Dimostrazioni di Analisi matematica 1

Virginia Longo, Giovanni Manfredi e Mattia Martelli

Indice

Parte I		3
1	Progressione geometrica	4
2	Formule di De Morgan	5
3	Disuguaglianza di Bernoulli	6
4	Binomio di Newton	7
5	Cardinalità dell'insieme delle parti	8
6	Formule di de Moivre	9
7	Estrazione di radice complessa	11
8	Irrazionalità di $\sqrt{2}$	12
9	Proprietà di \sim ed o	14
10	Numerabilità di $\mathbb Z$ e $\mathbb Q$ e non numerabilità di $\mathbb R$	16
11	Teorema fondamentale delle successioni monotone	18
12	Convergenza della successione che definisce \boldsymbol{e}	20
13	Teorema di unicità del limite	22
14	Teorema di permanenza del segno	23
15	Teorema del confronto	24
16	Teorema di Bolzano	25
17	Teorema di Darboux	27
18	Derivate elementari con la definizione	28
19	Derivabilità implica continuità	30
P	arte II	31
20	Teorema di Fermat	32

21 Teorema di Rolle	34
22 Teorema di Lagrange	35
23 Test di monotonia di f su un intervallo aperto	37
24 Teorema di Cauchy	39
25 Teorema di de l'Hôpital	41
26 Teorema del resto secondo Peano	42
27 Teorema del resto secondo Lagrange	45
28 Primo teorema fondamentale del calcolo integrale	48
29 Teorema valor medio integrale	50
30 Secondo teorema fondamentale del calcolo integrale	52
31 Condizione necessaria per la convergenza di una serie	55
32 Criterio del rapporto per la convergenza delle serie a termini positivi	57
33 Criterio del confronto per la convergenza di una serie a termini positivi	59
34 Criterio della radice per la convergenza delle serie a termini positivi	61
35 Giustificazione della formula di Eulero con l'esponenziale complesso	63
Dimostrazioni aggiuntive	68
${f A1Cardinalità}\; {f di}\; \mathbb{R}^n$	69

Parte I

Progressione geometrica

Enunciato

$$F(n): \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$
 $q \neq 1$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione.

Dimostriamo l'enunciato per n = 1:

$$\sum_{k=0}^{1} q^{k} = q^{0} + q^{1} = 1 + q$$

Allo stesso modo

$$\frac{1-q^{1+1}}{1-q} = \frac{1-q^2}{1-q} = \frac{(1-q)(1+q)}{1-q} = 1+q$$

Che corrisponde al risultato della sommatoria

Possiamo perciò considerare l'enunciato vero al passo n.

Dimostriamolo per n + 1:

$$\begin{split} \sum_{k=0}^{n+1} q^k &= \sum_{k=0}^n q^k + q^{n+1} \\ &= \frac{1 - q^{n+1}}{1 - q} + q^{n+1} \\ &= \frac{1 - q^{n+1}}{1 - q} + q^{n+1} \\ &= \frac{1 - q^{n+1} + q^{n+1} - q^{n+1+1}}{1 - q} \\ &= \frac{1 - q^{n+2}}{1 - q} \end{split}$$

 $Per\ ipotesi\ induttiva$

Allo stesso modo

$$\frac{1 - q^{(n+1)+1}}{1 - q} = \frac{1 - q^{n+2}}{1 - q}$$

Abbiamo quindi dimostrato la progressione geometrica.

Formule di De Morgan

Prima formula

La prima formula è

$$(A \cup B)^{\complement} \equiv A^{\complement} \cap B^{\complement}$$

La dimostreremo in entrambe le direzioni:

- se $x \in (A \cup B)^{\complement}$, allora $x \notin A \cup B$, quindi $x \notin A \land x \notin B$, perciò $x \in A^{\complement} \land x \in B^{\complement}$, dunque $x \in A^{\complement} \cap B^{\complement}$;
- se $x \in A^{\complement} \cap B^{\complement}$, allora $x \in A^{\complement} \wedge x \in B^{\complement}$, quindi $x \notin A \wedge x \notin B$, perciò $x \notin A \cup B$, dunque $x \in (A \cup B)^{\complement}$.

Abbiamo quindi dimostrato la prima formula.

Seconda formula

La seconda formula è

$$(A \cap B)^{\complement} \equiv A^{\complement} \cup B^{\complement}$$

Anche questa la dimostreremo in entrambe le direzioni:

- se $x \in (A \cap B)^{\complement}$, allora $x \notin A \cap B$, quindi $x \notin A \vee x \notin B$, perciò $x \in A^{\complement} \vee x \in B^{\complement}$, dunque $x \in A^{\complement} \cup B^{\complement}$;
- se $x \in A^{\complement} \cup B^{\complement}$, allora $x \in A^{\complement} \lor x \in B^{\complement}$, quindi $x \notin A \lor x \notin B$, perciò $x \notin A \cap B$, dunque $x \in (A \cap B)^{\complement}$.

Abbiamo quindi dimostrato anche la seconda formula.

Disuguaglianza di Bernoulli

Enunciato

La disuguaglianza di Bernoulli è

$$(1+x)^n \geqslant 1+nx$$
 $\forall n \in \mathbb{N}, \, \forall x \in \mathbb{R}, \, x > -1$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione.

Dimostriamo l'enunciato per n = 0:

$$(1+x)^0 \geqslant 1 + 0x$$
$$1 \geqslant 1$$

Possiamo perciò considerare l'enunciato vero al passo n.

Dimostriamolo per n+1:

$$(1+x)^{n+1} = (1+x)(1+x)^n$$

$$\geqslant (1+x)(1+nx)$$

$$= 1+nx+x+nx^2$$

$$= 1+x(n+1)+nx^2$$

$$\geqslant 1+x(n+1)$$
Per l'enunciato del teorema

Abbiamo quindi dimostrato la disuguaglianza di Bernoulli.

Binomio di Newton

Enunciato

Il binomio di Newton è

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione. Dimostriamo l'enunciato per n=0:

$$(a+b)^{0} = \sum_{k=0}^{0} \binom{n}{k} a^{k} b^{n-k}$$
$$1 = \binom{0}{0} a^{0} b^{0}$$
$$1 = 1$$

Possiamo perciò considerare l'enunciato vero al passo n. Dimostriamolo per n+1:

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$= (a+b)\sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k+1}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} a^{k} b^{n-k+1} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k+1}$$

$$= \binom{n}{n} a^{n+1} + \binom{n}{0} b^{n+1} + \sum_{k=1}^{n} \binom{n}{k-1} a^{k} b^{n-k+1} + \sum_{k=1}^{n} \binom{n}{k} a^{k} b^{n-k+1}$$

$$= \binom{n+1}{n+1} a^{n+1} + \binom{n+1}{0} b^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^{k} b^{n-k+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^{k} b^{n+1-k}$$

Abbiamo quindi dimostrato il binomio di Newton.

Cardinalità dell'insieme delle parti

Enunciato

Dato un insieme $\overline{\underline{X}}$, l'insieme delle parti $\mathcal{P}\left(\overline{\underline{X}}\right)$ ha cardinalità pari a 2^n , dove n è il numero di elementi dell'insieme.

Dimostrazione

Prendiamo un generico insieme $\overline{\underline{X}}$. Questo ha sicuramente come sottoinsiemi \emptyset e se stesso. Chiediamoci ora: quanti sottoinsiemi di un elemento possiede? $C_{n,1}=\binom{n}{1}$ Quanti sottoinsiemi di due elementi possiede? $C_{n,2}=\binom{n}{2}$

Quanti sottoinsiemi di n-1 elementi possiede? $C_{n,n-1}=\binom{n}{n-1}$ A questo punto possiamo dire che

 $\langle n \rangle \langle n \rangle \langle n \rangle$

$$\left| \mathcal{P}\left(\overline{\underline{\mathbf{X}}}\right) \right| = 1 + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + 1$$

che corrisponde a

$$\left|\mathcal{P}\left(\overline{\underline{\mathbf{X}}}\right)\right| = \sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n$$

secondo la regola del binomio di Newton. c.v.d.

Formule di de Moivre

Prodotto di due numeri complessi

Dati due numeri complessi z_1 e z_2 definiti come

$$z_1 = \rho_1(\cos \theta_1 + i \sin \theta_1)$$

$$z_2 = \rho_2(\cos \theta_2 + i \sin \theta_2)$$

Il loro prodotto sarà uguale a

$$\begin{split} z_1 \, z_2 &= \rho_1(\cos\vartheta_1 + i\sin\vartheta_1) \, \rho_2(\cos\vartheta_2 + i\sin\vartheta_2) \\ &= \rho_1 \rho_2(\cos\vartheta_1\cos\vartheta_2 + \cos\vartheta_1 i\sin\vartheta_2 + i\sin\vartheta_1\cos\vartheta_2 - \sin\vartheta_1\sin\vartheta_2) \\ &= \rho_1 \rho_2 [(\cos\vartheta_1\cos\vartheta_2 - \sin\vartheta_1\sin\vartheta_2) + i(\cos\vartheta_1\sin\vartheta_2 + \sin\vartheta_1\cos\vartheta_2)] \\ &= \rho_1 \rho_2 [\cos(\vartheta_1 + \vartheta_2) + i\sin(\vartheta_1 + \vartheta_2)] \end{split}$$

Quoziente di due numeri complessi

$$\begin{split} & \frac{z_1}{z_2} = \frac{\rho_1 \cos \vartheta_1 + i \sin \vartheta_1}{\rho_2 \cos \vartheta_2 + i \sin \vartheta_2} \\ & = \frac{\rho_1}{\rho_2} \frac{\cos \vartheta_1 + i \sin \vartheta_1}{\cos \vartheta_2 + i \sin \vartheta_2} \frac{\cos \vartheta_2 - i \sin \vartheta_2}{\cos \vartheta_2 - i \sin \vartheta_2} \\ & = \frac{\rho_1}{\rho_2} \frac{\cos \vartheta_1 \cos \vartheta_2 - \cos \vartheta_1 i \sin \vartheta_2 + i \sin \vartheta_1 \cos \vartheta_2 + \sin \vartheta_1 \sin \vartheta_2}{\cos^2 \vartheta_2 - i \sin \vartheta_2 \cos \vartheta_2 + i \sin \vartheta_2 \cos \vartheta_2 + \sin^2 \vartheta_2} \\ & = \frac{\rho_1}{\rho_2} \frac{[\cos(\vartheta_1 - \vartheta_2) + i \sin(\vartheta_1 - \vartheta_2)]}{\cos^2 \vartheta_2 + \sin^2 \vartheta_2} \\ & = \frac{\rho_1}{\rho_2} [\cos(\vartheta_1 - \vartheta_2) + i \sin(\vartheta_1 - \vartheta_2)] \end{split}$$

Potenza di numero complesso

Enunciato

$$z^n = \rho^n(\cos n\vartheta + i\sin n\vartheta)$$

Dimostrazione

Lo dimostreremo per induzione.

Dimostriamo l'enunciato per n=2:

$$z^{2} = z z = \rho(\cos \vartheta + i \sin \vartheta) \rho(\cos \vartheta + i \sin \vartheta)$$
$$= \rho^{2}(\cos 2\vartheta + i \sin 2\vartheta)$$

secondo la prima formula, con $z_1=z_2=z$. Possiamo perciò considerare l'enunciato vero al passo n-1. Dimostriamolo per n:

$$z^{n-1} = \rho^{n-1}(\cos(n-1)\vartheta + i\sin(n-1)\vartheta)$$

$$z^{n} = z^{n-1}z = \rho^{n-1}(\cos(n-1)\vartheta + i\sin(n-1)\vartheta) \rho(\cos\vartheta + i\sin\vartheta)$$

$$= \rho^{n}(\cos n\vartheta + i\sin n\vartheta)$$

sempre secondo la prima formula.

Abbiamo perciò dimostrato anche la terza formula. c.v.d.

Estrazione di radice complessa

Dati due numeri, $z, z^* \in \mathbb{C}$, definiti come $\sqrt[n]{z^*} = z$ vogliamo estrarre la radice di z^* , quindi calcolare $z^* = z^n$.

Partiamo definendo i numeri:

$$z = \rho(\cos \vartheta + i \sin \vartheta)$$
$$z^* = \rho^*(\cos \vartheta^* + i \sin \vartheta^*)$$

Dall'uguaglianza $z^{\ast}=z^{n}$ possiamo quindi ricavare

$$\rho^*(\cos \vartheta^* + i \sin \vartheta^*) = \rho^n(\cos n\vartheta + i \sin n\vartheta)$$

Questa uguaglianza è valida a meno di multipli di 2π .

Possiamo quindi ricavare il sistema

$$\begin{cases} \rho^* = \rho^n \\ \vartheta_k = k \times 2\pi = n\vartheta \end{cases} \qquad da \ cui \ si \ ricava \qquad \begin{cases} \rho = \sqrt[n]{\rho^*} \\ \vartheta = \frac{\vartheta^*}{n} + k\frac{2\pi}{n} \end{cases}$$

Irrazionalità di $\sqrt{2}$

Enunciato

 $\sqrt{2}$ è un numero irrazionale. È pertanto impossibile scriverlo come frazione.

Dimostrazione

Dimostriamo l'enunciato per assurdo. Partiamo quindi prendendo due numeri coprimi $p,q\in\mathbb{R}$ tali che

$$\frac{p}{q} = \sqrt{2}$$

$$p = \sqrt{2}q$$

$$p^2 = 2q^2$$

Abbiamo quindi tre casi:

p,q dispari: p sarà uguale a

$$p = 2^0 \times \dots = p^2$$

 \boldsymbol{q} sarà uguale a

$$q = 2^0 \times \dots = q^2$$

$$2q^2 = 2^1 \times \dots$$

Perciò, $p^2 \neq 2q^2$.

p dispari, q pari: p sarà uguale a

$$p = 2^0 \times \dots = p^2$$

 \boldsymbol{q} sarà uguale a

$$q = 2^k \times \dots$$

$$q^2 = 2^{2k} \times \dots$$

$$2q^2 = 2^{2k+1} \times \dots$$

Perciò, $p^2 \neq 2q^2$.

p pari, q dispari: p sarà uguale a

$$p = 2^k \times \dots$$
$$p^2 = 2^{2k} \times \dots$$

q sarà uguale a

$$q = 2^0 \times \dots = q^2$$
$$2q^2 = 2^1 \times \dots$$

Perciò, $p^2 \neq 2q^2$.

c.v.d.

Proprietà di \sim ed o

Teorema fondamentale che li lega

Enunciato

Per $x \to x_0$,

$$f \sim q \iff f = g + o(g)$$

Dimostrazione

Lo dimostreremo in entrambe le direzioni. Partiamo da sinistra.

$$f = gh$$

$$f - g = gh - g$$

$$f - g = g(h - 1)$$

$$f - g = o(g)$$

$$f = o(g) + g$$

$$f \sim g$$

$$h \to 1$$

$$H = h - 1 \to 0$$

Partiamo ora da destra.

$$f-g=o(g)$$

$$f-g=gh \qquad h\to 0$$

$$f=g+gh$$

$$f=g(h+1) \qquad H=h+1\to 1$$

$$f\sim g$$

c.v.d.

Proprietà di o

$$o(k g) = k o(g) = o(g)$$

Dimostrazione

$$\begin{split} f &= o(k\,g) \\ f &= g\,kh \\ f &= o(g) \end{split} \qquad h \to 0 :: kh \to 0$$

$$o(g) \pm o(g) = o(g)$$

Dimostrazione per o(g) + o(g) = o(g)

$$o(g) + o(g) = 2 o(g) = o(g)$$

Dimostrazione per o(g) - o(g) = o(g)

$$o(g) - o(g) = o(g) + (-o(g)) = o(g) + o(g) = o(g)$$

f o(g) = o(f g)

Dimostrazione

$$F = o(g)$$

$$F = gh$$

$$f F = f gh$$

$$f o(g) = o(f g)$$

 $(o(g))^n = o(g^n) \quad \forall n \in \mathbb{R}^+$

Dimostrazione

$$G = o(g)$$

$$G = gh$$

$$G^{n} = g^{n}h^{n}$$

$$(o(g))^{n} = o(g^{n})$$

$$H = h^{n} \to 0$$

Proprietà di \sim

Se $f \sim g$ allora $f^n \sim g^n$ dove $n \neq 0$ Dimostrazione

$$f = g h$$

$$f^n = g^n h^n$$

$$H = h^n \to 1$$

Se $f_1\sim g_1$ e $f_2\sim g_2$ allora $f_1\,f_2\sim g_1\,g_2$ e $\frac{f_1}{f_2}\sim \frac{g_1}{g_2}$ Dimostrazione

$$\begin{array}{lll} f_1 \sim g_1 & f_1 = g_1 \, h_1 & h_1 \to 1 \\ f_2 \sim g_2 & f_2 = g_2 \, h_2 & h_2 \to 1 \\ & f_1 \, f_2 = g_1 \, g_2 \, H & H = h_1 \, h_2 \to 1 \\ & \frac{f_1}{f_2} = \frac{g_1}{g_2} \, H & H = \frac{h_1}{h_2} \to 1 \end{array}$$

Numerabilità di $\mathbb Z$ e $\mathbb Q$ e non numerabilità di $\mathbb R$

Numerabilità di \mathbb{Z}

 $\mathbb Z$ è numerabile, in quanto è facilmente possibile metterlo in corrispondenza biunivoca con $\mathbb N.$

Dunque, \mathbb{Z} è numerabile.

Numerabilità di $\mathbb Q$

Cominciamo a scrivere l'insieme $\mathbb Q$ come una tabella.

Possiamo dunque costruire una successione, prendendo gli elementi sulle diagonali a partire dall'angolo in alto a sinistra, evitando i doppioni.

Dunque, anche $\mathbb Q$ è numerabile.

Non numerabilità di $\mathbb R$

Cominciamo scrivendo una sequenza infinita di numeri razionali $\in [0, 1]$.

0.1234... 0.9876... 0.1928...

Se noi definiamo un nuovo numero, prendendo una cifra alla volta in diagonale ed incrementandola di uno, ad esempio 0.293..., questo sarà, per definizione, diverso da ogni altro numero della sequenza. Non è pertanto possibile mettere in corrispondenza biunivoca \mathbb{R} con \mathbb{N} , dunque \mathbb{R} non è numerabile.

Teorema fondamentale delle successioni monotone

Si dimostrano diversi casi:

- 1. una successione monotona e limitata converge;
- 2. una successione monotona e illimitata
 - diverge positivamente, se crescente;
 - diverge negativamente, se decrescente.

Primo caso

Enunciato

Ipotesi

Fisso per comodità a_n monotona crescente

- 1. $a_n \leq a_{n+1}$ (ipotesi di monotonia);
- 2. $\{a_n\} \subset B_r(0)$ con r > 0 (ipotesi di limitatezza).

Tesi

$$\lim_{n \to +\infty} a_n = L$$

Dimostrazione

Essendo a_n limitata avrà un maggiorante in r e quindi avrà il sup. Dimostro che $L = \sup a_n$. Definiamo un intorno ε di sup come $B_{\varepsilon}(S)$: allora $\forall \varepsilon \geqslant 0$, $S - \varepsilon$ non è più né sup né maggiorante, quindi

$$\exists a_{n^*} \mid S - \varepsilon < a_{n^*} \leqslant S$$
$$\forall n > n^*, \ S - \varepsilon < a_{n^*} \leqslant a_n \leqslant S$$
$$a_n \in \mathcal{B}_{\varepsilon}(S)$$

Secondo caso

Enunciato

Consideriamo il caso della crescenza.

Ipotesi

Fisso per comodità a_n monotona crescente

- 1. $a_n \leqslant a_{n+1}$ (ipotesi di monotonia);
- 2. $\nexists B_r(0) \supset \{a_n\} \quad \forall n$ (ipotesi di illimitatezza).

Tesi

$$\lim_{n \to +\infty} a_n = +\infty$$

Dimostrazione

Essendo a_n illimitata

$$\forall B_r(0), a_{n^*} \geqslant r$$

e per la monotonia

$$\forall n > n^*, \, a_{n^*} \leqslant a_n$$

quindi, definitivamente

$$a_n \in B_r(+\infty)$$

e per la definizione di limite

$$\lim_{n \to +\infty} a_n = +\infty$$

Convergenza della successione che definisce e

Definizione

La successione che definisce il numero e è

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

Questa è monotona crescente e limitata, quindi converge per il teorema fondamentale delle successioni monotone.

Verifica della monotonia crescente

Secondo la definizione, $\forall n, a_n \leqslant a_{n+1}$. Dunque

$$\frac{a_n}{a_{n-1}} \geqslant 1$$

Verifichiamo la disequazione:

$$\frac{a_n}{a_{n-1}} = \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{1}{n-1}\right)^{n-1}}$$

$$= \frac{\left(1 + \frac{1}{n}\right)^n}{\left(\frac{n}{n-1}\right)^{n-1}}$$

$$= \left(1 + \frac{1}{n}\right)^n \left(\frac{n-1}{n}\right)^{n-1}$$

$$= \left(1 + \frac{1}{n}\right)^n \left(1 - \frac{1}{n}\right)^n \left(1 - \frac{1}{n}\right)^{-1}$$

$$= \left(1 - \frac{1}{n^2}\right)^n \left(1 - \frac{1}{n}\right)^{-1}$$

$$\geqslant \left(1 - \frac{1}{n}\right) \left(1 - \frac{1}{n}\right)^{-1} = 1$$

Nell'ultimo passaggio, per passare ad una disguaglianza, è stata usata la disguaglianza di Bernoulli. In particolare,

$$x = -\frac{1}{n^2}$$

dunque,

$$\left(1-\frac{1}{n^2}\right)^n\geqslant 1+n\left(-\frac{1}{n^2}\right)$$

Verifica della limitatezza

Innanzitutto, introduciamo una successione ausiliaria $\{b_n\}$ definita come

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right) = a_n \underbrace{\left(1 + \frac{1}{n}\right)}_{>1}$$

Quindi, $\forall n, a_n < b_n$. Dimostriamo quindi che $\{b_n\}$ decresce, da cui segue che $\{a_n\}$ è limitata. La disequazione da verificare è dunque

$$\frac{b_n}{b_{n-1}} \leqslant 1$$

Verifichiamola:

$$\frac{b_n}{b_{n-1}} = \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n-1}\right)^n} \\
= \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(\frac{n}{n-1}\right)^n} \\
= \left(1 + \frac{1}{n}\right)^{n+1} \left(\frac{n-1}{n}\right)^n \\
= \left(1 + \frac{1}{n}\right)^{n+1} \left(1 - \frac{1}{n}\right)^n \\
= \left(1 - \frac{1}{n^2}\right)^n \left(1 + \frac{1}{n}\right) \\
= \left(\frac{n^2 - 1}{n^2}\right)^n \left(1 + \frac{1}{n}\right) \\
= \frac{1 + \frac{1}{n}}{\left(\frac{n^2}{n^2 - 1}\right)^n} \\
= \frac{1 + \frac{1}{n}}{\left(1 + \frac{1}{n^2 - 1}\right)^n} \\
\leqslant \frac{1 + \frac{1}{n}}{1 + \frac{1}{n}} = 1$$

Come nella verifica precedente, è stata usata la disguaglianza di Bernoulli. In particolare,

$$x = \frac{1}{n^2 - 1}$$

dunque,

$$\left(1 + \frac{1}{n^2 - 1}\right)^n \geqslant 1 + n\left(\frac{1}{n^2 - 1}\right) > 1 + \frac{n}{n^2}$$

 $\mathrm{da}\ \mathrm{cui}$

$$\left(1 + \frac{1}{n^2 - 1}\right)^{-n} \leqslant \left(1 + \frac{1}{n}\right)^{-1}$$

Teorema di unicità del limite

Enunciato

Se una successione converge, il valore a cui converge è unico.

Dimostrazione

Sia $\{a_n\}$ una successione convergente ed ipotizziamo, per assurdo, che

$$\lim_{n \to +\infty} a_n = L_1$$
$$\lim_{n \to +\infty} a_n = L_2$$

con $L_1 \neq L_2$.

Per la definizione di limite otteniamo

$$\forall B_r(L_1), \exists M_1 \mid \forall n > M_1, a_n \in B_r(L_1)$$

 $\forall B_r(L_2), \exists M_2 \mid \forall n > M_2, a_n \in B_r(L_2)$

Scegliamo r come

$$r < \frac{\operatorname{dist}(L_1, L_2)}{2}$$
$$< \frac{|L_1 - L_2|}{2}$$

così da avere

$$B_r(L_1) \cap B_r(L_2) = \emptyset$$

Da ciò otteniamo

$$\forall n > \max\{M_1, M_2\}, n \in B_r(L_1) \land n \in B_r(L_2)$$

il che è assurdo, poiché l'intersezione è equivalente all'insieme vuoto.

Teorema di permanenza del segno

Enunciato

Se $\{a_n\}$ è definitivamente positiva e convergente allora il suo limite sarà non negativo.

Dimostrazione

Dalle ipotesi del teorema possiamo ricavare

$$\exists M \mid \forall n > M, \ a_n > 0$$
$$L = \lim_{n \to +\infty} a_n$$

Vogliamo dimostrare che $L\geqslant 0$. Procediamo per assurdo supponendo L<0. Per la definizione di limite,

$$\forall B_r(L), \exists M^* \mid \forall n > M^*, a_n \in B_r(L)$$

Se definiamo r come

$$r < \frac{|L|}{2}$$

stiamo dicendo che la successione è definitivamente negativa da M^* in poi, il che è assurdo poiché contraddice l'ipotesi.

Teorema del confronto

Enunciato

Siano $\{a_n\}, \{b_n\}, \{c_n\}$ tali che definitivamente $a_n \leq b_n \leq c_n$. Inoltre, $\{a_n\}, \{c_n\}$ convergono a L. Allora,

$$L = \lim_{n \to +\infty} b_n$$

Dimostrazione

Dalle ipotesi del teorema possiamo ricavare

$$\exists M_1 \mid \forall n > M_1, \ a_n \leqslant b_n \leqslant c_n$$

$$\forall B_r(L), \exists M_2 \mid \forall n > M_2, \ a_n \in B_r(L) \quad ovvero \quad L - r < a_n < L + r$$

$$\forall B_r(L), \exists M_3 \mid \forall n > M_3, \ c_n \in B_r(L) \quad ovvero \quad L - r < c_n < L + r$$

Chiamiamo $M^* = \max\{M_1, M_2, M_3\}$. Dopo M^* valgono le tre precedenti relazioni. Dunque,

$$\forall n > M^*, L - r < a_n \leq b_n \leq c_n < L + r$$

da cui si deduce che

$$b_n \in \mathcal{B}_r(L)$$

ovvero

$$\lim_{n \to +\infty} b_n = L$$

Teorema di Bolzano

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. A = [a, b] è un intervallo compatto;
- 2. f è continua su A;
- 3. f(a)f(b) < 0.

Tesi

$$\exists x^* \in (a,b) \mid f'(x^*) = 0$$

Dimostrazione

Per fissare le idee,

$$f(a) > 0$$

$$f(b) < 0$$

Procediamo per bisezione: definiamo x_1 uguale al punto medio, ovvero

$$x_1 = \frac{a_0 + b_0}{2}$$

A questo punto, valutiamo $f(x_1)$:

$$f(x_1) = \begin{cases} \text{se } f(x_1) = 0 & \text{ho trovato lo zero} \\ \text{se } f(x_1) > 0 & a_1 = x_1 \land b_1 = b_0 & (\text{studio l'intervallo destro}) \\ \text{se } f(x_1) < 0 & a_1 = a_0 \land b_1 = x_1 & (\text{studio l'intervallo sinistro}) \end{cases}$$

Possiamo quindi proseguire fino a x_k , che sarà definito come

$$x_k = \frac{a_{k-1} + b_{k-1}}{2}$$

da cui

$$f(x_k) = \begin{cases} \text{se } f(x_k) = 0 & \text{ho trovato lo zero} \\ \text{se } f(x_k) > 0 & a_k = x_k \land b_k = b_{k-1} & (\text{studio l'intervallo destro}) \\ \text{se } f(x_k) < 0 & a_k = a_{k-1} \land b_k = x_k & (\text{studio l'intervallo sinistro}) \end{cases}$$

Abbiamo dunque due succesioni:

 a_k monotona crescente b_k monotona decrescente

entrambe limitate, in quanto stanno in [a, b], e convergenti, per il teorema fondamentale delle successioni monotone. Quindi,

$$a_k \to L$$
 $b_k \to M$
 $ma\ L = M\ dato\ che\ dist(a_k, b_k) = \frac{b-a}{2^k} \xrightarrow[k \to +\infty]{} 0$

Prendiamo quindi $x^* = L = M$ e mostriamo che $f(x^*) = 0$:

$$\begin{array}{l} f(a_k) \ converge \ ad \ un \ valore \ \geqslant 0 \\ f(b_k) \ converge \ ad \ un \ valore \ \leqslant 0 \end{array} \} \ \ per \ il \ teorema \ della \ permanenza \ del \ segno$$

Uso la continuità di f: se $x \to x_0$, allora $f(x) \to f(x_0)$. Dunque,

$$\begin{cases} f(a_k) \to f(x^*) \geqslant 0 \\ f(b_k) \to f(x^*) \leqslant 0 \end{cases} f(x^*) = 0$$

Teorema di Darboux

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. A = [a, b] è un intervallo compatto;
- 2. f è continua su A.

Tesi

$$\forall \lambda \mid m < \lambda < M, \exists x_{\lambda} \in A \mid f(x_{\lambda}) = \lambda$$

Dimostrazione

Valendo il teorema di Weirstrass sappiamo che esistono $M,\,m,\,x_M$ e x_m tali che

$$f(x_m) = m \leqslant f(x) \leqslant M = f(x_M)$$

Introduciamo quindi una funzione ausiliaria

$$g(x) = f(x) - \lambda$$

Notare come g ha la stessa regolarità di f, infatti è continua. Inoltre g, studiata nell'intervallo $[x_m, x_M]$ soddisfa il teorema di Bolzano. Dunque,

$$g(x_m) = f(x_m) - \lambda = m - \lambda < 0$$

$$g(x_M) = f(x_M) - \lambda = M - \lambda > 0$$

da cui

$$\exists x_{\lambda} \mid g(x_{\lambda}) = 0$$
$$f(x_{\lambda}) - \lambda = 0$$
$$f(x_{\lambda}) = \lambda$$

Derivate elementari con la definizione

Derivata di x^n

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{(x_0 + h)^n - x_0^n}{h}$$

$$= \lim_{h \to 0} \frac{\sum_{k=0}^n \binom{n}{k} x_0^n h^{n-k} - x_0^n}{h}$$

$$= \lim_{h \to 0} \frac{\sum_{k=0}^{n-1} \binom{n}{k} x_0^n h^{n-k} - x_0^n}{h}$$

$$= \lim_{h \to 0} \sum_{k=0}^{n-1} \binom{n}{k} x_0^n h^{n-k}$$

$$= \lim_{h \to 0} \sum_{k=0}^{n-1} \binom{n}{k} x_0^n h^{n-k-1}$$

$$= \binom{n}{n-1} x_0^{n-1} + o(1) = nx_0^{n-1}$$

Derivata di $\ln x$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{\ln(x_0 + h) - \ln(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \ln\left(\frac{x_0 + h}{x_0}\right)$$

$$= \lim_{h \to 0} \frac{1}{h} \ln\left(1 + \frac{h}{x_0}\right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{h}{x_0} + o\left(\frac{h}{x_0}\right)\right)$$

$$= \frac{1}{x_0} + o\left(\frac{1}{x_0}\right)$$

$$= \frac{1}{x_0} + o(1) = \frac{1}{x_0}$$

Derivata di e^x

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{e^{x_0 + h} - e^{x_0}}{h}$$

$$= \lim_{h \to 0} \frac{e^{x_0}(e^h - 1)}{h}$$

$$= \lim_{h \to 0} e^{x_0} \frac{h + o(h)}{h}$$

$$= e^{x_0} (1 + o(1)) = e^{x_0}$$

Derivabilità implica continuità

Enunciato

Se f è derivabile in un punto x_0 allora f è continua in x_0 .

Dimostrazione

Per la definizione di derivata, se la funzione è derivabile in un punto x_0 significa che

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \quad \exists \text{ finito}$$
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{mh} = 1$$

Dunque, per la definizione di asintotico, con $h \to 0$,

$$f(x_0 + h) - f(x_0) \sim mh$$

$$f(x_0 + h) - f(x_0) = mh + o(mh)$$

$$f(x_0 + h) = f(x_0) + mh + o(mh)$$

Bisogna perciò calcolare $\lim_{h\to 0} f(x_0+h)$. Eseguendo la sostituzione $x=x_0+h$ si ottiene

$$\lim_{h \to 0} f(x) = \lim_{h \to 0} f(x_0) + \underbrace{mh}_{\to 0} + \underbrace{o(mh)}_{\to 0} = f(x_0)$$

c.v.d.

Parte II

Teorema di Fermat

Definizioni necessarie

Si ricordano le seguenti definizioni:

- x_0 è un punto stazionario se $f'(x_0) = 0$;
- x_0 è un punto di ottimo se è un punto di massimo o di minimo locale;
- x_M è un punto di massimo locale se $M=f(x_M)\geqslant f(x),\, \forall x\in A$ dove M è il valore massimo locale;
- x_M è un punto di minimo locale se $m=f(x_m)\leqslant f(x),\, \forall x\in A$ dove m
 è il valore minimo locale.

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $x_0 \in A$;
- 2. f sia derivabile in A;
- 3. x_0 sia un punto di ottimo.

Tesi

$$f'(x_0) = 0$$

ovvero x_0 è un punto stazionario

Dimostrazione

Caso 1 - x_0 è un punto di massimo locale

Per l'ipotesi 1 e l'ipotesi 2, quando h > 0 possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h} \leqslant 0$$

quando h < 0 invece possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h}\geqslant 0$$

quindi sempre per l'ipotesi di derivabilità valgono le seguenti affermazioni

$$\lim_{x \to 0^{+}} \frac{f(x_{0} + h) - f(x_{0})}{h} = L_{1} \leq 0 \text{ dove } L_{1} \exists \land L_{1} \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_{0} + h) - f(x_{0})}{h} = L_{2} \geq 0 \text{ dove } L_{2} \exists \land L_{2} \in \mathbb{R}$$

$$L_{1} = L_{2} = f'(x_{0})$$

e quindi

$$0 \leqslant f'(x_0) \leqslant 0$$

da cui

$$f'(x_0) = 0$$

c.v.d.

Caso 2 - x_0 è un punto di minimo locale

Per l'ipotesi 1 e l'ipotesi 2, quando h > 0 possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h}\geqslant 0$$

quando h < 0 invece possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h} \leqslant 0$$

quindi sempre per l'ipotesi di derivabilità valgono le seguenti affermazioni

$$\lim_{x \to 0^{+}} \frac{f(x_{0} + h) - f(x_{0})}{h} = L_{1} \geqslant 0 \text{ dove } L_{1} \exists \land L_{1} \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_{0} + h) - f(x_{0})}{h} = L_{2} \leqslant 0 \text{ dove } L_{2} \exists \land L_{2} \in \mathbb{R}$$

$$L_{1} = L_{2} = f'(x_{0})$$

e quindi

$$0 \leqslant f'(x_0) \leqslant 0$$

da cui

$$f'(x_0) = 0$$

c.v.d.

Teorema di Rolle

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. f è continua su A e derivabile su (a, b);
- 2. f(a) = f(b).

Tesi

$$\exists x_0 \in (a,b) \mid f'(x_0) = 0$$

Dimostrazione

Caso 1 - f(x) è una funzione costante

Il teorema è dimostrato, infatti $\forall x \in (a, b), f'(x) = 0.$

Caso 2 - f(x) non è una funzione costante

Data la continuità di f(x) su A e essendo A un intervallo chiuso e limitato, vale il **teorema di** Weierstrass.

$$\exists M, m \mid f(x_m) = m \leqslant f(x) \leqslant f(x_M) = M \quad \forall x \in A$$

e almeno uno tra x_m e x_M è interno ad (a,b), dato che $m \neq M$, poiché f non è costante.

Visto che almeno uno dei due punti di ottimo è interno all'intervallo, posso applicare il **teorema di Fermat**, da cui ricavo che il punto di ottimo interno è un punto stazionario e quindi:

$$\exists x_0 \in (a,b) \mid f'(x_0) = 0$$

c.v.d.

Teorema di Lagrange

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che f sia continua su A e derivabile su (a,b).

Tesi

$$\exists x_0 \in (a,b) \mid f'(x_0) = \frac{f(b) - f(a)}{b - a} = m$$

dove m è il coefficiente angolare della retta passante per a e b.

Dimostrazione

Introduco una funzione ausiliaria g(x) così definita:

$$g(x) = f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right]$$

Notiamo che g ha la regolarità di f su A:

- 1. è continua su A;
- 2. derivabile su (a, b).

Notiamo anche che:

$$g(a) = f(a) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (a - a) \right]$$

= $f(a) - [f(a) + 0]$
= $f(a) - f(a) = 0$

$$g(b) = f(b) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (b - a) \right]$$

= $f(b) - [f(a) + f(b) - f(a)]$
= $f(b) - f(b) = 0$

Da cui g(a) = g(b).

Posso quindi applicare il **teorema di Rolle** su A:

$$\exists x_0 \in (a,b) \mid g'(x_0) = 0$$

Calcolo quindi g'(x):

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$
$$g'(x_0) = 0$$
$$f'(x_0) - \frac{f(b) - f(a)}{b - a} = 0$$
$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Test di monotonia di f su un intervallo aperto

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che f sia derivabile su (a, b).

Tesi

$$f'(x) > 0 \quad \forall x \in A \Rightarrow f$$

è monotona strettamente crescente su A.

$$f'(x) < 0 \quad \forall x \in A \Rightarrow f$$

è monotona strettamente decrescente su A.

Dimostrazione

Caso 1 -
$$f'(x) > 0 \quad \forall x \in A$$

Siano $x_1, x_2 \in A \mid a < x_1 < x_2 < b$. Seleziono un sottointervallo chiuso interno ad A. Su $[x_1, x_2]$ applico il **teorema di Lagrange** a f quindi:

$$\exists x_0 \in (x_1, x_2) \mid f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

essendo $f'(x_0) > 0$ e anche $x_2 - x_1 > 0$ ne segue che:

$$\forall x_1 < x_2 \Rightarrow f(x_2) > f(x_1)$$

quindi f(x) è monotona strettamente crescente, c.v.d.

Caso 2 -
$$f'(x) < 0 \quad \forall x \in A$$

Siano $x_1, x_2 \in A \mid a < x_1 < x_2 < b$. Seleziono un sottointervallo chiuso interno ad A. Su $[x_1, x_2]$ applico il **teorema di Lagrange** a f quindi:

$$\exists x_0 \in (x_1, x_2) \mid f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

essendo $f'(x_0) < 0$ e $x_2 - x_1 > 0$ ne segue che:

$$\forall x_1 < x_2 \Rightarrow f(x_2) < f(x_1)$$

quindi f(x) è monotona strettamente decrescente, c.v.d.

Teorema di Cauchy

Enunciato

Ipotesi

Date:

$$f, g: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$
 $y = g(x)$

Supponendo inoltre f, g continue in A e derivabili in (a, b).

Tesi

$$\exists x^* \in (a,b) \mid \frac{f'(x^*)}{g'(x^*)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Dimostrazione

Introduco una funzione ausiliaria h(x) così definita:

$$h(x) = [f(b) - f(a)] g(x) - [g(b) - g(a)] f(x)$$

Notiamo che h ha la regolarità di f e di g su A:

- 1. è continua su A;
- 2. derivabile su (a, b).

Verifico se su h nell'intervallo [a, b] vale il **teorema di Rolle**:

$$h(a) = [f(b) - f(a)] \ g(a) - [g(b) - g(a)] \ f(a)$$

$$h(a) = f(b) g(a) - f(a) g(a) - f(a) g(b) + f(a) g(a)$$

$$h(a) = f(b) g(a) - f(a) g(b)$$

$$h(b) = [f(b) - f(a)] \ g(b) - [g(b) - g(a)] \ f(b)$$

$$h(b) = f(b) \ g(b) - f(a) \ g(b) - f(b) \ g(b) + f(b) \ g(a)$$

$$h(b) = f(b) \ g(a) - f(a) \ g(b)$$

h(a) = h(b), quindi posso applicare il **teorema di Rolle**, da cui si deriva che h ha un punto stazionario x^*

$$h'(x) = [f(b) - f(a)] g'(x) - [g(b) - g(a)] f'(x)$$

 $h'(x^*) = 0$

E quindi infine

$$h'(x^*) = 0$$

$$[f(b) - f(a)] \ g'(x^*) - [g(b) - g(a)] \ f'(x^*) = 0$$

$$[f(b) - f(a)] \ g'(x^*) = [g(b) - g(a)] \ f'(x^*)$$

$$\frac{f'(x^*)}{g'(x^*)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Teorema di de l'Hôpital

Enunciato

Ipotesi

Date:

$$f,g:A=[a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto y = f(x)$$

$$y = g(x)$$

Supponendo inoltre:

- 1. f, g continue in A e derivabili in (a, b);
- 2. f, g infinitesime in $x_0 \in (a, b)$.

Tesi

Se
$$l = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
, allora $l = \lim_{x \to x_0} \frac{f(x)}{g(x)}$

Dimostrazione

La dimostrazione avviene direttamente utilizzando il teorema di Cauchy:

$$\exists \ \vartheta \in (a,b) \Rightarrow \vartheta \in (x_0,x)$$

Aggiungo $f(x_0)$ che ricordiamo essere infinitesimo per ipotesi, poi considerando l'intervallo (x_0, x) :

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\vartheta)}{g'(\vartheta)}$$

Da cui:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(\vartheta)}{g'(\vartheta)} = l$$

Teorema del resto secondo Peano

Definizioni necessarie

Si ricorda che il **Polinomio di Taylor** $(T_n^f(x))$ è così definito:

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $f \in C^n(A)$;
- 2. $x_0 \in A$.

Tesi

$$F(n): f(x) - T_n^f(x) = o((x - x_0)^n)$$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione.

Passo Base: F(1)

Dimostriamo l'enunciato per n = 1:

$$f \in C^1(A)$$

$$f(x) - [f(x_0) + f'(x_0)(x - x_0)] \stackrel{?}{=} o((x - x_0))$$

Per la definizione di o-piccolo una funzione (f(x)) è o-piccolo di un altra (g(x)) quando il $\lim_{x\to x_0} \frac{f(x)}{g(x)} \to 0$

$$\lim_{x \to x_0} \frac{f(x) - [f(x_0) + f'(x_0)(x - x_0)]}{(x - x_0)} \stackrel{?}{\to} 0$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \stackrel{?}{\to} 0$$

$$f'(x_0) - f'(x_0) \to 0$$

Quindi F(1) è vera.

Ipotesi induttiva: F(n-1)

Assumiamo per ipotesi induttiva vera la seguente affermazione:

$$\forall\,g\in C^{n-1}(A)$$

$$g(x) - T_n^g(x) = o((x - x_0)^{n-1})$$

Che possiamo riscrivere come:

$$\lim_{x \to x_0} \frac{g(x) - T_n^g(x)}{(x - x_0)^{n-1}} \to 0$$

Verifica per F(n)

Per verificare la tesi, mi devo anche qui rifare alla definizione di o-piccolo:

$$B_{\varepsilon}(0)$$

$$\lim_{x \to x_0} \frac{f(x) - T_n^f(x)}{(x - x_0)^n} \stackrel{?}{\to} 0$$

Questa è però una forma di indeterminazione $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ per risolverla, le applico il **teorema de l'Hospital**

$$\lim_{x \to x_0} \frac{\left[f(x) - T_n^f(x) \right]'}{\left[(x - x_0)^n \right]'}$$

$$\lim_{x \to x_0} \frac{f'(x) - [T_n^f(x)]'}{n(x - x_0)^{n-1}}$$

Calcolo $\left[T_n^f(x)\right]'$ a parte:

$$[T_n^f(x)]' = f'(x_0) + \frac{f''(x_0)}{2!} 2(x - x_0) + \frac{f'''(x_0)}{3!} 3(x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!} n(x - x_0)^n$$

$$= f'(x_0) + f''(x_0)(x - x_0) + \frac{f'''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^n(x_0)}{(n-1)!} (x - x_0)^{n-1}$$

$$= T_{n-1}^{f'}(x)$$

Infatti se $f \in C^n(A) \Rightarrow f' \in C^{n-1}$. Quindi:

$$\lim_{x \to x_0} \frac{f'(x) - T_{n-1}^{f'}(x)}{n(x - x_0)^{n-1}}$$

Notiamo che $f' \in C^{n-1}$ e che $g \in C^{n-1}$ poniamo quindig = f'. Da cui abbiamo:

$$\lim_{x \to x_0} \frac{g(x) - T_{n-1}^g(x)}{n(x - x_0)^{n-1}}$$

Per ipotesi di induzione sappiamo che:

$$\lim_{x \to x_0} \frac{g(x) - T_n^g(x)}{(x - x_0)^{n-1}} \to 0$$

quindi anche:

$$\lim_{x \to x_0} \frac{g(x) - T_{n-1}^g(x)}{n(x - x_0)^{n-1}} \to 0$$

Teorema del resto secondo Lagrange

Definizioni necessarie

Si ricorda che il **polinomio di Taylor** $(T_n^f(x))$ è così definito:

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $f \in C^{n+1}(A)$;
- 2. $x_0 \in A$.

Tesi

$$\exists \, \vartheta \in (x_0, x) \mid f(x) - T_n^f(x) = \frac{f^{n+1}(\vartheta)}{(n+1)!} (x - x_0)^{n+1}$$

Dimostrazione

Considero due **funzioni ausiliarie** g(x), w(x) così definite:

$$g(x) = f(x) - T_n(x) \qquad g(x) \in C^{n+1}(A)$$

$$w(x) = (x - x_0)^{n+1}$$
 $w(x) \in C^{\infty}(A)$

Calcolo $g(x_0), g'(x_0), \ldots, g^{(n+1)}(x_0)$:

$$g(x_0) = f(x_0) - \left[\frac{f(x_0)}{0!} 1 + \frac{f'(x_0)}{1!} (x_0 - x_0) + \frac{f''(x_0)}{2!} (x_0 - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x_0 - x_0)^n \right] = 0$$

$$g'(x_0) = f'(x_0) - \left[\frac{f'(x_0)}{1!} 1 + \frac{f''(x_0)}{2!} 2(x_0 - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} n(x_0 - x_0)^{n-1} \right] = 0$$

$$g''(x_0) = 0$$

$$\dots$$

$$g^{(n)}(x_0) = 0$$

$$g^{(n)}(x_0) = 0$$

$$g^{(n+1)}(x_0) = f^{(n+1)}(x_0) - 0 = f^{(n+1)}(x_0)$$

Calcolo $w(x_0), w'(x_0), \ldots, w^{(n+1)}(x_0)$:

$$w(x_0) = (x_0 - x_0)^{n+1} = 0$$

$$w'(x_0) = (n+1)(x_0 - x_0)^n = 0$$

$$w'(x_0) = (n+1)(n)(x_0 - x_0)^{n-1} = 0$$

$$\cdots$$

$$w^{(n)}(x_0) = [(n+1)!](x_0 - x_0) = 0$$

$$w^{(n+1)}(x_0) = [(n+1)!]1 = (n+1)!$$

Toniamo ora su ciò che dobbiamo dimostrare:

$$\exists \, \vartheta \in (x_0, x) \mid f(x) - T_n^f(x) = \frac{f^{n+1}(\vartheta)}{(n+1)!} (x - x_0)^{n+1}$$
$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{f^{n+1}(\vartheta)}{(n+1)!}$$

Notiamo che $\frac{f(x)-T_n^f(x)}{(x-x_0)^{n+1}}=\frac{g(x)}{w(x)}$ quindi utilizzando il **teorema di Cauchy**:

$$\frac{g(x)}{w(x)} = \frac{g(x) - g(x_0)}{w(x) - w(x_0)}$$

$$\exists x_1 \in (x_0, x) = \frac{g'(x_1)}{w'(x_1)} = \frac{g'(x_1) - g'(x_0)}{w'(x_1) - w'(x_0)}$$

$$\exists x_2 \in (x_0, x_1) = \frac{g''(x_2)}{w''(x_2)} = \frac{g''(x_2) - g''(x_0)}{w''(x_2) - w''(x_0)}$$

$$\exists x_3 \in (x_0, x_2) = \frac{g'''(x_3)}{w'''(x_3)} = \dots$$

$$\exists \vartheta \in (x_0, x_n) = \frac{g^{(n+1)}(\vartheta)}{w^{(n+1)}(\vartheta)} \quad \text{Iterando } n \text{ volte}$$

Notiamo anche che possiamo fare questo perché da come abbiamo dimostrato prima calcolandolo, $g(x_0)$, $g'(x_0)$, ..., $g^{(n)}(x_0)$ e $w(x_0)$, $w'(x_0)$, ..., $w^{(n)}(x_0)$ sono infinitesimi.

Quindi le derivate (n+1)-esime dal precedente calcolo di g(x)ew(x) sono:

$$\frac{g^{(n+1)}(\vartheta)}{w^{(n+1)}(\vartheta)} = \frac{f^{n+1}(\vartheta)}{(n+1)!}$$

Quindi per come abbiamo definito g(x) e w(x):

$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{g(x)}{w(x)} = \frac{g^{(n+1)}(\vartheta)}{w^{(n+1)}(\vartheta)} = \frac{f^{n+1}(\vartheta)}{(n+1)!}$$

Da cui:

$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{f^{n+1}(\vartheta)}{(n+1)!}$$
$$f(x) - T_n^f(x) = \frac{f^{n+1}(\vartheta)}{(n+1)!} (x - x_0)^{n+1}$$

Primo teorema fondamentale del calcolo integrale

Enunciato

Ipotesi

Sia f(t) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $t \longmapsto y = f(t).$

Supponiamo inoltre che:

- 1. G sia primitiva di f su (a, b);
- 2. f(t) sia Riemann-integrabile su (a, b)

Tesi

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{i=1}^n f(c_i)(t_i - t_{i-1}) = G(b) - G(a)$$

Dimostrazione

Posti
$$a = t_0 e b = t_n$$

$$\begin{split} G(b) - G(a) &= G(t_0) - G(t_n) \\ &= G(t_n) - G(t_{n-1}) + G(t_{n-1}) + \ldots - G(t_i) + G(t_i) + \ldots - G(t_1) + G(t_1) - G(t_0) \\ &= \sum_{i=1}^{n} (G(t_i) - G(t_{i-1})) \end{split}$$

AGpossiamo applicare il **teorema di Lagrange** su $\left[t_{i-1},t_{i}\right]$

$$\exists \vartheta_i \in (t_{i-1}, t_i) \mid G'(\vartheta_i) = \frac{G(t_i) - G(t_{i-1})}{t_i - t_{i-1}}$$
$$= \sum_{i=1}^n G'(\vartheta_i)(t_i - t_{i-1})$$
$$= \sum_{i=1}^n f(\vartheta_i)(t_i - t_{i-1}) \longrightarrow S$$

Con ${\cal S}$ output cumulativo. Si tratta quindi di una somma di Riemann. c.v.d.

Teorema valor medio integrale

Enunciato

Ipotesi

Sia f(x) una funzione limitata tale che

$$f:A=[a,b] \longrightarrow \mathbb{R}$$

$$t \longmapsto y=f(t)$$

Supponiamo inoltre che:

- 1. $m = \min f \sup [a, b];$
- 2. $M = \max f \text{ su } [a, b]$.

Definizione

$$\frac{1}{b-a} \int_{a}^{b} f(t) \, \mathrm{d}t$$

purché f sia Riemann-integrabile.

Proprietà 1

$$m \leqslant VMI \leqslant M$$

Dimostrazione

$$m \leqslant f(t) \leqslant M \qquad \forall t \in [a, b]$$

Integrale definito:

$$\int_{a}^{b} m \, \mathrm{d}t \leqslant \int_{a}^{b} f(t) \, \mathrm{d}t \leqslant \int_{a}^{b} M \, \mathrm{d}t$$

Per la monotonia:

$$m(b-a) \leqslant \int_{a}^{b} f(t) dt \leqslant M(b-a)$$

 $m \leqslant \frac{1}{b-a} \int_{a}^{b} f(t) dt \leqslant M$

Proprietà 2

Se
$$f \in C^0([a,b])$$
 allora:

$$\exists \, \vartheta \in [a,b] \mid f(\vartheta) = VMI$$

Dimostrazione

$$m\leqslant VMI\leqslant M$$

Secondo teorema fondamentale del calcolo integrale

Definizioni necessarie

Si ricorda che è detta funzione integrale la funzione G:

$$G: [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto G(x) = \int_a^x f(t) \, \mathrm{d}t$$

Prima Forma

Enunciato

Ipotesi

Data una funzione limitata e Riemann-integrabile:

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $t \longmapsto y = f(t)$

Tesi

G è una funzione **continua**.

Dimostrazione

Voglio dimostrare che

$$\forall x_0 \in [a, b], G(x_0) = \lim_{x \to x_0} G(x)$$

Caso 1 - $a < x_0 < x < b$

Consideriamo quindi il limite da destra:

$$\lim_{x \to x_0^+} G(x) = \lim_{x \to x_0^+} \int_a^x f(t) dt$$

$$= \lim_{x \to x_0^+} \left[\int_a^{x_0} f(t) dt + \int_{x_0}^x f(t) dt \right]$$

$$= \lim_{x \to x_0^+} \left[G(x_0) + \int_{x_0}^x f(t) dt \right]$$

Se $\lim_{x\to x_0^+} \int_{x_0}^x f(t) dt$ fosse infinitesimo allora:

$$\lim_{x \to x_0^+} G(x) = G(x_0)$$

Passiamo quindi a dimostrare che $\lim_{x\to x_0^+} \int_{x_0}^x f(t) dt$ è infinitesimo:

$$m \leqslant f(t) \leqslant M$$
 accumulo tra $x_0 \in x$
$$m(x - x_0) \leqslant \int_{x_0}^x f(t) dt \leqslant M(x - x_0)$$

L'integrale definito è infinitesimo perché limitato tra quantità che tendono a 0.

Caso 2 - $a < x < x_0 < b$

Consideriamo quindi il limite da sinistra:

$$\lim_{x \to x_0^-} G(x) = \lim_{x \to x_0^-} \int_a^x f(t) dt$$

$$= \lim_{x \to x_0^-} \left[\int_a^{x_0} f(t) dt - \int_x^{x_0} f(t) dt \right]$$

$$= \lim_{x \to x_0^-} \left[G(x_0) - \int_x^{x_0} f(t) dt \right]$$

Se $\lim_{x\to x_0^-}-\int_x^{x_0}f(t)\,\mathrm{d}t$ fosse infinitesimo allora:

$$\lim_{x \to x_0^-} G(x) = G(x_0)$$

Passiamo quindi a dimostrare che $\lim_{x\to x_0^-} -\int_x^{x_0} f(t) dt$ è infinitesimo:

$$m \leqslant f(t) \leqslant M$$
 accumulo tra $x \in x_0$
 $m(x_0 - x) \leqslant -\int_x^{x_0} f(t) dt \leqslant M(x_0 - x)$

L'integrale definito è infinitesimo perché limitato tra quantità che tendono a 0.

Nel caso 1 abbiamo dimostrato che $\lim_{x\to x_0^+} G(x)=G(x_0)$ e caso 2 che $\lim_{x\to x_0^-} G(x)=G(x_0)$ quindi abbiamo:

$$\lim_{x \to x_0^-} G(x) = G(x_0) = \lim_{x \to x_0^+} G(x) \qquad \forall x_0 \in [a, b]$$

Che dimostra la continuità di G(x), c.v.d.

Seconda Forma

Enunciato

Ipotesi

Data una funzione continua:

$$f: A = [a, b] \longrightarrow \mathbb{R}$$
$$t \longmapsto y = f(t)$$

Tesi

G è una funzione **derivabile**.

$$G \in C^1([a,b])$$
 e $G'(x) = f(x)$ $\forall x \in [a,b]$

Dimostrazione

Sia $x_0 \in (a, b)$, vogliamo dimostrare che G è derivabile in x_0 .

Caso 1 - h > 0

$$\frac{G(x_0+h)-G(x_0)}{h} = \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0} f(t)dt \right]$$

$$= \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt \qquad \qquad \text{VMI di } f \text{ su } [x_0,x_0+h]$$

$$\exists \vartheta \in [x_0,x_0+h] \mid = f(\vartheta) \longrightarrow f(x_0) \qquad \qquad \text{per la seconda proprietà del VMI}$$

$$\cot h \to 0^+$$

Dimostrando che non solo G(x) è derivabile su (a,b) data l'arbitrarietà di x_0 , ma anche che la derivata di G(x) è f(x). c.v.d.

Caso 2 - h < 0

$$\begin{split} \frac{G(x_0+h)-G(x_0)}{h} &= \frac{1}{h} \left[\int_a^{x_0+h} f(t) \, \mathrm{d}t - \int_a^{x_0} f(t) \, \mathrm{d}t \right] \\ &= \frac{1}{h} \left[\int_a^{x_0+h} f(t) \, \mathrm{d}t - \int_a^{x_0+h} f(t) \, \mathrm{d}t - \int_{x_0+h}^{x_0} f(t) \, \mathrm{d}t \right] \\ &= \frac{1}{-h} \int_{x_0+h}^{x_0} f(t) \, \mathrm{d}t \qquad \qquad \text{VMI di } f \text{ su } [x_0+h,x_0] \\ &\exists \, \vartheta \in [x_0+h,x_0] \mid &= f(\vartheta) \longrightarrow f(x_0) \qquad \qquad \text{per la seconda proprietà del VMI} \\ &= \cos h \to 0^- \end{split}$$

Dimostrando che non solo G(x) è derivabile su (a,b) data l'arbitrarietà di x_0 , ma anche che la derivata di G(x) è f(x), c.v.d.

Condizione necessaria per la convergenza di una serie

Definizioni necessarie

• Data la successione:

$$a_n: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto a_n$

Si dice **serie**:

$$\sum_{n=0}^{+\infty} a_n$$

- La successione a_n è detta argomento della serie;
- La successione delle somme parziali è così definita:

$$S_N = \sum_{n=0}^{N} a_n$$

• Il carattere (o la natura) della serie è il carattere (o la natura) della sua successione delle somme parziali.

Enunciato

Ipotesi

$$\sum_{n=0}^{+\infty} a_n \quad \text{converge}$$

Tesi

$$\lim_{n \to +\infty} a_n \to 0$$

Dimostrazione

Se $\sum_{n=0}^{+\infty} a_n$ converge allora:

$$L = \lim_{N \to +\infty} S_N$$

Osservazione

Posso definire S_N ricorsivamente:

$$\begin{cases} S_{N+1} = S_N + a_{N+1} \\ S_0 = a_0 \end{cases}$$

Noto che anche:

$$\lim_{N \to +\infty} S_{N+1} = L$$
$$\lim_{N \to +\infty} S_N = L$$

Essendo i due limiti finiti posso fare il limite della loro differenza:

$$\lim_{N \to +\infty} \left(S_{N+1} - S_N \right) = L - L = 0$$

Dalla definizione ricorsiva che ho dato di \mathcal{S}_N posso riscrivere il tutto come:

$$\lim_{N \to +\infty} \left(S_{N+1} - S_N \right) = \lim_{N \to +\infty} \left(S_N + a_{N+1} - S_N \right) = \lim_{N \to +\infty} a_{N+1}$$

Da quanto detto sopra sappiamo che $\lim_{N\to +\infty} \left(S_{N+1}-S_{N}\right)=0,$ quindi:

$$\lim_{N \to +\infty} \left(S_{N+1} - S_N \right) = \lim_{N \to +\infty} a_{N+1} = 0$$

Criterio del rapporto per la convergenza delle serie a termini positivi

Enunciato

Sia $\sum a_n$ una serie a termini positivi $a_n > 0 \ \forall n$. Se

$$\frac{a_{n+1}}{a_n} \longrightarrow l \quad \text{per } n \to +\infty$$

Allora

$$l \begin{cases} \text{diverge} & \text{se } l > 1 \\ \text{il criterio non si applica} & \text{se } l = 1 \\ \text{converge} & \text{se } 0 \leqslant l < 1 \end{cases}$$

Dimostrazione

Caso 1 - $0 \le l < 1$

Introduco una successione ausiliaria

$$b_n = \frac{a_{n+1}}{a_n}$$

$$\lim_{n \to +\infty} b_n = l \qquad \text{e so che } l < 1$$

Per la definizione di limite

$$\forall B_{\varepsilon}(l) \exists M \mid \forall n > M \quad b_n \in B_{\varepsilon}(l)$$

Disuguaglianza ricorsiva che vale definitivamente

Scegliamo ε in modo che $\varepsilon < 1 - l$ da M in poi. Dunque,

$$\frac{a_{n+1}}{a_n} = b_n < l + \varepsilon$$

$$a_{n+1} < a_n(l+\varepsilon)$$

$$a_{M+2} < a_{M+1}(l+\varepsilon)$$

$$a_{M+3} < a_{M+2}(l+\varepsilon) < a_{M+1}(l+\varepsilon)^2$$

$$a_{M+4} < a_{M+3}(l+\varepsilon) < a_{M+1}(l+\varepsilon)^3$$
...
$$a_{M+n+1} < a_{M+1}(l+\varepsilon)^n$$

Ho maggiorato definitivamente la serie di partenza con una serie

$$\sum_{n=1}^{+\infty} a_{M+1} (l+\varepsilon)^n$$

Applico il criterio del confronto con la geometrica con ragione

$$-1 < q = l + \varepsilon < 1$$

che converge, quindi anche la serie di partenza $\sum a_n$ converge, c.v.d.

Caso 2 - l > 1

Definiamo una successione ausiliaria \boldsymbol{b}_n come

$$b_n = \frac{a_{n+1}}{a_n}$$

Sappiamo inoltre che

$$\lim_{n \to +\infty} b_n = l > 1$$

Da ciò si può dedurre che

$$\forall n \quad a_{n+1} > a_n$$

Da questo possiamo stabilire che la successione b_n è monotona strettamente crescente. Ma, poiché la successione b_n è stata definita in funzione della successione a_n , significa che anche questa ultima è monotona strettamente crescente. In tal caso, significa che la serie ad essa associata $\sum a_n$ diverge a $+\infty$, c.v.d.

Criterio del confronto per la convergenza di una serie a termini positivi

Enunciato

Ipotesi

Siano

$$\sum_{n=\dots}^{+\infty} a_n \quad e \quad \sum_{n=\dots}^{+\infty} b_n$$

tali che:

1. $\exists M_1 \mid \forall n \ge M_1, a_n > 0 \land b_n > 0$;

2. $\exists M_2 \mid \forall n \geqslant M_2, a_n \leqslant b_n$.

Tesi

1. Se $\sum_{n=\dots}^{+\infty} a_n$ diverge, allora anche $\sum_{n=\dots}^{+\infty} b_n$ diverge;

2. Se $\sum_{n=\dots}^{+\infty} b_n$ converge, allora anche $\sum_{n=\dots}^{+\infty} a_n$ converge.

Dimostrazione

Parte 1 - Divergenza

Siano $A_N = \sum_{n=...}^N a_n$ e $B_N = \sum_{n=...}^N b_n$. Se $\sum_{n=...}^{+\infty} a_n$ diverge significa che $\lim_{N\to+\infty} A_N = +\infty$ quindi per definizione di limite:

$$\forall B_r(+\infty) \exists R \mid \forall N > R \quad A_N > R$$

Ricordiamo che:

$$a_n \leqslant b_n \qquad (\forall n > M_2)$$

Con le sommatorie:

$$\sum_{n=\max(M_1,M_2)}^{+\infty} a_n \leqslant \sum_{n=\max(M_1,M_2)}^{+\infty} b_n$$

$$A_N \leqslant B_N$$

Da cui:

$$\lim_{N \to +\infty} B_N = +\infty$$

$$B_N > R \Rightarrow \text{ Quindi } \sum b_n \text{diverge a} + \infty$$

c.v.d.

Parte 2 - Convergenza

Se $\sum_{n=\dots}^{+\infty}b_n$ converge significa che $\lim_{N\to+\infty}B_N=L$ ovvero per definizoone di limite:

$$\forall B_r(L) \exists M_3 \mid \forall n > M_3 \quad B_N \in B_r(L) \quad L - r \leqslant B_N \leqslant L + r$$

 $A_N \leqslant B_N$ inoltre A_N, B_N sono monotone, infatti:

$$A_{N+1} = A_N + a_{N+1} e a_{N+1} > 0$$
 perciò $A_{N+1} > A_N$

 A_N è strettamente crescente e limitata (dal valore di L).

$$A_N \leqslant B_N \leqslant L$$

quindi per il teorema fondamentale delle successioni monotone ${\cal A}_N$ converge, c.v.d.

Criterio della radice per la convergenza delle serie a termini positivi

Enunciato

Sia $\sum a_n$ una serie a termini positivi $a_n > 0 \ \forall n$. Se

$$\sqrt[n]{a_n} \to l$$
 per $n \to +\infty$

Allora

$$l \begin{cases} \text{diverge} & \text{se } l > 1 \\ \text{il criterio non si applica} & \text{se } l = 1 \\ \text{converge} & \text{se } 0 \leqslant l < 1 \end{cases}$$

Dimostrazione

Caso 1 - $0 \le l < 1$

Introduco una successione ausiliaria

$$b_n = \sqrt[n]{a_n}$$

$$\lim_{n \to +\infty} b_n = l \qquad \text{e so che } l < 1$$

Per la definizione di limite

$$\forall B_{\varepsilon}(l) \exists M \mid \forall n > M \quad b_n \in B_{\varepsilon}(l)$$

Scegliamo ε in modo che $\varepsilon < 1 - l$ da M in poi. Dunque,

$$l - \varepsilon < b_n < l + \varepsilon \qquad (< 1)$$

$$\sqrt[n]{a_n} < l + \varepsilon \qquad (< 1)$$

$$a_n < (l + \varepsilon)^n$$

Applico il **criterio del confronto** tra $\sum a_n$ e $\sum (l+\varepsilon)^n$, dove $\sum (l+\varepsilon)^n$ è la geometrica di ragione $q=l+\varepsilon$, con -1< q<1. Essendo quest'ultima convergente, possiamo concludere che anche la serie di partenza **converge**.

Caso 2 - l > 1

Definiamo una successione ausiliaria b_n come

$$b_n = \sqrt[n]{a_n}$$

Sappiamo inoltre che

$$\lim_{n \to +\infty} b_n = l > 1$$

Da ciò possiamo dedurre che

$$\forall n \quad \sqrt[n]{a_n} = 1 + k$$

con k > 0.

Questo ci permette di dividere la serie di partenza in una somma di due serie distinte:

$$\sum a_n = \sum 1 + \sum k$$

Ma, poiché $\sum 1$ diverge a $+\infty$ e $\sum k > 0$, perciò sicuramente non diverge a $-\infty$, sicuramente la serie risultante dalla loro somma, ovvero la serie di partenza, diverge a $+\infty$, c.v.d.

Giustificazione della formula di Eulero con l'esponenziale complesso

Definizioni necessarie

• Si ricorda che il **Polinomio di Taylor** $(T_n^f(x))$ è così definito:

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

• Data la funzione:

$$f_k: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f_k(x)$

Si dice serie di funzioni:

$$\sum_{k=0}^{+\infty} f_k(x)$$

Un esempio di serie di funzioni è il Polinomio di Taylor esteso $a + \infty$.

- La funzione $f_k(x)$ è detta argomento della serie.
- La successione delle somme parziali è così definita:

$$S_N(x) = \sum_{n=0}^{N} f_k(x)$$

- Il carattere (o la natura) della serie di funzioni è il carattere (o la natura) della sua successione delle somme parziali.
- Se:

$$\forall x^* \in [a, b]$$
 $\lim_{N \to +\infty} S_N(x^*) = L(x^*)$

La serie di funzioni converge puntualmente in tutto A = [a, b].

Enunciato

Ridefinendo le funzioni e^x , sin x, cos x nei complessi è possibile verificare la **formula di Eulero**:

$$e^{i\vartheta} = \cos\vartheta + i\sin\vartheta$$

Dimostrazione

Parte 1 - e^z

Consideriamo la seguente serie di funzioni:

$$\sum_{k=-\infty}^{+\infty} \frac{1}{k!} \times x^k \qquad x \in \mathbb{R}$$

Questo è lo sviluppo di MacLaurin di e^x esteso all'infinito. Portiamo ora la serie nei complessi:

$$\sum_{k=-\infty}^{+\infty} \frac{1}{k!} \times z^k \qquad x \in \mathbb{C}$$

Verifichiamo se:

- converge puntualmente in $z^* \quad \forall z^* \in \mathbb{C}$;
- converge assolutamente puntualmente in z^* $\forall z^* \in \mathbb{C}$.

Sappiamo che se converge assolutamente ne seguirà la convergenza semplice. Quindi passiamo a dimostrare che:

$$\sum_{k=\dots}^{+\infty} \left| \frac{1}{k!} \times z^k \right| = \sum_{k=\dots}^{+\infty} A_k$$

Applico il **criterio del rapporto**:

$$\lim_{k \to +\infty} \frac{A_{k+1}}{A_k} = \lim_{k \to +\infty} \frac{|(z^*)^{k+1}|}{(k+1)k!} \times \frac{k!}{|(z^*)^k|}$$
$$= \lim_{k \to +\infty} \frac{z^*}{k+1} = 0$$

Quindi $\sum_{k=...}^{+\infty} A_k$ converge puntualmente $(\forall z^* \in \mathbb{C})$ e la serie $\sum_{k=...}^{+\infty} \frac{1}{k!} \times z^k$ converge assolutamente e semplicemente puntualmente.

Questa serie corrisponde quindi a una funzione di variabile complessa f(z).

Definiamo così la funzione:

$$e^z \stackrel{df}{=} \sum_{k=0}^{+\infty} \frac{1}{k!} \times z^k$$

Notiamo anche che se $z = x + 0 \times i$ abbiamo:

$$e^x = \sum_{k=0}^{+\infty} \frac{1}{k!} \times x^k$$

Che altro non è che lo sviluppo di MacLaurin di e^x esteso a $+\infty$. Abbiamo così definito la funzione esponenziale nei complessi.

Lo stesso tipo di procedimento può essere fatto per altre funzioni elementari.

Parte 2 - $\sin z$

Consideriamo la seguente serie di funzioni:

$$\sum_{k=\dots}^{+\infty} \frac{(-1)^k}{(2k+1)!} \times x^{2k+1} \qquad x \in \mathbb{R}$$

Questo è lo sviluppo di MacLaurin di sin x esteso a $+\infty$. Portiamo ora la serie nei complessi:

$$\sum_{k=-\infty}^{+\infty} \frac{(-1)^k}{(2k+1)!} \times z^{2k+1} \qquad x \in \mathbb{C}$$

Verifichiamo se:

- converge puntualmente in z^* $\forall z^* \in \mathbb{C}$
- converge assolutamente puntualmente in z^* $\forall z^* \in \mathbb{C}$

Sappiamo che se converge assolutamente ne seguirà la convergenza semplice. Quindi passiamo a dimostrare che:

$$\sum_{k=\dots}^{+\infty} \left| \frac{(-1)^k}{(2k+1)!} \times z^{2k+1} \right| = \sum_{k=\dots}^{+\infty} B_k$$

Applico il criterio del rapporto:

$$\lim_{k \to +\infty} \frac{B_{k+1}}{B_k} = \lim_{k \to +\infty} \frac{\left| (-1)^{k+1} \times (z^*)^{2(k+1)+1} \right|}{[2(k+1)+1]!} \times \frac{(2k+1)!}{\left| (-1)^k \times (z^*)^{2k+1} \right|}$$
$$= \lim_{k \to +\infty} \frac{(z^*)^2}{(2k+3)(2k+2)} = 0$$

Quindi $\sum_{k=...}^{+\infty} B_k$ converge puntualmente $(\forall z^* \in \mathbb{C})$ e la serie $\sum_{k=...}^{+\infty} \frac{(-1)^k}{(2k+1)!} \times z^{2k+1}$ converge assolutamente e semplicemente puntualmente.

Questa serie corrisponde quindi a una funzione di variabile complessa f(z).

Definiamo così la funzione:

$$\sin z \stackrel{df}{=} \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} \times z^{2k+1}$$

Notiamo anche che se $z = x + 0 \times i$ abbiamo:

$$\sin x = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} \times x^{2k+1}$$

Che altro non è che lo sviluppo di Mac Laurin di $\sin x$ esteso a $+\infty$. Abbiamo così definito la funzione seno nei complessi.

Parte 3 - $\cos z$

Consideriamo la seguente serie di funzioni:

$$\sum_{k=-\infty}^{+\infty} \frac{(-1)^k}{(2k)!} \times x^{2k} \qquad x \in \mathbb{R}$$

Questo è lo sviluppo di MacLaurin di $\cos x$ esteso a $+\infty$. Portiamo ora la serie nei complessi:

$$\sum_{k=\dots}^{+\infty} \frac{(-1)^k}{(2k)!} \times z^{2k} \qquad x \in \mathbb{C}$$

Verifichiamo se:

- converge puntualmente in $z^* \quad \forall z^* \in \mathbb{C}$
- converge assolutamente puntualmente in z^* $\forall z^* \in \mathbb{C}$

Sappiamo che se converge assolutamente ne seguirà la convergenza semplice. Quindi passiamo a dimostrare che:

$$\sum_{k=-}^{+\infty} \left| \frac{(-1)^k}{(2k)!} \times z^{2k} \right| = \sum_{k=-}^{+\infty} C_k$$

Applico criterio del rapporto:

$$\lim_{k \to +\infty} \frac{C_{k+1}}{C_k} = \lim_{k \to +\infty} \frac{\left| (-1)^{k+1} \times (z^*)^{2(k+1)} \right|}{[2(k+1)]!} \times \frac{(2k)!}{\left| (-1)^k \times (z^*)^{2k} \right|}$$
$$= \lim_{k \to +\infty} \frac{(z^*)^2}{(2k+2)(2k+1)} = 0$$

Quindi $\sum_{k=...}^{+\infty} C_k$ converge puntualmente $(\forall z^* \in \mathbb{C})$ e la serie $\sum_{k=...}^{+\infty} \frac{(-1)^k}{(2k)!} \times z^{2k}$ converge assolutamente e semplicemente puntualmente.

Questa serie corrisponde quindi a una funzione di variabile complessa f(z).

Definiamo così la funzione:

$$\cos z \stackrel{df}{=} \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \times z^{2k}$$

Notiamo anche che se $z = x + 0 \times i$ abbiamo:

$$\cos x = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \times x^{2k}$$

Che altro non è che lo sviluppo di MacLaurin di $\cos x$ esteso a $+\infty$. Abbiamo così definito la funzione seno nei complessi.

Parte 4 - La formula di Eulero

Abbiamo ora definito le funzioni e^z , $\sin z$, $\cos z$ in \mathbb{C} nel modo seguente:

$$e^{z} = \sum_{k=0}^{+\infty} \frac{1}{k!} \times z^{k}$$

$$\sin z = \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2k+1)!} \times z^{2k+1}$$

$$\cos z = \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2k)!} \times z^{2k}$$

Prendiamo ora $z = i\vartheta$ (parte reale nulla) avremo:

$$e^{i\vartheta} = \sum_{k=0}^{+\infty} \frac{1}{k!} \times (i\vartheta)^k$$

$$= \frac{1}{0!} \times (i\vartheta)^0 + \frac{1}{1!} \times (i\vartheta)^1 + \frac{1}{2!} \times (i\vartheta)^2 + \frac{1}{3!} \times (i\vartheta)^3 + \dots \qquad (i^2 = -1)$$

$$= 1 + i\vartheta - \frac{1}{2}\vartheta^2 - \frac{1}{3!}\vartheta^3 i + \frac{1}{4!}\vartheta^4 + \frac{1}{5!}\vartheta^5 i + \dots$$

La convergenza assouluta autorizza ad usare le proprietà elementari della somma. Commuto quindi tutti i termini con la i in fondo e gli altri li porto avanti. Ottengo così:

$$e^{i\vartheta} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \times \vartheta^{2k} + i \left(\sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} \times \vartheta^{2k+1} \right)$$

Da cui:

$$e^{i\vartheta} = \cos\vartheta + i\sin\vartheta$$

Dimostrazioni aggiuntive

Dimostrazione aggiuntiva numero 1

Cardinalità di \mathbb{R}^n

Definizioni necessarie

Si ricorda che:

- Due insiemi hanno la stessa cardinalità quando è possibile creare una corrispondenza biunivoca tra di essi;
- Un insieme infinito può avere la stessa cardinalità di un insieme infinito da lui contenuto.

Enunciato

Ipotesi

 \mathbb{R} ha la cardinalità del continuo.

Tesi

 \mathbb{R}^n ha la cardinalità del continuo.

Dimostrazione

Come definito in precedenza per dimostrare che i due insiemi hanno la stessa cardinalità dobbiamo dimostrare che siano in corrispondenza **biunivoca**. Per semplicità restringiamo la dimostrazione all'intervallo [0,1].

Iniettività

Dato un punto generico $P(x_P, y_P)$ definiamo che le sue coordinate in questo modo:

$$x_p = 0.x_1 x_2 x_3 x_4 \dots$$
 e $y_p = 0.y_1 y_2 y_3 y_4 \dots$

L'immagine di P su \mathbb{R} è Q, così definita:

$$Q = 0.x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 \dots$$

Ipotizziamo ora per assurdo che esista

$$P^* \neq P \mid f(P^*) = f(P)$$

$$P^* = (0.x_1^* x_2^* x_3^* x_4^* \dots, 0.y_1^* y_2^* y_3^* y_4^* \dots)$$

allora

$$f(P^*) = Q = 0.x_1^* y_1^* x_2^* y_2^* x_3^* y_3^* x_4^* y_4^* \dots$$

Ma visto che

$$Q = 0.x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 \dots$$

ne deriva che

$$P=P^*$$

il che è assurdo. Quindi f è **iniettiva**.

Suriettività

Dato

$$Q \in [0,1] = 0.q_1 q_2 q_3 q_4 \dots$$

Vale questa affermazione?

$$\exists ? P^{\circ} \in [0,1] \times [0,1] \mid f(P^{\circ}) = Q$$

Sì, P° è così definito:

$$P^{\circ} = (0.q_1 q_3 q_5 \dots, 0.q_2 q_4 q_6 \dots)$$

Da cui si ricava che f è anche **suriettiva**.

Abbiamo quindi trovato una corrispondenza biunivoca tra i due insiemi, il che dimostra che hanno la stessa cardinalità.