Math 214 – Foundations of Mathematics Homework 3/27 Sam Harrington

(Due Thursday, April 10)

COMPLETED Proposition 8.47: $\mathbb{R}_{>0}$ has no upper bound.

Proof. Let $x \in \mathbb{R}_{>0}$.

For purpose of contradiction, assume $\mathbb{R}_{>0}$ has an upper bound. That is, there exists $n \in \mathbb{R}$ such that $x \leq n$ for all $x \in \mathbb{R}_{>0}$. – Def of upper bound

Take n+1,

 $n - n + 1 = 1, 1 \in \mathbb{R}_{>0} : n < n + 1$

Because n > 1 (if not 2 > n a contradiction that n is an upper bound $(2 \in \mathbb{R}_{>0})$ by Ax 8.26 (i))), $n - 1 \in \mathbb{R}_{>0}$, and $2 \in \mathbb{R}_{>0}$

Since $n + 1 \in \mathbb{R}_{>0}$ (again by Ax 8.26 (i)), we have reached a contradiction that $x \leq n$ for all x.

Proving that $\mathbb{R}_{>0}$ has no upper bound

A quick note, I realized abt half way through that it would have been easier to prove that $n+1 \in \mathbb{R}_{>0}$ through the same process we showed $1 \in \mathbb{N}$

Proposition 8.50: If the sets $A, B \subseteq \mathbb{R}$ are bounded above and $A \subseteq B$, then

$$\sup(A) \leqslant \sup(B),$$

supposing $\sup(A)$ and $\sup(B)$ exist.

Proof. Let sets $A, B \subseteq \mathbb{R}$ be bounded above and $A \subseteq B$. Also let $\sup(A)$ and $\sup(B)$ exist. Define $\sup(A) := k$ and $\sup(B) := j$.

For purpose of contradiction, assume k > j. Then,

Because $j, k \in \mathbb{R}$ - def of bdd above - there exists $z \in \mathbb{R}$ such that j < z < k - THM 8.43. Goal: show the set defined of z must contain some $a \in A$

Assume that the set z does not contain some $a \in A$

This means that there is no $a > \sup(B)$, so $a \leq \sup(B)$ i.e. it is an upper bound by def.

This means $j \not< k$ a contradiction: Meaning the set defined of z must contain some $a \in A$

Because k < z, for all $z, z \notin B$.

This can be proved through a quick contradiction: suppose $z \in B$ If $z \in B$ then $z \leq k$ a contradiction.

Because $z \notin B$ but $z \in A$, We have reached contradiction that $A \subseteq B$ implying $\sup(A) \leqslant \sup(B)$