CPS 571 — HW 5

Shengxin Qian, sq16

1 Gradient Computation For Recursive Logistic Regression by Backpropagation

1.1 Gradient of 3-Layer Network

Figure 1: 3-layer neural network model

The 3-layer neural network required is shown as above. As one can see in Figure 1, the gradient $\frac{\partial L(\theta)}{\partial W_1}$ and $\frac{\partial L(\theta)}{\partial b_1}$ are derived as below.

$$\frac{\partial L(\theta)}{\partial W_{x_1,h_{11}}} = \frac{\partial L(\theta)}{\partial h_{11}} \frac{\partial h_{11}}{\partial net_{h_{11}}} \frac{\partial net_{h_{11}}}{\partial W_{x_1,h_{11}}}$$

$$= \frac{\partial L(\theta)}{\partial h_{11}} h_{11} (1 - h_{11}) x_1$$

$$= \sum_{i=1}^{H} \left[\frac{\partial L(\theta)}{\partial net_{h_{2i}}} w_{h_{11,h_{2i}}} \right] h_{11} (1 - h_{11}) x_1$$
(1)

$$\frac{\partial L(\theta)}{\partial net_{h_{2i}}} = \frac{\partial L(\theta)}{\partial net_{f(x)}} \frac{\partial net_{f(x)}}{\partial h_{2i}} \frac{\partial h_{2i}}{\partial net_{h_{2i}}}
= \frac{\partial L(\theta)}{\partial net_{f(x)}} w_{h_{2i},f(x)} h_{2i} (1 - h_{2i})
= \frac{\partial L(\theta)}{\partial f(x)} \frac{\partial f(x)}{\partial net_{f(x)}} w_{h_{2i},f(x)} h_{2i} (1 - h_{2i})
= \frac{\partial L(\theta)}{\partial f(x)} f(x) (1 - f(x)) w_{h_{2i},f(x)} h_{2i} (1 - h_{2i})$$
(2)

$$\frac{\partial L(\theta)}{\partial f(x)} = -\sum_{j=1}^{N} \left[y_j \frac{1}{f(x)} + (y_j - 1) \frac{1}{1 - f(x)} \right]$$
(3)

Overall,

$$\frac{\partial L(\theta)}{\partial W_{x_1,h_{11}}} = \sum_{i=1}^{H} \left\{ -\sum_{j=1}^{N} \left[y_j \frac{1}{f(x)} + (y_j - 1) \frac{1}{1 - f(x)} \right] \right\}
f(x)(1 - f(x)) w_{h_{2i},f(x)} h_{2i}(1 - h_{2i}) w_{h_{11},h_{2i}} h_{11}(1 - h_{11}) x_1$$
(4)

$$\frac{\partial L(\theta)}{\partial W_{x_1,h_{11}}} = \sum_{i=1}^{H} \left\{ -\sum_{j=1}^{N} \left[y_j \frac{1}{f(x)} + (y_j - 1) \frac{1}{1 - f(x)} \right] \right\}
f(x)(1 - f(x)) w_{h_{2i},f(x)} h_{2i}(1 - h_{2i}) w_{h_{11},h_{2i}} h_{11}(1 - h_{11}) x_1$$
(5)

Moreover,

$$W_{1} = \begin{bmatrix} W_{x_{1},h_{11}} & \dots & W_{x_{1},h_{1H}} \\ \vdots & \ddots & \vdots \\ W_{x_{784},h_{11}} & \dots & W_{x_{784},h_{1H}} \end{bmatrix}$$

$$(6)$$

$$\frac{\partial L(\theta)}{\partial W_1} = \begin{bmatrix}
\frac{\partial L(\theta)}{\partial W_{x_1,h_{11}}} & \cdots & \frac{\partial L(\theta)}{\partial W_{x_1,h_{1H}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial L(\theta)}{\partial W_{x_{784},h_{11}}} & \cdots & \frac{\partial L(\theta)}{\partial W_{x_{784},h_{1H}}}
\end{bmatrix}$$
(7)

Therefore, we can get the general equation of each element in the matrix,

$$\frac{\partial L(\theta)}{\partial W_{x_m,h_{1n}}} = \sum_{i=1}^{H} \left\{ -\sum_{j=1}^{N} \left[y_j \frac{1}{f(x)} + (y_j - 1) \frac{1}{1 - f(x)} \right] \right\}
f(x)(1 - f(x)) w_{h_{2i},f(x)} h_{2i}(1 - h_{2i}) w_{h_{1n},h_{2i}} h_{1n}(1 - h_{1n}) x_m$$
(8)

Similar to the derivation of $\frac{\partial L(\theta)}{\partial W_1}$, the first step of derivation of $\frac{\partial L(\theta)}{\partial b_1}$ is as below, the only difference is $\frac{\partial net_{h_{11}}}{\partial b_{h_{11}}} == 1$

$$\frac{\partial L(\theta)}{\partial b_{h_{11}}} = \frac{\partial L(\theta)}{\partial h_{11}} \frac{\partial h_{11}}{\partial net_{h_{11}}} \frac{\partial net_{h_{11}}}{\partial b_{h_{11}}}$$

$$= \frac{\partial L(\theta)}{\partial h_{11}} h_{11} (1 - h_{11})$$

$$= \sum_{i=1}^{H} \left[\frac{\partial L(\theta)}{\partial net_{h_{2i}}} w_{h_{11,h_{2i}}} \right] h_{11} (1 - h_{11})$$
(9)

Therefore, the general equation of each element in the vector $\frac{\partial L(\theta)}{\partial b_1}$ is,

$$\frac{\partial L(\theta)}{\partial b_{1n}} = \sum_{i=1}^{H} \left\{ -\sum_{j=1}^{N} \left[y_j \frac{1}{f(x)} + (y_j - 1) \frac{1}{1 - f(x)} \right] \right\}
f(x)(1 - f(x)) w_{h_{2i}, f(x)} h_{2i}(1 - h_{2i}) w_{h_{1n}, h_{2i}} h_{1n}(1 - h_{1n})$$
(10)

1.2 Gradient of (L - 1)-Layer Network

As one can see in equation 1 and 2,

$$\frac{\partial L(\theta)}{\partial h_{1i_1}} = \sum_{i_2=1}^{H} \left[\frac{\partial L(\theta)}{\partial net_{h_{2i_2}}} w_{h_{1i_1,h_{2i_2}}} \right]$$

$$\tag{11}$$

$$\frac{\partial L(\theta)}{\partial net_{h_{2i_2}}} = \frac{\partial L(\theta)}{\partial h_{2i_2}} \frac{\partial h_{2i_2}}{\partial net_{h_{2i_2}}}$$

$$= \sum_{i_3=1}^{H} \left[\frac{\partial L(\theta)}{\partial net_{h_{3i_3}}} w_{h_{2i_2,h_{3i_3}}} \right] h_{2i_2} (1 - h_{2i_2}) \tag{12}$$

If we use the same rule when deriving the general formula of the entire (L-1) hidden layers network and name $h_{ti_t}(1-h_{ti_t})w_{h_{(t-1)}i_{(t-1)},h_{ti_t}}$ as δ_t (i_t is the index of summation at layer t), the general formula would be:

$$\frac{\partial L(\theta)}{\partial h_{1i_1}} = \sum_{i_2=1}^{H} \left[\sum_{i_3=1}^{H} \dots \left[\sum_{i_{L-1}=1}^{H} \frac{\partial L(\theta)}{\partial f(x)} \delta_{f(x)} \delta_{L-1} \right] \delta_{L-2} \dots \delta_2 \right] \\
\delta_{f(x)} = f(x) (1 - f(x)) w_{h_{L-1}i_{L-1}, f(x)} \\
\delta_t = h_{ti_t} (1 - h_{ti_t}) w_{h_{(t-1)}i_{(t-1)}, h_{ti_t}} \tag{13}$$

So, according to the equation 1 and equation 8, we can get the gradient of $\frac{\partial L(\theta)}{\partial W_{x_m,h_{1i_1}}}$,

$$\frac{\partial L(\theta)}{\partial W_{x_m, h_{1i_1}}} = \sum_{i_2=1}^{H} \left[\sum_{i_3=1}^{H} \dots \left[\sum_{i_{L-1}=1}^{H} \left[-\sum_{j=1}^{N} \left[y_j \frac{1}{f(x)} + (y_j - 1) \frac{1}{1 - f(x)} \right] \right] \delta_{f(x)} \delta_{L-1} \right] \delta_{L-2} \dots \delta_2 \right] *
+ h_{1i_1} (1 - h_{1i_1}) x_m$$
(14)

$$\frac{\partial L(\theta)}{\partial W_1} = \begin{bmatrix}
\frac{\partial L(\theta)}{\partial W_{x_1,h_{11}}} & \cdots & \frac{\partial L(\theta)}{\partial W_{x_1,h_{1H}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial L(\theta)}{\partial W_{x_{784},h_{11}}} & \cdots & \frac{\partial L(\theta)}{\partial W_{x_{784},h_{1H}}}
\end{bmatrix}$$
(15)

Similar to $\frac{\partial L(\theta)}{\partial W_{x_m,h_{1i_1}}}$, the general formula of gradient of $\frac{\partial L(\theta)}{\partial b_{1i_1}}$ (element i_1 of vector b_1) is,

$$\frac{\partial L(\theta)}{\partial b_{1i_1}} = \sum_{i_2=1}^{H} \left[\sum_{i_3=1}^{H} \dots \left[\sum_{i_L=1}^{H} \left[-\sum_{j=1}^{N} \left[y_j \frac{1}{f(x)} + (y_j - 1) \frac{1}{1 - f(x)} \right] \right] \delta_{f(x)} \delta_L \right] \delta_{L-1} \dots \delta_2 \right] *
+ h_{1i_1} (1 - h_{1i_1})$$
(16)

2 EM for Coin Toss

2.1 Estimation of θ

In this question, because we only know the number of the heads and tails of each sample, the distribution of the result of each sample x_i matches binomial distribution. Assuming x_i represent the number of heads in each sample. Therefore, $P(x_i \mid z = A, \theta) = P(x_i \mid z = A, \theta_A) = C_n^{x_i} \theta_A^{x_i} (1 - \theta_A)^{(n-x_i)}$ and $P(x_i \mid z = B, \theta) = P(x_i \mid z = B, \theta_B) = C_n^{x_i} \theta_B^{x_i} (1 - \theta_B)^{(n-x_i)}$. In addition to that, because we randomly choose the coins in each sample, $P(z = A \mid \theta) = P(z = B \mid \theta) = 1/2$. The EM algorithm used for coin toss is:

1. Estimation Step:

$$Q_{i}(z = A) = P(z = A \mid x_{i}, \theta)$$

$$= \frac{P(z = A, x_{i} \mid \theta)}{P(x_{i} \mid \theta)}$$

$$= \frac{P(x_{i} \mid z = A, \theta) * P(z = A \mid \theta)}{P(x_{i} \mid \theta)}$$

$$= \frac{P(x_{i} \mid z = A, \theta) * P(z = A \mid \theta)}{P(x_{i} \mid z = A, \theta) * P(z = A \mid \theta)}$$

$$= \frac{P(x_{i} \mid z = A, \theta) * P(z = A \mid \theta) + P(x_{i} \mid z = B, \theta) * P(z = B \mid \theta)}{P(x_{i} \mid z = A, \theta) * 1/2}$$

$$= \frac{P(x_{i} \mid z = A, \theta) * 1/2}{P(x_{i} \mid z = A, \theta) * 1/2 + P(x_{i} \mid z = B, \theta) * 1/2} = 1 - Q_{i}(z = B)$$

2. Maximization Step:

$$\frac{\partial L(\theta)}{\partial \theta_{A}} = \left\{ \sum_{i} \left[Q_{i}(z=A) \log \frac{P(x_{i}, z=A \mid \theta_{A})}{Q_{i}(z=A)} + Q_{i}(z=B) \log \frac{P(x_{i}, z=B \mid \theta_{B})}{Q_{i}(z=B)} \right] \right\}^{\prime} \\
= \left\{ \sum_{i} Q_{i}(z=A) \log \frac{P(x_{i} \mid z=A, \theta_{A}) * 1/2}{Q_{i}(z=A)} + Q_{i}(z=B) \log \frac{P(x_{i} \mid z=B, \theta_{B}) * 1/2}{Q_{i}(z=B)} \right\}^{\prime} \\
= \sum_{i} Q_{i}(z=A) \frac{x_{i}(1-\theta_{A}) - \theta_{A}(n-x_{i})}{\theta_{A}(1-\theta_{A})} = 0$$
(18)

The maximum likelihood estimator of θ_A is

$$\widehat{\theta_A} = \frac{\sum_i Q_i(z=A)x_i}{\sum_i Q_i(z=A)n} \tag{19}$$

The equation of deriving $\widehat{\theta_B}$ is similar,

$$\widehat{\theta_B} = \frac{\sum_i Q_i(z=B)x_i}{\sum_i Q_i(z=B)n}$$
(20)

2.2 Implementation of EM algorithm for Coin Toss

One important thing is the initial θ estimation should not set as the same. In the simulation, I set the initial parameters as $\theta_A = 0.4$, $\theta_B = 0.2$. After 10 iterations, one result is [0.8, 0.34]. After 1000 iterations, one result is [0.8533, 0.3600].

3 K-means for Image Compression

Figure 2: 2-means recovered image

Figure 3: 2-means Pixel Value Distribution

Figure 4: 4-means recovered image

Figure 5: 4-means Pixel Value Distribution

Figure 6: 8-means recovered image

Figure 7: 8-means Pixel Value Distribution

Figure 8: original image

As we can see in the images above, after doing 10 iterations, the effect of compression is pretty good. Even with only 2-mean quantization, the contour is visible. The higher the number of means is, the more refine the graph is.