Exercise sheet 4

Curves and Surfaces, MTH201

- 1. Show that the curvature at any point of a line segment is always 0.
- 2. Find a parametrization of an ellipse, i.e. $\{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a} + \frac{y^2}{b} = 1\}$ and use it compute its curvature function $\kappa(t)$.
- 3. Given any smooth parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, is the curvature function $\kappa(t)$ always smooth? Do you need to add some condition? What is it?
- 4. Compute the signed curvature of the circle parametrized by $\gamma(t) = (5\cos(t), -5\sin(t))$.
- 5. If $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ parametrizes a curve, compute the curvature of the curve parametrized by $\tilde{\gamma}(t)=\gamma(-t)$ in terms of the curvature of γ . What about the relation between the signed curvatures of γ and $\tilde{\gamma}$?
- 6. Compare the signed curvatures of a curve and its reflection, i.e. $\gamma(t)$ and $-\gamma(t)$.
- 7. By finding a unit speed parametrization of a circle of radius r, compute its curvature. Let $\gamma(t)$ be some other *constant* speed parametrization of a circle of radius r, where $v := \|\dot{\gamma}(t)\|$ is the (constant) speed, and prove that $\|\ddot{\gamma}(t)\| = v^2/r$ (Do you recognize the significance of this?).
- 8. Can you draw a curve whose signed curvature in terms of a unit speed parametrization is $\kappa_s(t) = t$?
- 9. This exercise will help you to simplify the general formula for curvature that we derived during the lecture.
 - (a) Recall the triple product identity $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ for any three vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} . Simplify the expression for curvature defined during the lecture so that you can use the above equation to rewrite it entirely in terms of cross products instead of dot products.
 - (b) For orthogonal vectors \mathbf{v} and \mathbf{w} , why is $\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\|$? Use this to show that the curvature of a curve parametrized by γ can be computed at the point $\gamma(t)$ by $\frac{\|\ddot{\gamma}(t)\times\dot{\gamma}(t)\|}{\|\dot{\gamma}(t)\|^3}$.