

暫態動力學分析

❖暫態動力學(transient dynamic)分析是關於時間和加速度相關的應力與變形分析。典型的暫態動力學分析如下圖所示,當一結構受到衝擊力(impact force) F(t)作用時,它的反應會與時間有關,這與靜態分析大不相同,而且衝擊力作用時間t₀的長短也會造成不同的結構反應與應力場。

Equation of Motion

 Equation of motion for a transient dynamic analysis is the same as the general equation of motion.

$$[M]\{\ddot{u}\}+[C]\{\dot{u}\}+[K]\{u\}=\{F(t)\}$$

- This is the most general form of dynamic analysis. Loading may be any arbitrary function of time.
- Depending on the method of solution, ANSYS allows all types of nonlinearities to be included in a transient dynamic analysis - large deformation, contact, plasticity, etc.

Solution Methods

discussion of implicit and explicit

Implicit Method

- · Matrix inversion is required.
- Nonlinearities require equilibrium iterations (convergence problems)
- Integration time step ∆t can be large but may be restricted by convergence issues.
- Efficient for most problems except where ∆t needs to be very small.

Explicit Method

- No matrix inversion.
- Can handle nonlinearities easily (no convergence issues).
- Integration time step ∆t must be small (1e-6 second is typical).
- Useful for short duration transients such as wave propagation, shock loading, and highly nonlinear problems such as metal forming.
- ANSYS-LS/DYNA uses this method.

•

Implicit method

ANSYS uses Newmark integration scheme.

$$[M]\{\ddot{u}_{t+\Delta t}\} + [C]\{\dot{u}_{t+\Delta t}\} + [K]\{u_{t+\Delta t}\} = \{F(t)\}$$

$$u_{t+\Delta t} = u_{t} + \dot{u}_{t}\Delta t + [(1/2 - \alpha)\ddot{u}_{t} + \alpha\ddot{u}_{t+\Delta t}]\Delta t^{2}$$

$$\dot{u}_{t+\Delta t} = \dot{u}_{t} + [(1-\beta)\ddot{u}_{t} + \beta\ddot{u}_{t+\Delta t}]\Delta t$$

- Varying values of α and β causes integration scheme to change (implicit / explicit / average acceleration).
- Newmark is an implicit scheme.
- LS-DYNA uses explicit scheme.

Integration Time Step

- The integration time step (also ITS or ∆t) size should be small enough to capture the following:
 - the response frequency
 - the contact frequency (if applicable)
 - wave propagation effects (if applicable)
 - Nonlinear response (plasticity, creep, contact status)

反應頻率(response frequency)

❖針對一般的暫態動力學問題,△t概略的選取判斷 如下式:

 $\Delta t = \frac{1}{20f}$

其中Δt單位為秒,f為結構的反應頻率(response frequency),單位為Hz,這是概指分析案例的最高頻率。

❖至於反應頻率f值,則必須先經由初步的ANSYS暫態動力學分析後才能得到,ANSYS在求解時會於Output Window列印出f值,以供參考。接著利用ANSYS提供的f值,再以上式求出適當的Δt,以此Δt再重做一次分析。

Δt要足夠小到能捕捉結構反應的細節,上圖表示結構的反應 (structural response),假設最小的反應周期是T,則Δt大致上不要超過T/20。

$$\Delta t \le \frac{T}{20}$$

接觸頻率(contact frequency)

*若暫態動力學分析包含了接觸問題,則需要考慮Δt
是否能精確模擬出兩物體接觸時的動量轉移,若Δt
不夠小則會造成誤差。對於這類問題的Δt概略取法
如下式: $\Delta t = \frac{1}{30f_c}$

$$f_c = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

其中f_c稱為接觸頻率(contact frequency), k為間 隙剛度(gap stiffness), m為接觸面的等效質量 (effective mass)。

❖不過,上式的k和m較不易明確定義,而ANSYS在求解時會於Output Window列印出反應頻率 (response frequency),即f_c值,以供使用者參考。

應力波傳遞(wave propagation)

❖若要求解應力波傳遞問題,其**△t**概略取法如下式:

$$\Delta t \le \frac{\Delta x}{3c}$$

$$c = \sqrt{E/\rho}$$

其中Δx為元素尺寸,若波傳遞方向的結構長度為 L,則Δx須小於L/20,c則為彈性波速(elastic wave speed),而E和ρ分別為楊氏模數和密度。 以上計算須注意單位的相容性。

❖ Δt的設定需由ANSYS使用者給定,而ANSYS提供了指令AUTOTS和DELTIM,可自動調整時間增量。

Choose Analysis Type & Options

Solution options

- Choose large displacement transient or small displacement transient.
 - When in doubt, choose large displacement transient

Specify time at end of load step.

Automatic time stepping

If nonlinearities are present, use the "Program Chosen" option.

Specify initial, min and max values of Δt for this load step.

Specify output controls

Turn transient effects on/off

- useful for setting up initial conditions (discussed later)
- Ramp or Step apply load
- Specify damping (discussed later)
- Use default values for time integration parameters

懸臂樑暫態反應分析

如 下圖 的二維懸臂樑問題,樑之長度 $L=6\,\mathrm{m}$,矩形截面 $b=200\,\mathrm{mm}$ 和 $h=400\,\mathrm{mm}$,楊氏模數 $E=12\,\mathrm{GPa}$,密度 $\rho=1500\,\mathrm{kg/m^3}$,假設其 Rayleigh 阻 尼係數 $\alpha=0$ 和 $\beta=0.006$ 。懸臂樑初始條件為施加一負 y 方向位移 $v_o=40\,\mathrm{mm}$ 於右端,且其初始速度 $v_o=0$ 。試求右端的初始拘束釋放後,右端在 2 秒內的 暫態位移響應,分析單位系統採用: $\mathbf{m} \times \mathbf{N} \times \mathbf{Pa} \times \mathbf{kg}$ 。

Rayleigh damping

又稱為比例阻尼(proportional damping),它是假設整個結構之阻尼模式均相同,如下為結構之運動方程式:

$$[M](\ddot{u})+[C](\dot{u})+[K](u)=\{F\}$$

其中阻尼矩陣[C]可以下列方式表示:

$$[C] = \alpha [M] + \beta [K]$$

 α [M]和 β [K]的意義是分別用來表現viscous damping(結構和周遭流體的摩擦)和hysteresis damping(材料本身內部分子間的摩擦)。

Specify BC's & Initial Conditions

Example - "Plucking" the free end of a cantilever beam

- In this case u₀≠0 at one end of the beam, and v₀=0.
- Use the static load step method.
- Load step 1:
 - Transient effects OFF. Use TIMINT, OFF command or

Solution > Sol'n Control

Select the "Transient" Tab and unselect Transient effects

- Small time interval, e.g, 0.001.
- 2 substeps, stepped loads. (If ramped or with one substep, v_0 will be non-zero.)
- Apply the desired non-zero displacement at the free end of the beam.
- SOLVE.

Load step 2:

- Transient effects ON.
- Delete the imposed displacement.
- Specify ending time and continue with the transient.

4

Example: Plucking a Cantilever Beam

```
01
     /SOLU
02
      ANTYPE, TRANS
0.3
      TIMINT, OFF ! Transient effects off
04
0.5
      TIME, 0.001 ! Small time interval
06
      D, ... ! Apply displacement at desired nodes
      KBC, 1 ! Stepped loads
07
      NSUBST, 2 ! To avoid non-zero velocity
0.8
09
      SOLVE
      如果跳出/SOLU,再進入/SOLU,靜力分析的結果會因重新進入/SOLU後被清除掉
10
11
      TIMINT, ON! Transient effects on
12
      TIME, ...! Actual time at end of load
13
      DDELE, ...! Delete the applied displacement
14
      SOLVE
```

Output Window 印出的反應頻率

```
ON ANSYS 7.0 Output Window
                                                                        _ 🗆 ×
*** LOAD STEP
                 2
                     SUBSTEP 131 COMPLETED.
                                                CUM ITER =
                                                             133
*** TIME = 1.67169
                           TIME INC = 0.128846E-01 OLD TRIANG MATRIX
*** RESPONSE FREQ = 5.072
                               PERIOD= 0.1971
                                                   PTS/CYC = 15.
*** AUTO STEP TIME: NEXT TIME INC = 0.12885E-01 UNCHANGED
*** LOAD STEP
                    SUBSTEP
                              132 COMPLETED.
                                                CUM ITER =
                                                             134
                           TIME INC = 0.128846E-01 OLD TRIANG MATRIX
*** TIME = 1.68457
*** RESPONSE FREQ = 5.072
                               PERIOD= 0.1971
                                                   PTS/CYC = 15.
*** AUTO STEP TIME: NEXT TIME INC = 0.12885E-01 UNCHANGED
*** LOAD STEP
                    SUBSTEP
                              133 COMPLETED.
                                                CUM ITER =
                                                             135
                           TIME INC = 0.128846E-01 OLD TRIANG MATRIX
*** TIME =
            1.69746
*** RESPONSE FREQ = 5.072
                               PERIOD= 0.1971 PTS/CYC = 15.
*** AUTO STEP TIME: NEXT TIME INC = 0.12885E-01 UNCHANGED
*** LOAD STEP
                    SUBSTEP
                              134 COMPLETED.
                                                CUM ITER =
                                                             136
*** TIME =
                           TIME INC = 0.128846E-01 OLD TRIANG MATRIX
            1.71034
                                                   PTS/CYC = 15.
*** RESPONSE FREQ = 5.072
                               PERIOD= 0.1971
*** AUTO STEP TIME: NEXT TIME INC = 0.12885E-01 UNCHANGED
                                                CUM ITER =
*** LOAD STEP
                    SUBSTEP
                              135 COMPLETED.
                                                             137
*** TIME = 1.72323
                           TIME INC = 0.128846E-01 OLD TRIANG MATRIX
*** RESPONSE FREQ = 5.072
                               PERIOD= 0.1971
                                                   PTS/CYC = 15.
*** AUTO STEP TIME: NEXT TIME INC = 0.12885E-01 UNCHANGED
*** LOAD STEP
                     SUBSTEP
                              136 COMPLETED.
                                                CUM ITER =
                                                             138
                           TIME INC = 0.128846E-01 OLD TRIANG MATRIX
*** TIME = 1.73611
```

反應頻率為5.072Hz,由此算出Δt為1/(20*5.072)≈0.0099秒,約為0.01秒,因此DELTIM指令中的起始副增量可設定為0.01秒。

樑右端在2秒內的位移變化

位移單位:m

時間單位:sec