Laboratorium Mikroprocesory

SYSTEM PRZERWAŃ
MIKROKONTROLERA 8051

System przerwań

- Przerwanie można traktować jako polecenie skoku do z góry zdefiniowanego adresu.
- Mikrokontroler 8051 posiada wieloźródłowy system obsługi przerwań o dwóch priorytetach z możliwością zagnieżdżania.
- Mikroprocesor akceptuje żądania przerwania z pięciu źródeł:
 - dwa zewnętrzne urządzenia zgłaszające przerwania przez wejścia INTO i INT1
 - po jednym przerwaniu od każdego timera
 - ▶ jedno przerwanie z portu szeregowego.

System przerwań Adresy obsługi

- Każde przerwanie ma przydzielony adres, pod którym powinna być umieszczona procedura obsługi.
- Każdemu z pięciu przerwań może być przydzielony jeden z dwóch poziomów priorytetów.

źródło przerwania	adres obsługi
	przerwania
przerwanie zewnętrzne 0	3H
wewnętrzny timer 0	OBH
przerwanie zewnętrzne 1	13H
wewnętrzny timer 1	1BH
wewnętrzny port szeregowy	23H

System przerwań Zezwolenie na przerwania

- Aby przerwanie mogło być zrealizowane konieczne jest ustawienie zezwolenia na przerwanie
- Bity zezwoleń na przerwania zawarte w rejestrze przerwań IE.

IE7	IE6	IE5	IE4	IE3	IE2	IE1	IE0
EA	-	-	ES	ET1	EX1	ET0	EX0

EA - ogólne zezwolenie na przerwania

ES - zezwolenie na przerwanie transmisji szeregowej

ET1 - zezwolenie na przerwanie z timera 1

EX1 - zezwolenie na przerwanie z wejścia INT1

ETO - zezwolenie na przerwanie z timera 0

ETX - zezwolenie na przerwanie z wejścia INT0

System przerwań Flagi przerwań

- Na skutek żądania przerwania ustawiane są odpowiednie wskaźniki w rejestrach TCON i SCON.
- Dane przerwanie zostanie obsłużone jeśli odpowiadający mu bit będzie ustawiony i jeśli nie ma żądania przerwania o wyższym priorytecie.

źródło przerwania	nazwa flagi	lokalizacja	
przerwanie zewnętrzne 0	IE0	TCON.1	
wewnętrzny timer 0	TF0	TCON.5	
przerwanie zewnętrzne 1	IE1	TCON.3	
wewnętrzny timer 1	TF1	TCON.7	
wewnętrzny port	TI	SCON.1	
szeregowy			
wewnętrzny port	RI	SCON.0	
szeregowy	KI		

System przerwań Priorytety przerwań

Źródła przerwań mają przyznawane poziomy priorytetów przez ustawienie odpowiednich bitów w rejestrze priorytetu przerwań IP.

Ustawiając te bity w stan 1, przyznawany jest danemu

przerwaniu wyższy priorytet.

Każde źródło przerwań ma też priorytet wewnątrz poziomu, który jest wykorzystywany w przypadku konfliktu przerwań o tym samym priorytecie

źródło	flaga	priorytet	lokalizacja
przerwania	priorytetu	wewnątrz	
		poziomu	
port szeregowy	PS	.4 (najniższy)	IP.4
timer 1	PT1	.3	IP.3
INT1	PX1	.2	IP.2
timer0	PT0	.1	IP.1
INT0	PX0	.0 (najwyższy)	IP.0

Przykład

Plik: przerw_example.asm

```
T0_G
T0_C
T0_M
                                                         ;COUNTER/-TIMER
;MODE (0..3)
TIMO
;TIMER 1
T1_G
T1_C
T1_M
TIM1
                                                         :COUNTER/-TIMER
                     = 46 080 cykli = 180 * 256
                                       THO,#THO SET
                                                                           :przerwanie od Timera 0
                                                                           ;zainicjuj R7: 20*50ms=1s
                                                                           :start Timera 0
                                                                           ;programu głównego
```


Zadanie

- Napisz stoper mierzący czas z zakresu od 0 do 99 s z rozdzielczością 10ms (0,01 s).
- Funkcjonalność:
 - Czas jest wyświetlany w formacie: 00,00
 - Użytkownik ma możliwość uruchomienia/zatrzymania stopera przyciskiem z klawiatury

Zadanie

Ocena

- 3 realizacja zadania bez możliwości zatrzymywania i z maksymalnym czasem pomiaru 0,99 s
- 4 realizacja zadania bez możliwości zatrzymywania i z maksymalnym czasem pomiaru 99,99 s
- 5 realizacja zadania z możliwością zatrzymywania i z maksymalnym czasem pomiaru 99,99 s

