CS181 Assignment 3 - Clustering and Parameter Estimation

Lexi Ross & Ye Zhao

2013/03/08

1 High Dimensional Clustering

(a) Given that $\rho = P(\max_m |x_m - y_m| \le \epsilon)$, the probability that all the M dimensions of $\mathbf{x} - \mathbf{y}$ are between $-\epsilon$ and ϵ , we can find out ρ by finding the probability p_m of having each individual dimension of $\mathbf{x} - \mathbf{y}$, ie $p_m = P(-\epsilon \le x_m - y_m \le \epsilon)$. Since y_m is a uniform distribution on [0,1], we have

$$P(-\epsilon \le x_m - y_m \le \epsilon) = 2\epsilon \tag{1}$$

From the independence of each component, we have

$$\rho = \prod_{m=1}^{M} p_m = (2\epsilon)^M \tag{2}$$

- (b) In this case since \mathbf{x} is some arbitrary point in the hypercube, it is possible that the at least one of the components of \mathbf{x} is within ϵ far away from the surface of the cube. Let the dimension that has x_m near to the bound, ie $x_m < \epsilon$ or $x_m > (1 \epsilon)$, then we know that the probability of $|y_m x_m| \le < \epsilon$ will be strictly less than 2ϵ since at least one side of the point is being truncated. Hence the total probability will be less than that of ρ .
- (c) The Euclidean distance is given by

$$||\mathbf{x} - \mathbf{y}|| = \sqrt{\sum_{m=1}^{M} (x_m - y_m)^2}$$
(3)

Let x_{m^*} and y_{m^*} be the component that maximizes $|x_m - y_m|$, hence we have

$$||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_{m^*} - y_{m^*})^2 + \sum_{m \neq m^*, m \in M} (x_m - y_m)^2} > \sqrt{(x_{m^*} - y_{m^*})^2} = |x_{m^*} - y_{m^*}|$$
 (4)

$$||\mathbf{x} - \mathbf{y}|| > \max_{m} |x_m - y_m| \tag{5}$$

where the inequality comes from the fact that the summed square must always be bigger than or equal to zero.