Excited State and Nonadiabatic Reaction Pathways Involving Single-Atom Impurities in Graphene

David Lingerfelt 7/28/2021 21st VISTA Seminar

Acknowledgments

Prof. Tao Yu – UND

Dr. Anthony Yoshimura – LLNL

Dr. P. Ganesh - CNMS

Dr. Bobby Sumpter - CNMS

Dr. Jacek Jakowski - CSE

Office of Science

This work was performed at the Center for Nanophase Materials Sciences, a U.S. Department of Energy Office of Science User Facility.

Atomic Scale Manipulation with STEM

(b)

Aberration corrected optics allows focusing high energy (>>1keV) electron beams into subangstrom spot sizes.

Highly-localized response can induce chemical transformations on commensurate length scales.

PNAS 2006, 103, 3044-3048

(a)

Nano Lett. 2018,18, 5319-5323

Structure of Si-C₃ defects in graphene

Strain and Pseudo Gauge Fields

Electromechanically deformed graphene "drumheads" show a pseudo-Landau level like progression in their STS->

Science 2012, 336, 1557-1561.

← Similar story for CVD grown graphene nanobubbles on Pt

Si-C₃ diffusion in a graphene nanoflake

3.5 3.0 2.5 2.0 0.5 0.0 0.0 0.5 0.0

B3LYP/6-31g(d)

Time-dependent density functional theory

(Linear Response)

$$egin{bmatrix} \mathbf{A} & \mathbf{B} \ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} egin{bmatrix} \mathbf{X} \ \mathbf{Y} \end{bmatrix} = \omega egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{0} & -\mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{X} \ \mathbf{Y} \end{bmatrix}$$

$$A_{ia,jb} = \delta_{ij}\delta_{ab}(F_{aa} - F_{ii}) + (ia|jb) + (ia|f_{xc}|jb)$$
$$B_{ia,jb} = (ia|bj) + (ia|f_{xc}|bj)$$

$$\langle \Psi_0 | \hat{V}(\mathbf{r}_{q}) | \Psi_I \rangle = \sum_{ia} V_{ia}(\mathbf{r}_{q}) X_{ia}^I + V_{ai}(\mathbf{r}_{q}) Y_{ia}^I$$
$$\hat{V}(q, \mathbf{r}_{q}) = \frac{q}{|\hat{r} - \mathbf{r}_{q}|}$$
$$w_{0I}(\mathbf{r}_{q}) = 2\pi \left| \langle \Psi_0 | \hat{V}(\mathbf{r}_{q}) | \Psi_I \rangle \right|^2$$

("Real Time")

$$i\frac{\partial \mathbf{P}'(\mathbf{t})}{\partial t} = \left[\mathbf{F}'(t), \mathbf{P}'(t)\right]$$
$$\mathbf{P}'(t) = \mathbf{U}(t_0, t)\mathbf{P}'(t_0)\mathbf{U}^{\dagger}(t_0, t)$$
$$\mathbf{U}(t_0, t) = \mathcal{T}\exp\left(-i\int_{t_0}^t dt' \,\mathbf{F}(t')\right)$$

 Integrate EOM with 2nd order Magnus scheme (as implemented in NWChem)

Reaction profiles, nonadiabatic couplings, and $w_{0I}({f r}_{ m q})$

Excitation Rate (isovalue= 0.001, 0.005, 0.01 AU⁻¹)

Conclusions

- Si-C₃ introduces defect-localized states that can be excited optically and through eirradiation @ the defect site.
- Nonadiabatic coupling to lowest-lying defectcentered state can be strong along the diffusion coordinate.
- Nonadiabatic effects can send the effective diffusion barrier higher/lower depending on initial conditions.
- Disentangling the relative importance of these opposing effects will require coupled electronic and vibrational dynamics simulations.

