

gereon.kremer@cs.rwth-aachen.de https://ths.rwth-aachen.de/teaching/

Satisfiability Checking - WS 2016/2017 Series 4

Exercise 1

In this exercise, we give some more details on the concept of *logical theory* and how it is related to axioms.

We fix an arbitrary signature Σ and an arbitrary structure S over Σ . In the following, all sentences are over Σ and Φ^1 is a set of sentences. We use the following notation:

- $\mathcal{S} \models \varphi$: \mathcal{S} is a model of a sentence φ .
- $\mathcal{S} \models \Phi$: \mathcal{S} is a model of all sentences φ from the set Φ .

Definitions:

- A sentence φ is a consequence of Φ ($\Phi \models \varphi$) iff $\mathcal{S} \models \varphi$ for each model $\mathcal{S} \models \Phi$.
- $\Phi^{\models} := \{ \varphi \mid \Phi \models \varphi \}$ denotes the **set of consequences of** Φ .
- Φ is called **consistent** if there is no sentence φ with $\Phi \models \varphi$ and $\Phi \models \neg \varphi$.
- ullet A satisfiable set of sentences T is called a **theory** if for all sentences arphi

$$T \models \varphi \iff \varphi \in T.$$

• A theory T is **complete** iff for all sentences φ

either
$$\varphi \in T$$
 or $\neg \varphi \in T$.

Prove the following three statements.

- 1. Each theory T is consistent.
- 2. Let Φ be a set of sentences. Φ is consistent iff Φ is a theory.
- 3. The set $\mathsf{Th}(\mathcal{S}) := \{ \varphi \mid \mathcal{S} \models \varphi \}$ is a theory. It is called the **theory of** \mathcal{S} .
- 4. Th(S) is complete.
- 5. Let $\Sigma = \{+, \cdot, \leq, =\}$. Give one example each:
 - (a) a complete Σ -theory T_1 ,
 - (b) an incomplete Σ -theory T_2 .

Hint: You can use different ways to define a theory.

2 + 2 + 2 + 2 + 4 points

Solution:

 $^{^{1}}$ Imagine Φ to be a (finite) set of axioms.

- 1. Suppose there is a sentence φ with $T \models \varphi$ and $T \models \neg \varphi$. Let $\mathcal{S} \models T$. Because T is a theory, $\varphi \in T$ and $\mathcal{S} \models \varphi$. Likewise, $\neg \varphi \in T$ and $\mathcal{S} \not\models \varphi$.
- 2. " \Leftarrow ": Since Φ^{\models} is consistent as a theory, $\Phi \subset \Phi^{\models}$ is consistent.

"⇒": Let Φ be consistent. Because of the construction of Φ and \models is transitive, it holds that

$$\Phi^{\models} \models \varphi \Leftrightarrow \varphi \in \Phi^{\models}$$
.

It remains to prove that all sentences in Φ^{\models} are satisfiable. Assume there is an unsatisfiable sentence $\varphi \in \Phi^{\models}$. Hence, there is no $\mathcal{S} \models \varphi$. Because $\Phi \models \varphi$, there is also no $\mathcal{S} \models \Phi$, i.e., Φ has no models. Therefore, $\Phi \models \psi$ for each Σ sentence ψ ; in particular, $\Phi \models \neg \varphi$. \not Φ consistent.

3. Let $T := \mathsf{Th}(\mathcal{S})$. Each $\varphi \in T$ is indeed satisfiable since $\mathcal{S} \models \varphi$. It holds that

$$T \models \varphi \iff \mathcal{S} \models \varphi \iff \varphi \in T.$$

- 4. Let $T:=\mathsf{Th}(\mathcal{S})$. We assume that T is not complete. Therefore, a Σ sentence φ exists such that (1) $\varphi \notin T$ and (2) $\neg \varphi \notin T$. (A) implies that $\mathcal{S} \not\models \varphi$, i.e., there is no assignment from the domain of \mathcal{S} to the variables of φ so that φ evaluates to true by the given interpretation of Σ in \mathcal{S} . Consequently, any such assignment satisfies $\neg \varphi$. Hence $\mathcal{S} \models \neg \varphi$. Thus, $\neg \varphi \in T$. \not (B).
- 5. (a) We define the theory of a structure, e.g., $T_1 = \text{Th}((\mathbb{N}, +, \cdot, \leq, =))$, as proven in 4...
 - (b) We define a theory by a set of axioms, e.g.,

$$T_2 = \{ \forall x \forall y \ x \le x, \\ \forall x \forall y \ x \le y \land y \le x \to x = y, \\ \forall x \forall y \ \forall z \ x \le y \land y \le z \to x \le z \} \models$$

the theory of linear orders. It is true that, e.g., $(\mathbb{N}, +, \cdot, \leq, =) \models T_2$, but $\mathsf{Th}(\mathbb{N}, +, \cdot, \leq, =) \supsetneq T_2$. A witness for this issue is, e.g., the sentence

$$\varphi = \forall x \ x \le x \cdot x.$$

 $\varphi \in T_2$, but neither $\varphi \in T_2$ nor $\neg \varphi \in T_2$, because multiplication \cdot is not FO-definable within linear orderings.

Another solution for T_2 is Presburger arithmetic, $T_2 = \text{Th}((\mathbb{N}, +, \leq, =))$. Our incompleteness proof is based on decidability results:

- (1) satisfiability for Presburger arithmetic is decidable,
- (2) satisfiability for $T_1 = \text{Th}((\mathbb{N}, +, \cdot, \leq, =))$ is undecidable.

Firstly, we note that $T_2 \subseteq T_1$ because of the same interpretation of the signature.

If we assume that T_2 is complete, we can define a formula $\varphi_{\cdot}(x,y,z)$ in T_2 so that $\varphi_{\cdot}(x,y,z) \equiv (x \cdot y = z)$ in T_1 , i.e., we define multiplication in Presburger arithmetic. Thus, $T_2 \models T_1$, i.e., $T_2 = T_1$ because T_1 is complete due to part (a). This fact and (1) entail that T_1 must be decidable. Contradiction to (2).