

Storage, ISS, RAID, SSD

www.racunarstvo.hr



Upon completion of this module, you should be able to:

- Describe digital data, types of digital data, and information
- Describe data center and its key characteristics
- Describe key data center management processes
- Describe the evolution of computing platforms



# The Growth of the Digital Universe

- The digital universe is created and defined by software
  - Digital data is continuously generated, collected, stored, and analyzed through software
- The digital universe generates approximately 4.4 trillion GB of data annually
  - Proliferation of IT, Internet usage, social media, and smart devices adds to data growth
- The Internet of Things (IoT) is also adding to data growth
  - IoT is made up of Internet-connected equipment and sensors



# Why Information Storage and Management?

- Organizations are dependent on continuous and reliable access to information
- Organizations seek to effectively store, protect, process, manage, and leverage information
- Organizations are increasingly implementing intelligent storage solutions
  - To efficiently store and manage information
  - To gain competitive advantage
  - To derive new business opportunities



## What is Digital Data?

#### **Digital Data**

A collection of facts that is transmitted and stored in electronic form, and processed through software.





Increasing Growth

Algebra

### What is Information?

#### **Information**

Processed data that is presented in a specific context to enable useful interpretation and decision-making.

- Example: Annual sales data processed into a sales report
  - Enables calculation of the average sales for a product and the comparison of actual sales to projected sales
- New architectures and technologies have emerged for extracting information from non-structured data





- Information is stored on storage devices on non-volatile media
- Types of storage devices:
  - Magnetic storage devices: Hard disk drive and magnetic tape
  - Optical storage devices: Blu-ray disc, DVD, and CD
  - Flash-based storage devices: Solid state drive, memory card, and USB thumb drive
- Storage devices are assembled within a storage system or "array"
  - Provides high capacity, scalability, performance, reliability, and security
- Storage systems along with other IT infrastructure are housed in a data center



#### What is a Data Center?

#### **Data Center**

A facility that houses IT equipment including compute, storage, and network components, and other supporting infrastructure for providing centralized data-processing capabilities.

- A data center comprises:
  - Facility: The building and floor space where the data center is constructed
  - IT equipment: Compute, storage, and network equipment
  - Support infrastructure: Power supply, fire detection, HVAC, and security systems



## Key Characteristics of a Data Center







| Management Process | Description                                                                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------|
| Monitoring         | Continuously gathering information on data center resources                                                     |
| Reporting          | Presenting the details on resource performance, capacity, and utilization                                       |
| Provisioning       | Configuring and allocating resources to meet the capacity, availability, performance, and security requirements |
| Planning           | Estimating the amount of resources required to support business operations                                      |
| Maintenance        | Ensuring the proper functioning of resources and resolving incidents                                            |



# **Evolution of Computing Platforms**





Algebra visoko učilište



Mainframe, Mini Computer **Terminals** 



**THOUSANDS** OF APPS

## **First Platform**

#### Based on mainframes

- Applications and databases hosted centrally
- Users connect to mainframes through terminals
- Challenges with mainframes
  - Substantial CAPEX and OPEX
    - High acquisition costs
    - Considerable floor space and energy requirements







#### Based on client-server model

- Distributed application architecture
- Servers receive and process requests for resources from clients
- Users connect through a client program or a web interface

#### Challenges with clientserver model

- Creation of IT silos
- Hardware and software maintenance overhead
- Scalability to meet the growth of users and workloads





### **Third Platform**



 The four pillars are transforming the way organizations are using technology for business operations





Upon completion of this module, you should be able to:

- Describe the key components of an intelligent storage system
- Describe HDD and SSD components, addressing, and performance
- Describe RAID, its techniques, and its levels
- Discuss the types of intelligent storage systems





- Process massive amount of IOPS
- Elastic and non-disruptive horizontal scaling of resources
- Intelligent resource management
- Automated and policy driven configuration
- Support for multiple protocols for data access
- Supports APIs for software-defined and cloud integration
- Centralized management and chargeback in a multi-tenancy environment



## **Technology Solution**

- Intelligent storage system
  - Block-based storage system
  - File-based storage system
  - Object-based storage system
  - Unified storage system
- Storage Virtualization
- Software-defined storage



# Components of Intelligent Storage Systems – I

This lesson covers the following topics:

- Components of intelligent storage systems
- HDD components, addressing, and performance



# What is an Intelligent Storage System?

#### **Intelligent Storage System**

A feature-rich RAID array that provides highly optimized I/O processing capabilities.

- Has a purpose-built operating environment
  - Provides intelligent resource management capability
- Provides large amount of cache
- Provides multiple I/O paths

#### **Features**

- Supports combination of HDD and SSD
- Service massive amount of IOPS
- Scale-out architecture
- Deduplication, compression, and encryption
- Automated storage tiering
- Virtual storage provisioning
- Multi-tenancy
- Supports APIs to integrate with SDDC and cloud
- Data protection



# Components of Intelligent Storage System

- Two key components of an ISS
  - Controller
    - Block-based
    - File-based
    - Object-based
    - Unified
  - Storage
    - All HDDs
    - All SSDs
    - Combination of both



Intelligent Storage System



## Storage – Hard Disk Drives

Components of HDD





## **Physical Disk Structure**



**Algebra** 

visoko učilište

## **Logical Block Addressing**





### **HDD Performance**

- Electromechanical device
  - Impacts the overall performance of the storage system
- Disk service time
  - Time taken by a disk to complete an I/O request, depends on:
    - Seek time
    - Rotational latency
    - Data transfer rate



### **Seek Time**

- Time taken to position the read/write head
- The lower the seek time, the faster the I/O operation
- Seek time specifications include
  - Full stroke
  - Average
  - Track-to-track

The seek time of a disk is specified by the drive manufacturer





# **Rotational Latency**

- The time taken by the platter to rotate and position the data under the R/W head
- Depends on the rotation speed of the spindle
- Average rotational latency
  - One-half of the time taken for a full rotation
  - For 'X' rpm, drive latency is calculated in milliseconds as:

$$= \frac{(\frac{1}{2} \times 1000)}{(\frac{X}{60})} = \frac{500}{(\frac{X}{60})} = \frac{30000}{X}$$





#### **Data Transfer Rate**

- Average amount of data per unit time that the drive can deliver to the HBA
  - Internal transfer rate: Speed at which data moves from a platter's surface to the internal buffer of the disk
  - External transfer rate: Rate at which data move through the interface to the HBA





# I/O Controller Utilization Vs. Response Time

Based on fundamental laws of disk drive performance:

$$Avg. Response Time = \frac{Service Time}{(1 - Utilization)}$$

- Service time is time taken by the controller to serve an I/O
- For performance-sensitive applications disks are commonly utilized below 70% of their I/O serving capability





# Storage Design Based on Application Requirements and Disk Drive Performance

Disks required to meet an application's capacity need (DC):

$$D_c = \frac{Total\ capacity\ required}{Capacity\ of\ a\ single\ disk}$$

Disks required to meet application's performance need (DP):

$$D_p = \frac{\textit{IOPS generated by an application at peak workload}}{\textit{IOPS serviced by a single disk}}$$

• IOPS serviced by a disk (S) depends upon disk service time (T<sub>S</sub>):

$$T_s = Seek \ time + \frac{0.5}{(Disk \ rpm/60)} + \frac{Data \ block \ size}{Data \ transfer \ rate}$$

- TS is time taken for an I/O to complete, therefore IOPS serviced by a disk (S) is equal to (1/TS)
  - For performance sensitive application (S) = 0.7 X  $\frac{1}{T_s}$



Disk required for an application = Max (DC, DP)

# Components of Intelligent Storage Systems – II

This lesson covers the following topics:

SSD components, addressing, and performance



## Storage – Solid State Drives

Components of SSD





# SSD Addressing





## Page and Block States



Flash memory page states

**Algebra** 

visoko učilište



### **SSD Performance**

#### Access type

- SSD performs random reads the best
- SSDs use all internal I/O channels in parallel for multi-threaded large block I/Os

#### Drive state

New SSD or SSD with substantial unused capacity offers best performance

#### Workload duration

 SSDs are best for workloads with short bursts of activity



### Part 4: RAID

This lesson covers the following topics:

- Describe RAID implementation methods
- Describe the three RAID techniques
- Describe commonly used RAID levels
- Describe the impact of RAID on performance
- Compare RAID levels based on their cost, performance, and protection



# Why RAID?

#### **RAID**

A technique that combines multiple disk drives into a logical unit (RAID set) and provides protection, performance, or both.

- Provides data protection against drive failures
- Improves storage system performance by serving I/Os from multiple drives simultaneously
- Two implementation methods
  - Software RAID implementation
  - Hardware RAID implementation



### **RAID Array Components**





# **RAID Techniques**







Figure 1

**Algebra** 

visoko učilište

Figure 2

Figure 3

#### **RAID Levels**

- Commonly used RAID levels are:
  - RAID 0 Striped set with no fault tolerance
  - RAID 1 Disk mirroring
  - RAID 1 + 0 Nested RAID
  - RAID 3 Striped set with parallel access and dedicated parity disk
  - RAID 5 Striped set with independent disk access and a distributed parity
  - RAID 6 Striped set with independent disk access and dual distributed parity











#### Nested RAID – 1+0

















### **RAID Impacts on Performance**

- In RAID 5, every write (update) to a disk manifests as four I/O operations (2 disk reads and 2 disk writes)
- In RAID 6, every write (update) to a disk manifests as six I/O operations (3 disk reads and 3 disk writes)
- In RAID 1, every write manifests as two I/O operations (2 disk writes)





# **RAID Comparison**

| RAID level | Min disks | Available storage capacity (%) | Write penalty | Protection                               |
|------------|-----------|--------------------------------|---------------|------------------------------------------|
| 1          | 2         | 50                             | 2             | Mirror                                   |
| 1+0        | 4         | 50                             | 2             | Mirror                                   |
| 3          | 3         | [(n-1)/n]*100                  | 4             | Parity<br>(Supports single disk failure) |
| 5          | 3         | [(n-1)/n]*100                  | 4             | Parity<br>(Supports single disk failure) |
| 6          | 4         | [(n-2)/n]*100                  | 6             | Parity<br>(Supports two disk failures)   |



# Dynamic Disk Sparing (Hot Sparing)





# Part 5: Types of Intelligent Storage Systems

This lesson covers the following topics:

- Data access methods
- Types of intelligent storage systems
- Scale-up and scale-out architectures



#### **Data Access Methods**



User Component
Storage Component

Algebra
visoko učilište

# Types of Intelligent Storage Systems

- Block-based storage systems
- File-based storage systems
- Object-based storage systems
- Unified storage systems



# Scale-up Vs. Scale-out Architecture

Scale-up



Scale-out





Cluster