

Matched-field source localization using sparsely-coded neural network and data-model mixed training

Shougui Cai, Wen Xu
College of Information Science & Electronic Engineering

WUWNet'17 November 8, 2017, Halifax , Canada

MFP and SSP mismatch problem

- Source localization is a basic problem in underwater acoustics
 - matched-field processing (MFP) is one of the mostly-studied;
 - sensitive to the mismatch problem;
- Machine learning methods learn directly from the observation
 - □ do not require a good *a prior* information;
 - can be designed to implement a required processing;
 - be able to work at different scenarios by well trained;
- View source localization as a machine learning problem
 - easy to establish a probability distribution model by neural networks;
 - also, capable of representing almost any data distribution;
 - convenient for us to train the model by using modern machine learning frameworks.

Contents

- Neural network based source localization prediction model
- Performance comparison with two MFP methods
- Model robustness on SSP mismatch
- Data-model mixed training
- Summary & Future work

Neural network based source localizate

Input: Sample cov. Matrix: 441 Neurons (21*22/2*2-21) per frequency

Output: binary range vector: 1.1475-8.6475 km, 300 neurons, 25m each

Just one middle layer, 500 Neurons

[1] Niu, H., and Gerstoft, P. Source localization in an ocean waveguide using supervised machine learning. JASA (2017), 1176–1188.

Neural network based source localization

FNN with one hidden layer

$$z = f(Vx + b_1)$$

$$y = h(Wz + \boldsymbol{b}_2)$$

h:softmax function

$$a = Wz + b_2$$

$$y_k = \frac{e^{a_k}}{\sum_{j=1}^K e^{a_j}}$$

Neural network based source localization

- Input data preprocessing
 - Sound pressure:

$$p(f) = S(f)g(f,r) + n$$

Normalized:

$$\tilde{\boldsymbol{p}}(f) = \frac{\boldsymbol{p}(f)}{\|\boldsymbol{p}(f)\|_{2}}$$

• Sample covariance matrices:

$$\boldsymbol{C}(f) = \frac{1}{N_s} \sum_{s=1}^{N_s} \tilde{\boldsymbol{p}}_s(f) \tilde{\boldsymbol{p}}_s^H(f)$$

• Concatenate upper triangular elements' real and imaginary parts, vectorize to create input x

Neural network based source localization

- Source range mapping
 - \square Mapping rang into K bins of width with Δr

$$t_{nk} = \begin{cases} 1 & if ||r - r_k|| \le \frac{\Delta r}{2} \\ 0 & otherwise \end{cases}$$

	*	*	*		*	*	*	*	
[1	0	0		0	0	0	0	$] \longrightarrow r_1$
[0	1	0		0	0	0	0	$] \longrightarrow r_2$
[0	0	1		0	0	0	0	$] \longrightarrow r_3$
[0	0	0		0	0	0	1	$] \longrightarrow r_K$

- Training criterion
 - negative log-likelihood & sparsity constraint on FNN

$$E(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk} + \lambda_1 \|z\|_1 + \lambda_2 \|V\|_{2,1}$$

Definition of model accuracy

$$acc = \frac{1}{N} \sum_{n=1}^{N} I(y_n, t_n) \times 100\%$$

$$I(y_n, t_n) = \begin{cases} 1 & \text{if } y_n = t_n, \\ 0 & \text{otherwise.} \end{cases}$$

SWellEx96 Event S5

- Environmental model and source-receiver configuration
 - ☐ Shallow source: depth 9m;
 - ☐ Frequency: 109, 232, 385Hz used;

SWellEx-96 Event S5 JD 131, 23:15 GMT to JD 132, 00:30 GMT 32° 43'N 32" 42" 32" 39" 32" 387 (b)

Performance comparison with MFP

- SWell96Ex-S5 experimental data
 - Accuracy: SCFNN > MCE > Bartlett1 > Bartlett2

Table 1: Localization accuracy of SCFNN and MFP

Methods	SCFNN	MCE	Bartlett 1	Bartlett 2
109Hz	89.3%	72.3%	37.7%	3.7%
232 Hz	97%	91%	17.7%	4.3%
385 Hz	99.7%	97.7%	14%	0.67%
$109,\!232,\!385 \mathrm{Hz}$	99%	99.7%	40.7%	7.7%

Note: There are two kinds of replica-field used.

Bartlett 1 measurement data; Bartlett 2, simulated by model.

Performance comparison with MFP

SWell96Ex-S5 experimental data

Error: SCFNN < MCE < Bartlett1 < Bartlett2</p>

Table 2: Absolute mean error of SCFNN and MFP

Methods	SCFNN	MCE	Bartlett 1	Bartlett 2
109Hz	28.1	290.3	852.8	1219.5
232 Hz	7.4	2.5	832.3	832.3
385 Hz	0.08	0.58	1266.7	1756.3
109,232,385Hz	0.25	0.083	477.2	722.9

Note: There are two kinds of replica-field used.

Bartlett 1 measurement data; Bartlett 2, simulated by model.

Model robustness on SSP mismatch

Different degrees of error in the knowledge of SSP

Compared to the optimized,

- a) i906, significant change in shape;
- b) i905, change is slight;
- i906*, changed from i906, for the sake of testing.

optimized one is the best SSP model for real environment of SWellEx-96 experiment,
 while,i906, i905 are the measured SSPs from different stations.

Model robustness on SSP mismatch

- Monte-Carlo Simulation (1000 times)
 - Case 1: light change in SSP

SCFNN positions best, followed by MCE and Bartlett worst;

Model robustness on SSP mismatch

- Monte-Carlo Simulation (1000 times)
 - Case 2: large change in SSP

accuracy order unchanged;

absolute mean error, SCFNN larger than MCE.

Data-model mixed training

- Monte-Carlo Simulation (1000 times)
 - Model robustness is significantly improved

Summary

- SCFNN works well in localization problem
 - perform better than Bartlett, MCE methods;
- and is also sensitive to SSP mismatch
 - varying on different degrees of error in the knowledge of SSP;
 - still performs better than Bartlett and close to the MCE method;
- model robustness can be improved by data-model mixed training
 - SCFNN classifier can work well on two entirely different SSPs;
 - performance may be improved by add some 'noise' data;
 - also, neural network based model behaves poorly in low SNR case.

Future work

- Feature enhancement & adversarial learning on noise;
- Mathematical analysis & explain robustness on mixed training.

Thank you for listening!

Matched-field source localization using sparsely-coded neural network and data-model mixed training

Shougui Cai, Wen Xu
College of Information Science & Electronic Engineering

WUWNet'17 November 8, 2017, Halifax , Canada

