US Employment Rate Analysis

Data Preparation

Import Library

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

from datapackage import Package
from statsmodels.tsa.arima.model import ARIMA
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from math import sqrt
from sklearn.metrics import r2_score
from powerbiclient import QuickVisualize, get_dataset_config, Report
from powerbiclient.authentication import DeviceCodeLoginAuthentication
```

Load Data

```
package =
Package('https://datahub.io/core/employment-us/datapackage.json')
print(package.resource names)
for resource in package.resources:
    if resource.descriptor['datahub']['type'] == 'derived/csv':
        data = pd.read csv(resource.raw iter())
        print(data)
        #print(resource.read())
['validation report', 'aat1 csv', 'aat1 json', 'employment-us zip',
'aat1'l
    year population labor force population percent employed total
0
    1941
               99900
                             55910
                                                  56.0
                                                                  50350
   1942
               98640
                             56410
                                                  57.2
1
                                                                  53750
   1943
               94640
                                                                  54470
                             55540
                                                  58.7
    1944
               93220
                             54630
                                                  58.6
                                                                  53960
    1945
               94090
                                                  57.2
                             53860
                                                                  52820
```

67 2007 231867 153124 66.0 14 68 2008 233788 154287 66.0 14 69 2009 235801 154142 65.4 13	
68 2008 233788 154287 66.0 14 69 2009 235801 154142 65.4 13 70 2010 237830 153889 64.7 13 employed_percent agrictulture_ratio nonagriculture_ratio unemployed \ 0 50.4 9100 41250 5560 1 54.5 9250 44500 2660 2 57.6 9080 45390	44427
69 2009 235801 154142 65.4 13 70 2010 237830 153889 64.7 13 employed_percent agrictulture_ratio nonagriculture_ratio unemployed \ 0 50.4 9100 41250 5560 44500 45390 45390	46047
70 2010 237830 153889 64.7 13 employed_percent agrictulture_ratio nonagriculture_ratio unemployed \ 0 50.4 9100 41250 5560	45362
<pre>employed_percent agrictulture_ratio nonagriculture_ratio unemployed \ 0</pre>	39877
unemployed \ 0	39064
3 57.9 8950 45010 670 4 56.1 8580 44240 1040 66 63.1 2206 142221 7001 67 63.0 2095 143952 7078 68 62.2 2168 143194 8924 69 59.3 2103 137775 14265 70 58.5 2206 136858 14825 unemployed_percent not_in_labor footnotes 0 9.9 43990 NaN	
1 4.7 42230 NaN 2 1.9 39100 NaN 3 1.2 38590 NaN 4 1.9 40230 NaN	
66 4.6 77387 1.0 67 4.6 78743 1.0 68 5.8 79501 1.0 69 9.3 81659 1.0 70 9.6 83941 1.0	

Data Preview

Da	ta Prev	iew						
dat	ta.head	1()						
emr	year	<pre>population total \</pre>	labor_force	popula	tion_per	cent		
0	1941	99900	55910			56.0		50350
1	1942	98640	56410			57.2		53750
2	1943	94640	55540			58.7		54470
3	1944	93220	54630			58.6		53960
4	1945	94090	53860			57.2		52820
	_							
une	employ employe		agrictulture_	ratio	nonagri	.culture	e_ratio	
0 556	50	50.4		9100			41250	
1 266		54.5		9250			44500	
2 107		57.6		9080			45390	
3		57.9		8950			45010	
670 4		56.1		8580			44240	
104								
0 1 2 3 4	unempl	oyed_percent 9.9 4.7 1.9 1.2	- 4399 4223 3910	0 0 0 0	tnotes NaN NaN NaN NaN NaN			
dat	ta.tail	.()						
\	year	population	labor_force	popul	ation_pe	rcent	employe	d_total
66	2006	228815	151428			66.2		144427
67	2007	231867	153124			66.0		146047
68	2008	233788	154287			66.0		145362
69	2009	235801	154142			65.4		139877

70	2010	237830	153889		64.7	139064
une	employ mployed		agrictulture_ra	tio nonagr	riculture_ratio	
66	' '	63.1	2	206	142221	
700	1					
67	0	63.0	2	095	143952	
707 68	8	62.2	า	168	143194	
892	4	02.2	2	100	143194	
69	•	59.3	2	103	137775	
142	65					
70		58.5	2	206	136858	
148	25					
	unempl	oyed_percent	not_in_labor	footnotes		
66		4.6		1.0		
67		4.6		1.0		
68 69		5.8 9.3		$egin{array}{c} 1.0 \ 1.0 \end{array}$		
70		9.5	83941	1.0		
, 0		5.0	03341	1.0		

Immediately from the head of the data we can see a misspelling in the column 'agrictulture_ratio' which supposed to be 'agriculture_ratio'.

Data Exploration

Checking Data

Shape of Data

```
data.shape (71, 12)
```

General Information of Data

Column Name, Count, Data Type

```
labor_force
 2
                           71 non-null
                                            int64
 3
     population_percent
                           71 non-null
                                            float64
 4
     employed total
                           71 non-null
                                            int64
 5
     employed percent
                           71 non-null
                                            float64
 6
     agrictulture ratio
                           71 non-null
                                            int64
 7
     nonagriculture_ratio
                                            int64
                           71 non-null
 8
     unemployed
                           71 non-null
                                            int64
 9
     unemployed percent
                           71 non-null
                                            float64
 10
    not in labor
                           71 non-null
                                            int64
 11
    footnotes
                           21 non-null
                                            float64
dtypes: float64(4), int64(8)
memory usage: 6.8 KB
```

General Statistic Information

Genera	il Statistic i	ntormation				
data.d	escribe()					
nanula	-		ulation	labor	_force	
count	tion_perce 71.0000		.000000	71.	000000	71.000000
mean	1975.0985	592 156272	.521127	98707.	492958	62.230986
std	20.4863	340 44979	.642300	33380.	727804	3.513793
min	1941.0000	93220	.000000	53860.	000000	55.800000
25%	1957.5000	900 112996	.000000	67284.	000000	59.200000
50%	1975.0000	000 153153	.000000	93774.	000000	61.300000
75%	1992.5000	900 193821	.500000	128652.	500000	66.000000
max	2010.0000	900 237830	.000000	154287.	000000	67.100000
	amalaad	+-+-1	lavad na			o modio \
count mean std min 25% 50% 75% max	employed	000000 577465 290437 000000 000000 000000	58.7 3.1 50.4 56.4 57.8 61.9	700000 73239 40380 00000 00000 00000 50000	4456 2055 2095 3235 3440 5766	e_ratio \ .000000 .492958 .547406 .000000 .000000 .000000
not in	nonagricu _labor \	ulture_rati	o une	mployed	unemploye	d_percent
count 71.000		71.00000	9 71	.000000		71.000000
mean		88577.02816	9 5673	.774648		5.509859

57564.929577			
std	32739.727633	2954.030173	1.818803
11795.889143			
min	41250.000000	670.000000	1.200000
38590.000000	E7010 E00000	2121 500000	4 250000
25% 45969.000000	57818.500000	3131.500000	4.350000
50%	83279.000000	5692.000000	5.500000
59377.000000	03273100000	3032100000	3.30000
75%	116357.000000	7614.000000	6.450000
65169.000000			
max	143952.000000	14825.000000	9.900000
83941.000000			
footno	+AC		
	1.0		
	1.0		
std	0.0		
	1.0		
_	1.0		
	1.0		
	1.0		
IIIdA	1.0		

Missing Value

```
data.isnull().sum()
                          0
year
population
                          0
labor_force
                          0
population_percent
                          0
employed_total
                          0
                          0
employed_percent
agrictulture_ratio
                          0
nonagriculture_ratio
                          0
unemployed
                          0
unemployed percent
                          0
not in labor
                          0
                         50
footnotes
dtype: int64
```

Variable Coorelation

```
plt.figure(figsize=(24,12))
corr = data.corr()
sns.heatmap(corr, annot = True, linewidths=1)
plt.show()
```


Based on the correlation map above, we can notice that the year variable has high correlation with almost all the data except for the unemployed_percent with correlation as low as 0.39 and agriculture_ratio which shows little to no correlation even showing a negative correlation with almost all the variables within the data. This shows us that population, employment rate (based on employed_total and employed_percent) has been increasing throughout the year, but we can't say the same on the unemployed_percent which shows a weak correlation.

Univariate Analysis

Year Distribution

```
column_to_analyze = 'year'
plt.hist(data[column_to_analyze], bins=70, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Here we can see that the year there are 2 records with the year 1947.

Population Distribution

```
column_to_analyze = 'population'
plt.hist(data[column_to_analyze], bins=20, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


The chart for population shows a right skewed histogram where there is a abundance of record with population of around 110000

Labor Force Distribution

```
column_to_analyze = 'labor_force'
plt.hist(data[column_to_analyze], bins=20, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Population Percentage Distribution

```
column_to_analyze = 'population_percent'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Total Number of Employed Distribution

```
column_to_analyze = 'employed_total'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Percentage of Employed Distribution

```
column_to_analyze = 'employed_percent'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Agriculture Ratio Distribution

```
column_to_analyze = 'agrictulture_ratio'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```

employed_percent

Nonagriculture Ratio Distribution

```
column_to_analyze = 'nonagriculture_ratio'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```

Histogram of nonagriculture_ratio

Total Number of Unemployed Distribution

```
column_to_analyze = 'unemployed'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Percentage of Unemployed Distribution

```
column_to_analyze = 'unemployed_percent'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Number of Not in Labor Distribution

```
column_to_analyze = 'not_in_labor'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Footnotes Distribution

```
column_to_analyze = 'footnotes'
plt.hist(data[column_to_analyze], bins=10, edgecolor='black') #
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Data Preprocessing

Column agrictulture_ratio

Fixing the typo agrictulture_ratio.

```
data.rename(columns={'agrictulture_ratio': 'agriculture_ratio'},
inplace=True)
data.head()
         population labor_force population_percent
employed total \
                                                                50350
  1941
              99900
                           55910
                                                 56.0
  1942
                           56410
                                                 57.2
              98640
                                                                53750
  1943
              94640
                           55540
                                                 58.7
                                                                54470
  1944
              93220
                           54630
                                                 58.6
                                                                53960
  1945
              94090
                           53860
                                                 57.2
                                                                52820
```

	employed_percent mployed \	agriculture_ratio	o nonagriculture_ratio
0	50.4	9100	9 41250
556			
1	54.5	9250	9 44500
266			
2	57.6	9080	9 45390
107			
3	57.9	8950	9 45016
670			
4	56.1	8580	9 44246
104	9		
	unemployed_percen	- -	
0	9.9		NaN
1	4.7		NaN
2	1.9		NaN
3	1.2		NaN
4	1.9	9 40230	NaN

Column year

Fixing the duplicated year (1947) by finding the average of both data.

```
# Group by 'year' and calculate the mean for each group
data = data.groupby('year').mean().reset_index()
# Display the resulting DataFrame
print(data)
    year population labor_force population_percent employed_total
  1941
             99900.0
                          55910.0
                                                  56.0
                                                               50350.0
1 1942
             98640.0
                          56410.0
                                                  57.2
                                                               53750.0
    1943
             94640.0
                          55540.0
                                                  58.7
                                                               54470.0
    1944
                                                               53960.0
             93220.0
                          54630.0
                                                  58.6
             94090.0
                          53860.0
                                                  57.2
                                                               52820.0
    1945
65 2006
            228815.0
                         151428.0
                                                  66.2
                                                              144427.0
66 2007
            231867.0
                         153124.0
                                                  66.0
                                                              146047.0
67 2008
                                                  66.0
                                                              145362.0
            233788.0
                         154287.0
```

68	2009	235801.0	154142.0		65.4	139877.0
69	2010	237830.0	153889.0		64.7	139064.0
	-					
une	employed mployed		agriculture_rati	lo nonagri	culture_rat:	LO
0		50.4	9100.	. Θ	41250	. 0
556 1		54.5	9250.	. Θ	44500	. 0
266 2	0.0	57.6	9080.	Θ	45390	Θ
107	0.0					
3 670	Θ	57.9	8950.	. 0	45010	. 0
4		56.1	8580.	. Θ	44240	. 0
104	0.0					
			2200	0	142221	0
65 700	1.0	63.1	2206.	. 0	142221	. 0
66 707	9 0	63.0	2095.	. 0	143952	. 0
67		62.2	2168.	. Θ	143194	. 0
892 68	4.0	59.3	2103.	Θ	137775	Θ
142	65.0					
69 148	25.0	58.5	2206.	. 0	136858	. 0
			mat in labor	£+		
0	unempt	oyed_percent 9.9		footnotes NaN		
1 2		4.7 1.9		NaN NaN		
3		1.2	38590.0	NaN		
4		1.9		NaN 		
65		4.6		1.0		
66 67		4.6 5.8		$1.0 \\ 1.0$		
68 69		9.3 9.6	81659.0	1.0		
				1.0		
[70	rows x	12 columns]				

Recheck the histogram distribution of column year

```
column_to_analyze = 'year'
plt.hist(data[column_to_analyze], bins=70, edgecolor='black') #
```

```
Adjust the number of bins as needed
plt.xlabel('{}'.format(column_to_analyze))
plt.ylabel('Frequency')
plt.title('Histogram of {}'.format(column_to_analyze))
plt.show()
```


Based on the graph we can see that the duplicated data is now fixed.

Data Analysis

1. US Population, total Employment, and total Unemployment throughout the year.

```
plt.figure(figsize=(10,6))
data['average_employed'] = data['employed_total'].mean()
data['average_unemployed'] = data['unemployed'].mean()
data['average_population'] = data['population'].mean()

plt.plot(data['year'], data['population'], 'b-', label='population',
marker = 'o')
plt.plot(data['year'], data['employed_total'], 'r-',
label='employed_total', marker = 'o')
```

year

```
plt.plot(data['year'], data['unemployed'], 'g-', label='unemployed',
marker = 'o')
plt.plot(data['year'], data['average employed'], 'r-',
label='average employed', linestyle = '--')
plt.plot(data['year'], data['average unemployed'], 'g-',
label='average_unemployed',linestyle = '--')
plt.plot(data['year'], data['average population'], 'b-',
label='average population',linestyle = '--')
plt.xlabel('Year')
plt.vlabel('Population')
plt.legend(loc='upper left')
plt.grid(True)
plt.title('US Population, total Employment, and total Unemployment
throughout the year')
C:\Users\emili\AppData\Local\Temp\ipykernel 14212\1694127570.py:9:
UserWarning: linestyle is redundantly defined by the 'linestyle'
keyword argument and the fmt string "r-" (-> linestyle='-'). The
keyword argument will take precedence.
  plt.plot(data['year'], data['average employed'], 'r-',
label='average employed', linestyle = '--')
C:\Users\emili\AppData\Local\Temp\ipykernel 14212\1694127570.py:10:
UserWarning: linestyle is redundantly defined by the 'linestyle'
keyword argument and the fmt string "g-" (-> linestyle='-'). The
keyword argument will take precedence.
  plt.plot(data['year'], data['average unemployed'], 'q-',
label='average unemployed',linestyle = '--')
C:\Users\emili\AppData\Local\Temp\ipykernel 14212\1694127570.py:11:
UserWarning: linestyle is redundantly defined by the 'linestyle'
keyword argument and the fmt string "b-" (-> linestyle='-'). The
keyword argument will take precedence.
  plt.plot(data['year'], data['average population'], 'b-',
label='average population',linestyle = '--')
Text(0.5, 1.0, 'US Population, total Employment, and total
Unemployment throughout the year')
```


As we can see from the plot above, the total employment is steadily increasing throughout the year, following the increase of the population. However we can also see that the increase in population does not exactly match the increased in employment as we can see a drop of employed in the year 2010. Meanwhile the level of unemployed seems to stay low throughout the year although it shows a slight increase starting from 1970 with the largest jump in 2010.

2. Force Labor Composition in the US

2.1 Average Force Labor composition

The plot above shows the average value of the composition of the labor force which includes composition of the employed_total (agriculture and non agricultute)

2.2 Employment Composition throughout the year

```
data['agriculture_ratio_rate'] = (data['agriculture_ratio'] /
data['employed_total']) * 100
data['non_agriculture_ratio_rate'] = (data['nonagriculture_ratio'] /
data['employed_total']) * 100
plt.figure(figsize=(10,6))
plt.plot(data['year'], data['agriculture_ratio_rate'], 'r-',label =
'Agriculture percentage',marker = '^')
plt.plot(data['year'], data['non_agriculture_ratio_rate'], 'b-',label
= 'Non-Agriculture percentage',marker = 'o')

plt.title('Employment Composition Throughout the Year')
plt.xlabel('Year')
plt.ylabel('Employed (%)')
plt.legend(loc='upper left')
plt.grid(True)
```


As seen from the plot above, we can see the decline of interest in the agriculture field where it started from roughly 18% of the employed to just around 1 or 2%. Meanwhile the interest in non-agriculture field has been increasing in contrast.

3. Footnotes Analysis

	,			
	tes_df = data tes_df.descri	[data['footnote be()	s']== <mark>1</mark>]	
popula count	year tion_percent 21.000000	population \ 21.000000	labor_force 21.000000	21.000000
mean	1991.142857	191978.190476	124891.523810	64.514286
std	17.788439	42436.257856	31280.608731	2.947590
min	1953.000000	107056.000000	63015.000000	58.800000
25%	1978.000000	161910.000000	102250.000000	63.200000
50%	1998.000000	205220.000000	137673.000000	66.000000
75%	2005.000000	226082.000000	149320.000000	66.500000
max	2010.000000	237830.000000	154287.000000	67.100000

count mean 117 std 29 min 61 25% 96 50% 131 75% 139	oyed_total 21.000000 774.714286 160.380342 179.000000 048.000000 463.000000 252.000000		ed_percent 21.000000 60.895238 2.907830 55.500000 58.500000 62.300000 63.000000 64.400000	21 318 115 209! 2200 3223 3409	re_ratio \ 1.000000 1.047619 3.559512 5.000000 6.000000 9.000000	
nona not_in_labo count		_ratio	unemploye	•	/ed_percent 21.000000	
21.000000 mean	114593.0	619048	7116.85714	13	5.585714	
67086.52381 std 11465.46262	30200.	645097	3054.79716	57	1.559258	
min 44041.00000	54919.	900000	1834.00000	00	2.900000	
25% 59659.00000			5692.00006		4.600000	
50% 67547.00000			7001.00000		5.500000	
75% 76762.00000 max	137020.0 0 143952.0		8149.00006 14825.00006		6.000000 9.600000	
83941.00000			1102310000	, 0	31000000	
average_pop count	ulation \ 21.0	rage_emp 2.10000	_	age_unemplo 2.100000		
2.100000e+0 mean 1.570204e+0	1.0	9.35422	7e+04	5.721493	e+03	
std 5.964510e-1	0.0	2.98225	5e-11	9.3195476	e-13	
min 1.570204e+0	1.0	9.35422	7e+04	5.721493	e+03	
25% 1.570204e+0		9.35422		5.7214936		
50% 1.570204e+0		9.35422		5.721493		
75% 1.570204e+0 max 1.570204e+0	1.0	9.35422		5.7214936 5.7214936		
	culture_ra [.]	tio_rate	non_agric	culture_rat:	io_rate	

count mean std min 25% 50% 75%	21.000000 3.236027 2.458280 1.434470 1.586320 2.569544 3.526362	21.000000 96.763900 2.458467 89.767731 96.473638 97.430456 98.413680
75%	3.526362	98.413680
max	10.232269	98.565530

As seen from the table above, there is no correlation or anything that is unique from the data which includes footnotes. Footnotes itself should essentially means additional notes or understanding on the data, but the data above doesn't really tell us anything.

4. Labor Force Participant Rate

```
data['labor_force_participation_rate'] = (data['labor_force'] /
data['population']) * 100

plt.figure(figsize=(10,6))
plt.plot(data['year'], data['labor_force_participation_rate'], marker
= 'o', linestyle = '-')

plt.title('Labor Force Participation Rate over Time')
plt.xlabel('Year')
plt.ylabel('Labor Force Participation Rate (%)')
plt.grid(True)

plt.show()
```


As seen from the chart above, the percentage of the labor force seems to be increasing per population throughout the year with the all time high at around 67% of the population.

5. Predictive Model for Employed and Unemployed

5.1 Employed Pattern Prediction

```
x = data[['year']]
y = data['employed_total']

# split data
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)

# set the train model
model = LinearRegression()
model.fit(x_train, y_train)

# predict employment
future_years = np.array([max(data['year']) + i for i in range(1, 6)]).reshape(-1, 1)
future_predictions = model.predict(future_years)

# interval
mse = mean_squared_error(y_test, model.predict(x_test))
confidence_interval = 1.96 * sqrt(mse)
```

```
lower bound = future predictions - confidence interval
upper bound = future predictions + confidence interval
# linear regression
model all data = LinearRegression()
model all data.fit(x, y)
# interval
mse_all_data = mean_squared_error(y, model_all_data.predict(x))
confidence interval all data = 1.96 * sqrt(mse all data)
lower bound all data = model all_data.predict(x) -
confidence interval all data
upper bound all data = model all data.predict(x) +
confidence interval all data
r squared = r2 score(y, model all data.predict(x))
plt.figure(figsize=(15, 8))
plt.plot(data['year'], data['employed_total'], marker='o',
linestyle='-', label='Historical Data')
plt.plot(future_years, future predictions, marker='o', linestyle='--',
color='g', label='Predicted Employment ')
plt.fill between(future years.flatten(), lower bound, upper bound,
color='gray', alpha=0.5)
plt.plot(x, model all data.predict(x), color='r')
plt.fill_between(x['year'], lower_bound_all_data,
upper_bound_all_data, color='orange', alpha=0.5)
plt.title('Historical and Predicted Employment Over Time')
plt.xlabel('Year')
plt.ylabel('Employed Total')
plt.arid(True)
plt.legend()
# Display the R-squared as text on the plot
plt.text(0.1, 0.9, f'R-squared: {r squared:.2f}',
transform=plt.gca().transAxes, fontsize=12, color='blue')
plt.show()
c:\Users\emili\AppData\Local\Programs\Python\Python310\lib\site-
packages\sklearn\base.py:465: UserWarning: X does not have valid
feature names, but LinearRegression was fitted with feature names
  warnings.warn(
```


With an accuracy of 98%, there is a chance of an increase in employment rate

5.2 Unemployed Pattern Prediction

```
x = data[['year']]
y = data['unemployed']
# split data
x_train, x_test, y_train, y_test = train_test_split(x, y,
test size=0.2, random state=42)
# set the train model
model = LinearRegression()
model.fit(x train, y train)
# predict employment
future years = np.array([max(data['year']) + i for i in range(1,
6)]).reshape(-1, 1)
future predictions = model.predict(future years)
# interval
mse = mean_squared_error(y_test, model.predict(x_test))
confidence interval = 1.96 * sqrt(mse)
lower bound = future predictions - confidence interval
upper bound = future_predictions + confidence_interval
# linear regression
model all data = LinearRegression()
model all data.fit(x, y)
```

```
# interval
mse all data = mean squared error(y, model all data.predict(x))
confidence interval all data = 1.96 * sqrt(mse all data)
lower bound all data = model all data.predict(x) -
confidence interval all data
upper bound all data = model all data.predict(x) +
confidence interval all data
r squared = r2 score(y, model all data.predict(x))
plt.figure(figsize=(15, 8))
plt.plot(data['year'], data['unemployed'], marker='o', linestyle='-',
label='Historical Data')
plt.plot(future_years, future_predictions, marker='o', linestyle='--',
color='g', label='Predicted Unemployment ')
plt.fill_between(future_years.flatten(), lower_bound, upper_bound,
color='gray', alpha=0.5)
plt.plot(x, model all data.predict(x), color='r')
plt.fill between(x['year'], lower bound all data,
upper bound all data, color='orange', alpha=0.5)
plt.title('Historical and Predicted Unemployment Over Time')
plt.xlabel('Year')
plt.ylabel('Unemployed Total')
plt.grid(True)
plt.legend()
# Display the R-squared as text on the plot
plt.text(0.1, 0.8, f'R-squared: {r_squared:.2f}',
transform=plt.gca().transAxes, fontsize=12, color='blue')
plt.show()
c:\Users\emili\AppData\Local\Programs\Python\Python310\lib\site-
packages\sklearn\base.py:465: UserWarning: X does not have valid
feature names, but LinearRegression was fitted with feature names
 warnings.warn(
```


From the prediction of unemployment trend over time graph above, it can be seen that there is an orange area, which indicates the linear regression pattern and provide upper and lower boundary. There was periods of time that are beyond the given upper boundary which indicates the recession periods, which shows that during recession, the number of unemployment are increasing beyond and breaching the upper boundary of the normal area.

6. Pre and Post Recession Analysis

6.1 Employment Pattern Analysis

```
recession1 start year = 1981
recession1 end year = 1982
recession2 start year = 2008
recession2 end year = 2009
pre 1981 mask = (data['year'] <= recession1 start year)</pre>
between_1981_1982_mask = ((data['year'] >= recession1_start_year) &
(data['year'] <= recession1 end year))</pre>
between 1982 2008 mask = ((data['year'] >= recession1 end year) &
(data['year'] <= recession2 start year))</pre>
between 2008 2009 mask = ((data['year'] >= recession2 start year) &
(data['year'] <= recession2 end year))</pre>
post_2009_mask = (data['year'] >= recession2 end year)
plt.figure(figsize=(12, 6))
plt.plot(data[pre 1981 mask]['year'], data[pre 1981 mask]
['employed percent'], color='black')
plt.plot(data[between 1981 1982 mask]['year'],
```

```
data[between_1981_1982_mask]['employed_percent'], color='red',
label='Recession 1981-1982')
plt.plot(data[between_1982_2008_mask]['year'],
data[between_1982_2008_mask]['employed_percent'], color='black')
plt.plot(data[between_2008_2009_mask]['year'],
data[between_2008_2009_mask]['employed_percent'], color='orange',
label='Recession 2008-2009')
plt.plot(data[post_2009_mask]['year'], data[post_2009_mask]
['employed_percent'], color='black')

plt.title('Employment Rate Over Time')
plt.xlabel('Year')
plt.ylabel('Employment Rate')
plt.grid(True)
plt.legend()
plt.show()
```


From the Employment Rate Over Time graph above, it can be seen in green and red line, that there were significant drops during recession periods, which occur during 1981-1982 and 2008-2009. The pattern indicates that both drops are approaching the Employment Rate value of 58. However the bounce back after the 1981-1982 recession can be seen in year 1983.

6.2 Unemployment Pattern Analysis

```
recession1_start_year = 1981
recession1_end_year = 1982
recession2_start_year = 2008
recession2_end_year = 2009
```

```
pre 1981 mask = (data['year'] <= recession1 start year)</pre>
between 1981 1982 mask = ((data['year'] >= recession1 start year) &
(data['year'] <= recession1 end year))</pre>
between 1982 2008 mask = ((data['year'] >= recession1 end year) &
(data['year'] <= recession2 start year))</pre>
between_2008_2009_mask = ((data['year'] >= recession2_start_year) &
(data['year'] <= recession2 end year))</pre>
post 2009 mask = (data['year'] >= recession2 end year)
plt.figure(figsize=(12, 6))
plt.plot(data[pre_1981_mask]['year'], data[pre_1981_mask]
['unemployed'], color='black')
plt.plot(data[between 1981 1982 mask]['year'],
data[between 1981 1982 mask]['unemployed'], color='red',
label='Recession 1981-1982')
plt.plot(data[between 1982 2008 mask]['year'],
data[between 1982 2008 mask]['unemployed'], color='black')
plt.plot(data[between 2008 2009 mask]['year'],
data[between 2008 2009 mask]['unemployed'], color='orange',
label='Recession 2008-2009')
plt.plot(data[post 2009 mask]['year'], data[post 2009 mask]
['unemployed'], color='black')
plt.title('Unemployment Rate Over Time')
plt.xlabel('Year')
plt.ylabel('Unemployment Rate')
plt.grid(True)
plt.legend()
plt.show()
```


The Unemployment Rate Over Time graph above indicate that the during the both recession, there were a significant increase in the unemployment rate, which can be seen in red and yellow line. However, after the recession 1981-1982, there was a decrease amount of unemployment rate and it showed in a ranging type of graph. This period is keep ranging until the Global Recession 2008-2009 period.

From both of the line graphs above, it can be seen during the recession period, there were an increase in Unemployment in the US. However from the given graph also, the comparison between both picture was unable to be scaled in a same size. The ratio for unemployement rate was too huge if was compared directly with the employment rate. This showing there was huge number of lay-off activities and a small number of people hired.

Data Export

Export to CSV

data.to_csv('US_Employment_Rate.csv')

This part of the code is used to export the data to a csv file to be present in a form of a dashboard through Power BI.