

Labor Matlab für die industrielle und medizinische Bildverarbeitung

Prof. Dr.-Ing. Bodo Rosenhahn

Institut für Informationsverarbeitung

Einleitung

- 19.10. Introduction (1h VL, 3 L), Accountvergabe (Präsenz)
- 26.10. Local operators (Harris, etc.) (1h VL, 3L)
- 02.11. Global Operators (Hough Transform) (1h VL, 3L)
- 09.11. Region Growing / Watershed Segmentation (1h VL, 3L)
- 16.11. Bayes Classifier (1h VL, 3L)
- 23.11. K-Means / Mean shift (1h VL, 3L)
- 30.11. Shape Context (1h VL, 3L)
- 07.12. Morphological Operators (1h VL, 3L)
- 14.12. Disparity estimation (DTW) (1h VL, 3L)
- 21.12. Restarbeiten vor Weihnachten (4L)
- 11.01. Calibration and Triangulation (1h VL, 3L)
- 18.01. PCA (1h VL, 3L)
- 25.01. Tracking (1h VL, 3L)

Silhouetten-Verarbeitung

- Erosion Dilatation
- Opening Closing
- Momente
- Eckendetektion auf Silhouetten
- Distanztransformation
- Skelettisierung

Morphologie

Morphologisch: die äußere Gestalt betreffend

morphologische Operationen:

Operationen auf der Gestalt von Objekten setzt die Extraktion einer Gestalt voraus

also: in erster Linie Operation auf Segmenten (z.B. auf Binärbildern)

Wozu ist es gut?

- Veränderung der Gestalt, um Störungen nach einer Segmentierung zu beseitigen
- Berechnung von Formmerkmalen
- Suche nach bestimmten Formen (also: Analyse)

Topologie

 N_8 : \bullet \bullet \bullet \bullet \bullet

$$N_4 = \{(u, v) \mid |u - r| + |v - c| = 1\}$$

$$N_8 = \{(u, v) \mid \max\{|u - r|, |v - c|\} = 1\}$$

4er und 8er Nachbarschaft von Punkten

Strukturelement

Strukturelement: Bei jeder morphologischen Operation wird ein Strukturelement (oder Strukturierendes Element) S mit einem Referenzpunkt, auch Kern oder Maske genannt, verwendet.

Silhouetten

Strukturierendes Element

Erosion

$$X \ominus B = \{x : B_x \subset X\}.$$

■ value 1
□ value 0

(a) *X*

(b) *B*

(c) $X \ominus B$

Erosion

Strukturierendes Element

Erosion

Strukturierendes Element

Dilatation

$$X \oplus B = \{x : B_x \cap X \neq 0\}.$$

value 1
value 0

(a) *X*

(b) *B*

(c) $X \oplus B$

Dilatation

Strukturierendes Element

Öffnen (Opening)

$$X \circ B = (X \ominus B) \oplus B.$$

(a) X

(b) *B*

(c) $X \circ B$

Schliessen (Closing)

$$X \bullet B = (X \oplus B) \ominus B$$
.

value 1
value 0

(a) *X*

(b) *B*

(c) $X \bullet B$

Anwendung (Öffnen)

 Merkmalsdetektion durch Grösse des strukturierenden Elements

Original image

Thresholded

Opening with small structuring element

Opening with larger structuring element

Anwendung (Öffnen)

Merkmalsdetektion durch Gestalt des strukturierenden Elements

http://homepages.inf.ed.ac.uk/rbf/HIPR2/

Anwendung (Schliessen)

Grundlagen der Bildverarbeitung, 14. Morphologische Operationen, Klaus Toennies

$$S_{b4} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 Erosion mit S_{b4} bzw. S_{b8} entfernt alle Objekt-pixel, in deren 4- bzw. 8-Nachbarschaft sich Hintergrundpixel befinden.

Der Rand kann nun durch Differenzbildung zwischen Ursprungsbild und erodiertem Bild erzeugt werden: $\partial G = G \setminus (G \ominus S_b)$

Grundlagen der Bildverarbeitung, 14. Morphologische Operationen, Klaus Toennies

$$∂G = G \setminus (G \ominus M_b)$$

$$= G \cap \overline{(G \ominus M_b)}$$

$$= G \cap (G \oplus M_b)$$

Hintergrundrand:

$$\partial G_{\mathbf{B}} = (G \oplus \mathbf{M}_{\mathbf{b}}) \setminus G$$

Grundlagen der Bildverarbeitung, 14. Morphologische Operationen, Klaus Toennies

Morphologische Konturextraktion

Subtrahiere A vom erodierten A

$$\beta(A) = A - (A \ominus B)$$

- Bei einem 3x3-Strukturelement erhält man Exakt die Konturdicke 1.
- Kontur i.A. nicht geschlossen

Grauwert-Erosion

Grauwert-Dilatation

Grauwert - Öffnen und Schliessen

Matlab Beispiel Erosion/Dilatation

Eigenschaften

Dilatation

- Kommutativ: $F \oplus S = S \oplus F$
- Assoziativ: $F \oplus (S_1 \oplus S_2) = (F \oplus S_1) \oplus S_2$
- Chain rule:

$$F \oplus S = F \oplus (S_1 \oplus S_2 \oplus \cdots \oplus S_n) = (((X \oplus S_1) \oplus S_2) \cdots) \oplus S_n$$

Erosion

- Nicht kommutativ: $F \ominus S \neq S \ominus F$
- Nicht assoziativ: $F \ominus (S_1 \ominus S_2) \neq (F \ominus S_1) \ominus S_2$
- Chain rule:

$$F \ominus S = F \ominus (S_1 \oplus S_2 \oplus \cdots \oplus S_n) = (((X \ominus S_1) \ominus S_2) \cdots) \ominus S_n$$

• Opening/Closing: Idempotenz

$$F \circ S = (F \circ S) \circ S;$$
 $F \bullet S = (F \bullet S) \bullet S$

Hit-And-Miss

$$G \otimes (S_1, S_2) = (G \oplus S_1) \cap (\overline{G} \oplus S_2)$$
$$= (G \oplus S_1) \cap (\overline{G} \oplus S_2)$$

Hit

führt zur Akzeptanz von horizontalen Linien von 3,4, und 5 Pixeln Länge.

Notation:
$$M = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & x & 1 & 1 & 1 & x & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Beispiel

Distanztransformation

(Euklidische Metrik)

Distanz-transformationen

(Matlab Example)

Distanz-transformationen

Distanztransformationen sind recht empfindlich bei Störungen!

Skelettisierung

Ziel ist eine größtmögliche Verdünnung oder auch Skelettisierung der Objekte eines Bildes, wobei die *Konnektivität* und die Form erhalten bleiben soll.

Anwendung

Analyse von Schrift oder Blutgefäss-verzweigungen

Distanztransformation

- 2. Verfahren
- (a) Distanztransformation
- (b) Ableitung

(Matlab Example)

Anwendungen

MHH (Ochs)