

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE MATEMÁTICA Análisis de Modelamiento Numérico I

Ciclo 2020_01 Fecha: 05/08/2020

Profesores: Fidel Jara Huanca y Victor Huanca Sullca

Solucionario de la Practica Calificada No.4

Problema 1.-

Demostración. Que $(i) \Rightarrow (ii)$ es evidente: lo que por (i) sabemos que se cumple para todas las sucesiones de puntos de A que converjan a x, se cumplirá en particular para las sucesiones que, además, sean monótonas.

 $(ii)\Rightarrow (iii)$. Probaremos que si no se verifica (iii) tampoco se puede cumplir (ii). Si la afirmación (iii) no es cierta, existirá un $\varepsilon_0>0$ con la siguiente propiedad: para cada $\delta>0$ puede encontrarse $y\in A$ (evidentemente y dependerá de δ) tal que $|y-x|<\delta$ y, sin embargo, $|f(y)-f(x)|\geqslant \varepsilon_0$. Para cualquier $n\in \mathbb{N}$, podemos entonces tomar $\delta=1/n$, para obtener un $y_n\in A$ verificando que $|y_n-x|<1/n$, mientras que $|f(y_n)-f(x)|\geqslant \varepsilon_0$. Puesto que toda sucesión de números reales admite una sucesión parcial monótona, existe una sucesión monótona $\{x_n\}$ que es una sucesión parcial de $\{y_n\}$. Es evidente que $\{y_n\}\to x$, luego $\{x_n\}\to x$, pero de ser $|f(y_n)-f(x)|\geqslant \varepsilon_0$ para todo $n\in \mathbb{N}$, deducimos que también $|f(x_n)-f(x)|\geqslant \varepsilon_0$ para todo $n\in \mathbb{N}$. En resumen, $\{x_n\}$ es una sucesión monótona de puntos de A que converge a x, pero $\{f(x_n)\}$ no converge a f(x), luego no se cumple (ii), como queríamos.

 $(iii) \Rightarrow (i)$. Si $\{x_n\}$ es una sucesión de puntos de A que converge a x, deberemos probar que $\{f(x_n)\} \to f(x)$. Para $\varepsilon > 0$, sea $\delta > 0$ dado por la afirmación (iii), y usemos que $\{x_n\} \to x$ para encontrar $m \in \mathbb{N}$ de forma que, para $n \geqslant m$ se tenga $|x_n - x| < \delta$. Entonces, también para $n \geqslant m$ tenemos $|f(x_n) - f(x)| < \varepsilon$, como queríamos.

Problema 2.-

Demostr: $(x_n) \to x \Rightarrow \forall \varepsilon > 0, \exists n_0 \in |N/n \ge n_0 =) |x_n - x| \le \varepsilon$. (I) $n_0 \in |N| \Rightarrow \exists K_0 \in |N/n_{K_0} \ge n_0$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$ $L_{n_0} = \forall \varepsilon > 0, \exists K_0(\varepsilon) \in |N/K \ge K_0 \Rightarrow |x_{n_k} - x| \le \varepsilon$

Problema 3.-

Demostración Sea h(x) = g(x) - x, para todo $x \in [a, b]$. Entonces h(x) es continua y verifica que h(a) > 0 y h(b) < 0, por lo que se verifican las condiciones del Teorema de Bolzano. En consecuencia, existe un $s \in (a, b)$ tal que h(s) = 0, es decir g(s) = s.

Para demostrar la unicidad, supongamos que existe dos valores $s, t \in (a, b)$ tales que g(s) = s y g(t) = t, entonces, por el Teorema del Valor Medio, existe $c \in (s, t)$ tal que g(t) - g(s) = g'(c)(t - s), es decir, g'(c) = 1, lo que contradice la segunda condición.

Sea ahora $\{x_n\}$ la sucesión generada a partir de $x_0 \in [a, b]$ mediante la iteración $x_{n+1} = g(x_n, \text{ para } m \ge 0, \text{ y sea } L = \max_{x \in [a, b]} |g'(x)| < 1.$

Se verifica entonces que

$$e_n = |x_n - s| = |g(x_{n-1}) - g(s)| = |g'(x)|e_{n-1} \le Le_{n-1} \le L^2e_{n-2} \le \dots \le L^ne_0.$$

Problema 4.-

Problema 5.-

REEMPLYSONDS LOS USLORED OBTENEDIOS

LA SATE EWALIÓN $OS(0,22\sqrt{p})(oSh(0,22\sqrt{p})+1=0.9)$ GRAFIGNIDO OBTENETIOS:

LA PRIMERA PAÍZ E [72;74],

LA SEGUNDA PAÍZ E [450;460] Y

LA TERLERA RAÍZ E[1270;1280]