

FIG. 3

FIG. 4

FIG. 8

IMAGE CATEGORY BASED ON INFORMATION ON IMAGE SCENE SNOWSCAPE NIGHTSCAPE SNOWSCA - May 35 16 U-Shape IMAGE CATEGORY RESULTING FROM STATISTICAL ANALYSIS OF IMAGE **BRIGHT** NarrowHi WideHi MidHi AVERAGE OF LUMINANCE SIGNAL Y NarrowAve **AVERAGE** WideAve AND LONG THE MidAve NarrowLo WideLo DARK MidLo NARROW MIDDLE WIDE RANGE OF HISTOGRAM OF LUMINANCE SIGNAL Y

FIG. 11

FIG. 12

FIG. 14

FIG. 15

	TONE CORRECTION PARAMETER		SATURATION CORRECTION PARAMETER
	×Ό	rr	k c
Narrow & Low	× O-ML	rr-NL	k c-NL
Narrow & Ave	× O-NA	√re÷NX	k c≔NA
Narrow & Hi	× O-NH	rr-NH	k c-NH
Mid & Low	× O-ML	rr-#L	kc-¥L
Wid & Ave	× O-MA	r ŗ-MA	k c−MA
Mid & Hi	× O-MH	rr-1883	k.c-MH
Wide & Low	× O-WL	r r≓WL	kc-WL
Wide & Ave	× O-WA	r r-WA	k.c-WA
Wide & Hi	× O-WH	r r-WH	kc-1∦H
U-Shape	× 0-U	r y-U	k c -U
NIGHTSCAPE	× 0-N	rr-N	k c-N
SNOWSCAPE	x 0-S	rr-S	k c -S

20/25

$$\begin{bmatrix} Xraw \\ Yraw \\ Zraw \end{bmatrix} = M1 \cdot \begin{bmatrix} R^2 2 \\ G^2 2 \\ B^2 2 \end{bmatrix}$$
 (EQUATION 1)
$$M1 = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix}$$
 (EQUATION 2)
$$\begin{bmatrix} Xraw_n \\ Yraw_n \\ Zraw_n \end{bmatrix} = M2 \cdot \begin{bmatrix} Xraw \\ Yraw \\ Zraw \end{bmatrix}$$
 (EQUATION 2)
$$WHERE$$

$$M2 = \begin{bmatrix} 1/(Yraw_ave \times 5) & 0 & 0 \\ 0 & 1/(Yraw_ave \times 5) & 0 \\ 0 & 0 & 1/(Yraw_ave \times 5) \end{bmatrix}$$
 (EQUATION 3)
$$\begin{bmatrix} R^*3 \\ G^*3 \\ B^*3 \end{bmatrix} = M1^{-1} \cdot \begin{bmatrix} Xraw_n \\ Yraw_n \\ Zraw_n \end{bmatrix}$$
 (EQUATION 3)
$$\begin{bmatrix} RscRGB = round[(R^*3 \times 8192.0) + 4096.0] \\ GscRGB = round[(B^*3 \times 8192.0) + 4096.0] \\ BscRGB = round[(B^*3 \times 8192.0) + 4096.0] \\ GscRGB = round[(B^*3 \times 8192.0) + 4096.0] \\$$

21/25

$$R'3, G'3, B'3 \ge 0.0031308$$

$$\begin{cases} R'scRGB = 1.055 \times R'3(1.0/2.4) - 0.055 \\ G'scRGB = 1.055 \times G'3(1.0/2.4) - 0.055 \\ B'scRGB = 1.055 \times B'3(1.0/2.4) - 0.055 \end{cases}$$

$$(EQUATION 6-a)$$

$$0.0031308 > R'3, G'3, B'3 > -0.0031308$$

$$\begin{cases} R'scRGB = 12.92 \times R'3 \\ G'scRGB = 12.92 \times B'3 \end{cases}$$

$$R'3, G'3, B'3 \le -0.0031308$$

$$\begin{cases} R'scRGB = 12.92 \times B'3 \end{cases}$$

$$R'3, G'3, B'3 \le -0.0031308$$

$$\begin{cases} R'scRGB = -1.055 \times (-R'3)(1.0/2.4) + 0.055 \\ G'scRGB = -1.055 \times (-G'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \\ B'scRGB = -1.055 \times (-B'3)(1.0/2.4) + 0.055 \end{cases}$$

$$\begin{cases} R'scRGB = -1.055 \times (-B'3)(1.$$

22/25

$$\begin{cases} x \ d' = -4.6070 \times 10^9 / T \ w' \ ^3 + 2.9678 \times 10^6 / T \ w' \ ^2 \\ + 0.09911 \times 10^3 / T \ w' + 0.244063 & (EQUATION 10) \\ y \ d' = -3.000 \times x \ d^2 + 2.870 \times x \ d - 0.275 \end{cases}$$

$$\begin{cases} X \ w' = x \ d' / y \ d' \\ Y \ w' = 1 \\ Z \ w' = (1 - x \ d' - y \ d') / y \ d' \end{cases}$$

$$\begin{cases} R' \ w \\ B' \ w \end{cases} = M1^{-1} \cdot \begin{bmatrix} X \ w' \\ Y \ w' \\ Z \ w' \end{bmatrix}$$

$$\begin{cases} k \ r = R' \ w / R \ w \\ k \ g = G' \ w / G \ w \\ k \ b = B' \ w / B \ w \end{cases}$$

$$\begin{cases} R \ scRGB_T = round[k \ r \times R \ scRGB] \\ G \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R \ scRGB_T = round[k \ b \times B \ scRGB] \\ G \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

$$\begin{cases} R' \ scRGB_T = round[k \ b \times B \ scRGB] \end{cases}$$

FIG. 24

R'scRGB, G'scRGB, B'scRGB
$$\geq 0.04045$$

$$\begin{bmatrix}
R'3 = \left[\frac{R' \text{scRGB} + 0.055}{1.055} \right]^{2.4} \\
G'3 = \left[\frac{G' \text{scRGB} + 0.055}{1.055} \right]^{2.4}
\end{bmatrix}^{2.4}$$
(EQUATION 17-a)

$$\begin{bmatrix}
B'3 = \left[\frac{B' \text{scRGB} + 0.055}{1.055} \right]^{2.4}
\end{bmatrix}^{2.4}$$
(EQUATION 17-b)

$$\begin{bmatrix}
R'3 = R' \text{scRGB}/12.92 \\
G'3 = G' \text{scRGB}/12.92
\end{bmatrix}$$
(EQUATION 17-b)

$$\begin{bmatrix}
R'3 = R' \text{scRGB}/12.92 \\
G'3 = B' \text{scRGB}/12.92
\end{bmatrix}$$
(EQUATION 17-c)

$$\begin{bmatrix}
R'3 = -\left[\frac{(-R' \text{scRGB}) + 0.055}{1.055} \right]^{2.4} \\
1.055
\end{bmatrix}^{2.4}$$
(EQUATION 17-c)

$$\begin{bmatrix}
B'3 = -\left[\frac{(-B' \text{scRGB}) + 0.055}{1.055} \right]^{2.4}
\end{bmatrix}$$
(EQUATION 17-c)

24/25

R'scRGB, G'scRGB, B'scRGB<0

$$\begin{cases}
R = 0 \\
G = 0 \\
B = 0
\end{cases} (EQUATION 18-a)$$

$$0 \le R'scRGB, G'scRGB, B'scRGB \le 1.0$$

$$\begin{cases}
R = round(R'scRGB \times 255) \\
G = round(G'scRGB \times 255)
\end{cases} (EQUATION 18-b)$$

$$1.0 < R'scRGB, G'scRGB, B'scRGB$$

$$\begin{cases}
R = 255 \\
G = 255 \\
B = 255
\end{cases} (EQUATION 18-c)$$

$$Yout = \frac{1}{1 + e^{-rr(x - x0)}} (EQUATION 19-a)$$

$$Yout = \frac{Sfwd(Yin) - Sfwd(0)}{Sfwd(1) - Sfwd(0)} (EQUATION 19-b)$$

$$Sinv(x) = -\frac{1}{rr} ln(\frac{1}{x} - 1) + x0 (EQUATION 20-a)$$

$$Yout = \frac{Sinv(Yin) - Sinv(0)}{Sinv(1) - Sinv(0)} (EQUATION 20-b)$$

$$Cout = k c \times C in (EQUATION 21)$$

$$Ymin_TV = Ymin \times B Ktv (EQUATION 22)$$

FIG. 26

Y max_TV = Y max × W tv	(EQUATION 23)
$k c_TV = k c \times Gtv$	(EQUATION 24)
Ymax_Pic = Ymax × Wpic	(EQUATION 25)
k c_Pic=k c × Gpic	(EQUATION 26)
Ymin_User = Ymin×BKuser	(EQUATION 27)
Y max_User = Y max × Wuser	(EQUATION 28)
k c_User=k c × Guser	(EQUATION 29)
$Guser = 2 - \frac{B Kuser + Wuser}{2}$	(EQUATION 30)
$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 255 & 0 & 0 \\ 0 & 255 & 0 \\ 0 & 0 & 255 \end{bmatrix} \cdot M3^{-1} \cdot \begin{bmatrix} Y' \\ Cb' \\ Cr' \end{bmatrix}$	(EQUATION 31)