

Markscheme

May 2021

Physics

Standard level

Paper 2

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject Details: Physics SL Paper 2 Markscheme

Candidates are required to answer all questions. Maximum total = 50 marks.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- **5.** An alternative wording is indicated in the "Answers" column by a slash (/). Either wording can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** etc. Either alternative can be accepted.
- **8.** Words inside chevrons **« »** in the "Answers" column are not necessary to gain the mark.
- **9.** Words that are underlined are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- **12.** Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script. "ECF acceptable" will be displayed in the "Notes" column.
- **14.** Do **not** penalize candidates for errors in units or significant figures, **unless** it is specifically referred to in the "Notes" column.

C	Questi	on	Answers	Notes	Total
1.	а		$\Delta p = 0.45 \times 19 \ \textbf{OR} \ \ a = \frac{19}{0.055} \ \checkmark$ $\text{w= } F = \frac{0.45 \times 19}{0.055} \text{ » } 160 \text{ «N» } \checkmark$	Allow [2] marks for a bald correct answer. Allow ECF for MP2 if 19 sin22 OR 19 cos22 used.	2
1.	b	i	horizontal speed = 19 x cos 22 «= 17.6 m s ⁻¹ » \checkmark time = « $\frac{\text{distance}}{\text{speed}} = \frac{11}{19 \cos 22} = 0.62 \text{ «s» } \checkmark$	Allow ECF for MP2	2
1.	b	ii	initial vertical speed = 19 x sin 22 «= 7.1 m s ⁻¹ » ✓ «7.12 x 0.624 - 0.5 x 9.81 x 0.624 ² =» 2.5 «m» ✓ ball does not hit wall <i>OR</i> 2.5 «m» > 2.4 «m» ✓	Allow ECF from (b)(i) and from MP1 Allow $g = 10 \text{ m s}^{-2}$	3
1.	С		air resistance opposes «direction of» motion <i>OR</i> air resistance opposes velocity ✓ on the way up «vertical» acceleration is increased <i>OR</i> greater than g ✓ on the way down «vertical» acceleration is decreased <i>OR</i> smaller than g ✓	Allow deceleration/acceleration but meaning must be clear	2
1.	d		13 «rad» s ⁻¹ ✓	Unit must be seen for mark Accept Hz Accept 4 π «rad» s ⁻¹	1

Q	uestic	on	Answers	Notes	Total
2.	a		«He behaves as ideal gas if» $p \propto T$ «at constant V» \checkmark uses two points to show that $p \propto T$ \checkmark	MP1 can also be described as $\frac{p}{T} = k$ OR $\frac{p}{T} = \frac{nR}{V}$	2
2.	b		$\frac{100 \times 10^{3} \times 10^{-3}}{250 \times 8.31} = \text{«0.048 mol» } \checkmark$ $\text{«0.048 x 4 =» 0.19 «g» } \checkmark$	Allow any correct data point to be used. Allow ECF from MP1	2
2.	С		recognizes that pressure will double ✓ graph will be steeper <i>OR</i> gradient will be larger ✓ graph will still go through the origin ✓	MP1 can be expressed as e.g." $p \propto n$ " OR " $\frac{nR}{V}$ will double". Accept $pv = 2nRT$ for MP1 .	2 max

C	Questic	on	Answers	Notes	Total
3.	а		identifies units of σ as C m ⁻² \checkmark $\frac{C}{m^2} \times \frac{Nm^2}{C^2}$ seen and reduced to N C ⁻¹ \checkmark	Accept any analysis (eg dimensional) that yields answer correctly	2
3.	b	i	horizontal force F on ball = $T \sin 30 \checkmark$ $T = \frac{mg}{\cos 30} \checkmark$ $F \ll mg \tan 30 = 0.025 \times 9.8 \times \tan 30 = 0.14 \ll N \checkmark$	Allow g= 10 N kg ⁻¹ Award [3] marks for a bald correct answer. Award [1max] for an answer of zero, interpreting that the horizontal force refers to the horizontal component of the net force.	3
3.	b	ii	$E = \frac{0.14}{1.2 \times 10^{-6}} = 1.2 \times 10^{5} \text{ w} \checkmark$ $\sigma = \left(\frac{2 \times 8.85 \times 10^{-12} \times 0.14}{1.2 \times 10^{-6}}\right) = 2.1 \times 10^{-6} = 2$	Allow ECF from the calculated F in (b)(i) Award [2] for a bald correct answer.	2
3.	С		$\frac{Q}{0.22^2} = \frac{1.2 \times 10^{-6}}{0.18^2} \checkmark$ «+»1.8 x 10 ⁻⁶ «C» \(\forall 2sf \(\forall	Do not award MP2 if charge is negative Any answer given to 2 sig figs scores MP3	3

C	Question	n Answers	Notes	Total 2
4.	а	$^{205}_{82}$ Pb \checkmark $^{0}_{-1}$ e AND $^{0}_{0}$ υ_{e} \checkmark		
4.	b	Reference to proton repulsion <i>OR</i> nucleon attraction \checkmark strong force is short range <i>OR</i> electrostatic/electromagnetic force is long range \checkmark more neutrons «than protons» needed «to hold nucleus together» \checkmark		2 max
4.	c	135 130 125 120 76 77 78 79 80 81 82 83 84 85 86 any α change correct ✓ any β change correct ✓ diagram fully correct ✓	Award [2 max] for a correct diagram without arrows drawn. For MP1 accept a (-2, -2) line with direction indicated, drawn at any position in the graph. For MP2 accept a (1, -1) line with direction indicated, drawn at any position in the graph. Award [1] max for a correct diagram with all arrows in the opposite direction	3

C	Questi	on	Answers	Notes	Total
5.	а		energy is not propagated by standing waves ✓ amplitude constant for travelling waves <i>OR</i> amplitude varies with position for standing waves <i>OR</i> standing waves have nodes/antinodes ✓ phase varies with position for travelling waves <i>OR</i> phase constant inter-node for standing waves ✓ travelling waves can have any wavelength <i>OR</i> standing waves have discrete wavelengths ✓	OWTTE	2 max
5.	b	i	«sound» wave «travels down tube and» is reflected ✓ incident and reflected wave superpose/combine/interfere ✓	OWTTE Do not award MP1 if the reflection is quoted at the walls/container.	2
5.	b	ii	nodes shown at water surface AND $\frac{2}{3}$ way up tube (by eye) ✓	Accept drawing of displacement diagram for correct harmonic without nodes specifically identified. Award [0] if waveform is shown below the water surface	1
5.	b	iii	$\lambda = 0.74 \text{ mm} \checkmark$ $f = \ll \frac{c}{\lambda} = \frac{320}{0.74} = 430 \text{ m/s} \checkmark$	Allow ECF from MP1	2

(Question	Answers	Notes	Total
6.	a	there is a potential difference across the internal resistance OR there is energy/power dissipated in the internal resistance ✓ when there is current «in the cell»/as charge flows «through the cell» ✓	Allow full credit for answer based on $V = \varepsilon - Ir$	2
6.	b	ALTERNATIVE 1 pd dropped across cell = $6.5 \text{ «V»} \checkmark$ internal resistance = $\frac{6.5}{0.9} \checkmark$ 7.2 « Ω » \checkmark ALTERNATIVE 2 $\varepsilon = I(R+r) \text{ so } \varepsilon = V + Ir \checkmark$ 21.0 = $14.5 + 0.9 \times r \checkmark$ 7.2 « Ω » \checkmark	Alternative solutions are possible Award [3] marks for a bald correct answer	3
6.	С	power arriving at cell = 680 x 0.35 x 0.45 = «107 W» ✓ power in external circuit = 14.5 x 0.9 = «13.1 W» ✓ efficiency = 0.12 <i>OR</i> 12 % ✓	Award [3] marks for a bald correct answer Allow ECF for MP3	3
6.	d	<pre>«energy from Sun/photovoltaic cells» is renewable OR non-renewable are running out ✓ non-polluting/clean ✓ no greenhouse gases OR does not contribute to global warming/climate change ✓</pre>	OWTTE Do not allow economic aspects (e.g. free energy)	2 max