Исследование устойчивости стационарных состояний нелинейных систем второго порядка. Построение параметрического портрета системы. Автоколебания и множественность стационарных решений.

Работа Киселевой Анастасии, группа 601, Вариант 6 Рассматриваемая модель:

$$\frac{dx}{dt} = k_1 z - k_{-1} x - k_3 \phi(x, y) \cdot xy$$

$$\frac{dy}{dt} = k_2 z^2 - k_{-1} y^2 - k_3 \phi(x, y) \cdot xy,$$

где
$$z = 1 - x - y$$
, $\phi(x, y) = (1 - x)^{\alpha}$

Набор начальных параметров: $\alpha=18; k_1=0.012; k_{-1}=0.01; k_{-2}=10^{-9}; k_3=10; k_2=0.012.$

1 Однопараметрический анализ

Зависимость стационарных решений от k_2 при различном α с отмеченными точками бифуркации:

При $\alpha=18$

При $\alpha=25$

Зависимость стационарных решений от k_2 при различном k_3 с отмеченными точками бифуркации:

1.1 Двухпараметрический анализ

Ниже приведены графики двухпараметрического анализа с начальными параметрами, если другое не оговорено.

Параметрический портрет системы

Колебания y(t) и x(t)

Фазовый портрет системы для k_1 и k_2 из петли