Class 13: RNA Seq Analysis

Olivia Baldwin

Today we will work with bulk RNASeq data from Himes et al. where airway smooth muscle (asm) cells were treated with dexamethasone (dex), a glucocorticoid steriod.

```
counts <- read.csv("airway_scaledcounts.csv", row.names = 1)
meta <- read.csv("airway_metadata.csv")
head(counts)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG0000000003	723	486	904	445	1170
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG0000000003	1097	806	604		
ENSG0000000005	0	0	0		
ENSG00000000419	781	417	509		
ENSG00000000457	447	330	324		
ENSG00000000460	94	102	74		
ENSG00000000938	0	0	0		

head(meta)

```
id dex celltype geo_id
1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
```

```
dim(counts)
```

[1] 38694 8

```
table(meta$dex)
```

```
control treated 4 4
```

Q1: There are 38,694 genes in the counts data.

Q2: There are 4 control samples and 4 treated samples.

Want to compare control vs treated to see the drug's affect.

1. Let's split the counts into control.counts and treated.counts.

```
meta$id == colnames(counts)
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Syntax for [] is [rows, columns]

```
control <- meta[meta$dex=="control",]
control.counts <- counts[,control$id]</pre>
```

```
treated <- meta[meta$dex == "treated",]
treated.counts <- counts[,treated$id]</pre>
```

2. Lets calculate the mean counts per gene for "control" and "treated" - then we can compare.

I can use the apply function to apply mean over the rows or columns of a data frame.

```
control.mean <- apply(control.counts, 1, mean)
head(control.mean)</pre>
```

```
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
900.75 0.00 520.50 339.75 97.25
ENSG00000000938
```

0.75

```
treated.mean <- apply(treated.counts, 1, mean)
head(treated.mean)</pre>
```

```
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460 658.00 0.00 546.00 316.50 78.75 ENSG00000000938 0.00
```

Put these mean counts together into one df for ease.

```
meancounts <- data.frame(control.mean, treated.mean)
plot(meancounts)</pre>
```


Let's log transform it so we can see more of our data points.

```
plot(meancounts, log="xy")
```

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot

We most often use $\log 2$ transforms here because it makes the math easier.

This is because the $\log 2$ of 1 is zero (no change). A 1 would mean a "doubling" of the amounts.

```
#log2(treated/control)
log2(10/10)
```

[1] 0

```
log2(10/20)
```

[1] -1

```
log2(20/10)
```

[1] 1

```
log2(40/10)
```

[1] 2

Let's calculate the log2 fold change and add it to our table meancounts.

meancounts\$log2fc <- log2(meancounts\$treated.mean/meancounts\$control.mean)
head(meancounts)</pre>

	${\tt control.mean}$	${\tt treated.mean}$	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG0000000005	0.00	0.00	NaN
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000938	0.75	0.00	-Inf

Filter out all of the 0 counts from the meancounts data.

```
to.rm <- rowSums(meancounts[,1:2] == 0) > 0
mycounts <- meancounts[!to.rm, ]
#the `!` means opposite of
nrow(mycounts)</pre>
```

[1] 21817

#this shows that there are only about 22000 genes left after all 0 counts removed

Q: How many down regulared genes do we have at the common $\log 2$ fold change value of below -2? 367

```
down <- mycounts$log2fc < -2
sum(down)</pre>
```

[1] 367

Q: How many up regulated genes do we have at $\log 2$ of higher than +2? **250**

```
up <- mycounts$log2fc > 2
sum(up)
```

[1] 250

Do we trust these results? Not yet...

We are missing the stats!!

##DESeq Analysis

```
library(DESeq2)
```

DESeq, like many BioConductor packages, wants our input data in a very specific format.

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

The main function in DESeq2 is called DESeq().

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

```
res <- results(dds)</pre>
```

ENSG00000283123

log2 fold change (MLE): dex treated vs control Wald test p-value: dex treated vs control DataFrame with 38694 rows and 6 columns baseMean log2FoldChange lfcSE stat pvalue <numeric> <numeric> <numeric> <numeric> <numeric> 747.1942 -0.3507030 0.168246 -2.084470 0.0371175 ENSG00000000003 ENSG00000000005 0.0000 NANANANAENSG00000000419 520.1342 ENSG00000000457 322.6648 0.0245269 0.145145 0.168982 0.8658106 ENSG00000000460 87.6826 -0.1471420 0.257007 -0.572521 0.5669691 . . . ENSG00000283115 0.000000 NA NA NA NA ENSG00000283116 0.000000 NANΑ NA NAENSG00000283119 0.000000 NANANANAENSG00000283120 0.974916 -0.668258 1.69456 -0.394354 0.693319 NA ENSG00000283123 0.000000 NANANApadj <numeric> ENSG00000000003 0.163035 ENSG00000000005 ENSG00000000419 0.176032 ENSG00000000457 0.961694 ENSG00000000460 0.815849 ENSG00000283115 NAENSG00000283116 NAENSG00000283119 NAENSG00000283120 NA

#gives base mean, log2 change, log fold change standard error, stat, p-value and adjusted p-

A common overview figure plots the log2 fold change vs the p-value (volcano plot).

NA

```
plot(res$log2FoldChange, -log(res$padj))
abline(v=c(-2, 2), col="orange")
abline(h=-log(0.005), col="orange")
```


#the `-log` flips the log axis to put the values of interest towards the top

```
mycols <- rep("grey", nrow(res))
mycols[res$log2FoldChange > 2] <- "blue"
mycols[res$log2FoldChange < -2] <- "red"
mycols[res$padj > 0.005] <- "grey"

plot(res$log2FoldChange, -log(res$padj), col=mycols)
abline(v=c(-2, 2), col="orange")
abline(h=-log(0.005), col="orange")</pre>
```


Save our results from DESeq:

```
write.csv(res, file="myresults_class13.csv")
```

Gene Annotation

head(res)

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 6 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG0000000003	747.194195	-0.3507030	0.168246	-2.084470	0.0371175
ENSG0000000005	0.000000	NA	NA	NA	NA
ENSG00000000419	520.134160	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.664844	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.682625	-0.1471420	0.257007	-0.572521	0.5669691
ENSG00000000938	0.319167	-1.7322890	3.493601	-0.495846	0.6200029
	padj				
	<numeric></numeric>				

```
ENSG00000000003 0.163035

ENSG00000000005 NA

ENSG00000000419 0.176032

ENSG00000000457 0.961694

ENSG000000000460 0.815849

ENSG000000000938 NA
```

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

```
"ALIAS"
 [1] "ACCNUM"
                                    "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                    "EVIDENCEALL"
                                                                   "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                   "IPI"
                                                                   "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                    "ONTOLOGYALL"
                                                   "PATH"
                                                                   "PFAM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                    "SYMBOL"
                                                                   "UCSCKG"
[26] "UNIPROT"
```

res\$symbol <- mapIds(org.Hs.eg.db, keys=row.names(res), keytype="ENSEMBL", column="SYMBOL", n

'select()' returned 1:many mapping between keys and columns

#the `multiVals` is for when one thing in one database maps to multiple in another, so you de

head(res)

```
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 7 columns
```

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000000003	747.194195	-0.3507030	0.168246	-2.084470	0.0371175
ENSG00000000005	0.000000	NA	NA	NA	NA
ENSG00000000419	520.134160	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.664844	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.682625	-0.1471420	0.257007	-0.572521	0.5669691

ENSG00000000938	0.319167	7 -1.7322890	3.493601 -0.495846 0.6200029
	padj	symbol	
	<numeric></numeric>	<character></character>	
ENSG0000000003	0.163035	TSPAN6	
ENSG00000000005	NA	TNMD	
ENSG00000000419	0.176032	DPM1	
ENSG00000000457	0.961694	SCYL3	
ENSG00000000460	0.815849	FIRRM	
ENSG00000000938	NA	FGR	

Pathway Analysis

library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

library(gage)

```
library(gageData)
data("kegg.sets.hs")
```

KEGG take ENTREZ Ids. So I need to convert to the Entrez ID from the Ensembl.

```
res$entrez <- mapIds(org.Hs.eg.db, keys=row.names(res), keytype="ENSEMBL", column="ENTREZID"
```

^{&#}x27;select()' returned 1:many mapping between keys and columns

head(res)

```
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 8 columns
                 baseMean log2FoldChange
                                           lfcSE
                                                              pvalue
                                                      stat
                <numeric>
                              <numeric> <numeric> <numeric> <numeric>
                             -0.3507030 0.168246 -2.084470 0.0371175
ENSG00000000003 747.194195
ENSG00000000005
                 0.000000
                                              NA
                                                        NA
                              ENSG00000000419 520.134160
ENSG00000000457 322.664844
                              0.0245269 0.145145 0.168982 0.8658106
ENSG0000000460 87.682625
                             -0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000938
                             -1.7322890 3.493601 -0.495846 0.6200029
                 0.319167
                             symbol
                    padj
                                         entrez
               <numeric> <character> <character>
ENSG0000000000 0.163035
                             TSPAN6
                                          7105
                                          64102
ENSG00000000005
                     NA
                               TNMD
ENSG00000000419 0.176032
                               DPM1
                                          8813
ENSG00000000457
                0.961694
                              SCYL3
                                          57147
ENSG00000000460
               0.815849
                              FIRRM
                                          55732
ENSG00000000938
                     NA
                                FGR
                                           2268
```

The gage () function will check to see if the Entrez Ids overlap with known KEGG pathways.

```
#gage wants the vector of importance (if doing it for real I would filter out bad padj value)
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez
#this will change the ENS... names to the entrez names
keggres <- gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)</pre>
```

```
$names
```

[1] "greater" "less" "stats"

head(keggres\$less, 3)

```
p.geomean stat.mean p.val
hsa05332 Graft-versus-host disease 0.0004250461 -3.473346 0.0004250461
hsa04940 Type I diabetes mellitus 0.0017820293 -3.002352 0.0017820293
hsa05310 Asthma 0.0020045888 -3.009050 0.0020045888
q.val set.size exp1
hsa05332 Graft-versus-host disease 0.09053483 40 0.0004250461
hsa04940 Type I diabetes mellitus 0.14232581 42 0.0017820293
hsa05310 Asthma 0.14232581 29 0.0020045888
```

```
pathview(gene.data=foldchanges, pathway.id="hsa05310")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/obald/OneDrive/Documents/UCSD/Rscripts/class13

Info: Writing image file hsa05310.pathview.png

Figure 1: A oathway figure