

ESPACES VECTORIELS DE DIMERSION FINIE

1. Théorème de la base extraite

Définition 1.1

Soit E un espace vectoriel. On dit que E est de dimension finie s'il possède une famille génératrice de cardinal fini (i.e. avec un nombre fini d'éléments). Sinon il est dit de dimension infinie.

Exemple 1.2

L'espace vectoriel \mathbb{R}^n est de dimension finie car sa base canonique (qui est une famille génératrice) possède un nombre fini de vecteurs.

Proposition 1.3

Toute famille d'un espace vectoriel E qui contient une famille génératrice de E est elle-même une famille génératrice de E.

Proposition 1.4

Soit $(e_i)_{i\in I}$ une famille génératrice d'un especae vectoriel E et $i_0 \in I$ tel que e_{i_0} n'est pas combinaison linéaire des vecteurs de $(e_i)_{i\neq i_0}$. Alors $(e_i)_{i\neq i_0}$ engendre E.

Théorème 1.5: Base extraite

Soit E un espace vectoriel non nul, de dimension finie. De toute famille génératrice on peut extraire une base.

Corollaire 1.6

Si E est un espace vectoriel, non réduit à $\{0_E\}$, de dimension finie alors E possède au moins une base.

2. Théorème de la base incomplète

Proposition 2.1

Toute sous-famille d'une famille libre d'un espace vectoriel E est encore libre.

Proposition 2.2

Soit $(e_i)_{i\in I}$ une famille libre d'un espace vectoriel E et $u\in E$ un vecteur qui n'est pas combinaison linéaire des e_i , $i\in I$. Alors la famille $(e_i)_{i\in I}\cup\{u\}$ est encore libre.

Théorème 2.3: Base incomplète

Soient E un espace vectoriel de dimension finie, et (e_1, e_2, \dots, e_k) une famille libre de E.

Alors on peut compléter la famille libre (e_1, e_2, \dots, e_k) en une base $(e_1, e_2, \dots, e_k, e_{k+1}, e_{k+2}, \dots, e_n)$ de E.

Remarque 2.4

Les théorèmes de la base extraite et de la base incomplète sont encore vrais en dimension infinie si on admet l'axiome du choix.

3. Dimension d'un espace vectoriel

Proposition-Définition 3.1

Soit E un espace vectoriel non réduit à $\{0_E\}$ de dimension finie.

Alors toutes les bases de E ont le même nombre de vecteurs : ce nombre est appelée la dimension de E, et notée $\dim(E)$.

Lemme 3.2

Soient B_1 et B_2 deux bases de E telles que $B_1 \subset B_2$. Alors $B_1 = B_2$.

Lemme 3.3: Échange

Soient B_1 et B_2 deux bases distinctes de E. Alors, pour tout $a \in B_1 \setminus B_2$, il existe $b \in B_2 \setminus B_1$ tel que $B_1 \setminus \{a\} \cup \{b\}$ est encore une base de E.

Définition 3.4

- (1) Par convention, $\dim(\{0_E\}) = 0$.
- (2) Un espace vectoriel de dimension 1 est appelé droite vectorielle.
- (3) Un espace vectoriel de dimension 2 est appelé plan vectoriel.

Exemple 3.5

- (1) La base canonique de \mathbb{R}^n est constituée de n vecteurs : \mathbb{R}^n est donc de dimension n.
- (2) $\dim(\mathbb{R}_n[X]) = n + 1.$

Exemple 3.6

 \mathbb{R}^D (où D est un ensemble non vide quelconque), $\mathbb{R}[X]$ sont des espaces vectoriels de dimension infinie.

Théorème 3.7

Soit E un espace vectoriel de dimension finie n.

- (1) (a) Toute famille libre possède au plus n éléments.
 - (b) Toute famille libre de n vecteurs est une base de E.
 - (c) Toute famille de p vecteurs avec p > n n'est pas libre, elle est donc liée.
- (2) (a) Toute famille génératrice possède au moins n vecteurs.
 - (b) Toute famille génératrice de n vecteurs est une base de E.

(c) Toute famille de p vecteurs avec p < n n'est pas génératrice.

Corollaire 3.8

Soit E un espace vectoriel E de dimension n. On a les équivalences suivantes : une famille est une base de E si et seulement si cette famille est libre et de cardinal n, si et seulement si cette famille engendre E et est de cardinal n.

Définition 3.9

On appelle rang d'une famille de vecteurs (e_1, \ldots, e_p) la dimension de l'espace $\text{Vect}(e_1, \ldots, e_p)$.

Proposition 3.10

Une famille finie à p éléments est libre si et seulement si elle est de rang p.

Théorème 3.11

Soient E un espace vectoriel de dimension finie, et F un sous-espace vectoriel de E.

Alors

- (1) F est de dimension finie et $\dim(F) \leq \dim(E)$.
- (2) De plus, si $\dim(F) = \dim(E)$ alors F = E.

Proposition 3.12

Soient E et F deux espaces vectoriels de dimension finie. Alors $E \times F$ est de dimension finie et $\dim(E \times F) = \dim(E) + \dim(F)$.

Corollaire 3.13

Soit F un sous-espace vectoriel d'un espace E de dimension finie. Alors F admet un supplémentaire dans E.

Proposition 3.14: Formule de Grassmann

Soient E un espace vectoriel de dimension finie et F et G deux sous-espaces vectoriels de E. Alors $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$.

Corollaire 3.15

Soient F et G deux sous-espaces vectoriels d'un espace de dimension finie E. F et G sont supplémentaires si et seulement si $\dim(F+G) = \dim F + \dim G = \dim E$.

Remarque 3.16

L'égalité dim F + dim G = dim E ne suffit pas pour prouver que F et G sont supplémentaires : considérer une droite D incluse dans un plan P d'un espace E de dimension 3. Ces deux espaces ne sont pas supplémentaires, et pourtant dim D + dim P = 1 + 2 = 3 = dim E.