PARALLEL COMPUTER ARCHITECTURE AND PROGRAMMING

[Revised Credit System]

(Effective from the academic year 2021-2022) **SEMESTER - V**

Subject Code	CSE 3174	IA Marks	50
Number of Lecture			
Hours/Week	03	Exam Marks	50
Total Number of Lecture			
Hours	36	Exam Hours	03

CREDITS - 03

Course objectives: This course will enable students to

- Understand the concept of parallelism and parallel computers
- Illustrate point-to-point and collective communication primitives in MPI
- Explain the architecture of GPU and understand OpenCL APIs
- Discuss thread and memory organization in CUDA and write parallel programs for 1D and 2D arrays

Discuss important patterns of parallel computation

INTRODUCTION TO PARALLEL COMPUTERS: Introduction, Need for high speed computing, how to increase the speed of computers, Features of parallel computers, Structure of parallel computers	eaching	Hours
Introduction, Need for high speed computing, how to increase the speed or		
	6 Hours	
Classification of parallel computers, Array Processors, Shared Memory Parallel Computers, Utilizing temporal parallelism, Utilizing data parallelism, Comparison of temporal and data parallel processing Text Book 1: Chapter: 1, Chapter 4 – 4.1-4.2, 4.5, 4.7, Chapter: 2 – 2.1 – 2.3	, 7 1	

Module – 2

MESSAGE PASSIN	NG PROGR	AMMING:				6 Hours
Introduction, Mes	essage pas	sing model, Basic	data	types	and	
functions, Collective	e communica	tion, Benchmarking	g parallel	performa	ance,	
MPI error handling f	functions.					
Text Book 2: Chapte	ter 4: 4.1, 4.2	, 4.4.1 - 4.4.5, 4.5,	4.6, Chap	ter 6: 6.5	and	
Appendix						

Module – 3

GPU ARCHITECTURE AND OVERVIEW OF OpenCL APIS 5 hours
Introduction, GPUs as parallel computers, Architecture of a modern GPU,
Need for parallelism, Parallel programming languages and models,
Overview of OpenCL APIs for Platform and Devices, Execution
Environment- Context, Command Queues, Buffers, Program Object and
Kernel Object, Program layout, Writing kernels, OpenCL program for
vector-vector addition

Text Book 3: Chapter 1: 1.1-1.3,1.6, **Text Book 4:** Selected Topics from Chapter 2

Module - 4

CUDA THREAD AND MEMORY ORGANIZATION:

Parallelism, CUDA Program Structure, Vector-addition **Hours** kernel, Device memories and Data transfer, Kernel functions and Threads, Runtime APIs and Error Handling, CUDA thread organization, Mapping threads to multi-dimensional data, Importance of memory access efficiency, Matrix Multiplication, CUDA device memory types, Tiling for Reduced Memory Traffic, A Tiled Matrix Multiplication Kernel

Text Book 3: Chapter 2 Chapter 3: 3.1,3.2 Chapter 4: 4.1, 4.5

Module - 5

PARALLEL PATTERNS:

10 Hours

1D Parallel Convolution—A Basic Algorithm, Constant Memory and Caching, Sparse Matrix Computation, Background, Parallel SpMV Using Merge Algorithm, A Sort, Sequential Parallelization CSR, Merge Approach, Co-Rank Function Implementation, A Basic Parallel Merge Kernel, Case study-Machine Learning, Convolutional Neural Networks, ConvNets: Basic

Layers, ConvNets: Backpropagation, Convolutional Layer: A Basic CUDA Implementation of Forward Propagation, Reduction of Convolutional Layer to Matrix Multiplication

Text Book 3: Chapter: 7.1-7.3, 10.1,10.2, 11.1-11.5, 16.1-16.4

Course outcomes:

After studying this course, students will be able to:

- 1. Explain the structure and classification of parallel computers.
- 2. Write MPI programs using point-to-point and collective communication primitives.
- 3. Outline the GPU architecture and OpenCL APIs
- 4. Analyze thread and memory organization in CUDA and write CUDA programs
- 5. Apply the pattern of parallel computation in parallel applications

Text Books:

- C. Siva Ram Murthy, Parallel 1. V. Rajaraman, Computers Architecture and Programming, (2e), Prentice-Hall India, 2016
- 2. Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw Hill Edition, 2003
- 3. David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors –A Hands-on approach, (3e), Elsevier Inc., 2016
- R. Gaster, 4. Benedict Lee Howes, David R, Perhaad Mistry, Dana Schaa, "Heterogeneous Computing with OpenCL", (1e), Elsevier Inc ,2012.

Reference Books:

- 1. Shane Cook, *CUDA Programming: A developer's guide to parallel computing with GPUs*, Morgan Kaufman Publication, Elsevier, 2013.
- 2. Jason Sanders, Edward Kandrot, *CUDA By example: An Introduction to General Purpose GPU Programming*, Addison Wesley, 2011.
- 3. CUDA C Programming Guide, nVIDIA, 2012.