Linear Elasticity

Michael Christoffersen 18 April 2024 Finite Element Seminar

Deformation

Strain

In two or three dimensions

In one dimension

$$\mathcal{L} = \frac{1}{2} \left(\nabla u + (\nabla u)^{T} \right)$$

$$E = \frac{\Delta u_{x}}{\Delta x} \Rightarrow \frac{\partial u_{x}}{\partial x}$$

$$E = \frac{\Delta u_{x}}{\Delta x} \Rightarrow \frac{\partial u_{x}}{\partial x}$$

$$E = \frac{\Delta u_{x}}{\Delta x} \Rightarrow \frac{\partial u_{x}}{\partial x}$$

$$E = \frac{\Delta u_{x}}{\Delta x} \Rightarrow \frac{\partial u_{x}}{\partial x}$$

$$E = \frac{\Delta u_{x}}{\Delta x} \Rightarrow \frac{\partial u_{x}}{\partial x}$$

$$E = \frac{\Delta u_{x}}{\Delta x} \Rightarrow \frac{\partial u_{x}}{\partial x}$$

$$E = \frac{\Delta u_{x}}{\Delta x} \Rightarrow \frac{\partial u_{x}}{\partial x}$$

$$E = \frac{\Delta u_{x}}{\Delta x} \Rightarrow \frac{\partial u_{x}}{\partial x}$$

Stress

Force per unit area

Related to strain by a constitutive relationship

Today - linear elasticity

$$T = \lambda tr(\varepsilon) I + 2u\varepsilon$$

 $\lambda, u \Rightarrow Lamé parameters$
 $tr(\varepsilon) = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$
 $T = Tden + ity Matrix$

Governing equation

From Cauchy momentum equation:

$$-\nabla \cdot \sigma = f$$

 $f \Rightarrow body forces (e.g., gravity)$

To express as a function of u, first plug in Hooke's law:

$$\sigma = \lambda \operatorname{tr}(\epsilon) I + 2\mu \epsilon$$

and strain definition:

$$\epsilon = \frac{1}{2} (\nabla u + (\nabla u)^{\top})$$

Weak Form

Multiply by test function and integrate:

$$-\int_{\Omega} (\nabla \cdot \sigma) \cdot v \, dx = \int_{\Omega} f \cdot v \, dx$$

Integration by parts to get rid of $\nabla \cdot \sigma$:

$$-\left(\int_{\partial\Omega} (\sigma \cdot \hat{n}) \cdot v \, ds - \int_{\Omega} \sigma : \nabla v \, dx\right) = \int_{\Omega} f \cdot v \, dx$$

 $\hat{n} \Rightarrow \text{outward unit normal vector}$:\Rightarrow inner product of tensors $(A : B = \Sigma_i \Sigma_j A_{ij} B_{ij})$

$$-\left(\int_{\partial\Omega}(\sigma\cdot\hat{n})\cdot v\,\mathrm{d}s - \int_{\Omega}\sigma:\nabla v\,\mathrm{d}x\right) = \int_{\Omega}f\cdot v\,\mathrm{d}x$$

$$\int_{\Omega} \sigma : \nabla v \, dx = \int_{\Omega} f \cdot v \, dx + \int_{\partial \Omega} (\sigma \cdot \hat{n}) \cdot v \, ds$$

$$f = 0$$
 on \mathcal{I}
 $u = (0,0,0)$ on $\partial \rho \mathcal{I}$
 $\sigma \cdot \hat{n} = \rho \hat{n}$ on $\partial \rho \mathcal{I}$

where ρ is scalar

Motivation

Lots of other applications...

Firedrake Implementation

marshmallow.py

Solve with LU decomposition

$$f = 0$$
 on S

$$U = (0,0,0) \text{ on } \partial_{p}S$$

$$\nabla \cdot \hat{n} = p\hat{n} \text{ on } \partial_{p}S$$
Where p is scalar

Marshmallow performance (single core)

Spy of stiffness matrix for 3x3x3 marshmallow

Almost symmetric

10 non symmetric index pairs

More interesting - Mogi comparison

mesh_mogi.py

Uses Gmsh OCC kernel

mogi.py

LU starts to get slow with this mesh... need CG+GAMG

Even more interesting - use topography

mesh_conduit.py

Brute force approach to meshing an elevation model

conduit.py

References

Stress-strain figure from here:

https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docld/4383

Volcano deformation figure from here:

https://doi.org/10.1029/2022GL099464

These slides pull a lot from the FENICS linear elasticity tutorial:

https://fenicsproject.org/pub/tutorial/html/. ftut1008.html#ftut:elast