Notes

Week 2

Module 1 Week 2A

Probability and Random Variables

- Probability Theory important in linking Samples to underlying Population of Interest => important for Statistical Inference. ##### Probability
- Values taken on by the variables are not known until they are observed.
- Data is composed of observations of underlying Random Variables.
- Probability Theory provides the mathematics of this randomness.
- Probability fraction of occurrences an event occurs over many repeated trials.
 - E.g. The probability of a coin flip coming up heads is the fraction of heads that occurs after many, many flips.
 - Note the long-run/repeated trial nature of the concept.
 - This is a Frequentist interpretation of Probability, adopted in this class.
 - * Limitation: need for an objective/repeatable experiment.
 - * Alternative: Bayesian Probability which views Probabilities as a plausible expectation that an event occurs, which can updated as more information becomes available (critiques cite its subjective nature).
 - Terminology (using the coin flip example):
 - * Experiment flipping of the coin.
 - · is repeated and conducted under controlled conditions.
 - * **Outcome** result of a single experiment; not known until the coin is flipped; there's a chance involved.
 - * Sample Space (S) (\neq Sample from a Population) all possible outcomes; e.g. $S = \{H, T\}$.
 - * Event any combination of outcomes.
 - · Denoted with upper-case letters. E.g. A event of Heads, then P(A) Probability of Heads.
 - $0 \leq \mathbb{P}(A) \leq 1$
 - Law of Large Numbers as the number of trials increases, the *empirical* fraction of occurrences gets closer and closer to the theoretical probability of occurrence; e.g. for an unbiased coin, there more flips you observe, the fraction of tails or heads will get closer to 0.5.

• Probability Rules:

- "and": an outcome is in event A and B if it is in A and B at the same time.
 - * $A = \{1, 2, 3, 4, 5, 6\}.$
 - $* B = \{4, 5, 6, 7, 8\}.$
 - * $A \text{ and } B = A \cap B = \{4, 5, 6\}.$
- "or": an outcome is in event A or B if it is in A or B.
 - * A or B = $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- The complement of event A is denoted A'
 - $* \mathbb{P}(A') = 1 \tilde{\mathbb{P}}(A)$
- Conditional probability: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
 - * A Conditional Probability reduces the sample size
 - The $\mathbb{P}(A)$ in the sample space of B, rather than S
 - * Two events are Mutually Exclusive if $\mathbb{P}(A \cap B) = 0$
 - * Two events are **Independent** if $\mathbb{P}(A|B) = \mathbb{P}(A)$
 - · If two events are Independent, then $\mathbb{P}(A \cap B) = \mathbb{P}(A) * \mathbb{P}(B)$ (Follows from Conditional Probability)
 - * Multiplication Rule: $\mathbb{P}(A \cap B) = \mathbb{P}(B) * \mathbb{P}(A|B)$ (Follows from Conditional Probability)
 - * Addition Rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Random Variables

- A Random Variable provides a numerical description of the outcomes of an experiment.
- A Discrete Random Variable has outcomes that are countable.
 - E.g. Number of children, number of computer crashes
- Uppercase letters denote $Random\ Variables\ (X\ and\ Y)$
- Lowercase letters denote the outcome (x and y)
 - E.g. we roll a six-sided die and it comes up 4
 - -X = rolling a six-sided die
 - -x = 4
- A Probability Distribution Function describes how the probabilities are assigned over all outcomes of a discrete random variable.
 - We use f(x) to denote a Probability Distribution Function
 - * E.g. if the probability of rolling a 4 with a six-sided die is 1/6
 - $-f(4) = \frac{1}{6}$
 - Uniform Probability Distribution Function all outcomes are equally likely.
 - * $f(x) = \frac{1}{n}$, if n is the number of possible outcomes.
 - - $\begin{array}{l} * \ 0 \leq f(x) \leq 1 \\ * \ \sum f(x) = 1 \end{array}$
- The center and spread are important characteristics of a probability distribution
 - Center: Mean = Expected Value = $\mathbb{E}[X] = \sum f(x) * x = \mu$
 - Law of Large Numbers: as the number of observations increases the difference between the empirical mean (\bar{x}) and the theoretical mean (μ) gets infinitely smaller.
 - Spread: Variance (i.e. Second Moment) = $\mathbb{E}[(X \mu)^2] = \sum [f(x) * (x \mu)^2] = \sigma^2$
 - * Because square units are hard to interpret, Standard Deviation is often used as a measure of Spread instead.
- Binomial distribution (a Discrete Distribution)
 - -n independent trials
 - Each trial has the outcome of either "success" or "failure"
 - The probability of "success" is p and the probability of "failure" is q
 - The number of "successes" is denoted k
 - Each trial is repeated under identical conditions
 - The outcomes of a binomial experiment fit a binomial distribution
 - $-X \sim B(n,p)$: "Random Variable X is distributed according to a Binomial Distribution with parameters n and p"
 - $-f(x) = \binom{n}{k} p^k q^{(n-k)}$, where q = 1 p and $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
 - -Mean = np
 - Variance = npq
 - A Binomial experiment with a single trial is known as a **Bernoulli Trial**
- Poisson Distribution (a Discrete Distribution)s
 - Often used to model the number of occurrences of an event over a specified time interval or space.
 - Known mean rate of occurrence is the same for any two intervals of equal length
 - Occurrence of event in one interval is independent of occurrence in any other
 - -x: number of occurrences in an interval
 - $-\lambda$: average mean rate of occurrence

 - $-X \sim Pois(\lambda)$ $-f(x) = \frac{\lambda^x e^{-\lambda}}{x!}$ $-Mean = \lambda$

 - $Variance = \lambda$