QUÍMICA NIVEL MEDIO PRUEBA 1

Miércoles 14 de mayo de 2003 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

223-167 12 páginas

-	7		_	Tabla perió	periód	dica						8	4	\$	9	7	0
1 H 1,01				Número atómico	atómico												2 He 4,00
3 Li 6,94	4 Be 9,01			Elemento Masa atómica	ento tómica							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
11 Na 22,99	12 Mg 24,31		•									13 A1 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 CI 35,45	18 Ar 39,95
19 K 39,10	20 Ca 40,08	21 S c 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
55 Cs 132,91	56 Ba 137,34	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 TI 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)															
		÷-	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
		÷÷	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

- 1. ¿En qué cantidad de oxígeno, O_2 , (expresada en moles) hay 1.8×10^{22} moléculas?
 - A. 0,0030
 - B. 0,030
 - C. 0,30
 - D. 3,0
- 2. ¿Qué compuesto tiene la fórmula empírica de mayor masa?
 - A. C_2H_6
 - B. C_4H_{10}
 - C. C_5H_{10}
 - D. C_6H_6
- 3. $C_2H_2(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

¿Cuál es el coeficiente del oxígeno cuando se ajusta la ecuación anterior?

- A. 2
- B. 3
- C. 4
- D. 5

4. Se hace reaccionar 3,0 dm³ de dióxido de azufre con 2,0 dm³ de oxígeno de acuerdo con la ecuación:

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

- ¿Qué volumen de trióxido de azufre (expresado en dm³) se forma? (Suponga que la reacción se completa y que todos los gases se miden a la misma temperatura y presión.)
- A. 5,0
- B. 4,0
- C. 3,0
- D. 2,0
- 5. Observe la composición de las especies W, X, Y y Z que se indica a continuación. ¿Cuál de ellas es un anión?

Especie	Número de protones	Número de neutrones	Número de electrones
W	9	10	10
X	11	12	11
Y	12	12	12
Z	13	14	10

- A. W
- B. X
- C. Y
- D. Z
- **6.** Los niveles energéticos de un electrón en un átomo de hidrógeno están
 - A. espaciados regularmente.
 - B. más separados cerca del núcleo.
 - C. más juntos cerca del núcleo.
 - D. distribuidos al azar.

- 7. ¿Con qué se relaciona el número de electrones del nivel energético principal exterior de los elementos desde los metales alcalinos hasta los halógenos?
 - I. Con el número de grupo
 - II. Con el número de periodo
 - A. Sólo I
 - B. Sólo II
 - C. Ambos, I y II
 - D. Ninguno
- 8. ¿Qué par de elementos reacciona más fácilmente?
 - A. $Li + Br_2$
 - B. $Li + Cl_2$
 - C. $K + Br_2$
 - D. $K + Cl_2$
- 9. ¿Cuál es la fórmula del compuesto formado por calcio y nitrógeno?
 - A. CaN
 - B. Ca₂N
 - C. Ca₂N₃
 - D. Ca₃N₂

10. ¿Cómo varían la longitud y la fuerza de enlace a medida que aumenta el número de enlaces entre dos átomos?

	Longitud de enlace	Fuerza de enlace
A.	aumenta	aumenta
B.	aumenta	disminuye
C.	disminuye	aumenta
D.	disminuye	disminuye

11. ¿Cuál de las siguientes opciones es verdadera para el CO₂?

	enlace C=O	molécula de CO ₂
A.	polar	no polar
B.	no polar	polar
C.	polar	polar
D.	no polar	no polar

12. Las masas molares de los compuestos C₂H₆, CH₃OH y CH₃F son muy semejantes. ¿Cómo se ordenan sus puntos de ebullición?

A.
$$C_2H_6 < CH_3OH < CH_3F$$

B.
$$CH_3F < CH_3OH < C_2H_6$$

C.
$$CH_3OH < CH_3F < C_2H_6$$

D.
$$C_2H_6 < CH_3F < CH_3OH$$

13. A temperatura cercana a 0 °C y muy baja presión el agua existe en los estados sólido, líquido y gaseoso. ¿Qué relación existe entre las distancias moleculares de los tres estados en las condiciones mencionadas?

- A. Las distancias son iguales en los tres estados.
- B. En los estados sólido y líquido las distancias son similares, pero menores que en estado gaseoso.
- C. Las distancias son menores en el estado sólido, y similares en los estados líquido y gaseoso.
- D. Las distancias son menores en el estado líquido, y similares en los estados sólido y gaseoso.

14.	-	é pasará con el volumen de una masa fija de gas cuando su presión y temperatura (en Kelvin) se iquen?
	A.	No variará.
	B.	Aumentará.
	C.	Disminuirá.
	D.	No se puede predecir el cambio.
15.	¿Qu	é variaciones de energía se producen cuando los enlaces químicos se forman y se rompen?
	A.	Cuando los enlaces se forman y se rompen, se absorbe energía.
	B.	Cuando los enlaces se forman y se rompen, se libera energía.
	C.	Cuando los enlaces se forman se absorbe energía y se libera cuando se rompen.
	D.	Cuando los enlaces se forman se libera energía y se absorbe cuando se rompen.
16.		emperatura de una muestra de 2,0 g de aluminio aumenta desde 25° C a 30° C. ¿Cuántos julios de gía calórica se le entregaron? (Calor específico del Al = $0.90 \mathrm{J g^{-1} K^{-1}}$)
	A.	0,36
	B.	2,3
	C.	9,0
	D.	11

Véase al dorso

17. De acuerdo con las ecuaciones que se indican a continuación:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$\Delta H = -390 \text{ kJ}$$

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -390 \text{ kJ}$
 $Mn(s) + O_2(g) \rightarrow MnO_2(s)$ $\Delta H = -520 \text{ kJ}$

$$\Delta H = -520 \text{ kJ}$$

¿cuál es el valor de ΔH (expresado en kJ), para la siguiente reacción?

$$MnO_2(s) + C(s) \rightarrow Mn(s) + CO_2(g)$$

- A. 910
- B. 130
- C. -130
- D. -910
- 18. ¿Bajo qué condiciones una reacción es espontánea a cualquier temperatura?

	ΔH^{Θ}	ΔS^{Θ}
A.	+	+
B.	+	_
C.	_	_
D.	_	+

- **19.** ¿Cuál(es) de los siguientes aspectos es(son) importante(s) para determinar si una reacción se produce?
 - I. Energía de las moléculas
 - II. Orientación de las moléculas
 - A. Sólo I
 - B. Sólo II
 - C. Ambos, I y II
 - D. Ninguno

- **20.** Considere la reacción entre CaCO₃ sólido y HCl acuoso. ¿El aumento de qué condición(es) producirá un aumento de la velocidad de reacción?
 - I. Concentración de HCl
 - II. Tamaño de las partículas de CaCO₃
 - III. Temperatura
 - A. Sólo I
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

$$I_2(g) + 3Cl_2(g) \rightleftharpoons 2ICl_3(g)$$

¿Cuál es la expresión de la constante de equilibrio para la reacción anterior?

A.
$$K_c = \frac{[ICl_3]}{[I_2][Cl_2]}$$

B.
$$K_c = \frac{2[ICl_3]}{3[I_2][Cl_2]}$$

C.
$$K_c = \frac{2[ICl_3]}{[I_2] + 3[Cl_2]}$$

D.
$$K_c = \frac{[ICl_3]^2}{[I_2][Cl_2]^3}$$

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H^{\ominus} = -200 \text{ kJ}$

De acuerdo con la información anterior, ¿en qué condiciones de temperatura y presión se obtiene mayor cantidad de SO_3 ?

٨	
$\overline{}$	

т		
н	۲.	

C.

	5
baja	alta
alta	alta
alta	baja

Presión

baia

Temperatura

baia

223-167

23.	¿Cua	ai de los siguientes compuestos, en solución acuosa, reacciona con magnesio metarico?
	A.	Amoníaco
	B.	Cloruro de hidrógeno
	C.	Hidróxido de potasio
	D.	Hidrógenocarbonato de sodio
24.	¿Сиа́	il(es) de las siguientes soluciones es(son) buffer o reguladoras?
		I. $0.01 \mathrm{mol}\mathrm{dm}^{-3}\mathrm{HCl}$, $0.01 \mathrm{mol}\mathrm{dm}^{-3}\mathrm{NaCl}$
		II. 0,01 mol dm ⁻³ CH ₃ COOH, 0,01 mol dm ⁻³ CH ₃ COONa
	A.	Sólo I
	B.	Sólo II
	C.	Ambas, I y II
	D.	Ninguna

- **25.** ¿Qué enunciado es correcto?
 - A. La oxidación implica pérdida de electrones y disminución del estado de oxidación.
 - B. La oxidación implica ganancia de electrones y aumento del estado de oxidación.
 - C. La reducción implica pérdida de electrones y aumento del estado de oxidación.
 - D. La reducción implica ganancia de electrones y disminución del estado de oxidación.

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$

	Circuito externo	Movimiento de iones en solución
A.	los electrones se mueven desde el Ni hacia el Pb	los iones Pb ²⁺ (aq) salen del Pb(s)
B.	los electrones se mueven desde el Ni hacia el Pb	los iones Pb ²⁺ (aq) se mueven hacia el Pb(s)
C.	los electrones se mueven desde el Pb hacia el Ni	los iones Ni ²⁺ (aq) salen del Ni(s)
D.	los electrones se mueven desde el Pb hacia el Ni	los iones Ni ²⁺ (aq) se mueven hacia el Ni(s)

- 27. ¿Cuál de los siguientes compuestos es miembro de la misma serie homóloga que CH₃CH₂CH₂CH₃?
 - A. CH₃CH₂CH₃
 - B. CH₃CHCHCH₃
 - C. $CH_3CH(CH_3)_2$
 - D. CH₃CH₂CH₂CH₂OH
- 28. ¿Cuál de las siguientes estructuras es un aldehido?

				~~~		
29.	¿Oué producto	se obtiene	cuando el	$CH_2 = CH_2$	reacciona con	Br ₂ ?

- A. CHBrCHBr
- B. CH₂CHBr
- C. CH₃CH₂Br
- D. CH₂BrCH₂Br

**30.** ¿Cuál es el producto final que se obtiene cuando se calienta a reflujo CH₃CH₂OH con solución ácida de dicromato(VI) de potasio?

- A. CH₃CHO
- B.  $CH_2 = CH_2$
- C. CH₃COOH
- D. HCOOCH₃