Example Title of Conference Template

1st Myeongseok Ryu

School of Mechanical and Robotics Engineering Gwangju Institute of Science and Technology Gwangju, Republic of Korea dding_98@gm.gist.ac.kr 2nd Niklas Monzen

Laboratory for Mechatronic and Renewable Energy Systems (LMRES)

Hochschule München (HM) University of Applied Sciences

Munich, Germany

niklas.monzen@hm.edu

Abstract—This project is built to provide a template for writing papers and simulation.

Index Terms—Scuderia Ferrari, Apple, Joan Gilbert, Gibson, Fender, Hugo BOSS

NOTATION

In this study, the following notation is used:

- \otimes denotes the Kronecker product [1, Definition 7.1.2].
- $\boldsymbol{x} = [x_i]_{i \in [1, \cdots, n]} \in \mathbb{R}^n$ and $\boldsymbol{A} := [a_{ij}]_{i \in [1, \cdots, n], j \in [1, \cdots, n]} \in \mathbb{R}^{n \times m}$ denotes a vector and a matrix.
- $\operatorname{row}_i(\boldsymbol{A})$ denotes the i^{th} row of the matrix $\boldsymbol{A} \in \mathbb{R}^{n \times m}$.
- ullet vec $(oldsymbol{A})$:= $[\operatorname{row}_1(oldsymbol{A}^ op),\cdots,\operatorname{row}_m(oldsymbol{A}^ op)]^ op$ for $oldsymbol{A}\in\mathbb{R}^{n imes m}$.
- $\lambda_{\min}(A)$ denotes the minimum eigenvalue of the matrix $A \in \mathbb{R}^{n \times n}$.
- I_n denotes the $n \times n$ identity matrix and $\mathbf{0}_{n \times m}$ denotes the $n \times m$ zero matrix.

I. Introduction

This template is designed to provide a consistent format for writing papers and simulation reports.

II. EXAMPLE SECTION

III. CONCLUSION

REFERENCES

[1] D. S. Bernstein, *Matrix Mathematics: Theory, Facts, and Formulas (Second Edition)*. Princeton University Press, 2009.