(A) Solve the following problem using Bala's Algorithm
maximize 5x+2x2+12x3+10x4

S.t 3x4+6x2+5x3+5x4512

4x4+9x2-2x3+x4 £25

All xis are binney.

Ed:
To get to standard form of Bala's Algorithm we replace \$ xi = 1-4i

Then the problem becomes

 $max 5(1-y_1) + 2(1-y_2) + 12(1-y_3) + 10(1-y_4)$

max = 5-5y +2-2y2 +12-12y3 +10=10 y4

>max -54-242-1243-1044+29

> min 5y + 2y + 12y 3 + 10yy - 29

Given constraints be come

 $\rightarrow 3 n_4 + 6 n_2 + 5 n_3 + 5 n_4 \le 12$ $3(1-y_1) + 6(1-y_2) + 5(1-y_3) + 5(1-y_4) \le 12$

 $-3y_{1} - 6y_{2} - 5y_{3} - 5y_{4} + 19 \le 12$ $3y_{1} + 6y_{2} + 5y_{3} + 5y_{4} - 19 > -12$

:. 3y+6y+5y3+5y4777 ->0

 $\frac{1}{4} \frac{4}{14} + \frac{9}{12} - \frac{2}{12} + \frac{2}{14} \le 25$ $\frac{1}{(1-y_1)} + \frac{9}{(1-y_2)} + \frac{2}{12} (1-y_3) + \frac{1}{(1-y_4)} \le 25$ $-\frac{1}{4} - \frac{9}{12} + \frac{2}{12} + \frac{2}{12} \le 25$ $\frac{1}{4} + \frac{9}{12} - \frac{2}{12} + \frac{1}{4} + \frac{1}{12} \ge 25$ $\frac{1}{4} + \frac{9}{12} - \frac{2}{12} + \frac{1}{4} + \frac{1}{12} \ge -25$ $\frac{1}{4} + \frac{9}{12} - \frac{2}{12} + \frac{1}{4} + \frac{1}{12} \ge -25$

So the modified problem is min $2y_2 + 5y_1 + 10y_4 + 12y_3$ with constraints of $6y_2 + 3y_1 + 5y_4 + 5y_3 \ge 7$ C1. $6y_2 + 3y_1 + 5y_4 + 5y_3 \ge 7$ C2. $9y_2 + 4y_1 + 4y_4 - 2y_3 \ge -13$

Applying Bala's Algorithm.

First, to worsideing all y=0, Gis not satisfied.

: For min objective we get $Z_{min}^{*} = 7$ when $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, $y_4 = 0$

Some need to consider $y=0, n_2=0, x_3=1, x_4=1$

. Original objective becomes

$$2^{+}=22$$
 when $y=0, x_2=0, x_3=1, x_4=1$

02) Vester cover of graph.

Given an undirected graph G=(V,E)We need to find set $S\subseteq V$

Veetex cover formulated as Integer Linear Program Boblem.

OPT WORKIN & xi

s.t xje{0,13+ieV xi+xj>1+2i,j3@E

LPrelaxed problem is

OPT = \security

St OSMIST FIEV

Rounding procedure used is additione

Ni#= \$1 if xi > \frac{1}{3}

And there and perfect in OPTROUND = ZIEV X

(a) OPTLP = OPTILP

In ILP we have more strict constraint than in LP So, a valid colution for ILP is also a valid colution for ILP.

For LP, we have more choices of obviously when we have more possibilities rwe get better solution. It could only get better or may be stay the same, but it will never be worse.

We can also show this example, when graph has 3 neutres

and all are connected, I solution for ILP is (1,1,0) where OPT, ILP=2

Towedo LP relaxation we may get a solution like (0.7, 0.7, 0.3)

then OPT_P=1.7.

: OPTLP & OPTILP

0) 3 = {i eV | xi = 1} still produces a valid set cover. For every (1,5) EE we have a condition xi +xi > 1 Hence there will exist at least one nextex which is greater than I be xiz & to when as and After so unding procedure, it will be correctly = 1 ! We will get a feasible solution (c) Approximation factor. Maximum value of OPTROUND OPTROUND = 5 xi* 5 5 2 74 = 2 = xie = 2.0PTLP (Prom (a)) < 2. OPTILP

OPTILP < 2

$$2 \pi_{1} + 2 \pi_{2} + 7 \pi_{3} = 7$$

$$3 \pi_{1} + (\pi_{1} + 9) \pi_{2} + (\pi_{1} + 11) \pi_{3} = 10$$

$$3 \pi_{1} + (\pi_{1} + 9) \pi_{2} + 11 \pi_{3} = 10$$

Que Find I when equations have unique solution.

System of Legnations have unique solution when det(A) + D

The solutions of quadratic equation $2\lambda^2 - 2\lambda + 5 = 0$ are $\alpha = -1 \pm \sqrt{11}$ = 1.158, -2.158

By solve the tollowing LP using Simplex Tableau Method. minimize Z=674+772-373 subject to 5×4-6×2-73 <-9
-2×4+×2+4×3=3 1324-873 60 4, 12, 237,0 converting to standard poem. Here constant = -9 <0: Multiply by -1 to make it >0 a. 5x4-6x2-M3 <-9 -54+6×2+×3 0 29 We have this of > type: subtract gupplus variable 24. a add aetificial variable ay C21 It is equality = constraint. so we catherent add astificial variable az c3: We add susplus varsiable 2/5 i. Problem becomes. min z = 6 24 + 7 2 - 3 x 3 + 0. 24 + 0. 25 + May + Maz -5× +6×2+×3 - ×4 + 1/2 = 3 -24 + x2 +4x3

x x1, x2, x3, x4, x5, a1, a2 70

In	itial'	Table	: Iterati	on -1						
		Court by	81	*2	743				az 1	
coeffeinh	Basic	Contants	6	7	-3	0	0	M	M	3Ci MinRodio
M	04	9	-5	(6))	-1	0	1	0	2=15
M	a2	3	-2	1	4	D	0	0	1	$\frac{3}{1} = 3$
0	25	0	13	0	-8	0	1	0	0	-
	Z	12M	-7M	7M	5M	-M	0	M	M	
	2-C;		-7M-6	7M-7	5M+3	-M	D	0	0	

Incoming variable = x2 Outgoing variable = ay key element = 6

Iteration-2

R, (new) = R, (old) /6

R2(new) = R2(old) - R1(new)

R3 (new) = R3(old) ay 1/2 *1 ×2 ×3 ×4 M Coeficial Bourice Constants 6 7 -3 0 vorsiable 2/2 9/6 -5/6 1 1/6 -1/6 0 0 M 0 -8 0 0 25 0 13 0 75. M -35 AM +10.5 6 6

Min radio

9/2 = 9

2 x = 9

Incoming variable = 1/3
Outgring variable = 0,2

Key element = $\frac{23}{6}$ = 3.833

Iteration -3

R2(new) = R2(01d) * (6)

Ry (new) = Ry (old) - 1 Ro (new)

B (new) = Ry (old) + 8 Ro (new)

	5		9 (0.0)	10 K2	/				
			M	XL	×3	××	×5	a	
	Banic	Combinets	6	7	-3	0	0	M	M
7	22	-	-108 23×6	1	0	-4/23	0	4/23	-1 22
-3	2/3	9 23	-1 23	0	1	1/23	0	-1/23	6/23
1	15	72 23	243	0	0	8/23	1	-8/23	
	7	$Z = \frac{204}{23}$ $= 8.8696$	-315, 69 =-4,56	7	-3	-31 23	0	COLUMN TWO IS NOT THE OWNER, THE	-25/23
-8	y	AND DESCRIPTION OF THE PARTY OF	-10.56	8		1.347		=1.847	2-1.088
	-6j				0	-1.397	0	-M+1.547	-M -1.087
FRE	ver	281 -	7	pm 1	1.10 .000		. A	1 10	

Here, all zj-cj &o!, We reached optimal solution

: Min z = 8.8696 when 24=0, x2=1.43, x3=0.39

To apply Cholesky factorization, the matrix need to be positive sea definite and symmetric

The given madrix is symmetric.

To And whether a matrix is positive definite, we need to find eigenvalues. A modoix is possibre definite it all the eigenvalues are positive.

1A-71 =0

$$\begin{vmatrix}
 (4-1) & 6 & 2 & -6 \\
 6 & (34-1) & 3 & -9 & =0 \\
 2 & 3 & (2+1) & -1 \\
 -6 & -9 & -1 & (8-1)
 \end{vmatrix}$$

7 (4-1) x (330-285 x+44x2-x3)=6 (-30+6x2) +2(-250+60)-272) +6(-250+1607-672)-0

we need to find the signs of this equation to obtain the sign of eigen values.

1. Applying Descarte's Rule of signs

No of positive real roots < No of sign changes in f(7)

No of riegative real roots < No of sign changes in + (->)

A(-1) = 74+48 x3+365 x2+310 x-500 =0

: No of regadire real roots < 1

Here we got no of negative & positive real norts = 4. We have all real roots.

: We have all real roots.

. We have all real roots and I negative soot

.. Matoix is not positive definite because ne have 1 negative eigen value.

: We cannot Cholesky decomposition

Cholesky

A = [[4,6,2,-6],[6,34,3,-9],[2,3,2,-1],[-6,-9,-1,8]]

```
L = np.linalg.cholesky(A)
   LinAlgError
                                                 Traceback (most recent call last)
    <ipython-input-6-a8e4a4945d52> in <module>()
    ---> 1 L = np.linalg.cholesky(A)
    < array function internals> in cholesky(*args, **kwargs)
    ~/anaconda3/lib/python3.7/site-packages/numpy/linalg/linalg.py in cholesky(a)
                t, result_t = _commonType(a)
signature = 'D->D' if isComplexType(t) else 'd->d'
        753
        754
    --> 755
                 r = gufunc(a, signature=signature, extobj=extobj)
        756
                 return wrap(r.astype(result_t, copy=False))
        757
    ~/anaconda3/lib/python3.7/site-packages/numpy/linalg/linalg.py in _raise_linalgerror_nonposdef(err, flag)
         98
         99 def _raise_linalgerror_nonposdef(err, flag):
100    raise LinAlgError("Matrix is not positive definite")
    --> 100
        101
        102 def raise linalgerror eigenvalues nonconvergence(err, flag):
    LinAlgError: Matrix is not positive definite
```

Q6) Show the SVP factorization of 2 5 6 Sd: SVD Factorization A=UDVT 0, V-orthonormal vectors O-Diagonal matrix Method 1. V= eigenvalues (ATA) The eigenvalues vector of ATA - 10,10,20, U= The [Un 10,20] 2. D = eigenvalues (ATA) as diagonal DE 0 0 0 where \(\tau = \bar{1} \) where \(\tau = \bar{1} - \text{eigenvalues of ATA}\). Calculation Finding eigenvalues and eigen vectors of ATA. ATA-AI) = 0 = 1(13-A) 37 24 37 (107-A) A1 = 0 24 71 (29-A) => (B-A (6+7-A)-91×7) - 37 (37/99-A)-71×24) +24/3××1-3/1 >> 23-19722+365 7-625=0 Roots of this equation found using Newton's method 7=0.1781 , 72=20.4758, N=176.8511

$$A'A - \lambda I = \begin{bmatrix} 13 & 37 & 29 \\ 37 & 167 & 91 \\ 24 & 91 & 97 \end{bmatrix} - 176.8571 \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -163.3511 & 37 & 24 \\ 37 & -69.3511 & 71 \\ 24 & 91 & 97 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -0.2265 & -0.1969 \\ 0 & -609404 & 96.4361 \\ 0 & 96.4361 & -95.825 \end{bmatrix}$$

$$R_{2} \leftarrow R_{2} \div 76.4361$$
 $R_{1} \leftarrow R_{1} \div 0.2265 \times R_{2}$
 $\begin{bmatrix} 1 & -0.2265 & -0.1469 \\ 0 & 1 & -1.2537 \\ 0 & -60.9364 & 76.4361 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0.2265 & \times R_{2} \\ 0 & 0.2265 & \times R_{2} \\ 0 & -0.4309 \\ 0 & 1 & -1.2637 \\ 0 & -60.9364 & 76.4361 \end{bmatrix}$

Rg C Rs + 60,9704 X R2

1. The eigenvector for 2, =176.3511

Noemalizing we get 4= 0.2596 0.755 0.6022 vectors)

By following similar procedure, we get:

Eigen vectorpytu normalizing for 72=20,4758

$$V_2 = \begin{bmatrix} -0.248 \\ -0.7038 \end{bmatrix} = \begin{bmatrix} -0.2179 \\ -0.5617 \\ 0.7981 \end{bmatrix}$$

Eigen vector for $7_3 = 0.1731$

$$0_3 = \begin{bmatrix} 50.1343 \\ -18.0289 \end{bmatrix} = \begin{bmatrix} 0.9408 \\ -0.3883 \\ 0.0188 \end{bmatrix}$$

$$V = \begin{bmatrix} V_1 & V_2 & V_3 \end{bmatrix} = \begin{bmatrix} 0.2595 & -0.2179 & 6.9408 \\ 0.755 & -0.5617 & -0.3883 \\ 0.6022 & 6.7481 & 0.0188 \end{bmatrix}$$

$$D = \begin{bmatrix} 0.62 & 0 & 0 & 0 \\ 0.6022 & 6.7481 & 0.0188 \end{bmatrix} = \begin{bmatrix} 13.2297 & 0 & 0 \\ 0.755 & 0 & 0 \\ 0.002 & 0.7481 & 0 \end{bmatrix} = \begin{bmatrix} 13.2297 & 0 & 0 \\ 0.405 & 0 \\ 0.005 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0.5954 & 0.2595 \\ 0.7517 & 0.5562 \\ 0.$$

3.6 - SVD

Q7) If D=D3x3 is the diagonal matrix with entries do,d2,d3 what is D'AD? what are its eigen values in following case? A= (1 1) 3d? Dis diagonal matrix D= [d1 0 0 d2 0 o d3] D'-inverse of diagonal matrix D'= 1/21 00

(when no entries are zero) D'= 1/20
0 1/20 DAD => 1/d100 01/d20 00/d20 1111 000d3 ⇒ \[\d_1 \d_1 \d_1 \d_1 \d_1 \\ \d_2 \d_1 \d_2 \d_1 \\ \d_2 \d_2 \d_2 \\ \d_3 \d_3 \\ 1. PTAP= [1 d2/d1 d5/d1]

d/d2 1 d2/d2

d/d3 d3/d2 1 Finding Eigen values: 1-> d2/d1 d3/d1 =0 | d1/d2 1-> d3/d2 =0 | d1/d3 d2/d3 1-> →(1-N[(1-N²-号文号]-合(1-N对一类类)+合(dx号-(1-N光)= =>(1-x)(x-2x+x2-1)+2>=0 => 1-2/x+x2+2x2-x3+2x=0 $7 - \chi^3 + 3\chi^2 = 0$ => n=0,0,3 : Eigenvalues of DAD = 0,0,3

(8) Find solution of Ax=b with the smallest value of 112112-CX min Mall 2-CTX s.t Ax=b Hele c-nx1, A-mxn, b-mx1 & A is night investible. min Itally-ctx solving using Lagrain method. $L(a/x) = x^Tx - c^Tx + x^T(Ax - b)$ DT =0 = 2x - c + AT = 0 3 x = -ATA +C substituting it in AX=b $A\left(-\frac{AT}{2}+c^{*}\right)=b$ - Here A is right investible 7-AATX+ACT= b D. A ATAMO is invertible 7-AAT 7- 26-ACT) = 7 = -2 (AAT) (b-ACT) K nik pritutisdus 2 x = -AT(-2(AAT) (6-ACT) +CT (AT (AAT) (b-ACT) TET X = AT(AAT)-1 (b-Act)+cmx1

Number of variables in DUAL

= Number of constraints in PRIMAL4

No. of constraints in DUAL

= No. of servariables in PRIMAL=3

Equations in Dual form

maximize $Z = 9y_1 + 3y_2 - 3y_3$ Sit $-5y_1 - 2y_2 + 2y_3 - 13y_4 \le 6$ $6y_1 + y_2 - y_3 \le 7$ $y_1 + 4y_2 - 4y_3 + 8y_4 \le -3$ $y_1, y_2, y_3, y_4 > 0$