Radiographic Diagnosis of Dental Caries

S. Brent Dove, DDS, MS
Consensus Conference on Dental Caries
Diagnosis and Management Throughout Life
March 26, 20001

Radiography of Dental Caries

Diagnostic Value of Radiographs

- Creanor, SL, et al. 1990
 Br Dent J 169:126-129
- Weerheijm, KL, et al. 1992
 Caries Res 26:305-309
- Kidd, EAM, et al. 1992
 Caries Res 26:397-401
- Stephen, KW, et al. 1987
 Community Dent Oral Epidemiol 15:90-94
- de Vries, HCB, et al. 1990
 Caries Res 24:364-370

Literature Search

- Medline, EMBASE, Cochrane Library
- ◆ 1966 1999
- Inclusion Criteria
 - Histological validation of caries status
 - Sensitivity and specificity reported
- Exclusion Criteria
 - Non-commercial methods

Literature Search

- 1,407 diagnostic reports
- 39 studies selected (126 assessments)
- 65 evaluated radiographic methods
- Critical appraised and scored
- Validity based upon clear and unambiguous assessment of a method for a specific type of lesion on a specific type of surface

Permanent Posterior – Proximal – Cavitated Lesions

Citation, Method	Sites/ Rater	Prevalence	Criteria	Sensitivity	Specificity	Туре
Rugg-Gunn, 1972 ¹² D speed film	370 – NR	9%	Lesion in enamel & outer ½ dentin	0.35	1.00	In Vivo
Downer, 1975 ¹³ D-speed film	185 – NR	36%	Lesion at DEJ or beyond	0.73	0.97	In Vivo
Mejare, Grondahl, Carlstedt, et al, 1985 ¹⁴ D-speed film	598 – 3	5%	Lesion 2/3 enamel thickness	0.36	0.98	In Vivo
Pitts & Rimmer, 1992 ¹⁵ D-speed film	1468 – 1	1%	Lesion into dentin	0.87	0.99	In Vivo
Hintze, Wenzel, Danielsen, et al, 1998 ¹⁶ E-speed film	338 – 4	6%	Lesion into dentin	0.63	0.93	In Vivo
Espelid & Tveit, 1986 ¹⁷ D-speed film	151 – 7	19%	Lesion involving DEJ	0.69	0.89	In Vitro
Mean Performance				0.61 ± 0.21	0.96 ± 0.04	

Permanent Posterior – Proximal – Dentinal Lesions

Citation, Method	Sites/ Raters	Prevalence	Criteria	Sensitivity	Specificity
Mileman & van der Weele, 1990 ¹⁸ D-speed film	105 – 276	43%	Lesion into outer ½ of dentin	0.54	0.97
Verdonschot, van de Rijke, Brouwer, et al, 1991 ¹⁹ D-speed film	21 – 3	NR	Lesion reaching DEJ	0.50	0.94
Russell & Pitts, 1993 ²⁰ D-speed film E-speed film RVG	240 – 3	NR	Lesion penetrating DEJ	0.29 0.30 0.16	0.92 0.96 0.96
Ricketts, Whaites, Kidd, et al, 1997 ²¹ D-speed film	NR 96 teeth 5	13%	Lesion into dentin	0.16	0.99
Mean Performance				0.33 ± 0.16	0.96 ± 0.02

Permanent Posterior – Proximal – All Lesions

Citation, Method	Sites/ Raters	Prevalence	Criteria	Sensitivity	Specificity
Heaven, Firestone, & Feagin, 1992 ²² D-speed film with image analysis	16 – 1	75%	NR	1.0	1.0
Russell & Pitts, 1993 20 D-speed film E-speed film RVG	240 – 3	NR	Lesion penetrating DEJ	0.26 0.25 0.15	0.90 0.90 0.92
Ricketts, Whaites, Kidd, et al, 1997 ²¹ D-speed film	NR 96 teeth 5	37%	Lesion into dentin	0.27	0.97
Firestone, Sema, Heaven et al, 1998 ²³ D-speed film Film image analysis Sensaray image analysis	102 – 1	66%	NR	0.61 0.78 0.73	0.86 0.74 0.82
Mean Performance				0.51 ± 0.31	0.89 ± 0.08

Permanent Posterior – Occlusal – All Lesions

Citation, Method	Sites/ Raters	Prevalence	Criteria	Sensitivity	Specificity
Wenzel, Fejerskov, Kidd, et al 1990 D-speed film Digitized film enhanced	46 – 2	89%	caries into enamel	0.73 0.79	0.80 0.90
Russell & Pitts, 1993 D-speed film E-speed film RVG	120 – 3	NR	radiolucency penetration beyond DEJ	0.12 0.12 0.15	0.95 0.96 0.97
Lazarchik, Firestone, Heaven, et al, 1995 D-speed film	100 – 15	79%	caries present	0.58	0.79
Ricketts, Whaites, Kidd, et al, 1997 D-speed film	96 – 5	70%	radiolucency into dentin	0.27	0.97
Mean Performance				0.39 ± 0.30	0.91 ± 0.08

Permanent Posterior – Occlusal – Dentinal Lesions

Citation, Method	Sites/Rater	Prevalence	Criteria	Sensitivity	Specificity
Wenzel, Fejerskov, Kidd, et al 1990 D-speed film Digitized film	46 – 6	72%	caries into dentin	0.63 0.68	0.94 0.98
Wenzel, Hintze, Mikkelsen, et al, 1991 Film, Digitized film, RVG enhanced	81 – 4	67%	caries into dentin	0.63 0.72 0.62	0.85 0.83 0.83
Wenzel & Fejerskov, 1992 ²⁶ E-speed film, Digitized film	78 – 1	67%	caries reaching dentin	0.69 8:64 0.71	0.84 0.82 0.85
Nytun, Raadal, & Espelid, 1992 Film	30 – 10	77%	radiolucency involving dentin	0.54 0.66	0.77 0.50
Keltey & Holt, 1993 D-speed film	100 – 1	51%	radiolucency into	0.67	0.92
Russell & Pitts, 1993 D-speed ,E-speed film, RVG	120 – 3	28%	dentin radiolucency penetrating beyond	0.18 0.21	0.98 0.99
Lussi, 1993 D-speed film	63 – 24	44%	DEJ carres into dentin	0:45	0.97 0.83
Verdonschot, Wenzel, Truin, et al, 1993 E-speed film	81 – 4	67%	dentinal caries	0.61	0.79
Lussi, Firestone, Schoenburg, et al, 1995 D-speed film	26 – 6	42%	caries beyond the DEJ	0.62	0.77
Ricketts, Kidd, Smith, et al, 1997 D-speed film	48 – 12	67%	dentine caries	0.62	0.76
Ekstrand, Ricketts, & Kidd, 1997 D-speed film	100 – 3	39%	radiolucency to middle 1/3 of	0.54	1.00
Huysmans, Hitze, & Wenzel, 1997 Digora	189 – 3	55%	deritis into dentin	0.60	0.94
Ricketts, Whaites, Kidd, et al,	96 – 5	39%	radiolucency into	0.14	0.95
1997 Ashley, Blinkhorn, & Davies, 1998 E-speed film, Digora	103 – 1	36%	dentin radiolucency into dentin	0.24 0.19	0.89 0.89
Huysmans, Longbotton, & Pitts, 1998 E-speed film	107 – 2	41%	radiolucency into dentin	0.58	0.87
Mean Performance				0.51 ± 0.19	0.86 ± 0.11

Assessment of the Evidence

"Overall the strength of evidence for radiographic methods for the detection of dental caries is *poor* for all types of lesions on proximal and occlusal surfaces"

Deficiencies in the Evidence

- Few reports evaluating primary teeth, anterior teeth and root caries
- High degree of variability in sensitivity and specificity between reports
- Small number of examiners
- High prevalence of caries within sample
- Non-representative teeth
- Incomplete description of decision criteria
- Questionable reference standards

Conclusions from the Evidence

- Radiographic examination provides a higher degree of specificity than sensitivity
- Beneficial if the only intervention is surgical removal of tooth structure
- Detrimental if non-invasive remineralization interventions are to be applied

Conclusions from the Evidence

- Digital radiographic techniques may provide some improvement in sensitivity and reliability
- Computer aided diagnostics may offer hope for significant increases in diagnostic performance
- Guidelines should be developed for assessing new diagnostic methods to improve the internal and external validity of future research efforts.

