Preserving Inter-gene Relations during Test Case Generation using Intelligent Evolutionary Operators

Dimitri Stallenberg

Disruptive Crossover Operators

RESTfull API Testing

Progress & Plans

Prerequisites:

- Population filtering
- Population encoding

Machine Learning Modules:

- Linkage Tree learning
- Learning Bayesian structures with GOMEAOther techniques

Variational Operators:

Model-based structure crossover Model-based input crossover Model-based mutation

Experimental setup:

- One-Point crossover
- Benchmark problemMore benchmark problems

Machine Learning

What type of machine learning creates the most accurate dependency model for generating test-cases?

Encoding

n possible actions k solutions in population

k rows	a_0	a_1	a_2	:	a_n
	a_0	a_1	a_2	:	a_n
	a_0	a_1	a_2	:	a_n
				:	
	a_0	a_1	a_2	•••	a_n

Model to Building Blocks

Problems & Results

Encoding

Positional information loss

Complexity

n actions

Fitness evaluation: O(2ⁿ)

Mode	Standard	GOMEA
Evaluated Tests	554	977
Evaluated Actions	611,2	1256,4
Needed Budget	95%	91%
Covered Targets	54,2	71,8
Line Coverage	4%	6%

Date: 19-05-2020 Course: CS3000

Supervisors: Annibale Panichella,

Mitchell Olsthoorn