MA109 Tutorial 1 Sarthak Mittal

Solutions to Tutorial Sheet 1

1. Using $(\epsilon - n_0)$ definition, prove the following:

(iii)
$$\lim_{n \to \infty} \frac{n^{2/3} sin(n!)}{n+1} = 0$$

Solution. For a given $\epsilon > 0$, we have to find $n_0 \in \mathbb{N}$ such that $|a_n| < \epsilon$ for all $n \ge n_0$. Note that

$$|a_n| < \frac{n^{2/3}}{n+1} < \frac{1}{n^{1/3}}$$

Hence, select $n_0 \in \mathbb{N}$ such that $n_0 > \frac{1}{\epsilon^3}$. (Think about why is this always possible.)

(iv)
$$\lim_{n \to \infty} \left(\frac{n}{n+1} - \frac{n+1}{n} \right) = 0$$

Solution. Following approach similar to previous part, note that

$$|a_n| = \frac{1}{n} \left(2 - \frac{1}{n+1} \right) < \frac{2}{n}$$

Hence, select $n_0 \in \mathbb{N}$ such that $n_0 > \frac{2}{\epsilon}$. (Think again. Same logic.)

2. Show that the following limits exist and find them:

(i)
$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n} \right)$$

Solution.

$$\frac{n^2}{n^2 + n} \le a_n \le \frac{n^2}{n^2 + 1} \implies \lim_{n \to \infty} a_n = 1$$

(iv)
$$\lim_{n\to\infty} (n)^{1/n}$$

Solution. Let $n^{1/n} = 1 + h_n$. For $n \ge 2$, we have

$$n = (1 + h_n)^n \ge 1 + nh_n + \binom{n}{2}h_n^2 > \binom{n}{2}h_n^2 \implies 0 < h_n^2 < \frac{2}{n-1} \implies \lim_{n \to \infty} h_n = 0 \implies \lim_{n \to \infty} a_n = 1$$

(v)
$$\lim_{n \to \infty} \left(\frac{\cos \pi \sqrt{n}}{n^2} \right)$$

Solution.

$$0 < \left| \frac{\cos \pi \sqrt{n}}{n^2} \right| \le \frac{1}{n^2} \implies \lim_{n \to \infty} a_n = 0$$

(vi)
$$\lim_{n\to\infty} (\sqrt{n}(\sqrt{n+1} - \sqrt{n}))$$

Solution.

$$\sqrt{n}(\sqrt{n+1} - \sqrt{n}) = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{1 + \sqrt{1 + \frac{1}{n}}} \implies \lim_{n \to \infty} a_n = \frac{1}{2}$$

3. Show that the following sequences are not convergent:

(i)
$$\{\frac{n^2}{n+1}\}_{n\geq 1}$$

Solution.

$$\frac{n^2}{n+1} = (n-1) + \frac{1}{n+1} \text{ is not convergent since } \lim_{n \to \infty} \frac{1}{n+1} = 0$$

MA109 Tutorial 1 Sarthak Mittal

4. Determine whether the sequences are increasing or decreasing:

(i)
$$\{\frac{n}{n^2+1}\}_{n\geq 1}$$

Solution. Decreasing, since $a_n = \frac{1}{n + \frac{1}{n}}$ and $\{n + \frac{1}{n}\}_{n \geq 1}$ is increasing.

(iii)
$$\left\{\frac{1-n}{n^2}\right\}_{n\geq 2}$$

Solution. Increasing, as $a_{n+1} - a_n = \frac{n(n-1)-1}{n^2(n+1)^2} > 0$ for $n \ge 2$.

5. Prove that the following sequences are convergent by showing that they are monotone and bounded.

Also find their limits:

(ii)
$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

Solution. By induction, $\sqrt{2} \le a_n < 2 \ \forall n$. Hence, $a_{n+1} - a_n = \frac{(2-a_n)(1+a_n)}{a_n + \sqrt{2+a_n}} > 0 \ \forall n$. Thus $\{a_n\}_{n \ge 2}$ is monotonically increasing and bounded above by 2. So $\lim_{n \to \infty} a_n = a$ (say) exists, and $\sqrt{2} \le a < 2$. Also, $a = \sqrt{2+a}$, id est, $a^2 = a + 2 \implies a = -1$, 2. Hence $\lim_{n \to \infty} a_n = 2$.

7. If $\lim_{n\to\infty} a_n = L \neq 0$, show that there exists $n_0 \in \mathbb{N}$ such that

$$|a_n| \ge \frac{|L|}{2}$$
 for all $n \ge n_0$.

Solution. Take $\epsilon = |L|/2$. Then $\epsilon > 0$ and since $a_n \to L$, there exists $n_0 \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ $\forall n \ge n_0$. Now $||a_n| - |L|| \le |a_n - L|$ and hence $|a_n| > |L| - \epsilon = |L|/2 \ \forall n \ge n_0$.

8. If $a_n \ge 0$ and $\lim_{n \to \infty} a_n = 0$, show that $\lim_{n \to \infty} a_n^{1/2} = 0$.

Optional: State and prove a corresponding result if $a_n \to L > 0$.

Solution. Given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n| < \epsilon^2 \ \forall n \ge n_0$. Hence $|\sqrt{a_n}| < \epsilon \ \forall n \ge n_0$. Hint. For optional part, try using the fact that a_n will be bounded and $a_n - L = (\sqrt{a_n} - \sqrt{L})(\sqrt{a_n} + \sqrt{L})$.

10. Show that a sequence $\{a_n\}_{n\geq 1}$ is convergent if and only if both the sub-sequences $\{a_2n\}_{n\geq 1}$ and $\{a_{2n+1}\}_{n\geq 1}$ are convergent to the same limit.

Solution. The implication " \Longrightarrow " is obvious. For the converse, suppose both $\{a_{2n}\}_{n\geq 1}$ and $\{a_{2n+1}\}_{n\geq 1}$ converge to ℓ . Let $\epsilon>0$ be given. Choose $n_1,\ n_2\in\mathbb{N}$ such that $|a_{2n}-\ell|<\epsilon$ for all $n\geq n_1$ and $|a_{2n+1}-\ell|<\epsilon$ for all $n\geq n_2$. Let $n_0=\max\{n_1,n_2\}$. Then $|a_n-\ell|<\epsilon$ for all $n\geq 2n_0+1$.