Generalization of a Theorem By v. Neumann Concerning Zero Sum Two Person Games

Author(s): Abraham Wald

Source: Annals of Mathematics, Apr., 1945, Second Series, Vol. 46, No. 2 (Apr., 1945),

pp. 281-286

Published by: Mathematics Department, Princeton University

Stable URL: https://www.jstor.org/stable/1969023

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

is collaborating with JSTOR to digitize, preserve and extend access to $Annals\ of\ Mathematics$

GENERALIZATION OF A THEOREM BY v. NEUMANN CONCERNING ZERO SUM TWO PERSON GAMES

By Abraham Wald

(Received November 28, 1944)

1. Introduction

In the theory of games developed by John v. Neumann [1], [2] the normalized form of a zero sum two person game is defined as follows (see section 14.1 in [2]): There are two players and there is a function $K(\tau_1, \tau_2)$ of two variables τ_1 and τ_2 given where τ_1 and τ_2 can take only a finite number of values. Player 1 chooses a value τ_1 and player 2 chooses a value τ_2 , each choice being made in complete ignorance of the other, and then players 1 and 2 get the amounts $K(\tau_1, \tau_2)$ and $K(\tau_1, \tau_2)$, respectively. Obviously, player 1 wishes to maximize $K(\tau_1, \tau_2)$ and player 2 wishes to minimize $K(\tau_1, \tau_2)$.

As v. Neumann has shown (see section 14.5 in [2]), the choice of τ_1 by player 1 and the choice of τ_2 by player 2 can be rationalized if the game is strictly determined, i.e., if

(1.1)
$$\operatorname{Max}_{\tau_1} \operatorname{Min}_{\tau_2} K(\tau_1, \tau_2) = \operatorname{Min}_{\tau_2} \operatorname{Max}_{\tau_1} K(\tau_1, \tau_2).$$

If (1.1) is fulfilled, a good way for 1 to play the game is to choose a value τ_1 for which $\min_{\tau_2} K(\tau_1, \tau_2)$ assumes its maximum value, and a good way for 2 to play the game is to choose a value τ_2 for which $\max_{\tau_1} K(\tau_1, \tau_2)$ assumes its minimum value.

There are games for which (1.1) is not fulfilled. To overcome this difficulty, the problem is reformulated as follows (see section 17 in [2]): Instead of choosing a particular value of τ_i , player i considers all possible values of τ_i and chooses only the probabilities with which he is going to use them, respectively. In other words, if the possible values of τ_i are $1, 2, \dots, \beta_i$, player i does not choose any particular number in this set, but chooses a set of probabilities $\rho_1, \dots, \rho_{\beta_i}$ and the value of τ_i is then determined by a chance mechanism constructed in such a way that the probability that $\tau_i = j$ is equal to ρ_j . Thus, the choice of player 1 is now characterized by a vector $\xi = (\xi_1, \dots, \xi_{\beta_1})$ and the choice of 2 is characterized by a vector $\eta = (\eta_1, \dots, \eta_{\beta_2})$. Of course, the vectors ξ and η are subject to the restrictions: $\xi_i \geq 0$, $\sum_{i=1}^{\beta_1} \xi_i = 1$, $\eta_i \geq 0$ and $\sum_{j=1}^{\beta_2} \eta_j = 1$. The mathematical expectation of the outcome $K(\tau_1, \tau_2)$ is given by

(1.2)
$$K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \sum_{j=1}^{\beta_2} \sum_{i=1}^{\beta_1} K(i, j) \xi_i \eta_j.$$

The main theorem proved by v. Neumann (see section 17.6 in [2]) states that for any arbitrary function $K(\tau_1, \tau_2)$ the game corresponding to $K^*(\overrightarrow{\xi}, \overrightarrow{\eta})$ is always strictly determined, i.e.,

$$(1.3) \qquad \operatorname{Max} \underset{\xi}{\to} \operatorname{Min} \underset{\eta}{\to} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \operatorname{Min} \underset{\eta}{\to} \operatorname{Max} \underset{\xi}{\to} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}).$$

The above relation was proved by v. Neumann under the restriction that τ_1 and τ_2 can take only a finite number of values. The purpose of the present paper is to investigate the validity of (1.3) when τ_1 or τ_2 or both can take infinitely many values. In what follows in this paper we shall assume that $K(\tau_1, \tau_2)$ is a bounded function of τ_1 and τ_2 and that the number of different values the variable τ_i (i=1,2) can take is denumerable. Since the domain of τ_i is not assumed to be finite, the existence of a maximum or minimum of $K^*(\xi, \eta)$ with respect to ξ or η is not guaranteed. However, supremum (least upper bound) and infimum (greatest lower bound) of $K^*(\xi, \eta)$ with respect to ξ or η will always exist. Therefore, instead of (1.3) we shall consider the relation

(1.4)
$$\operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \operatorname{Inf} \xrightarrow{\eta} \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta})$$

and we shall investigate the conditions under which (1.4) holds.

It will be shown that if one of the variables τ_1 and τ_2 has a finite domain, equation (1.4) always holds. If both variables τ_1 and τ_2 can take infinitely many values, (1.4) does not always hold. A simple example where (1.4) does not hold is the following: Assume that τ_1 and τ_2 can take all positive integral values. Let $K(\tau_1, \tau_2) = 1$ if $\tau_1 > \tau_2$, $K(\tau_1, \tau_2) = 0$ if $\tau_1 = \tau_2$ and $K(\tau_1, \tau_2) = -1$ if $\tau_1 < \tau_2$. Then, as can readily be seen, $\sup_{\xi} \inf_{\eta} K^*(\xi, \eta) = -1$ and $\inf_{\eta} \sup_{\xi} K^*(\xi, \eta) = 1$. Thus, (1.4) does not hold. In section 4 we shall give a necessary and sufficient condition for the validity of (1.4) when each of the variables τ_1 and τ_2 can take infinitely many values.

2. Some Lemmas

In this section we shall prove several lemmas which will then be used in sections 3 and 4.

Lemma 1. Sup $\overrightarrow{\xi}$ Inf $\overrightarrow{\eta}$ $K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) \leq \text{Inf } \overrightarrow{\eta}$ Sup $\overrightarrow{\xi}$ $K^*(\overrightarrow{\xi}, \overrightarrow{\eta})$. Proof: Assume that Lemma 1 is not true. Then

$$(2.1) \quad \operatorname{Sup} \underset{\xi}{\rightarrow} \operatorname{Inf} \underset{\eta}{\rightarrow} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \operatorname{Inf} \underset{\eta}{\rightarrow} \operatorname{Sup} \underset{\xi}{\rightarrow} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) + \delta \quad (\delta > 0)$$

From (2.1) it follows that there exists a vector $\overrightarrow{\xi_0}$ such that

$$(2.2) K^*(\overrightarrow{\xi}_0, \overrightarrow{\eta}) \ge \operatorname{Inf} \xrightarrow{\gamma} \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) + \frac{1}{2}\delta \text{ for all } \eta.$$

From (2.2) we obtain

$$(2.3) \quad \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) \geq \operatorname{Inf} \xrightarrow{\eta} \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) + \tfrac{1}{2}\delta \quad \text{for all } \eta$$

which is impossible. Hence we arrived at a contradiction and Lemma 1 is proved.

Lemma 2. If
$$\lim_{u=\infty} \overrightarrow{\xi_u} = \overrightarrow{\xi}$$
 then $\lim_{u=\infty} K^*(\overrightarrow{\xi_u}, \overrightarrow{\eta}) = K^*(\overrightarrow{\xi}, \overrightarrow{\eta})$ uniformly in $\overrightarrow{\eta}$.

Similarly, if
$$\lim_{n\to\infty} \overrightarrow{\eta_n} = \overrightarrow{\eta}$$
, $\lim_{n\to\infty} K^*(\overrightarrow{\xi}, \overrightarrow{\eta_n}) = K^*(\overrightarrow{\xi}, \overrightarrow{\eta})$ uniformly in $\overrightarrow{\xi}$.

PROOF: It is sufficient to prove the first half of the lemma. We can assume without loss of generality that τ_i can take only positive integral values, i.e., $\tau_i = 1, 2, 3, \dots$, ad inf. (i = 1, 2). Let A be an upper bound of $|K(\tau_1, \tau_2)|$. Then for any $\overrightarrow{\eta} = (\eta_1, \eta_2, \dots, \text{ad inf.})$

$$\left|\sum_{i=1}^{\infty} K(i,j)\eta_{j}\right| \leq A.$$

Let $\overrightarrow{\xi_u} = (\xi_{u1}, \xi_{u2}, \cdots)$ and $\overrightarrow{\xi} = (\xi_1, \xi_2, \cdots)$. From (2.4) it follows readily that for any positive integer r

(2.5)
$$\lim_{u=\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{r} K(i,j) \xi_{ui} \eta_{j} = \sum_{j=1}^{\infty} \sum_{i=1}^{r} K(i,j) \xi_{i} \eta_{j}$$

uniformly in $\overrightarrow{\eta}$. For any $\epsilon > 0$ there exists a positive integer r_{ϵ} such that $\sum_{i=1}^{r_{\epsilon}} \xi_i \geq 1 - \epsilon$ and $\sum_{i=1}^{r_{\epsilon}} \xi_{ui} \geq 1 - \epsilon$ for all u. Then it follows from (2.4) that

$$(2.6) \quad \left| \sum_{j=1}^{\infty} \sum_{i=1}^{r_{\epsilon}} K(i,j) \xi_{ui} \eta_{j} - \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} K(i,j) \xi_{ui} \eta_{j} \right| \leq \epsilon A \quad \text{all for } \eta \text{ and all } u,$$

and

(2.7)
$$\left|\sum_{j=1}^{\infty}\sum_{i=1}^{r_{\epsilon}}K(i,j)\xi_{i}\eta_{j}-\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}K(i,j)\xi_{i}\eta_{j}\right| \leq \epsilon A \quad \text{for all } \eta.$$

Since ϵ can be chosen arbitrarily small, Lemma 2 follows from (2.5), (2.6) and (2.7).

Lemma 3. If
$$\lim_{u=\infty} \overrightarrow{\xi_u} = \overrightarrow{\xi}$$
 and $\lim_{u=\infty} \overrightarrow{\eta_u} = \overrightarrow{\eta}$ then $\lim_{u=\infty} K^*(\overrightarrow{\xi_u}, \overrightarrow{\eta_u}) = K^*(\overrightarrow{\xi}, \overrightarrow{\eta})$.

PROOF: From Lemma 2 it follows that

(2.8)
$$\lim_{u=\infty} \left\{ K^*(\overrightarrow{\xi_u}, \overrightarrow{\eta_u}) - K^*(\overrightarrow{\xi_u}, \overrightarrow{\eta}) \right\} = 0$$

and

(2.9)
$$\lim_{u=\infty} \{K^*(\overrightarrow{\xi_u}, \overrightarrow{\eta}) - K^*(\overrightarrow{\xi}, \overrightarrow{\eta})\} = 0.$$

Lemma 3 is a consequence of (2.8) and (2.9).

In what follows a superscript k attached to a vector $\overrightarrow{\zeta}$, i.e., $\overrightarrow{\zeta}^k$ will mean that the j^{th} component of $\overrightarrow{\zeta}$ is zero for all j > k.

LEMMA 4. $\lim_{k \to \infty} \operatorname{Inf} \xrightarrow{\gamma_k} \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta^k}) = \operatorname{Inf} \xrightarrow{\eta} \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}).$

PROOF: Clearly, Inf $\xrightarrow{\eta}_k$ Sup $\xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta^k})$ is monotonically decreasing with increasing k. Hence $\lim_{k=\infty}$ Inf $\xrightarrow{\eta}_k$ Sup $\xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta^k})$ exists. We shall denote this limit by ρ . Then

(2.10)
$$\operatorname{Inf}_{\overrightarrow{\eta}^{k}} \operatorname{Sup}_{\overrightarrow{\xi}} K^{*}(\overrightarrow{\xi}, \overrightarrow{\eta^{k}}) \geq \rho \quad \text{for all } k$$

and

(2.11)
$$\operatorname{Inf}_{\overrightarrow{\eta}} \operatorname{Sup}_{\overrightarrow{\xi}} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \rho - \delta \qquad (\delta \ge 0).$$

Assume that $\delta > 0$ and we shall derive a contradiction. Then it follows from (2.11) that there exists a vector η_0 such that

(2.12)
$$K^*(\xi, \overrightarrow{\eta_0}) \leq \rho - \frac{1}{2}\delta \text{ for all } \xi.$$

Let $\{\overrightarrow{\eta_k^k}\}$ $(k=1,\,2,\,\cdots,\,\text{ad inf.})$ be a sequence of vectors such that

(2.13)
$$\lim_{k=\infty} \overrightarrow{\eta_k} = \overrightarrow{\eta_0}.$$

Then, according to Lemma 2,

(2.14)
$$\lim_{k \to \infty} K^*(\xi, \overrightarrow{\eta_k}) = K^*(\overrightarrow{\xi}, \overrightarrow{\eta_0})$$

uniformly in $\overrightarrow{\xi}$. Hence there exists a finite k such that

$$(2.15) K^*(\overrightarrow{\xi}, \eta_k^{\overrightarrow{k}}) \leq \rho - \frac{1}{3}\delta \text{ for all } \xi.$$

But this is in contradiction to (2.10). Hence Lemma 4 is proved.

3. The case where one of the variables τ_1 and τ_2 can take only a finite number of values.

We shall prove the following theorem.

THEOREM 3.1. If one of the variables τ_1 and τ_2 takes inly a finite number of values, the relation

$$\operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \operatorname{Inf} \xrightarrow{\eta} \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta})$$

always holds.

PROOF: It is sufficient to prove Theorem 3.1 for the case when τ_1 can take only a finite number of values. The case where τ_2 can take only a finite number of values can be reduced to the previous case by interchanging the players 1 and 2 and by substituting $-K(\tau_1, \tau_2)$ for $K(\tau_1, \tau_2)$. We can assume without loss of

generality that τ_1 can take the values 1, 2, \cdots , r and τ_2 can take any positive integral value. Then

$$K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \sum_{j=1}^{\infty} \sum_{i=1}^{r} K(i, j) \xi_i \eta_j.$$

To prove Theorem 3.1 it is sufficient to show that

(3.1)
$$\lim_{k \to \infty} \operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta}_{k} K^{*}(\overrightarrow{\xi}, \overrightarrow{\eta^{k}}) = \operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta} K^{*}(\overrightarrow{\xi}, \overrightarrow{\eta}).$$

In fact, according to v. Neumann's theorem for the finite case we have

$$(3.2) \qquad \operatorname{Sup} \underset{\xi}{\rightarrow} \operatorname{Inf} \underset{\eta}{\rightarrow_k} K^*(\overrightarrow{\xi}, \overrightarrow{\eta^k}) = \operatorname{Inf} \underset{\eta}{\rightarrow_k} \operatorname{Sup} \underset{\xi}{\rightarrow} K^*(\overrightarrow{\xi}, \overrightarrow{\eta^k}).$$

Theorem 3.1 is an immediate consequence of equations (3.1), (3.2) and Lemma 4. To prove (3.1) we shall assume that (3.1) does not hold and we shall derive a contradiction. Then

(3.3)
$$\operatorname{Sup} \stackrel{\rightarrow}{\rightleftharpoons} \operatorname{Inf} \stackrel{\rightarrow}{\to} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \rho - \delta \quad (\delta > 0)$$

where

(3.4)
$$\rho = \lim_{k \to \infty} \operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta}_{k} K^{*}(\overrightarrow{\xi}, \overrightarrow{\eta^{k}}).$$

Since the domain of τ_1 is finite, for each positive integer k there exists a pair $(\overrightarrow{\xi_k}, \overrightarrow{\eta_k^k})$ such that

$$(3.5) \quad \operatorname{Inf}_{\overrightarrow{\eta}^{k}} K^{*}(\overrightarrow{\xi_{k}}, \overrightarrow{\eta^{k}}) = K^{*}(\overrightarrow{\xi_{k}}, \overrightarrow{\eta_{k}^{k}}) = \operatorname{Sup}_{\overrightarrow{\xi}} \operatorname{Inf}_{\overrightarrow{\eta}^{k}} K^{*}(\overrightarrow{\xi}, \overrightarrow{\eta^{k}}) \ge \rho.$$

Since the domain of τ_1 is finite, there exists a subsequence $\{k'\}$ of the sequence $\{k\}$ such that the sequence $\{\xi_{k'}\}$ converges. Let

(3.6)
$$\lim_{k=\infty} \overrightarrow{\xi_{k'}} = \overrightarrow{\xi_0}.$$

From (3.3) it follows that there exists a vector $\overrightarrow{\eta_0}$ such that

$$(3.7) K^*(\overrightarrow{\xi_0}, \overrightarrow{\eta_0}) \leq \rho - \frac{1}{2}\delta.$$

Let $\{\overline{\eta_0^k}\}$ $(k = 1, 2, \dots, ad inf.)$ a sequence of vectors such that

$$\lim_{k \to \infty} \overrightarrow{\eta_0^k} = \eta_0.$$

From equations (3.6), (3.8) and Lemma 3 we obtain

$$(3.9) K^*(\overrightarrow{\xi_{k'}}, \overrightarrow{\eta_0^{k'}}) \leq \rho - \frac{1}{3}\delta$$

for almost all values of k. But (3.9) is in contradiction to (3.5). Hence Theorem 3.1 is proved.

4. The case where both τ_1 and τ_2 can take infinitely many values

As we have seen in section 1, the relation (1.4) does not always hold when both τ_1 and τ_2 can take infinitely many values. In this section we shall give a necessary and sufficient condition for the validity of (1.4). We shall prove the following theorem.

THEOREM 4.1. A necessary and sufficient condition for the validity of

$$(4.1) \operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}) = \operatorname{Inf} \xrightarrow{\eta} \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta})$$

is that

$$(4.2) \qquad \lim_{k \to \infty} \operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta^k} K^*(\overrightarrow{\xi}, \overrightarrow{\eta^k}) = \operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}).$$

Proof: According to Theorem 3.1 we have

$$(4.3) \qquad \operatorname{Sup} \underset{\xi}{\to} \operatorname{Inf} \underset{\eta}{\to^{k}} K^{*}(\overrightarrow{\xi}, \ \overrightarrow{\eta^{k}}) = \operatorname{Inf} \underset{\eta}{\to^{k}} \operatorname{Sup} \underset{\xi}{\to} K^{*}(\overrightarrow{\xi}, \overrightarrow{\eta^{k}}).$$

From (4.3) and Lemma 4 it follows that

$$(4.4) \qquad \lim_{k=\infty} \operatorname{Sup} \xrightarrow{\xi} \operatorname{Inf} \xrightarrow{\eta^k} K^*(\overrightarrow{\xi}, \overrightarrow{\eta^k}) = \operatorname{Inf} \xrightarrow{\eta} \operatorname{Sup} \xrightarrow{\xi} K^*(\overrightarrow{\xi}, \overrightarrow{\eta}).$$

Hence (4.1) implies (4.2) and (4.2) implies (4.1). This proves the theorem.

COLUMBIA UNIVERSITY

References

- JOHN V. NEUMANN, Zur Theorie der Gesellschaftsspiele, Math. Annalen, Vol. 100 (1928), pp. 295-320.
- [2] JOHN V. NEUMANN AND OSKAR MORGENSTERN, Theory of games and economic behavior, Princeton University Press, Princeton, 1944.