Задача 0.1. Нека L_1 и L_2 са регулярни езици над азбука Σ , $L_1^c = \Sigma^* \setminus L_1$. Да се докаже, че:

- 1. $ind(\equiv_{L_1^c}) = ind(\equiv_{L_1})$.
- 2. $ind(\equiv_{L_1 \cap L_2}) \leq ind(\equiv_{L_1})ind(\equiv_{L_2}).$
- 3. $ind(\equiv_{L_1 \cup L_2}) \le ind(\equiv_{L_1})ind(\equiv_{L_2})$.
- 4. $ind(\equiv_{L_1^*}) \leq 2^{ind(L_1)}$.
- 5. $ind(\equiv_{L_1L_2}) \le 2^{ind(L_1)+ind(L_2)}$.

Задача 0.2. За краен детерминиран автомат $\mathcal{A} = \langle \Sigma, Q, s, \delta, F \rangle$ разглеждаме следната конструкция:

- 1. $Q^{(0)} = \{s\}, L_0 = \{s\}.$
- 2. Ако $L_i \neq \emptyset$, дефинираме:

$$L_{(i+1)} = \{\delta(p, a) \in Q \setminus Q^{(i)} \mid p \in L_i, a \in \Sigma\}$$

$$Q^{(i+1)} = Q^{(i)} \cup L_{i+1}.$$

1. Да се докаже, че има $i \leq |Q|$, за което $L_i = \emptyset$ и за всяко такова i,

$$Q^{(i)} = \{ p \mid \exists w \in \Sigma^* (s \xrightarrow{w}^*_{\mathcal{A}_1} p \}.$$

- 2. Да се докаже, че ако $L_i = \emptyset$, то $\mathcal{L}(\mathcal{A}) \neq \emptyset$ точно когато $Q^{(i)} \cap F \neq \emptyset$.
- 3. Да се докаже, че ако $\mathcal{L} \neq \emptyset$ е регулярен, то има дума $w \in \mathcal{L}$ с дължина $|w| \leq ind(\mathcal{L})$).
- 4. Да се докаже, че ако L_1 и L_2 са регулярни езици над азбука Σ , то следните са еквивалентни:
- 1. $L_1 \subseteq L_2$
- 2. за всяка дума $w \in \Sigma^*$ с $|w| \leq ind(\equiv_{L_1})ind(\equiv_{L_2})$, за която $w \in L_1$ е изпълнено, че $w \in L_2$.

Задача 0.3. Да се докаже, че $L_1, L_2 \subseteq \Sigma^*$ са регулярни езици, то следните са еквивалентни:

- 1. $L_1 = L_2$.
- 2. за всяка дума $w \in \Sigma^*$ с дължина $|w| \leq ind(L_1) + ind(L_2)$ е в сила, че:

$$w \in L_1 \iff w \in L_2.$$

Задача 0.4. Нека $A_i = \langle \Sigma, Q_i, I_i, \Delta_i, F_i \rangle$ са крайни автомати за i = 1, 2. Нека $\phi : Q_1 \to Q_2$ е биекция, за която:

- 1. $I_2 = \{\phi(s) \mid s \in I_1\},\$
- 2. $F_2 = \{ \phi(f) \mid f \in F_1 \},$

3. за всяко $a \in \Sigma \cup \{\varepsilon\}$ и $p,q \in Q_1$ следните са еквивалентни:

$$\langle p, a, q \rangle \in \Delta_1$$
 тогава и само тогава, когато $\langle \phi(p), a, \phi(q) \rangle \in \Delta_2$.

Да се докаже, че:

- 1. ако A_1 е детерминиран, то и A_2 е детерминиран.
- 2. за всеки $p,q \in Q_1$ и дума $w \in \Sigma^*$ и $n \in \mathbb{N}$:

$$p \stackrel{w}{\to}_{\mathcal{A}_1}^{(n)} q$$
 влече $\phi(p) \stackrel{w}{\to}_{\mathcal{A}_2}^{(n)} \phi(q)$.

- 3. $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$.
- 4. ϕ^{-1} е биекция от Q_2 в Q_1 , която има трите дадени свойства с разменени индекси $1\leftrightarrow 2$.
- 5. \mathcal{A}_1 е детерминиран тогава и само тогава, когато \mathcal{A}_2 .
- 6. $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$

3абележска~0.1. Биекция ϕ с горните свойства се нарича uзоморфизъм на крайни автомати. Съответно, когато такава функция съществува за автоматите \mathcal{A}_1 и \mathcal{A}_2 , казваме, че са изоморфии.

Задача 0.5. Нека $A_i = \langle \Sigma, Q_i, s_i, \delta_i, F_i \rangle$ са тотални крайни детерминирани автомати, за които $ind(\equiv_{\mathcal{L}} (\mathcal{A}_i)) = |Q_i|$ за i = 1, 2. Да се докаже, че:

- 1. ако $\sim_{\mathcal{A}_1} \subseteq Q_1 \times Q_1$ е релацията $p \sim_{\mathcal{A}_1} q$ точно тогава, когато $\mathcal{L}_{\mathcal{A}_1}(p) = \mathcal{L}_{\mathcal{A}_1}(q)$, то всеки клас на еквивалентност на $\sim_{\mathcal{A}_1}$ е синглетон.
- 2. всяко състояние $p \in Q_1$ е достижимо от s_1 в A_1 .
- 3. ако $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$, то \mathcal{A}_1 и \mathcal{A}_2 са изоморфни.

Упътване 0.1. Приложете Теоремата на Myhill-Nerode и разгледайте минимални тотални крайни детерминирани автомати за L_1 и L_2 . Разгледайте конструкциите върху автомати, които съответстват на операциите – допълнение, сечение, конкатенация и итерация – за да оцените броя на състоянията в (не)детерминиран автомат за съответния език (L_1^c , $L_1 \cap L_2$, L_1^* , L_1L_2). Ако автомата не е детерминиран, приложете конструкцията за детерминизация. Оценете състоянията на получения тотален краен детерминиран автомат за съответния език. Приложете Теоремата на Myhill-Nerode.

Упътване 0.2. 1. Приложете разсъжденията за обхождане в широчина към съответната ситуация.

- 2. Използвайте първата част и дефиницията за език на краен автомат.
- 3. Разгледайте минимален тотален краен детерминиран автомат c език \mathcal{L} . Приложете 1 и 2.
- 4. Това, че от 1 следва 2 е ясно. В обратната посока, от 2 към 1, съобразете, че $L_1 \subseteq L_2$ е еквивалентно на $L_1 \cap L_2^c = \emptyset$, където $L_2^c = \Sigma^* \setminus L_2$. Приложете подточка 3 към $L_1 \cap L_2^c$ заедно с неравенството от предишната задача $\operatorname{ind}(\equiv_{L_1 \cap L_2}) \leq \operatorname{ind}(\equiv_{L_1})\operatorname{ind}(\equiv_{L_2})$.

Упътване 0.3. Разгледайте тотални крайни детерминирани автомати $\mathcal{A}_i = \langle \Sigma, Q_i, s_i, \delta_i, F_i \rangle$ с езици $\mathcal{L}(\mathcal{A}_i) = L_i$ за i = 1, 2.

При предположение, че $Q_1\cap Q_2=\emptyset$ разгледайте алгоритъма за минимизация върху $\langle Q_1\cup Q_2,..,\delta_1\cup \delta_2,F_1\cup F_2\rangle$. Какво намира той? Какво означава това за състоянията s_1 и s_2 ?

- Упътване 0.4. 1. Забележете, че ако ϕ е биекция, то първото условие влече ϕ , ограничена до I_1 е биекция от I_1 в I_2 . Заключете, че $|I_2|=|I_1|=1$. Аналогично покажете, че ако δ_1 е функция, то δ_2 също е функция.
 - 2. Използвайте индукция по n.
 - 3. Използвайте доказаното в 2 и това, че $\phi(I_1) \subseteq I_2$ и $\phi(F_1) \subseteq F_2$.
 - 4. Това, че ϕ^{-1} е биекция би трябвало да е ясно. Тогава $Q_1 = \{\phi^{-1}(p) \mid p \in Q_2\}$. Това означава, че когато искаме да изчерпим елементите на Q_1 , може да го направим като изброяваме елементите на $p \in Q_2$ и прилагаме $\phi^{-1}(p)$. Оттук и равенството $\phi(\phi^{-1}(p)) = p$ задачата става синтактична.
 - 5. Приложете 1 и 4.
 - 6. Приложете 3 и 4.
- Улътване 0.5. 1. Ако $k = ind(\equiv_{\mathcal{L}} (\mathcal{A}_i))$, разгледайте $u_1, u_2, \ldots, u_k \in \Sigma^*$, които са несравними, тоест $u_i \not\equiv u_j$ за $i \not= j$. Разгледайте състоянията p_i , за които $s_1 \stackrel{u_i^*}{\to} p_i$. Използвайте, че $\mathcal{L}(p_i) = u_i^{-1}\mathcal{L}(\mathcal{A}_1)$, за да покажете, че p_1, \ldots, p_k са различни и от равенството $|Q_1| = k$ довършете.
 - 2. Продължете от 1.
 - 3. Ако q_1, \ldots, q_k са състоянията в \mathcal{A}_2 , за които $s_2 \stackrel{u_i}{\to}^* q_i$, от 1 и 2 следва, че $Q_2 = \{q_i \mid i \leq k\}$. Съответно $\phi: Q_1 \to Q_2$ с $\phi(p_i) = q_i$ е биекция. Проверете останалите свойства на изоморфизъм като използвате, че:

$$\mathcal{L}_{\mathcal{A}_1}(p_i) = u_i^{-1}\mathcal{L} = \mathcal{L}_{\mathcal{A}_2}(p_i)$$
, където $\mathcal{L} = \mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.