1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»_

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»_

Логика и теория алгоритмов

Домашнее Задание № 2

Студент: Нгуен Ань Тхы

Группа: ИУ7-И46Б

Москва. 2020 г.

- 1. Для булевой функции ф, заданной вектором значений:
 - а) Найти сокращенную ДНФ.
 - б) Найти ядро.
 - в) Получить все тупиковые ДНФ и указать, какие из них являются минимальными.
 - г) На картах Карно указать ядро и покрытия, соттветствующие минимальным ДНФ.

Вариант 19: 1110 0101 1010 0011

Решение:

x1 x2 x3 x4 φ 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1					
0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 <td>x1</td> <td>x2</td> <td>x3</td> <td>x4</td> <td>φ</td>	x1	x2	x3	x4	φ
0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td>	0	0	0	0	1
0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0	0	0	0	1	1
0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0	0	0	1	0	1
0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0	0	0	1	1	0
0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0	0	1	0	0	0
0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0	0	1	0	1	1
1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1	0	1	1	0	0
1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1	0	1	1	1	1
1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1	1	0	0	0	1
1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1	1	0	0	1	0
1 1 0 0 1 1 0 1 0 1 1 1 0 1	1	0	1	0	1
1 1 0 1 0 1 1 1 0 1	1	0	1	1	0
1 1 1 0 1	1	1	0	0	0
	1	1	0	1	0
1 1 1 1 1	1	1	1	0	1
	1	1	1	1	1

а) Найти сокращенную ДНФ:

Карта Карно для сокращенной ДНФ:

X1X2\X3X4	00	01	11	10
00	K2 1	1 K3	0	1
01	0	1 K4	1 K5	0
11	0	0	1 ке	1 K7
10	1	0	0	1

$$K1 = x0x0 = \bar{x}_2\bar{x}_4$$

$$K2 = 000x = \bar{x}_1 \bar{x}_2 \bar{x}_3$$

$$K3 = 0x01 = \bar{x}_1\bar{x}_3x_4$$

$$K4 = 01x1 = \bar{x}_1 x_2 x_4$$

$$K5 = x111 = x_2x_3x_4$$

$$K6 = 111x = x_1x_2x_3$$

$$K7 = 1x10 = x_1x_3\bar{x}_4$$

Сокращенная ДНФ:

K1VK2VK3VK4VK5VK6VK7

$$= \bar{x}_2 \bar{x}_4 \vee \bar{x}_1 \bar{x}_2 \bar{x}_3 \vee \bar{x}_1 \bar{x}_3 x_4 \vee \bar{x}_1 x_2 x_4 \vee x_2 x_3 x_4 \vee x_1 x_2 x_3 \vee x_1 x_3 \bar{x}_4$$

б) Найти ядро:

На карте Карно элементарные конъюнкции $x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4$ и $\bar{x}_1 \bar{x}_2 x_3 \bar{x}_4$ покрыта только этой импликантой.

$$\Rightarrow$$
 Ядро: $K1 = x0x0 = \bar{x}_2\bar{x}_4$

в) Получить все тупиковые ДНФ и указать, какие из них являются минимальными:

(K2VK3)(K3VK4)(K4VK5)(K5VK6)(K6VK7)

- = (K2K3VK2K4VK3VK3K4)(K4K5VK4K6VK5VK5K6)(K6VK7)
- =(K3VK2K4)(K5VK4K6)(K6VK7)
- =(K3K5VK3K4K6VK2K4K5VK2K4K6)(K6VK7)
- =K3K5K6vK3K4K6vK2K4K5K6vK2K4K6vK3K5K7vK3K4K6K7v K2K4K5K7vK2K4K6K7
- = K3K5K6 \vee K3K4K6 \vee K2K4K6 \vee K3K5K7 \vee K2K4K5K7 Получаем 5 типковых ДНФ:
 - 1) $K1K3K5K6 = \bar{x}_2\bar{x}_4 \lor \bar{x}_1\bar{x}_3x_4 \lor x_2x_3x_4 \lor x_1x_2x_3$
 - 2) $K1K3K4K6 = \bar{x}_2\bar{x}_4 \lor \bar{x}_1\bar{x}_3x_4 \lor \bar{x}_1x_2x_4 \lor x_1x_2x_3$
 - 3) $K1K2K4K6 = \bar{x}_2\bar{x}_4 \lor \bar{x}_1\bar{x}_2\bar{x}_3 \lor \bar{x}_1x_2x_4 \lor x_1x_2x_3$
 - 4) K1K3K5K7 = $\bar{x}_2\bar{x}_4 \vee \bar{x}_1\bar{x}_3x_4 \vee x_2x_3x_4 \vee x_1x_3\bar{x}_4$
- 5) K1K2K4K5K7 = $\bar{x}_2\bar{x}_4 \vee \bar{x}_1\bar{x}_2\bar{x}_3 \vee \bar{x}_1x_2x_4 \vee x_2x_3x_4 \vee x_1x_3\bar{x}_4$ Первые четыре ДНФ являются минимальными

г) На картах Карно указать ядро и покрытия, соттветствующие минимальным ДНФ:

1) $K1K3K5K6 = \bar{x}_2\bar{x}_4 \lor \bar{x}_1\bar{x}_3x_4 \lor x_2x_3x_4 \lor x_1x_2x_3$

		Z · · I · · J ·	04 1 102103104	172
$x_1x_2\backslash x_3x_4$	00	01	11	10
00	1	1 K3	0	1
01	0	1	1 K5	0
11	0	0	1 K6	1
10	1	0	0	1

2) K1K3K4K6 = $\bar{x}_2\bar{x}_4 \vee \bar{x}_1\bar{x}_3x_4 \vee \bar{x}_1x_2x_4 \vee x_1x_2x_3$

X ₁ X ₂ \X ₃ X ₄	00	01	11	10
00		1 K3	0	1
01	0	1 K4	1	0
11	0	0	1 K6	
10	1	0	0	1

3) $K1K2K4K6 = \bar{x}_2\bar{x}_4 \vee \bar{x}_1\bar{x}_2\bar{x}_3 \vee \bar{x}_1x_2x_4 \vee x_1x_2x_3$

$x_1x_2\backslash x_3x_4$	00	01	11	10
00	1	1	0	1
01	0	1 K4	1	0
11	0	0	1 K6	1
10	1	0	0	1

4) K1K3K5K7 = $\bar{x}_2\bar{x}_4 \vee \bar{x}_1\bar{x}_3x_4 \vee x_2x_3x_4 \vee x_1x_3\bar{x}_4$

$x_1x_2\backslash x_3x_4$	00	01	11	10
00	1	1	0	1
01	0	1 K4	1 K5	0
11	0	0	1	1 K7
10	(1 1	0	0	1

2. Даны функции f и w:

$$f(x_1, x_2, x_3) = ((\bar{x}_1 \lor x_2 \lor x_3) \to (\bar{x}_2 \sim x_3)) \sim (x_1 \sim \bar{x}_3), w = 111111100$$

- а) Вычислить таблицу значений функций f.
- б) Найти минимальнные ДНФ функций f u w.
- в) Выяснить полноту системы $\{f, w\}$. Если система не полна, дополнить систему функцией g до полной системы.
- г) Из функциональных элементов, реализующих функции полной системы $\{f, w\}$ или $\{f, w, g\}$, построить функциональные элементы, реализующие базовые функции (V, Λ , -, 0, 1).

а) Вычислить таблицу значений функций f:

$$f(x_1, x_2, x_3) = ((\bar{x}_1 \lor x_2 \lor x_3) \to (\bar{x}_2 \sim x_3)) \sim (x_1 \sim \bar{x}_3)$$

$$(1) = \bar{x}_1 \lor x_2 \lor x_3 \qquad (2) = \bar{x}_2 \sim x_3$$

$$(3) = (x_1 \sim \bar{x}_3)$$

X 1	X 2	X 3	\overline{x}_1	\bar{x}_2	\bar{x}_3	(1)	(2)	(3)	$(4)=(1)\to(2)$	$f = (4) \sim (3)$
0	0	0	1	1	1	1	0	0	0	1
0	0	1	1	1	0	1	1	1	1	1
0	1	0	1	0	1	1	1	0	1	0
0	1	1	1	0	0	1	0	1	0	0
1	0	0	0	1	1	0	0	1	1	1
1	0	1	0	1	0	1	1	0	1	0
1	1	0	0	0	1	1	1	1	1	1
1	1	1	0	0	0	1	0	0	0	1

б) Найти минимальнныеДН Φ функций f u w:

Карта Карно для функции f:

$x_1 \backslash x_2 x_3$	00	01	11	10
0	1	1	0	0
1	1	0	1	1

минимальнные ДНФ функций f: $\bar{x}_2\bar{x}_3$ V $\bar{x}_1\bar{x}_2$ V x_1x_2

Карта Карно для функции w:

$x_1 \backslash x_2 x_3$	00	01	11	10
0	1	1	1	1
1	1	1	0	0

минимальнные ДНФ функций w: \bar{x}_1 V \bar{x}_2

в) Выяснить полноту системы $\{f, w\}$. Если система не полна, дополнить систему функцией g до полной системы:

<i>x1</i>	х3	<i>x4</i>	f	w
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

1. Сохранение 0:

$$f(0, 0, 0) = 1 => f \notin T_0$$

$$w(0, 0, 0) = 1 => w \not\in T_0$$

2. Сохранение 1:

$$f(1, 1, 1) = 1 => f \in T_1$$

 $w(1, 1, 1) = 0 => w \notin T_1$

3. Самодейственность:

$$f(0, 0, 0) = f(1, 1, 1) = 1 => f \notin S$$

 $w(0, 1, 0) = w(1, 0, 1) = 1 => w \notin S$

4. Монотоность:

$$T.\kappa (0, 0, 0) < (0, 1, 0)$$
 но $f(0, 0, 0) > f(0, 1, 0) => f \not\in M$

$$T. \ \kappa(0, \ 0, \ 0) \le (1, \ 1, \ 0) \$$
но $\ w(0, \ 0, \ 0) > w(1, \ 1, \ 0) => f \not\in M$

5. Линейность функции:

Общий вид полинома Жегалкина для функции трех переменных:

x_1	<i>X</i> 2	х3	$f(x_1,x_2,x_3)$	
0	0	0	1	$a_0 = 1$
0	0	1	1	$a_0 \oplus a_3 = 1 \Rightarrow a_3 = 0$
0	1	0	0	$a_2 \oplus a_0 = 0 \Rightarrow a_2 = 1$
0	1	1	0	$a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 0 \Rightarrow a_{23} = 0$
1	0	0	1	$a_1 \oplus a_0 = 1 \Rightarrow a_1 = 0$
1	0	1	0	$a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 0 \Rightarrow a_{13} = 1$
1	1	0	1	$a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 1 \Rightarrow a_{12} = 1$
1	1	1	1	$a_{123} \oplus a_{12} \oplus a_{23} \oplus a_{13} \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_0 = 1 \Rightarrow a_{123} = 0$

Полином Жегалкина функции *f*:

$$f(x_1, x_2, x_3) = x_1 x_2 \oplus x_1 x_3 \oplus x_2 \oplus I => f \notin L$$

 $w(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_{1x_1} \oplus a_{2x_2} \oplus a_{3x_3} \oplus a_{0}$

x_1	x_2	х3	$w(x_1,x_2,x_3)$	
0	0	0	1	$a_0 = 1$
0	0	1	1	$a_0 \oplus a_3 = 1 \Rightarrow a_3 = 0$
0	1	0	1	$a_2 \oplus a_0 = 0 \Rightarrow a_2 = 0$
0	1	1	1	$a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 0 \Rightarrow a_{23} = 0$
1	0	0	1	$a_1 \oplus a_0 = 1 \Rightarrow a_1 = 0$
1	0	1	1	$a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 0 \Rightarrow a_{13} = 0$
1	1	0	0	$a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 1 \Rightarrow a_{12} = 1$
1	1	1	0	$a_{123} \oplus a_{12} \oplus a_{23} \oplus a_{13} \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_0 = 1 \Rightarrow a_{123} = 0$

$$w(x_1, x_2, x_3) = x_1x_2 \oplus 1 => w f \notin L$$

Критериальная таблица:

	T_{0}	T_{I}	S	M	L
f	-	+	ı	ı	-
W	-	-	-	-	-

Система $\{f, w\}$ является функциально польным классом.

- г) Из функциональных элементов, реализующих функции полной системы $\{f, w\}$ или $\{f, w, g\}$, построить функциональные элементы, реализующие базовые функции $(V, \Lambda, -, 0, 1)$:
- 1) Отрицание:

$$w \notin T_0 \ u \ w \notin T_1 \ m.\kappa \ w(0, \ 0, \ 0) = 1 \ u \ w(1, \ 1, \ 1) = 0$$

$$w(x, x, x) = \bar{x}$$

2) Константа 1:

$$f \not\in T_0 \ u \ f \in T_1 \ m.\kappa \ f(0,\ 0,\ 0) = f(1,\ 1,\ 1) = 1$$

$$f(x, x, x) = 1$$

3) Константа 0:

$$\overline{f(x,x,x)} = w(f(x,x,x), f(x,x,x), f(x,x,x) \equiv 0$$

Проверка:

$$w(f(0, 0, 0), f(0, 0, 0), f(0, 0, 0)) = w(1, 1, 1) = 0$$

 $w(f(1, 1, 1), f(1, 1, 1), f(1, 1, 1)) = w(1, 1, 1) = 0$

4) Построение дизъюнкции:

Для построения дизъюнкции из функции $f=\bar{x}_2\bar{x}_3 \lor \bar{x}_1\bar{x}_2 \lor x_1x_2$ зафиксируем переменную $x_2=1$, и обозначим $x_1\to x$, $x_3\to y$.

Тогда
$$f(x, 1, y) = \overline{1}\overline{y} \vee \overline{x}\overline{1} \vee 1x = x$$

Выражение для дизъюнкции: d(x, y) = f(x, 1, y) = f(x, f(x, x, x), y) = x Проверка:

$$d(0, 0) = f(0, f(0, 0, 0), 0) = f(0, 1, 0) = 0$$

$$d(0, 1) = f(0, f(0, 0, 0), 1) = f(0, 1, 1) = 0$$

$$d(1, 0) = f(1, f(1, 1, 1), 0) = f(1, 1, 0) = 1$$

$$d(1, 1) = f(1, f(1, 1, 1), 1) = f(1, 1, 1) = 1$$