Aufgabe 1 (ca. 45 Minuten):

Gegeben ist das lineare Gleichungssystem

$$Ax = b \text{ mit } A = \begin{pmatrix} 8 & 5 & 2 \\ 5 & 9 & 1 \\ 4 & 2 & 7 \end{pmatrix} \text{ und } b = \begin{pmatrix} 19 \\ 5 \\ 34 \end{pmatrix}.$$

- a) Überprüfen Sie, ob das obige System bzgl. dem Jacobi-Verfahren konvergiert.
- b) Berechnen Sie auf vier Stellen nach dem Komma die Näherung $x^{(3)}$ mit dem Jacobi-Verfahren ausgehend vom Startvektor $x^{(0)} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$. Schreiben Sie alle benötigten Matrizen sowie die verwendete Iterationsgleichung explizit auf. Die Iterationen selber führen Sie aber natürlich mit Python durch.
- c) Wie gross ist gemäss der a-posteriori Abschätzung der absolute Fehler von $x^{(3)}$?
- d) Schätzen Sie a-priori die Anzahl Iterationsschritte ab, damit der berechnete Näherungsvektor in jeder Kompnente maximal um 10^{-4} von der exakten Lösung $x=(2,-1,4)^T$ abweicht.
- e) Wiviele Iterationsschritte würden Sie a-priori benötigen, wenn Sie als Startvektor nicht $x^{(0)}$ sondern $x^{(2)}$ aus b) verwenden würden?

Aufgabe 2 (ca. 30 Minuten):

Wiederholen Sie die obige Aufgabe, diesmal für das Gauss-Seidel Verfahren. Sie dürfen (ausnahmsweise) die Inverse von D+L benutzen (müssen aber nicht, wenn Sie nicht wollen).

$$||x^{(n)}-x||_{\infty} \leq \frac{||B||_{\infty}^{n}}{1-1|E||_{\infty}} \cdot ||x^{(n)}-x^{(n)}||_{\infty} \leq 10^{-4}$$

$$||x^{(n)}-x^{(n)}||_{\infty} = \frac{||x^{(n)}-x^{(n)}||_{\infty}}{||x^{(n)}-x^{(n)}||_{\infty}} = \frac{||x^{(n)}-x^{(n)}||_{\infty}}{||x^{(n)}-x^{$$

$$\begin{array}{c|c} & & & & \\ &$$