ECE2 - Mathématiques

DS1

Exercice 1

Soient A,B et P les matrices de $\mathcal{M}_3(\mathbb{R})$ données par :

$$A = \begin{pmatrix} 2 & 1 & -2 \\ 0 & 3 & 0 \\ 1 & -1 & 5 \end{pmatrix} \quad ; \quad P = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & -1 & -1 \\ -3 & 3 & -3 \\ -1 & 1 & 1 \end{pmatrix}.$$

Partie I

- 1. Montrer que P est inversible et que $P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$.
- 2. Calculer $D_1 = P^{-1}AP$ et $D_2 = P^{-1}BP$.
- 3. La matrice $\begin{pmatrix} 6 & -2 & -6 \\ -8 & 14 & -9 \\ 0 & 1 & 12 \end{pmatrix}$ est-elle combinaison linéaire de A, B et P?

Partie II

On pose $X_0 = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$, $X_1 = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$, et pour tout entier naturel n: $X_{n+2} = \frac{1}{6}AX_{n+1} + \frac{1}{6}BX_n$.

Soit $(Y_n)_{n\in\mathbb{N}}$ la suite matricielle définie par : $\forall n\in\mathbb{N}$, $Y_n=P^{-1}X_n$.

- 1. Démontrer que : $\forall n \in \mathbb{N}$ $Y_{n+2} = \frac{1}{6}D_1Y_{n+1} + \frac{1}{6}D_2Y_n$.
- 2. Pour tout entier naturel n, on note $Y_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$. Déduire de la question précédente que :

$$\forall n \in \mathbb{N} \qquad \begin{cases} a_{n+2} &= \frac{1}{2} a_{n+1} + \frac{1}{2} a_n \\ b_{n+2} &= \frac{1}{2} b_{n+1} \\ c_{n+2} &= \frac{2}{3} c_{n+1} + \frac{1}{3} c_n \end{cases}$$

- 3. Calculer les matrices Y_0 et Y_1 .
- 4. Pour tout entier naturel n, calculer a_n , b_n et c_n en fonction de n.
- 5. En déduire l'expression de X_n en fonction de n, pour tout entier naturel n.

On notera $X_n = \begin{pmatrix} \alpha_n \\ \beta_n \\ \gamma_n \end{pmatrix}$, et on vérifiera que :

$$\beta_n = \left(\frac{1}{2}\right)^{n-1} - \frac{2}{3}\left(-\frac{1}{2}\right)^n - \frac{4}{3}.$$

6. (a) Compléter la fonction ci-dessous qui prend en argument un entier n supérieur ou égal à 2 et qui renvoie la matrice X_n :

(b) La fonction précédente a été utilisée dans un script permettant d'obtenir graphiquement (voir figure 1) les valeurs de α_n , β_n et γ_n en fonction de n. Associer chacune des trois représentations graphiques à chacune des suites $(\alpha_n)_{n\in\mathbb{N}}$, $(\beta_n)_{n\in\mathbb{N}}$, $(\gamma_n)_{n\in\mathbb{N}}$

en justifiant votre réponse.

Exercice 2

Pour tout entier naturel non nul n, on note f_n la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f_n(x) = nx - e^{-x}.$$

- 1. Soit $n \in \mathbb{N}^*$.
 - (a) Montrer que f_n est dérivable sur \mathbb{R} et calculer sa dérivée f'_n .
 - (b) Étudier les variations de f_n sur $\mathbb R$ (on précisera les limites aux bornes).
 - (c) Montrer que l'équation $f_n(x) = 0$ d'inconnue $x \in \mathbb{R}$ admet une solution unique notée u_n .
- 2. (a) Pour tout entier $n \in \mathbb{N}^*$, calculer $f_n(0)$ et $f_n(\frac{1}{n})$.
 - (b) En déduire : $\forall n \in \mathbb{N}^*$, $0 < u_n < \frac{1}{n}$.
 - (c) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers 0.
- 3. (a) Justifier que : $\forall n \in \mathbb{N}^*$, $u_n = \frac{e^{-u_n}}{n}$.
 - (b) En déduire un équivalent simple de u_n lorsque n tend vers $+\infty$.
- 4. Pour tout $n \in \mathbb{N}^*$, on pose $v_n = u_n \frac{1}{n}$.
 - (a) À l'aide des questions précédentes, déterminer un équivalent simple de v_n lorsque n tend vers $+\infty$.
 - (b) En déduire que $u_n = \frac{1}{n} + \frac{b}{n^2} + o_{n \to +\infty} \left(\frac{1}{n^2}\right)$ où b est un réel à préciser.

Exercice 3

On admet le résultat suivant :

Proposition : soit $(a_n)_{n\in\mathbb{N}}$ une suite qui converge vers un réel ℓ . Alors : $\lim_{n\to+\infty}\frac{1}{n}\sum_{i=0}^{n-1}a_i=\ell$.

On se propose d'étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2 + 1}{2}. \end{cases}$$

- 1. (a) Montrer que, pour tout entier naturel n on a, $0 \le u_n < 1$.
 - (b) Étudier les variations de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Déduire des questions précédentes que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 2. Pour tout entier naturel n on pose, $v_n = 1 u_n$.
 - (a) Montrer que : $\forall n \in \mathbb{N}, \frac{1}{v_{n+1}} \frac{1}{v_n} = \frac{1}{1 + u_n}$.
 - (b) En déduire que : $\lim_{n \to +\infty} \left(\frac{1}{v_{n+1}} \frac{1}{v_n} \right) = \frac{1}{2}$.
 - (c) En déduire, à l'aide du résultat admis en début d'exercice, que la suite $\left(\frac{1}{n}\sum_{j=0}^{n-1}\left(\frac{1}{v_{j+1}}-\frac{1}{v_j}\right)\right)_{n\in\mathbb{N}^*}$ converge et préciser sa limite.
 - (d) En déduire que : $\frac{1}{v_n} \mathop{\sim}_{n \to +\infty} \frac{n}{2}$.
 - (e) En déduire que : $u_n = 1 \frac{2}{n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right)$.
- 3. (a) Écrire une fonction Scilab d'entête function u=suite(n) qui renvoie la valeur de u_n .
 - (b) En déduire un programme, rédigé en Scilab, qui permet de déterminer et d'afficher la plus petite valeur de n pour laquelle on a $1 u_n < 10^{-3}$.

3

Exercice 4

On pourra utiliser, sans le démontrer, le résultat suivant :

Proposition : pour tout $n \in \mathbb{N}^*$, si X_1, \dots, X_n sont des variables aléatoires discrètes définies sur un même espace probabilisé et possédant une espérance, alors $\sum_{k=1}^n X_k$ possède une espérance et $E\left(\sum_{k=1}^n X_k\right) = \sum_{k=1}^n E(X_k)$.

On désigne par n un entier naturel supérieur ou égal à 2. On dispose de n urnes, numérotées de 1 à n, contenant chacune n boules. On répète n épreuves, chacune consistant à choisir une urne au hasard et à en extraire une boule au hasard (selon une loi uniforme). On suppose que les choix des urnes sont indépendants les uns des autres.

Pour tout i de $\{1, 2, ..., n\}$, on note X_i la variable aléatoire prenant la valeur 1 si l'urne numérotée i contient toujours n boules au bout de ces n épreuves, et qui prend la valeur 0 sinon.

1. (a) Pour tout i et tout k, éléments de $\{1,2,...,n\}$, on note $U_{i,k}$ l'événement « l'urne numéro i est choisie à la $k^{\text{\`e}me}$ épreuve ».

Écrire l'événement ($X_i = 1$) à l'aide de certains des événements $U_{i,k}$, puis montrer que :

$$\forall i \in \{1, 2, ..., n\}, \ P(X_i = 1) = \left(1 - \frac{1}{n}\right)^n.$$

(b) Justifier également que, si i et j sont deux entiers distincts, éléments de $\{1, 2, ..., n\}$, on a :

$$P([X_i = 1] \cap [X_j = 1]) = \left(1 - \frac{2}{n}\right)^n.$$

- (c) Comparer $\left(1-\frac{2}{n}\right)$ et $\left(1-\frac{1}{n}\right)^2$ et en déduire que, si i et j sont deux entiers distincts, éléments de $\{1,2,...,n\}$, alors les évènements $[X_i=1]$ et $[X_j=1]$ ne sont pas indépendants.
- 2. On pose $Y_n = \sum_{k=1}^n X_i$.
 - (a) Déterminer l'espérance de Y_n , notée $E(Y_n)$.
 - (b) En déduire $\lim_{n\to+\infty}\frac{\mathrm{E}(\mathrm{Y}_n)}{n}$ et donner un équivalent de $\mathrm{E}(\mathrm{Y}_n)$ lorsque n est au voisinage de $+\infty$.
- 3. Pour tout i de $\{1, 2, ..., n\}$, on note N_i la variable aléatoire égale au nombre de boules manquantes dans l'urne numérotée i à la fin de ces n épreuves.

4

- (a) Donner sans calcul la loi de N_i ainsi que la valeur de $E(N_i)$.
- (b) Que vaut le produit N_iX_i ?