

Vik Qian 菊风 (Juphoon) 2018

提纲&摘要

• Part1: 实时视频通信质量评价的方法研究

• Part2:根据质量模型设计质量甜点算法

本演讲将分享 Juphoon 媒体引擎开发团队在视频通信质量上的探索实践,通过对视频通话视频的大量统计分析,采用回归、支持向量机等机器学习方法,分析各种因素对通话质量的影响。

听众的预期收获:

- 通过这个学习交流,你可以了解我们通过统计学方法得到的一些编码相关的质量规律
- 了解我们是如何实现实时的质量客观评价和监控的
- 如果你对视频质量技术一无所知,这个分享试图在较短的时间内让你向在这个领域成为专家更近一步

Part1: 动机

- 有没有一种靠谱的评价视频通话质量自动化方法?
- 能否做到实时监控视频通话的端到端质量?

为什么现有简单的方法不可直接用?

PSNR、SSIM ---- need Pic by Pic

$$PSNR = 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight)$$

$$extit{MSE} = rac{1}{m\,n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$

$$SSIM(x,y) = \left[l(x,y)^{\alpha} \cdot c(x,y)^{\beta} \cdot s(x,y)^{\gamma}\right]$$

$$c(x,y) = rac{2\sigma_x\sigma_y + c_2}{\sigma_x^2 + \sigma_y^2 + c_2}$$

$$s(x,y) = rac{\sigma_{xy} + c_3}{\sigma_x \sigma_y + c_3}$$

$$l(x,y) = rac{2\mu_x \mu_y + c_1}{\mu_x^2 + \mu_y^2 + c_1}$$

PEVQ、VQuad-HD、VMAF怎么样?

- PEVQ (ITU-T Rec. J.247 (FR), 2008)
- VQuad-HD (ITU-T Rec. J.341 (FR), 2011)
- VMAF (NetFlix, 2017)
- 需要全参考 ---- 不适合实时视频通话

FR\RR\NR -- 3类参考模型

图来自Wikipedia

ITU 基于码流的可靠传输评价模型(2017)怎么样?

比较接近实时视频通信的质量评价需求,但没有考虑网络丢包、带宽限制、延时。

还不能直接使用。

Pv module in the context of building blocks of the ITU-T P.1203 model

CEV模型(Cubic information Entropy Volume)

$$MOS = TMOS^a * SMOS^b$$

基于 CEV 质量评价模型实践

为什么需要生成系统?

我们研究:

编码失真

量化失真(编码器 QP取值) 频域变换失真(DCT) 下采样失真 超分辨失真(良性) 滤波失真(良性)

传输失真

降低帧率(抽帧) 卡顿(丢帧) 延迟

标准库的各种失真

T3*	T8*	C*	L*	Distortion types
√	V	~	/	Additive Gaussian noise
1	1		9	Additive noise (more intensive color components)
1	1			Spatially correlated noise
1	1	(357)3	6780	Masked noise
1	1	(.	(*)	High frequency noise
1	1		(40)	Impulse noise
V	1	8.	1	Quantization noise
1	1	1	1	Gaussian blur
1	V		•)	Image denoising
1	V	1	~	JPEG compression
1	1	1	1	JPEG2000 compression
✓	1	(3.75)	6783	JPEG transmission errors
1	1	(.	(* ()	JPEG2000 transmission errors
1	1		(40)	Non eccentricity pattern noise
1	~	8.5		Local block-wise distortions of different intensity
1	1		823	Mean shift (intensity shift)
1	1	1	(+)	Contrast change
1			9	Change of color saturation
1			(4)	Multiplicative Gaussian noise
V	6 7 3)	(3 .7 (3	6780	Comfort noise
1	(*)((.	(*)	Lossy compression of noisy images
1			5 4 3	Image color quantization with dither
V		(27)	6 7 83	Chromatic aberrations
1	(=):	(.	8=01	Sparse sampling and reconstruction
2			1	Fast Fading Rayleigh

*T3: TID2013, T8: TID2008, C: CSIQ, L: LIVE

不同失真图片的评价指标

自己生成 VS 公共数据集

自己生成的数据:

- 针对x264、x265、openh264、 VPX视频编码失真做研究
- 传输失真(主要研究时间质量) 600 Videos, 20
 Observers
- 编码失真(主要研究空间质量)300 videos,15
 Observers

Database	Source Images	Distorte d Images	Distorti on Types	Image Type	Observ ers
TID2013	25	3000	24	color	971
TID2008	25	1700	17	color	838
CSIQ	30	866	6	color	35
LIVE	29	779	5	color	161
IVC	10	185	4	color	15
Toyama- MICT	14	168	2	color	16
A57	3	54	6	gray	7
WIQ	7	80	5	gray	60

公开的库范围很广,包含各种失真, 针对性弱一些。

生成系统

众包打分系统

视频436

视频446

视频437

视频447

MOS分说明>>

视频431

视频441

第一组>>

视频432

视频442

视频433

视频443

第二组>>

视频434

视频444

视频435

视频445

●第三组

1打分: 分 提交 备注: 最小1分, 最大5分, 比如4.5

CEV影响因子分析

模型实现

分析时间质量TMOS

- RTT
- Play Timestamp
- Frame rate
- CSPM (Congest Seconds Per Minute)

Proposed TMOS Fitting Model

$$TMOS = 5 \times \frac{Fmos^{m9} \cdot RTTmos^{m10} \cdot Cmos^{m13}}{5^{m9+m10+m13}}, \qquad TMOS \in (1,5)$$

$$Fmos = m5 \cdot F^2 + m6 \cdot F + m7$$

$$RTTmos = m3 \cdot ln RTT + m4$$

 $Cmos = m11 \cdot CSPM + m12$

F为帧率

RTT 为来回延迟

CSPM 为每分钟卡顿秒数

m3=-0.887, m4=8.9061, m5=-0.0048, m6=0.2907, m7=0.6651, m8=0.3, m9=0.5, m10=1, m11=-0.0667, m12=5, m13=0.5

TMOS Fitting 模型效果评估(Pearson 0.86)

ML – Train by SVM

TMOS SVM效果评估(Pearson 0.93)

TMOS 效果评估

回归预测

- MOS相关系数 0.86
- 所需代码数量极少, 速度快
- 需人工设定每个参数占比

可应用于现网质量跟踪

SVM建模

- MOS相关系数 0.93
- 代码量稍多
- 加载时训练模型时间较长

可应用于实验室测试评估

NN 神经网络

- MOS相关系数 0.88 (训练数据不足)
- 需大量数据
- 速度较慢

分析空间质量 SMOS

- PSNR/SSIM
- Encode QP
- Target Res
- Encode Res

PSNR to SMOS

Our data 蓝色为360p以下、棕色为360p以上视频

Lab for Image and Video Engineering (LIVE)
University of Texas at Austin

 $f(x) = \frac{L}{1 + e^{-k(x - x_0)}}$

Jupheon system software

SSIM to SMOS

蓝色为360p以下、棕色为360p以上视频

Lab for Image and Video Engineering (LIVE)
University of Texas at Austin

SMOS几个实用的数据

SMOS	PSNR	SSIM
4.50	40.6	0.98
4.00	36.7	0.9485
3.00	30	0.8715
2.00	24.5	0.7625
1.50	22.15	0.685

^{*} 不同视频源会有不同,更高分辨率的视频同样 SMOS对应更高的PSNR和SSIM

PSNR VS SSIM

Video	PSNR	SSIM		
Average	0.9351	0.9649		
All Pearson	0.8960	0.9005		
All Fit	0.9104	0.9126		
Per Res Fit	0.94569	0.94236		

- 对于同一个视频源不同码率编码的质量评价 SSIM比较准确(0.9351 VS 0.9649)
- 全局评价(有不同视频源) PSNR 和 SSIM 准确度差不多(0.8960 VS 0.9005)
- 按不同分辨率分类拟合能够提高评价准确度 (0.94569 VS 0.94236)

Video	PSNR	SSIM
180p-1 x264	0.92957	0.99124
180p-1 x265	0.89507	0.98096
180p-2 x264	0.93219	0.97743
180p-2 x265	0.93099	0.98918
180p-3 x264	0.89999	0.97610
180p-3 x265	0.84779	0.96665
180p-4 x264	0.90696	0.98375
180p-4 x265	0.91696	0.98347
360p-1 x264	0.98373	0.96854
360p-1 x265	0.97711	0.97686
360p-2 x264	0.95902	0.97133
360p-2 x265	0.93746	0.99218
360p-3 x264	0.90630	0.96961
360p-3 x265	0.83201	0.91705
360p-4 x264	0.99041	0.96004
360p-4 x265	0.94688	0.97349
720p-1 x264	0.94722	0.98469
720p-1 x265	0.92224	0.97748
720p-2 x264	0.95470	0.93365
720p-2 x265	0.96963	0.94442
720p-3 x264	0.96404	0.94488
720p-3 x265	0.93483	0.97016
1080p-1 x264	0.94849	0.92598
1080p-1 x265	0.95464	0.93126
1080p-2 x264	0.95660	0.96673
1080p-2 x265	0.90554	0.94717
1080p-3 x264	0.96706	0.93417
1080p-3 x265	0.96580	0.97968

^{*} All data are PLCC(Pearson)

^{*} rer: Resolution root

Proposed SMOS Fitting Model

$$SMOS = 5 \times \frac{Smos^{n9} \cdot Remos^{n10}}{5^{n9+n10}}, \qquad TMOS \in (1,5)$$

其中 Smos 算法3 档速度(3选一)

Almost No cost $PSNR' = n1 \cdot QP + n2 + n3 * rer, PSNR' \sim PSNR$

Fast (*10ms/frame) $Smos = L/(e^k*(a*psnr + b*rer + c) + d) + e$

Slow (*20ms/frame) $Smos = n5_i \cdot e^{n6_i \cdot SSIM}$

$$Remos = n7 * ln\left(\frac{TargetRes}{EncodeRes}\right) + n8,$$
 $Remos \in (1,5)$

*数量级参考,不同分辨率、平台速度不同

From QP/rer to PSNR

X264 (PLCC 0.987)

openh264 (PLCC 0.939)

上图为不同视频的H. 264编码的 PSNR 和 均值 QP 关系注:不同编码器的QP和PSNR关系会有所不同,需根据实际情况调整

From PSNR/rer to SMOS

PLCC 0.94569

ML – Train by SVM

Proposed CEV MOS

$$MOS = 5 * \frac{TMOS^a * SMOS^b}{5^{a+b}}$$

 $a = 0.6$, $b = 0.4$

现网应用:实时通话质量统计

实验室应用: MOS自动评估测试

ScriptName	NetworkCondition			MOS		
	v1000k_shipin_test	v4.01	v4.01	v4.02-200	v4.02-221	v5.00
Average 2.1.8 P8 180p no	[60~140] Delay=90ms jitter=30ms loss=0% Bandwidth=2000Kbps Buffer=1000 aggregation=0% kmalwifi shipin test	4.69	4.74	4.72	4.69	4.74
Average	[0~60] Delay=30ms jitter=10ms loss=1% Bandwidth=800Kbps Buffer=1000 aggregation=10%	4.89	4.92	4.89	4.89	4.84
Average	[60~140] Delay=60ms jitter=30ms loss=3% Bandwidth=700Kbps Buffer=1000 aggregation=10%	4.72	4.64	4.72	4.77	4.77
Average	[140~200] Delay=100ms jitter=80ms loss=2% Bandwidth=500Kbps Buffer=1000 aggregation=10% stable3G shipin test	4.59	4.39	4.42	4.69	4.54
Average	[0~80] Delay=100ms jitter=60ms loss=20% Bandwidth=2000Kbps Buffer=1000 aggregation=20%	4.29	4.29	4.39	4.39	4.62
Åverage	[80~140] Delay=200ms jitter=100ms loss=15% Bandwidth=300Kbps Buffer=1000 aggregation=85%	4.23	4.03	4.19	3.98	3. 43
Average	[140~200] Delay=150ms jitter=30ms loss=0% Bandwidth=1000Kbps Buffer=1000 aggregation=10% stablewifi_shipin_test	4.59	4.62	4.59	4.59	4.64
Average	[0~60] Delay=50ms jitter=10ms loss=1% Bandwidth=1000Kbps Buffer=1000 aggregation=10%	4.47	4.59	4.49	4.47	4.69
Average	[60~140] Delay=60ms jitter=30ms loss=10% Bandwidth=200Kbps Buffer=1000 aggregation=70%	3.21	3.94	3.47	3.41	3. 17
Average	[140~200] Delay=30ms jitter=10ms loss=0% Bandwidth=2000Kbps Buffer=1000 aggregation=10%	4.72	4.74	4.77	4.69	4.67
Average	[200~260] Delay=150ms jitter=150ms loss=12% Bandwidth=500Kbps Buffer=1000 aggregation=75%	4.39	4.42	4.47	4.32	4. 02

CEV 的缺点

- 依赖编码器,不同编码器需要重新训练(调参)
- 不是端对端,无法对第三方系统做打分

再讨论实时视频的端到端MOS评分

Part2: 动机

LiveVideo StackCon 音视频技术大会

• 能否使用CEV应用到优化编码策略,寻找视频质量甜点(基于感知编码)?

什么是甜点?

Frame Size/Frame Rate	Target Bitrate (VOD, kbps)	Min Bitrate (50%)	Max Bitrate (145%)
320x240p @ 24,25,30	150	75	218
640x360p @ 24,25,30	276	138	400
640x480p @ 24,25,30	512 (LQ), 750 (MQ)	256 (LQ) 375 (MQ)	742 (LQ) 1088 (MQ)
1280x720p @ 24,25,30	1024	512	1485
1280x720p @ 50,60	1800	900	2610
1920x1080p @ 24,25,30	1800	900	2610
1920x1080p @ 50,60	3000	1500	4350
2560x1440p @ 24,25,30	6000	3000	8700
2560x1440p @ 50,60	9000	4500	13050
3840x2160p @ 24,25,30	12000	6000	17400
3840x2160p @ 50,60	18000	9000	26100

https://developers.google.com/media/vp9/settings/vod/ Recommended VOD bitrates

SMOS - 编码空间质量

BPP	CIF size Subjective			
	quality			
0.098	Lowest			
0.195	Enough			
0.296	Highest			

SMOS - 分辨率、帧率关系

- 帧率 影响编码 intra reference
- 分辨率 影响编码 inter reference

$$SMOS = m_1 \ln BPP_x + m_2 = m_1 \ln \frac{Br\left(\frac{R}{R_{base}}\right)^{0.33}}{RF(m_3F + m_4)} + m_2$$

$$BPP_x = \left(\frac{Br}{RF}\right) alpha = BPP_{base} \ alpha$$

$$alpha = \frac{\left(\frac{R}{R_{base}}\right)^{0.33}}{m_3 F + m_4}$$

规模法则 - 杰弗里·韦斯特(Geoffrey West)

Scaling Law

系统	生命体	公司	城市
规模尺度	体重	员工数	人口
获取的能量	代谢率	销售额	产出
消耗的能量	身体维护	成本	基础设施
	■~体重 ^{3/4}]能量~体重	销售额~员工数 ^{0.9} 成本支出~员工数 销售额	产出~人口 ^{1.15} 基础设施~人口 ^{0.85}
	表的能量	成本	基础设施
Log	体重	Log 员工数	Log人口

计算SSIM - 不同分辨率和编码码率

SMOS - 分辨率的规模法则

应用规模法则

$$\frac{R_n}{R_m} = \left(\frac{BPP_n}{BPP_m}\right)^{x}$$

- x 取值1.5~3
- x 越大编码器越适合高分辨率

Openh264 编码举例

Resolution R_{χ} (Height*Width)	Lowest BPP	Enough BPP	Highest BPP
100000(baselin e)	0.098	0.195	0.296
200000	0.0796	0.1584	0.2404
300000	0.0705	0.1402	0.2129
400000	0.0647	0.1287	0.1953
500000	0.0605	0.1203	0.1826
600000	0.0573	0.1139	0.1729
700000	0.0547	0.1088	0.1651
800000	0.0525	0.1045	0.1586
900000	0.0507	0.1009	0.1531

$$BPP_{x} = BPP_{base} \left(\frac{R_{x}}{R_{base}}\right)^{0.33}$$

- 不同编码器参数不一样
- 不同场景也不一样(适用于有一定时空复杂度的视频)

TMOS -- 编码时间质量

$$TMOS = m_5 F^2 + m_6 F + m_7$$

F is frame-rate, $m_5 = -0.0048$, $m_6 = 0.2907$, $m_7 = 0.6651$.

CEV MOS - 编码总体质量

 $CEV = SMOS^{\alpha} * TMOS$

$$CEV = \left[m_1 \ln \frac{Br \left(\frac{R}{R_{base}} \right)^{0.33}}{RF (m_3 F + m_4)} + m_2 \right]^{\alpha} (m_5 F^2 + m_6 F + m_7)$$

$$0.296 > BPP = \frac{Br\left(\frac{R}{R_{base}}\right)^{0.33}}{RF(m_3F + m_4)} > 0.02$$

求导-求极值

$$\frac{dCEV}{dF} = \alpha \left[m_1 \ln \frac{Br \left(\frac{R}{R_{base}}\right)^{0.33}}{R * F(F * m_3 + m_4)} + m_2 \right]^{\alpha - 1} \frac{-m_1(2m_3 + m_4)}{F(m_3 F + m_4)} (m_5 F^2 + m_6 F^2 + m_6 F^2) + m_5 \left[m_1 \ln \frac{Br \left(\frac{R}{R_{base}}\right)^{0.33}}{R * F(F * m_3 + m_4)} + m_2 \right]^{\alpha} (2m_5 F + m_6) = 0$$

求解

$$Br = \frac{e^{\left[\alpha \frac{(2m_3 + m_4)(m_5F^2 + m_6F + m_7)}{F(m_3F + m_4)(2m_5F + m_6)} - \frac{m_2}{m_1}\right]}}{\left(\frac{R}{R_{base}}\right)^{0.33}} RF(m_3F + m_4)$$

$$0.296 > e^{\left[\alpha \frac{(2m_3 + m_4)(m_5 F^2 + m_6 F + m_7)}{F(m_3 F + m_4)(2m_5 F + m_6)} - \frac{m_2}{m_1}\right]} = BPP = \frac{Br\left(\frac{R}{R_{base}}\right)^{0.33}}{RF(m_3 F + m_4)} > 0.02$$

举例: 应用甜点模型

- 给定800kbps带宽,求解不同分辨率下最佳帧率
- 基线值,编码器不同、视频复杂度不同时需要调整

	Video sequence sample	AVC best frame-rate choice							
Resolution		kbps	avgFPS	Obser1	Obser2	Obser3	Obser4	Obser5	CEV
	ANCL CDC 2ioness	10	6.33	5	4	9	8	10	2
	ANSI_SRC_3inrow	30	6.50	9	7	5	6	8	4
	ANSI SPC hobles	20	7.67	10	5	9	9	10	3
176*144	ANSI_SRC_boblec	50	8.50	13	9	8	8	5	8
1/6 144	CDC SDC LaDaint	40	3.67	3	3	4	3	3	6
	CBC_SRC_LePoint	80	7.83	7	7	8	6	7	12
	ANSI_SRC_washdc	100	17.00	16	18	15	15	20	18
	ANSI_SRC_Washuc	150	21.17	21	24	18	25	20	19
	Sign Irono	50	7.67	12	6	8	9	9	2
	Sign_Irene	100	11.67	15	10	12	12	15	6
	ANGLEDC From1	150	11.33	14	13	10	10	8	13
352*288	ANSI_SRC_5row1	350	20.33	17	25	10	25	25	20
332 200	FlamingoHilton	300	16.50	8	11	22	22	22	14
	Fiamingoniiton	500	22.00	14	24	25	25	25	19
	Cheerleaders	400	17.00	13	15	20	20	18	16
	Cneerleaders	200	7.33	6	6	6	7	7	12
	Redflower	100	10.67	14	15	10	8	10	7
		200	13.33	18	24	10	8	10	10
	BetesPasBetes	500	15.00	17	25	10	15	10	13
640*480		400	12.67	14	20	10	10	10	12
040 460	CaesarsPalace	600	17.67	16	25	20	15	15	15
		1200	23.00	23	25	18	25	25	22
	ITII SPC Football	700	21.67	18	25	25	25	22	15
	ITU_SRC_Football	1400	25.00	25	25	25	25	25	25
	itur625_30mobileandcale ndar	300	13.50	18	15	12	12	12	12
720*576		600	18.67	25	25	18	15	12	17
/20*5/6	itur625_15flowergarden	1000	22.33	25	25	20	25	18	21
	iturozo_15ilowergarueri	1800	24.17	25	25	20	25	25	25
1280*720	FighterPilot	600	13.33	15	15	15	15	15	5
		400	13.50	15	15	15	12	15	9
1200.120	ducks_take_off	1500	9.83	7	8	10	10	10	14
		1800	11.67	9	10	13	11	13	14
Pearson coefficient			0.833	0.895	0.871	0.946	0.899	0.874	

对比测试: CEV预测的配置跟人工调校优化配置一致

总结

- CEV 是一种有效的质量评估模型
- 可用于实时视频通信质量评价
- 也可用于质量甜点算法模型设计

Thank you

