Plano de Ensino - 2018_2

Disciplina: Estruturas de Dados Período: 2º

Professora: Myrna Amorim (myrnacissa@outlook.com e myrnacissa@yahoo.com.br)

Curso: Ciência da Computação (BCC) e Tecnologia em Sistemas para Internet (TSI)

Horários:

Turma A - 6a feira: 18h20 às 21h40 (lab 03)

Turma B - 4a feira: 12h40 às 14h25 (lab 1) e 6a feira: 14h30 às 16h25 (lab 03)

Ementa:

Estruturas Lineares Sequenciais. Ponteiros. Estruturas lineares dinâmicas. Algoritmos de Ordenação. Estruturas de Dados não lineares – Árvores.

Objetivo Geral:

Capacitar o aluno a entender as principais estruturas de dados utilizadas na computação e saber aplicá-las de forma correta.

Bibliografias Sugeridas:

<u>Básica</u>

- 1. CORMEN, T. H., LEISERSON, C. E, RIVEST, R. L e STEIN, C., Algoritmos teoria e prática, Rio de Janeiro: Campus.
- 2. SZWARCFITER, Jayme L. e MARKENSON, Lílian, Estruturas de Dados e seus Algoritmos, 3a edição, São Paulo: LTC, 2010.
- 3. ZIVIANI, Nivio, Projeto de Algoritmos com implementações em Pascal e C, 5a edição, Editora Pioneira, 2001.

Complementar

- PEREIRA, Sílvio Lago, Estruturas de Dados Fundamentais: Conceitos e Aplicações, 5a edição, São Paulo: Érica, 2001.
- 2. PREISS, Bruno R., Estruturas de Dados e Algoritmos, Rio de Janeiro: Campus, 2000.
- 3. GUIMARAES, Angelo de Moura; LAGES, Newton Alberto de Castilho. Algoritmos e estruturas de dados. Rio de Janeiro: Livros Técnicos e Científicos, ISBN 9788521603788.
- 4. EDELWEISS, Nina; GALANTE, Renata. Estruturas de dados. Porto Alegre: Bookman, 2009. viii, 261, il. (Livros didáticos informática UFRGS; v. 18). ISBN 9788577803811.
- 5. GOODRICH, Michael T., 1961-; TAMASSIA, Roberto, 1960-. Estruturas de dados e algoritmos em JAVA. 4.ed. Porto Alegre: Bookman, 2007. xiii, 600 p., il. ISBN 9788560031504.

Critério de Avaliação:

A avaliação semestral envolve duas provas escritas (P1 e P2) e um trabalho (T). As datas das provas são agendadas conforme calendário acadêmico. A média parcial (MP) é computada como:

$$MP = (P1 + (P2 * 0.6 + T * 0.4)) / 2$$

O aluno que faltar a uma das duas provas terá direito a uma avaliação alternativa, denominada segunda chamada, versando sobre todos os tópicos abordados no curso, e cuja data também é agendada entre docente e discentes. A nota obtida nessa 2ª chamada substituirá a da avaliação P1 ou P2 (usando o mesmo peso) onde o aluno não esteve presente. Caso ele falte às duas avaliações, terá atribuído o grau ZERO em uma delas. O trabalho é desenvolvido durante o curso e neste caso não existe segunda chamada do trabalho.

Segundo o regimento do CEFET-RJ, caso o aluno obtenha média parcial inferior a 3,0 (três e zero) estará reprovado diretamente. Graus MP maiores ou iguais a 7,0 (sete e zero) aprovam diretamente o aluno. Em situações onde o aluno tenha grau MP entre 3,0 inclusive e 7,0 exclusive, terá direito a uma prova final (PF), que, juntamente com a média parcial gerará uma nova média, denominada média final (MF). Essa média é calculada da seguinte forma:

$$MF = (MP + PF) / 2$$

Para ser aprovado, o aluno deve alcançar uma MF maior ou igual a 5,0 (cinco e zero). Caso contrário, estará reprovado, devendo repetir a componente curricular.

Programa:

- 1. Estruturas lineares sequenciais
 - 1.1. Listas sequenciais
 - 1.1.Implementação das operações básicas
 - 1.1.1. Inserção de nós
 - 1.1.2. Remoção de nós
 - 1.1.3. Alteração de nós
 - 1.1.4. Ordenação e busca em listas
 - 1.2. Casos particulares: pilha e fila

2. Ponteiros

- 2.1. Conceitos básicos
- 2.2. Endereçamento direto e indireto
- 2.3. Princípios de alocação dinâmica
- 2.4. Problemas com seu uso
- 3. Estruturas lineares dinâmicas
 - 3.1. Listas simplesmente encadeadas
 - 3.1.1. Implementação das operações básicas
 - 3.1.1.1. Inserção de nós
 - 3.1.1.2. Remoção de nós
 - 3.1.1.3. Alteração de nós
 - 3.1.1.4. Ordenação e busca em listas
- 4. Algoritmos de Ordenação
 - 4.1. Ordenação por seleção
 - 4.2. Quicksort
 - 4.3. Mergesort
 - 4.4. Heapsort
 - 4.5. Complexidade dos algoritmos de ordenação
- 5. Árvores
 - 5.1. Conceitos básicos
 - 5.2. Árvores binárias de busca
 - 5.3. Árvores balanceadas
 - 5.4. Algoritmos de inserção e remoção
 - 5.5. Busca em árvores
 - 5.6. Complexidade dos algoritmos em árvores
 - 5.7. Árvores AVL

Softwares de Apoio à disciplina: CodeBlocks ou DEV C++ (ou qualquer IDE que suporte as linguagens de programação C/C++).

Semanas	Plano de Ensino – Previsão das Aulas
Semana 1	Apresentação da Disciplina. Objetivo e Motivação. Ementa. Bibliografia Recomendada.
	Procedimento em relação às faltas. Sistemática e data das avaliações e dos trabalhos. Algoritmos
	de Ordenação. Relembrando Bubble Sort. Implementação do Selection Sort (ordenação por
	seleção). Complexidade do Bubble Sort e do Selection Sort.
Semana 2	Funções Recursivas. Algoritmos de Ordenação: Quick Sort. Merge Sort. Complexidades. Exercícios.
Semana 3	Introdução às estruturas lineares sequenciais. Inserção, remoção e alteração de Nós. Exemplos e
	exercícios de listas sequenciais.
Semana 4	Ponteiros. Struct. Introdução às estruturas lineares dinâmicas (encadeadas).
Semana 5	Inserção. Remoção e alteração de nós. Exemplos e exercícios.
Semana 6	Pilha e Fila Exemplos.
Semana 7	1ª avaliação (P1)
	Correção e entrega da prova
Semana 8	Introdução às estruturas de dados não lineares – Árvores. Representação. Árvore Binária.
Semana 9	Árvore Binária de Busca. Conceitos básicos, busca e inserção de nós.
Semana 10	Árvore Binária de Busca. Complexidade. Exercícios.
Semana 11	Heap Sort. Complexidade. Exercícios.
Semana 12	Árvores balanceadas. Conceito de balanceamento.
Semana 13	Árvores AVL. Balanceamento de árvores AVL.
Semana 14	Inclusão e Remoção de nós (AVL). Exercícios.
Semana 15	Exercícios
Semana 16	2ª avaliação (P2)
	Correção e entrega da prova
Semana 17	Prova Final e 2ª chamada.
Semana 18	Prova Final (para alunos que fizeram a 2ª chamada).
	Correção e revisão da prova.