

Surface area:
$$\int ||\vec{r}_u \times \vec{r}_v|| du =$$

$$= \int_0^{\pi/2} \int_0^{2\pi} R^2 \cos v \, du \, dv$$

$$= R^2 \int_0^{\pi/2} 2\pi (\cos v) \, dv = 2\pi R^2 V$$

$$= \int_{0}^{\pi/2} \int_{0}^{2\pi} R^{2}(\cos v) \sin v \, du \, dv$$

$$= \int_{0}^{\pi/2} \int_{0}^{\pi/2} dw$$

$$= R^2 \int_0^{\pi/2} 2\pi \cos \frac{\sin v}{w} dv$$

$$= 2\pi R^2 \left[\frac{1}{2} \sin^2 v \right]_0^{\pi/2} = \pi R^2$$

Hmmm. Same as flux past equator circle.	
Of course! Think of water in a pipe.	
Divergence Theorem: pointing	
horma (
SSF. n dA = SSS DEVF dV	
5	
$EX : Div \hat{k} = 0.$ — incompressible	
Flux = 0. (Flux out of top)+ (Flux out bottom)	
- Flux Into	
So Fluxes are equal, 1	
Another biggy: n chosen by	
Another biggy: n chosen by Right	
S Kight	
Stokes' Theorem: \(\) (Curl\(\varF \)) \(\hat{n} dA = \) \(\varF \) \(\dr \)	
"Flux of vorticity" = "Circulation"	
•	
Another Stokes Theorem & w = Solw Boundary Inside	
(ase of S' as a graph: $Z = f(x, y)$	
$\vec{r}(x,y) = x\hat{j} + y\hat{j} + f(x,y)\hat{k}$	

$$\vec{r}_{x} \times \vec{r}_{y} = dt \begin{bmatrix} \hat{1} & \hat{j} \\ \hat{j} \\ \hat{N} \end{bmatrix}$$

$$= -\frac{2f}{2x} \hat{1} - \frac{2f}{2y} \hat{j} + \hat{k}$$

$$||\vec{r}_{\chi} \times \vec{r}_{\chi}|| = \sqrt{\left(\frac{2f}{2\chi}\right)^2 + \left(\frac{2f}{2\chi}\right)^2 + 1^2}$$

Area
$$(S') = \iint \sqrt{1 + f_x^2 + f_y^2} dx dy = \iint dA$$

$$Mass(S) = \iint \rho(x, y, f(x, y)) \int |f_x|^3 f_y^{-3} dx dy$$

$$R \qquad density fon$$

$$= \iint \rho(\vec{r}) dA$$

$$S$$

$$F(ux) = \iint \left[-F_{1}(x,y,f(x,y)) \frac{2f}{2x} - F_{2}(x,y,f(x,y)) \frac{2f}{2y} + F_{3}(x,y,f(x,y)) \right] dx dy$$

$$\begin{cases} \chi = (b + a \cos v) \cos u \\ y = (b + a \cos v) \sin u \begin{pmatrix} 0 \le u \le 2\pi \\ 0 \le v \le 2\pi \end{pmatrix} \\ \overline{z} = q \sin v \end{cases}$$

Avea =
$$(2\pi a)(2\pi b) = 4\pi^{2}ab$$