Possion Regression

数据集主要来自参考教程:

https://github.com/mahat/PoissonRegression/blob/master/SimplePoissonRegression.py 数据集大概是根据学生目前的项目以及书写成绩得到其获奖次数。(原链接也没有说明)

1. 根据函数 show_hist():

可以得到如下图表,看得出来 Y 服从泊松分布

2. 采用统计包计算得到以下的结果:

Poisson Regression Results

Dep. Variable: Model: Method: Date: Time: converged:	Y Poisson MLE Wed, 17 Jan 2018 21:03:29 True		sson Df F MLE Df M 2018 Pseu 3:29 Log- True LL-N	No. Observations: Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null: LLR p-value:		200 196 3 0.2118 -182.75 -231.86 3.747e-21
========	coef	std err	z	P> z	[0.025	0.975]
x3	0.0702 -0.3698 0.7140 -4.8773	0.011 0.441 0.320 0.628	6.619 -0.838 2.231 -7.764	0.000 0.402 0.026 0.000	0.049 -1.234 0.087 -6.109	0.091 0.495 1.341 -3.646

3. 自己写的 possion regression:

结果求得的参数与模型几乎一样

具体思路:

似然函数估计:

Poisson Likelihood

$$\log \mathcal{L}(\lambda|\mathbf{y}) = \sum_{i=1}^{N} y_i \log \lambda_i - \lambda_i$$

Substitute the systematic component, $\lambda_i = \exp(\mathbf{x}_i \boldsymbol{\beta})$

$$\log \mathcal{L}(\beta|\mathbf{y}, \mathbf{X}) = \sum_{i=1}^{N} y_i \mathbf{x}_i \beta - \exp(\mathbf{x}_i \beta)$$

梯度推导如下:

$$\nabla \log L(\beta|y, X) = \sum_{i=1}^{N} yixi - \exp(xi\beta) xi$$

根据以上公式,通过 scipy 提供的优化函数,得到最优解。