Introduction. Omron *CX-Programmer* is included in *CX-One* which is an integrated package for all of Omron's PLC series. The application includes a wide variety of features to speed up the development of a PLC program. New parameter-setting dialogues reduce setup time, and with standard function blocks in IEC 61131-3 structured text or conventional ladder language

Task.1. Run *CX-Programmer*. From the *File* menu choose *New...* (*File→New...*).

- Device Name the name of the project.
- Device Type PLC type that is used in the project.
- Network Type the interface between PC and PLC.
- Comment designer notes.

Create the following application:

```
0 [Program Name : NewProgram1]
[Section Name : Section1]

1: 0.00 Q: 100.00
```

From the Simulation menu choose Work Online Simulator (Simulation > Work Online Simulator). Wait for the gray background. Use the simulator to see how the program works.

Close the simulator (Simulation \rightarrow Work Online Simulator). Send this program to the PLC using the combination: $PLC \rightarrow Work$ Online; $PLC \rightarrow Transfer \rightarrow To$ PLC...

Task.2. Run *CX-Programmer*. From the *File* menu choose *New...* (*File→New...*).

In the project tree, open the *Programs* tab. Select *Symbols*.

Press the right mouse button while keeping the mouse pointer inside the *Symbols* window. Select *Insert Symbol*.

Enter the Name and address in the PLC memory (Address or value).

Create symbols according to the following table:

Hardware	Input symbol	Input	Output symbol	Output
Omron #1	button_1	0.0	out_1	100.0
	button_2	0.1	out_2	100.1
	button_3	0.2	out_3	100.2
Omron #2	button_1	0.0	out_1	100.0
	button_2	0.2	out_2	100.1
	button_3	0.3	out_3	100.2
Omron #3	button_1	0.0	out_1	100.0
	button_2	0.2	out_2	100.1
	button_3	0.4	out_3	100.2

Omron #4	button_1	0.0	out_1	100.0
	button_2	0.1	out_2	100.2
	button_3	0.3	out_3	100.3

Task.3. Using symbols from Task 2 build the following LD diagram in the *CX-Programmer*.

```
button_1 out_1

button_2 out_2

button_3 out_3
```

Send this program to the PLC. Check if it works.

Task.4. Using symbols from Task 2 build the following LD diagram in the *CX-Programmer*. Send this program to the PLC. Check if it works.

```
button_1 button_2 out_1
```

Task.5. Using symbols from Task 2 build the following LD diagram in the *CX-Programmer*. Send this program to the PLC. Check if it works.

```
button_1 out_2 button_2
```

Task.6. Using symbols from Task 2 build the following LD diagram in the *CX-Programmer*. Send this program to the PLC. Check if it works.

```
button_1 button_2 out _2
button_3
```

Task.7. Using symbols from Task 2 build the following LD diagram in the *CX-Programmer*. Send this program to the PLC. Check if it works.

```
button_1 button_2 out_3
button_3 out_2
```

Task.8. Using symbols from Task 2 build the following LD diagram in the *CX-Programmer*. Send this program to the PLC. Check if it works.

Task.9. Using symbols from Task 2 build the following LD diagram in the *CX-Programmer*. Send this program to the PLC. Check if it works.

Task.10. Using symbols from Task 2 prepare a solution that meets the following parameters:

- 1. *out_1* = *button_1* | *button_2*;
- 2. out_2 = out_1 & button_3;
- 3. out_2 should be energized, even when the input ceases.

The prepared program should be sent to the PLC and its operation presented to the teacher. After completing the task, the <u>cxp file</u> should be sent to the e-mail address shown in the footer, along with the authors of the solution.

Task.11. Using defined symbols prepare a solution that meets the following parameters:

- 1. turn on and hold (latch) out_3 if button_3 and button_1 were pressed;
- 2. turn on out_3 if button_2 and button_3 were pressed.

Task.12. KEEP function. Add a new symbol.

Hardware	Input symbol	Input
Omron #1		0.3
Omron #2	button_4	0.1
Omron #3		0.1
Omron #4		0.2

Build the following LD diagrams. Check the results.

Task.13. SET/RSET function. Build the following LD diagrams. Check the results.

Task.14. P flags. Build the following LD diagrams. Check the results.

```
P_First_Cycle
                                                                                                           W0.04
     \dashv \bar{\vdash}
First Cycle Flag
    P_On
                    button_1
                                                                                                            out_1
     √ ⊢
                      +
Always ON Flag
                                                                                                           W0.05
     P Off
                     W0.04
                                                                                                            out_2
Always OFF F...
     P_1s
                     VV0.04
                                      W0.05
                                                                                                            out 3
1.0 second cl...
```

Task.15. Timer. Build the following LD diagrams. Check the results.

Timer function syntax: TIM 1 #100

Task.16. Build the following LD diagram. Check the results.

Task.17. Build the following LD diagram. Check the results.

Task.18. Generate a 4s pulse on *out_2*, triggered by pressing the *button_3*.

Task.19. Generate 2 5s pulses on *out_1* triggered by pressing the *button_1*. The second pulse should be generated 10s after the first pulse is completed.

Task.20. Prepare a solution that meets the following parameters:

- 1. out_1 is energized (on) 5s after either button_1 or button_2 is pressed.
- 2. out_2 is energized (on) 3s after button_1 and button_2 were pressed.

3. *button_3* resets the system.

Task.21. Create an LD program that produces a 2Hz 50% PWM signal on out 2.

For those interested:

1. CX-Programmer Introduction Guide:

www.fa.omron.com.cn/data pdf/mnu/r132-e1-05 cx-programmer.pdf?

id=1605

2. CP1L Programming Manual:

<u>assets.omron.eu/downloads/manual/en/v1/w451 cp1 cpu unit progr</u> <u>amming manual en.pdf</u>