

C interfaces to GALAHAD LMS

Jari Fowkes and Nick Gould STFC Rutherford Appleton Laboratory Sun Mar 20 2022

1 GALAHAD C package Ims	1
1.1 Introduction	1
1.1.1 Purpose	1
1.1.2 Authors	1
1.1.3 Originally released	1
1.1.4 Method	1
1.1.5 Reference	1
2 File Index	3
2.1 File List	3
3 File Documentation	5
3.1 lms.h File Reference	5
3.1.1 Data Structure Documentation	5
3.1.1.1 struct lms_control_type	5
3.1.1.2 struct lms_time_type	6
3.1.1.3 struct lms_inform_type	6
Index	7

C interfaces to GALAHAD LMS GALAHAD 4.0

Chapter 1

GALAHAD C package Ims

1.1 Introduction

1.1.1 Purpose

Given a sequence of vectors $\{s_k\}$ and $\{y_k\}$ and scale factors $\{\delta_k\}$, obtain the product of a limited-memory secant approximation H_k (or its inverse) with a given vector, using one of a variety of well-established formulae.

Currently, only the control and inform parameters are exposed; these are provided and used by other GALAHAD packages with C interfaces.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

1.1.3 Originally released

July 2014, C interface January 2022.

1.1.4 Method

Given a sequence of vectors $\{s_k\}$ and $\{y_k\}$ and scale factors $\{\delta_k\}$, a limited-memory secant approximation H_k is chosen so that $H_{\max(k-m,0)} = \delta_k I$, $H_{k-j}s_{k-j} = y_{k-j}$ and $\|H_{k-j+1} - H_{k-j}\|$ is ''small" for $j = \min(k-1,m-1),\ldots,0$. Different ways of quantifying ''small" distinguish different methods, but the crucial observation is that it is possible to construct H_k quickly from s_k , y_k and δ_k , and to apply it and its inverse to a given vector v. It is also possible to apply similar formulae to the ''shifted" matrix $H_k + \lambda_k I$ that occurs in trust-region methods.

1.1.5 Reference

The basic methods are those given by

R. H. Byrd, J. Nocedal and R. B. Schnabel (1994) Representations of quasi-Newton matrices and their use in limited memory methods. Mathenatical Programming, **63(2)** 129-156,

with obvious extensions.

GALAHAD 4.0 C interfaces to GALAHAD LMS

Chapter 2

File Index

21	File	l iei

Here is a list of all files with brief descriptions:	
lms.h	Ę

4 File Index

GALAHAD 4.0 C interfaces to GALAHAD LMS

Chapter 3

File Documentation

3.1 lms.h File Reference

```
#include <stdbool.h>
#include "galahad_precision.h"
```

Data Structures

- struct lms_control_type
- struct lms_time_type
- struct lms_inform_type

3.1.1 Data Structure Documentation

3.1.1.1 struct lms_control_type

control derived type as a C struct

Data Fields

bool	f_indexing	use C or Fortran sparse matrix indexing	
int	error	unit for error messages	
int	out	unit for monitor output	
int	print_level	controls level of diagnostic output	
int	memory_length	limited memory length	
int	method	limited-memory formula required (others may be added in due course):	
		• 1 BFGS (default)	
		• 2 SR1	
		3 The inverse of the BFGS formula	
		 4 The inverse of the shifted BFGS formula. This should be used instead of .method = 3 whenever a shift is planned 	
bool	any_method	allow space to permit different methods if required (less efficient)	
bool	space_critical	if space is critical, ensure allocated arrays are no bigger than needed	
bool	deallocate_error_fatal	exit if any deallocation fails	
char	prefix[31]	all output lines will be prefixed by prefix(2:LEN(TRIM(.prefix))-1) where prefix	

6 File Documentation

3.1.1.2 struct lms_time_type

time derived type as a C struct

Data Fields

real_wp_	total	total cpu time spent in the package
real_wp_	setup	cpu time spent setting up space for the secant approximation
real_wp_	form	cpu time spent updating the secant approximation
real_wp_	apply	cpu time spent applying the secant approximation
real_wp_	clock_total	total clock time spent in the package
real_wp_	clock_setup	clock time spent setting up space for the secant approximation
real_wp_	clock_form	clock time spent updating the secant approximation
real_wp_	clock_apply	clock time spent applying the secant approximation

3.1.1.3 struct lms_inform_type

inform derived type as a C struct

Data Fields

int	status	return status. See LMS_setup for details
int	alloc_status	the status of the last attempted allocation/deallocation
int	length	the number of pairs (s,y) currently used to represent the limited-memory matrix
bool	updates_skipped	have (s,y) pairs been skipped when forming the limited-memory matrix
char	bad_alloc[81]	the name of the array for which an allocation/deallocation error ocurred
struct lms_time_type	time	timings (see above)

GALAHAD 4.0 C interfaces to GALAHAD LMS

Index

```
Ims.h, 5
Ims_control_type, 5
Ims_inform_type, 6
Ims_time_type, 6
```