Lista nr 7 22 listopada 2023 r.

Zajęcia 28 listopada 2023 r. Zaliczenie listy od 6 pkt.

L7.1. I punkt Niech dane będa parami różne liczby x_0, x_1, \dots, x_n . Wykaż, że dla wielomianów

$$\lambda_k(x) := \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}$$
 $(k = 0, 1, ..., n)$

a)
$$\sum_{k=0}^{n} \lambda_k(x) \equiv 1$$
, b) $\sum_{k=0}^{n} \lambda_k(2023) \prod_{i=0}^{j-1} (x_k - f(i)) = 0$ $(j = 1, 2, \dots, n)$,

gdzie $f:\mathbb{N}\to\mathbb{R}$ jest dowolną funkcją spełniającą warunek f(0)=2023.

 $\textbf{L7.2.} \ \boxed{1 \ \text{punkt}} \ \textbf{Używając postaci Newtona, podaj wielomian interpolacyjny dla następujących}$

$$\mathbf{a)} \ \ \frac{y_k}{y_k} \ \frac{-3}{2} \ \frac{0}{2} \ \frac{3}{8} \ \frac{4}{142} \ , \quad \mathbf{b)} \ \frac{y_k}{y_k} \ \frac{3}{38} \ \frac{4}{142} \ \frac{-3}{2} \ \frac{-1}{62} \ \frac{0}{2}$$

L7.3. Włącz komputer! 1 punkt Przy pomocy programu umożliwiającego rysowanie wykreuj wykresy wielomianów

$$p_{n+1}(x) := (x - x_0)(x - x_1) \dots (x - x_n)$$
 $(n = 4, 5, \dots, 20)$

dla x_k (0 $\leq k \leq n$) będących węzłami równo
odległymi w przedziale [-1,1]. Następnie powtórz eksperyment dla
 wezłów Czebyszewa. Skomentuj wyniki porównując odpowiednie wykresy. Jakie i dlaczego płyną stąd wnioski dla sposobu wyboru węzłów interpolacji?

 L7.4. $\boxed{1 \text{ punkt}}$ Niech $t_{nk}^{[a,b]}$ $(0 \leq k \leq n; \ n \in \mathbb{N})$ oznacza węzły Czebyszewa w przedziałe [a,b] $\overline{(a < b)}$. Podaj jawny wzór dla tych węzłów. Jaką wartość przyjmuje wyrażenie

$$\max_{x \in [a,b]} \left| \left(x - t_{n0}^{[a,b]} \right) \left(x - t_{n1}^{[a,b]} \right) \cdot \dots \cdot \left(x - t_{nn}^{[a,b]} \right) \right| ?$$

Odpowiedź uzasadnij.

L7.5. 1 punkt Funkcję $f(x) = \cos(x)$ interpolujemy wielomianem $L_n \in \Pi_n$ w pewnych n+1różnych punktach przedziału [-3, -2]. Znajdź wartość n, dla której

$$\max_{x \in [-3,-2]} |f(x) - L_n(x)| \le 10^{-12}.$$

Jak zmieni się sytuacja, gdy użyjemy węzłów Czebyszewa odpowiadającym przedziałowi [-3, -2]?

 $\begin{array}{lll} \textbf{L7.6.} & \boxed{2~\text{punkty}} \text{ Jak wiadomo, język programowania PWO++ ma bogatą bibliotekę funkcji i procedur numerycznych. Wśród nich jest m.in. procedura DD_Table(x,f) znajdująca z dodorowania PWO++ wieden z dodorowania PWO++ w$ kładnością bliską maszynowej ilorazy różnicowe $f[x_0]$, $f[x_0,x_1],\ldots,f[x_0,x_1,\ldots,x_n]$, gdzie x:= $[x_0,x_1,\ldots,x_n]$ jest wektorem parami różnych liczb rzeczywistych, a f – daną funkcją. Niestety procedura ta ma pewną wadę, mianowicie n musi być mniejsze niż 21. W jaki sposób, wykorzystując procedurę DD_Table tylko raz, można szybko wyznaczyć ilorazy różnicowe $f[z_0],~f[z_0,z_1],~\dots,~f[z_0,z_1,\dots,z_{20}],~f[z_0,z_1,\dots,z_{20},z_{21}],$ gdzie $z_i\neq z_j$ dla $i\neq j,~0\leq i,j\leq 21.$

 $\textbf{Uwagi.} \ \operatorname{Rozwiązania,} \ w \ \operatorname{których} \ \textbf{dwukrotnie} \ \operatorname{używa} \ \operatorname{się} \ \operatorname{procedury} \ \mathtt{DD_Table} \ \operatorname{lub} \ \operatorname{wyko-totnie} \ \operatorname{uzywa} \ \operatorname{się} \ \operatorname{procedury} \ \mathtt{DD_Table} \ \operatorname{lub} \ \operatorname{wyko-totnie} \ \operatorname{uzywa} \ \operatorname{się} \ \operatorname{procedury} \ \operatorname{DD_Table} \ \operatorname{lub} \ \operatorname{wyko-totnie} \ \operatorname{uzywa} \ \operatorname{się} \ \operatorname{procedury} \ \operatorname{DD_Table} \ \operatorname{lub} \ \operatorname{wyko-totnie} \ \operatorname{uzywa} \ \operatorname{się} \ \operatorname{procedury} \ \operatorname{DD_Table} \ \operatorname{lub} \ \operatorname{wyko-totnie} \ \operatorname{uzywa} \ \operatorname{uzwa} \ \operatorname{u$ rzystuje się jawny wzór na iloraz różnicowy nie wchodzą w grę.

L7.7. 2 punkty Niech dla $n \in \mathbb{N}$ dane będą punkty $x_0 < x_1 < \ldots < x_{n+1}$ oraz taka funkcja f, że pochodna $f^{(n+1)}$ jest ciągła i ma stały znak w przedziałe $[x_0, x_{n+1}]$. Niech L i Mbędą takimi wielomianami stopnia $\leq n$, że

$$L(x_i) = f(x_i)$$
 $(i = 0, 1, ..., n),$

$$M(x_j) = f(x_j)$$
 $(j = 1, 2, ..., n + 1).$

Wykazać, że dla dowolnego $x \in [x_0, x_{n+1}]$ wartość f(x) leży pomiędzy L(x) i M(x).

 L7.8. 2 punkty Niech p_n będzie wielomianem stopnia n>1interpolującym daną funkcję fw węzłach $t_{nj} := \cos \frac{\pi j}{n} \ (j=0,1,\dots,n).$ Udowodnij, że

$$p_n(x) = \sum_{k=0}^{n} {}''b_k^n \cdot T_k(x),$$

gdzie T_k jest k-tym wielomianem Czebyszewa, a

$$b_k^n := \frac{2}{n} \sum_{j=0}^n f(t_{nj}) T_k(t_{nj})$$
 $(k = 0, 1, ..., n).$

Jak użyć algorytmu Clenshawa do obliczenia współczynników b_k^n $(k=0,1,\ldots,n)$? Ile

 Uwaga. Jeśli potrafisz podać i uzasadnić algorytm wyznaczania współczynników b_k^n $(0 \le k \le n)$ w czasie $O(n \log n)$, to przygotuj rozwiązanie przy pomocy systemu LYTEX i dostarcz je prowadzącemu — być może dostaniesz dodatkowe punkty.