

<u>Help</u>

sandipan_dey >

Next >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivatives / Lecture 7: Directional derivatives

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

Previous

43:50:43

☐ Bookmark this page

Lecture due Aug 18, 2021 20:30 IST Completed

Explore

Unit vector given an angle

2.0/2 points (graded)

Let $\hat{m{u}}$ be a unit vector that makes an angle $m{ heta}$ with the positive $m{x}$ -axis.

Enter the missing coefficients in terms of $m{ heta}$ that describe the directional derivative in the direction of $\hat{m{u}}$.

Solution:

By drawing a right triangle whose hypotenuse is \hat{u} , we see that the unit vector in the direction of θ is

$$\hat{u} = \langle \cos \theta, \sin \theta \rangle.$$

Then

$$D_{\hat{u}}f\left(x,y
ight)=
abla f\left(x,y
ight)\cdot\hat{u}=\cos heta f_{x}\left(x,y
ight)+\sin heta f_{y}\left(x,y
ight).$$

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

Practice

1/1 point (graded)

Let $f(x,y)=x^2y^3-xe^y$. Find the directional derivative of f at the point (3,0) in the direction $heta=rac{\pi}{6}$.

Solution:

We have

$$f_x = 2xy^3 - e^y ext{ and } f_y = 3x^2y^2 - xe^y.$$

So

$$abla f = \langle 2xy^3 - e^y, 3x^2y^2 - xe^y
angle$$

and

$$abla f(3,0) = \langle -1, -3 \rangle.$$

Then we compute

$$D_{\hat{u}}f\left(3,0
ight)=
abla f\left(3,0
ight)\cdot\hat{u}=\left\langle -1,-3
ight
angle \cdot\left\langle \cos\left(\pi/6
ight),\sin\left(\pi/6
ight)
ight
angle =-rac{\sqrt{3}}{2}-rac{3}{2}.$$

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

5. Directional derivatives given an angle

Hide Discussion

Topic: Unit 2: Geometry of Derivatives / 5. Directional derivatives given an angle

Add a Post

Show all posts

There are no posts in this topic yet.

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

<u>Donate</u>

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>