PL-embedding the dual of J^2 -gems into \mathbb{S}^3 by an $O(n^2)$ -algorithm *

Sóstenes Lins and Ricardo Machado

May 11, 2013

Abstract

Let be given a colored 3-pseudo-triangulation \mathcal{H}^* with n tetrahedra. Colored means that each tetrahedron have vertices distinctively colored 0,1,2,3. In a pseudo 3-triangulation the intersection of simplices might be subsets of simplices of smaller dimensions, instead of singletons of such faces, as for true triangulations. If \mathcal{H}^* is the dual of a J^2 -gem (shortly defined), then we show that $|\mathcal{H}^*|$ is \mathbb{S}^3 and we make available an $O(n^2)$ -algorithm to produce a PL-embedding ([10]) of \mathcal{H}^* into \mathbb{S}^3 . This is rather surprising because such PL-embeddings are often of exponential size. This work is the first step towards obtaining, via an $O(n^2)$ -algorithm, a framed link presentation inducing the same closed orientable 3-manifold as the one given by a colored pseudo-triangulation. Previous work on this topic appear in [5], [6] and [7]. However, the exposition and new proofs of this paper are meant to be entirely self-contained.

1 Introduction

1.1 J^2 -gems

A J^2 -gem is a 4-regular, 4-edge-colored planar graph \mathcal{H} obtained from the intersection pattern of two Jordan curves X and Y with 2n transversal crossings. These crossings define consecutive segments of X alternatively inside Y and outside Y. Color the first type 2 and the second type 3. The crossings also define consecutive segments of Y alternatively inside X and outside X. Color the first type 0 and the second type 1. This defines a 4-regular 4-edge-colored graph \mathcal{H} where the vertices are the crossings and the edges are the colored colored segments. Let \mathcal{H}^* be the 3-dimensional abstract 3-complex formed by taking a set of vertex colored tetrahedra in 1–1 correspondence with the set of vertices of \mathcal{H} , $V(\mathcal{H})$, so that each tetrahedra has vertices of colors 0,1,2,3. This vertex coloring induces a face coloring of the triangular faces of the tetrahedron: color i the face opposite to the vertex colored i. For each i-colored edge of \mathcal{H} with ends u and v paste the corresponding tetrahedra ∇_u and ∇_v so as to paste the two triangular faces that do not contain a vertex of color i in such a way as to to match vertices of the other three colors. We show that the topological space |K| induced by \mathcal{H}^* is \mathbb{S}^3 . Moreover we describe an $O(n^2)$ -algorithm to make available a PL-embedding ([10]) of \mathcal{H}^* into \mathbb{S}^3 . We get explicit coordinates in \mathbb{S}^3 for the 0-simplices and the p-simplices ($p \in \{1,2,3\}$) are linear simplices in the spherical geometry.

1.2 Gems and their duals

A (3+1)-graph \mathcal{H} is a connected regular graph of degree 4 where to each vertex there are four incident differently colored edges in the color set $\{0,1,2,3\}$. For $I\subseteq\{0,1,2,3\}$, an I-residue is a component of the subgraph induced by the I-colored edges. Denote by $v(\mathcal{H})$ the number of 0-residues (vertices) of \mathcal{H} . For $0 \le i < j \le 3$, an $\{i,j\}$ -residue is also called an ij-gon or an i- and j-colored bigon (it is an even polygon, where the edges are alternatively colored i and j). Denote by $b(\mathcal{H})$ the total number of ij-gons for $0 \le i < j \le 3$. Denote by $t(\mathcal{H})$ the total number of i-residues for $0 \le i \le 3$, where i means complement of $\{i\}$ in $\{0,1,2,3\}$.

We briefly recall the definition of gems taken from [4]. A 3-gem is a (3+1)-graph \mathcal{H} satisfying $v(\mathcal{H})+t(\mathcal{H})=b(\mathcal{H})$. This relation is equivalent to having the vertices, edges and bigons restricted to any $\{i,j,k\}$ -residue inducing a plane graph where the faces are bounded by the bigons. Therefore we can embed each such $\{i,j,k\}$ -residue into a sphere \mathbb{S}^2 . We consider the ball bounded this \mathbb{S}^2 as induced by the $\{i,j,k\}$ -residue. For this reason an $\{i,j,k\}$ -residue in a 3-gem, i< j< k, is also called a triball. An ij-gon appears once in the boundary

^{*2010} Mathematics Subject Classification: 57M25 and 57Q15 (primary), 57M27 and 57M15 (secondary)

of triball $\{i, j, k\}$ and once in the boundary of triball $\{i, j, h\}$. By pasting the triballs along disks bounded by all the pairs of ij-gons, $\{i, j\} \subset \{0, 1, 2, 3\}$ of a gem \mathcal{H} , we obtain a closed 3-manifold denoted by $|\mathcal{H}|$. This general construction is dual to the one exemplified in the abstract and produces any closed 3-manifold. The manifold is orientable if and only if \mathcal{H} is bipartite, [8]. A *crystallization* is a gem which remains connected after deleting all the edges of any given color, that is, it has one $\{i, j, k\}$ -residue for each trio of colors $\{i, j, k\} \subset \{0, 1, 2, 3\}$.

Let \mathcal{H}^* be the dual of a gem \mathcal{H} . An \bar{i} -residue of \mathcal{H} corresponds in \mathcal{H}^* to a 0-simplex of \mathcal{H}^* . Most 0-simplices of \mathcal{H}^* do not correspond to \bar{i} -residues of \mathcal{H} . An ij-gon of a gem \mathcal{H} corresponds in \mathcal{H}^* to a PL1-face formed by a sequence of 1-simplices of \mathcal{H}^* ; this PL1-face is the intersection of two PL2-faces of colors i and j; their two bounding 0-simplices correspond to an \bar{h} - and to a \bar{k} -residue, where $\{h, i, j, k\} = \{0, 1, 2, 3\}$. An i-colored edge of \mathcal{H} corresponds to a PL2-face which is a 2-disk triangulated by a subset of i-colored 2-simplices of \mathcal{H}^* . Finally to a vertex of \mathcal{H} , it corresponds a PL3-face of \mathcal{H}^* which is a 3-ball formed by a subset of 3-simplices of \mathcal{H}^* .

(1.1) Proposition. The 3-manifold induced by a J^2 -gem \mathcal{H} is \mathbb{S}^3 .

Proof. Removing from \mathcal{H} all the edges of a given color still yields a connected graph which a plane graph and they come embedded so that the faces are the 2-residues. So \mathcal{H} has four 3-residues, one of each type. Denote by b_{ij} the number of ij-gons of \mathcal{H} . Each one of these residues are planar graphs having v=2n vertices, 3v/2 edges and $b_{12}+b_{13}+b_{23}$, $b_{02}+b_{03}+b_{23}$, $b_{01}+b_{13}+b_{03}$ and $b_{12}+b_{01}+b_{02}$ faces for, respectively, the $\overline{0}$ -, $\overline{1}$ -, $\overline{2}$ -, $\overline{3}$ -residue. Adding the four formulas for the Euler characteristic of the sphere imply that $v(\mathcal{H})+4=b(\mathcal{H})$. Therefore, \mathcal{H} is a crystallization having one 0i-gon and one jk-gon. This implies that the fundamental group of the induced manifold is trivial: as proved in [3], the fundamental group of the space induced by a crystallization is generated by $b_{0i}-1$ generators, and in our case this number is 0. Since Poincaré Conjecture is now proved, we are done. However, we can avoid using this fact and, as a bonus, obtaining the validity of the next corollary, which is used in the sequel.

Assume that \mathcal{H} is a J^2 -gem which does not induce \mathbb{S}^3 and has the smallest possible number of vertices satisfying these assumptions. By planarity we must have a pair of edges of \mathcal{H} having the same ends $\{p,q\}$. Consider the graph $\mathcal{H}fus\{p,q\}$ obtained from \mathcal{H} by removing the vertices p,q and the 2 edges linking them as well as welding the 2 pairs of pendant edges along edges of the same color. In [2] S. Lins proves that if \mathcal{H} is a gem, $\mathcal{H}' = \mathcal{H}fus\{p,q\}$ is also a gem and that two exclusive relations hold regarding $|\mathcal{H}|$ and $|\mathcal{H}'|$, their induced 3-manifolds: either $|\mathcal{H}| = |\mathcal{H}'|$ in the case that $\{p,q\}$ induces a 2-dipole or else $|\mathcal{H}| = |\mathcal{H}'| \#(\mathbb{S}^2 \times \mathbb{S}^1)$. Since \mathcal{H}' is a J^2 -gem, by our minimality hypothesis on \mathcal{H} the valid alternative is the second. But this is a contradiction: the fundamental group of $|\mathcal{H}|$ would not be trivial, because of the summand $\mathbb{S}^2 \times \mathbb{S}^1$.

1.3 Dipoles, pillows and balloons

Suppose there are m edges linking vertices x and y of a gem, $m \in \{1, 2, 3\}$. We say that $\{u, v\}$ is an m-dipole if removing all edges in the colors of the ones linking x to y, these vertices are in distinct components of the graph induced by the edges in the complementary set of colors. To cancel the dipole means deleting the subgraph induced by $\{u, v\}$ and identify pairs of the hanging edges along the same remaining color. To create the dipole is the inverse operation. It is simple to prove that the manifold of a gem is invariant under dipole cancellation or creation. Even though is not relevant for the present work state the foundational result on gems: two 3-manifolds are homeomorphic if and only if any two gems inducing it are linked by a finite number of cancellations and creations of dipoles, [1, 9].

The dual of a 2-dipole $\{u,v\}$, with internal colors i,j is named a pillow. It consistes of two PL3-faces ∇_u and ∇_v sharing two PL2-faces colored i and j. The thickening of a 2-dipole into a 3-dipole is defined as follows. Let i,j be the two colors internal to 2-dipole $\{u,v\}$ and k a third color. Let a be the k-neighboor of x and b be the k-neighboor of y. Remove edges [a,x] and [b,y] and put back k-edges [u,v] and [r,s]. This completes the thickening. It is simple to prove that the thickening in a gem produces a gem. We must be carefull because the inverse blind inverse operation thinning a 3-dipole not always produces a gem. The catch is that the result of the thinning perhaps is not a 2-dipole. In this sense the thinning move is not local: we must make sure that the result is a 2-dipole. To the data needed in thinning a 3-dipole $\{u,v\}$ with internal colors $\{i,j,k\}$ we must add the k-edge [r,s]. Note that the k-edges [u,v] and [r,s] are in the same hk-gon, where h is the fourth color. Denote by Δ_{rs} the dual of [r,s]. Let $\nabla_u \cup \nabla_v \cup \Delta_{rs}$ be called a balloon. Note that it consists of 2 PL3-faces ∇_u and ∇_v sharing three PL2-faces in colors $\{i,j,k\}$ together with a k-colored PL2-face whose intersection with $\nabla_u \cup \nabla_v$ is a PL1-face corresponding to the dual of the hk-gon, where h is the fourth color. Let $\nabla_u \cup \nabla_v$ be the balloon's head and let Δ_{rs} be the balloon's tail.

The Strategy for obtaining the PL-embedding of the dual of a J^2 -gem 1.4

We want to find a PL-embedding for the dual, \mathcal{H}^* , of a J^2 -gem \mathcal{H} into \mathbb{S}^3 . To this end we remove one PL3-face of \mathcal{H}^{\star} find in \mathbb{R}^3 a PL-embedding of the complementary ball so that their union form triangulated tetrahedron. After we use the inverse of a stereographic projection with center in further in the exterior of the triangulated tetrahedron. In this way we recover in \mathbb{S}^3 the missing PL3-face.

In this work we describe the PL-embedded PL3-faces of \mathcal{H}^* into \mathbb{R}^3 by making it geometrically clear that its boundary is a set of 4 PL2-faces, one of each color, forming an embedded \mathbb{S}^2 whose interior is disjoint from the interior of S²'s corresponding to others PL3-faces. Thus, for our purposes it will be only necessary to embed the 2-skeleton of \mathcal{H}^* .

A direct approach to find the PL-embedding of the dual of a general J^2 -gem with 2n vertices, seems very hard. We split the algorithm into 3 phases. First we find a sequence of n-1 2-dipole thickenings into 3-dipoles so that the final gem is simply a circular arrangement of n 3-dipoles with internal colors 0, 1, 2. Such a canonical n-gem is named a bloboid and is denoted \mathcal{B}_n . This indexing decreasing sequence is easily obtainable from the primal objects, the gems:

primal objects, the gems: $\mathcal{H} = \mathcal{H}_n \xrightarrow{2dip}_{thick_1} \mathcal{H}_{n-1} \xrightarrow{2dip}_{thick_2} \dots \xrightarrow{2dip}_{thick_{n-1}} \mathcal{H}_1 = \mathcal{B}_n = \mathcal{B}.$ In the second phase we find specific abstract PL-triangulations of the PL2-faces for the index increasing sequence of abstract colored 2-dimensional PL-complexes:

$$\mathcal{B}^{\star} = \mathcal{H}_{1}^{\star} \xrightarrow[move_{1}]{bp} \mathcal{H}_{2}^{\star} \xrightarrow[move_{2}]{bp} \dots \xrightarrow[move_{n-1}]{bp} \mathcal{H}_{n}^{\star} = \mathcal{H}^{\star}.$$

At the same time that we get we get also a sequence of wings

$$\mathcal{W}_{1}^{\star} \xrightarrow{wbp} \mathcal{W}_{2}^{\star} \xrightarrow{wbp} \dots \xrightarrow{move_{n-1}} \mathcal{W}_{n}^{\star} = \mathcal{W}^{\star}.$$

Each wing W_m 's corresponds to a section of the previous sequence \mathcal{H}_m 's by two adequated fixed semi-planes Π_{ℓ} and Π_r . Each wing \mathcal{W}_m has an associated nervure, denoted \mathcal{N}_m . Each nervure is an auxiliary spanning tree which helps in finding canonical embeddings for the planar graph $\mathcal{U}_m = \mathcal{W}_m \cup \mathcal{N}_m$ $(m = n - 1, \dots, 1)$, in Π_ℓ and Π_r . The third phase uses the final wing and the sequence of \mathcal{H}_m^{\star} 's to produce a pillow filling sequence

$$\mathcal{H}_{1}^{\diamond} \underbrace{^{pillow}_{filling_{1}}} \mathcal{H}_{2}^{\diamond} \underbrace{^{pillow}_{filling_{2}}} \dots \underbrace{^{pillow}_{filling_{n-1}}} \mathcal{H}_{n}^{\diamond} = \mathcal{H}^{\star}.$$

In this phase everything is embedded into \mathbb{R}^3 and the last element is the PL-embedding that we seek. The whole procedure can be implemented as a formal algorithm that takes $O(n^2)$ -space and $O(n^2)$ -time complexity, where 2n is the number of vertices of the original J^2 -gem.

1.5Acknowledgements

We thank the anonimous referees, which made us think and provide an O(n)-solution for finding the wing sequence, instead of an $O(n^3)$ -solution based on a bare Tutte's barycetric methods.

$\mathbf{2}$ Abstract 2-dimensional PL-complexes, their wings and nervures

$\mathbf{3}$ Diamond complexes

Further work $\mathbf{4}$

References

- [1] M. Ferri and C. Gagliardi. Crystallisation moves. Pacific J. Math, 100(1):85–103, 1982.
- [2] S. Lins. A simple proof of Gagliardi's handle recognition theorem. *Discrete mathematics*, 57(3):253–260, 1985.
- [3] S. Lins. On the fundamental group of 3-gems and a planar class of 3-manifolds. *European Journal of Combinatorics*, 9(4):291–305, 1988.
- [4] S. Lins. Gems, Computers, and Attractors for 3-Manifolds. World Scientific, 1995.
- [5] S. Lins and R. Machado. Framed link presentations of 3-manifolds by an $O(n^2)$ algorithm, I: gems and their duals. arXiv:1211.1953v2 [math. GT], 2012.
- [6] S. Lins and R. Machado. Framed link presentations of 3-manifolds by an $O(n^2)$ algorithm, II: colored complexes and boundings in their complexity. arXiv:1212.0826v2 [math. GT], 2012.
- [7] S. Lins and R. Machado. Framed link presentations of 3-manifolds by an $O(n^2)$ algorithm, III: geometric complex \mathcal{H}_n^{\star} embedded into \mathbb{R}^3 . arXiv:1212.0827v2 [math. GT], 2012.
- [8] S. Lins and A. Mandel. Graph-encoded 3-manifolds. Discrete Math., 57(3):261–284, 1985.
- [9] S. Lins and M. Mulazzani. Blobs and flips on gems. *Journal of Knot Theory and its Ramifications*, 15(8):1001–1035, 2006.
- [10] C.P. Rourke and B.J. Sanderson. Introduction to piecewise-linear topology, volume 69. Springer-Verlag, 1982.

Sóstenes L. Lins Centro de Informática, UFPE Av. Jornalista Aníbal Fernandes s/n Recife—PE 50740-560 Brazil sostenes@cin.ufpe.br Ricardo N. Machado Núcleo de Formação de Docentes, UFPE Av. Jornalista Aníbal Fernandes s/n Caruaru-PE Brazil ricardonmachado@gmail.com