计算机组成原理

第二十四讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心

8.4 中断系统

8.4

中断系统需解决的问题

- (1) 各中断源 如何 向 CPU 提出请求?
- (2) 各中断源 同时 提出 请求 怎么办?
- (3) CPU 什么 条件、什么 时间、以什么 方式 响应中断?
- (4) 如何保护现场?
- (5) 如何寻找入口地址?
- (6) 如何恢复现场,如何返回?
- (7) 处理中断的过程中又 出现新的中断 怎么办? 硬件 + 软件

六、中断屏蔽技术

8.4

1. 多重中断的概念

程序断点 k+1, l+1, m+1

2. 实现多重中断的条件

8.4

- (1) 提前 设置 开中断 指令
- (2) 优先级别高 的中断源 有权中断优先级别低 的中断源

3. 屏蔽技术

8.4

(1) 屏蔽触发器的作用

MASK = 0 (未屏蔽)

INTR 能被置 "1"

 $MASK_i = 1$ (屏蔽)

 $INTP_i = 0$ (不能被排队选中)

2022/8/24

5

(2) 屏蔽字

8.4

16个中断源 1, 2, 3, … 16 按 降序 排列

优先级	屏 蔽 字
1	11111111111111
2	011111111111111
3	001111111111111
4	000111111111111
5	0000111111111111
6	0000011111111111
•	•
15	0 0 0 0 0 0 0 0 0 0 0 0 1 1
16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(3) 屏蔽技术可改变处理优先等级

8.4

响应优先级不可改变

处理优先级

可改变 (通过重新设置屏蔽字)

中断源	原屏蔽字	新屏蔽字
A	1 1 1 1	1111
В	0 1 1 1	0 1 0 0
C	0 0 1 1	0 1 1 0
D	0 0 0 1	0 1 1 1

响应优先级 $A \rightarrow B \rightarrow C \rightarrow D$ 降序排列

处理优先级 $A \rightarrow D \rightarrow C \rightarrow B$ 降序排列

(3) 屏蔽技术可改变处理优先等级

8.4

CPU 执行程序轨迹(原屏蔽字)

(3) 屏蔽技术可改变处理优先等级

CPU 执行程序轨迹(新屏蔽字)

(4) 屏蔽技术的其他作用

可以人为地屏蔽某个中断源的请求

便于程序控制

(5) 新屏蔽字的设置

8.4

单重中断和多重中断的服务程序流程 单重 多重 取指令 取指令 执行指令 执行指令 否 否 中断否? 中断否? 是 是 中 中 中断响应 中断响应 断隐指令 断 中 中 程序断点进栈 隐指令 断 断 程序断点进栈 周 关中断 周 关中断 期 期 向量地址 \rightarrow PC 向量地址 \rightarrow PC 保护现场 保护现场 中断服务程序 中断服务程序 开中断 设备服务 设备服务 恢复现场 恢复现场 开中断 中断返回 中断返回 2022/8/12/

8.4

4. 多重中断的断点保护

(1) 断点进栈

- 中断隐指令 完成
- (2) 断点存入"0"地址 中断隐指令 完成
 - 中断周期 $0 \longrightarrow MAR$

命令存储器写

PC → MDR 断点 → MDR

(MDR) → 存入存储器

- 三次中断,三个断点都存入"0"地址
- ? 如何保证断点不丢失?

(3) 程序断点存入"0"地址的断点保护8.4

地址	内容	说明
0 5	XXXX JMP SERVE	存程序断点 5 为向量地址
SERVE	STA SAVE :	保护现场
置屏蔽字	LDA 0 STA RETURN ENI	} 0 地址内容转存 开中断
	•	} 其他服务内容
	LDA SAVE	恢复现场
CAND	JMP @ RETURN	间址返回
SAVE RETURN 2022/8/24	$\times \times $	存放 ACC 内容 转存 0 地址内容

第9章 控制单元的功能

- 9.1 操作命令的分析
- 9.2 控制单元的功能

9.1 操作命令的分析

完成一条指令分4个工作周期

取指周期

间址周期

执行周期

中断周期

9.1 操作命令的分析

一、取指周期

PC → MAR → 地址线 $1 \rightarrow R$ $M(MAR) \rightarrow MDR$ $MDR \rightarrow IR$ OP (IR) \rightarrow CU $(PC)+1 \longrightarrow PC$

二、间址周期

9.1

指令形式地址 → MAR

 $Ad(IR) \longrightarrow MAR$

1 → R

 $M(MAR) \longrightarrow MDR$

 $MDR \longrightarrow Ad (IR)$

三、执行周期

1. 非访存指令

(1) **CLA** 清A

 $0 \longrightarrow ACC$

(2) **COM** 取反

 $ACC \longrightarrow ACC$

(3) SHR 算术右移 $L(ACC) \rightarrow R(ACC), ACC_0 \rightarrow ACC_0$

(4) CSL 循环左移 R(ACC) → L(ACC), ACC。 → ACC。

(5) STP 停机指令 $0 \rightarrow G$

2. 访存指令

9.1

(1) 加法指令 ADD X

 $Ad(IR) \rightarrow MAR$

 $1 \longrightarrow R$

 $M(MAR) \rightarrow MDR$

 $(ACC) + (MDR) \longrightarrow ACC$

(2) 存数指令 **STA** X

 $Ad(IR) \rightarrow MAR$

 $1 \longrightarrow W$

 $ACC \longrightarrow MDR$

 $MDR \rightarrow M(MAR)$

(3) 取数指令 LDA X

9.1

$$Ad(IR) \rightarrow MAR$$

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow ACC$

- 3. 转移指令
 - (1) 无条件转 **JMP** X

 $Ad(IR) \rightarrow PC$

(2) 条件转移 BAN X (负则转)

 A_0 :Ad (IR) + \overline{A}_0 (PC) \longrightarrow PC

9.1

4. 三类指令的指令周期

2022/8/24

四、中断周期

程序断点存入"0"地址 程序断点 进栈

 $0 \longrightarrow MAR$

 $(SP)-1 \longrightarrow MAR$

 $1 \longrightarrow W$

 $1 \longrightarrow W$

 $PC \longrightarrow MDR$

 $PC \rightarrow MDR$

 $MDR \rightarrow M (MAR)$

 $MDR \rightarrow M (MAR)$

中断识别程序入口地址 M → PC

 $0 \rightarrow EINT (置 "0") 0 \rightarrow EINT (置 "0")$

9.2 控制单元的功能

一、控制单元的外特性

系统总线

2022/8/24

1. 输入信号

9.2

- (1) 时钟
 - CU 受时钟控制
 - 一个时钟脉冲

发一个操作命令或一组需同时执行的操作命令

- (2) 指令寄存器 OP(IR)→ CU 控制信号 与操作码有关
- (3) 标志 CU 受标志控制
- (4) 外来信号

如 INTR 中断请求 HRQ 总线请求

2. 输出信号

9.2

(1) CPU 内的各种控制信号

$$R_i \rightarrow R_j$$

(PC) + 1 \rightarrow PC
ALU +、-、与、或 ······

(2) 送至控制总线的信号

MREQ 访存控制信号

IO/M 访 IO/ 存储器的控制信号

RD 读命令

WR 写命令

INTA 中断响应信号

HLDA 总线响应信号

二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式

以ADD @ X 为例 \mathbb{C}_2 取指周期 **AC** PC IR 控制 ALU CU 时钟 控制信号

二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式

2022/8/24

二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式

2022/8/24

9.2

形式地址 — MAR

IR IR_i

• MDR → MAR → 地址线 MDR₀ MAR_i

PC

控制信号

CU

• $1 \longrightarrow R$

地址线 ← MAR -

时钟

 $\mathbf{MAR_{i}}$

数据线 → MDR

数据线 ── MDR ↓ MDRo

• MDR \longrightarrow IR MDR₀ IR_i

AC

 \mathbf{Y}

有效地址 → Ad (IR)

控制信号 : ALU

Z

CPU 内部总线

(3) ADD @ X 执行周期

- MDR → MAR → 地址线 MDR_0 **MAR**_i
- $\cdot 1 \longrightarrow R$
- · 数据线 → MDR
- MDR \longrightarrow Y \longrightarrow ALU MDR_0 $\mathbf{Y_i}$
- $AC \longrightarrow ALU$ AC_0 ALU_i
- $(AC) + (Y) \longrightarrow Z$
- $\bullet Z \longrightarrow AC$ Z_0 AC_i

内

部总

线