Validation of Automated Mobility Assessment using a Single 3D Sensor

Jiun-Yu Kao, Minh Nguyen, Luciano Nocera, Cyrus Shahabi, Antonio Ortega, Carolee Winstein, Ibrahim Sorkhoh, Yu-chen Chung, Yi-an Chen, and Helen Bacon

University of Southern California (USC)

October 9, 2016

*This work has been funded by Integrated Media System Center at USC.

Outline

- Introduction
- Proposed method
 - System design
 - Feature design
- Experiments and evaluation
- Conclusions

Mobility assessment

• Observe and assess a person's movements, e.g., gait and balance, when performing certain tasks

Mobility assessment

- Observe and assess a person's movements, e.g., gait and balance, when performing certain tasks
- Widely used in different contexts
 - estimate the risk of falls in elders
 - adjust medication levels for those with musculo-skeletal disorders
 - evaluate effectiveness of rehabilitation
 - sports, military application, · · ·

Mobility assessment

- Observe and assess a person's movements, e.g., gait and balance, when performing certain tasks
- Widely used in different contexts
 - estimate the risk of falls in elders
 - · adjust medication levels for those with musculo-skeletal disorders
 - evaluate effectiveness of rehabilitation
 - sports, military application, · · ·
- Traditionally provide by physicians
 - restricted to cost and personnel/equipment availability
 - unable to assess more frequently
 - unable to assess at familiar places, e.g., patients' home

Automated mobility assessment

Motivation

- low-cost body sensing techniques and depth sensors are available
- wearable sensors have demonstrated to be useful for multiple applications

Automated mobility assessment

Motivation

- low-cost body sensing techniques and depth sensors are available
- wearable sensors have demonstrated to be useful for multiple applications

Goal

- design and validate an automated mobility assessment system based on signal 3D sensor
- provide study design insights in a specific context
- highlight design aspects that can be generalized to other applications

RGB data

depth data

System design

Insights into key factors for deploying an automated mobility assessment system based on cost-effective 3D sensors

System design

Insights into key factors for deploying an automated mobility assessment system based on cost-effective 3D sensors

Hardware and environment:

- Field of view of the 3D sensors
- Estimation errors may be larger under certain situations.

System design

Insights into key factors for deploying an automated mobility assessment system based on cost-effective 3D sensors

Hardware and environment:

- Field of view of the 3D sensors
- Estimation errors may be larger under certain situations.

Task:

- Prefer activities exploiting the mobility of all parts of the body.
- Level of difficulty in performing activities affects the system capability.
- Better to have each task repeatedly performed.

Feature design

Gait Measurements

step lengths, stride time, stride width of each 2-step segmentation (SAU)

Feature design

Gait Measurements

step lengths, stride time, stride width of each 2-step segmentation (SAU)

Angular Statistics

For each SAU, extract 5 statistics, i.e., average, standard deviation, min, max, angular speed out of the angles at each joint.

Feature design

Gait Measurements

step lengths, stride time, stride width of each 2-step segmentation (SAU)

Angular Statistics

For each SAU, extract 5 statistics, i.e., average, standard deviation, min, max, angular speed out of the angles at each joint.

Graph-based features

Extract features capturing and evaluating more global properties in motions

Graph Formulation

 $\bullet \ \, \text{human skeletal structure} \Rightarrow \text{fixed undirected graph} \,\, G = (V,E)$

Extract features capturing and evaluating more global properties in motions

Graph Formulation

- ullet human skeletal structure \Rightarrow fixed undirected graph G=(V,E)
- ullet joints \Rightarrow graph vertex set $V=\{v_1,v_2,...,v_{15}\}$

Extract features capturing and evaluating more global properties in motions

Graph Formulation

- human skeletal structure \Rightarrow fixed undirected graph G = (V, E)
- joints \Rightarrow graph vertex set $V = \{v_1, v_2, ..., v_{15}\}$
- physical limb connections \Rightarrow graph edges (i.e. $A_{ij}=1$ when a physical limb connects joint i and joint j)

Extract features capturing and evaluating more global properties in motions

Graph Formulation

- ullet human skeletal structure \Rightarrow fixed undirected graph G=(V,E)
- joints \Rightarrow graph vertex set $V = \{v_1, v_2, ..., v_{15}\}$
- physical limb connections \Rightarrow graph edges (i.e. $A_{ij}=1$ when a physical limb connects joint i and joint j)
- difference of 3D position at each joint between two consecutive frames \Rightarrow a graph signal $\mathbf{f}_a^{(t)}(i) = \mathbf{v}_{t,i}(a)$ where $a = \{x, y, z\}$

• Graph Fourier transform (GFT) can provide frequency analysis to the graph signals, which defined as

$$\mathcal{L} = I - D^{-1/2} A D^{-1/2}, \ \mathcal{L} = U \Lambda U^T$$
$$\mathbf{F}_a^{(t)}(i) = U^T \mathbf{f}_a^{(t)}(i)$$

 Graph Fourier transform (GFT) can provide frequency analysis to the graph signals, which defined as

$$\mathcal{L} = I - D^{-1/2}AD^{-1/2}, \ \mathcal{L} = U\Lambda U^{T}$$
$$\mathbf{F}_{a}^{(t)}(i) = U^{T}\mathbf{f}_{a}^{(t)}(i)$$

• vectorize $C^{(t)} = [\mathbf{F}_x^{(t)}, \mathbf{F}_y^{(t)}, \mathbf{F}_z^{(t)}]$ to a row vector and concatenate into a transform coefficient matrix $\mathbf{C} \in \mathbb{R}^{(T-1) \times 45}$

 Graph Fourier transform (GFT) can provide frequency analysis to the graph signals, which defined as

$$\mathcal{L} = I - D^{-1/2}AD^{-1/2}, \ \mathcal{L} = U\Lambda U^T$$
$$\mathbf{F}_a^{(t)}(i) = U^T\mathbf{f}_a^{(t)}(i)$$

- vectorize $C^{(t)} = [\mathbf{F}_x^{(t)}, \mathbf{F}_y^{(t)}, \mathbf{F}_z^{(t)}]$ to a row vector and concatenate into a transform coefficient matrix $\mathbf{C} \in \mathbb{R}^{(T-1) \times 45}$
- apply pyramid pooling scheme to capture the dynamics and generate the final features

- GFT basis can capture global motion properties.
- Lead to an easier interpretation of the results compared to PCA.
- Easier to compare results across different subjects, tasks, coordinate systems or datasets since not data-dependent.

Experiment methodology:

- 14 subjects with Parkinsons disease
- Perform standardized tests (e.g. walking) in front of Kinect sensor
- Skeletons are extracted in real time using Microsoft Kinect SDK
- Each action is performed 5 times when medication is in effect and another 5 times after medication wears off

Experiment methodology:

- 14 subjects with Parkinsons disease
- Perform standardized tests (e.g. walking) in front of Kinect sensor
- Skeletons are extracted in real time using Microsoft Kinect SDK
- Each action is performed 5 times when medication is in effect and another 5 times after medication wears off

Goal:

classify between ON/OFF medication states with captured motion data

Feature performance

Table: SVM performance for various features. Accuracy is reported with the format as average accuracy (best accuracy/worst accuracy) across 14 subjects. A: Accuracy, P: Precision, R: Recall and F-M: F-measure. ALL: Gait, Angle, and Graph.

FEATURE	A (%)	P (%)	R (%)	F-M
GAIT	63.58 (88.71/39.53)	57.26	55.40	0.51
Angle	75.30 (92.22/53.58)	75.01	74.20	0.74
Graph	82.41 (95.68/69.63)	83.04	81.93	0.82
ALL	84.79 (93.95/71.23)	85.43	83.38	0.84
PCA	84.66 (95.32/71.99)	85.30	84.44	0.85

Classifier performance

Table: Performance of single classifier and multiple classifiers combination. A: Accuracy, P: Precision, R: Recall, F-M: F-measure, AP: Average of Probabilities, MV: Majority Voting, S: SVM, k: k-NN, D: Decision Tree, R: Random Forest.

Classifier	A (%)	P (%)	R (%)	F-M
SVM	84.79	85.43	83.38	0.84
Random Forest	83.09	83.68	83.09	0.83
K-NN	79.24	80.16	79.24	0.79
Decision Tree	72.66	72.92	72.66	0.73
Naive Bayes	71.02	71.64	71.02	0.70
SKR (AP)	87.41	87.61	87.40	0.87
Sk (AP)	87.28	87.49	87.29	0.87
Skr (MV)	85.62	85.79	85.61	0.86
DSK (AP)	85.37	85.61	85.37	0.85
DSK (MV)	85.29	85.51	85.30	0.85

System performance

Table: subject-independent performance of single classifiers and multiple classifiers combination. A: Accuracy, P: Precision, R: Recall, F-M: F-measure.

Classifier	A (%)	P (%)	R (%)	F-M
NAIVE BAYES	60.09	60.50	60.10	0.60
Decision Tree	62.98	63.00	63.00	0.63
SVM	67.13	67.10	67.10	0.67
Random Forest	75.67	75.90	75.70	0.76
K-NN	76.86	77.10	76.90	0.77
RK (AP)	77.32	77.50	77.30	0.77
SkR (MV)	76.92	77.00	76.90	0.77
RK (MV)	76.59	76.70	76.60	0.77

Impact of task difficulty

Table: Performance results for three walking tasks. Accuracy is reported with the format as average accuracy (best accuracy/worst accuracy) across subjects. A, P, R and F-M denote respectively Accuracy, Precision, Recall and F-measure.

Task	A (%)	P (%)	R (%)	F-M
Count	84.79 (93.95/71.23)	85.43	83.38	0.84
Tray	82.04 (94.44/53.63)	82.19	90.00	0.85
Walk	81.04 (96.05/48.99)	81.63	87.75	0.83

Conclusions

- Propose a methodology to develop automated mobility assessment system with a single 3D sensor
- Propose graph-based feature, which achieves comparable performance while has better interpretability and robustness.
- Present an evaluation for a pilot study involving PD subjects, which supports the feasibility of using single 3D sensor to automatically assess the mobility and successfully classify the medication states.