连通性

定义 1 (连通性). 设 X 为拓扑空间, 若对任意非空集合 A, B 满足 $A \cup B = X$, 有 $A \cap \overline{B} \neq \emptyset$ 或 $\overline{A} \cap B \neq \emptyset$, 则称 X 是**连通的**.

定理 1. 实数轴是连通空间.

证明. 设 $\mathbb{R} = A \cup B$ 且 $A \cap B = \emptyset$. 存在 $a \in A$, $b \in B$, 不失一般性, 设 $X = \{a \in A : a < b\}$, 令 $s = \sup X$.

若 $s \in X$,则对任意 s < x < b, $x \notin A$,则 $x \in B$,对任意 $\varepsilon > 0$,都有 $x \in (s,b)$ 使得 $|x-s| < \varepsilon$,故 $s \in B$ 的极限点, $s \in \overline{B}$,于是 $A \cap \overline{B} \neq \varepsilon$.

 $\exists s \notin X$,则对任意小的 $\varepsilon > 0$,都有 $a \in A$ 使得 $a > s - \varepsilon$,则 $s \in A$ 的极限点,故 $\overline{A} \cap B \neq \emptyset$.

定理 2. 实数轴的非空子集是连通的当且仅当这个子集是区间.

证明. 区间的连通性是平凡的. 下面假设 $X \subset \mathbb{R}$ 不是区间,则存在 $a,b \in X$, $p \notin X$ 满足 $a ,设 <math>A = \{a \in X : a < p\}$, $B = X \setminus A = \{b \in X : b > p\}$,则 $A \cap \overline{B} = \overline{A} \cap B = \emptyset$,推出 X 是不连通的. 于是实数轴的连通非空子集是区间.

连通性也可以由其他命题刻画,有以下定理.

定理 3. 下列命题是等价的.

- 1. *X* 是连通的;
- 2. X 的既开又闭的子集只有 X 和 \emptyset ;
- 3. X 不能表示成两个非空不交开集的并;
- 4. 不存在从 X 到多于一个点的离散空间的连续满射.

证明. $1 \rightarrow 2$: 假设既开又闭的 $A \subset X$,则 $B = X \setminus A$ 也是既开又闭的. 于是 $\overline{A} = A$, $\overline{B} = B$,

$$A \cap \overline{B} = \overline{A} \cap B = A \cap B = \emptyset$$
,

而 X 是连通的,所以 A 和 B 必有一者为空集,另一者为 X.

 $2 \rightarrow 3$: 假设 $X = U \cup V$, U, V 是开集且 $U \cap V = \varnothing$. 则 $U = X \setminus V$, $V = X \setminus U$, 开集的补集是闭的,于是 U, V 是既开又闭的,所以 U 和 V 必有一者为空集.

 $3 \rightarrow 4$: 假设离散空间中存在两个点 a, b, 则 $f^{-1}(a) \cup f^{-1}(b) = X$, $f^{-1}(a) \cap f^{-1}(b) = \varnothing$, 且 $f^{-1}(a)$ 和 $f^{-1}(b)$ 都是非空开集,这与 3 矛盾.

 $4 \rightarrow 1$: 如果 X 是不连通的,则存在 $A \cup B = X$ 使得 $A \cap \overline{B} = \overline{A} \cap B = A \cap B = \emptyset$,注 意到 A,B 是不交开集. 于是令

$$f = \begin{cases} 1, & x \in A, \\ -1, & x \in B, \end{cases}$$

则 f 是从 X 到 $\{1,-1\}$ 的连续满射. 由逆否命题的等价性得证.

可以发现,空集 Ø 也符合命题 2,于是约定空集也是连通的.

定理 4. 连通空间在连续映射下的像是连通的.

证明. 设 $f: X \to Y$ 是连续满射,且 X 是连通的. 设任意 $A \subset Y$ 既开又闭,则 $f^{-1}(A)$ 既开又闭,由于 X 的连通性, $f^{-1}(A) = \emptyset$ 或 X,于是 $A = \emptyset$ 或 Y,则 Y 是连通的.

推论 1. 若 X 和 Y 同胚,则 X 连通当且仅当 Y 连通.

例 1. 利用连通性证明介值定理.

证明. 设连续函数 $f:[a,b] \to \mathbb{R}$, f(a) < 0, f(b) > 0, 则由定理2得, [a,b] 是连通的, Im([a,b]) 是连通的,于是 [f(a),f(b)] 是区间,故存在 $c \in [a,b]$ 使得 f(c) = 0.

定理 5. 令 X 为拓扑空间,若 $Z \subset X$ 是连通的,且 Z 在 X 中稠密,则 X 是连通的.

证明. 设 $A \subset X$ 既开又闭,由于 Z 是稠密的,于是 $A \cap Z \neq \emptyset$,于是 $A \cap Z \subset Z$ 是既开又闭的,Z 是连通的,于是 $A \cap Z = Z$,于是 $Z \subset A$,于是 $X = \overline{Z} \subset \overline{A} = A \subset X$,故 A = X,X 是连通的.

推论 2. 若 $Z \in X$ 的连通子空间,对于 Y 满足 $Z \subset Y \subset \overline{Z}$,则 Y 是连通的. 特别地, \overline{Z} 也是连通的.

证明. Z 在 Y 中的闭包为 $\overline{Z} \cap Y = Y$,则 Z 在 Y 中稠密,于是 Y 是连通的.

定理 6. 设 $\mathcal{F} = \{M_i : \bigcup_{i \in I} M_i = X\}$ 是 X 的若干子集组成的集合,若 M_i 都是连通的,且 $\overline{M_i} \cap \overline{M_j} \neq \emptyset$, $i, j \in I$,则 X 是连通的.

证明. 设 $A \subset X$ 既开又闭,则对任意 $M_i \in \mathcal{F}$, $A \cap M_i$ 也是既开又闭的. 对任意 M_i ,若 $A \cap M_i = \emptyset$,则 $A \cap (\bigcup_{i \in I} M_i) = A \cap X = \emptyset$, $A = \emptyset$.

若对某些 M_i , $A \cap M_i \neq \emptyset$ 既开又闭,且 M_i 为连通的,于是 $A \cap M_i = M_i$, $M_i \subset A$, $\overline{M_i} \subset \overline{A}$.

假设存在 M_j ,使得 $A \cap M_j = \varnothing$,则 $M_j \subset X \setminus A$,于是 $\overline{M_j} \subset \overline{X \setminus A} = X \setminus A = X \setminus \overline{A}$. 而 $\overline{A} \cup (X \setminus \overline{A}) = \varnothing$,于是 $\overline{M_i} \cap \overline{M_j} = \varnothing$ 与题意不符. 于是对所有的 M_i ,只要存在 M_{i_0} 使得 $M_{i_0} \cap A \neq \varnothing$,则任意 $M_i \in \mathcal{F}$,都有 $M_i \cap A \neq \varnothing$,则 $M_i \subset A$. 故

$$X = \bigcup_{i \in I} M_i \subset A \subset X,$$

故 A = X. □

定义 2. 设 $A, B \subset X$,若 $\overline{A} \cap \overline{B} = \emptyset$,则称 A 和 B 是相互隔离的.

定理 7. 若 X 和 Y 都是连通的,则 $X \times Y$ 也连通.

证明. 由于 $\{x\} \times Y$ 与 Y 同胚,于是 $\{x\} \times Y$ 是连通的. 同理, $X \times \{y\}$ 也是连通的,且与 $\{x\} \times Y$ 交于 (x,y). 由定理6, $Z(x,y) = (\{x\} \times Y) \cup (X \times \{y\})$ 也是连通的. 对任意 $Z(x_1,y_1)$ 和 $Z(x_2,y_2)$, $Z(x_1,y_1) \cap Z(x_2,y_2) = \{(x_1,y_2),(x_2,y_1)\} \neq \emptyset$,于是

$$X\times Y=\bigcup_{x\in X,y\in Y}Z(x,y)$$

是连通的.

注. 若 $X \times Y$ 非空,则由 $X \times Y$ 连通可以推得 X 和 Y 都连通.

若整个空间不是连通的,分为了若干相互分离的连通的部分,称为连通分支.等价定义如下.

定义 3 (连通分支). 设 $U \in X$ 的连通子集,若 U 不是 X 的任一连通子集的真子集,则称为 X 的**连通分支**.

定理 8. 拓扑空间的任一连通分支是闭集.

证明. 若连通集 $U \subset X$,则 \overline{U} 是连通的,且 $U \subset \overline{U}$,若 U 不是闭集,则 $U \subsetneq \overline{U}$,于是 U 不是连通支集.

定理 9. 拓扑空间的任意两个连通分支相互隔离.

证明. 若连通分支 $\overline{U} \cap \overline{V} \neq \emptyset$,由定理6,得 $U \cup V$ 也是连通的,则 $U \setminus V$ 不再是极大连通子集,即连通分支.

定义 4 (完全不连通). 若拓扑空间 X 的每一点都是它的一个连通分支,则称 X 是**完全不连**通的.

定义 5 (局部连通). 设 X 为拓扑空间,若对任意 $x \in X$,任意邻域 $U \ni x$,都有连通的邻域 V,使得 $x \in V \subset U$,则称 X 是局部连通的.

连通性的一个特例为道路连通性. 首先定义道路.

定义 6 (道路). 设 *X* 为拓扑空间,连续映射 $\gamma:[0,1]\to X$,称 γ 为**道路**. $\gamma(0)$ 和 $\gamma(1)$ 分别 称为道路的**起点和终点**.

定义 7 (道路连通). 设 X 为拓扑空间,对任意 $x_0, x_1 \in X$,都存在 γ 使得 $\gamma(0) = x_0, \gamma(1) = x_1$,则称 X 是**道路连通的**.

定理 10. 设拓扑空间 X 和 Y 同胚,则 X 道路连通当且仅当 Y 道路连通.

证明. 不妨设连续映射 $f: X \to Y$,则 f^{-1} 也连续. 若 X 道路连通,有连续映射 $\gamma: [0,1] \to X$,则 $\gamma' = f \circ \gamma: [0,1] \to Y$ 是 Y 的道路,对任意 y_0, y_1 ,都有 x_0, x_1 满足 $f(x_0) = y_0$, $f(x_1) = y_1$,且有 $\gamma(0) = x_0$, $\gamma(1) = x_1$,于是 $\gamma'(0) = y_0$, $\gamma'(1) = y_1$,故 Y 道路连通. 同理可设 Y 道路连通,得到 X 道路连通.

定理 11. 道路连通空间是连通的.

证明. 设 X 是道路连通的,既开又闭的非空集合 $A \subsetneq X$,则对 $x \in A$, $y \in X \setminus A$,存在从 x 到 y 的道路 γ ,则 $\gamma^{-1}(A) \subsetneq [0,1]$,而 $\gamma^{-1}(A)$ 是既开又闭且非空的,且 [0,1] 是连通的,那 么 $\gamma^{-1}(A) = [0,1]$,矛盾! 于是 A = X,故 X 是连通的.

设 α 是从x到y的道路, β 是从y到z的道路,则

$$\gamma = \begin{cases} \alpha(2t), & 0 \leqslant t \leqslant \frac{1}{2} \\ \beta(2t-1), & \frac{1}{2} < t \leqslant 1 \end{cases}$$

是从 x 到 z 的道路.

定理 12. Euclidean 空间的连通开集是道路连通的.

证明. 设 $X \subset \mathbb{R}^n$ 是连通开集. 对任意 $x \in X$,设 $U(x) = \{y \in X | \text{存在从} x \text{到} y \text{的道路}\}$,则 U(x) 非空 $(x \in U(x))$,下证 U(x) = X.

设开球 $B(y,\varepsilon)$,对 $z\in B$,y 到 z 的道路是一条直线,于是有从 x 到 z 的道路,故 $z\in U(x)$,于是 $B(y,\varepsilon)\subset U(x)$,U(x) 是开集. 而 $X\setminus U(x)=\bigcup\{U(y):y\in X\setminus U(x)\}$,且任意 U(y) 为开集,于是 $X\setminus U(x)$ 为开集,U(x) 为闭集. U(x) 为既开又闭的非空集合,于是 U(x)=X.

道路连通空间是连通的,但连通空间不一定道路连通.下面是一个连通但不道路连通的 反例.

例 2. 定义

$$Y = \left\{ (0, y) \mid -1 \leqslant y \leqslant 1 \right\},$$

$$Z = \left\{ (x, \sin \frac{\pi}{x}) \mid 0 < x \leqslant 1 \right\},$$

则 $X = Y \cup Z$ 是连通的,而不是道路连通的.

证明. Z 是 (0,1] 上连续映射的像,因此 Z 连续. 而 Z 在 \mathbb{R}^2 的闭包是 X,于是 X 是连通的.

假设存在道路

$$\gamma: [0,1] \to X, \quad \gamma(t) = (\gamma_1(t), \gamma_2(t))$$

使得 $\gamma(0) = (0,0), \ \gamma(1) = (1,0).$ 令

$$s = \sup \{t \mid \gamma_1(t) = 0\},\$$

则 s < 1, $\gamma_1(s) = 0$, 且对任意 t > s, 有 $\gamma_1(t) > 0$. 于是对任意 t > s, 有

$$\gamma_2(t) = \sin \frac{\pi}{\gamma_1(t)},$$

于是由 γ_1 的连续性,存在递减数列 $t_n \to s$ 使得 $\gamma_1(t_n) = \frac{2}{2n+1}$. 则

$$\gamma_2(t_n) = (-1)^n \nrightarrow \gamma_2(s),$$

矛盾!

图 1: 拓扑学家的正弦曲线

与连通分支类似,定义道路连通分支.

定义 8 (道路连通分支). 设 $U \in X$ 的道路连通子集,若 U 不是 X 的任一道路连通子集的 真子集,则称为 X 的**道路连通分支**.

然而,对于道路连通分支没有相互分离的结论,而且也不一定是闭的. 例如图1,Y 和 Z 既不相互分离,Z 也不是闭的.

与局部连通类似,定义局部道路连通.

定义 9 (局部道路连通). 设 X 为拓扑空间,若对任意 $x \in X$,任意邻域 $U \ni x$,都有道路连通的邻域 V,使得 $x \in V \subset U$,则称 X 是**局部道路连通的**.