分布函数、期望、方差

两点分布 $P{X=k} = p^k (1-p)^{1-k}$ E = p, D = p(1-p)

二项分布 $X \sim B(n,p)$ $P\{X=k\} = C_n^k p^k (1-p)^{n-k}$ E=np, D=np(1-p)

泊松分布 $X \sim P(\lambda)$ $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ $E = \lambda, D = \lambda$

几何分布 $P{X = k} = (1-p)^{k-1} p$ $E = 1/p, D = (1-p)/p^2$

均匀分布 $E = \frac{a+b}{2}, D = \frac{(b-a)^2}{12}$

正态分布 $\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-\mu)^2}{2\sigma^2}}$

指数分布 $X \sim Exp(\lambda)$ $P(X) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0 \\ 0, x < 0 \end{cases}$ $E = \frac{1}{\lambda}, D = \frac{1}{\lambda^2}$

伽马分布 $f(x;\alpha,\lambda) = \begin{cases} \frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ $\Gamma(\alpha) = \int_{0}^{+\infty} x^{\alpha-1} e^{-x} dx$ $E = \frac{\alpha}{\lambda}, D = \frac{\alpha}{\lambda^2}$

Beta 分布 $f(x;a,b) = \frac{x^{a-1} (1-x)^{b-1}}{\int_0^1 x^{a-1} (1-x)^{b-1} dx} = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} \quad E = \frac{a}{a+b}, D = \frac{ab}{\left(a+b\right)^2 \left(a+b+1\right)}$

顺序统计量

$$f_{(k)}(x) = \frac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} [1-F(x)]^{n-k} f(x)$$

$$f_{(1)}(x) = n[1 - F(x)]^{n-1} f(x)$$

$$f_{(n)}(x) = n \lceil F(x) \rceil^{n-1} f(x)$$

$$f_{(k)(j)}(x,y) = \frac{n!}{(k-1)!(j-1-k)!(n-j)!}$$

$$\left[F(x)\right]^{k-1}\left[F(y)-F(x)\right]^{j-1-k}\left[1-F(y)\right]^{n-j}f(x)f(y)$$

$$f_{(1)(n)}(x,y) = \begin{cases} n(n-1) [F(y) - F(x)]^{n-2} f(x) f(y), x < y \\ 0 & x \ge y \end{cases}$$

抽样分布

 $\chi^{2}(n)$: E(X) = n, D(X) = 2n $u_{1-\alpha} = -u_{\alpha}$

$$t(n): X \sim N(0,1), Y \sim \chi^{2}(n)$$
 III $T = \frac{X}{\sqrt{Y/n}} \sim t(n)$ $t_{1-\alpha}(n) = -t_{\alpha}(n)$

$$F(n_1, n_2)$$
: $X \sim \chi^2(n_1) Y \sim \chi^2(n_2)$ \bigvee $F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$

$$F_{\alpha}(n_1, n_2) = \frac{1}{F_{1-\alpha}(n_2, n_1)}$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 $\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0,1)$

第二章

点估计

矩估计: $E(X) = \overline{X}$ 最大似然估计: $\frac{\partial \ln L(\theta)}{\theta} = 0, L(\theta) = \prod p(x)$

顺序统计量法: $\hat{\mu} = Me_{,\hat{\sigma}} = R/d_{,\hat{\sigma}}$

无偏、有效、相合

无偏 $E(\hat{\theta})=\theta$,渐进无偏 $\lim_{n\to\infty} E(\hat{\theta})=\theta$

均方误差: $E(\hat{\theta}-\theta)^2 = D(\hat{\theta}) + (E(\hat{\theta}-\theta))^2$, $D(\hat{\theta})$ 越小越有效

一致最小方差无偏估计: $D_{\theta}(\hat{\theta}^*) = \min D_{\theta}(\hat{\theta})$ $E_{\theta}(\hat{\theta}^*\theta) = 0$

RC 不等式:
$$D(\hat{\theta}) \ge \frac{1}{nI(\theta)} = D_0(\theta)$$
, $I(\theta) = E\left[\frac{\partial}{\partial \theta} \ln p(X, \theta)\right]^2 = -E\left[\frac{\partial^2}{\partial \theta^2} \ln p(X, \theta)\right]$

若 $D(\hat{\theta}) = D_0(\theta)$, 则 $\hat{\theta}$ 为有效估计 (有效估计条件比一致最小方差估计严格)

有效估计充要条件:
$$\frac{\partial \ln L(\theta)}{\partial \theta} = C(\theta) \Big[\hat{\theta} - \theta \Big]$$
, $D(\hat{\theta}) = \frac{1}{C(\theta)}$, $I(\theta) = \frac{C(\theta)}{n}$

均方相合估计: $\lim_{n \to \infty} E \left[\hat{\theta} - \theta \right]^2 = 0$, 均方相合估计一定是一致相合估计

第三章假设检验

	<i>7</i> 0-	二早报区位巡		
μ	σ² 已知	$U = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0,1)$	$\overline{X} \mp \frac{\sigma}{\sqrt{n}} u_{a/2}$	$ U \ge u_{\alpha/2}, U \ge u_{\alpha}, U \le -u_{\alpha}$
μ	σ² 未知	$T = \frac{\sqrt{n} \left(\overline{X} - \mu \right)}{S^*} \sim t (n - 1)$	$\overline{X} \mp \frac{S^*}{\sqrt{n}} t_{\alpha/2} (n-1)$	$ T \ge t_{\alpha/2}(n-1), U \ge t_{\alpha}(n-1), U \le -t_{\alpha}(n-1)$
σ^2	μ 已知	$\chi^2 = \frac{\sum_{i=1}^n (x_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$	$\frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2} \& \chi_{1-\alpha/2}^{2}(n)}$	大样本下检验 μ, - μ ₂ = c 接第五行第五列
σ^2	μ 未知	$\chi^2 = \frac{(n-1)S^{*2}}{\sigma^2} \sim \chi^2 (n-1)$	$\frac{(n-1)S^{s^2}}{\chi^2_{a/2}(n-1) \& \chi^2_{1-a/2}(n-1)}$	$\chi^{2} \le \chi^{2}_{1-\alpha/2}(n-1)$ 或 $\ge \chi^{2}_{\alpha/2}$ $\chi^{2} \ge \chi^{2}_{\alpha}(n-1), \chi^{2} \le \chi^{2}_{1-\alpha}(n-1)$
$\mu_1 - \mu_2$	σ² ₁ ,σ² 均已知	$U = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$	$\left(\overline{X} - \overline{Y}\right) \mp u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$rac{(X-Y)-c}{\sqrt{rac{S_{1n_1}^2}{n_1}+rac{S_{2n_2}^2}{n_2}}}\sim Nig(0,1ig)$ 拒絕域 $ u \ge u_{n/2}$
$\mu_1 - \mu_2$	σ_1^2, σ_2^2 均未知但 $\sigma_1^2 = \sigma_2^2$	$\frac{\left(\overline{X}-\overline{Y}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{w}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\sim t\left(n_{1}+n_{2}-2\right)$	$(\overline{X} - \overline{Y}) \mp t_{\alpha/2} (n_1 + n_2 - 2) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$ T \ge t_{\alpha/2} (n_1 + n_2 - 2), T \ge t_{\alpha}, T \le -t_{\alpha}$ (T 的分子变为 $(\overline{X} - \overline{Y}) - c$)
$\mu_1 - \mu_2$	σ_1^2, σ_2^2 均未知但 $n_1 = n_2$	$\frac{\left(\overline{X}-\overline{Y}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{z}^{*}/\sqrt{n}}\sim t(n-1)$	$\overline{Z} \mp \frac{S_Z^*}{\sqrt{n}} t_{\alpha/2} (n-1)$	$\overline{Z} = \overline{X} - \overline{Y}$ $S_Z^* = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \overline{Z})^2}$
$\sigma_{_1}^2 / \sigma_{_2}^2$	μ1,μ2 均未知	$\frac{\sigma_2^2 S_{1_{n_1}}^{s^2}}{\sigma_1^2 S_{2_{n_2}}^{s^2}} \sim F\left(n_1 - 1, n_2 - 1\right)$	$\frac{S_{l_{n_{1}}}^{*^{2}}/S_{2n_{2}}^{*^{2}}}{F_{\alpha/2} \& F_{l-\alpha/2}(n_{1}-1,n_{2}-1)}$	$F \leq F_{1-\alpha/2} (n_1 - 1, n_2 - 1) $ 或 $\geq F_{\alpha/2}$ $F \geq F_{\alpha}, F \leq F_{1-\alpha}$
指数分 布 λ	$2n\lambda \overline{X} \sim \chi^2(2n)$	$\frac{\chi_{1-\alpha/2}^2 & \chi_{\alpha/2}^2(2n)}{2n\bar{X}}$	$2n\lambda_0\overline{X} \leq \chi^2_{1-\alpha/2}(2n)$ 或 $\geq \chi^2_{\alpha/2}$	补充: $H_0: \sigma_1^2 = \sigma_2^2 \ \ \mu \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
二项分 布 p	$\frac{\sqrt{n}(\overline{X}-p)}{\sqrt{p(1-p)}} \sim N(0,1)$	$\frac{1}{2a} \left(b \mp \sqrt{b^2 - 4ac} \right)$ 大样本 0-1: $\frac{m}{n} \mp \sqrt{\frac{1}{n} \frac{m}{n} \left(1 - \frac{m}{n} \right)} \cdot u_{a/2}$	$S_{w} = \sqrt{\frac{(n_{1} - 1)S_{1n_{1}}^{*^{2}} + (n_{2} - 1)S_{2n_{2}}^{*^{2}}}{n_{1} + n_{2} - 2}}$ $a = n + u_{\alpha/2}^{2}, b = 2n\overline{X} + u_{\alpha/2}^{2}, c = n\overline{X}^{2}$	$F = \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1}{\sum_{i=1}^{n_2} (Y_i - \mu_2)^2 / n_2} \sim F(n_1, n_2)$ 拒絕域: $F \ge F_{\underline{\alpha}}(n_1, n_2)$ 或 $\le F_{\underline{1} - \underline{\alpha}}(n_1, n_2)$
大样本 <i>μ</i>	$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim N(0,1)$	$\overline{X} \mp \frac{S}{\sqrt{n}} u_{\alpha/2}$	$ u \ge u_{\alpha/2}$	<u> </u>

第五列表示假设检验 H₀ =,≤,≥ 的拒绝域

 χ^2 检验 $H_0: X \sim N(0,1)$,最大似然估计参数(均值方差),设拒绝域: $K_n = \sum_{i=1}^r \frac{m_i^2}{np_i} - n \geq \chi_a^2 \left(r - k - 1\right)$,m 为频数,n 为样本

数, p 为理论概率值, r 为分区数,k 为未知参数个数

独立性检验
$$H_0: p_{ij} = p_{i\cdot}p_{\cdot,j}$$
 ,拒绝域: $K_n = \sum_{i=1}^r \sum_{j=1}^s \left(n_{ij} - \frac{n_{i\cdot}n_{\cdot,j}}{n}\right)^2 / \left(\frac{n_{i\cdot}n_{\cdot,j}}{n}\right) \ge \chi_{\alpha}^{-2}\left((r-1)(s-1)\right)$

第四章

单因素方差分析表

$$H_0: \delta_1 = \dots = \delta_r = 0$$

方差来源	平方和	自由度	均方和	F值
因素 A (组间)	$Q_A = \sum\nolimits_{i=1}^r n_i (\bar{x}_i - \bar{x})^2$	r-1	$\bar{Q}_A = \frac{Q_A}{r-1}$	$F = \frac{\overline{Q}_A}{\overline{Q}_E}$
误差E(组内)	$Q_E = \sum_{i=1}^r \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$	n-r	$\bar{Q}_E = \frac{Q_E}{n-r}$	
总和	$Q_T = \sum_{i=1}^r \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2 = Q_A + Q_E$	n-1	拒绝域 : $F \ge F_{\alpha}$	(r-1,n-r)

点估计:
$$\hat{\mu} = \overline{X}, \hat{\mu}_i = \overline{X}_i, \hat{\delta}_i = \overline{X}_i - \overline{X}, \hat{\sigma}^2 = \frac{Q_E}{n-r} = \overline{Q}_E$$

$$\Gamma = \frac{(X_i - X_k) - (\mu_i - \mu_k)}{\sqrt{(1 - \frac{1}{n})\bar{O}_F}} \sim t(n - r)$$

 $T = \frac{(X_i - X_k) - (\mu_i - \mu_k)}{\sqrt{\frac{1}{n_i} - \frac{1}{n_k}} \bar{Q}_E} \sim t(n - r)$, 置信区间 $(X_i - X_k \pm t_{\frac{\alpha}{2}}(\mathbf{n} - \mathbf{r}) \sqrt{\frac{1}{n_i} - \frac{1}{n_k}} \bar{Q}_E)$

多因素方差有重复试验分析表

方差来源	平方和	自由度	均方和	F值	
因素 A	$Q_{A} = \mathfrak{L} \sum_{i=1}^{r} (\overline{X}_{i} \overline{X})^{2}$	r-1	$\bar{Q}_A = \frac{Q_A}{r-1}$	$F_A = \frac{\bar{Q}_A}{\bar{Q}_E}$	
因素 B	$Q_B = rl \sum_{j=1}^{r} (\overline{X}j \overline{X})^2$	s — 1	$\bar{Q}_B = \frac{Q_B}{s-1}$	$F_B = \frac{\bar{Q}_B}{\bar{Q}_E}$	
交互作用	$Q_{I} \approx t \sum_{i=1}^{r} \sum_{j=1}^{i} (\overline{X}_{ij} \overline{X}_{.j}. + \overline{X})^{2}$	(r-1).	$\bar{Q}_I = \frac{Q_I}{(r-1)(s-1)}$	$F_I = rac{ar{Q}_I}{ar{Q}_E}$	
误差	$Q_{E} = \sum_{i=1}^{r} \sum_{j=1}^{i} \sum_{k=1}^{l} (X_{ijk} - \overline{X}_{ij.})^{2}$	rs(l-1)	拒绝域: $F_A \ge F_\alpha (r-1, rs(l-1))$ $F_B \ge F_\alpha (s-1, rs(l-1))$ $F_I \ge F_\alpha ((r-1)(s-1), rs(l-1))$		
总和	$Q_{T} = \sum_{i=1}^{r} \sum_{j=1}^{i} \sum_{k=1}^{l} (X_{ijk} - \bar{X})^{2}$	rsl — 1			

无重复试验

方差来	 水源	平均和	自由度	均方和	F值
因素 /	A	$Q_A = s \sum\nolimits_{i=1}^r (\bar{X}_{i\cdot} - \bar{X})^2$	r-1	$\bar{Q}_A = \frac{Q_A}{r-1}$	$F_A = \frac{\bar{Q}_A}{\bar{Q}_E}$
因素 I	3	$Q_B = r \sum\nolimits_{j=1}^{s} (\bar{X}_{\cdot j} - \bar{X})^2$	s – 1	$\bar{Q}_B = \frac{Q_B}{s-1}$	$F_B = \frac{\bar{Q}_B}{\bar{Q}_E}$
误差		$Q_E = \sum_{i=1}^r \sum_{j=1}^s (\bar{X}_{ij} - \bar{X}_{i\cdot} - \bar{X}_{\cdot j} - \bar{X})^2$	(r-1)(s-1)	$\bar{Q}_E = \frac{Q_E}{(r-1)(s-1)}$	
总和		$Q_T = \sum_{i=1}^r \sum_{j=1}^s (X_{ij} - \bar{X})^2 = Q_A + Q_B + Q_E$	rs – 1	$F_A \ge F_{\alpha} (r-1, (r-1, r-1))$ $F_B \ge F_{\alpha} (s-1, r-1)$	(-1)(s-1) (-s)(s-1)

正交表方差分析

$$Q_j = \frac{s_j}{n} \sum_{i=1}^{s_j} T_{ij}^2 - \frac{1}{n} \left(\sum_{i=1}^{s_j} T_{ij} \right)^2$$
, sj 为水平数,自由度 $r_j = s_j - 1$

$$Q_T = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 自由度 $r_T = n - 1$ $Q_e = Q_T - \sum_i Q_j$ 自由度 $r_e = r_T - \sum_i r_j$

方差分析表同上, 计算 F 值与拒绝域

第五章

一元线性回归

一元最小二乘估计:
$$\hat{b} = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x} \overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2} \qquad \hat{a} = \overline{y} - \hat{b}\overline{x} \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2 - \frac{\hat{b}^2}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

假设检验:
$$l_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 \ l_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 \ l_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$
 $\hat{\sigma}^{*2} = \frac{n}{n-2} \hat{\sigma}^2$ $H_0: b = 0$ $t = \frac{\hat{b}}{\hat{\sigma}^*} \sqrt{l_{xx}}$ 拒绝域

$$|t| \ge t_{\alpha/2}(n-2)$$
 样本相关系数: $r = \frac{l_{xy}}{\sqrt{l_x l_y}}$

预测区间:
$$\frac{y_0-\hat{y}_0}{\hat{\sigma}^*\sqrt{1+\frac{1}{n}+\frac{\left(x_0-\overline{x}\right)^2}{l_x}}} \sim t(n-2) \text{ , } \ \hat{\upsilon} \ \delta(x_0) = t_{a/2}(n-2)\hat{\sigma}^*\sqrt{1+\frac{1}{n}+\frac{\left(x_0-\overline{x}\right)^2}{l_{xx}}} \text{ ,} 区间为 \ \hat{y}_0 \mp \delta(x_0) \text{ , n } \ \text{很大时 } \delta(x_0) \approx u_{a/2}\hat{\sigma}^*$$

多元线性回归
$$X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1k} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{bmatrix}$$
 其中 k 为变量种类数,n 为变量样本数

多元最小二乘估计:
$$B = (X^T X)^{-1} X^T Y$$
 $\hat{\sigma}^{*2} = \frac{Q_e}{n-k-1}$ 为 σ^2 的无偏估计

回归方程显著性检验

$$H_0$$
: $b_1 = ... = b_k = 0$ 拒绝域 $F \ge F_a(k, n-k-1)$

方差来源	平方和	自由度	均方和	F 值
回归	$Q_r = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2$	k	$\bar{Q}_r = \frac{Q_r}{k}$	$F = \frac{\bar{Q}_r}{\bar{Q}_e}$
误差	$Q_e = \sum_{i=1}^n (y_i - \hat{y}_i)^2$	n-k-1	$\bar{Q}_e = \frac{Q_e}{n-k-1}$	
总和	$Q_t = \sum_{i=1}^{n} (y_i - \bar{y})^2 = Q_r + Q_e$	n – 1		

回归系数显著性检验

$$H_{0,i}$$
: $b_j = 0$ $C = (X^T X)^{-1} = (c_{ij})_{(k+1):(k+1)}$, c_{jj} 为第 $j+1$ 个元素

检验统计量
$$t_j = \frac{\hat{b}_j / \sqrt{c_{jj}}}{\sqrt{Q_e / (n-k-1)}} \sim t(n-k-1)$$
,拒绝域 $|t_j| \ge t_{a/2}(n-k-1)$

预测区间,
$$\hat{y}_0 \mp t_{\alpha/2} (n-k-1) \sqrt{1 + \sum_{i=0}^k \sum_{j=0}^k c_{ij} x_{0i} x_{0j}} \sqrt{\frac{Q_e}{n-k-1}}$$

后验期望估计 $\pi(\theta|x) \propto \pi(\theta) p(x|\theta)$ $p(x|\theta) = \prod_{i=1}^{n} f(x_i|\theta)$ $\hat{\theta} = E(\theta|x)$

最大后验估计 $\frac{\partial \ln(\pi(\theta)p(x|\theta))}{\partial \theta} = 0$ (核取对数求导为 0)

后验中位数估计 $x \mid \theta \sim U(0,\theta)$ $\pi(\theta) = aM^a \theta^{-(a+1)}$ $F(\theta) = 1 - (M_0 \mid \theta)^{a+n}$

 $M_0 = \max(x_1,...,x_n,M)$ 令 $F(\theta) = 1/2$,中位数估计 $\hat{\theta}(x) = 2^{\frac{1}{a+n}} M_0$

区间估计 $X \sim N(\mu, \sigma^2)$ $\mu \sim N(\mu_0, \sigma_0^2)$ $x(\mu \mid x) \propto \exp\left\{-\frac{(\mu - a)^2}{2b^2}\right\}$ $a = \left(\frac{n\overline{x}}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right) / \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)$ $b^2 = \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)^{-1}$ 区间

 $a \mp bu_{\alpha/2}$

假设检验 $P(H_0|x)/P(H_1|x)$, 大于 1 则 H0 成立

先验分布选取:贝叶斯假设 $\pi(\theta)$ 刻 共轭先验分布 $\pi(x|\theta)$ 与 $\pi(\theta)$ 同一核函数

课后题 11.5,12.5; 11.5,11.6 投票人数 $X \sim B(1000, \theta)$