The Hong Kong University of Science & Technology MATH3423 - Statistical Inference Midterm Examination - Fall 2014/2015

Answer ALL Questions Date: 23 October 2014

Full marks: 70 Time Allowed: 80 minutes

- DO NOT open the exam paper until instructed to do so.
- It is a closed-book examination.
- Three questions are included in this paper.
- Give detailed explanation how to obtain the final answer. NO mark will be given if only the final answer is written down.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Name :		
Student Nu	mber :	
Signature :		

For marking use only:

Question No.	Marks	Out of
1		8
2		14
3(a)		10
3(b)		26
3(c)		12

1. (8 marks) Let X_1 , X_2 be random variables having the bivariate normal distribution with parameters μ_1 , μ_2 , σ_1 , σ_2 , ρ (correlation coefficient between X_1 and X_2), i.e.,

$$\left[\begin{array}{c} X_1 \\ X_2 \end{array}\right] \sim N_2 \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array}\right]\right).$$

Set

$$Y_1 = \frac{X_1 - \mu_1}{\sigma_1} + \frac{X_2 - \mu_2}{\sigma_2}, \ Y_2 = \frac{X_1 - \mu_1}{\sigma_1} - \frac{X_2 - \mu_2}{\sigma_2}.$$

Find the probability density functions of Y_1 and Y_2 . Are they independent?

- 2. If X_1, X_2, \ldots, X_n are independently and normally distributed with the same mean μ but different variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$. Let $U = \sum_{i=1}^n (X_i/\sigma_i^2)/\sum_{j=1}^n (1/\sigma_j^2)$ and $V = \sum_{i=1}^n (X_i U)^2/\sigma_i^2$. Note that U and V are independently distributed.
 - (a) (4 marks) Find the distribution of U.
 - (b) (10 marks) Find the distribution of V.
- 3. Let $X_1, ..., X_n$ be a random sample from a location distribution family

$$f(x;\theta) = \frac{1}{\theta} \exp\left(-\frac{x-\delta}{\theta}\right) I(x \ge \delta) .$$

Note that $Y_i = X_i - \delta \sim \exp\left(\frac{1}{\theta}\right)$.

- (a) Assume that δ is equal to zero.
 - i. (2 marks) Prove that the moment generating function of X_i is equal to $1/(1-\theta t)$.
 - ii. (4 marks) Find the distribution of $\sum_{i=1}^{n} X_i$.
 - iii. (4 marks) Find the distribution of $2\sum_{i=1}^{n} X_i/\theta$.
- (b) Assume that δ is known.
 - i. (4 marks) Find the method of moments estimator, $\tilde{\theta}$, for θ . Is it unbiased?
 - ii. (4 marks) Find the maximum likelihood estimator, $\hat{\theta}$, for θ . Is it unbiased?
 - iii. (2 marks) Find the mean squared error of $\hat{\theta}$.
 - iv. (4 marks) Let $\tau(\theta) = Pr(X_1 > 1 + \delta)$, find its maximum likelihood estimator, $\widehat{\tau(\theta)}$.
 - v. (6 marks) Find Cramer-Rao lower bound for the variance of unbiased estimators of $\tau(\theta)$.
 - vi. (6 marks) Find the limiting distribution of $\widehat{\tau(\theta)}$ by Delta method. What phenomenon do you observe?
- (c) Assume that θ is known.
 - i. (12 marks) Find the maximum likelihood estimator, $\hat{\delta}$, for δ . Is it unbiased? Hence or otherwise, find the unbiased estimator for δ .