Записки по ДИС2 - Лекция 13

25.05.2023

Диференциране на композиция.

Преговор

$oldsymbol{\Phi}$ ункции от вида $\mathbb{R}^n o \mathbb{R}$

 $f: U \to \mathbb{R}, \ U \subset \mathbb{R}^n$ — отворено, $x_0 \in U, \ df(x_0): \mathbb{R}^n \to \mathbb{R}$ — линеен оператор такъв, че: $f(x) = f(x_0) + df(x_0)(x - x_0) + \varphi(x, x_0)$ и $\frac{\varphi(x, x_0)}{\|x - x_0\|} \xrightarrow[x \to x_0]{} 0$. От предната лекция имаме следните твърдения:

Твърдение 1 Ако f е диференцируема в x_0 , то частните производни $\frac{\partial f}{\partial x_i}(x_0) = \lim_{\lambda \to 0} \frac{f(x_0 + \lambda e_i) - f(x_0)}{\lambda}$, $i \in \{1, ..., n\}$ съществуват и $\frac{\partial f}{\partial x_i}(x_0) = df(x_0)(e_i)$.

$$\nabla f(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), ..., \frac{\partial f}{\partial x_n}(x_0)\right) \quad df(x_0)(h) = \langle \nabla f(x_0), h \rangle$$

Твърдение 2 Ако частните производни $\frac{\partial f}{\partial x_i}(x_0)$ съществуват в U и са непрекъснати в x_0 , то f е диференцируема в x_0 .

$oldsymbol{\Phi}$ ункции от вида $\mathbb{R}^m ightarrow \mathbb{R}^n$

$$f: U \to \mathbb{R}^m, \ U \subset \mathbb{R}$$
 — отворено, $x_0 \in U, \ f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}$

Твърдение 3 f е диференцируема в x_0 , ако $f(x) = f(x_0) + df(x_0)(x - x_0) + o(\|x - x_0\|)$, където $df(x_0) : \mathbb{R}^m \to \mathbb{R}^n$ - линеен оператор $\Leftrightarrow f_i$ е диференцируема в x_0 за всяко $i = \overline{1,m}$. Тоест:

$$df(x_0)(h) = \begin{pmatrix} \nabla f_1(x_0) \\ \vdots \\ \nabla f_m(x_0) \end{pmatrix} h = f'(x_0)h, \quad m.e. \quad f'(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \dots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \dots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}_{(n \times m)}$$

1

Диференциране на композиция

Нека $x_0 \in U \subset \mathbb{R}^n$ отворено, $y_0 = f(x_0) \in V \subset \mathbb{R}^m$ отворено. $f: U \to V \quad g: V \to \mathbb{R}^k$

Твърдение 4 Нека $g\circ f:U\to\mathbb{R}^k$, f,g - диференцируеми в x_0 . Тогава $g\circ f$ е диференцируема в x_0 и $d(g\circ f)(x_0)=dg(f(x_0))\circ df(x_0)$.

Доказателство: To be added...

Инвариантност на формата на диференциала