Lending Club Case Study

- Bhanu Prathap Velampati

Problem Statement

Goal is to identify certain patterns, which helps to execute final decision on the loan application to be accepted or rejected

- Identify pattern who falls under 'Fully Paid' category, but low to moderate chances that he/she may fall in charged off category in future
- Identify pattern who falls under "Charged Off' category, still can accept their loan applications

Execution Summary

- Data exploration
- Data cleaning
- Derived variables
- Univariate Analysis
- Univariate Analysis & Results
- Bivariate Analysis & Results
- Multivariate Analysis
- Final observation

Data Exploration

- Go through all Data Frame variables and understand meaning of the variables and their usage
- Shortlisted below list of variables which are important for analysis

• Delete other variables which are not so important for analysis

Data Cleaning

- Identified all null values in the short-listed data frame and taken appropriate action by filling standby values
 - Ex.,
 - loan_df['pub_rec_bankruptcies'].isna().sum()
 - loan_df.pub_rec_bankruptcies.fillna('unknown',inplace=True)
- Convert float/object datatype into integer type which is used for analysis
- Remove special characters if any in the variable data
 - Ex.,
 - loan_df['emp_length']=loan_df.emp_length.astype('str').str.extractall('(\d+)').unstack().fillna(' ').sum(axis=1).astype(int)

Cont...

 Remove outliers using the help of boxplot or filtering data using conditions

```
sns.boxplot(x='annual_inc',data=loan_df)
plt.show()
```


loan_df.annual_inc.describe()

```
count
         3.971700e+04
mean
         6.896893e+04
std
         6.379377e+04
min
         4.000000e+03
25%
         4.040400e+04
50%
         5.900000e+04
75%
         8.230000e+04
max
         6.000000e+06
```

Name: annual_inc, dtype: float64

loan_df=loan_df[~(loan_df.annual_inc > 3*10**6)]

Derived Variables

- By default, provided some variables cannot be used for analysis because of too many individual parameters and many records
- Create new categorical variables which can be used for analysis
 - Ex.,
 - loan_df['revol_util_cat'] = pd.cut(loan_df['revol_util_int'], [0, 20, 30, 50, 70, 100], labels=['0-20', '20-30', '30-50', '50-70', '70 +'])
 - loan_df['int_rate_cat']=pd.cut(loan_df['int_rate_int'], [0, 5, 10, 15, 25,30], labels=['0-5', '5-10', '10-15', '15-20','20 &More'])

Univariate Analysis

- Univariate analysis can disclose data in the dataset in the form of range of values
- Executed univariate analysis on all shortlisted variables using countplot, barchart, histplot etc
- Based on the plots on all shorted variable, my conclusion is interest rate and loan purpose plays plays important role in further analyses
- As shows in the images, interest rates increased as high as 24% and good number of "Charged Off" records exists

cont...

- Univariate Analysis results:
 - Below are top observations
 - loan_amnt, funded_amnt_inv: Pattern in these variables is almost same, consider only funded_amnt_inv for further analysis
 - Moderate number of "Charged Off" records
 - Highest interest is around 24% which is pretty high
 - Employees who has <=1 years experience also given loans
 - Most of the loans were given for interest rates between 5-20
 - Most of the loans were allotted in the year 2010 and 2011
 - There are more number records which as revolving credit percentage more than 30 which is not good

Bivarate Analysis

- Bivariate analysis is done on two variables
 - In univariate analysis i see some patterns in interest rate and annual income which has some extreme entries like high interest rate and lowincomes.
 - Using Bivariate analysis, having plot on loan_status vs annual income, we can have some conclusions like
 - Customers getting low salaries have high chances of charged of ration

cont...

- Bivariate Analysis results:
 - Below are top observations
 - More interest rates when having less grades
 - More chances of charged off ratio when grade is less
 - Interest rate increased when funded amount increased
 - High chances of write off ratio when purpose of the loan is "Small Business"
 - If tenure is for 60months then more chances of charged of ratio
 - Less income can lead to more charged off ratio
 - Interest rate increasing year after year
 - High chances of charged off if bankrupt and pub_rec cases

•

Multivariate Analysis

- Multivariate analysis can help us with some strong patterns to conclude some fair observations
 #1. Higher is the interst rate, more chances of applicants falling in "charged off" category
 - Ex,.
 - Annual income vs interest rate vs loan status
 - Funded amount vs interest rate vs loan status

Final Observation

- Observations on applications who are already in Charged off category
 - Higher is the interest rate, more chances of applicants falling in "charged off" category
 - Higher is the interest rate when having low grades may fall in "charged off" category
 - Seeking loans for small business, other, house categories may fall in "charged Of" category
 - Up to some extent, with less income <30k and are having revol_credit score more than 30% may fall in "Charged Off" category
 - pub_rec having 1 and 2 and having court cases have high chances to fall in "Charged Off" category
 - High chances of "Charged off" ration when having more bankrupt cases
 - Less is the income and having high interest rate have high chances to fall in "Charged Off" category
- Observations on applications who are in "fully Paid" category
 - High risk to provide loans when having pub_rec as 1 and 2 and having court cases
 - High risk when revol_credit score greater than 30% and getting less income
 - High risk when interest rate is high for low-income people
 - Low risk when getting less income and having least grades