

Digesting an Open-Source Fair-Use TPC-E Implementation: DBT-5

Mark Wong Rilson Nascimento

2007-May, Ottawa

Introductions

- Mark Wong
 - Database Performance specialist
 - Previously worked at OSDL (presently, Linux Foundation)
- Rilson Nascimento
 - MSc Candidate in the Federal University of Pernambuco, Brazil
 - Previously worked at Itautec Performance Lab

Table of Contents

- TPC-E Overview
- Workload Architecture
- Experimental Results
- Research
- Future Work

Question Policy

- Interrupt us if something is unclear
- Keep long generic questions to the end
- Approach us during the conference
- Write us
 - markwkm@gmail.com
 - rilson.nascimento@gmail.com

Why TPC-E?

- http://www.tpc.org/tpce/spec/TPCEpresentation.ppt
- TPC-C is over 14 years old
- Not practical to modify existing workload
- Transaction are too lightweight by today's standards
- CPU performance grew according to Moore's Law
- Disk latency did not
- Reduce cost/complexity of running benchmark
- Encourage DB uses which is more representative of what customer do

TPC-E vs. DBT-5

- TPC-E is a benchmarking specification for generating marketing collateral
- DBT-5 a test kit to help improve PostgreSQL

TPC-E Overview

- TPC-E Goals
 - OLTP Database-centric workload
 - Comparability of results
 - Familiar business model easy to understand
 - Reduce cost of running benchmark
 - Enhance schema complexity
 - Be more representative to what customers do

TPC-E Overview (2)

Business Model – Financial Market

TPC-E Overview (3)

Business Model – Financial Market

TPC-E Overview (4)

Business Model – Financial Market

TPC-E Overview (5)

Business Model – Comparison with TPC-C

TPC-C

- Wholesale supplier
- Organized by
 - Warehouses
 - Districts
 - Customers

TPC-E

- Brokerage House
- Organized by
 - Customers
 - Accounts
 - Securities
 - Companies

TPC-E Overview (6)

Database Schema – Comparison with TPC-C

Characteristic	TPC-E	TPC-C
Tables	3 3	9
Columns	1 8 8	9 2
M in Cols / Table	2	3
Max Cols / Table	2 4	2 1
Data Type Count	Many	4
Data Types	UID, CHAR, NUM, DATE, BOOL, LOB	UID, CHAR, NUM, DATE
Prim ary Keys	3 3	8
Foreign Keys	5 0	9
Tables w / Foreign Keys	2 7	7
Check Constraints	2 2	0
R e fe r e n t i a l I n t e g r i t y	Yes	N o

TPC-E Overview (7)

Database Tables and Scaling

TPC-E Overview (8)

Transactions

Transaction	Weight	Access	Mix%	90% Response Time	
				Constraint	
Trade-Order	Heavy	R/W	10.1	2 sec.	
Trade-Result	Heavy	R/W	10	2 sec.	
Trade-Lookup	Medium	R/O	8	3 sec.	
Trade-Update	Medium	R/W	2	3 sec.	
Trade-Status	Light	R/O	19	1 sec.	
Customer Position	Mid-Heavy	R/O	13	3 sec.	
Broker Volume	Mid-Heavy	R/O	4.9	3 sec.	
Security Detail	Medium	R/O	14	3 sec.	
Market Feed	Medium	R/W	1	2 sec.	
Market Watch	Medium	R/O	18	3 sec.	
Data Maintenance	Light	R/W	-	-	
Trade-Cleanup	Medium	R/W	-	-	

TPC-E Overview (9)

- Metrics
 - Performance (throughput), expressed in tpsE
 - Price/Performance, expressed in price/tpsE
 - Availability Date, when all products necessary to achieve the stated performance will be available

TPC-E Overview (10)

Sample Test Configuration

TPC-E Overview (11)

Sample Test Configuration, Variation I

TPC-E Overview (12)

Sample Test Configuration, Variation II

TPC-E Overview (13)

Sample Test Configuration, Variation III

TPC-E Overview – Highlights and Benefits

- Financial business model
- Rich transaction set
- Diverse, realistic schema
- Server-centric workload with DB focus
- Realistic application model
- Rebalanced hardware configuration
- Specification provides code where sponsor creativity is not being tested

DBT-5 Architecture

DBT-5 Architecture - Loader

- Database creation is vendor specific, but...
- Database population can be vendor neutral
- TPC-E includes a data generator for database loading
 - C++ code to generate data
 - Flat file generation is provided
 - Sponsor is free to create to customize interface
- Libpqxx: C++ API for PostgreSQL

Experimental Results

- Test bed
 - Processor: Intel(R) Xeon(TM) CPU 2.80GHz w/HT
 - Memory: 3 GB
 - Disk: 14 disks in hw RAID 0 (data)
 - Operating System: Linux 2.6.20-gentoo-r4
 - Database Engine: PostgreSQL 8.2.3
 - Database Size: 2806 MB (1000 customers, 50 ITD)

Experimental Results – DBT-5 Report

Experimental Results

		Response T.	imo (c)			Elapsed T
Transaction	9	Average:	90th %	Total	Rollbacks	%
Trade Order	10.21	0.021:	0.043	3869	38	0.99
Trade Result	9.59	0.040 :	0.083	3635	0	0.00
Trade Lookup	8.08	0.346:	0.945	3063	0	0.00
Trade Update	1.96	0.313 :	0.677	743	0	0.00
Trade Status	19.03	0.006:	0.010	7212	0	0.00
Customer Position	12.89	0.005:	0.009	4885	0	0.00
Broker Volume	4.84	0.003:	0.004	1835	0	0.00
Security Detail	14.43	0.014 :	0.018	5467	0	0.00
Market Feed	0.96	0.055:	0.090	363	0	0.00
Market Watch	17.99	0.009:	0.017	6817	0	0.00
Data Maintenance	n/a	0.036:	0.122	9	0	0.00

^{2.02} trade-result transactions per second (TRTPS)

^{30.0} minute duration

²⁰ total unknown errors

Experimental Results – Response Time Plots

Experimental Results – System Statistics

Research

- A scientific article portraying DBT-5 was accepted in the 27th Brazilian Computer Society Conference, that will be held in Rio de Janeiro in June 2007
 - http://www.sbc.de9.ime.eb.br/en/index.php?view=wperforma nce&from=eventos&lang=en
- Rilson's Master's dissertation is employing DBT-5:
 Synthesizing Representative I/O Workloads for TPC-E

Future Work

- Update the workload to the latest TPC-E specification
 - EGen
 - Functions
- Write the Functions in C (in progress)
- Tune indexes/functions
- Support other databases

Resources

- DBT-5
 svn co https://osdldbt.svn.sourceforge.net/svnroot/osdldbt/trunk/dbt5 dbt5
- libpqxx: C++ API for PostgreSQL http://pqxx.org/
- TPC-E Specification
 http://www.tpc.org/tpce/spec/TPCE-v0.32.2g.pdf (PDF)
 http://www.tpc.org/tpce/spec/TPCE-v0.32.2g.doc (DOC)

Bibliography

- TPC BENCHMARK™ E Standard Specification Version 1.0.0
- TPC Site www.tpc.org
- Do Nascimento, R. O., M. Wong and P. R. M. Maciel. DBT-5: A Fair Usage Open Source TPC-E Implementation for Performance Evaluation of Computer Systems. XXVII Brazilian Computer Society Conference, 2007. (to appear)

Thank you!:)

markwkm@gmail.com
rilson.nascimento@gmail.com
PGCon 2007, Ottawa