

Phantom Walkabouts in Wireless Sensor Networks

Chen Gu, Matthew Bradbury and Arshad Jhumka

SAC 2017

WARWICK

Outline

- ► Introduction
- ► Related Work
- ► Phantom Walkabouts
- ► Experiments and Results

What is a Wireless Sensor Network?

A wireless sensor network (WSN) is a collection of computing devices called nodes, they have:

- ► a short range wireless radio
- an array of sensors such as light, heat and humidity
- ▶ a simple low powered CPU
- a battery with limited power supply

Applications include:

- Tracking
- Monitoring

What is Context Privacy?

- ▶ Privacy threats can be classified as either content-based or **context-based**
- ► Content-based threats have been widely addressed (using cryptography) (Perrig et al. [6])
- Context-based threats are varied
- ▶ We focus on protecting the location context of broadcasting nodes

Important Considerations

- ► Wireless Sensor Nodes are energy constrained
- ► Sending messages is the most expensive task
- ▶ Receiving messages is the next most expensive task (Shnayder et al. [7])

The Problem of Source Location Privacy

Given:

- ► A WSN that detects valuable assets
- ► A node broadcasting information about an asset

Found:

- An attacker can find the source node by backtracking the messages sent through the network
- So by deploying a network to monitor a valuable asset, a way has been provided for it to be captured

The Problem:

- Panda-Hunter Game
- Difficult

Related Work

- ► Attacker Models (Benenson et al. [1])
- ▶ Phantom Routing (Kamat et al. [3])
- ► Fake Sources: TFS/PFS (Bradbury et al. [2])
- ► Combination: Tree-based (Long et al. [4])
- ► Global Attacker: Periodic Collection (Mehta et al. [5])

Phantom Walkabouts

► A modification of Phantom Routing

Phantom Routing:

- 1. Source message is routed towards or away from a landmark node
- 2. After some number of hops, or when the landmark node is reached the message is routed towards the sink
- ► The landmark node is typically the sink
- ▶ This means messages tend not be routed further than the sink
- ▶ Phantom Walkabouts experiments with paths past the landmark node (long random walks)
- ▶ We test with paths that do not go beyond the landmark node (short random walks)
- Finally, we test with alternating patterns of both (phantom walkabouts)

Considering Walk Lengths

(b) Long Random Walk

- ▶ Phantom node can pull the attacker towards the source node with a short random walk
- Phantom node can pull the attacker away from the source node with a long random walk
- ► Long random walk requires additional messages

Short Random Walk Routing

Short Random Walk Procedure

- ► Each node divides its neighbours into four directions
- Nodes transmit messages to one of four directions
- Phantom source floods messages through the network after a message finishes the random walk
- ► Short walks are less than the sink-source distance (in hops)

Long Random Walk Routing

Long Random Walk Procedure

- ► Each node divides its neighbours into four directions
- ▶ Nodes transmit messages to one of four directions
- If message is blocked in the chosen direction, nodes will send the received messages to other direction
- Phantom source floods messages through the network after a message finishes the random walk
- ► Long walks are greater than the sink-source distance (in hops)

A Problem with Long Walks

- ► The attacker has high probability capturing messages before long random walk routing ends
- ► Nodes are always forwarding messages in the closer-to-sink direction

Biased Random Walk

- ► The message firstly chooses the bias random walk direction (i.e., horizontal or vertical direction)
- ► Messages have high possibility walking along the chosen direction
- ▶ When the message reaches the end of that direction, nodes will send it to other direction to continue the rest random walk
- ► The message is then flooded to the network after the phantom node is reached

Phantom Walkabouts

- ► The phantom walkabouts technique extends the phantom routing protocol by adopting variable lengths of phantom routing
- When a source node routes messages using phantom walkabouts, a message m_i is selected to either go on a short random walk of length s or long random walk of length s. The sequencing of messages looks like as follow

$$\underbrace{M_s, \cdots, M_s,}_{m} \underbrace{M_l, \cdots, M_l,}_{n} \underbrace{M_s, \cdots, M_s,}_{m} \underbrace{M_l, \cdots, M_l,}_{n} \cdots$$

ightharpoonup PA(m,n) (m, n \geq 0) denotes m short random walk and n long random walk messages

Experimental Setup

- ► TOSSIM (simulator for TinyOS)
- ► Square grid network of 11², 15², 21² and 25² nodes
- ► Message rates: 1, 2, 4, 8 messages/second
- ▶ Short random walk lengths S: $2, 3, ... 0.5 \times \Delta_{ss}$ (Δ_{ss} is sink source distance)
- ▶ Long random walk lengths L: $2 + \Delta_{ss}, \dots 1.5 \times \Delta_{ss}$
- ▶ The phantom walkabouts random walks: $\{(S_i, L_i) \mid 1 \le i \le |S|\}$
- ▶ Network topology: sink in the centre and source in the corner
- Attacker starts at the location of the sink
- ▶ 500 repeats were performed for each combination of source location and parameters

Experiments for multiple sources are in the paper – show similar patterns to single sources

Performance Metrics: Safety Period and Capture Ratio

- Safety Period (simulation time) $1.3 \times tt \tag{1}$
- ▶ tt is the average time it takes an attacker to capture the source when protectionless flooding is used
- ► Capture Ratio

$$CR = \frac{\text{Number of experiments ending in a capture}}{\text{total number of experiments}}$$
 (2)

When there are multiple sources in the network, a capture occurs when at least one of the sources are detected

Results: Capture Ratio

- ▶ The level of SLP increases (capture ratio decreases) with increasing message rate
- ightharpoonup PW(1,0) has low SLP while PW(1,1) and PW(0,1) perform much better

Results: Energy Usage (Messages Sent)

- ▶ Number of messages increases with increasing network size
- ▶ Number of messages transmitted is similar at various message rates
- Multiple nodes does not consume more energy

Summary

- ▶ Phantom walkabouts proposes to interleave sequences of short random walks and long random walks to attempt to make the attacker move in the wrong direction
- Phantom walkabouts provides a better level of SLP but at lower additional message overhead
- ▶ Phantom walkabouts provides better levels of SLP with certain parameterisations

Future Work

- ▶ Develop a dynamic phantom walkabouts that responds to changes in the network
- ► Consider different network topologies

References I

- [1] Zinaida Benenson, Peter M. Cholewinski, and Felix C. Freiling. Wireless Sensors Networks Security, chapter Vulnerabilities and Attacks in Wireless Sensor Networks, pages 22–43. IOS Press, 2008.
- [2] M. Bradbury, M. Leeke, and A. Jhumka. A dynamic fake source algorithm for source location privacy in wireless sensor networks. In 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pages 531–538, August 2015. doi: 10.1109/Trustcom.2015.416.
- [3] Pandurang Kamat, Yanyong. Zhang, W. Trappe, and C. Ozturk. Enhancing source-location privacy in sensor network routing. In 25th IEEE International Conference on Distributed Computing Systems (ICDCS'05), pages 599–608, June 2005. doi: 10.1109/ICDCS.2005.31.
- [4] Jun Long, Mianxiong Dong, K. Ota, and Anfeng Liu. Achieving source location privacy and network lifetime maximization through tree-based diversionary routing in wireless sensor networks. *IEEE Access*, 2:633–651, 2014. ISSN 2169-3536. doi: 10.1109/ACCESS.2014.2332817.
- [5] K. Mehta, D. Liu, and M. Wright. Protecting location privacy in sensor networks against a global eavesdropper. IEEE Trans. on Mobile Computing, 11(2):320–336, February 2012. ISSN 1536-1233. doi: 10.1109/TMC.2011.32.
- [6] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor networks. Commun. ACM, 47(6):53–57, June 2004. ISSN 0001-0782. doi: 10.1145/990680.990707.
- [7] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and Matt Welsh. Simulating the power consumption of large-scale sensor network applications. In *Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems*, SenSys '04, pages 188–200, New York, NY, USA, 2004. ACM. ISBN 1-58113-879-2. doi: 10.1145/1031495.1031518.

