MTH 207A: Assignment 3

- **P 1.** Let Y_1 , Y_2 , Y_3 , and Y_4 be four random variables such that $\mathbb{E}(Y_1) = \theta_1 \theta_3$, $\mathbb{E}(Y_2) = \theta_1 + \theta_2 \theta_3$, $\mathbb{E}(Y_3) = \theta_1 \theta_3$, and $\mathbb{E}(Y_4) = \theta_1 \theta_2 \theta_3$, where θ_i 's are unknown for $i = 1, \ldots, 4$. Then which one is true
 - 1. θ_1 and θ_3 are estimable
 - 2. $\theta_1 + \theta_2$ is estimable
 - 3. $\theta_1 \theta_3$ is estimable
 - 4. θ_2 are estimable.
- **P 2.** Prove that in a linear regression model $\mathbb{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$, if X is of full rank then every $\mathbf{l}'\boldsymbol{\beta}$ is estimable.
- **P 3.** Consider the model $\mathbb{E}(y_1) = 2\beta_1 \beta_2 \beta_3$, $\mathbb{E}(y_2) = \beta_2 \beta_4$, $\mathbb{E}(y_3) = \beta_2 + \beta_3 2\beta_4$ with usual assumptions. Describe the estimable functions.
- **P 4.** Consider the model $\mathbb{E}(y_1) = \beta_1 + \beta_2$, $\mathbb{E}(y_2) = \beta_1 \beta_2$, $\mathbb{E}(y_3) = \beta_1 + 2\beta_2$ with usual assumptions. Obtain the BLUE of $2\beta_1 + \beta_2$ and find its variance.
- **P** 5. Prove that for all the estimable linear functions $l'\beta$, $l'\hat{\beta}$ is invariant to the choice of g-inverse.
- **P 6.** For a full rank regression model, derive the BLUE $\hat{\beta}$ of β using least squares method. Find the expectation and variance of $\hat{\beta}$.