Motivation

This section is motivation and will not be rigorous. We have a 'Dirac delta function' such that for all 'nice' functions f

$$\int_{-\infty}^{\infty} \delta(x - x_0) f(x) dx = f(x_0).$$

Can we define $\delta'(x-x_0)$? Could try

$$\int_{-\infty}^{\infty} \delta'(x - x_0) f(x) dx = \lim_{h \to 0} \int_{-\infty}^{\infty} \left[\frac{\delta(x - x_0 + h) - \delta(x - x_0)}{h} \right] f(x)$$
$$= \lim_{h \to 0} \frac{1}{h} \left[f(x_0 - h) - f(x_0) \right]$$
$$= -f'(x_0).$$

i.e

$$\int_{-\infty}^{\infty} \delta'(x - x_0) f(x) dx = -\int_{-\infty}^{\infty} \delta(x - x_0) f'(x) dx$$

which looks like some form of integration-by-parts. We can make this rigorous using distribution theory.

Fourier transform of polynomials

If $f \in L^1(\mathbb{R})$ then

$$\hat{f}(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda x} f(x) dx.$$

How could we take the Fourier transform of something like $f(x) = x^n$? May recall identity

$$\delta(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\lambda x} \mathrm{d}x$$

and then get

$$\hat{f}(\lambda) = \int_{-\infty}^{\infty} x^n e^{-\lambda x} dx$$
$$= \left(i \frac{\partial}{\partial \lambda}\right)^n \int_{-\infty}^{\infty} e^{-i\lambda x} dx$$
$$= i^n 2\pi \delta^{(n)}(\lambda).$$

Recall Parseval's theorem: for suitable f, g

$$\int_{-\infty}^{\infty} \hat{g}(\lambda) f(\lambda) d\lambda = \int_{-\infty}^{\infty} g(x) \hat{f}(x) dx.$$

Could define the Fourier transform of g(x)=x to be the function $\lambda\mapsto \hat{x}(\lambda)$ such that

$$\int_{-\infty}^{\infty} \hat{x}(\lambda) f(\lambda) d\lambda = \int_{-\infty}^{\infty} x \hat{f}(x) dx$$

for all 'nice' functions f. We can make this rigorous using distributions.

Discontinuous solutions to PDEs

From linear acoustics, air pressure p = p(x, t) satisfies the wave equation

$$\frac{\partial^2 p}{\partial x^2} - \frac{\partial^2 p}{\partial t^2} = 0. \tag{*}$$

Could introduce a 'nice' f = f(x,t), say $f \in C_c^{\infty}(\mathbb{R}^2)$. Then (*) implies

$$\int \int (p_{xx} - p_{tt}) f(x, t) dx dt = 0.$$

So we can integrate by parts to interpret this as

$$\int \int (f_{xx} - f_{tt})p(x,t)dxdt = 0.$$

We say that p = p(x, t) is a weak solution to (*) if

$$\int \int (f_{xx} - f_{tt})p(x,t)dxdt = 0$$

for all $f \in C_c^{\infty}(\mathbb{R}^2)$. In each case, to extend a definition to a larger domain of applicability, we had to introduce a space of "nice" functions.

This is the theme of distribution theory: functions get replaced by linear maps on some auxilliary space of test functions V. A distribution is a linear map $u:V\to\mathbb{C}$, i.e we study the topological dual of V. Let $\langle\cdot,\cdot\rangle$ denote pairing between v and V^* , i.e for $u\in V^*$, $f,g\in V$, $\alpha,\beta\in\mathbb{C}$

$$\langle u, \alpha f + \beta g \rangle = \alpha \langle u, f \rangle + \beta \langle u, g \rangle.$$

The topological dual V^* consists of linear $u:V\to\mathbb{C}$ such that whenever $f_n\to f$ in V, we have $\langle u,f_n\rangle\to\langle u,f\rangle$ in \mathbb{C} . For example we could take $V=C^\infty(\mathbb{R})$ equipped with the topology of uniform convergence (i.e $f_n\to f$ in V if for all compact $K\subseteq\mathbb{R}$ and all $n\geq 0$, $\left|\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n(f_n-f)\right|\to 0$) then $\delta_{x_0}:V\to bbC$ defined by $\langle \delta_{x_0},f\rangle=f(x_0)$. Note that this is indeed continuous.

1 Distributions

1.1 Notation & Preliminaries

Throughout (unless otherwise specified) X, Y denote open subsets of \mathbb{R}^n , K a compact subset of \mathbb{R}^n . Integrals over X, \mathbb{R}^n are written as $\int_X [\cdot] dx$, $\int [\cdot] dx$ respectively.

1.2 Distributions & Test Functions

Definition. The space $\mathcal{D}(X)$ consists of smooth functions $\varphi: X \to \mathbb{C}$ of compact support. We say a sequence $(\varphi_m)_{m\geq 0}$ in $\mathcal{D}(X)$ converges to 0 in $\mathcal{D}(X)$ if there exists $K\subseteq X$ compact such that $\operatorname{supp}(\varphi_m)\subseteq K$ and $\operatorname{sup}_K|\partial^{\alpha}\varphi_m|\to 0$ for all multi-indices α .

Functions in $\mathcal{D}(X)$ have nice properties. For example, if $\varphi \in \mathcal{D}(X)$ then $\varphi = 0$ before you reach the boundary of X. This means integration-by-parts is easy since

$$\int_X \varphi \partial^\alpha \psi dx = (-1)^{|\alpha|} \int_X \psi \partial^\alpha \varphi dx.$$

Since $\varphi \in \mathcal{D}(X)$ is smooth we have

$$\varphi(x+h) = \sum_{|\alpha| \le N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x) + R_N(x,h)$$

where R_N is $o(|h|^N)$ uniformly in x.

Definition. A linear map $u: \mathcal{D}(X) \to \mathbb{C}$ is called a *distribution* if for all $K \subseteq X$ compact there exist $C, N \geq 0$ such that

$$|u(\varphi)| \le C \sum_{|\alpha| \le N} \sup_{K} |\partial^{\alpha} \varphi| \tag{*}$$

for all $\varphi \in \mathcal{D}(X)$ with $\operatorname{supp}(\varphi) \subseteq K$. The space of such linear maps is denoted by $\mathcal{D}'(X)$, i.e "distributions on X". If the same N can be used in (*) for all compact $K \subseteq X$, say the least such N is the order of u, written $\operatorname{ord}(u)$.

For $x_0 \in X$ define $\delta_{x_0}(\varphi) = \varphi(x_0)$ for $\varphi \in \mathcal{D}(X)$. Then $\delta_{x_0} : \mathcal{D}(X) \to \mathbb{C}$ is linear and

$$|\delta_{x_0}(\varphi)| = |\varphi(x_0)| \le \sup |\varphi|$$

so we can take C=1, N=0 in (*), so $\operatorname{ord}(\delta_{x_0})=0$.

For $\{f_{\alpha}\}$ in C(X), define $T: \mathcal{D}(X) \to \mathbb{C}$ by

$$T(\varphi) = \sum_{|\alpha| \le M} \int_X f_\alpha \partial^\alpha \varphi dx.$$

Take $\varphi \in \mathcal{D}(X)$ with supp $(\varphi) \subseteq K$. Then

$$|T(\varphi)| \le \sum_{|\alpha| \le M} \int_{K} |f_{\alpha}| |\partial^{\alpha} \varphi| dx$$

$$\le \left(\max_{\alpha} \int_{K} |f_{\alpha}| dx \right) \sum_{|\alpha| \le M} \sup |\partial^{\alpha} \varphi|$$

so (*) holds with $C = \max_{\alpha} \int_{K} |f_{\alpha}| dx$, N = M. Hence $T \in \mathcal{D}'(X)$.

Note this estimate would hold if the $\{f_{\alpha}\}$ were only assumed locally integrable, written $f_{\alpha} \in L^1_{loc}(X)$.

Remark. For $f \in L^1_{loc}$ we have a corresponding distribution $T_f : \mathcal{D}(X) \to \mathbb{C}$ defined by $T_f(\varphi) = \int_X f \varphi dx$. We often simply write $T_f = f$.

Lemma. A linear map $u : \mathcal{D}(X) \to \mathbb{C}$ is a distribution if and only if $u(\varphi_m) \to 0$ for all sequences $\varphi_m \to 0$ in $\mathcal{D}(X)$.

Proof. Suppose $u \in \mathcal{D}'(X)$ and $\varphi_m \to 0$ in $\mathcal{D}(X)$. Then $\operatorname{supp}(\varphi_m) \subseteq K$ for some K independent of m and there exist $C, N \geq 0$

$$|\varphi_m(u)| \le C \sum_{|\alpha| \le N} \sup_K |\partial^{\alpha} \varphi_m| \to 0$$

for all α .

Suppose not, i.e $u: \mathcal{D}(X) \to \mathbb{C}$ is linear and $u(\varphi_m) \to 0$ whenever $\varphi_m \to 0$ in $\mathcal{D}(X)$, but u is not a distribution. Then there is a compact set $K \subseteq X$ such that for all C, N, (*) fails on some φ with support contained in K. So there must be some $\varphi_m \in \mathcal{D}(X)$ with $\operatorname{supp}(\varphi_m) \subseteq K$ and

$$|u(\varphi_m)| > m \sum_{|\alpha| \le m} \sup_K |\partial^{\alpha} \varphi_m|.$$

Now replace φ_m with $\varphi_m' = \frac{\varphi_m}{u(\varphi_m)}$. So we may assume $u(\varphi_m) = 1$ WLOG. Hence

$$1 > m \sum_{|\alpha| < m} \sup_{K} |\partial^{\alpha} \varphi_{m}|.$$

Therefore $\sup_K |\partial^{\alpha} \varphi_m| < \frac{1}{m}$ for all $|\alpha| \leq m$. Hence $\varphi_m \to 0$ in $\mathcal{D}(X)$, giving a contradiction since $u(\varphi_m) \not\to 0$.

1.3 Limits in $\mathcal{D}'(X)$

We often have some sequence (u_m) in $\mathcal{D}'(X)$. If there is some $u \in \mathcal{D}'(X)$ such that $\varphi(u_m) \to \varphi(u)$ for all φ we say $u_m \to u$ in $\mathcal{D}'(X)$.

Theorem (*Non-examinable*). If (u_m) is a sequence in $\mathcal{D}'(X)$ and $u(\varphi) = \lim_{m \to \infty} u(\varphi_m)$ exists for all $\varphi \in \mathcal{D}(X)$, then $u \in \mathcal{D}'(X)$.

Proof. Not given.
$$\Box$$

Take $u_m \in \mathcal{D}'(\mathbb{R})$ defined by $u_m(\varphi) = \int \sin(mx)\varphi(x) dx$. By integration-by-parts we have

$$|\varphi(u_m)| = \left|\frac{1}{m} \int \cos(mx)\varphi'(x) dx\right| \to 0.$$

i.e $\sin(mx) \to 0$ in $\mathcal{D}'(\mathbb{R})$.

1.4 Basic Operations

1.4.1 Differentiation & Multiplication by Smooth Functions

For $u \in C^{\infty}(X) \subseteq L^1_{loc}(X)$, $\partial^{\alpha} u \in D'(X)$ by

$$\langle \partial^{\alpha} u, \phi \rangle = \int_{X} \phi \partial^{\alpha} u dx$$
$$= (-1)^{|\alpha|} \int_{X} u \partial^{\alpha} \phi dx$$
$$= (-1)^{|\alpha|} \langle u, \partial^{\alpha} \phi \rangle.$$

This leads to

Definition. For $u \in D'(X)$, $f \in C^{\infty}(X)$ define

$$\langle \partial^{\alpha}(fu), \phi \rangle := (-1)^{\alpha} \langle u, f \partial^{\alpha} \phi \rangle$$

for $\phi \in \mathcal{D}(X)$ [note $\partial^{\alpha}(fu) \in \mathcal{D}'(X)$]. We call $\partial^{\alpha}u$ the distributional derivatives of u.

For δ_x we have

$$\langle \partial^{\alpha} \delta_{x}, \phi \rangle = (-1)^{|\alpha|} \langle \delta_{x}, \partial^{\alpha} \phi \rangle$$
$$= (-1)^{|\alpha|} \partial^{\alpha} \phi(x).$$

Define the *Heaviside function*

$$H(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}.$$

Then $H \in L^1_{loc}(\mathbb{R})$ so

$$\langle H', \phi \rangle = -\langle H, \phi' \rangle = -\int_0^\infty \phi'(x) dx = \phi(0) = \langle \delta_0, \phi \rangle.$$

Hence $H' = \delta_0$. Generally we say u = v in $\mathcal{D}'(X)$ if $\langle u, \cdot \rangle = \langle v, \cdot \rangle$.

Lemma. If $u \in \mathcal{D}'(\mathbb{R})$ and u' = 0 in $\mathcal{D}'(\mathbb{R})$ then u is constant.

Proof. Fix $\theta \in \mathcal{D}(\mathbb{R})$ with $\langle 1, \theta \rangle = \int_{\mathbb{R}} \theta dx = 1$. For $\phi \in \mathcal{D}(\mathbb{R})$ write

$$\phi = \underbrace{(\phi - \langle 1, \phi \rangle \theta)}_{:=\phi_A} + \underbrace{\langle 1, \phi \rangle \theta}_{:=\phi_B}.$$

Note that $\langle 1, \phi_A \rangle = \int_{\mathbb{R}} \phi_A dx = 0$ so we have

$$\Phi_A(x) := \int_{-\infty}^x \phi_A(t) dt$$

defines $\Phi_A \in \mathcal{D}(\mathbb{R})$ with $\Phi'_A = \phi_A$. So

$$\langle u, \phi \rangle = \langle u, \phi_A \rangle + \langle u, \phi_B \rangle$$

$$= \langle u, \Phi'_A \rangle + \langle 1, \phi \rangle \langle u, \theta \rangle$$

$$= \underbrace{-\langle u', \phi_A \rangle + \langle 1, \phi \rangle}_{=0} + \underbrace{\langle 1, \phi \rangle \langle u, \theta \rangle}_{:=c \text{ constant}}$$

so u is constant in $\mathcal{D}'(\mathbb{R})$.

1.4.2 Translation & Reflection

If $\phi \in \mathcal{D}(\mathbb{R}^n)$ and $h \in \mathbb{R}^n$ define reflection and translation by

$$\dot{\phi}(x) = \phi(-x), \ (\tau_h \phi)(x) = \phi(x - h).$$

Definition. For $u \in \mathcal{D}'(\mathbb{R}^n)$ and $h \in \mathbb{R}^n$ we define

$$\langle \check{u}, \phi \rangle = u, \check{\phi}$$
 (reflection)

and

$$\langle \tau_h u, \phi \rangle = \langle u, \tau_{-h} \phi \rangle$$
 (translation)

for $\phi \in \mathcal{D}(\mathbb{R}^n)$.

Lemma. For $u \in \mathcal{D}'(\mathbb{R}^n)$ define

$$v_h = \frac{\tau_{-h}u - u}{h}.$$

 $fIf \frac{h}{|h|} \to m \in \mathbb{S}^{n-1} \text{ as } |h| \to 0 \text{ then } v_h \to m \cdot \partial u \text{ in } \mathcal{D}'(\mathbb{R}^n).$

Proof. For $\phi \in \mathcal{D}(\mathbb{R}^n)$ we have

$$\langle v_h, \phi \rangle = \langle u, \frac{\tau_h \phi - \phi}{h} \rangle.$$

By Taylor's theorem

$$(\tau_h \phi - \phi)(x) = \phi(x - h) - \phi(x) = -\sum_i h_i \frac{\partial \phi}{\partial x_i}(x) + R_1(x, h)$$

where $R_1 = o(|h|)$ in $\mathcal{D}(\mathbb{R}^n)$ [see Example Sheet 1] so by sequential continuity

$$\langle v_h, \phi \rangle = -\sum_i \frac{h_i}{|h|} \langle u, \frac{\partial \phi}{\partial x_i} \rangle + o(1)$$
$$= \langle \sum_i \frac{h_i}{|h|} \frac{\partial u}{\partial x_i}, \phi \rangle + o(1)$$
$$\to \langle m \cdot \partial u, \phi \rangle \text{ as } |h| \to 0.$$

1.4.3 Convolution in $\mathcal{D}(\mathbb{R}^n)$ and $\mathcal{D}'(\mathbb{R}^n)$

For $\phi \in \mathcal{D}(\mathbb{R}^n)$ we have

$$(\tau_x \check{\phi})(y) = \check{\phi}(y - x) = \phi(x - y).$$

If $u \in C^{\infty}(\mathbb{R}^n)$ define convolution with $\phi \in \mathcal{D}(\mathbb{R}^n)$

$$u * \phi(x) = \int_{\mathbb{R}^n} u(x - y)\phi(y)dy$$
$$= \int_{\mathbb{R}^n} \phi(x - y)u(y)dy$$
$$= \langle u, \tau_x \check{\phi} \rangle.$$

Definition. For $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in \mathcal{D}(\mathbb{R}^n)$ define

$$(u * \phi)(x) = \langle u, \tau_x \check{\phi} \rangle.$$

How regular is $u * \phi$?

Lemma. For $\phi \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ write $\Phi_x(y) = \phi(x,y)$. If for each $x \in \mathbb{R}^n$ there exists a neighbourhood $N_x \subseteq \mathbb{R}^n$ of x and compact set $K \subseteq \mathbb{R}^n$ such that

$$\operatorname{supp}(\phi|_{N_x \times \mathbb{R}^n}) \subseteq N_x \times K$$

then $\partial_x^{\alpha}\langle u, \Phi_x \rangle = \langle u, \partial_x^{\alpha} \Phi \rangle$ for $u \in \mathcal{D}'(\mathbb{R}^n)$.

Proof. By Taylor's theorem

$$\Phi_{x+h}(y) - \Phi_x(y) = \sum_i h_i \frac{\partial \phi}{\partial x_i}(x, y) + R_1(x, y, h).$$

For |h| sufficiently small we have $x + h \in N_x$ so $\operatorname{supp}(R_1(x,\cdot,h)) \subseteq K$ and also

$$sup_y|\partial_y^{\alpha}R(x,y,h)| = o(|h|)$$

so $R_1(x,\cdot,h) = o(|h|)$ in $\mathcal{D}(\mathbb{R}^n)$. By sequential continuity

$$\langle u, \Phi_{x+h} \rangle - \langle u, \Phi_x \rangle = \sum_i h_i \langle u, \frac{\partial}{\partial x_i} \Phi_x \rangle + o(|h|)$$

and so $\frac{\partial}{\partial x_i}\langle u, \Phi_x \rangle = \langle u, \frac{\partial}{\partial x_i} \Phi_x \rangle$ and the result follows by induction.

Corollary. If $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in \mathcal{D}(\mathbb{R}^n)$ then $u * \phi \in C^{\infty}(\mathbb{R}^n)$ and

$$\partial^{\alpha}(u * \phi) = u * \partial^{\alpha}\phi.$$

Proof. Have $(u * \phi)(x) = \langle u, \tau_x \check{\phi} \rangle$ so take $\Phi_x = \tau_x \check{\phi}$ in previous lemma.

1.5 Density of $\mathcal{D}(\mathbb{R}^n)$ in $\mathcal{D}'(\mathbb{R}^n)$

Can use previous result to prove an important theorem. First we need

Lemma. If $u \in \mathcal{D}'(\mathbb{R}^n)$, $\phi, \psi \in \mathcal{D}(\mathbb{R}^n)$ then

$$(u * \phi) * \psi = u * (\phi * \psi).$$

Proof. Fix $x \in \mathbb{R}^n$. Then

$$(u * \phi) * \psi(x) = \int_{\mathbb{R}^n} (u * \phi)(x - y)\psi(y) dy$$

$$= \int_{\mathbb{R}^n} \langle u, \tau_{x - y} \check{\phi} \rangle \psi(y) dy$$

$$= \lim_{h \to 0} \sum_{m \in \mathbb{Z}^n} \langle u, \tau_{x - hm} \check{\phi} \psi(hm) \rangle h^n \qquad \text{(Riemann sum)}$$

$$= \lim_{h \to 0} \langle u, \sum_{m \in \mathbb{Z}_n} \tau_{x - hm} \check{\phi} \psi(hm) h^n \rangle \qquad \text{(Finite sum)}$$

$$= \langle u, \lim_{h \to 0} \sum_{m \in \mathbb{Z}_n} \tau_{x - hm} \check{\phi} \psi(hm) h^n \rangle$$

$$= \langle u, \tau_x \phi \check{*} \psi \rangle$$

$$= u * (\phi * \psi).$$

Non-examinable

We can justify the exchange of the limit and the $\langle u, \cdot \rangle$ by defining for $|h| \leq 1$ the family of functions $\{F_h\}$ by

$$F_h(z) = \sum_{m \in \mathbb{Z}^n} \phi(x - z - hm) \psi(hm) h^m.$$

It is straightforward to see that $\operatorname{supp}(F_h)$ lies in some fixed compact $K \subseteq \mathbb{R}^n$. Also each F_h is in $C^{\infty}(\mathbb{R}^n)$. Note that for each multi-index α we have

$$\sup_{\alpha} |\partial^{\alpha} F_h(z)| \le M_{\alpha}.$$

So for each α , $z \mapsto \partial^{\alpha} F_h(z)$ is uniformly bounded and equi-continuous. Equi-continuity follows from

$$|\partial^{\alpha} F_h(x) - \partial^{\alpha} F_h(y)| = \left| \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \partial^{\alpha} F_h(tx + (1-t)y) \mathrm{d}t \right|$$
$$= \left| \int_0^1 (x-y) \cdot \nabla \partial^{\alpha} F_h(tx + (1-t)y) \mathrm{d}t \right|$$
$$\lesssim_{\alpha} |x-y|.$$

Applying Arzela-Ascoli and a diagonal argument we get a sequence (h_k) such that $\sup_z |\partial^{\alpha}(F_{h_k} - \tau_x \phi * \psi)| \to 0$ for each α .

Theorem. For $u \in \mathcal{D}'(\mathbb{R}^n)$ there exists (ϕ_k) in $\mathcal{D}(\mathbb{R}^n)$ such that $\phi_k \to u$ in $\mathcal{D}'(\mathbb{R}^n)$ (i.e $\langle u_k, \theta \rangle \to \langle u, \theta \rangle$ for all $\theta \in \mathcal{D}(\mathbb{R}^n)$).

Proof. Fix $\psi \in \mathcal{D}(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \psi dx = 1$ and set $\psi_k(x) = k^n \psi(kx)$. Fix $\chi \in \mathcal{D}(\mathbb{R}^n)$ with $\chi = 1$ on [-1,1] and supp $(\chi) \subseteq [-2,2]$. Set $\chi_k(x) = \chi(x/k)$. For $u \in \mathcal{D}'(\mathbb{R}^n)$ and arbitrary $\theta \in \mathcal{D}(\mathbb{R}^n)$ consider $\langle \phi_k, \theta \rangle$ where $\phi_k = (u * \psi_k)\chi_k$. Then

$$\langle \phi_k, \theta \rangle = \langle u * \psi_k, \chi_k \theta \rangle$$

$$= (u * \psi_k) * (\chi_k \hat{\theta})(0)$$

$$= u * (\psi_j * (\chi_k \hat{\theta}))(0)$$
 (previous lemma)

where we used the fact $\langle v, f \rangle = v * \check{f}(0)$. Note

$$\psi_k * (\chi_j \theta)(x) = \int k^n \psi(k(x-y)) \chi(-y/k) \theta(-y) dy$$

$$= \int \psi(y') \chi\left(\frac{y'}{k^2} - \frac{x}{k}\right) \theta\left(\frac{y'}{k} - x\right) dy' \qquad (y' = k(x-y))$$

$$= \theta(-x) + R_k(-x)$$

where

$$R_k(x) = \int \psi(y) \left[\chi \left(\frac{y}{k^2} + \frac{x}{k} \right) \theta \left(\frac{y}{k} + x \right) - \theta(x) \right] dy.$$

So

$$\langle \phi_k, \theta \rangle = u * \check{\theta}(0) + u * \check{R}_k(0)$$

= $\langle u, \theta \rangle + \langle u, R_k \rangle$.

It is straightforward to show $R_k \to 0$ in $\mathcal{D}(\mathbb{R}^n)$ [exercise].

2 Distributions of Compact Support

Let $Y \subseteq X$ be open. We say $u \in \mathcal{D}'(X)$ vanishes on Y if $\langle u, \phi \rangle = 0$ for all $\phi \in \mathcal{D}(Y)$.

Definition. For $u \in \mathcal{D}'(X)$ define the support of u by

$$\operatorname{supp}(u) = X \setminus \left(\bigcup_{\substack{Y \subseteq X \text{ open} \\ u \text{ vanishes on } Y}} Y \right).$$

E.g for $\delta_x \in \mathcal{D}'(\mathbb{R}^n)$ we have supp $(\delta_x) = \{x\}$.

Non-examinable

If $u \in \mathcal{D}'(X)$ vanishes on a collection $\{U_{\lambda}\}$ of open sets, then it vanishes on the union. Indeed suppose $\operatorname{supp}(\phi) \subseteq \bigcup_{\lambda} U_{\lambda}$. By compactness there is a finite collection $\{U_i\}_{i=1}^N$ such that $\operatorname{supp}(\phi) \subseteq \bigcup_{i=1}^N U_i$.

Take a partition of unity $\{\psi_i\}_{i=1}^N$ subordinate to $\{U_i\}_{i=1}^N$, i.e supp $(\psi_i) \subseteq U_i$ and $\sum_{i=1}^N \psi_i = 1$. Then

$$\langle u, \phi \rangle = \sum_{i=1}^{N} \langle u, \psi_i \phi \rangle = 0.$$

A corollary of this is that supp(u) is the complement of the largest open set on which u vanishes.

2.1 More test functions & distributions

Definition. Define $\mathcal{E}(X)$ to be the space of smooth functions $\phi: X \to \mathbb{C}$. We say $\phi_m \to 0$ in $\mathcal{E}(X)$ if for each multi-index α we have $\partial^{\alpha}\phi_m \to 0$ locally uniformly, i.e $\sup_K |\partial^{\alpha}\phi| \to 0$ for all $K \subseteq X$ compact.

Definition. A linear map $u: \mathcal{E}(X) \to \mathbb{C}$ belongs to $\mathcal{E}'(X)$ if there exists $K \subseteq X$ compact and constants $C, N \ge 0$ such that

$$|\langle u, \phi \rangle| \le C \sum_{|\alpha| \le N} \sup_{K} |\partial^{\alpha} \phi|$$

for all $\phi \in \mathcal{E}(X)$.

Lemma. A linear map $u : \mathcal{E}(X) \to \mathbb{C}$ belongs to $\mathcal{E}'(X)$ if and only if $\langle u, \phi_m \rangle \to 0$ whenever $\phi_m \to 0$ in $\mathcal{E}(X)$.

Proof. Almost identical to that of $\mathcal{D}'(X)$.

Lemma. If $u \in \mathcal{E}'(X)$ then $u|_{\mathcal{D}(X)}$ defines an element of $\mathcal{D}'(X)$ with compact support. Conversely if $u \in \mathcal{D}'(X)$ has compact support there exists a unique $\tilde{u} \in calE'(X)$ which extends u to $\mathcal{E}(X)$.

Proof. Note that $\mathcal{D}(X) \subseteq \mathcal{E}(X)$ so if $u \in \mathcal{E}'(X)$ then $u|_{\mathcal{D}(X)}$ is well-defined. There exist compact $K \subseteq X$ and constants $C, N \geq 0$ such that

$$|\langle u, \phi \rangle| \le C \sum_{|\alpha| \le N} \sup_{K} |\partial^{\alpha} \phi|$$

for all $\phi \in \mathcal{D}(X)$. Hence $u|_{\mathcal{D}(X)} \in \mathcal{D}'(X)$ and $\text{supp}(u) \subseteq K$.

If $u \in \mathcal{D}'(X)$ has compact support, fix $\rho \in \mathcal{D}(X)$ such that $\rho = 1$ on a neighbour-hood of supp(u). Define $\tilde{u} : \mathcal{E}(X) \to \mathbb{C}$ by $\langle \tilde{u}, \phi \rangle = \langle u, \rho \phi \rangle$ for each $\phi \in \mathcal{E}(X)$. Then supp $(\rho \phi) \subseteq \text{supp}(\phi)$. Since $u \in \mathcal{D}'(X)$ there exist constants $C, N \geq 0$ such that

$$\begin{split} \langle \tilde{u}, \phi \rangle | &= |\langle u, \rho \phi \rangle| \le C \sum_{|\alpha| \le N} \sup_{K} |\partial^{\alpha}(\rho \phi)| \\ &\le C' \sum_{|\alpha| \le N} \sup_{K} |\partial^{\alpha} \phi| \end{split}$$

so $\tilde{u} \in \mathcal{E}'(X)$. Suppose $\tilde{v} \in \mathcal{E}'(X)$ has $\tilde{v}|_{\mathcal{D}(X)} = u$ and $\operatorname{supp}(\tilde{v}) = \operatorname{supp}(u)$. With $\rho \in \mathcal{D}(X)$ as before

$$\begin{split} \langle \tilde{v}, \phi \rangle &= \langle \tilde{v}, \rho \phi \rangle + \langle \tilde{v}, (1 - \rho) \phi \rangle \\ &= \langle \tilde{u}, \rho \phi \rangle + \langle \tilde{u}, (1 - \rho) \phi \rangle \\ &= \langle \tilde{u}, \phi \rangle \end{split}$$

for all $\phi \in \mathcal{E}(X)$, i.e $\tilde{u} = \tilde{v}$.

2.2 Convolution between $\mathcal{E}'(\mathbb{R}^n)$ and $\mathcal{D}'(\mathbb{R}^n)$

For $\phi \in \mathcal{E}(\mathbb{R}^n)$, $u \in \mathcal{E}'(\mathbb{R}^n)$ define convolution as before by

$$u * \phi(x) = \langle u, \tau_x \check{\phi} \rangle.$$

We find $u * \phi \in \mathcal{E}(\mathbb{R}^n)$. Note that $u * \phi(x) = 0$ unless $(x - y) \in \text{supp}(\phi)$ for some $y \in \text{supp}(u)$, i.e $\text{supp}(u * \phi) \subseteq \text{supp}(\phi) + \text{supp}(u)$. In particular if $u \in \mathcal{E}'(\mathbb{R}^n)$ and $\phi \in \mathcal{D}(\mathbb{R}^n)$ we have $u * \phi \in \mathcal{D}(\mathbb{R}^n)$.

Definition. Let $u, v \in \mathcal{D}'(\mathbb{R}^n)$ where at least one of u, v has compact support. Then define

$$(u * v) * \phi := u * (v * \phi)$$

for $\phi \in \mathcal{D}(\mathbb{R}^n)$. Then $u * v \in \mathcal{D}'(\mathbb{R}^n)$ [see Example Sheet 2].

Lemma. For u, v as in the above definition. u * v = v * u.

Proof. Recall by a previous lemma that if $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi, \psi \in \mathcal{D}(\mathbb{R}^n)$ then $(u * \phi) * \psi = u * (\phi * \psi)$. The same holds if $u \in \mathcal{E}'(\mathbb{R}^n)$ and $\phi, \psi \in \mathcal{E}(\mathbb{R}^n)$ with at least one of $\operatorname{supp}(\phi), \operatorname{supp}(\psi)$ compact. We use this repeatedly as follows: for $\phi, \psi \in \mathcal{D}(\mathbb{R}^n)$

$$(u * v) * (\phi * \psi) = u * [v * (\phi * \psi)]$$

$$= u * [(v * \phi) * \psi]$$

$$= u * [\psi * (v * \phi)]$$

$$= (u * \psi) * (v * \phi).$$

So using $\phi * \psi = \psi * \phi$ we have

$$(v * u) * (\phi * \psi) = (v * \phi) * (u * \psi)$$

= $(u * \psi) * (v * \phi)$
= $(u * v) * (\phi * \psi)$.

So if E = u * v - v * u we have $E * (\phi * \psi) = 0$ for all $\phi, \psi \in \mathcal{D}(\mathbb{R}^n)$. Thus $(E * \phi) * \psi = 0$ and $E * \phi = 0$, so E = 0 in $\mathcal{D}'(\mathbb{R}^n)$, i.e u * v = v * u.

The above implies that for any $u \in \mathcal{D}'(\mathbb{R}^n)$ we have

$$\delta_0 * u = u * \delta_0 = u$$

since for $\psi \in \mathcal{D}(\mathbb{R}^n)$

$$(u * \delta_0) * \psi = u * (\delta_0 * \psi) = u * \psi$$

and

$$(\delta_0 * \psi)(x) = \langle \delta_0, \tau_x \check{\psi} \rangle$$
$$= (\tau_x \check{\psi})(0)$$
$$= \check{\psi}(-x)$$
$$= \psi(x).$$

3 Tempered Distributions & Fourier Analysis

3.1 More test functions & distributions

Definition. The *Schwartz space* written $\mathcal{S}(\mathbb{R}^n)$, consists of smooth $\phi: \mathbb{R}^n \to \mathbb{C}$ such that

$$\|\phi\|_{\alpha,\beta} := \sup |x^{\alpha}D^{\beta}\phi| < \infty$$

for all multi-indices α, β . We say $\phi_m \to 0$ in \mathcal{S} if $\|\phi_m\|_{\alpha,\beta} \to 0$ for all α, β . Elements of the Schwartz space are sometimes called rapidly decaying functions.

Definition. A linear map $u: \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$ belongs to $\mathcal{S}'(\mathbb{R}^n)$, the space of tempered distributions, if there exist $C, N \geq 0$ such that

$$|\langle u, \phi \rangle| \le C \sum_{|\alpha|, |\beta} \|\phi\|_{\alpha, \beta}$$

for all $\phi \in \mathcal{S}(\mathbb{R}^n)$.

Lemma. A linear functional $u: \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$ belongs to $\mathcal{S}'(\mathbb{R}^n)$ iff $\langle u, \phi_m \rangle \to 0$ whenever $\phi_m \to 0$ in \mathcal{S} .

Proof. Exercise.
$$\Box$$

Note that $\mathcal{D}(\mathbb{R}^n) \subseteq \mathcal{S}(\mathbb{R}^n) \subseteq \mathcal{E}(\mathbb{R}^n)$ in the sense of continuous inclusions, i.e

$$\phi_m \xrightarrow{\mathcal{D}} 0 \implies \phi_m \xrightarrow{\mathcal{S}} 0 \implies \phi_m \xrightarrow{\mathcal{E}} 0.$$

Which gives the continuous inclusions $\mathcal{E}'(\mathbb{R}^n) \subseteq \mathcal{S}'(\mathbb{R}^n) \subseteq \mathcal{D}'(\mathbb{R}^n)$.

It turns out that S is ideal for Fourier analysis.

3.2 Fourier Transform on $\mathcal{S}(\mathbb{R}^n)$

Definition. For an integrable function $f \in L^1(\mathbb{R}^n)$ define the Fourier transform of f by

$$\hat{f}(\lambda) = \int_{\mathbb{R}^n} e^{-i\lambda \cdot x} f(x) dx, \ \lambda \in \mathbb{R}^n.$$

We use \mathcal{F} to denote the linear map $f \mapsto \hat{f}$.

Note that $\mathcal{S}(\mathbb{R}^n) \subseteq L^1(\mathbb{R}^n)$ since for $\phi \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\int_{\mathbb{R}^n} |\phi| dx = \int_{\mathbb{R}^n} (1+|x|)^{-N} (1+|x|)^N |\phi| dx$$

$$\leq C \sum_{|\alpha| \leq N} ||\phi||_{\alpha,0} \int_{\mathbb{R}^n} (1+|x|)^{-N} dx$$

$$< \infty$$

for $N \ge n + 1$.

Lemma. If $f \in L^1(\mathbb{R}^n)$ then $\hat{f} \in C(\mathbb{R}^n)$.

Proof. DCT.
$$\Box$$

Intuitively, the Fourier transform interchanges decay & smoothness.

Notation: we write D^{α} for $(-i)^{\alpha}\nabla^{\alpha}$.

Lemma. For $\phi \in \mathcal{S}(\mathbb{R}^n)$ we have

$$(D^{\hat{\alpha}}\phi)(\lambda) = \lambda^{\alpha}\hat{\phi}(\lambda)$$
$$(x^{\hat{\beta}}\phi)(\lambda) = (-D)^{\beta}\hat{\phi}(\lambda).$$

Proof. Integration-by-parts gives

$$(D^{\hat{\alpha}}\phi)(\lambda) = \int_{\mathbb{R}}^{n} e^{-i\lambda \cdot x} D^{\alpha} \phi dx$$
$$= (-1)^{|\alpha|} \int_{\mathbb{R}^{n}} \phi D^{\alpha} [e^{-i\lambda \cdot x}] dx$$
$$= (-1)^{|\alpha|} \int_{\mathbb{R}^{n}} (-1)^{|\alpha|} \phi \lambda^{\alpha} e^{-i\lambda \cdot x} dx$$
$$= \lambda^{\alpha} \hat{\phi}(\lambda)$$

and

$$(-D)^{\beta} \hat{\phi}(\lambda) = (-D)^{\beta} \int_{\mathbb{R}^n} e^{-i\lambda \cdot x} \phi(x) dx$$
$$= \int_{\mathbb{R}^n} x^{\beta} e^{-i\lambda \cdot x} \phi(x) dx \qquad (DCT)$$
$$= (x^{\beta} \phi)(\lambda).$$

Note that the above show that $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Theorem. The Fourier transform is a continuous isomorphism on $\mathcal{S}(\mathbb{R}^n)$, i.e $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is a homeomorphism.

Proof. We know \mathcal{F} maps $\mathcal{S}(\mathbb{R}^n)$ so $C^{\infty}(\mathbb{R}^n)$. We also have

$$\left| \lambda^{\alpha} D^{\beta} \hat{\phi}(\lambda) \right| = \left| \int_{\mathbb{R}^n} D^{\alpha}(x^{\beta} \phi) e^{-i\lambda \cdot x} dx \right|$$

$$\leq \int_{\mathbb{R}^n} |D^{\alpha}(x^{\beta} \phi)| dx < \infty. \tag{\dagger}$$

Since $\phi \in \mathcal{S}(\mathbb{R}^n)$ we have $D^{\alpha}(x^{\beta}\phi) \in \mathcal{S}(\mathbb{R}^n) \subseteq L^1(\mathbb{R}^n)$. Hence $\|\hat{\phi}\|_{\alpha,\beta} < \infty$ for all α, β , i.e $\hat{\phi} \in \mathcal{S}(\mathbb{R}^n)$. Hence \mathcal{F} maps $\mathcal{S}(\mathbb{R}^n)$ to itself.

By suitably applying (†) to a sequence $\phi_m \to 0$ in \mathcal{S} , it's easy to see $\hat{\phi}_m \to 0$ in \mathcal{S} . We have

$$\int_{\mathbb{R}^n} e^{i\lambda \cdot x} \hat{\phi}(\lambda) \mathrm{d}\lambda = \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}^n} e^{i\lambda \cdot x} e^{-\varepsilon |\lambda|^2} \hat{\phi}(\lambda) \mathrm{d}\lambda.$$

Also

$$\int_{\mathbb{R}^{n}} e^{i\lambda \cdot x - \varepsilon |\lambda|^{2}} \hat{\phi}(\lambda) d\lambda = \int_{\mathbb{R}^{n}} \phi(y) \left[\int_{\mathbb{R}^{n}} e^{i\lambda \cdot (x - y) - \varepsilon |\lambda|^{2}} d\lambda \right] dy$$

$$= \int_{\mathbb{R}^{n}} \phi(y) \left[\prod_{j=1}^{n} \left(\frac{\pi}{\varepsilon} \right)^{1/2} e^{-(x_{j} - y_{j})^{2}/4\varepsilon} \right] dy \qquad (*)$$

$$= \int_{\mathbb{R}^{n}} \phi(y) \left(\frac{\pi}{\varepsilon} \right)^{n/2} e^{-|x - y|^{2}/4\varepsilon} dy$$

$$= \int_{\mathbb{R}^{n}} \phi(x - 2\sqrt{\varepsilon}y) \pi^{n/2} 2^{n} e^{-|y'|^{2}} dy' \qquad (y = \frac{x - y}{2\sqrt{\varepsilon}})$$

$$\xrightarrow{\varepsilon \downarrow 0} \phi(x) (2\pi)^{n} \left(\frac{1}{\sqrt{\pi}} \right)^{n} \int_{\mathbb{R}^{n}} e^{-|y|^{2}} dy$$

$$= (2\pi)^{n} \phi(x).$$

Thus $\phi(-x) = \mathcal{F}\left[\frac{\hat{\phi}}{(2\pi)^n}\right]$. So we get a homeomorphism $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$. (*) follows from

$$\int_{\mathbb{R}^n} e^{i\lambda \cdot (x-y) - \varepsilon |\lambda|^2} d\lambda = \prod_{j=1}^n \int_{\mathbb{R}} e^{i\lambda_j \cdot (x_j - y_j)} e^{-\varepsilon \lambda_j^2} d\lambda_j$$

followed by

$$\begin{split} \int_{\mathbb{R}} e^{i\lambda\sigma} e^{-\varepsilon\lambda^2} \mathrm{d}\lambda &= \int_{\mathbb{R}} e^{-\varepsilon\left(\lambda - \frac{i\sigma}{2\varepsilon}\right)^2 - \frac{\sigma^2}{4\varepsilon}} \mathrm{d}\lambda \\ &= e^{-\frac{\sigma^2}{4\varepsilon}} \int_{\mathbb{R}} e^{-\varepsilon\left(\lambda - \frac{i\sigma}{2\varepsilon}\right)^2} \mathrm{d}\lambda. \end{split}$$

3.3 Fourier Transform on $\mathcal{S}'(\mathbb{R}^n)$

Proposition. If $\phi, \psi \in \mathcal{S}(\mathbb{R}^n)$ then

$$\int_{\mathbb{R}^n} \phi(x)\hat{\psi}(x)dx = \int_{\mathbb{R}^n} \hat{\phi}(x)\psi(x)dx.$$

Proof. We have

$$\begin{split} \int_{\mathbb{R}^n} \phi(x) \hat{\psi}(x) \mathrm{d}x &= \int_{\mathbb{R}^n} \phi(x) \left[\int_{\mathbb{R}^n} e^{-i\lambda \cdot x} \psi(\lambda) \mathrm{d}\lambda \right] \mathrm{d}x \\ &= \int_{\mathbb{R}^n} \psi(\lambda) \int_{\mathbb{R}^n} e^{-\lambda \cdot x} \phi(x) \mathrm{d}x \mathrm{d}\lambda \\ &= \int_{\mathbb{R}^n} \psi(\lambda) \hat{\phi}(\lambda) \mathrm{d}\lambda. \end{split} \tag{Fubini}$$

If $u \in \mathcal{S}(\mathbb{R}^n) \subseteq \mathcal{S}'(\mathbb{R}^n)$ then the previous lemma states

$$\langle \hat{u}, \phi \rangle = \langle u, \hat{\phi} \rangle \ \forall \phi \in \mathcal{S}(\mathbb{R}^n).$$

Since $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$, the RHS is well-defined for any $u \in \mathcal{S}'(\mathbb{R}^n)$.

Definition. For $u \in \mathcal{S}'(\mathbb{R}^n)$ define \hat{u} by

$$\langle \hat{u}, \phi \rangle := \langle u, \hat{\phi} \rangle \ \forall \phi \in \mathcal{S}(\mathbb{R}^n).$$

Example. Take $u = \delta_0$ so

$$\langle \hat{\delta_0}, \phi \rangle = \langle \delta_0, \hat{\phi} \rangle = \hat{\phi}(0) = \int_{\mathbb{R}^n} \phi(x) dx = \langle 1, \phi \rangle$$

hence $\hat{\delta_0} = 1$ in $\mathcal{S}'(\mathbb{R}^n)$. Also

$$\langle \hat{1}, \phi \rangle = \langle 1, \hat{\phi} \rangle = \int_{\mathbb{R}^n} \hat{\phi}(x) dx = (2\pi)^n \phi(0) = \langle (2\pi)^n \delta_0, \phi \rangle$$

implying $\hat{1} = (2\pi)^n \delta_0$. Therefore

"
$$\delta_0(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-\lambda \cdot x} d\lambda$$
".

It is straightforward to show

$$(D^{\hat{\alpha}}u) = \lambda^{\alpha}\hat{u}$$
$$(x^{\hat{\beta}}u) = (-D)^{\beta}\hat{u}.$$

Theorem. The Fourier transform defines a continuous bijection $\mathcal{F}: \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$.

Proof. Note

$$\check{u} = \frac{1}{(2\pi)^n} \widehat{\hat{u}}.$$

Indeed

$$\langle \check{u}, \phi \rangle = \langle u, \check{\phi} \rangle = \langle u, (2\pi)^{-n} \hat{\hat{\phi}} \rangle$$

$$= \langle (2\pi)^{-n} \hat{u}, \phi \rangle$$
(*)

for all $\phi \in \mathcal{S}(\mathbb{R}^n)$, where (*) follows by Fourier inversion. Hence $\mathcal{F}(\mathcal{S}'(\mathbb{R}^n)) \subseteq \mathcal{S}'(\mathbb{R}^n)$, note $\phi_m \xrightarrow{\mathcal{S}} 0$ iff $\hat{\phi}_m \xrightarrow{\mathcal{S}} 0$,so

$$\langle \hat{u}, \phi_m \rangle = \langle u, \hat{\phi}_m \rangle \to 0$$

whenever $\phi_m \xrightarrow{\mathcal{S}} 0$, i.e $\hat{u} \in \mathcal{S}'(\mathbb{R}^n)$. For continuity of \mathcal{F} , suppose $u_m \to 0$ in $\mathcal{S}'(\mathbb{R}^n)$, i.e $u_m(\phi) \to 0$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$. This happens if and only if $\langle u_m, \hat{\phi} \rangle \to 0$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$ since \mathcal{F} is a bijection from $\mathcal{S}(\mathbb{R}^n)$ to itself, so $\hat{u} \in \mathcal{S}'(\mathbb{R}^n)$. \square

3.4 Sobolev Space

Definition. For $s \in \mathbb{R}$ define the Sobolev Space $H^s(\mathbb{R}^n)$ to be the $u \in \mathcal{S}'(\mathbb{R}^n)$ for which $\hat{u} \in \mathcal{S}'(\mathbb{R}^n)$ can be identified with a measurable function $\lambda \mapsto \hat{u}(\lambda)$ that satisfies

$$||u||_{H^s}^2 := \int_{\mathbb{D}_n} (1+|\lambda|^2)^s |\hat{u}(\lambda)|^2 d\lambda < \infty.$$

We will use notation

$$\langle \lambda \rangle = (1+|\lambda|^2)^{1/2}$$

so $\lambda \sim |\lambda|$ as $|\lambda| \to \infty$. We see that $u \in H^s(\mathbb{R}^n)$ iff $\langle \lambda \rangle^s \hat{u} \in L^2(\mathbb{R}^n)$.

Lemma. If $u \in H^s(\mathbb{R}^n)$ and $s > \frac{n}{2}$ then $u \in C(\mathbb{R}^n)$ (i.e u can be identified with a $C(\mathbb{R}^n)$ function).

Proof. We establish that $\hat{u} \in L^1(\mathbb{R}^n)$. Indeed

$$\int_{\mathbb{R}^n} |\hat{u}(\lambda)| d\lambda = \left(\int_{\mathbb{R}^n} \langle \lambda \rangle^{-2s} d\lambda \right)^{1/2} \left(\int_{\mathbb{R}^n} \langle \lambda \rangle^{2s} |\hat{u}(\lambda)|^2 d\lambda \right)^{1/2}$$
$$= \left(\int_{S^{n-1}} d\sigma \underbrace{\int_0^\infty (1+r^2)^{-s} r^{n-1} dr}_{(\dagger)} \right)^{1/2} \|u\|_{H^s}$$

where $d\sigma$ is the surface element on the sphere S^{n-1} . Note (†) is $calO(r^{-2s+n-1})$ as $r \to \infty$ so the integral is finite if s > n/2. We cannot yet invoke the inverse

Fourier transform since we only proved that it works on $\mathcal{S}(\mathbb{R}^n)$. We have

$$\begin{split} \langle u, \hat{\phi} \rangle &= \langle \hat{u}, \phi \rangle = \int_{\mathbb{R}^n} \hat{u}(\lambda) \phi(\lambda) \mathrm{d}\lambda \\ &= \int_{\mathbb{R}^n} \hat{u}(\lambda) (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\lambda \cdot x} \hat{\phi}(x) \mathrm{d}x \mathrm{d}\lambda \\ &= \int_{\mathbb{R}^n} \hat{\phi}(x) (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\lambda \cdot x} \hat{u}(\lambda) \mathrm{d}\lambda \mathrm{d}x \end{split} \qquad \text{(inverse FT)} \\ &= \int_{\mathbb{R}^n} \hat{\phi}(x) (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\lambda \cdot x} \hat{u}(\lambda) \mathrm{d}\lambda \mathrm{d}x \\ &= \int_{\mathbb{R}^n} u(x) \hat{\phi}(x) \mathrm{d}x \end{split}$$

where

$$u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\lambda \cdot x} \hat{u}(\lambda) d\lambda.$$

Since $\hat{u} \in L^1(\mathbb{R}^n)$ the DCT implies $u(x) \in C(\mathbb{R}^n)$.

Corollary. If $u \in H^s(\mathbb{R}^n)$ for all s > n/2 then $u \in C^{\infty}(\mathbb{R}^n)$.

Proof. Replace u with $D^{\alpha}u$ and show $(D^{\alpha}u) = \lambda^{\alpha}\hat{u} \in L^{1}(\mathbb{R}^{n})$ to conclude $D^{\alpha}u \in C(\mathbb{R}^{n})$.

When understanding regularity it suffices to confine attention to things of the form ϕu for $\phi \in \mathcal{D}(\mathbb{R}^n)$. Very rarely do we need to study u in isolation. Hence if $u \in \mathcal{D}'(X)$ for $X \supseteq \mathbb{R}^n$ we can consider $\phi u \in \mathcal{D}'(X)$, $\phi \in \mathcal{D}(X)$ and make the extension $(\phi u)_{\text{ext}} \in \mathcal{E}'(\mathbb{R}^n) \subseteq \mathcal{S}'(\mathbb{R}^n)$.

Definition. We say $u \in \mathcal{D}'(X)$ belongs to the *local Sobolev space* $H^s_{loc}(X)$ if $u\phi$ extends to an element of $H^s(\mathbb{R}^n)$ for each $\phi \in \mathcal{D}(X)$.

Note we interpret $\phi u \in \mathcal{E}'(\mathbb{R}^n) \subseteq \mathcal{S}'(\mathbb{R}^n)$ by

$$\langle \phi u, \psi \rangle := \langle u, \phi \psi \rangle$$

which is well defined as $supp(\phi\psi) \subseteq X$.

4 Applications of the Fourier Transform

4.1 Elliptic regularity

We're interested in problems of the form

$$P(D)u = f$$

where $u, f \in \mathcal{D}'(X)$ and P is a polynomial in n variables. For example if $P(\lambda) = \lambda_1^2 + \ldots + \lambda_n^2$ we have $P(D) = -\left(\frac{\partial}{\partial x_1}\right)^2 - \ldots - \left(\frac{\partial}{\partial x_n}\right)^2 = -\Delta$.

We are interested in the following question. If $f \in H^s_{loc}(X)$, can we say that $u \in H^t_{loc}(X)$ for some t = t(s, P)? We will answer this when P is elliptic.

Definition. An Nth order partial differential operator (P.D.O)

$$P(D) = \sum_{|\alpha| \le N} C_{\alpha} D^{\alpha}$$

has *principal symbol* defined by

$$\sigma_P(\lambda) = \sum_{|\alpha|=N} c_{\alpha} \lambda^{\alpha}.$$

We say P is elliptic if $\sigma_P(\lambda) \neq 0$ on $\mathbb{R}^n \setminus \{0\}$.

Lemma. If P(D) is Nth order elliptic then for $|\lambda|$ sufficiently large, $|P(\lambda)| \gtrsim \langle \lambda \rangle^N$.

Proof. By continuity and compactness, since $\sigma_p(\lambda)$ doesn't vanish on S^{n-1} we must have $\min_{|\lambda|=1} |\sigma_P(\lambda)| = C > 0$. Then for $\lambda \in \mathbb{R}^n \setminus \{0\}$

$$|\sigma_P(\lambda)| = |\lambda|^N \sum_{|\alpha|=N} C_{\alpha} (\lambda/|\lambda|)^{\alpha} \ge C|\lambda|^N.$$

By the triangle inequality

$$|P(\lambda)| \ge |\sigma_P(\lambda)| - |P(\lambda) - \sigma_P(\lambda)|$$

$$\ge \left[C - \frac{|P(\lambda) - \sigma_P(\lambda)|}{|\lambda|^N}\right] |\lambda|^N$$

$$\ge \frac{C}{2} |\lambda|^N$$

for $|\lambda|$ sufficiently large. Then $|P(\lambda)| \ge \frac{C}{2} |\lambda|^N \gtrsim \langle \lambda \rangle^N$.

Theorem. If P(D) is Nth order elliptic and $P(D)u \in H^s_{loc}(X)$, then $u \in H^{s+N}_{loc}(X)$.

Now we will prove an easier version of this theorem, relevant if $u \in \mathcal{E}'(\mathbb{R}^n)$. We will use the fact that if $u \in \mathcal{E}'(\mathbb{R}^n)$ then $\hat{u} \in \mathcal{E}(\mathbb{R}^n)$ and $|\hat{u}(\lambda)| \lesssim \langle \lambda \rangle^M$ for some $M \geq 0$.

When $u \in \mathcal{E}'(\mathbb{R}^n)$ we can use parametrix to prove a version of this theorem.

Definition. Say that $E \in \mathcal{D}'(\mathbb{R}^n)$ is a parametrix for P(D) if there exists $\omega \in \mathcal{E}(\mathbb{R}^n)$ such that

$$P(D)E = \delta_0 + \omega.$$

Lemma. Every (non-zero) elliptic P(D) admits a parametrix $E \in \mathcal{E}(\mathbb{R}^n \setminus \{0\})$.

Proof. Fix R > 0 so that $|P(\lambda)| \gtrsim \langle \lambda \rangle^N$ for $|\lambda| > R$ and fix $\chi \in \mathcal{D}(\mathbb{R}^n)$ such that $\chi = 1$ on $|\lambda| \leq R$ and $\chi = 0$ on $|\lambda| > R + 1$.

Define $E \in \mathcal{S}'(\mathbb{R}^n)$

$$\hat{E}(\lambda) = \frac{1 - \chi(\lambda)}{P(\lambda)}.$$

Then E is smooth and $|\hat{E}| \lesssim \langle \lambda \rangle^{-N}$ for $|\lambda| > R$, so $\hat{E} \in \mathcal{S}'(\mathbb{R}^n)$ and thus $E \in \mathcal{S}'(\mathbb{R}^n)$. By the inverse Fourier transform

$$P(D)E = \delta_0 + \omega$$

where

$$\hat{\omega} = -\chi \in \mathcal{D}(\mathbb{R}^n) \implies \omega \in \mathcal{S}(\mathbb{R}^n) \subseteq \mathcal{E}(\mathbb{R}^n).$$

For $|\lambda| > R + 1$ have

$$\begin{split} |\widehat{(x^{\beta}E)}(\lambda)| &= |D^{\beta}\hat{E}(\lambda)| \\ &= \left|D^{\beta}\left(\frac{1}{P(\lambda)}\right)\right| \\ &\lesssim \langle \lambda \rangle^{-N-|\beta|} \end{split} \qquad \text{(induction)}$$

so for every $s \in \mathbb{R}$ (in particular s > n/2) there is a β such that $x^{\beta}E \in H^{s}(\mathbb{R}^{n})$. So for each α , $D^{\alpha}(x^{\beta}E)$ is continuous for $|\beta|$ sufficiently large [Sobolev lemma]. Hence E is smooth away from x = 0, i.e $E \in \mathcal{E}(\mathbb{R}^{n} \setminus \{0\})$.

We now prove an easy version of

Theorem. If P(D) is Nth order elliptic and $P(D)u \in H^s_{loc}(X)$, then $u \in H^{s+N}_{loc}(X)$.

Proof for special case. If $u \in \mathcal{E}'(\mathbb{R}^n)$ then $\hat{u} \in \mathcal{E}(\mathbb{R}^n)$, using

$$P(\lambda)\hat{E}(\lambda) = 1 + \hat{\omega}$$

i.e $1 = P(\lambda)\hat{E} - \hat{\omega}$. Therefore $\hat{u} = [P(\lambda)\hat{u}]\hat{E} - \hat{\omega}\hat{u}$. Also $\langle \lambda \rangle^s P(\lambda)\hat{u} \in L^2$, and $\hat{E} \lesssim \langle \lambda \rangle^{-N}$. Furthermore $\hat{\omega} = o(\langle \lambda \rangle^{-k})$ for all k and $\hat{u} = \mathcal{O}(\langle \lambda \rangle^M)$ for some M. Hence

$$\langle \lambda \rangle^{s+N} \hat{u} = [\langle \lambda \rangle^s P(\lambda) \hat{u}] \hat{E}(\lambda) \langle \lambda \rangle^N - \hat{\omega} \hat{u} \langle \lambda \rangle^{s+N}$$

and we see that $\|\hat{u}\langle\lambda\rangle^{s+N}\|_{L^2}<\infty$, i.e $u\in H^{s+N}(\mathbb{R}^n)$.

Now we'll give a full proof

Proof. We use the following facts from Example Sheet 2:

- if $u \in \mathcal{E}'(\mathbb{R}^n)$ then there exists $t \in \mathbb{R}$ with $u \in H^t(\mathbb{R}^n)$;
- if $u \in H^s(\mathbb{R}^n)$ then $D^{\alpha}u \in H^{s-|\alpha|}(\mathbb{R}^n)$;
- if s > t then $H^s(\mathbb{R}^n) \subset H^t(\mathbb{R}^n)$;
- if $\phi \in \mathcal{S}(\mathbb{R}^n)$ and $u \in H^s(\mathbb{R}^n)$ then $\phi u \in H^s(\mathbb{R}^n)$.

Fix $\phi \in \mathcal{D}(X)$. Introduce test functions $\psi_0, \psi_1, \dots, \psi_M$ such that $\psi_{i-1} = 1$ on $\operatorname{supp}(\psi_i)$ and $\operatorname{supp}(\phi) \subseteq \operatorname{supp}(\psi_M) \subseteq \dots \operatorname{supp}(\psi_0)$.

Note $\psi_0 u \in \mathcal{E}'(\mathbb{R}^n)$ so $\psi_0 u \in H^t(\mathbb{R}^n)$ for some t. Then

$$P(D)[\psi_1 u] = \psi_1 P(D) u + [P(D), \psi_1](u)$$

= $\psi_1 P(D) u + [P(D), \psi_1](\psi_0 u)$

since $\psi_0 = 1$ on $\operatorname{supp}(\psi_1)$. Because $P(D)u \in H^s(\mathbb{R}^n)$, we have $\psi_1 P(D)u \in H^s(\mathbb{R}^n)$, and also $[P(D), \psi_1](\psi_0 u) \in H^{t-N+1}(\mathbb{R}^n)$ since $\psi_0 u \in H^t(\mathbb{R}^n)$. Therefore

$$P(D)[\psi_1 u] \in H^{\tilde{A}_1}(\mathbb{R}^n)$$

where $\tilde{A}_1 = \min\{s, t - N + 1\}$, i.e

$$\int_{\mathbb{R}^n} \langle \lambda \rangle^{2\tilde{A}_1} |P(\lambda)[\psi_1 u]^n(\lambda)|^2 d\lambda < \infty. \tag{\dagger}$$

Since $|P(\lambda)| \gtrsim \langle \lambda \rangle^N$, (†) implies

$$\int_{\mathbb{R}^n} \langle \lambda \rangle^{2(\tilde{A}_1 + N)} |[\psi_1 u]^n(\lambda)|^2 d\lambda < \infty$$

i.e $\psi_1 u \in H^{A_1}(\mathbb{R}^n)$ where $A_1 = \tilde{A}_1 + N = \min\{s + N, t + 1\}$. Similarly

$$P(D)[\psi_2 u] = \psi_2 P(D) u + [P(D), \psi_2](u)$$

= $\psi_2 P(D) u + [P(D), \psi_2](\psi_1 u)$

and since $\psi_1 u \in H^{A_1}(\mathbb{R}^n)$, by the same argument we get $\psi_2 u \in H^{A_2}(\mathbb{R}^n)$ where $A_2 = \min\{s+N,A_1+1\} = \min\{s+N,\min\{s+N+1,t+2\}\} = \min\{s+N,t+2\}$. Proceeding inductively, $\psi_M u \in H^{A_M}(\mathbb{R}^n)$ where $A_m = \min\{s+N,t+M\} = s+N$ for M large enough. Since $\psi_M = 1$ on $\sup(\phi)$ we get $\phi u \in H^{s+N}(\mathbb{R}^n)$. As ϕ was arbitrary we see $u \in H^{s+N}_{loc}(X)$.

4.2 Fundamental Solutions

To solve problems of the form P(D)u = f we can use fundamental solutions.

Definition. We say $E \in \mathcal{D}'(\mathbb{R}^n)$ is a fundamental solution for P(D) if $P(D)E = \delta_0$.

Lemma. The fundamental solution for

$$P(D) := \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right)$$

is given by $E = \frac{1}{\pi z}$.

Proof. We have $E \in L^1_{loc}(\mathbb{R}^2)$. For $\phi \in \mathcal{D}(\mathbb{R}^2)$ we have

$$\begin{split} \langle \frac{\partial}{\partial \overline{z}} E, \phi \rangle &= -\langle E, \frac{\partial \phi}{\partial \overline{z}} \rangle \\ &= -\lim_{\varepsilon \downarrow 0} \int_{|z| > \varepsilon} frac1\pi z \frac{\partial \phi}{\partial \overline{z}} \mathrm{d}x \\ &= -\lim_{\varepsilon \downarrow 0} \int_{|z| > \varepsilon} \frac{\partial}{\partial \overline{z}} \left(\frac{\phi}{\pi z} \right) \mathrm{d}x \\ &= \lim_{\varepsilon \downarrow 0} \frac{1}{2\pi i} \int_{|z| = \varepsilon} \frac{\phi}{z} \mathrm{d}z \qquad \text{(Green's theorem)} \\ &= \lim_{\varepsilon \downarrow 0} \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{\phi(\varepsilon \cos(\theta), \varepsilon \sin(\theta)) i \varepsilon e^{i\theta}}{\varepsilon e^{i\theta}} \mathrm{d}\theta \\ &= \frac{1}{2\pi} 2\pi \phi(0, 0) \\ &= \langle \delta_0, \phi \rangle. \end{split}$$

Lemma. The fundamental solution for the heat operator

$$P(D) = \frac{\partial}{\partial t} - \Delta_x$$

on $\mathbb{R}^n \times \mathbb{R}$ is

$$E(x,t) = \begin{cases} (4\pi t)^{-n/2} \exp\left(-\frac{|x|^2}{2t}\right) & t > 0\\ 0 & t \le 0 \end{cases}.$$

Proof. Note that

$$P(D)E = 0$$

on $t \ge \varepsilon > 0$ (check). For $\phi \in \mathcal{D}(\mathbb{R}^{n+1})$ we have

$$\langle \left(\frac{\partial}{\partial t} - \Delta_x\right) E, \phi \rangle = -\langle E, \left(\frac{\partial}{\partial t} + \Delta_x\right) \phi \rangle$$

$$= -\lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\infty} \int_{\mathbb{R}^n}^{\infty} E(x, t) [\phi_t + \Delta_x \phi] dx dt \qquad (DCT)$$

$$= -\lim_{\varepsilon \downarrow 0} \left[\int_{\mathbb{R}^n} E(t, x) \phi(t, x) \Big|_{t=\varepsilon}^{\infty} + \int_{\varepsilon}^{\infty} \int_{\mathbb{R}^n} \phi [\underline{E_t - \Delta_x E}] dx dt \right]$$

$$= \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}^n} (4\pi\varepsilon)^{-n/2} e^{-\frac{|x|^2}{2\varepsilon}} \phi(x, \varepsilon) dx$$

$$= \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}^n} (2\pi)^{-n/2} e^{-|y|^2} \phi(\sqrt{2\varepsilon}y, \varepsilon) dy \qquad (y = \sqrt{2\varepsilon}x)$$

$$= \phi(0, 0) \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-|y|^2} dy$$

$$= \langle \delta_0, \phi \rangle.$$

We will try to construct a surface $\Sigma \subseteq \mathbb{C}^n$ such that $\Sigma \simeq \mathbb{R}^n$ (homotopic) and for which

$$\langle E, \phi \rangle = (2\pi)^{-n} \int_{\Sigma} \frac{\hat{\phi}(-\lambda)}{P(\lambda)} d\lambda$$

defines an element of $\mathcal{D}'(\mathbb{R}^n)$. Note then

$$\langle P(D)E, \phi \rangle = \langle E, P(-D)\phi \rangle$$

$$= (2\pi)^{-n} \int_{\Sigma} \frac{P(\lambda)\hat{P}(-\lambda)}{P(\lambda)} d\lambda$$

$$= (2\pi)^{-n} \int_{\mathbb{R}^n} \hat{\phi}(-\lambda) d\lambda \qquad (\dagger)$$

$$= \phi(0)$$

where we hope Σ is nice enough that (†) holds, using complex analysis and $\Sigma \simeq \mathbb{R}^n$. We will call Σ Hörmander's Staircase.

Lemma. For $\lambda \in \mathbb{R}^n$ write $\lambda = (\lambda', \lambda_n) \in \mathbb{R}^{n-1} \times \mathbb{R}$. For each $\lambda' \in \mathbb{R}^{n-1}$, if $\phi \in \mathcal{D}(\mathbb{R}^n)$ then

$$\mathbb{C} \ni z \mapsto \hat{\phi}(\lambda', z)$$

is holomorphic and there exists $\delta > 0$ such that

$$|\hat{\phi}(\lambda',z)| \lesssim_m (1+|z|)^{-m} e^{\delta|\Im(z)|}$$

for m = 0, 1, 2, ..., i.e we have fast decay at horizontal infinity so $\int_{\mathbb{R}+i\eta} \hat{\phi}(\lambda', z) dz = \int_{\mathbb{R}} \hat{\phi}(\lambda', \lambda_n) d\lambda_n$ for all $\eta \in \mathbb{R}$ by Cauchy's theorem.

Theorem. For every non-zero P(D) there exists a fundamental solution.

Proof. By scaling and rotating coordinate axes can assume $P(\lambda)$ has the form

$$P(\lambda', \lambda_n) = \lambda_n^M + \sum_{m=0}^{M-1} a_m(\lambda') \lambda_n^M.$$

Let us fix $\mu' \in \mathbb{R}^{n-1}$. Then

$$P(\mu', \lambda_n) = \prod_{i=1}^{M} (\lambda_n - \tau_i(\mu'))$$

where $\{\tau_i(\mu')\}_i$ are the zeros of the polynomial $\lambda_n \to P(\mu', \lambda_n)$. We claim there exists a horizontal line $\Im \lambda_n = c(\mu')$ in the complex λ_n -plane, inside the strip $|\Im(\lambda_n)| \leq M+1$ such that

$$|\Im(\lambda_n - \tau_i(\mu'))| > 1$$

for $i=1,\ldots,M$. Indeed, $|\Im(\lambda_n)| \leq M+1$ consists of M+1 strips of width 2. So by the pigeonhole principle one of these strips contains no roots. So choose our horizontal line to bisect an empty strip. Hence

$$|P(\mu', \lambda_n)| > 1$$

on $\Im(\lambda_n) = c(\mu')$. Since the set of roots varies continuously in the coefficients of the polynomial, we deduce that the same statement holds for λ' in a sufficiently small open neighbourhood of μ' , say $N(\mu')$. So we get

$$|P(\lambda', \lambda_n)| > 1 \text{ for } \Im(\lambda_n) = c(\mu'), \quad \lambda' \in N(\mu').$$

We can do this for every $\mu' \in \mathbb{R}^{n-1}$, to obtain an open cover $\{N(\mu')\}_{\mu' \in \mathbb{R}^{n-1}}$. By compactness we can extract a locally finite subcover $N_1 = N(\mu'_1), N_2 = N(\mu'_2), \dots$ of \mathbb{R}^{n-1} . We have

$$|P(\lambda', \lambda_n)| > 1$$
 on $\Im(\lambda_n) = c_i = c(\mu_i'), \quad \lambda' \in N_i$.

Define open sets inductively by $\Delta_1 = N_1$ and $\Delta_i = N_i \setminus (\overline{N}_1 \cup \ldots \cup \overline{N}_{i-1})$. Now we have that $\{\Delta_i\}$ are open, disjoint and $\bigcup_i \overline{\Delta}_i = \mathbb{R}^{n-1}$ and

$$|P(\lambda', \lambda_n)| > 1$$
 on $\Im(\lambda_n) = c_i, \quad \lambda' \in \Delta_i$.

Now define

$$\langle E, \phi \rangle = (2\pi)^{-n} \sum_{i=1}^{\infty} \int_{\Delta_i} \int_{\Im(\lambda_n) = c_i} \frac{\hat{\phi}(-\lambda', -\lambda_n)}{P(\lambda', \lambda_n)} d\lambda_n d\lambda'$$

then

$$\langle P(D)E, \phi \rangle = (2\pi)^{-n} \sum_{i=1}^{\infty} \int_{\Delta_i} \int_{\Im(\lambda_n) = c_i} \frac{P(\lambda', \lambda_n) \hat{\phi}(-\lambda', -\lambda_n)}{P(\lambda', \lambda_n)} d\lambda_n d\lambda'$$

$$= (2\pi)^{-n} \sum_{i=1}^{\infty} \int_{\Delta_i} \int_{\mathbb{R}} \hat{\phi}(-\lambda', -\lambda_n) d\lambda_n d\lambda \qquad \text{(Lemma+Cauchy)}$$

$$= (2\pi)^{-n} \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \hat{\phi}(-\lambda', -\lambda_n) d\lambda_n d\lambda'$$

$$= \phi(0)$$

$$= \langle \delta_0, \phi \rangle.$$

Can show that E does indeed define a distribution [see Example Sheet 3] so $P(D)E = \delta_0$.

The existence of fundamental solutions is called the Malgrange-Ehrenpries theorem.

4.3 Structure Theorem for $\mathcal{E}'(X)$

We know that if $f \in C(X)$ then $\partial^{\alpha} f \in \mathcal{D}'(X)$ with

$$\langle \partial^{\alpha} f, \phi \rangle = (-1)^{|\alpha|} \int_{X} f \partial^{\alpha} \phi dx$$

for all $\phi \in \mathcal{D}(X)$. Also note that

$$\delta_0 = (xH)'' \text{ in } \mathcal{D}'(\mathbb{R}).$$

Natural to ask: can all distributions be written in the form

$$u = \sum_{\alpha} \partial^{\alpha} f_{\alpha} \text{ in } \mathcal{D}'(X)$$

where $f_{\alpha} \in C(X)$? We will prove this in the case $\mathcal{E}'(X)$ but the result is true more generally.

Lemma. If $u \in \mathcal{E}'(\mathbb{R}^n) \subseteq \mathcal{S}'(\mathbb{R}^n)$ then $\hat{u} \in \mathcal{S}'(\mathbb{R}^n)$ can be identified with the smooth (analytic) function $\lambda \mapsto \hat{u}(\lambda) = \langle u, x \mapsto e^{-i\lambda \cdot x} \rangle$. Also there exists $M \geq 0$ such that $|\hat{u}(\lambda)| \lesssim \langle \lambda \rangle^M$.

Proof. Fix $\chi \in \mathcal{D}(\mathbb{R}^n)$ such that $\chi = 1$ on |x| < 1 and $\chi = 0$ on |x| > 2. For $\phi \in \mathcal{S}(\mathbb{R}^n)$ set $\phi_m(x) = \chi(x/m)\phi(x) \in \mathcal{D}(\mathbb{R}^n)$. We claim $\phi_m \to \phi$ in $\mathcal{S}(\mathbb{R}^n)$. For arbitrary α, β ,

$$\|\phi - \phi_m\|_{\alpha,\beta} = \|x^{\alpha} D^{\beta} [\phi(x)(1 - \chi(x/m))]\|_{\infty}$$
$$= \left\|x^{\alpha} \sum_{\gamma \leq \beta} {\beta \choose \gamma} D^{\gamma} \phi D^{\beta - \gamma} (1 - \chi(x/m))\right\|_{\infty}.$$

All derivatives of $x \mapsto 1 - \chi(x/m)$ tend to 0 uniformly and

$$||x^{\alpha}D^{\gamma}\phi(1-\chi(x/m))||_{\infty} \lesssim \sup_{|x|>m} |x^{\alpha}D^{\gamma}\phi|$$
$$\lesssim \sup_{|x|>2m} \left|\frac{|x|}{2m}x^{\alpha}D^{\gamma}\phi\right|$$
$$\lesssim \frac{||\phi||_{\alpha+1,\gamma}}{2m} \to 0.$$

So by sequential continuity of $\hat{u} \in \mathcal{S}'(\mathbb{R}^n)$ we have

$$\begin{split} \langle \hat{u}, \phi \rangle &= \lim_{m \to \infty} \langle \hat{u}, \phi_m \rangle \\ &= \lim_{m \to \infty} \langle u, \hat{\phi}_m \rangle \\ &= \lim_{m \to \infty} \langle u, x \mapsto \int_{\mathbb{R}} e^{-i\lambda \cdot x} \phi_m(\lambda) \mathrm{d}\lambda \rangle. \end{split}$$

By a Riemann sum argument (note each ϕ_m has compact support), we have

$$\lim_{m \to \infty} \langle u, x \mapsto \int_{\mathbb{R}} e^{-i\lambda \cdot x} \phi_m(\lambda) d\lambda \rangle = \lim_{m \to \infty} \langle u, x \mapsto e^{-i\lambda \cdot x} \rangle \phi_m(\lambda) d\lambda.$$

Since the power series for $x\mapsto e^{-i\lambda\cdot x}$ converges locally uniformly, we were able to interchange $\langle\cdot,\cdot\rangle$ with the infinite sum, by sequential continuity. So $\hat{u}(\lambda)=\langle u,x\mapsto e^{-i\lambda\cdot x}\rangle$ is smooth and by the semi-norm estimate of $u\in\mathcal{E}'(\mathbb{R}^n)$, there exists $C,N\geq 0$ and compact $K\subseteq\mathbb{R}^n$ such that

$$\begin{aligned} |\hat{u}(\lambda)| &= |\langle u, x \mapsto e^{-i\lambda \cdot x} \rangle| \\ &\leq C \sum_{|\alpha| \leq N} \sup_{K} |\partial_x^{\alpha}(e^{-\lambda \cdot x})| \\ &\lesssim \langle \lambda \rangle^N \end{aligned}$$

for $\lambda \in \mathbb{R}^n$. Hence by the DCT

$$\lim_{m \to \infty} \int \langle u, x \mapsto \int_{\mathbb{R}} e^{-i\lambda \cdot x} \rangle \phi_m(\lambda) d\lambda = \int \hat{u}(\lambda) \phi(\lambda) d\lambda$$

i.e \hat{u} can be identified with $\lambda \mapsto \hat{u}(\lambda)$.

Theorem. For each $u \in \mathcal{E}'(X)$ there exists a finite collection $\{f_{\alpha}\}$, $f_{\alpha} \in C(X)$ and supp $(f_{\alpha}) \subseteq X$ such that

$$u = \sum_{\alpha} \partial^{\alpha} f_{\alpha} \text{ in } \mathcal{E}'(X).$$

Proof. Fix $\rho \in \mathcal{D}(X)$ such that $\rho = 1$ on supp(u). Then for $\phi \in \mathcal{E}(X)$ have

$$\langle u, \phi \rangle = \langle u, \rho \phi \rangle$$

and since u extends to an element of $\mathcal{E}'(\mathbb{R}^n)$ and $\rho\phi$ extends to $\rho\phi \in \mathcal{D}(\mathbb{R}^n)$, $\psi \in \mathcal{S}(\mathbb{R}^n)$ can write $(\rho\phi) = (\hat{\psi})$. In fact

$$(2\pi)^n \check{\psi} = \rho \phi. \tag{*}$$

So we have

$$\langle u, \phi \rangle = \langle u, \hat{(\psi)} \rangle = \langle \hat{u}, \hat{\psi} \rangle.$$

Note that

$$\mathcal{F}([1-\Delta]^m \psi)(\lambda) = \langle \lambda \rangle^{2m} \hat{\psi}(\lambda)$$

where $\Delta = \sum_{i=1}^{n} \left(\frac{\partial}{\partial x_i} \right)^2$ is the Laplacian. Hence

$$\langle u, \psi \rangle = \langle \langle \lambda \rangle^{-2m} \hat{u}, \mathcal{F} ([1 - \Delta]^m \psi) \rangle.$$

By choosing m sufficiently large and defining $f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\lambda \cdot x} \langle \lambda \rangle^{-2m} \hat{u}(\lambda) d\lambda$ we have that f is continuous by the DCT. Also

$$(2\pi)^n \, \check{f} = \mathcal{F}(\langle \lambda \rangle^{-2m} \hat{u})$$

and so

$$\begin{split} \langle u, \phi \rangle &= \langle \mathcal{F}(\langle \lambda \rangle^{-2m} \hat{u}), [1 - \Delta]^m \psi \rangle \\ &= \langle (2\pi)^n \check{f}, [1 - \Delta]^m \psi \rangle \\ &= \langle f, [1 - \Delta]^m [(2\pi)^n \check{\psi}] \rangle \\ &= \langle f, [1 - \Delta]^m (\rho \phi) \rangle. \end{split} \tag{by (*)}$$

We can expand derivatives, so by Leibnitz

$$\langle u, \phi \rangle = \langle f, \sum_{\alpha} (-1)^{|\alpha|} \rho_{\alpha} \partial^{\alpha} \phi \rangle$$

where $\rho_{\alpha} \in \mathcal{D}(\mathbb{R}^n)$ with supp $(\rho_{\alpha}) \subseteq X$. So

$$\langle u, \phi \rangle = \langle \sum_{\alpha} \partial^{\alpha}(\rho_{\alpha} f), \phi \rangle$$

= $\langle \sum_{\alpha} \partial^{\alpha} f_{\alpha}, \phi \rangle$

where $f_{\alpha} = \rho_{\alpha} f \in C(X)$ and supp $(f_{\alpha}) \subseteq X$.

Example. We know that $\delta_0 = (xH)''$. Also note that if $\phi \in \mathcal{D}(\mathbb{R})$ has $\phi(0) = 1$ then $\phi \delta_0 = \delta_0$. Hence for $f \in \mathcal{D}(\mathbb{R})$

$$\langle \delta_0, f \rangle = \langle \phi(xH)'', f \rangle$$

$$= \langle xH, (f\phi)'' \rangle$$

$$= \langle xH, f''\phi + 2\phi'f' + f\phi'' \rangle$$

$$= \langle (\phi xH)'', f \rangle - 2\langle (\phi'xH)', f \rangle + \langle \phi''xH, f \rangle$$

so $\delta_0 = (\phi x H)'' - 2(\phi' x H)' + \phi''(x H)$. Note that each of $\phi x H, \phi' x H, \phi'' x H$ have compact support in \mathbb{R} .

4.4 Paley-Wiener Schwartz Theorem

Have seen that if $u \in \mathcal{E}'(\mathbb{R}^n)$ then \hat{u} can be identified with

$$\lambda \mapsto \hat{u}(\lambda) = \langle u, x \mapsto e^{-i\lambda \cdot x} \rangle.$$

Taking a complex analytic extension to $z \in \mathbb{C}^n$, call this $\hat{u}(z) = \langle u, z \mapsto e^{-iz \cdot x} \rangle$ we obtain the *Fourier-Laplace transform* of $u \in \mathcal{E}'(\mathbb{R}^n)$. We know there exists $C, N \geq 0, K \subseteq \mathbb{R}^n$ compact such that

$$\begin{aligned} |\hat{u}(z)| &= |\langle u, x \mapsto e^{iz \cdot x} \rangle| \\ &\leq C \sum_{|\alpha| < N} \sup_{K} |\partial_x^{\alpha} e^{-iz \cdot x}|. \end{aligned}$$

Also, $z \mapsto \hat{u}(z)$ is entire [power series of $x \mapsto e^{-iz \cdot x}$ converges locally uniformly, so can apply u termwise (sequential continuity of u) to get power series for $\hat{u}(z)$].

Lemma. If $u \in \mathcal{E}'(\mathbb{R}^n)$ and $\operatorname{supp}(u) \subseteq \overline{B}_{\delta} = \{x \in \mathbb{R}^n : |x| \leq \delta\}$ then there exist $C, N \geq 0$ such that

$$|\hat{u}(z)| \le C(1+|z|)^N e^{\delta|\Im(z)|}.$$

Proof. Fix $\psi \in C^{\infty}(\mathbb{R})$ such that $\psi(\tau) = 1$ on $\tau \ge -\frac{1}{2}$ and $\psi(\tau) = 0$ on $\tau \le -1$. For $\varepsilon > 0$, define

$$\phi_{\varepsilon}(x) = \psi(\varepsilon(\delta - |x|))$$

for $x \in \mathbb{R}^n$. Then $\phi_{\varepsilon} \in \mathcal{D}(\mathbb{R}^n)$ and

$$\phi_{\varepsilon} = \begin{cases} 1 & \text{on } |x| \le \delta + \frac{1}{2\varepsilon} \\ 0 & \text{on } |x| \ge \delta + \frac{1}{\varepsilon} \end{cases}.$$

Note that $\phi_{\varepsilon} = 1$ on supp(u). Since $u \in \mathcal{E}'(\mathbb{R}^n)$ there exist $C, N \geq 0$ such that

$$|\hat{u}(z)| = |\langle u, x \mapsto \phi_{\varepsilon}(x)e^{-iz \cdot x} \rangle$$

$$\leq C \sum_{|\alpha| \leq N} \sup |\partial^{\alpha}[\phi_{\varepsilon}e^{-ix \cdot z}]|.$$

Note $|\partial^{\beta}\phi_{\varepsilon}| \lesssim_{\beta} \varepsilon^{|\beta|}$ and $|\partial^{\gamma}e^{-iz\cdot x}| \lesssim |z|^{|\gamma|}e^{(\varepsilon+\frac{1}{2\delta})|\Im(z)|}$ on $\operatorname{supp}(\phi_{\varepsilon})$. Hence

$$|\hat{u}(z)| \lesssim \sum_{|\beta| + |\gamma| \le N} \varepsilon^{|\beta|} |z|^{|\gamma|} e^{(\varepsilon + \frac{1}{2\delta})|\Im(z)|}$$

so take $\varepsilon = |z|$ to get the result.

The Paley-Wiener-Schwartz theorem is about the converse: if $z\mapsto U(z)$ is entire and

$$|U(z)| \le (1+|z|)^N e^{\delta|\Im(z)|}$$

is it the case that $U = \hat{u}$ for some $u \in \mathcal{E}'(\mathbb{R}^n)$ with $\operatorname{supp}(u) \subseteq \overline{B}_{\delta}$.

Theorem (Paley-Wiener-Schwartz).

(A) If $\phi \in \mathcal{D}(\mathbb{R}^n)$ and $\operatorname{supp}(\phi) \subseteq \overline{B}_{\delta}$ then $z \mapsto \hat{\phi}(z)$ is entire and

$$|\hat{\phi}(z)| \lesssim_N (1+|z|)^{-N} e^{\delta|\Im(z)|}, \ z \in \mathbb{C}, \ N = 0, 1, 2, \dots$$
 (†)

Conversely, if $z \mapsto \Phi(z)$ is entire and satisfies (\dagger) then $\Phi = \hat{\phi}$ for some $\phi \in \mathcal{D}(\mathbb{R}^n)$, supp $(\phi) \subseteq \overline{B}_{\delta}$.

(B) If $u \in \mathcal{E}'(\mathbb{R}^n)$ and $\operatorname{supp}(u) \subseteq \overline{B}_{\delta}$, then $z \mapsto \hat{u}(z)$ is entire and there exists N > 0 such that

$$|\hat{u}(z)| \lesssim (1+|z|)^N e^{\delta|\Im(z)|}, \ z \in \mathbb{C}. \tag{\ddagger}$$

Conversely, if $z \mapsto U(z)$ is entire and satisfies (\ddagger) then $U = \hat{u}$ for some $u \in \mathcal{E}'(\mathbb{R}^n)$ with $\operatorname{supp}(u) \subseteq \overline{B}_{\delta}$.

Proof.

(A) It is clear that

$$z \mapsto \hat{u}(z) = \int_{\mathbb{R}^n} e^{iz \cdot x} \phi(x) dx$$

is entire (Morera+Fubini). For the estimate (†) note that for α a multi-index

$$|z^{\alpha}\hat{\phi}(z)| = \left| \int_{\mathbb{R}^n} z^{\alpha} e^{-iz \cdot x} \phi(x) dx \right|$$
$$= \left| \int_{\mathbb{R}^n} e^{-iz \cdot x} D^{\alpha} \phi(x) dx \right|$$
$$\lesssim_{\alpha} e^{\delta |\Im(z)|}$$

since $|e^{-z \cdot x}| = |e^{\Im(z) \cdot x} \le e^{\delta |Im(z)|}$ on $\operatorname{supp}(\phi)$. The estimate (†) then follows. For the converse, given $z \mapsto \Phi(z)$ entire and obeying (†) define

$$\phi(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\lambda \cdot x} \Phi(\lambda) d\lambda.$$

Then by the DCT and (\dagger) we have that $\phi \in C^{\infty}(\mathbb{R}^n)$. By Cauchy's theorem, entirety of $z \mapsto \Phi(z)$ and estimate (\dagger) , we have for arbitrary $\eta \in \mathbb{R}^n$ that

$$|\phi(x)| = (2\pi)^{-n} \left| \int_{\mathbb{R}^n} e^{i(\lambda + i\eta) \cdot x} \Phi(\lambda + i\eta) d\lambda \right|$$

[justified by rapid horizontal decay of Φ]. So by (†)

$$|\phi(x)| \lesssim_N \int_{\mathbb{R}^n} e^{-\eta \cdot x} (1 + |\lambda + i\eta|)^{-N} e^{\delta|\eta|} d\lambda$$

$$\lesssim e^{\delta|\eta| - \eta \cdot x}.$$

Take $\eta = \frac{x}{|x|}t$, t > 0. Then

$$e^{\delta|\eta|-\eta\cdot x} = e^{-t(|x|-\delta)}.$$

If $|x| > \delta$, take $t \to \infty$ to get $\phi = 0$. Hence $\phi \in \mathcal{D}(\mathbb{R}^n)$ and $\operatorname{supp}(\phi) \subseteq \overline{B}_{\delta}$. Taking Fourier transform shows $\Phi = \hat{\phi}$.

(B) We already established the forward direction. For the converse, let $z \mapsto U(z)$ satisfy (\ddagger) . Then $U|_{\mathbb{R}^n} \in \mathcal{S}'(\mathbb{R}^n)$ since $|U(\lambda)| \lesssim \langle \lambda \rangle^N$. Since $\mathcal{F} : \mathcal{S}' \to \mathcal{S}'$ is an isomorphism, there exists $u \in \mathcal{S}'(\mathbb{R}^n)$ such that $\hat{u} = U$. Fix $\phi \in \mathcal{D}(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \phi dx = 1$ and $\operatorname{supp}(\phi) \subseteq B_1$. Set $\phi_{\varepsilon}(x) = \varepsilon^{-n}\phi(x/\varepsilon)$. Then $\phi_{\varepsilon} \to \delta_0$ in $\mathcal{S}'(\mathbb{R}^n)$ and $\operatorname{supp}(\phi_{\varepsilon}) \subseteq B_{\varepsilon}$. Hence $\hat{\phi}_{\varepsilon} \to 1$ in $\mathcal{S}'(\mathbb{R}^n)$.

Define

$$\hat{u}_{\varepsilon}(z) = \hat{\phi}_{\varepsilon}(z)U(z).$$

By (\dagger) (for $\hat{\phi_{\varepsilon}}$) and (\ddagger) (for U) we have

$$|\hat{u}_{\varepsilon}(z)| \lesssim_N (1+|z|)^{-N} e^{(\varepsilon+\delta)|\Im(z)|}, N=0,1,2,\dots$$

Hence $u_{\varepsilon} \in \mathcal{D}(\mathbb{R}^n)$ and $\operatorname{supp}(u_{\varepsilon}) \subseteq \overline{B}_{\delta+\varepsilon}$. As $\varepsilon \downarrow 0$, $\hat{u}_{\varepsilon} \to \hat{u}$ in $\mathcal{S}'(\mathbb{R}^n)$.

5 Oscillatory integrals

In this section we would like to make sense of

$$\int_{\mathbb{R}} e^{i\lambda x} \mathrm{d}\lambda$$

and more generally, objects of the form

$$\int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} a(x,\theta) d\theta$$

where $x \in X$. Call real valued $\Phi \in C^{\infty}(X \times \mathbb{R}^k \setminus \{0\})$ the phase function and a will belong to a class of functions called *symbols*. Note that the integral will not be well-defined in a classical sense as we will allow symbols which get large as $|\theta| \to \infty$.

Lemma (Riemann-Lebesgue). If $f \in L^1(\mathbb{R})$ then $|\hat{f}(\lambda)| \to 0$ as $|\lambda| \to \infty$.

Proof. Assume $f \in L^1(\mathbb{R}) \cap C(\mathbb{R})$. Then

$$\hat{f}(\lambda) = \frac{1}{2} \int_{\mathbb{R}} [e^{-i\lambda x} f(x) + e^{-i\lambda x} f(x)] dx$$

$$= \frac{1}{2} \int_{\mathbb{R}} [e^{-i\lambda x} f(x) + e^{-i\pi} e^{-i\lambda x} f(x + \pi/\lambda)] dx$$

$$= \frac{1}{2} \int_{\mathbb{R}} e^{-i\lambda x} [f(x) - f(x + \pi/\lambda)] dx.$$

Since $f \in L^1(\mathbb{R})$, given $\varepsilon > 0$ there exists R such that

$$\frac{1}{2} \int_{|x|>R} |f(x) - f(x + \pi/\lambda)| \mathrm{d}x < \frac{\varepsilon}{4}.$$

Since $f \in C(\mathbb{R})$ we can take $|\lambda|$ sufficiently large so that

$$\left| \int_{|x| < R} e^{-i\lambda x} [f(x) - f(x + \pi/\lambda)] dx \right| < \frac{\varepsilon}{4}$$

i.e $|\hat{f}(\lambda)| < \varepsilon/2$ for all $|\lambda|$ sufficiently large. Note $L^1(\mathbb{R}) \cap C(\mathbb{R})$ is dense in $L^1(\mathbb{R})$ so given $g \in L^1(\mathbb{R})$ we can fix $f \in L^1(\mathbb{R}) \cap C(\mathbb{R})$ such that $||f - g||_{L^1} < \varepsilon/2$ so

$$|\hat{g}(\lambda)| = |\hat{g}(\lambda) - \hat{f}(\lambda) + \hat{f}(\lambda)|$$

$$= ||g - f||_{L^1} + |\hat{f}(\lambda)|$$

$$< \varepsilon$$

for $|\lambda|$ sufficiently large.

The above result intuitively says that more oscillation in an integral implies faster decay. More generally, if $\phi \in \mathcal{D}(\mathbb{R})$ and $\Phi \in C^{\infty}(\mathbb{R})$ we expect

$$\int_{\mathbb{R}} \phi(x) e^{i\lambda\Phi(x)} \mathrm{d}x$$

to decay as $|\lambda| \to \infty$. For example if $\Phi' \neq 0$ then the operator $L = \frac{1}{i\lambda\Phi'(\theta)} \frac{\mathrm{d}}{\mathrm{d}\theta}$ is well-defined since $|\Phi'(\theta)| \gtrsim 1$ on $\mathrm{supp}(\phi)$. Note that $Le^{i\lambda\Phi} = e^{i\lambda\Phi}$. So

$$\int_{\mathbb{R}} \phi(\theta) e^{i\lambda\Phi(\theta)} d\theta = \int_{\mathbb{R}} \phi(\theta) L e^{i\lambda\Phi} d\theta$$
$$= \int_{\mathbb{R}} L^{t}[\phi] e^{i\lambda\Phi} d\theta$$

where $L^t = -\frac{1}{i\lambda} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[\frac{1}{\Phi} \cdot\right]$ is the formal adjoint of L. We can do this as many times as we want so

$$\left| \int_{\mathbb{R}} e^{i\lambda \Phi} \phi d\theta \right| = \left| \int_{\mathbb{R}} (L^t)^N(p) e^{i\lambda \Phi} d\theta \right|$$
$$\leq_N \langle \lambda \rangle^{-N}.$$

We expect to get a dominant contribution from points at which $\Phi' = 0$ (stationary points).

Lemma (Stationary phase). Let $\Phi \in C^{\infty}(\mathbb{R})$ such that $\Phi' \neq 0$ on $\mathbb{R} \setminus \{0\}$ and $\Phi(0) = \Phi'(0) = 0$, $\Phi''(0) \neq 0$. Then for $\phi \in \mathcal{D}(\mathbb{R})$

$$\left| \int_{\mathbb{R}} e^{i\lambda \Phi(\theta)} \phi(\theta) d\theta \right| \lesssim \frac{1}{|\lambda|^{1/2}} \ as \ |\lambda| \to \infty.$$

Proof. Fix $\rho \in \mathcal{D}(\mathbb{R})$ such that $\rho = 1$ on $|\theta| < 1$ and $\rho = 0$ on $|\theta| > 2$. Write

$$\int_{\mathbb{R}} e^{i\lambda\Phi} \rho(\theta) d\theta = \underbrace{\int_{\mathbb{R}} e^{i\lambda\Phi} \rho(\theta/\delta) \phi(\theta) d\theta}_{I_1} + \underbrace{\int_{\mathbb{R}} e^{i\lambda\Phi} (1 - \rho(\theta/\delta)) \phi(\theta) d\theta}_{I_2}$$

and since $\rho(\theta/\delta) = 0$ on $|\theta| > 2\delta$ we get the simple estimate

$$|I_1| \lesssim \delta$$
.

Note $(1 - \rho(\theta/\delta)) = 0$ on $|\theta| < \delta$ so we're essentially integrating over $|\theta| > \delta$, so

$$L = \frac{1}{i\lambda\Phi'}\frac{\mathrm{d}}{\mathrm{d}\theta}$$

is well-defined and $Le^{i\lambda\Phi}=e^{i\lambda\Phi}$. So

$$I_2(\lambda) = \int_{\mathbb{R}} e^{i\lambda\Phi} (L^t)^2 [(1 - \rho(\theta/\delta))\phi(\theta)] d\theta$$

where $L^t = -\frac{1}{i\lambda} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[\frac{1}{\Phi'} \cdot \right]$. Note that if

$$P := \frac{\mathrm{d}}{\mathrm{d}\theta} \left[a \cdot \right]$$

we have

$$P^{2} = \frac{\mathrm{d}}{\mathrm{d}\theta} \left[a \frac{\mathrm{d}}{\mathrm{d}\theta} (a \cdot) \right]$$
$$= a^{2} \frac{\mathrm{d}^{2}}{\mathrm{d}\theta^{2}} + 3aa' \frac{\mathrm{d}}{\mathrm{d}\theta} + (aa').$$

Also

$$(L^{t})^{2} = -\frac{1}{\lambda^{2}} \left[\frac{1}{(\Phi')^{2}} \frac{\mathrm{d}^{2}}{\mathrm{d}\theta^{2}} - 3 \frac{\Phi''}{(\Phi')^{3}} \frac{\mathrm{d}}{\mathrm{d}\theta} - \left(\frac{\Phi''}{(\Phi')^{3}} \right)' \right] - \frac{(\Phi'')^{2}}{(\Phi')^{4}}.$$

Note that

$$\Phi'(\theta) - \Phi'(0) = \int_0^\theta \Phi''(t) dt$$
$$= \theta \int_0^1 \Phi''(t\theta) dt$$

i.e

$$\frac{\mathrm{d}\Phi'(\theta)}{\mathrm{d}\theta} = \int_0^1 \Phi'(t\theta) \mathrm{d}t.$$

The LHS of this is non-zero at $\theta \neq 0$ and converges to $\Phi''(0) \neq 0$ as $\theta \to 0$, i.e $|\Phi'(\theta)| \gtrsim |\theta|$ on $\mathrm{supp}(\phi)$. So

$$(L^t)^2[\phi(\theta)[1-\rho(\theta/\delta)]] = \mathcal{O}\left(\frac{1}{\lambda^2\theta^2\delta^2}\right) + \mathcal{O}\left(\frac{1}{\lambda^2\theta^2\delta}\right) + \mathcal{O}\left(\frac{1}{\lambda^2\theta^4}\right)$$

and integrating over $|\theta| > \delta$ we see

$$|I_2(\lambda)| = \mathcal{O}\left(\frac{1}{\lambda^2 \delta^3}\right) + \mathcal{O}\left(\frac{1}{\lambda^2 \delta^3}\right) + \mathcal{O}\left(\frac{1}{\lambda^2 \delta^3}\right).$$

Matching with $I_1(\lambda) = \mathcal{O}(\delta)$ we take

$$\delta = \frac{1}{\lambda^2 \delta^3} \implies \delta = \frac{1}{|\lambda|^{1/2}}.$$

This estmiate is sharp, e.g

$$\begin{split} \int_{\mathbb{R}} e^{i\lambda\theta^2} \phi(\theta) \mathrm{d}\theta &= \frac{1}{\sqrt{\lambda}} \int_{\mathbb{R}} e^{i\eta^2} \phi(\eta/\sqrt{\lambda}) \mathrm{d}\eta \\ &\sim \frac{\mathrm{constant}}{\sqrt{\lambda}} + \text{ lower order terms} \end{split}$$

as $|\lambda| \to \infty$. Using this we expect

$$u(x) = \int_{\mathbb{R}} e^{i\Phi(x,\theta)} a(x,\theta) d\theta$$

to be "badly behaved" at $x_0 \in X$ for which

$$\nabla_{\theta} \Phi(x_0, \theta) = 0$$
 for some $\theta \in \mathbb{R}^k$.

We will show

sing supp
$$(u) \subseteq \{x \in X : \nabla_{\theta} \Phi(x, \theta) = 0 \text{ for some } \theta \in \mathbb{R}^k \setminus \{0\}\}.$$

Definition. Let $X \subseteq \mathbb{R}^n$ be open. A smooth function $a: X \times \mathbb{R}^k \to \mathbb{C}$ is called a *symbol* of order $N \in \mathbb{R}$ if for each $K \subseteq X$ compact

$$|D_x^{\alpha} D_{\theta}^{\beta} a(x,\theta)| \lesssim_{K,\alpha,\beta} \langle \theta \rangle^{N-|\beta|}$$

for $(x, \theta) \in K \times \mathbb{R}^k$. Call the space of all such symbols $\operatorname{Sym}(X, \mathbb{R}^k; N)$.

For example if $\{\varphi_{\alpha}\}$ is in $C^{\infty}(X)$ then

$$a(x,\theta) = \sum_{|\alpha| \le N} \varphi_{\alpha}(x)\theta^{\alpha}$$

belongs to $\operatorname{Sym}(X, \mathbb{R}^k; N)$. We only care about the behaviour of symbols for large $|\theta|$ since for any compact $L \subseteq \mathbb{R}^k$, if $a \in C^{\infty}(X \times \mathbb{R}^k)$ then

$$(x,\theta) \mapsto \frac{D_x^{\alpha} D^{\beta}(x,\theta)}{\langle \theta \rangle^{N-|\beta|}}$$

will always be bounded on $K \times L$ for $K \subseteq X$ compact.

Lemma.

- If $a \in \text{Sym}(X, \mathbb{R}^k; N)$ then $D_x^{\alpha} D_{\theta}^{\beta} a \in \text{Sym}(X, \mathbb{R}^k; N |\beta|)$;
- If $a_i \in \text{Sym}(X, \mathbb{R}^k; N_i)$ then $a_1 a_2 \in \text{Sym}(X, \mathbb{R}^k, N_1 + N_2)$;

Proof. Obviously $D_x^{\alpha}D_{\theta}^{\beta}a$ is smooth on $X \times \mathbb{R}^k$. For $K \subseteq X$ compact

$$\begin{split} |D_x^{\alpha'} D_{\theta}^{\beta'} [D_x^{\alpha} D_{\theta}^{\beta} a]| &= |D_x^{\alpha + \alpha'} D_{\theta}^{\beta + \beta'} a| \\ &\lesssim_{K,\alpha,\beta} \langle \theta \rangle^{N - |\beta + \beta'|} \\ &= \langle \theta \rangle^{N - |\beta| - |\beta'|} \end{split}$$

and so $D_x^{\alpha}D_{\theta}^{\beta}a\in \mathrm{Sym}(X,\mathbb{R}^k;N-|\beta|)$. Again for $K\subseteq X$ compact

$$|D_{x}^{\alpha}D_{\theta}^{\beta}(a_{1}a_{2})| \leq \left| \sum_{\alpha' \leq \alpha} \sum_{\beta' \leq \beta} {\alpha \choose \alpha'} {\beta \choose \beta'} (D_{x}^{\alpha'}D_{\theta}^{\beta'}a_{1}) (D_{x}^{\alpha-\alpha'}D_{\theta}^{\beta-\beta'}a_{2}) \right|$$

$$\lesssim_{\alpha,\beta} \sum_{\alpha' \leq \alpha} \sum_{\beta' \leq \beta} |D_{x}^{\alpha'}D_{\theta}^{\beta'}a_{1}| |D_{x}^{\alpha-\alpha'}D_{\theta}^{\beta-\beta'}a_{2}|$$

$$\lesssim_{K,\alpha,\beta} \sum_{\alpha' \leq \alpha} \sum_{\beta' \leq \beta} \langle \theta \rangle^{N_{1}-|\beta'|} \langle \theta \rangle^{N_{2}-|\beta|+|\beta'|}$$

$$\lesssim_{\alpha,\beta} \langle \theta \rangle^{N_{1}+N_{2}-|\beta|}$$

and hence $a_1 a_2 \in \text{Sym}(X, \mathbb{R}^k; N_1 + N_2)$.

Lemma. If $a \in C^{\infty}(X \times \mathbb{R}^k)$ and a is positively homogenous of degree N (in θ) for $|\theta|$ sufficiently large, then $a \in \text{Sym}(X, \mathbb{R}^k; N)$.

Remark. Technically we mean that for $|\theta|$ sufficiently large, a agrees with a function which is positively homogenous everywhere.

Proof. For $|\theta|$ sufficiently large $a(x,t\theta)=t^Na(x,\theta)$ for t>0. So for $|\theta|$ large

$$\begin{split} t^N D_x^\alpha D_\theta^\beta [a(x,\theta)] &= D_x^\alpha D_\theta^\beta [a(x,t\theta)] \\ &= t^{|\beta|} (D_x^\alpha D_\theta^\beta a)(x,t\theta) \end{split}$$

i.e $D_x^{\alpha}D_{\theta}^{\beta}a$ is also positively homogenous of order $N-|\beta|$ for $|\theta|$ large. For $K\subseteq X$ compact set $\omega=\theta/|\theta|\in S^{k-1}$ so

$$\begin{split} |D_x^\alpha D_\theta^\beta a(x,\theta)| &= |D_x^\alpha D_\theta^\beta a(x,|\theta|\omega)| \\ &= |\theta|^{N-|\beta|} |D_x^\alpha D_\theta^\beta a(x,\omega)| \\ &\lesssim_{K,\alpha,\beta} \langle \theta \rangle^{N-|\beta|} \end{split}$$

by compactness of S^{k-1} .

Definition. $\Phi: X \times \mathbb{R}^k \to \mathbb{R}$ is called a *phase function* if

- (i) Φ is continuous on $X \times \mathbb{R}^k$ and positively homogenous of degree 1 in θ ;
- (ii) Φ is smooth $X \times (\mathbb{R}^k \setminus \{0\})$;
- (iii) $d\Phi = \nabla_{\theta} \Phi \cdot d\theta + \nabla_x \Phi \cdot dx \neq 0 \text{ on } X \times (\mathbb{R}^k \setminus \{0\}), \text{ i.e.}$

$$\begin{pmatrix} \frac{\partial \Phi}{\partial \theta_1} \\ \vdots \\ \frac{\partial \Phi}{\partial \theta_k} \\ \frac{\partial \Phi}{\partial x_1} \\ \vdots \\ \frac{\partial \Phi}{\partial x_n} \end{pmatrix} \neq 0$$

on
$$X \times (\mathbb{R}^k \setminus \{0\})$$
.

We want to make sense of

$$D^{\alpha}\delta_0(x) = (2\pi)^{-n} \int_{\mathbb{D}_k} \theta^{\alpha} e^{ix \cdot \theta} d\theta$$

i.e
$$\Phi(x,\theta) = x \cdot \theta$$
, $a(x,\theta) = (2\pi)^{-n}\theta^{\alpha} \in \text{Sym}(\mathbb{R}^n, \mathbb{R}^n; |\alpha|)$.

More generally we want to make sense of

$$\int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} a(x,\theta) d\theta$$

for Φ a phase function and $a \in \text{Sym}(X, \mathbb{R}^k; N)$.

We could define a linear form $I_{\Phi}(a) : \mathcal{D}(X) \to \mathbb{C}$ by

$$\langle I_{\Phi}(a), \phi \rangle = \int_{\mathbb{R}^k} \int_{\mathbb{R}^n} e^{i\Phi(x,\theta)} a(x,\theta) \phi(x) dx d\theta$$

but this is difficult to work with due to lack of $d\theta \otimes dx$ integrability. Instead, fix $\chi \in \mathcal{D}(\mathbb{R}^k)$ such that $\chi = 1$ on $|\theta| < 1$ and set

$$I_{\Phi}^{\varepsilon}(a) = \int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} a(x,\theta) \chi(\varepsilon\theta) d\theta.$$

Then define

$$I_{\Phi}(a) = \lim_{\varepsilon \downarrow 0} I_{\Phi}^{\varepsilon}(a) \text{ in } \mathcal{D}'(X).$$

Lemma. If L has form

$$L = \sum_{j=1}^{k} a_j(x,\theta) \frac{\partial}{\partial \theta_j} + \sum_{j=1}^{n} b_j(x,\theta) \frac{\partial}{\partial x_j} + c(x,\theta)$$

for $a_j \in \text{Sym}(X, \mathbb{R}^k; 0)$, $b_j, c \in \text{Sym}(X, \mathbb{R}^k; -1)$, then L^t has the same form. Proof. We have

$$L^{t} = -\sum_{j=1}^{k} \frac{\partial}{\partial \theta_{j}} (a_{j} \cdot) - \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} (b_{j} \cdot) + c$$
$$= \sum_{j=1}^{k} \tilde{a}_{j} \frac{\partial}{\partial \theta_{j}} + \sum_{j=1}^{n} \tilde{b}_{j} \frac{\partial}{\partial x_{j}} + \tilde{c}$$

where $\tilde{a}_j = -a_j \in \mathrm{Sym}(X, \mathbb{R}^k; 0), \ \tilde{b}_j = -b_j \in \mathrm{Sym}(X, \mathbb{R}^k; -1)$ and

$$\tilde{c} = -\sum_{j=1}^{k} \frac{\partial a_j}{\partial \theta_j} - \sum_{j=1}^{n} \frac{\partial b_j}{\partial x_j} + c \in \text{Sym}(X, \mathbb{R}^k; -1).$$

If we could find such an L for which

$$Le^{i\Phi} = e^{i\Phi}$$

then

$$\begin{split} \langle \Phi_I^{\varepsilon}(a), \phi \rangle &= \int_{\mathbb{R}^k} \int_{\mathbb{R}^n} (L^N e^{i\Phi}) a(x, \theta) \chi(\varepsilon \theta) \phi(x) \mathrm{d}x \mathrm{d}\theta \\ &= \int_{\mathbb{R}^k} \int_{\mathbb{R}^n} e^{i\Phi} (L^t)^N [a(x, \theta) \chi(\varepsilon \theta) \phi(x)] \mathrm{d}x \mathrm{d}\theta \end{split}$$

the form of L (and hence L^t) should then lower the order of $a(x,\theta)\chi(\varepsilon\theta)\phi(x)$ by 1 upon each application.

Lemma. There exists a differential operator L of the form

$$L = \sum_{j=1}^{k} a_j(x,\theta) \frac{\partial}{\partial \theta_j} + \sum_{j=1}^{n} b_j(x,\theta) \frac{\partial}{\partial x_j} + c(x,\theta)$$

for $a_j \in \text{Sym}(X, \mathbb{R}^k; 0)$, $b_j, c \in \text{Sym}(X, \mathbb{R}^k; -1)$ such that if $L^t e^{i\Phi} = e^{i\Phi}$, for Φ a phase function.

Proof. Clearly

$$\frac{\partial}{\partial \theta_i} e^{i\Phi} = i \frac{\partial \Phi}{\partial \theta_i} e^{i\Phi}, \qquad \frac{\partial}{\partial x_i} e^{i\Phi} = i \frac{\partial \Phi}{\partial x_i} e^{i\Phi}.$$

So

$$\left(-\sum_{j=1}^{k} i|\theta|^2 \frac{\partial \Phi}{\partial \theta_j} \frac{\partial}{\partial \theta_j} - \sum_{j=1}^{n} i \frac{\partial \Phi}{\partial x_j} \frac{\partial}{\partial x_j}\right) e^{i\Phi} = (|\theta|^2 |\nabla_{\theta} \Phi|^2 + |\nabla_x \Phi|^2) e^{i\Phi}.$$

Since $\Phi(x, t\theta) = t\Phi(x, \theta)$ for t > 0,

$$t\frac{\partial}{\partial x_j}\Phi(x,\theta) = \frac{\partial}{\partial x_j}\Phi(x,t\theta) = \frac{\partial\Phi}{\partial x_j}(x,t\theta)$$

so $\frac{\partial \Phi}{\partial x_i}$ is positively homogenous of degree 1. Similarly

$$t\frac{\partial}{\partial \theta_i} \Phi(x, \theta) = \frac{\partial}{\partial \theta_i} \Phi(x, t\theta) = t\frac{\partial \Phi}{\partial \theta_i} (x, t\theta)$$

so $\frac{\partial \Phi}{\partial \theta_i}$ is positively homogenous of degree 0. Define

$$P = \sum_{j=1}^{k} \tilde{a}_j \frac{\partial}{\partial \theta_j} + \sum_{j=1}^{n} \tilde{b}_j \frac{\partial}{\partial x_j}$$

where

$$\tilde{a}_{j} = \frac{-i|\theta|^{2} \frac{\partial \Phi}{\partial \theta_{j}}}{|\theta|^{2}|\nabla_{\theta}\Phi|^{2} + |\nabla_{x}\Phi|^{2}}$$

$$\tilde{b}_{j} = \frac{-i \frac{\partial \Phi}{\partial x_{j}}}{|\theta|^{2}|\nabla_{\theta}\Phi|^{2} + |\nabla_{x}\Phi|^{2}}.$$

Then we see that \tilde{a}_j is positively homogenous of degree 0 and \tilde{b}_j is positively homogenous of degree -1. Note that the denominators may vanish at $\theta = 0$, so we fix $\rho \in \mathcal{D}(\mathbb{R}^k)$ with $\rho = 1$ on $|\theta| < 1$ and $\rho = 0$ on $|\theta| > 2$. Define

$$L^t = (1 - \rho)P + \rho.$$

Then $L^t e^{i\Phi} = (1 - \rho)e^{i\Phi} + \rho e^{i\Phi} = e^{i\Phi}$. By the previous two lemmas we then have that L is of the required form.

Note that $L: \operatorname{Sym}(X, \mathbb{R}^k; N) \to \operatorname{Sym}(X, \mathbb{R}^k; -1)$. Also, more generally for $\varphi \in \mathcal{D}(X)$ we have

$$L^{[}a(x,\theta)\varphi(x)] = \sum_{|\alpha| < M} a_{\alpha}(x,\theta)\partial^{\alpha}\varphi$$

where $a_{\alpha} \in \text{Sym}(X, \mathbb{R}^k; N - M)$ (by induction on M).

Theorem. If Φ is a phase function and $a \in \text{Sym}(X, \mathbb{R}^k; N)$ then

$$I_{\Phi}(a) = \lim_{\varepsilon \downarrow 0} I_{\Phi}^{\varepsilon}(a) \in \mathcal{D}'(X)$$

and $\operatorname{ord}(I_{\Phi}(a)) \leq N + k + 1$.

Proof. For each $\varepsilon > 0$,

$$I_{\Phi}^{\varepsilon}(a) = \int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} a(x,\theta) \chi(\varepsilon\theta) d\theta$$

where $\chi \in \mathcal{D}(\mathbb{R}^k)$ has $\chi = 1$ on $|\theta| < 1$ and $\chi = 0$ on $|\theta| > 2$. So for $\varphi \in \mathcal{D}(X)$ and taking L as above

$$\langle I_{\Phi}(a)^{\varepsilon}, \varphi \rangle = \int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{n}} e^{i\Phi(x,\theta)} a(x,\theta) \chi(\varepsilon\theta) \varphi(x) dx d\theta$$
$$= \int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{n}} [(L^{t})^{M} e^{i\Phi(x,\theta)}] a(x,\theta) \chi(\varepsilon\theta) \varphi(x) dx d\theta$$
$$= \int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{n}} e^{i\Phi} L^{M} [a(x,\theta) \chi(\varepsilon\theta) \varphi(x)] dx d\theta.$$

Note that since $\chi \in \mathcal{D}(\mathbb{R}^k)$,

$$\begin{split} \left| \left(\frac{\partial}{\partial \theta} \right)^{\alpha} \chi(\varepsilon \theta) \right| &= \varepsilon^{|\alpha|} |(\partial^{\alpha} \chi)(\varepsilon \theta)| \\ &\lesssim \varepsilon^{|\alpha|} \langle \varepsilon \theta \rangle^{-|\alpha|} \\ &= c_{\alpha} \frac{\varepsilon^{|\alpha|}}{\left[1 + \varepsilon^{2} |\theta|^{2} \right]^{|\alpha|/2}} \\ &= c_{\alpha} \frac{1}{\left[\frac{1}{-2} + |\theta|^{2} \right]^{|\alpha|/2}} \end{split}$$

so for $0 < \varepsilon \le 1$

$$\left| \left(\frac{\partial}{\partial \theta} \right)^{\alpha} \chi(\varepsilon \theta) \right| \lesssim_{\alpha} \langle \theta \rangle^{-|\alpha|}$$

i.e $\chi(\varepsilon\theta)\in \mathrm{Sym}(X,\mathbb{R}^k;0)$ uniformly in ε . So $a(x,\theta)\chi(\varepsilon\theta)\in \mathrm{Sym}(X,\mathbb{R}^k,N)$ so

$$L^{M}[a(x,\theta)\chi(\varepsilon\theta)\varphi(x)] = \sum_{|\alpha| \le M} a_{\alpha}(x,\theta;\varepsilon)\partial^{\alpha}\varphi$$

where $a_{\alpha} \in \operatorname{Sym}(X, \mathbb{R}^k; N-M)$. Also $a_{\alpha}(x, \theta) := a(x, \theta; 0) \in \operatorname{Sym}(X, \mathbb{R}^k, N-M)$. Choosing M = N + k + 1 (i.e with N - M < -k) by the DCT we have

$$\langle I_{\phi}(a), \varphi \rangle = \lim_{\varepsilon \downarrow 0} \langle I_{\Phi}^{\varepsilon}(a), \varphi \rangle$$
$$= \sum_{|\alpha| \le N+k+1} \int_{\mathbb{R}^k} \int_{\mathbb{R}^n} e^{i\Phi(x,\theta)} a_{\alpha}(x,\theta) \partial^{\alpha} \varphi dx d\theta.$$

If $supp(\varphi) \subseteq K$ we have

$$|\langle I_{\phi}(a), \varphi \rangle| \leq \sum_{|\alpha| \leq N+k+1} \int_{\mathbb{R}^k} \int_K |a_{\alpha}(x, \theta)| |\partial^{\alpha}| dx d\theta$$
$$\lesssim_K \sum_{|\alpha| \leq N+k+1} \sup_K |\partial^{\alpha} \varphi|$$

so $I_{\Phi}(a) \in \mathcal{D}'(X)$ and $\operatorname{ord}(I_{\Phi}(a)) \leq N + k + 1$.

Given $I_{\Phi}(a) \in \mathcal{D}'(X)$ we can show that $\frac{\partial}{\partial x_i} I_{\Phi}(a)$ coincides with the oscillatory integral

$$\int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} \left[i \frac{\partial Phi}{\partial x_j} a(x,\theta) + \frac{\partial a}{\partial x_j} (x,\theta) \right] \mathrm{d}\theta.$$

Remark. Since $i\frac{\partial Phi}{\partial x_j}a(x,\theta) + \frac{\partial a}{\partial x_j}(x,\theta)$ may fail to be smooth at $\theta = 0$, write

$$\int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} \rho(\theta) a(x,\theta) d\theta + \int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} (1 - \rho(\theta)) a(x,\theta) d\theta$$

for $\rho \in \mathcal{D}(\mathbb{R}^k)$, $\rho = 1$ on $|\theta| < 1$ and $\rho = 0$ on $|\theta| > 2$. Because of this technicality we often assume that the symbols have support away from a neighbourhood of the origin.

Consider

$$I_{\phi}(a) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \theta} d\theta$$

for $x \in \mathbb{R}^n$. Then for $\phi \in \mathcal{D}(\mathbb{R}^n)$ we have

$$\langle I_{\Phi}(a), \phi \rangle = \lim_{\varepsilon \downarrow 0} (2\pi)^{-n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{ix \cdot \theta} \chi(\varepsilon \theta) \phi(x) dx d\theta$$

so taking $(x, \theta) \mapsto (\varepsilon x, \theta/\varepsilon)$ this becomes

$$(2\pi)^{-n} \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{ix \cdot \theta} \chi(\theta) \phi(\varepsilon x) dx d\theta$$

$$= (2\pi)^{-n} \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}^n} (2\pi)^{-n} \hat{\chi}(-x) \phi(\varepsilon x) dx$$

$$= \phi(0)(2\pi)^{-n} \int_{\mathbb{R}^n} \hat{\chi}(-x) dx$$

$$= \phi(0)\chi(0)$$

$$= \phi(0)$$

i.e (abusing notation)

$$\delta(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \theta} d\theta$$

which gives

$$D^{\alpha}\delta_0(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \theta^{\alpha} e^{ix \cdot \theta} d\theta.$$

It is natural to ask when $I_{\Phi}(a) \in \mathcal{D}'(X)$ can be identified with a smooth function.

Definition. Let $Y \subseteq X$ be open. We say $u \in \mathcal{D}'(X)$ is *smooth on* Y if there exists $f \in C^{\infty}(Y)$ such that $\langle u, \phi \rangle = \int_{Y} f(x)\phi(x)dx$ for all $\phi \in \mathcal{D}(Y)$. Define the *singular support* of $u \in \mathcal{D}'(X)$ by

$$\operatorname{sing\,supp}(u) = X \setminus \bigcup_{\substack{Y \subseteq X \\ \text{open}}} \{Y : u \text{ is smooth on } Y\}$$

i.e the complement of the largest open set on which u is smooth.

Example. We have

$$\operatorname{sing\,supp}(\delta_0) = \{0\}.$$

When looking at sing supp of $I_{\Phi}(a)$, the following lemma allows us to assume that $a(x,\theta) = 0$ on $|\theta| < 1$ WLOG.

Lemma. If Φ is a phase function and a a symbol then the function $x \mapsto \int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} \rho(\theta) a(x,\theta) d\theta$ is smooth for any $\rho \in \mathcal{D}(\mathbb{R}^k)$.

Proof. Easy.
$$\Box$$

Fix $\rho \in \mathcal{D}(\mathbb{R}^k)$, $\rho = 1$ on $|\theta| < 1$ and $\rho = 0$ on $|\theta| > 2$. Then we can write

$$I_{\Phi}(a) = \underbrace{I_{\Phi}(\rho a)}_{\text{smooth function}} + I_{\Phi}(\underbrace{(1-\rho)a}_{:=\tilde{a}}).$$

Note $a \in \operatorname{Sym}(X, \mathbb{R}^k; N)$ so $\tilde{a} \in \operatorname{Sym}(X, \mathbb{R}^k; N)$ and sing $\operatorname{supp}(I_{\Phi}(a)) = \operatorname{sing supp}(I_{\Phi}(a))$. Clearly $\tilde{a}(x, \theta) = 0$ on $|\theta| < 1$.

It is natural to expect $\int_{\mathbb{R}^k} e^{i\Phi(x,\theta)} a(x,\theta) d\theta$ to behave badly at the $x \in X$ for which $\nabla_{\theta} \Phi(x,\theta) = 0$ for some $\theta \in \mathbb{R}^k$. In fact the singular support is contained in the set of such x.

Theorem. We have

$$\operatorname{sing\,supp}(I_{\Phi}(a)) \subseteq \{x \in X : \nabla_{\theta}\Phi(x,\theta) = 0 \text{ for some } \theta \in \mathbb{R}^k \setminus \{0\}\}.$$

Proof. Fix $x_0 \in X$ for which

$$\nabla_{\theta} \Phi(x_0, \theta) \neq 0 \quad \forall \theta \in \mathbb{R}^k \setminus \{0\}.$$

Note that $\theta \mapsto |\nabla_{\theta} \Phi(x_0, \theta)|$ is homogenous of degree 0, so is completely determined by values it takes on S^{k-1} . By continuity and compactness there exists c > 0 such that

$$|\nabla_{\theta}\Phi(x_0,\theta)| \ge c \text{ on } \mathbb{R}^k \setminus \{0\}.$$

By continuity, there exists a small open neighbourhood Y of x_0 such that

$$|\nabla_{\theta}\Phi(x,\theta)| > c/2 \text{ on } Y \times (\mathbb{R}^k \setminus \{0\}).$$

Consider

$$\mathcal{D}(Y) \ni \phi \mapsto \langle I_{\Phi}(a), \phi \rangle.$$

The differential operator

$$L^{t} = \sum_{j=1}^{k} \frac{-i\frac{\partial \Phi}{\partial \theta_{j}}}{|\nabla_{\theta}\Phi|^{2}} \frac{\partial}{\partial \theta_{j}}$$

is well defined on $Y \times (\mathbb{R}^k \setminus \{0\})$ and $L^t e^{i\Phi} = e^{i\Phi}$. Since we can assume $a(x,\theta) = 0$ on $|\theta| < 1$ WLOG, it follows that L^t is well defined on

$$(Y \times \mathbb{R}^k) \cap \operatorname{supp}[a(x,\theta)].$$

By the same arguments as the proof to the first theorem in this section, we can show $L: \mathrm{Sym}(X, \mathbb{R}^k; N) \to \mathrm{Sym}(X, \mathbb{R}^k; N-1)$ so for $\phi \in \mathcal{D}(Y)$ we have

$$\langle I_{\Phi}(a), \phi \rangle = \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}^k} \int_X e^{i\Phi} L^M[a(x, \theta)\chi(\varepsilon \theta)] \phi(x) dx d\theta$$

noting that $L[a(x,\theta)\chi(\varepsilon\theta)\phi(x)] = L[a(x,\theta)\chi(\varepsilon\theta)]\phi(x)$. Since $a(x,\theta)\chi(\varepsilon\theta) \in \text{Sym}(X,\mathbb{R}^k;N)$ (uniformly in ε) we can choose M large enough that the DCT allows us to take the limit. Then we see

$$\langle I_{\Phi}(a), \phi \rangle = \int_{X} \underbrace{\int_{\mathbb{R}^{k}} e^{i\Phi} L^{M} a(x, \theta) d\theta}_{(\dagger)} \phi(x) dx.$$

Since again we can take M as large as we want, we can differentiate under the integral sign to deduce $I_{\Phi}(a)$ is smooth on Y (i.e (†) is smooth on Y). Since $x_0 \in Y$ we get the result.

Since we had

$$\delta_0(x) = (2\pi)^{-n} \int_{\mathbb{R}^k} e^{ix \cdot \theta} d\theta$$

we deduce

sing supp
$$(\delta_0) \subseteq \{x \in \mathbb{R}^n : \nabla_{\theta}(x \cdot \theta) = 0 \text{ for some } \theta \in \mathbb{R}^k \setminus \{0\}\}$$

= $\{0\}$.

Suppose we wanted to solve (for $c \in \mathbb{R}^n$ constant)

$$\frac{\partial u}{\partial t} + c \cdot \nabla u = 0, \quad \lim_{t \downarrow 0} u(x', t) = \delta_0(x')$$

i.e $u(\cdot,t) \in \mathcal{D}'(\mathbb{R}^n)$ for each t and

$$\lim_{t\downarrow 0} u(\cdot,t) = \delta_0(x').$$

Writing x = (x', t). We guess by Fourier transform

$$u(x',t) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\theta \cdot (x'-ct)} d\theta$$

and indeed differentiating under the integral we find

$$\frac{\partial u}{\partial t} + c \cdot \nabla u = 0$$

and

$$\lim_{t \downarrow 0} u(x', t) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\theta \cdot x'} d\theta$$
$$= \delta_0(x) \text{ in } \mathcal{D}'(\mathbb{R}^n).$$