

Chapter 2

Basics of Algorithm Analysis

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Computational Tractability

``For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing."-- Francis Sullivan, Science, Vol. 287, No. 5454, p. 799, February 2000.

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.

- Typically takes 2ⁿ time or worse for inputs of size n.
- Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants c > 0 and d > 0 such that on every input of size n, its running time is bounded by $c n^d$ steps.

Def. An algorithm is poly-time if the above scaling property holds.

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size n.

- Generally captures efficiency in practice.
- Hard to find effective alternative.

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions.

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time algorithms are widely used because the worst-case instances seem to be rare.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	n log ₂ n	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

2.2 Asymptotic Order of Growth

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$.

Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$.

Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

Ex: $T(n) = 32n^2 + 17n + 32$.

- T(n) is $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$.
- T(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

Equals sign. O(f(n)) is a set of functions, but we often write T(n) = O(f(n)) instead of $T(n) \in O(f(n))$.

Properties

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and $g = \Theta(h)$ then $f + g = \Theta(h)$.

Asymptotic Bounds for Some Common Functions

Polynomials. $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

Logarithms. $O(\log_a n) = O(\log_b n)$ for any constants a, b > 1.

Logarithms. For every x > 0, $\log n = O(n^x)$.

log grows slower than every polynomial

Exponentials. For every r > 1 and every d > 0, $n^d = O(r^n)$.

every exponential grows faster than every polynomial

2.4 A Survey of Common Running Times

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of the input.

Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

```
    1: max ← a₁
    2: for i = 2 to n do
    3: if aᵢ > max then
    4: max ← aᵢ
    5: end if
    6: end for
    7: return max.
```

Linear Time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ into sorted whole.

- 1: i = 1, j = 1
- 2: **while** both lists are nonempty **do**
- 3: if $a_i \leq b_i$ then
- 4: append a_i to output list and increment i
- 5: **else**
- 6: append b_i to output list and increment j
- 7: end if
- 8: end while
- 9: append remainder of nonempty list to output list
- 10: return output list.

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform $O(n \log n)$ comparisons.

Largest empty interval. Given n time-stamps x_1 , ..., x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n²)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x_1, y_1) , ..., (x_n, y_n) , find the pair that is closest.

 $O(n^2)$ solution. Try all pairs of points.

```
1: \min \leftarrow (x_1 - x_2)^2 + (y_1 - y_2)^2

2: for i = 1 to n do

3: for j = i + 1 to n do

4: d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2

5: if d < \min then

6: \min \leftarrow d

7: end if

8: end for

9: end for
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion.

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

```
Set disjointness. Given n sets S_1, ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?
```

 $O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

```
    for each set S<sub>i</sub> do
    for each other set S<sub>j</sub> do
    for element p of S<sub>i</sub> do
    determine whether p also belongs to S<sub>j</sub>
    if (no element of S<sub>i</sub> belongs to S<sub>j</sub> then
    report that S<sub>i</sub> and S<sub>j</sub> are disjoint
    end if
    end for
    end for
```

Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

 $O(n^2 2^n)$ solution. Enumerate all subsets.

Homework

Read Chapter 2 of the textbook.

Exercises 6 & 8 in Chapter 2.