ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY

Základy elektrotepelných procesů

Určování radiační účinnosti sálavých panelů

Vypracoval: Martin Zlámal

Ostatní členové měřícího týmu:

Milan Flor Filip Sauer

Cvičení

"út 11:10 – 12:50"

Datum měření Datum vypracování 10. listopadu 2015 11. listopadu 2015

Školní rok Semestr Ročník

2015/16 1. 1.

Úkolem měření bylo stanovení sálavé účinnosti zadaných panelů. Měření bylo provedeno na dvou panelech FENIX (300 W) o rozměrech 50x70x12 mm. Oba panely jsou v lesklém skleněném provedení s tím, že vodorovný panel byl pokryt černým sklem, svislý potom sklem červeným. Druhou částí úkolu je určení vlnové délky záření v závislosti na povrchové teplotě panelu.

Naměřené a vypočtené hodnoty

Oteplovací charakteristika byla prvních 16 minut měřena každou minutu, následně pak každé dvě minuty.

Tabulka 1: Naměřené hodnoty teplot obou panelů [°C (K)]

Teploty vodorovného panelu	Teploty svislého panelu	Minuta měření [-]
22,3 (295,45)	22,6 (295,75)	0
25,2 (298,35)	25,5 (298,65)	1
27,3 (300,45)	28,1 (301,25)	2
29,4 (302,55)	29,5 (302,65)	3
31,2 (304,35)	31,9 (305,05)	4
33,4 (306,55)	33,7 (306,85)	5
36,0 (309,15)	36,0 (309,15)	6
37,5 (310,65)	38,3 (311,45)	7
39,8 (312,95)	40,0 (313,15)	8
41,8 (314,95)	42,0 (315,15)	9
44,0 (317,15)	43,7 (316,85)	10
45,7 (318,85)	45,7 (318,85)	11
48,0 (321,15)	47,8 (320,95)	12
49,5 (322,65)	49,5 (322,65)	13
51,3 (324,45)	51,1 (324,25)	14
53,1 (326,25)	52,7 (325,85)	15
55,2 (328,35)	54,3 (327,45)	16
57,7 (330,85)	57,6 (330,75)	18
61,2 (334,35)	60,2 (333,35)	20
63,8 (336,95)	62,5 (335,65)	22
66,4 (339,55)	65,5 (338,65)	24
68,6 (341,75)	67,1 (340,25)	26
71,1 (344,25)	69,4 (342,55)	28
72,9 (346,05)	70,8 (343,95)	30
75,5 (348,65)	73,0 (346,15)	32
76,6 (349,75)	74,4 (347,55)	34
78,4 (351,55)	75,6 (348,75)	36

80,2 (353,35)	77,2 (350,35)	38
81,6 (354,75)	78,1 (351,25)	40
83,0 (356,15)	78,8 (351,95)	42
84,6 (357,75)	81,0 (354,15)	44
85,8 (358,95)	81,6 (354,75)	46
87,5 (360,65)	82,5 (355,65)	48
88,0 (361,15)	83,5 (356,65)	50
89,0 (362,15)	84,0 (357,15)	52

Velikost vlnové délky pro každý panel určíme z Wienova posunovacího zákona, kde lambda je vlnová délka v milimetrech a theta nejvyšší teplota panelu v kelvinech. Pro vodorovný panel potom:

$$\lambda\theta = 2,898 \rightarrow \lambda = \frac{2,898}{\theta} = \frac{2,898}{362.15} \approx 0.008002 \, mm = 8,002 \, \mu \, m$$

Pro svislý panel:

$$\lambda = \frac{2,898}{\theta} = \frac{2,898}{357,15} \approx 0.008114 \, mm = 8,114 \, \mu m$$

Tepelné ztráty panelu prouděním stěnami určíme z ustáleného stavu pomocí Newtonova zákona a to pro každou stěnu zvlášť.

Tabulka 2: Naměřené teploty svislého panelu ze všech stran (zadní stěna) [°C]

Levý bok	39,2	42,7	40,3	Pravý bok
36,0	81,3 (48,2)	85,4 (51,0)	81,1 (46,3)	33,9
35,2	82,5 (51,1)	84,9 (53,1)	85,4 (48,8)	34,4
32,4	67,3 (44,2)	65,5 (47,1)	66,0 (42,6)	31,6
	30,8	31,4	29,9	

Hodnoty se vždy počítají z průměru teplot celé stěny:

$$\begin{split} &P_{Z(front)} = \alpha(\nu_1 - \nu_2)S = 1,55 \left(77,71 - 22,45\right)^{0,33} \cdot \left(77,71 - 22,45\right) \cdot \left(0,5 \cdot 0,7\right) = 112,67 \, W \\ &P_{Z(back)} = 1,55 \left(48,04 - 22,45\right)^{0,33} \cdot \left(48,04 - 22,45\right) \cdot 0,35 = 40,47 \, W \\ &P_{Z(top)} = 2 \left(40,73 - 22,45\right)^{0,33} \cdot \left(40,73 - 22,45\right) \cdot 0,084 = 8,01 \, W \\ &P_{Z(bottom)} = 1,08 \left(30,7 - 22,45\right)^{0,33} \cdot \left(30,7 - 22,45\right) \cdot 0,084 = 1,50 \, W \\ &P_{Z(left)} = 1,55 \left(34,53 - 22,45\right)^{0,33} \cdot \left(34,53 - 22,45\right) \cdot 0,06 = 2,56 \, W \\ &P_{Z(right)} = 1,55 \left(33,3 - 22,45\right)^{0,33} \cdot \left(33,3 - 22,45\right) \cdot 0,06 = 2,22 \, W \\ &\sum P_Z = P_{Z(front)} + P_{Z(back)} + P_{Z(top)} + P_{Z(bottom)} + P_{Z(left)} + P_{Z(right)} = \\ &= 112,67 + 40,47 + 8,01 + 1,50 + 2,56 + 2,22 = 167,43 \, W \end{split}$$

Z čehož lze jednoduše vypočítat sálavá účinnost panelu:

$$\eta = \left(\frac{P - \sum P_Z}{P}\right) \cdot 100 = \left(\frac{300 - 167,43}{300}\right) \cdot 100 = 44,19\%$$

Podobná série výpočtu platí pro vodorovně položený panel:

Tabulka 3: Naměřené teploty vodorovného panelu ze všech stran (horní stěna) [°C]

U okna	34,8	39,0	35,2	
36,2	68,9 (51,9)	72,4 (52,6)	72,9 (51,3)	35,7
39,5	87,2 (49,5)	91,1 (51,3)	88,1 (52,2)	39,9
34,4	79,8 (46,3)	83,3 (50,1)	78,2 (45,7)	35,6
	35,6	39,5	36,5	

$$\begin{split} P_{Z(front)} &= 1,28 \left(80,21 - 22,45 \right)^{0,33} \cdot \left(80,21 - 22,45 \right) \cdot 0,35 = 98,68 \, W \\ P_{Z(back)} &= 2,0 \left(50,1 - 22,45 \right)^{0,33} \cdot \left(50,1 - 22,45 \right) \cdot 0,35 = 57,88 \, W \\ P_{Z(top)} &= 1,55 \left(36,33 - 22,45 \right)^{0,33} \cdot \left(36,33 - 22,45 \right) \cdot 0,084 = 4,31 \, W \\ P_{Z(bottom)} &= 1,55 \left(37,2 - 22,45 \right)^{0,33} \cdot \left(37,2 - 22,45 \right) \cdot 0,084 = 4,67 \, W \\ P_{Z(left)} &= 1,55 \left(36,7 - 22,45 \right)^{0,33} \cdot \left(36,7 - 22,45 \right) \cdot 0,06 = 3,19 \, W \\ P_{Z(right)} &= 1,55 \left(37,07 - 22,45 \right)^{0,33} \cdot \left(37,07 - 22,45 \right) \cdot 0,06 = 3,30 \, W \\ \sum P_{Z} &= P_{Z(front)} + P_{Z(back)} + P_{Z(top)} + P_{Z(bottom)} + P_{Z(left)} + P_{Z(right)} = \\ &= 98,68 + 57,88 + 4,31 + 4,67 + 3,19 + 3,30 = 172,03 \, W \\ \eta &= \left(\frac{P - \sum P_{Z}}{P} \right) \cdot 100 = \left(\frac{300 - 172,03}{300} \right) \cdot 100 = 42,666 \, \% \end{split}$$

Grafy

Oteplovací charakteristiky sálavých panelů

Použité přístroje

- Sálavý panel FENIX 300 W 207727
- Sálavý panel FENIX 300 W 207728
- Pyrometr OPTRIS (nastavená emisivita 0,95) 193510

Závěr

Prvně je důležité přiznat, že ani jeden sálavý panel nebyl omylem připojen k wattmetru. Z toho důvodu je ve výpočtech uvažován příkon 300 W, ačkoliv skutečnost mohla být jiná. Podle vypočtených hodnot mají oba panely sálavou účinnost cca 43% (44,19% svislý a 42,66% vodorovný). Je nutné však zdůraznit, že se jedná o celkovou sálavou účinnost a neznedbatelná část energie je u této konstrukce panelů vyzářena boky a zadním krytem. To považuji za nežádoucí, protože se dá předpokládat, že chceme, aby panel zářil hlavně vyzařovací plochou (a ne do stěny). Z grafů je také patrná odchylka v oteplovacích charakteristikách, kdy se vodorovně položený panel zahříval rychleji. V neposlední řadě je z grafu vidět, že se vlnová délka záření se vzrůstající teplotou zmenšuje, což odpovídá Wienovu posunovacímu zákonu který říká, že čím je těleso teplejší, tím vyzařuje v kratších vlnových délkách.