Optimisation de tournées de drones à l'aide d'un GNN-PPO Projet Drone Delivery Optimizer

Mahouna ___ (RTX 4050 / Intel i7)

May 16, 2025

Contents

1	Introduction	2
2	Modèle de réseau de livraison2.1 Génération des nœuds	2
3	Fonction de coût généralisée 3.1 Consommation de batterie par arête	
4	Contraintes de début et fin de tournée 4.1 1. Algorithme génétique (GA)	
5		4
6	Algorithme PPO 6.1 Avantage (GAE- λ)	
7	Protocole d'entraînement	5
8	Conclusion	5

1 Introduction

Ce rapport présente la modélisation mathématique et l'implémentation d'une méthode hybride pour l'optimisation de tournées de drones :

- 1. un Algorithme Génétique (GA) classique corrigé pour garantir les points de départ et d'arrivée,
- 2. une approche **PPO** (Proximal Policy Optimization) alimentée par un **GNN** pour l'apprentissage par renforcement.

2 Modèle de réseau de livraison

2.1 Génération des nœuds

On génère N nœuds répartis par Poisson-disc à l'intérieur du polygone France, issus du fichier metropole-version-simplifiee.geojson.

2.2 Graphe orienté des k-plus-proches-voisins

Chaque nœud u est connecté vers ses k=10 plus proches voisins sortants, formant un graphe orienté

$$G_t = (\mathcal{V}_t, \mathcal{E}_t), \quad \mathcal{E}_t \subset \{u \to v\}.$$

Chaque arête orientée $e = (u \to v)$ porte un coût $c_{uv} = d_{uv} \cdot \left(\underbrace{1}_{\text{base effet du vent bruit aléatoire}} \underbrace{+\beta \cdot \eta_{uv}}_{\text{base effet du vent bruit aléatoire}}\right) \in [0,600]$, où en général $c_{uv} \neq c_{vu}$.

2.3 Attributs nodaux X

Pour chaque sommet v, on définit

$$x_v = \left[\underbrace{\text{one-hot(type)}}_{\in \{\text{hub,pickup,delivery,charging}\}}, \underbrace{\text{stock/demande}}_{\in \mathbb{R}}, \underbrace{\lambda_v, \phi_v}_{\text{latitude/longitude (2)}}, \underbrace{\cos \omega_v, \sin \omega_v}_{\text{direction du vent (2)}} \right] \in \mathbb{R}^9.$$

Le terme « stock/demande » reste nul ou constant ici car on part d'une hypothèse de demande unitaire illimitée.

3 Fonction de coût généralisée

3.1 Consommation de batterie par arête

Pour une arête e_i de coût c_i , la batterie consommée est

$$\Delta b_i = \frac{c_i}{k} \left(1 + \alpha \left(p_i - 1 \right) \right), \quad \underbrace{k = 10.8}_{\text{normalisation}}, \quad \underbrace{\alpha = 0.2}_{\text{facteur de surcharge (colis multiple)}}, \quad \underbrace{p_i}_{\text{nombre de colis embarqués}}.$$

Plus p_i est grand, plus la consommation augmente.

3.2 Objectif global d'une tournée E

Pour une séquence d'arêtes $E = (e_1, \dots, e_T)$, on définit

$$J(E) = \sum_{e_i \in E} c_i + \lambda \sum_{S} \left[\max(0, \sum_{e_i \in S} \Delta b_i - B_{\max}) \right]^2 + \mu \# \{ \text{recharges} \},$$

οù

- $B_{\text{max}} = 100$ est la capacité maximale de batterie,
- $\lambda \gg 1$ pénalise fortement tout dépassement de batterie,
- $\mu \ll \lambda$ pénalise légèrement chaque recharge,
- S parcourt chaque segment consécutif entre deux recharges.

4 Contraintes de début et fin de tournée

4.1 1. Algorithme génétique (GA)

But Générer des chromosomes (tours) garantissant la séquence :

$$H_{\rm start} \rightarrow D \rightarrow L \rightarrow H_{\rm end},$$

avec H. hubs et D, L points pickup/delivery.

Initialisation Pour chaque individu:

- 1. Choix aléatoire d'un hub H_{start} .
- 2. Construction de shortest_path($H_{\text{start}} \to D$).
- 3. Ajout de shortest_path $(D \to L)$.
- 4. Ajout de shortest_path $(L \to H_{\rm end})$ avec $H_{\rm end}$ choisi aléatoirement.

Le chromosome est la concaténation, en omettant les doublons consécutifs.

Réparation (repair) Après crossover/mutation :

- On repère les indices de D et L.
- On sectionne pour forcer $\cdots \to D \to L \to \ldots$
- Si la fin n'est pas un hub, on y greffe shortest_path(dernier $\to H_{\rm rand}$).

Mutation spécifique Échanger deux sous-chemins internes tout en maintenant la séquence $H \to D \to L \to H$.

4.2 2. PPO + GNN (RL)

Intégration dans l'environnement Au sein de l'environnement de RL :

- État initial virtuel : l'agent reçoit un état "départ" non relié.
- $Pas \ \theta$: action spéciale

$$a_0 = (\text{t\'el\'eportation vers un hub } H_i), \quad \text{co\^ut} = c_{\text{pickup} \to H_i}.$$

Ce hub H_i est tiré aléatoirement parmi ceux $\leq d_{\text{max}}$ du point de pickup.

• Fin de tournée : après desserte de D et L, l'agent choisit

$$a_T = (\text{t\'el\'eportation vers hub } H_i), \quad \text{co\^ut} = c_{v_T \to H_i}.$$

• Termination : l'épisode se termine dès que tous les flags {picked, delivered} sont à 1 et qu'un hub est rejoint.

Récompense instantanée mise à jour Pour tout pas t,

$$r_t = -c_t - \lambda \left[\max(0, b_t - \Delta b_t) \right]^2 - \mu \mathbb{1}_{\{\text{recharge}\}} - \kappa \mathbb{1}_{\{\text{t\'el\'eportation non valide}\}},$$

où $\kappa \gg 1$ pénalise tout téléport illégal hors hub.

5 Formulation RL et Architecture du GNN

- **5.1** État $s_t = (A_t, X_t, b_t, p_t, v_t)$
- **5.2** Action $a_t \in \{1, ..., K\}$

Choix d'une arête orientée sortante ou d'une action spéciale de téléportation.

5.3 GNN – Message Passing

$$H^{(\ell+1)} = \sigma(W_1^{(\ell)}H^{(\ell)} + W_2^{(\ell)}A_tH^{(\ell)}), \quad H^{(0)} = X_t.$$

5.4 Readout global et tête acteur-critique

$$g_t = \frac{1}{|\mathcal{V}_t|} \sum_v H_v^{(L)}, \quad \pi_{\theta}(a_t \mid s_t) = \text{Softmax}(W_{\pi}g_t + U_{\pi}[b_t, p_t]), \quad V_{\psi}(s_t) = w_v^{\top}g_t + u_v^{\top}[b_t, p_t].$$

6 Algorithme PPO

6.1 Avantage (GAE- λ)

$$\hat{A}_{t} = \sum_{k \geq 0} (\gamma \lambda)^{k} (r_{t+k} + \gamma V_{\psi}(s_{t+k+1}) - V_{\psi}(s_{t+k})).$$

6.2 Perte « clipped »

$$\mathcal{L} = \mathbb{E}_t \Big[\min \big(r_t \hat{A}_t, \ \text{clip}(r_t, 1 \pm \varepsilon) \hat{A}_t \big) \Big] + c_1 \|R_t - V_\psi\|^2 - c_2 \, \mathcal{H}[\pi_\theta].$$

4

7 Protocole d'entraînement

- N=8 environnements parallèles.
- $\gamma = 0.99$, $\lambda_{\text{GAE}} = 0.95$, $\varepsilon = 0.2$.
- GNN: 2 couches, dimension 128, ReLU, dropout 0.1.
- Adam, LR 3×10^{-4} , FP16 sur RTX 4050.

8 Conclusion

L'intégration explicite des contraintes de téléportation via un hub garantit la validité des tournées tant dans GA (par génération/réparation) que dans PPO+GNN (par encapsulation dans l'environnement). Le GNN-PPO exploite les coûts orientés c_{uv} et converge plus rapidement qu'un GA classique tout en respectant les contraintes de batterie grâce aux pénalités λ et μ .