TABULATION METHOD (OR) QUINE Mc-CLUSKEY METHOD

GOA + AA =

10) Simplify the following boolean expression using tabulation method:

 $F(A,B,C,D) = \leq_{m} (0,2,5,6,7,8,10,12,13,14,15)$

Column	Step -I							
0 - 0000		column-ji	Step ji					
2 - 0010	2-0000	(0,2)/	00-0					
0101/	2-0010 8-1000	(0,8) ~	- 0 00					
5 - 0110		(216)	0-10					
6	5 - 0101	(2,10)	- 010					
1 - 01110	6 - 0110	•						
8 - 1000	10 - 1010	(8,10) / (8,12)	10-0-					
1010/	12 - 1100	(517)						
10 - 1100	7 - 0111	(5/13)	01-1					
12	13 - 1101 -	(6,7)	_101 011_					
13 - 1101	14 - 1110	(b/14) /	_110					
14 - 1110 / /-		(10,14)	£ 1-10					
1 1111//	15 -1111	(12,13)	110_					
15 1 (1)	1 8 1	(12,14)	11-0					
	Ī	SK.	-					
or Divido	the minterm	/ ·	iffuent					
orep.								
sections depending upon the no of ones in								
ρ~ •	0 1	0 41	Marie 1					
minterm			1					
Step 2: Compare	the mint	terms in	the adjacent					
sections. The two	minterms	are said	to be compand.					
if only one variable changes put a dient								
the position where the variable is changing.								
Step 3: In the second		(7,15)	<u> </u>					
me ta	aum named		11-1					
minterm can be	LIV FI	(13/15)	111-					
with the adjacent	table. If	(14,15)						
wash is in the same position								
E single variable changes; continue								
the process.	V							

Sups: Solut the column which has single state & take come ponding implicant as essential prime implicant & verify whether essential prime implicant covers the min term in the given function.

	0	2	5	6	7	8	10	12	13	14/10
(0,2,8,10)	(x)	*				х	Х			
C.D'		X		×			X			×
AD' (8,12,10,1	4)					×	*	×	7	
(BD) (5 ,7,13,19	5)		X		×		, , , ,		Х	4
BE 6,7,1411	۲)،		4 5	*	×					ХX
AB	:		, ¹				4	×	×	××

F = B'D' + BD + (CD' + AD') or (BC + AB) or

(BC + AD') or (CD' + AB)

compulsory => single

complem state.

11/8/16
f= 2 (3,4,6,11,15,19,20,22,24,30,31) + 2d (5,7,14,12,24)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Jhis has not (11,15) 0-111 Jhis has not (11,15) 01-11 be combined with (11,27) -1011 (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 0111- (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 01-11 (14,15) 0111- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 011- (14,15) 01- (14,15) 01- (14,15) 0
(30,31) 1111_ Ans: B'CE'+AB'C'D

paine implica	14								
	1001 - 10-10				AB'c				
1					A BI				
L415/6/7)					AlB				
(416,20,22)	-01-0				BIC	3			
(3,7,11,15)	011				A'D				
(3,11,19,27)		1			C/D				
					A'C		- 		
(6,7,14,15)					CDE	,			
(6,14,22,30					BDE				
(11,15,27,3									
(14/15/80/2	sı) – III	-			A	becau	se it	conto	ins the
3	4 6	11	13	2 19	100	.0	22	30	31
AB1c1 D [18,19]	3 1		x - h - j	X			1 15	1 3 31	•
AB'DE' (18,21)					1		×	,	
A'6'C (415,6,7)	XX	la.	o a sid	da Ass	y 2003.				
B'CE' (416,20,	X	×	7.47	7) 2	(i by	X	×	14	riginal
A'DE (3,7,11,15)	x	- 25	×	×	Fre .	b	§ onless	7 23	110
CIDE (3/11/9/2) >	Arres A	jes 1	X	i	X	ġ	LACE I	dema	402
A'CD (6,7,14,15)		у		×	7		A MOVE	U C	40
CDE (6,14,22, 30)		х					X	×	
BDE (U,15, 27, 31)	(0) 2		X	×			. 9		×
BCD (14,12,30,31)	-	. 5		×	1				x ®
	4	4	1	1"	1		Co	annad	by CamSo