EP4179 — Microeconometría

Luis Chávez Universidad Nacional Agraria La Molina 2024-II

Pset1: OLS

A. Herramientas básicas

Problema 1. Asumiendo que $E(y_i|x_{1i})$ existe, se puede escribir:

$$y_i = E(y_i|x_{1i}) + u_i$$

Probar que el término de perturbación verifica $E(u_i|x_{1i}) = 0$ y sus implicancias: $E(u_i) = 0$ y $E(x_{1i}u_i) = 0$.

Problema 2. $\xi E(u_i|x_i) = 0$ equivale a $E[u_ih(x_i)]$, para cualquier medida de $h(\cdot)$?

Problema 3. Si $y_i = \alpha_0 + \alpha_1 x_i + u_i$, demostrar que:

$$\alpha_1 = \frac{cov(x_i, y_i)}{var(x_i)}$$

Problema 4. Asumiendo el modelo básico $y = x_i'\beta + u_i$, demostrar:

- (a) $E(u_i) = 0$
- (b) $cov(x_iu_i) = E(x_iu_i) = 0$

Problema 5. Sea la forma cuadrática $S = \beta' M \beta$, donde β es un vector de orden 2x1 y A es una matriz simétrica de orden 2. Hallar:

$$\frac{\partial S}{\partial \beta}$$

B. Herramientas intermedias

Problema 6. Hallar $\hat{\beta}_{OLS}$ a partir de la condición $E(x_iu_i)=0$. Asuma el modelo típico y el análogo muestral.

Problema 7. Pruebe la consistencia del estimador OLS.

Problema 8. Pruebe la normalidad asintótica del estimador OLS.

Problema 9. Halle la varianza asintótica del estimador OLS, también conocido como la varianza robusta Huber-White: $AV(\hat{\beta}_{OLS})$.

C. Herramientas avanzadas

Problema 10. Si $\gamma = w'\beta = \sum_{i=1}^k w_i\beta_i$, demostrar que $var(\hat{\gamma})$ puede ser escrita como:

$$\sum_{i=1}^{k} w_i^2 var(\hat{\beta}_i) + 2 \sum_{i=2}^{k} \sum_{j=1}^{i-1} w_i w_j cov(\hat{\beta}_i, \hat{\beta}_j)$$