren p-Hydroxybenzoesäuremethylester und -propylester sowie Glycerin und Carboxymethylcellulose-Natriumsalz gelöst. Es wird auf Raumtemperatur abgekühlt und unter Rühren der

Wirkstoff zugegeben und homogen dispergiert. Nach Zugabe und Lösen des Zuckers, der Sorbitlösung und des Aromas wird die Suspension zur Entlüftung unter Rühren evakuiert.

5 ml Suspension enthalten 50 mg Wirkstoff.

Beispiel 22

Ampullen mit 10 mg Wirksubstanz

10

5

Zusammensetzung:

Wirkstoff

10.0 mg

0.01 n Salzsäure s.q.

Aqua bidest ad

2.0 ml

15

Herstellung:

Die Wirksubstanz wird in der erforderlichen Menge 0.01 n HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 2 ml Ampullen abgefüllt.

20 Beispiel 23

Ampullen mit 50 mg Wirksubstanz

Zusammensetzung:

25

Wirkstoff

50.0 mg

0.01 n Salzsäure s.q.

Aqua bidest

ad 10.0 ml

Herstellung:

Die Wirksubstanz wird in der erforderlichen Menge 0.01 n HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 10 ml Ampullen abgefüllt.

Beispiel 24

Kapseln zur Pulverinhalation mit 5 mg Wirksubstanz

1 Kapsel enthält:

5 Wirksubstanz

5.0 mg

Lactose für Inhalationszwecke

15.0 mg

20.0 mg

Herstellung:

Die Wirksubstanz wird mit Lactose für Inhalationszwecke gemischt. Die Mischung wird auf einer Kapselmaschine in Kapseln (Gewicht der Leerkapsel ca. 50 mg) abgefüllt.

Kapselgewicht: 70.0 mg

Kapselgröße: 3

15

Beispiel 25

Inhalationslösung für Handvernebler mit 2.5 mg Wirksubstanz

20 1 Hub enthält:

Wirksubstanz

2.500 mg

Benzalkoniumchlorid

0.001 mg

1N-Salzsäure q.s.

25

30

Ethanol/Wasser (50/50)

ad

15.000 mg

Herstellung:

Die Wirksubstanz und Benzalkoniumchlorid werden in Ethanol/Wasser (50/50) gelöst. Der pH-Wert der Lösung wird mit 1N-Salzsäure eingestellt. Die eingestellte Lösung wird filtriert und in für den Handvernebler geeignete Behälter (Kartuschen) abgefüllt.

Füllmasse des Behälters: 4.5 g

Patentansprüche

1. Bicyclische Heterocyclen der allgemeinen Formel

$$R^{a}$$
 N
 R^{b}
 R^{c}
 R^{d}
 R^{d}
 R^{d}

5

in denen

R^a ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe,

10

R^b eine Phenyl- oder 1-Phenylethylgruppe, in denen der Phenylkern jeweils durch die Reste R¹ bis R³ substituiert ist, wobei

15

 ${\sf R}^1$ und ${\sf R}^2$, die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom,

eine C_{1-4} -Alkyl-, Hydroxy-, C_{1-4} -Alkoxy-, C_{2-3} -Alkenyl- oder C_{2-3} -Alkinylgruppe,

eine Aryl-, Aryloxy-, Arylmethyl- oder Arylmethoxygruppe,

20

eine Heteroaryl-, Heteroaryloxy-, Heteroarylmethyl- oder Heteroarylmethoxy-gruppe,

25

eine durch 1 bis 3 Fluoratome substituierte Methyl- oder Methoxygruppe oder

eine Cyano-, Nitro- oder Aminogruppe, und

R³ ein Wasserstoff-, Fluor-, Chlor- oder Bromatom,

30

eine Methyl- oder Trifluormethylgruppe darstellen,

R^c eine Cyclobutyl-, Cyclopentyl- oder Cyclohexylgruppe, die jeweils durch eine Gruppe R⁴-N-R⁵ substituiert ist, wobei

5

R⁴ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe und

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

10

eine Aminocarbonyl- C_{1-3} -alkyl-, C_{1-3} -Alkylaminocarbonyl- C_{1-3} -alkyl-, Di-(C_{1-3} -alkyl)aminocarbonyl- C_{1-3} -alkyl-, Pyrrolidin-1-ylcarbonyl- C_{1-3} -alkyl-, Piperidin-1-ylcarbonyl- C_{1-3} -alkyl-, Morpholin-4-ylcarbonyl- C_{1-3} -alkyl-, Homomorpholin-4-ylcarbonyl- C_{1-3} -alkyl-, Piperazin-1-ylcarbonyl- C_{1-3} -alkyl-, Piperazin-1-ylcarbonyl- C_{1-3} -alkyl-, Homopiperazin-1-ylcarbonyl- C_{1-3} -alkyl-, Homopiperazin-1-ylcarbonyl- C_{1-3} -alkyl-homopiperazin-1-ylcarbonyl- C_{1-3} -alkyl-homopiperazin-1-ylcarbonyl- C_{1-3} -alkylgruppe,

15

20

eine Hydroxy- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkyloxy- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot4}$ -Alkyloxy-carbonylamino- $C_{2\cdot4}$ -alkyl-, Amino- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkylamino- $C_{2\cdot4}$ -alkyl-, Di-($C_{1\cdot3}$ -alkyl)amino- $C_{2\cdot4}$ -alkyl-, Aminocarbonylamino- $C_{2\cdot4}$ -alkyl-, Aminocarbonylamino- $C_{2\cdot4}$ -alkyl-, Di-($C_{1\cdot3}$ -alkyl)amino-carbonylamino- $C_{2\cdot4}$ -alkyl-, Di-($C_{1\cdot3}$ -alkyl)amino-carbonylamino- $C_{2\cdot4}$ -alkyl-, Pyrrolidin-1-ylcarbonylamino- $C_{2\cdot4}$ -alkyl-, Piperidin-1-ylcarbonylamino- $C_{2\cdot4}$ -alkyl-, Morpholin-4-ylcarbonylamino- $C_{2\cdot4}$ -alkyl-, $C_{1\cdot3}$ -Alkylsulfonyl- $C_{2\cdot4}$ -alkyl- oder eine $C_{1\cdot3}$ -Alkylsulfonylamino- $C_{2\cdot4}$ -alkylgruppe,

25

eine (2-Oxo-pyrrolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxopiperidin-1-yl)- C_{2-4} -alkyl-, (3-Oxomorpholin-4-yl)- C_{2-4} -alkyl-, (2-Oxo-imidazolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxo-3- C_{1-3} -alkyl-imidazolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxo-hexahydropyrimidin-1-yl)- C_{2-4} -alkyl- oder eine (2-Oxo-3- C_{1-3} -alkyl-hexahydropyrimidin-1-yl)- C_{2-4} -alkyl-gruppe,

30

eine C_{1-4} -Alkylsulfonyl-, Chlor- C_{1-4} -alkylsulfonyl-, Brom- C_{1-4} -alkylsulfonyl-, Amino- C_{1-4} -alkylsulfonyl-, C_{1-3} -Alkylamino- C_{1-4} -alkylsulfonyl-, (Pyrrolidin-1-yl)- C_{1-4} -alkylsulfonyl-, (Piperidin-1-yl)- C_{1-4} -alkylsulfonyl-,

sulfonyl-, (Homopiperidin-1-yl)- C_{1-4} -alkylsulfonyl-, (Morpholin-4-yl)- C_{1-4} -alkylsulfonyl-, (Piperazin-1-yl)- C_{1-4} -alkylsulfonyl-, (Piperazin-1-yl)- C_{1-4} -alkylsulfonyl-, (Homopiperazin-1-yl)- C_{1-4} -alkylsulfonyl-, (Homopiperazin-1-yl)- C_{1-4} -alkylsulfonyl- oder eine (4- C_{1-3} -Alkyl-homopiperazin-1-yl)- C_{1-4} -alkylsulfonyl-gruppe,

eine C₁₋₄-Alkyloxycarbonylgruppe,

5

10

15

20

25

30

eine Formyl-, C_{1-4} -Alkyl-carbonyl-, C_{1-3} -Alkyloxy- C_{1-4} -alkyl-carbonyl-, Tetrahydrofuranylcarbonyl-, Tetrahydropyranylcarbonyl-, Amino- C_{1-4} -alkyl-carbonyl-, Di-(C_{1-3} -alkyl)amino- C_{1-4} -alkyl-carbonyl-, Di-(C_{1-3} -alkyl)amino- C_{1-4} -alkyl-carbonyl-, Piperidin-1-yl- C_{1-4} -alkyl-carbonyl-, (Homopiperidin-1-yl)- C_{1-4} -alkyl-carbonyl-, Morpholin-4-yl- C_{1-4} -alkyl-carbonyl-, (Piperazin-1-yl)- C_{1-4} -alkyl-carbonyl-, (Homopiperazin-1-yl)- C_{1-4} -alkyl-carbonyl-, (Homopiperazin-1-yl)- C_{1-4} -alkyl-carbonyl-, (Homopiperazin-1-yl)- C_{1-4} -alkyl-carbonyl-, oder eine C_{1-3} -Alkylsulfonyl- C_{1-4} -alkyl-carbonylgruppe, oder

eine Cyano-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl-, Di-(C₁₋₃-alkyl)amino-(C₁₋₃-Alkyloxy-C₂₋₄-alkyl)aminocarbonyl-, carbonyl-. N-(C₁₋₃-Alkyl)-N-(C₁₋₃alkyloxy-C₂₋₄-alkyl)aminocarbonyl-, Arylaminocarbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1-ylcarbonyl-, Homopiperidin-1-ylcarbonyl-, Morpholin-4-ylcarbonyl-, Homomorpholin-4-ylcarbonyl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-ylcarbonyl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-ylcarbonyl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3vicarbonyl-. Piperazin-1-ylcarbonyl-, 4-C₁₋₃-Alkyl-piperazin-1-ylcarbonyl-. Homopiperazin-1-ylcarbonyl-, 4-C₁₋₃-Alkyl-homopiperazin-1-ylcarbonyl-, Aminosulfonyl-, C₁₋₃-Alkyl-aminosulfonyl-, Di-(C₁₋₃-alkyl)amino-sulfonyl-, Pyrrolidin-1-yl-sulfonyl-, Piperidin-1-ylsulfonyl-, Homopiperidin-1-ylsulfonyl-, Morpholin-4-ylsulfonyl-, Homomorpholin-4-ylsulfonyl-, Piperazin-1-ylsulfonyl-, 4-C₁₋₃-Alkyl-piperazin-1-ylsulfonyl-, Homopiperazin-1-ylsulfonyl- oder eine 4-C₁₋₃-Alkyl-homopiperazin-1-ylsulfonylgruppe darstellen,

eine Cyclobutyl-, Cyclopentyl- oder Cyclohexylgruppe, die jeweils durch eine Gruppe R⁶ substituiert ist, wobei

5

15

25

 R^6 eine 2-Oxo-pyrrolidin-1-yl-, 2-Oxopiperidin-1-yl-, 3-Oxo-morpholin-4-yl-, 2-Oxo-imidazolidin-1-yl-, 2-Oxo-3- C_{1-3} -alkyl-imidazolidin-1-yl-, 2-Oxo-hexahydropyrimidin-1-yl- oder eine 2-Oxo-3- C_{1-3} -alkyl-hexahydropyrimidin-1-ylgruppe darstellt,

eine Azetidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

eine Piperidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

oder eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-yl- 20 gruppe,

R^d ein Wasserstoffatom oder ein Fluor-, Chlor- oder Bromatom,

eine Hydroxygruppe,

eine C₁₋₄-Alkyloxygruppe,

eine durch 1 bis 3 Fluoratome substituierte Methoxygruppe,

30 eine durch 1 bis 5 Fluoratome substituierte Ethyloxygruppe,

eine C₂₋₄-Alkyloxygruppe, die durch einen Rest R⁶ oder R⁷ substituiert ist, wobei

R⁶ wie vorstehend erwähnt definiert ist und

 R^7 eine Hydroxy-, C_{1-3} -Alkyloxy-, C_{3-6} -Cycloalkyloxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Bis-(2-methoxyethyl)-amino-, Pyrrolidin-1-yl-, Piperidin-1-yl-, Homopiperidin-1-yl-, Morpholin-4-yl-, Homomorpholin-4-yl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-yl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-yl-, 8-Oxa-3-aza-bicyclo-[3.2.1]oct-3-yl-, Piperazin-1-yl-, 4- C_{1-3} -Alkyl-piperazin-1-yl-, Homopiperazin-1-yl-oder C_{1-3} -Alkyl-homopiperazin-1-ylgruppe, oder

eine Formylamino-, C_{1-4} -Alkylcarbonylamino-, C_{1-3} -Alkyloxy- C_{1-3} -alkylcarbonylamino-, C_{1-4} -Alkyloxycarbonylamino-, Aminocarbonylamino-, C_{1-3} -Alkylaminocarbonylamino-, Di-(C_{1-3} -alkyl)aminocarbonylamino-, Pyrrolidin-1-ylcarbonylamino-, Piperidin-1-ylcarbonylamino-, Piperazin-1-ylcarbonylamino-, A- C_{1-3} -Alkyl-piperazin-1-ylcarbonylamino- Morpholin-4-ylcarbonylamino- oder eine C_{1-4} -Alkylsulfonylamino-Gruppe darstellt,

15

10

5

eine C₃₋₇-Cycloalkyloxy- oder C₃₋₇-Cycloalkyl-C₁₋₄-alkyloxygruppe,

eine Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy- oder Tetrahydropyran-4-yloxy-gruppe,

20

eine Tetrahydrofuranyl-C₁₋₄-alkyloxy- oder Tetrahydropyranyl-C₁₋₄-alkyloxygruppe,

eine C₁₋₄-Alkoxygruppe, die durch eine in 1-Stellung durch den Rest R⁸ substituierte Pyrrolidinyl-, Piperidinyl- oder Homopiperidinylgruppe substituiert ist, wobei

25

30

R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

oder eine C₁₋₄-Alkoxygruppe, die durch eine in 4-Stellung durch den Rest R⁸ substituierte Morpholinylgruppe substituiert ist, wobei R⁸ wie vorstehend erwähnt definiert ist, und

X eine durch eine Cyanogruppe substituierte Methingruppe oder ein Stickstoffatom bedeuten,

wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen jeweils eine Phenylgruppe zu verstehen ist, die durch R⁹ mono- oder disubstituiert ist, wobei die Substituenten gleich oder verschieden sein können und

R⁹ ein Wasserstoffatom, ein Fluor-, Chlor-, Brom- oder Iodatom oder eine C₁₋₃-Alkyl-, Hydroxy-, C₁₋₃-Alkyloxy-, Difluormethyl- Trifluormethyl-, Difluormethoxy-, Trifluormethoxy- oder Cyanogruppe darstellt,

unter den bei der Definition der vorstehend genannten Reste erwähnten Heteroarylgruppen eine Pyridyl-, Pyridazinyl-, Pyrimidinyl- oder Pyrazinylgruppe zu verstehen
ist, wobei die vorstehend erwähnten Heteroarylgruppen jeweils durch den Rest R⁹
mono- oder disubstituiert sind, wobei die Substituenten gleich oder verschieden sein
können und R⁹ wie vorstehend erwähnt definiert ist, und

die vorstehend erwähnten Pyrrolidinyl-, Piperazinyl- und Morpholinylgruppen jeweils durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein können, und

soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen gerad-20 kettig oder verzweigt sein können,

mit der Maßgabe, daß die Verbindung 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-hydroxy-chinazolin ausgeschlossen ist,

- deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.
 - 2. Bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 1, in denen

R^a ein Wasserstoffatom,

30

10

R^b eine durch die Reste R¹ bis R³ substituierte Phenylgruppe, wobei

R¹ ein Wasserstoff-, Fluor-, Chlor- oder Bromatom,

eine Methyl-, Trifluormethyl- oder Ethinylgruppe,

eine Phenyloxy- oder Phenylmethoxygruppe, wobei der Phenylteil der vorstehend erwähnten Gruppen gegebenenfalls durch ein Fluor- oder Chloratom substituiert ist, oder

eine Pyridyloxy- oder Pyridinylmethoxygruppe, wobei der Pyridinylteil der vorstehend erwähnten Gruppen gegebenenfalls durch eine Methyl- oder Trifluormethylgruppe substituiert ist,

10

25

30

5

R² ein Wasserstoff-, Fluor- oder Chloratom oder eine Methylgruppe und

R³ ein Wasserstoffatom darstellen,

R^c eine Cyclopentylgruppe, die in 3-Stellung durch eine Gruppe R⁴-N-R⁵ substituiert ist, wobei

R⁴ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe und

 R^5 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe,

eine Aminocarbonyl- C_{1-3} -alkyl-, C_{1-3} -Alkylaminocarbonyl- C_{1-3} -alkyl-, Di-(C_{1-3} -alkyl)aminocarbonyl- C_{1-3} -alkyl-, Pyrrolidin-1-ylcarbonyl- C_{1-3} -alkyl-, Piperidin-1-ylcarbonyl- C_{1-3} -alkyl-, Piperazin-1-ylcarbonyl- C_{1-3} -alkyl- oder Morpholin-4-ylcarbonyl- C_{1-3} -alkylgruppe,

eine Hydroxy- C_{2-4} -alkyl-, C_{1-3} -Alkyloxy- C_{2-4} -alkyl-, C_{1-4} -Alkyloxy-carbonylamino- C_{2-4} -alkyl-, Amino- C_{2-4} -alkyl-, C_{1-3} -Alkylamino- C_{2-4} -alkyl-, Di-(C_{1-3} -alkyl)amino- C_{2-4} -alkyl-, Aminocarbonylamino- C_{2-4} -alkyl-, Aminocarbonylamino- C_{2-4} -alkyl-, C_{1-3} -Alkylaminocarbonylamino- C_{2-4} -alkyl-, Di-(C_{1-3} -alkyl)amino-carbonylamino- C_{2-4} -alkyl-, Morpholin-4-ylcarbonylamino- C_{2-4} -alkyl-, C_{1-3} -Alkylsulfonyl- C_{2-4} -alkyl-oder C_{1-3} -Alkylsulfonylamino- C_{2-4} -alkyl-, C_{1-3} -Alkyl-, C

eine (2-Oxo-pyrrolidin-1-yl)-C_{2.4}-alkyl-, (2-Oxopiperidin-1-yl)-C_{2.4}-alkyl-, (3-Oxomorpholin-4-yl)- C_{2-4} -alkyl-, (2-Oxo-imidazolidin-1-yl)- C_{2-4} -alkyl-, (2-Oxo-3-methylimidazolidin-1-yl)-C_{2.4}-alkyl- (2-Oxo-hexahydropyrimidin-1-yl)-C_{2.4}-alkyl- oder (2-Oxo-3-methyl-hexahydropyrimidin-1-yl)-C₂₋₄-alkylgruppe,

5

eine C₁₋₃-Alkylsulfonyl-, Chlor-C₂₋₄-alkylsulfonyl-, Brom-C₂₋₄-alkylsulfonyl-, Amino-C₂₋₄-alkylsulfonyl-, C₁₋₃-Alkylamino-C₂₋₄-alkylsulfonyl-, Di-(C₁₋₃-alkyl)amino-C24-alkylsulfonyl-, (Pyrrolidin-1-yl)-C24-alkylsulfonyl-, (Piperidin-1-yl)-C24-alkylsulfonyl- oder (Morpholin-4-yl)-C2-4-alkylsulfonylgruppe,

10

eine C₁₋₄-Alkyloxycarbonylgruppe,

15

C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkyloxy-C₁₋₃-alkyl-carbonyl-, eine Formyl-. Tetrahydropyranylcarbonyl-, Tetrahydrofuranylcarbonyl-, Amino-C₁₋₃-alkylcarbonyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-carbonyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkylcarbonyl-, Pyrrolidin-1-yl-C₁₋₃-alkyl-carbonyl-, Piperidin-1-yl-C₁₋₃-alkyl-carbonyl-. Piperazin-1-yl-C₁₋₃-alkyl-carbonyl-, 4-C₁₋₃-Alkyl-piperazin-1-yl-C₁₋₃-alkyl-carbonyl-, eine C₁₋₃-Alkylsulfonyl-C₁₋₃-alkyl-Morpholin-4-yl-C₁₋₃-alkyl-carbonyloder carbonylgruppe, oder

20

25

eine Cyano-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl-, Di-(C₁₋₃-alkyl)amino-(C₁₋₃-Alkyloxy-C₂₋₄-alkyl)aminocarbonyl-, N-(C₁₋₃-Alkyl)-Ncarbonyl-. (C₁₋₃-Alkyloxy-C₂₋₄-alkyl)aminocarbonyl-, Phenylaminocarbonyl-, Pyrrolidin-1ylcarbonyl-, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl-, C₁₋₃-Alkyl-morpholin-Di-(C₁₋₃-alkyl)morpholin-4-ylcarbonyl-, Homomorpholin-4-4-vlcarbonyl-. ylcarbonyl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-ylcarbonyl-, 3-Oxa-8-aza-8-Oxa-3-aza-bicyclo[3.2.1]oct-3-ylcarbonyl-, bicyclo[3.2.1]oct-8-ylcarbonyl-, Piperazin-1-ylcarbonyl-, $4-(C_{1-3}-alkyl)$ -piperazin-1-ylcarbonyl-, Aminosulfonyl-, C₁₋₃-Alkyl-aminosulfonyl-, Di-(C₁₋₃-alkyl)amino-sulfonyl-, Pyrrolidin-1-yl-sulfonyl-, Piperidin-1-ylsulfonyl- oder eine Morpholin-4-ylsulfonylgruppe darstellen.

30

eine Cyclopentylgruppe, die in 3-Stellung durch eine Gruppe R⁶ substituiert ist, wobei

R⁶ eine 2-Oxo-pyrrolidin-1-yl-, 2-Oxopiperidin-1-yl-, 3-Oxo-morpholin-4-yl-, 2-Oxo-imidazolidin-1-yl-, 2-Oxo-3-methyl-imidazolidin-1-yl-, 2-Oxo-hexahydropyrimidin-1-yl- oder eine 2-Oxo-3-methyl-hexahydropyrimidin-1-ylgruppe darstellt,

- eine Cyclohexylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Gruppe R⁴-N-R⁵ substituiert ist, wobei R⁴ und R⁵ wie vorstehend erwähnt definiert sind,
 - eine Cyclohexylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Gruppe R⁶ substituiert ist, wobei R⁶ wie vorstehend erwähnt definiert ist,
 - eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,
- eine Piperidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵
 wie vorstehend erwähnt definiert ist,
 - eine Piperidin-4-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist, oder
- 20 eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe,
 - R^d ein Wasserstoffatom,

10

25

30

- eine C₁₋₃-Alkyloxygruppe,
- eine Methoxygruppe, die durch ein bis drei Fluoratome substituiert ist,
- eine Ethyloxygruppe, die in 2-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ wie vorstehend erwähnt definiert ist und
 - R^7 eine Hydroxy-, C_{1-3} -Alkyloxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Bis-(2-methoxyethyl)-amino-, Pyrrolidin-1-yl-, Piperidin-1-yl-, Morpholin-4-yl-, Homomorpholin-4-yl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-yl-, 3-Oxa-8-aza-bicyclo-

[3.2.1]oct-8-vl-, 8-Oxa-3-aza-bicvclo[3.2.1]oct-3-yl-, Piperazin-1-yl- oder eine 4-C₁₋₃-Alkyl-piperazin-1-ylgruppe, oder

C₁₋₄-Alkylcarbonylamino-, C₁₋₃-Alkyloxy-C₁₋₃-alkyleine Formylamino-, C₁₋₄-Alkyloxycarbonylamino-, Aminocarbonylamino-, carbonylamino-, Alkylaminocarbonylamino-, Di-(C₁₋₃-alkyl)aminocarbonylamino-, Pyrrolidin-1ylcarbonylamino-, Piperidin-1-ylcarbonylamino-, Piperazin-1-ylcarbonylamino-, 4-C₁₋₃-Alkyl-piperazin-1-ylcarbonylamino- Morpholin-4-ylcarbonylaminoeine C₁₋₄-Alkylsulfonylamino-Gruppe darstellt,

10

5

eine Propyloxygruppe, die in 3-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ und R⁷ wie vorstehend erwähnt definiert sind, oder

eine Butyloxygruppe, die in 4-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ und R⁷ wie vorstehend erwähnt definiert sind, und 15

X ein Stickstoffatom bedeuten,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen geradkettig oder verzweigt sein können,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

3. Bicyclische Heterocyclen der allgemeinen Formel 1 gemäß Anspruch 1, in denen

25

20

R^a ein Wasserstoffatom,

R^b eine 3-Ethinylphenyl-, 3-Bromphenyl-, 3,4-Difluorphenyl- oder 3-Chlor-4-fluor-phenylgruppe,

30

eine 3-Chlor-4-benzyloxy-phenyl-, 3-Chlor-4-[(3-fluor-benzyl)oxy]-phenyl-, 4-(Pyridin-3-4-[(6-Methyl-pyridin-3-yl)oxy]-phenyl-, 3-Methyl-4-(pyridin-3-yloxy)vloxy)-phenyl-. phenyl-, 3-Methyl-4-[(6-methyl-pyridin-3-yl)oxy]-phenyl-, 3-Chlor-4-(pyridin-3-yloxy)phenyl- oder 3-Chlor-4-[(6-methyl-pyridin-3-yl)oxy]-phenyl-Gruppe,

5

10

15

20

25

30

R^c eine Cyclohexylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Gruppe R⁴-N-R⁵ substituiert ist, wobei

R⁴ ein Wasserstoffatom, eine Methyl- oder Ethylgruppe und

R⁵ ein Wasserstoffatom, eine Methyl-, Aminocarbonylmethyl-, Methylaminocarbonylmethyl-, Dimethylaminocarbonylmethyl-, Pyrrolidin-1-ylcarbonylmethyl-, Piperidin-1-ylcarbonylmethyl-, 4-Methylpiperazin-1-ylcarbonylmethyl-, Morpholin-4-ylcarbonylmethyl-, 2-(Morpholin-4-ylcarbonyl)ethyl- oder 3-(Morpholin-4-yl-carbonyl)propylgruppe,

eine Ethyl-, Propyl-, 2-Hydroxyethyl-, 3-Hydroxypropyl-, 2-Methoxyethyl-, 2-Aminoethyl-. 3-2-(Butyloxycarbonylamino)-ethyl-, Methoxypropyl-, 2-(Acetylamino)ethyl-, 3-(Acetylamino)propyl-, 2-Aminopropyl-, 3-(Ethylcarbonylamino)propyl-, 2-(Ethylcarbonylamino)ethyl-, 2-(Propylcarbonylamino)ethyl-, 3-(Propylcarbonylamino)propyl-, 3-(Ethylaminocarbonylamino)propyl-, 2-(Ethylaminocarbonylamino)ethyl-. (Dimethylaminocarbonylamino)ethyl-, 3-(Dimethylaminocarbonylamino)propyl-, 2-(Morpholin-4-ylcarbonylamino)ethyl-, 3-(Morpholin-4-ylcarbonylamino)propyl-, 2-(Methylsulfonyl)ethyl-, 3-(Methylsulfonyl)propyl-, 2-(Methylsulfonylamino)ethyloder eine 3-(Methylsulfonylamino)propylgruppe,

eine 2-(2-Oxo-pyrrolidin-1-yl)ethyl-, 2-(2-Oxopiperidin-1-yl)ethyl-, 2-(3-Oxomorpholin-4-yl)ethyl-, 2-(2-Oxo-imidazolidin-1-yl)ethyl-, 2-(2-Oxo-3-methyl-imidazolidin-1-yl)ethyl-, 2-(2-Oxo-hexahydropyrimidin-1-yl)ethyl- oder eine 2-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)ethylgruppe,

eine 3-(2-Oxo-pyrrolidin-1-yl)propyl-, 3-(2-Oxopiperidin-1-yl)propyl-, 3-(3-Oxomorpholin-4-yl)propyl-, 3-(2-Oxo-imidazolidin-1-yl)propyl-, 3-(2-Oxo-3-methyl-imidazolidin-1-yl)propyl-, 3-(2-Oxo-hexahydropyrimidin-1-yl)propyl- oder eine 3-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)propylgruppe,

eine Methylsulfonyl-, Ethylsulfonyl-, 3-Chlorpropylsulfonyl-, 2-(Morpholin-4-yl)-ethylsulfonyl- oder eine 3-(Morpholin-4-yl)-propylsulfonylgruppe,

eine Propyloxycarbonyl- oder Butyloxycarbonylgruppe,

5

eine Formyl-, Acetyl-, Ethylcarbonyl-, Propylcarbonyl-, Methoxyacetyl-, (2-Methoxyethyl)carbonyl-, (3-Methoxypropyl)carbonyl-, Tetrahydrofuran-2-ylcarbonyl-, Tetrahydropyran-4-ylcarbonyl-, Aminoacetyl-, Methylaminoacetyl-, Dimethylaminoacetyl-, Morpholin-4-ylacetyl-, [2-(Morpholin-4-yl)ethyl]carbonyl-, [3-(Morpholin-4-yl)propyl]carbonyl- oder eine Methylsulfonylacetylgruppe,

10

15

eine Cyano-, Aminocarbonyl-, Methylaminocarbonyl-, Dimethylaminocarbonyl-, Propylaminocarbonyl-. Ethylaminocarbonyl-, Diethylaminocarbonyl-, (2-Methoxyethyl)aminocarbonyl-, N-Methyl-N-(2-methoxyethyl)-aminocarbonyl-, N-Methyl-N-(3-methoxypropyl)-(3-Methoxypropyl)aminocarbonyl-, aminocarbonyl-, Phenylaminocarbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1-Morpholin-4-ylcarbonyl-, 2-Methylmorpholin-4-ylcarbonyl-, vlcarbonvl-. Dimethylmorpholin-4-ylcarbonyl-, Homomorpholin-4-ylcarbonyl-, 2-Oxa-5-azabicyclo[2.2.1]hept-5-ylcarbonyl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-ylcarbonyl-, 8-4-Methylpiperazin-1-ylcarbonyl-, Oxa-3-aza-bicyclo[3.2.1]oct-3-ylcarbonyl-, Dimethylaminosulfonyloder eine Methylaminosulfonyl-, Aminosulfonyl-. Morpholin-4-ylsulfonylgruppe darstellen,

20

25

eine Cyclohexylgruppe, die in 3-Stellung oder in 4-Stellung durch eine Gruppe R⁶ substituiert ist, wobei

R⁶ eine 2-Oxo-pyrrolidin-1-yl-, 2-Oxopiperidin-1-yl-, 3-Oxo-morpholin-4-yl-, 2-Oxo-imidazolidin-1-yl-, 2-Oxo-3-methyl-imidazolidin-1-yl-, 2-Oxo-hexahydropyrimidin-1-yl- oder eine 2-Oxo-3-methyl-hexahydropyrimidin-1-ylgruppe darstellt,

30

eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist,

eine Piperidin-3-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei

R⁵ wie vorstehend erwähnt definiert ist.

eine Piperidin-4-ylgruppe, die in 1-Stellung durch den Rest R⁵ substituiert ist, wobei R⁵ wie vorstehend erwähnt definiert ist, oder

5

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe,

R^d ein Wasserstoffatom,

10 eine Methoxy-, Difluormethoxy- oder Ethyloxygruppe,

eine Ethyloxygruppe, die in 2-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ wie vorstehend erwähnt definiert ist und

15

R⁷ eine Hydroxy-, Methoxy-, Ethoxy-, Amino-, Dimethylamino-, Diethylamino-, Bis-(2-methoxyethyl)-amino-, Pyrrolidin-1-yl-, Piperidin-1-yl-, Morpholin-4-yl-, Homomorpholin-4-yl-, 2-Oxa-5-aza-bicyclo[2.2.1]hept-5-yl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-yl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3-yl-, Piperazin-1-yl-, 4-Methylpiperazin-1-yl- oder 4-Ethylpiperazin-1-ylgruppe, oder

20

eine Acetylamino-, Ethylcarbonylamino-, Propylcarbonylamino-, Butylcarbonylamino-, Methoxyacetylamino-, Butyloxycarbonylamino-, Ethylaminocarbonylamino-, Dimethylaminocarbonylamino-, Pyrrolidin-1-ylcarbonylamino-, Morpholin-4-ylcarbonylamino-, Methylsulfonylamino-, Ethylsulfonylamino- oder Butylsulfonylamino-Gruppe darstellt,

25

eine Propyloxygruppe, die in 3-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ und R⁷ wie vorstehend erwähnt definiert sind, oder

30

eine Butyloxygruppe, die in 4-Stellung durch einen Rest R⁶ oder R⁷ substituiert ist, wobei R⁶ und R⁷ wie vorstehend erwähnt definiert sind, und

X ein Stickstoffatom bedeuten,

wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen geradkettig oder verzweigt sein können,

- deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze. 5
 - 4. Bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 1, in denen

Ra ein Wasserstoffatom,

10

25

R^b eine 3-Bromphenyl-, 3,4-Difluorphenyl-, 3-Chlor-4-fluor-phenyl- oder eine 3-Ethinylphenylgruppe, oder

eine 3-Chlor-4-benzyloxy-phenyl-, 3-Chlor-4-[(3-fluorbenzyl)oxy]-phenyl-, 4-(Pyridin-3-4-[(6-Methyl-pyridin-3-yl)oxy]-phenyl-, 3-Methyl-4-(pyridin-3-yloxy)yloxy)-phenyl-, 15 3-Methyl-4-[(6-methyl-pyridin-3-yl)oxy]-phenyl-, 3-Chlor-4-(pyridin-3-yloxy)phenyl-. phenyl- oder 3-Chlor-4-[(6-methyl-pyridin-3-yl)oxy]-phenyl-Gruppe,

R^c eine Cyclohexylgruppe, die in 3-Stellung durch eine Amino-, Acetylamino-, tert.-Butyloxycarbonylamino- oder Methylsulfonylaminogruppe substituiert ist, 20

eine Cyclohexylgruppe, die in 4-Stellung durch eine Amino-, Methylamino-, Ethylamino, Dimethylamino-. Aminocarbonylmethylamino-, Methylaminocarbonylmethylamino-, Dimethylaminocarbonylmethylamino-, Morpholin-4-ylcarbonylmethylamino-, [3-[2-(Methylsulfonyl)ethyl]amino-, [3-(Morpholin-4-ylcarbonyl)propyl]amino-, [2-(Methylsulfonylamino)ethyl]amino-Gruppe (Methylsulfonyl)propyllaminooder substituiert ist,

Cyclohexylgruppe, die in 4-Stellung durch eine [2-(2-Oxo-pyrrolidin-1yl)ethyl]amino-, [2-(2-Oxopiperidin-1-yl)ethyl]amino-, [2-(2-Oxo-imidazolidin-1-30 [2-(2-Oxo-3-methyl-imidazolidin-1-yl)ethyl]amino-, [2-(2-Oxoyl)ethyl]amino-, hexahydropyrimidin-1-yl)ethyl]amino- oder [2-(2-Oxo-3-methyl-hexahydropyrimidin-1yl)ethyl]amino-Gruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine [3-(2-Oxo-pyrrolidin-1-yl)propyl]amino-, [3-(2-Oxo-imidazolidin-1-yl)propyl]amino-, [3-(2-Oxo-imidazolidin-1-yl)propyl]amino-, [3-(2-Oxo-3-methyl-imidazolidin-1-yl)propyl]amino-, [3-(2-Oxo-hexahydropyrimidin-1-yl)propyl]amino- oder [3-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)propyl]amino-Gruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine Acetylamino-, N-(Acetyl)-Aminomethylcarbonylamino-, Methylaminomethylcarbonylamino-, methylamino-. Morpholin-4-ylmethylcarbonylamino-, Dimethylaminomethylcarbonylamino-, Tetrahydropyran-4-N-(Methoxyacetyl)-methylamino-, Methoxyacetylamino-, 10 ylcarbonylamino-, N-(Tetrahydropyran-4-ylcarbonyl)-methylamino-, tert.-N-(tert.-Butyloxycarbonyl)-methylamino-, Butyloxycarbonylamino-, Methylaminocarbonylamino-, N-(Ethylaminocarbonyl)-Aminocarbonylamino-, Dimethylaminocarbonylamino-, N-(Dimethylaminocarbonyl)methylamino-, methylamino-, N-(Piperidin-1-ylcarbonyl)-methylamino-, Morpholin-4-ylcarbonylamino-, 15 N-(Morpholin-4-ylcarbonyl)-methylaminooder N-(4-Methylpiperazin-1-ylcarbonyl)methylamino-Gruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine 2-Oxo-pyrrolidin-1-yl-, 2-Oxopiperidin-1-yl-, 3-Oxo-morpholin-4-yl-, 2-Oxo-imidazolidin-1-yl-, 2-Oxo-3-methyl-imidazolidin-1-yl-, 2-Oxo-hexahydropyrimidin-1-yl- oder eine 2-Oxo-3-methyl-hexahydropyrimidin-1-yl-Gruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine Methylsulfonylamino-, N-(Methylsulfonyl)-methylamino-, Ethylsulfonylamino-, N-(Ethylsulfonyl)-methylamino-, Dimethylaminosulfonylamino-, N-(Dimethylaminosulfonyl)-methylamino-, Morpholin-4-ylsulfonyl)-methylamino- 3-Chlorpropylsulfonylamino-, [2-(Morpholin-4-yl)-ethyl]sulfonylamino- oder [3-(Morpholin-4-yl)-propyl]sulfonylamino-gruppe substituiert ist,

eine Pyrrolidin-3-ylgruppe,

5

20

25

30

eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch eine Methyl-, Acetyl-, Methoxyacetyl-, tert.-Butyloxycarbonyl-, Morpholin-4-ylcarbonyl- oder Methylsulfonylgruppe substituiert ist.

5 eine Piperidin-3-ylgruppe,

eine Piperidin-3-ylgruppe, die in 1-Stellung durch eine Methyl-, Acetyl-, Methoxyacetyl-, tert.-Butyloxycarbonyl-, Morpholin-4-ylcarbonyl- oder Methylsulfonylgruppe substituiert ist,

10

15

20

25

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Methyl-, Ethyl-, Propyl-, Isopropyl-, 2-Hydroxyethyl-, 2-Methoxyethyl-, 3-Methoxypropyl-, 2-(Methylsulfonyl)ethyl-, 3-(Methylsulfonyl)-propyl-, 2-(tert.-Butyloxycarbonylamino)-ethyl-, 2-Aminoethyl-, 2-(Acetylamino)-ethyl-, 2-(Ethylcarbonylamino)-ethyl-, 2-(Propylcarbonylamino)-ethyl-, 2-(Ethylaminocarbonylamino)-ethyl-. 2-(Dimethylaminocarbonylamino)-ethyl-, (Morpholin-4-ylcarbonylamino)-ethyl-, 3-(Acetylamino)-propyl-, 3-(Ethylcarbonylamino)propyl-, 3-(Propylcarbonylamino)-propyl-, 3-(Ethylaminocarbonylamino)-propyl-, (Dimethylaminocarbonylamino)-propyl-, 3-(Morpholin-4-ylcarbonylamino)-propyl-, 2-(Methylsulfonylamino)-ethyl-, 3-(Methylsulfonylamino)-propyl-, (Aminocarbonyl)methyl-, (Methylaminocarbonyl)methyl-, (Dimethylaminocarbonyl)methyl-, (Pvrrolidin-1ylcarbonyl)methyl-, (Morpholin-4-ylcarbonyl)methyl-, 2-(Morpholin-4-ylcarbonyl)-ethyloder 3-(Morpholin-4-ylcarbonyl)-propyl-Gruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine 2-(2-Oxo-pyrrolidin-1-yl)-ethyl-, 2-(2-Oxopiperidin-1-yl)-ethyl-, 2-(3-Oxomorpholin-4-yl)-ethyl-, 2-(2-Oxo-imidazolidin-1-yl)-ethyl-, 2-(2-Oxo-3-methyl-imidazolidin-1-yl)-ethyl-, 2-(2-Oxo-hexahydropyrimidin-1-yl)-ethyl- oder 2-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)-ethyl-Gruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine 3-(2-Oxo-pyrrolidin-1-yl)-propyl-,
3-(2-Oxopiperidin-1-yl)-propyl-, 3-(3-Oxomorpholin-4-yl)-propyl-, 3-(2-Oxo-imidazolidin1-yl)-propyl-, 3-(2-Oxo-3-methyl-imidazolidin-1-yl)-propyl-, 3-(2-Oxo-hexahydropyrimidin-1-yl)-propyl- oder 3-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)-propyl-Gruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Formyl-, Acetyl-, Methoxyacetyl-, (2-Methoxyethyl)carbonyl-, (3-Methoxypropyl)carbonyl-, Methylsulfonylacetyl-, Aminoacetyl-, Methylaminoacetyl-, (Dimethylamino)acetyl-, (Morpholin-4-yl)acetyl-, [2-(Morpholin-4-yl)-ethyl]carbonyl-, [3-(Morpholin-4-yl)-propyl]carbonyl-, Tetrahydrofuran-2-

5 ylcarbonyl- oder Tetrahydropyran-4-ylcarbonyl-Gruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Cyano-, Aminocarbonyl-, Methylaminocarbonyl-, Ethylaminocarbonyl-. (2-Methoxyethyl)aminocarbonyl-, N-Methyl-N-(2-methoxyethyl)-aminocarbonyl-, (3-Methoxypropyl)aminocarbonyl-, N-Methyl-N-(3-methoxypropyl)-aminocarbonyl-, Isopropylaminocarbonyl-, 10 Phenylaminocarbonyl-, Dimethylaminocarbonyl-, Diethylaminocarbonyl-, Pyrrolidin-1ylcarbonyl-, Piperidin-1-ylcarbonyl-, Morpholin-4-ylcarbonyl-, 2-Methylmorpholin-4vlcarbonyl-, 2.6-Dimethylmorpholin-4-ylcarbonyl-, Homomorpholin-4-ylcarbonyl-, 3-Oxa-8-aza-bicyclo[3.2.1]oct-8-2-Oxa-5-aza-bicyclo[2.2.1]hept-5-ylcarbonyl-, 8-Oxa-3-aza-bicyclo[3.2.1]oct-3-ylcarbonyl-. 4-Methylpiperazin-1ylcarbonyl-. 15 ylcarbonyl-, Isopropyloxycarbonyl- oder tert.-Butyloxycarbonyl-Gruppe substituiert ist,

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Methylsulfonyl-, Ethylsulfonyl-, [2-(Morpholin-4-yl)-ethyl]sulfonyl-, [3-(Morpholin-4-yl)-propyl]sulfonyl-, Aminosulfonyl-, Methylaminosulfonyl-, Dimethylaminosulfonyl- oder Morpholin-4-ylsulfonylgruppe substituiert ist, oder

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe,

25 Rd ein Wasserstoffatom,

20

eine Methoxy-, Difluormethoxy- oder Ethyloxygruppe,

eine 2-(Morpholin-4-yl)ethyloxy-, 3-(Morpholin-4-yl)propyloxy- oder 4-(Morpholin-4-30 yl)butyloxygruppe,

eine 3-(Dimethylamino)propyloxy-, 3-(Diethylamino)propyloxy-, 3-[Bis-(2-methoxyethyl)-amino]propyloxy-, 3-(Piperazin-1-yl)propyloxy-, 3-(4-Methylpiperazin-1-yl)propyloxy-oder 3-(4-Ethylpiperazin-1-yl)propyloxy-Gruppe

PCT/EP03/03062 WO 03/082290 132

3-(2-Oxa-5-aza-bicyclo[2.2.1]hept-5-yl)eine 3-(Homomorpholin-4-yl)-propyloxy-, propyloxy-, 3-(3-Oxa-8-aza-bicyclo[3.2.1]oct-8-yl)-propyloxy- oder 3-(8-Oxa-3-azabicyclo[3.2.1]oct-3-yl)-propyloxy-Gruppe,

5

2-(2-Oxopiperidin-1-yl)-ethyloxy-, 2-(3-2-(2-Oxo-pyrrolidin-1-yl)-ethyloxy-, eine Oxomorpholin-4-yl)-ethyloxy-, 2-(2-Oxo-imidazolidin-1-yl)-ethyloxy-, 2-(2-Oxo-3-methylimidazolidin-1-yl)-ethyloxy-, 2-(2-Oxo-hexahydropyrimidin-1-yl)-ethyloxy- oder 2-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)-ethyloxy-Gruppe,

10

3-(2-Oxo-pyrrolidin-1-yl)-propyloxy-, 3-(2-Oxopiperidin-1-yl)-propyloxy-, eine Oxomorpholin-4-yl)-propyloxy-, 3-(2-Oxo-imidazolidin-1-yl)-propyloxy-, 3-(2-Oxo-3methyl-imidazolidin-1-yl)-propyloxy-, 3-(2-Oxo-hexahydropyrimidin-1-yl)-propyloxy- oder 3-(2-Oxo-3-methyl-hexahydropyrimidin-1-yl)-propyloxy-Gruppe,

15

20

2-(Methoxy)-ethyloxy-, 2-(tert.-Butyloxycarbonylamino)-ethyloxy-, 2-(Amino)eine 2-(Ethylcarbonylamino)-ethyloxy-, 2ethyloxy-, 2-(Acetylamino)-ethyloxy-, 2-2-(Isobutylcarbonylamino)-ethyloxy-, (Propylcarbonylamino)-ethyloxy-, (Methoxyacetylamino)-ethyloxy-, 2-(Ethylaminocarbonylamino)-ethyloxy-, 2-(Dimethylaminocarbonylamino)-ethyloxy-, 2-(Pyrrolidin-1-ylcarbonylamino)-ethyloxy-, 2-(Piperidin-1-ylcarbonylamino)-ethyloxy-, 2-(Morpholin-4-ylcarbonylamino)-ethyloxy-, 2-(Methylsulfonylamino)-ethyloxygruppe, 2-(Ethylsulfonylamino)-ethyloxyoder 2-(Butylsulfonylamino)-ethyloxy-Gruppe, oder

25

eine 3-(tert,-Butyloxycarbonylamino)-propyloxy-, 3-(Amino)-propyloxy-, 3-(Acetylamino)propyloxy- oder 3-(Methylsulfonylamino)-propyloxy-Gruppe,

und

X ein Stickstoffatom bedeuten, 30

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

5. Bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 1, in denen

Ra ein Wasserstoffatom,

5

15

20

R^b eine 3-Chlor-4-fluor-phenylgruppe oder eine 3-Ethinylphenylgruppe.

R^c eine Cyclohexylgruppe, die in 3-Stellung durch eine Amino-, Acetylamino-, tert.-Butyloxycarbonylamino- oder Methylsulfonylaminogruppe substituiert ist,

eine Cyclohexylgruppe, die in 4-Stellung durch eine Amino-, Methylamino-, Dimethylamino-, Acetylamino-, N-(Acetyl)-methylamino-, Methoxyacetylamino-, 10 (Methoxyacetyl)-methylamino-, Tetrahydropyran-4-ylcarbonylamino-, N-(Tetrahydropyran-4-ylcarbonyl)-methylamino-, tert.-Butyloxycarbonylamino-, N-(tert.-Butyloxycarbonyl)-methylamino-, N-(Ethylaminocarbonyl)-methylamino-. Dimethylaminocarbonylamino-, N-(Dimethylaminocarbonyl)-methylamino-, N-(Piperidin-1-ylcarbonyl)-methylamino-, Morpholin-4-ylcarbonylamino-, N-(Morpholin-4-ylcarbonyl)methylamino-, N-(4-Methylpiperazin-1-ylcarbonyl)-methylamino-, Methylsulfonylamino-, N-(Methylsulfonyl)-methylamino-, Ethylsulfonylamino-, N-(Ethylsulfonyl)-methylamino-, Dimethylaminosulfonylamino-, N-(Dimethylaminosulfonyl)-methylamino-, Morpholin-4ylsulfonylamino-, N-(Morpholin-4-ylsulfonyl)-methylamino-, 3-Chlorpropylsulfonylaminooder [3-(Morpholin-4-yl)-propyl]sulfonylaminogruppe substituiert ist,

eine Pyrrolidin-3-ylgruppe,

eine Pyrrolidin-3-ylgruppe, die in 1-Stellung durch eine tert.-Butyloxycarbonyl- oder Methylsulfonylgruppe substituiert ist. 25

eine Piperidin-3-ylgruppe,

eine Piperidin-3-ylgruppe, die in 1-Stellung durch eine tert.-Butyloxycarbonyl- oder Methylsulfonylgruppe substituiert ist, 30

eine Piperidin-4-ylgruppe.

134

eine Piperidin-4-ylgruppe, die in 1-Stellung durch eine Methyl-, (Aminocarbonyl)methyl-, (Morpholin-4-ylcarbonyl)methyl-, (Dimethylaminocarbonyl)methyl-, 2-(tert.-2-2-Aminoethyl-, 2-(Acetylamino)ethyl-, Butyloxycarbonylamino)ethyl-, (Methylsulfonylamino)ethyl-, Cyano-, Acetyl-, Methoxyacetyl-, (Dimethylamino)acetyl-, Tetrahydropyran-4-ylcarbonyl-, Ethylaminocarbonyl-, (Morpholin-4-yl)acetyl-, Isopropylaminocarbonyl-, Phenylaminocarbonyl-, Dimethylaminocarbonyl-. Diethylaminocarbonyl-, Pyrrolidin-1-ylcarbonyl-, Piperidin-1-ylcarbonyl-, Morpholin-4-2-Methylmorpholin-4-ylcarbonyl-, 2,6-Dimethylmorpholin-4-ylcarbonyl-, Homomorpholin-4-ylcarbonyl-, 4-Methylpiperazin-1-ylcarbonyl-, Isopropyloxycarbonyl-, tert.-Butyloxycarbonyl-, Methylsulfonyl-, Dimethylaminosulfonyl- oder Morpholin-4ylsulfonylgruppe substituiert ist, oder

eine Tetrahydrofuran-3-yl-, Tetrahydropyran-3-yl- oder Tetrahydropyran-4-ylgruppe,

15 R^d ein Wasserstoffatom,

5

10

eine Methoxy- oder Ethyloxygruppe,

eine 2-(Morpholin-4-yl)ethyloxy-, 3-(Morpholin-4-yl)propyloxy- oder 4-(Morpholin-4-20 yl)butyloxygruppe,

eine 2-(3-Methyl-2-oxo-hexahydropyrimidin-1-yl)-ethyloxygruppe,

propyloxy- oder 3-(Methylsulfonylamino)-propyloxygruppe,

eine 2-(Methoxy)-ethyloxy-, 2-(tert.-Butyloxycarbonylamino)-ethyloxy-, 2-Amino-ethyloxy-, 2-(Acetylamino)-ethyloxy- oder 2-(Methylsulfonylamino)-ethyloxygruppe oder eine 3-(tert.-Butyloxycarbonylamino)-propyloxy-, 3-Amino-propyloxy-, 3-(Acetylamino)-

30 und

X ein Stickstoffatom bedeuten.

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

- 6. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 1:
- (a) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((*S*)-tetrahydrofuran-3-yloxy)-7-methoxy-chinazolin,
 - (b) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-methoxy-chinazolin,
- 10 (c) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-((*R*)-tetrahydrofuran-3-yloxy)-7-methoxy-chinazolin,
 - (d) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-amino-cyclohexan-1-yloxy)-7-methoxy-chinazolin,

15

20

- (e) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-methansulfonylamino-cyclohexan-1-yloxy)-7-methoxy-chinazolin,
- (f) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin,
 - (g) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methansulfonyl-piperidin-4-yloxy)-7-methoxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{[3-(morpholin-4-yl)-propyl]sulfonyl amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin,
 - (i) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-3-yloxy)-7-methoxy-chinazolin,
- 30 (k) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-{[3-(morpholin-4-yl)-propyl]sulfonyl-amino}-cyclohexan-1-yloxy)-7-methoxy-chinazolin,
 - (I) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-methyl-piperidin-4-yloxy)-7-methoxy-chinazolin,

- (m) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)carbonyl]-piperidin-4-yloxy}-7-methoxy-chinazolin,
- (n) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(methoxymethyl)carbonyl]-piperidin-4-yl-oxy}-7-methoxy-chinazolin,
 - (o) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(1-cyano-piperidin-4-yloxy)-7-methoxy-chinazolin,
- 10 (p) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{1-[(morpholin-4-yl)sulfonyl]-piperidin-4-yl-oxy}-7-methoxy-chinazolin,
 - (q) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[1-(2-acetylamino-ethyl)-piperidin-4-yloxy]-7-methoxy-chinazolin,
 - (r) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(dimethylamino)sulfonylamino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin,
- (s) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(morpholin-4-yl)carbonylamino]-20 cyclohexan-1-yloxy}-7-methoxy-chinazolin,
 - (t) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{trans-4-[(morpholin-4-yl)sulfonylamino]-cyclohexan-1-yloxy}-7-methoxy-chinazolin,
- 25 (u) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-acetylamino-ethoxy)-chinazolin,
 - (v) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-methansulfonylamino-ethoxy)-chinazolin und
 - (w) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-methoxy-ethoxy)-chinazolin,

sowie deren Salze.

15

30

- 7. Physiologisch verträgliche Salze der Verbindungen nach mindestens einem der Ansprüche 1 bis 6 mit anorganischen oder organischen Säuren oder Basen.
- 8. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder ein physiologisch verträgliches Salz gemäß Anspruch 7 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- 9. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 7 zur Herstellung eines Arzneimittels, das zur Behandlung von benignen oder malignen Tumoren, zur Vorbeugung und Behandlung von Erkrankungen der Atemwege und der Lunge sowie zur Behandlung von Erkrankungen des Magen-Darm-Traktes und der Gallengänge und -blase geeignet ist.
 - 10. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 8, dadurch gekennzeichnet, daß auf nicht-chemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 7 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
 - 11. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß
 - a) eine Verbindung der allgemeinen Formel

25

20

15

$$R^{a}$$
 N
 R^{b}
 $O-H$
 R^{d}
 $O(H)$

in der

R^a, R^b, R^d und X wie in den Ansprüchen 1 bis 6 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$Z^1 - R^c$$
 ,(III)

5

in der

R^c wie in den Ansprüchen 1 bis 6 erwähnt definiert ist und Z¹ eine Austrittsgruppe darstellt, umgesetzt wird, oder

10

b) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^d eine der in den Ansprüchen 1 bis 6 erwähnten, gegebenenfalls substituierten Alkyloxygruppen darstellt,

eine Verbindung der allgemeinen Formel

15

in der R^a, R^b, R^c und X wie in den Ansprüchen 1 bis 6 erwähnt definiert, sind mit einer mit einer Verbindung der allgemeinen Formel

20

25

30

$$Z^2 - R^{d'}$$
 ,(V)

in der $R^{d'}$ eine C_{1-4} -Alkylgruppe, eine durch 1 bis 3 Fluoratome substituierte Methylgruppe, eine durch 1 bis 5 Fluoratome substituierte Ethylgruppe, eine durch einen Rest R^6 oder R^7 substituiert C_{2-4} -Alkylgruppe, wobei R^6 und R^7 wie in den Ansprüchen 1 bis 6 erwähnt definiert sind, eine C_{1-4} -Alkylgruppe, die durch eine in 1-Stellung durch den Rest R^8 substituierte Pyrrolidinyl-, Piperidinyl- oder Homopiperidinylgruppe substituiert ist, oder eine C_{1-4} -Alkylgruppe, die durch eine in 4-Stellung durch den Rest R^8 substituierte Morpholinylgruppe substituiert ist, wobei R^8 jeweils wie in den Ansprüchen 1 bis 6 erwähnt definiert ist, und

Z² eine Austrittsgruppe darstellt, umgesetzt wird oder

- c) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^d eine der in den Ansprüchen 1 bis 6 erwähnten Alkyloxygruppen darstellt, die durch eine gegebenenfalls substituierte Amino-, Alkylamino- oder Dialkylaminogruppe oder durch eine gegebenenfalls substituierte, über ein Iminostickstoffatom gebundene heterocyclischen Gruppe substituiert ist,
- 10 miteiner Verbindung der allgemeinen Formel

in der R^a, R^b, R^c und X wie in den Ansprüchen 1 bis 6 erwähnt definiert sind und Z³ eine

Austrittsgruppe darstellt, mit

Ammoniak, einem entsprechenden, gegebenenfalls substituierten Alkylamin, Dialkylamin oder einer Iminoverbindung oder deren geeigneten Salzen oder Derivaten umgesetzt wird oder

d) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^d eine Hydroxygruppe darstellt,

ein Schutzrestes von einer Verbindung der allgemeinen Formel

20

in der R^a, R^b, R^c und X wie in den Ansprüchen 1 bis 6 erwähnt definiert sind und R^d eine in eine Hydroxygruppe überführbare Gruppe darstellt, abgespalten wird oder

e) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^c eine -NH-Gruppe enthält,

ein Schutzrest von einer Verbindung der allgemeinen Formel

in der R^a, R^b, R^d und X wie in den Ansprüchen 1 bis 6 erwähnt definiert sind und R^c mit der Maßgabe die in den Ansprüchen 1 bis 6 für R^c erwähnten Bedeutungen besitzt, daß R^c ein geschütztes Stickstoffatom enthält, abgespalten wird oder

f) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R^c eine durch eine gegebenenfalls substituierte Amino-, Alkylamino- oder Dialkyaminogruppe oder durch eine über ein Stickstoffatom gebundenene, gegebenenfalls substituierte heterocyclische Gruppe substituierte Alkylgruppe enthält,

ein Verbindung der allgemeinen Formel

15

20

25

$$R^a$$
 R^b
 R^c
 Z^3
 R^d
 R^d
 R^d
 R^d
 R^d
 R^d

in der R^a, R^b, R^d und X wie in den Ansprüchen 1 bis 6 erwähnt definiert sind, Z³ eine Austrittsgruppe darstellt und R^{cⁱⁱⁱ} mit der Maßgabe, daß ein an ein aliphatisches Kohlenstoffatom gebundenes Wasserstoffatom durch die Gruppe Z³ ersetzt ist, die für R^c in den Ansprüchen 1 bis 6 erwähnt Bedeutungen besitzt,

mit Ammoniak, einem entsprechenden, gegenenfalls substituierten Alkylamin, Dialkylamin oder einer Iminoverbindung oder deren geeigneten Salzen oder Derivaten umgesetzt wird und

- 5 gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, mittels Acylierung, Cyanierung oder Sulfonylierung in eine entsprechende Acyl-, Cyano- oder Sulfonylverbindung der allgemeinen Formel I übergeführt wird und/oder
- eine so erhaltene Verbindung der allgemeinen Formel I, die eine Amino-, Alkylaminooder Iminogruppe enthält, mittels Alkylierung oder reduktiver Alkylierung in eine entsprechende Alkylverbindung der allgemeinen Formel I übergeführt wird und/oder
- eine so erhaltene Verbindung der allgemeinen Formel I, die eine Chlor-15 C₁₋₄-alkylsulfonyl- oder eine Brom-C₁₋₄-alkylsulfonylgruppe enthält, mittels Umsetzung mit einem Amin in eine entsprechende Amino-C₁₋₄-alkylsulfonylverbindung übergeführt wird und/oder
- eine so erhaltene Verbindung der allgemeinen Formel I, die eine tert.
 Butyloxycarbonylamino-, N-Alkyl-N-(tert.-butyloxycarbonyl)amino- oder eine N-tert.
 Butyloxycarbonyliminogruppe enthält, mittels Behandlung mit einer Säure in eine entsprechende Amino-, Alkylamino- oder Iminoverbindung der allgemeinen Formel I übergeführt wird, und/oder
- erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder

30

gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, übergeführt wird.

INTERNATIONAL SEARCH REPORT

Interplonal Application No PCT/EP 03/03062

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 A61K31/517 C07D239/94 CO7D405/12 C07D401/12 C07D413/12 C07D491/08 A61P35/00 C07D403/12 C07D498/08 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ° Citation of document, with Indication, where appropriate, of the relevant passages χ WO 02 18372 A (SOLCA FLAVIO ; BOEHRINGER 1-11 INGELHEIM PHARMA (DE); HIMMELSBACH FRANK) 7 March 2002 (2002-03-07) page 31; example I page 34; example III page 45 -page 56; examples claims 1-11 WO 02 18351 A (SOLCA FLAVIO ; BOEHRINGER X INGELHEIM PHARMA (DE); HIMMELSBACH FRANK) 7 March 2002 (2002-03-07) page 28; example I page 49 -page 68; examples claims -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. "T" later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 06/06/2003 30 May 2003 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Kollmannsberger, M Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Internal Application No PCI/EP 03/03062

	PC1/EP 03/03062					
Citation of document, with indication,where appropriate, of the relevant passages	rielevani io Gianni No.					
WO 00 5514] A (METZ THOMAS ;SOLCA FLAVIO (AT); BOEHRINGER INGELHEIM PHARMA (DE);) 21 September 2000 (2000-09-21) examples claims	1-11					
	WO 00 55141 A (METZ THOMAS ;SOLCA FLAVIO (AT); BOEHRINGER INGELHEIM PHARMA (DE);) 21 September 2000 (2000-09-21) examples					

INTERNATIONAL SEARCH REPORT

formation on patent family members

Internal Application No PCI/EP 03/03062

	tent document in search report		Publication date		Patent family member(s)		Publication date
WO	0218372	Α	07-03-2002	DE	10042059	A1	07-03-2002
	02100/2	• •	-, •	AÜ	9548101		13-03-2002
•			•	MO	0218372	A1	07-03-2002
				US	2002049197	A1	25-04-2002
WO	0218351	Α	07-03-2002	DE	10042058	A1	07-03-2002
				AU	8769401	Α	13-03-2002
				WO	0218351	A1	07-03-2002
				NO	20030870	Α	25-02-2003
				US	2002082271	A1	27-06-2002
WO	0055141		21-09-2000	DE	19911509	A1	21-09-2000
				AU	3166700	Α	04-10-2000
				BG	105893	Α	31-05-2002
				BR	0009076	A	26-12-2001
				CA	2368059	A1	21-09-2000
				CN	1343201	T	03-04-2002
				CZ	20013326	A3	12-12-2001
				EΕ	200100484	Α	16-12-2002
				WO	0055141		21-09-2000
				EΡ	1163227	A1	19-12-2001
				HU	0201832		28-12-2002
				JP	2002539199	T	19-11-2002
				NO	20014487		14-09-2001
				PL	350522		16-12-2002
				SK	13032001		04-06-2002
				TR	200102782		22-04-2002
				US	2002177601	Al	28-11-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 03/03062

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 A61K31/517 C07D239/94 C07D405/12 C07D401/12 CO7D413/12 C07D403/12 CO7D498/08 C07D491/08 A61P35/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO7D A61K A61P Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowelt diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, CHEM ABS Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. 1-11 WO 02 18372 A (SOLCA FLAVIO ; BOEHRINGER X INGELHEIM PHARMA (DE); HIMMELSBACH FRANK) 7. März 2002 (2002-03-07) Seite 31; Beispiel I Seite 34; Beispiel III Seite 45 -Seite 56; Beispiele Ansprüche 1-11 WO 02 18351 A (SOLCA FLAVIO ; BOEHRINGER X INGELHEIM PHARMA (DE); HIMMELSBACH FRANK) 7. März 2002 (2002-03-07) Seite 28; Beispiel I Seite 49 -Seite 68; Beispiele Ansprüche -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie *T* Spätere Veröffentlichung, die nach dem internationalen Armeidedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeidung nicht koliidiert, sondern nur zum Verständnis des der * Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Theorie angegeben ist "E" älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung inlicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtei werden "L" Veröffentlichung, die geelgnet ist, einen Prioritätsanspruch zweifelhaft er-schelnen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 30. Mai 2003 06/06/2003 Bevolimächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Kollmannsberger, M

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 03/03062

		PCI/EP US	<u> </u>				
	(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN						
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	Briden Telle	Betr. Anspruch Nr.				
X	WO 00 55141 A (METZ THOMAS ;SOLCA FLAVIO (AT); BOEHRINGER INGELHEIM PHARMA (DE);) 21. September 2000 (2000-09-21) Beispiele Ansprüche		1-11				
			20				
	·						

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichtunk, die zur selben Patentfamilie gehören

PCT/EP 03/03062

Im Recherchenbericht angeführtes Patentdokumen	t	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 0218372	A	07-03-2002	DE	10042059 A1	07-03-2002
			AU	9548101 A	13-03-2002
			MO	0218372 Al	07-03-2002
			US	2002049197 A1	25-04-2002
WO 0218351	Α	07-03-2002	DE	10042058 A1	07-03-2002
			AU	8769401 A	13-03-2002
			WO	0218351 Al	07-03-2002
			NO	20030870 A	25-02-2003
			US	2002082271 A1	27-06-2002
WO 0055141		21-09-2000	DE	19911509 A1	21-09-2000
	•		AU	3166700 A	04-10-2000
			BG	105893 A	31-05-2002
			BR	0009076 A	26-12-2001
			CA	2368059 A1	21-09-2000
			CN	1343201 T	03-04 - 2002
	1		CZ	20013326 A3	12-12-2001
			EE	200100484 A	16-12-2002
			WO	0055141 Al	21-09-2000
			EP	1163227 A1	19-12-2001
			HU	0201832 A2	28-12-2002
			JP	2002539199 T	19-11-2002
			NO	20014487 A	14-09-2001
			PL	350522 A1	16-12-2002
			SK	13032001 A3	04-06-2002
			TR	200102782 T2	22-04-2002
			US	2002177601 A1	28-11-2002