L4 – 5.3 Transformations of Trig Functions MHF4U

Part 1: Transformation Properties

$$y = a\sin[k(x-d)] + c$$

Desmos Demonstration

а	k	d	С
Vertical stretch or compression by a factor of	Horizontal stretch or compression by a factor of	Phase shift	Vertical shift
a .	$\frac{1}{ k }$.	d > 0; shift right	c > 0; shift up
Vertical reflection if $a < 0$	Horizontal reflection if	d < 0; shift left	c < 0; shift down
a = amplitude	k < 0.		
	$\frac{2\pi}{ k } = period$		

Example 1: For the function $y = 3 \sin \left[\frac{1}{2} \left(\theta + \frac{\pi}{3}\right)\right] - 1$, state the...

Amplitude:	Period:
Phase shift:	Vertical shift:
Max:	Min:

Part 2: Given Equation → Graph Function

Example 2: Graph $y = 2\sin\left[2\left(x - \frac{\pi}{3}\right)\right] + 1$ using transformations. Then state the amplitude and period of the function.

$y = \sin x$				
x	y			

$y = 2\sin\left[2\left(x - \frac{\pi}{3}\right)\right] + 1$				

Amplitude:

Period:

Part 3: Given the Graph → Write the Equation

$$y = a\sin[k(x-d)] + c$$

а	k	d	С
Find the amplitude of the function:	Find the period (in radians) of the function using a starting point and ending point of a full cycle.	for sin x: x-coordinate of a rising mid-line. for cos x: x-coordinate of a maximum point.	Find the vertical shift OR
			(this finds the 'middle' of the function)

Example 3: Determine the equation of a sine and cosine function that describes the following graph

Example 4: Determine the equation of a sine and cosine function that describes the following graph

Example 5:

a) Create a sine function with an amplitude of 7, a period of π , a phase shift of $\frac{\pi}{4}$ right, and a vertical displacement of -3.

b) What would be the equation of a cosine function that represents the same graph as the sine function above?

Part 4: Even and Odd Functions

Even FunctionsOdd FunctionsEVEN FUNCTION if:ODD FUNCTION if:Line symmetry over the _____Point symmetry about the _____Rule:f(-x) = f(x)

Example:

Example:

 $y = \tan x$ is also an odd function