# Programming

#### William Henrich Due <sup>1</sup>

<sup>1</sup>Department of Computer Science

September 12th, 2025

#### Intended Learning Outcomes

- Write a simple program as a nondetermistic finite-state automaton (NFA).
- Write a simple program as a determistic finite-state automaton (DFA).
- The ability to differentiate between a NFA and a DFA.

# Programming Languages

What Programming Languages do you know?

#### **NFA**

- An alphabet that is a finite set of symbols e.g.
  - English Alphabet.
  - Hindu–Arabic numerals.
  - Morse code symbols.
- A finite set of states
- Transitions between states labelled by symbols or  $\epsilon$ .



- A single initial state. start →
- Zero or more accepting states.























#### Your turn

Create a NFA that determines if a non-negative integer is even.

#### **DFA**

- Subset of NFAs.
- No  $\epsilon$  transitions allowed.



No state may have more than one outgoing transition per symbol.



Why do this?

#### Your turn

Create a DFA that determines if a non-negative integer is even.

#### We are done

We are done.