

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGINEERING & MANAGEMENT

B. Tech. [SEM I (DS 1A & ECE 1A)]

TUTORIAL SHEET-1

[Session: 2024-25 (Odd)]

BAS-103: ENGINEERING MATHEMATICS-I

Unit No. & Name: I- MATRICES Course Outcome: CO1- Understand the concept of

complex matrices, Eigen values, Eigen vectors and apply the concept of rank to evaluate linear

simultaneous equations

SUBJI	SUBJECTIVE QUESTIONS		
Elemen	ntary transformations, Inverse of a matrix		
Q1)	Find the inverse of the matrix by elementary transformation $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$. (AKTU, 2021)	3	
	$Ans.: A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$		
Q2)	Find the inverse of the matrix by elementary transformation $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$. (AKTU, 2019)	3	
	$Ans.: A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$		
	of matrix		
Q3)	Find the rank of the matrix reducing it to row Echelon form $A = \begin{bmatrix} 2 & 3 & -2 & 4 \\ 3 & -2 & 1 & 2 \\ 3 & 2 & 3 & 4 \\ -2 & 4 & 0 & 5 \end{bmatrix}$.	3	
	4 4		
Q4)	Find the rank of the matrix $A = \begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{bmatrix}$ by reducing it to normal form. (AKTU, 2019) Ans.: 2	3	
Q5)	Find non-singular matrices P and Q such that PAQ is in normal form where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$.	3	
(AKTU, 2021) Ans.: P and Q depends on elementary operations			
	on of system of linear equations	3	
Q6)	Solve the system of homogenous equations: $x_1 + x_2 + x_3 + x_4 = 0$, $x_1 + 3x_2 + 2x_3 + 4x_4 = 0$, $2x_1 + x_3 - x_4 = 0$. (AKTU, 2024) Ans.: $x_1 = a + 2b$, $x_2 = a$, $x_3 = -2a - 3b$, $x_4 = b$ where a and b are arbitrary real number.		
Q7)	Test the consistency for the following system of equations and if system is consistent, solve them:	3	
	x + y + z = 6, $x + 2y + 3z = 14$, $x + 4y + 7z = 30$. (AKTU, 2023) Ans.: $x = k - 2$, $y = 8 - 2k$, $z = k$ where k is an arbitrary real number.		

Q8)	For what values of λ and μ the following equations: $x + y + z = 6$, $x + 2y + 5z = 10$, $2x + 3y + \lambda z = \mu$ has i) unique solution ii) no solution iii) infinite number of solutions. Also,	3
	find the solution for $\lambda = 2$ and $\mu = 8$. (AKTU, 2022, 2020)	
	Ans.: (i) $\lambda \neq 6$ and μ is any number (ii) $\lambda = 6$ and $\mu \neq 16$ (iii) $\lambda = 6$ and $\mu = 16$	
	For $\lambda = 2$ and $\mu = 8$, $x = 8$, $y = -4$, $z = 2$	
Chara	cteristic equation, Cayley-Hamilton Theorem and its application	
Q9)		3
	Determine A^{-1} , A^{-2} and A^{-3} if $A = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}$ using Cayley-Hamilton theorem.	
	$\begin{bmatrix} -1 & -4 & -3 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 6 & 6 \end{bmatrix}$	
	(AKTU, 2024) Ans.: $A^{-1} = \frac{1}{4} - 1$ 6 2	
040	$\begin{bmatrix} -1 & -10 & -6 \end{bmatrix}$	
Q10)	Determine A^{-1} , A^{-2} and A^{-3} if $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ using Cayley-Hamilton theorem. (AKTU, 2024) Ans : $A^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 6 & 6 \\ -1 & 6 & 2 \\ -1 & -10 & -6 \end{bmatrix}$ Verify Cayley- Hamilton Theorem for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ and hence find A^{-1} . Also express the	3
	Verify Cayley- Hammon Theorem for $A = \begin{bmatrix} 2 & 4 & 5 \end{bmatrix}$ and hence find A . Also express the	
	polynomial $B = A^8 - 11 A^7 - 4 A^6 + A^5 + A^4 - 11 A^3 - 3 A^2 + 2A + I$ as a quadratic	
	polynomial in A and honce find P (AKTII 2021 2010)	
	$\begin{bmatrix} 1 & -3 & 2 \end{bmatrix} $ [13 21 25]	
	$Ans: A^{-1} = \begin{bmatrix} 1 & 3 & 2 \\ -3 & 3 & -1 \end{bmatrix} : B = A^2 - 2A + I = \begin{bmatrix} 13 & 21 & 23 \\ 21 & 38 & 46 \end{bmatrix}$	
	polynomial in A and hence, find B : $ Ans.: A^{-1} = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{bmatrix}; B = A^2 - 2A + I = \begin{bmatrix} 13 & 21 & 25 \\ 21 & 38 & 46 \\ 25 & 46 & 59 \end{bmatrix} $	
Linear	Dependence and Independence of vectors	
Q11)	Show that the vectors $x_1 = (1,2,4), x_2 = (2,-1,3), x_3 = (0,1,2)$ and $x_4 = (-3,7,2)$ are	3
	linearly dependent. (AKTU, 2019)	
Q12)	Show using a matrix that the set of vectors: (2,5,2,-3), (3,6,5,2), (4,5,14,14), (5,10,8,4) is	3
	linearly independent.	
Eigen	values and Eigen vectors	
Q13)	Find eigen values and corresponding eigen vectors for the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$.	3
	Find eigen values and corresponding eigen vectors for the matrix 2 3 4 .	
	(AKTU, 2023)	
	Ans: Eigen values are 1, -1, 3 & eigen vectors are $k[-1 \ 1 \ 0]^T$, $k[0 \ -1 \ 1]^T$, $k[-2 \ -3 \ 1]^T$	
Q14)		3
	Find eigen values and corresponding eigen vectors for the matrix $\begin{bmatrix} 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.	
	(AKTU, 2022, 2020)	
	Ans: Eigen values are -3, -3, 5 & eigen vectors are $\begin{bmatrix} 3k_1 - 2k_2 & k_2 & k_1 \end{bmatrix}^T$, $k_3 \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^T$	
Comp	lex Matrices, Hermitian, Skew-Hermitian and Unitary Matrices, Applications to Engineering	
proble	ms	
Q15)	. [-2 1 2]	3
Q13)	Prove that the matrix $A = \frac{1}{2} \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$ is orthogonal.	3
	Prove that the matrix $A = \frac{1}{3} \begin{bmatrix} -2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix}$ is orthogonal.	
Q16)	$\alpha = \frac{1}{\alpha + i\gamma} - \beta + i\delta$	3
	Define unitary matrix. Show that the matrix $\begin{bmatrix} \alpha + i\gamma & -\beta + i\delta \\ \beta + i\delta & \alpha - i\gamma \end{bmatrix}$ is a unitary matrix if	
	$\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1.$ (AKTU, 2022, 2020)	

SUPPLEMENTARY QUESTIONS			
Simple Stresses & Strains			
Q1)	Let A be an $n \times n$ matrix. Prove that the constant term of $p_A(x)$ is $(-1)^n A $. Use this to	2	
	show that any singular matrix must have zero as one of its eigen values.		
Eigen	values and Eigen vectors		
Q2)	Prove that the eigen vector corresponding to eigen value λ of matrix A is also an eigen vector of every matrix $f(A)$ where $f(x)$ is any scalar polynomial and the corresponding eigen value for $f(A)$ is $f(\lambda)$ and in general if $g(x) = \frac{f_1}{f_2}$ and $ f_2(A) \neq 0$ then $g(\lambda)$ is an eigen value of $g(A)$	2	
	$= f_1(A)\{f_2(A)\}^{-1}$		
Complex Matrices, Hermitian, Skew-Hermitian and Unitary Matrices, Applications to Engineering problems.			
Q3)	Show that the diagonal elements of a Hermitian matrix are necessarily real.	2	
Q4)	Show that the diagonal elements of a skew-Hermitian matrix are either purely imaginary or	2	
	zero.		

SHOR	SHORT-ANSWER TYPE QUESTIONS			
Elemen	Elementary transformations, Inverse of a matrix			
Q1)	Calculate the inverse of matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$.			
Rank o	f a matrix			
Q2)	Find the value of b for which the rank of the matrix $A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ b & 13 & 10 \end{bmatrix}$ is 2. (AKTU, 2021)	2		
Solution	n of system of linear equations			
Q3)	Show that the system of equations: $x + 3y - 2z = 0$, $2x - y + 4z = 0$, $x - 11y + 14z = 0$ has a non-trivial solution. (AKTU, 2019)	2		
Charac	teristic equation, Cayley-Hamilton Theorem and its application			
Q4)	State the Cayley-Hamilton theorem. (AKTU, 2021)	1		
Q5)	Express $2A^5 - 3A^4 + A^2 - 4I$ as a linear polynomial in A where $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$.	2		
Linear	Dependence and Independence of vectors			
Q6)	Show that the system of vectors $X_1 = (1, -1, 1), X_2 = (2, 1, 1)$ and $X_3 = (3, 0, 2)$ are linearly dependent or linearly independent. (AKTU, 2022)	2		
Q7)	For what value of λ , the vectors $(1, -2, \lambda)$, $(2, -1, 5)$ and $(3, -5, 7\lambda)$ are linearly dependent. (AKTU, 2020)			
Eigen v	alues and Eigen vectors			
Q8)	Find the product and sum of the eigen values for $A = \begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$. (AKTU, 2024)	2		
Q9)	Find the eigen value of the matrix $A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$ corresponding to the eigen vector $\begin{bmatrix} 51 \\ 51 \end{bmatrix}$.	2		
C1	(AKTU, 2023)			
Complex Matrices, Hermitian, Skew-Hermitian and Unitary Matrices, Applications to Engineering problems.				
Q10)	If A is a Hermitian matrix, then show that iA is Skew-Hermitian matrix.			
(10)	(AKTU, 2023, 2020)	2		
Q11)	Prove that the matrix $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1+i\\ 1-i & -1 \end{bmatrix}$ is unitary. (AKTU , 2021)	2		

Across

- 2. all elements are zero except principal diagonal
- 7. If rank of A and rank of augmented matrix and elements is equal
- **9.** If A = A'
- 10. diagonal elements are one only
- 13. if interchange the rows and column
- 14. Arrangement of elements in row and column in a rectangular array
- 15. if A.A'=I
- 16. All elements are zero

Down

- 1. diagonal elements are scalar say k
- 3. If square of A = 0
- 4. if A = Power of A is theta
- 5. Number of rows and columns are same
- 6. If rank of A and rank of augmented matrix is equal
- 8. if A. power of A is theta = I
- 11. If there are number of columns and one row
- 12. if modulus of A is zero

REFERENCES

TEXT BOOKS:					
Ref. [ID]	Authors	Book Title	Publisher/Press	Edition &Year of Publication	No. of Books Available in Library
[T1]	Erwin Kreyszig	Advanced Engineering Mathematics	Wiley Publication India Pvt. Ltd. Delhi	1 ST Ed.,2013	29
[T2]	Peter V. O` Neil and Santosh K. Sengar	A text book of Engineering Mathematics	Cengage Learning New Delhi	2 nd Ed., 2010	81
[T3]	H.S.Gangwar	Engineering Mathematics 1	New Age International (P) LTD. New Delhi	4 th Ed., 2014	65
REFEREN	REFERENCE BOOKS:				
Ref. [ID]	Authors	Book Title	Publisher/Press	Edition &Year of Publication	
[R1]	B.V. Ramana	Engineering Mathematics	Tata McGraw-Hill New Delhi	4 th Edition, 2008	96
[R2]	Shantinarayan & P. K. Mittal	Differential Calculus	S. Chand New Delhi	15 TH Ed., 2004	01
[R3]	B.S. Grewal	Higher Engineering Mathematics	Khanna Publication	43 rd Ed., 2015	34
ONLINE/I	ONLINE/DIGITALREFERENCES:				
Ref. [ID]	Source Name	Source Hyperlink			
[D1]	Matrices	Engineering Mathematics -II (rcet.org.in)			

	V
•••••	Δ

Signature of Faculty:

(With Date) 12.09.2024

Signature of HOD:

(With Date) 14.09.2024