Khai phá luật kết hợp

TS. Nguyễn Quốc Tuấn

Nội dung

- Tổng quan về khai phá luật kết hợp
- Biểu diễn luật kết hợp
- Giải thuật Apriori
- Giải thuật FP_Growth

Tổng quan về luật kết hợp

- Quá trình khai phá luật kết hợp
- Các khái niệm cơ bản

Quá trình khai phá luật kết hợp

Quá trình khai phá luật kết hợp

Transaction	Items_bought
2000 1000 4000	A, B, C A, C A, D
5000	B, E, F

A, B, C, D, F, ... $A \rightarrow C$ (50%, 66.6%) ...

• Dữ liệu mẫu của AllElectronics

TID	List of item_IDs
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	11, 12, 13

• Các khái niệm cơ bản

- Item (phần tử)
- Itemset (tập phần tử)
- Transaction (giao dich)
- Association (sự kết hợp) và association rule (luật kết hợp)
- Support (độ hỗ trợ)
- Confidence (độ tin cậy)
- Frequent itemset (tập phần tử phổ biến/thường xuyên)
- Strong association rule (luật kết hợp mạnh)

• Các khái niệm cơ bản

- Item (phần tử)
 - Các phần tử, mẫu, đối tượng đang được quan tâm.
 - $I = \{I1, I2, ..., Im\}$: tập tất cả m phần tử có thể có trong tập dữ liệu
- *Itemset* (tập phần tử)
 - Tập hợp các items
 - Một itemset có k items gọi là k-itemset.
- Transaction (giao dich)
 - Lần thực hiện tương tác với hệ thống
 - Liên hệ với một tập D gồm các phần tử được giao dịch

• Dữ liệu mẫu của AllElectronics

Các khái niệm cơ bản

- Association (Sự kết hợp): các phần tử cùng xuất hiện với nhau trong một hay nhiều giao dịch.
 - Thể hiện mối liên hệ giữa các phần tử/các tập phần tử

- Association rule (Luật kết hợp): qui tắc kết hợp có điều kiện giữa các tập phần tử.
 - Thể hiện mối liên hệ (có điều kiện) giữa các tập phần tử
 - Cho A và B là các tập phần tử, luật kết hợp giữa A và B là A \rightarrow B.
 - B xuất hiện trong điều kiện A xuất hiện.

• Các khái niệm cơ bản

- Support (độ hỗ trợ)
 - Độ đo đo tần số xuất hiện của các phần tử/tập phần tử.

$$Support(A) = P(A) = support_count(A)/|D|$$

- Minimum support threshold (ngưỡng hỗ trợ tối thiểu) min_sup
- Confidence (độ tin cậy)
 - Độ đo đo tần số xuất hiện của một tập phần tử trong điều kiện xuất hiện của một tập phần tử khác.

 $Confidence(A => B) = P(B|A) = support(A \cup B)/support(A) = support_count(A \cup B)/support_count(A)$

• Minimum confidence threshold (ngưỡng tin cậy tối thiểu) – min_conf

- Các khái niệm cơ bản
 - Frequent itemset (Tập phần tử phổ biến)
 - Tập phần tử có support thỏa min_sup.
 - Cho A là một itemset
 - A là tập phổ biến nếu support(A) >= min_sup.
 - Strong association rule (Luật kết hợp mạnh)
 - Luật kết hợp có support và confidence thỏa minimum support threshold và minimum confidence threshold.
 - Cho luật kết hợp A→B giữa A và B, A và B là itemsets
 - A→B là luật kết hợp mạnh nếu
 support(A→B) >= min_sup và confidence(A→B) >= min_conf.

Nội dung

- Tổng quan về khai phá luật kết hợp
- Biểu diễn luật kết hợp
- Giải thuật Apriori
- Giải thuật FP_Growth

Biểu diễn luật kết hợp

- Luật kết hợp giữa các tập phần tử phổ biến: A > B [support, confidence]
 - A và B là các frequent itemsets
 - Support($A \rightarrow B$) = Support($A \cup B$) >= min_sup
 - Confidence($A \rightarrow B$) = Support($A \cup B$)/Support($A \cup B$) = P($B \mid A$) >= min_conf

Biểu diễn luật kết hợp

- Quá trình tạo các luật kết hợp mạnh từ các tập phổ biến
 - ullet Cho mỗi tập phổ biến l, tạo các tập con không rỗng của l.
 - Support(*l*) >= min_sup
 - Cho mỗi tập con không rỗng s của l, tạo ra luật " $s \rightarrow (l-s)$ " nếu Support_count(l)/Support_count(s) >= min_conf

Nội dung

- Tổng quan về khai phá luật kết hợp
- Biểu diễn luật kết hợp
- Giải thuật Apriori
- Giải thuật FP_Growth

- Tính chất của thuật toán: Mọi tập con khác rỗng của một tập phổ biến cũng phải là tập phổ biến.
- Mô tả thuật toán:
 - Bước 1: Duyệt (Scan) toàn bộ transaction database để có được tập ứng viên của 1-itemset (C₁), so sánh C₁ với min_sup, để có được 1-itemset (L₁).
 - Bước 2: Sử dụng L_{k-1} nối (join) L_{k-1} để sinh ra candidate k-itemset. Loại bỏ các itemsets không phải là frequent itemsets thu được k-itemset.
 - Bước 3: Scan transaction database để có được support của mỗi candidate kitemset, so sánh C_k với min_sup để thu được frequent k—itemset (L_k) .
 - Bước 4: Lặp lại từ bước 2 cho đến khi tập ứng viên trống (không tìm thấy frequent itemsets).

Input:

- D, a database of transactions;
- min_sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

```
L_1 = \text{find\_frequent\_1-itemsets}(D);
(1)
         for (k = 2; L_{k-1} \neq \emptyset; k++) {
(2)
            C_k = \operatorname{apriori\_gen}(L_{k-1});
(3)
             for each transaction t \in D { // scan D for counts
(4)
                  C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
(5)
                  for each candidate c \in C_t
(6)
(7)
                       c.count++;
(8)
            L_k = \{c \in C_k | c.count \ge min\_sup\}
(10)
(11)
         return L = \cup_k L_k;
```

```
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
        for each itemset l_1 \in L_{k-1}
(1)
           for each itemset l_2 \in L_{k-1}
(2)
                if (l_1[1] = l_2[1]) \land (l_1[2] = l_2[2]) \land ... \land (l_1[k-2] = l_2[k-2]) \land (l_1[k-1] < l_2[k-1]) then {
(3)
                     c = l_1 \bowtie l_2; // join step: generate candidates
(4)
(5)
                     if has_infrequent_subset(c, L_{k-1}) then
                          delete c; // prune step: remove unfruitful candidate
(6)
                     else add c to C_k;
(7)
(8)
(9)
        return C_k;
procedure has_infrequent_subset(c: candidate k-itemset;
           L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
        for each (k-1)-subset s of c
(1)
           if s \not\in L_{k-1} then
(2)
(3)
                return TRUE:
(4)
        return FALSE;
```

• Dữ liệu mẫu của AllElectronics

TID	List of item_IDs
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11, 13
T600	12, 13
T700	11, 13
T800	11, 12, 13, 15
T900	11, 12, 13

• Min_sup=20%

11, 12, 13, 15

11, 12, 13

TID	List of item_IDs
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11, 13
T600	12, 13
T700	11, 13

T800

T900

Khai phá luật kết hợp từ tập phổ biến

• Min conf = 50%

$$l = \{I1, I2, I5\}$$

nonempty subsets of l are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}

```
confidence = 2/4 = 50\%
I1 \land I2 \Rightarrow I5,
                                                                                                           I1 \land I2 \Rightarrow I5
I1 \wedge I5 \Rightarrow I2,
                                  confidence = 2/2 = 100\%
                                                                                Min conf = 50\%
                                                                                                           I1 \wedge I5 \Rightarrow I2
I2 \wedge I5 \Rightarrow I1,
                                  confidence = 2/2 = 100\%
                                  confidence = 2/6 = 33\%
I1 \Rightarrow I2 \wedge I5,
                                                                                                           I2 \wedge I5 \Rightarrow I1
I2 \Rightarrow I1 \wedge I5,
                                  confidence = 2/7 = 29\%
                                                                                                           I5 \Rightarrow I1 \land I2
                                  confidence = 2/2 = 100\%
I5 \Rightarrow I1 \wedge I2,
```

- Đặc điểm
 - Tạo ra nhiều tập dự tuyển
 - Một k-itemset cần ít nhất 2^k -1 itemsets dự tuyển trước đó.
 - Kiểm tra tập dữ liệu nhiều lần
 - Chi phí lớn khi kích thước các itemsets tăng lên dần.
 - Nếu k-itemsets được khám phá thì cần kiểm tra tập dữ liệu k+1 lần.

• Bài tập 1: Cho I = {A, B, C, D, E, F} và cơ sở dữ liệu giao dịch sau:

T1	{A, B, C, F}
T2	{A, B, E, F}
Т3	{A, C}
T4	{D, E}
T5	{B, F}

• Tìm tập phổ biến và tập luật kết hợp mạnh với min_sup=25% và min_conf=75%

• Bài tập 2: Cho I = {A, B, C, D, E, F} và cơ sở dữ liệu giao dịch sau:

T1	{D, E}
T2	{A, B, D, E}
T3	{A, B, D}
T4	{C, D, E}
T5	{F}
T6	{B, C, D}

• Tìm tập phổ biến và tập luật kết hợp mạnh với min_sup=20% và min_conf=70%

Nội dung

- Tổng quan về khai phá luật kết hợp
- Biểu diễn luật kết hợp
- Giải thuật Apriori
- Giải thuật FP_Growth

- Nén tập dữ liệu vào cấu trúc cây (Frequent Pattern tree, FP-tree)
 - Giảm chi phí cho toàn tập dữ liệu dùng trong quá trình khai phá
 - Tập mục không thường xuyên bị loại bỏ sớm.
 - Đảm bảo kết quả khai phá không bị ảnh hưởng
- Phương pháp chia-để-trị (divide-and-conquer)
 - Quá trình khai phá được chia thành các công tác nhỏ.
 - 1. Xây dựng FP-tree
 - 2. Khám phá tập mục thường xuyên với FP-tree
- Tránh tạo ra các tập dự tuyển
 - Mỗi lần kiểm tra một phần tập dữ liệu

- 1. Xây dựng FP-tree
 - 1.1. Kiểm tra tập dữ liệu, tìm frequent 1-itemsets
 - 1.2. Sắp thứ tự frequent 1-itemsets theo sự giảm dần của support count (tần suất xuất hiện)
 - 1.3. Kiểm tra tập dữ liệu, tạo FP-tree
 - Tạo root của FP-tree, được gán nhãn "null" {}
 - Mỗi giao dịch tương ứng một nhánh của FP-tree.
 - Mỗi node trên một nhánh tương ứng một item của giao dịch.
 - Các item của một giao dịch được sắp theo giảm dần.
 - Mỗi node kết hợp với support count của item tương ứng.
 - Các giao dịch có chung items tạo thành các nhánh có prefix chung.

Input:

- D, a transaction database;
- min_sup, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

- The FP-tree is constructed in the following steps:
 - (a) Scan the transaction database D once. Collect F, the set of frequent items, and their support counts. Sort F in support count descending order as L, the list of frequent items.
 - (b) Create the root of an FP-tree, and label it as "null." For each transaction Trans in D do the following. Select and sort the frequent items in Trans according to the order of L. Let the sorted frequent item list in Trans be [p|P], where p is the first element and P is the remaining list. Call $Insert_tree([p|P], T)$, which is performed as follows. If T has a child N such that N. $Insert_tree([p|P], T)$, which is performed as follows. If T has a child T such that T is parent link be linked to T, and its node-link to the nodes with the same T insert_tree(T, T) recursively.
- The FP-tree is mined by calling FP_growth(FP_tree, null), which is implemented as follows.

- 2. Khám phá frequent itemsets với FP-tree
 - 2.1. Tạo conditional pattern base cho mỗi node của FP-tree
 - Tích luỹ các prefix paths with frequency của node đó
 - 2.2. Tạo conditional FP-tree từ mỗi conditional pattern base
 - Tích lũy frequency cho mỗi item trong mỗi base
 - Xây dựng conditional FP-tree cho frequent items của base đó
 - 2.3. Khám phá conditional FP-tree và phát triển frequent itemsets một cách đệ qui
 - Nếu conditional FP-tree có một path đơn thì liệt kê tất cả các itemsets.

```
procedure FP_growth(\mathit{Tree}, \alpha)

(1) if \mathit{Tree} contains a single path \mathit{P} then

(2) for each combination (denoted as \beta) of the nodes in the path \mathit{P}

(3) generate pattern \beta \cup \alpha with \mathit{support\_count} = \mathit{minimum support count of nodes in } \beta;

(4) else for each a_i in the header of \mathit{Tree} {

(5) generate pattern \beta = a_i \cup \alpha with \mathit{support\_count} = a_i.\mathit{support\_count};

(6) construct \beta's conditional pattern base and then \beta's conditional FP_tree \mathit{Tree}_\beta;

(7) if \mathit{Tree}_\beta \neq \emptyset then

(8) call FP_growth(\mathit{Tree}_\beta, \beta); }
```


Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
15	{{I2, I1: 1}, {I2, I1, I3: 1}}	⟨I2: 2, I1: 2⟩	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I4	$\{\{I2, I1: 1\}, \{I2: 1\}\}$	⟨I2: 2⟩	{I2, I4: 2}
13	$\{\{I2, I1: 2\}, \{I2: 2\}, \{I1: 2\}\}$	\langle I2: 4, I1: 2 \rangle , \langle I1: 2 \rangle	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1	{{I2: 4}}	$\langle \text{I2: 4} \rangle$	{I2, I1: 4}

- Đặc điểm
 - Không tạo tập itemsets dự tuyển
 - Không kiểm tra xem liệu itemsets dự tuyển có thực là frequent itemsets
 - Sử dụng cấu trúc dữ liệu nén dữ liệu từ tập dữ liệu
 - Giảm chi phí kiểm tra tập dữ liệu
 - Chi phí chủ yếu là đếm và xây dựng cây FP-tree lúc đầu
 - → Hiệu quả và co giãn tốt cho việc khám phá các frequent itemsets dài lẫn ngắn

So sánh giữa giải thuật Apriori và giải thuật FP-Growth

So sánh giữa giải thuật Apriori và giải thuật FP-Growth

Co giãn tuyến tính với số giao dịch