Roll No. 412039

AIM: To Implement Multiple Linear Regression using Python.

Code & Output:

In [2]:

```
import pandas as pd
path_to_file = 'Downloads/petrol_consumption.csv'
df = pd.read_csv(path_to_file)
```

In [3]:

df.head()

Out[3]:

	Petrol_tax	Average_income	Paved_Highways	Population_Driver_licence(%)	Petrol_Consumption
0	9.0	3571	1976	0.525	541
1	9.0	4092	1250	0.572	524
2	9.0	3865	1586	0.580	561
3	7.5	4870	2351	0.529	414
4	8.0	4399	431	0.544	410

In [4]:

print(df.describe().round(2).T)

	count	mean	std	min	25%	\				
Petrol_tax	48.0	7.67	0.95	5.00	7.00					
Average_income	48.0	4241.83	573.62	3063.00	3739.00					
Paved_Highways	48.0	5565.42	3491.51	431.00	3110.25					
Population_Driver_licence(%)	48.0	0.57	0.06	0.45	0.53					
Petrol_Consumption	48.0	576.77	111.89	344.00	509.50					
50% 75% max										

	50.0		
Petrol_tax	7.50	8.12	10.00
Average_income	4298.00	4578.75	5342.00
Paved_Highways	4735.50	7156.00	17782.00
<pre>Population_Driver_licence(%)</pre>	0.56	0.60	0.72
Petrol_Consumption	568.50	632.75	968.00

In [7]:

```
correlations = df.corr()
# annot=True displays the correlation values
sns.heatmap(correlations, annot=True).set(title='Heatmap of Consumption Data - Pearson Correlations')
```


In [8]:

In [9]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2, random_state=42)
```

In [11]:

```
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
```

Out[11]:

LinearRegression()

```
In [12]:
regressor.intercept_
Out[12]:
361.4508790666836
In [13]:
regressor.coef
Out[13]:
array([-5.65355145e-02, -4.38217137e-03, 1.34686930e+03, -3.69937459e+01])
In [15]:
feature names = X.columns
print(feature names)
Index(['Average income', 'Paved Highways', 'Population Driver licence(%)',
       'Petrol_tax'],
      dtype='object')
In [16]:
feature_names = X.columns
model_coefficients = regressor.coef_
coefficients_df = pd.DataFrame(data = model_coefficients,
                               index = feature names,
                               columns = ['Coefficient value'])
print(coefficients_df)
                               Coefficient value
Average_income
                                       -0.056536
Paved_Highways
                                       -0.004382
Population_Driver_licence(%)
                                     1346.869298
                                      -36.993746
Petrol_tax
In [17]:
y_pred = regressor.predict(X_test)
In [18]:
results = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
print(results)
             Predicted
    Actual
27
       631
            606.692665
       587
            673.779442
40
            584.991490
26
       577
43
       591
           563.536910
24
       460
            519.058672
37
       704
            643.461003
       525
            572.897614
12
            687.077036
19
       640
4
       410
            547.609366
25
       566 530.037630
```

In [21]:

```
from sklearn.metrics import mean_absolute_error, mean_squared_error
import numpy as np
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)

print(f'Mean absolute error: {mae:.2f}')
print(f'Mean squared error: {mse:.2f}')
print(f'Root mean squared error: {rmse:.2f}')
```

Mean absolute error: 53.47 Mean squared error: 4083.26 Root mean squared error: 63.90

In [22]:

```
regressor.score(X_train, y_train)
```

Out[22]:

0.7068781342155135

In [23]:

```
plt.scatter(y_test,y_pred);
plt.xlabel('Actual');
plt.ylabel('Predicted');
sns.regplot(x=y_test,y=y_pred,ci=None,color ='red');
```


Conclusion: Thus, we implemented multiple Linear Regression using sklearn library of python.