functional METAPOST User's manual

Joachim Korittky

May 27, 2002

Contents

1	Introduction	2
2	Basic functions	2
	2.1 Text	2
	2.2 Attributes	3
	2.3 Frames	5
	2.3.1 Shadows	6
	2.4 Colors	6
	2.5 Points and Numbers	8
	2.6 Placements	10
	2.6.1 Overlays	12
	2.7 Transformations	16
	2.8 Paths	17
	2.8.1 Arrows	19
	2.9 Areas	20
	2.10 Clipping	20
	2.11 Dash patterns	21
	2.12 Pencils	21
3	Applications	22
	3.1 Trees	22
	3.2 Turtle graphics	25
	3.3 Canvas	27
4	Matrix	31
5	Parameters	31

1 Introduction

2 Basic functions

2.1 Text

Text is a basic element of *functional* METAPOST and is generated by the function $text :: String \rightarrow Picture$. This defines a picture with a bounding box and nine associated points C, N, NE, E, SE, S, SW, W, NW, as demonstrated in Fig. 2.1.1.

Figure 2.1.1: Bounding box of a text with reference points

But $text :: String \rightarrow Picture$ is only useful for single words or numbers. The function $tex :: String \rightarrow Picture$ implements the full functionality of T_FX^1 .

The backslash \ has a special meaning, therefore tex "\large_\A" must be written as tex "\\large_\A". A similar function is $math :: String \rightarrow Picture$, which adds \$ symbols at the start and the end of the string, switching to TeX math mode.

The bullet can also be useful, which, too, owns all the reference points C, N...

The minimal picture is *nullPic*, which has no extension and no visible content.

Function		generates
text	$::String \rightarrow Picture$	single words
tex	$::String \rightarrow Picture$	full T _E X
math	$::String \rightarrow Picture$	T _E X math mode
dot, bullet	::Picture	fat point
nullPic	::Picture	empty picture
trueBox	$::Picture \rightarrow Picture$	generates the picture with minimal
		all-including bounding box.

Table 2.1.1: Basic functions

This are the basic elements, which, together with lines, paths and area fillings, allow the construction of more complex graphics.

¹METAPOST has to start T_FX for every *tex* command in order to calculate the bounding box. Therefore, *text* is much faster.

2.2 Attributes 3

text "text" yields text text text with spaces yields text-with spaces tex "text with spaces" yields text with spaces math "\\frac{1}{\\sqrt{x^2-1}}\" yields $\frac{1}{\sqrt{x^2-1}}$ dot yields •

Figure 2.1.2: Examples

2.2 Attributes

Attributes control the look and placement of objects. They allow e.g. to change colors and distances.

Different objects may have the same attributes. The attribute functions are therefore organized in type classes.

2.2 Attributes 4

Attribute	Class	Picture	Frame	Path	PathElemDescr	Area	Tree	Edge	Turtle
setName	HasName	X							
getNames	HasName	X							
setDX	HasDXY		X						
getDX	HasDXY		X						
setDY	HasDXY		X						
getDY	HasDXY		X						
setWidth	HasExtent		X						
removeWidth	HasExtent		X						
getWidth	HasExtent		X						
setHeight	HasExtent		X						
removeHeight	HasExtent		X						
getHeight	HasExtent		X						
setColor	HasColor	X	X	X	X	X		X	X
getColor	HasColor	X	X	X	X	X		X	X
setBGColor	HasBGColor	X	X	71	2.1	71		71	71
getBGColor	HasBGColor	X	X						
setLabel	HasLabel	71	71	X	X			X	
removeLabel	HasLabel			X	X			X	
setPattern	HasPattern		X	X	X			X	
removePattern	HasPattern		X	X	X			X	
								X	
getPattern	HasPattern		X	X	X	37		X	37
setPen	HasPen			X		X			X
setDefaultPen	HasPen		X	X	X	X		X	X
getPen	HasPen		X	X	X	X		X	X
setArrowHead	HasArrowHead			X	X			X	
removeArrowHead	HasArrowHead			X	X			X	
getArrowHead	HasArrowHead			X	X			X	
setStartArrowHead	HasArrowHead			X	X			X	
removeStartArrowHead	HasArrowHead			X	X			X	
getStartArrowHead	HasArrowHead			X	X			X	
setStartCut	HasStartEndCut			X	X			X	
removeStartCut	HasStartEndCut			X	X			X	
setEndCut	HasStartEndCut			X	X			X	
removeEndCut	HasStartEndCut			X	X			X	
setStartAngle	HasStartEndDir			X	X			X	
setStartCurl	HasStartEndDir			X	X			X	
setStartVector	HasStartEndDir			X	X			X	
removeStartDir	HasStartEndDir			X	X			X	
setEndAngle	HasStartEndDir			X	X			X	
setEndCurl	HasStartEndDir			X	X			X	
setEndVector	HasStartEndDir			X	X			X	
removeEndDir	HasStartEndDir			X	X			X	
setJoin	HasJoin			X	X				
getJoin	HasJoin			X	X				
setShadow	HasShadow		X						
clearShadow	HasShadow		X						
setBack	HasLayer					X			
setFront	HasLayer					X			
setAlign	HasAlign						X		
hide	IsHideable		X	X				X	X

Table 2.2.1: Overview of attributes

2.3 Frames 5

2.3 Frames

The function box adds a frame to a picture.

Figure 2.3.1: Frame distances

2.4 Colors **6**

Function		generates
box	::IsPicture $a \Rightarrow a \rightarrow Frame$	box p
		= frame (box' Nothing Nothing p)
circle	:: Is Picture $a \Rightarrow a \rightarrow Picture$	circle p
		= frame (circle' Nothing p)
oval	:: Is Picture $a \Rightarrow a \rightarrow Picture$	oval p
		= frame (oval' Nothing Nothing p)
triangle	:: Is Picture $a \Rightarrow a \rightarrow Picture$	triangle p
		= frame (triangle' Nothing Nothing Nothing p)
frame,		
toPicture	$::Frame \rightarrow Picture$	
(##)	$::Picture \rightarrow (Frame \rightarrow Frame)$	$(Frame\ a)\ \#\#f = frame\ (f\ a)$
	\rightarrow Picture	$a ## _= a$
dot, bullet	::Picture	dot = circle nullPic
		## setBGColor black
		## setDX 1

Table 2.3.1: Frame types

2.3.1 Shadows

Function		generates
setShadow	$::(Double, Double) \rightarrow Picture \rightarrow Picture$	Shadow

Table 2.3.2: Shadows

2.4 Colors

Pictures, paths, path segments, filled areas, turtle graphics and other objects may have color attributes. Pictures also have a background color, but it is only used for boxes (where the foreground color is used for the border).

Colors are coded as RGB values: *color* 1 0 0 is red, *color* 0 1 0 is green and *color* 0 0 1 gives blue. Some colors are predefined:

Name	Value
white	color 1 1 1
black	color 0 0 0
red	color 1 0 0
green	color 0 1 0
blue	color 0 0 1
yellow	color 1 1 0
cyan	color 0 1 1
magenta	color 1 0 1

Table 2.4.1: Predefined colors

It is possible to add, subtract, multiply and divide colors. The latter allows to dim or brighten up. Values of type *Int* or *Integer* are converted to grayscales: 0.5 * *green* is a light green. WHAT?

2.4 Colors 7

Color gradients are also available. They come in three sorts (Low, Med, High) with different numbers of intermediate colors? *graduateMed red blue* 10 defines a color gradient with 64 steps from red to blue along an axis rotated by 10 degrees?

```
tex "text"
                                                             yields
                                                                       text
# setColor green
tex "text"
# setColor white
                                                             yields
# setBGColor black
tex "text"
# setColor (graduateLow white black 0)
                                                             yields
# setBGColor (graduateLow white black 90)
scale 2 (dot # setColor (graduateLow white black (-30)))
                                                             yields
box "text"
                                                             yields
                                                                       text
# setColor (graduateLow white black (-30))
```

Figure 2.4.1: Color attributes and color gradients

A color gradient stretches automatically over connected path segments, as long as they have the same color.

A warning may be in place: use this feature economically. It blows up the PostScript files and especially dotted paths with gradients can exhaust the memory of METAPOST.

```
from0 = line (ref W - vec (50,0)) (ref C)
# setArrowHead arrowHeadBig
# setPen 2
# setColor (graduateMed white black 0)
```

Nethertheless, a slowly emerging arrow may make a nice effect.

²The function $graduate :: Color \rightarrow Color \rightarrow Angle \rightarrow Quality \rightarrow Color$ is even more flexible.

³The parameter of *graduate*... can again be a color gradient, as in *graduateMed red* (*graduateMed blue black* 0) 10. Then the color of the parameter is determined by the first color. In this example we get a gradient from *red* to *blue*.

2.5 Points and Numbers 8

2.5 Points and Numbers

```
punkte = markPoint p_6 "p6"
       (markPoint p2 "p2"
        (markPoint p3 "p3"
        (markPoint p4 "p4"
        (markPoint p5 "p5"
        (markPoint p1 "p1"
                   (toPicture (box
                                            ( tex "box"
                               # setColor 0.7
                   )) # setName "box")))))
       where
       p_1 = ref ("box" \triangleleft C)
       p_2 = ref ("box" \triangleleft NW)
       p_3 = ref ("box" \triangleleft NW) + vec (-width "box", 0)
       p_4 = ref ("box" \triangleleft SE) + dist p_1 p_2 * dir (-45)
       p_5 = xy \ p_3 \ p_4
       p_6 = med \ 0.333 \ p_5 \ p_4
       \mathit{script}\ l = \mathit{tex}\ (\texttt{"} \backslash \texttt{scriptsize} \, \bot \texttt{"} + l)
       markPoint\ p\ l
                    = constraint p C
                               (dot # label N (script l))
       constraint p d l p'
                    = Overlay [p \doteq ref (0 \triangleleft d)] (Just 1) [l, p']
```

Example 2.5.1: Definitions of points

Expression	is the name of
ref C	center of the current picture
ref ("a" $\triangleleft N$)	point <i>N</i> of picture <i>a</i>
ref ("a" \triangleleft (1 :: Int) \triangleleft N)	point N of subpicture 1
	of picture a
	(The numbers are automatically allocated
	by the <i>overlay</i> function.)
var C	numerical variable of name C
$var((1::Int) \triangleleft (0::Int))$	numerical variable 0 in picture 1

Table 2.5.1: Names of objects

2.5 Points and Numbers 9

Expression		Meaning
var	::IsName $a \Rightarrow a \rightarrow Numeric$	numerical variable
xpart	$::Point \rightarrow Numeric$	x coordinate of a point
ypart	$::Point \rightarrow Numeric$	y coordinate of a point
width	$::IsName\ a\Rightarrow a\rightarrow Numeric$	width s
		$= xpart (ref (toName s \triangleleft E))$
		$-xpart (ref (toName s \triangleleft W))$
height	::IsName $a \Rightarrow a \rightarrow Numeric$	height s
		$= ypart (ref (toName s \triangleleft N))$
		$-ypart (ref (toName s \triangleleft S))$
dist	$::Point \rightarrow Point \rightarrow Numeric$	distance between points
xdist	$::Point \rightarrow Point \rightarrow Numeric$	difference of x coordinates
ydist	$::Point \rightarrow Point \rightarrow Numeric$	difference of y coordinates
med	$::Numeric \rightarrow Numeric$	
	\rightarrow Numeric \rightarrow Numeric	
maximum'	$::[Numeric] \rightarrow Numeric$	
minimum'	$::[Numeric] \rightarrow Numeric$	
(+), (-), (*),		
(/), (**)	$::Numeric \rightarrow Numeric \rightarrow Numeric$	as usual
negate, abs, sig	num,	
recip, exp, log,	sqrt,	
sin, cos, tan	$::Numeric \rightarrow Numeric$	
fromInteger	$::Integer \rightarrow Numeric$	
fromInt	$::Int \rightarrow Numeric$	
fromRational	$::Rational \rightarrow Numeric$	
pi	::Numeric	

Table 2.5.2: Definition of Numerics

Expression		defines
ref	:: $IsName\ a \Rightarrow a \rightarrow Point$	point variable
dir	$::Numeric \rightarrow Point$	dir a
		= vec (cos a, sin a)
vec	$::(Numeric, Numeric) \rightarrow Point$	generate vector
xy	$::Point \rightarrow Point \rightarrow Point$	$xy p_1 p_2$
		$= vec (xpart p_1, ypart p_2)$
med	$::Numeric \rightarrow Point \rightarrow Point$	
	\rightarrow Point	
(+), (-), (*), (/)	$::Point \rightarrow Point \rightarrow Point$	componentwise
(*)	$::Numeric \rightarrow Point \rightarrow Point$	multiplication with scalar
negate, abs, signum,		
recip, exp, log, sqrt,	$::Point \rightarrow Point$	
fromInteger	$::Integer \rightarrow Point$	$i \leadsto (i, i)$
fromInt	$::Int \rightarrow Point$	
fromRational	$::Rational \rightarrow Point$	

Table 2.5.3: Definition of points

2.6 Placements

There are many different ways to combine pictures and objects to more complex pictures.

Command		combines pictures
(-)	$::(IsPicture\ a, IsPicture\ b) \Rightarrow a$	$p_1 \mid - \mid p_2$
	$\rightarrow b \rightarrow Picture$	$= column [toPicture p_1, toPicture p_2]$
(=)	$::(IsPicture\ a, IsPicture\ b) \Rightarrow a$	$p_1 = p_2$
	$\rightarrow b \rightarrow Picture$	= $columnSepBy 8 [toPicture p_1, toPicture p_2]$
	$::(IsPicture\ a, IsPicture\ b) \Rightarrow a$	$p_1 \mid \mid \mid p_2$
	$\rightarrow b \rightarrow Picture$	$= row [toPicture p_1, toPicture p_2]$
	$::(IsPicture\ a, IsPicture\ b) \Rightarrow a$	$p_1 \mid \mid \mid p_2$
	$\rightarrow b \rightarrow Picture$	$= rowSepBy \ 8 \ [toPicture \ p_1, toPicture \ p_2]$
row	::IsPicture $a \Rightarrow [a] \rightarrow Picture$	row = rowSepBy 0
column	::IsPicture $a \Rightarrow [a] \rightarrow Picture$	column = columnSepBy 0
rowSepBy	$::IsPicture\ a \Rightarrow Numeric \rightarrow [a]$	rowSepBy hSep ps
	\rightarrow Picture	$= overlay [ref (i \triangleleft E) + vec (hSep, 0)]$
		$\stackrel{.}{=} ref ((i+1) \triangleleft W)$
		$ i \leftarrow [0 length ps - 2]] ps$
columnSepBy	$::IsPicture\ a \Rightarrow Numeric \rightarrow [a]$	columnSepBy vSep ps
	\rightarrow Picture	$= overlay [ref (i \triangleleft S) - vec (0, vSep)]$
		$\stackrel{.}{=} ref ((i+1) \triangleleft N)$
		$ i \leftarrow [0 length ps - 2]] ps$
label	$::Dir \rightarrow Picture \rightarrow Picture$	
	\rightarrow Picture	Label alongside picture
overlay	$::IsPicture\ a \Rightarrow [Equation] \rightarrow [a]$	overlay eqs ps =
	\rightarrow Picture	overlay' eqs Nothing ps
overlay'	$::IsPicture\ a \Rightarrow [Equation]$	
	\rightarrow Maybe Index \rightarrow [a] \rightarrow Picture	Equations define relations
		between pictures, pictures
		in the list have names "0", "1"
		Index makes the new bounding
		box equal to the bounding box
		of the n-th picture, "Nothing"
		gives the minimal enclosing box.

Table 2.6.1: Placements

```
automat1 = constraint (ref ("B" <math>\triangleleft N) + vec (0, 30)) S
                 ((toPicture $ circle (math "C\\atop_b^*")) # setName "C")
                 (rowSepBy 16 [(toPicture $ oval "Start") # setName "start",
                 (toPicture \$ circle (math "{B}\setminus atop_{\sqcup}(a||b)^*a}")) # setName "B",
                 (toPicture \$ circle (math "{D}\setminus atop_(a||b)^*ab}")) # setName "D",
                 (toPicture $ oval "Stop") # setName "stop"
       where
       constraint p d l p'
                 = overlay' [p \doteq ref ((0 :: Int) \triangleleft d)] (Just 1) [l, p']
automat3 = matrixSepBy 30 20
       [[empty, toPicture (circle (math "C\\atop\b^*")) # setName "C"],
        [toPicture (oval "Start") # setName "start",
         toPicture (circle (math "{B\\atop_(a||b)^*a}")) # setName "B",
         toPicture\ (circle\ (math\ "{D}\atop_{\sqcup}(a||b)^*ab}")) \# setName\ "D",
         toPicture (oval "Stop"
                                    ) # setName "stop"
                (Stop)
                      (Start)
                                     (a||b)*a
                                                    (a||b)*ab
```

Example 2.6.1: Finite state machine (first part)

2.6.1 Overlays

Expression		Meaning
 = equal = equal cond b t e 	$::Numeric \rightarrow Numeric \rightarrow Equation$ $::[Numeric] \rightarrow Equation$ $::Point \rightarrow Point \rightarrow Equation$ $::[Point] \rightarrow Equation$ $::Boolean \rightarrow Equation \rightarrow Equation$	equality of numbers equality of several numbers equality of points equality of several points
	\rightarrow Equation	conditional equality

Table 2.6.2: Equations

Expression		Meaning
(≐)	::Numeric \rightarrow Numeric \rightarrow Boolean	
(≢)	$::Numeric \rightarrow Numeric \rightarrow Boolean$	
(<)	$::Numeric \rightarrow Numeric \rightarrow Boolean$	
(≼)	$::Numeric \rightarrow Numeric \rightarrow Boolean$	
(≐)	$::Point \rightarrow Point \rightarrow Boolean$	
(≢)	$:: Point \rightarrow Point \rightarrow Boolean$	
(<)	$::Point \rightarrow Point \rightarrow Boolean$	
(≼)	$::Point \rightarrow Point \rightarrow Boolean$	
boolean	$::Bool \rightarrow Boolean$	
(+), (-), (*)	$::Boolean \rightarrow Boolean \rightarrow Boolean$	$a \lor b, a \land \neg b, a \land b$
negate, abs, signum	$::Boolean \rightarrow Boolean$	$\neg a$, True, id
fromInteger	$::Integer \rightarrow Boolean$	i > 0
fromInt	$::Int \rightarrow Boolean$	i > 0

Table 2.6.3: Boolean expressions

```
kreis :: (IsPicture \ a) \Rightarrow Numeric \rightarrow [a] \rightarrow Picture
kreis\ r\ ps = overlay
           [ref\ (j \triangleleft C) - r \stackrel{.}{*} dir\ (d * fromInt\ j)
            = ref (j + 1 \triangleleft C)
                    -r * dir (d * (fromInt j + 1))
           |j \leftarrow [0 \dots l - 2]]
           ps
           where
           l = length ps
           d = 360 / fromInt l
kreis 7 :: Picture \\
kreis7 = kreis 40
       [draw [line (ref C)
                                              (\mod(i+j)\ 7 \triangleleft C))
                        (ref
                         \# setArrowHead (default
                                                    # setArrowHeadStyle ahLine)
                |j \leftarrow [1
                                              .. 6 :: Int]]
                ((toPicture) i # setName i)
       |i \leftarrow [0 \dots 6 :: Int]]
```

Example 2.6.2: Circle with overlay

```
drei = overlay [
ref (1 \triangleleft C) \doteq ref (0 \triangleleft C) + vec (40, 0),
ref (2 \triangleleft C) \doteq ref (0 \triangleleft C) + whatever * dir (-45),
ref (1 \triangleleft C) \doteq ref (2 \triangleleft C) + whatever * dir 50,
ref (2 \triangleleft C) \doteq ref (3 \triangleleft C) + ref (0 :: Int),
ref (3 \triangleleft C) \doteq ref (0 \triangleleft C) + ref (0 :: Int)]
[text "0", text "1", text "2", toPicture bullet]
```

Example 2.6.3: Intersection point with overlay

```
spirale
= overlay [ref (0 \triangleleft C) \doteq ref (1 \triangleleft C),
ref (0 \triangleleft C) \doteq vec (0,0)]
[draw [foldl (..) (toPath (vec (0,0))) punkte]
(circle empty
\# setDX (12 * r)),
zz]
where
r = 2
zz = kreis (12 * r)
(take 10 (cycle [bullet]))
punkte = [(i * r * pi) * dir (i * (180 / 12))
|i \leftarrow [0 .. 12]]
```

Example 2.6.4: Coil

```
brack = setTrueBoundingBox brack1 |||| setTrueBoundingBox brack2
      brack1 = [bracket \ x \ (vec \ (0, x*5), vec \ (x*5, x*5)) | x \leftarrow ws]
              ++ [bracket x (vec (x * 5, x * 5), vec (x * 5, 0)) |x \leftarrow ws]
             where
             ws = [1, 3] + [5, 10..20]
     brack2 = [bracket \ x \ (5
                                    * dir x, 60 * dir x) |x \leftarrow ws|
             where
             ws = [0, 45..360 - 45]
bracket :: IsPicture \ a \Rightarrow a \rightarrow (Point, Point) \rightarrow Path
bracket l (pl, pr)
        = define
        ref "start" \doteq pl,
        ref "end" = pr,
        var "ang" \doteq angle (ref "start" - ref "end"),
                                         ( dist (ref "start") (ref "end") < 20)
        var "d" \doteq cond
                                            dist (ref "start") (ref "end") / 4)
        ref "vecl" \stackrel{.}{=} var "d" \stackrel{.}{*} dir (var "ang" - 135),
        ref "vecr" \doteq var "d" \dot{*} dir (var "ang" - 45),
        ref "start2" \( \decirc ref "start" + ref "vecl",
        ref "end2" \doteq ref "end" + ref "vecr",
        ref "mid" = med 0.5 (ref "start") (ref "end")
                                         + (1.41 * var "d")
                                             dir (var "ang" - 90),
        ref "midl" \doteq ref "mid" - ref "vecl",
        ref "midr" \doteq ref "mid" - ref "vecr"
                     (pl ... ref "start2" --- ref "mid1" ... ref "mid"
                 &ref "mid" ... ref "midr" --- ref "end2" ... pr
                    # setPen (penCircle (0.001, var "d" / 5) (var "ang"))
                    # setLabel 0.5 C lab)
        where
        lab = overlay'
                              [var "ang" \doteq angle (pl - pr),
                              ref(0 \triangleleft C) = cond(var "ang" < (-175.5)
                                             +175.5 < var "ang")
                                                       (ref(1 \triangleleft S))
                              (cond\ (var\ "ang" < (-112.5))\ (ref\ (1 \triangleleft SE))
                                (cond ( var "ang" < (-67.5)) (ref (1 \triangleleft E))
                                 (cond (var "ang" < (-22.5)) (ref (1 \triangleleft NE))
                                   (cond\ (var\ "ang" < 22.5)\ (ref\ (1 \triangleleft N))
                                    (cond (var "ang" < 67.5) (ref (1 \triangleleft NW))
                                     (cond\ (var\ "ang" < 112.5)\ (ref\ (1 \triangleleft W))
                                             (ref (1 \triangleleft SW))
                               )))))))] (Just 0)
           empty, toPicture 1
```


2.7 Transformations 16

2.7 Transformations

Expression		generates
scale	$::Angle \rightarrow Picture \rightarrow Picture$	$scale\ n\ p = transform\ (scaled\ n)\ p$
rotate	$::Angle \rightarrow Picture \rightarrow Picture$	rotate a p
		= transform (rotated a) p
transform	:: $Transformation \rightarrow Picture$	
	\rightarrow Picture	apply transform to picture
rotated	$::Angle \rightarrow Transformation$	generate rotation
reflectedX	::Transformation	reflectedX = affine (1,0,0,-1)
reflectedY	::Transformation	reflectedY = affine (-1, 0, 0, 1)
scaled	$::Double \rightarrow Transformation$	scaled $a = affine(a, 0, 0, a)$
scaledX	$::Double \rightarrow Transformation$	$scaledX \ a = affine \ (a, 0, 0, 1)$
scaledY	$::Double \rightarrow Transformation$	$scaledY \ a = affine \ (1,0,0,a)$
affine	::(Double, Double, Double, Double)	
	\rightarrow Transformation	transformation matrix
(&)	::Transformation	
	\rightarrow Transformation	
	\rightarrow Transformation	sequence of transformations

Table 2.7.1: Predefined Transformations

2.8 Paths 17

2.8 Paths

Expression		Meaning
(&)	$::Path \rightarrow Path \rightarrow Path$	concatenate paths
()	$::Path \rightarrow Path \rightarrow Path$	connect paths (Bézier)
()	$::Path \rightarrow Path \rightarrow Path$	connect paths (line)
()	$::Path \rightarrow Path \rightarrow Path$	connect paths (Bézier, smooth)
()	$::Path \rightarrow Path \rightarrow Path$	connect paths (line, smooth)
cycle	::Path	generate closed cycle
line	$::Point \rightarrow Point \rightarrow Path$	line p_1 p_2
		$= p_1 - p_2$
curve	$::Point \rightarrow Point \rightarrow Path$	curve p_1 p_2
		$= p_1 p_2$
pathLength	$::Num\ a\Rightarrow Path\rightarrow a$	
forEachPath	$::(PathElemDescr \rightarrow PathElemDescr \rightarrow PathElemD$	mDescr)
	\rightarrow Path \rightarrow Path	
pathSetEnd	$::(PathElemDescr \rightarrow PathElemDescr)$	mDescr)
	\rightarrow Path \rightarrow Path	
pathGetEnd	$::(PathElemDescr \rightarrow a)$	
	\rightarrow Path \rightarrow a	
pathGetStart	$::(PathElemDescr \rightarrow a)$	
	\rightarrow Path \rightarrow a	
pathSetStart	$::(PathElemDescr \rightarrow PathElemDescr)$	mDescr)
	\rightarrow Path \rightarrow Path	
cutPic	$::Name \rightarrow CutPic$	name of a picture which is
		used to cut a line
hier	$::Name \rightarrow CutPic \rightarrow CutPic$	hierachical name
setStartCut	$::CutPic \rightarrow Path \rightarrow Path$	cut path after bounding box
removeStartCut		do not cut start of path
setEndCut	$::CutPic \rightarrow Path \rightarrow Path$	cut path before bbox
removeEndCut	$::Path \rightarrow Path$	do not cut end of path
draw	$::[Path] \rightarrow Picture$	draw paths in picture
	\rightarrow Picture	

Table 2.8.1: Paths

2.8 Paths 18

```
automat2 = draw
                  loopN "C" # setLabel 0.5 S (math "b"),
                  loopSW "B" # setLabel 0.5 N (math "a"),
                  to "start" "B" "a" S,
                  to "C" "B" "a" W,
                  to "B" "D" "b" S
                  to "D" "stop" "b" S,
                  to "start" "C" "b" SE # setStartAngle 55,
                  to "stop" "C" "b" SW # setStartAngle 135,
                  to "stop" "B" "a" N \# setStartAngle (-125),
                  to "D" "B" "a" N \# setStartAngle (-145)
                  automat1
        where
       to a b l d = curve
                                        (ref (a \triangleleft C)) (ref (b \triangleleft C))
                  # setArrowHead default
                  \# setLabel 0.5 d (math l)
       loopN \ s = ref \ (s \triangleleft NE)
                .. ref
                                        (s \triangleleft N) + vec (0, 0.5 * width s)
                 .. ref
                                        (s \triangleleft NW)
                 \#\,set Arrow Head\,\,default
       loopSW \ s = ref \ (s \triangleleft SW)
                                         (s \triangleleft S) + vec (-0.353 * width s,
                  .. ref
                                                                    -0.353 * width s)
                                        (s \triangleleft S)
                  .. ref
                  \# setArrowHead def ault
```


Example 2.8.1: Finite state machine, complete

2.8 Paths 19

2.8.1 Arrows

```
pfeil = cdraws [f (line)]
                                         vec (0, -fromInt y * 16))
                                         vec (40, -fromInt y * 16)))
               |(y,f) \leftarrow zip [0..]fs|
                                         vec(0,0)
     = |(box (cdraw (curve)))|
                                         vec(40,0)
                        # setEndAngle 60
                        # setStartAngle 60
                        # setArrowHead (arrowHeadSize 10 40)
                        # setStartArrowHead (arrowHeadSize 10 40 # ahToLine)
           \# setBGColor white
           \# setShadow (5, -5)
       where
       doubleAr \ ar = setArrowHead \ ar
                    o setStartArrowHead ar
       ahToLine = setArrowHeadStyle \ AHLine
       fs = [id,
                                         doubleAr default,
                                         doubleAr (arrowHeadSize 10 20),
                                         doubleAr (arrowHeadSize 5 250),
                                         double Ar \ (\textit{def ault \# ahToLine}),
                                         doubleAr (arrowHeadSize 10 20 # ahToLine),
                                         double Ar \; (arrow Head Size \; 5 \; 180 \; \# \; ah To Line) \, ,
                                         doubleAr (arrowHeadSize 5 250 # ahToLine)
         ]
```

Example 2.8.2: Different arrow types

Expression		Meaning
arrowHead	::PathArrowHead	normal arrow head
arrowHeadBig	::PathArrowHead	fat arrow head
arrowHeadSize	$::Double \rightarrow Double \rightarrow PathArrowHead$	arrow head with length, angle
oarrowHead	::PathArrowHead	normal arrow head, contoured
oarrowHeadBig	::PathArrowHead	fat arrow head, contoured
oarrowHeadSize	$::Double \rightarrow Double \rightarrow PathArrowHead$	arrow head with length, angle, contoured

Table 2.8.2: Arrows

2.9 Areas 20

2.9 Areas

Expression	1	Meaning
area	$::[Point] \rightarrow Area$	construct area object
		(straight edges)
toArea	$::Path \rightarrow Area$	convert path to area object
setColor	$::Color \rightarrow Area \rightarrow Area$	set color
getColor	$::Area \rightarrow Color$	get color
setPen	$::Pen \rightarrow Area \rightarrow Area$	set pencil
getPen	$::Area \rightarrow Pen$	get pencil
setBack	$::Area \rightarrow Area$	area is behind picture
setFront	$::Area \rightarrow Area$	area covers picture
fill	$::[Area] \rightarrow Picture \rightarrow Picture$	

Table 2.9.1: Areas

2.10 Clipping

Expression	Meaning
$clip$:: $Path \rightarrow Picture \rightarrow Picture$	Clip picture outside the path

Table 2.10.1: Clipping

```
clipping = column \ [a, vspace \ (-5), math \ "\oplus", vspace \ (-5), \\ b, math \ "\downarrow", on \ [a, b]]
\mathbf{where}
on \ ps = overlay \ [ref \ (i \triangleleft C) \doteq ref \ ((i+1) \triangleleft C) \\ | i \leftarrow [0 \ldots length \ ps - 2]] \ ps
t = box \ "clip"
a = clip \ (ref \ NW -- ref \ NE \\ --ref \ SW -- cycle) \\ (t \# setBGColor \ 0.8)
b = clip \ (ref \ SW -- ref \ NE \\ --ref \ SE -- cycle) \\ (t \# setColor \ white \\ \# setBGColor \ black)
```

Example 2.10.1: Clipping

2.11 Dash patterns 21

```
≈ pac pac .
pac = clip (ref SE + vec
                                 (0, 15)
                                                             , pac pac pac pac
          -- ref C
                                                            ac pac pac pac pr
          -- ref NE - vec
                                 (0, 15)
                                                           pac pac pac par
          ..\ ref\ W
                                                          pac pac pac
          .. cycle)
                                                          pac pac pac
                                                           pac pac pac pa
          (matrixSepBy 0 0 (take 10 (
                                                            ac pac pac pac <sub>F</sub>
                  repeat (take 5 (
                                                             a pac pac pac pac
                                    repeat "pac")))))
                                                                эс рас рас r
```

Example 2.10.2: Pac Man

2.11 Dash patterns

Expression		Meaning
dashed	::Pattern	dashed [3, 3]
dotted	::Pattern	dotted $[-1, 2.5, 0, 2.5]$
dashPattern	$::[Double] \rightarrow Pattern$	list of lengths for end,start,end,start,end,
		if first arg = -1, then start, stop, start,

Table 2.11.1: Dash patterns

2.12 Pencils

Expression		Meaning
penCircle	$::Double \rightarrow Pen$	circular pen of radius
penCalli	$::(Double, Double) \rightarrow Double \rightarrow Pen$	oval pen with rotation
(+), (-), (*), (/)	$::Pen \rightarrow Pen \rightarrow Pen$	acts on circular pens
negate, abs, signum,		
recip, exp, log, sqrt,	$::Pen \rightarrow Pen$	acts on circular pens
fromInteger	$::Integer \rightarrow Pen$	generates circular pen
fromInt	$::Int \rightarrow Pen$	generates circular pen
fromRational	$::Rational \rightarrow Pen$	generates circular pen

Table 2.12.1: Pencils

3 Applications

3.1 Trees

```
tree1 = node dot [edge (node dot [enode dot []]
                                           # setAlign AlignRightSon),
                                   edge (node dot [enode dot []]
                                           # setAlign AlignLeftSon)
tree2 = node2 [edge2 (node2)]
                          [edge2s (node2
                                                upToRoot
                                                 # setPattern dashed
                                                 # setEndAngle 0
                                                 # setStartAngle 130]),
                           edge2s (node2 []),
                           edge2s (node2 [])]
                            # setAlign alignRight),
                  edge2 (node2
                          edge2
                                            ( node2 []),
                                            ( node2 [upToRoot])]
                           edge2
                            # setAlign alignLeft)
      where
     node2 = node dot
     \mathit{edge2} = \mathit{edge'} \; (\mathit{line} \; (\mathit{ref} \; (\mathit{This} \mathrel{\triangleleft} C)) \; (\mathit{ref} \; (\mathit{Parent} \mathrel{\triangleleft} C)))
     edge2s = edge' (stair (ref (This \triangleleft C)) (ref (Parent \triangleleft C)))
     upToRoot = cross' (curve
                                         (ref (This \triangleleft C)) (ref (Up 1 \triangleleft C))
                             \# setStartAngle (90)
                             \# setArrowHead default)
                                tree3 = tree2
                        tree4 = for Each Node
                                             (setDistH 10)
```

Example 3.1.1: Alignment

3.1 Trees 23

Expression	1	Meaning
edge	$:: Tree \rightarrow Edge$	edge t
		=edge'
		(ref Parent)
edge'	$::Path \rightarrow Tree \rightarrow Edge$	special edge
cross	$::Point \rightarrow Edge$	cross p
		= cross' (line (ref This) p)
cross'	$::Path \rightarrow Edge$	crossing edge
enode	$::Picture \rightarrow [Edge]$	enode p ts
	\rightarrow Edge	= edge (node p ts)
node	$::Picture \rightarrow [Edge] \rightarrow Tree$	normal node
toPicture	$:: Tree \rightarrow Picture$	convert
stair	$:: Point \rightarrow Point \rightarrow Path$	stair p_1 p_2
		$=z' p_1$
		$-z' (p_1 + vec (0, 0.5 * distY p_2 p_1))$
		$-z' (p_2 - vec (0, 0.5 * distY p_2 p_1))$
		$-z'$ p_2
		stairs, useful for trees

Table 3.1.1: Trees

Expression		Meaning
DefaultAlign	::AlignSons	childs as dense as possible
AlignLeft	::AlignSons	if child, then branch left,
		else DefaultAlign
AlignRight	::AlignSons	analogous
AlignLeftSon	::AlignSons	parent above left child
AlignRightSon	::AlignSons	analogous
AlignOverN	$::Int \rightarrow AlignSons$	parent above <i>n</i> th child
		(0 = left)
AlignAngles	$::[Double] \rightarrow AlignSons$	list of angles. If more childs
		than angles, pack remaining dense
AlignConst	$::Double \rightarrow AlignSons$	constant distance between childs;
		may generate overlaps
AlignFunction	::	
	\rightarrow [Numeric]	

Table 3.1.2: Placement of child nodes

Expression		Meaning
setDistH	$::Separation \rightarrow Tree \rightarrow Tree$	horiz. distance between childs
getDistH	:: $Tree \rightarrow Separation$	
setDistV	$::Separation \rightarrow Tree \rightarrow Tree$	vert. distance to parent
getDistV	:: $Tree \rightarrow Separation$	
setAlign	$::AlignSons \rightarrow Tree \rightarrow Tree$	placement of childs
getAlign	$:: Tree \rightarrow AlignSons$	

Table 3.1.3: Special attributes of trees

3.1 Trees 24

Expression		Meaning
sepBorder	::Numeric \rightarrow Separation	dist. between bounding boxes
sepCenter	$::Numeric \rightarrow Separation$	dist. between centers
(+), (-), (*)	$::Separation \rightarrow Separation$	
	\rightarrow Separation	
negate, abs, signum	$::Separation \rightarrow Separation$	
fromInteger	$::Integer \rightarrow Separation$	$i \sim sepBorderi$
fromInt	$::Int \rightarrow Separation$	$i \sim sepBorderi$

Table 3.1.4: Node distances

Name	Meaning
Parent	current parent node
This	current node
Root	root
$Up 1, Up 2, \dots$	nodes on path to root
<i>Son</i> 0, <i>Son</i> 1,	children from left to right
\ \ \	<i>ef Parent</i>) denotes an edge from the current node to the parent node.
line (ref This) (r	ef Root) is an edge to the root. Edges may be arbitrary paths.

Table 3.1.5: Placeholder for special nodes

Expression		Meaning
forEachNode	$::(Tree \rightarrow Tree) \rightarrow Tree \rightarrow Tree$	apply fct to each
		node.
for Each Level Node	$::(Tree \rightarrow Tree) \rightarrow Int \rightarrow Tree \rightarrow Tree$	apply fct to each
		node of a given
		depth (0 = root)
forEachPic	$::(Picture \rightarrow Picture) \rightarrow Tree \rightarrow Tree$	apply fct to all
		pictures.
forEachEdge	$::(Path \rightarrow Path) \rightarrow Tree \rightarrow Tree$	apply fct to all
		edges.

Table 3.1.6: Auxilliary functions

3.2 Turtle graphics 25

Figure 3.1.1: A big tree

3.2 Turtle graphics

Example 3.2.1: C curve of order 10

3.2 Turtle graphics 26

```
turtle2 = (haus \ rot \ 20
                 &home & pu & fw 40 & pd
                 &haus (setColor blue o (haus dach)) 15
                                     , 4) 45)
       ) # setPen (penCircle (1
       where
       haus d \ l = (fw \ l \# setPen \ 5) \& toleft \& fw \ l \& toleft
                & fw l & turn 180
                & dl
                & turn(-45) & fw(l*sqrt(2))
               & turn (-135) & fw l
                & turn (-135) \& fw (l * sqrt (2))
                & turn (-45)
       rot \ l = dach \ l
            # setColor (graduateMed red 0.9 10)
       dach \ l = turn \ 45 \ \& fw \ (0.5 * l * sqrt \ (2))
              & toright & fw (0.5 * l * sqrt (2))
              & turn (-45)
       fw = forward
       pu = penUp
       pd = penDown
```

Example 3.2.2: Colors and pencils in turtle graphics

Command		generates
turtle, toPicture	$::Turtle \rightarrow Picture$	picture from turtle path
home	::Turtle	jump to $(0,0)$, look to the right
relax	::Turtle	do nothing
left	::Turtle	rotate 90 degree to the left
right	::Turtle	rotate 90 degree to the right
turn	$::Orientation \rightarrow Turtle$	rotate (positive = to the left)
turnl	$::Orientation \rightarrow Turtle$	rotate to the left
turnr	$::Orientation \rightarrow Turtle$	rotate to the right
forward	::Double o Turtle	step in current direction
backwards	::Double o Turtle	backstep in current direction
penUp	::Turtle	lift pen
penDown	::Turtle	lower pen
(&)	$::Turtle \rightarrow Turtle \rightarrow Turtle$	concatenate two turtle paths
plot	$::[Turtle] \rightarrow Turtle$	concatenate several turtle paths

Table 3.2.1: Commands for turtle graphics

Command		generates
relax	::Paint	draw nothing
(&)	$::Paint \rightarrow Paint \rightarrow Paint$	draw consecutively
toPicture	$::Paint \rightarrow Picture$	
cdrop	$::(Numeric, Numeric) \rightarrow Picture$	draw a picture at
	\rightarrow Paint	given position
cdraw	$::Path \rightarrow Paint$	$cdraw\ p = cdraws\ [p]$
cdraws	$::[Path] \rightarrow Paint$	draw paths
cfill	$::Area \rightarrow Paint$	$cfill\ a = cfills\ [a]$
cfills	$::[Area] \rightarrow Paint$	fill areas
cclip	$::Path \rightarrow Paint$	clip everything inside path

Table 3.3.1: Commands for canvas drawings

```
colorcirc = transform (affine (0.5, 0, 0.1, 0.425, 0, 0))
         (color 60
         (bw 50
         (color 41.7
         (bw 34.7
         (color 28.9
         (bw 24.1
         (color 20.1
         (bw 16.7
         (color 13.95
         (bw 11.63 empty)
                                        ) ))))))))
       where
       color\ r\ p = fill\ (areas\ r
                        (\lambda i \rightarrow hsv2rgb\ (i,1,1)))\ p
       bw \ r \ p = fill \ (areas \ r
                       (\lambda i \rightarrow grey (abs (i - 180) / 180))) p
       areas r c = [toArea [r * dir (Numeric i),
                                            r * dir (2 + Numeric i),
                                            1.15*r)*dir(2+Numeric\ i),
                                             1.15 * r) * dir (Numeric i)
                             # setPen 0.01
                             # setColor (c i)
                             \# setFront
                                 |i \leftarrow [0, 4...356]|
```

Example 3.3.1: Color circle

```
barchart = chart [(35, 0.5), (40, 0.3 + red), (6, green), (3, red - 0.3), (6, yellow)]
chart\ bs = cfills\ floor
        & cdraws (grid 10)
        & cfills (bars 0 bs)
        & labels 0 bs
     where
     hSize = hSep * fromInt (length bs)
     hSep = 35
     width = 20
     floor = [toArea\ [vec\ (-5,3), vec\ (-18,-10),
                                         vec(hSize - 13, -10), vec(hSize, 3)]
                                        setColor 0.7
                                     # setPen 1
     grid(-1) = []
     grid\ n = line\ (vec\ (-5, n*5+3))\ (vec\ (hSize, n*5+3)): grid\ (n-1)
     bars \_[] = []
     bars n(bc:bs) = bar \ n \ bc: top \ n \ bc: side \ n \ bc: bars \ (n+1) \ bs
     bar n (b, c) = toArea [vec (n * hSep, 0), vec (n * hSep + width, 0),
                         vec (n * hSep + width, b), vec (n * hSep, b)
                          # setPen 1
                          # setFront
                          \# setColor (c* graduateMed 0.8 0.3 45)
     top \ n \ (b, c) = toArea \ [vec \ (n * hSep + width, b), vec \ (n * hSep, b),
                         vec (n * hSep + 3, b + 3), vec (n * hSep + width + 3, b + 3)
                          # setPen 1
                          # setFront
                          \# setColor (c * graduateMed 0.3 0.8 (-45))
     side n(b, c) = toArea[vec(n * hSep + width, 0), vec(n * hSep + width, b),
                         vec (n * hSep + width + 3, b + 3), vec (n * hSep + width + 3, 3)]
                         # setPen 1
                          # setFront
                          # setColor (c * graduateMed 0.6 0.2 0)
     labels \_[] = relax
     labels n((b, \_):bs)
                                        n * hSep + width / 2 + 3, b + 10
                       = cdrop
                                        tex (num2String b)
                                         # setBGColor white)
                       & labels (n+1) bs
                      where
                      num2String\ (Numeric\ n) = "\tiny" + (show\ n) + "\'"
                      num2String _ = ""
                              40.0%
                  __ 35.0%
```

Example 3.3.2: Election results

```
chip = scale \ 0.72 \ (boxRek \ (boxRek \ boxI' \ (setPattern \ dashed)) \ (setPattern \ dotted))
     where
     circ = toPicture (circle empty # setDX 4)
     tree = toPicture (node circ [enode circ [enode circ [], enode circ []],
                               enode circ [enode circ [], enode circ []]])
                                # setName (0 :: Int)
     pin \ n \ p = p -- vec \ (xpart \ p, ypart \ (ref \ N))
               # setLabel 1 S (toPicture (dot # setDX 2) # setName n)
     box1 = box (overlay [ref (0 \triangleleft N)])
                                                 \stackrel{\cdot}{=} ref (1 \triangleleft N) - vec (0.5 * width (0 :: Int), 0)]
                                                     tree, circ # setName "circ"])
            # setDX 10
            # setDY 10
     boxI' = draw [ref ("circ" \triangleleft SW) -- ref ("circ" \triangleleft C) + vec (-8, -4),
                                                      ref("circ" \triangleleft SE) -- ref("circ" \triangleleft C) + vec(8, -4),
                                                      pin "a" (ref (0 \triangleleft 0 \triangleleft C)),
                                                      pin "b" (ref ("circ" \triangleleft C) + vec (-8, -4)),
                                                      pin "d" (ref ("circ" \triangleleft C) + vec (8, −4)),
                                                      pin \ "c" \ (ref \ ("circ" \triangleleft C))]
                            box1
     boxRek b f
                   = draw [pin "d" (ref (1 \triangleleft "d" \triangleleft C)),
                                                      pin "a" (ref (0 \triangleleft "c" \triangleleft C)),
                                                      pin "b" (ref (1 \triangleleft "b" \triangleleft C)),
                                                      pin \text{ "c" } (ref (1 \triangleleft \text{ "c" } \triangleleft C))]
                  (box (setTrueBoundingBox (
                               draw [curve (ref (0 \triangleleft "a" \triangleleft C)) (ref (0 \triangleleft "b" \triangleleft C))]
                                                 # setStartAngle 25,
                                                      curve (ref (0 \triangleleft "d" \triangleleft C)) (ref (1 \triangleleft "a" \triangleleft C))
                                                         setStartAngle 25
                                      ((b
                                                         setName (0 :: Int)) |||| (b # setName (1 :: Int)))))
                   # setDX 10
                   # setDY 10
                   \#f
```

Example 3.3.3: Chip

```
kompl = matrix [[grid, pow2],
                                       pow3, func
      where
      grid = scale 7 (plane zId)
      pow2 = scale 0.4 (plane zPow2)
      pow3 = scale 0.05 (plane zPow3)
      func = scale 0.05 (plane zFunc)
      z a = PathPoint (vec a)
      zId x y = z (x, y)
      zPow2 \ x \ y = z \ (2 * x)
                                     * \quad y, x * x - y * y)
      zPow3 \ x \ y = z \ (x * (x * x - 3 * y * y), y * (3 * x * x - y * y))
      zFunc \ x \ y = z \ (2 * x
                                       * x * y + x * x * x - y * y * x, 2 * x * y * y + x * x * y - y * y * y
      plane\ f = toPicture\ (
                                           cdraws (map \ toPath \ (horiz \ f))
                                   & cdraws (map \ toPath \ (vert \ f)))
              where
                                       = [[f (fromInt x) (fromInt y)]
             horiz f
                                           |x \leftarrow [-9..9]]|y \leftarrow [-9..9]]
                                       = [[f (fromInt x) (fromInt y)]
             vert f
                                            |y \leftarrow [-9..9]]|x \leftarrow [-9..9]]
      toPath\ ps = (foldl1\ (..)\ ps) \# setPen\ 0.001
```

Example 3.3.4: Complex analytic maps

4 Matrix

```
matrBsp = matrixAlign
                       [[\mathit{cell'}\ C \qquad \qquad (\mathit{math}\ "\\ ),
                          cell' \ W "left_adjusted",
                         cell' W "centered",
                         cell' \ W \ "\mathtt{right} \sqcup \mathtt{adjusted}"],
                               [\mathit{cell'}\ W \qquad (\quad "\mathtt{vertical"}\ |\!-\!|\ "\mathtt{on}\sqcup\mathtt{top"}),
                                 cell' NW "NW",
                                 cell' N "N",
                                 cell' NE "NE"],
                                [\mathit{cell'}\ W \ (\ "\mathtt{vertical"}\ |\!-\!|\ "\mathtt{centered"}),
                                 cell' W "W",
                                 cell' C "C",
                                 cell' E "E"],
                                 \lceil \mathit{cell'} \ W \qquad \  ( \quad \text{"vertical"} \ |\!-\!| \ \text{"on} \sqcup \mathsf{bottom"}), 
                                 cell' SW "SW",
                                 cell' S "S",
                                 cell' SE "SE"]]
                       \
                                      left adjusted
                                                                                    right adjusted
                                                                 centered
                                      NW
                                                                      N
                                                                                                     NE
               vertical
                on top
                vertical
                                       W
                                                                      \mathbf{C}
                                                                                                        \mathbf{E}
               centered\\
                  vertical
                                                                      \mathbf{S}
                                      SW
                                                                                                      SE
               on bottom
```

Example 4.0.5: Alignement in tables

5 Parameters

Parameter		
prolog	included at beginning of METAPOST file.	
epilog	included at end of METAPOST file.	
funcmp_rts	options for the binary <i>funcmp_bin</i> .	
funcmp_bin	name of the binary.	
mp_bin	name of METAPOST.	

Table 5.0.2: Parameters in the .FuncMP file

```
= "verbatimtex\n\
prolog
                                                                                                                                     \verb|\label{logist}| $$ \colored{logist} $$ \co
                                                                                                                                     \\\usepackage{mflogo}\n\
                                                                                                                                     \\\begin{document}\n\
                                                                                                                                     \left( \frac{n}{n} \right)
                                                                                                                                     \verb|\input boxes|n||
                                                                                                                                     \input FuncMP"
                                                                                                               = "\n\n\\end"
epilog
defaultDX
                                                                                                          = 3
                                                                                                             = 3
defaultDY
textDX
                                                                                                             = 2
textDY
                                                                                                             = 2
funcmp_rts
                                                                                                  = "+RTS -H24m -K1M -RTS"
                                                                                                        = "./FuncMP"
funcmp_bin
mp_bin
                                                                                                               = "virmp "
```

Example 5.0.6: the file .FuncMP