18/09/2025

PROYECTO MATCHAI

A01710550 - Maxime Vilcocq Parra A01710791 - Galo Alejandro del Rio Viggiano A01369687 - Ana Karen Toscano Díaz A01710367 - José Antonio López Saldaña

EQUIPO DE TRABAJO

Galo Alejandro del Rio Viggiano

A01710791

Maxime Vilcocq Parra

A01710550

José Antonio López Saldaña

A01710367

Ana Karen (Max) Toscano

A01369687

Sobre el Proyecto

CONTEXTO

Sobre el Proyecto

NUESTRA SOLUCIÓN

OBJETIVOS

Precisión

Robustez

CÓDIGO IMPLEMENTADO

1. CARGA Y PREPROCESAMIENTO DE DATOS

Carga de imágenes TAC y máscaras desde archivos .npy

Normalización con windowing tipo CT

Clipping intensidades (-1500 a 500 HU)

```
# Load data
prefix = "/kaggle/input/covid-segmentation/"
images_medseg = np.load(prefix + "images_medseg.npy").astype(np.float32)
masks_medseg = np.load(prefix + "masks_medseg.npy").astype(np.int16)
NUM CLASSES = 4
# Preprocess
def preprocess(images: np.ndarray) -> np.ndarray:
    images = np.clip(images, -1500, 500)
    mean, std = images.mean(), images.std()
    return (images - mean) / (std + 1e-8)
images_medseg = preprocess(images_medseg)
```

2. DATA SET Y DATA LOADER

Creación de la clase LungDataset

- Convierte imágenes a tensores
- Asegura máscaras indexadas (H,W)

Separación en entrenamiento y validación

Uso de WeightedRandomSampler para balancear clases minoritarias

```
# Dataset
class LungDataset(Dataset):
    def __init__(self, images, masks, aug=None):
        self.images, self.masks, self.aug = images, masks, aug
        self.to_tensor = T.ToTensor() # HWC -> CHW, preserva float32
    def __len__(self):
        return len(self.images)
    def __getitem__(self, i):
        img, mask = self.images[i], self.masks[i]
        if self.aug: # aplicar augmentations si están definidos
            sample = self.aug(image=img, mask=mask)
            img, mask = sample["image"], sample["mask"]
        if img.ndim == 2: # si no hay canal explícito añadir (H, W, 1)
            img = img[..., None]
        x = self.to_tensor(img)
        if mask.ndim == 3 and mask.shape[-1] > 1: # si está one-hot pasar a índices
            mask = np.argmax(mask, axis=-1)
        y = torch.tensor(mask, dtype=torch.long)
        return x, y
```

```
# Train/Val split

n_total = len(images_medseg)
n_val = int(0.20 * n_total)
idxs = np.arange(n_total); np.random.shuffle(idxs)
train_idx, val_idx = idxs[n_val:], idxs[:n_val]

train_ds = LungDataset(images_medseg[train_idx], masks_medseg[train_idx], train_aug)
val_ds = LungDataset(images_medseg[val_idx], masks_medseg[val_idx], val_aug)
```

```
# Weighted sampler
def mask has lesion(mask):
    if mask.ndim == 3 and mask.shape[-1] > 1:
       mask = np.argmax(mask, axis=-1)
    return int(np.any(mask > 0))
minor presence = np.array([mask has lesion(m) for m in masks medseg[train idx]])
sample weights np = np.where(minor presence == 1, 3.0, 1.0).astype(np.float32)
sample_weights = torch.as_tensor(sample_weights_np, dtype=torch.double)
sampler = WeightedRandomSampler(sample weights, num samples=len(sample weights), replacement=True)
BATCH = 6
pin = torch.cuda.is_available()
train_dl = DataLoader(train_ds, batch_size=BATCH, sampler=sampler, num_workers=2, pin_memory=pin)
val_dl = DataLoader(val_ds, batch_size=BATCH, shuffle=False, num_workers=2, pin_memory=pin)
```

3. AUGMENTATIONS

Entrenamiento (más variabilidad):

- Resize a 320×320
- Flips (horizontal, vertical)
- Rotaciones aleatorias (90°)
- Afine (escala, rotación, shear, traslación)
- Brillo y contraste aleatorio

Validación (solo resize para consistencia)

```
# Augmentations
IMG_SIZE = 384
train_aug = A.Compose([
   A.Resize(IMG_SIZE, IMG_SIZE),
   A.HorizontalFlip(p=0.5),
   A. VerticalFlip(p=0.3),
   A.RandomRotate90(p=0.3),
    A.Affine(scale=(0.95,1.05), rotate=(-10,10), shear=(-5,5),
             translate_percent=(0.0,0.03), p=0.4),
    A.RandomBrightnessContrast(brightness_limit=0.10, contrast_limit=0.10, p=0.2),
val_aug = A.Compose([A.Resize(IMG_SIZE, IMG_SIZE)])
```

4. MODELO

Arquitectura UNet++

Encoder: EfficientNet-B3 preentrenado en ImageNet

Entrada: 1 canal (grayscale)

Salida: 4 clases (fondo + 2 lesiones)

```
# Model

device = "cuda" if torch.cuda.is_available() else "cpu"
model = smp.UnetPlusPlus(
    encoder_name="timm-efficientnet-b3",
    encoder_weights="imagenet",
    in_channels=1,
    classes=NUM_CLASSES,
).to(device)
```

5. FUNCIONES DE PÉRDIDA

CrossEntropy con pesos balanceados.

Dice Loss para segmentación.

Focal Loss para énfasis en clases difíciles (γ = 2.5).

Ponderación: 0.25*CE + 0.5*Dice + 0.25*Focal

```
# Definir combinación de pérdidas = CrossEntropy ponderada + Dice + Focal
ce_loss = nn.CrossEntropyLoss(weight=ce_weights)
dice_loss = smp.losses.DiceLoss(mode="multiclass")
focal_loss = smp.losses.FocalLoss(mode="multiclass", gamma=2.5)

def criterion(y_pred, y_true, a=0.25, b=0.5, c=0.25):
    return a*ce_loss(y_pred, y_true) + b*dice_loss(y_pred, y_true) + c*focal_loss(y_pred, y_true)
```

6. OPTIMIZACIÓN Y MÉTRICAS

Optimizador: AdamW

Scheduler: OneCycleLR (ajuste dinámico del LR)

AMP (Mixed Precision) para acelerar entrenamiento

Métrica principal: Coeficiente Dice por clase

```
# Optimizer & Scheduler
opt = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-4)
EPOCHS = 60
scheduler = torch.optim.lr_scheduler.OneCycleLR(
    opt, max_lr=5e-4, steps_per_epoch=len(train_dl), epochs=EPOCHS
# Configuración para entrenamiento mixto (AMP) con nueva API.
use_amp = (device == "cuda")
scaler = torch.amp.GradScaler('cuda') if use_amp else None
# Metrics
@torch.no_grad()
def dice_per_class(logits, target, num_classes=NUM_CLASSES):
    pred = logits.argmax(1)
    dices = []
    for c in range(num_classes):
        p = (pred == c).float()
        t = (target == c).float()
        inter = (p*t).sum()
        denom = p.sum() + t.sum()
        dices.append(1.0 if denom == 0 else (2*inter/denom).item())
    return dices
```

7. LOOP DE ENTRENAMIENTO

Forward y backward pass con AMP

Validación al final de cada epoch

Guardado del mejor modelo (checkpoint) según Dice promedio

```
# Training loop
best_mean_dice = -1.0
ckpt_path = "best_unetpp_b3_384.pth"
for epoch in range(1, EPOCHS+1):
   model.train()
   running = 0.0
   for x, y in train_dl:
       x, y = x.to(device, non_blocking=True), y.to(device, non_blocking=True)
       opt.zero_grad(set_to_none=True)
       if use_amp:
           with torch.amp.autocast('cuda'):
               out = model(x)
               loss = criterion(out, y)
            scaler.scale(loss).backward()
            scaler.step(opt)
            scaler.update()
       else:
           out = model(x)
            loss = criterion(out, y)
            loss.backward()
           opt.step()
       scheduler.step()
       running += loss.item()
   train_loss = running / max(len(train_dl), 1)
```

```
model.eval()
vloss, vdices = 0.0, []
autocast_ctx = torch.amp.autocast('cuda') if use_amp else contextlib.nullcontext()
with torch.no grad(), autocast ctx:
    for x, y in val dl:
        x, y = x.to(device), y.to(device)
        out = model(x)
        loss = criterion(out, y)
        vloss += loss.item()
        vdices.append(dice per class(out, y))
vloss /= max(len(val_dl), 1)
vdices = np.mean(vdices, axis=0)
mean dice = float(np.mean(vdices))
if mean dice > best mean dice:
    best_mean_dice = mean_dice
    torch.save(model.state dict(), ckpt path)
print(f"Epoch {epoch:3d}/{EPOCHS} | Train {train_loss:.3f} | Val {vloss:.3f} | "
      f"Dice {np.round(vdices, 4)} | Mean {mean_dice:.4f} | Best {best_mean_dice:.4f}")
```

8. VISUALIZACIÓN DE RESULTADOS

Función visualize_batch

Muestra:

- Imagen TAC
- Máscara ground truth
- Predicción del modelo

```
# Visualization
model.load_state_dict(torch.load(ckpt_path, map_location=device))
model.eval()
@torch.no_grad()
def visualize_batch(x_cpu, y_cpu, pred_cpu, max_images=6):
    n = min(max_images, x_cpu.size(0))
    for i in range(n):
        plt.figure(figsize=(12,4))
        plt.subplot(1,3,1); plt.imshow(x_cpu[i,0], cmap="gray"); plt.title("Image"); plt.axis("off")
        plt.subplot(1,3,2); plt.imshow(y_cpu[i], cmap="jet", alpha=0.7); plt.title("Mask GT"); plt.axis("off")
        plt.subplot(1,3,3); plt.imshow(pred_cpu[i], cmap="jet", alpha=0.7); plt.title("Prediction"); plt.axis("off")
        plt.show()
with torch.no_grad():
    for b_idx, (x, y) in enumerate(val_dl):
       x = x.to(device)
        out = model(x)
        pred = out.argmax(1).cpu()
        visualize_batch(x.cpu(), y, pred, max_images=8)
        if b_idx >= 4: # mostrar primeras 5 batches
           break
```


RESULTADOS

SE LOGRÓ UNA
MEJORA
PROGRESIVA EN LA
MÉTRICA DICE A LO
LARGO DE 60
ÉPOCAS.

EL MODELO
ALCANZÓ UN DICE
PROMEDIO CERCANO
AL 0.84,
MOSTRANDO BUENA
CAPACIDAD DE
SEGMENTACIÓN EN
LESIONES

PULMONARES.

IMPLICACIONES ÉTICAS

MUCHAS GRACIAS

Limitaciones del modelo

Why These Outliers Happen

1. Ambiguity in the CT image

- Some slices genuinely look similar across classes (e.g. normal tissue vs. early-stage opacities).
- Even human radiologists sometimes disagree on labeling.

2. Label noise in the ground truth

- Masks in public COVID datasets are often annotated quickly.
- Boundary regions (yellow vs. blue vs. cyan in your case) are hard to separate, and your model may
 be predicting something plausible that just doesn't match the annotation perfectly.

3. Class imbalance still bites

 If one class is underrepresented (say cyan lesions are rare), the model may under- or over-predict it in specific cases.

4. 3D context is missing

- Your UNet++ only sees one 2D slice at a time.
- In lungs, some patterns are only clear when you see adjacent slices. Without that, the model may confuse diffuse lesions vs. dense opacities.