Turingovy stroje

ZPRACUJE: Mystik

Obsah

- 1 Turingův stroj (TS)
 - 1.1 Formální definice
 - 1.1.1 Alternativní definice TS
 - 1.1.2 Grafická prezentace
 - 1.2 Jazyky přijímané TS
 - 1.3 Alternativy TS
- 2 Modulární konstrukce TS
 - 2.1 Základní stavební bloky
 - 2.2 Kompozitní diagram
- 3 Varianty TS
 - 3.1 TS zastavující se zapsáním výsledku na pásku
 - 3.2 Vícepáskové TS
 - 3.3 Nedeterministické TS (NTS)
 - 3.4 Úplný TS
 - 3.5 Lineárně omezený automat (LOA)
 - 3.6 Deterministický lineárně omezený automat
- 4 Univerzální TS (TS_U)
- 5 Churchova-Turingova teze

Turingův stroj (TS)

Turingův stroj se skládá z

- řídící jendotky s konečným počtem stavů (konečná série pravidel)
- jednosměrně neohraničená páska
- čtecí/zapisovací hlava pracující s páskou

Funkce Turingova stroje

- 1. Přečte symbol pod hlavou
- 2. Dle přečteného symbolu a aktuálního stavu je provedena změna stavu a provedena akce:
 - přepíše symbol jiným symbolem
 - posune se o jednu pozici doleva nebo doprava

Prázdný (blank) symbol Δ

nachází e na buňkách pásky na které dosud nebylo nic zapsáno

Konfigurace pásky

nekonečný řetezec s obsahem pásky a aktuální pozice hlavy zapisujeme: $a\Delta babc\Delta$. . . (podtržení značí pozici)

Konfigurace TS

stav řídící jednotky + konfigurace pásky

Krok výpočtu TS (⊢)

přechod od jendé konfigurace TS k jiné

Výpočet TS

posloupnost konfigurací

Typy výpočtů

nekonečný

- konečný
 - normální (přechod do koncového stavu)
 - abnormální (posun mimo pásky, nedefinovaná žádná přechodová funkce pro aktuální konfiguraci)

Formální definice

TS je 6-tice $M = (Q, \Sigma, \Gamma, \delta, q_0, q_F)$

- Q konečná množina stavů řídící jednotky
- Σ konečná vstupní abeceda
- Γ konečná **pásková** abeceda ($\Sigma \in \Gamma$. $\Delta \in \Gamma$)
- δ funkce přechodu (zobrazení $(Q\setminus\{g_F\}) imes\Gamma o Q imes(\Gamma\cup\{L,R\})$)

 $a\in\Gamma$ - zápis symbolu a na pásku, L - posun hlavy doleva, R - posun hlavy doprava

 q_0 - $\operatorname{\mathsf{počáteční}}$ stav řídící jednotky $(q_0 \in Q)$

 q_F - koncový stav řídící jednotky($q_F \in Q$)

Alternativní definice TS

- je povoleno více koncových stavů
- místo jednoho koncového stavu zavedeny stavy accept a reject
- na prvním políčku pásky je napevno zapsán symbol konce pásky
- operace přepis a posun jsou spojeny do jedné operace
- a další

Grafická prezentace

- stavy značíme stejně jako u konečného automatu
- přechody značíme šipkou mezi stavy s popiskem x/s (x-co se čte z pásky, s prováděná operace zápis/L/R)

Jazyky přijímané TS

Jazyk přijímaný TS

množina všech řetězců v obsahu pásky ve vstupní konfiguraci pro které TS normálně zastaví

Jazyky přijímané TS odpovídají typu 0 Chomského hierarchie (rekurzivně vyčíslitelné)

Jazyky přijímané úplnými TS jsou rekurzivní jazyky

Alternativy TS

Existuje celá řada výpočetních modelů, které svojí výpočetní silou odpovídají TS

- Zásobníkový automat s alespoň dvěma zásobníky
- λ-kalkul (Lambda kalkul je teoretickým základem funkcionálního programování. Každý výraz popisuje funkci jednoho
 argumentu, který je sám funkcí jednoho argumentu, a jejímž výsledkem je opět funkce jednoho argumentu.)
- Parciálně rekurzivní funkce
- automaty s frontou
- automaty s 2 a více čítači

Modulární konstrukce TS

29.5.2011 17:27

Modulární konstrukce TS

TS lze konstruovat spojováním jednodušších TS ve složitější celky

Základní stavební bloky

- L posun hlavy doleva
- R posun hlavy doprava
- x na aktuální pozici zapiš x
- S_L posun (shift) obsahu pásky doleva (posune řetězec ne-blank symbolů nacházejících se vpravo od akt. pozice o jednu pozici doleva, akt. symbol je přepsán)
- S_R posun (shift) obsahu pásky doprava (posune řetězec ne-blank symbolů nacházejících se vlevo od akt. pozice o jednu pozici doprava, akt. symbol je přepsán)
- L_x posun doleva na nejbližší x
- R_x posun doprava na nejbližší x
- L_{¬x} posun doleva na nejbližší různé od x
- R_{¬x} posun doprava na nejbližší různé od x

Kompozitní diagram

skládání TS ze základních stavebních bloků

Sekvence

sekvenci
$$\longrightarrow A \longrightarrow B \longrightarrow C$$
 zkracujeme na $\longrightarrow ABC$

Parametrická konvence

parametr nabývá hodnoty podle provedeného přechodu (w je x nebo y podle toho co bylo na pásce)

Větvení

větvení dle obsahu pásky (podle obsahu pásky se přejde do jednoho z navazujících TS)

Přechod vždy

přechod je proveden bez ohledu na obsah pásky (narozdíl od šipky s popiskem, která je proveden pouze pokud symbol na pásce odpovídá)

$$A \rightarrow B$$

Varianty TS

TS zastavující se zapsáním výsledku na pásku

TS po rozhodnutí výsledku smaže obsah pásky a výsledek (ACCEPT nebo REJECT) zapíše v nějaké podobě na pásku

Vícepáskové TS

- TS nepoužívá pouze jednu pásku a hlavu, ale více pásek (každá s vlastní hlavou)
- TS přečte symboly na všech páskách, provede operaci (na každé pásce může jinou) a změní řídící stav
- Je ekvivalentní jednopáskovému TS (stav více pásek lze zakódovat i na jednu pásku)

Zvětšení paměťových možností TS jeho výpočetní možnosti nerozšiřuje

Nedeterministické TS (NTS)

- V každém kroku vybírá z konečného počtu možností
- přechodová funkce má tvar:

$$(Q \setminus \{g_F\}) \times \Gamma \rightarrow 2^{Q \times (\Gamma \cup \{L,R\})}$$

ekvivalentní deterministickému TS (deterministický TS proste postupně vyzkouší všechny možnosti)

Zavedení nedeterminismu nezvětšuje výpočetní schopnosti TS (ale může výrazně zlepšit časovou složitost výpočtu)

Úplný TS

TS, který pro každý vstup zastaví (neskončí v nekonečném cyklu)

Přijímá rekurzivní jazyky

Lineárně omezený automat (LOA)

nedeterministický TS, který nikdy neopustí část pásky na které je zapsán jeho vstup (páska má konečnou velikost)

Přijímají jazyky typu 1 Chomského hierarchie (kontextové jazyky)

Deterministický lineárně omezený automat

deterministický TS, který nikdy neopustí část pásky na které je zapsán jeho vstup (páska má konečnou velikost)

Není známo zda je striktně slabší než nedeterministický LOA

Univerzální TS (TSU)

- zavádí koncept programovatelného stroje TS, který simuluje běh jiného TS
- na vstupní pásce jsou umístěna data i program (program je nějakým způsobem zakódovaný TS, který chceme simulovat)
- může být implementován jako 3-páskový TS (vstup/výstup, simulace pásky daného TS, stav daného TS).

Churchova-Turingova teze

Turingovy stroje a jim ekvivalentní systémy definují svojí výpočetní silou to, co intuitivně považujeme za efektivně vyčíslitelné (vypočitatelné v konečném čase)

(nelze to ale formálně dokázat)

Není znám žádný výpočetní proces, který bychom označili za efektivně vyčíslitelný a který by nebylo možné realizovat na Turingově stroji.

Kategorie: Státnice 2011 | Teoretická informatika

Stránka byla naposledy editována 29. 5. 2011 v 13:08.