SDD_Graphes

I/ Vocabulaire des graphes

1/ Exemples et définition

On appelle **graphe** la donnée d'un ensemble fini V de sommets et d'un ensemble E de liens entre eux.

Quelques exemples de graphes au quotidien :

Les liens sont le choix d'un sommet de départ (appelé S1 ici) et d'un sommet d'arrivée (appelé S2 ici).

- Si ces liens sont <u>symétriques</u>, c'est-à-dire que l'on, peut aller de S1 à S2 mais aussi de S2 à S1, le graphe est **non-orienté** : chacun d'entre eux peut être représenté par une <u>arête</u>.
- A l'inverse, le graphe est **orienté** et les chemins possibles sont représentés par des <u>arcs</u>.

1

• Des <u>poids</u> peuvent être associés aux liens d'un graphe (orienté ou non). On parle alors de graphes **pondéré**.

Quelques exemples pour illustrer les définitions ci-dessus :

Graphe non orienté

2 3 4

Graphe orienté

Graphe pondéré

2/ Graphes non orientés

- Les liens d'un graphe non orienté s'appellent des arêtes.
- Une chaîne est une suite (finie) consécutives d'arêtes. Par exemple, D-M-J-V-G sur le graphe à droite.
- Un graphe est connexe s'il existe une chaîne reliant entre tous sommets.
- Si une **chaîne** mène d'un sommet à lui-même , on parle alors de **cycle**. Par exemple H-M-V-B-R-H sur le graphe à droite.

Remarque: un graphe ne comportant aucun cycle est un arbre.

3/ Graphes orientés

- Les liens d'un graphe orienté s'appellent des arcs.
- Un **chemin** est une suite (finie) consécutives d'arcs. Par exemple, 4-3-2 sur le graphe à droite.
- Un graphe est connexe s'il existe un chemin pour tous sommets, chaque arc étant transformé en arête. C'est le cas pour le graphe à droite.

II/ Implémentations des graphes

1/ Différentes méthodes

Plusieurs modes de représentation peuvent être implémentées pour stocker des graphes : matrices d'adjacences, liste des voisins, des successeurs ou des prédécesseurs. Une matrice notée

2/ Matrice d'adjacence

Rappel:

Une **matrice** est un tableau de nombres et peut être représentée par une liste de listes en langage Python.

Représentation en Python A = [[1,2,3],[4,5,6],[7,8,9]] print(A[1][2]) # Attendu : 6

Un graphe peut être représenté par une **matrice d'adjacence** : pour **tout lien existant** entre deux sommets (ce sont des sommets dits adjacents ou voisins), on donne la valeur « 1 » **sinon** on donne « 0 ». Si le graphe est <u>pondéré</u>, on peut indiquer la valeur de chaque poids dans la matrice.

Voici un exemple de $\underline{\text{graphes}}$ avec leur $\underline{\text{matrice d'adjacence}}$:

<u>pondéré</u>					
	a	b	C	d	e
a	0	1	0	1	0
b	0	0	0	1	0
c	1	0	0	0	0
d	1	0	0	0	1
e	0	0	0	0	0

3/ Liste d'adjacence

Pour commencer, on définit une liste des sommets du graphe. À chaque élément de cette liste, on associe une autre liste qui contient les sommets lié à cet élément.

Voici un exemple:

Un graphe

et sa liste d'adjacence (ou des voisins)

Pour les graphes **orientés**, il est nécessaire de définir 2 listes : la liste des successeurs et la liste des prédécesseurs. Soit un arc allant d'un sommet B vers un sommet A (flèche de B vers A). On dira que B est un successeur de A et que A est un prédécesseur de B.

Liste des prédécesseurs

Source : site pixies de David Roche

Il est possible de travailler avec des listes d'adjacences en Python en utilisant les dictionnaires :

Voici un exemple :

Le choix entre matrice d'adjacence et liste des voisins se fait surtout en fonction de la **densité** du graphe (nombre important de liens) : plus il est dense, plus la matrice d'adjacence devient intéressante. Le type d'algorithme utilisé influence également ce choix.