Measurement of differential production cross section for boosted top quarks in the all hadronic channel

NTUA 23/9/2020

G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis

Motivation

Top, anti-top production in the fully hadronic final state.

Trying to identify two big jets that contain the products of the top/anti-top decay.

NTUA G. BAKAS 2

Overview

- Variables of interest:
 - ttbar mass, pt, rapidity
 - Leading and Subleading jetPt and |jetY|
 - Nominal ttbar MC samples
 - Mtt samples (700-1000, 1000-Inf) (only for 2016)
 - Baseline Parton cuts:
 - Jet Matching
 - partonPt[0],[1] > 400
 - |partonEta[0],[1]| < 2.4
 - mTTbarParton > 1000 GeV
- Baseline Reconstructed level cuts:
 - nJets > 1, nLeptons = 0, Dijet mass (mJJ) > 1000
 - Leading and Subleading jet $p_T > 400$
 - Leading and Subleading absolute jet eta | n | < 2.4
- Btagging selection:
 - bTagging (medium WP deepCSV) (2016: 0.6321, 2017: 0.4941, 2018: 0.4184)
- Top Tagger WP:
 - New top Tagger: (2016: 0.2, 2017:0.0, 2018: 0.1)

Region	Requirements
Signal Region (SR)	Baseline + topTagger + $m_{SD}^{jet1,2} \in (120,220) GeV + 2btags$
Control Region (CR)	Baseline + topTagger + $m_{SD}^{jet1,2} \in (120,220) GeV + 0 btags$
Extended SR (SR _A) (QCD fit region)	Baseline + topTagger + $m_{SD}^{jet1,2} \in (50,300) GeV + 2btags$
Extended CR (CR _A) (QCD fit region)	Baseline + topTagger + $m_{SD}^{jet1,2} \in (50,300) GeV + 0 btags$

Goal is to Unfold to the Parton And Particle Levels

- Closure Tests with Nominal MC's
- Unfolding and extrapolation with Data

Discovered that our Control Region is contaminated from ttbar and Subdominant bkg:

 Extract this contribution from the Data CR distribution → pure QCD

Differences with TOP-18-013:

- mJJ and mTTbarParton cut at 1000 GeV instead of 800 GeV
- New top tagger, tagging jets and not events. The goal is to have higher efficiency in the far end of the spectrum

B tagging SF's are applied

NTUA G. BAKAS 3

Efficiency and Acceptance Plots

Parton Efficiency '16,'17,'18 NominalMC

Parton Acceptance '16,'17,'18 NominalMC

Efficiency and Acceptance Plots

Parton Efficiency '16,'17,'18 NominalMC

Parton Acceptance '16,'17,'18 NominalMC

(2016) (2017) (2018)

Assuming that response matrices are compatible to each other

- 1. Unfold each year and combine results?
- 2. Combine Fiducial Measurements and then unfold

Contamination Plots Medium WP (CR) 2016, 2017, 2018

(2016) (2017) (2018)

Contamination Plots Medium WP (CR) 2016, 2017, 2018

Comment

Shapes and in general contamination is **NOT** affected by btagging by Scale factors

Mass Fit in Extended SR (SR_A)

$$QCD_0(m^t) = D_0(m^t) - T_0(m^t) - Sub_0(m^t)$$

Both SR and Control Region use the Medium btag WP.

Intuition is to remove the ttbar and subdominant bkg contribution from the data Control Region

A RooPlot of "mTop"

<u>Signal strength:</u> $r = 0.644361 \pm 0.023851$ (new)

A RooPlot of "mTop"

Signal strength: $r = 0.683382 \pm 0.0200866$

Signal Strength Results

Signal Extraction

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$Subdominant bkg shape and contribution (MC)$$

- Where x_{reco} is the respected variable of interest (ttbar mass, pt, rapidity, leading and subleading jetPt and |jetY|)
- We deploy a fit in the Signal Region (2btag) to extract the N_{QCD}^{fit}

$$D(m^t)^{(i)} = N_{tt}^{(i)} T^{(i)}(m^t, k_{MassScale}, k_{MassResolution}) + N_{bkg}^{(i)} B(m^t) (1 + k_1 x) + N_{sub}^{(i)} O^{(i)}(m^t)$$

Our data CR is contaminated from ttbar and subdominant bkgs which has to be dealt with.

NTUA G. BAKAS 11

Fiducial Differential Cross Section

Fiducial Differential Cross Section (Normalized)

Parton & Particle levels

Parton

Observable	Requirement	
$p_T^{t,ar{t}}$	> 400 GeV	
$ \eta^{t,ar{t}} $	< 2.4	
$m_{tar{t}}$	> 1000 GeV	

Particle level Top Candidates

Observable	Requirement	
N_{jets}	>1	
$p_T^{jet1,2}$	> 400 GeV	
$ \eta^{jet1,2} $	< 2.4	
$m_{SD}^{ m jet1,2}$	(120, 220) GeV	
m_{jj}	> 1000 GeV	

$$\frac{d\sigma_i^{\mathrm{unf}}}{dx} = \frac{1}{\mathcal{L} \cdot \Delta x_i} \cdot \frac{1}{f_{2,i}} \cdot \sum_j \left(R_{ij}^{-1} \cdot f_{1,j} \cdot S_j \right)$$
 efficiency of the reco+true selection reco+true selection

Unfolding: simple response matrix inversion w/o regularisation

Parton Differential Cross Section

Parton Differential Cross Section Comparison

Tag And Probe

- Top Tagger Scale Factors
 - Validation method to ensure that no SF's are needed
 - From data we subtract QCD and Subdominant bkgs (MC) so that the data sample is pure

```
efficiency = \frac{\# (1 \, jet \, pass \, baseline + Tight \, TopTagger \, Cut \, AND \, 1 \, jet \, pass \, SR)}{\# (1 \, jet \, pass \, baseline + Tight \, TopTagger \, Cut \, AND \, 1 \, jet \, pass \, only \, baseline)}
```

- Randomization: Randomly select leading/subleading jet to use as tag or probe to avoid pT bias
- Divide the phase space into pT regions based on the topTagger categories: [400-600] GeV, [600-800] GeV,
 [800-Inf] GeV

(2016) (2017) (2018)

eff data: 0.781 ± 0.038 eff ttbar: 0.772 ± 0.014

Efficiency per Pt region eff data pT[400-600]: 0.761 ± 0.042 eff ttbar pT[400-600]: 0.778 ± 0.016

eff data pT[600-800]: 0.851 ± 0.100 eff ttbar pT[600-800]: 0.748 ± 0.031

eff data pT[800-Inf]: 0.886 ± 0.160 eff ttbar pT[800-Inf]: 0.775 ± 0.063

eff data: 0.857 ± 0.040

eff ttbar: 0.875 ± 0.0072

Efficiency per Pt region

eff data pT[400-600]: 0.872 ± 0.047 eff ttbar pT[400-600]: 0.874 ± 0.008

eff data pT[600-800]: 0.795 ± 0.088 eff ttbar pT[600-800]: 0.876 ± 0.018

eff data pT[800-Inf]: 0.797 ± 0.186 eff ttbar pT[800-Inf]: 0.899 ± 0.045

eff data: 0.798 ± 0.034 eff ttbar: 0.839 ± 0.005

Efficiency per Pt region

eff data pT[400-600]: 0.793 ± 0.04

eff ttbar pT[400-600]: 0.836 ± 0.006

eff data pT[600-800]: 0.829 ± 0.066 eff ttbar pT[600-800]: 0.851 ± 0.013

eff data pT[800-Inf]: 0.752 ± 0.13 eff ttbar pT[800-Inf]: 0.865 ± 0.032

Summary

- Applied the b-tagging SF's
 - Significant effect on the ttbar signal strength on 2017 and 2018
- We have extracted the first results of the cross section in the Fiducial and the parton/particle levels
- Start investigating ttbar Systematic Uncertainties

2016 Nominal MC:

Tune CUETP8M2T4	TuneCP5	
/TT_TuneCUETP8M2T4_13TeV-powheg- pythia8/RunllSummer16MiniAODv3-	/TTToHadronic_TuneCP5_PSweights_13TeV-powheg- pythia8/RunllSummer16MiniAODv3-	
PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM	PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM (TTToSemiLeptonic, TTTo2L2Nu)	

- Investigate on how to combine the measurements between the three years
 - Combine them in the fiducial level and extract the cross section?
 - Extract the cross sections individually and combine the measurements in the unfolded level?

NTUA G. BAKAS 19

BACKUP

Signal Selection

Variables	Selected Cut	
pT (both leading jets)	> 400 GeV	
Njets	> 1	
N leptons	= 0	
eta (both leading jets)	< 2.4	
mJJ	> 1000 GeV	
jetMassSoftDrop (only for fit)	(50,300) GeV	
Top Tagger	> 0.2, 0, 0.1	
B tagging (2 btagged jets)	> Medium WP	
Signal Trigger		

Control Region Selection

Variables	Selected Cut	
pT (both leading jets)	> 400 GeV	
Njets	> 1	
N leptons	= 0	
eta (both leading jets)	< 2.4	
mJJ	> 1000 GeV	
jetMassSoftDrop (only for fit)	(50,300) GeV	
Top Tagger	> 0.2, 0, 0.1	
B tagging (0 btagged jets)	< Medium WP	
Control Trigger		

Year	Type of File	DAS
2016	TT Mtt 700-1000	/TT Mtt-700to1000 TuneCUETP8M2T4 13TeV-powheg-pythia8/RunlISummer16MiniAODv3-PUMoriond17 94X mcRun2 asymptotic v3-v2/MINIAODSIM
	TT Mtt 1000-Inf	/TT Mtt-1000toInf TuneCUETP8M2T4_13TeV-powheg-pythia8/RunlISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM
	TT Nominal	/TT TuneCUETP8M2T4 13TeV-powheg-pythia8/RunllSummer16MiniAODv3-PUMoriond17 94X mcRun2 asymptotic v3-v1/MINIAODSIM
	TT Mtt 700-1000	
2017	TT Mtt 1000-Inf	
	TT Nominal Hadronic	/TTToHadronic TuneCP5 13TeV-powheg-pythia8/RunlIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
	TT Nominal Semilepton	/TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM
	TT Nominal Dilepton	TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM
	TT Mtt 700-1000	
2018	TT Mtt 1000-Inf	
	TT Nominal Hadronic	/TTToHadronic_TuneCP5_13TeV-powheg-pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM
	TT Nominal Semilepton	/TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM
	TT Nominal Dilepton	/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM

Overview: Discriminator, Efficiency and Acceptance

The discriminator is a BDT trained individually for 2016, 2017 and 2018

Category training: split the sample in categories based on Pt

- Bins:
 - [400, 600] GeV
 - [600, 800] GeV
 - [800, 1200] GeV
 - [1200, inf) GeV
- BDT, used variables:
 - Leading and Sub-leading subjet mass
 - N-Subjetiness variables (tau1, tau2, tau3)
 - fraction of the jetPt over the total pt sum of the event.
 - Energy correlation functions (ecfB1N2,ecfB1N3, ecfB2N2, ecfB2N3)
- BDT Output consistency for the 3 years
- Calculation of Efficiency and acceptance for each year
 - We choose the WP's for each year so that the leading jet p_T efficiency is similar for all years

2016

2017

2018

NTUA G. BAKAS 23

Fit Params Results Comparison

b tagging SF's

without b tagging SF's

b tagging SF's

without b tagging SF's

b tagging SF's

without b tagging SF's

mTTbarParton (GeV)

mTTbarParton (GeV)

Tight TopTagger + SR TopTagger

TagAndProbe Efficiency Plots

b tagging SF's

without b tagging SF's

Efficiency--with btagging SF's eff data: 0.781 ± 0.038

eff ttbar: 0.772 ± 0.014

Efficiency per Pt region

eff data pT[400-600]: 0.761 ± 0.042 eff ttbar pT[400-600]: 0.778 ± 0.016

eff data pT[600-800]: 0.851 ± 0.100 eff ttbar pT[600-800]: 0.748 ± 0.031

eff data pT[800-Inf]: 0.886 ± 0.160 eff ttbar pT[800-Inf]: 0.775 ± 0.063

Efficiency--without btagging SF's

eff data: 0.782 ± 0.039

eff ttbar: 0.772 ± 0.014

Efficiency per Pt region

eff data pT[400-600]: 0.762 ± 0.043 eff ttbar pT[400-600]: 0.778 ± 0.016

eff data pT[600-800]: 0.854 ± 0.103 eff ttbar pT[600-800]: 0.748 ± 0.031

eff data pT[800-Inf]: 0.888 ± 0.161 eff ttbar pT[800-Inf]: 0.775 ± 0.064

b tagging SF's

without b tagging SF's

Efficiency-- with btagging SF's eff data: 0.857 ± 0.040

eff ttbar: 0.875 ± 0.0072

Efficiency per Pt region

eff data pT[400-600]: 0.872 ± 0.047 eff ttbar pT[400-600]: 0.874 ± 0.008

eff data pT[600-800]: 0.795 ± 0.088 eff ttbar pT[600-800]: 0.876 ± 0.018

eff data pT[800-Inf]: 0.797 ± 0.186 eff ttbar pT[800-Inf]: 0.899 ± 0.045

Efficiency-- without btagging SF's

eff data: 0.864 ± 0.043

eff ttbar: 0.875 ± 0.007

Efficiency per Pt region

eff data pT[400-600]: 0.880 ± 0.049 eff ttbar pT[400-600]: 0.874 ± 0.008

eff data pT[600-800]: 0.8 ± 0.091 eff ttbar pT[600-800]: 0.876 ± 0.018

eff data pT[800-Inf]: 0.796 ± 0.2 eff ttbar pT[800-Inf]: 0.898 ± 0.045

b tagging SF's

without b tagging SF's

Efficiency-- with tag SF's eff data: 0.816 ± 0.032 eff ttbar: 0.839 ± 0.005

Efficiency per Pt region

eff data pT[400-600]: 0.8176 ± 0.038 eff ttbar pT[400-600]: 0.837 ± 0.006

eff data pT[600-800]: 0.809 ± 0.063 eff ttbar pT[600-800]: 0.847 ± 0.013

eff data pT[800-Inf]: 0.772 ± 0.132 eff ttbar pT[800-Inf]: 0.868 ± 0.032

Efficiency-- without tag sf's

eff data: 0.822 ± 0.034

eff ttbar: 0.839 ± 0.005

Efficiency per Pt region

eff data pT[400-600]: 0.824 ± 0.039 eff ttbar pT[400-600]: 0.837 ± 0.006

eff data pT[600-800]: 0.819 ± 0.066 eff ttbar pT[600-800]: 0.847 ± 0.013

eff data pT[800-Inf]: 0.789 ± 0.141 eff ttbar pT[800-Inf]: 0.868 ± 0.032

