

Winning Space Race with Data Science

Gulnaz Sitdikova 10/08/2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- ✓ Collect data using SpaceX REST API and Web Scraping
- ✓ Data Collection with Web Scraping
- ✓ Data Wrangling Exploratory Data Analysis with SQL
- ✓ Exploratory Data Analysis with Data Visualization
- ✓ Interactive Visual Analytics with Folium
- ✓ Build Models to predict landing outcomes
- Summary of all results
- ✓ Exploratory Data Analysis result
- √ Visualization/Analytics
- ✓ Predictive Analytics result

Introduction

Project background and context

SpaceX is a leader in the space industry. His achievements include sending a spacecraft to the ISS, launching a satellite constellation that provides Internet access, and sending manned missions into space. SpaceX is advertising the launch of its \$62 million Falcon 9 rocket on its website. Other suppliers are valued at more than \$165 million. This difference is possible due to the reuse of the first stage of the Falcon 9 rocket. So if we can determine whether the first stage will land, we can determine the launch cost. This information could be used by a SpaceX competitor. The goal of the project is to create a machine learning pipeline that allows predicting the success of the first stage.

- Problems you want to find answers
- How payload mass, launch site, number of flights and orbits affect first-stage landing success?
- Rate of successful landings over time..
- Best predictive model for successful landing.

Methodology

Executive Summary

- Data collection methodology:
 - Collect Data using SpaceX REST API and web scraping from Wikipedia
- Perform data wrangling
 - Wrangle Data by applying one hot encoding to prepare the data for analysis and modeling
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Build Models to predict landing outcomes using classification models. Tune and evaluate models to find best model and parameters.

Data Collection

From API:

- Request data from SpaceX API
- Decode response, use .json()
- Convert to a dataframe, use .json_normalize()

From Wikipedia:

- Request data from Wikipedia
- Create BeautifulSoup object from HTML response
- Collect data from parsing HTML tables
- Create dataframe from data

Export data to CSV file

Data Collection - SpaceX API

- Request data from SpaceX API
- Decode response and convert to dataframe
- Filter dataframe
- Replace missing values
- Export data to csv file

```
spacex url="https://api.spacexdata.com/v4/launches/past"
       response = requests.get(spacex url)
      Now we decode the response content as a Json using .json() and turn it into a Pandas dataframe using .json normalize()
[11]: # # Use ison normalize meethod to convert the ison result into a dataframe
      data = pd.json normalize(response.json())
       Calculate below the mean for the PayloadMass using the .mean() . Then use the mean and the .replace() function to replace
[28]: mean value = data falcon9['PayloadMass'].mean()
       data falcon9.loc[:, 'PayloadMass'].replace(np.NaN, mean value, inplace=True)
```

Data Collection - Scraping

- Request data from Wikipedia
- Create BeautifulSoup object
- Extract column names from
- HTML table header
- Collect data from HTML tables
- Create dataframe
- Export data to csv file

```
[3]: static url = "https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=1027686922"
     Next, request the HTML page from the above URL and get a response object
     TASK 1: Request the Falcon9 Launch Wiki page from its URL
     First, let's perform an HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP response.
[4]: r = requests.get(static_url)
     Create a BeautifulSoup object from the HTML response
[5]: page = r.text
     soup = BeautifulSoup(page)
     # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
     Print the page title to verify if the Beautiful Soup object was created properly
[6]: soup.title
[6]: <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
      column names = []
      for element in first_launch_table.find all('th'):
          name = extract column from header(element)
          if name is not None and len(name) > 0:
               column names.append(name)
```

Data Wrangling

- Calculate the number of launches on each site use value_counts()
- Calculate the number and occurrence of each orbit use value_counts()
- Calculate the number and occurrence of mission outcome per orbit type use value_counts()
- Create a landing outcome label from Outcome column
- Export data to csv file

EDA with Data Visualization

Charts:

- Flight number and payload
- Flight number and launch location
- Payload mass (kg) depending on the launch site
- Payload mass (kg) depending on the type of orbit

Analysis:

- View relationships using scatter plots
- Show comparisons between individual categories using histograms

EDA with SQL

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch site begins with 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display Average payload mass carried by booster version F9 v1.1
- List the date when the first succesful landing outcome in ground pad was achieved
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the max payload mass
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Build an Interactive Map with Folium

- Added red circles at all launch sites coordinates with a popup label showing its name using its latitude and longitude coordinates Colored Markers of Launch Outcomes
- Added colored markers of successful (green) and unsuccessful (red) launches at each launch site to show which launch sites have high success rates
- Added colored lines to show distance between launch site CCAFS SLC40 and its proximity to the nearest coastline, railway, highway, and city

Build a Dashboard with Plotly Dash

Dropdown List with Launch Sites

Allow user to select all launch sites or a certain launch site

Pie Chart Showing Successful Launches

Allow user to see successful and unsuccessful launches as a percent of the total

Slider of Payload Mass Range

Allow user to select payload mass range

Scatter Chart Showing Payload Mass vs. Success Rate by Booster Version

• Allow user to see the correlation between Payload and Launch Success

Predictive Analysis (Classification)

- Create NumPy array from the Class column
- Standardize the data with StandardScaler. Fit and transform the data.
- Split the data using train_test_split
- Create a GridSearchCV object with cv=10 for parameter optimization
- Apply GridSearchCV on different algorithms: logistic regression, support vector machine, decision tree, K-Nearest Neighbor
- Calculate accuracy on the test data using .score() for all models
- Assess the confusion matrix for all models

Results

Exploratory Data Analysis

- Launch success has improved over time
- KSC LC-39A has the highest success rate among landing sites
- Orbits ES-L1, GEO, HEO and SSO have a 100% success rate

Visual Analytics

• Launch sites are far enough away from anything a failed launch can damage (city, highway, railway), while still close enough to bring people and material to support launch activities

Predictive Analytics

• Decision Tree model is the best predictive model for the dataset

Flight Number vs. Launch Site

- Earlier flights have a lower success rate but later flights have a higher success rate
- VAFB SLC 4E and KSC LC 39A have higher success rates

Payload vs. Launch Site

- Most launches with a payload mass of more than 7,000 kg were successful
- No rockets with a payload mass of more than 10,000 kg were launched from the VAFB SLC 4E launch pad

Success Rate vs. Orbit Type

- Orbit types ES-L1, GEO, HEO, SSO have a 100% Success rate
- Orbit type SO have a 0% Success rate

Flight Number vs. Orbit Type

- In most cases, the probably of success increases with the number of flights to each orbit
- In the case of the GTO orbit, this trend is not observed

Payload vs. Orbit Type

- Launches from LEO, ISS and PO orbits with heavy payloads are successful
- Heavy payload GTO launches have had mixed success

Launch Success Yearly Trend

 The Success Rate since 2013 kept increasing till 2017 (stable 2014)

All Launch Site Names

Launch Site Names

- CCAFS LC-40
- VAFB SLC-4E
- KSC LC-39A
- CCAFS SLC-40

```
Display the names of the unique launch sites in the space mission
%sql select distinct Launch_Site from SPACEXTABLE;
  * sqlite:///my_data1.db
Done.
 Launch_Site
 CCAFS LC-40
 VAFB SLC-4E
  KSC LC-39A
CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'											
%sql select * from SPACEXTABLE where Launch_Site like 'CCA%' limit 5;											
Done.	:///my_data	al.db Booster_Version	Launch Site	Payload	PAYLOAD MASS_KG_	Orbit	Customer	Mission_Outcome	Landing Outcome		
2010-04-06	18:45:00	F9 v1.0 B0003		Dragon Spacecraft Qualification Unit	0	LEO	SpaceX		Failure (parachute)		
2010-08-12	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)		
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt		
2012-08-10	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt		
2013-01-03	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt		

For the task use the following query:

%sql select * from SPACEXTABLE where Launch_Site like 'CCA%' limit 5;

Total Payload Mass

```
Display the total payload mass carried by boosters launched by NASA (CRS)

* sql select sum(PAYLOAD_MASS__KG_) from SPACEXTABLE where Customer = 'NASA (CRS)';

* sqlite://my_datal.db
Done.

* sum(PAYLOAD_MASS__KG_)

45596
```

Total payload Mass = 45,596 kg carried by boosters launched by NASA (CRS)

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

%sql select avg(PAYLOAD_MASS__KG_) from SPACEXTABLE where Booster_Version = 'F9 v1.1';

* sqlite://my_datal.db
Done.

avg(PAYLOAD_MASS__KG_)

2928.4
```

Average Payload Mass = 2,928 kg carried by booster version F9 v1.1

First Successful Ground Landing Date

```
List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

*sql select min(Date) from SPACEXTABLE where Landing_Outcome = 'Success (ground pad)'

*sqlite:///my_datal.db
Done.

min(Date)

2015-12-22
```

First successful landing outcome in ground pad was 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

```
List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

| *sql select Booster_Version from SPACEXTABLE\
| where Landing_Outcome = "Success (drone ship)" and PAYLOAD_MASS__KG_ between 4000 and 6000;

| * sqlite:///my_datal.db |
| Done. |
| Booster_Version |
| F9 FT B1022 |
| F9 FT B1021.2 |
| F9 FT B1031.2
```

Boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000:

-F9 FT B1022, F9 FT B1026, F9 FT B1021.2, F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Success – 99
Success (payload status unclear) – 1
Failure (in flight) - 1

Boosters Carried Maximum Payload

```
List the names of the booster versions which have carried the maximum payload mass. Use a subquery
                                                                                               Carrying Max Payload
%sql select Booster Version from SPACEXTABLE\
                                                                                               • F9 B5 B1048.4
where PAYLOAD MASS KG = (select max(PAYLOAD MASS KG ) from SPACEXTABLE)
                                                                                               • F9 B5 B1049.4
 * sqlite:///my datal.db
Done.
                                                                                               • F9 B5 B1051.3
Booster_Version
                                                                                               • F9 B5 B1056.4
  F9 B5 B1048.4
  F9 B5 B1049.4
                                                                                               • F9 B5 B1048.5
  F9 B5 B1051.3
                                                                                               • F9 B5 B1051.4
  F9 B5 B1056.4
                                                                                               • F9 B5 B1049.5
  F9 B5 B1048.5
                                                                                               • F9 B5 B1060.2
  F9 B5 B1051.4
  F9 B5 B1049.5
                                                                                               • F9 B5 B1058.3
  F9 B5 B1060.2
                                                                                               • F9 B5 B1051.6
  F9 B5 B1058.3
                                                                                               • F9 B5 B1060.3
  F9 B5 B1051.6
  F9 B5 B1060.3
                                                                                               • F9 B5 B1049.7
  F9 B5 B1049.7
```

2015 Launch Records

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 4, 2) as month to get the months and substr(Date, 7,4)='2015' for year.

%sql select substr(Date, 6, 2) as month, Landing_Outcome, Booster_Version, Launch_Site from SPACEXTABLE\
where substr(Date, 1, 4) = '2015' and Landing_Outcome = 'Failure (drone ship)'

* sqlite:///my datal.db

	month	Landing_Outcome	Booster_Version	Launch_Site		
	10	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40		
	04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40		

Done.

Showing month, date, booster version, launch site and landing outcome

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
5]: %sql select Landing Outcome, count(*) as count outcomes \
     from SPACEXTABLE\
    where Date between '2010-06-04' and '2017-03-20'\
    group by Landing Outcome\
    order by count_outcomes Desc;
      * sqlite:///my data1.db
     Done.
       Landing_Outcome count_outcomes
              No attempt
                                      10
      Success (ground pad)
                                      5
       Success (drone ship)
                                       5
       Failure (drone ship)
                                      5
        Controlled (ocean)
                                       3
      Uncontrolled (ocean)
     Precluded (drone ship)
        Failure (parachute)
```

Rank the count of landing outcomes between 2010-06-04 and 2017-03-20 in descending order

All launch sites map markers

Markers showing launch sites with color labels

- Green markers for successful launches
- Red markers for unsuccessful launches

Launch Site distance to landmarks

City Distance 23.21 km

Railway Distance 21.96 km

Highway Distance 26.89 km

Coastline Distance 0.87 km

Launch Success by Site

The piechart displays the percentage of the total number of successful launches KSC LC-39A has the highest rate - 41.7%

Launch Success (KSC LC-39A)

KSC LC-39A has the highest success rate - 76.9%

Payload Mass and Success

Payloads between 1,000 kg and 4,000 kg have the highest success rate

Payload Mass and Success Payloads between 4,000 kg and 10,000 kg have the highest success rate

Classification Accuracy

Best model in Training is DecisionTree with a score of 0.889 (in-sample)

Best params is : {'criterion': 'entropy',
'max_depth': 16, 'max_features': 'sqrt',
'min_samples_leaf': 1, 'min_samples_split':
2, 'splitter': 'random'}

But in our Test (out-sample) the best models are LogReg, SVM and KNN with F1 Score of 0.889

DecisionTree is 0.869

Confusion Matrix

Decision Tree: Higher false negatives (FN=2) compared to other models (FN=0)

Others (LogReg, SVM, KNN): Lower false negatives, indicating better prediction of successful landings.

Conclusions

Recommendation: Utilize models with lower false negatives (LogReg, SVM, KNN) for accurate prediction of Falcon 9 first stage landings.

Coast: All the launch sites are close to the coast

Launch Success: Increases over time

KSC LC-39A: Has the highest success rate among launch sites.

Orbits: ES-L1, GEO, HEO, and SSO have a 100% success rate

Payload Mass: Across all launch sites, the higher the payload mass (kg), the higher the success rate

