一、是非判断(对的在括号内打"√",错的打"×")

- 1. 实际电压源外接负载, 当负载开路时, 该电压源内部有电流有功率损耗。 (×)
- 2. 在电感性负载两端并联一合适大小的电容,可以提高功率因数减小线路的损耗。(√)
- 3. 电流的正方向就是电流的实际方向。 (×)
- 4. 电压的极性(方向)是从高电位指向低电位。 (√)
- 5. 稳压二极管的稳压区是反向击穿区。 (√)
- 6. 晶体三极管和场效晶体管均为电流控制型器件。 (×)

二、单项选择

- 1. 右图所示电路中,输出功率的是
- A. 电压源
- B. 电流源
- C. 电压源和电流源
- D. 不能确定
- 2. 右图所示电路中, 电压U等于
- A. 2V
- B. 3V
- C. 4V
- D. 6V
- 3. 右图所示的电路中电压 u=
- A.2V B.6V
- C.3V D.4V
- 4. 右图所示电路中, a 点电位变化的范围
- A. $-4 \sim +2V$
- B. $-3 \sim +3 \text{V}$
- C. $-2 \sim +4V$
- D. $-1 \sim +5V$
- 5. 右图所示电路中, a 点电位等于

- **A**. -1V
- B. -4V
- C. +1V
- D. +5V

6.NPN 型双极晶体管处于放大工作状态时,各电极电位关系为

- $V_C > V_B > V_E$ $V_E > V_C > V_B$
- $V_C > V_E > V_B$ $V_E > V_B > V_C$
- 7. 小功率硅三极管工作在放大状态时,UBE 的电压约为
- A. 0.2V B. 0.3V
- C. 0.7V D. 1V

三、填空题(将答案填入空格内)

- 1. 任何一个完整的电路都必须有____、____和______三个基本部分组成。具有单一电 磁特性的电路元件称为______电路元件,由它们组成的电路称为____。(电源、负载、中 间环节、理想、电路模型)
- 2. 某晶体三极管三个电极的电位分别是: $V_{F}=2V$, $V_{S}=1.7V$, $V_{S}=-2.5V$, 可判断该三极管管脚"1" 为____极, 管脚 "2" 为____极, 管脚 "3" 为____极, 且属于____材料____型 三极管。 (E, B, C, 锗, PNP)
- 3. 左下图所示电路中,已知 E1=7V, E2=8V, E3=15V, R1= R2= R3=5 Ω,则: ____。(注明是吸收还是释放) U_{BA} = -5V , P_{E2} = -16W释放

4. 右上图所示电路中,二极管导通时 $U_D=0.7V$,则输出电压 $U_O=-2.3V$ 。

四、图示电路中,已知: $U_s=12V$, $I_{s1}=0.75A$, $I_{s2}=5A$, $R_1=8\Omega$, $R_2=6\Omega$, $R=6\Omega$, $R_1=9\Omega$ 。用电源等效变换法求电流 I。

I=0.75A

五、电路如图所示,二极管 D₁, D₂ 均为理想元件,求电压 u_{AO} 。判断二极管的工作状态为: D₁ _______, D₂ _______。(选填:导通,截止)

u_{AO}=0V D1 导通, D2 截止

