

Reglerteknik AK

Tentamen 12 mars 2013 kl 14-19

Poängberäkning och betygsättning

Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 25 poäng. Poängberäkningen finns markerad vid varje uppgift.

Betyg 3: lägst 12 poäng

4: lägst 17 poäng

5: lägst 22 poäng

Tillåtna hjälpmedel

Matematiska tabeller (TEFYMA eller motsvarande), formelsamling i reglerteknik samt icke förprogrammerade räknare.

Tentamensresultat

Resultatet anslås senast torsdagen den 21/3 på kursens hemsida. Visning samma dag klockan 12.30-13.00 i lab C på första våningen i Maskinhuset.

Lösningar till tentamen i Reglerteknik AK 20130312

1. Ett system har följande överföringsfunktion

$$G(s) = \frac{10}{s^2 + 2s + 5}.$$

Beräkna systemets poler och rita in dem i ett singularitetsdiagram. Markera även i vilket område poler ska ligga för att få ett system som är både snabbare och mer dämpat än det ursprungliga. (2 p)

Solution

Poler i $s = -1 \pm 2i$. Singularitetsdiagrammet för systemet visas i Figur 1.

Figur 1 Singularitetsdiagram för systemet i uppg. **1**. Området som ger ett snabbare system (högre ω) och ett mer dämpat system (högre ζ) är skuggat i figuren.

2. Bodediagrammet för ett system visas i Figur 2.

a. Bestäm systemets överföringsfunktion. (2 p)

b. Bestäm utsignalen y(t) efter att alla transienter avklingat då insignalen till systemet är $u(t) = 3\sin(40t)$. (1 p)

Solution

a. Beloppskurvan har två brytfrekvenser $\omega_1=1$ rad/s $\omega_2=100$ rad/s där kurvan bryter nedåt en respektive två gånger. Lågfrekvensasymptoten har lutningen +1 vilket ger överföringsfunktionen

$$G_0(s) = Ks(1+s)^{-1}(1+\frac{1}{100}s)^{-2}$$

Figur 2 Bodediagrammet för systemet i Problem 2

K bestäms genom insättning av en punkt (här $\omega=0.1~{\rm rad/s})$ i lågfrekvensasymptotens överföringsfunktion

 $|G_{LF}(0.1i)| = |K \cdot 0.1i|$ =[avläsning i bodediagram]=1 $\Rightarrow K = 10$

$$G_0(s) = \frac{10s}{(1+s)(1+\frac{1}{100}s)^2} = \frac{100000s}{(s+1)(s+100)^2}$$

b. Utsignalen ges av

$$y(t) = 3|G_0(40i)|\sin(40t + \arg(G_0(40i)))$$

Avläsning i bodediagrammet ger $|G_0(40i)|\approx 9$ och $\arg(G_0(40i))\approx -45^\circ=-\pi/4$. Detta ger

$$y(t) = 27\sin(40t - \pi/4)$$

3. Stigtiden med avseende på en insignal kan definieras som den tid det tar för ett system att gå från 10% till 90% av slutvärdet. Beräkna stigtiden för

$$G(s) = \frac{1}{s+2}$$

med avseende på ett enhetssteg. Antag att systemet är i vila initialt. (1 p)

Solution

Multiplicera med laplacetransformen för ett enhetssteg, d.v.s. 1/s. Invers transform ger därefter att

$$y(t) = \frac{1}{2}(1 - e^{-2t}), t > 0.$$

y(t) växer monotont till y = 1/2. Genom att sätta $y(t_1) = 0.05$ och $y(t_2) = 0.45$ kan stigtiden $t_2 - t_1$ hittas som:

$$0.05 = \frac{1}{2}(1 - e^{-2t_1}) \Leftrightarrow e^{-2t_1} = 1 - 0.1 \Leftrightarrow -2t_1 = \ln 0.9 \Rightarrow t_1 = -\frac{\ln 0.9}{2}$$
$$0.45 = \frac{1}{2}(1 - e^{-2t_2}) \Leftrightarrow e^{-2t_2} = 1 - 0.9 \Leftrightarrow -2t_2 = \ln 0.1 \Rightarrow t_2 = -\frac{\ln 0.1}{2}$$
$$t_2 - t_1 \approx 1.1$$

4. Ett system har överföringsfunktionen

$$G_p(s) = \frac{1}{s(s+1)(s+2)},$$

och regleras med en P-regulator, $G_R(s) = K$, se figur 3.

Figur 3 Blockdiagram till problem 4.

- **a.** För vilka K är slutna systemet asymptotiskt stabilt? (2 p)
- **b.** Sätt K = 1 (ger asymptotiskt stabilt system) och antag att

$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

Dimensionera en kompenseringslänk

$$G_k(s) = M \frac{s+a}{Ms+a} \tag{1}$$

så att det stationära felet minskar med en faktor 3, samtidigt som fasmarginalen inte får minska med mer än 6° . (2 p)

c. Antag att du skulle vilja att kompenseringslänken hade en mindre inverkan på fasmarginalen jämfört med din design i b). Hur hade du behövt ändra M och/eller a i (1)? Obs: du behöver inte räkna ut nya parametrar, utan bara förklara om du hade ökat/minskat M och/eller a samt varför. (1 p)

a. Slutna systemets överföringsfuntion är

$$G(s) = \frac{G_P(s)G_R(s)}{1 + G_P(s)G_R(s)} = \frac{K}{s^3 + 3s^2 + 2s + K}.$$

Systemet är asymptotiskt stabilt om nollställena till nämnarpolynomet ligger strikt i vänster halvplan. Kravet för ett tredje ordningens polynom är att alla koefficienter är positiva, vilket ger K > 0, samt att $K < 2 \cdot 3 = 6$.

Svar: 0 < K < 6.

b. För att minska det stationära felet med en faktor 3 måste vi välja M=3. Den okompenserade kretsöverföringsfunktionen är

$$G_0(s) = \frac{1}{s(s+1)(s+2)}.$$

Skärfrekvensen ω_c ges av

$$|G_0(i\omega_c)| = 1 \Rightarrow \omega_c = 0.45.$$

Enligt tumregeln väljer vi därför $a = 0.1\omega_c = 0.045$.

c. Kompenseringslänkens undre brytfrekvens hittar vi vid $\omega=a/M$ och den övre brytfrekvensen vid $\omega=a$. Förstärkningen på lågfrekvensasymptoten ligger vid M för ändliga värden på M och förstärkningen för högfrekvensasymptoten på 1 oberoende av värdet på a. Fasen ligger hela tiden under 0 grader men närmar sig 0 asymptotiskt för höga frekvenser. Genom att minska värdet på a skjuter man kompenseringskurvan mot lägre frekvenser; dvs lågfrekvensasymptoten ligger fortfarande på en förstärkning M men den övre brytpunkten $\omega=a$ ligger längre bort från skärfrekvensen och därmed försämras ej fasmarginalen så mycket.

5. I figur 4 visas ett system där *y* är utsignal, *r* insignal och *l* är en laststörning.

Figur 4 Blockschema för uppgift 5.

- **a.** Beräkna överföringsfunktionen från l till y. (1 p)
- **b.** Antag ett l i form av ett steg samt att $G_2(s)$ inte har något nollställe i s=0. Visa att man kan välja $G_4(s)$ som en konstant så att en laststörning l ej får någon påverkan på y i stationäritet. Ange hur man skall välja denna konstant.
- **c.** Antag att vi har en periodisk störning $l = \sin(2t)$ och att $G_2(s) = \frac{1}{s+1}$. Visa att man kan välja $G_4(s) = k \cdot e^{-bs}$ så att inverkan av den periodiska störningen försvinner helt (efter att transienterna avklingat). Bestäm något k > 0 och något b > 0 så att detta uppfylls.¹ (1 p)

Solution

a. Från blockdiagrammet får vi:

$$Y = G_5(L + G_2(G_4L + G_1(R - Y))) \Rightarrow$$

$$Y = \frac{G_5(1 + G_2G_4)L + G_5G_2G_1R}{1 + G_5G_2G_1},$$

vilket ger att

$$G_{ly} = \frac{G_5 + G_5 G_2 G_4}{1 + G_5 G_1 G_2}$$

- **b.** För att få bort effekten av l i stationäritet kan styrlagen väljas som $G_4 = -1/G_2(0)$.
- **c.** Efter att transienterna dött ut, skall det gälla att $(G_4(2i)G_2(2i)+1)=0$

¹Anm. Denna kompensering gäller dock bara för just en viss frekvens och det finns mycket bättre sätt att framkoppla bort inverkan av störningar

för att inverkan av sinussignalen skall försvinna. dvs

$$|G_4(2i)G_2(2i)| = 1$$
 $k \cdot \underbrace{|e^{-b2i}|}_{=1} \frac{1}{\sqrt{2^2 + 1^2}} = 1$ $\arg\{G_4(2i)G_2(2i)\} = -\pi$ $\arg\{ke^{-b2i}\frac{1}{2i+1}\} = -\pi$ $\Rightarrow k = \sqrt{5}$ $b = (\pi - \arctan(2/1))/2 \approx 1.02$

6. Kretsöverföringsfunktionen för ett system utan instabila poler har Bodediagrammet som visas i Figur 5. Besvara följande påståenden med sant eller falskt, samt motivera ditt svar.

Figur 5 Bodediagram för systemet i uppg. 6.

a. Systemet har exakt två poler. (0.5 p)

b. Systemet har minst en integrator. (0.5 p)

c. Amplitudmarginalen för systemet är större än 10. (0.5 p)

d. Nyquistkriteriet skulle säga att slutna systemet är stabilt, även om man i kretsförstärkningen lägger till en en godtyckligt lång tidsfördröjning.
 (0.5 p)

- **a.** Falskt. Systemet har ett polöverskott på tre. Det vill säga tre poler fler än nollställen.
- b. Falskt. Systemet har en ändlig förstärkning för låga frekvenser.
- ${f c.}$ Sant. Vid fasen -180° är amplituden lägre än 0.1.
- **d.** Sant. Eftersom $|G(i\omega)|<1$ för alla frekvenser befinner vi oss inuti enhetscirkeln och kommer hålla oss innanför punkten -1 oavsett hur mycket vi vrider på faskurvan.

7. Antag att ett system ges av

$$\dot{x} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} 0 & 1 \end{pmatrix} x$$

a. År systemet styrbart?

(1 p)

(1 p)

- **b.** Beräkna en tillståndsåterkoppling $u = -Lx + l_r r$ som ger det karakteristiska polynomet $s^2 + 2s + 4$. Bestäm också värdet på l_r så att den statiska förstärkningen blir 1. (2 p)
- **c.** Antag att tillstånden inte går att mäta, så att de istället måste skattas. Då ges dynamiken för det återkopplade systemet av

$$\begin{pmatrix} \dot{x} \\ \dot{\tilde{x}} \end{pmatrix} = \begin{pmatrix} A - BL & BL \\ 0 & A - KC \end{pmatrix} \begin{pmatrix} x \\ \tilde{x} \end{pmatrix} + \begin{pmatrix} Bl_r \\ 0 \end{pmatrix} r.$$

Är detta system styrbart från referensvärdet? Motivera.

Solution

a. Enklast är att kolla rangen av styrbarhetsmatrisen

$$W_s = (B \quad AB) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

Denna har full rang, och därför är systemet styrbart.

b. Med styrlagen insatt blir systemet

$$\dot{x} = (A - BL)x + Bl_r r$$

$$v = Cx$$

Överföringsfunktionen till detta system är

$$G(s) = C(sI - A + BL)^{-1}Bl_r.$$

Insättning av värden medför att

$$G(s) = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s+1+l_1 & 1+l_2 \\ -1 & s \end{pmatrix}^{-1} \begin{pmatrix} l_r \\ 0 \end{pmatrix}.$$

Genom att multiplicera ihop matriserna får vi överföringsfunktionen:

$$G(s) = \frac{l_r}{s^2 + s(1 + l_1) + 1 + l_2}.$$

Matchning med önskat karakteristiskt polynom ger att

$$l_1 = 1$$
$$l_2 = 3$$

Rätt statisk förstärkning kan t.ex. hittas genom

$$G(0) = \frac{l_r}{1 + l_2} = 1 \Rightarrow l_r = 1 + l_2 = 4.$$

c. Skattningsfelen \tilde{x} är inte styrbara eftersom de inte påverkas av vare sig referensvärdet r eller av tillstånden x. (Man kan också titta på styrbarhetsmatrisen för hela systemet för att komma till denna slutsats).

8. I figur 6 visas Nyquistkurvorna för fyra olika öppna system med överföringsfunktioner $G_0(s)$. Figur 7 visar stegsvaren (enhetssteg) för $\frac{G_0(s)}{1+G_0(s)}$, d.v.s. de system som ges av enkel återkoppling av de öppna systemen. Para ihop varje Nyquistkurva med respektive stegsvar. Motivera dina svar.

(2 p)

Figur 6 Nyquistkurvorna i uppgift

Figur 7 Stegsvaren i uppgift

Solution

A-2: Tidsfördröjning kan skönjas i stegsvar 2. En tidsfördröjning ger upphov till en spiralform i Nyquistkurvan, vilket kan ses i A.

C-1: Nyquistkurvan innehåller en integrator (en faktor 1/s) vilket gör att det inte finns stationära fel hos $\frac{G_0}{1+G_0}$. Så utsignalen kommer att gå mot 1, vilket stämmer med stegsvar 1.

För stegsvar 3 och 4 gäller att slutvärdet är 1/2. Detta stämmer med Nyquistkurvorna i B och D, som har $G_0(0)=1$, vilket ger $\frac{G_0(0)}{1+G_0(0)}=\frac{1}{2}$. Skillnaden mellan stegsvaren är att 3 är sämre dämpat än 4. Vi kan också se på Nyquistkurvorna att kurvan i B kommer närmre den kritiska punkten -1 än vad kurvan gör i D. Om Nyquistkurvan ligger nära -1 blir det slutna systemet dåligt dämpat, så slutsatsen blir: B-3 och D-4

9. Det finns många olika metoder för att designa PID-regulatorer för olika typer av processer. En trimningsmetod för PI-regulatorer för integrerande processer som används flitigt inom processindustrin är T_a -trimning. Trimningsmetoden baseras på valet av en enda designparameter, arresttiden, T_a , vilket är tiden från att en stegstörning, d, (se Figur 8) har inträffat tills utsignalen g börjar återvända till sitt referensvärde (se Figur 9). För en integrerande process med överföringsfunktionen $G_p(s) = \frac{k_p}{s}$ ges regulatorparametrarna vid T_a -trimning av

$$K=rac{2}{k_vT_a},\ T_i=2T_a$$

Figur 8 Blockschema för Problem 9.

Figur 9 De heldragna kurvorna visar T_a -trimning med arresttiden T_a =10 tidsenheter. Ett vanligt val är att halvera integraltiden för att få snabbare återhämtning, dvs. välja $T_i = T_a$, vilket illustreras av de streckade kurvorna. I Problem 9 behandlas dock bara T_a -trimning med $T_i = 2T_a$.

a. Var ligger systemets poler då T_a -trimning tillämpas? (1 p)

b. Hur stor är den maximala avvikelsen från referensvärdet då en störning, d, i form av ett enhetssteg inträffar om T_a -trimning tillämpas? Uttryck svaret i parametrarna k_v och T_a . (2 p)

a. Vi har $G_R(s) = K(1 + \frac{1}{sT_i}) = \frac{K(1+sT_i)}{sT_i}$ och $G_P(s) = \frac{k_v}{s}$.

Slutna systemets överföringsfunktion från referensvärde till utsignal ges av

$$G_{r o y}(s) = rac{G_R(s)G_P(s)}{1+G_R(s)G_P(s)} = rac{rac{k_v}{s}Krac{sT_i+1}{sT_i}}{1+rac{k_v}{s}Krac{sT_i+1}{sT_i}} = rac{rac{Kk_v}{T_i}(sT_i+1)}{s^2+rac{Kk_v}{T_i}(sT_i+1)}$$

Det karaktäristiska polynomet är $s^2 + K k_v s + \frac{K k_v}{T_i} = 0$.

Med de givna regulatorparametrarna $K=rac{2}{k_vT_a},\,T_i=2T_a$ fås

$$s^{2} + \frac{2}{T_{a}}s + \frac{1}{T_{a}^{2}} = (s + \frac{1}{T_{a}})^{2} = 0$$

det vill säga en dubbelpol i $-\frac{1}{T_a}$

b. Överföringsfunktionen från d till e ges av

$$G_{d o e}(s) = -rac{G_P(s)}{1+G_R(s)G_P(s)} = -rac{k_v s}{s^2+Kk_v s+rac{Kk_v}{T_c}} = -rac{k_v s}{(s+rac{1}{T_c})^2}$$

Då störningen är ett enhetssteg fås

$$E(s) = -\frac{k_v s}{(s + \frac{1}{T_a})^2} \frac{1}{s} = -\frac{k_v}{(s + \frac{1}{T_a})^2}$$

Invers Laplacetransformering ger $e(t) = -k_v t e^{-\frac{1}{T_a}t}$.

Derivering ger $\dot{e}(t) = -k_v(1 - \frac{t}{T_a})e^{-\frac{1}{T_a}t}$.

 $\dot{e}(t)=0$ då $t=T_a$ vilket ger den maximala avvikelsen

$$\max_{t} |e(t)| = |e(T_a)| = k_v T_a e^{-1}.$$