

² Huawei Cloud

CED: Catalog Extraction from Documents

Tong Zhu¹, Guoliang Zhang¹, Zechang Li², Zijian Yu¹, Junfei Ren¹, Mengsong Wu¹, Zhefeng Wang², Baoxing Huai², Pingfu Chao¹, Wenliang Chen¹

w1chen@suda.edu.cn

Paper

GitHub

Introduction

We aim to extract catalogs from documents (CED) to convert text-based documents into trees. We provide a large manually annotated dataset (ChCatExt), a transition-based model (TRACER), and a metric.

The Transition-based Method

We design a transition-based method with four actions: Sub-Heading, Sub-Text, Concat, and Reduce. Two text chunks (the stack top s and the input q) are paired to feed a BERT-family model to predict the action at each step.

Dataset

We annotate three types of documents to construct the proposed dataset, including bid announcements, financial announcements, and credit rating reports. We also collect Wikipedia as an auto-labeled dataset for pre-training.

Source	#Docs	Avg.Length	Avg	Avg.Depth		
			Heading	Text	Total	Avg.Depun
BidAnn	100	1,756.76	8.04	30.61	38.65	3.00
FinAnn	300	3,504.22	12.09	52.31	64.40	3.79
CreRat	250	15,003.81	27.70	81.07	108.77	4.59
Total ChCatExt	650	7,658.30	17.47	60.03	77.50	3.98
Wiki	214,989	1,960.41	11.07	19.34	30.41	3.86

Results and Conclusion

Our model outperforms other baselines by large margins. Although Wiki pre-training is not effective in the main results, it shows good ability in domain transfer experiments.

In conclusion, we build a large dataset for automatic catalog extraction. Based on this dataset, we design a transition-based method to help address the task and obtain promising results. We hope that this task and new data could promote the development of Intelligent Document Processing.

Methods	Heading			Text			Overall		
	Р	R	F1	Р	R	F1	Р	\mathbf{R}	F1
Pipeline	88.637	86.595	87.601	81.627	82.475	82.047	76.837	77.338	77.085
Tagging	87.456	88.241	87.846	81.079	81.611	81.344	77.746	78.800	78.269
TRACER	90.634	90.341	90.486	83.031	85.673	84.328	81.017	83.818	82.390
w/o Constraints	89.911	89.713	89.811	82.491	84.948	83.698	80.216	83.035	81.596
TRACER w/ WikiBert	88.671	89.785	89.221	83.308	85.025	84.156	80.820	83.357	82.063