中級統計学:復習テスト2

2024年9月24日
注意: すべての質問に解答しなければ提出とは認めない.正答に修正した上で,復習テスト $1\sim8$ を順に重ねて左上でホチキス止めし,第 1 回中間試験実施日(10 月 18 日の予定)に提出すること.
1. (a) 棒グラフとヒストグラム(柱状グラフ)の違いを説明しなさい.
(b) ヒストグラムと累積相対度数グラフの長所・短所を説明しなさい.
(c) (教科書 pp. 32–33 参照) データ (1, 1, 1, 1, 2, 3, 4, 5, 16, 20) の平均・中位数・最頻値を求めなさい.
(C) (3ATI 自 PP: 02 00 多流) / - グ (1,1,1,1,2,0,1,20,10,20) ジョス 「TD奴 取別間でかめるです。

- 2. (教科書 p. 38 参照) データを (x_1, \ldots, x_n) とする.
 - (a) $y_i := a + bx_i$ と一次変換すると,

$$\mu_y = a + b\mu_x$$
$$\sigma_y^2 = b^2 \sigma_x^2$$

となることを示しなさい.ただし μ_x,μ_y は平均, σ_x^2,σ_y^2 は分散を表す.

(b) 上の結果を利用して, $z_i:=(x_i-\mu_x)/\sigma_x$ と標準化すると,平均が 0,分散が 1 となることを示しなさい.(ヒント: $z_i=-\mu_x/\sigma_x+(1/\sigma_x)x_i$ と書ける.)

解答例

- 1. (a) 棒グラフは横軸が分類を表し、柱の高さで(相対)度数を表す. ヒストグラムは横軸が数値を表し、 柱の面積で(相対)度数を表す.
 - (b) ヒストグラム

長所 度数の大小が把握しやすい.

短所 適切な階級の取り方が難しい.

累積相対度数グラフ

長所 分位数を読み取るのに適しており、階級が細かいほど滑らかなグラフとなる.

短所 度数の大小が把握しにくい.

- (c) 平均 5.4, 中位数 2.5, 最頻值 1
- 2. (a)

$$\mu_{y} := \frac{y_{1} + \dots + y_{n}}{n}$$

$$= \frac{(a + bx_{1}) + \dots + (a + bx_{n})}{n}$$

$$= \frac{(a + \dots + a) + (bx_{1} + \dots + bx_{n})}{n}$$

$$= \frac{na + b(x_{1} + \dots + x_{n})}{n}$$

$$= a + b\frac{x_{1} + \dots + x_{n}}{n}$$

$$= a + b\mu_{x}$$

$$\sigma_{y}^{2} := \frac{(y_{1} - \mu_{y})^{2} + \dots + (y_{n} - \mu_{y})^{2}}{n}$$

$$= \frac{[(a + bx_{1}) - (a + b\mu_{x})]^{2} + \dots + [(a + bx_{n}) - (a + b\mu_{x})]^{2}}{n}$$

$$= \frac{(bx_{1} - b\mu_{x})^{2} + \dots + (bx_{n} - b\mu_{x})^{2}}{n}$$

$$= \frac{[b(x_{1} - \mu_{x})]^{2} + \dots + [b(x_{n} - \mu_{x})]^{2}}{n}$$

$$= \frac{b^{2}(x_{1} - \mu_{x})^{2} + \dots + b^{2}(x_{n} - \mu_{x})^{2}}{n}$$

$$= b^{2}\sigma_{x}^{2}$$

(b)
$$z_i:=(x_i-\mu_x)/\sigma_x=-\mu_x/\sigma_x+(1/\sigma_x)x_i$$
 と書けるから, $a=-\mu_x/\sigma_x$, $b=1/\sigma_x$ と置くと,

$$\mu_z = a + b\mu_x$$

$$= -\frac{\mu_x}{\sigma_x} + \frac{1}{\sigma_x}\mu_x$$

$$= 0$$

$$\sigma_y^2 = b^2\sigma_x^2$$

$$= \left(\frac{1}{\sigma_x}\right)^2\sigma_x^2$$

$$= 1$$