MECÁNICA	CONTROL N°3
MARTES	14 DICIEMBRE 2021

FACULTAD DE CIENCIAS INSTITUTO DE FISICA y ASTRONOMIA

									_		_							
																	i !	
																	i !	
																	i !	
																	i !	
APELLIDO PATERNO		٨	РМА	т	NIC	OMBR	E											
ALLL	LIDO	1 7 1 1	ATERNO ALMAI. NOMBRE															

1) La polea de la figura tiene 0,160[m] de radio y su momento de inercia respecto a su Centro de Masa 0,560[kg·m²]. Si la cuerda no resbala en la polea y ambas masas parten del reposo, determine la velocidad con que el bloque de 4,00[kg] llega al suelo.

MECÁNICA	CONTROL N°3
MARTES	14 DICIEMBRE 2021

APELLIDO PATERNO

FACULTAD DE CIENCIAS INSTITUTO DE FISICA y ASTRONOMIA

NOMBRE

AP.MAT.

2) Los discos de la figura giran en sentidos opuestos a razón de 30[rpm]. Si el disco superior cae sobre el inferior, rotando finalmente adherido a él determine la velocidad con que giran ambos discos finalmente.

Universidad de Valparaíso

$$L_{i} = \frac{1}{2} M_{i} v_{i}^{2}. \quad \omega - \frac{1}{2} M_{z} r_{z}^{2} \omega$$

$$L_{i} = \frac{\omega}{2} (o_{1}o4^{2} - 2 \cdot o_{1}o6^{2})$$

$$L_{f} = \left(\frac{1}{2} M_{4} v_{i}^{2} + \frac{1}{2} M_{z} v_{i}^{2}\right) \omega^{i}$$

$$\omega^{i} = \omega \quad \underbrace{o_{1}o4^{2} - 2 \cdot o_{1}o6^{2}}_{o_{1}o4^{2} + 2 \cdot o_{1}o6^{2}}$$

$$= 30 \left(-o_{1}b3\right)$$

$$\omega^{i} = -19 \left[RPM\right]$$

$$\omega^{i} = -19 \left[RPM\right]$$

MECÁNICA	CONTROL N°3	FACULTAD DE CIENCIAS
MARTES	14 DICIEMBRE 2021	INSTITUTO DE FISICA y ASTRONOMIA

APELLIDO PATERNO

3) La viga horizontal pesa 150[N] y se encuentra en equilibrio. Determine la tension de la cuerda y la fuerza ejercida por la pared,

(3) Levipa se en cuentra en equilibrio, determinar
$$= \sqrt{1 + 2}$$
 an equilibrio, determinar $= \sqrt{1 + 2}$ and $= \sqrt{1 + 2}$ and

	MECÁNICA CON MARTES 14 DI	TROL N°3 ICIEMBRE 2021	FACU INSTI	Universidad deValparaíso CHILE				
APELLIDO PATERNO AP.MAT. NOMBRE	ADELLIDO DATERNO		ADMAT	NOMBRE				

4) Un lanchón abierto, hecho con placa de latón de 4,0[cm] de espesor en sus costados y el fondo (como el mostrado en la figura), se utiliza para tranportar carbón ¿Qué cantidad de carbón puede transportar sin que se moje?

Considere
$$\rho_{agua}=1.0[\frac{g}{cm^3}]$$
, $\rho_{carb\'on}=1.5[\frac{g}{cm^3}]$ y $\rho_{acero}=7.8[\frac{g}{cm^3}]$

