1.	1. Which statement best describes the support enumeration algorithm?		
	0	The support enumeration algorithm is a method for finding mixed strategy Nash equilibria by iterating over all possible combinations of supports for players and checking feasibility conditions.	
	0	The support enumeration algorithm calculates equilibria by directly solving a matrix of payoffs without considering the players' strategy supports.	
	0	The support enumeration algorithm is used to find pure strategy Nash equilibria by iterating through all possible combinations of strategies and checking for mutual best responses.	

 \bigcirc The support enumeration algorithm identifies Nash equilibria by simulating repeated gameplay and observing which strategies survive over time.

2. For a non-degenerate game $(A, B) \in (\mathbb{R}^{4\times 3})^2$ how many pairs of supports will be checked using the support enumeration algorithm?

71051498

3. Which following pair of strategies is a Nash equilibrium for the following game:

$$A = \begin{pmatrix} 4 & 3 \\ 0 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 2 \\ 3 & 8 \end{pmatrix}$$

 $\bigcirc \ \sigma_r = (5/8, 3/8) \qquad \sigma_c = (1/2, 1/2) \\
\bigcirc \ \sigma_r = (5/8, 3/8) \qquad \sigma_c = (1/3, 2/3) \\
\bigcirc \ \sigma_r = (1/4, 3/4) \qquad \sigma_c = (1/2, 1/2)$