

CPSC 131

Data Structures

Graph Traversals Depth-First Search

Graph Traversals

- A systematic procedure for exploring a graph by examining all of its vertices and edges
- Traversal algorithms
 - Depth-First Search (DFS)
 - Visits the child vertices before visiting the sibling vertices
 - A stack is used when implementing DFS

- Breadth-First Search (BFS)
 - Visits the neighbor vertices before visiting the child vertices
 - A queue is used in the search process

Depth-First Search (DFS)

Depth-First Search

- ☐ The DFS algorithm is similar to a classic strategy for exploring a maze
 - Mark each intersection, corner and dead end (vertex) visited
 - Mark each corridor (edge) traversed
 - Keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

DFS Traversal Terminologies & Sketches

- A unexplored vertexA visited vertex
- —— unexplored edge
- discovery edge
- --- back edge

DFS Algorithm Pseudo Code

procedure DFS-recursive(*v*):

The algorithm sets and gets labels of vertices as "visited" or "not visited"

Lexicograhic order

- ☐ If there are multiple vertices to choose from, which do we choose first?
- Any order will give a correct traversal
- ☐ For consistency in this class, we will select vertices in alphabetical order
 - Also called lexicographic order

DFS Example

Visited: A C F H G E D

Analysis of DFS

- \square Setting/getting a vertex/edge label takes O(1) time
- □ Each vertex is labeled twice initially as NOT_VISITED once as VISITED
- Each edge is labeled twice once as UNEXPLORED once as DISCOVERY or BACK
- ☐ Method incidentEdges is called **once for each represente**
 - incidentEdges() returns a list of all edges touching vertex Since:

 $\int_{\Sigma_{\mathbf{v}}} \deg(\mathbf{v}) = 2\mathbf{m}$

 \square DFS runs in O(n + m) time provided that the graph is represented by the adjacency list structure

DFS Stack-based Algorithm

```
DFS (startV) {
Set all vertices to not visited
Push startV to stack
 while ( stack is not empty )
  currentV = Pop stack
  "Visit" currentV
  if ( currentV is not visited)
   set currentV to visited
   for each vertex adjV adjacent to currentV do
        Push adjV to stack
```