OBJETIVOS

- Hoje continuamos nosso estudo do protocolo TCP
- Foco no Controle de Congestionamento

CONTROLE DE CONGESTIONAMENTO

• O <u>controle de fluxo</u> permite à origem estimar a capacidade do destino:

CONTROLE DE CONGESTIONAMENTO

- O controle de fluxo permite à origem estimar a capacidade do destino:
- Entre a origem e destino: a rede!
- O controle de congestionamento permite à origem estimar a capacidade da rede

Slow Start	Um mecanismo de controle de congestionamento que inicia a transmissão de dados em uma taxa baixa e aumenta exponencialmente até detectar perda de pacotes.	Rápido aumento da taxa de transmissão até o primeiro sinal de congestionamento, minimizando o tempo ocioso da rede.	Tahoe, Reno, New Reno, Vegas, BBR
Congestion Avoidance	Após o slow start, aumenta linearmente a taxa de transmissão para evitar congestionamento.	Evita o congestionamento pela moderação do crescimento da taxa de transmissão conforme a capacidade da rede é aproximada.	Tahoe, Reno, New Reno, Vegas, BBR, CUBIC
Fast Retransmit	Reduz o tempo necessário para recuperar um pacote perdido ao retransmitir imediatamente após detectar várias duplicatas de ACKs.	Melhora o desempenho em condições de perda de pacotes, reduzindo a latência de recuperação.	Tahoe, Reno, New Reno
Fast Recovery	Após uma retransmissão rápida, diminui a janela de	Permite uma recuperação mais rápida do	Reno, New Reno, CUBIC

congestionamento apenas congestionamento

		<u> </u>	
Explicit Congestion Notification (ECN)	Permite que os equipamentos de rede notifiquem o remetente sobre o início do congestionamento antes que a perda de pacotes ocorra.	Permite ajustes proativos no controle de congestionamento, reduzindo a perda de pacotes e melhorando o throughput geral.	DCTCP, opciona BBR e C
Selective Acknowledgment (SACK)	Permite ao receptor informar ao remetente exatamente quais pacotes foram recebidos com sucesso, permitindo a retransmissão seletiva de pacotes perdidos.	Aumenta a eficiência em ambientes com alta taxa de perda de pacotes ao evitar retransmissões desnecessárias.	Reno, N Reno, Sa Vegas
Proportional Rate Reduction (PRR)	Algoritmo que ajusta a taxa de envio de dados após uma perda de pacote para coincidir com a taxa na qual a rede pode transmitir dados com sucesso.	Reduz a latência de recuperação após perda de pacote e melhora a utilização da rede em cenários de congestionamento.	CUBIC,

1.565

RELACIONAMENTO DE MECANISMOS DE CONGESTIONAMENTO

Relação entre mecanismos e trigger

Algoritmo	Ano	Principais Características	Contexto de Uso Ideal	Vantagens	Desvantagens
TCP Tahoe	1988	Início lento, evitação de congestionamento e retransmissão rápida	Redes iniciais de baixa velocidade e confiabilidade	Implementação simples e robusta	Reage lentamente a mudanças de estado da rede
TCP Reno	1990	Recuperação rápida adicionada ao Tahoe	Redes com confiabilidade moderada e latência estável	Melhora na gestão de uma única perda de pacote	Problemas com várias perdas consecutivas
TCP New Reno	1999	Recuperação rápida aprimorada	Ambientes com perda múltipla e conexões longas	Eficiente em cenários de múltiplas perdas de pacote	Complexidade de controle aumentada
TCP Vegas	1994	Detecção proativa de congestionamento	Redes com boas condições de	Evita congestionamentos antes de ocorrerem	Desempenho varia com a precisão do

OS NAIS

mais

					1909 print (21.5), 2 sp. 1 sc.
TCP SACK	1996	Reconhecimento seletivo, otimiza a retransmissão	Redes com condições variáveis e perdas esporádicas	Eficiente em recuperar múltiplas perdas de pacote	Mais custoso em termos de cabeçalhos de pacotes
HighSpeed TCP	2003	Janela de congestionamento cresce rapidamente	Redes de longa distância e alta capacidade	Utiliza eficientemente grandes larguras de banda	Pode ser agressivo demais para redes menores
CUBIC	2008	Escala a janela de congestionamento usando uma curva cúbica	Redes de banda larga com alta capacidade	Melhor desempenho em redes de alta velocidade	Pode ser ineficaz em redes de baixa capacidade
TCP BBR	2016	Baseia-se na medição de largura de banda e RTT, independente de perdas	Redes modernas de alta velocidade e internet global	Consistência e eficiência em diferentes condições de rede	Pode enfrentar problemas com variações de rede persistentes

MOS ONAIS

os mais

O algoritmo de BBR contém quatro fases: *Startup*, *Drain*, *ProbeBandwidth* e *ProbeRTT* [23].

1. Startup:

- a. Slow start (New Reno);
- b. Para cada pacote enviado é calculada uma amostra de RTT;
- c. RTTP = RTTmin (nos últimos dez segundos);
- d. Análise da taxa de entrega para cada ACK recebido. Caso o crescimento da taxa de entrega fique estagnado por três RTTs consecutivos (indicador de descoberta do gargalo da largura de banda da rede pelo BBR), o mesmo vai para fase de *Drain*.

2. Drain:

- a. Para cada pacote enviado é calculado uma amostra de RTT;
- b. RTTP = RTTmin (nos últimos dez segundos);
- c. Redução da taxa de entrega para uma parcela do produto da estimativa periódica da largura de banda disponível (BWBTL) e Tempo de progagação de ida e volta (RTTP);
- d. O valor bandiwdth delay product²² (BDP) é encontrado através da equação BDP = (RTTP x BWBTL);
- e. CWND = BDP.

3. ProbeBandwidth:

- a. Fase de maior duração no fluxo, ativada periodicamente durante todo período de transmissão;
- b. Propositalmente a taxa de entrega é alterada para um valor maior que o valor BDP;
- volta para a fase *Drain*, com valores reduzidos de taxa de entrega para uma parcela do BDP.

4. ProbeRTT:

- a. Fase que é ativada caso o valor do RTTP fique inalterado por dez segundos durante a transmissão;
- b. Interrupção do ProbeBandwidth.
- c. Ocorre uma remedição do RTTP.

- Se ocorrer recebimento de três ACKs duplicados:
 - a. Não uso do algoritmo de Slow Start;
 - b. ssthresh = (CWND / 2);
 - c. Retransmissão do segmento ausente com o Fast Retransmit;
- II. Artificial Inflation¹⁸ com Fast Recovery:
 - a. CWND = sshresh + 3 * MSS:
 - b. A cada ACK duplicado do segmento que ocasionou o Fast Retrasmit,CWND = CWND + 1:
- III. Após às ocorrências de novos ACKs recebidos com sucesso com uso do Fast Recovery:
 - a. CWND = ssthresh (com o valor do momento da perda);
 - b. Encerramento do uso do algoritmo Fast Recovery;
 - c. Execução do Congestion Avoidance com AIMD, com aumento da
 CWND maneira linear, mas diminuindo exponencialmente.

Onde,

- C é uma variável escalar auxiliar da função Cubic;
- T é tempo da redução da janela de congestionamento;
- CWNDmáx é tamanho da janela antes da redução;
- CWND é o valor que definirá como ocorrerá o crescimento da janela;
- K é período necessário para função conseguir chegar em CWNDmáx sem a ocorrências de eventos de perdas. O cálculo da variável K é mostrado Equação 2:

$$K = \frac{\sqrt[3]{CWNDm\acute{a}x \cdot \beta}}{C}$$

Equação 2 - Período necessário para atingir CWNDmáx.

β é fator de redução multiplicativo.

Fig. 4: Cubic function used for the congested window size (cwnd).

TAXONOMIA

Taxonomia por Loss, Hybrid and Delay

Throughput	Medida da taxa de dados transmitidos com sucesso em uma conexão durante um período de tempo especificado.	Indica a eficiência do algoritmo em utilizar a capacidade da rede.
Fairness	Grau em que um algoritmo de congestionamento distribui a largura de banda de forma justa entre os fluxos.	Importante para garantir que nenhum fluxo domine a largura de banda disponível.
RTT Fairness	Igualdade na distribuição de largura de banda entre conexões com diferentes RTTs.	Avalia como o algoritmo lida com a diversidade de latências na rede.
Utilização da Rede	Percentual da capacidade da rede efetivamente usada pelo tráfego transmitido.	Mede a eficácia do algoritmo em maximizar o uso dos recursos de rede.
Latência	Tempo total que um pacote leva para viajar do remetente ao destinatário.	Uma métrica crucial para aplicações sensíveis ao tempo, como VoIP e jogos online.
Perda de Pacotes	Porcentagem de pacotes que são perdidos durante a transmissão e não chegam ao destinatário.	Reflete a robustez do algoritmo em condições de rede instáveis ou sobrecarregadas.
Jitter	Variação no tempo de chegada de pacotes	Importante para aplicações de tempo

CONGESTIONAMENTO EM RELAÇÃO AO CONTEXTO

Congestionamento e IOT

CONGESTIONAMENTO EM RELAÇÃO AO CONTEXTO

Congestionamento e Cloud

VISÃO GERAL

OBRIGADO!

