ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ, 6 СЕМЕСТР Конспект лекций Додонова Н. Ю.

https://github.com/artemZholus/funcan

Содержание

1	Линейные операторы в банаховых пространствах
	1.1 Сопряженный оператор
	1.2 Ортогональное дополнение в банаховых пространствах
2	Элементы спектральной теории линейных операторов
	2.1 Определение спектра и резольвенты оператора
	2.2 Альтернатива Фредгольма-Шаудера
3	Теорема Гильберта-Шмидидта

Линейные операторы в банаховых пространствах

Сопряженный оператор

Здесь и далее, если не оговорено иного, считаем, что мы находимся в В-пространствах.

Определение (сопряженное пространство). $X^* = \left\{ f : X \xrightarrow[\text{henp.}]{\text{лин.}} \mathbb{R} \right\}$ — пространство сопряженное к X.

Заметим, что это пространство линейных функционалов, а значит, мы можем ввести в нем норму как норму линейного функционала.

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \tag{1}$$

По свойствам числовой оси получаем, что X^* всегда банахово (независимо от X).

Рассмотрим теперь $A \in \mathcal{L}(X,Y)$. Пусть $f(x) = \varphi(Ax)$, где $\varphi \in Y^*$.

Определение. Сопряженный оператор к A имеет вид $A^*(\varphi) = \varphi \circ A$.

Утверждение 1.1. Если A нерперывный, то A^* тоже непрерывный.

Теорема 1.2. $||A^*|| = ||A||$

Пример: ТООО

Теорема 1.3 (теорема Рисса). Пусть H — гильбертово пространство. Тогда $\forall f \in H^*$, f можно представить как $f(x) = \langle x, y \rangle$, где $y \in H$, ||f|| = ||y||.

Пример: ТООО

Пусть $H=L_2(E), \varphi\in L_2^*(E)$. Тогда $\varphi(f)=\int_E g\cdot fd\mu$. Согласно теореме Рисса, возвращаясь к сопряженному оператору, мы видим следующее. $A^*(\varphi,x)=\varphi(Ax)=\langle Ax,y\rangle=\langle x,z\rangle$ - последнее равенство по теореме Рисса. Причем y и z выбираются единственным образом, и $z=A^*(y)$. В гильбертовом пространстве это может служить определением сопряженного оператора:

Определение (Сопряженный оператор в гильбертовом пространстве). Пусть $x, y \in H$. Пусть $A : H \to H$. Тогда A^* - такой, что $\langle Ax, y \rangle = \langle x, A^*y \rangle$.

Ортогональное дополнение в банаховых пространствах

Определение (ортогональное дополнение в В-пространстве). Пусть $S \subset X$.

Тогда
$$S^{\perp} = \{ f \mid f \in X^*, \forall x \in S \implies f(x) = 0 \}.$$

Определение (ортогональное дополнение в сопряженном пространстве). Пусть $S \subset X^*$.

Тогда
$$S^{\perp} = \{x \mid x \in X, \forall f \in S \implies f(x) = 0\}.$$

Заметим, что независимо от S, S^{\perp} замкнуто в силу непрерывности f(x)

Утверждение 1.4.

1.
$$X^{\perp} = \{0\};$$

2.
$$X^{*\perp} = \{0\}.$$

Определение (множество значений оператора). $R(A) \stackrel{\text{def}}{=} \{Ax \mid x \in X\}.$

Теорема 1.5. $Cl R(A) = (Ker A^*)^{\perp}$.

Теорема 1.6.
$$R(A) = \operatorname{Cl} R(A) \implies R(A^*) = (\operatorname{Ker} A)^{\perp}$$
.

В силу того, что во второй теореме требуется замкнутость, возникает вопрос: а когда это действительно будет? Одним из инструментов, дающих ответ на этот вопрос, является априорная оценка решения операторного уравнения.

Определение (априорная оценка решения операторного уравнения). Пусть $A: X \to Y$ - линейный оператор, $y \in R(A), \exists \alpha = \text{const},$ такая что $||x|| \leqslant \alpha \, ||y||$, где y = Ax. Коэффициент α называется априорной оценкой.

Ответ на поставленный вопрос дает следующая теорема:

Теорема 1.7. Если A — линейный ограниченный оператор, такой что для уравнения y = Ax существует априорная оценка, то R(A) — замкнуто.

Элементы спектральной теории линейных операторов

Определение спектра и резольвенты оператора

Определение (регулярная точка). Число $\lambda \in \mathbb{C}$, называется *регулярной точкой* для оператора A, если оператор $\lambda I - A$ — непрерывно обратим.

Определение (резольвента). Множество всех регулярных точек называется *резольвентой* (обозначается $\rho(A)$) оператора A.

Определение (резольвентный оператор). Оператор $R_{\lambda}(A) = (\lambda I - A)^{-1}$ называется резольвентным оператором.

Определение (спектр). Множество $\sigma(A) = \mathbb{C} \setminus \rho(A)$ называется спектром оператора A.

Рассмотрим $\lambda \in \sigma(A)$. Может быть два случая:

- 1. $\text{Ker}(\lambda I A) \neq \{0\}$. Это значит, что оператор $\lambda I A$ имеет нетривиальное собственное подпространство, в котором (по определению) выполняется $Ax = \lambda x, x \neq 0$, для некоторых x (то, что часто называется собственными числами и векторами).
- 2. ${\rm Ker}(\lambda I A) = \{ {\bf 0} \}$. Здесь необходимо рассмотреть два подслучая:
 - (a) $\dim X < +\infty$. В конечномерном случае из сюрьективности следует биективность, поэтому обратный оператор всегда существует. А спектр будет состоять из собственных значений.
 - (b) $\dim X = +\infty$. В этом случае может отсутствовать непрерывная обратимость. Если при этом $\operatorname{Cl} R(\lambda I A) = X$, то говорят, что λ принадлежит непрерывной части спектра. Иначе говорят, что λ принадлежит остаточной части спектра. (те λ для которых ядро нетривиально называют дискретной частью спектра).

Утверждение 2.1. Резольвентное множество является открытым в \mathbb{C} .

Следствие 2.2. Спектр - замкнутое множество.

Теорема 2.3. Пусть A - ограничен, тогда $\sigma(A) \neq \emptyset$

Определение (Спектральный радиус оператора).

$$r_{\gamma}(A) \stackrel{\text{\tiny def}}{=} \sup_{\lambda \in \sigma(A)} |\lambda|$$

Утверждение 2.4. $\exists \lim \sqrt[n]{\|A^n\|} = r_{\gamma}(A)$

 Π ример. Пространство C[0,1]. Оператор $A(f,t)=t\cdot f(t)$. Очевидно, что $\|A(f)\|\leqslant \|f\|$. Пусть $\lambda I-A=A_\lambda$. $A_\lambda(f,t)=(\lambda-t)\cdot f(t)=g(t)\implies f(t)=\frac{g(t)}{\lambda-t}$. При каких λ , A_λ непрерывно обратим? Очевидно, при $\lambda\notin [0,1]$. Это значит, что если $\lambda\in [0,1]$ $\Longrightarrow \lambda\in \rho(A)$. Поэтому $\sigma(A)=[0,1]$.

Пример. Пространство C[0,1]. $A(f,x) = \int_0^x f(t)dt, x \in [0,1]$. Вычислим его спектральный радиус.

$$A(f,x) = \int_0^x f(t)dt$$

$$A^2(f,x) = \int_0^x \left(\int_0^{x_1} f(t)dt\right) dx_1$$

$$A^n(f,x) = \int_0^x dx_1 \int_0^{x_1} dx_2 \cdots \int_0^{x_{n+1}} f(t)dt \leqslant \frac{\|f\|}{n!}$$

$$\|f\| \leqslant 1 \implies \|A^n\| \leqslant \frac{1}{n!} \implies r_n \leqslant \frac{1}{\sqrt[n]{n!}} \to 0 \implies r_{\sigma}(A) = 0$$

Теорема 2.5 (Об отображении спектра полиномами). $\sigma(P(A)) = P(\sigma(A))$

Лемма 2.6. P(A) - непрерывно обратим $\Leftrightarrow 0 \notin P(\sigma(A))$

Альтернатива Фредгольма-Шаудера

Определение (Компактный оператор). Оператор $A: X \to Y$ называется компактным если $\forall M$ - ограниченное множество, A(M) - относительный компакт.

ТОООпример оператора фредгольма.

Утверждение 2.7 (Компактность произведения). Пусть A - компактный оператор, а B - ограниченный. Tогда AB u BA - компактны.

Утверждение 2.8. В бесконечномерных пространствах, компактный оператор не может быть непрерывно обратимым.

В классе сепарабельных банаховых пространств важную роль имеют пространства с базисом Шаудера.

Определение (базис Шаудера). Пусть X - баназово пространство. $\exists e_1, \ldots, e_n, \ldots$ - линейно независимые точки. $\forall x \in X, \ x = \sum_{1}^{+\infty} \alpha_{j} e_{j}$. Тогда e_{j} - называется базисом Шаудера.

Теорема 2.9 (О почти конечномерности компактного оператора). $\Pi y cmb \ A : X \to X$ - компактный оператор. X - имеет базис Шаудера. Тогда $\forall \varepsilon > 0 \exists B, C : \dim R(B) < +\infty, \|C\| \leqslant \varepsilon, A = B + C$

Утверждение 2.10. Если A - компактный оператор, то A^* - тоже компактный.

Для функционального анализа фундаментальную роль играют уравнения вида

$$y = (\lambda I - A)x\tag{2}$$

и, в частности, y = (I - A)x = Tx.

Утверждение 2.11. Пусть A - компактный оператор. Тогда dim Ker $T < \infty$.

Теорема 2.12. Пусть оператор A - компактный. Тогда $\operatorname{Cl} R(T) = R(T)$ (R(T) - подпространство X).

Теорема Гильберта-Шмидидта

Определение (Гильбертово пространство). H - гильбертово пространство над \mathbb{C} , если.

- $\bullet \langle x, y \rangle = \overline{\langle y, x \rangle}$
- $\langle x, \alpha y \rangle = \bar{\alpha} \langle x, y \rangle$

 Π ример (\mathbb{C}^n – конечномерный случай). $z=(z_1,z_2,\ldots,z_n),z_i\in\mathbb{C}$

$$\langle z, u \rangle = \sum_{i=1}^{n} z_i \bar{u_i}$$

$$\langle x, x \rangle \geqslant 0, \langle x, x \rangle = 0 \Leftrightarrow x = 0$$

$$\langle z, u \rangle = \sum_{i=1}^{n} z_i \bar{u}_i$$

$$\langle x, x \rangle \geqslant 0, \langle x, x \rangle = 0 \Leftrightarrow x = 0$$

$$\langle x, x \rangle = \sum_{i=1}^{n} x_i \cdot \bar{x}_i = \sum_{i=1}^{n} |x_i|^2$$

Определение (Самосопряженный оператор). Линейный оператор $A: X \to X$ называется самосопряженным, если выполняется условие: $\langle Ax, y \rangle = \langle x, Ay \rangle$.

 $\Pi pumep. \ A: \mathbb{C}^n \to \mathbb{C}^n, \ A = \bar{A}^T$ – эрмитовски симметричная

Утверждение 3.1. Если $\int_a^b K(k,t)f(t)dt$ - интегральный оператор, то $K(x,y)=\overline{K(y,x)}$

Утверждение 3.2. A – самосопряженный оператор, $\lambda = \mu + i\nu$. Тогда $\forall x \in H \Rightarrow \|Ax - \lambda x\| \geqslant |\nu| \cdot \|x\|$

Утверждение 3.3. Пусть A - линейный оператор e H, тогда $Cl\ R(A) = (Ker A^*)^{\perp}$

Следствие 3.4. $H = Cl R(A) \oplus Ker A^*$

Теорема 3.5. Пусть оператор A самосопряженный, тогда $\sigma(A) \subset R$.

Теорема 3.6. A – самосопряженный и ограниченный в H.

1.
$$\lambda \in \rho \Leftrightarrow \exists m > 0 : \forall x \in H \quad ||(A - \lambda I)x)|| \ge m ||x||$$

2.
$$\lambda \in \sigma(A) \Leftrightarrow \exists x_m : ||x_m|| = 1 \quad ||(A - \lambda I)x_m|| \to 0$$

Определение. Нижняя и верхняя граница оператора A $m_-=\inf_{\|x\|=1}\langle Ax,x\rangle$ $m_+=\sup_{\|x\|=1}\langle Ax,x\rangle$

Утверждение 3.7. $|\langle Ax, x \rangle| \le ||Ax|| \cdot ||x|| \le ||A|| \cdot ||x||^2 = ||A||$ То есть $|m_-|, |m_+| \le$

Теорема 3.8.

- 1. $\sigma(A) \subset [m_-, m_+]$
- 2. $m_{-}, m_{+} \in \sigma(A)$