

An Efficient Python Framework for DG Methods

Andreas Dedner, Robert Klöfkorn

- Dune-Common basic infrastructure and build system
- Dune-Geometry implementation of generic geometry classes
 - Dune-Grid abstract grid interface
- Dune-Istl Iterative Solver Template Library (Krylov, PAMG, ...)
- Dune-Localfunctions implementation of shape functions, ...
- Dune-PDELab discretization module

- Dune-Common basic infrastructure and build system
 - Dune-Geometry implementation of generic geometry classes
 - Dune-Grid abstract grid interface
 - Dune-Istl Iterative Solver Template Library (Krylov, PAMG, ...)
- Dune-Localfunctions implementation of shape functions, ...
- DuMu^X flow and transport processes in porous media

- Dune-Common basic infrastructure and build system
- Dune-Geometry implementation of generic geometry classes
 - Dune-Grid abstract grid interface
- Dune-Istl Iterative Solver Template Library (Krylov, PAMG, ...)
- Dune-Localfunctions implementation of shape functions, ...
- Open Porous Media Initiative (SINTEF, Equinor, NORCE and others)

- Dune-Common basic infrastructure and build system
- Dune-Geometry implementation of generic geometry classes
- Dune-Grid abstract grid interface
- Dune-Istl Iterative Solver Template Library (Krylov, PAMG, ...)
- Dune-Localfunctions implementation of shape functions, ...
- Dune-Fem discretization module
 - discrete function spaces
 - data management for adaptivity
 efficient communication (observer pattern)
 - data I/O and checkpointing
 - python bindings including FENICS UFL for variational description of PDEs.

...

- Dune-Common
- Dune-Geometry
- Dune-Grid
- Dune-IstlDune-Localfunctions
- Dune-Fem discretization module
- Dune-Fem-DG various DG schemes for advection-diffusion type problems

- Dune-Common
- Dune-Geometry
- Dune-Grid
- Dune-IstlDune-I ocalfunctions
- Dune-Fem discretization module
- Dune-Fem-DG various DG schemes for advection-diffusion type problems
- Dune-Vem implementation of Virtual Element method

- Dune-Common
- Dune-Geometry
- Dune-Grid
- Dune-IstlDune-I ocalfunctions
- Dune-Fem discretization module
- Dune-Fem-DG various DG schemes for advection-diffusion type problems
- Dune-Vem implementation of Virtual Element method
- Twophase-DG implements two-phase flow using DG discretizations

Forward Facing Step 3d

Simulation details (XC4000 SCC Karlsruhe, 2008):

- stabilized DG approach with quadratic polynomials (k = 2 = 50 ukn. per cell)
- ► fully unstructured hexahedral grid (ALUGrid, also tetras)
- non-conforming grid adaptation in parallel (MPI) with dynamic load balancing (METIS)
- ▶ final adapted grid contains about 4.5 million grid cells (uniform grid about 95 million cells)
- ► Adaptation 5% and load-balancing about 10-15% of one timestep
- ► Load-balancing takes place approx. every 100th timestep

speedup for one timestep		
K	$S_{128 \to K}$	$\frac{128}{K}S_{128\rightarrow K}$
128		
256	1.97	0.985
512	3.73	0.933

ODE solving per timestep		
K	$S_{128 \to K}$	$\frac{128}{K}S_{128 \to K}$
128		
256	1.98	0.99
512	3.85	0.963

Well-balanced Finite Volume scheme for shallow water

5 Robert Klöfkorn

Density current test case

Reference solution: potential temperature Θ pertubation

Straka et al. Numerical Solutions of a Non-Linear Density Current: A Benchmark Solution and Comparisons, Int. J. Num. Meth. Fluids 17, 1–22 (1993)

5/5 Robert Klöfkorn $\overline{\text{U}}_{\text{N}}$