Final Exam Review

Instrumental Variables

Assumptions and Tests

- The instrument is "strong enough" -- check its correlation with the causal state. It should be dependent with D.
- Exclusion Restriction -- The instrument is only associated with the outcome through the causal state
- If there's heterogeneity in the treatment effect, monotonicity.

Estimators

- Wald estimator
- TSLS -- can control when you don't have clean instruments!

Caveats

- Actually estimate LATEs! The ATE on the population induced into the treatment by the instrument
- We have to make the additional assumption of monotonicity

Instrumental Variables

Examples

- Draft lottery
 - Randomly chosen birthdays cause military service
 - Study the effect of military service on life outcomes (e.g. lifetime earnings)
- Experiments with non-compliance
 - Assignment to treatment causes treatment
 - Not all those assigned comply!
- Advertising
 - o Impressions cause clicks on ads, which can cause product purchases
 - Exclusion restriction can be tricky: do impressions causes purchases?

For a review of more applications:

Front-Door Criterion

• Assumptions:

Definition 3.3.3 (Front-Door)

A set of variables Z is said to satisfy the front-door criterion relative to an ordered pair of variables (X, Y) if:

- Z intercepts all directed paths from X to Y;
- (ii) there is no back-door path from X to Z; and
- (iii) all back-door paths from Z to Y are blocked by X.

• Estimators:

Theorem 3.3.4 (Front-Door Adjustment)

If Z satisfies the front-door criterion relative to (X,Y) and if P(x,z) > 0, then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x',z)P(x').$$
 (3.31)

Front-Door Criterion

Examples

- Smoking
 - Tar is the mechanism for the effect of smoking on lung cancer
- Military Service
 - Civilian workforce participation vs. military training are mechanisms for the effect of military service on lifetime earnings

Time-Series Estimation

- Treatment over all units:
 - Usually assume unconfoundedness
 - The Y₀ counterfactual continues on its trend, can be extrapolated with a model
 - The Y₁ counterfactual is as observed
- Treatment over some units
 - Might assume unconfoundedness
 - Can compare D=1 and D=0 groups to get the effect
 - Can use matching approaches
 - The propensity score matching example from homework
- What is change-score good for?
 - Controlling for constant confounders

Improvements (from M&W)

- The an effect on other variables that should be effected
- Show no effect on variables that shouldn't be effected.
- Consider meaningful subgroups (e.g. those who don't receive treatment, or those with large expected effects)
- Include additional adjustment variables -- we can still control for things!
- Compare time trend with untreated units
- If treatment is unapplied, does the effect shift back?
- How frequent are shifts in the outcome? How likely is the effect just noise?