Analysis I - Vorlesungs-Script

Prof. Dr. Camillo De Lellis

Basisjahr 10 Semester II

Mitschrift:

Simon Hafner

Inhaltsverzeichnis

1	\mathbf{Die}	reellen Zahlen 1	
	1.1	Körperstrukturen	
	1.2	Die Anordnung von \mathbb{R}	
	1.3	Die Vollständigkeit der reellen Zahlen	
	1.4	Supremumseigenschaft, Vollständigkeit	
	1.5	Abzählbarkeit	
2	Komplexe Zahlen		
	2.1	Definition	
3	Fun	ktionen	
	3.1	Definition	
1 2 3 4 5	3.2	Algebraische Operationen	
	3.3	Zoo	
		3.3.1 Exponentialfunktion	
		3.3.2 Polynome	
4	Folgen 11		
	4.1	Rechenregeln	
	4.2	Monotone Folgen	
	4.3	Der Satz von Bolzano-Weierstrass	
	4.4	Konvergenzkriterium von Cauchy	
5	Reihen 19		
	5.1	Konvergenz der Reihen	
	5.2	Konvergenzkriterien für reelle Reihen	
	5.3	Konvergenzkriterien für allgemeine (komplexe) Reihen 21	
	5.4	Wurzel- und Quotientenkriterium	
	5.5	Das Cauchyprodukt	
	5.6	Potenzreihen	
6	Stetige Funktionen und Grenzwerte 25		
	6.1	Stetigkeit	
	6.2	Zwischenwertsatz	
	6.3	Zwischenwertsatz	
	6.4	Maxima und Minima	
	6.5	Stetige Fortsetzung, Grenzwerte	
	6.6	Grenzwerte	
7	Exponential funktion 31		
	7.1	Existenz und Eindeutigkeit	
	7.2	Eigenschaften	
	7.3	Natürlicher Logarithmus	
	7.4	Euler	

1 Die reellen Zahlen

Q ist nicht genug!

Satz 1.1. Es gibt kein $q \in \mathbb{Q}$ so dass $q^2 = 2$

Beweis. Falls $q^2=2$, dann $(-q)^2=2$ OBdA $q\geq 0$ Deswegen q>0. Sei q>0 und $q\in\mathbb{Q}$ so dass $q^2=2$. $q=\frac{m}{n}$ mit $m,n\in\mathbb{N}\setminus\{0\}$ und $\mathrm{GGT}(m,n)=1$ (d.h. falls $r\in\mathbb{N}$ m und n dividiert, dann r=1!).

$$m^2 = 2n^2 \implies m$$
 ist gerade $\implies m = 2k$ für $k \in \mathbb{N}$

$$4k^2 = 2n^2 \implies n \text{ ist gerade} \implies 2|n(2 \text{ dividient } n)|$$

 \implies Widerspruch! Weil 2 dividiert m und n! (d.h. es gibt <u>keine</u> Zahl $q \in \mathbb{Q}$ mit $q^2 = 2$).

Beispiel 1.2.

$$\sqrt{2} = 1,414\cdots$$

Intuitiv:

Intuitiv

- Q hat "Lücke"
- $\mathbb{R} = \{ \text{ die reellen Zahlen } \} \text{ haben "kein Loch"}.$

Konstruktion Die reellen Zahlen kann man "konstruieren". (Dedekindsche Schnitte, siehe Kapitel I.10 in H. Amann, J. Escher Analysis I, oder Kapitel 1.8 in W. Rudin Principle of Mathematical Analysis; Cantorsche "Vervollständigung", siehe I. Stewart Introduction to metic and topological spaces). Wir werden "operativ" sein, d.h. wir beschreiben einfach die wichtigsten Eigenschaften von \mathbb{R} durch:

- die Köperaxiomen (K1) (K4);
- die Anordnugsaxiomen (A1)– (A3);
- das Vollständigkeitsaxiom (V).

1.1 Körperstrukturen

K1 Kommutativgesetz

$$a + b = b + a$$
$$a \cdot b = b \cdot a$$

K2 Assoziativgesetz

$$(a+b) + c = a + (b+c)$$
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

1

K3 Distributivgesetz

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

 ${\rm K4}$ Die Lösungen x folgender Gleichungen existieren:

$$a+x=b$$
 $\forall a,b \in \mathbb{R}$ $a \cdot x = b$ $\forall a,b \in \mathbb{R}, a \neq 0.$

NB: 0 ist das "Annallierungselement", d.h. das einzige Element 0 so dass a0=0 für jede $a\in\mathbb{R}$.

1.2 Die Anordnung von \mathbb{R}

A1 $\forall a \in \mathbb{R}$ gilt genau eine der drei Relationen:

- -a < 0
- -a = 0
- -a > 0

A2 Falls a > 0, b > 0, dann a + b > 0, $a \cdot b > 0$

A3 Archimedisches Axiom: $\forall a \in \mathbb{R} \ \exists n \in \mathbb{N} \ \text{mit} \ n > a$

Übung 1.3. Beweisen Sie dass $a \cdot b > 0$ falls a < 0, b < 0

Satz 1.4 (Bernoullische Ungleichung). $\forall x > -1, x \neq 0 \ und \ \forall n \in \mathbb{N} \ \{0,1\} \ gilt \ (1+x)^n > (1+nx)$

Beweis. Vollständige Induktion.

Schritt 1

$$(1+x)^2 = 1 + 2x + \underbrace{x^2}_{>0} > 1 + 2x$$

weil $x \neq 0$.

Nehmen wir an dass

$$(1+x)^n > 1+nx (x > -1, x \neq 0)$$

Dann

$$\underbrace{(1+x)}_{a}\underbrace{(1+x)^{n}}_{c} > \underbrace{(1+nx)}_{d}(1+x) \qquad (\text{weil} \quad (1+x) > 0)$$

(In der Tat,

$$c>d\iff c-d>0 \ \stackrel{\text{A2}}{\Longrightarrow} \ a(c-d)>0 \ \stackrel{\text{K4}}{\Longrightarrow} \ ac-ad>0 \ \stackrel{\text{A2}}{\Longrightarrow} \ ac>ad)$$

$$(1+x)^{n+1} > (1+nx)(1+x) = 1 + nx + x + nx^{2} = 1 + (n+1)x + \underbrace{nx^{2}}_{>0} > 1 + (n+1)x$$
$$\implies (1+x)^{n+1} > 1 + (n+1)x$$

Definition 1.5. Für $a \in \mathbb{R}$ setzt man

$$|a| = \begin{cases} a & \text{falls } a \ge 0 \\ -a & \text{falls } a < 0 \end{cases}$$

Bemerkung 1.6.

$$|x| = max\{-x, x\}$$

Satz 1.7. Es gilt :

$$|ab| = |a||b| \tag{1}$$

$$|a+b| \le |a|+|b|$$
 (Dreiecksungleichung) (2)

$$||a| - |b|| \leq |a - b| \tag{3}$$

Beweis. \bullet (1) ist trivial.

• Zu (2):

$$a+b \le |a|+|b|$$

(weil $x \leq |x| \ \forall x \in \mathbb{R}$ und die Gleichung gilt genau, dann wenn $x \geq 0$).

$$-(a+b) = -a - b \le |-a| + |-b| = |a| + |b|$$

Aber

$$|a+b|=\max\left\{a+b,-(a+b)\right\}\leq |a|+|b|$$

• Zu (3).

$$|a| = |(a - b) + b| \le |a - b| + |b|$$

$$\Rightarrow |a| - |b| \le |a - b|$$

$$|b| = |a + (b - a)| \le |a| + |b - a|$$
(4)

$$\implies |b| - |a| \le |b - a| = |a - b| \tag{5}$$

$$||a| - |b|| = \max\left\{|a| - |b|, -(|a| - |b|)\right\} \stackrel{(4),(5)}{\leq} |a - b|$$

1.3 Die Vollständigkeit der reellen Zahlen

Für $a < b, a, b \in \mathbb{R}$, heisst:

- abgeschlossenes Intervall: $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$
- offenes Intervall: $]a, b[= \{x \in \mathbb{R} : a < x < b\}]$
- (nach rechts) halboffenes Intervall: $[a, b] = \{x \in \mathbb{R} : a \le x < b\}$
- (nach links) halboffenes Intervall: $[a, b] = \{x \in \mathbb{R} : a < x \le b\}$

Sei I=[a,b] (bzw. $]a,b[\ldots)$. Dann a,b sind die Randpunkte von I. Die Zahl |I|=b-a ist die Länge von I. (b-a>0)

Definition 1.8. Eine Intervallschachtelung ist eine Folge I_1, I_2, \cdots geschlossener Intervalle (kurz $(I_n)_{n \in \mathbb{N}}$ oder (I_n)) mit diesen Eigenschaften:

I1 $I_{n+1} \subset I_n$

I2 Zu jedem $\epsilon > 0$ gibt es ein Intervall I_n so dass $|I_n| < \epsilon$

Beispiel 1.9. $\sqrt{2}$

$$1, 4^2 < 2 < 1, 5^2$$
 $I_1 = [1, 4/1, 5]$ $|I_1| = 0.1$
 $1, 41^2 < 2 < 1, 42^2 \Longrightarrow I_2 = [1, 41/1, 42]$ $|I_2| = 0.01$
 $1, 414^2 < 2 < 1, 415^2$ $I_3 = [1, 414, 1, 415]$ $|I_2| = 0.001$
...
 $I_n = \dots$

I1 und I2 sind beide erfüllt.

Axiom 1.10. Zu jeder Intervallschachtelung $\exists x \in \mathbb{R}$ die allen ihren Intervallen angehört.

Satz 1.11. Die Zahl ist eindeutig.

Beweis. Sei (I_n) eine Intervallschachtelung. Nehmen wir an dass $\exists \alpha < \beta$ so dass $\alpha, \beta \in I_n$ für alle n. Dann $|I_n| \ge |\beta - \alpha| > a$. Widerspruch!

Satz 1.12. $\forall a \in \mathbb{R} \ mit \ a \geq 0 \ und \ \forall k \in \mathbb{N} \setminus \{0\}, \ \exists ! x \in \mathbb{R} \ mit \ x \geq 0 \ und \ x^k = a$ $(\exists ! x \ bedeutet \ "es \ gibt \ genau \ ein \ x"). Wir \ nennen \ x = \sqrt[k]{a} = a^{\frac{1}{k}}.$

Sei a > 0 und $m, n \in \mathbb{N}$. Dann $a^{m+n} = a^m a^n$. Wir definieren $a^{-m} := \frac{1}{a^m}$ für $m \in \mathbb{N}$. (so dass die Gleichung $a^{m-m} = a^0 = 1$ stimmt). Wir haben dann die Eigenschaft: $a^{j+k} = a^j \cdot a^k \ \forall j, k \in \mathbb{Z}$. Wir haben aber auch, für $m, n \in \mathbb{N}$,

$$(a^m)^n = \underbrace{a^m \cdot a^m \cdots a^m}_{n \text{ Mal}} = a^{m + \cdots + m} = a^{nm}$$

(Und mit $a^{-m} = \frac{1}{a^m}$ stimmt die Regel $(a^m)^n = a^{mn}$ auch $\forall m, n \in \mathbb{Z}!$). Diese Gleichung motiviert die Notation $a^{\frac{1}{k}}$ für $\sqrt[k]{a}$.

Definition 1.13. $\forall q = \frac{m}{n} \in \mathbb{Q}, \forall a > 0, \text{ wir setzen } a^q := (\sqrt[n]{a})^m$

Es ist leicht zu sehen dass die Gleichungen

$$a^{q+r} = a^q \cdot a^r$$
 und $a^{qr} = (a^q)^r$

für alle $q, r \in \mathbb{Q}$ gelten.

Beweis vom Satz 1.12. OBdA x>1 (sonst würden wir $\frac{1}{x}$ betrachten). wir konstruieren eine Intervallschachtelung $(I_n),\ I_n=[a_n,b_n]$ so dass $a_n^k\geq x\geq b_n^k$ $\forall n\in\mathbb{N}$ Wie setzten

$$I_1 := [1, x]$$

$$I_{n+1} = \begin{cases} \left[a_n, \frac{a_n + b_n}{2} \right] & \text{falls } x \le \left(\frac{a_n + b_n}{2} \right)^k \\ \left[\frac{a_n + b_n}{2}, b_n \right] & \text{falls } x > \left(\frac{a_n + b_n}{2} \right)^k \end{cases}$$

 $|I_n| = \frac{1}{2^{n-1}}|I_1|$ und $I_{n+1} \subset I_n$. Intervallschachtelungsprinzip $\implies \exists y \in \mathbb{R} \text{ s.d.}$ $y \in I_n \forall n \in \mathbb{N}$

Wir behaupten dass $y^k = x$.

Man definiert $J_n = [a_n^k, b_n^k]$. Wir wollen zeigen, dass J_n eine Intervallschachtelung ist.

• $J_{n+1} \subset J_n$ weil $I_{n+1} \subset I_n$

$$|J_n| = b_n^k - a_n^k = \underbrace{(b_n - a_n)}_{|I_n|} \underbrace{(b_n^{k-1} + b_n^{k-2} a_n + \dots + a_n^{k-1})}_{\leq k b_1^{k-1}}$$

 $\implies |J_n| \le |I_n|kb_1^{k-1}$.

Sei ε gegeben. Man wähle N gross genug, so dass

$$|I_n| \le \varepsilon' = \frac{\varepsilon}{kb_1^{k-1}} \implies |J_n| \le \varepsilon' kb_1^{k-1} = \varepsilon$$

Einerseits

$$y \in [a_n, b_n] \implies y^k \in [a_n^k, b_n^k] = J_n$$

Andererseits

$$x \in J_n \qquad \forall n \in \mathbb{N}$$

Satz 1.11
$$\implies x = y^k$$

1.4 Supremumseigenschaft, Vollständigkeit

Definition 1.14. $s \in \mathbb{R}$ heisst obere (untere) Schranke der Menge $M \subset \mathbb{R}$ falls $s \geq x \ (s \leq x) \ \forall x \in M$.

Definition 1.15. $s \in \mathbb{R}$ ist das Supremum der Menge $M \subset \mathbb{R}$ $(s = \sup M)$ falls es die kleinste obere Schranke ist. D.h.

- s ist die obere Schranke
- falls s' < s, dann ist s' keine obere Schranke.

Beispiel 1.16. M =]0, 1[. In diesem Fall sup $M = 1 \notin M$

Beispiel 1.17. M = [0, 1]. sup $M = 1 \in M$

Definition 1.18. $s \in \mathbb{R}$ heisst Infimum einer Menge M $(s = \inf M)$ falls s die grösste obere Schranke ist.

Definition 1.19. Falls $s = \sup M \in M$, nennt man s das Maximum von M. Kurz: $s = \max M$. Analog Minimum.

Satz 1.20. Falls $M \subset \mathbb{R}$ nach oben (unten) beschränkt ist, dann existiert sup M (inf M).

Beweis. Wir konstruieren eine Intervallschachtelung I_n , so dass b_n eine obere Schranke ist, und a_n keine obere Schranke ist.

- $I_1 = [a_1, b_1]$, wobei b_1 eine obere Schranke
- a_1 ist keine obere Schranke

Sei I_n gegeben.

$$I_{n+1} = \begin{cases} \left[a_n, \frac{a_n + b_n}{2}\right] & \text{falls } \frac{a_n + b_n}{2} \text{ eine obere Schranke ist;} \\ \left[\frac{a_n + b_n}{2}, b_n\right] & \text{sonst } . \end{cases}$$

Also, $\exists s \text{ s.d. } s \in I_n \quad \forall n.$

Wir behaupten dass s das Supremum von M ist.

• Warum ist s eine obere Schranke? Angenommen $\exists x \in M$ so dass x > s. Man wähle $|I_n| < x - s$. Daraus folgt

$$x-s > b_n - a_n > b_n - s \implies x > b_n$$

Widerspruch.

• Warum ist s die kleinste obere Schranke? Angenommen $\exists s' < s$. Dann wähle n' so dass $I_{n'} < s - s'$.

$$s - s' > b_{n'} - a_{n'} \ge s - a_{n'} \implies a_{n'} > s'$$

Widerspruch.

Lemma 1.21. Jede nach oben (unten) beschränkte Menge $M \subseteq \mathbb{Z}$ mit $M \neq \emptyset$ besitzt das grösste (kleinste) Element.

Beweis. OBdA betrachte nur nach unten beschränkte Mengen $M\subset N$. Angenommen M hat kein kleinstes Element. Mit der Vollständigen Induktion beweisen wir dass $M=\emptyset$.

• $0 \notin M$, sonst ist 0 das kleinste Element;

• Angenommen dass $\{0, 1, \dots, k\} \cap M = \emptyset$, wir schliessen auch $\{0, 1, \dots, k+1\} \cap M = \emptyset$, sonst ist k+1 das kleinste Element von M.

Vollständige Induktion $\implies \{0, \dots, n\} \cap M = \emptyset \ \forall n \in \mathbb{N}. \text{ D.h. } M \cap \mathbb{N} = \emptyset.$

Satz 1.22. \mathbb{Q} ist dicht in \mathbb{R} , bzw. für beliebige zwei $x, y \in \mathbb{R}$, y > x, gibt es eine rationelle Zahl $q \in \mathbb{Q}$, so dass x < q < y.

Beweis. Man wähle $n \in \mathbb{N}$ so dass $\frac{1}{n} < y - x$. Betrachte die Menge $A \subseteq \mathbb{Z}$, so dass $M \in A \implies M > nx$. Lemma 1.21 $\implies \exists m = \min A$.

$$x < \frac{m}{n} = \frac{m-1}{n} + \frac{1}{n} < x + y - x = y$$

Also setze $q = \frac{m}{n}$

1.5 Abzählbarkeit

Definition 1.23. Die Mengen A & B sind <u>gleichmächtig</u>, wenn es eine Bijektion $f: A \to B$ gibt. D.h. es gibt eine Vorschrift f s.d.

- f zuordnet ein Element $b \in B$ jedem $a \in A$; dieses Element wird mit f(a) bezichnet;
- $f(a) \neq f(b)$ falls $a \neq b$;
- $\forall b \in B \ \exists a \in A \ \text{mit} \ b = f(a).$

 $(f \text{ ist eine } bijektive \ Abbildung;$ siehe Kapitel 3). A hat grössere Mächtigkeit als B, falls B gleichmächtig wie eine Teilmenge von A ist, aber A zu keiner Teilmenge von B gleichmächtig ist.

Beispiel 1.24. • {1,2} & {3,4} sind gleichmächtig.

• $\{1, 2, \dots, n\}$ hat kleinere Mächtigkeit als $\{1, 2, \dots, m\}$, wenn n < m ist.

Definition 1.25. Eine Menge A ist abzählbar, wenn es eine Bijektion zwischen \mathbb{N} und A gibt D.h. $A = \{a_1, a_2, \dots, a_n, \dots\}$.

Lemma 1.26. \mathbb{Z} ist abzählbar

Beweis.
$$\begin{bmatrix} \mathbb{N} & 1 & 2 & 3 & 4 & 5 & \dots \\ \mathbb{Z} & 0 & 1 & -1 & 2 & -2 & \dots \end{bmatrix}$$

Formal, definiere

$$f: \mathbb{N} \to \mathbb{Z}$$

$$f(n) := \begin{cases} \frac{n}{2} & \text{wenn } n \text{ gerade} \\ \frac{1-n}{2} & \text{wenn } n \text{ ungerade} \end{cases}$$

Satz 1.27. \mathbb{Q} ist abzählbar

Satz 1.28. \mathbb{R} ist nicht abzählbar.

(Für die Beweise siehe Kapitel 2.4 von K. Königsberger Analysis I).

2 Komplexe Zahlen

Bemerkung 2.1. $\forall a \in \mathbb{R}, a^2 > 0$. Deswegen ist $x^2 = -1$ unlösbar. Die Erfindung der imaginäre Einheit i (die imaginäre Zahl mit $i^2 = -1$) hat sehr interessante Konsequenzen auch für die üblichen reellen Zahlen.

2.1 **Definition**

[Erste Definition der Komplexen Zahlen]

Definition 2.2. Sei $a, b \in \mathbb{R}$, dann $a + bi \in \mathbb{C}$. Wir definieren die Summe:

$$(a+bi) + (\alpha + \beta i) = (a+\alpha) + (b+\beta)i$$

und das Produkt

$$(a+bi)(\alpha+\beta i) = (a\alpha-b\beta) + \underbrace{(a\beta+b\alpha)}_{A}i$$

Definition 2.3. Seien A und B zwei Mengen. Dann ist $A \times B$ die Menge der Paare (a, b) mit $a \in A$ und $b \in B$.

Definition 2.4 (Zweite Definition der Komplezen Zahlen). $\mathbb{C} = \mathbb{R} \times \mathbb{R}$ mit + und \cdot , die wir so definieren:

$$(a,b) + (\alpha,\beta) = (a+\alpha,b+\beta)$$

 $(a,b)(\alpha,\beta) = (a\alpha - b\beta,\underbrace{a\beta + b\alpha}_{A})$

Bemerkung 2.5.

$$\mathbb{R} \simeq \{(a,0), a \in \mathbb{R}\} \subset \mathbb{C}$$

In der Sprache der abstrakte Algebra \mathbb{R} ist isomorph zu $\mathbb{R}' := \{(a,0) : a \in \mathbb{R}\}$: d.h. die Summe und das Produkt in \mathbb{R} und \mathbb{R}' sind "gleich":

$$(a,0) + (\alpha,0) = (a + \alpha,0)$$

 $(a,0)(\alpha,0) = (a\alpha,0)$

Deswegen wir schreiben a statt (a, 0).

Bemerkung 2.6.

$$(0,a)(0,b) = (-ab,0)$$

Deswegen:

$$\underbrace{(0,1)}_{\text{Wurzel von -1}} (0,1) = (-1,0) \underbrace{(0,-1)}_{\text{auch eine Wurzel von -1}} (0,-1) = (-1,0)$$

Bemerkung 2.7. i = (0,1) und wir schreiben (a,b) für a + bi. D.h. die zwei Definitionen der komplezen Zahlen sind equivalent!

Bemerkung 2.8. 0 = (0,0) = 0 + 0i. $\xi \in \mathbb{C}$

$$0\xi = 0$$
$$0 + \xi = \xi$$

Satz 2.9. Alle Körperaxiome (K1-K4) gelten.

Beweis. K1 Kommultativität: trivial

K2 Assoziativität: trivial

K3 Distributivität: trivial.

K4 Seien $\xi, \zeta \in \mathbb{C}$.

$$\exists \omega \in \mathbb{C} : \qquad \xi + \omega = \zeta$$

$$\xi \neq 0 \exists \omega : \qquad \xi \omega = \zeta$$

$$(6)$$

$$(7)$$

$$\xi \neq 0 \exists \omega : \qquad \xi \omega = \zeta \tag{7}$$

Zu (6). Wir setzen

$$\xi = a + bi$$

$$\zeta = c + di$$

$$\omega = x + yi$$

$$\xi + \omega = (a+x) + (b+y)i = \xi = c + di$$

Sei x := c - a, y := d - b. Dann $\xi + \omega = \zeta$.

Zu (7) 1 (= 1 + 0i)) das neutrale Element.

$$(a+bi)(1+0i) = \underbrace{(a1-b0)}_{a} + \underbrace{(b1+a0)}_{b} = (a+bi)$$

Sei $\xi \neq 0$ und suchen wir α so dass $\xi \alpha = 1$. Dann ist $\omega = \alpha \zeta$ eine Lösung von (7) (eigentlich DIE Lösung). Falls $\xi = a + bi$, dann

$$\alpha = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \,.$$

In der Tat:

$$\xi\alpha = \overbrace{\left(\frac{aa}{a^2 + b^2} - \frac{b(-b)}{a^2 + b^2}\right)}^{1} + \overbrace{\left(\frac{a(-b)}{a^2 + b^2} - \frac{ab}{a^2 + b^2}\right)}^{0} i = 1.$$

Definition 2.10. Sei $\xi = (x + yi) \in \mathbb{C}$. Dann:

- x ist der reelle Teil von ξ (Re $\xi = x$)
- y ist der imaginäre Teil von ξ (Im $\xi = y$)
- x yi ist die konjugierte Zahl ($\overline{\xi} = x yi$)

Bemerkung 2.11.

$$\sqrt{\overline{\xi\xi}} = \sqrt{(\operatorname{Re}\xi)^2 + (\operatorname{Im}\xi)^2} =: |\xi|$$

Definition 2.12. $|\xi|$ ist der Betrag von ξ .

Satz 2.13. Es gilt: $(\forall a, b \in \mathbb{C})$:

$$\overline{a+b} = \overline{a} + \overline{b}$$

$$-$$

$$\overline{ab} = \overline{a}\overline{b}$$

• - Re
$$a=\frac{a+\overline{a}}{2}$$
 - (Im a) $i=\frac{a-\overline{a}}{2}$

- $a = \overline{a}$ genau dann wenn $a \in \mathbb{R}$.
 - $a\overline{a} = |a|^2 = \sqrt{(\operatorname{Re} a)^2 + (\operatorname{Im} a)^2} \ge 0$

(die Gleicheit gilt genau dann wenn a = 0)

Bemerkung 2.14. Sei ω so dass $\xi\omega=1$ ($\xi\neq0$). Man schreibt $\omega\frac{1}{\xi}$. Der Beweis vom Satz 2.9 impliziert $\omega=\frac{\overline{\xi}}{|\xi|^2}$

Satz 2.15. $\forall a, b \in \mathbb{C}$

- |a| > 0 für $a \neq 0$ (trivial)
- $|\overline{a}| = |a|$ (trivial)
- $|\operatorname{Re} a| \le |a|$, $|\operatorname{Im} a| \le |a|$ (trivial)

- |ab| = |a||b|
- $|a+b| \le |a| + |b|$

Beweis.

$$|ab|^2 = (ab)\overline{(ab)} = ab\overline{a}\overline{b} = a\overline{a}\overline{b} = |a|^2|b|^2 \implies |ab| = |a||b|$$

$$\underbrace{|a+b|^2}_{\in \mathbb{R}} \in \mathbb{R} = (a+b)\overline{(a+b)} = (a+b)(\overline{a}+\overline{b}) = a\overline{a}+b\overline{b}+a\overline{b}+b\overline{a}$$

$$= \underbrace{|a|^2 + |b|^2}_{\in \mathbb{R}} + (a\overline{b}+b\overline{a}) . \tag{8}$$

Bemerkung: die Identität implizert dass $a\overline{b}+b\overline{a}$. In der Tat $a\overline{b}+b\overline{a}=a\overline{b}+\overline{a}\overline{\overline{b}}=2\operatorname{Re}(a)\overline{b}$. Deswegen

$$|a+b|^{2} = |a|^{2} + |b|^{2} + 2\operatorname{Re}(a)\overline{b} \leq |a|^{2} + |b|^{2} + 2|a\overline{b}|$$

= $|a|^{2} + |b|^{2} + 2|a||b| = (|a| + |b|)^{2}$. (9)

3 Funktionen

3.1 Definition

Definition 3.1. Seien A und B zwei Mengen. Eine Funktion $f: A \to B$ ist eine Vorschrift die jedem Element $a \in A$ ein eindeutiges Element $f(a) \in B$ zuordnet.

Beispiel 3.2. $A \subset \mathbb{R}, B = \mathbb{R} \text{ (oder } \mathbb{C})$

$$f(x) = x^2$$

Definition 3.3. A ist der Definitionsbereich.

$$f(A) = \{ f(x) : x \in A \}$$

ist der Wertbereich

Bemerkung 3.4. Wertbereich von x^2 :

$$\{y \in \mathbb{R} : y \ge 0\}$$

Definition 3.5. Der Graph einer Funktion $f: A \to B$ ist

$$G(f) = \{(x, f(x)) \in A \times B : x \in A\}$$

Beispiel 3.6. Verboten: zwei Werte für die Stelle x.

Beispiel 3.7. $f: \mathbb{R} \to \mathbb{R}$ f(x) = |x|

3.2 Algebraische Operationen

Wenn $B = \mathbb{R}$ oder \mathbb{C} . Seien f, g zwei Funktionen mit gleichem Definitionsbereich.

• f + g ist die Funktion h so dass $h : A \to B$

$$h(x) = f(x) + g(x)$$

• Die Funktion fg ist $k: A \to B$

$$k(x) = f(x)g(x)$$

• $\frac{f}{g}$ ist wohldefiniert falls der Wertebereich von g in $B \setminus \{0\}$ enthalten ist:

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}$$

Falls $B = \mathbb{C}$, kann man auch Re f, Im f, \overline{f} .

Definition 3.8. Sei $f: A \to B$, $g: B \to C$. Die Komposition $g \circ f: A \to C$.

$$g \circ f(x) = g(f(x))$$

Bemerkung 3.9. Sei $f: A \to \mathbb{R}, g: A \to \mathbb{R}$. Wir definieren $\Xi: A \to \mathbb{R} \times \mathbb{R}$:

$$\Xi(a) = (f(a), g(a))$$

und $\Phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$:

$$\Phi(x,y) = xy$$

Dann

$$\Phi\circ\Xi(a)=\Phi(\Xi(a))=\Phi\left(\left(f(a)\right),g(a)\right)=f(a)g(a)$$

Also: die "algebraischen Operationen" sind "Kompositionen".

Definition 3.10. • Wenn $f: A \to B$ und f(A) = B dann ist f surjektiv.

• Wenn $f: A \to B$ und die folgende Eigenschaft hat:

$$f(x) \neq f(y) \forall x \neq y \in A$$

dann ist f injektiv.

 \bullet Falls f surjektiv und injektiv ist, dann sagen wir, dass f bijektiv ist.

Bemerkung 3.11. Die bijektiven Funktionen sind umkehrbar. Sei $f:A\to B$ bijektiv. $\forall b\ \exists a: f(a)=b\ (\text{surjektiv}),\ a\ \text{ist eindeutig (injektiv)}\ (\text{die Notation für die Eindeutigkeit ist }\exists!a:f(a)=b).$ Dann g(b)=a ist eine "wohldefinierte Funktion", $g:B\to A$.

Definition 3.12. g wird Umkehrfunktion genannt. $f:A\to B,\ g:B\to A,\ f\circ g:B\to B,\ g\circ f:A\to A$ und

$$f \circ g(b) = b \quad \forall b \in B \qquad g \circ f(a) = a \quad \forall a \in A.$$
 (10)

Definition 3.13. Die "dumme Funktion" $h:A\to A$ mit $h(a)=a\ \forall a\in A$ heisst Identitätsfunktion (Id). Deswegen, (10) $\iff f\circ g=\mathrm{Id}$ und $g\circ f=\mathrm{Id}$.

3.3 Zoo

3.3.1 Exponentialfunktion

 $a \in \mathbb{R}, a > 0$. Defintionsbereich \mathbb{Q} (momentan!):

$$\begin{aligned} \operatorname{Exp}_a:\mathbb{Q}\to\mathbb{R}\\ \operatorname{Exp}_a(n) &= a^n & (=1 \text{ falls } n=0)\\ \operatorname{Exp}_a(-n) &= \frac{1}{a^n}\\ \operatorname{Exp}_a\left(\frac{m}{n}\right) &= \left(\sqrt[n]{a}\right)^m \end{aligned}$$

 Exp_a ist die einzige Funktion $\Phi:\mathbb{Q}\to\mathbb{R}$ mit den folgenden Eigenschaften:

- $\Phi(1) = a$
- $\Phi(q+r) = \Phi(q)\Phi(r) \ \forall q, r \in \mathbb{Q}$

Bemerkung 3.14. Später werden wir Exp_a auf \mathbb{R} fortsetzen.

3.3.2 Polynome

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
$$f: \mathbb{R}(\mathbb{C}) \ni x \mapsto f(x) \in \mathbb{R}(\mathbb{C})$$

Produkt von Polynomen $x \mapsto f(x)g(x)$:

$$f(x)g(x) = (a_n x^n + \dots + a_0) (b_m x^m + \dots + b_0)$$

$$= b_m a_n x^{n+m} + b_n a_{n-1} x^{n-1+m} + \dots$$

$$= b_m a_n x^{n+m} + (b_m a_{n-1} + b_{m-1} a_n) x^{n+m-1} + \dots + a_0 b_0$$

$$= c_{m+n} x^{m+n} + \dots + c_0,$$

wobei

$$c_k = \sum_{i+j=k} a_i b_j = \sum_{i=0}^k a_i b_{k-i}$$

Definition 3.15. Der Grad von $a_n x^n + \cdots + a_0$ ist n wenn $a_n \neq 0$

Satz 3.16. Sei $g \neq 0$ ein Polynom. Dann gibt es zu jedem Polynom f zwei Polynome g und r so dass

$$g = qf + r$$
$$\operatorname{grad} r < \operatorname{grad} f$$

Beweis. http://de.wikipedia.org/wiki/Polynomdivision

Bemerkung 3.17. Sei $g=x-x_0$. Sei f mit Grad ≥ 1 , Satz 3.16 $\implies f=gq+r=gq+c_0$ und Grad von r<1. r ist eine Konstante $r=c_0$. Deswegen

$$f(x) = q(x)(x - x_0) + c_0$$
$$f(x_0) = q(x_0)0 + c_0 = c_0$$

Korollar 3.18. Falls f ein Polynom ist und $f(x_0) = 0$, dann $\exists q$ Polynom so dass $f = q(x - x_0)$

Das Polynom $a_n x^n + \ldots + a_0$ mit $a_n = \ldots = 0$ ist das Trivialpolynom.

Korollar 3.19. Ein Polynom P hat höchstens grad f Nullstellen falls P ist nicht das Trivialpolynom.

Korollar 3.20. Falls $f(x) = 0 \ \forall x \in \mathbb{R}$, dann ist f das Trivialpolynom.

Korollar 3.21. Falls f, g Polynome sind und $f(x) = g(x) \ \forall x \in \mathbb{R}$ dann sind die Koeffizienten von f und g gleich.

Beweis.
$$f - g$$
 ist ein Polynom mit $(f - g)(x) = 0 \ \forall x$.

Definition 3.22. Seien f, g Polynome. Dann ist $\frac{f}{g}$ eine rationale Funktion.

4 Folgen

Definition 4.1. Eine Folge komplexer (reeller) Zahlen ist eine Abbildung: $f: \mathbb{N} \to \mathbb{C}(\text{bzw. }\mathbb{R})$. Das heisst:

$$\forall n \in \mathbb{N}$$
 $f(n) \in \mathbb{C}$ (bzw. \mathbb{R}).

Wir schreiben a_n für f(n)

N.B.: N ist auch eine Folge: $a_n = f(n) = n$.

Definition 4.2. Eine Folge (a_n) heisst konvergent, falls $\exists a \in \mathbb{C}$ so dass:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ |a_n - a| < \varepsilon \ \forall n \ge N.$$
 (11)

Beispiel 4.3. $a_n = \frac{1}{n}$ ist eine konvergente Folge. Sei a = 0. Wählen wir $\varepsilon > 0$. Sei dann $N \in \mathbb{N}$ mit $N > \frac{1}{\varepsilon}$ (diese Zahl existiert wegen des Axioms von Archimedes!). Für $n \geq N$:

$$|a_n| = \left(\frac{1}{n} - 0\right) = \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

Bemerkung 4.4. Die Zahl a im Konvergenzkriterium ist eindeutig. Sie heisst der Limes der Folge (a_n) .

 $Beweis.\,$ Seien $a\neq a'$ zwei relle Zahlen, die das Konvergenzkriterium (11) erfüllen. Sei $\varepsilon:=\frac{|a-a'|}{2}$

$$\exists N : |a_n - a| < \varepsilon \ \forall n \ge N$$

$$\exists N' : |a_n - a'| < \varepsilon \ \forall n \ge N'$$

Für $n \ge \max\{N, N'\}$

$$|a'-a| \le |a'-a_n| + |a-a_n| < 2\varepsilon = |a'-a|$$

 $\implies |a'-a| < |a'-a|$ Widerspruch!

Wenn eine Folge kovergiert und die Zahl a (11) erfüllt, wir schreiben

$$a = \lim_{n \to +\infty} (a_n)$$

oder

$$a_n \to a$$
.

Bemerkung 4.5. Sei $\alpha = A + 0, b_0 b_1 b_2 \dots$ eine reelle Zahl, wobei $A \in \mathbb{N}$ und b_i die Ziffern der Dezimaldarstellung von $\alpha - A$ sind. Für jede $n \in \mathbb{N}$ sei

$$a_n := A + 0, b_0 \dots b_n \in \mathbb{Q}$$
.

Die Folge (a_n) konvergiert gegen α . In der Tat, sei ε eine beliebige positive reelle Zahl. Sei N s.d. $10^N > \frac{1}{\varepsilon}$. Für $n \ge N$ gilt $|a_n - \alpha| \le 10^{-N} < \varepsilon$.

Definition 4.6. Sei (a_n) eine Folge und A(n) eine "Folge von Aussagen über a_n ". Wir sagen dass A(n) wahr für "fast alle" a_n ist, wenn $\exists N$ so dass A(n) stimmt $\forall n \geq N$. Eine alternative Formulierung von (11) ist also:

$$|a_n - a| < \varepsilon$$
 für fast alle a_n

Beispiel 4.7. Sei $s \in \mathbb{Q}$ s > 0. Sei $a_n = \frac{1}{n^s}$. Dann

$$\lim_{n \to +\infty} \left(\frac{1}{n^s} \right) = 0$$

Sei $N \in \mathbb{N}$ mit $N > \varepsilon^{\frac{1}{s}}$ (Axiom von Archimedes!). Dann

$$|0 - a_n| = \frac{1}{n^s} < \varepsilon$$
 falls $n \ge N$

(NB: $\frac{1}{s}$ ist wohldefiniert weil $s \neq 0$. Ausserdem

$$\frac{1}{n^s} < \varepsilon \iff n^s > \frac{1}{\varepsilon} \iff n > \frac{1}{\varepsilon^{\frac{1}{s}}} \quad \text{weil } s > 0.$$

Beispiel 4.8. a > 0

$$\lim_{n \to +\infty} \sqrt[n]{a} = 1$$

Fall a > 1. Zu beweisen:

$$\forall \varepsilon > 0 \ \exists N : \ \sqrt[n]{a} - 1 < \varepsilon \ \forall n \ge N \in \mathbb{N}$$

Sei $x_n = \sqrt[n]{a} - 1 > 0$ und $n \ge 1$

$$a = (1 + x_n)^n = 1 + nx_n + \binom{n}{2}x_n^2 + \binom{n}{3}x_n^3 + \dots + x_n^n.$$

Deswegen

$$a \ge 1 + nx_n$$
 für $x_n \le \frac{a-1}{n}$

Sei $\varepsilon > 0$. Wähle $N \geq \frac{a-1}{\varepsilon}$

$$\implies \sqrt[n]{a} - 1 = x_n \le \frac{a-1}{n} \le \frac{a-1}{N} < \frac{a-1}{\frac{a-1}{n}} = \varepsilon$$

Fall 0 < a < 1 Wir haben $\frac{1}{a} > 1$ und nutzen die Rechenregeln (siehe Satz 4.13(iii), unten!):

$$\sqrt[n]{a} = \frac{1}{\sqrt[n]{\frac{1}{a}} \to \frac{1}{1} = 1}$$

Fall a=1 Trivial! Die Folge ist "konstant": $a_n=1 \forall n$.

Beispiel 4.9. $\lim_{n\to+\infty} \sqrt[n]{2} = 1$. Wie oben

$$x_n = \sqrt[n]{n} - 1$$

$$n = (1 + x_n)^n = 1 + nx_n + \binom{n}{2}x_n^2 + \dots + x_n^n$$

Hier wir nuzte die stärkere Ungleichung: $(n \ge 2)$

$$n \ge 1 + \binom{n}{2} x_n^2 = 1 + \frac{n(n-1)}{2} x_n^2$$

$$x_n^2 \le \frac{2}{n} \implies x_n \le \sqrt[2]{\frac{2}{n}}$$

Sei $\varepsilon > 0$, wähle N so dass

$$\sqrt{\frac{N}{2}} > \varepsilon^{-1} \qquad (\iff N > 2\varepsilon^{-2})$$

Dann, für $n \geq N$,

$$0 \ge \sqrt[n]{n} - 1 < \sqrt{\frac{2}{n}} \le \sqrt{\frac{2}{N}} < \sqrt{\frac{2}{\frac{2}{\varepsilon^2}}} = \varepsilon$$
$$\implies |\sqrt[n]{n} - 1| < \varepsilon$$

Übung 4.10. Sei $k \in \mathbb{N}$. Dann $\lim_{n} \sqrt[n]{n^k} = 1$.

Beispiel 4.11. Sei $q \in \mathbb{C}$ mit |q| < 1. Dann,

$$\lim_{n \to +\infty} q^n = 0$$

In der Tat

$$|q^n - 0| = |q^n| - |0| \le |q|^n$$

Sei nun $\varepsilon > 0$. Da $\sqrt[n]{\varepsilon} \to 1$ und |q| < 1, $\exists N$ s.d.

$$|\sqrt[n]{\varepsilon} - 1| < 1 - |q| \quad \forall n > N$$

Deswegen, für $n \geq N$,

$$\sqrt[n]{\varepsilon} > 1 - (1 - |q|) = |q| \implies \varepsilon > |q|^n$$
.

Übung 4.12. Sei $k \in \mathbb{N}$ und $q \in \mathbb{C}$ mit |q| < 1. Dann

$$\lim_{n \to \infty} n^k q^n = 0.$$

4.1 Rechenregeln

Satz 4.13. Seien (a_n) und (b_n) zwei konvergente Folgen, mit $a_n \to a$ und $b_n \to b$, dann:

- (ii) $a_n + b_n \rightarrow a + b$
- (i) $a_n b_n \to ab$
- (iii) $\frac{a_n}{b_n} \to \frac{a}{b}$ falls $b \neq 0$

Beweis vom Satz 4.13(i).

$$|(a_n + b_n) - (a - b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b|$$
(12)

Sei $\varepsilon > 0$:

$$\exists N: |a_n - a| < \frac{\varepsilon}{2} \quad \forall n \ge N$$
 (13)

$$\exists N': |a_n - a| < \frac{\varepsilon}{2} \quad \forall n \ge N'$$
 (14)

Für $n \ge \max\{N, N'\}$:

$$|(a_n+b_n)-(a+b)| \stackrel{(12),(13)\&(14)}{<} \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definition 4.14. Eine Folge heisst beschränkt, falls

$$\exists M > 0: \qquad |a_n| \le M \quad \forall N. \tag{15}$$

Lemma 4.15. Eine konvergente Folge ist immer beschränkt.

Beweis. Sei $a_n\to a.$ Dann $\exists N$ s.d. $|a_n-a|<1 \ \forall n\ge N.$ Deswegen, $|a_n|<|a|+1 \ \forall n\ge N.$ Wählen wir

$$M := \max\{|a_0|, \dots, |a_{N-1}|, |a|+1\}.$$

$$Dann |a_n| \leq M \ \forall n.$$

Beweis vom Satz 4.13(ii)&(iii). (ii) Wegen des Lemmas 4.15 $\exists M>0$ die (15) erfüllt

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab| = |a_n (b_n - b) + b(a_n - a)|$$

$$\leq |a_n||b_n - b| + |b||a_n - a| \leq M|b_n - b| + |b||a_n - a| \quad (16)$$

Wähle

$$N \in \mathbb{N}:$$
 $|b_n - b| \le \frac{\varepsilon}{2M}$ $\forall n \ge N$
 $N \in \mathbb{N}':$ $|a_n - a| \le \frac{\varepsilon}{2|b|}$ $\forall n \ge N'$

Für $n \ge \max\{N, N'\}$ gilt

$$|a_n b_n - ab| \stackrel{(16),(17)\&(17)}{<} \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(iii) Folgt aus (ii) und

$$\frac{1}{b_n} \to \frac{1}{b}$$
 falls $b_n \to b \neq 0$ (17)

Um (17) zu beweisen:

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b_n b} \right| = \frac{1}{|b|} \frac{|b - b_n|}{|b_n|} \tag{18}$$

Da |b| > 0 und $b_n \to b$,

$$\exists N: |b_n - b| < \frac{|b|}{2} \quad \forall n \ge N$$

Deswegen, für $n \geq N$,

$$|b_n| \ge |b| - |b - b_n| \ge \frac{|b|}{2} > 0$$
 (19)

und

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| \le \frac{2}{|b|^2} |b_n - b|.$$

Sei $\varepsilon > 0$ und wähle N' s.d. $|b_n - b| < \varepsilon |b|^2/2$ forall $n \ge N$. Für $n \ge \max\{N, N'\}$ schliessen wir

 $\left|\frac{1}{b_n} - \frac{1}{b}\right| < \varepsilon.$

Bemerkung 4.16. Falls $a_n \to a$ und $\lambda \in \mathbb{C}$, folgt aus dem Satz 4.13(ii) dass $\lambda a_n \to \lambda a$: wir setzen eifach $b_n := \lambda \ \forall n!$

Satz 4.17. Sei $a_n \to a \ (a_n \in \mathbb{C}), \ dann:$

- $|a_n| \to |a|$
- $\bar{a_n} \to \bar{a}$
- $\operatorname{Re} a_n \to \operatorname{Re} a$
- $\operatorname{Im} a_n \to \operatorname{Im} a$

Beweis. Die Behauptungen sind triviale Konsequenzen des Konvergenzkriteriums (11) und der folgenden Ungleichungen:

- $\bullet ||a_n| |a|| \le |a_n a|$
- $\bullet |\bar{a_n} \bar{a}| = |a_n a|$
- $|\operatorname{Im} a_n \operatorname{Im} a| < |a_n a|$
- $|\operatorname{Re} a_n \operatorname{Re} a| \le |a_n a|$

Satz 4.18. Seien $a_n \to a$, $b_n \to b$ mit $a_n \le b_n$. Dann $a \ge b$.

Beweis. Sei $\varepsilon > 0$. Dann

$$\exists N \in \mathbb{N}: |a_n - a| < \varepsilon \quad \forall n \ge N$$

 $\exists N' \in \mathbb{N}: |a_n - a| < \varepsilon \quad \forall n \ge N'$

Für $n = \max\{N, N'\}$:

$$b - a \ge b_n - |b_n - b| - a_n - |a - a_n| \ge (b_n - a_n) + 2\varepsilon \ge 2\varepsilon.$$

Da ε eine beliebige positive Zahl ist, gilt $b-a \geq 0$.

Satz 4.19. Seien $a_n \to a$, $b_n \to a$. Sei (c_n) mit $a_n \ge c_n \ge b_n$. Dann ist (c_n) eine konvergente Folge mit $c_n \to a$

Beweis. Sei $\varepsilon>0$ und wähle

$$N \in \mathbb{N}:$$
 $|a_n - a| < \varepsilon \quad \forall n \ge N$
 $N' \in \mathbb{N}:$ $|a_n - a| < \varepsilon \quad \forall n \ge N'$

Für $n \ge \max\{N, N'\}$:

$$a - \varepsilon < a - |a - a_n| \le a_n = a_n \le c_n \le b_n \le a + |b_n - a| < a + \varepsilon.$$

$$\implies |c_n - a| < \varepsilon.$$

Beispiel 4.20. Sei $s\geq 0$ und wähle $k\in\mathbb{N}$ mit $k\leq s\leq k+1$. Sei $q\in\mathbb{C}$ mit |q|<1. Dann

$$\sqrt[n]{n^k} \le \sqrt[n]{n^s} \le \sqrt[n]{n^{k+1}}$$
$$0 \le n^s |q|^n \le n^k |q|^n.$$

Deswegen $\sqrt[n]{n^s} \to 1$ und $n^k q^n \to 0$.

Satz 4.21. Seien $a_n \to a$ und $b_n \to b$ reelle Folgen. Falls $a_n \le b_n$, dann $a \le b$.

Beweis 4.22. Sei $\varepsilon > 0$. Dann:

•

$$\exists N : |a_n - a| < \varepsilon \ \forall n > N$$

•

$$\exists N : |b_n - b| < \varepsilon \ \forall n \ge N'$$

Sei $n \ge \max\{N', N\}$.

$$b - a = b_n + (b - b_n) - a_n + (a_n - a) \ge (b - b_n) + (a_n - a)$$
$$\ge -|a_n - a| - |b_n - b| \ge -2\varepsilon$$
$$b - a \ge -2\varepsilon \stackrel{\forall \varepsilon > 0}{\Longrightarrow} b - a \ge 0$$

 $(w\ddot{a}re\ b-a<0:Sei$

$$Sei\varepsilon = \frac{|b-a|}{3} = \frac{-(b-a)}{3}$$

Widerspruch!)

Satz 4.23. (Einschliessungsregel). Sei c_n eine Folge reeller Zahlen. Seien $a_n \to a$ und $b_n \to a$ so dass $a_n \le c_n \le b_n$. Dann $c_n \to a$.

Beweis 4.24. $Sei \varepsilon > 0$.

•

$$\exists N : |a_n - a| < \varepsilon \ \forall n \ge N$$

•

$$\exists N : |b_n - a| < \varepsilon \ \forall n \ge N'$$

Sei $n \ge \max\{N, N'\}$.

$$a\varepsilon \le a_n \le c_n \le b_n < a + \varepsilon$$

$$\implies |c_n - a| < \varepsilon$$

Beispiel 4.25.

$$\lim_{n \to \infty} \sqrt[n]{n^k} = 1 \quad k \in \mathbb{N}$$

$$\sqrt[n]{n^s} \quad s \in \mathbb{Q}, s > 0$$

$$\underbrace{1}_{a_n} \leq \underbrace{\sqrt[n]{n^s}}_{c_n} \leq \underbrace{\sqrt[n]{n^k}}_{b_n}$$

Einschliessungsregel: $\sqrt[n]{n^s} \to 1$.

4.2 Monotone Folgen

Definition 4.26. Eine Folge a_n reeller Zahlen heisst fallend (bzw. wachsend) falls $a_n \geq a_{n-1} \ \forall n \in \mathbb{N} \ (a_n \geq a_{n-1} \forall n \in \mathbb{N})$. Monoton bedeuted fallend oder wachsend.

Satz 4.27. Eine monotone (beschränkte) Folge konvergiert.

Beweis 4.28. oBdA kann ich (a_n) wachsend annehmen. (Sei a_n fallend, dann $-a_n$ wachsend. a_n konvergiert (mit Limes = L), a_n konvergiert mit Limes -L. $a_n = (-1)(-a_n)$ $a_n \to \lim(-1)\lim(-a_n) = -1$, L = -L). Sei

$$s = \sup \underbrace{\{a_n : n \in \mathbb{N}\}}_{M}$$

Behauptung:

$$s = \lim_{n \to \infty} a_n$$

 $a_n \geq a$. Zu beweisen:

$$forall \varepsilon > 0 \ \exists N : a_n > s - \varepsilon \ \forall n \ge N$$

Beweis:

$$forall \varepsilon > 0 \ \exists a_i \in M : a_i > s - \varepsilon$$

Die Folge wächst $\implies a_n \ge a_j > s - \varepsilon \ \forall n \ge j$.

Beispiel 4.29.

$$a_n = (-1)^n$$

4.3 Der Satz von Bolzano-Weierstrass

Definition 4.30. Sei (a_n) eine Folge. Eine Teilfolge von (a_n) ist eine neue Folge $b_n := a_{n_k}, n_k \in \mathbb{N}$ mit $n_k > n_{k-1}$

$$\underbrace{a_0} \quad a_1 \quad \underbrace{a_2} \quad a_3 \quad a_4 \quad a_5 \quad \underbrace{a_6} \quad s \cdots$$

Satz 4.31. Jede berschränkte Folge (a_n) $(\subset \mathbb{R}, \mathbb{C})$ besitzt eine konvergente Teilfolge.

Beweis 4.32. Schritt 1: Sei (a_n) eine Folge reeller Zahlen. Sei I und $M \in \mathbb{R}$ so dass $I \leq a_n \leq M \ \forall n \in \mathbb{N}$.

$$\overbrace{[I,M]}^{J_0} = [I,A_0] \cup [A_0,M] \quad A_0 = \frac{M-I}{2} + I = \frac{M+I}{2}$$

mindestens ein Intervall enthält unendlich viele (a_n) . Nennen wir dieses Intervall J_1 . Intervallschachtelung:

- $J_{k+1} \subset J_k$
- $l_k = L\ddot{a}nge \ von \ J_k$. $l_0 = M I$, $l_k = (M I)2^{-k}$, $l_k \downarrow 0$

$$\exists a \in J_k \ \forall k \in \mathbb{N}$$

$$\exists n_0 : a_{n_0} \in J_0$$

 J_1 enthält unendlich viele $a_n \implies \exists n_1 > n_0$ mit $a_{n_1} \in J$. Rekursiv: (a_{a_k}) Teilfolge mit $a_{n_k} \in J_k$

$$|a_{n_k} - a| \le l_k = (M - I)2^{-k} \implies a_{n_k} - a \to 0$$

$$\stackrel{\rightarrow a + a = a}{a_{n_k}} = \underbrace{a_{n_k}}_{\rightarrow 0} + \underbrace{a}_{\rightarrow a}$$

$$a_k = \xi_k + i\Xi_k$$

 (ξ_k) ist eine beschränkte Folge reeller Zahlen. $\exists (\xi_{k_j})$ Teilfolge die konvergiert.

$$a_{k_i} = \xi_{k_i} + i\Xi_{k_i}$$

 (Ξ_{k_j}) ist eine beschränkte Folge reeller Zahlen und (Ξ_{k_j}) eine konvergente Teilfolge.

$$a_{k_{j_l}} = \Xi_{k_{j_l}} + i\Xi_{k_{j_l}}$$

ist eine konvergente Teilfolge!

Definition 4.33. Falls (a_k) eine Folge ist und a der Limes einer Teilfolge, dann heisst a Häufungswert.

Lemma 4.34. Sei (a_k) eine Folge. a Häufungswert $\iff \forall$ Invervall mit $a \in I$ \exists unendlich viele $a_k \in I$.

Definition 4.35. Wenn die Menge der Häufungswerte von (a_n) (relle Folge) ein Supremum (bzw. ein Infimum) besitzen, heisst dieses Supremum "Limes Superior" (bzw. "Limes Inferior").

Lemma 4.36. Der Limes Superior (bzw. Inferior) ist das Maximum (bzw. Minimum) der der Häufungswerte.

$$\lim_{n \to \infty} a_n = \limsup_{n \to +\infty} a_n = Limes \ Superior$$

$$\lim_{n \to \infty} a_n = \liminf_{n \to +\infty} a_n = Limes \ Inferior$$

4.4 Konvergenzkriterium von Cauchy

Satz 4.37. Eine Folge komplexer Zahlen konvergiert genau dann, wenn:

$$\forall \varepsilon > 0 \ \exists N : |a_n - a_m| < \varepsilon \ \forall n, m \ge N$$

Beweis 4.38. Konvergenz \implies Cauchy: $a_n \rightarrow a$. Sei $\varepsilon > 0$

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \quad \forall n, m \ge N$$

Dann

$$\exists N : |a_n - a| < \frac{\varepsilon}{2} \ \forall n \ge N$$

Bemerkung 4.39. Falls aein Häufungswert ist, dann konvergiert die Ganze Folge \to fertig! Weil: $a_{n_k}\to a$

$$\forall \varepsilon > 0 \ \exists K : k > K : |a_{n_k} - a| < \frac{\varepsilon}{2}$$

$$\exists N : \forall m, n \ge N \ |a_{n_k} - a| < \frac{\varepsilon}{2}$$

 $Cauchy \implies Konvergenz \ Sei \ n \geq N. \ Sicher: \exists n_k > N \implies$

$$|a - a_n| = |a - a_{n_k} + a_{n_k} - a_n|$$

$$\leq |a - a_{n_k}| + |a_{n_k} - a_n|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $W\ddot{a}hle\ \varepsilon=1.$

$$\exists \bar{N} : |a_n - a_m| < 1 \ \forall n, m \ge \bar{N}$$
$$|a_n| \le |a_n - a_{\bar{N}}| + |a_{\bar{N}}| < |a_{\bar{N}}| + 1 \ \forall n \ge \bar{N}$$

Sei nun

$$M := \max \left(\left\{ |a_k| : k < \bar{N} \right\} \cup \left\{ |a_{\bar{N}} + 1| \right\} \right)$$
$$|a_n| < M \ \forall n \in \mathbb{N} \ \stackrel{B-W}{\Longrightarrow} \ \exists \ ein \ H\ddot{a}ufungswert$$

Definition 4.40. Sei a_n eine Folge von reellen Zahlen. Dann sagen wir:

- $a_n \to +\infty$ (oder $\lim_{n \to +\infty} a_n = +\infty$) falls $\forall M \in \mathbb{R} \exists N \in \mathbb{R} : a_n \geq M$ $\forall n \geq N$ (oder $a_n \geq \text{für fast alle } n \in \mathbb{R}$)
- $a_n \to -\infty$ ($\lim_{n \to -\infty} a_n = -\infty$) falls $\forall M \in \mathbb{R}, a_n \leq M$ für fast alle n.

Wenn die Folge a_n keine obere Schranke besitzt: $\overline{\lim_{n\to+\infty}}a_n=+\infty$. Dasselbe gilt equivalent auch für untere Schranken.

Übung 4.41. $\overline{\lim}_{n\to+\infty} a_n = +\infty \iff \exists \text{ Teilfolge } \{a_{n_k}\}_{k\in\mathbb{N}} \text{ mit } a_{n_k} \overset{k\to+\infty}{\to} +\infty$

Bemerkung 4.42. Sei a_n eine wachsende (bzw. fallende) Folge. Dann:

- \bullet entweder konvergiert a_n
- oder $\lim_{n\to+\infty} a_n = +\infty$ (bzw. $\lim_{n\to+\infty} a_n = -\infty$)

5 Reihen

5.1 Konvergenz der Reihen

Definition 5.1. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge komplexer Zahlen. Wir setzen:

$$s_0 = a_0$$

 $s_1 = a_0 + a_1$
 $s_2 = a_0 + a_1 + a_2$
...

$$s_k := \sum_{i=0}^k a_i$$

Definition 5.2. Die $(s_k)_{k\in\mathbb{N}}$ ist die Folge der Partialsummen. Die Reihe ist die Folge $(s_k)_{k\in\mathbb{N}}$ falls der Limes von s_k existiert, dann ist $\lim_{n\to+\infty} s_n$ ist der Wert der Reihe. Und wir sagen dass (s_k) eine konvergente Reihe ist.

Notation 5.3. Die Notation der Reihe ist $\sum_{i=0}^{\infty} a_i$ bezeichnet <u>die Reihe</u> und <u>den Wert der Reihe</u>.

Beispiel 5.4. Sei z eine komplexe Zahl. Dann ist die Reihe $\sum_{n=0}^{\infty} z^n$ die geometrische Reihe.

• |z| < 1 dann konvergiert \implies die geometrische Reihe.

Falls z = 0 ist der Wert der Reihe 1.

$$0 \neq z, |z| < 1$$

$$(1-z)(1+z+\cdots z^n) = 1-z^{n+1}$$

$$s_n = \frac{1-z^{n+1}}{1-z}$$

$$\lim_{n \to +\infty} \frac{1-z^n}{1-z} = \lim_{n \to +\infty} \left(\frac{1}{1-z}\right) - \frac{1}{1-z} \underbrace{\left(\lim_{n \to +\infty} z^n\right)}_{=0 \text{ weil } |z| < 1} = \frac{1}{1-z}$$

Für |z| > 1 ist $s_n = \frac{(1-z)^{n+1}}{1-z}$ falls $\lim_{n \to +\infty} s_n$ existiert, dann konvergiert die Folge $z^{n+1} \implies$ die Folge $\underbrace{|z|^n+1}_{\text{falsch weil }|z^n| \text{ divergiert}}$ konvergiert. Sei $a \in \mathbb{R}, \ a > 1$

$$a^n = (1 + (a - 1))^n = 1 + n(a - 1)$$

- z = 1 $s_n = 1 + 1 + \cdots + 1 = n + 1 \implies (s_n)$ konvergiert nicht!
- $s \neq 1$ s_n konvergiert nicht weil z^{n+1} nicht konvergiert!
- $|z| = 1 \implies$

$$z = \cos \theta + i \sin \theta \implies z^{n+1} = \cos((n+1)\theta) + i \sin((n+1)\theta)$$

(Übung 4, Blatt 3)

Bemerkung 5.5. Falls $z \in \mathbb{R}$, $z \geq 1$. Dann ist s_n eine Folge reeller Zahlen, $s_n \geq 0$, s_n ist monoton wachsend $(s_{n+1} = s_n + z^{n+1} \geq s_n)$. \Longrightarrow in diesem Fall $\sum_{n=0}^{\infty} z^n = +\infty$

$$z \in \mathbb{R}, z = -1$$

$$s_n = \begin{cases} 1 & \text{für gerade } n \\ 0 & \text{für ungerade } n \end{cases}$$

 $\implies s_n$ ist beschränkt und s_n konvergiert nicht (Häufungspunkte 0, 1. $z \in \mathbb{R}, z < -1$.

$$s_n = \frac{1 - z^{n+1}}{1 + z}$$

 \implies (s_n) ist nicht beschränkt

Bemerkung 5.6. Wenn die Partialsumme eine Folge reeller Zahlen ist und $s_n \to +\infty$ (bzw. $-\infty$), dann $\sum a_n = +\infty$ (bzw. $-\infty$).

Beispiel 5.7. Harmonische Reihe: $\sum_{n=1}^{\infty} \frac{1}{n} s_{n+1} \ge s_n \implies$ entweder $\lim_{n \to +\infty} s_n$ existiert oder $\lim_{n \to +\infty} s_n$

$$s_{2^{n}-1} = 1 + \underbrace{\frac{1}{2} + \frac{1}{3}}_{2^{k-1} \le j \le 2^{k} - 1} + \dots + \underbrace{\dots}_{2^{n-1} \le j \le 2^{n} - 1}$$

$$\ge 1 + \underbrace{\frac{1}{4} + \dots + \underbrace{\frac{1}{2^{k}} + \dots + \frac{1}{2^{k}}}_{2^{k-1}} + \dots}$$

$$\ge 1 + \underbrace{\frac{1}{2} + \dots + \underbrace{\frac{1}{2^{k}} + \dots + \frac{1}{2^{k}}}_{2^{k-1}} + \dots}$$

$$\ge 1 + \underbrace{\frac{1}{2} + \dots + \underbrace{\frac{1}{2^{k}} + \dots + \frac{1}{2^{k}}}_{n \to +\infty} + \dots}$$

$$= 1 + \underbrace{\frac{n-1}{2} \sigma_n}_{n \to +\infty} = s_{2^{n}-1} \ge +1 \underbrace{\frac{n-1}{2}}_{n \to +\infty} \implies \lim_{n \to +\infty} \sigma_n = +\infty$$

 \implies die ursprüngliche Folge (s_n) konvergiert nicht!

$$\implies \lim_{n \to +\infty} s_n = +\infty \implies +\infty \implies \sum \frac{1}{n} = +\infty$$

5.2 Konvergenzkriterien für reelle Reihen

Bemerkung 5.8. (gilt auch für komplexe Reihen!)

$$\sum_{n=0}^{\infty} a_n \text{konvergiert} \implies a_n \to 0$$

Übung 5.9. ganz schnell: die geometrische Reihe konvergiert nicht falls $|z| \ge 1$ Bemerkung 5.10. $a \to 0 \implies \sum_{n=0}^{\infty} a_n$ konvergiert! Bsp: $a_n = \frac{1}{n}$

Satz 5.11. Sei $\sum a_n$ eine Reihe mit reellen Zahlen $a_n \geq 0$. Dann:

- entweder ist die Folge (s_n) beschränkt (und die Reihe konvergiert deswegen)
- $oder \sum_{n=0}^{\infty} s_n = +\infty$

Satz 5.12. (Konvergenzkriterium Leibnitz). Sei (a_n) eine fallende Nullfolge. Dann konvergiert $\sum_{n=0}^{\infty} (-1)^n a_n$ (eine alternierende Reihe).

Beweis 5.13. Betrachten wir

$$s_k - s_{k-2} = (-1)^{k-1} a_{k-1} + (-1)^k a_k (-1)^k (a_k - a_{k-1})^k$$

- $s_k s_{k-2} \ge 0$ falls k ungerade ist
- $s_k s_{k-2} \le 0$ falls k gerade ist

Für k ungerade:

$$\underbrace{s_1 \leq s_3 \leq s_5 \leq \cdots}_{gerade} = \underbrace{s_{k+1}}_{ungerade} + \underbrace{(-1)^{k+1}}_{\geq 0} \underbrace{a_{n+1}}_{\geq 0} \leq s_{k+1} \leq s_n$$

Für k gerade:

$$s_1 \le s_3 \le s_5 \le \cdots$$

(Beweis gleich wie für ungerade)

 \implies die Folge s_0, s_2, s_4, \cdots ist monoton fallend und von unten beschränkt \implies $\lim_{k \to +\infty} 2k = S_q \in \mathbb{R}$

$$S_u - S_g = \lim_{n \to +\infty} s_{2n+1} - \lim_{n \to +\infty} s_{2n} = \lim_{n \to +\infty} (s_{2n+1} - s_{2n}) \lim_{n \to +\infty} a_{2n+1} = 0$$

$$\implies S_u = S_g \implies \lim_{n \to +\infty} s_n = S_u (= S_g)$$

Korollar 5.14.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

konvergiert

5.3 Konvergenzkriterien für allgemeine (komplexe) Reihen

Bemerkung 5.15. $\sum a_n$ konvergiert \iff (s_n) konvergiert \iff (s_n) ist eine Cauchyfolge. \iff $\forall \varepsilon > 0 \ \exists N : |s_n - s_m| < \varepsilon \ \forall n \ge m \ge N. \ \varepsilon > |s_n - s_m| = |a_{m+1} + \cdots + a_n|.$

Korollar 5.16. Majorantenkriterium: Sei $\sum a_n$ eine Reihe komplexer Zahlen und $\sum b_n$ eine konvergente Reihe nichtnegativer reeller Zahlen. Falls $|a_n| \leq b_n$ $(d.h. \sum b_n \text{ majorisiert } \sum a_n, \text{ dann ist } \sum a_n \text{ konvergent.}$

Beweis 5.17. $\sum b_n$ konvergiert $\iff \sigma_n = \sum_{k=0}^n b_n$ ist eine Cauchyfolge.

$$\iff \forall \varepsilon > 0 \exists N : \underbrace{|\sigma_n - \sigma_m|}_{<} \varepsilon \forall n \geq m \geq N$$

$$b_n + \dots + b_{m+1} \ge |a_n| + \dots + |a_{m+1}| \ge |a_n + \dots + a_{m+1}| = |s_n - s_m|$$

 $Wobei \sum s_n = \sum_{k=0}^n a_k.$

$$\iff \forall \varepsilon > 0 |s_n - s_m| \le |\sigma_n - \sigma_m| < \varepsilon \forall n \ge m \ge N$$

 \iff (s_n) ist eine Cauchyfolge \iff $\sum a_n$ konvergiert

5.4 Wurzel- und Quotientenkriterium

Definition 5.18. Eine Reihe $\sum_{n=0}^{\infty} a_n$ heisst <u>absolut konvergent</u>, falls $\sum_{a=0}^{\infty} |a_n|$ eine konvergente Reihe ist.

Bemerkung 5.19. Majorantenkriterium \iff die absolute Konvergent impliziert die Konvergent.

Satz 5.20. (Quotientenkriterium) Sei $\sum a_n$ eine Reihe mit $a_n \neq 0$ für fast alle n und s.d. $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = q$ existiert. Falls

- q < 1 konvergiert die Reihe absolut.
- q > 1 divergiert die Reihe.
- q = 1 unentschieden.

Beweis 5.21. • $q > 1 \implies \exists N \text{ so dass } |a_{n+1}| \ge \tilde{q}|a_n| \text{ falls } n \ge N.$ $1 < \tilde{q} = \frac{1}{2} + \frac{q}{2} < q.$

$$|a_n| \ge \tilde{q}|a_{n-1}| \ge \tilde{q}^2|a_{n-2}| \dots > \tilde{q}^{n-N}|a_N|$$

 $oBdA |a_N| \neq 0$

$$\implies \lim_{n \to +\infty} |a_n| = +\infty \implies \sum a_n \ divergient$$

• q < 1 $1 < \tilde{q} = \frac{1}{2} + \frac{q}{2} < q \ \exists N \ so \ dass \ |a_n| \leq \tilde{q}^{n-N} |a_N| \ (das \ gleiche \ Argument \ wie \ vorher).$

$$b_n = \tilde{q}^{n-N}|a_N| = C\tilde{q}^n$$
$$b_n = |a_n|$$

 $\sum b_n \ majorisiert \sum a_n$

$$\sum b_n \ konv \stackrel{Maj.}{\Longrightarrow} \sum |a_n| \ konvergiert$$

Satz 5.22. (Wurzelkriterium) Sei $\sum a_n$ eine Reihe und $L := \limsup_{n \to +\infty} \sqrt[n]{|a_n|}$ (" $L = +\infty$ " falls $|a_n|$ unbeschränkt ist!) Dann:

- ullet L < 1 konvergiert die Reihe absolut
- \bullet L > 1 divergiert die Reihe
- ullet L=1 unentschieden

Beweis 5.23. • L < 1

$$L < \tilde{L} = \frac{L}{2} + \frac{1}{2} < 1 \implies \exists N : \sqrt[n]{|a_n|} \le \tilde{L} \implies |a_n| \le \tilde{L}^n$$

für $n \ge N$ haben wir wie oben die absolute Konvergenz.

• *L* > 1

$$\exists k_n : \sqrt[k_n]{|a_{k_n}|} \to L$$

$$1 < \tilde{L} = \frac{L}{2} + \frac{1}{2} < L$$

$$\exists N : k_n \ge N : \sqrt[k_n]{|a_{k_n}|} \ge \tilde{L}$$

$$\implies |a_{k_n}| \ge \tilde{L}^{k_n} \to +\infty \text{ für } n \to +\infty$$

$$\implies a_n \not\to 0 \implies \sum a_n \text{ divergient}$$

Beispiel 5.24. Sei $s \ge 1 \sum \frac{1}{n^s}$

- s = 1 harmonische Reihe divergiert
- s > 1 konvergiert! $\sum \frac{1}{n^2}$ Bernoulli?? $= \frac{\pi^2}{6}$

$$\sum \frac{1}{n^{2k}} \sim \underbrace{c_k}_{\in \mathbb{Q}} \pi^{2k}$$

•
$$a_n = \frac{1}{n^s}$$

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1 \forall s \ge 1$$

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = 1 \forall s \ge 1$$

 $s=1 \implies \text{Divergenz}, \ s>1 \implies \text{Konvergenz}.$

$$\implies \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{7^s} + \dots$$

$$\sum_{n=0}^{\infty} b_n = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{4^s} + \dots + \frac{1}{4^s} + \dots$$

$$b_n \ge 0$$

$$s_n = b_0 + \dots + b_n$$

 $\{s_n\}$ ist beschränkt. Wir setzen

$$\begin{split} s_{2k-1} &= \frac{1}{1^s} + \frac{2}{2^s} + \dots + \frac{2^{k-1}}{2^{(k-1)s}} = \frac{1}{1^{s-1}} + \frac{1}{2^{s-1}} + \dots + \frac{1}{2^{(s-1)(k-1)}} \\ &= \frac{1}{\alpha} + \frac{1}{\alpha^1} + \dots + \frac{1}{a^{k-1}} \leq \sum_{k=0}^{\infty} \frac{1}{\alpha^s} < +\infty \\ &\qquad \qquad \alpha := 2^{s-1} > 2^0 = 1 \\ &\stackrel{\text{Majo.}}{\Longrightarrow} \sum \frac{1}{n^s} \text{ konvergiert} \end{split}$$

5.5 Das Cauchyprodukt

Definition 5.25. $\sum a_n$ und $\sum b_n$. Das CP ist die Reihe $\sum c_n$

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0 = \sum_{j=0}^n a_j b_{n-j} = \sum_{j+k=n} a_j b_k$$

Satz 5.26. Falls $\sum a_n$ und $\sum b_n$ absolut konvergieren, dann konvergiert das CP absolut.

$$\sum c_n = \left(\sum a_n\right) \left(\sum b_n\right)$$

Beweis 5.27.

$$s - k = \sum_{j=0}^{k} a_j, \sigma_k = \sum_{i=0}^{k} b_i$$

$$s_k \sigma_k = \sum_{j=0}^n \sum_{i=0}^n b_i a_j$$

$$c_n = \sum_{j+i=n} a_i b_j, \beta_k = \sum_{n=0}^k c_k$$

$$\sum_{n=0}^{k} \sum_{i+j=n} a_i b_j = \sum_{i+j \le n} a_i b_j$$

$$c_0 = a_0 b_0$$

$$c_1 = a_0 b_1 + a_1 b_0$$

$$c_1 = a_0 b_2 + a_1 b_1 + a_2 b_0$$

$$\beta_k - \sigma_k s_k$$

Absolute Konvergenz:

•
$$\sum |c_k| < +\infty$$

•
$$B_n = \sum_{k=0}^{\infty} |c_k|$$

 (B_n) ist eine beschränkte Folge

$$B_{n} = \sum_{k=0}^{N} |sum_{i+j \ge k} a_{i} b_{j}| \le \sum_{k=0}^{N} \sum_{i+j=k}^{N} |a_{i}| |b_{j}|$$

$$= \sum_{i+j \le N} |a_{i}| |b_{j}| \le \sum_{i=0}^{N} \sum_{j=0}^{N} |a_{i}| |b_{j}|$$

$$= \left(\sum_{i=0}^{N} |a_{i}|\right) \left(\sum_{j=0}^{N} |b_{j}|\right) \le \left(\sum_{j=0}^{N} |a_{i}|\right) \left(\sum_{j=0}^{N} |b_{j}|\right)$$

$$= LM$$

Wobei $L = \sum |a_i| \ und \ M = \sum |b_j|$. $\Longrightarrow (B_n) \ konvergiert \implies \sum c_n \ konvergiert \ absolut.$

$$\begin{split} |\sum_{i=0}^{N}a_{i}\sum_{j=0}^{N}b_{j}-\sum_{k=0}^{N}|\\ &=|\sum_{i=0,j=0}^{N}a_{i}b_{j}-\sum_{i+j\leq N}a_{i}b_{j}|\\ &=|\sum_{i+j>N,i\leq,j\leq N}a_{i}b_{j}|\leq \sum_{i+j>N,i\leq,j\leq N}|a_{i}||b_{j}|\\ &\leq \sum_{i\leq N,j\leq N,i\geq \frac{N}{2},j\geq \frac{N}{2}}|a_{i}||b_{j}|=\sum_{i,j\leq N}|a_{i}||b_{j}|=\sum_{i,j<\frac{N}{2}}|a_{i}||b_{j}|\\ &=\underbrace{\left(\sum_{i=0}^{N}|a_{i}|\right)\left(\sum_{j=0}^{N}|b_{j}|\right)-\left(\sum_{i=0}^{\lfloor\frac{1}{N}^{2}}|a_{i}|\right)\left(\sum_{j=0}^{\lfloor\frac{1}{N}^{2}}|b_{j}|\right)}_{\Gamma_{N}}\\ &0\leq |\sum_{i=0}^{N}a_{i}\sum_{j=0}^{N}b_{j}-\sum_{k=0}^{N}c_{k}|\leq \Gamma_{N}\\ &\lim_{N\to+\infty}\Gamma_{N}=\sum_{i=0}^{\infty}|a_{i}|\sum_{j=0}^{\infty}|b_{j}|-\sum_{i=0}^{\infty}|a_{i}|\sum_{j=0}^{\infty}|b_{j}|\\ &\Longrightarrow\sum c_{k}=\sum a_{i}\sum b_{j} \end{split}$$

5.6 Potenzreihen

Definition 5.28. Die Potenzreihen: $\sum a_n z^n$, $z \in \mathbb{C}$

Lemma 5.29. Falls $a_n z_0^n$ eine konvergente Reihe ist, dann $\forall z$ mit $|z| < |z_0|$ konvergiert $\sum a_n z^n$ absolut.

Beweis 5.30. $a_n z_0^n$ ist eine Nullfolge.

$$\implies \exists C : |a_n z_0^n| \le C \forall n$$

$$|a_n z^n| \le |a_n z_0^n| \underbrace{\frac{|z|^n}{|z_0|^n}} \le C \alpha^n$$

$$|z| < |z_0| \implies \alpha < 1$$

 $\implies \sum C\alpha^n$ eine konvergente Majorante.

Satz 5.31. Sei (a_n) eine Folge von Koeffizienten $a_n \in \mathbb{C}$. Sei $K := \{z \in \mathbb{C} : \sum a_n z^n \text{ konvergient}\}\$ $K \ni z \to f(z) = \sum_{n=0}^{\infty} a_n z^n$. Wenn

$$f(z) = \sum a_n z^n, g(z) = \sum b_n z^n$$

$$\implies f(z) + g(z) = \sum (a_n + b_n) z^n$$

$$\implies f(z)g(z) = \sum_{\text{falls } z \text{ absolute Konvergenz garantiert}} c_n z^n$$

Beweis 5.32. Sei $\sum \gamma_n$ das CP von $\sum a_n z^n$ und $b_n z^n$.

$$\sum \gamma_n = \sum a_n z^n \sum b_n z^n$$

$$= \sum \sum_{i+j=n} (a_i z^i) (b_j z^j) = \sum_{n=0}^{\infty} \sum_{i+j=n} a_i b_j z^{i+j}$$

$$= \sum n = 0 z^n \underbrace{\sum_{i+j=n} a_i b_j}_{=c_n}$$

Satz 5.33. (Cauchy-Hadamard) $\sum a_n z^n$. Sei $L := \limsup \sqrt[n]{|a_n|}$. Dann (Wurzerlkriterium)

- $|z| < \frac{1}{L} \implies \sum a_n z^n$ konvergiert absolut
- $|z| > \frac{1}{L} \implies \sum a_n z^n \ divergient$
- |z| = 1 unentschieden

6 Stetige Funktionen und Grenzwerte

6.1 Stetigkeit

In $D \subset \mathbb{R}$, $D \subset \mathbb{C}$.

Definition 6.1. Eine Funktion $f: D \mapsto \mathbb{R}(\mathbb{C})$. Sei $x_0 \in D$. f heisst stetig in x_0 falls $\forall \varepsilon > 0$, $\exists \delta > 0$ mit

$$|x - x_0| < \delta, x \in D \implies |f(x) - f(x_0)| < \varepsilon$$

(Bedingung S). Gegenüber:

$$\forall \delta > 0 \exists x \in |x_0 - \delta, x_0 + \delta[\text{ mit } |f(x) - f(x_0)| \ge \varepsilon$$

Beispiel 6.2. Die Polynome sind stetige Funktionen.

Beispiel 6.3. (Später), Summe und Produkte stetiger Funktionen sind auch stetig.

Bemerkung 6.4. • Die Bedingung (S) ist trivial für die Funktion f = const

• Die Bedingung (S) ist trivial für die Funktion f(x) = x

$$|x-x_0| < \delta = \varepsilon \implies |f(x)-f(x_0)| = |x-x_0| < \varepsilon$$

Definition 6.5. Eine Funktion $f:D\to\mathbb{R}(\mathbb{C})$ heisst Lipschitz(-stetig) falls $\exists L\geq 0$ mit

$$|f(x) - f(y)| \le L|x - y|, \forall x, y \in D$$

(L)
$$\Longrightarrow$$
 (S): wähle $\delta = \frac{\varepsilon}{L}$

Korollar 6.6. g(x) := |x| ist stetig.

$$|g(x) - g(y)| = ||x| - |y|| \le |x - y|$$

d.h. (L) mit L = 1

Beispiel 6.7. (Später): $\frac{f}{g}$ ist stetig falls f,g stetig und $g(x) \neq 0 \ \forall x \in D. \implies$ Rationale Funktionen $\frac{P(x)}{Q(x)}$ sind stetig auf $d = \mathbb{C} \setminus \{x : Q(x) = 0\}$

Beispiel 6.8. $f(x)=x^k, \ k\in\mathbb{N}$ ist ein Polynom $\Longrightarrow f$ ist stetig. Sei $g(x):=x^{\frac{1}{k}}=\sqrt[k]{x}, \ k\in\mathbb{N}\setminus\{0\}$ (g(x) ist die einzige relle Zahl $y\in\mathbb{R}$ mit $y\geq 0$ und $y^k=x$). $x_0\in\mathbb{R},\ \varepsilon>0$

$$|\underbrace{\sqrt[k]{x}}_{y} - \underbrace{\sqrt[k]{x_0}}_{y_0}| \le \sqrt[k]{absx - x_0}$$

$$\iff |y - y_0|^k \le |y^k - y_0^k|$$

oBdA $y \ge y_0$

$$\underbrace{(y-y_0)^k}_a \le \underbrace{y^k}_c - \underbrace{y_0^k}_b$$

$$\iff a^k + b^k \le c^k = (a+b)^k$$

$$a^{k} + b^{k} \le (a+b)^{k} = a^{k} + \overbrace{\binom{k}{1}a^{k-1}b + \dots + b^{k}}^{\ge 0}$$

Deswegen: $\delta = \varepsilon^k$. $|x - x_0| < \delta \ x > x_0, \ x < x_0 + \delta$

$$|\sqrt[k]{x} - \sqrt[k]{x_0}| = (\sqrt[k]{x} - \sqrt[k]{x_0}) < (\sqrt[k]{x_0 + \delta} + \sqrt[k]{x_0})$$

$$=|\sqrt[k]{x_0+\delta}-\sqrt[k]{x_0}| \le \sqrt[k]{\delta} = \sqrt[k]{\varepsilon^k} = \varepsilon$$

Oder wähle $\delta = \left(\frac{\varepsilon}{2}\right)^k$

$$|x-x_0|<\delta \implies |\sqrt[k]{x}-\sqrt[k]{x_0}| \le \sqrt[k]{|x-x_0|} \le \sqrt[k]{\left(rac{arepsilon}{2}
ight)^k} = rac{arepsilon}{2} < arepsilon$$

Beispiel 6.9. Sei a > 0 und $f(x) = a^x \ \forall x \in \mathbb{Q}$ $f : \mathbb{Q} \to \mathbb{R}$ ist stetig!

Satz 6.10. Sei $f: D \to \mathbb{R}(\mathbb{C})$. Sei $x_0 \in D$. Diese zwei Aussagen sind equivalent:

- f ist stetig an der Stelle x_0 .
- $\forall (x_n) \subset D \ mit \ x_n \to x_0 \ haben \ wir \ f(x_n) \to f(x_0)$

Beweis 6.11. Sei $\varepsilon > 0$. f stetig in $x_0 \implies \exists \delta > 0$ mit $|f(x) - f(x_0)| < \varepsilon$ falls $|x - x_0| < \delta$. $x_n \to x_0 \implies \exists N$:

$$|x_n - x_0| < \delta \forall n > N \implies |f(x_n) - f(x_0)| < \varepsilon$$

Andere Richtung: Nehmen wir an dass f stetig falsch ist.

$$\implies \exists \varepsilon > 0 : \forall \delta > 0 \exists x : |x - x_0| < \delta \land |f(x) - f(x_0)| \ge \varepsilon$$

for all $n \in \mathbb{N} \setminus \{0\}$. Ich setze $\delta = \frac{1}{n} \implies \exists x_n \ mit \ |x_n - x_0| < \frac{1}{n} \ und \ |f(x_n) - f(x_0)| \ge \varepsilon \implies x_n \to x_0 \ und \ f(x_n) \not\to f(x_0)$.

Satz 6.12. Seien $f, g: D \to \mathbb{R}(\mathbb{C})$ zwei stetige Funktionen. Dann:

- f + g, fg sind stetig
- $\frac{f}{g}$ ist stetig auf $D \setminus \{x : g(x) = 0\}$

Beweis 6.13. Sei $x_0 \in D$, $(x_n) \subset D$ $x_n \to x_0$ (für $\frac{f}{g}$ $g(x_n) \neq 0$, $q(x_0) \neq 0$ weil $(x_n), x_0 \subset D \setminus \{x : g/x(=0\})$

$$f(x_n) + g(x_n) \to \qquad f(x_0) + g(x_0)$$

$$f(x_n)g(x_n) \to \qquad f(x_0)g(x_0)$$

$$\frac{f(x_n)}{g(x_n)} \to \qquad \frac{f(x_0)}{g(x_0)}$$

Satz 6.14. $f: D \to A, g: A \to B$ stetig $\Longrightarrow g \circ f: D \to B$ stetig.

Beweis 6.15. $x_0,(x_n) \subset D$ mit $x_n \to x_0 \implies \underbrace{f(x_n)}_{y_n} \to f(x_0)_{y_0} (y_n), y_0 \in A$

- $g(y_n) \to g(y_0)$
- $g(f(x_n)) \to g(f(x_0))$

 $\implies g \circ f(x_n) \to g \circ f(x_0) \implies Stetigkeit \ von \ g \circ f$

Satz 6.16. Sei $f:[a,b] \to \mathbb{R}(\mathbb{C})$ injektiv. Sei

$$B := f([a,b]) (= \{z : \exists x \in [a,b] \ mit \ f(x) = z\})$$

Bemerkung 6.17. $f:[a,b]\to B$ ist bijektiv und deswegen umkehrbar.

Sei $f^{-1}: B \to [a,b]$ die Umkehrfunktion. Dann ist $f^{-1}B \to [a,b]$ stetig, falls f stetig ist.

Beweis 6.18. Sei $x_0 \in B$, (x_n) mit $(x_n) \subset B$ und $x_n \to x_0$. Die Folge

$$\underbrace{f^{-1}(x_n)}_{=y_n} \stackrel{?}{\to} \underbrace{f^{-1}(x_0)}_{=y_0}$$

 $(y_n) \subset [a,b], y_0 \in [a,b].$ Falls $y_n \not\to y_0$, dann:

$$\exists \varepsilon > 0 : \forall N \in \mathbb{N} \exists \underbrace{n}_{n_k} \geq \underbrace{N}_{k} : |y_n - y_0| \geq \varepsilon$$

$$n_k \geq n_{k-1} \implies \textit{Teilfolge} \ (y_{n_k}) : |y_{n_k} - y_0| \geq \varepsilon \forall k \in \mathbb{N}$$

 $Bolzano-Weiterstrass \implies \exists y_{n_k} \to \bar{y} \implies \bar{y} \neq y_0$

$$f(y_{n_{k_i}}) = x_{n_{k_i}}$$

Stetigkeit von $f:f(y_{n_{k_j}}) \to f(\bar{y})$ Und da $x_{n_{k_j}} \to x_0$ sowie $x_{n_{k_j}} = f(y_{n_{k_j}}, heisst$ dass das $f(\bar{y}) = x_0$, aber $f(y_0) = x_0 \implies f(\bar{y}) = f(y_0)$, mit $\bar{y} \neq y_0$. Widerspruch mit der Injektivität von f. Deswegen $f^{-1}(x_n) = y_n \to y_0 = f^{-1}(x_0) \implies f^{-1}$ ist stetig.

Bemerkung 6.19. Aus diesem Satz schliessen Sie die Stetigkeit von $x\mapsto x^{\frac{1}{k}}$ von der Stetigkeit $x\mapsto x^k$.

Definition 6.20. Wenn eine Funktion $f: D \to \mathbb{R}(D)$ stetig ist für $x \in D$, dann ist f stetig auf D.

Bemerkung 6.21. Für Satz 1 genügt die Stetigkeit der beiden Funktionen ander der Stelle x_0 . Für Satz 2 ähnlich. Für Satz 3 ist die Stetigkeit auf dem ganzen D wichtig.

6.2 Zwischenwertsatz

Satz 6.22. Sei $f:[a,b] \to \mathbb{R}$ stetig, mit $f(b) \ge f(a)$ (bzw. $f(b) \le f(a)$). Dann $\forall y \in [f(a), f(b)]$ (bzw. $\forall y \in [f(b), f(a)]$) exists $x \in [a,b]$ mit f(x) = y.

6.3 Zwischenwertsatz

Satz 6.23. Eine stetige Abbildung $f : [a,b] \to \mathbb{R}$ nimmt jeden Wert γ zwischen f(a) und f(b) an.

Beweis 6.24. $oBdA \ f(a) \leq f(b) \ und \ f(a) \leq \gamma \leq f(b)$

$$I_0 = [a, b] = [a_0, b_0]$$

$$\left[a, \frac{a+b}{2}\right], \left[\frac{a+b}{2}, b\right]$$

$$f\left(\frac{a+b}{2}\right) \ge \gamma \implies I_1 = \left[a, \frac{a+b}{2}\right] = [a_1, b_1]$$

$$f\left(\frac{a+b}{2}\right) < \gamma \implies I_1 = \left[\frac{a+b}{2}, b\right] = [a_1, b_1]$$

Rekursiv $I_k = [a_k, b_k] \ mit \ f(a_k) \le \gamma \le f(b_k), \ I_{k+1} = [a_{k+1}, b_{k+1}]$

$$I_{k+1} = \begin{cases} \left[a_k, \frac{a_k + b_k}{2}\right] & f\left(\frac{a_k + b_k}{2}\right) \ge \gamma \\ \left[\frac{a_k + b_k}{2}, b_k\right] & sonst \end{cases}$$

$$|I_k| = 2^{-k}(b-a) \stackrel{k \to +\infty}{\rightarrow} 0$$

 $Intervallschachtelung \implies \exists! x_0 \ mit \ x_0 \in I_k \ \forall k.$

$$b_k \downarrow x_0 \implies f(x_0) = \lim_{k \to +\infty} f(b_k) \ge \gamma$$

 $b_k \downarrow x_0 \implies f(x_0) = \lim_{k \to +\infty} f(a_k) \ge \gamma$
 $\implies f(x_0) = \gamma$

Korollar 6.25. Fixpunktsatz: Sei $f : [a,b] \rightarrow [a,b]$ eine stetige Abbildung. Dann besitzt f einen Fixpunkt, d.h.

$$\exists x_0 \in [a,b] : f(x_0) = x_0$$

Beweis 6.26. g(x) := f(x) - x

$$g(a) = f(a) - a \ge 0$$

$$q(b) = f(b) - b > 0$$

Mithilfe des oberen Satzes $\implies \exists x_0 \ mit$

$$g(x_0) = 0 \iff f(x_0) - x_0 = 0 \iff f(x_0) = x_0$$

6.4 Maxima und Minima

Satz 6.27. Sei $f:[a,b] \to \mathbb{R}$ stetig. Dann $\exists x_M, x_m \in [a,b]$ mit

$$f(x_m) \ge f(x) \ge f(x_M) \ \forall x \in [a, b]$$

Beweis 6.28. oBdA suche ich die Maximumstelle

$$S = \sup \{ f(x) : x \in [a, b] \}$$

$$(=+\infty \ falls \ \{f(x): x \in [a,b]\} \ keine obere Schranke$$

$$S \in \mathbb{R}$$
, sei $S_n = S - \frac{1}{n} \implies \exists x_n \ mit \ f(x_n) \geq S - \frac{1}{n}$

$$(x_n) \subset [a,b] \implies \exists (x_{n_k}) \quad mit \ x_{n_k} \to \bar{x}$$

$$\stackrel{S \in \mathbb{R}}{\Longrightarrow} f(\bar{x}) = \lim_{k \to +\infty} f(x_{n_k}) = S \stackrel{!}{=} \max_{x \in [a,b]} f(x) = \max_{[a,b]} f$$

$$\stackrel{S=+\infty}{\Longrightarrow} f(\bar{x}) = \lim_{k \to +\infty} f(x_{n_k}) = +\infty \implies Widerspruch$$

Bemerkung 6.29. Sei $E \subset \mathbb{R}$ eine Menge mit der Eigenschaft $\forall (x_n) \subset E$ ∃eine Teilfolge (x_{n_k}) $x \in E$ mit

$$x_{n_k} \to x$$

Ist E immer ein abgeschlossenes Intervall? Nein

$$E := [0, 1] \cup [2, 3]$$

Sei $(x_n) \subset [0,1] \cup [2,3]$. Dann $\exists (x_{n_k})$ die entweder in [0,1] oder in [2,3] enthalten ist $\implies \exists$ eine konvergente Teilfolge.

Definition 6.30. Die Mengen $E(\subset \mathbb{R}, \subset \mathbb{C})$ mit der Eigenschaft in der Bemerkung oben heissen kompakte Mengen.

Satz 6.31. Eine reellwertige stetige Funktion auf einem kompakten Definitionbereich besitzt mindestens eine Maximumstelle (und eine Minimumstelle).

Definition 6.32. Stetigkeit an einer Stelle x:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{mit} \ \underbrace{|x-y| < \delta} \ \underline{\text{und}} \ y \in \underline{D} \implies |f(x) - f(y)| < \varepsilon$$

Stetigkeit auf D bedeutet Stetigkeit an jeder Stelle $x \in D$.

Definition 6.33. Eine Funktion $f: D \to \mathbb{R}(\mathbb{C})$ heisst gleichmässig stetig falls

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{mit} \ |x - y| < \delta \ \text{mit} \ x, y \in D \implies |f(x) - f(y)| < \varepsilon$$

Beispiel 6.34. f Lipschitz

$$|f(x) - f(y)| \le L|x - y| \ \forall x, y \in D$$

Dann ist f gleichmässig stetig $\delta = \frac{\varepsilon}{L}$

$$|x-y| < \frac{\varepsilon}{L} \implies |f(x) - f(y)| \le L|x-y| < L\delta = L\frac{\varepsilon}{L} = \varepsilon$$

Satz 6.35. Falls D eine kompakte Menge ist, ist jede stetige Funktion $f: D \to \mathbb{R}(\mathbb{C})$ gleichmässig stetig!

Beweis 6.36. (Widerspruchsbeweis) f stetig aber nicht gleichmässig. Dann $\exists \varepsilon > 0 : \forall \delta$ die ich wählen kann

$$\exists x,y \in D \ mit \ |x-y| < \delta \ und \ |f(x)-f(y)| \ge \varepsilon$$

$$\delta = \frac{1}{n} > 0 \implies \exists x_n, y_n \ mit \ |x_n-y_n| < \frac{1}{n} \ und \ |f(x_n)-f(y_n)| \ge \varepsilon$$

$$Kompaktheit \implies \exists x_{n_k} \ Teilfolge \ mit \ x_{n_k} \to x \in D$$

$$\implies y_{n_k} \to x \in D$$

$$\implies f(x_{n_k}) \to f(x)$$

$$\implies |f(x_{n_k}) - f(y_{n_k})| \to 0$$

6.5 Stetige Fortsetzung, Grenzwerte

Definition 6.37. Sei $f: D \to \mathbb{R}(\mathbb{C})$ stetig. Sei E > D. Eine stetige Fortsetzung von f ist eine $\tilde{f}: E \to \mathbb{R}(\mathbb{C})$ stetig mit $f(x) = \tilde{f}(x) \ \forall x \in D$

Definition 6.38. $g: E \to A, D \subset E$,

$$g|_D \to A \text{ mit } g|_D(x) = g(x) \ \forall x \in D$$

Bemerkung 6.39. Sei $f: D \to \mathbb{R}(\mathbb{C})$ stetig. Sei $x_0 \notin D$. Die Fragen:

- gibt es eine stetige Fortsetzung von f auf $D \cup \{x_0\}$
- ist diese Fortsetzung eindeutig?

Definition 6.40. x_0 ist ein Häufungspunkt von einer Menge E wenn $\forall \varepsilon > 0 \exists$ unendlich viele Punkte $x \in E$ mit

$$|x-x_0|<\varepsilon$$

Bemerkung 6.41. x_0 ist ein Häufungspunkt von $E \iff \exists (x_n) \subset \backslash \{x_0\}$ mit $x_n \to x_0$

Bemerkung 6.42. In Bem 10, 1. Frage: Falls x_0 kein Häufungspunkt von D ist: \exists stetige Fortsetzungen, \exists unendlich viele!

Bemerkung 6.43. Wenn x_0 ein Häufungspunkt von D ist, die Antwort zur 2. Frage ist ja. Die Antwort zur 1. ist undefiniert.

Definition 6.44. x_0 Häufungspunkt von $D, x_0 \notin D$, falls \exists stetige Fortsetzung \tilde{f} von f auf $D \cup \{x_0\}$ existiert. Dann $\tilde{f}(x_0) = \lim_{x \to x_0} f(x)$

6.6 Grenzwerte

Definition 6.45. Sei $f: D \to \mathbb{R}(\mathbb{C})$, $D \subset \mathbb{R}(\mathbb{C})$. Sei $x_0 \in D$ ein Häufungspunkt. Der Grenzwert von f (falls er existiert) an der Stelle x_0 ist die einzige Zahl $a \in \mathbb{R}(\mathbb{C})$ so dass

$$F(x) = \begin{cases} f(x) & x \in D \setminus \{x_0\} \\ a & x = x_0 \end{cases}$$

stetig in x_0 ist. $(f(x_0) \neq a)$ falls $x_0 \in D$

Bemerkung 6.46. $f(x_0) = a$ und $x_0 \in D \implies f$ ist stetig an der Stelle x_0

Satz 6.47. Die folgenden Aussagen sind äquivalent:

- $\lim_{x \to x_0} f(x) = a$
- $\forall \{x_n\} \subset D \setminus \{x_0\} \text{ mit } x_n \to x_0 \text{ gilt } \lim_{n \to +\infty} f(x_n) = 0$
- $\forall \varepsilon > 0 \ \exists \delta > 0 \ so \ dass \ |x x_0| < \delta \ und \ x \in D \setminus \{x_0\} \implies |f(x) a| < 0$

Satz 6.48. (Rechenregeln) $f, g: D \to \mathbb{R}(\mathbb{C})$, x_0 Häufungspunkt von D

$$\lim_{x \to x_0} (f+g)(x) = \left(\lim_{x \to x_0} f(x)\right) + \left(\lim_{x \to x_0} g(x_0)\right)$$

falls die Grenzwerte existieren!

$$\lim_{x \to x_0} (fg)(x) = \left(\lim_{x \to x_0} f(x)\right) \left(\lim_{x \to x_0} g(x_0)\right)$$
$$\lim_{x \to x_0} \frac{f}{g}(x) \quad falls \quad \lim_{x \to x_0} g(x) \neq 0$$

Satz 6.49. Seien $f: D \to E, g: E \to \mathbb{RC}$ mit

- x_0 Häufungspunkt von D und $y_0 = \lim_{x \to x_0} f(x)$
- $y_0 \in E$ und g ist stetig and der Stelle y_0

Dann:

$$\lim_{x\to x_0}g\circ f(x)=g(y_0)=g(\lim_{x\to x_0}f(x))$$

Beweis 6.50. Wenden Sie die entsprechenden Rechenregeln für Folgen $x \to x_0$ $(\{x_n\} \subset D \setminus \{x_0\})$

Beispiel 6.51. Teil 1 von Satz 3. A \implies B: für $f, g \implies \forall \{x_n\} \subset D \setminus \{x_0\}$ mit $x_n \to x_0$

$$\lim_{n \to \infty} f(x_n) = \lim_{x \to x_0} f(x_0) \wedge \lim_{n \to \infty} g(x_n) = \lim_{x \to x_0} g(x_0)$$

$$\implies \lim_{n \to \infty} (f + g) = \underbrace{\lim_{n \to \infty} f(x)}_{n \to \infty} \underbrace{\lim_{n \to \infty} g(x_n)}_{n \to \infty} + \underbrace{\lim_{n \to \infty} g(x_n)}_{n \to \infty}$$

$$\stackrel{\text{Satz 2}}{\Longrightarrow} \lim_{x \to x_0} (f + g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

Definition 6.52. Falls $f: D \to \mathbb{R}$ und x_0 ein Häufungspunkt von D ist, dann:

• $\lim_{x\to x_0} f(x) = +\infty(-\infty)$ falls $\forall \{x_n\} \subset D \setminus \{x_0\}$ mit $x_n \to x_0$ gilt $\lim_{n\to +\infty} f(x_n) = +\infty$ (bzw. $-\infty$)

Ähnlich $f: D \to \mathbb{C}$ und:

• D ist nicht nach oben beschränkt. Wir schreiben $\lim_{x\to+\infty} f(x) = a$ genau dann, wenn $\forall \{x_n\} \subset D$ mit $x_n \to \infty$ gilt $\lim_{n\to+\infty} f(x_n) = a$

gleich wenn D nicht nach unten beschränkt ist. $\lim_{x\to\infty} f(x) = a$

$$\lim_{x \to +\infty} f(x) = \pm \infty$$

$$\lim_{x \to -\infty} f(x) = \pm \infty$$

Definition 6.53. Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}(\mathbb{C})$. Falls x_0 ein Häufungspunkt von $]-\infty, x_0[\cap D \text{ ist, dann } \lim x \uparrow x_0 f(x) = a \text{ falls } \forall \{x_n\} \subset D\cap]-\infty, x_0[\text{ mit } x_n \in D x_n < x_n \left(\lim_{x\to x_0^-} f(x)\right) \text{ gilt } \lim_{n\to +\infty} f(x_n) = a.$ Falls x_0 ein Häufingspunkt von $D\cap]x_0 + \infty[$ ist

$$\lim_{x \downarrow x_0} f(x) = a \land (\lim_{\to x_0^+} f(x))$$

falls $\forall \{x_n\} \subset D \cap]x_0, +\infty[$ mit $x_n \to x_0$ gilt $f(x_n) \to a$. Ähnlich $\lim_{x \to x_0^{\pm}} f(x) = \pm \infty$.

Beispiel 6.54. Stetigkeit:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

- $\exists \lim_{x \to x_0} f(x) \neq f(x_0)$ wenn die Funktion f in x_0 nicht stetig ist
- $\lim_{x\to x_0} f(x) = +\infty$ wenn die Funktion f in x_0 eine Asymptote hat.

7 Exponentialfunktion

$$a \in \mathbb{R}a > 0$$
 $a^a = a^{\frac{m}{n}} = \sqrt[n]{m}, \ q = \frac{m}{n} \in \mathbb{Q}$

7.1 Existenz und Eindeutigkeit

Satz 7.1. $\exists ! \operatorname{Exp} : \mathbb{C} \to \mathbb{C}$ mit folgenden Eigenschaften:

- Additionstheorem Exp(z+w) = Exp(z) Exp(w)
- $\lim_{z\to 0} \frac{\operatorname{Exp}(z)-1}{z} = 1$

Für Exp wissen wir:

- $\operatorname{Exp}(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} \ \forall z \in \mathbb{C}$
- $\operatorname{Exp}(z) = \lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n \, \forall z \in \mathbb{C}$
- Exp ist stetig und falls e = Exp(1) dann $e^q = \text{Exp}(1)$ forall $q \in \mathbb{R}$

Bemerkung 7.2.

$$e = \sum \frac{1}{n!} = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n$$

Bemerkung 7.3. Kernidee:

$$\operatorname{Exp}(z) = f(z)$$

$$f(z) = f(\frac{nz}{n}) = f(\frac{z}{n} + \frac{z}{n} + \dots + \frac{z}{n}) \stackrel{\text{Add}}{=} f(z)^n$$
$$f\left(\frac{z}{n}\right) = 1 + \frac{z_n}{n} = \left(1 + \frac{z_n}{n}\right)^n$$

$$z_n = n\left(f\left(\frac{z}{n}\right) - 1\right) = \left(\frac{f\left(\frac{z}{n}\right) - 1}{\frac{z}{n}}\right)z$$

 $n \to +\infty \ \frac{z}{n} \to 0$

$$\lim_{n \to +\infty} z_n = z \lim_n \to n \to +\infty \frac{f\left(\frac{z}{n}\right) - 1}{\frac{z}{n}} = z$$

$$f(z) = \left(1 + \frac{z_n}{n}\right)^n \implies f(z) = \lim_{n \to +\infty} \left(1 + \frac{\{overbrace z_n^z\}}{n}\right)^n \stackrel{?}{=} \lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n$$

Bemerkung 7.4. Zusammenfassung: Falls f die Bedingungen Additionstheorem und Wachstum erfüllt, dann:

$$f(z) = \lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n$$

wobei $\lim_{n\to+\infty} z_n = z$

Lemma 7.5. Fundamentallemma: $\forall \{z_n\} \subset \mathbb{C} \text{ mit } z_n \to z \text{ gilt:}$

$$\lim_{n \to \infty} \left(1 + \frac{z_n}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = \sum_{n \to \infty} \frac{z^n}{n!}$$

Bemerkung 7.6. (1)+(2) liefern Eindeutigkeit und zwei Darstellungen: Die Darstellungen definieren eine stetige Funktion mit den ganzen Eigenschaften des Theorems.

Bemerkung 7.7. $\sum \frac{z^n}{n!}$ konvergiert auf \mathbb{C} (und konvergiert deswegen absolut)

Beweis 7.8. Das Kriterium von Hadamand:

$$R:=\frac{1}{\limsup_{n\to +\infty}\sqrt{\frac{1}{n!}}}=+\infty$$

Das bedeutet:

$$\lim_{n \to +\infty} \sqrt[n]{\frac{1}{n}} = 0$$

$$\begin{cases} n \ \textit{gerade} & n! \ge \underbrace{n(n-1)\cdots}_{\frac{n}{2}} \\ n \ \textit{ungerade} & n! \ge \underbrace{n(n-1)\cdots}_{\frac{n-1}{2}} \end{cases}$$

$$n! \ge \frac{n}{2}$$

n gerade: n ungerade

Beweis 7.9. Die Reihe $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ konvergiert absolut $\forall z \in \mathbb{C}$

Behauptung 7.10.

$$\underbrace{\lim_{n \to +\infty} (sup) |\left(1 - \frac{z_n}{n}\right)^n - \sum_{n=0}^{\infty} \frac{z^k}{k!}|}_{A_n} = 0$$

Bemerkung 7.11.

$$\left(1 - \frac{z_n}{n}\right)^n - \sum_{n=0}^{\infty} \frac{z^k}{k!} = \left|\sum_{k=0}^n \binom{n}{k} \frac{z_n^k}{n^k} - \sum_{k=0}^{\infty} \frac{z^k}{k!}\right|$$

Sei $M \in \mathbb{N}$ und $M \leq n$

$$\leq |\underbrace{\sum_{k=0}^{M} \left(\binom{n}{k} \frac{z_n^k}{n^k} - \frac{z^k}{k!} \right)|}_{B_n} + \underbrace{\sum_{k\geq M+1}^{n} \binom{n}{k} \frac{|z_n|^k}{n^k}}_{C_n} + \underbrace{\sum_{k=M+1}^{\infty} \frac{|z|^k}{k!}}_{D}$$

$$\underbrace{\binom{n}{k} \frac{z_n^k}{n^k}}_{z_n^k} = \frac{n!}{(n-k)!k!} \frac{z_n^k}{n^k} = \underbrace{\frac{n(n-1)\cdots(n-k+1)}{nn\cdots n}}_{k \text{ mal}} \frac{z_n^k}{k!}$$

$$\lim_{n \to \infty} a_n^k = \lim_{n \to +\infty} 1\left(1 - \frac{1}{n}\right)\cdots\left(1 - \frac{k-1}{n}\right) \frac{z_n^k}{k!} = \frac{z^k}{k!}$$

$$\lim_{n \to +\infty} \sup_{n \to +\infty} A_n \le \limsup_{n \to +\infty} B_n + \limsup_{n \to +\infty} C_n + D$$

$$\underbrace{\lim_{n \to +\infty} \sup_{n \to +\infty} A_n}_{n \to +\infty} \le \lim_{n \to +\infty} \sup_{n \to +\infty} C_n + D$$
(20)

Abschätzung für C_n :

$$C_n = \sum_{k=M+1}^{n} \frac{|z_n|^k}{k!} 1\left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)$$

 $|z_n|$ konvergiert nach $|z| \implies \exists R \geq 0$ mit $|z_n| \leq R$

$$\leq \sum_{k=M+1}^n \frac{|z_n|^k}{k!} \leq \sum_{k=M+1}^\infty \frac{R^k}{k!}$$

$$\limsup_{n \to +\infty} A_n \le \sum_{k=M+1}^{\infty} \frac{R^k}{k!} + \sum_{k=M+1}^{\infty} \frac{|z|^k}{k!}$$
(21)

$$\lim_{n \to +\infty} \sup_{k=M+1} \frac{R^k}{k!} = 0 \tag{22}$$

$$(\text{weil } \limsup_{n \to +\infty} \sum_{k=0}^M \frac{R^k}{k!} = \sum_{k=0}^\infty \frac{R^k}{k!} \implies \lim_{M \to +\infty} \sum_{k=M+1}^\infty \frac{R^k}{k!}$$

$$\lim_{M \to +\infty} \left(\sum_{k=0}^{\infty} \frac{R^k}{k!} - \sum_{k=0}^{M} \frac{R^k}{k!} \right) = 0$$

$$2122 \implies \limsup_{n \to +\infty} A_n = 0$$

Bemerkung 7.12. Lemma + Bemerkung \implies Falls eine Funktion mit der Eigenschaft (AT) und (WT) existiert, dann gilt:

$$\operatorname{Exp}(z) = \lim_{n \to +\infty} \left(1 + \frac{z}{n} \right)^n = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Beweis 7.13. (Eindeutigkeit haben wir schon ↑.) Wir definieren

$$\operatorname{Exp}(z) = \sum_{k=0}^{\infty} \frac{z^k}{k=0} \left(= \lim_{n \to +\infty} \left(1 + \frac{z}{n} \right)^n \right)$$

$$(AT)$$
 gilt:

$$\operatorname{Exp}(z)\operatorname{Exp}(w) = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n \lim_{n \to \infty} \left(1 + \frac{w}{n}\right)^n$$
$$= \lim_{n \to \infty} \left(\left(1 + \frac{z}{n}\right)\left(1 + \frac{w}{n}\right)\right)^n = \lim_{n \to \infty} \left(1 + \frac{z+w}{n} + \frac{zw}{n^2}\right)^n$$

$$= \lim_{n \to \infty} \left(1 + \frac{\overline{\left(z + w + \frac{zw}{n}\right)}}{n} \right) \xrightarrow{Fundamentallemma} \lim_{n \to \infty} \left(1 + \frac{z + w}{n} \right)^n$$

$$= \operatorname{Exp}(z+w) \ da\alpha \to (z+w)$$

Sei

$$e = \operatorname{Exp}(1) \left(\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \sum_{k=0}^{\infty} \frac{1}{k!} \right)$$

$$\operatorname{Exp}(q+s) = \operatorname{Exp}(q)\operatorname{Exp}(s) \ \forall q, s \in \mathbb{Q}$$

(Zur Erinnerung: Falls $f: \mathbb{Q} \to \mathbb{R}$ erfüllt f(1) = a > 0 und f(q+s) = f(q)(s). Dann $f(q) = a^q \ \forall q \in \mathbb{Q}$.) Setze

$$f: \operatorname{Exp} \implies \operatorname{Exp} q = e^q \ \forall q \in \mathbb{Q}$$

(Später: $Exp(z) = e^z$)

Lemma 7.14. Sei $\sum a_n z^n$ eine Potenzreihe mit Konvergenzradius $R > (R = +\infty \text{ falls die Reihe überall konvergiert})$. Dann ist $f(z) = \sum a_n z^n$ eine stetige Funktion auf $\{|z| < R\}$ (\mathbb{C} falls $R = +\infty$).

Bemerkung 7.15. Lemma \implies Stetigkeit von Exp. Ausserdem:

$$\lim_{z \to 0} \frac{\operatorname{Exp} z - 1}{z} = 1$$

$$\frac{\operatorname{Exp}(z) - 1}{z} = \frac{1 + \sum_{k=1}^{\infty} \frac{z^k}{k!} - 1}{z} = \sum_{k=1}^{\infty} \frac{z^{k-1}}{k!} = G(z)$$

Die Reihe, die G definiert hat Konvergenzradius $+\infty$. Deswegen ist G stetig.

$$\implies \lim_{z \to 0} \frac{\operatorname{Exp}(z) - 1}{z} = \lim_{z \to 0} G(z) - G(0) = 1$$

Beweis 7.16. Zu beweisen: Sei z_0 mit $|z_0| < R$

Stetigkeit in
$$x_0 \iff \lim z \to z_0 f(z) = f(z_0)$$

$$\lim_{z \to z_0} \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{+} \infty_{n=0} a_n z_0^n$$

Finden sie $a_{k,n} \in \mathbb{R} \ \forall k \lim_{n \to \infty} a_{k,n} = a_n(k, n \in \mathbb{N}) \ aber \lim_{n \to \infty} \sum_{n=0}^{\infty} a_{k,n} \neq \sum_{k=0}^{\infty} a_k$. Sei $z_k \to z_0$.

$$\limsup_{k\to +\infty} |\widehat{\sum_{n=0}^{\infty} a_n z_k^n - \sum_{n=0}^{\infty} z_0^n}|$$

$$\leq \limsup_{k \to +\infty} |\sum_{n=0}^M a_n z_k^n - \sum_{n=0}^M a_n z_0^n| + \limsup_{k \to +\infty} \sum_{n=M}^\infty |a_n| |z_k^n| + \sum_{n=M}^\infty |a_n| |z_0|^n$$

Sei ρ mit $|z_0| < \rho < R$. Da $z_k \to z_0$: $|z_k| < \rho$, falls k gross genug ist.

$$\lim_{k \to +\infty} \sup A_k \le 0 + 2 \sum_{n=M+1}^{\infty} |a_n| \rho^n$$

$$\implies \lim_{k \to +\infty} \sup A_k \le 2 \lim \sup_{M \to +\infty} \underbrace{\sum_{n=M+1}^{\infty} |a_n| \rho^n}_{konvergiert} = 0$$

$$\implies \lim_{k \to \infty} (z_n) = \left(\sum_{n=0}^{\infty} z_k^n a_n\right) = f(z_0) \left(=\sum_{n=0}^{\infty} z_0^n a_n\right) \implies \lim_{z \to z_0} f(z) = f(z_0)$$

Bemerkung 7.17.

$$|\sum_{n=0}^{\infty} \xi_{n} - \sum_{n=0}^{\infty} \zeta_{n}|$$

$$= |\lim_{N \to \infty} \left(\sum_{n=0}^{N} \xi_{n} - \zeta_{n} \right)|$$

$$\leq \lim_{N \to \infty} \left\{ |\sum_{n=0}^{M} (\xi_{n} - \zeta_{n})| + |\sum_{n=M+1}^{N} (\xi_{n} - \zeta_{n})| \right\}$$

$$= |\sum_{n=0}^{M} (\xi_{n} - \zeta_{n})| + \lim_{N \to \infty} |\sum_{n=M+1}^{\infty} (\xi_{n} - \zeta_{n})|$$

$$\leq |\sum_{n=0}^{M} (\xi_{n} - \zeta_{n})| + \lim_{N \to \infty} \sum_{n=M+1}^{\infty} (|\xi_{n}| - |\zeta_{n}|)$$

$$= |\sum_{n=0}^{M} (\xi_{n} - \zeta_{n})| + \sum_{n=M+1}^{\infty} |\xi_{n}| - \sum_{n=M+1}^{\infty} |\zeta_{n}|$$

7.2 Eigenschaften

- f(z+w) = f(z)f(w)
- $\bullet \lim_{z \to 0} \frac{l^z 1}{z} = 1$

Satz 7.18. *1. positiv*

- 2. monoton steigend
- 3. bijektiv

Beweis 7.19. 1.

$$l^x = l^{\frac{x}{2} + \frac{x}{2}} = (e^{\frac{x}{2}})^2 > 0$$

2.

$$\frac{e^{x+h}}{e^x} = e^h = 1 + \frac{h}{11} + \dots > 1$$

3. $z.z.: \forall y \in \mathbb{R}^+$

$$\exists x : e^x = y$$

Falls $y \geq 1$

$$e^0 = 1 \le y \le e^y \stackrel{ZWS}{\Longrightarrow} \exists x : e^x = y$$

Falls 0 < y < 1, dann betrachte $\frac{1}{y} > 1$

$$\exists x : e^x = frac1y \implies e^{-x} = y$$

Satz 7.20. vom Wachstum

$$\lim_{x \to \infty} \frac{e^x}{x^n} = +\infty$$
$$\lim_{x \to -\infty} x^n e^x = 0$$

Beweis 7.21.

$$e^x > \frac{x^{n+1}}{(n+1)!} \Longrightarrow \frac{e^x}{x^n} > \frac{x}{(n+1)!} \to_{x \to \infty} \infty$$

$$x^n e^x = \frac{x^n}{e^{-x}} = (-1)^n \frac{(-x)^n}{e^{-x}} \to_{x \to \infty} \infty$$

7.3 Natürlicher Logarithmus

Definition 7.22. $\ln : \mathbb{R}^+ \to \mathbb{R}$ ist die Inverse der exponentiellen Funktion.

Satz 7.23.

$$\ln(xy) = \ln x + \ln y$$

Beweis 7.24.

$$e^{\ln(xy)} = xy = e^{\ln x}e^{\ln y} = e^{\ln x + \ln y}$$

 $\implies \ln(xy) = \ln x + \ln y$

Satz 7.25. vom Wachstum 2

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[n]{x}} = 0$$

Beweis 7.26.

$$\frac{\ln x}{\sqrt[n]{x}} = \frac{\ln e^{ny}}{sqrt[n]e^{ny}} = \frac{ny}{e^y}$$

$$\exists y : x = e^{ny}$$

$$\underbrace{y \to \infty}_{x \to \infty} \implies \frac{\ln x}{\sqrt[n]{x}} \to 0$$

Satz 7.27.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Beweis 7.28.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{y \to 0} \frac{\ln e^y}{e^y - 1} = \lim_{y \to 0} \frac{y}{e^y - 1} = 1$$

Bemerkung 7.29. $\ln : \mathbb{R}^+ \to \mathbb{R}$ ist stetig

Bemerkung 7.30. $y = \frac{m}{n} \in \mathbb{Q}, n \in \mathbb{N}, a > 0$

$$\sqrt[n]{a^n} = \frac{m}{n} = e^{y \ln a}$$

Warum?

$$f(2) = e^{2 \ln a}$$

$$f(0) = 1$$

$$f(2+r) = f(2)f(r)$$

$$f: \mathbb{Q} \to \mathbb{R}$$

$$\implies a^y = e^{y \ln a}$$

Definition 7.31. $a > 0, z \in \mathbb{C}$

$$a^z := e^{z \ln a}$$

Satz 7.32. 1.

$$a^{x+y} = a^x a^y \ (x, y \in \mathbb{C})$$

2.

$$(a^x)^y = a^{xy} \ (x, y \in \mathbb{R})$$

3.

$$(ab)^x = a^x b^x$$

Beweis 7.33. 1.

$$a^{x+y} = w^{(x+y)\ln a} = e^{x\ln a + y\ln a} = e^{x\ln a}e^{y\ln a} = a^x a^y$$

2. ähnlich

3. ↑

Satz 7.34. 1.

$$\lim_{x \to \infty} x^a = \begin{cases} \infty & a > 0\\ 1 & a = 0\\ 0 & a < 0 \end{cases}$$

2.

$$\lim_{x \to 0} x^a = \begin{cases} 0 & a > 0 \\ 1 & a = 0 \\ \infty & a < 0 \end{cases}$$

3.

$$\lim_{x \to \infty} x^a = \begin{cases} +\infty & a \ge 0\\ 0 & a < 0 \end{cases}$$

4.

$$x^a e^x = +\infty$$

5.

$$\lim_{x \to 0} \frac{a^x - 1}{x} \ln a$$

Beweis 7.35. 1.

$$Bild(x \mapsto x^a) = \mathbb{R}^+ \implies \lim_{x \to \infty} x^a = +\infty$$

a=0 trivial a>0

$$x^a = \frac{1}{r^{-a}} \to 0$$

(Wegen -a > 0 und $x^{-a} \to \infty$)

- 2. folgt aus 1 durch die Substitution $x\mapsto \frac{1}{x}$. 1 Falls $a>0,\ x^a$ monoton wachsend.
- 3. $a \ge 0$ offensichtlich, a < 0: $\exists n \in \mathbb{N}, \ a < -\frac{1}{n}, \ -a > \frac{1}{n}$

$$x^a \ln x = \frac{\ln x}{x^{-a}} < \frac{\ln x}{x^{\frac{1}{a}}} \stackrel{Satz}{\to} \stackrel{7.25}{\to} 0$$

4. a > 0 trivial, a < 0, $\exists n \in \mathbb{N}$ so dass a > -n (-a < n)

$$x^a e^x = \frac{e^x}{a^{-a}} > \frac{e^x}{x^n} \stackrel{Satz}{\longrightarrow} \stackrel{7.20}{\longrightarrow} \infty$$

5.
$$\lim_{x \to 0} \frac{a-1}{x} = \ln a$$

$$\frac{a^{x} - 1}{x} = \frac{e^{x \ln a} - 1}{x} = \underbrace{e^{x \ln a} - 1}_{x \ln a} \ln a \to_{x \to 0} \ln a$$

7.4 Euler

Definition 7.36.

$$\cos(\phi) := \cos(\phi - 2\pi n)$$

$$\sin(\phi) := \sin(\phi - 2\pi n)$$

Satz 7.37. Für ϕ klein genug gilt:

1.

$$|\sin \phi| \le |\phi| \le \frac{|\sin \phi|}{\cos \phi}$$

2.

$$1 - \cos \phi \le \phi^2$$

Beweis 7.38. 1. Ziemlich graphisch, plottet wer gerne? Bitte melden.

2.

$$1 - \cos \phi = \frac{(1 - \cos \phi)(1 + \cos \phi)}{1 + \cos \phi} = \frac{1 - (\cos \phi)^2}{1 + \cos \phi} \le \frac{\sin^2 \phi}{1} \le \phi^2$$

Korollar 7.39. 1.

$$\lim_{\phi \to 0} \frac{\sin \phi}{\phi} = 1$$

2.

$$\lim_{\phi \to 0} \frac{1 - \cos \phi}{\phi} = 0$$

3. $\sin und \cos sind stetig$.

Beweis 7.40. 1.

$$\frac{1}{\cos\phi} \le \frac{|\sin\phi|}{\phi} \le 1$$

2.

$$0 \le \frac{1 - \cos \phi}{|\phi|} \le |\phi|$$

3. Additionsregeln

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

Satz 7.41. von Euler

$$e^{x+iy} = e^x(\cos x + \sin y)$$

Beweis 7.42. Definiere $f(z) = e^x(\cos x + \sin y)$. f erfüllt (E1) und (E2)

E1 folgt aus den Additionsregeln

E2 2 Spezialfälle:

$$\begin{aligned} &-z = x \in \mathbb{R} \\ &\lim_{z \to 0} \frac{f(z) - 1}{z} = \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \\ &-z = iy \\ &\lim_{z \to 0} \frac{f(z) - 1}{z} = \lim_{y \to 0} \frac{\cos y + i \sin y - 1}{iy} \\ &= \frac{1}{i} \lim_{y \to 0} \frac{\cos y - 1}{y} + \frac{1}{i} \lim_{y \to 0} \frac{i \sin y}{y} = \frac{1}{i} 0 + \frac{1}{i} i = q \end{aligned}$$

Der allgemeine Fall wird im Übungsblatt behandelt.

Bemerkung 7.43. (Was hat Euler gemacht?) Wegen der Taylor'schen Reihen:

$$\cos y = \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k}}{(2k)!}$$

$$\sin y = \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k+1}}{(2k+1)!}$$

Wenn man die Formel

die Formel
$$e^{z} := \sum_{k=0}^{\infty} \frac{z^{k}}{k!}$$

$$e^{y} = \sum_{k=0}^{\infty} \frac{(iy)^{k}}{k!} = \underbrace{\sum_{k=0}^{\infty} (-1)^{k} \frac{y^{2k}}{(2k)!}}_{\cos y} + i \underbrace{\sum_{k=0}^{\infty} (-1)^{k} \frac{y^{2k+1}}{(2k+1)!}}_{\sin y}$$

$$\implies e^{iy} = \cos y + i \sin y$$

 $e^{i\pi}=-1\to {\rm die}$ berühmte Formel von Euler.