Versuch 101

Das Trägheitsmoment

 $\label{tabea} Tabea\ Hacheney \\ tabea.hacheney @tu-dortmund.de$

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 16.11.2021 Abgabe: 23.11.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3	
2	Durchführung	3	
3	Auswertung 3.1 Winkelrichtgröße	3	
4	Eigenträgheitsmoment	3	
5	Diskussion	4	
Lit	iteratur		

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Winkelrichtgröße

Die Winkelrichtgröße wird durch die Formel

$$D = \frac{F \cdot r}{\phi} \tag{1}$$

bestimmt. Die verwendeten Werte sind in ?? angegeben.

Tabelle 1: Messdaten zur Bestimmung der Winkelrichtgröße D

F/N	ϕ	r/m	D/Nm
0,1	30	0,1	0,000333
$0,\!26$	60	0,1	0,000433
$0,\!41$	90	0,1	0,000456
$0,\!56$	120	0,1	0,000467
0,72	150	0,1	0,000480
$0,\!85$	180	0,1	0,000472
$0,\!48$	180	0,2	0,000533
$0,\!55$	240	0,2	0,000458
$0,\!63$	270	0,2	0,000467
0,69	300	0,2	0,00046

Sowohl der Mittelwert, als auch die Standardabweichung wurden mit Python bestimmt. Daraus ergibt sich der gemittelte Wert

$$D = (0.000456 \pm 0{,}000048)\,\mathrm{Nm}.$$

4 Eigenträgheitsmoment

Siehe Abbildung 1!

Abbildung 1: Plot.

5 Diskussion

Literatur

[1] Versuch zum Literaturverzeichnis. TU Dortmund, Fakultät Physik. 2014.