Modelamiento predictivo

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Tipos de aprendizaje

 $\widehat{Y} = f(X, Y)$

 $\hat{Z} = f(X)$

 $\widehat{X}_t = f(\widehat{X}_{t-n})$

Idea general.

Enfoque determinístico

Enfoque probabilístico

Modelos de regresión versus clasificación

- Por la naturaleza de ambos problemas, se suelen evaluar de manera diferente
- Clasificación es binaria, pertenece o no a la categoría predicha
- Regresión permite calculo de métricas relativas

Buscamos construir, a través de un proceso delicado, el mejor y = f(x) posible.

Aprendizaje

Minimizar una función de evaluación

Algoritmo de búsqueda

Busca el conjunto de parámetros que maximicen la puntuación del modelo.

Algoritmos de regresión o clasificación

- Regresiones
- K nearest neighbors
- Clasificadores bayesianos
- Arboles de decisión
- Support Vector Machines
- Neural networks
- Deep neural networks

Modelamiento predictivo

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Inferencia Espacial

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Modelamiento espacial

La inferencia estadística convencional se basa en dos supuestos fundamentales

- Los valores de una variable son independientes unos de otros
- Los valores de una variable se distribuyen de forma aleatoria

Ley de Tobler!

Continuidad espacial

- Los datos geoespaciales no siempre se obtienen para todo el territorio
- En muchos casos se recurre a muestreo, o a medición en algunas ubicaciones especificas del espacio
- En caso de discontinuidad espacial, seria necesario interpolar valores en locaciones sin datos.

Enfoques de inferencia espacial

- Modelos de densidad
- Modelos de interpolación univariada
 - Base radial o ponderada por distancia
 - Kriging
- Métodos basados en covariables
 - Co-Kriging
 - Regresiones espaciales

Kernel Density

- Construye distribuciones de probabilidad alrededor de los datos utilizando el método densidad de kernel
- Distribuciones 2D generan un campo de valores representando el espacio continuo
- Permite detectar Hotspots de fenómenos espaciales
- Apropiado cuando se busca inferir la densidad de un fenómeno en el espacio

Interpolación ponderada por distancia

- Selecciona los puntos que se encuentren dentro de un radio
- Calcula la distancia
- Pondera los valores de los puntos cercanos inversamente por la distancia
- Parámetro Alpha indica el peso que se le da a la distancia

$$\hat{z}_S = \frac{\sum_{i=1}^N \frac{z_i}{d_i^{\alpha}}}{\sum_{i=1}^N \frac{1}{d_i^{\alpha}}}$$

Kriging (y cokriging)

Pasos para ejecutar kriging

- 1. Calculo del variograma empírico (o correlograma)
- 2. Ajuste y selección de un modelo de variograma teórico
- 3. Optimizar los pesos w utilizando el variograma teórico ajustado, es decir, kriging (o cokriging).
- 4. Predicción de los valores en los lugares de interés

$$\hat{z} = \sum_{i=1}^{n} w_i z_i \qquad \sum w_i = 1.$$

Regresiones

- Se calcula como una función de ajuste lineal
- Determinada por la minimización de los cuadrados entre cada observación y su estimación
- Coeficientes óptimos asignados a cada variable explicativa.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_n X_n + \varepsilon$$

Valor propiedades vs estimación

Regresión espacial

Modelo de error espacial: incorpora efectos espaciales mediante un factor de error:

Donde:

- ε es un vector de factores de error, ponderado con una matriz de pesos espaciales W
- λ es el coeficiente de error espacial
- ξ es un vector de errores sin autocorrelación

Modelo de lag espacial: incorpora efectos espaciales incorporando variables de lag espacial:

Donde:

- Wy es la VD con lag espacial para matriz de pesos espaciales W
- ε es un vector de factores de error
- ρ es el coeficiente de lag espacial

$$y = x\beta + \varepsilon$$
$$\varepsilon = \lambda W \varepsilon + \xi$$

$$y = \rho W y + x \beta + \varepsilon$$

Pasos para regresión espacial

- 1. Definir un criterio de vecindad (contigüidad, distancia, etc) y asignar pesos a estas relaciones espaciales
- 2. Chequear autocorrelación espacial de la variable dependiente
- 3. Determinar tipos de error espacial y escoger el tipo de regresión espacial correspondiente
- 4. Estimar un modelo de regresión espacial y un OLS

Evaluación modelos espaciales

- Autocorrelación espacial de los errores
- Calculo del índice de moran global y su p-valor

$$I = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} (x_i - \overline{x})(x_j - \overline{x})}{\left(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j}\right) \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Evaluación modelos de regresión

R-cuadrado

$$\frac{\sum_{t=1}^{T} (\hat{Y}_t - \overline{Y})^2}{\sum_{t=1}^{T} (Y_t - \overline{Y})^2}$$

• RMSE

$$\sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Sesgo

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)$$

• MAE
$$\frac{1}{N} \sum_{i=1}^N |y_i - \hat{y}_i|$$

MAPE

$$\frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{|y_i|} * 100$$

Métricas comunes de desempeño de clasificación

Zero-one loss:

$$S_{0/1}(M) = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} I[f(x(i); M), y(i)]$$

where
$$I(a,b) = \begin{cases} 1 & a \neq b \\ 0 & \text{otherwise} \end{cases}$$

Squared loss:

$$S_{sq}(M) = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} [f(x(i); M) - y(i)]^2$$

Matriz de confusión

Se concentra en la capacidad predictiva de un modelo, en lugar de la rapidez con la que se tarda en clasificar o crear modelos, escalabilidad, etc.

Confusion matrix		Predicted Class					
		No	Yes				
Actual Class	No	True Negative	False Positive				
	Yes	False Negative	True Positive				

Métricas asociadas para la matriz de confusión:

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$F1\text{-score} = \frac{2*TP}{2*TP + FP + FN}$$

ROC curve

Desarrollada en la década de 1950 en teoría de detección de señales para analizar señales ruidosas

Caracteriza la compensación entre golpes positivos y falsas alarmas La curva ROC traza la tasa de Verdaderos positivos (TP) en el eje y contra la tasa Falsos Positivos en el eje x para diferentes valores.

- Desempeño de cada clasificador es representado como un punto en la curva ROC.
- Al cambiar el umbral de algoritmo, distribución de muestras o matriz de costes, cambia la ubicación del punto, que genera la curva final

Inferencia Espacial

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Analisis de redes

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Análisis de redes

- Un grafo es una estructura matemática que describe un conjunto de nodos y las relaciones entre ellos
- El problema de encontrar el camino mas corto entre 2 nodos en un grafo con pesos no es trivial, pero el mundo de las matemáticas ya encontró una solución suficientemente buena (Dijkstra, 1959)
- Estos problemas suelen buscar minimizar la distancia (horizontal), pero a veces hay otras variables relevantes como terreno o elevación

Accesibilidad

- La accesibilidad debe comprenderse como la facilidad con la cual una oportunidad (servicios, actividades, destinos, etc.) puede ser alcanzada.
- El acceso depende de 4 tipos de variables de decisión descritas por Geurs y van Wee (2004):
 - Land-use (Uso del suelo)
 - Transportation (Transporte)
 - Temporal (Relacionado al tiempo)
 - Individual (Individual)
- Cada una tienen sus propias restricciones de espaciotiempo, llamadas impedancias.

Uso de suelo

- Está compuesto por la oferta de las oportunidades, la cual contiene; sus tamaños, capacidades y ubicaciones (distribución).
- Considera tanto la oferta tanto como la demanda, y la competencia:
 - Ofertas de trabajo
 - Matrículas escolares

Transporte

- Es el medio de transporte utilizado para alcanzar una oportunidad desde su origen:
 - Caminar
 - Transporte público
 - Automóvil, etc
- El acceso se relaciona al costo de alcanzar una oportunidad desde un origen al destino:
 - Tiempo de traslado
 - Distancia
 - Costo monetario
 - Conectividad

Temporalidad

- Es la disponibilidad en el tiempo de las oportunidades, es decir, el tiempo necesario para las actividades.
- Las impedancias temporales son:
 - Horarios de apertura o cierre
 - Horarios de trabajo o libre

Individual

- Son las necesidades, habilidades y capacidades individuales de los demandantes.
 - Propósito (hacer, libre)
 - Percepciones.
 - Condición física.
 - Nivel educacional.

Integración de dimensiones

- En la práctica es difícil integrar todas las variables y restricciones a la vez.
- Todas las variables tienen su importancia en el cálculo de la accesibilidad
- Resultados dependerán de su planteamiento y pesos asignados.
- Mantener los modelos simples

K.T. Geurs, B. van Wee | Journal of Transport Geography 12 (2004) 127-140

Modelos gravitacionales

Miden la accesibilidad una oportunidad (servicios, actividades, destinos, etc.)

Se puede abordar de diferentes maneras:

- Cost to k closest
- Cumulative opportunities

Job accessibility by transit in under 30 min.

Impedancia

- Las funciones de impedancia se utilizan en los modelos de Gravity-based para el cálculo de la accesibilidad.
- Integran el acceso a un servicio con el costo de desplazamiento (distancia, tiempo, dinero, etc.).
- A mayor costo de desplazamiento genera influencias decrecientes sobre la accesibilidad.

Imagen 10: Ejemplo gráfico de distintas funciones de decaimiento. (Pereira y Herszenhut, 2022)

Distancias (km)											
	Clientes										
Desde	C1	C2	C3	C4	C 5	C6	C 7	C 8	C9		
Fábrica	15	10	20	18	22	20	10	9	24		
C1	0	12	10	12	25	24	20	21	30		
C2		0	13	11	18	15	12	15	20		
C3			0	7	22	23	22	25	28		
C4				0	18	18	18	22	16		
C5					0	7	17	23	12		
C6						0	13	19	10		
C7							0	9	15		
C8								0	22		

Isócronas

- Una isócrona se define como una línea en que algo ocurre o llega a la misma hora
- Se utilizan en la planificación del transporte y planificación urbana
- El mapa de isócronas muestra las áreas relacionadas con isócronos entre diferentes puntos
- Esto permite construir áreas de servicio de acuerdo a el tiempo que un usuario este dispuesto a viajar por este servicio.

Analisis de redes

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2