Discussion: Comovements in Global Markets and the Role of U.S. Treasury

Author: Grace Xing Hu, Zhao Jin, and Jun Pan

Discussant: Junyong Kim (UNC Pembroke)

2023 FMA Annual Meeting

Comment 1 Co

Comment 2

Summary

- Daily safety measure η_t^{UST}
 - Negative intraday correlation (ρ) b/w $r^{US \text{ equity}}$ (SPX) & $r^{US \text{ Treasury}}$ (UST)
 - Five-minute returns, January 2004 to June 2022
- ► Top-quintile η_t^{UST} days as flight-to-UST episodes
 - ▶ $r^{\text{SPX}} \downarrow$, $r^{\text{UST}} \uparrow$, $r^{\text{JPY/USD}} \uparrow$, option-implied $\sigma \uparrow$, & SPX-to-UST flows \uparrow
 - η_t^{USD} & η_t^{VIX} , unlike η_t^{UST} , show no flight-to-safety (FTS) pattern
- Cf. Baele, Bekaert, Inghelbrecht, and Wei (2020)
 - Identify FTS days in 23 countries using their daily $r^{\text{Stock}}/r^{\text{Bond}}$ with model averaging approach
 - Regime switching model + "threshold" model + "ordinal index" model
 - Negative r^{Stock} , positive r^{Bond} , negative $\rho_{\text{Stock,Bond}}$, & elevated σ_{Stock}

Table 2: During Q5 as FTS

	Panel A:				Non EOMC	FOMC	D:ff	
		Q5	Q1	_	Non-FOMC	FOMC	Diff	
	η_t^{UST}	0.64***	-0.07***		0.32***	0.03	0.28***	
	76	[201.95]	[-13.03]		[36.74]	[0.83]	[9.89]	
	# Days	926	926		4509	147	[]	
r ^{SPX} ↓ & r ^{UST} ↑ Panel B: Major Market Return and Implied Volatility								
1 4 6 1		Ret	urn	CAPM α		Almr. Vol		manlind - 1
		Q_5	Q1	Q_5	Q1	Q_5	Q1	mplied $\sigma \uparrow$
	SPX	-36.20***	13.75***			0.51***	-0.16***	
		[-8.04]	[4.76]			[6.48]	[-4.12]	
	UST	13.60***	-6.05***	5.03***	-7.96***	0.79***	-0.11	
	001	[9.57]	[-3.92]	[4.42]	[-4.92]	[4.68]	[-0.96]	
	DXY	1.20	2.14	-0.89	3.61**	0.07***	-0.03***	
	2111	[0.63]	[1.22]	[-0.49]	[2.06]	[3.75]	[-3.13]	
	EUR/USD	-1.90	-1.87	-0.22	-3.99**	0.07***	-0.03**	
	2010,002	[-0.82]	[-0.99]	[-0.10]	[-2.06]	[3.42]	[-2.47]	
	YEN/USD	16.48***	-8.43***	10.27***	-9.76***	0.14***	-0.04***	
	1211,002	[7.07]	[-4.42]	[5.10]	[-5.03]	[4.28]	[-3.04]	
rJPY/USD ↑ Panel C: Major Market Liquidity								
17 7 1		$\Delta ext{Vol}$		$\Delta ext{Volume}$		$\Delta Gamma$		
		Q_5	Q1	Q_5	Q1	Q_5	Q1	
	SPX	1.11***	-0.25**	0.25***	-0.00	-0.08	0.03	
		[4.22]	[-2.12]	[7.29]	[-0.12]	[-0.61]	[0.43]	
	UST	-0.02	0.28***	0.15***	0.12***	-0.00	0.03***	
		[-0.21]	[3.64]	[5.22]	[3.97]	[-0.72]	[3.09]	

During Q1, UST's liquidity ↑

Question: If UST becomes the source of risk in Q1, wouldn't $b_{\text{UST}}^{\text{Q1}}$ be positive and significant?

Comment 1: Compared to Existing FTS

Comment 4

- This paper
 - "We are mostly related to the recent paper Baele, Bekaert, Inghelbrecht, and Wei (2019), which use the daily returns of international equity and government bonds to infer flight-to-safety episodes based on multiple indicators such as return impact, correlation, and volatility spikes. We differ from their approach by constructing a simple safety measure from the correlation of the U.S. equity and Treasury intraday high-frequency returns, which enables us to identify the flight-to-UST episodes at the daily frequency."
- But Baele et al.'s FTS is also daily measure
 - Correlation? Comparative advantage? High-frequency advantages?
 - Baele *et al.*: "FTS days comprise less than 2% of the sample ..."
 - This paper: "... flight-to-UST episodes as the top 20% $\eta_t^{\rm UST}$ days ..."

Summary Comment 1

Comment 2

Comment 1: Compared to Existing FTS

- Section 2.5/Figure 4 are describing/displaying the difference between high- & low-frequency safety measures
- Correlation/overlapping b/w their top-20% η_t^{UST} days?
- "... its construction method limits its ability to capture flight-to-safety at the daily basis."

Comment 1: Compared to Existing FTS

- Table 6/Figure 4 in Baele *et al.* (2020)
- "During the FTS days, equities drop, on average, 2.29% ... whereas Treasury bonds increase, on average, 0.43% ..."
- "... we note that the 2.79% return impact on the first day of an FTS represents a 2.3 standard deviation move above its daily average of 0.013% ..."

Comment 1: Compared to Existing FTS

- Baele et al. classify 222/10,794 days as FTS days in the US
- Likewise, how many FTS days in these papers are overlapping?
 - Q5-, D10-, P100- η_t^{UST}
- What if η_t^{USD} or η_t^{VIX} ?
- Orthogonal information b/w them would be interesting

Summary Comment 1

Comment 2

Comment 2: Exceptions in Figure 3 (a)

- Top-20% η_t^{UST} days constitute more than 20% of worst-20% SPX days
- 6/19 years are deviating from this pattern and stated as exceptions
- A little more explanations about their difference would be helpful

Comment 3: Comparing η_t^{UST} & η_t^{Others} ?

Panel A: Summary Statistics								
	Q_5	Q1			Q5	Q1		
η_t^{USD}	0.45***	-0.30***	•	η_t^{VIX}	0.91***	0.43***		
	[92.72]	[-55.92]		,,,	[617, 79]	[73-15]		
# Days	642	626		# Days	680	826		
Panel B: Market Performance on Q5 Ex. Q5-UST Days								
	Q5-USD				Q5-VIX			
	Return	CAPM α	$\Delta {\rm Imp.~Vol}$	Return	CAPM α	$\Delta {\rm Imp.~Vol}$		
SPX	14.81***		-0.18***	-7.24*		0.05		
	[2.98]		[-2.78]	[-1.74]		[0.71]		
UST	-2.23	-1.13	-0.30*	-1.80	-2.52	0.17		
	[-1.12]	[-0.52]	[-1.71]	[-1.07]	[-1.48]	[1.25]		
DXY	-0.97	2.04	-0.05***	3.41**	2.59	0.00		
	[-0.45]	[1.07]	[-3.87]	[2.00]	[1.57]	[0.29]		
EUR/USD	0.63	-2.21	-0.06***	-4.20**	-4.28**	-0.00		
	[0.27]	[-1.00]	[-3.65]	[-2.19]	[-2.25]	[-0.19]		
YEN/USD	-4.69**	-3.63	-0.06***	-3.41*	-4.23**	0.01		
	[-1.98]	[-1.49]	[-2.76]	[-1.71]	[-2.11]	[0.57]		

Days = 680 for Q5 & 826 for Q1?

- (Table 5) $\hat{E}[r^{SPX}]$ in bp is
 - -36 on Q5- η_t^{UST}
 - +15 on Q5- $\eta_t^{\text{USD}} \setminus \text{Q5-} \eta_t^{\text{UST}}$
 - -7 on Q5- $\eta_t^{VIX} \setminus Q5-\eta_t^{UST}$
- "... its clear that the U.S. equity market is much less stressed on the Q5 days captured by η_t^{USD} and η_t^{VIX} ."
- $\hat{E}[r^{SPX}]$ for Q5- η_t^{USD} & - η_t^{VIX} would be fairer
 - Or for both Q5- η_t^{UST} \Q5- η_t^{USD} & $Q5-\eta_t^{UST} \setminus Q5-\eta_t^{VIX}$

Comment 3: Comparing η_t^{UST} & η_t^{Others} ?

Comment 4

- Figure 5 shows the crosssection of asset returns and the assets' ρ against US market
- \triangleright Q5- $\eta_t^{\text{USD}}\setminus$ Q5- η_t^{UST} & Q5- $\eta_t^{\text{VIX}} \setminus Q5 - \eta_t^{\text{UST}}$ in panels (c-d)
- Instead, Q5- $\eta_t^{\text{UST}} \setminus \text{Q5-}\eta_t^{\text{USD}} \&$ $Q5-\eta_t^{UST}\backslash Q5-\eta_t^{VIX}$ would be more informative as η_t^{UST} is the main variable in this paper
- Or more directly, ρ /overlapping among η_t s

Comment 4: $\eta_t^{JPY/USD}$ as Safe Haven?

- Both Tables 2 & 5 are suggesting JPY/USD rather than DXY & EUR/USD as safe haven
- What if $\eta_t^{JPY} = -corr(r_t^{SPX}, r_t^{JPY/USD})$ then?
- Section 3.3/Figure 7 show the importance of η_t^{USD} during the 2011 European debt crisis & the most recent inflation surge
- It would be further interesting if $\eta_t^{JPY} \& \eta_t^{EUR}$ have distinct contents
 - \triangleright ρ /overlapping

Comment 5

Comment 4: $\eta_t^{JPY/USD}$ as Safe Haven?

Yes

46220

9.27

Intercept

NOBS

R2 (%)

Currency FE

Yes

46220

Yes

46220

3.02

- Table 7 regresses r^{FX} on Q5, Δy^{UST} , & their interactions
- Likewise, panel regressions (3, 6) based on equation (7) might contain the distinct effects of JPY (CHF) & other currencies
 - $b^{Q5} \& d^{UST}$ for IPY (CHF)

0.44

No

4622

0.35

[0.40]

4622

Yes

46220

8.51

Intercept

NOBS

R2 (%)

Currency FE

Summary Comment 1 Comment 2 Comment 3 Comment 4 Comment 5 Comment 6 Conclusion

Comment 5: Denmark/Norway/Sweden

 $r^{\text{DNK/USD}}$, $r^{\text{NOK/USD}}$, & $r^{\text{SEK/USD}}$ often exhibit reasonable ρ s (0.7–0.8 at daily/monthly levels) & insignificantly different $\hat{E}[r]$ s

Comment 5: Denmark/Norway/Sweden

Panel C.Other G10 currencies (ex. YEN, CHF)									
	NZD	AUD	NOK	$_{\mathrm{GBP}}$	CAD	SEK	EUR	DKK	
Q_5	-10.08***	-13.05***	-8.03**	-5.69*	-11.92***	-4.65	-1.47	-1.38	
	[-2.59]	[-3.16]	[-2.17]	[-1.93]	[-4.05]	[-1.35]	[-0.53]	[-0.50]	
Q1	-4.22	-3.99	-5.33*	-0.09	-1.15	-4.44	-3.35	-3.35	
	[-1.45]	[-1.49]	[-1.68]	[-0.04]	[-0.60]	[-1.59]	[-1.45]	[-1.44]	
VIX	-0.74***	-0.61**	-0.69**	-0.51**	-0.49***	-0.54***	-0.28*	-0.28*	
	[-2.94]	[-2.29]	[-2.07]	[-2.34]	[-3.02]	[-2.60]	[-1.76]	[-1.74]	
Ted	0.03	-0.00	0.03	0.01	0.02	0.02	0.01	0.01	
Intercept	[0.58]	[-0.01]	[0.51]	[0.20]	[0.34]	[0.37]	[0.36]	[0.37]	
	15.34***	14.76***	13.78**	9.83***	11.24***	10.72***	5.33*	5.25*	
	[3.34]	[2.81]	[2.50]	[2.69]	[3.23]	[2.98]	[1.76]	[1.74]	
NOBS	4621	4621	4621	4621	4621	4621	4621	4621	
R2 (%)	0.91	1.06	0.75	0.82	1.40	0.47	0.19	0.18	

Their intercept, b^{Q5} , & R^2 in Table 6 seem significantly different from each other

⇒ Are their roles as safe haven different?

Comment 6: BAB Returns During Q5?

	Excess	CAPM	CAPM α				
Portfolio	Return	β	Full	Q_5	Q1	Normal	
1 (low beta)	3.38***	0.61***	0.68	7.66***	-3.08**	-0.47	
,	[3.14]		[1.02]	[4.95]	[-2.18]	[-0.55]	
2	3.90***	0.75***	0.61	6.29***	-0.25	-1.03	
	[3.14]		[1.09]	[4.94]	[-0.22]	[-1.52]	
3	5.15***	0.92***	1.10**	2.44**	0.83	0.74	
	[3.50]		[2.35]	[1.98]	[0.75]	[1.20]	
4	5.44***	0.98***	1.13**	-1.27	1.13	1.94***	
	[3.36]		[2.12]	[-1.10]	[0.95]	[2.84]	
5	5.91***	1.06***	1.24**	0.67	0.65	1.62**	
	[3.34]		[2.22]	[0.47]	[0.55]	[2.28]	
6	5.54***	1.12***	0.62	-0.85	-0.18	1.38*	
	[2.95]		[1.04]	[-0.56]	[-0.15]	[1.76]	
7	5.86***	1.17****	0.75	-2.35	-0.14	2.08**	
	[2.91]		[0.98]	[-1.38]	[-0.09]	[2.24]	
8	5.65**	1.27***	0.06	-4.41**	2.24	0.88	
	[2.45]		[0.07]	[-2.33]	[1.19]	[0.71]	
9	5.49**	1.36***	-0.50	-7.39***	1.77	1.10	
	[2.15]		[-0.47]	[-3.11]	[0.88]	[0.78]	
10 (high beta)	5.71*	1.53***	-0.99	-8.72***	1.02	0.96	
	[1.90]		[-0.73]	[-3.15]	[0.36]	[0.53]	
BAB	1.75		1.75	18.16***	-5.69	-1.40	
	[1.02]		[1.02]	[4.86]	[-1.59]	[-0.61]	

- As Q5- η_t^{UST} is a safety measure, the behavior of bettingagainst-beta (BAB, long low- β short high- β) is examined
 - $r^{\text{Low-}\beta} \uparrow r^{\text{High-}\beta} \downarrow \Rightarrow BAB \uparrow$
- "... clear that the information captured by η_t^{UST} is not identical to those reflected by the equity returns."
- Quality-minus-junk (Asness et al.), illiquid-minus-liquid (Pastor and Stambaugh)

ummary Comment 1 Comment 2 Comment 3 Comment 4 Comment 5

Conclusion

- Extensive empirical findings timely & interesting
 - ▶ Stocks, bonds, currencies, commodities, derivatives, etc.
- A lot of upside potential
 - Time-varying multi-dimensionality
 - High- versus low-frequency correlation
 - Future research: Asset pricing, international finance, macro-finance

Comment 6

Conclusion

- Gorton (2017): "... safe assets play a critical and fundamental role in any economy and yet are associated with financial crises when the safety attribute of short-term debt comes into question."
- Thanks for this opportunity to discuss this impressive paper!

Comment 2

Miscellaneous

- PCA in Figure 1: 3-month or -year rolling window?
- Figure 2: Additional 20% cutoff for η_t^{USD} is suggested
 - So that one can visually detect major FTS periods
- Page 8
 - "... falls sharply after the the (?) Fed announced ..."
 - "... statistics of the the (?) daily safety measures ..."
- ▶ Page 16: "... is the short term 3- (?) Treasuries, which ..."
- Format: Equation (3) versus Equations (2) & (4)
- Baele et al. (2019): 2020?
- Jiang et al. (2020): 2023 in RES?