

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 07-278717

(43)Date of publication of application : 24.10.1995

(51)Int.Cl. C22C 23/02
F16B 35/00

(21)Application number : 06-073348 (71)Applicant : UBE IND LTD
NISSAN MOTOR CO LTD

(22)Date of filing : 12.04.1994 (72)Inventor : MAKINO KUNIHIKO
KAWADA TOSHIRO
KANEMITSU KIYOUSUKE
WATANABE KOUJI
MATSUMAGA MASAHIRO
SAYASHI MAMORU

(54) MAGNESIUM ALLOY MEMBER EXCELLENT IN SETTLING RESISTANCE IN PRESSURIZED PART

(57)Abstract:

PURPOSE: To produce a member made of a magnesium alloy excellent in thermal settling resistance at a high temp. in the pressurized part such as a bolt fastened part even if casting methods at any cooling rate are adopted.

CONSTITUTION: This member made of a magnesium alloy excellent in thermal settling resistance at a high temp. in the pressurized part is the one having a compsn. contg., by weight, 1.5 to 10.0% Al, <2.5% RE and 0.2 to 5.5% Ca, furthermore contg., at need, one or two kinds of 0.2 to 2.5% Cu and Zn, and the balance Mg with impurities.

LEGAL STATUS

[Date of request for examination] 30.03.2001

[Date of sending the examiner's decision of rejection] 18.12.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's
decision of rejection]

[Date of requesting appeal against
examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

*** NOTICES ***

JPO and NCIPPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The member made from a Magnesium alloy excellent in the setting-proof nature in the application-of-pressure section characterized by consisting of the remainder Mg and an impurity aluminum:1.5-10.0% by weight % including less than [RE:2.5%] and calcium:0.2-5.5%.

[Claim 2] calcium: The member made from a Magnesium alloy excellent in the setting-proof nature in the application-of-pressure section according to claim 1 which is 0.25-5.5%.

[Claim 3] aluminum: The member made from a Magnesium alloy excellent in the setting-proof nature in the application-of-pressure section according to claim 1 which are 2.0-8.0%, RE:0.5-2.0%, and calcium:0.5-4.0%.

[Claim 4] The member made from a Magnesium alloy excellent in the tractive characteristics characterized by consisting of the remainder Mg and an impurity aluminum:1.5-10.0% by weight % including one sort in less than [RE:2.5%], calcium:0.2-5.5%, and Cu and Zn, or : [two sorts of] 0.2 - 2.5%, and the setting-proof nature in the application-of-pressure section.

[Claim 5] aluminum: The member made from a Magnesium alloy excellent in the tractive characteristics according to claim 4 which are 2.0-8.0%, RE:0.5-2.0%, and calcium:0.2-4.0%, and the setting-proof nature in the application-of-pressure section.

[Claim 6] The setting-proof nature in the application-of-pressure section is the member made from a Magnesium alloy excellent in the setting-proof nature in the application-of-pressure section according to claim 1 to 5 which is the heat-resistant setting nature in an elevated temperature.

[Claim 7] The member made from a Magnesium alloy the application-of-pressure section excelled [member] in the setting-proof nature in the application-of-pressure section according to claim 1 to 6 which is the bolt conclusion section.

[Translation done.]

*** NOTICES ***

JPO and NCIP are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]**[0001]**

[Industrial Application] This invention relates to the member made from a Magnesium alloy which should be excellent in the setting-proof nature, especially the heat-resistant setting nature in the bolt conclusion section in the components made from a Magnesium alloy which have, the application-of-pressure section, for example, the bolt conclusion section, especially used by hot environments, about the lightweight member made from a Magnesium alloy used as the components, for example, the components for automobiles, of the machine structure.

[0002]

[Description of the Prior Art] As a Magnesium alloy used for the raw material of the components for automobiles, conventionally For example, JIS H The alloy for magnesium castings (MC 1 - MC10) enacted by 5203, and JIS H Although there is an alloy for magnesium die casting (MD 1A, MD 1B), enacted by 5303 As a Magnesium alloy which was excellent in the material property under hot environments especially, there is AE42 material (U.S. Dow Chemical) which is a Mg-4%aluminum-2%RE (rare earth elements) system alloy.

[0003]

[Problem(s) to be Solved by the Invention] In however, the case of the components which used AE42 material which is such a Mg-4%aluminum-2%RE (rare earth elements) system alloy as a raw material When distribution of Ce compound considered to contribute at improvement in the setting-proof nature of the bolt conclusion section, especially heat-resistant setting nature in the case of the components which have especially the bolt conclusion section, and generation do not take the coagulation gestalt by quenching like die casting It was a technical problem for there to be a trouble that sufficient heat-resistant setting nature cannot be obtained, and to solve such a trouble.

[0004]

[Objects of the Invention] This invention is made in view of such a conventional technical problem. Also including the case where the coagulation gestalt by such quenching besides in the case of taking the coagulation gestalt by quenching like die casting is not taken, even if it is the casting approach of what kind of cooling rate It aims at offering the member made from a Magnesium alloy excellent in the heat-resistant setting nature in the application-of-pressure sections, such as setting-proof nature in the application-of-pressure sections, such as the bolt conclusion section, especially the hot bolt conclusion section. While excelling in the setting-proof nature in the application-of-pressure section depending on the case, it aims at offering the member made from a Magnesium alloy which can also raise the tractive characteristics in ordinary temperature further again.

[0005]

[Means for Solving the Problem] The member made from a Magnesium alloy excellent in the setting-proof nature in the application-of-pressure section concerning this invention By adding a minute amount or little calcium, while reducing the content of RE in a Mg-aluminum-RE system alloy Even if it is the casting approach of what kind of cooling rate, it enables it to raise the setting-proof nature in the application-of-pressure sections, such as the bolt conclusion section. By weight % aluminum: It is characterized by considering as the component presentation which consists of the remainder Mg and an impurity 1.5-10.0% including less than [RE(one sort or two sorts or more of rare earth elements):2.5%], and calcium:0.2-5.5%.

[0006] Similarly moreover, the member made from a Magnesium alloy excellent in the tractive characteristics concerning this invention, and the setting-proof nature in the application-of-pressure section Cu and Zn of a minute amount enable it to raise the tractive characteristics in ordinary temperature simultaneous adding or by carrying out independent addition to the above-mentioned member made from a Magnesium alloy. By weight % aluminum: It is characterized by considering as the component presentation which consists of the remainder Mg and an impurity 1.5-10.0% including one sort in less than [RE:2.5%], calcium:0.2-5.5%, and Cu and Zn, or : [two sorts of] 0.2 - 2.5%.

[0007] And in the embodiment of the member made from a Magnesium alloy by this invention, it is the heat-resistant setting nature near [the temperature of 100 degrees C to] 150 degree C, and setting-proof nature in the application-of-pressure section is characterized by excelling in such heat-resistant setting nature, and the application-of-pressure section is the bolt conclusion section, and it is characterized by excelling in the setting-proof nature, especially the heat-resistant setting nature in such the bolt conclusion section.

[0008] Next, the reason for definition of a component presentation (% of the weight) of the member made from a Magnesium alloy excellent in the setting-proof nature in the application-of-pressure section concerning this invention is explained.

[0009] aluminum:1.5 - 10.0% drawing 1 is what shows the result of having investigated the effect of aluminum content exerted on the tractive characteristics of the Magnesium alloy whose RE content is 0.9 - 1.2%. Moreover, drawing 2 The effect of aluminum content exerted on the heat-resistant setting nature in the bolt conclusion section in the elevated temperature (100 degrees C) of the Magnesium alloy whose RE contents are 0%, 1.0%, and 2.0% is set in the next example. As the result investigated by measuring an axial-tension decreasing rate in the way shown in adopted drawing 5 (A) and (B) is shown and it is shown in drawing 2 , although aluminum content serves as min, the heat setting (axial-tension decreasing rate) of the bolt conclusion section near 4.0% If tensile strength serves as max at about 6% and aluminum content becomes less than about 6% as shown in drawing 1 , tensile strength will fall, and it falls further at 4.0% or less, and becomes less practical at less than 1.5%.

[0010] And although tensile strength will show the inclination of an increment to about 6% and proof stress will also increase it to 10.0% if aluminum content is made to increase, tensile strength falls rather. Moreover, as for this inclination, RE content was checked in 2.5% or less of range. Therefore, since it is such, aluminum content is more preferably good to consider as 2.0 - 8.0% of range 1.5 to 10.0%.

[0011] RE(one sort or two sorts or more of sum totals chosen from among rare earth elements): It was checked that less than [2.5%] RE has the large effectiveness that the direction which makes [many] an addition improves the heat-resistant setting nature in the application-of-pressure sections, such as the bolt conclusion section in an elevated temperature. And when it is made to contain 2.0% or more, in order to make Ce compound considered to contribute to improvement in the heat-resistant setting nature in the application-of-pressure sections, such as the bolt conclusion section, distribute and generate, it is necessary to use the casting approach of taking the coagulation gestalt by quenching like die casting. Of course, in this invention, since it is possible, using die casting makes RE content 2.5% or less.

[0012] Therefore, as for RE content, being added at 2.0% or less is desirable, and it is the optimal. [about 1.0% of] Moreover, while the yield worsened at 2.0% or more, although cost became high eventually, after adding RE 2.0% or more, it has checked the effectiveness of improving the heat-resistant setting nature in the application-of-pressure sections, such as the bolt conclusion section in an elevated temperature, even if abundant addition of RE added a minute amount or little calcium further. It is good to make the content of RE into 0.5 - 2.0% of range more preferably 2.5% or less for such a reason.

[0013] calcium:0.2 - 5.5% drawing 3 is what shows the result of having investigated the effect of calcium content exerted on the tractive characteristics of the Magnesium alloy whose RE content is 0.9 - 1.2%. Moreover, drawing 4 The effect of calcium content exerted on the heat-resistant setting nature in the bolt conclusion section in the elevated temperature (100 degrees C) of the Magnesium alloy whose RE contents are 1.0% and 2.0% is set in the next example. Although the heat-resistant

setting nature of the bolt conclusion section in an elevated temperature is improved even if calcium is the case where little addition is carried out, as the result investigated by measuring an axial-tension decreasing rate in the way shown in adopted drawing 5 (A) and (B) is shown and it is shown in drawing 4, the property seldom improves at less than 0.2%. Since it will become that in which toughness (elongation) is inferior and will also come to generate a casting crack at the time of casting if it exceeds 5.5% as shown in drawing 3, it becomes and less practical, although the property which the heat-resistant setting nature of the bolt conclusion section in an elevated temperature improves further, and is most improved at 0.50 - 0.75% is shown, it exceeds 1% and the effectiveness is shown even about 6%, when calcium content is made to increase further. Moreover, as for this inclination, RE content was checked in 2.5% or less of range. Therefore, since it is such, it is good to make the content of calcium into 0.2 - 4.0% of range more preferably 0.2 to 5.5%.

[0014] In order to raise the tractive characteristics of the member made from a Magnesium alloy in ordinary temperature when [of Cu and the Zn / one sort or when Cu and Zn have few calcium contents : / two sorts of / 0.2 to 2.5%], it is the element which can be added suitably, when compound-adding or independent adding in 0.2 - 2.5% of range, the effectiveness is demonstrated, but since the effectiveness is lost in excess 2.5%, it is good to consider as 0.2 - 2.5% of range. Moreover, the same thing can say also from the heat-resistant setting nature assessment in the 150-degree C bolt conclusion section.

[0015] The member made from a Magnesium alloy which has the application-of-pressure sections, such as the bolt conclusion section which has such a component presentation, can be manufactured by the dissolution of the common components for the automobiles made from a Magnesium alloy, and the casting approach.

[0016] For example, the crucible made from steel which does not contain nickel component is used, and the gas for antioxidizing represented by the mixed gas of SF6 / CO2/Air can be used, and it can dissolve and cast.

[0017] Moreover, the member made from a Magnesium alloy which has the application-of-pressure sections, such as the bolt conclusion section concerning this invention, can adopt various kinds of casting approaches, for example, the sand-casting method, a metal-mold-casting method, pressure die casting, plaster mold casting, etc., and especially definition is not carried out.

[0018]

[Function of the Invention] The member made from a Magnesium alloy which has the application-of-pressure sections, such as the bolt conclusion section by this invention While consisting of a component presentation of Remainder Mg and an impurity and reducing RE content aluminum:1.5-10.0% by weight % including less than [RE:2.5%] and calcium:0.2-5.5% Since it is what adds a minute amount or little calcium, it is what Ce compound crystallized with the gestalt which followed the gap of a dendrite. This made the skid hard to generate in the case of deformation, and the heat-resistant setting nature in the application-of-pressure section has been improved in the setting-proof nature in the application-of-pressure section, especially an elevated temperature. Moreover, when the property in 100 degrees C - 150 degrees C is excellent, it cannot be overemphasized that it is the property of excelling also in the temperature exceeding 150 degrees C.

[0019] Moreover, the member made from a Magnesium alloy which similarly has the application-of-pressure sections, such as the bolt conclusion section by this invention In the member made from a Magnesium alloy concerning the above-mentioned invention, further, since one sort in Cu and Zn or two sorts are made to contain 0.2 to 2.5% in total While the heat-resistant setting nature in the application-of-pressure section is improved in the setting-proof nature in the application-of-pressure section, especially an elevated temperature, the tractive characteristics in ordinary temperature serve as a member made from a Magnesium alloy which has the application-of-pressure sections, such as the bolt conclusion section which improved further.

[0020] Moreover, RE (rare earth elements) which is an alloy element To enable it to reduce the addition, since it is expensive, without reducing the heat-resistant setting nature in the application-of-pressure section in the setting-proof nature in the application-of-pressure sections, such as the bolt conclusion section, especially an elevated temperature is desired. In this invention, even when RE content is reduced, it becomes the setting-proof nature in the application-of-pressure sections, such as the bolt conclusion section, especially the thing in which the heat-resistant setting nature in the

application-of-pressure section was excellent in the elevated temperature, and low cost-ization is also brought about by expensive addition reduction of RE.

[0021]

[Example] Hereafter, the example of the member made from a Magnesium alloy which was excellent in the setting-proof nature in the application-of-pressure section concerning this invention is shown.

[0022] Although it could manufacture by the dissolution of the common components for the automobiles made from a Magnesium alloy, and the casting approach, the crucible made from steel which does not contain nickel component was used for the member made from a Magnesium alloy which has the application of pressure sections, such as the bolt conclusion section concerning this invention, the gas for antioxidizing which uses the mixed gas of SF₆ / CO₂/Air as a principal component was used for it, and it dissolved and cast it in this example.

[0023] The analysis result of the alloy content of 38 kinds (examples 1-23, examples 1-15 of a comparison) of casts ingoted, cast and manufactured is shown in a table 1 thru/or a table 3.

Subsequently, the tensile test piece made from a Magnesium alloy and the member made from a Magnesium alloy for heat-resistant setting nature measurement are created from these castings, and it is JIS. Z 2201 and JIS Z The heat-resistant setting sex test by the point shown in the tensile test based on 2241, drawing 5 (A), and (B) was performed.

[0024] It changes into the condition of having put in order the member 1 made from a Magnesium alloy for heat-resistant setting nature measurement which makes the shape of a cylindrical shape as shown in drawing 5 (A), and the different-species member (product made from steel) 2 which similarly makes the shape of a cylindrical shape in this heat-resistant setting sex test. As washers 3 and 4 are applied to ends and it is indicated in drawing 5 (B) as the case where it binds tight with a bolt 5 and a nut 6 The shape of a cylindrical shape is made into nothing and the condition of having piled up the different-species member (product made from steel) 12 which formed female screw 12a in inner circumference, as well as the member 11 made from a Magnesium alloy for heat-resistant setting nature measurement which makes the shape of a cylindrical shape. About the case where applied the washer 13 to the member 11 made from a Magnesium alloy, and thrust the bolt 15 into female screw 12a, and it is bound tight The axial-tension decreasing rate at the time of bolting with bolts 5 and 15 estimated heat-resistant setting nature, and the 150-degree C trial was carried out with the retention temperature of 100 degrees C in this case for predetermined axial-tension 30MPa, and holding-time 200 hours. In addition, in this conclusion section, the electric corrosion prevention approach generally used can also be used.

[0025] thus -- a tensile test -- obtaining -- having had -- tensile strength -- proof stress -- elongation -- a table -- four -- or -- a table -- six -- " -- tensile strength -- " -- proof stress -- " -- elongation --] -- a column -- being shown -- a result -- it was . Moreover, it was the result of similarly showing the heat-resistant setting nature assessment (axial-tension decreasing rate) obtained by the heat-resistant setting sex test in a table 4 thru/or a table 6.

[0026]

[A table 1]

区分	化学成分(重量%)							備考
	Aℓ	Mn	RE	Ca	Cu	Zn	Mg	
実施例1	2.0	0.38	0.90	0.32	-	-	-	残部
実施例2	4.1	0.29	1.1	0.31	-	-	-	残部
実施例3	5.9	0.32	1.2	0.3	-	-	-	残部
実施例4	9.4	0.25	1.0	0.29	-	-	-	残部
実施例5	1.9	0.39	0.90	1.0	-	-	-	残部
実施例6	4.0	0.35	1.1	0.90	-	-	-	残部
実施例7	6.1	0.32	1.2	1.1	-	-	-	残部
実施例8	9.5	0.26	1.1	1.0	-	-	-	残部
実施例9	2.0	0.42	0.90	3.0	-	-	-	残部
実施例10	4.2	0.35	0.90	3.1	-	-	-	残部
実施例11	5.9	0.31	1.1	3.2	-	-	-	残部
実施例12	9.3	0.28	1.0	3.0	-	-	-	残部

[0027]

[A table 2]

区分	化学成分(重量%)							備考
	Aℓ	Mn	RE	Ca	Cu	Zn	Mg	
実施例13	1.9	0.36	0.90	5.0	-	-	-	残部
実施例14	4.0	0.38	1.1	4.9	-	-	-	残部
実施例15	5.8	0.29	1.2	5.1	-	-	-	残部
実施例16	9.6	0.27	1.0	5.0	-	-	-	残部
実施例17	4.0	0.34	1.1	0.2	0.5	-	-	残部
実施例18	4.0	0.34	1.1	0.5	-	2.0	-	残部
実施例19	4.1	0.32	1.2	0.2	0.5	0.5	-	残部
実施例20	3.9	0.34	2.3	0.25	-	-	-	残部
実施例21	4.0	0.35	2.40	1.1	-	-	-	残部
実施例22	4.1	0.32	2.5	3.1	-	-	-	残部
実施例23	4.0	0.33	2.3	5.1	-	-	-	残部

[0028]

[A table 3]

区分	化学成分(重量%)						備考	
	A l	M n	R E	C a	C u	Z n	M g	
比較例 1	2. 0	0. 39	—	—	—	—	—	残部
比較例 2	4. 1	0. 29	—	—	—	—	—	残部
比較例 3	9. 5	0. 25	—	—	—	—	—	残部
比較例 4	2. 1	0. 38	0. 49	—	—	—	—	残部
比較例 5	3. 9	0. 28	0. 51	—	—	—	—	残部
比較例 6	1. 9	0. 41	1. 1	—	—	—	—	残部
比較例 7	4. 1	0. 31	1. 2	—	—	—	—	残部
比較例 8	2. 0	0. 41	2. 1	—	—	—	—	残部
比較例 9	0. 5	0. 40	—	—	—	—	—	残部
比較例 10	1. 1	0. 42	—	—	—	—	—	残部
比較例 11	0. 4	0. 42	1. 0	0. 25	—	—	—	残部
比較例 12	0. 5	0. 42	1. 1	1. 1	—	—	—	残部
比較例 13	0. 5	0. 38	1. 00	3. 1	—	—	—	残部
比較例 14	0. 4	0. 39	1. 2	5. 1	—	—	—	残部
比較例 15	4. 0	0. 33	1. 9	—	—	—	—	残部 AE 42 合金

[0029]

[A table 4]

区分	引張り強さ (M P a)	耐力 (M P a)	伸び (%)	軸力低下率(%)	
				1 0 0 °C	1 5 0 °C
実施例 1	1 6 0	6 5	1 3 . 1	2 4	3 0
実施例 2	1 6 9	1 1 0	1 2 . 3	1 9	2 1
実施例 3	1 9 5	8 4	1 3 . 2	2 1	2 5
実施例 4	1 6 8	1 0 8	1 5 . 0	2 3	2 7
実施例 5	1 3 5	6 5	8 . 5	2 1	2 3
実施例 6	1 7 1	6 8	9 . 9	1 5	1 8
実施例 7	1 6 2	5 9	1 0 . 5	1 7	2 1
実施例 8	1 2 3	4 8	1 1 . 2	1 9	2 5
実施例 9	1 2 8	1 1 6	4 . 2	2 2	2 7
実施例 10	1 5 9	8 1	5 . 9	2 1	2 4
実施例 11	1 5 6	9 2	4 . 5	2 2	2 6
実施例 12	1 5 0	1 1 0	2 . 9	2 4	2 6

[0030]

[A table 5]

区分	引張り強さ (M P a)	耐力 (M P a)	伸び (%)	軸力低下率 (%)	
				1 0 0 ℃	1 5 0 ℃
実施例 1 3	1 3 5	1 1 1	3. 4	2 4	2 9
実施例 1 4	1 4 6	9 1	5. 2	2 3	2 7
実施例 1 5	1 2 9	9 2	4. 4	2 4	2 7
実施例 1 6	1 6 0	1 1 2	3. 0	2 4	2 5
実施例 1 7	1 9 0	7 6	1 1. 9	2 3	2 7
実施例 1 8	2 0 5	8 6	1 2. 9	2 2	2 5
実施例 1 9	1 9 5	7 8	1 1. 4	2 3	2 4
実施例 2 0	1 6 7	7 9	1 3. 7	2 3	2 4
実施例 2 1	1 6 9	8 5	1 4. 0	1 5	1 6
実施例 2 2	1 7 1	8 6	7. 5	2 1	2 3
実施例 2 3	1 7 1	8 6	4. 2	2 4	2 8

[0031]

[A table 6]

区分	引張り強さ (M P a)	耐力 (M P a)	伸び (%)	軸力低下率 (%)	
				1 0 0 ℃	1 5 0 ℃
比較例 1	7 5	3 8	9. 2	5 3	7 0
比較例 2	9 0	5 6	1 2. 3	4 5	5 7
比較例 3	1 1 5	7 2	1 0. 5	4 3	5 8
比較例 4	1 2 3	5 8	8. 5	4 6	6 0
比較例 5	1 4 3	8 5	1 1. 3	3 8	5 0
比較例 6	1 2 1	8 1	1 2. 0	3 7	4 5
比較例 7	1 2 5	9 2	1 1. 6	3 0	3 3
比較例 8	1 1 0	8 0	8. 5	3 3	4 0
比較例 9	8 3	4 1	1 8. 0	7 5	9 8
比較例 1 0	9 2	4 7	1 7. 2	6 2	9 0
比較例 1 1	1 1 0	1 0 5	1. 2	4 7	6 0
比較例 1 2	1 1 3	1 0 7	1. 1	4 1	5 0
比較例 1 3	1 2 4	1 1 1	< 1. 0	3 6	4 1
比較例 1 4	1 3 1	1 1 5	< 1. 0	3 2	3 5
比較例 1 5	1 6 5	7 5	1 4. 0	2 5	3 3

[0032] While mechanical properties, such as tensile strength, proof stress, and elongation, were good, by the member made from a Magnesium alloy of this invention example, it was admitted that the axial-tension decreasing rate was small and it had become the temperature of 100 degrees C and the thing excellent in the heat-resistant setting nature of the 150-degree C bolt conclusion section, so that more clearly than the result shown in a table 1 thru/or a table 6.

[0033] On the other hand, in the member made from a Magnesium alloy of the example of a comparison with which are not satisfied of this invention, while there was a thing inferior to mechanical properties, such as tensile strength, proof stress, and elongation, the axial-tension decreasing rate is what shows a large value, and was inferior to the heat-resistant setting nature of the

temperature of 100 degrees C, and the 150-degree C bolt conclusion section.

[0034]

[Effect of the Invention] The member made from a Magnesium alloy concerning this invention is weight %. aluminum:1.5-10.0%, Depending on the case, less than [RE:2.5%] and calcium:0.2-5.5% further Since it has the component presentation which consists of the remainder Mg and an impurity including one sort in Cu and Zn, or : [two sorts of] 0.2 - 2.5% Even if it is the case where the casting approaches used as what kind of cooling rate also including the case where the coagulation gestalt by such quenching besides in the case of taking the coagulation gestalt by quenching like die casting is not taken are adopted It is possible to have excelled in the heat-resistant setting nature in the application-of-pressure sections, such as setting-proof nature in the application-of-pressure sections, such as the bolt conclusion section, especially the hot bolt conclusion section. The effectiveness it is ineffective work size of becoming possible to maintain the good conclusion condition by conclusion means, such as a bolt, over a long period of time is brought about.

[Translation done.]

*** NOTICES ***

JPO and NCIPPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]**[Drawing 2]****[Drawing 3]**

[Drawing 4]

[Drawing 5]

[Translation done.]

Original document

MAGNESIUM ALLOY MEMBER EXCELLENT IN SETTLING RESISTANCE IN PRESSURIZED PART

Patent number: JP7278717
Publication date: 1995-10-24
Inventor: MAKINO KUNIHIKO; KAWADA TOSHIRO; KANEMITSU KIYOUSUKE;
WATANABE KOUJI; MATSUNAGA MASAHIRO; SAYASHI MAMORU
Applicant: UBE INDUSTRIES; NISSAN MOTOR
Classification:
- international: C22C23/02; F16B35/00; C22C23/00; F16B35/00; (IPC1-7): C22C23/02; F16B35/00
- european:
Application number: JP19940073348 19940412
Priority number(s): JP19940073348 19940412

[View INPADOC patent family](#)[Report a data error here](#)

Abstract of JP7278717

PURPOSE:To produce a member made of a magnesium alloy excellent in thermal settling resistance at a high temp. in the pressurized part such as a bolt fastened part even if casting methods at any cooling rate are adopted. CONSTITUTION:This member made of a magnesium alloy excellent in thermal settling resistance at a high temp. in the pressurized part is the one having a compsn. contg., by weight, 1.5 to 10.0% Al, <=2.5% RE and 0.2 to 5.5% Ca, furthermore contg., at need, one or two kinds of 0.2 to 2.5% Cu and Zn, and the balance Mg with impurities.

Data supplied from the *esp@cenet* database - Worldwide

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-278717

(43)公開日 平成7年(1995)10月24日

(51)Int.Cl.⁶

C 22 C 23/02

F 16 B 35/00

識別記号

庁内整理番号

F I

技術表示箇所

J

審査請求 未請求 請求項の数 7 O.L (全 9 頁)

(21)出願番号 特願平6-73348

(22)出願日 平成6年(1994)4月12日

(71)出願人 000000206

宇部興産株式会社

山口県宇部市西本町1丁目12番32号

(71)出願人 000003997

日産自動車株式会社

神奈川県横浜市神奈川区宝町2番地

(72)発明者 牧野邦彦

山口県宇部市西本町1丁目12番32号 宇部

興産株式会社宇部本社内

(72)発明者 河田俊郎

山口県宇部市西本町1丁目12番32号 宇部

興産株式会社宇部本社内

(74)代理人 弁理士 小塩豊

最終頁に続く

(54)【発明の名称】 加圧部での耐へたり性に優れたマグネシウム合金製部材

(57)【要約】 (修正有)

【目的】 どのような冷却速度の鋳造方法を採用したときでも、ボルト締結部等の加圧部での高温における耐熱へたり性に優れたマグネシウム合金製部材を提供する。

【構成】 重量%で、Al:1.5~10.0%, RE:2.5%以下、Ca:0.2~5.5%、場合によってはさらにCu, Znのうちの1種または2種:0.2~2.5%を含み、残部Mgおよび不純物よりなる加圧部での高温における耐熱へたり性に優れたマグネシウム合金製部材5, 6, 3, 4。

1

2

【特許請求の範囲】

【請求項1】 重量%で、Al:1.5~10.0%、RE:2.5%以下、Ca:0.2~5.5%を含み、残部Mgおよび不純物よりなることを特徴とする加圧部での耐へたり性に優れたマグネシウム合金製部材。

【請求項2】 Ca:0.25~5.5%である請求項1に記載の加圧部での耐へたり性に優れたマグネシウム合金製部材。

【請求項3】 Al:2.0~8.0%、RE:0.5~2.0%、Ca:0.5~4.0%である請求項1に記載の加圧部での耐へたり性に優れたマグネシウム合金製部材。

【請求項4】 重量%で、Al:1.5~10.0%、RE:2.5%以下、Ca:0.2~5.5%、およびCu、Znのうちの1種または2種:0.2~2.5%を含み、残部Mgおよび不純物よりなることを特徴とする引張り特性および加圧部での耐へたり性に優れたマグネシウム合金製部材。

【請求項5】 Al:2.0~8.0%、RE:0.5~2.0%、Ca:0.2~4.0%である請求項4に記載の引張り特性および加圧部での耐へたり性に優れたマグネシウム合金製部材。

【請求項6】 加圧部での耐へたり性は、高温での耐熱へたり性である請求項1ないし5のいずれかに記載の加圧部での耐へたり性に優れたマグネシウム合金製部材。

【請求項7】 加圧部が、ボルト締結部である請求項1ないし6のいずれかに記載の加圧部での耐へたり性に優れたマグネシウム合金製部材。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、機械構造物の部品、例えば、自動車用部品として利用される軽量なマグネシウム合金製部材に関し、特に、高温環境で使用される加圧部例えばボルト締結部を有するマグネシウム合金製部品においてそのボルト締結部における耐へたり性とくに耐熱へたり性に優れたものとすることができるマグネシウム合金製部材に関するものである。

【0002】

【従来の技術】 従来、自動車用部品の素材に使用されるマグネシウム合金としては、例えば、JIS H 5203に制定されるマグネシウム鋳物用合金(MC 1~MC 10)や、JIS H 5303に制定されるマグネシウムダイカスト用合金(MD 1A, MD 1B)等があるが、特に、高温環境下での材料特性に優れたマグネシウム合金としては、Mg-4%Al-2%RE(希土類元素)系合金であるAE42材(米国Dow Chemical社)がある。

【0003】

【発明が解決しようとする課題】 しかしながら、このようなMg-4%Al-2%RE(希土類元素)系合金で

10

20

30

40

50

あるAE42材を素材として使用した部品の場合、とくにボルト締結部を有する部品の場合に、ボルト締結部の耐へたり性、とくに耐熱へたり性の向上に寄与すると考えられるCe化合物の分散、生成が、ダイカストのような急冷による凝固形態をとらないときに、十分な耐熱へたり性を得ることができないという問題点があり、このような問題点を解決することが課題であった。

【0004】

【発明の目的】 本発明は、このような従来の課題にかんがみてなされたものであって、ダイカストのような急冷による凝固形態をとる場合のほか、このような急冷による凝固形態をとらない場合をも含めて、どのような冷却速度の鋳造方法であっても、ボルト締結部等の加圧部での耐へたり性、とくに高温におけるボルト締結部等の加圧部での耐熱へたり性に優れたマグネシウム合金製部材を提供することを目的としており、さらにまた、場合によっては、加圧部における耐へたり性に優れていると共に常温での引張り特性をも向上させることができるマグネシウム合金製部材を提供することを目的としている。

【0005】

【課題を解決するための手段】 本発明に係わる加圧部での耐へたり性に優れたマグネシウム合金製部材は、Mg-Al-RE系合金においてREの含有量を減らすと共に微量ないしは少量のCaを添加することにより、どのような冷却速度の鋳造方法であっても、ボルト締結部等の加圧部における耐へたり性を向上させることができるようになしたものであって、重量%で、Al:1.5~10.0%、RE(希土類元素の1種または2種以上):2.5%以下、Ca:0.2~5.5%を含み、残部Mgおよび不純物よりなる成分組成としたことを特徴としている。

【0006】 また、同じく、本発明に係わる引張り特性および加圧部での耐へたり性に優れたマグネシウム合金製部材は、上記マグネシウム合金製部材に微量のCuとZnを同時添加あるいは単独添加することにより、常温での引張り特性を向上させることができるようにしたものであって、重量%で、Al:1.5~10.0%、RE:2.5%以下、Ca:0.2~5.5%、およびCu、Znのうちの1種または2種:0.2~2.5%を含み、残部Mgおよび不純物よりなる成分組成としたことを特徴としている。

【0007】 そして、本発明によるマグネシウム合金製部材の実施態様において、加圧部での耐へたり性は、温度100°Cから150°C付近での耐熱へたり性であって、このような耐熱へたり性に優れたものであることを特徴としており、また、加圧部がボルト締結部であって、このようなボルト締結部での耐へたり性、とくに耐熱へたり性に優れたものであることを特徴としている。

【0008】 次に、本発明に係わる加圧部での耐へたり性に優れたマグネシウム合金製部材の成分組成(重量

%) の限定理由について説明する。

【0009】 A1 : 1. 5 ~ 10. 0 %

図1は、RE含有量が0. 9 ~ 1. 2 %であるマグネシウム合金の引張り特性に及ぼすA1含有量の影響を調べた結果を示すものであり、また、図2は、RE含有量が0 %, 1. 0 %, 2. 0 %であるマグネシウム合金の高温(100℃)でのボルト締結部における耐熱へたり性に及ぼすA1含有量の影響を後の実施例において採用した図5(A) (B)に示す要領で軸力低下率を測定することにより調べた結果を示すものであって、図2に示すように、A1含有量が4. 0 %付近でボルト締結部の熱へたり(軸力低下率)は最小となるが、図1に示すように、A1含有量が約6 %で引張り強さが最大となり、約6 %よりも少なくなると引張り強さが低下し、4. 0 %以下でさらに低下し、1. 5 %未満では実用的でなくなる。

【0010】 そして、A1含有量を増加させていくと、引張り強さは約6 %まで増加の傾向を示し、10. 0 %までは耐力も増加するが、引張り強さはむしろ低下していく。また、この傾向は、RE含有量が2. 5 %以下の範囲で確認された。したがって、このような理由から、A1含有量は1. 5 ~ 10. 0 %、より好ましくは2. 0 ~ 8. 0 %の範囲とするのが良い。

【0011】 RE(希土類元素のうちから選ばれる1種または2種以上の合計) : 2. 5 %以下

REには、添加量を多くする方が、高温でのボルト締結部等の加圧部における耐熱へたり性を改善する効果が大きいことが確認された。そして、2. 0 %以上含有させたときにボルト締結部等の加圧部における耐熱へたり性の向上に寄与すると考えられるCe化合物を分散、生成させるためには、ダイカストのような急冷による凝固形態をとる鋳造方法を用いる必要がある。もちろん、本発明ではダイカストを用いることは可能であるのでRE含有量を2. 5 %以下としている。

【0012】 したがって、RE含有量は2. 0 %以下で添加されることが好ましく、1. 0 %ぐらいが最適である。また、2. 0 %以上では歩留まりが悪くなるとともに、REの多量添加は最終的にコストは高くなるが、REを2. 0 %以上添加したうえで、さらに微量ないしは少量のCaを添加しても高温でのボルト締結部等の加圧部における耐熱へたり性を改善する効果が確認できた。このような理由により、REの含有量を2. 5 %以下、より好ましくは0. 5 ~ 2. 0 %の範囲とするのが良い。

【0013】 Ca : 0. 2 ~ 5. 5 %

図3は、RE含有量が0. 9 ~ 1. 2 %であるマグネシウム合金の引張り特性に及ぼすCa含有量の影響を調べた結果を示すものであり、また、図4は、RE含有量が1. 0 %, 2. 0 %であるマグネシウム合金の高温(100℃)でのボルト締結部における耐熱へたり性に及ぼすCa含有量の影響を後の実施例において採用した図5(A) (B)に示す要領で軸力低下率を測定することにより調べた結果を示すものであって、図4に示すように、Caは少量添加した場合であっても高温でのボルト締結部の耐熱へたり性を改善するが、0. 2 %未満ではその特性はあまり改善されない。そして、Ca含有量をさらに増加させていくと高温でのボルト締結部の耐熱へたり性はさらに改善され、0. 5 0 ~ 0. 7 5 %で最も改善される特性を示し、1 %を超えると韧性(伸び)が劣るものとなり、鋳造時には铸造割れも発生するようになるので実用的でなくなる。また、この傾向は、RE含有量が2. 5 %以下の範囲で確認された。したがって、このような理由から、Caの含有量を0. 2 ~ 5. 5 %、より好ましくは0. 2 ~ 4. 0 %の範囲とするのが良い。

【0014】 Cu, Znのうちの1種または2種 : 0. 2 ~ 2. 5 %

Cu, Znは、Ca含有量が少ない場合に、常温でのマグネシウム合金製部材の引張り特性を向上させるために適宜添加することができる元素であり、0. 2 ~ 2. 5 %の範囲で複合添加あるいは単独添加した場合にその効果を発揮するが、2. 5 %超ではその効果が失われる。また、150℃でのボルト締結部における耐熱へたり性評価からも同様なことがいえる。

【0015】 このような成分組成を有するボルト締結部等の加圧部を有するマグネシウム合金製部材は、一般的なマグネシウム合金製自動車用部品の溶解、鋳造方法によって製造することができる。

【0016】 例えば、Ni成分を含まないスチール製の坩堝を使用し、SF₆ / CO₂ / Arの混合ガスに代表される酸化防止用のガスを用いて溶解、鋳造することができる。

【0017】 また、本発明に係わるボルト締結部等の加圧部を有するマグネシウム合金製部材は、各種の鋳造方法、例えば、砂型鋳造法、金型鋳造法、ダイカスト法、石膏型鋳造法、等を採用することが可能であり、特に限定はされない。

【0018】

【発明の作用】 本発明によるボルト締結部等の加圧部を有するマグネシウム合金製部材は、重量%で、A1 : 1. 5 ~ 10. 0 %、RE : 2. 5 %以下、Ca : 0. 2 ~ 5. 5 %を含み、残部Mgおよび不純物の成分組成よりなっているものであり、RE含有量を減らすとともに、微量ないしは少量のCaを添加するものとなっているので、Ce化合物が樹枝状晶の間隙に連続した形態で晶出したものとなっていて、これが、変形の際にすべりを発生しにくくして加圧部での耐へたり性、とくに高温において加圧部での耐熱へたり性が改善されたものとな

る。また、100°C～150°Cでの特性が優れることにより、150°Cを超える温度でも優れる特性であることはいうまでもない。

【0019】また、同じく本発明によるボルト締結部等の加圧部を有するマグネシウム合金製部材は、上記発明に係わるマグネシウム合金製部材において、さらに、Cu, Znのうちの1種または2種を合計で0.2～2.5%含有させたものであるから、加圧部での耐へたり性、とくに高温において加圧部での耐熱へたり性が改善されると共に、常温での引張り特性がより一層向上したボルト締結部等の加圧部を有するマグネシウム合金製部材となる。

【0020】また、合金元素であるRE（希土類元素）は、高価であるため、ボルト締結部等の加圧部での耐へたり性、とくに高温において加圧部での耐熱へたり性を低下させることなく少しでもその添加量を減らすことができるようになるとが望まれており、本発明では、RE含有量を減らしたときでもボルト締結部等の加圧部での耐へたり性、とくに高温において加圧部での耐熱へたり性が優れたものとなり、高価なREの添加量減少によってコスト化もたらされる。

【0021】

【実施例】以下、本発明に係わる加圧部での耐へたり性の優れたマグネシウム合金製部材の実施例を示す。

【0022】本発明に係わるボルト締結部等の加圧部を有するマグネシウム合金製部材は、一般的なマグネシウム合金製自動車用部品の溶解、鋳造方法によって製造することができるが、この実施例では、Ni成分を含まないスチール製の坩堝を使用し、SF₆/CO₂/Arの混合ガスを主成分とする酸化防止用のガスを用いて溶解、鋳造した。

【0023】表1ないし表3には、溶製、鋳造して製造

した38種類（実施例1～23、比較例1～15）の鋳造品の合金成分の分析結果を示す。次いで、これらの鋳物よりマグネシウム合金製引張り試験片および耐熱へたり性測定用マグネシウム合金製部材を作成し、JIS Z 2201とJIS Z 2241に準拠した引張り試験と図5（A）（B）に示した要領による耐熱へたり性試験を行った。

【0024】この耐熱へたり性試験においては、図5（A）に示すように、円筒形状をなす耐熱へたり性測定用マグネシウム合金製部材1と同じく円筒形状をなす異種部材（スチール製）2とを並べた状態にし、両端にワッシャ3、4を当てて、ボルト5およびナット6で締め付けた場合と、図5（B）に示すように、円筒形状をなす耐熱へたり性測定用マグネシウム合金製部材11と同じく円筒形状をなしつつ内周にねじ12aを形成した異種部材（スチール製）12とを重ねた状態とし、マグネシウム合金製部材11にワッシャ13を当てて、ボルト15をねじ12aにねじ込んで締め付けた場合について、ボルト5、15による締め付け時の軸力低下率で耐熱へたり性を評価し、この場合、所定軸力30MPa、保持時間200時間、保持温度100°Cと150°Cの試験を実施した。なお、この締結部においては、一般的に用いられている電食防止方法を用いることも出来る。

【0025】このようにして、引張り試験より得られた引張り強さ、耐力、伸びは、表4ないし表6の「引張り強さ」、「耐力」、「伸び」の欄に示す結果であった。また、耐熱へたり性試験により得られた耐熱へたり性評価（軸力低下率）についても、同じく表4ないし表6に示す結果であった。

【0026】

【表1】

区分	化学成分（重量%）							備考
	Az	Mn	RE	Ca	Cu	Zn	Mg	
実施例1	2.0	0.38	0.90	0.32	-	-	残部	
実施例2	4.1	0.29	1.1	0.31	-	-	残部	
実施例3	5.9	0.32	1.2	0.3	-	-	残部	
実施例4	9.4	0.25	1.0	0.29	-	-	残部	
実施例5	1.9	0.39	0.90	1.0	-	-	残部	
実施例6	4.0	0.35	1.1	0.90	-	-	残部	
実施例7	6.1	0.32	1.2	1.1	-	-	残部	
実施例8	9.5	0.26	1.1	1.0	-	-	残部	
実施例9	2.0	0.42	0.90	3.0	-	-	残部	
実施例10	4.2	0.35	0.90	3.1	-	-	残部	
実施例11	5.9	0.31	1.1	3.2	-	-	残部	
実施例12	9.3	0.28	1.0	3.0	-	-	残部	

(5)

特開平7-278717

7

8

[0027]

* * [表2]

区分	化学成分(重量%)							備考
	A l	Mn	RE	Ca	Cu	Zn	Mg	
実施例13	1. 9	0. 36	0. 90	5. 0	-	-	-	残部
実施例14	4. 00	0. 38	1. 1	4. 9	-	-	-	残部
実施例15	5. 80	0. 29	1. 2	5. 1	-	-	-	残部
実施例16	9. 60	0. 27	1. 0	5. 0	-	-	-	残部
実施例17	4. 00	0. 34	1. 1	0. 2	0. 5	-	-	残部
実施例18	4. 00	0. 34	1. 1	0. 5	-	2. 0	-	残部
実施例19	4. 10	0. 32	1. 2	0. 2	0. 5	0. 5	-	残部
実施例20	3. 90	0. 34	2. 3	0. 25	-	-	-	残部
実施例21	4. 00	0. 35	2. 40	1. 1	-	-	-	残部
実施例22	4. 10	0. 32	2. 5	3. 1	-	-	-	残部
実施例23	4. 00	0. 33	2. 3	5. 1	-	-	-	残部

[0028]

* * [表3]

区分	化学成分(重量%)							備考
	A l	Mn	RE	Ca	Cu	Zn	Mg	
比較例1	2. 00	0. 39	-	-	-	-	-	残部
比較例2	4. 10	0. 29	-	-	-	-	-	残部
比較例3	9. 50	0. 25	-	-	-	-	-	残部
比較例4	2. 10	0. 38	0. 49	-	-	-	-	残部
比較例5	3. 90	0. 28	0. 51	-	-	-	-	残部
比較例6	1. 90	0. 41	1. 1	-	-	-	-	残部
比較例7	4. 10	0. 31	1. 2	-	-	-	-	残部
比較例8	2. 00	0. 41	2. 1	-	-	-	-	残部
比較例9	0. 50	0. 40	-	-	-	-	-	残部
比較例10	1. 10	0. 42	-	-	-	-	-	残部
比較例11	0. 40	0. 42	1. 0	0. 25	-	-	-	残部
比較例12	0. 50	0. 42	1. 1	1. 1	-	-	-	残部
比較例13	0. 50	0. 38	1. 00	3. 1	-	-	-	残部
比較例14	0. 40	0. 39	1. 2	5. 1	-	-	-	残部
比較例15	4. 00	0. 33	1. 9	-	-	-	-	残部 A E 4 2 合金

[0029]

40 [表4]

(6)

特開平7-278717

9

10

区分	引張り強さ (MPa)	耐力 (MPa)	伸び (%)	軸力低下率(%)	
				100°C	150°C
実施例1	160	65	13.1	24	30
実施例2	169	110	12.3	19	21
実施例3	195	84	13.2	21	25
実施例4	168	108	15.0	23	27
実施例5	135	65	8.5	21	23
実施例6	171	68	9.9	15	18
実施例7	162	59	10.5	17	21
実施例8	123	48	11.2	19	25
実施例9	128	116	4.2	22	27
実施例10	159	81	5.9	21	24
実施例11	156	92	4.5	22	26
実施例12	150	110	2.9	24	26

[0030]

* * [表5]

区分	引張り強さ (MPa)	耐力 (MPa)	伸び (%)	軸力低下率(%)	
				100°C	150°C
実施例13	135	111	3.4	24	29
実施例14	146	91	5.2	23	27
実施例15	129	92	4.4	24	27
実施例16	160	112	3.0	24	25
実施例17	190	76	11.9	23	27
実施例18	205	86	12.9	22	25
実施例19	195	78	11.4	23	24
実施例20	167	79	13.7	23	24
実施例21	169	85	14.0	15	16
実施例22	171	86	7.5	21	23
実施例23	171	86	4.2	24	28

[0031]

【表6】

11

12

区分	引張り強さ (MPa)	耐力 (MPa)	伸び (%)	軸力低下率(%)	
				100°C	150°C
比較例1	75	38	9.2	53	70
比較例2	90	56	12.3	45	57
比較例3	115	72	10.5	43	58
比較例4	123	58	8.5	46	60
比較例5	143	85	11.3	38	50
比較例6	121	81	12.0	37	45
比較例7	125	92	11.6	30	33
比較例8	110	80	8.5	33	40
比較例9	83	41	18.0	75	98
比較例10	92	47	17.2	62	90
比較例11	110	105	1.2	47	60
比較例12	113	107	1.1	41	50
比較例13	124	111	<1.0	36	41
比較例14	131	115	<1.0	32	35
比較例15	165	75	14.0	25	33

【0032】表1ないし表6に示した結果より明らかなように、本発明実施例のマグネシウム合金製部材では、引張り強さ、耐力、伸び等の機械的性質が良好であると共に、軸力低下率が小さいものとなっており、温度100°Cと150°Cでのボルト締結部の耐熱へたり性に優れたものとなっていることが認められた。

【0033】これに対して、本発明を満足しない比較例のマグネシウム合金製部材では、引張り強さ、耐力、伸びなどの機械的性質に劣ったものがあると共に、軸力低下率が大きい値を示すものとなっており、温度100°Cと150°Cでのボルト締結部の耐熱へたり性に劣るものとなっていた。

【0034】

【発明の効果】本発明に係わるマグネシウム合金製部材は、重量%で、Al:1.5~10.0%, RE:2.5%以下、Ca:0.2~5.5%の場合によってはさらに、Cu, Znのうちの1種または2種:0.2~2.5%を含み、残部Mgおよび不純物よりなる成分組成を有するものであるから、ダイカストのような急冷による凝固形態をとる場合のほか、このような急冷による凝固形態をとらない場合をも含めて、どのような冷却速度となる鋳造方法を採用した場合であっても、ボルト締

結部等の加圧部での耐へたり性、とくに高温におけるボルト締結部等の加圧部での耐熱へたり性に優れたものとすることが可能であり、ボルト等の締結手段による良好な締結状態を長期にわたって維持することが可能になるという著大なる効果がもたらされる。

【図面の簡単な説明】

【図1】RE含有量が0.9~1.2%であるマグネシウム合金の引張り特性に及ぼすAl含有量の影響を調べた結果を示すグラフである。

【図2】RE含有量が0%, 1.0%, 2.0%であるマグネシウム合金の高温(100°C)でのボルト締結部における耐熱へたり性(軸力低下率)に及ぼすAl含有量の影響を調べた結果を示すグラフである。

【図3】RE含有量が0.9~1.2%であるマグネシウム合金の引張り特性に及ぼすCa含有量の影響を調べた結果を示すグラフである。

【図4】RE含有量が1.0%, 2.0%であるマグネシウム合金の高温(100°C)でのボルト締結部における耐熱へたり性(軸力低下率)に及ぼすCa含有量の影響を調べた結果を示すグラフである。

【図5】本発明の実施例で採用したボルト締結部の構造を示す断面説明図である。

【図1】

【図2】

【図3】

【図4】

【図5】

フロントページの続き

(72)発明者 金 光 亨 輔
山口県宇部市西本町1丁目12番32号 宇部
興産株式会社宇部本社内
(72)発明者 渡 辺 浩 児
神奈川県横浜市神奈川区宝町2番地 日産
自動車株式会社内

(72)発明者 松 長 正 治
神奈川県横浜市神奈川区宝町2番地 日産
自動車株式会社内
(72)発明者 堀 師 守
神奈川県横浜市神奈川区宝町2番地 日産
自動車株式会社内