MAXIMUM LIKELIHOOD ESTIMATION

INTRODUCTION

Tools for Macroeconomists: The essentials

Petr Sedláček

OVERVIEW FOR TODAY

- looking at the big picture
 - what you've done in the past days
 - what we'll do today and Friday
- intro into estimation
 - Kalman filter (based on Hamilton)
 - Maximum Likelihood estimation
- estimating DSGE models
 - · DSGE and time-series models
- extensions

Introduction

WHAT TOOLS ARE NEEDED IN MODERN MACRO?

(ACCORDING TO VICTOR RIOS-RULL)

- 1. theoretical tools
 - · use models to look at data
- 2. computational tools
 - characterize model outcomes
 - assign "right" parameter values
- 3. empirical tools
 - · analyze statistical properties of data and model
- 4. common sense

Introduction

WHAT YOU'VE ALREADY DONE

WHAT YOU'VE ALREADY LEARNED

What does it mean to "solve" a model?

- solving for policy rules
- forward-looking behavior makes this tough

Which (general) tools did you learn towards this end?

- function approximation
- numerical integration

What ways of constructing model solutions did you cover?

- perturbation
- projection

Introduction

WHAT WE'LL COVER NEXT

WHAT WILL WE LEARN TODAY?

How to parameterize models

- · alternative methods
 - calibration
 - matching moments
 - estimation
 - Maximum Likelihood
 - Bayesian methods

WHAT TOOLS ARE NEEDED IN MODERN MACRO?

(ACCORDING TO VICTOR RIOS-RULL)

- 1. theoretical tools
 - · use models to look at data
- 2. computational tools
 - characterize model outcomes
 - assign "right" parameter values
- 3. empirical tools
 - · analyze statistical properties of data and model
- 4. common sense

MAIN THING TO REMEMBER

"The goal of computing is insight, not numbers"

Richard Hamming

Mathematician and computer scientist

Alternative Parameterization

Methods

ALTERNATIVE METHODS OF PARAMETRIZING MODELS

- calibration
- matching moments
 - general methods of moments
 - simulated method of moments
 - indirect inference
- estimation
 - · Maximum Likelihood
 - Bayesian estimation

Alternative Parameterization

Methods

CALIBRATION

CALIBRATION

- wide-spread methodology
 - at least since Kydland and Prescott (1982)
- · although calibration is also an empirical exercise
- it lacks the probabilistic interpretation
- · constrained by (a priori identified) features in the data

Kydland and Prescott (1996):

It is important to emphasize that the parameter values selected are not the ones that provide the best fit in some statistical sense.

CALIBRATION

Main idea:

- model parameters pinned down by selected real-world features
- "evaluate" model based on a different set of features

Criticism of calibration

- no formal rules on selecting targets
- no formal rules on selecting dimensions of model fit
- no formal rules on comparing alternatives

We'll go through an example to give you an idea

Alternative Parameterization

Methods

MATCHING MOMENTS

MATCHING MOMENTS (GMM, SMM, II)

- · idea similar to calibration:
 - · parametrize by a set of moments (features) of the data
 - $\boldsymbol{\cdot}$ judge model performance by a different set of moments
- matching moments adds statistical rigor
 - estimation (limited information)
 - hypothesis testing

GENERALIZED METHOD OF MOMENTS (HANSEN, 1982)

Main idea:

select a set of moments (orthogonality conditions)

$$\mathbb{E}[f(x_t,\Psi)]=0$$

- x_t is a vector of variables, Ψ are model parameters
- choose Ψ s.t. sample analogs $g(X, \Psi) = 1/T \sum_t f(x_t, \Psi)$ hold
 - exactly identified case: # of params. = # of conditions
 - over-identified case: # of params. < # of conditions

SIMULATED METHOD OF MOMENTS

- \cdot sometimes orthog. conditions cannot be assessed analytically
- \cdot moment-matching estimation based on simulations
 - $\boldsymbol{\cdot}$ retains asymptotic properties of GMM

INDIRECT INFERENCE

Main idea:

- parameters pinned down by selected reduced-form estimates
 - · choose parameters s.t. simulated data from structural model
 - replicates reduced-form results in the data
- judge model performance by a different set of moments

Alternative Parameterization

Methods

ESTIMATION

ESTIMATION

Full information method

- need to specify entire distributions (of driving forces)
 - · model fit (and parameters) based on implied likelihood function
 - and prior information in case of Bayesian estimation

We'll talk about estimation in detail!

