7. Kanalikiht II

Side IRT3930

Ivo Müürsepp

CSMA/CD

- Kuula, kas keegi teine edastab (meedium vaba?).
- Kui meedium on vaba, siis edasta kaader.
- Kui meedium ei ole vaba, siis kuula edasi. Alusta kaadri edastamist niipea kui meedium vabaneb. Kuulamist jätkatakse ka edastamise ajal.
- Kui tuvastatakse kokkupõrge (collision) siis edasta lühikene teavitussignaal (jamming) ja lõpeta seejärel edastus.
- Oota juhuslikult valitud aja (backoff) jooksul ja seejärel alusta uuesti esimesest punktist.

Meediapöördus raadiovõrgus

- Peidetud sõlme probleem
 - Hidden node probleem
 - Lahendus: pollimine, token
- Avaliku sõlme probleem
 - Exposed node probleem
 - Lahendus: RTS/CTS mehhanism

Loogilise ühenduse kiht *LLC*

- Liides kõrgema kihi protokollide jaoks. Andmete multipleksimine (*LSAP*).
- Voo juhtimine (Stop-and-Wait, Sliding-Window).
- Vigade tuvastus ja parandamine (ARQ, FEC).

Vookontroll RS-232 näitel

- Tarkvaraline
 - Xon/Xoff
 - In-band
 - Kasutatakse kahte ASCII sümbolit:
 - Xoff: peata edastus 0x13 (CNTRL + S)
 - Xon: jätka edastamist 0x11 (CNTRL + Q)
- Riistvaraline
 - RTS/CTS
 - Eraldi ühendused kontrollsignaalide jaoks (*out-of –band*)

Riistvaraline vookontroll

Nr	Lühend	Tähendus	Selgitus
1	CD	Carrier Detect	Modemid on omavahel ühendatud
2	Rx	Receive	Sisend vastuvõetavate andmete jaoks
3	Tx	Transmit	Väljund edastatavatele andmetele
4	DTR	Data Terminal Ready	Arvuti (DTE) on sideks valmis
5	GND	Ground	Maa
6	DSR	Data Set Ready	Modem (DCE) on sideks valmis
7	RTS	Request To Send	Arvuti (DTE) soovib edastada
8	CTS	Clear To Send	Modem (DCE) on valmis andmeid vastu võtma
9	RI	Ring Indicator	Sissetulev "kõne"

Nullmodem

Kanalikihi seadmed

Vigu parandavad koodid

- FEC Forward Error Correction
- Saavutatakse kontrollitud liiasuse lisamisega.
- Hammingi koodid
 - Kolmkeordselt kordav kood Hamming (3,1)
 - Hamming (7,4)
- Reed-Solomoni koodid
 - CD, DVB, WiMAX, QR
- BCH koodid
- Konvolutsioonilised koodid
- Võrekoodid
 - Viterbi algoritm.
- Turbokoodid
 - 3G/4G mobiil, kosmoseside
- LDPC koodid (Gallageri koodid)

Mõisted

- Hammingi kaal
 - Koodsõna **c** Hammingi kaaluks *w*{**c**} nimetatakse tema mittenulliste koordinaatide arvu.
- Hammingi kaugus
 - Kahe koodsõna \mathbf{c}_i ja \mathbf{c}_j vaheliseks kauguseks nimetatakse nende koordinaatide arvu, milles nad üksteisest erinevad. $h = d\{\mathbf{c}_i, \mathbf{c}_i\} = w\{\mathbf{c}_i \oplus \mathbf{c}_i\}$
- Minimaalne kaugus
 - Koodi ${\bf C}$ minimaalseks kauguseks h_{\min} nimetatakse kahe erineva koodsõna vähimat kaugust.

$$h_{min} = d\{\mathbf{c}_i, \mathbf{c}_i\} \quad i \neq j$$

Hammingi kood

- Lineaarne binaarne plokk-kood minimaalse kaugusega h_{min} = 3.
- Iga täisarvu *r* ≥ 2 korral on ploki pikkus *n* = 2r -1, millest informatsiooni kannab *k* = 2^r-*r*-1 bitti ja ülejäänud on paarsusbitid.
- Koodi kiiruseks (*code rate*) nimetatakse informatsiooni edastavate bittide arvu *k* suhet kogu ploki pikkusesse *n*.

$$R = k/n$$

Hammingi koodi kiirus

$$R = 1 - r/(2^r - 1)$$

Suudab parandada ühekordseid bitivigu.

Hamming (7,4)

$$r = 3$$

 $n = 7$
 $k = 4$
 $R = 4/7 \approx 0.57$

Biti nr		7	6	5	4	3	2	1
Biti sisu		d7	d6	d5	p4	d3	p2	p1
	P4	X	X	X	X			
	p2	X	X			X	X	
	p1	X		X		X		X

$$p4 = d7 + d6 + d5$$

 $p2 = d7 + d6 + d3$
 $p1 = d7 + d5 + d3$

Sõnum: 1101

$$p4 = d7 + d6 + d5 = 1+1+0 = 0$$
 $p2 = d7 + d6 + d3 = 1+1+1 = 1$
 $p1 = d7 + d5 + d3 = 1+0+1 = 0$

Koodsõna: 1100110

Hamming (7,4)

Sõnum: 1101

Koodsõna **c**: 1100110

Veavektor **e**: 0010000

Vigane koodsõna: 1110110

Sündroom:

$$A = p4 + d7 + d6 + d5$$

$$B = p2 + d7 + d6 + d3$$

$$C = p1 + d7 + d5 + d3$$

Leiame sündroomi s:

$$A = p4 + d7 + d6 + d5 = 0+1+1+1 = 1$$

$$B = p2 + d7 + d6 + d3 = 1 + 1 + 1 + 1 = 0$$

$$C = p1 + d7 + d5 + d3 = 0 + 1 + 1 + 1 = 1$$

Sündroom:
$$s = 101_2 = 5$$

Bitt numbriga 5 ehk d5 on vigane!

Parandatud koodsõna: 1100110

Hamming (7,4)

Genereeriv maatriks

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

c = dG

Süstemaatiline kood

$$\mathbf{G} = \begin{bmatrix} \mathbf{I} | \mathbf{A} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 | 0 & 1 & 1 \\ 0 & 1 & 0 & 0 | 1 & 1 & 0 \\ 0 & 0 & 1 & 0 | 1 & 0 & 1 \\ 0 & 0 & 0 & 1 | 1 & 1 & 1 \end{bmatrix}$$

Paarsuskontrolli maatriks

Saadakse genereeriva maatriksi teisendamisel

$$\mathbf{H} = \begin{bmatrix} \mathbf{A}^T | \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 | 1 & 0 & 0 \\ 1 & 1 & 0 & 1 | 0 & 1 & 0 \\ 0 & 1 & 1 & 1 | 0 & 0 & 1 \end{bmatrix}$$

Sündroom leitakse

$$\mathbf{s} = \mathbf{H}\mathbf{c}^T$$

15

Hamming (7,4) – lubatud koodsõnad

sõnum	koodsõna	sõnum	koodsõna
0000	0000000	1000	
0001	0000111	1001	
0010	0011001	1010	
0011	0011110	1011	
0100		1100	
0101		1101	1100110
0110		1110	
0111		1111	

- Koodsõna on seitsmebitine, võimalike koodsõnade arv seega 2⁷ = 128
- Lubatud koodsõnu ainult 16
- Kasutusel ainult iga kaheksas

Harjutusülesanded

- Kuupsatelliidiga side pidamiseks kasutatakse *stop-and-wait* vookontrolli. Andmeedastuskiirus on 9600 bit/s, vahemaa satelliidist maajaamani muutub 3200-400 km. Andmepaketi pikkus on 256 baiti ja kinnituse oma 4 baiti. Millisesse vahemikku jääb keskmine andmeedastuskiirus? Lihtsuse mõttes eeldame, et kanalis vigu ja lisaviiteid ei teki.
- Kodeeri Hammingi (7,4) koodi kasutades sõnum d = 1001.
- Vastu võeti koodsõna c = 1011110, milline oli edastatud sõnum d?
- Täida slaidil 16 toodud lubatud koodsõnade tabel lõpuni.

Lisaks lugeda

- Columbia University. Serial Port and Modem Cables.
 http://www.columbia.edu/kermit/cable.html, 15.10.17
- Hamming Codes How it Works.
 https://www.gaussianwaves.com/2008/05/hamming-codes-how-it-works/, 15.10.17