영화 평점 예측 감정 분석

주재걸 교수님 연구실 DAVIAN Lab.

강경필

1. Introduction

🖆 공감 < 574 🔎 비공감 < 34

2. Data

3. Dictionary based model

★★★★★ 2 난 재밌는줄 모르겠다. 전형적인 한국 신파극 노잼.

★★★★★ **10** 관람객 재미있게 잘 보았습니다

★★★★★ 10 너무 재밌게 잘 봤습니다.. 감동적입니다

각 단어마다 평균 감정 점수를 계산하자!

"재밌다" => 7점, 2점, 10점, 10점 => **7.25점**

3. Dictionary based model

4. ML based models

- Scikit-Learn

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license
- 기존 기계학습(Classification, Regression, Clustering 등) 모델들
- 매우 빠름(C++ 등 구현됨, multiprocessing 지원)
- 다양한 utility 지원
- 쉽고 직관적인 API model = Model() model.fit(train_X, train_y) model.predict(X)

4. ML based models

- Linear regression

Linear regression equation

(without error)

- Gated Recurrent Unit

Gated Recurrent Unit (GRU)

Similar performance as LSTM with less computation.

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." AMNLP 2014.

- RNN Model

- Convolutional neural networks

Herry Mer & Buren holder

5. Deep learning based models

Convolutional Neural Networks for Sentence Classification, Yoon Kim, 2014

Convolutional Neural Networks for Sentence Classification, Yoon Kim, 2014

- CNN model

Convolutional Neural Networks for Sentence Classification, Yoon Kim, 2014

6. 모델 비교

Dictionary based model: 제일 간단, 성능은 낮음

ML models : 각 단어에 가중치 부여, 성능이 나쁘지 않음

- Linear Regression

- Ridge Regression

- GradientBoostingRegression

Deep learning models: 맥락 고려, Word embedding 사용, 최적화 필요

- CNN model

- RNN model

모델 복잡성능 좋음

CUNEMENTS). 15 TO DEPART

Visualization – Example

Candivis

gensim lib

DIA DANS

감사합니다

Any Questions?

rudvlf0413@naver.com