# Estimating Fiscal Multipliers: An SVAR Approach

Gavin Engelstad Samina Stack

Fall 2024

Stat 451: Causal Inference

# **Big Picture**

How does fiscal policy affect overall output in the US?

# Background

# Fiscal Policy

Fiscal policy is one of the two main tools for policymakers to affect the economy

- Taxes ⇒ Lower Output (Barro and Redlick 2011)
- Spending ⇒ Higher Output (Blanchard and Leigh 2013)

The fiscal multiplier is the magnitude of the effect of fiscal policy

**Keynesian Multiplier** \$1 increase in spending ⇒ >\$1 increase in output (Barro and Redlick 2011)

Crowding Out \$1 increase in spending ⇒ <\$1 increase in output (Baum 2012)

# **Empirical Strategy**

# Growth vs. Business Cycle Effects



We're interested in understanding Business Cycles

# Vector Autoregression (1/2)

Model a vector of outputs as an autoregressive process

$$Y_t = \sum_{\ell=1}^p B_\ell Y_{t-\ell} + u_t$$

Where:

 $Y_t$  Vector of Outputs

 $B_{\ell}$  Coefficient Matrix

 $\boldsymbol{u}_t$  Vector of Errors

# Vector Autoregression (2/2)



#### Causal Inference (1/2)

Variance covariance matrix of  $u_t$  is symmetric and dense VARs measure correlations, not causation (Nakamura and Steinsson 2018)

Ex: Measured effect of interest rate on GDP could be:

- The interest rate responding to forecasts about GDP
- GDP actually responding to the interest rate

#### Causal Inference (2/2)

A structural shock is an exogenous shock to one of the variables in the model

Could be caused by

- International events
- · Other series movements
- ...

The effect of a structural shock to a variable is the causal effect of changes in that variable

### Structural VAR (1/2)

Add a contemporaneous relationship to the VAR

$$A_0 Y_t = \sum_{\ell=1}^{p} A_{\ell} Y_{t-\ell} + \varepsilon_t$$

Where:

 $Y_t$  Vector of Outputs

 $A_{
m p}$  Coefficient Matrix

 $\boldsymbol{\varepsilon}_{\mathrm{t}}$  Vector of Structural Errors (Var Cov Matrix  $\boldsymbol{I}_{n}$ )

# Structural VAR (2/2)



#### Our Model (1/2)

Estimate the order 4 VAR

$$Y_t = \sum_{\ell=1}^p B_\ell Y_{t-\ell} + u_t$$

Where  $Y_t$  is the vector of

- GDP  $(x_t)$
- $\cdot$  Government Spending  $(\boldsymbol{g}_t)$
- $\cdot$  Government Revenue  $(t_t)$

### Our Model (2/2)

#### Structural relationship:

$$u_{t}^{x} = a_{1}u_{t}^{g} + a_{2}u_{t}^{t} + \varepsilon_{t}^{x}$$

$$u_{t}^{g} = b_{1}u_{t}^{x} + b_{2}\varepsilon_{t}^{t} + \varepsilon_{t}^{g}$$

$$u_{t}^{t} = c_{1}u_{t}^{x} + c_{2}\varepsilon_{t}^{g} + \varepsilon_{t}^{t}$$

#### Assume:

- b<sub>1</sub> = 0, Government response is delayed
- $c_1 = 1.7$ , Lutz and Follette (2010)
- $b_2$  or  $c_2 = 0$ , identification restriction



(Blanchard and Perotti 2002)

# Data

### Data (1/2)

Get data on GDP, Government Spending, and Tax Revenues from FRED between 1960 and 2007

Then we:

**Inflation Adjust** Divide by GDP deflator **Detrend** Get business cycle effects



# Results



# Multiplier

Take the maximum increase in GDP following the structural shock

Adjust for relative size of GDP and government spending Estimate multiplier is

1.035

(0.115)

#### Robustness

#### Results are robust to

- Setting  $b_2 = 0$  Setting  $b_2 = 0$
- Different responsiveness of revenue to GDP Changing C1
- Using a different number of lags
- Allowing the effect to change over time



Conclusion

#### Conclusion

Using an SVAR, we estimated the fiscal multiplier for the US economy

Found fiscal spending has approximately a 1-1 effect

#### Limitations:

- Structural assumptions
- · Simplistic linear detrending
- · Revenue-side effects



# Coefficients

| Parameter | a <sub>1</sub> | $a_2$  | c <sub>2</sub> |  |
|-----------|----------------|--------|----------------|--|
| Estimate  | -0.182         | -0.150 | 0.040          |  |

# Setting $b_2 = 0$



Multiplier: 0.990 (0.115)

# Changing $c_1$

Follow Blanchard and Perotti (2002), set  $c_1$  = 2.08

| Parameter |        |                       | Mutiplier |          |      |
|-----------|--------|-----------------------|-----------|----------|------|
| $a_1$     | $a_2$  | <b>c</b> <sub>2</sub> | Value     | Std. Er. | Time |
| -0.182    | -0.150 | 0.040                 | 1.126     | 0.115    | 2    |

#### **Different VAR Orders**

Estimate multiplier using VAR with order 1-24 (1 Quarter - 6 Years)



#### **Time Trends**

Estimate multiplier within 10 year rolling windows





#### References i

- Barro, Robert J, and Charles J Redlick. 2011. "Macroeconomic effects from government purchases and taxes." *The Quarterly Journal of Economics* 126 (1): 51–102.
- Baum, A. 2012. Fiscal Multipliers and the State of the Economy. Number.
- Blanchard, Olivier, and Roberto Perotti. 2002. "An empirical characterization of the dynamic effects of changes in government spending and taxes on output." *the Quarterly Journal of economics* 117 (4): 1329–1368.

#### References ii

- Blanchard, Olivier J, and Daniel Leigh. 2013. "Growth forecast errors and fiscal multipliers." *American Economic Review* 103 (3): 117–120.
- Lutz, Byron F, and Glenn R Follette. 2010. "Fiscal policy in the United States: Automatic stabilizers, discretionary fiscal policy actions, and the economy." *Discretionary Fiscal Policy Actions, and the Economy (June 28, 2010).*
- Nakamura, Emi, and Jón Steinsson. 2018. "Identification in macroeconomics." *Journal of Economic Perspectives* 32 (3): 59–86.