複素解析学 [演習 2023年 (チョイ)

問 1 (フックス群としてのモジュラー群). 複素数体 $\mathbb C$ の部分集合 A に対して、成分 a,b,c,d が A の元で ad-bc=1 を満たす一次分数変換 f(z)=(az+b)/(cz+d) の集合を PSL(2,A) と書く.特に $PSL(2,\mathbb Z)$ をモジュラー群と呼ぶ.上半平面 $\mathbb H:=\{z\in\mathbb C: \mathrm{Im}\,z>0\}$ の部分集合 $D:=\{z\in\mathbb H: |z|>1, |\mathrm{Re}\,z|<\frac12\}$ を定義する.

- (1) $PSL(2,\mathbb{R})$ の元 f は全単射写像 $\mathbb{H} \to \mathbb{H}$ を定義することを示せ.
- (2) $PSL(2,\mathbb{Z})$ は S(z) := -1/z と T(z) := z + 1 によって生成されることを示せ. つまり、全ての元が $S^{\pm 1}$ と $T^{\pm 1}$ の有限回の合成として表れることを示せ.
- (3) 集合 D は $PSL(2,\mathbb{Z})$ の基本領域であることを示せ. つまり、次の二つが成り立つことを示せ:
 - (a) 任意の点 $z \in \mathbb{H}$ に対して $f(z) \in \overline{D}$ を満たす $f \in PSL(2,\mathbb{Z})$ が少なくとも一つ存在する.
 - (b) 任意の点 $z \in \mathbb{H}$ に対して $f(z) \in D$ を満たす $f \in PSL(2,\mathbb{Z})$ が多くとも一つしか存在しない.
- (4) $PSL(2,\mathbb{Z})$ は \mathbb{H} に**真性不連続に作用**することを示せ. つまり、任意の点 $z \in \mathbb{H}$ に対して軌道 $\{f(z): f \in PSL(2,\mathbb{Z})\}$ が離散集合であることを示せ.

問2 (カラテオドリ級関数集合の極点). 開単位円板上で定義された正則関数 f が f(0)=1 を満たすとする. もし任意の |z|<1 を満たす複素数 z に対して $\operatorname{Re} f(z)>0$ ならば、f を**カラテオドリ級**の関数という. 関数 f が冪級数展開 $f(z)=1+2\sum_{k=1}^{\infty}c_kz^k$ を持つとする.

(1) 正の整数 k と実数 0 < r < 1 に対して次の式を示せ:

$$c_k r^k = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) e^{-ik\theta} d\theta.$$

- (2) 次の二つの条件が同値であることを示せ:
 - (a) 関数 f がカラテオドリ級である.
 - (b) 任意の正の整数 n に対して点 $(c_1, \dots, c_n) \in \mathbb{C}^n$ は $\theta \in [0, 2\pi)$ によって媒介変数表示された曲線 $(e^{-i\theta}, \dots, e^{-in\theta}) \in \mathbb{C}^n$ の凸包絡の元である.

問 3 (アールフォルス・清水標数). 複素平面上の有理型関数 f を考える. 次のように $r \ge 0$ に対する 関数 $A(\cdot,f)$ を定義する:

$$A(r,f) := \frac{1}{\pi} \int_{\sqrt{x^2 + y^2} \le r} f^\#(x + iy)^2 \, dx \, dy, \qquad \text{$\not \sim$ it U, $f^\#(z) := \frac{|f'(z)|}{1 + |f(z)|^2}$, $$$ $z \in \mathbb{C}$.}$$

関数 f^* を f の**球面導関数**と呼ぶ.

(1) 任意の点 $(x,y) \in \mathbb{R}^2$ に対して、

$$\frac{1}{\pi}f^{\#}(x+iy)^{2} = \frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y)$$

を満たす実平面 \mathbb{R}^2 上の実関数 P と Q を求め、関数 $K(x,y) := 1 + |f(x+iy)|^2$ を用いて表せ.

(2) グリーンの定理と偏角の原理を用いて $r \ge 0$ に対して次の式が成り立つことを示せ:

$$\int_0^r A(t,f) \frac{dt}{t} = \int_0^r n(t,f) \frac{dt}{t} + \frac{1}{2\pi} \int_0^{2\pi} \log \sqrt{1 + |f(re^{i\theta})|^2} d\theta - \log \sqrt{1 + |f(0)|^2}.$$

ただし、n(r,f) は閉円板 $\overline{B(0,r)}$ 内にある重複度を込めて数えた f の極の数である.左辺の関数を f のアールフォルス・清水標数と呼ぶ.

(3) 球面導関数 $f^\#$ が有界ならば、ある定数 C>0 が存在して、全ての $z\in\mathbb{C}$ に対して $|f(z)|\leq Ce^{|z|^2}$ であることを示せ、特に、f は \mathbb{C} 全体上正則である.

問 4 (四分円上のディリクレ問題). 領域 $\Omega := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1, x > 0, y > 0\}$ 上に定義された調和関数 $v \in C^2(\Omega,\mathbb{R})$ が次の境界値条件を満たすとする:各点 $(x_0,y_0) \in \partial \Omega$ に対して

$$\lim_{(x,y)\to(x_0,y_0)} \nu(x,y) = \begin{cases} 1 & \text{if } y_0 > 0, \\ 0 & \text{if } y_0 = 0 \text{ and } 0 < x_0 < 1. \end{cases}$$

- (1) シュワルツの鏡像の原理を用いて ν は領域 $\widetilde{\Omega} := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1, x > 0\}$ 上の調和関数 $\widetilde{\nu} \in C^2(\widetilde{\Omega}, \mathbb{R})$ に拡張されることを示せ.
- (2) 適切な等角変換とポアソン積分を用いて ν を求めよ.