

Exame Final Nacional de Matemática A Prova 635 | Época Especial | Ensino Secundário | 2020

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho Decreto-Lei n.º 55/2018, de 6 de julh	Decreto-Lei n.º 139/2012, de 5 de	julho Decreto-Lei n	ı.º 55/2018, de 6 de ju	ulho
---	-----------------------------------	-----------------------	-------------------------	------

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 8 Páginas

A prova inclui 4 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final (itens **1.1.**, **1.2.**, **8.1.** e **8.2.**). Dos restantes 14 itens da prova, apenas contribuem para a classificação final os 8 itens cujas respostas obtenham melhor pontuação.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}(\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; \ r - \text{raio})$$

Área lateral de um cone: $\pi rg(r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho e^{i\theta}} = \sqrt[n]{\rho} e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \ \mathbf{e} \ n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Na Figura 1, está representado, num referencial o.n. Oxyz, um cubo $\begin{bmatrix} ABCDEFGH \end{bmatrix}$ em que cada aresta é paralela a um dos eixos coordenados.

Figura 1

Sabe-se que:

- o vértice B tem coordenadas (0, 2, 4)
- o vetor \overrightarrow{BE} tem coordenadas (2,2,-2)
- a aresta [BG] é paralela ao eixo Oz
- **1.1.** Determine a amplitude do ângulo OBE

Apresente o resultado em graus, arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

1.2. Seja α o plano que passa por G e é perpendicular à reta OE

Sejam $P,\ Q$ e R os pontos de lpha que pertencem aos eixos coordenados.

Determine o volume da pirâmide [OPQR]

2. Na Figura 2, está representado, num referencial o.n. xOy, um hexágono regular [MNPQRS] centrado na origem.

Sabe-se que o vértice $\,M\,$ tem coordenadas $\,(1,0)\,$ e que o vértice $\,N\,$ pertence ao primeiro quadrante.

Qual é a equação reduzida da reta MN?

(B)
$$y = -\sqrt{3}x + \sqrt{6}$$

(C)
$$y = -x + 2$$

(D)
$$y = -x + 1$$

3. Considere um dado cúbico equilibrado, com as faces numeradas de 1 a 6

Lança-se esse dado quatro vezes e escrevem-se, da esquerda para a direita, os algarismos saídos, obtendo-se, assim, um número com quatro algarismos.

Qual é a probabilidade de esse número ser par, menor do que $5000\,$ e capicua (sequência de algarismos cuja leitura da direita para a esquerda ou da esquerda para a direita dá o mesmo número)?

- (A) $\frac{1}{36}$ (B) $\frac{5}{36}$ (C) $\frac{1}{108}$
 - (D) $\frac{5}{108}$
- 4. Um hotel, que promove atividades ao ar livre, é procurado por turistas de várias nacionalidades.
 - 4.1. Num certo dia, o hotel organizou uma descida do rio Zêzere e uma caminhada na serra da Estrela. Sabe-se que:
 - 80% dos hóspedes participaram na caminhada na serra da Estrela;
 - 50% dos hóspedes participaram na descida do rio Zêzere;
 - 30% dos hóspedes que participaram na descida do rio Zêzere não participaram na caminhada na serra da Estrela.

Escolhe-se, ao acaso, um dos hóspedes do hotel.

Determine a probabilidade de esse hóspede ter participado na caminhada na serra da Estrela e não ter participado na descida do rio Zêzere.

Apresente o resultado na forma de percentagem.

4.2. Três hóspedes suecos e quatro hóspedes dinamarqueses pretendem visitar os arredores do hotel. Para tal, o hotel disponibiliza quatro motos de dois lugares cada uma (uma preta, uma amarela, uma branca e uma verde).

Sabe-se que apenas os hóspedes dinamarqueses podem conduzir.

De quantas maneiras distintas se podem distribuir, deste modo, os sete hóspedes pelas quatro motos?

- **(A)** 21
- **(B)** 35
- (C) 268
- **(D)** 576

5. Considere uma progressão geométrica não monótona (u_n)

Sabe-se que
$$u_3 = \frac{1}{12}$$
 e que $u_{18} = 4u_{20}$

Determine uma expressão do termo geral de (u_n)

Apresente essa expressão na forma $a \times b^n$, em que $a \in b$ são números reais.

6. Considere a sucessão (v_n) definida, por recorrência, por

$$\begin{cases} v_1 = 2 \\ v_{n+1} = \frac{1}{v_n}, \text{ para qualquer número natural } n \end{cases}$$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (v_n) é uma progressão aritmética.
- **(B)** A sucessão (v_n) é uma progressão geométrica.
- **(C)** A sucessão (v_n) é monótona.
- **(D)** A sucessão (v_n) é limitada.
- 7. Em $\,\mathbb{C}\,$, conjunto dos números complexos, considere o número complexo $\,z_1=-1-i\,$
 - **7.1.** Determine, sem recorrer à calculadora, os números reais a e b, de forma que z_1 seja solução da equação $\frac{a}{z^2} + bz^4 = -2 + i$
 - **7.2.** Na Figura 3, está representado, no plano complexo, o triângulo equilátero [OFG]

Figura 3

Sabe-se que o ponto F é a imagem geométrica do número complexo z_1 e que o ponto G é a imagem geométrica do número complexo $z_1 \times z_2$ e pertence ao quarto quadrante.

A que é igual o número complexo z_2 ?

(A)
$$\frac{1}{2} + \frac{\sqrt{2}}{2}i$$
 (B) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ (C) $1 + \sqrt{2}i$

(B)
$$\frac{1}{2} + \frac{\sqrt{3}}{2}$$

(C)
$$1 + \sqrt{2}$$

(D)
$$1 + \sqrt{3} i$$

8. Um município construiu, num dos seus parques, uma rampa de *skate* entre duas paredes verticais distanciadas 21 metros uma da outra.

Na Figura 4, estão representados um corte longitudinal da rampa e dois jovens, cada um no seu *skate*.

Figura 4

Nesta figura, o arco BD representa a rampa, os segmentos de reta $\begin{bmatrix} AB \end{bmatrix}$ e $\begin{bmatrix} CD \end{bmatrix}$ representam as paredes e o segmento de reta $\begin{bmatrix} AC \end{bmatrix}$ representa o solo. Os pontos P e Q representam as posições dos dois jovens na rampa.

Admita que a distância ao solo, em metros, de um ponto da rampa situado x metros à direita da parede representada na figura por $\begin{bmatrix} AB \end{bmatrix}$ é dada por

$$f(x) = 0.0001x^4 - 0.005x^3 + 0.11x^2 - x + 3.4$$
, $0 \le x \le 21$

- **8.1.** Qual é, em metros, com arredondamento às décimas, o valor absoluto da diferença entre as alturas das duas paredes da rampa de *skate*?
 - **(A)** 0,8
 - **(B)** 0,7
 - (C) 0.5
 - **(D)** 0,4

8.2. Num certo instante, os dois jovens estão à mesma distância do solo, um mais próximo da parede representada por [AB] e o outro mais próximo da parede representada por [CD]. O jovem que se encontra mais próximo da parede representada por [AB] está a um metro desta parede.

Seja d a distância a que se encontra da parede representada por [CD] o jovem que dela está mais próximo.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de d, sabendo-se que esse valor existe e é único.

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas;
- apresente o valor de d em metros, arredondado às décimas.

Se, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

9. Seja f a função, de domínio $\left]0, \frac{\pi}{2}\right[$, definida por $f(x) = \frac{e^{2x} - 1}{\operatorname{tg} x}$

Mostre que o gráfico da função f não tem assíntotas.

10. Para um certo número real k, seja g a função, de domínio \mathbb{R} , definida por

$$g(x) = \begin{cases} \frac{x^2 - x}{k - kx} & \text{se } x < 1\\ x^2 - 10 + 8 \ln x & \text{se } x \ge 1 \end{cases}$$

10.1. Sabe-se que g é contínua no ponto 1

Qual é o valor de k?

- (A) $\frac{1}{6}$
- (B) $\frac{1}{7}$
- (C) $\frac{1}{8}$
- **(D)** $\frac{1}{9}$

10.2. Estude, sem recorrer à calculadora, a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão no intervalo $]1, +\infty[$

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de g tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de g tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de g, caso este(s) exista(m).
- **10.3.** Mostre, recorrendo a métodos exclusivamente analíticos, que a função g tem, pelo menos, um zero no intervalo $]\sqrt{e}$, e[
- **11.** Considere a função h, de domínio \mathbb{R} , definida por $h(x) = \frac{5}{4 + 3\cos(2x)}$
 - **11.1.** Qual é a taxa média de variação da função h entre $\frac{\pi}{6}$ e $\frac{7\pi}{6}$?
 - **(A)** 1

- (B) $\frac{1}{2}$
- **(C)** 0
- **(D)** $-\frac{1}{2}$
- **11.2.** Determine, sem recorrer à calculadora, as abcissas dos pontos do gráfico da função h, pertencentes ao intervalo $]-\pi,\pi[$, cuja ordenada é 2

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 4 itens da prova contribuem obrigatoriamente para a classificação final.		1.	.1.			1.	2.			8.1.			8.2.		Subtotal
Cotação (em pontos)	16				20			16		20		72			
Destes 14 itens, contribuem para a classificação final da prova os 8 itens cujas respostas obtenham melhor pontuação.	2.	3.	4.1.	4.2.	5.	6.	7.1.	7.2.	9.	10.1.	10.2.	10.3.	11.1.	11.2.	Subtotal
Cotação (em pontos)	8 x 16 pontos								128						
TOTAL								200							