

В Анатолий Суворин → ПИбп-1804а

СДО Росдистант > Текущий курс > Системы искусственного интеллекта > Тема 9. Алгоритм нечеткого вывода Tsukamoto > Промежуточный тест 9

Тест начат	8/04/2022, 16:37
Состояние	Завершено
Завершен	8/04/2022, 16:38
Прошло времени	8 сек.
Баллы	0,0/17,0
Оценка	0,0 из 6,0 (0%)

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, $npu -0.5 < x \le 0.5$;

$$Nx(x) = 0$$
, при $0,5 < x \le 1$

$$Px(x) = 0$$
, $npu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $npu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu = 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = -0,1; y_0 = -0,2.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, $npu -0.5 < x \le 0.5$;

$$Nx(x) = 0$$
, при $0,5 < x \le 1$

$$Px(x) = 0$$
, $npu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

Ny(y) = 1, при
$$-1 \le y \le -0.5$$
;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0,5-y, \text{ при } -0,5< z \le 0,5;$$

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu = 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

Исходные данные:

 $x_0 = -0,2; y_0 = 0,35.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = -0,1; y_0 = 0,3.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

Исходные данные:

 $x_0 = -0,2; y_0 = 0,1.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, $npu -0.5 < x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu = 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = 0$; $y_0 = -0,25$.

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $\pi pu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, $npu -0.5 < x \le 0.5$;

$$Nx(x) = 0$$
, при $0,5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

$$Ny(y) = 0.5-y$$
, $npu -0.5 < y \le 0.5$;

Ny(y) =0, при
$$0,5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $\pi pu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu = 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = -0,3; y_0 = -0,2.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у - входные переменные, а z - выходная переменная. Переменные х,у, и могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz - функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, $npu -0.5 < x \le 0.5$;

$$Nx(x) = 0$$
, при $0,5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0,5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $\pi pu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu = 0,5 < z \le 1$;

Заданы четкие значения входных переменных x_0 и y_0 . Требуется рассчитать четкое значение выходной переменной \tilde{z}_{0} (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

Исходные	ланные
ислодиыс	данныс

 $x_0 = -0,2; y_0 = 0.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $\pi pu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, при $0,5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0,5 < x \le 1$$

$$Py(y) = 0$$
, $npu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $\pi pu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = -0,1; y_0 = -0,3.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, $npu -0.5 < x \le 0.5$;

$$Nx(x) = 0$$
, при $0,5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu = 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = 0$; $y_0 = -0, 2$.

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $\pi pu - 1 \le x \le -0.5$:

$$Nx(x) = 0.5-x$$
, $npu -0.5 < x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu \ 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = 0,1; y_0 = 0,15.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1. \text{ при } -1 \le x \le -0.5$$
:

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

$$Ny(y) = 0,5-y, \text{ при } -0,5< y \le 0,5;$$

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $\pi pu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = 0, 1; y_0 = 0.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, при $0,5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $\pi pu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = 0$; $y_0 = -0, 1$.

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0,5-x, \text{ при } -0,5 < x \le 0,5;$$

$$Nx(x) = 0$$
, при $0,5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $\pi pu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = -0,3; y_0 = -0,1.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $npu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

Ny(y) = 1, при
$$-1 \le y \le -0.5$$
;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $\pi pu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu = 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = 0,2; y_0 = 0,3.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $npu -1 \le x \le -0.5$;

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu = 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = 0, 1; y_0 = 0, 2.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1$$
, $\pi pu - 1 \le x \le -0.5$:

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, при 0,5< $x \le 1$;

$$Ny(y) = 1$$
, $npu -1 \le y \le -0.5$;

$$Ny(y) = 0,5-y, \text{ при } -0,5< y \le 0,5;$$

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $npu -1 \le z \le -0.5$;

$$Nz(z) = 0,5-y, \text{ при } -0,5< z \le 0,5;$$

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = -0.3; y_0 = -0.35.$

Ответ: Х

- 1) Если х есть Nx и у есть Ny, то z есть Pz
- 2) Если х есть Рх и у есть Ру, то z есть Nz

Где х и у — входные переменные, а z — выходная переменная. Переменные x,y,z могут принимать любые значения в диапазоне [-1, 1]. Nx, Ny, Nz, Px, Py, Pz — функции принадлежности определенные следующим образом:

$$Nx(x) = 1. \text{ при } -1 \le x \le -0.5$$
:

$$Nx(x) = 0.5-x$$
, при $-0.5< x \le 0.5$;

$$Nx(x) = 0$$
, $\pi pu = 0.5 < x \le 1$

$$Px(x) = 0$$
, $\pi pu -1 \le x \le -0.5$;

$$Px(x)=x+0,5$$
, $\pi pu -0,5 < x \le 0,5$;

$$Px(x)=1$$
, $\pi pu = 0,5 < x \le 1$;

$$Ny(y) = 1$$
, $\pi pu -1 \le y \le -0.5$;

Ny(y) = 0,5-у, при
$$-0,5 < y \le 0,5$$
;

Ny(y) =0, при
$$0.5 < x \le 1$$

$$Py(y) = 0$$
, $\pi pu -1 \le y \le -0.5$;

$$Py(y)=y+0,5$$
, при $-0,5 < y \le 0,5$;

$$Py(y)=1$$
, при 0,5< $y≤1$;

$$Nz(z) = 1$$
, $\pi pu -1 \le z \le -0.5$;

$$Nz(z) = 0.5-y$$
, $npu -0.5 < z \le 0.5$;

$$Nz(z) = 0$$
, $\pi pu = 0,5 < z \le 1$

$$Pz(z) = 0$$
, $\pi pu -1 \le z \le -0.5$;

$$Pz(z)=y+0,5, \text{ при } -0,5 < z \le 0,5;$$

$$Pz(z)=1$$
, $\pi pu 0,5 < z \le 1$;

Заданы четкие значения входных переменных \mathbf{x}_0 и \mathbf{y}_0 . Требуется рассчитать четкое значение выходной переменной \mathbf{z}_0 (по методу "взвешенное среднее") в соответствии с алгоритмом Tsukamoto.

 $x_0 = 0,2; y_0 = -0,35.$

Ответ: Х

