JLX128128G-620-PN 使用说明书

录

序号	内容标题	页码
1	概述	2
2	字符型模块的特点	2
3	外形及接口引脚功能	3~5
4	基本原理	5~6
5	技术参数	6~7
6	时序特性	7~11
7	指令功能及硬件接口与编程案例	12~末页

电话: 0755-29784961 Http://www.jlxlcd.cn

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX128128G-620 型液晶模块由于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX128128G-620 可以显示 128×128 点阵单色或 4 灰度级的图片,或显示 8 个 \times 8 行=64 个的 16*16 点阵的汉字,或显示 16 个 \times 8 行=128 个的 8*16 点阵的英文、数字、符号。或显示 21 个 \times 16 行的 5*8 点阵的英文、数字、符号。

2. JLX128128G-620 图像型点阵液晶模块的特性

- 1.1 结构牢: 带挡墙背光;
- 1.2 IC 采用 ST7571, 功能强大, 稳定性好
- 1.3 功耗低:1 100mW(不开背光 1mW <3.3V@0.3mA>, 开背光不大于 100mW<3.3V@30mA>);
- 1.4 显示内容:
 - ●128*128点阵单色图片或4灰度级的图片,
 - ●或显示 8 个×8 行=64 个的 16*16 点阵的汉字。
 - ●或显示 16 个×8 行=128 个的 8*16 点阵的英文、数字、符号。
 - ●或显示 21 个×16 行的 5*8 点阵的英文、数字、符号。
 - ●可选用 16*16 点阵或其他点阵的图片来自编汉字, 也可配合晶联讯字库 IC(JLX-GB2312) 来显示汉字。

来显示汉字。	0		
1.5 指令功能强;			
	可选 I ² C 总线、4 线 SPI 串	日、并口(6800时	序或8080时序可选择)
1.7 工作温度:-20℃	- 70℃;		
1.8 可靠性高。			

晶联讯电子

3. 外形尺寸及接口引脚功能

3.1 外形尺寸图

图 1. 外形尺寸

3.2 模块的接口引脚功能

3.2.1 并行时接口引脚功能

液晶模块

引线号	符号	名 称	功 能
1	NC		空脚
2	NC		空脚
3	NC		空脚
4	NC		空脚
5	LEDA	背光电源	供电电源正极
6	VSS	接地	OV
7	VDD	电路电源	供电电源正极
8	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD")
9	RST	复位	低电平复位,复位完成后,回到高电平,液晶模块开始工作
10	CS	片选	低电平片选
11	D7	I/0	数据总线 DB7
12	D6	I/0	数据总线 DB6
13	D5	I/0	数据总线 DB5
14	D4	I/0	数据总线 DB4
15	D3	I/0	数据总线 DB3
16	D2	I/0	数据总线 DB2
17	D1	I/0	数据总线 DB1
18	D0	I/0	数据总线 DBO
19	RD (E)	使能信号	6800 时序: 使能信号
20	WR	读/写	6800 时序: H:读数据 L:写数据

表 1: 模块并行接口引脚功能

3.2.2 四线串行时接口引脚功能

引线号	符号	名 称	功 能
1	NC		空脚
2	NC		空脚
3	NC		空脚
4	NC		空脚
5	LEDA	背光电源	供电电源正极
6	VSS	接地	OV
7	VDD	电路电源	供电电源正极
8	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD")
9	RST	复位	低电平复位,复位完成后,回到高电平,液晶模块开始工作
10	CS	片选	低电平片选
11	D7 (SDA)	I/0	串行数据
12	D6 (SCK)	I/0	串行时钟
13	D5	I/0	此引脚不用,悬空或接 VDD
14	D4	I/0	此引脚不用,悬空或接 VDD
15	D3	I/0	此引脚不用,悬空或接 VDD
16	D2	I/0	此引脚不用,悬空或接 VDD
17	D1	I/0	此引脚不用,悬空或接 VDD
18	D0	I/0	此引脚不用,悬空或接 VDD

晶联讯电子 液晶模块 JLX128128G-620-PN 更新日期: 2018-12-27

19	RD (E)	使能信号	此引脚不用,悬空或接 VDD
20	WR	读/写	此引脚不用,悬空或接 VDD

表 2: 4线 SPI 串行接口引脚功能

3.2.3 I²C 总线时接口引脚功能

引线号	符 号	名 称	功 能
1	NC		空脚
2	NC		空脚
3	NC		空脚
4	NC		空脚
5	LEDA	背光电源	供电电源正极
6	VSS	接地	OV
7	VDD	电路电源	供电电源正极
8	AO (RS)	空脚	空脚
9	RST	复位	低电平复位,复位完成后,回到高电平,液晶模块开始工作
10	CS	空脚	空脚
11	D7 (SCK)	I/0	串行时针
12-16	D6-D2 (SDA)	I/0	串行数据
17	D1	I/0	从属地址, D1, D0 同时接 VSS 时为: 0X78
18	DO	I/0	从属地址, D1, D0 同时接 VDD 时为: 0X7e
19	RD (E)	空脚	空脚
20	WR	空脚	空脚

表 3: I2C 总线接口引脚功能

4. 基本原理

4.1 液晶屏(LCD)

在 **LCD** 上排列着 128×128 点阵, 128 个列信号与驱动 IC 相连, 128 个行信号也与驱动 IC 相连, IC 邦定在 LCD 玻璃上(这种加工工艺叫 COG).

4.2 工作电图:

图 1 是 JLX128128G-620 图像点阵型模块的电路框图,它由驱动 IC ST7571 及几个电阻电容组成。

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

名称	符号	标准值			单位
		最小	典型	最大	
电路电源(3.3)	VDD - VSS	2. 7	3. 3	3. 5	V
电路电源(5.0)	VDD - VSS	4. 7	5. 0	5. 2	V
LCD 驱动电压	VDD - VO	VDD - 13.0		VDD + 0.3	V
静电电压		_	_	100	V
工作温度		-20		+70	$^{\circ}$
储存温度		-30		+80	$^{\circ}$

表 4: 最大极限参数

5.2 直流 (DC) 参数

可以选择 3.3V 供电及 5.0V 供电两种方式:

ET OF MILE OF								
名 称	符号	测试条件	标 准 值		单位			
			MIN	TYPE	MAX			
工作电压	VIN	3.3V 供电	2.7	3. 3	3.5	V		
输入高电平	VIH	_	2.2		VDD	V		
输入低电平	VIO	_	-0.3		0.6	V		
输出高电平	VOH	IOH = 0.2 mA	2.4		_	V		
输出低电平	V00	100 = 1.2 mA	_		0.4	V		
模块工作电流	IDD	VDD = 3.3V	_		0.3	mA		
背光工作电流	ILED	VLED=3. 0V	32	60	80	mA		

表 5: 直流 (DC) 参数

表 6. 写数据到 ST7571 的时序要求

引联讯电子	液晶模块	JLX128128G-620-PN

项 目	符号	测试条件	极限值			单位
			MIN	TYPE	MAX	
4线 SPI串口时钟周期	tSCYC		200			ns
(4-line SPI Clock Period)			200			
保持SCK高电平脉宽	tSHW		80			ns
(SCL "H" pulse width)		引脚: SCL	00			
保持SCLK低电平脉宽	tSLW		80			ns
(SCL "L" pulse width)						
地址建立时间	tSAS		60			ns
(Address setup time)		 弓 脚: AO				
地址保持时间	tSAH	7 [] JAP: AU	30			ns
(Address hold time)						
数据建立时间	tSDS		60			ns
(Data setup time)		 弓 脚: SID				
数据保持时间	tSDH	1 1 Mah: 21D	30			ns
(Data hold time)						
片选信号建立时间	tCSS		40			ns
(CS-SCL time)		 弓 脚: CSB				
片选信号保持时间	tCSH	JIMH: COD	100		53 7	ns
(CS-SCL time)						K

VDD =1.8 $^{\sim}$ 3.3V ±5%, Ta = -30 $^{\sim}$ 85 $^{\circ}$ C

输入信号的上升和下降时间(TR, TF)在15纳秒或更少的规定。

所有的时间,用 20%和 80%作为标准规定的测定。

从 CPU 写到 ST7571 (Writing Data from CPU to ST7571)

图 4. 写数据到 ST7571 的时序要求 (6800 系列 MPU)

ns

ns

ns

秋 / · · 庆与								
项 目	符号	名称	极限值			单位		
			MIN	TYPE	MAX			
地址保持时间	A0	tAH6	0			ns		
地址建立时间		tAW6	0			ns		
系统循环时间	Е	tCYC6	500			ns		
使能"低"脉冲宽度		tEWLW	250			ns		

250

80

30

表 7. 读写数据的时序要求

tEWHW

tDS6

tDH6

VDD =1.8 $^{\sim}$ 3.3V ±5%, Ta = -30 $^{\sim}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非常快,

(TR + TF) ≤ (tcyc6 - tewlw - tewhw) 指定。

DB[7: 0]

所有的时间,用 20%和 80%作为参考指定的测定。

tewlw 指定为重叠的 CSB "H"和"L"。

R/W信号总是"H"

使能"高"脉冲宽度

写数据建立时间

写数据保持时间

6. 3 8080 时序并行接口的时序特性(AC 参数) CSB /WR t_r t_{CCLW} t_r t_{CCHW} t_r t_{CCHW}

从 CPU 写到 ST7571 (Writing Data from CPU to ST7571)

图 5. 写数据到 ST7571 的时序要求 (8080 系列 MPU)

表 8. 读写数据的时序要求

项 目	符号	名称	极限值			单位		
			MIN	TYPE	MAX			

晶联讯电子 液晶模块 JLX128128G-620-PN 更新日期: 2018-12-27

地址保持时间	A0	tAH8	0		ns
地址建立时间		tAW8	0		ns
系统循环时间	/WR	tCYC8	500		ns
使能"低"脉冲宽度		tCCLW	250		ns
使能"高"脉冲宽度		tCCHW	250		ns
写数据建立时间	DB	tDS8	80		ns
写数据保持时间		tDH8	30		ns

VDD =1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非常快,

(TR + TF) ≤ (tcyc8 - tcclw - tcchw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tcclw被指定为"L"之间的重叠CSB和/WR处于"L"级

从 CPU 写到 ST7571 (Writing Data from CPU to ST7571)

图 6. 写数据到 ST7571 的时序要求(I²C 系列 MPU)

表 9. 读写数据的时序要求

项 目	符号	名称		极限值		单位
			MIN	TYPE	MAX	
SCL时钟频率	CSL	FSCLK			400	kHZ
SCL时钟的低周期	CSL	TLOW	1. 3			us
SCL时钟周期	CSL	THIGH	0.6			us
数据保持时间	SDA	TSU;Data	100			ns

		· • • • • • • • • • • • • • • • • • • •	020 111	<u> </u>	1/9 1. = 010	, 12 2.
数据建立时间	SDA	THD;Data	0		0.9	us
SCL, SDA 的上升时间	SCL	TR	20+0. 1Cb		300	ns
SCL, SDA 下降时间	SCL	TF	20+0. 1Cb		300	ns
每个总线为代表的电容 性负载		Cb			400	pF
一个重复起始条件设置 时间	SDA	TSU; SUA	0.6			us
启动条件的保持时间	SDA	THD; STA	0.6			us
为停止条件建立时间		TSU;STO	0.6			us
容许峰值宽度总线		TSW			50	ns
开始和停止条件之间的 总线空闲时间	SCL	TBUF	1.3			us

VDD =1.8~3.3V±5%, Ta = −30~85℃ 注:

所有的时间,用 20%和 80%作为标准规定的测定。

这是推荐的操作 I C接口与 VDD1 高于 2.6V。

图 7: 电源启动后复位的时序

表 10: 电源启动后复位的时序要求

	~		HJ-1/J 3	,		
项 目	符号	测试条件		极限值	单位	
			MIN	TYPE	MAX	
复位时间	tR		120			ms
复位保持低电平的时间	tRW	引脚: RESET	2.0			us

晶联讯电子 液晶模块 JLX128128G-620-PN 更新日期: 2018-12-27

7. 指令功能:

7.1 指令表 表 11

指令名称				指	令 石	马		说明				
	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
(1) 设置模式	0	0	0	0	1	1	1	0	0	0	2字节的指令	
(Set Mode)	_	0	- PRO			770.0					FR [3 : 0]: 设置帧频	
	0	0	FR3	FR2	FR1	FR0	BE1	BE0		0	BE [1: 0]: 设置增压效率	
										模式: 0X38, FR 、BE 0Xb8		
(2) 写显示数据	1	0				写	数据	将数据写入 DDRAM				
(Write Display Data)												
(3) 设置图标	0	0	1	0	1	0	0	0	1	ION	ION = 0: 禁止图标功能	
(Set Icon)											ION = 1: 启用图标功能	
											并设置页地址= 16	
(4) 设置页地址	0	0	1	0	1	1	显示	页地均	上,共	4位	设置页地址。每8行为一个页,128	
(Set Page Address)											行分为16个页,可设置值为:0XB0~	
											0XBF 分别对应第一页到第 16 页,	
列地址高4	0	0	0	0	0	1	列地	业的高	4 位		高4位与低4位共同组成列地址,指定128	
(5) 位设置(Set											列中的其中一列。比如液晶模块的第 100	
Column Address											列地址十六进制为 0x64, 那么此指令由	
(MSB))											2 个字节来表达: 0x16, 0x04	
列地址低4	0	0	0	0	0	0	列地	业的低	4 位			
位设置(Set												
Column Address												
(LSB)												
(6)显示开/关	0	0	1	0	1	0	1	1	1	0	显示开/关:	
(Display ON/OFF)										1	OXAE: 关, OXAF: 开	
(7)设置起始行	0	0	0	1	0	0	0 0				设置显示存储器的显示初始行,可设置值	
Set Display Start	0	0		显示	油油	行地	h- ±	L 土 フ ん	<u> </u> रे		为 0X40~0XBF ,分别代表第 0~63 行,针	
Line)	U	U		개도/1,	אאנעיי	11 MRY	ar, 2	7/1	<u>v.</u>		对该液晶屏一般设置为 0x40	
(8)设置COM0	0	0	0	1	0	0	0	1			2 字节的指令。	
(Set COM0)	0	0		C6	C5	C4	C3	C2	C1	C0	指定 COM 引脚为 COM0	
	U	U		CO	CO	CT	00	02	01		0X44	
(9)设置显示	0	0	0	1	0	0	1	0			2字节的指令。	
Duty (Set Display	0	0	L7	L6	L5	L4	L3	L2	L1	L0	显示设置 Duty	
Duty)	Ü	U	Li	LO	LO	LI	ь	22	Di	ь		
(10) Set N-line	0	0	0	1	0	0	1	0			2-byte instruction.	
Inversion	0	0				N4	N3	N2	N1	NO	Set N-line inversion counter	
(11) Release	0	0	1	1	1	0	0	1	0	0	Exit N-line inversion mode	
N-line Inversion												
(12)正显/反显	0	0	1	0	1	0	0	1	1	0	显示正显/反显:	
(Reverse Display)										1	0xA6 : 常规: 正显 0xA7 : 反显	
(13)显示全部点	0	0	1	0	1	0	0	1	0	0	显示全部点阵:	
阵(Entire Display										1	0xA4 : 常规 0xA5 : 显示全部点阵	
ON)												

JEX	® 晶联	讯电	已子	Ä	支 晶构	莫块	JL	X12	8128	G-62	0-PN	更新日期: 2018-12-27
(14)电源	原控制	0	0	0	0	1	0	1	电压	操作模式	式选择,	选择内部电压供应操作模式:
(Power C									共34	立		D2、D1、D0 位分别对应内部升压是否打
												开(1 为打开, 0 为不打开), 电压调整电路
												是否打开(1 为打开, 0 为不打开), 电压跟
												随器是否打开(1 为打开,0 为不打开)。
												通常是 0x2C,0x2E,0x2F 三
												条指令按顺序紧接着写,表示依次打开内
												部升压、电压调整电路、电压跟随器。也
												可以单单写 0x2F ,一次性打开三部分
												电路。
(15)选择	译内部电	0	0	0	0	1	0	0	内部	电压值	电阻设	选择内部电阻比例 (Rb/Ra):可以理解为
阻比例	(Select								置			粗调对比度值。可设置范围为: 0x20~
Regulator R	Register)											0x27,
												数值越大对比度越浓,越小越淡
(16)	内部设置	0	0	1	0	0	0	0	0	0	1	设置内部电阻微调,可以理解为微调对比
Set	液晶电压											度值,此两个指令需紧接着使用。上面一
Contrast	模式											条指令 0x81 是不改的,下面一条指令可
	设置的电	0	0			6 位 申	1.压值数	数据,0	~63 共	- 64 级		设置范围为: 0x00~0x3F,数值越大对比
	压值											度越浓,越小越淡
(17) LCI		0	0	0	1	0	1	0	B2	B1	В0	设置偏压比:
设置(Sele bias)	ct LCD											此液晶: 0X54 1/9bias
(18)设定		0	0	1	1	0	0	1				行扫描顺序选择:
	COM Scan							0				0XC0 :普通扫描顺序: 从上到下
Direction)				Ш								0XC8: 反转扫描顺序: 从下到上
(19)设定		0	0	1	0	1	0	0	0	0	1	列扫描顺序选择:
方向(Set	SEG Scan										0	0xA0: 常规: 列地址从左到右,
Direction)												0xA1: 反转: 列地址从右到左
(20)开抚		0	0	1	0	1	0	1	0	1	1	0x8B: 开启内部震荡电路
路(Oscillat										_		and a set Mr. little D
(21)设置		0	0	1	0	1	0	1	0	0	1	OXA8: 正常模式
式 (Rele											0	OXA9: 睡眠模式
Power-Save		0	0	1	1	1	0	0	0	0	1	0XE1: 退出睡眠模式
(22)退出 式(Rele		U	U	1	1	1	U	ľ	0	0	1	UXEI: 返出睡眠模式
Power-Save												
(23)RES		0	0	1	1	1	0	0	0	1	0	OXE2:软件复位
, ,		0	J									
	显显示数			0	2 字节指令,设定数据仅用在 3-spl							
	据长度(Set Display		_	DL7	DL6	DL5	DL4	DL3	DL2	DL1	DLO	
Data Length		0	0	-	-1	1	1	,	1		4	OVER
(25) 扩		0	0	1	1	1	1	1	1	0	1	OXFD
Extension												
Command S	Set1)											

更新日期: 2018-12-27

— пн-их											<u> </u>
(26) 扩展指令2	0	0	1	1	0	1	0	0	0	1	OXD1
Extension											
Command Set2)											
	0	0	0	1	1	1	1	0	1	1	0X7B
(27) 扩展指令3	0	0	U	1	1	1	1	١	1	1	OATB
Extension											
Command Set3)											
						扌	广展指	令 1			
(1)增加Vop偏移	0	0	0	1	0	1	0	0	0	1	0X51
(Increase Vop											
offset)											
(2)降低Vop偏移	0	0	0	1	0	1	0	0	1	0	0X52
			U	1		1	ľ	"	1	"	VAUZ
Decrease Vop											
offset)					_	_					
(3)返回正常模	0	0	0	0	0	0	0	0	0	0	0X00
式(Return normal											
mode)											
						ŧ	广展指	令 2			
(1)禁用自动读	0	0	1	0	1	0	1	0	1	0	OXAA
(Disable autoread)											
	0	0	0	0	0	1	0	0	1	1	0X13
(2) 进入EEPROM	U	0	U	U		1	ľ	0	1		OAIS
模式 (Enter EEPROM											
mode)											
(3)启用阅读模	0	0	0	0	1	0	0	0	0	0	0X20
式(Enable read											
mode)											
(4) 设置读取脉冲	0	0	0	1	1	1	0	0	0	1	0X71
(Set read pulse)											
(5) 退出EEPROM	0	0		0	0	0	0	0	1	1	0X83
			1	U			ľ		1	1	VAGO
模式(Exit EEPROM											
mode)				_							
(6) 启用擦除模式	0	0	0	1	0	0	1	0	1	0	0X4A
(Enable erase											
mode)											
(7) 设置擦除脉冲	0	0	0	1	0	1	0	1	0	1	0X55
(Set erase pulse)											
(8) 启用写入模式	0	0	0	0	1	1	0	1	0	1	0X35
(Enable write mode)		`			1	_					
	0	0	0	1	1	0	1	0	1	0	OVEA
(9) 设置写入脉冲	U	0	U	1	1	U	1	١	1	"	OX6A
(Set write pulse)	_			_	_		<u> </u>	<u> </u>			
(10) 返回正常模	0	0	0	0	0	0	0	0	0	0	0X00
式(Return normal											
mode)											
						ŧ	广展指	令 3			
(1)设置显示模	0	0	0	0	0	1	0	0	0	1	显示模式选择
式(Set Color Mode)		`				_				0	黑白模式: 0X11, 四灰阶模式: 0X10
/ (Set Colol Mode)	<u> </u>		<u> </u>		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	V	而以为,UNII,四次的快兴:UNIU

晶联讯电子 液晶模块 JLX128128G-620-PN 更新日期: 2018-12-27

(2)返回正常模	0	0	0	0	0	0	0	0	0	0	0X00
式											

表 11. 指令表

请详细参考 IC 资料"ST7571.PDF"。

7.2 点阵与 DD RAM 地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 128*128 点阵的屏分为 16 个"页", 从第 0"页"到第 15"页"。

DB7—DB0 的排列方向:数据是从上向下排列的。最高位 D7 是在最上面,最低位 D0 是在最下面。每一位 (bit)数据对应一个点阵,通常"1"代表点亮该点阵,"0"代表关掉该点阵.如下图所示:

SEG Output		EG D	S	SEG 1		SEG 2		SEG 3			EG 24		EG 25		EG 26		EG 27
Column Address X[7:1]	00	DΗ	0	01H		02H		03H		70	СН	70	DΗ	7E	ΕH	7F	Н
Internal column address X[7:0]	00	01	02	03	04	05	06	07		F8	F9	FA	FB	FC	FD	FE	FF
Display Data (MX=0)	1	1	1	0	0	1	0	0		1	1	1	0	0	1	0	0
LCD panel display																	
		—															
																	
Display data (MX=1)	0	0	0	1	1	0	1	1		0	0	0	1	1	0	1	1
LCD panel display																	

Fig. 12 The Relationship between the Column Address and The Segment Outputs

下图摘自 ST7571 IC 资料,可通过"ST7571. PDF"之第 29 页获取最佳效果。

-COM23

晶联讯电子

Fig. 15 Reference Example for Partial Display

Fig. 16 Partial Display (Partial Display Duty=16, initial COM0=0)

-COM0 -COM1 -COM2 -COM3 -COM4

Fig. 17 Moving Display (Partial Display Duty=16, initial COM0=8)

7.3 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

点亮液晶模块的步骤

硬件准备:

开发板(或专门设计的主板)、单片机、电源、连接线、仿真器或程序下载器(又名烧录器)

正确地接线

根据说明书正确地与开发板连接,连接的线包括:液晶模块电源线、背光电源线、10端口(接口) 10端口包括:并口时:CS、RESET 、 RW、E、RS、DO--D7,串口时: CS、SCLK、SDA、RESET、RS

编写软件

背光给合适的直流电可以点亮,但液晶 屏里面没有程序,只给电不能让液晶屏 显示(我们通常说"点亮"),程序须 另外编写,并烧录(下载)到单片机里 液晶模块才能工作。

7.4 程序举例:

7.4.1 并行接口

delay_us(1);

晶联讯电子

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:


```
wr=0;
    P1=data1;
    rd=1;
    delay_us(1);
    cs1=1;
    rd=0;
//----transfer data to LCM-----
void transfer_data(int data1)
    cs1=0;
    rs=1;
    rd=0;
    delay_us(1);
    wr=0;
    P1=data1;
    rd=1;
    delay_us(1);
    cs1=1;
    rd=0;
void delay_us(int i)
    int j, k;
    for (j=0; j \le i; j++)
  for (k=0; k<10; k++);
void delay(int i)
    int j,k;
    for (j=0; j < i; j++)
    for (k=0; k<110; k++);
//等待一个按键
void waitkey()
 repeat:
    if (key==1) goto repeat;
    else;
        delay(1500);
```

液晶模块


```
void initial_lcd()
    reset=0;
    delay(500);
    reset=1;
    delay(100);
    transfer_command(0x2c);
    delay(200);
    transfer_command(0x2e);
    delay(200);
    transfer command (0x2f);
    delay(10);
                                //显示关
    transfer_command(0xae);
                                //模式设置
    transfer command (0x38);
    transfer_command(0xb8);
                                //85HZ
    transfer_command(0xc8);
                                //行扫描顺序
    transfer_command(0xa0);
                                //列扫描顺序
    transfer command (0x44);
                                //Set initial COMO register
    transfer_{command}(0x00);
    transfer command (0x40);
                                //Set initial display line register
    transfer_{command}(0x00);
    transfer command(0xab);
    transfer\_command(0x67);
                                //粗调对比度,可设置范围 0x20~0x27
   transfer command (0x26);
    transfer\_command(0x81);
                                //微调对比度
                                //微调对比度的值,可设置范围 0x00~0x3f
    transfer_{command}(0x29);
                                //0x54 1/9 bias
    transfer command (0x54);
    transfer\_command(0xf3);
    transfer\_command(0x04);
    transfer_{command}(0x93);
    transfer command (0x7b);
                                //Extension Command Set3
    transfer_command(0x11); //Gray mode
    transfer_{command}(0x10);
                                //Gray mode
    transfer\_command(0x00);
                                //显示开
    transfer_command(0xaf);
```



```
void lcd_address(uchar page, uchar column)
    cs1=0;
    column=column;
    page=page-1;
    transfer_command(0xb0+page);
    transfer_command(((column>>4)&0x0f)+0x10);
    transfer_command(column&0x0f);
void clear_screen()
    uchar i, j;
    for (j=0; j<16; j++)
    {
        lcd address(j+1, 0);
        for (i=0; i<128; i++)
            transfer_data(0x00);
            transfer_data(0x00);
void test_screen()
   uchar i, j;
    for (j=0; j<16; j++)
        1cd_address(j+1, 0);
        for (i=0; i<256; i++)
            transfer_data(0xaa);
            waitkey();
//显示 8x16 的点阵的字符串,括号里的参数分别为(页,列,字符串指针)
void display_string_8x16(uchar page, uchar column, uchar *text)
    uint i=0, j, k, n;
    while (\text{text}[i] > 0 \times 00)
    {
        if((text[i]>=0x20)&&(text[i]<=0x7e))
```

液晶模块

```
j=text[i]-0x20;
           for (n=0; n<2; n++)
               lcd address(page+n, column);
               for (k=0; k<8; k++)
                   transfer_data(ascii_table_8x16[j][k+8*n]);
                   transfer_data(ascii_table_8x16[j][k+8*n]);
           i++;
           column += 8;
       }
       else
       i++;
       if (column>127)
           column=0;
           page += 2;
//写入一组 16x16 点阵的汉字字符串(字符串表格中需含有此字)
//括号里的参数:(页,列,汉字字符串)
void display_string_16x16(uchar page, uchar column, uchar *text)
   uchar i, j, k;
   uint address;
   j = 0;
   while(text[j] != '\0')
       i=0;
       address=1;
       while(Chinese text 16x16[i]> 0x7e )
           if(Chinese_text_16x16[i] == text[j])
               if(Chinese\_text\_16x16[i+1] == text[j+1])
                   address = i*16;
                   break:
```



```
i +=2;
        if(column>127)
            column = 0;
            page +=2;
        if (address !=1)
            for (k=0; k<2; k++)
                lcd_address(page+k, column);
                for (i=0; i<16; i++)
                    transfer_data(Chinese_code_16x16[address]);
                    transfer_data(Chinese_code_16x16[address]);
                    address++;
             j +=2;
        else
            for (k=0; k<2; k++)
                lcd_address(page+k, column);
                for (i=0; i<16; i++)
                     transfer_data(0x00);
                     transfer_data(0x00);
                }
            j++;
        column +=16;
}
//显示 16x16 点阵的汉字或者 ASCII 码 8x16 点阵的字符混合字符串
//括号里的参数:(页,列,字符串)
void display_string_8x16_16x16(uchar page, uchar column, uchar *text)
    uchar temp[3];
    uchar i=0;
    while(text[i] !=' \setminus 0')
```

```
if(text[i]>0x7e)
            temp[0]=text[i];
            temp[1]=text[i+1];
            temp[2]=' \setminus 0';
                                                                                     //汉字为两个字节
            display_string_16x16(page, column, temp); //显示汉字
            column += 16;
            i +=2;
            if(column>127)
                 column = 0;
                 page +=2;
        }
        else
            temp[0]=text[i];
            temp[1]=' \setminus 0';
                                                                                     //字母占一个字节
            display_string_8x16(page, column, temp);
                                                      //显示字母
            column += 8;
            i++;
            if(column>127)
                 column =0;
                 page +=2;
void display 32x32(uchar page, uchar column, uchar *dp)
    int i, j;
    for (j=0; j<4; j++)
        lcd_address(page+j, column);
        for(i=0;i<32;i++)
            transfer_data(*dp);
            transfer_data(*dp);
            dp++;
```



```
void display_graphic(uchar *dp)
   int i, j;
   for (j=0; j<16; j++)
       1cd_{address(j+1,0)};
       for (i=0; i<128; i++)
           transfer data(*dp);
           transfer_data(*dp);
           dp++;
}
void main(void)
   initial_lcd();
   while (1)
       clear_screen();
       display graphic (bmp2);
       waitkey();
       clear screen();
       display_32x32(1, 16, jing32);
       display_32x32(1, 48, 1ian32);
       display 32x32(1,80, xun32);
       display_string_16x16(5,1,"深圳市晶联讯电子有限公司是集研发、生产、销售于一体的从事液晶显示
屏及液晶显示模块的高科技公司。");
       waitkey();
       clear screen();
   display_string_8x16(1, 1, "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!#$%&(
)*+-, -. /:; <=>?@[\]^_^{{|}}~0123456789ABCDFGHIJKLMNOPQRSTUVWXYZ");
       waitkey();
       clear_screen();
       display_string_8x16_16x16(1,1,"深圳市晶联讯电子 JLX128128G-620 128x128 点阵
                                                                                           视
区:43. 5x45. 1mm 带 16x16 点阵中文 字库,或 8x16 或 5x7 点阵 ASCII 码,四灰度级显示功能。");
       waitkey();
```


7.5.4 串行接口

晶联讯电子

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

液晶模块


```
7.5.5 以下是串行接口例程序
与并行程序相比,只需改变接口顺序及<mark>传送数据</mark>和命令子程序即可
//传送指令
sbit rs=P3^3;
                /*接口定义:LCD 的 rs*/
sbit sclk=P1<sup>6</sup>;
                /*接口定义:LCD 的 sclk*/
sbit sid=P1^7;
                /*接口定义:LCD 的 sid*/
sbit reset=P3<sup>5</sup>; /*接口定义:LCD的 reset*/
sbit cs1=P3<sup>4</sup>;
                /*接口定义:LCD 的 cs1*/
                //P2.0 口与 GND 之间接一个按键
sbit key=P2^0;
/*写指令到 LCD 模块*/
void transfer command(int data1)
   char i;
   cs1=0;
   rs=0:
   for (i=0; i<8; i++)
       sc1k=0;
       if(data1&0x80) sid=1;
       else sid=0;
       sc1k=1;
       delay_us(1);
       data1<<=1;
   cs1=1;
```

液晶模块

```
/*写数据到 LCD 模块*/
void transfer_data(int data1)
    char i;
    cs1=0;
    rs=1;
    for (i=0; i<8; i++)
        sc1k=0;
        if (data1\&0x80) sid=1;
        else sid=0;
        sc1k=1;
        data1<<=1;
    }
    cs1=1;
```

7.5.4 I²C接口

7.5.5 以下是 I2C 接口例程序

7.5.5 以下是 I²C 接口例程序 与并行程序相比,只需改变接口顺序及传送数据和命令子程序即可 //传送指令

```
sbit scl=P1^0;
sbit sda=P1^3
void transfer(int data1)
     int i;
     for(i=0;i<8;i++)
```

晶联讯电子

```
scl=0;
         if(data1\&0x80) sda=1;
         else sda=0;
         scl=1;
         scl=0;
         data1=data1<<1;
         sda=0;
         scl=1;
         scl=0;
}
void start_flag()
    scl=1;
                  /*START FLAG*/
    sda=1;
                  /*START FLAG*/
                  /*START FLAG*/
    sda=0;
void stop_flag()
    scl=1;
                  /*STOP FLAG*/
                  /*STOP FLAG*/
    sda=0;
    sda=1;
                  /*STOP FLAG*/
//写命令到液晶显示模块
void transfer_command(uchar com)
    start_flag();
    transfer(0x7e);
    transfer(0x00);
    transfer(com);
    stop_flag();
}
//写数据到液晶显示模块
void transfer_data(uchar dat)
{
    start_flag();
    transfer(0x7e);
    transfer(0x40);
    transfer(dat);
    stop_flag();
}
```