Probabilistic Connectivity of Underwater Sensor Networks

Md Asadul Islam

University of Alberta

mdasadul@ualberta.ca

August 22, 2014

Overview

- Problem Formulation and Thesis Contributions
- 2 A-CONN problem
- 3 AR-CONN and SR-CONN problems
- 4 Future Research Directions

Why UWSNs?

UWSNs fuelled by many important underwater sensing applications and services such as

- Scientific applications
- Industrial applications
- Military and homeland security applications
- Humanitarian applications

Challenges of the underwater communication channel

- Water currents
- Communication

Node Locality Sets

- ullet $V=V_{sense}\cup V_{relay}$ the set of nodes in a given UWSN
- The geographic area considered rectangles of a superimposed grid layout.
- At time T, each node x can be in any one of a possible set of grid rectangles denoted $Loc(x) = \{x[1], x[2], \ldots\}$.
- Node x can be grid rectangle x[i] with a certain probability $p_x(i)$.
- Truncate some locality sets of low probability for convenience thus, $\sum_{x[i] \in \text{Loc}(x)} p_x(i) \le 1$, if Loc(x) is truncated.

\mathbf{x}_1	0.2 0.5 0.1 0.07 0.05 0.08	\mathbf{z}_1	0.6 0.2 0.1 0.1
\mathbf{x}_2	0.25 0.3 0.16 0.29	\mathbf{z}_2	0.5 0.25 0.2
\mathbf{y}_1	0.2 0.3 0.1 0.1 0.15 0.15	z_3	0.25 0.36 0.14 0.25
y_2	0.25 0.35 0.25 0.15	Z.4	0.7 0.15 0.15
y_3	0.16 0.18 0.14 0.3 0.22	s	0.18 0.1 0.03 0.34 0.1 0.14

Figure 1: Network with Probabilistic locality set

Problem Definition

We define four probabilistic connectivity problem. They are

- A-CONN problem
- AR-CONN problem
- S-CONN problem
- SR-CONN problem

the A-CONN and AR-CONN problems

Definition (**the** *A-CONN* **problem**)

Given a probabilistic network G with no relay nodes, compute the probability Conn(G) that the network is in a state where the sink node s can reach all sensor nodes.

Definition (**the** *AR-CONN* **problem**)

Given a probabilistic network G where V_{relay} is possibly non-empty, compute the probability Conn(G) that the network is in a state where the sink node s can reach all sensor nodes.

the S-CONN and SR-CONN problems

Definition (**the** *S-CONN* **problem**)

Given a probabilistic network G with no relay nodes, and a required number of sensor nodes $n_{req} \leq |V_{sense}|$, compute the probability $Conn(G, n_{req})$ that the network is in a state where the sink node s can reach a subset of sensor nodes having at least n_{req} sensor nodes.

Definition (**the** *SR-CONN* **problem**)

Given a probabilistic network G where V_{relay} is possibly non-empty, and a required number of sensor nodes $n_{req} \leq |V_{sense}|$, compute the probability $Conn(G, n_{req})$ that the network is in a state where the sink node s can reach a subset of sensor nodes having at least n_{req} sensor nodes.

Thesis Contribution

Efficient dynamic programming algorithms

- for the SR-CONN problem on probabilistic networks whose underlying graphs are trees.
- 2 for the A-CONN problem on partial k-trees.
- \odot for the AR-CONN and SR-CONN problems on partial k-trees.

All cases the algorithm runs in polynomial time for any fixed k.

Simulation Results for A-CONN problem

- Test Networks
- Running Time
- Connectivity for different partial k-trees

Test Networks

Figure 2: G_{10}

Test Networks(Cont.)

Figure 3: G_{12}

Figure 4: G_{15}

Running Time

k	Network G_{10}	Network G_{12}	Network G_{15}
1	90	130	200
2	1000	1380	1480
3	60000	875000	940000

Table 1: Running time in milliseconds

Connectivity for different partial *k*-trees

k	Network G_{10}	Network G_{12}	Network G_{15}
1	0.62	0.336	0.82
2	0.71	0.36	0.99
3	0.75	0.37	1

Table 2: Connectivity lower bounds using different partial k-trees

Simulation Results for AR-CONN and SR-CONN problems

- Test Networks
- Running time
- Effects of Adding Relay nodes

Test Networks

Figure 5: Network G_{10}

Figure 6: Network $G_{10,3}$

Running Time

k	Network G_{10}	Network G _{10,3}
1	90	110
2	1000	6000
3	6000	8000

Table 3: Running time in milliseconds

Effect of adding relay nodes

k	Network G ₁₀	Network G _{10,3}
1	0.30	0.86
2	0.54	0.96
3	0.60	0.98

Table 4: Connectivity with respect to k

Effect of adding relay nodes for various node R_{tr} :

Figure 7: Connectivity versus transmission range

SR-CONN Simulation Results

A designer has at least 3 options to achieve a minimum required $Conn(G, n_{req})$ value:

- tuning the n_{req} parameter,
- tuning node transmission range R_{tr} , and
- tuning the number of deployed relay nodes.

Effect of varying n_{req}

- Figure 8 illustrates the achieved $Conn(G, n_{req})$ as n_{req} varies in the range [1, 10].
- Figure 9 illustrates the achieved $Conn(G, n_{req})$ as n_{req} varies in the range [1, 10], and R_{tr} varies in the range [2.5, 5.5].

Figure 8: Connectivity versus n_{req}

Figure 9: Connectivity versus n_{req} and transmission range

Concluding Remarks

- This thesis is motivated by recent interest in UWSNs as a platform for preforming many useful tasks.
- A challenge arises since sensor nodes incur small scale and large scale movements that can disrupt network connectivity.
- Thus, tools for quantifying the likelihood that a network remains completely or partially connected become of interest.
- To this end, the thesis has formalized 4 probabilistic connectivity problems, denoted A-CONN, S-CONN, AR-CONN, and SR-CONN.
- The obtained results show that all of the 4 problems admit polynomial time algorithms on k-trees (and their subgraph), for any fixed k.
- The running time of the algorithms, however, increase exponentially as k increases. Thus, more work needs to be done towards obtaining more effective algorithms.

Future Research Directions

- Investigating the applicability of our algorithm to some other classes of graph to be a worthwhile direction.
- It is interesting to analyze the delays incurred in typical data collection rounds.
- It is worthwhile to investigate area coverage assuming a probabilistic locality model of the nodes.

Thanks!