Bismillahir Rahmanir Raheem

International Islamic University Chittagong (IIUC)

Department of Electronic and Telecommunication Engineering (ETE) Semester End Examination

Program: B.Sc. (Engg) in ETESemester: Spring 2024Course Code: PHY-1101Course Title: Physics-ITime: 2 hours 30 minutesFull Marks: 50

(i) Answer all the questions. The figures in the right-hand margin indicate full marks. (ii) Course Outcomes (COs) and Bloom's Level are mentioned in additional Column.

Course Outcomes (COs) of this course				
CO1	Demonstrate an understanding of mechanics, waves, optics, heat and thermodynamics			
CO2	Apply basic physics laws and formulae to complex cases like; Fly wheel, Elastic bending, forced			
	oscillation, Compound Pendulum, Heat engine, Polarization etc.			

Bloom's Level of the Questions							
Letter Symbols	R	U	Ap	An	${f E}$	C	
Meaning	Remember	Understand	Ap ply	An alysis	Evaluate	Create	

Part A

[1]	(a)	Illustrate your idea on Angle of contact.	U	CO1	2
	(b)	Explain molecular theory of surface tension in details.	An	CO2	6
	(c)	A capillary tube with an inner radius of 0.5 mm is dipped into water and	Ap	CO2	2
		results in a rise of water by 11 mm within the tube from the liquid surface.			
		Estimate the value of surface tension of water.			
[2]	(a)	Illustrate your idea on streamline motion.	U	CO1	2
	(b)	Derive the equation $\frac{v^2}{2} + gh + \frac{P}{\rho} = C$, where the symbols have their usual	An	CO2	6
		meaning.			
	(c)	An orifice is set at a height of 5 cm from the bottom of a container filled	Ap	CO2	2
		with oil. If the height of the oil surface from the bottom is 55 cm, estimate			
		the value of velocity efflux through the orifice.			
	OR				
[2]	(a)	Express your idea on critical velocity.	U	CO1	2
	(b)	Derive expression for terminal velocity of a fluid from Stoke's formula.	An	CO2	6
	(c)	A fluid of density 1000 Kgm ⁻³ is flowing through a narrow pipeline of	Ap	CO2	2
		inner radius 1.2 cm. If the value of coefficient of viscosity of the fluid is			
		170, determine the value of critical velocity.			

Bismillahir Rahmanir Raheem

		Part B			
[3]	(a)	Illustrate your understanding on phase of a particle in simple harmonic motion.	R	CO1	2
	(b)	Prove that total energy of a particles in simple harmonic motion is $\frac{1}{2}KA^2$.	An	CO2	6
	(c)	A weightless spring suspended from ceiling is weighted by 100 gm ball and extended by 4 cm at the free end. If the ball is pulled down by 3 cm and allowed for oscillation, estimate the time period of the spring.	AP	CO2	2
[4]	(a)	What do you understand about thermodynamic system? Mention some types of thermodynamic systems.	R	CO1	2
	(b)	Explain isothermal and adiabatic process in detail.	An	CO2	6
	(c)	At 350°K, a gas in a system attains an increase in volume by 30 mm ³ . Calculate the amount of work done by the gas in the system. Consider n=500.	Ap	CO2	2
		OR			
[4]	(a)	Sketch heat engine and refrigerator as block diagram.	U	CO1	2
	(b)	Derive the relation $W = R \log \frac{V_2}{V_1} [T_1 - T_2]$, where the symbols correspond to terms related to Carnot heat engine.	An	CO2	7
	(c)	A Carnot engine has efficiency 33 %, it's temperature at sink is 37°. Find the temperature of the source.	Ap	CO2	1
[5]	(a)	Elaborate on polarization of light.	U	CO1	2
	(b)	Explain the process of plane polarized light by reflection process.	An	CO2	3
	(c)	State and explain Brewster's law for polarization of light.	An	CO2	3
	(c)	Prove that light waves are transverse waves.	An	CO2	2