LECTURE 5

Greedy Algorithms

- Interval Scheduling
- Interval Partitioning NP Completeness

Greedy Algorithms

- Build up a solution to an optimization problem at each step shortsightedly choosing the option that currently seems the best.
 - Sometimes good
 - Often does not work

Interval Scheduling Problem

- •Job j starts at s_j and finishes at f_j .
- •Two jobs are compatible if they do not overlap.
- •Find: maximum subset of mutually compatible jobs.

Possible Greedy Strategies

Consider jobs in some natural order. Take next job if it is compatible with the ones already taken.

- Earliest start time: ascending order of s_i.
- Earliest finish time: ascending order of f_j.
- •Shortest interval: ascending order of $(f_j s_j)$.
- Fewest conflicts: For each job j, count the number of conflicting jobs c_j . Schedule in ascending order of c_j .

Greedy: Counterexamples

Formulating Algorithm

Arrays of start and finishing times

$$-s_1, s_2, ..., s_n$$

$$-f_1, f_2, ..., f_n$$

• Input length?

$$-2n = \Theta(n)$$

Greedy Algorithm

•Earliest finish time: ascending order of f_i.

```
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n. 
 A \leftarrow \phi \triangle Set of selected jobs for j = 1 to n { 
  if (job j compatible with A) 
    \land A \leftarrow \land \cup \{j\} } 
 return A
```

- •Implementation. $O(n \log n)$ time; O(n) space.
- -Remember job j^* that was added last to A.
- Job j is compatible with A if $s_j \ge f_{j*}$.

Running time: O(n log n)

```
O(n \log n) \qquad \begin{array}{l} \text{Sort jobs by finish times so that} \\ f_1 \leq f_2 \leq \ldots \leq f_n. \end{array} O(1) \qquad \begin{array}{l} A \leftarrow (\text{empty}) \quad \Delta \text{ Queue of selected jobs} \\ j^* \leftarrow 0 \\ \text{for j = 1 to n } \{\\ \text{if } (f_{j^*} <= s_j) \\ \text{enqueue(j onto A)} \\ \} \\ \text{return A} \end{array}
```

Analysis: Greedy Stays Ahead

- •Theorem. Greedy algorithm is optimal.
- •Proof strategy (by contradiction):
 - -Suppose greedy is not optimal.
 - -Consider an optimal strategy... which one?
 - Consider the optimal strategy that agrees with the greedy strategy for as many initial jobs as possible
 - Look at first place in list where
 optimal strategy differs from greedy strategy
 - Show a new optimal strategy that agrees more w/ greedy

Analysis: Greedy Stays Ahead

- •Theorem. Greedy algorithm is optimal.
- •Pf (by contradiction): Suppose greedy is not optimal.
- -Let i_1 , i_2 , ... i_k denote set of jobs selected by greedy.
- -Let j_1 , j_2 , ..., j_m be set of jobs in the optimal solution with $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ for the largest possible value of r.

with job in 1?

Analysis: Greedy Stays Ahead

- •Theorem. Greedy algorithm is optimal.
- •Pf (by contradiction): Suppose greedy is not optimal.
- -Let i_1 , i_2 , ... i_k denote set of jobs selected by greedy.
- -Let j_1 , j_2 , ..., j_m be set of jobs in the optimal solution with $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ for the largest possible value of r.

Interval Partitioning

•Lecture j starts at s_i and finishes at f_i .

11:30

10:30

9:30

•Find: minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

•E.g.: 10 lectures are scheduled in 4 classrooms.

4

5

6

9

h

1

a

f

i

12:30

1:30

2:30

4:30

Interval Partitioning

- •Lecture j starts at s_i and finishes at f_i .
- •Find: minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- •E.g.: Same lectures are scheduled in 3 classrooms.

Lower Bound

- •Definition. The depth of a set of open intervals is the maximum number that contain any given time.
- •Key observation. Number of classrooms needed ≥ depth.
- •E.g.: Depth of this schedule = $3 \Rightarrow$ this schedule is optimal.

•Q: Is it always sufficient to have number of classrooms = depth?

Greedy Algorithm

•Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s_1 \le s_2 \le \ldots \le s_n. d \leftarrow 0 \triangle Number of allocated classrooms for j = 1 to n {
   if (lecture j is compatible with some classroom k) schedule lecture j in classroom k
   else
     allocate a new classroom d + 1 schedule lecture j in classroom d + 1 d \leftarrow d + 1
}
```

- •Implementation. $O(n \log n)$ time; O(n) space.
- For each classroom, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue (main loop n log(d) time)

Analysis: Structural Argument

- •Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.
- •Theorem. Greedy algorithm is optimal.
- •Proof: Let d = number of classrooms allocated by greedy.
 - Classroom d is opened because we needed to schedule a lecture, say
 j, that is incompatible with all d-1 last lectures in other classrooms.
- These d lectures each end after s_i.
- Since we sorted by start time, they start no later than s_{j} .
- Thus, we have d lectures overlapping at time $s_i + \epsilon$.
- Key observation ⇒ all schedules use ≥ d classrooms.

NP-Completeness

P⊋NP

NP: Non-deterministic Polynomial

P: Polynomial

NPC: Non-deterministic Polynomial Complete

- P: the class of problems which can be solved by a deterministic polynomial algorithm.
- NP: the class of decision problem which can be solved by a non-deterministic polynomial algorithm.
- NP-hard: the class of problems to which every NP problem reduces.
- NP-complete (NPC): the class of problems which are NP-hard and belong to NP.

Decision problems

- The solution is simply "Yes" or "No".
- Optimization problem : more difficult Decision problem
- E.g. the traveling salesperson problem
 - Optimization version: Find the shortest tour Decision version:

Is there a tour whose total length is less than or equal to a constant C?

Nondeterministic algorithms

- A nondeterministic algorithm is an algorithm consisting of two phases: guessing and checking.
- Furthermore, it is assumed that a nondeterministic algorithm always makes a correct guessing.

Nondeterministic algorithms

- They do not exist and they would never exist in reality.
- They are useful only because they will help us define a class of problems: NP problems

NP algorithm

If the checking stage of a nondeterministic algorithm is of polynomial time-complexity, then this algorithm is called an NP (nondeterministic polynomial) algorithm.

NP problem

- If a decision problem can be solved by a NP algorithm, this problem is called an NP (nondeterministic polynomial) problem.
- NP problems : (must be decision problems)

To express Nondeterministic Algorithm

- Choice(S): arbitrarily chooses one of the elements in set S
- Failure : an unsuccessful completion
- Success: a successful completion

Nondeterministic searching Algorithm:

```
j ← choice(1 : n) /* guess
if A(j) = x then success /* check
else failure
```

- A nondeterministic algorithm terminates unsuccessfully iff there exist no set of choices leading to a success signal.
- The time required for choice(1 : n) is O(1).
- A deterministic interpretation of a non-deterministic algorithm can be made by allowing unbounded parallelism in computation.

Problem Reduction

- Problem A reduces to problem B (A∞B)
 - iff A can be solved by using any algorithm which solves B.
 - If A∞B, B is more difficult (B is at least as hard as A)

- Note: $T(tr_1) + T(tr_2) < T(B)$
- $T(A) \le T(tr_1) + T(tr_2) + T(B) \sim O(T(B))$

Polynomial-time Reductions

- We want to solve a problem R; we already have an algorithm for S
- We have a transformation function T
 - Correct answer for R on x is "yes", iff the correct answer for S on T(x) is "yes"
- Problem **R** is polynomially reducible to **S** if such a transformation T can be computed in polynomial time
- The point of reducibility: S is at least as hard to solve as R

Polynomial-time Reductions

We use reductions (or transformations) to prove that a problem is NP-complete

Algorithm for **R**

- x is an input for R; T(x) is an input for S
- $(\mathsf{R} \propto \mathsf{S})$

NPC and NP-hard

- A problem A is NP-hard if every NP problem reduces to A.
- A problem A is NP-complete (NPC) if A∈NP and every NP problem reduces to A.
 - Or we can say a problem A is NPC if A∈NP and A is NP-hard.

NP-Completeness

- "NP-complete problems": the hardest problems in NP
- Interesting property
 - If any one NP-complete problem can be solved in polynomial time, then every problem in NP can also be solved similarly (i.e., P=NP)
- Many believe P≠NP

Importance of NP-Completeness

- NP-complete problems: considered "intractable"
- Important for algorithm designers & engineers
- Suppose you have a problem to solve
 - Your colleagues have spent a lot of time to solve it exactly but in vain
 - See whether you can prove that it is NP-complete
 - If yes, then spend your time developing an approximation (heuristic) algorithm
- Many natural problems can be NP-complete

Relationship Between NP and P

- It is not known whether P=NP or whether P is a proper subset of NP
- It is believed NP is much larger than P
 - But no problem in NP has been proved as not in P
 - No known deterministic algorithms that are polynomially bounded for many problems in NP
 - So, "does P = NP?" is still an open question!

Cook's theorem (1971)

$NP = P \text{ iff } SAT \in P$

- SAT (the satisfiability problem) is NP-complete
- It is the first NP-complete problem
- Every NP problem reduces to SAT

SAT is NP-complete

- Every NP problem can be solved by an NP algorithm
- Every NP algorithm can be transformed in polynomial time to an SAT problem (a Boolean formula C)
- Such that the SAT problem is satisfiable iff the answer for the original NP problem is "yes"
- That is, every NP problem ∞ SAT
- SAT is NP-complete

The Node Cover Problem

Def: Given a graph G = (V, E), S is the node cover of G if S ⊆ V and for ever edge (u, v) ∈ E, (u,v) is incident to a node in S.

Decision problem: ∃ S ∋ | S | ≤ K ?

How to Prove a Problem *S* is NP-Complete?

- 1. Show **S** is in NP
- 2. Select a known NP-complete problem *R*
 - Since R is NP-complete, all problems in NP are reducible to R
- 3. Show how **R** can be poly. reducible to **S**
 - Then all problems in NP can be poly. reducible to S (because polynomial reduction is transitive)
- 4. Therefore **S** is **NP**-complete

CLIQUE(k): Does G=(V,E) contain a clique of size ≥k?

Definition:

 A clique in a graph is a set of vertices such that any pair of vertices are joined by en edge.

Vertex Cover(k): Given a graph G=(V, E) and an integer k, does G have a vertex cover with ≤k vertices?

Definition:

A vertex cover of G=(V, E) is V'⊆V such that every edge in E is incident to some v∈V'.

Dominating Set(k): Given an graph G=(V, E) and an integer k, does G have a dominating set of size ≤k?

Definition:

□ A dominating set D of G=(V, E) is D⊆V such that every $v \in V$ is either in D or adjacent to at least one vertex of D.

- SAT: Give a Boolean expression (formula) in DNF (conjunctive normal form), determine if it is satisfiable.
- 3SAT: Give a Boolean expression in DNF such that each clause has *exactly* 3 variables (literals), determine if it is satisfiable.

 Chromatic Coloring(k): Given a graph G=(V, E) and an integer k, does G have a coloring for k

Definition

A coloring of a graph G=(V, E) is a function
 f: V → { 1, 2, 3,..., k } ∋ if (u, v) ∈ E, then
 f(u)≠f(v).

Traveling salesperson problem

- Given: A set of n planar points
 Find: A closed tour which includes all points exactly once such that its total length is minimized.
- This problem is NP-complete.

Partition problem

- Given: A set of positive integers S Find: S_1 and S_2 such that $S_1 \cap S_2 = \emptyset$, $S_1 \cup S_2 = S$, $\sum_{i \in S_1} i = \sum_{i \in S_2} i$ (partition into S_1 and S_2 such that the sum of S_1 is equal to S_2)
- e.g. S={1, 7, 10, 9, 5, 8, 3, 13}
 - $S_1 = \{1, 10, 9, 8\}$
 - $S_2 = \{7, 5, 3, 13\}$
- This problem is NP-complete.

Partition Problem

- **Def**: Given a set of positive numbers A = $\{a_1, a_2, ..., a_n\}$, determine if \exists a partition P, $\ni \sum_{i \in p} a_i = \sum_{i \notin p} a_i$
- e.g. A = {3, 6, 1, 9, 4, 11} partition: {3, 1, 9, 4} and {6, 11}
- <Theorem> sum of subsets ∞ partition

Bin Packing Problem

Def: n items, each of size c_i, c_i > 0, a positive number k and bin capacity C, determine if we can assign the items into k bins such that the sum of c_i's assigned to each bin does not exceed C.

< Theorem > partition ∞ bin packing.

VLSI Discrete Layout Problem

- Given: n rectangles, each with height h_i (integer) width w_i and an area A, determine if there is a <u>placement</u> of the n rectangles within A according to the following rules:
 - Boundaries of rectangles are parallel to x axis or y axis.
 - 2. Corners of rectangles lie on integer points.
 - 3. No two rectangles overlap.
 - 4. Two rectangles are separated by at least a unit distance.

(See the figure on the next page.)

A Successful Placement

<Theorem> bin packing ∞ VLSI discrete layout.