Capitolo 1

Implementazione di procedure di decisione per frammenti Binding in Vampire

(descrizione dell'approccio, minime modifiche al kernel, utilizzo di funzionalità esistenti,)

1.1 Algoritmo di Classificazione

Figura 1.1: Classificatore

La precondizione più importante per la correttezza dell'algoritmo di decisione è che la formula faccia parte del frammento $\forall 1B$. Per questo motivo è stato creato un classificatore che prende in input una formula rettificata e restituisce l'elemento del frammento a cui appartiene. Una formula è rettificata se non contiene \top o \bot . L'algoritmo non fa altro che verificare la forma sintattica della formula e capisce a quale grammatica della sezione ?? appartiene. Per questo scopo sono state create due funzioni delle Classificatore Esterno (Algoritmo 1) e Classificatore Interno (Algoritmo 3). La prima verifica la parte della formula senza quantificatori mentre la seconda verifica la parte interna ai quantificatori e confronta i termini dei letterali. Entrambi gli algoritmi hanno una struttura di visita dell'albero sintattico in postOrder e hanno una complessità lineare rispetto alla dimensione della formula.

Algorithm 1: Classificatore esterno

```
Firma: classify(\varphi) Input: \varphi Una formula rettificata
Output: Un elemento dell'enumerazione Fragment
switch \varphi do
    case Literal do
       return ONE_BINDING;
    case A[\land,\lor]B do
       return compare(classify(A), classify(B));
    end
    case \neg A do
       return classify(A).complementary();
    case [\forall,\exists]A do
       sub := \varphi;
       connective := connective of \varphi;
       repeat
           sub := subformula of sub;
           connective := connective of sub;
       until connective \notin \{\forall, \exists\};
        (fragment, \_) := innerClassify(sub);
       return fragment;
    end
    case A \Leftrightarrow B do
       return compare(classify(A \Rightarrow B), classify(B \Rightarrow A));
    end
    case A \oplus B do
       return classify(A \Leftrightarrow B).complementary();
    case A \Rightarrow B do
       return compare(classify(\neg A), classify(B));
   end
end
```

Algorithm 2: Compare esterno

```
Firma: compare (A, B) Input: A, B due elementi dell'enumerazione Fragment

Output: Un elemento dell'enumerazione Fragment

if A = B then

| return A;
end

if One\_Binding \notin \{A, B\} then

| return None;
end

return max(A, B);
```

Il classificatore esterno si appoggia ad una funzione ausiliaria chiamata compare che prende in input due elementi dell'enumerazione Fragment e restituisce il frammento risultante dalla combinazione booleana (\land, \lor) dei due frammenti. La combinazione di due 1B è sempre un 1B mentre la combinazione di un 1B con un CB o DB è sempre un CB o DB. Infine la combinazione di un CB con un CB fa parte del frammento Boolean Binding che però in questa sezione verrà chiamato None. Per la comparazione è

stato creato un ordinamento dei frammenti che segue una struttura a rombo:

Dove 1B è il minimo e None è il massimo. Il risultato è un reticolo e la funzione compare restituisce l'estremo superiore dei due frammenti. La funzione complementary restituisce il frammento della negazione di una formula di un determinato frammento. In particolare il complementare di un 1B è 1B mentre il complementare di un CB è DB e viceversa.

Algorithm 3: Classificatore interno

```
Firma: innerClassify(\varphi) Input: \varphi Una formula rettificata
Output: Una coppia (Fragment, Literal)
switch \varphi do
   case Literal\ l\ do
       return (ONE\_BINDING, l);
   end
   case A[\land,\lor]B do
       return innerCompare(innerClassify(A), innerClassify(B), connective of <math>\varphi);
   end
   case \neg A do
       return innerClassify(A).complementary();
   case A[\Rightarrow, \Leftrightarrow, \oplus]B do
       return innerCompare(innerClassify(A), innerClassify(B), connective of <math>\varphi);
   end
   else
       return (None, null);
   end
end
```

La struttura del classificatore interno è molto simile a quella del classificatore esterno, mentre il comparatore interno è leggermente più complesso. Il caso base è quando la formula è un singolo letterale che è sempre un 1B. La visita in post Order restituisce una coppia (Fragment, Literal) che rappresenta il frammento a cui appartiene la formula e un letterale di rappresentanza della formula in questo caso il letterale più a sinistra. Il letterale serve a mantenere una reference alla lista di termini delle formule del frammento 1B.

Algorithm 4: Compare interno

```
Firma: innerCompare(A, B, con) Input: A, B due coppie (Fragment, Literal), con un connettivo
Output: Una coppia (Fragment, Literal)
switch A.first, B.first, con do
   case One_Binding, One_Binding, __ do
      if A.second has same terms of B.second then
          return A;
      \mathbf{end}
       else if conn = \wedge then
          return (Conjunctive_Binding, null);
       end
      else if conn = \vee then
          return (Disjunctive_Binding, null);
      end
   end
   case [One_Binding, Conjunctive_Binding | Conjunctive_Binding, One_Binding], \wedge do
      return (Conjunctive_Binding, null);
   end
   case [One_Binding, Disjunctive_Binding | Disjunctive_Binding, One_Binding], ∨ do
      return (Disjunctive_Binding, null);
   end
   case Conjunctive_Binding, Conjunctive_Binding, ∧ do
      return (Conjunctive_Binding, null);
   end
   case Disjunctive\_Binding, Disjunctive\_Binding, \vee do
      return (Disjunctive_Binding, null);
   end
end
return (None, null);
```

La combinazione booleana di due frammenti 1B (all'interno di un quantificatore) può portare a tre diversi risultati. Se i termini dei letterali di rappresentanza sono uguali allora la combinazione è ancora un 1B altrimenti la combinazione è un CB se il connettivo è \land e un DB se il connettivo è \lor . Il termine null viene usato come sostituto del letterale di rappresentanza in formule del frammento CB e DB in quanto sono una combinazione di più 1B e non hanno un letterale di rappresentanza. Due frammenti CB rimangono CB solo se il loro connettivo è \land . La combinazione di un 1B con un CB è un CB se il connettivo è \land . Stesso discorso per i DB e il connettivo \lor . In tutti gli altri casi la combinazione è None. Nell'algoritmo 4 sono stati omessi i casi con connettivi \Rightarrow , \Leftrightarrow , \oplus in quanto non sono riconducibili a formule composte da \land e \lor come è stato fatto ad esempio nell'algoritmo 1. Con la funzione complementary applicata ad una coppia: (Fragment, Literal).complementary() si intende la coppia (Fragment.complementary(), Literal).

1.2 Preprocessing

Figura 1.2: Struttura del Preprocessing

In questa sezione verrà descritto l'algoritmo di preprocessing utilizzato per trasformare una formula in input del frammento 1B o CB in una struttura trattabile dall'algoritmo di decisione. Per utilizzare il SatSolver di Vampire per la ricerca degli implicanti è necessario clausificare la formula. Inoltre per evitare un esplosione esponenziale di formule causate dalle forme NNF e CNF è necessario utilizzare tecniche di naming. Qui sorgono i primi problemi visto che ne la clausificazione ne il naming sono processi conservativi rispetto ai frammenti. Ad esempio la semplice formula del frammento 1B $\forall x_1(p_1(x_1)) \lor p_2$ clausificata diventa $\{\{p_1(x_1), p_2\}\}$ che fa parte del frammento DB. L'approccio utilizzato è stato quello di creare una nuova formula ground che rappresenta la struttura booleana esterna della formula originale, applicare le funzioni standard di preprocessing e mantenere una serie di strutture per risalire ai componenti originali. Per questo scopo viene introdotto un nuovo insieme di simboli di predicato $\Sigma_b = \{b_1, b_2, \ldots\}$. I predicati di Σ_b con arità 0 saranno chiamati booleanBinding e saranno associati ad una formula del frammento 1B o CB. I predicati di Σ_b con arità n>0 saranno chiamati literalBindign e fungeranno da rappresentati dei τ -Binding delle formule 1B. Il preprocessing seguirà pressochè questa struttura:

- 1. Rettificazione
- 2. Trasformazione in ENNF
- 3. Creazione della formula booleana esterna (FBE) e associazione dei booleanBinding
- 4. Naming della FBE
- 5. Trasformazione in NNF della FBE
- 6. Creazione dei literalBinding e Sat-Clausificazione delle formule mappate dai booleanBinding
- 7. Creazione delle Sat-Clausole della FBE

La rettificazione e la trasformazione in ENNF sono processi conservativi rispetto ai frammenti e quindi verranno applicate direttamente le funzioni standard di Vampire. La creazione della FBE e l'associazione dei booleanBinding avviene tramite l'algoritmo 5.

Algorithm 5: Top Boolean Formula

```
Firma: topBooleanFormula(\varphi)
Input: \varphi una formula rettificata
Output: Una formula ground
GlobalData: bindingFormulas una mappa da booleanBinding a formula switch \varphi do
   case Literal l do
       return new AtomicFormula(1);
   end
   case A[\land, \lor]B do
       return new JunctionFormula(topBooleanFormula(A), connective of \varphi,
        topBooleanFormula(B));
   end
   case \neg A do
       return new NegatedFormula(topBooleanFormula(A));
   case [\forall,\exists]A do
       b = newBooleanBinding();
       bindingFormulas[b] := \varphi;
       return new AtomicFormula(b);
   end
   case A[\Leftrightarrow,\Rightarrow,\oplus]B do
      return new BinaryFormula(A, connective of \varphi, B);
   end
end
```

L'algoritmo prende in input una formula rettificata e restituisce una formula ground sostituendo le sottoformule quantificate con un nuovo booleanBinding aggiungendo la sottoformula originale alla mappa bindingFormulas. Da adesso in poi qualunque modifica fatta alla FBE preserverà l'appartenenza al frammento originale. Gli step successivi sono quindi applicare le funzioni standard di Vampire per il naming e la trasformazione in NNF. La trasformazione in NNF potrebbe portare alla negazione di qualche booleanBinding e va quindi aggiunta alla mappa bindingFormulas la formula negata associata.

end

A questo punto inizia il processo di SatClausificazione delle formule interne (quelle associate ai booleanBinding). Ogni letterale ground che non è un booleanBinding viene trasformato in una SatClausola di lunghezza 1 composta dal solo satLetterale associato al letterale.

end

Per essere clausificate le formule della mappa bindingFormulas vanno trasformate in NNF, Skolemizzate. Anche in questo caso vengono utilizzate le funzioni standard di Vampire. Ogni booleanBinding è associato ad una formula del frammento ConjunctiveBinding, per questo dopo la skolemizzazione il quantificatore universale viene distribuito sull'and per ottenere le sottoformule del frammento OneBinding. Per ogni sottoformula OneBinding viene creato un nuovo LiteralBinding in rappresentaza della sottoformula. Il nuovo letterale avrà gli stessi termini del letterale più a sinistra della sottoformula (che sono gli stessi di tutti i letterali della sottoformula). Successivamente la formula viene SatClausificata. Si aggiunge alla mappa satClauses la coppia composta dal nuovo LiteralBinding e le satClausole della sottoformula. Alla mappa literalToBooleanBindings viene aggiunta la coppia composta dal nuovo LiteralBinding e il booleanBinding associato mentre alla mappa booleanBindingToLiteral viene aggiunta la coppia composta dal booleanBinding e la lista dei LiteralBinding che rappresentano le sottoformule della formula originale.

```
while bindingFormulas \neq \emptyset do
   (boolean Binding, formula) := binding Formulas.pop()
   formula := nnf(formula)
   formula := skolemize(formula)
   toDo := \emptyset
   if formula is ConjunctiveBinding then
       formula := distributeForAll(formula)
      "Add each subformula to the todo list"
   end
   else
      toDo.add(formula)
   end
   literalBindings := \emptyset while todo \neq \emptyset do
       subformula := todo.pop()
      literalBinding := newLiteralBinding(subformula.mostLeftLiteral())
      clauses := SatClausifyBindingFormula(subFormula)
       satClauses[literalBinding] := clauses
      literalToBooleanBindings[literalBinding] := booleanBinding
      literalBindings.add(literalBinding)
   end
   boolean Binding To Literal [boolean Binding] := literal Binding s
```

end

La funzione SatClausifyBindingFormula è una funzione che prende in input una formula la clausifica e converte tutte le clausole in SatClausole in modo che ogni satLetterale ha lo stesso indice del funtore del predicato associato. Questo è differente da quello che viene fatto dalla classe Sat2Fo che associa

ogni puntatore a letterale ad un nuovo SatLetterale con un nuovo indice arbitrario. L'ultimo step è la SatClausificazione della FBE che avviene tramite le funzioni standard di Vampire della classe Sat2Fo. È importante ricordare che i satLetterali delle formule interne sono diversi dai satLetterali della FBE nonostante possano avere lo stesso indice.

Si prenda ad esempio la formula del frammento CB:

$$(\forall x_1, x_2((p_1(x_1) \lor p_2(x_1)) \land p_2(f_1(x_2))) \land \forall x_1(p_3(x_1) \Rightarrow p_1(x_1))) \lor (\forall x_1(p_2(x_1)) \Rightarrow p_4)$$

Il primo passo di preprocessing prevede la rettificazione e la trasformazione in ENNF. La formula è già rettificata mentre la trasformazione in ENNF porta all'eliminazione del \Rightarrow :

$$(\forall x_1, x_2((p_1(x_1) \lor p_2(x_1)) \land p_2(f_1(x_2))) \land \forall x_1(\neg p_3(x_1) \lor p_1(x_1))) \lor (\forall x_1(p_2(x_1)) \Leftrightarrow p_4)$$

La creazione della FBE porta alla generazione di un booleanBinding per ogni sottoformula quantificata:

$$(b_1 \wedge b_2) \vee (b_3 \Leftrightarrow p_4)$$

La mappa bindingFormulas contiene le seguenti coppie:

$$b_1 \to \forall x_1, x_2((p_1(x_1) \lor p_2(x_1)) \land p_2(f_1(x_2)))$$

$$b_2 \to \forall x_1(\neg p_3(x_1) \lor p_1(x_1))$$

$$b_3 \rightarrow \forall x_1(p_2(x_1))$$

La formula ottenuta è troppo piccola per poter applicare il namig quindi si procede direttamente con la trasformazione in NNF:

$$(b_1 \wedge b_2) \vee ((\neg b_3 \vee p_4) \wedge (b_3 \vee \neg p_4))$$

Durante il processo di NNF il boolean Binding b_3 è stato negato e quindi va aggiunto alla mappa binding Formulas:

$$\neg b_3 \rightarrow \exists x_1(\neg p_2(x_1))$$

A questo punto vengono trasformate in NNF e Skolemizzate le formule associate ai booleanBinding, vengono poi creati i literalBindings e le SatClausole delle formule interne. Il booleanBinding b_1 è associato ad una formula CB quindi viene distribuito il quantificatore universale sull'and e creati due literalBindings. La skolemizzazione della formula associata a $\neg b_3$ porta alla formula::

$$\neg b_3 \rightarrow \neg p_2(sk_1)$$

Vengono create così le mappe booleanBindingToLiteral e la sua inversa literalToBooleanBindings:

booleanBindingToLiteral	literalToBooleanBindings
$b_1 \to \{b_4(x_1), b_5(f_1(x_1))\}$	$b_4(x_1) \rightarrow b_1$
$b_2 \to \{b_6(x_1)\}$	$b_5(f_1(x_1)) \to b_1$
$b_3 \to \{b_7(x_1)\}$	$b_6(x_1) \rightarrow b_2$
$\neg b_3 \to \{b_8(sk_1)\}$	$b_7(x_1) \rightarrow b_3$
	$b_8(sk_1) o \neg b_3$

Le formule associate ai literalBindings vengono clausificate:

•
$$\forall x_1, x_2((p_1(x_1) \lor p_2(x_1))) \to \{\{(p_1(x_1), p_2(x_1))\}\}$$

•
$$\forall x_1, x_2(p_2(f_1(x_2))) \to \{\{p_2(f_1(x_2))\}\}\$$

•
$$\forall x_1(\neg p_3(x_1) \lor p_1(x_1)) \to \{\{\neg p_3(x_1), p_1(x_1)\}\}$$

•
$$\forall x_1(p_2(x_1)) \to \{\{p_2(x_1)\}\}$$

•
$$\neg p_2(sk_1) \to \{\{\neg p_2(sk_1)\}\}$$

E successivamente SatClausificate e associate ai literalBindings:

•
$$b_4(x_1) \to \{\{s_1, s_2\}\}$$

•
$$b_5(f_1(x_1)) \to \{\{s_2\}\}$$

•
$$b_6(x_1) \to \{\{\neg s_3, s_1\}\}$$

•
$$b_7(x_1) \to \{\{s_2\}\}$$

•
$$b_8(sk_1) \to \{\{\neg s_2\}\}$$

Gli ultimi due step sono la clausificazione della FBE:

$$\{\{b_1, \neg b_3, p_4\}, \{b_2, \neg b_3, p_4\}, \{b_1, b_3, \neg p_4\}, \{b_2, b_3, \neg p_4\}\}$$

E la SatClausificazione tramite sat2Fo:

$$\{\{s_1, \neg s_2, s_3\}, \{s_4, \neg s_2, s_3\}, \{s_1, s_2, \neg s_3\}, \{s_4, s_2, \neg s_3\}\}$$

Che crea internamente una bi-mappa che associa ogni satletterale ad un letterale:

•
$$s_1 \leftrightarrow b_1$$

•
$$s_3 \leftrightarrow p_4$$

•
$$s_2 \leftrightarrow \neg b_3$$

•
$$s_4 \leftrightarrow b_2$$

1.3 Procedura di Decisione

Figura 1.3: Struttura dell'algoritmo di decisione

1.3.1 Implicants Sorting

1.3.2 Maximal Unifiable Subsets

```
Algorithm 6: Maximal Unifiable Subsets

Firma: mus(literal)
Input: literal un puntatore ad un letterale

Output: \top o \bot
GlobalData: S una mappa da letterali a bool

if S[literal] then

| return \top;
end

if literal is ground then

| return groundLiteralMus(literal);
end

S[literal] = \top;
res := mus(literal, \emptyset);
S[literal] = \bot;
return res;
```

Algorithm 7: Maximal Unifiable Subsets

```
Firma: mus(literal, FtoFree)
Input: literal un puntatore ad un letterale, FtoFree un puntatore ad una lista di letterali
Output: \top o \bot
GlobalData: S una mappa da letterali a interi, fun una funzione da lista di letterali a bool,
 tree un SubstitutionTree
isMax := \top;
uIt = tree.getUnifications(query: literal, retrieveSubstitutions: true);
toFree := \emptyset;
while uIt.hasNext() do
    (u,\sigma) := uIt.next();
   if S[u] = 0 then
       S[u] = 1;
       l := literal^{\sigma};
       if l = literal then
           u' := u^{\sigma};
           if u' = u then
              FtoFree := FtoFree \cup \{u\};
           end
           else
              toFree := toFree \cup \{u\};
           end
       end
       else
           isMax = \bot;
           if \neg mus(l, toFree) then
            return \perp;
           \mathbf{end}
           S[u] = -1;
           toFree := toFree \cup \{u\};
       \mathbf{end}
   \quad \mathbf{end} \quad
end
if isMax then
   if \neg fun(\{x \mid S[x] = 1\}) then
    return \perp;
   end
end
while toFree \neq \emptyset do
   S[toFree.pop()] = 0;
end
return \top;
```

Algorithm 8: Maximal Unifiable Subsets Ground Firma: groundMus(literal) Input: literal un puntatore ad un letterale ground Output: \top o \bot GlobalData: S una mappa da letterali a interi, fun una funzione da lista di letterali a bool, tree un SubstitutionTree if $S[literal] \neq 0$ then | return \top ; end uIt = tree.getUnifications(query: literal, retrieveSubstitutions: true);solution := \emptyset ; while uIt.hasNext() do | $(u, \sigma) := uIt.next()$;

end end

return fun(solution);

end

if S[u] = 0 then

if u is ground then S[u] = -1;

 $solution := solution \cup \{u\};$

1.3.3 Algoritmo Finale

Algorithm 9: Algoritmo di decisione

```
Firma: solve(prp)
Input: prp il problema pre-processato
Output: \top o \bot
satSolver := newSatSolver();
satSolver.addClauses(prp.clauses);
while satSolver.solve() = SATISFIABLE do
   res := \top;
   implicants := getImplicants(satSolver, prp);
   implicants := sortImplicants(implicants);
   if implicants contains only ground Literals then
      return \top;
   end
   agIt := ArityGroupIterator(implicants);
   while res And agIt.hasNext() do
      maximalUnifiableSubsets := SetupMus(group, internalSat);
      foreach lit \in group do
          if \neg maximalUnifiableSubsets.mus(lit) then
             res := \bot;
             blockModel(maximalUnifiableSubsets.getSolution());
             Break;
          end
      end
      if res = \top then
         return \top;
      end
   end
end
return \perp;
```

Algorithm 10: Sat interna

```
Firma: internalSat(literals)
Input: literals una lista di letterali
Output: \top o \bot
if literals.length = 1 And getSatClauses(literals.top()).length = 1 then
| return \top;
end
satSolver := newSatSolver();
foreach l \in literals do
| satSolver.addClause(getSatClauses(l));
end
return satSolver.solve() = SATISFIABLE;
```

Algorithm 11: getImplicants

```
Firma: getImplicants(solver, prp)
{\bf Input:}\ solver un sat solver, prpil problema pre-processato
Output: Una lista letterali
implicants := \emptyset;
foreach l \in prp.literals() do
    satL := prp.toSat(l);
    {\bf if}\ solver.trueInAssignment(satL)\ {\bf then}
       if prp.isBooleanBinding(l) then
           implicants := implicants \cup prp.getLiteralBindings(l);
        end
        else
        implicants := implicants \cup \{l\};
       end
    \quad \text{end} \quad
\quad \text{end} \quad
{\bf return}\ implicants;
```