

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

VIETNAM - KOREA UNIVERSITY OF INFORMATION AND COMMUNICATION TECHNOLOGY

한-베정보통신기술대학교

Nhân bản – Phụng sự – Khai phóng

Graphs

CONTENT

- Terminology
- Graph Representations
- Graph Traversals

CONTENT

- Terminology
- Graph Representations
- Graph Traversals

• A graph G=(V,E), V and E are two sets

- V: finite non-empty set of vertices
- E: set of edges (pairs of vertices)

Undirected graph

• The pair of vertices representing any edge is unordered. Thus, the pairs (u,v) and (v,u) represent the same edge

Directed graph

each edge is represented by an ordered pair <u,v>

Examples

Graph G1:

- V(G1)={0,1,2,3}
- E(G1)={(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)}

Examples

Graph G2:

- V(G2)={0,1,2,3,4,5,6}
- E(G2)={(0,1), (0,2), (1,3), (1,4), (2,5), (2,6)}

G₂ is also a tree

Tree is a special case of graph

Examples

Graph G3:

- V(G3)={0,1,2}
- E(G3)={<0,1>,<1,0>,<1,2>}

Directed graph (digraph)

Complete Graph

- Complete Graph is a graph that has the maximum number of edges
- For undirected graph with n vertices, the maximum number of edges is n(n-1)/2
- For directed graph with n vertices, the maximum number of edges is n(n-1)

Example: G₁

Adjacent and Incident

- If (u,v) is an edge in an undirected graph,
 - Adjacent: u and v are adjacent
 - Incident: The edge (u,v) is incident on vertices u and v

- If <u,v> is an edge in a directed graph
 - Adjacent: u is adjacent to v, and v is adjacent from u
 - Incident: The edge <u,v> is incident on u and v

Subgraph

- A subgraph of G is a graph G' such that
 - V(G') ⊆ V(G)
 - $E(G') \subseteq E(G)$
- Some of the subgraph of G₁

• Some of the subgraphs of G₃

Path

- Path from u to v in G
 - a sequence of vertices u, i₁, i₂,...,i_k, v
 - If G is undirected: (u,i_1) , (i_1,i_2) ,..., $(i_k,v) \in E(G)$
 - If G is directed: $\langle u, i_1 \rangle, \langle i_1, i_2 \rangle, ..., \langle i_k, v \rangle \in E(G)$

Length

- The length of a path is the number of edges on it.
- Length of 0,1,3,2 is 3

Simple Path

• is a path in which all vertices except possibly the first and last are distinct.

 \Rightarrow 0,1,3,2 is simple path 0,1,3,1 is path but not simple

Cycle

–a simple path, first and last vertices are same.

 \Rightarrow 0,1,2,0 is a cycle

Acyclic graph

No cycle is in graph

Connected

- Two vertices u and v are connected if in an undirected graph G, ∃ a path in G from u to v
- A graph G is connected, if any vertex pair u,v is connected

Connected Component

- a maximal connected subgraph.
- Tree is a connected acyclic graph

Strongly Connected

- u, v are strongly connected if in a directed graph (digraph) G, ∃ a path in G from u to v.
- A directed graph G is strongly connected, if any vertex pair u,v is connected

Strongly Connected Component

a maximal strongly connected subgraph

Degree of Vertex

- is the number of edges incident to that vertex
- Degree in directed graph
 - Indegree
 - Outdegree
- Summation of all vertices' degrees are 2 | E |

undirected graph

directed graph in-degree out-degree

Weighted Edge

- In many applications, the edges of a graph are assigned weights
- These weights may represent the distance from one vertex to another
- A graph with weighted edges is called a network

CONTENT

- Terminology
- Graph Representations
- Graph Traversals

- Graph Representations
 - Adjacency Matrix
 - Adjacency Lists
 - Adjacency Multilists

Adjacency Matrix

- Let G = (V, E) with n vertices, $n \ge 1$. The adjacency matrix of G is a 2-dimensional $n \times n$ matrix, A
 - A(i, j) = 1 iff $(v_i, v_j) \in E(G)$ $(\langle v_i, v_i \rangle \text{ for a digraph})$
 - A(i, j) = 0 otherwise
- The adjacency matrix for an undirected graph is symmetric
- The adjacency matrix for a digraph need not be symmetric

...Graph Representations - Adjacency Matrix

Example

undirected: n²/2

directed: n²

symmetric

 G_4

Merits of Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{j=0}^{n-1} adj_mat[i][j]$
- For a digraph, the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Graph Representations - Adjacency Lists

Adjacency List

- Replace *n* rows of the adjacency matrix with *n* linked list
- Example (1)

Adjacency List

- Replace n rows of the adjacency matrix with n linked list
- -Example (2)

An undirected graph with n vertices and e edges => n head nodes and 2e list nodes

- Adjacency List
 - Data Structures
 - Each row in adjacency matrix is represented as an adjacency list

```
#define MAX_VERTICES 50

typedef struct node *node_pointer;

typedef struct node {
    int vertex;
    struct node *link;
};

node_pointer graph[MAX_VERTICES];
int n=0;    /* vertices currently in use */
```

CONTENT

- Terminology
- Graph Representations
- Graph Traversals

Traversal

Given G = (V,E) and vertex v, find or visit all $w \in V$, such that w connects v

- Depth First Search (DFS)
- Breadth First Search (BFS)

Applications

- Connected component
- Spanning trees
- Biconnected component

Depth-First Search (DFS)

 like depth-first search in a tree, we search as deeply as possible by visiting a node, and then recursively performing depth-first search on each adjacent node

Breadth-First Search (BFS)

 like breadth-first search in a tree, we search as broadly as possible by visiting a node, and then immediately visiting all nodes adjacent to that node

Depth First Search (DFS)

- Begin the search by visiting the start vertex v
 - If v has an unvisited neighbor, traverse it recursively
 - Otherwise, backtrack
- Very similar to preorder traversal of a binary tree (node, left, right)

• Example: Preorder

Algorithm

```
Depth_First_Search (VERTEX V){
    Visit V;
    Set the visit flag for the vertex V to TRUE;
    For all adjacent vertices Vi (i = 1, 2, ....., n) of V
        If (Vi has not been previously visited)
            Depth_First_Search (Vi)
}
```

- Time is O(n + e) for adjacency lists
- Time is $O(n^2)$ for adjacency matrices

...Graph Traversals - Depth First Search

```
#define FALSE 0
#define TRUE 1
short int visited[MAX VERTICES];
/* graph is represented as an adjacency list */
void dfs(int v){
       node_pointer w;
       visited[v]= TRUE;
       printf("%5d", v);
       for (w=graph[v]; w; w=w->link)
               if (!visited[w->vertex])
                      dfs(w->vertex);
```


...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

H

G

F

E

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A \in \mathbb{R} \longrightarrow B, H$$

$$B F \longrightarrow A, C, G, F, H$$

$$C F \longrightarrow B, D, F$$

$$D F \longrightarrow C, E, F$$

$$E_F \longrightarrow D, F$$

$$F_F \longrightarrow B, C, D, E, G$$

$$G F \longrightarrow B, F, H$$

$$H_F \longrightarrow A, B, G$$


```
Depth_First_Search (VERTEX V)
{
    Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A_F \longrightarrow B, H$$

$$B F \longrightarrow A, C, G, F, F$$

$$C F \longrightarrow B, D, F$$

$$D F \longrightarrow C, E, F$$

$$\mathsf{E}_{\mathsf{F}} \longrightarrow \mathsf{D}, \mathsf{F}$$

$$\exists F \longrightarrow B, C, D, E, G$$

$$G F \longrightarrow B, F, H$$

$$H_F \longrightarrow A, B, G$$

A B C D H G F E

```
Depth_First_Search (VERTEX V)
{
    Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A = \longrightarrow B, H$$
 $B = \longrightarrow A, C, G, F, H$
 $C = \longrightarrow B, D, F$
 $D = \longrightarrow C, E, F$
 $E = \longrightarrow D, F$
 $F = \longrightarrow B, C, D, E, G$
 $G = \longrightarrow B, F, H$

 $H_F \longrightarrow A, B, G$

A


```
Depth_First_Search (VERTEX V) {
Visit V;
```

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2,, n) of V if (Vi has not been previously visited)

Depth_First_Search (Vi)
}

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$


```
Depth_First_Search (VERTEX V)
{
Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$F_F \longrightarrow B, C, D, E, G$$

$$G F \longrightarrow B, F, H$$

$$H F \longrightarrow A, B, G$$

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B$$
, H
 $B au \longrightarrow A$, C , G , F , H
 $C au \longrightarrow B$, D , F
 $D au \longrightarrow C$, E , F
 $E au \longrightarrow D$, F
 $F au \longrightarrow B$, C , D , E , G
 $G au \longrightarrow B$, F , H
 $G au \longrightarrow A$, G

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $E au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$

 $H_F \longrightarrow A, B, G$


```
Depth_First_Search (VERTEX V)
{
    Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
        if (Vi has not been previously visited)
            Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$


```
Depth_First_Search (VERTEX V)
{
Visit V;

Set the visit flag for the vertex V to TRUE;
```

For all adjacent vertices Vi (i = 1, 2,, n) of V if (Vi has not been previously visited)

Depth_First_Search (Vi)
}

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A \xrightarrow{T} \longrightarrow B, H$$
 $B \xrightarrow{T} \longrightarrow A, C, G, F, H$
 $C \xrightarrow{F} \longrightarrow B, D, F$
 $D \xrightarrow{F} \longrightarrow C, E, F$
 $E \xrightarrow{F} \longrightarrow D, F$
 $F \xrightarrow{F} \longrightarrow B, C, D, E, G$
 $G \xrightarrow{F} \longrightarrow B, F, H$
 $H \xrightarrow{F} \longrightarrow A, B, G$

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $E au \longrightarrow D, F$
 $E au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

ABC


```
Depth_First_Search (VERTEX V)
{
Visit V;
Set the visit flag for the vertex V to TRUE;
For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

ABCDEFGH

- Breadth First Search (BFS)
 - Very similar to level-order traversal of a binary tree (left, node, right)

- Use a queue to track unvisited nodes
- For each node that is deleted from the queue,
 - add each of its children to the queue
 - until the queue is empty

Level-Order

Output

Α

Level-Order

Queue Output Init [A] -

Level-Order

Queue Output
Init [A] Step 1 [B,C] A

Dequeue A
Print A
Enqueue children of A

Level-Order

Queue Output
Init [A] Step 1 [B,C] A
Step 2 [C,D] A B

Dequeue B
Print B
Enqueue children of B

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C ,D]	АВ
Step 3	[D, E , F]	A B C

Dequeue C Print C Enqueue children of C

. . .

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C,D]	ΑВ
Step 3	[D,E,F]	ABC
Step 4	[E,F, G ,H]	A B C I

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C,D]	AB
Step 3	[D,E,F]	ABC
Step 4	[E,F,G,H]	ABCD
Step 5	[F,G,H]	A B C D E

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C,D]	АВ
Step 3	[D,E,F]	ABC
Step 4	[E,F,G,H]	ABCD
Step 5	[F ,G,H]	ABCDE
Step 6	[G,H, <mark>I</mark>]	A B C D E I

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C,D]	AB
Step 3	[D,E,F]	ABC
Step 4	[E,F,G,H]	ABCD
Step 5	[F,G,H]	ABCDE
Step 6	[G ,H,I]	ABCDEF
Step 7	[H,I]	ABCDEF G

Algorithm

```
bfs(v) { /* v is the starting vertex */
  push v into an empty queue Q;
  while Q is not empty do
         v = delete(Q);
         if v is not visited {
                  mark v as visited;
                  push v's neighbors into Q;
```

• Time is O(e) for adjacency lists and $O(n^2)$ for adjacency matrices


```
typedef struct queue *queue_pointer;
typedef struct queue {
    int vertex;
    queue_pointer link;
};
void addq(queue_pointer *, queue_pointer *, int);
int deleteq(queue_pointer *);
```



```
void bfs(int v){
       node_pointer w;
       queue pointer front, rear;
       front = rear = NULL;
       printf("%5d", v);
       visited[v] = TRUE;
       addq(&front, &rear, v);
       while (front) {
               v = deleteq(&front);
               for (w=graph[v]; w; w=w->link)
                      if (!visited[w->vertex]) {
                              printf("%5d", w->vertex);
                              addq(&front, &rear, w->vertex);
                              visited[w->vertex] = TRUE;
```


Adjacent Vertices

Visit [F, F, F, F, F, F, F]

Q: []

V:

Vertex

Adjacent Vertices

Vertex

A, B, G

В, Н

Adjacent Vertices

Visit [**T**, F, F, F, F, F, F]

Q: [**A**]

V:

Visit [T, F, F, F, F, F, F]

Q: []

v: A

Vertex

Adjacent Vertices

Д

Visit [T, F, F, F, F, F, F]

Q: []

 $V: A \rightarrow B, H$

Vertex

Adjacent Vertices

Д

Adjacent Vertices

A, C, G, F, H

B, H

B, D, F

A, B, G

Vertex

Visit [T, F, F, F, F, F, F, F]

Q: $V: A \rightarrow B, H$

Visit [T, **T**, F, F, F, F, F]

Q: [B]

v: $A \rightarrow B$, H

Vertex

Adjacent Vertices

Vertex

Adjacent Vertices

A B

Visit [T, T, F, F, F, F, F]

Q: [B]

v: $A \rightarrow B$, H

A B C D

F

Visit [T, T, F, F, F, F, F, T]

G

Q: [B, **H**]

v: $A \rightarrow B$, H

Vertex

Adjacent Vertices

A B **H**

Visit [T, T, F, F, F, F, T]

Q: [H]

v: **B**

Vertex

Adjacent Vertices

ABH

Visit [T, T, F, F, F, F, T]

Q: [H]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

ABH

Visit [T, T, F, F, F, F, T]

Q: [H]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

ABH

Visit [T, T, F, F, F, F, T]

Q: [H]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

A B H

A B C D H G F E

Visit [T, T, T, F, F, F, T]

Q: [H, C]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

ABHC

A B C D H G F E

Visit [T, T, T, F, F, F, T]

Q: [H, C]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

ABHC

A B C D H G F E

Visit [T, T, T, F, F, F, T, T]

Q: [H, C, G]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

Vertex

Adjacent Vertices

v:
$$B \rightarrow A, C, G, F, H$$

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [H, C, G, F]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

A B C D

Visit [T, T, T, F, F, T, T, T]

G

Q: [H, C, G, F]

v: $B \rightarrow A$, C, G, F, H

F

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [C, G, F]

v: H

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [C, G, F]

v: $H \rightarrow A, B, G$

Vertex

Adjacent Vertices

Vertex

Adjacent Vertices

Visit [T, T, T, F, F, T, T, T] [C, G, F] v: $H \rightarrow A, B, G$

Visit [T, T, T, F, F, T, T, T]

Q: [C, G, F]

v: $H \rightarrow A, B, G$

Vertex

Adjacent Vertices

Visit [T, T, T, F, F, T, T, T]

Q: [C, G, F]

v: $H \rightarrow A, B, G$

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [C, G, F]

V:

Adjacent Vertices

Visit [T, T, T, F, F, T, T, T]

Q: [G, F]

v: $C \rightarrow B, D, F$

Vertex

Adjacent Vertices

Vertex

B, H

Adjacent Vertices

Visit [T, T, T, F, F, T, T, T]

Q: [G, F]

v: C → B, D, F

Visit [T, T, T, F, F, T, T, T]

Q: [G, F]

v: $C \rightarrow B, D, F$

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, T, F, T, T, T]

Q: [G, F, D]

v: $C \rightarrow B, D, F$

Vertex

Adjacent Vertices

Visit [T, T, T, F, T, T, T]

Q: [G, F, D]

v: $C \rightarrow B, D, F$

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, T, T, T, T]

Q: []

V:

Adjacent Vertices

ABHCGFDE

SUMMARY

- Terminology
- Graph Representations
- Graph Traversals

Data Structures & Algorithms

ĐẠI HỌC ĐÀ NẰNG

ĐẠI HỌC ĐÀ NANG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN What pháng

Nhân bản – Phụng sự – Khai phóng

Enjoy the Course...!

Data Structures & Algorithms