Tabelle mit pKs und pKB Werten

pK_S	Säure		korr	espondierende Base	pK _B
Vollständige Protonenabgabe	Perchlorsäure	HClO₄	ClO ₄ -	Perchlorat-Ion	Protonenaufnahme
	lodwasserstoffsäure	Н	1-	lodid-lon	
	Bromwasserstoff	HBr	Br-	Bromid-Ion	
	Salzsäure	HCl	Cl-	Chlorid-Ion	
	Schwefelsäure	H₂SO ₄	HSO₄-	Hydrogensulfat-Ion	
	Salpetersäure	HNO ₃	NO ₃ -	Nitrat-Ion	
	Oxonium-lon	H ₃ O+	H ₂ O	Wasser	
1,42	Oxalsäure	$H_2C_2O_4$	HC ₂ O ₄ -	Hydrogenoxalat-Ion	12,58
1,92	Hydrogensulfat-Ion	HSO₄-	SO ₄ ²⁻	Sulfat-Ion	12,08
2,13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄ -	Dihydrogenphosphat-lon	11,87
2,22	Hexaaquaeisen(III)-lon	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyeisen(III)-lon	11,78
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10,86
3,35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10,65
3,75	Ameisensäure (Methansäure)	НСООН	HC00-	Methanoat-Ion (Formiat)	10,25
4,75	Essigsäure (Ethansäure)	CH₃COOH	CH₃COO-	Ethanoat-Ion (Acetat)	9,25
4,85	Hexaaquaaluminium-lon	$[Al(H_2O)_6]^{3+}$	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyaluminium-lon	9,15
6,52	Kohlensäure	$CO_2 + H_2O$	HCO ₃ ⁻	Hydrogencarbonat-lon	7,48
6,92	Schwefelwasserstoff	H ₂ S	HS-	Hydrogensulfid-Ion	7,08
7,00	Hydrogensulfit-Ion	HSO ₃ -	SO ₃ ²⁻	Sulfit-Ion	7,00
7,20	Dihydrogenphosphat-lon	H ₂ PO ₄ -	HPO ₄ ^{2−}	Hydrogenphosphat-lon	6,80
9,25	Ammonium-Ion	NH ₄ +	NH ₃	Ammoniak	4,75
9,40	Blausäure (Cyanwasserstoff)	HCN	CN-	Cyanid-lon	4,60
	Hydrogencarbonat-lon	HCO ₃ -	CO ₃ ² -	Carbonat-Ion	3,60
	Wasserstoffperoxid	H_2O_2	HO ₂ -	Hydrogenperoxid-lon	3,38
12,36	Hydrogenphosphat-lon	HPO ₄ ²⁻	PO ₄ 3-	Phosphat-Ion	1,64
	Hydrogensulfid-Ion	HS-	S ² -	Sulfid-Ion	1,00
	Wasser	H ₂ O	OH-	Hydroxid-lon	
Keine Protonenabgabe	Ethanol	CH₃CH₂OH	CH₃CH₂O⁻	Ethanolat-Ion	Vollständige Protonenaufnahme
	Methanol	CH ₃ OH	CH ₃ O-	Methanolat-Ion	
	Ammoniak	NH_3	NH ₂ -	Amid-lon	
	Hydroxid-lon	OH-	O ² -	Oxid-lon	
	Wasserstoff	H ₂	H-	Hydrid-lon	

Standardpotenziale bei 25 °C

Red	=	Ox + n e ⁻	EO/V
Li(s)	=	$Li^{+}(aq) + e^{-}$	-3,02
K(s)	=	$K^{+}(aq) + e^{-}$	-2,92
Ba(s)	=	$Ba^{2+}(aq) + 2e^{-}$	-2,90
Ca(s)	=	$Ca^{2+}(aq) + 2e^{-}$	-2,76
Na(s)	=	Na ⁺ (aq) + e ⁻	-2,71
Mg(s)	=	$Mg^{2+}(aq) + 2e^{-}$	-2,38
- Al(s)	-	$AI^{3+}(aq) + 3 e^{-}$	-1,66
N ₂ H ₄ (aq) + 4 OH ⁻ (aq)	=	$N_2(g) + 4 H_2O(I) + 4 e^-$	-1,16
SO ₃ ²⁻ (aq) + 2 OH ⁻ (aq)	-	$SO_4^{2-}(aq) + H_2O(I) + 2 e^-$	-0,92
H ₂ (g) + 2 OH⁻(aq)	=	2 H ₂ O(I) + 2 e ⁻	-0,83
- Zn(s)	=	$Zn^{2+}(aq) + 2e^{-}$	-0,76
Fe(s)	=	$Fe^{2+}(aq) + 2e^{-}$	-0,41
Cd(s)	=	$Cd^{2+}(aq) + 2e^{-}$	-0,40
$Pb(s) + SO_4^{2-}(aq)$	=	$PbSO_4(s) + 2 e^-$	-0,36
Ni(s)	=	$Ni^{2+}(aq) + 2e^{-}$	-0,23
H ₂ O ₂ (aq) + 2 OH ⁻ (aq)	=	$O_2(g) + 2 H_2O(I) + 2 e^-$	-0,15
Ag(s) + I-(aq)	=	Agl(s) + e ⁻	-0,15
Sn(s)	=	Sn ²⁺ (aq) + 2 e ⁻	-0,14
—Pb(s)	=	Pb ²⁺ (aq) + 2 e ⁻	-0,13
- Fe(s)	=	Fe ³⁺ (aq) + 3 e ⁻	-0,04
H ₂ (g) + 2 H ₂ O(l)	=	2 H ₃ O ⁺ (aq) + 2 e ⁻	0
Ag(s) + Br ⁻ (aq)	=	AgBr(s) + e ⁻	0,07
H ₂ S(g) + 2 H ₂ O(l)		S(s) + 2 H ₃ O ⁺ (aq) + 2 e ⁻	0,14
Cu ⁺ (aq)	<u>_</u>	Cu ²⁺ (aq) + e ⁻	0,16
H ₂ SO ₃ (aq) + 5 H ₂ O(I)	=	$SO_4^{2-}(aq) + 4 H_3O^+(aq) + 2 e^-$	0,20
	<u>+</u>	AgCl(s) + e ⁻	0,22
Ag(s) + Cl ⁻ (aq)	=	Hg ₂ Cl ₂ (s) + 2 e ⁻	0,27
2 Hg(l) + 2 Cl ⁻ (aq)	=	Ag ₂ O(s) + H ₂ O(l) + 2 e ⁻	0,34
2 Ag(s) + 2 OH ⁻ (aq)	=	$Cu^{2+}(aq) + 2e^{-}$	0,34
Cu(s)	=	O ₂ (g) + 2 H ₂ O(l) + 4 e ⁻	0,40
4 OH-(aq)	=	2 OCl (aq) + 2 H ₂ O(l) + 2e ⁻	0,42
Cl ₂ (g) + 4 OH ⁻ (aq)	LOST CARE	Cu ⁺ (aq) + e ⁻	0,52
Cu(s)	←	I ₂ (s) + 2 e ⁻	0,54
2 l ⁻ (aq)	=	$MnO_4^-(aq) + 2 H_2O(I) + 3 e^-$	0,59
$MnO_2(s) + 4 OH^-(aq)$	=	O ₂ (g) + 2 H ₃ O ⁺ (aq) + 2 e ⁻	0,68
H ₂ O ₂ (aq) + 2 H ₂ O(l)	=	Fe ³⁺ (aq) + e ⁻	0,77
— Fe ²⁺ (aq)	=	Ag ⁺ (aq) + e ⁻	0,80
Ag(s)		$Hg_2^{2+}(aq) + 2e^-$	0,80
→ 2 Hg(I)	→	Hg^{2} (aq) + 2 e ⁻	0,85
- Hg(I)	=	NO ₃ ⁻ (aq) + 4 H ₃ O ⁺ (aq) + 3 e ⁻	0,96
- NO(g) + 6 H ₂ O(I)	<u>→</u>	Br ₂ (aq) + 2 e ⁻	1,07
2 Br ⁻ (aq)	<u>→</u>	Pt ²⁺ (aq) + 2 e ⁻	1,20
Pt(s)	=	2 IO ₃ ⁻ (aq) + 12 H ₃ O ⁺ (aq) + 10 e ⁻	1,20
I ₂ (s) + 18 H ₂ O(I)	=		1,21
$Mn^{2+}(aq) + 6 H_2O(I)$	=	$MnO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,23
6 H ₂ O(I)	=	$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	1,33
2 Cr3+(aq) + 21 H2O(I)	=	$Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^-$	1,36
_ 2 Cl ⁻ (aq)	=	$Cl_2(g) + 2e^{-}$	1,42
Au(s)	=	$Au^{3+}(aq) + 3e^{-}$	1,42
Pb2+(aq) + 6 H2O(I)	=	$PbO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,40
Mn2+(aq) + 12 H2O(I)	=	$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	
$-MnO_2(s) + 6 H_2O(l)$	=	$MnO_4^-(aq) + 4 H_3O^+(aq) + 3 e^-$	1,68
PbSO ₄ (s) + 5 H ₂ O(l)	=	PbO ₂ (s) + HSO ₄ ⁻ (aq) + 3 H ₃ O ⁺ (aq) + 2 e ⁻	1,69
4 H ₂ O(I)	=	$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	1,78
2 SO ₄ ²⁻ (aq)	=	$S_2O_8^{2-}(aq) + 2 e^-$	2,00
2 F ⁻ (aq)	=	$F_2(g) + 2 e^-$	2,87