Topics: Descriptive Statistics and Probability

1. Look at the data given below. Plot the data, find the outliers, and find out μ , σ , σ^2 .

Name of company	Measure X
Allied Signal	
Bankers Trust	25.53%
General Mills	25.41%
ITT Industries	24.14%
J.P.Morgan & Co.	29.62%
Lehman Brothers	28.25%
Marriott	25.81%
MCI	24.39%
Merrill Lynch	40.26%
Microsoft	32.95%
Morgan Stanley	91.36%
Sun Microsystems	25.99%
Travelers	39.42%
US Airways	26.71%
Warner-Lambert	35.00%

Answer:

$$\mu = 33.27\% = 0.33$$

 $\sigma = 0.169454009$

 $\sigma^2 = 0.028714661$

As per the calculation there is one outlier in given dataset, and the value of outlier is 91.36%.

2.

Answer the following three questions based on the box-plot above.

- (i) What is inter-quartile range of this dataset? (Please approximate the numbers) In one line, explain what this value implies.
- (ii) What can we say about the skewness of this dataset?
- (iii) If it was found that the data point with the value 25 is actually 2.5, how would the new boxplot be affected?

Answer:

- (i) Inter-quartile = Q3-Q1 = 12-5 = 7
 Range from 5 to 12 and Viscous 0 to 19
 There is a one outlier in given dataset, value of outlier is 25
 - This value implies near to the median.
- (ii) positive skewed, and mean greater than median.
- (iii)

Answer the following three questions based on the histogram above.

- (i) Where would the mode of this dataset lie?
- (ii) Comment on the skewness of the dataset.

Answer: Positive Skewed

(iii) Suppose that the above histogram and the box-plot in question 2 are plotted for the same dataset. Explain how these graphs complement each other in providing information about any dataset.

Answer:

- (i) The mode of these data is lie between 6 to 8.
- (ii) This Histogram is positive skewed.

(iii)

4. AT&T was running commercials in 1990 aimed at luring back customers who had switched to one of the other long-distance phone service providers. One such commercial shows a businessman trying to reach Phoenix and mistakenly getting Fiji, where a half-naked native on a beach responds incomprehensibly in Polynesian. When asked about this advertisement, AT&T admitted that the portrayed incident did not actually take place but added that this was an enactment of something that "could happen." Suppose that one in 200 long-distance telephone calls is misdirected. What is the probability that at least one in five attempted telephone calls reaches the wrong number? (Assume independence of attempts.)

Answer:

One in 200 long distance telephone calls are misdirecting so,

- \Rightarrow Probability of call misdirecting p = 1/200
- \Rightarrow Probability of call not misdirecting q = 1-1/200 = 199/200
- \Rightarrow Number of calls = 5

$$P(x) = {}^{n}C_{x} * p^{x} * q^{n-x}$$

At least one in five attempted telephone calls reaches the wrong number = 1- none of the call reaches wrong number

```
= 1-P (0)

=1-^{5}C<sub>0</sub> * (1/200)<sup>0</sup> * (199/200)<sup>5-0</sup>

= 1-(199/200)<sup>5</sup>

= 0.0247
```

5. Returns on a certain business venture, to the nearest \$1,000, are known to follow the following probability distribution

X	P(x)
-2,000	0.1
-1,000	0.1
0	0.2
1000	0.2
2000	0.3
3000	0.1

- (i) What is the most likely monetary outcome of the business venture?
- (ii) Is the venture likely to be successful? Explain
- (iii) What is the long-term average earning of business ventures of this kind? Explain
- (iv) What is the good measure of the risk involved in a venture of this kind? Compute this measure

Answer:

- (i) x=2000 at the probability of 0.3 is the Most likely monetary outcome of the business venture of given data.
- (ii) Venture is successful when the X is positive.

In the data we can see, there are three positive values of X - 1000, 2000,3000 and probability of this values are -0.2,0.3,0.1.

Now, Take summation of

Probability =
$$P(1000) + P(2000) + P(3000)$$

= $0.2+0.3+0.1$
= 0.6

0.6 > 0.5

Hence venture likely to be successful as per calculation

(iii)

E(X)	P(x)	$E(X) \times P(x)$
-2000	0.1	-200
-1000	o.1	-100
0	0.2	0
1000	0.3	200
2000	0.3	600
3000	0.1	300

Expected value =
$$\sum E(X) \times P(x) = 800$$

As per calculation, long term average earing of business ventures = $800 \,$ \$

Venture is likely to be positive as Expected values is positive = 800 \$.

(iv) the good measure of the risk involved in a venture of this kind, Standard Deviation = $\sqrt{Variance}$

E(X)	P(X)	$E(X) = X \times P(X)$	$E(X^2) = X^2 \times P(X)$
-2000	0.1	-200	400000
-1000	0.1	-100	100000
0	0.2	0	0
1000	0.2	200	200000
2000	0.3	600	1200000
3000	0.1	300	900000
		= 800	= 2800000

Variance (X)	$= E(X^2) - [E(X)]^2$
	$=2800000-(800)^2$
	= 2160000