Lezione 1 – Codifiche binarie di valori numerici

Architettura degli elaboratori

Modulo 1 – Fondamenti architetturali

Unità didattica 2 – Rappresentazione binaria delle informazioni

Nello Scarabottolo

Università degli Studi di Milano - Ssri - CDL ONLINE

Le informazioni da rappresentare

Vogliamo dare una rappresentazione binaria ai vari modi in cui si presentano le informazioni che ci troviamo a trattare:

- quantità espresse da NUMERI;
- descrizioni testuali espresse mediante
 CARATTERI (lettere dell'alfabeto, simboli di interpunzione, ecc.);
- immagini costituite da <u>MATRICI</u> <u>BIDIMENSIONALI DI PIXEL</u> ("mosaici" con un certo numero di "tessere": per es. 1280x1024);
- suoni costituiti da FORME D'ONDA che riproducono le variazioni di pressione dell'aria;
- filmati costituiti da SUONI e sequenze di IMMAGINI

Cominciamo dai numeri interi positivi

In primo luogo, cerchiamo una rappresentazione che ci consenta di riutilizzare le regole di calcolo cui siamo abituati:

- ci rifacciamo alla notazione decimale, inventata in India, perfezionata dagli arabi e introdotta in Europa da Fibonacci;
- si tratta di una <u>notazione posizionale</u> basata sulle 10 cifre decimali da 0 a 9;
- ogni cifra concorre al valore finale del numero con un peso dato dalla sua posizione nel numero: unità, decine, centinaia, migliaia, ... decimi, centesimi, millesimi, ...;
- il peso è una <u>potenza</u> del numero 10 (base della notazione).

Notazione posizionale pesata

Decimale

$$(1273)_{10} = 1 \times 10^3 + 2 \times 10^2 + 7 \times 10^1 + 3 \times 10^0$$

Binaria (due cifre: 0 e 1)

$$(10010110)_2 = 1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (150)_{10}$$

Esadecimale (10 cifre decimali e le lettere da A a F)

$$(\underline{A59F})_{16} = 10 \times 16^3 + 5 \times 16^2 + 9 \times 16^1 + 15 \times 16^0 =$$

= $(42399)_{10} =$
= $(1010\ 0101\ 1001\ 1111)_2 =$
= $(2399)_{10} =$

Quante cifre servono?

Decimale

• con *c* cifre rappresento tutti i numeri *n* tali che:

$$0 \le n \le 10^{c} - 1$$

• per rappresentare un numero *n* servono almeno:

$$c = \lceil \log_{10} n \rceil = \text{int.sup.}(\log_{10} n) \text{ cifre}$$

Binario

• con **(b)** bit rappresento tutti i numeri **n** tali che:

$$0 \le n \le 2^{n} - 1$$

• per rappresentare un numero $\underline{\boldsymbol{n}}$ servono almeno:

$$\boldsymbol{b} = \lceil \log_2 \boldsymbol{n} \rceil = \text{int.sup.}(\log_2 \boldsymbol{n}) \text{ bit}$$

I multipli binari

Una parentela fra le potenze delle due basi, che ha portato a un uso leggermente improprio dei nomi ...

Val.b	Nome	Simb.	Esp.b	Esp.d	Val.d
1.024	kilo	K	2 ¹⁰	10 ³	1.000
1.048.576	mega	М	2 ²⁰	10 ⁶	1.000.000
1.073.741.824	giga	G	2 ³⁰	10 ⁹	1.000.000.000
	tera	Т	2 ⁴⁰	10 ¹²	
	peta	Р	2 ⁵⁰	10 ¹⁵	
	exa	E	2 ⁶⁰	1018	

Le operazioni si fanno nel modo usuale

Somma

	001101012	53 ₁₀
+	101100012	177 ₁₀
rip.	0110001	
=	111001102	230 ₁₀

Sottrazione

	100100012	145 ₁₀
-	001100002	48 ₁₀
pr.	1100000	
=	011000012	97 ₁₀

Prodotto

					1	1	0	1	2	13 ₁₀
×					1	0	0	1	2	9 ₁₀
					1	1	0	1		
				0	0	0	0			
			0	0	0	0				
		1	1	0	1					
=	0	1	1	1	0	1	0	1	2	117 ₁₀

Conversione di base

Da binario a decimale, si	quoziente	resto
applica la <u>notazione</u> posizionale come visto	1017	
negli esempi precedenti.	508	1
-3 p p	254	0
Da decimale a binario, si	127	0
divide ripetutamente il	63	1
numero per 2 fino ad	31	1
arrivare a <u>quoziente nullo</u> , e	15	1
si prendono i resti a	7	1

 $(1017)_{10} = (11111111001)_2$

Tutto OK anche con i numeri frazionari

Decimale

$$(127,3)_{10} = 1 \times 10^2 + 2 \times 10^1 + 7 \times 10^0 + 3 \times 10^{-1}$$
Binaria

$$(10010,110)_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} = (18,75)_{10}$$

Per avere però

- buona precisione (capacità di rappresentare numeri piccoli, o che differiscono per piccoli valori);
- buona estensione (capacità di rappresentare numeri grandi)

serve un numero esagerato di bit ...

I numeri in virgola mobile

Il numero *n* viene rappresentato in <u>notazione</u> esponenziale:

$$n = m \times b^e$$

dove:

- m è la mantissa, costituita da un numero predefinito di cifre significative;
- **b** è la base (10 o 2);
- e è l'esponente (positivo o negativo)da dare alla base per definire il peso delle cifre della mantissa. Serve quindi a "muovere" la posizione della virgola rispetto alle cifre della mantissa, e consente di rappresentare valori molto piccoli e molto grandi

E se un numero è relativo ?

Nessun problema: il segno del numero relativo (+ o -) è un'informazione binaria ...

 basta associare un bit al <u>segno</u>, con la convenzione:

0 = numero positivo

1 = numero negativo

e usare gli altri bit per rappresentare il <u>modulo</u> del numero;

 con b bit (incluso il bit di segno) rappresentiamo tutti i numeri n tali che:

$$-(2^{b-1}-1) \le n \le 2^{b-1}-1$$

In sintesi...

La notazione posizionale pesata in base 2 ci consente di:

- rappresentare numeri interi e frazionari;
- utilizzare le regole dell'<u>aritmetica</u> per eseguire operazioni.

Se si vuole aumentare precisione ed estensione della rappresentazione senza richiedere numeri eccessivi di bit, si può ricorrere alla notazione in virgola mobile.

I numeri con segno possono essere rappresentati con la notazione in modulo e segno.

