Exercices 2

TABLE DES MATIÈRES

1	Convexity			
	1.1	C1	1	
		1.1.1 Enoncé	1	
	1.2	C2	1	
		1.2.1 Enoncé	1	
	1.3	C ₃	1	
		1.3.1 Enoncé	1	
	1.4	C4	2	
		1.4.1 Enoncé	2	
	1.5	$C_5 \dots C_5$	2	
		1.5.1 Enoncé	2	
2	Logistic regression			
	2.1	L1	2	
		2.1.1 Enoncé	2	
	2.2	L2	3	
		2.2.1 Enoncé	3	

1 CONVEXITY

1.1 C1

1.1.1 Enoncé

Show that all norms are convex.

1.2 C2

1.2.1 Enoncé

 $x \mapsto \theta^\mathsf{T} x$ is convex on \mathbb{R}^d with $\theta \in \mathbb{R}^d$ (linear form)

1.3 C3

1.3.1 Enoncé

if Q is a symmetric definite positive matrix (matrice définie positive) with smallest eigenvalue $\lambda_{\min} > 0$, then $x \mapsto x^T Q x$ is $2\lambda_{\min}$ - strongly convex.

1.4 C4

1.4.1 Enoncé

If f is increasing and convex and g is convex, then $f \circ g$ is convex.

1.5 C5

1.5.1 Enoncé

Is f in convex and g is linear, then $f \circ g$ is convex.

2 LOGISTIC REGRESSION

Definition 1. Cross entropy loss

$$l:\mathbb{R}^2\to\mathbb{R}$$

$$l(\hat{y}, y) = y \log(1 + e^{-\hat{y}}) + (1 - y) \log(1 + e^{\hat{y}})$$
(1)

Definition 2. Sigmoid function

$$\sigma: \mathbb{R} \to \mathbb{R}.$$

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{2}$$

2.1 L1

2.1.1 Enoncé

Show that σ is differentiable and that

$$\forall z, \sigma'(z) = \sigma(z)\sigma(-z) \tag{3}$$

2.2.1 Enoncé

Show that $l(\hat{y},y)$ is convex in its first argument, which means for fixed $y,\,\hat{y}\mapsto l(\hat{y},y)$ is convex.