

## POLITECHNIKA WARSZAWSKA

WYDZIAŁ: Mechaniczny Energetyki I Lotnictwa

# Metody Komputerowe w Mechanice Konstrukcji

# **SPRAWOZDANIE**

Ćwiczenie nr 3 (ANSYS)

Modelowanie konstrukcji kompozytowych.

Analiza naprężeń i deformacji belki ogonowej modelu samolotu.

Wykonał: Adam Nowak (indeks 304250)

(magisterskie niestacjonarne)

WARSZAWA, styczeń 2025

# Spis treści

| 1. | Cel ćwiczenia                                | 3  |
|----|----------------------------------------------|----|
| 2. | Obiekt – dane                                | 3  |
| 3. | Właściwości materiałowe                      | 4  |
|    | Kryteria zniszczenia                         |    |
| 5. | Warunki brzegowe                             | 6  |
|    | Model MES                                    |    |
| 6. | Symulacja weryfikacyjna                      | 9  |
| 7. | Analiza belki ogonowej z kompozytem szklanym | 13 |
| 8. | Analiza pełnego modelu belki                 | 17 |
| 9. | Analiza wytrzymałości belki                  | 21 |

## 1. Cel ćwiczenia

Celem ćwiczenia jest analiza belki ogonowej modelu Meleager 2001 zbudowanego na Wydziale Mechanicznym Energetyki i Lotnictwa Politechniki Warszawskiej. Belka ogonowa jest rurą stożkową, wzmocnioną przez trzy duralowe wręgi. Na końcu belki zamocowany jest statecznik poziomy do ostatniej wręgi, natomiast statecznik pionowy został przyklejony do zewnętrznej powłoki.

#### 2. Obiekt – dane

Belka składa się z rury stożkowej oraz wręg. Geometria i struktura wręg została przedstawiona na Rysunek 1 . Wręgi wykonane są z duraluminium, natomiast płaszcz posiada pięciowarstwowa strukturę przedstawioną w Tabela 1.



Rysunek 1 Geometria belki ogonowej



Rysunek 2 Struktura płaszcza

| Warstwa | Materiał                    | Grubość | Orientacja włókien |
|---------|-----------------------------|---------|--------------------|
| 1       | Dural                       | 0.03 mm | 0°                 |
| 2       | Kompozyt węglowo-epoksydowy | 0.15 mm | 90°                |
| 3       | Balsa                       | 0.80 mm | 90°                |
| 4       | Kompozyt węglowo-epoksydowy | 0.15 mm | 90°                |
| 5       | Dural                       | 0.03 mm | 0°                 |

Tabela 1 Struktura płaszcza belki ogonowej

W analizie początkowo rozważono połowę belki przeciętej wzdłuż osi symetrii z nałożonym warunkiem symetrii. W kolejnych etapach przeanalizowano także cały model belki.



Rysunek 3 Geometria oraz przyjęty układ współrzędnych.

#### 3. Właściwości materiałowe

Poniżej przedstawiono właściwości materiałowe. W dalszej części analiza zostanie zmodyfikowana – kompozyt węglowo-epoksydowy zostanie zastąpiony kompozytem szklanym o tej samej długości. Właściwości materiałowe wszystkich materiałów zaprezentowano w tabeli. Na podstawie przedstawionych założeń i ograniczeń elementu SHELL281, moduł sprężystości związany z osią "Z" nie jest brany pod uwagę. "*Naprężenie przechodzące przez grubość, SZ, zawsze wynosi zero*".

| Parametry | Duraluminium | Balsa | Kompozyt we. | Kompozyt szklany |
|-----------|--------------|-------|--------------|------------------|
| EX [MPa]  | 72000        | 3000  | 96300        | 22555            |
| EY [MPa]  | -            | 80    | 8500         | 22555            |
| EZ [MPa]  | -            | 80    | 8500         | 1000             |
| PRXY      | 0.32         | 0.28  | 0.295        | 0.295            |
| PRYX      | -            | 0.28  | 0.295        | 0.295            |
| PRXZ      | -            | 0.28  | 0.295        | 0.295            |
| GXY [MPa] | -            | 166   | 6000         | 2675             |
| GYZ [MPa] | -            | 100   | 1300         | 1000             |
| GXZ [MPa] | -            | 100   | 1300         | 1000             |

Tabela 2 Dane materiałowe, model liniowy

# 4. Kryteria zniszczenia

| Strain in Tension<br>Strain in Compression | X                | Υ  | Z  | [0.02]     [0.005]       [-0.02]     [-0.005]    |
|--------------------------------------------|------------------|----|----|--------------------------------------------------|
| Strain in Shear                            | XY               | YZ | XZ | 0.015 0.018 0.015                                |
| Stress in Tension<br>Stress in Compression | X                | Υ  | Z  | 400     200     100       -400     -200     -100 |
| Stress in Shear                            | XY               | YZ | XZ | 50 40 40                                         |
| Stress Coupling Coe                        | XY<br>efficients | YZ | XZ | 0.1 0.08 0.08                                    |

Rysunek 4 Kryteria wytrzymałościowe kompozytu węglowo-epoksydowego

|                      | X         | Υ  | Z  |                  |
|----------------------|-----------|----|----|------------------|
| Strain in Tension    |           |    |    | 0.015 0.005      |
| Strain in Compressio | n         |    |    | -0.015 -0.005    |
|                      | XY        | YZ | XZ |                  |
| Strain in Shear      |           |    |    | 0.02 0.015 0.015 |
|                      | Х         | Υ  | Z  |                  |
| Stress in Tension    |           |    |    | 300 200 50       |
| Stress in Compressio | n         |    |    | -300 -50         |
|                      | XY        | YZ | XZ |                  |
| Stress in Shear      |           |    |    | 50 40 40         |
|                      | XY        | YZ | XZ |                  |
| Stress Coupling Coef | fficients |    |    | 0.1 0.08 0.08    |

 $Rysunek\ 5\ Kryteria\ wytrzymałościowe\ kompozytu\ szklanego$ 

# 5. Warunki brzegowe

## Pierwszy przypadek (symulacja weryfikacyjna):

- Siła pionowa od statecznika poziomego o wartości 20 N została przyłożona w dwóch punktach na wrędze po 10 N.
- Wprowadzono warunki symetrii na liniach i powierzchniach symetrii belki.
- Dodatkowe na wręgach UX = 0, UY = 0.
- W dodatkowej analizie zmiana kompozytu węglowo-epoksydowego na kompozyt szklany.



Rysunek 6 Warunki brzegowe, przypadek 1

## Drugi przypadek:

- Siła pionowa od statecznika poziomego o wartości 40 N została przyłożona w dwóch punktach na wrędze po 20 N.
- Siła poprzeczna od statecznika pionowego o wartości 30 N, przyłożona w dwóch punktach na wrędze po 15 N.
- Moment skręcający od statecznika pionowego o wartości 5000 Nmm, przyłożony jako dwie pary sił na wrędze o promieniu 11m w czterech punktach po 114 N.
- Mocowanie na wręgach UX = 0, UY = 0.



Rysunek 7 Warunki brzegowe, przypadek drugi 2

## 6. Model MES

#### 5.1 Użyte oprogramowanie.

Do przeprowadzenia symulacji wykorzystano oprogramowanie Ansys Mechanical Enterprise z wykorzystaniem aplikacji wewnętrznej APDL.

#### 5.2 Zastosowane elementy skończone.

Obiekt został zamodelowany za pomocą elementów SHELL281 oraz SOLID186.



Tabela 3 Siatka strukturalna modelu



Rysunek 8 Model siatki zbliżenie na pierwszą wręgę

# 6. Symulacja weryfikacyjna

Symulacja weryfikacyjna została przeprowadzona w celu sprawdzenia poprawności modelu oraz porównania wyników uzyskanych z wynikami podanymi w instrukcji.



Rysunek 9 Przemieszczenia UX oraz UY



Rysunek 10 Naprężenia na kierunku X w warstwie pierwszej (duraluminium)



Rysunek 11 Naprężenia na kierunku X w warstwie drugiej (rowing węglowy)



Rysunek 12 Naprężenia na kierunku X w warstwie trzeciej (balsa)



Rysunek 13 Naprężenia na kierunku X w warstwie czwartej (rowing węglowy)



Rysunek 14 Naprężenia na kierunku X w warstwie piątej (duraluminium)



Rysunek 15 Naprężenia zredukowane w warstwach zewnętrznych (duraluminium) oraz na wrędze

| Przemieszczenia [mm]     | UX   | UY  | UZ    |
|--------------------------|------|-----|-------|
| Symulacja: instrukcja    | -    | 24  | -     |
| Symulacja: weryfikacyjna | 0.62 | 28  | 0.008 |
| Zgodność                 | -    | 86% | -     |

Tabela 4 Wyniki symulacji weryfikacyjnej, przemieszczenia

| Naprężenia na kierunku X [Mpa] | Warstwa 1 | Warstwa 2 | Warstwa 3 | Warstwa 4 | Warstwa 5 |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|
| Symulacja: instrukcja          | 75        | 100       | 3.1       | 96        | 72        |
| Symulacja: weryfikacyjna       | 121       | 152       | 4.5       | 121       | 90        |
| Zgodność                       | 62%       | 66%       | 69%       | 79%       | 80%       |

Tabela 5 Wyniki symulacji weryfikacyjnej, naprężenia w osi X

| Naprężenia zredukowane [MPa] | Płaszcz | Wręga |
|------------------------------|---------|-------|
| Symulacja: instrukcja        | 83      | -     |
| Symulacja: weryfikacyjna     | 112     | 181   |
| Zgodność                     | 74%     | -     |

Tabela 6 Wyniki symulacji weryfikacyjnej, naprężenia zredukowane Von-Mises'a

Wyniki symulacji weryfikacyjnej pokazują pewne rozbieżności w porównaniu do wyników podanych w instrukcji. Wartości przemieszczeń oraz kolejno naprężeń na kierunku X w kolejnych warstwach wykazują rozbieżności, które mogą wynikać z zastosowania bardziej gęstej siatki w symulacji weryfikacyjnej. Zwiększenie gęstości siatki zwykle prowadzi do bardziej precyzyjnych wyników, dlatego wyniki uzyskane w tej symulacji mogą być bliższe rzeczywistym wartościom.

# 7. Analiza belki ogonowej z kompozytem szklanym



Rysunek 16 Przemieszczenia UX oraz UY z kompozytem szklanym



Rysunek 17 Naprężenia na kierunku X w warstwie piątej (duraluminium)



Rysunek 18 Naprężenia na kierunku X w warstwie czwartej (kompozyt szklany)



Rysunek 19 Naprężenia na kierunku X w warstwie trzeciej (balsa)



Rysunek 20 Naprężenia na kierunku X w warstwie czwartej (kompozyt szklany)



Rysunek 21 Naprężenia na kierunku X w warstwie piątej (duraluminium)





Rysunek 22 Naprężenia zredukowane w warstwach zewnętrznych (duraluminium) oraz na wrędze

| Przemieszczenia [mm]        | UX   | UY | UZ    |
|-----------------------------|------|----|-------|
| Kompozyt węglowo-epoksydowy | 0.62 | 28 | 0.008 |
| Kompozyt szklany            | 1.64 | 73 | 0.008 |
| Różnica                     | 1.02 | 45 | 0     |

Tabela 7 Wyniki symulacji z kompozytem szklanym, przemieszczenia

| Naprężenia na kierunku X [Mpa] | Warstwa 1 | Warstwa 2 | Warstwa 3 | Warstwa 4 | Warstwa 5 |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|
| Kompozyt węglowo-epoksydowy    | 121       | 152       | 4.5       | 121       | 90        |
| Kompozyt szklany               | 283       | 87        | 11        | 75        | 238       |
| Różnica                        | 162       | -65       | 6.5       | -46       | 148       |

Tabela 8 Wyniki symulacji z kompozytem szklanym, naprężenia w osi X

| Naprężenia zredukowane      | Płaszcz [MPa] | Wręga [MPa] |
|-----------------------------|---------------|-------------|
| Kompozyt węglowo-epoksydowy | 112           | 181         |
| Kompozyt szklany            | 270           | 182         |
| Różnica                     | 158           | 1           |

Tabela 9 Wyniki symulacji z kompozytem szklanym, naprężenia zredukowane Von-Mises'a

Wyniki symulacji z kompozytem szklanym pokazują, że zarówno naprężenia, jak i wartości deformacji (UX, UY) znacząco wzrosły w porównaniu do kompozytu węglowo-epoksydowego. Taki wzrost ma negatywny wpływ na wytrzymałość konstrukcji, co wynika z różnic w właściwościach materiałowych między tymi dwoma kompozytami.

Wyjątek stanowią naprężenia w warstwie dla kierunku X, gdzie wartości dla kompozytu szklanego są niższe niż dla kompozytu węglowo-epoksydowego. Jest to spowodowane niższym modułem sprężystości w kierunku X (EX) dla kompozytu szklanego (22.555 MPa w porównaniu do 96.300 MPa dla kompozytu węglowo-epoksydowego). Niższy moduł Younga prowadzi do większej zdolności do deformacji, co skutkuje mniejszymi naprężeniami w tym kierunku.

# 8. Analiza pełnego modelu belki



Rysunek 23 Przemieszczenia UY oraz UZ z kompozytem szklanym



Rysunek 24 Naprężenia na kierunku X w warstwie pierwszej (duraluminium)



Rysunek 25 Naprężenia na kierunku X w warstwie drugiej (rowing węglowy)



Rysunek 26 Naprężenia na kierunku X w warstwie trzeciej (balsa)



Rysunek 27 Naprężenia na kierunku X w warstwie czwartej (rowing węglowy)



Rysunek 28 Naprężenia na kierunku X w warstwie piątej (duraluminium)



Rysunek 29 Naprężenia zredukowane w warstwach zewnętrznych (duraluminium) oraz na końcowej wrędze

| Przemieszczenia [mm]     | UX   | UY | UZ    |
|--------------------------|------|----|-------|
| Symulacja weryfikacyjna  | 0.62 | 28 | 0.008 |
| Symulacja pełnego modelu | 0.78 | 29 | 22    |

Tabela 10 Wyniki symulacji modelu pełnego, przemieszczenia

| Naprężenia na kierunku X [MPa] | Warstwa 1 | Warstwa 2 | Warstwa 3 | Warstwa 4 | Warstwa 5 |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|
| Symulacja weryfikacyjna        | 121       | 152       | 4.5       | 121       | 90        |
| Symulacja pełnego modelu       | 127       | 159       | 4.7       | 121       | 90        |

Tabela 11 Wyniki symulacji modelu pełnego, naprężenia w osi X

| Naprężenia zredukowane [MPa] | Płaszcz | Wręga |
|------------------------------|---------|-------|
| Symulacja weryfikacyjna      | 112     | 181   |
| Symulacja pełnego modelu     | 118     | 150   |

Tabela 12 Wyniki symulacji modelu pełnego, naprężenia zredukowane Von-Mises'a

Wyniki symulacji pełnego modelu z kompozytem węglowo-epoksydowym wskazują na niewielki wzrost wartości naprężeń i przemieszczeń w przypadku pełnego modelu. Różnice te wynikają z uwzględnienia w pełnym modelu dodatkowych obciążeń, takich jak siła poprzeczna od usterzenia poziomego oraz moment skręcający.

Największe zmiany występują w tylnej wrędze, na której skoncentrowano siły od usterzeń oraz moment skręcający. Obszar ten jest szczególnie narażony na naprężenia, co potwierdzają różnice wyników obu symulacji.

# 9. Analiza wytrzymałości belki

Wizualizacje dla kompozytu węglowo-epoksydowego w drugiej warstwie.



Rysunek 30 Kryteria zniszczenia, maksymalne naprężenia oraz maksymalne odkształcenia, k. węglowo-epoksydowy



Rysunek 31 Kryteria zniszczenia, Tsai-Wu Strength oraz Inverse Tsai-Wu Strength, k. węglowo-epoksydowy

Wizualizacje dla kompozytu szklanego w drugiej warstwie.



Rysunek 32 Kryteria zniszczenia, maksymalne naprężenia oraz maksymalne odkształcenia, kompozyt szklany



Rysunek 33 Kryteria zniszczenia, Tsai-Wu Strength oraz Inverse Tsai-Wu Strength, kompozyt szklany

| Warstwa 2            |                    |         |  |  |
|----------------------|--------------------|---------|--|--|
| Kryterium/Kompozyt   | Węglowo-epoksydowy | Szklany |  |  |
| Max Stress           | 0.450              | 0.599   |  |  |
| Max Strain           | 0.192              | 0.114   |  |  |
| Tsai-Wu Strength     | 0.217              | 0.374   |  |  |
| Inv Tsai-Wu Strength | 0.466              | 0.612   |  |  |

Tabela 13 Kryteria zniszczenia kompozytów w drugiej warstwie

| Warstwa 4            |                    |         |  |  |  |
|----------------------|--------------------|---------|--|--|--|
| Kryterium/Kompozyt   | Węglowo-epoksydowy | Szklany |  |  |  |
| Max Stress           | 0.372              | 0.497   |  |  |  |
| Max Strain           | 0.190              | 0.142   |  |  |  |
| Tsai-Wu Strength     | 0.151              | 0.259   |  |  |  |
| Inv Tsai-Wu Strength | 0.389              | 0.509   |  |  |  |

Tabela 14 Kryteria zniszczenia kompozytów w czwartej warstwie

Zarówno kompozyt szklano-epoksydowy, jak i węglowo-epoksydowy w warstwach drugiej i czwartej spełniają wymagania wytrzymałościowe według czterech kryteriów wytężenia: Max Strain, Max Stress, Tsai-Wu Strength oraz Inv Tsai-Wu Strength. Wartości odkształceń i naprężeń nie przekraczają dopuszczalnych granic, co potwierdza bezpieczeństwo konstrukcji.