Arutomatisierung, Regelungtechnik

Kristóf Cserpes

October 3, 2021

Contents

T	Line	ear Maps	5
	1.1	Vector spaces	 5
		1.1.1 Subspace	 5
		1.1.2 Span, (lineare Hülle)	 6
		1.1.3 Base	 6
		1.1.4 Dimension	 7
		1.1.5 Transformation matrix	 7
		1.1.6 Image (Bild)	 8
		1.1.7 Kernel, Null Space (Kern)	 8
	1.2	Rank-Nullity theorem	 9
2	Mat	trices	11
	2.1	Properties	 11
		2.1.1 Dimension	
		2.1.2 Rank (Rang)	
		2.1.3 Trace (Spur)	
		2.1.4 Minor, Cofactors	
		2.1.5 Determinant	13
		2.1.6 Eigenvalues, Eigenvectors	14
		2.1.7 Similarity	
		2.1.8 Defective matrices	
		2.1.9 Geeralized eigenvectors	19
		2.1.10 Shift matrix	20
		2.1.11 Nilpotent matrix	 20
		2.1.12 Jordan normal form	21
	2.2	Operations	 21
		2.2.1 Transposing	21
		2.2.2 Direct sum	22
		2.2.3 Diagonalisation	22
		2.2.4 Raising a matrix to the nth power using diagonalisation	 23
		2.2.5 Matrix exponential	 23
		2.2.6 Diagonalizable case	
3	Diff	erential Equation	27
-	3.1	Homogeneous linear first-order	
	3.2	Linear first-oder system of differential equations	
	-	3.2.1 Homogenous case	

4 CONTENTS

Chapter 1

Linear Maps

1.1 Vector spaces

A vector space over a field F is a set V that is closed under vector addition (+) and scalar multiplication (·). A vector space must fulfill following axioms:

$$v, w, u \in V$$

$$\alpha, \beta \in F$$

$$v + w = u$$

$$\alpha \cdot v = u$$

$$(\alpha \cdot \beta) \cdot v = \alpha \cdot (\beta \cdot v)$$

$$\alpha(v + w) = \alpha \cdot v + \alpha \cdot w$$

$$(\alpha + \beta) \cdot w = \alpha \cdot v + \beta \cdot w$$

$$1 \cdot v = w$$

$$(1.1)$$

The vector addition (V, +) form a commutative group.

$$(v+w)+u=v+(w+z) \\ v+0=V \\ v+w=0 \\ v+w=w+v$$
 Identity element: zero vector
 Commutativity

 $(F, +, \cdot)$ form a field.

$$a, a^{-1}, b, c \in F$$

$$(a+b)+c=a+(b+c) \qquad \qquad \text{Additive associativity}$$

$$a+a^{-1}=0 \qquad \qquad \text{Additive inverse}$$

$$a+0=a \qquad \qquad \text{Additive identity}$$

$$a+b=b+a \qquad \qquad \text{Additive commutativity}$$

$$(a \cdot b) \cdot c=a \cdot (b \cdot c) \qquad \qquad \text{Mulitlicative associativity}$$

$$a \cdot a^{-1}=1, a^{-1} \neq 0 \qquad \qquad \text{Mulitlicative inverse}$$

$$a \cdot 1=a \qquad \qquad \text{Multiplicative identity}$$

$$a \cdot b=b \cdot a \qquad \qquad \text{Multiplicative commutativity}$$

$$a \cdot (b+c)=a \cdot b+c \qquad \qquad \text{Distibutivity}$$

Example for fields: $(\mathbb{R}, +, \cdot)$ $(\mathbb{C}, +, \cdot)$ Example for non fields: $(\mathbb{N}, +, \cdot)$ $(\mathbb{Z}, +, \cdot)$

1.1.1 Subspace

Let V be a vector space of F. A subspace W is a subset of V that also form a vector space over F.

Example 1:

 \mathbb{R}^2 is a vector space over \mathbb{R} .

$$W = \{c \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} \mid c \in \mathbb{R}\} = \{\dots \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2.4 \\ 4.8 \end{bmatrix} \dots \}$$

Direct sum

Let V be a vector space ofer a field F and W and U subspaces of V When:

$$W \cap U = \{0\} \tag{1.2}$$

$$W \cup U = V \tag{1.3}$$

Then U and W are a direct sum of V. It is denoted by

$$V = U \oplus W \tag{1.4}$$

1.1.2 Span, (lineare Hülle)

Let V be a vector space ofer a field F and S a finite subset of V with length n. The span of S is the set of vectors that can be created by linear combinations with the vectors in S.

$$span(S) = \{ \sum_{i=1}^{n} a_i \cdot s_i \mid n \in \mathbb{N}, a_i \in F, s_i \in S \}$$

$$(1.5)$$

Example 1:

$$S = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

$$\operatorname{span} S = \left\{ a_1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + a_2 \begin{bmatrix} 0\\1\\0 \end{bmatrix} \mid a_1, a_2 \in \mathbb{R} \right\}$$

Spanning set

Let V be a vector space of a field F and S a finite subset of V. S is a spanning set of if

$$\operatorname{span} S = V \tag{1.6}$$

Example 2:

Let V be \mathbb{R}^2 over the field \mathbb{R} . Following subsets are spanning set of V:

$$S_{1} = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

$$S_{2} = \left\{ \begin{bmatrix} 3\\0 \end{bmatrix}, \begin{bmatrix} 0\\2 \end{bmatrix} \right\}$$

$$S_{3} = \left\{ \begin{bmatrix} 3\\0 \end{bmatrix}, \begin{bmatrix} 0\\2 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$$

1.1.3 Base

Let V be a vector space ofer a field F and B a spanning set of V. If the elements of B are lineary independent then B is called a basis. The coefficients of the linear combination are referred to as components or coordinates of the vector with respect to B. The elements of B are called basis vectors.

Example 1:

Let V be \mathbb{R}^2 over the field \mathbb{R} . Following subsets are spanning set of V:

$$B_1 = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$
$$B_2 = \left\{ \begin{bmatrix} 3\\0 \end{bmatrix}, \begin{bmatrix} 0\\2 \end{bmatrix} \right\}$$

In previous example S_3 is not a valid base, because its elements are lineary dependent.

Standard base

A base B is called a Standard base if the vectors of B are all zero, except one that equals 1. The vectors of the standard base are called unit vectors.

Example 2:

The standard base for \mathbb{R}^n is

$$\begin{split} \hat{i} &= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \hat{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ B &= \{\hat{i}, \hat{j}, \hat{k}\} \end{split}$$

A vector v expressed in the standard basis B.

$$v = \begin{bmatrix} 4\\5\\6 \end{bmatrix} = 4\hat{i} + 5\hat{j} + 6\hat{k}$$

1.1. VECTOR SPACES 7

1.1.4 Dimension

The dimension dim of a vector space is the size of its base B. The dimension is equal to the rank (see 2.1.2) of the tranformation matrix.

Example 1:

The vector space \mathbb{R}^n

$$\dim \mathbb{R}^n = n$$

Example 2:

$$V = \{c_1 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, c_2 \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \mid c_1, c_2 \in \mathbb{R}\}$$

$$\dim V = 2$$

Example 3:

$$V=\{c_1egin{bmatrix}1\\1\\0\\0\end{bmatrix},c_2egin{bmatrix}0\\1\\0\\0\end{bmatrix}\mid c_1,c_2\in\mathbb{R}\}$$
im $V=1$

Example 4:

The only vector space with dimension 0 is where V contains only the zero vector.

$$\dim \{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \} = 0$$

section Linear maps Let V W be vector spaces over the same field F. A function $f:V\to W$ is said to be a linear map if for any two vectors $v,u\in V$ and any scalar $c\in F$ the following two conditions are satisfied:

$$f(u+v) = f(u) + f(v)$$
 (Additvity)
 $f(c \cdot u) = c \cdot u$ (Homogenity)

1.1.5 Transformation matrix

Each linear transformation can be represented as a matrix vector multiplication.

$$\begin{aligned} f: W \to V \\ \dim W &= n, \dim V = m \\ f(x) &= A^{m \times n} x \end{aligned}$$

Example 1:

$$f(x) = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 7 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$f\left(\begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}\right) = \begin{bmatrix} 38 \\ 130 \end{bmatrix}$$

Composition

If there are two linear maps f,g wiht tranformation matrices:

$$f: V \to W = Ax$$
$$g: U \to V = Bx$$

then the composition is:

$$h: U \to W = f \circ g$$

$$h(x) = A(Bx) = (A \cdot B)x$$

Example 2:

$$f(x) = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 7 & 9 \end{bmatrix} \cdot x$$

$$g(x) = \begin{bmatrix} -1 & -2 \\ -7 & -9 \\ 13 & 17 \end{bmatrix} \cdot x$$

$$h(x) = f \circ g = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 7 & 9 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -7 & -9 \\ 13 & 17 \end{bmatrix} \cdot x = \begin{bmatrix} 24 & 31 \\ 64 & 80 \end{bmatrix} \cdot x$$

$$g\left(\begin{bmatrix} 3 \\ 4 \end{bmatrix}\right) = \begin{bmatrix} -11 \\ -57 \\ 107 \end{bmatrix}, f\left(\begin{bmatrix} -11 \\ -57 \\ 107 \end{bmatrix}\right) = \begin{bmatrix} 196 \\ 509 \end{bmatrix}$$

$$h(\begin{bmatrix} 3 \\ 4 \end{bmatrix}) = \begin{bmatrix} 196 \\ 509 \end{bmatrix}$$

1.1.6 Image (Bild)

The image f^{\rightarrow} of a tranformation $L: V \rightarrow W$ is the set of vectors that the tranformation can produce.

$$f^{\rightarrow}(L) = \{L(x) \mid x \in V\} \tag{1.7}$$

The image is the columnspan of the tranformation matrix. The dimenson of the image ist called **rank**, and is the same as the rank of the transformation matrix.

Example 1:

$$L(x) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x$$
$$f^{\to}(L) = \mathbb{R}^2$$

Example 2:

$$L(x) = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 1 & 1 \\ 0 & 2 \end{bmatrix} x$$

$$f^{\to}(L) = \{ \begin{bmatrix} c_1 \\ 2c_1 \\ c_1 + c_2 \\ 2c_2 \end{bmatrix} \mid c_1, c_2 \in \mathbb{R} \}$$

1.1.7 Kernel, Null Space (Kern)

The kernel of a linear map $L:V\to W$ is the linear subspace of the domain of the map which is mapped to the zero vector.

$$\ker L = \{ v \in V | L(v) = 0 \}$$
(1.8)

The vecots of the kernel are the set of vectors that yield the zero vector after multiplication with the tranformation matrx.

$$L: Ax = y$$
$$x' \in \ker L \text{ if } Ax' = 0$$

The kernel forms a subspace of V:

$$v, u \in \ker L, \alpha \in \mathbb{F}$$

 $\alpha v \in \ker L$
 $v + u \in \ker L$

The dimension of the kernel is called the **nullity**.

Example 1:

$$L: Ax = y$$

$$A = \begin{bmatrix} 1 & -1, & 0 \\ 0 & -2 & 4 \end{bmatrix}$$

To calculate $\ker A$ simply set y to the zero vector and solve for x.

$$\begin{bmatrix} 1 & -1, & 0 \\ 0 & -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$x_1 - x_2 = 0 \to x_1 = x_2$$
$$-2x_2 + 4x_3 = 0 \to x_2 = 2x_3$$

The kernel is:

$$\ker L = \{c \cdot \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \mid c \in \mathbb{C}\}$$

A concrete example:

$$\begin{bmatrix} 4\\4\\2 \end{bmatrix} \in \ker L$$

$$L\begin{pmatrix} \begin{bmatrix} 4\\4\\2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \cdot 4 - 1 \cdot 4 + 0 \cdot 2\\0 \cdot 4 - 2 \cdot 4 + 4 \cdot 2 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

Example 2:

1.2 Rank-Nullity theorem

If $L: V \to W$ is a linear tranformation then it.

$$\operatorname{rank} L + \operatorname{nullity} T = \dim(\operatorname{image} T) + \dim(\ker(T)) = \dim(V)$$
(1.9)

Example 1:

$$L: \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x = y$$

$$imageT = \mathbb{R}^2$$

$$\operatorname{rank} L = 2$$

$$\ker T = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \}$$

$$\operatorname{nullity} L = 0$$

$$\dim V = \operatorname{rank} L + \operatorname{nullity} T = 2 + 0 = 2$$

Example 2:

$$L: \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix} x = y$$

$$imagL = \{ \begin{bmatrix} c \\ 2c \end{bmatrix} \mid c \in \mathbb{R} \}$$

$$\operatorname{rank} L = 1$$

$$\ker L = \{ \begin{bmatrix} -2c_1 - 4c_2 \\ c_1 \\ c_2 \end{bmatrix} \mid c_1, c_2 \in \mathbb{R} \} \text{ nullity } A = 2$$

Chapter 2

Matrices

2.1 Properties

2.1.1 Dimension

The dimension 1 is the number of rows a and columns b of a Matrix A

$$\dim A = a \times b \tag{2.1}$$

Denoted as:

$$A^{a \times b}$$

Example 1:

$$\dim \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = 2 \times 3$$

Example 2:

Linearly dependent rows/columns

$$\dim\begin{bmatrix}1 & 2\\2 & 4\end{bmatrix} = 2 \times 2$$

Matlab

2.1.2 Rank (Rang)

${\bf Row sapce,\ column space}$

The rowspace C of a matrix ist the span of its column vectors. The definied as is the span of its row vectors. It is denoted as $C(A^T)$ The dimension of the column and rowspace are always equal.

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 2 & 4 \end{bmatrix}$$

$$C(A) = \{ \begin{bmatrix} c \\ c \end{bmatrix} \mid c \in \mathbb{R} \}$$

$$C(A^T) = \{ \begin{bmatrix} c \\ 2c \\ 4c \end{bmatrix} \mid c \in \mathbb{R} \}$$

$$\dim C(A) = \dim C(A^T) = 1$$

¹Not to be confused with the dimenson of a vector space, see 1.1.4

12 CHAPTER 2. MATRICES

Rank

The rank of a matrix A is the maximal number of linearly independent columns (or the number of linearly independent rows, is the same thing). Or equally, the rank of a matrix A is the dimension of its columnspace (or rowspace):

$$\operatorname{rank} A = \dim C(A) = \dim C(A^{T}) \tag{2.2}$$

Example 2:

$$\operatorname{rank} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = 2$$

Example 3:

Both rows are linearly dependent

$$\operatorname{rank} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} = 1$$

Example 4:

Only a matrix containing zeroes has a rank of 0

$$\operatorname{rank} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

Example 5:

Both columns are linearly independent, some rows are linearly dependent.

$$\operatorname{rank} \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 5 & 7 \end{bmatrix} = 2$$

Matlab

rank (API link) A = [[1,2,3],[1,2,3]]rank(A)ans = 1

2.1.3 Trace (Spur)

The trace of a square matrix A is the sum of all its main diagonal elements.

$$tr(A) = \sum_{i=0}^{n} a_{ii} \tag{2.3}$$

Example 1:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$tr(A) = 1 + 5 + 9 = 15$$

Matlab

```
trace (API link)
>> A = [1,2,3;4,5,6;7,8,9]
>> trace(A)
ans =
15
```

2.1. PROPERTIES 13

2.1.4 Minor, Cofactors

Submatrix

A submatrix $S_i j$ of a Matrix A is the Matrix obtained by deleting the ith Row and deleting the jth column.

Example 1:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
$$S_{12} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}$$

Minor

A minor M_{ij} of a matrix A is the determinant of the submatrix S_{ij} .

Cofactors

A cofactor C_{ij} is obtained by multiplying the minor M_{ij} by $(-1)^{i+j}$. The cofactor Matrix C is given by:

$$C = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1i} \\ C_{21} & C_{22} & \dots & C_{1i} \\ \vdots & \vdots & \ddots & \vdots \\ C_{j1} & C_{j2} & & C_{ij} \end{bmatrix} = \begin{bmatrix} M_{11} & -M_{12} & \dots & (-1)^{i+1}M_{1i} \\ -M_{21} & M_{22} & \dots & (-1)^{i+2}M_{2i} \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{1+j}M_{j1} & (-1)^{2+j}M_{j2} & & (-1)^{i+j}M_{ij} \end{bmatrix}$$

$$(2.4)$$

Example 2:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$M_{11} = det\begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix} = -3 \qquad M_{12} = det\begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix} = -6 \qquad M_{13} = det\begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix} = -3$$

$$M_{21} = det\begin{pmatrix} 2 & 3 \\ 8 & 9 \end{pmatrix} = -6 \qquad M_{22} = det\begin{pmatrix} 1 & 3 \\ 7 & 9 \end{pmatrix} = -12 \qquad M_{23} = det\begin{pmatrix} 1 & 2 \\ 7 & 8 \end{pmatrix} = -6$$

$$M_{31} = det\begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix} = -3 \qquad M_{32} = det\begin{pmatrix} 1 & 4 \\ 3 & 6 \end{pmatrix} = -6 \qquad M_{33} = det\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} = -3$$

$$C = \begin{bmatrix} M_{11} & -M_{12} & M_{13} \\ -M_{21} & M_{22} & -M_{23} \\ M_{31} & -M_{32} & M_{33} \end{bmatrix} = \begin{bmatrix} -3 & 6 & -3 \\ 6 & -12 & 6 \\ -3 & 6 & -3 \end{bmatrix}$$

Example 3:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$M_{11} = 4$$

$$M_{21} = 2$$

$$M_{22} = 1$$

$$C = \begin{bmatrix} M_{11} & -M_{12} \\ -M_{21} & M_{22} \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$$

2.1.5 Determinant

2x2 Matrix

For 2x2 Matrix the formula is as given:

$$\det \begin{pmatrix} \begin{bmatrix} x_1, x_2 \\ x_3, x_4 \end{bmatrix} \end{pmatrix} = x_1 \cdot x_4 - x_2 \cdot x_4$$

$$\det\left(\begin{bmatrix} 3 & 7 \\ -5 & 11 \end{bmatrix}\right) = 3 \cdot 11 - 7 \cdot (-5) = 68$$

3x3 Matrix

14

The determinant of a 3x3 Matrix can be calculated using its minors.

$$\det \begin{pmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix} \end{pmatrix} = x_1 \cdot \det \begin{pmatrix} \begin{bmatrix} x_5 & x_6 \\ x_8 & x_9 \end{bmatrix} \end{pmatrix} - x_2 \cdot \det \begin{pmatrix} \begin{bmatrix} x_4 & x_6 \\ x_7 & x_9 \end{bmatrix} \end{pmatrix} + x_3 \cdot \det \begin{pmatrix} \begin{bmatrix} x_4 & x_5 \\ x_7 & x_8 \end{bmatrix} \end{pmatrix}$$

$$= x_1 (x_5 x_9 - x_6 x_8) - x_2 (x_4 x_9 - x_6 x_7) + x_3 (x_4 x_8 - x_5 x_7)$$

$$= x_1 x_5 x_9 + x_2 x_6 x_7 + x_3 x_4 x_8 - x_3 x_5 x_7 - x_2 x_4 x_9 - x_1 x_6 x_8$$

For higher order matrices you can apply this method recursively.

Example 2:

Minors were calculated in previous example.

$$\det \left(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \right) = 1 \cdot (-3) - 2 \cdot (-6) + 3 \cdot (-3) = 0$$

Triangular matrx

$$D = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ 0 & x_{22} & & & \\ \vdots & & \ddots & & \\ 0 & 0 & \cdots & x_{nn} \end{bmatrix} \det(D) = x_{11} \cdot x_{22} \dots x_{nn} = \prod_{i=1}^{n} x_i$$

Singular matrix

Singular matrices are matrices with det = 0. Singular matrices have rows and/or columns that are not linearly independent.

Example 3:

$$A = \begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix}$$
$$\det(A) = 1 \cdot (-4) - (-2) \cdot 2 = 0$$

Matlab

2.1.6 Eigenvalues, Eigenvectors

An eigenvector v of a square matrix A is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue λ is the factor by which the eigenvector is scaled.

$$A \cdot v = \lambda \cdot v \tag{2.5}$$

$$A = \begin{bmatrix} 5 & 1 \\ 0 & 3 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \lambda = 5$$

$$A \cdot v = \begin{bmatrix} 5 & 1 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

2.1. PROPERTIES 15

Characteristic polynomial

The expression 2.5 can be written as:

$$A \cdot v = \lambda \cdot I \cdot v$$
 Multiplying with identity Matrix
$$A \cdot v - \lambda \cdot I \cdot v = 0$$
 (2.6)
$$v \cdot (A - \lambda \cdot I) = 0$$
 (2.7)

Since v per definition can't be the zero vector, the expression $(A - \lambda \cdot I)$ must be zero.

$$A - \lambda \cdot I = 0$$

$$\det (A - \lambda \cdot I) = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} - \lambda & & \\ \vdots & & \ddots & \\ a_{n1} & & a_{nn} - \lambda \end{bmatrix} \end{pmatrix} = 0$$

The characteristic polynomial P_A of a matrix A is defined as:

$$P_A(t) = \det\left(A - tI\right) \tag{2.8}$$

If a square matrix A with $\dim(A) = n \times n$ then $p_A(t)$ will have a degree of n. The characteristic polynomial is always monic (the leading coefficient is 1)

Example 2:

$$A = \begin{bmatrix} 5 & 7 \\ 11 & 3 \end{bmatrix}$$

$$p_A(t) = \det \left(\begin{bmatrix} 5 - t & 7 \\ 11 & 3 - t \end{bmatrix} \right) = (5 - t) \cdot (3 - t) - 7 \cdot 11 = t^2 - 8t - 62$$

Note for a 2×2 matrix $p_A(t)$ is always:

$$p_A(t) = t^2 - \operatorname{trace}(A)t - \det(A)$$
(2.9)

Matlab

charpoly (API link)

>> charpoly ([5, 7; 11, 3]) ans =
$$-8 -62$$

If A gets pluged into $p_A(t)$ then the result will be the zero-matrix.

$$P_a(A) = A^n + b_2 A^{n-1} \cdots b_{n-1} A + b_n I = 0$$
(2.10)

Example 3:

From previous example.

$$p_A(t) = t^2 - 8t - 62$$

$$p_A(A) = \begin{bmatrix} 5 & 7 \\ 11 & 3 \end{bmatrix}^2 - \begin{bmatrix} 5 & 7 \\ 11 & 3 \end{bmatrix} - 62I$$

$$= \begin{bmatrix} 102 & 56 \\ 88 & 86 \end{bmatrix} - \begin{bmatrix} 40 & 56 \\ 88 & 24 \end{bmatrix} - \begin{bmatrix} 62 & 0 \\ 0 & 62 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Characteristic equation

The roots of the characteristic polynomial are the eigenvalues λ_i of A. The expression

$$p_A(t) = 0 (2.11)$$

is called the characteristic equation. The characteristic polynomial can be written as:

$$p_A(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_i)$$
(2.12)

Example 4:

$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$

$$p_A(t) = \det(A - tI) = \det\left(\begin{bmatrix} 3 - t & 7\\ 2 & 5 - t \end{bmatrix}\right) = t^2 - 8t + 1$$

We get the eigenvalues by setting $p_A(\lambda) = 0$ and solving for λ

$$\lambda^{2} - 8\lambda + 1 = 0$$

$$\lambda_{12} = -\frac{-8}{2} \pm \sqrt{\left(\frac{-8}{2}\right)^{2} - 1}$$

$$\lambda_{1} = 4 - \sqrt{15}, \lambda_{2} = 4 + \sqrt{15}$$

Arithmetic Multiplity

A matrix can have multiple eigenvalues λ_i with the same value. The characteristic polynomial can be written as:

$$p_A(t) = (t - \lambda_1)(t - \lambda_2)\dots(t - \lambda_n)$$

The arithmetic Multiplicity $\mu_A(\lambda_1)$ is the number of times $(t - \lambda_i)$ can divide $p_A(t)$, so the highest power $(t - \lambda_i)$ can have (simply said the number of times a value appears).

Example 5:

A has 4 eigenvalues: 1, 2, 3, $4(=\lambda_{1..10})$

The characteristic polynomial can be expressed by using only distinct eigenvalues:

$$p_A(t) = (t-1)(t-2)^2(t-3)^3(t-4)^4$$

For example $\mu_A(\lambda_4) = 4$, because (t-4) divides $p_A(t)$ 4 times.

Eigenvectors, eigenspace

To find the eigenvector of an associatited eigenvalue we need to find the kernel of the following linear map:

$$L: (A - \lambda_i \cdot I)x = y$$
$$\epsilon_i = \ker L$$

Since the kernel of a transformation forms a vectorspace ϵ called **eigenspace**. So following properites are satisfied:

$$v_1, v_2 \in \epsilon_i, c \in \mathbb{F}$$

$$v_1 + v_2 \in \epsilon_i$$

$$c \cdot v_1 \in \epsilon_i$$

Example 6:

Continuing example 2.

$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$

$$\lambda_1 = 4 - \sqrt{15}, \lambda_2 = 4 + \sqrt{15}$$

2.1. PROPERTIES 17

 λ_1 :

$$\begin{bmatrix} 3 - (4 - \sqrt{15}) & 7 \\ 2 & 5 - (4 - \sqrt{15}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 + \sqrt{15} & 7 \\ 2 & 1 + \sqrt{15} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

We can eliminate the II row by subtracting I $\left(\frac{2}{-1+\sqrt{15}}\right)$

$$\begin{bmatrix} -1 + \sqrt{15} & 7 \\ 2 & 1 + \sqrt{15} \end{bmatrix} \rightarrow \begin{bmatrix} -1 + \sqrt{15} & 7 \\ 2 - 2 & (1 + \sqrt{15}) - \left(\frac{14}{-1 + \sqrt{15}}\right) \end{bmatrix} = \begin{bmatrix} -1 + \sqrt{15} & 7 \\ 0 & 0 \end{bmatrix}$$

Since the last row was eliminated, we see that of $rank(A - \lambda I)$ is 1. It means x_1 or x_2 can be freely chosen.

Keep in mind we are interest only in the 'form' of the eigenvector, because an eigenvector of A multiplied with a scalar is still an eigenvector of A.

$$0 = (-1 + \sqrt{15})x + 7y$$
$$y = \frac{(1 - \sqrt{15})x}{7}$$

We can eliminate the fraction by setting x = 7.

$$x = 7$$

$$y = \frac{(1 - \sqrt{15})7}{7} = 1 - \sqrt{15}$$

$$v_1 = \begin{bmatrix} 7 \\ 1 - \sqrt{15} \end{bmatrix}$$

Same for λ_2 :

$$\begin{bmatrix} 3-(4+\sqrt{15}) & 7 \\ 2 & 5-(4-\sqrt{15}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 - \sqrt{15} & 7 \\ 2 & 1 - \sqrt{15} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

We can eliminate the II row by subtracting I $\left(\frac{2}{-1-\sqrt{15}}\right)$

$$\begin{bmatrix} -1 - \sqrt{15} & 7 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving for x_1, x_2 :

$$(-1 - \sqrt{15})x_1 + 7x_2 = 0$$

$$x_2 = \frac{1 + \sqrt{15}x_1}{7}$$

$$x_1 = 7 \text{ (chosen)}$$

$$x_2 = 1 + \sqrt{15}$$

$$v_2 = \begin{bmatrix} 7\\1 + \sqrt{15} \end{bmatrix}$$

Matlab

eig (API link)

18 CHAPTER 2. MATRICES

Geometric multiplicity

The geometry multiplicity γ_A of an eigenvalue is the dimension of the associatited eigenspace.

$$\gamma_a(\lambda_i) = \dim \ker (A - I\lambda_i) \tag{2.13}$$

The geometry multiplicity of an eigenvalue can't be larger than the arithmetic multiplicity.

$$\gamma_A(\lambda_i) \le \mu_a(\lambda_1) \tag{2.14}$$

For a square Matrix $A^{n\times n}$ with m eigenvalues it holds:

$$\sum_{i=1}^{m} \gamma(\lambda_i) + \mu(\lambda_i) = n \tag{2.15}$$

Example 7:

2.1.7 Similarity

Two square matrices A and B are similar when an if there exists an invertible $n \times n$ matrix P such that:

$$A = P^{-1}BP \tag{2.16}$$

$$B = PAP^{-1} \tag{2.17}$$

It is denoted as

$$\tilde{A=B}$$

U is also called the change of base matrix. Similar matrices have the same:

- Characteristic polynomial
- Eigenvalues (but not eigenvectors)
- Determinant
- Trace

Similarity is an equivalence relation

- A is similar to A
- If A is similar to B, then B is similar to A.
- If A is similar to B and B is similar to C, then A is similar to C.

$$B = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}, A = \begin{bmatrix} 3 & 4 \\ \frac{1}{4} & 3 \end{bmatrix}, P = \begin{bmatrix} 3 & 0 \\ 1 & 4 \end{bmatrix}, P^{-1} = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{12} & \frac{1}{4} \end{bmatrix}$$
$$P^{-1}BP = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{12} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & 1 \\ -\frac{1}{6} & \frac{3}{4} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ \frac{1}{4} & 3 \end{bmatrix}$$

2.1. PROPERTIES 19

$$\det(B) = 2 \cdot 4 - 3 \cdot 0 = 8$$

$$\det(A) = 3 \cdot 3 - 1 \cdot \frac{1}{4} = 8$$

$$tr(A) = 3 + 3 = 6$$

$$tr(B) = 2 + 4 = 6$$

$$p_B(t) = (2 - t)(4 - t) - 4 \cdot 0 = t^2 - 6t + 8$$

$$p_A(t) = (3 - t)(3 - t) - 4 \cdot \frac{1}{4} = t^2 - 6t + 8$$

2.1.8 Defective matrices

If there is one eigenvalue λ_i with $\mu_A(\lambda_i) \neq \gamma_A(\lambda_i)$ then the corresponding Matrix A defective:

- ullet The matrix has less than n lienary independent eigenvectors
- \bullet The sum of the dimesons of the eigensapces has a dimension less than n

The eigenvalue is called defective eigenvalue.

Example 1:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\lambda_1 = 1, \lambda_2 = 4$$

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} \frac{1}{9} \\ \frac{1}{3} \\ 1 \end{bmatrix}$$

$$\mu_A(\lambda_1) = 2 \neq \gamma_A(\lambda_1) = 1$$

Defective matrices can't be diagonalized.

2.1.9 Geeralized eigenvectors

Let $L:V\to V$ with a defective transformation matrix A. A generalized eigenvector w of a defective eigenvalue is the solution of:

$$(A - \lambda I)^m w = 0$$

$$(A - \lambda I)^{m-1} w \neq 0$$

$$m > 1, m \in \mathbb{N}$$

$$(2.18)$$

 \boldsymbol{m} is called the rank of the generalized eigenvector.

Jordan chain

Let v be an ordinary eigenvector of A:

$$(A - \lambda I)v = 0$$

$$(A - \lambda I)w_1 = v$$

$$(A - \lambda I)w_2 = w_1$$

$$(A - \lambda I)w_3 = w_2$$

$$\vdots$$

$$(A - \lambda I)w_{n-1} = w_n$$

$$A = \begin{bmatrix} 3 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

The matrix has single eigenvalue $\lambda = 3$ with $\mu_a(3) = 3$ but only one eigenvector v_1 .

$$A - I\lambda = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix} v = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix} w_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, w_1 = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$$

2.1.10 Shift matrix

A shift matrix that has 1 on its superdiagonal and 0 elsewhere.

$$S = \begin{bmatrix} 0 & 1 & 0 & \cdots \\ \vdots & 0 & 1 & 0 & \cdots \\ \vdots & & \ddots & & \\ & & & 0 & 1 \\ & & \ddots & 0 & 0 \end{bmatrix}$$

When multplied with another matrix A it shifts the columns of A by one to the right.

$$A = \begin{bmatrix} c_1 & c_2 & \cdots & c_{n-1} & c_n \end{bmatrix}$$
$$A \cdot S = \begin{bmatrix} 0 & c_2 & \cdots & c_{n-2} & c_{n-1} \end{bmatrix}$$

Example 1:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 4 & 5 \\ 0 & 7 & 8 \end{bmatrix}$$

2.1.11 Nilpotent matrix

A matrix is nilpotent of degree k if

$$A^{i} \neq 0$$
$$A^{k} = 0$$
$$0 \leq i < k$$

Example 1:

Let A be a Matrix containing only zeroers except on its superdiagonal. A is nilpotent of degree k + 1 where k is the number of nonzero element. An example would be the shift matrix:

$$S^{1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} S^{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} S^{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Example 2:

Only the zero matrix is nilpotent with degree 1.

Example 3:

A diagonal matrix is not nilpotent.

$$D = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

$$D^n = \begin{bmatrix} 2^n & 0 \\ 0 & 4^n \end{bmatrix}$$

2.2. OPERATIONS 21

2.1.12 Jordan normal form

Jordan Block

A jordan block is a square matrix with the same value for each element on its main diagonal and 1 on it superdiagonal. The other elements are 0.

$$B_{\lambda} = \begin{bmatrix} \lambda & 1 & 0 & \cdots \\ 0 & \lambda & 1 & 0 & \cdots \\ \vdots & & \ddots & & \\ & & & \lambda & 1 \\ & & & \ddots & 0 & \lambda \end{bmatrix}$$

Jordan box

Let lambda be an eigenvalue of A with $\mu(\lambda) = n$ and $\gamma_a(\lambda) = m$. A Jordan box is the direct sum of

$$J_{\lambda} = D_{\lambda} \oplus B_{\lambda} \tag{2.19}$$

where:

$$\dim J_{\lambda} = n$$
$$\dim D_{\lambda} = m$$
$$\dim B_{\lambda} = n - m$$

Example 1:

$$\mu(\lambda) = 4, \gamma(\lambda) = 2$$

$$D_{\lambda} = \begin{bmatrix} \lambda \end{bmatrix} B_{\lambda} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$

$$J_{\lambda} = \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}$$

Example 2:

$$\mu(\lambda) = 4, \gamma(\lambda) = 3$$

$$D_{\lambda} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} B_{\lambda} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$$

$$J_{\lambda} = \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}$$

2.2 Operations

2.2.1 Transposing

Transpose of a matrix A is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A^T .

Example 1:

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Example 2:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

Notice the diagonal elements do not get swaped by transposing. So for any diagonal matrix D holds $D = D^T$.

Matlab

transpose (API link)

2.2.2 Direct sum

The direct sum of two matrixes $A^{a \times b}$ and $B^{c \times d}$ is defined as

$$C = A \oplus B = \begin{bmatrix} A & N_1 \\ N_2 & B \end{bmatrix}$$

$$\dim C = (a+c) \times (b+d)$$
(2.20)

 N_1 and N_2 are zero matrices with dimensions dim $N_1 = b$

2.2.3 Diagonalisation

A matrix A is diagonalizabe if A is similar (see 2.1.7) to a diagonal matrix D.

$$D = U^{-1}AU$$

Eigendecomposition

A matrix can be diagonalized using its eigenvalues and eigenvectors. D is a diagonal matrix containing the eigenvalues λ_i on it main diagonal. The the eigenspaces ϵ_i form a base called **eigenbase** (when the arithmetic multiplicity of an eigenvalue is 1 then ϵ is just the eigenvector). So change of base matrix U has the base vectors of the eigenspaces as it's columns.

$$A = UDU^{-1} \tag{2.21}$$

$$U = \begin{bmatrix} v_1 & v_2 \cdots v_n \end{bmatrix} \tag{2.22}$$

Example 1:

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 5 & 0 & -1 \end{bmatrix}$$

The eigenvalues λ_i and eigenvectors v_i are:

$$\lambda_1 = 4, v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

$$\lambda_2 = -2, v_2 = \begin{bmatrix} -\frac{1}{5}\\0\\1 \end{bmatrix}$$

$$\lambda_3 = 2, v_3 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

We can construct U and D. Keep in mind that the order of the eigenvalues in the diagonal of D must match the order of eigenvector columns in U (and U^{-1}).

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$U = \begin{bmatrix} -\frac{1}{5} & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$U^{-1} = \begin{bmatrix} \frac{5}{6} & 0 & \frac{1}{6} \\ -\frac{5}{6} & 0 & \frac{5}{6} \\ 0 & 1 & 0 \end{bmatrix}$$

The diagonalized A is:

$$A = \begin{bmatrix} -\frac{1}{5} & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} \frac{5}{6} & 0 & \frac{1}{6} \\ -\frac{5}{6} & 0 & \frac{5}{6} \\ 0 & 1 & 0 \end{bmatrix}$$

2.2. OPERATIONS 23

Matlab

>>
$$a = [3,0,1;0,2,0;5,0,-1]$$

>> $[v, d] = eig(a)$
 $v =$

$$0.7071 -0.1961 0$$

$$0.7071 0.9806 0$$

$$d =$$

$$4 0 0$$

$$0 -2 0$$

$$0 0 2$$
>> $v*d*inv(v)$

$$ans =$$

$$3.0000 0 1.0000$$

$$0 2.0000 0$$

$$5.0000 0 -1.0000$$

2.2.4 Raising a matrix to the nth power using diagonalisation

Using the definition of matrix multiplication a single squaring a matrix takes $O(n^3)$ computation steps. Raising a matrix to the mth power would take $O(m \cdot n^3)$ steps. For any diagonal matrix it holds:

$$D^{m} = \begin{bmatrix} x_{11}^{m} & & & & \\ & x_{22}^{m} & & & \\ & & \ddots & & \\ & & & x_{nn}^{m} \end{bmatrix}$$
 (2.23)

Using diagonalisation a more effcient calculation can be achieved:

$$A = UDU^{-1}$$

$$A^2 = A \cdot A = UDU^{-1}UDU^{-1} = UD^2U^{-1}$$

$$A^3 = A^2 \cdot A = UD^2U^{-1}UDU^{-1} = UD^3U^{-1}$$

$$\vdots$$

$$A^n = UD^nU^{-1}$$

2.2.5 Matrix exponential

The taylor series of the exponential functions is given as:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \cdots$$
 (2.24)

Using this definition you can define the matrix exponential:

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!} = I + A + \frac{A^2}{2} + \frac{A^3}{6} \cdots$$
 (2.25)

Diagonal Case

24 CHAPTER 2. MATRICES

2.2.6 Diagonalizable case

If A is diagonalizabe with UDU^{-1} then:

$$e^{A} = \sum_{n=0}^{\infty} \frac{UD^{n}U^{-1}}{n!} = UIU^{-1} + \frac{UDU^{-1}}{n!} + \frac{UD^{2}U^{-1}}{2} + \frac{UD^{3}U^{-1}}{6} \cdots$$

$$= U^{-1} \left(\sum_{n=0}^{\infty} \frac{D^{n}}{n!}\right) U = U^{-1}e^{D}U$$

$$= U^{-1} \begin{bmatrix} e^{\lambda_{1}} & & & & \\ & e^{\lambda_{2}} & & & \\ & & \ddots & & \\ & & & e^{\lambda_{n}} \end{bmatrix} U$$

Example 1:

$$A = \begin{bmatrix} 3 & -4 \\ -5 & -5 \end{bmatrix}$$

$$\lambda_1 = -7, v_1 = \begin{bmatrix} \frac{2}{5} \\ 1 \end{bmatrix}$$

$$\lambda_2 = 5, v_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$e^D = \begin{bmatrix} \frac{2}{5} & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^{-7} & 0 \\ 0 & e^5 \end{bmatrix} \begin{bmatrix} \frac{5}{12} & \frac{5}{6} \\ \frac{-5}{12} & \frac{1}{6} \end{bmatrix}$$

Matlab

expm (API link)

>>
$$a = [3, -4; -5, -5]$$

>> $expm(a)$
 $ans = 123.6778 -49.4707 -61.8384 24.7363$

Comuting matrices

If two matrices A and B commute (AB = BA) then

$$e^{A+B} = e^A e^B (2.26)$$

Jordan bock

A Jordan block B_{λ} of size m can be separated into:

$$B_{\lambda} = D_{\lambda} + S \tag{2.27}$$

where S is the shift matrix (the shift matrix is nilpotent of degree m).

$$e^{B_{\lambda}} = e^{D_{\lambda} + S} = e^{D_{\lambda}} \cdot e^{S}$$
 (Note D_{λ} and S commute)

$$= e^{D_{\lambda}} \cdot e^{S} = e^{D_{\lambda}} \left(\sum_{n=0}^{m-1} \frac{S^{n}}{n!} = I + S + \frac{S^{2}}{2} + \frac{S^{3}}{6} \cdots \right)$$

$$= e^{D_{\lambda}} \left(I + \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & & & & \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & & & & \end{bmatrix} + \cdots + \frac{1}{(m-1)!} \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & & 0 & 1 \\ \vdots & & & & & 0 \end{bmatrix} \right)$$

$$= e^{D_{\lambda}} \begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{1}{6} & \cdots & \frac{1}{(m-1)!} \\ 0 & 1 & 1 & \frac{1}{2} & \cdots & \frac{1}{(m-2)!} \\ 0 & 0 & 1 & 1 & \cdots & \frac{1}{(m-3)!} \end{bmatrix} = \begin{bmatrix} e^{\lambda} & e^{\lambda} & \frac{1}{2}e^{\lambda} & \frac{1}{6}e^{\lambda} & \cdots & \frac{1}{(m-1)!}e^{\lambda} \\ 0 & e^{\lambda} & e^{\lambda} & \frac{1}{2}e^{\lambda} & \cdots & \frac{1}{(m-2)!}e^{\lambda} \\ 0 & 0 & e^{\lambda} & e^{\lambda} & \cdots & \frac{1}{(m-3)!}e^{\lambda} \end{bmatrix}$$

$$\vdots$$

2.2. OPERATIONS 25

Example 2:

$$B_2 = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
$$e^{B_2} = \begin{bmatrix} e^2 & e^2 & \frac{1}{2}e^2 & \frac{1}{6}e^2 \\ 0 & e^2 & e^2 & \frac{1}{2}e^2 \\ 0 & 0 & e^2 & e^2 \\ 0 & 0 & 0 & e^2 \end{bmatrix}$$

Chapter 3

Differential Equation

3.1 Homogeneous linear first-order

The homogeneous linear first-order differential equations have the form:

$$f'(t) + p(t)f(t) = 0$$

Homogeneous is because one side of the equation is zero. You can rewrite the expression above to have f(x) separated

$$f'(t) = -p(t)f(t) \tag{3.1}$$

$$f'(t)\frac{1}{f(t)} = -p(t) \tag{3.2}$$

Now all the f(t) terms are on the left hand side.

Note the following differentiation:

$$(\ln f(t))' = \frac{1}{f(t)}f'(t) \tag{3.3}$$

It can be used to help integrate 3.2.

$$\int f'(t) \frac{1}{f(t)} = \int -p(t)$$
$$\ln(|f(t)|) + C_1 = -P(t) + C_2$$
$$\ln(|f(t)|) = -P(t) + \hat{C}$$

You can combine C_1 and C_2 to a single constant \hat{C} , because they both are constants. Since the domain of \ln is $(0, \inf]$ you have to take the absolute value of f(t). To get rid of \ln raise both side to e. To compensate for the absolute value you have to take \pm of e.

$$|f(t)| = e^{-P(t) + \hat{C}}$$
 (3.4)

$$f(t) = \pm e^{-P(t) + \hat{C}} \tag{3.5}$$

$$f(t) = e^{-P(t)}C (3.6)$$

The expression $e^{\hat{C}}$ is a constant, so it can be replaced by C, which constant be \pm .

The expression 3.6 is the general solution for homogeneous first order linear differential equations. Any linear combination of the general is a valid solution to the differential equation.

Notation

The notation of differential equations can be simplified by:

$$f(t) = y$$
$$f(t)' = y'$$

Example 1:

$$y' + \sin(x+2)y = 0$$

The general solution is:

$$p(t) = sin(x + 2)$$

$$P(t) = -cos(x + 2)$$

$$y = e^{-p(t)}C$$

$$y = e^{cos(x+2)}C$$

Following functions are valid solutions to the homogeneous equation:

$$y = 2e^{\cos(x+2)}$$

 $y = 2e^{\cos(x+2)} + 3e^{\cos(x+2)}$
 $y = 0$

Non-homogenous

$$y' + p(t)y = s(t) \tag{3.7}$$

Recall the product rule which states

$$(f \cdot g) = f'g + fg' \tag{3.8}$$

If we multiply 3.7 by an unknown function $\mu(t)$ called the **integrating factor** we get the following expression:

$$\mu(t)y' + \mu(t)p(t)y = \mu(t)s(t)$$
 (3.9)

we have an expression that looks like the product rule, if we suppose that

$$\mu(t)' = \mu(t)p(t) \tag{3.10}$$

$$\mu(t) = \int \mu(t)p(t) \tag{3.11}$$

Integrating 3.9 by using the product formula in reverse we get:

$$\int \mu(t) \cdot y' + \mu(t) \cdot p(t) \cdot y dt = \int \mu(t) \cdot s(t) dt$$
(3.12)

$$\mu(t)y = \int \mu(td)s(t)dt \tag{3.13}$$

$$y = \frac{1}{\mu(t)} \int \mu(t)s(t) \tag{3.14}$$

The function that satisfies 3.10 is

$$\mu(t) = C(t)e^{P(t)} \tag{3.15}$$

$$\mu(t)' = C(t)'e^{P(t)} + C(t) \cdot p(t) \cdot e^{P(t)}$$
(3.16)

We can chose C(t) = 1

$$\mu(t) = e^{P(t)} \tag{3.17}$$

$$\mu(t)' = p(t)e^{P(t)} = p(t)\mu(t)$$
(3.18)

(3.19)

Setting 3.17 in 3.14 we get the solution for the differential equation.

$$y = e^{-P(t)} \int e^{P(t)} s(t) dt$$
 (3.20)

In general integrating the expression above yield the following expression

$$y = y_p + y_h (3.21)$$

Where y_h is the solution to the homogenous equation y' + p(t)y = 0. The term y_p is called a particular solution and it is one of the solutions to the nonhomogeneous equation.

Example 2:

$$y' + 2y = t$$

$$p(t) = 2$$

$$P(t) = 2t$$

$$s(t) = t$$

$$y = e^{-2t} \int e^{2t} t dt$$

$$y = e^{-2t} \left(\frac{1}{2}e^{2t} \cdot t - \frac{1}{4}e^{2t} + C\right)$$

$$y = \frac{1}{2}t - \frac{1}{4} + Ce^{-2t}$$

We see that Ce^{-2t} is the solution to the homogeneous equation. $y_p = \frac{1}{2}t - \frac{1}{4}$ is one of the solution to the nonhomogeneous equation.

Matlab

dsolve (API link)

>> syms
$$y(t)$$

>> eqn = diff(y, t) + 2*y == t
>> dsolve(eqn)
ans =
 $t/2 + (C1*exp(-2*t))/4 - 1/4$

Note: C1 / 4 is still a constant C.

3.2 Linear first-oder system of differential equations

The exponential map

The exponential map is defined by

$$P_n(t) = e^{At} (3.22)$$

where A is a square matrix with dimension $n \times n$ (see also 2.2.5). If a is diagonalizabe then:

$$P_n(t) = Ue^{Dt}U^{-1} (3.23)$$

The derivate is given by:

$$P_n(t)\frac{d}{dt} = Ae^{At} (3.24)$$

System of differential equations

A system off differential equations contains a set of unknown function $x_1(t), x_2(t) \cdots x_n(t)$ denoted by $x_1, x_2 \cdots x_n$. The derivate of a function x_i (with respect to to t) is denoted by x'_i .

3.2.1 Homogenous case

A homogenous linear first-order system has the form:

$$x'_{1} + p_{11}x_{1} + p_{12}x_{2} \cdots p_{1n}x_{1n} = 0$$

$$x'_{2} + p_{21}x_{1} + p_{22}x_{2} \cdots p_{1n}x_{2n} = 0$$

$$\vdots$$

$$x'_{3} + p_{n1}x_{1} + p_{n2}x_{2} \cdots p_{1n}x_{nn} = 0$$

The terms p_{ij} are called coefficient functions (so written out the are like $p_{ij}(t)$) they only depend on t. The derivates can be expressed as a column vector:

$$m{x'} = egin{bmatrix} x_1' \ x_2' \ \vdots \ x_n' \end{bmatrix}$$

The coefficient functions can be expressed as a square matrix $A^{n\times n}$

$$p = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & & & & \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$
(3.25)

The functions can be written as a column vector

$$\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \tag{3.26}$$

The wholse system can be written in matrix form:

$$x' = px \tag{3.27}$$

The solution is given by (same formula as 3.6 applied to matrices):

$$\boldsymbol{x} = M_p(t)\boldsymbol{c} \tag{3.28}$$

where c is a column vector of constants.

$$x_1' = 1x_1 + 4x_2$$
$$x_2' = 3x_2 + 2x_2$$

Which can be rewritten as:

$$egin{aligned} oldsymbol{x'} & oldsymbol{px} \ egin{bmatrix} x_1' \ x_2' \end{bmatrix} &= egin{bmatrix} 1 & 4 \ 2 & 4 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} \end{aligned}$$

The eigenvalues and eigenvectors are:

$$\lambda_1 = -2, v_1 = \begin{bmatrix} \frac{-4}{3} \\ 1 \end{bmatrix} \lambda_2 = 5, v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Calculating $M_p(t)$

$$M_p(t) = \begin{bmatrix} \frac{-4}{3} & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^{-2t} & 0\\ 0 & e^{5t} \end{bmatrix} \frac{1}{7} \begin{bmatrix} -3 & 3\\ 4 & 4 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 4e^{-2t} + 3e^{5t} & 4e^{5t} - 4e^{-2t}\\ -3e^{-2t} + 3e^{5t} & 3e^{-2t} + 4e^{5t} \end{bmatrix}$$

The solution is (note the factor $\frac{1}{7}$ can be ignored because $\frac{c}{7}$ ist still a constant):

$$\boldsymbol{x} = M_p(t)\boldsymbol{c} \tag{3.29}$$

$$x_1(t) = c_1 \left(4e^{-2t} + 3e^{5t} \right) + c_2 \left(4e^{5t} - 4e^{-2t} \right)$$
(3.30)

$$x_1(t) = c_1 \left(4e^{-2t} + 3e^{5t} \right) + c_2 \left(4e^{5t} - 4e^{-2t} \right)$$

$$x_2(t) = c_1 \left(-3e^{-2t} + 3e^{5t} \right) + c_2 \left(3e^{-2t} + 4e^{5t} \right)$$

$$(3.30)$$

The constans can be simplified by setting $c_a = (3c_1 + 4c_2)$ and $c_b = 3(c_2 - c_1)$:

$$x_1(t) = c_1 4e^{-2t} + c_1 3e^{5t} + c_2 4e^{5t} - c_2 4e^{-2t} = -4(c_2 - c_1)e^{-2t} + (3c_1 + 4c_2)e^{5t}$$

$$= c_a e^{5t} - \frac{4}{3}c_b e^{-2t}$$

$$x_2(t) = c_1(-3)e^{-2t} + c_1 3e^{5t} + c_2 3e^{-2t} + c_2 4e^{5t} = 3(c_2 - c_1)e^{-2t} + (3c_1 + 4c_2)e^{5t}$$

$$= c_b e^{-2t} + c_a e^{5t}$$

Matlab

>> syms x1(t) x2(t)
>> ode1 = diff(x1) ==
$$1*x1 + 4*x2$$

>> ode2 = diff(x2) == $3*x1 + 2*x2$
>> S = dsolve([ode1; ode2])
>> S.x1
ans =
 $C1*exp(5*t) - (4*C2*exp(-2*t))/3$
>> S.x2
ans =
 $C2*exp(-2*t) + C1*exp(5*t)$

A more simplified solution is:

$$\boldsymbol{x} = \sum_{i=1}^{n} c_i \boldsymbol{v_i} e^{\lambda_i t} \tag{3.32}$$