

3250 Foundations of Data Science

Module 3: NumPy

Course Plan

Module Titles

Module 1 – Introduction to Data Science

Module 2 – Introduction to Python

Current Focus: Module 3 - NumPy

Module 4 – Pandas

Module 5 - Data Collection and Cleaning

Module 6 – Descriptive Statistics and Visualization

Module 7 – Workshop (No Content)

Module 8 – Time Series

Module 9 – Introduction to Regression and Classification

Module 10 – Databases and SQL

Module 11 – Data Privacy and Security

Module 12 – Term Project Presentations (no content)

Learning Outcomes for this Module

- Further build your Python skills
- Download and share work with GitHub
- Use the NumPy data analysis library to work with large arrays
- Use kNN to classify observations

Topics for this Module

- 3.1 Working with Python
- 3.2 Git and GitHub
- **3.3** NumPy
- 3.4 kNN: k Nearest Neighbors
- 3.5 Resources and Homework

Module 3 – Section 1

Working with Python

Imports

Use them to bring in packages you need

Syntax

- import pandas
- import pandas as pd
- from pandas import DataFrame

Review: For Loops & Ranges

• for i in range(0, 5):

• for c in "this string":

Reading & Writing Files

```
f = open('myfile.txt', 'r')
for line in f:
    print(line)
f.close()
fout = open('mynewfile.txt', 'w')
for i in range (2, 17):
    fout.write(str(i)+ '\n')
fout.close()
```


Software Objects

Characteristics of Python

objects:

- Type
- Value
- Identity
- Object Attributes:
 - Data attributes
 - Methods

An Example Software Object: DataFrame

Getting Help in Jupyter

• ? or help() will show some documentation for an object

tab-shift will show methods or parameters

Module 3 – Section 2

Git and GitHub

<u>Git</u>

- Distributed Version Control System
 - Enables collaborative, distributed development
 - Keeps track of all changes to the code base, who has made the change and what has been changed in the update
 - Allows to revert back to the previous version
- Uses Code Repository
 - Stores the code base
 - Retains a complete copy of the entire project throughout its lifetime
 - Manages the revisions and history of a project

History of Git

- Git was created in 2005 by Linus Torvalds to support the development of the Linux[®] kernel.
- Linux community needed a version control system that would:
 - Facilitate distributed development
 - Scale to handle thousands of developers
 - Perform quickly and efficiently
 - Maintain integrity and trust
 - Enforce Accountability
 - Support immutability
 - Atomic Transactions
 - Support and encourage branched development
 - Complete repositories
 - Clean Internal Design
 - Be free, as in Freedom

<u>GitHub</u>

- GitHub is a web-hosted Git repository
- Introduces the model of social coding, enables collaborative distributed development
- Allows developers to:
 - Create a repository
 - Work remotely, online and offline
 - Collaborate on independent streams of history
 - Merge the code built by multiple developers
 - Pull, Fork, Clone and Watch

How to Start with GitHub

- Go to <u>GitHub</u> and Sign Up for the free account
- On Demand Training
- Other videos:
 - Git and GitHub for Beginners: GitHub basics, and how to use GitHub Desktop
 - Git & GitHub Crash Course For Beginners

Module 3 – Section 3

NumPy

Download & Launch NumPy Notebook

- To start the download, go to <u>github.com/wesm/pydata-book</u>
- Click the green "Clone or download" button
- Click the zip option
- Copy the downloaded file "pydata-book-2nd-edition" to your folder for this course and unzip it
- Delete the zip
- Start jupyter notebook, navigate to pydata-book-2nd-edition and launch ch04.ipynb

NumPy: Numerical Python

- Fast, space-efficient n-dimensional array
- Standard math operations on entire arrays without loops
- Linear algebra and random number generation
- Tools for integrating to fast C, C++ and Fortran libraries

NumPy Array

- Adds arrays of more than one dimension to Python
- The entire array must be of a single type, typically numbers
- Has a shape e.g. (2, 4, 3) and size e.g. 24
- Supports
 - Views
 - Indexing
 - Slicing

Creating an Array

```
import numpy as np
a = np.array([1,2,3])
b = np.array([[1,2,3], [3,4,5]])
```


Indexing

- Dimensions are called axes
- An ndarray can have one index per axis
- Indexes on arrays are integers starting at 0

Example:

```
a = np.array([[1,2,3],[4,5,6]])
a[0, 2]
a[1, 1]
```


<u>Views</u>

- Most operations on ndarrays do not make copies of the data
 - Simple assignments
 - Passing ndarrays as arguments to a function
 - .view() which creates a "window" on part of an ndarray
 - Slicing returns a view
- .copy() will make a deep copy

Slicing

Slicing an array returns a view of it

Examples:

```
a = np.random.rand(10,10)
a[0:2]
a[0:4, 2:6]
a[:, 2:6]
```


Module 3 – Section 4

k Nearest Neighbors

Intro to kNN

- Let's look at the <u>Fisher iris data set</u>
- And a k-Nearest Neighbors implementation in Python

Module 3 – Section 5

Resources and Homework

Resources

- NumPy indexing reference
- Jupyter cheat sheet

Next Class

Pandas

Assignment 1 is due

Follow us on social

Join the conversation with us online:

- f facebook.com/uoftscs
- @uoftscs
- in linkedin.com/company/university-of-toronto-school-of-continuing-studies
- @uoftscs

Any questions?

Thank You

Thank you for choosing the University of Toronto School of Continuing Studies