Computing scores in a complete search system

Chapter 7 - IIR

Quick Recap

Term Frequency Weight

The log frequency weight of term t in a document d is defined as follows

$$\mathbf{w}_{t,d} = \begin{cases} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Inverse Document Frequency - IDF

- The document frequency df_t is defined as the number of documents that t occurs in.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

idf is a measure of the informativeness of the term.

TF-IDF Weight

The tf-idf weight of a term is the product of its tf weight and its idf weight:

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{\mathsf{N}}{\mathsf{df}_t}$$

Issue with Euclidean Distance

Cosine Similarity between Query and Document

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} \frac{q_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2}} \cdot \frac{d_i}{\sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term *i* in the document.
- |q| and |d| are the lengths of vectors q and d, respectively.
- q/|q| and d/|d| are length-1 vectors (= normalized)

Cosine Similarity between Query and Document

Length Normalization

RICH

Cosine Similarity Illustrated

• Query: "best car insurance". Document: "car insurance auto insurance"

word			query		document			product	
					tf-idf				
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	n'lized	
auto	0	0	5000	2.3	0	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	0.68	2.04

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

 $1/1.92 \approx 0.52$
 $1.3/1.92 \approx 0.68$

Final similarity score between query and document:

$$\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$$

Is Cosine Enough?

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - \circ d1 \rightarrow a short document on anti-doping rules at 2008 Olympics
 - d2 → a long document that consists of a copy of d1 and 5 other news stories, all on topics different from Olympics/anti-doping
 - \circ d3 \rightarrow a short document on anti-doping rules at the 2004 Athens Olympics
- What ranking do we expect in the vector space model?
 - d2 is likely to be ranked below d3 ...
 - o ...but d2 is more relevant than d3.

Can we do something about this?

Pivot Normalization

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
- This removes the unfair advantage that short documents have.
- Note that "pivoted" scores are no longer bounded by 1.

Predicted and true probability of relevance

Pivot normalization

pivoted normalization = (1.0 – slope) x pivot + slope x old normalization

Effect on Effectiveness: Amit Singhal's experiments

	Pivoted Cosine Normalization								
Cosine	Slope								
	0.60	0.65	0.70	0.75	0.80				
6,526	6,342	$6,\!458$	6,574	6,629	6,671				
0.2840	0.3024	0.3097	0.3144	0.3171	0.3162				
Improvement	+6.5%	+9.0%	+10.7%	+11.7%	+11.3%				

(relevant documents retrieved and (change in) average precision)

Ranking

The Importance of Ranking

- Users want to look at a few results not thousands.
- It's very hard to write queries that produce a few results.
- Even for expert searchers
- → Ranking is important because it effectively reduces a large set of results to a very small one.

Attention of Users

Desktop search engine result page

Source: Eye Square Eye Tracking Study, 2011
Base: Resondents with contact to the stationary advertising on Google (n=38 Stationary)
Info: Aggregation over three brands

Attention of Users

Mobile search engine results page

Users' Behavior

Users' Behavior

How many links do users view?

Mean: 3.07 Median/Mode: 2.00

Users' Behavior

Looking vs. Clicking

- Users view results one and two more often / thoroughly
- · Users click most frequently on result one

Summary

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking: Distribution is even more skewed for clicking
 - o In 1 out of 2 cases, users click on the top-ranked page.
 - Even if the top-ranked page is not relevant, 30% of users will
- click on it.
- → Getting the ranking right is very important.
- → Getting the top-ranked page right is most important.

Real(istic) Search System

The Architecture

Tiered Index

Basic idea:

- Create several tiers of indexes, corresponding to importance of indexing terms
- During query processing, start with highest-tier index
- o If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
- If we've only found < k hits: repeat for next index in tier cascade

Example: two-tier system

- Tier 1: Index of all titles
- Tier 2: Index of the rest of documents
- Pages containing the search words in the title are better hits than pages containing the search words in the body of the text.

Simple Example

The Importance of Tiered Indexes

- The use of tiered indexes is believed to be one of the reasons that Google search quality was significantly higher initially (2000/01) than that of competitors.
 - (along with PageRank, use of anchor text and proximity constraints)

Efficient Scoring

Now we also need term frequencies in the index

BRUTUS

$$\longrightarrow$$
 1,2
 7,3
 83,1
 87,2
 ...

 CAESAR
 \longrightarrow
 1,1
 5,1
 13,1
 17,1
 ...

 CALPURNIA
 \longrightarrow
 7,1
 8,2
 40,1
 97,3

term frequencies

Term Frequencies in the Inverted Index

- Thus: In each posting, store $tf_{t,d}$ in addition to docID d.
- As an integer frequency, not as a (log-)weighted real number. . .
 - o . . . because real numbers are (more) difficult to compress.
- Overall, additional space requirements are small: a byte per posting or less

How do we compute Top-K results?

- We usually don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort
 - Return the top k
- Not very efficient

How do we compute Top-K results?

- We usually don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort
 - Return the top k
- Not very efficient

Alternatively, use a Min-Heap

What's a Min-Heap

How do we compute Top-K results?

- Goal: Keep the top k documents seen so far
- Use a binary min heap
- To process a new document d' with score s':
 - Get current minimum hm of heap (O(1))
 - If s' ≤ h_m skip to next document
 - If s' > h heap-delete-root (O(log k))
 - Heap-add d'/s' (O(log k))

Even more efficient solutions?

- Ranking has time complexity O(N) where N is the number of
- documents.
- Optimizations reduce the constant factor, but they are still O(N), N > 10¹⁰
- Are there sublinear algorithms?
- What we're doing in effect: solving the k-nearest neighbor (kNN) problem for the query vector (= query point).
- There are no general solutions to this problem that are sublinear.

Even more efficient solutions: Heuristics

- Idea 1: Reorder postings lists
 - Instead of ordering according to docID . . .
 - o . . . order according to some measure of "expected relevance".
- Idea 2: Heuristics to prune the search space
 - Not guaranteed to be correct . . .
 - . . . but fails rarely.
 - In practice, close to constant time.
 - For this, we'll need the concepts of document-at-a-time processing and term-at-a-time processing.

Orderings different than DocID

- So far: postings lists have been ordered according to docID.
- Alternative: a query-independent measure of "goodness" of a page
- Example: PageRank g(d) of page d, a measure of how many "good" pages
 hyperlink to d
- Order documents in postings lists according to PageRank: $g(d1) > g(d2) > g(d3) > \dots$
- Define composite score of a document:

$$net$$
- $score(q, d) = g(d) + cos(q, d)$

- This scheme supports early termination:
 - \circ We do not have to process postings lists in their entirety to find top k.

Orderings different than DocID

Order documents in postings lists according to PageRank:

$$g(d1) > g(d2) > g(d3) > \dots$$

Define composite score of a document:

$$net$$
- $score(q, d) = g(d) + cos(q, d)$

- Suppose: (i) $g \rightarrow [0, 1]$; (ii) g(d) < 0.1 for the document d we're currently processing; (iii) smallest top k score we've found so far is 1.2
 - \rightarrow Then all subsequent scores will be < 1.1.
- So we've already found the top k and can stop processing the remainder of postings lists.

Document-at-a-Time

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
- Computing cosines in this scheme is document-at-a-time.
- We complete computation of the query-document similarity score of document di before starting to compute the query-document similarity score of d_i + 1.
 - Alternative: term-at-a-time processing

Weight sorted posting lists

- Idea: don't process postings that contribute little to final score
- Order documents in postings list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists.
- Early termination while processing postings lists is unlikely to change the top k.
- But:
 - We no longer have a consistent ordering of documents in postings lists.
 - We no longer can employ document-at-a-time processing.

Term-at-a-Time Processing

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
- Then completely process the postings list of the second query
- Term
 - o . . . and so forth

Term-at-a-Time Processing

```
CosineScore(q)
    float Scores[N] = 0
 2 float Length[N]
  3 for each query term t
     do calculate w_{t,q} and fetch postings list for t
         for each pair(d, \mathsf{tf}_{t,d}) in postings list
         do Scores[d] += w_{t,d} \times w_{t,a}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top k components of Scores[]
 10
```


Accumulators

- For the web (20 billion documents), an array of accumulators *A* in memory is infeasible.
 - Thus: Only create accumulators for docs occurring in postings lists
- This is equivalent to: Do not create accumulators for docs with zero scores (i.e., docs that do not contain any of the query terms)

Accumulators

BRUTUS

$$\longrightarrow$$
 1,2
 7,3
 83,1
 87,2
 ...

 CAESAR
 \longrightarrow
 1,1
 5,1
 13,1
 17,1
 ...

 CALPURNIA
 \longrightarrow
 7,1
 8,2
 40,1
 97,3

- For query: [Brutus Caesar]:
- Only need accumulators for 1, 5, 7, 13, 17, 83, 87
- Don't need accumulators for 3, 8 etc.

Enforcing Conjunctive Search

- We can enforce conjunctive search (a la Google): only consider documents (and create accumulators) if all terms occur.
- Example: just one accumulator for [Brutus Caesar] in the
- example above . . .
 - o . . . because only d1 contains both words.

Ranking: Summary

- Ranking is very expensive in applications where we have to compute similarity scores for all documents in the collection.
- In most applications, the vast majority of documents have similarity score 0
 for a given query → lots of potential for speeding things up.
- However, there is no fast nearest neighbor algorithm that is guaranteed to be correct even in this scenario.
- In practice: use heuristics to prune search space usually works very well.

