Homotopie avancée

Motivation. On a deux théories homotopiques raisonnables envisageables dans Top : celle à équivalence d'homotopie près (catégorie Top $[h\text{-eq}^{-1}]$) et celle à équivalence faible d'homotopie près (catégorie Top $[fh\text{-eq}^{-1}]$). Puisqu'en général les localisées ne ressemblement pas aux catégories de départ, on a besoin d'un modèle de celles-là. Problème : les limites ne se comportent pas bien dans ces catégories. Par exemple, le pushout n'est pas préservé par équivalence d'homotopie : $[0,1] \cong \{*\}$ mais $\{*\} \sqcup_{\{*,*'\}} \{*'\} \simeq \{*\} \not\cong S^1 \simeq \{*\} \sqcup_{\{*,*'\}} [0,1]$. Autre exemple : dans les catégories de complexes de chaînes, les noyaux ne sont pas invariants par quasi-isomorphismes : si R est un anneau, le complexe C constant en R alternant pour différentielles id_R et $0_{R\to R}$: ... $\stackrel{0}{\longrightarrow} R \stackrel{id}{\longrightarrow} R \stackrel{0}{\longrightarrow} 0$ ici écrit en degrés (1,0,-1), est exact donc en particulier quasi-isomorphe à 0. De même pour le complexe $C' = \Sigma^{-1}C$. Dans Ch(R), $Ker(0\to 0)\simeq 0$ (ouf). Cependant, en considérant le morphisme de complexes $\varphi: C\to C'$ donné par $\varphi_{2n}=0$ et $\varphi_{2n+1}=id_R$, c'est un quasi-isomorphisme et $Ker(C\stackrel{\varphi}{\longrightarrow} D)\ni C$ n'est pas quasi-isomorphe à 0.

Encore un exemple : un foncteur linéaire $F: R\text{-Mod} \to S\text{-Mod}$ induit un foncteur $Ch(R) \to Ch(S)$ qui en général ne préserve pas les quasi-isomorphismes et donc ne passe pas aux catégories dérivées $\mathcal{D}(R) = Ch(R)[\operatorname{qis}^{-1}]$. On peut prendre par exemple $\operatorname{Hom}(M,-): R\text{-Mod} \to \mathbb{Z}\text{-Mod}$ pour M un R-module fixé qui n'est pas projectif (puisque les foncteurs exacts préservent les quasi-isomorphismes), tel $M = \mathbb{Z}/2\mathbb{Z}, R = \mathbb{Z}$.

Le rôle de l'algèbre homologique apparaît alors clairement. De même que la catégorie des complexes de chaînes a assez de projectifs, i.e. à quasi-isomoprhisme près, tout objet est équivalent à un projectif, dans Top, à équivalence faible d'homotopie près, tout espace est équivalent à un CW-complexe.

Si F est exact à droite et $P_{\bullet}(M) \to M$ une résolution projective, alors $H_0(F(P_{\bullet}(M)) = M$ et pour toute suite exacte coute $0 \to A \to B \to C \to 0$ dans C, on obtient une suite exacte longue $\ldots \to H_1(F(B)) \to H_1(F(C)) \to F(A) \to F(b) \to F(C) \to 0$. On note $F(P_{\bullet}(M)) = LF(M)$ le foncteur dérivé à gauche de F. Si F est exact à gauche et $M \to I^{\bullet}(M)$ une résolution injective, alors $H^0(I^{\bullet}(M)) = M$ et pour toute suite exacte coute $0 \to A \to B \to C \to 0$ dans C, on obtient une suite exacte longue $0 \to F(A) \to F(B) \to F(C) \to H^1(F(A)) \to H^1(F(B)) \ldots$ On note $F(I^{\bullet}(M)) = RF(M)$ le foncteur dérivé à droite de F.