CG4002

Computer Engineering Capstone Project

Lecture

Internal communications: Body area network over Bluetooth Low Energy

Peh Li Shiuan, Professor, Computer Science & Electrical and Computer Engineering (Courtesy) peh@nus.edu.sg

School of Computing

[Slides adapted from previous CG3002 slides]

1

ARDUINO BEETLE-ULTRA96 BLE SERIAL COMMUNICATIONS

5

Lecture 3: Communications

Goal: Send sensor data from Beetles to laptop reliably

- Burning questions...
 - ■Beetle:
 - **✓**How to connect wirelessly?
 - **√**How to handshake?
 - √How to send?
 - **✓ Real-time OS?**
 - ■Laptop:
 - **√**How to discover the beetles?
 - **√**How to handshake?
 - **√**How to receive from multiple beetles?
 - **√**How to ensure reliable communication?

Bluetooth Low Energy (BLE)

- Targeted for low power devices, IoT, wearables, mobiles
- Widely adopted
- Small data size, low duty cycle
- Range

7

BLE Host and Controller

[TI CC2540 software developer's guide]

9

Lecture 3: Communications

Setting up BLE host and controller on Ubuntu Linux

- hciconfig
 - •print information about Bluetooth devices installed in the system.
- /dev/wilc_bt:
 - ■echo BT POWER UP > /dev/wilc bt
 - ■echo BT DOWNLOAD FW > /dev/wilc bt
 - echo BT FW CHIP WAKEUP > /dev/wilc bt
- hciattach /dev/ttyPS1 -t 10 any 115200 noflow nosleep
 - attach serial UART to bluetooth stack as HCI transport interface
- Configure conn_min_interval and conn_max_interval settings
- bluetoothctl
 - •commands: list, show, connect
 - ■Get UUID

How to establish BLE connections?

- Connection = Peripheral Central can communicate
- Discovery and advertising
 - Central device can scan and look for new devices
 - ■Do you need it?
- Handshaking
 - •Need to make sure both devices are awake so you can establish connection
 - •How will you handshake?

13

Lecture 3: Communications

BLE on Beetle: Serial Programming

- Serial.begin
- Serial.available
- Serial.read
- Serial.print

BLE on Ubuntu: bluepy? pySerial? bluez?

- To do serial programming using Python you can use the bluepy package.
 - •github.com/IanHarvey/bluepy
- Sample code skeleton from bluepy import btle

dev = btle.Peripheral("B0:B4:48:BF:C9:83")

p = Peripheral(MACADDRESS)

15

Lecture 3: Communications

 ${\bf Arduino\ Programming\ /\ Serial\ Communication}$

BUILDING A PROTOCOL

Designing your own protocol over BLE

- Handshaking: What do you send? Who starts handshaking?
- Packet format: What data do you send, in what format?
 - **BLE:** Max message size? What if data is fragmented across multiple messages?
 - Baud rate?
- Reliability?
- Concurrency?
- Security?

18

Assign an ID to each device

• You need to be able to identify sensors (actuators) to read from (send data to).

Device ID	Device
0	Sonar 1
1	Sonar 2
2	Touch Sensor 1
3	Touch Sensor 2
4	Buzzer
5	Tactile feedback motor

• Do you have more than one sensor connected to a Beetle?

20

Lecture 3: Communications

Create Packet Types

• So both sides know what sort of packets are being sent (and the appropriate response)

Packet Type	Packet Code
ACK	0
NAK	1
Hello	2
Read	3
Write	4
Data Response	5

Bootup 3-way Handshake

• Objective:

•So both beetles and laptop know that each is ready to communicate.

■Do this at the very start of your programs on both sides

22

Lecture 3: Communications

Periodic Push By Arduino?

- Arduino sends data whenever it is available.
- Laptop monitors and buffers data as it comes in.
 - +Arduino sends data whenever it is available.
 - -Laptop needs to buffer incoming data.
 - What happens if buffer overflows?

Periodic Poll by Laptop

- Arduino waits for poll packets from laptop
- Laptop requests data when it needs it.
 - +Laptop decides when it needs the data and sends poll packet.
 - -If laptop doesn't poll often enough, may lose data on Arduino (Arduino has small memory).

24

Lecture 3: Communications

Sending Raw or Processed Data?

- Polling/Pushing individual sensor data can be expensive.
- Might be better (??) to send processed?

Reliability: Checksums, Reconnections, Fragmentation

- Checksums are used to check that data is received correctly.
 - ■Does BLE specs support checksum?
- Disconnections and reconnections
- Packet fragmentation

26

Lecture 3: Communications

Concurrency: Tasks and processes in our project

Arduino: RTOS?

- What are the tasks?
- Priorities among the tasks?

Laptop:

- What are the processes? Or threads?
- Synchronization/communication between the threads/processes?

Security

- External comms: AES from laptop to Ultra96 to evaluation server
- Internal comms: End to end security from Arduino?