KYBER

By Pakin Panawattanakul 24/03/2025

PRESENTATION OUTLINE

- 1. Introduction
 - a) Objective
 - b) What is FPGA
- 2. Kyber PKE
- 3. Kyber KEM

INTRODUCTION

OBJECTIVE

Our group previous presentation

- Post quantum cryptography:
 variations, math problem,
 performance → Lattice based
- Frodo KEM: Lattice based algorithm that haven't been implement → It is suck!

Today Objective

- AJ. Vasin: Find Lattice based cryptography implementation methods on FPGA
- Understanding basic idea of Kyber-PKE & Kyber-KEM

FIELD PROGRAMMABLE GATES ARRAY

- No instruction set like traditional CPU
- Reconfigurable Logic Block
- Using Hardware description language
 - E.g. Verilog and VHDL
- Parallel execution
- Flexibility and Customizable

https://eee.poriyaan.in/topic/fpga--field-programmable-gate-arrays--11689/ https://www.researchgate.net/figure/Digital-circuit-with-two-inputs-OR-and-AND-gates_fig11_309907692

KYBER-PKE & KYBER-KEM

- Base on Module Learning with Error(Tony's presentation)
- Kyber-KEM chosen to be standard Key encapsulation algorithm by NIST

NIST (National Institute of Standards and Technology) is a U.S. agency that develops and promotes standards for technology, including cybersecurity and cryptography.

- Public key encryption(PKE)
- Encrypted message

- Key Encapsulation Mechanism (KEM)
- Established shared secret key (symmetric key)

IMPORTANT MATH NOTATION

- Integer modulo \mathbb{Z}_q
- Polynomial ring : $R_q = \mathbb{Z}_q[x]/(x^n + 1)$
- Polynomial vector R_q^k
- "Small" Polynomial : S_{η}
- bit string $\{0,1\}^n$

- Integer modulo : \mathbb{Z}_q
 - Integer 0,1,2,..., q-1
 - After math operation \rightarrow mod q

e.g.
$$15+3 = 18\%17 = 1$$

- Polynomial ring: $R_q = \mathbb{Z}_q[x]/(x^n + 1)$
 - q, n
 - Coefficient in $\mathbb{Z}_q \in \{0,1,2,\ldots,q-1\}$
 - Degree = $n-1 \rightarrow a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$
 - After multiplying apply modular reduction $/(x^n + 1)$

e.g.
$$q = 17$$
, $n = 4$

$$f(x) = 2 + 16x + 3x^2 + 5x^3$$

$$g(x) = 9 + x + 14x^3$$

$$f(x)g(x) = 18 + 146x + 43x^2 + 76x^3 + 229x^4 + 42x^5 + 70x^6$$

coef. mod q

$$= 1 + 10x + 9x^2 + 8x^3 + 8x^4 + 8x^5 + 2x^6$$

modular reduction $/(x^n + 1)$

$$= 10 + 2x + 7x^2 + 8x^3$$

Polynomial vector R_q^k

- Matrix size k; e.g. k = 3
- Entries are polynomial ring R_q

$$\begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}_{k \times 1}$$

Polynomial vector $R_q^{k \times k}$

- Matrix size 3×3 ; e.g. k = 3
- Entries are polynomial ring R_q

$$\begin{bmatrix} R_q & R_q & R_q \\ R_q & R_q & R_q \\ R_q & R_q & R_q \end{bmatrix}_{k \times k}$$

$$R_q = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

"Small" Polynomial : S_{η}

- η (eta) : coefficient $\in [-\eta, \eta]$ when written in symmetric mod
- e.g. q = 17, n = 4, $\eta = 2$
- Coefficient can be -2, -1, 0, 1, 2

$$s(x) = 1 + x - 2x^3$$

Noted: s(x) is written is symmetric mods $15x^3$

Symmetric mod → mods

Bit string

- Bits string $\{0,1\}^n$
- e.g. 01101101....0 ← n bits long

Kyber-768 domain Parameters

q = 3329	Polynomial coefficient can be : 0,1,2,3328
n = 256	Each polynomial has degree 255 : $a_0 + a_1x + \cdots + a_{255}x^{255}$
k = 3	For matrix size

$\eta_1 = 2$	size of "small" polynomial
$\eta_2 = 2$	size of "small" polynomial

$$d_u = 10$$
 for compression/decompression of ciphertext

$$d_v = 4$$
 for compression/decompression of ciphertext

KYBER-PKE

- Key generation
- Encryption
- Decryption

- Base on Learning with errors problem
- Public key encryption
- Security level: "secure against chosen plain

text attack" → lower than Kyber-KEM

Kyber-PKE key generation: Alice does:

- 1. Select $\rho \in_R \{0,1\}^{256}$ and compute $A = \operatorname{Expand}(\rho)$, where $A \in R_q^{k \times k}$.
- 2. Select $s \in_{CBD} S_{\eta_1}^k$ and $e \in_{CBD} S_{\eta_2}^k$.
- 3. Compute t = As + e.
- 4. Alice's encryption (public) key is (ρ, t) ; her decryption (private) key is s.

 $\rho = \{0,1\}^{256}$ 256 bits string

$$A = \operatorname{Hash}(\rho)$$

$$A = \begin{bmatrix} R_q & R_q & R_q \\ R_q & R_q & R_q \\ R_q & R_q & R_q \end{bmatrix}_{3 \times 3}$$

 $S = \begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}_{3 \times 1} \qquad e = \begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}_{3 \times 1}$

Note: coefficient size has to be small according to $\eta_1 = 2$, $\eta_2 = 2$

2

Kyber-PKE encryption: To encrypt a message $m \in \{0,1\}^n$ for Alice, Bob does:

- 1. Obtain an authentic copy of Alice's encryption key (ρ, t) and compute $A = \text{Expand}(\rho)$.
- 2. Select $r \in_{CBD} S_{\eta_{1'}}^k$ $e_1 \in_{CBD} S_{\eta_{2'}}^k$ and $e_2 \in_{CBD} S_{\eta_2}$.
- 3. Compute $u = A^T r + e_1$ and $v = t^T r + e_2 + \lceil \frac{q}{2} \rfloor m$.
- 4. Compute $c_1 = \text{Compress}_q(u, d_u)$ and $c_2 = \text{Compress}_q(v, d_v)$.
- 5. Output $c = (c_1, c_2)$. Ciphertext: send to Alice

$$m = \{0,1\}^{256}$$

$$t = \begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}, \rho = \{0,1\}^{256}$$

m, ρ can be written as polynomial e.g. $\rho = x + x^3 + x^5 + \dots + x^{255}$

$$r = \begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}_3 \quad e_1 = \begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}_3 \quad e_2 = R_q$$

$$R_q \text{ are small!}$$

$$u = A^{T} \underbrace{R_{q} R_{q} R_{q$$

(

Kyber-PKE decryption: To decrypt $c = (c_1, c_2)$, Alice does:

- 1. Compute $u' = \text{Decompress}_{q}(c_1, d_u) \text{ and }$ $v' = \text{Decompress}_{q}(c_2, d_v).$
- 2. Compute $m = \text{Round}_q(v' s^T u')$.

 $u' = \begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}_{3 \times 1}, v' = R_q$

 $m = Round_{q}(v' - s^{T}u')$ $= Round_{q}(R_{q} - [R_{q} \quad R_{q} \quad R_{q}]_{1\times 3} \times \begin{bmatrix} R_{q} \\ R_{q} \\ R_{q} \end{bmatrix}_{3\times 1}$ $= Round_{q}(R_{q}) \rightarrow \text{get plaintext Bob's original message}$

Note: there is small chance that decryption fail but the probability is very low

KYBER-KEM

- Key generation
- Encapsulation
- Decapsulation

Hash function:

generate A: SHAKE 128 G is SHA3-512, H is SHA3-256, J is SHAKE256

- Kyber PKE alone is not secure enough. Applying "Fujisaki Okamoto" transform → Kyber KEM
- Key Encapsulation mechanism
- Using Kyber-PKE as base building block
- Use Hash() and seed to create Pseudo RNG alongside
 - pure random
 - Central binomial Distribution
- Security: "Secure against chosen ciphertext attack" (more secure than Kyber-PKE)

Kyber-KEM key generation: Alice does:

- 1. Use the Kyber-PKE key generation algorithm to select a Kyber-PKE encryption key (ρ, t) and decryption key s.
- 2. Select $z \in_R \{0,1\}^{256}$.
- 3. Alice's encapsulation key is $ek = (\rho, t)$; her decapsulation key is dk = (s, ek, H(ek), z).

	Public key			Private key		
Kyber-KEM		Public key	Private key		Public key	Private key
	Kyber-KEM	Encapsulation (ρ,t)	Decapsulation $(s, ek, H(ek), z)$	Kyber-KEM	Encapsulation (ρ,t)	Decapsulation $(s, ek, H(ek), z)$
	Kyber-PKE	Encryption (ρ,t)	Decryption s	Kyber-PKE	Encryption (ρ,t)	Decryption s
Kyber-PKE		Public key	Private key		Public key	Private key
<i>y</i> = == ====	Kyber-KEM	Encapsulation (ho,t)	Decapsulation $(s, ek, H(ek), z)$	Kyber-KEM	Encapsulation (ρ,t)	Decapsulation $(s, ek, H(ek), z)$
	Kyber-PKE	Encryption (ρ,t)	Decryption s	Kyber-PKE	Encryption (ρ,t)	Decryption s

Follow Kyber-PKE Key-gen (page 15)

$$\rho = \{0,1\}^{256} \quad , t = \begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}_{3 \times 1}$$

$$s = \begin{bmatrix} R_q \\ R_q \\ R_q \end{bmatrix}_{3 \times 1}$$

encryption key $ek = (\rho, t)$

$$z = \{0,1\}^{256}$$

Encapsulation key = Encryption key

Decapsulation key != Decryptionkey

Kyber-KEM encapsulation: To establish a shared secret key with Alice, Bob does:

- 1. Obtain an authentic copy of Alice's encapsulation key *ek*.
- 2. Select $m \in_R \{0,1\}^{256}$.
- 3. Compute h = H(ek) and (K, R) = G(m, h), where $K, R \in \{0, 1\}^{256}$.
- 4. Use the Kyber-PKE encryption algorithm to encrypt *m* with encryption key *ek*, and using *R* to generate the random quantities needed; call the resulting ciphertext *c*.
- 5. Output the secret key *K* and ciphertext *c*.

Send ciphertext c to Alice

$$ek = (\rho, t)$$

 $m = 11000101 \dots 1 \leftarrow 256 \text{ bits}$

Using hash function H and G

 $K = 11000101 \dots 1 \leftarrow 256 \text{ bits string}$

 $R = 11000101 \dots 1 \leftarrow 256 \text{ bits string}$

K is secret key

R is seed for Kyber-PKE step 4

Use R as seed $\rightarrow r$, e_1 , e_2 to encrypt m

Follow Kyber-PKE encryption (page 16)

Get ciphertext $c = (c_1, c_2)$

_

1

Kyber-KEM decapsulation: To recover the secret key K from c using dk = (s, ek, H(ek), z), Alice does:

- 1. Use the Kyber-PKE decryption algorithm to decrypt *c* using decryption key *s*; call the resulting plaintext *m*′.
- 2. Compute (K', R') = G(m', H(ek)).
- 3. Compute $\overline{K} = J(z, c)$.
- Use the Kyber-PKE encryption algorithm to encrypt m'
 with encryption key ek, and using R' to generate the
 random quantities needed; call the resulting ciphertext c'.
- 5. If $c \neq c'$ then return(\overline{K}). Decapsulation fail
- 6. Return(K'). Decapsulation successful

Follow Kyber-PKE decryption (page 17) $m' = \{0,1\}^{256}$

Get $K', R' = \{0,1\}^{256}$

(2

K' is the candidate of secret key

R' is the seed use in step 4

 \overline{K} is return value when the decapsulation fail

1

Use R' as seed $\rightarrow r$, e_1 , e_2 to encrypt m' again!!

Follow Kyber-PKE encryption (page 16)

Get ciphertext c' = (c_1, c_2)

FUTURE WORK

- Literature review : implementation methods of Kyber KEM
 - Which part of algorithm have been implemented
 - Which part we could implement, and benefits?
- Next presentation : Kyber KEM implementation on FPGA using High
 Level Synthesis tools

REFERENCES

- https://eee.poriyaan.in/topic/fpga--field-programmable-gate-arrays--11689/
- https://www.researchgate.net/figure/Digital-circuit-with-two-inputs-OR-and-
 -AND-gates_fig11_309907692
- https://cryptography101.ca/kyber-dilithium/