

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

E344 Assignment 2

Daniel von Eschwege 21785155

Report submitted in partial fulfilment of the requirements of the module

Design (E) 344 for the degree Baccalaureus in Engineering in the Department of Electrical

and Electronic Engineering at Stellenbosch University.

UNIVERSITEIT.STELLENBOSCH.UNIVERSITY jou kennisvennoot. your knowledge partner

Plagiaatverklaring / Plagiarism Declaration

- 1. Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele eiendom van ander persone asof dit jou eie werk is.
 - Plagiarism is the use of ideas, material and other intellectual property of another's work and to present is as my own.
- 2. Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit 'n vorm van diefstal is.
 - I agree that plagiarism is a punishable offence because it constitutes theft.
- 3. Ek verstaan ook dat direkte vertalings plagiaat is.

 I also understand that direct translations are plagiarism.
- 4. Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.

 Accordingly all quotations and contributions from any source whatsoever (including the internet) have been cited fully. I understand that the reproduction of text without quotation marks (even when the source is cited) is plagiarism
- 5. Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik ingehandig het vir bepunting in hierdie module/werkstuk of 'n ander module/werkstuk nie.

 I declare that the work contained in this assignment, except where otherwise stated, is my original work and that I have not previously (in its entirety or in part) submitted it for grading in this module/assignment or another module/assignment.

21785155	Dischwege	
Studentenommer / Student number	Handtekening / Signature	
D.H. von Eschwege	September 24, 2020	
Voorletters en van / Initials and surname	Datum / Date	

Contents

De	ectaration	
Lis	st of Figures	iii
Lis	st of Tables	iv
No	omenclature	v
1.	System design	1
	1.1. System overview	. 1
2.	Heart rate sensor	2
	2.1. Introduction	. 2
	2.2. Design	. 2
	2.3. Results	. 4
	2.4. Summary	. 7
3.	System and conclusion	9
	3.1. System	. G
	3.2. Lessons learnt	S
Bil	bliography	10
Α.	Social contract	11
В.	GitHub Activity Heatmap	12
C.	Stuff you want to include	13

List of Figures

1.1.	System Diagram	1
2.1.	Complete Circuit enlarge this	2
2.2.	Frequency response of filters	5
2.3.	Amplification of filtered signal	5
2.4.	Pulse width modulation - 60 BPM	5
2.6.	Pulse width modulation - 60 BPM	6
2.7.	Circuit diagrams of the two voltage regulators, and another irrelevant one	7
2.5.	Pulse width modulation - 150 BPM	7
2.8.	I am the short caption that appears in the List of Figures list	8

List of Tables

2.1.	Example of a simple table	. 7
2.2.	Example of another table	. 8

Nomenclature

Variables and functions

p(x) Probability density function with respect to variable x.

P(A) Probability of event A occurring.

 ε The Bayes error.

 ε_u The Bhattacharyya bound.

B The Bhattacharyya distance.

s An HMM state. A subscript is used to refer to a particular state, e.g. s_i

refers to the i^{th} state of an HMM.

S A set of HMM states.

F A set of frames.

Observation (feature) vector associated with frame f.

 $\gamma_s(\mathbf{o}_f)$ A posteriori probability of the observation vector \mathbf{o}_f being generated by

HMM state s.

 μ Statistical mean vector.

 Σ Statistical covariance matrix.

 $L(\mathbf{S})$ Log likelihood of the set of HMM states **S** generating the training set

observation vectors assigned to the states in that set.

 $\mathcal{N}(\mathbf{x}|\mu,\Sigma)$ Multivariate Gaussian PDF with mean μ and covariance matrix Σ .

 a_{ij} The probability of a transition from HMM state s_i to state s_j .

N Total number of frames or number of tokens, depending on the context.

D Number of deletion errors.

I Number of insertion errors.

S Number of substitution errors.

Acronyms and abbreviations

AE Afrikaans English

AID accent identification

ASR automatic speech recognition

AST African Speech Technology

CE Cape Flats English

DCD dialect-context-dependent

DNN deep neural network

G2P grapheme-to-phoneme

GMM Gaussian mixture model

HMM hidden Markov model

HTK Hidden Markov Model Toolkit

IE Indian South African English

IPA International Phonetic Alphabet

LM language model

LMS language model scaling factor

MFCC Mel-frequency cepstral coefficient

MLLR maximum likelihood linear regression

OOV out-of-vocabulary

PD pronunciation dictionary

PDF probability density function

SAE South African English

SAMPA Speech Assessment Methods Phonetic Alphabet

Chapter 1

System design

1.1. System overview

Figure 1.1: System Diagram

A heart-rate sensor is designed to receive an input signal from which pulses and analogue values are generated, corresponding to heart-beats and the heart-rate respectively. The aforementioned is achieved by voltage regulation, signal conditioning, pulse generation and conversion to analogue, as shown in figure 1.1. The circuit is powered by a voltage regulator [1] which can supply 100 mA, of which 12.8 mA is used for the temperature sensor - see E344 Assignment 1 [1] - leaving 87.2 mA at 5 V. The input signal has an amplitude of insufficient magnitude for conversion, and is subject to noise, necessitating signal conditioning: a first order passive high-pass filter and a second order active low-pass filter attenuate both highand low-frequencies. Chosen with maximal simplicity in mind to reduce cost and complexity, the filters still performing adequately. Thereafter, a differential amplifier produces a signal with a large amplitude and little noise. A Schmitt Trigger then outputs a pulse signal with a frequency corresponding to the heart-rate. The Schmitt Trigger was chosen as it provides a noise margin via hysteresis. An analogue voltage output is required for the microcontroller filtering and peak detection using diodes was considered but discarded, as non-linear diodes result in extremely slow simulation. Rather, the pulse output signal was converted to a pulse-width modulated signal, where the frequency of the former determines the duty cycle of the latter. This was done as PWM signals lend themselves to conversion-to-analogue by simple filtering. The PWM signal was obtained by using a D Flip-Flop and a RC-circuit (see section ??). A third order passive RC filter is then used - passive components reduce current usage and simulation time. The filter is of high order as to minimize noise, while meeting the settling time requirement. Finally, the signal was amplified to achieve the required range.

Chapter 2

Heart rate sensor

2.1. Introduction

Circuits pertaining to signal conditioning, pulse signal and analogue output generation will be discussed. Conditioning is done via filtering and amplification; active filters provide high input and low output impedance, and a large Q-factor [2]. A differential amplifier is suitable for amplification, as the gain is referenced against a customizable voltage [3]. A Schmitt Trigger is well-suited for pulse generation, as it provides a noise margin [4]. PWM signals can be converted to analogue using filtering [5]. check template at end to make sure everything is included

2.2. Design

Figure 2.1: Complete Circuit enlarge this

The complete circuit is shown upfront in figure 2.1 in order to aid with explanation. Note that when resistor values are selected at random, the largest resistor in the sub-circuit is always chosen to be $500 \, \mathrm{k}\Omega$, as to reduce current usage. The design process now follows.

The stimulus input signal contains noise at 0.25 Hz and at 5 Hz and higher. The information in the signal resides between 0.8 to 2.5 Hz, corresponding to 50 and 150 BPM respectively. Noise results in distorted square wave output, necessitating filtering. A first order passive high-pass filter, cutoff frequency 0.606 Hz, attenuates the low frequency noise. With R18 = $500 \,\mathrm{k}\Omega$, C8 = $525 \,\mathrm{nF}$ according to $f_c = \frac{1}{2\pi RC}$. The capacitor is connected to a virtual ground of 2.5 V, thus centering the signal around 2.5 V. A second order active low-pass

filter, cutoff frequency 4.1 Hz, filters out high frequency noise. $R5 = R6 = 500 \,\mathrm{k}\Omega$, C1 = C2 = 77 nF - see aforementioned formula. Cutoff frequencies were selected to remove noise maximally while minimally affecting heart-rate data. The signal should reside slightly above 2.5 V to facilitate amplification (to be discussed). Thus, Rb1 = $500 \,\mathrm{k}\Omega$ and Ra1 = $10 \,\mathrm{k}\Omega$ since $A_v = 1 + \frac{R_A}{R_B}$ [?]. The TL081 op-amp is used, as it is less expensive than the TLC2272 [?]. A filter output with DC offset slightly above 2.5 V allows for the use of a differential amplifier with the existing virtual ground connected to the negative input, thus removing the need for additional circuitry otherwise required to provide a voltage level at the negative input. The signal is amplified according to $V_{OUT} = \frac{R_a}{R_b} (V_2 - V_1)$ [3], where R_a corresponds to R7 and R9, and R_b to R8 and R10. The gain of 50 was selected to again provide a DC offset of 2.5 V, as it facilitates implementation of the comparator (to be discussed). Since the amplified signal has an amplitude of only 1.66 V, the inexpensive TL081 was chosen despite having a smaller output range. Next, the signal is fed into a Schmitt Trigger comparator, which produces 5 V if the input exceeds the upper trip point (UTP) and 0V if the input falls below the lower trip point (LTP) [4]. The range between the UTP and LTP is referred to as the hysteresis width and serves as a noise margin [4] around the reference voltage, V_{REF} . The hysteresis width was chosen as 0.5 V as to be an order of magnitude larger than the highest levels of noise present on the signal serving as input to the comparator. As mentioned previously, the amplified signal has a DC offset of $2.5 \,\mathrm{V}$, which was chosen as to require $\mathrm{V}_{\mathrm{REF}} = 2.5 \,\mathrm{V}$, once again allowing for the use of the existing virtual ground (instead of additional circuitry) at the negative input of the LT1018 comparator, which was chosen as it allows for output very close to 0 and 5V, and has a high gain. Now, UTP = 2.75 V, LTP = 2.25 V, UTP = $V_{REF} + \beta Vcc$ and LTP = $V_{REF} - \beta Vcc$, thus $\beta = 0.05$ [4]. Further, $\beta = \frac{R_{22}}{R_{22} + R_{21}}$. Thus $R21 = 190 \, k\Omega$ and $R22 = 10 \, k\Omega$. (R21 was later adjusted to $100 \,\mathrm{k}\Omega$ to account for loading effects). The design specifications require a pulse width of at least 150 ms. A one-shot was considered to extend the pulses, but was omitted as the requirement could be met without it. All of the aforementioned thus produces a square wave output, where the frequency of the pulses directly relates to the heart-rate.

Obtaining an output suitable for a microcontroller presents itself as a problem of converting frequency to analogue. The decision was made to obtain a PWM signal from the FM pulse signal, as PWM signals lend themselves more readily to conversion-to-analogue using a simple low-pass RC filter. Pulse-width modulation was achieved by means of a D flip-flop. The essence of the design is to firstly keep the output high continually, but to then drive the output low for a fixed time, once per period. Since the period of the clock signal varies against BPM, driving low for a fixed amount of time results in a different ratio of the pulse being low at different frequencies, producing a varying duty cycle. Specifically, the previously generated pulse signal is used as a clock signal for the D flip-flop, and the not-Q output is fed back into the data line. This would normally drive the output high for all time t; thus a RC circuit is added of which the capacitor is charged by the not-Q output, and connected to the SET-line

of the flip-flop. Once the capacitor charges to 2.5 V, Q is pulled high and not-Q low until the next rising edge of the clock input inverts Q and not-Q. The result is a slightly delayed PWM signal, with a large duty cycle at high frequencies, and vice-versa. This configuration was preferred above the standard one-shot setup, as it results in a linear and consistent PWM output, as long as the capacitor charge time is selected to be shorter than the narrowest pulse of the clock signal. See section 2.3, figure 2.6 for output graphs. The calculations follow. Select R1 = $500 \,\mathrm{k}\Omega$. The capacitor charge oscillates between V_L and V_H . V_H = $2.5 \,\mathrm{V}$. V_L is reached for the first time at t_{L_1} and V_H at t_{H_1} . V_L is then reached at t_{L_2} . For 150 BPM (or $2.5 \,\mathrm{Hz}$), the pulse drives high for $0.2 \,\mathrm{ms}$. Since the capacitor has to charge faster than $0.2 \,\mathrm{ms}$, a charge time of $0.16 \,\mathrm{ms}$ was selected to add a 20% margin, accounting for noise. Thus $t_{H_1} - t_{L_1} = 0.16$ and $t_{L_2} = 0.4 - 0.16 = 0.24$ for the 150 BPM signal. Finally,

$$V_L = 5\left(1 - e^{\frac{t_{L_1}}{\tau}}\right)$$

$$V_H = 5\left(1 - e^{\frac{-t_{H_1}}{\tau}}\right)$$

$$V_L = V_H\left(e^{\frac{t_{L_1}}{\tau}}\right)$$

giving $C = 1\mu$. Solving of equations is omitted here for the sake of brevity. See Appendix C for the relevant Matlab script.

Having obtained a PWM signal, a fourth order passive low-pass filter produces analogue values in the range of 0.95 to 1.2 V. A cutoff frequency of 0.5 Hz ensures maximal attenuation of noise while maintaining a 5% settling time of 10 seconds. Therefore resistor values are $500 \,\mathrm{k}\Omega$ and capacitor values are $1\,\mu$. Finally, the analogue output is amplified by means of a differential amplifier with a negative input at 0.938 V. A gain of 20 produces a sufficient output range. Resistor values were chosen to be large as to minimize loading effects. Thus, $R2 = R12 = 900 \,\mathrm{k}\Omega$ and $R11 = R13 = 45 \,\mathrm{k}\Omega$ according to $V_{\mathrm{OUT}} = \frac{R_a}{R_b} \left(V_2 - V_1 \right)$ [3]. Loading effects still had a slight effect, and required adapting R11 and R13 to $41 \,\mathrm{k}\Omega$. An analogue transducer is thus designed, and can be connected to a microcontroller.

2.3. Results

The frequency response of both the high- and low-pass filters are -3dB at 0.606 Hz and -6dB at 4.3 Hz respectively, as shown in figures 2.2a and 2.2b, thus matching the design calculations almost perfectly. **current!!!!!!**

The filtered signal is passed through a differential amplifier; the input is shown in blue and the output in red in figure 2.3. The filtered signal has a 50 mV amplitude (peak-to-peak), and the output 1.747 V. Therefore $A_v \approx 35$, which, although smaller than calculated, is to be expected due to non-linear behaviour for high amplification factors.

Following amplification, the signal is passed into a LT1018 comparator. Input and output thereof is shown in figure 2.4. Measurements yielded $UTP = 2.75 \,\mathrm{V}$ and $LTP = 2.25 \,\mathrm{V}$, giving

Figure 2.2: Frequency response of filters

Figure 2.3: Amplification of filtered signal

a hysteresis width of $0.5\,\mathrm{V}$, exactly as calculated. The cursor at the top right in figure $2.4\,\mathrm{measures}$ the narrowest pulse at $150\,\mathrm{BPM}$ as to demonstrate compliance with the $150\,\mathrm{ms}$ requirement, and the lower right gives the values of the tip points.

For the analogue transducer, a PWM signal is obtained as in figure 2.6. Section 2.2 explains the interrelation of the signals, where voutbeatpulses, pwm, /q and rc correspond to the clock signal, Q, not-Q and the charging capacitor voltage respectively. As shown, the pulse is high for about 730 ms of every 1s period in the case of 60 beats per minute. A duty cycle of 73% is thus obtained, and decreases to 56% for 0.223s of 0.4s at 150 beats per minute - see

Figure 2.4: Pulse width modulation - 60 BPM

Figure 2.6: Pulse width modulation - 60 BPM

figure 2.5. Finally, amplification and filtering of the PWM signal produces the output shown in figure ??, demonstrating an output range of 4.2 V.

Figure 2.5: Pulse width modulation - 150 BPM

Figure 2.7: Analogue Voltage Output

Table 2.1: Example of a simple table.

	2017	2018	Δ_{Abs}	Δ_{DiD}
A B	9,868 $10,191$	10,399 10,590	$+5 \\ +4$	-11 -12

2.4. Summary

State whether your design performs as expected and what the limitations are or things to keep in mind are.

Table 2.2: Example of another table.

Schools	Total energy used		Change	
Solidolis	2017 [kWh]	2018 [kWh]	$\begin{array}{c} \Delta_{Abs} \\ [\%] \end{array}$	Δ_{DiD} [%]
A B	9,868 $10,191$	10,399 $10,590$	$+5 \\ +4$	-11 -12

Figure 2.8: Circuit diagrams of the two voltage regulators, and another irrelevant one

8

Figure 2.9: Voltage regulation, comparing the linear and switchmode regulators... (a) Blah blah. (b) Blah blah. (c) Blah blah. (d) Blah blah. As far as possible, please put input(s) and output(s) on the same plot rather than on separate plots. Based on the datasheet of XXXX in [?]

Chapter 3

System and conclusion

3.1. System

Report on the "so what" or the take-away of the ciruit you designed in this report. Report on noise levels and how the Heart rate sensor will fit into the system (E.g. what the calibration will look like and what the measurement error will be given the range, quantisation error and noise).

3.2. Lessons learnt

Write down at least three of the most important things you have learnt in Assignment 2, and state what you would have done differently if you had another chance.

Bibliography

- [1] "E344 assignment 1."
- [2] "Difference between active and passive filter."
- [3] W. Storr, "Operational amplifiers," 2018. [Online]. Available: https://www.electronics-tutorials.ws/opamp
- [4] —, "Op-amp comparator," 2018. [Online]. Available: https://www.electronics-tutorials. ws/opamp/op-amp-comparator.html
- [5] "Analog output convert pwm to voltage."

Appendix A

Social contract

Sign and inlcude.

Appendix B

GitHub Activity Heatmap

Take a screenshot of your github version control activity heatmap and insert here.

Appendix C Stuff you want to include