EBU6018 Advanced Transform Methods

Discrete Fourier Transform_2 Fast Fourier Transform

Andy Watson

Fast Fourier Transform (FFT)

- What is the FFT?
 - A collection of "tricks" that exploit the symmetry of the DFT calculation to make its execution much faster
 - Speedup increases with DFT size
- This lecture: outline the basic workings of the simplest formulation, the radix-2 decimation-intime algorithm.
- Radix-2 means that the number of elements is a power of 2 (4, 8, 16, 32, etc)
- Decimation-in-time means that the input function is sampled in the time domain.

Introduction, continued

- Some dates:
 - ~1880 algorithm first described by Gauss
 - 1965 algorithm rediscovered (not for the first time)
 by Cooley and Tukey
- FFT Revolutionized digital signal processing from 1960s
- E.g. in 1967 8192-point DFT on mainframe IBM 7094:
 - ~30 minutes using conventional techniques
 - ~5 seconds using FFTs

Measures of computational efficiency

- Could consider
 - Number of additions
 - Number of multiplications
 - Amount of memory required
 - Scalability and regularity
- Focus most on number of multiplications
 - More costly than additions for fixed-point processors
 - Same cost as additions for floating-point processors, but number of operations is comparable

Computational Cost of Discrete-Time Operation

- In general, the output of a system (for example a transform) is the convolution of the input with the impulse response of the system
- So, the convolution of an N-point input with an M-point unit sample response
- Direct convolution: $y[n] = \sum_{k=-\infty} x[k]h[n-k]$

Number of multiplies ≈ MN

For N >> M the computation is $O(N^2)$

Computational Cost of Discrete-Time

- Convolution of an *N*-point input with an *M*-point unit sample response
 - Replace the convolution by multiplying the transforms of the two functions then getting the inverse transform of the product.
- Using transforms directly: $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}$
 - Computation of N-point DFTs requires N^2 multiplies
 - Each convolution (two direct transforms plus an inverse transform) requires three DFTs

For N >> M the computation is approx $3N^2$ $O(N^2)$ So, no time is saved replacing convolution by DFT, but can now use FFT to be faster

Cooley-Tukey decimation-in-time algorithm

Consider DFT algorithm for an integer power of 2,

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N} \qquad W_N = e^{-j2\pi/N}$$

Take alternate values of the input sequence.

 Create separate sums for even and odd values of n:

$$X[k] = \sum_{n \text{ even}} x[n]W_N^{nk} + \sum_{n \text{ odd}} x[n]W_N^{nk}$$
 factor in this lecture – common in FFT to

Note different sign in twiddle common in FFT texts

• Letting n = 2r for n even and n = 2r + 1 for n odd,

we get
$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r]W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1]W_N^{(2r+1)k}$$

Cooley-Tukey decimation in time algorithm

Splitting indices in time, we have obtained

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r]W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1]W_N^{(2r+1)k}$$

• But
$$W_N^2 = e^{-j2\pi 2/N} = e^{-j2\pi/(N/2)} = W_{N/2}$$

• and
$$W_N^{2rk}W_N^k = W_N^kW_{N/2}^{rk}$$

So:
$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r]W_{N/2}^{rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1]W_{N/2}^{rk}$$

$$N/2\text{-point DFT of } x[2r] \qquad N/2\text{-point DFT of } x[2r+1]$$

Savings so far ...

We have split the DFT computation into two halves:

$$X[k] = \sum_{k=0}^{N-1} x[n]W_N^{nk}$$
 If x[n] is 8-point, then we now have two 4-point
$$= \sum_{r=0}^{(N/2)-1} x[2r]W_{N/2}^{rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1]W_{N/2}^{rk}$$

- Have we gained anything? Consider the nominal number of multiplications for N=8
 - Original form produces $8^2 = 64$ multiplications
 - New form produces $2(4^2)+8=40$ multiplications
 - So we're already ahead …… Let's keep going!!

Signal flowgraph notation

- In generalizing this formulation, it is most convenient to adopt a graphic approach ...
- Signal flowgraph notation describes the three basic DSP operations:

Signal flowgraph representation of 8-point DFT

Recall that the DFT is now of the form

• The DFT in (partial) flowgraph $X[k] = G[k] + W_N^k H[k]$

Continuing with the decomposition

- So why not break up into additional DFTs?
- Let's take the upper 4-point DFT and break it up into two 2-point DFTs:

The complete decomposition into 2-

Now let's take a closer look at the 2-point DFT

The expression for the 2-point DFT is:

$$X[k] = \sum_{n=0}^{1} x[n]W_2^{nk} = \sum_{n=0}^{1} x[n]e^{-j2\pi nk/2}$$

• Evaluating for k = 0,1 we obtain

$$X[0] = x[0] + x[1]$$

$$X[1] = x[0] + e^{-j2\pi 1/2}x[1] = x[0] - x[1]$$

which in signal flowgraph notation looks like ...

This topology is called the basic "butterfly"

The complete 8-point decimation-in-time FFT

Number of multiplies for N-point FFT

- Let $N = 2^{\nu}$ where $\nu = \log_2(N)$
- $(\log_2(N) \text{ columns})(N/2 \text{ butterflys/column})(2 \text{ mults/butterfly})$ or approx $N\log_2(N)$ multiplications

Additional timesavers: reducing multiplications in the basic butterfly

As we derived it, the basic butterfly is of the form

Since $W_N^{N/2} = -1$ we can reduce computation by 2 by premultiplying by W_N^r

Bit reversal of the input

Recall the first stages of the 8-point FFT:

Consider the binary representation of the indices of the input:

010

110

1 001

5 101

3 011

7 111

Hence the indices of the FFT inputs are said to be in

bit-reversed order

Example with an 8-point input sequence

Some comments on bit reversal

- This implementation of FFT: input is bit reversed, output is in natural order
- Sometimes convenient to implement filtering applications by
 - Use FFTs with input in natural order, output in bitreversed order
 - Multiply frequency coefficients together (in bitreversed order)
 - Use inverse FFTs with input in bit-reversed order, output in natural order
- Computing in this fashion means we never have to compute bit reversal explicitly

