Design and Verification of Time-Critical Byzantine Fault-Tolerant Systems

Vincent Rahli – University of Birmingham

Joint work with David Kozhaya (ABB) & Jeremie Decouchant (TU Delft)

Distributed Systems

Why?

Better performance More storage Higher resilience

Distributed problems

Broadcast Consensus

Properties\Abstractions

Agreement Validity

Models

Synchronous
Asynchronous
Partially synchronous

Cyber-Physical Systems

Specific requirements

Energy efficient devices Real-time constraints

Models

Varying quality of the communication infrastructure due to scale & heterogeneity

Real-Time Byzantine Reliable Broadcast (RTBRB)

Goal: distribute data reliably despite arbitrary faults

Real-Time Byzantine Reliable Broadcast (RTBRB)

Real-Time Byzantine Reliable Broadcast (RTBRB)

Probabilistically Synchronous System Model

Pistis – a RTBRB Protocol

Similar to Bracha's Byzantine reliable broadcast protocol

Pistis – Pushing Messages

- 1. **Repeat** sending in case a transmission fails
- 2. Send to X (here 2f+1) out of 3f+1 nodes to avoid too many messages
- 3. If a node does not gather enough replies to its message, it becomes passive

Pistis – Pulling Messages (Proof-of-Connectivity)

To guarantee **timeliness**, nodes regularly **pull** messages

Formalization in Coq

We are hiring a postdoc! Contact: V.Rahli@bham.ac.uk

Pistis: suite of real-time protocols

Formal verification of BFT protocols

Design of BFT protocols (blockchain)