# GÉOMÉTRIE O-MINIMALE

lecture dirigée de recherche, encadrée par M. Goulwen Fichou

Walid El Ouadghiri & Téofil Adamski lundi 27 avril 2020

### Introduction

#### But

Développer une géométrie « modérée », c'est-à-dire qui ne comporte pas de monstres topologiques comme l'adhérence du graphe de la fonction  $x > 0 \mapsto \sin(1/x)$ .

## Objectifs

- Observer des propriétés fortes de cette géométrie :
  - décomposition cellulaire,
  - triangulation.
- Étudier la connexité.
- Donner un sens à la dimension.
- Construire la caractéristique d'Euler.

## Plan

- 1. Ensembles semi-algébriques
- 2. Structure o-minimale
- 3. Décomposition cellulaire
- 4. Connexité et dimension
- 5. Triangulation et caractéristique d'Euler

## Partie 1

Ensembles semi-algébriques

# Ensembles semi-algébriques et algébriques

#### **Définition**

Un ensemble semi-algébrique de  $\mathbb{R}^n$  est une union finie d'ensembles de la forme

$$\{x \in \mathbb{R}^n \mid P(x) = 0, Q_1(x) > 0, \dots, Q_r(x) > 0\}$$
 avec  $P, Q_1, \dots, Q_r \in \mathbb{R}[X_1, \dots, X_n]$ .

On note  $\mathscr{SA}_n$  la classe des ensembles semi-algébriques de  $\mathbb{R}^n$ . Un ensemble *algébrique* de  $\mathbb{R}^n$  est un ensemble de la forme

$$\{x \in \mathbb{R}^n \mid P_1(x) = 0, \dots, P_r(x) = 0\}$$
 avec  $P_1, \dots, P_r \in \mathbb{R}[X_1, \dots, X_n]$ .





# Propriétés des ensembles semi-algébriques

## Théorème de Tarski-Seidenberg

Soit  $n \in \mathbb{N}^*$ . On note  $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$  la projection sur les n premières coordonnées. Alors

$$A \in \mathcal{S} \mathcal{A}_{n+1} \implies \pi(A) \in \mathcal{S} \mathcal{A}_n.$$

Les ensembles semi-algébriques sont stables par projection. Ce n'est pas le cas des ensembles algébriques.  $\Rightarrow$  Propriété intéressante!

### Structure de $\mathcal{S}A_1$

Les éléments de  $\mathscr{S}\!\mathscr{A}_1$  sont exactement les unions finies de singletons et d'intervalles.

## Partie 2

Structure o-minimale

### Structures o-minimales

#### Définition

Une structure étendant  $\mathbb{R}$  est une suite  $\mathscr{S} := (\mathscr{S}_n)_{n \in \mathbb{N}^*}$  où chaque élément  $\mathscr{S}_n$  est une classe de parties de  $\mathbb{R}^n$  vérifiant

- 1. tout ensemble algébrique de  $\mathbb{R}^n$  est dans  $\mathscr{S}_n$ ;
- 2. si  $A, B \in \mathcal{S}_n$ , alors  $A \cup B \in \mathcal{S}_n$  et  $\mathbb{R}^n \setminus A \in \mathcal{S}_n$ ;
- 3. si  $A \in \mathcal{S}_m$  et  $B \in \mathcal{S}_n$ , alors  $A \times B \in \mathcal{S}_{m+n}$ ;
- 4. si  $A \in \mathcal{S}_{n+1}$ , alors  $\pi(A) \in \mathcal{S}_n$  où  $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$  est la projection sur les n premières coordonnées.

De plus, la structure  $\mathscr S$  est dite o-minimale si

5. les éléments de  $\mathcal{S}_1$  sont exactement les unions finies de singletons ou d'intervalles.

Les éléments de  $\mathcal{S}_n$  sont appelés les sous-ensembles définissables de  $\mathbb{R}^n$ .

# Un exemple de structure o-minimale

### Proposition

La suite  $(\mathscr{S}\mathscr{A}_n)_{n\in\mathbb{N}^*}$  est une structure o-minimale étendant  $\mathbb{R}$ . C'est même la plus petite.

Preuve Les axiomes se montrent facilement et notamment grâce au théorème de Tarski-Seidenberg. Montrons que c'est la plus petite. Soient  $(\mathscr{S}_n)_{n\in\mathbb{N}^*}$  une structure o-minimale étendant  $\mathbb{R}$  et  $n\in\mathbb{N}^*$ . Montrons que  $\mathscr{S}_n\subset\mathscr{S}_n$ . Soit  $P\in\mathbb{R}[X_1,\ldots,X_n]$ . Montrons que

$$A := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid P(x_1, \ldots, x_n) > 0\} \in \mathcal{S}_n.$$

On pose

$$B := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{n+1}^2 P(x_1, \dots, x_n) - 1 = 0\} \in \mathcal{S}_{n+1}.$$

On note  $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$  la projection sur les n premières coordonnées. Alors

$$A = \pi(B) \in \mathscr{S}_n.$$

### Fonctions définissables

#### Définition

Soit  $A \subset \mathbb{R}^n$ . Une fonction  $f: A \to \mathbb{R}^p$  est définissable si son graphe  $\Gamma(f) \subset \mathbb{R}^{n+p}$  est définissable.

## Exemples

- ▶ Toute fonction polynomiale  $\mathbb{R}^n \to \mathbb{R}$  est définissable.
- ► La fonction

$$f: \begin{vmatrix} [-1,1] \longrightarrow \mathbb{R}, \\ x \longmapsto \sqrt{1-x^2} \end{vmatrix}$$

est définissable.

⇒ Propriétés usuelles : stabilité par somme, produit, composition, . . .

## Partie 3

Décomposition cellulaire

Une décomposition cellulaire adaptée au cercle \$1



# Une décomposition cellulaire adaptée au cercle \$1





# Une décomposition cellulaire adaptée au cercle \$1



# Une décomposition cellulaire adaptée au cercle S<sup>1</sup>



## Décompositions en cellules définissables

#### **Définition**

On définit les décompositions en cellules définissables (ou dcd) de  $\mathbb{R}^n$  par induction sur n.

- 1. Une dcd de  $\mathbb{R}$  est une partition  $\{C_1, \ldots, C_k\} \subset \mathcal{P}(\mathbb{R})$  de  $\mathbb{R}$  telle que chaque partie  $C_i$  soit un singleton ou un intervalle ouvert.
- 2. Pour  $n \ge 2$ , une dcd  $\mathscr{C} \subset \mathscr{P}(\mathbb{R}^n)$  de  $\mathbb{R}^n$  est la donnée d'une dcd  $\mathscr{C}'$  de  $\mathbb{R}^{n-1}$  et, pour chaque partie  $C \in \mathscr{C}'$ , d'un entier  $\ell_C \ge 1$  et de fonctions définissables et continues

$$\zeta_{C,1} < \cdots < \zeta_{C,\ell_C} : C \to \mathbb{R}.$$

Les éléments de & sont alors les ensembles

$$\begin{split} & ]\zeta_{C,i},\zeta_{C,i+1} \big[ \coloneqq \big\{ \big(x',x_n\big) \in \mathbb{R}^n \ \big| \ x' \in C, \ \zeta_{C,i}(x') < x_n < \zeta_{C,i+1}(x') \big\} \quad \text{et} \quad \Gamma(\zeta_{C,i}), \\ & \text{pour } C \in \mathscr{C}' \text{ et } i \in [\![0,\ell_C]\!] \text{ en posant } \zeta_{C,0} \coloneqq -\infty \text{ et } \zeta_{C,\ell_C+1} \coloneqq +\infty. \end{split}$$

Les éléments C d'une dcd  $\mathscr{C}$  de  $\mathbb{R}^n$  sont appelées des *cellules*.

# Théorème de décomposition cellulaire

#### Théorème

Soient  $A_1, ..., A_k \subset \mathbb{R}^n$  des ensembles définissables. Alors il existe une dcd de  $\mathbb{R}^n$  telle que chaque ensemble  $A_i$  soit une union finie de cellules.

On dira qu'une telle dcd de  $\mathbb{R}^n$  est adaptée aux ensembles  $A_1, \ldots, A_k$ .

## Partie 4

Connexité et dimension

## Connexité définissable

#### Définition

- Un ensemble définissable A est dit définissablement connexe si, pour tous ouverts définissables disjoints U et V de A tels que  $A = U \cup V$ , on a A = U ou A = V.
- ► Un ensemble définissable A est dit définissablement connexe par arcs si, pour tous points  $a, b \in A$ , il existe une fonction continue et définissable  $\gamma: [0,1] \to A$  telle que

$$\gamma(0) = a$$
 et  $\gamma(1) = b$ .

### Remarque

Pour un ensemble définissable, on a les implications

connexité par arcs définissable ⇒ connexité par arcs

⇒ connexité

⇒ connexité définissable.

Réciproque « connexité définissable ⇒ connexité par arcs définissable » ?

## Corollaire (réciproque)

Tout ensemble définissable de  $\mathbb{R}^n$  définissablement connexe est définissablement connexe par arcs.

⇒ Cette géométrie ne possède pas de monstres topologiques!



### Notion de dimension

### **Définition**

La dimension d'un ensemble définissable  $A \subset \mathbb{R}^n$  est la borne supérieure de l'ensemble des entiers  $d \in \mathbb{N}$  tel qu'il existe une fonction définissable injective de  $\mathbb{R}^d$  dans A. On la note

$$\dim A \in [-\infty, +\infty].$$

### Propositions

La dimension d'un ensemble définissable ne peut valoir  $+\infty$ . De plus, on a les propositions attendues suivantes.

- ▶ Pour tout  $d \in \mathbb{N}^*$ , on a dim  $\mathbb{R}^d = d$ .
- ▶ Si  $A \subset B$ , alors dim  $A \leq \dim B$ .
- ▶ Si  $f: A \rightarrow B$  est une bijection définissable, alors dim  $A = \dim B$ .
- $\bullet \quad \text{On a } \dim(A \cup B) = \max(\dim A, \dim B).$
- $\bullet \quad \text{On a } \dim(A \times B) = \dim A + \dim B.$

## Partie 5

Triangulation et caractéristique d'Euler

## Simplexes

#### Définition

Soit  $(a_0,...,a_d)$  une famille de  $\mathbb{R}^n$  telle que  $(a_1-a_0,...,a_d-a_0)$  soit linéairement indépendante dans  $\mathbb{R}^n$ . Le *d-simplexe ouvert* d'arêtes  $a_0,...,a_d$  est l'ensemble

$$]a_0, \ldots, a_d[ := \{x \in \mathbb{R}^n \mid \exists \lambda_0, \ldots, \lambda_d \in ]0, 1], \sum_{i=0}^d \lambda_i = 1 \text{ et } x = \sum_{i=0}^d \lambda_i a_i \}.$$

Le d-simplexe fermé d'arêtes  $a_0, \ldots, a_d$  est l'ensemble

$$[a_0,\ldots,a_d]:=\overline{]a_0,\ldots,a_d[}.$$







# Simplexes (suites)

#### **Définition**

Une face d'un simplexe  $\overline{\sigma} = [a_0, ..., a_d]$  est un simplexe  $\overline{\tau} = [b_0, ..., b_e]$  tel que

$$\{b_0, \ldots, b_e\} \subset \{a_0, \ldots, a_d\}.$$

Un complexe simplicial fini de  $\mathbb{R}^n$  est un ensemble fini  $\mathcal{K} := \{\overline{\sigma_1}, \dots, \overline{\sigma_p}\}$  de simplexes qui vérifient, pour tous  $i, j \in [1, p]$ , l'intersection  $\overline{\sigma_i} \cap \overline{\sigma_j}$  ait une face commune de  $\overline{\sigma_i}$  et  $\overline{\sigma_j}$ . On pose

$$|\mathcal{K}| = \bigcup_{i=1}^{p} \overline{\sigma_i}.$$



# Théorème de triangulation

#### Théorème

Soient  $A \subset \mathbb{R}^n$  un ensemble définissable et  $B_1, \ldots, B_k \subset A$  des ensembles définissables. Alors il existe un complexe simplicial fini  $\mathscr K$  tel que les sommets des simplexes de  $\mathscr K$  appartiennent à  $\mathbb{Q}^n$  et un homéomorphisme définissable  $\Phi \colon |\mathscr K| \to A$  telle que chaque ensemble  $B_i$  soit une union d'images de simplex ouverts de  $\mathscr K$  par  $\Phi$ .

### Interprétation

Un ensemble définissable peut être décomposé, à un homéomorphisme définissable près, en petits triangles.

# Caractéristique d'Euler

### **Définition**

Soient  $S \subset \mathbb{R}^n$  un ensemble définissable et  $\mathscr{P} \subset \mathscr{P}(\mathbb{R}^n)$  une partition finie de S en cellules. On pose

$$\chi(S,\mathscr{P}) := \sum_{C \in \mathscr{P}} (-1)^{\dim C} \in \mathbb{Z}.$$

Cette quantité ne dépend pas de la partition finie en cellules  ${\mathscr P}$  choisies. On la note  $\chi(S)$ .



Des invariants numériques : la dimension et la caractéristique d'Euler

On sait déjà que deux ensembles en bijection définissable ont la même dimension.

### Théorème

Soient  $S \subset \mathbb{R}^m$  un ensemble définissable et  $f: S \to \mathbb{R}^n$  une injection définissable. Alors  $\chi(S) = \chi(f(S))$ .

### Remarque

Notons qu'il n'y a aucune hypothèse de continuité sur la fonction f.

# Des invariants numériques : sens réciproque

#### Théorème

Soient  $A \subset \mathbb{R}^m$  et  $B \subset \mathbb{R}^n$  deux ensembles définissables tels que

$$\dim A = \dim B$$
 et  $\chi(A) = \chi(B)$ .

Alors il existe une bijection définissable entre A et B.

Preuve Par induction sur la dimension commune. Le cas dim  $A = \dim B = 0$  est trivial. Soit k > 0. On suppose le théorème aux rangs  $\ell < k$ . Quitte à trianguler, on peut les écrire comme des unions disjoints de simplexes

$$A = \bigsqcup_{i=1}^{q} \sigma_i$$
 et  $B = \bigsqcup_{j=1}^{s} \tau_j$ .

On peut s'arranger pour qu'ils aient le même nombre de k-simplexes et qu'ils aient au moins un k-1 simplexes. On sépare ensuite les k-simplexes des  $\ell$ -simplexes avec  $\ell < k$ . On peut ensuite construire une bijection semi-linéaire entre l'union des k-simplexes de A et l'union des k-simplexes de B. De même pour les  $\ell$ -simplexes en utilisant l'hypothèse de récurrence.

## Conclusion

Merci de nous avoir écouté!