

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ по курсу «Моделирование»

«Марковские процессы»

Студент:	ИУ7-73Б		М. Д. Маслова			
	(группа)	(подпись, дата)	(И. О. Фамилия)			
Преподаватель:			И. В. Рудаков			
		(подпись, дата)	(И. О. Фамилия)			

СОДЕРЖАНИЕ

1	Зад	ание
2	Teo	ретическая часть
	2.1	Марковские процессы
	2.2	Предельные вероятности состояний
	2.3	Точки стабилизации
3	Пра	актическая часть
	3.1	Текст программы
	3 2	Полученный результат

1 Задание

Разработать программное обеспечение, предоставляющее возможность определения вероятности и времени пребывания системы массового обслуживания в каждом состоянии в установившемся режиме работы.

Реализовать графический интерфейс, позволяющий задать количество состояний системы (их не более десяти) и матрицу интенсивностей переходов.

2 Теоретическая часть

2.1 Марковские процессы

Случайный процесс, протекающий в некоторой системе S, называется **марковским**, если для каждого момента времени вероятность любого состояния системы в будущем зависит только от ее состояния в настоящем времени и не зависит от того, когда и каким образом система пришла в это состояние, то есть не зависит от того, как процесс развивался в прошлом.

2.2 Предельные вероятности состояний

Для марковских процессов используются уравнения Колмогорова, составляющиеся по следующему правилу:

- 1. В левой части каждого уравнения стоит производная вероятности состояния.
- 2. Правая часть содержит столько членов, сколько стрелок связано с этим состоянием; если стрелка направлена из состояния соответствующий член имеет знак «-», если в состояние знак «+».
- 3. Каждый член равен плотности вероятности перехода (интенсивности), соответствующей данной стрелке, умноженной на вероятность того состояния, из которого исходит стрелка.

То есть строится система уравнений, которые имеют вид:

$$P_i'(t) = \sum_{j=1}^n \lambda_{ji} P_j(t) - P_i(t) \sum_{j=1}^n \lambda_{ij},$$
(2.1)

где $P_i(t)$ – вероятность того, что система находится в i-ом состоянии; n — число состояний в системе;

 λ_{ij} — интенсивность перехода системы из i-ого состояния в j-ое.

Одно из уравнений данной системы заменяется условием нормировки:

$$\sum_{i=1}^{n} P_i(t) = 1. (2.2)$$

В силу того, что *предельные вероятности состояний постоянны*, для их определения в уравнениях Колмогорова необходимо *заменить их про-*

изводные нулями и решить полученную систему линейных алгебраических уравнений.

Отметим, что предельная вероятность состояния показывает *среднее относительное время пребывания* системы в этом состоянии.

2.3 Точки стабилизации

Для определения точек стабилизации системы определяются вероятности состояний с некоторым малым шагом Δt . Точка стабилизации считается найденной, если приращение вероятности, а также разница между ранее найденной предельной вероятностью состояния и вычисленной вероятностью, достаточно малы, то есть выполняются соотношения:

$$|P_i(t + \Delta t) - P_i(t)| < \varepsilon, \tag{2.3}$$

$$|P_i(t) - \lim_{t \to \infty} P_i(t)| < \varepsilon, \tag{2.4}$$

где ε — заданная точность.

3 Практическая часть

3.1 Текст программы

На листинге 3.1 представлены функции расчета предельных вероятностей по заданной матрице интенсивностей переходов.

Листинг 3.1 – Реализация функций расчета предельных вероятностей

```
1 import numpy as np
2 import scipy as sp
4 def GetKolmogorovEquations(matrix):
      statesNumber = matrix.shape[0]
6
7
      rightSide = np.zeros([statesNumber] * 2)
8
      for state in range(statesNumber):
9
          rightSide[state][state] = -sum(matrix[state, :])
10
          rightSide[state] += matrix[:, state]
11
12
      return rightSide
13
14
15
16 def GetNormalizationEquation(statesNumber):
      return 1, np.zeros(statesNumber) + 1
17
18
19
20 def CalculateMarginalProbabilities(matrix):
      statesNumber = matrix.shape[0]
21
22
      leftSide = np.zeros(statesNumber)
23
      rightSide = GetKolmogorovEquations(matrix)
24
25
      leftSide[-1], rightSide[-1] = GetNormalizationEquation(
26
         statesNumber)
27
      return sp.linalg.solve(rightSide, leftSide)
28
```

На листинге 3.2 представлены функции расчета точек стабилизации.

Листинг 3.2 – Реализация функций расчета точек стабилизации

```
def GetProbabilitiesDerivatives(probabilities, _, matrix):
2
      derivatives = np.zeros(len(probabilities))
3
      for i, probability in enumerate(probabilities):
4
5
          derivatives[i] = np.dot(probabilities, matrix[i, :])
6
7
      return derivatives
8
10 def CalculateStabilizationTime(matrix, marginalProbabilities):
      timeList = np.arange(0, TIME MAX, TIME STEP)
11
12
      statesNumber = matrix.shape[0]
13
14
      probabilities0 = np.array([0] * statesNumber)
      probabilities0[0] = 1
15
16
      kolmogorovMatrix = GetKolmogorovEquations(matrix)
17
      probabilities = sp.integrate.odeint(
18
                                    GetProbabilitiesDerivatives,
19
20
                                    probabilities0,
                                    timeList,
21
                                     (kolmogorovMatrix,))
22
23
24
      stabilizationTimes = np.zeros(statesNumber)
25
      for state in range(statesNumber):
26
          curStateProbabilities = probabilities[:, state]
27
28
           found = False
29
30
31
          for i in range(1, len(curStateProbabilities)):
               previousProbability = curStateProbabilities[i - 1]
32
               curProbability = curStateProbabilities[i]
33
34
35
               if (abs(curProbability - previousProbability) < EPS</pre>
                  and abs(curProbability
36
                           - marginalProbabilities[state]) < EPS):</pre>
37
                   found = True
38
                   break
39
40
          stabilizationTimes[state] = (timeList[i] if found
41
42
                                                       else None)
```

3.2 Полученный результат

На рисунке 3.1 представлен пример работы программы для системы с тремя состояниями. На рисунке 3.2 представлен соответствующий график зависимости вероятности от времени.

Рисунок 3.1 – Расчет для системы с тремя состояниями

Рисунок 3.2 – График зависимости вероятности состояния от времени для системы с тремя состояниями

На рисунке 3.3 представлен пример работы программы для системы с пятью состояниями. На рисунке 3.4 представлен соответствующий график зависимости вероятности от времени.

(0	личест	во со	стоя	ний сист	гемы			5			+	☑ Γe	енераци	Я	
1			2			3				4		5			
1	2.45	_	+	3.05	_	+	0.31	-	+	3.32	-	+	1.73	_	+
2	1.82	-	+	2.32	-	+	4.19	-	+	1.25	-	+	2.11	-	+
3	2.91	_	+	1.09	-	+	2.05	-	+	4.05	-	+	2.99	-	+
4	3.64	_	+	0.42	-	+	4.54	-	+	3.94	-	+	3.83	_	+
5	2.07	_	+	4.44	-	+	1.27	-	+	0.38	-	+	4.69	_	+
Pe	езульт	ат							Paco	читать		П	оказать	граф	ИК
1			2		3		4		5						
P	0.23	-	+	0.21	-	+	0.17	-	+	0.15	-	+	0.24	-	+
t	0.86	-	+	0.75	T -	+	0.77	_	+	0.77	_	+	0.82	-	+

Рисунок 3.3 – Расчет для системы с пятью состояниями

Рисунок 3.4 – График зависимости вероятности состояния от времени для системы с пятью состояниями