EEL 205 N

132

MAJOR EXAMINATION

Time 2 Hrs Total Marks: 40

Note: a) All questions are compulsory.

- b) Only 10% Marks are allocated towards the correctness of the process and technique used to solve the problem
- 1 x [n] is a real valued causal sequence with discrete time Fourier Transform X ($e^{j\omega}$). Determine x[n] if the imaginary part of X ($e^{j\omega}$) is given by : Im { X ($e^{j\omega}$) } = 3 sin (2ω) 2 sin(3 ω).

6 Marks

1

Ž

10.

8.7

13

1

 y_r [n] is a real-valued sequence with discrete time Fourier transform Y_r ($e^{j\omega}$). The sequences y_r [n] and y_i [n] as shown in Fig1. are interpreted as real and imaginary part of a complex sequence y_i [n] = y_r [n] + i y_i [n]. Determine the choice of H($e^{i\omega}$) in Fig. 1 so that Y($e^{i\omega}$) is Y_r($e^{i\omega}$) for negative frequencies ($-\pi < \omega < 0$) and zero for positive frequencies ($0 < \omega < \pi$) between - π and π .

 $y_{r}[n] \xrightarrow{\qquad \qquad } y_{r}[n]$ $y_{r}[n] \xrightarrow{\qquad \qquad } y_{r}[n] + j y_{i}[n]$ $y_{i}[n] \xrightarrow{\qquad \qquad } y_{i}[n]$ Fig. 1

3 A system for examining the spectral content of a signal x[n] is shown in fig. 2 (a). The filters h[n] in each channel are identical three-point non-causal FIR filters with an impulse response h [n] = $h_0 \delta$ [n] + $h_1 \delta$ [n +1] + $h_2 \delta$ [n +2]. The filter output is sampled at n = 0 δ obtain the sequence y_k [n], k = 0,1,2,3.

8 Marks

Fig. 2(a)

An alternative to the system in Fig 2 (a) has been proposed using a 4-point discrete Fourier transform as shown in Fig 2(b).

Determine g [n] and r [n] so that P [k] = y_k [0]

4 The following information is known about a discrete time LTI system with input x[n] and output y[n].

6 Marks

- a. If $x[n] = (-2)^n$ for all n, then y[n] = 0 for all n
- b. If $x[n] = (1/2)^n u[n]$ for all n, then y[n] for all n is of the form $y[n] = \delta[n] + a(1/4)^n u[n]$, where "a" is a constant
- c. Determine the value of the constant "a"
- d. Determine the response y[n] if the input x[n] = 1 for all n.
- For an LTI system the input x [n] and output y[n] are related by the difference equation: y [n-1] (5/2) y [n] + y [n+1] = x[n]. This system may or may not be stable or causal.
 - Considering the pele-zero pattern associated with this difference equation, determine three pessible choices of the unit impulse response of the system.

6 Marks

6 Find whether the impulses responses listed below corresponds to a stable system.

a.
$$h_1[n] = n \cos((\pi/4)n)u[n]$$

b.
$$h_2[n] = 3^n u[-n + 10]$$

2 Marks

7 Solve the Initial value problem given below:

$$\frac{d^2 y(t)}{d t^2} + 4 \frac{d y(t)}{d t} = \cos(t-3) + 4t \qquad y(3) = 0 \quad y'(3) = 7$$

6 Marks