

Introdução a Computação Paralela

Programação Paralela

Aula 1 Alessandro L. Koerich

> Pontificia Universidade Católica do Paraná (PUCPR) Ciência da Computação – 6º Período

- Problemas Complexos
- * Avanços Tecnológicos
- * Motivação
- * Transistores FLOPS Memória Disco

PUCPR Ciência da Computação

- Aplicações
- * Resumo

Koerich (alekoe@ppgia.pucpr.br

* Próxima Aula

alekoe ppgia.pucpr.br

Questão

- * O que é necessário para obter processamento paralelo?
 - * Uma máquina paralela
 - * Um sistema operacional paralelo
 - * Uma linguagem de programação paralela

Arquiteturas

- * <u>Vectorial Computers</u>: sistemas proprietários
 - * Forneceram o progresso necessário para o surgimento da ciência computacional, mas eles eram somente uma resposta parcial.
- * Massively Parallel Processors (MPP): sistemas proprietários
 - * Alto custo e uma baixa relação performance /custo.
- * Symmetric Multiprocessors (SMP):
 - Problemas de escalabilidade

PUCPR Ciência da Computação

Programação Paralela

Alessandro

o L. Koerich (alekoe@ppgia.pucpr.br) P

PUCPR Ciência da Computação

Programação Paralela 200

2004

4

Arquiteturas

Sistemas Distribuídos:

- * Difícil de utilizar e duro de extrair paralelismo.
- **<u>Clusters</u>**: popularidade crescente
 - * High Performance Computing Commodity Supercomputing
 - * High Availability Computing Mission Critical **Applications**

Máquina Paralela

Sun Enterprise 10000

- * 4 Processor Boards
- 16 466-MHz UltraSPARC-II Processors w/ 8-MB SRAM External Cache per **Processor**
- 4 Memory Boards
- 16 1-GB Memory Options
- 1 Sun StorEdge S1 Disk Array
- * 1 Sun FastEthernet 10/100BaseT Fast/Wide **UltraSCSI SBus Adapter**

Preco: US\$ 847,990.00

Koerich (alekoe@ppgia.pucpr.br)

PUCPR Ciência da Computação

PUCPR Ciência da Computação

Máquina Paralela

- * 18 Processor Boards
- * 72 @ 1.05 GHz UltraSPARC-IIICu Processors w/8-MB **SRAM External Cache per Processor**
- 4 Memory Boards
- 288 GB Memory
- 1 Sun StorEdge S1 Disk Array
- * 1 Sun FastEthernet 10/100BaseT Fast/Wide **UltraSCSI SBus Adapter**

Preço:

Necessidade de Recursos Alternativos

- * Não podemos comprar "Big Iron" machines
 - * Devido a seu alto custo e curto ciclo de vida.
 - * Restrição de recursos
 - * Não se encaixam mais no modelo atual de financiamento.
- * Paradoxo: tempo necessário para desenvolver um aplicação paralela é igual a meia vida dos supercomputadores paralelos!!

PUCPR Ciência da Computação

Programação Paralela

ndro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR Ciência da Computação

Programação Paralela 2004

Tendência da Tecnologia...

- Performance dos componentes dos PCs/Workstations estão quase atingido a performance dos componentes utilizados em supercomputadores...
 - * Microprocessadores (50% a 100% por ano)
 - * Redes (Fibra ótica, Gigabit ..)
 - * Sistemas Operacionais
 - * Ambientes de Programação
 - Aplicações
- * A taxa de melhora de performance dos componentes comuns é muito alta.

Koerich (alekoe@ppgia.pucpr.br)

Falando em Performance...

- * Como é medida a performance de computadores e processadores?
 - * MHz / GHz?
 - * MFLOPS Millions Floating Point Operations per Second (futuretech.mirror.vuurwerk.net/perf.html)
 - * SPEC (www.spec.org)

ndro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR Ciência da Computação

Koerich (alekoe@ppgia.pucpr.br

PUCPR Ciência da Computação

Motivação

- Buscar uma maneira mais barata de resolver problemas computacionais tremendamente complexos.
- * Solução: conectar PC's comuns e fazê-los trabalhar juntos → CLUSTER

Agrupamento de Computadores

ssandro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR

"Cadeia Alimentar" Computacional

Legado de Mainframes, Supercomputadores e MPPs

essandro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR Ciência da Computação

Programação Paralela

2004

13

Problemas Complexos

* O que seria um problema computacionalmente complexo ?

* Um Exemplo??

PUCPR Ciência da Computação

Programação Paralela

2004

Problema Complexo: Genoma

- Montar fragmentos de DNA em genomas completos
- Identificar partes da sequência

Problema Complexo: Genoma

ssandro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR Ciência da Computação

Programação Paralela

15

PUCPR Ciência da Computação

Programação Paralela

ela 2004

16

Estudo de Caso: Bioinformática

- Celera Genomics construiu um dos ambientes computacionais mais poderosos do mundo
- Este ambiente é composto por 800 computadores
 Compaq Alpha rodando Compaq Tru64TM UNIX
 64-bit interconectados, cada um sendo capaz de realizar mais de 250 bilhões de comparações de seqüências por hora.
- Este ambiente está sendo utilizado para montar fragmentos de DNA em genomas completos.

PUCPR Ciência da Computação

rogramação Paralela

2004

17

Avanços Tecnológicos

- Execução de múltiplas instruções em um mesmo ciclo de clock (CPI)
- Peak Floating Point Operations (FPLOFS)

PUCPR Ciência da Computação

Programação Paralela

2004

004

Avanços Tecnológicos

- * Memória
 - * Tamanho e Velocidade
 - * Alimentar dados na taxa necessária
 - * Memory Bandwidth
- Inovações em arquitetura e software ⇒ redução dos bottlenecks causados pelo caminho dos dados e memória

Avanços Tecnológicos

Desktops, workstations e servidores com 2, 4 ou mais processadores conectados estão se tornando plataformas comuns para o desenvolvimento de aplicações

dro I Koerich (alekoe@nngia nuchr hr)

PUCPR Ciência da Computação

Programação Paralel

2004

ssandro L. Koerich (alekoe@ppgia.

PUCPR Ciência da Computação

Programação Paralela

alela 200

Avanços Tecnológicos

- Aplicações em larga escala em ciência e engenharia
- * Servidores de base de dados e web
- Aplicações gráficas, rendering
- Aplicações envolvendo alta disponibilidade

PUCPR Ciência da Computação

Avanços Tecnológicos

- * É importante do ponto de vista do custo, performance e requisitos das aplicações, entender...
- * os princípios, ferramentas, e técnicas para programação de várias plataformas paralelas atualmente disponíveis.

Motivação

- Mito: o desenvolvimento de programas paralelo requer tempo e esforço.
 - * Complexidade para especificar e coordenar tarefas concorrentes
 - * Falta de algoritmos portáveis
 - * Falta de ambientes padrão
 - * Falta de ferramentas de desenvolvimento de software

Motivação

- * Se comparado ao desenvolvimento de processadores.....
- * Vale a pena gastar 2 anos para desenvolver uma aplicação paralela, se o hardware se tornará obsoleto?
 - * O esforço no desenvolvimento é desperdiçado
- * Porém, arquiteturas uniprocessador não serão capazes de manter os aumentos de performance no futuro....

PUCPR Ciência da Computação

ro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR Ciência da Computação

PUCPR

De Transistores à FLOPS

- * Lei de Moore (1965)
 - Duplicação da densidade de transistores a cada dois anos
- Mas, a lei de Moore poderá torna-se invalida em breve ⇒ perda de energia elétrica

De Transistores à FLOPS

- * A questão de traduzir transistores em operações por segundo (*ops*) é crítica
- Como usar transistores para obter taxas crescentes de poder computacional ⇒ problema de arquitetura !!
- Recurso lógico ⇒ paralelismo implícito e explícito!!

L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR Ciência da Computação

ogramação Paralela

2004

Alessa

Koerich (alekoe@ppgia.pucpr.br

PUCPR Ciência da Computação

Dunana a a a a Banalala

. . . .

Memória e Disco

- * A velocidade global de computação: *Processador + Memória*
- * Clock rates de processadores: 140% ao ano na década passada, além do aumento de número de instruções por ciclo de clock . . .
- **☀** Tempo de acesso RAM: ↑10% ao ano
- * Existe um tremendo gargalo !!!

Resumo

- Problemas complexos exigem grande poder computacional
- Avanços tecnológicos estão cada vez mais limitados
- * Validade da Lei de Moore

PUCPR

Próxima Aula

* Exemplos de Aplicações de Sistemas Paralelos

Alessandro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR Ciência da Computação

Programação Paralela 2004

29

