Example!

Consider the Gramman

$$E \rightarrow TE'$$

$$E' \rightarrow + TE' \mid C$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid C$$

$$F \rightarrow C(E) \mid id$$

construct a predictive passing table,

Solution:

FIRST(E) =
$$\{(, id\}\}$$
 FIRST(+) = $\{+\}$
FIRST(E) = $\{+\}$ FIRST(*) = $\{+\}$
FIRST($\{+\}\}$) = $\{+\}$

* The following algorithm can be used to construct a predictive passing table.

Algorithm: Construction of predictive Pausing table.

Input: A arammai Gi

Output : Pousing Table M

Method :

- 1. For each production $A \gg \infty$ of the grammar do slep 2 and slep 3
- a For each terminal a in FIRST(X), add A > x to MEA, a]

- 3. If E is in FIRST (x) add A > x to M[A,b]. for each terminal b in FOLLOW(A) If E is in FIRST (x) and \$ is in FOLLOW(A) add A > x to M[A,\$]
- 4 Make each undefined entry to be error * We can apply this algorithm to the grammar,

 $E \rightarrow TE'$ $E' \rightarrow + TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$ $F \rightarrow (E) \mid id$

* According to step 2

FIRST (TE') = FIRST (T) = { C, id}

 $M[T, c] = E \rightarrow TE'$ $M[T, id] = E \rightarrow TE'$

* This step = is applied to all the productions

FOLLOW(E) = $\{\$, \}\}$ FOLLOW(F) = $\{\$, \}\}$ FOLLOW(T) = $\{\}, \$, +\}$ FOLLOW(T) = $\{\}, \$, +\}$ FOLLOW(F) = $\{\}, \}, \$, +\}$

109

* Applying the Algorithm, The non-recursive predictive possing table is,

Non	INPUT SYMBOL						
Terminal	id	+	*	(.)	\$	
E	E>TE'			E-TE'			
E'		E'>+TE'			E→€	E > E	
T	T-> FT			J-> FT'			
て"		$T' \rightarrow \epsilon$	T>*FT		7'→ €	756	
F	Fəid			F→(E)			

Example:

Consider the Grammon

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

* In this predictive parsing table, blanks are error entries and non-blanks indicate a production with which to expand the top non-terminal on the stack.

Non	Input Symbol	
Terminal	id : + ()	\$
E.	$E \rightarrow TE'$ $E \rightarrow TE'$	٠, ١
E)	E=>+TE'	E'→ E
T	T> FT	,
T	T-> e T->*FT' T-> E	Tbe
F	F→id F→(E)	

* The Pauser traces out a left most derivation for this input. i.e) the productions output one those of a left most derivation.

1000

STACK	INPUT	OUTPUT
\$E	id+id *id\$	
SET	phik bit bi	E -> TE'
\$ = 'T <u>'</u> F	id + id * id \$	T-> FT'
\$ E'T' id	id + id * id \$	F → id
\$ E'T'	+ id * id \$.	•
\$. = 1	+ id + id \$	T'> E
\$ E'T+	+ id * id \$	E -> +TE'
\$ E' T	id aids	*. , * * * * * * * * * * * * * * * * * *
\$ E ' T ' F	id*id\$	T→ FT!
\$E'T'id	id * id \$	F -> id
\$ E'T'	* idg	
\$ E'T'F >	* id\$	$T \xrightarrow{\circ} \Re FT'$
SE'T'F	id\$	
SE'T'id	14 id\$	$F \rightarrow id$
\$ E'T'	4	11-> €
\$ E '	\$	E'→ ←

• :

-