Permit Number 5252

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission				Emission Rates *		
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**		
102	Clay Treater Decon. Heater HS-102 (3 MMBtu/hr)	NO_x CO VOC SO_2 PM_{10}	0.39 0.87 0.04 0.06 0.17	1.71 0.54 0.16 0.24 0.72		
103	Benzene Recovery Column Reboiler HS-103	NO_x CO VOC SO_2 PM_{10}	10.95 23.30 0.05 0.17 0.39	47.98 1.03 0.20 0.26 1.70		
104	EB Recovery Column Reboiler HS-104	NO_x CO VOC SO_2 PM_{10}	7.22 40.84 0.72 0.28 0.63	25.89 34.51 3.15 0.47 2.75		
201/219	Superheaters HS-201and 21	$\begin{array}{ccc} 9 & NO_x \\ & CO \\ & VOC \\ & SO_2 \\ & PM_{10} \end{array}$	42.01 84.08 1.28 1.03 0.06	166.31 48.57 5.62 4.51 0.25		
213	Tank MS-213	VOC	0.01	0.01		
220	Superheater HS-220 (170 MMBtu/hr)	NO_x CO VOC SO_2 PM_{10}	2.16 6.11 0.54 0.44 0.58	7.63 19.08 2.24 1.84 2.46		

Emission	Source	Air Contaminant	nant <u>Emissio</u>	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		NH₃	1.01	4.44
301-A	Boiler HB-301-A	NO _x CO	34.76 59.09	143.00 4.60
		VOC	0.22	0.91
		SO_2	0.62	1.16
		PM_{10}	0.74	3.04
301-B	Boiler HB-301-B	NO_x	40.20	169.53
		CO	59.09	4.60
		VOC	1.22	5.18
		SO_2	0.69	1.16
		PM_{10}	0.38	1.56
301-S	Boiler HB-301-S	NO_x	53.14	205.00
		CO	61.46	4.60
		VOC	1.26	4.86
		SO_2	0.58	1.16
		PM_{10}	0.45	1.75
302	Tank MT-302	VOC	0.01	0.01
307	Tank MT-307	VOC	0.01	0.01
308	Tank MT-308	VOC	0.01	0.01
331	Wastewater Clarifier GV-33	1 VOC	0.01	0.01
601	TDA Reactor Feed Heater HS-601	NO_x CO VOC SO_2 PM_{10}	1.30 3.60 0.02 0.02 0.19	5.68 0.04 0.09 0.03 0.83
812	Stormwater Pump	NO_{x} CO VOC SO_{2} PM_{10}	0.74 0.16 0.06 0.05 0.05	2.23 0.48 0.18 0.15 0.16

Emission	Source	Air Contaminant	Emission	Emission Rates *		
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**		
1301	Boiler HB-1301-P	NO_x CO VOC SO_2 PM_{10}	17.83 54.05 1.39 0.25 0.51	66.10 47.22 5.11 0.52 1.88		
CT-1	Cooling Tower-1	VOC (4) PM ₁₀	2.52 1.98	6.03 8.68		
CT-2	Cooling Tower-2	PM ₁₀	0.34	1.48		
CTOTANK and CTOVENT	Catalytic Thermal Oxidizers	NO_x CO VOC SO_2 PM_{10}	0.81 6.95 16.40 0.01 0.09	1.48 12.70 2.20 0.01 0.17		
Diesel Tanks	Diesel Tanks	VOC	0.11	0.03		
FL	Flare	NO _x CO VOC SO ₂	0.24 1.75 0.60 0.01	1.06 7.68 2.63 0.01		
FUG-MSS	Fugitive MSS	VOC PM_{10} C_6H_6	11.95 0.10 4.02	0.61 <0.01 0.28		

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	<u>Emissior</u> lb/hr	n Rates * TPY**
FUG-BZ	Benzene Fugitives (4)	VOC	1.17	5.14
FUG-HRVOC	Ethylene Fugitives (4)	VOC (5) Ethylene	0.22 0.21	0.95 0.91
FUG-NH3	Ammonia Fugitives (4)	NH_3	0.03	0.13
FUG-VOC	VOC Fugitives (4)	VOC	2.10	9.19
GY308	GY308 Condensate Deaerato	or VOC	0.70	0.33
GY-347	Precoat	PM_{10}	0.01	0.01
LR-1	Loading Rack	VOC	4.32	0.01
М	AINTENANCE, START-UP, AI	ND SHUTDOWN EMIS	SIONS	
115	Emergency Generator	NO_x CO VOC SO_2 PM_{10}	12.09 2.61 0.96 0.80 0.86	0.67 0.15 0.06 0.04 0.06
220	Superheater HS-220 Start-up and Shutdown	NO_x CO VOC SO_2 PM_{10}	10.20 42.79 0.54 0.44 0.58	1.84 7.70 0.10 0.08 0.10
802A, 802B, 802S, and 805	Firewater Pumps	$\begin{array}{c} NO_{x} \\ CO \\ VOC \\ SO_{2} \\ PM_{10} \end{array}$	42.16 9.08 3.36 2.80 3.00	3.37 0.73 0.27 0.22 0.24

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant		Rates *						
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**						
FL	Flare MSS	NO_x	8.44	0.10						
		CO	60.96	0.71						
		PM_{10}	3.00	0.24						
		VOC (5)	141.66	1.82						
		C_6H_6	63.87	1.22						
		Ethylene	70.00	0.48						
REGEN	EB Regenerator	CO	5.00	0.20						
	HAZARDOUS AIR POLLUTANTS (HAP) EMISSION LIMITATIONS									
				0.00						
		Individual HAP		9.90						

(1) Emission point identification - either specific equipment designation or emission point number (EPN) from plot plan.

All HAPs Combined

- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) NO_x total oxides of nitrogen
 - CO carbon monoxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code ' 101.1
 - SO₂ sulfur dioxide
 - PM₁₀ particulate matter equal to or less than 10 microns in diameter.
 - NH₃ ammonia
 - C₆H₆ benzene
 - HAP hazardous air pollutants
- (4) Emission rate is an estimate and compliance is demonstrated by meeting the requirements of the applicable special conditions and permit application representations.
- (5) The allowables for VOC includes the allowables for the speciated organic compounds.

*	Emission rates schedule:	are b	ased o	on and	the	facilities	are	limited	by	the	following	maximum	operating
	Hrs/Day	/	Da	ıys/Wk		Wks	/Yr c	or <u>8,76</u>	<u> 30</u>	_Hrs	/Yr		

24.90

^{**} Compliance with annual emission limits is based on a rolling 12-month period.