

www.sites.google.com/site/faresfergani

<u> السنة الدراسية : 2015/2014</u>

لمحتوى المفاهيمي:

سلسلة تمارين-1 (مستوى 02)

<u>التمرين (1) :</u>

 $_{1}$ نعتبر حمض من الشكل $_{n}$ ينحل في الماء وفق المعادلة :

 $H_nA + nH_2O = A^{n-} + nH_3O^+$

أ- أثبت أن نسبة التقدم في هذا التحول يعبر عنها بالعلاقة :

$$\tau_f = \frac{\left[H_3O^+\right]}{nC}$$

 $[H_3O^+] = nC$: الحمض يكون قوي إذا كان الحمض يكون قوي إذا كان

2- نعتبر أساس B ينحل في الماء وفق المعادلة:

 $B + nH_2O \ = \ BH^{+n} \ + \ nHO^{-}$

أ- أثبت أن نسبة التقدم في هذا التحول يعبر عنها بالعلاقة :

$$\tau_{\rm f} = \frac{\left[HO^{-} \right]}{nC}$$

 $[HO^{-}] = nC$: كان الأساس يكون قوي إذا كان $[HO^{-}] = nC$.

. $C = 10^{-3} \text{ mol/L}$ فيما يلي قيم الـ pH لمحاليل لها نفس التركيز المولي pH المحاليل لها نفس

• محلول حمض الإيثانويك CH₃COOH • محلول حمض الإيثانويك

. pH = 3.0 : HCl محلول حمض كلور الهيدروجين

. $pH = 2.7 : H_2SO_4$ محلول حمض الكبريت

. pH = 11 : NaOH محلول هيدروكسيد الصوديوم

من بين الأحماض و الأسس السابقة بين من هي القوية و من هي الضعيفة .

4- نحضر عند الدرجة 25° C محلول (B) لهيدروكسيد الصوديوم السابق بحل $9 \cdot 0.04$ من هيدروكسيد الصوديوم النقى في 1L من الماء المقطر

أ- أحسب C التركيز الابتدائي للمحلول (B) .

ب- أحسب pH هذا المحلول علما أن هيدر وكسيد الصوديوم هو أساس قوي .

5- نحضر محلول (A) لكلور الهيدروجين بحل V(HCl) من غاز كلور الهيدروجين مقاس في الشرطين النظاميين في 1L من الماء النقى ، قسنا pH المحلول (A) المتحصل عليه عند الدرجة $25^{\circ}\mathrm{C}$ فوجدنا pH=2 . أوجد

. $M(O) = 16 \text{ g.mol}^{-1}$ $M(H) = 1 \text{ g.mol}^{-1}$ $M(Na) = 23 \text{ g.mol}^{-1}$.

الحالة	التقدم	H_nA	$+ nH_2O =$	$=$ A^{n-}	$-nH_3O^+$
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	بز	0	0
انتقالية	X	CV - x	بز	X	n.x
نهائية	X_f	$CV - x_{\rm f}$	بز	X _f	$n.x_f$

لدينا:

$$\tau_f = \frac{x_f}{x_{max}}$$

- اعتمادا على جدول التقدم:

- باعتبار التفاعل التام يكون

$$CV - x_{max} = 0 \rightarrow x_{max} = CV$$

- بالتعويض في عبارة τ_f :

$$\tau_{f} = \frac{\left[H_{3}O^{+}\right]_{f}.V}{CV}$$

$$\tau_{\rm f} = \frac{\left[H_3 O^+\right]_{\rm f}}{nC}$$

ب- يكون الحمض H_nA قوى إذا كان $\tau_f = 1$ و منه :

$$\frac{\left[H_3O^+\right]_f}{nC} = 1 \rightarrow \left[H_3O^+\right]_f = nC$$

$$\underline{\tau}_{f} = \frac{[HO^{-}]}{nC}$$

الحالة	التقدم	В +	$-nH_2O =$	$=$ BH $^{n+}$	+ nHO ⁻
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	بز	0	0
انتقالية	X	CV - x	بز	X	n.x
نهائية	X _f	$CV - x_f$	بز	X_{f}	n.x _f

لدبنا

$$\tau_f = \frac{x_f}{x_{max}}$$

- اعتمادا على جدول التقدم:

$$\bullet \ \left[HO^{\text{-}} \right]_{\!f} = \frac{n_f \, (HO^{\text{-}})}{V} \rightarrow \ \left[HO^{\text{-}} \right]_{\!f} = \frac{n x_f}{V} \ \rightarrow \ x_f = \frac{\left[HO^{\text{-}} \right]_{\!f} V}{n} \ .$$

- باعتبار التفاعل التام يكون:

$$CV - x_{max} = 0 \rightarrow x_{max} = CV$$

- بالتعويض في عبارة τ_f :

$$\tau_f = \frac{\left[\!\!\! \left[\!\!\! HO^{\text{-}}\right]\!\!\! \right]_{\!f}.V}{CV}$$

$$\tau_{\rm f} = \frac{\left[{\rm HO}^{\text{-}} \right]_{\rm f}}{{\rm nC}}$$

ب- يكون الأساس B قوى إذا كان $au_f = 1$ و منه :

$$\frac{\left[HO^{-}\right]_{f}}{nC} = 1 \rightarrow \left[HO^{-}\right]_{f} = nC$$

3- تصنيف الأحماض و الأسس إلى قوية و ضعيفة : الحمض CH3COOH : ينحل الحمض CH3COOH في الماء وفق المعادلة :

 $CH_3COOH + H_2O = CH_3COO^{-} + H_3O^{+}$

 $: \left[H_3 O^+ \right]$ و C نقارن في هذه الحالة بين

• $C = 10^{-3} \text{ mol/L}$

• pH = $3.9 \rightarrow [H_3O^+] = 10^{-3.9} = 1.26.10^{-4} \text{ mol/L}$

. و منه فالحمض $ext{CH}_3 ext{COOH}$ عمض ضعيف [$ext{H}_3 ext{O}^+$] و منه فالحمض

<u>الحمض HCl :</u> ينحل الحمض HCl في الماء وفق المعادلة :

 $HCl + H_2O = Cl^- + H_3O^+$

 $: [H_3O^+]$ و C نقارن في هذه الحالة بين

• $C = 10^{-3} \text{ mol/L}$

• pH = 3 \rightarrow [H₃O⁺]=10⁻³ mol/L

نلاحظ : HCI و منه فالحمض $[H_3O^+]=C$ عمض قوي.

 $\frac{H_2SO_4}{H_2SO_4}$: ينحل الحمض H_2SO_4 في الماء وفق المعادلة : $H_2SO_4 + 2H_2O = SO_4^{2^-} + 2H_3O^+$

 $: \left[\mathrm{H_{3}O^{+}} \right]$ و $2\mathrm{C}$ نقارن في هذه الحالة بين

 $-2C = 2 \cdot 10^{-3} \text{ mol/L}$

• pH = $2.7 \rightarrow [H_3O^+] = 2.10^{-3} \text{ mol/L}$

نلاحظ: $2C = [H_3O^+]$ و منه فالحمض H_2SO_4 حمض قوي.

الأساس <u>NaOH :</u> ينحل الأساس NaOH في الماء وفق المعادلة :

 $NaOH + H_2O = Na^+ + HO$

نقارن في هذه الحالة بين C و [-HO]:

• $C = 10^{-3} \text{ mol/L}$

• pH = 11 → $[H_3O^+] = 10^{-11} \text{ mol/L}$ → $[HO^-] = \frac{\text{Ke}}{[H_2O^+]} = \frac{10^{-14}}{10^{-11}} = 10^{-3} \text{ mol/L}$

نلاحظ: $C = [HO^-]$ و منه فالأساس NaOH قوي .

4- أ- التركيز C:

$$C = \frac{n_0(NaOH)}{V} = \frac{\frac{m_0(NaOH)}{M}}{V} \rightarrow C = \frac{m_0(NaOH)}{M \cdot V}$$

M(NaOH) = 23 + 16 + 1 = 40 g/mol

$$C = \frac{0.04}{40.1} = 10^{-3} \text{ mol/L}$$

ب- pH المحلول الناتج (B) : بما أن هيدروكسيد الصوديوم أساس قوي يكون :

$$[HO^{-}] = C = 10^{-3} \text{ mol/L}$$

$$[HO^{+}] = \frac{\text{Ke}}{10^{-14}} = 1$$

$$[H_3O^+] = \frac{Ke}{[HO^-]} = \frac{10^{-14}}{10^{-3}} = 10^{-11} \text{ mol/L}$$

$$pH = -\log[H_3O^+] = -\log(10^{-11}) = 11$$

5- التركيز المولى C للمحلول (A):

$$C = \frac{n(HCl)}{V} = \frac{\frac{V(HCl)}{V_M}}{V} = \frac{V(HCl)}{V \cdot V_M} \rightarrow V(HCl) = C \cdot V \cdot V_M$$

حمض كلور الهيدروجين حمض قوي لذا يكون:

$$C = [H_3O^+]$$

 $pH = 2 \rightarrow [H_3O^+] = 10^{-2} \text{ mol/L} \rightarrow C = 10^{-2} \text{ mol/L}$

و منه:

 $V(HCl) = 10^{-2} .1.22.4 = 0.224 L$

<u>التمرين (2) :</u>

نمزج حجما V_a من محلول حمض الإيثانويك CH_3COOH تركيزه المولي V_b مع حجم V_b من محلول النشادر تركيزه المولى . C_b

1- أُكتب معادلة التفاعل الحادث بين: CH₃COOH و NH₃

2- عبر عن ثابت التوازن K بدلالة ثابت الحمموضة Ka_2 ، Ka_1 ثابتي الحموضة للثنائيتين (أساس/حمض) السابقتين على الترتيب ، ثم أحسب قيمته ، ماذا تستنتج ؟

. pKa₂(NH₄⁺/NH₃) = 9.2 · pKa₁(CH₃COOH/CH₃COO⁻) = 4.8 يعطى :

 $n_0 = C_a V_a = C_b V_b$: و النشادر متساويتان أي $n_0 = 1$ لكل من حمض الإيثانويك و النشادر متساويتان أي أي $n_0 = 1$ لكل من حمض الإيثانويك و النشادر متساويتان أي $n_0 = 1$

. $au_{\mathrm{f}}=rac{\sqrt{\mathrm{K}}}{1+\sqrt{\mathrm{K}}}$: بين أن النسبة النهائية au_{f} لتقدم التفاعل يمكن كتابتها على الشكل

 $_{-}$ - احسب $_{ au_{
m f}}$ ماذا تستنتج ؟ تحقق من ان هذه النتيجة تتوافق مع نتيجة السؤال $_{-}$ 2 .

<u>الأجوبة :</u>

1- معادلة التفاعل الحادث بين NH3 · CH3COOH

 $CH_3COOH + NH_3 = CH_3COO^- + NH_4^+$

<u>2- عبارة K بدلالة Ka₂ ، Ka₁ عبارة </u>

$$K = \frac{\left[CH_{3}COO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{f}} \cdot \frac{\left[NH_{4}^{+}\right]_{f}}{\left[NH_{3}\right]_{f} \cdot \left[H_{3}O^{+}\right]_{f}} = Ka_{1} \cdot \frac{1}{Ka_{2}} \rightarrow K = \frac{Ka_{1}}{Ka_{2}}$$

قيمة K :

• pKa₁ = 4.8
$$\rightarrow$$
 Ka₁ = 10^{-4.8} = 1.58 . 10⁻⁵

•
$$pKa_2 = 9.2 \rightarrow Ka_2 = 10^{-9.2} = 6.30 \cdot 10^{-10}$$

إذن :

$$K = \frac{1.58 \cdot 10^{-5}}{6.30 \cdot 10^{-10}} = 2.5 \cdot 10^4$$

الاستنتاج : نستنتج أن التفاعل السابق تام . ${
m K} > 10^4$

الحالة	التقدم	$CH_3COOH + NH_3 = CH_3COO^- + NH_4^+$				
ابتدائية	x = 0	n_0	\mathbf{n}_0	0	0	
انتقالية	X	n ₀ - x	n ₀ - x	X	X	
نهائية	$\mathbf{x}_{\mathbf{f}}$	n ₀ - x _f	n ₀ - x _f	X_f	X_{f}	

$$\underline{\tau_{\mathrm{f}}} = \frac{\sqrt{\mathrm{K}}}{1 - \sqrt{\mathrm{K}}}$$
 بــ اثبات أن لاينا :

$$\tau_{\rm f} = \frac{x_{\rm f}}{x_{max}} \rightarrow x_{\rm f} = \tau_{\rm f} . x_{max}$$

- بفرض أن التفاعل تام يكون:

$$n_0$$
 - $x_{max} = 0 \rightarrow x_{max} = n_0$

$$x_f = \tau_f.n_0$$

لدينا أيضا:

$$K = \frac{\left[CH_{3}COO^{-}\right]_{f} \cdot \left[NH_{4}^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{f} \left[NH_{3}\right]_{f}}$$

اعتمادا على جدول التقدم:

•
$$\left[\text{CH}_{3} \text{COOH} \right]_{f} = \frac{n_{0} - x_{f}}{V} = \frac{n_{0} - \tau_{f} \cdot n_{0}}{V} = \frac{n_{0} (1 - \tau_{f})}{V}$$

بالتعويض في عبارة K نجد:

$$K = \frac{\frac{\tau_f.n_0}{V} \frac{\tau_f.n_0}{V}}{\frac{n_0(1-\tau_f)}{V} \frac{n_0(1-\tau_f)}{V}} = \frac{\tau_f^2}{(1-\tau_f)^2}$$

$$\begin{split} K &= (\frac{\tau_f}{1 - \tau_f})^2 \quad \rightarrow \ \sqrt{K} = \frac{\tau_f}{1 - \tau_f} \quad \rightarrow \ \sqrt{K} \ (1 - \tau_f \) = \tau_f \quad \rightarrow \ \sqrt{K} \ - \sqrt{K} . \tau_f \ = \tau_f \\ \sqrt{K} &= \tau_f + \sqrt{K} . \tau_f \quad \rightarrow \ \sqrt{K} \ = \tau_f \ (1 + \sqrt{K}) \ \rightarrow \tau_f = \frac{\sqrt{K}}{1 - \sqrt{K}} \end{split}$$

جـ- قيمة $\frac{\tau_{\rm f}}{2.5}$ ، لذا يكون : وجدنا سابقا : $= 2.5 \cdot 10^4$ ، لذا يكون :

$$\tau_{\rm f} = \frac{\sqrt{2.5 \cdot 10^4}}{1 - \sqrt{2.5 \cdot 10^4}} \approx 1$$

نستنتج أن التحول الكيميائي الحادث بين CH₃COOH و NH₃ تام .

<u>التمرين (3):</u>

نضع في كأس بيشر $V_a = 10 \; mL$ من حمض الإيثانويك تركيزه المولي كأس بيشر $V_a = 10 \; mL$ محلول هيدروكسيد الصوديوم NaOH تركيزه المولي $m C_b = 10^{-2} \; mol/L$ ، الدراسة التجريبية لهذه المعايرة أعطت البيانين التاليين:

- 1- أكتب معادلة التفاعل الحادث أثناء المعايرة مبينا الثنائيات (أساس/حمض) الداخلة في التفاعل .
- 2- من (الشكل-2) أي المنحنيين (1) ، (2) يعبر عن الصفة الأساسية و أيهما يعبر عن الصفة الحمضية علل . 3- اعتمادا على الشكلين:
 - حدد احداثيتي نقطة التكافؤ ($V_b\,,\,pH$) ، ثم استنتج C_a تركيز المحلول الحمضي .
 - استنتج ثابت الحموضة Ka للثنائية (-CH3COOH/CH3COO) .
 - حدد مجال الـ pH الذي فيه يتغلب الحمض CH3COOH على أساسه المرافق CH3COO
- استنتج النسبة المئوية للصفة الحمضية و كذا النسبة المئوية للصفة الأساسية عند إضافة $V_{\rm h}=6{
 m ml}$ من هيدر و كسيد الصو ديو م

الأجمية :

1- معادلة التفاعل الحادث:

$$CH_3COOH_{(aq)} + HO_{(aq)} = CH_3COO_{(aq)} + H_2O_{(\ell)}$$

- الثنائيات (أساس/حمض) الداخلة في التفاعل هي:

 (CH_3COOH/CH_3COO^-) , (H_2O/HO^-)

2- أثناء معايرة حمض الإيثانويك CH₃COOH و الذي يتحول إلى أساسه المرافق CH₃COO يتناقص تركيز الحمض CH3COOH و يتزايد تركيز أساسه المرافق -CH3COO و على هذا الأساس المنحنى الذي يعبر عن الصفة الحمضية هو المنحنى (1) و المنحنى الذي يوافق الصفة الأساسية هو المنحني (2).

3- احداثيي نقطة التكافؤ:

 $(pH = 8.2, V_{bE} = 10 \text{ mL})$: يكون (الشكل (الشكل في (الشكل) يكون يقطة التكافؤ

L_a التركيز
 عند التكافؤ

$$C_a V_a = C_b V_{bE} \rightarrow C_a = \frac{C_b V_{bE}}{V_a}$$

$$C_a = \frac{10^{-2} \times 10 \cdot 10^{-3}}{10 \cdot 10^{-3}} = 10^{-2} \text{mol.L}^{-1}$$

• ثابت الحموضة Ka : اعتمادا على (الشكل-2) تساوي قيمة الـ pKa قيمة الـ pH عند يكون : $CH_3COOH\% = CH_3COO^{-}\% = 50\%$

علبه بکون:

 $pKa = 4.8 \rightarrow Ka = 10^{-4.8} = 1.58 \cdot 10^{-5}$

- يتغلب الحمض على أساسه المرافق عندما يكون pH < pKa لهذا فمجال الـ pH الذي يتغلب فيه الحمض . (0 < pH < 4.8) : هو CH_3COO^- على أساسه المرافق CH_3COOH
 - النسب المئوية للصفتين الحمضية و الأساسية:

بالإسقاط على المنحنيين في (الشكل-2):

$$V_b = 6 \text{ mL} \rightarrow pH = 5$$

$$CH_3COOH\% = 36\%$$

 $CH_3COO^-\% = 64\%$

التمرين (4):

نعاير في الدرجة $^{\circ}C$ حجما $^{-}$ $^{-}$ $^{-}$ من محلول مائي ممدد لحمض كلور الهيدروجين ($^{-}$ $^{-}$ $^{-}$ $^{-}$ النتائج تركيزه المولي $^{-}$

- 1- ارسم بشكل تخطيطي التركيب التجريبي للمعايرة محددا بعض الاحتياطات الأمنية الوقائية المتخذة .
 - 2- بين كيف يمكن تحقيق قياس الـ pH لمحلول .
 - 3- حمض كلور الهيدروجين هو حمض قوي ، اعتمادا على البيان أوجد:
 - أ- إحداثيتي نقطة التكافؤ
 - ب- التركيز C_a لمحلول كلور الهيدروجين .
 - جـــ التركيــ ز المــولي C_b لمحلــول هيدروكــسيد الصوديوم ، و كذا قيمة الـ pH له .

الأجوبة :

- 1- التركيب التجريبي للمعايرة:
 - بعض الاحتياطات اللازمة:
- ار تداء قفاز ات و نظار ات و قائية .
 - أن تكون الألبسة قطنية .
 - انجاز التجربة واقفا
 - 2- كيفية تحقيق قياس الـ pH:
 - نقوم بمعايرة جهاز pH متر .
- نخرج المسبار من المحلول الخاص ثم نقوم بتنظيفه بالماء المقطر
- نغمس المسبار في المحلول الذي نريد قياس الـ pH له.
- نرج المحلول بواسطة مخلاط مغناطيسي بحذر حتى لا يلامس المسبار القطعة المغناطيسية .

مخلاط مغناطیسی -

- نضع جهاز الـ pH متر في وضعية "قياس" ثم ننتظر استقرار القيمة المشار إليها .

عند إجراء عدة قياسات متتالية يجب تنظيف المسبار بالماء المقطر بين قياسين متتاليين.

3- أ- إحداثيتي نقطة التكافؤ:

بالاعتماد على طريقة المماسات نجد:

$$(V_{bE} = 10 \text{ mL }, pH_E = 7)$$

ب- التركيز C_a لمحلول كلور الهيدروجين :

بما أن حمض كلور الهيدروجين قوي يكون:

$$C_a = \left[H_3 O^+ \right]_f$$

من البيان قبل المعايرة:

$$pH = 2 \ \rightarrow \ \left[H_3O^+\right]_f = 10^{\text{-}2} \, \text{mol/L} \ \rightarrow \ C_a = 10^{\text{-}2} \, \text{mol/L}$$

جـ- التركيز $\frac{C_b}{C_b}$ لمحلول هيدروكسيد الصوديوم : عند التكافؤ :

$$C_a V_a = C_b V_{bE} \ \rightarrow \ C_b = \frac{C_a V_a}{V_{bE}}$$

$$C_b = \frac{10^{-2} \cdot 0.02}{0.01} = 10^{-2} \text{ mol/L}$$

• pH محلول هيدروكسيد الصوديوم:

بما أن هيدروكسيد الصوديوم أساس قوي يكون:

$$[HO^{-}] = C_b = 2.10^{-2} \text{ mol/L}$$

و منه:

•
$$\left[H_3 O^+ \right]_f = \frac{Ke}{\left[HO^- \right]} = \frac{10^{-14}}{2.10^{-2}} = 5.10^{-13} \text{ mol/L}$$

• pH =
$$-\log[H_3O^+]_f = 12.3$$

<u>التمرين (5):</u>

 C_b نعاير عند الدرجة V_b حجما V_b من محلول مائي ممدد لمحلول النشادر V_b تركيزه المولى الابتدائي بمحلول كلور الهيدروجين (C_a بمحلول كلور الهيدروجين ($H_3O^+ + Cl^-$) تركيزه المولي محلول كلور الهيدروجين اللازم للتكافؤ

1- أكتب معادلة تفاعل المعابرة

2- ثم مثل جدول تقدم التفاعل المنمذج لهذه المعايرة .

ند إضافة حجم V_a من محلول كلور الهيدروجين : V_a

: عبر بدلالة au_{f} في الحالتين V_{a} ، C_{a} ، V_{b} ، C_{b} ، $\frac{\left [NH_{3} \right]}{\left [NH_{.}^{+} \right]}$ عن نسبة التقدم النهائي بيات

• الحالة التي يكون فيها $m V_a <
m V_{aE}$ (قبل التكافؤ) .

. (عند التكافؤ $V_a = V_{aE}$ عند التكافؤ) .

 $_{-}$ عبر عن ثابت التوازن $_{-}$ لتفاعل المعايرة بدلالة ثابت الحموضة $_{a}$ للثنائية ($_{-}$ $_{-}$ $_{-}$ $_{-}$ $_{-}$

1- معادلة التفاعل:

$$NH_3 + HO^- = NH_4^+ + H_2O$$

2- جدول التقدم:

الحالة	التقدم	NH ₃ +	- HO =	NH_4^+ +	H ₂ O
ابتدائية	$\mathbf{x} = 0$	C_bV_b	C_aV_a	0	بزيادة
انتقالية	X	C_bV_b - x	C_aV_a - x	X	بزيادة
نهائية	x_f	C_bV_b - x_f	C_aV_a - x_f	$\mathbf{X}_{\mathbf{f}}$	بزيادة

$$\frac{[NH_3]_f}{[NH_4]_f}$$
 عبارة $\frac{[NH_4]_f}{[NH_4]_f}$ يجدول التقدم ك

$$\bullet \left[NH_4^+ \right]_f = \frac{x_f}{V_S}$$

بقسمة $[NH_3]_1$ نجد ا

$$\frac{\begin{bmatrix} NH_{3} \end{bmatrix}_{f}}{\begin{bmatrix} NH_{4} \end{bmatrix}_{f}} = \frac{\begin{bmatrix} C_{b}V_{b} - x_{f} \\ V_{S} \end{bmatrix}}{\begin{bmatrix} x_{f} \\ V_{S} \end{bmatrix}} \rightarrow \frac{\begin{bmatrix} NH_{3} \end{bmatrix}_{f}}{\begin{bmatrix} NH_{4} \end{bmatrix}_{f}} = \frac{C_{b}V_{b} - x_{f}}{x_{f}} \rightarrow \frac{\begin{bmatrix} NH_{3} \end{bmatrix}_{f}}{\begin{bmatrix} NH_{4} \end{bmatrix}_{f}} = \frac{C_{b}V_{b}}{x_{f}} - 1$$

$$\frac{C_{b}V_{b}}{x_{f}} = 1 + \frac{\begin{bmatrix} NH_{3} \end{bmatrix}_{f}}{\begin{bmatrix} NH_{4} \end{bmatrix}_{f}} \rightarrow x_{f} = \frac{C_{b}V_{b}}{1 + \frac{\begin{bmatrix} NH_{3} \end{bmatrix}_{f}}{[NH_{4} \end{bmatrix}_{f}}}$$

ب- عبارة $au_{\rm f}$ في الحالة التي يكون فيها $au_{\rm aE} < au_{\rm aE}$ المضافة في حين لا تختفي كليا كمية $au_{\rm f}$ ، أي أن $au_{\rm f}$ هو في هذه الحالة (قبل التكافؤ) تحتفي كل شوار د $au_{\rm f}$ المضافة في حين لا تختفي كليا كمية $au_{\rm f}$ ، أي أن $au_{\rm f}$ هو متَّفاعل محد ، لذا يكون اعتمادا على جدول تقدم تفاعل المعايرة:

$$C_aV_a - x_{max} = 0 \rightarrow x_{max} = C_aV_a$$

- و جدنا سابقا :

$$x_{f} = \frac{C_{b}V_{b}}{1 + \frac{[NH_{3}]_{f}}{[NH_{4}^{+}]_{f}}}$$

و لدينا :

$$\tau_f = \frac{x_f}{x_{max}}$$

و منه:

$$\tau_{f} = \frac{\frac{C_{b}V_{b}}{[NH_{3}]_{f}}}{C_{a}V_{a}} \rightarrow \tau_{f} = \frac{C_{b}V_{b}}{C_{a}V_{a}(1 + \frac{[NH_{3}]_{f}}{[NH_{4}^{+}]_{f}})}$$

auعبارة $au_{
m f}$ عند التكافؤ :

عند التكافؤ يمكن كتابة عبارة τ كما يلي:

$$\tau_{fE} = \frac{C_b V_b}{C_a V_{aE} (1 + \frac{[NH_3]_f}{[NH_4^+]_f})}$$

: عند التكافؤ يكون ${
m C_{b}V_{b}}={
m C_{a}V_{aE}}$ و منه يمكن كتابة

$$\tau_{fE} = \frac{1}{1 + \frac{\left[NH_3\right]_f}{\left[NH_4^+\right]_f}}$$

 K_{a2} ، K_{a1} بدلالة K_{a2} ، نابت التوازن K بدلالة الدناء

$$K = \frac{[NH_4^+]_f}{[NH_3]_f [H_3O^+]_f}$$

$$K_a(NH_4^+/NH_3) = \frac{[NH_3]_f [H_3O^+]_f}{[NH_4^+]_f}$$

یکون :

$$K = \frac{1}{K_a(NH_4^+/NH_3)}$$

<u>التمرين (6) :</u>

نعاير عند الدرجة V_a من محلول مائى ممدد لحمض الإيثانويك CH_3COOH ، تركيزه المولى الابتدائي C_a بمحلول هيدروكسيد الصوديوم V_{bE} الصوديوم ($V_a^+ + HO^-$) تركيزه المولى C_b و حجمه C_b هو حجم محلول هيدر وكسيد الصوديوم اللازم للتكافؤ

1- أكتب معادلة تفاعل المعايرة

2- ثم مثل جدول تقدم التفاعل المنمذج لهذه المعايرة .

: مند إضافة حجم $V_{\rm b}$ من محلول هيدروكسيد الصوديوم $V_{\rm b}$

. التفاعل
$$X_f$$
 في نهاية التفاعل X_f عن التقدم النهائي X_f عن التقدم النهائي أ X_f عبر بدلالة X_f عبر بدلالة X_f عبر بدلالة X_f عبر بدلالة التفاعل X_f التفاعل

: غير بدلالة
$$au_{\rm f}$$
 في الحالتين ، $V_{\rm b}$ ، $V_{\rm b}$ ، $V_{\rm a}$ ،

- الحالة التي يكون فيها $V_b < V_{bE}$ (قبل التكافؤ) .
- ، الحالة التي يكون فيها $V_b = V_{bE}$ (عند التكافؤ) .

4- عبر عن ثابت التوازن K لتفاعل المعايرة بدلالة الجداء الشاردي للماء K_e و ثابت الحموضة K_a للثنائية (CH₃COOH/CH₃COO).

<u>الأجوبة :</u>

1- معادلة التفاعل:

$$CH_3COOH + HO^- = CH_3COO^- + H_2O$$

2- جدول التقدم :

الحالة	التقدم	$CH_3COOH + HO^- = CH_3COO^- + H_2O$				
ابتدائية	$\mathbf{x} = 0$	C_aV_a	C_bV_b	0	بزيادة	
انتقالية	X	C_aV_a - x	C_bV_b - x	X	بزيادة	
نهائية	X_{f}	C_aV_a - X_f	C_bV_b - X_f	X_{f}	بزيادة	

$$\frac{V_a, C_a}{[CH_3COOH]_f}$$
 بدلالة $\frac{V_a, C_a}{[CH_3COO]_f}$ عبارة $\frac{V_a, C_a}{[CH_3COO]_f}$

عتمادا على جدول التقدم

: نجد $[CH_3COO^-]_f$ على $[CH_3COOH]_f$ نجد

$$\frac{\begin{bmatrix} \text{CH}_{3}\text{COOH} \end{bmatrix}_{f}}{\begin{bmatrix} \text{CH}_{3}\text{COO}^{-} \end{bmatrix}_{f}} = \frac{\frac{C_{a}V_{a} - x_{f}}{V_{S}}}{\frac{x_{f}}{V_{S}}} \quad \rightarrow \quad \frac{\begin{bmatrix} \text{CH}_{3}\text{COOH} \end{bmatrix}_{f}}{\begin{bmatrix} \text{CH}_{3}\text{COO}^{-} \end{bmatrix}_{f}} = \frac{C_{a}V_{a} - x_{f}}{x_{f}}$$

$$\frac{\begin{bmatrix} \text{CH}_{3}\text{COOH} \end{bmatrix}_{f}}{\begin{bmatrix} \text{CH}_{3}\text{COO}^{-} \end{bmatrix}_{f}} = \frac{C_{a}V_{a}}{x_{f}} - 1$$

$$\frac{C_{a}V_{a}}{x_{f}} = 1 + \frac{\left[CH_{3}COOH\right]_{f}}{\left[CH_{3}COO^{-}\right]_{f}} \rightarrow x_{f} = \frac{C_{a}V_{a}}{\left[CH_{3}COOH\right]_{f}}$$

$$\frac{C_{a}V_{a}}{\left[CH_{3}COO^{-}\right]_{f}} \rightarrow x_{f} = \frac{\left[CH_{3}COOH\right]_{f}}{\left[CH_{3}COO^{-}\right]_{f}}$$

ب- عبارة $au_{\rm f}$ في الحالة التي يكون فيها $au_{\rm be} < ext{V}_{
m be}$: في هذه الحالة (قبل التكافؤ) تحتفي كل شوارد $ext{HO}^{-}$ المضافة في حين لا تختفي كليا كمية $ext{CH}_3$ COOH ، أي أن ·HO هو متفاعل محد ، لذا يكون اعتمادا على جدول تقدم تفاعل المعايرة :

$$C_b V_b \text{ - } x_{max} = 0 \ \ \rightarrow \ \ x_{max} = C_b V_b$$

$$x_{f} = \frac{C_{a}V_{a}}{1 + \frac{\left[CH_{3}COOH\right]_{f}}{\left[CH_{3}COO^{-}\right]_{f}}}$$

و لدينا :

$$\tau_f = \frac{x_f}{x_{max}}$$

$$\tau_{f} = \frac{\frac{C_{a}V_{a}}{\left[CH_{3}COOH\right]_{f}}}{\frac{\left[CH_{3}COO^{-}\right]_{f}}{C_{b}V_{b}}} \rightarrow \tau_{f} = \frac{\frac{C_{a}V_{a}}{\left[CH_{3}COOH\right]_{f}}}{\frac{\left[CH_{3}COOH\right]_{f}}{\left[CH_{3}COO^{-}\right]_{f}}}$$

ullet عبارة $au_{
m f}$ عند التكافؤ : عند التكافؤ يمكن كتابة عبارة $au_{
m f}$ كما يلي :

$$\tau_{fE} = \frac{C_a V_a}{C_b V_{bE} (1 + \frac{\left[CH_3 COOH\right]_f}{\left[CH_3 COO^-\right]_f})}$$

عند التكافؤ يكون : $\mathrm{C_aV_a} = \mathrm{C_bV_{bE}}$ و منه يمكن كتابة :

$$\tau_{fE} = \frac{1}{1 + \frac{\left[CH_{3}COOH\right]_{f}}{\left[CH_{3}COO^{-}\right]_{f}}}$$

 $\frac{1}{12}$ د عبارة ثابت التوازن $\frac{1}{12}$ بدلالة $\frac{1}{12}$ بدلاله لدينا والتوازن

$$K = \frac{\left[\text{CH}_{3}\text{COOH} \right]_{f}}{\left[\text{CH}_{3}\text{COO}^{-} \right]_{f} \left[\text{HO}^{-} \right]_{f}}$$

 $: [H_3O^+]_f$ نضرب و نقسم على

$$K = \frac{\left[\text{CH}_{3}\text{COOH} \right]_{\!\!\!\!f} . \left[\text{H}_{3}\text{O}^{+} \right]}{\left[\text{CH}_{3}\text{COO}^{-} \right]_{\!\!\!\!f} . \left[\text{H}_{3}\text{O}^{+} \right]_{\!\!\!f} . \left[\text{HO}^{-} \right]_{\!\!\!\!f}} \ \, \rightarrow \ \, K = \frac{\left[\text{CH}_{3}\text{COOH} \right]_{\!\!\!\!f} . \left[\text{H}_{3}\text{O}^{+} \right]}{\left[\text{CH}_{3}\text{COO}^{-} \right]_{\!\!\!\!f}} \frac{1}{\left[\text{H}_{3}\text{O}^{+} \right]_{\!\!\!f} . \left[\text{HO}^{-} \right]_{\!\!\!\!f}}$$

و حيث أن :

•
$$K_a(CH_3COOH/CH_3COO^-) = \frac{[CH_3COO^-]_f [H_3O^+]_f}{[CH_3COOH]_f}$$

•
$$K_e = [H_3O^+]_f . [HO^-]_f$$

یکون:

$$K = K_a \cdot \frac{1}{K_e} \rightarrow K = \frac{K_a}{K_e}$$

<u>التمرين (7) :</u>

 C_b نعاير عند الدرجة $V_b = 20~mL$ تركيزه المولي الابتدائي $V_b = 20~mL$ تركيزه المولي الابتدائي الابتدائي V_a عند الدرجة $V_a = 0.2~mol/L$ يركيزه المولي $V_a = 0.2~mol/L$ النتائج المتحصل عليها مكنت من رسم البيان $V_a = 0.2~mol/L$ (الشكل) .

1- أكتب معادلة تفاعل المعايرة .

2- اعتمادا على البيان:

أ- حدد قيمة \overline{V}_{aE} حجم محلول كلور الهيدروجين اللازم للتكافؤ

ب- استنتج قيمة C_b التركيز المولي لمحلول النشادر المعاير

جـ قبل وضع مسبار جهاز الـ pH- متر في البيشر ، لو نضيف إليه كمية مناسبة من الماء المقطر لجعل المسبار مغمورا بشكل ملائم ، هل إضافة الماء المقطر قبل وضع المسبار تؤثر قيمة V_{aE} اشرح .

 (NH_4^+/NH_3) د- أحسب قيمة ثابت الحموضة Ka الثنائية

3- مثل جدول تقدم التفاعل المنمذج لهذه المعايرة .

$$. \frac{[NH_3]}{[NH_4^+]} = 10^{pH - pKa} : أثبت أن -4$$

. 9 من محلول كلور الهيدروجين ، نجد pH من محلول كلور $V_a=6~mL$ من محلول 5

أ- أحسب النسبة $\frac{[NH_3]}{[NH_4]}$ ، ثم بين أي من الأساس $\frac{NH_3}{[NH_3]}$ أو الحمض المرافق $\frac{[NH_3]}{[NH_4]}$.

ب- أحسب قيمة التقدم النهائي X_{f} ، علما أنه يمكن التعبير عنه بالعلاقة :

$$x_{f} = \frac{C_{b}V_{b}}{1 + \frac{\left[NH_{3}\right]}{\left[NH_{4}\right]}}$$

جـ أحسب قيمة التقدم الأعظمي x_{max} ، ثم استنتج قيمة أن تفاعل المعايرة تام

6- أحسب ثابت التوازن K لتفاعل المعايرة ، ماذا تستنتج ؟ هل توافق هذه النتيجة استناجك في السؤال-5-ج.

الأجوبة :

1- معادلة تفاعل المعايرة:

$$NH_3 + H_3O^+ = NH_4^+ + H_2O$$

<u>2- أ- قيمة V_{aE} : 2</u> من نقطة التكافة

 $V_{aE} = 10 \text{ mL}$

<u>ب- التركيز C_b :</u> عند التكافؤ :

$$C_b V_b = C_a V_{aE} \rightarrow C_b = \frac{C_a V_{aE}}{V_b}$$

$$C_b = \frac{0.2.0.01}{0.02} = 0.1 \text{ mol/L}$$

جـ تأثير إضافة الماء المقطر على قيمة V_{aE} : عند التكافؤ:

$$C_b V_b = C_a V_{aE} \rightarrow V_{aE} = \frac{C_b V_b}{V_a}$$

هو تركيز المحلول المعاير الموجود في السحاحة و $m ext{ ext{ iny C}}_a$ هو تركيز المحلول المعاير الموجود في السحاحة و

. V_b و C_b المنحلة في المحلول و هي لا تتغير عند إضافة الماء المقطر رغم تغير C_b و C_b الجداء C_b يمثل كمية C_b المنحلة في المحلول و هي المخلول و هي المخلول و هي المخلول و عند إضافة الماء المقطر رغم تغير عند إ إذن لا تتغير قيمة V_{aE} عند إضافة الماء المقطر في البيشر قبل وضع مسبار الـ pH متر .

د- ثابت الحموضة K_a : من نقطة نصف التكافؤ

$$\begin{split} pK_a &= pH_{E/2} = 9.2 \\ K_a &= 10^{\text{-}9.2} = 6.3 \text{ . } 10^{\text{-}10} \end{split}$$

3- جدول تقدم المعايرة:

الحالة	التقدم	NH_3 +	- HO =	NH_4^+ +	H ₂ O
ابتدائية	x = 0	C_bV_b	C_aV_a	0	بزيادة
انتقالية	X	C_bV_b - x	C_aV_a - x	X	بزيادة
نهائية	X_f	C_bV_b - x_f	C_aV_a - x_f	X_{f}	بزيادة

$$\frac{[NH_3]_f}{[NH_4^+]_f} = 10^{pH-pKa}$$
 يُبات أن $\frac{1}{2}$

$$\begin{split} K_{a} &= \frac{\left[NH_{3}\right]_{f} \left[H_{3}O^{+}\right]_{f}}{\left[NH_{3}\right]_{f}} \\ &\log K_{a} = \log \frac{\left[NH_{3}\right]_{f}}{\left[NH_{3}\right]_{f}} + \log \left[H_{3}O^{+}\right]_{f} \\ &- \log K_{a} = -\log \frac{\left[NH_{3}\right]_{f}}{\left[NH_{3}\right]_{f}} - \log \left[H_{3}O^{+}\right]_{f} \\ pKa &= -\log \frac{\left[NH_{3}\right]_{f}}{\left[NH_{3}\right]_{f}} + pH \\ &\log \frac{\left[NH_{3}\right]_{f}}{\left[NH_{3}\right]_{f}} = pH - pKa \rightarrow \frac{\left[NH_{3}\right]_{f}}{\left[NH_{4}\right]_{f}} = 10^{pH - pKa} \end{split}$$

$$\frac{V_a = 6 \text{ mL}}{[NH_4]_f}$$
 عند إضافة $\frac{[NH_3]_f}{[NH_4]_f}$ عند إضافة $\frac{5}{1}$

$$V_b = 6 \text{ mL} \rightarrow \text{pH} = 9$$

و لدينا:

 $pKa(NH_4^+/NH_3) = 9.2$

و اعتمادا على العلاقة السابقة:

$$\frac{[NH_3]_f}{[NH_4]_f} = 10^{9-9.2} = 0.63$$

$$\frac{[NH_3]_f}{[NH_4]_f} = 0.63 < 1 \rightarrow [NH_3]_f < [NH_4]_f$$

 NH_3 أذن الحمض NH_4^+ مغلب على حمضع المرافق

ب- قيمة x_f : اعتمادا على العلاقة المعطاة :

$$x_f = \frac{0.1.0.02}{1 + 0.63} = 1.23.10^{-3} \text{ mol}$$

جـ- التقدم الأعظمي : $V_a = 6 \; mL < V_{aF}$ (قبل التكافؤ) ، في هذه الحالة يكون H_3O^+ هو المتفاعل المحد و منه : $V_a = 6 \; mL < V_{aF}$

 $C_a V_a - x_{max} = 0 \rightarrow c_{max} = C_a V_a$

ب- استنتاج أن تفاعل المعايرة تفاعل تام : نحسب τ_f :

$$\tau_{f} = \frac{x_{f}}{x_{max}}$$

$$\tau_{f} = \frac{1.23 \cdot 10^{-3}}{1.2 \cdot 10^{-3}} \approx 1$$

إذن تفاعل معايرة تام .

6- ثابت التوازن:

$$K = \frac{\left[NH_4^+\right]_f}{\left[NH_3\right]_f\left[H_3O^+\right]_f} = \frac{1}{K_a(NH_4^+/NH_3)}$$
$$K = \frac{1}{6.3 \cdot 10^{-10}} = 1.6 \cdot 10^9$$

 $\frac{10^{10}}{10^{10}}$ ، نستنتج أن تفاعل المعايرة تام .

<u>التمرين (8) :</u>

نعاير عند الدرجة $\mathrm{CH_{3}COOH}$ من محلول مائي ممدد لحمض الإيثانويك $\mathrm{CH_{3}COOH}$ ، تركيزه $C_{b} = 10^{-2} \text{ mol/L}$ المولي الابتدائي C_{a} بمحلول هيدروكسيد الـصوديوم ($Na^{+} + HO^{-}$) تركيزه المولي عبدروكسيد الـصوديوم و حجمه V_b . النتائج المتحصل عليها مكنت من رسم البيان $pH=f(V_b)$. V_b

- 1- أذكر البروتوكول التجريبي لتحقيق قياس الـ pH لمحلول .
 - 2- أكتب معادلة التفاعل المنمذَّج للمعايرة .
- 3- كيف تسمى كل من النقطتين B ، A ، أذكر مميزات كل نقطة .
 - 4- اعتمادا على البيان:
- . المعاير CH_3COOH المعاير مصل الايثانويك CH_3COOH المعاير
- . ($CH_3COOH_{(aq)}/CH_3COO^{-}_{(aq)}$) و قيمة الـ Ka و قيمة الـ و قيمة الـ و قيمة الـ
 - جـ بين أن حمض الإيثانويك ضعيف .
- = 1 د- ما هو حجم محلول هيدروكسيد الصوديوم المضاف عندما يكون
 - نجد إضافة $V_b = 6 \text{ mL}$ المزيج هو 5:
 - اً عبر عن النسبة $[CH_3COO^-]$ بدلالة pKa و pKa أ- عبر عن النسبة $[CH_3COOH]$
 - ب- مثل جدول تقدم التفاعل المنمذج للمعايرة.
 - . $V_b=6~mL$ عند إضافة x_f عند x_f عند إضافة بدلالة x_f عند أسابقة بدلالة عند x_f
 - د- أحسب النسبة النهائية للتقدم $au_{
 m f}$ ، ماذا تستنتج ؟
 - 6- تحقق من نتيجة السؤال5-جـ بحساب ثابت التوازن K .

الأجوبة :

- 1- البروتوكول التجريبي للمعايرة:
- نملأ السحاحة بمحلول هيدروكسيد الصوديوم و نضبط مستوى المحلول عند التدريجة صفر .
- نسحب باستعمال ماصة عيارية حجما V_0 من محلول النشادر و نضعه في بيشر الذي يوضع بدوره فوق مخلاط
 - نعاير الـ pH متر باستعمال محلولين موقيين مختلفين على الأقل لهما pH معلوم .
- نغسل جيدا مسبار الـ pH متر بالماء المقطر و نجففه ، ثم نغمره بخذر في البيشر الذي يحتوي على محلول حمض الإيثانويك (نغمره شاقوليا دون لمس القطعة المغناطيسة الخاصة بالمخلاط) .
- نشغل المُخلاط المغناطيسي و نبدأ في إضافة حجوم مختلفة من محلُول هيدروكسيد الصوديوم الموجود في
- نقيس في كل إضافة قيمة pH الوسط التفاعلي (المزيج) و ندون النتائج في جدول يمكن من خلاله رسم المنحنى $pH = f(V_2)$
 - 2- معادلة التفاعل:

$CH_3COOH + HO^- = CH_3COO^- + H_3O^+$

B و A و B اسم و مميزات النقطتين

- النقطة A تسمى نقطة التكافؤ و عندها تتفاعل كل كمية CH₃COOH التي نحن بصدد معايرتها مع كل كمية النقطة الموجودة في محلول هيدروكسيد الصوديوم المضاف عند التكافؤ ، أي تفاعل المعايرة عند التكافؤ يكون في نسب ستو کیو متریة
- النقطة B تسمى نقطة التكافؤ و عندها تتفاعل نصف كمية CH3COOH الابتدائية في محلول حمض الايثانويك المعايَر

 $\frac{1}{2}$: CH₃COOH للمحلول $\frac{1}{2}$ التكافؤ :

$$C_a V_a = C_b V_{bE} \rightarrow C_a = \frac{C_b V_b}{V_a}$$

من البيان من نقطة التكافؤ $V_{bE}=10~mL$ و منه :

$$C_a = \frac{10^{-2} \cdot 0.01}{0.01} = 10^{-2} \text{ mol/L}$$

ب- قيمة الـ Ka <u>:</u> من نقطة نصف التكافؤ :

$$pKa=pH_{1/2}=4.8$$

$$K_a = 10^{-4.8} = 1.58 \cdot 10^{-5}$$

جـ اثبات أن حمض الايثانويك ضعيف:

$$\tau_f = \frac{\left[H_3 O^+\right]_f}{C_a}$$

من البيان قبل المعايرة ($V_b=0$) يكون pH محلول حمض الإيثانويك هو 3.4 و منه يكون في هذا المحلول : $[H_3O^+]_c = 10^{-3.4} = 4.10^{-4} \text{ mol/L}$

: منه و $C_a = 10^{-2} \, \text{mol/L}$ و منه

$$\tau_{\rm f} = \frac{4.10^{-4}}{10^{-2}} = 4.10^{-2}$$
 (4%)

نلاحظ : $\tau_{\rm f} < 1$ و منه انحلال حمض الایثانویك في الماء غیر تام و بالتالي فهو حمض ضعیف . $\frac{ \left[{\rm CH_3COO}^- \right]_{\rm f} }{ {\rm CH_3COOH}_{\rm a} }$ د - حجم محلول NaOH المضاف عندما یکون $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

في هذه الحالة تكون المعايرة بلغت نقطة نصف التكافؤ و عندها يكون:

$$V_b = \frac{V_{bE}}{2} = \frac{10 \text{ mL}}{2} = 5 \text{ mL}$$

$$\frac{[\mathrm{CH_3COO}^{-}]_{\mathrm{f}}}{[\mathrm{CH_3COOH}]_{\mathrm{f}}}$$
 بدلالة $\frac{5}{-5}$

$$\begin{split} K_{a} = & \frac{\left[\text{CH}_{3}\text{COO}^{\text{-}} \right]_{f} \left[\text{H}_{3}\text{O}^{\text{+}} \right]_{f}}{\left[\text{CH}_{3}\text{COOH} \right]_{f}} \\ \log & \text{Log} \frac{\left[\text{CH}_{3}\text{COO}^{\text{-}} \right]_{f}}{\left[\text{CH}_{3}\text{COOH} \right]_{f}} + \log \left[\text{H}_{3}\text{O}^{\text{+}} \right]_{f} \end{split}$$

$$\begin{split} -\log K_a &= -\log \frac{\left[\text{CH}_3 \text{COO}^- \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} - \log \left[\text{H}_3 \text{O}^+ \right]_f \\ pKa &= -\log \frac{\left[\text{CH}_3 \text{COO}^- \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} + pH \\ \log \frac{\left[\text{CH}_3 \text{COO}^- \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} = pH - pKa \\ &\rightarrow \frac{\left[\text{CH}_3 \text{COO}^- \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} = 10^{pH - pKa} \\ &\qquad \qquad \underbrace{ \begin{bmatrix} \text{CH}_3 \text{COO}^- \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f} \\ = \frac{\left[\text{CH}_3 \text{COOH} \right]_f}{\left[\text{CH}_3 \text{COOH} \right]_f$$

•
$$V_b = 6 \text{ mL} \rightarrow pH = 5$$

■
$$pK_a = 4.8$$

و منه:

$$\frac{\left[\text{CH}_{3}\text{COO}^{-}\right]_{f}}{\left[\text{CH}_{3}\text{COOH}\right]_{f}} = 10^{5-4.8} = 1.58$$

ب- جدول التقدم:

الحالة	التقدم	$CH_3COOH + HO^- = CH_3COO^- + H_2O$				
ابتدائية	x = 0	C_aV_a	C_bV_b	0	بزيادة	
انتقالية	X	C_aV_a - x	C_bV_b - x	X	بزيادة	
نهائية	X_{f}	C_aV_a - x_f	C_bV_b - x_f	X_{f}	بزيادة	

$$\frac{[CH_{3}COO^{-}]_{f}}{[CH_{3}COOH]_{f}} \xrightarrow{\text{in } X_{f}} \frac{[CH_{3}COOH]_{f}}{[CH_{3}COOH]_{f}}$$

$$\bullet \left[\text{CH}_{3} \text{COOH} \right]_{f} = \frac{C_{a} V_{a} - x_{f}}{V_{S}}$$

: $[CH_3COOH]_f$ على $[CH_3COO^-]_f$ بقسمة

$$\frac{\left[\text{CH}_{3}\text{COO}^{-}\right]_{f}}{\left[\text{CH}_{3}\text{COOH}\right]_{f}} = \frac{\frac{x_{f}}{V_{S}}}{\frac{C_{a}V_{a} - x_{f}}{V_{S}}} \rightarrow \frac{\left[\text{CH}_{3}\text{COO}^{-}\right]_{f}}{\left[\text{CH}_{3}\text{COOH}\right]_{f}} = \frac{x_{f}}{C_{a}V_{a} - x_{f}}$$

 $V_b = 6 \text{ mL}$ عند إضافة X_f عند إضافة عند اسابقا :

$$V_b = 6 \text{ mL} \rightarrow \frac{\left[\text{CH}_3\text{COO}^-\right]_f}{\left[\text{CH}_3\text{COOH}\right]_f} = 1.58$$

و من خلال العلاقة السابقة نكتب:

$$1.58 = \frac{x_f}{(10^{-2}.10^{-2}) - x_f}$$

$$1.58 = \frac{x_f}{10^{-4} - x_f} \rightarrow 1.58 \cdot 10^{-4} - 1.58 x_f = x_f$$

1.58 .
$$10^{-4} = 2.58 \text{ x}_f \rightarrow \text{ x}_f = \frac{1.58.10^{-4} \text{ mol}}{2.58} = 6.12.10^{-5} \text{ mol}$$

د- النقدم النهائي $au_{
m f}$: $V_{
m b} = 6~{
m mL} < V_{
m bE}$ هو المتفاعل المحد و عليه يمكن كتابة اعتمادا على $V_{
m b} = 6~{
m mL} < V_{
m bE}$ جدول التقدم:

$$C_bV_b$$
 - $x_{max} = 0 \rightarrow x_{max} = C_bV_b$
 $x_{max} = 10^{-2} . 6 . 10^{-3} = 6 . 10^{-5} mol$

لدبنا

$$\tau_{f} = \frac{x_{f}}{x_{max}}$$

$$\tau_{f} = \frac{6.12.10^{-5}}{6.10^{-5}} \approx 1$$

نستنتج أن تفاعل المعايرة تام . 6- حساب ثابت التوازن : لدينا :

$$\begin{split} K = & \frac{\left[\text{CH}_{3}\text{COOH} \right]_{f}}{\left[\text{CH}_{3}\text{COO}^{-} \right]_{f} \left[\text{HO}^{-} \right]_{f}} \\ K = & \frac{\left[\text{CH}_{3}\text{COOH} \right]_{f} \left[\text{H}_{3}\text{O}^{+} \right]}{\left[\text{CH}_{3}\text{COO}^{-} \right]_{f} \left[\text{H}_{3}\text{O}^{+} \right]_{f} \left[\text{HO}^{-} \right]_{f}} \right. \\ \to & K = \frac{\left[\text{CH}_{3}\text{COOH} \right]_{f} \left[\text{H}_{3}\text{O}^{+} \right]}{\left[\text{CH}_{3}\text{COO}^{-} \right]_{f} \left[\text{H}_{3}\text{O}^{+} \right]_{f} \left[\text{HO}^{-} \right]_{f}} \end{split}$$

و منه:

$$K = K_a \cdot \frac{1}{K_e} \rightarrow K = \frac{K_a}{K_e}$$

لدينا :

•
$$K_a = 1.58 \cdot 10^{-5}$$

•
$$K_e = 10^{-4}$$

و منه:

$$K = \frac{1.58.10^{-5}}{10^{-14}} = 1.58.10^9$$

نلاحظ: $10^4 > 10^4$ ، نستنتج أن تفاعل المعايرة تام ، و هذا يتفق مع النتيجة السابقة .

<u>التمرين (9):</u>

نحضر عند الدرجة $^{\circ}C_{\rm b}$ محلول مائيا للنشادر $^{\circ}C_{\rm b}$ حجمه $^{\circ}C_{\rm b}$ و تركيزه المولي $^{\circ}C_{\rm b}$ ، ثم نضيف له ، تدريجيا محلول حمض كلور الهيدروجين تركيزه المولي $m C_a = 10^{-2}~mol/L$ مع بعض قطرات من الهيليالتين يتغير لون الكاشف بعد سكب حجم V_{aE} من المحلول الحمضي ، (الشكل-1) المقابل يمثل تغيرات النسبة بين التركيز المولي لمحلول النشادر المتبقي $[NH_3]$ و التركيز المولي لحمضه المرافق $[NH_4^+]$ بدلالة حجم المحلول الحمضي

1- أوجد:

أ- حجم المحلول الحمضى V_{aE} اللازم للتكافؤ .

ب التركيز المولي الابتدائي C_b لمحلول النشادر .

2- استنتج من الشكل المعطى قيمة الـ Pka للثنائية (NH_4^+/NH_3) ، علما أن pH محلول النشادر قبل المعايرة هو 9.9

الأحوية :

1- أ- حجم المحلول الحمضي المضاف: طريقة أولى:

عند التكافؤ $\overline{\text{Tielet}}$ عند التكافؤ $\overline{\text{Tielet}}$ كل كمية $\overline{\text{NH}_3}$ و عليه يكون :

$$[NH_3] \approx 0 \rightarrow \frac{[NH_3]}{[NH_4^+]} = 0$$

 $V_{aE} = 40\ mL$: بالاسقاط في البيان نجد طريقة ثانية : - عند نصف التكافؤ :

$$[NH_3] = [NH_4^+] \rightarrow \frac{[NH_3]}{[NH_4^+]} = 1$$

- كما يكون الحجم المضاف من محلول كلور الهيدروجين مساوي لنصف الحجم المضاف عند التكافؤ ، أي :

$$V_a = \frac{V_{aE}}{2}$$

بعبارة أخرى:

$$V_a = \frac{V_{aE}}{2} \longrightarrow \frac{[NH_3]}{[NH_4^+]} = 1$$

بالإسقاط في البيان نجد:

$$\frac{V_{aE}}{2} = 20 \, mL \, \rightarrow \, V_{aE} = 40 \, mL$$

ب- التركيز المولي C_b الابتدائي لمحلول النشادر : عند التكافؤ :

$$C_b V_b = C_a V_{aE} \rightarrow C_b = \frac{C_a V_{aE}}{V_b}$$

$$C_b = \frac{10^{-2} .40.10^{-3}}{20.10^{-3}} = 2.10^{-2} \text{ mol/L}$$

2- قيمة الـ pKa : لدينا :

$$pH = pKa + log \frac{\left[NH_3\right]}{\left[NH_4^{+}\right]} \rightarrow pKa = pH - log \frac{\left[NH_3\right]}{\left[NH_4^{+}\right]}$$

 $[NH_3]$ و من البيان يكون قبل المعايرة $V_a=0$ الدينا من معطيات التمرين : pH=9.9 و من البيان يكون قبل المعايرة $V_a=0$ ، بالتعويض في العلاقة السابقة نجد:

pKa = 9.9 - log5 = 9.2

التمرين (10):

التالية : C_0 لمحلول هيدروكسيد الصوديوم تركيزه المولى C_0 تحمل المعلومات التالية :

$$P = 20 \% \cdot d = 1.3 \cdot M = 40 \text{ g/mol}$$

حيث : • M هي كتلة المولية لهيدر وكسيد الصوديوم .

• d كثافة المحلول.

■ P هي النسبة الكتلية للمحلول ، تمثل كتلة هيدروكسيد الصوديوم المنحلة في 100g من محلول العينة

أ- أثبت أن النسبة الكتلية P يعبر عنها بدلالة d ، M ، C_0 بالعلاقة :

$$P = \frac{MC_0}{10d}$$

. $\rho(H_2O=1000g/L$: علما أن الكتلة الحجمية للماء

 \mathbf{C}_0 ب- أحسب قيمة

جـ ما هو حجم محلول حمض كلور الهيدروجين الذي تركيزه المولي $C_a = 0.1 \, \text{mol/L}$ اللازم لمعايرة حجم . هل يمكن تحقيق هذه المعايرة بسهولة ؟ علل $m V_0=10~mL$

 $^{\circ}$ 2- نحضر عند الدرجة $^{\circ}$ 2 محلولا $^{\circ}$ $^{\circ}$ بتمديد الحجم $^{\circ}$ $^{\circ}$ $^{\circ}$ من العينة المخبرية $^{\circ}$ $^{\circ}$ مرة ، نأخذ بواسطة ماصة عيارية $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ من المحلول $^{\circ}$ الممدد و نعايره بمحلول كلور الهيدروجين تركيزه المولي الممدد و نعايره بمحلول كلور الهيدروجين تركيزه المولي $^{\circ}$ $^{$

أ- أكتب المعادلة المنمذجة للتحول الحادث أثناء المعايرة . ب- كيف نضع مسبار الـ pH- متر حتى يكون مغمورا بشكل ملائم ؟ لماذا ؟

جـ ما هي قيمة pH الوسط التفاعلي عند التكافؤ

د- اعتمادًا على البيان بين أن هيدروكسيد الصوديوم هو أساس قوي .

هـ- أحسب الحجم المضاف عند التكافؤ V_{aE} ، ثم حدد سلم الرسم على محور V_2 .

<u>الأجوبة :</u>

$$P = \frac{M.C_0}{10d}$$
 البات

- من تعريف النسبة الكتلية يمكن كتابة :

$$\left\{ \begin{array}{l} 100 \ g \ (S_0) \ \rightarrow \ P\% \ g \ (NaOH) \\ m(S_0) \ g \ \rightarrow \ m(NaOH) \ g \end{array} \right.$$

ومنه:

$$P = \frac{m(NaOH)}{m(S_0)}.100$$

- إذا كانت $ho(S_0)$ هي الكتلة الحجمية لمحلول هيدر وكسيد الصوديوم نكتب :

$$\rho(S_0) = \frac{m(S_0)}{V_S} \rightarrow m(S_0) = \rho(S_0).V_S$$

- إذا كان $C_{\rm m}$ هو التركيز الكتلي لمحلول هيدروكسيد الصوديوم نكتب

$$C_m = \frac{m(NaOH)}{V_S} \rightarrow m(NaOH) = C_m.V_S$$

و منه تصبح عبارة P كما يلي:

$$P = \frac{C_{\rm m}.V_{\rm S}}{\rho.V_{\rm S}}.100 \rightarrow P = \frac{100.C_{\rm m}}{\rho}$$

لدينا

$$-C_m = M.C_0$$

•
$$d = \frac{\rho(S_0)}{\rho(H_2O)} \rightarrow \rho = d \cdot \rho(H_2O) = d \cdot 1000 \rightarrow \rho = 1000d$$

و منه يصبح:

$$P = \frac{100.M.C_0}{1000.d} \rightarrow P = \frac{M.C_0}{10.d}$$

ب- قيمة $\frac{C_0}{2}$: من العلاقة السابقة لدينا :

$$C_0 = \frac{10.d.P}{M}$$
 $C_0 = \frac{10.1.3.20}{40} = 6.5 \text{ mol/L}$

جـ حجم محلول حمض كلور الهيدروجين اللازم للتكافؤ: عند التكافؤ:

$$C_0 V_0 = C_a V_{aE} \ \rightarrow \ V_{aE} = \frac{C_0 V_0}{C_a}$$

$$V_{aE} = \frac{6.5 \cdot 0.01}{0.10} = 0.650 \, L = 650 \, mL$$

نلاحظ أن حجم المحلول الحمضى اللازم للمعايرة كبير جدا مقارنة مع الحجم الذي يمكن أن تحتويه السحاحة ، إذن لا يمكن تحقيق المعايرة بسهولة

2-أ- معادلة التفاعل المنمذج للمعايرة:

 $H_3O^+_{(aq)} + HO^-_{(aq)} = 2H_2O_{(\ell)}$

ب- حتى يكون المسبار مغمور بشكل ملائم في البيشر يجب أن يوضّع بشكل عموديا بعيدا عن سطح البيشر و ذلك لتجنب إتلافه بسبب ارتجاج الوعاء إذا كان موضوع فوق المرج ، أو بسبب ملامسته للقطعة المغناطيسية في حالة استعمال المخلاط المغناطيسي.

جـ قيمة الـ pH عند التكافؤ :

pH = 7 : و عليه فالمزيج عند التكافؤ يكون معتدل أي

د- إثبات أن هيدر وكسيد الصوديوم هو أساس قوي :

بما أن العينة مددت 650 مرة يكون تركيز المحلول الممد و هو المحلول الذي قمنا بمعايرته هو:

$$C_b = \frac{C_0}{650} = \frac{6.5}{650} = 10^{-2} \text{ mol/L}$$

 $(V_a=0)$ و من البيان قبل المعايرة الوسط التفاعلي جزء من المحلول الممدد (S) ذو التركيز ، و من البيان قبل المعايرة یکون : pH = 2 ، إذن محلول هیدروکسید الصودیوم الممدد هو pH = 2 و منه :

$$\left[H_3 O^+ \right]_f = 10^{-2} \text{ mol/L} \rightarrow \left[HO^- \right] = \frac{\text{Ke}}{\left[H_3 O^+ \right]_f} = \frac{10^{-14}}{10^{-12}} \rightarrow \left[HO^- \right] = 10^{-2} \text{ mol/L}$$

نلاحظ أن $= C_b = [HO^-]$ إذن محلول هيدروكسيد الصوديوم هو أساس قوي .

هـ الحجم المضاف عند التكافؤ : V_{aE} عن التكافؤ :

$$C_b V_b = C_a V_{aE} \ \rightarrow \ V_{aE} = \frac{C_b V_b}{C_a}$$

 $G(\mu S)$

$$V_{aE} = \frac{10^{-2} \cdot 0.01}{5 \cdot 10^{-3}} = 0.02 L = 20 \text{ mL}$$

500

2

سلم الرسم:

الحجم $V_{aE}=20$ و عليه : الورقة الميليمترية قيمة $V_{aE}=20$ و عليه :

$$\begin{cases} 20 \text{ mL} \rightarrow 5\text{cm} \\ \text{x mL} \rightarrow 1 \text{ cm} \end{cases}$$

 $1 \text{cm} \rightarrow 4 \text{ mL}$: و منه سلم الرسم هو $x = \frac{20.1}{5} = 4 \text{ mL}$: إذن

<u>التمرين (11):</u>

توجد في مخبر الثانوية قارورة لحمض كلور الهيدروجين المركز A_0 مكتوب عليها P = 34% ، الكتلة االحجمية لـ ho=1180 هي ho=1180 . النسبة المئوية الكتلية للحمض تعنى كتلة الحمض المنحلة في ho=1180 من هذا المحلول . من أجل التحقق من الكتابة P = 34% ، نقوم بما يلى :

• المرحلة الأولى : نمدد عينة من المحلول \hat{A}_0 مرة فنحصل على محلول \hat{A}_1 تركيزه \hat{A}_1 .

. $C_b = 0.1 \; \text{mol/L}$ و نعايره بمحلول الصود تركيزه $V_1 = 10 \; \text{mL} : A_1$ و نعايره بمحلول الصود تركيزه و بمتابعة تطور الناقلية G للمحلول نحصل على المنحنى التالى:

1- اكتب معادلة التفاعل المنمذج للمعايرة .

 C_1 التركيز المولى G = f(V) حدد اعتمادا على المنحنى لمحلول حمض كلور الهيدر وجين الممدد

محلول C_{m0} المتنتج التركيز المولى C_0 المحلول محلول C_{m0} A_0 كلور الماء المركز

 A_0 ما هى كتلة A_0 من محلول A_0 .

5- ما هي كتلة كلور الهيدروجين HCl المنحل في 1L من A_0 المحلول

 A_0 أحسب النسبة الكتلية للمحلول A_0 ، هل تتوافق مع الكتابة

الموجودة على القارورة ؟

7- من بين الكواشف التي تضمنها الجدول التالي ما هو أنسب كاشف لهذه المعايرة ؟ مع التعليل .

الكاشف	أزرق البروموتيمول	الفينول فتالين	أحمر الميثيل
PH مجال تغير لونه	6.2 - 7.6	8.2 - 9.5	4.2 - 6.0

V (mL)

. M(Cl) = 35.5 g/mol ، M(H) = 1 g/mol : يعطى

الأجوبة :

2- أ- معادلة المعايرة :

$$H_3O^+_{(aq)} + HO^-_{(aq)} = 2H_2O_{(\ell)}$$

ب- التركيز C_1 لمحلول HCl الممدد : اعتمادا على معادلة المعايرة يكون عند التكافؤ :

$$C_1V_1 = C_bV_{bE} \ \rightarrow \ C_1 = \frac{C_bV_{bE}}{V_1}$$

الأستاذ : فرقاني فارس

. اذن : $V_{bE}=11~mL$: يكون G=f(t) البيان من خلال البيان و منه من حدية و منه من خلال البيان يكون

$$C_1 = \frac{0.1.11.10^{-3}}{10.10^{-3}} = 0.11 \text{ mol/L}$$

جـ التركيز المولي C_0 و الكتلي C_{m0} لمحلول HCl قبل التمديد : المحلول مخفف 100 مرة و عليه :

$$C_1 = \frac{C_0}{100} \rightarrow C_0 = 100 C_1 = 100.0.11 = 11 \text{ mol/L}$$

 $C_{m0} = M(HCl) \cdot C_0$

• M(HCl) = 1 + 35.5 = 36.5 g/mol

 $- C_{m0} = 36.5 \cdot 11 = 401.5 \text{ g/L}$

د- كتلة <u>1</u>L من <u>A</u>₀ :

$$\rho = \frac{m}{V} \rightarrow m = \rho V \longrightarrow m = 1180 \text{ . } 1 = 1180 \text{ g}$$

هـ كتلة HCl المنحل في 1L من HCl :

$$C_m = \frac{m'}{V} \rightarrow m' = C_m V$$

 $m' = 401.5 \cdot 1 = 401.5 g$

و - النسبة الكتلية لـ A_0 : يمكن القول أن A_0 من المحلول A_0 توجد به A_0 عرجه بنا القول أن A_0 من تعريف النسبة الكتلية يكون : A_0 من المحلول أن A_0 من المحلول أن A_0 توجد به وحد به

$$\begin{cases} 1180 \text{ g} \rightarrow 4150 \\ 100 \text{ g} \rightarrow P \end{cases} \rightarrow P = \frac{100.401.5}{1180} = 34\%$$

و هي توافق الكتابة المتواجدة على القارورة .

ي- الكاشف المناسب للمعايرة:

pH = 7 عند التكافؤ و منه و من خلال الجدول كون أن تفاعل المعايرة حادث بين حمض قوي و أساس قوي يكون المعطى يكون الكاشف المناسب لهذه المعايرة هو أزرق البروموتيمول.

تمارين مقترحة

التمرين (12): (بكالوريا 2011 - رياضيات) (الحل المفصل: تمرين مقترح 09 على الموقع)

d=1.3 و S_0 عينة مخبرية S_0 لمحلول هيدروكسيد الصوديوم تحمل المعلومات التالية :

. $C_0 = 8.8 \; \mathrm{mol.L^{-1}}$ بين بالحساب أن التركيز المولي للمحلول يقارب -1

ب- ما هو حجم محلول حمض كلور الهيدروجين الذي تركيزه المولى $\mathrm{C_a} = 0.10 \, \mathrm{mol.L^{-1}}$ اللازم لمعايرة من العينة المخبرية . $V_0 = 10 \text{ mL}$

جـ هل يمكن تحقيق هذه المعايرة بسهولة ؟ علل .

2- نحضر محلولا S بتمديد العينة المخبرية 50 مرة . صف البروتوكول التجريبي الذي يسمح بتحضير 500 mL

من المحلول S .

3- نأخذ بواسطة ماصة حجما من المحلول S من المحلول V_b = 10.0 mL مسبار جهاز الـ pH- متر في البيشر و نضيف إليه كمية مناسبة من الماء المقطر تجعل المسبار مغمورا بشكل ملائم نقيس قيمة الـ pH ، بعدها نسكب بواسطة سحاحة حجما من المحلول الحمضى ثم نعيد قياس الـ Ha .

أ- كيف نضع مسبار الـ pH- متر حتى يكون مغمور ابشكل ملائم ؟ لماذآ ؟

ب- أكتب المعادلة المنمذجة للتحول الحادث أثناء المعايرة .

. حين الإحداثيين $(V_{aE}\,,\,pH_E)$ لنقطة التكافؤ E مع ذكر الطريقة المتتبعة

د- استنتج التركيز المولى للعينة المخبرية .

 $M(Na) = 23 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$; $M(H) = 1 \text{ g.mol}^{-1}$

 $V_{a}(mL)$

أحوية مختصرة :

$$V_{aE} = \frac{C_0 V_0}{C_a} = 0.880 L = 880 \text{ mL} \text{ ($.$} \cdot C_0 = \frac{10.d.P}{M} = 8.8 \text{ mol/L (†-1)}$$

جـ) لايمكن تحقيق المعايرة بسهولة لأن حجم المحلول الحمضي اللازم للمعايرة كبير جدا مقارنة مع الحجم الذي يمكن أن تحتويه السحاحة

نأخذ بواسطة ماصة $100~\mathrm{mL}$ ، الحجم $V_0 = 10~\mathrm{mL}$ من العينة المخبرية و نضعها في الحوجلة العيارية (2 mL ثم نكمل الحجم بالماء المقطر إلى الخط العياري (التدريجة 500) ، بعدها نرج المحلول حتى يتجانس أو نخلطه بقضبيب زجاجي

3- أ) حتى يكون المسبار مغمور بشكل ملائم في البيشر يجب أن يوضع عموديا و ذلك لتجنب إتلافه من طرف المخلاط المغناطيسي أو اصطدامه بالوعاء بسبب ارتجاج الوعاء إذا كان موضوع فوق المرج .

الشكاء – 4 ----

. (
$$V_{aE} = 17.6 \text{ mL}$$
 , $pH = 7$) (\Rightarrow ' $H_3O^+_{(aq)} + HO^-_{(aq)} = 2H_2O_{(\ell)}$ (\hookrightarrow

د) نحسب أو $V_b = \frac{C_a V_{aE}}{V_b} = 0.176 \, \text{mol/L}$ و من ثم نحسب تركيز $C_b = \frac{C_a V_{aE}}{V_b} = 0.176 \, \text{mol/L}$ و من ثم نحسب تركيز العينة المخبرية فنجد : $C_0 = 50 \, C_b = 8.8 \, \text{mol/L}$

التمرين (13): (بكالوريا 2013 - علوم تجريبية) (الحل المفصل: تمرين مقترح 10 على الموقع)

نقيس محلول (S) لحمض الإيثانويك CH_3COOH حجمه CH_3COOH محلول (S) نقيس نحضر محلول (S) نقيس الناقاية الكهربائية النوعية $\sigma=16.0~{\rm mS.m}^{-1}$. نقيس الناقاية الكهربائية النوعية $\sigma=16.0~{\rm mS.m}^{-1}$

1- أكتب معادلة التفاعل المنمذجة لانحلال حمض الإيثانويك في الماء .

2- جد عبارة $\left[H_3O^+_{(aq)}\right]_f$ في المحلول (S) بدلالة σ ، (σ 0- $(A_3O^+_{(aq)})$ 0 حيث : λ 1 الناقلية النوعية المولية الشاردية ، ثم أحسبه .

3.4 بين أن قيمة الـ pH للمحلول هي 3.4.

4- نعاير حجما V_a من المحلول السّابق (S) بواسطة محلول هيدروكسيد البوتاسيوم ($K^+_{(aq)} + HO^-_{(aq)}$) تركيزه المولي : $C_b = 2.0 \cdot 10^{-3} \, \text{mol/L}$.

قبل عملية المعايرة ، كانت النسبة : $\frac{[CH_3COO^-]}{[CH_3COOH_{(aq)}]}$ ، و أثناء المعايرة عند إضافة

 $\frac{\left[\text{CH}_{3}\text{COO}^{\text{-}}\right]}{\left[\text{CH}_{3}\text{COOH}_{(aq)}\right]}$ = 1 أصبحت النسبة V_{b} = 10 mL

أ - استنتج قيمة Ka ثابت الحموضة للثنائية ($CH_3COOH_{(aq)}/CH_3COO^{-}_{(aq)}$) . V_a قيمة V_a قيمة و V_a .

. $\lambda(H_3O^+) = 35.0 \text{ mS.m}^2.\text{mol}^{-1}$ ، $\lambda(CH_3COO^-) = 4.1 \text{ mS.m}^2.\text{mol}^{-1}$: المعطیات

<u>أجوبة مختصرة :</u>

 $. CH_3COOH + H_2O = CH_3COO^- + H_3O^+ (1)$

$$\cdot \left[H_3 O^+ \right]_f = 0.41 \, \text{mol/m}^3 = 4.10 \, .10^{-4} \, \, \text{mol/L} \, \cdot \left[H_3 O^+ \right]_f = \frac{\sigma}{\lambda (C H_3 COO^-) + \lambda (H_3 O^+)} \, \, (2 \, \, \text{mol/m}^3 = 4.10 \, .10^{-4} \, \, \text{mol/L} \, \cdot \left[H_3 O^+ \right]_f = \frac{\sigma}{\lambda (C H_3 COO^-) + \lambda (H_3 O^+)} \, \, (2 \, \, \text{mol/m}^3 = 4.10 \, .10^{-4} \, \, \text{mol/L} \, \cdot \left[H_3 O^+ \right]_f = \frac{\sigma}{\lambda (C H_3 COO^-) + \lambda (H_3 O^+)} \, \, (2 \, \, \text{mol/m}^3 = 4.10 \, .10^{-4} \, \, \text{mol/L} \, \cdot \left[H_3 O^+ \right]_f = \frac{\sigma}{\lambda (C H_3 COO^-) + \lambda (H_3 O^+)} \, \, (2 \, \, \text{mol/m}^3 = 4.10 \, .10^{-4} \, \, \text{mol/L} \, \cdot \left[H_3 O^+ \right]_f = \frac{\sigma}{\lambda (C H_3 COO^-) + \lambda (H_3 O^+)} \, \, (2 \, \, \text{mol/m}^3 = 4.10 \, .10^{-4} \, \, \text{mol/L} \, \cdot \left[H_3 O^+ \right]_f = \frac{\sigma}{\lambda (C H_3 COO^-) + \lambda (H_3 O^+)} \, \, (2 \, \, \text{mol/m}^3 = 4.10 \, .10^{-4} \,$$

. $V_a = \frac{C_b V_{bE}}{C_a} = 4.10^{-3} L = 4 \text{ mL} \quad (\because \text{ Ka} = 1.70 . 10^{-5} (^{\dagger} - 4))$

التمرين (14): (بكالوريا 2010 - علوم تجريبية) (الحل المفصل: تمرين مقترح 11 على الموقع)

يتكون مشروب غازي من غاز ثنائي أكسيد الكربون ${\rm CO}_2$ منحل في الماء و السكر و حمض البنزويك ذو الصيغة ${\rm C}_6{\rm H}_5{\rm COOH}$. يريد أحد التلاميذ إجراء عملية معايرة لمعرفة التركيز المولي ${\rm C}_6{\rm H}_5{\rm COOH}$ فذا المشروب ، و لأجل ذلك يأخذ منه حجما قدره ${\rm C}_4{\rm C}_4{\rm$

 $^{\circ}$ C المحلول عند الدرجة $^{\circ}$ C الشكل متر فقمكن من رسم المنحنى البياني $^{\circ}$ PH = $^{\circ}$ EH (الشكل) .

باعتبار حمض البنزويك الحمض الوحيد في المشروب الغازي.

أ- أكتب المعادلة الكيميائية المعبرة عن التفاعل المنمذج للتحول الكيميائي الحاصل خلال المعايرة .

ب- حدد بيانيا إحداثيي نقطة التكافؤ E .

جـ استنتج التركيز المولى C_a لحمض البنزويك .

2- من أجل حجم $V_b = 10.0 \text{ mL}$ لهيدر وكسيد الصوديوم المضاف :

أ- أنشئ جدولا لتقدم التفاعل.

ب- أوجد كمية مادة كل من شوارد الهيدرونيوم $(H_3O^+_{(aq)})$ و جزيئات البنزويك المتبقية في الوسط التفاعلي مستعينا بجدول التقدم .

3- ما هو الكاشف المناسب لمعرفة نقطة التكافؤ من بين الكواشف المذكورة في الجدول أدناه مع التعليل .

pH مجال التغير اللوني	اسم الكاشف
6,2 - 4,2	أحمر المبيثيل
7,6 - 6,0	أزرق البرومونتيمول
10,0 - 8,0	الفينول فتاليين

أجوبة مختصرة :

.
$$(V_b = 10 \text{ mL} \text{ , } pH = 8 \text{) } (\because \text{ } C_6H_5COOH_{(aq)} + HO^-_{(aq)} = C_6H_5COO^-_{(aq)} + H_2O_{(\ell)} (^{\dagger} - 1))$$

$$C_a = \frac{C_bV_{bE}}{V_a} = 2.10^{-2} \text{ mol/L } (\Rightarrow 1.0 \text{ mol/L })$$

2- أ<u>) جدول التقدم :</u>

ب) الكاشف المناسب هو الفينول فتالين لأن مجال تغير لونه يتضمن قيمة الـ $n_E(H_3O^+) = \left[H_3O^+\right]_E (V_a + V_{bE}) = 6.10^{-6} \, \text{mol}$ الكاشف المناسب هو الفينول فتالين لأن مجال تغير لونه يتضمن قيمة الـ pH عن التكافؤ .

التمرين (15): (بكالوريا 2008 – علوم تجريبية) (الحل المفصل: تمرين مقترح 17 على الموقع)

يحتوي الحليب على حمض اللاكتيك (حمض اللبن) الذي تزداد كميته عندما لا تحترم شروط الحفظ، و يكون الحليب غير صالح للاستهلاك إذا زاد تركيز حمض اللاكتيك فيه عن $^{-1}$ mol.L .

. (HA) و نرمز لها اختصارا (CH_3 -CHOH-COOH) و نرمز لها اختصارا

أثناء حصة الأعمال المخبرية ، طلب الأستاذ من تلميذين تحقيق معايرة عينة من حليب قصد معرفة مدى صلاحيته . التجربة الأولى : أخذ التلميذ الأول حجما 20~mL من الحليب و عايره بمحلول هيدروكسيد الصوديوم (محلول الصود) تركيزه المولي $^{-1}$ mol.L $^{-1}$ متتبعا تغيرات pH المزيج بواسطة pH متر ، فتحصل على المنحنى الممثل في الشكل المقابل .

التجربة الثانية : أخذ التلميذ الثاني حجما و مدده بالماء المقطر إلى أن أصبح حجمه 200mL ثم عاير المحلول الناتج بمحلول الصود السابق مستعملا كاشفا ملونا مناسبا ، فلاحظ أن لون الكاشف يتغير عند إضافة حجم من الصود قدره $V_{B} = 12.9 \text{ mL}$

1- أكتب معادلة التفاعل المنمذج لعملية المعايرة .

2- ضع رسما تخطيطيا للتجربة الأولى .

3- لماذًا أضاف التلميذ الماء في التجربة الثانية ؟ هل يؤثر ذلك على نقطة التكافؤ ؟

4- عين التركيز المولي لحمض اللاكتيك في الحليب المعاير في كل تجربة . ماذا تستنتج عن مدى صلاحية الحليب المعاير للاستهلاك؟

5- برأيك أي تجربة أكثر دقة .

أجوبة مختصرة :

نعلم أن الحليب بلونه الأبيض لا يسمح لنا بمشاهدة انقلاب لون (3 ، $HA_{(aq)} + HO_{(aq)}^- = A_{(aq)}^- + H_2O_{(\ell)}$ (1) الْكَاشُفْ عند نقطة التكافؤ ألهذا نضيف له الماء (نمدده) حتى يصبح شفافا أكثر من الأول و بالتالي يمكن رصد انقلاب اللون .

تأثير التمديد على نقطة التكافؤ:

نفس نفس ، $n(HA) = n(HO^-)$ ، هذا يعني أننا نستعمل نفس نفس نفس ، هذا يعني أننا نستعمل نفس حجم المحلول الأساسي سواء مددناه أم لم نمدده ، لكن قيمة الـ pH تكون أقل في حالة التمديد ، إذن لا يؤثر التمديد على نقطة التكافؤ لكن يؤثر على pH الوسط المزيج عند التكافؤ .

 $C_{A2} = 3.2.10^{-3} \text{ mol/L}$: التجربة الأولى $C_{A1} = \frac{C_B V_{BE}}{V_{A1}} = 3.0.10^{-2} \text{ mol/L}$ ما التجربة الأولى $C_{A2} = 3.0.10^{-2} \text{ mol/L}$

و هو تركيز المحلول الممدد و كون أننا مددنا المحلول 10 مرات، فالتركيز ينقص بـ 10 مرات و يكون تركيز $C_A' = 10 C_A = 3.2.10^{-2} \text{ mol/L}$: الحمض الأصلى هو

الاستنتاج : نلاحظ أن تركيز حمض اللبن أكبر من التركيز المسموح به $(^{2}-10^{-1})$ و عليه فالحليب الذي قمنا بمعايرته غير نلاحظ أن تركيز حمض اللبن أكبر من التركيز المسموح به $(^{2}-10^{-1})$ صالح للإستهلاك .

5) التجربة الأولى أدق من التجربة الثانية ، لأن في الأولى تم تحديد نقطة التكافؤ بدقة بواسطة مقياس الـ pH ، هذا الأخير يكون القياس المعطى من خلاله أدق من القياس المعطى عن طريق تغير اللون .

التمرين (16): (بكالوريا 2009 - علوم تجريبية) (الحل المفصل: تمرين مقترح 18 على الموقع)

محلول لحمض الإيثانويك CH_3COOH تركيزه CH_3COOH محلول لحمض الإيثانويك

1- اكتب معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي الحاصل بين حمض الإيثانويك و الماء .

2- انشئ جدو لا لتقدم التفاعل الكيميائي السابق.

. (نسبة تقدم التفاعل $[{
m H_3O}^+]$ بدلالة au ، au نسبة تقدم التفاعل .

: على الشكل (CH_3COOH/CH_3COO) على الثنائية (Ka) على الشكل عبارة ثابت الحموضة

$$Ka = \frac{\tau^2 C}{1-\tau}$$

5- نحدد قيمة au للتحول من أجل تراكيز مختلفة (C) و ندون النتائج في الجدول أدناه :

الصفحة : 34

$C(mol.L^{-1}) \times 10^{-2}$	17,8	8,77	1,78	1,08
τ (×10 ⁻²)	1,0	1,4	3,1	4,0
$A = 1/C(L.mol^{-1})$				
$B = \tau^2 / 1 - \tau$				

أ/ أكمل الجدول السابق.

A = f(B) ب/مثل البيان

. (CH_3COOH/CH_3COO^-) استنتج ثابت الحموضة Ka

<u>أجوبة مختصرة :</u>

 $CH_3COOH_{(aq)} + H_2O_{(\ell)} = CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$ (1

2- جدول التقدم:

الحالة	التقدم	CH ₃ COOH +	$H_2O =$	CH ₃ COO ⁻ -	+ H ₃ O ⁺
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	بزيادة	0	0
انتقالية	X	CV - x	بزيادة	X	X
نهائية	X_f	$CV - x_{\rm f}$	بزيادة	X_{f}	X_f

 $\left[H_3O^+\right]_f = \tau C (3)$

<u>5</u>- أ) إكمال الجدول :

C (mol/L) . 10 ⁻²	17.8	8.77	1.78	1.08
$\tau (10^{-2})$	1.0	1.4	3.1	4.0
$A = \frac{1}{C}$	5.62	11.40	56.18	92.60
$B = \frac{\tau_f^2}{(1 - \tau_f)} (10^{-4})$	1.0	2.0	9.9	16.7

 $Ka = 1.8.10^{-5}$: بمطابقة العلاقة النظرية و البيانية ، و بعد حساب الميل نجد

التمرين (17): (بكالوريا 2010 - علوم تجريبية) (الحل المفصل: تمرين مقترح 19 على الموقع)

المحاليل المائية مأخوذة في الدرجة ℃25 .

لأجل تعيين قيمة التركيز المولي لمحلول مائي (S_0) لحمض الميثانويك $HCOOH_{(aq)}$ نحقق التجربتين التاليتين : التجربة الأولى: ناخذ حجما V_0 من المحلول V_0 و نمدده 10 مرات (أي إضافة V_0 من الماء المقطر) لنحصل على محلول V_0 .

التجربة الثانية: نَأْخَذُ حَجْما $V_1 = 20 \, \text{mL}$ من المحلول الممدد (S_1) و نعايره بمحلول مائي لهيدروكسيد الصوديوم $V_1 = 20 \, \text{mL}$ تركيزه المولي $C_b = 0.02 \, \text{mol.L}^{-1}$. ($Na^+_{(aq)} + HO^-_{(aq)}$) تركيزه المعايرة البيان (الشكل-3) .

- 1- اشرح باختصار كيفية تمديد المحلول (S_0) و ما هي الزجاجيات الضرورية لذلك ؟
 - 2- أكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث أثناء المعايرة .
- S_{1} عين بيانيا إحداثيي نقطة التكافؤ ، و استنتج التركيز المولى للمحلول الممدد S_{1} .
- 4- أوجد بالاعتماد علَى البيان القيمة التقريبية لثابت الحموضة Ka للثنائية (HCOOH_(ag)/HCOO⁻(ag)).
 - 5- استنتج قيمة التركيز المولى للمحلول الأصلى (S_0) .

أجوبة مختصرة :

1) نأخذ mL من المحلول (S_0) و بما أننا نريد تمديدها 10 مرات أي جعل حجمها 10 أضعاف يساوي 200~mL ، نضع الحجم المأخوذ في حوجلة قياسية سعتها 200~mL ، ثم نضيف الماء المقطر إلى غاية بلوغ التدريجة 200~mL من الحوجلة .

· $HCOOH_{(aq)} + HO^{-}_{(aq)} = HCOO^{-}_{(aq)} + H_{2}O_{(\ell)}$ (2

. $C_0 = 10 C_1 = 0.2 \text{ mol/L}$ · $Ka = 1.58 \cdot 10^{-4} (4 \text{ mol/L})$

التمرين (18): (بكالوريا 2010 - رياضيات) (الحل المفصل: تمرين مقترح 20 على الموقع)

نحضر محلول (S) لحمض الإيثانويك (CH $_3$ COOH) لهذا الغرض ندخل كتلة m في حجم قدره 100 mL من الماء المقطر . نقيس pH المحلول (S) بواسطة مقياس الـ pH متر عند الدرجة 25° C فكانت قيمته 2.4 .

1- أكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث

2-أ/ انشئ جدو لا لتقدم التفاعل الكيميائي .

ب/ أوجد قيمة التقدم النهائي ${
m X_f}$.

جـ/ إذا علمت أن نسبة التقدّم النهائي $au_{\rm f}=0.039$ بين أن قيمة التركيز المولي ${\rm C}=10^{-2}~{\rm mol/L}$ ثم استنتج ${\rm m}$ قيمة الكتلة المنحلة في المحلول (S) .

3- أحسب كسر التفاعل الابتدائي Q_{ri} و كسر التفاعل عند التوازن Q_{rf} . ما هي جهة تطور الجملة الكيميائية ؟

4- بهدف التأكد من قيمة التركيز المولي C للمحلول (S) ، نعاير حجما $V_a=10~\text{mL}$ منه بو اسطة محلول أساسي للمحلول (Cb = 4.0 . $10^{-3}~\text{mol.L}^{-1}$ تركيزه المولي $(Na^+_{(aq)}+HO^-_{(aq)})$ فيحدث التكافؤ عند إضافة حجم $V_{bE}=25~\text{mL}$ من المحلول الأساسي .

أ/ أذكر البروتوكول التجريبي لهذه المعايرة .

ب/ أكتب معادلة التفاعل المنمذج لهذا التحول .

ج/ أحسب قيمة التركيز المولى C للمحلول (S) . قارنها مع القيمة المعطاة سابقا .

د/ ما هي قيمة pH المزيج لحظة إضافة 12.5 mL مُعلول هيدروكسيد الصوديوم؟

<u>أجوبة مذتصرة :</u>

$$CH_{3}COOH_{(aq)} + H_{2}O_{(\ell)} = CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$
 (1

2- أ<u>) جدول التقدم :</u>

الحالة	التقدم	CH ₃ COOH +	$OOH + H_2O = CH_3COO^- + H_3O^+$			
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	بزيادة	0	0	
انتقالية	X	CV – x	بزيادة	X	X	
نهائية	X_f	$CV - x_{\rm f}$	بزيادة	X_{f}	X_{f}	

. $m = C.M.V = 6.10^{-2} g$ · $x = n_f(H_3O^+) = [H_3O^+]_f V = 4.10^{-5} mol$ (\hookrightarrow

ن بعد لذا يكون
$$H_3O^+$$
 بعد لذا يكون ، $Q_{ri} = \frac{\left[CH_3COO^-\right]_i \left[H_3O^+\right]_i}{\left[CH_3COOH\right]_i}$ (3

.
$$Q_{rf} = 1.6.10^{-5}$$
 ، $Q_{rf} = \frac{\left[CH_3COO^{-}\right]_f \left[H_3O^{+}\right]_f}{\left[CH_3COOH\right]_f}$ ، $Q_{ri} = 0$: و منه یکون $\left[H_3O^{+}\right]_i = 0$

جـ) نلاحظ $Q_{ri} < Q_{rf}$ ، إذن تطور الجملة يكون في الإتجاه المباشر أي في جهة تشكل $Q_{ri} < Q_{rf}$. (هذا السؤال خاص بوحدة مراقبة تطور جملة كيميائية)

4- أ) البروتوكول التجريبي <u>:</u>

- نضع $m V_a = 10~ml$ من محلول حمض الإيثانويك في بيشر ثم نضيف له قطرات من كاشف مناسب

- نضع محلول الصود ذو التركيز $\mathrm{C_b} = 4 \cdot 10^{-4} \, \mathrm{mol/L}$ في السحاحة عند التدريجة (صفر)

- نقطر قطرة قطرة محلول الصود بواسطة السحاحة إلى أن يتغير اللون ، و الذي يدل على بلوغ التكافؤ .

. C_{bE} المحجم المائر المنكافؤ - .

$$C_a = \frac{C_b V_{bE}}{V_a} = 0.01 \text{ mol/L } (\Rightarrow `CH_3COOH_{(aq)} + HO_{(aq)} = CH_3COO_{(aq)} + H_2O_{(\ell)} (\Rightarrow CH_3COOH_{(aq)} + H_2O_{(\ell)})$$

د- قيمة الـ pH عند إضافة 12.5 mL من محلول الصود:

نلاحظ أن الحجم $V_{bE}=25~mL$ مساوي لنصف الحجم المضاف عند التكافؤ $V_{bE}=12.5~mL$ ، هذا يعني أن المعايرة عند إضافة هذا الحجم من محلول الصود بلغت نقطة لتكافؤ ، و معلوم أن عند هذه النقطة يكون : pH=pKa=4.8

التمرين (19): (بكالوريا 2011 - رياضيات) (الحل المفصل: تمرين مقترح 21 على الموقع)

. $C_0 = 1.0 \cdot 10^{-2} \, \mathrm{mol.L^{-1}}$ و تركيزه المولي V_0 محلول مائي لحمض الإيثانويك CH3COOH ، حجمه و

1- أكتب معادلة التفاعل المنمذجة لانحلال حمض الإيثانويك في الماء .

 x_{eq} - أنشئ جدو لا لتقدم التفاعل . نرمز ب x_{eq} إلى تقدم التفاعل عن التوازن .

3- أكتب عبارة كل من:

. $\left[H_3O^+_{\;\;(aq)}
ight]_f$ و C_0 بدلالة و بنسبة التقدم النهائي النهائي بدلالة و

.
$$Q_{r \, eq} = \frac{\left[H_3 O^+_{(aq)}\right]_{eq}^2}{C_0 - \left[H_3 O^+_{(aq)}\right]_{eq}}$$
 : کسر التفاعل عند التوازن ، و بین أنه یمکن کتابته علی الشکل :

 $\left[HO^{-}_{(aq)} \right]_{\acute{e}q}$ عند التوازن بدلالة ($\lambda(H_{3}O^{+})$ ، $\lambda(H_{3}O^{-})$ ، $\lambda(H_{3}O^{+})$ ، نهمل $\sigma_{\acute{e}q}$ عند التوازن بدلالة ($H_{3}O^{+}_{(aq)} \right]_{\acute{e}q}$.

4- باستخدام العلاقات المستنتجة سابقا ، أكمل الجدول الموالى :

Qe éq	$\tau_{\mathrm{f}}\left(\% ight)$	$\left[H_3O^+_{(aq)}\right]_{\acute{e}q}(mol.L^{-1}$	$\sigma_{\acute{e}q} (S.m^{-1})$	C (mol.L ⁻¹)	المحلول
			0.016	$1.0 \cdot 10^{-2}$	S_0
			0.036	$5.0 \cdot 10^{-2}$	S_1

 $\lambda(\text{CH}_3\text{COO}^-) = 3.6 \text{ mS.m}^2.\text{mol}^{-1}$ و $\lambda(\text{H}_3\text{O}^+) = 35.0 \text{ mS.m}^2.\text{mol}^{-1}$: علما أن

ب- استنتج تأثير التركيز المولي للمحلول على كل من:

- $au_{
 m f}$ نسبة التقدم النهائي . $au_{
 m f}$
- كسر التفاعل عند التوازن Qréq .

أجوبة مختصرة :

$$CH_3COOH_{(aq)} + H_2O_{(\ell)} = CH_3COO_{(aq)} + H_3O_{(aq)}^+(1)$$

2) جدول التقدم:

الحالة	التقدم	CH ₃ COOH +	$H_2O =$	CH ₃ COO ⁻ -	+ H ₃ O ⁺
ابتدائية	$\mathbf{x} = 0$	$n_0 = C_0 V$	بزيادة	0	0
انتقالية	X	$C_0V - x$	بزيادة	X	X
نهائية	X_f	$C_0V - x_f$	بزيادة	X_f	X_{f}

$$\delta_{\acute{e}q} = (\lambda (CH_3COO^-) + \lambda (H_3O^+)) \left[H_3O^+ \right]_{\acute{e}q} \quad \circ \quad Q_{rf} = \frac{\left[H_3O \right]_f^2}{C_0 - \left[H_3O^+ \right]_f} \quad \circ \quad \tau_f = \frac{\left[H_3O^+ \right]_f}{C_0} \quad (1-3)$$

4- أ) إكمال الجدول:

$$Q_{r \neq q} = \frac{[H_3 O]_{eq}^2}{C_0 - [H_3 O^+]_{eq}} \qquad \text{`} \quad \tau_f = \frac{[H_3 O^+]_f}{C_0} \qquad \text{`} \quad [H_3 O^+]_{eq} = \frac{\delta_{eq}}{\lambda (CH_3 COO^-) + \lambda (H_3 O^+)}$$

 $m mol/m^3$ من خلال هذه العلاقات نملاً الجدول مع الأخذ بعين أنه عند حساب $\left[H_3O^+ \right]_{eq}^+$ تكون الوحدة ب τ_6 مطاوبة ب τ_6 مطاوبة ب τ_6 مطاوبة بالمتحصل عليها تضرب في m mol/L و لتحويلها إلى m mol/L نقسم على m mol/L كما أن قيمة m mol/L مطاوبة ب

Q _{e éq}	$\tau_{\mathrm{f}}\left(\% ight)$	$\left[\mathrm{H_{3}O^{+}_{(aq)}}\right]_{\mathrm{\acute{e}q}}(\mathrm{mol.L^{-1}})$	$\sigma_{\text{\'eq}} (S.m^{-1})$	C (mol.L ⁻¹)	المحلول
$1.8 \cdot 10^{-5}$	4.15	4.150 . 10 ⁻⁴	0.016	$1.0 \cdot 10^{-2}$	S_0
$1.8 \cdot 10^{-5}$	1.86	9.326 . 10 ⁻⁴	0.036	$5.0 \cdot 10^{-2}$	\overline{S}_1

ب) اعتمادا على النتائج المتحصل عليها سابقا و المدونة في الجدول السابق يمكن استنتاج ما يلى :

- كلما از داد التركيز المولي للمحلول تناقصت نسبة التقدم النهائي $au_{
 m f}$. كسر التفاعل عند التوازن لا يتأثر بالتركيز المولى للمحلول .

التمريين (20): (بكالوريا 2013 - رياضيات) (الحل المفصل: تمرين مقترح 22 على الموقع)

من حمض m = 0.72 g : و ذلك بانحلال كتلة m = 0.72 g من حمض الإيثانويك m = 0.72 g ، و ذلك بانحلال الإيثانويك النقى في pH من الماء المقطر . في درجة الحرارة $2^{\circ}C$ ، كانت قيمة الـ pH لمحلوله pH المحلولة pH

أ- أحسب C_1 التركيز المولى للمحلول (S_1) .

ب- اكتب المعادلة المنمذجة لتفاعل حمض الإيثانويك مع الماء .

جـ أنشئ جدو لا لتقدم التفاعل .

. (S_1) عند التوازن بدلالة pH و P محيث P حجم المحلول P .

هـ بين أن قيمة الـ pKa للثنائية : CH3COOH/CH3COO هي : 4.76

 n_0 مع حجم V_1 من المحلول V_1) كمية مادته n_0 مع حجم V_2 من محلول النشادر له نفس كمية المادة V_1

أ- أكتب معادلة التفاعل الحادث بين: CH3-COOH و NH3

ب- احسب ثابت التو ز ان K

. $au_{
m eq}=rac{\sqrt{K}}{1+\sqrt{K}}$: بين أن النسبة النهائية $au_{
m eq}$ لتقدم التفاعل يمكن كتابتها على الشكل

 $au_{
m ea}$ ماذا تستنتج $au_{
m ea}$

. $M(O) = 16 \text{ g/mol} \cdot M(C) = 12 \text{ g/mol} \cdot M(H) = 1 \text{ g/mol} \cdot pKa(NH_4^+/NH_3) = 9.2$: نعطی

أجوبة مختصرة :

$$C_1 = \frac{m}{M.V} = 1.5 \cdot 10^{-2} \text{ mol/L } (^{\dagger} - 1)$$

. CH₃COOH + H₂O = CH₃COO⁻ + H₃O⁺ (-

ج) جدول التقدم:

الحالة	التقدم	$CH_3COOH + H_2O = CH_3COO^- + H_3O^+$				
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	بزيادة	0	0	
انتقالية	X	CV - x	بزيادة	X	X	
نهائية	X_f	$CV - x_{\mathrm{f}}$	بزيادة	X_f	X_f	

، pKa = 4.76 : و منه نستنتج
$$Ka$$
 و منه $x_{eq} = \left[H_3O^+\right]_{eq}V$ (د

. $CH_3COOH + NH_3 = CH_3COO^- + NH_4^+ (^{\dagger}-2)$

ب، نستنتج أن التفاعل تام $\kappa=1$ ، د $\kappa=2.75$. 10^4

 C_a كتب على قارورة ما يلى : محلول حمض الإيثانويك $C_{13}COOH$ ، تركيزه المولى

1- بهدف تحديد التركيز المولي لمحلول حمض الإيثانويك ، قيس اله PH له فوجد 3.8 في درجة الحرارة 2°25 . أ- اكتب معادلة انحلال حمض الإيثانويك في الماء .

 $\left[H_{3}O^{+} \right]_{eq}$ و C_{a} : التوازن بدلالة C_{a} و التقدم عند التوازن بدلالة و التقدم عند التوازن بدلالة و التقدم عند التوازن بدلالة و التقدم

. $au_{eq} = 0.0158$: نامولي المولي المولي لمحلول مصن الإيثانويك au_{a}

2- بهدف التأكّد من قيمةً C_a ، نعاير حجماً $V_a=18\,$ mL من محلول حمض الإيثانويك بمحلول هيدروكسيد الصوديوم ، تركيزه المولي : $C_b=1.0\cdot 10^{-2}\,$ mol ، استعمال تجهيز ExAO مكن الحصول على (الشكل) . أ- أنشئ جدو لا لتقدم تفاعل المعايرة .

. C_a ب نقطة التكافؤ ($E(V_{bE}\,,\,pH_E)$ ، ثم احسب

 $V_{b}=9~{
m ml}$ المزيج هو 4.8 من محلول هيدروكسيد الصوديوم ، نجد $V_{b}=9~{
m ml}$

اً عبر عن النسبة $\frac{\left[CH_{3}COO^{-} \right]}{\left[CH_{3}COOH \right]}$ بدلالة pKa و pKa ، ثم احسبها .

ب- عبر عن النسبة السابقة بدلالة تقدم التفاعل \mathbf{x} ، ثم استنتج قيمة \mathbf{x}

جـ احسب النسبة النهائية للتقدم $au_{
m f}$ ، ماذا تستنتج ؟

يعطى : pKa(CH₃COOH/CH₃COO⁻) = 4.8

أَجِوبِةُ مِذْتُصِرَةُ :

$$`(V_{bE} = 18 \text{ mL }, pH_E = 8.4) (ب - 2 `C_a = 10^{-2} \text{ mol/L} (ج ` \tau_{eq} = \frac{\left[H_3O^+\right]}{C_a} (-1)^{-1})$$

$$\frac{\left[\text{CH}_{3}\text{COO}^{-}\right]}{\left[\text{CH}_{3}\text{COOH}\right]} = 1 \cdot \frac{\left[\text{CH}_{3}\text{COO}^{-}\right]}{\left[\text{CH}_{3}\text{COOH}\right]} = 10^{\text{pH-pKa}} \quad (\text{†-3 $ $^{\circ}$ $C_{a} = 10^{-2}$ mol/L}$$

. ب نستنتج أن التفاعل تام ،
$$au_{\rm f} = 1$$
 ، $au_{\rm f} = 1$ ، $au_{\rm f} = 1$ ، $au_{\rm f} = 1$ ، نستنتج أن التفاعل تام . $au_{\rm f} = 1$ ، نستنتج أن التفاعل تام .

التمرين (22): (بكالوريا 2012 - رياضيات) (الحل المفصل: تمرين مقترح 28 على الموقع)

تؤخذ كل المحاليل في 25°C .

الإيبوبروفين حمض كربوكسيلي صيغته الجزيئية الإجمالية $C_{13}H_{18}O_2$ ، دواء يعتبر من المضادات الالتهابات ، شبيه بالأسبرين ، مسكن للآلام و مخفض للحرارة . تباع مستحضرات الإيبوبروفين في الصيدليات على شكل مسحوق في أكياس تحمل المقدار mg يذوب في الماء . في كل هذا النشاط نرمز لحمض الإيبوبروفين . $M(RCOOH) = 206 \text{ g.mol}^{-1}$. $RCOO^{-1}$. $RCOOH^{-1}$. $RCOOH^{-1}$.

أولا: نذيب محتوى كيس الإيبوبروفين S_0 من الحمض في بيشر به ماء فنحصل على محلول مائى S_0 تركيزه . $V_0 = 500 \text{ mL}$ و حجمه C_0

. $C_0 = 0.002 \text{ mol.L}^{-1}$: نأكد من أن

pH=3.5 القيمة pH المحلول pH=3.5

أ- تحقق باستعانتك بجدول التقدم أن تفاعل حمض الإيبوبروفين مع الماء محدود .

ب- اكتب عبارة كسر التفاعل Or لهذا التحول .

$$Q_{r\, eq} = rac{x_{max} \cdot au_f^2}{V_0 \, (1 - au_f)}$$
 : عند التوازن تكتب على الشكل و Q_r غير أن عبارة

. mol يعبر عنه بـ التقاعل و $x_{
m max}$: التقدم الأعظمي و يعبر عنه بـ $au_{
m f}$

د- استنتج قيمة ثابت التوازن K .

ثانيا: التحقق من صحة المقدار المسجل على الكيس ، نأخذ من محلول مائي S_b لهيدروكسيد $V_b = 100.0 \; mL$ الصوديوم $(Na^{+}_{(aq)} + HO^{-}_{(aq)})$ تركيزه المولي و نذیب فیه کلیا محتوی الکیس $C_b = 2.0 \cdot 10^{-2} \text{ mol.L}^{-1}$ فنحصل على محلول مائي \$ (نعتبر أن حجم المحلول \$ هو (V_b) . نأخذ 20 mL و نضعه في يشر و نعايره بمحلول حمض كلور الهيدروجين تركيزه المولي $\mathrm{C_a} = 2.0 \cdot 10^{-2} \; \mathrm{mol.L^{-1}}$ المولي

5- احسب m كتلة حمض الإيبوبروفين المتواجدة في الكيس ، ماذا تستنتج ؟

أجوبة مختصرة :

<u>أولا :</u>

ن ين عناعل حمض الإيبوبروفين ،
$$au_{
m f}=0.158$$
 ، نلاحظ أن : $au_{
m f}=0.002\,{
m mol/L}$ (1) ، $au_{
m f}=0.002\,{
m mol/L}$ ، $au_{
m f}=0.002\,{
m mol/L}$

$$K = 5.93.10^{-5}$$
 (2 ، $Q_r = \frac{\left[RCOO^{-}\right]\left[H_3O^{+}\right]}{\left[RCOOH\right]}$ (ب ، (محدود) مع الماء غير تام

ثانيا:

المتواجد في الكيس RCOOH المتواجد في الكيس - $n_i(HO^{\bar{}}) = C_bV_b = 2 . 10^{-3} \, mol$ المتواجد في الكيس - $n_i(HO^{\bar{}}) = n_i(HO^{\bar{}}) - n_i'(HO^{\bar{}}) = 9.7 . 10^{-4} \, mol$. $n(HO^{\bar{}}) = n_i(HO^{\bar{}}) - n_i'(HO^{\bar{}}) = 9.7 . 10^{-4} \, mol$

. و هذا يتوافق مع ما هو مكتوب على الكيس m=0.2~g=200~mg (5

التمريين (23): (الحل المفصل: تمرين مقترح 02 على الموقع)

أربعة محاليل مائية لها نفس التركيز المولي الابتدائي $C=10^{-2}~{
m mol/L}$ هي :

. ($H_3O^+ + Cl^-$) محلول حمض کلور الهيدروجين : S_1

. CH_3COOH محلول حمض الإيثانويك : S_2

 $. NH_3$ محلول النشادر : S_3

. $(Na^+ + HO^-)$ محلول هيدروكسيد الصوديوم : S_4

 $pH = 2 \cdot pH = 10.6$ كل محلول عند الدرجة 25°C ، نسجل النتائج التالية من غير ترتيب pH = 2 · pH = 3.4 · pH = 12 .

1- أرفق كُل محلول بقيمة الـ pH الموافقة له و دون النتائج في الجدول التالي :

المحلول	S_1	S_2	S_3	S_4
قيمة الـ pH				

- 2- أكتب معادلة تفاعل غاز النشادر مع الماء . هل هو تفاعل حمض أساس ؟ اذكر الثنائيتين (أساس/حمض) الداخلتين في التفاعل .
 - 3- مثل جدول التقدم لهذا التفاعل .
 - 4- أوجد العبارات التالية:
 - اً عبارة $au_{
 m f}$ بدلالة ا $au_{
 m f}$.
 - . $\left[\mathrm{HO^{-}} \right]_{\mathrm{f}}$ بدلالة بالموضة Ka بارة ثابت الحموضة
 - . $au_{\rm f}$ بدلالة الموضة $au_{\rm f}$ الثنائية ($ext{NH}_4^+/ ext{NH}_3$) بدلالة
 - $au_{
 m f}=4~\%$ محلول النشادر المدونة في الجدول السابق بين أن النسبة النهائية للتقدم هي و $au_{
 m f}=4~\%$
 - $_{0}$ أحسب عند حدوث التوازن الكيميائي تركيز الوسط التفاعلي بكل من $_{0}^{+}$ $_{0}$ $_{0}$ $_{0}$ $_{0}$ $_{0}$
 - 7- أحسب قيمة ثابت الحموضة Ka للثنّائية (NH_4^+/NH_3) بطّريقتين ثم استنتج قيمة الـ pKa الموافقة .
 - . pKa(CH₃NH₃+/CH₃NH₂) = 10.7 من حيث القوة علما أن CH₃NH₂ ، NH₃ ، NH₃ . و الأساسين $Ke = 10^{-14} : 25^{\circ}C$ عطى : الجداء الشار دي للماء عند $25^{\circ}C$ عطى :

التمرين (24): (الحل المفصل: تمرين مقترح 04 على الموقع)

نحضر مزيج (S) حجمه V بمزج $m_1=10^{-3}~mol$ من حمض الإيثانويك مع $n_2=10^{-3}~mol$ من النشادر في الماء المقطر فيحدث تحول كيميائي ينمذج بالمعادلة الكيميائية :

$$CH_{3}COOH_{(aq)} + NH_{3(aq)} = CH_{3}COO_{(aq)}^{-} + NH_{4(aq)}^{+}$$

1- مثل جدول التقدم لهذا التفاعل .

2- أوجد عبارة كسر التفاعل في الحالة النهائية Q_{rf} بدلالة pKa_2 ، pKa_2 ، pKa_3 ، ثم أحسب قيمته ماذا تستنتج ؟ يعطى :

$$pKa_1(CH_3COOH/CH_3COO^-) = 4.8$$
, $pKa_2(NH_4^+/NH_3) = 9.2$

 X_{f} عبارة كسر التفاعل في الحالة النهائية بدلالة التقدم النهائي X_{f}

 $_{ ext{-}}$ 4- أو جد نسبة التقدم النهائي $au_{ ext{f}}$ للتفاعل ، هل تتفق النتيجة مع جواب السؤال

أجوبة مختصرة :

1) جدول التقدم:

الحالة	التقدم	CH ₃ COOH	+ NH ₃ =	CH ₃ COO +	- NH ₄ ⁺
ابتدائية	$\mathbf{x} = 0$	10^{-3}	10^{-3}	0	0
انتقالية	X	10 ⁻³ - x	10 ⁻³ - x	X	X
نهائية	X_{f}	$10^{-3} - x_f$	$10^{-3} - x_f$	X_{f}	X_{f}

. نستنتج أن التفاعل المنمذج بالمعادلة السابقة تام ، $Q_{rf} = \frac{Ka_1}{Ka_2} = 2.51.10^4$ (2

. 2- السؤال مع النتيجة السابقة في السؤال $au_{\rm f} = 1~(4~{\rm v}~{\rm Q}_{\rm rf} = \frac{{\rm x_f}^2}{(10^{-3} - {\rm x_f})^2}~(3)$

التمرين (25): (الحل المفصل: تمرين مقترح 14 على الموقع)

. (HOOH/HCOO و 3.8: يعطى . $\mathrm{Ke} = 10^{-14}$ حيث $25^{\circ}\mathrm{C}$ حيث المحاليل مأخوذة عند الدرجة

. pH = 2.9 و له C_A و الميثانويك) تركيزه المولي C_A و له C_A

أ- أكتب معادلة تفاعل HCOOH مع الماء . هل هو تفاعل حمض أساس ؟ بين التنائيتين (أساس/حمض) الداخلتين في التفاعل في حالة الإيجاب .

ب- أنشئ جدول تقدم هذا التفاعل .

. $au_{
m f}$. $au_{
m f}=\frac{1}{1+10^{{
m pKa-pH}}}$: التفاعل تكتب على الشكل والشكل المنائي $au_{
m f}$

د- استنتج التركيز المولي C_A للمحلول (S_A) .

2- لتحديد تركيز المحلول (S_A) بواسطة المعايرة ، نأخذ حجما $V_A=10~mL$ من المحلول (S_A) و نعايره بمحلول (S_B) لهيدروكسيد الصوديوم تركيزه المولي $C_B=1.1 \cdot 10^{-2}~mol/L$ بدلالة V_B حجم الأساس المضاف

أ- أكتب معادلة تفاعل المعايرة .

. $(V_{BE},\,pH_E)$ ب- حدد إحداثيات نقطة التكافؤ

جـ- استنتج التركيز $_{
m C_A}$ للمحلول $_{
m C_A}$) . هل النتيجة توافق ما تم التوصل إليه سابقا .

أجوبة مختصرة :

1- أ $^+$ HCOO $^+$ H $_2$ O = HCOO $^-$ + H $_3$ O + ($^+$ HCOO $^+$ H $_2$ O) . (HCOO/HCOO $^-$) , (H $_3$ O $^+$ /H $_2$ O) . (HCOO/HCOO $^-$) , (H $_3$ O $^+$ /H $_2$ O) . ($^+$ 0 H $_3$ O $^+$) . ($^+$ 0 H $_3$ O $^+$ 0) . ($^+$ 0 H $_3$ O $^$

الحالة	التقدم	НСООН -	$+$ H_2O =	= HCOO	+ HO ⁻
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	بز	0	0
انتقالية	X	CV - x	بز	X	X
نهائية	X_{f}	$CV - x_f$	بز	$\mathbf{X}_{\mathbf{f}}$	X_{f}

$$HCOOH + HO^{-} = HCOO^{-} + H_{2}O$$
 († -2 $^{\cdot}$ $C_{A} = \frac{\left[H_{3}O^{+}\right]_{f}}{\tau_{f}} = 1.1.10^{-2}$ mol/L (2

$$C_A = \frac{C_B V_{BE}}{V_A} = 1.1.10^{-2} \text{ mol/L } (\Rightarrow (V_{BE} = 10 \text{ mL}), V_E = 7.4) (\Rightarrow (V_{BE} = 10 \text{ mL})$$

التمرين (26): (الحل المفصل: تمرين مقترح 25 على الموقع)

 25° C كل المحاليل تؤخذ في درجة حرارة

محلولين حمضيين HA_2 ، HA_1 تركيز هما على الترتيب C_{a2} ، C_{a1} أحدهما قوي و الآخر ضعيف ، نأخذ $V_a = 20 \, \mathrm{mL}$ من كل محلول حمضي و نعايره بمحلول هيدروكسيد الصوديوم $V_a = 20 \, \mathrm{mL}$

علوم فيزيائية – ثالثة ثانوي – الشعب : علوم تجريبية ، رياضيات ، تقني رياضي .

البيانين V_B فنحصل على البيانين PH بدلالة حجم الأساس المضاف $C_b = 10^{-2}~{\rm mol.}L^{-1}$. (1) و (2) ، حيث يوافق البيان (1) معايرة الحمض (HA_1) و يوافق البيان (2) معايرة الحمض (HA_2) معايرة الحمض (HA_1) و يوافق البيان (2) معايرة الحمض (HA_2) معايرة الحمض (HA_1) و يوافق البيان (2) معايرة الحمض (HA_1) و يوافق البيان (HA_2) معايرة الحمض (HA_1) و يوافق البيان (HA_1) و يوافق البيان (HA_2) معايرة الحمض (HA_1) و يوافق البيان (HA_1) و يوافق البيان (HA_1) و يوافق البيان (HA_1) معايرة الحمض (HA_1) و يوافق البيان (HA_1) معايرة الحمض (HA_1) و يوافق البيان (HA_1) معايرة الحمض (HA_1) و يوافق البيان (HA_1) معايرة الحمض (HA_1) و يوافق البيان (HA_1) معايرة المعايرة المعا

- 1- أ- أرسم شكل تخطيطي لعملية المعايرة محددا بعض الاحتياطات الأمنية الوقائية المتخذة .
 - 2- أ- بالإستعانة بالبيانين (1) ، (2) (الشكل-2) :
 - أ- صنف الحمضين HA_2 ، HA_1 ألمستعملين إلى (قوي أم ضعيف) .
 - ب- اكتب معادلة التفاعل المنمذج لكل معايرة .
- جـ عرف التكافؤ ، بين أن للحمضين نفس التركيز الابتدائي : $\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A}1}=\mathrm{C}_{\mathrm{A}2}$ ثم أحسبه .
 - 3- عين قيمة الـ pKa للثنائية (أساس/حمض).
 - 4- ما هو الكاشف الملون المناسب لكل عملية معايرة من بين الكواشف التالية:

الكاشف	مجال التغير اللوني
أزرق البروموتيمول	6.1 - 7.6
أحمر الميثيل	4.2 - 6.3
الفينول فتالين	8.2 - 10.0
الهيليالتين	3.1 - 4.4

- $\overline{}$ و الحمض الضعيف $\overline{}$ المحمض الضعيف $\overline{}$
 - أ- أكتب معادلة تفاعله مع الماء .
- ب- أنشئ جدو لا للتقدم ، و استنتج قيمة التقدم النهائي .

<u>أجوبة مختصرة :</u>

- 1) الاحتياطات الأمنية الضرورية:
- أرتداء القفازات المطاطية و النظارات الخاصة بالإضافة إلى مأزر قطني .
 - انجاز التجربة واقفا.
 - عدم جعل المواد تتراكم على طاولة انجاز التجربة .
 - 2- أ) البيان-1 \rightarrow حمض قوي ، البيان-2 \rightarrow حمض ضعيف
 - $H_3O^+ + HO^- = 2H_2O \leftarrow HA_1$ (ب) $HA_2 + HO^- = A_2^- + 2H_2O \leftarrow HA_2$ الحمض

ج) عند التكافؤ تتفاعل كل كمية النوع الكيميائي المتفاعل في المحلول المعاير مع كل كمية مادة النوع الكيميائي المتفاعل في المحلول المعاير ، أي أن التفاعل المنمذج للمعايرة يكون في الشروط الستوكيومترية

.
$$C_a = \frac{C_b V_{bE}}{V_a} = 10^{-2} \text{ mol/L} \leftarrow C_a$$
قيمة

• $pKa = pH_{1/2E} = 4.8$ (3

4) الكاشف المناسب : معاير $HA_1 o f$ أزرق البروموتيمول ، معايرة $HA_2 o HA_1$ الفينول فتالين .

 $. HA_2 + H_2O = A_2^- + H_3O^+ (^{\dagger} -5)$

ب) جدول التقدم:

الحالة	التقدم	HA_2 +	$ H_2O =$	$=$ A_2^- +	H_3O^+
ابتدائية	$\mathbf{x} = 0$	$n_0 = C_a V_a$	بزيادة	0	0
انتقالية	X	C_aV_a - x	بزيادة	X	X
نهائية	X _f	$C_aV_a-x_f$	بزيادة	X_{f}	$\mathbf{x}_{\mathbf{f}}$

. $x_f = 8 \cdot 10^{-6} \text{ mol } \leftarrow x_f$ قيمة

التمرين (27): (الحل المفصل: تمرين مقترح 26 على الموقع)

نحقق المعايرة الـ pH مترية لحجم mL من محلول مثيل أمين CH_3NH_2 تركيزه المولي C_B بواسطة محلول C_B مترية لحجم C_B الشكل المقابل محلول C_A لهيدروجين $C_A = 0.1 \ mol/L$ تركيزه المولي $C_A = 0.1 \ mol/L$ المقابل المقابل يمثل المعايرة و الذي يمثل تطور D_B المحلول بدلالة حجم الحمض المضاف D_A .

- 1- أ- أعط تعريف برنشتد للأساس.
- ب- كيف تبين أن محلول مثيل أمين عبارة عن أساس .
 - 2- اكتب معادلة تفاعل المعايرة . أذكر خصائصه .
- $C_{\rm B}$ عين احداثيتي نقطة التكافؤ و استنتج التركيز $C_{\rm B}$
- 4- بين أن انحلال ميثيل أمين في الماء محدودا (غير تام).

- 5- اعتمادا على البيان ، أوجد قيمة pK_a الثنائية .
- . $V_A=8~mL$ عند إضافة حجم عند $\frac{[CH_3NH_2]}{[CH_3NH_3^+]}$ عند إضافة حجم -6
- . x_E فيمة التقدم عند التكافؤ) ، ثم استنتج قيمة C_B ، V_B و عبر عن النسبة السابقة بدلالة و C_B ، C_B ، C_B
 - 7- احسب نسبة التقدم النهائي au لتفاعل المعايرة عند التكافؤ ماذا تستنتج ؟
 - 8- احسب ثابت التوازن K لتفاعل المعايرة . هل توافق هذه النتيجة استناجك في السؤال-7 .

<u>أجوبة مختصرة :</u>

- H^+ أو أكثر خلال H^+ الأساس هو كل فرد كيميائي جزيئيا كان أم شارديا قادر على تثبيت بروتون هيدروجين H^+ أو أكثر خلال تفاعل كيميائي
 - ب) قبل المعايرة و من البيان 7>1.4>7 ، إذن محلول ميثيل أمين أساس ضعيف .
 - . خصائص تفاعل المعايرة : تام و سريع ، $CH_3NH_2 + H_3O^+ = CH_3-NH_3^+ + H_2O$ (2
 - . $C_B = \frac{C_A V_{AE}}{V_B} = 0.016 \, \text{mol/L}$ ' ($V_{AE} = 8 \, \text{mL}$, pH = 6.4) (3
- 4) نحسب نسبة التقدم النهائي فنجد : $au_{
 m f}=0.16<1$ انحلال الميثيل أمين في الماء غير تام و بالتالي فهو أساس ضعيف .
 - $pKa = pH_{1/2E} = 10.6$ (5
- $x_E = 8.10^{-4} \text{ mol}$ $\cdot \frac{[CH_3NH_2]}{[CH_3NH_4^+]} = \frac{C_BV_B}{x_E} 1 \ (\because \cdot \frac{[CH_3NH_2]}{[CH_3NH_4^+]} = 10^{pH-pKa} = 6.3.10^{-5} \ (\i-6]{-6}$
 - . نحسب نسبة التقدم النهائي فنجد : $au_{
 m f}=1$ ، نستنتج أن تفاعل المعايرة تام (7
- و المعايرة تام و $K > 10^4$: نستنتج أن تفاعل المعايرة تام و $K = \frac{[CH_3NH_2]_f}{[CH_3NH_2]_f[H_3O^+]_f} = \frac{1}{Ka} = 4.10^{10}$ (8 هذا يوافق الاستنتاج السابق .

التمرين (28): (الحل المفصل: تمرين مقترح 27 على الموقع)

نذيب $v=20.0~{\rm mL}$ في حجم HA من حمض ضعيف نرمز له بـ $v=20.0~{\rm mL}$ في حجم الماء المقطر لذيب انحصل على محلول حمضي (S) .

- 1- عرف الحمض الضعيف ثم اكتب معادلة انحلاله في الماء .
- $_{\rm H_2O}$ عدا الماء $_{\rm H_2O}$?
- 3- مثل جدول التقدم للتفاعل المنمذج لانحلال الحمض HA في الماء.
 - $au_{
 m f} = 4\%$ عند بلوغ نهاية التفاعل (التوازن الكيميائي) يكون -4
 - أ- أوجد قيمة $[H_3O^+]$ ثم استنتج قيمة $[H_3O^+]$
- . $au_{\rm f} = 4\%$ عند بلوغ الأفراد الكيميائية المتواجدة في المحلول ، عند بلوغ
 - . pKa استنتج قيمة الـ Ka الثنائية (HA/A) ، استنتج قيمة الـ Ka
- $C_b = 1.0 . 10^{-2} \text{ mol/L}$ عايرنا المحلول الحمضي (S) بمحلول هيدر وكسيد الصوديوم تركيزه المولي المحلول الحمضي فتحصلنا على البيانات التالية :

أ- أحسب $V_{
m bE}$ حجم محلول هيدر وكسيد الصوديوم اللازم للتفاعل .

ب- ماذا يمثل البيان (1) (الشكل-1) ؟

جــ أحد البيانين (2) أو (3) (الشكل-2) يمثل نسبة الصفة الحمضية %HA و الآخر يمثل نسبة الصفة الأساسية %A في المُحْلول ، أنسب كل بيان لما يمثله مع التعليل أنسب لكل ما يمثله كل بيان في (الشكل-2) مع

د- ضع على الشكلين في مكان علامة الاستفهام القيم المميزة للمعايرة

أجوبة مختصرة :

 $HA + H_2O = A^- + H_3O^+$ ، (غير تام) ، الحمض الضعيف هو كل حمض يكون انحلاله في الماء جزئيا

. HA \cdot A \cdot HO \cdot H₃O \cdot (2)

(3) جدو ل التقدم :

الحالة	التقدم	HA -	+ H ₂ O =	= A +	- H ₃ O ⁺
ابتدائية	$\mathbf{x} = 0$	n_0	بزيادة	0	0
انتقالية	X	n ₀ - x	بزيادة	X	X
نهائية	X_f	$n_0 - x_f$	بزيادة	$\mathbf{x}_{\mathbf{f}}$	X_f

.
$$pH = 3.4$$
 · $\left[H_3O^+\right]_f = \frac{\tau_f.n_0}{V} = 4.10^{-4} \text{ mol/L}$ († -4

$$[HA]_f = \frac{n_0}{V} - [H_3O^+]_f = 9.6.10^{-3} \text{ mol/L} \quad \text{(A-)}_f = [H_3O^+]_f = 4.10^{-4} \text{ mol/L} \quad \text{(} \text{(} \text{-} \text{)}_f = 1.10^{-4} \text{ mol/L} \quad \text{(} \text{$$

.
$$Ka = 1.67 \cdot 10^{-5} \rightarrow pKa = 4.8 (5)$$

$$V_{bE} = \frac{n_{0A}}{C_b} = 2.10^{-2} L = 20 \text{ mL } (^{\dagger} -6)$$

ب) يمثل البيان (1) تغيرات pH الوسط التفاعلي بدلالة الحجم V_b لمحلول هيدر وكسيد الصوديوم المضاف . جـ) المنحنى (1) \rightarrow نسبة الصفة الحمضية M^- ، المنحنى (2) \rightarrow نسبة الصفة الأساسية M^- ، القيم المميزة في مكان علامة الاستفهام :

