

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo de Várias Variáveis — Avaliação PS

Prof. Adriano Barbosa

Matemática	26/04/2023
------------	------------

1	
2	
3	
4	
5	
Nota	

Aluno(a):....

Todas as respostas devem ser justificadas.

Avaliação P1:

1. Determine a correspondência entre as funções e seus gráficos (A, B e C). Em seguida, determine a correspondência entre os gráficos e as curvas de nível (I, II e III)

(a)
$$z = \sin(xy)$$

(b)
$$z = e^x \cos y$$

(c)
$$z = (1 - x^2)(1 - y^2)$$

2. Calcule os limites abaixo:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - 4y^2}{x^2 + 2y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

- 3. Encontre a taxa de variação máxima de $f(x,y)=x^2y+\sqrt{y}$ no ponto (2,1). Em que direção ela ocorre?
- 4. Se $u = x^2y^3 + z^4$, onde $x = p + 3p^2$, $y = pe^p$ e $z = p \operatorname{sen} p$, use a regra da cadeia para calcular $\frac{du}{dp}$.
- 5. Encontre os valores máximo e mínimo local e pontos de sela da função $f(x,y)=x^2-xy+y^2+9x-6y+10$.

Avaliação P2:

1. Determine se as afirmações são verdadeiras ou falsas. Justifique as verdadeiras e dê um contra-exemplo para as falsas.

(a)
$$\int_{-1}^{2} \int_{0}^{6} x^{2} \sin(x - y) dx dy = \int_{0}^{6} \int_{-1}^{2} x^{2} \sin(x - y) dy dx$$
.

(b)
$$\int_{1}^{2} \int_{3}^{4} x^{2} e^{y} dy dx = \int_{1}^{2} x^{2} dx \int_{3}^{4} e^{y} dy$$
.

(c) Se
$$f$$
 é contínua em $[0,1]$, então
$$\int_0^1 \int_0^1 f(x) f(y) \ dy dx = \left[\int_0^1 f(x) \ dx \right]^2$$

- 2. Calcule a integral $\iint_D \frac{y}{1+x^2} \ dA$, onde D é limitada pelas curvas $y=\sqrt{x}, \ y=0$ e x=1.
- 3. Use coordenadas polares para determinar o valor da integral $\int_0^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} (x^3 + xy^2) \ dy dx$.
- 4. Reescreva a integral $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x,y,z) \ dz dy dx$ como uma integral iterada na ordem dx dy dz.
- 5. Use coordenadas esféricas para calcular $\int_{-2}^2 \int_0^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \ dz dx dy.$