1.12 Initialisation : Pour n = 4, l'inégalité $4! = 24 > 16 = 2^4$ est attestée.

Hérédité : Soit $n \ge 4$ un entier tel que $n! > 2^n$.

On va prouver que $(n+1)! > 2^{n+1}$, en montrant que $(n+1)! - 2^{n+1} > 0$. De même, l'hypothèse de récurrence devient : $n! - 2^n > 0$.

$$(n+1)! - 2^{n+1} = \underbrace{(n+1)}_{>2} n! - 2 \cdot 2^n > 2n! - 2 \cdot 2^n = 2\underbrace{(n!-2^n)}_{>0} > 0$$