

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 5

Maszyna z ruchem "stój w miejscu"

Maszyna
$$M=< Q, \Sigma, \Gamma, \delta, q_0, q_{ACC}, q_{REJ}>$$
, gdzie

$$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R, S\}$$

Twierdzenie

Dla dowolnej maszyny Turinga M₁ dopuszczającej ruch S (stój w miejscu) istnieje równoważna jej maszyna Turinga M2 nie dopuszczająca ruchu S

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

Maszyna z ruchem "stój w miejscu"

Maszyna
$$M=< Q, \Sigma, \Gamma, \delta, q_0, q_{ACC}, q_{REJ}>$$
, gdzie

$$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R, S\}$$

Twierdzenie

Dla dowolnej maszyny Turinga M_1 dopuszczającej ruch S (stój w miejscu) istnieje **równoważna jej** maszyna Turinga M_2 nie dopuszczająca ruchu S

S \leadsto LR lub S \leadsto RL

oznacza koniec taśmy

Instrukcje wymagające ruchu w lewo poza > są ignorowane

Twierdzenie

Dla dowolnej maszyny Turinga $\mathbf{M_1}$ z taśmą dwustronnie nieograniczoną istnieje **równoważna jej** maszyna Turinga $\mathbf{M_2}$ z taśmą jednostronnie ograniczoną

Każdemu ruchowi maszyny M_1 odpowiadają "dwa" ruchy maszyny M_2 (możliwa zmiana kierunku)

Każdy ruch poza powoduje zmianę *parzystości* czytanych komórek

Maszyna z wieloma taśmami

Maszyna
$$M=< Q, \Sigma, \Gamma, \delta, q_0, q_{ACC}, q_{REJ}>$$
, gdzie
$$\delta: Q \times \Gamma^k \longrightarrow Q \times \Gamma^k \times \big\{\mathtt{L},\mathtt{R},\mathtt{S}\big\}^k \qquad (k>0)$$

$$\delta(q_i, a, b, c) = (q_j, b, a, c, R, S, L)$$

 $q_i \, abc \, o \, q_i \, bacRSL$

Maszyna z wieloma taśmami

Twierdzenie

Dla dowolnej wielotaśmowej maszyny Turinga M_1 istnieje równoważna jej jednotaśmowa maszyna Turinga M_2 .

$$\delta(q_i, a, b, c) = (q_j, b, a, c, R, S, L)$$

 $\mathtt{q_i\,abc}\,\rightarrow\,\mathtt{q_i\,bacRSL}$

Maszyna z wieloma taśmami

Maszyna
$$M=< Q,~\Sigma,~\Gamma,~\delta,~q_0,~q_{ACC}>$$
, gdzie
$$\delta: Q\times\Gamma\longrightarrow 2^{Q\times\Gamma\times\{\mathtt{L},\,\mathtt{R},\,\mathtt{S}\}}$$

Niedeterministyczna maszyna Turinga **rozpoznaje** język L, jeśli dla dowolnego słowa $w \in L$ **istnieje** skończona ścieżka jej obliczeń kończąca się w stanie akceptującym

Niedeterministyczna maszyna Turinga **rozstrzyga** język L, jeśli dla dowolnego słowa $w \in \Sigma^*$ **każda** ścieżka jej obliczeń jest **skończona**, oraz $w \in L$ wtedy i tylko wtedy, gdy **istnieje** ścieżka obliczeń kończąca się w stanie akceptującym

Niedeterministyczna maszyna Turinga **rozstrzyga** język L, jeśli dla dowolnego słowa $w \in \Sigma^*$ **każda** ścieżka jej obliczeń jest **skończona**, oraz $w \in L$ wtedy i tylko wtedy, gdy **istnieje** ścieżka obliczeń kończąca się w stanie akceptującym

Twierdzenie

Dla dowolnej jednotaśmowej niedeterministycznej maszyny Turinga M istnieje **równoważna jej** trzytaśmowa deterministyczna maszyna Turinga M'.

Kodowanie ścieżki obliczeń

 $^{oxtimes }b$ – maksymalna liczba rozgałęzień

 \bowtie kod – słowo nad alfabetem $\{1,\ldots,b\}$

Marcin Piątkowski

Kodowanie ścieżki obliczeń

b – maksymalna liczba rozgałęzień kod – słowo nad alfabetem $\{1,\ldots,b\}$

Marcin Piątkowski

Kodowanie ścieżki obliczeń

 \bowtie kod – słowo nad alfabetem $\{1,\ldots,b\}$

Marcin Piątkowski

Symulacja obliczeń

Równoważność modeli obliczeniowych

Twierdzenie

Dla dowolnego programu na maszynę licznikową istnieje maszyna Turinga symulująca jego działanie

Maszyna licznikowa ⇒ maszyna Turinga

Maszyna Turinga ⇒ maszyna licznikowa

Twierdzenie

Dla dowolnej jednotaśmowej maszyny Turinga istnieje program na maszynę licznikową symulujący jej działanie

Stos

$$\frac{\tau(a_0, a_1, \dots, a_n) + 1}{2^{a_0} + 2^{a_0 + a_1 + 1} + \dots + 2^{a_0 + a_1 + \dots + a_n + n}}$$

$$\frac{\tau(a_0, a_1, \dots, a_n) + 1}{2^{x+1} \cdot \left(2^{a_0} + 2^{a_0+a_1+1} + \dots + 2^{a_0+a_1+\dots+a_n+n}\right)}$$

$$\begin{vmatrix}
2^{x+1} \cdot \left(2^{a_0} + 2^{a_0+a_1+1} + \dots + 2^{a_0+a_1+\dots+a_n+n}\right) \\
\\
2^{x+a_0+1} + 2^{x+a_0+a_1+2} + \dots + 2^{x+a_0+a_1+\dots+a_n+n+1}
\end{vmatrix}$$

$$\frac{\tau(a_0, a_1, \dots, a_n) + 1}{2^{x+1} \cdot \left(2^{a_0} + 2^{a_0+a_1+1} + \dots + 2^{a_0+a_1+\dots+a_n+n}\right) + 2^x}$$

$$\begin{vmatrix}
2^x + 2^{x+a_0+1} + 2^{x+a_0+a_1+2} + \dots + 2^{x+a_0+a_1+\dots+a_n+n+1}
\end{vmatrix}$$

$$\frac{\tau(a_0, a_1, \dots, a_n) + 1}{2^{x+1} \cdot \left(2^{a_0} + 2^{a_0+a_1+1} + \dots + 2^{a_0+a_1+\dots+a_n+n}\right) + 2^x}$$

$$\frac{2^x + 2^{x+a_0+1} + 2^{x+a_0+a_1+2} + \dots + 2^{x+a_0+a_1+\dots+a_n+n+1}}{\tau(x, a_0, a_1, \dots, a_n) + 1}$$

$$\frac{\tau(a_0, a_1, \dots, a_n) + 1}{2^{x+1} \cdot \left(2^{a_0} + 2^{a_0+a_1+1} + \dots + 2^{a_0+a_1+\dots+a_n+n}\right) + 2^x}$$

$$\frac{2^x + 2^{x+a_0+1} + 2^{x+a_0+a_1+2} + \dots + 2^{x+a_0+a_1+\dots+a_n+n+1}}{\tau(x, a_0, a_1, \dots, a_n) + 1}$$

$Maszyna Turinga \Rightarrow maszyna licznikowa$

Kodowanie zbioru stanów QΚοdowanie alfabetu taśmy Γ

Maszyna Turinga ←⇒ funkcje częściowo rekurencyjne

Twierdzenie

Każda funkcja częściowo rekurencyjna jest obliczalna na maszynie Turinga

Twierdzenie

Każda funkcja obliczalna na maszynie Turinga jest częściowo rekurencyjna

