

МИРЭА – Российский технологический университет Кафедра вычислительной техники

Теория автоматов

Практическая работа №2:

Проектирование синхронных цифровых автоматов

Автоматы распознавания языков. Асинхронный язык

Старший преподаватель: Боронников Антон Сергеевич antboronnikov@mail.ru

Асинхронный язык

В асинхронный язык входят слова, в которых повторение любого из символов может быть произвольным. Точнее, если слово а принадлежит асинхронному языку, то в языке также содержатся все слова, полученные из а повторениями любых букв из а либо вычеркиванием из а некоторых повторений отдельных букв.

Функция переходов автомата, определяющего асинхронный язык, имеет следующую особенность: <u>автомат может перейти в другое состояние только при изменении входного символа.</u>

Назовем **ядром** асинхронного языка язык, в котором нет повторений символов. В частности, если ядро — дефинитный язык, то <u>при синтезе автомата</u>, распознающего асинхронный язык с таким ядром, <u>можно</u> воспользоваться приемом из пункта про дефинитный язык — <u>сопоставить состояниям автомата</u> префиксы распознаваемых слов ядра.

Изоморфные и эквивалентные автоматы

Автоматы изоморфны если их описание одинаково с точностью до переобозначений.

Два инициальных автомата будем называть эквивалентными автоматами, если любую одну и ту же входную последовательность они перерабатывают в одну и туже выходную последовательность. Неинициальные автоматы будем называть эквивалентными, если для любого состояния, взятого в качестве начального одного из автоматов, найдется в другом автомате состояние, назначив которое начальным получим эквивалентность переработки информации входной в выходную.

Минимальные автоматы

Автомат, эквивалентный заданному и имеющий наименьшее возможное число состояний, называется **минимальным**. Если автоматы всюду определены и эквивалентны, то они имеют изоморфные минимальные автоматы. Для частично-определенных автоматов это положение может не выполняться.

Минимизация автомата возможна, если в автомате есть состояния, которые могут быть объединены в одно состояние. Такие состояния называют эквивалентными состояниями. Иначе говоря, автомат минимальный, если у него нет эквивалентных состояний.

Достаточное условие эквивалентности

Достаточным условием эквивалентности состояний является совпадение соответствующих им строк в автоматной таблице. Такие состояния называют явно эквивалентными. Если строки одинаковы за исключением переходов в себя при одних и тех же входах, то такие состояния так же явно эквивалентны. Поэтому в автоматных таблицах следует переход в себя указывать не именем состояния, а каким-либо одинаковым символом, например таким: \$. После такой замены строки могут стать одинаковыми.

<u>Задание:</u> Спроектировать автомат с двухразрядным входом (in1,in2) и одноразрядным выходом (Z), который индицирует следующее событие: после нулей на обеих линиях по каждой из линий in1 и in2 прошло ровно по одному стробу любой длительности.

Строб – импульс («1» может продержаться всего один такт, может продержаться неопределенное время):

Решение. Композиция автоматов

Решение будем искать в виде симметричной композиции двух одинаковых автоматов:

Решение. Получение распознаваемых слов

Обозначим возможные символы (сочетания значений сигналов) на входах автомата следующим образом:

$$\frac{\ln 1}{\ln 2}$$
 $\frac{0}{0} = a$ $\frac{1}{0} = b$ $\frac{0}{1} = q$ $\frac{1}{1} = q$

Если удалить все повторения символов, то получим для одного из автоматов дефинитный язык со следующими минимальными последовательностями, приводящими к событию, которое должен распознать автомат:

Другой автомат распознает последовательности, полученные из указанных заменой b на q, q на b.)

Решение. Автоматная таблица

Автомат Мили задается следующей автоматной таблицей:

		00	01	10	11	
Nº	A/Q	a	q	b	С	эквивалентности
0	λ	а	λ	λ	λ	
1	а	\$	λ	ab	ac	
2	ab	aba	abq	\$	abc	
3	ac	a /1	λ	acb	\$	
4	aba	\$	abaq	ab	ac	
5	abq	a /1	\$	λ	λ	5 ≡ 8 ≡ 10
6	abc	a /1	abcq	abcb	\$	
7	acb	a /1	λ	\$	λ	7 ≡ 9
8	abcq	a /1	\$	λ	λ	5 ≡ 8 ≡ 10
9	abcb	a /1	λ	\$	λ	7 ≡ 9
10	abaq	a /1	\$	λ	λ	5 ≡ 8 ≡ 10

Обозначения:

Q – текущее состояние

А – входы

\$ – переход в то же состояние

Слова, которые должен распознавать автомат:

aca

abqa

acba

abca

abaqa

abcba

abcqa

Решение. Объединение эквивалентных состояний

Объединив эквивалентные состояния, получим таблицу автомата Мили:

		00	01	10	11
Nº	A Q	a	q	b	С
S0	λ	а	λ	λ	λ
S1	а	\$	λ	ab	ac
S2	ab	aba	abq	\$	abc
S3	ac	a /1	λ	acb	\$
S4	aba	\$	abaq	ab	ac
S5	abq	a /1	\$	λ	λ
S6	abc	a /1	abcq	abcb	\$
S7	acb	a /1	λ	\$	λ
S5	abcq	a /1	\$	λ	λ
S7	abcb	a /1	λ	\$	λ
S5	abaq	a /1	\$	λ	λ

Решение. Граф переходов

На базе автоматной таблицы построим граф переходов состояний:

	00	01	10	11
۸/ ۵	а	q	b	С
S0	S1	S0	S0	S0
S1	S1	S0	S2	S 3
S2	S4	S5	S2	S6
S3	S1 /1	S0	S7	S3
S4	S4	S5	S2	S3
S5	S1 /1	S5	S0	S0
S6	S1 /1	S5	S7	S6
S 7	S1 /1	S0	S 7	S0

Решение. Кодирование состояний

	00	01	10	11	
۸/ ۵/	а	q	b	С	код
S0	S1	S0	SO	S0	000
S1	S1	S0	S2	S3	001
S2	S4	S 5	S2	S6	010
S3	S1 /1	S0	S7	S3	011
S4	S4	S 5	S2	S3	100
S5	S1 /1	S 5	S0	S0	101
S6	S1 /1	S 5	S7	S6	110
S 7	S1 /1	S0	S 7	S0	111

Кодировка состояний – произвольная. Чтобы закодировать 8 состояний необходим минимум трехразрядный код.

Но если использовать в качестве комбинационной логики формирования следующего состояния ПЗУ, то лучше будет закодировать состояния начиная с 000 и по увеличению на 1, для удобства «прошивки».

Решение. Схема локального автомата

	00	01	10	11	
۸/ ۵/	а	q	b	С	код
S0	S1	SO	S0	S0	000
S1	S1	SO	S2	S3	001
S2	S4	S5	S2	S6	010
S3	S1 /1	SO	S 7	S3	011
S4	S4	S 5	S2	S3	100
S5	S1 /1	S 5	S0	S0	101
S6	S1 /1	S5	S 7	S6	110
S 7	S1 /1	S0	S 7	S0	111

Решение. Схема полного автомата

Индикация события: после нулей на обеих линиях по каждой из линий IN1 и IN2 прошло ровно по одному стробу любой длительности

