Fondamenti di ELABORAZIONE NUMERICA DEI SEGNALI

E. Del Re

Università di Firenze
Dipartimento di Elettronica e Telecomunicazioni
Laboratorio di Elaborazione Numerica dei Segnali e
Telematica (LENST)

Elaborazione Numerica dei Segnali (ENS)

- Cosa è?
- Perché?
- Dove?

ENS – Cosa è?

- L'elaborazione numerica dei segnali è la applicazione di una sequenza opportuna di operazioni aritmetiche o logiche (<u>algoritmo</u>) ad una serie numerica (es. cifre binarie) che rappresenta (in modo esatto o sufficientemente approssimato) un segnale (in genere originariamente analogico)
- Con lo scopo (elaborazione) di migliorarne la qualità o di estrarne delle informazioni

Schema di principio della ENS

ENS – Perché?

PRO

- Universalità, flessibilità, estesa gamma di (nuove) elaborazioni realizzabili
- Programmabilità (processori digitali, es. DSP)
- Precisione facilmente controllabile con il numero di bit usati
- Realizzazioni più facilmente riproducibili: HW dedicato (es. VLSI-Very Large Scale Integration) o logica programmabile (DSP- Digital Signal Processor); trascurabili effetti termici e di invecchiamento
- Compatibilità maggiore con i sistemi già numerici (ad es. comunicazioni numeriche, dati,...)

CONTRO

- Velocità di elaborazione: limitata dalla complessità algoritmica e dalla tecnologia
- Consumi di potenza (spesso, ma non sempre) superiori ad 'equivalenti' soluzioni analogiche

ENS – Dove?

• File multimediali: CD, DVD, MP3, JPEG, MPEG,....

• Tx/Rx cellulari; codifica audio, immagini e video; GPS; internet mobile

TV digitale terrestre e satellitare (DVB)

 Applicazioni: telecomunicazioni, biomedica, sismica, disabili, automazione industriale, traffico, sonar e radar, array di sensori, stime spettrali, etc.

.... ovunque (pervasiva)

ENS – Contenuto del corso

- Digitalizzazione dei segnali
- Sistemi discreti lineari tempo-invarianti
- Trasformata discreta di Fourier
- Filtri FIR
- Filtri IIR
- Realizzazione di sistemi di ENS
- Laboratorio con MATLAB

DIGITALIZZAZIONE DEI SEGNALI

Conversione analogico - digitale

Due operazioni:

Campionamento

in teoria può non introdurre distorsione sul segnale

Quantizzazioneintroduce comunque un errore (errore di quantizzazione)

CAMPIONAMENTO IDEALE

<u>Ideale</u>:

tempo istantaneo di chiusura dell'interruttore con passo di campionamento T (frequenza di campionamento $f_c = 1/T$)

Relazioni tempo-frequenza (Trasformata di Fourier)

Segnale continuo

$$X_a(f) = \int_{-\infty}^{+\infty} x_a(t)e^{-j2\pi ft}dt$$

$$x_a(t) = \int_{-\infty}^{+\infty} X_a(f)e^{-j2\pi ft}df$$
 (T.F. inversa)

Segnale discreto

$$X_{c}(f) = \sum_{n=-\infty}^{+\infty} x_{c}(nT)e^{-j2\pi f nT}$$

$$= \sum_{n=-\infty}^{+\infty} x_{c}(nT)e^{-j2\pi F n}$$

$$= X_{c}(F)$$

T.F. diretta (tempo-discreta)

$$F=fT=rac{f}{f_c}$$
 frequenza normalizzata (è quella che conta nella ENS!)

$$x_{c}(nT) = T \int_{-1/2T}^{1/2T} X_{c}(f) e^{j2\pi f nT} df \qquad \textbf{T. F. inversa}$$

$$= \int_{-1/2}^{1/2} X_{c}(F) e^{j2\pi F n} dF$$

$$= \int_{0}^{1} X_{c}(F) e^{j2\pi F n} dF$$

$$\mathbf{x_{c}(nT)}$$

$$\mathbf{x_{c}(nT)}$$

$$\mathbf{n}$$

$$\mathbf{x_{c}(nT)}$$

$$\mathbf{n}$$

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

Osservazioni

- Dimensioni diverse per $X_a(f)$ e $X_c(f)$
- $X_c(f)$ non sempre esiste (serie non convergente) Condizione sufficiente:

 $\sum |x_c(nT)| < \infty$ (serie assolutamente sommabile)

• $X_c(f)$ periodica di periodo $f_c = 1/T$ ovvero

 $X_{c}(F)$ periodica di periodo 1

Banda utile del segnale campionato:
 per definizione quella compresa fra:

$$|f| \le \frac{f_c}{2}$$
 ovvero $|F| \le \frac{1}{2}$

Teorema del campionamento

Relazione fra $X_c(f)$ e $X_a(f)$

$$X_{c}(f) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_{a}(f - kf_{c})$$

 $X_c(f)$ somma di un numero infinito di repliche dello spettro di $x_a(t)$, ciascuna traslata di un multiplo intero della frequenza f_c

N.B.: può presentarsi il fenomeno detto aliasing o sovrapposizione spettrale (distorsione spettrale)

Condizione di assenza di distorsione spettrale (condizione di Nyquist)

1) segnale limitato in banda B

$$X_a(f) = 0$$
 per $|f| > B$

2)
$$f_c > 2B$$

(1 e 2) ------ repliche disgiunte in frequenza

Banda di guardia: f_c - 2B

Se 1 o 2 non sono entrambe verificate: parziale o totale sovrapposizione delle repliche (distorsione spettrale dovuta al campionamento)

Esempio

Segue dal teorema del campionamento che campionando a f_c i due segnali reali continui (mostrate solo le frequenze positive):

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

se
$$f_3 - \frac{f_c}{2} = \frac{f_c}{2} - f_2$$

dopo il campionamento le frequenze f_2 e f_3 sono indistinguibili

Osservazione

> tutte le frequenze oltre $f_c/2$ sono ribaltate nella banda utile

Esercitazioni di Laboratorio di MATLAB

(reperibili a: http://lenst.det.unifi.it/node/379)

Aliasing

Ricostruzione del segnale analogico

Formula di ricostruzione

Per ottenere il segnale continuo dai suoi campioni, nel caso di assenza di distorsione:

$$y_a(t) = \sum_{n=-\infty}^{+\infty} y_c(nT) \frac{sen \pi f_c(t-nT)}{\pi f_c(t-nT)}$$

che equivale alla realizzazione (ideale):

Osservazione:

i campioni sono una rappresentazione equivalente del segnale analogico

CAMPIONAMENTO DI SEGNALI ALEATORI

 $x_a(t)$ segnale aleatorio

- $x_c(nT)$ ha la stessa densità di probabilità di $x_a(t)$
- segnali stazionari in senso lato

$$E\{x_c(nT)\}=m_x \quad media$$

$$E\{x_c(nT)x_c(nT+mT)\}=r_x(mT)$$
 autocorrelazione

 $r_x(mT)$ corrisponde al campionamento della autocorrelazione continua $r(\tau)$ di $x_a(t)$

• Spettro di potenza $G_x(f)$ di $x_c(nT)$

 $G_x(f)$ è la Trasformata di Fourier di $r_x(mT)$

Se $G_a(f)$ è lo spettro di potenza di $x_a(t)$, cioè la trasformata di Fourier di $r(\tau)$, si ha

$$G_x(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(f - k f_c)$$

• Sequenze stazionarie ed ergodiche

Quelle per cui coincidono le medie temporali e le medie di insieme

Sequenze a spettro bianco

$$r_x(mT) = r_x(0)\delta(mT) \iff G_x(f) = \text{costante} = r_x(0)$$

Potenza di una sequenza (a media nulla)

$$S_x = E\{x_c^2(nT)\} = r_x(0)$$

che coincide con la varianza σ_x^2 della sequenza

QUANTIZZAZIONE

Due operazioni:

QUANTIZZAZIONE

Quantizzazione uniforme

Errore di quantizzazione

$$e(nT) = x_c(nT) - x(nT)$$

 $x_c(nT) = x(nT) + e(nT)$

ovvero

$$\left| e(nT) \right| \leq \frac{q}{2}$$
 arrotondamento

$$\begin{bmatrix} 0 \le e(nT) < q & troncamento \end{bmatrix}$$
 non usato in ENS

Modello dell'errore di quantizzazione

(comunemente assunto)

e(nT):

- segnale aleatorio
 - lacktriangle indipendente da x_c (nT) e quindi da x(nT)
- densità di probabilità uniformemente distribuita: (arrotondamento)

- ♦ bianco
- > valor medio:

0 arrotondamento[q/2 troncamento]

varianza:

$$\sigma_e^2 = \int_{-\frac{q}{2}}^{\frac{q}{2}} e^2 \frac{1}{q} de = \frac{q^2}{12}$$

Potenza dell'errore di quantizzazione:

$$N_q = \int_{-\frac{1}{2}}^{\frac{1}{2}} G_e(F) dF = \frac{q^2}{12}$$

Densità spettrale di potenza:

$$G_e(f) = \frac{q^2}{12}$$
 ovvero $G_e(F) = \frac{q^2}{12}$

Valutazione critica del modello

 Controesempi banali di non validità del modello

Es.: - segnale costante

- sinusoide con frequenza sottomultipla della frequenza di campionamento
- onda quadra
- molti segnali deterministici
- ecc....

- Si può supporre valido se il segnale è sufficientemente "complicato": per esempio se da campione a campione attraversa diversi livelli di quantizzazione ed in modo "apparentemente" non deterministico
- Modello adeguato nella maggior parte dei segnali di interesse
- Modello matematicamente trattabile

Rapporto segnale - rumore di quantizzazione

B bit (compreso il segno): 2^B livelli

Dinamica quantizzatore
$$2(\pm 1) \Rightarrow q = \frac{2}{2^{B}}$$

$$SNR_{q} = \frac{S}{N_{q}} = \frac{Potenzadel segnale}{Potenza err. di quantizzazione} = \frac{S}{q^{2}/12} = 3S2^{2B}$$

$$(SNR_{q})_{dB} = 6.02B + 4.77 + S_{dB} \qquad (dB)$$

 \triangleright Ogni bit aggiunto fa aumentare SNR_q di 6.02~dB

Esempi particolari

> Segnale sinusoidale (val. max = 1, S=1/2)

$$(SNR_q)_{dB} = 6.02B + 1.76$$
 (dB)

> Segnale gaussiano

Semi-Dinamica quantizzatore: $1=4\sigma=4\sqrt{S}$

$$\left[\begin{array}{c|c} \Pr{ob} \{ | x_c(nT) | > 4\sigma \} \cong 6.310^{-5} \end{array} \right]$$

$$S = \frac{1}{16}$$

$$(SNR_a)_{dB} = 6.02B - 7.27$$
 (dB)

Esempi numerici: $SNR_q(dB)$

B	sinusoide	gaussiano
2	13.8	4.77
4	25.8	16.8
6	37.9	28.9
8	49.9	40.9
10	62.0	52.9
12	74.0	65.0
14	86.0	77.O
16	98.0	89.0

Degradazione del rapporto segnale/rumore

Segnale + rumore

Segnale + rumore + err. quantizz.

Ipotesi: rumore ed errore di quantizzazione incorrelati

$$\frac{1}{SNR_{uq}} = \frac{1}{SNR_i} + \frac{1}{SNR_q}$$

degradazione

$$\Delta_{dB} = (SNR_i)_{dB} - (SNR_{uq})_{dB}$$

- ullet Dati SNR_i e B, si determina Δ_{dB}
- ullet Dati SNR_i e Δ_{dB} si determina SNR_q e quindi B.

<u>Esempio</u>

 \triangleright Segnale con un dato rapporto segnale-rumore SNR_i

Possiamo considerare SNR_i come generato da una "equivalente" ipotetica quantizzazione.

Domanda: quanti bit aggiuntivi rispetto a questa *ipotetica* quantizzazione devo aggiungere nel quantizzatore per avere una degradazione di

$\Delta_{ extit{dB}}$	bit aggiuntivi "rispetto all'ingresso"
3	0
1	+1
0.27	+2
0.067	+3
0.016	+4
0.004	+5
0.001	+6

CONVERSIONE A/D DI SEGNALI PASSA-BANDA

1. Campionamento diretto

Se la banda del segnale $x_a(t)$ è compresa fra

$$k f_x \le |f| \le (k+1) f_x$$
 k intero

si ha assenza di sovrapposizione spettrale delle repliche (assenza di distorsione spettrale) se si campiona il segnale alla frequenza:

$$f_c = 2 f_x$$

Per questi tipi di segnali si può convertire alla frequenza $f_c = 2 f_x$, senza distorsione

 f_x da scegliere in modo che la banda del segnale sia compresa fra due suoi multipli interi consecutivi (soluzione non univoca)

Osservazione

★ Nel caso 1 (*k dispari*) la replica dello spettro in banda base è invertita rispetto a quella nella banda originaria

★ Nel caso 2 (*k pari*) la replica dello spettro in banda base non è invertita rispetto a quella nella banda originaria

Se l'inversione spettrale è un problema......

Segnale

Segnale

Inversione spettrale per segnali numerici.

Si invertono di segno i campioni dispari del segnale originale. Il relativo spettro risulta invertito.

$$x'(nT) = (-1)^n x(nT)$$

Formula di ricostruzione

$$x_a(t) = \sum_{n=-\infty}^{+\infty} x_c(nT) \frac{sen \pi f_c(t-nT)/2}{\pi f_c(t-nT)/2} \cos 2\pi f_0(t-nT)$$

$$f_0 = \frac{2k+1}{2} \frac{f_c}{2}$$
 frequenza di centro banda

Ovvero:

filtro passa-banda ideale

$$f_1 = k \frac{f_c}{2}$$

$$f_2 = (k+1)\frac{f_c}{2}$$

2. Campionamento delle componenti I e Q

a(t) componente I b(t) componente Q

$$\begin{vmatrix} a(t) \Leftrightarrow A(f) \\ b(t) \Leftrightarrow B(f) \end{vmatrix} = 0, per |f| \ge \frac{B}{2}$$

A. Metodo tradizionale

H(f) filtro passa-basso per $|f| \le \frac{B}{2}$

Problemi:

- moltiplicatori identici (analogici)
- sinusoidi esattamente sfasate di 90° (generate analogicamente)
- filtri (analogici) identici nei due rami
- due A/D sincroni

B. Metodo numerico

H(f) filtro *numerico* passa-basso per $|f| \le \frac{B}{2}$

Vantaggi:

- un solo A/D (anche se più veloce)
- sinusoidi (numeriche) esattamente sfasate di 90°
- filtri identici (numerici)

C. Metodo con $f_C = 4 f_0$

$$x_c(nT) = a(nT)\cos 2\pi f_0 \frac{n}{4f_0} - b(nT)\sin 2\pi f_0 \frac{n}{4f_0}$$

$$= a(nT)\cos \frac{n\pi}{2} - b(nT)sen \frac{n\pi}{2}$$

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

Realizzazione

Si deve convertire il segnale $x_a(t)$ ad una frequenza intermedia f_0 e poi campionarlo a $f_c = 4f_0$

a(nT) sottosequenza pari a segni alterni b(nT) sottosequenza dispari a segni alterni

<u>Osservazioni</u>

1. I e Q correttamente campionate a

$$f_c' = \frac{1}{2T} = \frac{f_c}{2} = 2f_0 \ge B$$

2. I e Q <u>non allineate</u> temporalmente (<u>ma</u> possono essere allineate con un'operazione di interpolazione)

$$ightharpoonup f_c = 4f_0$$
 è troppo grande?

Soluzione: generalizzazione (usata in pratica)

È sufficiente scegliere una

$$f_c = 4f_0/(2k+1)$$
, k intero

CONVERSIONE A/D CON CAMPIONAMENTO REALE

Due contributi:

1. Aliasing o ripiegamento dello spettro

2. Tempo non istantaneo di campionamento (aperture time del S/H)

1. Ripiegamento dello Spettro e Filtro di antialiasing

Il filtro di antialiasing limita la banda del segnale in modo da ridurre la distorsione spettrale

Filtro di antialiasing = passa basso non ideale

Distorsione spettrale introdotta dal campionamento

In generale

$$D_c(f) = \frac{1}{T} \sum_{k \neq 0} G_a(f - kf_c) \mid f \mid < \frac{f_c}{2}$$

Se verificate le condizioni 1) e 2) di assenza di sovrapposizione spettrale $D_c(f) = 0$ Altrimenti $D_c(f) \neq 0$

Si può definire un rapporto segnale/distorsione di campionamento:

$$\frac{S}{D} = \frac{Potenza\ dell\ segnale\ utile}{Potenza\ della\ distorsion\ e}$$

$$S = \frac{2}{T} \int_{0}^{f_c/2} G_a(f) df$$

$$D = 2 \int_{0}^{f_c/2} D_c(f) df$$

Esempio:

Procedura alternativa e più semplice di valutazione e controllo della distorsione introdotta dal campionamento.

Supponiamo che dopo un filtro di antialiasing di Butterworth di ordine n e di frequenza di taglio f_t si abbia:

$$G_a(f) = -10Log \left[1 + \left(\frac{f}{f_t} \right)^{2n} \right] \quad (dB)$$

Dopo il campionamento

$$G_c(f_c/2) \cong -10Log \left[1 + \left(\frac{f_c}{2f_t}\right)^{2n}\right] + 3 \quad (dB)$$

dove il termine 3 è dovuto al ripiegamento spettrale. Si deve scegliere f_c o n in modo che:

$$G_c(f_c/2) < a \quad (dB)$$
 (per un prefissato a)

Relazione fra il livello dello spettro a $f_c/2$ e la frequenza di campionamento normalizzata, al variare del fattore n di decadimento dello spettro di ingresso (di tipo Butterworth). Generalmente $f_c>2f_t$ (3, $10\,f_t$)

2. Tempo di campionamento non istantaneo

Si campiona un segnale con spettro $X_a(f) P(f)$ [invece di $X_a(f)$]

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

Conclusione

Il campionamento di un segnale mediante un impulso di durata non nulla può essere trattato come il campionamento ideale del segnale filtrato dallo spettro dell'impulso di campionamento.

- \rightarrow Conclusione valida per qualsiasi P(f)
- → Se $\tau << T$ effetti trascurabili Altrimenti se ne deve tenere conto

Questo effetto è più sensibile per il campionamento di segnali in alta frequenza.

Nel caso di impulso rettangolare lo spettro del segnale campionato viene distorto da una funzione

$$P(f) = \frac{sen\pi f\tau}{\pi f\tau}$$

spesso trascurabile se τ è piccolo.

Altrimenti si compensa la distorsione con un filtro con risposta nella <u>banda utile</u> del segnale del tipo

$$\frac{1}{P(f)} = \frac{\pi f \tau}{sen\pi f \tau} \quad | f | \le B$$

a) prima del campionamento (compensazione analogica)

Filtro analogico (può essere incluso nel filtro di antialiasing)

b) dopo il campionamento (compensazione digitale)

CONVERSIONE D/A - RICOSTRUZIONE REALE

Conversione digitale - analogica (D/A)

$$y(t) = \sum_{n=-\infty}^{+\infty} \left[x_c(nT) \delta(t - nT) \right] * q(t)$$

$$q(t) = \int_{0}^{1} \frac{\int_{0}^{\infty} dt}{\tau} dt$$

$$Q(f) = \tau \frac{sen \pi f \tau}{\pi f \tau}$$

Distorsione che può essere compensata come nel caso del campionamento non istantaneo

COMPENSAZIONE ANALOGICA Includere la funzione 1/Q(f) nel filtro analogico passa-basso di ricostruzione

COMPENSAZIONE DIGITALE Far precedere al blocco formatore di impulsi (e quindi al convertitore D/A) un filtro numerico con risposta in frequenza 1/Q(f)

Effetto più sensibile per la ricostruzione di segnali in alta frequenza con filtri passa-banda

Considerazioni finali sulla Conversione A/D

La codifica dei livelli quantizzati deve essere fatta associando a ciascun livello il numero binario proporzionale al valore (ampiezza) del livello stesso (codifica lineare)

Quantizzazione uniforme + codifica lineare = quantizzazione lineare

L'elaborazione numerica dei segnali richiede una quantizzazione lineare

Per esempio nella codifica internazionale PCM della voce a 64 kbit/s questo non è vero: la quantizzazione è di tipo logaritmico.

Se si deve elaborare il segnale vocale PCM occorre prima transcodificarlo in una quantizzazione lineare

8 bit PCM ← 13 ÷ 14 bit quant. lineare

Quantizzazione segnale vocale PCM

$$y = f(x)$$

Q approssima le seguenti leggi:

• legge A (Europa)

$$y = \frac{Ax}{1 + \log A}, \quad 0 \le x \le \frac{1}{A}$$
$$= \frac{1 + \log Ax}{1 + \log A}, \quad \frac{1}{A} \le x \le 1$$

$$A = 87.6$$

• legge μ (Nord America)

$$y = \frac{\log(1 + \mu x)}{\log(1 + \mu)}$$

 $\mu = 100~o~225$ (a seconda della gerarchia PCM)

Caratteristica della legge A

Rappresentazioni binarie più usate

- Virgola fissa modulo e segno complemento a 2
- Virgola mobile

Caratteristiche delle rappresentazioni binarie

	Virgola fissa frazionaria	Virgola fissa intera	Virgola mobile
Traboccam. con moltiplic.	NO	SI	Improbabile
Traboccam. con somme	SI (spesso ininfluente)	SI	Improbabile
Errore nelle moltiplic.	SI	NO	SI
Errore nelle somme	NO	NO	SI
Dinamica	moderata	moderata	enorme
Realizzazione	semplice	semplice	complessa

Generalmente in virgola fissa si usa la rappresentazione frazionaria perché non ha traboccamento nelle moltiplicazioni