

Advanced Algorithms

Lecture 1

Introduction

&

Dynamic Programming

Center for Data-intensive Systems

byang@cs.aau.dk

Agenda

- Introduction
- Dynamic Programming

People

- Lecturer: Bin Yang
 - Email: <u>byang@cs.aau.dk</u>
 - Office: 3.2.48
 - Homepage: http://people.cs.aau.dk/~byang/
 - DPW group: Database, Programming and Web Technologies
 - Big data, data science, data analytics (machine learning, artificial intelligence)
 - Daisy: Center for Data-Intensive Systems.
 http://www.daisy.aau.dk/
- Teaching Assistant: Simon Aagaard Pedersen
 - PhD student at Daisy
 - Email: sape@cs.aau.dk
 - Office: 3.2.46

Location and Time

- Location
 - NJV 6A, 1.20, but with some exceptions.
- Time
 - Some Tuesdays and Fridays.
 - Lectures are from 8.15 to 10.00.
 - Exercises are from 10.15 to 12.00.
- Check the full schedule on Moodle before going to the classroom.

Moodle Page and Textbook

- Course page at Moodle
 - https://www.moodle.aau.dk/course/view.php?id=28778
 - Please check it frequently for notifications and updates!
- Textbook
 - "Introduction to Algorithms", 3.ed, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, The MIT Press.
 - ISBN:9780262533058
 - Abbreviation: CLRS
 - Available at the Factum book store http://ftu.dk/

Course Structure

- A total of 15 sessions
 - 12 regular sessions + 3 self-study exercise sessions
- A regular session = a lecture class + an exercise class.
- A lecture class
 - 2 * 45 minutes
 - Each lecture studys a specific topic.
 - During a lecture, there may be mini-quizzes.
 - Have a pen and some papers.
- An exercise class
 - 2 * 45 minutes
 - Solve exercises assigned in the session.
 - You are encouraged to work in groups.
 - Simon comes by from group to group during each exercise class.
 - Get a feeling of exam questions from enough exercises!

Course Structure (2)

- A self-study exercise session = 4 hours of exercises
 - You need to do it in groups.
 - Each group can submit to Simon/me one written solution no later than a week of the session.
 - Simon/I will give written feedback for each of the submitted solutions.
 - I recommend that each of you solves the problems individually first, and then you discuss, summarize, and hand in solutions per group.
 - In case you cannot agree with each other, you can hand in multiple solutions for one problem.

Working hours

- This is a 5 ECTS course, where each ECTS=30 hours
 - 150 hours
- 12 regular sessions
 - 2h exercises + 2h lecture.
 - 3h reading
 - In total, 12*(2+2+2+1)=84h
- 3 self-study exercises sessions
 - 4+4=8h on solving the exercises.
 - 4h on checking the solutions/feedback in order to make sure you can solve each of the exercises.
 - In total, 3*(8+4)=36h
- 30h for preparing the exam.
- In total, 84+36+30=150h

Exam

- Individual and written, but open-book
 - Electronic devices with communication capabilities, such as laptops and mobile phones, are NOT allowed.
 - You can bring old-fashion calculators.
 - You can freely use your copies of slides from the lectures, textbooks, and other course material.
- Exam in two parts
 - A set of quizzes, to test knowledge.
 - Choose the options that you think are correct.
 - A few (1 ~ 3) open problems, each with some sub-problems, to test competences and skills.
 - Given a real world problem, write pseudo code, give complexity analysis, etc.
 - You will get a better feeling when you participate self-study exercise sessions.
- The exam will have 100 points.

Prerequisites

- AD on DAT3/SW3 or AD2 on IT7
- Let's quickly recap the intended learning outcomes of AD/AD2
- Basic mathematical concepts such as recursion, induction, concrete and abstract complexity;
 - Solving recurrences, asymptotic notation.
- Basic data structures;
 - Queues, stacks, heaps, linked lists, priority queues.
- Algorithmic principles such as searching, search trees, sorting, dynamic programming, divide-and-conquer;
 - Binary search tree, merge sort, quick sort.
- Graphs and graph algorithms such as shortest path, connected components, spanning trees.
 - BFS, DFS, MST, topological sorting, shortest path.

Mini quiz

From the AD1 exam in Jan 2019.

- **1.2.** (3 points) $700 \cdot n^2 + 999 \cdot n^2 \lg n + 0.1 \cdot n^2 \lg^2 n$ is:

- **a)** $\Theta(n^2 \lg n)$ **b)** $\Omega(n^2 \lg n)$ **c)** $\Theta(n^2)$ **d)** $\Theta(n^2 \cdot \lg^2 n)$

Mini quiz

From the AD exam in Jan 2016.

- **1.2.** (3 points) $700 \cdot n^2 + 999 \cdot n^2 \lg n + 0.1 \cdot n^2 \lg^2 n$ is:
- **a)** $\Theta(n^2 \lg n)$ **b)** $\Omega(n^2 \lg n)$ **c)** $\Theta(n^2)$ **d)** $\Theta(n^2 \cdot \lg^2 n)$

Intended Learning Outcomes (ILO)

- After taking AALG, you should acquire the following knowledge
 - Algorithm design techniques such as divide-and-conquer, greedy algorithms, dynamic programming, back-tracking, branch-andbound algorithms, and plane-sweep algorithms;
 - Algorithm analysis techniques such as recursion, amortized analysis;
 - A collection of core algorithms and data structures to solve a number problems from various computer science areas: algorithms for external memory, multiple-threaded algorithms, advanced graph algorithms, heuristic search and geometric calculations;
 - There will also enter into one or more optional subjects in advanced algorithms, including, but not limited to: approximate algorithms, randomized algorithms, search for text, linear programming and number theoretic algorithms such as cryptosystems.

Course Content (1)

- Lecture 1: Dynamic programming (CLRS 15)
 - Principles of DP.
 - Examples: Edit distance, activity selection.
- Lecture 2: All-pairs shortest paths (CLRS 25)
 - Distance matrix and predecessor matrix.
 - Floyd-Warshall algorithm, which uses DP.
- Lecture 3: Network flow algorithms (CLRS 26)
 - Formalize flow networks, flows, maximum-flow.
 - Ford-Fulkerson algorithms.
- Lecture 4: Greedy algorithm (CLRS 16)
 - Ideas/principles of greedy algorithm.
 - Examples: Activity selection, Huffman coding.

Course content (2)

- Lecture 5: Amortized analysis (CLRS 17)
 - Understand amortized analysis, difference from average-case analysis.
 - Aggregated analysis, accounting method, potential method.
- Lectures 6, 7, 8: Computational geometry (CLRS 33 + additional references)
 - Basic geometric operations in 2D, e.g., two line segments intersecting, orientation of two line segments?
 - Sweeping algorithms.
 - Graham's scan and Jarvis's march algorithm for convex hull.
 - Divide-and-conquer algorithm to find the closet pair of points in a set of points.
 - Range searching in d-dimensional space: kd-tree and range tree.

Course Content (3)

- Lecture 9: External-memory algorithms and data structures (CLRS 18 + additional references)
 - Balanced search trees, e.g., B-trees and R-trees.
 - External memory sorting: multi-way merge-sort algorithm.
- Lecture 10: Multi-threaded algorithms (CLRS 27)
 - Concurrency keywords: parallel, spawn, sync.
 - MT Fibonacci number computation, MT merge sort.
- Lecture 11 & 12: Algorithms for NP-complete problems (CLRS 35)
 - Approximation algorithms
 - Backtracking and branch-and-bound
 - Examples using the algorithms.
 - Vertex cover, traveling sales man.

Tips

- Your feedback is always welcome.
 - Esp. when you get confused.
 - Send me an email or drop by my office.
- Participate in every lecture.
- Play actively in every exercise class and self-study exercise session.
 - Exercises prepare you for the final exam!
 - Make sure you understand all exercises by YOURSELF after your group work in each exercise class.
- Check the course page frequently.

Agenda

- Introduction
- Dynamic Programming (DP)
 - To understand the principles of dynamic programming.
 - To understand the DP algorithm for edit distance.
 - To be able to apply the DP algorithm design technique.

Recall algorithm design techniques from AD1

- Algorithm design techniques so far:
 - Brute-force algorithms
 - Linear search
 - Incremental algorithms
 - Insertion sort
 - Algorithms that use ADTs (implemented using efficient data structures)
 - Heap sort
 - Divide-and-conquer algorithms
 - Merge sort, quick sort.
 - Dynamic-programming
 - Rod cutting
 - Top-down with memoiziation.
 - Bottom-up method.

Divide and Conquer

- If the problem size is small enough to solve it in a straightforward manner, solve it.
- Otherwise, meaning that the input size is too large to deal with in a straightforward manner, do the following
 - Divide: Divide the problem into two or more disjoint subproblems.
 - Conquer: Use divide-and-conquer recursively to solve the subproblems.
 - **Combine**: Take the solutions to the sub-problems and combine these solutions into a solution for the original problem.

Merge Sort


```
Merge-Sort(A, p, r)
   if p < r then
        q←(p+r)/2
        Merge-Sort(A, p, q)
        Merge-Sort(A, q+1, r)
        Merge(A, p, q, r)</pre>
```

- Mini-quiz: do you still recall the recurrence of merge sort?
 - A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
- T(n)=
 - $\Theta(1)$ if n=1
 - $2T(n/2) + \Theta(n)$ if n>1

Dynamic programming

- A powerful technique to solve optimization problems.
- An optimization problem can have many possible solutions, each solution has a value, and we wish to find a solution with the optimal (i.e., minimum or maximum) value.
- An algorithm should compute the optimal value plus, if needed, an optimal solution.

Rod cutting

- A steel rod of length n should be cut and sold in pieces.
- Pieces sold only in integer sizes according to a price table P[1..n].
- Goal: cut up the rod to maximize profit.

Length	1	2	3	4	5	6	7
Price	4	5	13	16	23	24	27

Max profit (optimal value): 31
Optimal cut (optimal solution): 1, 1, 5

Two key characteristics of DP

- Overlapping sub-problems
 - Sub-problems share sub-sub-problems.
 - A divide-and-conquer algorithm does more work than necessary, as it needs to repeatedly solve the common sub-sub-problems.
- Optimal substructure
 - The optimal solution to a problem incorporates optimal solutions to sub-problems.
 - Un-weighted shortest path (YES)
 - Shortest path A = <q, r, t> from q to t.
 - Sub-paths of A, <q, r> and <r, t>, are also the shortest paths.
 - Un-weighted longest simple path. (NO)
 - Longest path B = <q, r, t> from q to t.
 - Sub-paths of B, <q, r> and <r, t>, may not be the longest paths.

Two approaches of DP

- Top-down with memoization
 - Solve each sub-problem only once and store the answers to the solved sub-problems in a table.
 - Next time, when you need to solve a solved sub-problem, just look up the table to get the answer.
- Bottom-up without recursion.
 - Depending on some natural notion on the size of a sub-problem.
 - Solving any particular sub-problem depends only on solving smaller sub-problems.
 - Sort the sub-problems by size and solve them in size order, smallest first. And save the solutions.

Pros and cons

- Both should have the same asymptotic running time.
- If all sub-problems must be solved, memoization (recursion) is usually slower (by a constant factor) than Bottom-up (loops).
- If not all sub-problems need to be solved, memoization only solves the necessary ones.

Structure of DP

- Construction:
 - Which choices have to be considered in each step of the algorithm?
 - What are the sub-problems?
 - How are the trivial sub-problems solved?
 - Write a memoized version of the algorithm or in which order do we have to solve the sub-problems (bottom-up)
 - Remember the (optimal) choices made
 - Use the remembered choices to construct a solution

Analysis:

- How many different sub-problems are there in total?
- How many choices have to be considered when solving each subproblem?

Agenda

- Introduction
- Dynamic Programming
 - To understand the principles of dynamic programming.
 - To understand the DP algorithm for edit distance.
 - To be able to apply the DP algorithm design technique.

Edit distance

- Problem definition:
 - Two strings: s[1..m] and t[1..n]
 - Find edit distance dist(s, t) between the two input strings s and t.
 - The smallest number of edit operations that turns s into t.
 - Edit operations:
 - Replace one letter with another letter
 - Delete one letter
 - **Insert** one letter
- Example: let's turn "ghost" to "house"
 - ghost delete g
 - host insert u
 - houst replace t by e
 - house

Two examples

- s=milk t=windy
 - Option 1: Replace k by y, dist(s, t)=dist(mil, wind)+1
 - Option 2: Delete k, dist(s, t) = dist(mil, windy)+1
 - Option 3: Insert y in the end of s, dist(s, t) = dist(milk, wind)+1
 - dist(s, t) = min (dist(mil, wind)+1, dist(mil, windy)+1, dist(milk, wind)+1)
- s=milk t=link
 - Option 1: Keep k, dist(s, t)=dist(mil, lin)
 - Option 2: Delete k, dist(s, t) = dist(mil, link)+1
 - Option 3: Insert k in the end, dist(s, t) = dist(milk, lin)+1
 - dist(s, t) = min (dist(mil, lin), dist(mil, link)+1, dist(milk, lin)+1)
- Optimal sub-structure for edit distance?
 - YES! The optimal solution to a problem incorporates optimal solutions to sub-problems.
 - Formal proof: see additional references on Moodle.

Sub-problems

- Sub-problem:
 - $d_{i,j} = dist (s [1..i], t [1..j])$
- Then $dist(s, t) = d_{m,n}$
- Let's look at the last symbol: s [i] and t [j]. There are three options, do whatever is the cheapest:
- Option 1:
 - If s [i] = t [j], then turn s [1..i-1] to t [1..j-1]
 - ◆ Milk, link: d_{i,j} = d_{i-1,j-1}
 - Else replace s[i] by t [j] and turn s [1..i-1] to t [1..j-1]
 - milk, windy; mily, windy: d_{i,j} = 1 + d_{i-1,j-1}
- Option 2: Delete s [i] and turn s [1..i-1] to t [1..j]
 - milk, windy; mil, windy: d_{i,j} = 1+ d_{i-1,j}
- Option 3: Insert t [j] at the end of s [1..i] and turn s [1..i] to t [1..j-1]
 - Milk, windy; milky, windy: d_{i,j} = 1+ d_{i,j-1}

Recurrence, optimal substructure

$$d_{i,j} = \min \begin{cases} d_{i-1,j-1} + \begin{cases} 0 & \text{if } s[i] = t[j] \\ 1 & \text{else replace s}[i] \text{ by } t[j] \end{cases} \\ d_{i-1,j} + 1 & \text{delete s}[i] \\ d_{i,j-1} + 1 & \text{insert } t[j] \text{ at the end of s}[i] \end{cases}$$

- How do we solve trivial sub-problems?
 - To turn empty string to t [1..j], do j inserts
 - To turn s [1..i] to empty string, do i deletes

DP Algorithm, memoization


```
EditDistance(s[1..m], t[1..n])
```

```
01 for i = 0 to m do

02 for j = 0 to n do

03 dist[i, j] = ∞

04 return EditDistR(s, t, m, n)
```

Initialization

```
EditDistR(s, t, i, j)
01 if dist[i,j] == ∞ then
```

else

04

Trivial sub-problems: i deletes and j inserts

EditDistR(s,t,i,j-1)+1) insert t[j]

```
07 else
08 	 dist[i,j] = 1 + min(EditDistR(s,t,i-1,j-1)s[i] by t[j]
EditDistR(s,t,i-1,j), delete s[i]
EditDistR(s,t,i,j-1)) 	 insert t[j]
```

09 **return** dist[i**,**j]

Time Complexity

- Analysis
 - If we solve it in a naïve D&C manner, what is the complexity?
 - Exponential runtime.

- How many different sub-problems are there in total?
 - n*m
- How many choices have to be considered when solving each subproblem?
 - 3 (copy/replace, insert, and delete)
- Thus, Θ(nm)

DP Algorithm, bottom-up

```
Trivial sub-problems
EditDistance (s[1..m], t[1..n])
                                             i deletes and j inserts
01 for i = 0 to m do dist[i,0] = i
02 for j = 0 to n do dist[0,j] = j
                                              Fills in entries in the
03 for i = 1 to m do
                                              (m+1)*(n+1) matrix in
0.4
      for j = 1 to n do
                                              row-major order.
05
         if s[i] = t[j] then
06
             dist[i,j] = min(dist[i-1,j-1], dist[i-1,j]+1,
                              dist[i,j-1]+1)
07
         else
             dist[i,j] = 1 + min(dist[i-1,j-1], dist[i-1,j],
08
                              dist[i,j-1]
09 return dist[m,n]
```

- What is the running time of this algorithm?
- How do we modify it to remember the edit operations?

s="GO" t="LOG"

m=2, n=3, we have a 3*4 matrix to fill in.

		j	1	L 2	O 3 G
i					
0		0	1	2	3
1	G	1	1	2	2
2	0	2	2	1	2

```
EditDistance(s[1..m], t[1..n])
                                           Trivial sub-problems
                                           i deletes and j inserts
01 for i = 0 to m do dist[i,0] = i
02 for j = 0 to n do dist[0,j] = j
                                           Fills in entries in the
03 for i = 1 to m do
                                           (m+1)*(n+1) matrix in
                                           row-major order.
0.4
       for j = 1 to n do
05
          if s[i] = t[j] then
06
             dist[i,j] = min(dist[i-1,j-1], dist[i-1,j]+1,
                                dist[i,j-1]+1)
07
          else
80
             dist[i,j] = 1 + min(dist[i-1,j-1], dist[i-1,j],
                                dist[i, j-1])
09 return dist[m,n]
```

Remember edit operations

m=2, n=3, we have a 3*4 matrix to fill in.

		0	1 L	2 O	3 G
0		0	1 I	2 I	3 I
1	G	1 D	1 R	2 R, I	2 C
2	0	2 D	2 R, D	1 C	2 I

```
EditDistance(s[1..m], t[1..n])
                                           Trivial sub-problems
                                           i deletes and j inserts
01 for i = 0 to m do dist[i,0] = i
02 for j = 0 to n do dist[0,j] = j
                                          Fills in entries in the
03 for i = 1 to m do
                                           (m+1)*(n+1) matrix in
                                          row-major order.
0.4
      for j = 1 to n do
05
          if s[i] = t[j] then
             dist[i,j] = min(dist[i-1,j-1], dist[i-1,j]+1,
06
                               dist[i,j-1]+1)
07
          else
80
             dist[i,j] = 1 + min(dist[i-1,j-1], dist[i-1,j],
                                dist[i,j-1])
09 return dist[m,n]
```

Remember edit operations

m=2, n=3, we have a 3*4 matrix to fill in.

What is the running time of this algorithm?

 $\Theta(nm)$

Mini quiz

- s="GO" t="LOGG"
- Fill in the 3*5 matrix.
- Identify the edit distance and the corresponding edit operations.
- There may be more than one possible sequences of operations.

Remember edit operations

i=2 Insert "G"

m=2, n=3, we **have** a 3*4 matrix to fill in.

		•	_	2	3	4 6
0		0	1 I	2 I	3 I	41
1	G	1 D	1 R	2 R, I	2 C	3 C, I
2	O	2 D	2 R, D	1 C	2 I	3 R, I
	i=1	Replace "L	,,,	i=0 Inse	ert "L"	
	i=2	Copy "O"	GO LO	i=0 inse	ert "O"	GO LGO
	i=2	Insert "G"	LO	i=1 cop	y "G"	LOGO

Although we always have a single optimal value (edit distance = 3), we may have more than one optimal solution (two possible ways of turning s to t).

=2 Replace "G"

LOG

LOGO

LOGG

ILO of Lecture 1

- Dynamic Programming
 - To understand the principles of dynamic programming.
 - Overlapping sub-problems and optimal sub-structure.
 - Top-down with memoization and bottom-up.
 - To understand the DP algorithm for edit distance.
 - To be able to apply the DP algorithm design technique.

Lecture 2

- All-pairs shortest paths (dynamic programming)
 - To understand the adjacency matrix and the predecessor matrix, which are the representations of the input and output of most of the all-pairs shortest-path algorithms.
 - To understand how the dynamic programming principles play out in the Floyd-Warshall algorithm.
- Activity selection (another example of using dynamic programing)