

Topic: Forecasting – Time Series

Forecast the Coca-Cola prices and Airlines Passengers data set. Prepare a document for each model explaining how many dummy variables you have created and RMSE value for each model. Finally which model you will use for Forecasting.

1.) Airlines.xlsx

•	Month [‡]	Passengers
1	1995-01-01	112
2	1995-02-01	118
3	1995-03-01	132
4	1995-04-01	129
5	1995-05-01	121
6	1995-06-01	135
7	1995-07-01	148
8	1995-08-01	148
9	1995-09-01	136
10	1995-10-01	119
11	1995-11-01	104
12	1995-12-01	118
13	1996-01-01	115
14	1996-02-01	126
15	1996-03-01	141
16	1996-04-01	135

Firstly we need to convert the dataset to csv to remove the time stamp error in python and proceed with data preprocessing steps.

Data Preprocessing:

- 1) The dataset consists of 96 observations with 2 variables of Month-Year and passengers list.
- 2) Below is the graph that represents passengers list for the given period of time

- 3) Checking the NA values, as there are no NA values no further imputation is required.
- 4) As the data is of 12 months, so the frequency is taken as 12 and created 12dummy variables.
- 5) Now the months names are assigned to the columns names of dummy variables and combined with the airline data.
- 6) A time column "t" is assigned to the dataset and taking the log of passengers and square of t, so that the whole data is normalized.

Splitting the data:

- 1) Now the data is divided into training and test data with [1:70] and [71:96]
- 2) Calculating the RMSE value using different models, as we cannot directly tell what is the exact trend followed by the data
- 3) Only residual values are calculated for all the models to calculate the RMSE values

Calculating RMSE Using Different Models:

Linear Model:

✓ RMSE is 48.30 and Adjusted R2 Value is 0.7699

Exponential Model:

- ✓ RMSE is 43.47 and Adjusted R2 is 0.78
- ✓ As predicted values are logged values, we do exponential of expo_pred\$fit to get the actual values.

Quadratic Model:

✓ RMSE is 43.898 and Adjusted R2 Value is 0.769

Additive Seasonality Model:

✓ RMSE is 124.97and Adjusted R2 is 0.083 Hence, it may not be additive seasonality model.

Additive Seasonality with Linear Model:

✓ RMSE is 34.502 and Adjusted R2 is 0.94

Additive Seasonality with Quadratic Model:

✓ RMSE is 30.393 and Adjusted R2 is 0.95

Multiplicative Seasonality Model:

- ✓ In multiplicative we multiply but we can't multiply directly hence we apply log
- ✓ RMSE is 129.6291 & Adjusted R2 is 0.07

Multiplicative Seasonality Linear trend:

- ✓ RMSE is 11.72 and Adjusted R2 is 0.96
- ✓ This is the highest R2 & lowest RMSE

Below are the over all RMSE values for all models

•	model	RMSE
1	rmse_linear	48.30986
2	rmse_expo	43.47847
3	rmse_Quad	43.89814
4	rmse_Add_season	124.97570
5	rmse_Add_sea_Quad	30.39304
6	rmse_multi_sea	129.62914
7	rmse_multi_add_sea	11.72479

- \checkmark Now building the model with the whole dataset of airlines
- ✓ Histogram of residual values

Histogram of resid

Series resid

✓ From the above residual graph, we can say that the lag 1 to 4 are significant, so Arima can be built

Building the Arima Model:

- ✓ Auto regression is only used to forecast errors
- ✓ Performing auto regression with 2nd lag, p=2,d=0,q=0

Series k\$residuals

- ✓ From the above graph, we can say that significance problem is removed & all are below threshold ACF values.
- ✓ Using the function pred_res\$pred then recalling function acf(k\$residuals,lag.max = 12) we get the output of the problem statement.

2.) CocaCola_Sales_RawData.xlsx

_	Quarter [‡]	Sales [‡]
1	Q1_86	1734.827
2	Q2_86	2244.961
3	Q3_86	2533.805
4	Q4_86	2154.963
5	Q1_87	1547.819
6	Q2_87	2104.412
7	Q3_87	2014.363
8	Q4_87	1991.747
9	Q1_88	1869.050
10	Q2_88	2313.632
11	Q3_88	2128.320
12	Q4_88	2026.829
13	Q1_89	1910.604
14	Q2_89	2331.165
15	Q3_89	2206.550
16	Q4_89	2173.968
17	Q1_90	2148.278

Data Preprocessing:

- 1) The dataset consists of 42 observations with 2 variables of Month-Year and Sales for the 4 quarters in a specific period.
- 2) Below is the graph that represents sales for the given period of time.

- 3) As the data is of 4 quarters, so the frequency is taken as 4 and created 4 dummy variables
- 4) Now the quarters names are assigned to the columns names of dummy variables and combined with the data.
- 5) A time column "t" is assigned to the dataset and taking the log of sales and square of t, so that the whole data is normalized.

Splitting the data:

- 1) Now the data is divided into training and test data with [1:30] and [31:42]
- 2) Calculating the RMSE value using different models, as we cannot directly tell what is the exact trend followed by the data
- 3) Only residual values are calculated for all the models to calculate the RMSE values

Calculating RMSE Using Different Models

Linear Model:

✓ RMSE is 714.014 and Adjusted R2 Value is 0.69

Exponential Model:

- ✓ RMSE is 552.28 and Adjusted R2 is 0.69
- ✓ RMSE has reduced of the exponential model than linear.
- ✓ As predicted values are logged values, we do exponential of expo_pred\$fit to get actual values

Quadratic Model:

✓ RMSE is 646.27 and Adjusted R2 Value is 0.79

Additive Seasonality Model:

✓ RMSE is 1778.00 and Adjusted R2 is 0.05. Hence, it may not be additive seasonality model.

Additive Seasonality with Linear Model:

✓ RMSE is 637.94 and Adjusted R2 is 0.82

Additive Seasonality with Quadratic Model:

✓ RMSE is 586.05 and Adjusted R2 is 0.94

Multiplicative Seasonality Model:

- ✓ In multiplicative we multiply but we can't multiply directly hence we apply log
- ✓ RMSE is 1828.92 and Adjusted R2 is 0.07

Multiplicative Seasonality Linear trend:

- ✓ RMSE is 410.24 and Adjusted R2 is 0.83
- ✓ This is the highest R2 & lowest RMSE

Below are the overall RMSE values for all models

_	model	RMSE *
1	rmse_linear	714.0144
2	rmse_expo	552,2821
3	rmse_Quad	646.2715
4	rmse_Add_season	1778.0065
5	rmse_Add_sea_Quad	586.0533
6	rmse_multi_sea	1828.9239
7	rmse_multi_add_sea	410.2497

- ✓ Here we find that Multiplicative additional Seasonality with Linear trend which has least RMSE value of 410.24
- \checkmark Now building the model with the whole dataset

ActualGraph

PredictedGraph

MAPE and MAE Graphical Representation:

Time Series Graph:

✓ Visualization shows that it has level, trend, seasonality => Additive seasonality

Moving Average Graph:

✓ The MAPE value for moving average is 8.908

Using Holtwinters Function:

✓ Taking alpha value as 0.2 as a default and assuming time series data has only level parameter

Forecasts from HoltWinters

Additive Graph:

Forecasts from Holt-Winters' additive method

- ✓ Based on the MAPE value who choose holts winter exponential technique which assumes the time series
- ✓ Data level, trend, seasonality characters with default values of alpha, beta and gamma

Hints:

- 1. Business Problem
 - 1.1. Objective
 - 1.2. Constraints (if any)
- 2. Data Pre-processing
 - 2.1 Feature Engineering, EDA etc.
- 3. Model Building
 - 3.1 Partition the dataset
 - 3.2 Model(s) Work with all the models (linear, exponential, quadratic etc.)
 - 3.3 Model(s) Improvement steps
 - 3.4 Model Evaluation
 - 3.5 Python and R codes
- 4. Result Share the benefits/impact of the solution how or in what way the business (client) gets benefit from the solution provided.

Note:

- 1. For each assignment the solution should be submitted in the format
- 2. Research and Perform all possible steps for improving the model(s) accuracy & reduce the RMSE (also evaluate errors like MAPE, MAE etc.)
- 3. All the codes (executable programs) are running without errors
- 4. Documentation of the module should be submitted along with R & Python codes, elaborating on every step mentioned here