Standard GA theory

- · Schema theory, schema theorem
- · Two-armed bandit analogy
- Almost sure convergence
- · Building block hypothesis
- · Implicit parallelism
- · Deceptive problems

Evolutinary Computing

. . .

Standard GA theory

Dominating theoretical paradigm 1975-1992:

Central notion: schema schema analysis in many forms

Most recently:

- No Free Lunch Theorem (NFL)
- theoretical analysis with stronger predictive capabilities (⇒ time complexity!)
- ideas from quantitative genetics, physics, etc.

Evolutinary Computing

GA Theory

Schemata (1)

Schema (definition):

A schema H in IB $^{\ell}$ is a *partial* instantiation of a string in IB $^{\ell}$. Usually the uninstantiated elements are denoted by ' $^{\cdot}$ ', sometimes called "don't care" symbol or "wild card". A schema defines a subset of IB $^{\ell}$:

$$H \in \{0, 1, *\}^{t}$$

Example

Further definitions:

• Instance of the schema H: 1 0 0 0 1 0 1 0 1 0 1

• Set of all instances of schema $H=(h_1,\,\dots\,,\,h_{\varrho})$: $I(H)=\{(a_1,\,\dots\,,\,a_{\varrho})\in\,IB^{\ell}\,|\,\,h_i\neq * \Rightarrow a_i=h_i\}$

Evolutinary Computing

GA Theory

Schemata (2)

Further definitions continued:

Order of the schema: Number of instantiated elements (6 in our example).

$$o(H) = |\{i \mid h_i \in \{0,1\}\}|$$

 Defining length of the schema: length of the sub-string starting at the first and ending at the last instantiated element (7 in our example). Idea: it is the number of possible breakpoints

 $d(H) = \max\{i \mid h_i \in \{0,1\}\} - \min\{i \mid h_i \in \{0,1\}\}\$

Evolutinary Computing GA Theory

Schemata (3)

Some numbers:

In total there are 3' different schemata.

Each chromosome (in IB') is an instance of 2' different schemata.

Thus: at most N · 2' schemata are represented in a population of size N.

A schema can be viewed as a hyperplane of an n-dimensional space.

Examples in a 3-dimensional (hyper)cube:

GA Theory

Schema Theorem (1)

Theorem (Holland '75):

$$m(H,t+1) \ge m(H,t) \cdot \frac{f(H)}{\bar{f}} \cdot \left(1 - p_c \frac{d(H)}{l-1}\right) \cdot \left(1 - p_m\right)^{o(H)}$$

- f to be maximised, f: mean fitness in population
- I: length of the string
- H: a schema
- d(H): defining length
- · o(H): order
- p_m: mutation rate
- p_c: crossover rate
- . f(H): (estimated) schema fitness
- $\bullet \quad m(H,\,t) \hbox{: expected number of instantiations of H in generation t}$

Evolutinary Computin

GA Theo

Schema Theorem (2)

• Expected number of instantiations of H selected for the gene pool:

$$m(H,t)\cdot\frac{f(H)}{\bar{f}}$$

Probability that crossover does not occur within the defining length:

$$1 - p_c \frac{d(H)}{l - 1}$$

• Probability that the schema is not mutated:

$$(1-p_{\scriptscriptstyle m})^{\scriptscriptstyle o(H)}$$

Evolutinary Computing

GA Theory

Schema Theorem (3)

Critique on the schema theorem (Bäck '96):

- Most of Holland's approximations are only true for very large numbers (trials and population size).
- Within finite populations, exponentially increasing/decreasing the number of schema instances, leads to entirely filling the population and complete elimination, respectively.
- Not all schemata are represented in a typical population.
- Schemata of large defining length are likely to be destroyed by crossover (even highly fit ones).

Evolutinary Computing

GA Theory

String number	Initial population	x value	$\widetilde{f(x)}$	$pselect_i$	Expected count	Actual count
	(Randomly) generated)	(Unsigned) integer	(x^2)	$\left(\frac{f_i}{\Sigma f}\right)$	$\left(\frac{f_i}{\overline{f}}\right)$	(From rou- lette wheel)
1	01101	13	169	0.14	0.58	1
2	11000	24	576	0.49	1.97	2
3	01000	8	64	0.06	0.22	0
4	10011	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4.0
Average			293	0.25	1.00	1.0
Max			<u>576</u>	0.49	1.97	2.0
		Schema	A Proc	essing		
				String	s Sch	ema Average
			F	de presenta	tives 1	Fitness $f(H)$
H_1	1****			2,4		469
H_2	*10**			2,3		320
H_3	1 * * * 0			2		576

GA Theory 2

K-armed bandits and GA's (2)

Theorem (Holland '75)

Expected loss is minimal if approximately:

[1]
$$n^* \approx b^2 \cdot \ln \left(\frac{N^2}{8\pi \cdot b^4 \cdot \ln(N^2)} \right)$$

trials are allocated to the observed worst arm

Corollary:

Expected loss is minimal if approximately:

[2]
$$N - n^* \approx \sqrt{8\pi \cdot b^4 \cdot \ln(N^2)} \cdot e^{\frac{n^*}{2b^2}}$$

trials are allocated to the observed best arm.

K-armed bandits and GA's (3)

We can generalize the two-armed bandit to a k-armed bandit, this gives us:

 Generalized corollary:
 Optimal strategy is to allocate an exponentially increasing number of trials to the observed best arms.

2. A link to GA's:

Minimizing expected losses from k-armed bandits

Minimizing expected losses while sampling from order $\log_2(k)$ schemata.

Thus, GA's allocate trials (near-)optimally.

Point of critique (Fogel '95): Why would this be optimal for global optimization? (Minimizing expected losses does not always correspond to maximizing potential gains.)

Evolutinary Computing

Almost sure convergence (1)

Theorem (Eiben et al. '91):

$$P[\lim_{t \to \infty} P_t \cap Optima \neq 0] = 1$$

- P_t: population at time t
- · Optima: Set of global optima
- Prerequisites:
 - $-\max_{\overline{x}\in P(t)} f(\overline{x}) \ge \max_{\overline{x}\in P(t-1)} f(\overline{x}) \qquad \text{(e.g. by elitist selection)}$
 - any point is accessible from any other point (OK if $p_m > 0$).

Evolutinary Computing

GA Theory

15

17

Almost sure convergence (2)

Critique on the theorem:

- It says nothing about convergence speed
- Theory people: I don't care if it works if only it converges
- Practice people: I don't care if it converges if only it works

Theorem later generalized by Rudolph

Evolutinary Computing

GA Theory

Implicit parallelism

- Implicit parallelism: a GA with population size N processes more than N different schemata effectively
- Reason: individuals are instantiations of more than one schema
- Effectively processing of a schema:

Sampled at the desirable exponentially increasing rate.

· Why wouldn't a schema be processed effectively?

Schema disruption by genetic operators!

Holland's estimate: O(N3) schemata are processed effectively when using a population of size N

Evolutinary Computing

GA Theory

The Building Block Hypothesis

Building Block Hypothesis (Holland '75):

GA's are able to detect short, low order and highly fit schemata and combine these into highly fit individuals.

Building blocks are small and good schemata, where:

- - short (i.e have a small defining length)
- of low order, and
- good is: highly fit (estimated fitness in present population).

Implicit parallelism and the Building Block Hypothesis are seen as explanations for the power of GA's.

Evolutinary Computing

GA Theory

18

GA Theory 3

The minimal deceptive problem (1)

Goal: Define problems that mislead GA's (Goldberg '89)

- Deceptive: building blocks (small and good schemata) lead to incorrect, i.e. suboptimal, solutions
- Minimal: smallest case with such deception (two bits)
- · Next we show how to construct a minimal deceptive problem

Evolutinary Computing

The minimal deceptive problem (2)

 f_{00} f_{01} f_{10} schema 2: schema 3: schema 4: $\delta(H)$

- f_{xy} is the average fitness of the schema * * x * * * y * * (assume no variance; for expected performance this assumption can be left out).
- Assume the global optimum is an instance of schema 1 and

$$[1] \quad f_{11} > \begin{cases} f_{01} \\ f_{10} \\ f_{00} \end{cases}$$

For the problem to be deceptive, we need:

[2]
$$f_{0*} > f_{1*}$$
 and/or [3] $f_{*0} > f_{*1}$

GA Theory

The minimal deceptive problem (3)

[2]
$$\frac{f_{00} + f_{01}}{2} > \frac{f_{10} + f_{11}}{2}$$
, or

$$[3] \quad \frac{f_{00}+f_{10}}{2}>\frac{f_{01}+f_{11}}{2}$$
 • Choosing (arbitrarily) for [2] we normalise with:

$$r = \frac{f_{11}}{f_{00}}$$

$$c = \frac{f_{01}}{c}$$

$$c' = \frac{f_{10}}{f_{00}}$$

• Using [1] we get:

r > c', r > 1 and r > c.

• Using [2] we get:

r < 1 + c - c'.

From [4] and [5] we can conclude: [6]

GA Theory Evolutinary Computing

c'< 1 and c' < c. 21

The minimal deceptive problem (4) · This leaves us with two possibilities: Type I: $f_{01} > f_{00}$ (c > 1) Type II: $f_{01} \leq f_{00} \ (c \leq 1)$ Type II Туре I

GA Theory

22

Evolutinary Computing

GA Theory

4