MODELOS MULTIVARIANTES NO ESTACIONARIOS

MODELOS MULTIVARIANTES NO ESTACIONARIOS

CLASES 1 y 2

- 1. Cointegración
- 2. Equilibro de largo plazo
- Modelo de corrección del error
- 4. Pruebas de cointegración

Cointegración: introducción

En la mayoría de los casos, si combinamos dos variables que son I(1), entonces la combinación será también I(1).

De manera general, si combinamos variables con diferente orden de integración, la combinación tendrá el orden de integración del mayor, esto es.,

si
$$X_{i,t} \sim I(d_i)$$
 para i = 1,2,3,...,k

por lo que tenemos k variables y cada una es integrada de orden d_i.

Definamos
$$z_t = \sum_{i=1}^k \alpha_i X_{it}$$
 (1)

Entonces $z_t \sim I(m \land x d_i)$

Combinaciones lineales de variables no estacionarias

Reordenando (1), podemos escribir

$$X_{it} = \sum_{i=2}^{k} \beta_i X_{it} + z_t'$$

$$\cos \beta_i = -rac{lpha_i}{lpha_1}$$
 , ${z_t}' = rac{z_t}{lpha_1}$

Esto es una ecuación de regresión.

Sin embargo, los errores tienen propiedades no deseables, z_t no es estacionaria y está correlacionada si todas las X_i son I(1).

Queremos asegurarnos que los errores sean I(0). ¿Bajo qué circunstancias esto se cumple?

Definición de cointegración (Engle y Granger, 1987)

Sea z_t un vector kx1 de variables, entonces los componentes de z_t están **cointegrados** de orden (d,b) si

- i) Todos los componentes de z_t son I(d)
- ii) Existe al menos un vector de coeficientes α tal que $\alpha' z_t \sim I(d-b)$ Varias series de tiempo son no estacionarias pero se "mueven juntas" en el tiempo.

Si las variables están cointegradas, esto significa que una combinación lineal de ellas es estacionaria.

Pueden existir hasta r relaciones de cointegración linealmente independientes (con $r \le k-1$), conocidas como vectores de cointegración; r es el rango de cointegración de z_t .

La relación de cointegración puede ser vista como una relación de largo plazo.

Cointegración y equilibrio

Ejemplos de posibles relaciones de cointegración en finanzas:

- precios spot y futuros
- ratio de precios relativos (internos y externos y el tipo de cambio)
- precio de acciones y dividendos
- La fuerzas de mercado que operan por la condición de no arbitraje aseguran que se cumpla la relación de equilibrio.
- La no existencia de cointegración implica que las series pueden separarse sin límite en el largo plazo.

Modelos de corrección del error (MCE)

Cuando se introdujo por primera vez el concepto de no estacionariedad, la respuesta usual era tomar la primera diferencia de las series que son I(1).

El problema con este enfoque es que los modelos en primera diferencia no tienen solución de largo plazo.

Por ej. consideremos y_t , x_t son I(1).

El modelo que queremos estimar es

$$\Delta y_t = \beta \Delta x_t + u_t$$

Pero esto colapsa a nada en el largo plazo.

Recordemos que la definición de largo plazo que usamos es cuando

$$y_t = y_{t-1} = y$$
; $x_t = x_{t-1} = x$.

Por lo que todos los términos de diferencias son 0, esto es, $\Delta y_t = 0$; $\Delta x_t = 0$.

Especificando el MCE

Una manera de solucionar este problema consiste en usar términos en diferencias y en niveles, por ejemplo:

$$\Delta y_t = \beta_1 \Delta x_t + \beta_2 (y_{t-1} - \gamma x_{t-1}) + u_t \tag{2}$$

 $y_{t-1} - \gamma x_{t-1}$ es conocido como el **término de corrección del error**.

Si las variables (y_t, x_t) están cointegradas con coeficiente de cointegración γ , entonces $(y_{t-1} - \gamma x_{t-1})$ será I(0) aunque las variables que lo constituyen (y_t, x_t) son I(1).

Es válido estimar (2) por MCO.

El **teorema de la representación de Granger** muestra que cualquier relación de cointegración puede ser expresada mediante un MCE.

Pruebas de cointegración

El MCE puede ser generalizado para incluir más de dos variables:

$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \dots + \beta_k x_{kt} + u_t$$
 (3)

 u_t debe ser I(0) si las variables y_t , x_{2t} , ... x_{kt} están cointegradas.

Pero, ¿y si queremos probar que los residuos de la ecuación (3) son estacionarios? Podemos usar las pruebas DF / ADF sobre u_t. Por lo que tenemos la siguiente regresión:

$$\Delta \widehat{u_t} = \psi \widehat{u_{t-1}} + v_t \qquad \text{con } v_t \sim iid.$$

Como ésta es un prueba en los residuos (que son estimados) de un modelo, $\widehat{u_t}$, los valores críticos deben ser cambiados.

Pruebas de cointegración: Conclusiones

- Engle y Granger (1987) tabularon un nuevo conjunto de valores críticos por lo que la prueba es conocida como la prueba de Engle-Granger (E.G.) .
- Podemos usar la prueba esadística ADF o PP para testear la estacionariedad de $\widehat{u_t}$.
- ¿Cuáles son las hipótesis nula y alternativas para una prueba en los residuos de cointegración?

H₀: hay una raíz unitaria en los residuos de la regresión de cointegración

H₁: los residuos de la regresión de cointegración son estacionarios

Métodos de estimación de parámetros en sistemas cointegrados: el enfoque de Engle-Granger

Existen (al menos) 3 métodos que podemos usar: Engle-Granger, Engle Yoo y Johansen.

1- El método de Engle Granger de 2 etapas

Paso 1:

- Asegurarse que todas las variables individuales sean I(1).
- Luego estimar la regresión de cointegración usando MCO.
- Guardar los residuos de la regresión de cointegración,
- Testear si los residuos son I(0).

Paso 2:

- Utilizar los residuos del paso 1 rezagados como una variable en el modelo de correción del error.

$$\Delta y_t = \beta_1 \Delta x_t + \beta_2 (\widehat{u_{t-1}}) + u_t$$
 con $\widehat{u_{t-1}} = y_{t-1} - \widehat{\gamma} x_{t-1}$

Ejemplo de un modelo con series no estacionarias: relación de rezagos y adelantos entre los precios spot y futuros

Esperamos que los cambios en el precio spot de un activo financiero esté contemporánea y perfectamente correlacionado con su precio futuro y que no estén autocorrelacionados en forma cruzada (crossautocorrelated):

Es decir:
$$corr(\Delta ln(F_t), \Delta ln(S_t)) \approx 1$$
 $corr(\Delta ln(F_t), \Delta ln(S_{t-k})) \approx 0 \quad \forall k$ $corr(\Delta ln(F_{t-j}), \Delta ln(S_t)) \approx 0 \quad \forall j$

Podemos probar esta idea modelando la relación de rezagos y adelantos entre las dos variables.

Veremos los trabajos de Tse (1995) y Brooks (2001).

Datos de precios spot y futuros

- Tse (1995): 1055 observaciones diarias del índice de bolsa NSA e índices de bolsa futuros utilizando datos de diciembre de 1988 a abril de 1993.
- Brooks (2001): 13035 observaciones en un rango de 10 minutos del índice de bolsa e índices de bolsa futuros para todos los días con transacciones para el período junio 1996 a diciembre de 1997.

Metodología

El precio futuro "justo" (fair) viene dado por:

$$F_t^* = S_t e^{(r-d)(T-t)}$$

donde F_t^* es el precio futuro "justo", S_t es el precio spot, r es una tasa continua compuesta de interés de un activo libre de riesgo, d es el retorno continuo compuesto de los dividendos derivados del índice hasta que el contrato a futuro se realiza, y (T-t) es el tiempo para desarrollar el contrato futuro. Tomando logaritmos en ambas lados de la anterior ecuación

$$f_t^* = s_t + (r - d)(T - t)$$

Primero, analizar estacionariedad de f_t y s_t.

Prueba de DF en el log-precios y retornos de datos del FTSE con alta frecuencia

	Futuro	Spot
Estadístico Dickey-Fuller datos de Log-Price	-0.1329	-0.7335
Estadístico Dickey Fuller datos de retornos	-84.9968	-114.1803

Prueba de regresión de cointegración sobre los residuos

Conclusión: In F_t y In S_t no son estacionarios, pero ΔlnF_t y ΔlnS_t sí son estacionarios.

Sin embargo, un modelo que contiene sólo términos de primeras diferencias no tiene relaciones de largo plazo.

La solución consiste en ver si existe una relación de cointegración entre f_t y s_t que significa que podemos incluir correctamente variables en niveles.

Regresión de cointegración potencial: $s_t = \gamma_0 + \gamma_1 f_t + z_t$ donde z_t es un término de perturbación.

Estime la regresión, calcule los residuos, $\widehat{z_t}$, y testee si son estacionarios.

Ecuación estimada y prueba de cointegración

Regresión de cointegración			
Coeficiente	Valor estimado		
γ_{o}	0.1345		
$\gamma_{\mathtt{1}}$	0.9834		
Prueba DF residuos	Prueba estadística		
$\hat{\mathcal{Z}}_t$	-14.7303		

Conclusiones sobre raíces unitarias y pruebas de cointegración

Conclusión: $\widehat{z_t}$ es estacionaria y por lo tanto tenemos una relación de cointegración entre ln F_t y ln S_t .

El paso final en el método en 2 etapas de Engle-Granger consiste en utilizar los residuos de la regresión de la primera etapa, como los términos del mecanismo de corrección de errores en la ecuación general.

El modelo general es:

$$\Delta lnS_t = \beta_0 + \delta z_{t-1} + \beta_1 \Delta lnS_{t-1} + \alpha_1 \Delta lnF_{t-1} + v_t$$

MCE estimado

Coeficiente	Valor estimado	Estadístico t
$\widehat{eta_0}$	9,67E-06	1,6083
δ	-8,34E-01	-5,1298
$\widehat{eta_1}$	0,1799	19,2886
$\widehat{lpha_1}$	0,1312	20,4946

Miremos los signos y la significación de los coeficientes:

 $\widehat{\alpha_1}$ es positivo y altamente significativo

 $\widehat{\beta_1}$ es positivo y altamente significativo

 $\hat{\delta}$ es negativo y significativo

Prediciendo retornos

¿Es posible usar el MCE para producir mejores predicciones que usando otros modelos?

Comparación de precisión en estimación fuera de la muestra

	MCE	MCE-COC	ARIMA	VAR
RMSE MAE	0.0004382 0.4259	0.0004350 0.4255	0.0004531 0.4382	0.0004510 0.4378
% Dirección Correcta	67.69%	68.75%	64.36%	66.80%

Algunas limitantes del enfoque de Engle-Granger

Este método sufre de los siguientes problemas:

- 1. Las pruebas de raíces unitarias y cointegración tienen bajo poder en muestras finitas.
- 2. Estamos forzados a tratar las variables de manera asimétrica y especificamos que una es la variable dependiente y las otras son variables independientes.
- **3.** No podemos realizar pruebas de hipótesis sobre la verdadera relación de cointegración estimada en la primera etapa.
- 4. Solamente permite detectar una relación (o vector) de cointergación.
- El problema 1 es un problema de bajo tamaño muestral que debería desaparecer en términos asintóticos.
- Los problemas 2 y 4 se resuelven con el enfoque de Johansen.
- El problema 3 se resuelve con el enfoque de Engle-Yoo o el de Johansen.

Método de Engle y Yoo en 3 etapas

Uno de los problemas del método en dos etapas de EG es que no podemos hacer inferencias sobre la verdadera regresión de cointegración.

El método de Engle y Yoo (EY) en 3 etapas toma las primeras 2 etapas del método de EG.

EY agrega un tercer paso que consiste en actualizar las estimaciones del vector de cointegración y de sus errores estándares.

El problema más importante con dicha técnica es que en el caso general, donde tenemos más de dos variables que están cointegradas, habrá únicamente una relación de cointegración.

De hecho, puede haber hasta r vectores de cointegración linealmente independientes (con $r \le g-1$), donde g es el número total de variables.

Método de Engle y Yoo en 3 etapas

Por lo que, en el caso en que solo tenemos (y, x) entonces r solo puede ser 1 ó 0.

Sin embargo en el caso general puede haber más de una relación de cointegración.

Y si existen varias relaciones, ¿Cómo sabemos cuántas son o si encontramos la "óptima"?

La respuesta a esta pregunta es usar un *enfoque de sistemas de cointegración* que nos permite determinar todas las *r* relaciones de cointegración- es el método de Johansen.

Cointegración usando el método de Johansen basado en VARs

Para usar el método de Johansen reescribimos el VAR

$$y_{t} = \beta_{1} y_{t-1} + \beta_{2} y_{t-2} + \dots + \beta_{k} y_{t-k} + u_{t}$$

$$g \times 1 \qquad g \times g \times 1 \qquad g \times 1$$

como un **VECM**, esto es

$$\Delta y_{t} = \Pi y_{t-k} + \Gamma_{1} \Delta y_{t-1} + \Gamma_{2} \Delta y_{t-2} + \dots + \Gamma_{k-1} \Delta y_{t-(k-1)} + u_{t}$$

$$con \Pi = \left(\sum_{j=1}^{k} \beta_{j} - I_{g}\right) \quad \text{y} \quad \Gamma_{i} = \left(\sum_{j=1}^{i} \beta_{j} - I_{g}\right)$$

 Π es la matriz de coeficientes de largo plazo pues todos los $\Delta y_{t-i} = 0$.

Revisión de algebra matricial necesaria para la prueba de Johansen

Sea Π una matriz cuadrada gxg y sea c un vector no nulo gx1 y λ denota escalares.

$$\lambda$$
 es la raíz característica de Π si escribimos
$$\Pi$$
 c = λ c
$$\text{gxg gx1} \quad \text{gx1}$$

También podemos escribir

$$\Pi c = \lambda I_g c$$

y por lo tanto

$$(\Pi - \lambda I_g) c = 0$$

donde I_g es la matriz identidad.

Revisión de Algebra Matricial

Dado que por definición c \neq 0, para que el sistema tenga una solución cero, requerimos que la matriz $(\Pi - \lambda I_g)$ sea singular (determinante igual a 0):

$$\left|\Pi - \lambda I_g\right| = 0$$

Por ejemplo, sea Π una matriz 2x 2, $\Pi = \begin{bmatrix} 5 & 1 \\ 2 & 4 \end{bmatrix}$

Por lo que la ecuación característica es:

$$\left|\Pi - \lambda I_g\right| = \left|\begin{bmatrix} 5 & 1 \\ 2 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right| = 0$$

$$= \left|\begin{bmatrix} 5 - \lambda & 1 \\ 2 & 4 - \lambda \end{bmatrix}\right| = (5 - \lambda)(4 - \lambda) - 2 = \lambda^2 - 9\lambda + 18$$

Revisión de Algebra Matricial

Las soluciones son λ = 6 y λ = 3.

Las raíces características son conocidas también como valores propios.

El **rango** de una matriz es igual al número de filas o columnas de la matriz linealmente independientes.

Denotamos Rango(Π) = r

El rango de una matriz es igual al orden de la matriz cuadrada más grande que obtenemos de Π que tiene un determinante diferente de cero.

Por ejemplo, el determinante de Π es \neq 0, por lo que tiene rango 2.

Prueba de Johansen basada en los Valores Propios

Propiedades de los valores propios de cualquier matriz cuadrada A:

- 1. la suma de los valores propios es la traza
- 2. el producto de los valores propios es el determinante
- 3. el número de valores propios diferentes de cero es el rango

Volviendo a la prueba de Johansen, la representación VECM del modelo VAR es

$$\Delta y_t = \Pi y_{t-k} + \Gamma_1 \Delta y_{t-k} + \Gamma_2 \Delta y_{t-2} + \dots + \Gamma_{k-1} \Delta y_{t-(k-1)} + u_t$$

La prueba de cointegración entre las y's se calcula considerando el rango de la matriz Π a través de sus valores propios.

El rango de una matriz es igual al número de raíces características (valores propios) diferentes de cero.

Prueba de Johansen Basada en los Valores Propios

Se ordenan los valores propios λ_i :

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_g$$

Si las variables no están cointegradas, el rango de Π no será diferente de cero, por lo tanto $\lambda_i = 0 \ \forall$ i. Entonces si $\lambda_i = 0$, Ln(1- λ_i) = 0

Si los λ_i 's son raíces, deben ser menores que 1 en valor absoluto.

Si el rango (Π) = 1, entonces Ln(1- λ_1) será negativo y Ln(1- λ_i) = 0

Si el valor propio i no es cero, entonces $Ln(1-\lambda_i) < 0 \quad \forall i > 1$.

La prueba estadística de Johansen

Las pruebas estadísticas de cointegración son:

$$\lambda_{traza}(r) = -T \sum_{i=\gamma+1}^{g} ln(1 - \widehat{\lambda_i})$$

$$\gamma$$

$$\lambda_{max}(r, r+1) = -T ln(1 - \widehat{\lambda_{t+1}})$$

donde $\widehat{\lambda_i}$ es el valor estimado para el i-ésimo valor propio ordenado de la matriz Π .

 λ_{traza} traza testea la nula de que el número de vectores de cointegración es menor o igual a r contra una alternativa sin especificar.

 λ_{traza} =0 cuando todos los λ_i = 0, por lo que es una prueba conjunta.

 λ_{max} testea la nula de que el número de vectores de cointegración es r contra una alternativa de r+1.

Decomposición de la Matriz Π

Para todo 1 < r < g, Π se define como el producto de dos matrices:

$$\Pi = \alpha \beta'$$
gxg gxr rxg

 $m{\beta}$ contiene el vector de cointegración mientras que $m{\alpha}$ da la "ponderación" de cada vector de cointegración en cada ecuación.

Por ej. si g=4 y r=1, α y β serán 4x1, y Π y_{t-k} vendrá dada por:

$$\begin{pmatrix} \alpha_{11} \\ \alpha_{12} \\ \alpha_{13} \\ \alpha_{14} \end{pmatrix} (\beta_{11}y_1 \quad \beta_{12}y_2 \quad \beta_{13}y_3 \quad \beta_{14}y_4)$$

Valores críticos de Johansen

Johansen y Juselius (1990) calcularon valores críticos para los dos estadísticos. La distribución de los test estadísticos no es estándar.

Los valores críticos dependen de:

- 1. el valor g-r, que es el número de componentes no estacionarios
- 2. si se incluye constante y/o tendencia en la regresión

Si la prueba estadística es mayor que los valores críticos de las tablas de Johansen, rechazamos la hipótesis nula de que existen r vectores de cointegración en favor de la alternativa de que hay más de r.

La Secuencia de la Prueba de Johansen

La secuencia de la prueba bajo la hipótesis nula es r=0,1,...,g-1 por lo que las hipótesis para λ_{traza} son

$$egin{array}{lll} H_0: & r=0 & vs & H_1: 0 < r \leq g \\ H_0: & r=1 & vs & H_1: 1 < r \leq g \\ H_0: & r=2 & vs & H_1: 2 < r \leq g \\ & \dots & \dots & \dots \\ H_0: & r=g-1 & vs & H_1: r=g \end{array}$$

Aumentamos el valor de *r* hasta que no podamos rechazar la hipótesis nula.

Interpretación de los Resultados de la Prueba de Johansen

Pero, ¿cómo esto corresponde a una prueba sobre el rango de la matriz Π ?

 \mathbf{r} es el rango de Π .

 Π no puede ser de rango completo (g) pues este correspondería al caso original de y_t estacionaria.

Si Π es de rango cero, entonces por analogía con el caso univariado, Δy_t depende solo de Δy_{t-1} y no de y_{t-1} , por lo que no hay una relación de largo plazo entre los elementos de y_{t-1} . Por lo tanto no hay cointegración.

Para $1 < \text{rango } (\Pi) < g$, hay múltiples vectores de cointegración.

Prueba de Cointegración de Johansen

- EG no permite hacer pruebas de hipótesis sobre la restricción de cointegración pero Johansen sí.
- Si existen *r* vectores de cointegración, solamente esas combinaciones lineales serán estacionarias.
- Es posible hacer prueba de hipótesis sobre uno o más coeficientes de la relación de cointegración viendo la hipótesis como una restricción en la matriz Π .
- Todas las combinaciones lineales de los vectores de cointegración son también vectores de cointegración.
- Si el número de vectores de cointegración es alto, y la hipótesis bajo consideración es simple, es posible recombinar los vectores de cointegración para satisfacer la restricción exactamente.

Prueba de cointegración de Johansen

A medida que la restricción se vuelve más compleja, será imposible cumplirla mediante una renormalización.

Luego de esto, si la restricción no es severa, entonces el vector de cointegración no cambiará mucho luego de imponer la restricción.

La prueba estadística para esta hipótesis es:

$$-T\sum_{i=1}^{r}[\ln(1-\lambda_{i})-\ln(1-{\lambda_{i}}^{*})]\sim\chi^{2}(m)$$

donde,

 λ_i^* son las raíces características del modelo restringido

 λ_i son las raíces características del modelo sin restringir

r es el número de raíces características diferentes de cero en el modelo sin restringir, y m es el número de restricciones.

Prueba de Cointegración de Johansen: Ejemplos

Ejemplo 1: Hamilton (1994, pp.647)

¿Se cumple la relación de PPP (purchasing power parity) para los precios y tipo de cambio de USA e Italia?

Se estimó un VAR con 12 rezagos y 189 observaciones. Los valores de la prueba de Johansen fueron:

r	λ max	Valores Críticos
0	22.12	20.8
1	10.19	14.0

Conclusión: existe una relación de cointegración.

Prueba de Cointegración de Johansen: Ejemplos

PPP establece que el tipo de cambio entre 2 países es igual al ratio de los precios relativos.

Una condición necesaria y suficiente para PPP es que el log del tipo de cambio entre los países A y B, y el log de los precios de los países A y B estén cointegrados, con vector de cointegración [1-11].

Chen (1995) usa datos mensuales de Abril 1973 a Diciembre de 1990 para probar la hipótesis de PPP usando Johansen.

Pruebas de Cointegración con Datos de Europa

Prueba de r	r = 0	r≤ 1	r≤ 2	$lpha_1$	α_2
cointegración entre:				-	2
FRF-DEM	34,63*	17,1	6,26	1,33	-2,5
FRF-ITL	52,69*	15,51	5,43	0,65	-2,52
FRF-NLG	68,10*	16,37	6,42	0,58	-0,8
FRF-BEF	52,54*	26,09*	3,63	0,78	-1,15
DEM-ITL	42,59*	20,76*	4,79	5,8	-2,25
DEM-NLG	50,25*	17,79	3,28	0,12	-0,25
DEM-BEF	69,13*	27,13	4,52	0,87	-0,52
ITL-NLG	37,51*	14,22	5,05	0,55	-0,71
ITL-BEF	69,24*	32,16	7,15	0,73	-1,28
NLG-BEF	64,52*	21,97*	3,88	1,69	-2,17
Valores críticos	31,52	17,95	8,18	-	-

FRF: French franc; DEM: German Mark; ITL: Italian lira; NLG: Dutch Guilder; BEF: Belgian franc. Source: Chen (1995) . Reprinted with the permission of Taylor and Francis Ltd. (www.tandf.co.uk)

Ejemplo 3: ¿Están Cointegrados los Mercados de Bonos Internacionales?

Mills y Mills (1991). The International Transmission of Bond Market Movements. Bulletin of Economics Research.

Si los mercados financieros están cointegrados, entonces tienen una "tendencia estocástica común".

Datos diarios de cierre de retornos de bonos de gobiernos en cuatro mercados de bonos US, UK, Alemania y Japón.

Para probar cointegración, una condición n ecesaria pero no suficiente es que los rendimientos sean no estacionarios.

Las cuatro series son I(1).

Prueba de Cointegración entre los Rendimientos

Usan Johansen. A lo sumo pueden existir 3 vectores de cointegración linealmente independientes.

Usan el estadístico de la traza:

$$\lambda_{traza}(r) = -T \sum_{i=\nu+1}^{g} ln(1-\widehat{\lambda_i})$$
,

donde λ_i son los valores propios ordenados.

Prueba de Johansen			
r (número de vectores de	Estadístico	Valores c	ríticos
cointegración bajo H ₀)		10%	5%
0	22.06	35.6	38.6
1	10.58	21.2	23.8
2	2.52	10.3	12.0
3	0.12	2.9	4.2

Mills y Mills (1991).

Prueba de Cointegración entre los Rendimientos

Conclusión: No existen vectores de cointegración.

El trabajo estima un VAR para las primeras diferencias de los retornos:

$$\Delta X_{t} = \sum_{i=1}^{k} \Gamma_{i} \Delta X_{t-i} + \nu_{t}$$

$$\text{Donde } X_t = \begin{bmatrix} X(US) \\ X(UK) \\ X(WG) \\ X(IAP) \end{bmatrix}, \Gamma_i = \begin{bmatrix} \Gamma_{11i} & \Gamma_{12i}\Gamma_{13i} & \Gamma_{14i} \\ \Gamma_{21i} & \Gamma_{22i}\Gamma_{23i} & \Gamma_{24i} \\ \Gamma_{31i} & \Gamma_{32i}\Gamma_{33i} & \Gamma_{34i} \\ \Gamma_{41i} & \Gamma_{42i}\Gamma_{43i} & \Gamma_{44i} \end{bmatrix}, \nu_t = \begin{bmatrix} \nu_{1t} \\ \nu_{2t} \\ \nu_{3t} \\ \nu_{4t} \end{bmatrix}$$

Fijan k = 8.

Descomposición de Varianzas para un VAR de Retornos de Bonos de Países

Explicando	Días		Explicada po	r movimiento es	
movimientos en	adelante	US	UK	Alemania	Japón
US	1	95.6	2.4	1.7	0.3
	5	94.2	2.8	2.3	0.7
	10	92.9	3.1	2.9	1.1
	20	92.8	3.2	2.9	1.1
UK	1	0.0	98.3	0.0	1.7
	5	1.7	96.2	0.2	1.9
	10	2.2	94.6	0.9	2.3
	20	2.2	94.6	0.9	2.3
Alemania	1	0.0	3.4	9 4.6	2.0
	5	6.6	6.6	84.8	3.0
	10	8.3	6.5	82.9	3.6
	20	8.4	6.5	82.7	3.7
Japón	1	0.0	0.0	1.4	100.0
	5	1.3	1.4	1.1	96.2
	10	1.5	2.1	1.8	94.6
	20	1.6	2.2	1.9	94.2

Mills y Mills (1991)

Función de Impulso Respuesta para un VAR de retornos de Bonos de Países

T 1 D	e TAD et .	1 D 1 37' 11
Impilise Responses	for VAR of Internationa	ii Bona Yielas

	Response of US to				
Days after shock	US	UK	Germany	Japan	
0	0.98	0.00	0.00	0.00	
1	0.06	0.01	- 0. 10	0.05	
2	- 0.02	0.02	- 0.14	0.07	
3	0.09	- 0.04	0.09	0.08	
4	- 0.02	- 0.03	0.02	0.09	
10	- 0.03	- 0.01	- 0.02	- 0.01	
20	0.00	0.00	- 0.10	- 0.01	
	Response of UK t	o innovations in			
Days after shock	US	UK	Germany	Japan	
0	0.19	0.97	0.00	0.00	
1	0.16	0.07	0.01	- 0.06	
2	- 0.01	- 0.01	- 0.05	0.09	
3	0.06	0.04	0.06	0.05	
4	0.05	- 0.01	0.02	0.07	
10	0.01	0.01	- 0.04	- 0.01	
20	0.00	0.00	- 0.01	0.00	
	•	nany to innovations in			
Days after shock	US	UK	Germany	Japan	
0	0.07	0.06	0.95	0.00	
1	0.13	0.05	0.11	0.02	
2	0.04	0.03	0.00	0.00	
3	0.02	0.00	0.00	0.01	
4	0.01	0.00	0.00	0.09	
10	0.01	0.01	- 0.01	0.02	
20	0.00	0.00	0.00	0.00	
	Response of Japan				
Days after shock	US	UK	Germany	Japan	
0	0.03	0.05	0.12	0.97	
1	0.06	0.02	0.07	0.04	
2	0.02	0.02	0.00	0.21	
3	0.01	0.02	0.06	0.07	
4	0.02	0.03	0.07	0.06	
10	0.01	0.01	0.01	0.04	
20	0.00	0.00	0.00	0.01	

Función de Impulso Respuesta para un VAR de retornos de Bonos de Países

Impulse Responses	for VAR of Internations	al Bond Yields

	Response of US	to innovations in		
Days after shock	US	UK	Germany	Japan
0	0.98	0.00	0.00	0.00
1	0.06	0.01	- 0. 10	0.05
2	- 0.02	0.02	- 0.14	0.07
3	0.09	- 0.04	0.09	0.08
4	- 0.02	- 0.03	0.02	0.09
10	- 0.03	- 0.01	- 0.02	- 0.01
20	0.00	0.00	- 0.10	- 0.01
		to innovations in		
Days after shock	US	UK	Germany	Japan
0	0.19	0.97	0.00	0.00
1	0.16	0.07	0.01	- 0.06
2	- 0.01	- 0.01	- 0.05	0.09
3	0.06	0.04	0.06	0.05
4	0.05	- 0.01	0.02	0.07
10	0.01	0.01	- 0.04	- 0.01
20	0.00	0.00	- 0.01	0.00
	Response of Ger	many to innovations in		
Days after shock	US	UK	Germany	Japan
0	0.07	0.06	0.95	0.00
1	0.13	0.05	0.11	0.02
2	0.04	0.03	0.00	0.00
3	0.02	0.00	0.00	0.01
4	0.01	0.00	0.00	0.09
10	0.01	0.01	- 0.01	0.02
20	0.00	0.00	0.00	0.00
		an to innovations in		
Days after shock	US	UK	Germany	Japan
0	0.03	0.05	0.12	0.97
1	0.06	0.02	0.07	0.04
2	0.02	0.02	0.00	0.21
3	0.01	0.02	0.06	0.07
4	0.02	0.03	0.07	0.06
10	0.01	0.01	0.01	0.04
20	0.00	0.00	0.00	0.01

Ejemplo 4. ¿Están cointegrados el consumo privado y el ingreso permanente?

Datos para EEUU:

- Ingreso personal disponible en billones de US dólares, ajustado por estacionalidad.
- Gastos de consumo personal, en billones de US dólares, ajustados por estacionalidad.
- iii. Deflactor implícito en los gastos de consumo personal, ajustado por estacionalidad
- iv. Período 1949Q1-2017Q4
- v. Fuente: FRED
- Se analiza la estacionariedad de las series y la posibilidad de que exista una relación estable de equilibrio, en el largo plazo entre ellas.
- Teoría lo dice, ¿lo avalan los datos?

Null Hypothesis: LOG(I_C_R_US) has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.608058	0.4771
Test critical values:	1% level	-3.453483	
	5% level	-2.871619	
	10% level	-2.572213	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(I_C_R_US))

Method: Least Squares
Date: 04/02/18 Time: 13:53
Sample (adjusted): 1947Q4 2017Q4

Included observations: 281 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(I_C_R_US(-1))	-0.001083	0.000674	-1.608058	0.1090
D(LOG(I_C_R_US(-1))	0.054528	0.056971	0.957106	0.3393
D(LOG(I_C_R_US(-2))	0.309108	0.056901	5.432367	0.0000
С	0.011465	0.004091	2.802158	0.0054
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.119017 0.109476 0.007645 0.016190 972.7975 12.47387 0.000000	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.008136 0.008101 -6.895356 -6.843564 -6.874584 2.004562

Null Hypothesis: D(LOG(I_C_R_US)) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-8.051752	0.0000
Test critical values:	1% level	-3.453483	
	5% level	-2.871619	
	10% level	-2.572213	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(I_C_R_US),2)

Method: Least Squares Date: 04/02/18 Time: 13:53

Sample (adjusted): 1947Q4 2017Q4

Included observations: 281 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LOG(I_C_R_US(-1))) D(LOG(I_C_R_US(-1)), C	-0.615300 -0.319801 0.005003	0.076418 0.056672 0.000772	-8.051752 -5.643008 6.483737	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.509254 0.505724 0.007667 0.016341 971.4920 144.2424 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	2.39E-05 0.010905 -6.893181 -6.854338 -6.877603 2.009086

Null Hypothesis: LOG(I_I_P) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 10 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-1.075779 -3.993066 -3.426874 -3.136704	0.9300

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(I_I_P))

Method: Least Squares Date: 04/02/18 Time: 13:52

Sample (adjusted): 1951Q4 2017Q4

Included observations: 265 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(I_I_P(-1)) D(LOG(I_I_P(-1))) D(LOG(I_I_P(-2))) D(LOG(I_I_P(-3)))	-0.001385	0.001287	-1.075779	0.2831
	0.893302	0.054104	16.51071	0.0000
	0.125227	0.069936	1.790593	0.0746
	-0.018278	0.069956	-0.261281	0.7941
D(LOG(I_I_P(-4))) D(LOG(I_I_P(-5))) D(LOG(I_I_P(-6))) D(LOG(I_I_P(-7))) D(LOG(I_I_P(-8))) D(LOG(I_I_P(-9))) D(LOG(I_I_P(-10))) C	-0.099616	0.069633	-1.430589	0.1538
	-0.013420	0.069878	-0.192052	0.8479
	0.085665	0.069397	1.234422	0.2182
	-0.055679	0.065667	-0.847904	0.3973
	-0.021982	0.062200	-0.353410	0.7241
	-0.444476	0.061584	-7.217403	0.0000
	0.464643	0.048987	9.485067	0.0000
	0.007345	0.005882	1.248646	0.2130
@TREND("1947Q1") R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	9.70E-06 0.882061 0.876445 0.001160 0.000339 1421.877 157.0585 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var terion rion n criter.	0.3714 0.008026 0.003300 -10.63303 -10.45742 -10.56247 1.875386

Null Hypothesis: $D(LOG(I_I_P))$ has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 11 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.663207	0.0266
Test critical values:	1% level	-3.993335	
	5% level	-3.427004	
	10% level	-3.136780	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(I_I_P),2)

Method: Least Squares
Date: 04/02/18 Time: 13:50
Sample (adjusted): 1952Q2 2017Q4
Included observations: 263 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LOG(I_I_P(-1)))	-0.129398	0.035324	-3.663207	0.0003
D(LOG(I_I_P(-1)),2)	0.060801	0.065212	0.932360	0.3521
D(LOG(I_I_P(-2)),2)	0.236922	0.065736	3.604136	0.0004
D(LOG(I_I_P(-3)),2)	0.137377	0.054021	2.543024	0.0116
D(LOG(I_I_P(-4)),2)	0.010465	0.053219	0.196642	0.8443
D(LOG(I_I_P(-5)),2)	-0.023650	0.053161	-0.444870	0.6568
D(LOG(I_I_P(-6)),2)	0.080820	0.053126	1.521290	0.1295
D(LOG(I_I_P(-7)),2)	0.047374	0.053080	0.892507	0.3730
D(LOG(I_I_P(-8)),2)	0.032771	0.051958	0.630720	0.5288
D(LOG(I_I_P(-9)),2)	-0.438087	0.048327	-9.065020	0.0000
D(LOG(I_I_P(-10)),2)	0.133953	0.055377	2.418920	0.0163
D(LOG(I_I_P(-11)),2)	0.163604	0.057475	2.846532	0.0048
С	0.001438	0.000430	3.346846	0.0009
@TREND("1947Q1")	-2.71E-06	1.18E-06	-2.292157	0.0227
R-squared	0.387291	Mean depend	ent var	-3.82E-05
Adjusted R-squared	0.355303	S.D. depende		0.001413
S.E. of regression	0.001135	Akaike info cri		-10.67337
Sum squared resid	0.000321	Schwarz criterion		-10.48322
Log likelihood	1417.549	Hannan-Quin	n criter.	-10.59696
F-statistic	12.10709	Durbin-Watso	n stat	2.020604
Prob(F-statistic)	0.000000			

Sample (adjusted): 1949Q4 2017Q4

Included observations: 273 after adjustments
Trend assumption: Linear deterministic trend
Series: LOG(I_C_US) LOG(I_P_C_US) LOG(I_I_P)

Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 At most 2	0.133420	51.19652	29.79707	0.0001
	0.036560	12.10283	15.49471	0.1521
	0.007063	1.935028	3.841466	0.1642

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None * At most 1 At most 2	0.133420	39.09369	21.13162	0.0001
	0.036560	10.16780	14.26460	0.2011
	0.007063	1.935028	3.841466	0.1642

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

Vector Error Correction Estimates

Date: 04/02/18 Time: 11:49

Sample (adjusted): 1949Q4 2017Q4 Included observations: 273 after adjustments

Standard errors in () & t-statistics in []

Cointegrating Eq:	CointEq1	
LOG(I_C_US(-1))	1.000000	
LOG(I_P_C_US(-1))	-1.030150 (0.01975) [-52.1613]	
LOG(I_I_P(-1))	-0.991700 (0.02138) [-46.3885]	
С	4.746786	

Error Correction:	D(LOG(I_C_US))	D(LOG(I_P_C_US))	D(LOG(I_I_P))
CointEq1	-0.129879 (0.03349)	-0.007739 (0.01605)	0.006651 (0.00529)
	[-3.87833]	[-0.48218]	[1.25837]

Vector Error Correction Estimates
Date: 04/02/18 Time: 12:21

Sample (adjusted): 1951Q2 2017Q4

Included observations: 267 after adjustments Standard errors in () & t-statistics in []

Cointegration Restrictions:

B(1,1)=1, B(1,2)=-1

Convergence achieved after 6 iterations.

Restrictions identify all cointegrating vectors

LR test for binding restrictions (rank = 1):

Chi-square(1)
Probability

0.579634 0.446456

Cointegrating Eq:	CointEq1		
LOG(I_C_US(-1))	1.000000		
LOG(I_P_C_US(-1))	-1.000000		
LOG(I_I_P(-1))	-1.036137 (0.00590) [-175.760]		
C	4.836496		
Error Correction:	D(LOG(I_C_US))	D(LOG(I_P_C_US))	D(LOG(I_I_P))
CointEq1	-0.101486 (0.02825) [-3.59239]	-0.044209 (0.01426) [-3.10033]	0.010983 (0.00502) [2.18752]

Vector Error Correction Estimates Date: 04/02/18 Time: 13:00

Sample (adjusted): 1950Q2 2017Q4

Included observations: 271 after adjustments

Standard errors in () & t-statistics in []

Cointegration Restrictions:

B(1,1)=1, B(1,2)=-1

Convergence achieved after 1 iterations.

Restrictions identify all cointegrating vectors

LR test for binding restrictions (rank = 1):

Chi-square(1) 2.909128 Probability 0.088079

Cointegrating Eq:	CointEq1	
LOG(I_C_US(-1))- LOG(I_P_C_US(-1))	1.000000	
LOG(I_I_P(-1))	-1.000000	
С	4.623137	
Error Correction:	D(LOG(I_C_US)- LOG(I_P_C_US))	D(LOG(I_I_P))
CointEq1	-0.044833 (0.01878) [-2.38759]	-0.001577 (0.00323) [-0.48796]

Vector Error Correction Estimates

Date: 04/02/18 Time: 13:05

Sample (adjusted): 1950Q2 2017Q4

Included observations: 271 after adjustments

Standard errors in () & t-statistics in []

Cointegration Restrictions:

B(1,1)=1, B(1,2)=-1, A(2,1)=0

Convergence achieved after 2 iterations.

Restrictions identify all cointegrating vectors

LR test for binding restrictions (rank = 1):

Chi-square(2) 3.156241 Probability 0.206363

Cointegrating Eq:	CointEq1	
LOG(I_C_US(-1))- LOG(I_P_C_US(-1))	1.000000	
LOG(I_I_P(-1))	-1.000000	
C	4.623137	
Error Correction:	D(LOG(I_C_US)- LOG(I_P_C_US))	D(LOG(I_I_P))
CointEq1	-0.042151 (0.01796)	0.000000 (0.0000)

[-2.34757]

[NA]

Dependent Variable: LOG(I_C_US)-LOG(I_P_C_US)

Method: Least Squares

Date: 04/02/18 Time: 14:08

Sample (adjusted): 1949Q1 2017Q4

Included observations: 276 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(I_I_P)	-4.713399 1.015500	0.013072 0.002219	-360.5650 457.6815	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.998694 0.998689 0.024368 0.162698 634.5773 209472.4 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Wats c	nt var terion rion n criter.	1.231751 0.672971 -4.583893 -4.557658 -4.573366 0.108472

Dependent Variable: LOG(I_C_US)-LOG(I_P_C_US)

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 04/02/18 Time: 14:10

Sample (adjusted): 1949Q1 2017Q4

Included observations: 276 after adjustments

 $LOG(I_C_US)-LOG(I_P_C_US)= C(1)+LOG(I_I_P)$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-4.622654	0.001589	-2908.894	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.998461 0.998461 0.026401 0.191676 611.9569 0.091871	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	1.231751 0.672971 -4.427224 -4.414107 -4.421960

Null Hypothesis: D(RESID_COI) has a unit root

Exogenous: Constant

Lag Length: 4 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-8.310744 -3.454443 -2.872041 -2.572439	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID_COI,2)

Method: Least Squares Date: 04/02/18 Time: 14:12

Sample (adjusted): 1950Q3 2017Q4

Included observations: 270 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(RESID_COI(-1)) D(RESID_COI(-1),2) D(RESID_COI(-2),2) D(RESID_COI(-3),2) D(RESID_COI(-4),2)	-0.896502 -0.093433 0.301364 0.347516 0.081232	0.107873 0.095650 0.089636 0.083845 0.061151	-8.310744 -0.976820 3.362102 4.144757 1.328375	0.0000 0.3296 0.0009 0.0000 0.1852
C	1.93E-05	0.000451	0.042866	0.9658
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.563756 0.555494 0.007404 0.014472 944.4706 68.23319 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.51E-05 0.011105 -6.951634 -6.871669 -6.919524 1.935944

Dependent Variable: D(LOG(I_C_US)-(LOG(I_P_C_US)))

Method: Least Squares

Date: 04/02/18 Time: 14:28

Sample (adjusted): 1949Q4 2017Q4

Included observations: 273 after adjustments

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

bandwidth = 6.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID_COI(-1) D_L_C_R(-2) D_L_C_R(-4) D_L_I_R	0.003400 -0.046099 0.353163 -0.254981 1.479320	0.001194 0.021797 0.115083 0.075609 0.293028	2.848363 -2.114927 3.068778 -3.372380 5.048384	0.0047 0.0354 0.0024 0.0009 0.0000
D_L_I_R(-2)	-0.986517	0.285228	-3.458700	0.0006
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.250959 0.236932 0.007130 0.013573 965.2266 17.89112 0.000000 0.000000	Mean dependence S.D. dependence Akaike info crus Schwarz crite Hannan-Quin Durbin-Watso Wald F-statis	ent var iterion rion in criter. on stat	0.008209 0.008162 -7.027301 -6.947972 -6.995457 2.096573 17.76796