AD624629

21.2/925

FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION

1 / AD 10/50 33

ARCHIVE COPY

PROFESSING GULL

Code 1

CRUSTAL STRUCTURE IN THE WISCONSIN AREA

NAVY RESEARCH SECTION
NAVY RESEARCH SECTION
SCIENCE DIVISION
RESEARCH SECTION

MAY 5-1952

L. B. Slichter

Institute of Geophysics University of California Los Angeles 24, California

N9 onr-86200 October 31, 1951 L. B. Slichter

October 26, 1951

Summary:

Seismic results from six large blasts in the Wisconsin area are reported. The observations were made with a group of 12 three-component instruments, of period 1 second, located on selected bed-rock sites. Time signals at 1 second intervals were transmitted by radio. On the scale of the present experiments, which involved an area about 600 km. long by 150 km. wide, the major structure revealed was a relatively homogeneous layer about 40 km. thick. The time-distance segment corresponding to this layer is always nearly linear; and, at the four areas investigated implies compressional wave velocities of 6.16, 6.26, 6.22 and 6.16 km./sec. respectively. Although the assumption of a homogeneous layer of uniform wave velocity leads to satisfactorily small residuals (see Table I--the mean absolute value for 8 residuals for the Davenport blast is, for example, .09 seconds), an improved fit with the observed time-distance data results throughout the area if the wave velocity in the major layer is assumed to increase linearly with depth, in accordance with the relations:

v = 6.034(1 + .0038z) (Northern Area) v = 5.94(1 + .0045z) (Southern Area)

where z = depth below top of layer in km.

In Table III is shown a summary of the seismic interpretations corresponding to several postulated crustal models. The preferred models. "Palmer III" and "Davenport II" incorporate, respectively, the two velocity functions above. A significant effect of the assumption of the increase in velocity with depth is the increase in thickness deduced for the major layer. and the decrease assignable to the thin overlying layer. The increase (see Table III) is about 15 %, but the decrease in the thickness of the superficial layer may vary from 25 % to several hundred percent. The residuals associated with the several crustal models specified in Table III are listed in Table I. Table I also lists complete Time-Distance data for compressional phases for the several blast locations. The non-homogeneous layer in model "Palmer III" avoids the ad-hoc split into two homogeneous layers involved in the two comparison equations T and T.'. The corresponding Davenport flodel "Davenport II" removes a small systematic trend in the residuals for "Davenport I", and also reduces their mean absolute magnitude by about 1/2. Note, however, that the first arrival at \triangle = 204.2 km. is definitely early on either basis. (See Figure 3, for reproduction of this seismogram.) This early arrival is attributed to the fast wave below the Mohorovicic discontimuity. Plans in 1940 to observe this phase at greater distances with subsequent Davenport blasts were necessarily abandonned due to the impact of the war. In deducing the depth to the Moho discontinuity at Davenport, it has been assumed that the wave-velocity, v2, is 8.17 km./sec., as observed in the northern part of the area; and the early arrival at \(= 204.2 is attributed to the va phase. More extensive observational data throughout the area, is greatly to be desired in amplification of the present observations.

The scale of the present field work is obviously much too coarse for mapping the details of the thin superficial layer. The observed velocities in this layer vary from 4.16 to 4.58, and the thickness from .63 km. in the south to 2.8 km. in the north (basis of preferred interpretations). That the layer can not be subject to extremely large local fluctuations in thickness or wave velocity is evidenced by the generally small and regular residuals of the time-distance data with respect to smooth comparison functions. These residuals are generally less than .1 or .2 seconds, indicating that the local fluctuations in the layer thickness are generally less than .4 to 1.2 km. The travel-time data are indeed insensitive in the present case to variations in the thickness of the superficial layer.

Map I shows the distribution of the blast points and observing stations. Figures 1 to 4 reproduce 16 of the seismograms. In particular, Figure 1. Figure 2, Figure 3, (= 143.3) and Figure 4 (e) and (f) show significant second arrivals. Figure 4 shows 6 pairs of "duplicate" records and the useful degree of similarity of such pairs. The Palmer records were duplicated pair-wise with an east-west separation of 2.8 km. between shot points in neighboring mines. Figures 4 (a) and 4 (f) exhibit comparisons of Palmer records at large epicentral distances. In Table II, the time-distance data are consolidated by reduction to a common origin time at __ = 112.2 km. (i.e. the midpoint of the 6.16-6.26 km./sec. segments). This choice of origin relegates differences due to local conditions near the blast points to the initial, less significant part of the travel-time curve. The preferred interpretations lead to depths to the Moho of 40 to 44 km., with a thin superficial layer .6 to 2.8 km. thick, of wave velocity about 4.2 to 4.5 km./sec. In the major layer the velocity increases gradually from about 6.0 km./sec. at the top, to 7.0 km./sec. at the bottom. Below this layer, the compressional wave velocity is about 8.17 km./sec.

Map 1. Location of Blast and Observing Stations.

Figure 1. Seismogram for Manistique, $\triangle = 34.13$ km., Showing Second P Phase.

Figure 2. Seismogram for Palmer, \triangle = 128.0 km., Showing second P Phase.

Figure 3. Seismograms for Sturgeon Bay, and Seismogram for Daven.

Figure 4. Record Pairs for Repeated Blasts. Epicentral dange 8.39 km. to 277.5 km.

CUMPARISON OF REPLAT SEIS. OGRAMS

A, A' Transverse Component B, B' Vertical Component C, C' Longitudinal Component

BLAST	DATE	POUNDS DYNALL TE	TRACE MARKS	EPICENTRAL	DISTANCE
Manistique	June 22, 1940 Aug. 7, 1940	47,000 58,000	A,B,C A',B',C'	Fig. (a) 8.51 8.39	Fig, (b) 21.16 21.46
Hudson II	June 15, 1939 Nov. 11, 1939	30,000 56,000	A,B,C A',B',C'	Fig. (c) 32.20 32.70	Fig. (d) 204.5 204.5
Palmer	July 20, 1940 a.m. July 20, 1940 p.m.	20,000 13,000	B, C B', C'	Fig. (e) 216.1 216.1	Fig. (f) 277.5 277.5

A & A' Omitted Becord No Volum

Ъ TRAVEL TIME DATA FOR COMPRESSIONAL PHASES

Palmar Mich. (20,000 lbs.) July 20, 1940 (to = origin time = 0 for Palmer Blast)

Galliver (1) Mich. Galliver (2) Mich. Galliver (3) Mich. Galliver (4) Mich Manistique (2) Mich.	Note (1) On basis of 72 PART II.	Sawyer, Wis. Little Syzmico, Wis. Wausaukee, Wis.	Wausaukee, Wis. Sawyer, Wis. Little Swamico, Wis. Navarinc, Wis. Omro, Wis.	Sewyer, Wis. Navarino, Wis. Omro, Wis.	Hermansville, Mich. Wausaukee, Wis. Sawyer, Wis.	Volunteer Mine, Mich. " " " Palmer, Mich.	Station
48848	5 11	SA	N S N	ONS	ASA H	P 22	Sym Sym
	= $/6.16+1.20$ these Manistique, Mich. #1 (t_0 = .70 for Mani	179.4 188.5 128.0	128.0 179.4 188.5 216.1 277.5	179.4 216.1 277.5	84.83 128.0 179.4	0 .57 10.41	△ ,km
.00 .07 .15 2.20 4.61	20 these Mich. #1 for Mani	31.30* 32.67* 24.13**	24.13* 30.30 31.35 34.82 42.32	30.30 T2 35.80* T2 44.2".±.1 "	14.95 22.01 30.30	0 .15 2.51	trto sec.
$\frac{1}{n} = \frac{\Delta}{4}, 53$	/6.16+1.20 these residuals would be48 and -1.05 respectively. nistique, Mich. #1 (47,000 lbs) June 22, 1940; #2 (58,400 lbs) Aug. 8, 1940. (to = .70 for Manistique #1; to = 1.95 for Manistique #2)	Reflection "	T ₃ =\(\frac{1}{8}\), 17+8.34	$\frac{1}{12}$!= $\frac{\triangle}{6.58+3.03}$	T ₂ = 46.16+1.20	$T_1 = \frac{\triangle}{4.16}$	Comparison Equation I
0 .073 .15 1.85 4.74	%48 (22, 19, 95 for)	32.42	24.01 30.30 31.41 34.79 42.31	30.30 35.87 45.20	14.97 21.98 30.32	0.00	LF3
003 0 +.35	and -1.0 (10; #2 ((anistiq		01 02 03	0.00	÷.02	0.00	Re Re
	5 respecti 58,400 lbs ue #2)			007 34 485	+.007		siduals t II = 00307
	vely.) Aug. 8	+.16 +.25 +.01		+.009 +.050	+.006 +.006		-t _{o III}
#1, #2 #2 #2	pretation, 1940.	High frequency Alternative Inter-	Strong High frequency	Strong; Note (1)			Remarks

Table I Travel-Time Data for Compressional Phases, and Residuals Corresponding to Several Crustal Models.

** Third Arrival		Preston, Iowa Preston, Iowa Galena, Ill. Sholisburg, Wis Platteville, Wis. Linden, Wis. Orfordsville, Wis. Barneveld, Wis. Madison, Wis.	Quarry, Dewey Portland Cement Co.	Station	
	WA	PR SH	88	Sym bol	
	204.2	35.60 72.19 108.0 128.0 144.6 165.0 177.2 185.6	.00	₽	
	33.20	6.25 118.24 21.45 24.10 27.25 29.23 30.60	t ₀ =.90	sec sec	
	T ₃ =~78.17 + 8.206	T_=\(\shcap6.16+.55\)	T = 4/4.5	Cormison Equation Ti	PART IV Day
	33.20	22.33 22.33 22.33 22.33 22.33 23.33	.00	T ₁	Davenport.
	0	\$888334258 \$111.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	88	Residual I A = 0	Iowa.
		+.086 +.064 +.017 010 099 038 246		II <pre></pre>	(34,000 TPs) A
		See text		F 1	May 29, 19,10

				% 37 * 25	this Residual would be	T1, this T2, "	on Line 1	mperis	e (1) On Basis of Comparison Line e (2) " " " " "	Note
Shear Comp.					Reflection	16.3* 33.0	189.9	8 m	Bellevue, Wis. Woodland, Wis.	Hook
Clear Event Note (2)	-		.43	25.84 31.55	T ₃ = \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25.41* 31.55	143.3	80	Omro, Wis. Woodland, Wis.	Woodl
	159		88	11.97 24.31	T ₂ =~\6.22+1.27	11.97 24.31	66.57 143.3	O 88	Bellevue, Wis.	Bellev Omro,
Note (1)	710.		888	1.87 3.08 11.97	T 1= 45.74+.38	1.87 3.02 11.97	8.56 15.51 66.57	BASA	Sewyer, Wis. Tornado, Wis. Bellevue, Wis.	Sew Tor Bel
See text	nguyaga sab na sasni sadab nin	aan galantah dinadrin apini dinadr ia diden y	.00	.00 1.87	T1=\(\triangle /4.58\)	.00 .37 .45	.00 8.56	\$ 8 8 B	Quarry, Sturgeon Bay Co.	Que Stu Sex
" #2 1 Clear Event	56 30	(Q=°4)	2, 1940 (t _o =0)		leflection Wis. (10,650	3.1 27.85 8.1 27.85 8.1 29.25* F.1 Sturgeon Bay,	168.1 168.1 168.1 III. Stur	# # £ £	Gladstone, Mich. McAllister, Wis. McAllister, Wis. P A R	GLa Mc A Mc A
****	17			2.34 4.43 6.46 17.15	T ₂ = ^/6.26+1.00	2.47* 4.61 6.46 16.95	8.39 21.46 34.13 101.1	385ª	Gulliver (4) Mich. Manistique (2) Mich. Manistique (1) Mich. Rock, Mich.	Gulliv Manist Manist Rock,
Blast No. Blast #1			.8	7.54	$T_1 = 44.53$	7.54*	34.13	3	Manistique (1) Mich.	Mar
Remarks	t - 7 ₁ III × = .0038	Residuals	Res	ئىر	Comparison Equetion T ₁	t - t _o) 5	bol lod	Station	

Table II Consolidated Travel-Time Data Reduced to Common Origin at

\$\trace = 112.2 \text{ km}.\$

TABLE II

Composite Travel-Time Data, Adjusted to Common Point.
= 112.2, t = 19.41

Sym- bol	Blast	km.	t _A ,	Comparison equation	Ti	Residual t _A -Ti	Remarks
V _L G ₁	P M1, M2	. 00	.56	$T_1 = \triangle/4.2$.00	.00	
Sl	S	. 00			.00	.11	
D1.	D	. 00	.65		00	.65	
G2	M 1	.33	.63	i e	.078		
\$ 2	S	.41	.48		.097		
D2	D	.45			.107		
V2	P	.57		1	.136		
G3	M ₂	.68	.71		.162		
S3 SA	S	2.06	.56 1.98		.49	.05	
P	P	10.41			2.04	06 .03	
M2	M 2	21.46			5.11	.06	
MI.	Mi	34.13			8.10	.00	
SA	s	8.56	1.98	T ₁ = -5.74+.49	1.98	.00	
	S	15.51		1 71147	3.19	-,06	
T B	S	66.57			12.08	.00	
04.	M2	8.39	2.76	$T_2 = 46.18+1.26$	2.62	.14	
M1	M1.	34.13		2	6.78	. 24	
DE	D	35.6	6.90		7.02	12	
B	5		12.08		12.04	.04	
PR	D		12.89		12.94	05	
Н	P		14.95		14.98	-,03	
R	M2		17.51		17.62	11	
GL	M2 ·		17.62		17.77	15	
GA Sa	D	108.0	22.10		18.74 21.97	.15	
W	P		22.01		21.97	.13	
0	8		24.42		24.45	03	
PL	D		24.75		24.66	.09	
L	D		27.90		27.96	06	
MC	M 1		28.41			05	
OR	D	177.2	29.88		29.93	05	
SA	P	179.4	30.30		30.29	.01	
BA	D		31.25			04	
LS	P		31.35			41	
MA	D		33.85	= C)// == ===		45	
SA	P		30.30	$T_2 = 46.58+3.03$	30.30	0	
N	P		35.80*			07	
0	P	277.5	45.20*		45.20	.00	

TABLE II (Continued)

V	7	128.0	24.13*	12=0/8.17+8.34	24.01	.12	
0	8	143.3	25.32*	,	25.87	35	
MC	Xl	168.1	29.81*		28.92	.39	
84 L3. W 0	P	179.4	30.30		30.30	00	
13.	P	188.5	31.35		31.41	06	
WO	3	189.9	31.66		31.57	.09	
)i	P	216.1	34.82		34.79	.03	
C	P	277.5	42.32		42.32	.00	
NA	D	204.2	33.85	T3=48.17+8.86	33.85	.00	see text
MC	M	168.1	29.81	Reflection	29.76	.05	see text

* Second Event

Note: The following time adjustments were added to the listed values of $t-t_0$ in Table I to bring the travel times into accord at $\triangle = 112.2$; Palmer blast, 0; Manistique blasts, .56 sec.; Sturgeon Bay, .11 sec; Davenport, .65 sec.

Table III Summary of Interpretations.

TABLE II. Summary of Inter, tions

	PALMER		E LISINGE	ST. ROZDON BAY	ON BAY	DAVENPURT	ORT
Model I	Model II	Mod al III	Model I	Model I	Model II	Model I	Model II
∞ = 0	√ = .00307	× = .0038	<u>۲</u> " 0		又 = 0	<u>ک</u> " ٥	% = 00119
v= 4.16	$v_1 = 4.16$	$V_1 = 4.16$	v ₁ = 4.53	v ₁ = 4.58	v ₁ = 4.58	$v_1 = 4.5$	$v_1 = 4.5$
$\frac{v}{2} = 6.16$	$v_2 = v_3 = v_2 = v_3 = v_3 = v_4 = v_5 $	$\nabla_2 = 6.034(1.7038z)$	v ₂ = 6.26	v ₂ = 6.22	$v_2^{i} = 5.74$ $v_2^{i} = 6.22$	$v_2 = 6.16$	5.94(1+.004492)
$v_3 = 8.17$	v ₃ = 8.17	v = 8.17	Not Dotermin	$\bar{v}_3 = 8.17$	$v_3 = 8.17$	$v_3 = (8.17)$	$v_3 = (8.17)$
$\epsilon_1 = \triangle/4.16$	九 = △ /4.16	t ₁ = \(\sqrt{1.16} \)	53	t ₁ = \(\Delta/\(\lambda\).\(\sigma\)		$t_1 = \triangle / 4.5$	$t_1 = \triangle/4.5$
5 = 0/6.16 1.2	~ N		1,92 W, = C	12=1/6.22+1.27 12=1/5.74+38	t ₂ =4/5.74 + 38	t ₂ =0/6.16*.55	
t3= 17.8.17.8.34	5= 0/8.17+8.34 ₃ = 0/8.17+8.34	t3=~/8.17+8.34			t2=^/6.22*1.27	$t_2 = \frac{1.27}{5}$	t ₃ = /8.17 *8.21
				t ₃ = /8:17 *8.30	$t_3 = 78.17^{+8.30}$		
	$w(h_2) = 6.717 \text{ km./sec}$	v(h2) = 6.904 km./sec					$v(h_2) = 7.09 hm./sec.$
h = 3.4 km	2.7 km.	2.80	$b_1 = 2.94$	$\mathbf{h}_1 = 4.3$	h ₁ = 1.44 h ₁ = 6.05	$\mathbf{b_1} = 1.8$	ት = .63
$\frac{h}{2} = 32.7$	36.9 km.	37.95		h ₂ = 32.1	$h_2 = 30.0$	h ₂ = 35.3	h ₂ = 42.95
Depth to Nobo=36.1	39.6 kg.	40.75		36.4	37.49	37.1	छ छ