Since $s^*(M_p, (M_p)_*) = s^*(M, M_*) | M_p$ (a) follows immediately from (i)''. Using the resolvent equation for R it is easy to see that (ii)'' implies

$$\lim_{n} \|(\mathrm{Id} - \lambda R(\lambda))\phi_{n}\| = 0$$

for all $\lambda \in D$ and the proof is complete.

Without further comments we will make use of the following facts in the rest of this section :

- (1) A sequence (ϕ_n) in M'₊ converges in the $\sigma(M',M)$ -topology if and only if it converges in $\sigma(M',M'')$ -topology [Akeman-Dodds-Gamlen (1972)].
- (2) We can decompose $\phi \in M'_+$ into its normal and singular part $\phi = \phi^{(n)} + \phi^{(s)}$, $0 \le \phi^{(n)} \in M_*$, $0 \le \phi^{(s)} \in M_*$ and $\|\phi\| = \|\phi^{(n)}\| + \|\phi^{(s)}\|$ [Takesaki (1979), Theorem III.2.14].
- (3) If (ϕ_n) is a sequence in M_\star which converges to zero in the $\sigma(M_\star,M)$ -topology and if (x_n) is a sequence in M which converges to zero in the s* (M,M_\star) -topology, then $\lim_n \phi_k(x_n) = 0$ uniformly in k \in N [Takesaki (1979), Lemma III.5.5].
- Theorem 4.4. Let R be an identity preserving pseudo-resolvent on $D=\{\lambda\in\mathbb{C}: \text{Re}(\lambda)>0\}$ with values in a W*-algebra M which is of Schwarz type and let R' its adjoint pseudo-resolvent. Any one of the following conditions implies dim Fix $(\hat{R})<\infty$ in some ultrapower of M.
- (a) The fixed space of R' is finite dimensional.
- (b) $\lim_{\mu \downarrow 0} \mu R(\mu) = P$ exists in the strong operator topology and rank(P) < ∞ .
- (c) The fixed space of R' is contained in M_{\star} .
- (d) Every map $\ \mu R\left(\mu\right)$, $\mu \in \mathbb{R}_{+}$, is irreducible on $\ M$.

<u>Proof.</u> Suppose that the dimension of the fixed space of $(R'')^{\hat{}}$ in some ultrapower $(M')^{\hat{}}$ of M' is infinite dimensional. Since $(M')^{\hat{}}$

П