Laboratorijska vježba 3

Matija Marić, 0036479678

11. svibnja 2018.

Sadržaj

1	Obnavljanje slike		2
	1.1	Modeliranje degradiranja slike kao FIR filtera	2
	1.2	Inverzni filter	4
	1.3	Pseudoinverzni filter	5
	1.4	Wienerov filter	6
		1.4.1 Autokorelacijska funkcija	9
2	Pronalaženje značajki slike		
	2.1	Amplitudne značajke slike	10
		Značajke histograma prvog reda	
		Značajke histograma drugog reda	
		Sobelov i Prewittov operator	

Poglavlje 1

Obnavljanje slike

1.1 Modeliranje degradiranja slike kao FIR filtera

Slika 1.1: PSF i OTF karakterističnih zamućenja

Slika 1.2: PSF i OTF kombinacije zamućenja

Slika 1.3: PSF na slici salona.png

Slika 1.4: PSF na slici klis.png

1.2 Inverzni filter

4.

Slika 1.5: Inverzno filtrirana slika sa i bez aditivnog šuma.

2. Srednja kvadratna greška bez šuma je 0.0057, a sa šumom 0.0121.

Slika 1.6: Inverzno filtrirana slika sa i bez aditivnog šuma i kvantizirano na 256 razina.

4. Srednja kvadratna greška sa kvantizacijom bez šuma je 0.0016, a sa šumom 0.0121. Kvantizacijom se smanjuje greška.

1.3 Pseudoinverzni filter

Slika 1.7: Pseudoinverzno filtrirana slika sa i bez aditivnog šuma, sa K=0.05.

- 2. Srednja kvadratna greška bez šuma je 0.0013, a sa šumom 0.0112.
- 3. Pseudoinverzno filtriranje daje bolje rezultate.

Slika 1.8: Pseudoinverzno filtrirana slika sa i bez aditivnog šuma, sa K=0.05 i kvantizirano na 256 razina.

- 5. Srednja kvadratna greška bez šuma je 0.0013, a sa šumom 0.0112.
- 6. Pseudoinverzno filtriranje daje bolje rezultate.
- 7. Kvantizacija kod pseudoinverznog filtriranje ne radi nikakvu razliku u rezultatima.

1.4 Wienerov filter

Slika 1.9: Slika sa aditivnim šumom filtrirana Weinerovim filterom.

2.

Slika 1.10: Slika sa degradacijom bez šuma filtrirana Weinerovim filterom.

Slika 1.11: Slika sa degradacijom i šumom filtrirana Weinerovim filterom.

- 4. Srednja kvadratna greška za sliku sa šumom je 0.1307, sa degradacijom 0.0017, sa degradacijom i šumom 0.0106.
- 5. Weinerov filter daje bolje rezultate od inverznog i pseudoinverznog filtera.
- 6. Odnos signal/šum za sliku sa šumom je 1.2552, sa degradacijom 1.0819, sa degradacijom i šumom 1.0477.

1.4.1 Autokorelacijska funkcija

Slika 1.12: Autokorelacijska funkcija slike degradirane Gaussovim šumom.

Poglavlje 2

Pronalaženje značajki slike

2.1 Amplitudne značajke slike

Slika 2.1: Amplitudne značajke slike clock.tiff, blok veličine 32×32

Slika 2.2: Amplitudne značajke slike $\mathit{clock.tiff},$ blok veličine 16×16

Slika 2.3: Amplitudne značajke slike $\mathit{clock.tiff},$ blok veličine 8×8

2.2 Značajke histograma prvog reda

Slika 2.4: Značajke histograma prvog reda (entropija i energija) slike $\mathit{clock.tiff},$ blok veličine 5×5

2.3 Značajke histograma drugog reda

Slika 2.5: Histogrami drugog reda za pomake (1, 1) i (5, 5)

2. Rezultati su grupirani oko dijagonale jer su slike pomaknute jednako na svakoj osi.

- 3. Kod drugog histograma rezultati su raspršeniji jer je veći pomak i jača korelacija za raspršenije piksele.
- 4. Veliki dio piksela na slici saturn.tif su crni i pomakom većina ostaje ista, zato je najveći stupac na (0, 0) poziciji u histogramu.

Slika 2.6: Histogrami drugog reda za pomake (1, 1), (3, 3), (5, 5), (10, 10) slike saturn.tif

2.4 Sobelov i Prewittov operator

Slika 2.7: Proc
jene gradijenta Sobelovim i Prewittovim operatorom na slici
 $4.2.07.tif\! f$