SECOND ROBOTICS PROJECT

ROBOTICS

THE PROBLEM

Provided data:

- Odometry from the robot
- PointCloud

DATA

Format: ROS Bag file play the bag with the command: rosbag play --clock robotics2.bag

Data:

- /ugv/odom odometry from encoders

- /ugv/rslidar_points pointcloud from lidar

THE PROJECT (Task 1: mapping)

- Use the bag to create a map of the environment
 - Use the preferred mapping package
 - Write a launch file that starts:
 - all required nodes to perform data conversion
 - the mapping node
 - rviz with config file to show the map, the lidar and the tf, set global frame to map
 - You can use pointcloud_to_laserscan package to convert the pointcloud data

THE PROJECT (Task 2: navigation)

- Setup a realistic simulation of the robot using real robot data and the map created in task 1 (using stage)
- Robot data available here: https://global.agilex.ai/products/scout-mini
- Setup the navigation stack to receive goals and move the simulated robot avoiding obstacles in the generated map
- Write a goal-publisher node that reads a sequence of goals from a csv and send them to the robot. A new goal is sent when the robot reach the previous one or it's aborted
- an example csv file is provided

THE PROJECT (Task 2: navigation)

- Provide a launch file that starts:
 - stage simulation with the robot and the map
 - movebase configured to localize in the provided map and drive autonomously the robot avoiding obstacles
 - the controller node that publish the goal after reading them from csv
 - csv structure: x,y,theta
 - rviz configured to visualize the map, the tfs, the particle cloud (if amcl is used), the laser scanner, the paths and the goals

- Also provide a map folder with:
 - png file of the reconstructed map (mandatory)
 - serialized map if slam toolbox is used

THE FILES

https://goo.gl/GonArW Second_Project folder

Deadlines and requested files

- -Send only a tar.gz file
- -Send via e-mail both to Simone Mentasti and Matteo Matteucci
- -name the e-mail "SECOND ROBOTICS PROJECT 2024"
- -Inside the archive:
 - info.txt file (details next slide)
 - folders of the nodes you created (with inside CmakeLists.txt, package.xml, etc...)
 - map folder
 - do not send the entire environment (with build and devel folders)
 - do not send the bag files

Deadlines and requested files

File txt must contain only the group names with this structure codice persona;name;surname

You can add another file called readme.txt with additional info. I will not always look for it. But if something goes wrong I'll check for explanations.

Some more requests

Name the archive with your codice persona

Don't use absolute path

The project need to be written using c/c++

Deadline: 23 June (1 month)

Max 3 student for team

N.B.: If the grading is needed earlier you can send the project before the deadline. Specify the need for earlier grading in the message and mail title

Questions:

- -write to me via mail (simone.mentasti@polimi.it)
- do not write only to Prof. Matteucci

Additional info

- Set the simulated time in the launch files
- rosparam set use_sim_time true
- <param name="/use_sim_time" value="true"/>
- You can first test the navigation of the robot sending goals manually
- Use actions to send goals, not publishers
- Minimal changes to the map generated to use it in the simulation are allowed, mostly to clear noise and unrealistic obstacles

Changelog

_