Fast Adapting Without Forgetting for Face Recognition

Hao Liu, Xiangyu Zhu[®], *Member, IEEE*, Zhen Lei[®], *Senior Member, IEEE*, Dong Cao, and Stan Z. Li, *Fellow, IEEE*

汇报人姓名: 王岩

日期: 2022.1.21

研究思路

The problem is:

 a well trained model on the data domain can only achieve good performance in this domain, it cannot cover new domains.

The common ways are as follows:

- Fine-tune the base model with the target-domain data to cope with new domain, which can cause catastrophic forgetting.
- Fine-tunes the model on both source and target domains simultaneously, it will take huge training time and data storage.

研究进展——已取得结果

- Single Exemplar Domain Incremental Learning(SE-DIL): a new task for a practical application of face recognition, which aims to quickly adapt the base model from source domain to the target domain and keep the performance on source domains.
- Fast Adapating without Forgetting(FAwF): a method to solve SE-DIL with three components: margin-based exemplar selection, prototype-based class extension and hard&soft knowledge distillation.
- KidsFace: a large-scale database of children faces with 12,444 identities, which is the first large-scale children database.

研究进展——

Fig. 1. The process of Single Exemplar Domain Incremental Learning. Starting with a well-trained base model, each time we encounter a new domain, it can adapt to the new domain and preserve the performance of the source domain, and finally, get superior generalization capabilities.

Fig. 3. Overview of our Fast Adapting without Forgetting. It consists of Margin-based Exemplar Selection (MES), Prototype-based Class Extension (PCE) and Hard&Soft Knowledge Distillation (H&S). The base model is not updated during training.

FAwF consists of three components:

- Margin-based Exemplar Selection(MES)
- Prototype-based Class Extension(PCE)
- Hard&Soft Knowledge Distillation(H&S)

MES: select the most valuable exemplar one class to preserve sourcedomain knowledge.

The common way is to keep the samples that are as close to the class center.

MES only selects one sample a class to provide more diverse source domain intra-class information in target domain training to preserve source domain performance.

With a given margin h, select the sample whose distance from the class center is closest to h, this sample as the exemplar of this class.

Algorithm 1 Margin-Based Exemplar Selection

Input:
$$Net(\theta_s)$$

$$D_s = \{(x_s^i, y_s^i), 1 \le i \le M_s, 1 \le y_s^i \le N_s\}$$
Margin h
Output: Selected exemplars E_s

1 for each sample x_s^i in D_s do

2 | Extract the feature f_s^i of x_s^i from $Net(\theta_s)$

3 end

4 for $j = 1 ... N_s$ do

5 | $c_j = Average(f_s^i), y_s^i = j$

6 | $distance_s^i = ||f_s^i - c_j||, y_s^i = j$

7 | $e_j = x_s^{arg min(|distance_i - h|)}, y_s^i = j$

8 end

9 $E_s = \{e_j, 1 \le j \le N_s\}$

PCE: The classification layer needed to expanded when continuously adapted to new classes of new domains.

The incremental learning methods use random initialization for the weights of new classes.

take the class prototype to initialize the weights of new classes for the new domain in the classification layer.

PCE: The classification layer needed to expanded when continuously adapted to new classes of new domains.

$$p_j = \frac{\sum_{y_t^i = j} f_t^i}{N_t}, \quad 1 \le j \le N_t \quad \longrightarrow \quad W_t = [p_1, p_2, \dots, p_{N_t}]$$

extract features of all samples of the target domain, calculate the prototype to represent each new class.

$$p_{j} = \frac{\sum_{y_{t}^{i}=j} \mu_{t}^{i} f_{t}^{i}}{\sum_{y_{t}^{i}=j} \mu_{t}^{i}}, \quad 1 \leq j \leq N_{t} \qquad \mu_{t}^{i} = \|f_{t}^{i}\|$$

Algorithm 2 Prototype-Based Class Extension

Input : $Net(\theta_s)$

$$D_t = \{(x_t^i, y_t^i), 1 \le i \le M_t, 1 \le y_t^i \le N_t\}$$

Output: Weight vectors W_t of target domain classes

- 1 **for** each sample x_t^i in D_t **do**
- 2 | Extract the feature f_t^i of x_t^i from $Net(\theta_s)$
- 3 end

4 for
$$j = 1 ... N_t$$
 do

$$p_j = \frac{\sum_{y_t^i = j} \mu_t^i f_t^i}{\sum_{y_t^i = j} \mu_t^i}, \, \mu_t^i \text{ is quality factor }$$

$$\mathbf{6} \mid w_j = p_j$$

7 end

8
$$W_t = \{w_j, 1 \le j \le N_t\}$$

Hard&Soft Knowledge Distillation:

Loss combines the classification loss and the distilling loss.

$$L = L_c + \lambda \cdot L_d$$

The hard classification loss classifies exemplars in D_s and samples in D_t to their right labels.

Use the **CosFace** for hard classification.

$$L_{c} = -\frac{1}{M_{t} + N_{s}}$$

$$\times \sum_{i=1}^{M_{t} + N_{s}} \log \frac{e^{s(\cos(\theta_{iy^{i}}) - m)}}{e^{s(\cos(\theta_{iy^{i}}) - m)} + \sum_{j=1, j \neq y^{i}}^{N_{t}} e^{s\cos(\theta_{ij})}}$$

$$\cos \theta_{ij} = w_{j}^{T} f^{i}, \quad ||w_{j}|| = 1, \quad ||f^{i}|| = 1$$
(5)

where M_t is the number of samples of target domain, N_t is the number of target domain classes, w_j denotes the weight vector of class j, s is the scale factor and m is the margin parameter in CosFace.

Take soft activation distilling loss to better retain the source domain information, the base model is used to guide the training.

Specifically, we denote the output logits of the base model and the new model as $\hat{\mathbf{o}}^{N_s|}(x) = [\hat{o}_1(x), \dots, \hat{o}_{N_s}(x)]$ and $\mathbf{o}^{N_s+N_t}(x) = [o_1(x), \dots, o_{N_s}(x), o_{N_s+1}(x), \dots, o_{N_s+N_t}(x)],$

$$L_{d} = -\frac{1}{M_{t} + N_{s}} \sum_{i=1}^{M_{t} + N_{s}} \sum_{j=1}^{N_{s}} \hat{\pi}_{j}(x_{i}) \log[\pi_{j}(x_{i})]$$

$$\hat{\pi}_{j}(x_{i}) = \frac{e^{\hat{o}_{j}(x_{i})/T}}{\sum_{k=1}^{N_{s}} e^{\hat{o}_{k}(x_{i})/T}}, \quad \pi_{j}(x_{i}) = \frac{e^{o_{j}(x_{i})/T}}{\sum_{k=1}^{N_{s}} e^{o_{k}(x_{i})/T}}$$
(6)

$$\hat{\pi}_{j}(x_{i}) = \frac{e^{\hat{o}_{j}(x_{i})/T}}{\sum_{k=1}^{N_{s}} e^{\hat{o}_{k}(x_{i})/T}}, \quad \pi_{j}(x_{i}) = \frac{e^{o_{j}(x_{i})/T}}{\sum_{k=1}^{N_{s}} e^{o_{k}(x_{i})/T}}$$
(7)

实验设计

dataset

source domain:

- LFW
- CALFW
- CPLFW
- CFP-FP
- AgeDB-30
- IJB-C
- MS1M-RetinaFace

target domain:

- CASIA NIR-VIS 2.0
- QMUL-SurvFace
- KidsFace

Model	Target Domain 1				Source Doma	iin			Training
	KidsFace	LFW	LFW	CALFW	CPLFW	CFP-FP	AgeDB-30	IJB-C	Time(days)
	-Test	LITYY	BLUFR		CILIW	CIT-II	AgeDD-30	וים-כ	
JT(Upper Bound)	90.239	99.75	99.84	95.98	92.88	98.11	98.03	95.19	2.4
BaseS	53.687	99.73	99.84	95.98	92.63	98.11	98.03	95.02	5.5
BaseT	70.872	90.42	25.02	74.36	64.48	68.08	66.20	35.48	0.3
FT	84.661	96.08	60.62	84.43	75.53	79.47	79.40	78.84	0.16
FAwF	86.846	99.75	<u>99.79</u>	<u>95.95</u>	<u>92.19</u>	<u>97.82</u>	<u>97.91</u>	<u>94.37</u>	0.1

	Target Domain 1				S	Source Domai	in			
Method	KidsFace-Test	LFW	LFW	CALFW	CPLFW	CFP-FP	AgeDB-30	IJB-C	MF1	MF1
	Klusi acc- iest	LIW	BLUFR	CALIW	CILIW	CIT-II	AgeDD-30	пр-с	Rank 1	Veri.
Contrastive	83.753	99.22	95.53	93.15	87.75	94.70	94.06	83.02	83.815	85.484
Trplet	85.057	99.20	94.22	92.96	86.25	93.48	92.18	81.80	85.823	86.676
LwF [30]	84.977	95.83	52.80	84.63	73.96	77.15	79.71	59.04	40.145	37.355
iCaRL [32]	73.894	99.68	99.35	95.76	90.38	95.97	96.95	91.74	94.117	95.215
EEIL [33]	73.585	99.70	99.49	95.70	90.70	95.57	97.31	91.91	95.162	96.030
BiC [34]	81.722	99.45	98.72	95.33	87.65	91.54	95.95	79.69	90.681	92.508
FAwF	86.846	99.75	99.79	95.95	92.19	97.82	97.91	94.37	96.899	97.123

Method	Target Domain 2	Target Domain 1	Source Domain										
	CASIA NIR-VIS 2.0	KidsFace-Test	LFW	LFW BLUFR	CALFW	CPLFW	CFP-FP	AgeDB-30	IJB-C				
Contrastive	99.291	30.585	98.72	87.70	90.96	85.21	92.18	91.35	78.01				
Trplet	99.267	57.864	98.93	92.48	92.11	84.23	90.72	91.01	71.57				
LwF [30]	97.881	70.706	96.08	54.91	84.30	73.16	75.87	78.91	58.10				
iCaRL [32]	95.586	72.425	99.68	99.52	95.61	90.63	95.84	97.18	91.20				
EEIL [33]	93.862	70.412	99.72	99.45	95.68	90.20	95.41	97.21	89.83				
BiC [34]	94.660	72.596	99.50	98.53	95.05	86.80	90.01	95.65	76.62				
FAwF	99.629	84.731	99.73	99.78	95.95	92.36	98.05	97.96	94.33				

	Target Domain 3	Target Domain 2	Target Domain 1	Source Domain								
Method	QMUL-SurvFace	CASIA NIR	SIA NIR KidsFace		LFW	CALFW	CPLFW	CFP-FP	AgeDB-30	IJB-C		
	QWIOL-Survivace	-VIS 2.0	-Test	LFW	BLUFR	CALIW	CILIW	CIT-IT	AgeDb-30	IJD-C		
Contrastive	44.2	1.216	10.974	86.07	4.78	64.81	63.48	65.00	62.01	14.62		
Trplet	50.0	1.006	17.139	91.32	20.24	70.93	69.10	72.60	64.43	24.22		
LwF [30]	54.7	0.483	14.441	78.72	2.77	57.98	60.38	61.94	51.28	7.72		
iCaRL [32]	56.5	54.977	63.519	99.60	99.29	95.30	87.21	88.48	96.36	86.12		
EEIL [33]	57.5	54.131	64.492	99.63	99.27	95.53	87.05	88.50	96.56	86.30		
BiC [34]	45.5	65.568	61.374	99.08	96.62	93.93	80.60	78.02	93.48	74.73		
FAwF	59.3	97.906	71.004	99.70	99.74	95.46	91.28	96.83	97.15	90.43		

Ablation Study

			Target Domain 1		Source Domain									
PCE	PCE MES H&S	H&S	&S KidsFace-Test	LFW	LFW	CALFW	CPLFW	CFP-FP	AgeDB-30	IJB-C	MF1	MF1		
		Riusi acc- iest	LIV	BLUFR	CALIW	CILIV	CIT-II	AgeDD-30	IJD-C	Rank 1	Veri.			
-	=	Н	86.039	98.85	86.32	94.21	85.30	87.87	93.70	85.88	80.466	82.978		
✓	-	Н	86.645	99.68	99.66	95.86	91.61	96.97	97.23	93.63	94.598	95.350		
✓	✓	Н	86.825	99.73	99.78	95.96	92.53	97.65	97.66	94.36	96.645	96.682		
	-	H&S	73.641	99.70	99.41	95.56	90.49	95.34	97.24	91.04	92.688	92.893		
✓	-	H&S	87.045	99.73	99.69	95.76	91.76	97.45	97.28	93.93	95.294	96.385		
\checkmark	√	H&S	86.846	99.75	99.79	95.95	92.19	97.82	97.91	94.37	96.899	97.123		

思考与疑问

训练新模型时,蒸馏损失一项,为什么不只考虑source domain 的sample带来的损失来维持source domain performance,将 所有样本都考虑会不会影响到target domain performance?

$$L_{d} = -\frac{1}{M_{t} + N_{s}} \sum_{i=1}^{M_{t} + N_{s}} \sum_{j=1}^{N_{s}} \hat{\pi}_{j}(x_{i}) \log[\pi_{j}(x_{i})]$$

$$\hat{\pi}_{j}(x_{i}) = \frac{e^{\hat{o}_{j}(x_{i})/T}}{\sum_{k=1}^{N_{s}} e^{\hat{o}_{k}(x_{i})/T}}, \quad \pi_{j}(x_{i}) = \frac{e^{o_{j}(x_{i})/T}}{\sum_{k=1}^{N_{s}} e^{o_{k}(x_{i})/T}}$$
(6)

$$\hat{\pi}_j(x_i) = \frac{e^{\hat{o}_j(x_i)/T}}{\sum_{k=1}^{N_s} e^{\hat{o}_k(x_i)/T}}, \quad \pi_j(x_i) = \frac{e^{o_j(x_i)/T}}{\sum_{k=1}^{N_s} e^{o_k(x_i)/T}}$$
(7)

Thanks! 谢谢

