Problem Set 1

Mathematics for Social Scientists

Exercise 1...

a. For each of the following pairs of sets A, B, compute the intersection $A \cap B$, the union $A \cup B$ and the difference $A \setminus B$.

i.
$$A = \{1, 2, 3, 5, 6, 7, 8, 10\}, B = \{3, 4, 9, 10\}$$

ii. $A = \{n \in \mathbb{N} : n \text{ is a prime number}\}, B = \{n \in \mathbb{N} : n \text{ is odd}\}$

iii.
$$A = [0, 1], B = (0, 2)$$

b. Evaluate the following:

i. $A = \{a, b, 5\}$. What is P(A), that is, the power set of A?

ii. $A = \{a, b, c\}, B = \{1, 2, f\}$. What is $A \times B$, i.e. the Cartesian product of A and B?

iii. $A = \{a, b\}, B = \{a, b, c\}$. What is $P(B) \setminus P(A)$? What is |P(A)|, i.e. the cardinality¹ of the power set of A? What is |P(B)|?

iv. Let |A| = n, i.e. A has n elements, where $n \in \mathbb{N}$. Can you come up with a rule to compute |P(A)|?

EXERCISE 2. Fill in the blanks.

(i) $n \in \mathbb{Z}$ is even $\frac{n}{2} \in \mathbb{Z}$

(ii) $n \in \mathbb{N}$ is not prime \Leftrightarrow $m \in \mathbb{N}$ such that $m = \{1, n\}$, and $\frac{n}{m} = \mathbb{N}$.

(iii) $q \in \mathbb{Q}$, $n \in \mathbb{Z}$ such that $n \leq q < n + 1$.

(iv) $x \in [0, 1]$ $x \in (0, 1)$.

(v) $y \in (0,1)$ $y \in [0,1]$.

EXERCISE 3. Let $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$.

¹Cardinality = Number of elements

- (i) Let $g: \mathbb{R} \to \mathbb{R}: x \mapsto x/2$. What are $g \circ f$ and $f \circ g$?
- (ii) Suppose that $g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto x$. What is g?
- (iii) Define a function g such that $f \circ g(2) = 2$, $f \circ g(0) = 2$.
- (iv) In which of the following cases is $f \circ g$ a well-defined function?
 - (a) $g: \mathbb{N} \to \mathbb{R}: x \mapsto x+1$
 - (b) $g: \mathbb{R} \to \mathbb{R}: x \mapsto \sqrt{x}$
 - (c) $g: \mathbb{R} \to [0, \infty): x \to |x|$, the modulus (absolute value) function.

EXERCISE 4. Let X and Y be sets, $f: X \to Y$ a function. Define the **image** of f as

$$\{y \in Y : \exists x \in X \text{ such that } f(x) = y\}.$$

Write down the images of the following functions.

- (i) $X = Y = \mathbb{Q}, f(x) = x^3$.
- (ii) $X = (0, 1], Y = \mathbb{R}, f(x) = \frac{1}{x}$.
- (iii) $X = Y = \mathbb{R}, f(x) = \sin(x).$
- (iv) $X = Y = \mathbb{R}, f(x) = 1.$