الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2010

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

الله: 03 ساعات ونصف

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين الموضيوع الأول

التمرين الأول: (04 نقاط)

لمتابعة النطور الزمني للتحول الكيميائي الحاصل بين محلول حمض كلور الهيدروجين ومعدن الزنك، الذي يُنَمُذَجُ بتفاعل كيميائي ذي المعادلة: $Zn(s) + 2H^+(aq) = Zn^{2+}(aq) + H_2(g)$

ندخل في اللحظة V=40~mL من معدن الزنك في دورق به V=40~mL من محلول حمض كلور المجدر وجين تركيزه المولى $C=5.0 \times 10^{-1}~mol.L^{-1}$

نعتبر حجم الوسط التفاعلي ثابتا خلال مدة التحول وأن الحجم المولى للغاز في شروط التجربة:

 $V_M = 25L.mol^{-1}$

نقيس حجم غاز ثنائي الهيدروجين V_{H_2} المنطلق في نفس الشرطين من الضغط ودرجة الحرارة، ندون النتائج في

الجدول التالي:

t(s)	0	50	100		200		300	400	500	750
$V_{H_1}(mL)$	0	36	1		1	,	}	[200
x(mol)										

 $V_{H_{\star}}$ أنجز جنولا لتقدم التفاعل واستنتج العلاقة بين التقدم x وحجم غاز ثنائي الهيدروجين المنطلق $^{-1}$

2- أكمل الجدول أعلاه.

د- مثل البيان x = f(t) باعتماد سلم الرسم التالي:

 $1cm \rightarrow 100s$

 $1cm \rightarrow 1, 0 \times 10^{-3} mol$

 $t_2 = 400s$; $t_i = 100s$: الحسب قيمة السرعة الحجمية للتفاعل في اللحظتين -4

كيف تتطور هذه السرعة مع الزمن؟ علل.

5- إن التحول الكيميائي السابق تحول تام:

أ/ احسب التقدم الأعظمي x_{max} واستنتج المتفاعل المحد.

ب/ عرّف زمن نصف التفاعل $t_{1/2}$ وأوجد قيمته.

 $M_{(Zn)} = 65 \text{ g.mol}^{-1}$ يُعطى:

التمرين الثاني: (04) نقاط)

يوجد عنصر الكربون في دورته الطبيعية على شكل نظيرين مستقرين هما الكربون 12 والكربون 13 ونظير مشع (غير مستقر) هو الكربون 14 ، والذي يبلغ زمن نصف عمره 5570 ans . $t_{1/2} = 5570$

 $^{14}_{7}N$: الكربون 12: $^{13}_{6}C$ ، الكربون 13: $^{13}_{6}C$ ، الأزوت 14: $^{14}_{7}N$

1- أعط تركيب نواة الكربون 14.

2- أ/ إن قذف نواة الآزوت بنيترون هو تحول نووي يعبر عنه بالمعادلة التالية:

$${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{A}_{Z}Y_{1} + {}^{1}_{1}H$$

 $\cdot \stackrel{A}{2} Y_1$ بتطبيق قانوني الانحفاظ حدد النواة

ب/ إن تفكك نواة الكربون 14 يعطي نواة إبن $\frac{d}{d}Y_2$ وجسيم $\frac{d}{d}$. اكتب معادلة التفاعل النووي الموافق وانكر اسم العنصر $\frac{d}{d}Y_2$.

 $N\left(t
ight)=N_{0}\;e^{-\lambda\;t}$: يُعطى قانون التناقص الإشعاعي بالعلاقة-3

 $^{\uparrow}$ ماذا تمثل المقادير التالية: $^{\uparrow}$ $^{\uparrow}$ $^{\uparrow}$ $^{\uparrow}$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$
: برا بین آن

ج/ أوجد وحدة λ باستعمال التحليل البعدي.

د/ احسب القيمة العددية للمقدار ثرالمميز للكربون 14.

-4- سمح تأريخ قطعة من الخشب القديم كتلتها m(g) اكتشفت عام 2000، بمعرفة النشاط A لهذه العينة والذي قدر بسـ 11,3 تفككاً في الدقيقة، في حين قدر النشاط A_0 لعينة حية مماثلة بـ A_0 تفككا في الدقيقة. اكتب عبارة A(t) يدلالة A_0 و A_0 و A_0 ثم احسب عمر قطعة الخشب القديم ، وما هي سنة قطع الشجرة التي انحدرت منها؟

التمرين الثالث: (04) نقاط)

نريد تعيين (L,r) مميزتي وشيعة، نربطها في دارة

كهربائية على التسلسل مع:

مولد کهربائی ذي توتر کهربائی ثابت $E=6\ V$.

 $R=10~\Omega$ ناقل أومي مقاومته - ناقل

- قاطعة k (الشكل-1).

اتغلق القاطعة k ، اكتب عبارة كل من: -1

 u_R : التوتر الكهربائي بين طرفي الناقل الأومي u_R

u : التوثر الكهربائي بين طرفي الوشيعة.

$$i(t) = \frac{E}{R+r}(1-e^{-\frac{(R+r)}{L}t})$$
: نان المعادلة التفاضلية السابقة تقبل حلاً من الشكل: -3

4- مكنت الدراسة التجريبية بمتابعة تطور شدة التيار الكهربائي المار في الدارة ورسم البيان الممثل له في (الشكل-2) .

بالاستعانة بالبيان احسب:

أ- المقاومة م للوشيعة.

 μ قيمة τ ثابت الزمن، ثم استنتج قيمة L ذاتية

الوشيعة.

5- احسب قيمة الطاقة الكهربائية
 المخزنة في الوشيعة في

حالة النظام الدائم.

الشكل-2

التمرين الرابع: (04 نقاط)

المحاليل المائية مأخوذة في الدرجة 25°C.

لأجل تعيين قيمة التركيز المولي لمحلول مائي (S_0) لحمض الميثانويك HCOOH(aq) نحقق التجربتين التاليتين: التجربة الأولى: نأخذ حجما $V_0 = 20m$ من المحلول (S_0) ، ونمدده 10 مرات (أي إضافة $V_0 = 20m$ من الماء المقطر) لنحصل على محلول (S_0) .

التجربة الثانية: نأخذ حجما $V_i=20mL$ من المحلول الممدد S_i) ونعايره بمحلول مائي لهيدروكسيد $V_i=20mL$ الصوديوم $Na^+(aq)+HO^-(aq)$ تركيزه المولي $Na^+(aq)+HO^-(aq)$

أعطت نتائج المعايرة البيان (الشكل-3).

1- اشرح باختصار كيفية

تمديد المحلول (S_0) وما هي الزجاجيات الضرورية لذلك؟

2- اكتب معادلة النفاعل المنمذج المتحول الكيميائي الحادث أثناء المعايرة.

S- عين بياني المداثبي نقطة التكافؤ، واستنتج التركيز المولى للمحلول الممدد (S_1) .

-4 اوجد بالاعتماد على البيان القيمة التقريبية لثابت الحموضة K_A للثنائية K_A المتنتج قيمة التركيز المولى للمحلول الأصلي S_0 .

التمرين التجريبي: (04 نقاط)

قام فوج من التلاميذ في حصة للأعمال المخبرية بدراسة السقوط الشاقولي لجسم صلب (S) في الهواء، وذلك باستعمال كاميرا رقمية (Webcam)، عولج شريط

الفيديو ببرمجية "Avistep" بجهاز الإعلام الآلي فتحصلوا على البيان v = f(t) الذي يمثل تغيرات سرعة مركسز عطالة (S)بدلالة الزمن (الشكل-4).

1 -- حدد طبيعة حركة مركز عطالة الجسم (S)

في النظامين الانتقالي والدائم. علل.

بالاعتماد على البيان عين: -2 السرعة الحدية ν_{lim} .

t=0 بب/ تسارع الحركة في اللحظة

3- كيف يكون الجسم الصلب (S) متميزا وهذا للحصول على حركة مستقيمة شاقولية انسحابية في نظامين انتقالي ودائم؟
 4- باعتبار دافعة أرخميدس مهملة، مثل القوى المؤثرة على الجسم (S) أثناء السقوط، واستنتج عندئذ المعادلسة التفاضلية للحركة بدلالة السرعة v في حالة السرعات الصغيرة.

5- توقع شكل مخطط المسرعة عند إهمال دافعة أرخميدس و مقاومة الهواء. علل.

الموضوع الثاني

التمرين الأول: (04 نقاط)

عثر العمال أثناء الحفريات الجارية في بناء مجمعات سكنية على جمجمتين بشريتين إحداهما (a) سليمة والثانية (b)مهشمة جزئياً. اقترح العمال فرضيتان:

- يَرَى الفريق الأول أن الجمجمتين لشخصين عاشا في نفس الحقبة الزمنية.
- يَرَى الفريق الثاني أن العوامل الطبيعية كانجراف النربة والانكسارات الصخرية جمعت الجمجمتين، رغم
 أنهما الشخصين عاشا في حقبتين مختلفتين (تقدر الحقبة بـ 70سنة).

 ^{-14}C تَدَخَّلَ فريق ثالث (خبراء علم الآثار) للفصل في القضية معتمداً النشاط الإشعاعي للكريون

علماً بأن المادة الحية يتجدد فيها الكربون 14 المشع لجسيمات $(^{\sigma})$ باستمرار، وبعد الوفاة تتوقف هذه العملية. أخذ الفريق الثالث عينة من كل جمجمة (العينتان متساويتان في الكتلة) وقاس نشاطهما الإشعاعي حيث كانت النتيجتين على الترتيب $A_{(a)}=5000$ و $A_{(a)}=4500$ و $A_{(a)}=5000$ مماثلة لهما هو $A_{(b)}=6000$ ونصف عمر $A_{(a)}=5570$ هو $A_{(a)}=5570$

اً اكتب معادلة تفكك الكربون $^{14}C_6$ ، وتعرف على النواة الإبن (غير المثارة) من بين الأثوية التالية: $^{16}C_6$.

. $t_{1/2}$, t , A_{0} اكتب علاقة النشاط (t) للعينة بدلالة: λ

3/ كيف حسم الغريق الثالث في القضية ؟

4/ احسب بالإلكترون فولط وبالجول طاقة ربط نواة الكربون 14 .

يعطى:

$$m_P = 1,00728u$$
 , $1MeV = 1,6 \times 10^{-13}J$, $1u = 931,5MeV \times C^{-2}$
 $m_n = 1,00866u$, $1eV = 1,6 \times 10^{-19}J$, $m_{\frac{14}{6}c} = 14,00324u$

التمرين الثاني: (04 نقاط)

يتكون مشروب غازي من غاز ثنائي أكسيد الكربون CO_2 منحل في الماء والسكر وحمض البنزويك ذو الصيغة يتكون مشروب غازي من غاز ثنائي أكسيد الكربون C_0 منحل في الماء والسكر وحمض البنزويك ذو المشروب، C_6H_5COOH يريد أحد التلاميذ إجراء عملية معايرة لمعرفة التركيز المولي C_a يريد أحد التلاميذ إجراء عملية معايرة عائد يتم يعسف في بيشر ثم ولأجل ذلك يأخذ منه حجما قدره $V_a=50mL$ بعد إزالة غاز CO_2 عن طريق رجه جيدا ويضعه في بيشر ثم يعسف يأخذ منه حجما قدره هيدروك سيد السموديوم $V_a=1.0 \times 10^{-1}$ التركيب ز المسولي $C_b=1.0 \times 10^{-1}$ المسولي $C_b=1.0 \times 10^{-1}$

 $25^{\circ}C$ المحلول عند الدرجة V_b من أجل كل حجم V_b لهيدروكسيد الصوديوم المضاف يسجل التلميذ في كل مرة قيمة pH المحلول عند الدرجة pH متر فتمكن من رسم المنحنى البياني $pH=f(V_b)$ (الشكل-1).

باعتبار حمض البنزويك الحمض الوحيد في المشروب الغازي.

أ- اكتب المعادلة الكيميائية المعبرة عن التفاعل المنمذج

للتحول الكيميائي الحاصل خلال المعايرة.

 $\cdot E$ مند بيانيا إحداثيي نقطة التكافق

 C_{o} لحمض البنزويك. C_{o} لحمض البنزويك.

من أجل حجم $V_h = 10,0 \ mL$ ميدروكسيد –2 الصوديوم المضاف:

أ-- انشيئ جدولا لتقدم التفاعل.

ب- أوجد كمية مادة كل من شوارد الهيدرونيوم وجزيئات حمض البنزويك المتبقية في $(H_3O^+(aq))$

الوسط التفاعلي مستعينا بجدول التقدم.

3- ما هو الكاشف المناسب لمعرفة نقطة التكافؤ من بين الكواشف المذكورة في الجدول أدناه مع التعليل ؟

T.	Н							,					
	<u> </u>									 ,			
-	-	-			 		,,,,,,,			 ~			
-	-				 					 			
	-				 					 			
-	-				 ,,,,,,,,,,			1		 			
				نبييت	 								
			ر بعدد		 								
2	-									 	ļ		
	_	-			 	<u></u>			-	 	- F		7 .
ساړ			L		 					 <u>.</u>	ь	m	_
0		2				1-	ىكل.						

pH مجال التغير اللوني	اسم الكاشف
6,2 - 4,2	أحمر الميثيل
7,6 - 6,0	أزرق البرومونتيمول
10,0 - 8,0	الفينول فتاليين

التمرين الثالث: (04 نقاط)

نحقق دارة كهربائية على التسلسل تتكون من:

- E = 5V مولد ذو نوتر كهربائي ثابت
 - $R = 100 \Omega$ ناقل أومى مقاومته
 - مكثفة سعتها .C
 - k قاطعة

نوصل طرفى المكثفة B,A إلى واجهة دخول لجهاز إعلام آلى وعولجت المعطيات ببرمجية "Microsoft Excel" $u_c=u_{AB}=f(t)$ (الشكل على المنحنى البياني: وتحصلنا على المنحنى اقترح مخططاً للدارة موضحاً اتجاه التبار ثم مثل بسهم

 u_c کلا من التوترین u_R و کلا

- C عين قيمة ثابت الزمن τ للدارة وما مدلوله الفيزيائي؟ استنتج قيمة سعة المكثفة C
 - 3/ احسب شحنة المكثفة عند بلوغ الدارة للنظام الدائم.
- C' = 2 ارسم، كيفياً، في نفس المعلم السابقة بمكثقة أخرى سعتها C' = 2، ارسم، كيفياً، في نفس المعلم السابق شكل المنحني . الذي يمكن مشاهدته على شاشة الجهاز . مع التعليل $u_c = g(t)$

صفحة 6 من 8 Lotphilosophie الجديد و الحصرى فقط على موقع الاستاذ sites.google.com/site/lotphilosophie_

التمرين الرابع: (04 نقاط)

تؤخذ $g = 10m \times s^{-2}$ ، مقاومة الهواء ودافعة أرخميدس مهملتان.

لتنفيذ مخالفة خلال مباراة في كرة القدم ، وضع اللاعب الكرة في النقطة O مكان وقوع الخطأ (نعتبر الكرة نقطية) على بعد d=25m من خط المرمى، حيث ارتفاع العارضة الأفقية d=25m.

يقذف اللاعب الكرة بسرعة ابتدائية

يصنع حاملها مع الأفق زاوية \bar{v}_0 يصنع $\alpha=30^\circ$

الرس طبيعة حركة الكرة في $(\overbrace{ox}, \overbrace{oy})$ بأخذ مبدأ الأزمنة

y = f(x) استنج معادلة المسار (استنج معادلة المسار

2/ كم يجب أن تكون قيمة \overline{v}_0 حتى يُسَجَّلَ الهدف مماسياً للعارضة الأفقية (النقطة A) ؟ ما هـي المـدة الزمنيــة المستغرقة ؟ وما هي قيمة سرعتها عند (النقطة A)؟

 \mathfrak{r} (B عَم يجب أن تكون قيمة \overline{v}_0 حتى يُسَجَّلَ الهدف مماسياً لخط المرمى (النقطة \mathfrak{r}

التمرين التجريبي: (04 نقاط)

 C_0 نأخذ عينة من منظف طبي للجروح عبارة عن سائل يحتوي أساسا على ثنائي اليود $I_2(\alpha q)$ تركيزه المولي $I_2(\alpha q)$ نضيف إليها قطعة من الزنك Zn(s) فنلاحظ تناقص الشدة اللونية للمنظف.

1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث، علما أن الشائيتين الداخلتين في التفاعل هما:

 $(Zn^{2+}(aq)/Zn(s)) \cdot (I_2(aq)/I^{-}(aq))$

 Z_{-} التجربة الأولى: عند درجة الحرارة Z_{-} نضيف إلى حجم Z_{-} من المنظف قطعة من Z_{-} ونتابع عن طريق المعايرة تغيرات Z_{-} بدلالة الزمن Z_{-} فنحصل على البيان Z_{-} (الشكل Z_{-}).

 I_2 عرف السرعة الحجمية لاختفاء و I_2 مبينا طريقة حسابها بيانيا.

 I_2 المرعة الحجمية لاختفاء I_3 مع الزمن ? فسر ذلك .

V التجرية الثانية: نأخذ نفس الحجم V من نفس العينة عند الدرجة $20^{\circ}C$ ، نضعها في حوجلة عيارية سعتها $100\,m$ ثم نكمل الحجم بواسطة

الماء المقطر إلى خط العيار ونسكب محتواها في بيشر ونضيف إلى المحلول قطعة من الزنك. توقع شكل البيان (1) للتجربة الأولى. علل. توقع شكل البيان (1) للتجربة الأولى. علل. $I_2 = g(t)$ ورسمه، كيفيا، في نفس المعلم مع البيان (1) للتجربة الأولى. علل البيان (3) $I_2 = g(t)$ من نفس العينة، تُرقع درجة الحرارة إلى $I_3 = g(t)$ ، توقع شكل البيان (3) $I_4 = I_4 = g(t)$ وارسمه، كيفيا، في نفس المعلم السابق . $I_4 = I_4 = g(t)$ ما هي العوامل الحركية التي تبرزها هذه التجارب؟ ماذا تستنتج؟

الجمهورية الجزائرية الديمقراطية الشعيبة

الديوان الوطنى للامتحاثات والمسابقات

دورة جوان: 2010

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

المدة: 03 ساعات ونصف

(خاص بالمكفوفين)

اختبار في مادة : العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين الموضوعين الموضوع الأول

التمرين الأول: (04 نقاط)

لمتابعة التطور الزمني للتحول الكيميائي الحاصل بين محلول حمض كلور الهيدروجين ومعدن الزنك ، الذي يُنَمّذَجُ بتفاعل كيميائي ذي المعادلة :

 $Zn(s) + 2H^{+}(aq) = Zn^{2+}(aq) + H_{2}(g)$

ندخل في اللحظة $V=40\ mL$ كتلة $m=1,0\ g$ من معدن الزنك في دورق به $V=40\ mL$ من محلول محمض كلور الهيدروجين تركيزه المولي $C=0,50\ mol.L^{-1}$

نعتبر حجم الوسط التفاعلي ثابتا خلال مدة التحول وأن الحجم المولي للغاز في شروط التجربة:

 $V_{M} = 25L.mol^{-1}$

نقيس حجم غاز ثنائي الهيدروجين V_{H_2} المنطلق في لحظات زمنية مختلفة وفي نفس الشرطين من الضغط ودرجة الحرارة:

t(s)z; 0; 50; 100; 150; 200; 250; 300; 400; 500; 750

: فكانت قيم الحجم V_{H_2} على الترتيب هي

 $V_{H_2}(mL)$; ;0 ;36 ;64;86 ; 104 ;120 ;132 ;154 ;170 ;200

x عير عن كمية المادة في لحظة كيفية t واستنتج العلاقة بين التقدم x وحجم غاز ثنائي الهيدروجين المنطلق V_{H_2} .

. الموافقة للحظات الزمنية السابقة -2

3- احسب قيمتي السرعة المتوسطة في المجالين [300s,500s] ماذا تستنتج ؟

4- التحول الكيميائي السابق تحول تام:

أر احسب التقدم الأعظمي x_{max} وأوجد المتفاعل المحد.

. الموافقة لذلك $t_{1/2}$ واستنتج قيمة التقدم x الموافقة لذلك $t_{1/2}$

 $M_{(Zn)} = 65 \ g.mol^{-1}$ يُعطى:

صفحة 1 من 6

التمرين الثاني: (04) نقاط)

يوجد عنصر الكربون في دورته على شكل نظيرين مستقرين هما الكربون 12 والكربون 13 ونظير مشع (غير مستقر) هو الكربون 14، والذي يبلغ زمن نصف عمره 5570 ans $t_{1/2}$.

 $^{14}_{7}N$: 14 الكربون 13: $^{13}_{6}C$ ، الكربون 13: $^{13}_{6}C$ ، الأزوت 14: المعطيات: الكربون

1- أعط تركيب نواة الكربون 14.

2- أ/ إن قذف نواة الآزوت بنيترون هو تحول نووي يعبر عنه بالمعادلة التالية:

$${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{A}_{Z}Y_{1} + {}^{1}_{1}H$$

بتطبيق قانوني الانحفاظ حدد النواة $_{Z}^{A}Y_{1}$

ب/ إن تفكك نواة الكربون 14 يعطي نواة الإبن Y_2 Z' وجسيم γ . اكتب معادلة التفاعل النووي الموافق واذكر اسم العنصر γ .

 $N(t) = N_0 e^{-\lambda t}$: يُعطى قانون التناقص الإشعاعي بالعلاقة -3

 $^{\circ}$ $^{\circ}$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$
 :بر بین أن

ج/ أوجد وحدة λ باستعمال التحليل البعدي.

د/ احسب القيمة العددية للمقدار 1/ المميز للكربون 14.

m(g) اكتشفت عام 2000، بمعرفة النشاط A لهذه العينة والذي قدر بسر 13,6 تفككاً في الدقيقة، في حين قدر النشاط A_0 لعينة حية مماثلة بـ 13,6 تفككا في الدقيقة.

اكتب عبارة A(t) بدلالة : A_0 و λ و λ ثم احسب عمر قطعة الخشب القديم ، وما هي سنة قطع الشجرة التي انحدرت منها؟

التمرين الثالث: (04 نقاط)

نرید تعیین (L,r) ممیزتی وشیعة، نربطها فی دارة کهر بائیة علی التسلسل مع مولد کهربائی ذی توتر کهربائی ثابت E=6 ، ناقل أومی مقاومته R=10 . قاطعة R=6

 u_b ، (R التوتر الكهربائي بين طرفي الناقل الأومي u_b ، (التوتر الكهربائي بين طرفي الناقل الأومي u_b ، (التوتر الكهربائي بين طرفي الوشيعة).

-2 بتطبيق قانون جمع التوترات، أوجد المعادلة التفاضلية للتيار الكهربائي i(t) المار في الدارة -2

$$i(t) = \frac{E}{R+r}(1-e^{-\frac{(R+r)}{L}t})$$
: بين أن المعادلة التفاضلية السابقة تقبل حلاً من الشكل: -3

-4 مكنت الدراسة التجريبية بمتابعة تطور شدة النيار الكهربائي المار في الدارة بدلالة الزمن وتم الحصول على النتائج التالية : في اللحظة t = 0 كانت شدة النيار الكهربائي i = 0

i = 0,25A في اللحظة $t = t_{1/2} = 7ms$ في اللحظة التيار الكهربائي

أ/ احسب شدة التيار الأعظمية واستنتج قيم r (مقاومة الوشيعة)، au (ثابت الزمن)، L (ذاتية الوشيعة) au/ احسب قيمة الطاقة الكهربائية المخزنة في الوشيعة في حالة النظام الدائم.

التمرين الرابع: (04 نقاط)

المحاليل المائية مأخوذة في الدرجة 25℃.

لأجل تعيين قيمة التركيز المولى لمحلول مائي (S_0) لحمض الميثانويك (HCOOH(aq)) نحقق التجربتين التاليتين:

التجربة الأولى: نأخذ حجما $V_0 = 20mL$ من المحلول (S_0) ، و نمدده 10 مسرات (أي بإضافة $V_0 = 20mL$ من الماء المقطر) لنحصل على محلول (S_1) .

التجربة الثانية: نأخذ حجما $V_1=20mL$ من المحلول الممدد (S_1) و نعسايره بمحلول مائي لتجربة الثانية: نأخذ حجما $V_1=20mL$ من المحلول الممدد $C_b=0.02mol\times L^{-1}$ تركيزه المولي $Na^+(aq)+HO^-(aq)$. أعطست نتائج المعايرة بالحصول على النتائج التالية:

 $pH = pK_a = 3.8$ عند إضافة حجم $V_b = 10 \mathrm{m}$ من هيدروكسيد الصوديوم كانت قيمة

pH=8.0 عند إضافة حجم $V_b=20 \mathrm{m} L$ عند إضافة حجم عند إضافة عند الصوديوم

- -1 اشرح باختصار كيفية تمديد المحلول (S_0).
- 2- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث أثناء المعايرة.
- -3 باستغلال نتائج المعايرة حدد إحداثيي نقطة التكافؤ، واستنتج التركيز المولى للمحلول الممدد (S_1).
- -4 أوجد بالاعتماد على نتائج المعايرة المتحصل عليها قيمة ثابت الحموضة K_A المثنائية $(HCOOH(aq)/HCOO^-(aq))$
 - 5- استنتج قيمة التركيز المولي للمحلول الأصلى (S_0) .

التمرين التجريبي: (04نقاط)

سمحت دراسة حركة السقوط الشاقولي لجسم صلب (S) في الهواء وفي معلم مرتبط بمرجع أرضى نعتبره غاليلياً، بتحديد قيم سرعة المتحرك في اللحظات التالية: 0s; 2,5s; 10s; 12s فكانت على الترتيب كما يلى:

 $v(m.s^{-1})$: 0,0; 12,35; 19,6; 19,6

- -1 حدد طبيعة حركة مركز عطالة الجسم (S) في النظامين الانتقالي والدائم. علل.
 - . $v_{\rm lim}$ النتائج السابقة عين السرعة الحدية -2
- -3 كيف يكون الجسم (s) متميزا وهذا للحصول على حركة مستقيمة شاقولية انسحابية في نظامين انتقالى ودائم؟
- 4- باعتبار دافعة أرخميدس مهملة ، استنتج عندئذ المعادلة التفاضلية للحركة بدلالة السرعة ٧ فسي حالة السرعات الصغيرة .

الموضوع الثاني

التمرين الأول: (04 نقاط).

عثر العمال أثناء الحفريات الجارية في بناء مجمعات سكنية على جمجمتين بشريتين إحداهما (a) سليمة والثانية (b)مهشمة جزئياً. اقترح العمال فرضيتان:

- يَرَى الفريق الأول أن الجمجمئين لشخصين عاشا في نفس الحقبة الزمنية.
- يَرَى الفريق الثاني أن العوامل الطبيعية كانجراف النربة والانكسارات الصخرية جمعت الجمجمتين، رغم
 أنهما لشخصين عاشا في حقبتين مختلفتين(تقدر الحقبة بـ 70سنة) .

 ^{14}C تَدَخُلُ فريق ثالث (خبراء علم الآثار) للفصل في القضية معتمداً النشاط الإشعاعي للكربون

علماً بأن المادة الحية يتجدد فيها الكربون ^{14}C المشع لجسيمات $^{-}(eta)$ باستمرار، وبعد الوفاة تتوقف هذه العملية. أخذ الفريق الثالث عينة من كل جمجمة (العينتان متساويتان في الكتلة) وقاس نشاطهما الإشعاعي حيث كانت النتيجتين على الترتيب $A_{(a)}=5000$ و $A_{(a)}=4500$ و $A_{(a)}=6000$ علماً أن نشاط عينة حديثة مماثلة لهما هو $t_{N}=5570$ هو $A_{(a)}=6000$ ونصف عمر $A_{(a)}=6000$

الكتب معادلة تفكك الكربون $^{14}C_6$ ، وتعرف على النواة الإبن (غير المثارة) من بين الأنوية التالية: $^{16}C_6$. $^{16}D_6$ أو $^{14}N_6$ أو $^{16}C_6$.

. t_{χ} , t , A_0 اكتب علاقة النشاط (t) للعينة بدلالة: $\lambda(t)$

3/ كيف حسم الفريق الثالث في القضية ؟

4/ احسب بالإلكترون فولط وبالجول طاقة ربط نواة الكربون 14.

يعطي:

$$m_P = 1,00728u$$
 · $1MeV = 1,6 \times 10^{-13}J$ · $1u = 931,5MeV \times C^{-2}$
 $m_n = 1,00866u$ · $1eV = 1,6 \times 10^{-19}J$ · $m_{\frac{14}{6}c} = 14,00324 u$

التمرين الثانى: (04) نقاط)

يتكون مشروب غازي من غاز ثنائي أكسيد الكربون CO_2 منحل في الماء والسكر وحمض البنزويك ذو الصيغة C_a مشروب غازي من غاز ثنائي أكسيد الكربون C_a منحل في الماء والسكر وحمض البنزويك ذو المشروب، C_a بير أحد التلاميذ إجراء عملية معايرة لمعرفة التركيز المولي C_a للحمض في هذا المشروب، ولأجل ذلك يأخذ منه حجما قدره $V_a=50$ بعد إزالة غاز CO_2 عن طريق رجه جيدا ويضعه في بيشر ثم يعايره بواسطة محلول هيدروك سيد الصوديوم $(Na^+(\alpha q)+HO^-(\alpha q))$ ذي التركيسز المولي $C_b=1.0\times 10^{-1}$ $C_b=1.0\times 10^{-1}$

pH لهيدروكسيد الصوديوم المضاف يسجل التلميذ في كل مرة قيمة V_b المحلول عند الدرجة V_b باستعمال مقياس الـ pH متر فتمكن من الحصول على النتائج التالية :

 $pH = pK_a = 4.2$ من أجل حجم مضاف قيمته $V_b = 5mL$ عند قيمة

من أجل حجم مضاف قيمته $V_h=10mL$ عندت قيمة

باعتبار حمض البنزويك الحمض الوحيد في المشروب الغازي.

أ- اكتب المعادلة الكيميائية المعبرة عن التفاعل المنمذج للتحول الكيميائي الحاصل خلال المعايرة.

ب- باستغلال النتائج السابقة حدد إحداثيي نقطة التكافؤ E.

 C_a استنتج التركيز المولى C_a لحمض البنزويك.

 $V_b = 10,0 \; mL$ من أجل حجم $V_b = 10,0 \; mL$ لهيدروكسيد الصوديوم المضاف، أوجد كمية مادة الأنواع الكيميائية المتواجدة في المزيج.

3- ما هو الكاشف المناسب لمعرفة نقطة التكافؤ من بين الكواشف التالية مع التعليل ؟

- الكاشف أحمر الميثيل pH مجال تغيره اللونى 4,2 6,2
- الكاشف أزرق البروموتيمول pH مجال تغيره اللونى 7,6 الكاشف
 - الكاشف فينول فتاليين pH مجال تغيره اللوني 8,0 10,0

التمرين الثالث: (04 نقاط)

نحقق دارة كهربائية على التسلسل تتكون من :

- E = 5V مولد نو توتر کهربائی ثابت
 - ناقل أومي مقاومته Ω 100 R.
 - مكثفة سعتها C.
 - اقاطعة .k

نوصل طرفي المكثفة B,A إلى واجهة دخول لجهاز إعلام آلى وعولجت المعطيات ببرمجية "Microsoft Excel" وتحصلنا على قيم التوتر الكهربائي بين طرفي المكثفة u_c في اللحظات التالية: 0ms; 0,50ms; 1ms; 2ms; 5ms

هي على الترتيب: 0V; 3,15V; 4,35V; 5V

1/ عين قيمة ثابت الزمن ت للدارة وما مدلوله الفيزيائي؟

استنتج قيمة سعة المكثفة .C

- 2/ احسب شحنة المكثفة عند بلوغ الدارة النظام الدائم .
- C'=2 لو استبدلنا المكثفة السابقة بمكثفة أخرى سعتها C'=2 ، كيف تصبح قيمة ثابت الزمن الجديد ؟

حسري فقط على سوقع الأستاذ Lotphilosophie sites.google.com/site/lotphilosophie

التمرين الرابع: (04 نقاط)

نأخذ : $g = 10 \, m \times s^{-2}$ ، مقاومة الهواء و دافعة أر خميدس مهملتان.

لتنفيذ مخالفة خلال مباراة في كرة القدم، وضع اللاعب الكرة في النقطة O مكان وقوع الخطأ (نعتبر الكرة نقطية) على بعد d=25m من خط المرمى، حيث ارتفاع العارضة الأفقية h=AB=2.44m.

 $.\alpha$ = 30° يقذف اللاعب الكرة بسرعة ابتدائية $\overline{v_0}$ يصنع حاملها مع الأفق زاوية

الرس طبيعة حركة الكرة في المعلم $(\overrightarrow{ox}, \overrightarrow{oy})$ بأخذ مبدأ الأزمنة لحظة القذف.

y = f(x) استنتج معادلة المسار

2/ كم يجب أن تكون قيمة \overline{v}_0 حتى يُسَجَّلَ الهدف مماسياً للعارضة الأققية (النقطة A) ؟ ما هي لحظة وصول الكرة إلى العارضة الأفقية (النقطة A)؟

وما هي قيمة سرعتها (النقطة A) ؟

(B) كم يجب أن تكون قيمة (a,b) حتى يُسَجَّلَ الهدف مماسياً لخط المرمى (النقطة (a,b) ؟ التمرين التجريبي: (a,b) نقاط)

نأخذ عينة من منظف طبي للجروح عبارة عن سائل يحتوي أساسا على ثنائي اليود $I_2(aq)$ تركيــزه المولي (C_0) . نضيف إليها قطعة من الزنك Zn(s).

-1 اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث، علما أن الثنائيتين الداخلتين في التفاعل $Zn^{2+}(aq)/Zn(s)$ ، $(I_2(aq)/I^-(aq))$.

V=50mL حجم V=50mL من المنظف قطعة الحرارة V=50mL من V=50mL عند درجة الحرارة V=50mL من V=50mL من V=50mL من V=50mL المولية الخيرات V=50mL من V=50mL من V=50mL المولية الحظات عن طريق المعايرة تغيرات V=50mL بدلالة الزمن V=50mL فكانت قيم التراكيز المولية في V=50mL من V=50mL المحظات : V=50mL

 $[I_2](mmo\ell L^{-1})$: 20 ; 13 ; 09 ; 06 ; 04 : A

أ- عرف السرعة الحجمية لاختفاء I_2 ثم استنتج قيمتها المتوسطة في المجال [0min, 0,4min] ثـم في المجال [0,4min, 0,8min].

ب- كيف تتطور السرعة الحجمية لاختفاء I_2 مع الزمن ؟ فسر ذلك.

V في تجربة ثانية نأخذ نفس الحجم V من نفس العينة عند الدرجة 20° 0 نضعها في حوجلة عيارية سعتها 100mL ثم نكمل الحجم بواسطة الماء المقطر إلى خط العيار ونسسكب محتواها فسي بيسشر ونضيف إلى المحلول قطعة من الزنك .

كيف تتطور السرعة في هذه الحالة مقارنة بالتجربة الأولى ؟

4- في تجربة ثالثة تُرْفع درجة الحرارة إلى ℃80، وتحت نفس شروط التجربة الأولى ككيف تتطور السرعة في هذه الحالة مقارنة بالتجربة الأولى ؟

5- ما هي العوامل الحركية التي تبرزها هذه التجارب ؟

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2010

اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

مجموع	مجزأة	عناصر الإجابة						المحاور		
	<u> </u>				ع الأول					
			_				نقاط)	ل : (04	التمرين الأوا	
									1- جدول ا	
		2	المعانل	Zn	(s) +	2H*(aq)	<u> </u>	Zn ²⁺ (aq)-	+ H ₂ (g)	
	0.75	ح/ الجملة	التقدم	~		(mol)	ية المادة	کم		
		ح/ ابند	0	1,5	4×10 ⁻²	2×1	0-2	0	0	
01		ح/ إنتقا	x	1,54	$\times 10^{-2} - x$	2×10 ⁻²	-2x	x	х	
		ح/ نها	x_f	1,54×	$(10^{-2} - x_f)$	2×10 ⁻²	$-2x_f$	x_f	x_f	
								V		
	0.25					*	$n_{H_1} = x =$	$\frac{V_{H_2}}{V_M}$:3	- ألعلاق	
								~ جدول:	2- إكمال الـ	
			(s)	0	50	100	150	200		
05	0.5	$x \times 10^{-3} (ma)$		0	1,44	2,56	3,44	16,4	ļ	
			(s)	250	300	400	500	750	·	
		$x \times 10^{-3} (mc)$	(l)	4,80	5,28	6,16	6,80	8,00)	
0.5	0.5									
					(8/2	لر الصفحة	. = x (أنظ	f(t) :ان	3- رسم البي	
	0.25					. v :	$=\frac{1}{x}\frac{dx}{dx}$	الحجمية:	4- السرعة	
	0.25			10	~4.7~10		, ,		- في اللحظ	
01	0.25						•		- في اللحظ - في اللحظ	
	0.25	نصد ،	سسس نة	_					مي سخط يلاحظ أن قيد	
		-	* * *	- سريس					وحصر المتفا تراكيز المتفا	
	2×0.25) المحد هو	المتفاعل	ير ومنه	$_{\rm max} = 10^{-2} mc$	ل التقدم اد	: من جدو		5/ أ- المتفاء	
	-					•	يدروجين	, كلور اله	حمض	
01		(م التفاعل	فيها تقد	ية التي يبلغ	المدة الزمن	: t _{1/2} هو	ب التفاعل	- زمن نصف	
01	0.25					$x_{(t_{(1)})} = \frac{x_{m}}{x_{m}}$	عظمی ××	تقدمه الأ	نصف قيمة	
	0.75					2	-		من البيان:	
	0.25				11/2 ~ 2	703 🛶 x	(_{1/2}) = 3 ^	io moi	من سبيان،	
	:									

الشعب (ة): علوم تجريبية

تابع الإجابة التموذجية اختبار مادة: العلوم الفيزيائية

مجموع	¥	عناصر الإجابة	المحاور
0.5	0.25 0.25	الثمرين الثاتي: (04 نقاط) 1- تركيب نواة الكريون 14 : عدد البروتونات: $2=6$ عدد النيترونات: $N=A-Z=8$	
01	0.25 0.25 0.25 0.25	$A=14 \Leftrightarrow A+1=14+1$ النواة بتطبيق قانوني الإنحفاظ: $1+1=14+1 \Rightarrow A=14$ $= -2$ $= -2$ $= -2$ $= -2$ ومنه: $2 = -2$ $= -2$ $= -2$ $= -2$ $= -2$ $= -2$ $= -2$ المعادلة: $-2 = -2$ $= -2$ ومنه $2 = -2$ $= -2$ (الأزوت 14).	
	0.25 0.25	$N(t) / 1-3$ عدد الأنوية غير المتفككة في العينة في اللحظة 1. N_0 عدد الانوية غير متفككة في العينة في اللحظة N_0	
1.75	0.25 0.25	λ : ثابت التفكك الاشعاعي، $N(t)=N_0/2$ يكون: $t=t_{1/2}$ عددما ياب العلاقة: عددما $t=t_{1/2}$ عددما ياب العلاقة: عددما ياب ا	
	0.25	$\lambda = \frac{\ln 2}{t_{1/2}} : -\ln 2 = -\lambda t_{1/2} \leftarrow 1/2 = e^{-\lambda t_{1/2}} \leftarrow N_0/2 = N_0.e^{-\lambda t_{1/2}}$	
	0.25	(s^{-1}) اي أن وحدة قياس λ هي مقلوب وحدة الزمن $[\lambda] = \frac{1}{[T]} = [T]^{-1}$.	
	0.25	$\lambda=1,244\times10^{-4}ans^{-1}$: ومنه $\lambda=\frac{\ln2}{t_{1/2}}$: λ قيمة $\lambda=\frac{\ln2}{t_{1/2}}$: $\lambda=\ln$	
	0.25	$A(t) = \frac{A}{dt}$ $A(t) = N_0 \lambda t$ $A(t) = N_0 \lambda t$ $A(t) = \frac{A}{dt} = e^{-\lambda t}$ $A(t) = N_0 \lambda t$ $A(t) = $	
0.75	0.25	$\frac{1}{A_0} = e $ $t = -\frac{\ln A / A_0}{4} = 1489, 28 ans$	
	0.25	لا منها القطعة عام: 510,72 = 510,72 = 2000 – 1489,28 = 510,72 = 511	

تابع الإجابة النموذجية اختبار مادة : العلوم الفيزيائية الشعب (ة): علوم تجريبية

مجموع	مجزأة	عناصر الإجابة	المحاور
		التمرين الثالث: (04 نقاط)	
01	2×0.5	$u_b = r.i + L\frac{di}{dt}$, $u_R = R.i - 1$	
		u .	
0.5	2×0.25	$E = (R+r)i + L\frac{di}{dt} \Leftrightarrow \frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$	
0.5	0.5	3- باشتقاق عبارة التيار والتعويض في المعادلة التفاضلية تتحقق المساواة.	
	2×0.25	$i_{\max} = \frac{E}{R+r} \Leftrightarrow r = 2\Omega / -4$	
1.5	0.5	t=0 باستعمال ميل المماس في اللحظة $ au=10ms$	
	2×0.25	$i_{ m max}$ أو طريقة النسبة المئوية (63%) من I_0 أي I_0	
	2.40.25	$\tau = \frac{L}{R+r} \Leftrightarrow L = 1, 2 \times 10^{-1} H$	
0.5	2×0.25	5- الطاقة المخزنة في الوشيعة في حالة النظام الدائم:	
		$E_b = \frac{1}{2}L.i_{\text{max}}^2$; $E_b = 1.5 \times 10^{-2}J$	
		التمرين الرابع: (04 نقاط)	
		1- عملية التمديد:	
	0.25	$n_1 = n_2 \qquad c_1 V_1 = c_2 V_2$	
01	0.25 0.25	$V_2 = rac{c_1 V_1}{c_2} = rac{c_1 V_1}{rac{c_1}{10}} = 10 V_1$	
	0.5	الشرح : نأخذ $20 \mathrm{mL}$ من المحلول (S_0) ونضعها في حوجلة قياسية (عيارية) سعتها $200 \mathrm{mL}$	
	0.5	نضيف الماء المقطر حتى الخط العياري 200mL (إضافة 180mL من الماء المقطر).	
		2- معادلة التفاعل المنمذج:	
0.5	0.5	$OH^-(aq) + HCOOH(aq) = HCOO^-(aq) + H_2O(l)$	
	0.5	$E(20mL\;;\;8,2)$: نقطة التكافؤ من البيان -3	
1.25		تركيز الحمض الممدد:	
	0.25	$c_a V_a = c_b V_b \Rightarrow c_a = \frac{c_b V_b}{c_b}$	
	2×0.25	$c_a = \frac{0.02 \times 20}{20} = 0.02 mol/L$	
		20	
0.75	3×0.25	$pH = pK_a = 3.8$: عند نقطة نصف النكافؤ: $K_a = 10^{-3.8} = 1.58 \times 10^{-4}$	
۸۶	م ح	$(s_{\scriptscriptstyle 0})$: تركيز المحلول الأصلي ($s_{\scriptscriptstyle 0}$):	
0.5	0.5	$c_0 = 10c_a \Rightarrow c_0 = 10 \times 0,02 = 0,2 mol/L$	
:			

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

	###	تابع الإجابه النمودجيه اختبار ماده: العلوم الفيزيانية الشعب(ه): علوم	
مجموع	مجزاة	عناصر الإجابة	المحاور
		التمرين التجريبي: (04 نفاط)	
	0.25	ا البيان $f(t)=v=v$ يعبر عن نظامين أحدهما انتقالي والآخر دائم.	
0.75	0.25	النظام الانتقالي: $t \leq 7s$ ح.م. متسارعة $-$	
	0.25	v=Cte ح.م. منتظمة $t>7s$ - النظام الدائم $t>7s$	
		,	
	0.25	$v_{\mathrm{lim}} = 19.6m/s$ ألسرعة الحدية -2	
0.75	0.25	$t=0$ عند $t=0$ يتمثل في حساب ميل المماس عند $t=0$ Δv $19.6-0.6$	
	0.25	$a_0 = \frac{\Delta v}{\Delta t} = \frac{19.6 - 0.6}{2 - 0} = 9.5 \text{m.s}^{-2}$	
0.5	0.5	3- الشكل ، الحجم ، الكتلة	
	0.25	$\vec{f} + \vec{P} = m.\vec{a}$ -4	
	0.25	-f + P = m.a	
1.25	الرسم		
	0.5	$-Kv + m.g = m\frac{dv}{dt}$	
	0.25	$g = \frac{K}{m}v + \frac{dv}{dt}$	
	0.05	5- بيان السرعة بدلالة الزمن يكون خطيا.	
	0.25	$g = \frac{dv}{dt} = a$ eath $g = \frac{dv}{dt} = a$	
0.75	0.25	$\int V(m.s^{-1})$ dt	
	0.25		
		t(s)	
		!	
	ſ		
:			

23

صفحة 4 من 8

الجديد و الحصري فقط على موقع الأستاذ otphilosophie.

sites.google.com/site/lotphilosophie

الشعب (ة): علوم تجريبية

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية النموذجية اختبار مادة:

مجموع		عناصر الإجابة	المحاور
		الموضوع الثاني	
	-	التمرين الأول: (04 ثقاط)	
	<u> </u>	^{14}C معادلة النفكك ^{14}C :	
		${}^{14}_{6}C \rightarrow {}^{A}_{7}Y + {}^{0}_{1}e$	
	0.25 0.25	, ,	
01	0.25	$ \begin{array}{rcl} & 14 = A + 0, & A = 14 \\ & 6 = Z - 1, & Z = 7 \end{array}, {}_{Z}^{A}Y = {}_{7}^{14}N $	
	0.25	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$	
	0.25	t_{χ},t,A_0 بدلالة $A(t)$ علقة (2)	
0.75	0.25	$A = A_0 e^{-\lambda t}$	
0.70		$A = A_0 e^{-\frac{\ln 2}{\ell_{VI}}},$	
	0.25		
		(3)	
		$ \ln \frac{A}{A_0} = -\frac{\ln 2}{t_{1/2}}t $	
		, and the second	
	0.25	$t = \frac{t_{1/2}}{\ln 2} \cdot \ln \frac{A_0}{A}$	
	2×0.25	5570 p 5000	
	2 0,20		
1.5		$t_A = 1458,57$ ans $5570 - 4500$	
	2×0.25	$t_B = \frac{5570}{0.639} \ln \frac{4500}{6000}$ الفريق الثاني:	
		$t_{_B} \simeq 2301,45 ans$	
	0.25	$ t_A - t_B = 842,88 \text{ ans}$	
		الجمجمتان لا تتتميان لنفس الحقبة الزمنية.	
	0.25	$E_{I}({}_{6}^{14}C) = \Delta mC^{2} \tag{4}$	
	0.25		
0.75	0.25	$E_1({}_{6}^{14}C) = ([6 \times 1,00728 + (14-6) \times 1,00866] - 14,00324)C^2 \times \frac{931,5}{C^2}$	
	0.25	$E_{I} = 102,2MeV = 102,2 \times 10^{6} eV$	
	0.25	L ₁ 102, 21/16 v 102, 2 × 10 € v	
		التمرين الثاني: (04 نقاط)	
	0.5	$C_6H_5COOH(aq) + HO^-(aq) = C_6H_5COO^-(aq) + H_2O(l) / -1$	
1.5	0.5	E(10mL;8) برا نقطة التكافؤ: $E(10mL;8)$ تحدد E بيانيا باستعمال طريقة المماسات المتوازية.	
1		تحدد ي بيانيا باستعمال طريعه المماسات المنوارية.	

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

£		شعب(ة): علوم		ماده: العلوم الفيز عناصر الإجابة)		المحاور
مجموح	مجزأة		7	عىصى ، رجب			المحاور
<u> </u>	0.25		$C_a = \frac{C_b V_{bE}}{V_a}$	ومنه: C_aV	$V_a = C_b V_{bE}$: غۇ	ج/ عند التكاه	
	0.25		$C_o = 2,0 \times 10^{-2}$	$mol.L^{-1}$			
		,			يَقَدم:	2-أ-جدول ال	†
		المعادلة	C _e H _e COOH(aq)		$C_6H_2COO(aq)$	$+ H_2O(l)$	
		ح/إبتد	$C_a V_a = 10^{-3} mol$	$C_b V_b = 10^{-3} mol$	0	بزيادة	
	0.5	ح/نها	$10^{-3} - x_{\bar{E}}$	$10^{-3} - x_{E}$	$\boldsymbol{x}_{\scriptscriptstyle E}$	بزيادة	
			•	$_{5}COOH$ و $H_{3}O^{+}$	مية مادة كل مر	ب- حساب ک	
02	0.25		$H \times (V_a + V_b) = 10^{-8}$	$\times (50+10)10^{-3}$			
02	0.25	$n_{(H_3O^*)} = 6 \times 1$	0 ⁻¹⁰ mol				
:	0.25	$n_{(HO^{-})} = 10^{(8-1)}$	$^{(4)} \times (50+10)10^{-3}$				
	0.23			$x_E = 6 \times 10^{-8} \Rightarrow x_E =$	$10^{-3} mol$,	
	0.25	(FIO)	•				
	2×0.25	$n_{(C_6H_5COOH_{(aq)})}$	$=C_aV_a-x_E=10^{-3}$	$-x_E=0$			
		. •		ل المعايرة تام وبالتال	ة عند ذكر تفاء	* تقبل الإجاب	
0.5	0.5		غيره اللوني يحوي	ل فتاليين لأن مجال ت	لمناسب هو فينو	4- الكاشف اا	
					pٍ نقطة التكافق.	قيمة H(
		-			(04 نقاط)	التمرين الثالث	
0.75	0.75		ļi		رة:	1 مخطط الدار	:
			, † A				
	0.5	E ($u_{AB} = C$	~ − 1;	, من البيان ns	· :#: -:.#: /2	
			I → B → □			•	
1.5			$u_R \mid R$	كتفه بنسبه	لازم لتشحن الم		
	0.5		K		تنتها العظمى.		
		<u> </u>		$\tau = RC =$	$C = \frac{r}{R} = \frac{10^{-1}}{100}$	3	
	0.5					اسعة المكتفه (
			$Q_{\max} = q_0$	$C = 10^{-5} F$ $= E C$			
0.5	2×0.25		$Q_{\text{max}} = Q_0$ $Q_0 = 5.10^{-}$	* _31.51	ثفة عند النظام	3) شحن المك	
		≱ u _e (v		Comonio		. tt tc = 1A	
		-6(,		ني	4) شكل المنحا	
	^ *	5					,
	0.5	7					
1.25				t(s)			;
	0.75			7	$t'=2\tau \Leftarrow \frac{\tau}{\tau'}=$	RC : النعلنا :	
	0.75				τ'=	2RC	

صفحة 6 من 8

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب (ة): علوم تجريبية مجزأة مجموع عناصر الإجاية المحاور التمرين الرابع (04) نقاط) $\sum \vec{F}_{ext} = m.\vec{a}$: القانون الثاني لنيونن في مرجع غالبلي -1 0.25 $\vec{P} = m\vec{a}$ 0.25 $x=v_0\coslpha.t$: على $a_x=0$ حمد منتظمة معادلتها $a_x=0$ 2.5 3×0.25 $y=-rac{1}{2}gt^2+v_0\sinlpha t$ على $y=-rac{1}{2}gt^2+v_0\sinlpha t$ على خرم.م. بإنتظام معادلتها $a_y=-g$ 3×0.25 معادلة المسار : $y = \frac{-g}{2v_{cos}^{2}\alpha}x^{2} + \tan \alpha.x$ وهو عبارة عن قطع مكافئ. 0.5 y=h , x=d :سجل الهدف لما -20.25 $h = \frac{-g}{2a^2 \cos^2 \alpha} d^2 + \tan \alpha . d$ 01 0.25 $v_{
m e} \simeq 18,6 ms^{-1}$ بالتعویض نجد: $x = v_0 \cos \alpha t = d$ t = 1.55s2×0.25 $v_A = \sqrt{(v_0 \cos \alpha)^2 + (-qt + v_0 \sin \alpha)^2}$ $v_{A} = 17,26 m.s^{-1}$ y=0 و x=d و x=0 $0 = \frac{-g}{2v_c^2 \cos^2 \alpha} d^2 + \tan \alpha d$ 0.25 0.5 $v_0^{-1} = 17 ms^{-1}$ 0.25 التمرين التجريبي: (04 نقاط). $Zn(s) = Zn^{2+}(aa) + 2e^{-}$ 0.25 $I_2(aq) + 2e^- = 2I^-(aq)$ 0.75 0.25 $Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$ 0.25 2- أ) البروتوكول التجريبي: المواد والأدوات وطريقة العمل والرسم. ب) تعريف السرعة الحجمية: هي سرعة النفاعل من أجل وحدة الحجم للوسط النفاعلى. 0.5 0.25 $v = \frac{1}{V} \frac{dx}{dx}$ $v = -\frac{d[I_2]}{dt}$ 1.75 0.25 t نحسب السرعة بيانيا بميل المماس للمنحنى في كل لحظة 0.25 ج) السرعة الحجمية تتناقص مع مرور الزمن بسبب تناقص التركيز وبالتالي 0.5 نقص الاصطدامات الفعالة .

الشعب(ة): علوم تجريبية مجزأة مجموع تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية عناصر الإجابة المحاور 3 -3 شكل المنحنى: 20 0.5 0.5 السرعة عند t=0 أقل من السرعة في التجربة (1) عند نفس اللحظة بسبب التناقص في التركيز الابتدائي. $\Lambda[I_2]$ 20 0.5 0.5 5- العوامل الحركية هي: 0.5 0.5 - التركيز المولى للمتفاعلات. - درجة الحرارة

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2010

	يبية	الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجر	
مجموع	مجزاة	عناصر الإجابة	المحاور
		الموضوع الأول	
		(la	التمرين الأول : (04 نقا
		$n = \frac{m}{M} \text{if} n = \frac{V_{gaz}}{V_{}} \iff n_{H_2}$	V _{H2} .35% - 11 - 1
1	2×0.5	$n-\frac{1}{M}$ 3. $n-\frac{1}{V_M}$ $\longrightarrow n_{H_2}$	V_M
			x حساب قيم التقدم -2
		t(s) 0 50 100 15	0 200
0.5	0.5	$x \times 10^{-3} (mol)$ 0 1,44 2,56 3,	14 16,4
0.5	0.5	t(s) 250 300 400 50	750
		$x \times 10^{-3} (mol)$ 4,80 5,28 6,16 6,	8,00
1		Ах	
	0.25	$v = \frac{1}{\Delta t}$	3- السرعة المتوسطة: -
	0.5	$v_1 = 7.6 \times 10^{-6} mol s$	[300s,500s]
1.5	0.5	$v_{.} = 20 \times 10^{-6} mol.s$: [50s,150s]
		•	قيمة السرعة المتوسطة تت
-	0.25 0.5	منه المتفاعل المحد هو حمض كلور الهيدروجين.	
1	0.25	رب: هو المدة الزمنية التي يبلغ فيها تقدم التفاعل	
1		$x_{(t_{1/2})} = 5 \times 10^{-3} mol$ $x_{(t_{1/2})} = \frac{x_{\text{max}}}{2} \zeta$	•
	0.25	$x_{(u_{i/2})} = 3 \times 10^{-10} \text{ mot}$ $x_{(u_{i/2})} = \frac{1}{2} \sqrt{2}$	الصنيب الأعظا
0.5	0.25		التمرين الثاني: (04 نقا
0.5	0.25	ن 14: عدد البروتونات: 6=2 7- 1- الا	
}			عدد النيترونات: 8=
Ì	0.25 0.25	$A=14 \Longleftrightarrow A+1=14+1$ بيق قانوني الإنحفاظ: $Z=6 \Longleftrightarrow 7+0=Z+1$	ا / تغییل هو ۱۰ بنط
1	0.25	$2 = 0 \leftarrow 7 + 0 - 2 + 1$ ${}^{14}C = {}^{4}Y,$	
	0.25	$^{14}_{6}C \rightarrow ^{14}_{7}N \equiv ^{4'}_{7}Y_{2}$ ومنه $^{14}_{7}Y_{2} \equiv ^{14}(14$ زوت 14).	14 N + 00 - : alled /-
	0.25	م و و المتفككة في العينة في اللحظة 1.	•
		متفككة في العينة في اللحظة 0 = 1.	
1.50	0.25	# # #	λ: ثابت التفكك الاشعاء
1.30	0.25	$N(t) = N_0/2$ يكون: $t = t_{1/2}$	•
		$\lambda = \frac{\ln 2}{t} : \text{eais} = -\lambda u_{1/2} \leftarrow 1/2 = e^{-\lambda t}$	0 37 10 37 -460
	0.25	$\lambda = \frac{1}{t_{1/2}} = -\lambda t_{1/2} \leftarrow 1/2 = e^{-\lambda t_{1/2}}$	$N_0/2 = N_0.e^{-\alpha t}$
		النام ودقاقيان الأمام وقليان والقالا وينا (أحوا	$a = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$
	0.25	ر أن وحدة قياس x هي مقلوب وحدة الزمن (s^{-1}) .	$\mathcal{F}'[L''] = \overline{[T]} = [L'] $
	;	$\lambda = 1,244 \times 10^{-4} ans^{-1}$:	$\lambda = \frac{\ln 2}{2} : \lambda = \frac{1}{2}$
ļ	0.25	71,247.10 ans	t _{1/2}
سر (

صفحة 1 من 6 الجديد و الحصري فقط على موقع الأستاذ Sites.google.com/site/lotphilosophie

 تابع الإجابة النموذجية اختبار مادة : العلوم الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجريبية المحاور الإجابة النموذجية اختبار مادة : العلوم الفيزيائية (الموضوع المكيف) مجزأة مجموع المحاور $A(t) = \frac{dN}{dt} \Rightarrow A(t) = N_0 \lambda e^{-\lambda t} = A_0 e^{-\lambda t}$
 $\frac{A}{A_0} = e^{-\lambda t} \Leftrightarrow \ln \frac{A}{A_0} = -\lambda t$ = $\frac{1}{4}$ 0.25 $t = -\frac{\ln A / A_0}{2} = 1489,28 ans$ 0.25 تم قطع الشجرة التي انحدرت منها القطعة عام: 511 = 510,72 = 1489,28 0.25 التمرين الثالث: (04) نقاط) $u_b = r.i + L\frac{di}{dt}$ $u_R = R.i - 1$ 1 2×0.5 $E = (R+r)i + L\frac{di}{dt} \Leftrightarrow \frac{di}{dt} + \frac{(R+r)}{r}i = \frac{E}{r}$: is it is a solution in Eq. (2) 0.5 2×0.25 3- باشتقاق عبارة التيار والتعويض في المعادلة التفاضلية تتحقق المساواة. 0.5 0.5 $i_{\text{max}} = 0.25 \times 2 = 0.5A \iff i_{\text{max}} = \frac{E}{R + r} \Leftrightarrow r = 2\Omega / -4$ 2×0.25 $\tau = \frac{t_{\frac{1}{2}}}{1-2} \iff \tau \approx 10 ms$ 1.5 0.5 $\tau = \frac{L}{R+r} \Leftrightarrow L = 1,2 \times 10^{-1} H$ 2×0.25 ب- الطاقة المخزنة في الوشيعة في حالة النظام الدائم: $E_b = \frac{1}{2} L i_{\text{max}}^2$; $E_b = 1.5 \times 10^{-2} J$ 0.5 2×0.25 التمرين الرابع: (04 نقاط) ا- عملية التمديد: 0.25 $n_1 = n_2 \qquad c_1 V_1 = c_2 V_2$ $V_2 = \frac{c_1 V_1}{c_2} = \frac{c_1 V_1}{c_1} = 10V_1$ 01 0.25 $200 \mathrm{mL}$ الشرح: نأخذ $20 \mathrm{mL}$ من المحلول (S_0) ونضعها في حوجلة قياسية (عيارية) سعتها 0.5 نضيف الماء المقطر حتى الخط العياري 200mL (إضافة 180mL من الماء المقطر). 2- معادلة التفاعل المنمذج: $OH^{-}(aq) + HCOOH(aq) = HCOO^{-}(aq) + H_2O(l)$ 0.5 0.5 E(20mL; 8,2) : نقطة التكافؤ: -3 0.5 تركيز الحمض الممدد: 0.25 $c_a V_a = c_b V_b \Rightarrow c_a = \frac{c_b V_b}{c_a}$ 1.25 $c_a = \frac{0.02 \times 20}{20} = 0.02 mol / L$ 2×0.25

امتحان شهادة البكالوريا دورة: 2010 تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجريبية عناصر الإجابة مجزأة مجموع المحاور $K_{\circ} = 10^{-3.8} = 1,58 \times 10^{-4}$: غند نقطة نصف التكافئ: $K_{\circ} = 10^{-3.8} = 1,58 \times 10^{-4}$ 0.75 3×0.25 (S_0) تركيز المحلول الأصلى (S_0) : $c_0 = 10c_a \Rightarrow c_0 = 10 \times 0.02 = 0.2 mol/L$ 0.5 0.5 التمرين التجريبي: (04 نقاط) 1- المعطيات تبين وجود نظامين أحدهما انتقالي والآخر دائم. النظام الانتقالي : $0 \leq t \leq 10s$ ح.م. متسارعة -01 2×0.5 v=Cte ح.م. منتظمه t>10s - النظام الدائم $v_{\rm Lim}=19.6m/s$ السرعة الحدية -201 01 3- الشكل ، الحجم ، الكتلة، ... 01 01 $\sum \vec{F}_{ext} = m\vec{a} \iff \vec{f} + \vec{P} = m.\vec{a}$ 0.25 -f + P = m.a01 0.25 $-Kv + m.g = m\frac{dv}{dt}$ 0.25 $g = \frac{K}{m}v + \frac{dv}{dt}$ 0.25

711	ا: عنوم نجريا	الإجابة التموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة)	
مجموع	مجزأة	عناصر الإجابة	المحاور
:		الموضوع الثاني	
1		التمرين الأول: (04 نقاط)	
		ا) معادلة التفكك ^{14}C :	
1		$^{14}_{6}C \rightarrow ^{4}_{7}Y + ^{0}_{-1}e$	
0.1	0.25	·	
01	0.25 0.25	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
	0.25	${}_{6}^{14}C \rightarrow {}_{7}^{14}N + {}_{7}^{0}e$	
•		t_{χ},t,A_0 بدلالة $A(t)$ علقة (2)	
		$A = A_0 e^{-\lambda t}$	
0.75	0.25		
0.75	2×0.25	$A = A_0 e^{-\frac{\ln 2}{r_{V1}}t}$	
		(3	
	0.25	· 1	
		$\ln\frac{A}{A_0} = -\frac{\ln 2}{t_{1/2}}t$	
		t_{χ} , A_{\circ}	
	2×0.25	$t = \frac{t_{\gamma_2}}{\ln 2} \cdot \ln \frac{A_0}{A}$	
1.5		$t_A = \frac{5570}{0.693} \ln \frac{5000}{6000}$ الفريق الأول:	
	2×0.25	" I	
		$t_A \approx 1458,57 ans$	
		$t_B = \frac{5570}{0.639} \ln \frac{4500}{6000}$ الفريق الثاني:	
		$t_B = 2301,45$ ans	
	0.25	$ t_A - t_B = 842,88 \text{ ans}$	
		الجمجمتان لا تتتميان لنفس الحقبة الزمنية.	
		$E_{I}({}_{6}^{14}C) = \Delta mC^{2} \tag{4}$	
	0.25	27(60) - 3110	
		931.5	
0.75	0.25	$E_1({}_{6}^{14}C) = ([6 \times 1,00728 + (14-6) \times 1,00866] - 14,00324)C^2 \times \frac{931,5}{C^2}$	
	0.25	$E_1 = 102, 2MeV = 102, 2 \times 10^6 eV$	ı
		التمرين الثاني: (04 نقاط)	
	0.5	$C_6H_5COOH(aq) + HO^-(aq) = C_6H_5COO^-(aq) + H_2O(l)$	
	0.5	E(10mL;8) ب/ نقطة النكافؤ:	
		, , , -	
	-		

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجريبية

		الإجابة التمودجية احتبار ماده: العلوم العيزياتية (الموصوع المخيف) الشعب(ه):	
مجموع	مجزاة	عناصر الإجابة	المحاور
1.75	2×0.25 0.25	$C_a=rac{C_b.V_{bE}}{V_o}$ ومنه: $C_aV_a=C_bV_{bE}$: عند التكافؤ $C_a=2.0 imes10^{-2}mol.L^{-1}$	
-	0.23	2- حساب كمية مادة الأنواع الكيميائية:	
	0.25	$n_{(H_3O^+)} = 10^{-\rho H} \times (V_a + V_b) = 10^{-8} \times (50 + 10)10^{-3}$	
	0.25	$n_{(H_3O^+)} = 6 \times 10^{-10} mol$ $n_{(HO^-)} = 10^{(8-14)} \times (50+10)10^{-3}$	
1.75	0.25 2×0.25	$n_{(HO^{-})} = 6 \times 10^{-8} mol \iff 10^{-3} - x_E = 6 \times 10^{-8} \implies x_E = 10^{-3} mol$	
	0.25 0.25	$n_{(C_6H_2COO^{-})} = n_{N\sigma^{+}} = x_E = 10^{-3} mol$ $n_{(C_6H_2COOH_{(\alpha_f)})} = C_0 V_{\sigma} - x_E = 10^{-3} - x_E = 0$	
0.5	0.5	3- الكاشف المناسب هو فينول فتاليين لأن مجال تغيره اللوني يحوي قيمة pH نقطة التكافؤ.	
		/1:: O 4\ A HAH	
	0.5	التمرين الثالث (04 نقاط) $r = 1ms$ ثابت الزمن $r = 1ms$	
	0.5	وهو الزمن اللازم لتشحن المكثفة بنسبة	
02		%63 من شحنتها العظمى.	
	0.5	$ au = RC \Rightarrow C = rac{ au}{R} = rac{10^{-3}}{100}$ سعة المكثفة	
	0.5	$C = 10^{-5} F = 10 \mu F$	
	0.5	2) شحن المكثفة عند النظام الدائم:	
01		$Q_{\text{max}} = q_0 = EC$ $q_0 = 5.10^{-5} Coulomb$	
01	2×0.5	$\tau' = 2ms \text{each} \tau' = 2\tau \Leftarrow \frac{\tau = RC}{\tau' = 2RC} $ (3)	
		/LIS: AA) = 1.9 • = 3	
:	0.25	$egin{align} rac{ ext{line} (04)}{ ext{line} (04)} & rac{ ext{line} (04)}$	
	0.25	$\overrightarrow{P}=m.ec{a}$	
2.5	3×0.25	$x=v_0\coslpha.t$: على $a_x=0$ على $a_x=0$ على على $a_x=0$ على	:
	3×0.25	$y=-rac{1}{2}gt^2+v_0\sinlpha t$: على $dt=-rac{1}{2}gt^2+v_0\sinlpha t$ على $dt=-rac{1}{2}gt^2+v_0\sinlpha t$ على	
	0.5	معادلة المسار : $y = \frac{-g}{2v_0^2\cos^2\alpha}x^2 + an lpha.x$ و هو عبارة عن قطع مكافئ.	

المنحان سنهاده البخالورية دوره: 2010 تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجريبية

ببيه	علوم لجريا	الإجابه النموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة):	
مجموع	مجزاة	عناصر الإجابة	المحاور
	0.25	y=h و $x=d$ -2 سجل الهدف لما: $x=d$	
	0.23	$h = \frac{-g}{2v_{\star}^2 \cos^2 \alpha} d^2 + \tan \alpha . d$	-
01	0.25	20, 500 0	
		$v_{ m o} \simeq 18,6ms^{-1}$ بالتعویض نجد: $v_{ m o} \simeq 18,6ms^{-1}$	
	2×0.25	$x = v_0 \cos \alpha t = d$	
		t = 1,55s	
		$v_A = \sqrt{(v_0 \cos lpha)^2 + (-gt + v_0 \sin lpha)^2}$	
		$v_{_{A}}=17,26m.s^{-1}$	
		y=0 و $x=d$ و $x=d$ -3	
0.5	0.25	$0=rac{-g}{2v_0^2\cos^2lpha}d^2+ anlpha.d$	
0.5	0.25	$v_{ m o}^{\ '}=17ms^{-1}$	
		التمرين التجريبي: (04 نقاط).	
		-1	
	0.05	$Zn(s) = Zn^{2+}(aq) + 2e^-$	
0.75	0.25 0.25	$I_2(aq) + 2e^- = 2I^-(aq)$	
0.75	0.25	$Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$	
		2- أ) تعريف السرعة الحجمية: هي سرعة التفاعل من أجل وحدة الحجم للوسط التفاعلي.	
	0.5	$v = \frac{1}{V} \frac{dx}{dt}$	
	0.25	r to	
	0.25	$v = -\frac{d[I_2]}{dt}$	
1.75		حساب قيمة السرعة الحجمية المتوسطة:	
	0.25	$v_1 = 27.5 mmol L^{-1}.min^{-1}$: $[0 \cdot 0.4 min]$	
	0.25	$v_2 = 12,5 \text{mmol } L^{-1}.\text{min}^{-1} : [0,4 \text{min} \cdot 0,8 \text{min}]$	1
		ب) السرعة المحمية تتناقص مع مرور الزمن بسبب تناقص التركيز وبالتالي	
	0.25	نقص الاصطدامات الفعالة .	
0.5	0.5	3- سرعة التفاعل تصبح أقل لأن تركيز المادة المتفاعلة أصبح أقل بفعل التمديد.	
0.5	0.5	4- سرعة التفاعل تصبح أكبر لأن رفع درجة الحرارة يزيد الاصطدامات الفعالة.	
		5- العوامل الحركية هي :	
		ر المعوامل العربية لعي . - النزكيز المولى للمتفاعلات.	
0.5	0.5	- شرخير الموتي المتفاعدات. - درجة الحرارة.	
		· · · · · · · · · · · · · · · · · · ·	
L	J	1	<u></u>

33