Class 3

RECAP (STOCKS)

· The eagh flow of a stock: uncertain dividendy.

Q What is the preice of a stock?

Dividend discount Model

- DDM no Po = Dividend + Divi

If you sell it: $P_0 : \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \dots + \frac{D_r + P_r}{(1+r)^r}$

```
def price_stock_DDM(D, F, r):
    #expected dividends D, final price F, discount rate r
P = 0
    for i in range(1, len(D)):
        P += D[i-1]/((1+r)**(i))
P += (D[-1]+F)/((1+r)**(len(D)))
return round(P,2)
```

price_stock_DDM([50,52,55], 1100, 0.06)

1063.21

- GORDON GROWTH MODEL: D: (1+9)

$$S_0 \quad b_0 = \sum_{i=1}^{i=1} \frac{(1+i)_i}{D^{i}} = \sum_{i=1}^{i=1} \frac{(1+i)_{i+1}}{D^{i} \cdot (1+i)_{i+1}} = \frac{L-d}{D^{i}}$$

```
def price_stock_GGM(D, r, g):
    #Gordon growth model, forever
    return round(D/(r-g), 2)
```

· ACCO UNCING QUANCITIES

- ASSETS: Sum of the owned stuff

- LIABILITIES: Debt

-BOOK VALUE: Assety - liabilities

- BOOK VALUE per SHARE: BV /+ share

- EARNINGS: Profit over a year

PIXED - RETURN on EQUITY: Earnings / Book value = EPS / BYPS

- PLOWPACE RATIO: h= 1 - Dividuds

3) Roturn on a stock
$$R = \frac{D_1 + P_1 - P_0}{P_0}$$

Should be constant in the morbest (given right)
$$R = \frac{D_1 + P_1}{P_0} - 1 = \frac{(1+g)D_0 + (1+g)^2 P_0/(r_0)}{D_1/r_0} - 1 = \dots = \Gamma$$
Since we will a trisk to come.

Question 1

Respond briefly to the following statement: "You say stock price equals the present value of future dividends? That's crazy! All the investors I know are looking for capital gains."

Quick Auswer: By definition...

Even if
$$R = \frac{D_1 + P_1}{P_0} = 1$$
 we have $\frac{D_1}{P_0}$ and $\frac{P_1}{P_0} = \frac{D_1}{P_0} + \frac{D_2}{P_0} + \dots$

Question 2

Consider the following three stocks:

- Stock A is expected to provide a dividend of \$10 a share forever.
- Stock B is expected to pay a dividend of \$5 next year. Thereafter, dividend growth is expected to be 4% a year forever.
- Stock C is expected to pay a dividend of \$5 next year. Thereafter, dividend growth is expected to be 20% a year for five years (i.e., until year 6) and zero thereafter.

If the required rate of return for each stock is 10%, which stock is the most valuable?

Calculations coming up.

(alculations coming up.

(alculations coming up.

(b) perpetuity

$$P_A = \frac{C}{r} = \frac{10}{0.1} = 100$$

B Ge Ge M with Die 5, g= 0.04, r= 0.1

No
$$P_B = \frac{D_1}{r-9} = \frac{5}{0.1-0.04} = 83.33$$

© Two RATES:
$$P_{c} = \frac{D_{1}}{1.1} + \frac{D_{2}}{1.1^{2}} + \frac{D_{3}}{11^{3}} + \dots + \frac{D_{6}}{1.16} + \frac{P_{purpeturty}}{1.1^{3}}$$

$$= \frac{6}{1.1} + \frac{5 \cdot (1.2)^{\frac{1}{1}}}{(1.1)^{\frac{1}{1}}} + \frac{5 \cdot 1.2^{\frac{5}{1}}}{0.1} + \frac{1}{1.1^{\frac{5}{1}}} - \frac{1}{104.5}$$

Question 3

Company Q's current return on equity (ROE) is 14%. It pays out one-half of earnings as cash dividends (payout ratio = .5). Current book value per share is \$50. Book value per share will grow as Q reinvests earnings.

Assume that the ROE and payout ratio stay constant for the next four years. After that, competition forces ROE down to 11.5% and the payout ratio increases to 0.8. The cost of capital is 11.5%.

- a. What are Q's EPS and dividends next year? How will EPS and dividends grow in years 2, 3, 4, 5, and subsequent years?
- b. What is Q's stock worth per share? How does that value depend on the payout ratio and growth rate after year 4?

	Year	Year 1	Year 2	Year 3	Year 4	Year 5
	0					
EPS		\$50*.14 = \$7	\$7.49	\$8.014	\$8.575	\$7.537
Dividend		\$7*.5 = \$3.5	\$3.75	\$4.007	\$4.288	\$6.030
BVPS	\$50	\$50 + \$3.5 =	\$57.245	\$61.252	\$65.54	\$67.05
		\$53.5				

```
def all_accounting(BVPS_0: "Book_value_per_share_0", ROE: "Return_on_Equity", b: "Plowback ratio"):
    EPS = []
    DIV = []
    BVPS = [BVPS_0]
    if len(ROE)!=len(b):
        print("ERROR")
        return -1
    for i in range(1,len(ROE)+1):
        EPS_new = BVPS[-1]*ROE[i-1]
        DIV_new = EPS_new*(1-b[i-1])
        BVPS_new = BVPS[-1]+b[i-1]*EPS_new

    EPS.append(round(EPS_new,2))
        DIV.append(round(DIV_new,2))
        BVPS.append(round(BVPS_new,2))
    print(EPS)
    print(BVPS)
```

all_accounting(50, [0.14, 0.14, 0.14, 0.115, 0.115], [0.5, 0.5, 0.5, 0.5, 0.2, 0.2])
[7.0, 7.49, 8.01, 8.58, 7.54, 7.71]

a) The growth reate is
$$0.5 \cdot 0.14$$
 for the first 4 years. Then it becomes $0.115 \cdot 0.2 = 0.023$.

b) $P_0 = \frac{D_1 + ... + \frac{D_4}{(1+1)^4} + \frac{P_4}{(1+r)^4}}{1+r} \xrightarrow{0.115-0.023} 0.115-0.023$.

b) $Q = 0.07$