UNIT 3

Differential Calculus of Functions of More Than One Variable

OBJECTIVES

By the end of the unit, you must be able to:

- ✓ find directional derivatives;
- find equations of tangent planes and normal lines to surfaces; and
- find extreme values of a multivariable function

OBJECTIVES

By the end of the unit, you must be able to:

- determine domain and range of functions;
- sketch graphs and contour maps of functions;
- find the partial derivatives of a multivariable function;
- establish differentiability of a multivariable function;

3.1

Functions of More Than One Variable

REVIEW

Function of a single variable:

$$f: R \rightarrow R$$
 where $y = f(x)$

Also, y = f(x) is a curve on the coordinate plane containing the points(x, f(x)). The 11-th dimensional space

R: the real number line

$$R^2 = \{(x,y) \mid x,y \in R\}$$

: the plane

$$R^3 = \{(x,y,z) \mid x,y,z \in R\}$$

The 11-dimensional space

$$R^n$$
= $\{(x_1, x_2, \dots, x_n) | x_i \in R\}$
: the n -dimensional number space
 (x_1, x_2, \dots, x_n) is a point in R^n .

GOAL

Functions of more than variable

$$f: \mathbb{R}^n \to \mathbb{R}$$
 where $y = f(x_1, x_2, \dots, x_n)$

Restrictions:
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $f: \mathbb{R}^3 \to \mathbb{R}$

Definition

A <u>function of n variables</u> is a set of ordered pairs (P, w), where $P \in R^n$, where w is unique for each P.

Details

$$f: R^{n} \rightarrow R$$

Notation: $w = f(P)$

where $P \in R^{n}$

Domain, D_{f}

: set of all admissible P

Range, R_{f}

: set of all resulting w

Graph of a function

Given:
$$w = f(x_1, x_2, ..., x_n)$$

Graph of f
: set of all points $(x_1, x_2, ..., x_n, w) \in R^{n+1}$
where $(x_1, x_2, ..., x_n) \in D_f$

Restrictions

Given:
$$z = f(x,y)$$

Graph of f : surface in R^3
For functions of at least three variables,
NO geometric graphs because of restriction to a 3D object.

Example #1

Continuation

Example #2

$$f(x,y) = \mathbf{4} - x^2 - y^2$$

Domain, $D_{\dot{g}} R^2$

Range, $R_{\dot{g}}$ Use the graph!

Graph: PARABOLOID

 $x^2 + y^2 + z - 4 = 0$

Example #3

$$f(x,y,z) = \frac{1}{4 - x^2 - y^2 - z^2}$$
Domain, D_f

 $R^{3} - \{(x,y,z) | x^{2} + y^{2} + z^{2} = 4\}$ This is Rexcept some sphere.

Example #3
$$w = \frac{1}{4 - x^2 - y^2 - z^2}$$

$$\Rightarrow x^2 + y^2 + z^2 = 4 - \frac{1}{w}$$
Possible values of w ?
$$4 - \frac{1}{w} \ge 0$$

Range,
$$R_f \left(-\infty, \mathbf{0}\right) \cup \left[\frac{1}{4}, +\infty\right]$$

Example #6

$$g(x,y,z) = \ln x + \sqrt{y} + \frac{1}{z}$$

Domain,
$$D_f$$
 $\{(x,y,z) \mid x > 0, y \ge 0, z \ne 0\}$

Range, $R_{\mathcal{F}}$ R

Graph is in R^4

Levels

Consider
$$z = f(x,y)$$

Level curve at $z \neq c$
 $\{(x,y) | f(x,y) = c\}$

Consider
$$w = f(x,y,z)$$

Level surface at $w = c$
 $\{(x,y,z) | f(x,y,z) = c\}$

Contour map

A contour map of if a set of level curves (or level surfaces) by considering different function values.

level curve ~ cross-section contour map ~ topographic map Example. Draw a contour map of

$$f(x,y) = \frac{1}{x^2 + y^2}$$

Consider level curves at

$$z = \frac{1}{4}, \frac{1}{2}, 1, 2, 4$$

z CANNOT BE NEGATIVE!

Example (continued)

$$z = \frac{1}{x^2 + y^2} \quad z = \frac{1}{4} : x^2 + y^2 = 4$$

$$z = \frac{1}{2} : x^2 + y^2 = 2$$
At $z = k$

$$z = 1 : x^2 + y^2 = 1$$

$$z = 2 : x^2 + y^2 = \frac{1}{2}$$

$$z = 4 : x^2 + y^2 = \frac{1}{4}$$

Example. Draw a contour map of

$$g(x,y) = \frac{1}{x-y}$$

Consider level curves at

$$z = -3, -2, -1, 1, 2, 3$$

Solution:

$$D_g:\{(x,y)|x-y\neq 0\}$$

$$R_g: R-\{\mathbf{0}\}$$

Example (continued)

$$g(x,y) = \frac{1}{x-y}$$

z = -3: 3x - 3y + 1 = 0

z = -2: 2x - 2y + 1 = 0

z = -1: x - y + 1 = 0

z = 1: x - y - 1 = 0

z = 2: 2x - 2y - 1 = 0

z = 3: 3x - 3y - 1 = 0

Traces

$$z = \frac{1}{x - y}$$

xy-plane: 0 = 1 z = 0

yz-plane: $z = -\frac{1}{y}$

xz-plane: $z = \frac{1}{x}$

Traces

Example. Draw a contour map of

$$f(x,y,z) = -x + y + 2z$$

Consider level surfaces at

$$w = -2, -1, 0, 1, 2$$

Reminder:

$$ax + by + cz + d = 0$$
 is a plane.

Solution:

$$f(x,y,z) = -x + y + 2z$$

$$w = -2: -x + y + 2z + 2 = 0$$

$$w = -1: -x + y + 2z + 1 = 0$$

$$w = 0: -x + y + 2z = 0$$

$$w = 1: -x + y + 2z - 1 = 0$$

Example. Draw a contour map of

$$g(x,y,z) = x^2 - y + z$$

w = 2: -x + y + 2z - 2 = 0

Consider level surfaces at

$$w = -2, -1, 0, 1, 2$$

$$x^2 + by + cz + d = 0$$

is a (slanting) parabolic cylinder.

Solution:

$$g(x,y,z) = x^{2} - y + z$$

$$w = -2: \quad x^{2} - y + z + 2 = 0$$

$$w = -1: \quad x^{2} - y + z + 1 = 0$$

$$w = 0: \quad x^{2} - y + z = 0$$

$$w = 1: \quad x^{2} - y + z - 1 = 0$$

$$w = 2: \quad x^{2} - y + z - 2 = 0$$

