

Figure 51.23: Let $f: \mathbb{R} \to \mathbb{R} \cup \{-\infty, +\infty\}$ be the piecewise function defined by f(x) = x+1 for $x \geq 1$ and $f(x) = -\frac{1}{2}x + \frac{3}{2}$ for x < 1. Its epigraph is the shaded blue region in \mathbb{R}^2 . The line $\frac{1}{2}(x-1)+1$ (with normal $(\frac{1}{2},-1)$ is a supporting hyperplane to the graph of f(x) at (1,1) while the line $\frac{1}{2}(x-1)+1-\epsilon$ is the hyperplane associated with the ϵ -subgradient at x=1 and shows that $u=\frac{1}{2}\in\partial_{\epsilon}f(x)$.

The set $\partial_{\epsilon} f(x)$ can be defined in terms of the conjugate of the function h_x given by

$$h_x(y) = f(x+y) - f(x)$$
, for all $y \in \mathbb{R}^n$.

Proposition 51.32. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be any proper convex function. For any $\epsilon > 0$, if h_x is given by

$$h_x(y) = f(x+y) - f(x)$$
, for all $y \in \mathbb{R}^n$,

then

$$h_x^*(y) = f^*(y) + f(x) - \langle x, y \rangle$$
 for all $y \in \mathbb{R}^n$

and

$$\partial_{\epsilon} f(x) = \{ u \in \mathbb{R}^n \mid h_x^*(u) \le \epsilon \}.$$

Proof. We have

$$h_x^*(y) = \sup_{z \in \mathbb{R}^n} (\langle y, z \rangle - h_x(z))$$

$$= \sup_{z \in \mathbb{R}^n} (\langle y, z \rangle - f(x+z) + f(x))$$

$$= \sup_{x+z \in \mathbb{R}^n} (\langle y, x+z \rangle - f(x+z) - \langle y, x \rangle + f(x))$$

$$= f^*(y) + f(x) - \langle x, y \rangle.$$

Observe that $u \in \partial_{\epsilon} f(x)$ iff for every $y \in \mathbb{R}^n$,

$$f(x+y) \ge f(x) - \epsilon + \langle y, u \rangle$$