

# **Multisensor Speech Processing**

# **General ASE Objectives**

<u>Objective</u>: Use nonacoustic sensors to improve performance of speech encoding algorithms

with speech that is degraded by severe additive noise backgrounds

**Two Phases: I: 2400 bps and II: 1000-300 bps** 





# **Exploiting Nonacoustic Sensors**

# **Primary Phase I Contributions**

- Provided technical support to DARPA and ASE community
  - Collaborated with ARCON on Pilot Corpus
  - Provided our studies and results to ASE community
  - Designed and maintained ASE website
- Research and concept studies
  - Focus on fundamental issues and theoretical bounds
  - Nature of sensor measurements
     Example: Voice bars
  - Low-rate speech encoding at 2400 bps
     Fusing acoustic and nonacoustic signals gives large gains in speech intelligibility
  - Speaker recognition

Fusing outputs from different recognition systems using acoustic- and nonacoustic-sensor signals significantly improves speaker recognition accuracy





# **Outline**

- Nature of sensor measurements in noise
- Applications
  - Speech coding
  - Speaker recognition
- Summary



# **ASE Corpora**

### **Collection Scenario**

- ASE Corpus Collection performed by ARCON and designed by ARCON and MIT LL
- Support R&D and evaluations relevant to ASE
  - 10 male + 10 female talkers
  - Vowel, word, sentence, and conversational material
     Supports DRT and DAM testing
  - Primary harsh acoustic noise conditions

Bradley Tank (M2)

Black Hawk Helicoptor (BH)

Military Urban Terrain (MOUT)



- Multisensor recordings of simultaneous channels
  - Acoustic microphone used in field: mouth
     Referred to as the resident microphone and is a gradient noise-canceling microphone
  - B&K reference microphone: mouth
  - General Electromagnetic Movement Sensor (GEMS): throat
  - 1 Electroglottograph (EGG) sensor: throat
  - 2 P-Mics: throat and forehead
  - 1 Bone conduction microphone: top of skull (only in MOUT)



# Nonacoustic Sensors

# **Time-Frequency Properties in Noise**

- For each sensor (GEMS, P-mic and Bone-mic), investigated properties of its signal output in the time and frequency domains
  - Source components

**Voicing** 

**Frication** 

**Consonant bursts** 

- Vocal tract components
  - Formant location and bandwidth
- Time-frequency properties were studied in relation to those of corresponding acoustic microphone signal and to each other in harsh acoustic backgrounds
  - Complementary nature of the measurements



### **GEMS Nonacoustic Sensor**

### **Signal Properties in Noise**

In ASE corpus, GEMS placed at the vocal cord location



- Observed GEMS signal properties
  - Good low-frequency source content
     Low-frequency voicing, including voice bars and nasality
  - Strong "glottalized" source activity in low-energy regions
     Irregular pulses at end of words
     Secondary pulses between primary
  - Essentially no vocal tract content
  - Excellent noise immunity

Bradley Tank Environment

GEMS

Acoustic



## **GEMS Nonacoustic Sensor**

# **Low-Frequency Voicing**

- Example of low-frequency voicing
  - Waveforms (from the Bradley environment) and spectrograms of the resident-mic signal and GEMS signal for the word "dint"





While the resident-mic shows the highfrequency burst energy in the /d/ and in the unvoiced plosive /t/

\*Voice bars and voicing at the end of consonants is measurable by the GEMS, P-Mic, and Bone-mic. The strength and duration of these vibrations appears to be speaker-dependent, as well as condition-dependent, being more present with harsher noise.



# **GEMS Nonacoustic Sensor**

### **Glottalization**

- Example of glottalization
  - Waveforms (from the Bradley tank environment) and spectrograms of the resident-mic signal and GEMS signal





# **P-Mic Nonacoustic Sensor**

# **Signal Properties in Noise**

- In ASE corpus, P-Mic placed near vocal cords and forehead
- Observed P-Mic signal properties near vocal cords
  - Good low-frequency source content
     Low-frequency voicing, including
     voice bars and nasality
  - Some glottalized source activity in low-energy regions
  - Some vocal tract content
  - Fair noise immunity
- Observed P-Mic signal properties on forehead
  - Good source and tract content
  - Poor noise immunity

#### Example

- Black Hawk Helicopter Environi





# Sensor

# Signal Properties in Noise

- In ASE corpus, bone-conduction mic placed on skull
- Observed bone-mic signal properties
  - Good mid-frequency spectral content
  - Fair glottalized source activity in low-energy regions
  - Good vocal tract content
  - Good noise immunity

- Example
  - Black Hawk Helicopter Environi





# **Fundamental Measurements**

## **Approximate Sensor Contributions**





# **Outline**

Nature of sensor measurements in noise

- Applications
  - Speech coding
  - Speaker recognition
- Summary and future directions



# **MELPe Speech Encoding**

### **Multi-Sensor Fusion**

Approach: MELPe signal enhancement with P-mic/Bone-mic/Res-mic signal fusion; GEMS pitch from MELPe analysis



**DRT Intelligibility Test** 

Using 3 Males/3 Females from ASE corpus



Significant intelligibility gains have been achieved in all of the high noise environments by exploiting ASE sensors (GEMS, P-mic, and Bone-mic).



# **Multisensor MELPe**

### **Demonstration**

### 400 bps MELP coded speech in Bradley high-noise environment





# **Multisensor MELPe**

### **Demonstration**

### 00 bps MELP coded speech in Military Urban high-noise environment

#### **Resident Microphone**



#### **Multi-Sensor Enhancement**





# MELPe Speech Encoding DRT Attribute Results



There is broad variation in the impact of ASE technology on various D intelligibility attributes --- with strong improvements in voicing and r



# **High Frequency Fusion**

# **M2 High Noise Condition**

- High frequency (>4 kHz) speech data has been shown to provide significant intelligibility content
  - MELPe coded speech was augmented with high frequency unencoded speech
     High frequency unencoded speech (4-8 kHz) was attenuated 100 dB in 0-4 kHz band
- Note that ARCON sound simulation rolls off at 4 kHz
  - Bradley Vehicle and Military Urban can exceed this range





### Wideband Multisensor MELPe



# DRT Intelligibility Test M2 Noise Environment



- MELPe (High Noise)
- ☐ Multisensor MELPe (High Noise)
- Wideband Multisensor MELPe (High Noise)
- MELPe (Low Noise)

The addition of high frequency content to the Multisensor MELPe architecture provides significant DRT intelligibility gain.



# Recognition

Motivation

- Lincoln glottal flow estimator developed in late 90's
  - Pitch-synchronous inverse-filtering approach
  - Significant speaker ID in flow but not robust

Comparison of Lincoln pitch-synchronous glottal flow estimator with differentiated



acoustic-based flow estimate: Determination of "truth".



# **Speaker Recognition**

# **Approach**

#### **Approach**

- Treat each sensor output as we do a speech signal
- Apply standard feature extraction and classification
- Fuse at the score level

#### **Multisensor Architecture**





# **Speaker Recognition**

### Results



Speaker ID results using multiple sensors in a high noise environment mat performance level of an audio-only approach in a low noise environment.



# **Conclusions**

- Nonacoustic sensor measurements, such as from the GEMS and P-mic, have interesting properties
  - Reveal certain speech events such as voice bars and glottalized activity lost in the acoustic signal
  - Signal quality of different sensor outputs is banddependent
- Nonacoustic sensors can be used with acoustic noise canceling microphones, such as resident microphones, to improve speech encoding and speaker recognition
  - Encoding: Primary gains in DRT attributes of voicing and nasality attributes
    - Corresponds to low-frequency and harmonic content of GEMS, P-mic, and bone-conduction-mic sensors
  - Speaker recognition: Large gain from fusion using standard recognition



# **Some Key References**

#### **Lincoln Work**

- D. Messing, Noise suppression using spectral magnitude and phase from nonacoustic sensors, MS Thesis, MIT, August 2003.
- T. F. Quatieri, D. Messing, K. Brady, W. B. Campbell, J. P. Campbell, M. Brandstein, C. J. Weinstein, J. D. Tardelli, and P. D. Gatewood, "Exploiting nonacoustic sensors for speech enhancement", Proc. Workshop on Multimodal User Authentication, Santa Barbara, CA, 11-12 December 2003.
- W.M. Campbell, T.F. Quatieri, J.P. Campbell, and C.J. Weinstein, "Multimodal speaker authentication using nonacoustic sensors," Proc. Workshop on Multimodal User Authentication, Santa Barbara, CA, 2003.
- K. Brady, T. F. Quatieri, W. B. Campbell, J. P. Campbell, M. Brandstein, C. J. Weinstein, "Multisensor MELPe using parameter substitution", Proc. Int. Conf. Acoustics, Speech, and Signal Processing, Montreal Canada, 2004.

#### **Nonacoustic Sensors**

- G.C. Burnett, J.F. Holzrichter, T.J. Gable, and L.C. Ng, "The use of glottal electromagnetic micropower sensors (GEMS) in determining a voiced excitation function," presented at the 138th Meeting of the Acoustical Society of America, November 2, 1999, Columbus, Ohio.
- M. Rothenberg, "A multichannel electroglottograph," J. of Voice, vol. 6, no. 1, pp. 36-43, 1992.
- M.V. Scanlon, "Acoustic sensor for health status monitoring," Proceedings of IRIS Acoustic and Seismic Sensing, vol. 2, pp. 205-222, 1998.
- T. Yanagisawa and K. Furihata, "Pickup of speech signal utilization of vibration transducer under high ambient noise", Journal of Acoustical Society of Japan, Vol. 31, No. 3, pp. 213-220, 1975.

#### **2400 bps MELP**

A. McCree, K. Truong, E.B. George, T.P. Barnwell, and V, Viswanathan, "A 2.4 kbit/s MELP coder candidate for the new US
Federal standard," Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Atlanta, GA, vol. 1, pp. 200-203, May 1996.