Функция Ляпунова

1. Наводящий пример.

Уравнение гармонических колебаний.

Умножим на x'и про интегрируем уравнение

$$x'' + \omega^2 x = 0 \Rightarrow x'^2 + \omega^2 x^2 = c \Leftrightarrow x_2^2 + \omega^2 x_1^2 = c$$
. (1)

Это уравнение равносильно системе

$$\begin{cases} x_1' = x_2 \\ x_2' = -\omega^2 x_1 \end{cases}$$
 (2)

Здесь $x_1 = x(t)$; $x_2 = x'(t)$. В фазовом пространстве переменных x_1 и x_2 уравнение (1) задает эллипс. Если начальная точка $\left(x_1(t_0); \; x_2(t_0)\right)$ находится на некотором эллипсе, то при всех t точка $\left(x_1(t); \; x_2(t)\right)$ будет оставаться на этом же эллипсе.

Если учитывать трение, то получим уравнение вида $x'' + kx' + \omega^2 x = 0$ (3)

Равносильная система имеет вид

$$\begin{cases} x_1' = x_2 \\ x_2' = -kx_2 - \omega^2 x_1 \end{cases}$$
 (4)

Рассмотрим функцию $L(x_1, x_2) = \omega^2 x_1^2 + x_2^2$. Ее линии уровня – эллипсы, причем оси эллипса тем меньше, чем ближе начальная точка к точке (0;0).

Подставим в нее решение системы (4) $(x_1(t); x_2(t))$, получим $L(x_1(t), x_2(t))$.

Продифференцируем полученное выражение по t . По правилу дифференцирования сложной функции

$$\frac{dL}{dt} = \frac{\partial L}{\partial x_1} x_1' + \frac{\partial L}{\partial x_2} x_2' = 2\omega^2 x_1 x_2 + 2x_2 (-kx_2 - \omega^2 x_1) = -2kx_2^2$$

Отсюда следует, что $L\big(x_1(t),x_2(t)\big)$ - убывающая функция от t. Иначе говоря, точка $\big(x_1(t);\ x_2(t)\big)$ при возрастании t переходит с большего эллипса на меньший и в пределе получаем $\big(x_1(t);\ x_2(t)\big) \to (0;0)$ при $t \to +\infty$. Это означает, что нулевое решение асимптотически устойчиво.

Этот пример показывает, что исследование поведения функции L вдоль решения позволяет ответить на вопрос об устойчивости. При этом не нужно решать дифференциальное уравнение.

2. Положительно определенная функция

Функция $\Phi(X)$ наз. положительно определенной в шаре **B**: $|X| \le R$, если

а)
$$\Phi(X) > 0$$
 при $X \neq 0$

6)
$$\Phi(0) = 0$$
.

Далеее считаем $\Phi(X)$ непрерывной в **B**.

Лемма. 1)
$$\forall \varepsilon > 0 \quad \exists \delta > 0 : |X| < \delta \Longrightarrow \Phi(X) < \varepsilon$$

2) $\forall \varepsilon > 0 \quad \exists \delta > 0 : \Phi(X) < \delta \Longrightarrow |X| < \varepsilon$

Доказательство.

1) Из непрерывности $\Phi(X)$ следует $\lim_{X\to 0}\Phi(X)=\Phi(0)$.

По условию б) имеем $\Phi(0)=0$. Итак, $\lim_{X\to 0}\Phi(X)=0$, что и тр.доказать.

2) Пусть не так, т.е. из малости $\Phi(X)$ не следует малость X.

Тогда
$$\exists X_n : \Phi(X_n) \to 0$$
 , но при этом $|X_n| \ge \varepsilon$.

Выберем сходящуюся подпоследовательность $X_n \to X_0$. Тогда в силу непрервности $\lim_{X_n \to X_0} \Phi(X_n) = \Phi(X_0) = 0$. Но $|X_n| \ge \varepsilon \Longrightarrow |X_0| \ge \varepsilon$

Противоречит пункту а) определения положительно определенной функции!

3. Производная в силу системы

Обозначим

$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}, \ F(X) = \begin{pmatrix} f_1(x) \\ \dots \\ f_n(x) \end{pmatrix},$$

и рассмотрим систему

$$X' = F(X), \quad F(0) = 0$$

Рассмотрим произвольную функцию L(X).

Функция

$$\dot{L}(X) = \sum_{i=1}^{n} \frac{\partial L}{\partial x_{i}} f_{j}(X)$$
 (2)

называется производной от L в силу системы (1).

Если подставить в L решение X(t), то $\dot{L}(X(t))=rac{d}{dt}L(X(t))$,т.е. \dot{L} в этом стучае совпадает с обычной произвдной по переменной t . Действительно, по правилу дифференцирования сложной функции имеем

$$\frac{d}{dt}L(X(t)) = \sum_{j=1}^{n} \frac{\partial L}{\partial x_j} x_j'$$

Учитывая , что $x_j'=f_j(X)$, получаем $\dot{L}(X(t))=rac{d}{dt}Lig(X(t)ig)$.

Далее будем рассматривать $\dot{L}(X)$ просто как функцию переменных $x_1,...,x_n$.

Функция L(X) называется функцией Ляпунова системы (1), если а) положительно определена в некотором шаре B: |X| < R; $6)\dot{L}(X) \leq 0, \; X \in B.$

4. Теоремы об устойчивости

Теорема 1.

Если для (1) существует функция Ляпунова, то нулевое решение устойчиво по Ляпунову.

Доказательство. Рассмотрим три множества

$$B_1: |X| \le \varepsilon$$
, $B_2: L(X) \le \delta$, $B_3: |X| \le \delta_1$

По доказанной выше лемме можно выбрать константы ε , δ , δ_1 так, чтобы $B_3 \subset B_2 \subset B_1$. По теореме существования решение $X(t,X_0), \quad X_0 \in B_3$, существует и единственно при $0 \le t < t_{max}$.

Кроме того, решение не выходит из B_2 , следовательно, и из B_{1} . Докажем, что t_{max} не может быть конечным числом.

Уравнение (1) равносильно интегральному уравнению

$$X(t) = X_0 + \int_0^t F(\tau, X(\tau)) d\tau, \quad 0 \le t < t_{\text{max}}$$
 (3)

Решение непрерывная функция и, кроме того ограниченная, так как решение не выходит из B_2 . Поэтому в (3) можно перейти к пределу при $t \to t_{max}$. Отсюда

$$X_1 = X_0 + \int_0^{t_{\text{max}}} F(\tau, X(\tau)) d\tau, \qquad X_1 = \lim_{t \to t_{\text{max}}} X(t).$$

При этом X_1 тоже принадлежит B_2 . Но тогда можно продолжить решение дальше, взяв X_1 в качестве начального вектора это противоречит определению t_{max} . Итак, решение существует при всех t > 0 и $|X(t)| < \epsilon$. **Нулевое решение устойчиво!**

Теорема 2 . Если функция Ляпунова вместо свойства б) удовлетворяет условию в) $\dot{L}(X) \leq -M(X), \, \forall X \in B$,

M(X)— положительно определенная непрерывная функция, то нулевое решение асимптотически устойчиво.

Доказательство.

Обозначим $a = \inf L(X(t,X_0))$, $b = \inf M(X(t,X_0))$. Докажем, что a = 0. Отсюда будет следовать асимптотическая устойчивость.

Пусть не так, т.е. a > 0. Тогда $|X(t,X_0)| > r > 0$, но тогда и b > 0, иначе для некоторой последовательности значений $X(t,X_0)$ выполнялось бы $M(X(t,X_0)) \rightarrow 0$, а это противоречит положительной определенности функции M(X). Итак, b > 0, и из условия в) получаем

$$\frac{d}{dt}L(X(t,X_0)) \le -b$$

Интегрируя от 0 до t, получаем $L(X(t,X_{_0})) \leq L(X_{_0}) - bt$. Отсюда

 $L(X(t,X_0)) o -\infty, \quad t o +\infty, \;$ что противоречит положительной определенности.