ЗАДАНИЕ на лабораторные работы №1

Тема: Построение и программная реализация алгоритма полиномиальной интерполяции табличных функций.

Цель работы. Получение навыков построения алгоритма интерполяции таблично заданных функций полиномами Ньютона и Эрмита.

Исходные данные.

1. Таблица функции и её производных

X	у	y ,
0.00	1.000000	1.000000
0.15	0.838771	-1.14944
0.30	0.655336	-1.29552
0.45	0.450447	-1.43497
0.60	0.225336	-1.56464
0.75	-0.018310	-1.68164
0.90	-0.278390	-1.78333
1.05	-0.552430	-1.86742

- 2. Степень аппроксимирующего полинома п.
- 3. Значение аргумента, для которого выполняется интерполяция.

Результаты работы.

- 1. Значения y(x) при степенях полиномов Ньютона и Эрмита n=1, 2, 3 и 4 при фиксированном x, например, x=0.525 (середина интервала 0.45-0.60). Результаты свести в таблицу для сравнения полиномов.
- 2. Найти корень заданной выше табличной функции с помощью обратной интерполяции, используя полином Ньютона.

Вопросы при защите лабораторной работы.

Ответы на вопросы дать письменно в Отчете о лабораторной работе.

- 1. Будет ли работать программа при степени полинома n=0?
- 2. Как практически оценить погрешность интерполяции? Почему сложно применить для этих целей теоретическую оценку?
- 3. Если в двух точках заданы значения функции и ее первых производных, то полином какой минимальной степени может быть построен на этих точках?
- 4. В каком месте алгоритма построения полинома существенна информация об упорядоченности аргумента функции (возрастает, убывает)?
- 5. Что такое выравнивающие переменные и как их применить для повышения точности интерполяции?

Методика оценки работы.

Модуль 1, срок - 6-я неделя.

- 1. Задание полностью выполнено 9 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на вопросы, и эти ответы не являются копией ответов в ранее сданных работах до 15 баллов (максимум).