Lecture 4 Image Processing

Multimedia Systems Spring 2020

Digital Images

- 2D matrix of pixels.
 - A pixel (Picture Element) is the smallest unit of color in a digital image.
 - Number of pixels determines the resolution.
- Grey Scale Images:
 - A single value corresponding to a grey level.
 - 8 bits is usually used to represent a grey scale
- Color Images
 - Three values corresponding to some RGB levels
 - Red Green and Blue (RGB)
 - 24 bits to represent a color

Coordinates in an image

- Image representation
 - -> 2D function
- f(x,y)
 - $f(0,0): 1^{st} \text{ col. } 1^{st} \text{ row}$
 - f(1,0): 2nd col. 1st row
 - f(0,1): 1st col. 2nd row

Coordinates in an image

Point and Neighborhood

- 3x3
 neighborhood
 about a point
 (x,y) in an image
 point f(x,y)
- 8 neighborhood f(x-1,y-1), f(x,y-1), f(x+1,y-1), f(x-1,y), f(x+1,y), f(x-1,y+1), f(x,y+1), f(x+1,y+1)

Point Operation (Binarization)

- Point operation: p(x,y) = function(q(x,y))
- Threshold

•
$$p(x,y) = \begin{cases} 255 & \text{if } q(x,y) > \text{threshold} \\ 0 & \text{else} \end{cases}$$

Original

threshold

Point Operation

- Image inversion
 - p(x,y) = 255 q(x,y)

Original

Inverted

Point Operation

Histogram Stretching

$$p(x,y) = a_1 q(x,y)$$
 $0 < q(x,y) <= 100$

$$p(x,y) = a_2 q(x,y) + 100 100 < q(x,y) <= 200$$

•
$$p(x,y) = a_3 q(x,y)$$

200 < q(x,y) <= 255

Area operation: Image Convolution

Input Image

Output Image

Area operation: Image Convolution

Idea: new pixel values of the image are determined by considering the surrounding pixel values.

$$p(x,y)=q*h=\sum_{i=-\frac{m}{2}}^{\frac{m}{2}}\sum_{j=-\frac{m}{2}}^{\frac{m}{2}}h(j,i)q(x+j,y+i) \quad \text{correlation}$$

$$p(x,y)=q*h=\sum_{i=-\frac{m}{2}}^{\frac{m}{2}}\sum_{j=-\frac{m}{2}}^{\frac{m}{2}}h(j,i)q(x-j,y-i)\quad \text{convolution}$$

where h is the filter, * denotes convolution, m is the filter size, and m/2 is integer division

original

h

original

Pixel offset

Filtered (no change)

Slide credit: Bill Freeman

original

shift

original

100

shifted

original

Blurring

original

Blurred (filter applied in both dimensions).

Blur examples

2.4

Blur examples

Slide credit: Bill Freeman

Linear filtering (no change)

original

Filtered (no change)

original

(remember blurring)

original

Blurred (filter applied in both dimensions).

Sharpening

original

0.33

Sharpened original

Sharpening example

original

Sharpened
(differences are
accentuated; constant
areas are left untouched).

Sharpening

before after

Spatial filtering

Representation of a general 3x3 spatial filter mask

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Image Convolution

Average Smoothing:

•
$$A_{avg} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Gaussian Smoothing:

$$\bullet \ \mathsf{A}_{\mathsf{Gaus}} = \begin{array}{c} \frac{1}{106} \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 9 & 9 & 9 & 1 \\ 1 & 9 & 18 & 9 & 1 \\ 1 & 9 & 9 & 9 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{vmatrix}$$

Gaussian filter

- Smoothing (lowpass) filter
- The Gaussian smoothing operator is a 2-D convolution operator that is used to `blur' images and remove detail and noise
- 1D Gaussian example (sigma=1.0)

$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

2D Gaussian filter (sigm1=1.0)

Gaussian filter

Image Convolution Example

Average Smoothing with 3x3 filter:

$$p(x, y) = q * h = \sum_{i = -\frac{m}{2}}^{\frac{m}{2}} \sum_{j = -\frac{m}{2}}^{\frac{m}{2}} h(i, j) q(x - i, y - j)$$

Average Smoothing

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	
	·							

Image Convolution Example

Gaussian blur filter effect

Sharpening

mask
$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
 or $\begin{pmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{pmatrix}$ or $\begin{pmatrix} -k & -k & -k \\ -k & 8k+1 & -k \\ -k & -k & -k \end{pmatrix}$

Edge Detection

Derivative of a linear function f(x,y)

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right)$$

We could approximate this as

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

- In image, this can be
 - I(x+1,y) I(x,y) or I(x+1,y) I(x-1,y)

Simple Edge Detection

- Simple Edge Detection Idea:
 - ∂I/∂x
 Simply convolve Image with [1 0 -1]
 Resulting image: I_x
 - 2. ∂I/∂y
 Simply convolve Image with [1 0 -1]^T
 Resulting image: I_v
 - 3. Image Gradient (magnitude $\partial I/\partial x$ and $\partial I/\partial y$): $\nabla I(i,j) = \sqrt{[I_x(i,j)^2 + I_y(i,j)^2]}$

Input Image

0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

$\partial \mathbf{I}/\partial \mathbf{x}$

0	0	0	0	9	9	0	0	0	0	
0	0	0	0	9	9	0	0	0	0	
0	0	0	0	-9		0	0	0	0	
0	0	0	0	-9	-9	0	0	0	0	
0	0	0	0	-9	-9	0	0	0	0	
0	0	0	0	-9	-9	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

Input Image

0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	9	9	9	9	9	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

* 1

$\partial I/\partial x$

0	0	0	0	-9	-9	0	0	0	0	
0	0			٩	9	0		0		
0	0			ទា	<u></u>					
0	0	0	0	-9	-9	0	0	0	0	
				Ġ	ا ت					
0	0		0	-9	-9	0		0	0	
0	0	0	0	0	0	0	0	0	0	
0	0		0		0	0		0		
0	0	0	0	0	0	0	0	0	0	
0	0		0	0	0	0		0	0	

$\partial \mathbf{I}/\partial \mathbf{y}$

0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0		0		O	0	0		0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	9	9	9	9	9	S	
0	0	0	0	9	9	9	9	9	9	
0		0				0		0		
0	0	0	0	O	0	0	0	0		
0				0						

$$\sqrt{I_{x}(i,j)^{2}+I_{v}(i,j)^{2}}$$

Sobel Edge Detection

Sobel edge filter

$$\begin{bmatrix} \mathbf{h}_x \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \bullet \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{h}_y \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \bullet \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$p(x, y) = \sqrt{(q(x, y) * h_x(x, y))^2 + (q(x, y) * h_y(x, y))^2}$$

$$\theta = \arctan(\frac{q(x, y) * h_x(x, y)}{q(x, y) * h_y(x, y)})$$

- Let us take a look at the one-dimensional case:
- A change in brightness:

Its first derivative:

Its second derivative:

$$\nabla^{2} f = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}}$$

$$\frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial G_{x}}{\partial x} = \frac{\partial (f[i, j+1] - f[i, j])}{\partial x}$$

$$= \frac{\partial (f[i, j+1])}{\partial x} - \frac{\partial f[i, j]}{\partial x}$$

$$= (f[i, j+2] - f[i, j+1]) - (f[i, j+1] - f[i, j])$$

$$= f[i, j+2] - 2f[i, j+1] + f[i, j]$$

Since we want the computation centered at [i,j]:

$$\frac{\partial^2 f}{\partial x^2} = f[i, j+1] - 2f[i, j] + f[i, j-1]$$

$$\frac{\partial^2 f}{\partial y^2} = f[i+1, j] - 2f[i, j] + f[i-1, j]$$

- Obviously, each function can be computed using a 1, -2, 1 convolution on filter in x or y direction, respectively.
- Since ∇^2 is defined as the sum of these two functions, we can use a single 3×3 (or larger) convolution filter for its computation (next slide).

Continuous variant:

Discrete variants (applied after smoothing):

0	1	0		
1	-4	1		
0	1	0		

1	1	1
1	-8	1
1	1	1

Laplacian of Gaussian

- Bad idea to apply a Laplacian without smoothing
 - smooth with Gaussian, apply Laplacian
 - this is the same as filtering with a Laplacian of Gaussian (LOG) filter
 - Now mark the zero points where there is a sufficiently large derivative, and enough contrast

Laplacian of Gaussian

▶3×3 Laplacian

■5×5 Laplacian

•7×7 Laplacian

zero detection

zero detection

zero detection

Median filter

A Median Filter operates over a window by selecting the median intensity in the window.

I(x,y)	4	6	6	I'(x,y)	4	6	6
(6	14	8	median($I(x,y)$) = 6	6	6	8
	7	5	7	7	7	5	7

- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?
- Median filter is non linear

Median filter

- Useful in removing salt-and-pepper noise
- But, salt-andpepper noise is not common.
- Also useful in removing noise in a binary image

Template(Block) matching

Template Matching

- Filters can be regarded as templates
 - Applying a filter at some point can be seen as taking a dot-product between the image and some vector
 - Filtering the image is a set of dot products
 - It is a measure of the angle of two vectors (template (block) and image)

Template Matching by Cross-Correlation

The use of cross-correlation for template matching is motivated by the distance measure (squared Euclidean distance) between a template t(x,y) and image f(x,y)

$$d_{f,t}(x,y) = \sum_{i,j} [t(i,j) - f(x+j,y+i)]^2$$

The correlation response at each pixel (x,y) is

$$c(x,y) = f * t = \sum_{i=-\frac{m}{2}}^{\frac{m}{2}} \sum_{j=-\frac{m}{2}}^{\frac{m}{2}} t(j,i) f(x+j,y+i)$$

Normalize correlation

 By normalizing the image and feature vectors to unit length, yielding a cosine-like correlation coefficient

$$\gamma(x,y) = \frac{\sum\limits_{i,j} [(t(j,i) - \bar{t})(f(x+j,y+i) - \bar{f}_{x,y})]}{\{\sum\limits_{i,j} (t(j,i) - \bar{t})^2 \sum\limits_{i,j} (f(x+j,y+i) - \bar{f}_{x,y})^2\}^{0.5}}$$

$$-1 < \gamma(x,y) <= 1$$

- 1 or -1 : exact matching of image and feature
- 0: no correlation

Template matching: example(1)

Template

Original image

Absolute value of correlation (scale to $0 \sim 255$)

Template matching: example(2)

Template

Original image

Absolute value of correlation (scale to $0 \sim 255$)

Template matching: example(3)

Template

Data Set 3

Normalized correlation

Correspondence by block matching

Image blocks as a vector

Image blocks as a vector

Sum of squared distance

 w_L and w_R are corresponding m by m windows of pixels.

We define the window function:

$$W_m(x, y) = \{u, v \mid x - \frac{m}{2} \le u \le x + \frac{m}{2}, y - \frac{m}{2} \le v \le y + \frac{m}{2}\}$$

The SSD cost measures the intensity difference as a function of disparity:

$$C_r(x, y, d) = \sum_{(u,v) \in W_m(x,y)} [I_L(u,v) - I_R(u-d,v)]^2$$