$$\int_{1}^{2} x \ln(x) dx$$

pela regra dos trapézios e, depois, analiticamente.

Considere diversos valores para n e 4 casas decimais com arredondamento

a) Número de intervalos:

n=	1

b) Tamanho do intervalo

a=	1
b=	2

h= 1

c) iterações:

$$T(h_n) = \frac{h}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right]$$

i	X' _i	f(x';)	C _i	c _i *f(x' _i)
0	1,0000	0,0000	1	0,0000 1,3863
1	2,0000	1,3863	1	1,3863
Soma				1,3863

 $T(h_1) = 0.5 * 1,3863 = 0.6931$

$$\int_{1}^{2} x \ln(x) dx$$

pela regra dos trapézios e, depois, analiticamente.

Considere diversos valores para **n** e **4** casas decimais com arredondamento

a) Número de intervalos:

n=	2
----	---

b) Tamanho do intervalo

a=	1
b=	2

h= 0,5

c) iterações:

$$T(h_n) = \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

i	X' _i	f(x';)	C _i	c _i *f(x' _i)
0	1,0000	0,0000	1	0,0000
1	1,5000	0,6082	2	1,2164
2	2,0000	1,3863	1	1,3863
Soma				2,6027

$$T(h_2) = 0.25 * 2.6027 = 0.6507$$

$$\int_{1}^{2} x \ln(x) dx$$

pela regra dos trapézios e, depois, analiticamente.

Considere diversos valores para n e 4 casas decimais com arredondamento

a) Número de intervalos:

b) Tamanho do intervalo

a=	1
b=	2

h= 0,25

c) iterações:

$$T(h_n) = \frac{h}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right]$$

i	X' _i	f(x';)	C _i	c _i *f(x' _i)
0	1,0000	0,0000	1	0,0000
1	1,2500	0,2789	2	0,5579
2	1,5000	0,6082	2	1,2164
3	1,7500	0,9793	2	1,9587
4	2,0000	1,3863	1	1,3863
Soma				5,1192

 $T(h_4) = 0,125 * 5,1192 = 0,6399$

$$\int_{1}^{2} x \ln(x) dx$$

pela regra dos trapézios e, depois, analiticamente.

Considere diversos valores para n e 4 casas decimais com arredondamento

a) Número de intervalos:

n=	8
----	---

b) Tamanho do intervalo

a=	1
b=	2

c) iterações:

$$T(h_n) = \frac{h}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right]$$

i	X' _i	f(x' _i)	C _i	c _i *f(x' _i)
0	1,0000	0,000	1	0,000
1	1,1250	0,1325	2	0,2650
2	1,2500	0,2789	2	0,5579
3	1,3750	0,4379	2	0,8757
4	1,5000	0,6082	2	1,2164
5	1,6250	0,7890	2	1,5779
6	1,7500	0,9793	2	1,9587
7	1,8750	1,1786	2	2,3573
8	2,0000	1,3863	1	1,3863
Soma				10,1951

$$T(h_8) = 0.0625 * 10.1951 = 0.6372$$