15

16

17

18

19

20

21

34

ANONYMOUS AUTHOR(S)

We introduce a new technique for correcting syntax errors in arbitrary context-free languages. Our work addresses the problem of syntax error correction, which we solve by defining a finite language that provably generates every repair within a certain edit distance. To do this, we adapt the Bar-Hillel construction from formal languages, guaranteeing this language is sound and complete with respect to a programming language's grammar. This technique also admits a polylogarithmic time algorithm for deciding intersection nonemptiness between CFLs and acyclic NFAs, the first of its kind in the parsing literature.

INTRODUCTION

When programming, one invariably encounters a recurring scenario in which the editor occupies an unparseable state. Faced with this predicament, programmers must spend time to locate and repair the error before proceeding. In the following paper, we propose to solve this problem automatically by generating a list of candidate repairs which contains with high probability the true repair, assuming this repair differs by no more than a few edits from the broken source code.

Prior research on syntax repair can be classified into exact and approximate methods. In the former, rule-based methods are used to locate a suitable alternative. While appealing for their interpretability and well-understood algorithmic properties, these methods are too weak to model the full distribution of natural source code and must rely on relatively brittle heuristics.

In the latter case, the set of all strings is typically used as the sample space for a distribution whose parameters are learned from a dataset of pairwise errors and fixes. Though statistically more robust, large language models typically use approximate inference and thus require some form of postprocessing or rejection sampling to ensure the generated results conform to the grammar.

The primary shortcoming with both of these approaches is they generate too few repairs. Even if the model in question guarantees grammatical soundness or has good statistical generalization properties, it is likely to miss the intended repair in the presence of ambiguity or when there are many candidates from which to choose. Note however, that most syntax errors need relatively minor alterations to repair, of which there are only a finite number of possibilities to consider.

Thus we arrive at the core problem this paper aims to solve: how do we efficiently recover the most probable repairs in close proximity to a syntactically broken code snippet? To address this problem, we propose to exhaustively evaluate every repair within a fixed edit distance.

Our algorithm first constructs an automaton representing all possible strings within a certain edit distance. This is used to compute a matrix denoting all valid repairs in the programming language and edit distance, then we construct a regular expression for that language. Finally, this regular expression is decoded using a fast pretrained statistical model to produce a finite list, which is then reranked and truncated to obtain the final repairs. The full pipeline is depicted in Fig. 1.

Fig. 1. Simplified dataflow. Given a grammar and broken code fragment, we create an automaton generating the language of local edits, complete a Boolean matrix, then use it to construct a regular expression representing the language intersection. This regular expression can be decoded to produce a list of candidate repairs, which is then reranked and truncated to obtain the most probable candidates from within the language intersection.

46

47

To operationalize this technique, we design, develop and benchmark a new developer tool for syntax repair. This tool makes aggressive use of communication-free parallelism, making it readily executable by off-the-shelf GPU and SIMD co-processors. We provide a reference implementation of our tool on the WebGPU platform and show these computational resources, which typically sit idle during text editing, can be profitably used to accelerate real-time program repair.

Finally, we show the efficacy of this technique for locating and repairing syntax errors of up to three edits and eighty lexical tokens in under a second, practical for a few lines of source code in realistic programming languages. Our work shows this technique is highly effective at predicting the human repair across a dataset of Python source code, on average 5x more accurately than previous state of the art methods at comparable latency and compute thresholds.

2 BACKGROUND

 Recall that a CFG, $\mathcal{G} = \langle \Sigma, V, P, S \rangle$, is a quadruple consisting of terminals (Σ) , nonterminals (V), productions $(P: V \to (V \mid \Sigma)^+)$, and a start symbol, (S). Every CFG is reducible to so-called *Chomsky Normal Form* [16], $P': V \to (V^2 \mid \Sigma)$, where every production is either (1) a binary production $w \to xz$, or (2) a unit production $w \to t$, where w, x, z: V and $t: \Sigma$. For example:

$$G = \{ S \to SS \mid (S) \mid () \} \Longrightarrow G' = \{ S \to QR \mid SS \mid LR, R \to \}, L \to (, Q \to LS \}$$

Likewise, a finite state automaton (FSA) is a quintuple $\mathcal{A} = \langle Q, \Sigma, \delta, q_{\alpha}, F \rangle$, where Q is a finite set of states, Σ is a finite alphabet, $\delta \subseteq Q \times \Sigma \times Q$ is the transition function, q_{α} is the initial state, and $F \subseteq Q$ are the accepting states. These generally come in two varieties, deterministic and nondeterministic depending on whether or not δ maps each pair $\langle q, s \rangle$ to a unique q'.

There is an equivalent characterization of the regular languages via an inductively defined datatype, which is often more elegant than FSAs to work with. Consider the generalized regular expression (GRE) fragment containing concatenation, conjunction and disjunction:

Definition 2.1 (Star-free GRE fragment). Let e be an expression defined by the grammar:

$$e \rightarrow \varnothing \mid \varepsilon \mid \Sigma \mid e \cdot e \mid e \vee e \mid e \wedge e$$

where ε is the empty symbol. Semantically, we interpret these expressions as denoting languages:

$$\mathcal{L}(\varnothing) = \varnothing \qquad \qquad \mathcal{L}(x \cdot z) = \mathcal{L}(x) \circ \mathcal{L}(z)^{1}$$

$$\mathcal{L}(\varepsilon) = \{\varepsilon\} \qquad \qquad \mathcal{L}(x \lor z) = \mathcal{L}(x) \cup \mathcal{L}(z)$$

$$\mathcal{L}(a) = \{a\} \qquad \qquad \mathcal{L}(x \land z) = \mathcal{L}(x) \cap \mathcal{L}(z)$$

Brzozowski [11] introduces an operator, ∂ , which lets us quotient a language by some prefix,

Definition 2.2 (Brzozowski, 1964). To compute the quotient $\partial_a(L) = \{b \mid ab \in L\}$, we:

$$\begin{array}{lll} \partial_a(&\varnothing&)=\varnothing & & & & & & & & & \\ \partial_a(&\varepsilon&)=\varnothing & & & & & & & \\ \partial_a(&\varepsilon&)=\varnothing & & & & & & \\ \partial_a(&b&)=\begin{cases}\varepsilon & \text{if } a=b\\ \varnothing & \text{if } a\neq b \end{cases} & & & & & \\ \partial_a(x\cdot z)=(\partial_a x)\cdot z\vee \delta(x)\cdot \partial_a z & & & & \\ \partial_a(x\vee z)=\partial_a x\vee \partial_a z & & & & \\ \partial_a(x\wedge z)=\partial_a x\wedge \partial_a z & & & & \\ \partial_a(x\wedge z)=\partial_a x\wedge \partial_a z & & & & \\ \partial_a(x\wedge z)=\delta(x)\wedge \delta(z) & & \\ \partial_a(x\wedge z)=\delta(x)\wedge \delta(z) & & & \\ \partial_a(x\wedge z)=\delta(x)\wedge \delta(z) & &$$

¹Where $\mathcal{L}(x) \circ \mathcal{L}(z)$ is defined as $\{a \cdot b \mid a \in \mathcal{L}(x) \land b \in \mathcal{L}(z)\}$.

Primarily, this gadget was designed to handle membership queries, for which purpose it has received considerable attention [1, 39, 49, 53] in recent years:

Theorem 2.3 (Recognition). For any regex e and $\sigma: \Sigma^*, \sigma \in \mathcal{L}(e) \iff \varepsilon \in \mathcal{L}(\partial_{\sigma}e)$, where:

$$\partial_{\sigma}(e): E \to E = \begin{cases} e & \text{if } \sigma = \varepsilon \\ \partial_{b}(\partial_{a}e) & \text{if } \sigma = a \cdot b, a \in \Sigma, b \in \Sigma^{*} \end{cases}$$

Variations on this basic procedure can also be used for functional parsing and regular expression tasks. Less well known, perhaps, is that Brzozowski's derivative can also be used to decode witnesses. We will first focus on the nonempty disjunctive fragment, and define this process in two steps:

Theorem 2.4 (Generation). For any nonempty (ε, \wedge) -free regex, e, to witness $\sigma \in \mathcal{L}(e)$:

$$\mathit{follow}(e): E \rightarrow 2^{\Sigma} = \begin{cases} \{e\} & \textit{if } e \in \Sigma \\ \mathit{follow}(x) & \textit{if } e = x \cdot z \\ \mathit{follow}(x) \cup \mathit{follow}(z) & \textit{if } e = x \vee z \end{cases}$$

$$\mathsf{choose}(e): E \to \Sigma^+ = \begin{cases} e & \textit{if } e \in \Sigma \\ \left(s \overset{\$}{\leftarrow} \mathit{follow}(e)\right) \cdot \mathit{choose}(\partial_s e) & \textit{if } e = x \cdot z \\ \mathit{choose}\left(e' \overset{\$}{\leftarrow} \{x, z\}\right) & \textit{if } e = x \vee z \end{cases}$$

Here, we use the $\stackrel{\$}{\leftarrow}$ operator to denote probabilistic choice, however any deterministic choice function will also suffice to generate a witness. Now we are equipped to handle conjunction.

Recall that every regular language is also context-free a fortiori. So, given an (ε, \wedge) -free regular expression, we can construct an equivalent CFG with productions P(e) as follows:

$$P(e): E \to (V \to (\Sigma \mid V \mid V^2)) = \begin{cases} \{S_e \to e\} & \text{if } e \in \Sigma \\ P(x) \cup P(z) \cup \{S_e \to S_x S_z\} & \text{if } e = x \cdot z \\ P(x) \cup P(z) \cup \{S_e \to S_x, S_e \to S_z\} & \text{if } e = x \vee z \end{cases}$$
(1)

where the CFG is $G(e) = \langle V, \Sigma, P(e), S_e \rangle$ with V being all nonterminals in P(e). Therefor, to intersect two regular languages, we can treat one of them as a CFL. Alternatively, we can take the intersection between some truly non-regular CFL (say, a programming language syntax) and a regular language.

Theorem 2.5 (Bar-Hillel, 1961). For any CFG, $G = \langle V, \Sigma, P, S \rangle$, and nondeterministic finite automata (NFA), $A = \langle Q, \Sigma, \delta, q_{\alpha}, F \rangle$, there is a CFG, $G_{\cap} = \langle V_{\cap}, \Sigma_{\cap}, P_{\cap}, S_{\cap} \rangle$ s.t. $\mathcal{L}(G_{\cap}) = \mathcal{L}(G) \cap \mathcal{L}(A)$.

Salomaa [45] introduces a direct, but inefficient construction for the intersection grammar:

Definition 2.6 (Salomaa, 1973). One could construct G[∩] like so,

$$\frac{q_{\omega} \in F}{\left(S \to q_{\alpha}Sq_{\omega}\right) \in P_{\cap}} \mathcal{S} \quad \frac{(w \to a) \in P \qquad (q \overset{a}{\to} r) \in \delta}{\left(qwr \to a\right) \in P_{\cap}} \uparrow \quad \frac{(w \to xz) \in P \qquad p, q, r \in Q}{\left(pwr \to (pxq)(qzr)\right) \in P_{\cap}} \bowtie q^{-1}$$

however most synthetic productions in P_{\cap} will be non-generating or unreachable. This method will construct a synthetic production for state pairs which are not even connected by any path, which is clearly excessive. In § 3, we will present a far more efficient construction for the special case when the intersection is finite. But first, let us return to the broader question of syntax repair.

2.1 Informal statement

 Assume there exists a transducer from Unicode tokens to grammatical tokens, $\tau: \Sigma_U^* \to \Sigma_G^*$. In the compiler nomenclature τ is called a *lexer* and would typically be regular under mild conditions. In this paper, we do not consider τ and strictly deal with languages over Σ_G^* , or simply Σ^* for brevity.

Now suppose we have a syntax, $\ell \subset \Sigma^*$, containing every acceptable program. A syntax error is an unacceptable string, $\sigma \notin \ell$, that we wish to repair. We can model syntax repair as a language intersection between a context-free language (CFL) and a regular language. Henceforth, σ will always and only be used to denote a syntactically invalid string whose target language is known.

Given a lexical representation of a broken computer program σ and a grammar G, our goal is to find every valid string σ consistent with the grammar G and within a certain edit distance, d. Consider the language of nearby strings: if intersected with the language of grammatically valid programs, $\mathcal{L}(G)$, the result (ℓ_{\cap}) will contain every possible repair within the given edit distance, a subset of which will be natural or statistically probable. If we can locate these repairs then we can map them back into Unicode, adding placeholders for fresh names, numbers, and string literals, then finally apply an off-the-shelf code formatter to display them. Both the preprocessing and the cosmetic postprocessing steps are tangential to this work, in which we confine ourselves to a lexical alphabet.

Fig. 2. CFL intersection with the local edit region around a broken code snippet, where $d^* = 3$ is the langauge edit distance (LED).

2.2 Formal statement

Let us now restate our informal description of the syntax repair problem in more formal terms.

Definition 2.7 (Bounded Levenshtein-CFL reachability). Given a CFL, ℓ , and an invalid string, $\sigma: \bar{\ell}$, find every valid string reachable within d edits of σ , i.e., letting Δ be the Levenshtein metric and $\mathcal{L}(L(\sigma,d)) = \{\sigma' \mid \Delta(\sigma,\sigma') \leq d\}$ be the Levenshtein d-ball, we seek to find $\ell \cap = \mathcal{L}(L(\sigma,d)) \cap \ell$.

As the admissible set ℓ_{\cap} is typically under-constrained, we want a procedure which surfaces natural and valid repairs over unnatural but valid repairs:

Definition 2.8 (Ranked repair). Given a finite language $\ell_{\cap} = \mathcal{L}(L(\underline{\sigma}, d)) \cap \ell$ and a probabilistic language model $P_{\theta} : \Sigma^* \to [0, 1] \subset \mathbb{R}$, find the top-k maximum probability repairs. That is,

$$R(\ell_{\cap}, P_{\theta}) : 2^{\Sigma^*} \times (\Sigma^* \to \mathbb{R}) \to (\Sigma^*)^{\leq k} = \underset{\sigma \subseteq \ell_{\cap}, |\sigma| \leq k}{\operatorname{argmax}} \sum_{\sigma \in \sigma} P_{\theta}(\sigma)$$
 (2)

A popular approach to ranked repair involves learning a distribution over strings, however this is highly sample-inefficient and generalizes poorly to new languages. Approximating a distribution over Σ^* forces the model to jointly learn syntax and stylometry. Furthermore, even with an extremely efficient approximate sampler for $\sigma \sim \ell_{\cap}$, due to the size of the languages involved, it would be intractable to sample either ℓ or $\mathcal{L}\big(L(\sigma,d)\big)$, reject duplicates, then reject unreachable or invalid edits, and completely out of the question to sample $\sigma \sim \Sigma^*$ as do most neural language models.

As we will demonstrate, the ranked repair problem can be factorized into three subproblems: (1) exact representation, (2) decoding and (3) reranking. Instead of working with strings, we will explicitly construct a grammar which soundly and completely generates $\ell \cap \mathcal{L}(L(\sigma, d))$, then decode repairs from its language. By ensuring decoding is sufficiently precise and exhaustive, ensuring the retrieved set contains the true repair can be achieved with a much simpler, syntax-oblivious model. Finally, we will train a language model to rerank the repair candidates and take the top-k results.

3 METHOD

The key to solving this problem is to treat finite language intersections as matrix exponentiation, using a correspondence between CFL-REG intersections and a certain semiring algebra. We show that if one of the participants in the language intersection is presented as an acyclic FSA, the finite intersection nonemptiness (FINE) problem is polylogarithmic parallel time decidable. Formally,

THEOREM 3.1. For any CFG, $G = \langle V, \Sigma, P, S \rangle$, and acyclic NFA (ANFA), $A = \langle Q, \Sigma, \delta, q_{\alpha} : Q, F \subseteq Q \rangle$, there exists a decision procedure $\Psi : CFG \to ANFA \to \mathbb{B}$ such that $\Psi(G, A) \models [\mathcal{L}(G) \cap \mathcal{L}(A) \neq \varnothing]$ which requires $\mathcal{O}(\log^2 |Q| + \log |Q| |V|)$ time using $\mathcal{O}(|Q|^2 |V|)$ parallel processors.

PROOF. To prove nonemptiness, we must show there exists a path $q_{\alpha} \leadsto q_{\omega}$ in A such that $q_{\omega} : F$ where $q_{\alpha} \leadsto q_{\omega} \vdash S$. At least one of two cases must hold for $w \in V$ to parse a given $p \leadsto r$ pair:

- (1) p steps directly to r in which case it suffices to check $\exists a. ((p \xrightarrow{a} r) \in \delta \land (w \to a) \in P)$, or,
- (2) there is some midpoint $q \in Q$, $p \rightsquigarrow q \rightsquigarrow r$ such that $\exists x, z. ((w \rightarrow xz) \in P \land \overbrace{p \leadsto q, q \leadsto r})$.

This decomposition immediately suggests a dynamic programming solution. Let M be a matrix of type $E^{|Q|\times|Q|\times|V|}$ indexed by Q. Since we assumed δ is acyclic, there exists a topological sort of δ imposing a total order on Q such that M is strictly upper triangular (SUT). Note Q can be ordered topologically in $\mathcal{O}(\log^2|Q|)$ time [18] using matrix multiplication. We initialize M thusly:

$$M_0[r,c,w] = \bigvee_{a \in \Sigma} \left\{ a \mid (w \to a) \in P \land (q_r \xrightarrow{a} q_c) \in \delta \right\}$$
 (3)

Now, our goal will be to find $M=M^2$ such that $\left[M_0[r,c,w]\neq\varnothing\right]\Longrightarrow \left[M[r,c,w]\neq\varnothing\right]$ under a certain near-semiring. The algebraic operations $\oplus,\otimes:E^{2|V|}\to E^{|V|}$ we will define elementwise:

$$[\ell \oplus r]_w = [\ell_w \vee r_w]$$
 and $[\ell \otimes r]_w = \bigvee_{x, z \in V} \{\ell_x \cdot r_z \mid (w \to xz) \in P\}.$ (4)

By slight abuse of notation,² we will redefine the matrix exponential over this domain as,

$$\exp(M) = \sum_{i=0}^{\infty} M_0^i = \sum_{i=0}^{|Q||V|} M_0^i \text{ (since } M_0 \text{ is SUT and thus nilpotent)}.$$
 (5)

While |Q||V| is an upper-bound and $\exp(M)$ may converge sooner, incremental evaluation grows expensive even with unbounded parallelism. Instead, we will use exponentiation-by-squaring:

$$\sum_{i=0}^{2n} M_0^i = T(2n) = \begin{cases} M_0, & \text{if } n = 1, \\ T(n) + T(n)^2 & \text{otherwise.} \end{cases}$$
 (6)

Therefor, the complexity can be reduced to at most $\lceil \log_2 |Q||V| \rceil$ sequential steps in the limit. Finally, we will union all the languages of every state pair deriving S into a new nonterminal, S_{\cap} .

$$S_{\cap} = \bigvee_{q_{\omega} \in F} \exp(M)[q_{\alpha}, q_{\omega}, S], \text{ and } \Psi = [S_{\cap} \neq \varnothing].$$
 (7)

Note that it is possible to check Ψ before each recurrence of T and escape immediately thereafter in the positive case. Optimistically, this can occur in $\Omega(\log_2 p^*)$ time, where p^* is the length of the shortest path through δ , $p^* = \min_{q_\omega \in F} |q_\alpha \leadsto q_\omega|$. In case of nonemptiness, one may simply $\operatorname{choose}(S_\cap)$ (see Theorem 2.4) to decode a witness $\sigma \in \mathcal{L}(G) \cap \mathcal{L}(A)$. In either case, the FINE algorithm terminates in $\mathcal{O}(\log^2 |Q| + \log |Q||V|)$ parallel time with $\mathcal{O}(|Q|^2|V|)$ processors. \square

²Customarily, there is a $\frac{1}{k!}$ factor to modulate exploding values, but alas this domain has no multiplicative inverse.

4 EXAMPLES

 In this section, we will consider three examples of intersections with finite languages. First, parsing can be viewed as a special case of intersection with a singleton language. Second, we will introduce *completion* as an intersection which admits terminal wildcards in fixed locations. Thirdly, we consider syntax repair, where we will intersect a language representing all possible edit paths within a certain distance to determine the location(s) and fill them with the appropriate terminal(s).

4.1 Recognition as intersection

In the case of ordinary CFL recognition, the automaton forms a single row and accepts one word:

Since the word is predetermined, we just need to keep track of nonterminal subsets for each substring. So, given a CFG, $G': \mathcal{G}$ in Chomsky Normal Form (CNF), we can construct a recognizer for strings $\sigma: \Sigma^n$ as follows. Let 2^V be our domain, 0 be \emptyset , \oplus be \cup , and \otimes be defined as:

$$X \otimes Z = \left\{ w \mid \langle x, z \rangle \in X \times Z, (w \to xz) \in P \right\}$$
 (8)

If we define $\hat{\sigma}_r = \{w \mid (w \to \sigma_r) \in P\}$, then construct a matrix with nonterminals on the superdiagonal representing each token, $M_0[r+1=c](G',\sigma) = \hat{\sigma}_r$, the fixpoint $M_{i+1} = M_i + M_i^2$ is uniquely determined by the superdiagonal entries. Omitting the exponentiation-by-squaring detail, the ordinary fixedpoint iteration simply fills successive diagonals:

Once the fixpoint M_{∞} is attained, the proposition $[S \in \Lambda_{\sigma}^*]^3$ decides language membership, i.e., $[\sigma \in \mathcal{L}(G)]$. So far, this procedure is essentially the textbook CYK algorithm in a linear algebraic notation [26] and a well-established technique in the parsing literature [28].

4.2 Completion as intersection

Let us now consider a problem of intermediate difficulty, wherein we are given a string template admitting edits at fixed locations, which can be filled by any terminal. When intersected with a CFL, this specifies a finite language whose contents are the set of all words consistent with the template. This problem we call *completion*. Formally,

Definition 4.1 (Completion). Let $\underline{\Sigma} = \Sigma \cup \{_\}$, where $_$ denotes a hole. We denote $\sqsubseteq : \Sigma^n \times \underline{\Sigma}^n$ as the relation $\{\langle \sigma', \sigma \rangle \mid \sigma_i \in \Sigma \implies \sigma_i' = \sigma_i\}$ and the set of all inhabitants $\{\sigma' : \Sigma^+ \mid \sigma' \sqsubseteq \sigma\}$ as $H(\sigma)$. Given a *porous string*, $\sigma : \underline{\Sigma}^*$ we seek all syntactically valid inhabitants, i.e., $A(\sigma) = H(\sigma) \cap \ell$.

Here, the FSA takes a similar shape but can have multiple arcs between adjacent states, e.g.:

³Hereinafter, we use Iverson brackets to denote the indicator function of a predicate with free variables, i.e., $[P] \Leftrightarrow \mathbb{1}(P)$.

 This corresponds to a template with two holes, $\sigma = 1$ _ _. Suppose the context-free grammar is $G = \{S \to NON, O \to + \mid \times, N \to 0 \mid 1\}$. This grammar will first be rewritten into CNF as $G' = \{S \to NL, N \to 0 \mid 1, O \to \times \mid +, L \to ON\}$. Using the powerset algebra we just defined, the matrix fixpoint $M' = M + M^2$ can be computed as follows, shown in the leftmost column below:

	2^V		$\mathbb{Z}_2^{ V }$	$GRE^{ V }$		
M_0	{N} {N, 0	$\{N,O\}$			$\left(\begin{array}{c} E_{0,1} \end{array}\right.$	$E_{1,2}$ $E_{2,3}$
M_1	{N} Ø {N, o	$\{L\}$ $\{N,O\}$			$E_{0,1}$	$ \begin{array}{c c} E_{0,2} \\ E_{1,2} & E_{1,3} \\ E_{2,3} \end{array} $
M_2 = M_{∞}	{N} Ø {N, 0	$ \begin{cases} S \\ O \\ IL \\ \{N,O\} \end{cases} $			$E_{0,1}$	$ \begin{array}{ccc} E_{0,2} & E_{0,3} \\ E_{1,2} & E_{1,3} \\ & E_{2,3} \end{array} $

The same procedure can be translated, without loss of generality, into the bit domain $(\mathbb{Z}_2^{|V|})$ using a lexicographic nonterminal ordering, however M_{∞} in both 2^V and $\mathbb{Z}_2^{|V|}$ represents a decision procedure, i.e., $[S \in M_{\infty}[0,3]] \Leftrightarrow [M_{\infty}[0,3,3] = \blacksquare] \Leftrightarrow [A(\sigma) \neq \varnothing]$. Since $M_{\infty}[0,3] = \{S\}$, we know there is at least one $\sigma' \in A(\sigma)$, but neither M_{∞} in 2^V or \mathbb{Z}_2^V lets us recover a witness.

To witness $\sigma' \in A(\sigma)$, we can translate the matrix exponential to the GRE domain. We first define $X \boxtimes Z = [X_2 \cdot Z_1, \varnothing, \varnothing, X_1 \cdot Z_0]$ and $X \boxplus Z = [X_i \vee Z_i]_{i \in [0,|V|)}$, mirroring \oplus , \otimes from the powerset domain. Since the unit nonterminals O, N can only occur on the superdiagonal, they may be safely ignored by \boxtimes . To solve for M_{∞} , we proceed by first computing $E_{0,2}, E_{1,3}$:

$$\begin{split} E_{0,2} &= E_{0,j} \cdot E_{j,2} = E_{0,1} \boxtimes E_{1,2} \\ &= [L \in E_{0,2}, \varnothing, \varnothing, S \in E_{0,2}] \\ &= [O \in E_{0,1} \cdot N \in E_{1,2}, \varnothing, \varnothing, N \in E_{0,1} \cdot L \in E_{1,2}] \\ &= [E_{0,1,2} \cdot E_{1,2,1}, \varnothing, \varnothing, E_{0,1,1} \cdot E_{1,2,0}] \end{split} \qquad \begin{aligned} E_{1,3} &= E_{1,j} \cdot E_{j,3} = E_{1,2} \boxtimes E_{2,3} \\ &= [L \in E_{1,3}, \varnothing, \varnothing, S \in E_{1,3}] \\ &= [O \in E_{1,2} \cdot N \in E_{2,3}, \varnothing, \varnothing, N \in E_{1,2} \cdot L \in E_{2,3}] \\ &= [E_{1,2,2} \cdot E_{2,3,1}, \varnothing, \varnothing, E_{1,2,1} \cdot E_{2,3,0}] \end{aligned}$$

Now we solve for the corner entry $E_{0.3}$ by dotting the first row and last column, which yields:

$$\begin{split} E_{0,3} &= E_{0,j} \cdot E_{j,3} = (E_{0,1} \boxtimes E_{1,3}) \boxplus (E_{0,2} \boxtimes E_{2,3}) \\ &= [E_{0,1,2} \cdot E_{1,3,1} \vee E_{0,2,2} \cdot E_{2,3,1}, \varnothing, \varnothing, E_{0,1,1} \cdot E_{1,3,0} \vee E_{0,2,1} \cdot E_{2,3,0}] \end{split}$$

Since we only care about $E_{0,3,3} \Leftrightarrow [S \in E_{0,3}]$, we can ignore the first three entries and solve for:

$$\begin{split} E_{0,3,3} &= E_{0,1,1} \cdot E_{1,3,0} \vee E_{0,2,1} \cdot E_{2,3,0} \\ &= E_{0,1,1} \cdot (E_{1,2,2} \cdot E_{2,3,1}) \vee E_{0,2,1} \cdot \varnothing \\ &= E_{0,1,1} \cdot E_{1,2,2} \cdot E_{2,3,1} \big(= [N \in E_{0,1}] \cdot [O \in E_{1,2}] \cdot [N \in E_{2,3}] \big) \\ &= 1 \cdot \{+, \times\} \cdot \{0, 1\} \end{split}$$

Finally, to recover a witness, we can simply choose $(1 \cdot \{+, \times\} \cdot \{0, 1\})$.

4.3 Repair as intersection

 Now, we are ready to consider the general case of syntax repair, in which case the edit locations are not localized but can occur anywhere inside the snippet. In this case, we construct a lattice of all possible edit paths up to a fixed distance. This structure is called a Levenshtein automaton.

As the original construction defined by Schultz and Mihov [46] contains cycles and ε -transitions, we propose a variant which is ε -free and acyclic. Furthermore, we adopt a nominal form which supports infinite alphabets and simplifies the description to follow. Illustrated in Fig. 3 is an example of a small Levenshtein automaton recognizing $\mathcal{L}(L(\sigma:\Sigma^5,3))$. Unlabeled arcs accept any terminal from the alphabet, Σ . Equivalently, this transition system can be viewed as a kind of proof system within an

Fig. 3. Levenshtein NFA recognizing $\mathcal{L}(L(\sigma : \Sigma^5, 3))$.

unlabeled lattice. The following construction is equivalent to Schultz and Mihov's original Levenshtein automaton, but is more amenable to our purposes as it does not any contain ε -arcs, and instead uses skip connections to recognize consecutive deletions of varying lengths.

$$\frac{s \in \Sigma \quad i \in [0, n] \quad j \in [1, d_{\max}]}{(q_{i,j-1} \stackrel{s}{\to} q_{i,j}) \in \delta} \qquad \frac{s \in \Sigma \quad i \in [1, n] \quad j \in [1, d_{\max}]}{(q_{i-1,j-1} \stackrel{s}{\to} q_{i,j}) \in \delta} \qquad \frac{s \in \Sigma \quad i \in [1, n] \quad j \in [1, d_{\max}]}{(q_{i-1,j-1} \stackrel{s}{\to} q_{i,j}) \in \delta} \qquad \frac{d \in [1, d_{\max}] \quad i \in [d+1, n] \quad j \in [d, d_{\max}]}{(q_{i-d-1,j-d} \stackrel{\sigma_i}{\to} q_{i,j}) \in \delta} \qquad \frac{d \in [1, d_{\max}] \quad i \in [d+1, n] \quad j \in [d, d_{\max}]}{(q_{i-d-1,j-d} \stackrel{\sigma_i}{\to} q_{i,j}) \in \delta} \qquad \frac{q_{i,j} \in Q \quad |n-i+j| \leq d_{\max}}{q_{i,j} \in F} \quad \text{Done}$$

Each type of arc plays a specific role. \(^\chi\) handles insertions, \(^\chi\) handles substitutions and \(^\chi\). handles deletions of one or more terminals. Let us consider some illustrative cases.

Note that the same patch can have multiple Levenshtein alignments. Done constructs the final states, which are all states accepting strings σ' whose Levenshtein distance $\Delta(\sigma, \sigma') \leq d_{\text{max}}$.

To avoid creating a parallel bundle of arcs for each insertion and substitution point, we instead decorate each arc with a nominal predicate, accepting or rejecting σ_i . To distinguish this nominal variant from the original construction, we highlight the modified rules in orange below.

$$\frac{i \in [0, n] \quad j \in [1, d_{\max}]}{(q_{i,j-1} \stackrel{[\neq \sigma_{i+1}]}{\rightarrow} q_{i,j}) \in \delta} \xrightarrow{i \in [1, n] \quad j \in [1, d_{\max}]} \stackrel{[\neq \sigma_{i}]}{\rightarrow} q_{i,j}) \in \delta}$$

$$\frac{i \in [1, n] \quad j \in [0, d_{\max}]}{(q_{i-1,j-1} \stackrel{[\neq \sigma_{i}]}{\rightarrow} q_{i,j}) \in \delta} \xrightarrow{d \in [1, d_{\max}] \quad i \in [d+1, n] \quad j \in [d, d_{\max}]} \stackrel{(q_{i-d-1,j-d} \stackrel{[=\sigma_{i}]}{\rightarrow} q_{i,j}) \in \delta}{\rightarrow} q_{i,j}) \in \delta$$

Nominalizing the NFA eliminates the creation of $2(|\Sigma| - 1) \cdot |\sigma| \cdot d_{max}$ unnecessary arcs and drastically reduces the representation size of the Levenshtein automaton, but does not affect the underlying semantics. Thus, it is important to first nominalize the automaton before proceeding.

As a concrete example, suppose we have the string, $\sigma = ()$ and wish to balance the parentheses. We will initially have the Levenshtein automaton, A, depicted in Fig. 4. To check for non-emptiness, we will perform the following procedure. Suppose we have a CNF CFG, $G' = \{S \to LR, S \to LF, S \to SS, F \to SR, L \to (, R \to)\}$ and let us assume an ordering of S, F, L, R on V.

First, we need to order the automata states by increasing longest-path distance from q_0 . One approach would be to topologically sort the adjacency matrix. While some form of sorting is unavoidable for arbitrary ANFAs, if we know ahead of time that our structure is a Levenshtein automaton, we can simply enumerate its state space by increasing Manhattan distance from the origin. So, a valid ordering on Q would be q_{00} , q_{01} , q_{10} , q_{11} , q_{20} , q_{21} , q_{30} , q_{31} . Now, we want to compute whether $[\mathcal{L}(G') \cap \mathcal{L}(A) \neq \varnothing]$.

Under such an ordering, the adjacency matrix takes an upper triangular form and becomes the template for the initial parse chart, M_0 (Fig. 7). Each entry of this chart corresponds to a vector of expressions $E^{|V|}$ with at least one expression denoting a nonempty language. Likewise, the reachability matrix signifies a subset of state pairs which can participate in the language intersection. The adjacency and reachability matrices will always cover the expression vectors of the initial and final parse charts, respectively. In other words, we may safely ignore absent $\langle q, q' \rangle$ pairs in the reachability matrix, as these state pairs definitely cannot participate in the intersection.

From the reachability matrix we can construct the parse chart via matrix exponentiation. We note that n-step reachability constraints n-step parseability, i.e., $\sum_{i=0}^n A^i[q,q'] = \square \vdash M_n[q,q',v] = \square, \text{ thus we can avoid substantial work via memoization. In this example, since } M_\infty[q_{00},q_{31},S] = \blacksquare, \text{ this implies that } \mathcal{L}(A) \cap \mathcal{L}(G') \neq \varnothing, \text{ hence LED}(\sigma,G) = 1. \text{ Using the same matrix, we will then perform a second pass to construct regular expressions representing finite languages for each nonempty constituent. Once again, we can skip <math>\langle q,q',v\rangle$ entries when $M_\infty[q,q',v] = \square$ to hasten convergence.

Just as before, we will define \boxplus , \boxtimes over GRE vectors, where $X \boxtimes Z = [X_x \cdot Z_z \mid (w \to xz) \in P]_{w \in V}$ and $X \boxplus Z = [X_w \vee Z_w]_{w \in V}$. Finally, we will repeat the matrix exponential, using M_{∞} in the binary domain as a guide. This allows us to construct the regular expression tree for $S_{\cap} = q_{00}Sq_{20} \vee q_{00}Sq_{31}$ shown in Fig. 9. Once this regex is constructed, decoding becomes simply a matter of invoking $\mathsf{choose}(S_{\cap})$. In this case there are only a few choices, but in general, there can be a vast multitude.

Fig. 4. Simple Levenshtein automaton.

Fig. 5. Pairing function over $\mathcal{L}(L(\sigma : \Sigma^3, 1))$.

Fig. 6. Adjacency and reachability matrix.

Fig. 7. Initial parse chart configuration.

Fig. 8. Final parse chart configuration.

Fig. 9. Regular expression denoting $\mathcal{L}(G_{\cap})$.

5 MEASURING THE LANGUAGE INTERSECTION

We will now attempt to put a probability distribution over the language intersection. We shall start with a few cursory but illumative approaches, then proceed towards a more refined solution.

5.1 Mode collapse

 Ordinarily, one might think to train a top-down PCFG sampler using a treebank of well-formed code snippets, however this method is highly degenerate in the finite case, exhibiting poor sample diversity. Consider an illustrative pathological case for top-down ancestral (TDA) sampling:

$$G = \left\{ S \to A \ B \ \left(\frac{10^5 - 1}{10^5} \right), \ S \to C \ C \ \left(\frac{1}{10^5} \right), \ A \to a \ (1), \ B \to b \ (1), \ C \to a \ \left(\frac{1}{26} \right) \mid \ldots \mid z \ \left(\frac{1}{26} \right) \right\}$$

Such a sampler will almost always yield ab, but most of $\mathcal{L}(G)$ is concealed in the hidden branch, $S \to CC$. Though a contrived example, it illustrates why TDA sampling is unviable: our sampler should match the true distribution over the finite CFL, not the PCFG's local approximation thereof.

5.2 Exact enumeration

To correct for mode collapse, a brute force solution would be to simply generate every tree. While the whole set can be materialized in some cases when the intersection language is small, this strategy is clearly suboptimal due to its worst-case complexity. Nevertheless, it is useful for checking completeness. To enumerate trees, we first need the total number of trees, which is denoted |e|.

Definition 5.1 (Cardinality).
$$|e|: E \to \mathbb{N} = \begin{cases} 1 & \text{if } e \in \Sigma \\ x \times z & \text{if } e = x \cdot z \\ x + z & \text{if } e = x \vee z \end{cases}$$

Theorem 5.2 (Enumeration). To enumerate, we can invoke $\bigcup_{i=0}^{|R|} \{enum(R,i)\}$:

$$\operatorname{enum}(e,n): E \times \mathbb{N} \to \Sigma^* = \begin{cases} e & \text{if } e \in \Sigma \\ \operatorname{enum}\big(x,\lfloor\frac{n}{|z|}\rfloor\big) \cdot \operatorname{enum}\big(z, \ n \bmod |z|\big) & \text{if } e = x \cdot z \\ \operatorname{enum}\big((x,z)_{\min(1,\lfloor\frac{n}{|x|}\rfloor)}, n - |x| \min(1,\lfloor\frac{n}{|x|}\rfloor)\big) & \text{if } e = x \vee z \end{cases}$$

This can be converted to a uniform sampler by drawing integers without replacement using a pseudorandom number generator, however, if |e| is very large, enum can fail to capture modes.

5.3 The problem with ambiguity

The main problem with the previous approach is that it counts distinct trees, which overcounts the total number of words, $|\mathcal{L}(G_{\cap})|$. Since the Levenshtein automaton can be ambiguous, this causes certain repairs to be overrepresented, resulting in a pernicious bias. Consider, for example,

LEMMA 5.3. If the FSA, α , is ambiguous, then the intersection grammar, G_{\cap} , can be ambiguous.

PROOF. Let ℓ be the language defined by $G = \{S \to LR, L \to (R \to)\}$, where $\alpha = L(\underline{\sigma}, 2)$, the broken string $\underline{\sigma}$ is) (, and $L(G_{\cap}) = \ell \cap L(\alpha)$. Then, $L(G_{\cap})$ contains the following two identical repairs:)() with the parse $S \to q_{00}Lq_{21} q_{21}Rq_{22}$, and () with the parse $S \to q_{00}Lq_{11} q_{11}Rq_{22}$. \square

We would expect the underlying sample space to be a proper set, *not* a multiset.

5.4 Disambiguation

 To count the number of distinct repairs, we will need to convert G_{\cap} to an automaton. Since $\mathcal{L}(G_{\cap})$ is finite, it must be regular a fortiori. Recalling the definition for an NFA, $\langle Q, \Sigma, \delta, q_\alpha : Q, F \subseteq Q \rangle$, and star-free regex, $e \to \Sigma \mid e \lor e \mid e \land e$, we will proceed by structural induction on the regex:

$$N(e) = \begin{cases} \left\langle \{q_{\alpha}, q_{\omega}\} \right\rangle &, \{q_{\alpha} \stackrel{e}{\rightarrow} q_{\omega}\} \\ \left\langle Q_{x} \cup Q_{z} \right\rangle &, \{q \stackrel{s}{\rightarrow} q_{\alpha z} \mid (q \stackrel{s}{\rightarrow} q_{\omega}^{\in F_{x}}) \in \delta_{x}\} \cup \delta_{x} \cup \delta_{z} \\ \left\langle Q_{x} \cup \{q_{\alpha e}\} \cup \\ Q_{z} \cup \{q_{\alpha e}\} \cup \\ Q_{z} \cup \{q_{\omega e}\} \\ &, \{q \stackrel{s}{\rightarrow} q_{\omega e} \mid (q \stackrel{s}{\rightarrow} q_{\omega}^{\in F_{x,z}}) \in \delta_{x,z}\} \cup \delta_{z} \\ &, q_{\alpha e}, \{q_{\omega e}\} \\ &, \{q \stackrel{s}{\rightarrow} q_{\omega e} \mid (q \stackrel{s}{\rightarrow} q_{\omega}^{\in F_{x,z}}) \in \delta_{x,z}\} \cup \delta_{z} \\ &, q_{\alpha e}, \{q_{\omega e}\} \\ &, \{q_{\alpha e} \stackrel{s}{\rightarrow} q \mid (q_{\alpha x, \alpha z} \stackrel{s}{\rightarrow} q) \in \delta_{x,z}\} \cup \delta_{z} \\ &, q_{\alpha e}, \{q_{\omega e}\} \\ &, \{q_{\alpha e} \stackrel{s}{\rightarrow} q \mid (q_{\alpha x, \alpha z} \stackrel{s}{\rightarrow} q) \in \delta_{x,z}\} \cup \delta_{z} \\ &, q_{\alpha e}, \{q_{\omega e}\} \\ &, \{q_{\alpha e} \stackrel{s}{\rightarrow} q \mid (q_{\alpha x, \alpha z} \stackrel{s}{\rightarrow} q) \in \delta_{x,z}\} \cup \delta_{z} \\ &, q_{\alpha e}, \{q_{\omega e}\} \\ &, \{q_{\alpha e} \stackrel{s}{\rightarrow} q \mid (q_{\alpha x, \alpha z} \stackrel{s}{\rightarrow} q) \in \delta_{x,z}\} \cup \delta_{z} \\ &, \{q_{\alpha e}, \{q_{\omega e}\} \} \\ &, \{q_{\alpha e} \stackrel{s}{\rightarrow} q \mid (q_{\alpha x, \alpha z} \stackrel{s}{\rightarrow} q) \in \delta_{x,z}\} \cup \delta_{z} \\ &, \{q_{\alpha e}, \{q_{\omega e}\} \} \\ &, \{q_{\alpha e},$$

Though less conventional than Thompson's construction, N(e) avoids the creation of unnecessary ε arcs. And while slightly more verbose, we find the topology induced by the first version of the \vee case to be more favorable for minimization. Continuing with our running example from § 4.3, we will use Brzozowski's algorithm [10] to construct the unique minimal DFA, $D_0^* \equiv_{\mathcal{L}} G_0$:

Fig. 10. FSA for $\mathcal{L}(L(()), 1) \cap \mathcal{L}(G')$ (a) with or (b) without \vee -merging, and then (c) post-minimization.

Since $\mathcal{L}(G_{\cap})$ is necessarily finite, we can infer that the corresponding DFA is acyclic and thus representable as an upper triangular adjacency matrix under a topological ordering of δ . For any such DFA, we can ascertain the size of its language by counting walks from q_{α} to $q_{\omega} \in F$. Letting A be the adjacency matrix for D_0^* , i.e., $A[q, q'] = \begin{bmatrix} 1 \text{ if } \exists s : \Sigma \text{ s.t. } (q \xrightarrow{s} q') \in \delta \text{ else } 0 \end{bmatrix}$, the number of words it recognizes is given via the transfer matrix method [24], that is,

$$C(A, q_{\alpha}, F) : \mathbb{N}^{|Q| \times |Q|} \times Q \times 2^{Q} \to \mathbb{N} = \sum_{q_{\omega} \in F} (I - A)^{-1} [q_{\alpha}, q_{\omega}] = \sum_{q_{\omega} \in F} \sum_{i=0}^{|Q| - 1} A^{i} [q_{\alpha}, q_{\omega}]$$
(9)

Plugging in powers of the adjacency matrix for the DFA shown in Fig. 10.(c), we arrive at the total:

Note the model counting problem for arbitrary GREs is strictly harder than deciding intersection nonemptiness as it requires determinization, however, weak bounds may be obtained by applying C to the FSA generated by N(e) or by direct analysis of e. While the inequality $C_{D_0^*} \leq C_{N(e)} \leq |e|$ will hold, the bounds provided by the latter approximations may be vacuous, whereas $C_{D_0^*}$ is exact.

6 IMPLEMENTATION

540 541

542

543

545

546

547

548 549

551

552

553

555

559

565

567

568

569

570

571

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587 588 The implementation essentially consists of four stages, each dependent on its predecessor.

- (1) lev_build : $\Sigma^{|Q|-1} \times \mathbb{N}^3 \to NFA$ constructs a Levenshtein NFA from the broken string.
- (2) cfl_fixpt : NFA × CFG $\rightarrow \mathbb{B}^{|Q| \times |Q| \times |V|}$ computes the matrix exponential.
- (3) reg_build: $\mathbb{B}^{|Q|\times |Q|\times |V|} \times CFG \to GRE$ constructs the regular expression for G_{\cap} .
- (4) reg_dcode : GRE $\times \mathbb{N}^{|\Sigma|^{c^{23}}} \times \mathbb{N} \to (\Sigma^+)^{k \approx 10}$ returns a small set of the most probable repairs.

We will now explore the imperative pseudocode for each stage, starting with the Levenshtein automata constructor, which is a straightforward translation of the inference rules in § 4.3.

Algorithm 1 lev_build pseudocode

```
1: procedure lev_build(\sigma: \Sigma^n, d_{\max}: \mathbb{N})  \blacktriangleright Takes a string and maximum edit distance.

2: Q, \delta \leftarrow \varnothing

3: for \langle h, j, i, k \rangle in [0, n]^2 \times [0, d_{\max}]^2 do

4: \delta \leftarrow \delta \cup \begin{cases} q_{h,i} \stackrel{[\neq \sigma_{j+1}]}{\rightarrow} q_{j,k} & \text{if } h = j \\ q_{h,i} \stackrel{[\neq \sigma_{j+1}]}{\rightarrow} q_{j,k} & \text{if } h = j - 1 \\ q_{h,i} \stackrel{[=\sigma_{j}]}{\rightarrow} q_{j,k} & \text{if } h = j - 1 \\ q_{h,i} \stackrel{[=\sigma_{j}]}{\rightarrow} q_{j,k} & \text{if } 1 \leq j - h - 1 \leq d_{\max} \land 1 \leq k - i \leq d_{\max} \end{cases}

5: Q \leftarrow Q \cup \{q_{h,i}, q_{j,k}\}

6: I \leftarrow \{q_{0,0}\}, F \leftarrow \{q_{i,j} \mid n - i + j \leq d_{\max}\}

7: return \langle Q, \Sigma, \delta = Q \times (\Sigma \rightarrow \mathbb{B}) \times Q, q_{\alpha}, F \rangle \blacktriangleright Returns a [nominal] Levenshtein automaton.
```

Next, the chart parser expects an acyclic NFA, a CNF grammar and returns a Boolean 3-tensor.

Algorithm 2 cfl_fixpt pseudocode

```
Require: CFG must be in CNF and the NFA must be \varepsilon-free and acyclic (i.e., denote a finite language).
   1: procedure cfl_fixpt(\langle \Sigma, V, P, S \rangle : CFG, \langle Q, \Sigma, \delta, q_{\alpha}, F \rangle : NFA)
            R: \mathbb{B}^{|Q| \times |Q|} \leftarrow \left[ \blacksquare \text{ if } \exists \sigma \in \Sigma^+ \mid q \overset{\sigma}{\leadsto} q' \text{ else } \square \right]_{q,\,q':\,Q} \qquad \triangleright \text{ Solve for reachability matrix.}
            M: \mathbb{B}^{|Q| \times |Q| \times |V|} \leftarrow \left[ \blacksquare \text{ if } \exists s: \Sigma \mid (v \to s) \in P \land (q \xrightarrow{\varphi} q') \in \delta \land \varphi(s) \text{ else } \Box \right]_{q, q': Q, v: V}
  3:
                                                                                             ▶ Solves matrix exponential, \exp(M_0).
            for i in [0, \lceil \log_2(|Q||V|) \rceil] do
  4:
                  Done \leftarrow \blacksquare
  5:
                                                                                              ▶ Iterates one step of M_{i+1} = M_i + M_i^2.
                  for \langle p, r, w \rangle in Q^2 \times V do
                        if M[p, r, w] or not R[p, r] then continue
  7:
                        Q_{pr} \leftarrow \{q : Q \mid R[p,q] \land R[q,r]\} > Consider reachable states between p and r.
  8:
                        M[p,r,w] \leftarrow \blacksquare \text{ if } \exists q: Q_{pr}, x,z: V \mid M[p,q,x] \land M[q,r,z] \land (w \rightarrow xz) \in P \text{ else } \Box
  9:
                        if M[p,r,w] then Done \leftarrow \square
 10:
                  if DONE then break
 11:
                                                                                    ▶ Returns the completed Boolean parse chart.
            return M
 12:
```

Note we may short-circuit for three reasons, if: $M_{i+1} = M_i$, when two states q, q' are unreachable, or whenever a $\langle q, q', v \rangle$ is already present. Once we obtain M_{∞} , we can immediately tell whether $\ell_{\cap} \neq \emptyset$ by checking whether $M_{\infty}[q_{\alpha}, q_{\omega}, S] = \blacksquare$ for some $q_{\omega} : F$. Otherwise if no such q_{ω} exists, then ℓ_{\cap} must be empty and d_{\max} should be enlarged before proceeding.

590

591 592

593 594

595

596

597

598

599

600

601

602

603

604

605

608

609

610 611

612

613 614

615

616

617

618 619

620

621

622

623 624 625

626

627

628

629

630

631

632 633

634

635

636 637 Now we can perform a second sweep over nonempty entries of the Boolean parse chart, reconstructing the provenance of each $\langle q, q', v \rangle$ constituent. For compactness it will be convenient to use a pointer-based representation of the regular expression instead of manipulating strings.

Algorithm 3 reg_build pseudocode

```
Require: Same as cfl_fixpt (Alg. 2), M_{\mathbb{B}}[q_{\alpha}, q_{\omega} : F, S] = \blacksquare for some q_{\omega}, and M_{\mathbb{B}} = M_{\mathbb{B}} + M_{\mathbb{R}}^2.
   1: procedure reg_build (M_{\mathbb{B}}: \mathbb{B}^{|Q| \times |Q| \times |V|}, \langle \Sigma, V, P, S \rangle : CFG, \langle Q, \Sigma, \delta, q_{\alpha}, F \rangle : NFA)
              P: \mathbb{B}^{|\mathcal{Q}| \times |\mathcal{Q}|} \leftarrow \left[ \blacksquare \text{ if } \exists q: Q, v, v': V \mid M_{\mathbb{B}}[p, q, v] \land M_{\mathbb{B}}[q, r, v'] \text{ else } \Box \right]_{p, r: Q}
              M: \mathrm{GRE}^{|Q| \times |Q| \times |V|} \leftarrow \left[ \{ s: \Sigma \mid M[q,q',v] \land (q \xrightarrow{\varphi} q') \in \delta \land (v \to s) \in P \land \varphi(s) \} \right]_{q,q':Q,v:V}
   3:
              for i in [0, \lceil \log_2(|Q||V|) \rceil] do
   4:
                     M' \leftarrow M
   5:
                     for \langle p, r, w \rangle in Q^2 \times V do
   6:
                            if not M_{\mathbb{B}}[p, r, w] then continue
   7:
                            Q_{pr} \leftarrow \{q: Q \mid P[p,q] \land P[q,r]\}
                                                                                                 ▶ Consider parseable states between p and r.
   8:
                           M'[p,r,w] \leftarrow M[p,r,w] \vee \bigvee_{\substack{q:Q_{pr}\\x,z:V}} \left\{ M[p,q,x] \cdot M[q,r,z] \mid (w \rightarrow xz) \in P \right\}
   9:
                     if M = M' then break else M \leftarrow M'
 10:
            return \bigvee M[q_{\alpha}, q_{\omega}, S]
 11:
                                                                                              ▶ Union regexes for all total parses yielding S.
                          q_{\omega}: F
```

Finally, once we have the expression for G_{\cap} , we can decode it to extract a small set of candidates. Various strategies are possible here, and we opt for the simplest one. We use two priority queues to store partial and total trajectories, which are ranked by probability as estimated by a pretrained c-gram count tensor, C. Partial trajectories are greedily extended until termination, after which the trajectory it is diverted to the total queue, and the top-k total trajectories are returned.

Algorithm 4 reg_dcode pseudocode

```
Require: We expect the shortest word to exceed the Markov order in length, c < |\sigma|, \forall \sigma : \mathcal{L}(e).
   1: \mathbf{procedure} \ \mathtt{reg\_dcode} (e : \mathsf{GRE}, C : \mathbb{N}^{|\Sigma|^{c \approx 3}}, k : \mathbb{N})
                 \mathcal{T} \leftarrow [], \mathcal{E} \leftarrow [\langle \varepsilon^{c-1}, e \cdot \varepsilon^{c-1}, 0 \rangle]
                                                                                                                              ▶ Initialize total and partial trajectories.
                let P(s : \Sigma \mid \sigma : \Sigma^{\geq c-1}) = \frac{C[\sigma_{|\sigma|-c+1,|\sigma|} \cdot s] + 1}{\sum_{s' \in \Sigma} C[\sigma_{|\sigma|-c+1,|\sigma|} \cdot s']}  > Define Markov transition probability.
                 repeat
   4:
                         \langle \sigma, e, p \rangle \leftarrow \mathbf{pop} \ \mathcal{E}_0 \ \mathbf{off} \ \mathcal{E}
   5:
                         \mathcal{E}' \leftarrow \left[ \langle \sigma \cdot a, \partial_a e, p + \ln P(a \mid \sigma) \rangle \mid a \in \text{follow}(e) \right]
   6:
                         \mathcal{T} \leftarrow \mathcal{T} + + \left[ \langle \sigma, p \rangle \mid \langle \sigma, e, p \rangle \in \mathcal{E}' \land \varepsilon \in \mathcal{L}(e) \right]
   7:
                         \mathcal{E} \leftarrow [\langle \sigma, e, p \rangle \in (\mathcal{E} ++ \mathcal{E}') \text{ sorted by } p]
   8:
                 until interrupted or \mathcal{E} is empty.
   9:
                 return [\sigma \mid \langle \sigma, p \rangle \in \mathcal{T}_{0..k} sorted by p] \rightarrow Skim off top-k repairs by c-gram probability.
  10:
```

Now, we have our shortlist of repairs and after cosmetic postprocessing, can present them to the user. With this approach, we can quickly generate a representative subset of ℓ_{\cap} within a fixed latency budget, e.g., 100ms, or otherwise terminate early should we succeed in exhaustively generating it.

6.1 GPU translation

 The foregoing architecture can be translated to series of high-performance GPU kernels, essentially binary tensor contractions optimized for GPU acceleration. Our strategy will be to treat each stage of the repair pipeline as a massively parallel map-reduce query. Each thread will be responsible for writing a single entry to a large buffer, independently and without external communication.

We will make the simplifying assumption that each GPU kernel is a pure function that takes as input a coordinate triple $r, c, v : \mathbb{N}$ and one or more flat buffers $b_1 : \mathbb{N}^{d_1}, \dots b_n : \mathbb{N}^{d_n}$ containing encoded data, does some arithmetic, and returns a single output buffer, $b_{\text{out}} : \mathbb{N}^d$. The main challenge of GPU programming then becomes mapping aggregate datatypes to and from an integer format.

Morally, each $\langle r, c, v \rangle$ triple will dispatch a single isolated GPU thread with global read access to the input buffers and exclusive write access to a contiguous region of the output buffer. Absent a GPU, this can be rewritten as a triply-nested loop, subject to additional latency overhead. Each thread is effectively executed simultaneously on a GPU, but all memory must be sized ahead of time, as dynamic allocation is forbidden during a GPU kernel's execution. This presents a minor challenge for constructing the GRE datatype, though surmountable with careful reference counting.

For the CFG and NFA datatypes, we elect to use a dense representation $\mathbb{B}^{|V| \times |V| \times |V|}$ and $\mathbb{B}^{|Q| \times |Q| \times |\Sigma|}$ due to the tripartite coordinate structure and thread dispatching API. While these datatypes can be encoded sparsely as $\mathbb{N}^{3|P|}$ and $\mathbb{N}^{3|\delta|}$, for most repair instances and memory configurations representation size is not a bottleneck. It will be helpful to define two indices $\mathsf{nt_enc}: \Sigma \to 2^V$ and $\mathsf{nt_dec}: V \to 2^\Sigma$ for nonterminal encoding and decoding, and bijections $\Sigma \leftrightarrow \mathbb{N}, V \leftrightarrow \mathbb{N}$ for getting into and out of the integer domain – these we omit for brevity but are trivial to define.

The parse chart M can be represented as a bit-packed integer matrix $\mathtt{uint32}^{|Q|\times|Q|\times|V|}$, whose layout testifies to four properties of each $\langle q,q',v\rangle$ triple: (1) the first bit encodes the dis/equality predicate φ , (2) the next 25 bits designate terminal participation (if $\exists s: \Sigma.\varphi(s) \land (q \xrightarrow{\varphi} q') \in \delta$), (3) the next five bits memoize the minimum i_{\min} such that $M_{i_{\min}}[q,q',v]\&1 = \blacksquare$ for short-circuiting (see Line #7 of Alg. 3), and (4) the lowest-order bit denotes parsability, i.e., $q \rightsquigarrow q' \vdash v$. Note the decoder must acknowledge the possibility that v can simultaneously parse (a) an arc $q \rightarrow q'$ and (b) a path $q \rightsquigarrow q'$, so each branch can be explored. This is depicted below in little-endian format:

$$\stackrel{=/\neq}{\bigoplus} \underbrace{s \colon \Sigma \Leftrightarrow \mathbb{B}^{25}}_{i_{\min} \colon \mathbb{N}_{\leq 32} \Leftrightarrow \mathbb{B}^{5}} \stackrel{v \colon V}{\bigoplus} \\ \left[\stackrel{\bullet}{\blacksquare}, \boxed{\square}, \boxed{\square}, \boxed{\square}, \boxed{\square}, \boxed{\square}, \boxed{\square}, \boxed{\square}, \boxed{\square}, \boxed{\square} \right] \colon \text{uint32}$$

Once cfl_fixpt (Alg. 2) is complete, we can calculate the total amount of memory needed to allocate G_{\cap} by counting constituents in the parse chart. Being an algebraic datatype, the GRE can be flattened according to a variety of allocation models. We will use the following memory layout,

$$\left[\underbrace{\frac{2}{2}, \frac{7}{5}, \dots, \frac{1}{5}}_{\text{bp}_{0} \text{ bp}_{1}}, \underbrace{\frac{3}{5}, \frac{3}{5}}_{\text{bp}_{c-1}}, \underbrace{0, 4, \dots, \frac{n-8}{5}, \frac{n-6}{5p_{c-2}}}_{\text{bp}_{c-2}}, \underbrace{\frac{59, 83}{64, 152}, \dots, \underbrace{\frac{34, 83}{5p_{c-2}}}_{\text{bp}_{0}}, \underbrace{\frac{22, 74, 74, 90}{5p_{c-1}}, \frac{16, 66}{5p_{c-1}}}_{\text{bp}_{c-1}}\right] : \text{uint32}^{n}$$

where each bp_i represents a nonempty $\langle q,q',v\rangle$ constituent with at least one back-pointer pair, $\operatorname{bp_count}(p,r,w) = \left|\left\{\langle q,x,z\rangle \mid M[p,q,x] \land M[q,r,z] \land (w \to xz) \in P\right\}\right|$ counts the number of unique backpointers held by each nonterminal w parseable from $p \leadsto r$, and $\operatorname{bp_storage}$ stores pointers to memory locations in the same data structure. These pointers should also be tied to locations in the parse chart M[q,q',v] to recover the terminal subsets for unit productions.

In total, the GPU should have at least 4 GB of onboard memory to accommodate language intersections with up to 1k states and nonterminals ($|Q|^2 \times |V| = 10^6 \times 10^3 \times 32$ bits ≈ 4 GB), however occupancy can be roughly halved by exploiting the upper-triangular structure of M.

6.2 Training the reranker

After decoding, we have a list of repair candidates that are all valid, nearby and at least somewhat plausible, however it is possible this list may be quite long. No reasonable user would be expected to skim through more than a few dozen candidates to select their intended repair, especially since they could have presumably written it themselves in a few seconds. So, we will proceed to rerank the list. If we can guarantee the candidate repairs are sufficiently exhaustive, they should include with high probability the true repair, which then need only be surfaced into the user's field of view.

The ensuing method falls under the umbrella of the *learning-to-rank* (LTR) problem in machine learning – using their terminology, the broken code snippet would be called a *query* and the list of repairs, *documents*. To discuss the reranker, we must now overload some concepts, so the reader is trusted to contextually interpret $\mathcal L$ as denoting a *loss* instead of a language, and the derivative ⁴ as the directional rate of change of a differentiable manifold over the parameter space of a neural network. Matrix multiplication remains more or less the same, except now over the reals.

The reranker employs a transformer-encoder architecture to map both the query (broken code snippet, denoted $\sigma: \bar{\ell}_{\cap}$) and the document (candidate repair, denoted $\sigma: \ell_{\cap}$) to a p-dimensional real vector space \mathbb{R}^p . We elide the definition of a transformer-encoder (see Strobl et al.'s survey [50]), except to say that it is a function, E_{θ} , which takes a string and a positional encoding, and returns an embedding, $E_{\theta}: (\Sigma \times \mathbb{N})^n \to \mathbb{R}^p$ where θ are learnable parameters. To these, we will introduce a Levenshtein alignment (LA : $\Sigma^n \times \Sigma^m \to \mathbb{N}^{[m,n]}$) as a third argument that, when applied to a query-document pair, will produce a vector tracking edit locations and types. Finally, a multilayer perceptron (MLP $_{\theta}: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}^+$) processes the embedding to produce a relevance score:

$$f_{\theta}(\underline{\sigma}, \sigma) : \Sigma^{n} \times \Sigma^{m} \to \mathbb{R}^{+} = \mathrm{MLP}_{\theta} \Big(\mathrm{E}_{\theta} \big(\underline{\sigma}, [i]_{i \in [0, n)} \big), \mathrm{E}'_{\theta} \big(\sigma, [i]_{i \in [0, m)}, \mathrm{LA}(\underline{\sigma}, \sigma) \big) \Big)$$

Our training objective will be to minimize the tempered softmax or listwise cross-entropy loss,

$$\mathcal{L}(\theta) = -\sum_{q \in \mathcal{Q}} \log \left(\frac{\exp\left(f_{\theta}(q, d^*)\tau^{-1}\right)}{\sum_{d \in \mathcal{D}_q} \exp\left(f_{\theta}(q, d)\tau^{-1}\right)} \right)$$
(13)

where $\mathcal Q$ is the set of training queries, $\mathcal D_q$ is the set of candidate repairs for query q, and $d^* \in \mathcal D_q$ is true repair. The temperature parameter, τ controls the sharpness of the softmax distribution, encouraging parameter settings that result in the true repair being assigned higher priority – the closer to zero, the greater the loss will be for underestimating the relevance of the true repair.

More concretely, we depict a single instance of the training data in Fig. 11. The reranking model sees a (1) query, (2) document, (3) positional encoding and (4) Levenshtein alignment, and returns a numerical score. Once the relevance scores are obtained, we calculate the cross-entropy loss across the top-k scoring documents and backpropagate. In practice, this update is averaged across a batch $\langle q_i, [d_j]_{0...k} \rangle_{i=0...|B|^{\approx 16}}$ of repair instances to reduce noise. The batch update rule is a standard variant of stochastic gradient descent $(\theta' \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta))$ with momentum (AdamW), where the learning rate is in the range $\alpha \approx 10^{-4}$. A more exhaustive description of the architectural details and hyperparameter settings used for training the reranker can be found in Appendix C.

q:	NAME	=	NAME)	NAME		
PE:	0	1	2	3	4		
d_1 :	NAME	=	NAME	(NAME)	
PE:	0	1	2	3	4	5	
LA:	0	0	0	2	0	1	
d_2 :	NAME	(NAME)	NAME		
PE:	0	1	2	3	4		
LA:	0	2	0	0	3		
$\overline{d_3}$:	NAME	=	NAME		NAME	()
PE:	0	1	2	3	4	5	6
LA:	0	0	0	2	0	1	1

Fig. 11. Transformer data encoding.

⁴There is a connection to Brzozowski's derivative, but to refrain from digression here we refer the reader to [22] for details.

7 EVALUATION

 We call our method Tidyparse and consider the following research questions:

- RQ 1: What statistical properties do human repairs exhibit? (e.g., length, edit distance)
- RQ 2: How performant is Tidyparse at fixing syntax errors? (i.e., vs. Seq2Parse and BIFI)
- RQ 3: Which design choices are most significant? (e.g., decoding, reranking, parallelism)

We address **RQ 1** in § 7.2 by analyzing the distribution of natural code snippet lengths and edit distances, **RQ 2** in § 7.3 by comparing Tidyparse against two existing syntax repair baselines, and **RQ 3** in § 7.4 by ablating various design choices and evaluating the impact on repair precision.

7.1 Experimental setup

In the following set of experiments, we use syntax errors and fixes from the Python language. Python code snippets are abstracted as a sequence of lexical tokens using the official Python 3.8.11 parser, erasing strings, numbers and identifiers, but retaining all other keywords. Accuracy is evaluated across a test set of pairwise errors and repairs by checking for lexical equivalence with the ground-truth repair, following the same methodology as Sakkas et al. (2022) [44].

We use the Precision@k statistic, which measures the frequency of true repair appearing in the top-k results, across a dataset of repair instances. Specifically, given a repair model, $R: \Sigma^* \to (\Sigma^*)^t$ and a test set, $\mathcal{D}_{\text{test}}$, containing pairwise aligned errors (σ) and fixes (σ') , we define Precision@k as:

Precision@k(R) =
$$|\mathcal{D}_{\text{test}}|^{-1} \sum_{\mathcal{D}_{\text{test}}} \mathbb{1} \left[\sigma' \in R(\underline{\sigma})_{0...k} \right]$$
 (14)

Our full dataset [54] consists of 20k naturally-occurring pairs of Python errors and human fixes from StackOverflow, which we use to evaluate the precision of each model at blind recovery of the ground truth repair. From the StackOverflow dataset, we filter for syntax errors shorter than 80 tokens and fewer than four lexical edits apart from the corresponding repair, then divide the remaining repairs into two disjoint sets: a training set (\mathcal{D}_{train}) of 4,586 repair instances and a test set (\mathcal{D}_{test}) of 2,211 repair instances, balanced across each length interval and edit distance, i.e., $\mathcal{D}_{test} = \{\langle \sigma, \sigma' \rangle \mid \lfloor |\sigma|/10 \rfloor \in [0, 8], \Delta(\sigma, \sigma') \in [1, 3] \}$, each test bin containing at least 50 instances.

To train the reranker, we augment each instance in the training and test set with a list of repair confounders. Each instance consists of a tuple, $\langle \underline{\sigma} : \overline{\ell}, \underline{\sigma}' : \ell_{\cap}, \underline{\sigma} : \ell_{\cap}^{\leq 10^3} \rangle$, with a single syntax error $(\underline{\sigma})$, the ground truth repair, $(\underline{\sigma}')$, and up to 10^3 confounders $(\underline{\sigma})$ sampled without replacement from ℓ_{\cap} using our pretrained 4-gram model. We then train the reranker on $\mathcal{D}_{\text{train}}$ for 20k steps, which takes 24 hours and evaluate on $\mathcal{D}_{\text{test}}$. Hyperparameter settings are provided in Appendix C.

We compare our method with two external baselines, Seq2Parse and Break-It-Fix-It (BIFI) [55], on the same test set. The Seq2Parse and BIFI experiments were conducted on a single Nvidia V100 GPU with 32 GB of RAM. For Seq2Parse, we use the default pretrained model provided in commit 7ae0681 5 . For BIFI, we use the Round 2 breaker and fixer from commit ee2a68c 6 , the highest-performing model reported by the authors, with a variable-width beam search to control the number of predictions, and let the BIFI fixer model predict the top-k repairs, for $k = \{1, 5, 10, 2 \times 10^4\}$.

⁵https://github.com/gsakkas/seq2parse/tree/7ae0681f1139cb873868727f035c1b7a369c3eb9

⁶https://github.com/michiyasunaga/BIFI/tree/ee2a68cff8dbe88d2a2b2b5feabc7311d5f8338b

7.2 Dataset statistics

In the following experiments, we use a dataset of Python snippets consisting of 20,500 pairwise-aligned human errors and fixes from StackOverflow [54]. We preprocess the dataset to lexicalize all code snippets, then filter by length and distance shorter than 80 lexical tokens and under four edits, i.e., with Levenshtein distance under four lexical edits ($|\Sigma| = 50$, $|\sigma| < 80$, $\Delta(\sigma, \sigma') < 4$). We depict the length, edit distance, normalized edit locations and stability profile in Fig. 12.

Fig. 12. Repair statistics across the StackOverflow dataset, of which Tidyparse can handle about half in under ~3s and ~4 GB. Larger repairs and edit distances are possible, albeit requiring additional time and memory.

We observe that slightly over half of the code snippet pairs in the StackOverflow dataset contain fewer than 80 tokens and four lexical edits, which are computational feasible to process in a few hundred milliseconds. We also note a slight primacy or recency bias in the edit locations, evidenced by a large fraction of human repairs which modify the boundaries of the broken code snippet.

For the stability profile, we enumerate repairs for each syntax error and estimate the average fraction of all edit locations that were never altered by any repair in the $L(\sigma, \Delta(\sigma, \sigma'))$ -ball. For example, on average roughly half of the string is stable for 3-edit syntax repairs in the [10-20) token range, whereas 1-edit repairs of the same length could modify only $\sim 10\%$ of all locations. For a fixed edit distance, we observe an overall decrease in the number of degrees of caret freedom with increasing length, which intuitively makes sense, as the repairs are more heavily constrained by the surrounding context and their locations grow more concentrated relative to the entire string.

For an intuition about the size of the language intersections involved in syntax repair, volumetric analysis will be helpful, particularly in understanding the influence of snippet length and edit distance on language intersection volume. To measure the intersection volume we will form the $L(\sigma, \Delta(\sigma, \sigma'))$ automaton, intersect it with the Python grammar, then automatize the resulting regular expression and finally compute the DFA transfer matrix using the method described in § 5.4 to obtain the exact volume. For a given (error, fix) pair, this tells us how many repairs of equal or lesser distance exist in the Python language. Plotting intersection volume across the full dataset (Fig. 13), we observe a strong positive correlation with the Levenshtein margin and a mild correlation with snippet length. Fully materializing

Fig. 13. Log language volume versus snippet length and edit distance for Python repairs.

 ℓ_{\cap} is typically only feasible if we extend the Levenshtein radius up to one edit beyond the language edit distance (LED) (i.e., $d_{\max} \leq \text{LED}(\sigma)^7 + 1$) after which it grows too large to exhaustively generate and must be sampled. Across all snippets where $\Delta(\sigma, \sigma') < 4$, approximately 54% matched LED(σ), 35% had an edit distance of LED(σ) + 1 and 11% had a distance of LED(σ) + 2.

⁷Where $\text{LED}(\underline{\sigma})$ is shorthand for $\text{LED}(\underline{\sigma},\ell) = \min \left\{ d_{\max} : \mathbb{N} \mid \mathcal{L}(L(\underline{\sigma},d_{\max})) \cap \ell \neq \varnothing \right\}$ with ℓ being the Python language.

7.3 StackOverflow evaluation

For our first experiment, we measure the precision of our repair procedure at various lengths and Levenshtein distances, comparing Tidyparse against Seq2Parse, and BIFI on the same test set.

Fig. 14. Tidyparse, Seq2Parse and BIFI repair precision at various lengths and Levenshtein distances.

Tidyparse attains SoTA top-1 precision versus Seq2Parse and BIFI across all lengths and edit distances. The Precision@10 of our method even outperforms with BIFI's Precision@20k, whereas our Precision@10 is Pareto-dominant across all lengths and edit distances and precision values. We report the raw data from these experiments in Appendix E.

The remaining experiments in this section were conducted on a 16-core ARM64 M4 Max with 128 GB of memory. We balance the StackOverflow dataset across Levenshtein distances, then measure the number of samples required to draw the exact human repair across varying Levenshtein radii. This tells us of how many samples are required on average to saturate the admissible set.

7.4 Subcomponent ablation

The primary question of interest is, to what extent does the neural reranker improve precision relative to a naïve decoding strategy? For comparison, we use an 4-gram based repair, sans reranking. That is, we form the language intersection, decode it with a 4-gram model, sort the repairs by their respective 4-gram probabilities, and without further processing evaluate $Precision@10^{\{0,1,2,3\}}$.

Fig. 15. 4-gram repairs. 4-gram Precision@1000 is an upper bound on Tidyparse Precision@k, since our reranker takes as input the 1000 most probable 4-gram samples.

We can quantify the improvement in rank by comparing the histogram of the true document's rank across the test set, with and without reranking the top-1,000 4-gram sampled repairs using the neural reranker. Since we sample but do not modify the ranks of repairs beyond the top-1000, these remain unchanged. If initially ranked in the top-1k results by the 4-gram model, the true repair rarely appears below 50th in the reranked list.

Finally, we evaluate the impact of increased parallelism on repair throughput. We balance the Stack-Overflow dataset across edit distances and run DFA sampler for up to 10s, then measure the total wall-clock runtime to retrieve the full set of candidate

Fig. 16. Observed improvement in rank prior and subsequent to neural reranking (note, y-axis is log-scaled).

repairs as a function of the number of additional CPU cores assigned, which we exercise to both construct the intersection grammar and sample from it. We compare this with the GPU sampler on the same dataset.

Fig. 17. End-to-end repair timings.

In Fig. 17, we plot the end-to-end repair timings by measuring the wallclock runtime of the repair algorithm (§ 6) across the test-set. This wall-clock runtime corroborates the complexity analysis (§ 3) showing a distinct lower bound. While short repairs finish quickly, latency is positively correlated with length and edit distance. Our method is typically able to saturate the admissible set for 1- and 2-edit repairs before timeout, while 4+-edit throughput starts becoming constrained by compute around 10s, when Python's admissible set approaches a volume of 10^5 valid edits. This bottleneck can be relaxed with a longer timeout, however we anticipate that a much longer delay will begin to tax the patience of most users, and so we consider 10s a reasonable upper bound for repair latency.

8 DISCUSSION

The main lesson we draw from our experiments is that it is possible to leverage compute to compete with large language models on practical program repair tasks. Though sample-efficient, their size comes at the cost of expensive training, and domain adaptation requires fine-tuning or retraining on pairwise repairs. Our approach uses a small grammar and a relatively cheap ranking metric to achieve significantly higher precision. This allows us to repair errors in languages with little to no training data and provides far more flexibility and controllability during the repair process.

Our primary insight leading to state-of-the-art precision is that repairs are typically concentrated near the center of a small Levenshtein ball, and by enumerating or sampling it carefully, then reranking repairs by naturalness, one can achieve significantly higher precision than one-shot neural repair. This is especially true for small-radii Levenshtein balls, where the admissible set is small enough to be completely enumerated and ranked. For larger radii, we can still achieve competitive precision by using an efficient decoder to sample the admissible set.

There is a clear tradeoff between latency and precision for any repair model. While existing neural syntax repair models scale poorly with additional time, Tidyparse is highly effective at exchanging more time for higher precision. We find that the Precision@1 of our method is competitive with BIFI's Precision@20k, while requiring only a fraction of the data and compute for training and inference. As Tidyparse uses its own grammar, it can sample directly from the formal language specification and does not require a stochastic language model to suggest nearby valid repairs, only to rank them by naturalness. The emphasis on completeness is especially useful for discovering small or contextually unlikely repairs, which may be overlooked by neural models.

Although latency and precision are ultimately the deciding usability factors, repair throughput is a crucial intermediate factor to consider when evaluating the performance of a repair system. Even with a perfectly accurate scoring function, if the correct repair is never retrieved, it will be for naught. By maximizing the total number of unique valid repairs, we increase the probability of retrieving natural repairs to give the scoring function the best chance of ranking them successfully. For this reason, we prioritize throughput heavily in our design and evaluation (Fig. ??).

8.1 Limitations and future work

8.1.1 Naturalness. Firstly, Tidyparse does not currently support intersections between weighted CFGs and weighted finite automata, a la Pasti et al. [42]. This feature would allow us to put transition probabilities on the Levenshtein automaton corresponding to edit likelihood then construct a weighted intersection grammar. With this, one could preemptively discard unlikely productions from G_{\cap} to reduce the complexity in exchange for relaxed completeness. We also hope to explore more incremental sampling strategies such as sequential Monte-Carlo [37].

The scoring function is currently computed over lexical tokens. We expect that a more precise scoring function could be constructed by splicing candidate repairs back into the original source code and then scoring plaintext, however this would require special handling for insertions and substitutions of names, numbers and identifiers that were absent from the original source code. For this reason, we currently perform the scoring in lexical space, which discards a useful signal, but even this coarse approximation is sufficient to achieve state-of-the-art precision.

Furthermore, the scoring function only considers each candidate repair $P_{\theta}(\sigma')$ in isolation, returning the most plausible candidate independent of the original error. One way to improve this would be to incorporate the broken sequence (σ) , parser error message (m), original source (s), and possibly other contextual priors to inform the scoring function. This would require a more expressive probabilistic language model to faithfully model the joint distribution $P_{\theta}(\sigma' \mid \sigma, m, s, \ldots)$, but would significantly improve the precision of the generated repairs.

8.1.2 Complexity. Latency can vary depending on several factors including string length, grammar size, and critically the Levenshtein edit distance. This can be an advantage because, without any contextual or statistical information, syntax and minimal Levenshtein edits are often sufficiently constrained to identify a small number of valid repairs. It is also a limitation because the admissible set expands rapidly with edit distance and the Levenshtein metric diminishes in usefulness without a very precise metric to discriminate natural solutions in the cosmos of equidistant repairs.

Space complexity increases sharply with edit distance and to a lesser extent with length. This can be partly alleviated with more precise criteria to avoid creating superfluous productions, but the memory overhead is still considerable. Memory pressure can be attributed to engineering factors such as the grammar encoding, but is also an inherent challenge of language intersection. Therefore, managing the size of the intersection grammar by preprocessing the syntax and automaton, then eliminating unnecessary synthetic productions is a critical factor in scaling up our technique.

8.1.3 Toolchain integration. Lastly and perhaps most significantly, Tidyparse does not incorporate semantic constraints, so its repairs whilst syntactically admissible, are not guaranteed to be type safe. It may be possible to add a type-based semantic refinement to our language intersection, however this would require a more expressive grammatical formalism than CFGs naturally provide.

Program slicing is an important preprocessing consideration that has so far gone unmentioned. The current implementation expects pre-sliced code fragments, however in a more practical scenario, it would be necessary to leverage editor information to identify the boundaries of the repairable fragment. This could be achieved by analyzing historical editor states or via ad hoc slicing techniques.

Additionally, the generated repairs must be spliced back into the surrounding context, which requires careful editor integration. One approach would be to filter all repairs through an incremental compiler or linter, however, the latency necessary to check every repair may be non-negligible.

We envision a few primary use cases for Tidyparse: (1) helping novice programmers become more quickly familiar with a new programming language, (2) autocorrecting common typos among proficient but forgetful programmers, (3) as a prototyping tool for PL designers and educators, and (4) as a pluggable library or service for parser-generators and language servers.

9 RELATED WORK

Three important questions arise when repairing syntax errors: (1) is the program broken in the first place? (2) if so, where are the errors located? (3) how should those locations then be altered? Those questions are addressed by three theoretical areas, (1) parsing, (2) language equations and (3) syntax repair. We survey each of those areas, then turn our attention to more engineering-oriented research, including (4) string solving, (5) error-correction, (6) decoding and finally (7) neural program repair.

9.1 Parsing

 Context-free language (CFL) parsing is the well-studied problem of how to turn a string into a unique tree, with many different algorithms and implementations (e.g., shift-reduce, recursive-descent, LR). Many of those algorithms expect grammars to be expressed in a certain form (e.g., left- or right- recursive) or are optimized for a narrow class of grammars (e.g., regular, linear).

General CFL parsing allows ambiguity (non-unique trees) and can be formulated as a dynamic programming problem, as shown by Cocke-Younger-Kasami (CYK) [43], Earley [21] and others. These parsers have roughly cubic complexity with respect to the length of the input string.

As shown by Valiant [52], Lee [35] and others, general CFL recognition is in some sense equivalent to binary matrix multiplication, another well-studied combinatorial problem with broad applications, known to be at worst subcubic. This reduction opens the door to a range of complexity-theoretic speedups to CFL recognition, however large constants tend to limit their practical utility.

From a more applied perspective, parsers are ubiquitous in present-day software engineering, but none are designed to handle arbitrary CFGs or recover from arbitrary errors. Parr and Quong introduce ANTLR [41] which can handle LL(k) grammars and offers an IDE plugin with limited support for error recovery. Scott and Johnstone [47] introduce GLL parsing, which supports linear-time parsing for LL grammars and cubic for arbitrary CFGs, but does not support error correction. Inspired by their work, we introduce a method for repairing small syntax errors in arbitrary CFLs.

9.2 Language equations

Language equations are a powerful tool for reasoning about formal languages and their inhabitants. First proposed by Ginsburg et al. [25] for the ALGOL language, language equations are essentially systems of inequalities with variables representing *holes*, i.e., unknown values, in the language or grammar. Solutions to these equations can be obtained using various fixpoint techniques, yielding members of the language. This insight reveals the true algebraic nature of CFLs and their cousins.

Being an algebraic formalism, language equations naturally give rise to a kind of calculus, vaguely reminiscent of Leibniz' and Newton's. First studied by Brzozowski [11, 12] and Antimirov [4], one can take the derivative of a language equation, which can be interpreted as a kind of continuation or language quotient, revealing the suffixes that complete a given prefix. This technique leads to an elegant family of algorithms for incremental parsing [1, 39] and automata minimization [10].

Bar-Hillel [5] establishes the closure of CFLs under intersection with regular languages, but does not elaborate on how to construct the corresponding grammar in order to recognize it. Beigel [8] and Pasti et al. [42] provide helpful insights into the construction of the intersection grammar, and Nederhof and Satta [40] specifically consider finite CFL intersections, but neither considers Levenshtein intersections. Our work specializes Bar-Hillel intersections to Levenshtein automata in particular, and more generally acyclic automata using a refinement of Salomaa's construction [45].

More concretely, we restrict our attention to language equations over CFLs whose variables coincide with edit locations in the source code of a computer program, and solutions correspond to syntax repairs. While prior work has studied the use of language equations for parsing [39], to our knowledge they were never specifically applied to code completion or syntax error correction.

9.3 Syntax repair

 In finite languages, syntax repair corresponds to spelling correction, a more restrictive and largely solved problem. Schulz and Stoyan [46] construct a finite automaton that returns the nearest dictionary entry by Levenshtein edit distance. Though considerably simpler than syntax correction, their work shares similar challenges and offers insights for handling more general repair scenarios.

When a sentence is grammatically invalid, parsing grows more challenging. Like spelling, the problem is to find the minimum number of edits required to transform an arbitrary string into a syntactically valid one, where validity is defined as containment in a (typically) context-free language. Early work, including Irons [33] and Aho [2] propose a dynamic programming algorithm to compute the minimum number of edits required to fix an invalid string. Prior work on error correcting parsing only considers the nearest edit(s), and does not study edits of varying distance in the Levenshtein ball. Furthermore, the problem of repair is not generally well-posed, as there can be many valid solutions. We instead focus on maximum likelihood Levenshtein-CFL reachability, which attempts to find the most natural repair within a fixed Levenshtein distance.

9.4 String solving

There is related work on string constraints in the constraint programing literature, featuring solvers like CFGAnalyzer and HAMPI [34], which consider bounded context free grammars and intersections thereof. Bojańczyk et al. (2014) [9] introduce the theory of nominal automata. Around the same time, D'Antoni et al. (2014) introduce *symbolic automata* [17], a generalization of finite automata which allow infinite alphabets and symbolic expressions over them. Hague et al. (2024) [29] use Parikh's theorem in the context of symbolic automata to speed up string constraint solving, from which we draw partial inspiration for the Levenshtein-Bar-Hillel construction. In none of the constraint programming literature we surveyed do any of the approaches specifically consider the problem of syntax error correction, which is the main focus of our work.

9.5 Error correcting codes

Our work focuses on errors arising from human factors in computer programming, in particular *syntax error correction*, which is the problem of fixing partially corrupted programs. Modern research on error correction, however, can be traced back to the early days of coding theory when researchers designed *error-correcting codes* (ECCs) to denoise transmission errors induced by external interference, e.g., collision with a high-energy proton, manipulation by an adversary or even typographical mistake. In this context, *code* can be any logical representation for communicating information between two parties (such as a human and a computer), and an ECC is a carefully-designed scheme which ensures that even if some portion of the message should become corrupted, one can still recover the original message by solving a linear system of equations. When designing ECCs, one typically assumes a noise model over a certain sample space, such as the Hamming [51] or Levenshtein [6, 7, 36] balls, from which we draw inspiration for this work.

9.6 Decoding

Decoding is a key problem in machine translation, speech recognition, and other sequence-to-sequence tasks. Given a compressed encoding of some finite distribution, the goal is find the maximum likelihood samples. A classic example is Viterbi decoding, which is used to find the most likely sequence of transitions in a hidden Markov model (HMM) and is closely related to probabilistic parsing. For PCFGs, the problem is more challenging, as the solution space can be exponentially larger than HMMs relative to the number of transitions.

In particular, we care about the problem of top-k decoding, which attempts to find the exact or approximate k-most likely samples in order of decreasing likelihood. This is closely related to the k-best enumeration [23] problem, a carefully studied problem in graph theory and combinatorial optimization. An exact solution to this problem for large acyclic PCFGs is often intractable, but we can approximate it using a beam search or cube-pruning technique.

A popular solution to k-best decoding in the NLP literature is a technique called cube-pruning [13, 31], which samples maximum likelihood paths through a hypergraph. We take inspiration from this technique, and adapt it to the setting of constrained decoding from finite CFGs.

An alternate line of work originates from combinatorics [27, 30] and Boltzmann sampling [20], which constructs a generating function for the language and samples it uniformly. Unlike our method, distinctness or convergence guarantees for arbitrary finite CFLs are not provided.

Another approach would be to use MCMC or sequential Monte Carlo (SMC) to steer a transformer-based LLM, as proposed by Lew et al. [37]. This technique shows promise for constrained sampling from LLMs, and could be adapted to improve sample efficiency. The downside is that distinctly sampling an LLM is unclear how to do properly, being a fundamentally non-Markovian process. One solution proposed by Shi and Bieber [48] assumes trace injectivity and constructs a trie, however their solution is not stateless and can introduce a significant latency overhead.

9.7 Neural program repair

More recently, probabilistic repair techniques have been introduced using neural models to predict the most likely correction [3, 15, 19]. These approaches typically employ large language models (LLMs) and treat the problem as a sequence-to-sequence transformation. While capable of generating natural repairs, these models are susceptible to misgeneralization, costly to train, and challenging to customize thereafter. Furthermore, the generated repairs are not necessarily sound without additional filtering, and we observe the released models often hallucinate false positive repairs.

In particular, two papers stand out being closely related to our own: Break-It-Fix-It (BIFI) [55] and Seq2Parse [44]. BIFI adapts techniques from semi-supervised learning to generate synthetic errors in clean code and fixes them. This reduces the need for pairwise training data, but tends to generalize poorly to lengthy or out-of-distribution repairs. Seq2Parse combines a transformer-based model with an augmented version of the Early parser to suggest error rules, but only suggests a single repair. Our work differs from both in that we suggest multiple repairs at much higher precision, do not require a pairwise repair dataset, and can fix syntax errors in any language with a well-defined grammar. We note our approach is complementary to existing work in neural program repair, and may be used to generate synthetic repairs for training or employ an LLM for ranking.

Recent work by Merrill et al. [38] and Chiang et al. [14] suggest that the issue with generalization may be more foundational: transformer-based language models, a popular class of neural language models used in probabilistic program repair, are fundamentally less expressive than context-free grammars, which formally describe the syntax of most programming languages. This suggests such models, despite their useful approximation properties, are ill-suited for the task of end-to-end syntax repair. Yet, they may still be useful for resolving ambiguity between valid repairs of differing likelihood or searching a large sample space for the most likely repair.

10 CONCLUSION

Our work, while a case study on syntax repair, is part of a broader line of inquiry in program synthesis that investigates how to weave formal language theory and machine learning into helpful programming tools for everyday developers. In some ways, syntax repair serves as a test bench for integrating learning and language theory, as it lacks the intricacies of type-checking and semantic analysis, but is still rich enough to be an interesting challenge. By starting with syntax repair, we hope to lay the foundation for more organic hybrid approaches to program synthesis.

Two high-level codesign patterns have emerged to combine the naturalness of neural language models with the precision of formal methods. One seeks to filter the outputs of a generative language model to satisfy a formal specification, typically by some form of rejection sampling. Alternatively, some attempt to use language models to steer an incremental search for valid programs via a reinforcement learning or hybrid neurosymbolic approach. However, implementing these strategies is often painstaking and their generalization behavior can be difficult to analyze.

In our work, we take a more pragmatic tack - by incorporating the distance metric into a formal language, we attempt to exhaustively enumerate repairs by increasing distance, then use the stochastic language model to sort the resulting solutions by naturalness. The more constraints we can incorporate into formal language, the more efficient sampling becomes, and the more precise control we have over the output. This reduces the need for training a large, expensive language model to relearn syntax, and allows us to leverage compute for more efficient search and ranking.

There is a delicate balance in formal methods between soundness and completeness. Often these two seem at odds because the target language is too expressive to achieve them both simultaneously. In syntax repair, we also care about *naturalness*. Fortunately, syntax repair is tractable enough to achieve all three by modeling the problem using language intersection. Completeness helps us to avoid missing simple repairs that might be easily overlooked, soundness guarantees all repairs will be valid, and naturalness ensures the most likely repairs receive the highest priority.

We have implemented our approach and demonstrated its viability as a tool for syntax assistance in real-world programming languages. Tidyparse is capable of generating repairs for invalid source code in a range of practical languages with little to no data required. We plan to continue expanding the prototype's autocorrection functionality to cover a broader range of languages and hope to conduct a more thorough user study to validate its effectiveness in practical programming scenarios.

DATA-AVAILABILITY STATEMENT

An artifact for Tidyparse is currently available as a browser application, ⁸ supporting single-line syntax repairs in the Python language. The data, source code and transformer models necessary for reproducing the full experiments contained in this paper will be made available for artifact review.

⁸https://tidyparse.github.io/python

REFERENCES

1226

1232

1233

1238

1239

1240

1241

1242

1274

1227 [1] Michael D Adams, Celeste Hollenbeck, and Matthew Might. 2016. On the complexity and performance of parsing
1228 with derivatives. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
1229 Implementation. 224–236.

- [2] Alfred V Aho and Thomas G Peterson. 1972. A minimum distance error-correcting parser for context-free languages.

 SIAM J. Comput. 1, 4 (1972), 305–312.
 - [3] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. 2021. Self-supervised bug detection and repair. Advances in Neural Information Processing Systems 34 (2021), 27865–27876. https://arxiv.org/pdf/2105.12787.pdf
 - [4] Valentin Antimirov. 1996. Partial derivatives of regular expressions and finite automaton constructions. <u>Theoretical</u> Computer Science 155, 2 (1996), 291–319.
- [5] Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir. 1961. On formal properties of simple phrase structure grammars. Sprachtypologie und Universalienforschung 14 (1961), 143–172.
- 1236 [6] Daniella Bar-Lev, Tuvi Etzion, and Eitan Yaakobi. 2021. On Levenshtein Balls with Radius One. In 2021 IEEE

 1237 International Symposium on Information Theory (ISIT). 1979–1984. https://doi.org/10.1109/ISIT45174.2021.9517922
 - [7] Leonor Becerra-Bonache, Colin de La Higuera, Jean-Christophe Janodet, and Frédéric Tantini. 2008. Learning Balls of Strings from Edit Corrections. Journal of Machine Learning Research 9, 8 (2008).
 - [8] Richard Beigel and William Gasarch. [n.d.]. A Proof that if $L = L_1 \cap L_2$ where L_1 is CFL and L_2 is Regular then L is Context Free Which Does Not use PDA's. http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf
 - [9] Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. 2014. Automata theory in nominal sets. <u>Logical Methods in</u> Computer Science 10 (2014).
- [10] Janusz A Brzozowski. 1962. Canonical regular expressions and minimal state graphs for definite events. In <u>Proc.</u>
 Symposium of Mathematical Theory of Automata. 529–561.
- [11] Janusz A Brzozowski. 1964. Derivatives of regular expressions. <u>Journal of the ACM (JACM)</u> 11, 4 (1964), 481–494.
- [12] Janusz A. Brzozowski and Ernst Leiss. 1980. On equations for regular languages, finite automata, and sequential networks. Theoretical Computer Science 10, 1 (1980), 19–35.
- 1247 [13] David Chiang. 2007. Hierarchical phrase-based translation. computational linguistics 33, 2 (2007), 201–228.
- 1248 [14] David Chiang, Peter Cholak, and Anand Pillay. 2023. Tighter bounds on the expressivity of transformer encoders. In
 1249 International Conference on Machine Learning. PMLR, 5544–5562. https://proceedings.mlr.press/v202/chiang23a/chiang23a.pdf
- [15] Nadezhda Chirkova and Sergey Troshin. 2021. Empirical study of transformers for source code. In <u>Proceedings of the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering.</u> 703–715.
- 1253 [16] Noam Chomsky. 1959. On certain formal properties of grammars. Information and control 2, 2 (1959), 137–167.
- [17] Loris D'Antoni and Margus Veanes. 2014. Minimization of symbolic automata. In <u>Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages</u>. 541–553.
- [18] Eliezer Dekel, David Nassimi, and Sartaj Sahni. 1981. Parallel matrix and graph algorithms. SIAM Journal on computing 1256 10, 4 (1981), 657–675.
- [19] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan. 2021. Generating bug-fixes using pretrained
 transformers. In Proceedings of the 5th ACM SIGPLAN International Symposium on Machine Programming. 1–8.
- [20] Philippe Duchon, Philippe Flajolet, et al. 2004. Boltzmann samplers for the random generation of combinatorial structures. Combinatorics, Probability and Computing 13, 4-5 (2004), 577–625.
 - [21] Jay Earley. 1970. An efficient context-free parsing algorithm. Commun. ACM 13, 2 (1970), 94–102.
- [22] Conal Elliott. 2019. Generalized convolution and efficient language recognition. arXiv preprint arXiv:1903.10677 (2019).
- 1263 [23] David Eppstein. 2014. k-best enumeration. arXiv preprint arXiv:1412.5075 (2014).
- [24] P Flajolet. 2009. Analytic Combinatorics. Cambridge University Press.
- [25] Seymour Ginsburg and H Gordon Rice. 1962. Two families of languages related to ALGOL. <u>Journal of the ACM</u>
 (JACM) 9, 3 (1962), 350–371.
- [26] Joshua Goodman. 1999. Semiring parsing. <u>Computational Linguistics</u> 25, 4 (1999), 573–606. https://aclanthology.org/ J99-4004.pdf
- [27] Vivek Gore, Mark Jerrum, Sampath Kannan, Z Sweedyk, and Steve Mahaney. 1997. A quasi-polynomial-time algorithm for sampling words from a context-free language. Information and Computation 134, 1 (1997), 59–74.
- [28] Dick Grune and Ceriel J. H. Jacobs. 2008. Parsing as Intersection. Springer New York, New York, NY, 425–442. https://doi.org/10.1007/978-0-387-68954-8_13
- [29] Matthew Hague, Artur Jeż, and Anthony W Lin. 2024. Parikh's Theorem Made Symbolic. Proceedings of the ACM on Programming Languages 8, POPL (2024), 1945–1977.

1288

1289

1292

1294

1300

1301

1322 1323

- 1275 [30] Timothy Hickey and Jacques Cohen. 1983. Uniform random generation of strings in a context-free language. SIAM J. Comput. 12, 4 (1983), 645–655.
- 1277 [31] Liang Huang and David Chiang. 2005. Better k-best parsing. In <u>Proceedings of the Ninth International Workshop on</u>
 Parsing Technology. 53–64.
- 1278 [32] Liang Huang and David Chiang. 2007. Forest rescoring: Faster decoding with integrated language models. In Proceedings of the 45th annual meeting of the association of computational linguistics. 144–151.
- 1280 [33] E. T. Irons. 1963. An Error-Correcting Parse Algorithm. Commun. ACM 6, 11 (nov 1963), 669–673. https://doi.org/10. 1145/368310.368385
- [34] Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and Michael D Ernst. 2009. HAMPI: a solver for string constraints. In Proceedings of the eighteenth international symposium on Software testing and analysis. 105–116.
- [35] Lillian Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. <u>Journal of the ACM</u>
 (JACM) 49, 1 (2002), 1–15. https://arxiv.org/pdf/cs/0112018.pdf
- [36] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710. https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
 - [37] Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K Mansinghka. 2023. Sequential monte carlo steering of large language models using probabilistic programs. arXiv preprint arXiv:2306.03081 (2023).
 - [38] William Merrill, Ashish Sabharwal, and Noah A Smith. 2022. Saturated transformers are constant-depth threshold circuits. Transactions of the Association for Computational Linguistics 10 (2022), 843–856.
- [39] Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing with derivatives: a functional pearl. <u>ACM sigplan</u>
 notices 46, 9 (2011), 189–195.
 - [40] Mark-Jan Nederhof and Giorgio Satta. 2004. The language intersection problem for non-recursive context-free grammars. Information and Computation 192, 2 (2004), 172–184.
 - [41] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k) parser generator. Software: Practice and Experience 25, 7 (1995), 789–810.
- [42] Clemente Pasti, Andreas Opedal, Tiago Pimentel, Tim Vieira, Jason Eisner, and Ryan Cotterell. 2023. On the Intersection of Context-Free and Regular Languages. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, Andreas Vlachos and Isabelle Augenstein (Eds.). Association for Computational Linguistics, Dubrovnik, Croatia, 737–749. https://doi.org/10.18653/v1/2023.eacl-main.52
 - [43] Itiroo Sakai. 1961. Syntax in universal translation. In <u>Proceedings of the International Conference on Machine Translation and Applied Language Analysis</u>.
 - [44] Georgios Sakkas, Madeline Endres, Philip J Guo, Westley Weimer, and Ranjit Jhala. 2022. Seq2Parse: neurosymbolic parse error repair. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1180–1206.
- 1302 [45] Arto Salomaa. 1973. Formal languages. Academic Press, New York. 59–61 pages.
- 1303 [46] Klaus U Schulz and Stoyan Mihov. 2002. Fast string correction with Levenshtein automata. <u>International Journal on Document Analysis and Recognition</u> 5 (2002), 67–85.
- [47] Elizabeth Scott and Adrian Johnstone. 2010. GLL parsing. <u>Electronic Notes in Theoretical Computer Science</u> 253, 7
 (2010), 177–189.
- [48] Kensen Shi, David Bieber, and Charles Sutton. 2020. Incremental sampling without replacement for sequence models.
 In <u>International Conference on Machine Learning</u>. PMLR, 8785–8795.
- [49] Caleb Stanford, Margus Veanes, and Nikolaj Bjørner. 2021. Symbolic Boolean derivatives for efficiently solving extended regular expression constraints. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 620–635.
- [50] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. 2024. What formal languages can transformers express? a survey. Transactions of the Association for Computational Linguistics 12 (2024), 543–561.
- [51] Michalis K Titsias and Christopher Yau. 2017. The Hamming ball sampler. <u>J. Amer. Statist. Assoc.</u> 112, 520 (2017), 1598–1611.
- [52] Leslie G Valiant. 1975. General context-free recognition in less than cubic time. <u>Journal of computer and system</u> sciences 10, 2 (1975), 308–315. http://people.csail.mit.edu/virgi/6.s078/papers/valiant.pdf
- [53] Ian Erik Varatalu, Margus Veanes, and Juhan Ernits. 2025. RE#: High Performance Derivative-Based Regex Matching
 with Intersection, Complement, and Restricted Lookarounds. <u>Proceedings of the ACM on Programming Languages</u> 9,
 POPL (2025), 1–32.
- [54] Alexander William Wong, Amir Salimi, Shaiful Chowdhury, and Abram Hindle. 2019. Syntax and Stack Overflow: A methodology for extracting a corpus of syntax errors and fixes. In 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 318–322.
- [55] Michihiro Yasunaga and Percy Liang. 2021. Break-it-fix-it: Unsupervised learning for program repair. In <u>International</u>
 Conference on Machine Learning. PMLR, 11941–11952.

A LEVENSHTEIN AUTOMATA MATRICES

These are useful for visually checking different implementations.

Fig. 18. Lev($|\sigma|$ =6, Δ =1) automaton, adjacency and reachability matrix.

Fig. 19. Lev($|\sigma|$ =6, Δ =2) automaton, adjacency and reachability matrix.

Fig. 20. Lev($|\sigma|$ =6, Δ =3) automaton, adjacency and reachability matrix.

Fig. 21. Lev($|\sigma|$ =6, Δ =4) automaton, adjacency and reachability matrix.

B LEVENSHTEIN AUTOMATA MINIMALITY

It is reasonable to ask whether the Levenshtein automaton defined in § 4.3 is minimal, in the sense of whether there exists an automaton with fewer states than A yet still generates $\mathcal{L}(G_{\cap})$ when intersected with $\mathcal{L}(G)$. In other words, given G and g, is there an A' such that $|Q_{A'}| < |Q_A|$ yet $\mathcal{L}(G) \cap \mathcal{L}(A') = \mathcal{L}(G) \cap \mathcal{L}(A)$ still holds? In fact, there is a trivial example:

THEOREM B.1. Let $Q_{A'}$ be defined as $Q_A \setminus \{q_{n,0}\}$.

Since $q_{n,0}$ accepts the original string $\sigma: \bar{\ell} \cap \Sigma^n$ which is by definition outside $\mathcal{L}(G)$, we can immediately rule out this state. Moreover, we can define a family of automata with strictly fewer states than the full LBH construction by making the following observation: if we can prove one edit must occur before the last s tokens, we can rule out the last s states absorbing editless trajectories.

Theorem B.2. $\varnothing = \mathcal{L}(\sigma_{1...(n-s)} \cdot \Sigma^s) \cap \mathcal{L}(G)$ implies the states $[q_{n-i,0}]_{i \in 1...s}$ are unnecessary.

Likewise, if we expend our entire edit budget in the first p tokens, we will be unable to recover in a string where at least one repair must occur after the first p tokens.

Theorem B.3. $\varnothing = \mathcal{L}(\Sigma^p \cdot \sigma_{p...n}) \cap \mathcal{L}(G)$ implies the states $[q_{i,d_{\max}}]_{i \in 0...p}$ are unnecessary.

Therefor, we can eliminate p+s states from A by proving emptiness of $\mathcal{L}(\Sigma^p \cdot \sigma_{p...(n-s)} \cdot \Sigma^s) \cap \mathcal{L}(G)$, without affecting $\mathcal{L}(G_{\cap})$. For example, let us consider the pruned L-NFA for the broken string $\sigma = [(+)]$ with $G = \{S \to (S) \mid [S] \mid S+S \mid 1\}$. Its longest parseable suffix and prefix are:

(B.1) _ _ +)]
$$\notin \mathcal{L}(G)$$
 \times \wedge _ _ _)] $\in \mathcal{L}(G)$ \checkmark $\Longrightarrow [q_{n-i,0}]_{i \in 1...s}$ are unnecessary.
(B.2) [(+ _ _ $\notin \mathcal{L}(G)$ \times \wedge [(_ _ _ $\in \mathcal{L}(G)$ \checkmark \Longrightarrow $[q_{i,d_{max}}]_{i \in 0...p}$ are unnecessary.

Now we can prune the top leftmost and bottom rightmost states. Pictorially, this looks as follows:

Fig. 22. Levenshtein NFA before and after prefix and suffix pruning.

C HYPERPARAMETER SETTINGS

Below is a listing of the hyperparameter settings used for training the reranking model:

- Input dimension: 100
- Encoder dimension: 512
- Attention heads: 4
- Encoder layers: 4
- Vocab size, $|\Sigma| = 94$
- Learning rate, $\alpha = 10^{-3}$
- Temperature, $\tau = 10^{-1}$
- Optimizer: AdamW
- Negative rate: 10^{-2}
- Batch size: 8
- Dropout: 10^{-1}
- Activation: GELU

The full parameters θ are partitioned into two sets, θ_e , θ_r , for the encoder and reranker layers. The encoder is pretrained on next-token prediction, then fine tuned on the reranking task. During optimization, we use a smaller learning rate ($\alpha=10^{-5}$) so as not to disturb the pretrained encoder parameters and a larger learning rate ($\alpha=10^{-4}$) for the reranker parameters. We train the encoder for 20k steps and the reranker for 13k steps, taking ~ 4 hours on an Nvidia H100 GPU.

D EXAMPLE REPAIRS

1422

1423

1425

1427

1429

1433

1437

1439

1440 1441 1442

1443

1444 1445 1446

1447

1448

1449

1450

1451 1452 1453

1454

1455

1456

1461

1462

1463 1464

1465 1466

Below, we provide a few representative examples of broken code snippets and the corresponding human repairs that were successfully ranked first by our method. On the left is a complete snippet fed to the model and on the right, the corresponding human repair that was correctly predicted.

```
Original broken code
                                                    First predicted repair
                                                    from sympy import *
form sympy import *
x = Symbol('x', real=True)
                                                    x = Symbol('x', real=True)
x, re(x), im(x)
                                                    x, re(x), im(x)
result = yeald From(item.create())
                                                    result = yield From(item.create())
raise Return(result)
                                                    raise Return(result)
df.apply(lambda row: list(set(row['ids'))))
                                                    df.apply(lambda row: list(set(row['ids'])))
                                                    sum(len(v) for v in items.values())
sum(len(v) for v items.values()))
def average(values):
                                                    def average(values):
  if values == (1,2,3):
                                                      if values == (1,2,3):
    return (1+2+3)/3
                                                        return (1+2+3)/3
  else if values == (-3,2,8,-1):
                                                      elif values == (-3,2,8,-1):
    return (-3+2+8-1)/4
                                                        return (-3+2+8-1)/4
                                                    dict = {
dict = {
  "Jan": 1
                                                      "Jan": 1,
 "January": 1
                                                      "January": 1,
  "Feb": 2 # and so on
                                                      "Feb": 2 # and so on
class MixIn(object)
                                                    class MixIn(object):
 def m():
                                                      def m():
   pass
                                                        pass
class classA(MixIn):
                                                    class classA(MixIn): pass
class classB(MixIn):
                                                    class classB(MixIn): pass
```

E RAW DATA

Raw data from Precision@k experiments across snippet length and Levenshtein distance from § 7.3. $|\sigma|$ indicates the snippet length and Δ indicates the Levenshtein distance between the broken and code and human fix computed over lexical tokens. For Tidyparse, we sample until exhausting the admissible set or a timeout of 30s is reached, whichever happens first, then rank the results. For the other models Precision@1, we sample one repair and report the percentage of repairs matching the human repair. For Precision@All, we report the percentage of repairs matching the human repair within the top 20000 samples.

	Δ	Precision@1							
<u> σ</u>		(0, 10)	[10, 20)	[20, 30)	[30, 40)	[40, 50)	[50, 60)	[60, 70)	[70, 80)
Tidyparse	1	0.37	0.52	0.44	0.40	0.38	0.34	0.43	0.27
	2	0.65	0.64	0.56	0.50	0.42	0.48	0.30	0.32
	3	0.21	0.15	0.12	0.13	0.13	0.18	0.15	0.10
Seq2Parse	1	0.35	0.41	0.40	0.37	0.31	0.29	0.27	0.21
	2	0.12	0.13	0.14	0.12	0.11	0.11	0.10	0.12
	3	0.03	0.07	0.08	0.09	0.09	0.02	0.07	0.06
BIFI	1	0.20	0.33	0.32	0.27	0.21	0.21	0.25	0.18
	2	0.18	0.18	0.21	0.19	0.19	0.18	0.11	0.11
	3	0.02	0.02	0.03	0.02	0.03	0.05	0.03	0.02
			Precision@All						
Tidyparse	1	1.00	1.00	1.00	0.99	0.99	1.00	0.97	0.97
	2	1.00	0.99	0.98	1.00	1.00	1.00	0.94	0.90
	3	1.00	0.98	0.80	0.70	0.55	0.42	0.42	0.31
BIFI	1	0.65	0.67	0.70	0.65	0.60	0.62	0.60	0.64
	2	0.52	0.41	0.37	0.32	0.27	0.27	0.21	0.24
	3	0.20	0.13	0.08	0.17	0.15	0.18	0.17	0.07