Contexto e natureza dos dados em segurança pública

Dados Estruturados BOs, sistemas policiais, bases jurídicas

Dados Semi-estruturados Planilhas, PDFs, JSON, XML

Dados Não Estruturados Imagens, videos, redes sociais

Como garantir que todos os registros de um mesmo tipo de crime estão padronizados?

Dados Estruturados

O número de ocorrências de um mesmo tipo cresce em períodos específicos?

Séries temporais e sazonalidade

Qualidade e integridade de dados

O que muda na análise quando o boletim está em PDF e não em um sistema?

Dados Semi-estruturados

É possível cruzar os PDFs de laudos periciais com os dados de ocorrência?

Dados não estrutura os

Image

Oceano caótico

visão computacional, PLN, reconhecimento de padrões

O valor dos dados não estruturados vem do processamento inteligente e do contexto ético

Como identificar padrões de l veículos suspeitos em vídeos de câmeras públicas?

Dados não estruturados

Micros Desafios

Estruturados: Campos mal padronizados inflacionam contagens.

Semi: OCR e parsing podem introduzir erros; registre versões.

Não estruturados: Bias e ambiguidade — resultados dependem de contexto.

Exemplos básicos

```
1 SELECT regiao, COUNT(*) AS ocorrencias
2 FROM boletins
3 WHERE tipo='assalto' AND date(data_ocorrencia) >= date(?)
4 GROUP BY regiao
5 ORDER BY ocorrencias DESC;
```

\$ ocrmypdf laudo.pdf laudo_ocr.pdf

Estruturados: Campos mal padronizados inflacionam contagens.

Semi: OCR e parsing podem introduzir erros; registre versões.

Não estruturados: Bias e ambiguidade — resultados dependem de contexto.

Onde estão?

Fontes e tipos de coleta

Natureza dos dados

Estruturados não e semi

1 Periodicidade

Pontual (eventual)

Programada (batch)
Contínua (streaming)

Origem

Coleta interna Coleta externa

Coleta mista

Aquisição

Manual

Automatizada

Assistida por IA/

Nível de Intervenção

Ativa, coletor solicita dado

Passiva, sistema emite o dado

2002

Acesso e Autorização

Atividade

Publique no fórum "Tipo de Coleta" um exemplo de sistema:

- Estruturado
- Não estruturado

Periodicidade

Pontual (eventual)

Programada (batch)

Contínua (streaming)

Tente caracterizar o tipo de coleta
possível

- Semi estruturado

1 Origem

Coleta interna Coleta externa Coleta mista

Nível de Intervenção

1 Aquisição

Manual

Automatizada

Assistida por IA/

Ativa, coletor solicita dado Passiva, sistema emite o dado

Acesso e Autorização

Raspagem e extração

Raspagem (scraping)

Obter dados de interfaces ou conteúdo publicado

HTML

Extração (extraction)

Obter dados diretamente de uma fonte estruturada

Database

Web Scraping

Ferramentas

Extração de

requests
BeatifulSoup
Selenium
Scrapy

Estabelecer limites de requisição

Notícias Portais de transparência Redes sociais

Manter registro (hash e logs) como parte da cadeia de custódia

Exemplo: transparência

Extração via API e Integração

Tecnologias

APIS REST/GraphQL

Paginação

Bancos de Dados

Change Data Capture

obtenção de dados de forma estruturada e autenticada

Prática

Integração interna Portais públicos

Cuidados éticos e legais

LGPD

Consentimento explícito Tratamento de dados pessoais

Responsabilidade

Coletar apenas o necessário Anonimizar dados pessoais

Registrar origem, data, hora, ferramentas e responsável pela coleta Calcular hash de cada arquivo para garantir autenticidade

Hash para cadeia de custódia

hash

é uma impressão digital de um arquivo

Algoritmo

SHA256: seguro e aceito

Usos principais

Verificar se o arquivo não foi alterado Registrar no log de custódia Comprovar autenticidade em auditorias

Exemplo

Raspagem e extração

Raspagem (scraping)

Extração (extraction)

Obter dados de interfaces ou conteúdo publicado Obter dados diretamente de uma fonte estruturada

Web Scraping

Ferramentas

Extração de

requests BeatifulSoup Selenium Scrapy

Estabelecer limites de requisição

Notícias Portais de transparência Redes sociais

Evitar violar Terms of Service ou extrair dados pessoais sensíveis

Manter registro (hash e logs) como parte da cadeia de custódia

Cuidados éticos e legais

LGPD

Responsabilidade

Consentimento explícito Tratamento de dados pessoais Coletar apenas o necessário Anonimizar dados pessoais

Cadeia de custódia

Registrar origem, data, hora, ferramentas e responsável pela coleta Calcular hash de cada arquivo para garantir autenticidade

Extração via API e Integração

Tecnologias

Prática

APIS REST/GraphQL Paginação Bancos de Dados Change Data Capture Integração interna Portais públicos

obtenção de dados de forma estruturada e autenticada

Hash para cadeia de custódia

hash

Algoritmo

é uma impressão digital de um arquivo

SHA256: seguro e aceito

Usos principais

Verificar se o arquivo não foi alterado Registrar no log de custódia Comprovar autenticidade em auditorias

Exemplo

Do KDD Clássico aos Processos Modernos de Dados

Da Descoberta de Conhecimento à Engenharia de Dados: a evolução do ciclo de valor do dado

Fayyad, 1996

Figura 1.2. Etapas Operacionais do Processo de KDD.

Goldschmidt, 2015

Transformar bases estruturadas (bancos relacionais) em conhecimento útil

Contexto original: bases corporativas isoladas, foco em descoberta (insight científico/estatístico)

Transição para o Pipeline Moderno

Evolução tecnológica

Big Data, IoT, logs, streaming e dados não estruturados Cloud, conteiners, APIs, ambiente distribuídos

Figura 1.2. Etapas Operacionais do Processo de KDD.

Goldschmidt, 2015

Evolução conceitual

"Descobrir conhecimento" para "gerar e sustentar fluxos de dados contínuos e auditáveis"

Evolução ética

"Extrair informação" para "tratar dado como ativo sensível" sujeito à LGPD e à cadeia de custódia

Dado é o produto

Dado como produto

- Unidade de valor, não apenas o resultado de análise
- Deve ser produzido, versionado, validado e distribuído como um artefato
- Em segurança pública, cada registro é um produto com valor operacional e probatório
- Seu uso como prova depende da qualidade do pré-processamento e da confiança no processo de custódia

Implicações práticas

Fontes múltiplas: delegacias, tribunais, dispositivos pessoais, sensores e nuvem.

Necessidade de:

Data lineage: rastreabilidade de ponta a ponta.

Hash e cadeia de custódia digital

Staging areas e pipelines versionados

Governança ética e legal

Cada dado é uma evidência em potencial e, portanto, requer rastreabilidade, integridade e contexto.

KDD x Pipeline Moderno

Asi	oec'	to
	\	

Foco

Estrutura

Entrada

Papel humano

Controle

Preocupação ética

Segurança Pública

KDD (anos 1990-2000)

Descoberta de Conhecimento

Sequência linear (offline)

Dados estruturados

Cientista de dados

Manual

Mínima

Estatístico ou preditivo

Pipeline Moderno

Produção e fluxo contínuo de dados

Arquitetura distribuída e contínua

Dados híbridos e em streaming

Engenheiro de dados/analista forense

Automatizado e versionado (ETL, DataOps)

Central (LGPD, auditoria, custódia)

Probatório, evidência digital, perícia de dados

Limpeza

Data cleaning

Remover inconsistência, duplicações

Preencher valores ausentes

Corrigir erros de digitação, codificação e formatos

Converter campos textuais (datas, números)

Anonimização e Pseudonimização

Dado Anonimiado não é pessoal Mantém a utilidade analítica e investigativa, sem expor dados sensíveis diretamente

Tornar impossível identificar o titular dos dados pessoais

Métodos: masking, hashing, noise addition, k-anonymity, truncamento

Aplicações: dashboards públicos, relatórios interinstitucionais, auditorias.

Normalização e Agregação

Intencionalidade

Ajuste de escala

Converter atributos categóricos para numéricos

Agrupar registros por caso, período, local ou natureza do crime.

Unificar unidades (ex.: R\$ → centavos, km/h → m/s)

Usar funções de agregação (SUM, COUNT, AVG, MIN, MAX)

Campos categóricos (ex.: "PM", "Polícia Militar")

window functions para séries temporais (ocorrências por hora/dia/semana)

Data Staging Area

Finalidade

onde se verifica a qualidade (completude, veracidade e integridade)

SQL

Zona de preparação antes da carga no data warehouse ou sistema analítico

Permite integração, limpeza, e auditoria sem afetar dados originais.

Requisito essencial em cadeias de custódia digitais.

53 Bucket

Por que manter uma staging area separada do banco operacional?

ETL e ELT

Transform Load

Extract

Data Lakes e Data Warehouses na nuvem

Repositório central

Hub de dados

ELT permite que as organizações trabalhem com dados brutos

ELT é ideal quando se deseja ter acesso a todos os dados originais (raw data)

Arquitetura Híbrida (Data Lakehouse)

Arquitetura	Finalidade na Segurança Pública	Natureza do dado
Data Warehouse (DW)	Relatórios Históricos e BI: Usado para consolidação, auditoria, estatísticas criminais e conformidade legal	Estruturado: Dados pré-processados e altamente transformados, com esquema rígido (schema-on-write)
Data Lake (DL)	Análise Preditiva e Investigativa: Usado para armazenar dados brutos e massivos, como vídeos, logs e mídias sociais, para Machine Learning e análise forense	Qualquer Formato: Não estruturado, semi-estruturado e estruturado, com esquema flexível (schema-on-read)

COM MAMOS BIMUS

seja ter acesso a todos os dados originais (raw data)

Arquitetura Híbrida (Data Lakehouse)

Arquitetura	Finalidade na Segurança Pública	Natureza do dado
Data Warehouse (DW)	Relatórios Históricos e BI: Usado para consolidação, auditoria, estatísticas criminais e conformidade legal	Estruturado: Dados pré-processados e altamente transformados, com esquema rígido (schema-on-write)
Data Lake (DL)	Análise Preditiva e Investigativa: Usado para armazenar dados brutos e massivos, como vídeos, logs e mídias sociais, para Machine Learning e análise forense	Qualquer Formato: Não estruturado, semi-estruturado e estruturado, com esquema flexível (schema-on-read)

Pré-processamento e organização em segurança pública

Importância

Pré-processamento

Normalização e Agregação

Ajuste de escala

Unificar unidades (ex.: R\$ → centavos, km/h → m/s)

Campos categóricos (ex.: "PM", "Polícia Militar")

Como

