CS 7545: Machine Learning Theory

Fall 2021

Lecture 15

Name: Tyler LaBonte Professor: Santosh S. Vempala

1 Boosting

Suppose \mathcal{H} is a class of boolean labelings, and we have a black-box algorithm that produces a γ -weak learner, that is, $h \in \mathcal{H}$ for which

$$\Pr_{x \sim D}[h(x) = \ell(x)] \ge \frac{1}{2} + \gamma. \tag{1}$$

and $\gamma > 0$. Since a random guess would give us probability $\frac{1}{2}$, a weak learner is any learner which does better than a trivial solution. We will show that we can combine ("boost") weak learners to obtain a strong learner h^* :

$$\forall \epsilon > 0, \Pr_{x \sim D}[h(x) = \ell(x)] \ge 1 - \epsilon.$$
 (2)

A first idea is to recursively obtain weak learners for an arbitrarily large fraction of the data. That is h_1 will be correct on half the data, h_2 will be correct on half the remaining data, and so on. But this approach is too greedy, and there isn't a clear way to combine the h_i .

We will use a weighted majority to achieve a strong learner. Suppose each example x_1, x_2, \ldots, x_n has weight w_i initially set to 1. When example i is misclassified, we increase w_i by a factor of $\frac{\frac{1}{2}+\gamma}{\frac{1}{2}-\gamma}$. We repeat T times using weak learners each time, then output the majority vote of the weak learners.

Suppose the number of errors of the final majority hypothesis \hat{h} is \hat{m} . Then since at least half the weak learners got it wrong, each error has weight at least $\left(\frac{\frac{1}{2}+\gamma}{\frac{1}{2}-\gamma}\right)^{T/2}$.

Let W(t) be the total weight at iteration t. Clearly W(0) = n. Then,

$$W(t+1) \le \underbrace{\left(\left(\frac{1}{2} - \gamma\right)\left(\frac{\frac{1}{2} + \gamma}{\frac{1}{2} - \gamma}\right)}_{\text{weighted errors}} + \underbrace{\frac{1}{2} + \gamma}_{\text{correct points}} W(t) = (1 + 2\gamma)W(t). \tag{3}$$

So $W(T) \leq (1+2\gamma)^T n$. Then,

$$\hat{m} \left(\frac{1+2\gamma}{1-2\gamma} \right)^{T/2} \le (1+2\gamma)^T n. \tag{4}$$

Thus,

$$\hat{m} \le (1 - 4\gamma^2)^{T/2} n. \tag{5}$$

Lecture 15

Then $T = \frac{\ln n}{2\gamma^2}$ implies $\hat{m} < 1$, and since \hat{m} is integer, we have $\hat{m} = 0$.

But, there is a small catch. Actually $\hat{h} \notin \mathcal{H}$, since it is a majority of concepts from \mathcal{H} . So to bound generalization, we need to bound the VC-dimension of the majority of k hypotheses from a class of VC-dimension d. Via the same logic as for the intersection of hypotheses, we find that this VC-dimension is $\leq 2kd \log kd$.

Theorem 1.1: Boosting

 $n \ge \frac{c}{\epsilon} (Td\log(Td)\log\frac{1}{\epsilon} + \log\frac{1}{\delta}$ samples are sufficient for PAC-learning with boosting.