

Bidirectional Feature Pyramid Network with Recurrent Attention Residual Modules for Shadow Detection

Lei Zhu^{1,2,4,*}, Zijun Deng^{3,*}, Xiaowei Hu¹, Chi-Wing Fu^{1,4}, Xuemiao Xu³, Jing Qin², and Pheng-Ann Heng^{1,4}

Contributions

- Detect shadows by exploring and combining global context in deep layers and local context in shallow layers of a deep convolutional neural network (CNN).
- Formulate the recurrent attention residual (RAR) module to combine the contexts in two adjacent CNN layers and learn an attention map to select a residual and then refine the context features.
- Develop a **bidirectional feature pyramid network** (BFPN) to aggregate shadow contexts spanned across different CNN layers by deploying two series of RAR modules.
- Outperform the best existing method with **34.88**% reduction on SBU and **34.57**% reduction on UCF for the balance error rate (BER).

