Assignment 5

Due Friday, Dec 8, 2017 at 11:59pm.
Individual assignment. No group work allowed.
Weight: 8% of the final grade.

Question 1:

The following are given.

100	30	500	30	200	30	300	30	600
KB	KB	KB	KB	KB	KB	KB	KB	KB
free	P ₁₀	free	P ₁₁	free	P ₁₂	free	P ₁₃	free

P1: 212 KB

P2: 417 KB

P3: 112 KB

P4: 426 KB

These processes will be placed in memory using 4 different algorithms as follows.

First-Fit

100	30	212	112	176	30	200	30	300	30	417	183
KB	KB	KB	KP	KB	KB	KB	KB	KB	KB	KB	KB
free	P ₁₀	P ₁	P ₃	free	P ₁₁	free	P ₁₂	free	P ₁₃	P ₂	free

• P4 cannot be placed anywhere.

Best-Fit

100	30	417	83	30	112	88	30	212	88	30	426	174
KB	KB	KB	KB	KB	KB	KB	KB	KB	KB	KB	KB	KB
free	P ₁₀	P ₂	free	P ₁₁	P_3	free	P ₁₂	P ₁	free	P ₁₃	P ₄	free

Worst-Fit

100	30	417	83	30	200	30	300	30	212	112	276
KB	KB	KB	KB	KB	KB	KB	KB	KB	KB	KB	KB
free	P ₁₀	P ₂	free	P ₁₁	free	P ₁₂	free	P ₁₃	P ₁	P_3	free

• P4 cannot be placed anywhere.

Next-Fit

100	30	212	288	30	200	30	300	30	417	112	71
KB	KB	KB	KB	KB	KB	KB	KB	KB	KB	KB	KB
free	P ₁₀	P ₁	free	P ₁₁	free	P ₁₂	free	P ₁₃	P ₂	P ₃	free

• P4 cannot be placed anywhere.

Question 2:

Let the page size be 1 KB (1024 $\sim 2^{10}$).

Note: The table includes the numbers' binary representations with the first 10 bits underlined for increased clarity.

Address	Page Number	Offset
2375	2	327
10 <u>0101000111</u>	10	0101000111
19366	18	934
10010 <u>1110100110</u>	10010	1110100110
30000	29	304
11101 <u>0100110000</u>	11101	0100110000
256 (0)100000000	0	256 100000000
16385	16	1
10000 <u>0000000001</u>	10000	0000000001

Question 3:

The following are given.

• Logical address space: 1 GB (2^{32} = 4.294.967.296 bits = 1.073.741.824 bytes)

• Page size: $4 \text{ KB } (2^{10} = 1024 \text{ bytes})$

• Physical memory: Up to 512 MB

Then a conventional single-level page table would have 250.000 entries.

• # pages = logical address space / page size

• 1 GB / 4 KB = 1.000.000 KB / 4 KB = 250.000

Inverted page tables have one entry for each real (i.e. physical) page of memory (i.e. frames). And an inverted page table would have 128.000 entries.

- # frames = physical address space / page size
- 512 MB / 4 KB = 512.000 KB / 4 KB = 128.000

Question 4:

Given that a direct memory reference takes 200ns, with a single-level page table stored in memory, it would take 2 * 200ns = 400ns to locate and reference a page in memory.

With a translation lookaside buffer (TLB), if 75% of all page-table entries are found in the TLB, and searching the TLB takes 10ns, then the effective access time is:

- (1-0.75) * (10ns + 2 * 200ns) + 0.75 * (10ns + 200ns) =
- 0.25 * 410ns + 0.75 * 210ns =
- 102.5ns + 157.5ns =
- 260ns

Question 5:

The following are given:

- The page reference string: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6
- 3 frames in physical memory

Then the following are how pages are placed into frames for the LRU and OPT replacement algorithms. Note that the "oldest" page is in the top row. A star signifies that a page fault occured.

LRU (Least Recently Used):

1*	1	1	2	3	4	2	1	5	6	6	1	2	3	7	6	3	3	1	2
	2*	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3
		3*	4*	2	1*	5*	6*	2*	1*	2	3*	7*	6*	3	2*	1*	2	3	6*

There are 15 page faults.

OPT (Optimal):

1*	1	1	1	1	1	1	1	1	1	1	3*	3	3	3	3	3	3	3	6*
	2*	2	2	2	2	2	2	2	2	2	2	7*	7	7	2*	2	2	2	2
		3*	4*	4	4	5*	6*	6	6	6	6	6	6	6	6	1*	1	1	1

There are 11 page faults.