

Continuous Assessment Test (CAT) - I - FEB 2024

Programme	:	BAI, BCE, BCL, BDS, BEC, BEE, BLC, BME, BMH, BMV, BPS, BRS, MTI	Semester	:	Weekend Intra 2023- 24
Course Code & Course Title	:	BEEE102L-Basic Electrical and Electronics Engineering	Class Number	:	CH2023240503677 CH2023240503746
Faculty	:	Dr. Aravind C K	Slot	:	Y11+Y12+Y21
Duration	:	90 minutes	Max. Mark	:	50

Answer all questions Q. Sub Marks Description No Sec. 4 Write equations to transform star-connected elements to delta and vice versa 1 (i) If a battery having an e.m.f. of 24 volts and internal resistance of 1 Ω is connected to terminals A and B, find the current from the battery and the potential drop across each resistor. 2Ω 3Ω 5Ω 6 (ii) **≨**6Ω ≨8Ω 4Ω € Fig. 1 Find the current flowing through the 1Ω resistor using Thevenin's theorem. 6 Q 2 A 6 Q 2 5 10 2 $\geq 1 \Omega$ Fig. 2 Determine the node voltage v₁ and loop currents i₁ and i₂ of the circuit shown in 10

Fig. 3 by (a) nodal method, and (b) by mesh method.

3

		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		A series AC circuit containing an inductor (20 mH), a capacitor (120 μF), and a	5	
4	(i)	resistor (60 Ω) is driven by an AC source of 24 V/50 Hz. Calculate the energy dissipated in the circuit in 60 seconds.		
	(ii)	Explain the importance of earthing in electrical installations. How does it reduce the risk of electric shock?		
5		A 230 V, 50 Hz a.c. supply is applied to a coil of 0.06 H inductance and 2.5 Ω resistance connected in series with a 6·8 μF capacitor. Calculate (i) the total impedance of the circuit, (ii) the circuit current, (iii) the phase angle between circuit current and voltage, (iv) the power factor, and (v) the power consumed.	10	
