## **LAB ASSIGNMENT – 4**

| NAME        | PRIYAL BHARDWAJ             |
|-------------|-----------------------------|
| REG. NO.    | 18BIT0272                   |
| COURSE CODE | MAT2001                     |
| COURSE NAME | STATISTICS FOR ENGINEERS    |
| SLOT        | L7+L8                       |
| FACULTY     | Prof. VENKATA SATYANARAYANA |

1. Find (i)  $P(0.8 \le Z \le 1.5)$  (ii)  $P(Z \le 2)$  (iii)  $P(Z \ge 1)$  Find These probability values and Plot the graph.

## (i) R CODE & OUTPUT:

```
> pnorm(1.5, mean=0, sd=1)-pnorm(0.8, mean=0, sd=1)
[1] 0.1450482
> x=seq(-3,3,length=200)
> y=dnorm(x)
> plot(x,y,type="1")
> x=seq(0.8,1.5,length=100)
> y=dnorm(x)
> polygon(c(0.8,x,1.5),c(0,y,0),col="lightgreen")
```



ANS:

| P(0.8<=Z<=1.5) 0.1450482 |
|--------------------------|
|--------------------------|

## (ii) R CODE & OUTPUT:

```
> pnorm(2, mean=0, sd=1)
[1] 0.9772499
> x=seq(-3,3,length=200)
> y=dnorm(x)
> plot(x,y,type="1")
> x=seq(-4,2,length=100)
> y=dnorm(x)
> polygon(c(-4,x,2),c(0,y,0),col="red")
```



## ANS:

| _       |           |
|---------|-----------|
| P(Z<=2) | 0.9772499 |

## (iii) R CODE & OUTPUT:

```
> 1-pnorm(1, mean=0, sd=1)
[1] 0.1586553
> x=seq(-3,3,length=200)
> y=dnorm(x)
> plot(x,y,type="1")
> x=seq(1,4,length=100)
> y=dnorm(x)
> polygon(c(1,x,4),c(0,y,0),col="blue")
```



## ANS:

| P(7>=1) | 0.1586553 |
|---------|-----------|
| '\=' +/ | 0.1300333 |

#### 2. If mean=70 and Standard deviation is 16

- - $P(38 \le X \le 46)$  ii)  $P(82 \le X \le 94)$
- *iii*)  $P(62 \le X \le 86)$

Find the Probability values and Plot the graph with text.

## (i) R CODE & OUTPUT:

```
> pnorm(46, mean=70, sd=16)-pnorm(38, mean=70, sd=16)
[1] 0.04405707
> x=seq(-3,3,length=200)
> y=dnorm(x)
> plot(x,y,type="1")
> x=seq(-2,-1.5,length=100)
> y=dnorm(x)
> polygon(c(-2,x,-1.5),c(0,y,0),col="lightgreen")
```



ANS:

| P(38<=X<=46) | 0.04405707 |
|--------------|------------|
|--------------|------------|

### (ii) R CODE & OUTPUT:

```
> pnorm(94, mean=70, sd=16)-pnorm(82, mean=70, sd=16)
[1] 0.1598202
> x=seq(-3,3,length=200)
> y=dnorm(x)
> plot(x,y,type="1")
> x=seq(0.75,1.5,length=100)
> y=dnorm(x)
> polygon(c(0.75,x,1.5),c(0,y,0),col="red")
```



## ANS:

| P(82<=X<=94) 0.1598202 |
|------------------------|
|------------------------|

## (iii) R CODE & OUTPUT:

```
> pnorm(86, mean=70, sd=16)-pnorm(62, mean=70, sd=16)
[1] 0.5328072
> x=seq(-3,3,length=200)
> y=dnorm(x)
> plot(x,y,type="l")
> x=seq(-0.5,1,length=100)
> y=dnorm(x)
> polygon(c(-0.5,x,1),c(0,y,0),col="blue")
```



## ANS:

| P(62<=X<=86) | 0.5328072 |
|--------------|-----------|
| . (0= ): 00/ | 0.00_00   |

- 3. 1000 students had Written an examination the mean of test is 35 and standard deviation is 5. Assumning the to be normal find
  - i) How many students Marks Lie between 25 and 40
  - ii) How many students get more than 40
  - iii) How many students get below 20
  - iv) How many students get 50

#### **R CODE & OUTPUT:**

```
> 1000*(pnorm(40, mean=35, sd=5)-pnorm(25, mean=35, sd=5)) #Q3(i)
[1] 818.5946
> 1000*(1-pnorm(40, mean=35, sd=5)) #Q3(ii)
[1] 158.6553
> 1000*(pnorm(20, mean=35, sd=5)) #Q3(iii)
[1] 1.349898
```

## P(x = a) = 0 for continuous random variables.

#### ANS:

### Number of students with marks(approx.):

| 1 | Between 25 and 50 | 818 |
|---|-------------------|-----|
| 2 | More than 40      | 158 |
| 3 | Less than 20      | 1   |
| 4 | Equal to 50       | 0   |

# P(X=50)=0 because student marks is a continuous random variable.

#### **Q.4**

Experience has shown that 20% of a manufactured product is of top quality. In one day's production of 400 articles, only 50 are of top quality. Write down the R programming code to test whether the production of the day chosen is a representative sample at 95% confidence level.

ANS: Null Hypothesis( $H_0$ ): P = 0.2

Alternative Hypothesis(H<sub>1</sub>): P ≠ 0.2

R CODE:

### Interpretation:

Since test statistic(z) does not fall between -1.959964 and 1.959964, we reject the null hypothesis. Hence, the production of the day chosen is not a representative sample at 95% confidence level.

#### **Q.5**

Before an increase in excise duty on tea, 800 people out of a sample of 1000 were consumers of tea. After the increase in duty, 800 people were consumers of tea in a sample of 1200 persons. Write down the R programming code to test whether the significant decrease in the consumption of tea after the increase in duty at 1% level of significance.

ANS:  $P_1$  = Proportion of tea drinkers before excise

P<sub>2</sub> = Proportion of tea drinkers after excise

Null Hypothesis( $H_0$ ):  $P_1 = P_2$ 

Alternative Hypothesis( $H_1$ ):  $P_1 > P_2$ 

#### R CODE:

| Interpretation:                                       |   |  |               |  |
|-------------------------------------------------------|---|--|---------------|--|
| Since p value = 1.354*1                               |   |  |               |  |
| the null hypothesis. Hei<br>drinkers after increase i |   |  | number of tea |  |
|                                                       | , |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |
|                                                       |   |  |               |  |