Contesta una opció de les dues proposades. Utilitza la taula periòdica adjunta. Pots usar la calculadora.

La puntuació màxima de cada pregunta està indicada a l'inici de la pregunta. La nota de l'examen és la suma de les puntuacions.

OPCIÓ A

- 1. (1 punt) L'àcid acetilsalicílic (C₉H₈O₄) és el principi actiu de l'aspirina, un medicament que s'utilitza com a analgèsic i antiinflamatori. En un estudi publicat el 2012 a la revista *Lancet* es comprovà que un grup de persones que havien ingerit diàriament i durant cinc anys 70 mg d'aspirina reduïen en un 20% la incidència de patir un tumor gàstric respecte a les que no ingerien aquest medicament.
 - a) Si la ingesta diària dels 70 mg d'àcid acetilsalicílic es fa dins 300 mL d'aigua, es pot assegurar que la concentració ingerida és inferior a 0,01 M? Raona la resposta.
 - b) Indica dos grups funcionals presents a la molècula d'àcid acetilsalicílic (vegeu la figura 1).

Figura 1. Estructura química de l'àcid acetilsalicílic.

Figura 2. Fotografia d'un comprimit d'aspirina.

2. (2,5 punts)

El clorat de potassi reacciona amb el sulfat de ferro(II) en medi àcid segons la reacció ajustada següent:

$$KCIO_3 + 6 FeSO_4 + 3 H_2SO_4 \rightarrow KCI + 3 H_2O + 3 Fe_2(SO_4)_3$$
.

- a) Indica el nombre d'oxidació del clor a les espècies KClO₃ i KCl.
- b) Quina és l'espècie reductora? I l'espècie oxidant? Raona la resposta.
- c) Determina el volum de sulfat de ferro(II) 1,0 M necessari per reaccionar amb 1 g de mostra que conté un 80% de KCIO₃.
- **3. (2 punts)** El PbS presenta l'equilibri químic següent:

$$PbS_{(s)} \quad \rightleftarrows \quad Pb^{2+}_{(aq)} + \quad S^{2-}_{(aq)} \qquad \quad K_{PS} = 1, 0 \cdot 10^{-29}$$

- a) Indica, raonadament, si precipitarà PbS quan es mesclen 10^{-5} mols de Pb(NO₃)₂ amb 10^{-5} mols de Na₂S dins 10,0 L d'aigua.
- b) Sabent que el producte de solubilitat (K_{PS}) del CuS és 4,0·10⁻³⁸, quin dels dos composts és més soluble en aigua, el CuS o el PbS? Raona la resposta.

a la Universitat

- **4. (2,5 punts)** Donats els composts següents: NH₃, NF₃, F₂ i NaF, respon raonadament a les preguntes següents:
 - a) Quin compost és soluble en benzè?
 - b) Per què el NH_{3(l)} presenta una temperatura d'ebullició superior al NF_{3(l)}?
 - c) Quin compost condueix el corrent elèctric en estat fos? I en estat sòlid?
 - d) Es pot afirmar que la molècula de F₂ presenta un doble enllaç?
- **5. (2 punts)** Justifica si les següents afirmacions són vertaderes o falses:
 - a) Quan es mesclen 10 mL de HCl 0,1 M amb 20 mL de NaOH 0,1 M, s'obté una dissolució neutra.
 - b) El pH d'una dissolució aquosa d'àcid nítric és menor que el d'una dissolució de la mateixa concentració d'àcid acètic.
 - c) La constant de basicitat (K_b) del NH₃ coincideix amb la constant d'acidesa (K_a) del seu àcid conjugat (NH₄⁺).

Dades: $K_a(CH_3COOH) = 1.8 \cdot 10^{-5}$, $K_a(NH_4^+) = 5.6 \cdot 10^{-10}$.

Convocatòria 2018

OPCIÓ B

a la Universitat

- 1. (2,5 punts) La trimetilamina [N(CH₃)₃] és un compost orgànic, producte de la descomposició d'animals i plantes. Aquest compost és una base feble monobàsica.
 - a) Calcula el pH d'una dissolució de trimetilamina 0,01 M que presenta un grau de dissociació de 0,1.
 - b) Calcula la constant de basicitat (K_b) de la trimetilamina.
 - c) Determina el volum d'una dissolució de HCl 5,0·10⁻² M necessari per neutralitzar 50 mL de la dissolució de trimetilamina 0,01 M.
 - d) Indica el material de vidre (el seu nom) que utilitzaries dels representats a la figura 3 per fer una valoració àcid-base al laboratori de química.

Figura 3. Material de laboratori.

2. (2 punts) La reacció d'isomerització del butà (CH₃-CH₂-CH₂-CH₃) en metilpropà (CH(CH₃)₃) ve donada per la reacció ajustada següent:

$$CH_3-CH_2-CH_3-(g) \rightleftharpoons CH(CH_3)_3-(g)$$
 Kc (300 K)= 2,5

- a) Si inicialment s'injecta de manera simultània 1 mol de butà i 0,2 mols de metilpropà en un reactor buit de 2,0 L que es manté a 300 K, calcula la concentració de butà quan s'assoleix l'equilibri químic.
- b) Determina la pressió parcial de metilpropà quan s'assoleix l'equilibri químic a 300 K.
- c) Si s'augmenta la pressió total del sistema, augmentarà la formació de metilpropà? Raona la resposta.
- **3. (2 punts)** Respon raonadament a les preguntes següents:
 - a) Quin dels tres elements: S, Ca i Cl presenta menor electronegativitat?
 - b) Justifica la geometria de la molècula de SH₂ mitjançant el model de la repulsió de parells d'electrons de la capa de valència. Es pot afirmar que és una molècula apolar?
 - c) Quines forces d'interacció s'han de superar per dissoldre CaS_(s) dins aigua?

a la Universitat

4. (2 punts) La notació convencional de la pila Daniell és la següent:

 $Zn_{(s)}/Zn^{2+}(aq, 1,0 M) // Cu^{2+}(aq, 1,0 M)/Cu_{(s)}$

- a) Escriu la semireacció que té lloc a l'ànode.
- b) La FEM estàndard de la pila Daniell és de + 1,10 V. Sabent que el potencial estàndard de reducció del Cu²⁺/Cu_(s) és de + 0,34 V, quin és el potencial estàndard de reducció del Zn²⁺/Zn_(s)?
- c) Si es canviàs l'elèctrode de Zn²⁺/Zn per un de Pb²⁺/Pb, augmentaria o disminuiria la FEM de la pila? Raona la resposta.
- d) Explica quina funció té un pont salí en una cel·la galvànica.

Dades: $E^0 [Pb^{2+}/Pb] = -0.13 V$

5. (1,5 punts)

La reacció $CH_3COOH + NH_3 \rightarrow CH_3CONH_2 + H_2O$ presenta la següent equació de velocitat: $v = k[CH_3COOH] \cdot [NH_3]$ on $k = 5,0 \cdot 10^3 \, L^2 \, mol^{-1} \, s^{-1}$, a 25 °C.

- a) Calcula la velocitat de reacció quan [CH₃COOH] = [NH₃] = 0,02 M.
- b) En general, es pot afirmar que un augment de la temperatura disminueix la velocitat de la reacció? Raona la resposta.
- c) Anomena el compost següent: CH₃CONH₂.

Convocatòria 2018

Taula Periòdica dels Elements

							_	
18	0	2 He 4,0026	10 Ne 20,1797	18 Ar 39,948	36 Kr 83,80	54 Xe 131,29	86 Rn (222,02)	118 0g (293)
17	VIIa		9 F 18,9984	17 CI 35,4527	35 Br 79,904	53 1 126,9045	85 At (209,99)	Ts 0
16	VIa		8 O 15,9994	16 S 32,066	34 Se 78,96	52 Te 127,60	84 Po (208,98)	116 Lv (289)
15	Va		7 N 14,0067	15 P 30,9738	33 As 74,9216	51 Sb 121,760	83 Bi 208,980	115 Mc (288)
14	IVa		6 C 12,0107	14 Si 28,0855	32 Ge 72,61	50 Sn 118,710	82 Pb 207,2	114 FI (285)
13	IIIa		5 B 10,811	13 AI 26,9815	31 Ga 69,723	49 In 114,818	81 TI 204,383	E
12	qII				30 Zn 65,39	48 Cd 112,411	80 Hg 200,59	112 Cn (277)
11	qı				29 Cu 63,546	47 Ag 107,8682	79 Au 196,967	Rg (272)
10					28 Ni 58,6934	46 Pd 106,42	78 Pt 195,078	110 Ds (271)
6	II/				27 Co 58,9332	45 Rh 102,905	77 Ir 192,217	109 Mt (268)
œ					26 Fe 55,845	44 Ru 101,07	76 Os 190,23	108 Hs (265,13)
7	VIIb				25 Mn 54,9380	43 Tc (98,9063)	75 Re 186,207	107 Bh (264,12)
9	VIb				24 Cr 51,9961	42 Mo 95,94	74 W 183,84	106 Sg (263,12)
5	Λb				23 V 50,9415	41 Nb 92,9064	73 Ta 180,948	105 Db (262,11)
4	IVb				22 Ti 47,867	40 Zr 91,224	72 Hf 178,49	104 Rf (261,11)
3	qIII				21 Sc 44,9559	39 Y 88,9059	57 * La 138,906	89 * Ac (227,03)
2	lla		4 Be 9,0122	12 Mg 24,3050	20 Ca 40,078	38 Sr 87,62	56 Ba 137,327	88 Ra (226,03)
1	la	1 H 1,00794	3 Li 6,941	11 Na 22,9898	19 K 39,0983	37 Rb 85,4678	55 Cs 132,905	87 Fr (223,02)
		_	2	m	4	5	9	7

71	Lu 174,967	_
70	Yb 173,04	
69	Tm 168,934	101 Md (258,10)
89	Er 167,26	100 Fm (257,10)
29	Ho 164,930	_
99	Dy 162,50	98 Cf (251,08)
65	Tb 158,925	
64	Gd 157,25	96 Cm (247,07)
63	Eu 151,964	95 Am (243,06)
62	Sm 150,36	94 Pu (244,06)
61	Pm (144,913)	93 Np (237,048)
09	Nd 144,24	7
59	Pr 140,908	90 91 Pa 732,038 231,036
58	Ce 140,116	90 Th 232,038

Constants: R = 0.082 atm L mol⁻¹ K⁻¹ = 8,3 J mol⁻¹ K⁻¹

SOLUCIONS

OPCIÓ A

1. (1 punt)

a)
$$\frac{70mg}{300mL} \cdot \frac{1000mL}{1L} \cdot \frac{1g}{1000mg} \cdot \frac{1mol}{180g} = 1,29 \cdot 10^{-3} M$$

Correcte: $1,29 \cdot 10^{-3} \text{ M} < 0,01 \text{ M}$

0,5 punts

Model 3

b) Grup èster i àcid carboxílic.

0,5 punts

2. (2,5 punts)

a)
$$KCIO_3 + 6 FeSO_4 + 3 H_2SO_4 KCI + 3 H_2O + 3 Fe_2(SO_4)_3$$
.

KCIO₃ +1 + x +
$$(-6)$$
=0 x= + 5
KCI n.o.= -1.

0,25 punts

0,25 punts

b) Espècie reductora: s'oxida. Ha de ser el FeSO₄ o el Fe(II)

$$Fe^{2+} \rightarrow Fe^{3+}$$
.

0,5 punts

Espècie oxidant: es redueix. És el KCIO₃

0,5 punts

c)
$$1 \ g \ mostra \ \frac{80 \ g \ KClO_3}{100 \ g \ mostra} \ \frac{1 \ mol \ KClO_3}{122,55 \ g} \cdot \frac{6 \ moles \ FeSO_4}{1 \ mol \ KClO_3} \cdot \frac{1000 \ mL}{1,0 \ mol} = 39,2 \ mL$$
 1 punt

3. (2 punts)

a) PbS (s)
$$\rightleftharpoons$$
 Pb²⁺ (aq) + S²⁻ (aq) $K_{PS} = 1,0.10^{-29}$

$$\frac{10^{-5} \text{ mols Pb}^{2+}}{10.0 L} = 10^{-6} \text{ M } Pb^{2+} \quad \frac{10^{-5} \text{ mols S}^{2-}}{10.0 L} = 10^{-6} \text{ M } S^{2-} \quad \textbf{0,5 punts}$$

$$Q = [Pb^{2+}][S^{2-}] = (10^{-6})^2 = 10^{-12} > 1,0 \cdot 10^{-29}$$
 Precipitarà

0,5 punts

b) K_{PS} del CuS < K_{PS} PbS. Com que tenen la mateixa estequiometria, el PbS és més soluble en aigua.

4. (2,5 punts)

a) La molècula F₂ és apolar i és soluble en benzè, que és un dissolvent apolar.

0,5 punts

- b) Les molècules de NH₃ presenten enllaç d'hidrogen entre elles, que en fa augmentar la interacció i el punt d'ebullició. La molècula de NF₃ no presenta aquest tipus de força intermolecular. **0,5 punts**
- c) El NaF és un compost iònic i, per tant, condueix el corrent en estat fos. En estat sòlid no hi ha cap compost que condueixi el corrent.

0,5 punts 0,5 punts

d) F-F 1s²2s²2p⁵. Es formarà un enllaç simple. Fals.

0,5 punts

5. (2 punts)

a)
$$10mL \frac{0.1molClH}{1000mL} = 10^{-3} mols \ HCl$$
 0,25 punts

$$20mL \frac{0.1molNaOH}{1000mL} = 2.10^{-3} mols \text{ NaO}H$$
 0,25 punts

$$HCI + NaOH \rightarrow NaCI + H_2O$$

 10^{-3} $2 \cdot 10^{-3}$ - - - 10^{-3}

Queda un excés de NaOH. El pH serà bàsic. Fals. **0,5 punts**

b) L'àcid nítric és més fort que l'àcid acètic. Hi haurà major concentració de H₃O⁺ a la dissolució, i el pH serà menor (més àcid). **0,5 punts**

c) Fals. Ka·Kb = Kw. No coincideixen. **0,5 punts**

OPCIÓ B

1. (2,5 punts)

a)
$$B + H_2O \rightleftharpoons BH^+ + OH^ C_0$$
 - - $C_0(1-\alpha)$ $C_0\alpha$ $C_0\alpha$

$$[OH^{\cdot}] = C_0 \alpha = 0,01 \cdot 0,1 = 10^{\cdot 3} \text{ M} \qquad pOH = 3 \Rightarrow pH = 11,0 \qquad \qquad \textbf{1 punt}$$

2. (2 punts)

a)
$$CH_3-CH_2-CH_3-CH_3$$
 (g) $\rightleftarrows CH(CH_3)_3$ (g) Kc (300 K)= 2,5.
1-x 0.2 + x

b)
$$P_{metil-propà} \cdot V = n_{metil-propà} \cdot RT;$$
 $P \cdot 2,0 = (0,2+0,66) \cdot 0,082 \cdot 300$ $P = 10,57 \text{ atm}$ **0,5 punts**

c) Fals. Un augment de la pressió total del sistema desplaçarà l'equilibri cap al lloc on disminueixi el nombre de mols. L'estequiometria d'aquesta reacció ens indica que hi ha el mateix nombre de mols als reactius i als productes. Per tant, en aquest cas, l'equilibri químic és independent de la pressió total.

O,5 punts

2/3

Model 3

3. (2 punts)

a la Universitat

a) El Ca és un metall i té tendència a perdre electrons per aconseguir la configuració de gas noble. Per aquest motiu, és l'element que presenta menor electronegativitat.

0,5 punts

b)

L'àtom central presenta dos parells d'electrons sense compartir i dos enllaços senzills. Estructura angular. 0,5 punts

La molècula és polar, ja que la suma vectorial és distinta de zero.

0,5 punts

0,5 punts

c) Forces electrostàtiques, ja que es tracta d'un compost iònic.

4. (2 punts)

$$Zn(s)/Zn^{2+}(aq, 1,0 M) // Cu^{2+}(aq, 1,0 M)/Cu(s)$$

a) **0,5 punts** A la notació convencional, l'ànode és l'elèctrode que s'escriu a l'esquerra, on té lloc la reacció d'oxidació:

$$Zn \rightarrow Zn^{2+} + 2 e$$

b) **0,5 punts**
$$E_{pila} = E_{red}(Cu^{2+}/Cu) - E_{red}(Zn^{2+}/Zn)$$

1,10 = 0,34 - $E_{red}(Zn^{2+}/Zn)$ $E_{red}(Zn^{2+}/Zn) = -0.76 \text{ V}$

c) **0,5 punts** Epila=
$$E_{red}(Cu^{2+}/Cu)-E_{red}(Pb^{2+}/Pb)=0,34-(-0,13)=0,47 \text{ V}.$$
 La FEM de la pila disminuiria.

d) **0,5 punts** Pont salí. La seva funció és tancar el circuit i mantenir constant la neutralitat elèctrica de les dues solucions, anòdica i catòdica.

5. (1,5 punts)

$$v = k[CH_3COOH] \cdot [NH_3],$$
 on $k = 5,0 \cdot 10^3 \text{ L} \cdot \text{mol}^{-1} \text{ s}^{-1}$, a 25°C.

a)
$$v = 5,0.10^3 \cdot (0,02)(0,02) = 2 \text{ mol} \cdot L^{-1} \text{ s}^{-1}$$
. **0,5 punts**

b) Fals. Un augment de la temperatura incrementa el nombre de col·lisions i, per tant, la velocitat de la reacció. 0,5 punts

c) CH₃-CONH₂ Etanamida 0,5 punts