

# LogiCORE IP 10-Gigabit Ethernet MAC v10.2

DS201 October 19, 2011

**Product Specification** 

#### Introduction

The LogiCORE™ IP 10-Gigabit Ethernet MAC core is a single-speed, full-duplex 10 Gb/s Ethernet Media Access Controller (MAC) solution enabling the design of high-speed Ethernet systems and subsystems.

#### **Features**

- Designed to 10-Gigabit Ethernet specification IEEE 802.3-2008
- Choice of external XGMII or internal FPGA interface to PHY layer (internal interface only on Spartan®-6 devices)
- Cut-through operation with minimum buffering for maximum flexibility in client-side interfacing
- Supports Deficit Idle Count for maximum data throughput; maintains minimum IFG under all conditions and provides line rate performance
- Configured and monitored through a microprocessor-neutral Management Interface
- Comprehensive statistics gathering with statistic vector outputs
- Supports flow-control in both directions
- MDIO STA master interface to manage PHY layers
- Extremely customizable; trade resource usage against functionality
- Available under SignOnce license program
- Delivered through the Xilinx® CORE Generator<sup>TM</sup> software
- Supports VLAN, jumbo frames, and WAN mode (WAN mode not supported on Spartan-6® devices.)
- Custom Preamble mode

| LogiCORE IP Facts                                 |                    |                                                  |                   |              |
|---------------------------------------------------|--------------------|--------------------------------------------------|-------------------|--------------|
| C                                                 | ore Spe            | cifics                                           |                   |              |
| Device Family <sup>1</sup>                        |                    |                                                  | Spee              | d Grades     |
| Virtex-6                                          |                    |                                                  |                   | -1           |
| Virtex-5                                          |                    |                                                  |                   | -1           |
| Virtex-4                                          |                    |                                                  |                   | -10          |
| Spartan-6 <sup>2</sup>                            |                    |                                                  |                   | -3           |
| Resources Used <sup>3</sup>                       | Slices             | LUTs                                             | FFs               | Block<br>RAM |
|                                                   | 1803               | 3738                                             | 3652              | 0            |
| Pro                                               | vided wi           | th Core                                          |                   | 1            |
| Documentation                                     | User Gu            | Specifica<br>iide<br>Started G                   |                   |              |
| Design File Formats                               | EDIF an            | d NGC n                                          | etlist            |              |
| Constraints File                                  | UCF                |                                                  |                   |              |
| Verification                                      |                    | est bench<br>est fixture                         |                   |              |
| Example Design                                    | VHDL a             | nd Verilo                                        | g                 |              |
| Design                                            | Tool Re            | quireme                                          | nts               |              |
| Xilinx<br>Implementation Tools                    | ISE soft           | ware v13                                         | .1                |              |
| Simulation                                        | Cadenc<br>Simulate | Graphics<br>e Incisive<br>or (IES) v<br>/s VCS & | Enterpris<br>10.2 |              |
| Synthesis                                         | XST 13.            | 1                                                |                   |              |
| Support                                           |                    |                                                  |                   |              |
| Provided by Xilinx, Inc. @ www.xilinx.com/support |                    |                                                  |                   |              |

- For the complete list of supported devices, see the 13.1 release notes for this core.
- External XGMII interface and WAN mode not supported on Spartan-6 devices.
- Numbers are approximate for default configuration in Virtex-5 devices. See Table 21 - Table 23 for a complete description of device utilization by configuration and device family.



## **Applications**

Figure 1 shows a typical Ethernet system architecture and the 10-Gigabit Ethernet MAC core within it. The MAC and all the blocks to the right are defined in Ethernet IEEE specifications.



Figure 1: Typical Ethernet System Architecture

Figure 2 shows the 10-Gigabit Ethernet MAC core connected to a physical layer (PHY) device, for example, an optical module using the XGMII interface.



Figure 2: 10-Gigabit Ethernet MAC Core Connected to PHY with XGMII Interface

The 10-Gigabit Ethernet MAC core is designed to be easily attached to the <u>Xilinx IP XAUI core</u>, which provides the advantage (over XGMII) of reduced pin count and improved operating distance. Figure 3 illustrates the two cores in a system using an XPAK optical module. In this case, the XGMII interface is omitted from the 10-Gigabit Ethernet MAC core at customization time, and the internal FPGA logic interface is used to interface to the XAUI core.





Figure 3: 10-Gigabit Ethernet MAC Core Used with Xilinx XAUI Core



## **Functional Description**

Figure 4 illustrates a block diagram of the 10-Gigabit Ethernet MAC core implementation. The major functional blocks of the core include the following:

- Client-side interface: Designed for simple attachment of user logic
- Transmitter
- Receiver
- Flow Control block: Implements both Receive Flow Control and Transmit Flow Control
- Reconciliation Sublayer (RS): Processes XGMII Local Fault and Remote Fault messages and handles DDR conversion
- Management interface and MDIO (optional)
- Statistics counters (optional)
- XGMII interface: Connection to the physical layer device or logic



Figure 4: Implementation of the 10-Gigabit Ethernet MAC Core



#### **Core Interfaces**

#### **Client-Side Interface: Transmit**

The client-side interface on transmit has a 64-bit datapath with eight control bits to delineate bytes within the 64-bit port. Additionally, there are signals to handshake the transfer of data into the core. An example design which includes source code for a FIFO with LocalLink interface is provided with the core generated by CORE Generator software. Table 1 defines the signals.

Table 1: Transmit Client-Side Interface Port Description

| Name               | Direction | Description                                                                                                                                                                                                       |
|--------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tx_data[63:0]      | Input     | Frame data to be transmitted is supplied on this port.                                                                                                                                                            |
| tx_data_valid[7:0] | Input     | Control signals for $tx_{data}$ port. Each asserted signal on $tx_{data}$ valid signifies which bytes of $tx_{data}$ are valid; that is, if $tx_{data}$ valid[0] is '1,' the signals $tx_{data}$ [7:0] are valid. |
| tx_start           | Input     | Handshaking signal. Asserted by the client to make data available for transmission.                                                                                                                               |
| tx_ack             | Output    | Handshaking signal. Asserted when the first column of data on ${\tt tx\_data}$ has been accepted.                                                                                                                 |
| tx_underrun        | Input     | Assert this pin to forcibly corrupt the current frame.                                                                                                                                                            |
| tx_ifg_delay[7:0]  | Input     | Control signal for configurable interframe gap adjustment.                                                                                                                                                        |



Figure 5 shows transmitting a frame through the client-side interface.

Figure 5: Frame Transmission Across Client-Side Interface

#### **Client-Side Interface: Receive**

The client-side interface on receive has a 64-bit datapath with eight control bits to delineate bytes within the 64-bit port. Additionally, there are signals to indicate to the user logic the validity of the previous frame received. The ports are shown in Table 2.

Table 2: Receive Client-Side Interface Port Description

| Name               | Direction | Description                                                                                                                                                                                  |
|--------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rx_data[63:0]      | Output    | Frame data received.                                                                                                                                                                         |
| rx_data_valid[7:0] | Output    | Control signals for the rx_data port. Each asserted signal on rx_data_valid indicates which bytes of rx_data are valid. For example, if rx_data_valid[0] is '1,' then rx_data[7:0] is valid. |
| rx_good_frame      | Output    | Asserted at the end of frame to indicate the frame was successfully received and should be processed by the user logic.                                                                      |
| rx_bad_frame       | Output    | Asserted at the end of frame to indicate the frame was not successfully received and should be discarded by the user logic.                                                                  |



Figure 6 shows receiving a frame through the client-side interface.

Figure 6: Frame Reception Across Client-Side Interface

#### **Flow Control Interface**

The flow control interface is used to initiate the transmission of flow control frames from the core. The ports associated with this interface are shown in Table 3.

Table 3: Flow Control Interface Port Description

| Name            | Direction | Description                                                                  |
|-----------------|-----------|------------------------------------------------------------------------------|
| pause_req       | Input     | Request that a flow control frame is emitted from the MAC core.              |
| pause_val[15:0] | Input     | Pause value field for flow control frame to be sent when pause_req asserted. |

Figure 7 illustrates a flow control request. Asserting the pause\_req signal in this way results in a flow control frame being transmitted from the core with the pause value field set to pause\_val[15:0]



Figure 7: Flow Control Frame Request

#### XGMII Interface or 64-bit SDR PHY Interface

The PHY interface may be a 32-bit DDR XGMII interface or a 64-bit SDR interface, depending on the customization of the core. This interface is used to connect to the physical layer, whether this is a separate device or implemented in the FPGA beside the MAC core. Table 4 and Table 5 show the ports associated with this interface.

Table 4: 32-bit XGMII PHY Interface Port Descriptions

| Name            | Direction | Description                                                                  |
|-----------------|-----------|------------------------------------------------------------------------------|
| xgmii_tx_clk    | Output    | Forwarded clock to PHY device.                                               |
| xgmii_txd[31:0] | Output    | Transmit data to PHY; double data rate (DDR) source centred on xgmii_tx_clk. |
| xgmii_txc[3:0]  | Output    | Transmit control to PHY; DDR source-centred on xgmii_tx_clk.                 |
| xgmii_rx_clk    | Input     | Inbound clock from PHY device.                                               |
| xgmii_rxd[31:0] | Input     | Received data from PHY; DDR source-centred on xgmii_rx_clk.                  |
| xgmii_rxc[3:0]  | Input     | Received control from PHY; DDR source-centred on xgmii_rx_clk.               |

Table 5: 64-bit SDR PHY Interface Port Descriptions

| Name            | Direction | Description                                                            |
|-----------------|-----------|------------------------------------------------------------------------|
| xgmii_txd[63:0] | Output    | Transmit data to PHY. Synchronous to rising edge of tx_clk.            |
| xgmii_txc[7:0]  | Output    | Transmit control to PHY. Synchronous to rising edge of tx_clk.         |
| xgmii_rx_clk    | Input     | Inbound clock from PHY.                                                |
| xgmii_rxd[63:0] | Input     | Received data from PHY. Synchronous to rising edge of xgmii_rx_clk.    |
| xgmii_rxc[7:0]  | Input     | Received control from PHY. Synchronous to rising edge of xgmii_rx_clk. |



#### **Management Interface**

Configuration of the core, access to the statistics block, and access to the MDIO port can be provided through the Management Interface, a 32-bit processor-neutral interface independent of the Ethernet datapath. Table 6 defines the ports associated with the Management Interface.

Table 6: Management Interface Port Descriptions

| Name               | Direction | Description                                                                                                 |
|--------------------|-----------|-------------------------------------------------------------------------------------------------------------|
| host_clk           | Input     | Clock for Management Interface. Range between 10 MHz and 133 MHz.                                           |
| host_opcode[1:0]   | Input     | Defines operation to be performed over Management Interface.                                                |
| host_addr[9:0]     | Input     | Address of register to be accessed.                                                                         |
| host_wr_data[31:0] | Input     | Data to write to register.                                                                                  |
| host_rd_data[31:0] | Output    | Data read from register.                                                                                    |
| host_miim_sel      | Input     | When asserted, the MDIO interface is accessed.                                                              |
| host_req           | Input     | Used to request a transaction on the MDIO interface or read from the statistic registers.                   |
| host_miim_rdy      | Output    | When asserted, the MDIO interface has completed any pending transaction and is ready for a new transaction. |

The Management Interface can be omitted at core customization. In this case, the available configuration signals would be used. See Configuration Signals, page 15 for more information.

#### **Configuration Registers**

After the core is powered up and reset, the user application can reconfigure some of the core parameters from their default values, such as flow control operation and WAN mode. Configuration registers can be written and read at any time; however, changes may only take effect during the next interframe gap period. Exceptions to this include the soft reset registers which take effect immediately.

Configuration of the 10-Gigabit Ethernet MAC core is performed through a bank of registers accessed through the Management Interface. The configuration registers in this bank and their addresses are shown Table 7.

Table 7: Configuration Registers

| Address (Hex) | Description                           |
|---------------|---------------------------------------|
| 0x200         | Receiver Configuration Word 0         |
| 0x240         | Receiver Configuration Word 1         |
| 0x280         | Transmitter Configuration             |
| 0x2C0         | Flow Control Configuration            |
| 0x300         | Reconciliation Sublayer Configuration |
| 0x340         | Management Configuration              |



The contents of each configuration register are defined in Table 8 through Table 13.

Table 8: Receiver Configuration Word 0

| Bit  | Default Value | Description                    |
|------|---------------|--------------------------------|
| 31:0 | All 0s        | Pause frame MAC address [31:0] |

Table 9: Receiver Configuration Word 1

| Bit   | Default Value | Description                        |
|-------|---------------|------------------------------------|
| 15:0  | All 0s        | Pause frame MAC address [47:32]    |
| 24:16 | N/A           | Reserved                           |
| 25    | 0             | Receiver Length/Type Check Disable |
| 26    | 0             | Receiver Preserve Preamble Enable  |
| 27    | 0             | VLAN Enable                        |
| 28    | 1             | Receiver Enable                    |
| 29    | 0             | In-band FCS Enable                 |
| 30    | 0             | Jumbo Frame Enable                 |
| 31    | 0             | Receiver Reset                     |

Table 10: Transmitter Configuration Word

| Bit  | Default Value | Description                          |
|------|---------------|--------------------------------------|
| 22:0 | N/A           | Reserved                             |
| 23   | 0             | Transmitter Preserve Preamble Enable |
| 24   | 0             | Deficit Idle Count Enable            |
| 25   | 0             | Inter-Frame Gap Adjust Enable        |
| 26   | 0             | WAN Mode Enable                      |
| 27   | 0             | VLAN Enable                          |
| 28   | 1             | Transmitter Enable                   |
| 29   | 0             | In-band FCS Enable                   |
| 30   | 0             | Jumbo Frame Enable                   |
| 31   | 0             | Transmitter Reset                    |

Table 11: Flow Control Configuration Word

| Bit  | Default Value | Description                  |
|------|---------------|------------------------------|
| 28:0 | N/A           | Reserved                     |
| 29   | 1             | Receive Flow Control Enable  |
| 30   | 1             | Transmit Flow Control Enable |
| 31   | N/A           | Reserved                     |



Table 12: Reconciliation Sublayer Configuration Word

| Bit  | Default Value | Description                      |
|------|---------------|----------------------------------|
| 26:0 | N/A           | Reserved                         |
| 27   | 0             | Fault Inhibit                    |
| 28   | N/A           | Local Fault received, read-only  |
| 29   | N/A           | Remote Fault received, read-only |
| 30   | N/A           | Transmit DCM Locked, read-only   |
| 31   | N/A           | Receive DCM Locked, read-only    |

Table 13: Management Configuration Word

| Bit  | Default Value | Description                                                                   |
|------|---------------|-------------------------------------------------------------------------------|
| 4:0  | All 0s        | Clock Divide[4:0]. Used as a divider value to generate MDC signal at 2.5 MHz. |
| 5    | 0             | MDIO Enable.                                                                  |
| 31:6 | N/A           | Reserved.                                                                     |

When accessing the configuration registers through the Management Interface, the upper bit of host\_opcode functions as an active-low write-enable signal. Figure 8 illustrates a configuration register read, and Figure 9 illustrates a configuration register write. The lower bit of the host\_opcode is only used for MDIO accesses.



Figure 8: Configuration Register Read Timing



Figure 9: Configuration Register Write Timing

#### **Statistic Counters**

During operation, the MAC core collects statistics on the success and failure of various operations for processing by network management entities elsewhere in the system. These statistics are accessed through the Management Interface. A list of statistics is shown in Table 14.

Table 14: Statistic Counters

| Address (hex) | Name                                            |
|---------------|-------------------------------------------------|
| 0x000         | Frames Received OK                              |
| 0x001         | Frame Check Sequence Errors                     |
| 0x002         | Broadcast frames Received OK                    |
| 0x003         | Multicast Frames Received OK                    |
| 0x004         | 64 byte Frames Received OK                      |
| 0x005         | 65-127 byte Frames Received OK                  |
| 0x006         | 128-255 byte Frames Received OK                 |
| 0x007         | 256-511 byte Frames Received OK                 |
| 0x008         | 512-1023 byte Frames Received OK                |
| 0x009         | 1024-MaxFrameSize byte Frames Received OK       |
| 0x00A         | Control Frames Received OK                      |
| 0x00B         | Length/Type Out of Range                        |
| 0x00C         | VLAN Tagged Frames Received OK                  |
| 0x00D         | Pause Frames Received OK                        |
| 0x00E         | Control Frames Received with Unsupported Opcode |
| 0x00F         | Oversize Frames Received OK                     |
| 0x010         | Undersized Frames Received                      |
| 0x011         | Fragment Frames Received                        |
| 0x012         | Number of Bytes Received                        |
| 0x013         | Number of Bytes Transmitted                     |



Table 14: Statistic Counters (Continued)

| Address (hex) | Name                                         |
|---------------|----------------------------------------------|
| 0x020         | Frames Transmitted                           |
| 0x021         | Broadcast Frames Transmitted                 |
| 0x022         | Multicast Frames Transmitted                 |
| 0x023         | Underrun Errors                              |
| 0x024         | Control Frames Transmitted OK                |
| 0x025         | 64 byte Frames Transmitted OK                |
| 0x026         | 65-127 byte Frames Transmitted OK            |
| 0x027         | 128-255 byte Frames Transmitted OK           |
| 0x028         | 256-511 byte Frames Transmitted OK           |
| 0x029         | 512-1023 byte Frames Transmitted OK          |
| 0x02A         | 1024-MaxFrameSize byte Frames Transmitted OK |
| 0x02B         | VLAN Tagged Frames Transmitted OK            |
| 0x02C         | Pause Frames Transmitted OK                  |
| 0x02D         | Oversize Frames Transmitted OK               |

Figure 10 shows a statistics register access across the Management Interface. Each register is 64-bits wide and for this reason must be read in a two-cycle transfer.



Figure 10: Statistics Register Read Across Management Interface

The statistic counters are an optional block of the 10-Gigabit Ethernet MAC core.



#### **MDIO STA Master**

The MDIO STA master interface implemented in the 10-Gigabit Ethernet MAC core is an STA entity (as defined by *IEEE Std.802.3-2008* that can initiate transactions to one or more attached physical layer MDIO Managed Devices (MMDs). Table 15 defines the ports associated with this interface.

Table 15: MDIO Port Descriptions

| Name     | Direction | Description                                                                                        |  |  |  |
|----------|-----------|----------------------------------------------------------------------------------------------------|--|--|--|
| mdc      | Output    | Management Clock; derived from host_clk                                                            |  |  |  |
| mdio_in  | Input     | Serial data in                                                                                     |  |  |  |
| mdio_out | Output    | Serial data out                                                                                    |  |  |  |
| mdio_tri | Output    | 3-state control for MDIO signals; '0' indicates that mdio_out should be asserted onto the MDIO bus |  |  |  |

Figure 11 shows an MDIO transaction across the Management Interface For MDIO transactions, host\_opcode maps into the OP field of the MDIO frame, host\_addr maps to the two address fields of the frame (PRTAD and DEVAD), and host\_wr\_data[15:0] maps into the address/data field of the MDIO frame for Address or Write transactions, and the address/data field maps into host\_rd\_data[15:0] for Read or Read/Increment transactions.



<sup>\*</sup> If a read transaction is initiated, the host\_rd\_data bus is valid at the point indicated. If a write transaction is initiated, the host\_wr\_data bus must be valid at the indicated point. Simultaneous read and write is not permitted.

Figure 11: MDIO Transaction Across Management Interface

If the Management Interface is omitted from the core, the MDIO interface is also omitted.



## **Configuration Signals**

If the Management Interface is omitted at core customization time, a configuration vector is exposed by the core. This allows you to configure the core by statically or dynamically driving the constituent bits of the port. Table 16 describes the configuration signal. For more information about the use of the configuration vector, see the 10-Gigabit Ethernet MAC User Guide.

Table 16: Configuration Signal

| Name                       | Direction | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|----------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| configuration_vector[68:0] | Input     | Configuration signals for the core. The bits are: Bits 47 to 0: Pause frame MAC Source Address Bit 48: Receive VLAN Enable Bit 49: Receive Enable Bit 50: Receive In-Band FCS Bit 51: Receive Jumbo Frame Enable Bit 52: Receiver Reset Bit 53: Transmitter WAN Mode Bit 54: Transmitter IFG Adjust Bit 55: Transmitter VLAN Enable Bit 56: Transmitter In-Band FCS Enable Bit 57: Transmitter In-Band FCS Enable Bit 58: Transmitter Jumbo Frame Enable Bit 59: Transmitter Reset Bit 60: Receive Flow Control Enable Bit 61: Transmit Flow Control Enable Bit 62: Deficit Idle Count Enable Bit 63: Reserved — Tie to '0' Bit 64: RS Fault Inhibit Bit 65: Transmitter Preserve Preamble Enable Bit 66: Receiver Preserve Preamble Enable Bit 67: Receiver Length/Type Error Disable Bit 68: Control Frame Length Check Disable |  |  |



#### **Statistic Vectors**

In addition to the statistic counters described in Management Interface, page 9, there are two statistics vector outputs on the core netlist that are used to signal the core state. These vectors are actually used as the inputs of the counter logic internal to the core. So if you omit the statistic counters at the CORE Generator software customization stage, a relevant subset can be implemented in user logic. Table 17 identifies the signals. The contents of the vectors are defined in Table 18 and Table 19.

Table 17: Statistic Vector Signals

| Name                       | Direction | Description                                       |
|----------------------------|-----------|---------------------------------------------------|
| tx_statistics_vector[24:0] | Output    | Aggregated statistics flags for transmitted frame |
| tx_statistics_valid        | Output    | Valid strobe for tx_statistics_vector             |
| rx_statistics_vector[28:0] | Output    | Aggregated statistics flags for received frames   |
| rx_statistics_valid        | Output    | Valid strobe for rx_statistics_vector             |

Table 18: Transmit Statistics Vector Contents

| tx_statistics_vector bits | Name                    |
|---------------------------|-------------------------|
| 24                        | PAUSE_FRAME_TRANSMITTED |
| 23 to 20                  | BYTES_VALID             |
| 19                        | VLAN_FRAME              |
| 18 to 5                   | FRAME_LENGTH_COUNT      |
| 4                         | CONTROL_FRAME           |
| 3                         | UNDERRUN_FRAME          |
| 2                         | MULTICAST_FRAME         |
| 1                         | BROADCAST_FRAME         |
| 0                         | SUCCESSFUL_FRAME        |

Table 19: Receive Statistics Vector Contents

| rx_statistics_vector bits | Name               |
|---------------------------|--------------------|
| 28                        | LEN_TYPE_RANGE     |
| 27                        | BAD_OPCODE         |
| 26                        | FLOW_CONTROL_FRAME |
| 25 to 22                  | BYTES_VALID        |
| 21                        | VLAN_FRAME         |
| 20                        | OUT_OF_BOUNDS      |
| 19                        | CONTROL_FRAME      |
| 18 to 5                   | FRAME_LENGTH_COUNT |
| 4                         | MULTICAST_FRAME    |
| 3                         | BROADCAST_FRAME    |



Table 19: Receive Statistics Vector Contents (Continued)

| rx_statistics_vector bits | Name       |
|---------------------------|------------|
| 2                         | FCS_ERROR  |
| 1                         | BAD_FRAME  |
| 0                         | GOOD_FRAME |

#### **Clocks and Resets**

Table 20 describes the clock and reset ports present on the supplied example design. In the source code of the example design, other system clocks are derived from the gtx\_clk and xgmii\_rx\_clk signals for use in the core logic. This clock arrangement may be customized in the user application as required.

Table 20: Clock and Reset Ports

| Name         | Direction | Description                                                                  |
|--------------|-----------|------------------------------------------------------------------------------|
| gtx_clk      | Input     | Global transmit clock; all other transmit clocks are derived from this clock |
| xgmii_rx_clk | Input     | XGMII receive clock; all receive clocks are derived from this clock          |
| reset        | Input     | Asynchronous reset                                                           |

## Verification

The 10-Gigabit Ethernet MAC core has been verified in both simulation and hardware testing.

#### **Simulation**

A highly parameterizable transaction-based simulation test suite has been used to verify the core. Tests included:

- Configuration register access through Management Interface
- Local Fault and Remote Fault handling
- Frame transmission
- Frame reception
- CRC validity
- Handling of CRC errors
- Statistic counter access through Management Interface and validity of counts
- Statistic vector validity
- Initiating MDIO transactions through Management Interface
- Use of custom preamble field



#### **Hardware Verification**

The core has been used in a number of hardware test platforms at Xilinx, including the following:

- The core has been used in a test platform design with the Xilinx 10-Gigabit Ethernet XAUI LogiCORE IP. This design comprises the MAC, XAUI, a *ping* loopback FIFO and a test pattern generator all under embedded PowerPC® processor control.
- This design has been used for conformance and interoperability testing at the University of New Hampshire Interoperability Lab.

#### **Device Utilization**

The Virtex®-4 device family contains four-input LUTs; all other families contain six-input LUTs. For this reason, the device utilization for Virtex-4 FPGAs is listed separately. See either:

- Virtex-6 FPGAs
- Virtex-5 FPGAs
- Virtex-4 FPGAs
- Spartan-6 FPGAs

#### Virtex-6 FPGAs

Table 21 provides approximate utilization figures for various core options when a single instance of the core is instantiated in a Virtex-6 device.

Utilization figures are obtained by implementing the block-level wrapper for the core. This wrapper is part of the example design and connects the core to the selected physical interface.

Table 21: Device Utilization for the 10-Gigabit Ethernet MAC Core (Virtex-6 FPGAs)

| Parameter Values   |                         |                    | Resource Usage   |        |      |      |       |
|--------------------|-------------------------|--------------------|------------------|--------|------|------|-------|
| Physical Interface | Management<br>Interface | Statistic Counters | Simplex<br>Split | Slices | LUTs | FFs  | BUFGs |
|                    | Yes                     | Yes                | None             | 1543   | 3020 | 3650 | 2     |
|                    | 162                     | No                 | None             | 1222   | 2338 | 2708 | 2     |
| XGMII              | No                      | No                 | None             | 1168   | 2245 | 2468 | 2     |
|                    |                         |                    | Transmit-only    | 653    | 1313 | 1218 | 0     |
|                    |                         |                    | Receive-only     | 389    | 781  | 1044 | 2     |
|                    | Yes                     | Yes                | None             | 1606   | 3020 | 3650 | 2     |
|                    | 162                     | No                 | None             | 1208   | 2338 | 2708 | 2     |
| No XGMII           | No                      | No                 | None             | 1168   | 2245 | 2468 | 2     |
|                    |                         |                    | Transmit-only    | 667    | 1313 | 1218 | 0     |
|                    |                         |                    | Receive-only     | 398    | 781  | 1044 | 2     |



## **Virtex-5 FPGAs**

Table 22 provides approximate utilization figures for various core options when a single instance of the core is instantiated in a Virtex-5 device.

Utilization figures are obtained by implementing the block-level wrapper for the core. This wrapper is part of the example design and connects the core to the selected physical interface.

Table 22: Device Utilization for the 10-Gigabit Ethernet MAC Core (Virtex-5 FPGAs)

| Parameter Values      |                         |                    |                  | Resource Usage |      |      |       |
|-----------------------|-------------------------|--------------------|------------------|----------------|------|------|-------|
| Physical<br>Interface | Management<br>Interface | Statistic Counters | Simplex<br>Split | Slices         | LUTs | FFs  | BUFGs |
| XGMII                 | Yes                     | Yes                | None             | 2162           | 3420 | 3647 | 1     |
|                       |                         | No                 | None             | 1715           | 2554 | 2712 | 1     |
|                       | No                      | No                 | None             | 1596           | 2427 | 2470 | 1     |
|                       |                         |                    | Transmit-only    | 863            | 1402 | 1221 | 0     |
|                       |                         |                    | Receive-only     | 510            | 843  | 1044 | 1     |
| No XGMII              | Yes                     | Yes                | None             | 2272           | 3420 | 3647 | 1     |
|                       |                         | No                 | None             | 1812           | 2554 | 2712 | 1     |
|                       | No                      | No                 | None             | 1552           | 2427 | 2470 | 1     |
|                       |                         |                    | Transmit-only    | 866            | 1402 | 1221 | 0     |
|                       |                         |                    | Receive-only     | 560            | 843  | 1044 | 1     |

#### Virtex-4 FPGAs

Table 23 provides approximate utilization values for various core options when a single instance of the core is instantiated in a Virtex-4 device.

Utilization figures are obtained by implementing the block-level wrapper for the core. This wrapper is part of the example design and connects the core to the selected physical interface.

Table 23: Device Utilization for the 10-Gigabit Ethernet MAC Core (Virtex-4 FPGAs)

| Parameter Values      |                         |                       |               | Resource Usage |      |      |       |
|-----------------------|-------------------------|-----------------------|---------------|----------------|------|------|-------|
| Physical<br>Interface | Management<br>Interface | Statistic<br>Counters | Simplex Split | Slices         | LUTs | FFs  | BUFGs |
| ХӨМІІ                 | Yes                     | Yes                   | None          | 4862           | 4457 | 3654 | 1     |
|                       |                         | No                    | None          | 3668           | 3372 | 2716 | 1     |
|                       | No                      | No                    | None          | 3548           | 3194 | 2474 | 1     |
|                       |                         |                       | Transmit-only | 1843           | 1927 | 1226 | 0     |
|                       |                         |                       | Receive-only  | 1371           | 1147 | 1045 | 1     |
|                       | Yes                     | Yes                   | None          | 4715           | 4457 | 3654 | 1     |
| No XGMII              |                         | No                    | None          | 3633           | 3372 | 2716 | 1     |
|                       | No                      | No                    | None          | 3267           | 3194 | 2474 | 1     |
|                       |                         |                       | Transmit-only | 1869           | 1927 | 1226 | 0     |
|                       |                         |                       | Receive-only  | 1371           | 1147 | 1045 | 1     |



#### Spartan-6 FPGAs

Table 24 provides approximate utilization figures for various core options when a single instance of the core is instantiated in a Spartan-6 device.

Utilization figures are obtained by implementing the block-level wrapper for the core. This wrapper is part of the example design and connects the core to the selected physical interface.

Table 24: Device Utilization for the 10-Gigabit Ethernet MAC Core (Spartan-6 FPGAs)

| Parameter Values      |                         |                    |                  | Resource Usage |      |      |       |  |
|-----------------------|-------------------------|--------------------|------------------|----------------|------|------|-------|--|
| Physical<br>Interface | Management<br>Interface | Statistic Counters | Simplex<br>Split | Slices         | LUTs | FFs  | BUFGs |  |
| No XGMII              | Yes                     | Yes                | None             | 1696           | 2888 | 3742 | 1     |  |
|                       |                         | No                 | None             | 1264           | 2206 | 2804 | 1     |  |
|                       | No                      | No                 | None             | 1200           | 2107 | 2565 | 1     |  |
|                       |                         |                    | Transmit-Only    | 709            | 1225 | 1241 | 0     |  |
|                       |                         |                    | Receive-Only     | 439            | 737  | 1116 | 1     |  |

#### References

[1] IEEE Standard 802.3-2008, "Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications."

## Support

Visit <u>www.xilinx.com/support/</u> for technical support. Xilinx provides technical support for this LogiCORE IP product when used as described in product documentation.

Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not listed in the documentation or if customized beyond that allowed in the product documentation, or if any changes are made in sections of the design marked as *DO NOT MODIFY*.

## **Ordering Information**

This Xilinx LogiCORE IP module is provided under the SignOnce IP Site License. Two free evaluation licenses are provided: The Simulation Only license is provided with the CORE Generator software, and the Full System Hardware Evaluation license, which lets you test your designs in hardware for a limited period of time, can be downloaded from the 10GEMAC product page.

For full access to all core functionality, both in simulation and in hardware, you must purchase the core. The Xilinx CORE Generator system is bundled with the Xilinx ISE® Design Suite software at no additional charge.

Contact your local <u>Xilinx sales representative</u> for pricing and availability of Xilinx LogiCORE IP modules and software. Information about additional Xilinx LogiCORE IP modules is available on the Xilinx <u>IP Center</u>.



## **Revision History**

| Date     | Version | Revision                                                                                                                                                     |  |  |  |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 09/30/04 | 1.0     | Initial Xilinx release.                                                                                                                                      |  |  |  |
| 04/28/05 | 2.0     | Updated for Xilinx tools 7.1i SP1.                                                                                                                           |  |  |  |
| 01/11/06 | 3.0     | Updated for Xilinx tools 8.1i.                                                                                                                               |  |  |  |
| 07/13/06 | 4.0     | Updated to core version 8.0; Xilinx tools 8.2i.                                                                                                              |  |  |  |
| 09/21/06 | 4.1     | Updated to core version 8.1, release date.                                                                                                                   |  |  |  |
| 02/15/07 | 4.2     | Updated to core version 8.2, Xilinx tools 9.1i.                                                                                                              |  |  |  |
| 08/08/07 | 4.3     | Updated to core version 8.3, Xilinx tools 9.2i.                                                                                                              |  |  |  |
| 03/24/08 | 4.4     | Updated references to IEEE Standard 802.3-2005, removed support for Virtex-II, updated tools for ISE v10.1.                                                  |  |  |  |
| 06/27/08 | 8.5     | Revision number advanced to match core version number, added footnote to facts table stating that WAN mode is no longer supported for Virtex-II Pro designs. |  |  |  |
| 9/18/08  | 8.6     | Updated to core version 8.6; CR fixes.                                                                                                                       |  |  |  |
| 04/24/09 | 9.1     | Updated to core version 9.1, Xilinx tools 11.1. Added Virtex-6 device support.                                                                               |  |  |  |
| 06/24/09 | 9.2     | Updated to core version 9.2, Xilinx tools 11.2.                                                                                                              |  |  |  |
| 09/16/09 | 9.3     | Updated to core version 9.3, Xilinx tools 11.3. Added Virtex-6 HXT, Virtex-6 -1L and Virtex-6 CXT support.                                                   |  |  |  |
| 04/19/10 | 10.1    | Updated to core version 10.1, Xilinx tools 12.1.                                                                                                             |  |  |  |
| 03/01/11 | 10.2    | Updated to core version 10.2, Xilinx IDS software and tools support for 13.1 release                                                                         |  |  |  |
| 10/19/11 | 10.2.1  | Documentation Only: Corrected data in Table 2.                                                                                                               |  |  |  |



## **Notice of Disclaimer**

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.