

FCC PART 15 B, CLASS B TEST REPORT

For

Nexpro International Limitada

San Jose-Goicoechea, Guadalupe, Barrio Tournon, Frente Al Hotel Villas Tournon, Oficinas Del Bufete Facio Y Canas, Costa Rica

FCC ID: ZYPS9081

Report Type: **Product Type:** Original Report Smartphone Gardon Zhang **Test Engineer:** Gardon Zhang Report Number: R1DG130121001-00A **Report Date:** 2013-02-06 Alvin Huang Reviewed By: RF Leader **Test Laboratory:** Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION	4
DESCRIPTION OF TEST CONFIGURATION	4
EUT Exercise Software	4
EQUIPMENT MODIFICATIONS	4
SUPPORT EQUIPMENT LIST AND DETAILS	4
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §15.107 – AC LINE CONDUCTED EMISSIONS	7
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP.	
TEST PROCEDURE	
TEST FROCEDORE TEST EQUIPMENT LIST AND DETAILS.	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
Test Data	
FCC §15.109 - RADIATED SPURIOUS EMISSIONS	
Applicable Standard	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST FROEEBORE TEST EQUIPMENT LIST AND DETAILS.	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
Test Data	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Nexpro International Limitada*'s product, model number: *Neat (FCC ID: ZYPS9081)* or the "EUT" in this report was a *Smartphone*, which was measured approximately: 147.0 mm (L) x 76.5 mm (W) x 9.7 mm (H), rated input voltage: DC 3.7 V Li-ion battery, the highest operating frequency is 1.0 GHz.

Report No.: R1DG130121001-00A

* All measurement and test data in this report was gathered from production sample serial number: 130121001 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2013-01-21.

Objective

This test report is prepared on behalf of *Nexpro International Limitada* in accordance with Part 2-Subpart J, Part 15-Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine the compliance of the EUT with FCC Part 15 B.

Related Submittal(s)/Grant(s)

Part 22H/24E PCE, Part 15.247 DSS and art 15.247 DTS submissions with FCC ID: ZYPS9081

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm.

FCC Part 15 B, Class B Page 3 of 14

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a manufacturer testing fashion.

EUT operation mode: Downloading (data transforms with computer)

EUT Exercise Software

"winthrax" exercise software was used.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	PC	VOSTRO 220S	127BP2X
DELL	Keyboard	L100	CNORH656658907BL05DC
DELL	Mouse	MOC5UO	G1900NKD
DELL	LCD Monitor	E178WFPC	CN-OWY564-64180-7C4-2SQH
SAST	Modem	AEM-2100	0293

Report No.: R1DG130121001-00A

External I/O Cable

Cable Description	Length (m)	From/Port	То
Shielding Detachable USB Cable	1.5	Host PC	Mouse
Shielding Detachable Serial Cable	1.2	Host PC	Modem
Shielding Detachable K/B Cable	1.5	Host PC	Keyboard
Shielding Detachable VGA Cable	1.5	Host PC	LCD Monitor
Unshielding Detachable USB Cable	1.0	EUT	Host PC

FCC Part 15 B, Class B Page 4 of 14

Block Diagram of Test Setup

For conducted emission

FCC Part 15 B, Class B Page 5 of 14

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Results	
§15.107	AC Line Conducted Emissions Complian	
§15.109	Radiated Spurious Emissions	Compliance

Report No.: R1DG130121001-00A

FCC Part 15 B, Class B Page 6 of 14

FCC §15.107 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

According to FCC §15.107

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on CISPR 16-4-2, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is 2.4 dB(k=2, 95% level of confidence), and the uncertainty will not be taken into consideration for the test data recorded in the report.

Report No.: R1DG130121001-00A

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Poth of LISNs (AMM) 80 cm from FUT and at the

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.4-2003. The related limit was specified in FCC Part 15.107 Class B.

The spacing between the peripherals was 10 cm.

The host PC was connected to a 120 VAC/60 Hz power source.

FCC Part 15 B, Class B Page 7 of 14

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: R1DG130121001-00A

Test Procedure

During the conducted emission test, the host PC was connected to the outlet of the first LISN, and the other relevant equipments were connected to the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2012-11-24	2013-11-23
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2012-08-22	2013-08-21
Com-Power	L.I.S.N.	LI-200	12005	N/A	N/A
Rohde & Schwarz	Pulse limiter	ESH3Z2	DE25985	2012-07-08	2013-07-07
BACL	CE Test software	BACL-CE	V1.0	-	-

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Pulse Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Pulse Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

FCC Part 15 B, Class B Page 8 of 14

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.107</u>, with the worst margin reading of:

Report No.: R1DG130121001-00A

9.34 dB at 9.150 MHz in the Neutral conducted mode

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Gardon Zhang on 2013-01-29

FCC Part 15 B, Class B Page 9 of 14

EUT Operation Mode: Downloading (data transforms with Computer)

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
1.105	35.47	10.17	46.00	10.53	Ave.
1.205	34.01	10.18	46.00	11.99	Ave.
0.605	33.73	10.23	46.00	12.27	Ave.
8.850	37.41	10.45	50.00	12.59	Ave.
7.945	35.60	10.41	50.00	14.40	Ave.
8.845	41.50	10.45	60.00	18.50	QP
1.105	35.40	10.17	56.00	20.60	QP
27.450	28.50	11.78	50.00	21.50	Ave.
1.205	34.21	10.18	56.00	21.79	QP
0.605	33.93	10.23	56.00	22.07	QP
7.940	37.87	10.41	60.00	22.13	QP
27.575	19.11	11.77	60.00	40.89	QP

FCC Part 15 B, Class B Page 10 of 14

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
9.150	40.66	10.46	50.00	9.34	Ave.
1.105	35.69	10.17	46.00	10.31	Ave.
0.705	35.52	10.21	46.00	10.48	Ave.
0.605	34.57	10.23	46.00	11.43	Ave.
8.345	37.62	10.42	50.00	12.38	Ave.
17.800	34.17	11.98	50.00	15.83	Ave.
9.150	42.19	10.46	60.00	17.81	QP
8.345	41.69	10.42	60.00	18.31	QP
1.105	36.06	10.17	56.00	19.94	QP
0.705	35.09	10.21	56.00	20.91	QP
0.605	34.66	10.23	56.00	21.34	QP
17.775	30.10	11.98	60.00	29.90	QP

- 1) Correction Factor =LISN/ISN VDF (Voltage Division Factor) + Cable Loss + Pulse Limiter Attenuation The corrected factor has been input into the transducer of the test software.
- 2) Corrected Amplitude = Reading + Correction Factor3) Margin = Limit Corrected Amplitude

FCC Part 15 B, Class B Page 11 of 14

FCC §15.109 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

According to FCC §15.109

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: R1DG130121001-00A

Based on CISPR 16-4-2, the Treatment of Uncertainty in EMC Measurements, the estimation of the uncertainty of radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is 4.0 dB(k=2, 95% level of confidence), and the uncertainty will not be taken into consideration for the test data recorded in the report.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The host PC was connected to a 120 VAC/60 Hz power source.

FCC Part 15 B, Class B Page 12 of 14

EMI Test Receiver Setup

The system was investigated from 30 MHz to 6.0 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz	120kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	Ave.

Report No.: R1DG130121001-00A

Test Procedure

For the radiated emissions test, the host PC and relevant equipments were connected to AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
НР	Amplifier	8447E	1937A01046	2012-11-24	2013-11-23
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2012-08-08	2013-08-07
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
SUPER ULTRA	Amplifier	ZVA-213+	N/A	2012-11-24	2013-11-23
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2014-11-30
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
R&S	Auto test Software	EMC32	V6.30	-	-

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

FCC Part 15 B, Class B Page 13 of 14

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.109 Class B, with the worst margin reading of:

12.0 dB at 66.562675 MHz in the Vertical polarization

Report No.: R1DG130121001-00A

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Gardon Zhang on 2013-01-31.

EUT Operation Mode: Downloading (data transforms with Computer)

30MHz -5 GHz (1GHz *5th harmonic)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity	Turntable Position (Degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
66.562675	28.0	220.0	V	0.0	-20.6	40.0	12.0
531.368750	24.8	189.0	Н	0.0	-9.3	46.0	21.2
32.439850	15.4	178.0	Н	0.0	-8.7	40.0	24.6
480.016625	21.2	165.0	Н	0.0	-10.1	46.0	24.8
165.407325	16.4	106.0	V	99.0	-15.3	43.5	27.1
240.011525	16.1	117.0	V	20.0	-15.9	46.0	29.9

***** END OF REPORT *****

FCC Part 15 B, Class B Page 14 of 14