5.4 - Slope as a Rate of Change Worksheet MPM1D

2. A teenager's heart pumps an average of 7200 L of blood every 24 hours. What is the rate of change of volume of blood?

3. A hummingbird can flap its wings an average of 1800 times every 30 seconds. What is the rate of change of wing flaps?

- **4.** The graph shows the height above the ground of a rock climber over time.
- a) Calculate the slope of the graph.

b) Interpret the slope as a rate of change.

- **5.** The graph shows the relationship between temperature and altitude.
- a) Calculate the slope of the graph.

b) Interpret the slope as a rate of change.

6. The price of a loaf of bread increased from \$1.45 in 2003 to \$1.78 in 2006. What is the average price increase per year?

7. The graph shows the height of a plant over a 2-month growth period. Calculate the rate of change per day.

8. The table shows the minimum volume of water needed to fight a typical fire in rooms of various sizes.

Floor Area (m²)	Minimum Volume of Water (L)
25	39
50	78
75	117

- a) Graph the data in the table.
- b) Calculate the rate of change.

c) If a fire truck is pumping water at a rate of 200 L/min, how long will it take to put out a fire in a room with a floor area of $140 \, \text{m}^2$?

- **9.** A large party balloon is being filled with helium at a constant rate. After 8 seconds, there is 2.5 L of helium in the balloon.
- a) Graph this relation

b) The balloon will burst if there is more than 10 L of helium in it. How long will it take to fill the balloon with that much helium? Mark this point on your graph.

- **10.** The distance-time graph shows two cars that are travelling at the same time.
- a) Which car has the greater speed, and by how much?

b) What does the point of intersection of the two lines represent?

- **11.** A scuba tank holds 2.6 m^3 of compressed air. A diver at a shallow depth uses about 0.002 m^3 per breath and takes about 15 breaths per minute.
- a) How much air will the diver use in 1 minute?

b) How long will the air in the tank last at this rate?