Confirmation No.: 4218

Applicant: JOBSON, Edward Atty. Ref.: 00173.0019.PCUS00

AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (Currently Amended) Device for reducing the amount of a first gas component in an exhaust

gas flow of a combustion engine (1) which-is adapted for operation by a lean air/fuel mixture,

comprising an exhaust pipe (21) for transport of the exhaust gas flow from the engine (1),

characterized in that it comprises a separation unit (22) which is arranged along the exhaust pipe

(21), which separation unit (22) comprises a wall structure (32) of a material which provides

separation of the first gas component from the exhaust gas flow by means of a selective passage

of the first gas component before other gas components in the exhaust gas flow.

2. (Currently Amended) Device according to claim 1, characterized in that wherein the

combustion engine (1) is provided in connection with a turbo-aggregate (36) with an exhaust gas

operated turbine (37) and a compressor (38) for compression of air which has been fed into the

engine (1), characterized in that the conduit (31) is connected to a point upstream of the

compressor (38) and wherein the separation unit (22) further comprises an inlet (27) for supply of

a reduction agent, which is separated from the incoming exhaust gas flow by means of the wall

structure (32), wherein the separation unit (22) provides catalytic reduction of the first gas

component by means of supply of the reduction agent.

3. (Original) Device according to claim 2, characterized in that the inlet (27) of the separation

unit (22), via a conduit (28), is connected to a tank (7) forming part of the engine (1) and being

intended for the regular fuel of the engine (1), wherein the reduction agent is taken from the fuel.

4. (Original) Device according to claim 2, characterized in that the inlet (27) of the separation

unit (22), via a conduit, is connected to a separate tank for the reduction agent.

Confirmation No.: 4218

Applicant: JOBSON, Edward Atty. Ref.: 00173.0019.PCUS00

5. (Original) Device according to claim 4, characterized in that the separation unit (22) is adapted

for feeding in the reduction agent counter-current in relation to the exhaust gas flow.

6. (Currently Amended) Device according to claim 5, characterized in that the separation unit

(22) comprises an outlet (30) which is connected with the inlet (2) of the engine (1) via a conduit

(31), for feeding any reduction agent which has not reacted with the first gas component out from

the separation unit (22) and back to the inlet (2).

7. (Original) Device according to claim 6, characterized in that the inlet (27) is connected with an

additional conduit (28b) for feeding in fresh air as carrier gas for the reduction agent.

8. (Currently Amended) Device according to claim 1, characterized in that wherein the

combustion engine (1) is provided in connection with a turbo-aggregate (36) with an exhaust gas

operated turbine (37) and a compressor (38) for compression of air which has been fed into the

engine (1), characterized in that the conduit (31) is connected to a point upstream of the

compressor (38) and wherein the separation unit (22) comprises an outlet (30) which is-

connected with the inlet (2) of the engine (1) via a conduit (31), for returning the first gas

component to the inlet (2) after separation from the exhaust gas flow.

9. (Currently Amended) Device according to claim 8, characterized in that the inlet (27) is

connected with an additional conduit (28b) for feeding in fresh air as carrier gas for the first gas

component.

10. (Currently Amended) Device according to claim 9, characterized in that the first gas

component is constituted by an oxide of nitrogen (NOx compound) in the exhaust gas flow.

Confirmation No.: 4218

Applicant: JOBSON, Edward Atty. Ref.: 00173.0019.PCUS00

11. (Original) Device for reducing the amount of a first gas component from a combustion engine

(1) which is adapted for operation by a lean air/fuel mixture, comprising an exhaust pipe (21) for

transport of the exhaust gas flow from the engine (1), characterized in that it comprises a

separation unit (22) which is arranged along the exhaust pipe (21), which separation unit (22)

comprises a wall structure (32) of a material which provides separation of a second gas

component from the exhaust gas flow by means of a selective passage of the second gas

component before other gas components in the exhaust gas flow, and that the separation unit (22)

comprises an outlet (30) which is connected with the inlet (2) of the engine (1) via a conduit (31),

for return of the second gas component to the inlet (2) after separation from the exhaust gas flow.

12. (Original) Device according to claim 11, characterized in that the second gas component is

constituted by water.

13. (Original) Device according to claim 12, characterized in that the first gas component is

constituted by an oxide of nitrogen (NOx compound) in the exhaust gas flow.

14. (Original) Device according to claim 13, wherein the engine (1) is provided in connection

with a turbo-aggregate (36) with an exhaust gas operated turbine (37) and a compressor (38) for

compression of air which has been fed into the engine (1), characterized in that the conduit (31)

is connected to a point upstream of the compressor (38).

15. (Original) Device according to claim 14, wherein the function of the engine (1) is

controllable by means of a control unit (5), characterized in that the control unit (5) is adapted for

supply of the reduction agent essentially continuously during lean operation of the engine (1).

16. (Original) Device according to claim 15, characterized in that a NOx sensor (25) is connected

to the control unit (5) for detection of the amount of NOx compounds in the exhaust gas flow.

Confirmation No.: 4218

Applicant: JOBSON, Edward

Atty. Ref.: 00173.0019.PCUS00

17. (Original) Device according to claim 16, characterized in that the control unit (5) is adapted

for supply of the reduction agent depending on the amount of the NOx compound.

18. (Original) Device according to claim 17, characterized in that the NOx sensor (25) is utilized

during diagnosis of the function regarding reduction of the NOx compound.

19. (Original) Device according to claim 18, characterized in that the engine (1) is of the "lean-

burn" type.

20. (Original) Device according to any one of claim 18, characterized in that the engine is of the

diesel engine type.

21. (Original) Separation unit (22) for reducing the amount of a gas component in a gas flow,

characterized in that it comprises a wall structure (32) which comprises material which provides

a selective passage of the gas component from the gas flow before other gas components in the

gas flow.

22. (Original) Method for reducing the amount of a gas component in an exhaust gas flow of a

combustion engine (1) which is adapted for operation by a lean air/fuel mixture, comprising

feeding of the exhaust gas flow from the engine (1) to a separation unit (22), characterized in that

it comprises separation of the gas component from the exhaust gas flow in a wall structure (32)

comprising material which provides a selective passage of the gas component before other gas

components in the exhaust gas flow.

23. (Currently Amended) Method according to claim 22, characterized in that it wherein the

combustion engine (1) is provided in connection with a turbo-aggregate (36) with an exhaust gas

operated turbine (37) and a compressor (38) for compression of air which has been fed into the

engine (1), characterized in that the conduit (31) is connected to a point upstream of the

Confirmation No.: 4218 Applicant: JOBSON, Edward

Atty. Ref.: 00173.0019.PCUS00

compressor (38) and wherein said method further comprises supply of supplying a reduction

agent to an inlet (27) of the separation; unit (22), separation unit (22) and wherein the wall

structure (32), and catalytic reduction of the gas component takes place in the wall structure (32)

by means of the reduction agent.

24. (Original) Method according to claim 23, characterized in that the supply of the reduction

agent takes place from a tank (7) forming part of the engine (1) and being intended for the regular

fuel of the engine (1), wherein the reduction agent is taken from the fuel.

25. (Original) Method according to claim 24, characterized in that the reduction agent is fed

through the separation unit (22) essentially counter-current in relation to the exhaust gas flow.

26. (Original) Method according to claim 25, characterized in that reduction agent which has not

reacted with the gas component is fed out from the separation unit (22) and returned to the inlet

(2) of the engine (1).

27. (Original) Method according to claim 26, characterized in that it comprises feeding in fresh

air as carrier gas for the reduction agent.

28. (Original) Method according to claim 27, characterized in that the reduction agent is supplied

to the separation unit (22) essentially continuously during lean operation of the engine (1).

29. (Original) Method according to claim 22, characterized in that it comprises return of the gas

component to the inlet (2) via a conduit (31).

Confirmation No.: 4218

Applicant: JOBSON, Edward Atty. Ref.: 00173.0019.PCUS00

30. (Currently Amended) Method according to claim 29, characterized in that it wherein the

combustion engine (1) is provided in connection with a turbo-aggregate (36) with an exhaust gas

operated turbine (37) and a compressor (38) for compression of air which has been fed into the

engine (1), characterized in that the conduit (31) is connected to a point upstream of the

compressor (38) and wherein said method further comprises feeding in fresh air as carrier gas for

the gas component.

31. (Original) Method according to claim 30, wherein the gas component is constituted by an

oxide of nitrogen (NOx compound) in the exhaust gas flow, characterized in that it comprises

detection of the amount of the NOx compound in the exhaust gas flow.

32. (Original) Method according to claim 31, characterized in that the supply of the reduction

agent takes place depending on the detected amount of NOx compounds.

33. (Original) Method according to claim 32, characterized in that it comprises a diagnosis of the

function regarding reduction of the NOx compound.

34. (Original) Method for reducing the amount of a first gas component from a combustion

engine (1) which is adapted for operation by a lean air/fuel mixture, comprising feeding of the

exhaust gas flow from the engine (1) to a separation unit (22), characterized in that it comprises

separation of a second gas component from the exhaust gas flow in a wall structure (32)

comprising material which provides a selective passage of the second gas component before

other gas components in the exhaust gas flow, and return of the second gas component to the

inlet (2) of the engine (1).

Confirmation No.: 4218 Applicant: JOBSON, Edward

Atty. Ref.: 00173.0019.PCUS00

35. (Original) Method according to claim 34, characterized in that it comprises separation of the first gas component and the second gas component in the wall structure, which comprises material which provides a selective passage of the first gas component and the second gas component before other gas components in the exhaust gas flow, and return of the first gas component and the second gas component to the inlet of the engine.