Data Science, 2022 Tut 6: Machine Learning 1

Name: Prachi Mehta

UID: 2018130025

- 1. [Probability] Assume that the probability of obtaining heads when tossing a coin is λ .
 - a. What is the probability of obtaining the first head at the (k + 1)-th toss?
 - b. What is the expected number of tosses needed to get the first head?

9.1	probability of Heads = 2 probability of Tails = 1-P(H) = 1-2
α)	P(heads at k+1 toes) = P(Tat k toss) . P(Hat k+1 + toss) = (1-2) (1-2) (1-2) (1-2) (1-2)
	= (1-A)K. A
	1110 Fp =
6)	No of tosses required to get first hoad is:
	or its fail of their head =(-1)(S+1)
	$S = \lambda + (1-\lambda)(S+1)$
	= X+ S+1-SX-X
	8 = (8+1) - SX
	5) = 1
	12 = 1/2 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =

- 2. [Probability] Assume X is a random variable.
 - a. We define the variance of X as: $Var(X) = E[(X E[X])^2]$. Prove that $Var(X) = E[X^2] E[X]^2$.
 - b. If E[X] = 0 and $E[X^2] = 1$, what is the variance of X? If Y = a + bX, what is the variance of Y?

```
6.2 a) Var(x) = E([X - E(X)]^2]
= E(X^2 - 2 \times E(X) + E(X)^2]
= E(X^2) - 2E(X + E(X)) + E(X)^2
= E(X^2) - 2E(X)^2 + E(X)^2
= E(X^2) - E(X)^2
Hence proved.
```

6)
$$vag(x) = E(x^2) - E(x)^2$$

$$= 1 - 0^2$$

$$= 1$$

$$E(x^2) = 1 \quad g \quad E(x) = 0$$

$$E(y^2) = E((a + bx)^2]$$

$$= E(a^2 + 2abx + b^2x^2)$$

$$= a^2 + 2abE[x] + b^2E(x^2)$$

$$= a^2 + 2ab(0) + b^2(1)$$

$$= a^2 + 0 + b^2$$

$$= a^2 + b^2$$

$$E(y) = E[a + bx] = a + bE[x]$$

$$= a + b(0)$$

$$= a$$

$$vag(y) = E[y^2] - E[y]^2 = a^2 + b^2 - a^2$$

$$= b^2$$

3. [Probability] Your friend Aku is a great predictor about winning horse race. Assume that we know three facts: 1) If Aku tells you that a horse name black beauty will win, it will win with probability 0.99. 2) If Aku tells you that a black beauty will not win, it will not win with probability 0.99999. 3)

With probability 10^{-5} , Aku predicts that a black beauty is a winning horse. This also means that with probability $1 - 10^{-5}$, Aku predicts that a black beauty will not win.

- a. Given a horse, what is the probability that it wins?
- b. What is the probability that Aku correctly predicts a black beauty is winning?

Q-3	
	let & be event that given horse is winning
	&-Qi event horse is not winning
	let I be event 'Aku Predicts hosse winning'
	let on he event 'Aku predicts horse not winning'
a)	P(P) = P(B, A) + P(B, ~ a)
	= P(P/Q) P(Q) + P(P/2Q) P(Q) = 0.99 × 10-5 + (1-0.91999) (1-10-5)
	= 0.99 × 10" + (1-091999) (1-105)
	= 1.99×10-5.

	ORTE O
Q-3	
	$P(P/Q) = P(P,Q) = P(P/Q) \cdot P(Q)$
	10/01
	1.99 × 10-5
	1.99 × 10-3
	20.49