

In the Claims

The listing of claims will replace all prior versions and listings of claims in the application.

Listings of claims

1. (Withdrawn) A method of antagonising gonadotropin releasing hormone activity in a patient, comprising administering a compound of formula (I):

wherein:

R¹ is selected from: hydrogen, optionally substituted C₁₋₆alkyl, optionally substituted aryl or optionally substituted arylC₁₋₆alkyl, wherein the optional substituents are selected from C₁₋₄alkyl, nitro, cyano, fluoro and C₁₋₄alkoxy;

R² is an optionally substituted mono or bi-cyclic aromatic ring, wherein the optional substituents are 1, 2 or 3 substituents independently selected from: cyano, **R^eR^fN-**, C₁₋₆alkyl, C₁₋₆alkoxy, halo, haloC₁₋₆alkyl or haloC₁₋₆alkoxy wherein **R^e** and **R^f** are independently selected from hydrogen, C₁₋₆alkyl or aryl;

R³ is selected from a group of Formula (IIa) to Formula (IId):

Formula (IIa)

Formula (IIb)

Formula (IIc)

Formula (IId)

where **R⁶** and **R^{6a}** are independently selected from hydrogen, fluoro, optionally substituted C₁₋₆alkyl, C₁₋₆alkoxy, or **R⁶** and **R^{6a}** taken together and the carbon atom to which they are attached form a carbocyclic ring of 3-7 atoms or **R⁶** and **R^{6a}** taken together and the carbon atom to which they are attached form a carbonyl group;

or when **A** is not a direct bond the group forms a carbocyclic ring of 3-7 carbon atoms or a heterocyclic ring containing one or more heteroatoms;

or the group forms a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

R⁷ is selected from: hydrogen or C₁₋₆alkyl;

R⁸ is selected from:

- (i) hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, haloC₁₋₆alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxy, hydroxyC₁₋₆alkyl, cyano, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, C₁₋₆alkyl-S(O_n)-, -O-R^b, -NR^bR^c, -C(O)-R^b, -C(O)O-R^b, -CONR^bR^c, NH-C(O)-R^b or -S(O_n)NR^bR^c, where R^b and R^c are independently selected from hydrogen and C₁₋₆alkyl optionally substituted with hydroxy, amino, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, HO-C₂₋₄alkyl-NH- or HO-C₂₋₄alkyl-N(C₁₋₄alkyl)-;
- (ii) nitro when **B** is a group of Formula (IV) and **X** is CH and **p** is 0;
- (iii) carbocyclyl (such as C₃₋₇cycloalkyl or aryl) or arylC₁₋₆alkyl each of which is optionally substituted by R¹², or R¹³;
- (iv) heterocyclyl or heterocyclylC₁₋₆alkyl each of which is optionally substituted by up to 4 substituents independently selected from R¹² or R¹³, and where any nitrogen atoms within a heterocyclyl group are, where chemically allowed, optionally in their oxidised (N→O, N-OH) state;

A is selected from:

- (i) a direct bond;
- (ii) optionally substituted C₁₋₅alkylene wherein the optional substituents are independently selected from: hydroxy, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, aryl or arylC₁₋₆alkyl;
- (iii) a carbocyclic ring of 3-7 atoms;
- (iv) a carbonyl group or -C(O)-C(R^dR^d)-, wherein R^d is independently selected from hydrogen and C₁₋₂alkyl;

or when \mathbf{R}^3 is a group of Formula (IIa) or (IIb), the group

forms a

heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

or when \mathbf{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId), the group

forms

a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

B is selected from:

- (i) a direct bond;
- (ii) a group of Formula (IV)

Formula (IV)

wherein:

X is selected from N or CH,

wherein at position (a) Formula (IV) is attached to the nitrogen atom and the $(\text{CH}_2)_p$ group is attached to \mathbf{R}^8 ; and

- (iii) a group independently selected from: optionally substituted C_{1-6} alkylene, optionally substituted C_{3-7} cycloalkyl, optionally substituted C_{3-6} alkenylene, optionally substituted C_{3-6} alkynyl, $(\text{C}_{1-5}\text{alkyl})_{aa}-\text{S}(\text{O}_n)-(\text{C}_{1-5}\text{alkyl})_{bb}-$, $-(\text{C}_{1-5}\text{alkyl})_{aa}-\text{O}-(\text{C}_{1-5}\text{alkyl})_{bb}-$, $-(\text{C}_{1-5}\text{alkyl})_{aa}-\text{C}(\text{O})-(\text{C}_{1-5}\text{alkyl})_{bb}-$ or $(\text{C}_{1-5}\text{alkyl})_{aa}-\text{N}(\mathbf{R}^{17})-(\text{C}_{1-5}\text{alkyl})_{bb}$, or $-(\text{C}_{1-5}\text{alkyl})_{aa}-\text{C}(\text{O})\text{NH}-(\text{C}_{1-5}\text{alkyl})_{bb}-$

where \mathbf{R}^{17} is hydrogen or C_{1-4} alkyl, or where \mathbf{R}^{17} and the $(\text{C}_{1-5}\text{alkyl})_{aa}$ or $(\text{C}_{1-5}\text{alkyl})_{bb}$ chain can be joined to form a heterocyclic ring, wherein aa and bb are independently 0 or 1 and the combined length of $(\text{C}_{1-5}\text{alkyl})_{aa}$ and $(\text{C}_{1-5}\text{alkyl})_{bb}$ is less than or equal to C_5 alkyl and wherein the optional substituents are independently selected from \mathbf{R}^{12} ;

or the group $-\mathbf{B}-\mathbf{R}^8$ represents a group of Formula (V)

Formula (V);

or the group together forms an optionally substituted heterocyclic ring

containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from \mathbf{R}^{12} and \mathbf{R}^{13} ;

or the group forms a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

\mathbf{R}^{11} is selected from: hydrogen, optionally substituted C_{1-6} alkyl, $N(\mathbf{R}^{23}\mathbf{R}^{24})$ or $NC(O)OR^{25}$, where \mathbf{R}^{23} , \mathbf{R}^{24} and \mathbf{R}^{25} are independently selected from: hydrogen, hydroxy, optionally substituted C_{1-6} alkyl, optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, an optionally substituted carbocyclic ring of 3-7 atoms, optionally substituted heterocyclyl or optionally substituted heterocyclyl C_{1-6} alkyl or \mathbf{R}^{23} and \mathbf{R}^{24} taken together with the nitrogen atom to which they are attached, can form an optionally substituted ring of 3-10 atoms,

wherein the optional substituents are selected from \mathbf{R}^{12} and where K and R^8 are as defined herein;

\mathbf{J} is a group of the formula: $-(CH_2)_s-L-(CH_2)_s-$ or $-(CH_2)_s-C(O)-(CH_2)_s-L-(CH_2)_s-$ wherein when s is greater than 0, the alkylene group is optionally substituted,

or the group together forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from \mathbf{R}^{12} and \mathbf{R}^{13} ;

\mathbf{K} is selected from: a direct bond, $-(CH_2)_{s1}-$, $-(CH_2)_{s1}-O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-C(O)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-S(O_n)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^{17a})-(CH_2)_{s2}-$, $-(CH_2)_{s1}-C(O)N(\mathbf{R}^{17a})-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^{17a})C(O)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^{17a})C(O)N(\mathbf{R}^{17a})-(CH_2)_{s2}-$, $-(CH_2)_{s1}-OC(O)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-C(O)O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^{17a})C(O)O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-OC(O)N(\mathbf{R}^{17a})-(CH_2)_{s2}-$, $-(CH_2)_{s1}-OS(O_n)-(CH_2)_{s2}-$, or $-(CH_2)_{s1}-S(O_n)-O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-S(O)_2N(\mathbf{R}^{17a})-(CH_2)_{s2}-$ or $-(CH_2)_{s1}-N(\mathbf{R}^{17a})S(O)_2-(CH_2)_{s2}-$; wherein the $-(CH_2)_{s1}-$ and $-(CH_2)_{s2}-$ groups are independently optionally substituted by hydroxy or C_{1-4} alkyl and wherein when $s1>1$ or $s2>1$ then the CH_2 group can optionally be a branched chain.;

where \mathbf{R}^{17a} is hydrogen or C_{1-4} alkyl;

\mathbf{L} is selected from optionally substituted aryl or optionally substituted heterocyclyl;

R^4 is selected from hydrogen, C_{1-4} alkyl or halo;

R^5 is selected from a group of Formula III-a; III-b; III-c; III-d; III-e; III-f, III-g, III-h, III-i, or III-j, III-k, III-l, III-m, III-n or III-o

wherein:

het represents an optionally substituted 3- to 8-membered heterocyclic ring containing from 1 to 4 heteroatoms independently selected from O, N and S, wherein the optional substituents are selected from 1-2 groups selected from R^{12} and R^{13} ; and

Q is selected from a direct bond or $-[C(R^{16}R^{16a})]_{1-2-}$;

R^{14} and R^{15} are selected from:

- (i) R^{14} selected from hydrogen; optionally substituted C_{1-8} alkyl; optionally substituted aryl; $-R^d-Ar$, where R^d represents C_{1-8} alkylene and Ar represents optionally substituted aryl; and optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; and R^{15} is selected from hydrogen; optionally substituted C_{1-8} alkyl and optionally substituted aryl;

(ii) wherein the group of Formula (III) represents a group of Formula **III-a**, **III-b**, **III-i**, **III-l** or **III-m**, then the group **NR¹⁴(-R¹⁵)** represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; or

(iii) wherein the group of Formula (III) represents structure **III-e**, represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 4 heteroatoms independently selected from O, N and S;

R¹⁶ and **R^{16a}** are independently selected from:

- (i) hydrogen or optionally substituted C₁₋₈alkyl; or
- (ii) **R¹⁶** and **R^{16a}** together with the carbon to which they are attached form an optionally substituted 3 to 7-membered cycloalkyl ring;

R¹² is independently selected from: halo, hydroxy, hydroxyC₁₋₆alkyl, oxo, cyano, cyanoC₁₋₆alkyl, nitro, carboxyl, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₆alkoxyC₁₋₄alkyl, C₁₋₆alkoxycarbonylC₀₋₄alkyl, C₁₋₆alkanoylC₀₋₄alkyl, C₁₋₆alkanoyloxyC₀₋₄alkyl, C₂₋₆alkenyl, C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxy, aryl, arylC₁₋₆alkyl, heterocyclyl, heterocyclylC₁₋₆alkyl, aminoC₀₋₄alkyl, N-C₁₋₄alkylaminoC₀₋₄alkyl, N, N-di-C₁₋₄alkylaminoC₀₋₄alkyl, carbamoyl, N-C₁₋₄alkylcarbamoylC₀₋₂alkyl, N, N-di-C₁₋₄alkylaminocarbamoylC₀₋₂alkyl, aminocarbonylC₀₋₄alkyl, N-C₁₋₆alkyaminocarbonylC₀₋₄alkyl, N, N-C₁₋₆alkyaminocarbonylC₀₋₄alkyl, C₁₋₆alkyl-S(O)_n-aminoC₀₋₄alkyl-, aryl-S(O)_n-aminoC₀₋₂alkyl-, C₁₋₃perfluoroalkyl-S(O)_n-aminoC₀₋₂alkyl-, C₁₋₆alkylamino-S(O)_n-C₀₋₂alkyl-, arylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₃perfluoroalkylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₆alkanoylamino-S(O)_n-C₀₋₂alkyl-, arylcarbonylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₆alkyl-S(O)_n-C₀₋₂alkyl-, aryl-S(O)_n-C₀₋₂alkyl-, C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxyC₀₋₂alkyl; **R^{9'}OC(O)(CH₂)_w**, **R^{9''}R^{10''}N(CH₂)_w**, **R^{9'}R^{10'}NC(O)(CH₂)_w**, **R⁹R¹⁰NC(O)N(R⁹)(CH₂)_w**, **R⁹OC(O)N(R⁹)(CH₂)_w**, or halo, wherein **w** is an integer between 0 and 4 and **R⁹** and **R¹⁰** are independently selected from hydrogen, C₁₋₄alkyl, C₁₋₄alkylsulphonyl and C₃₋₇carbocyclyl, **R^{9'}** and **R^{10'}** are independently selected from C₁₋₄alkylsulphonyl and C₃₋₇carbocyclyl, and **R^{9''}** and **R^{10''}** are C₃₋₇carbocyclyl; wherein an amino group within **R¹²** is optionally substituted by C₁₋₄alkyl;

R¹³ is C₁₋₄alkylaminocarbonyl wherein the alkyl group is optionally substituted by 1, 2 or 3 groups selected from **R¹²**, or **R¹³** is a group -C(O)-**R¹⁸** and **R¹⁸** is selected from an amino acid derivative or an amide of an amino acid derivative;

M is selected from -CH₂-CH₂- or -CH=CH-;

n is an integer from 0 to 2;
p is an integer from 0 to 4;
s, s1 and **s2** are independently selected from an integer from 0 to 4, and
s1+s2 is less than or equal to 4;
t is an integer between 0 and 4; and
or a salt, solvate or pro-drug thereof to a patient.

2. (Previously amended) A compound of formula (IA) which is a compound of formula (I):

wherein:

R¹ is selected from: hydrogen, optionally substituted C₁₋₆alkyl, optionally substituted aryl or optionally substituted arylC₁₋₆alkyl, wherein the optional substituents are selected from C₁₋₄alkyl, nitro, cyano, fluoro and C₁₋₄alkoxy;

R² is an optionally substituted mono or bi-cyclic aromatic ring, wherein the optional substituents are 1, 2 or 3 substituents independently selected from: cyano, **R^eR^fN-**, C₁₋₆alkyl, C₁₋₆alkoxy, halo, haloC₁₋₆alkyl or haloC₁₋₆alkoxy wherein **R^e** and **R^f** are independently selected from hydrogen, C₁₋₆alkyl or aryl;

R³ is selected from a group of Formula (IIa) to Formula (IId):

Formula (IIa)

Formula (IIb)

Formula (IIc)

Formula (IId)

where **R⁶** and **R^{6a}** are independently selected from hydrogen, fluoro, optionally substituted C₁₋₆alkyl, C₁₋₆alkoxy, or **R⁶** and **R^{6a}** taken together and the carbon atom to which they

are attached form a carbocyclic ring of 3-7 atoms or \mathbf{R}^6 and \mathbf{R}^{6a} taken together and the carbon atom to which they are attached form a carbonyl group;

or when \mathbf{A} is not a direct bond the group forms a carbocyclic ring of 3-7 carbon atoms or a heterocyclic ring containing one or more heteroatoms;

or the group forms a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

\mathbf{R}^7 is selected from: hydrogen or C_{1-6} alkyl;

\mathbf{R}^8 is selected from:

- (i) hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, halo C_{1-6} alkyl, C_{1-4} alkoxy C_{1-4} alkyl, hydroxy, hydroxy C_{1-6} alkyl, cyano, $N-C_{1-4}$ alkylamino, N,N -di- C_{1-4} alkylamino, C_{1-6} alkyl-S(O_n)-, -O- \mathbf{R}^b , -NR^bR^c, -C(O)- \mathbf{R}^b , -C(O)O- \mathbf{R}^b , -CONR^bR^c, NH-C(O)- \mathbf{R}^b or -S(O_n)NR^bR^c, where \mathbf{R}^b and \mathbf{R}^c are independently selected from hydrogen and C_{1-6} alkyl optionally substituted with hydroxy, amino, $N-C_{1-4}$ alkylamino, N,N -di- C_{1-4} alkylamino, HO- C_{2-4} alkyl-NH- or HO- C_{2-4} alkyl-N(C_{1-4} alkyl)-;
- (ii) nitro when \mathbf{B} is a group of Formula (IV) and \mathbf{X} is CH and \mathbf{p} is 0;
- (iii) carbocyclyl (such as C_{3-7} cycloalkyl or aryl) or aryl C_{1-6} alkyl each of which is optionally substituted by \mathbf{R}^{12} , or \mathbf{R}^{13} ;
- (iv) heterocyclyl or heterocyclyl C_{1-6} alkyl each of which is optionally substituted by up to 4 substituents independently selected from \mathbf{R}^{12} or \mathbf{R}^{13} , and where any nitrogen atoms within a heterocyclyl group are, where chemically allowed, optionally in their oxidised ($N \rightarrow O$, $N-OH$) state;

\mathbf{A} is selected from:

- (i) a direct bond;
- (ii) optionally substituted C_{1-5} alkylene wherein the optional substituents are independently selected from: hydroxy, hydroxy C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, aryl or aryl C_{1-6} alkyl;
- (iii) a carbocyclic ring of 3-7 atoms;
- (iv) a carbonyl group or -C(O)-C(\mathbf{R}^d \mathbf{R}^d)-, wherein \mathbf{R}^d is independently selected from hydrogen and C_{1-2} alkyl;

or when \mathbf{R}^3 is a group of Formula (IIa) or (IIb), the group

forms a

heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

or when \mathbf{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId), the group

forms

a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

B is selected from:

- (i) a direct bond;
- (ii) a group of Formula (IV)

Formula (IV)

wherein:

X is selected from N or CH,

wherein at position (a) Formula (IV) is attached to the nitrogen atom and the $(\text{CH}_2)_p$ group is attached to \mathbf{R}^8 ; and

- (iii) a group independently selected from: optionally substituted C_{1-6} alkylene, optionally substituted C_{3-7} cycloalkyl, optionally substituted C_{3-6} alkenylene, optionally substituted C_{3-6} alkynyl, $(\text{C}_{1-5}\text{alkyl})_{aa}-\text{S}(\text{O}_n)-(\text{C}_{1-5}\text{alkyl})_{bb}-$, $-(\text{C}_{1-5}\text{alkyl})_{aa}-\text{O}-(\text{C}_{1-5}\text{alkyl})_{bb}-$, $-(\text{C}_{1-5}\text{alkyl})_{aa}-\text{C}(\text{O})-(\text{C}_{1-5}\text{alkyl})_{bb}-$ or $(\text{C}_{1-5}\text{alkyl})_{aa}-\text{N}(\mathbf{R}^{17})-(\text{C}_{1-5}\text{alkyl})_{bb}$, or $-(\text{C}_{1-5}\text{alkyl})_{aa}-\text{C}(\text{O})\text{NH}-(\text{C}_{1-5}\text{alkyl})_{bb}-$

where \mathbf{R}^{17} is hydrogen or C_{1-4} alkyl, or where \mathbf{R}^{17} and the $(\text{C}_{1-5}\text{alkyl})_{aa}$ or $(\text{C}_{1-5}\text{alkyl})_{bb}$ chain can be joined to form a heterocyclic ring, wherein aa and bb are independently 0 or 1 and the combined length of $(\text{C}_{1-5}\text{alkyl})_{aa}$ and $(\text{C}_{1-5}\text{alkyl})_{bb}$ is less than or equal to C_5 alkyl and wherein the optional substituents are independently selected from \mathbf{R}^{12} ;

or the group $-\mathbf{B}-\mathbf{R}^8$ represents a group of Formula (V)

Formula (V);

or the group together forms an optionally substituted heterocyclic ring

containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from \mathbf{R}^{12} and \mathbf{R}^{13} ;

or the group forms a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

\mathbf{R}^{11} is selected from: hydrogen, optionally substituted C_{1-6} alkyl, $N(\mathbf{R}^{23}\mathbf{R}^{24})$ or $NC(O)OR^{25}$, where \mathbf{R}^{23} , \mathbf{R}^{24} and \mathbf{R}^{25} are independently selected from: hydrogen, hydroxy, optionally substituted C_{1-6} alkyl, optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, an optionally substituted carbocyclic ring of 3-7 atoms, optionally substituted heterocyclyl or optionally substituted heterocyclyl C_{1-6} alkyl or \mathbf{R}^{23} and \mathbf{R}^{24} taken together with the nitrogen atom to which they are attached, can form an optionally substituted ring of 3-10 atoms,

wherein the optional substituents are selected from \mathbf{R}^{12} and where K and R^8 are as defined herein;

\mathbf{J} is a group of the formula: $-(CH_2)_s-L-(CH_2)_s-$ or $-(CH_2)_s-C(O)-(CH_2)_s-L-(CH_2)_s-$ wherein when s is greater than 0, the alkylene group is optionally substituted,

or the group together forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from \mathbf{R}^{12} and \mathbf{R}^{13} ;

\mathbf{K} is selected from: a direct bond, $-(CH_2)_{s1}-$, $-(CH_2)_{s1}-O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-C(O)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-S(O_n)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^{17a})-(CH_2)_{s2}-$, $-(CH_2)_{s1}-C(O)N(\mathbf{R}^{17a})-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^{17a})C(O)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^{17a})C(O)N(\mathbf{R}^{17a})-(CH_2)_{s2}-$, $-(CH_2)_{s1}-OC(O)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-C(O)O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^{17a})C(O)O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-OC(O)N(\mathbf{R}^{17a})-(CH_2)_{s2}-$, $-(CH_2)_{s1}-OS(O_n)-(CH_2)_{s2}-$, or $-(CH_2)_{s1}-S(O_n)-O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-S(O)_2N(\mathbf{R}^{17a})-(CH_2)_{s2}-$ or $-(CH_2)_{s1}-N(\mathbf{R}^{17a})S(O)_2-(CH_2)_{s2}-$; wherein the $-(CH_2)_{s1}-$ and $-(CH_2)_{s2}-$ groups are independently optionally substituted by hydroxy or C_{1-4} alkyl and wherein when $s1>1$ or $s2>1$ then the CH_2 group can optionally be a branched chain.;

where \mathbf{R}^{17a} is hydrogen or C_{1-4} alkyl;

\mathbf{L} is selected from optionally substituted aryl or optionally substituted heterocyclyl;

R^4 is selected from hydrogen, C_{1-4} alkyl or halo;

R^5 is selected from a group of Formula III-a; III-b; III-c; III-d; III-e; III-f, III-g, III-h, III-i, or III-j, III-k, III-l, III-m, III-n or III-o

wherein:

het represents an optionally substituted 3- to 8-membered heterocyclic ring containing from 1 to 4 heteroatoms independently selected from O, N and S, wherein the optional substituents are selected from 1-2 groups selected from R^{12} and R^{13} ; and

Q is selected from a direct bond or $-[C(R^{16}R^{16a})]_{1-2-}$;

R^{14} and R^{15} are selected from:

- (i) R^{14} selected from hydrogen; optionally substituted C_{1-8} alkyl; optionally substituted aryl; $-R^d-Ar$, where R^d represents C_{1-8} alkylene and Ar represents optionally substituted aryl; and optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; and R^{15} is selected from hydrogen; optionally substituted C_{1-8} alkyl and optionally substituted aryl;

(ii) wherein the group of Formula (III) represents a group of Formula **III-a**, **III-b**, **III-i**, **III-l** or **III-m**, then the group **NR¹⁴(-R¹⁵)** represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; or

(iii) wherein the group of Formula (III) represents structure **III-e**, represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 4 heteroatoms independently selected from O, N and S;

R¹⁶ and **R^{16a}** are independently selected from:

- (i) hydrogen or optionally substituted C₁₋₈alkyl; or
- (ii) **R¹⁶** and **R^{16a}** together with the carbon to which they are attached form an optionally substituted 3 to 7-membered cycloalkyl ring;

R¹² is independently selected from: halo, hydroxy, hydroxyC₁₋₆alkyl, oxo, cyano, cyanoC₁₋₆alkyl, nitro, carboxyl, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₆alkoxyC₁₋₄alkyl, C₁₋₆alkoxycarbonylC₀₋₄alkyl, C₁₋₆alkanoylC₀₋₄alkyl, C₁₋₆alkanoyloxyC₀₋₄alkyl, C₂₋₆alkenyl, C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxy, aryl, arylC₁₋₆alkyl, heterocyclyl, heterocyclylC₁₋₆alkyl, aminoC₀₋₄alkyl, **N-C₁₋₄alkylaminoC₀₋₄alkyl**, **N**, **N-di-C₁₋₄alkylaminoC₀₋₄alkyl**, carbamoyl, **N-C₁₋₄alkylcarbamoylC₀₋₂alkyl**, **N**, **N-di-C₁₋₄alkylaminocarbamoylC₀₋₂alkyl**, aminocarbonylC₀₋₄alkyl, **N-C₁₋₆alkyaminocarbonylC₀₋₄alkyl**, **N**, **N-C₁₋₆alkyaminocarbonylC₀₋₄alkyl**, C₁₋₆alkyl-S(O)_n-aminoC₀₋₄alkyl-, aryl-S(O)_n-aminoC₀₋₂alkyl-, C₁₋₃perfluoroalkyl-S(O)_n-aminoC₀₋₂alkyl-, C₁₋₆alkylamino-S(O)_n-C₀₋₂alkyl-, arylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₃perfluoroalkylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₆alkanoylamino-S(O)_n-C₀₋₂alkyl-, arylcarbonylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₆alkyl-S(O)_n-C₀₋₂alkyl-, aryl-S(O)_n-C₀₋₂alkyl-, C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxyC₀₋₂alkyl; **R⁹'OC(O)(CH₂)_w-**, **R^{9''}R^{10''}N(CH₂)_w-**, **R^{9'}R^{10'}NC(O)(CH₂)_w-**, **R⁹R¹⁰NC(O)N(R⁹)(CH₂)_w-**, **R⁹OC(O)N(R⁹)(CH₂)_w-**, or halo, wherein **w** is an integer between 0 and 4 and **R⁹** and **R¹⁰** are independently selected from hydrogen, C₁₋₄alkyl, C₁₋₄alkylsulphonyl and C₃₋₇carbocyclyl, **R^{9'}** and **R^{10'}** are independently selected from C₁₋₄alkylsulphonyl and C₃₋₇carbocyclyl, and **R^{9''}** and **R^{10''}** are C₃₋₇carbocyclyl; wherein an amino group within **R¹²** is optionally substituted by C₁₋₄alkyl;

R¹³ is C₁₋₄alkylaminocarbonyl wherein the alkyl group is optionally substituted by 1, 2 or 3 groups selected from **R¹²**, or **R¹³** is a group -C(O)-**R¹⁸** and **R¹⁸** is selected from an amino acid derivative or an amide of an amino acid derivative;

M is selected from -CH₂-CH₂- or -CH=CH-;

n is an integer from 0 to 2;
p is an integer from 0 to 4;
s, s1 and **s2** are independently selected from an integer from 0 to 4, and
s1+s2 is less than or equal to 4;
t is an integer between 0 and 4; and
or a salt, solvate or pro-drug thereof;
with the proviso that when

(i) the group forms an aromatic carbocyclic ring of 3-7 carbon atoms or an aromatic heterocyclic ring containing one or more heteroatoms, or

(ii) when **R**³ is a group of Formula (IIa) or (IIb), and the group forms an aromatic heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms; or

(iii) when **R**³ is a group of Formula (IIa), (IIb), (IIc) or (IId), and the group

forms an aromatic heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms, or

(iv) when the group forms an aromatic heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms and A is a direct bond; then **R**⁵ is other than a group III-o.

3. (original) A compound according to claim 2 wherein the group **A** is selected from (i) a direct bond or (ii) optionally substituted C₁₋₅alkylene wherein the optional substituents are independently selected from: hydroxy, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, aryl or arylC₁₋₆alkyl.

4. (Previously amended) A compound according to claim 2 which includes a group \mathbf{R}^{13} and wherein the group \mathbf{R}^{13} is $-\text{C(O)}-\mathbf{R}^{18}$, and \mathbf{R}^{18} is selected from an amino acid derivative or an amide of an amino acid derivative; or a salt, solvate or pro-drug thereof.

5. (Previously amended) A compound according to claim 2 wherein \mathbf{R}^1 is selected from hydrogen, optionally substituted $\text{C}_{1-6}\text{alkyl}$ or optionally substituted $\text{arylC}_{1-6}\text{alkyl}$, wherein the optional substituents are selected from: fluoro and $\text{C}_{1-4}\text{alkoxy}$.

6. (Previously amended) A compound according to claim 2 wherein \mathbf{R}^2 is phenyl, optionally substituted by one or more groups selected from methyl, ethyl, methoxy, ethoxy, *tert*-butoxy, F or Cl.

7. (Previously amended) A compound according to claim 2 wherein \mathbf{R}^3 is selected from a group of formula (IIc) or formula (IId).

8. (Previously amended) A compound according to claim 2 wherein \mathbf{R}^4 is selected from hydrogen, methyl, ethyl, chloro or bromo.

9. (Previously amended) A compound according to claim 2 wherein \mathbf{R}^5 is selected from a group of Formula III-a , III-g, III-h, III-i, III-j, III-k , III-l: or III-o

wherein \mathbf{R}^{16} , \mathbf{R}^{16a} , \mathbf{R}^{14} and \mathbf{R}^{15} are as defined in claim 2.

10. (original) A compound according to claim 9 wherein \mathbf{R}^5 is a group of formula

11. (Previously amended) A compound according to claim 2 wherein **M** is $-\text{CH}_2\text{CH}_2-$.

12. (Previously amended) A compound of Formula (Ia) as claimed in claim 2

Formula (Ia)

wherein:

R³ is selected from a group of Formula (IIa) or Formula (IIb):

Formula (IIa)

Formula (IIb)

R⁷ is selected from: hydrogen or C₁₋₆alkyl;

B is a group of Formula (IV)

Formula (IV)

and p, **A**, **X**, **M**, **R**¹, **R**², **R**⁴, **R**⁵, **R**⁶, **R**^{6a}, **R**⁸, and **R**¹¹ are as defined in claim 2 or a salt, solvate or pro-drug thereof.

13. (Previously amended) A compound of Formula (Ic) which is a compound of formula (Ia) as claimed in claim 2 wherein:

Formula (Ic)

wherein:

R^3 is selected from a group of Formula (IIc) or Formula (IId):

wherein

the group together forms an optionally substituted heterocyclic ring containing 4-7 carbon atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from R¹² and R¹³, and A, M, J, R¹, R², R⁴, R⁵, R⁶, R^{6a}, R⁸, and R¹² and R¹³ are as defined in claim 2, or a salt, solvate or pro-drug thereof.

14. (Currently amended) A compound selected from:

3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(morpholin-4-ylcarbonyl)piperidin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)but-2-en-1-yl]-4-[1s-methyl-2-(n'-isopropoxycarbonyl-3-pyrid-4-yl-pyrrolidin-1-ylcarboximidamido) ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1S-methyl-2-(N'-isopropoxycarbonyl-3-pyrid-4-yl-pyrrolidin-1-ylcarboximidamido) ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(pyrrolidin-1-ylcarbonyl)piperazin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;
 2-chloro-3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(pyrrolidin-1-ylcarbonyl)piperazin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(4-hydroxypiperidin-1-ylcarbonyl)piperidin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[2-{4-(1,1-dioxo-isothiazolidin-2-ylcarbonyl)-4-methoxy-piperidin-1-yl}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;
 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{1-benzyl-pyrroldin-3-ylamino}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole;

3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-(2-{4-n-isopropylureidophenyl}ethylamino)ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole; 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{4-(pyrid-4-yl)piperidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole; 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{3-(pyrid-4-yl)ppyrrolidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole; and 3-[3,3-dimethyl-4-oxo-4-(azabicyclo[2.2.1]heptan-7-yl)butyl]-4-[1s-methyl-2-{4-phenylpiperidin-1-ylcarbonylamino}ethyl]-5-(3,5-dimethylphenyl)-1H-pyrrole.

15. (Withdrawn) A process for preparing a compound of formula (I) as defined in claim 2 said process comprising a step selected from (a) to (h):

(a) reaction of a compound of formula **XXXII** with a compound of formula H- $\mathbf{R}^{3\prime}$,

XXXII

wherein X¹ is selected from:
group; and ; L¹ is a displaceable

H- $\mathbf{R}^{3\prime}$ is selected from:

(b) reaction of a compound of formula **XXXIII** with a compound of formula L²- $\mathbf{R}^{3\prime\prime}$,

XXXIII

wherein \mathbf{X}^2 is selected from:

group and \mathbf{R}^{7a} is selected from the definition of \mathbf{R}^7 or \mathbf{R}^{22} above, and

$\mathbf{L}^2\text{-}\mathbf{R}^{3''}$ is selected from: $\mathbf{L}^2\text{-}\mathbf{B}\text{-}\mathbf{R}^8$, $\mathbf{L}^2\text{-}\mathbf{J}\text{-}\mathbf{K}\text{-}\mathbf{R}^8$ and $\mathbf{L}^2\text{-}\mathbf{R}^{21}$

- (c) for compounds of Formula (I) or (IA) wherein \mathbf{R}^7 is other than part of a heterocyclic ring or hydrogen, reaction of a compound of Formula (I) or (IA) wherein \mathbf{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId) and \mathbf{R}^7 is hydrogen with a group of formula $\mathbf{L}^3\text{-}\mathbf{R}^{7a}$, wherein \mathbf{R}^{7a} is as defined above for \mathbf{R}^7 with the exclusion of hydrogen and \mathbf{L}^3 is a displaceable group;
- (d) for compounds of Formula (I) or (IA) wherein \mathbf{R}^4 is hydrogen, reduction of a thienopyrrole of Formula XXXVIII

XXXVII

- (e) for compounds of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIc) or (IId) and

$\begin{array}{c} \mathbf{R}^7 \\ | \\ \text{N}-\mathbf{J}-\text{wavy line} \end{array}$
the group together forms an optionally substituted nitrogen-containing heterocyclic ring containing 4-7 carbon atoms, reaction of a compound of Formula XXXIVa or XXXIVb, with a compound of Formula $\mathbf{L}^6\text{-}\mathbf{K}\text{-}\mathbf{R}^8$, wherein \mathbf{L}^6 is a displaceable group

XXXIVa

XXXIVb

- (f) for compounds of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIc) or (IId), reaction of a compound of Formula XXXVa or XXXVb, with a compound of Formula $\mathbf{L}^7\text{-}\mathbf{K}''\text{-}\mathbf{R}^8$,

wherein \mathbf{L}^7 is a displaceable group, and wherein the groups \mathbf{K}' and \mathbf{K}'' comprise groups which when reacted together form \mathbf{K} ,

XXXVa

XXXVb

;

(g) reaction of a compound of Formula XXXVI with an electrophilic compound of the formula $\mathbf{L}^8\text{-}\mathbf{R}^3$, wherein \mathbf{L}^8 is a displaceable group

XXXVI

(h) reaction of a compound of Formula XXXIX with an appropriate electrophilic reagent to give a compounds of Formula (I)

XXXIX

and thereafter if necessary, carrying out one or more of the following steps:

- converting a compound of the Formula (I) into another compound of the Formula (I);
- removing any protecting groups;
- forming a salt, pro-drug or solvate.

16. (Previously Amended) A pharmaceutical formulation comprising a compound according to claim 2, or salt, pro-drug or solvate thereof, and a pharmaceutically acceptable diluent or carrier.

17-18. (cancelled)

19. (New) A compound of formula (I):

wherein:

R¹ is selected from: hydrogen, optionally substituted C₁₋₆alkyl, optionally substituted aryl or optionally substituted arylC₁₋₆alkyl, wherein the optional substituents are selected from C₁₋₄alkyl, nitro, cyano, fluoro and C₁₋₄alkoxy;

R² is an optionally substituted phenyl, wherein the optional substituents are 1, 2 or 3 substituents independently selected from: cyano, **R^eR^fN-**, C₁₋₆alkyl, C₁₋₆alkoxy, halo, haloC₁₋₆alkyl or haloC₁₋₆alkoxy wherein **R^e** and **R^f** are independently selected from hydrogen, C₁₋₆alkyl or aryl;

R³ is selected from a group of Formula (IIc) or Formula (IId):

Formula (IIc)

Formula (IId)

where **R⁶** and **R^{6a}** are independently selected from hydrogen, fluoro, optionally substituted C₁₋₆alkyl, C₁₋₆alkoxy, or **R⁶** and **R^{6a}** taken together and the carbon atom to which they are attached form a carbocyclic ring of 3-7 atoms or **R⁶** and **R^{6a}** taken together and the carbon atom to which they are attached form a carbonyl group;

R⁷ is selected from: hydrogen or C₁₋₆alkyl;

R⁸ is selected from:

- (i) hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, haloC₁₋₆alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxy, hydroxyC₁₋₆alkyl, cyano, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, C₁₋₆alkyl-S(O_n)-, -O-R^b, -NR^bR^c, -C(O)-R^b, -C(O)O-R^b, -CONR^bR^c, NH-C(O)-R^b or -S(O_n)NR^bR^c, where **R^b** and **R^c** are independently selected from hydrogen and C₁₋₆alkyl optionally substituted with hydroxy, amino, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, HO-C₂₋₄alkyl-NH- or HO-C₂₋₄alkyl-N(C₁₋₄alkyl)-;
- (iii) carbocyclyl (such as C₃₋₇cycloalkyl or aryl) or arylC₁₋₆alkyl each of which is optionally substituted by **R¹²**, or **R¹³**;

(iv) heterocycl or heterocyclC₁₋₆alkyl each of which is optionally substituted by up to 4 substituents independently selected from **R**¹² or **R**¹³, and where any nitrogen atoms within a heterocycl group are, where chemically allowed, optionally in their oxidised (N→O, N-OH) state;

A is selected from:

- (i) a direct bond;
- (ii) optionally substituted C₁₋₅alkylene wherein the optional substituents are independently selected from: hydroxy, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, aryl or arylC₁₋₆alkyl;
- (iii) a carbocyclic ring of 3-7 atoms;
- (iv) a carbonyl group or –C(O)–C(**R**^d**R**^d)–, wherein **R**^d is independently selected from hydrogen and C₁₋₂alkyl;

J is a group of the formula: -(CH₂)_s-**L**-(CH₂)_s- or -(CH₂)_s-C(O)-(CH₂)_s-**L**-(CH₂)_s-wherein when **s** is greater than 0, the alkylene group is optionally substituted,

or the group together forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms, wherein the optional substituents are selected from 1 or 2 substituents independently selected from **R**¹² and **R**¹³;

K is selected from: a direct bond, -(CH₂)_{s1}-, -(CH₂)_{s1}-O-(CH₂)_{s2}-, -(CH₂)_{s1}-C(O)-(CH₂)_{s2}-, -(CH₂)_{s1}-S(O_n)-(CH₂)_{s2}-, -(CH₂)_{s1}-N(**R**^{17a})-(CH₂)_{s2}-, -(CH₂)_{s1}-C(O)N(**R**^{17a})-(CH₂)_{s2}-, -(CH₂)_{s1}-N(**R**^{17a})C(O)-(CH₂)_{s2}-, -(CH₂)_{s1}-N(**R**^{17a})C(O)N(**R**^{17a})-(CH₂)_{s2}-, -(CH₂)_{s1}-OC(O)-(CH₂)_{s2}-, -(CH₂)_{s1}-C(O)O-(CH₂)_{s2}-, -(CH₂)_{s1}-N(**R**^{17a})C(O)O-(CH₂)_{s2}-, -(CH₂)_{s1}-OC(O)N(**R**^{17a})-(CH₂)_{s2}-, -(CH₂)_{s1}-OS(O_n)-(CH₂)_{s2}-, or -(CH₂)_{s1}-S(O_n)-O-(CH₂)_{s2}-, -(CH₂)_{s1}-S(O)₂N(**R**^{17a})-(CH₂)_{s2}-or -(CH₂)_{s1}-N(**R**^{17a})S(O)₂-(CH₂)_{s2}-, wherein the -(CH₂)_{s1}- and -(CH₂)_{s2}- groups are independently optionally substituted by hydroxy or C₁₋₄alkyl and wherein when s1>1 or s2>1 then the CH₂ group can optionally be a branched chain.;

where **R**^{17a} is hydrogen or C₁₋₄alkyl;

L is selected from optionally substituted aryl or optionally substituted heterocycl;

R⁴ is selected from hydrogen, C₁₋₄alkyl or halo;

R⁵ is selected from one of the following groups:

R¹² is independently selected from: halo, hydroxy, hydroxyC₁₋₆alkyl, oxo, cyano, cyanoC₁₋₆alkyl, nitro, carboxyl, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₆alkoxyC₁₋₄alkyl, C₁₋₆alkoxycarbonylC₀₋₄alkyl, C₁₋₆alkanoylC₀₋₄alkyl, C₁₋₆alkanoyloxyC₀₋₄alkyl, C₂₋₆alkenyl, C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxy, aryl, arylC₁₋₆alkyl, heterocyclyl, heterocyclylC₁₋₆alkyl, aminoC₀₋₄alkyl, **N**-C₁₋₄alkylaminoC₀₋₄alkyl, **N**, **N**-di-C₁₋₄alkylaminoC₀₋₄alkyl, carbamoyl, **N**-C₁₋₄alkylcarbamoylC₀₋₂alkyl, **N**, **N**-di-C₁₋₄alkylaminocarbamoylC₀₋₂alkyl, aminocarbonylC₀₋₄alkyl, **N**-C₁₋₆alkyaminocarbonylC₀₋₄alkyl, **N**, **N**-C₁₋₆alkyaminocarbonylC₀₋₄alkyl, C₁₋₆alkyl-S(O)_n-aminoC₀₋₄alkyl-, aryl-S(O)_n-aminoC₀₋₂alkyl-, C₁₋₃perfluoroalkyl-S(O)_n-aminoC₀₋₂alkyl-, C₁₋₆alkylamino-S(O)_n-C₀₋₂alkyl-, arylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₃perfluoroalkylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₆alkanoylamino-S(O)_n-C₀₋₂alkyl-, arylcarbonylamino-S(O)_n-C₀₋₂alkyl-, C₁₋₆alkyl-S(O)_n-C₀₋₂alkyl-, aryl-S(O)_n-C₀₋₂alkyl-, C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxyC₀₋₂alkyl; **R⁹'OC(O)(CH₂)_w-**, **R^{9''}R^{10''}N(CH₂)_w-**, **R^{9'}R^{10'}NC(O)(CH₂)_w-**, **R⁹R¹⁰NC(O)N(R⁹)(CH₂)_w-**, **R⁹OC(O)N(R⁹)(CH₂)_w-**, or halo, wherein **w** is an integer between 0 and 4 and **R⁹** and **R¹⁰** are independently selected from hydrogen, C₁₋₄alkyl, C₁₋₄alkylsulphonyl and C₃₋₇carbocyclyl, **R^{9'}** and **R^{10'}** are independently selected from C₁₋₄alkylsulphonyl and C₃₋₇carbocyclyl, and **R^{9''}** and **R^{10''}** are C₃₋₇carbocyclyl; wherein an amino group within **R¹²** is optionally substituted by C₁₋₄alkyl;

R¹³ is C₁₋₄alkylaminocarbonyl wherein the alkyl group is optionally substituted by 1, 2 or 3 groups selected from **R¹²**, or **R¹³** is a group -C(O)-**R¹⁸** and **R¹⁸** is selected from an amino acid derivative or an amide of an amino acid derivative;

M is selected from -CH₂-CH₂- or -CH=CH-;

n is an integer from 0 to 2;

p is an integer from 0 to 4;

s, **s1** and **s2** are independently selected from an integer from 0 to 4, and

s1+s2 is less than or equal to 4;

t is an integer between 0 and 4; and
or a salt, solvate or pro-drug thereof.

20. (New) A pharmaceutical formulation comprising a compound according to claim 19, or
salt, pro-drug or solvate thereof, and a pharmaceutically acceptable diluent or carrier.