# 金融實務專案

預測什麼樣的銀行客戶流失機率比較高

2023/7/15 凌銘陽

## 資料集統計描述

10000筆客戶資料,14個欄位,無缺失值

| ColumnName      | Description        | Туре  |
|-----------------|--------------------|-------|
| RowNumber       | 資料編號               | 連續型資料 |
| CustomerId      | 客戶ID               | 連續型資料 |
| Surname         | 客戶姓氏               | 字串資料  |
| Geography       | 居住國家               | 離散型資料 |
| Gender          | 性別                 | 二元型資料 |
| Age             | 年齡                 | 連續型資料 |
| CreditScore     | 信用分數               | 連續型資料 |
| Tenure          | 往來期間               | 離散型資料 |
| Balance         | 帳務餘額               | 連續型資料 |
| NumOfProducts   | 持有產品數              | 離散型資料 |
| HasCrCard       | 是否持卡               | 二元型資料 |
| IsActiveMember  | 是否有效會員             | 二元型資料 |
| EstimatedSalary | 預估收入               | 連續型資料 |
| Exited          | 是否流失 (0:未流失, 1:流失) | 二元型資料 |

# 約20%的人流失



# 一、確認你的分析範圍

| 提出假設                                            | 與問題、假設相關的欄位、變數可能有哪些? |
|-------------------------------------------------|----------------------|
| 客戶 <mark>持有產品數量</mark> 多,相對較為忠實客群,流失率較低         | 客戶資料、持有產品數、是否流失      |
| 客戶 <mark>帳務餘額</mark> 少的, 越可能會流失                 | 客戶資料、帳務餘額、是否流失       |
| 客戶 <mark>年齡</mark> 低可能有較低忠誠度,流失率高               | 客戶資料、年齡、是否流失         |
| <mark>信用分數</mark> 低,是否影響到借款成功率,導致有換行的趨勢,進而影響流失率 | 客戶資料、信用分數、是否流失       |
| 地區會不會影響流失率                                      | 客戶資料、居住國家、是否流失       |
| 客戶 <mark>來往時間</mark> 長短影響忠誠度,用越久越不容易流失          | 客戶資料、來往期間、是否流失       |
| 客戶是會員・可能流失率較低                                   | 客戶資料、是否會員、是否流失       |
| 客戶有 <mark>持卡</mark> ,可能流失率較低                    | 客戶資料、是否持卡、是否流失       |
| 客戶 <mark>性別</mark> ,可能流失率會有落差                   | 客戶資料、性別、是否流失         |

# 二、開始你的分析(連續型資料)

- CreditScore、Age 呈現常態分佈,在平均值有較高的流失數
- 40~50歲有較多的流失量(橘色)
- Balance 呈現雙峰分佈,在5萬以下及約12萬左右有較高的流失量
- EstimatedSalary 則是與流失率無太大關聯

| 提出假設                                  | 與問題、假設相關的欄位、變數可能<br>有哪些? | 驗證結果                               |
|---------------------------------------|--------------------------|------------------------------------|
| 客戶 <mark>年齡</mark> 低可能有較低忠誠度,流<br>失率高 | 客戶資料、年齡、是否流失             | 否,流失數量與年齡成常態分佈<br>( <b>1</b> )     |
| 信用分數低,是否影響到借款成功率,導致有換行的趨勢,進而影響<br>流失率 | 客戶資料、信用分數、是否流失           | 否·流失數量與信用分數成常態分佈                   |
| 客戶 <mark>帳務餘額</mark> 少的, 越可能會流失       | 客戶資料、帳務餘額、是否流失           | 是·呈現雙峰分佈·餘額5萬以下的客戶與12萬左右<br>有較高流失率 |









# 二、開始你的分析 (離散型資料)

| 提出假設                                       | 與問題、假設相關的欄位、變數可能 有哪些? | 驗證結果                                |
|--------------------------------------------|-----------------------|-------------------------------------|
| 地區會不會影響流失率                                 | 客戶資料、居住國家、是否流失        | 是,德國地區流失率為西班牙與法國的2倍(32、16%)         |
| 客戶 <mark>來往時間</mark> 長短影響忠誠度,用<br>越久越不容易流失 | 客戶資料、來往期間、是否流失        | 否·無論來往多久流失占比幾乎相同(~20%)              |
| 客戶 <mark>性別</mark> ,可能流失率會有落差              | 客戶資料、性別、是否流失          | 是· <mark>女性</mark> 流失率高於男性(25%、16%) |



# 二、 開始你的分析 (離散型資料)

| 提出假設                                        | 與問題、假設相關的欄位、變數可能<br>有哪些? | 驗證結果                                                               |
|---------------------------------------------|--------------------------|--------------------------------------------------------------------|
| 客戶 <mark>持有產品數量</mark> 多,相對較為忠<br>實客群,流失率較低 | 客戶資料、持有產品數、是否流失          | 是,因為持有複數產品者流失率較低,因此假設為真<br>(由於持有3個以上的基數少,固有較大的流失率,選<br>擇將2個以上是為一類) |
| 客戶有 <mark>持卡</mark> ,可能流失率較低                | 客戶資料、是否持卡、是否流失           | <b>否</b> ,無倫有無持卡皆有相同的流失率(~20%)                                     |
| 客戶是會員,可能流失率較低                               | 客戶資料、是否會員、是否流失           | 是,無會員流失率為27%,反之則14%                                                |



# 二、開始你的分析(檢查離群值)



#### 年齡有較大離群值(約為57歲以上)



# 二、開始你的分析(特徵工程)

- 1. 保留會影響流失的特徵 CreditScore、Geography、 Gender、 Age、 Balance、 NumOfProducts、 IsActiveMember
- 2. 處理NumOfProducts,因3、4基數少,合併到2,轉為二元型資料
- 3. 離散型資料轉換為二元欄位(是否德國、是 否法國、是否西班牙)
- 4. 連續型資料標準化
  - 1. CreditScore、Age 常態分佈 > z轉換
  - 2. Balance雙峰分佈 > 最大最小轉換
- 5. 相關係數分析
  - 1:完全正相關
  - -1:完全負相關
  - 0:無關聯



- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

## 三、提交你的分析報告

#### 總結論

- 對流失較有影響力的特徵有(相關係數)
  - 1. 持有產品數 (0.29)
  - 2. 年龄 (0.28)
  - 3. 地區 (德國0.17)
  - 4. 是否會員 (0.15)
  - 5. 帳戶餘額 (0.12)
  - 6. 性別 (0.11)
- 可控制的建議
  - 提高客戶購買產品數
  - 維持中年龄層(35~50)的客戶數量
  - 使客戶成為有效會員
- 建立有效模型進行預測與評估

## 四、模型與預測

#### 1. Baseline model

- 邏輯回歸 LogisticRegression
- 支持向量機 SVC
- 決策樹 DecisionTreeClassifier
- 隨機森林 RandomForestClassifier
- 梯度提升樹 GradientBoostingClassifier
- KNN KNeighborsClassifier
- 貝葉司分類器 Naive\_bayes
- XGBooting XGB
- 2. 模型驗證(Area Under the Receiver Operating Characteristic Curve, AUC)
  - 選擇適合的模型(邏輯回歸、梯度提升樹)
- 3. 模型優化
  - 調整權重(流失客戶通常較稀少,會有不平衡的問題,此資料集流失比例為1:5
  - 超參數優化

## 四、模型與預測 - Baseline model

#### 因為我們在意的是Exited為1的預測(流失)

· ROC\_AUC: 衡量二元分類模型性能的一個常用指標

ROC: 該曲線代表真陽率 (True Positive Rate) vs 假陽率 (False Positive Rate)

AUC: 代表該曲線下的面積,該值越接近1表示模型的性能越好

|   | Model                  | AUC Average Score | ROC_AUC_Score | ROC_AUC_Score_1 |
|---|------------------------|-------------------|---------------|-----------------|
| 0 | Gradient Boosting Tree | 0.826762          | 0.704593      | 0.833426        |
| 1 | Logistic Regression    | 0.792484          | 0.644177      | 0.811966        |
| 2 | XGB                    | 0.804581          | 0.695257      | 0.801698        |
| 3 | NBC                    | 0.776863          | 0.582373      | 0.792129        |
| 4 | Random Forest          | 0.802822          | 0.705735      | 0.791129        |
| 5 | SVC                    | 0.758981          | 0.672915      | 0.782499        |
| 6 | KNN                    | 0.745890          | 0.679213      | 0.760071        |
| 7 | Decision Tree          | 0.659379          | 0.657577      | 0.657364        |

# 四、模型與預測 – 選擇模型(線下面積較高的2個)

#### 曲線下面積:

• 1:完美預測分類

• 0.5: 隨機55分類(灰線以下)

· 0:模型性能差,幾乎無能力預測



|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 9            | 0.87      | 0.96   | 0.91     | 1194    |
| 1            | 0.75      | 0.45   | 0.56     | 306     |
| accuracy     |           |        | 0.86     | 1500    |
| macro avg    | 0.81      | 0.70   | 0.74     | 1500    |
| weighted avg | 0.85      | 0.86   | 0.84     | 1500    |



|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.85      | 0.96   | 0.90     | 1194    |
| 1            | 0.70      | 0.32   | 0.44     | 306     |
| accuracy     |           |        | 0.83     | 1500    |
| macro avg    | 0.77      | 0.64   | 0.67     | 1500    |
| weighted avg | 0.82      | 0.83   | 0.81     | 1500    |

## 四、模型與預測 - 優化模型

- 1. 調整流失比例權重(0:1=1:5)
- 2. 超參數調整、驗證曲線微調
- 3. 這兩個模型AUC略為上升

|   | Model    | ROC_AUC_Score_1 |
|---|----------|-----------------|
| 0 | LOGR_opt | 0.812491        |
| 1 | LOGR     | 0.811966        |
| 2 | GDBT_opt | 0.834521        |
| 3 | GDBT     | 0.833426        |

| precision | recall                                    | f1-score | support |
|-----------|-------------------------------------------|----------|---------|
|           |                                           |          |         |
| 0.93      | 0.66                                      | 0.77     | 1194    |
| 0.38      | 0.80                                      | 0.51     | 306     |
|           |                                           |          |         |
|           |                                           | 0.69     | 1500    |
| 0.65      | 0.73                                      | 0.64     | 1500    |
| 0.82      | 0.69                                      | 0.72     | 1500    |
|           |                                           |          |         |
|           |                                           |          |         |
| precision | recall                                    | f1-score | support |
| •         |                                           |          |         |
| 0.87      | 0.97                                      | 0.91     | 1194    |
| 0.78      | 0.42                                      | 0.54     | 306     |
|           |                                           |          |         |
|           |                                           | 0.86     | 1500    |
| 0.82      | 9.69                                      |          | 1500    |
|           |                                           |          | 1500    |
| 0.85      | 0.80                                      | 0.64     | 1500    |
|           | 0.38<br>0.65<br>0.82<br>precision<br>0.87 | 0.93     | 0.93    |

# 五、BackUp

- EDA: Python
- Feature Engineer: Python
- ML: Python
- 參考資料:
  - 自己筆記
  - Google
  - ChatGPT
  - Link