Correction du devoir surveillé 2.

Exercice 1

1°) Allure de la courbe de Arcsin :

2°) Arcsin est définie sur [-1,1]. On résout alors, pour $x \in [-1,1]$:

$$-1 \le 1 - 2x^2 \le 1 \iff -1 \le 2x^2 - 1 \le 1$$

$$\iff 0 \le 2x^2 \le 2$$

$$\iff 0 \le x^2 \le 1$$

$$\iff -1 \le x \le 1$$

Ainsi, f est bien définie sur D = [-1, 1]

- $\mathbf{3}^{\circ}$) f est continue sur D comme somme et composée de fonctions continues.
- **4°)** Arcsin n'est dérivable que sur]-1,1[. On résout alors, pour $x\in]-1,1[$, les équations :

$$1 - 2x^2 = 1 \iff x = 0$$
 ; $1 - 2x^2 = -1 \iff 2x^2 = 2 \iff x = 1 \text{ ou } x = -1$

Ainsi, sur $D' = D \setminus \{-1,0,1\}$, la fonction $x \mapsto 1 - 2x^2$ est dérivable et à valeurs dans]-1,1[. Ainsi, f est au moins dérivable sur $D' = D \setminus \{-1,0,1\}$ comme somme et composée de fonctions dérivables, et pour tout $x \in D'$,

$$f'(x) = \frac{2}{\sqrt{1 - x^2}} - 4x \frac{1}{\sqrt{1 - (1 - 2x^2)^2}}$$
$$= \frac{2}{\sqrt{1 - x^2}} - \frac{4x}{\sqrt{4x^2 - 4x^4}}$$
$$= \frac{2}{\sqrt{1 - x^2}} - \frac{2x}{|x|\sqrt{1 - x^2}}$$

Ainsi,
$$f'(x) = \begin{cases} 0 & \text{si } x \in]0,1[\\ \frac{4}{\sqrt{1-x^2}} & \text{si } x \in]-1,0[\end{cases}$$

5°) Pour tout $x \in]0,1[,f'(x)=0$ et]0,1[est un intervalle, donc f est constante sur]0,1[. Comme f est continue sur [0,1], on en déduit que f est constante sur [0,1].

De plus, $f(0) = Arcsin(1) = \frac{\pi}{2}$ donc f est constante sur [0,1] égale à $\frac{\pi}{2}$

6°) Soit $x \in]-1,0[,f'(x)=4\operatorname{Arcsin}'(x).$ De plus]-1,0[est un intervalle. Donc, il existe une constante $c \in \mathbb{R}$ telle que : $\forall x \in]-1,0[,f(x)=4\operatorname{Arcsin}(x)+c.$ Comme f et Arcsin sont continues sur [-1,0], cette égalité est encore vraie sur l'intervalle [-1,0]. Pour déterminer la constante, on pose x=0.

 $f(0) = \operatorname{Arcsin}(1) = \frac{\pi}{2} = c$. Donc, pour tout $x \in [-1, 0], f(x) = 4 \operatorname{Arcsin}(x) + \frac{\pi}{2}$.

7°) Allure de la courbe de f:

 $\forall x \in [-1, 0], f(x) = 4 \operatorname{Arcsin}(x) + \frac{\pi}{2}.$

Il y a une tangente verticale au point d'abscisse -1.

Il y a une demi-tangente verticale de pente 4 au point d'abscisse 0.

- 8°) La fonction f est continue et strictement croissante sur [-1,0], et [-1,0] est un intervalle. Donc, d'après le théorème de la bijection, f réalise une bijection de l'intervalle [-1,0] sur l'intervalle $f([-1,0]) = [f(-1),f(0)] = \left[-\frac{3\pi}{2},\frac{\pi}{2}\right]$. Comme $0 \in \left[-\frac{3\pi}{2},\frac{\pi}{2}\right]$, on en déduit que 0 admet un unique antécédent α dans [-1,0]. Autrement dit, $\exists!\alpha \in [-1,0], f(\alpha) = 0$
- 9°) f est strictement croissante sur [-1,0] et α et $-\frac{1}{2}$ sont éléments de [-1,0], donc :

$$\alpha > -\frac{1}{2} \iff f(\alpha) > f\left(-\frac{1}{2}\right)$$

 $\operatorname{Or}\, f\left(-\frac{1}{2}\right) = 2\operatorname{Arcsin}\left(-\frac{1}{2}\right) + \operatorname{Arcsin}\left(\frac{1}{2}\right) = -2\frac{\pi}{6} + \frac{\pi}{6} = -\frac{\pi}{6}.$

De plus, $f(\alpha) = 0$ donc $f\left(-\frac{1}{2}\right) < f(\alpha)$. Ainsi, $\left[-\frac{1}{2} < \alpha\right]$.

10°) a) Soit $x \in [-1, 1]$.

Pour tout $u \in \mathbb{R}$, $\cos^2 u + \sin^2 u = 1$. Donc, $\cos^2(\operatorname{Arcsin}(x)) = 1 - \sin^2(\operatorname{Arcsin}(x)) = 1 - x^2$. Ainsi, $\sqrt{\cos^2(\operatorname{Arcsin}(x))} = \sqrt{1 - x^2}$ ce qui signifie $|\cos(\operatorname{Arcsin}(x))| = \sqrt{1 - x^2}$.

De plus $\operatorname{Arcsin}(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \operatorname{donc} \operatorname{cos}(\operatorname{Arcsin}(x)) \ge 0 \operatorname{d'où} \left[\operatorname{cos}(\operatorname{Arcsin}(x)) = \sqrt{1 - x^2}\right]$

b) α vérifie l'égalité : $f(\alpha) = 0$.

Donc, $2 \operatorname{Arcsin}(\alpha) = \operatorname{Arcsin}(2\alpha^2 - 1)$ par imparité de Arcsin.

On prend alors l'image par la fonction $\sin : \sin(2 \operatorname{Arcsin}(\alpha)) = \sin(\operatorname{Arcsin}(2\alpha^2 - 1))$.

D'où $2\sin(Arcsin(\alpha))\cos(Arcsin(\alpha)) = 2\alpha^2 - 1$.

 $\sin(\operatorname{Arcsin}(\alpha)) = \alpha \text{ donc}$, en utilisant la question précédente, il vient : $2\alpha\sqrt{1-\alpha^2} = 2\alpha^2 - 1$

c) On élève au carré l'égalité précédente : $4\alpha^2(1-\alpha^2)=(2\alpha^2-1)^2$.

Ce qui s'écrit : $4\alpha^2 - 4\alpha^4 = 4\alpha^4 - 4\alpha^2 + 1$. D'où, $8\alpha^4 - 8\alpha^2 + 1 = 0$.

Ainsi α^2 est racine du trinôme $8X^2 - 8X + 1$, qui a pour discriminant :

$$\Delta = 8^2 - 4 \times 8 = 8 \times 4 = 16 \times 2 = (4\sqrt{2})^2$$

Ainsi, $\alpha^2 = \frac{8+4\sqrt{2}}{16} = \frac{2+\sqrt{2}}{4}$ ou $\alpha^2 = \frac{2-\sqrt{2}}{4}$; ces deux nombres sont bien positifs.

Comme
$$\alpha < 0$$
, il vient : $\alpha = -\sqrt{\frac{2+\sqrt{2}}{4}}$ ou $\alpha = -\sqrt{\frac{2-\sqrt{2}}{4}}$.

Vérifions que $-\sqrt{\frac{2+\sqrt{2}}{4}} \le -\frac{1}{2}$.

$$-\sqrt{\frac{2+\sqrt{2}}{4}} \le -\frac{1}{2} \iff \sqrt{\frac{2+\sqrt{2}}{4}} \ge \frac{1}{2}$$

$$\iff \frac{2+\sqrt{2}}{4} \ge \frac{1}{4} \text{ car les deux nombres précédents sont positifs}$$

$$\iff 2+\sqrt{2} \ge 1$$

$$\iff \sqrt{2} \ge -1$$

Comme $\sqrt{2} \ge -1$ il vient $-\sqrt{\frac{2+\sqrt{2}}{4}} \le -\frac{1}{2}$. Comme $\alpha > -\frac{1}{2}$, finalement :

$$\alpha = -\sqrt{\frac{2-\sqrt{2}}{4}} = -\frac{\sqrt{2-\sqrt{2}}}{2}$$

Exercice 2

 $\mathbf{1}^{\circ}$) Soit $z \in \mathbb{C} \setminus \{1\}$.

$$(E) \iff 1 + 2\sum_{k=0}^{n-1} z^k - 2z^0 + z^n = 0$$

$$\iff -1 + 2\frac{1 - z^n}{1 - z} + z^n = 0 \qquad \text{car } z \neq 1$$

$$\iff -1 + z + 2 - 2z^n + z^n(1 - z) = 0$$

$$\iff 1 + z - z^n - z^{n+1} = 0$$

$$\iff 1 + z - z^n(1 + z) = 0$$

$$(E) \iff (1 - z^n)(1 + z) = 0$$

 $\mathbf{2}^{\circ}$) Soit $z \in \mathbb{C}$.

$$1 + 2\sum_{k=1}^{n-1} 1^k + 1^n = 1 + 2(n-1) + 1 = 2n \neq 0$$
 donc 1 n'est pas solution de (E) .

On peut donc supposer dans la suite $z \neq 1$.

(E)
$$\iff$$
 $(1-z^n)(1+z) = 0$ par 1
 \iff $z^n = 1$ ou $z = -1$
 \iff $\exists k \in \{0, \dots, n-1\}, \ z = e^{i\frac{2k\pi}{n}}$ ou $z = -1$

Si
$$0 \le k \le n - 1$$
, $e^{i\frac{2k\pi}{n}} = 1 \iff k = 0$.

L'ensemble des solutions de (E) est $\{-1\} \cup \{e^{i\frac{2k\pi}{n}} / k \in \{1, \dots, n-1\}\}$.

 $(-1)^n=-1$ car n est impair donc -1 n'est pas solution de l'équation $z^n=1$, donc -1 n'est pas de la forme $e^{i\frac{2k\pi}{n}}$ où $1\leq k\leq n-1$.

De plus, les $e^{i\frac{2k\pi}{n}}$ avec $1 \le k \le n-1$ sont distincts 2 à 2.

Ainsi, (E) possède n solutions

3°) Soit $u \in \mathbb{C}$. $1 - iu = 0 \iff u = \frac{1}{i} \iff u = -i$.

On suppose
$$u \neq -i$$
.

$$\frac{1+iu}{1-iu} = e^{i\varphi} \iff 1+iu = e^{i\varphi}(1-iu)$$
$$\iff iu(1+e^{i\varphi}) = e^{i\varphi} - 1$$

$$\iff u = \frac{e^{i\varphi} - 1}{i(1 + e^{i\varphi})}$$
 car $e^{i\varphi} \neq -1$ puisque φ ne s'écrit pas $\pi + 2p\pi$ où $p \in \mathbb{Z}$

$$\frac{e^{i\varphi} - 1}{i(1 + e^{i\varphi})} = \frac{e^{i\frac{\varphi}{2}} \left(e^{\frac{i\varphi}{2}} - e^{-i\frac{\varphi}{2}} \right)}{ie^{i\frac{\varphi}{2}} \left(e^{\frac{i\varphi}{2}} + e^{-i\frac{\varphi}{2}} \right)} = \frac{2i\sin\left(\frac{\varphi}{2}\right)}{i2\cos\left(\frac{\varphi}{2}\right)} = \tan\left(\frac{\varphi}{2}\right). \text{ De plus, } \tan\left(\frac{\varphi}{2}\right) \neq -i.$$

Ainsi, (*) admet une seule solution : le réel $\tan\left(\frac{\varphi}{2}\right)$.

4°) Soit $u \in \mathbb{C} \setminus \{-i\}$.

$$(E') \iff \frac{1+iu}{1-iu} \text{ est solution de } (E)$$

$$\iff \frac{1+iu}{1-iu} = -1 \text{ ou } \exists k \in \{1,\dots,n-1\}, \frac{1+iu}{1-iu} = e^{i\frac{2k\pi}{n}}$$

$$\frac{1+iu}{1-iu} = -1 \iff 1+iu = -1+iu \iff \underbrace{-1=1}_{\text{order}}.$$

Pour $k \in \{1, \dots, n-1\}, \frac{2k\pi}{n} \in]0, 2\pi[$. De plus, $\frac{2k\pi}{n} = \pi \iff k = \frac{n}{2}$. Or $k \neq \frac{n}{2}$ car n est impair. Ainsi $\frac{2k\pi}{n}$ ne s'écrit pas $\pi + 2p\pi$ où $p \in \mathbb{Z}$.

Donc, par 3,
$$\frac{1+iu}{1-iu} = e^{i\frac{2k\pi}{n}} \iff u = \tan\left(\frac{k\pi}{n}\right).$$

Les nombres trouvés sont bien distincts de -i.

Ainsi, l'ensemble des solutions de l'équation est $\left\{\tan\left(\frac{k\pi}{n}\right) \mid k \in \{1, \dots, n-1\}\right\}$

Exercice 3

1°) Comme dans la somme interne, $\frac{1}{i}$ est une constante vis-à-vis de k:

$$D_n = \sum_{i=1}^n (n-i+1) \frac{1}{i}$$

$$= \sum_{i=1}^n \left(\frac{n+1}{i} - 1 \right) = (n+1) \sum_{i=1}^n \frac{1}{i} - \sum_{i=1}^n 1$$

$$D_n = (n+1)H_n - n.$$

2°) En échangeant les deux symboles
$$\sum$$
, $D_n = \sum_{k=1}^n \sum_{i=1}^k \frac{1}{i}$ donc $D_n = \sum_{k=1}^n H_k$.

3°) On a donc

$$(n+1)H_n - n = \sum_{k=1}^n H_k$$

$$H_n = \frac{n}{n+1} + \frac{H_1 + H_2 + \dots + H_n}{n+1}$$
d'où $H_n + \frac{1}{n+1} = \frac{n}{n+1} + \frac{1}{n+1} + \frac{H_1 + H_2 + \dots + H_n}{n+1}$

$$H_{n+1} = 1 + \frac{H_1 + H_2 + \dots + H_n}{n+1}$$

 $\mathbf{4}^{\circ}$) Soit $k \in \mathbb{N}^*$.

$$(u_{k+1} - u_k)H_k + (H_{k+1} - H_k)u_{k+1} = u_{k+1}H_k - u_kH_k + H_{k+1}u_{k+1} - H_ku_{k+1} = H_{k+1}u_{k+1} - H_ku_k.$$

Donc, pour tout $n \in \mathbb{N}^*$, pour tout $k \in \{1, \dots, n\}$:
 $(u_{k+1} - u_k)H_k = H_{k+1}u_{k+1} - H_ku_k - (H_{k+1} - H_k)u_{k+1}$. D'où en sommant:

$$(u_{k+1} - u_k)H_k = H_{k+1}u_{k+1} - H_ku_k - (H_{k+1} - H_k)u_{k+1}$$
. D'où, en sommant :

$$\sum_{k=1}^{n} (u_{k+1} - u_k) H_k = \sum_{k=1}^{n} (-H_k u_k + H_{k+1} u_{k+1}) - \sum_{k=1}^{n} (H_{k+1} - H_k) u_{k+1}$$

$$= -H_1 u_1 + H_2 u_2 - H_2 u_2 + H_3 u_3 - \dots - H_n u_n + H_{n+1} u_{n+1} - \sum_{k=1}^{n} (H_{k+1} - H_k) u_{k+1}$$

$$= -H_1 u_1 + H_{n+1} u_{n+1} - \sum_{k=1}^{n} (H_{k+1} - H_k) u_{k+1} \quad \text{(somme t\'elescopique)}$$

$$\sum_{k=1}^{n} (u_{k+1} - u_k) H_k = H_{n+1} u_{n+1} - u_1 - \sum_{k=1}^{n} \frac{1}{k+1} u_{k+1} \quad \text{car } H_1 = 1 \text{ et } H_{k+1} = H_k + \frac{1}{k+1}$$

5°) Soit $n \in \mathbb{N}^*$. Pour tout $k \in \{1, \dots, n\}$, $u_{k+1} - u_k = k$, donc, en sommant ces égalités :

$$\sum_{k=1}^{n} (u_{k+1} - u_k) = \sum_{k=1}^{n} k$$

$$u_2 - u_1 + u_3 - u_2 + u_4 - u_3 + \dots + u_{n+1} - u_n = \frac{n(n+1)}{2}$$

$$u_{n+1} - u_1 = \frac{n(n+1)}{2}$$
 par téléscopage
$$u_{n+1} = \frac{n(n+1)}{2}$$

6°) Avec la formule obtenue en question 4, et comme pour tout $k \in \mathbb{N}^*$, $u_{k+1} - u_k = k$, et $u_{k+1} = \frac{k(k+1)}{2}$, on a, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} kH_k = H_{n+1} \frac{n(n+1)}{2} - u_1 - \sum_{k=1}^{n} \frac{1}{k+1} \frac{k(k+1)}{2}$$
$$= H_{n+1} \frac{n(n+1)}{2} - \frac{1}{2} \sum_{k=1}^{n} k$$

$$\sum_{k=1}^{n} kH_k = H_{n+1} \frac{n(n+1)}{2} - \frac{n(n+1)}{4}.$$

7°) Soit $n \in \mathbb{N}^*$. Posons k = i + n dans S_n :

$$S_n = \sum_{k=n+1}^{2n} \frac{1}{k} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \operatorname{donc} \left[S_n = H_{2n} - H_n \right]$$

8°) Pour $n \in \mathbb{N}^*$,

$$S_{n+1} - S_n = H_{2(n+1)} - H_{n+1} - (H_{2n} - H_n)$$

$$= H_{2n+2} - H_{2n} + H_n - H_{n+1}$$

$$= \sum_{k=1}^{2n+2} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} + \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n+1} \frac{1}{k}$$

$$= \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}$$

$$= \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{2}{2n+2}$$

$$S_{n+1} - S_n = \frac{1}{2n+1} - \frac{1}{2n+2}$$

9°) Posons, pour tout $n \in \mathbb{N}^*$, $P_n : S_n = T_n$.

•
$$S_1 = H_2 - H_1 = 1 + \frac{1}{2} - 1 = \frac{1}{2}$$
, et $T_1 = \sum_{k=1}^{2} \frac{(-1)^{k-1}}{k} = \frac{1}{1} - \frac{1}{2} = \frac{1}{2}$, donc P_1 est vraie.

• Supposons P_n vraie pour un $n \in \mathbb{N}^*$ fixé.

$$T_{n+1} = \sum_{k=1}^{2(n+1)} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{2n+2} \frac{(-1)^{k-1}}{k}$$

$$= \frac{(-1)^{2n+1}}{2n+2} + \frac{(-1)^{2n}}{2n+1} + \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k}$$

$$= -\frac{1}{2n+2} + \frac{1}{2n+1} + T_n$$

$$= -\frac{1}{2n+2} + \frac{1}{2n+1} + S_n \quad \text{par } P_n$$

$$= S_{n+1} \quad \text{par } 8$$

Donc P_{n+1} est vraie.

• Ainsi, pour tout $n \in \mathbb{N}^*$, $S_n = T_n$

10°) Soit $n \in \mathbb{N}^*$ et $i \in \mathbb{N}^*$.

$$\ln(n+i+1) - \ln(n+i) = \ln\left(\frac{n+i+1}{n+i}\right) = \ln\left(1 + \frac{1}{n+i}\right), \text{ donc, comme } \frac{1}{n+i} \in]-1, +\infty[,$$
 on peut affirmer que $\ln(n+i+1) - \ln(n+i) \le \frac{1}{n+i}.$

$$\ln(n+i) - \ln(n+i-1) = \ln\left(\frac{n+i}{n+i-1}\right) = -\ln\left(\frac{n+i-1}{n+i}\right) = -\ln\left(1 - \frac{1}{n+i}\right).$$
Comme $n+i \ge 2$, $-\frac{1}{n+i} > -1$, et donc $\ln\left(1 - \frac{1}{n+i}\right) \le \frac{-1}{n+i}$ d'où $\frac{1}{n+i} \le -\ln\left(1 - \frac{1}{n+i}\right)$ i.e. $\frac{1}{n+i} \le \ln(n+i) - \ln(n+i-1)$.

Ainsi, on a bien
$$\ln(n+i+1) - \ln(n+i) \le \frac{1}{n+i} \le \ln(n+i) - \ln(n+i-1)$$
.

11°) Soit $n \in \mathbb{N}^*$, sommons l'encadrement obtenu à la question précédente pour i allant de 1 à n:

$$\sum_{i=1}^{n} \left(\ln(n+i+1) - \ln(n+i) \right) \le \sum_{i=1}^{n} \frac{1}{n+i} \le \sum_{i=1}^{n} \left(\ln(n+i) - \ln(n+i-1) \right)$$

Or le terme central est $S_n = T_n$, à gauche on a une somme télescopique :

$$\ln(n+2) - \ln(n+1) + \ln(n+3) - \ln(n+2) + \dots + \ln(2n+1) - \ln(2n) = \ln(2n+1) - \ln(n+1) = \ln\left(\frac{2n+1}{n+1}\right)$$

et à droite aussi :

$$\ln(n+1) - \ln(n) + \ln(n+2) - \ln(n+1) + \dots + \ln(2n) - \ln(2n-1) = \ln(2n) - \ln(n) = \ln\left(\frac{2n}{n}\right) = \ln(2).$$

Ainsi, pour tout
$$n \in \mathbb{N}^*$$
, $\ln\left(\frac{2n+1}{n+1}\right) \leq T_n \leq \ln(2)$. Or $\frac{2n+1}{n+1} = \frac{2+\frac{1}{n}}{1+\frac{1}{n}} \xrightarrow[n \to +\infty]{} 2$, donc $\ln\left(\frac{2n+1}{n+1}\right) \xrightarrow[n \to +\infty]{} \ln(2)$.

D'après le théorème des gendarmes, $T_n \xrightarrow[n \to +\infty]{} \ln(2)$.

Exercice 4

- 1°) a) Soit $z \in \mathbb{C} \setminus \{1\}$. $f(z) = 1 + \frac{1}{z-1}$. $\frac{1}{z-1} \neq 0$ donc $f(z) \neq 1$. Ainsi, $f(z) \in \mathbb{C} \setminus \{1\}$. Donc f est bien à valeurs dans $\mathbb{C} \setminus \{1\}$.
 - **b)** Soit $z \in \mathbb{C} \setminus \{1\}$. $f \circ f(z) = f(f(z)) = 1 + \frac{1}{f(z) - 1} = 1 + \frac{1}{1 + \frac{1}{z - 1} - 1} = 1 + z - 1 = z$. Ainsi, $f \circ f(z) = z$.
 - c) Soit $(z, z') \in (\mathbb{C} \setminus \{1\})^2$. Nous allons montrer la contraposée i.e. : $f(z) = f(z') \implies z = z'$. On suppose que f(z) = f(z'). Alors, $1 + \frac{1}{z-1} = 1 + \frac{1}{z'-1}$. Donc, $\frac{1}{z-1} = \frac{1}{z'-1}$ puis z-1 = z'-1. Donc z = z'. On a montré que $z \neq z' \implies f(z) \neq f(z')$.
- $\mathbf{2}^{\circ}$) Soit $z \in \mathbb{C} \setminus \{1\}$.

$$f(z) + \overline{f(z)} = 1 \iff 1 + \frac{1}{z - 1} + 1 + \frac{1}{\overline{z} - 1} = 1$$

$$\iff \frac{\overline{z} - 1 + z - 1}{(z - 1)(\overline{z} - 1)} = -1$$

$$\iff z + \overline{z} - 2 = -(z\overline{z} - z - \overline{z} + 1)$$

$$\iff z + \overline{z} - 2 = -z\overline{z} + z + \overline{z} - 1$$

$$f(z) + \overline{f(z)} = 1 \iff z\overline{z} = 1$$

3°) On a montré, dans la question précédente, que :
$$\forall t \in \mathbb{C} \setminus \{1\}, f(t) + \overline{f(t)} = 1 \iff t\overline{t} = 1$$
. Soit $z \in \mathbb{C} \setminus \{1\}$. On pose $t = f(z)$. Alors $t \in \mathbb{C} \setminus \{1\}$. Donc $f(t) + \overline{f(t)} = 1 \iff t\overline{t} = 1$. i.e. $f(f(z)) + \overline{f(f(z))} = 1 \iff f(z)\overline{f(z)} = 1$. Or $f \circ f(z) = z$ par 1b. Ainsi, $z + \overline{z} = 1 \iff f(z)\overline{f(z)} = 1$.

- 4°) a) Soit $z' \in f(\mathcal{D})$. Montrons que $z' \in \Gamma \setminus \{1\}$. $z' \text{ s'\'ecrit } f(z) \text{ où } z \in \mathcal{D}. \text{ } \mathcal{D} \text{ a pour \'equation } x = \frac{1}{2} \text{ donc } \frac{z + \overline{z}}{2} = \frac{1}{2} \text{ i.e. } z + \overline{z} = 1.$ Donc, par 3, $f(z)\overline{f(z)} = 1$ i.e. $z'\overline{z'} = 1$, ce qui s'\'ecrit $|z'|^2 = 1$. Donc $z' \in \Gamma$. De plus, $z' = f(z) \neq 1$. Donc $z' \in \Gamma \setminus \{1\}$.
 - b) Par la question précédente, on a montré que : $f(\mathcal{D}) \subset \Gamma \setminus \{1\}$. Montrons l'inclusion réciproque.

Soit
$$z' \in \Gamma \setminus \{1\}$$
.

On pose
$$z = f(z')$$
. Alors $f(z) = f(f(z'))$ i.e. $f(z) = z'$.

On sait que
$$|z'|^2 = 1$$
 donc $z'\overline{z'} = 1$. Donc, par 2, $f(z') + \overline{f(z')} = 1$ i.e. $\frac{z + \overline{z}}{2} = \frac{1}{2}$.

Donc
$$z \in \mathcal{D}$$
 et on a $z' = f(z)$. Donc $z' \in f(\mathcal{D})$.

On a montré que :
$$\Gamma \setminus \{1\} \subset f(\mathcal{D})$$
.

Finalement, on a bien :
$$f(\mathcal{D}) = \Gamma \setminus \{1\}$$

5°) a) $\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 = 1 \text{ donc } M\left(\frac{3}{5}, \frac{4}{5}\right) \in \Gamma. \text{ De plus, } \frac{3}{5} \in \mathbb{Q} \text{ et } \frac{4}{5} \in \mathbb{Q}.$ Donc M est un point rationnel de Γ .

$$f(u) = 1 + \frac{1}{-\frac{1}{2} + ip}$$

$$= 1 + \frac{2}{-1 + 2ip}$$

$$= 1 + \frac{2(-1 - 2ip)}{1 + 4p^2}$$

$$f(u) = \frac{-1 + 4p^2}{1 + 4p^2} + i\frac{-4p}{1 + 4p^2}$$

c) Soit $p \in \mathbb{Z}$. Alors $u = \frac{1}{2} + ip \in \mathcal{D}$ donc, par 4a, $f(u) \in \Gamma \setminus \{1\}$. De plus, la partie réelle et la partie imaginaire de f(u) sont des nombres rationnels (comme quotients d'entiers). Ainsi, f(u) est un point rationnel de Γ .

D'autre part, si
$$p$$
 et p' sont des entiers tels que $p \neq p'$ alors $\frac{1}{2} + ip \neq \frac{1}{2} + ip'$.

Donc, par 1c,
$$f\left(\frac{1}{2} + ip\right) \neq f\left(\frac{1}{2} + ip'\right)$$
.

Comme l'ensemble $\mathbb Z$ est infini, on en déduit que Γ possède une infinité de points rationnels.