- 🕒 # Лабораторная работа 5
- > <u># Обыкновенные дифференциальные уравнения</u>
- > # Слуцкий Никита | гр. 053506 (ФКСиС, ИиТП)
- **>** #Вариант 1 (номер в журнале 21)
- _> _> _> restart;
- > # Задание 1
- > #``Для данного дифференциального уравнения методом изоклин построить интегральную кривую, проходящую через точку М .
- > with(DEtools): # naкem DEtools для работы с дифференциальными уравнениями
- $> M1_x := 1 :$
- [> M1 y := 2 :
- > equation1 := $diff(y(x), x) = 2 \cdot y(x) x^2$;

equation
$$1 := \frac{\mathrm{d}}{\mathrm{d}x} y(x) = 2 y(x) - x^2$$
 (1)

> $solution1 := dsolve(\{equation1, y(M1_x) = M1_y\});$

частное решение (решение задачи Коши с заданной точкой)

solution
$$1 := y(x) = \frac{1}{2} x^2 + \frac{1}{2} x + \frac{1}{4} + \frac{3}{4} \frac{e^{2x}}{e^2}$$
 (2)

> field1 := dfieldplot(equation1, y(x), x = -5...5, y = -10...10, color = "LightSeaGreen");

- > chart1 := plots[implicitplot](solution1, x = -5..5, y = -10..10, thickness = 4, color = "DarkRed") :
- > plots[display](field1, chart1);

> # Задание 2

> # Найти линию, проходящую через M_0 и обладающую свойством,

что в любой ее точке М нормальный вектор MN с концом на Оу имеет длину а , и образует острый угол с положительным направлением Оу.

> # Сделать чертеж

 \nearrow with (DE tools):

= 25 :

 $M2_1x := 15:$

 $M2_1y := 1$:

> equation2_1 := diff $(y(x), x) = \frac{x}{-\operatorname{sqrt}(625 - x^2)}$:

> solution2_1 := dsolve({equation2_1, y(M2_1_x) = M2_1_y});
solution2_1 := y(x) =
$$-\frac{(x-25)(x+25)}{\sqrt{-x^2+625}}$$
 - 19
(3)

> $chart2_1 := plots[implicit plot](solution2_1, x = -25..25, y = -20..20, thickness = 4, color$ = "RoyalBlue"):

 \downarrow field 2 := dfieldplot(equation 2 : 1, y(x), x = -25 ...25, y = -20 ...20) :

```
> plots[display](field2_1, chart2_1);
   restart;
   with(DEtools):
   M2\_2\_x := 1:
 M2 \underline{\phantom{a}} y := e: 
> a2_2 := -\frac{1}{2}:
> equation2_2 := diff (y(x), x) = \frac{y(x) \cdot x}{a2_2}:
> solution2_2 := simplify(dsolve({equation2_2, y(M2_2_x) = M2_2_y}));

solution2_2 := y(x) = e^{-x^2 + 2}
                                                                                                                          (4)
> chart2\_2 := plots[implicitplot](solution2\_2, x = -3 ...3, y = 0 ...8, thickness = 4, color = "Tomato"):
\rightarrow field2_2 := dfieldplot(equation2_2, y(x), x = -3 ..3, y = 0 ..8, color = "RoyalBlue") :
> plots[display](field2_2, chart2_2);
```


restart;

> # Задание 3

- _> # Найти общий интегралуравнения
- > # Построить на одном чертеже вблизи особой точки уравнения поле направлений и какую-либо интегральную кривую

 \rightarrow with(DETools):

- > equation3 := $diff(y(x), x) = \frac{4 \cdot x + 21 \cdot y(x) 25}{24 \cdot x + y(x) 25}$:
- \rightarrow solution3 := dsolve(equation3);

$$solution3 := 4 \ln \left(-\frac{y(x) - 5 + 4x}{x - 1} \right) - 5 \ln \left(\frac{-y(x) + x}{x - 1} \right) - \ln(x - 1) - CI = 0$$
 (5)

- \searrow system_equations_3 := $\{4 \cdot x + 21 \cdot y 25 = 0, 24 \cdot x + y 25 = 0\}$:
- \rightarrow solve(system_equations_3, {x, y});

$$\{x=1, y=1\}$$

 \gt solution3_special_point := dsolve({equation3, y(1) = 1});

$$solution 3_special_point := y(x) = x, y(x) = 5 - 4x$$
(7)

- \rightarrow field3 := dfieldplot(equation3, y(x), x = -4..4, y = -4..4, color = "RoyalBlue") :
- > $chart_3_1 := plots[implicitplot](solution3_special_point[1], x = -4 ..4, y = -4 ..4, thickness = 3, color = "Tomato"):$
- > plots[display](field3, chart_3_1);

>
$$solve \left[linalg[det] \left[\begin{bmatrix} 24 - \lambda & 1 \\ 4 & 21 - \lambda \end{bmatrix} \right] = 0 \right];$$

нашёл корни характеристического уравнения для определения типа особой точки

> # корни действительны и оба корня > 0. Следовательно, это **неустойчивый узел**

restart;

> # Задание 4

Найти решение задачи Коши

· # Сделать чертеж интегральной кривой.

> with(DEtools):

 $= \operatorname{equation} 4 := \operatorname{diff}(y(x), x) + x \cdot y(x) = (1 + x) \cdot e^{-x} \cdot (y(x))^{2} :$

> *dsolve*(*equation4*);

$$y(x) = \frac{1}{e^{\frac{1}{2}x^2}} CI + e^{-x}$$
 (9)

$$\searrow$$
 M4 $y := 1$:

> solution4 := dsolve({equation4, $y(M4_x) = M4_y$ });

$$solution 4 := y(x) = \frac{1}{e^{-x}}$$
 (10)

- \rightarrow field4 := dfieldplot(equation4, y(x), x = -2 ...2, y = 0 ...e², color = "RoyalBlue") :
- \Rightarrow chart4 := plots[implicit plot](solution4, x = -2 ...2, y = 0 ...e², color = "Tomato", thickness = 3):
- > plots[display](field4, chart4);

restart;

> # Задание 5

- > # Решить ДУ
- ➤ #Построить в одной системе координат интегральные кривые при целых значениях произвольной постоянной от –1 до 1.
- \rightarrow with(DEtools):
- > equation $5_1 := diff(y(z), z) = z \cdot \arcsin(z)$;

equation
$$5_1 := \frac{d}{dz} y(z) = z \arcsin(z)$$
 (11)

> solution5_1 := dsolve(equation5_1);

$$solution5_1 := y(z) = \frac{1}{2} z^2 \arcsin(z) + \frac{1}{4} z \sqrt{-z^2 + 1} - \frac{1}{4} \arcsin(z) + _C1$$
 (12)

>
$$chart5_1_0 := plot\Big(\Big[z \cdot \arcsin(z) + \operatorname{sqrt}(1-z^2), \frac{1}{2}z^2 \arcsin(z) + \frac{1}{4}z\sqrt{-z^2+1}\Big]$$

- $\frac{1}{4}\arcsin(z), z = -1..1\Big], thickness = 3, color = green\Big):$

- > $chart5_1_1 := plot\Big(\Big[z \cdot \arcsin(z) + \operatorname{sqrt}(1-z^2), \frac{1}{2}z^2 \arcsin(z) + \frac{1}{4}z\sqrt{-z^2+1}\Big]$ - $\frac{1}{4}\arcsin(z) + 1, z = -1..1\Big], thickness = 3, color = "Tomato"\Big):$
- > $chart5_1_minus1 := plot\left(\left[z \cdot \arcsin(z) + \operatorname{sqrt}\left(1 z^2\right), \frac{1}{2}z^2 \arcsin(z) + \frac{1}{4}z\sqrt{-z^2 + 1}\right) \frac{1}{4}\arcsin(z) 1, z = -1..1, thickness = 3, color = "RoyalBlue"\right):$
- > plots[display](chart5_1_minus1, chart5_1_0, chart5_1_1);

- > equation5_2 := diff $(x(p), p) = \frac{p}{1 p^2}$:
- dsolve(equation5_2);

$$x(p) = -\frac{1}{2}\ln(p-1) - \frac{1}{2}\ln(p+1) + CI$$
 (13)

- > $chart5_2_0 := plot\left(\left[-\frac{1}{2}\ln(p-1) \frac{1}{2}\ln(1+p), \frac{1}{2}\ln\left(\left|\frac{1+p}{1-p}\right|\right) p, p = -10..10\right],$ thickness = 3, color = green:
- > $chart5_2_1 := plot\left(\left[-\frac{1}{2}\ln(p-1) \frac{1}{2}\ln(1+p) + 1, \frac{1}{2}\ln\left(\left|\frac{1+p}{1-p}\right|\right) p, p = -10..10\right],$ $thickness = 3, color = "Tomato"\right):$
- > $chart5_2_minus1 := plot\left(\left[-\frac{1}{2}\ln(p-1) \frac{1}{2}\ln(1+p) 1, \frac{1}{2}\ln\left(\left|\frac{1+p}{1-p}\right|\right) p, p = -10\right)$..10, thickness = 3, color = "RoyalBlue":

> plots[display](chart5 2 minus1, chart5 2 0, chart5 2 1); 2 -3 -23 -2-6 -8restart; # Задание 6 # Найти все решения уравнения > # Построить в одной системе график особого решения и интегральных кривых при целых значениях постоянной от -3 до 3. > with(DEtools): \Rightarrow equation $6 := y(x) = x \cdot diff(y(x), x) + 2 \cdot (diff(y(x), x))^2 - 1$: \rightarrow solution6 := dsolve(equation6); solution6 := $y(x) = -\frac{1}{8}x^2 - 1$, $y(x) = 2CI^2 + CIx - 1$ (14) \vdash lines 6 := Array([1, 2, 3, 4, 5, 6, 7]): \rightarrow index6 := 1: > for counter from -3 by 1 to 3 do $lines6[index6] := plot(2 \cdot counter^2 + counter \cdot x - 1, x = -5 ..5, thickness = 2, color$ = "RoyalBlue") : # графики семейства прямых index6 := index6 + 1: end do: > chart6 := plots[implicit plot](solution 6[1], x = -10..10, y = -5..5, thickness = 2, color= "Tomato"): > plots[display](lines6[1], lines6[2], lines6[3], lines6[4], lines6[5], lines6[6], lines6[7], chart6);

