INDRAJIT PAL

Personal Website | LinkedIn | GitHub | Email

EDUCATION

Bachelor of Engineering, Electronics and Communication Engineering

Birla Institute of Technology, Mesra, Ranchi, India

First Class with Distinction

Higher Secondary (Class 12), Central Board of Secondary Education (CBSE)

All India Senior School Secondary Examination Delhi Public School, Ruby Park, Kolkata, India

94.6%

CGPA: 8.11/10

Secondary (Class 10), Central Board of Secondary Education (CBSE)

All India School Secondary Examination

Delhi Public School, Ruby Park, Kolkata, India

95% (A1)

(Secured highest possible A1 grade in all 5 major subjects)

WORK EXPERIENCE

Senior Data Scientist

Noodle.ai (August 2021 – Present) | Location - Bangalore, India

Noodle.ai is an Artificial Intelligence startup specializing in building machine learning applications for enterprises to reduce industrial waste.

Role Synopsis

- o Building predictive Sequential / Time Series Forecasting machine learning models which generate Demand-Supply recommendations to limit waste, enable efficient distribution of inventory in disrupted supply chains.
- O Developing Noodle's Proprietary AI algorithms (ML/RL) for flagship "Supply Chain AI" product suite Demand Flow | Inventory Flow to optimize Digital Supply Chains.
- o Improved efficiency in AI Deployment Pipelines by increasing development & deployment speeds by 3× times with trained AI models which outperform baseline SAP's projections by more than 20% wMAPE.

Machine Learning Engineer

Business Intelligence Unit, Axis Bank (July, 2018 - July 2021) | Location - Bangalore, India

Role Synopsis

- o Developed machine learning models in Python (scikit-learn, Spark MLlib, TensorFlow, Keras) to predict credit-risk, customer churn & customer-behavioral scores.
- o Created APIs & data pipelines for extracting, analyzing model features in big-data, distributed computing platforms using Spark.
- o Enabled data-driven decision-making by deploying ML models in real-time through REST (RESTful) APIs & Docker containers.

PROJECTS AND RESEARCH PUBLICATIONS

Complete collection of – My projects: here | My Research publications: here

Gamified Reinforcement Learning with Interactive AI Agents

Project Webpage: https://indropal.github.io/AIArcade/ | [Link]

- Explored Reinforcement Learning (RL) Algorithms (like PPO, SARSA, Q-Learning) & built RL AI Agents to interact with users in real-time.
- Deployed interactive-environment with trained RL Agents to interact with users in real-time which is easily accessible via web-browser.

Intercorrelation of Major DNA/RNA Sequence Descriptors – A Preliminary Study

Journal: Current computer-aided drug design, Volume 12, Number 3, 2016, pp. 216-228(13)

Authors: Dwaipayan Sen, Subhadeep Dasgupta, Indrajit Pal, Smarajit Manna, C. Basak, G.D. Grunwald | DOI: 10.2174/1573409912666160525111918 Link: https://www.ingentaconnect.com/content/ben/cad/2016/00000012/00000003/art00005

- Various techniques for Graphical Representation & Numerical Characterization (GRANCH) of bio-molecular sequences (DNA/RNA) have been explored & their relative efficacies in clustering molecules based on molecular similarities via unique sequence descriptors which encode nonredundant structural information have been assessed.
- Observations through Principal-Component-Analyses along with a broad study in correlation of calculated DNA-descriptors among various techniques suggests strong inter-correlation & redundancy in structural information among some techniques.

Generative Deep Learning with Multiple Modalities

GitHub Repository: https://github.com/indropal/GenerativeDeepLearningwithMultimodality | [Link]

- Explored State-Of-The-Art architectures in Generative Deep Learning like <u>CLIP</u> & <u>VQGAN</u>.
- Developed a *Text-to-Image* Deep Learning (*DL*) architecture which can generatively create images from contextual information present in text.
- The developed DL architecture is capable of producing artistic styling like *Sfumato*.

Circuit-Level Technique to Design Variation and Noise-Aware Reliable Dynamic Logic Gates

Journal: IEEE Transactions on Device and Materials Reliability, vol. 18, no. 2, pp. 224-239, June 2018

Authors: Indrajit Pal, Aminul Islam | DOI: 10.1109/TDMR.2018.2819019

Link: https://ieeexplore.ieee.org/document/8323211

- Proposed novel circuit-level approach to mitigate delay variations due to Process/Voltage/Temperature (PVT) fluctuations improving PVT robustness with 50% reduction in delay variability & enhancing noise immunity for near-threshold operation of Dynamic logic gates.
- Developed theoretical model of proposed Dynamic logic topologies and performed extensive robustness study by Monte Carlo simulations in **HSPICE**

A VDTA-based robust electronically tunable memristor emulator circuit

Journal: Analog Integrated Circuits and Signal Processing, 2019

Authors: Indrajit Pal, Vikash Kumar, Nilay Aishwarya, Abhijeet Nayak, Aminul Islam | DOI: 10.1007/s10470-019-01575-y

Link: https://doi.org/10.1007/s10470-019-01575-v

- Designed a *Voltage Differencing Transconductance Amplifier (VDTA)* based memristor emulator with tunable memristive properties & derived a mathematical model of the circuit which is robust to PVT fluctuations.
- The designed circuit can be integrated into <u>ASIC</u>s designed for ML Applications & On-Chip Learning the results of a practical on-chip implementation have been demonstrated along with its transfer-characteristics and presented in the manuscript.

Electronic Toll Collection System using Barcode Technology

Conference: Springer Sponsored Conference on Nanoelectronics, Circuits and Communication Systems, 2017

Authors: E.V.V. Hari Charan, Indrajit Pal, Akash Sinha, Raj Kamal Roye Baro, Vijay Nath | DOI: 10.1007/978-981-13-0776-8_51

Published Book Series: Springer Book Series – Lecture Notes in Electrical Engineering

 An automated Electronic Toll Collection was developed with the capability of decoding information in barcodes via sophisticated image-processing (using OpenCV) techniques & fast retrieval of information from a database using the decoded data

Predicting Bio-Molecular properties from Molecule Structure

GitHub Repository: https://github.com/indropal/GraphDLBioMolecules | [Link]

- Graphs are an efficient way to represent molecular structure and to understand the interactive bonds amongst atoms which can be further used to decipher a molecule's physical properties.
- This project explores *Graph Neural Networks* to decipher graph representations of bio-molecular structures & predict physical-properties of molecules.

SKILLS

Skill Type	Details		
Programming Languages	Python, C/C++, C#, JavaScript		
Machine Learning Libraries	scikit-learn, XGBoost, CatBoost, LightGBM, SciPy		
Deep Learning Frameworks	TensorFlow, Keras, PyTorch		
Big Data Frameworks	Spark/PySpark, Hive		
Deployment Frameworks	Docker, Flask		

TECHNICAL CERTIFICATIONS

Deep Learning Specialization

DeepLearning.AI, Coursera | [Specialization Certificate Link]

DeepLearning.AI TensorFlow Developer Professional Certificate

DeepLearning.AI, Coursera | Professional Certificate Link

Applied Machine Learning in Python

University of Michigan, Coursera | [Certificate Link]

PERSONAL DETAILS

Personal Website: https://indropal.github.io		[Link]	
LinkedIn profile: https://linkedin.com/in/pal-indrajit		[Link]	
GitHub Profile: https://github.com/indropal	-	[Link]	
Contact Number: Email ID: pal.indrajit99@gmail.com	I	Google Scholar Profile:	[Link]