1.12 电路的暂态分析

什么是暂态 (瞬态)?

R2支路断开前

$$oldsymbol{U}_{C1} \Box rac{oldsymbol{R}_2}{oldsymbol{R}_1 oldsymbol{\square} oldsymbol{R}_2} oldsymbol{\square} oldsymbol{U}_{oldsymbol{S}}$$

R2支路断开后

$$U_{c_2} \square U_{s}$$

1.12 电路的暂态分析

1.基本概念

(一) 稳态和暂态

换路: 电路在接通、断开、改接以 及参数和电源发生突变等等。

稳态

电路工作状态 稳定,*u* 和 *i* 没 有突变。 暂态

新的稳态

电路在过渡 过程中所处 的状态。

出现5态的原因: 内因: 电路中有储能元件——电容 C 或电感 L

外因: 换路

1.基本概念

(一) 稳态和暂态

因为
$$p = \frac{dW}{dt}$$
,若W突变,则 $p \Rightarrow \infty$

所以: 电容C 的电压不能突变

(二) 电阻元件、电感元件、电容元件

参数	电路图	时域关系	瞬时功率 <i>p</i> □ <i>ui</i>	储能
R	+ i u	u □ iR	p □0耗能	0
L	+ u 	$u \square L \frac{\mathrm{d}i}{\mathrm{d}t}$	p□0 电能转化 为磁能 p□0 磁能转化 为电能	$\frac{1}{2}$ Li ²
C	+ u i	$i \square C \frac{\mathrm{d}u}{\mathrm{d}t}$	p □ 0 电能转化 为电场能 p □ 0 电场能转 化为电能	$\frac{1}{2}Cu^2$

1.12 电路的暂态分析

• 电容图片

复合介质电容

钽电解电容

真空电容

云母电容

1.12 电路的暂态分析

• 电感图片

磁珠电感

贴片电感

铁心电感线圈

工字形电感线圈

2 储能元件与换路定律

(一) 储能元件

注意: W不能突变

电容C的电压不能突变

电感L 的电流不能突变

- t=+∞时刻的值称为稳态值,如: u(∞) i(∞);
- t=0+时刻的值称为初始值,如: u(0+)、i(0+);
- 不同元件的值可用不同下标区分,如: $u_{\mathbb{C}}(0_+)$ 、 $u_{\mathbb{R}}(0_+)$ 。

注意:

- 1. 换路定律仅适用于换路瞬间。
- 2. 式中0+、0-均为0时刻,但电路结构不同;
- 3. 换路瞬间, u_C 、 i_L 不能突变, 其它电量均可能突变;

(二) 换路定律

換路定律
$$\begin{cases} u_{C}(0_{\square}) \square u_{C}(0_{\square}) \\ i_{L}(0_{\square}) \square i_{L}(0_{\square}) \end{cases}$$

即: 电容电压、电感电流在换路瞬间不能突变。

初始值: 电路中各 $u \times i$ 在 $t = 0_+$ 时的数值。

求解步骤:

- 1) 作出t=0的电路,求出 $u_{C}(0_{-})$ 、 $i_{L}(0_{-})$;
- 2) 根据换路定则知: $u_{C}(0_{+}) = u_{C}(0_{-})$ 、 $i_{L}(0_{+}) = i_{L}(0_{-})$ 。
- 3) 作出 $t = 0_{+}$ 的电路,此时,电容用电压等于 $u_{C}(0_{+})$ 的恒压源代替,电感用电流等于 $i_{L}(0_{+})$ 的恒流源代替,求其它电量的初始值;

先求取不能突变的量,即 $u_c(0+)$ 、 $i_l(0+)$

再计算其它可能 突变的量

例1: 图示电路换路前电路处于稳态, C、L均未储能。

试求各个电压/电流的初始值。

解:

(1) t = 0_时刻电路 $u_{\rm C}(0_{-}) = 0$ 、 $i_{\rm L}(0_{-}) = 0$

电容元件视为开路;

电感元件视为短路。

先求取不能突变的量,即 $u_c(0+)$ 、 $i_l(0+)$

再计算其它可能 突变的量

例1: 图示电路换路前电路处于稳态, C、L均未储能。

试求各个电压/电流的初始值。

解:

- (1) t = 0_时刻电路 $u_{\rm C}(0_{-})=0$ 、 $i_{\rm L}(0_{-})=0$
- (2) 由换路定则:

$$\boldsymbol{u}_{\boldsymbol{C}}(0_{\scriptscriptstyle \square}) \square \boldsymbol{u}_{\boldsymbol{C}}(0_{\scriptscriptstyle \square}) \square 0 V$$

$$i_L(0_{\square}) \square i_L(0_{\square}) \square 0 A$$

先求取不能突变的量,即 $u_c(0+)$ 、 $i_l(0+)$

再计算其它可能 突变的量

(3) t = 0+时刻电路

元件无初始储能

电容视为短路, 电感视为开路;

元件有初始储能?

电容视为输出为U_C的恒压源, 电感视为输出为I_L的恒流源。

先求取不能突变的量,即 $u_c(0+)$ 、 $i_l(0+)$

再计算其它可能 突变的量

$$\boldsymbol{u}_{\boldsymbol{C}}(0_{\scriptscriptstyle \square}) \square \boldsymbol{u}_{\boldsymbol{C}}(0_{\scriptscriptstyle \square}) \square 0 V$$

 $U_{\rm C}$

$$i_L(0_{\scriptscriptstyle \square}) \square i_L(0_{\scriptscriptstyle \square}) \square 0 A$$

 I_L

(3) t = 0+时刻电路

元件无初始储能

电容视为短路, 电感视为开路;

先求取不能突变的量,即 $u_c(0+)$ 、 $i_l(0+)$

<mark>再</mark>计算其它可能 突变的量

$$\boldsymbol{u}_{C}(0_{\square}) \square \boldsymbol{u}_{C}(0_{\square}) \square 0V$$

$$\boldsymbol{i}_{L}(0_{\square}) \square \boldsymbol{i}_{L}(0_{\square}) \square 0 A$$

(3) t = 0+时刻电路

$$i (0_{\square}) \square i_{C}(0_{\square}) \square \frac{U}{R \square R_{2}}$$

$$\square \frac{6}{2 \square 4} \square 1 A$$

$$U_{L}(0_{\square}) \square R_{2} \square_{C}(0_{\square})$$

$$\Box 4\Box 1\Box 4$$
 V

t=0,时刻电路

$i_{\rm C}$ 及 $u_{\rm L}$ 可以突变

还可以求出
$$U_{R}(0_{+}) = 2 \text{ V}$$
, $U_{R3}(0+) = 0 \text{ V}$

先求取不能突变的量,即 $u_c(0+)$ 、 $i_l(0+)$

再计算其它可能 突变的量

$$\boldsymbol{u}_{C}(0_{\square}) \square \boldsymbol{u}_{C}(0_{\square}) \square 0V$$

$$\boldsymbol{i}_{L}(0_{\square}) \square \boldsymbol{i}_{L}(0_{\square}) \square 0A$$

(3) t = 0+时刻电路

$$i (0_{\square}) \square i_{C}(0_{\square}) \square \frac{U}{R \square R_{2}}$$

$$\square \frac{6}{2 \square 4} \square 1 A$$

 $U_L(0_{\square}) \square R_2 \square_C(\theta_{\square})$

$$\Box 4\Box 1\Box 4$$
 V

t=0_时刻电路

 $i_{\rm C}$ 及 $u_{\rm L}$ 可以突变

1.12 电路的暂态分析

3.RC电路的暂态分析

原因

暂态响应分类

产生 零输入响应: 内部

内部储能作用

零状态响应: 外部激励作用

全响应 = 零输入响应 + 零状态响应

电容C上无电荷,S打在a时

少₀为电容充电 - 零状态响应 外部激励

电容C上电压为 U_0 , S打在b时:

电容放电 - <u>零输入</u>响应 储能元件

3.RC电路的暂态分析

放电过程

$$Ri_C \square u_C \square 0$$

$$RC\frac{\mathrm{d}\,u_C}{\mathrm{d}\,t} + u_C = 0$$

$$u_C \square U_0 e^{\square \frac{t}{\square}}$$

RC 电路的零状态响应

充电过程

$$Ri_C \square u_C \square U_S$$

$$RC\frac{\mathrm{d}\,u_C}{\mathrm{d}\,t}\Box u_C\Box U_S$$

$$\boldsymbol{u}_{\boldsymbol{C}} \square \boldsymbol{U}_{\mathrm{S}} (1 \square \mathrm{e}^{\square \frac{\boldsymbol{t}}{\square}})$$

$\diamondsuit \tau = RC$

$\frac{U_s}{R}$ $\frac{U_c}{R}$

RC 电路的零输入响应(放电)

$$u_{\mathcal{C}} = U_0 e^{-\frac{t}{\tau}}$$

$$i_C = C \frac{du_C}{dt} = -\frac{U_0}{R} U_0 e^{-\frac{t}{\tau}}$$

$$u_R = i_C R = -U_0 e^{-\frac{t}{\tau}}$$

RC 电路的零状态响应 (充电)

$$u_{\mathcal{C}} = U_{\mathcal{S}}(1 - e^{-\frac{t}{\tau}})$$

$$i_C = C \frac{du_C}{dt} = \frac{U_S}{R} e^{-\frac{t}{\tau}}$$

$$u_R = i_C R = U_S e^{-\frac{t}{\tau}}$$

时间常数 τ

 $\tau = RC$

(1) 单位 $\Omega \frac{A \mathbb{S}}{V} \square S$

□决定电路 化的快慢

(2) 物理意义

零输入响应:

$$u_C \square U_0 e^{\square \frac{t}{\square}}$$
 $\stackrel{\text{def}}{=} \tau$ $\stackrel{\text{def}}{=}$

 $\boldsymbol{u_C} \square \boldsymbol{U_0} e^{\square 1} \square 0.368 \boldsymbol{U_0}$

零状态响应:
$$u_C \square U_S (1 \square e^{-\frac{t}{\square}})$$

 $|\boldsymbol{u}_{\boldsymbol{C}} \square \boldsymbol{U}_{\boldsymbol{S}}(1 \square \boldsymbol{e}^{\square 1}) \square 0.632 \boldsymbol{U}_{\boldsymbol{S}}|$

所以: 时间常数τ等于电压衰减到初始值U₀的36.8%或者

电压从初始值上升到稳态值63.2%所需的时间。

时间常数 τ

零输入响应

$$u_{c} = U_{0}e^{-\frac{t}{\tau}}$$

$$v \cap RC$$

$$0.368U_{0}$$

$$0$$

L 越大,曲线变化越慢, U_C 达到稳态所需要的时间越长。

时间常数 τ

零输入响应

(3) 暂态时间

理论上认为 t \square \square 、 u_C \square 0 电路达稳态 工程上认为 t \square $(3\sim5)$ \square 、 u_C \square 0 电容放电基本结束。

t		2 ∠	3 ∠	4 ∠	5 □	6 C
$\mathbf{e}^{\Box \frac{t}{\Box}}$	$\mathbf{e}^{\square 1}$	$\mathbf{e}^{\square 2}$	$e^{\Box 3}$	e ^{□4}	e ^{□5}	$e^{\Box 6}$
u_{C}	0.368 <i>U</i>	0.135 <i>U</i>	0.050U	0.018 <i>U</i>	0.007 <i>U</i>	0.002U

当 t=5口时,过渡过程基本结束, u_c 达到稳态值。

时间常数τ

零状态响应

$$u_{\mathcal{C}} = U_{\mathcal{S}}(1 - e^{-\frac{t}{\tau}})$$

当
$$t$$
 = □时

$$u_{\rm C}(\tau) = U_{\rm s}(1-{\rm e}^{-1}) = 63.2 \ \% U_{\rm s}$$

 u_{C} i_{C} 变化曲线

□表示电容电压 u_C 从初始值上升到 稳态值的63.2% 时所需的时间。

理论上 $t = \Box$ $U(\Box) = U_S$ 时完全达到稳态

工程上 $t = (3\sim5)\tau$ 可认为电路已稳定,充电已基本结束。

RC 电路的全响应

换路前, S 在a端

电容有储能 $u_{C}(0-) = U_{0}$

换路后, S在b端

$$u_{\mathcal{C}}(\infty) = U_{\mathcal{S}}$$

$求u_C(t)$?

$$RC\frac{du_c}{dt}\Box u_c\Box U_s$$

$$u_c = U_0 e^{-\frac{t}{\tau}} + U_S (1 - e^{-\frac{t}{\tau}})$$

全响应 = 零输入响应 + 零状态响应

$$u_c = U_0 e^{-\frac{t}{\tau}} + U_S (1 - e^{-\frac{t}{\tau}}) = U_S + (U_0 - U_S) e^{-\frac{t}{\tau}}$$

一阶线性电路:

仅含一个储能元件或可等效为一个储能元件,且由 -阶微分方程描述的线性电路。

初始值

新的稳态值

 $\Box = R_{\theta}C$ 决定变化快慢

以上,被称为一 阶暂态的三要素

4.1 一阶线性电路响应通式 (在直流电源激励下)

三要素法: 在求得三要素的基础上, 直接写出

电路的响应(电压或电流)。

注:一阶电路都可以应用三要素法求解

4.2 响应中"三要素"的确定

初始值 ƒ(0+)的计算

- 1) 由t=0 电路求 $u_c(0)$, $i_L(0)$
- 3) 由 $t=0_+$ 时的电路,求其它各量的 $u(0_{\square})$ 或 $i(0_{\square})$

4.2 响应中"三要素"的确定

稳态值 $f(\square)$ 的计算

求换路后电路达到稳定后电路中的电压和电流:若电路中有电源,则其中C——开路,L——短路,然后求解直流电阻性电路中的电压和电流。

注意: 在一阶线性电路中通常都是先计算储能元件电容的电压、电感的电流,再根据电路图求其它量

4.2 响应中"三要素"的确定

时间常数☑的计算

对于一阶RC电路 $\Box R_0C$ 对于一阶RL 电路 $\Box \frac{L}{R_0}$

- 1) 对于简单的一阶电路, $R_0 = R$
- 2) 对于较复杂的一阶电路, R_0 为换路后的电路除去电源和储能元件后,在储能元件两端所求得的无源二端网络的等效电阻。

R₀的计算类似于应用戴维宁 定理解题时计算电路等效电阻 的方法。即从储能元件两端看 进去的等效电阻,如图所示。 [例] 在下图中,已知 $U_1 = 3$ V, $U_2 = 6$ V, $R_1 = 1$ k \square , $R_2 = 2$ k \square , C = 3 \square F , t < 0 时电路已处于稳态,t > 0把开关打到2的位置。用三要素法求 t > 0 时的 $u_C(t)$,并画出变化曲线。

[解] 先确定 $u_{C}(0_{+})$ $u_{C}(\square)$ 和时间常数 \square

t < 0 时电路已处于稳态, 意味着电容相当于开路。

初始值
$$u_{C}(0_{+})$$
 $u_{C}(0_{\square}) \square u_{C}(0_{\square}) \square \frac{R_{2} \square U_{1}}{R_{1} \square R_{2}} \square 2$ V

[例] 在下图中,已知 $U_1 = 3$ V, $U_2 = 6$ V, $R_1 = 1$ k \square , $R_2 = 2$ k \square , C = 3 \square F , t < 0 时电路已处于稳态,t > 0 把开关打到2的位置。用三要素法求 t > 0 时的 $u_C(t)$,并画出变化曲线。

[解] 先确定 $u_{C}(0_{+})$ $u_{C}(\square)$ 和时间常数 \square

t = □ 时电路也已处于**稳态**, 意味着电容相当于**开路**。

稳态值
$$u_{C}(\square)$$

$$u_{C}(\square) \square \frac{R_{2} \square U_{2}}{R_{1} \square R_{2}} \square 4 V$$

[例] 在下图中,已知 $U_1 = 3$ V, $U_2 = 6$ V, $R_1 = 1$ k \square , $R_2 = 2$ k \square , C = 3 \square F , t < 0 时电路已处于稳态,t > 0 把开关打到2的位置。用三要素法求 t > 0 时的 $u_C(t)$,并画出变化曲线。

[解] 先确定 $u_{C}(0_{+})$ $u_{C}(\square)$ 和时间常数 \square

$$u_{C}(\mathbf{0}_{\square}) \square u_{C}(\mathbf{0}_{\square}) \square 2 \mathbf{V}$$

$$u_{C}(\square) \square 4 \mathbf{V}$$

$$\Box\Box(R_1/\!/R_2)C\Box\frac{2}{3}\Box\Box\Box\Box$$
ms

三要素法公式

$$u_{C} \square u_{C}(\square) \square [u_{C}(0_{\square}) \square u_{C}(\square)] e^{\square_{\square}^{t}}$$

$$u_c(t) = 4 - 2e^{-500t} V (t \ge 0)$$

[例] 在下图中,已知 $U_1 = 3$ V, $U_2 = 6$ V, $R_1 = 1$ k \square , $R_2 = 2$ k \square , C = 3 \square F , t < 0 时电路已处于稳态,t > 0把开关打到2的位置。用三要素法求 t

 ≥ 0 时的 $u_C(t)$,并画出变化曲线。

[解]

$$u_{C}(0_{\square}) \square 2 V$$

$$u_{C}(\Box) \Box 4 \mathbf{V}$$

$$\Box \Box 2 \text{ ms}$$

$$u_C \square 4 \square 2e^{\square 500 t} V$$

