

DECISION TREES AND RANDOM FORESTS

Angelo KlinKatra Analytics

DECISION TREES AND RANDOM FORESTS

LEARNING OBJECTIVES

- Understand and build decision tree models for classification and regression
- Understand the differences between linear and non-linear models
- Understand and build random forest models for classification and regression
- Know how to extract the most important predictors in a random forest model

DECISION TREES AND RANDOM FORESTS

PRE-WORK

PRE-WORK REVIEW

- Use Seaborn to create plots
- Knowledge of a bootstrap sample
- Explain the concepts of cross-validation, logistic regression and overfitting
- Know how to build and evaluate some classification model in scikit-learn using cross-validation and AUC

DECISIONTREES RANDAEORESTS

ACTIVITY: KNOWLEDGE CHECK

DIRECTIONS: ANSWER THE FOLLOWING QUESTIONS

- 1. Define the difference between the precision and recall of a model
- 2. What are some common components and use cases for logistic regression?

GUIDED PRACTICE

EXPLORE THE DATA SET

ACTIVITY: EXPLORE THE DATA SET

DIRECTIONS: (25 MINUTES)

We will be using a data set from StumpleUpon, a service that recommends webpages to users based upon their interests. They like to recommend "evergreen" sites, ones that are always relevant. This usually means websites that avoid topical content and focus on recipes, how-to guides, art projects, etc. We want to determine important characteristics for "evergreen" websites. Follow these prompts to get started:

- 1. Break into groups
- 2. Prior to looking at the data, brainstorm 3-5 characteristics that would be useful for predicting evergreen websites
- 3. After looking at the data set, can you model or quantify any of the characteristics you wanted?
 - a. See the Notebook for data dictionary and starter code
- 4. Does being a news site affect "evergreeness"?
 - a. Compute or plot the percent of evergreen news sites

ACTIVITY: EXPLORE THE DATA SET

DIRECTIONS: (25 MINUTES)

- 5. In general, does category affect "evergreeness"? Plot the rate of evergreen sites for all Alchemy categories.
- 6. How many articles are there per category?
- 7. Create a feature for the title containing "recipe". Is the percentage of evergreen websites higher or lower on pages that have "recipe" in the title?
- 8. **Check**: Were you able to plot the requested features?
 - a. Can you explain how you would approach this type of data set?

TRAINING DECISION TREES

INTUITION BEHIND DECISION TREES

Decision Tree: The Obama-Clinton Divide

• Decision trees are like the game "20 questions"

 They make decision by answering a series of questions most often binary questions (yes or

no ducated populations.
Senator Hillary Rodham
Clinton has a commanding
lead in less-educated

NO There are not many African-Americans in this county. YES This county has a large African-American population.

• We want the smallest set of questions to get to the right answer!

And is the high school

• Each questions should reduce the search space as much as possible

NO This is a county with less-educated voters. YES This is a county with more educated voters.

Obama wins these counties 383 to 70.

TREES

Trees are a data structure made up of nodes and branches

 Each node typically has two or more branches that connect it to its children

TREES

• Each child is another node in the tree and contains its own **subtree**

 Nodes without any children are known as leaf nodes

DECISION TREES

- A Decision Tree contains a Question on nodes that are not a leaf node
- Depending upon the answer to the question, we proceed down the left or right branch of the tree and ask another question
- Once we do not have any more questions (at the Leaf nodes), we make a Prediction
- Note: The next question is always dependent on the last

DECISION TREES

- Let's suppose we want to predict if an article is a news article
- What questions should we ask to make a prediction?
- How many questions should we ask?

DECISION TREES

- We may start by asking:
 - Does it mention a President?
 - If it does, it must be a news article
- If not, let's ask another question:
 - Does the article contain other political features?
 - If not, does the article contain references to political topics?
- We could keep going on in this manner until we were satisfied

ACTIVITY: KNOWLEDGE CHECK

DIRECTIONS: (25 MINUTES)

- 1. Let's work as a class to accomplish the following:
 - a. Using our StumpleUpon data set, try to predict whether a given article is evergreen
 - b. Build a decision tree to determine the above

COMPARISON WITH PREVIOUS MODELS

- Decision trees are non-linear, an advantage over logistic regression
- A linear model is one in which a change in an input variable has a constant change on the output variable

COMPARISON WITH PREVIOUS MODELS

• Linear vs. non-linear classification models

COMPARISON WITH PREVIOUS MODELS

- An example of this difference is the relationship between years of education and salary
 - In a linear model, the increase in salary from 10 to 15 years of education would be the same as the increase in salary from 15 to 20 years of education
 - In a non-linear model, salary can change dramatically for years 0-15 and negligibly from years 15-20
- Trees automatically contain interaction of features, since each question is dependent on the last

- Training a decision model is deciding the best set of questions to ask
- A good question will be one that best segregates the positive group from the negative group and then narrows in on the correct answer
- For example, in our news article decision tree, the best question is one that creates two groups, one that is mostly news stories and one that is mostly non-news stories

- We can quantify the purity of the separation of groups using Classification Error, Entropy or Gini Impurity
- We want to choose the question that gives us the best change in our purity measure
 - At each step, we can ask, "Given our current set of data points, which question will make the largest change in purity?"
- This is done recursively for each new set of two groups until we reach a stopping point

- Let's build a sample tree for our evergreen prediction problem.
 Assume our features are whether the article contains a recipe, the image ratio, the html ratio
- First, let's choose the feature that gives us the highest purity, the recipe feature

We can take each side of the tree and repeat the process

 We can continue this process until we have asked as many questions as we want or until our leaf nodes are completely pure

MAKING PREDICTIONS FROM A DECISION TREE

- Predictions are made by answering each of the questions
- Once we reach a leaf node, our prediction is made by taking the majority label of the training samples that fulfil the questions
- In our sample tree, if we want to classify a new article, ask:
 - Does the article contain the word recipe?
 - If it does not, does the article have a lot of images?
 - If it does, then 630 / 943 article are evergreen
 - So we can assign a 0.67 probability for evergreen sites

ACTIVITY: KNOWLEDGE CHECK

DIRECTIONS: ANSWER THE FOLLOWING QUESTIONS

- 1. How do we classify a new article?
- 2. How do we make predictions from a decision tree?

DECISION TREES IN SCIKIT-LEARN

ACTIVITY: DECISION TREES IN SCIKIT-LEARN

DIRECTIONS: (15 MINUTES)

- 1. In the starter code notebook, work through the exercises titled "Decision Trees in scikit-learn"
- 2. In your groups from earlier, work on evaluating the decision tree using cross-validation methods
- 3. What metrics would work best? Why?

Check: Are you able to evaluate the decision tree model using cross-validation methods?

OVERFITTING IN DECISION TREES

OVERFITTING IN DECISION TREES

 Decision trees tend to be weak models because they can easily memorise or overfit to a data set

• A model is **overfit** when it memorises or bends to a few specific data points rather than picking up general trends in the data

OVERFITTING IN DECISION TREES

- An unconstrained decision tree can learn an extreme tree (e.g. one feature for each word in a news article)
- We can limit our decision trees using a few methods
 - Limiting the number of questions (nodes) a tree can have)
 - Limiting the number of samples in the leaf nodes

ACTIVITY: KNOWLEDGE CHECK

DIRECTIONS: ANSWER THE FOLLOWING QUESTIONS

- 1. Why are decision trees generally thought of as weak models?
- 2. How can we limit our decision trees?

ADJUSTING DECSON RES TO AVOID OVERFITTING

ACTIVITY: ADJUSTING DECISION TREES TO AVOID OVERFITTING

DIRECTIONS: ANSWER THE FOLLOWING QUESTIONS

- 1. You can control for overfitting in decision trees by adjusting one of the following parameters:
 - a. max_depth: Control the maximum number of questions
 - b. min_samples_in_leaf: Control the minimum number of records in each node
- 2. Test each of these parameters in the starter code notebook

RUNNING THROUGH THE RANDOM FORESTS

RUNNING THROUGH THE RANDOM FORESTS

 Random Forest models are one of the most widespread classifiers used

- They are relatively simple to use and help avoid overfitting
- Random Forests are an ensemble or collection of individual decision trees

PROS AND CONS OF RANDOM FORESTS

- Advantages
 - Easy to tune
 - Built-in protection against overfitting
 - Non-linear
 - Built-in interaction effects

- Disadvantages
 - Slow
 - Black-box
 - No "coefficients"
 - Harder to explain

TRAINING A RANDOM FOREST MODEL

 Training a random forest model involves training many decision tree models

 Since decision trees overfit easily, we use many decision trees together and randomise the way they are created

TRAINING A RANDOM FOREST MODEL

- Random Forest Algorithm
 - Take a bootstrap sample of the data set
 - Train a decision tree on the bootstrap sample
 - For each split/feature selection, only evaluate a limited number of features to find the best one

Repeat this for N trees

PREDICTIONS USING RANDOM FORESTS

- Predictions for a random forest model come from each decision tree
- Make an individual prediction with each decision tree
- Combine the individual predictions and take the majority vote

REGRESSIONWITH AND RANDOM FORESTS

ACTIVITY: REGRESSION WITH DECISION TREES AND RANDOM FORESTS

DIRECTIONS: (20 MINUTES)

- 1. Build a random forest model to predict the evergreeness of a website
 - a. Remember to use the parameter n_estimators to control the number of trees used in the model
- 2. Take note of the features that give the best splits to determine the most important features
- 3. Decision trees and random forests can be used for both classification and regression. In regression, predictions are made by taking the average value of the samples in the leaf node. You can take the average of the individual trees' predictions. Build a regression based random forest model.

FOREST USING CROSS-VALIDATION

ACTIVITY: EVALUATE RANDOM FOREST USING CROSS-VALIDATION

DIRECTIONS: (25 MINUTES)

- 1. Building upon the previous Guided Practice, add any input variables to the model that you think may be relevant
- 2. For each feature:
 - a. Evaluate the model for improved predictive performance using crossvalidation
 - b. Evaluate the importance of the feature
- 3. **Bonus**: Just like the recipe feature, add in similar text features and evaluate their performance

CONCLUSION

TOPIC REVIEW

TOPIC REVIEW

• What are decision trees?

• What does training involve?

• What are some common problems with decision trees?

• What are random forests?

• What are some common problems with random forests?

DATA SCIENCE

BEFORE NEXT CLASS

BEFORE NEXT CLASS

DUE DATE

- Project:
 - Unit Project 4

DECISION TREES AND RANDOM FORESTS

DECISION TREES AND RANDOM FORESTS

EXITICKETS

DON'T FORGET TO FILL OUT YOUR EXIT TICKET

Exit Ticket Link

What's the lesson number?	12
What was the topic of the lesson?	Decision Trees and Random Forests