

SÍLABO INVESTIGACIÓN OPERATIVA I

ÁREA CURRICULAR: PRODUCCIÓN E INGENIERIA INDUSTRIAL

CICLO: VI CURSO DE VERANO 2018-I

I. CÓDIGO DEL CURSO : 09008506040

II. CREDITOS : 04

III.REQUÍSITOS : 09006004040 Estadística y Probabilidades II

: 09066201020 Introducción a la Ingeniería

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El desarrollo de la asignatura es teórico-práctico y su aprendizaje permite al alumno solucionar problemas de negocios; administrar proyectos e interpretar modelos de PL asistido por computadora. El curso comprende las unidades de aprendizaje: I. Proceso de Toma de Decisiones con Investigación de Operaciones. II. Modelos Matemáticos de PL. Formulación y Construcción. III. Solución de Modelos de PL. Métodos: Geométrico- Algebraico. IV. Solución de Modelos de PL- Método Simplex. V. Análisis de Sensibilidad- Cambios Paramétricos. VI. Modelos de redes. Problemas de Transporte y Asignación. Introducción al PERT/CPM.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Eppen, G., Gould, F., Schmidt, C., Moore, H., Weatherford L. (2000). Investigación de Operaciones en la Ciencia Administrativa . México. Edit. Pearson. Prentice Hall.
- Sankara Iyer (2008), Operations Research Tata McGraw-Hill.
- Wayne L Winston. (2004). Operations Research: Applications and Algorithms-4th edition .USA. Indian University.
- Hillier, F., Lieberman, G. (2007). Introducción a la Investigación de Operaciones. México.: Ed. McGraw-Hill.

Electrónicas

 Villanueva Herrera, T. (2008). Separata digital de Investigación Operativa 1. Facultad de Ingeniería y Arquitectura. Universidad de San Martín de Porres, Perú. Recuperado el 22.03.2010, de:

ftp://ftp.usmp.edu.pe/separatas/FIA/Industrial/Ciclo V/Inv Operativa I/separatas%20profesor/

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: EL PROCESO DE TOMA DE DECISIONES BASADA EN LA IO.

OBJETIVOS DE APRENDIZAJE:

- Identificar una situación a solucionar para explicar el proceso de Toma de Decisiones.
- Representar gráficamente las fases del Proceso de Toma de Decisiones.
- Reconocer modelos Cuantitativos de Decisión.
- Construir modelos de Programación Lineal.

PRIMERA SEMANA

Primera sesión

Introducción a la Investigación de Operaciones: Proceso de Toma de Decisiones. Modelos y Modelos Cuantitativos de Decisión.

Segunda sesión

Orígenes, Desarrollo y naturaleza de la Investigación de Operaciones. Modelos utilizados por la Ciencia de la Administración. Áreas de Aplicación de la IO.

SEGUNDA SEMANA

Primera sesión

Modelos Matemáticos Normativos y Descriptivos. Componentes de un modelo Normativo

Segunda sesión

Modelos Matemáticos de Programación Lineal. Características: Objetivo, Restricciones, divisibilidad, aditividad, no negatividad. Expresión matemática genérica de un modelo de Programación Lineal.

UNIDAD II: MODELOS MATEMATICOS DE PL - FORMULACION Y CONSTRUCCION

OBJETIVOS DE APRENDIZAJE:

- Analizar un problema y determinar si puede ser representado y resuelto como un modelo de PL.
- Formular modelos de PL a partir de problemas que requieren soluciones cuantitativas.

TERCERA SEMANA

Primera sesión

Procedimientos para formular un modelo de Programación Lineal. Identificación del objetivo y las restricciones, construcción de la estructura matemática del Objetivo, de las restricciones y del modelo de PL.

Segunda sesión

Formulación de modelos matemáticos para problemas de PL. Debate acerca del procedimiento de formulación.

UNIDAD III: SOLUCION DE MODELOS DE PL - METODOS: GEOMETRICO-ALGEBRAICO

OBJETIVOS DE APRENDIZAJE:

- Representar geométricamente las relaciones matemáticas de un modelo de PL.
- Construir e interpretar la región que contiene las soluciones factibles del modelo.
- Aplicar conocimientos geométricos para determinar una o más soluciones del modelo.
- Traducir las relaciones matemáticas del modelo de PL, en sistemas de ecuaciones lineales.
- Aplicar conocimientos de álgebra para determinar una o más soluciones del modelo.

CUARTA SEMANA

Primera sesión

Métodos de solución para modelos de PL: Método Geométrico (Solución gráfica). La Región Factible y la Solución Óptima. Problemas de Maximización.

Segunda sesión

Solución Gráfica de problemas de Minimización.

QUINTA SEMANA

Primera sesión

Casos especiales: Soluciones Optimas Alternativas (Múltiples). Problemas no Acotados, No Factibles, Degenerados.

Segunda sesión

Introducción al análisis de Sensibilidad: Enfoque gráfico (variaciones en los coeficientes de la Función Objetivo, cambios en los valores de Segundo Termino de las restricciones).

SEXTA SEMANA

Primera sesión

Métodos de solución para, modelos de PL; método algebraico.

Segunda sesión

Variables de Holgura y de Exceso.

UNIDAD IV: SOLUCION DE MODELOS DE PL - METODO SIMPLEX

OBJETIVOS DE APRENDIZAJE:

- Preparar un modelo matemático de PL para aplicar el algoritmo SIMPLEX.
- Construir tableros SIMPLEX y trasladar a él, las variables y parámetros del modelo de PL.
- Graficar el algoritmo SIMPLEX para dar solución a modelos de PL.
- Aplica sus conocimientos matemáticos de solución gaussiana de matrices para solución Simplex.

SEPTIMA SEMANA

Primera sesión

Métodos de solución para modelos de PL: Método Simplex. Tablero Simplex: componentes. Forma Estándar de un modelo de PL. El Algoritmo Simplex.

Segunda sesión

Aplicación del algoritmo Simplex a problemas de: Maximización.

OCTAVA SEMANA

Examen parcial

NOVENA SEMANA

Primera sesión

El método Simplex para un modelo de Minimización. Casos especiales: Soluciones Optimas Alternativas (Múltiples).

Segunda sesión

Casos especiales: Problemas no Acotados, Inconsistentes, Degenerados.

UNIDAD V: ANALISIS DE SENSIBILIDAD - CAMBIOS PARAMETRICOS.

OBJETIVOS DE APRENDIZAJE:

- Identificar situaciones de cambios en los parámetros de un modelo al ser aplicados a la realidad.
- Reconocer la utilidad de las herramientas para analizar los cambios en los parámetros del modelo.
- Solucionar situaciones con variación de parámetros en los modelos de Programación Lineal.
- Desarrollar análisis de sensibilidad de los recursos y variables, con capacidad de interpretación de cambios en las variables del modelo, haciendo uso del WINQSB o el LINDO PC como software especializado.

DECIMA SEMANA

Primera sesión

Análisis de Sensibilidad: Importancia del análisis post-optimal. El Precio sombra. Cambios en los Coeficientes de la Función Objetivo de una variable No Básica.

Segunda sesión

Análisis de Sensibilidad: Cambios en los Coeficientes de la Función Objetivo de una variable Básica.

DECIMOPRIMERA SEMANA

Primera sesión

Análisis de Sensibilidad: Cambios en un nivel de Recursos. Importancia y uso administrativo de los precios sombra.

Segunda sesión

Análisis de Sensibilidad: Cambios obligados en las variables de decisión.

DECIMOSEGUNDA SEMANA

Primera sesión

Dualidad: El planteamiento Dual.

Segunda sesión

Relación entre la solución óptima Primaria y la solución óptima Dual. Interpretación económica del Dual.

DECIMOTERCERA SEMANA

Primera sesión

Resolución de modelos de PL con LINDO/PC.

Segunda sesión

Uso e interpretación de resultados obtenidos.

UNIDAD VI: MODELOS DE REDES - PROBLEMAS DE TRANSPORTE y PERT/CPM

OBJETIVOS DE APRENDIZAJE:

- Deducir las características especiales que presentan algunos problemas de PL.
- Identifica las características de un problema de transbordo (transporte).
- Reconoce las características de un problema de PERT/CPM.
- Traduce las relaciones matemáticas de un problema de transporte, PERT/CPM en modelos
- Gráficos de Redes.
- Soluciona problemas de transporte, PERT/CPM aplicando algoritmos específicos de redes.

DECIMOCUARTA SEMANA

Primera sesión

Programación Lineal: Aplicaciones especiales. El problema de Transporte: Formulación del Modelo. Tablero de transporte. Procedimientos para encontrar Soluciones Iniciales factibles.

Segunda sesión

Métodos de solución para problemas de Transporte: Método Cruce del Arroyo.

DECIMOQUINTA SEMANA

Primera sesión

Métodos de solución para problemas de Transporte: Método de Distribución Modificado.

Segunda sesión

Problema de Transporte No equilibrados. Degeneración. Problemas de maximización.

DECIMOSEXTA SEMANA

Primera sesión

Modelos de PERT/CPM: Aspectos generales. Terminología de redes PERT/CPM. Planteamiento de modelos de redes PERT/CPM.

Segunda sesión

Análisis de una red PERT/CMP. Cálculo del Tiempo de duración de un Proyecto. Holgura de Actividades. Actividades Críticas. Rutas Críticas.

DECIMOSÉPTIMA SEMANA

Examen final

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

VIII.PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y una computadora personal para cada estudiante del curso, ecran, proyector de multimedia y una impresora.

Materiales: Durante las exposiciones teóricas, presentaciones y discusión en grupo se utilizarán Transparencias, presentaciones en Power Point, Tutorial OR Courseware, Software LINDO/PC o el WINQSB, direcciones electrónicas. Para los ejercicios en clase y prácticas asignadas se utilizará las separatas del curso.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF=(PE+EP+EF)/3

PE=(P1 + P2 + P3)/3

Donde:

PF = Promedio final

PE =Promedio de evaluaciones

EP= Examen parcial (escrito)

EF= Examen Final (escrito)

P# = Practica calificada

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	κ

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	К
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	R
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	R
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	K
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	

h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo	ð
	profesional.	11
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	R
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	R

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase: Teoría Práctica Laboratorio
3 2 0

b) Sesiones por semana: Dos sesiones.

c) **Duración** : 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. José Cruz Estupiñan

XV. FECHA

La Molina, enero de 2018.