

UBCV0004.ST25.txt SEQUENCE LISTING

<110>	Finlay, Brett Kenny, Brandan DeVinney, Rebe Stein, Marcus	t				
<120>	HOST RECEPTOR	FOR PATHOGE	NIC BACTERIA	4		
<130>	UBCV-0004					
<140> <141>	US 09/189,415 1998-11-10					
<150> <151>	us 60/065,130 1997-11-12					
<160>	14					
<170>	PatentIn versi	on 3.3				
<210> <211> <212> <213>	1 1920 DNA Escherichia co	li				
<400>	1	2422422424		atassatt.		60
	cata ccattacgtc					60
	tgta tgcctattgg					120
	ccgc cactaccttc					180
	tcta caggagcatt		_		-	240
	tctg tcgattccag					300
	acat ctgagacatg					360
	attc tcaatacgca					420
	catg ccgctattgg					480
	tgga gcagcttgca					540
	cgtg gcggtagtgg					600
	aaaa tactggccaa					660
	acgc gttctgttgg					720
	cata cttcaacaac					780
gtcggc	gcaa ttgctgctgg	tttagcggga	ctggcggcaa	ctggtattgc	acaggcgttg	840
gctttg	acac cggaaccgga	tgatcctaca	accaccgatc	ctgatcaggc	cgcaaatgct	900
gcagaa	agtg caacaaaaga	tcagttaacg	caagaagcat	tcaagaaccc	tgagaaccag	960
aaagtt	aaca tcgatgcgaa	cggaaatgct	attccgtctg	gggaattaaa	agatgatatt	1020
gttgag	caaa tagcacaaca	agctaaagag	gctggtgagg	tggccagaca	gcaggctgtt	1080
gaaagc	aatg cacaggcgca	gcagcgatat	gaggatcagc	atgccagacg	tcaggaggaa	1140
ttacag	cttt catcgggtat	tggttacggc	ctcagcagtg	cattgattgt	tgctggggga	1200
attggt	gctg gtgtaacgac	tgcgctccat	agacgaaatc Page 1		acagacaact	1260

actacaacaa	cacatacggt	agtgcagcaa	cagaccggag	ggatacccca	gcacaaggtg	1320
gcactgatgc	cacaagagcg	aagacgcttc	tctgatagac	gtgattcgca	ggggagtgtt	1380
gcatcgacac	actggtcaga	ttcctctagc	gaagtggtta	atccatatgc	tgaagttggg	1440
ggggctcgga	atagtctatc	ggctcatcag	ccagaagagc	atatttatga	tgaggtcgct	1500
gcagatcctg	gttatagcgt	tattcagaat	ttttcaggga	gcggcccagt	taccggaagg	1560
ttaataggaa	ctccagggca	aggtatccaa	agtacttatg	cgcttctggc	aaacagcggc	1620
ggattgcgtt	taggtatggg	aggattaacg	agtggtggcg	agacggcagt	aagttctgta	1680
aatgccgcac	caacgcaggg	accagtacgt	ttcgtttaaa	tatatctgtg	agtatttagt	1740
tgaggttggg	gtggggtggg	ggggcgtttt	actagcgtta	atgtttcaga	gaacaacgtt	1800
gcagcatggg	taactcttga	acttctgtta	ttataatcaa	ttaagagaaa	ttataatgtc	1860
atcaagatat	gaacttttat	tagataggtt	tgcggaaaaa	attggtgttg	gatctatttc	1920

```
<210>
```

Met Pro Ile Gly Asn Leu Gly Asn Asn Val Asn Gly Asn His Leu Ile 5 10 15

Pro Pro Ala Pro Pro Leu Pro Ser Gln Thr Asp Gly Ala Ala Arg Gly 20 25 30

Gly Thr Gly His Leu Ile Ser Ser Thr Gly Ala Leu Gly Ser Arg Ser 35 40 45

Leu Phe Ser Pro Leu Arg Asn Ser Met Ala Asp Ser Val Asp Ser Arg 50 55 60

Asp Ile Pro Gly Leu Pro Thr Asn Pro Ser Arg Leu Ala Ala Ala Thr 65 70 75 80

Ser Glu Thr Cys Leu Leu Gly Gly Phe Glu Val Leu His Asp Lys Gly 85 90 95

Pro Leu Asp Ile Leu Asn Thr Gln Ile Gly Pro Ser Ala Phe Arg Val 100 105 110

Glu Val Gln Ala Asp Gly Thr His Ala Ala Ile Gly Glu Lys Asn Gly 115 120 125

<211> 549 <212> PRT

<213> Escherichia coli

<220>

misc_feature (314)..(314) <221> <222>

Xaa can be any naturally occurring amino acid

<400>

Leu Glu Val Ser Val Thr Leu Ser Pro Gln Glu Trp Ser Ser Leu Gln 130 135 140 Ser Ile Asp Thr Glu Gly Lys Asn Arg Phe Val Phe Thr Gly Gly Arg 145 150 155 160 Gly Gly Ser Gly His Pro Met Val Thr Val Ala Ser Asp Ile Ala Glu 165 170 175 Ala Arg Thr Arg Ile Leu Ala Lys Leu Asp Pro Asp Asn His Gly Gly 180 185 190 Arg Gln Pro Lys Asp Val Asp Thr Arg Ser Val Gly Val Gly Ser Ala 195 200 205 Ser Gly Ile Asp Asp Gly Val Val Ser Glu Thr His Thr Ser Thr Thr 210 215 220 Asn Ser Ser Val Arg Ser Asp Pro Lys Phe Trp Val Ser Val Gly Ala 225 230 235 240 Ile Ala Ala Gly Leu Ala Gly Leu Ala Ala Thr Gly Ile Ala Gln Ala 245 250 255 Leu Ala Leu Thr Pro Glu Pro Asp Asp Pro Thr Thr Asp Pro Asp 260 265 270 Gln Ala Ala Asn Ala Ala Glu Ser Ala Thr Lys Asp Gln Leu Thr Gln 275 280 285 Glu Ala Phe Lys Asn Pro Glu Asn Gln Lys Val Asn Ile Asp Ala Asn 290 295 300 Gly Asn Ala Ile Pro Ser Gly Glu Leu Xaa Asp Asp Ile Val Glu Gln 305 310 315 320 Ile Ala Gln Gln Ala Lys Glu Ala Gly Glu Val Ala Arg Gln Gln Ala 325 330 335 Val Glu Ser Asn Ala Gln Ala Gln Gln Arg Tyr Glu Asp Gln His Ala 340 345 350 Arg Arg Gln Glu Leu Gln Leu Ser Ser Gly Ile Gly Tyr Gly Leu 355 360 365 Ser Ser Ala Leu Ile Val Ala Gly Gly Ile Gly Ala Gly Val Thr Thr 370 375 380 Ala Leu His Arg Arg Asn Gln Pro Ala Glu Gln Thr Thr Thr Thr 385 390 400

Thr His Thr V	Val Val Gln 405	Gln Gln Thr	Gly Gly 1 410	Ile Pro Gln	His Lys 415			
Val Ala Leu M	Met Pro Gln 420	Glu Arg Arg 425	Arg Phe S	Ser Asp Arg 430	Arg Asp			
Ser Gln Gly S 435	Ser Val Ala	Ser Thr His 440	Trp Ser A	Asp Ser Ser 445	Ser Glu			
Val Val Asn F 450	Pro Tyr Ala	Glu Val Gly 455		Arg Asn Ser 460	Leu Ser			
Ala His Gln F 465	Pro Glu Glu 470	His Ile Tyr	Asp Glu V 475	√al Ala Ala	Asp Pro 480			
Gly Tyr Ser V	Val Ile Gln 485	Asn Phe Ser	Gly Ser 0 490	Gly Pro Val	Thr Gly 495			
Arg Leu Ile G	Gly Thr Pro 500	Gly Gln Gly 505	Ile Gln S	Ser Thr Tyr 510	Ala Leu			
Leu Ala Asn S 515	Ser Gly Gly	Leu Arg Leu 520	Gly Met G	Gly Gly Leu 525	Thr Ser			
Gly Gly Glu T 530	Thr Ala Val	Ser Ser Val 535		Ala Pro Thr 540	Pro Gly			
Pro Val Arg F 545	Phe Val							
<210> 3 <211> 1723 <212> DNA <213> Escherichia coli								
<400> 3 atgcctattg gt	taaccttgg tc	ataatccc aat	gtgaata a	attcaattcc ·	tcctgcacct 60			
ccattacctt ca					_			
ccgttgggat ct	tcgtgcgct at	ttacgcct gta	aggaatt d	tatggctga ¹	ttctggcgac 180			
aatcgtgcca gt	tgatgttcc tg	gacttcct gta	aatccga t	tgcgcctggc (ggcgtctgag 240			
ataacactga at	tgatggatt tg	aagttctt cat	gatcatg g	gtccgctcga	tactcttaac 300			
aggcagattg go	ctcttcggt at	ttcgagtt gaa	actcagg a	aagatggtaa a	acatattgct 360			
gtcggtcaga gg	gaatggtgt tg	agacctct gtt	gttttaa g	gtgatcaaga q	gtacgctcgc 420			
ttgcagtcca tt	tgatcctga ag	gtaaagac aaa	itttgtat t	ttactggagg (ccgtggtggt 480			
gctgggcatg ct	tatggtcac cg	ttgcttca gat	atcacgg a	agcccgcca a	aaggatactg 540			
gagctgttag ag	gcccaaagg ga	ccggggag tcd	aaaggtg c	tggggagtc a	aaaaggcgtt 600			
ggggagttga gg	ggagtcaaa ta	gcggtgcg gaa	naacacca c Page 4	cagaaactca (gacctcaacc 660			

tcaacttcca	gccttcgttc	agatcctaaa	ctttggttgg	cgttggggac	tgttgctaca	720
ggtctgatag	ggttggcggc	gacgggtatt	gtacaggcgc	ttgcattgac	gccggagccg	780
gatagcccaa	ccacgaccga	ccctgatgca	gctgcaagtg	caactgaaac	tgcgacaaga	840
gatcagttaa	cgaaagaagc	gttccagaac	ccagataatc	aaaaagttaa	tatcgatgag	900
ctcggaaatg	cgattccgtc	aggggtattg	aaagatgatg	ttgttgcgaa	tatagaagag	960
caggctaaag	cagcaggcga	agaggccaaa	cagcaagcca	ttgaaaataa	tgctcaggcg	1020
caaaaaaaat	atgatgaaca	acaagctaaa	cgccaggagg	agctgaaagt	ttcatcgggg	1080
gctggctacg	gtcttagtgg	cgcattgatt	cttggtgggg	gaattggtgt	tgccgtcacc	1140
gctgcgcttc	atcgaaaaaa	tcagccggta	gaacaaacaa	caacaactac	tactacaact	1200
acaactacaa	gcgcacgtac	ggtagagaat	aagcctgcaa	ataatacacc	tgcacagggc	1260
aatgtagata	cccctgggtc	agaagatacc	atggagagca	gacgtagctc	gatggctagc	1320
acctcgtcga	ctttctttga	cacttccagc	atagggaccg	tgcagaatcc	gtatgctgat	1380
gttaaaacat	cgctgcatga	ttcgcaggtg	ccgacttcta	attctaatac	gtctgttcag	1440
aatatgggga	atacagattc	tgttgtatat	agcaccattc	aacatcctcc	ccgggatact	1500
actgataacg	gcgcacggtt	attaggaaat	ccaagtgcgg	ggattcaaag	cacttatgcg	1560
cgtctggcgc	taagtggtgg	attacgccat	gacatgggag	gattaacggg	ggggagtaat	1620
agcgctgtga	atacttcgaa	taacccacca	gcgccgggat	cccatcgttt	cgtctaaata	1680
tatccataat	cattttattt	agagggaggg	aggggggaag	tct		1723

<210> 4 <211> 559

<212> PRT <213> Escherichia coli

<400> 4

Met Pro Ile Gly Asn Leu Gly His Asn Pro Asn Val Asn Asn Ser Ile $10 \ 15$

Pro Pro Ala Pro Pro Leu Pro Ser Gln Thr Asp Gly Ala Gly Gly Arg 20 25 30

Gly Gln Leu Ile Asn Ser Thr Gly Pro Leu Gly Ser Arg Ala Leu Phe 35 40 45

Thr Pro Val Arg Asn Ser Met Ala Asp Ser Gly Asp Asn Arg Ala Ser 50 55 60

Asp Val Pro Gly Leu Pro Val Asn Pro Met Arg Leu Ala Ala Ser Glu 65 70 75 80

Ile Thr Leu Asn Asp Gly Phe Glu Val Leu His Asp His Gly Pro Leu 85 90 95

Asp Thr Leu Asn Arg Gln Ile Gly Ser Ser Val Phe Arg Val Glu Thr 100 105 110 Gln Glu Asp Gly Lys His Ile Ala Val Gly Gln Arg Asn Gly Val Glu 115 120 125 Thr Ser Val Val Leu Ser Asp Gln Glu Tyr Ala Arg Leu Gln Ser Ile 130 135 140 Asp Pro Glu Gly Lys Asp Lys Phe Val Phe Thr Gly Gly Arg Gly Gly 145 150 155 160 Ala Gly His Ala Met Val Thr Val Ala Ser Asp Ile Thr Glu Ala Arg 165 170 175 Gln Arg Ile Leu Glu Leu Glu Pro Lys Gly Thr Gly Glu Ser Lys 180 185 190 Gly Ala Gly Glu Ser Lys Gly Val Gly Glu Leu Arg Glu Ser Asn Ser 195 200 205 Gly Ala Glu Asn Thr Thr Glu Thr Gln Thr Ser Thr Ser Thr Ser Ser 210 215 220 Leu Arg Ser Asp Pro Lys Leu Trp Leu Ala Leu Gly Thr Val Ala Thr 225 230 240 Gly Leu Ile Gly Leu Ala Ala Thr Gly Ile Val Gln Ala Leu Ala Leu 245 250 255 Thr Pro Glu Pro Asp Ser Pro Thr Thr Asp Pro Asp Ala Ala Ala 260 265 270 Ser Ala Thr Glu Thr Ala Thr Arg Asp Gln Leu Thr Lys Glu Ala Phe 275 280 285 Gln Asn Pro Asp Asn Gln Lys Val Asn Ile Asp Glu Leu Gly Asn Ala 290 295 300 Ile Pro Ser Gly Val Leu Lys Asp Asp Val Val Ala Asn Ile Glu Glu 305 310 315 320 Gln Ala Lys Ala Ala Gly Glu Glu Ala Lys Gln Gln Ala Ile Glu Asn 325 330 335 Asn Ala Gln Ala Gln Lys Lys Tyr Asp Glu Gln Gln Ala Lys Arg Gln 340 345 350 Glu Glu Leu Lys Val Ser Ser Gly Ala Gly Tyr Gly Leu Ser Gly Ala 355 360 365

Leu Ile Leu Gly Gly Gly Ile Gly Val Ala Val Thr Ala Ala Leu His 370 375 380							
Arg Lys Asn Gln Pro Val Glu Gln Thr Thr Thr Thr Thr Thr Thr 385 400							
Thr Thr Thr Ser Ala Arg Thr Val Glu Asn Lys Pro Ala Asn Asn Thr 405 410 415							
Pro Ala Gln Gly Asn Val Asp Thr Pro Gly Ser Glu Asp Thr Met Glu 420 425 430							
Ser Arg Arg Ser Ser Met Ala Ser Thr Ser Ser Thr Phe Phe Asp Thr 435 440 445							
Ser Ser Ile Gly Gly Pro Cys Arg Ile Arg Met Leu Met Leu Lys His 450 455 460							
Arg Cys Met Ile Arg Arg Cys Arg Leu Leu Ile Leu Ile Arg Leu Phe 475 480							
Arg Ile Trp Gly Ile Gln Ile Ser Val Val Tyr Ser Thr Ile Gln His 485 490 495							
Pro Pro Arg Asp Thr Thr Asp Asn Gly Ala Arg Leu Leu Gly Asn Pro 500 505 510							
Ser Ala Gly Ile Gln Ser Thr Tyr Ala Arg Leu Ala Leu Ser Gly Gly 515 520 525							
Leu Arg His Asp Met Gly Gly Leu Thr Gly Gly Ser Asn Ser Ala Val 530 535 540							
Asn Thr Ser Asn Asn Pro Pro Ala Pro Gly Ser His Arg Phe Val 545 550 555							
<210> 5 <211> 1460 <212> DNA <213> Escherichia coli							
<400> 5 aattctgttg ctgatgctgc tgattctcgt gccagtgata ttcccggact tcctacaaat	60						
ccactgcgct ttgctgcgtc cgaggtatct ttgcatggtg cgcttgaagt tcttcatgat	120						
aaaggggggc ttgatactct taactctgct attggatctt cgttattccg tgttgaaact	180						
cgggatgatg gcagccatgt tgctatcggg caaaaaaatg gcctcgagac cactgttgtt	240						
ttaagtgagc aagagttttc tagcttacag tcccttgatc ctgaaggtaa aaacaaattt	300						
gtatttactg gaggccgcgg tggcccaggg catgctatgg tcacggttgc ttcagatatc	360						
gccgaagccc gtcagaggat aatagataaa ttagaaccaa aggatacaaa ggagacgaag 420 Page 7							

gagccagggg	atccaaatag	tggcgaggga	aaaatcattg	aaattcatac	ctcaacctca	480
acttctagcc	tccgtgcaga	tcctaaactt	tggttgtcat	tggggactat	tgctgcaggt	540
ctgataggga	tggctgcgac	ggggattgca	caggctgttg	cgttgactcc	agagccggat	600
gacccaatca	ctaccgaccc	tgatgctgca	gcaaacacag	ctgaagcagc	ggcaaaagat	660
cagttaacga	aagaagcatt	ccagaaccca	gataaccaga	aagttaatat	cgatgagaac	720
ggaaatgcaa	ttccgtccgg	ggaactaaaa	gatgatgttg	ttgcgcaaat	agcagaacaa	780
gctaaagcgg	cgggtgaaca	ggccagacag	gaagctattg	aaagtaattc	tcaggcgcag	840
caaaaatatg	atgaacagca	tgctaaacgc	gaacaggaaa	tgtctctttc	atcgggggtt	900
ggctacggta	ttagtggtgc	gctgattctt	ggcgggggaa	ttggtgccgg	tgttactgct	960
gctcttcatc	ggaaaaacca	accggcagaa	caaacaatca	ctacacgtac	ggtagtcgat	1020
aatcagccta	cgaataacgc	atctgcgcag	ggcaatactg	acacaagtgg	gccagaagag	1080
tccccggcga	gcagacgtaa	ttcgaatgcc	agcctcgcat	cgaacgggtc	tgacacctcc	1140
agcacgggca	cggtagagaa	tccgtatgct	gacgttggaa	tgcccagaaa	tgattcactg	1200
gctcgcattt	cagaggaacc	tatttatgat	gaggtcgctg	cagatcctaa	ttatagcgtc	1260
attcaacatt	tttcagggaa	cagcccagtt	accggaaggt	tagtgggaac	cccagggcaa	1320
ggtatccaaa	gtacttatgc	gcttctggca	agcagcggcg	gattgcgttt	aggtatggga	1380
ggattaacgg	ggggtggcga	gagcgcagta	agtactgcca	atgccgcacc	aacgccggga	1440
cccgcacgtt	tcgtttaaat					1460

<210> 6 <211> 484

<212> PRT

<213> Escherichia coli

<400> 6

Asn Ser Val Ala Asp Ala Ala Asp Ser Arg Ala Ser Asp Ile Pro Gly
5 10 15

Leu Pro Thr Asn Pro Leu Arg Phe Ala Ala Ser Glu Val Ser Leu His $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gly Ala Leu Glu Val Leu His Asp Lys Gly Gly Leu Asp Thr Leu Asn 35 40 45

Ser Ala Ile Gly Ser Ser Leu Phe Arg Val Glu Thr Arg Asp Asp Gly 50 55 60

Ser His Val Ala Ile Gly Gln Lys Asn Gly Leu Glu Thr Thr Val Val 65 70 75 80

Leu Ser Glu Gl
n Glu Phe Ser Ser Leu Gl
n Ser Leu Asp Pro Glu Gly $90 \hspace{1.5cm} 95$

Lys Asn Lys Phe Val Phe Thr Gly Gly Arg Gly Gly Pro Gly His Ala 100 105 110 Met Val Thr Val Ala Ser Asp Ile Ala Glu Ala Arg Gln Arg Ile Ile 115 120 125 Asp Lys Leu Glu Pro Lys Asp Thr Lys Glu Thr Lys Glu Pro Gly Asp 130 135 140 Pro Asn Ser Gly Glu Gly Lys Ile Ile Glu Ile His Thr Ser Thr Ser 145 150 155 160 Thr Ser Ser Leu Arg Ala Asp Pro Lys Leu Trp Leu Ser Leu Gly Thr 165 170 175 Ile Ala Ala Gly Leu Ile Gly Met Ala Ala Thr Gly Ile Ala Gln Ala 180 185 190 Val Ala Leu Thr Pro Glu Pro Asp Asp Pro Ile Thr Thr Asp Pro Asp 195 200 205 Ala Ala Ala Asn Thr Ala Glu Ala Ala Ala Lys Asp Gln Leu Thr Lys 210 215 220 Glu Ala Phe Gln Asn Pro Asp Asn Gln Lys Val Asn Ile Asp Glu Asn 225 230 235 240 Gly Asn Ala Ile Pro Ser Gly Glu Leu Lys Asp Asp Val Val Ala Gln 245 250 255 Ile Ala Glu Gln Ala Lys Ala Ala Gly Glu Gln Ala Arg Gln Glu Ala 260 265 270 Ile Glu Ser Asn Ser Gln Ala Gln Gln Lys Tyr Asp Glu Gln His Ala 275 280 285 Lys Arg Glu Gln Glu Met Ser Leu Ser Ser Gly Val Gly Tyr Gly Ile 290 295 300 Ser Gly Ala Leu Ile Leu Gly Gly Gly Ile Gly Ala Gly Val Thr Ala 305 310 315 Ala Leu His Arg Lys Asn Gln Pro Ala Glu Gln Thr Ile Thr Thr Arg 325 330 335 Thr Val Val Asp Asn Gln Pro Thr Asn Asn Ala Ser Ala Gln Gly Asn 340 345 350 Thr Asp Thr Ser Gly Pro Glu Glu Ser Pro Ala Ser Arg Arg Asn Ser 355 360 365

Asn Ala Ser Leu Ala Ser Asn Gly Ser Asp Thr Ser Ser Thr Gly Thr 370 375 380

Val Glu Asn Pro Tyr Ala Asp Val Gly Met Pro Arg Asn Asp Ser Leu 385 390 395 400

Ala Arg Ile Ser Glu Glu Pro Ile Tyr Asp Glu Val Ala Ala Asp Pro 405 410 415

Asn Tyr Ser Val Ile Gln His Phe Ser Gly Asn Ser Pro Val Thr Gly 420 425 430

Arg Leu Val Gly Thr Pro Gly Gln Gly Ile Gln Ser Thr Tyr Ala Leu

Leu Ala Ser Ser Gly Gly Leu Arg Leu Gly Met Gly Gly Leu Thr Gly 450 460

Gly Gly Glu Ser Ala Val Ser Thr Ala Asn Ala Ala Thr Pro Gly Pro 465 470 475 480

Ala Arg Phe Val

<210>

<211> 30

<212> PRT

<213> Escherichia coli

<400>

Pro Ile Gly Asn Leu Gly Asn Asn Val Asn Gly Asn His Leu Ile Pro
1 10 15

Pro Ala Pro Pro Leu Pro Ser Gln Thr Asp Gly Ala Ala Arg 20 25 30

<210>

26 <211>

<212> DNA

Artificial <213>

<220>

<223> Primer

aaagtcgaca agaacctgag aaccag

<210>

30

<211> <212> DNA

<213> Artificial

<220>

<223> Primer 26

<400> 9 tttgtcgact tatgtttgtg aaggtagtgg

<210> 10 <211> 549 <212> PRT <213> Escherichia coli

<400> 10

Met Pro Ile Gly Asn Leu Gly Asn Asn Val Asn Gly Asn His Leu Ile 5 10 15

Pro Pro Ala Pro Pro Leu Pro Ser Gln Thr Asp Gly Ala Ala Arg Gly 20 25 30

Gly Thr Gly His Leu Ile Ser Ser Thr Gly Ala Leu Gly Ser Arg Ser 35 40 45

Leu Phe Ser Pro Leu Arg Asn Ser Met Ala Asp Ser Val Asp Ser Arg 50 55 60

Asp Ile Pro Gly Leu Pro Thr Asn Pro Ser Arg Leu Ala Ala Ala Thr 65 70 75 80

Ser Glu Thr Cys Leu Leu Gly Gly Phe Glu Val Leu His Asp Lys Gly 85 90 95

Pro Leu Asp Ile Leu Asn Thr Gln Ile Gly Pro Ser Ala Phe Arg Val

Glu Val Gln Ala Asp Gly Thr His Ala Ala Ile Gly Glu Lys Asn Gly 115 120 125

Leu Glu Val Ser Val Thr Leu Ser Pro Gln Glu Trp Ser Ser Leu Gln 130 135 140

Ser Ile Asp Thr Glu Gly Lys Asn Arg Phe Val Phe Thr Gly Gly Arg 145 150 155 160

Gly Gly Ser Gly His Pro Met Val Thr Val Ala Ser Asp Ile Ala Glu 165 170 175

Ala Arg Thr Lys Ile Leu Ala Lys Leu Asp Pro Asp Asn His Gly Gly 180 185 190

Arg Gln Pro Lys Asp Val Asp Thr Arg Ser Val Gly Val Gly Ser Ala 195 200 205

Ser Gly Ile Asp Asp Gly Val Val Ser Glu Thr His Thr Ser Thr Thr 210 215 220

Asn Ser Ser Val Arg Ser Asp Pro Lys Phe Trp Val Ser Val Gly Ala Page 11 230

Ile Ala Ala Gly Leu Ala Gly Leu Ala Ala Thr Gly Ile Ala Gln Ala 245 250 255 Leu Ala Leu Thr Pro Glu Pro Asp Asp Pro Thr Thr Asp Pro Asp 260 265 270 Gln Ala Ala Asn Ala Ala Glu Ser Ala Thr Lys Asp Gln Leu Thr Gln 275 280 285 Glu Ala Phe Lys Asn Pro Glu Asn Gln Lys Val Asn Ile Asp Ala Asn 290 295 300 Gly Asn Ala Ile Pro Ser Gly Glu Leu Lys Asp Asp Ile Val Glu Gln 305 310 315 Ile Ala Gln Gln Ala Lys Glu Ala Gly Glu Val Ala Arg Gln Gln Ala 325 330 335 Val Glu Ser Asn Ala Gln Ala Gln Gln Arg Tyr Glu Asp Gln His Ala 340 345 350 Arg Arg Gln Glu Glu Leu Gln Leu Ser Ser Gly Ile Gly Tyr Gly Leu 355 360 365 Ser Ser Ala Leu Ile Val Ala Gly Gly Ile Gly Ala Gly Val Thr Thr 370 375 380 Ala Leu His Arg Arg Asn Gln Pro Ala Glu Gln Thr Thr Thr Thr 385 390 395 400 Thr His Thr Val Val Gln Gln Gln Thr Gly Gly Ile Pro Gln His Lys 405 410 415 Val Ala Leu Met Pro Gln Glu Arg Arg Arg Phe Ser Asp Arg Asp 420 425 430 Ser Gln Gly Ser Val Ala Ser Thr His Trp Ser Asp Ser Ser Glu 435 440 445 Val Val Asn Pro Tyr Ala Glu Val Gly Gly Ala Arg Asn Ser Leu Ser 450 460 Ala His Gln Pro Glu Glu His Ile Tyr Asp Glu Val Ala Ala Asp Pro 465 470 475 480 Gly Tyr Ser Val Ile Gln Asn Phe Ser Gly Ser Gly Pro Val Thr Gly 485 490 495

Arg Leu Ile Gly Thr Pro Gly Gln Gly Ile Gln Ser Thr Tyr Ala Leu

Leu Ala Asn Ser Gly Gly Leu Arg Leu Gly Met Gly Gly Leu Thr Ser 515 520 525

Gly Gly Glu Thr Ala Val Ser Ser Val Asn Ala Ala Pro Thr Gln Gly 530 540

Pro Val Arg Phe Val 545

<210> 11

<211> 558

<213> Escherichia coli

<400> 11

Met Pro Ile Gly Asn Leu Gly His Asn Pro Asn Val Asn Asn Ser Ile 5 10 15

Pro Pro Ala Pro Pro Leu Pro Ser Gln Thr Asp Gly Ala Gly Gly Arg 20 25 30

Gly Gln Leu Ile Asn Ser Thr Gly Pro Leu Gly Ser Arg Ala Leu Phe 35 40 45

Thr Pro Val Arg Asn Ser Met Ala Asp Ser Gly Asp Asn Arg Ala Ser 50 55 60

Asp Val Pro Gly Leu Pro Val Asn Pro Met Arg Leu Ala Ala Ser Glu 65 70 75 80

Ile Thr Leu Asn Asp Gly Phe Glu Val Leu His Asp His Gly Pro Leu 85 90 95

Asp Thr Leu Asn Arg Gln Ile Gly Ser Ser Val Phe Arg Val Glu Thr 100 105 110

Gln Glu Asp Gly Lys His Ile Ala Val Gly Gln Arg Asn Gly Val Glu 115 120 125

Thr Ser Val Val Leu Ser Asp Gln Glu Tyr Ala Arg Leu Gln Ser Ile 130 140

Asp Pro Glu Gly Lys Asp Lys Phe Val Phe Thr Gly Gly Arg Gly Gly 145 150 155 160

Ala Gly His Ala Met Val Thr Val Ala Ser Asp Ile Thr Glu Ala Arg 165 170 175

Gln Arg Ile Leu Glu Leu Leu Glu Pro Lys Gly Thr Gly Glu Ser Lys 180 185 190

Gly Ala Gly Glu Ser Lys Gly Val Gly Glu Leu Arg Glu Ser Asn Ser 195 200 205 Gly Ala Glu Asn Thr Thr Glu Thr Gln Thr Ser Thr Ser Thr Ser Ser 210 215 220 Leu Arg Ser Asp Pro Lys Leu Trp Leu Ala Leu Gly Thr Val Ala Thr 225 230 235 240 Gly Leu Ile Gly Leu Ala Ala Thr Gly Ile Val Gln Ala Leu Ala Leu 245 250 255 Thr Pro Glu Pro Asp Ser Pro Thr Thr Asp Pro Asp Ala Ala 260 265 270 Ser Ala Thr Glu Thr Ala Thr Arg Asp Gln Leu Thr Lys Glu Ala Phe 275 280 285 Gln Asn Pro Asp Asn Gln Lys Val Asn Ile Asp Glu Leu Gly Asn Ala 290 295 300 Ile Pro Ser Gly Val Leu Lys Asp Asp Val Val Ala Asn Ile Glu Glu 305 310 315 320 Gln Ala Lys Ala Ala Gly Glu Glu Ala Lys Gln Gln Ala Ile Glu Asn $325 \hspace{1cm} 330 \hspace{1cm} 335$ Asn Ala Gln Ala Gln Lys Lys Tyr Asp Glu Gln Gln Ala Lys Arg Gln
340 345 350 Glu Glu Leu Lys Val Ser Ser Gly Ala Gly Tyr Gly Leu Ser Gly Ala 355 360 365 Leu Ile Leu Gly Gly Gly Ile Gly Val Ala Val Thr Ala Ala Leu His 370 375 380 Arg Lys Asn Gln Pro Val Glu Gln Thr Thr Thr Thr Thr Thr Thr 385 390 395 400 Thr Thr Ser Ala Arg Thr Val Glu Asn Lys Pro Ala Asn Asn Thr 405 410 415 Pro Ala Gln Gly Asn Val Asp Thr Pro Gly Ser Glu Asp Thr Met Glu 420 430 Ser Arg Arg Ser Ser Met Ala Ser Thr Ser Ser Thr Phe Phe Asp Thr 435 440 445 Ser Ser Ile Gly Thr Val Gln Asn Pro Tyr Ala Asp Val Lys Thr Ser 450 455 460 Page 14

Leu His Asp Ser Gln Val Pro Thr Ser Asn Ser Asn Thr Ser Val Gln 465 470 475 480

Asn Met Gly Asn Thr Asp Ser Val Val Tyr Ser Thr Ile Gln His Pro 485 490 495

Pro Arg Asp Thr Thr Asp Asn Gly Ala Arg Leu Leu Gly Asn Pro Ser 500 510

Ala Gly Ile Gln Ser Thr Tyr Ala Arg Leu Ala Leu Ser Gly Gly Leu 515 520

Arg His Asp Met Gly Gly Leu Thr Gly Gly Ser Asn Ser Ala Val Asn 530 540

Thr Ser Asn Asn Pro Pro Ala Pro Gly Ser His Arg Phe Val 545 550 555

<210> 12

<211> 485 <212> PRT

<213> Escherichia coli

<400> 12

Asn Ser Val Ala Asp Ala Ala Asp Ser Arg Ala Ser Asp Ile Pro Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Pro Thr Asn Pro Leu Arg Phe Ala Ala Ser Glu Val Ser Leu His 20 25 30

Gly Ala Leu Glu Val Leu His Asp Lys Gly Gly Leu Asp Thr Leu Asn 35 40 45

Ser Ala Ile Gly Ser Ser Leu Phe Arg Val Glu Thr Arg Asp Asp Gly 50 60

Ser His Val Ala Ile Gly Gln Lys Asn Gly Leu Glu Thr Thr Val Val 65 70 75 80

Leu Ser Glu Gln Glu Phe Ser Ser Leu Gln Ser Leu Asp Pro Glu Gly 85 90 95

Lys Asn Lys Phe Val Phe Thr Gly Gly Arg Gly Gly Pro Gly His Ala 100 105 110

Met Val Thr Val Ala Ser Asp Ile Ala Glu Ala Arg Gln Arg Ile Ile 115 120 125

Asp Lys Leu Glu Pro Lys Asp Thr Lys Glu Thr Lys Glu Pro Gly Asp 130 140

Pro Asn Ser Gly Glu Gly Lys Ile Ile Glu Ile His Thr Ser Thr Ser 145 150 155 160 Thr Ser Ser Leu Arg Ala Asp Pro Lys Leu Trp Leu Ser Leu Gly Thr 165 170 175 Ile Ala Ala Gly Leu Ile Gly Met Ala Ala Thr Gly Ile Ala Gln Ala 180 185 190 Val Ala Leu Thr Pro Glu Pro Asp Asp Pro Ile Thr Thr Asp Pro Asp 195 200 205 Ala Ala Ala Asn Thr Ala Glu Ala Ala Ala Lys Asp Gln Leu Thr Lys 210 215 220 Glu Ala Phe Gln Asn Pro Asp Asn Gln Lys Val Asn Ile Asp Glu Asn 225 230 235 240 Gly Asn Ala Ile Pro Ser Gly Glu Leu Lys Asp Asp Val Val Ala Gln 245 250 255 Ile Ala Glu Gln Ala Lys Ala Ala Gly Glu Gln Ala Arg Gln Glu Ala 260 265 270 Ile Glu Ser Asn Ser Gln Ala Gln Gln Lys Tyr Asp Glu Gln His Ala 275 280 285 Lys Arg Glu Gln Glu Met Ser Leu Ser Ser Gly Val Gly Tyr Gly Ile 290 295 300 Ser Gly Ala Leu Ile Leu Gly Gly Gly Ile Gly Ala Gly Val Thr Ala 305 310 315 320 Ala Leu His Arg Lys Asn Gln Pro Ala Glu Gln Thr Ile Thr Thr Arg 325 330 335 Thr Val Val Asp Asn Gln Pro Thr Asn Asn Ala Ser Ala Gln Gly Asn 340 345 350 Thr Asp Thr Ser Gly Pro Glu Glu Ser Pro Ala Ser Arg Arg Asn Ser 355 360 365 Asn Ala Ser Leu Ala Ser Asn Gly Ser Asp Thr Ser Ser Thr Gly Thr 370 375 380 Val Glu Asn Pro Tyr Ala Asp Val Gly Met Pro Arg Asn Asp Ser Leu 385 390 395 400 Ala Arg Ile Ser Glu Glu Pro Ile Tyr Asp Glu Val Ala Ala Asp Pro 405 410 415

Asn Tyr Ser Val Ile Gln His Phe Ser Gly Asn Ser Pro Val Thr Gly
420 425 430

Arg Leu Val Gly Thr Pro Gly Gln Gly Ile Gln Ser Thr Tyr Ala Leu 435 440 445

Leu Ala Ser Ser Gly Gly Leu Arg Leu Gly Met Gly Gly Leu Thr Gly 450 460

Gly Glu Ser Ala Val Ser Thr Ala Asn Ala Ala Pro Thr Pro Gly 465 470 475 480

Pro Ala Arg Phe Val

<210> 13

<211> 22

<212> PRT

<213> Escherichia coli

<400> 13

Met Ser Ser Arg Ser Glu Leu Leu Leu Asp Arg Phe Ala Glu Lys Ile $1 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Gly Val Gly Ser Ile Ser 20

<210> 14

<211> 485 <212> PRT

<213> Escherichia coli

<400> 14

Asn Ser Val Ala Asp Ala Ala Asp Ser Arg Ala Ser Asp Ile Pro Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Pro Thr Asn Pro Leu Arg Phe Ala Ala Ser Glu Val Ser Leu His 20 25 30

Gly Ala Leu Glu Val Leu His Asp Lys Gly Gly Leu Asp Thr Leu Asn 35 40 45

Ser Ala Ile Gly Ser Ser Leu Phe Arg Val Glu Thr Arg Asp Asp Gly 50 55 60

Ser His Val Ala Ile Gly Gln Lys Asn Gly Leu Glu Thr Thr Val Val 65 70 75 80

Leu Ser Glu Gln Glu Phe Ser Ser Leu Gln Ser Leu Asp Pro Glu Gly 85 90 95

Lys Asn Lys Phe Val Phe Thr Gly Gly Arg Gly Gly Pro Gly His Ala Page 17

Met Val Thr Val Ala Ser Asp Ile Ala Glu Ala Arg Gln Arg Ile Ile 115 120 125 Asp Lys Leu Glu Pro Lys Asp Thr Lys Glu Thr Lys Glu Pro Gly Asp 130 140 Pro Asn Ser Gly Glu Gly Lys Ile Ile Glu Ile His Thr Ser Thr Ser 145 150 155 160 Thr Ser Ser Leu Arg Ala Asp Pro Lys Leu Trp Leu Ser Leu Gly Thr 165 170 175 Ile Ala Ala Gly Leu Ile Gly Met Ala Ala Thr Gly Ile Ala Gln Ala 180 185 190 Val Ala Leu Thr Pro Glu Pro Asp Asp Pro Ile Thr Thr Asp Pro Asp 195 200 205 Ala Ala Ala Asn Thr Ala Glu Ala Ala Ala Lys Asp Gln Leu Thr Lys 210 215 220 Glu Ala Phe Gln Asn Pro Asp Asn Gln Lys Val Asn Ile Asp Glu Asn 225 230 235 240 Gly Asn Ala Ile Pro Ser Gly Glu Leu Lys Asp Asp Val Val Ala Gln 245 250 255 Ile Ala Glu Gln Ala Lys Ala Ala Gly Glu Gln Ala Arg Gln Glu Ala 260 265 270 Ile Glu Ser Asn Ser Gln Ala Gln Gln Lys Tyr Asp Glu Gln His Ala 275 280 285 Lys Arg Glu Gln Glu Met Ser Leu Ser Ser Gly Val Gly Tyr Gly Ile 290 295 300 Ser Gly Ala Leu Ile Leu Gly Gly Gly Ile Gly Ala Gly Val Thr Ala 305 310 315 Ala Leu His Arg Lys Asn Gln Pro Ala Glu Gln Thr Ile Thr Thr Arg 325 330 335 Thr Val Val Asp Asn Gln Pro Thr Asn Asn Ala Ser Ala Gln Gly Asn 340 350 Thr Asp Thr Ser Gly Pro Glu Glu Ser Pro Ala Ser Arg Arg Asn Ser 355 360 365 Asn Ala Ser Leu Ala Ser Asn Gly Ser Asp Thr Ser Ser Thr Gly Thr

37

Val Glu Asn Pro Tyr Ala Asp Val Gly Met Pro Arg Asn Asp Ser Leu 385 390 395 400

Ala Arg Ile Ser Glu Glu Pro Ile Tyr Asp Glu Val Ala Ala Asp Pro 405 410 415

Asn Tyr Ser Val Ile Gln His Phe Ser Gly Asn Ser Pro Val Thr Gly 420 425 430

Arg Leu Val Gly Thr Pro Gly Gln Gly Ile Gln Ser Thr Tyr Ala Leu 435 440 445

Leu Ala Ser Ser Gly Gly Leu Arg Leu Gly Met Gly Gly Leu Thr Gly 450 460

Gly Gly Glu Ser Ala Val Ser Thr Ala Asn Ala Ala Pro Thr Pro Gly 465 470 480

Pro Ala Arg Phe Val 485