A First Class Boolean Sort in First-Order Theorem Proving and TPTP

Evgenii Kotelnikov¹ Laura Kovács¹ Andrei Voronkov²

¹ Chalmers University of Technology, Gothenburg, Sweden

² The University of Manchester, Manchester, UK

CICM 2015 16 July

Introduction: Many-Sorted First-Order Logic

Syntax $term \rightarrow var$ $| f(term, \ldots)|$ $formula \rightarrow p(term,...)$ term = term $| formula \otimes formula$ $\mid \neg formula$ $\forall var formula$ $\exists var formula$

Introduction: Many-Sorted First-Order Logic

Syntax

```
term \rightarrow var
            | f(term, \ldots)|
formula \rightarrow p(term,...)
              term = term
            | formula \otimes formula
            \neg formula
            \forall var formula
              \exists var formula
```

Sorts

```
sort \rightarrow int, real, \alpha, \beta, \dots
var: sort
f: sort \times \dots \times sort \rightarrow sort
p: sort \times \dots \times sort
```

Introduction: FOL with First-Class Boolean Sort

Syntax

```
term 
ightarrow var \ | f(term, ...) \ | term = term \ | orall var term \ | \exists var term
```

Terms of the sort bool are formulas

Connective are interpreted boolean

Sorts

 $sort \to bool, int, real, \alpha, \beta, \dots$

var:sort

 $f: sort \times \ldots \times sort \rightarrow sort$

Introduction: FOL with First-Class Boolean Sort

Syntax

```
term \rightarrow var
 \mid f(term, ...)
 \mid term = term
 \mid \forall var \ term
 \mid \exists \ var \ term
```

Sorts

 $sort o bool, int, real, \alpha, \beta, \dots$ var: sort $f: sort \times \dots \times sort \to sort$

Terms of the sort bool are formulas

Connective are interpreted boolean functions

Contributions

FOOL = FOL + Bool

- ▶ FOL with first class boolean sort, if-then-else and let-in
- A translation from FOOL to FOL
- A technique for efficient superposition in FOOL
- A proposal for changes in TPTP

Outline

Motivation

Translation from FOOL to FOL

Superposition for FOOL

Changes to TPTP

Future work

Outline

Motivation

Translation from FOOL to FOL

Superposition for FOOL

Changes to TPTF

Future work

Motivation: Proof automation

Interactive theorem provers routinely use quantifiers over booleans.

An example from Isabelle/HOL

```
\begin{split} (\forall p:bool)(\forall l:list_A)(\forall x:A)(\forall y:A) \\ &\texttt{contains}(l,\texttt{ite}(p,\,x,\,y)) = \\ &(p \Rightarrow \texttt{contains}(l,\,x)) \land (\neg p \Rightarrow \texttt{contains}(l,\,y)) \end{split}
```

SMT-LIB

FOOL is the smallest superset of SMT-LIB Core and TF0.

Motivation: Program analysis

Straightforward mapping of PL's boolean type.

Bubble sort

```
bool isSorted;
do {
 isSorted = true;
 for (int i = 0; i < n - 1; i++) {
   if (array[i] > array[i + 1]) {
     swap(array[i], array[i + 1]);
     isSorted = false:
     break:
} while (!isSorted):
```

Motivation: if-then-else and let-in

Syntax in FOOL

```
term \rightarrow ...
| if term then term else term
| let f(var:sort,...) = term in term
```

In current TPTP

- 1. \$ite_t and \$ite_f
- 2. \$let_tt, \$let_tf, \$let_ft and \$let_ff

Outline

Motivation

Translation from FOOL to FOL

Superposition for FOOL

Changes to TPTP

Future work

- Every FOL formula is syntactically a FOOL formula, but not the other way around.
- ▶ A restricted subset of FOOL is FOL with a distinguished boolean sort and constants true and false.
- ► The translation replaces FOOL subterms that are not allowed in FOL with the ones that are, preserving models.

- Every FOL formula is syntactically a FOOL formula, but not the other way around.
- ▶ A restricted subset of FOOL is FOL with a distinguished boolean sort and constants true and false.
- The translation replaces FOOL subterms that are not allowed in FOL with the ones that are, preserving models.

- Every FOL formula is syntactically a FOOL formula, but not the other way around.
- A restricted subset of FOOL is FOL with a distinguished boolean sort and constants true and false.
- The translation replaces FOOL subterms that are not allowed in FOL with the ones that are, preserving models.

Terms that are allowed in FOOL but not in FOL

1. Boolean variables in formula context.

$$(\forall x : bool) (x \lor P(x))$$

2. Formulas in term context.

$$(\forall x : \sigma_1) P((\forall y : \sigma_2) Q(x, y))$$

3. if-then-else expressions.

$$(\forall x : \sigma) P(\text{if } Q(x) \text{ then } c_1 \text{ else } c_2)$$

4. let-in expressions.

$$(\forall x : \sigma) (x = \text{let } f(y : \sigma) = p(x, q(y)) \text{ in } f(f(x)))$$

Input

- ▶ FOOL formula φ
- ▶ Set of definitinos $D = \emptyset$

Apply replacements

Each of four replacements:

- Introduces a fresh symbol
- ightharpoonup Makes a substitution in φ
- ▶ Might add a formula to D

Output

FOOL formula
$$\bigwedge_{\psi \in D} \psi \wedge \varphi'$$

Boolean variable x in formula context Replace x with x = true.

 $(\forall x : bool) (\mathbf{x} \lor P(x))$

$$(\forall x : bool) (x = true \lor P(x))$$

Formula φ in term context

- 1. Let $x_1 : \sigma_1, \ldots, x_n : \sigma_n$ be all free variables of φ .
- 2. Add definition of a fresh symbol g $(\forall x_1 : \sigma_1) \dots (\forall x_n : \sigma_n) \ (\varphi \Leftrightarrow g(x_1, \dots, x_n) = true).$
- 3. Replace φ by $g(x_1, \ldots, x_n)$.

$$(\forall x : \sigma_1) P((\forall y : \sigma_2) Q(x, y))$$

$$(\forall x : \sigma_1) P((\forall y : \sigma_2) Q(x, y))$$
 Add
$$(\forall x : \sigma_1) ((\forall y : \sigma_2) Q(x, y) \Leftrightarrow g(x) = true)$$

$$(\forall x : \sigma_1) P(g(x))$$

Add $(\forall x : \sigma_1) ((\forall y : \sigma_2) Q(x, y) \Leftrightarrow g(x) = true)$

if φ then s else t

- 1. Let $x_1 : \sigma_1, \ldots, x_n : \sigma_n$ be all free variables of φ , s and t.
- 2. Add definitions of a fresh symbol g $(\forall x_1 : \sigma_1) \dots (\forall x_n : \sigma_n) \ (\varphi \Rightarrow g(x_1, \dots, x_n) = s)$ and $(\forall x_1 : \sigma_1) \dots (\forall x_n : \sigma_n) \ (\neg \varphi \Rightarrow g(x_1, \dots, x_n) = t)$.
- 3. Replace if φ then s else t by $g(x_1, \ldots, x_n)$.

 $(\forall x : \sigma) P(\text{if } Q(x) \text{ then } c_1 \text{ else } c_2)$

$$(\forall x:\sigma) \, P(\text{if } Q(x) \text{ then } c_1 \text{ else } c_2)$$
 Add $(\forall x:\sigma) \, (\quad Q(x) \Rightarrow g(x) = c_1)$

```
(\forall x:\sigma) P(\text{if }Q(x) \text{ then } c_1 \text{ else } c_2) Add (\forall x:\sigma) (Q(x) \Rightarrow g(x) = c_1) Add (\forall x:\sigma) (\neg Q(x) \Rightarrow g(x) = c_2)
```

$$\begin{split} & (\forall x:\sigma) \, P(g(x)) \\ & \text{Add } (\forall x:\sigma) \, (\quad Q(x) \Rightarrow g(x) = c_1) \\ & \text{Add } (\forall x:\sigma) \, (\neg Q(x) \Rightarrow g(x) = c_2) \end{split}$$

let
$$f(x_1:\sigma_1,\ldots,x_n:\sigma_n)=s$$
 in t

- 1. Let $y_1: \tau_1, \ldots, y_m: \tau_m$ be all free variables of s and t.
- 2. Add definition of a fresh symbol g $(\forall x_1 : \sigma_1) \dots (\forall x_n : \sigma_n) (\forall y_1 : \tau_1) \dots (\forall y_m : \tau_m) (g(x_1, \dots, x_n, y_1, \dots, y_m) = s).$
- 3. Replace let $f(x_1:\sigma_1,\ldots,x_n:\sigma_n)=s$ in t by t with each application $f(t_1,\ldots,t_n)$ of a free occurrence of f replaced by $g(t_1,\ldots,t_n,y_1,\ldots,y_m)$.

$$(\forall x:\sigma)\,(x=\mathrm{let}\,f(y:\sigma)\,=\,p(x,q(y))\,\mathrm{in}\,f(f(x)))$$

$$\begin{array}{ll} (\forall x:\sigma)\,(x=\mathrm{let}\,f(y:\sigma)\,=\,p(x,q(y))\,\ln f(f(x))) \\ \\ \mathrm{Add}\,\,(\forall x:\sigma)(\forall y:\tau)(g(x,y)=p(x,q(y))) \end{array}$$

$$(\forall x:\sigma) (x = g(g(x,x),x))$$
 Add
$$(\forall x:\sigma)(\forall y:\tau)(g(x,y) = p(x,q(y)))$$

Translation from FOOL to FOL: Final step

$$\bigwedge_{\psi \in D} \psi \wedge \varphi' \wedge (\forall x : bool) (x = true \vee x = false) \wedge (true \neq false)$$

Translation from FOOL to FOL: Final step

$$\bigwedge_{\psi \in D} \psi \wedge \varphi' \wedge (\forall x : bool) (x = true \vee x = false) \wedge (true \neq false)$$

Translation from FOOL to FOL: Final step

$$\bigwedge_{\psi \in D} \psi \wedge \varphi' \wedge (\forall x : bool) (x = true \vee x = false) \wedge (true \neq false)$$

Outline

Motivation

Translation from FOOL to FOL

Superposition for FOOL

Changes to TPTF

Superposition for FOOL: Paramodulation

Paramodulation rule

$$\frac{l = r \vee C \qquad L[s] \vee D}{(L[r] \vee C \vee D)\theta} \quad \theta = \text{mgu}(l, s)$$

Ordered paramodulation in action

$$\frac{f(g(b)) = a \vee R(c) \qquad P(g(f(x))) \vee Q(x)}{P(g(a)) \vee Q(g(b)) \vee R(c)} \qquad \theta = \{x \mapsto g(b)\}$$

Superposition for FOOL: Paramodulation

Paramodulation rule

$$\frac{l = r \vee C \qquad L[s] \vee D}{(L[r] \vee C \vee D)\theta} \qquad \theta = \text{mgu}(l, s)$$

Ordered paramodulation in action

$$\frac{f(g(b)) = a \vee R(c) \qquad P(g(f(x))) \vee Q(x)}{P(g(a)) \vee Q(g(b)) \vee R(c)} \qquad \theta = \{x \mapsto g(b)\}$$

Superposition for FOOL: A problem

$$(\forall x:bool)\,(x=true \lor x=false)$$

Self-paramodulation from true to true

$$\frac{x = true \lor x = false}{x = y \lor x = false \lor y = false}$$

Superposition for FOOL: A problem

$$(\forall x : bool) (x = true \lor x = false)$$

Self-paramodulation from true to true

$$\frac{x = true \lor x = false}{x = y \lor x = false \lor y = false}$$

Superposition for FOOL: Our solution

Fixed term ordering

 $true \succ false$ and they both are smaller than all other terms.

The only possible inference for $x = true \lor x = false$

$$\frac{x = true \lor x = false \quad C[s]}{C[true] \lor s = false}$$

An extra inference rule instead of $x = true \lor x = false$

$$\frac{C[s]}{C[true] \lor s = false}$$

Superposition for FOOL: Our solution

Fixed term ordering

 $true \succ false$ and they both are smaller than all other terms.

The only possible inference for $x = true \lor x = false$

$$\frac{x = true \lor x = false \quad C[s]}{C[true] \lor s = false}$$

An extra inference rule instead of $x = true \lor x = false$

$$\frac{C[s]}{C[true] \lor s = false}$$

Superposition for FOOL: Our solution

Fixed term ordering

 $true \succ false$ and they both are smaller than all other terms.

The only possible inference for $x = true \lor x = false$

$$\frac{x = true \lor x = false \quad C[s]}{C[true] \lor s = false}$$

An extra inference rule instead of $x = true \lor x = false$

$$\frac{C[s]}{C[\mathit{true}] \vee s = \mathit{false}}$$

Outline

Motivation

Translation from FOOL to FOL

Superposition for FOOL

Changes to TPTP

Changes to TPTP

Symbol declarations in TF0

```
tff(plus, type, plus : (int * int) > int).
tff(less, type, less : (int * int) > $0).
```

To support FOOL

- ▶ Allow \$0 to be the sort of an argument
- ► Allow quantification and equality over \$0
- Allow formulas inside terms (when sorts coincide)
- Unify \$ite_t and \$ite_f
- Unify \$let_tt, \$let_tf, \$let_ft and \$let_ff

Changes to TPTP

Symbol declarations in TF0

```
tff(plus, type, plus : (int * int) > int).
tff(less, type, less : (int * int) > $0).
```

To support FOOL

- Allow \$0 to be the sort of an argument
- ► Allow quantification and equality over \$0
- Allow formulas inside terms (when sorts coincide)
- Unify \$ite_t and \$ite_f
- Unify \$let_tt, \$let_tf, \$let_ft and \$let_ff

Outline

Motivation

Translation from FOOL to FOL

Superposition for FOOL

Changes to TPTF

- ▶ Implementation of FOOL in Vampire
- Experiments in reasoning in FOOL
- ▶ Better translation of if-then-else and let-in
- Support for TF1
- SMT-LIB parser