Due: 3/31/21

Dr. Muhammed Abid

Assignment 6: Chapter 13, 14, 15

PROBLEM #1 (20 POINTS):

The following grammar has Λ -productions, but Λ is not in the language generated by this grammar. Using the algorithm in chapter 13, find another grammar for the same language that does not have any Λ -productions.

a)
$$S \to bZ$$

$$Z \to ABAB$$

$$A \to a | \Lambda$$

$$B \to b | \Lambda$$

b)
$$S \to aX|bX$$

$$X \to a|b|\Lambda$$

a)
$$S \to bZ$$

$$Z \to ABAB|BAB|ABA|BA|AB|A|B$$

$$A \rightarrow a$$

$$B \to b$$

b)
$$S \to aX|bX|a|b$$

$$X \to a|b$$

PROBLEM #2 (20 POINTS):

The following context-free grammar (CFG) has unit productions. Using the algorithm presented in chapter 13, find a CFG for the same language that does not have any unit productions.

a)
$$S \to aXZa|aXa|aZa|aa$$

$$X \to Y|a$$

$$Y \to Z|b$$

$$Z \to bZ|b$$

b)
$$S \to aX|Yb$$

$$X \to S$$

$$Y \to bY|b$$

a)
$$S \to aXZa|aXa|aZa|aa$$

$$X \to a|b|bZ$$

$$Z \to bZ|b$$

b)
$$S \to aX|Yb$$

$$X \to aX|Yb$$

$$Y \to bY|b$$

PROBLEM #3 (20 POINTS):

Convert the grammar you obtained as a result of Question 2 into Chomsky Normal Form (CNF).

- a) $S \to R_1 R_2 |R_1 A| A R_2 |AA|$
 - $X \to a|b|BZ$
 - $Z \to b|BZ$
 - $R_1 \to AX$
 - $R_2 \to ZA$
 - $A \rightarrow a$
 - $B \to b$
- b) $S \to AX|YB$
 - $X \to AX|YB$
 - $Y \to YB|b$
 - $A \to a$
 - $B \to b$

PROBLEM #4 (20 POINTS):

Convert the following CFG into CNF.

a)
$$S \to aXX$$

$$X \to aS|bS|a$$

b)
$$E \to E + E$$

$$E \to E * E$$

$$E \to (E)$$

$$E \rightarrow 7$$

a)
$$S' \to AR_1$$

$$S \to AR_1$$

$$X \to AS|BS|a$$

$$R_1 \to XX$$

$$A \to a$$

$$B \to b$$

b)
$$E' \to R_1 E | R_2 E | R_3 E | 7$$

$$E \to R_1 E |R_2 E|R_3)|7$$

$$R_1 \to E +$$

$$R_2 \to E*$$

$$R_2 \to (E$$

PROBLEM #5 (15 POINTS):

Consider the following push down automation (PDA).

- a) Using a trace table like those in Chapter 14, show what happens to the input tape and stack as each of the following words proceeds through the machine.
 - 1) bbbaaa
 - 2) bbbbaa
- b) What is the language accepted by this PDA? Write English description of the language.

SOLUTION:

STATE	STACK	TAPE
START	Δ	bbbaaa Δ
$READ_1$	Δ	θ bbaaa Δ
PUSH b	$\mathrm{b}\Delta$	θ bbaaa Δ
$READ_2$	$\mathrm{b}\Delta$	bb baaa Δ
PUSH b	${ m bb}\Delta$	$\frac{bb}{b}$ baaa Δ
$READ_2$	${ m bb}\Delta$	$\frac{bbb}{aaa}$
PUSH b	${ m bbb}\Delta$	bbb aaa Δ
$READ_2$	$\mathrm{bbb}\Delta$	$\frac{bbba}{a}$ aa Δ

STATE	STACK	TAPE
POP_1	$\mathrm{bb}\Delta$	$\frac{bbba}{a}$ aa Δ
$READ_3$	$\mathrm{bb}\Delta$	$bbbaa$ a Δ
POP_1	$\mathrm{b}\Delta$	$bbbaa$ a Δ
$READ_3$	$\mathrm{b}\Delta$	$bbbaaa\Delta$
POP_1	Δ	$bbbaaa\Delta$
$READ_3$	Δ	$bbbaaa\Delta$
POP_2		$bbbaaa\Delta$
ACCEPT		$bbbaaa\Delta$

a) 1)

STATE	STACK	TAPE
START	Δ	bbbbaa Δ
$READ_1$	Δ	$ ext{b}$ bbbaa Δ
PUSH b	$\mathrm{b}\Delta$	θ bbbaa Δ
$READ_2$	$\mathrm{b}\Delta$	bb bbaa Δ
PUSH b	${ m bb}\Delta$	bb bbaa Δ
$READ_2$	${ m bb}\Delta$	bbb baa Δ
PUSH b	${ m bbb}\Delta$	$\frac{bbb}{aa}$
$READ_2$	${ m bbb}\Delta$	$bbbbaa\Delta$

STATE	STACK	TAPE
PUSH b	bbbb Δ	$bbbbaa\Delta$
$READ_2$	bbbb Δ	$bbbba$ a Δ
POP_1	${ m bbb}\Delta$	$bbbba$ a Δ
$READ_3$	${ m bbb}\Delta$	$bbbbaa\Delta$
POP_1	${ m bb}\Delta$	$bbbbaa\Delta$
$READ_3$	${ m bb}\Delta$	$bbbbaa\Delta$
POP_3	$\mathrm{b}\Delta$	$bbbbaa\Delta$
REJECT	$\mathrm{b}\Delta$	$bbbbaa\Delta$

2)

b) The language accepted by this PDA is any number of b's followed by the same number of a's.

PROBLEM #7 (20 POINTS):

For a given CFG, construct a PDA that accepts the same language they generate, using the algorithm in chapter 15?

Note: Make sure that CFG in proper format to convert it into PDA.

a)
$$S \to XY$$

 $X \to aX|bX|a$
 $Y \to Ya|Yb|a$

b) $S \to aS|aSbS|a$

SOLUTION:

a)

