Теория формальных языков. Рубежный контроль №2

Вариант №23

Киселев Кирилл

Теоретическая информатика и компьютерные технологии МГТУ им. Н.Э. Баумана декабрь 2023

Содержание

1	Задача 1	2
	1.1 Решение	2
2	Задача 2 2.1 Решение	3
3	Задача 3 3.1 Решение	4

1 Задача 1

Язык SRS $a \to bab, \, a^3 \to a^2, \, ba \to ac$ над множеством базисных слов $b^n a^n$

1.1 Решение

Замечания:

- 1. Любое не пустое слово содержит хотя бы одну a
- 2. Буквы a могут только уменьшаться
- 3. $|w|_a \le |w|_b + |w|_c$
- 4. Можно бесконечно двигать влево самую первую букву a
- 5. Слова могут начинаться только с $b^{i}a^{k}$, где k>0
- 6. Применение правила 3 ограничивает сдвиг тех a, которые находились правее буквы a, к которой было применено правило.

$$w = b^{i_0} a^{p_1} c^{k_1} b^{i_1} a^{p_2} c^{k_2} b^{i_2} a^{p_3} c^{k_3} b^{i_3} \dots a^{p_r} c^{k_r} b^{i_r} a^{p_{r+1}}, p_1 \ge 1$$

$$\sum_{m=1}^{r+1} p_m \le \sum_{m=0}^{r} i_m + \sum_{m=1}^{r} k_m$$

2 Задача 2

Язык
$$\Big\{ w \; \Big| \; |w|_{ab} \; = \; |w|_{baa} \; \& \; w = w^R \Big\}$$
. Алфавит $\{a,b\}$

2.1 Решение

Пусть $L_1 = \{w \mid |w|_{ab} = |w|_{baa}\}, L_2 = \{w \mid w = w^R\}$. Язык L_1 регулярный, а язык L_2 контекстно-свободный. Значит исходный язык L является КС, как пересечение КС и регулярного языков.

Докажем недетерминированность L. Пусть n - длина накачки. Тогда возьмем следующие слова: $w_1=a^{2n}b^{2n}a^{2n},\ w_2=a^{2n}b^{2n}baabb^{2n}a^{2n}$. Пусть $x=a^{2n}b^{2n},\ y=a^{2n},\ z=baabb^{2n}a^{2n}$. Необходимо рассмотреть 2 случая:

- 1. Рассмотрим общий перефикс x. Пусть $x=x_0x_1x_2x_3x_4$. Если $x_1=a^k$ и $x_3=a^p$, либо $x_1=a^k$ и $x_3=b^p$, то отрицательная накачка выводит оба слова из языка, т.к полученные слова уже не будут являться палиндромами. Если $x_1=b^k$ и $x_3=b^p$, то отрицательная накачка в w_2 выводит слово из языка, т.к. полученное слово не будет являться палиндромом. Если $x_1=a^{k_1}b^{k_2}$, либо $x_2=a^{k_1}b^{k_2}$, то отрицательная накачка выводит оба слова из языка
- 2. Пусть $x=x_0x_1x_2,\ y=y_0y_1y_2,\ z=z_0z_1z_2.$ Т.к по условию леммы $|x_1x_2|\leq n$, то $x_1=b^{k_1}$ и $x_2=b^{k_2},\ k_1+k_2\leq n,\ k_1>0.$ Также y_1 в любом случае равно a^{k_3} , тогда слово $x_0x_1^ix_2y_0y_1^iy_2$ при любом $i\neq 1$ не принадлежит L, т.к. не является палиндромом.

Следовательно, данный язык не является детерменированным КС языком.

3 Задача 3

Язык атрибутной грамматики для регулярок:

 $[S] \rightarrow [Regexp]$;

 $[Regexp] \rightarrow [Regexp][Regexp] \qquad ; \quad Regexp_1.val \neq \varepsilon, Regexp_2.val \neq \varepsilon$

 $Regexp_0.val := Regexp_1.val + + Regexp_2.val$

 $[Regexp] \rightarrow ([Regexp] | [Regexp]) \quad ; \quad Regexp_1.val \neq \varepsilon \vee Regexp_2.val \neq \varepsilon,$

 $Regexp_1.val \neq |, Regexp_0.val \coloneqq |$

 $[Regexp] \rightarrow ([Regexp])* \hspace{1cm} ; \hspace{0.2cm} Regexp_1.val \neq \varepsilon$

 $Regexp_1.val \neq *, Regexp_0.val := *$

$$\begin{split} [Regexp] \rightarrow \varepsilon & ; \quad Regexp.val \coloneqq \varepsilon \\ [Regexp] \rightarrow a & ; \quad Regexp.val \coloneqq a \\ [Regexp] \rightarrow b & ; \quad Regexp.val \coloneqq b \end{split}$$

3.1 Решение

Рассмотрим подвыражения, которые запрещены согласно ограничениям налагаемым условиями на аттрибут:

- 1. $(\varepsilon|\varepsilon)$
- $2. \ ((\cdot \mid \cdot) \mid \cdot)$
- 3. (ε) *
- 4. $((\cdot)*)*$