

TFG del Grado en Ingeniería Informática

Presentado por Pablo Santidrián Tudanca en Universidad de Burgos — 14 de marzo de 2020

Tutor: José Francisco Díez Pastor y Álvar Arnaiz Gonzalez

D. nombre tutor, profesor del departamento de nombre departamento, área de nombre área.

Expone:

Que el alumno D. Nombre del alumno, con DNI 71362353T, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado título de TFG.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 14 de marzo de 2020

 V° . B° . del Tutor: V° . B° . del co-tutor:

D. José Francisco Díez Pastor D. Álvar Arnaiz Gonzalez

Resumen

En este primer apartado se hace una **breve** presentación del tema que se aborda en el proyecto.

Descriptores

Palabras separadas por comas que identifiquen el contenido del proyecto Ej: servidor web, buscador de vuelos, android ...

Abstract

A **brief** presentation of the topic addressed in the project.

Keywords

keywords separated by commas.

Índice general

Indice general	III
Índice de figuras	v
Índice de tablas	VI
Introducción	1
1.1. Estructura de la memoria	2
Objetivos del proyecto	3
Conceptos teóricos	5
3.1. Secciones	5
3.2. Referencias	5
3.3. Imágenes	6
3.4. Listas de items	6
3.5. Tablas	7
Técnicas y herramientas	9
4.1. Gestión del proyecto	9
4.2. Entorno de desarrollo:	10
4.3. Documentación	11
4.4. librerias	11
Aspectos relevantes del desarrollo del proyecto	13
Trabajos relacionados	15

IV	ÍNDICE GENERAL
Conclusiones y Líneas de trabajo futuras	17
Bibliografía	19

	_ _ _	figuras
indice	ne	HOHRAS
···aicc	ac	

3.1. Autómata para una expresión vacía	
--	--

Índice de tablas

3.1. Herramientas y tecnologías utilizadas en cada parte del proyecto

Introducción

El cambio climático está provocando que los fenómenos naturales extremos sean cada vez más habituales afectando a la poblaciones locales. Una de estas poblaciones locales son la medusas.

Las medusas tienen periodos de aparición estacionales y se alimentan de plancton por lo que su densidad en mayor en zonas donde este abunda. Estas zonas suelen ser lugares cercanos al talud continental donde además se reproducen [1]. Las medusas son organismos asexuales, un mismo individuo puede generar descendencia y esta se lleva a cabo mediante la fecundación de gametos que se convertirán en larvas, más adelante estas se adherirán a alguna superficie donde se transformarán en pólipos para finalmente se separará la medusa adulta.[2]

La aparición de medusas cerca de las costas, es un fenómeno que se da cada vez con mayor frecuencia. Estas floraciones tiene efectos perjudiciales en ámbitos como el turismo o la pesca, así como los daños que pueden provocar a la salud de las personas llegando en algunos casos a causar enfermedades graves [4, 6].

Alguno de los factores que están provocando el aumento de estos acercamientos son[1, 3]:

- En la **climatología** influye principalmente el cambio climático con el descenso del nivel de lluvias y el aumento de la temperatura, que favorece el aumento de la salinidad y de la temperatura del agua.
- La contaminación provocada por la modificación de las zonas costeras o los vertidos cercanos a los costas provocan la proliferación de bacterias o plancton que sirve de alimento para las medusas.

2 Introducción

■ La **sobrepesca** causa un descenso de depredadores así como de otras especies con las que las medusas compiten por el alimento.

Con este proyecto se pretende predecir el comportamiento de las poblaciones de medusas en las costas de Chile en función de datos meteorológicos y marítimos obtenidos mediante el programa europeo *Copernicus*. Estos datos se tratarán para eliminar la información que no es útil y delimitar la zona geográfica de estudio. A partir de ahí se entrenará a una serie de modelos para predecir el comportamiento de las medusas.

1.1. Estructura de la memoria

Objetivos del proyecto

Este apartado explica de forma precisa y concisa cuales son los objetivos que se persiguen con la realización del proyecto. Se puede distinguir entre los objetivos marcados por los requisitos del software a construir y los objetivos de carácter técnico que plantea a la hora de llevar a la práctica el proyecto.

Conceptos teóricos

En aquellos proyectos que necesiten para su comprensión y desarrollo de unos conceptos teóricos de una determinada materia o de un determinado dominio de conocimiento, debe existir un apartado que sintetice dichos conceptos.

Algunos conceptos teóricos de LATEX¹.

3.1. Secciones

Las secciones se incluyen con el comando section.

Subsecciones

Además de secciones tenemos subsecciones.

Subsubsecciones

Y subsecciones.

3.2. Referencias

Las referencias se incluyen en el texto usando cite [7]. Para citar webs, artículos o libros [5].

¹Créditos a los proyectos de Álvaro López Cantero: Configurador de Presupuestos y Roberto Izquierdo Amo: PLQuiz

3.3. Imágenes

Se pueden incluir imágenes con los comandos standard de LATEX, pero esta plantilla dispone de comandos propios como por ejemplo el siguiente:

Figura 3.1: Autómata para una expresión vacía

3.4. Listas de items

Existen tres posibilidades:

3.5. TABLAS 7

- primer item.
- segundo item.
- 1. primer item.
- 2. segundo item.

Primer item más información sobre el primer item.

Segundo item más información sobre el segundo item.

3.5. Tablas

Igualmente se pueden usar los comandos específicos de LATEXo bien usar alguno de los comandos de la plantilla.

Herramientas	App AngularJS	API REST	BD	Memoria
HTML5	X			
CSS3	X			
BOOTSTRAP	X			
JavaScript	X			
AngularJS	X			
Bower	X			
PHP		X		
Karma + Jasmine	X			
Slim framework		X		
Idiorm		X		
Composer		X		
JSON	X	X		
PhpStorm	X	X		
MySQL			X	
PhpMyAdmin			X	
Git + BitBucket	X	X	X	X
MikT _E X				X
TEXMaker				X
Astah				X
Balsamiq Mockups	X			
VersionOne	X	X	X	X

Tabla 3.1: Herramientas y tecnologías utilizadas en cada parte del proyecto

Técnicas y herramientas

Este apartado se plasman las diferentes técnicas metodológicas y herramientas de desarrollo que se han utilizado en la realización del proyecto así como las posibles alternativas que se han tenido en cuenta y el motivo de haberlas desechado.

4.1. Gestión del proyecto

Scrum

Scrum se trata de un marco de trabajo ágil destinado al manejo de proyectos de desarrollo *software*. Está destinado para equipos pequeños dividiendo el trabajo en objetivos que se van logrando de manera incremental a traces de iteraciones denominadas *sprints*. [8]

Git

Git se trata de un sistema de control de versiones gratuito y de codigo abierto para el manejo de proyecto. Se trata de un software de control de versiones de manera que se puede llevar un registro de cambios en los archivos y posibilita la coordinación de trabajos entre diferentes personas. []

GitHub

GitHub es un plataforma destinada a alojar proyecto basándose en el software de control de versiones Git. Esta plataforma utiliza un interfaz web desde la que se nos permite realizar control de código, documentación, gestión de tareas y otros muchas funcionalidades además de integración con otros servicios. GitHub es gratituito para proyectos *open source*. []

Alternativas:

Otras alternativas a GitHub fueron Gitlab y Bitbucket. Ambos servicios son bastante similares a GitHub en funcionalidades y basados en Git.

Bitbucket fué rechazado rápidamente por la falta de familiaridad en su uso ya que no lo había usado nunca, únicamente había visto repositorios en la web.

Gitlab es un entorno más conocido ya que es el software que he utilizado en las prácticas de empresa para el control de código dentro del equipo de trabajo del que formo parte.

Finalmente se decidió usar GitHub por haber sido utilizado en clase de gestión de proyectos por lo que se tenia un mayor conocimiento de su funcionamiento asi como por su integración con ZenHub del que se hablará a continuación.

ZenHub

ZenHub es un herramienta para gestión de proyectos que se integra con GitHub. Este complemento añade a GitHub un tablero canvas en el cual se representan las *issues*. Es posible estimar tareas, así como darlas prioridades y visualizar gráficos como el gráfico *burndown*. []

Alternativas:

Se plantearon otras alternativas como Trello o GitHub projects pero finalmente se elijió ZenHub por su facilidad de uso y el haber sido usado anteriormente, requisito que las otras alternativas no cumplían.

4.2. Entorno de desarrollo:

Python

Para el desarrollo de el código en python se ha utilizado el IDE Visual Studio Code. se estudiaron otra alternativas como PyCharm o Jupyter Notebook pero finalmente se eligió vs Code por la familiaridad con la misma y gran compatibiliad con diferentes lenguajes.

Vs Code es una aplicación totalmente gratuita basada en el framework Electron y posee gran cantidad de extensiones para facilitar la tarea a la hora de la programación como auto completado con IntelliSense. Además tiene integración con git para el control de versiones.

4.3. Documentación

LaTeX

LateX es un sistema de composición de texto plano destinado a la composición de textos con una calidad tipográfica alta. Incluye características diseñadas para la elaboración de documentación técnica y científica siendo un estándar en la publicación de documentos de investigación. Latex es totalmente gratuito.

Texmaker

Texmaker se trata de un editor de textos gratuito y multiplataforma, que ofrece diversas herramientas para elaborar documentación con LaTeX.

Zotero

La herramienta Zotero es un software gratuito para la gestión de referencias pudiendo recoger , organizar y citar creando referencias bibliográficas para cualquier editor. También cuenta con integración en le navegador. Una vez recopilados todas las citas, se puede exportar a un fichero BibTex para la utilizarse con LaTex.[]

4.4. librerias

Flask

Flask es un framework ligero para el desarrollo de aplicaciones web en Python bajo el modelo MVC. Está diseñado para desarrollar aplicaciones de manera rápida y sencilla y con capacidad de escalar a aplicaciones más complejas.

Xarray

Xarray se trata de un proyecto de código abierto desarrollado para Python que facilita el trabajo con matrices multidimensionales etiquetadas utilizando la librería NumPy. Consta de una gran variedad de funciones para el análisis y la visualización de estructuras de datos. Está inspirado en el funcionamiento de la librería pandas y diseñado para funcionar con archivos de tipo netCDF.

Pandas

Esta librería se trata de una extension de NumPy y está destinada a la manipulación y análisis de datos en lenguaje Python. Permite la trabajar con estructuras de datos y operaciones para su trasformación pudiendo estas ser tablas temporales o series numéricas.

FtpLib

Liberia destinada a la implementación de la parte del cliente en el protocolo FTP. Desarrollada para el lenguaje Python, nos permite automatizar accesos a servidores FTP.

tqdm

Pequeña librería utilizada para mostrar una barra de progreso a la hora de realizar la descarga de los datos del FTP.

Módulos sys y os

Módulos de sistema proporcionados por Python para utilizar funcionalidades del sistema operativo.

En el módulo .ºs"proporciona funcionalidades dependientes del sistema operativo. En especial las relacionadas con la estructura de directorios y ficheros pudiendo manipular la misma.

En cuanto a "sys" nos permite obtener variables y funcionalidades relacionadas con el interprete.

Aspectos relevantes del desarrollo del proyecto

Este apartado pretende recoger los aspectos más interesantes del desarrollo del proyecto, comentados por los autores del mismo. Debe incluir desde la exposición del ciclo de vida utilizado, hasta los detalles de mayor relevancia de las fases de análisis, diseño e implementación. Se busca que no sea una mera operación de copiar y pegar diagramas y extractos del código fuente, sino que realmente se justifiquen los caminos de solución que se han tomado, especialmente aquellos que no sean triviales. Puede ser el lugar más adecuado para documentar los aspectos más interesantes del diseño y de la implementación, con un mayor hincapié en aspectos tales como el tipo de arquitectura elegido, los índices de las tablas de la base de datos, normalización y desnormalización, distribución en ficheros3, reglas de negocio dentro de las bases de datos (EDVHV GH GDWRV DFWLYDV), aspectos de desarrollo relacionados con el WWW... Este apartado, debe convertirse en el resumen de la experiencia práctica del proyecto, y por sí mismo justifica que la memoria se convierta en un documento útil, fuente de referencia para los autores, los tutores y futuros alumnos.

Trabajos relacionados

Este apartado sería parecido a un estado del arte de una tesis o tesina. En un trabajo final grado no parece obligada su presencia, aunque se puede dejar a juicio del tutor el incluir un pequeño resumen comentado de los trabajos y proyectos ya realizados en el campo del proyecto en curso.

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.

Bibliografía

- [1] Las proliferaciones de medusas. Library Catalog: www.miteco.gob.es.
- [2] Reproducción de las medusas, sus etapas, pólipos y larvas plánulas., October 2016. Library Catalog: medusas.wiki Section: Información general.
- [3] Lisandro Benedetti-Cecchi, Antonio Canepa, Veronica Fuentes, Laura Tamburello, Jennifer E. Purcell, Stefano Piraino, Jason Roberts, Ferdinando Boero, and Patrick Halpin. Deterministic Factors Overwhelm Stochastic Environmental Fluctuations as Drivers of Jellyfish Outbreaks. *PLOS ONE*, 10(10):e0141060, October 2015. Publisher: Public Library of Science.
- [4] Lisa-ann Gershwin, Anthony J. Richardson, Kenneth D. Winkel, Peter J. Fenner, John Lippmann, Russell Hore, Griselda Avila-Soria, David Brewer, Rudy J. Kloser, Andy Steven, and Scott Condie. Biology and ecology of Irukandji jellyfish (Cnidaria: Cubozoa). *Adv. Mar. Biol.*, 66:1–85, 2013.
- [5] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.
- [6] James Tibballs, Ran Li, Heath A. Tibballs, Lisa-Ann Gershwin, and Ken D. Winkel. Australian carybdeid jellyfish causing "Irukandji syndrome". *Toxicon*, 59(6):617–625, May 2012.
- [7] Wikipedia. Latex wikipedia, la enciclopedia libre, 2015. [Internet; descargado 30-septiembre-2015].

20 BIBLIOGRAFÍA

[8] Wikipedia contributors. Scrum (software development) — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=943108748, 2020. [Online; accessed 10-March-2020].