Copyrighted by Hyunyoung Lee. Do not distribute!

CSCE 222 Discrete Structures for Computing – Fall 2023 Hyunyoung Lee Homework 5 Solutions

Total 100 + 10 (bonus) points.

Problem 1. (10 points) Section 11.1, Exercise 11.3

Solution. Ernie is right. We have $f \sim g$, since

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^2 + 2n}{n^2} = \lim_{n \to \infty} \left(1 + \frac{2}{n}\right) = 1.$$

Bert's argument that the absolute error $f(n) - g(n) \ge 2n$ is irrelevant, since the notation $f \sim g$ only claims that the relative error (f(n) - g(n))/g(n) vanishes. The relative error $(f(n) - g(n))/g(n) = 2n/n^2 = 2/n$ does vanish as $n \to \infty$, even though the absolute error gets arbitrarily large.

Problem 2. (20 points) Section 11.3, Exercise 11.14. [Requirement: Study the definition of \approx involving the inequalities carefully and use the definition to answer the questions.]

Solution. (The detailed explanation in blue and red fonts in (iii) is to explain why we take the maximum between n_0 and m_0 as the threshold for n for f = h, which may be omitted.)

(i) Property f = f obviously holds since

$$1 \cdot |f(n)| \le |f(n)| \le 1 \cdot |f(n)|$$

holds for all $n \ge 1$.

(ii) If f = g, then by definition there exist positive constants c and C and a positive integer n_0 such that

$$c|g(n)| \le |f(n)| \le C|g(n)|$$

holds for all $n \ge n_0$. Therefore,

$$\frac{1}{C}|f(n)| \le |g(n)| \le \frac{1}{c}|f(n)|$$

holds for all $n \ge n_0$, which implies g = f. Therefore, property (ii) follows.

- (iii) If (1) $f \approx g$ and (2) $g \approx h$, then this means that
 - (1) there exist positive constants c, C and a positive integer n_0 such that

$$c|g(n)|\leqslant |f(n)|\leqslant C|g(n)|\ \ {\rm hold}\ \ {\rm for\ \ all}\ \ n\geqslant n_0$$

that is,

$$c|g(n)| \leq |f(n)|$$
 and $|f(n)| \leq C|g(n)|$ hold for all $n \geq n_0$

that is,

- (1a) $c|g(n)| \leq |f(n)|$ holds for all $n \geq n_0$ and
- (1b) $|f(n)| \leq C|g(n)|$ holds for all $n \geq n_0$,

and

(2) there exist positive constants d, D and a positive integer m_0 such that

$$d|h(m)| \le |g(m)| \le D|h(m)|$$
 hold for all $m \ge m_0$

that is,

(2a)
$$d|h(m)| \leq |g(m)|$$
 holds for all $m \geq m_0$ and

(2b)
$$|g(m)| \leq D|h(m)|$$
 holds for all $m \geq m_0$.

Now, if $n_0 \ge m_0$ (i.e., n_0 is the $\max(n_0, m_0)$), then (2a) and (1a) can be combined as:

(2a) $d|h(n)| \leq |g(n)|$ and (1a) $c|g(n)| \leq |f(n)|$ holds for all $n \geq n_0 \geq m_0$ and by substituting |g(n)| in (1a) with d|h(n)|, we get

$$cd|h(n)| \leq |f(n)|$$
 holds for all $n \geq n_0 \geq m_0$. (3)

Similarly, for (1b) and (2b) if $n_0 \ge m_0$ (i.e., n_0 is the $\max(n_0, m_0)$):

(1b) $|f(n)| \le C|g(n)|$ and (2b) $|g(n)| \le D|h(n)|$ holds for all $n \ge n_0 \ge m_0$ and by substituting |g(n)| in (1b) with D|h(n)|, we get

$$|f(n)| \le CD|h(n)|$$
 holds for all $n \ge n_0 \ge m_0$. (4)

The conjunction of (3) and (4) yields

$$cd|h(n)| \leq |f(n)| \leq CD|h(n)|$$
 holds for all $n \geq n_0 \geq m_0$.

In the case of $m_0 \ge n_0$ (i.e., m_0 is the $\max(n_0, m_0)$), (2a) and (1a) can be combined as:

$$d|h(n)| \leqslant |g(n)| \text{ and } c|g(n)| \leqslant |f(n)| \text{ holds for all } n \geqslant m_0 \geqslant n_0$$
 and we get

$$cd|h(n)| \leq |f(n)|$$
 holds for all $n \geq m_0 \geq n_0$. (5)

Also, for (1b) and (2b) if
$$m_0 \ge n_0$$
 (i.e., m_0 is the $\max(n_0, m_0)$):
$$|f(n)| \le C|g(n)| \text{ and } |g(n)| \le D|h(n)| \text{ holds for all } n \ge m_0 \ge n_0$$
and we get

$$|f(n)| \le CD|h(n)|$$
 holds for all $n \ge m_0 \ge n_0$. (6)

The conjunction of (5) and (6) yields

$$cd|h(n)| \leq |f(n)| \leq CD|h(n)|$$
 holds for all $n \geq m_0 \geq n_0$.

It follows that

$$cd|h(n)| \le |f(n)| \le CD|h(n)|$$

holds for all $n \ge \max\{n_0, m_0\}$. This shows that f = h holds.

Problem 3. (15 points) Prove that $3n^2 + 41 \in O(n^3)$ by giving a direct proof based on the definition of big-O involving the inequalities and absolute values, as given in the lecture notes Section 11.4.

To do so, first write out what $3n^2 + 41 \in O(n^3)$ means according to the definition. Then, you need to find a positive real constant C and a positive integer n_0 that satisfy the definition.

Solution. By substituting $f(n) = 3n^2 + 41$ and $g(n) = n^3$ in the definition of big-O, we prove the claim: There exist a positive real constant C and a positive integer n_0 such that

$$|3n^2 + 41| \leqslant C |n^3|$$

holds for all $n \ge n_0$.

Since n > 0 and both f and g are positive valued functions, we can remove the absolute value functions and divide both sides of the inequality by n^3 to get

$$\frac{3n^2 + 41}{n^3} = \frac{3}{n} + \frac{41}{n^3} \leqslant C$$

which holds for all $n \ge 4$ with C = 2. Thus, by taking $(C, n_0) = (2, 4)$, the claim holds.

Note that there are infinitely many such value pairs for (C, n_0) that make the inequality holds for all $n \ge n_0$.

Problem 4. (15 points) Prove that $\frac{1}{2}n^2 + 5 \in \Omega(n)$ by giving a direct proof based on the definition of big- Ω involving the inequalities and absolute values, as given in the lecture notes Section 11.5.

To do so, first write out what $\frac{1}{2}n^2 + 5 \in \Omega(n)$ means according to the definition. Then, you need to find a positive real constant c and a positive integer n_0 that satisfy the definition.

Solution. By substituting $f(n) = \frac{1}{2}n^2 + 5$ and g(n) = n in the definition of Ω , we show that there exist a positive real constant c and a positive integer n_0 such that

$$c|n| \leqslant \left| \frac{1}{2}n^2 + 5 \right|$$

holds for all $n \ge n_0$.

Since n > 0 and both f and g are positive valued functions, we can remove the absolute value functions and divide both sides of the inequality by n to get

$$c \leqslant \left(\frac{1}{2}n^2 + 5\right)\frac{1}{n} = \frac{1}{2}n + \frac{5}{n}$$

which holds for all $n \ge 1$ with c = 1. Thus, by taking $(c, n_0) = (1, 1)$, the claim holds.

Again, note that there are infinitely many such value pairs for (c, n_0) that make the inequality holds for all $n \ge n_0$.

Problem 5. (10 + 10 = 20 points) Read Section 11.6 carefully before attempting this problem. Analyze the running time of the following algorithm using a step count analysis as shown in the Horner scheme (Example 11.40).

// search a key in an array a[1..n] of length n search(a, n, key) cost times for k in (1..n) do [n+1] c1 [n] if a[k]=key then c2 [1] return k сЗ endfor [n] c4 return false с5 [1]

- (a) Fill in the []s in the above code each with a number or an expression involving n that expresses the step count for the line of code.
- (b) Determine the worst-case complexity of this algorithm and give it in the Θ notation. Show your work and explain using the definition of Θ involving the inequalities.

Solution. (For part (b))

Let f(n) be the worst-case time complexity of this algorithm. Then, we have

$$f(n) = c1(n+1) + c2(n) + c3 + c4(n) + c5$$

= $(c1 + c2 + c4)n + (c1 + c3 + c5)$
 $\in \Theta(n)$.

Indeed, by the fact that c1, c2, c3, c4, and c5 are all positive real constants, if we let p = c1 + c2 + c4 > 0 and q = c1 + c3 + c5 > 0, then by taking $(c, C, n_0) = (p, p + q, 1)$ for instance, we have

$$p\cdot |n|\leqslant |pn+q|\leqslant p|n|+q|n|=(p+q)|n|\ \, \text{hold for all}\,\, n\geqslant 1.$$

Problem 6. (15 + 15 = 30 points) Read Section 11.6 carefully before attempting this problem. Analyze the running time of the following algorithm using a step count analysis as shown in the Horner scheme (Example 11.40).

// determine the number of digits of an integer n binary_digits(n) times int cnt = 1[1] c1 while (n > 1) do c2 [floor(log_2 (n)) + 1] cnt = cnt + 1[floor(log_2 (n))] сЗ n = floor(n/2.0)[floor(log_2 (n))] c4 [floor(log_2 (n))] endwhile c5 return cnt [1] с6

- (a) Fill in the []s in the above code each with a number or an expression involving n that expresses the step count for the line of code.
- (b) Determine the worst-case complexity of this algorithm as a function of n and give it in the Θ notation. Show your work and explain using the definition of Θ involving the inequalities.

Solution. (For part (b))

Let f(n) be the worst-case time complexity of this algorithm. Then, we have

$$f(n) = c1 + c2(\lfloor \log_2 n \rfloor + 1) + c3(\lfloor \log_2 n \rfloor) + c4(\lfloor \log_2 n \rfloor) + c5(\lfloor \log_2 n \rfloor) + c6$$

$$= (c2 + c3 + c4 + c5)\lfloor \log_2 n \rfloor + (c1 + c2 + c6)$$

$$\in \Theta(\log_2 n).$$

Indeed, by the fact that c1, c2, c3, c4, c5, and c6 are all positive real constants, if we let p = c2 + c3 + c4 + c5 > 0 and q = c1 + c2 + c6 > 0, then by taking $(c, C, n_0) = (\frac{p}{2}, p + q, 2)$ for instance, we have

$$\frac{p}{2} \cdot |\log_2 n| \le |p[\log_2 n] + q| \le p|\log_2 n| + q|\log_2 n| = (p+q)|\log_2 n|$$

holds for all $n \ge 2$. Taking p+q for C is straightforward. Justification of taking $\frac{p}{2}$ for c with $n_0=2$ is as follows. All the terms involved have nonnegative values, so we can remove the absolute value functions. Let $\lfloor \log_2 n \rfloor = m$ for a positive integer m (since $\log_2 n \ge 1$ for all $n \ge 2$). Then by the definition of $\lfloor \rfloor$, we have

$$m \le \log_2 n < m + 1. \tag{1}$$

Since $\frac{p}{2} > 0$, multiplying $\frac{p}{2}$ to all sides of (1) yields

$$\frac{p}{2}m \le \frac{p}{2}\log_2 n < \frac{p}{2}(m+1) = \frac{p}{2}m + \frac{p}{2}.$$
 (2)

Since $m \ge 1$, by extracting the blue parts from (2), we get

$$\frac{p}{2}\log_2 n < \frac{p}{2}m + \frac{p}{2} \leqslant \frac{p}{2}m + \frac{p}{2}m$$

and by substituting m back with $\lfloor \log_2 n \rfloor$, we get

$$\frac{p}{2}\log_2 n < \frac{p}{2}\lfloor\log_2 n\rfloor + \frac{p}{2}\lfloor\log_2 n\rfloor = 2 \cdot \frac{p}{2}\lfloor\log_2 n\rfloor = p\lfloor\log_2 n\rfloor < p\lfloor\log_2 n\rfloor + q$$

holds for all $n \ge 2$.

(The exact values for (c, C, n_0) may not be necessary. As long as the student gives some explanation why f(n) is in $\Theta(\log_2 n)$, it should be fine.)