What is claimed is:

1. A compound of Formula I

$$\begin{array}{c|c}
R^1 & R^2 \\
 & = | = \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

wherein

5

10

15

20

25

R¹ is selected from H, F, and Cl;

R² is selected from H, OH, CN, halo, C(O)R⁵, thienyl, pyrimidinyl, oxazolyl, furanyl,

 (C_1-C_3) alkyl, (C_2-C_6) alkenyl and (C_2-C_6) alkynyl, each optionally substituted with up to two substituents selected from OH, halo, and (C_1-C_3) alkoxy optionally substituted with (C_1-C_3) alkoxy,

 (C_1-C_6) alkoxy optionally substituted with (C_1-C_3) alkyl, (C_1-C_3) alkoxy,

and N[(C₁-C₃)alkyl]₂ where each alkyl group is independently optionally substituted with a substituent selected from (C₁-C₃)alkyl,

$$(C_1-C_3)$$
alkoxy OH, halo, $\xrightarrow{+}$ N , and phenyl,

N[(C₁-C₄)alkyl]₂ where each alkyl group is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkyl, halo, (C₁-C₃)alkoxy, and phenyl,

pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, and halo,

phenyl optionally substituted with up to two substituents independently selected

from
$$(C_1-C_3)$$
alkoxy, CN, halo, $+$ \times , $C(O)-N$ \times

 $C(O)N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with

(C₁-C₃)alkoxy, and

pyrrolidinyl optionally substituted with N[(C₁-C₃)alkyl]₂;

R³ is selected from H, halo, (C₁-C₃)alkyl, and (C₁-C₃)alkoxy;

R⁴ is selected from H, F, and Cl;

R⁵ is selected from OH, NHR⁶.

 $N[(C_1-C_3)alkyl]R^7$ where said alkyl is optionally substituted with up to one substituent selected from $(C_1-C_3)alkyl$ and $(C_1-C_3)alkoxy$,

- $N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with up to two substituents independently selected from CN, OH, $(C_1-C_3)alkoxy$, $N[(C_1-C_3)alkyl]_2$, pyridyl, phenyl, $S(O)_2(C_1-C_3)alkyl$, tetrahydrofuryl, $S(O)_2$ -phenyl, (C_3-C_6) cycloalkyl, and furyl optionally substituted with $(C_1-C_3)alkyl$,
- $N[(C_3-C_6)$ cycloalkyl](C_1-C_3)alkyl where said alkyl is substituted with up to two substituents independently selected from (C_1-C_3) alkoxy, OH, CN, $N[(C_1-C_4)$ alkyl]₂, $S(O)_2$ -phenyl, $S(O)_2$ (C_1-C_3)alkyl, phenyl, furyl, tetrahydrofuryl, (C_5-C_6) cycloalkyl, and pyridyl,
- optionally substituted with up to two substituents independently selected from N[(C₁-C₃)alkyl]₂, C(O)(C₁-C₃)alkyl, pyrrolidinyl, S(O)₂(C₁-C₃)alkyl, S(O)₂-phenyl, , oxo-dihydrobenzimidazolyl, pyrazinyl, C(O)NH₂, C(O)NH-phenyl, C(O)-furanyl, C(O)NH(C₁-C₃)alkyl, (C₁-C₃)alkyl optionally substituted with up to two substituents

pyrrolidinyl, C(O)-pyrrolidinyl, C(O)-N, and N[(C₁-C₃)alkyl]₂, phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN, and pyridyl optionally substituted with (C₁-C₃)alkyl, CF₃, and CN, and pyrrolidinyl optionally substituted with up to two substituents independently selected from N[(C₁-C₄)alkyl]₂, C(O)NH₂, pyridyl, and (C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and pyrrolidinyl;

R⁶ is selected from H,

5

10

15

20

25

30

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, halo, (C₁-C₄)alkoxy, NHC(O)(C₁-C₃)alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, thienyl,

→ N

×

N[(C₁-C₄)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, halo, and phenyl,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, CN, halo, CF_3 , $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ phenyl, and $S(O)_2NH_2$, pyridyl optionally substituted up to two times with CF₃, 5 indolyl optionally substituted up to two times with (C1-C3)alkyl, imidazolyl optionally substituted up to two times with (C1-C3)alkyl, furyl optionally substituted up to two times with (C₁-C₄)alkyl, and pyrrolidinyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (O), and 10 (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C1-C3)alkoxy, and halo, indolyl optionally substituted up to two times with (C₁-C₃)alkyl, pyrazolyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and 15 phenyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (C₁-C₄)alkyl, halo, CF₃, and CN, benzothiazolyl optionally substituted up to two times with (C1-C4)alkyl, thiazolyl optionally substituted up to two times with (C1-C4)alkyl, thiadiazolyl optionally substituted with up to two substituents independently 20 selected from CF₃, (C₃-C₆)cycloalkyl, and (C₁-C₆)alkyl, phenyl optionally substituted with up to two substituents independently selected from CN, halo, CF₃, N[(C₁-C₄)alkyl]₂, indolyl, $\stackrel{+}{\longrightarrow}$, (C₁-C₄)alkoxy, O-pyridyl optionally substituted with C(O)NH(C₁-C₄)alkyl, (C₁-C₄)alkyl optionally substituted with up to two substituents 25 independently selected from pyridyl, OH, halo, and phenyl, and optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, and(C₁-C₄)alkoxy, pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from 30 (C₁-C₄)alkyl and (C₁-C₄)alkoxy, and indazolyl optionally substituted up to two times with (C1-C4)alkyl; R⁷ is selected from (C₁-C₃)alkoxy, pyrrolidinyl, tetrahydropyranyl, pyridyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_3) alkoxy,

pyranyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl and (C₁-C₃)alkoxy,

piperidinyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, and (C₁-C₃)alkoxy, and

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and (C₁-C₃)alkyl; and

X is selected from O, S, CH₂ and NH;

with the proviso that when R^1 is F or Cl, then R^4 must be H, and when R^4 is F or Cl, then R^1 must be H;

or a pharmaceutically acceptable salt thereof.

 A method of treating a disorder selected from a hyper-proliferative disorder and a disorder associated with angiogenesis, in a mammal in need thereof, comprising administering to said mammal an effective amount of a compound of Formula I

15

20

5

10

wherein

R¹ is selected from H, F, and Cl;

R² is selected from H, OH, CN, halo, C(O)R⁵, thienyl, pyrimidinyl, oxazolyl, furanyl,

 (C_1-C_3) alkyl, (C_2-C_6) alkenyl and (C_2-C_6) alkynyl, each optionally substituted with up to two substituents selected from OH, halo, and (C_1-C_3) alkoxy optionally substituted with (C_1-C_3) alkoxy.

 $(C_1-\dot{C}_6)$ alkoxy optionally substituted with (C_1-C_3) alkyl, (C_1-C_3) alkoxy,

25

and N[(C₁-C₃)alkyl]₂ where each alkyl group is independently optionally substituted with a substituent selected from (C₁-C₃)alkyl,

$$(C_1-C_3)$$
alkoxy OH, halo, $+N$, and phenyl,

N[(C₁-C₄)alkyl]₂ where each alkyl group is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkyl, halo, (C₁-C₃)alkoxy, and phenyl,

30

pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, and halo,

phenyl optionally substituted with up to two substituents independently selected

from (C₁-C₃)alkoxy, CN, halo,
$$\xrightarrow{+}$$
 \times C(O)-N X

 $C(O)N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with $(C_1-C_3)alkoxy$, and

pyrrolidinyl optionally substituted with N[(C₁-C₃)alkyl]₂;

R³ is selected from H, halo, (C₁-C₃)alkyl, and (C₁-C₃)alkoxy;

R⁴ is selected from H, F, and Cl;

R⁵ is selected from OH, NHR⁶,

5

10

15

20

25

30

 $N[(C_1-C_3)alkyl]R^7$ where said alkyl is optionally substituted with up to one substituent selected from $(C_1-C_3)alkyl$ and $(C_1-C_3)alkyl$,

 $N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with up to two substituents independently selected from CN, OH, $(C_1-C_3)alkoxy$, $N[(C_1-C_3)alkyl]_2$, pyridyl, phenyl, $S(O)_2(C_1-C_3)alkyl$, tetrahydrofuryl, $S(O)_2$ -phenyl, (C_3-C_6) cycloalkyl, and furyl optionally substituted with $(C_1-C_3)alkyl$,

N[(C₃-C₆)cycloalkyl](C₁-C₃)alkyl where said alkyl is substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, OH, CN, N[(C₁-C₄)alkyl]₂, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₅-C₆)cycloalkyl, and pyridyl,

optionally substituted with up to two substituents independently selected from N[(C₁-C₃)alkyl]₂, C(O)(C₁-C₃)alkyl, pyrrolidinyl,

 $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ -phenyl, , oxo-dihydrobenzimidazolyl, pyrazinyl, $C(O)NH_2$, C(O)NH-phenyl, C(O)-furanyl, $C(O)NH(C_1-C_3)$ alkyl, (C_1-C_3) alkyl optionally substituted with up to two substituents

pyrrolidinyl, C(O)-pyrrolidinyl, C(O)—N X, and N[(C₁-C₃)alkyl]₂, phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN, and pyridyl optionally substituted with (C₁-C₃)alkyl, CF₃, and CN, and

pyrrolidinyl optionally substituted with up to two substituents independently

selected from N[(C₁-C₄)alkyl]₂, C(O)NH₂, pyridyl, and (C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and pyrrolidinyl;

R⁶ is selected from H,

5

10

15

20

25

30

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, halo, (C₁-C₄)alkoxy, NHC(O)(C₁-C₃)alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, thienyl,

N[(C₁-C₄)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, halo, and phenyl,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, CN, halo, CF₃, S(O)₂(C₁-C₃)alkyl, S(O)₂phenyl, and S(O)₂NH₂,

pyridyl optionally substituted up to two times with CF_3 , indolyl optionally substituted up to two times with (C_1-C_3) alkyl, imidazolyl optionally substituted up to two times with (C_1-C_3) alkyl, furyl optionally substituted up to two times with (C_1-C_4) alkyl, and pyrrolidinyl optionally substituted with up to two substituents

independently selected from (C₁-C₄)alkoxy, (O), and

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, and halo,

indolyl optionally substituted up to two times with (C₁-C₃)alkyl, pyrazolyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and

phenyl optionally substituted with up to two substituents independently selected from (C_1 - C_4)alkoxy, (C_1 - C_4)alkyl, halo, CF_3 , and CN,

benzothiazolyl optionally substituted up to two times with (C_1-C_4) alkyl, thiazolyl optionally substituted up to two times with (C_1-C_4) alkyl, thiadiazolyl optionally substituted with up to two substituents independently

selected from CF₃, (C₃-C₆)cycloalkyl, and (C₁-C₆)alkyl, phenyl optionally substituted with up to two substituents independently selected

from CN, halo, CF_3 , $N[(C_1-C_4)alkyl]_2$, indolyl, , $(C_1-C_4)alkyl$, O-pyridyl optionally substituted with $C(O)NH(C_1-C_4)alkyl$, $(C_1-C_4)alkyl$ optionally substituted with up to two substituents

independently selected from pyridyl, OH, halo, and phenyl, and independently substituted with up to two substituents independently selected from (C₁-C₃)alkyl, and(C₁-C₄)alkoxy,

pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl and (C₁-C₄)alkoxy, and

indazolyl optionally substituted up to two times with (C₁-C₄)alkyl;

R⁷ is selected from (C₁-C₃)alkoxy, pyrrolidinyl, tetrahydropyranyl,

pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl and (C₁-C₃)alkoxy,

pyranyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_3) alkoxy,

piperidinyl optionally substituted with up to two substituents independently selected from (C_1 - C_3)alkyl, and (C_1 - C_3)alkoxy, and

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and (C₁-C₃)alkyl; and

X is selected from O, S, CH₂ and NH;

with the proviso that when R¹ is F or Cl, then R⁴ must be H, and when R⁴ is F or Cl, then R¹ must be H;

or a pharmaceutically acceptable salt thereof.

3. A composition comprising a carrier and a compound of Formula I

$$\begin{array}{c|c}
R^1 & R^2 \\
 & = |= \\
 & N \\
 & N \\
 & H
\end{array}$$
(I)

25 wherein

30

5

10

15

20

R¹ is selected from H, F, and Cl;

R² is selected from H, OH, CN, halo, C(O)R⁵, thienyl, pyrimidinyl, oxazolyl, furanyl,

 $(C_1\text{-}C_3)$ alkyl, $(C_2\text{-}C_6)$ alkenyl and $(C_2\text{-}C_6)$ alkynyl, each optionally substituted with up to two substituents selected from OH, halo, and

 (C_1-C_3) alkoxy optionally substituted with (C_1-C_3) alkoxy,

 (C_1-C_6) alkoxy optionally substituted with (C_1-C_3) alkyl, (C_1-C_3) alkoxy,

5

10

20

25

30

pyrrolidinyl,
$$+ N \times$$

and N[(C₁-C₃)alkyl]₂ where each alkyl group is independently optionally substituted with a substituent selected from (C₁-C₃)alkyl,

$$(C_1-C_3)$$
alkoxy OH, halo, $\xrightarrow{+}$ N , and phenyl,

N[(C₁-C₄)alkyl]₂ where each alkyl group is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkyl, halo, (C₁-C₃)alkoxy, and phenyl,

pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, and halo,

phenyl optionally substituted with up to two substituents independently selected

from (C₁-C₃)alkoxy, CN, halo,
$$+N$$
 \times C(O)-N \times

 $C(O)N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with $(C_1-C_3)alkoxy$, and

pyrrolidinyl optionally substituted with N[(C₁-C₃)alkyl]₂;

- 15 R³ is selected from H, halo, (C₁-C₃)alkyl, and (C₁-C₃)alkoxy;
 - R⁴ is selected from H, F, and Cl;
 - R⁵ is selected from OH, NHR⁶,

 $N[(C_1-C_3)alkyl]R^7$ where said alkyl is optionally substituted with up to one substituent selected from $(C_1-C_3)alkyl$ and $(C_1-C_3)alkyl$,

 $N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with up to two substituents independently selected from CN, OH, $(C_1-C_3)alkoxy$, $N[(C_1-C_3)alkyl]_2$, pyridyl, phenyl, $S(O)_2(C_1-C_3)alkyl$, tetrahydrofuryl, $S(O)_2$ -phenyl, (C_3-C_6) cycloalkyl, and furyl optionally substituted with $(C_1-C_3)alkyl$,

N[(C₃-C₆)cycloalkyl](C₁-C₃)alkyl where said alkyl is substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, OH, CN, N[(C₁-C₄)alkyl]₂, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₅-C₆)cycloalkyl, and pyridyl,

optionally substituted with up to two substituents independently selected from N[(C₁-C₃)alkyl]₂, C(O)(C₁-C₃)alkyl, pyrrolidinyl,

 $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ -phenyl, $(CO)_3$ -phenyl, $(CO)_4$ -phenyl

. : `

(C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from OH, halo, (C₁-C₃)alkoxy, pyrrolidinyl, C(O)-pyrrolidinyl, phenyl optionally substituted with up to two substituents independently 5 selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN, and pyridyl optionally substituted with (C1-C3)alkyl, CF3, and CN, and pyrrolidinyl optionally substituted with up to two substituents independently selected from N[(C1-C4)alkyl]2, C(O)NH2, pyridyl, and (C₁-C₃)alkyl optionally substituted with up to two substituents 10 independently selected from (C₁-C₃)alkoxy, and pyrrolidinyl; R⁶ is selected from H, (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, halo, (C₁-C₄)alkoxy, NHC(O)(C₁-C₃)alkyl, S-(C₁-C₃)alkyl, benzimidazolyl, thienyl, 15 N[(C₁-C₄)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, halo, and phenyl, phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, CN, halo, 20 CF_3 , $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ phenyl, and $S(O)_2NH_2$, pyridyl optionally substituted up to two times with CF₃. indolyl optionally substituted up to two times with (C1-C3)alkyl, imidazolyl optionally substituted up to two times with (C₁-C₃)alkyl. furyl optionally substituted up to two times with (C1-C4)alkyl, and 25 pyrrolidinyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (O), and (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, and halo, indolyl optionally substituted up to two times with (C₁-C₃)alkyl, 30 pyrazolyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and phenyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (C₁-C₄)alkyl, halo, CF₃, and CN,

benzothiazolyl optionally substituted up to two times with (C1-C4)alkyl, thiazolyl optionally substituted up to two times with (C1-C4)alkyl, thiadiazolyl optionally substituted with up to two substituents independently selected from CF₃, (C₃-C₆)cycloalkyl, and (C₁-C₆)alkyl, phenyl optionally substituted with up to two substituents independently selected 5 from CN, halo, CF₃, N[(C₁-C₄)alkyl]₂, indolyl, O-pyridyl optionally substituted with C(O)NH(C₁-C₄)alkyl, (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from pyridyl, OH, halo, and phenyl, and optionally substituted with up to two substituents independently 10 selected from (C₁-C₃)alkyl, and(C₁-C₄)alkoxy, pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_4) alkoxy, and 15 indazolyl optionally substituted up to two times with (C1-C4)alkyl; R⁷ is selected from (C₁-C₃)alkoxy, pyrrolidinyl, tetrahydropyranyl, pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl and (C₁-C₃)alkoxy, pyranyl optionally substituted with up to two substituents independently selected 20 from (C_1-C_4) alkyl and (C_1-C_3) alkoxy, piperidinyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, and (C₁-C₃)alkoxy, and phenyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkoxy, and (C_1-C_3) alkyl; and 25 X is selected from O, S, CH₂ and NH; with the proviso that when R1 is F or CI, then R4 must be H, and when R4 is F or Cl, then R¹ must be H; or a pharmaceutically acceptable salt thereof.