The Clmg Library 3.1.4

Generated by Doxygen 1.8.17

1 Main Page	1
2 Clmg Library Overview	3
2.1 Library structure	3
2.2 Clmg version of "Hello world"	4
2.3 How to compile ?	4
2.4 What's next ?	5
3 FAQ	7
3.1 FAQ Summary	7
3.2 1. General information and availability	7
3.2.1 1.1. What is the Clmg Library?	7
3.2.2 1.2. What platforms are supported?	8
3.2.3 1.3. How is Clmg distributed ?	8
3.2.4 1.4. What kind of people are concerned by CImg?	8
3.2.5 1.5. What are the specificities of the CeCILL license?	8
3.2.6 1.6. Who is behind CImg?	9
3.3 2. C++ related questions	9
3.3.1 2.1 What is the level of C++ knowledge needed to use CImg?	9
3.3.2 2.2 How to use CImg in my own C++ program ?	9
3.3.3 2.3 Why is Clmg entirely contained in a single header file?	9
3.4 3. Other resources	10
3.4.1 3.1 Translations	10
4 Setting Environment Variables	11
5 How to use Clmg library with Visual C++ 2005 Express Edition ?	13
5.1 How to use CImg library with Visual C++ 2005 Express Edition?	13
6 Tutorial : Getting Started.	15
7 Image Loops.	17
7.1 Loops over the pixel buffer	17
7.2 Loops over image dimensions	18
7.3 Loops over interior regions and borders.	18
7.4 Loops using neighborhoods.	19
7.4.1 Neighborhood-based loops for 2D images	19
7.4.2 Neighborhood-based loops for 3D images	20
7.4.3 Defining neighborhoods	20
7.4.4 Using alternate variable names	20
7.4.5 Example codes	21
8 Using Display Windows.	23
9 How pixel data are stored with Clmg?	25

10 Files IO in Clmg.	27
11 Retrieving Command Line Arguments.	29
11.1 The cimg_usage() macro	29
11.2 The cimg_help() macro	29
11.3 The cimg_option() macro	29
11.4 Example of use	30
11.5 How to learn more about command line options?	31
12 Module Index	33
12.1 Modules	33
13 Namespace Index	35
13.1 Namespace List	35
14 Hierarchical Index	37
14.1 Class Hierarchy	37
15 Class Index	39
15.1 Class List	39
16 Module Documentation	41
16.1 Clmg Library Overview	41
16.2 FAQ : Frequently Asked Questions	42
16.3 Setting Environment Variables	43
16.4 How to use Clmg library with Visual C++ 2005 Express Edition ?	44
16.5 Tutorial: Getting Started.	45
16.6 Using Image Loops.	46
16.7 Using Display Windows.	47
16.8 How pixel data are stored with Clmg.	48
16.9 Files IO in Clmg	49
16.10 Retrieving Command Line Arguments	50
17 Namespace Documentation	51
17.1 cimg_library Namespace Reference	51
17.1.1 Detailed Description	51
17.2 cimg_library::cimg Namespace Reference	52
17.2.1 Detailed Description	60
17.2.2 Function Documentation	60
17.2.2.1 output()	60
17.2.2.2 info()	61
17.2.2.3 exception_mode() [1/2]	61
17.2.2.4 exception_mode() [2/2]	61
17.2.2.5 openmp_mode()	62
17.2.2.6 eval()	62

17.2.2.7 warn()
17.2.2.8 system()
17.2.2.9 endianness()
17.2.2.10 invert_endianness() [1/2]
17.2.2.11 invert_endianness() [2/2]
17.2.2.12 time()
17.2.2.13 tic()
17.2.2.14 toc()
17.2.2.15 sleep()
17.2.2.16 wait()
17.2.2.17 mod()
17.2.2.18 minmod()
17.2.2.19 round()
17.2.2.20 atof()
17.2.2.21 strncasecmp()
17.2.2.22 strcasecmp()
17.2.2.23 strellipsize() [1/2]
17.2.2.24 strellipsize() [2/2]
17.2.2.25 strpare()
17.2.2.26 strwindows_reserved()
17.2.2.27 strunescape()
17.2.2.28 fopen()
17.2.2.29 fclose()
17.2.2.30 is_directory()
17.2.2.31 is_file()
17.2.2.32 fsize()
17.2.2.33 fdate() [1/2]
17.2.2.34 fdate() [2/2]
17.2.2.35 date() [1/2]
17.2.2.36 date() [2/2]
17.2.2.37 curl_path()
17.2.2.38 dcraw_path()
17.2.2.39 ffmpeg_path()
17.2.2.40 graphicsmagick_path()
17.2.2.41 gunzip_path()
17.2.2.42 gzip_path()
17.2.2.43 imagemagick_path()
17.2.2.44 medcon_path()
17.2.2.45 temporary_path()
17.2.2.46 wget_path()
17.2.2.47 split_filename()
17.2.2.48 fread()

17.2.2.49 fwrite()	 81
17.2.2.50 fempty()	 81
17.2.2.51 ftype()	 82
17.2.2.52 load_network()	 82
17.2.2.53 files()	 83
17.2.2.54 dialog()	 83
18 Class Documentation	85
18.1 Clmg< T > Struct Template Reference	 85
18.1.1 Detailed Description	
18.1.2 Member Typedef Documentation	 145
18.1.2.1 iterator	 146
18.1.2.2 value_type	 146
18.1.3 Constructor & Destructor Documentation	 146
18.1.3.1 ∼Clmg()	 146
18.1.3.2 Clmg() [1/13]	 147
18.1.3.3 Clmg() [2/13]	 147
18.1.3.4 Clmg() [3/13]	 148
18.1.3.5 Clmg() [4/13]	 149
18.1.3.6 Clmg() [5/13]	 150
18.1.3.7 Clmg() [6/13]	 150
18.1.3.8 Clmg() [7/13]	 152
18.1.3.9 Clmg() [8/13]	 153
18.1.3.10 Clmg() [9/13]	 154
18.1.3.11 Clmg() [10/13]	 154
18.1.3.12 Clmg() [11/13]	 155
18.1.3.13 Clmg() [12/13]	 155
18.1.3.14 Clmg() [13/13]	 156
18.1.4 Member Function Documentation	 156
18.1.4.1 assign() [1/13]	 156
18.1.4.2 assign() [2/13]	 157
18.1.4.3 assign() [3/13]	
18.1.4.4 assign() [4/13]	 157
18.1.4.5 assign() [5/13]	
18.1.4.6 assign() [6/13]	 158
18.1.4.7 assign() [7/13]	 158
18.1.4.8 assign() [8/13]	
18.1.4.9 assign() [9/13]	
18.1.4.10 assign() [10/13]	
18.1.4.11 assign() [11/13]	
18.1.4.12 assign() [12/13]	
18.1.4.13 assign() [13/13]	 159

18.1.4.14 clear()
18.1.4.15 move_to() [1/2]
18.1.4.16 move_to() [2/2]
18.1.4.17 swap()
18.1.4.18 empty()
18.1.4.19 operator()() [1/2]
18.1.4.20 operator()() [2/2]
18.1.4.21 operator T*()
18.1.4.22 operator=() [1/4]
18.1.4.23 operator=() [2/4]
18.1.4.24 operator=() [3/4]
18.1.4.25 operator=() [4/4]
18.1.4.26 operator+=() [1/3]
18.1.4.27 operator+=() [2/3]
18.1.4.28 operator+=() [3/3]
18.1.4.29 operator++() [1/2]
18.1.4.30 operator++() [2/2]
18.1.4.31 operator+() [1/4]
18.1.4.32 operator+() [2/4]
18.1.4.33 operator+() [3/4]
18.1.4.34 operator+() [4/4]
18.1.4.35 operator-=() [1/3]
18.1.4.36 operator-=() [2/3]
18.1.4.37 operator-=() [3/3]
18.1.4.38 operator() [1/2]
18.1.4.39 operator() [2/2]
18.1.4.40 operator-() [1/4]
18.1.4.41 operator-() [2/4]
18.1.4.42 operator-() [3/4]
18.1.4.43 operator-() [4/4]
18.1.4.44 operator*=() [1/3]
18.1.4.45 operator*=() [2/3]
18.1.4.46 operator*=() [3/3]
18.1.4.47 operator*() [1/3]
18.1.4.48 operator*() [2/3]
18.1.4.49 operator*() [3/3]
18.1.4.50 operator/=() [1/3]
18.1.4.51 operator/=() [2/3]
18.1.4.52 operator/=() [3/3]
18.1.4.53 operator/() [1/3]
18.1.4.54 operator/() [2/3]
18.1.4.55 operator/() [3/3]

18.1.4.56 operator%=() [1/3]
18.1.4.57 operator%=() [2/3]
18.1.4.58 operator%=() [3/3]
18.1.4.59 operator%() [1/3]
18.1.4.60 operator%() [2/3]
18.1.4.61 operator%() [3/3]
18.1.4.62 operator&=() [1/3]
18.1.4.63 operator&=() [2/3]
18.1.4.64 operator&=() [3/3]
18.1.4.65 operator&() [1/3]
18.1.4.66 operator&() [2/3]
18.1.4.67 operator&() [3/3]
18.1.4.68 operator" =() [1/3]
18.1.4.69 operator" =() [2/3]
18.1.4.70 operator" =() [3/3]
18.1.4.71 operator" () [1/3]
18.1.4.72 operator" () [2/3]
18.1.4.73 operator" () [3/3]
18.1.4.74 operator [^] =() [1/3]
18.1.4.75 operator [^] =() [2/3]
18.1.4.76 operator [^] =() [3/3]
18.1.4.77 operator [^] () [1/3]
18.1.4.78 operator [^] () [2/3]
18.1.4.79 operator [^] () [3/3]
18.1.4.80 operator<<=() [1/3]
18.1.4.81 operator<<=() [2/3]
18.1.4.82 operator<<=() [3/3]
18.1.4.83 operator<<() [1/3]
18.1.4.84 operator<<() [2/3]
18.1.4.85 operator<<() [3/3]
18.1.4.86 operator>>=() [1/3]
18.1.4.87 operator>>=() [2/3]
18.1.4.88 operator>>=() [3/3]
18.1.4.89 operator>>() [1/3]
18.1.4.90 operator>>() [2/3]
18.1.4.91 operator>>() [3/3]
18.1.4.92 operator~()
18.1.4.93 operator==() [1/3]
18.1.4.94 operator==() [2/3]
18.1.4.95 operator==() [3/3]
18.1.4.96 operator"!=() [1/3]
18.1.4.97 operator" =() [2/3]

18.1.4.98 operator"!=() [3/3]
18.1.4.99 operator,() [1/2]
18.1.4.100 operator,() [2/2]
18.1.4.101 operator<()
18.1.4.102 pixel_type()
18.1.4.103 width()
18.1.4.104 height()
18.1.4.105 depth()
18.1.4.106 spectrum()
18.1.4.107 size()
18.1.4.108 data() [1/2]
18.1.4.109 data() [2/2]
18.1.4.110 offset()
18.1.4.111 begin()
18.1.4.112 end()
18.1.4.113 front()
18.1.4.114 back()
18.1.4.115 at() [1/2]
18.1.4.116 at() [2/2]
18.1.4.117 atX() [1/2]
18.1.4.118 atX() [2/2]
18.1.4.119 atXY() [1/2]
18.1.4.120 atXY() [2/2]
18.1.4.121 atXYZ() [1/2]
18.1.4.122 atXYZ() [2/2]
18.1.4.123 atXYZC() [1/2]
18.1.4.124 atXYZC() [2/2]
18.1.4.125 linear_atX() [1/2]
18.1.4.126 linear_atX() [2/2]
18.1.4.127 linear_atXY() [1/2]
18.1.4.128 linear_atXY() [2/2]
18.1.4.129 linear_atXYZ() [1/2]
18.1.4.130 linear_atXYZ() [2/2]
18.1.4.131 linear_atXYZC() [1/2]
18.1.4.132 linear_atXYZC() [2/2]
18.1.4.133 cubic_atX() [1/2]
18.1.4.134 cubic_atX_c() [1/2]
18.1.4.135 cubic_atX() [2/2]
18.1.4.136 cubic_atX_c() [2/2] 198
18.1.4.137 cubic_atXY() [1/2]
18.1.4.138 cubic_atXY_c() [1/2]
18.1.4.139 cubic_atXY() [2/2]

18.1.4.140 cubic_atXY_c() [2/2]
18.1.4.141 cubic_atXYZ() [1/2] 200
18.1.4.142 cubic_atXYZ_c() [1/2]
18.1.4.143 cubic_atXYZ() [2/2] 200
18.1.4.144 cubic_atXYZ_c() [2/2]
18.1.4.145 cubic_atXYZ_p()
18.1.4.146 set_linear_atX()
18.1.4.147 set_linear_atXY()
18.1.4.148 set_linear_atXYZ()
18.1.4.149 value_string()
18.1.4.150 is_shared()
18.1.4.151 is_empty()
18.1.4.152 is_inf()
18.1.4.153 is_nan()
18.1.4.154 is_sameXY() [1/3]
18.1.4.155 is_sameXY() [2/3]
18.1.4.156 is_sameXY() [3/3]
18.1.4.157 is_sameXZ() [1/2]
18.1.4.158 is_sameXZ() [2/2]
18.1.4.159 is_sameXC() [1/2]
18.1.4.160 is_sameXC() [2/2]
18.1.4.161 is_sameYZ() [1/2]
18.1.4.162 is_sameYZ() [2/2]
18.1.4.163 is_sameYC() [1/2]
18.1.4.164 is_sameYC() [2/2]
18.1.4.165 is_sameZC() [1/2]
18.1.4.166 is_sameZC() [2/2]
18.1.4.167 is_sameXYZ() [1/2]
18.1.4.168 is_sameXYZ() [2/2]
18.1.4.169 is_sameXYC() [1/2]
18.1.4.170 is_sameXYC() [2/2] 207
18.1.4.171 is_sameXZC() [1/2]
18.1.4.172 is_sameXZC() [2/2]
18.1.4.173 is_sameYZC() [1/2]
18.1.4.174 is_sameYZC() [2/2]
18.1.4.175 is_sameXYZC() [1/2]
18.1.4.176 is_sameXYZC() [2/2]
18.1.4.177 containsXYZC()
18.1.4.178 contains() [1/5]
18.1.4.179 contains() [2/5]
18.1.4.180 contains() [3/5]
18.1.4.181 contains() [4/5]

18.1.4.182 contains() [5/5]
18.1.4.183 is_overlapped()
18.1.4.184 is_object3d()
18.1.4.185 is_Clmg3d()
18.1.4.186 sqr()
18.1.4.187 sqrt()
18.1.4.188 exp()
18.1.4.189 erf()
18.1.4.190 log()
18.1.4.191 log2()
18.1.4.192 log10()
18.1.4.193 abs()
18.1.4.194 sign()
18.1.4.195 cos()
18.1.4.196 sin()
18.1.4.197 sinc()
18.1.4.198 tan()
18.1.4.199 cosh()
18.1.4.200 sinh()
18.1.4.201 tanh()
18.1.4.202 acos()
18.1.4.203 asin()
18.1.4.204 atan()
18.1.4.205 atan2()
18.1.4.206 acosh()
18.1.4.207 asinh()
18.1.4.208 atanh()
18.1.4.209 mul()
18.1.4.210 div()
18.1.4.211 pow() [1/3]
18.1.4.212 pow() [2/3]
18.1.4.213 pow() [3/3]
18.1.4.214 rol() [1/3]
18.1.4.215 rol() [2/3]
18.1.4.216 rol() [3/3]
18.1.4.217 ror() [1/3]
18.1.4.218 ror() [2/3]
18.1.4.219 ror() [3/3]
18.1.4.220 min() [1/3]
18.1.4.221 min() [2/3]
18.1.4.222 min() [3/3]
18.1.4.223 max() [1/3]

18.1.4.224 max() [2/3]
18.1.4.225 max() [3/3]
18.1.4.226 minabs() [1/3]
18.1.4.227 minabs() [2/3]
18.1.4.228 minabs() [3/3]
18.1.4.229 maxabs() [1/3]
18.1.4.230 maxabs() [2/3]
18.1.4.231 maxabs() [3/3]
18.1.4.232 min_max()
18.1.4.233 max_min()
18.1.4.234 kth_smallest()
18.1.4.235 variance()
18.1.4.236 variance_mean()
18.1.4.237 variance_noise()
18.1.4.238 MSE()
18.1.4.239 PSNR()
18.1.4.240 eval() [1/3]
18.1.4.241 eval() [2/3]
18.1.4.242 eval() [3/3]
18.1.4.243 get_stats()
18.1.4.244 magnitude()
18.1.4.245 dot()
18.1.4.246 get_vector_at()
18.1.4.247 get_matrix_at()
18.1.4.248 get_tensor_at()
18.1.4.249 set_vector_at()
18.1.4.250 set_matrix_at()
18.1.4.251 set_tensor_at()
18.1.4.252 diagonal()
18.1.4.253 identity_matrix() [1/2]
18.1.4.254 sequence() [1/2]
18.1.4.255 transpose()
18.1.4.256 cross()
18.1.4.257 invert()
18.1.4.258 solve()
18.1.4.259 solve_tridiagonal()
18.1.4.260 eigen()
18.1.4.261 get_eigen()
18.1.4.262 symmetric_eigen()
18.1.4.263 get_symmetric_eigen()
18.1.4.264 sort() [1/2]
18.1.4.265 sort() [2/2]

18.1.4.266 SVD()
18.1.4.267 get_SVD()
18.1.4.268 project_matrix()
18.1.4.269 dijkstra() [1/2]
18.1.4.270 dijkstra() [2/2]
18.1.4.271 string()
18.1.4.272 row_vector() [1/4]
18.1.4.273 row_vector() [2/4]
18.1.4.274 row_vector() [3/4]
18.1.4.275 row_vector() [4/4]
18.1.4.276 vector() [1/4]
18.1.4.277 vector() [2/4]
18.1.4.278 vector() [3/4]
18.1.4.279 vector() [4/4]
18.1.4.280 matrix() [1/3]
18.1.4.281 matrix() [2/3]
18.1.4.282 matrix() [3/3]
18.1.4.283 tensor()
18.1.4.284 identity_matrix() [2/2]
18.1.4.285 sequence() [2/2]
18.1.4.286 rotation_matrix()
18.1.4.287 fill() [1/4]
18.1.4.288 fill() [2/4]
18.1.4.289 fill() [3/4]
18.1.4.290 fill_from_values()
18.1.4.291 fill() [4/4]
18.1.4.292 fillX()
18.1.4.293 fillY()
18.1.4.294 fillZ()
18.1.4.295 fillC()
18.1.4.296 discard()
18.1.4.297 rand()
18.1.4.298 round()
18.1.4.299 noise()
18.1.4.300 normalize() [1/2]
18.1.4.301 normalize() [2/2]
18.1.4.302 norm()
18.1.4.303 cut()
18.1.4.304 quantize()
18.1.4.305 otsu()
18.1.4.306 threshold()
18.1.4.307 histogram()

18.1.4.308 equalize()
18.1.4.309 index()
18.1.4.310 map()
18.1.4.311 label() [1/2]
18.1.4.312 label() [2/2]
18.1.4.313 default_LUT256()
18.1.4.314 HSV_LUT256()
18.1.4.315 lines_LUT256()
18.1.4.316 hot_LUT256()
18.1.4.317 cool_LUT256()
18.1.4.318 jet_LUT256()
18.1.4.319 flag_LUT256()
18.1.4.320 cube_LUT256()
18.1.4.321 RGBtoXYZ()
18.1.4.322 XYZtoRGB()
18.1.4.323 resize() [1/3]
18.1.4.324 resize() [2/3]
18.1.4.325 resize() [3/3]
18.1.4.326 resize_doubleXY()
18.1.4.327 resize_tripleXY()
18.1.4.328 mirror() [1/2]
18.1.4.329 mirror() [2/2]
18.1.4.330 shift()
18.1.4.331 permute_axes()
18.1.4.332 unroll()
18.1.4.333 rotate() [1/4]
18.1.4.334 rotate() [2/4]
18.1.4.335 rotate() [3/4]
18.1.4.336 rotate() [4/4]
18.1.4.337 warp()
18.1.4.338 get_projections2d()
18.1.4.339 crop()
18.1.4.340 autocrop()
18.1.4.341 get_column()
18.1.4.342 columns()
18.1.4.343 row()
18.1.4.344 get_rows()
18.1.4.345 get_slice()
18.1.4.346 get_slices()
18.1.4.347 get_channel()
18.1.4.348 get_channels()
18.1.4.349 streamline()

18.1.4.350 get_shared_points()
18.1.4.351 get_shared_rows()
18.1.4.352 get_shared_row()
18.1.4.353 get_shared_slices()
18.1.4.354 get_shared_slice()
18.1.4.355 get_shared_channels()
18.1.4.356 get_shared_channel()
18.1.4.357 get_split() [1/2]
18.1.4.358 get_split() [2/2]
18.1.4.359 append()
18.1.4.360 correlate()
18.1.4.361 convolve()
18.1.4.362 cumulate() [1/2]
18.1.4.363 cumulate() [2/2]
18.1.4.364 erode() [1/3]
18.1.4.365 erode() [2/3]
18.1.4.366 erode() [3/3]
18.1.4.367 dilate() [1/3]
18.1.4.368 dilate() [2/3]
18.1.4.369 dilate() [3/3]
18.1.4.370 closing() [1/2]
18.1.4.371 closing() [2/2]
18.1.4.372 opening() [1/2]
18.1.4.373 opening() [2/2]
18.1.4.374 watershed()
18.1.4.375 deriche()
18.1.4.376 vanvliet()
18.1.4.377 blur() [1/2]
18.1.4.378 blur() [2/2]
18.1.4.379 blur_anisotropic() [1/2]
18.1.4.380 blur_anisotropic() [2/2]
18.1.4.381 blur_bilateral() [1/2]
18.1.4.382 blur_bilateral() [2/2]
18.1.4.383 boxfilter()
18.1.4.384 blur_box() [1/2]
18.1.4.385 blur_box() [2/2]
18.1.4.386 blur_guided()
18.1.4.387 blur_patch()
18.1.4.388 blur_median()
18.1.4.389 sharpen()
18.1.4.390 get_gradient()
18.1.4.391 get hessian()

18.1.4.392 structure_tensors()
18.1.4.393 diffusion_tensors()
18.1.4.394 displacement()
18.1.4.395 matchpatch()
18.1.4.396 distance() [1/2]
18.1.4.397 distance() [2/2]
18.1.4.398 distance_dijkstra()
18.1.4.399 distance_eikonal() [1/2]
18.1.4.400 distance_eikonal() [2/2]
18.1.4.401 haar() [1/2]
18.1.4.402 haar() [2/2]
18.1.4.403 get_FFT()
18.1.4.404 FFT() [1/2]
18.1.4.405 FFT() [2/2]
18.1.4.406 rotate_object3d()
18.1.4.407 shift_object3d() [1/2]
18.1.4.408 shift_object3d() [2/2]
18.1.4.409 resize_object3d()
18.1.4.410 append_object3d()
18.1.4.411 texturize_object3d()
18.1.4.412 get_elevation3d()
18.1.4.413 get_projections3d()
18.1.4.414 get_isoline3d()
18.1.4.415 isoline3d() [1/2]
18.1.4.416 isoline3d() [2/2]
18.1.4.417 get_isosurface3d()
18.1.4.418 isosurface3d() [1/2]
18.1.4.419 isosurface3d() [2/2]
18.1.4.420 elevation3d()
18.1.4.421 box3d()
18.1.4.422 cone3d()
18.1.4.423 cylinder3d()
18.1.4.424 torus3d()
18.1.4.425 plane3d()
18.1.4.426 sphere3d()
18.1.4.427 ellipsoid3d()
18.1.4.428 object3dtoClmg3d()
18.1.4.429 Clmg3dtoobject3d()
18.1.4.430 draw_point() [1/2]
18.1.4.431 draw_point() [2/2]
18.1.4.432 draw_line() [1/6]
18.1.4.433 draw_line() [2/6]

18.1.4.434 draw_line() [3/6]
18.1.4.435 draw_line() [4/6]
18.1.4.436 draw_line() [5/6]
18.1.4.437 draw_line() [6/6]
18.1.4.438 draw_arrow()
18.1.4.439 draw_spline() [1/4]
18.1.4.440 draw_spline() [2/4]
18.1.4.441 draw_spline() [3/4]
18.1.4.442 draw_spline() [4/4]
18.1.4.443 draw_triangle() [1/9]
18.1.4.444 draw_triangle() [2/9]
18.1.4.445 draw_triangle() [3/9]
18.1.4.446 draw_triangle() [4/9]
18.1.4.447 draw_triangle() [5/9]
18.1.4.448 draw_triangle() [6/9]
18.1.4.449 draw_triangle() [7/9]
18.1.4.450 draw_triangle() [8/9]
18.1.4.451 draw_triangle() [9/9]
18.1.4.452 draw_rectangle() [1/3]
18.1.4.453 draw_rectangle() [2/3]
18.1.4.454 draw_rectangle() [3/3]
18.1.4.455 draw_polygon()
18.1.4.456 draw_ellipse() [1/4]
18.1.4.457 draw_ellipse() [2/4]
18.1.4.458 draw_ellipse() [3/4]
18.1.4.459 draw_ellipse() [4/4]
18.1.4.460 draw_circle() [1/2]
18.1.4.461 draw_circle() [2/2]
18.1.4.462 draw_image() [1/2]
18.1.4.463 draw_image() [2/2]
18.1.4.464 draw_text() [1/4]
18.1.4.465 draw_text() [2/4]
18.1.4.466 draw_text() [3/4]
18.1.4.467 draw_text() [4/4]
18.1.4.468 draw_quiver() [1/2]
18.1.4.469 draw_quiver() [2/2]
18.1.4.470 draw_axis() [1/2]
18.1.4.471 draw_axis() [2/2]
18.1.4.472 draw_axes()
18.1.4.473 draw_grid()
18.1.4.474 draw_graph()
18.1.4.475 draw fill()

18.1.4.476 draw_plasma()
18.1.4.477 draw_mandelbrot()
18.1.4.478 draw_gaussian() [1/2]
18.1.4.479 draw_gaussian() [2/2]
18.1.4.480 draw_object3d()
18.1.4.481 select()
18.1.4.482 load()
18.1.4.483 load_ascii()
18.1.4.484 load_dlm()
18.1.4.485 load_bmp()
18.1.4.486 load_jpeg()
18.1.4.487 load_magick()
18.1.4.488 load_png()
18.1.4.489 load_pnm()
18.1.4.490 load_pfm()
18.1.4.491 load_rgb()
18.1.4.492 load_rgba()
18.1.4.493 load_tiff()
18.1.4.494 load_minc2()
18.1.4.495 load_analyze()
18.1.4.496 load_cimg() [1/2]
18.1.4.497 load_cimg() [2/2]
18.1.4.498 load_inr()
18.1.4.499 load_exr()
18.1.4.500 load_pandore()
18.1.4.501 load_parrec()
18.1.4.502 load_raw()
18.1.4.503 load_yuv()
18.1.4.504 load_off()
18.1.4.505 load_video()
18.1.4.506 load_ffmpeg_external()
18.1.4.507 load_gif_external()
18.1.4.508 load_heif()
18.1.4.509 load_graphicsmagick_external()
18.1.4.510 load_gzip_external()
18.1.4.511 load_imagemagick_external()
18.1.4.512 load_medcon_external()
18.1.4.513 load_pdf_external()
18.1.4.514 load_dcraw_external()
18.1.4.515 load_camera()
18.1.4.516 load_other()
18.1.4.517 print()

18.1.4.518 display() [1/3]
18.1.4.519 display() [2/3]
18.1.4.520 display() [3/3]
18.1.4.521 display_object3d()
18.1.4.522 display_graph()
18.1.4.523 save()
18.1.4.524 save_ascii()
18.1.4.525 save_cpp()
18.1.4.526 save_dlm()
18.1.4.527 save_bmp()
18.1.4.528 save_jpeg()
18.1.4.529 save_magick()
18.1.4.530 save_png()
18.1.4.531 save_pnm()
18.1.4.532 save_pnk()
18.1.4.533 save_pfm()
18.1.4.534 save_rgb()
18.1.4.535 save_rgba()
18.1.4.536 save_tiff()
18.1.4.537 save_minc2()
18.1.4.538 save_analyze()
18.1.4.539 save_cimg() [1/2]
18.1.4.540 save_cimg() [2/2]
18.1.4.541 save_empty_cimg() [1/2]
18.1.4.542 save_empty_cimg() [2/2]
18.1.4.543 save_inr()
18.1.4.544 save_exr()
18.1.4.545 save_pandore() [1/2]
18.1.4.546 save_pandore() [2/2]
18.1.4.547 save_raw() [1/2]
18.1.4.548 save_raw() [2/2]
18.1.4.549 save_yuv() [1/2]
18.1.4.550 save_yuv() [2/2]
18.1.4.551 save_off() [1/2]
18.1.4.552 save_off() [2/2]
18.1.4.553 save_video()
18.1.4.554 save_ffmpeg_external()
18.1.4.555 save_gzip_external()
18.1.4.556 save_graphicsmagick_external()
18.1.4.557 save_imagemagick_external()
18.1.4.558 save_medcon_external()
18.1.4.559 save_other()

18.1.4.560 get_serialize()	379
18.1.5 Member Data Documentation	379
18.1.5.1 const_iterator	379
18.2 ClmgDisplay Struct Reference	380
18.2.1 Detailed Description	386
18.2.2 Constructor & Destructor Documentation	386
18.2.2.1 ∼CImgDisplay()	386
18.2.2.2 ClmgDisplay() [1/5]	387
18.2.2.3 ClmgDisplay() [2/5]	387
18.2.2.4 ClmgDisplay() [3/5]	387
18.2.2.5 ClmgDisplay() [4/5]	388
18.2.2.6 ClmgDisplay() [5/5]	388
18.2.3 Member Function Documentation	389
18.2.3.1 screenshot() [1/2]	389
18.2.3.2 assign()	389
18.2.3.3 empty()	389
18.2.3.4 operator=() [1/3]	390
18.2.3.5 operator=() [2/3]	390
18.2.3.6 operator=() [3/3]	390
18.2.3.7 operator bool()	390
18.2.3.8 is_closed()	391
18.2.3.9 is_key() [1/3]	391
18.2.3.10 is_key() [2/3]	391
18.2.3.11 is_key() [3/3]	392
18.2.3.12 is_key_sequence()	392
18.2.3.13 is_keyESC()	393
18.2.3.14 width()	393
18.2.3.15 height()	393
18.2.3.16 normalization()	394
18.2.3.17 title()	394
18.2.3.18 window_width()	394
18.2.3.19 window_height()	395
18.2.3.20 window_x()	395
18.2.3.21 window_y()	395
18.2.3.22 mouse_x()	395
18.2.3.23 mouse_y()	396
18.2.3.24 button()	396
18.2.3.25 wheel()	397
18.2.3.26 key()	397
18.2.3.27 released_key()	398
18.2.3.28 keycode()	398
18.2.3.29 frames_per_second()	399

18.2.3.30 display() [1/2]	399
18.2.3.31 display() [2/2]	399
18.2.3.32 show()	400
18.2.3.33 close()	400
18.2.3.34 move()	400
18.2.3.35 resize() [1/4]	401
18.2.3.36 resize() [2/4]	401
18.2.3.37 resize() [3/4]	402
18.2.3.38 resize() [4/4]	402
18.2.3.39 set_normalization()	402
18.2.3.40 set_title()	403
18.2.3.41 set_fullscreen()	403
18.2.3.42 toggle_fullscreen()	404
18.2.3.43 show_mouse()	404
18.2.3.44 hide_mouse()	404
18.2.3.45 set_mouse()	405
18.2.3.46 set_button() [1/2]	405
18.2.3.47 set_button() [2/2]	405
18.2.3.48 set_wheel() [1/2]	405
18.2.3.49 set_wheel() [2/2]	406
18.2.3.50 set_key() [1/2]	406
18.2.3.51 set_key() [2/2]	406
18.2.3.52 flush()	407
18.2.3.53 wait()	407
18.2.3.54 render()	407
18.2.3.55 paint()	408
18.2.3.56 screenshot() [2/2]	408
18.2.3.57 snapshot()	408
18.3 CImgException Struct Reference	409
18.3.1 Detailed Description	409
18.4 CImgList< T > Struct Template Reference	410
18.4.1 Detailed Description	423
18.4.2 Member Typedef Documentation	423
18.4.2.1 iterator	424
18.4.2.2 value_type	424
18.4.3 Constructor & Destructor Documentation	424
18.4.3.1 ∼CImgList()	424
18.4.3.2 ClmgList() [1/19]	425
18.4.3.3 ClmgList() [2/19]	425
18.4.3.4 ClmgList() [3/19]	425
18.4.3.5 ClmgList() [4/19]	426
18.4.3.6 ClmgList() [5/19]	426

	8.4.3.7 ClmgList() [6/19]	27
	8.4.3.8 ClmgList() [7/19]	₽27
	8.4.3.9 ClmgList() [8/19]	128
	8.4.3.10 ClmgList() [9/19]	128
	8.4.3.11 ClmgList() [10/19]	128
	8.4.3.12 ClmgList() [11/19]	129
	8.4.3.13 ClmgList() [12/19]	129
	8.4.3.14 ClmgList() [13/19]	ł29
	8.4.3.15 ClmgList() [14/19]	130
	8.4.3.16 ClmgList() [15/19]	30
	8.4.3.17 ClmgList() [16/19]	31
	8.4.3.18 ClmgList() [17/19]	31
	8.4.3.19 ClmgList() [18/19]	32
	8.4.3.20 ClmgList() [19/19]	32
18.4.4 N	ember Function Documentation	32
	8.4.4.1 get_shared()	32
	8.4.4.2 assign() [1/18]	133
	8.4.4.3 clear()	133
	8.4.4.4 assign() [2/18]	133
	8.4.4.5 assign() [3/18]	133
	8.4.4.6 assign() [4/18]	34
	8.4.4.7 assign() [5/18]	134
	8.4.4.8 assign() [6/18]	134
	8.4.4.9 assign() [7/18]	135
	8.4.4.10 assign() [8/18]	35
	8.4.4.11 assign() [9/18]	35
	8.4.4.12 assign() [10/18]	136
	8.4.4.13 assign() [11/18]	ŀ36
	8.4.4.14 assign() [12/18]	136
	8.4.4.15 assign() [13/18]	37
	8.4.4.16 assign() [14/18]	37
	8.4.4.17 assign() [15/18]	37
	8.4.4.18 assign() [16/18]	138
	8.4.4.19 assign() [17/18]	138
	8.4.4.20 assign() [18/18]	38
	8.4.4.21 move_to() [1/2]	38
	8.4.4.22 move_to() [2/2]	139
	8.4.4.23 swap()	139
	8.4.4.24 empty()	40
	8.4.4.25 operator()() [1/3]	40
	8.4.4.26 operator()() [2/3]	40
	8.4.4.27 operator()() [3/3]	40

18.4.4.28 operator Clmg $< T > *()$
18.4.4.29 operator=() [1/4]
18.4.4.30 operator=() [2/4]
18.4.4.31 operator=() [3/4]
18.4.4.32 operator=() [4/4]
18.4.4.33 operator+()
18.4.4.34 operator,() [1/2]
18.4.4.35 operator,() [2/2]
18.4.4.36 operator>()
18.4.4.37 operator<()
18.4.4.38 pixel_type()
18.4.4.39 width()
18.4.4.40 size()
18.4.4.41 data() [1/2]
18.4.4.42 data() [2/2]
18.4.4.43 at()
18.4.4.44 atNXYZC() [1/2]
18.4.4.45 atNXYZC() [2/2]
18.4.4.46 atNXYZ() [1/2]
18.4.4.47 atNXYZ() [2/2]
18.4.4.48 atNXY() [1/2]
18.4.4.49 atNXY() [2/2]
18.4.4.50 atNX() [1/2]
18.4.4.51 atNX() [2/2]
18.4.4.52 atN() [1/2]
18.4.4.53 atN() [2/2]
18.4.4.54 is_sameN() [1/2]
18.4.4.55 is_sameN() [2/2]
18.4.4.56 is_sameXYZC()
18.4.4.57 is_sameNXYZC()
18.4.4.58 containsNXYZC()
18.4.4.59 containsN()
18.4.4.60 contains() [1/8]
18.4.4.61 contains() [2/8]
18.4.4.62 contains() [3/8]
18.4.4.63 contains() [4/8]
18.4.4.64 contains() [5/8]
18.4.4.65 contains() [6/8]
18.4.4.66 contains() [7/8]
18.4.4.67 contains() [8/8]
18.4.4.68 min_max() [1/2]
18.4.4.69 min_max() [2/2]

18.4.4.70 max_min()
18.4.4.71 insert() [1/5]
18.4.4.72 insert() [2/5]
18.4.4.73 insert() [3/5]
18.4.4.74 insert() [4/5]
18.4.4.75 insert() [5/5]
18.4.4.76 remove() [1/2]
18.4.4.77 remove() [2/2]
18.4.4.78 images()
18.4.4.79 get_shared_images()
18.4.4.80 get_append()
18.4.4.81 split()
18.4.4.82 push_back() [1/2]
18.4.4.83 push_front() [1/2]
18.4.4.84 push_back() [2/2]
18.4.4.85 push_front() [2/2]
18.4.4.86 erase()
18.4.4.87 get_select() [1/2]
18.4.4.88 get_select() [2/2]
18.4.4.89 load()
18.4.4.90 load_cimg() [1/3]
18.4.4.91 load_cimg() [2/3] 463
18.4.4.92 load_cimg() [3/3]
18.4.4.93 load_parrec()
18.4.4.94 load_yuv()
18.4.4.95 load_video()
18.4.4.96 load_ffmpeg_external()
18.4.4.97 load_gif_external()
18.4.4.98 load_gzip_external()
18.4.4.99 load_tiff()
18.4.4.100 print()
18.4.4.101 display() [1/3]
18.4.4.102 display() [2/3]
18.4.4.103 display() [3/3]
18.4.4.104 save()
18.4.4.105 is_saveable()
18.4.4.106 save_gif_external()
18.4.4.107 save_yuv() [1/2]
18.4.4.108 save_yuv() [2/2]
18.4.4.109 save_cimg() [1/4]
18.4.4.110 save_cimg() [2/4]
18.4.4.111 save_cimg() [3/4]

Index		479
	18.4.5.1 const_iterator	477
	18.4.5 Member Data Documentation	
	18.4.4.122 FFT() [2/2]	476
	18.4.4.121 FFT() [1/2]	476
	18.4.4.120 font()	476
	18.4.4.119 get_serialize()	475
	18.4.4.118 save_ffmpeg_external()	475
	18.4.4.117 save_video()	474
	18.4.4.116 save_gzip_external()	474
	18.4.4.115 save_tiff()	474
	18.4.4.114 save_empty_cimg() [2/2]	473
	18.4.4.113 save_empty_cimg() [1/2]	473
	18.4.4.112 save_cimg() [4/4]	471

Chapter 1

Main Page

This is the reference documentation of the CImg Library, the C++ template image processing library. This documentation have been generated using the tool doxygen. It contains a detailed description of all classes and functions of the CImg Library.

Use the menu above to navigate through the documentation pages. As a first step, you may look at the list of available modules.

You may be interested also in the presentation slides presenting an overview of the CImg Library capabilities.

2 Main Page

Chapter 2

Clmg Library Overview

The **Clmg Library** is an image processing library, designed for C++ programmers. It provides useful classes and functions to load/save, display and process various types of images.

2.1 Library structure

The CImg Library consists in a single header file CImg. h providing a set of C++ template classes that can be used in your own sources, to load/save, process and display images or list of images. Very portable (Unix/X11,Windows, MacOS X, FreeBSD,..), efficient, simple to use, it's a pleasant toolkit for coding image processing stuff in C++.

The header file CImg.h contains all the classes and functions that compose the library itself. This is one originality of the Clmg Library. This particularly means that :

- No pre-compilation of the library is needed, since the compilation of the Clmg functions is done at the same time as the compilation of your own C++ code.
- No complex dependencies have to be handled: Just include the CImg.h file, and you get a working C++ image processing toolkit.
- The compilation is done on the fly: only Clmg functionalities really used by your program are compiled and appear in the compiled executable program. This leads to very compact code, without any unused stuff.
- · Class members and functions are inlined, leading to better performance during the program execution.

The CImg Library is structured as follows:

All library classes and functions are defined in the namespace cimg_library. This namespace encapsulates
the library functionalities and avoid any class name collision that could happen with other includes. Generally,
one uses this namespace as a default namespace:

```
#include "CImg.h"
using namespace cimg_library;
...
```

- The namespace cimg_library::cimg defines a set of *low-level* functions and variables used by the library. Documented functions in this namespace can be safely used in your own program. But, **never** use the cimg_library::cimg namespace as a default namespace, since it contains functions whose names are already defined in the standard C/C++ library.
- The class cimg_library::Clmg represents images up to 4-dimensions wide, containing pixels of type T (template parameter). This is actually the main class of the library.

- The class cimg_library::ClmgList represents lists of cimg_library::Clmg<T> images. It can be used for instance to store different frames of an image sequence.
- The class cimg_library::ClmgDisplay is able to display images or image lists into graphical display windows. As you may guess, the code of this class is highly system-dependent but this is transparent for the programmer, as environment variables are automatically set by the Clmg library (see also Setting Environment Variables).
- The class cimg_library::ClmgException (and its subclasses) are used by the library to throw exceptions when errors occur. Those exceptions can be caught with a try { ..} catch (CImgException) { ..} block. Subclasses define precisely the type of encountered errors.

Knowing these four classes is **enough** to get benefit of the Clmg Library functionalities.

2.2 Clmg version of "Hello world".

Below is some very simple code that creates a "Hello World" image. This shows you basically how a CImg program looks like.

Which can be also written in a more compact way as:

```
#Include "CImg.h"
using namespace cimg_library;
int main() {
  const unsigned char purple[] = { 255,0,255 };
  CImg<unsigned char>(640,400,1,3,0).draw_text(100,100,"Hello World",purple).display("My first CImg code");
  return 0;
}
```

Generally, you can write very small code that performs complex image processing tasks. The Clmg Library is very simple to use and provides a lot of interesting algorithms for image manipulation.

2.3 How to compile?

The Clmg library is a very light and user-friendly library: only standard system libraries are used. It avoids handling complex dependencies and problems with library compatibility. The only thing you need is a C++ compiler:

- Microsoft Visual Studio.NET and Visual Express Edition: Use the project files and solution files provided in the Clmg Library package (directory 'compilation/') to see how it works.
- Intel ICL compiler: Use the following command to compile a Clmg-based program with ICL: icl /Ox hello_world.cpp user32.lib gdi32.lib
- g++ (MingW windows version): Use the following command to compile a CImg-based program with g++, on Windows:
 g++ -o hello_world.exe hello_world.cpp -O2 -lgdi32
- g++ (Linux version): Use the following command to compile a Clmg-based program with g++, on Linux: g++ -o hello_world.exe hello_world.cpp -O2 -L/usr/X11R6/lib -lm -lpthread -lX11
- g++ (Solaris version): Use the following command to compile a Clmg-based program with g++, on Solaris: g++ -o hello_world.exe hello_world.cpp -O2 -lm -lpthread -R/usr/X11R6/lib -lrt -lnsl -lsocket

2.4 What's next ?

• g++ (Mac OS X version) : Use the following command to compile a Clmg-based program with g++, on Mac OS X ·

```
g++ -o hello_world.exe hello_world.cpp -O2 -lm -lpthread -I/usr/X11R6/include -L/usr/X11R6/lib -lm -lpthread -lX11
```

• **Dev-Cpp**: Use the project file provided in the Clmg library package to see how it works.

If you are using other compilers and encounter problems, please write me since maintaining compatibility is one of the priorities of the CImg Library. Nevertheless, old compilers that do not respect the C++ standard will not support the CImg Library.

2.4 What's next?

If you are ready to get more, and to start writing more serious programs with Clmg, you are invited to go to the Tutorial: Getting Started. section.

Chapter 3

FAQ

3.1 FAQ Summary

```
General information and availability
What is the CImg Library ?
What platforms are supported ?
How is CImg distributed ?
What kind of people are concerned by CImg ?
What are the specificities of the CeCILL license ?
Who is behind CImg ?
C++ related questions
What is the level of C++ knowledge needed to use CImg ?
How to use CImg in my own C++ program ?
Why is CImg entirely contained in a single header file ?
Other resources
Translations
```

3.2 1. General information and availability

3.2.1 1.1. What is the Clmg Library?

The Clmg Library is an *open-source C++ library for image processing*.

It mainly consists in a (big) single header file CImg.h providing a set of C++ classes and functions that can be used in your own sources, to load/save, manage/process and display generic images. It's actually a very simple and pleasant toolkit for coding image processing stuff in C++: Just include the header file CImg.h, and you are ready to handle images in your C++ programs.

8 FAQ

3.2.2 1.2. What platforms are supported?

Clmg has been designed with *portability* in mind. It is regularly tested on different architectures and compilers, and should also work on any decent OS having a decent C++ compiler. Before each release, the Clmg Library is compiled under these different configurations:

- PC Linux 32/64 bits, with g++.
- PC Windows 32/64 bits, with Visual C++ Express Edition.

Clmg has a minimal number of dependencies. In its minimal version, it can be compiled only with standard C++ headers. Anyway, it has interesting extension capabilities and can use external libraries to perform specific tasks more efficiently (Fourier Transform computation using FFTW for instance).

3.2.3 1.3. How is Clmg distributed?

The Clmg Library is freely distributed as a complete .zip compressed package, hosted at the CImg server. The package is distributed under the Cecill license.

This package contains:

- The main library file CImg.h (C++ header file).
- Several C++ source code showing examples of using CImg.
- A complete library documentation, in PDF format.
- Additional library plug-ins that can be used to extend library capabilities for specific uses.

The Clmg Library is a quite lightweight library which is easy to maintain (due to its particular structure), and thus has a fast rythm of release. A new version of the Clmg package is released approximately every three months.

3.2.4 1.4. What kind of people are concerned by Clmg?

The Clmg library is an *image processing* library, primarily intended for computer scientists or students working in the fields of image processing or computer vision, and knowing bases of C++. As the library is handy and really easy to use, it can be also used by any programmer needing occasional tools for dealing with images in C++, since there are no standard library yet for this purpose.

3.2.5 1.5. What are the specificities of the CeCILL license?

The CeCILL license governs the use of the Clmg Library. This is an *open-source* license which gives you rights to access, use, modify and redistribute the source code, under certains conditions. There are two different variants of the CeCILL license used in Clmg (namely CeCILL and CeCILL—C, all open-source), corresponding to different constraints on the source files:

- The CeCILL-C license is the most permissive one, close to the GNU LGPL license, and applies only on the main library file CImg.h. Basically, this license allows to use CImg.h in a closed-source product without forcing you to redistribute the entire software source code. Anyway, if one modifies the CImg.← h source file, one has to redistribute the modified version of the file that must be governed by the same CeCILL-C license.
- The CeCILL license applies to all other files (source examples, plug-ins and documentation) of the Clmg Library package, and is close (even *compatible*) with the *GNU GPL license*. It *does not allow* the use of these files in closed-source products.

You are invited to read the complete descriptions of the the CeCILL-C and CeCILL licenses before releasing a software based on the Clmg Library.

3.2.6 1.6. Who is behind Clmg?

Clmg has been started by David Tschumperlé at the beginning of his PhD thesis, in October 1999. He is still the main coordinator of the project. Since the first release, a growing number of contributors has appeared. Due to the very simple and compact form of the library, submitting a contribution is quite easy and can be fastly integrated into the supported releases. List of contributors can be found on the front page.

3.3 2. C++ related questions

3.3.1 2.1 What is the level of C++ knowledge needed to use Clmg?

The Clmg Library has been designed using C++ templates and object-oriented programming techniques, but in a very accessible level. There are only public classes without any derivation (just like C structures) and there is at most one template parameter for each Clmg class (defining the pixel type of the images). The design is simple but clean, making the library accessible even for non professional C++ programmers, while proposing strong extension capabilities for C++ experts.

3.3.2 2.2 How to use Clmg in my own C++ program?

Basically, you need to add these two lines in your C++ source code, in order to be able to work with Clmg images: #include "CImg.h" using namespace cimg_library;

3.3.3 2.3 Why is Clmg entirely contained in a single header file?

People are often surprised to see that the complete code of the library is contained in a single (big) C++ header file CImg.h. There are good practical and technical reasons to do that. Some arguments are listed below to justify this approach, so (I hope) you won't think this is a awkwardly C++ design of the CImg library:

- First, the library is based on *template datatypes* (images with generic pixel type), meaning that the programmer is free to decide what type of image he instanciates in his code. Even if there are roughly a limited number of fully supported types (basically, the "atomic" types of C++: *unsigned char, int, float, ...*), this is *not imaginable* to pre-compile the library classes and functions for *all possible atomic datatypes*, since many functions and methods can have two or three arguments having different template parameters. This really means *a huge number* of possible combinations. The size of the object binary file generated to cover all possible cases would be just *colossal*. Is the STL library a pre-compiled one? No, Clmg neither. Clmg is not using a classical *.cpp* and *.h* mechanism, just like the STL. Architectures of C++ *template-based* libraries are somewhat special in this sense. This is a proven technical fact.
- Second, why CImg does not have several header files, just like the STL does (one for each class for instance)? This would be possible of course. There are only 4 classes in CImg, the two most important being C← Img<T> and CImgList<T> representing respectively an image and a collection of images. But contrary to the STL library, these two CImg classes are strongly inter-dependent. All CImg algorithms are actually not defined as separate functions acting on containers (as the STL does with his header <algorithm>), but are directly methods of the image and image collection classes. This inter-dependence practically means that you will undoubtly need these two main classes at the same time if you are using CImg. If they were defined in separate header files, you would be forced to include both of them. What is the gain then? No gain. Concerning the two other classes: You can disable the third most important class CImgDisplay of the CImg library, by setting the compilation macro cimg_display to 0, avoiding thus to compile this class if you don't use display capabilities of CImg in your code. But to be honest, this is a quite small class and doing this doesn't

10 FAQ

save much compilation time. The last and fourth class is *CImgException*, which is only few lines long and is obviously required in almost all methods of CImg. Including this one is *mandatory*.

As a consequence, having a single header file instead of several ones is just a way for you to avoid including all of them, without any consequences on compilation time. This is both good technical and practical reasons to do like this.

• Third, having a single header file has plenty of advantages: Simplicity for the user, and for the developers (maintenance is in fact easier). Look at the CImg.h file, it looks like a mess at a first glance, but it is in fact very well organized and structured. Finding pieces of code in CImg functions or methods is particularly easy and fast. Also, how about the fact that library installation problems just disappear? Just bring CImg.h with you, put it in your source directory, and the library is ready to go!

I admit the compilation time of CImg-based programs can be sometime long, but don't think that it is due to the fact that you are using a single header file. Using several header files wouldn't arrange anything since you would need all of them. Having a pre-compiled library object would be the only solution to speed up compilation time, but it is not possible at all, due to the too much generic nature of the library.

3.4 3. Other resources

3.4.1 3.1 Translations

This FAQ has been translated to Serbo-Croatian language by Web Geeks .

Setting Environment Variables

The CImg library is a multiplatform library, working on a wide variety of systems. This implies the existence of some *environment variables* that must be correctly defined depending on your current system. Most of the time, the CImg Library defines these variables automatically (for popular systems). Anyway, if your system is not recognized, you will have to set the environment variables by hand. Here is a quick explanations of environment variables. Setting the environment variables is done with the #define keyword. This setting must be done *before including*

Setting the environment variables is done with the #define keyword. This setting must be done before including the file CImg.h in your source code. For instance, defining the environment variable cimg_display would be done like this:

```
#define cimg_display 0
#include "CImg.h"
...
```

Here are the different environment variables used by the Clmg Library:

- cimg_OS: This variable defines the type of your Operating System. It can be set to 1 (*Unix*), 2 (*Windows*), or 0 (*Other configuration*). It should be actually auto-detected by the Clmg library. If this is not the case (cimg_OS=0), you will probably have to tune the environment variables described below.
- cimg_display: This variable defines the type of graphical library used to display images in windows. It can be set to 0 (no display library available), 1 (X11-based display) or 2 (Windows-GDI display). If you are running on a system without X11 or Windows-GDI ability, please set this variable to 0. This will disable the display support, since the CImg Library doesn't contain the necessary code to display images on systems other than X11 or Windows GDI.
- cimg_use_vt100: This variable tells the library if the system terminal has VT100 color capabilities. It can
 be defined or not defined. Define this variable to get colored output on your terminal, when using the CImg
 Library.
- cimg_verbosity: This variable defines the level of run-time debug messages that will be displayed by
 the Clmg Library. It can be set to 0 (no debug messages), 1 (normal debug messages displayed on standard
 error), 2 (normal debug messages displayed in modal windows, which is the default value), or 3 (high debug
 messages). Note that setting this value to 3 may slow down your program since more debug tests are made by
 the library (particularly to check if pixel access is made outside image boundaries). See also CImgException
 to better understand how debug messages are working.
- cimg_plugin: This variable tells the library to use a plugin file to add features to the Clmg<T> class. Define it with the path of your plugin file, if you want to add member functions to the Clmg<T> class, without having to modify directly the "<tt>Clmg.h</tt>" file. An include of the plugin file is performed in the Clmg<T> class. If cimg_plugin if not specified (default), no include is done.
- cimglist_plugin: Same as cimg_plugin, but to add features to the ClmgList<T> class.
- cimgdisplay_plugin : Same as cimg_plugin, but to add features to the ClmgDisplay<T> class.

All these compilation variables can be checked, using the function cimg_library::cimg::info(), which displays a list of the different configuration variables and their values on the standard error output.

How to use Clmg library with Visual C++ 2005 Express Edition ?

5.1 How to use Clmg library with Visual C++ 2005 Express Edition?

This section has been written by Vincent Garcia and Alexandre Fournier from I3S/Sophia_Antipolis.

- · Download Clmg library
- Download and install Visual C++ 2005 Express Edition
- · Download and install Microsoft Windows SDK
- · Configure Visual C++ to take into account Microsoft SDK
 - 1. Go to menu "Tools -> options"
 - 2. Select option "Projects and Solutions -> VC++ Directories"
 - 3. In the select liste "Show directories for", choose "include files", and add C:\Program Files\Microsoft Platform SDK\Include (adapt if needed)
 - 4. In the select liste "Show directories for", choose "library files", and add C:\Program Files\Microsoft
 Platform SDK\Lib (adapt if needed) Edit file C:\Program Files\Microsoft Visual Studio 8\VC\VCProject←
 Defaults\corewin_express.vsprops (adapt if needed)
 - 6. 7. Remplace the line AdditionalDependencies="kernel32.lib"/> by AdditionalDependencies="kernel32.\(\circ\) lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib"/>
- · Restart Visual C++
- · Import Clmg library in your main file

	<u>. </u>				
How to use	Clmg libra	ry with Vis	ual C++ 200	5 Express E	Edition ?

14

Tutorial: Getting Started.

Let's start to write our first program to get the idea. This will demonstrate how to load and create images, as well as handle image display and mouse events. Assume we want to load a color image lena.jpg, smooth it, display it in a windows, and enter an event loop so that clicking a point in the image will draw the (R,G,B) intensity profiles of the corresponding image line (in another window). Yes, that sounds quite complex for a first code, but don't worry, it will be very simple using the Clmg library! Well, just look at the code below, it does the task:

```
#include "CImg.h"
using namespace cimg_library;
int main() {
    CImg<unsigned char> image("lena.jpg"), visu(500,400,1,3,0);
    const unsigned char red[] = { 255,0,0 }, green[] = { 0,255,0 }, blue[] = { 0,0,255 };
    image.blur(2.5);
    CImgDisplay main_disp(image, "Click a point"), draw_disp(visu, "Intensity profile");
    while (!main_disp.is_closed() && !draw_disp.is_closed()) {
        main_disp.wait();
        if (main_disp.button() && main_disp.mouse_y()>=0) {
            const int y = main_disp.mouse_y();
            visu.fill(0).draw_graph(image.get_crop(0,y,0,0,image.width()-1,y,0,0),red,1,1,0,255,0);
            visu.draw_graph(image.get_crop(0,y,0,1,image.width()-1,y,0,1),green,1,1,0,255,0);
            visu.draw_graph(image.get_crop(0,y,0,2,image.width()-1,y,0,2),blue,1,1,0,255,0).display(draw_disp);
        }
    return 0;
}
```

Here is a screenshot of the resulting program:

And here is the detailled explanation of the source, line by line:

```
#include "CImg.h"
```

Include the main and only header file of the CImg library.

```
using namespace cimg_library;
```

Use the library namespace to ease the declarations afterward.

```
int main() {
```

Definition of the main function.

```
CImg<unsigned char> image("lena.jpg"), visu(500,400,1,3,0);
```

Creation of two instances of images of unsigned char pixels. The first image image is initialized by reading an image file from the disk. Here, lena.jpg must be in the same directory as the current program. Note that you must also have installed the <code>ImageMagick</code> package in order to be able to read JPG images. The second image visu is initialized as a black color image with dimension dx=500, dy=400, dz=1 (here, it is a 2D image, not a 3D one), and dv=3 (each pixel has 3 'vector' channels R,G,B). The last argument in the constructor defines the default value of the pixel values (here 0, which means that visu will be initially black).

```
const unsigned char red[] = { 255,0,0 }, green[] = { 0,255,0 }, blue[] = { 0,0,255 };
```

Definition of three different colors as array of unsigned char. This will be used to draw plots with different colors. image.blur(2.5);

Blur the image, with a gaussian blur and a standard variation of 2.5. Note that most of the CImg functions have two versions: one that acts in-place (which is the case of blur), and one that returns the result as a new image (the name of the function begins then with $get_$). In this case, one could have also written $image = image.get_$ _blur(2.5); (more expensive, since it needs an additional copy operation).

```
CImgDisplay main_disp(image, "Click a point"), draw_disp(visu, "Intensity profile");
```

Creation of two display windows, one for the input image image, and one for the image visu which will be display intensity profiles. By default, CImg displays handles events (mouse,keyboard,...). On Windows, there is a way to create fullscreen displays.

```
while (!main_disp.is_closed() && !draw_disp.is_closed()) {
```

Enter the event loop, the code will exit when one of the two display windows is closed. $main_disp.wait()$;

```
Wait for an event (mouse, keyboard,..) in the display window main_disp. if (main_disp.button() \&\& main_disp.mouse_y()>=0) {
```

Test if the mouse button has been clicked on the image area. One may distinguish between the 3 different mouse buttons, but in this case it is not necessary

```
const int y = main_disp.mouse_y();
```

Get the image line y-coordinate that has been clicked.

```
visu.fill(0).draw_graph(image.get_crop(0,y,0,0,image.width()-1,y,0,0),red,1,0,256,0);
```

This line illustrates the pipeline property of most of the CImg class functions. The first function $\mathtt{fiil}(0)$ simply sets all pixel values with 0 (i.e. clear the image \mathtt{visu}). The interesting thing is that it returns a reference to \mathtt{visu} and then, can be pipelined with the function $\mathtt{draw_graph}()$ which draws a plot in the image \mathtt{visu} . The plot data are given by another image (the first argument of $\mathtt{draw_graph}()$). In this case, the given image is the red-component of the line y of the original image, retrieved by the function $\mathtt{get_crop}()$ which returns a sub-image of the image \mathtt{image} . Remember that images coordinates are 4D (x,y,z,c) and for color images, the R,G,B channels are respectively given by $\mathtt{v=0}$, $\mathtt{v=1}$ and $\mathtt{v=2}$.

```
 \verb|visu.draw_graph(image.get_crop(0,y,0,1,image.width()-1,y,0,1),green,1,0,256,0)|; \\
```

Plot the intensity profile for the green channel of the clicked line.

```
visu.draw_graph(image.get_crop(0,y,0,2,image.width()-1,y,0,2),blue,1,0,256,0).display(draw_disp);
```

Same thing for the blue channel. Note how the function (which return a reference to visu) is pipelined with the function display () that just paints the image visu in the corresponding display window. ...till the end

I don't think you need more explanations!

As you have noticed, the CImg library allows to write very small and intuitive code. Note also that this source will perfectly work on Unix and Windows systems. Take also a look to the examples provided in the CImg package (directory <code>examples/</code>). It will show you how CImg-based code can be surprisingly small. Moreover, there is surely one example close to what you want to do. A good start will be to look at the file <code>CImg_demo.cpp</code> which contains small and various examples of what you can do with the CImg Library. All CImg classes are used in this source, and the code can be easily modified to see what happens.

Image Loops.

The Clmg Library provides different macros that define useful iterative loops over an image. Basically, it can be used to replace one or several for (..) instructions, but it also proposes interesting extensions to classical loops. Below is a list of all existing loop macros, classified in four different categories:

- · Loops over the pixel buffer
- · Loops over image dimensions
- · Loops over interior regions and borders.
- · Loops using neighborhoods.

7.1 Loops over the pixel buffer

Loops over the pixel buffer are really basic loops that iterate a pointer on the pixel data buffer of a cimg_library::CImg image. Two macros are defined for this purpose:

- cimg_for(img,ptr,T): This macro loops over the pixel data buffer of the image img, using a pointer T* ptr, starting from the beginning of the buffer (first pixel) till the end of the buffer (last pixel).
 - img must be a (non empty) cimg_library::CImg image of pixels T.
 - ptr is a pointer of type T*. This kind of loop should not appear a lot in your own source code, since this is a low-level loop and many functions of the Clmg class may be used instead. Here is an example of use:

```
CImg<float> img(320,200);
cimg_for(img,ptr,float) { *ptr=0; } // Equivalent to 'img.fill(0);'
```

- cimg_rof(img,ptr,T): This macro does the same as cimg_for() but from the end to the beginning of the pixel buffer.
- cimg_foroff(img,off): This macro loops over the pixel data buffer of the image img, using an offset, starting from the beginning of the buffer (first pixel, off=0) till the end of the buffer (last pixel value, off = img. ← size()-1).
 - img must be a (non empty) cimg_library::Clmg<T> image of pixels T.
 - off is an inner-loop variable, only defined inside the scope of the loop.

Here is an example of use :

```
CImg<float> img(320,200);
cimg_foroff(img,off) { img[off]=0; } // Equivalent to 'img.fill(0);'
```

18 Image Loops.

7.2 Loops over image dimensions

The following loops are probably the most used loops in image processing programs. They allow to loop over the image along one or several dimensions, along a raster scan course. Here is the list of such loop macros for a single dimension:

```
cimg_forX(img,x): equivalent to: for (int x = 0; x<img.width(); ++x).</li>
cimg_forY(img,y): equivalent to: for (int y = 0; y<img.height(); ++y).</li>
cimg_forZ(img,z): equivalent to: for (int z = 0; z<img.depth(); ++z).</li>
cimg_forC(img,c): equivalent to: for (int c = 0; c<img.spectrum(); ++c).</li>
```

Combinations of these macros are also defined as other loop macros, allowing to loop directly over 2D, 3D or 4D images :

```
cimg_forXY(img,x,y): equivalent to: cimg_forY(img,y) cimg_forX(img,x).
cimg_forXZ(img,x,z): equivalent to: cimg_forZ(img,z) cimg_forX(img,x).
cimg_forYZ(img,y,z): equivalent to: cimg_forZ(img,z) cimg_forY(img,y).
cimg_forXC(img,x,c): equivalent to: cimg_forC(img,c) cimg_forX(img,x).
cimg_forYC(img,y,c): equivalent to: cimg_forC(img,c) cimg_forY(img,y).
cimg_forZC(img,z,c): equivalent to: cimg_forC(img,c) cimg_forZ(img,z).
cimg_forXYZ(img,x,y,z): equivalent to: cimg_forC(img,c) cimg_forXY(img,x,y).
cimg_forXYC(img,x,y,c): equivalent to: cimg_forC(img,c) cimg_forXZ(img,x,z).
cimg_forYZC(img,y,z,c): equivalent to: cimg_forC(img,c) cimg_forYZ(img,y,z).
cimg_forYZC(img,y,z,c): equivalent to: cimg_forC(img,c) cimg_forYZ(img,y,z).
cimg_forXYZC(img,x,y,z,c): equivalent to: cimg_forC(img,c) cimg_forYZ(img,y,z).
```

- For all these loops, x,y,z and v are inner-defined variables only visible inside the scope of the loop. They don't have to be defined before the call of the macro.
- img must be a (non empty) cimg_library::Clmg image.

```
Here is an example of use that creates an image with a smooth color gradient : CImg < unsigned char > img(256,256,1,3); // Define a 256x256 color image cimg_forXYC(img,x,y,c)  { img(x,y,c) = (x+y)*(c+1)/6; } img.display("Color gradient");
```

7.3 Loops over interior regions and borders.

Similar macros are also defined to loop only on the border of an image, or inside the image (excluding the border). The border may be several pixel wide :

- cimg_for_insideX(img,x,n): Loop along the x-axis, except for pixels inside a border of n pixels wide.
- cimg_for_insideY(img,y,n): Loop along the y-axis, except for pixels inside a border of n pixels wide.
- $cimg_for_insideZ(img,z,n)$: Loop along the z-axis, except for pixels inside a border of n pixels wide.

- cimg_for_insideC(img,c,n): Loop along the c-axis, except for pixels inside a border of n pixels wide.
- cimg_for_insideXY(img,x,y,n): Loop along the (x,y)-axes, excepted for pixels inside a border of n pixels wide.
- cimg_for_insideXYZ(img,x,y,z,n): Loop along the (x,y,z)-axes, excepted for pixels inside a border of n pixels wide.

And also:

- cimg for borderX(img,x,n): Loop along the x-axis, only for pixels inside a border of n pixels wide.
- cimg_for_borderY(img,y,n): Loop along the y-axis, only for pixels inside a border of n pixels wide.
- cimg_for_borderZ(img,z,n): Loop along the z-axis, only for pixels inside a border of n pixels wide.
- cimg for borderC(img,c,n): Loop along the c-axis, only for pixels inside a border of n pixels wide.
- cimg for borderXY(img,x,y,n): Loop along the (x,y)-axes, only for pixels inside a border of n pixels wide.
- cimg_for_borderXYZ(img,x,y,z,n): Loop along the (x,y,z)-axes, only for pixels inside a border of n pixels wide.
- For all these loops, x,y,z and c are inner-defined variables only visible inside the scope of the loop. They don't have to be defined before the call of the macro.
- img must be a (non empty) cimg_library::Clmg image.
- The constant n stands for the size of the border.

Here is an example of use, to create a 2d grayscale image with two different intensity gradients:

```
CImg<> img(256,256);
cimg_for_insideXY(img,x,y,50) img(x,y) = x+y;
cimg_for_borderXY(img,x,y,50) img(x,y) = x-y;
img_display();
```

7.4 Loops using neighborhoods.

Inside an image loop, it is often useful to get values of neighborhood pixels of the current pixel at the loop location. The Clmg Library provides a very smart and fast mechanism for this purpose, with the definition of several loop macros that remember the neighborhood values of the pixels. The use of these macros can highly optimize your code, and also simplify your program.

7.4.1 Neighborhood-based loops for 2D images

For 2D images, the neighborhood-based loop macros are :

- cimg_for2x2(img,x,y,z,c,l,T): Loop along the (x,y)-axes using a centered 2x2 neighborhood.
- cimg_for3x3(img,x,y,z,c,I,T): Loop along the (x,y)-axes using a centered 3x3 neighborhood.
- cimg_for4x4(img,x,y,z,c,I,T): Loop along the (x,y)-axes using a centered 4x4 neighborhood.
- cimg_for5x5(img,x,y,z,c,I,T): Loop along the (x,y)-axes using a centered 5x5 neighborhood.

For all these loops, x and y are inner-defined variables only visible inside the scope of the loop. They don't have to be defined before the call of the macro. img is a non empty CImg < T > image. z and c are constants that define on which image slice and vector channel the loop must apply (usually both 0 for grayscale 2D images). Finally, I is the 2x2, 3x3, 4x4 or 5x5 neighborhood of type I that will be updated with the correct pixel values during the loop (see Defining neighborhoods).

20 Image Loops.

7.4.2 Neighborhood-based loops for 3D images

For 3D images, the neighborhood-based loop macros are :

- cimg_for2x2x2(img,x,y,z,c,l,T): Loop along the (x,y,z)-axes using a centered 2x2x2 neighborhood.
- cimg_for3x3x3(img,x,y,z,c,l,T): Loop along the (x,y,z)-axes using a centered 3x3x3 neighborhood.

For all these loops, x, y and z are inner-defined variables only visible inside the scope of the loop. They don't have to be defined before the call of the macro. img is a non empty CImg < T > image. c is a constant that defines on which image channel the loop must apply (usually 0 for grayscale 3D images). Finally, I is the 2x2x2 or 3x3x3 neighborhood of type I that will be updated with the correct pixel values during the loop (see Defining neighborhoods).

7.4.3 Defining neighborhoods

A neighborhood is defined as an instance of a class having operator[] defined. This particularly includes classical C-array, as well as Clmg<T> objects.

For instance, a 3x3 neighborhood can be defined either as a 'float[9]' or a 'CImg<float>(3,3)' variable.

7.4.4 Using alternate variable names

There are also some useful macros that can be used to define variables that reference the neighborhood elements. There are :

- Clmg 2x2(I,type): Define a 2x2 neighborhood named I, of type type.
- Clmg_3x3(I,type): Define a 3x3 neighborhood named I, of type type.
- Clmg_4x4(I,type): Define a 4x4 neighborhood named I, of type type.
- Clmg 5x5(I,type): Define a 5x5 neighborhood named I, of type type.
- Clmg_2x2x2(I,type): Define a 2x2x2 neighborhood named I, of type type.
- Clmg 3x3x3(I,type): Define a 3x3x3 neighborhood named I, of type type.

Actually, I is a generic name for the neighborhood. In fact, these macros declare a set of new variables. For instance, defining a 3x3 neighborhood $CImg_3x3(I,float)$ declares 9 different float variables Ipp,Icp,Inp,Ipc,Icc,Inc,Ipn,Icn,Inn which correspond to each pixel value of a 3x3 neighborhood. Variable indices are p,c or n, and stand respectively for 'previous', 'current' and 'next'. First indice denotes the x-axis, second indice denotes the y-axis. Then, the names of the variables are directly related to the position of the corresponding pixels in the neighborhood. For 3D neighborhoods, a third indice denotes the z-axis. Then, inside a neighborhood loop, you will have the following equivalence:

```
Ipp = img(x-1,y-1)
Icn = img(x,y+1)
Inp = img(x+1,y-1)
Inpc = img(x+1,y-1,z)
Ippn = img(x-1,y-1,z+1)
```

· and so on...

and so on...

For bigger neighborhoods, such as 4x4 or 5x5 neighborhoods, two additionnal indices are introduced: a (stands for 'after') and b (stands for 'before'), so that:

```
• Ibb = img(x-2, y-2)
• Ina = img(x+1, y+2)
```

The value of a neighborhood pixel outside the image range (image border problem) is automatically set to the same values as the nearest valid pixel in the image (this is also called the *Neumann border condition*).

7.4.5 Example codes

More than a long discussion, the above example will demonstrate how to compute the gradient norm of a 3D volume using the cimg for 3x3x3 () loop macro:

And the following example shows how to deal with neighborhood references to blur a color image by averaging pixel values on a 5x5 neighborhood.

As you can see, explaining the use of the CImg neighborhood macros is actually more difficult than using them!

22 Image Loops.

Using Display Windows.

When opening a display window, you can choose the way the pixel values will be normalized before being displayed on the screen. Screen displays only support color values between [0,255], and some

When displaying an image into the display window using CImgDisplay::display(), values of the image pixels can be eventually linearly normalized between [0,255] for visualization purposes. This may be useful for instance when displaying CImg<double> images with pixel values between [0,1]. The normalization behavior depends on the value of normalize which can be either 0,1 or 2:

- 0 : No pixel normalization is performed when displaying an image. This is the fastest process, but you must be sure your displayed image have pixel values inside the range [0,255].
- 1 : Pixel value normalization is done for each new image display. Image pixels are not modified themselves, only displayed pixels are normalized.
- 2 : Pixel value normalization is done for the first image display, then the normalization parameters are kept and used for all the next image displays.

How pixel data are stored with Clmg?

First, CImg<T> are *very* basic structures, which means that there are no memory tricks, weird memory alignments or disk caches used to store pixel data of images. When an image is instanced, all its pixel values are stored in memory at the same time (yes, you should avoid working with huge images when dealing with CImg, if you have only 64kb of RAM).

A CImg<T> is basically a 4th-dimensional array (width,height,depth,dim), and its pixel data are stored linearly in a single memory buffer of general size (width*height*depth*dim). Nothing more, nothing less. The address of this memory buffer can be retrieved by the function CImg<T>::data(). As each image value is stored as a type T (T being known by the programmer of course), this pointer is a 'T*', or a 'const T*' if your image is 'const'. so, 'T *ptr = img.data()' gives you the pointer to the first value of the image 'img'. The overall size of the used memory for one instance image (in bytes) is then 'width*height*depth*dim*sizeof(T)'.

Now, the ordering of the pixel values in this buffer follows these rules: The values are *not* interleaved, and are ordered first along the X,Y,Z and V axis respectively (corresponding to the width,height,depth,dim dimensions), starting from the upper-left pixel to the bottom-right pixel of the instane image, with a classical scanline run.

So, a color image with dim=3 and depth=1, will be stored in memory as :

R1R2R3R4R5R6......G1G2G3G4G5G6.......B1B2B3B4B5B6.... (i.e following a 'planar' structure)

and *not* as R1G1B1R2G2B2R3G3B3... (interleaved channels), where R1 = img(0,0,0,0) is the first upper-left pixel of the red component of the image, R2 is img(1,0,0,0), G1 = img(0,0,0,1), G2 = img(1,0,0,1), B1 = img(0,0,0,2), and so on...

Another example, a (1x5x1x1) Clmg<T> (column vector A) will be stored as : A1A2A3A4A5 where A1 = img(0,0), A2 = img(0,1), ..., A5 = img(0,4).

As you see, it is *very* simple and intuitive: no interleaving, no padding, just simple. This is cool not only because it is simple, but this has in fact a number of interesting properties. For instance, a 2D color image is stored in memory exactly as a 3D scalar image having a depth=3, meaning that when you are dealing with 2D color images, you can write 'img(x,y,k)' instead of 'img(x,y,0,k)' to access the kth channel of the (x,y) pixel. More generally, if you have one dimension that is 1 in your image, you can just skip it in the call to the operator(). Similarly, values of a column vector stored as an image with width=depth=spectrum=1 can be accessed by 'img(y)' instead of 'img(0,y)'. This is very convenient.

Another cool thing is that it allows you to work easily with 'shared' images. A shared image is a CImg<T> instance that shares its memory with another one (the 'base' image). Destroying a shared image does nothing in fact. Shared images is a convenient way of modifying only *portions* (consecutive in memory) of an image. For instance, if 'img' is a 2D color image, you can write:

img.get shared channel(0).blur(2); img.get shared channels(1,2).mirror('x');

which just blur the red channel of the image, and mirror the two others along the X-axis. This is possible since channels of an image are not interleaved but are stored as different consecutive planes in memory, so you see that constructing a shared image is possible (and trivial).

Files IO in Clmg.

The CImg Library can NATIVELY handle the following file formats :

- RAW: consists in a very simple header (in ascii), then the image data.
- ASC (Ascii)
- HDR (Analyze 7.5)
- INR (Inrimage)
- PPM/PGM (Portable Pixmap)
- BMP (uncompressed)
- PAN (Pandore-5)
- DLM (Matlab ASCII)

If ImageMagick is installed, The CImg Library can save image in formats handled by ImageMagick : JPG, GIF, PNG, TIF,...

28 Files IO in Clmg.

Retrieving Command Line Arguments.

The CImg library offers facilities to retrieve command line arguments in a console-based program, as it is a commonly needed operation. Three macros $cimg_usage()$, $cimg_help()$ and $cimg_option()$ are defined for this purpose. Using these macros allows to easily retrieve options values from the command line. Invoking the compiled executable with the option -h or -help will automatically display the program usage, followed by the list of requested options.

11.1 The cimg_usage() macro

The macro cimg_usage (usage) may be used to describe the program goal and usage. It is generally inserted one time after the int main (int argc, char **argv) definition.

Parameters

: A string describing the program goa	ıl and usage.
---------------------------------------	---------------

Precondition

The function where ${\tt cimg_usage}$ () is used must have correctly defined ${\tt argc}$ and ${\tt argv}$ variables.

11.2 The cimg_help() macro

The macro $cimg_help(str)$ will display the string str only if the -help or -help option are invoked when running the programm.

11.3 The cimg_option() macro

The macro cimg_option (name, default, usage) may be used to retrieve an option value from the command line.

Parameters

name	: The name of the option to be retrieved from the command line.	
default	: The default value returned by the macro if no options name has been specified when running the	
	program.	
usage	: A brief explanation of the option. If usage==0, the option won't appear on the option list when invoking the executable with options -h or -help (hidden option).	

Returns

cimg_option() returns an object that has the same type as the default value default. The return value is equal to the one specified on the command line. If no such option have been specified, the return value is equal to the default value default. Warning, this can be confusing in some situations (look at the end of the next section).

Precondition

The function where <code>cimg_option()</code> is used must have correctly defined <code>argc</code> and <code>argv</code> variables.

11.4 Example of use

The code below uses the macros $cimg_usage()$ and $cimg_option()$. It loads an image, smoothes it an quantifies it with a specified number of values.

Invoking the corresponding executable with test -h -hidden -n 20 -i foo.jpg will display:

Warning

As the type of object returned by the macro <code>cimg_option(option,default,usage)</code> is defined by the type of <code>default</code>, undesired casts may appear when writting code such as:
<code>const_double_sigma = cimg_option("-val",0,"A floating point value");</code>

In this case, sigma will always be equal to an integer (since the default value 0 is an integer). When passing a float value on the command line, a *float to integer* cast is then done, truncating the given parameter to an integer value (this is surely not a desired behavior). You must specify 0.0 as the default value in this case.

11.5 How to learn more about command line options?

You should take a look at the examples <code>examples/gmic.cpp</code> provided in the Clmg Library package. This is a command line based image converter which intensively uses the <code>cimg_option()</code> and <code>cimg_usage()</code> macros to retrieve command line parameters.

Module Index

12.1 Modules

Here is a list of all modules:

Clmg Library Overview	41
FAQ: Frequently Asked Questions	42
Setting Environment Variables	43
How to use CImg library with Visual C++ 2005 Express Edition?	14
Tutorial: Getting Started	45
Using Image Loops	16
Using Display Windows	17
How pixel data are stored with CImg	48
Files IO in Clmg	49
Retrieving Command Line Arguments	50

34 Module Index

Namespace Index

13.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

cimg_library	
Contains all classes and functions of the CImg library	51
cimg_library::cimg	
Contains low-level functions and variables of the CImg Library	52

36 Namespace Index

Hierarchical Index

14.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

$ng\ldots\ldots\ldots\ldots\ldots$	 85
ng< charT >	 85
$ng < doubleT > \ldots \ldots \ldots \ldots \ldots$	 85
ng< floatT >	 85
$ng < intT > \ldots \ldots \ldots \ldots \ldots$	 85
$ng < uintT > \ldots \ldots \ldots \ldots$	 85
$ng < ulongT > \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	 85
ngDisplay	 380
ngException	 409
$ngList < T > \ldots \ldots \ldots \ldots$	 410
ngList< charT >	 410
ngList< doubleT >	 410
$ngList < ulongT > \ldots \ldots \ldots \ldots \ldots$	 410

38 Hierarchical Index

Class Index

15.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Clmg< T >
Class representing an image (up to 4 dimensions wide), each pixel being of type T 8
CImgDisplay
Allow the creation of windows, display images on them and manage user events (keyboard,
mouse and windows events)
CImgException
Instances of CImgException are thrown when errors are encountered in a CImg function call 40
CImgList< T >
Represent a list of images CImg <t></t>

40 Class Index

Module Documentation

16.1 Clmg Library Overview

42 Module Documentation

16.2 FAQ : Frequently Asked Questions.

16.3 Setting Environment Variables

44 Module Documentation

16.5 Tutorial : Getting Started.

46 Module Documentation

16.6 Using Image Loops.

16.7 Using Display Windows.

48 Module Documentation

16.8 How pixel data are stored with Clmg.

16.9 Files IO in Clmg. 49

16.9 Files IO in Clmg.

50 Module Documentation

16.10 Retrieving Command Line Arguments.

Chapter 17

Namespace Documentation

17.1 cimg_library Namespace Reference

Contains all classes and functions of the CImg library.

Namespaces

cimg

Contains low-level functions and variables of the CImg Library.

Classes

struct Clmg

Class representing an image (up to 4 dimensions wide), each pixel being of type ${\it T.}$

struct ClmgDisplay

Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events).

struct CImgException

Instances of CImgException are thrown when errors are encountered in a CImg function call.

struct ClmgList

Represent a list of images CImg<T>.

17.1.1 Detailed Description

Contains all classes and functions of the CImg library.

This namespace is defined to avoid functions and class names collisions that could happen with the inclusion of other C++ header files. Anyway, it should not happen often and you should reasonably start most of your CImgbased programs with

```
#include "CImg.h"
using namespace cimg_library;
```

to simplify the declaration of CImg Library objects afterwards.

17.2 cimg library::cimg Namespace Reference

Contains low-level functions and variables of the CImq Library.

Functions

```
• std::FILE * output (std::FILE *file)
```

Get/set default output stream for the CImg library messages.

• void info ()

Print information about CImg environment variables.

template<typename T >
 void unused (const T &,...)

Avoid warning messages due to unused parameters. Do nothing actually.

• unsigned int & exception_mode (const unsigned int mode)

Set current CImg exception mode.

• unsigned int & exception_mode ()

Return current CImg exception mode.

• unsigned int openmp_mode (const unsigned int mode)

Set current CImg openmp mode.

• unsigned int openmp_mode ()

Return current CImg openmp mode.

Display a simple dialog box, and wait for the user's response [specialization].

double eval (const char *const expression, const double x, const double y, const double z, const double c)

Evaluate math expression.

• void warn (const char *const format,...)

Display a warning message on the default output stream.

- int system (const char *const command, const char *const module_name=0, const bool is_verbose=false)
- template<typename T >

T & temporary (const T &)

Return a reference to a temporary variable of type T.

template<typename T >

```
void swap (T &a, T &b)
```

Exchange values of variables a and b.

• template<typename T1 , typename T2 >

```
void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2)
```

Exchange values of variables (a1,a2) and (b1,b2).

• template<typename T1 , typename T2 , typename T3 >

```
void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3)
```

Exchange values of variables (a1,a2,a3) and (b1,b2,b3).

template < typename T1 , typename T2 , typename T3 , typename T4 >

void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4)

Exchange values of variables (a1,a2,...,a4) and (b1,b2,...,b4).

template<typename T1, typename T2, typename T3, typename T4, typename T5 > void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4, T5 &a5, T5 &b5)

Exchange values of variables (a1,a2,...,a5) and (b1,b2,...,b5).

template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6 >
 void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4, T5 &a5, T5 &b5, T6 &a6, T6 &b6)

Exchange values of variables (a1,a2,...,a6) and (b1,b2,...,b6).

template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7 > void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4, T5 &a5, T5 &b5, T6 &a6, T6 &b6, T7 &a7, T7 &b7)

Exchange values of variables (a1,a2,...,a7) and (b1,b2,...,b7).

template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8 > void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4, T5 &a5, T5 &b5, T6 &a6, T6 &b6, T7 &a7, T7 &b7, T8 &a8, T8 &b8)

Exchange values of variables (a1,a2,...,a8) and (b1,b2,...,b8).

• bool endianness ()

Return the endianness of the current architecture.

template<typename T >

void invert_endianness (T *const buffer, const unsigned long size)

Reverse endianness of all elements in a memory buffer.

• template<typename T >

T & invert_endianness (T &a)

Reverse endianness of a single variable.

• unsigned long long time ()

Return the value of a system timer, with a millisecond precision.

• unsigned long long tic ()

Start tic/toc timer for time measurement between code instructions.

• unsigned long long toc ()

End tic/toc timer and displays elapsed time from last call to tic().

void sleep (const unsigned int milliseconds)

Sleep for a given numbers of milliseconds.

• unsigned int wait (const unsigned int milliseconds)

Wait for a given number of milliseconds since the last call to wait().

• template<typename T , typename t >

T cut (const T &val, const t &val_min, const t &val_max)

Cut (i.e. clamp) value in specified interval.

template<typename T >

T rol (const T &a, const unsigned int n=1)

Bitwise-rotate value on the left.

template<typename T >

T ror (const T &a, const unsigned int n=1)

Bitwise-rotate value on the right.

• template<typename T >

Tabs (const T &a)

Return absolute value of a value.

• double acosh (const double x)

Return hyperbolic arcosine of a value.

• double asinh (const double x)

Return hyperbolic arcsine of a value.

double atanh (const double x)

Return hyperbolic arctangent of a value.

• double sinc (const double x)

Return the sinc of a given value.

double log2 (const double x)

Return base-2 logarithm of a value.

• template<typename T >

T sqr (const T &val)

Return square of a value.

```
• template<typename T >
  double cbrt (const T &x)
      Return cubic root of a value.

    template<typename t >

  t min (const t &a, const t &b, const t &c)
      Return the minimum between three values.
• template<typename t >
  t min (const t &a, const t &b, const t &c, const t &d)
      Return the minimum between four values.

    template<typename t >

  t minabs (const t &a, const t &b)
      Return the minabs between two values.

    template<typename t >

  t max (const t &a, const t &b, const t &c)
      Return the maximum between three values.

    template<typename t >

  t max (const t &a, const t &b, const t &c, const t &d)
      Return the maximum between four values.
• template<typename t >
  t maxabs (const t &a, const t &b)
      Return the maxabs between two values.
  template<typename T >
  T sign (const T &x)
      Return the sign of a value.
• template<typename T >
  unsigned long long nearest_pow2 (const T &x)
      Return the nearest power of 2 higher than given value.
• template<typename T >
  T mod (const T &x, const T &m)
      Return the modulo of a value.
• template<typename T >
  T minmod (const T &a, const T &b)
     Return the min-mod of two values.
• template<typename T >
  T round (const T &x, const double y, const int rounding_type=0)
      Return rounded value.
• template<typename T >
  T hypot (const T x, const T y)
      Return sqrt(x^2 + y^2).
• double factorial (const int n)
      Return the factorial of n.

    double permutations (const int k, const int n, const bool with_order)

      Return the number of permutations of k objects in a set of n objects.

    double fibonacci (const int n)

      Calculate fibonacci number.
• long gcd (long a, long b)
      Calculate greatest common divisor.

    char lowercase (const char x)

      Convert character to lower case.
· void lowercase (char *const str)
      Convert C-string to lower case.
```

char uppercase (const char x)

Convert character to upper case.

void uppercase (char *const str)

Convert C-string to upper case.

• bool is blank (const char c)

Return true if input character is blank (space, tab, or non-printable character).

double atof (const char *const str)

Read value in a C-string.

• int strncasecmp (const char *const str1, const char *const str2, const int I)

Compare the first 1 characters of two C-strings, ignoring the case.

int strcasecmp (const char *const str1, const char *const str2)

Compare two C-strings, ignoring the case.

char * strellipsize (char *const str, const unsigned int l=64, const bool is ending=true)

Ellipsize a string.

• char * strellipsize (const char *const str, char *const res, const unsigned int l=64, const bool is_ending=true)

Ellipsize a string.

bool strpare (char *const str, const char delimiter, const bool is_symmetric, const bool is_iterative)

Remove delimiters on the start and/or end of a C-string.

• bool strpare (char *const str, const bool is symmetric, const bool is iterative)

Remove white spaces on the start and/or end of a C-string.

• void strwindows reserved (char *const str, const char c=' ')

Replace reserved characters (for Windows filename) by another character.

void strunescape (char *const str)

Replace escape sequences in C-strings by character values.

const char * basename (const char *const s, const char separator='/')

Return the basename of a filename.

std::FILE * fopen (const char *const path, const char *const mode)

Open a file.

int fclose (std::FILE *file)

Close a file.

• int fseek (FILE *stream, long offset, int origin)

Version of 'fseek()' that supports >=64bits offsets everywhere (for Windows).

long ftell (FILE *stream)

 $\textit{Version of 'ftell()'} \ \textit{that supports} > = 64 \textit{bits offsets everywhere (for Windows)}.$

• bool is_directory (const char *const path)

Check if a path is a directory.

bool is_file (const char *const path)

Check if a path is a file.

long long fsize (const char *const filename)

Get file size.

template<typename T >

int fdate (const char *const path, T *attr, const unsigned int nb_attr)

Get last write time of a given file or directory (multiple-attributes version).

• int fdate (const char *const path, unsigned int attr)

Get last write time of a given file or directory (single-attribute version).

• template<typename T >

int date (T *attr, const unsigned int nb_attr)

Get current local time (multiple-attributes version).

int date (unsigned int attr)

Get current local time (single-attribute version).

const char * curl_path (const char *const user_path, const bool reinit_path)

Search path of an executable (Windows only).

const char * dcraw_path (const char *const user_path, const bool reinit_path)

Get/set path to the dcraw binary.

const char * ffmpeg_path (const char *const user_path, const bool reinit_path)

Get/set path to the FFMPEG's ffmpeg binary.

const char * graphicsmagick path (const char *const user path, const bool reinit path)

Get/set path to the GraphicsMagick's gm binary.

• const char * gunzip path (const char *const user path, const bool reinit path)

Get/set path to the gunzip binary.

const char * gzip path (const char *const user path, const bool reinit path)

Get/set path to the gzip binary.

const char * imagemagick_path (const char *const user_path, const bool reinit_path)

Get/set path to the ImageMagick's convert binary.

const char * medcon path (const char *const user path, const bool reinit path)

Get/set path to the Medcon's medcon binary.

const char * temporary_path (const char *const user_path, const bool reinit_path)

Get/set path to store temporary files.

const char * wget_path (const char *const user_path, const bool reinit_path)

Get/set path to the wget binary.

const char * split_filename (const char *const filename, char *const body=0)

Split filename into two C-strings body and extension.

 char * number_filename (const char *const filename, const int number, const unsigned int digits, char *const str)

Generate a numbered version of a filename.

 $\bullet \ \ \text{template}{<} \text{typename T} >$

size_t fread (T *const ptr, const size_t nmemb, std::FILE *stream)

Read data from file.

• template<typename T >

size t fwrite (const T *ptr, const size t nmemb, std::FILE *stream)

Write data to file.

void fempty (std::FILE *const file, const char *const filename)

Create an empty file.

• const char * ftype (std::FILE *const file, const char *const filename)

Try to guess format from an image file.

• char * load_network (const char *const url, char *const filename_local, const unsigned int timeout, const bool try_fallback, const char *const referer)

Load file from network as a local temporary file.

• const char * option (const char *const name, const int argc, const char *const argv, const char *const default, const char *const usage, const bool reset static)

Return options specified on the command line.

• ClmgList< char > files (const char *const path, const bool is_pattern=false, const unsigned int mode=2, const bool include path=false)

Return list of files/directories in specified directory.

• template<typename t >

int dialog (const char *const title, const char *const msg, const char *const button1_label, const char *const button2_label, const char *const button3_label, const char *const button4_label, const char *const button5 \leftarrow _label, const char *const button6_label, const CImg< t > &logo, const bool is_centered=false)

Display a simple dialog box, and wait for the user's response.

Variables

```
    const unsigned int keyESC = 1U

     Keycode for the ESC key (architecture-dependent)

    const unsigned int keyF1 = 2U

     Keycode for the F1 key (architecture-dependent)

    const unsigned int keyF2 = 3U

     Keycode for the F2 key (architecture-dependent)

    const unsigned int keyF3 = 4U

     Keycode for the F3 key (architecture-dependent)

    const unsigned int keyF4 = 5U

     Keycode for the F4 key (architecture-dependent)

    const unsigned int keyF5 = 6U

     Keycode for the F5 key (architecture-dependent)

    const unsigned int keyF6 = 7U

     Keycode for the F6 key (architecture-dependent)

    const unsigned int keyF7 = 8U

     Keycode for the F7 key (architecture-dependent)
• const unsigned int keyF8 = 9U
     Keycode for the F8 key (architecture-dependent)

    const unsigned int keyF9 = 10U

     Keycode for the F9 key (architecture-dependent)

    const unsigned int keyF10 = 11U

     Keycode for the F10 key (architecture-dependent)

    const unsigned int keyF11 = 12U

     Keycode for the F11 key (architecture-dependent)

    const unsigned int keyF12 = 13U

     Keycode for the F12 key (architecture-dependent)

    const unsigned int keyPAUSE = 14U

     Keycode for the PAUSE key (architecture-dependent)

 const unsigned int key1 = 15U

     Keycode for the 1 key (architecture-dependent)

 const unsigned int key2 = 16U

     Keycode for the 2 key (architecture-dependent)

 const unsigned int key3 = 17U

     Keycode for the 3 key (architecture-dependent)
• const unsigned int key4 = 18U
     Keycode for the 4 key (architecture-dependent)
• const unsigned int key5 = 19U
     Keycode for the 5 key (architecture-dependent)
• const unsigned int key6 = 20U
     Keycode for the 6 key (architecture-dependent)

    const unsigned int key7 = 21U

     Keycode for the 7 key (architecture-dependent)

 const unsigned int key8 = 22U

     Keycode for the 8 key (architecture-dependent)

    const unsigned int key9 = 23U

     Keycode for the 9 key (architecture-dependent)

    const unsigned int key0 = 24U
```

Keycode for the 0 key (architecture-dependent)

const unsigned int keyBACKSPACE = 25U

Keycode for the BACKSPACE key (architecture-dependent)

const unsigned int keyINSERT = 26U

Keycode for the INSERT key (architecture-dependent)

const unsigned int keyHOME = 27U

Keycode for the HOME key (architecture-dependent)

const unsigned int keyPAGEUP = 28U

Keycode for the PAGEUP key (architecture-dependent)

const unsigned int keyTAB = 29U

Keycode for the TAB key (architecture-dependent)

const unsigned int keyQ = 30U

Keycode for the *Q* key (architecture-dependent)

• const unsigned int keyW = 31U

Keycode for the ₩ key (architecture-dependent)

• const unsigned int keyE = 32U

Keycode for the E key (architecture-dependent)

• const unsigned int keyR = 33U

Keycode for the R key (architecture-dependent)

• const unsigned int keyT = 34U

Keycode for the T key (architecture-dependent)

const unsigned int keyY = 35U

Keycode for the Y key (architecture-dependent)

const unsigned int keyU = 36U

Keycode for the U key (architecture-dependent)

const unsigned int keyl = 37U

Keycode for the I key (architecture-dependent)

• const unsigned int keyO = 38U

Keycode for the O key (architecture-dependent)

const unsigned int keyP = 39U

Keycode for the ${\it P}$ key (architecture-dependent)

const unsigned int keyDELETE = 40U

Keycode for the DELETE key (architecture-dependent)

const unsigned int keyEND = 41U

Keycode for the END key (architecture-dependent)

• const unsigned int keyPAGEDOWN = 42U

Keycode for the PAGEDOWN key (architecture-dependent)

const unsigned int keyCAPSLOCK = 43U

Keycode for the CAPSLOCK key (architecture-dependent)

const unsigned int keyA = 44U

Keycode for the ${\tt A}$ key (architecture-dependent)

const unsigned int keyS = 45U

Keycode for the S key (architecture-dependent)

• const unsigned int keyD = 46U

Keycode for the D key (architecture-dependent)

const unsigned int keyF = 47U

Keycode for the F key (architecture-dependent)

• const unsigned int keyG = 48U

Keycode for the G key (architecture-dependent)

• const unsigned int keyH = 49U

Keycode for the H key (architecture-dependent)

• const unsigned int keyJ = 50U

Keycode for the $\it J$ key (architecture-dependent)

const unsigned int keyK = 51U

Keycode for the K key (architecture-dependent)

• const unsigned int keyL = 52U

Keycode for the L key (architecture-dependent)

const unsigned int keyENTER = 53U

Keycode for the ENTER key (architecture-dependent)

const unsigned int keySHIFTLEFT = 54U

Keycode for the SHIFTLEFT key (architecture-dependent)

const unsigned int keyZ = 55U

Keycode for the Z key (architecture-dependent)

const unsigned int keyX = 56U

Keycode for the X key (architecture-dependent)

const unsigned int keyC = 57U

Keycode for the C key (architecture-dependent)

const unsigned int keyV = 58U

Keycode for the V key (architecture-dependent)

const unsigned int keyB = 59U

Keycode for the B key (architecture-dependent)

const unsigned int keyN = 60U

Keycode for the N key (architecture-dependent)

const unsigned int keyM = 61U

Keycode for the M key (architecture-dependent)

const unsigned int keySHIFTRIGHT = 62U

Keycode for the SHIFTRIGHT key (architecture-dependent)

• const unsigned int keyARROWUP = 63U

Keycode for the ARROWUP key (architecture-dependent)

const unsigned int keyCTRLLEFT = 64U

Keycode for the CTRLLEFT key (architecture-dependent)

const unsigned int keyAPPLEFT = 65U

Keycode for the APPLEFT key (architecture-dependent)

const unsigned int keyALT = 66U

Keycode for the ALT key (architecture-dependent)

• const unsigned int keySPACE = 67U

Keycode for the SPACE key (architecture-dependent)

const unsigned int keyALTGR = 68U

Keycode for the ALTGR key (architecture-dependent)

• const unsigned int keyAPPRIGHT = 69U

Keycode for the APPRIGHT key (architecture-dependent)

const unsigned int keyMENU = 70U

Keycode for the MENU key (architecture-dependent)

const unsigned int keyCTRLRIGHT = 71U

Keycode for the CTRLRIGHT key (architecture-dependent)

const unsigned int keyARROWLEFT = 72U

Keycode for the ARROWLEFT key (architecture-dependent)

const unsigned int keyARROWDOWN = 73U

Keycode for the ARROWDOWN key (architecture-dependent)

const unsigned int keyARROWRIGHT = 74U

Keycode for the ARROWRIGHT key (architecture-dependent)

const unsigned int keyPAD0 = 75U

Keycode for the PADO key (architecture-dependent)

const unsigned int keyPAD1 = 76U

Keycode for the PAD1 key (architecture-dependent)

const unsigned int keyPAD2 = 77U

Keycode for the PAD2 key (architecture-dependent)

const unsigned int keyPAD3 = 78U

Keycode for the PAD3 key (architecture-dependent)

• const unsigned int keyPAD4 = 79U

Keycode for the PAD4 key (architecture-dependent)

const unsigned int keyPAD5 = 80U

Keycode for the PAD5 key (architecture-dependent)

const unsigned int keyPAD6 = 81U

Keycode for the PAD6 key (architecture-dependent)

• const unsigned int keyPAD7 = 82U

Keycode for the PAD7 key (architecture-dependent)

const unsigned int keyPAD8 = 83U

Keycode for the PAD8 key (architecture-dependent)

• const unsigned int keyPAD9 = 84U

Keycode for the PAD9 key (architecture-dependent)

const unsigned int keyPADADD = 85U

Keycode for the PADADD key (architecture-dependent)

• const unsigned int keyPADSUB = 86U

Keycode for the PADSUB key (architecture-dependent)

• const unsigned int keyPADMUL = 87U

Keycode for the PADMUL key (architecture-dependent)

• const unsigned int keyPADDIV = 88U

Keycode for the PADDDIV key (architecture-dependent)

const double PI = 3.14159265358979323846

Value of the mathematical constant Pl.

17.2.1 Detailed Description

Contains low-level functions and variables of the CImg Library.

Most of the functions and variables within this namespace are used by the CImg library for low-level operations. You may use them to access specific const values or environment variables internally used by CImg.

Warning

Never write using namespace cimg_library::cimg; in your source code. Lot of functions in the cimg:: namespace have the same names as standard C functions that may be defined in the global namespace ::.

17.2.2 Function Documentation

17.2.2.1 output()

Get/set default output stream for the CImg library messages.

file Desired output stream. Set to 0 to get the currently used output stream only.

Returns

Currently used output stream.

17.2.2.2 info()

```
void info ( )
```

Print information about CImg environment variables.

Note

Output is done on the default output stream.

17.2.2.3 exception_mode() [1/2]

Set current CImg exception mode.

The way error messages are handled by CImg can be changed dynamically, using this function.

Parameters

mode Desired exception mode. Possible values are:

- 0: Hide library messages (quiet mode).
- 1: Print library messages on the console.
- 2: Display library messages on a dialog window.
- 3: Do as 1 + add extra debug warnings (slow down the code!).
- 4: Do as 2 + add extra debug warnings (slow down the code!).

17.2.2.4 exception_mode() [2/2]

```
unsigned int& cimg_library::cimg::exception_mode ( )
```

Return current CImg exception mode.

Note

By default, return the value of configuration macro cimg_verbosity

17.2.2.5 openmp_mode()

Set current CImg openmp mode.

The way openmp-based methods are handled by \mathtt{CImg} can be changed dynamically, using this function.

Parameters

mode	Desired openmp mode. Possible values are:	
	0: Never parallelize.	
	• 1: Always parallelize.	
	• 2: Adaptive parallelization mode (default behavior).	

17.2.2.6 eval()

Evaluate math expression.

expression	C-string describing the formula to evaluate.
X	Value of the pre-defined variable \mathbf{x} .
У	Value of the pre-defined variable y.
Z	Value of the pre-defined variable z.
С	Value of the pre-defined variable c.

Returns

Result of the formula evaluation.

Note

Set expression to 0 to keep evaluating the last specified expression.

Example

```
const double res1 = cimg::eval("\cos(x)^2 + \sin(y)^2",2,2), // will return '1' res2 = cimg::eval(0,1,1); // will return '1' too
```

17.2.2.7 warn()

Display a warning message on the default output stream.

Parameters

```
format | C-string containing the format of the message, as with std::printf().
```

Note

If configuration macro <code>cimg_strict_warnings</code> is set, this function throws a <code>CImgWarning</code> \leftarrow <code>Exception</code> instead.

Warning

```
As the first argument is a format string, it is highly recommended to write cimg::warn("%s",warning_message);
instead of cimg::warn(warning_message);
```

if ${\tt warning_message}$ can be arbitrary, to prevent nasty memory access.

17.2.2.8 system()

command	C-string containing the command line to execute.
module_name	Module name.

Returns

Status value of the executed command, whose meaning is OS-dependent.

Note

This function is similar to std::system() but it does not open an extra console windows on Windowsbased systems.

17.2.2.9 endianness()

```
bool cimg_library::cimg::endianness ( )
```

Return the endianness of the current architecture.

Returns

false for Little Endian or true for Big Endian.

17.2.2.10 invert_endianness() [1/2]

Reverse endianness of all elements in a memory buffer.

Parameters

in,out	buffer	Memory buffer whose endianness must be reversed.
	size	Number of buffer elements to reverse.

17.2.2.11 invert_endianness() [2/2]

17.2 cimg_library::cimg Namespace Reference 65 Reverse endianness of a single variable.

in, out a Variable to reverse	in,out
-----------------------------------	--------

Returns

Reference to reversed variable.

17.2.2.12 time()

```
unsigned long long cimg_library::cimg::time ( )
```

Return the value of a system timer, with a millisecond precision.

Note

The timer does not necessarily starts from 0.

17.2.2.13 tic()

```
unsigned long long cimg_library::cimg::tic ( )
```

Start tic/toc timer for time measurement between code instructions.

Returns

Current value of the timer (same value as time()).

17.2.2.14 toc()

```
unsigned long long cimg_library::cimg::toc ( )
```

End tic/toc timer and displays elapsed time from last call to tic().

Returns

Time elapsed (in ms) since last call to tic().

17.2.2.15 sleep()

Sleep for a given numbers of milliseconds.

milliseconds Number of milliseconds to wait for.		milliseconds	Number of milliseconds to wait for.
--	--	--------------	-------------------------------------

Note

This function frees the CPU resources during the sleeping time. It can be used to temporize your program properly, without wasting CPU time.

17.2.2.16 wait()

Wait for a given number of milliseconds since the last call to wait().

Parameters

milliseconds Number of milliseconds to wait fo
--

Returns

Number of milliseconds elapsed since the last call to wait().

Note

Same as sleep() with a waiting time computed with regard to the last call of wait(). It may be used to temporize your program properly, without wasting CPU time.

17.2.2.17 mod()

Return the modulo of a value.

X	Input value.
m	Modulo value.

Note

This modulo function accepts negative and floating-points modulo numbers, as well as variables of any type.

17.2.2.18 minmod()

Return the min-mod of two values.

Note

minmod(a,b) is defined to be:

- minmod(a,b) = min(a,b), if a and b have the same sign.
- minmod(a,b) = 0, if a and b have different signs.

17.2.2.19 round()

Return rounded value.

Parameters

X	Value to be rounded.	
У	Rounding precision.	
rounding_type Type of rounding operation (0 = nearest, -1 = backward, 1 =		

Returns

Rounded value, having the same type as input value \mathbf{x} .

17.2.2.20 atof()

Read value in a C-string.

Returns

Read value.

Note

Same as std::atof() extended to manage the retrieval of fractions from C-strings, as in "1/2".

17.2.2.21 strncasecmp()

```
int cimg_library::cimg::strncasecmp ( const char *const str1, const char *const str2, const int l)
```

Compare the first 1 characters of two C-strings, ignoring the case.

Parameters

str1	C-string.
str2	C-string.
1	Number of characters to compare.

Returns

0 if the two strings are equal, something else otherwise.

Note

This function has to be defined since it is not provided by all C++-compilers (not ANSI).

17.2.2.22 strcasecmp()

Compare two C-strings, ignoring the case.

str1	C-string.
str2	C-string.

Returns

0 if the two strings are equal, something else otherwise.

Note

This function has to be defined since it is not provided by all C++-compilers (not ANSI).

17.2.2.23 strellipsize() [1/2]

Ellipsize a string.

Parameters

str	C-string.
1	Max number of characters.
is_ending	Tell if the dots are placed at the end or at the center of the ellipsized string.

17.2.2.24 strellipsize() [2/2]

Ellipsize a string.

str	C-string.
res	output C-string.
1	Max number of characters.
is_ending	Tell if the dots are placed at the end or at the center of the ellipsized string.

17.2.2.25 strpare()

Remove delimiters on the start and/or end of a C-string.

Parameters

in,out	str	C-string to work with (modified at output).
	delimiter	Delimiter character code to remove.
	is_symmetric	Tells if the removal is done only if delimiters are symmetric (both at the beginning and the end of $\ensuremath{\mathtt{s}}$).
	is_iterative	Tells if the removal is done if several iterations are possible.

Returns

true if delimiters have been removed, false otherwise.

17.2.2.26 strwindows_reserved()

Replace reserved characters (for Windows filename) by another character.

Parameters

in,out	str	C-string to work with (modified at output).
in	С	Replacement character.

17.2.2.27 strunescape()

Replace escape sequences in C-strings by character values.

in,out	str	C-string to work with (modified at output).	
--------	-----	---	--

17.2.2.28 fopen()

Open a file.

Parameters

path	Path of the filename to open.
mode	C-string describing the opening mode.

Returns

Opened file.

Note

Same as std::fopen() but throw a CImgIOException when the specified file cannot be opened, instead of returning 0.

17.2.2.29 fclose()

Close a file.

Parameters

```
file File to close.
```

Returns

0 if file has been closed properly, something else otherwise.

Note

Same as std::fclose() but display a warning message if the file has not been closed properly.

17.2.2.30 is_directory()

Check if a path is a directory.

Parameters

```
path | Specified path to test.
```

17.2.2.31 is_file()

Check if a path is a file.

Parameters

```
path Specified path to test.
```

17.2.2.32 fsize()

Get file size.

Parameters

filename	Specified filename to get size from.
----------	--------------------------------------

Returns

File size or '-1' if file does not exist.

17.2.2.33 fdate() [1/2]

```
T * attr,
const unsigned int nb_attr )
```

Get last write time of a given file or directory (multiple-attributes version).

	path	Specified path to get attributes from.
in,out	attr	Type of requested time attributes. Can be { 0=year 1=month 2=day 3=day of week 4=hour 5=minute 6=second } Replaced by read attributes after return (or -1 if an error occurred).
	nb_attr	Number of attributes to read/write.

Returns

Latest read attribute.

17.2.2.34 fdate() [2/2]

Get last write time of a given file or directory (single-attribute version).

Parameters

path	Specified path to get attributes from.
attr	Type of requested time attributes. Can be { 0=year 1=month 2=day 3=day of week 4=hour 5=minute 6=second }

Returns

Specified attribute or -1 if an error occurred.

17.2.2.35 date() [1/2]

Get current local time (multiple-attributes version).

	in,out		Type of requested time attributes. Can be { 0=year 1=month 2=day 3=day of week 4=hour 5=minute 6=second 7=millisecond } Replaced by read attributes after return (or -1 if an error occurred).
Ī		nb_attr	Number of attributes to read/write.

Returns

Latest read attribute.

17.2.2.36 date() [2/2]

```
int cimg_library::cimg::date (
          unsigned int attr )
```

Get current local time (single-attribute version).

Parameters

```
attr Type of requested time attribute. Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second | 7=millisecond }
```

Returns

Specified attribute or -1 if an error occurred.

17.2.2.37 curl_path()

Search path of an executable (Windows only).

Get the file or directory attributes with support for UTF-8 paths (Windows only). Get/set path to the *Program Files/* directory (Windows only).

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the program files. Get/set path to the curl binary.

user_path	Specified path, or 0 to get the path currently used.
reinit path	Force path to be recalculated (may take some time).

Returns

Path containing the curl binary.

17.2.2.38 dcraw_path()

Get/set path to the dcraw binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the dcraw binary.

17.2.2.39 ffmpeg_path()

Get/set path to the FFMPEG's ffmpeg binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the ffmpeg binary.

17.2.2.40 graphicsmagick_path()

Get/set path to the GraphicsMagick's $\ensuremath{\mathsf{gm}}$ binary.

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the gm binary.

17.2.2.41 gunzip_path()

Get/set path to the gunzip binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the gunzip binary.

17.2.2.42 gzip_path()

Get/set path to the gzip binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the gzip binary.

17.2.2.43 imagemagick_path()

Get/set path to the ImageMagick's convert binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the convert binary.

17.2.2.44 medcon_path()

Get/set path to the Medcon's medcon binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the medcon binary.

17.2.2.45 temporary_path()

Get/set path to store temporary files.

user_path	Specified path, or 0 to get the path currently used.
reinit path	Force path to be recalculated (may take some time).

Returns

Path where temporary files can be saved.

17.2.2.46 wget_path()

Get/set path to the wget binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the wget binary.

17.2.2.47 split_filename()

Split filename into two C-strings body and extension.

filename and body must not overlap!

17.2.2.48 fread()

Read data from file.

out	ptr	Pointer to memory buffer that will contain the binary data read from file.
	nmemb	Number of elements to read.
	stream	File to read data from.

Returns

Number of read elements.

Note

Same as std::fread() but may display warning message if all elements could not be read.

17.2.2.49 fwrite()

Write data to file.

Parameters

	ptr	Pointer to memory buffer containing the binary data to write on file.
	nmemb	Number of elements to write.
out	stream	File to write data on.

Returns

Number of written elements.

Note

Similar to std::fwrite but may display warning messages if all elements could not be written.

17.2.2.50 fempty()

Create an empty file.

file	Input file (can be 0 if filename is set).
filename	Filename, as a C-string (can be 0 if file is set).

17.2.2.51 ftype()

Try to guess format from an image file.

Parameters

file	Input file (can be 0 if filename is set).
filename	Filename, as a C-string (can be 0 if file is set).

Returns

C-string containing the guessed file format, or $\mbox{0}$ if nothing has been guessed.

17.2.2.52 load_network()

Load file from network as a local temporary file.

Parameters

	url	URL of the filename, as a C-string.
out	filename_local	C-string containing the path to a local copy of filename.
	timeout	Maximum time (in seconds) authorized for downloading the file from the URL.
	try_fallback	When using libcurl, tells using system calls as fallbacks in case of libcurl failure.
	referer	Referer used, as a C-string.

Returns

Value of filename_local.

Note

Use the $\mbox{libcurl}$ library, or the external binaries \mbox{wget} or \mbox{curl} to perform the download.

17.2.2.53 files()

Return list of files/directories in specified directory.

Parameters

path	Path to the directory. Set to 0 for current directory.
is_pattern	Tell if specified path has a matching pattern in it.
mode	Output type, can be primary { 0=files only 1=folders only 2=files + folders }.
include_path	Tell if path must be included in resulting filenames.

Returns

A list of filenames.

17.2.2.54 dialog()

Display a simple dialog box, and wait for the user's response.

Parameters

title	Title of the dialog window.
msg	Main message displayed inside the dialog window.
button1_label	Label of the 1st button.
button2_label	Label of the 2nd button (0 to hide button).
button3_label	Label of the 3rd button (0 to hide button).
button4_label	Label of the 4th button (0 to hide button).
button5_label	Label of the 5th button (0 to hide button).
button6_label	Label of the 6th button (0 to hide button).
logo	Image logo displayed at the left of the main message.
is_centered	Tells if the dialog window must be centered on the screen.

Returns

Index of clicked button (from 0 to 5), or -1 if the dialog window has been closed by the user.

Note

- Up to 6 buttons can be defined in the dialog window.
- The function returns when a user clicked one of the button or closed the dialog window.
- If a button text is set to 0, the corresponding button (and the following) will not appear in the dialog box. At least one button must be specified.

Chapter 18

Class Documentation

18.1 Clmg< T > Struct Template Reference

Class representing an image (up to 4 dimensions wide), each pixel being of type ${\mathbb T}$.

Public Types

typedef T * iterator

Simple iterator type, to loop through each pixel value of an image instance.

typedef T value_type

Pixel value type.

Public Attributes

const typedef T * const_iterator

Simple const iterator type, to loop through each pixel value of a const image instance.

Constructors / Destructor / Instance Management

static CImg< T > & empty ()

Return a reference to an empty image.

static const Clmg< T > & const_empty ()

Return a reference to an empty image [const version].

• ∼CImg ()

Destroy image.

• Clmg ()

Construct empty image.

Clmg (const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1)

Construct image with specified size.

• Clmg (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const T &value)

Construct image with specified size and initialize pixel values.

• Clmg (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size c, const int value0, const int value1,...)

Construct image with specified size and initialize pixel values from a sequence of integers.

• Clmg (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size c, const double value0, const double value1,...)

Construct image with specified size and initialize pixel values from a sequence of doubles.

Clmg (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_z, const unsigned int size_z, const values, const bool repeat_values)

Construct image with specified size and initialize pixel values from a value string.

template<typename t >

Clmg (const t *const values, const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_shared=false)

Construct image with specified size and initialize pixel values from a memory buffer.

• Clmg (const T *const values, const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_shared=false)

Construct image with specified size and initialize pixel values from a memory buffer [specialization].

template<typename t >

Clmg (const t *const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size c, const char *const axes order)

Construct image from memory buffer with specified size and pixel ordering scheme.

• Clmg (const char *const filename)

Construct image from reading an image file.

template<typename t >

Clmg (const Clmg< t > &img)

Construct image copy.

Clmg (const Clmg < T > &img)

Construct image copy [specialization].

template<typename t >

Clmg (const Clmg< t > &img, const bool is_shared)

Advanced copy constructor.

Clmg (const Clmg< T > &img, const bool is_shared)

Advanced copy constructor [specialization].

template<typename t >

Clmg (const Clmg< t > &img, const char *const dimensions)

Construct image with dimensions borrowed from another image.

template<typename t >

Clmg (const Clmg < t > &img, const char *const dimensions, const T &value)

Construct image with dimensions borrowed from another image and initialize pixel values.

Clmg (const ClmgDisplay &disp)

Construct image from a display window.

• Clmg< T > & assign ()

Construct empty image [in-place version].

Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size c=1)

Construct image with specified size [in-place version].

Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const T &value)

Construct image with specified size and initialize pixel values [in-place version].

• Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size c, const int value0, const int value1,...)

Construct image with specified size and initialize pixel values from a sequence of integers [in-place version].

Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const double value0, const double value1,...)

Construct image with specified size and initialize pixel values from a sequence of doubles [in-place version].

 Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const char *const values, const bool repeat_values)

Construct image with specified size and initialize pixel values from a value string [in-place version].

template<typename t >

Clmg< T > & assign (const t *const values, const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1)

Construct image with specified size and initialize pixel values from a memory buffer [in-place version].

Clmg< T > & assign (const T *const values, const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1)

Construct image with specified size and initialize pixel values from a memory buffer [specialization].

template<typename t >

Clmg< T > & assign (const t *const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const bool is_shared)

Construct image with specified size and initialize pixel values from a memory buffer [overloading].

Clmg< T > & assign (const T *const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const bool is_shared)

Construct image with specified size and initialize pixel values from a memory buffer [overloading].

template<typename t >

Clmg< T > & assign (const t *const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const char *const axes_order)

Construct image from memory buffer with specified size and pixel ordering scheme.

• Clmg< T > & assign (const char *const filename)

Construct image from reading an image file [in-place version].

template<typename t >

```
CImg < T > \& assign (const CImg < t > \& img)
```

Construct image copy [in-place version].

• template<typename t >

```
Clmg< T > & assign (const Clmg< t > &img, const bool is_shared)
```

In-place version of the advanced copy constructor.

template<typename t >

```
Clmg< T > & assign (const Clmg< t > &img, const char *const dimensions)
```

Construct image with dimensions borrowed from another image [in-place version].

template<typename t >

```
Clmg< T > & assign (const Clmg< t > &img, const char *const dimensions, const T &value)
```

Construct image with dimensions borrowed from another image and initialize pixel values [in-place version].

Clmg
 T > & assign (const ClmgDisplay &disp)

Construct image from a display window [in-place version].

Clmg< T > & clear ()

Construct empty image [in-place version].

• template<typename t >

```
CImg < t > & move\_to (CImg < t > & img)
```

Transfer content of an image instance into another one.

Clmg< T > & move_to (Clmg< T > &img)

Transfer content of an image instance into another one [specialization].

template<typename t >

```
ClmgList< t > & move_to (ClmgList< t > &list, const unsigned int pos=\sim0U)
```

Transfer content of an image instance into a new image in an image list.

Clmg< T > & swap (Clmg< T > &img)

Swap fields of two image instances.

Overloaded Operators

• T & operator() (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)

Access to a pixel value.

const T & operator() (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const

Access to a pixel value [const version].

• T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const ulongT wh, const ulongT whd=0)

Access to a pixel value.

• const T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const ulongT wh, const ulongT whd=0) const

Access to a pixel value [const version].

operator T* ()

Implicitly cast an image into a T*.

• operator const T * () const

Implicitly cast an image into a T* [const version].

Clmg< T > & operator= (const T &value)

Assign a value to all image pixels.

Clmg< T > & operator= (const char *const expression)

Assign pixels values from a specified expression.

template<typename t >

```
Clmg< T > & operator= (const Clmg< t > &img)
```

Copy an image into the current image instance.

Clmg< T > & operator= (const Clmg< T > &img)

Copy an image into the current image instance [specialization].

Clmg< T > & operator= (const ClmgDisplay &disp)

Copy the content of a display window to the current image instance.

template<typename t >

```
Clmg< T > & operator+= (const t value)
```

In-place addition operator.

Clmg< T > & operator+= (const char *const expression)

In-place addition operator.

• template<typename t >

```
Clmg< T > & operator+= (const Clmg< t > &img)
```

In-place addition operator.

• Clmg< T > & operator++ ()

In-place increment operator (prefix).

Clmg< T > operator++ (int)

In-place increment operator (postfix).

• Clmg< T > operator+ () const

Return a non-shared copy of the image instance.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > operator+ (const t value) const

Addition operator.

• Clmg< Tfloat > operator+ (const char *const expression) const

Addition operator.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > operator+ (const Clmg< t > &img) const

Addition operator.

template<typename t >

Clmg< T > & operator-= (const t value)

```
In-place subtraction operator.

    Clmg< T > & operator= (const char *const expression)

     In-place subtraction operator.
• template<typename t >
  Clmg< T > & operator-= (const Clmg< t > &img)
      In-place subtraction operator.

    Clmg< T > & operator-- ()

      In-place decrement operator (prefix).

    Clmg< T > operator-- (int)

      In-place decrement operator (postfix).
• Clmg< T > operator- () const
      Replace each pixel by its opposite value.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator- (const t value) const
      Subtraction operator.

    Clmg< Tfloat > operator- (const char *const expression) const

      Subtraction operator.
• template<typename t >
  Clmg< typename cimg::superset< T, t >::type > operator- (const Clmg< t > &img) const
      Subtraction operator.

    template<typename t >

  Clmg< T > & operator*= (const t value)
      In-place multiplication operator.

    Clmg< T > & operator*= (const char *const expression)

      In-place multiplication operator.
• template<typename t >
  CImg < T > \& operator* = (const CImg < t > \& img)
     In-place multiplication operator.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator* (const t value) const
      Multiplication operator.
• Clmg< Tfloat > operator* (const char *const expression) const
     Multiplication operator.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator* (const Clmg< t > &img) const
     Multiplication operator.

    template<typename t >

  Clmg< T > & operator/= (const t value)
      In-place division operator.

    Clmg< T > & operator/= (const char *const expression)

     In-place division operator.

    template<typename t >

  Clmg< T > & operator/= (const Clmg< t > &img)
      In-place division operator.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator/ (const t value) const
      Division operator.

    Clmg< Tfloat > operator/ (const char *const expression) const

      Division operator.

    template<typename t >
```

Clmg< typename cimg::superset< T, t >::type > operator/ (const Clmg< t > &img) const

Division operator.

```
• template<typename t >
  Clmg< T > & operator%= (const t value)
     In-place modulo operator.

    Clmg< T > & operator%= (const char *const expression)

     In-place modulo operator.

    template<typename t >

  Clmg< T > & operator%= (const Clmg< t > &img)
     In-place modulo operator.
• template<typename t >
  Clmg< typename cimg::superset< T, t >::type > operator% (const t value) const
     Modulo operator.

    Clmg< Tfloat > operator% (const char *const expression) const

     Modulo operator.
• template<typename t >
  Clmg< typename cimg::superset< T, t >::type > operator% (const Clmg< t > &img) const
     Modulo operator.

    template<typename t >

  Clmg< T > & operator&= (const t value)
     In-place bitwise AND operator.

    Clmg< T > & operator&= (const char *const expression)

     In-place bitwise AND operator.
• template<typename t >
  Clmg< T > & operator&= (const Clmg< t > &img)
     In-place bitwise AND operator.

    template<typename t >

  Clmg< T > operator& (const t value) const
     Bitwise AND operator.

    Clmg< T > operator& (const char *const expression) const

     Bitwise AND operator.

    template<typename t >

  Clmg< T > operator& (const Clmg< t > &img) const
     Bitwise AND operator.

    template<typename t >

  Clmg< T > & operator = (const t value)
     In-place bitwise OR operator.

    Clmg< T > & operator = (const char *const expression)

     In-place bitwise OR operator.
• template<typename t >
  CImg < T > \& operator = (const CImg < t > \& img)
     In-place bitwise OR operator.

    template<typename t >

  Clmg< T > operator (const t value) const
     Bitwise OR operator.

    Clmg< T > operator (const char *const expression) const

     Bitwise OR operator.

    template<typename t >

  Clmg< T > operator (const Clmg< t > &img) const
     Bitwise OR operator.

    template<typename t >

  Clmg< T > & operator^{\land} = (const t value)
     In-place bitwise XOR operator.
```

Clmg< T > & operator[^] = (const char *const expression)

In-place bitwise XOR operator. • template<typename t > Clmg< T > & operator $^{\land}$ = (const Clmg< t > &img) In-place bitwise XOR operator. • template<typename t >Clmg< T> operator $^{\wedge}$ (const t value) const Bitwise XOR operator. Clmg< T > operator[∧] (const char *const expression) const Bitwise XOR operator. template<typename t > Clmg< T> operator $^{\wedge}$ (const Clmg< t> &img) const Bitwise XOR operator. template<typename t > Clmg< T > & operator<<= (const t value) In-place bitwise left shift operator. Clmg< T > & operator<<= (const char *const expression) In-place bitwise left shift operator. template<typename t > Clmg< T > & operator<<= (const Clmg< t > &img) In-place bitwise left shift operator. • template<typename t > Clmg< T > operator<< (const t value) const Bitwise left shift operator. Clmg< T > operator<< (const char *const expression) const Bitwise left shift operator. template<typename t > Clmg< T > operator<< (const Clmg< t > &img) const Bitwise left shift operator. template<typename t > Clmg< T > & operator>>= (const t value) In-place bitwise right shift operator. Clmg< T > & operator>>= (const char *const expression) In-place bitwise right shift operator. • template<typename t > CImg < T > & operator >>= (const CImg < t > & img)In-place bitwise right shift operator. template<typename t > Clmg< T > operator>> (const t value) const Bitwise right shift operator. • Clmg< T > operator>> (const char *const expression) const Bitwise right shift operator. • template<typename t > Clmg< T > operator>> (const Clmg< t > &img) const Bitwise right shift operator. Clmg< T > operator ~ () const Bitwise inversion operator. • template<typename t >bool operator== (const t value) const

```
Test if all pixels of an image have the same value.
• bool operator== (const char *const expression) const
      Test if all pixel values of an image follow a specified expression.

    template<typename t >

  bool operator== (const Clmg< t > &img) const
```

Test if two images have the same size and values.

• template<typename t >

bool operator!= (const t value) const

Test if pixels of an image are all different from a value.

bool operator!= (const char *const expression) const

Test if all pixel values of an image are different from a specified expression.

template<typename t >

bool operator!= (const Clmg< t > &img) const

Test if two images have different sizes or values.

• template<typename t >

 $\label{eq:clmgList} \textbf{ClmgList} < \textbf{typename cimg::superset} < \textbf{T}, \ \textbf{t} > \\ \textbf{::type} > \textbf{operator}, \ (\textbf{const Clmg} < \textbf{t} > \& \text{img}) \ \textbf{const}$

Construct an image list from two images.

• template<typename t >

ClmgList< typename cimg::superset< T, t >::type > operator, (const ClmgList< t > &list) const

Construct an image list from image instance and an input image list.

ClmgList< T > operator< (const char axis) const

Split image along specified axis.

Instance Characteristics

• static const char * pixel_type ()

Return the type of image pixel values as a C string.

• int width () const

Return the number of image columns.

· int height () const

Return the number of image rows.

• int depth () const

Return the number of image slices.

• int spectrum () const

Return the number of image channels.

ulongT size () const

Return the total number of pixel values.

• T * data ()

Return a pointer to the first pixel value.

const T * data () const

Return a pointer to the first pixel value [const version].

• T * data (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)

Return a pointer to a located pixel value.

const T * data (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)

Return a pointer to a located pixel value [const version].

• longT offset (const int x, const int y=0, const int z=0, const int c=0) const

Return the offset to a located pixel value, with respect to the beginning of the pixel buffer.

· iterator begin ()

Return a Clmg<T>::iterator pointing to the first pixel value.

· const_iterator begin () const

Return a Clmg<T>::iterator pointing to the first value of the pixel buffer [const version].

• iterator end ()

Return a Clmg<T>::iterator pointing next to the last pixel value.

const_iterator end () const

Return a Clmg<T>::iterator pointing next to the last pixel value [const version].

T & front ()

Return a reference to the first pixel value.

const T & front () const

Return a reference to the first pixel value [const version].

T & back ()

Return a reference to the last pixel value.

• const T & back () const

Return a reference to the last pixel value [const version].

T & at (const int offset, const T &out value)

Access to a pixel value at a specified offset, using Dirichlet boundary conditions.

T at (const int offset, const T &out value) const

Access to a pixel value at a specified offset, using Dirichlet boundary conditions [const version].

T & at (const int offset)

Access to a pixel value at a specified offset, using Neumann boundary conditions.

const T & at (const int offset) const

Access to a pixel value at a specified offset, using Neumann boundary conditions [const version].

T & atX (const int x, const int y, const int z, const int c, const T &out_value)

Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate.

T atX (const int x, const int y, const int z, const int c, const T &out value) const

Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate [const version].

T & atX (const int x, const int y=0, const int z=0, const int c=0)

Access to a pixel value, using Neumann boundary conditions for the X-coordinate.

const T & atX (const int x, const int y=0, const int z=0, const int c=0) const

Access to a pixel value, using Neumann boundary conditions for the X-coordinate [const version].

T & atXY (const int x, const int y, const int z, const int c, const T &out_value)

Access to a pixel value, using Dirichlet boundary conditions for the X and Y-coordinates.

T atXY (const int x, const int y, const int z, const int c, const T &out_value) const

Access to a pixel value, using Dirichlet boundary conditions for the X and Y coordinates [const version].

T & atXY (const int x, const int y, const int z=0, const int c=0)

Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates.

const T & atXY (const int x, const int y, const int z=0, const int c=0) const

Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates [const version].

T & atXYZ (const int x, const int y, const int z, const int c, const T &out_value)

Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates.

T atXYZ (const int x, const int y, const int z, const int c, const T &out_value) const

Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates [const version].

T & atXYZ (const int x, const int y, const int z, const int c=0)

Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates.

const T & atXYZ (const int x, const int y, const int z, const int c=0) const

Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates [const version].

T & atXYZC (const int x, const int y, const int z, const int c, const T &out_value)

Access to a pixel value, using Dirichlet boundary conditions.

T atXYZC (const int x, const int y, const int z, const int c, const T &out_value) const

Access to a pixel value, using Dirichlet boundary conditions [const version].

• T & atXYZC (const int x, const int y, const int z, const int c)

Access to a pixel value, using Neumann boundary conditions.

const T & atXYZC (const int x, const int y, const int z, const int c) const

Access to a pixel value, using Neumann boundary conditions [const version].

• Tfloat linear atX (const float fx, const int y, const int z, const int c, const T &out value) const

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X-coordinate.

Tfloat linear_atX (const float fx, const int y=0, const int z=0, const int c=0) const

Return pixel value, using linear interpolation and Neumann boundary conditions for the X-coordinate.

- Tfloat linear_atX_p (const float fx, const int y=0, const int z=0, const int c=0) const
 - Return pixel value, using linear interpolation and periodic boundary conditions for the X-coordinate.
- Tfloat linear_atXY (const float fx, const float fy, const int z, const int c, const T &out_value) const
 - Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X and Y-coordinates.
- Tfloat linear_atXY (const float fx, const float fy, const int z=0, const int c=0) const
 - Return pixel value, using linear interpolation and Neumann boundary conditions for the X and Y-coordinates.
- Tfloat linear_atXY_p (const float fx, const float fy, const int z=0, const int c=0) const
 - Return pixel value, using linear interpolation and periodic boundary conditions for the X and Y-coordinates.
- Tfloat linear_atXYZ (const float fx, const float fy, const float fz, const int c, const T &out_value) const

 Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.
- Tfloat linear_atXYZ (const float fx, const float fy=0, const float fz=0, const int c=0) const
 - Return pixel value, using linear interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.
- Tfloat linear_atXYZ_p (const float fx, const float fy=0, const float fz=0, const int c=0) const
 - Return pixel value, using linear interpolation and periodic boundary conditions for the X,Y and Z-coordinates.
- Tfloat linear_atXYZC (const float fx, const float fy, const float fz, const float fc, const T &out_value) const Return pixel value, using linear interpolation and Dirichlet boundary conditions for all X,Y,Z,C-coordinates.
- $\bullet \ \ \, \text{Tfloat linear_atXYZC (const float fx, const float fy=0, const float fz=0, const float fc=0) const}$
 - Return pixel value, using linear interpolation and Neumann boundary conditions for all X,Y,Z and C-coordinates.
- Tfloat linear_atXYZC_p (const float fx, const float fy=0, const float fz=0, const float fc=0) const
 Return pixel value, using linear interpolation and periodic boundary conditions for all X,Y,Z and C-coordinates.
- Tfloat cubic_atX (const float fx, const int y, const int z, const int c, const T &out_value) const Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.
- T cubic_atX_c (const float fx, const int y, const int z, const int c, const T &out_value) const

 Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.
- Tfloat cubic_atX (const float fx, const int y=0, const int z=0, const int c=0) const

 Return pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.
- T cubic_atX_c (const float fx, const int y, const int z, const int c) const
 - Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.
- Tfloat cubic atX p (const float fx, const int y=0, const int z=0, const int c=0) const
 - Return pixel value, using cubic interpolation and periodic boundary conditions for the X-coordinate.
- T cubic atX pc (const float fx, const int y, const int z, const int c) const
- Tfloat cubic_atXY (const float fx, const float fy, const int z, const int c, const T &out_value) const

 Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X and Y-coordinates.
- T cubic_atXY_c (const float fx, const float fy, const int z, const int c, const T &out_value) const

 Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y-coordinates.
- Tfloat cubic_atXY (const float fx, const float fy, const int z=0, const int c=0) const
 - Return pixel value, using cubic interpolation and Neumann boundary conditions for the X and Y-coordinates.
- T cubic_atXY_c (const float fx, const float fy, const int z, const int c) const
 - Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y-coordinates.
- Tfloat cubic_atXY_p (const float fx, const float fy, const int z=0, const int c=0) const
 - Return pixel value, using cubic interpolation and periodic boundary conditions for the $\it X$ and $\it Y$ -coordinates.
- T cubic atXY pc (const float fx, const float fy, const int z, const int c) const
- Tfloat cubic_atXYZ (const float fx, const float fy, const float fz, const int c, const T &out_value) const Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.
- T cubic_atXYZ_c (const float fx, const float fy, const float fz, const int c, const T &out_value) const
 - Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the XYZ-coordinates.
- Tfloat cubic atXYZ (const float fx, const float fy, const float fz, const int c=0) const
 - Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.
- T cubic_atXYZ_c (const float fx, const float fy, const float fz, const int c) const
 - Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the XYZ-coordinates.

- Tfloat cubic_atXYZ_p (const float fx, const float fy, const float fz, const int c=0) const
 - Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.
- T cubic atXYZ pc (const float fx, const float fy, const float fz, const int c) const
- Clmg< T > & set_linear_atX (const T &value, const float fx, const int y=0, const int z=0, const int c=0, const bool is added=false)

Set pixel value, using linear interpolation for the X-coordinates.

Clmg< T > & set_linear_atXY (const T &value, const float fx, const float fy=0, const int z=0, const int z=0, const bool is_added=false)

Set pixel value, using linear interpolation for the X and Y-coordinates.

Clmg< T > & set_linear_atXYZ (const T &value, const float fx, const float fy=0, const float fz=0, const int c=0, const bool is_added=false)

Set pixel value, using linear interpolation for the X,Y and Z-coordinates.

Clmg< charT > value_string (const char separator=',', const unsigned int max_size=0, const char *const format=0) const

Return a C-string containing a list of all values of the image instance.

Instance Checking

· bool is shared () const

Test shared state of the pixel buffer.

· bool is empty () const

Test if image instance is empty.

· bool is_inf () const

Test if image instance contains a 'inf' value.

• bool is_nan () const

Test if image instance contains a NaN value.

bool is_sameX (const unsigned int size_x) const

Test if image width is equal to specified value.

template<typename t >

bool is_sameX (const Clmg< t > &img) const

Test if image width is equal to specified value.

bool is_sameX (const ClmgDisplay &disp) const

Test if image width is equal to specified value.

• bool is_sameY (const unsigned int size_y) const

Test if image height is equal to specified value.

• template<typename t >

bool is_sameY (const Clmg< t > &img) const

Test if image height is equal to specified value.

bool is_sameY (const ClmgDisplay &disp) const

Test if image height is equal to specified value.

bool is_sameZ (const unsigned int size_z) const

Test if image depth is equal to specified value.

• template<typename t >

bool is_sameZ (const Clmg< t > &img) const

Test if image depth is equal to specified value.

bool is sameC (const unsigned int size c) const

Test if image spectrum is equal to specified value.

template<typename t >

bool is sameC (const Clmg< t > &img) const

Test if image spectrum is equal to specified value.

• bool is_sameXY (const unsigned int size_x, const unsigned int size_y) const

Test if image width and height are equal to specified values.

• template<typename t >

```
bool is_sameXY (const Clmg< t > &img) const
```

Test if image width and height are the same as that of another image.

bool is_sameXY (const ClmgDisplay &disp) const

Test if image width and height are the same as that of an existing display window.

• bool is_sameXZ (const unsigned int size_x, const unsigned int size_z) const

Test if image width and depth are equal to specified values.

template<typename t >

```
bool is_sameXZ (const Clmg< t > &img) const
```

Test if image width and depth are the same as that of another image.

• bool is_sameXC (const unsigned int size_x, const unsigned int size_c) const

Test if image width and spectrum are equal to specified values.

• template<typename t >

```
bool is_sameXC (const Clmg< t > &img) const
```

Test if image width and spectrum are the same as that of another image.

bool is_sameYZ (const unsigned int size_y, const unsigned int size_z) const

Test if image height and depth are equal to specified values.

template<typename t >

```
bool is_sameYZ (const Clmg< t > &img) const
```

Test if image height and depth are the same as that of another image.

bool is_sameYC (const unsigned int size_y, const unsigned int size_c) const

Test if image height and spectrum are equal to specified values.

template<typename t >

```
bool is sameYC (const Clmg< t > &img) const
```

Test if image height and spectrum are the same as that of another image.

• bool is sameZC (const unsigned int size z, const unsigned int size c) const

Test if image depth and spectrum are equal to specified values.

• template<typename t >

```
bool is_sameZC (const Clmg< t > &img) const
```

Test if image depth and spectrum are the same as that of another image.

bool is_sameXYZ (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z) const
 Test if image width, height and depth are equal to specified values.

template<typename t >

```
bool is sameXYZ (const Clmg< t > &img) const
```

Test if image width, height and depth are the same as that of another image.

bool is_sameXYC (const unsigned int size_x, const unsigned int size_y, const unsigned int size_c) const

Test if image width, height and spectrum are equal to specified values.

• template<typename t >

```
bool is_sameXYC (const Clmg< t > &img) const
```

Test if image width, height and spectrum are the same as that of another image.

bool is_sameXZC (const unsigned int size_x, const unsigned int size_z, const unsigned int size_c) const

Test if image width, depth and spectrum are equal to specified values.

• template<typename t >

```
bool is_sameXZC (const Clmg< t > &img) const
```

Test if image width, depth and spectrum are the same as that of another image.

• bool is_sameYZC (const unsigned int size_y, const unsigned int size_z, const unsigned int size_c) const

Test if image height, depth and spectrum are equal to specified values.

template<typename t >

```
bool is sameYZC (const Clmg< t > &img) const
```

Test if image height, depth and spectrum are the same as that of another image.

 bool is_sameXYZC (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size c) const

Test if image width, height, depth and spectrum are equal to specified values.

template<typename t >

bool is_sameXYZC (const Clmg< t > &img) const

Test if image width, height, depth and spectrum are the same as that of another image.

• bool containsXYZC (const int x, const int y=0, const int z=0, const int c=0) const

Test if specified coordinates are inside image bounds.

• template<typename t >

bool contains (const T &pixel, t &x, t &y, t &z, t &c) const

Test if pixel value is inside image bounds and get its X,Y,Z and C-coordinates.

template<typename t >

bool contains (const T &pixel, t &x, t &y, t &z) const

Test if pixel value is inside image bounds and get its X,Y and Z-coordinates.

template<typename t >

bool contains (const T &pixel, t &x, t &y) const

Test if pixel value is inside image bounds and get its X and Y-coordinates.

template<typename t >

bool contains (const T &pixel, t &x) const

Test if pixel value is inside image bounds and get its X-coordinate.

bool contains (const T &pixel) const

Test if pixel value is inside image bounds.

template<typename t >

bool is_overlapped (const Clmg< t > &img) const

Test if pixel buffers of instance and input images overlap.

- template<typename tp , typename tc , typename to >

 $bool\ is_object3d\ (const\ ClmgList< tp>\&primitives,\ const\ ClmgList< tc>\&colors,\ const\ to\ \&opacities,\ const\ bool\ full_check=true,\ char\ *const\ error_message=0)\ const$

Test if the set {*this,primitives,colors,opacities} defines a valid 3D object.

• bool is_Clmg3d (const bool full_check=true, char *const error_message=0) const

Test if image instance represents a valid serialization of a 3D object.

Mathematical Functions

• Clmg< T > & sqr ()

Compute the square value of each pixel value.

- Clmg< Tfloat > get_sqr () const
- Clmg< T > & sqrt ()

Compute the square root of each pixel value.

- CImg< Tfloat > get_sqrt () const
- Clmg< T > & exp ()

Compute the exponential of each pixel value.

- Clmg< Tfloat > get_exp () const
- Clmg< T > & erf ()

Compute the error function of each pixel value.

- Clmg< Tfloat > get_erf () const
- CImg< T> & log ()

Compute the logarithm of each pixel value.

- Clmg< Tfloat > get_log () const
- Clmg< T > & log2 ()

Compute the base-2 logarithm of each pixel value.

- Clmg< Tfloat > get_log2 () const
- Clmg< T > & log10 ()

Compute the base-10 logarithm of each pixel value.

- Clmg< Tfloat > get_log10 () const
- Clmg< T > & abs ()

Compute the absolute value of each pixel value.

- Clmg< Tfloat > get_abs () const
- Clmg< T > & sign ()

Compute the sign of each pixel value.

- Clmg< Tfloat > get_sign () const
- Clmg< T > & cos ()

Compute the cosine of each pixel value.

- Clmg< Tfloat > get_cos () const
- Clmg< T > & sin ()

Compute the sine of each pixel value.

- Clmg< Tfloat > get_sin () const
- Clmg< T > & sinc ()

Compute the sinc of each pixel value.

- Clmg< Tfloat > get_sinc () const
- Clmg< T > & tan ()

Compute the tangent of each pixel value.

- Clmg< Tfloat > get_tan () const
- Clmg< T > & cosh ()

Compute the hyperbolic cosine of each pixel value.

- Clmg< Tfloat > get_cosh () const
- Clmg< T > & sinh ()

Compute the hyperbolic sine of each pixel value.

- Clmg< Tfloat > get_sinh () const
- Clmg< T > & tanh ()

Compute the hyperbolic tangent of each pixel value.

- Clmg< Tfloat > get_tanh () const
- CImg< T > & acos ()

Compute the arccosine of each pixel value.

- Clmg< Tfloat > get_acos () const
- Clmg< T > & asin ()

Compute the arcsine of each pixel value.

- Clmg< Tfloat > get_asin () const
- Clmg< T > & atan ()

Compute the arctangent of each pixel value.

- CImg< Tfloat > get_atan () const
- $\bullet \ \ \text{template}{<} \text{typename t} >$

CImg < T > & atan2 (const CImg < t > & img)

Compute the arctangent2 of each pixel value.

 $\bullet \quad template\!<\!typename\ t>$

Clmg< Tfloat > get_atan2 (const Clmg< t > &img) const

Compute the arctangent2 of each pixel value [new-instance version].

• Clmg< T > & acosh ()

Compute the hyperbolic arccosine of each pixel value.

- Clmg< Tfloat > get_acosh () const
- Clmg< T > & asinh ()

Compute the hyperbolic arcsine of each pixel value.

• Clmg< Tfloat > get_asinh () const

Clmg< T > & atanh ()

Compute the hyperbolic arctangent of each pixel value.

- Clmg< Tfloat > get_atanh () const
- template<typename t >

```
Clmg< T > & mul (const Clmg< t > &img)
```

In-place pointwise multiplication.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get mul (const Clmg< t > &img) const

In-place pointwise multiplication [new-instance version].

• template<typename t >

```
Clmg< T > & div (const Clmg< t > &img)
```

In-place pointwise division.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get_div (const Clmg< t > &img) const

In-place pointwise division [new-instance version].

Clmg< T > & pow (const double p)

Raise each pixel value to a specified power.

Clmg< Tfloat > get_pow (const double p) const

Raise each pixel value to a specified power [new-instance version].

Clmg< T > & pow (const char *const expression)

Raise each pixel value to a power, specified from an expression.

Clmg< Tfloat > get pow (const char *const expression) const

Raise each pixel value to a power, specified from an expression [new-instance version].

template<typename t >

```
CImg < T > & pow (const CImg < t > & img)
```

Raise each pixel value to a power, pointwisely specified from another image.

template<typename t >

```
Clmg< Tfloat > get pow (const Clmg< t > &img) const
```

Raise each pixel value to a power, pointwisely specified from another image [new-instance version].

Clmg< T > & rol (const unsigned int n=1)

Compute the bitwise left rotation of each pixel value.

Clmg< T > get_rol (const unsigned int n=1) const

Compute the bitwise left rotation of each pixel value [new-instance version].

Clmg< T > & rol (const char *const expression)

Compute the bitwise left rotation of each pixel value.

Clmg< T > get_rol (const char *const expression) const

Compute the bitwise left rotation of each pixel value [new-instance version].

template<typename t >

```
Clmg< T > & rol (const Clmg< t > &img)
```

Compute the bitwise left rotation of each pixel value.

template<typename t >

```
Clmg< T > get_rol (const Clmg< t > &img) const
```

Compute the bitwise left rotation of each pixel value [new-instance version].

Clmg< T > & ror (const unsigned int n=1)

Compute the bitwise right rotation of each pixel value.

Clmg< T > get_ror (const unsigned int n=1) const

Compute the bitwise right rotation of each pixel value [new-instance version].

Clmg< T > & ror (const char *const expression)

Compute the bitwise right rotation of each pixel value.

Clmg< T > get_ror (const char *const expression) const

Compute the bitwise right rotation of each pixel value [new-instance version].

• template<typename t >

CImg < T > & ror (const CImg < t > & img)

Compute the bitwise right rotation of each pixel value.

template<typename t >

Clmg< T > get ror (const Clmg< t > &img) const

Compute the bitwise right rotation of each pixel value [new-instance version].

Clmg< T > & min (const T &value)

Pointwise min operator between instance image and a value.

Clmg< T > get_min (const T &value) const

Pointwise min operator between instance image and a value [new-instance version].

• template<typename t >

```
CImg < T > & min (const CImg < t > & min)
```

Pointwise min operator between two images.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get min (const Clmg< t > &img) const

Pointwise min operator between two images [new-instance version].

Clmg< T > & min (const char *const expression)

Pointwise min operator between an image and an expression.

Clmg< Tfloat > get_min (const char *const expression) const

Pointwise min operator between an image and an expression [new-instance version].

Clmg< T > & max (const T &value)

Pointwise max operator between instance image and a value.

Clmg< T > get_max (const T &value) const

Pointwise max operator between instance image and a value [new-instance version].

template<typename t >

```
Clmg< T > & max (const Clmg< t > &img)
```

Pointwise max operator between two images.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get_max (const Clmg< t > &img) const

Pointwise max operator between two images [new-instance version].

Clmg< T > & max (const char *const expression)

Pointwise max operator between an image and an expression.

Clmg< Tfloat > get_max (const char *const expression) const

Pointwise max operator between an image and an expression [new-instance version].

Clmg< T > & minabs (const T &value)

Pointwise minabs operator between instance image and a value.

Clmg< T > get_minabs (const T &value) const

Pointwise minabs operator between instance image and a value [new-instance version].

• template<typename t >

```
Clmg< T > & minabs (const Clmg< t > &img)
```

Pointwise minabs operator between two images.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get minabs (const Clmg< t > &img) const

Pointwise minabs operator between two images [new-instance version].

Clmg< T > & minabs (const char *const expression)

Pointwise minabs operator between an image and an expression.

Clmg< Tfloat > get_minabs (const char *const expression) const

Pointwise minabs operator between an image and an expression [new-instance version].

Clmg< T > & maxabs (const T &value)

Pointwise maxabs operator between instance image and a value.

Clmg< T > get_maxabs (const T &value) const

Pointwise maxabs operator between instance image and a value [new-instance version].

• template<typename t >

CImg < T > & maxabs (const CImg < t > & img)

Pointwise maxabs operator between two images.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get maxabs (const Clmg< t > &img) const

Pointwise maxabs operator between two images [new-instance version].

Clmg< T > & maxabs (const char *const expression)

Pointwise maxabs operator between an image and an expression.

Clmg< Tfloat > get_maxabs (const char *const expression) const

Pointwise maxabs operator between an image and an expression [new-instance version].

• T & min ()

Return a reference to the minimum pixel value.

const T & min () const

Return a reference to the minimum pixel value [const version].

• T & minabs ()

Return a reference to the minimum pixel value in absolute value.

· const T & minabs () const

Return a reference to the minimum pixel value in absolute value [const version].

• T & max ()

Return a reference to the maximum pixel value.

· const T & max () const

Return a reference to the maximum pixel value [const version].

T & maxabs ()

Return a reference to the maximum pixel value in absolute value.

const T & maxabs () const

Return a reference to the maximum pixel value in absolute value [const version].

• template<typename t >

```
T & min_max (t &max_val)
```

Return a reference to the minimum pixel value as well as the maximum pixel value.

 $\bullet \quad \text{template}{<} \text{typename t} >$

```
const T & min_max (t &max_val) const
```

Return a reference to the minimum pixel value as well as the maximum pixel value [const version].

 $\bullet \ \ \text{template}{<} \text{typename t} >$

```
T & max_min (t &min_val)
```

Return a reference to the maximum pixel value as well as the minimum pixel value.

 $\bullet \quad template\!<\!typename\ t>$

```
const T & max_min (t &min_val) const
```

Return a reference to the maximum pixel value as well as the minimum pixel value [const version].

T kth_smallest (const ulongT k) const

Return the kth smallest pixel value.

· T median () const

Return the median pixel value.

double product () const

Return the product of all the pixel values.

· double sum () const

Return the sum of all the pixel values.

· double mean () const

Return the average pixel value.

• double variance (const unsigned int variance_method=1) const

Return the variance of the pixel values.

• template<typename t >

double variance_mean (const unsigned int variance_method, t &mean) const

Return the variance as well as the average of the pixel values.

• double variance_noise (const unsigned int variance_method=2) const

Return estimated variance of the noise.

template<typename t >

double MSE (const Clmg< t > &img) const

Compute the MSE (Mean-Squared Error) between two images.

• template<typename t >

double PSNR (const Clmg< t > &img, const double max_value=255) const

Compute the PSNR (Peak Signal-to-Noise Ratio) between two images.

double eval (const char *const expression, const double x=0, const double y=0, const double z=0, const doub

Evaluate math formula.

double eval (const char *const expression, const double x=0, const double y=0, const double z=0, const double z=0, ClmgList< T > *const list images=0) const

Evaluate math formula [const version].

template<typename t >

void eval (Clmg< t > &output, const char *const expression, const double x=0, const double y=0, const double z=0, const double c=0, ClmgList< T > *const list_images=0)

Evaluate math formula.

template<typename t >

void eval (Clmg< t > &output, const char *const expression, const double x=0, const double y=0, const double z=0, const double c=0, ClmgList< T > *const list_images=0) const

Evaluate math formula [const version].

template<typename t >

 $Clmg < doubleT > eval (const char *const expression, const <math>Clmg < t > &xyzc, ClmgList < T > *const list_images=0)$

Evaluate math formula on a set of variables.

• template<typename t >

 $Clmg< doubleT > eval (const char *const expression, const <math>Clmg< t > &xyzc, ClmgList< T > *const list_images=0) const$

Evaluate math formula on a set of variables [const version].

Clmg< Tdouble > get_stats (const unsigned int variance_method=1) const

Compute statistics vector from the pixel values.

Clmg< T > & stats (const unsigned int variance_method=1)

Compute statistics vector from the pixel values [in-place version].

Vector / Matrix Operations

• template<typename tf , typename t >

static CImg< T > dijkstra (const tf &distance, const unsigned int nb_nodes, const unsigned int starting_node, const unsigned int ending_node, CImg< t > &previous_node)

Compute minimal path in a graph, using the Dijkstra algorithm.

• template<typename tf , typename t >

static CImg< T> dijkstra (const tf &distance, const unsigned int nb_nodes, const unsigned int starting_node, const unsigned int ending node= \sim 0U)

Return minimal path in a graph, using the Dijkstra algorithm.

• static Clmg < T > string (const char *const str, const bool is last zero=true, const bool is shared=false)

Return an image containing the character codes of specified string.

static Clmg< T > row_vector (const T &a0)

Return a 1×1 image containing specified value.

static Clmg< T > row_vector (const T &a0, const T &a1)

Return a 2x1 image containing specified values.

static Clmg< T > row_vector (const T &a0, const T &a1, const T &a2)

Return a 3x1 image containing specified values.

static Clmg< T > row vector (const T &a0, const T &a1, const T &a2, const T &a3)

Return a 4x1 image containing specified values.

static CImg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4)

Return a 5x1 image containing specified values.

static CImg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5)

Return a 6x1 image containing specified values.

static Clmg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6)

Return a 7x1 image containing specified values.

static Clmg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7)

Return a 8x1 image containing specified values.

static CImg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8)

Return a 9x1 image containing specified values.

static Clmg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9)

Return a 10x1 image containing specified values.

static CImg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10)

Return a 11x1 image containing specified values.

static CImg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11)

Return a 12x1 image containing specified values.

static Clmg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12)

Return a 13x1 image containing specified values.

static Clmg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13)

Return a 14x1 image containing specified values.

static CImg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14)

Return a 15x1 image containing specified values.

static CImg< T > row_vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15)

Return a 16x1 image containing specified values.

static Clmg< T > vector (const T &a0)

Return a 1x1 image containing specified value.

static Clmg< T > vector (const T &a0, const T &a1)

Return a 1x2 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2)

Return a 1x3 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3)

Return a 1x4 image containing specified values.

static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4)

Return a 1x5 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5)
 Return a 1x6 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6)

Return a 1x7 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7)

Return a 1x8 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8)

Return a 1x9 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9)

Return a 1x10 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10)

Return a 1x11 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11)

Return a 1x12 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12)

Return a 1x13 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13)

Return a 1x14 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14)

Return a 1×15 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15)

Return a 1x16 image containing specified values.

static Clmg< T > matrix (const T &a0)

Return a 1x1 matrix containing specified coefficients.

static Clmg< T > matrix (const T &a0, const T &a1, const T &a2, const T &a3)

Return a 2x2 matrix containing specified coefficients.

static Clmg< T > matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8)

Return a 3x3 matrix containing specified coefficients.

static CImg< T > matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15)

Return a 4x4 matrix containing specified coefficients.

static CImg< T > matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15, const T &a16, const T &a17, const T &a18, const T &a19, const T &a20, const T &a21, const T &a22, const T &a23, const T &a24)

Return a 5x5 matrix containing specified coefficients.

static Clmg< T > tensor (const T &a0)

Return a 1x1 symmetric matrix containing specified coefficients.

static Clmg< T > tensor (const T &a0, const T &a1, const T &a2)

Return a 2x2 symmetric matrix tensor containing specified coefficients.

static CImg< T > tensor (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5)

Return a 3x3 symmetric matrix containing specified coefficients.

static Clmg< T > diagonal (const T &a0)

Return a 1x1 diagonal matrix containing specified coefficients.

static Clmg< T > diagonal (const T &a0, const T &a1)

Return a 2x2 diagonal matrix containing specified coefficients.

static Clmg< T > diagonal (const T &a0, const T &a1, const T &a2)

Return a 3x3 diagonal matrix containing specified coefficients.

static Clmg < T > diagonal (const T &a0, const T &a1, const T &a2, const T &a3)

Return a 4x4 diagonal matrix containing specified coefficients.

static Clmg< T > diagonal (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4)

Return a 5x5 diagonal matrix containing specified coefficients.

static Clmg< T > identity matrix (const unsigned int N)

Return a NxN identity matrix.

• static Clmg< T > sequence (const unsigned int N, const T &a0, const T &a1)

Return a N-numbered sequence vector from a 0 to a 1.

static Clmg< T > rotation_matrix (const float x, const float y, const float z, const float w, const bool is_
 —
 quaternion=false)

Return a 3x3 rotation matrix from an { axis + angle } or a quaternion.

• double magnitude (const int magnitude_type=2) const

Compute norm of the image, viewed as a matrix.

• double trace () const

Compute the trace of the image, viewed as a matrix.

• double det () const

Compute the determinant of the image, viewed as a matrix.

template<typename t >

double dot (const Clmg< t > &img) const

Compute the dot product between instance and argument, viewed as matrices.

- Clmg< T > get_vector_at (const unsigned int x, const unsigned int y=0, const unsigned int z=0) const
 Get vector-valued pixel located at specified position.
- Clmg< T > get_matrix_at (const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) const
 Get (square) matrix-valued pixel located at specified position.
- Clmg< T > get_tensor_at (const unsigned int x, const unsigned int y=0, const unsigned int z=0) const Get tensor-valued pixel located at specified position.
- template<typename t >

Clmg< T > & set_vector_at (const Clmg< t > &vec, const unsigned int x, const unsigned int y=0, const unsigned int z=0)

Set vector-valued pixel at specified position.

template<typename t >

Clmg< T > & set_matrix_at (const Clmg< t > &mat, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0)

Set (square) matrix-valued pixel at specified position.

• template<typename t >

Clmg< T > & set_tensor_at (const Clmg< t > &ten, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0)

Set tensor-valued pixel at specified position.

Clmg< T > & diagonal ()

Resize image to become a diagonal matrix.

Clmg< T > get_diagonal () const

Resize image to become a diagonal matrix [new-instance version].

Clmg< T > & identity_matrix ()

Replace the image by an identity matrix.

Clmg< T > get identity matrix () const

Replace the image by an identity matrix [new-instance version].

Clmg< T > & sequence (const T &a0, const T &a1)

Fill image with a linear sequence of values.

Clmg< T > get sequence (const T &a0, const T &a1) const

Fill image with a linear sequence of values [new-instance version].

Clmg< T > & transpose ()

Transpose the image, viewed as a matrix.

Clmg< T > get transpose () const

Transpose the image, viewed as a matrix [new-instance version].

template<typename t >

```
Clmg< T > & cross (const Clmg< t > &img)
```

Compute the cross product between two 1x3 images, viewed as 3D vectors.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get_cross (const Clmg< t > &img) const

Compute the cross product between two 1x3 images, viewed as 3D vectors [new-instance version].

Clmg< T > & invert (const bool use_LU=true)

Invert the instance image, viewed as a matrix.

Clmg< Tfloat > get_invert (const bool use_LU=true) const

Invert the instance image, viewed as a matrix [new-instance version].

Clmg< T > & pseudoinvert (const bool use LU=false)

Compute the Moore-Penrose pseudo-inverse of the instance image, viewed as a matrix.

Clmg< Tfloat > get_pseudoinvert (const bool use_LU=false) const

Compute the Moore-Penrose pseudo-inverse of the instance image, viewed as a matrix [new-instance version].

• template<typename t >

```
Clmg< T > & solve (const Clmg< t > &A, const bool use LU=false)
```

Solve a system of linear equations.

• template<typename t >

Solve a system of linear equations [new-instance version].

• template<typename t >

```
Clmg< T > & solve_tridiagonal (const Clmg< t > &A)
```

Solve a tridiagonal system of linear equations.

• template<typename t >

Clmg< typename cimg::superset2< T, t, float >::type > get_solve_tridiagonal (const Clmg< t > &A) const

Solve a tridiagonal system of linear equations [new-instance version].

• template<typename t >

```
{\sf const} \ {\sf CImg}{<} \ {\sf T} > \& \ {\sf eigen} \ ({\sf CImg}{<} \ {\sf t} > \& {\sf val}, \ {\sf CImg}{<} \ {\sf t} > \& {\sf vec}) \ {\sf const}
```

Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.

ClmgList< Tfloat > get_eigen () const

Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.

template<typename t >

```
const Clmg< T > & symmetric eigen (Clmg< t > &val, Clmg< t > &vec) const
```

Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.

ClmgList< Tfloat > get_symmetric_eigen () const

Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.

template<typename t >

```
Clmg< T > & sort (Clmg< t > &permutations, const bool is_increasing=true)
```

Sort pixel values and get sorting permutations.

• template<typename t >

Clmg< T > get_sort (Clmg< t > &permutations, const bool is_increasing=true) const

Sort pixel values and get sorting permutations [new-instance version].

Clmg< T > & sort (const bool is_increasing=true, const char axis=0)

Sort pixel values.

Clmg< T > get_sort (const bool is_increasing=true, const char axis=0) const

Sort pixel values [new-instance version].

template<typename t >

const CImg< T > & SVD (CImg< t > &U, CImg< t > &S, CImg< t > &V, const bool sorting=true, const unsigned int max iteration=40, const float lambda=0) const

Compute the SVD of the instance image, viewed as a general matrix.

• ClmgList< Tfloat > get_SVD (const bool sorting=true, const unsigned int max_iteration=40, const float lambda=0) const

Compute the SVD of the instance image, viewed as a general matrix.

template<typename t >

 $CImg < T > \& project_matrix$ (const CImg < t > &dictionary, const unsigned int method=0, const unsigned int max_iter=0, const double max_residual=1e-6)

Compute the projection of the instance matrix onto the specified dictionary.

template<typename t >

Clmg< Tfloat > **get_project_matrix** (const Clmg< t > &dictionary, const unsigned int method=0, const unsigned int max iter=0, const double max residual=1e-6) const

• template<typename t >

Clmg< T > & dijkstra (const unsigned int starting_node, const unsigned int ending_node, Clmg< t > &previous_node)

Return minimal path in a graph, using the Dijkstra algorithm.

template<typename t >

 $CImg < T > get_dijkstra$ (const unsigned int starting_node, const unsigned int ending_node, CImg < t > aprevious_node) const

Return minimal path in a graph, using the Dijkstra algorithm [new-instance version].

Clmg< T > & dijkstra (const unsigned int starting_node, const unsigned int ending_node=~0U)

Return minimal path in a graph, using the Dijkstra algorithm.

• Clmg< Tfloat > get_dijkstra (const unsigned int starting_node, const unsigned int ending_node=~0U) const Return minimal path in a graph, using the Dijkstra algorithm [new-instance version].

Value Manipulation

Clmg< T > & fill (const T &val)

Fill all pixel values with specified value.

Clmg< T > get_fill (const T &val) const

Fill all pixel values with specified value [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1)

Fill sequentially all pixel values with specified values.

Clmg< T > get_fill (const T &val0, const T &val1) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4)

Fill sequentially all pixel values with specified values [overloading].

Clmg < T > get fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5)
 Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12)

Fill sequentially all pixel values with specified values [overloading].

CImg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12)

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13, const T &val14)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13, const T &val14) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13, const T &val14, const T &val15)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13, const T &val14, const T &val15) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const char *const expression, const bool repeat_values, const bool allow_formula=true,
 ClmgList< T > *const list_images=0)

Fill sequentially pixel values according to a given expression.

Clmg< T > get_fill (const char *const expression, const bool repeat_values, const bool allow_formula=true,
 ClmgList< T > *const list_images=0) const

Fill sequentially pixel values according to a given expression [new-instance version].

Clmg< T > & fill_from_values (const char *const values, const bool repeat_values)

Fill sequentially pixel values according to a value sequence, given as a string.

• Clmg< T > get_fill_from_values (const char *const values, const bool repeat_values) const

Fill sequentially pixel values according to a value sequence, given as a string [new-instance version].

• template<typename t >

Clmg< T > & fill (const Clmg< t > &values, const bool repeat values=true)

Fill sequentially pixel values according to the values found in another image.

• template<typename t >

Clmg< T > get_fill (const Clmg< t > &values, const bool repeat_values=true) const

Fill sequentially pixel values according to the values found in another image [new-instance version].

Clmg< T > & fillX (const unsigned int y, const unsigned int z, const unsigned int c, const int a0,...)

Fill pixel values along the X-axis at a specified pixel position.

Clmg< T > & fillX (const unsigned int y, const unsigned int z, const unsigned int c, const double a0,...)

Fill pixel values along the X-axis at a specified pixel position [overloading].

Clmg< T > & fillY (const unsigned int x, const unsigned int z, const unsigned int c, const int a0,...)

Fill pixel values along the Y-axis at a specified pixel position.

Clmq < T > & fillY (const unsigned int x, const unsigned int z, const unsigned int c, const double a0....)

Fill pixel values along the Y-axis at a specified pixel position [overloading].

Clmg< T > & fillZ (const unsigned int x, const unsigned int y, const unsigned int c, const int a0,...)

Fill pixel values along the Z-axis at a specified pixel position.

Clmg< T > & fillZ (const unsigned int x, const unsigned int y, const unsigned int c, const double a0,...)

Fill pixel values along the Z-axis at a specified pixel position [overloading].

• Clmg< T > & fillC (const unsigned int x, const unsigned int y, const unsigned int z, const int a0,...)

Fill pixel values along the C-axis at a specified pixel position.

Clmg< T > & fillC (const unsigned int x, const unsigned int y, const unsigned int z, const double a0,...)

Fill pixel values along the C-axis at a specified pixel position [overloading].

• template<typename t >

Clmg< T > & discard (const Clmg< t > &values, const char axis=0)

Discard specified sequence of values in the image buffer, along a specific axis.

• template<typename t >

Clmg< T > get_discard (const Clmg< t > &values, const char axis=0) const

Clmg< T > & discard (const char axis=0)

Discard neighboring duplicates in the image buffer, along the specified axis.

Clmg< T > get_discard (const char axis=0) const

Discard neighboring duplicates in the image buffer, along the specified axis [new-instance version].

Clmg< T > & invert endianness ()

Invert endianness of all pixel values.

Clmg< T > get_invert_endianness () const

Invert endianness of all pixel values [new-instance version].

Clmg< T > & rand (const T &val min, const T &val max)

Fill image with random values in specified range.

Clmg< T > get rand (const T &val min, const T &val max) const

Fill image with random values in specified range [new-instance version].

Clmg< T > & round (const double y=1, const int rounding type=0)

Round pixel values.

Clmg< T > get round (const double y=1, const unsigned int rounding type=0) const

Round pixel values [new-instance version].

Clmg< T > & noise (const double sigma, const unsigned int noise_type=0)

Add random noise to pixel values.

Clmg< T > get noise (const double sigma, const unsigned int noise type=0) const

Add random noise to pixel values [new-instance version].

Clmg< T > & normalize (const T &min_value, const T &max_value, const float constant_case_ratio=0)
 Linearly normalize pixel values.

Clmg< Tfloat > get_normalize (const T &min_value, const T &max_value, const float ratio_if_constant_
 image=0) const

Linearly normalize pixel values [new-instance version].

Clmg< T > & normalize ()

Normalize multi-valued pixels of the image instance, with respect to their L2-norm.

Clmg< Tfloat > get_normalize () const

Normalize multi-valued pixels of the image instance, with respect to their L2-norm [new-instance version].

Clmg< T > & norm (const int norm_type=2)

Compute Lp-norm of each multi-valued pixel of the image instance.

Clmg< Tfloat > get_norm (const int norm_type=2) const

Compute L2-norm of each multi-valued pixel of the image instance [new-instance version].

Clmg< T > & cut (const T &min value, const T &max value)

Cut pixel values in specified range.

Clmg< T > get_cut (const T &min_value, const T &max_value) const

Cut pixel values in specified range [new-instance version].

Clmg< T > & quantize (const unsigned int nb_levels, const bool keep_range=true)

Uniformly quantize pixel values.

• Clmg< T > get_quantize (const unsigned int n, const bool keep_range=true) const

Uniformly quantize pixel values [new-instance version].

T otsu (const unsigned int nb_levels=256) const

Return the Otsu threshold.

- Clmg< T > & threshold (const T &value, const bool soft_threshold=false, const bool strict_threshold=false)
 Threshold pixel values.
- Clmg< T > get_threshold (const T &value, const bool soft_threshold=false, const bool strict_threshold=false)
 const

Threshold pixel values [new-instance version].

Clmg< T > & histogram (const unsigned int nb_levels, const T &min_value, const T &max_value)

Compute the histogram of pixel values.

Clmg< T > & histogram (const unsigned int nb_levels)

Compute the histogram of pixel values [overloading].

Clmg< ulongT > get_histogram (const unsigned int nb_levels, const T &min_value, const T &max_value)
 const

Compute the histogram of pixel values [new-instance version].

Clmg< ulongT > get_histogram (const unsigned int nb_levels) const

Compute the histogram of pixel values [new-instance version].

Clmg< T > & equalize (const unsigned int nb_levels, const T &min_value, const T &max_value)

Equalize histogram of pixel values.

Clmg< T > & equalize (const unsigned int nb_levels)

Equalize histogram of pixel values [overloading].

Clmg< T > get equalize (const unsigned int nblevels, const T &val min, const T &val max) const

Equalize histogram of pixel values [new-instance version].

Clmg< T > get_equalize (const unsigned int nblevels) const

Equalize histogram of pixel values [new-instance version].

template<typename t >

Clmg< T > & index (const Clmg< t > &colormap, const float dithering=1, const bool map_indexes=false)

Index multi-valued pixels regarding to a specified colormap.

template<typename t >

Clmg< typename Clmg< t >::Tuint > get_index (const Clmg< t > &colormap, const float dithering=1, const bool map_indexes=true) const

Index multi-valued pixels regarding to a specified colormap [new-instance version].

• template<typename t >

Clmg< T > & map (const Clmg< t > &colormap, const unsigned int boundary_conditions=0)

Map predefined colormap on the scalar (indexed) image instance.

template<typename t >

Clmg< t > get_map (const Clmg< t > &colormap, const unsigned int boundary_conditions=0) const

Map predefined colormap on the scalar (indexed) image instance [new-instance version].

Clmg< T > & label (const bool is_high_connectivity=false, const Tfloat tolerance=0, const bool is_L2_
 —
 norm=true)

Label connected components.

Clmg< ulongT > get_label (const bool is_high_connectivity=false, const Tfloat tolerance=0, const bool is
 _L2_norm=true) const

Label connected components [new-instance version].

template<typename t >

Clmg< T > & label (const Clmg< t > &connectivity_mask, const Tfloat tolerance=0, const bool is_L2 $_{\leftarrow}$ norm=true)

Label connected components [overloading].

template<typename t >

 $\label{local_const_const} \mbox{Clmg} < \mbox{ulongT} > \mbox{get_label} \ (\mbox{const Clmg} < \mbox{t} > \mbox{\&connectivity_mask, const Tfloat tolerance=0, const bool} \\ \mbox{is_L2_norm=true}) \mbox{ const}$

Label connected components [new-instance version].

Color Base Management

static const Clmg< Tuchar > & default_LUT256 ()

Return colormap "default", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & HSV_LUT256 ()

Return colormap "HSV", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & lines_LUT256 ()

Return colormap "lines", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & hot LUT256 ()

Return colormap "hot", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & cool_LUT256 ()

Return colormap "cool", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & jet_LUT256 ()

Return colormap "jet", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & flag_LUT256 ()

Return colormap "flag", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & cube_LUT256 ()

Return colormap "cube", containing 256 colors entries in RGB.

Clmg< T > & sRGBtoRGB ()

Convert pixel values from sRGB to RGB color spaces.

Clmg< Tfloat > get_sRGBtoRGB () const

Convert pixel values from sRGB to RGB color spaces [new-instance version].

• Clmg< T > & RGBtosRGB ()

Convert pixel values from RGB to sRGB color spaces.

Clmg< Tfloat > get_RGBtosRGB () const

Convert pixel values from RGB to sRGB color spaces [new-instance version].

Clmg< T > & RGBtoHSI ()

Convert pixel values from RGB to HSI color spaces.

CImg< Tfloat > get_RGBtoHSI () const

Convert pixel values from RGB to HSI color spaces [new-instance version].

Clmg< T > & HSItoRGB ()

Convert pixel values from HSI to RGB color spaces.

Clmg< Tfloat > get_HSltoRGB () const

Convert pixel values from HSI to RGB color spaces [new-instance version].

Clmg< T > & RGBtoHSL ()

Convert pixel values from RGB to HSL color spaces.

- CImg< Tfloat > get_RGBtoHSL () const

Convert pixel values from RGB to HSL color spaces [new-instance version].

Clmg< T > & HSLtoRGB ()

Convert pixel values from HSL to RGB color spaces.

• Clmg< Tuchar > get_HSLtoRGB () const

Convert pixel values from HSL to RGB color spaces [new-instance version].

Clmg< T > & RGBtoHSV ()

Convert pixel values from RGB to HSV color spaces.

- CImg< Tfloat > get_RGBtoHSV () const

Convert pixel values from RGB to HSV color spaces [new-instance version].

Clmg< T > & HSVtoRGB ()

Convert pixel values from HSV to RGB color spaces.

Clmg< Tuchar > get HSVtoRGB () const

Convert pixel values from HSV to RGB color spaces [new-instance version].

Clmg< T > & RGBtoYCbCr ()

Convert pixel values from RGB to YCbCr color spaces.

Clmg< Tuchar > get_RGBtoYCbCr () const

Convert pixel values from RGB to YCbCr color spaces [new-instance version].

Clmg< T > & YCbCrtoRGB ()

Convert pixel values from RGB to YCbCr color spaces.

• Clmg< Tuchar > get_YCbCrtoRGB () const

Convert pixel values from RGB to YCbCr color spaces [new-instance version].

Clmg< T > & RGBtoYUV ()

Convert pixel values from RGB to YUV color spaces.

Clmg< Tfloat > get_RGBtoYUV () const

Convert pixel values from RGB to YUV color spaces [new-instance version].

Clmg< T > & YUVtoRGB ()

Convert pixel values from YUV to RGB color spaces.

Clmg< Tuchar > get_YUVtoRGB () const

Convert pixel values from YUV to RGB color spaces [new-instance version].

CImg< T > & RGBtoCMY ()

Convert pixel values from RGB to CMY color spaces.

Clmg< Tuchar > get_RGBtoCMY () const

Convert pixel values from RGB to CMY color spaces [new-instance version].

Clmg< T > & CMYtoRGB ()

Convert pixel values from CMY to RGB color spaces.

Clmg< Tuchar > get_CMYtoRGB () const

Convert pixel values from CMY to RGB color spaces [new-instance version].

Clmg< T > & CMYtoCMYK ()

Convert pixel values from CMY to CMYK color spaces.

• $CImg < Tuchar > get_CMYtoCMYK$ () const

Convert pixel values from CMY to CMYK color spaces [new-instance version].

Clmg< T > & CMYKtoCMY ()

Convert pixel values from CMYK to CMY color spaces.

Clmg< Tfloat > get CMYKtoCMY () const

Convert pixel values from CMYK to CMY color spaces [new-instance version].

Clmg< T > & RGBtoXYZ (const bool use_D65=true)

Convert pixel values from RGB to XYZ color spaces.

Clmg< Tfloat > get_RGBtoXYZ (const bool use_D65=true) const

Convert pixel values from RGB to XYZ color spaces [new-instance version].

Clmg< T > & XYZtoRGB (const bool use_D65=true)

Convert pixel values from XYZ to RGB color spaces.

Clmg< Tuchar > get_XYZtoRGB (const bool use_D65=true) const

Convert pixel values from XYZ to RGB color spaces [new-instance version].

Clmg< T > & XYZtoLab (const bool use_D65=true)

Convert pixel values from XYZ to Lab color spaces.

Clmg< Tfloat > get XYZtoLab (const bool use D65=true) const

Convert pixel values from XYZ to Lab color spaces [new-instance version].

Clmg< T > & LabtoXYZ (const bool use_D65=true)

Convert pixel values from Lab to XYZ color spaces.

Clmg< Tfloat > get_LabtoXYZ (const bool use_D65=true) const

Convert pixel values from Lab to XYZ color spaces [new-instance version].

CImg< T > & XYZtoxyY ()

Convert pixel values from XYZ to xyY color spaces.

Clmg< Tfloat > get_XYZtoxyY () const

Convert pixel values from XYZ to xyY color spaces [new-instance version].

Clmg< T > & xyYtoXYZ ()

Convert pixel values from xyY pixels to XYZ color spaces.

Clmg< Tfloat > get_xyYtoXYZ () const

Convert pixel values from xyY pixels to XYZ color spaces [new-instance version].

Clmg< T > & RGBtoLab (const bool use_D65=true)

Convert pixel values from RGB to Lab color spaces.

Clmg< Tfloat > get_RGBtoLab (const bool use_D65=true) const

Convert pixel values from RGB to Lab color spaces [new-instance version].

Clmg< T > & LabtoRGB (const bool use_D65=true)

Convert pixel values from Lab to RGB color spaces.

Clmg< Tuchar > get_LabtoRGB (const bool use_D65=true) const

Convert pixel values from Lab to RGB color spaces [new-instance version].

Clmg< T > & RGBtoxyY (const bool use_D65=true)

Convert pixel values from RGB to xyY color spaces.

Clmg< Tfloat > get_RGBtoxyY (const bool use_D65=true) const

Convert pixel values from RGB to xyY color spaces [new-instance version].

Clmg< T > & xyYtoRGB (const bool use D65=true)

Convert pixel values from xyY to RGB color spaces.

Clmg< Tuchar > get_xyYtoRGB (const bool use_D65=true) const

Convert pixel values from xyY to RGB color spaces [new-instance version].

CImg< T > & RGBtoCMYK ()

Convert pixel values from RGB to CMYK color spaces.

Clmg< Tfloat > get_RGBtoCMYK () const

Convert pixel values from RGB to CMYK color spaces [new-instance version].

Clmg< T > & CMYKtoRGB ()

Convert pixel values from CMYK to RGB color spaces.

• Clmg< Tuchar > get_CMYKtoRGB () const

Convert pixel values from CMYK to RGB color spaces [new-instance version].

Geometric / Spatial Manipulation

• template<typename tfunc >

static Clmg< float T> streamline (const tfunc &func, const float x, const float y, const float z, const float L=256, const float dl=0.1f, const unsigned int interpolation_type=2, const bool is_backward_tracking=false, const bool is_oriented_only=false, const float x0=0, const float y0=0, const float z0=0, const float x1=0, const float y1=0, const float z1=0)

Return stream line of a 3D vector field.

static CImg< floatT > streamline (const char *const expression, const float x, const float y, const float z, const float L=256, const float dl=0.1f, const unsigned int interpolation_type=2, const bool is_backward_← tracking=true, const bool is_oriented_only=false, const float x0=0, const float y0=0, const float z0=0, const float x1=0, const float y1=0, const float z1=0)

Return stream line of a 3D vector field [overloading].

• Clmg< T > & resize (const int size_x, const int size_y=-100, const int size_z=-100, const int size_c=-100, const int interpolation_type=1, const unsigned int boundary_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_z=0.

Resize image to new dimensions.

• Clmg< T > get_resize (const int size_x, const int size_y=-100, const int size_z=-100, const int size_c=-100, const int interpolation_type=1, const unsigned int boundary_conditions=0, const float centering_x=0, const float centering_z=0, const float centering_c=0) const

Resize image to new dimensions [new-instance version].

• template<typename t >

Clmg< T > & resize (const Clmg< t > &src, const int interpolation_type=1, const unsigned int boundary \leftarrow _conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0)

Resize image to dimensions of another image.

• template<typename t >

Clmg< T > get_resize (const Clmg< t > &src, const int interpolation_type=1, const unsigned int boundary ← _conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0) const

Resize image to dimensions of another image [new-instance version].

Clmg< T > & resize (const ClmgDisplay &disp, const int interpolation_type=1, const unsigned int boundary
 _conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0)

Resize image to dimensions of a display window.

• Clmg< T > get_resize (const ClmgDisplay &disp, const int interpolation_type=1, const unsigned int boundary_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0) const

Resize image to dimensions of a display window [new-instance version].

Clmg< T > & resize_halfXY ()

Resize image to half-size along XY axes, using an optimized filter.

Clmg< T > get_resize_halfXY () const

Resize image to half-size along XY axes, using an optimized filter [new-instance version].

Clmg< T > & resize doubleXY ()

Resize image to double-size, using the Scale2X algorithm.

Clmg< T > get_resize_doubleXY () const

Resize image to double-size, using the Scale2X algorithm [new-instance version].

Clmg< T > & resize_tripleXY ()

Resize image to triple-size, using the Scale3X algorithm.

Clmg< T > get_resize_tripleXY () const

Resize image to triple-size, using the Scale3X algorithm [new-instance version].

Clmg< T > & mirror (const char axis)

Mirror image content along specified axis.

Clmg< T > get_mirror (const char axis) const

Mirror image content along specified axis [new-instance version].

Clmg< T > & mirror (const char *const axes)

Mirror image content along specified axes.

Clmg< T > get_mirror (const char *const axes) const

Mirror image content along specified axes [new-instance version].

 Clmg< T > & shift (const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0, const unsigned int boundary_conditions=0)

Shift image content.

 Clmg< T > get_shift (const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0, const unsigned int boundary_conditions=0) const

Shift image content [new-instance version].

Clmg< T > & permute_axes (const char *const axes_order)

Permute axes order.

Clmg< T > get permute axes (const char *const axes order) const

Permute axes order [new-instance version].

Clmg< T > & unroll (const char axis)

Unroll pixel values along specified axis.

Clmg< T > get unroll (const char axis) const

Unroll pixel values along specified axis [new-instance version].

Clmg< T > & rotate (const float angle, const unsigned int interpolation=1, const unsigned int boundary_
 conditions=0)

Rotate image with arbitrary angle.

Clmg< T > get_rotate (const float angle, const unsigned int interpolation=1, const unsigned int boundary
 _conditions=0) const

Rotate image with arbitrary angle [new-instance version].

 Clmg< T > & rotate (const float angle, const float cx, const float cy, const unsigned int interpolation, const unsigned int boundary_conditions=0)

Rotate image with arbitrary angle, around a center point.

 Clmg< T > get_rotate (const float angle, const float cx, const float cy, const unsigned int interpolation, const unsigned int boundary_conditions=0) const

Rotate image with arbitrary angle, around a center point [new-instance version].

Clmg< T > rotate (const float u, const float v, const float w, const float angle, const unsigned int interpolation, const unsigned int boundary conditions)

Rotate volumetric image with arbitrary angle and axis.

Clmg< T > get_rotate (const float u, const float v, const float w, const float angle, const unsigned int interpolation, const unsigned int boundary_conditions) const

Rotate volumetric image with arbitrary angle and axis [new-instance version].

Clmg< T > rotate (const float u, const float v, const float w, const float angle, const float cx, const float cy, const float cz, const unsigned int interpolation=1, const unsigned int boundary_conditions=0)

Rotate volumetric image with arbitrary angle and axis, around a center point.

• Clmg< T > get_rotate (const float u, const float v, const float w, const float angle, const float cx, const float cy, const float cz, const unsigned int interpolation=1, const unsigned int boundary conditions=0) const

Rotate volumetric image with arbitrary angle and axis, around a center point [new-instance version].

template<typename t >

Clmg< T > & warp (const Clmg< t > &p_warp, const unsigned int mode=0, const unsigned int interpolation=1, const unsigned int boundary conditions=0)

Warp image content by a warping field.

template<typename t >

Clmg< T > get_warp (const Clmg< t > &p_warp, const unsigned int mode=0, const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const

Warp image content by a warping field [new-instance version]

Clmg< T > & projections2d (const unsigned int x0, const unsigned int y0, const unsigned int z0)

Construct a 2D representation of a 3D image, with XY,XZ and YZ views [in-place version].

• Clmg< T > & crop (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const unsigned int boundary conditions=0)

Crop image region.

• Clmg< T > get_crop (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const unsigned int boundary conditions=0) const

Crop image region [new-instance version].

Clmg< T > & crop (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const unsigned int boundary conditions=0)

Crop image region [overloading].

• Clmg< T > get_crop (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const unsigned int boundary conditions=0) const

Crop image region [new-instance version].

Clmg< T > & crop (const int x0, const int y0, const int x1, const int y1, const unsigned int boundary_
 conditions=0)

Crop image region [overloading].

Clmg< T > get_crop (const int x0, const int y0, const int x1, const int y1, const unsigned int boundary_
 conditions=0) const

Crop image region [new-instance version].

Clmg< T > & crop (const int x0, const int x1, const unsigned int boundary_conditions=0)

Crop image region [overloading].

Clmg< T > get_crop (const int x0, const int x1, const unsigned int boundary_conditions=0) const

Crop image region [new-instance version].

Clmg< T > & autocrop (const T &value, const char *const axes="czyx")

Autocrop image region, regarding the specified background value.

Clmg< T > get autocrop (const T &value, const char *const axes="czyx") const

Autocrop image region, regarding the specified background value [new-instance version].

Clmg< T > & autocrop (const T *const color=0, const char *const axes="zyx")

Autocrop image region, regarding the specified background color.

Clmg< T > get_autocrop (const T *const color=0, const char *const axes="zyx") const

Autocrop image region, regarding the specified background color [new-instance version].

Clmg< T > get column (const int x0) const

Return specified image column.

Clmg< T > & column (const int x0)

Return specified image column [in-place version].

Clmg< T > & columns (const int x0, const int x1)

Return specified range of image columns.

Clmg< T > get_columns (const int x0, const int x1) const

Return specified range of image columns [in-place version].

Clmg< T > get_row (const int y0) const

Return specified image row.

Clmg< T > & row (const int y0)

Return specified image row [in-place version].

• Clmg< T > get rows (const int y0, const int y1) const

Return specified range of image rows.

Clmg< T > & rows (const int y0, const int y1)

Return specified range of image rows [in-place version].

• Clmg< T > get_slice (const int z0) const

Return specified image slice.

• Clmg< T > & slice (const int z0)

Return specified image slice [in-place version].

Clmg< T > get_slices (const int z0, const int z1) const

Return specified range of image slices.

Clmg< T > & slices (const int z0, const int z1)

Return specified range of image slices [in-place version].

Clmg< T > get_channel (const int c0) const

Return specified image channel.

Clmg< T > & channel (const int c0)

Return specified image channel [in-place version].

• Clmg< T > get_channels (const int c0, const int c1) const

Return specified range of image channels.

Clmg< T > & channels (const int c0, const int c1)

Return specified range of image channels [in-place version].

Clmg< floatT > get_streamline (const float x, const float y, const float z, const float L=256, const float dl=0.1f, const unsigned int interpolation_type=2, const bool is_backward_tracking=false, const bool is_
 oriented_only=false) const

Return stream line of a 2D or 3D vector field.

• Clmg< T > get_shared_points (const unsigned int x0, const unsigned int x1, const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0)

Return a shared-memory image referencing a range of pixels of the image instance.

const Clmg< T > get_shared_points (const unsigned int x0, const unsigned int x1, const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) const

Return a shared-memory image referencing a range of pixels of the image instance [const version].

 Clmg< T > get_shared_rows (const unsigned int y0, const unsigned int y1, const unsigned int z0=0, const unsigned int c0=0)

Return a shared-memory image referencing a range of rows of the image instance.

const CImg< T > get_shared_rows (const unsigned int y0, const unsigned int y1, const unsigned int z0=0, const unsigned int c0=0) const

Return a shared-memory image referencing a range of rows of the image instance [const version].

Clmg< T > get_shared_row (const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0)

Return a shared-memory image referencing one row of the image instance.

const CImg < T > get_shared_row (const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0)
 const

Return a shared-memory image referencing one row of the image instance [const version].

Clmg< T > get_shared_slices (const unsigned int z0, const unsigned int z1, const unsigned int c0=0)

Return a shared memory image referencing a range of slices of the image instance.

const CImg < T > get_shared_slices (const unsigned int z0, const unsigned int z1, const unsigned int c0=0)
const

Return a shared memory image referencing a range of slices of the image instance [const version].

Clmg< T > get_shared_slice (const unsigned int z0, const unsigned int c0=0)

Return a shared-memory image referencing one slice of the image instance.

const Clmg< T > get_shared_slice (const unsigned int z0, const unsigned int c0=0) const

Return a shared-memory image referencing one slice of the image instance [const version].

• Clmg< T > get_shared_channels (const unsigned int c0, const unsigned int c1)

Return a shared-memory image referencing a range of channels of the image instance.

const Clmg< T > get_shared_channels (const unsigned int c0, const unsigned int c1) const

Return a shared-memory image referencing a range of channels of the image instance [const version].

Clmg< T > get_shared_channel (const unsigned int c0)

Return a shared-memory image referencing one channel of the image instance.

const Clmg< T > get_shared_channel (const unsigned int c0) const

Return a shared-memory image referencing one channel of the image instance [const version].

Clmg< T > get_shared ()

Return a shared-memory version of the image instance.

const Clmg< T > get_shared () const

Return a shared-memory version of the image instance [const version].

• ClmgList< T > get split (const char axis, const int nb=-1) const

Split image into a list along specified axis.

• template<typename t >

 $\label{eq:clmgList} \textit{ClmgList} < \textit{T} > \textit{get_split} \; (\textit{const Clmg} < \textit{t} > \textit{\&values}, \, \textit{const char axis=0}, \, \textit{const bool keep_values=true}) \; \textit{const char axis=0}, \, \textit{const bool keep_values=true}) \; \textit{const char axis=0}, \; \textit{const bool keep_values=true}) \; \textit{const bool keep_values=true}$

Split image into a list of sub-images, according to a specified splitting value sequence and optionally axis.

• template<typename t >

 $\label{eq:clmg} \textit{Clmg} < \textit{T} > \& \text{ append (const Clmg} < \textit{t} > \& \text{img, const char axis='x', const float align=0)}$

Append two images along specified axis.

Clmg< T > & append (const Clmg< T > &img, const char axis='x', const float align=0)

Append two images along specified axis [specialization].

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get_append (const Clmg< T > &img, const char axis='x', const float align=0) const

Append two images along specified axis [const version].

• Clmg< T > get_append (const Clmg< T > &img, const char axis='x', const float align=0) const

Append two images along specified axis [specialization].

Filtering / Transforms

 static void FFT (Clmg< T > &real, Clmg< T > &imag, const char axis, const bool is_inverse=false, const unsigned int nb threads=0)

Compute 1D Fast Fourier Transform, along a specified axis.

static void FFT (Clmg< T > &real, Clmg< T > &imag, const bool is_inverse=false, const unsigned int nb
 threads=0)

Compute n-D Fast Fourier Transform.

• template<typename t >

Clmg< T > & correlate (const Clmg< t > &kernel, const unsigned int boundary_conditions=1, const bool is_normalized=false, const unsigned int channel_mode=1, const int xcenter=(int)(\sim 0U >>1), const int ycenter=(int)(\sim 0U >>1), const int zcenter=(int)(\sim 0U >>1), const int xstart=0, const int ystart=0, const int zstart=0, const int xend=(int)(\sim 0U >>1), const int yend=(int)(\sim 0U >>1), const float xstride=1, const float ystride=1, const float xstride=1, const float ydilation=1, const float zdilation=1, const bool interpolation type=false)

Correlate image by a kernel.

• template<typename t >

Clmg< typename cimg::superset2< T, t, float >::type > **get_correlate** (const Clmg< t > &kernel, const unsigned int boundary_conditions=1, const bool is_normalized=false, const unsigned int channel_ \leftarrow mode=1, const int xcenter=(int)(\sim 0U >>1), const int ycenter=(int)(\sim 0U >>1), const int zcenter=(int)(\sim 0U >>1), const int xstart=0, const int ystart=0, const int zstart=0, const int xend=(int)(\sim 0U >>1), const int yend=(int)(\sim 0U >>1), const float xstride=1, const float ystride=1, const float zstride=1, const float xdilation=1, const float ydilation=1, const float zdilation=1, const bool interpolation_ \leftarrow type=false) const

template<typename t >

Clmg< T > & convolve (const Clmg< t > &kernel, const unsigned int boundary_conditions=1, const bool is_normalized=false, const unsigned int channel_mode=1, const int xcenter=(int)(\sim 0U >>1), const int ycenter=(int)(\sim 0U >>1), const int zcenter=(int)(\sim 0U >>1), const int xstart=0, const int ystart=0, const int zstart=0, const int xend=(int)(\sim 0U >>1), const int yend=(int)(\sim 0U >>1), const float xstride=1, const float ystride=1, const float xstride=1, const float ydilation=1, const float zdilation=1, const bool interpolation_type=false)

Convolve image by a kernel.

• template<typename t >

Clmg< typename cimg::superset2< T, t, float >::type > get_convolve (const Clmg< t > &kernel, const unsigned int boundary_conditions=1, const bool is_normalized=false, const unsigned int channel_ \leftarrow mode=1, const int xcenter=(int)(\sim 0U >>1), const int ycenter=(int)(\sim 0U >>1), const int zcenter=(int)(\sim 0U >>1), const int xstart=0, const int xstart=0, const int xstart=0, const int xend=(int)(\sim 0U >>1), const int yend=(int)(\sim 0U >>1), const float xstride=1, const float ystride=1, const float zstride=1, const float xdilation=1, const float ydilation=1, const float zdilation=1, const bool interpolation_ \leftarrow type=false) const

Convolve image by a kernel [new-instance version].

Clmg< T > & cumulate (const char axis=0)

Cumulate image values, optionally along specified axis.

Clmg< Tlong > get_cumulate (const char axis=0) const

Cumulate image values, optionally along specified axis [new-instance version].

Clmg< T > & cumulate (const char *const axes)

Cumulate image values, along specified axes.

 $\bullet \quad \text{CImg}{<} \, \text{Tlong} > \text{get_cumulate} \, \, (\text{const char} * \text{const axes}) \, \, \text{const} \,$

Cumulate image values, along specified axes [new-instance version].

• template<typename t >

Clmg< T > & erode (const Clmg< t > &kernel, const unsigned int boundary_conditions=1, const bool is_ \leftarrow real=false)

Erode image by a structuring element.

template<typename t >

 $\label{local_const} $$\operatorname{Clmg}< typename\ cimg::superset< T,\ t>::type> get_erode\ (const\ Clmg< t> \&kernel,\ const\ unsigned\ int\ boundary_conditions=1,\ const\ bool\ is_real=false)\ const\\$

Erode image by a structuring element [new-instance version].

Clmg< T > & erode (const unsigned int sx, const unsigned int sy, const unsigned int sz=1)

Erode image by a rectangular structuring element of specified size.

Clmg< T > get_erode (const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const

Erode image by a rectangular structuring element of specified size [new-instance version].

Clmg< T > & erode (const unsigned int s)

Erode the image by a square structuring element of specified size.

Clmg< T > get erode (const unsigned int s) const

Erode the image by a square structuring element of specified size [new-instance version].

• template<typename t >

Clmg< T > & dilate (const Clmg< t > &kernel, const unsigned int boundary_conditions=1, const bool is_ \leftarrow real=false)

Dilate image by a structuring element.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get_dilate (const Clmg< t > &kernel, const unsigned int boundary_conditions=1, const bool is_real=false) const

Dilate image by a structuring element [new-instance version].

Clmg< T > & dilate (const unsigned int sx, const unsigned int sy, const unsigned int sz=1)

Dilate image by a rectangular structuring element of specified size.

Clmg < T > get dilate (const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const

Dilate image by a rectangular structuring element of specified size [new-instance version].

Clmg< T > & dilate (const unsigned int s)

Dilate image by a square structuring element of specified size.

Clmg< T > get_dilate (const unsigned int s) const

Dilate image by a square structuring element of specified size [new-instance version].

template<typename t >

 $Clmg < T > & closing (const Clmg < t > &kernel, const unsigned int boundary_conditions=1, const bool is real=false)$

Apply morphological closing by a structuring element.

template<typename t >

 $Clmg < T > get_closing$ (const Clmg < t > &kernel, const unsigned int boundary_conditions=1, const bool is_real=false) const

Apply morphological closing by a structuring element [new-instance version].

Clmg< T > & closing (const unsigned int sx, const unsigned int sy, const unsigned int sz=1)

Apply morphological closing by a rectangular structuring element of specified size.

Clmg< T > get_closing (const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const

Apply morphological closing by a rectangular structuring element of specified size [new-instance version].

Clmg< T > & closing (const unsigned int s)

Apply morphological closing by a square structuring element of specified size.

Clmg< T > get_closing (const unsigned int s) const

Apply morphological closing by a square structuring element of specified size [new-instance version].

template<typename t >

Clmg< T > & opening (const Clmg< t > &kernel, const unsigned int boundary_conditions=1, const bool is_real=false)

Apply morphological opening by a structuring element.

template<typename t >

 $CImg < T > get_opening$ (const CImg < t > &kernel, const unsigned int boundary_conditions=1, const bool is real=false) const

Apply morphological opening by a structuring element [new-instance version].

Clmg< T > & opening (const unsigned int sx, const unsigned int sy, const unsigned int sz=1)

Apply morphological opening by a rectangular structuring element of specified size.

Clmg< T > get_opening (const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const

Apply morphological opening by a rectangular structuring element of specified size [new-instance version].

Clmg< T > & opening (const unsigned int s)

Apply morphological opening by a square structuring element of specified size.

Clmg< T > get_opening (const unsigned int s) const

Apply morphological opening by a square structuring element of specified size [new-instance version].

template<typename t >

Clmg< T > & watershed (const Clmg< t > &priority, const bool is high connectivity=false)

Compute watershed transform.

• template<typename t >

Clmg< T > get_watershed (const Clmg< t > &priority, const bool is_high_connectivity=false) const

Compute watershed transform [new-instance version].

 Clmg< T > & deriche (const float sigma, const unsigned int order=0, const char axis='x', const unsigned int boundary_conditions=1)

Apply recursive Deriche filter.

• Clmg< Tfloat > get_deriche (const float sigma, const unsigned int order=0, const char axis='x', const unsigned int boundary conditions=1) const

Apply recursive Deriche filter [new-instance version].

• Clmg< T > & vanvliet (const float sigma, const unsigned int order, const char axis='x', const unsigned int boundary conditions=1)

Van Vliet recursive Gaussian filter.

Clmg< Tfloat > get_vanvliet (const float sigma, const unsigned int order, const char axis='x', const unsigned int boundary conditions=1) const

Blur image using Van Vliet recursive Gaussian filter. [new-instance version].

• Clmg< T > & blur (const float sigma_x, const float sigma_y, const float sigma_z, const unsigned int boundary_conditions=1, const bool is_gaussian=true)

Blur image

 Clmg< Tfloat > get_blur (const float sigma_x, const float sigma_y, const float sigma_z, const unsigned int boundary_conditions=1, const bool is_gaussian=true) const

Blur image [new-instance version].

• Clmg< T > & blur (const float sigma, const unsigned int boundary_conditions=1, const bool is_← gaussian=true)

Blur image isotropically.

Clmg< Tfloat > get_blur (const float sigma, const unsigned int boundary_conditions=1, const bool is_

 gaussian=true) const

Blur image isotropically [new-instance version].

template<typename t >

Clmg< T > & blur_anisotropic (const Clmg< t > &G, const float amplitude=60, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool is_fast_approx=1)

Blur image anisotropically, directed by a field of diffusion tensors.

• template<typename t >

Clmg< Tfloat > get_blur_anisotropic (const Clmg< t > &G, const float amplitude=60, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool is_fast_ \leftarrow approx=true) const

Blur image anisotropically, directed by a field of diffusion tensors [new-instance version].

Clmg< T > & blur_anisotropic (const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool is_fast_approx=true)

Blur image anisotropically, in an edge-preserving way.

• Clmg< Tfloat > get_blur_anisotropic (const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool is_fast_approx=true) const

Blur image anisotropically, in an edge-preserving way [new-instance version].

• template<typename t >

 $Clmg < T > \& blur_bilateral$ (const Clmg < t > &guide, const float sigma_x, const float sigma_y, const float sigma_z, const float sigma_r, const float sampling_x, const float sampling_y, const float sampling_z, const float sampling_r)

Blur image, with the joint bilateral filter.

• template<typename t >

 $\label{local_const_const} $$\operatorname{Clmg}< Tfloat> \operatorname{get_blur_bilateral}$ (const $\operatorname{Clmg}< t> & \operatorname{guide}$, const float sigma_x, const float sigma_y, const float sigma_z, const float sigma_r, const float sampling_x, const float sampling_y, const float sampling_z, const float sampling_r) const float$

Blur image, with the joint bilateral filter [new-instance version].

template<typename t >

Clmg< T > & blur_bilateral (const Clmg< t > &guide, const float sigma_s, const float sigma_r, const float sampling s=0, const float sampling r=0)

Blur image using the joint bilateral filter.

• template<typename t >

$$\label{eq:clmg} \begin{split} &\text{Clmg} < \text{Tfloat} > \text{get_blur_bilateral (const Clmg} < t > \text{\&guide, const float sigma_s, const float sigma_r, const float sampling_s=0, const float sampling_r=0) const \end{split}$$

Blur image using the bilateral filter [new-instance version].

- Clmg< T > & boxfilter (const float boxsize, const int order, const char axis='x', const unsigned int boundary
 _conditions=1, const unsigned int nb_iter=1)
- Clmg< Tfloat > get_boxfilter (const float boxsize, const int order, const char axis='x', const unsigned int boundary_conditions=1, const unsigned int nb_iter=1) const
- Clmg< T > & blur_box (const float boxsize_x, const float boxsize_y, const float boxsize_z, const unsigned int boundary_conditions=1, const unsigned int nb_iter=1)

Blur image with a box filter.

 Clmg< Tfloat > get_blur_box (const float boxsize_x, const float boxsize_y, const float boxsize_z, const unsigned int boundary conditions=1) const

Blur image with a box filter [new-instance version].

Clmg< T > & blur_box (const float boxsize, const unsigned int boundary_conditions=1)

Blur image with a box filter.

Clmg < Tfloat > get blur box (const float boxsize, const unsigned int boundary conditions=1) const

Blur image with a box filter [new-instance version].

• template<typename t >

Clmg< T > & blur_guided (const Clmg< t > &guide, const float radius, const float regularization)

Blur image, with the image guided filter.

template<typename t >

 $\label{eq:clmg} \textbf{CImg} < \textbf{Tfloat} > \textbf{get_blur_guided} \text{ (const } \textbf{CImg} < \textbf{t} > \textbf{\&guide, const float radius, const float regularization)} \\ \textbf{const}$

Blur image, with the image guided filter [new-instance version].

• template<typename t >

Clmg< T > & blur_patch (const Clmg< t > &guide, const float sigma_s, const float sigma_r, const unsigned int patch_size=3, const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_\(\cdot\) approx=true)

Blur image using patch-based space.

template<typename t >

 $\label{local_const_const} \mbox{Clmg} < T \mbox{float} > \mbox{get_blur_patch} \mbox{ (const Clmg} < t > \mbox{\&guide, const float sigma_s, const float sigma_r, const unsigned int patch_size=3, const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast $$_approx=true$) const $$$

Blur image using patch-based space [new-instance version].

 Clmg< T > & blur_patch (const float sigma_s, const float sigma_r, const unsigned int patch_size=3, const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true)

Blur image using patch-based space [simplification].

Clmg< Tfloat > get_blur_patch (const float sigma_s, const float sigma_r, const unsigned int patch_size=3, const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true) const

Blur image using patch-based space [simplification] [new-instance version].

Clmg< T > & blur_median (const unsigned int n, const float threshold=0)

Blur image with the median filter.

Clmg< T > get_blur_median (const unsigned int n, const float threshold=0) const

Blur image with the median filter [new-instance version].

Clmg< T > & sharpen (const float amplitude, const bool sharpen_type=false, const float edge=1, const float alpha=0, const float sigma=0)

Sharpen image.

 Clmg< T > get_sharpen (const float amplitude, const bool sharpen_type=false, const float edge=1, const float alpha=0, const float sigma=0) const

Sharpen image [new-instance version].

ClmgList< Tfloat > get_gradient (const char *const axes=0, const int scheme=0) const

Return image gradient.

ClmgList< Tfloat > get_hessian (const char *const axes=0) const

Return image hessian.

• Clmg< T > & laplacian ()

Compute image Laplacian.

Clmg< Tfloat > get_laplacian () const

Compute image Laplacian [new-instance version].

• Clmg< T > & structure tensors (const bool is fwbw scheme=false)

Compute the structure tensor field of an image.

• Clmg< Tfloat > get_structure_tensors (const bool is_fwbw_scheme=false) const

Compute the structure tensor field of an image [new-instance version].

Clmg< T > & diffusion_tensors (const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false)

Compute field of diffusion tensors for edge-preserving smoothing.

• Clmg< Tfloat > get_diffusion_tensors (const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const bool is sqrt=false) const

Compute field of diffusion tensors for edge-preserving smoothing [new-instance version].

• Clmg< T > & displacement (const Clmg< T > & source, const float smoothness=0.1f, const float precision=5.f, const unsigned int nb_scales=0, const unsigned int iteration_max=10000, const bool is_← backward=false, const Clmg< floatT > &guide=Clmg< floatT > ::const empty())

Estimate displacement field between two images.

Clmg< floatT > get_displacement (const Clmg< T > &source, const float smoothness=0.1f, const float precision=5.f, const unsigned int nb_scales=0, const unsigned int iteration_max=10000, const bool is_← backward=false, const Clmg< floatT > &guide=Clmg< floatT >::const_empty()) const

Estimate displacement field between two images [new-instance version].

• template<typename t1 , typename t2 >

 $\label{eq:const_const_const} $$\operatorname{CImg}<T>\&\operatorname{patch_image}$, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations, const unsigned int nb_ randoms, const float patch_penalization, const $\operatorname{CImg}<t1>\&\operatorname{guide}$, $\operatorname{CImg}<t2>\&\operatorname{matching_score}$)$

Compute correspondence map between two images, using a patch-matching algorithm.

template<typename t1, typename t2 >

 $\label{eq:clmg} \mbox{Clmg} < \mbox{intT} > \mbox{get_matchpatch} \mbox{ (const Clmg} < \mbox{T} > \mbox{\&patch_image, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations, const unsigned int nb_randoms, const float patch_penalization, const Clmg < t1 > \mbox{\&guide, Clmg} < t2 > \mbox{\&matching_score)} \mbox{const}$

Compute correspondence map between two images, using the patch-match algorithm [new-instance version].

 $\bullet \quad template {<} typename \ t >$

Compute correspondence map between two images, using the patch-match algorithm [overloading].

• template<typename t >

 $\label{local_const_const} $$\operatorname{Clmg}<\mathsf{T}> $\operatorname{patch_image}, $\operatorname{const} $\operatorname{unsigned} $\operatorname{int} $\operatorname{patch_width}, $\operatorname{const} $\operatorname{unsigned} $\operatorname{int} $\operatorname{patch_height}, $\operatorname{const} $\operatorname{unsigned} $\operatorname{int} $\operatorname{nb_iterations=5}, $\operatorname{const} $\operatorname{unsigned} $\operatorname{int} $\operatorname{nb_iterations=5}, $\operatorname{const} $\operatorname{unsigned} $\operatorname{int} $\operatorname{nb_iterations=5}, $\operatorname{const} $\operatorname{unsigned} $\operatorname{int} $\operatorname{nb_iterations=5}, $\operatorname{const} $\operatorname{loat} $\operatorname{patch_penalization=0}, $\operatorname{const} $\operatorname{Clmg}< t> $\operatorname{guide=Clmg}< t>:::const_empty()) $\operatorname{const} $\operatorname{const} $\operatorname{loat} $\operatorname{patch_penalization=0}, $\operatorname{const} $\operatorname{loat} $\operatorname{patch_penalization=0}, $\operatorname{loat} loat

Compute correspondence map between two images, using the patch-match algorithm [overloading].

Clmg< T > & distance (const T &value, const unsigned int metric=2)

Compute Euclidean distance function to a specified value.

Clmg< Tfloat > get distance (const T &value, const unsigned int metric=2) const

Compute distance to a specified value [new-instance version].

template<typename t >

Clmg< T > & distance (const T &value, const Clmg< t > &metric_mask)

Compute chamfer distance to a specified value, with a custom metric.

• template<typename t >

Clmg< Tfloat > get distance (const T &value, const Clmg< t > &metric mask) const

Compute chamfer distance to a specified value, with a custom metric [new-instance version].

• template<typename t , typename to >

 $CImg < T > \& distance_dijkstra$ (const T &value, const CImg < t > &metric, const bool is_high_connectivity, $CImg < to > \&return_path$)

Compute distance to a specified value, according to a custom metric (use dijkstra algorithm).

• template<typename t , typename to >

Clmg< typename cimg::superset< t, long >::type > get_distance_dijkstra (const T &value, const Clmg< t > &metric, const bool is_high_connectivity, Clmg< to > &return_path) const

Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm) [new-instance version].

• template<typename t >

Clmg< T > & distance_dijkstra (const T &value, const Clmg< t > &metric, const bool is_high_ \leftarrow connectivity=false)

Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm). [overloading].

• template<typename t >

Clmg< Tfloat > get_distance_dijkstra (const T &value, const Clmg< t > &metric, const bool is_high_← connectivity=false) const

Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm). [new-instance version].

• template<typename t >

Clmg< T > & distance eikonal (const T &value, const Clmg< t > &metric)

Compute distance map to one source point, according to a custom metric (use fast marching algorithm).

• template<typename t >

 $\label{eq:clmg} \textit{Clmg} < \textit{Tfloat} > \textit{get_distance_eikonal} \; (\textit{const T \&value}, \, \textit{const Clmg} < \textit{t} > \textit{\&metric}) \; \textit{const}$

Compute distance map to one source point, according to a custom metric (use fast marching algorithm).

Clmg< T > & distance_eikonal (const unsigned int nb_iterations, const float band_size=0, const float time
 step=0.5f)

Compute distance function to 0-valued isophotes, using the Eikonal PDE.

 Clmg< Tfloat > get_distance_eikonal (const unsigned int nb_iterations, const float band_size=0, const float time_step=0.5f) const

Compute distance function to 0-valued isophotes, using the Eikonal PDE [new-instance version].

• Clmg< T > & haar (const char axis, const bool invert=false, const unsigned int nb_scales=1)

Compute Haar multiscale wavelet transform.

Clmg < Tfloat > get_haar (const char axis, const bool invert=false, const unsigned int nb_scales=1) const
 Compute Haar multiscale wavelet transform [new-instance version].

Clmg< T > & haar (const bool invert=false, const unsigned int nb_scales=1)

Compute Haar multiscale wavelet transform [overloading].

Clmg< Tfloat > get_haar (const bool invert=false, const unsigned int nb_scales=1) const

Compute Haar multiscale wavelet transform [new-instance version].

ClmgList< Tfloat > get_FFT (const char axis, const bool is_inverse=false) const

Compute 1D Fast Fourier Transform, along a specified axis.

ClmgList< Tfloat > get FFT (const bool is inverse=false) const

Compute n-D Fast Fourier Transform.

3D Objects Management

template<typename tf, typename tfunc >
 static Clmg< floatT > isoline3d (ClmgList< tf > &primitives, const tfunc &func, const float isovalue, const
 float x0, const float y0, const float x1, const float y1, const int size x=256, const int size y=256)

Compute isolines of a function, as a 3D object.

template<typename tv , typename tf , typename tfunc >
 static void isoline3d (tv &add_vertex, tf &add_segment, const tfunc &func, const float isovalue, const float x0,
 const float y0, const float x1, const float y1, const int size_x, const int size_y)

Compute isolines of a function, as a 3D object.

template<typename tf >

static Clmg< float T > isoline3d (ClmgList< tf > &primitives, const char *const expression, const float isovalue, const float x0, const float y0, const float x1, const float y1, const int size_x=256, const int size_y=256)

Compute isolines of a function, as a 3D object [overloading].

• template<typename tf , typename tfunc >

static CImg< float T> isosurface3d (CImgList< tf> &primitives, const tfunc &func, const float isovalue, const float x0, const float y0, const float z0, const float x1, const float y1, const float z1, const int size_x=32, const int size_y=32, const int size_z=32)

Compute isosurface of a function, as a 3D object.

template<typename tv , typename tf , typename tfunc >
 static void isosurface3d (tv &add_vertex, tf &add_triangle, const tfunc &func, const float isovalue, const float x0, const float y0, const float z0, const float x1, const float y1, const float z1, const int size_x, const int size_y, const int size_z)

Compute isosurface of a function, as a 3D object.

 $\bullet \quad {\sf template}{<} {\sf typename} \; {\sf tf} >$

static Clmg< float T > isosurface3d (ClmgList< tf P > isosurface3d const float P < isosurface3d const float $P < \text{isosu$

Compute isosurface of a function, as a 3D object [overloading].

• template<typename tf , typename tfunc >

static Clmg< float T > elevation3d (ClmgList< tf > &primitives, const tfunc &func, const float x0, const float y0, const float x1, const float y1, const int size_x=256, const int size_y=256)

Compute 3D elevation of a function as a 3D object.

template<typename tf >

static CImg< float T > elevation3d (CImgList< tf > &primitives, const char *const expression, const float x0, const float y1, const float y1, const int size_x=256, const int size_y=256)

Compute 3D elevation of a function, as a 3D object [overloading].

template<typename tf >

static Clmg< float T > box3d (ClmgList< tf > &primitives, const float size_x=200, const float size_y=100, const float size z=100)

Generate a 3D box object.

template<typename tf >

static Clmg< floatT > cone3d (ClmgList< tf > &primitives, const float radius=50, const float size_z=100, const unsigned int subdivisions=24)

Generate a 3D cone.

template<typename tf >

static Clmg< floatT > cylinder3d (ClmgList< tf > &primitives, const float radius=50, const float size_z=100, const unsigned int subdivisions=24)

Generate a 3D cylinder.

• template<typename tf >

static Clmg< floatT > torus3d (ClmgList< tf > &primitives, const float radius1=100, const float radius2=30, const unsigned int subdivisions1=24, const unsigned int subdivisions2=12)

Generate a 3D torus.

• template<typename tf >

static Clmg< floatT > plane3d (ClmgList< tf > &primitives, const float size_x=100, const float size_y=100, const unsigned int subdivisions_x=10, const unsigned int subdivisions_y=10)

Generate a 3D XY-plane.

• template<typename tf >

static CImg< floatT > sphere3d (CImgList< tf > &primitives, const float radius=50, const unsigned int subdivisions=3)

Generate a 3D sphere.

• template<typename tf , typename t >

static Clmg< floatT > ellipsoid3d (ClmgList< tf > &primitives, const Clmg< t > &tensor, const unsigned int subdivisions=3)

Generate a 3D ellipsoid.

Clmg< T > & rotate_object3d (const float x, const float y, const float z, const float w, const bool is_←
quaternion=false)

Rotate 3D object's vertices.

- Clmg
 Tfloat > get_rotate_object3d (const float x, const float y, const float z, const float w, const bool is_quaternion=false) const
- Clmg< T > & shift_object3d (const float tx, const float ty=0, const float tz=0)

Shift 3D object's vertices.

Clmg< Tfloat > get shift object3d (const float tx, const float ty=0, const float tz=0) const

Shift 3D object's vertices [new-instance version].

Clmg< T > & shift_object3d ()

Shift 3D object's vertices, so that it becomes centered.

Clmg< Tfloat > get shift object3d () const

Shift 3D object's vertices, so that it becomes centered [new-instance version].

Clmg< T > & resize_object3d (const float sx, const float sy=-100, const float sz=-100)

Resize 3D object.

• Clmg< Tfloat > get_resize_object3d (const float sx, const float sy=-100, const float sz=-100) const

Resize 3D object [new-instance version].

• Clmg< T > resize_object3d ()

Resize 3D object to unit size.

Clmg< Tfloat > get_resize_object3d () const

Resize 3D object to unit size [new-instance version].

- template < typename tf , typename tp , typename tff >

Clmg< T > & append_object3d (ClmgList< tf > &primitives, const Clmg< tp > &obj_vertices, const ClmgList< tff > &obj primitives)

Merge two 3D objects together.

template < typename tp , typename tc , typename tt , typename tx > const CImg < T > & texturize_object3d (CImgList < tp > &primitives, CImgList < tc > &colors, const CImg < tt > &texture, const CImg < tx > &coords=CImg < tx > ::const_empty()) const

Texturize primitives of a 3D object.

template<typename tf , typename tc , typename te >
 CImg< floatT > get_elevation3d (CImgList< tf > &primitives, CImgList< tc > &colors, const CImg< te >
 &elevation) const

Generate a 3D elevation of the image instance.

- template<typename tf , typename tc >

 $\label{eq:clmg} \textbf{Clmg} < \textbf{floatT} > \textbf{get_projections3d} \; \\ \textbf{(ClmgList} < \textbf{tf} > \textbf{\&primitives}, \; \textbf{ClmgList} < \textbf{tc} > \textbf{\&colors}, \; \textbf{const unsigned int x0}, \; \textbf{const unsigned int z0}, \; \textbf{const bool normalize_colors=false}) \; \textbf{const unsigned int z0}, \; \textbf{const unsigned int z0}, \; \textbf{const bool normalize_colors=false}) \; \textbf{const unsigned int z0}, \; \textbf{c$

Generate the 3D projection planes of the image instance.

• template<typename tf >

Clmg< floatT > get_isoline3d (ClmgList< tf > &primitives, const float isovalue, const int size_x=-100, const int size_y=-100) const

Generate a isoline of the image instance as a 3D object.

• template<typename tf >

Clmg< floatT > get_isosurface3d (ClmgList< tf > &primitives, const float isovalue, const int size_x=-100, const int size_y=-100, const int size_z=-100) const

Generate an isosurface of the image instance as a 3D object.

• template<typename tp , typename tc , typename to >

 $\label{eq:clmgdist} \begin{aligned} &\text{Clmg} < \text{T} > \& \text{ object3dtoClmg3d (const ClmgList} < \text{tp} > \& \text{primitives, const ClmgList} < \text{tc} > \& \text{colors, const to} \\ &\text{\& opacities, const bool full_check=true)} \end{aligned}$

Convert 3D object into a CImg3d representation.

• template<typename tp , typename tc >

 $\label{eq:clmg} \mbox{Clmg< T} > \mbox{\& object3dtoClmg3d (const ClmgList< tp > \& primitives, const ClmgList< tc > \& colors, const bool full check=true)} \\$

Convert 3D object into a Clmg3d representation [overloading].

• template<typename tp >

Clmg< T > & object3dtoClmg3d (const ClmgList< tp > &primitives, const bool full_check=true)

Convert 3D object into a Clmg3d representation [overloading].

Clmg< T > & object3dtoClmg3d (const bool full_check=true)

Convert 3D object into a Clmg3d representation [overloading].

template<typename tp , typename tc , typename to >

Clmg< floatT > get_object3dtoClmg3d (const ClmgList< tp > &primitives, const ClmgList< tc > &colors, const to &opacities, const bool full check=true) const

Convert 3D object into a Clmg3d representation [new-instance version].

• template<typename tp , typename tc >

 $\label{local_const_const} \mbox{Clmg< floatT} > \mbox{get_object3dtoClmg3d} \mbox{ (const ClmgList< tp} > \mbox{\&primitives, const ClmgList< tc} > \mbox{\&colors, const bool full_check=true)} \mbox{ const}$

Convert 3D object into a Clmg3d representation [overloading].

template<typename tp >

Clmg< floatT > get_object3dtoClmg3d (const ClmgList< tp > &primitives, const bool full_check=true) const Convert 3D object into a Clmg3d representation [overloading].

Clmg< floatT > get object3dtoClmg3d (const bool full check=true) const

Convert 3D object into a CImg3d representation [overloading].

ullet template<typename tp , typename tc , typename to >

 $\label{eq:clmg} \mbox{Clmg< T} > \& \mbox{Clmg3dtoobject3d (ClmgList< tp} > \& \mbox{primitives, ClmgList< tc} > \& \mbox{colors, ClmgList< to} > \& \mbox{opacities, const bool full_check=true)}$

Convert Clmg3d representation into a 3D object.

• template<typename tp , typename tc , typename to >

 $\label{eq:clmg_decomp} \mbox{CImg< T} > \mbox{get_CImg3dtoobject3d (CImgList< tp} > \mbox{\&primitives, CImgList< tc} > \mbox{\&colors, CImgList< to} > \mbox{\&colors, clmgList< to} > \mbox{\&colors, CImgList< to} > \m$

Convert Clmg3d representation into a 3D object [new-instance version].

Drawing Functions

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{tc} >$

Clmg< T > & draw_point (const int x0, const int y0, const int z0, const tc *const color, const float opacity=1)

Draw a 3D point.

• template<typename tc >

Clmg< T > & draw point (const int x0, const int y0, const tc *const color, const float opacity=1)

Draw a 2D point [simplification].

• template<typename t , typename tc >

Clmg< T > & draw_point (const Clmg< t > &points, const tc *const color, const float opacity=1)

• template<typename tc >

Clmg< T > & draw_line (int x0, int y0, int x1, int y1, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a 2D line.

• template<typename tz , typename tc >

Clmg< T > & draw_line (Clmg< tz > &zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a 2D line, with z-buffering.

 $\bullet \ \ \text{template}{<} \text{typename tc} >$

Clmg< T > & draw_line (int x0, int y0, int x1, int y1, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init hatch=true)

Draw a textured 2D line.

template<typename tc >

Clmg< T > & draw_line (int x0, int y0, const float z0, int x1, int y1, const float z1, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a textured 2D line, with perspective correction.

• template<typename tz , typename tc >

Clmg< T > & draw_line (Clmg< tz > &zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a textured 2D line, with perspective correction and z-buffering.

• template<typename t , typename tc >

Clmg< T > & draw_line (const Clmg< t > &points, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a set of consecutive lines.

template<typename tc >

Clmg< T > & draw_arrow (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity=1, const float angle=30, const float length=-10, const unsigned int pattern= \sim 0U)

Draw a 2D arrow.

• template<typename tc >

Clmg< T > & draw_spline (const int x0, const int y0, const float u0, const float v0, const int x1, const int y1, const float u1, const float v1, const tc *const color, const float opacity=1, const float precision=0.25, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a 2D spline.

template<typename t >

Clmg< T > & draw_spline (const int x0, const int y0, const float u0, const float v0, const int x1, const int y1, const float u1, const float v1, const Clmg< t > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const float precision=4, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a textured 2D spline.

• template<typename tp , typename tt , typename tc >

Clmg< T > & draw_spline (const Clmg< tp > &points, const Clmg< tt > &tangents, const tc *const color, const float opacity=1, const bool is_closed_set=false, const float precision=4, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a set of consecutive splines.

• template<typename tp , typename tc >

Clmg< T > & draw_spline (const Clmg< tp > &points, const tc *const color, const float opacity=1, const bool is_closed_set=false, const float precision=4, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a set of consecutive splines [overloading].

template<typename tc >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const float opacity=1)

Draw a filled 2D triangle.

template<typename tc >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const float opacity, const unsigned int pattern)

Draw a outlined 2D triangle.

• template<typename tz , typename tc >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const tc *const color, const float opacity=1, const float brightness=1)

Draw a filled 2D triangle, with z-buffering.

• template<typename tc >

Clmg< T > & draw_triangle (int x0, int y0, int x1, int y1, int x2, int y2, const tc *const color, float bs0, float bs1, float bs2, const float opacity=1)

Draw a Gouraud-shaded 2D triangle.

• template<typename tz , typename tc >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const tc *const color, float bs0, float bs1, float bs2, float opacity=1)

Draw a Gouraud-shaded 2D triangle, with z-buffering [overloading].

template<typename tc >

Clmg< T > & draw_triangle (int x0, int y0, int x1, int y1, int x2, int y2, const tc *color0, const tc *color1, const tc *color2, const float opacity=1)

Draw a color-interpolated 2D triangle.

template<typename tc >

Clmg< T > & draw_triangle (int x0, int y0, int x1, int y1, int x2, int y2, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const float opacity=1, const float brightness=1)

Draw a textured 2D triangle.

template<typename tc >

Clmg< T > & draw_triangle (int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const float opacity=1, const float brightness=1)

Draw a 2D textured triangle, with perspective correction.

• template<typename tz , typename tc >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const float opacity=1, const float brightness=1)

Draw a textured 2D triangle, with perspective correction and z-buffering.

• template<typename tc , typename tl >

Clmg< T > & draw_triangle (int x0, int y0, int x1, int y1, int x2, int y2, const tc *const color, const Clmg< tl > & light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity=1)

Draw a Phong-shaded 2D triangle.

• template<typename tz , typename tc , typename tl >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const tc *const color, const Clmg< tl > &light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity=1)

Draw a Phong-shaded 2D triangle, with z-buffering.

• template<typename tc >

Clmg< T > & draw_triangle (int x0, int y0, int x1, int y1, int x2, int y2, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, float bs0, float bs1, float bs2, const float opacity=1)

Draw a textured Gouraud-shaded 2D triangle.

template
 typename tc >

Clmg< T > & draw_triangle (int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, float bs0, float bs1, float bs2, const float opacity=1)

Draw a textured Gouraud-shaded 2D triangle, with perspective correction [overloading].

 $\bullet \quad \text{template}{<} \text{typename tz , typename tc} >$

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, float bs0, float bs1, float bs2, const float opacity=1)

Draw a textured Gouraud-shaded 2D triangle, with perspective correction and z-buffering [overloading].

ullet template<typename tc , typename tl >

Clmg< T > & draw_triangle (int x0, int y0, int x1, int y1, int x2, int y2, const Clmg< to > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const Clmg< tl > &light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity=1)

Draw a textured Phong-shaded 2D triangle.

• template<typename tc , typename tl >

Clmg< T > & draw_triangle (int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const Clmg< tl > &light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity=1)

Draw a textured Phong-shaded 2D triangle, with perspective correction.

template<typename tz , typename tc , typename tl >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const Clmg< tc > &texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const Clmg< tl > &light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity=1)

Draw a textured Phong-shaded 2D triangle, with perspective correction and z-buffering.

• Clmg< T > & draw_rectangle (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const T val, const float opacity=1)

Draw a filled 4D rectangle.

• template<typename tc >

Clmg< T > & draw_rectangle (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const tc *const color, const float opacity=1)

Draw a filled 3D rectangle.

• template<typename tc >

Clmg< T > & draw_rectangle (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity=1)

Draw a filled 2D rectangle.

• template<typename tc >

Clmg< T> & draw_rectangle (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity, const unsigned int pattern)

Draw a outlined 2D rectangle [overloading].

- template<typename tp , typename tc >

Clmg < T > & draw polygon (const Clmg < tp > &points, const tc *const color, const float opacity=1)

Draw a filled 2D polygon.

• template<typename t , typename tc >

 $CImg < T > \& draw_polygon$ (const CImg < t > & points, const tc *const color, const float opacity, const unsigned int pattern)

Draw a outlined 2D or 3D polygon [overloading].

template<typename tc >

Clmg< T> & draw_ellipse (const int x0, const int y0, const float r1, const float r2, const float angle, const tc *const color, const float opacity=1)

Draw a filled 2D ellipse.

• template<typename t , typename tc >

Clmg< T > & draw_ellipse (const int x0, const int y0, const Clmg< t > &tensor, const tc *const color, const float opacity=1)

Draw a filled 2D ellipse [overloading].

• template<typename tc >

Clmg< T > & draw_ellipse (const int x0, const int y0, const float r1, const float r2, const float angle, const tc *const color, const float opacity, const unsigned int pattern)

Draw an outlined 2D ellipse.

• template<typename t , typename tc >

 $\label{eq:clmg} \begin{aligned} &\text{Clmg} < T > \& \text{ draw_ellipse (const int x0, const int y0, const $Clmg} < t > \& tensor, const tc *const color, const float opacity, const unsigned int pattern) \end{aligned}$

Draw an outlined 2D ellipse [overloading].

• template<typename tc >

 $\label{eq:clmg} CImg < T > \& \ draw_circle \ (const \ int \ x0, \ const \ int \ y0, \ int \ radius, \ const \ tc \ *const \ color, \ const \ float \ opacity=1)$

Draw a filled 2D circle.

• template<typename tc >

Clmg< T > & draw_circle (const int x0, const int y0, int radius, const tc *const color, const float opacity, const unsigned int pattern)

Draw an outlined 2D circle.

• template<typename t >

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const int c0, const Clmg< t > &sprite, const float opacity=1)

Draw an image.

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const int c0, const Clmg< T > &sprite, const float opacity=1)

Draw an image [specialization].

template<typename t >

 $CImg < T > \& draw_image$ (const int x0, const int y0, const int z0, const CImg < t > & sprite, const float opacity=1)

Draw an image [overloading].

template<typename t >

Clmg< T > & draw image (const int x0, const int y0, const Clmg< t > &sprite, const float opacity=1)

Draw an image [overloading].

template<typename t >

Clmg< T > & draw_image (const int x0, const Clmg< t > &sprite, const float opacity=1)

Draw an image [overloading].

template<typename t >

Clmg< T > & draw_image (const Clmg< t > &sprite, const float opacity=1)

Draw an image [overloading].

- template<typename ti , typename tm >

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const int c0, const Clmg< ti > &sprite, const Clmg< tm > &mask, const float opacity=1, const float mask max value=1)

Draw a masked image.

• template<typename ti , typename tm >

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const Clmg< ti > &sprite, const Clmg< tm > &mask, const float opacity=1, const float mask_max_value=1)

Draw a masked image [overloading].

• template<typename ti , typename tm >

 $Clmg < T > \& draw_image (const int x0, const int y0, const <math>Clmg < ti > \& sprite, const <math>Clmg < tm > \& mask, const float opacity=1, const float mask_max_value=1)$

Draw a image [overloading].

• template<typename ti , typename tm >

Clmg< T > & draw_image (const int x0, const Clmg< ti > &sprite, const Clmg< tm > &mask, const float opacity=1, const float mask_max_value=1)

Draw a image [overloading].

• template<typename ti , typename tm >

Clmg< T > & draw_image (const Clmg< ti > &sprite, const Clmg< tm > &mask, const float opacity=1, const float mask max value=1)

Draw an image.

• template<typename tc1 , typename tc2 , typename t >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const tc1 *const foreground_color, const tc2 *const background_color, const float opacity, const ClmgList< t >&font,...)

Draw a text string.

• template<typename tc , typename t >

 $Clmg < T > \& draw_text$ (const int x0, const int y0, const char *const text, const tc *const foreground_color, const int, const float opacity, const ClmgList < t > & font,...)

Draw a text string [overloading].

• template<typename tc , typename t >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const int, const tc *const background_color, const float opacity, const ClmgList< t > &font,...)

Draw a text string [overloading].

• template<typename tc1 , typename tc2 >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const tc1 *const foreground_color, const tc2 *const background_color, const float opacity=1, const unsigned int font_height=13,...)

Draw a text string [overloading].

template<typename tc >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const tc *const foreground_color, const int background_color=0, const float opacity=1, const unsigned int font_height=13,...)

Draw a text string [overloading].

• template<typename tc >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const int, const tc *const background_color, const float opacity=1, const unsigned int font_height=13,...)

Draw a text string [overloading].

• template<typename t1 , typename t2 >

Clmg< T > & draw_quiver (const Clmg< t1 > &flow, const t2 *const color, const float opacity=1, const unsigned int sampling=25, const float factor=-20, const bool is_arrow=true, const unsigned int pattern= \sim 0U)

Draw a 2D vector field.

• template<typename t1 , typename t2 >

Clmg< T > & draw_quiver (const Clmg< t1 > &flow, const Clmg< t2 > &color, const float opacity=1, const unsigned int sampling=25, const float factor=-20, const bool is_arrow=true, const unsigned int pattern= \sim 0U)

Draw a 2D vector field, using a field of colors.

• template<typename t , typename tc >

Clmg < T > & draw_axis (const Clmg < t > &values_x, const int y, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const unsigned int font_height=13, const bool allow_zero=true, const float round x=0)

Draw a labeled horizontal axis.

• template<typename t , typename tc >

Clmg< T > & draw_axis (const int x, const Clmg< t > &values_y, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const unsigned int font_height=13, const bool allow_zero=true, const float round y=0)

Draw a labeled vertical axis.

• template<typename tx , typename ty , typename tc >

Clmg< T > & draw_axes (const Clmg< tx > &values_x, const Clmg< ty > &values_y, const tc *const color, const float opacity=1, const unsigned int pattern_x= \sim 0U, const unsigned int pattern_y= \sim 0U, const unsigned int font_height=13, const bool allow_zero=true, const float round_x=0, const float round_y=0)

Draw labeled horizontal and vertical axes.

 $\bullet \quad \mathsf{template}{<} \mathsf{typename} \; \mathsf{tc} >$

Clmg< T > & draw_axes (const float x0, const float x1, const float y0, const float y1, const tc *const color, const float opacity=1, const int subdivisionx=-60, const int subdivisiony=-60, const float precisionx=0, const float precisiony=0, const unsigned int pattern_x= \sim 0U, const unsigned int pattern_y= \sim 0U, const unsigned int font_height=13)

Draw labeled horizontal and vertical axes [overloading].

• template<typename tx , typename ty , typename tc >

Clmg< T > & draw_grid (const Clmg< tx > &values_x, const Clmg< ty > &values_y, const tc *const color, const float opacity=1, const unsigned int pattern_x= \sim 0U, const unsigned int pattern_y= \sim 0U)

Draw 2D grid.

template<typename tc >

Clmg< T > & draw_grid (const float delta_x, const float delta_y, const float offsetx, const float offsety, const bool inverty, const to *const color, const float opacity=1, const unsigned int pattern_ \leftarrow x= \sim 0U, const unsigned int pattern y= \sim 0U)

Draw 2D grid [simplification].

• template<typename t , typename tc >

Clmg< T > & draw_graph (const Clmg< t > &data, const tc *const color, const float opacity=1, const unsigned int plot_type=1, const int vertex_type=1, const double ymin=0, const double ymax=0, const unsigned int pattern= \sim 0U)

Draw 1D graph.

• template<typename tc , typename t >

Clmg< T > & draw_fill (const int x0, const int y0, const int z0, const tc *const color, const float opacity, Clmg< t > ®ion, const float tolerance=0, const bool is_high_connectivity=false)

Draw filled 3D region with the flood fill algorithm.

template<typename tc >

Clmg< T > & draw_fill (const int x0, const int y0, const int z0, const tc *const color, const float opacity=1, const float tolerance=0, const bool is high connexity=false)

Draw filled 3D region with the flood fill algorithm [simplification].

• template<typename tc >

Clmg< T > & draw_fill (const int x0, const int y0, const tc *const color, const float opacity=1, const float tolerance=0, const bool is high connexity=false)

Draw filled 2D region with the flood fill algorithm [simplification].

Clmg< T > & draw_plasma (const float alpha=1, const float beta=0, const unsigned int scale=8)

Draw a random plasma texture.

• template<typename tc >

Clmg< T > & draw_mandelbrot (const int x0, const int y0, const int x1, const int y1, const Clmg< tc > &colormap, const float opacity=1, const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2, const unsigned int iteration_max=255, const bool is_normalized_iteration=false, const bool is_julia_ \leftarrow set=false, const double param_r=0, const double param_i=0)

Draw a quadratic Mandelbrot or Julia 2D fractal.

• template<typename tc >

Clmg< T > & draw_mandelbrot (const Clmg< tc > &colormap, const float opacity=1, const double z0r=-2, const double z1r=2, const double z1i=2, const unsigned int iteration_max=255, const bool is_normalized_iteration=false, const bool is_julia_set=false, const double param_r=0, const double param_i=0)

Draw a quadratic Mandelbrot or Julia 2D fractal [overloading].

template<typename tc >

Clmg< T > & draw gaussian (const float xc, const float sigma, const tc *const color, const float opacity=1)

Draw a 1D gaussian function.

- template<typename t , typename tc >

Clmg< T > & draw_gaussian (const float xc, const float yc, const Clmg< t > &tensor, const tc *const color, const float opacity=1)

Draw a 2D gaussian function.

template<typename tc >

Clmg< T> & draw_gaussian (const int xc, const int yc, const float r1, const float r2, const float ru, const float rv, const tc *const color, const float opacity=1)

Draw a 2D gaussian function [overloading].

template<typename tc >

Clmg< T > & draw_gaussian (const float xc, const float yc, const float sigma, const tc *const color, const float opacity=1)

Draw a 2D gaussian function [overloading].

• template<typename t , typename tc >

Clmg< T > & draw_gaussian (const float xc, const float yc, const float zc, const Clmg< t > &tensor, const tc *const color, const float opacity=1)

Draw a 3D gaussian function [overloading].

template<typename tc >

 $Clmg < T > \& draw_gaussian$ (const float xc, const float yc, const float zc, const float sigma, const tc *const color, const float opacity=1)

Draw a 3D gaussian function [overloading].

template<typename tp , typename tf , typename tc , typename to >
 Clmg< T > & draw_object3d (const float x0, const float y0, const float z0, const Clmg< tp > &vertices,
 const ClmgList< tf > &primitives, const ClmgList< tc > &colors, const Clmg< to > &opacities, const unsigned int render_type=4, const bool is_double_sided=false, const float focale=700, const float lightx=0, const float lighty=0, const float lighty=0, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const float g opacity=1)

Draw a 3D object.

template < typename tp , typename tf , typename tc , typename to , typename tz > $CImg < T > \& draw_object3d$ (const float x0, const float y0, const float z0, const CImg < tp > & vertices, const CImgList < tf > & primitives, const CImgList < tc > & colors, const CImg < to > & opacities, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg < tz > & zbuffer)

Draw a 3D object [simplification].

template<typename tp , typename tf , typename tc , typename to >
 CImg< T > & draw_object3d (const float x0, const float y0, const float z0, const CImg< tp > &vertices,
 const CImgList< tf > &primitives, const CImgList< tc > &colors, const CImgList< to > &opacities, const unsigned int render_type=4, const bool is_double_sided=false, const float focale=700, const float lightx=0, const float lighty=0, const float lightz=-5e8, const float specular_lightness=0.2f, const float specular_shininess=0.1f,
 const float g opacity=1)

Draw a 3D object [simplification].

template<typename tp , typename tf , typename tc , typename tc , typename tz >
 CImg
 T > & draw_object3d (const float x0, const float y0, const float z0, const CImg
 tp > &vertices, const CImgList
 tc > &colors, const CImgList
 to > &opacities, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_shininess, const float g_opacity, CImg
 tz > &zbuffer)

Draw a 3D object [simplification].

template<typename tp , typename tf , typename tc >
 Clmg< T > & draw_object3d (const float x0, const float y0, const float z0, const Clmg< tp > &vertices, const
 ClmgList< tf > &primitives, const ClmgList< tc > &colors, const unsigned int render_type=4, const bool is
 _double_sided=false, const float focale=700, const float lightx=0, const float lighty=0, const float lightz=-5e8,
 const float specular_lightness=0.2f, const float specular_shininess=0.1f, const float g_opacity=1)

Draw a 3D object [simplification].

template < typename tp , typename tf , typename tc , typename tz >
 Clmg < T > & draw_object3d (const float x0, const float y0, const float z0, const Clmg < tp > & vertices,
 const ClmgList < tf > & primitives, const ClmgList < tc > & colors, const unsigned int render_type, const bool
 is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular
 _ lightness, const float specular_shininess, const float g_opacity, Clmg < tz > & zbuffer)

Draw a 3D object [simplification].

Data Input

static Clmg< T > get_load (const char *const filename)

Load image from a file [new-instance version].

static Clmg< T > get_load_ascii (const char *const filename)

Load image from an ascii file [in-place version].

static Clmg< T > get load ascii (std::FILE *const file)

Loadimage from an ascii file [new-instance version].

static Clmg< T > get_load_dlm (const char *const filename)

Load image from a DLM file [new-instance version].

static Clmg< T > get load dlm (std::FILE *const file)

Load image from a DLM file [new-instance version].

static Clmg< T > get_load_bmp (const char *const filename)

Load image from a BMP file [new-instance version].

static Clmg< T > get_load_bmp (std::FILE *const file)

Load image from a BMP file [new-instance version].

static Clmg< T > get_load_jpeg (const char *const filename)

Load image from a JPEG file [new-instance version].

static Clmg< T > get load jpeg (std::FILE *const file)

Load image from a JPEG file [new-instance version].

static Clmg< T > get_load_magick (const char *const filename)

Load image from a file, using Magick++ library [new-instance version].

static CImg < T > get load png (const char *const filename, unsigned int *const bits per value=0)

Load image from a PNG file [new-instance version].

static CImg< T > get_load_png (std::FILE *const file, unsigned int *const bits_per_value=0)

Load image from a PNG file [new-instance version].

static Clmg< T > get_load_pnm (const char *const filename)

Load image from a PNM file [new-instance version].

static Clmg< T > get_load_pnm (std::FILE *const file)

Load image from a PNM file [new-instance version].

static Clmg< T > get_load_pfm (const char *const filename)

Load image from a PFM file [new-instance version].

static Clmg< T > get load pfm (std::FILE *const file)

Load image from a PFM file [new-instance version].

static Clmg< T > get_load_rgb (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGB file [new-instance version].

• static CImg< T > get_load_rgb (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGB file [new-instance version].

static CImg< T > get_load_rgba (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGBA file [new-instance version].

• static Clmg< T > get_load_rgba (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGBA file [new-instance version].

static Clmg< T > get_load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, unsigned int *const bits_per_value=0, float *const voxel_size=0, Clmg< charT > *const description=0)

Load image from a TIFF file [new-instance version].

static Clmg< T > get_load_minc2 (const char *const filename)

Load image from a MINC2 file [new-instance version].

static Clmg< T > get_load_analyze (const char *const filename, float *const voxel_size=0)

Load image from an ANALYZE7.5/NIFTI file [new-instance version].

static Clmg< T > get load analyze (std::FILE *const file, float *const voxel size=0)

Load image from an ANALYZE7.5/NIFTI file [new-instance version].

• static Clmg< T > get_load_cimg (const char *const filename, const char axis='z', const float align=0)

Load image from a .cimg[z] file [new-instance version]

static CImg< T > get_load_cimg (std::FILE *const file, const char axis='z', const float align=0)

Load image from a .cimg[z] file [new-instance version]

static CImg< T > get_load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)

Load sub-images of a .cimg file [new-instance version].

• static Clmg< T > get_load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)

Load sub-images of a .cimg file [new-instance version].

static Clmg< T > get load inr (const char *const filename, float *const voxel size=0)

Load image from an INRIMAGE-4 file [new-instance version].

static CImg< T > get_load_inr (std::FILE *const file, float *voxel_size=0)

Load image from an INRIMAGE-4 file Inew-instance version.

static Clmg< T > get_load_exr (const char *const filename)

Load image from a EXR file [new-instance version].

static Clmg< T > get_load_pandore (const char *const filename)

Load image from a PANDORE-5 file [new-instance version].

static Clmg< T > get_load_pandore (std::FILE *const file)

Load image from a PANDORE-5 file [new-instance version].

 $\bullet \quad \text{static Clmg} < T > \text{get_load_parrec} \text{ (const char *const filename, const char axis='c', const float align=0)}\\$

Load image from a PAR-REC (Philips) file [new-instance version].

static CImg< T > get_load_raw (const char *const filename, const unsigned int size_x=0, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_multiplexed=false, const bool invert_endianness=false, const ulongT offset=0)

Load image from a raw binary file [new-instance version].

static CImg < T > get_load_raw (std::FILE *const file, const unsigned int size_x=0, const unsigned int size = y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_multiplexed=false, const bool invert endianness=false, const ulongT offset=0)

Load image from a raw binary file [new-instance version].

static Clmg< T > get_load_yuv (const char *const filename, const unsigned int size_x, const unsigned int size_y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z')

Load image sequence from a YUV file [new-instance version].

static CImg< T > get_load_yuv (std::FILE *const file, const unsigned int size_x, const unsigned int size
 _y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z')

Load image sequence from a YUV file [new-instance version].

• template<typename tf , typename tc >

static Clmg< T > get_load_off (ClmgList< tf > &primitives, ClmgList< tc > &colors, const char *const filename)

Load 3D object from a .OFF file [new-instance version].

• template<typename tf , typename tc >

static Clmg< T > get_load_off (ClmgList< tf > &primitives, ClmgList< tc > &colors, std::FILE *const file)

Load 3D object from a .OFF file [new-instance version].

static Clmg< T > get_load_video (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const char axis='z', const float align=0)

Load image sequence from a video file, using OpenCV library [new-instance version].

 static Clmg< T > get_load_ffmpeg_external (const char *const filename, const char axis='z', const float align=0)

Load image sequence using FFMPEG's external tool 'ffmpeg' [new-instance version].

static CImg< T > get_load_gif_external (const char *const filename, const char axis='z', const float align=0)

Load gif file, using ImageMagick or GraphicsMagick's external tool 'convert' [new-instance version].

static Clmg< T > get_load_heif (const char *const filename)

Load image from a HEIC file [new-instance version].

static Clmg< T > get_load_graphicsmagick_external (const char *const filename)

Load image using GraphicsMagick's external tool 'gm' [new-instance version].

static Clmg< T > get_load_gzip_external (const char *const filename)

Load gzipped image file, using external tool 'gunzip' [new-instance version].

static Clmg< T > get_load_imagemagick_external (const char *const filename)

Load image using ImageMagick's external tool 'convert' [new-instance version].

static Clmg< T > get load medcon external (const char *const filename)

Load image from a DICOM file, using Medcon's external tool 'medcon' [new-instance version].

static Clmg< T > get_load_pdf_external (const char *const filename, const unsigned int resolution=400)

Load image from a .pdf file [new-instance version].

static Clmg< T > get load dcraw external (const char *const filename)

Load image from a RAW Color Camera file, using external tool 'dcraw' [new-instance version].

static Clmg< T > get_load_camera (const unsigned int camera_index=0, const unsigned int capture
 _ width=0, const unsigned int capture_height=0, const unsigned int skip_frames=0, const bool release_
 camera=true)

Load image from a camera stream, using OpenCV [new-instance version].

static Clmg< T > get_load_other (const char *const filename)

Load image using various non-native ways [new-instance version].

Clmg< T > & select (ClmgDisplay &disp, const unsigned int feature_type=2, unsigned int *const XYZ=0, const bool exit_on_anykey=false, const bool is_deep_selection_default=false)

Launch simple interface to select a shape from an image.

Clmg< T > & select (const char *const title, const unsigned int feature_type=2, unsigned int *const XYZ=0, const bool exit_on_anykey=false, const bool is_deep_selection_default=false)

Simple interface to select a shape from an image [overloading].

• Clmg< intT > get_select (ClmgDisplay &disp, const unsigned int feature_type=2, unsigned int *const X← YZ=0, const bool exit_on_anykey=false, const bool is_deep_selection_default=false) const

Simple interface to select a shape from an image [new-instance version].

• Clmg< intT > get_select (const char *const title, const unsigned int feature_type=2, unsigned int *const XYZ=0, const bool exit_on_anykey=false, const bool is_deep_selection_default=false) const

Simple interface to select a shape from an image [new-instance version].

• Clmg< intT > get_select_graph (ClmgDisplay &disp, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0, const bool exit on anykey=false) const

Select sub-graph in a graph.

Clmg< T > & load (const char *const filename)

Load image from a file.

Clmg< T > & load ascii (const char *const filename)

Load image from an ascii file.

Clmg< T > & load_ascii (std::FILE *const file)

Load image from an ascii file [overloading].

• Clmg< T > & load_dlm (const char *const filename)

Load image from a DLM file.

Clmg< T > & load_dlm (std::FILE *const file)

Load image from a DLM file [overloading].

Clmg< T > & load bmp (const char *const filename)

Load image from a BMP file.

• Clmg< T > & load bmp (std::FILE *const file)

Load image from a BMP file [overloading].

Clmg< T > & load_jpeg (const char *const filename)

Load image from a JPEG file.

Clmg< T > & load_jpeg (std::FILE *const file)

Load image from a JPEG file [overloading].

Clmg< T > & load_magick (const char *const filename)

Load image from a file, using Magick++ library.

Clmg< T > & load_png (const char *const filename, unsigned int *const bits_per_value=0)

Load image from a PNG file.

Clmg< T > & load_png (std::FILE *const file, unsigned int *const bits_per_value=0)

Load image from a PNG file [overloading].

Clmg< T > & load_pnm (const char *const filename)

Load image from a PNM file.

Clmg< T > & load_pnm (std::FILE *const file)

Load image from a PNM file [overloading].

Clmg< T > & load pfm (const char *const filename)

Load image from a PFM file.

Clmg< T > & load_pfm (std::FILE *const file)

Load image from a PFM file [overloading].

- Clmg< T > & load_rgb (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)
 Load image from a RGB file.
- Clmg < T > & load_rgb (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGB file [overloading].

- Clmg< T > & load_rgba (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)
 Load image from a RGBA file.
- Clmg< T > & load_rgba (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGBA file [overloading].

Load image from a TIFF file.

• Clmg< T > & load_minc2 (const char *const filename)

Load image from a MINC2 file.

Clmg< T > & load_analyze (const char *const filename, float *const voxel_size=0)

Load image from an ANALYZE7.5/NIFTI file.

Clmg< T > & load_analyze (std::FILE *const file, float *const voxel_size=0)

Load image from an ANALYZE7.5/NIFTI file [overloading].

Clmg< T > & load_cimg (const char *const filename, const char axis='z', const float align=0)

Load image from a .cimg[z] file.

• Clmg< T > & load_cimg (std::FILE *const file, const char axis='z', const float align=0)

Load image from a .cimg[z] file [overloading].

Clmg< T > & load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)

Load sub-images of a .cimg file.

• Clmg< T > & load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)

Load sub-images of a .cimg file [overloading].

Clmg< T > & load_inr (const char *const filename, float *const voxel_size=0)

Load image from an INRIMAGE-4 file.

Clmg< T > & load_inr (std::FILE *const file, float *const voxel_size=0)

Load image from an INRIMAGE-4 file [overloading].

Clmg< T > & load_exr (const char *const filename)

Load image from a EXR file.

Clmg< T > & load pandore (const char *const filename)

Load image from a PANDORE-5 file.

Clmg< T > & load_pandore (std::FILE *const file)

Load image from a PANDORE-5 file [overloading].

Clmg< T > & load parrec (const char *const filename, const char axis='c', const float align=0)

Load image from a PAR-REC (Philips) file.

Clmg< T > & load_raw (const char *const filename, const unsigned int size_x=0, const unsigned int size ← y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_multiplexed=false, const bool invert endianness=false, const ulongT offset=0)

Load image from a raw binary file.

Clmg< T > & load_raw (std::FILE *const file, const unsigned int size_x=0, const unsigned int size_
 y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_multiplexed=false, const bool invert_endianness=false, const ulongT offset=0)

Load image from a raw binary file [overloading].

Clmg< T > & load_yuv (const char *const filename, const unsigned int size_x, const unsigned int size ← y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z')

Load image sequence from a YUV file.

Clmg< T > & load_yuv (std::FILE *const file, const unsigned int size_x, const unsigned int size_y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_← frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z')

Load image sequence from a YUV file [overloading].

• template<typename tf , typename tc >

```
\label{eq:clmg_list} \mbox{ClmgList} < \mbox{tf} > \mbox{\&primitives, ClmgList} < \mbox{tc} > \mbox{\&colors, const char *const filename)}
```

Load 3D object from a .OFF file.

• template<typename tf , typename tc >

```
Clmg< T > & load_off (ClmgList< tf > &primitives, ClmgList< tc > &colors, std::FILE *const file)
```

Load 3D object from a .OFF file [overloading].

• Clmg< T > & load_video (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const char axis='z', const float align=0)

Load image sequence from a video file, using OpenCV library.

Clmg< T > & load_ffmpeg_external (const char *const filename, const char axis='z', const float align=0)

Load image sequence using FFMPEG's external tool 'ffmpeg'.

Clmg< T > & load_gif_external (const char *const filename, const char axis='z', const float align=0)

Load gif file, using Imagemagick or GraphicsMagicks's external tools.

Clmg< T > & load_heif (const char *const filename)

Load image from a HEIC file.

• Clmg< T > & load graphicsmagick external (const char *const filename)

Load image using GraphicsMagick's external tool 'gm'.

• Clmg< T > & load_gzip_external (const char *const filename)

Load gzipped image file, using external tool 'gunzip'.

Clmg< T > & load_imagemagick_external (const char *const filename)

Load image using ImageMagick's external tool 'convert'.

Clmg< T > & load_medcon_external (const char *const filename)

Load image from a DICOM file, using Medcon's external tool 'medcon'.

Clmg< T > & load_pdf_external (const char *const filename, const unsigned int resolution=400)

Load image from a .pdf file.

Clmg< T > & load_dcraw_external (const char *const filename)

Load image from a RAW Color Camera file, using external tool 'dcraw'.

 Clmg< T > & load_camera (const unsigned int camera_index=0, const unsigned int capture_width=0, const unsigned int capture_height=0, const unsigned int skip_frames=0, const bool release_camera=true)

Load image from a camera stream, using OpenCV.

Clmg< T > & load_other (const char *const filename)

Load image using various non-native ways.

Data Output

• static void save_empty_cimg (const char *const filename, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)

Save blank image as a .cimg file.

• static void save_empty_cimg (std::FILE *const file, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)

Save blank image as a .cimg file [overloading].

const CImg < T > & print (const char *const title=0, const bool display stats=true) const

Display information about the image data.

const Clmg
 T > & display (ClmgDisplay &disp) const

Display image into a CImgDisplay window.

const Clmg
 t > & display (ClmgDisplay &disp, const bool display_info, unsigned int *const XYZ=0, const bool exit on anykey=false) const

Display image into a ClmgDisplay window, in an interactive way.

 const Clmg< T > & display (const char *const title=0, const bool display_info=true, unsigned int *const XYZ=0, const bool exit_on_anykey=false) const

Display image into an interactive window.

• template<typename tp , typename tf , typename tc , typename to > const Clmg< T > & display_object3d (ClmgDisplay &disp, const Clmg< tp > &vertices, const ClmgList< tf > &primitives, const ClmgList< tc > &colors, const to &opacities, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_← anykey=false) const

Display object 3D in an interactive window.

template<typename tp , typename tf , typename tc , typename to >
 const Clmg< T > & display_object3d (const char *const title, const Clmg< tp > &vertices, const ClmgList<
 tf > &primitives, const ClmgList< tc > &colors, const to &opacities, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_
 anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp , typename tf , typename tc >
 const Clmg< T > & display_object3d (ClmgDisplay &disp, const Clmg< tp > &vertices, const ClmgList< tf
 > &primitives, const ClmgList< tc > &colors, const bool centering=true, const int render_static=4, const int
 render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float
 light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f,
 const bool display axes=true, float *const pose matrix=0, const bool exit on anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp , typename tf , typename tc >
 const Clmg< T > & display_object3d (const char *const title, const Clmg< tp > &vertices, const ClmgList<
 tf > &primitives, const ClmgList< tc > &colors, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp , typename tf >
 const Clmg< T > & display_object3d (ClmgDisplay &disp, const Clmg< tp > &vertices, const ClmgList
 tf > &primitives, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp , typename tf >
 const CImg< T > & display_object3d (const char *const title, const CImg< tp > &vertices, const CImgList<
 tf > &primitives, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose matrix=0, const bool exit on anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp >

const Clmg< T > & display_object3d (ClmgDisplay &disp, const Clmg< tp > &vertices, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular \leftarrow _lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_ \leftarrow matrix=0, const bool exit on anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp >

const CImg< T > & display_object3d (const char *const title, const CImg< tp > &vertices, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular \leftarrow _lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_ \leftarrow matrix=0, const bool exit on anykey=false) const

Display object 3D in an interactive window [simplification].

• const Clmg< T > & display_graph (ClmgDisplay &disp, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0, const bool exit_on_anykey=false) const

Display 1D graph in an interactive window.

const Clmg< T > & display_graph (const char *const title=0, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0, const bool exit_on_anykey=false) const

Display 1D graph in an interactive window [overloading].

- const Clmg < T > & save (const char *const filename, const int number=-1, const unsigned int digits=6) const
 Save image as a file.
- const Clmg< T > & save_ascii (const char *const filename) const

Save image as an ascii file.

const Clmg< T > & save ascii (std::FILE *const file) const

Save image as an Ascii file [overloading].

const Clmg< T > & save_cpp (const char *const filename) const

Save image as a .cpp source file.

const Clmg< T > & save cpp (std::FILE *const file) const

Save image as a .cpp source file [overloading].

const Clmg< T > & save_dlm (const char *const filename) const

Save image as a DLM file.

const Clmg< T > & save dlm (std::FILE *const file) const

Save image as a DLM file [overloading].

const Clmg< T > & save_bmp (const char *const filename) const

Save image as a BMP file.

const Clmg< T > & save_bmp (std::FILE *const file) const

Save image as a BMP file [overloading].

const Clmg< T > & save_jpeg (const char *const filename, const unsigned int quality=100) const
 Save image as a JPEG file.

const Clmg< T > & save_jpeg (std::FILE *const file, const unsigned int quality=100) const

Save image as a JPEG file [overloading].

const Clmg < T > & save_magick (const char *const filename, const unsigned int bytes_per_pixel=0) const
 Save image, using built-in ImageMagick++ library.

const Clmg < T > & save_png (const char *const filename, const unsigned int bytes_per_pixel=0) const
 Save image as a PNG file.

- const Clmg< T > & save_png (std::FILE *const file, const unsigned int bytes_per_pixel=0) const
 Save image as a PNG file [overloading].
- const Clmg < T > & save_pnm (const char *const filename, const unsigned int bytes_per_pixel=0) const
 Save image as a PNM file.
- const Clmg< T > & save_pnm (std::FILE *const file, const unsigned int bytes_per_pixel=0) const
 Save image as a PNM file [overloading].
- const Clmg < T > & save_pnk (const char *const filename) const
 Save image as a PNK file.
- const Clmg< T > & save pnk (std::FILE *const file) const

Save image as a PNK file [overloading].

const Clmg< T > & save pfm (const char *const filename) const

Save image as a PFM file.

const Clmg< T > & save pfm (std::FILE *const file) const

Save image as a PFM file [overloading].

const Clmg< T > & save_rgb (const char *const filename) const

Save image as a RGB file.

const Clmg< T > & save rgb (std::FILE *const file) const

Save image as a RGB file [overloading].

const Clmg< T > & save_rgba (const char *const filename) const

Save image as a RGBA file.

const Clmg< T > & save_rgba (std::FILE *const file) const

Save image as a RGBA file [overloading].

• const Clmg< T > & save_tiff (const char *const filename, const unsigned int compression_type=0, const float *const voxel_size=0, const char *const description=0, const bool use_bigtiff=true) const

Save image as a TIFF file.

- const Clmg < T > & save_minc2 (const char *const filename, const char *const imitate_file=0) const
 Save image as a MINC2 file.
- const Clmg< T > & save_analyze (const char *const filename, const float *const voxel_size=0) const Save image as an ANALYZE7.5 or NIFTI file.
- const Clmg < T > & save_cimg (const char *const filename, const bool is_compressed=false) const
 Save image as a .cimg file.
- const CImg< T > & save_cimg (std::FILE *const file, const bool is_compressed=false) const
 Save image as a .cimg file [overloading].
- const Clmg< T > & save_cimg (const char *const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const

Save image as a sub-image into an existing .cimg file.

const Clmg< T > & save_cimg (std::FILE *const file, const unsigned int n0, const unsigned int x0, const unsigned int z0, const unsigned int c0) const

Save image as a sub-image into an existing .cimg file [overloading].

- const Clmg < T > & save_inr (const char *const filename, const float *const voxel_size=0) const Save image as an INRIMAGE-4 file.
- const Clmg < T > & save_inr (std::FILE *const file, const float *const voxel_size=0) const
 Save image as an INRIMAGE-4 file [overloading].
- const Clmg< T > & save exr (const char *const filename) const

Save image as an OpenEXR file.

- const Clmg< T > & save_pandore (const char *const filename, const unsigned int colorspace=0) const
 Save image as a Pandore-5 file.
- const Clmg< T > & save_pandore (std::FILE *const file, const unsigned int colorspace=0) const
 Save image as a Pandore-5 file [overloading].

- const Clmg < T > & save_raw (const char *const filename, const bool is_multiplexed=false) const
 Save image as a raw data file.
- $\bullet \ \, \text{const Clmg} < \mathsf{T} > \& \ \, \text{save_raw} \ \, (\text{std}::\mathsf{FILE} \ * \text{const file}, \ \, \text{const bool is_multiplexed=false}) \ \, \text{const policy}$

Save image as a raw data file [overloading].

 const Clmg< T > & save_yuv (const char *const filename, const unsigned int chroma_subsampling=444, const bool is_rgb=true) const

Save image as a .yuv video file.

 const Clmg< T > & save_yuv (std::FILE *const file, const unsigned int chroma_subsampling=444, const bool is_rgb=true) const

Save image as a .yuv video file [overloading].

template<typename tf , typename tc >
 const Clmg< T > & save_off (const ClmgList< tf > &primitives, const ClmgList< tc > &colors, const char
 *const filename) const

Save 3D object as an Object File Format (.off) file.

template<typename tf , typename tc >
 const Clmg< T > & save_off (const ClmgList< tf > &primitives, const ClmgList< tc > &colors, std::FILE
 *const file) const

Save 3D object as an Object File Format (.off) file [overloading].

 const Clmg< T > & save_video (const char *const filename, const unsigned int fps=25, const char *codec=0, const bool keep_open=false) const

Save volumetric image as a video (using the OpenCV library when available).

 const Clmg< T > & save_ffmpeg_external (const char *const filename, const unsigned int fps=25, const char *const codec=0, const unsigned int bitrate=2048) const

Save volumetric image as a video, using ffmpeg external binary.

const Clmg< T > & save_gzip_external (const char *const filename) const

Save image using gzip external binary.

 const Clmg< T > & save_graphicsmagick_external (const char *const filename, const unsigned int quality=100) const

Save image using GraphicsMagick's external binary.

const Clmg < T > & save_imagemagick_external (const char *const filename, const unsigned int quality=100)
 const

Save image using ImageMagick's external binary.

- const CImg< T > & save_medcon_external (const char *const filename) const
 - Save image as a Dicom file.
- const CImg< T > & save_other (const char *const filename, const unsigned int quality=100) const
- Clmg< ucharT > get_serialize (const bool is_compressed=false, const unsigned int header_size=0) const Serialize a Clmg<T> instance into a raw Clmg<unsigned char> buffer.

18.1.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{struct cimg\_library} :: \mbox{Clmg} < \mbox{T} > \\ \mbox{}
```

Class representing an image (up to 4 dimensions wide), each pixel being of type $\ensuremath{\mathbb{T}}.$

This is the main class of the Clmg Library. It declares and constructs an image, allows access to its pixel values, and is able to perform various image operations.

Image representation

A CImg image is defined as an instance of the container CImg < T>, which contains a regular grid of pixels, each pixel value being of type T. The image grid can have up to 4 dimensions: width, height, depth and number of channels. Usually, the three first dimensions are used to describe spatial coordinates (x, y, z), while the number of channels is rather used as a vector-valued dimension (it may describe the R,G,B color channels for instance). If you need a fifth dimension, you can use image lists CImgList < T> rather than simple images CImg < T>.

Thus, the CImg < T > class is able to represent volumetric images of vector-valued pixels, as well as images with less dimensions (1D scalar signal, 2D color images, ...). Most member functions of the class Clmg < T > are designed to handle this maximum case of (3+1) dimensions.

Concerning the pixel value type T: fully supported template types are the basic C++ types: unsigned char, char, short, unsigned int, int, unsigned long, long, float, double, Typically, fast image display can be done using CImg<unsigned char> images, while complex image processing algorithms may be rather coded using CImg<float> or CImg<double> images that have floating-point pixel values. The default value for the template T is float. Using your own template types may be possible. However, you will certainly have to define the complete set of arithmetic and logical operators for your class.

Image structure

The CImg<T> structure contains *six* fields:

- _width defines the number of columns of the image (size along the X-axis).
- _height defines the number of *rows* of the image (size along the Y-axis).
- _depth defines the number of *slices* of the image (size along the Z-axis).
- _spectrum defines the number of *channels* of the image (size along the C-axis).
- _data defines a pointer to the pixel data (of type T).
- _is_shared is a boolean that tells if the memory buffer data is shared with another image.

You can access these fields publicly although it is recommended to use the dedicated functions width(), height(), depth(), spectrum() and ptr() to do so. Image dimensions are not limited to a specific range (as long as you got enough available memory). A value of 1 usually means that the corresponding dimension is flat. If one of the dimensions is 0, or if the data pointer is null, the image is considered as *empty*. Empty images should not contain any pixel data and thus, will not be processed by Clmg member functions (a ClmgInstanceException will be thrown instead). Pixel data are stored in memory, in a non interlaced mode (See How pixel data are stored with Clmg.).

Image declaration and construction

Declaring an image can be done by using one of the several available constructors. Here is a list of the most used:

- Construct images from arbitrary dimensions:
 - CImg<char> img; declares an empty image.

- CImg<unsigned char> img(128,128); declares a 128x128 greyscale image with unsigned char pixel values.
- CImg<double> img(3,3); declares a 3x3 matrix with double coefficients.
- CImg<unsigned char> img(256, 256, 1, 3); declares a 256x256x1x3 (color) image (colors are stored as an image with three channels).
- CImg<double> img(128,128,128); declares a 128x128x128 volumetric and greyscale image (with double pixel values).
- CImg<> img (128, 128, 128, 3); declares a 128x128x128 volumetric color image (with float pixels, which is the default value of the template parameter T).
- Note: images pixels are not automatically initialized to 0. You may use the function fill() to do it, or use the specific constructor taking 5 parameters like this: CImg<> img(128, 128, 128, 128, 3, 0); declares a 128x128x128 volumetric color image with all pixel values to 0.
- · Construct images from filenames:
 - CImg<unsigned char> img("image.jpg"); reads a JPEG color image from the file "image.jpg".
 - CImg<float> img("analyze.hdr"); reads a volumetric image (ANALYZE7.5 format) from the file "analyze.hdr".
 - **Note:** You need to install ImageMagick to be able to read common compressed image formats (JPG,PNG, ...) (See Files IO in Clmg.).
- · Construct images from C-style arrays:
 - CImg<int> img(data_buffer, 256, 256); constructs a 256x256 greyscale image from a int* buffer data_buffer (of size 256x256=65536).
 - CImg<unsigned char> img(data_buffer, 256, 256, 1, 3); constructs a 256x256 color image from a unsigned char* buffer data_buffer (where R,G,B channels follow each others).

The complete list of constructors can be found here.

Most useful functions

The CImg<T> class contains a lot of functions that operates on images. Some of the most useful are:

- operator()(): Read or write pixel values.
- display(): displays the image in a new window.

18.1.2 Member Typedef Documentation

18.1.2.1 iterator

```
typedef T* iterator
```

Simple iterator type, to loop through each pixel value of an image instance.

Note

- The CImg<T>::iterator type is defined to be a T*.
- You will seldom have to use iterators in Clmg, most classical operations being achieved (often in a faster way) using methods of Clmg<T>.

Example

```
CImg<float> img("reference.jpg");
// Set all pixels to '0', with a CImg iterator.
for (CImg<float>::iterator it = img.begin(), it<img.end(); ++it) *it = 0;
img.fill(0);
built-in method</pre>
// Do the same with a
```

18.1.2.2 value_type

```
typedef T value_type
```

Pixel value type.

Refer to the type of the pixel values of an image instance.

Note

- The CImg<T>::value_type type of a CImg<T> is defined to be a T.
- CImg<T>::value_type is actually not used in Clmg methods. It has been mainly defined for compatibility with STL naming conventions.

18.1.3 Constructor & Destructor Documentation

18.1.3.1 ∼Clmg()

```
\simCImg ( )
```

Destroy image.

Note

- The pixel buffer data() is deallocated if necessary, e.g. for non-empty and non-shared image instances.
- · Destroying an empty or shared image does nothing actually.

Warning

When destroying a non-shared image, make sure that you will not operate on a remaining shared image
that shares its buffer with the destroyed instance, in order to avoid further invalid memory access (to a
deallocated buffer).

18.1.3.2 Clmg() [1/13]

```
CImg ()
```

Construct empty image.

Note

- An empty image has no pixel data and all of its dimensions width(), height(), depth(), spectrum() are set to 0, as well as its pixel buffer pointer data().
- An empty image may be re-assigned afterwards, e.g. with the family of assign(unsigned int,unsigned int,unsi
- · An empty image is never shared.

Example

18.1.3.3 Clmg() [2/13]

Construct image with specified size.

Parameters

size⊷	Image width().
_X	
size⊷	Image height().
_y	
size⊷	Image depth().
_Z	
size⊷	Image spectrum() (number of channels).

Note

- It is able to create only *non-shared* images, and allocates thus a pixel buffer data() for each constructed image instance.
- Setting one dimension size_x,size_y,size_z or size_c to 0 leads to the construction of an *empty* image.
- A CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. when requested size is too big for available memory).

Warning

• The allocated pixel buffer is *not* filled with a default value, and is likely to contain garbage values. In order to initialize pixel values during construction (e.g. with 0), use constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) instead.

Example

```
 \label{eq:construct}  \text{CImg<float> img1(256,256,1,3);} \qquad // \text{ Construct a } 256x256x1x3 \text{ (color) image, filled with garbage values } \\  \text{CImg<float> img2(256,256,1,3,0);} \qquad // \text{ Construct a } 256x256x1x3 \text{ (color) image, filled with value '0'} \\
```

18.1.3.4 Clmg() [3/13]

Construct image with specified size and initialize pixel values.

Parameters

size⊷	Image width().
_X	
size⊷	Image height().
_y	
size⊷	Image depth().
_Z	
size⊷	Image spectrum() (number of channels).
_c	
value	Initialization value.

Note

• Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with the specified value.

Warning

• It cannot be used to construct a vector-valued image and initialize it with *vector-valued* pixels (e.g. RGB vector, for color images). For this task, you may use fillC() after construction.

18.1.3.5 Clmg() [4/13]

```
CImg (

const unsigned int size_x,
const unsigned int size_y,
const unsigned int size_z,
const unsigned int size_c,
const unsigned int size_c,
const int value0,
const int value1,
...)
```

Construct image with specified size and initialize pixel values from a sequence of integers.

Construct a new image instance of size size_x x size_y x size_z x size_c, with pixels of type T, and initialize pixel values from the specified sequence of integers value0,value1,...

Parameters

size⊷	Image width().
_X	
size⊷	Image height().
_y	
size⊷	Image depth().
_Z	
size⊷	Image spectrum() (number of channels).
_c	
value0	First value of the initialization sequence (must be an <i>integer</i>).
value1	Second value of the initialization sequence (must be an integer).

Note

• Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with a sequence of specified integer values.

Warning

• You must specify *exactly* size_x*size_y*size_z*size_c integers in the initialization sequence. Otherwise, the constructor may crash or fill your image pixels with garbage.

Example

```
const CImg<float> img(2,2,1,3, ) // Construct a 2x2 color (RGB) image 0,255,0,255, // Set the 4 values for the red component 0,0,255,255, // Set the 4 values for the green component 64,64,64,64); // Set the 4 values for the blue component img.resize(150,150).display();
```

18.1.3.6 Clmg() [5/13]

```
CImg (

const unsigned int size_x,
const unsigned int size_y,
const unsigned int size_z,
const unsigned int size_c,
const double value0,
const double value1,
...)
```

Construct image with specified size and initialize pixel values from a sequence of doubles.

Construct a new image instance of size $size_x x size_y x size_z x size_c$, with pixels of type T, and initialize pixel values from the specified sequence of doubles value0, value1,...

Parameters

size←	Image width().
_X	
size⊷	Image height().
_y	
size⊷	Image depth().
_Z	
size⊷	Image spectrum() (number of channels).
_ <i>C</i>	
value0	First value of the initialization sequence (must be a double).
value1	Second value of the initialization sequence (must be a double).

Note

• Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...), but takes a sequence of double values instead of integers.

Warning

• You must specify exactly dx*dy*dz*dc doubles in the initialization sequence. Otherwise, the constructor may crash or fill your image with garbage. For instance, the code below will probably crash on most platforms:

```
const CImg<float> img(2,2,1,1, 0.5,0.5,255,255); // FAIL: The two last arguments are 'int', not 'double'!
```

18.1.3.7 Clmg() [6/13]

```
CImg (

const unsigned int size_x,

const unsigned int size_y,

const unsigned int size_z,

const unsigned int size_c,
```

```
const char *const values,
const bool repeat_values )
```

Construct image with specified size and initialize pixel values from a value string.

Construct a new image instance of size $size_x x size_y x size_z x size_c$, with pixels of type T, and initializes pixel values from the specified string values.

Parameters

size_x	Image width().
size_y	Image height().
size_z	Image depth().
size_c	Image spectrum() (number of channels).
values	Value string describing the way pixel values are set.
repeat_values	Tells if the value filling process is repeated over the image.

Note

- Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with values described in the value string values.
- Value string values may describe two different filling processes:
 - Either values is a sequences of values assigned to the image pixels, as in "1,2,3,7,8,2". In this case, set repeat_values to true to periodically fill the image with the value sequence.
 - Either, values is a formula, as in "cos(x/10)*sin(y/20)". In this case, parameter repeat_values is pointless.
- For both cases, specifying repeat_values is mandatory. It disambiguates the possible overloading of constructor Clmg(unsigned int,unsigned int,unsigned int,unsigned int,T) with T being a const char*.
- A CImgArgumentException is thrown when an invalid value string values is specified.

Example

18.1.3.8 Clmg() [7/13]

Construct image with specified size and initialize pixel values from a memory buffer.

Construct a new image instance of size $size_x x size_y x size_z x size_c$, with pixels of type T, and initializes pixel values from the specified t* memory buffer.

Parameters

values	Pointer to the input memory buffer.	
size_x	Image width().	
size_y	Image height().	
-size_z	Image depth().	
size_c	Image spectrum() (number of channels).	Ge
is_shared	Tells if input memory buffer must be shared by the current instance.	

Generated by Doxygen

Note

- If is_shared is false, the image instance allocates its own pixel buffer, and values from the specified input buffer are copied to the instance buffer. If buffer types T and t are different, a regular static cast is performed during buffer copy.
- Otherwise, the image instance does not allocate a new buffer, and uses the input memory buffer as its
 own pixel buffer. This case requires that types T and t are the same. Later, destroying such a shared
 image will not deallocate the pixel buffer, this task being obviously charged to the initial buffer allocator.
- A CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. when requested size is too big for available memory).

Warning

 You must take care when operating on a shared image, since it may have an invalid pixel buffer pointer data() (e.g. already deallocated).

Example

18.1.3.9 Clmg() [8/13]

Construct image from reading an image file.

Construct a new image instance with pixels of type \mathbb{T} , and initialize pixel values with the data read from an image file.

Parameters

```
filename Filename, as a C-string.
```

Note

- Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it reads the image dimensions and pixel values from the specified image file.
- The recognition of the image file format by Clmg highly depends on the tools installed on your system and on the external libraries you used to link your code against.
- Considered pixel type T should better fit the file format specification, or data loss may occur during file load (e.g. constructing a CImg<unsigned char> from a float-valued image file).
- A CImgIOException is thrown when the specified filename cannot be read, or if the file format is not recognized.

Example

```
const CImg<float> img("reference.jpg");
img.display();
```

18.1.3.10 Clmg() [9/13]

```
CImg ( \label{eq:const_CImg} \mbox{const_CImg< t > & $img$ } \mbox{)}
```

Construct image copy.

Construct a new image instance with pixels of type T, as a copy of an existing CImq<t> instance.

Parameters

img	Input image to copy.
-----	----------------------

Note

- Constructed copy has the same size width() x height() x depth() x spectrum() and pixel values as the input image imq.
- If input image img is shared and if types T and t are the same, the constructed copy is also shared, and shares its pixel buffer with img. Modifying a pixel value in the constructed copy will thus also modifies it in the input image img. This behavior is needful to allow functions to return shared images.
- Otherwise, the constructed copy allocates its own pixel buffer, and copies pixel values from the input image img into its buffer. The copied pixel values may be eventually statically casted if types T and t are different.
- Constructing a copy from an image img when types t and T are the same is significantly faster than with different types.
- A CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. not enough available memory).

18.1.3.11 Clmg() [10/13]

```
CImg ( \label{eq:const_cimg} \mbox{const Cimg< t > & $img$,} \\ \mbox{const bool $is\_shared} \ )
```

Advanced copy constructor.

Construct a new image instance with pixels of type \mathtt{T} , as a copy of an existing $\mathtt{CImg} < \mathtt{t} > \mathtt{instance}$, while forcing the shared state of the constructed copy.

Parameters

img	Input image to copy.
is_shared	Tells about the shared state of the constructed copy.

Note

- Similar to Clmg(const Clmg<t>&), except that it allows to decide the shared state of the constructed image, which does not depend anymore on the shared state of the input image img:
 - If is_shared is true, the constructed copy will share its pixel buffer with the input image img.
 For that case, the pixel types T and t must be the same.
 - If is_shared is false, the constructed copy will allocate its own pixel buffer, whether the input image img is shared or not.
- A CImgArgumentException is thrown when a shared copy is requested with different pixel types
 T and t.

18.1.3.12 Clmg() [11/13]

```
CImg ( \label{eq:const_cimg} \mbox{const CImg< t > \& img,} \\ \mbox{const char *const $dimensions} \mbox{)}
```

Construct image with dimensions borrowed from another image.

Construct a new image instance with pixels of type T, and size get from some dimensions of an existing CImg < t > instance.

Parameters

img	Input image from which dimensions are borrowed.
dimensions	C-string describing the image size along the X,Y,Z and C-dimensions.

Note

- Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it takes the image dimensions (not its pixel values) from an existing CImg<t> instance.
- The allocated pixel buffer is *not* filled with a default value, and is likely to contain garbage values. In order to initialize pixel values (e.g. with 0), use constructor Clmg(const Clmg<t>&,const char*,T) instead.

Example

18.1.3.13 Clmg() [12/13]

Construct image with dimensions borrowed from another image and initialize pixel values.

Construct a new image instance with pixels of type T, and size get from the dimensions of an existing CImg < t > instance, and set all pixel values to specified value.

Parameters

img	Input image from which dimensions are borrowed.
dimensions	String describing the image size along the X,Y,Z and V-dimensions.
value	Value used for initialization.

Note

• Similar to Clmg(const Clmg<t>&,const char*), but it also fills the pixel buffer with the specified value.

18.1.3.14 Clmg() [13/13]

Construct image from a display window.

Construct a new image instance with pixels of type T, as a snapshot of an existing CImgDisplay instance.

Parameters

disp	Input display window.
------	-----------------------

Note

- The width() and height() of the constructed image instance are the same as the specified CImgDisplay.
- The depth() and spectrum() of the constructed image instance are respectively set to 1 and 3 (i.e. a 2D color image).
- The image pixels are read as 8-bits RGB values.

18.1.4 Member Function Documentation

18.1.4.1 assign() [1/13]

```
CImg<T>& assign ()
```

Construct empty image [in-place version].

In-place version of the default constructor Clmg(). It simply resets the instance to an empty image.

18.1.4.2 assign() [2/13]

Construct image with specified size [in-place version].

In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int).

18.1.4.3 assign() [3/13]

Construct image with specified size and initialize pixel values [in-place version].

In-place version of the constructor Clmg(unsigned int,unsigned int,unsigned int,unsigned int,T).

18.1.4.4 assign() [4/13]

Construct image with specified size and initialize pixel values from a sequence of integers [in-place version].

In-place version of the constructor CImg(unsigned int,unsigned int,uns

18.1.4.5 assign() [5/13]

Construct image with specified size and initialize pixel values from a sequence of doubles [in-place version].

In-place version of the constructor Clmg(unsigned int,unsigned int,unsigned int,unsigned int,double,double,...).

18.1.4.6 assign() [6/13]

Construct image with specified size and initialize pixel values from a value string [in-place version].

In-place version of the constructor CImg(unsigned int,unsigned int,uns

18.1.4.7 assign() [7/13]

Construct image with specified size and initialize pixel values from a memory buffer [in-place version].

In-place version of the constructor Clmg(const t*,unsigned int,unsigned int,unsigned int,unsigned int).

18.1.4.8 assign() [8/13]

Construct image from reading an image file [in-place version].

In-place version of the constructor Clmg(const char*).

18.1.4.9 assign() [9/13]

Construct image copy [in-place version].

In-place version of the constructor Clmg(const Clmg<t>&).

18.1.4.10 assign() [10/13]

In-place version of the advanced copy constructor.

In-place version of the constructor Clmg(const Clmg<t>&,bool).

18.1.4.11 assign() [11/13]

```
CImg<T>& assign (  \mbox{const CImg} < \mbox{t} > \mbox{\& img,}   \mbox{const char *const $dimensions$ )}
```

Construct image with dimensions borrowed from another image [in-place version].

In-place version of the constructor Clmg(const Clmg<t>&,const char*).

18.1.4.12 assign() [12/13]

Construct image with dimensions borrowed from another image and initialize pixel values [in-place version].

In-place version of the constructor CImg(const CImg<t>&,const char*,T).

18.1.4.13 assign() [13/13]

Construct image from a display window [in-place version].

In-place version of the constructor Clmg(const ClmgDisplay&).

18.1.4.14 clear()

```
CImg<T>& clear ( )
```

Construct empty image [in-place version].

Equivalent to assign().

Note

• It has been defined for compatibility with STL naming conventions.

18.1.4.15 move_to() [1/2]

Transfer content of an image instance into another one.

Transfer the dimensions and the pixel buffer content of an image instance into another one, and replace instance by an empty image. It avoids the copy of the pixel buffer when possible.

Parameters

img	Destination image.
img	Destination image.

Note

• Pixel types T and t of source and destination images can be different, though the process is designed to be instantaneous when T and t are the same.

Example

```
CImg<float> src(256,256,1,3,0), // Construct a 256x256x1x3 (color) image filled with value '0' dest(16,16); // Construct a 16x16x1x1 (scalar) image src.move_to(dest); // Now, 'src' is empty and 'dest' is the 256x256x1x3 image
```

18.1.4.16 move to() [2/2]

Transfer content of an image instance into a new image in an image list.

Transfer the dimensions and the pixel buffer content of an image instance into a newly inserted image at position pos in specified CImgList < t > instance.

Parameters

list	Destination list.
pos	Position of the newly inserted image in the list.

Note

- When optional parameter pos is omitted, the image instance is transferred as a new image at the end of the specified list.
- It is convenient to sequentially insert new images into image lists, with no additional copies of memory buffer.

Example

18.1.4.17 swap()

Swap fields of two image instances.

Parameters

```
img | Image to swap fields with.
```

Note

• It can be used to interchange the content of two images in a very fast way. Can be convenient when dealing with algorithms requiring two swapping buffers.

Example

18.1.4.18 empty()

```
static CImg<T>& empty ( ) [static]
```

Return a reference to an empty image.

Note

This function is useful mainly to declare optional parameters having type CImg < T > in functions prototypes, e.g.

```
void f(const int x=0, const int y=0, const CImg<float>& img=CImg<float>::empty());
```

18.1.4.19 operator()() [1/2]

```
T& operator() (  {\rm const\ unsigned\ int\ } x,   {\rm const\ unsigned\ int\ } y=0,   {\rm const\ unsigned\ int\ } z=0,   {\rm const\ unsigned\ int\ } c=0\ )
```

Access to a pixel value.

Return a reference to a located pixel value of the image instance, being possibly *const*, whether the image instance is *const* or not. This is the standard method to get/set pixel values in CImg<T> images.

Parameters

	X	X-coordinate of the pixel value.
	У	Y-coordinate of the pixel value.
	Z	Z-coordinate of the pixel value.
Ī	С	C-coordinate of the pixel value.

Note

- Range of pixel coordinates start from (0,0,0,0) to (width() 1, height() 1, depth() 1, spectrum() 1).
- Due to the particular arrangement of the pixel buffers defined in Clmg, you can omit one coordinate if the corresponding dimension is equal to 1. For instance, pixels of a 2D image (depth() equal to 1) can be accessed by img (x,y,c) instead of img (x,y,0,c).

Warning

There is no boundary checking done in this operator, to make it as fast as possible. You must take care of
out-of-bounds access by yourself, if necessary. For debugging purposes, you may want to define macro
'cimg_verbosity'>=3 to enable additional boundary checking operations in this operator. In that
case, warning messages will be printed on the error output when accessing out-of-bounds pixels.

Example

```
CImg<float> img(100,100,1,3,0); // Construct a 100x100x1x3 (color) image with pixels set to '0'
const float
  valR = img(10,10,0,0), // Read red value at coordinates (10,10)
  valG = img(10,10,0,1), // Read green value at coordinates (10,10)
  valB = img(10,10,2), // Read blue value at coordinates (10,10) (Z-coordinate can be omitted)
  avg = (valR + valG + valB)/3; // Compute average pixel value
img(10,10,0) = img(10,10,1) = img(10,10,2) = avg; // Replace the color pixel (10,10) by the average
grey value
```

18.1.4.20 operator()() [2/2]

Access to a pixel value.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
wh	Precomputed offset, must be equal to width()*height().
whd	Precomputed offset, must be equal to width () *height () *depth ().

Note

• Similar to (but faster than) operator()(). It uses precomputed offsets to optimize memory access. You may use it to optimize the reading/writing of several pixel values in the same image (e.g. in a loop).

18.1.4.21 operator T*()

```
operator T* ( )
```

Implicitly cast an image into a T*.

Implicitly cast a CImg<T> instance into a T* or const T* pointer, whether the image instance is *const* or not. The returned pointer points on the first value of the image pixel buffer.

Note

- It simply returns the pointer data() to the pixel buffer.
- It also allows to use brackets to access pixel values, without need for a CImg<T>::operator[](), e.g.

```
CImg<float> img(100,100);
const float value = img[99]; // Access to value of the last pixel on the first row
img[510] = 255; // Set pixel value at (10,5)
```

18.1.4.22 operator=() [1/4]

Assign a value to all image pixels.

Assign specified value to each pixel value of the image instance.

Parameters

value | Value that will be assigned to image pixels.

Note

- · The image size is never modified.
- The value may be casted to pixel type T if necessary.

Example

```
CImg<char> img(100,100); // Declare image (with garbage values)
img = 0; // Set all pixel values to '0'
img = 1.2; // Set all pixel values to '1' (cast of '1.2' as a 'char')
```

18.1.4.23 operator=() [2/4]

Assign pixels values from a specified expression.

Initialize all pixel values from the specified string expression.

Parameters

expression	Value string describing the way pixel values are set.
------------	---

Note

- String parameter expression may describe different things:
 - If expression is a list of values (as in "1, 2, 3, 8, 3, 2"), or a formula (as in " (x*y) %255"), the pixel values are set from specified expression and the image size is not modified.
 - If expression is a filename (as in "reference.jpg"), the corresponding image file is loaded and replace the image instance. The image size is modified if necessary.

Example

```
CImg<float> img1(100,100), img2(img1), img3(img1); // Declare 3 scalar images 100x100 with uninitialized values img1 = "0,50,100,150,200,250,200,150,100,50"; // Set pixel values of 'img1' from a value sequence img2 = "10*((x*y)%25)"; // Set pixel values of 'img2' from a formula img3 = "reference.jpg"; // Set pixel values of 'img3' from a file (image size is modified) (img1,img2,img3).display();
```

18.1.4.24 operator=() [3/4]

Copy an image into the current image instance.

Similar to the in-place copy constructor assign(const Clmg<t>&).

18.1.4.25 operator=() [4/4]

Copy the content of a display window to the current image instance.

Similar to assign(const CImgDisplay&).

18.1.4.26 operator+=() [1/3]

In-place addition operator.

Add specified value to all pixels of an image instance.

Parameters

```
value Value to add.
```

Note

- Resulting pixel values are casted to fit the pixel type T. For instance, adding 0.2 to a CImg<char> is possible but does nothing indeed.
- Overflow values are treated as with standard C++ numeric types. For instance,

 CImg<unsigned char> img(100,100,1,1,255); // Construct a 100x100 image with pixel values '255'

 img+=1; // Add '1' to each pixels -> Overflow

 // here all pixels of image 'img' are equal to '0'.
- To prevent value overflow, you may want to consider pixel type T as float or double, and use cut()
 after addition.

Example

```
CImg<unsigned char> img1("reference.jpg"); // Load a 8-bits RGB image (values in [0,255])
CImg<float> img2(img1); // Construct a float-valued copy of 'img1'
img2+=100; // Add '100' to pixel values -> goes out of [0,255] but no problems with floats
img2.cut(0,255); // Cut values in [0,255] to fit the 'unsigned char' constraint
img1 = img2; // Rewrite safe result in 'unsigned char' version 'img1'
const CImg<unsigned char> img3 = (img1 + 100).cut(0,255); // Do the same in a more simple and elegant
way
(img1,img2,img3).display();
```

18.1.4.27 operator+=() [2/3]

In-place addition operator.

Add values to image pixels, according to the specified string expression.

Parameters

expression Value string describing the way pixel values are added.

Note

• Similar to operator=(const char*), except that it adds values to the pixels of the current image instance, instead of assigning them.

18.1.4.28 operator+=() [3/3]

```
\label{eq:const} \begin{split} \text{CImg} &< \text{T} > \& \text{ operator} += \text{ (} \\ & \text{const CImg} < \text{ t } > \text{ \& img )} \end{split}
```

In-place addition operator.

Add values to image pixels, according to the values of the input image imq.

Parameters

img | Input image to add.

Note

- The size of the image instance is never modified.
- It is not mandatory that input image img has the same size as the image instance. If less values are available in img, then the values are added periodically. For instance, adding one WxH scalar image (spectrum() equal to 1) to one WxH color image (spectrum() equal to 3) means each color channel will be incremented with the same values at the same locations.

Example

```
CImg<float> img1("reference.jpg"); // Load a RGB color image (img1.spectrum()==3)
// Construct a scalar shading (img2.spectrum()==1).
const CImg<float> img2(img1.width(),img.height(),1,1,"255*(x/w)^2");
img1+=img2; // Add shading to each channel of 'img1'
img1.cut(0,255); // Prevent [0,255] overflow
(img2,img1).display();
```

18.1.4.29 operator++() [1/2]

```
CImg<T>& operator++ ( )
```

In-place increment operator (prefix).

Add 1 to all image pixels, and return a reference to the current incremented image instance.

Note

• Writing ++img is equivalent to img+=1.

18.1.4.30 operator++() [2/2]

```
CImg<T> operator++ (
    int )
```

In-place increment operator (postfix).

Add 1 to all image pixels, and return a new copy of the initial (pre-incremented) image instance.

Note

• Use the prefixed version operator++() if you don't need a copy of the initial (pre-incremented) image instance, since a useless image copy may be expensive in terms of memory usage.

18.1.4.31 operator+() [1/4]

```
CImg<T> operator+ ( ) const
```

Return a non-shared copy of the image instance.

Note

- Use this operator to ensure you get a non-shared copy of an image instance with same pixel type T. Indeed, the usual copy constructor Clmg<T>(const Clmg<T>&) returns a shared copy of a shared input image, and it may be not desirable to work on a regular copy (e.g. for a resize operation) if you have no information about the shared state of the input image.
- Writing (+img) is equivalent to CImg<T> (img, false).

18.1.4.32 operator+() [2/4]

Addition operator.

Similar to operator+=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

18.1.4.33 operator+() [3/4]

Addition operator.

Similar to operator+=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

18.1.4.34 operator+() [4/4]

```
CImg< typename cimg::superset<T,t>::type > operator+ ( const CImg< t > & img ) const
```

Addition operator.

Similar to operator+=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

18.1.4.35 operator-=() [1/3]

In-place subtraction operator.

Similar to operator+=(const t), except that it performs a subtraction instead of an addition.

18.1.4.36 operator-=() [2/3]

In-place subtraction operator.

Similar to operator+=(const char*), except that it performs a subtraction instead of an addition.

18.1.4.37 operator-=() [3/3]

In-place subtraction operator.

Similar to operator+=(const Clmg<t>&), except that it performs a subtraction instead of an addition.

18.1.4.38 operator--() [1/2]

```
CImg<T>& operator-- ( )
```

In-place decrement operator (prefix).

Similar to operator++(), except that it performs a decrement instead of an increment.

18.1.4.39 operator--() [2/2]

```
CImg<T> operator-- (
          int )
```

In-place decrement operator (postfix).

Similar to operator++(int), except that it performs a decrement instead of an increment.

18.1.4.40 operator-() [1/4]

```
CImg<T> operator- ( ) const
```

Replace each pixel by its opposite value.

Note

• If the computed opposite values are out-of-range, they are treated as with standard C++ numeric types. For instance, the unsigned char opposite of 1 is 255.

Example

18.1.4.41 operator-() [2/4]

Subtraction operator.

Similar to operator-=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

18.1.4.42 operator-() [3/4]

Subtraction operator.

Similar to operator-=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

18.1.4.43 operator-() [4/4]

```
 \begin{tabular}{ll} {\tt CImg< typename cimg::superset<T,t>::type> operator- (} \\ & {\tt const CImg< t>\& img}) & {\tt const} \end{tabular}
```

Subtraction operator.

Similar to operator-=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

18.1.4.44 operator*=() [1/3]

In-place multiplication operator.

Similar to operator+=(const t), except that it performs a multiplication instead of an addition.

18.1.4.45 operator*=() [2/3]

In-place multiplication operator.

Similar to operator+=(const char*), except that it performs a multiplication instead of an addition.

18.1.4.46 operator*=() [3/3]

In-place multiplication operator.

Replace the image instance by the matrix multiplication between the image instance and the specified matrix imq.

Parameters

```
img | Second operand of the matrix multiplication.
```

Note

- It does *not* compute a pointwise multiplication between two images. For this purpose, use mul(const Clmg<t>&) instead.
- The size of the image instance can be modified by this operator.

Example

```
CImg<float> A(2,2,1,1, 1,2,3,4); // Construct 2x2 matrix A = [1,2;3,4] const CImg<float> X(1,2,1,1, 1,2); // Construct 1x2 vector X = [1;2] A*=X; // Assign matrix multiplication A*X to 'A' // 'A' is now a 1x2 vector whose values are [5;11].
```

18.1.4.47 operator*() [1/3]

Multiplication operator.

Similar to operator*=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

18.1.4.48 operator*() [2/3]

Multiplication operator.

Similar to operator*=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

18.1.4.49 operator*() [3/3]

```
\label{eq:cimg}  \mbox{CImg< typename cimg::superset<T,t>::type > operator* (} \\ \mbox{const CImg< t > & $img$ ) const }
```

Multiplication operator.

Similar to operator*=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

18.1.4.50 operator/=() [1/3]

In-place division operator.

Similar to operator+=(const t), except that it performs a division instead of an addition.

18.1.4.51 operator/=() [2/3]

In-place division operator.

Similar to operator+=(const char*), except that it performs a division instead of an addition.

18.1.4.52 operator/=() [3/3]

```
\label{eq:cimg} $$ \cite{CImg<T>\& operator/= (} $$ \const CImg< t > \& img ) $$
```

In-place division operator.

Replace the image instance by the (right) matrix division between the image instance and the specified matrix imq.

Parameters

img | Second operand of the matrix division.

Note

It does not compute a pointwise division between two images. For this purpose, use div(const Clmg<t>&) instead

- It returns the matrix operation A*inverse(img).
- The size of the image instance can be modified by this operator.

18.1.4.53 operator/() [1/3]

Division operator.

Similar to operator/=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

18.1.4.54 operator/() [2/3]

Division operator.

Similar to operator/=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

18.1.4.55 operator/() [3/3]

```
CImg< typename cimg::superset<T,t>::type > operator/ ( const CImg< t > & img ) const
```

Division operator.

Similar to operator/=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

18.1.4.56 operator%=() [1/3]

In-place modulo operator.

Similar to operator+=(const t), except that it performs a modulo operation instead of an addition.

18.1.4.57 operator%=() [2/3]

In-place modulo operator.

Similar to operator+=(const char*), except that it performs a modulo operation instead of an addition.

18.1.4.58 operator%=() [3/3]

```
\label{eq:const} $$ \mbox{CImg<t>\& img } $$ \mbox{const CImg< t} $$ \& img $$ $$ $$ $$
```

In-place modulo operator.

Similar to operator+=(const Clmg<t>&), except that it performs a modulo operation instead of an addition.

18.1.4.59 operator%() [1/3]

```
CImg< typename cimg::superset<T,t>::type > operator% ( const t value ) const
```

Modulo operator.

Similar to operator%=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

18.1.4.60 operator%() [2/3]

Modulo operator.

Similar to operator%=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

18.1.4.61 operator%() [3/3]

Modulo operator.

Similar to operator%=(const CImg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

18.1.4.62 operator&=() [1/3]

```
CImg<T>& operator&= ( const t value)
```

In-place bitwise AND operator.

Similar to operator+=(const t), except that it performs a bitwise AND operation instead of an addition.

18.1.4.63 operator&=() [2/3]

```
\label{eq:const_const_expression} $$\operatorname{CImg}_{T>\&} \operatorname{operator}_{=} ($$ \operatorname{const} \operatorname{char} *\operatorname{const} \operatorname{expression} )$
```

In-place bitwise AND operator.

Similar to operator+=(const char*), except that it performs a bitwise AND operation instead of an addition.

18.1.4.64 operator&=() [3/3]

```
\label{eq:const} \begin{split} \mbox{CImg}<\mbox{T}>\& \mbox{ operator}\&=\mbox{ (}\\ \mbox{const CImg}<\mbox{ t }>\&\mbox{ img )} \end{split}
```

In-place bitwise AND operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise AND operation instead of an addition.

18.1.4.65 operator&() [1/3]

```
CImg<T> operator& (  {\tt const\ t\ \it value\ )\ const}
```

Bitwise AND operator.

Similar to operator $\&=(const\ t)$, except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is $\verb|T|$.

18.1.4.66 operator&() [2/3]

```
\label{eq:const_const_expression} \mbox{CImg$<$T$> operator& (} \\ \mbox{const char *const expression} \mbox{ ) const}
```

Bitwise AND operator.

Similar to operator&=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.67 operator&() [3/3]

Bitwise AND operator.

Similar to operator&=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.68 operator" | =() [1/3]

In-place bitwise OR operator.

Similar to operator+=(const t), except that it performs a bitwise OR operation instead of an addition.

18.1.4.69 operator" | =() [2/3]

```
\label{eq:cimg} \begin{array}{ll} \texttt{CImg} < \texttt{T} > \& \ \text{operator} | = \ ( \\ & \text{const char *const } \ \textit{expression} \ ) \end{array}
```

In-place bitwise OR operator.

Similar to operator+=(const char*), except that it performs a bitwise OR operation instead of an addition.

18.1.4.70 operator" | =() [3/3]

In-place bitwise OR operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise OR operation instead of an addition.

18.1.4.71 operator" | () [1/3]

Bitwise OR operator.

Similar to operator = (const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.72 operator" | () [2/3]

```
\label{eq:cimg} \begin{array}{c} \text{CImg} < \text{T} > \text{ operator} | \text{ (} \\ \\ \text{const char *const } \text{expression ) const} \end{array}
```

Bitwise OR operator.

Similar to operator = (const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.73 operator" | () [3/3]

Bitwise OR operator.

Similar to operator = (const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.74 operator[^]=() [1/3]

```
CImg<T>& operator^{\wedge}= (
const t value )
```

In-place bitwise XOR operator.

Similar to operator+=(const t), except that it performs a bitwise XOR operation instead of an addition.

Warning

• It does not compute the power of pixel values. For this purpose, use pow(const t) instead.

18.1.4.75 operator[^]=() [2/3]

```
CImg<T>& operator^= (

const char *const expression )
```

In-place bitwise XOR operator.

Similar to operator+=(const char*), except that it performs a bitwise XOR operation instead of an addition.

Warning

• It does not compute the power of pixel values. For this purpose, use pow(const char*) instead.

18.1.4.76 operator^=() [3/3]

In-place bitwise XOR operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise XOR operation instead of an addition.

Warning

• It does not compute the power of pixel values. For this purpose, use pow(const Clmg<t>&) instead.

18.1.4.77 operator[^]() [1/3]

```
CImg<T> operator^{\wedge} ( const t value ) const
```

Bitwise XOR operator.

Similar to operator $^{\wedge}$ =(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.78 operator[^]() [2/3]

```
\label{eq:cimg} \begin{array}{c} \text{CImg} < \text{T} > \text{ operator}^{\wedge} \text{ (} \\ & \text{const char *const } expression \text{ ) const} \end{array}
```

Bitwise XOR operator.

Similar to operator $^{\wedge}$ =(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.79 operator[^]() [3/3]

Bitwise XOR operator.

Similar to operator $^-$ =(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.80 operator<<=() [1/3]

In-place bitwise left shift operator.

Similar to operator+=(const t), except that it performs a bitwise left shift instead of an addition.

18.1.4.81 operator <<=() [2/3]

In-place bitwise left shift operator.

Similar to operator+=(const char*), except that it performs a bitwise left shift instead of an addition.

18.1.4.82 operator <<=() [3/3]

In-place bitwise left shift operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise left shift instead of an addition.

18.1.4.83 operator << () [1/3]

```
CImg<T> operator<< ( const t value ) const
```

Bitwise left shift operator.

Similar to operator <<= (const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.84 operator << () [2/3]

Bitwise left shift operator.

Similar to operator<<=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.85 operator << () [3/3]

Bitwise left shift operator.

Similar to operator <<= (const Clmg<t>&), except that it returns a new image instance instead of operating inplace. The pixel type of the returned image is T.

18.1.4.86 operator>>=() [1/3]

In-place bitwise right shift operator.

Similar to operator+=(const t), except that it performs a bitwise right shift instead of an addition.

18.1.4.87 operator>>=() [2/3]

In-place bitwise right shift operator.

Similar to operator+=(const char*), except that it performs a bitwise right shift instead of an addition.

18.1.4.88 operator>>=() [3/3]

```
\label{eq:const} \begin{split} \text{CImg} &< \texttt{T} > \& \text{ operator} >> = \text{ (} \\ & \text{const CImg} < \text{ t } > \text{ \& img )} \end{split}
```

In-place bitwise right shift operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise right shift instead of an addition.

18.1.4.89 operator>>() [1/3]

```
CImg<T> operator>> ( const t value) const
```

Bitwise right shift operator.

Similar to operator>>=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.90 operator>>() [2/3]

```
\label{eq:cimg} \mbox{CImg$<$T$> operator}{>>} \mbox{ (} \\ \mbox{const char *const expression ) const}
```

Bitwise right shift operator.

Similar to operator>>=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

18.1.4.91 operator>>() [3/3]

```
\label{eq:cimg} \begin{array}{ll} \text{CImg$<$T$> operator}{>} & ( & \\ & \text{const CImg$<$t$} > & img ) & \text{const} \end{array}
```

Bitwise right shift operator.

Similar to operator>>=(const Clmg<t>&), except that it returns a new image instance instead of operating inplace. The pixel type of the returned image is T.

18.1.4.92 operator~()

```
CImg<T> operator\sim ( ) const
```

Bitwise inversion operator.

Similar to operator-(), except that it compute the bitwise inverse instead of the opposite value.

18.1.4.93 operator==() [1/3]

```
bool operator== ( {\tt const\ t\ \it value\ )\ const}
```

Test if all pixels of an image have the same value.

Return true is all pixels of the image instance are equal to the specified value.

Parameters

	value	Reference value to compare with.

18.1.4.94 operator==() [2/3]

```
bool operator== (  {\tt const\ char\ *const\ } expression\ )\ {\tt const}
```

Test if all pixel values of an image follow a specified expression.

Return true is all pixels of the image instance are equal to the specified expression.

Parameters

expression	Value string describing the way pixel values are compared.	
CADICOSIOII		

18.1.4.95 operator==() [3/3]

Test if two images have the same size and values.

Return true if the image instance and the input image img have the same pixel values, even if the dimensions of the two images do not match. It returns false otherwise.

Parameters

img Input image to compare with.

Note

• The pixel buffer pointers data() of the two compared images do not have to be the same for operator==() to return true. Only the dimensions and the pixel values matter. Thus, the comparison can be true even for different pixel types T and t.

Example

```
const CImg<float> img1(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'float' pixel values) const CImg<char> img2(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'char' pixel values) if (img1==img2) { // Test succeeds, image dimensions and values are the same std::printf("'img1' and 'img2' have same dimensions and values."); }
```

18.1.4.96 operator"!=() [1/3]

Test if pixels of an image are all different from a value.

Return true is all pixels of the image instance are different than the specified value.

Parameters

value Reference value to compare with.

18.1.4.97 operator"!=() [2/3]

Test if all pixel values of an image are different from a specified expression.

Return true is all pixels of the image instance are different to the specified expression.

Parameters

expression	Value string describing the way pixel values are compared.
------------	--

18.1.4.98 operator"!=() [3/3]

Test if two images have different sizes or values.

Return true if the image instance and the input image img have different dimensions or pixel values, and false otherwise.

Parameters

```
img Input image to compare with.
```

Note

• Writing img1!=img2 is equivalent to ! (img1==img2).

18.1.4.99 operator,() [1/2]

Construct an image list from two images.

Return a new list of image (CImgList instance) containing exactly two elements:

- A copy of the image instance, at position [0].
- A copy of the specified image img, at position [1].

Parameters

img | Input image that will be the second image of the resulting list.

Note

- The family of operator,() is convenient to easily create list of images, but it is also *quite slow* in practice (see warning below).
- Constructed lists contain no shared images. If image instance or input image img are shared, they are inserted as new non-shared copies in the resulting list.

• The pixel type of the returned list may be a superset of the initial pixel type T, if necessary.

Warning

• Pipelining operator,() N times will perform N copies of the entire content of a (growing) image list. This may become very expensive in terms of speed and used memory. You should avoid using this technique to build a new ClmgList instance from several images, if you are seeking for performance. Fast insertions of images in an image list are possible with ClmgList<T>::insert(const Clmg<t>&,unsigned int,bool) or move to(ClmgList<t>&,unsigned int).

Example

```
const CImg<float>
  img1("reference.jpg"),
  img2 = img1.get_mirror('x'),
  img3 = img2.get_blur(5);
const CImgList<float> list = (img1,img2); // Create list of two elements from 'img1' and 'img2'
(list,img3).display(); // Display image list containing copies of 'img1','img2' and 'img3'
```

18.1.4.100 operator,() [2/2]

```
CImgList< typename cimg::superset<T,t>::type > operator, ( const CImgList< t > & list) const
```

Construct an image list from image instance and an input image list.

Return a new list of images (CImgList instance) containing exactly list.size() + 1 elements:

- A copy of the image instance, at position [0].
- A copy of the specified image list list, from positions [1] to [list.size()].

Parameters

```
list Input image list that will be appended to the image instance.
```

Note

• Similar to operator,(const Clmg<t>&) const, except that it takes an image list as an argument.

18.1.4.101 operator<()

Split image along specified axis.

Return a new list of images (CImgList instance) containing the split components of the instance image along the specified axis.

Parameters

```
axis | Splitting axis (can be 'x ','y ','z ' or 'c ')
```

Note

• Similar to get_split(char,int) const, with default second argument.

Example

```
const CImg<unsigned char> img("reference.jpg"); // Load a RGB color image
const CImgList<unsigned char> list = (img<'c'); // Get a list of its three R,G,B channels
(img,list).display();</pre>
```

18.1.4.102 pixel_type()

```
static const char* pixel_type ( ) [static]
```

Return the type of image pixel values as a C string.

Return a char* string containing the usual type name of the image pixel values (i.e. a stringified version of the template parameter T).

Note

- · The returned string does not contain any spaces.
- If the pixel type ${\tt T}$ does not correspond to a registered type, the string "unknown" is returned.

18.1.4.103 width()

```
int width ( ) const
```

Return the number of image columns.

Return the image width, i.e. the image dimension along the X-axis.

Note

- The width() of an empty image is equal to 0.
- width() is typically equal to 1 when considering images as vectors for matrix calculations.
- width() returns an int, although the image width is internally stored as an unsigned int. Using
 an int is safer and prevents arithmetic traps possibly encountered when doing calculations involving
 unsigned int variables. Access to the initial unsigned int variable is possible (though not recommended) by (*this)._width.

18.1.4.104 height()

```
int height ( ) const
```

Return the number of image rows.

Return the image height, i.e. the image dimension along the Y-axis.

Note

- The height() of an empty image is equal to 0.
- height() returns an int, although the image height is internally stored as an unsigned int. Using
 an int is safer and prevents arithmetic traps possibly encountered when doing calculations involving
 unsigned int variables. Access to the initial unsigned int variable is possible (though not recommended) by (*this)._height.

18.1.4.105 depth()

```
int depth ( ) const
```

Return the number of image slices.

Return the image depth, i.e. the image dimension along the Z-axis.

Note

- The depth() of an empty image is equal to 0.
- depth() is typically equal to 1 when considering usual 2D images. When depth()> 1, the image is said
 to be volumetric.
- depth() returns an int, although the image depth is internally stored as an unsigned int. Using an int is safer and prevents arithmetic traps possibly encountered when doing calculations involving unsigned int variables. Access to the initial unsigned int variable is possible (though not recommended) by (*this)._depth.

18.1.4.106 spectrum()

```
int spectrum ( ) const
```

Return the number of image channels.

Return the number of image channels, i.e. the image dimension along the C-axis.

Note

- The spectrum() of an empty image is equal to 0.
- spectrum() is typically equal to 1 when considering scalar-valued images, to 3 for RGB-coded color images, and to 4 for RGBA-coded color images (with alpha-channel). The number of channels of an image instance is not limited. The meaning of the pixel values is not linked up to the number of channels (e.g. a 4-channel image may indifferently stands for a RGBA or CMYK color image).
- spectrum() returns an int, although the image spectrum is internally stored as an unsigned int. Using an int is safer and prevents arithmetic traps possibly encountered when doing calculations involving unsigned int variables. Access to the initial unsigned int variable is possible (though not recommended) by (*this)._spectrum.

18.1.4.107 size()

```
ulongT size ( ) const
```

Return the total number of pixel values.

Return width () *height () *depth () *spectrum (), i.e. the total number of values of type T in the pixel buffer of the image instance.

Note

- The size() of an empty image is equal to 0.
- The allocated memory size for a pixel buffer of a non-shared CImg<T> instance is equal to size()*sizeof(T).

Example

18.1.4.108 data() [1/2]

```
T* data ( )
```

Return a pointer to the first pixel value.

Return a T*, or a const T* pointer to the first value in the pixel buffer of the image instance, whether the instance is const or not.

Note

- The data() of an empty image is equal to 0 (null pointer).
- The allocated pixel buffer for the image instance starts from data() and goes to data()+size()
 1 (included).
- To get the pointer to one particular location of the pixel buffer, use data(unsigned int,unsigned int,unsigned int,unsigned int) instead.

18.1.4.109 data() [2/2]

Return a pointer to a located pixel value.

Return a T*, or a const T* pointer to the value located at (x,y,z,c) in the pixel buffer of the image instance, whether the instance is const or not.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

• Writing img.data(x,y,z,c) is equivalent to & (img(x,y,z,c)). Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int).

18.1.4.110 offset()

```
longT offset (  \mbox{const int } x, \\ \mbox{const int } y = 0, \\ \mbox{const int } z = 0, \\ \mbox{const int } c = 0 \mbox{) const}
```

Return the offset to a located pixel value, with respect to the beginning of the pixel buffer.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

• Writing img.data(x,y,z,c) is equivalent to & (img(x,y,z,c)) - img.data(). Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int).

Example

18.1.4.111 begin()

```
iterator begin ( )
```

Return a Clmg<T>::iterator pointing to the first pixel value.

Note

- Equivalent to data().
- · It has been mainly defined for compatibility with STL naming conventions.

18.1.4.112 end()

```
iterator end ( )
```

Return a Clmg<T>::iterator pointing next to the last pixel value.

Note

- Writing img.end() is equivalent to img.data() + img.size().
- It has been mainly defined for compatibility with STL naming conventions.

Warning

• The returned iterator actually points to a value located *outside* the acceptable bounds of the pixel buffer. Trying to read or write the content of the returned iterator will probably result in a crash. Use it mainly as a strict upper bound for a Clmg<T>::iterator.

Example

```
CImg<float> img(100,100,1,3); // Define a 100x100 RGB color image
// 'img.end()' used below as an upper bound for the iterator.
for (CImg<float>::iterator it = img.begin(); it<img.end(); ++it)
    *it = 0;</pre>
```

18.1.4.113 front()

```
T& front ( )
```

Return a reference to the first pixel value.

Note

- Writing img.front() is equivalent to img[0], or img(0,0,0,0).
- It has been mainly defined for compatibility with STL naming conventions.

18.1.4.114 back()

```
T& back ( )
```

Return a reference to the last pixel value.

Note

- Writing img.back() is equivalent to img[img.size() 1], or img(img.width() 1, img.height() 1, img.depth() 1, img.spectrum() 1).
- It has been mainly defined for compatibility with STL naming conventions.

18.1.4.115 at() [1/2]

Access to a pixel value at a specified offset, using Dirichlet boundary conditions.

Return a reference to the pixel value of the image instance located at a specified offset, or to a specified default value in case of out-of-bounds access.

Parameters

offset	Offset to the desired pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

- Writing img.at (offset,out_value) is similar to img[offset], except that if offset is out-side bounds (e.g. offset<0 or offset>=img.size()), a reference to a value out_value is safely returned instead.
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are *not* sure about the validity of the specified pixel offset.

18.1.4.116 at() [2/2]

```
T\& at ( const\ int\ \emph{offset}\ )
```

Access to a pixel value at a specified offset, using Neumann boundary conditions.

Return a reference to the pixel value of the image instance located at a specified offset, or to the nearest pixel location in the image instance in case of out-of-bounds access.

Parameters

offset Offset to the desired pixel value.

Note

• Similar to at(int,const T), except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified offset, i.e.

```
If offset<0, then img[0] is returned.</li>If offset>=img.size(), then img[img.size() - 1] is returned.
```

- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are *not* sure about the validity of the specified pixel offset.
- If you know your image instance is *not* empty, you may rather use the slightly faster method _at (int).

18.1.4.117 atX() [1/2]

Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate.

Return a reference to the pixel value of the image instance located at (x,y,z,c), or to a specified default value in case of out-of-bounds access along the X-axis.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if (x,y,z,c) is outside image bounds.

Note

- Similar to operator()(), except that an out-of-bounds access along the X-axis returns the specified value out_value.
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are *not* sure about the validity of the specified pixel coordinates.

Warning

• There is *no* boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

18.1.4.118 atX() [2/2]

```
T& atX (  \mbox{const int } x, \\ \mbox{const int } y = 0, \\ \mbox{const int } z = 0, \\ \mbox{const int } c = 0 \mbox{)}
```

Access to a pixel value, using Neumann boundary conditions for the X-coordinate.

Return a reference to the pixel value of the image instance located at (x,y,z,c), or to the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis.

Parameters

X	X-coordinate of the pixel value.	
У	Y-coordinate of the pixel value.	
Z	Z-coordinate of the pixel value.	
С	C-coordinate of the pixel value.	

Note

- Similar to at(int,int,int,const T), except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified X-coordinate.
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are *not* sure about the validity of the specified pixel coordinates.
- If you know your image instance is *not* empty, you may rather use the slightly faster method _← at (int,int,int,int).

Warning

• There is *no* boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

18.1.4.119 atXY() [1/2]

Access to a pixel value, using Dirichlet boundary conditions for the X and Y-coordinates.

Similar to atX(int,int,int,const T), except that boundary checking is performed both on X and Y-coordinates.

18.1.4.120 atXY() [2/2]

```
T& atXY (  \mbox{const int } x, \\ \mbox{const int } y, \\ \mbox{const int } z = 0, \\ \mbox{const int } c = 0 \mbox{ )}
```

Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates.

Similar to atX(int,int,int,int), except that boundary checking is performed both on X and Y-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _atX \(\times \) Y (int, int, int).

18.1.4.121 atXYZ() [1/2]

Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates.

Similar to atX(int,int,int,const T), except that boundary checking is performed both on X,Y and Z-coordinates.

18.1.4.122 atXYZ() [2/2]

```
T& atXYZ (  \mbox{const int } x, \\ \mbox{const int } y, \\ \mbox{const int } z, \\ \mbox{const int } c = 0 \mbox{ ) }
```

Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates.

Similar to atX(int,int,int,int), except that boundary checking is performed both on X,Y and Z-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _atXY
Z(int,int,int,int).

18.1.4.123 atXYZC() [1/2]

Access to a pixel value, using Dirichlet boundary conditions.

Similar to atX(int,int,int,int,const T), except that boundary checking is performed on all X,Y,Z and C-coordinates.

18.1.4.124 atXYZC() [2/2]

Access to a pixel value, using Neumann boundary conditions.

Similar to atX(int,int,int,int), except that boundary checking is performed on all X,Y,Z and C-coordinates.

Note

If you know your image instance is not empty, you may rather use the slightly faster method _atXYZ←
 C(int,int,int,int).

18.1.4.125 linear_atX() [1/2]

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X-coordinate.

Return a linearly-interpolated pixel value of the image instance located at (fx,y,z,c), or a specified default value in case of out-of-bounds access along the X-axis.

Parameters

fx	X-coordinate of the pixel value (float-valued).	
у	Y-coordinate of the pixel value.	
Z	Z-coordinate of the pixel value.	
С	C-coordinate of the pixel value.	
out_value	lue Default value returned if (fx,y,z,c) is outside image bound	

Note

- Similar to atX(int,int,int,const T), except that the returned pixel value is approximated by a linear interpolation along the X-axis, if corresponding coordinates are not integers.
- The type of the returned pixel value is extended to float, if the pixel type T is not float-valued.

Warning

 There is no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds

18.1.4.126 linear atX() [2/2]

Return pixel value, using linear interpolation and Neumann boundary conditions for the X-coordinate.

Return a linearly-interpolated pixel value of the image instance located at (fx,y,z,c), or the value of the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis.

Parameters

fx	X-coordinate of the pixel value (float-valued).	
У	Y-coordinate of the pixel value.	
Z	Z-coordinate of the pixel value.	
С	C-coordinate of the pixel value.	

Note

- Similar to linear_atX(float,int,int,int,const T) const, except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified X-coordinate.
- If you know your image instance is *not* empty, you may rather use the slightly faster method _linear ← _atX(float,int,int,int).

Warning

• There is *no* boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

18.1.4.127 linear_atXY() [1/2]

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X and Y-coordinates.

Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved both for X and Y-coordinates.

18.1.4.128 linear_atXY() [2/2]

Return pixel value, using linear interpolation and Neumann boundary conditions for the X and Y-coordinates.

Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved both for X and Y-coordinates.

Note

If you know your image instance is not empty, you may rather use the slightly faster method _linear ← _atXY (float, float, int, int).

18.1.4.129 linear_atXYZ() [1/2]

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.

Similar to linear_atX(float,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved both for X,Y and Z-coordinates.

18.1.4.130 linear_atXYZ() [2/2]

Return pixel value, using linear interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.

Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved both for X,Y and Z-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _linear ← _atXYZ (float, float, float, int).

18.1.4.131 linear atXYZC() [1/2]

Return pixel value, using linear interpolation and Dirichlet boundary conditions for all X,Y,Z,C-coordinates.

Similar to linear_atX(float,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved for all X,Y,Z and C-coordinates.

18.1.4.132 linear_atXYZC() [2/2]

Return pixel value, using linear interpolation and Neumann boundary conditions for all X,Y,Z and C-coordinates.

Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved for all X,Y,Z and C-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _linear ← _atXYZC (float, float, float, float).

18.1.4.133 cubic_atX() [1/2]

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.

Return a cubicly-interpolated pixel value of the image instance located at (fx,y,z,c), or a specified default value in case of out-of-bounds access along the X-axis. The cubic interpolation uses Hermite splines.

Parameters

fx	d X-coordinate of the pixel value (float-valued).
y Y-coordinate of the pixel value.	
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if (fx,y,z,c) is outside image bounds.

Note

- Similar to linear_atX(float,int,int,int,const T) const, except that the returned pixel value is approximated by a *cubic* interpolation along the X-axis.
- The type of the returned pixel value is extended to float, if the pixel type T is not float-valued.

Warning

• There is *no* boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

18.1.4.134 cubic_atX_c() [1/2]

Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.

Similar to cubic_atX(float,int,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype ${\tt T}$.

18.1.4.135 cubic_atX() [2/2]

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.

Return a cubicly-interpolated pixel value of the image instance located at (fx,y,z,c), or the value of the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis. The cubic interpolation uses Hermite splines.

Parameters

fx	X-coordinate of the pixel value (float-valued).	
У	Y-coordinate of the pixel value.	
Z	Z-coordinate of the pixel value.	
С	C-coordinate of the pixel value.	

Note

- Similar to cubic_atX(float,int,int,int,const T) const, except that the returned pixel value is approximated by a cubic interpolation along the X-axis.
- If you know your image instance is *not* empty, you may rather use the slightly faster method _cubic← _atX(float,int,int,int).

Warning

 There is no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

18.1.4.136 cubic_atX_c() [2/2]

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.

Similar to $cubic_atX(float,int,int,int)$ const, except that the return value is clamped to stay in the min/max range of the datatype T.

18.1.4.137 cubic_atXY() [1/2]

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X and Y-coordinates.

Similar to cubic_atX(float,int,int,const T) const, except that the cubic interpolation and boundary checking are achieved both for X and Y-coordinates.

18.1.4.138 cubic atXY c() [1/2]

Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y-coordinates.

Similar to cubic_atXY(float,float,int,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype ${\tt T}$.

18.1.4.139 cubic_atXY() [2/2]

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X and Y-coordinates.

Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking are achieved for both X and Y-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _cubic ← _atXY (float, float, int, int).

18.1.4.140 cubic_atXY_c() [2/2]

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y-coordinates.

Similar to $cubic_atXY(float,float,int,int)$ const, except that the return value is clamped to stay in the min/max range of the datatype T.

18.1.4.141 cubic_atXYZ() [1/2]

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.

Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking are achieved both for X,Y and Z-coordinates.

18.1.4.142 cubic atXYZ c() [1/2]

Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the XYZ-coordinates.

Similar to cubic_atXYZ(float,float,float,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype T.

18.1.4.143 cubic_atXYZ() [2/2]

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.

Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking are achieved both for X,Y and Z-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _cubic← _atXYZ (float, float, float, int).

18.1.4.144 cubic_atXYZ_c() [2/2]

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the XYZ-coordinates.

Similar to $cubic_atXYZ(float,float,float,int)$ const, except that the return value is clamped to stay in the min/max range of the datatype T.

18.1.4.145 cubic_atXYZ_p()

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.

Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking are achieved both for X,Y and Z-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _cubic ← _atXYZ (float, float, float, int).

18.1.4.146 set_linear_atX()

Set pixel value, using linear interpolation for the X-coordinates.

Set pixel value at specified coordinates (fx,y,z,c) in the image instance, in a way that the value is spread amongst several neighbors if the pixel coordinates are float-valued.

Parameters

value	Pixel value to set.	
fx	X-coordinate of the pixel value (float-valued).	
у	Y-coordinate of the pixel value.	
Z	Z-coordinate of the pixel value.	
C	C-coordinate of the pixel value.	
is_added	Tells if the pixel value is added to (true), or simply replace (false) the current image pixel(s).	

Returns

A reference to the current image instance.

Note

· Calling this method with out-of-bounds coordinates does nothing.

18.1.4.147 set_linear_atXY()

Set pixel value, using linear interpolation for the X and Y-coordinates.

Similar to set_linear_atX(const T&,float,int,int,int,bool), except that the linear interpolation is achieved both for X and Y-coordinates.

18.1.4.148 set_linear_atXYZ()

Set pixel value, using linear interpolation for the X,Y and Z-coordinates.

Similar to set_linear_atXY(const T&,float,float,int,int,bool), except that the linear interpolation is achieved both for X,Y and Z-coordinates.

18.1.4.149 value_string()

Return a C-string containing a list of all values of the image instance.

Return a new CImg<char> image whose buffer data() is a char* string describing the list of all pixel values of the image instance (written in base 10), separated by specified separator character.

Parameters

separator	A char character which specifies the separator between values in the returned C-string.	
max_size	Maximum size of the returned image (or 0 if no limits are set).	
format	For float/double-values, tell the printf format used to generate the text representation of the numbers (or 0 for default representation).	

Note

- · The returned image is never empty.
- For an empty image instance, the returned string is "".
- If max_size is equal to 0, there are no limits on the size of the returned string.
- Otherwise, if the maximum number of string characters is exceeded, the value string is cut off and terminated by character '\0'. In that case, the returned image size is max_size + 1.

18.1.4.150 is_shared()

```
bool is_shared ( ) const
```

Test shared state of the pixel buffer.

Return true if image instance has a shared memory buffer, and false otherwise.

Note

- A shared image do not own his pixel buffer data() and will not deallocate it on destruction.
- Most of the time, a CImg < T > image instance will not be shared.
- A shared image can only be obtained by a limited set of constructors and methods (see list below).

18.1.4.151 is_empty()

```
bool is_empty ( ) const
```

Test if image instance is empty.

Return true, if image instance is empty, i.e. does *not* contain any pixel values, has dimensions $0 \times 0 \times 0 \times 0$ and a pixel buffer pointer set to 0 (null pointer), and false otherwise.

18.1.4.152 is_inf()

```
bool is_inf ( ) const
```

Test if image instance contains a 'inf' value.

Return true, if image instance contains a 'inf' value, and false otherwise.

18.1.4.153 is_nan()

```
bool is_nan ( ) const
```

Test if image instance contains a NaN value.

Return true, if image instance contains a NaN value, and false otherwise.

18.1.4.154 is_sameXY() [1/3]

Test if image width and height are equal to specified values.

Test if is_sameX(unsigned int) const and is_sameY(unsigned int) const are both verified.

18.1.4.155 is_sameXY() [2/3]

Test if image width and height are the same as that of another image.

Test if is_sameX(const Clmg<t>&) const and is_sameY(const Clmg<t>&) const are both verified.

18.1.4.156 is sameXY() [3/3]

Test if image width and height are the same as that of an existing display window.

Test if is_sameX(const ClmgDisplay&) const and is_sameY(const ClmgDisplay&) const are both verified.

18.1.4.157 is_sameXZ() [1/2]

Test if image width and depth are equal to specified values.

Test if is_sameX(unsigned int) const and is_sameZ(unsigned int) const are both verified.

18.1.4.158 is_sameXZ() [2/2]

```
bool is_sameXZ ( \label{eq:const_CImg} \mbox{const} \mbox{ CImg} < \mbox{ t } > \mbox{ \& } \mbox{img } \mbox{) const}
```

Test if image width and depth are the same as that of another image.

Test if is_sameX(const Clmg<t>&) const and is_sameZ(const Clmg<t>&) const are both verified.

18.1.4.159 is_sameXC() [1/2]

```
bool is_sameXC (  {\rm const\ unsigned\ int\ } size\_x, \\ {\rm const\ unsigned\ int\ } size\_c\ )\ {\rm const}
```

Test if image width and spectrum are equal to specified values.

Test if is_sameX(unsigned int) const and is_sameC(unsigned int) const are both verified.

18.1.4.160 is_sameXC() [2/2]

Test if image width and spectrum are the same as that of another image.

Test if is_sameX(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

18.1.4.161 is_sameYZ() [1/2]

Test if image height and depth are equal to specified values.

Test if is_sameY(unsigned int) const and is_sameZ(unsigned int) const are both verified.

18.1.4.162 is_sameYZ() [2/2]

Test if image height and depth are the same as that of another image.

Test if is_sameY(const Clmg<t>&) const and is_sameZ(const Clmg<t>&) const are both verified.

18.1.4.163 is_sameYC() [1/2]

Test if image height and spectrum are equal to specified values.

Test if is sameY(unsigned int) const and is sameC(unsigned int) const are both verified.

18.1.4.164 is_sameYC() [2/2]

Test if image height and spectrum are the same as that of another image.

Test if is_sameY(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

18.1.4.165 is_sameZC() [1/2]

```
bool is_sameZC ( {\rm const~unsigned~int~} size\_z, {\rm const~unsigned~int~} size\_c~)~{\rm const}
```

Test if image depth and spectrum are equal to specified values.

Test if is_sameZ(unsigned int) const and is_sameC(unsigned int) const are both verified.

18.1.4.166 is_sameZC() [2/2]

Test if image depth and spectrum are the same as that of another image.

 $Test \ if \ is_sameZ(const \ Clmg < t > \&) \ const \ and \ is_sameC(const \ Clmg < t > \&) \ const \ are \ both \ verified.$

18.1.4.167 is_sameXYZ() [1/2]

Test if image width, height and depth are equal to specified values.

Test if is_sameXY(unsigned int,unsigned int) const and is_sameZ(unsigned int) const are both verified.

18.1.4.168 is_sameXYZ() [2/2]

Test if image width, height and depth are the same as that of another image.

Test if is sameXY(const Clmg<t>&) const and is sameZ(const Clmg<t>&) const are both verified.

18.1.4.169 is_sameXYC() [1/2]

Test if image width, height and spectrum are equal to specified values.

Test if is_sameXY(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.

18.1.4.170 is_sameXYC() [2/2]

```
bool is_sameXYC (  {\tt const\ CImg<\ t\ >\ \&\ img\ )\ const}
```

Test if image width, height and spectrum are the same as that of another image.

Test if is_sameXY(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

18.1.4.171 is_sameXZC() [1/2]

Test if image width, depth and spectrum are equal to specified values.

Test if is sameXZ(unsigned int,unsigned int) const and is sameC(unsigned int) const are both verified.

18.1.4.172 is_sameXZC() [2/2]

Test if image width, depth and spectrum are the same as that of another image.

Test if is_sameXZ(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

18.1.4.173 is_sameYZC() [1/2]

Test if image height, depth and spectrum are equal to specified values.

Test if is_sameYZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.

18.1.4.174 is_sameYZC() [2/2]

```
bool is_sameYZC ( \label{eq:const_CImg} \mbox{const} \ \mbox{CImg} < \mbox{t} \ > \mbox{\&} \ \mbox{img} \ ) \ \mbox{const}
```

Test if image height, depth and spectrum are the same as that of another image.

Test if is_sameYZ(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

18.1.4.175 is_sameXYZC() [1/2]

Test if image width, height, depth and spectrum are equal to specified values.

Test if is_sameXYZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.

18.1.4.176 is_sameXYZC() [2/2]

```
bool is_sameXYZC (  {\rm const~CImg} < ~t~> ~\&~img~) ~{\rm const}
```

Test if image width, height, depth and spectrum are the same as that of another image.

Test if is_sameXYZ(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

18.1.4.177 containsXYZC()

Test if specified coordinates are inside image bounds.

Return true if pixel located at (x,y,z,c) is inside bounds of the image instance, and false otherwise.

Parameters

X	X-coordinate of the pixel value.	
У	Y-coordinate of the pixel value.	
Z	Z-coordinate of the pixel value.	
С	C-coordinate of the pixel value.	

Note

- Return true only if all these conditions are verified:
 - The image instance is *not* empty.

```
- 0<=x<=width() - 1.
- 0<=y<=height() - 1.
- 0<=z<=depth() - 1.
- 0<=c<=spectrum() - 1.</pre>
```

18.1.4.178 contains() [1/5]

Test if pixel value is inside image bounds and get its X,Y,Z and C-coordinates.

Return true, if specified reference refers to a pixel value inside bounds of the image instance, and false otherwise.

Parameters

	pixel	Reference to pixel value to test.
out	X	X-coordinate of the pixel value, if test succeeds.
out	У	Y-coordinate of the pixel value, if test succeeds.
out	Z	Z-coordinate of the pixel value, if test succeeds.
out	С	C-coordinate of the pixel value, if test succeeds.

Note

18.1.4.179 contains() [2/5]

Test if pixel value is inside image bounds and get its X,Y and Z-coordinates.

Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X,Y and Z-coordinates are set.

18.1.4.180 contains() [3/5]

Test if pixel value is inside image bounds and get its X and Y-coordinates.

Similar to contains(const T&,t&,t&,t&) const, except that only the X and Y-coordinates are set.

18.1.4.181 contains() [4/5]

```
bool contains (  \mbox{const T \& pixel,}   \mbox{t \& x ) const}
```

Test if pixel value is inside image bounds and get its X-coordinate.

Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X-coordinate is set.

18.1.4.182 contains() [5/5]

```
bool contains ( {\tt const~T~\&~pixel~)~const}
```

Test if pixel value is inside image bounds.

Similar to contains(const T&,t&,t&,t&) const, except that no pixel coordinates are set.

18.1.4.183 is overlapped()

```
bool is_overlapped ( \label{eq:const_cimg} \mbox{const} \ \mbox{CImg} < \ t \ > \ \& \ img \ ) \ \mbox{const}
```

Test if pixel buffers of instance and input images overlap.

Return true, if pixel buffers attached to image instance and input image img overlap, and false otherwise.

Parameters

```
img Input image to compare with.
```

Note

- Buffer overlapping may happen when manipulating *shared* images.
- If two image buffers overlap, operating on one of the image will probably modify the other one.
- Most of the time, CImg<T> instances are *non-shared* and do not overlap between each others.

Example

18.1.4.184 is object3d()

Test if the set {*this,primitives,colors,opacities} defines a valid 3D object.

Return true is the 3D object represented by the set {*this,primitives,colors,opacities} defines a valid 3D object, and false otherwise. The vertex coordinates are defined by the instance image.

Parameters

	primitives	List of primitives of the 3D object.
	colors	List of colors of the 3D object.
	opacities	List (or image) of opacities of the 3D object.
	full_check	Tells if full checking of the 3D object must be performed.
out	error_message	C-string to contain the error message, if the test does not succeed.

- Set full_checking to false to speed-up the 3D object checking. In this case, only the size of each 3D object component is checked.
- Size of the string error_message should be at least 128-bytes long, to be able to contain the error message.

18.1.4.185 is_Clmg3d()

```
bool is_CImg3d (  {\rm const~bool~} full\_check = true, \\ {\rm char~} *{\rm const~} error\_message = 0~)~{\rm const}
```

Test if image instance represents a valid serialization of a 3D object.

Return true if the image instance represents a valid serialization of a 3D object, and false otherwise.

Parameters

		full_check	Tells if full checking of the instance must be performed.
Ī	out	error_message	C-string to contain the error message, if the test does not succeed.

Note

- Set full_check to false to speed-up the 3D object checking. In this case, only the size of each 3D object component is checked.
- Size of the string error_message should be at least 128-bytes long, to be able to contain the error message.

18.1.4.186 sqr()

```
CImg<T>& sqr ( )
```

Compute the square value of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its square value $I_{(x,y,z,c)}^2$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

Example

```
const CImg<float> img("reference.jpg");
(img,img.get_sqr().normalize(0,255)).display();
```

18.1.4.187 sqrt()

```
CImg<T>& sqrt ( )
```

Compute the square root of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its square root $\sqrt{I_{(x,y,z,c)}}$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

Example

```
const CImg<float> img("reference.jpg");
(img,img.get_sqrt().normalize(0,255)).display();
```

18.1.4.188 exp()

```
CImg<T>& exp ()
```

Compute the exponential of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its exponential $e^{I_{(x,y,z,c)}}$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.189 erf()

```
CImg<T>& erf ()
```

Compute the error function of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its error function.

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.190 log()

```
CImg<T>& log ()
```

Compute the logarithm of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its logarithm $\log_e(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.191 log2()

```
CImg < T > \& log2 ()
```

Compute the base-2 logarithm of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its base-2 logarithm $\log_2(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.192 log10()

```
CImg<T>& log10 ()
```

Compute the base-10 logarithm of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its base-10 logarithm $\log_{10}(I_{(x,y,z,c)})$.

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.193 abs()

```
CImg<T>& abs ()
```

Compute the absolute value of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its absolute value $|I_{(x,y,z,c)}|$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

18.1.4.194 sign()

```
CImg<T>& sign ()
```

Compute the sign of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its sign $sign(I_{(x,y,z,c)})$.

Note

- The sign is set to:
 - 1 if pixel value is strictly positive.
 - −1 if pixel value is strictly negative.
 - 0 if pixel value is equal to 0.
- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.195 cos()

```
CImg<T>&cos()
```

Compute the cosine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its cosine $\cos(I_{(x,y,z,c)})$.

- Pixel values are regarded as being in radian.
- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.196 sin()

```
CImg<T>& sin ( )
```

Compute the sine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its sine $\sin(I_{(x,y,z,c)})$.

Note

- Pixel values are regarded as being in radian.
- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

18.1.4.197 sinc()

```
CImg<T>& sinc ( )
```

Compute the sinc of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its sinc $\operatorname{sinc}(I_{(x,y,z,c)})$.

Note

- Pixel values are regarded as being exin radian.
- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

18.1.4.198 tan()

```
CImg<T>& tan ( )
```

Compute the tangent of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its tangent $\tan(I_{(x,y,z,c)})$.

- Pixel values are regarded as being exin radian.
- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

18.1.4.199 cosh()

```
CImg<T>& cosh ( )
```

Compute the hyperbolic cosine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic cosine $\cosh(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.200 sinh()

```
CImg<T>& sinh ()
```

Compute the hyperbolic sine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic sine $\sinh(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.201 tanh()

```
CImg<T>& tanh ()
```

Compute the hyperbolic tangent of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic tangent $\tanh(I_{(x,y,z,c)})$.

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.202 acos()

```
CImg < T > \& acos ()
```

Compute the arccosine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arccosine $a\cos(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.203 asin()

```
CImg<T>& asin ( )
```

Compute the arcsine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arcsine $asin(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.204 atan()

```
CImg<T>& atan ( )
```

Compute the arctangent of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arctangent $atan(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.205 atan2()

Compute the arctangent2 of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arctangent2 $atan2(I_{(x,y,z,c)})$.

Parameters

img | Image whose pixel values specify the second argument of the atan2 () function.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

Example

```
const CImg<float>
   img_x(100,100,1,1,"x-w/2",false),   // Define an horizontal centered gradient, from '-width/2' to
'width/2'
   img_y(100,100,1,1,"y-h/2",false),   // Define a vertical centered gradient, from '-height/2' to
'height/2'
   img_atan2 = img_y.get_atan2(img_x);   // Compute atan2(y,x) for each pixel value
(img_x,img_y,img_atan2).display();
```

18.1.4.206 acosh()

```
CImg<T>& acosh ()
```

Compute the hyperbolic arccosine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arccosineh $a\cosh(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImq<float> image, if the pixel type T is not float-valued.

18.1.4.207 asinh()

```
CImg<T>& asinh ()
```

Compute the hyperbolic arcsine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic arcsine $asinh(I_{(x,y,z,c)})$.

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.208 atanh()

```
CImg<T>& atanh ( )
```

Compute the hyperbolic arctangent of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic arctangent $\operatorname{atanh}(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

18.1.4.209 mul()

In-place pointwise multiplication.

Compute the pointwise multiplication between the image instance and the specified input image img.

Parameters

```
img | Input image, as the second operand of the multiplication.
```

Note

- Similar to operator+=(const Clmg<t>&), except that it performs a pointwise multiplication instead of an addition.
- It does not perform a matrix multiplication. For this purpose, use operator*=(const Clmg<t>&) instead.

Example

```
CImg<float>
  img("reference.jpg"),
  shade(img.width,img.height(),1,1,"-(x-w/2)^2-(y-h/2)^2",false);
shade.normalize(0,1);
(img,shade,img.get_mul(shade)).display();
```

18.1.4.210 div()

In-place pointwise division.

Similar to mul(const Clmg<t>&), except that it performs a pointwise division instead of a multiplication.

18.1.4.211 pow() [1/3]

```
\label{eq:const_double} \begin{split} \text{CImg} &< \text{T} \!>\! \& \text{ pow (} \\ &\quad \text{const double } p \text{ )} \end{split}
```

Raise each pixel value to a specified power.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its power $I_{(x,y,z,c)}^p$.

Parameters

```
p Exponent value.
```

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

Example

18.1.4.212 pow() [2/3]

Raise each pixel value to a power, specified from an expression.

Similar to operator+=(const char*), except it performs a pointwise exponentiation instead of an addition.

18.1.4.213 pow() [3/3]

```
CImg<T>& pow (  \label{eq:const_CImg}  \mbox{const_CImg< t} > \mbox{\& $img$ } )
```

Raise each pixel value to a power, pointwisely specified from another image.

Similar to operator+=(const Clmg<t>& img), except that it performs an exponentiation instead of an addition.

18.1.4.214 rol() [1/3]

```
CImg<T>& rol ( const unsigned int n = 1)
```

Compute the bitwise left rotation of each pixel value.

Similar to operator<<=(unsigned int), except that it performs a left rotation instead of a left shift.

18.1.4.215 rol() [2/3]

Compute the bitwise left rotation of each pixel value.

Similar to operator <<= (const char*), except that it performs a left rotation instead of a left shift.

18.1.4.216 rol() [3/3]

Compute the bitwise left rotation of each pixel value.

Similar to operator <<= (const Clmg < t>&), except that it performs a left rotation instead of a left shift.

18.1.4.217 ror() [1/3]

Compute the bitwise right rotation of each pixel value.

Similar to operator>>=(unsigned int), except that it performs a right rotation instead of a right shift.

18.1.4.218 ror() [2/3]

```
CImg<T>& ror ( const char *const expression )
```

Compute the bitwise right rotation of each pixel value.

Similar to operator>>=(const char*), except that it performs a right rotation instead of a right shift.

18.1.4.219 ror() [3/3]

Compute the bitwise right rotation of each pixel value.

Similar to operator>>=(const Clmg<t>&), except that it performs a right rotation instead of a right shift.

18.1.4.220 min() [1/3]

```
CImg<T>& min ( const T & value )
```

Pointwise min operator between instance image and a value.

Parameters

val Value used as the reference argument of the min operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\min(I_{(x,y,z,c)}, \mathrm{val})$.

18.1.4.221 min() [2/3]

Pointwise min operator between two images.

Parameters

img Image used as the reference argument of the min operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\min(I_{(x,y,z,c)}, \mathrm{img}_{(x,y,z,c)}).$

18.1.4.222 min() [3/3]

Pointwise min operator between an image and an expression.

Parameters

```
expression Math formula as a C-string.
```

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\min(I_{(x,y,z,c)},\exp(x,y,z,c))$.

18.1.4.223 max() [1/3]

```
CImg<T>& max ( const \ T \ \& \ value \ )
```

Pointwise max operator between instance image and a value.

Parameters

val Value used as the reference argument of the max operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max(I_{(x,y,z,c)}, \mathrm{val})$.

18.1.4.224 max() [2/3]

```
\label{eq:const_cimg} $$\operatorname{CImg}<\mathsf{T}>\&$ max ($$ const CImg< t> \& img )$
```

Pointwise max operator between two images.

Parameters

img Image used as the reference argument of the max operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max(I_{(x,y,z,c)}, \operatorname{img}_{(x,y,z,c)})$.

18.1.4.225 max() [3/3]

```
\label{eq:const_char} $$\operatorname*{CImg}_{T>\&\ max} ($$ const\ char\ *const\ expression\ )$
```

Pointwise max operator between an image and an expression.

Parameters

expression Math formula as a C-string.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max(I_{(x,y,z,c)},\exp(x,y,z,c))$.

18.1.4.226 minabs() [1/3]

```
CImg<T>& minabs ( const \ T \ \& \ value \ )
```

Pointwise minabs operator between instance image and a value.

val Value used as the reference argument of the minabs operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $minabs(I_{(x,y,z,c)}, val)$.

18.1.4.227 minabs() [2/3]

Pointwise minabs operator between two images.

Parameters

img | Image used as the reference argument of the minabs operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\operatorname{minabs}(I_{(x,y,z,c)},\operatorname{img}_{(x,y,z,c)}).$

18.1.4.228 minabs() [3/3]

Pointwise minabs operator between an image and an expression.

Parameters

```
expression Math formula as a C-string.
```

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\min abs(I_{(x,y,z,c)}, expr_{(x,y,z,c)})$.

18.1.4.229 maxabs() [1/3]

```
CImg<T>& maxabs ( const \ T \ \& \ value \ )
```

Pointwise maxabs operator between instance image and a value.

val Value used as the reference argument of the maxabs operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max abs(I_{(x,y,z,c)}, val)$.

18.1.4.230 maxabs() [2/3]

Pointwise maxabs operator between two images.

Parameters

img | Image used as the reference argument of the maxabs operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max abs(I_{(x,y,z,c)}, img_{(x,y,z,c)})$.

18.1.4.231 maxabs() [3/3]

Pointwise maxabs operator between an image and an expression.

Parameters

```
expression Math formula as a C-string.
```

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max bs(I_{(x,y,z,c)}, \exp(x,y,z,c))$.

18.1.4.232 min_max()

Return a reference to the minimum pixel value as well as the maximum pixel value.

out <i>max_val</i>	Maximum pixel value.
--------------------	----------------------

18.1.4.233 max_min()

Return a reference to the maximum pixel value as well as the minimum pixel value.

Parameters

out	min_val	Minimum pixel value.
-----	---------	----------------------

18.1.4.234 kth_smallest()

```
T kth_smallest ( {\tt const\ ulongT\ }k\ )\ {\tt const}
```

Return the kth smallest pixel value.

Parameters

k Rank of the smallest element searched.

18.1.4.235 variance()

```
double variance ( {\tt const\ unsigned\ int\ } {\it variance\_method\ =\ 1\ )\ {\tt const}
```

Return the variance of the pixel values.

Parameters

variance_method	Method used to estimate the variance. Can be:	
	• 0: Second moment, computed as $1/N\sum_{k=1}^N(x_k-\bar{x})^2=1/N\left(\sum_{k=1}^Nx_k^2-\left(\sum_{k=1}^Nx_k\right)^2/N\right) \text{ with } \bar{x}=1/N\sum_{k=1}^Nx_k.$	
	• 1: Best unbiased estimator, computed as $\frac{1}{N-1}\sum\limits_{k=1}^{N}(x_k-\bar{x})^2$.	
	• 2: Least median of squares.	
	3: Least trimmed of squares.	

18.1.4.236 variance_mean()

Return the variance as well as the average of the pixel values.

Parameters

	variance_method	Method used to estimate the variance (see variance(const unsigned int) const).	
out	mean	Average pixel value.	

18.1.4.237 variance_noise()

```
double variance_noise ( {\tt const\ unsigned\ int\ } variance\_method\ =\ 2\ )\ {\tt const}
```

Return estimated variance of the noise.

Parameters

Note

Because of structures such as edges in images it is recommended to use a robust variance estimation. The variance of the noise is estimated by computing the variance of the Laplacian $(\Delta I)^2$ scaled by a factor c insuring $cE[(\Delta I)^2] = \sigma^2$ where σ is the noise variance.

18.1.4.238 MSE()

```
double MSE ( \label{eq:const_cimg} \mbox{const} \ \mbox{Cimg} < \mbox{t} \ > \mbox{\&} \ \mbox{img} \ ) \ \mbox{const}
```

Compute the MSE (Mean-Squared Error) between two images.

Parameters

18.1.4.239 PSNR()

```
double PSNR (  \mbox{const CImg} < \mbox{t} > \& \mbox{img}, \\ \mbox{const double } \mbox{max\_value} = 255 \mbox{) const}
```

Compute the PSNR (Peak Signal-to-Noise Ratio) between two images.

Parameters

img	•	Image used as the second argument of the PSNR operator.	
max_value Maximum theoretical value of the signal.		Maximum theoretical value of the signal.	

18.1.4.240 eval() [1/3]

Evaluate math formula.

expression	Math formula, as a C-string.	
X	Value of the pre-defined variable x.	
У	Value of the pre-defined variable y.	
Z	Value of the pre-defined variable z.	
С	Value of the pre-defined variable c.	
list_images	A list of images attached to the specified math formula.	

18.1.4.241 eval() [2/3]

Evaluate math formula.

Parameters

out	output	Contains values of output vector returned by the evaluated expression (or is empty if the returned type is scalar).
	expression	Math formula, as a C-string.
	Х	Value of the pre-defined variable x.
	У	Value of the pre-defined variable y.
	z Value of the pre-defined variable z.	
	С	Value of the pre-defined variable c.
	list_images	A list of input images attached to the specified math formula.

18.1.4.242 eval() [3/3]

Evaluate math formula on a set of variables.

Parameters

expression	Math formula, as a C-string.
xyzc	Set of values (x,y,z,c) used for the evaluation.
list_images	A list of input images attached to the specified math formula.

18.1.4.243 get_stats()

Compute statistics vector from the pixel values.

Parameters

variance method	Method used to compute the variance (see variance(const unsigned int) const).

Returns

Statistics vector as [min, max, mean, variance, xmin, ymin, zmin, cmin, xmax, ymax, zmax, cmax, sum, product].

18.1.4.244 magnitude()

```
double magnitude ( {\tt const\ int\ \it magnitude\_type\ =\ 2\ )\ const}
```

Compute norm of the image, viewed as a matrix.

Parameters

magnitude_type	Norm type. Can be:
	• -1: Linf-norm
	• 0: L0-norm
	• 1: L1 -norm
	• 2: L2-norm

18.1.4.245 dot()

```
double dot ( \label{eq:const_cimg} \mbox{const} \ \mbox{CImg< t > \& img ) const}
```

Compute the dot product between instance and argument, viewed as matrices.

Parameters

img | Image used as a second argument of the dot product.

18.1.4.246 get_vector_at()

```
const unsigned int y = 0,
const unsigned int z = 0) const
```

Get vector-valued pixel located at specified position.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

18.1.4.247 get_matrix_at()

Get (square) matrix-valued pixel located at specified position.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

Note

- The spectrum() of the image must be a square.

18.1.4.248 get_tensor_at()

Get tensor-valued pixel located at specified position.

	X	X-coordinate of the pixel value.
	У	Y-coordinate of the pixel value.
Z		Z-coordinate of the pixel value.

18.1.4.249 set_vector_at()

```
CImg<T>& set_vector_at (  const \ CImg < t > \& \ vec, \\ const \ unsigned \ int \ x, \\ const \ unsigned \ int \ y = 0, \\ const \ unsigned \ int \ z = 0 )
```

Set vector-valued pixel at specified position.

Parameters

vec	Vector to put on the instance image.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

18.1.4.250 set_matrix_at()

```
CImg<T>& set_matrix_at (  const \ CImg < t > \& \ mat, \\ const \ unsigned \ int \ x = 0, \\ const \ unsigned \ int \ y = 0, \\ const \ unsigned \ int \ z = 0 )
```

Set (square) matrix-valued pixel at specified position.

Parameters

mat	Matrix to put on the instance image.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

18.1.4.251 set_tensor_at()

```
CImg<T>& set_tensor_at (  const \ CImg < t > \& \ ten, \\ const \ unsigned \ int \ x = 0, \\ const \ unsigned \ int \ y = 0, \\ const \ unsigned \ int \ z = 0 )
```

Set tensor-valued pixel at specified position.

ten	Tensor to put on the instance image.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

18.1.4.252 diagonal()

```
CImg<T>& diagonal ( )
```

Resize image to become a diagonal matrix.

Note

Transform the image as a diagonal matrix so that each of its initial value becomes a diagonal coefficient.

18.1.4.253 identity_matrix() [1/2]

```
CImg<T>& identity_matrix ( )
```

Replace the image by an identity matrix.

Note

If the instance image is not square, it is resized to a square matrix using its maximum dimension as a reference.

18.1.4.254 sequence() [1/2]

Fill image with a linear sequence of values.

a0	Starting value of the sequence.
a1	Ending value of the sequence.

18.1.4.255 transpose()

```
CImg<T>& transpose ( )
```

Transpose the image, viewed as a matrix.

Note

```
Equivalent to permute_axes("yxzc");
```

18.1.4.256 cross()

Compute the cross product between two 1x3 images, viewed as 3D vectors.

Parameters

img | Image used as the second argument of the cross product.

Note

The first argument of the cross product is *this.

18.1.4.257 invert()

Invert the instance image, viewed as a matrix.

Parameters

use_LU Choose the inverting algorithm. Can be: true: LU-based matrix inversion. false: SVD-based matrix inversion.

18.1.4.258 solve()

Solve a system of linear equations.

Parameters

Α	Matrix of the linear system.
use_LU	In case of non square system (least-square solution), choose between SVD-based (false) or
	LU-based (true) method. LU method is faster for large matrices, but numerically less stable.

Note

Solve AX = B where B=*this.

18.1.4.259 solve_tridiagonal()

Solve a tridiagonal system of linear equations.

Parameters

```
A Coefficients of the tridiagonal system. A is a tridiagonal matrix A = [ b0,c0,0,...; a1,b1,c1,0,...; ...; ...,0,aN,bN ], stored as a 3 columns matrix
```

Note

Solve AX=B where B=*this, using the Thomas algorithm.

18.1.4.260 eigen()

Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.

out	val	Vector of the estimated eigenvalues, in decreasing order.
out	vec	Matrix of the estimated eigenvectors, sorted by columns.

18.1.4.261 get_eigen()

```
CImgList<Tfloat> get_eigen ( ) const
```

Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.

Returns

A list of two images [val; vec], whose meaning is similar as in eigen(Clmg<t>&,Clmg<t>&) const.

18.1.4.262 symmetric_eigen()

Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.

Parameters

out	val	Vector of the estimated eigenvalues, in decreasing order.
out	vec	Matrix of the estimated eigenvectors, sorted by columns.

18.1.4.263 get_symmetric_eigen()

```
CImgList<Tfloat> get_symmetric_eigen ( ) const
```

Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.

Returns

A list of two images [val; vec], whose meaning are similar as in symmetric_eigen(Clmg<t>&,Clmg<t>&) const.

18.1.4.264 sort() [1/2]

Sort pixel values and get sorting permutations.

out	permutations	Permutation map used for the sorting.	
,		Tells if pixel values are sorted in an increasing (true) or decreasing (false) way.	

18.1.4.265 sort() [2/2]

Sort pixel values.

Parameters

is_increasing	Tells if pixel values are sorted in an increasing (true) or decreasing (false) way.
axis	Tells if the value sorting must be done along a specific axis. Can be:
	0: All pixel values are sorted, independently on their initial position.
	• 'x': Image columns are sorted, according to the first value in each column.
	 'y': Image rows are sorted, according to the first value in each row.
	 'z': Image slices are sorted, according to the first value in each slice.
	• 'c': Image channels are sorted, according to the first value in each channel.

18.1.4.266 SVD()

Compute the SVD of the instance image, viewed as a general matrix.

Compute the SVD decomposition *this=U*S*V' where U and V are orthogonal matrices and S is a diagonal matrix. V' denotes the matrix transpose of V.

out	U	First matrix of the SVD product.
out	S	Coefficients of the second (diagonal) matrix of the SVD product. These coefficients are stored as a vector.

Parameters

out	V	Third matrix of the SVD product.
	sorting	Tells if the diagonal coefficients are sorted (in decreasing order).
	max_iteration	Maximum number of iterations considered for the algorithm convergence.
	lambda	Epsilon used for the algorithm convergence.

Note

```
The instance matrix can be computed from U,S and V by const CImg<> A; // Input matrix (assumed to contain some values) CImg<> U,S,V; A.SVD(U,S,V)
```

18.1.4.267 get_SVD()

Compute the SVD of the instance image, viewed as a general matrix.

Returns

A list of three images [U; S; V], whose meaning is similar as in SVD(Clmg<t>&,Clmg<t>&,Clmg<t>&,bool,unsigned int,fl

18.1.4.268 project_matrix()

Compute the projection of the instance matrix onto the specified dictionary.

Find the best matching projection of selected matrix onto the span of an over-complete dictionary D, using the orthogonal projection or (opt. Orthogonal) Matching Pursuit algorithm. Instance image must a 2D-matrix in which each column represent a signal to project.

dictionary A matrix in which each column is an element of the dictionary D.

method	Tell what projection method is applied. It can be:
	• 0 = orthogonal projection (default).
	• 1 = matching pursuit.
	 2 = matching pursuit, with a single orthogonal projection step at the end.
	 >=3 = orthogonal matching pursuit where an orthogonal projection step is performed every 'method-2' iterations.
max_iter	Sets the max number of iterations processed for each signal. If set to '0' (default), 'max_iter' is set to the number of dictionary columns. (only meaningful for matching pursuit and its variants).
max_residual	Gives a stopping criterion on signal reconstruction accuracy. (only meaningful for matching pursuit and its variants).

Returns

A matrix W whose columns correspond to the sparse weights of associated to each input matrix column. Thus, the matrix product D*W is an approximation of the input matrix.

18.1.4.269 dijkstra() [1/2]

Compute minimal path in a graph, using the Dijkstra algorithm.

Parameters

distance	An object having operator()(unsigned int i, unsigned int j) which returns distance between two nodes (i,j).
nb_nodes	Number of graph nodes.
starting_node	Index of the starting node.
ending_node	Index of the ending node (set to \sim 0U to ignore ending node).
previous_node	Array that gives the previous node index in the path to the starting node (optional parameter).

Returns

Array of distances of each node to the starting node.

18.1.4.270 dijkstra() [2/2]

Return minimal path in a graph, using the Dijkstra algorithm.

Parameters

starting_node	Index of the starting node.
ending_node	Index of the ending node.
previous_node	Array that gives the previous node index in the path to the starting node (optional parameter).

Returns

Array of distances of each node to the starting node.

Note

image instance corresponds to the adjacency matrix of the graph.

18.1.4.271 string()

Return an image containing the character codes of specified string.

Parameters

str	input C-string to encode as an image.
is_last_zero	Tells if the ending '0' character appear in the resulting image.
is_shared	Return result that shares its buffer with str.

18.1.4.272 row_vector() [1/4]

Return a 1x1 image containing specified value.

a0 First vector value.

18.1.4.273 row_vector() [2/4]

Return a 2x1 image containing specified values.

Parameters

a0	First vector value.
a1	Second vector value.

18.1.4.274 row_vector() [3/4]

Return a 3x1 image containing specified values.

Parameters

a0	First vector value.
a1	Second vector value.
a2	Third vector value.

18.1.4.275 row_vector() [4/4]

Return a 4x1 image containing specified values.

Parameters

a0	First vector value.
a1	Second vector value.
a2	Third vector value.
аЗ	Fourth vector value.

18.1.4.276 vector() [1/4]

Return a 1×1 image containing specified value.

Parameters

a0 First vector value.

18.1.4.277 vector() [2/4]

Return a 1x2 image containing specified values.

Parameters

a0	First vector value.
a1	Second vector value.

18.1.4.278 vector() [3/4]

Return a 1x3 image containing specified values.

a0	First vector value.
a1	Second vector value.
a2	Third vector value.

18.1.4.279 vector() [4/4]

Return a 1x4 image containing specified values.

Parameters

a0	First vector value.
a1	Second vector value.
a2	Third vector value.
аЗ	Fourth vector value.

18.1.4.280 matrix() [1/3]

Return a 1x1 matrix containing specified coefficients.

Parameters

```
a0 First matrix value.
```

Note

Equivalent to vector(const T&).

18.1.4.281 matrix() [2/3]

Return a 2x2 matrix containing specified coefficients.

Parameters

a0	First matrix value.
a1	Second matrix value.
a2	Third matrix value.
аЗ	Fourth matrix value.

18.1.4.282 matrix() [3/3]

Return a 3x3 matrix containing specified coefficients.

Parameters

First matrix value.
Second matrix value.
Third matrix value.
Fourth matrix value.
Fifth matrix value.
Sixth matrix value.
Seventh matrix value.
Eighth matrix value.
Ninth matrix value.

18.1.4.283 tensor()

```
static CImg<T> tensor ( {\tt const~T~\&~a0~)~[static]}
```

Return a 1x1 symmetric matrix containing specified coefficients.

Note

Equivalent to vector(const T&).

18.1.4.284 identity_matrix() [2/2]

Return a NxN identity matrix.

Parameters

N Dimension of the matrix.

18.1.4.285 sequence() [2/2]

Return a N-numbered sequence vector from a0 to a1.

Parameters

Ν	Size of the resulting vector.
a0	Starting value of the sequence.
a1	Ending value of the sequence.

18.1.4.286 rotation_matrix()

Return a 3x3 rotation matrix from an { axis + angle } or a quaternion.

Parameters

У	Y-coordinate of the rotation axis, or second quaternion coordinate.
Z	Z-coordinate of the rotation axis, or third quaternion coordinate.
W	Angle of the rotation axis (in degree), or fourth quaternion coordinate.
is_quaternion	Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w).

18.1.4.287 fill() [1/4]

```
CImg<T>& fill ( const T & val )
```

Fill all pixel values with specified value.

Parameters

```
val Fill value.
```

18.1.4.288 fill() [2/4]

Fill sequentially all pixel values with specified values.

Parameters

val0	First fill value.
val1	Second fill value.

18.1.4.289 fill() [3/4]

Fill sequentially pixel values according to a given expression.

expression	C-string describing a math formula, or a sequence of values.
repeat_values	In case a list of values is provided, tells if this list must be repeated for the filling.
allow_formula	Tells that mathematical formulas are authorized for the filling.
list_images	In case of a mathematical expression, attach a list of images to the specified expression.

18.1.4.290 fill_from_values()

Fill sequentially pixel values according to a value sequence, given as a string.

Parameters

values	C-string describing a sequence of values.
repeat_values	Tells if this sequence must be repeated when filling.

18.1.4.291 fill() [4/4]

Fill sequentially pixel values according to the values found in another image.

Parameters

values	Image containing the values used for the filling.
repeat_values	In case there are less values than necessary in $values$, tells if these values must be repeated for the filling.

18.1.4.292 fillX()

```
const int a0,
... )
```

Fill pixel values along the X-axis at a specified pixel position.

У	Y-coordinate of the filled column.
Z	Z-coordinate of the filled column.
С	C-coordinate of the filled column.
a0	First fill value.

18.1.4.293 fillY()

Fill pixel values along the Y-axis at a specified pixel position.

Parameters

X	X-coordinate of the filled row.
Z	Z-coordinate of the filled row.
С	C-coordinate of the filled row.
a0	First fill value.

18.1.4.294 fillZ()

Fill pixel values along the Z-axis at a specified pixel position.

X	X-coordinate of the filled slice.
У	Y-coordinate of the filled slice.
С	C-coordinate of the filled slice.
a0	First fill value.

18.1.4.295 fillC()

Fill pixel values along the C-axis at a specified pixel position.

Parameters

X	X-coordinate of the filled channel.
У	Y-coordinate of the filled channel.
Z	Z-coordinate of the filled channel.
a0	First filling value.

18.1.4.296 discard()

```
CImg<T>& discard (  \mbox{const CImg} < \mbox{t} > \mbox{\& values,}   \mbox{const char } \mbox{axis} = \mbox{0} \mbox{)}
```

Discard specified sequence of values in the image buffer, along a specific axis.

Parameters

values	Sequence of values to discard.	
axis	Axis along which the values are discarded. If set to 0 (default value) the method does it for all the	
	buffer values and returns a one-column vector.	

Note

Discarded values will change the image geometry, so the resulting image is returned as a one-column vector.

18.1.4.297 rand()

Fill image with random values in specified range.

val_min	Minimal authorized random value.
val_max	Maximal authorized random value.

Note

Random variables are uniformly distributed in [val_min,val_max].

18.1.4.298 round()

Round pixel values.

Parameters

У	Rounding precision.
rounding_type	Rounding type. Can be:
	• −1: Backward.
	• 0: Nearest.
	• 1: Forward.

18.1.4.299 noise()

Add random noise to pixel values.

sigma	Amplitude of the random additive noise. If sigma<0, it stands for a percentage of the global value range.	
noise_type	pe of additive noise (can be 0=gaussian, 1=uniform, 2=Salt and Pepper, Poisson or 4=Rician).	

Returns

A reference to the modified image instance.

Note

- For Poisson noise (noise_type=3), parameter sigma is ignored, as Poisson noise only depends on the image value itself.
- Function CImg<T>::get_noise() is also defined. It returns a non-shared modified copy of the image instance.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_noise(40);
(img,res.normalize(0,255)).display();
```

18.1.4.300 normalize() [1/2]

Linearly normalize pixel values.

Parameters

min_value	Minimum desired value of the resulting image.
max_value	Maximum desired value of the resulting image.
constant_case_ratio	In case of instance image having a constant value, tell what ratio of [min_value,max_value] is used to fill the normalized image (=0 for min_value, =1 for max_value, =0.5 for (min_value + max_value)/2).

Example

```
const CImg<float> img("reference.jpg"), res = img.get_normalize(160,220);
(img.res).display();
```

18.1.4.301 normalize() [2/2]

```
CImg<T>& normalize ( )
```

Normalize multi-valued pixels of the image instance, with respect to their L2-norm.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_normalize();
(img,res.normalize(0,255)).display();
```

18.1.4.302 norm()

```
CImg<T>& norm ( const int norm\_type = 2 )
```

Compute Lp-norm of each multi-valued pixel of the image instance.

Parameters

```
norm_type | Type of computed vector norm (can be -1=Linf, or greater or equal than 0).
```

Example

```
const CImg<float> img("reference.jpg"), res = img.get_norm();
(img,res.normalize(0,255)).display();
```

18.1.4.303 cut()

Cut pixel values in specified range.

Parameters

min_value	Minimum desired value of the resulting image.
max_value	Maximum desired value of the resulting image.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_cut(160,220);
(img,res).display();
```

18.1.4.304 quantize()

Uniformly quantize pixel values.

nb_levels	Number of quantization levels.
keep_range	Tells if resulting values keep the same range as the original ones.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_quantize(4);
(img,res).display();
```

18.1.4.305 otsu()

```
T otsu ( {\rm const\ unsigned\ int\ } nb\_levels = 256\ )\ {\rm const}
```

Return the Otsu threshold.

Parameters

r	nb_levels	Number of histogram levels used for the estimation.
---	-----------	---

18.1.4.306 threshold()

Threshold pixel values.

Parameters

value	Threshold value
soft_threshold	Tells if soft thresholding must be applied (instead of hard one).
strict_threshold	Tells if threshold value is strict.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_threshold(128);
(img,res.normalize(0,255)).display();
```

18.1.4.307 histogram()

Compute the histogram of pixel values.

nb_levels	Number of desired histogram levels.	
min_value	Minimum pixel value considered for the histogram computation. All pixel values lower than min_value will not be counted.	
max_value	Maximum pixel value considered for the histogram computation. All pixel values higher than max_value will not be counted.	

Note

- The histogram H of an image I is the 1D function where H(x) counts the number of occurrences of the value x in the image I.
- The resulting histogram is always defined in 1D. Histograms of multi-valued images are not multi-dimensional.

Example

```
const CImg<float> img = CImg<float>("reference.jpg").histogram(256); img.display_graph(0,3);
```

18.1.4.308 equalize()

Equalize histogram of pixel values.

Parameters

nb_levels	Number of histogram levels used for the equalization.	
min_value	Minimum pixel value considered for the histogram computation. All pixel values lower than min_value will not be counted.	
max_value	Maximum pixel value considered for the histogram computation. All pixel values higher than max_value will not be counted.	

Example

```
const CImg<float> img("reference.jpg"), res = img.get_equalize(256);
(img,res).display();
```

18.1.4.309 index()

```
const float dithering = 1,
const bool map_indexes = false )
```

Index multi-valued pixels regarding to a specified colormap.

Parameters

colormap	Multi-valued colormap used as the basis for multi-valued pixel indexing.
dithering	Level of dithering (0=disable, 1=standard level).
map_indexes	Tell if the values of the resulting image are the colormap indices or the colormap vectors.

Note

• img.index(colormap,dithering,1) is equivalent to img.index(colormap,dithering,0).map(col

Example

```
const CImg<float> img("reference.jpg"), colormap(3,1,1,3, 0,128,255, 0,128,255, 0,128,255);
const CImg<float> res = img.get_index(colormap,1,true);
(img,res).display();
```

18.1.4.310 map()

```
CImg<T>& map (  const \ CImg < \ t \ > \ \& \ colormap,   const \ unsigned \ int \ boundary\_conditions = 0 )
```

Map predefined colormap on the scalar (indexed) image instance.

Parameters

colormap	Multi-valued colormap used for mapping the indexes.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet \mid 1=neumann \mid 2=periodic \mid 3=mirror }.

Example

18.1.4.311 label() [1/2]

Label connected components.

is_high_connectivity	Boolean that choose between 4(false)- or 8(true)-connectivity in 2D case, and between 6(false)- or 26(true)-connectivity in 3D case.
tolerance	Tolerance used to determine if two neighboring pixels belong to the same region.
is_L2_norm	If true, tolerance is compared against L2 difference, otherwise L1 is used.

Note

The algorithm of connected components computation has been primarily done by A. Meijster, according to the publication: 'W.H. Hesselink, A. Meijster, C. Bron, "Concurrent Determination of Connected Components.", In: Science of Computer Programming 41 (2001), pp. 173–194'. The submitted code has then been modified to fit Clmg coding style and constraints.

18.1.4.312 label() [2/2]

Label connected components [overloading].

Parameters

connectivity_mask	Mask of the neighboring pixels.
tolerance	Tolerance used to determine if two neighboring pixels belong to the same region.
is_L2_norm	If true, tolerance is compared against L2 difference, otherwise L1 is used.

18.1.4.313 default_LUT256()

```
static const CImg<Tuchar>& default_LUT256 ( ) [static]
```

Return colormap "default", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

18.1.4.314 HSV_LUT256()

```
static const CImg<Tuchar>& HSV_LUT256 ( ) [static]
```

Return colormap "HSV", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

18.1.4.315 lines_LUT256()

```
static const CImg<Tuchar>& lines_LUT256 ( ) [static]
```

Return colormap "lines", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

18.1.4.316 hot_LUT256()

```
static const CImg<Tuchar>& hot_LUT256 ( ) [static]
```

Return colormap "hot", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

18.1.4.317 cool_LUT256()

```
static const CImg<Tuchar>& cool_LUT256 ( ) [static]
```

Return colormap "cool", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

18.1.4.318 jet_LUT256()

```
static const CImg<Tuchar>& jet_LUT256 ( ) [static]
```

Return colormap "jet", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

18.1.4.319 flag_LUT256()

```
static const CImg<Tuchar>& flag_LUT256 ( ) [static]
```

Return colormap "flag", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

18.1.4.320 cube_LUT256()

```
static const CImg<Tuchar>& cube_LUT256 ( ) [static]
```

Return colormap "cube", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

18.1.4.321 RGBtoXYZ()

```
CImg<T>& RGBtoXYZ (

const bool use\_D65 = true)
```

Convert pixel values from RGB to XYZ color spaces.

Parameters

use_D65 Tell to use the D65 illuminant (D50 otherwise).

18.1.4.322 XYZtoRGB()

Convert pixel values from XYZ to RGB color spaces.

Parameters

```
use_D65 Tell to use the D65 illuminant (D50 otherwise).
```

18.1.4.323 resize() [1/3]

Resize image to new dimensions.

size_x	Number of columns (new size along the X-axis).
size_y	Number of rows (new size along the Y-axis).
size_z	Number of slices (new size along the Z-axis).
size_c	Number of vector-channels (new size along the C-axis).
interpolation_type	Method of interpolation:
	• -1 = no interpolation: raw memory resizing.
	 0 = no interpolation: additional space is filled according to boundary_conditions.
	• 1 = nearest-neighbor interpolation.
	• 2 = moving average interpolation.
	• 3 = linear interpolation.
	• 4 = grid interpolation.
	• 5 = cubic interpolation.
	• 6 = lanczos interpolation.

boundary_conditions	Type of boundary conditions used if necessary.
centering_x	Set centering type (only if interpolation_type=0).
centering_y	Set centering type (only if interpolation_type=0).
centering_z	Set centering type (only if interpolation_type=0).
centering_c	Set centering type (only if interpolation_type=0).

Note

If pd[x,y,z,v]<0, it corresponds to a percentage of the original size (the default value is -100).

18.1.4.324 resize() [2/3]

Resize image to dimensions of another image.

Parameters

src	Reference image used for dimensions.
interpolation_type	Interpolation method.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
centering_x	Set centering type (only if interpolation_type=0).
centering_y	Set centering type (only if interpolation_type=0).
centering_z	Set centering type (only if interpolation_type=0).
centering_c	Set centering type (only if interpolation_type=0).

18.1.4.325 resize() [3/3]

Resize image to dimensions of a display window.

disp	Reference display window used for dimensions.
interpolation_type	Interpolation method.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
centering_x	Set centering type (only if interpolation_type=0).
centering_y	Set centering type (only if interpolation_type=0).
centering_z	Set centering type (only if interpolation_type=0).
centering_c	Set centering type (only if interpolation_type=0).

18.1.4.326 resize_doubleXY()

```
CImg<T>& resize_doubleXY ( )
```

Resize image to double-size, using the Scale2X algorithm.

Note

Use anisotropic upscaling algorithm described here.

18.1.4.327 resize_tripleXY()

```
CImg<T>& resize_tripleXY ( )
```

Resize image to triple-size, using the Scale3X algorithm.

Note

18.1.4.328 mirror() [1/2]

Mirror image content along specified axis.

axis	Mirror axis

18.1.4.329 mirror() [2/2]

Mirror image content along specified axes.

Parameters

```
axes Mirror axes, as a C-string.
```

Note

axes may contains multiple characters, e.g. "xyz"

18.1.4.330 shift()

Shift image content.

Parameters

delta_x	Amount of displacement along the X-axis.
delta_y	Amount of displacement along the Y-axis.
delta_z	Amount of displacement along the Z-axis.
delta_c	Amount of displacement along the C-axis.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

18.1.4.331 permute_axes()

```
\label{eq:const_const_axes_order} $$\operatorname{CImg}<T>\& \ \operatorname{permute\_axes} \ ($$\operatorname{const} \ \operatorname{char} \ast\operatorname{const} \ \operatorname{axes\_order} \ )$
```

Permute axes order.

axes_order	Axes permutations, as a C-string of 4 characters. This function permutes image content
	regarding the specified axes permutation.

18.1.4.332 unroll()

```
CImg<T>& unroll ( const char axis)
```

Unroll pixel values along specified axis.

Parameters

```
axis Unroll axis (can be 'x', 'y', 'z' or c'c').
```

18.1.4.333 rotate() [1/4]

Rotate image with arbitrary angle.

Parameters

angle	Rotation angle, in degrees.	
interpolation	Type of interpolation. Can be { 0=nearest 1=linear 2=cubic }.	
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.	

Note

The size of the image is modified.

18.1.4.334 rotate() [2/4]

```
const float cy, const unsigned int interpolation, const unsigned int boundary\_conditions = 0)
```

Rotate image with arbitrary angle, around a center point.

Parameters

angle	Rotation angle, in degrees.
СХ	X-coordinate of the rotation center.
су	Y-coordinate of the rotation center.
interpolation	Type of interpolation, { 0=nearest 1=linear 2=cubic 3=mirror
	}.
boundary_conditions	Boundary conditions, { 0=dirichlet 1=neumann 2=periodic
	3=mirror }.

18.1.4.335 rotate() [3/4]

Rotate volumetric image with arbitrary angle and axis.

Parameters

и	X-coordinate of the 3D rotation axis.
V	Y-coordinate of the 3D rotation axis.
W	Z-coordinate of the 3D rotation axis.
angle	Rotation angle, in degrees.
interpolation	Type of interpolation. Can be { 0=nearest 1=linear 2=cubic }.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

Note

Most of the time, size of the image is modified.

18.1.4.336 rotate() [4/4]

```
CImg < T > rotate ( const float u,
```

```
const float v,
const float w,
const float angle,
const float cx,
const float cy,
const float cz,
const unsigned int interpolation = 1,
const unsigned int boundary_conditions = 0 )
```

Rotate volumetric image with arbitrary angle and axis, around a center point.

Parameters

и	X-coordinate of the 3D rotation axis.
V	Y-coordinate of the 3D rotation axis.
W	Z-coordinate of the 3D rotation axis.
angle	Rotation angle, in degrees.
СХ	X-coordinate of the rotation center.
су	Y-coordinate of the rotation center.
CZ	Z-coordinate of the rotation center.
interpolation	Type of interpolation. Can be { 0=nearest 1=linear 2=cubic 3=mirror }.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic }.

Note

Most of the time, size of the image is modified.

18.1.4.337 warp()

Warp image content by a warping field.

warp	Warping field.
mode	Can be { 0=backward-absolute 1=backward-relative 2=forward-absolute 3=foward-relative }
interpolation	Canbe { 0=nearest 1=linear 2=cubic }.
boundary_conditions	Boundary conditions { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

18.1.4.338 get_projections2d()

Generate a 2D representation of a 3D image, with XY,XZ and YZ views.

Parameters

х0	X-coordinate of the projection point.
y0	Y-coordinate of the projection point.
z0	Z-coordinate of the projection point.

18.1.4.339 crop()

Crop image region.

Parameters

х0	= X-coordinate of the upper-left crop rectangle corner.
у0	= Y-coordinate of the upper-left crop rectangle corner.
z0	= Z-coordinate of the upper-left crop rectangle corner.
c0	= C-coordinate of the upper-left crop rectangle corner.
x1	= X-coordinate of the lower-right crop rectangle corner.
y1	= Y-coordinate of the lower-right crop rectangle corner.
z1	= Z-coordinate of the lower-right crop rectangle corner.
c1	= C-coordinate of the lower-right crop rectangle corner.
boundary_conditions	= Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

18.1.4.340 autocrop()

Autocrop image region, regarding the specified background color.

Parameters

color	Color used for the crop. If 0, color is guessed.
axes	Axes used for the crop.

18.1.4.341 get_column()

Return specified image column.

Parameters

```
x0 Image column.
```

18.1.4.342 columns()

Return specified range of image columns.

Parameters

x0	Starting image column.
x1	Ending image column.

18.1.4.343 row()

```
CImg<T>& row ( const int y0 )
```

Return specified image row [in-place version].

Parameters

y0 Image row.

18.1.4.344 get_rows()

Return specified range of image rows.

Parameters

y0	Starting image row.
y1	Ending image row.

18.1.4.345 get_slice()

```
CImg<T> get_slice ( const int z0 ) const
```

Return specified image slice.

Parameters

```
z0 Image slice.
```

18.1.4.346 get_slices()

```
CImg<T> get_slices (  \mbox{const int } z0, \\ \mbox{const int } z1 \mbox{) const}
```

Return specified range of image slices.

Parameters

z0	Starting image slice.
<i>z</i> 1	Ending image slice.

18.1.4.347 get_channel()

```
CImg<T> get_channel (
```

```
const int c0 ) const
```

Return specified image channel.

Parameters

```
c0 | Image channel.
```

18.1.4.348 get_channels()

```
CImg<T> get_channels (  {\rm const\ int\ } c0, \\ {\rm const\ int\ } c1\ ) \ {\rm const}
```

Return specified range of image channels.

Parameters

c0	Starting image channel.
c1	Ending image channel.

18.1.4.349 streamline()

```
static CImg<floatT> streamline (
            const tfunc & func,
            const float x,
            const float y,
            const float z,
            const float L = 256,
             const float dl = 0.1f,
             const unsigned int interpolation_type = 2,
             const bool is_backward_tracking = false,
            const bool is_oriented_only = false,
             const float x0 = 0,
             const float y0 = 0,
            const float z0 = 0,
             const float x1 = 0,
             const float y1 = 0,
             const float z1 = 0 ) [static]
```

Return stream line of a 3D vector field.

func	Vector field function.
X	X-coordinate of the starting point of the streamline.
у	Y-coordinate of the starting point of the streamline.

Parameters

Z	Z-coordinate of the starting point of the streamline.
L	Streamline length.
dl	Streamline length increment.
interpolation_type	Type of interpolation. Can be { 0=nearest int 1=linear 2=2nd-order RK 3=4th-order RK. }.
is_backward_tracking	Tells if the streamline is estimated forward or backward.
is_oriented_only	Tells if the direction of the vectors must be ignored.
хО	X-coordinate of the first bounding-box vertex.
у0	Y-coordinate of the first bounding-box vertex.
z0	Z-coordinate of the first bounding-box vertex.
x1	X-coordinate of the second bounding-box vertex.
y1	Y-coordinate of the second bounding-box vertex.
z1	Z-coordinate of the second bounding-box vertex.

18.1.4.350 get_shared_points()

```
CImg<T> get_shared_points ( const unsigned int x0, const unsigned int x1, const unsigned int y0 = 0, const unsigned int z0 = 0, const unsigned int z0 = 0)
```

Return a shared-memory image referencing a range of pixels of the image instance.

Parameters

х0	X-coordinate of the starting pixel.
x1	X-coordinate of the ending pixel.
y0	Y-coordinate.
z0	Z-coordinate.
c0	C-coordinate.

18.1.4.351 get_shared_rows()

```
CImg<T> get_shared_rows ( const unsigned int y0, const unsigned int y1, const unsigned int z0 = 0, const unsigned int c0 = 0)
```

Return a shared-memory image referencing a range of rows of the image instance.

y0	Y-coordinate of the starting row.
y1	Y-coordinate of the ending row.
z0	Z-coordinate.
c0	C-coordinate.

18.1.4.352 get_shared_row()

Return a shared-memory image referencing one row of the image instance.

Parameters

y0	Y-coordinate.
z0	Z-coordinate.
c0	C-coordinate.

18.1.4.353 get_shared_slices()

Return a shared memory image referencing a range of slices of the image instance.

Parameters

z0	Z-coordinate of the starting slice.
<i>z</i> 1	Z-coordinate of the ending slice.
c0	C-coordinate.

18.1.4.354 get_shared_slice()

Return a shared-memory image referencing one slice of the image instance.

<i>z</i> 0	Z-coordinate.
c0	C-coordinate.

18.1.4.355 get_shared_channels()

```
CImg<T> get_shared_channels (  {\rm const\ unsigned\ int\ } c0, \\ {\rm const\ unsigned\ int\ } c1\ )
```

Return a shared-memory image referencing a range of channels of the image instance.

Parameters

c0	C-coordinate of the starting channel.
c1	C-coordinate of the ending channel.

18.1.4.356 get_shared_channel()

```
CImg<T> get_shared_channel (  {\rm const\ unsigned\ int\ } c0\ )
```

Return a shared-memory image referencing one channel of the image instance.

Parameters

```
c0 C-coordinate.
```

18.1.4.357 get_split() [1/2]

```
CImgList<T> get_split ( const char axis, const int nb = -1 ) const
```

Split image into a list along specified axis.

axis	Splitting axis. Can be { 'x' 'y' 'z' 'c' }.
nb	Number of split parts.

Note

- If nb==0, instance image is split into blocs of equal values along the specified axis.
- If nb<=0, instance image is split into blocs of -nb pixel wide.
- If nb>0, instance image is split into nb blocs.

18.1.4.358 get_split() [2/2]

Split image into a list of sub-images, according to a specified splitting value sequence and optionally axis.

Parameters

values	Splitting value sequence.
axis	Axis along which the splitting is performed. Can be '0' to ignore axis.
keep_values	Tells if the splitting sequence must be kept in the split blocs.

18.1.4.359 append()

```
CImg<T>& append (  \mbox{const CImg} < \mbox{t} > \mbox{\& img}, \\ \mbox{const char } axis = \mbox{'x'}, \\ \mbox{const float } align = 0 \mbox{ )}
```

Append two images along specified axis.

Parameters

img	Image to append with instance image.	
axis	Appending axis. Can be { 'x' 'y' 'z' 'c' }.	
align	Append alignment in [0,1].	

18.1.4.360 correlate()

```
const unsigned int channel_mode = 1,
const int xcenter = (int)(\sim 0U >> 1),
const int ycenter = (int)(\sim 0U >> 1),
const int zcenter = (int)(\sim 0U >> 1),
const int xstart = 0,
const int ystart = 0,
const int zstart = 0,
const int xend = (int)(\sim 0U >> 1),
const int yend = (int)(\sim 0U >> 1),
const int zend = (int)(\sim 0U >> 1),
const float xstride = 1,
const float ystride = 1,
const float zstride = 1,
const float xdilation = 1,
const float ydilation = 1,
const float zdilation = 1,
const bool interpolation_type = false )
```

Correlate image by a kernel.

Parameters

kernel	= the correlation kernel.
boundary_conditions	Boundary condition. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
is_normalized	= enable local normalization.
channel_mode	Channel processing mode. Can be { 0=all 1=one for one (default) 2=partial sum 3=full sum }.
xcenter	X-coordinate of the kernel center (\sim 0U>>1 means 'centered').
ycenter	Y-coordinate of the kernel center (~0U>>1 means 'centered').
zcenter	Z-coordinate of the kernel center (~0U>>1 means 'centered').
xstart	Starting X-coordinate of the instance image.
ystart	Starting Y-coordinate of the instance image.
zstart	Starting Z-coordinate of the instance image.
xend	Ending X-coordinate of the instance image.
yend	Ending Y-coordinate of the instance image.
zend	Ending Z-coordinate of the instance image.
xstride	Stride along the X-axis.
ystride	Stride along the Y-axis.
zstride	Stride along the Z-axis.
xdilation	Dilation along the X-axis.
ydilation	Dilation along the Y-axis.
zdilation	Dilation along the Z-axis.
interpolation_type	Can be { false=nearest true=linear }.

Note

The correlation of the image instance *this by the kernel kernel is defined to be: res(x,y,z) = sum ~ _{i,j,k} (*this)(\alpha_x\;x + \beta_x\;(i - c_x),\alpha_y\;y + \beta_y\;(j - c_y),\alpha_z\;z + \beta_z\;(k - c_z))*kernel(i,j,k).

18.1.4.361 convolve()

```
CImg<T>& convolve (
             const CImg< t > & kernel,
             const unsigned int boundary_conditions = 1,
             const bool is_normalized = false,
             const unsigned int channel_mode = 1,
             const int xcenter = (int)(\sim 0U >> 1),
             const int ycenter = (int)(\sim 0U >> 1),
             const int zcenter = (int) (\sim 0U >> 1),
             const int xstart = 0,
             const int ystart = 0,
             const int zstart = 0,
             const int xend = (int) (\sim 0U >> 1),
             const int yend = (int)(\sim0U>>1),
             const int zend = (int)(\sim 0U >> 1),
             const float xstride = 1,
             const float ystride = 1,
             const float zstride = 1,
             const float xdilation = 1,
             const float ydilation = 1,
             const float zdilation = 1,
             const bool interpolation\_type = false)
```

Convolve image by a kernel.

kernel	= the correlation kernel.
boundary_conditions	Boundary condition. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
is_normalized	= enable local normalization.
channel_mode	Channel processing mode. Can be { 0=all $ $ 1=one for one (default) $ $ 2=partial sum $ $ 3=full sum $ $ 3.
xcenter	X-coordinate of the kernel center (~0U means 'centered').
ycenter	Y-coordinate of the kernel center (~0U means 'centered').
zcenter	Z-coordinate of the kernel center (~0U means 'centered').
xstart	Starting X-coordinate of the instance image.
ystart	Starting Y-coordinate of the instance image.
zstart	Starting Z-coordinate of the instance image.
xend	Ending X-coordinate of the instance image.
yend	Ending Y-coordinate of the instance image.
zend	Ending Z-coordinate of the instance image.
xstride	Stride along the X-axis.
ystride	Stride along the Y-axis.
zstride	Stride along the Z-axis.
xdilation	Dilation along the X-axis.
ydilation	Dilation along the Y-axis.
zdilation	Dilation along the Z-axis.
interpolation_type	Can be { false=nearest true=linear }.

Note

- The convolution of the image instance *this by the kernel kernel is defined to be: $res(x,y,z) = sum_{i,j,k} (*this)(\lambda y,x \beta_x), \lambda y,y$
 - $\beta_z = \beta_z \cdot (k c_z) \cdot (k$

18.1.4.362 cumulate() [1/2]

```
CImg<T>& cumulate ( const char axis = 0)
```

Cumulate image values, optionally along specified axis.

Parameters

axis | Cumulation axis. Set it to 0 to cumulate all values globally without taking axes into account.

18.1.4.363 cumulate() [2/2]

Cumulate image values, along specified axes.

Parameters

```
axes Cumulation axes, as a C-string.
```

Note

axes may contains multiple characters, e.g. "xyz"

18.1.4.364 erode() [1/3]

Erode image by a structuring element.

Parameters

kernel	Structuring element.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
is_real	Do the erosion in real (a.k.a 'non-flat') mode (true) rather than binary mode (false).

18.1.4.365 erode() [2/3]

```
CImg<T>& erode (  {\rm const\ unsigned\ int\ } sx, \\ {\rm const\ unsigned\ int\ } sy, \\ {\rm const\ unsigned\ int\ } sz=1\ )
```

Erode image by a rectangular structuring element of specified size.

Parameters

SX	Width of the structuring element.
sy	Height of the structuring element.
SZ	Depth of the structuring element.

18.1.4.366 erode() [3/3]

```
CImg<T>& erode ( {\rm const\ unsigned\ int}\ s\ )
```

Erode the image by a square structuring element of specified size.

Parameters

```
s Size of the structuring element.
```

18.1.4.367 dilate() [1/3]

Dilate image by a structuring element.

kernel	Structuring element.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
is_real	Do the dilation in real (a.k.a 'non-flat') mode (true) rather than binary mode (false).

18.1.4.368 dilate() [2/3]

Dilate image by a rectangular structuring element of specified size.

Parameters

	SX	Width of the structuring element.
	sy	Height of the structuring element.
Ī	SZ	Depth of the structuring element.

18.1.4.369 dilate() [3/3]

```
CImg<T>& dilate ( {\rm const\ unsigned\ int}\ s\ )
```

Dilate image by a square structuring element of specified size.

Parameters

```
s Size of the structuring element.
```

18.1.4.370 closing() [1/2]

Apply morphological closing by a structuring element.

Parameters

kernel	Structuring element.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
is_real	Do the closing in real (a.k.a 'non-flat') mode (true) rather than binary mode (false).

18.1.4.371 closing() [2/2]

Apply morphological closing by a square structuring element of specified size.

Parameters

```
s Size of the structuring element.
```

18.1.4.372 opening() [1/2]

Apply morphological opening by a structuring element.

Parameters

kernel	Structuring element.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
is_real	Do the opening in real (a.k.a 'non-flat') mode (true) rather than binary mode (false).

18.1.4.373 opening() [2/2]

Apply morphological opening by a square structuring element of specified size.

```
s Size of the structuring element.
```

18.1.4.374 watershed()

```
CImg<T>& watershed ( const\ CImg<\ t\ >\ \&\ priority, const\ bool\ is\_high\_connectivity\ =\ false\ )
```

Compute watershed transform.

Parameters

priority	Priority map.
is_high_connectivity	Boolean that choose between 4(false)- or 8(true)-connectivity in 2D case, and between 6(false)- or 26(true)-connectivity in 3D case.

Note

Non-zero values of the instance instance are propagated to zero-valued ones according to specified the priority map.

18.1.4.375 deriche()

Apply recursive Deriche filter.

sigma	Standard deviation of the filter.
order	Order of the filter. Can be { 0=smooth-filter 1=1st-derivative
	2=2nd-derivative }.
axis	Axis along which the filter is computed. Can be { 'x' 'y' 'z' 'c' }.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

18.1.4.376 vanvliet()

Van Vliet recursive Gaussian filter.

Parameters

sigma	standard deviation of the Gaussian filter
order	the order of the filter 0,1,2,3
axis	Axis along which the filter is computed. Can be { 'x' 'y' 'z' 'c' }.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

Note

dirichlet boundary condition has a strange behavior

I.T. Young, L.J. van Vliet, M. van Ginkel, Recursive Gabor filtering. IEEE Trans. Sig. Proc., vol. 50, pp. 2799-2805, 2002.

(this is an improvement over Young-Van Vliet, Sig. Proc. 44, 1995)

Boundary conditions (only for order 0) using Triggs matrix, from B. Triggs and M. Sdika. Boundary conditions for Young-van Vliet recursive filtering. IEEE Trans. Signal Processing, vol. 54, pp. 2365-2367, 2006.

18.1.4.377 blur() [1/2]

Blur image.

sigma_x	Standard deviation of the blur, along the X-axis.
sigma_y	Standard deviation of the blur, along the Y-axis.
sigma_z	Standard deviation of the blur, along the Z-axis.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
is_gaussian	Tells if the blur uses a gaussian (true) or quasi-gaussian (false) kernel.

Note

- The blur is computed as a 0-order Vanvliet (gaussian) or Deriche filter (quasi-gaussian).
- This is a recursive algorithm, not depending on the values of the standard deviations.

See also

```
deriche(), vanvliet().
```

18.1.4.378 blur() [2/2]

Blur image isotropically.

Parameters

sigma	Standard deviation of the blur.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.a
is_gaussian	Use a gaussian kernel (VanVliet) is set, a quasi-gaussian (Deriche) otherwise.

See also

deriche(), vanvliet().

18.1.4.379 blur_anisotropic() [1/2]

Blur image anisotropically, directed by a field of diffusion tensors.

G	Field of square roots of diffusion tensors/vectors used to drive the smoothing.
amplitude	Amplitude of the smoothing.

Parameters

dl	Spatial discretization.
da	Angular discretization.
gauss_prec	Precision of the diffusion process.
interpolation_type	Interpolation scheme. Can be { 0=nearest-neighbor 1=linear
	2=Runge-Kutta }.
is_fast_approx	Tells if a fast approximation of the gaussian function is used or not.

18.1.4.380 blur_anisotropic() [2/2]

Blur image anisotropically, in an edge-preserving way.

Parameters

amplitude	Amplitude of the smoothing.
sharpness	Sharpness.
anisotropy	Anisotropy.
alpha	Standard deviation of the gradient blur.
sigma	Standard deviation of the structure tensor blur.
dl	Spatial discretization.
da	Angular discretization.
gauss_prec	Precision of the diffusion process.
interpolation_type	Interpolation scheme. Can be { 0=nearest-neighbor 1=linear
	2=Runge-Kutta }.
is_fast_approx	Tells if a fast approximation of the gaussian function is used or not.

18.1.4.381 blur_bilateral() [1/2]

```
const float sigma_z,
const float sigma_r,
const float sampling_x,
const float sampling_y,
const float sampling_z,
const float sampling_r)
```

Blur image, with the joint bilateral filter.

Parameters

guide	Image used to model the smoothing weights.
sigma_x	Amount of blur along the X-axis.
sigma_y	Amount of blur along the Y-axis.
sigma_z	Amount of blur along the Z-axis.
sigma_r	Amount of blur along the value axis.
sampling←	Amount of downsampling along the X-axis used for the approximation. Defaults (0) to sigma_x.
_X	
sampling⊷	Amount of downsampling along the Y-axis used for the approximation. Defaults (0) to sigma_y.
y	
sampling←	Amount of downsampling along the Z-axis used for the approximation. Defaults (0) to sigma_z.
_Z	
sampling⊷	Amount of downsampling along the value axis used for the approximation. Defaults (0) to sigma_r.
_r	

Note

18.1.4.382 blur_bilateral() [2/2]

Blur image using the joint bilateral filter.

guide	Image used to model the smoothing weights.
sigma_s	Amount of blur along the XYZ-axes.
sigma_r	Amount of blur along the value axis.
sampling←	Amount of downsampling along the XYZ-axes used for the approximation. Defaults to sigma_s.
_s	
sampling⊷	Amount of downsampling along the value axis used for the approximation. Defaults to sigma_r.
_r	

18.1.4.383 boxfilter()

Parameters

boxsize	Size of the box window (can be subpixel)
order	the order of the filter 0,1 or 2.
axis	Axis along which the filter is computed. Can be { 'x' 'y' 'z' 'c' }.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.
nb_iter	Number of filter iterations.

18.1.4.384 blur_box() [1/2]

Blur image with a box filter.

Parameters

boxsize_x	Size of the box window, along the X-axis (can be subpixel).
boxsize_y	Size of the box window, along the Y-axis (can be subpixel).
boxsize_z	Size of the box window, along the Z-axis (can be subpixel).
boundary_conditions	Boundary conditions. Can be { false=dirichlet true=neumann 2=periodic 3=mirror }.
nb_iter	Number of filter iterations.

Note

• This is a recursive algorithm, not depending on the values of the box kernel size.

See also

blur().

18.1.4.385 blur_box() [2/2]

Blur image with a box filter.

Parameters

boxsize	Size of the box window (can be subpixel).
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic
	3=mirror }.a

See also

deriche(), vanvliet().

18.1.4.386 blur_guided()

```
\label{eq:const_cimg} $$\operatorname{CImg}<T>\& \ blur\_guided ($$ \operatorname{const} \ CImg< t>\& \ guide, $$ \operatorname{const} \ float \ radius, $$ \operatorname{const} \ float \ regularization )$
```

Blur image, with the image guided filter.

Parameters

guide	Image used to guide the smoothing process.
radius	Spatial radius. If negative, it is expressed as a percentage of the largest image size.
regularization	Regularization parameter. If negative, it is expressed as a percentage of the guide value range.

Note

This method implements the filtering algorithm described in: He, Kaiming; Sun, Jian; Tang, Xiaoou, "← Guided Image Filtering," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.35, no.6, pp.1397,1409, June 2013

18.1.4.387 blur_patch()

```
const unsigned int patch_size = 3,
const unsigned int lookup_size = 4,
const float smoothness = 0,
const bool is_fast_approx = true )
```

Blur image using patch-based space.

Parameters

guide	Image used to model the smoothing weights.
sigma_s	Amount of blur along the XYZ-axes.
sigma_r	Amount of blur along the value axis.
patch_size	Size of the patches.
lookup_size	Size of the window to search similar patches.
smoothness	Smoothness for the patch comparison.
is_fast_approx	Tells if a fast approximation of the gaussian function is used or not.

18.1.4.388 blur_median()

Blur image with the median filter.

Parameters

n	Size of the median filter.]
threshold	Threshold used to discard pixels too far from the current pixel value in the median computation.]

18.1.4.389 sharpen()

Sharpen image.

amplitude	Sharpening amplitude
sharpen_type	Select sharpening method. Can be { false=inverse diffusion true=shock filters }.

edge	Edge threshold (shock filters only).
alpha	Gradient smoothness (shock filters only).
sigma	Tensor smoothness (shock filters only).

18.1.4.390 get_gradient()

Return image gradient.

Parameters

axes	Axes considered for the gradient computation, as a C-string (e.g "xy").
scheme	= Numerical scheme used for the gradient computation:
	• -1 = Backward finite differences
	0 = Centered finite differences (default)
	• 1 = Forward finite differences
	• 2 = Using Sobel kernels
	• 3 = Using rotation invariant kernels
	 4 = Using Deriche recursive filter.
	 5 = Using Van Vliet recursive filter.
1	

18.1.4.391 get_hessian()

Return image hessian.

2000	Axes considered for the hessian computation, as a C-string (e.g "xy").
anes	Axes considered for the nessian computation, as a o-string (e.g. xy).

18.1.4.392 structure_tensors()

```
\label{eq:cimg} $$ \color= CImg<T>\& structure\_tensors ($$ const bool $is\_fwbw\_scheme = false )$
```

Compute the structure tensor field of an image.

Parameters

```
is_fwbw_scheme | scheme. Can be { false=centered | true=forward-backward }
```

18.1.4.393 diffusion_tensors()

Compute field of diffusion tensors for edge-preserving smoothing.

Parameters

sharpness	Sharpness
anisotropy	Anisotropy
alpha	Standard deviation of the gradient blur.
sigma	Standard deviation of the structure tensor blur.
is_sqrt	Tells if the square root of the tensor field is computed instead.

18.1.4.394 displacement()

Estimate displacement field between two images.

source	Reference image.
--------	------------------

Parameters

smoothness	Smoothness of estimated displacement field.		
precision	Precision required for algorithm convergence.		
nb_scales	Number of scales used to estimate the displacement field.		
iteration_max	Maximum number of iterations allowed for one scale.		
is_backward	If false, match $I2(X + U(X)) = I1(X)$, else match $I2(X) = I1(X - U(X))$.		
guide Image used as the initial correspondence estimate for the algorithm. 'guide' may have a channel with boolean values (0=false other=true) that tells for each pixel if its correspondence estimate for the algorithm. 'guide' may have a channel with boolean values (0=false other=true) that tells for each pixel if its correspondence estimate for the algorithm. 'guide' may have a channel with boolean values (0=false other=true) that tells for each pixel if its correspondence estimate for the algorithm. 'guide' may have a channel with boolean values (0=false other=true) that tells for each pixel if its correspondence estimate for the algorithm.			

18.1.4.395 matchpatch()

Compute correspondence map between two images, using a patch-matching algorithm.

Parameters

	patch_image	The image containing the reference patches to match with the instance image.
	patch_width	Width of the patch used for matching.
	patch_height	Height of the patch used for matching.
	patch_depth	Depth of the patch used for matching.
	nb_iterations	Number of patch-match iterations.
	nb_randoms	Number of randomization attempts (per pixel).
	patch_penalization	Penalization factor in score related patch occurrences. if negative, also tells that identity result is not avoided.
	guide	Image used as the initial correspondence estimate for the algorithm. 'guide' may have a last channel with boolean values (0=false other=true) that tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask).
out	matching_score	Returned as the image of matching scores.

18.1.4.396 distance() [1/2]

Compute Euclidean distance function to a specified value.

Parameters

value	Reference value.		
metric	Type of metric. Can be { 0=Chebyshev 1=Manhattan 2=Euclidean		
	3=Squared-euclidean }.		

Note

The distance transform implementation has been submitted by A. Meijster, and implements the article 'W.H. Hesselink, A. Meijster, J.B.T.M. Roerdink, "A general algorithm for computing distance transforms in linear time.", In: Mathematical Morphology and its Applications to Image and Signal Processing, J. Goutsias, L. Vincent, and D.S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.' The submitted code has then been modified to fit CImg coding style and constraints.

18.1.4.397 distance() [2/2]

```
CImg<T>& distance ( const\ T\ \&\ value, const\ CImg<\ t\ >\ \&\ metric\_mask\ )
```

Compute chamfer distance to a specified value, with a custom metric.

Parameters

value	Reference value.	
metric_mask	Metric mask.	

Note

The algorithm code has been initially proposed by A. Meijster, and modified by D. Tschumperlé.

18.1.4.398 distance dijkstra()

Compute distance to a specified value, according to a custom metric (use dijkstra algorithm).

	value	Reference value.
metric		Field of distance potentials.
	is_high_connectivity	Tells if the algorithm uses low or high connectivity.
out <i>return_path</i>		An image containing the nodes of the minimal path.

18.1.4.399 distance_eikonal() [1/2]

Compute distance map to one source point, according to a custom metric (use fast marching algorithm).

Parameters

value	Reference value.
metric	Field of distance potentials.

18.1.4.400 distance_eikonal() [2/2]

Compute distance function to 0-valued isophotes, using the Eikonal PDE.

Parameters

nb_iterations	Number of PDE iterations.
band_size	Size of the narrow band.
time_step	Time step of the PDE iterations.

18.1.4.401 haar() [1/2]

Compute Haar multiscale wavelet transform.

axis	Axis considered for the transform.
invert	Set inverse of direct transform.
nb_scales	Number of scales used for the transform.

18.1.4.402 haar() [2/2]

Compute Haar multiscale wavelet transform [overloading].

Parameters

invert	Set inverse of direct transform.
nb_scales	Number of scales used for the transform.

18.1.4.403 get_FFT()

Compute 1D Fast Fourier Transform, along a specified axis.

Parameters

axis	Axis along which the FFT is computed.	
is_inverse	Tells if the forward (false) or inverse (true) FFT is computed.	

18.1.4.404 FFT() [1/2]

Compute 1D Fast Fourier Transform, along a specified axis.

in,out	real	Real part of the pixel values.
in,out	imag	Imaginary part of the pixel values.
	axis	Axis along which the FFT is computed.
	is_inverse	Tells if the forward (false) or inverse (true) FFT is computed.

18.1.4.405 FFT() [2/2]

Compute n-D Fast Fourier Transform.

Parameters

in,out	real	Real part of the pixel values.
in,out	imag	Imaginary part of the pixel values.
	is_inverse	Tells if the forward (false) or inverse (true) FFT is computed.
	nb_threads	Number of parallel threads used for the computation. Use 0 to set this to the number of available cpus.

18.1.4.406 rotate_object3d()

Rotate 3D object's vertices.

Parameters

X	X-coordinate of the rotation axis, or first quaternion coordinate.
У	Y-coordinate of the rotation axis, or second quaternion coordinate.
Z	Z-coordinate of the rotation axis, or second quaternion coordinate.
W	Angle of the rotation axis (in degree), or fourth quaternion coordinate.
is_quaternion	Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w).

18.1.4.407 shift_object3d() [1/2]

Shift 3D object's vertices.

Parameters

tx	X-coordinate of the 3D displacement vector.
ty	· •
tz	Z-coordinate of the 3D displacement vector.

18.1.4.408 shift_object3d() [2/2]

```
CImg<T>& shift_object3d ( )
```

Shift 3D object's vertices, so that it becomes centered.

Note

The object center is computed as its barycenter.

18.1.4.409 resize_object3d()

Resize 3D object.

Parameters

SX	Width of the 3D object's bounding box.
sy	Height of the 3D object's bounding box.
SZ	Depth of the 3D object's bounding box.

18.1.4.410 append_object3d()

Merge two 3D objects together.

Parameters

in,out	primitives	Primitives data of the current 3D object.
	obj_vertices	Vertices data of the additional 3D object.
	obj_primitives	Primitives data of the additional 3D object.

18.1.4.411 texturize_object3d()

Texturize primitives of a 3D object.

Parameters

in,out	primitives	Primitives data of the 3D object.
in,out	colors	Colors data of the 3D object.
	texture	Texture image to map to 3D object.
	coords	Texture-mapping coordinates.

18.1.4.412 get_elevation3d()

Generate a 3D elevation of the image instance.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
out	colors	The returned list of the 3D object colors.
	elevation	The input elevation map.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
const CImg<float> img("reference.jpg");
CImgList<unsigned int> faces3d;
CImgList<unsigned char> colors3d;
const CImg<float> points3d = img.get_elevation3d(faces3d,colors3d,img.get_norm()*0.2);
CImg<unsigned char>().display_object3d("Elevation3d",points3d,faces3d,colors3d);
```

18.1.4.413 get_projections3d()

Generate the 3D projection planes of the image instance.

Parameters

out	primitives	Primitives data of the returned 3D object.
out	colors	Colors data of the returned 3D object.
	x0	X-coordinate of the projection point.
	y0	Y-coordinate of the projection point.
	z0	Z-coordinate of the projection point.
	normalize_colors	Tells if the created textures have normalized colors.

18.1.4.414 get_isoline3d()

Generate a isoline of the image instance as a 3D object.

out	primitives	The returned list of the 3D object primitives (template type tf should be at least unsigned int).
	isovalue	The returned list of the 3D object colors.
	size_x	The number of subdivisions along the X-axis.
	size_y	The number of subdisivions along the Y-axis.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
const CImg<float> img("reference.jpg");
CImgList<unsigned int> faces3d;
const CImg<float> points3d = img.get_isoline3d(faces3d,100);
CImg<unsigned char>().display_object3d("Isoline3d",points3d,faces3d,colors3d);
```

18.1.4.415 isoline3d() [1/2]

Compute isolines of a function, as a 3D object.

Parameters

out	primitives	Primitives data of the resulting 3D object.
	func	Elevation functor. Must have $operator()(x,y)$ defined.
	isovalue	Isovalue to extract from function.
	x0	X-coordinate of the starting point.
	y0	Y-coordinate of the starting point.
	x1	X-coordinate of the ending point.
	y1	Y-coordinate of the ending point.
	size_x	Resolution of the function along the X-axis.
	size_y	Resolution of the function along the Y-axis.

Note

Use the marching squares algorithm for extracting the isolines.

18.1.4.416 isoline3d() [2/2]

```
const tfunc & func,
const float isovalue,
const float x0,
const float y0,
const float x1,
const float y1,
const int size_x,
const int size_y) [static]
```

Compute isolines of a function, as a 3D object.

Parameters

out	add_vertex	: Functor with operator()(x,y,z) defined for adding new vertex.
out	add_segment	: Functor with operator()(i,j) defined for adding new segment.
	func	Elevation function. Is of type float (*func) (const float x, const
		float y).
	isovalue	Isovalue to extract from function.
	x0	X-coordinate of the starting point.
	y0	Y-coordinate of the starting point.
	x1	X-coordinate of the ending point.
	y1	Y-coordinate of the ending point.
	size_x	Resolution of the function along the X-axis.
	size_y	Resolution of the function along the Y-axis.

Note

Use the marching squares algorithm for extracting the isolines.

18.1.4.417 get_isosurface3d()

Generate an isosurface of the image instance as a 3D object.

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	isovalue	The returned list of the 3D object colors.
	size_x	Number of subdivisions along the X-axis.
	size_y	Number of subdisivions along the Y-axis.
	size_z	Number of subdisivions along the Z-axis.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
const CImg<float> img = CImg<unsigned char>("reference.jpg").resize(-100,-100,20);
CImgList<unsigned int> faces3d;
const CImg<float> points3d = img.get_isosurface3d(faces3d,100);
CImg<unsigned char>().display_object3d("Isosurface3d",points3d,faces3d,colors3d);
```

18.1.4.418 isosurface3d() [1/2]

Compute isosurface of a function, as a 3D object.

Parameters

out	primitives	Primitives data of the resulting 3D object.
	func	Implicit function. Is of type float (*func) (const float x, const float
		y, const float z).
	isovalue	Isovalue to extract.
	x0	X-coordinate of the starting point.
	у0	Y-coordinate of the starting point.
	z0	Z-coordinate of the starting point.
	x1	X-coordinate of the ending point.
	y1	Y-coordinate of the ending point.
	z1	Z-coordinate of the ending point.
	size_x	Resolution of the elevation function along the X-axis.
	size_y	Resolution of the elevation function along the Y-axis.
	size_z	Resolution of the elevation function along the Z-axis.

Note

Use the marching cubes algorithm for extracting the isosurface.

18.1.4.419 isosurface3d() [2/2]

Compute isosurface of a function, as a 3D object.

Parameters

out	add_vertex	: Functor with operator()(x,y,z) defined for adding new vertex.
out	add_triangle	: Functor with operator()(i,j) defined for adding new segment.
	func	Implicit function. Is of type float (*func) (const float x, const
		float y, const float z).
	isovalue	Isovalue to extract.
	x0	X-coordinate of the starting point.
	y0	Y-coordinate of the starting point.
	z0	Z-coordinate of the starting point.
	x1	X-coordinate of the ending point.
	y1	Y-coordinate of the ending point.
	z1	Z-coordinate of the ending point.
	size_x	Resolution of the elevation function along the X-axis.
	size_y	Resolution of the elevation function along the Y-axis.
	size_z	Resolution of the elevation function along the Z-axis.

Note

Use the marching cubes algorithm for extracting the isosurface.

18.1.4.420 elevation3d()

Compute 3D elevation of a function as a 3D object.

Parameters

out	primitives	Primitives data of the resulting 3D object.	
	func	Elevation function. Is of type float (*func) (const float x, const float y).	
x0 X-coordinate of the starting point.		X-coordinate of the starting point.	
	у0	Y-coordinate of the starting point.	
	x1 X-coordinate of the ending point.		
	y1	Y-coordinate of the ending point.	
	size_x	Resolution of the function along the X-axis.	
	size_y	Resolution of the function along the Y-axis.	

18.1.4.421 box3d()

Generate a 3D box object.

Parameters

out	primitives	The returned list of the 3D object primitives (template type tf should be at least unsigned int).
	size_x	The width of the box (dimension along the X-axis).
	size_y	The height of the box (dimension along the Y-axis).
	size_z	The depth of the box (dimension along the Z-axis).

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::box3d(faces3d,10,20,30);
CImg<unsigned char>().display_object3d("Box3d",points3d,faces3d);
```

18.1.4.422 cone3d()

Generate a 3D cone.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	radius	The radius of the cone basis.
	size_z	The cone's height.
	subdivisions	The number of basis angular subdivisions.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::cone3d(faces3d,50);
CImg<unsigned char>().display_object3d("Cone3d",points3d,faces3d);
```

18.1.4.423 cylinder3d()

Generate a 3D cylinder.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	radius	The radius of the cylinder basis.
	size_z	The cylinder's height.
	subdivisions	The number of basis angular subdivisions.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::cylinder3d(faces3d,50);
CImg<unsigned char>().display_object3d("Cylinder3d",points3d,faces3d);
```

18.1.4.424 torus3d()

Generate a 3D torus.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	radius1	The large radius.
	radius2	The small radius.
	subdivisions1	The number of angular subdivisions for the large radius.
	subdivisions2	The number of angular subdivisions for the small radius.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::torus3d(faces3d,20,4);
CImg<unsigned char>().display_object3d("Torus3d",points3d,faces3d);
```

18.1.4.425 plane3d()

Generate a 3D XY-plane.

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	size_x	The width of the plane (dimension along the X-axis).
	size_y	The height of the plane (dimensions along the Y-axis).
	subdivisions⇔ _x	The number of planar subdivisions along the X-axis.
	subdivisions↔ _y	The number of planar subdivisions along the Y-axis.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::plane3d(faces3d,100,50);
CImg<unsigned char>().display_object3d("Plane3d",points3d,faces3d);
```

18.1.4.426 sphere3d()

Generate a 3D sphere.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	radius	The radius of the sphere (dimension along the X-axis).
	subdivisions	The number of recursive subdivisions from an initial icosahedron.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::sphere3d(faces3d,100,4);
CImg<unsigned char>().display_object3d("Sphere3d",points3d,faces3d);
```

18.1.4.427 ellipsoid3d()

Generate a 3D ellipsoid.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	tensor	The tensor which gives the shape and size of the ellipsoid.
	subdivisions	The number of recursive subdivisions from an initial stretched icosahedron.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N-1).

Example

18.1.4.428 object3dtoClmg3d()

Convert 3D object into a CImg3d representation.

Parameters

primitives Primitives data of the 3D object.	
colors	Colors data of the 3D object.
opacities	Opacities data of the 3D object.
full_check	Tells if full checking of the 3D object must be performed.

18.1.4.429 Clmg3dtoobject3d()

Convert Clmg3d representation into a 3D object.

Parameters

out	primitives	Primitives data of the 3D object.
out	colors	Colors data of the 3D object.
out	opacities	Opacities data of the 3D object.
	full_check	Tells if full checking of the 3D object must be performed.

18.1.4.430 draw_point() [1/2]

Draw a 3D point.

Parameters

x0	X-coordinate of the point.
y0	Y-coordinate of the point.
z0	Z-coordinate of the point.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

Note

• To set pixel values without clipping needs, you should use the faster Clmg::operator()() function.

Example:

```
CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,128,64 };
img.draw_point(50,50,color);
```

18.1.4.431 draw_point() [2/2]

points	Image of vertices coordinates.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

18.1.4.432 draw_line() [1/6]

Draw a 2D line.

Parameters

x0	X-coordinate of the starting line point.
y0	Y-coordinate of the starting line point.
x1	X-coordinate of the ending line point.
y1	Y-coordinate of the ending line point.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if a reinitialization of the hash state must be done.

Note

- Line routine uses Bresenham's algorithm.
- Set init_hatch = false to draw consecutive hatched segments without breaking the line pattern.

Example:

```
CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,128,64 };
img.draw_line(40,40,80,70,color);
```

18.1.4.433 draw_line() [2/6]

Draw a 2D line, with z-buffering.

Parameters

zbuffer	Zbuffer image.
x0	X-coordinate of the starting point.
y0	Y-coordinate of the starting point.
z0	Z-coordinate of the starting point
x1	X-coordinate of the ending point.
y1	Y-coordinate of the ending point.
z1	Z-coordinate of the ending point.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if a reinitialization of the hash state must be done.

18.1.4.434 draw_line() [3/6]

```
CImg<T>& draw_line (
    int x0,
    int y0,
    int x1,
    int y1,
    const CImg< tc > & texture,
    int tx0,
    int ty0,
    int tx1,
    int ty1,
    const float opacity = 1,
    const unsigned int pattern = ~0U,
    const bool init_hatch = true )
```

Draw a textured 2D line.

X-coordinate of the starting line point.
Y-coordinate of the starting line point.
X-coordinate of the ending line point.
Y-coordinate of the ending line point.
Texture image defining the pixel colors.
X-coordinate of the starting texture point.
Y-coordinate of the starting texture point.
X-coordinate of the ending texture point.
Y-coordinate of the ending texture point.
Drawing opacity.
An integer whose bits describe the line pattern.
Tells if the hash variable must be reinitialized.

Note

• Line routine uses the well known Bresenham's algorithm.

Example:

```
 \label{eq:const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const
```

18.1.4.435 draw_line() [4/6]

Draw a textured 2D line, with perspective correction.

x0	X-coordinate of the starting point.
y0	Y-coordinate of the starting point.
z0	Z-coordinate of the starting point
x1	X-coordinate of the ending point.
y1	Y-coordinate of the ending point.
z1	Z-coordinate of the ending point.
texture	Texture image defining the pixel colors.
tx0	X-coordinate of the starting texture point.
ty0	Y-coordinate of the starting texture point.
tx1	X-coordinate of the ending texture point.
ty1	Y-coordinate of the ending texture point.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if the hash variable must be reinitialized.

18.1.4.436 draw_line() [5/6]

```
CImg < T > & draw_line (
             CImg< tz > & zbuffer,
             int x0,
             int y0,
             const float z0,
             int x1,
             int y1,
             const float z1,
             const CImg< tc > & texture,
              const int tx0,
              const int ty0,
             const int tx1,
             const int ty1,
             const float opacity = 1,
             const unsigned int pattern = \sim 0U,
             {\tt const bool } init\_hatch = true \;)
```

Draw a textured 2D line, with perspective correction and z-buffering.

Parameters

zbuffer	Z-buffer image.
х0	X-coordinate of the starting point.
y0	Y-coordinate of the starting point.
z0	Z-coordinate of the starting point
x1	X-coordinate of the ending point.
y1	Y-coordinate of the ending point.
z1	Z-coordinate of the ending point.
texture	Texture image defining the pixel colors.
tx0	X-coordinate of the starting texture point.
ty0	Y-coordinate of the starting texture point.
tx1	X-coordinate of the ending texture point.
ty1	Y-coordinate of the ending texture point.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if the hash variable must be reinitialized.

18.1.4.437 draw_line() [6/6]

Draw a set of consecutive lines.

Parameters

points	Coordinates of vertices, stored as a list of vectors.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	If set to true, init hatch motif.

Note

• This function uses several call to the single Clmg::draw_line() procedure, depending on the vectors size in points.

18.1.4.438 draw_arrow()

```
CImg<T>& draw_arrow (  const int \ x0, \\ const int \ y0, \\ const int \ x1, \\ const int \ y1, \\ const int \ y1, \\ const tc *const color, \\ const float opacity = 1, \\ const float angle = 30, \\ const float length = -10, \\ const unsigned int pattern = <math>\sim 0U)
```

Draw a 2D arrow.

Parameters

х0	X-coordinate of the starting arrow point (tail).
y0	Y-coordinate of the starting arrow point (tail).
x1	X-coordinate of the ending arrow point (head).
y1	Y-coordinate of the ending arrow point (head).
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
angle	Aperture angle of the arrow head.
length	Length of the arrow head. If negative, describes a percentage of the arrow length.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.

18.1.4.439 draw_spline() [1/4]

```
CImg<T>& draw_spline ( const int x0,
```

```
const int y0,
const float u0,
const float v0,
const int x1,
const int y1,
const float u1,
const float v1,
const float v2,
const v2,
const v2,
const v3,
const v3,
const v4,
```

Draw a 2D spline.

Parameters

x0	X-coordinate of the starting curve point
y0	Y-coordinate of the starting curve point
u0	X-coordinate of the starting velocity
v0	Y-coordinate of the starting velocity
x1	X-coordinate of the ending curve point
y1	Y-coordinate of the ending curve point
u1	X-coordinate of the ending velocity
v1	Y-coordinate of the ending velocity
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
precision	Curve drawing precision.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	If true, init hatch motif.

Note

- The curve is a 2D cubic Bezier spline, from the set of specified starting/ending points and corresponding velocity vectors.
- The spline is drawn as a sequence of connected segments. The precision parameter sets the average number of pixels in each drawn segment.
- A cubic Bezier curve is sometimes defined by a set of 4 points { (x0,y0), (xa,ya), (xb,yb), (x1,y1) } where (x0,y0) is the starting point, (x1,y1) is the ending point and (xa,ya), (xb,yb) are two *control* points. The starting and ending velocities (u0,v0) and (u1,v1) can be deduced easily from the control points as u0 = (xa x0), v0 = (ya y0), u1 = (x1 xb) and v1 = (y1 yb).

Example:

```
CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,255,255 };
img.draw_spline(30,30,0,100,90,40,0,-100,color);
```

18.1.4.440 draw_spline() [2/4]

```
CImg < T > \& draw_spline (
            const int x0,
             const int y0,
             const float u0,
             const float v0,
             const int x1,
             const int y1,
             const float u1,
             const float v1,
             const CImg< t > & texture,
             const int tx0,
             const int ty0,
             const int tx1,
             const int ty1,
             const float opacity = 1,
             const float precision = 4,
             const unsigned int pattern = \sim 0U,
             const bool init_hatch = true )
```

Draw a textured 2D spline.

Parameters

х0	X-coordinate of the starting curve point
y0	Y-coordinate of the starting curve point
и0	X-coordinate of the starting velocity
v0	Y-coordinate of the starting velocity
x1	X-coordinate of the ending curve point
y1	Y-coordinate of the ending curve point
u1	X-coordinate of the ending velocity
v1	Y-coordinate of the ending velocity
texture	Texture image defining line pixel colors.
tx0	X-coordinate of the starting texture point.
ty0	Y-coordinate of the starting texture point.
tx1	X-coordinate of the ending texture point.
ty1	Y-coordinate of the ending texture point.
precision	Curve drawing precision.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	if true, reinit hatch motif.

18.1.4.441 draw_spline() [3/4]

```
const float opacity = 1,
const bool is\_closed\_set = false,
const float precision = 4,
const unsigned int pattern = \sim 0U,
const bool init\_hatch = true)
```

Draw a set of consecutive splines.

Parameters

points	Vertices data.
tangents	Tangents data.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
is_closed_set	Tells if the drawn spline set is closed.
precision	Precision of the drawing.
pattern	An integer whose bits describe the line pattern.
init_hatch	If true, init hatch motif.

18.1.4.442 draw_spline() [4/4]

Draw a set of consecutive splines [overloading].

Similar to previous function, with the point tangents automatically estimated from the given points set.

18.1.4.443 draw_triangle() [1/9]

Draw a filled 2D triangle.

Parameters

x0	X-coordinate of the first vertex.
y0	Y-coordinate of the first vertex.
x1	X-coordinate of the second vertex.
y1	Y-coordinate of the second vertex.
x2	X-coordinate of the third vertex.
y2	Y-coordinate of the third vertex.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.

18.1.4.444 draw_triangle() [2/9]

Draw a outlined 2D triangle.

Parameters

x0	X-coordinate of the first vertex.
y0	Y-coordinate of the first vertex.
x1	X-coordinate of the second vertex.
y1	Y-coordinate of the second vertex.
x2	X-coordinate of the third vertex.
y2	Y-coordinate of the third vertex.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the outline pattern.

18.1.4.445 draw_triangle() [3/9]

```
int x1,
int y1,
const float z1,
int x2,
int y2,
const float z2,
const tc *const color,
const float opacity = 1,
const float brightness = 1)
```

Draw a filled 2D triangle, with z-buffering.

Parameters

zbuffer	Z-buffer image.
x0	X-coordinate of the first vertex.
y0	Y-coordinate of the first vertex.
z0	Z-coordinate of the first vertex.
x1	X-coordinate of the second vertex.
y1	Y-coordinate of the second vertex.
z1	Z-coordinate of the second vertex.
x2	X-coordinate of the third vertex.
y2	Y-coordinate of the third vertex.
z2	Z-coordinate of the third vertex.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
brightness	Brightness factor.

18.1.4.446 draw_triangle() [4/9]

```
CImg<T>& draw_triangle (
    int x0,
    int y0,
    int x1,
    int y1,
    int x2,
    int y2,
    const tc *const color,
    float bs0,
    float bs1,
    float bs2,
    const float opacity = 1 )
```

Draw a Gouraud-shaded 2D triangle.

х0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.

Parameters

x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
color	Pointer to spectrum () consecutive values, defining the drawing color.
bs0	Brightness factor of the first vertex (in [0,2]).
bs1	brightness factor of the second vertex (in [0,2]).
bs2	brightness factor of the third vertex (in [0,2]).
opacity	Drawing opacity.

18.1.4.447 draw_triangle() [5/9]

```
CImg<T>& draw_triangle (
    int x0,
    int y0,
    int x1,
    int y1,
    int x2,
    int y2,
    const tc * color0,
    const tc * color1,
    const tc * color2,
    const float opacity = 1 )
```

Draw a color-interpolated 2D triangle.

Parameters

x0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
color1	Pointer to spectrum () consecutive values of type T, defining the color of the first vertex.
color2	Pointer to spectrum () consecutive values of type T, defining the color of the second vertex.
color3	Pointer to spectrum () consecutive values of type T, defining the color of the third vertex.
opacity	Drawing opacity.

18.1.4.448 draw_triangle() [6/9]

```
int x1,

int y1,

int x2,

int y2,

const CImg< tc > & texture,

int tx0,

int ty0,

int tx1,

int tx1,

int tx2,

int ty2,

const float opacity = 1,

const float brightness = 1)
```

Draw a textured 2D triangle.

Parameters

х0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
texture	Texture image used to fill the triangle.
tx0	X-coordinate of the first vertex in the texture image.
ty0	Y-coordinate of the first vertex in the texture image.
tx1	X-coordinate of the second vertex in the texture image.
ty1	Y-coordinate of the second vertex in the texture image.
tx2	X-coordinate of the third vertex in the texture image.
ty2	Y-coordinate of the third vertex in the texture image.
opacity	Drawing opacity.
brightness	Brightness factor of the drawing (in [0,2]).

18.1.4.449 draw_triangle() [7/9]

```
int ly2, const float opacity = 1)
```

Draw a Phong-shaded 2D triangle.

Parameters

x0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
color	Pointer to spectrum () consecutive values, defining the drawing color.
light	Light image.
lx0	X-coordinate of the first vertex in the light image.
ly0	Y-coordinate of the first vertex in the light image.
lx1	X-coordinate of the second vertex in the light image.
ly1	Y-coordinate of the second vertex in the light image.
lx2	X-coordinate of the third vertex in the light image.
ly2	Y-coordinate of the third vertex in the light image.
opacity	Drawing opacity.

18.1.4.450 draw_triangle() [8/9]

```
CImg < T > \& draw_triangle (
             int x0,
             int y0,
             int x1,
             int y1,
             int x2,
             int y2,
             const CImg< tc > & texture,
             int tx0,
             int ty0,
             int tx1,
             int ty1,
             int tx2,
             int ty2,
             float bs0,
             float bs1,
             float bs2,
             const float opacity = 1 )
```

Draw a textured Gouraud-shaded 2D triangle.

x0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.

Parameters

x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
texture	Texture image used to fill the triangle.
tx0	X-coordinate of the first vertex in the texture image.
ty0	Y-coordinate of the first vertex in the texture image.
tx1	X-coordinate of the second vertex in the texture image.
ty1	Y-coordinate of the second vertex in the texture image.
tx2	X-coordinate of the third vertex in the texture image.
ty2	Y-coordinate of the third vertex in the texture image.
bs0	Brightness factor of the first vertex.
bs1	Brightness factor of the second vertex.
bs2	Brightness factor of the third vertex.
opacity	Drawing opacity.

18.1.4.451 draw_triangle() [9/9]

```
CImg < T > & draw_triangle (
            int x0,
             int y0,
             int x1,
            int y1,
             int x2,
             int y2,
             const CImg< tc > & texture,
             int tx0,
             int ty0,
             int tx1,
             int ty1,
             int tx2,
             int ty2,
             const CImg< tl > & light,
             int lx0,
             int ly0,
             int lx1,
             int ly1,
             int 1x2,
             int 1y2,
             const float opacity = 1)
```

Draw a textured Phong-shaded 2D triangle.

х0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.

Parameters

y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
texture	Texture image used to fill the triangle.
tx0	X-coordinate of the first vertex in the texture image.
ty0	Y-coordinate of the first vertex in the texture image.
tx1	X-coordinate of the second vertex in the texture image.
ty1	Y-coordinate of the second vertex in the texture image.
tx2	X-coordinate of the third vertex in the texture image.
ty2	Y-coordinate of the third vertex in the texture image.
light	Light image.
lx0	X-coordinate of the first vertex in the light image.
ly0	Y-coordinate of the first vertex in the light image.
lx1	X-coordinate of the second vertex in the light image.
ly1	Y-coordinate of the second vertex in the light image.
lx2	X-coordinate of the third vertex in the light image.
ly2	Y-coordinate of the third vertex in the light image.
opacity	Drawing opacity.

18.1.4.452 draw_rectangle() [1/3]

Draw a filled 4D rectangle.

x0	X-coordinate of the upper-left rectangle corner.
y0	Y-coordinate of the upper-left rectangle corner.
z0	Z-coordinate of the upper-left rectangle corner.
c0	C-coordinate of the upper-left rectangle corner.
x1	X-coordinate of the lower-right rectangle corner.
y1	Y-coordinate of the lower-right rectangle corner.
z1	Z-coordinate of the lower-right rectangle corner.
c1	C-coordinate of the lower-right rectangle corner.
val	Scalar value used to fill the rectangle area.
opacity	Drawing opacity.

18.1.4.453 draw_rectangle() [2/3]

Draw a filled 3D rectangle.

Parameters

х0	X-coordinate of the upper-left rectangle corner.
y0	Y-coordinate of the upper-left rectangle corner.
z0	Z-coordinate of the upper-left rectangle corner.
x1	X-coordinate of the lower-right rectangle corner.
y1	Y-coordinate of the lower-right rectangle corner.
z1	Z-coordinate of the lower-right rectangle corner.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.

18.1.4.454 draw_rectangle() [3/3]

Draw a filled 2D rectangle.

x0	X-coordinate of the upper-left rectangle corner.
y0	Y-coordinate of the upper-left rectangle corner.
x1	X-coordinate of the lower-right rectangle corner.
y1	Y-coordinate of the lower-right rectangle corner.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.

18.1.4.455 draw_polygon()

Draw a filled 2D polygon.

Parameters

points	Set of polygon vertices.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.

18.1.4.456 draw_ellipse() [1/4]

Draw a filled 2D ellipse.

Parameters

x0	X-coordinate of the ellipse center.
у0	Y-coordinate of the ellipse center.
r1	First radius of the ellipse.
r2	Second radius of the ellipse.
angle	Angle of the first radius.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

18.1.4.457 draw_ellipse() [2/4]

```
CImg<T>& draw_ellipse (

const int x0,
```

```
const int y0,
const CImg< t > & tensor,
const tc *const color,
const float opacity = 1 )
```

Draw a filled 2D ellipse [overloading].

Parameters

х0	X-coordinate of the ellipse center.
y0	Y-coordinate of the ellipse center.
tensor	Diffusion tensor describing the ellipse.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

18.1.4.458 draw_ellipse() [3/4]

Draw an outlined 2D ellipse.

Parameters

x0	X-coordinate of the ellipse center.
<i>y</i> 0	Y-coordinate of the ellipse center.
r1	First radius of the ellipse.
r2	Second radius of the ellipse.
angle	Angle of the first radius.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the outline pattern.

18.1.4.459 draw_ellipse() [4/4]

```
CImg<T>& draw_ellipse ( const int x0, const int y0,
```

```
const CImg< t > & tensor, const tc *const color, const float opacity, const unsigned int pattern )
```

Draw an outlined 2D ellipse [overloading].

Parameters

х0	X-coordinate of the ellipse center.
y0	Y-coordinate of the ellipse center.
tensor	Diffusion tensor describing the ellipse.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the outline pattern.

18.1.4.460 draw_circle() [1/2]

Draw a filled 2D circle.

Parameters

x0	X-coordinate of the circle center.
y0	Y-coordinate of the circle center.
radius	Circle radius.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.

Note

• Circle version of the Bresenham's algorithm is used.

18.1.4.461 draw_circle() [2/2]

```
const tc *const color,
const float opacity,
const unsigned int pattern )
```

Draw an outlined 2D circle.

Parameters

х0	X-coordinate of the circle center.
y0	Y-coordinate of the circle center.
radius	Circle radius.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the outline pattern.

18.1.4.462 draw_image() [1/2]

```
 \begin{split} \text{CImg} < T > \& & \text{draw\_image (} \\ & \text{const int } x0, \\ & \text{const int } y0, \\ & \text{const int } z0, \\ & \text{const int } c0, \\ & \text{const } \text{CImg} < \text{t} > \& \text{sprite,} \\ & \text{const float } opacity = 1 \text{)} \end{split}
```

Draw an image.

Parameters

sprite	Sprite image.
x0	X-coordinate of the sprite position.
y0	Y-coordinate of the sprite position.
z0	Z-coordinate of the sprite position.
c0	C-coordinate of the sprite position.
opacity	Drawing opacity.

18.1.4.463 draw_image() [2/2]

```
const float opacity = 1,
const float mask_max_value = 1 )
```

Draw a masked image.

sprite	Sprite image.
mask	Mask image.
хО	X-coordinate of the sprite position in the image instance.
у0	Y-coordinate of the sprite position in the image instance.
z0	Z-coordinate of the sprite position in the image instance.
c0	C-coordinate of the sprite position in the image instance.
mask_max_value	Maximum pixel value of the mask image mask.
opacity	Drawing opacity.

Note

- Pixel values of mask set the opacity of the corresponding pixels in sprite.
- \bullet Dimensions along x,y and z of \mathtt{sprite} and \mathtt{mask} must be the same.

18.1.4.464 draw_text() [1/4]

Draw a text string.

Parameters

х0	X-coordinate of the text in the image instance.
у0	Y-coordinate of the text in the image instance.
text	Format of the text ('printf'-style format string).
foreground_color	Pointer to spectrum () consecutive values, defining the foreground drawing color.
background_color	Pointer to spectrum () consecutive values, defining the background drawing color.
opacity	Drawing opacity.
font	Font used for drawing text.

18.1.4.465 draw_text() [2/4]

```
CImg<T>& draw_text ( const int x0,
```

```
const int y0,
const char *const text,
const tc *const foreground_color,
const int ,
const float opacity,
const CImgList< t > & font,
... )
```

Draw a text string [overloading].

Note

A transparent background is used for the text.

18.1.4.466 draw_text() [3/4]

Draw a text string [overloading].

Note

A transparent foreground is used for the text.

18.1.4.467 draw_text() [4/4]

Draw a text string [overloading].

x0	X-coordinate of the text in the image instance.
<i>y0</i>	Y-coordinate of the text in the image instance.
text	Format of the text ('printf'-style format string).
foreground_color	Array of spectrum() values of type T, defining the foreground color (0 means 'transparent').
background_color	Array of spectrum() values of type T, defining the background color (0 means 'transparent').
	Describes and the

18.1.4.468 draw_quiver() [1/2]

```
CImg<T>& draw_quiver ( const \ CImg< t1 > \& \ flow, const \ t2 * const \ color, const \ float \ opacity = 1, const \ unsigned \ int \ sampling = 25, const \ float \ factor = -20, const \ bool \ is\_arrow = true, const \ unsigned \ int \ pattern = \sim 0U \ )
```

Draw a 2D vector field.

Parameters

flow	Image of 2D vectors used as input data.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.
sampling	Length (in pixels) between each arrow.
factor	Length factor of each arrow (if $<$ 0, computed as a percentage of the maximum length).
is_arrow	Tells if arrows must be drawn, instead of oriented segments.
pattern	Used pattern to draw lines.

Note

Clipping is supported.

18.1.4.469 draw_quiver() [2/2]

Draw a 2D vector field, using a field of colors.

flow	Image of 2D vectors used as input data.
color	Image of spectrum()-D vectors corresponding to the color of each arrow.
opacity	Opacity of the drawing.
sampling	Length (in pixels) between each arrow.
factor	Length factor of each arrow (if $<$ 0, computed as a percentage of the maximum length).
is_arrow Generated by Do pattern	Tells if arrows must be drawn, instead of oriented segments. **ygen** Used pattern to draw lines.

Note

Clipping is supported.

18.1.4.470 draw_axis() [1/2]

Draw a labeled horizontal axis.

Parameters

values_x	Values along the horizontal axis.
У	Y-coordinate of the horizontal axis in the image instance.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	Drawing pattern.
font_height	Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
allow_zero	Enable/disable the drawing of label '0' if found.

18.1.4.471 draw_axis() [2/2]

Draw a labeled vertical axis.

X	X-coordinate of the vertical axis in the image instance.
values_y	Values along the Y-axis.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

pattern	Drawing pattern.
font_height	Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
allow_zero	Enable/disable the drawing of label '0' if found.

18.1.4.472 draw_axes()

Draw labeled horizontal and vertical axes.

Parameters

values_x	Values along the X-axis.
values_y	Values along the Y-axis.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern_x	Drawing pattern for the X-axis.
pattern_y	Drawing pattern for the Y-axis.
font_height	Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
allow_zero	Enable/disable the drawing of label '0' if found.

18.1.4.473 draw_grid()

Draw 2D grid.

Parameters

values⊷	X-coordinates of the vertical lines.
_x	
values⇔	Y-coordinates of the horizontal lines.
_y	
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern⊷	Drawing pattern for vertical lines.
_X	
pattern⊷	Drawing pattern for horizontal lines.
_y	

18.1.4.474 draw_graph()

Draw 1D graph.

data	Image containing the graph values $I = f(x)$.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.
plot_type	Define the type of the plot:
	• 0 = No plot.
	• 1 = Plot using segments.
	• 2 = Plot using cubic splines.
	• 3 = Plot with bars.

vertex_type	Define the type of points:
	• 0 = No points.
	• 1 = Point.
	• 2 = Straight cross.
	• 3 = Diagonal cross.
	• 4 = Filled circle.
	• 5 = Outlined circle.
	• 6 = Square.
	• 7 = Diamond.
ymin	Lower bound of the y-range.
ymax	Upper bound of the y-range.
pattern	Drawing pattern.

Note

• if ymin = ymax = 0, the y-range is computed automatically from the input samples.

18.1.4.475 draw_fill()

Draw filled 3D region with the flood fill algorithm.

	x0	X-coordinate of the starting point of the region to fill.
	y0	Y-coordinate of the starting point of the region to fill.
	z0	Z-coordinate of the starting point of the region to fill.
	color	Pointer to spectrum () consecutive values, defining the drawing color.
out	region	Image that will contain the mask of the filled region mask, as an output.
	tolerance	Tolerance concerning neighborhood values.
	opacity	Opacity of the drawing.
	is_high_connectivity	Tells if 8-connexity must be used.

Returns

region is initialized with the binary mask of the filled region.

18.1.4.476 draw_plasma()

Draw a random plasma texture.

Parameters

alpha	Alpha-parameter.
beta	Beta-parameter.
scale	Scale-parameter.

Note

Use the mid-point algorithm to render.

18.1.4.477 draw_mandelbrot()

```
CImg<T>& draw_mandelbrot (
            const int x0,
            const int y0,
             const int x1,
            const int y1,
             const CImg< tc > & colormap,
             const float opacity = 1,
             const double z0r = -2,
            const double z0i = -2,
             const double z1r = 2,
             const double z1i = 2,
             const unsigned int iteration_max = 255,
             const bool is_normalized_iteration = false,
             const bool is_julia_set = false,
             const double param_r = 0,
             const double param_i = 0)
```

Draw a quadratic Mandelbrot or Julia 2D fractal.

x0	X-coordinate of the upper-left pixel.
у0	Y-coordinate of the upper-left pixel.

x1	X-coordinate of the lower-right pixel.
y1	Y-coordinate of the lower-right pixel.
colormap	Colormap.
opacity	Drawing opacity.
z0r	Real part of the upper-left fractal vertex.
z0i	Imaginary part of the upper-left fractal vertex.
z1r	Real part of the lower-right fractal vertex.
z1i	Imaginary part of the lower-right fractal vertex.
iteration_max	Maximum number of iterations for each estimated point.
is_normalized_iteration	Tells if iterations are normalized.
is_julia_set	Tells if the Mandelbrot or Julia set is rendered.
param_r	Real part of the Julia set parameter.
param_i	Imaginary part of the Julia set parameter.

Note

Fractal rendering is done by the Escape Time Algorithm.

18.1.4.478 draw_gaussian() [1/2]

```
CImg<T>& draw_gaussian ( const float xc, const float sigma, const tc *const color, const float opacity = 1)
```

Draw a 1D gaussian function.

Parameters

хс	X-coordinate of the gaussian center.
sigma	Standard variation of the gaussian distribution.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

18.1.4.479 draw_gaussian() [2/2]

```
CImg<T>& draw_gaussian ( const float xc, const float yc, const CImg< t > & tensor,
```

```
const tc *const color,
const float opacity = 1 )
```

Draw a 2D gaussian function.

Parameters

хс	X-coordinate of the gaussian center.
ус	Y-coordinate of the gaussian center.
tensor	Covariance matrix (must be 2x2).
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

18.1.4.480 draw_object3d()

```
CImg < T > & draw_object3d (
            const float x0,
             const float y0,
             const float z0,
             const CImg< tp > & vertices,
             const CImgList< tf > & primitives,
             const CImgList< tc > & colors,
             const CImg< to > & opacities,
             const unsigned int render_type = 4,
             const bool is_double_sided = false,
             const float focale = 700,
             const float lightx = 0,
             const float lighty = 0,
             const float lightz = -5e8,
             const float specular_lightness = 0.2f,
             const float specular_shininess = 0.1f,
             const float g\_opacity = 1)
```

Draw a 3D object.

x0	X-coordinate of the 3D object position
у0	Y-coordinate of the 3D object position
z0	Z-coordinate of the 3D object position
vertices	Image Nx3 describing 3D point coordinates
primitives	List of P primitives
colors	List of P color (or textures)
opacities	Image or list of P opacities
render_type	d Render type (0=Points, 1=Lines, 2=Faces (no light), 3=Faces (flat), 4=Faces(Gouraud)
is_double_sided	Tells if object faces have two sides or are oriented.
focale	length of the focale (0 for parallel projection)
lightx	X-coordinate of the light
lighty	Y-coordinate of the light
lightz	Z-coordinate of the light

specular_lightness Amount of specular light.	
specular_shininess	Shininess of the object
g_opacity	Global opacity of the object.

18.1.4.481 select()

Launch simple interface to select a shape from an image.

Parameters

disp	Display window to use. Type of feature to select. Can be { 0=point 1=line 2=rectangle	
feature_type		
	3=ellipse }.	
XYZ	Pointer to 3 values X,Y,Z which tells about the projection point coordinates, for volumetric images.	
exit_on_anykey	Exit function when any key is pressed.	

18.1.4.482 load()

Load image from a file.

Parameters

filename	Filename, as a C-string.

Note

The extension of filename defines the file format. If no filename extension is provided, $Clmg < T > ::get_load()$ will try to load the file as a .cimg or .cimgz file.

18.1.4.483 load_ascii()

Load image from an ascii file.

Parameters

```
filename Filename, as a C -string.
```

18.1.4.484 load_dlm()

Load image from a DLM file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.485 load_bmp()

Load image from a BMP file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.486 load_jpeg()

Load image from a JPEG file.

18.1.4.487 load_magick()

Load image from a file, using Magick++ library.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

18.1.4.488 load_png()

Load image from a PNG file.

Parameters

	filename	Filename, as a C-string.
out	bits_per_value	Number of bits used to store a scalar value in the image file.

18.1.4.489 load_pnm()

Load image from a PNM file.

filename	Filename, as a C-string.

18.1.4.490 load_pfm()

Load image from a PFM file.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

18.1.4.491 load_rgb()

Load image from a RGB file.

Parameters

filename	Filename, as a C-string.
dimw	Width of the image buffer.
dimh	Height of the image buffer.

18.1.4.492 load_rgba()

Load image from a RGBA file.

filename	Filename, as a C-string.
dimw	Width of the image buffer.
dimh	Height of the image buffer.

18.1.4.493 load_tiff()

Load image from a TIFF file.

Parameters

	filename	Filename, as a C-string.
	first_frame	First frame to read (for multi-pages tiff).
	last_frame	Last frame to read (for multi-pages tiff).
	step_frame	Step value of frame reading.
out	bits_per_value	Number of bits used to store a scalar value in the image file.
out	voxel_size	Voxel size, as stored in the filename.
out	description	Description, as stored in the filename.

Note

- libtiff support is enabled by defining the precompilation directive cimg_use_tif.
- When libtiff is enabled, 2D and 3D (multipage) several channel per pixel are supported for char, uchar, short, ushort, float and double pixel types.
- If $cimg_use_tiff$ is not defined at compile time the function uses $CImg < T > \& load_other(const char*)$.

18.1.4.494 load_minc2()

Load image from a MINC2 file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.495 load_analyze()

Load image from an ANALYZE7.5/NIFTI file.

Parameters

	filename	Filename, as a C-string.
out	voxel_size	Pointer to the three voxel sizes read from the file.

18.1.4.496 load_cimg() [1/2]

Load image from a .cimg[z] file.

Parameters

filename	Filename, as a C-string.		
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.		
align	Appending alignment.		

18.1.4.497 load_cimg() [2/2]

Load sub-images of a .cimg file.

filename	Filename, as a C-string.
n0	Starting frame.
n1	Ending frame (~0U for max).

x0	X-coordinate of the starting sub-image vertex.
y0	Y-coordinate of the starting sub-image vertex.
z0	Z-coordinate of the starting sub-image vertex.
c0	C-coordinate of the starting sub-image vertex.
x1	X-coordinate of the ending sub-image vertex (~0U for max).
y1	Y-coordinate of the ending sub-image vertex (~0U for max).
<i>z</i> 1	Z-coordinate of the ending sub-image vertex (\sim 0U for max).
c1	C-coordinate of the ending sub-image vertex (~0U for max).
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.
align	Appending alignment.

18.1.4.498 load_inr()

Load image from an INRIMAGE-4 file.

Parameters

	filename	Filename, as a C-string.
out	voxel_size	Pointer to the three voxel sizes read from the file.

18.1.4.499 load_exr()

Load image from a EXR file.

Parameters

filename	Filename, as a C-string.

18.1.4.500 load_pandore()

Load image from a PANDORE-5 file.

filename	Filename, as a C-string.
----------	--------------------------

18.1.4.501 load_parrec()

Load image from a PAR-REC (Philips) file.

Parameters

filename	Filename, as a C-string.		
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.		
align	Appending alignment.		

18.1.4.502 load_raw()

Load image from a raw binary file.

filename	Filename, as a C-string.	
size_x Width of the image buffer.		
size_y	Height of the image buffer.	
size_z	Depth of the image buffer.	
size_c	Spectrum of the image buffer.	
is_multiplexed	Tells if the image values are multiplexed along the C-axis.	
invert_endianness	Tells if the endianness of the image buffer must be inverted.	
offset	Starting offset of the read in the specified file.	

18.1.4.503 load_yuv()

Load image sequence from a YUV file.

Parameters

filename	Filename, as a C-string.	
size_x	Width of the frames.	
size_y	Height of the frames.	
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.	
first_frame	Index of the first frame to read.	
last_frame	Index of the last frame to read.	
step_frame	Step value for frame reading.	
yuv2rgb	Tells if the YUV to RGB transform must be applied.	
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.	

18.1.4.504 load_off()

Load 3D object from a .OFF file.

Parameters

out	primitives	Primitives data of the 3D object.
out	colors	Colors data of the 3D object.
	filename	Filename, as a C-string.

18.1.4.505 load_video()

```
const unsigned int first_frame = 0, const unsigned int last_frame = \sim 0U, const unsigned int step_frame = 1, const char axis = 'z', const float align = 0)
```

Load image sequence from a video file, using OpenCV library.

Parameters

filename	Filename, as a C-string.
first_frame	Index of the first frame to read.
last_frame	Index of the last frame to read.
step_frame	Step value for frame reading.
axis	Alignment axis.
align	Appending alignment.

18.1.4.506 load_ffmpeg_external()

Load image sequence using FFMPEG's external tool 'ffmpeg'.

Parameters

filename	Filename, as a C-string.	
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.	
align	Appending alignment.	

18.1.4.507 load_gif_external()

Load gif file, using Imagemagick or GraphicsMagicks's external tools.

filename	Filename, as a C-string.	
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.	
align	Appending alignment.	

18.1.4.508 load heif()

Load image from a HEIC file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.509 load_graphicsmagick_external()

Load image using GraphicsMagick's external tool 'gm'.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.510 load_gzip_external()

Load gzipped image file, using external tool 'gunzip'.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.511 load_imagemagick_external()

Load image using ImageMagick's external tool 'convert'.

filename	Filename, as a C-string.
----------	--------------------------

18.1.4.512 load_medcon_external()

Load image from a DICOM file, using Medcon's external tool 'medcon'.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

18.1.4.513 load_pdf_external()

Load image from a .pdf file.

Parameters

filename	Filename, as a C-string.
resolution	Image resolution.

18.1.4.514 load_dcraw_external()

Load image from a RAW Color Camera file, using external tool 'dcraw'.

filename	Filename, as a C-string.

18.1.4.515 load_camera()

Load image from a camera stream, using OpenCV.

Parameters

index	Index of the camera to capture images from (from 0 to 63).
capture_width	Width of the desired image ('0' stands for default value).
capture_height	Height of the desired image ('0' stands for default value).
skip_frames	Number of frames to skip before the capture.
release_camera	Tells if the camera resource must be released at the end of the method.

18.1.4.516 load_other()

Load image using various non-native ways.

Parameters

18.1.4.517 print()

Display information about the image data.

	title	Name for the considered image.
Ī	display_stats	Tells to compute and display image statistics.

18.1.4.518 display() [1/3]

Display image into a ClmgDisplay window.

Parameters

```
disp Display window.
```

18.1.4.519 display() [2/3]

Display image into a CImgDisplay window, in an interactive way.

Parameters

	disp	Display window.
	display_info	Tells if image information are displayed on the standard output.
in,out	XYZ	Contains the XYZ coordinates at start / exit of the function.
	exit_on_anykey	Exit function when any key is pressed.

18.1.4.520 display() [3/3]

Display image into an interactive window.

	title	Window title
	display_info	Tells if image information are displayed on the standard output.
in,out	XYZ	Contains the XYZ coordinates at start / exit of the function.
	exit_on_anykey	Exit function when any key is pressed.

18.1.4.521 display_object3d()

```
const CImg<T>& display_object3d (
            CImgDisplay & disp,
             const CImg< tp > & vertices,
             const CImgList< tf > & primitives,
             const CImgList< tc > & colors,
             const to & opacities,
             const bool centering = true,
             const int render_static = 4,
             const int render\_motion = 1,
             const bool is_double_sided = true,
             const float focale = 700,
             const float light_x = 0,
             const float light_y = 0,
             const float light_z = -5e8f,
             const float specular_lightness = 0.2f,
             const float specular_shininess = 0.1f,
             const bool display_axes = true,
             float *const pose_matrix = 0,
             const bool exit\_on\_anykey = false) const
```

Display object 3D in an interactive window.

Parameters

disp	Display window.
vertices	Vertices data of the 3D object.
primitives	Primitives data of the 3D object.
colors	Colors data of the 3D object.
opacities	Opacities data of the 3D object.
centering	Tells if the 3D object must be centered for the display.
render_static	Rendering mode.
render_motion	Rendering mode, when the 3D object is moved.
is_double_sided	Tells if the object primitives are double-sided.
focale	Focale
light_x	X-coordinate of the light source.
light_y	Y-coordinate of the light source.
light_z	Z-coordinate of the light source.
specular_lightness	Amount of specular light.
specular_shininess	Shininess of the object material.
display_axes	Tells if the 3D axes are displayed.
pose_matrix	Pointer to 12 values, defining a 3D pose (as a 4x3 matrix).
exit_on_anykey	Exit function when any key is pressed.

18.1.4.522 display_graph()

```
const CImg<T>& display_graph (
```

```
CImgDisplay & disp,
const unsigned int plot_type = 1,
const unsigned int vertex_type = 1,
const char *const labelx = 0,
const double xmin = 0,
const double xmax = 0,
const char *const labely = 0,
const double ymin = 0,
const double ymax = 0,
const bool exit_on_anykey = false ) const
```

Display 1D graph in an interactive window.

Parameters

disp	Display window.	
plot_type	Plot type. Can be { 0=points 1=segments 2=splines 3=bars }.	
vertex_type	Vertex type.	
labelx	Title for the horizontal axis, as a C-string.	
xmin	Minimum value along the X-axis.	
xmax	Maximum value along the X-axis.	
labely	Title for the vertical axis, as a C-string.	
ymin	Minimum value along the X-axis.	
ymax	Maximum value along the X-axis.	
exit_on_anykey	Exit function when any key is pressed.	

18.1.4.523 save()

Save image as a file.

Parameters

filename	Filename, as a C-string.
number	When positive, represents an index added to the filename. Otherwise, no number is added.
digits	Number of digits used for adding the number to the filename.

Note

- The used file format is defined by the file extension in the filename filename.
- Parameter number can be used to add a 6-digit number to the filename before saving.

18.1.4.524 save_ascii()

Save image as an ascii file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.525 save_cpp()

Save image as a .cpp source file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.526 save_dlm()

Save image as a DLM file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.527 save_bmp()

Save image as a BMP file.

filename	Filename, as a C-string.
----------	--------------------------

18.1.4.528 save_jpeg()

Save image as a JPEG file.

Parameters

filename	Filename, as a C-string.
quality	Image quality (in %)

18.1.4.529 save_magick()

Save image, using built-in ImageMagick++ library.

Parameters

filename	Filename, as a C-string.
bytes_per_pixel	Force the number of bytes per pixel for the saving, when possible.

18.1.4.530 save_png()

Save image as a PNG file.

filename	Filename, as a C-string.
bytes_per_pixel	Force the number of bytes per pixels for the saving, when possible.

18.1.4.531 save_pnm()

Save image as a PNM file.

Parameters

filename	Filename, as a C-string.
bytes_per_pixel	Force the number of bytes per pixels for the saving.

18.1.4.532 save_pnk()

Save image as a PNK file.

Parameters

filename	Filename, as a C-string.
monanio	i nonamo, ao a o oming.

18.1.4.533 save_pfm()

Save image as a PFM file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.534 save_rgb()

Save image as a RGB file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.535 save_rgba()

Save image as a RGBA file.

Parameters

```
filename Filename, as a C-string.
```

18.1.4.536 save tiff()

Save image as a TIFF file.

Parameters

	filename	Filename, as a C-string.
	compression_type	Type of data compression. Can be { 0=None 1=LZW 2=JPEG }.
out	voxel_size	Voxel size, to be stored in the filename.
out	description	Description, to be stored in the filename.
	use_bigtiff	Allow to save big tiff files (>4Gb).

Note

- libtiff support is enabled by defining the precompilation directive cimg_use_tif.
- When libtiff is enabled, 2D and 3D (multipage) several channel per pixel are supported for char, uchar, short, ushort, float and double pixel types.
- If cimg_use_tiff is not defined at compile time the function uses Clmg<T>&save_other(const char*).

18.1.4.537 save_minc2()

Save image as a MINC2 file.

Parameters

filename	Filename, as a C-string.
imitate_file	If non-zero, reference filename, as a C-string, to borrow header from.

18.1.4.538 save_analyze()

Save image as an ANALYZE7.5 or NIFTI file.

Parameters

filename	Filename, as a C-string.	
voxel_size	Pointer to 3 consecutive values that tell about the voxel sizes along the X,Y and Z dimensions.	

18.1.4.539 save_cimg() [1/2]

Save image as a .cimg file.

Parameters

filename	Filename, as a C-string.
is_compressed	Tells if the file contains compressed image data.

18.1.4.540 save_cimg() [2/2]

```
const CImg<T>& save_cimg (
    const char *const filename,
```

```
const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const
```

Save image as a sub-image into an existing .cimg file.

Parameters

filename	Filename, as a C-string.
n0	Index of the image inside the file.
х0	X-coordinate of the sub-image location.
у0	Y-coordinate of the sub-image location.
z0	Z-coordinate of the sub-image location.
c0	C-coordinate of the sub-image location.

18.1.4.541 save_empty_cimg() [1/2]

Save blank image as a .cimg file.

Parameters

filename	Filename, as a C-string.
dx	Width of the image.
dy	Height of the image.
dz	Depth of the image.
dc	Number of channels of the image.

Note

- All pixel values of the saved image are set to $\ 0$.
- Use this method to save large images without having to instantiate and allocate them.

18.1.4.542 save_empty_cimg() [2/2]

```
const unsigned int dx, const unsigned int dy = 1, const unsigned int dz = 1, const unsigned int dc = 1) [static]
```

Save blank image as a .cimg file [overloading].

Same as save_empty_cimg(const char *,unsigned int,unsigned int,unsigned int,unsigned int) with a file stream argument instead of a filename string.

18.1.4.543 save_inr()

Save image as an INRIMAGE-4 file.

Parameters

filename	Filename, as a C-string.
voxel_size	Pointer to 3 values specifying the voxel sizes along the X,Y and Z dimensions.

18.1.4.544 save_exr()

Save image as an OpenEXR file.

Parameters

```
filename Filename, as a C-string.
```

Note

The OpenEXR file format is described here.

18.1.4.545 save_pandore() [1/2]

Save image as a Pandore-5 file.

Parameters

filename Filename, as a C-string.					
Ī	colorspace	Colorspace data field in output file (see	Pandore	file	specifications for more
		information).			

18.1.4.546 save_pandore() [2/2]

Save image as a Pandore-5 file [overloading].

Same as save_pandore(const char *,unsigned int) const with a file stream argument instead of a filename string.

18.1.4.547 save_raw() [1/2]

Save image as a raw data file.

Parameters

filename	Filename, as a C-string.
is_multiplexed	Tells if the image channels are stored in a multiplexed way (true) or not (false).

Note

The .raw format does not store the image dimensions in the output file, so you have to keep track of them somewhere to be able to read the file correctly afterwards.

18.1.4.548 save_raw() [2/2]

Save image as a raw data file [overloading].

Same as save_raw(const char *,bool) const with a file stream argument instead of a filename string.

18.1.4.549 save_yuv() [1/2]

Save image as a .yuv video file.

Parameters

filename	Filename, as a C-string.
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.
is_rgb	Tells if pixel values of the instance image are RGB-coded (true) or YUV-coded (false).

Note

Each slice of the instance image is considered to be a single frame of the output video file.

18.1.4.550 save_yuv() [2/2]

Save image as a .yuv video file [overloading].

Same as save_yuv(const char*,const unsigned int,const bool) const with a file stream argument instead of a file-name string.

18.1.4.551 save_off() [1/2]

Save 3D object as an Object File Format (.off) file.

Parameters

filename	Filename, as a C-string.	
primitives	List of 3D object primitives.	
colors	List of 3D object colors.	

Note

- Instance image contains the vertices data of the 3D object.
- Textured, transparent or sphere-shaped primitives cannot be managed by the .off file format. Such primitives will be lost or simplified during file saving.

• The .off file format is described here.

18.1.4.552 save_off() [2/2]

Save 3D object as an Object File Format (.off) file [overloading].

Same as save_off(const ClmgList<tf>&,const ClmgList<tc>&,const char*) const with a file stream argument instead of a filename string.

18.1.4.553 save_video()

Save volumetric image as a video (using the OpenCV library when available).

Parameters

filename Filename to write data to.	
fps	Number of frames per second.
codec	Type of compression (See http://www.fourcc.org/codecs.php to see available codecs).
keep_open	Tells if the video writer associated to the specified filename must be kept open or not (to allow frames to be added in the same file afterwards).

18.1.4.554 save ffmpeg external()

Save volumetric image as a video, using ffmpeg external binary.

Parameters

filename	Filename, as a C-string.
fps	Video framerate.
codec	Video codec, as a C-string.
bitrate	Video bitrate.

Note

- Each slice of the instance image is considered to be a single frame of the output video file.
- This method uses ffmpeg, an external executable binary provided by FFmpeg. It must be installed for the method to succeed.

18.1.4.555 save_gzip_external()

```
\label{eq:const_cimg} $$\operatorname{const} \operatorname{cimg}_{x} \approx \operatorname{const} \operatorname{char} *\operatorname{const} \operatorname{filename} ) $$ const $$
```

Save image using gzip external binary.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

Note

This method uses gzip, an external executable binary provided by gzip. It must be installed for the method to succeed.

18.1.4.556 save_graphicsmagick_external()

```
const CImg<T>& save_graphicsmagick_external ( const char *const filename, const unsigned int quality = 100 ) const
```

Save image using GraphicsMagick's external binary.

Parameters

filename	Filename, as a C-string.	
quality	Image quality (expressed in percent), when the file format supports it.	

Note

This method uses gm, an external executable binary provided by GraphicsMagick. It must be installed for the method to succeed.

18.1.4.557 save_imagemagick_external()

```
const CImg<T>& save_imagemagick_external ( const char *const filename, const unsigned int quality = 100) const
```

Save image using ImageMagick's external binary.

Parameters

filename Filename, as a C-string.		Filename, as a C-string.	1
	quality	Image quality (expressed in percent), when the file format supports it.]

Note

This method uses convert, an external executable binary provided by ImageMagick. It must be installed for the method to succeed.

18.1.4.558 save_medcon_external()

Save image as a Dicom file.

Parameters

filename Filename, as a C-string.

Note

This method uses medcon, an external executable binary provided by (X) Medcon. It must be installed for the method to succeed.

18.1.4.559 save_other()

Parameters

filename	Filename, as a C-string.]
quality	Image quality (expressed in percent), when the file format supports it.]

Note

- The filename extension tells about the desired file format.
- This method tries to save the instance image as a file, using external tools from ImageMagick or GraphicsMagick. At least one of these tool must be installed for the method to succeed.
- It is recommended to use the generic method save(const char*, int) const instead, as it can handle some file formats natively.

18.1.4.560 get_serialize()

Serialize a Clmg<T> instance into a raw Clmg<unsigned char> buffer.

Parameters

is_compressed	tells if zlib compression must be used for serialization (this requires 'cimg_use_zlib' been enabled).
header_size	Reserve empty bytes as a starting header.

18.1.5 Member Data Documentation

18.1.5.1 const_iterator

```
const typedef T* const_iterator
```

Simple const iterator type, to loop through each pixel value of a const image instance.

Note

- The CImg<T>::const_iterator type is defined to be a const T*.
- You will seldom have to use iterators in Clmg, most classical operations being achieved (often in a faster way) using methods of CImg<T>.

Example

18.2 ClmgDisplay Struct Reference

Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events).

Constructors / Destructor / Instance Management

∼CImgDisplay ()

Destructor.

• ClmgDisplay ()

Construct an empty display.

• CImgDisplay (const unsigned int width, const unsigned int height, const char *const title=0, const unsigned int normalization=3, const bool is fullscreen=false, const bool is closed=false)

Construct a display with specified dimensions.

• template<typename T >

ClmgDisplay (const Clmg< T > &img, const char *const title=0, const unsigned int normalization=3, const bool is_fullscreen=false, const bool is_closed=false)

Construct a display from an image.

• template<typename T >

ClmgDisplay (const ClmgList< T > &list, const char *const title=0, const unsigned int normalization=3, const bool is fullscreen=false, const bool is closed=false)

Construct a display from an image list.

· CImgDisplay (const CImgDisplay &disp)

Construct a display as a copy of an existing one.

CImgDisplay & assign ()

Destructor - Empty constructor [in-place version].

 ClmgDisplay & assign (const unsigned int width, const unsigned int height, const char *const title=0, const unsigned int normalization=3, const bool is_fullscreen=false, const bool is_closed=false)

Construct a display with specified dimensions [in-place version].

template<typename T >

ClmgDisplay & assign (const Clmg < T > &img, const char *const title=0, const unsigned int normalization=3, const bool is_fullscreen=false, const bool is_closed=false)

Construct a display from an image [in-place version].

• template<typename T >

ClmgDisplay & assign (const ClmgList< T > &list, const char *const title=0, const unsigned int normalization=3, const bool is_fullscreen=false, const bool is_closed=false)

Construct a display from an image list [in-place version].

ClmgDisplay & assign (const ClmgDisplay &disp)

Construct a display as a copy of another one [in-place version].

• template<typename T >

static void screenshot (CImg< T > &img)

Take a screenshot.

· static CImgDisplay & empty ()

Return a reference to an empty display.

static const ClmgDisplay & const_empty ()

Return a reference to an empty display [const version].

Overloaded Operators

• template<typename t >

ClmgDisplay & operator= (const Clmg< t > &img)

Display image on associated window.

• template<typename t >

CImgDisplay & operator= (const CImgList< t > &list)

Display list of images on associated window.

ClmgDisplay & operator= (const ClmgDisplay &disp)

Construct a display as a copy of another one [in-place version].

· operator bool () const

Return false if display is empty, true otherwise.

Instance Checking

· bool is empty () const

Return true if display is empty, false otherwise.

· bool is closed () const

Return true if display is closed (i.e. not visible on the screen), false otherwise.

· bool is visible () const

Return true if display is visible (i.e. not closed by the user), false otherwise.

· bool is_resized () const

Return true if associated window has been resized on the screen, false otherwise.

· bool is_moved () const

Return true if associated window has been moved on the screen, false otherwise.

• bool is_event () const

Return true if any event has occurred on the associated window, false otherwise.

bool is_fullscreen () const

Return true if current display is in fullscreen mode, false otherwise.

• bool is_key () const

Return true if any key is being pressed on the associated window, false otherwise.

bool is_key (const unsigned int keycode) const

Return true if key specified by given keycode is being pressed on the associated window, false otherwise.

bool & is key (const char *const keycode)

Return true if key specified by given keycode is being pressed on the associated window, false otherwise.

• bool is_key_sequence (const unsigned int *const keycodes_sequence, const unsigned int length, const bool remove_sequence=false)

Return true if specified key sequence has been typed on the associated window, false otherwise.

bool is_keyESC () const

Return true if the ESC key is being pressed on the associated window, false otherwise.

- bool is_keyF1 () const
- bool is_keyF2 () const
- bool is keyF3 () const
- bool is_keyF4 () const
- bool is_keyF5 () const
- bool is_keyF6 () const
- bool is_keyF7 () const
- bool is_keyF8 () const
- bool is_keyF9 () constbool is_keyF10 () const
- bool is_keyF11 () const

- bool is_keyF12 () const
- · bool is_keyPAUSE () const
- · bool is_key1 () const
- bool is_key2 () const
- · bool is key3 () const
- · bool is_key4 () const
- bool is key5 () const
- · bool is_key6 () const
- · bool is_key7 () const
- · bool is key8 () const
- bool is_key9 () const
- bool is key0 () const
- bool is_keyBACKSPACE () const
- bool is keyINSERT () const
- bool is_keyHOME () const
- · bool is keyPAGEUP () const
- · bool is keyTAB () const
- bool is keyQ () const
- bool is_keyW () const
- bool is_keyE () const
- · bool is_keyR () const
- bool is_keyT () const
- bool is_keyY () const
- bool is_keyU () const
- · bool is keyl () const
- · bool is_keyO () const
- · bool is_keyP () const
- bool is_keyDELETE () const
- bool is keyEND () const
- · bool is_keyPAGEDOWN () const
- bool is_keyCAPSLOCK () const
- · bool is keyA () const
- bool is_keyS () const
- bool is_keyD () const
- bool is_keyF () const
- bool is_keyG () const
- bool is_keyH () const
- bool is_keyJ () const
- bool is_keyK () const
- bool is_keyL () const
- · bool is keyENTER () const
- · bool is_keySHIFTLEFT () const
- bool is_keyZ () const
- bool is_keyX () const
- bool is_keyC () const
- bool is_keyV () const
- bool is_keyB () const
- bool is_keyN () const
- bool is_keyM () const
- · bool is_keySHIFTRIGHT () const
- · bool is keyARROWUP () const
- bool is_keyCTRLLEFT () const
- bool is_keyAPPLEFT () const
- · bool is keyALT () const
- bool is_keySPACE () const

- · bool is_keyALTGR () const
- bool is_keyAPPRIGHT () const
- · bool is keyMENU () const
- · bool is_keyCTRLRIGHT () const
- bool is_keyARROWLEFT () const
- · bool is keyARROWDOWN () const
- bool is_keyARROWRIGHT () const
- · bool is_keyPAD0 () const
- bool is keyPAD1 () const
- · bool is keyPAD2 () const
- · bool is keyPAD3 () const
- bool is_keyPAD4 () const
- bool is_keyPAD5 () const
- bool is_keyPAD6 () const
- bool is_keyPAD7 () const
- · bool is keyPAD8 () const
- bool is_keyPAD9 () const
- bool is_keyPADADD () const
- bool is_keyPADSUB () const
- bool is keyPADMUL () const
- bool is_keyPADDIV () const

Instance Characteristics

· int width () const

Return display width.

• int height () const

Return display height.

· unsigned int normalization () const

Return normalization type of the display.

• const char * title () const

Return title of the associated window as a C-string.

• int window_width () const

Return width of the associated window.

• int window height () const

Return height of the associated window.

• int window x () const

Return X-coordinate of the associated window.

int window_y () const

Return Y-coordinate of the associated window.

• int mouse_x () const

Return X-coordinate of the mouse pointer.

int mouse_y () const

Return Y-coordinate of the mouse pointer.

• unsigned int button () const

Return current state of the mouse buttons.

• int wheel () const

Return current state of the mouse wheel.

unsigned int & key (const unsigned int pos=0) const

Return one entry from the pressed keys history.

unsigned int & released_key (const unsigned int pos=0) const

Return one entry from the released keys history.

float frames_per_second ()

Return the current refresh rate, in frames per second.

- · ClmgDisplay & move inside screen ()
- static int screen width ()

Return width of the screen (current resolution along the X-axis).

• static int screen height ()

Return height of the screen (current resolution along the Y-axis).

static unsigned int keycode (const char *const keycode)

Return keycode corresponding to the specified string.

Window Manipulation

template<typename T >

ClmgDisplay & display (const Clmg< T > &img)

Display image on associated window.

• template<typename T >

ClmgDisplay & display (const ClmgList< T > &list, const char axis='x', const float align=0)

Display list of images on associated window.

CImgDisplay & show ()

Show (closed) associated window on the screen.

CImgDisplay & close ()

Close (visible) associated window and make it disappear from the screen.

ClmgDisplay & move (const int pos_x, const int pos_y)

Move associated window to a new location.

ClmgDisplay & resize (const bool force_redraw=true)

Resize display to the size of the associated window.

CImgDisplay & resize (const int width, const int height, const bool force_redraw=true)

Resize display to the specified size.

• template<typename T >

ClmgDisplay & resize (const Clmg< T > &img, const bool force_redraw=true)

Resize display to the size of an input image.

ClmgDisplay & resize (const ClmgDisplay &disp, const bool force_redraw=true)

Resize display to the size of another ClmgDisplay instance.

ClmgDisplay & set_normalization (const unsigned int normalization)

Set normalization type.

ClmgDisplay & set_title (const char *const format,...)

Set title of the associated window.

• ClmgDisplay & set_fullscreen (const bool is_fullscreen, const bool force_redraw=true)

Enable or disable fullscreen mode.

ClmgDisplay & toggle_fullscreen (const bool force_redraw=true)

Toggle fullscreen mode.

CImgDisplay & show_mouse ()

Show mouse pointer.

ClmgDisplay & hide_mouse ()

Hide mouse pointer.

• ClmgDisplay & set_mouse (const int pos_x, const int pos_y)

Move mouse pointer to a specified location.

ClmgDisplay & set_button ()

Simulate a mouse button release event.

• ClmgDisplay & set_button (const unsigned int button, const bool is_pressed=true)

Simulate a mouse button press or release event.

ClmgDisplay & set_wheel ()

Flush all mouse wheel events.

ClmgDisplay & set_wheel (const int amplitude)

Simulate a wheel event.

• ClmgDisplay & set_key ()

Flush all key events.

ClmgDisplay & set_key (const unsigned int keycode, const bool is_pressed=true)

Simulate a keyboard press/release event.

• ClmgDisplay & flush ()

Flush all display events.

· CImgDisplay & wait ()

Wait for any user event occurring on the current display.

CImgDisplay & wait (const unsigned int milliseconds)

Wait for a given number of milliseconds since the last call to wait().

• template<typename T >

ClmgDisplay & render (const Clmg< T > &img)

Render image into internal display buffer.

ClmgDisplay & paint ()

Paint internal display buffer on associated window.

template<typename T >

const ClmgDisplay & snapshot (Clmg< T > &img) const

Take a snapshot of the associated window content.

static void wait (ClmgDisplay &disp1)

Wait for any event occurring on the display disp1.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2)

Wait for any event occurring either on the display disp1 or disp2.

static void wait (CImgDisplay &disp1, CImgDisplay &disp2, CImgDisplay &disp3)

Wait for any event occurring either on the display disp1, disp2 or disp3.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4)

Wait for any event occurring either on the display disp1, disp2, disp3 or disp4.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, ClmgDisplay &disp5)

Wait for any event occurring either on the display disp1, disp2, disp3, disp4 or disp5.

• static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, ClmgDisplay &disp5, ClmgDisplay &disp6)

Wait for any event occurring either on the display disp1, disp2, disp3, disp4, ... disp6.

• static void wait (CImgDisplay &disp1, CImgDisplay &disp2, CImgDisplay &disp3, CImgDisplay &disp4, CImgDisplay &disp5, CImgDisplay &disp6, CImgDisplay &disp7)

Wait for any event occurring either on the display disp1, disp2, disp3, disp4, ... disp7.

static void wait (CImgDisplay &disp1, CImgDisplay &disp2, CImgDisplay &disp3, CImgDisplay &disp4, CImgDisplay &disp5, CImgDisplay &disp6, CImgDisplay &disp7, CImgDisplay &disp8)

Wait for any event occurring either on the display disp1, disp2, disp3, disp4, ... disp8.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, ClmgDisplay &disp5, ClmgDisplay &disp6, ClmgDisplay &disp7, ClmgDisplay &disp8, ClmgDisplay &disp9)

Wait for any event occurring either on the display disp1, disp2, disp3, disp4, ... disp9.

 static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, ClmgDisplay &disp5, ClmgDisplay &disp6, ClmgDisplay &disp7, ClmgDisplay &disp8, ClmgDisplay &disp9, ClmgDisplay &disp10)

Wait for any event occurring either on the display disp1, disp2, disp3, disp4, ... disp10.

• static void wait all ()

Wait for any window event occurring in any opened ClmgDisplay.

template<typename T >
 static void screenshot (const int x0, const int y0, const int x1, const int y1, Clmg< T > &img)

Take a snapshot of the current screen content.

18.2.1 Detailed Description

Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events).

CImgDisplay methods rely on a low-level graphic library to perform: it can be either **X-Window** (X11, for Unix-based systems) or **GDI32** (for Windows-based systems). If both libraries are missing, CImgDisplay will not be able to display images on screen, and will enter a minimal mode where warning messages will be outputted each time the program is trying to call one of the CImgDisplay method.

The configuration variable <code>cimg_display</code> tells about the graphic library used. It is set automatically by <code>CImg</code> when one of these graphic libraries has been detected. But, you can override its value if necessary. Valid choices are:

- 0: Disable display capabilities.
- 1: Use X-Window (X11) library.
- 2: Use GDI32 library.

Remember to link your program against X11 or GDI32 libraries if you use ClmgDisplay.

18.2.2 Constructor & Destructor Documentation

18.2.2.1 \sim ClmgDisplay()

 \sim CImgDisplay ()

Destructor.

Note

If the associated window is visible on the screen, it is closed by the call to the destructor.

18.2.2.2 ClmgDisplay() [1/5]

```
CImgDisplay ( )
```

Construct an empty display.

Note

Constructing an empty ClmgDisplay instance does not make a window appearing on the screen, until display of valid data is performed.

Example

```
 \begin{array}{lll} {\tt CImgDisplay} \ {\tt disp;} & {\tt //} \ {\tt Does} \ {\tt actually} \ {\tt nothing} \\ \dots \\ {\tt disp.display(img);} \ {\tt //} \ {\tt Construct} \ {\tt new} \ {\tt window} \ {\tt and} \ {\tt display} \ {\tt image} \ {\tt in} \ {\tt it} \\ \end{array}
```

18.2.2.3 ClmgDisplay() [2/5]

Construct a display with specified dimensions.

Parameters

width	Window width.	
height Window height.		
title	Window title.	
normalization Normalization type (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization		
is_fullscreen	Tells if fullscreen mode is enabled.	
is_closed	Tells if associated window is initially visible or not.	

Note

A black background is initially displayed on the associated window.

18.2.2.4 ClmgDisplay() [3/5]

```
const char *const title = 0,
const unsigned int normalization = 3,
const bool is_fullscreen = false,
const bool is_closed = false ) [explicit]
```

Construct a display from an image.

Parameters

img	Image used as a model to create the window.	
title Window title.		
normalization	Normalization type (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization	
is_fullscreen	reen Tells if fullscreen mode is enabled.	
is_closed	Tells if associated window is initially visible or not.	

Note

The pixels of the input image are initially displayed on the associated window.

18.2.2.5 ClmgDisplay() [4/5]

Construct a display from an image list.

Parameters

list	The images list to display.	
title	Window title.	
normalization	$Normalization \ type \ (0=none, \ 1=always, \ 2=once, \ 3=pixel \ type-dependent, \ see \ normalization ()).$	
is_fullscreen	een Tells if fullscreen mode is enabled.	
is_closed Tells if associated window is initially visible or not.		

Note

All images of the list, appended along the X-axis, are initially displayed on the associated window.

18.2.2.6 ClmgDisplay() [5/5]

```
CImgDisplay ( {\tt const~CImgDisplay~\&~} disp~)
```

Construct a display as a copy of an existing one.

Parameters

disp Display instance to copy.

Note

The pixel buffer of the input window is initially displayed on the associated window.

18.2.3 Member Function Documentation

18.2.3.1 screenshot() [1/2]

```
static void screenshot ( $\tt CImg< T>\& img ) [static]
```

Take a screenshot.

Parameters

	out	img	Output screenshot. Can be empty on input	1
--	-----	-----	--	---

18.2.3.2 assign()

```
CImgDisplay& assign ()
```

Destructor - Empty constructor [in-place version].

Note

Replace the current instance by an empty display.

18.2.3.3 empty()

```
static CImgDisplay& empty ( ) [static]
```

Return a reference to an empty display.

Note

Can be useful for writing function prototypes where one of the argument (of type ClmgDisplay&) must have a default value.

Example

```
void foo(CImgDisplay& disp=CImgDisplay::empty());
```

```
18.2.3.4 operator=() [1/3]
```

Display image on associated window.

Note

```
disp = img is equivalent to disp.display(img).
```

18.2.3.5 operator=() [2/3]

Display list of images on associated window.

Note

```
disp = list is equivalent to disp.display(list).
```

18.2.3.6 operator=() [3/3]

```
CImgDisplay& operator= (  {\tt const~CImgDisplay~\&~disp~)}
```

Construct a display as a copy of another one [in-place version].

Note

Equivalent to assign(const ClmgDisplay&).

18.2.3.7 operator bool()

```
operator bool ( ) const
```

Return false if display is empty, true otherwise.

Note

```
if (disp) { ... } is equivalent to if (!disp.is_empty()) { ... }.
```

18.2.3.8 is_closed()

```
bool is_closed ( ) const
```

Return true if display is closed (i.e. not visible on the screen), false otherwise.

Note

- · When a user physically closes the associated window, the display is set to closed.
- A closed display is not destroyed. Its associated window can be show again on the screen using show().

18.2.3.9 is_key() [1/3]

```
bool is_key ( ) const
```

Return true if any key is being pressed on the associated window, false otherwise.

Note

The methods below do the same only for specific keys.

18.2.3.10 is_key() [2/3]

Return true if key specified by given keycode is being pressed on the associated window, false otherwise.

Parameters

```
keycode Keycode to test.
```

Note

Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

Example

```
CImgDisplay disp(400,400);
while (!disp.is_closed()) {
  if (disp.key(cimg::keyTAB)) { ... } // Equivalent to 'if (disp.is_keyTAB())'
  disp.wait();
}
```

18.2.3.11 is_key() [3/3]

Return true if key specified by given keycode is being pressed on the associated window, false otherwise.

Parameters

```
keycode C-string containing the keycode label of the key to test.
```

Note

Use it when the key you want to test can be dynamically set by the user.

Example

```
CImgDisplay disp(400,400);
const char *const keycode = "TAB";
while (!disp.is_closed()) {
   if (disp.is_key(keycode)) { ... } // Equivalent to 'if (disp.is_keyTAB())'
   disp.wait();
}
```

18.2.3.12 is_key_sequence()

Return true if specified key sequence has been typed on the associated window, false otherwise.

Parameters

keycodes_sequence	Buffer of keycodes to test.
length	Number of keys in the keycodes_sequence buffer.
remove_sequence	Tells if the key sequence must be removed from the key history, if found.

Note

Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

Example

```
CImgDisplay disp(400,400);
const unsigned int key_seq[] = { cimg::keyCTRLLEFT, cimg::keyD };
while (!disp.is_closed()) {
   if (disp.is_key_sequence(key_seq,2)) { ... } // Test for the 'CTRL+D' keyboard event disp.wait();
}
```

18.2.3.13 is_keyESC()

```
bool is_keyESC ( ) const
```

Return true if the ESC key is being pressed on the associated window, false otherwise.

Note

Similar methods exist for all keys managed by CImg (see cimg::keyESC).

18.2.3.14 width()

```
int width ( ) const
```

Return display width.

Note

The width of the display (i.e. the width of the pixel data buffer associated to the ClmgDisplay instance) may be different from the actual width of the associated window.

18.2.3.15 height()

```
int height ( ) const
```

Return display height.

Note

The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance) may be different from the actual height of the associated window.

18.2.3.16 normalization()

```
unsigned int normalization ( ) const
```

Return normalization type of the display.

The normalization type tells about how the values of an input image are normalized by the CImgDisplay to be correctly displayed. The range of values for pixels displayed on screen is [0,255]. If the range of values of the data to display is different, a normalization may be required for displaying the data in a correct way. The normalization type can be one of:

- 0: Value normalization is disabled. It is then assumed that all input data to be displayed by the ClmgDisplay instance have values in range [0, 255].
- 1: Value normalization is always performed (this is the default behavior). Before displaying an input image, its values will be (virtually) stretched in range [0,255], so that the contrast of the displayed pixels will be maximum. Use this mode for images whose minimum and maximum values are not prescribed to known values (e.g. float-valued images). Note that when normalized versions of images are computed for display purposes, the actual values of these images are not modified.
- 2: Value normalization is performed once (on the first image display), then the same normalization coefficients are kept for next displayed frames.
- 3: Value normalization depends on the pixel type of the data to display. For integer pixel types, the normalization is done regarding the minimum/maximum values of the type (no normalization occurs then for unsigned char). For float-valued pixel types, the normalization is done regarding the minimum/maximum value of the image data instead.

18.2.3.17 title()

```
const char* title ( ) const
```

Return title of the associated window as a C-string.

Note

Window title may be not visible, depending on the used window manager or if the current display is in fullscreen mode.

18.2.3.18 window_width()

```
int window_width ( ) const
```

Return width of the associated window.

Note

The width of the display (i.e. the width of the pixel data buffer associated to the CImgDisplay instance) may be different from the actual width of the associated window.

18.2.3.19 window_height()

```
int window_height ( ) const
```

Return height of the associated window.

Note

The height of the display (i.e. the height of the pixel data buffer associated to the ClmgDisplay instance) may be different from the actual height of the associated window.

18.2.3.20 window_x()

```
int window_x ( ) const
```

Return X-coordinate of the associated window.

Note

The returned coordinate corresponds to the location of the upper-left corner of the associated window.

18.2.3.21 window_y()

```
int window_y ( ) const
```

Return Y-coordinate of the associated window.

Note

The returned coordinate corresponds to the location of the upper-left corner of the associated window.

18.2.3.22 mouse_x()

```
int mouse_x ( ) const
```

Return X-coordinate of the mouse pointer.

Note

- If the mouse pointer is outside window area, -1 is returned.
- Otherwise, the returned value is in the range [0,width()-1].

18.2.3.23 mouse_y()

```
int mouse_y ( ) const
```

Return Y-coordinate of the mouse pointer.

Note

- If the mouse pointer is outside window area, -1 is returned.
- Otherwise, the returned value is in the range [0,height()-1].

18.2.3.24 button()

```
unsigned int button ( ) const
```

Return current state of the mouse buttons.

Note

Three mouse buttons can be managed. If one button is pressed, its corresponding bit in the returned value is set:

- bit 0 (value 0×1): State of the left mouse button.
- bit 1 (value 0x2): State of the right mouse button.
- bit 2 (value 0x4): State of the middle mouse button.

Several bits can be activated if more than one button are pressed at the same time.

Example

```
CImgDisplay disp(400,400);
while (!disp.is_closed()) {
   if (disp.button()&1) { // Left button clicked
      ...
   }
   if (disp.button()&2) { // Right button clicked
      ...
   }
   if (disp.button()&4) { // Middle button clicked
      ...
   }
   disp.wait();
}
```

18.2.3.25 wheel()

```
int wheel ( ) const
```

Return current state of the mouse wheel.

Note

- The returned value can be positive or negative depending on whether the mouse wheel has been scrolled forward or backward.
- Scrolling the wheel forward add 1 to the wheel value.
- Scrolling the wheel backward subtract 1 to the wheel value.
- The returned value cumulates the number of forward of backward scrolls since the creation of the display, or since the last reset of the wheel value (using set_wheel()). It is strongly recommended to quickly reset the wheel counter when an action has been performed regarding the current wheel value. Otherwise, the returned wheel value may be for instance 0 despite the fact that many scrolls have been done (as many in forward as in backward directions).

Example

```
CImgDisplay disp(400,400);
while (!disp.is_closed()) {
  if (disp.wheel()) {
    int counter = disp.wheel(); // Read the state of the mouse wheel
    ... // Do what you want with 'counter'
    disp.set_wheel(); // Reset the wheel value to 0
  }
  disp.wait();
}
```

18.2.3.26 key()

```
unsigned int& key (  {\rm const\ unsigned\ int\ } pos\ =\ 0\ )\ {\rm const}
```

Return one entry from the pressed keys history.

Parameters

pos | Index to read from the pressed keys history (index 0 corresponds to latest entry).

Returns

Keycode of a pressed key or 0 for a released key.

Note

• Each CImgDisplay stores a history of the pressed keys in a buffer of size 128. When a new key is pressed, its keycode is stored in the pressed keys history. When a key is released, 0 is put instead. This means that up to the 64 last pressed keys may be read from the pressed keys history. When a new value is stored, the pressed keys history is shifted so that the latest entry is always stored at position 0.

• Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

18.2.3.27 released key()

```
unsigned int& released_key ( {\tt const\ unsigned\ int\ } pos \ = \ 0\ )\ {\tt const}
```

Return one entry from the released keys history.

Parameters

pos Index to read from the released keys history (index 0 corresponds to latest entry).

Returns

Keycode of a released key or 0 for a pressed key.

Note

- Each CImgDisplay stores a history of the released keys in a buffer of size 128. When a new key is released, its keycode is stored in the pressed keys history. When a key is pressed, 0 is put instead. This means that up to the 64 last released keys may be read from the released keys history. When a new value is stored, the released keys history is shifted so that the latest entry is always stored at position 0.
- Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

18.2.3.28 keycode()

Return keycode corresponding to the specified string.

Note

Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

Example

```
const unsigned int keyTAB = CImgDisplay::keycode("TAB"); // Return cimg::keyTAB
```

18.2.3.29 frames_per_second()

```
float frames_per_second ( )
```

Return the current refresh rate, in frames per second.

Note

Returns a significant value when the current instance is used to display successive frames. It measures the delay between successive calls to frames_per_second().

18.2.3.30 display() [1/2]

```
CImgDisplay& display ( {\tt const\ CImg<\ T\ >\ \&\ img\ )}
```

Display image on associated window.

Parameters

img	Input image to display.
-----	-------------------------

Note

This method returns immediately.

18.2.3.31 display() [2/2]

Display list of images on associated window.

Parameters

list	List of images to display.
axis Axis used to append the images along, for the visualization (can be x, y, z or c).	
align Relative position of aligned images when displaying lists with images of different sizes (0 for upp	
	0.5 for centering and 1 for lower-right).

Note

This method returns immediately.

18.2.3.32 show()

```
CImgDisplay& show ( )
```

Show (closed) associated window on the screen.

Note

- · Force the associated window of a display to be visible on the screen, even if it has been closed before.
- Using show() on a visible display does nothing.

18.2.3.33 close()

```
CImgDisplay& close ( )
```

Close (visible) associated window and make it disappear from the screen.

Note

- A closed display only means the associated window is not visible anymore. This does not mean the display has been destroyed. Use show() to make the associated window reappear.
- · Using close() on a closed display does nothing.

18.2.3.34 move()

Move associated window to a new location.

Parameters

pos⇔	X-coordinate of the new window location.
_X	
pos⊷	Y-coordinate of the new window location.
_y	

Note

Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless).

18.2.3.35 resize() [1/4]

Resize display to the size of the associated window.

Parameters

force_redraw	Tells if the previous window content must be updated and refreshed as well.
--------------	---

Note

- Calling this method ensures that width() and window_width() become equal, as well as height() and window_height().
- The associated window is also resized to specified dimensions.

18.2.3.36 resize() [2/4]

Resize display to the specified size.

Parameters

width	Requested display width.
height	Requested display height.
force_redraw	Tells if the previous window content must be updated and refreshed as well.

Note

The associated window is also resized to specified dimensions.

18.2.3.37 resize() [3/4]

Resize display to the size of an input image.

Parameters

img	Input image to take size from.	
force_redraw	Tells if the previous window content must be resized and updated as well.	1

Note

- Calling this method ensures that width() and img.width() become equal, as well as height() and img.height().
- The associated window is also resized to specified dimensions.

18.2.3.38 resize() [4/4]

Resize display to the size of another ClmgDisplay instance.

Parameters

disp	Input display to take size from.
force_redraw	Tells if the previous window content must be resized and updated as well.

Note

- Calling this method ensures that width() and disp.width() become equal, as well as height() and disp.height().
- The associated window is also resized to specified dimensions.

18.2.3.39 set_normalization()

Set normalization type.

Parameters

normalization New normalization mode.	normalization	tion New normalization mode.
---	---------------	------------------------------

18.2.3.40 set title()

Set title of the associated window.

Parameters

	format	C-string containing the format of the title, as with std::printf().	
--	--------	---	--

Warning

As the first argument is a format string, it is highly recommended to write ${\tt disp.set_title}$ ("%s", window_title);

```
instead of
disp.set_title(window_title);
```

if window_title can be arbitrary, to prevent nasty memory access.

18.2.3.41 set_fullscreen()

Enable or disable fullscreen mode.

Parameters

is_fullscreen	Tells is the fullscreen mode must be activated or not.
force_redraw	Tells if the previous window content must be displayed as well.

Note

- When the fullscreen mode is enabled, the associated window fills the entire screen but the size of the current display is not modified.
- The screen resolution may be switched to fit the associated window size and ensure it appears the largest as possible. For X-Window (X11) users, the configuration flag cimg_use_xrandr has to be set to allow the screen resolution change (requires the X11 extensions to be enabled).

18.2.3.42 toggle_fullscreen()

Toggle fullscreen mode.

Parameters

ce_redraw Tells if the previous window content must be displayed as well.	l.
--	----

Note

Enable fullscreen mode if it was not enabled, and disable it otherwise.

18.2.3.43 show_mouse()

```
CImgDisplay& show_mouse ( )
```

Show mouse pointer.

Note

Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless).

18.2.3.44 hide_mouse()

```
CImgDisplay& hide_mouse ( )
```

Hide mouse pointer.

Note

Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless).

18.2.3.45 set_mouse()

Move mouse pointer to a specified location.

Note

Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless).

18.2.3.46 set_button() [1/2]

```
CImgDisplay& set_button ( )
```

Simulate a mouse button release event.

Note

All mouse buttons are considered released at the same time.

18.2.3.47 set_button() [2/2]

Simulate a mouse button press or release event.

Parameters

button	Buttons event code, where each button is associated to a single bit.
is_pressed	Tells if the mouse button is considered as pressed or released.

18.2.3.48 set_wheel() [1/2]

```
CImgDisplay& set_wheel ( )
```

Flush all mouse wheel events.

Note

Make wheel() to return 0, if called afterwards.

18.2.3.49 set_wheel() [2/2]

Simulate a wheel event.

Parameters

amplitu	de	Amplitude of the wheel scrolling to simulate.
---------	----	---

Note

Make wheel() to return amplitude, if called afterwards.

18.2.3.50 set_key() [1/2]

```
CImgDisplay& set_key ( )
```

Flush all key events.

Note

Make key() to return 0, if called afterwards.

18.2.3.51 set_key() [2/2]

Simulate a keyboard press/release event.

Parameters

keycode	Keycode of the associated key.
is_pressed	Tells if the key is considered as pressed or released.

Note

Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

18.2.3.52 flush()

```
CImgDisplay& flush ( )
```

Flush all display events.

Note

Remove all passed events from the current display.

18.2.3.53 wait()

Wait for a given number of milliseconds since the last call to wait().

Parameters

```
milliseconds Number of milliseconds to wait for.
```

Note

Similar to cimg::wait().

18.2.3.54 render()

```
CImgDisplay& render ( {\tt const~CImg<~T~>~\&~img~)}
```

Render image into internal display buffer.

Parameters

img Input image data to render.

Note

- Convert image data representation into the internal display buffer (architecture-dependent structure).
- The content of the associated window is not modified, until paint() is called.
- Should not be used for common ClmgDisplay uses, since display() is more useful.

18.2.3.55 paint()

```
CImgDisplay& paint ( )
```

Paint internal display buffer on associated window.

Note

- Update the content of the associated window with the internal display buffer, e.g. after a render() call.
- Should not be used for common CImgDisplay uses, since display() is more useful.

18.2.3.56 screenshot() [2/2]

Take a snapshot of the current screen content.

Parameters

	x0	X-coordinate of the upper left corner.
	y0	Y-coordinate of the upper left corner.
	x1	X-coordinate of the lower right corner.
	y1	Y-coordinate of the lower right corner.
out	img	Output screenshot. Can be empty on input

18.2.3.57 snapshot()

```
const CImgDisplay& snapshot ( {\tt CImg<~T>\&~img~)~const}
```

Take a snapshot of the associated window content.

Parameters

out	img	Output snapshot. Can be empty on input.
-----	-----	---

18.3 ClmgException Struct Reference

Instances of CImgException are thrown when errors are encountered in a CImg function call.

Inherits exception.

Inherited by CImgArgumentException, CImgDisplayException, CImgInstanceException, CImgIoException, and $C \leftarrow ImgWarningException$.

Public Member Functions

const char * what () const throw ()
 Return a C-string containing the error message associated to the thrown exception.

18.3.1 Detailed Description

Instances of CImgException are thrown when errors are encountered in a CImg function call.

Overview

ClmgException is the base class of all exceptions thrown by CImg (except ClmgAbortException). ClmgException is never thrown itself. Derived classes that specify the type of errord are thrown instead. These classes can be:

- **CImgAbortException:** Thrown when a computationally-intensive function is aborted by an external signal. This is the only non-derived exception class.
- ClmgDisplayException: Thrown when something went wrong during the display of images in ClmgDisplay instances.
- ClmgInstanceException: Thrown when an instance associated to a called CImg method does not fit the function requirements. For instance, the following example throws a CImgInstanceException:

 const CImg<float> img; // Define an empty image
 const float value = img.at(0); // Try to read first pixel value (does not exist)
- CImglOException: Thrown when an error occurred when trying to load or save image files. This happens when trying to read files that do not exist or with invalid formats. For instance, the following example throws a CImglOException:

 const CImg<float> img("missing_file.jpg"); // Try to load a file that does not exist
- ClmgWarningException: Thrown only if configuration macro cimg_strict_warnings is set, and when a CImg function has to display a warning message (see cimg::warn()).

It is not recommended to throw CImgException instances by yourself, since they are expected to be thrown only by CImg. When an error occurs in a library function call, CImg may display error messages on the screen or on the standard output, depending on the current CImg exception mode. The CImg exception mode can be get and set by functions cimg::exception_mode() and cimg::exception_mode(unsigned int).

Exceptions handling

In all cases, when an error occurs in CImg, an instance of the corresponding exception class is thrown. This may lead the program to break (this is the default behavior), but you can bypass this behavior by handling the exceptions by yourself, using a usual try $\{ \ldots \}$ catch () $\{ \ldots \}$ bloc, as in the following example:

```
#define "CImg.h"
using namespace cimg_library;
int main() {
    cimg::exception_mode(0);
    try {
        ...
    } catch (CImgException& e) {
        std::fprintf(stderr, "CImg Library Error: %s",e.what());
        ...
    }
    ...
}
// Enable quiet exception mode

// Here, do what you want to stress CImg
// You succeeded: something went wrong!
// Display your custom error message
// Do what you want now to save the ship!
}
```

18.4 ClmgList< T > Struct Template Reference

Represent a list of images Clmg<T>.

Public Types

typedef Clmg< T > * iterator

Simple iterator type, to loop through each image of a list.

typedef T value_type

Pixel value type.

Public Attributes

const typedef Clmg< T > * const_iterator

Simple const iterator type, to loop through each image of a const list instance.

Constructors / Destructor / Instance Management

∼CImgList ()

Destructor.

• ClmgList ()

Default constructor.

• ClmgList (const unsigned int n)

Construct list containing empty images.

• ClmgList (const unsigned int n, const unsigned int width, const unsigned int height=1, const unsigned int depth=1, const unsigned int spectrum=1)

Construct list containing images of specified size.

• ClmgList (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const T &val)

Construct list containing images of specified size, and initialize pixel values.

• ClmgList (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const int val0, const int val1,...)

Construct list containing images of specified size, and initialize pixel values from a sequence of integers.

• ClmgList (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const double val0, const double val1,...)

Construct list containing images of specified size, and initialize pixel values from a sequence of doubles.

• template<typename t >

ClmgList (const unsigned int n, const Clmg< t > &img, const bool is_shared=false)

Construct list containing copies of an input image.

• template<typename t >

ClmgList (const Clmg< t > &img, const bool is_shared=false)

Construct list from one image.

• template<typename t1 , typename t2 >

ClmgList (const Clmg < t1 > &img1, const Clmg < t2 > &img2, const bool is shared=false)

Construct list from two images.

template<typename t1, typename t2, typename t3 >

ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const bool is_ \leftarrow shared=false)

Construct list from three images.

• template<typename t1 , typename t2 , typename t3 , typename t4 >

ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const bool is_shared=false)

Construct list from four images.

- template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 >

ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const bool is_shared=false)

Construct list from five images.

- template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 , typename t6 >

ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const Clmg< t6 > &img6, const bool is_shared=false)

Construct list from six images.

template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6, typename t7 >
 CImgList (const CImg< t1 > &img1, const CImg< t2 > &img2, const CImg< t3 > &img3, const CImg< t4 > &img4, const CImg< t5 > &img5, const CImg< t6 > &img6, const CImg< t7 > &img7, const bool is shared=false)

Construct list from seven images.

template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 , typename t6 , typename t7 , typename t8 > ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const Clmg< t6 > &img6, const Clmg< t7 > &img7, const Clmg< t8 > &img8, const bool is_shared=false)

Construct list from eight images.

• template<typename t >

ClmgList (const ClmgList< t > &list)

Construct list copy.

ClmgList (const ClmgList< T > &list)

Construct list copy [specialization].

• template<typename t >

ClmgList (const ClmgList< t > &list, const bool is_shared)

Construct list copy, and force the shared state of the list elements.

ClmgList (const char *const filename)

Construct list by reading the content of a file.

ClmgList (const ClmgDisplay &disp)

Construct list from the content of a display window.

ClmgList< T > get_shared ()

Return a list with elements being shared copies of images in the list instance.

const ClmgList< T > get_shared () const

Return a list with elements being shared copies of images in the list instance [const version].

ClmgList< T > & assign ()

Destructor [in-place version].

ClmgList< T > & clear ()

Destructor [in-place version].

ClmgList< T > & assign (const unsigned int n)

Construct list containing empty images [in-place version].

 ClmgList< T > & assign (const unsigned int n, const unsigned int width, const unsigned int height=1, const unsigned int depth=1, const unsigned int spectrum=1)

Construct list containing images of specified size [in-place version].

 ClmgList< T > & assign (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const T &val)

Construct list containing images of specified size, and initialize pixel values [in-place version].

 ClmgList< T > & assign (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const int val0, const int val1,...)

Construct list with images of specified size, and initialize pixel values from a sequence of integers [in-place version].

 ClmgList< T > & assign (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const double val0, const double val1,...)

Construct list with images of specified size, and initialize pixel values from a sequence of doubles [in-place version].

template<typename t >

ClmgList< T > & assign (const unsigned int n, const Clmg< t > &img, const bool is_shared=false)

Construct list containing copies of an input image [in-place version].

template<typename t >

ClmgList< T > & assign (const Clmg< t > &img, const bool is shared=false)

Construct list from one image [in-place version].

• template<typename t1 , typename t2 >

```
ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const bool is_shared=false)
```

Construct list from two images [in-place version].

• template<typename t1 , typename t2 , typename t3 >

ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const bool is_shared=false)

Construct list from three images [in-place version].

• template<typename t1 , typename t2 , typename t3 , typename t4 >

```
ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const bool is_shared=false)
```

Construct list from four images [in-place version].

template<typename t1, typename t2, typename t3, typename t4, typename t5 >
 ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const bool is_shared=false)

Construct list from five images [in-place version].

• template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 , typename t6 > $\begin{array}{l} \text{CImgList} < T > \& \text{ assign (const CImg} < t1 > \& \text{img1, const CImg} < t2 > \& \text{img2, const CImg} < t3 > \& \text{img3, const CImg} < t4 > \& \text{img4, const CImg} < t5 > \& \text{img5, const CImg} < t6 > \& \text{img6, const bool is_shared=false)} \end{array}$

Construct list from six images [in-place version].

template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6, typename t7 >
 ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const Clmg< t6 > &img6, const Clmg< t7 > &img7, const bool is_shared=false)

Construct list from seven images [in-place version].

• template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 , typename t6 , typename t7 , typename t8 > $\begin{array}{l} \text{CImgList} < \text{T} > \text{\& assign (const CImg} < \text{t1} > \text{\&img1, const CImg} < \text{t2} > \text{\&img2, const CImg} < \text{t3} > \text{\&img3, const CImg} < \text{t4} > \text{\&img4, const CImg} < \text{t5} > \text{\&img5, const CImg} < \text{t6} > \text{\&img6, const CImg} < \text{t7} > \text{\&img7, const CImg} < \text{t8} > \text{\&img8, const bool is_shared=false)} \\ \end{array}$

Construct list from eight images [in-place version].

• template<typename t >

ClmgList< T > & assign (const ClmgList< t > &list, const bool is_shared=false)

Construct list as a copy of an existing list and force the shared state of the list elements [in-place version].

ClmgList< T > & assign (const ClmgList< T > &list, const bool is_shared=false)

Construct list as a copy of an existing list and force shared state of elements [in-place version] [specialization].

• ClmgList< T > & assign (const char *const filename)

Construct list by reading the content of a file [in-place version].

ClmgList< T > & assign (const ClmgDisplay &disp)

Construct list from the content of a display window [in-place version].

template<typename t >

```
ClmgList< t > & move to (ClmgList< t > &list)
```

Transfer the content of the list instance to another list.

template<typename t >

ClmgList< t > & move_to (ClmgList< t > &list, const unsigned int pos)

Transfer the content of the list instance at a specified position in another list.

ClmgList< T > & swap (ClmgList< T > &list)

Swap all fields between two list instances.

static ClmgList< T > & empty ()

Return a reference to an empty list.

static const ClmgList< T > & const_empty ()

Return a reference to an empty list [const version].

Overloaded Operators

Clmg< T > & operator() (const unsigned int pos)

Return a reference to one image element of the list.

const Clmg< T > & operator() (const unsigned int pos) const

Return a reference to one image of the list.

• T & operator() (const unsigned int pos, const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)

Return a reference to one pixel value of one image of the list.

• const T & operator() (const unsigned int pos, const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const

Return a reference to one pixel value of one image of the list [const version].

operator CImg< T > * ()

Return pointer to the first image of the list.

• operator const CImg< T > * () const

Return pointer to the first image of the list [const version].

• template<typename t >

```
ClmgList< T > & operator= (const Clmg< t > &img)
```

Construct list from one image [in-place version].

• template<typename t >

```
ClmgList< T > & operator= (const ClmgList< t > &list)
```

Construct list from another list.

ClmgList< T > & operator= (const ClmgList< T > &list)

Construct list from another list [specialization].

ClmgList< T > & operator= (const char *const filename)

Construct list by reading the content of a file [in-place version].

ClmgList< T > & operator= (const ClmgDisplay &disp)

Construct list from the content of a display window [in-place version].

ClmgList< T > operator+ () const

Return a non-shared copy of a list.

template<typename t >

ClmgList< T > & operator, (const Clmg< t > &img)

Return a copy of the list instance, where image img has been inserted at the end.

template<typename t >

ClmgList< T > operator, (const Clmg< t > &img) const

Return a copy of the list instance, where image img has been inserted at the end [const version].

• template<typename t >

ClmgList< T > & operator, (const ClmgList< t > &list)

Return a copy of the list instance, where all elements of input list list have been inserted at the end.

template<typename t >

ClmgList< T > & operator, (const ClmgList< t > &list) const

Return a copy of the list instance, where all elements of input list have been inserted at the end [const version].

Clmg< T > operator> (const char axis) const

Return image corresponding to the appending of all images of the instance list along specified axis.

CImgList< T > operator< (const char axis) const

Return list corresponding to the splitting of all images of the instance list along specified axis.

Instance Characteristics

· int width () const

Return the size of the list, i.e. the number of images contained in it.

• unsigned int size () const

Return the size of the list, i.e. the number of images contained in it.

Clmg< T > * data ()

Return pointer to the first image of the list.

const Clmg< T > * data () const

Return pointer to the first image of the list [const version].

Clmg< T > * data (const unsigned int pos)

Return pointer to the pos-th image of the list.

- const Clmg< T > * data (const unsigned int I) const
- iterator begin ()

Return iterator to the first image of the list.

· const iterator begin () const

Return iterator to the first image of the list [const version].

iterator end ()

Return iterator to one position after the last image of the list.

· const iterator end () const

Return iterator to one position after the last image of the list [const version].

• Clmg< T > & front ()

Return reference to the first image of the list.

const Clmg< T > & front () const

Return reference to the first image of the list [const version].

const Clmg< T > & back () const

Return a reference to the last image of the list.

Clmg< T > & back ()

Return a reference to the last image of the list [const version].

Clmg< T > & at (const int pos)

Return pos-th image of the list.

- T & atNXYZC (const int pos, const int x, const int y, const int z, const int c, const T &out_value)
 Access to pixel value with Dirichlet boundary conditions.
- T atNXYZC (const int pos, const int x, const int y, const int z, const int c, const T &out_value) const
 Access to pixel value with Dirichlet boundary conditions [const version].
- T & atNXYZC (const int pos, const int x, const int y, const int z, const int c)

Access to pixel value with Neumann boundary conditions.

• T atNXYZC (const int pos, const int x, const int y, const int z, const int c) const

Access to pixel value with Neumann boundary conditions [const version].

T & atNXYZ (const int pos, const int x, const int y, const int z, const int c, const T &out_value)

Access pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x, y, z).

- T atNXYZ (const int pos, const int x, const int y, const int z, const int c, const T &out_value) const
 Access pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y,z) [const version].
- T & atNXYZ (const int pos, const int x, const int y, const int z, const int c=0)

Access to pixel value with Neumann boundary conditions for the 4 coordinates (pos, x,y,z).

• T atNXYZ (const int pos, const int x, const int y, const int z, const int c=0) const

Access to pixel value with Neumann boundary conditions for the 4 coordinates (pos, x,y,z) [const version].

T & atNXY (const int pos, const int x, const int y, const int z, const int c, const T &out value)

Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x, y).

- T atNXY (const int pos, const int x, const int y, const int z, const int c, const T &out_value) const Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y) [const version].
- T & atNXY (const int pos, const int x, const int y, const int z=0, const int c=0)

Access to pixel value with Neumann boundary conditions for the 3 coordinates (pos, x,y).

T atNXY (const int pos, const int x, const int y, const int z=0, const int c=0) const

Access to pixel value with Neumann boundary conditions for the 3 coordinates (pos, x,y) [const version].

T & atNX (const int pos, const int x, const int z, const int z, const int c, const T &out value)

Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (pos,x).

- T atNX (const int pos, const int x, const int y, const int z, const int c, const T &out_value) const
- Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (pos,x) [const version].
- T & atNX (const int pos, const int x, const int y=0, const int z=0, const int c=0)

Access to pixel value with Neumann boundary conditions for the 2 coordinates (pos, x).

T atNX (const int pos, const int x, const int y=0, const int z=0, const int c=0) const

Access to pixel value with Neumann boundary conditions for the 2 coordinates (pos, x) [const version].

• T & atN (const int pos, const int x, const int y, const int z, const int c, const T &out value)

Access to pixel value with Dirichlet boundary conditions for the coordinate (pos).

- T atN (const int pos, const int x, const int y, const int z, const int c, const T &out_value) const
 - Access to pixel value with Dirichlet boundary conditions for the coordinate (pos) [const version].
- T & atN (const int pos, const int x=0, const int y=0, const int z=0, const int c=0)

Return pixel value with Neumann boundary conditions for the coordinate (pos).

- T atN (const int pos, const int x=0, const int y=0, const int z=0, const int c=0) const
 - Return pixel value with Neumann boundary conditions for the coordinate (pos) [const version].
- static const char * pixel_type ()

Return the type of image pixel values as a C string.

Instance Checking

bool is_empty () const

Return true if list is empty.

• bool is sameN (const unsigned int size n) const

Test if number of image elements is equal to specified value.

```
• template<typename t >
  bool is_sameN (const ClmgList< t > &list) const
     Test if number of image elements is equal between two images lists.

    template<typename t >

  bool is_sameXY (const Clmg< t > &img) const
 template<typename t >
  bool is_sameXY (const ClmgList< t > &list) const
• template<typename t >
  bool is_sameNXY (const unsigned int n, const Clmg< t > &img) const

    template<typename t >

  bool is_sameNXY (const ClmgList< t > &list) const
• template<typename t >
  bool is_sameXZ (const Clmg< t > &img) const
  template<typename t >
  bool is_sameXZ (const ClmgList< t > &list) const

    template<typename t >

  bool is sameNXZ (const unsigned int n, const Clmg< t > &img) const

    template<typename t >

  bool is_sameNXZ (const ClmgList< t > &list) const

    template<typename t >

  bool is_sameXC (const Clmg< t > &img) const

    template<typename t >

  bool is\_sameXC (const CImgList< t > &list) const

    template<typename t >

  bool is_sameNXC (const unsigned int n, const Clmg< t > &img) const
• template<typename t >
  bool is_sameNXC (const ClmgList< t > &list) const

    template<typename t >

  bool is_sameYZ (const Clmg< t > &img) const
• template<typename t >
  bool is_sameYZ (const ClmgList< t > &list) const
• template<typename t >
  bool is sameNYZ (const unsigned int n, const Clmg< t > &img) const

    template<typename t >

  bool is_sameNYZ (const ClmgList< t > &list) const
  template<typename t >
  bool is_sameYC (const Clmg< t > &img) const
• template<typename t >
  bool is_sameYC (const ClmgList< t > &list) const

    template<typename t >

  bool is_sameNYC (const unsigned int n, const Clmg< t > &img) const

    template<typename t >

  bool is_sameNYC (const ClmgList< t > &list) const

    template<typename t >

  bool is_sameXYZ (const Clmg< t > &img) const

    template<typename t >

  bool is_sameXYZ (const ClmgList< t > &list) const

    template<typename t >

  bool is_sameNXYZ (const unsigned int n, const Clmg< t > &img) const

    template<typename t >

  bool is_sameNXYZ (const ClmgList< t > &list) const

    template<typename t >

  bool is_sameXYC (const Clmg< t > &img) const

    template<typename t >
```

bool **is_sameXYC** (const ClmgList< t > &list) const

template<typename t >

bool **is_sameNXYC** (const unsigned int n, const Clmg< t > &img) const

• template<typename t >

bool **is_sameNXYC** (const ClmgList< t > &list) const

• template<typename t >

bool is_sameYZC (const Clmg< t > &img) const

template<typename t >

bool **is_sameYZC** (const ClmgList< t > &list) const

• template<typename t >

bool **is_sameNYZC** (const unsigned int n, const Clmg< t > &img) const

template<typename t >

bool $is_sameNYZC$ (const CImgList< t > &list) const

template<typename t >

bool is_sameXYZC (const Clmg< t > &img) const

template<typename t >

bool is_sameXYZC (const ClmgList< t > &list) const

• template<typename t >

bool **is_sameNXYZC** (const unsigned int n, const Clmg< t > &img) const

template<typename t >

bool is sameNXYZC (const ClmgList< t > &list) const

- · bool is sameX (const unsigned int val) const
- bool is_sameNX (const unsigned int n, const unsigned int val) const
- bool is sameY (const unsigned int val) const
- bool is_sameNY (const unsigned int n, const unsigned int val) const
- · bool is sameZ (const unsigned int val) const
- bool is sameNZ (const unsigned int n, const unsigned int val) const
- bool is sameC (const unsigned int val) const
- bool is sameNC (const unsigned int n, const unsigned int val) const
- · bool is sameXY (const unsigned int val1, const unsigned int val2) const
- · bool is sameNXY (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is sameXZ (const unsigned int val1, const unsigned int val2) const
- bool is sameNXZ (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is_sameXC (const unsigned int val1, const unsigned int val2) const
- bool is_sameNXC (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is_sameYZ (const unsigned int val1, const unsigned int val2) const
- · bool is_sameNYZ (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is_sameYC (const unsigned int val1, const unsigned int val2) const
- bool is_sameNYC (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is_sameZC (const unsigned int val1, const unsigned int val2) const
- bool is_sameNZC (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is sameXYZ (const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is_sameNXYZ (const unsigned int n, const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is_sameXYC (const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is_sameNXYC (const unsigned int n, const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is sameXZC (const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is_sameNXZC (const unsigned int n, const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is sameYZC (const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool **is_sameNYZC** (const unsigned int n, const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is_sameXYZC (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) const

Test if dimensions of each image of the list match specified arguments.

bool is_sameNXYZC (const unsigned int n, const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) const

Test if list dimensions match specified arguments.

bool containsNXYZC (const int n, const int x=0, const int y=0, const int z=0, const int c=0) const

Test if list contains one particular pixel location.

• bool containsN (const int n) const

Test if list contains image with specified index.

• template<typename t >

bool contains (const T &pixel, t &n, t &x, t &y, t &z, t &c) const

Test if one image of the list contains the specified referenced value.

template<typename t >

bool contains (const T &pixel, t &n, t &x, t &y, t &z) const

Test if one of the image list contains the specified referenced value.

• template<typename t >

bool contains (const T &pixel, t &n, t &x, t &y) const

Test if one of the image list contains the specified referenced value.

template<typename t >

bool contains (const T &pixel, t &n, t &x) const

Test if one of the image list contains the specified referenced value.

template<typename t >

bool contains (const T &pixel, t &n) const

Test if one of the image list contains the specified referenced value.

bool contains (const T &pixel) const

Test if one of the image list contains the specified referenced value.

• template<typename t >

bool contains (const Clmg< T > &img, t &n) const

Test if the list contains the image 'img'.

bool contains (const Clmg< T > &img) const

Test if the list contains the image img.

Mathematical Functions

• T & min ()

Return a reference to the minimum pixel value of the instance list.

· const T & min () const

Return a reference to the minimum pixel value of the instance list [const version].

• T & max ()

Return a reference to the maximum pixel value of the instance list.

const T & max () const

Return a reference to the maximum pixel value of the instance list [const version].

template<typename t >

T & min_max (t &max_val)

Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well.

template<typename t >

```
const T & min_max (t &max_val) const
```

Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well [const version].

template<typename t >

T & max min (t &min val)

Return a reference to the minimum pixel value of the instance list and return the minimum value as well.

template<typename t >

```
const T & max_min (t &min_val) const
```

Return a reference to the minimum pixel value of the instance list and return the minimum value as well [const version].

List Manipulation

• template<typename t >

ClmgList< T > & insert (const Clmg< t > &img, const unsigned int pos= \sim 0U, const bool is_shared=false)

Insert a copy of the image img into the current image list, at position pos.

ClmgList< T > & insert (const Clmg< T > &img, const unsigned int pos=~0U, const bool is_shared=false)
 Insert a copy of the image img into the current image list, at position pos [specialization].

• template<typename t >

 $\label{eq:clmgList} \mbox{ClmgList} < \mbox{T} > \mbox{get_insert} \mbox{ (const Clmg} < \mbox{t} > \mbox{\&img, const unsigned int pos} = \sim 0 \mbox{U, const bool is_shared=false)} \\ \mbox{const}$

Insert a copy of the image img into the current image list, at position pos [new-instance version].

ClmgList< T > & insert (const unsigned int n, const unsigned int pos=~0U)

Insert n empty images img into the current image list, at position pos.

CImgList< T > get insert (const unsigned int n, const unsigned int pos=~0U) const

Insert n empty images img into the current image list, at position pos [new-instance version].

• template<typename t >

ClmgList< T > & insert (const unsigned int n, const Clmg< t > &img, const unsigned int pos= \sim 0U, const bool is_shared=false)

Insert n copies of the image img into the current image list, at position pos.

template<typename t >

ClmgList< T > get_insert (const unsigned int n, const Clmg< t > &img, const unsigned int pos= \sim 0U, const bool is_shared=false) const

Insert n copies of the image img into the current image list, at position pos [new-instance version].

template<typename t >

CImgList< T > & insert (const CImgList< t > &list, const unsigned int pos= \sim 0U, const bool is_shared=false)

Insert a copy of the image list list into the current image list, starting from position pos.

template<tvpename t >

ClmgList< T > get_insert (const ClmgList< t > &list, const unsigned int pos= \sim 0U, const bool is_ \leftarrow shared=false) const

Insert a copy of the image list list into the current image list, starting from position pos [new-instance version].

template<typename t >

ClmgList< T > & insert (const unsigned int n, const ClmgList< t > &list, const unsigned int pos= \sim 0U, const bool is shared=false)

Insert n copies of the list list at position pos of the current list.

• template<typename t >

ClmgList< T > get_insert (const unsigned int n, const ClmgList< t > &list, const unsigned int pos= \sim 0U, const bool is_shared=false) const

Insert n copies of the list list at position pos of the current list [new-instance version].

ClmgList< T > & remove (const unsigned int pos1, const unsigned int pos2)

Remove all images between from indexes.

ClmgList< T > get_remove (const unsigned int pos1, const unsigned int pos2) const

Remove all images between from indexes [new-instance version].

ClmgList< T > & remove (const unsigned int pos)

Remove image at index pos from the image list.

ClmgList< T > get_remove (const unsigned int pos) const

Remove image at index pos from the image list [new-instance version].

• ClmgList< T > & remove ()

Remove last image.

ClmgList< T > get_remove () const

Remove last image [new-instance version].

ClmgList< T > & reverse ()

Reverse list order.

ClmgList< T > get_reverse () const

Reverse list order [new-instance version].

ClmgList< T > & images (const unsigned int pos0, const unsigned int pos1)

Return a sublist.

ClmgList< T > get images (const unsigned int pos0, const unsigned int pos1) const

Return a sublist [new-instance version].

ClmgList< T > get_shared_images (const unsigned int pos0, const unsigned int pos1)

Return a shared sublist.

const CImgList< T > get_shared_images (const unsigned int pos0, const unsigned int pos1) const

Return a shared sublist [new-instance version].

• Clmg< T > get append (const char axis, const float align=0) const

Return a single image which is the appending of all images of the current CImgList instance.

• ClmgList< T > & split (const char axis, const int nb=-1)

Return a list where each image has been split along the specified axis.

ClmgList< T > get_split (const char axis, const int nb=-1) const

Return a list where each image has been split along the specified axis [new-instance version].

template<typename t >

```
ClmgList< T > & push back (const Clmg< t > &img)
```

Insert image at the end of the list.

template<typename t >

```
ClmgList< T > & push_front (const Clmg< t > &img)
```

Insert image at the front of the list.

template<typename t >

```
ClmgList< T > & push_back (const ClmgList< t > &list)
```

Insert list at the end of the current list.

template<typename t >

```
ClmgList< T > & push_front (const ClmgList< t > &list)
```

Insert list at the front of the current list.

CImgList< T > & pop_back ()

Remove last image.

ClmgList< T > & pop_front ()

Remove first image.

ClmgList< T > & erase (const iterator iter)

Remove image pointed by iterator.

Data Input

 Clmg< intT > get_select (ClmgDisplay &disp, const bool feature_type=true, const char axis='x', const float align=0, const bool exit_on_anykey=false) const

Display a simple interactive interface to select images or sublists.

• Clmg< intT > get_select (const char *const title, const bool feature_type=true, const char axis='x', const float align=0, const bool exit_on_anykey=false) const

Display a simple interactive interface to select images or sublists.

ClmgList< T > & load (const char *const filename)

Load a list from a file.

• ClmgList< T > & load_cimg (const char *const filename)

Load a list from a .cimg file.

CImgList< T > & load_cimg (std::FILE *const file)

Load a list from a .cimg file.

• ClmgList< T > & load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1)

Load a sublist list from a (non compressed) .cimg file.

• ClmgList< T > & load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int z1, const unsigned int c1)

Load a sub-image list from a (non compressed) .cimg file [overloading].

ClmgList< T > & load parrec (const char *const filename)

Load a list from a PAR/REC (Philips) file.

ClmgList< T > & load_yuv (const char *const filename, const unsigned int size_x, const unsigned int size_y, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_
frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true)

Load a list from a YUV image sequence file.

ClmgList< T > & load_yuv (std::FILE *const file, const unsigned int size_x, const unsigned int size_y, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_← frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true)

Load a list from an image sequence YUV file [overloading].

ClmgList< T > & load_video (const char *const filename, const unsigned int first_frame=0, const unsigned int last frame=~0U, const unsigned int step frame=1)

Load an image from a video file, using OpenCV library.

• ClmgList< T > & load ffmpeg external (const char *const filename)

Load an image from a video file using the external tool 'ffmpeg'.

ClmgList< T > & load gif external (const char *const filename)

Load gif file, using ImageMagick or GraphicsMagick's external tools.

ClmgList< T > & load_gzip_external (const char *const filename)

Load a gzipped list, using external tool 'gunzip'.

ClmgList< T > & load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, unsigned int *const bits_per_value=0, float *const voxel size=0, Clmg< charT > *const description=0)

Load images from a TIFF file.

static ClmgList< T > get load (const char *const filename)

Load a list from a file [new-instance version].

static ClmgList< T > get_load_cimg (const char *const filename)

Load a list from a .cimg file [new-instance version].

static ClmgList< T > get_load_cimg (std::FILE *const file)

Load a list from a .cimg file [new-instance version].

static CImgList< T > get_load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int z1, const unsigned int z1)

Load a sublist list from a (non compressed) .cimg file [new-instance version].

static CImgList< T > get_load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int z1, const unsigned int c1)

Load a sub-image list from a (non compressed) .cimg file [new-instance version].

static ClmgList< T > get_load_parrec (const char *const filename)

Load a list from a PAR/REC (Philips) file [new-instance version].

• static CImgList< T > get_load_yuv (const char *const filename, const unsigned int size_x, const unsigned int size_y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true)

Load a list from a YUV image sequence file [new-instance version].

• static ClmgList< T > get_load_yuv (std::FILE *const file, const unsigned int size_x, const unsigned int size_y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true)

Load a list from an image sequence YUV file [new-instance version].

static ClmgList< T > get_load_video (const char *const filename, const unsigned int first_frame=0, const unsigned int last frame=~0U, const unsigned int step frame=1)

Load an image from a video file, using OpenCV library [new-instance version].

static ClmgList< T > get_load_ffmpeg_external (const char *const filename)

Load an image from a video file using the external tool 'ffmpeg' [new-instance version].

static ClmgList< T > get load gif external (const char *const filename)

Load gif file, using ImageMagick or GraphicsMagick's external tools [new-instance version].

static ClmgList< T > get load gzip external (const char *const filename)

Load a gzipped list, using external tool 'gunzip' [new-instance version].

• static ClmgList< T > get_load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, unsigned int *const bits_per_value=0, float *const voxel size=0, Clmg< charT > *const description=0)

Load a multi-page TIFF file [new-instance version].

Data Output

• const ClmgList< T > & print (const char *const title=0, const bool display_stats=true) const Print information about the list on the standard output.

const ClmgList< T > & display (ClmgDisplay &disp, const char axis='x', const float align=0) const

Display the current ClmgList instance in an existing ClmgDisplay window (by reference).

 const ClmgList< T > & display (ClmgDisplay &disp, const bool display_info, const char axis='x', const float align=0, unsigned int *const XYZ=0, const bool exit_on_anykey=false) const

Display the current ClmgList instance in a new display window.

const ClmgList< T > & display (const char *const title=0, const bool display_info=true, const char axis='x', const float align=0, unsigned int *const XYZ=0, const bool exit_on_anykey=false) const

Display the current ClmgList instance in a new display window.

const ClmgList< T > & save (const char *const filename, const int number=-1, const unsigned int digits=6)
 const

Save list into a file.

 const ClmgList< T > & save_gif_external (const char *const filename, const float fps=25, const unsigned int nb loops=0)

Save image sequence as a GIF animated file.

• const CImgList< T > & save_yuv (const char *const filename=0, const unsigned int chroma_← subsampling=444, const bool is_rgb=true) const

Save list as a YUV image sequence file.

 const ClmgList< T > & save_yuv (std::FILE *const file, const unsigned int chroma_subsampling=444, const bool is_rgb=true) const

Save image sequence into a YUV file.

- const ClmgList< T > & save_cimg (const char *const filename, const bool is_compressed=false) const
 Save list into a .cimg file.
- const CImgList< T > & save_cimg (std::FILE *file, const bool is_compressed=false) const
 Save list into a .cimg file.
- const ClmgList< T > & save_cimg (const char *const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const

Insert the image instance into into an existing .cimg file, at specified coordinates.

 const ClmgList< T > & save_cimg (std::FILE *const file, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const

Insert the image instance into into an existing .cimg file, at specified coordinates.

• const ClmgList< T > & save_tiff (const char *const filename, const unsigned int compression_type=0, const float *const voxel size=0, const char *const description=0, const bool use bigtiff=true) const

Save list as a TIFF file.

const ClmgList< T > & save_gzip_external (const char *const filename) const

Save list as a gzipped file, using external tool 'gzip'.

• const CImgList< T > & save_video (const char *const filename, const unsigned int fps=25, const char *codec=0, const bool keep open=false) const

Save image sequence (using the OpenCV library when available).

• const ClmgList< T > & save_ffmpeg_external (const char *const filename, const unsigned int fps=25, const char *const codec=0, const unsigned int bitrate=2048) const

Save image sequence, using the external tool 'ffmpeg'.

- Clmg< ucharT > get_serialize (const bool is_compressed=false, const unsigned int header_size=0) const Serialize a ClmgList<T> instance into a raw Clmg< unsigned char> buffer.
- static bool is saveable (const char *const filename)

Tell if an image list can be saved as one single file.

• static void save_empty_cimg (const char *const filename, const unsigned int nb, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)

Save empty (non-compressed) .cimg file with specified dimensions.

• static void save_empty_cimg (std::FILE *const file, const unsigned int nb, const unsigned int dx, const unsigned int dz=1, const unsigned int dz=1)

Save empty .cimq file with specified dimensions.

template<typename t >

static CImgList< T > get_unserialize (const CImg< t > &buffer, const unsigned int header_size=0)

Unserialize a Clmg<unsigned char> serialized buffer into a ClmgList<T> list.

Others

ClmgList< T > & FFT (const char axis, const bool invert=false)

Compute a 1D Fast Fourier Transform, along specified axis.

ClmgList< Tfloat > get_FFT (const char axis, const bool invert=false) const

Compute a 1-D Fast Fourier Transform, along specified axis [new-instance version].

ClmgList< T > & FFT (const bool invert=false)

Compute n-D Fast Fourier Transform.

ClmgList< Tfloat > get_FFT (const bool invert=false) const

Compute n-D Fast Fourier Transform [new-instance version].

ClmgList< T > & reverse_object3d ()

Reverse primitives orientations of a 3D object.

ClmgList< T > get_reverse_object3d () const

Reverse primitives orientations of a 3D object [new-instance version].

static const ClmgList< ucharT > & font (const unsigned int requested_height, const bool is_variable_
 width=true)

Return a Clmg pre-defined font with requested height.

18.4.1 Detailed Description

```
template<typename T> struct cimg_library::ClmgList< T>
```

Represent a list of images Clmg<T>.

18.4.2 Member Typedef Documentation

18.4.2.1 iterator

```
typedef CImg<T>* iterator
```

Simple iterator type, to loop through each image of a list.

Note

- The CImgList<T>::iterator type is defined as a CImg<T>*.
- You may use it like this:
 CImgList<> list; // Assuming this image list is not empty
 for (CImgList<>::iterator it = list.begin(); it<list.end(); ++it) (*it).mirror('x');</pre>
- Using the loop macro cimglist_for is another (more concise) alternative: cimglist_for(list,1) list[1].mirror('x');

18.4.2.2 value_type

```
typedef T value_type
```

Pixel value type.

Refer to the pixels value type of the images in the list.

Note

- The CImgList<T>::value_type type of a CImgList<T> is defined to be a T. It is then similar to CImg<T>::value_type.
- CImgList<T>::value_type is actually not used in Clmg methods. It has been mainly defined for compatibility with STL naming conventions.

18.4.3 Constructor & Destructor Documentation

18.4.3.1 ∼CImgList()

```
\simCImgList ( )
```

Destructor.

Destroy current list instance.

Note

- · Any allocated buffer is deallocated.
- · Destroying an empty list does nothing actually.

18.4.3.2 ClmgList() [1/19]

```
CImgList ( )
```

Default constructor.

Construct a new empty list instance.

Note

- An empty list has no pixel data and its dimension width() is set to 0, as well as its image buffer pointer data().
- An empty list may be reassigned afterwards, with the family of the assign() methods. In all cases, the type of pixels stays T.

18.4.3.3 ClmgList() [2/19]

```
CImgList ( const\ unsigned\ int\ n ) [explicit]
```

Construct list containing empty images.

Parameters

```
n Number of empty images.
```

Note

Useful when you know by advance the number of images you want to manage, as it will allocate the right amount of memory for the list, without needs for reallocation (that may occur when starting from an empty list and inserting several images in it).

18.4.3.4 ClmgList() [3/19]

Construct list containing images of specified size.

Parameters

n	Number of images.
width	Width of images.
GARFIGET by Doxygeright of images.	
depth	Depth of images.
spectrum	Number of channels of images.

Note

Pixel values are not initialized and may probably contain garbage.

18.4.3.5 ClmgList() [4/19]

```
CImgList (

const unsigned int n,

const unsigned int width,

const unsigned int height,

const unsigned int depth,

const unsigned int spectrum,

const T & val )
```

Construct list containing images of specified size, and initialize pixel values.

Parameters

n	Number of images.
width	Width of images.
height	Height of images.
depth	Depth of images.
spectrum	Number of channels of images.
val	Initialization value for images pixels.

18.4.3.6 ClmgList() [5/19]

Construct list containing images of specified size, and initialize pixel values from a sequence of integers.

Parameters

n	Number of images.
width	Width of images.
height	Height of images.
depth	Depth of images.
spectrum	Number of channels of images.
val0	First value of the initializing integers sequence.
val1	Second value of the initializing integers sequence.

Warning

You must specify at least width*height*depth*spectrum values in your argument list, or you will probably segfault.

18.4.3.7 ClmgList() [6/19]

```
CImgList (

const unsigned int n,
const unsigned int width,
const unsigned int height,
const unsigned int depth,
const unsigned int spectrum,
const double val0,
const double val1,
...)
```

Construct list containing images of specified size, and initialize pixel values from a sequence of doubles.

Parameters

n	Number of images.
width	Width of images.
height	Height of images.
depth	Depth of images.
spectrum	Number of channels of images.
val0	First value of the initializing doubles sequence.
val1	Second value of the initializing doubles sequence.

Warning

You must specify at least width*height*depth*spectrum values in your argument list, or you will probably segfault.

18.4.3.8 ClmgList() [7/19]

```
CImgList (  {\rm const\ unsigned\ int\ } n,   {\rm const\ CImg} <\ t\ >\ \&\ img,   {\rm const\ bool\ } is\_shared\ =\ false\ )
```

Construct list containing copies of an input image.

Parameters

n	Number of images.
img	Input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of img.

Generated by Doxygen

18.4.3.9 ClmgList() [8/19]

```
CImgList (  \mbox{const CImg} < \mbox{t} > \& \mbox{img}, \\ \mbox{const bool } \mbox{is\_shared = false} \mbox{) [explicit]}
```

Construct list from one image.

Parameters

img	Input image to copy in the constructed list.
is_shared	Tells if the element of the list is a shared or non-shared copy of img.

18.4.3.10 ClmgList() [9/19]

```
CImgList (  \mbox{const CImg} < \mbox{t1} > \& img1, \\ \mbox{const CImg} < \mbox{t2} > \& img2, \\ \mbox{const bool } is\_shared = false \mbox{)}
```

Construct list from two images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

18.4.3.11 ClmgList() [10/19]

```
CImgList (  \mbox{const CImg} < \mbox{t1} > \& img1, \\ \mbox{const CImg} < \mbox{t2} > \& img2, \\ \mbox{const CImg} < \mbox{t3} > \& img3, \\ \mbox{const bool } is\_shared = false \mbox{)}
```

Construct list from three images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

18.4.3.12 ClmgList() [11/19]

Construct list from four images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

18.4.3.13 ClmgList() [12/19]

Construct list from five images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
img5	Fifth input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

18.4.3.14 ClmgList() [13/19]

```
const CImg< t2 > & img2,
const CImg< t3 > & img3,
const CImg< t4 > & img4,
const CImg< t5 > & img5,
const CImg< t6 > & img6,
const bool is\_shared = false)
```

Construct list from six images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
img5	Fifth input image to copy in the constructed list.
img6	Sixth input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

18.4.3.15 ClmgList() [14/19]

Construct list from seven images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
img5	Fifth input image to copy in the constructed list.
img6	Sixth input image to copy in the constructed list.
img7	Seventh input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

18.4.3.16 ClmgList() [15/19]

```
CImgList (
```

```
const CImg< t1 > & img1, const CImg< t2 > & img2, const CImg< t3 > & img3, const CImg< t4 > & img4, const CImg< t5 > & img5, const CImg< t5 > & img6, const CImg< t6 > & img6, const CImg< t7 > & img7, const CImg< t8 > & img8, const CImg< t8 > & img8, const bool is_shared = false )
```

Construct list from eight images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
img5	Fifth input image to copy in the constructed list.
img6	Sixth input image to copy in the constructed list.
img7	Seventh input image to copy in the constructed list.
img8	Eighth input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

18.4.3.17 ClmgList() [16/19]

Construct list copy.

Parameters

list	Input list to copy.

Note

The shared state of each element of the constructed list is kept the same as in list.

18.4.3.18 ClmgList() [17/19]

Construct list copy, and force the shared state of the list elements.

Parameters

list	Input list to copy.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

18.4.3.19 ClmgList() [18/19]

Construct list by reading the content of a file.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

18.4.3.20 ClmgList() [19/19]

Construct list from the content of a display window.

Parameters

disp	Display window to get content from.
------	-------------------------------------

Note

Constructed list contains a single image only.

18.4.4 Member Function Documentation

18.4.4.1 get_shared()

```
CImgList<T> get_shared ( )
```

Return a list with elements being shared copies of images in the list instance.

Note

```
list2 = list1.get_shared() is equivalent to list2.assign(list1, true).
```

```
18.4.4.2 assign() [1/18]
```

```
CImgList<T>& assign ( )
```

Destructor [in-place version].

See also

CImgList().

18.4.4.3 clear()

```
CImgList<T>& clear ( )
```

Destructor [in-place version].

Equivalent to assign().

Note

Only here for compatibility with STL naming conventions.

18.4.4.4 assign() [2/18]

Construct list containing empty images [in-place version].

See also

CImgList(unsigned int).

18.4.4.5 assign() [3/18]

Construct list containing images of specified size [in-place version].

See also

ClmgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int).

18.4.4.6 assign() [4/18]

Construct list containing images of specified size, and initialize pixel values [in-place version].

See also

ClmgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const T).

18.4.4.7 assign() [5/18]

Construct list with images of specified size, and initialize pixel values from a sequence of integers [in-place version].

See also

ClmgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const int, const int, ...).

18.4.4.8 assign() [6/18]

Construct list with images of specified size, and initialize pixel values from a sequence of doubles [in-place version].

See also

ClmgList(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int,const double,const double,...).

18.4.4.9 assign() [7/18]

Construct list containing copies of an input image [in-place version].

See also

ClmgList(unsigned int, const Clmg<t>&, bool).

18.4.4.10 assign() [8/18]

Construct list from one image [in-place version].

See also

CImgList(const CImg<t>&, bool).

18.4.4.11 assign() [9/18]

Construct list from two images [in-place version].

See also

CImgList(const CImg<t>&, const CImg<t>&, bool).

18.4.4.12 assign() [10/18]

Construct list from three images [in-place version].

See also

ClmgList(const Clmg<t>&, const Clmg<t>&, bool).

18.4.4.13 assign() [11/18]

Construct list from four images [in-place version].

See also

ClmgList(const Clmg<t>&, const Clmg<t>&, const Clmg<t>&, const Clmg<t>&, bool).

18.4.4.14 assign() [12/18]

Construct list from five images [in-place version].

See also

 $\label{eq:const_$

18.4.4.15 assign() [13/18]

Construct list from six images [in-place version].

See also

 $\label{local_const_con$

18.4.4.16 assign() [14/18]

Construct list from seven images [in-place version].

See also

 $\begin{tabular}{ll} $ClmgList(const\ Clmg < t > \&, const\ Clmg < t >$

18.4.4.17 assign() [15/18]

Construct list from eight images [in-place version].

See also

 $\label{local_const_co$

18.4.4.18 assign() [16/18]

Construct list as a copy of an existing list and force the shared state of the list elements [in-place version].

See also

ClmgList(const ClmgList<t>&, bool is_shared).

18.4.4.19 assign() [17/18]

Construct list by reading the content of a file [in-place version].

See also

CImgList(const char *const).

18.4.4.20 assign() [18/18]

Construct list from the content of a display window [in-place version].

See also

CImgList(const CImgDisplay&).

18.4.4.21 move_to() [1/2]

Transfer the content of the list instance to another list.

Parameters

list	Destination list.
------	-------------------

Note

When returning, the current list instance is empty and the initial content of list is destroyed.

18.4.4.22 move_to() [2/2]

Transfer the content of the list instance at a specified position in another list.

Parameters

list	Destination list.
pos	Index of the insertion in the list.

Note

When returning, the list instance is empty and the initial content of list is preserved (only images indexes may be modified).

18.4.4.23 swap()

Swap all fields between two list instances.

Parameters

```
list List to swap fields with.
```

Note

Can be used to exchange the content of two lists in a fast way.

18.4.4.24 empty()

```
static CImgList<T>& empty ( ) [static]
```

Return a reference to an empty list.

Note

Can be used to define default values in a function taking a ClmgList<T> as an argument. void f(const ClmgList<char>& list=ClmgList<char>::empty());

18.4.4.25 operator()() [1/3]

```
CImg<T>& operator() ( {\rm const\ unsigned\ int\ } pos\ )
```

Return a reference to one image element of the list.

Parameters

pos Index of the image element.

18.4.4.26 operator()() [2/3]

```
const CImg<T>& operator() (  {\rm const\ unsigned\ int\ } pos\ )\ {\rm const}
```

Return a reference to one image of the list.

Parameters

pos Index of the image element.

18.4.4.27 operator()() [3/3]

```
T& operator() (  {\rm const\ unsigned\ int\ } pos, \\ {\rm const\ unsigned\ int\ } x, \\ {\rm const\ unsigned\ int\ } y=0, \\ {\rm const\ unsigned\ int\ } z=0, \\ {\rm const\ unsigned\ int\ } c=0\ )
```

Return a reference to one pixel value of one image of the list.

Parameters

pos	Index of the image element.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

```
list (n, x, y, z, c) is equivalent to list [n] (x, y, z, c).
```

18.4.4.28 operator Clmg< T > *()

```
operator CImg < T > * ()
```

Return pointer to the first image of the list.

Note

Images in a list are stored as a buffer of CImg < T >.

18.4.4.29 operator=() [1/4]

```
\label{eq:const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_
```

Construct list from one image [in-place version].

Parameters

Note

```
list = img; is equivalent to list.assign(img);.
```

18.4.4.30 operator=() [2/4]

Construct list from another list.

Parameters

```
list Input list to copy.
```

Note

```
list1 = list2 is equivalent to list1.assign(list2);.
```

18.4.4.31 operator=() [3/4]

Construct list by reading the content of a file [in-place version].

See also

CImgList(const char *const).

18.4.4.32 operator=() [4/4]

Construct list from the content of a display window [in-place version].

See also

CImgList(const CImgDisplay&).

18.4.4.33 operator+()

```
CImgList<T> operator+ ( ) const
```

Return a non-shared copy of a list.

Note

+list is equivalent to CImgList < T > (list, false). It forces the copy to have non-shared elements.

18.4.4.34 operator,() [1/2]

```
\label{eq:const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_
```

Return a copy of the list instance, where image img has been inserted at the end.

Parameters

img Image inserted at the end of the instance copy.

Note

Define a convenient way to create temporary lists of images, as in the following code:

```
(img1,img2,img3,img4).display("My four images");
```

18.4.4.35 operator,() [2/2]

Return a copy of the list instance, where all elements of input list list have been inserted at the end.

Parameters

list List inserted at the end of the instance copy.

18.4.4.36 operator>()

```
CImg<T> operator> ( const char axis ) const
```

Return image corresponding to the appending of all images of the instance list along specified axis.

Parameters

```
axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }.
```

Note

```
list>'x' is equivalent to list.get_append('x').
```

18.4.4.37 operator<()

Return list corresponding to the splitting of all images of the instance list along specified axis.

Parameters

axis Axis used for image splitting.

Note

```
list<'x' is equivalent to list.get_split('x').</pre>
```

18.4.4.38 pixel_type()

```
static const char* pixel_type ( ) [static]
```

Return the type of image pixel values as a C string.

Return a char* string containing the usual type name of the image pixel values (i.e. a stringified version of the template parameter \mathbb{T}).

Note

- The returned string does not contain any spaces.
- If the pixel type ${\tt T}$ does not correspond to a registered type, the string "unknown" is returned.

18.4.4.39 width()

```
int width ( ) const
```

Return the size of the list, i.e. the number of images contained in it.

Note

Similar to size() but returns result as a (signed) integer.

18.4.4.40 size()

```
unsigned int size ( ) const
```

Return the size of the list, i.e. the number of images contained in it.

Note

Similar to width() but returns result as an unsigned integer.

18.4.4.41 data() [1/2]

```
CImg<T>* data ( )
```

Return pointer to the first image of the list.

Note

Images in a list are stored as a buffer of CImg < T >.

18.4.4.42 data() [2/2]

Return pointer to the pos-th image of the list.

Parameters

pos | Index of the image element to access.

Note

```
list.data(n); is equivalent to list.data + n;.
```

18.4.4.43 at()

```
CImg<T>& at ( const int pos )
```

Return pos-th image of the list.

Parameters

pos | Index of the image element to access.

18.4.4.44 atNXYZC() [1/2]

```
T& atNXYZC (  {\rm const\ int\ } pos, \\ {\rm const\ int\ } x, \\
```

```
const int y,
const int z,
const int c,
const T & out_value )
```

Access to pixel value with Dirichlet boundary conditions.

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);.
```

18.4.4.45 atNXYZC() [2/2]

Access to pixel value with Neumann boundary conditions.

Parameters

pos	Index of the image element to access.
Х	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

```
list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);.
```

18.4.4.46 atNXYZ() [1/2]

```
T& atNXYZ ( {\rm const\ int\ } pos,
```

```
const int x,
const int y,
const int z,
const int c,
const T & out_value )
```

Access pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y,z).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

18.4.4.47 atNXYZ() [2/2]

Access to pixel value with Neumann boundary conditions for the 4 coordinates (pos, x,y,z).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

18.4.4.48 atNXY() [1/2]

Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

18.4.4.49 atNXY() [2/2]

Access to pixel value with Neumann boundary conditions for the 3 coordinates (pos, x,y).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

18.4.4.50 atNX() [1/2]

Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (pos,x).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

18.4.4.51 atNX() [2/2]

```
T& atNX (  \mbox{const int } pos, \\ \mbox{const int } x, \\ \mbox{const int } y = 0, \\ \mbox{const int } z = 0, \\ \mbox{const int } c = 0 \mbox{ )}
```

Access to pixel value with Neumann boundary conditions for the 2 coordinates (pos, x).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

18.4.4.52 atN() [1/2]

Access to pixel value with Dirichlet boundary conditions for the coordinate (pos).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

18.4.4.53 atN() [2/2]

```
T& atN (  \mbox{const int } pos, \\ \mbox{const int } x = 0, \\ \mbox{const int } y = 0, \\ \mbox{const int } z = 0, \\ \mbox{const int } c = 0 \mbox{ )}
```

Return pixel value with Neumann boundary conditions for the coordinate (pos).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

18.4.4.54 is_sameN() [1/2]

```
bool is_sameN ( {\tt const\ unsigned\ int\ } size\_n\ )\ {\tt const}
```

Test if number of image elements is equal to specified value.

Parameters

size←	Number of image elements to test.
_n	

18.4.4.55 is_sameN() [2/2]

Test if number of image elements is equal between two images lists.

Parameters

```
list Input list to compare with.
```

18.4.4.56 is_sameXYZC()

```
bool is_sameXYZC (  {\rm const\ unsigned\ int\ } dx, \\ {\rm const\ unsigned\ int\ } dy, \\ {\rm const\ unsigned\ int\ } dz, \\ {\rm const\ unsigned\ int\ } dc\ )\ {\rm const}
```

Test if dimensions of each image of the list match specified arguments.

Parameters

dx	Checked image width.
dy	Checked image height.
dz	Checked image depth.
dc	Checked image spectrum.

18.4.4.57 is_sameNXYZC()

```
bool is_sameNXYZC (
```

```
const unsigned int n, const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) const
```

Test if list dimensions match specified arguments.

Parameters

n	Number of images in the list.	
dx	Checked image width.	
dy	Checked image height.	
dz	Checked image depth.	
dc	Checked image spectrum.	

18.4.4.58 containsNXYZC()

Test if list contains one particular pixel location.

Parameters

n	Index of the image whom checked pixel value belong to.
Х	X-coordinate of the checked pixel value.
У	Y-coordinate of the checked pixel value.
Z	Z-coordinate of the checked pixel value.
С	C-coordinate of the checked pixel value.

18.4.4.59 containsN()

```
bool contains N ( \label{eq:const} \mbox{const int } n \mbox{ ) const}
```

Test if list contains image with specified index.

Parameters

n Index of the checked image.

18.4.4.60 contains() [1/8]

Test if one image of the list contains the specified referenced value.

Parameters

	pixel	Reference to pixel value to test.
out	n	Index of image containing the pixel value, if test succeeds.
out	Х	X-coordinate of the pixel value, if test succeeds.
out	У	Y-coordinate of the pixel value, if test succeeds.
out	Z	Z-coordinate of the pixel value, if test succeeds.
out	С	C-coordinate of the pixel value, if test succeeds.

Note

If true, set coordinates (n,x,y,z,c).

18.4.4.61 contains() [2/8]

Test if one of the image list contains the specified referenced value.

	pixel	Reference to pixel value to test.
out	n	Index of image containing the pixel value, if test succeeds.
out	Х	X-coordinate of the pixel value, if test succeeds.
out	У	Y-coordinate of the pixel value, if test succeeds.
out	Z	Z-coordinate of the pixel value, if test succeeds.

Note

If true, set coordinates (n,x,y,z).

18.4.4.62 contains() [3/8]

Test if one of the image list contains the specified referenced value.

Parameters

	pixel	Reference to pixel value to test.
out	n	Index of image containing the pixel value, if test succeeds.
out	X	X-coordinate of the pixel value, if test succeeds.
out	У	Y-coordinate of the pixel value, if test succeeds.

Note

If true, set coordinates (n,x,y).

18.4.4.63 contains() [4/8]

Test if one of the image list contains the specified referenced value.

Parameters

		pixel	Reference to pixel value to test.
ĺ	out	n	Index of image containing the pixel value, if test succeeds.
Ī	out	Х	X-coordinate of the pixel value, if test succeeds.

Note

If true, set coordinates (n,x).

18.4.4.64 contains() [5/8]

```
bool contains ( \label{eq:const_T & pixel,} \\ \text{t & $n$ ) const}
```

Test if one of the image list contains the specified referenced value.

Parameters

	pixel	Reference to pixel value to test.
out	n	Index of image containing the pixel value, if test succeeds.

Note

If true, set coordinates (n).

18.4.4.65 contains() [6/8]

```
bool contains ( {\tt const} \ {\tt T} \ {\tt \&} \ pixel \ {\tt )} \ {\tt const}
```

Test if one of the image list contains the specified referenced value.

Parameters

```
pixel Reference to pixel value to test.
```

18.4.4.66 contains() [7/8]

```
bool contains ( \label{eq:const_Cimg} \mbox{const Cimg< T} > \& img, \\ \mbox{t \& $n$ ) const}
```

Test if the list contains the image 'img'.

Parameters

		img	Reference to image to test.
ou	t	n	Index of image in the list, if test succeeds.

Note

If true, returns the position (n) of the image in the list.

18.4.4.67 contains() [8/8]

```
bool contains ( \label{eq:const_CImg} \mbox{const CImg< T > \& $img$ ) const}
```

Test if the list contains the image img.

Parameters

img Reference to image to test.

18.4.4.68 min_max() [1/2]

```
T& min_max ( t & max_val )
```

Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well.

Parameters

out <i>max val</i>	Value of the maximum value found.
--------------------	-----------------------------------

18.4.4.69 min_max() [2/2]

Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well **[const version]**.

Parameters

```
out | max_val | Value of the maximum value found.
```

18.4.4.70 max_min()

Return a reference to the minimum pixel value of the instance list and return the minimum value as well.

Parameters

out <i>min_val</i>	Value of the minimum value found.
--------------------	-----------------------------------

18.4.4.71 insert() [1/5]

Insert a copy of the image img into the current image list, at position pos.

Parameters

img	Image to insert a copy to the list.		
pos	Index of the insertion.		
is_shared	Tells if the inserted image is a shared copy of img or not.		

18.4.4.72 insert() [2/5]

Insert n empty images img into the current image list, at position pos.

Parameters

n	Number of empty images to insert.
pos	Index of the insertion.

18.4.4.73 insert() [3/5]

```
CImgList<T>& insert (  const unsigned int n, \\ const CImg< t > & img, \\ const unsigned int pos = <math>\sim 0U,  const bool is\_shared = false )
```

Insert n copies of the image img into the current image list, at position pos.

Parameters

n	Number of image copies to insert.
img	Image to insert by copy.
pos	Index of the insertion.
is_shared	Tells if inserted images are shared copies of img or not.

18.4.4.74 insert() [4/5]

Insert a copy of the image list list into the current image list, starting from position pos.

Parameters

list Image list to insert.	
pos	Index of the insertion.
is_shared	Tells if inserted images are shared copies of images of list or not.

18.4.4.75 insert() [5/5]

Insert n copies of the list list at position pos of the current list.

Parameters

n	Number of list copies to insert.	
list	Image list to insert.	
pos Index of the insertion.		
is_shared	Tells if inserted images are shared copies of images of list or not.	

18.4.4.76 remove() [1/2]

```
CImgList<T>& remove (
```

```
const unsigned int pos1, const unsigned int pos2)
```

Remove all images between from indexes.

Parameters

pos1	Starting index of the removal.
pos2	Ending index of the removal.

18.4.4.77 remove() [2/2]

```
CImgList<T>& remove ( const unsigned int pos)
```

Remove image at index pos from the image list.

Parameters

pos	Index of the image to remove.
-----	-------------------------------

18.4.4.78 images()

Return a sublist.

Parameters

pos0	Starting index of the sublist.
pos1	Ending index of the sublist.

18.4.4.79 get_shared_images()

Return a shared sublist.

Parameters

pos0	Starting index of the sublist.
pos1	Ending index of the sublist.

18.4.4.80 get_append()

Return a single image which is the appending of all images of the current ClmgList instance.

Parameters

axis	Appending axis. Can be { 'x' 'y' 'z' 'c' }.
align	Appending alignment.

18.4.4.81 split()

```
CImgList<T>& split (
const char axis,
const int nb = -1)
```

Return a list where each image has been split along the specified axis.

Parameters

axis	Axis to split images along.
nb	Number of split parts for each image.

18.4.4.82 push_back() [1/2]

Insert image at the end of the list.

img	Image to insert.

18.4.4.83 push_front() [1/2]

```
CImgList<T>& push_front ( const \ CImg < \ t \ > \ \& \ img \ )
```

Insert image at the front of the list.

Parameters

img | Image to insert.

18.4.4.84 push_back() [2/2]

Insert list at the end of the current list.

Parameters

list List to insert.

18.4.4.85 push_front() [2/2]

Insert list at the front of the current list.

Parameters

list List to insert.

18.4.4.86 erase()

Remove image pointed by iterator.

Parameters

iter Iterator pointing to the image to remove.

18.4.4.87 get_select() [1/2]

Display a simple interactive interface to select images or sublists.

Parameters

disp	Window instance to display selection and user interface.
feature_type	Can be false to select a single image, or true to select a sublist.
axis	Axis along whom images are appended for visualization.
align	Alignment setting when images have not all the same size.
exit_on_anykey	Exit function when any key is pressed.

Returns

A one-column vector containing the selected image indexes.

18.4.4.88 get_select() [2/2]

Display a simple interactive interface to select images or sublists.

title	Title of a new window used to display selection and user interface.
feature_type	Can be false to select a single image, or true to select a sublist.
axis	Axis along whom images are appended for visualization.
align	Alignment setting when images have not all the same size.
exit_on_anykey	Exit function when any key is pressed.

Returns

A one-column vector containing the selected image indexes.

18.4.4.89 load()

Load a list from a file.

Parameters

filename Filename to read of	data from.
--------------------------------	------------

18.4.4.90 load_cimg() [1/3]

Load a list from a .cimg file.

Parameters

filename Filename to read data from.

18.4.4.91 load_cimg() [2/3]

```
CImgList<T>& load_cimg (
    std::FILE *const file )
```

Load a list from a .cimg file.

Parameters

file | File to read data from.

18.4.4.92 load_cimg() [3/3]

```
CImgList<T>& load\_cimg (
```

```
const char *const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int z0, const unsigned int z0, const unsigned int z0, const unsigned int z1, const unsigned int z1
```

Load a sublist list from a (non compressed) .cimg file.

Parameters

filename	Filename to read data from.
n0	Starting index of images to read (\sim 0U for max).
n1	Ending index of images to read (\sim 0U for max).
x0	Starting X-coordinates of image regions to read.
y0	Starting Y-coordinates of image regions to read.
z0	Starting Z-coordinates of image regions to read.
c0	Starting C-coordinates of image regions to read.
x1	Ending X-coordinates of image regions to read (\sim 0U for max).
y1	Ending Y-coordinates of image regions to read (\sim 0U for max).
<i>z</i> 1	Ending Z-coordinates of image regions to read (\sim 0U for max).
c1	Ending C-coordinates of image regions to read (\sim 0U for max).

18.4.4.93 load_parrec()

Load a list from a PAR/REC (Philips) file.

Parameters

filename	Filename to read data from.
mename	Filename to read data mom.

18.4.4.94 load_yuv()

```
const unsigned int first_frame = 0, const unsigned int last_frame = \sim 0U, const unsigned int step_frame = 1, const bool yuv2rgb = true )
```

Load a list from a YUV image sequence file.

Parameters

filename	Filename to read data from.	
size_x	Width of the images.	
size_y	Height of the images.	
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.	
first_frame	Index of first image frame to read.	
last_frame	Index of last image frame to read.	
step_frame	Step applied between each frame.	
yuv2rgb	Apply YUV to RGB transformation during reading.	

18.4.4.95 load_video()

Load an image from a video file, using OpenCV library.

Parameters

filename	Filename, as a C-string.
first_frame	Index of the first frame to read.
last_frame	Index of the last frame to read (can be higher than the actual number of frames, e.g. ' \sim 0U').
step_frame	Step value for frame reading.

Note

If step_frame==0, the current video stream is forced to be released (without any frames read).

18.4.4.96 load_ffmpeg_external()

Load an image from a video file using the external tool 'ffmpeg'.

Parameters

filename | Filename to read data from.

18.4.4.97 load gif external()

Load gif file, using ImageMagick or GraphicsMagick's external tools.

Parameters

filename | Filename to read data from.

18.4.4.98 load_gzip_external()

Load a gzipped list, using external tool 'gunzip'.

Parameters

filename | Filename to read data from.

18.4.4.99 load_tiff()

Load images from a TIFF file.

filename	Filename to read data from.
----------	-----------------------------

Parameters

	first_frame	Index of first image frame to read.
	last_frame	Index of last image frame to read.
	step_frame	Step applied between each frame.
out	bits_per_value	Number of bits used to store a scalar value in the image file.
out	voxel_size	Voxel size, as stored in the filename.
out	description	Description, as stored in the filename.

18.4.4.100 print()

Print information about the list on the standard output.

Parameters

title	Label set to the information displayed.
display_stats	Tells if image statistics must be computed and displayed.

18.4.4.101 display() [1/3]

Display the current ClmgList instance in an existing ClmgDisplay window (by reference).

Parameters

disp	Reference to an existing ClmgDisplay instance, where the current image list will be displayed.
axis	Appending axis. Can be { 'x' 'y' 'z' 'c' }.
align	Appending alignment.

Note

This function displays the list images of the current ClmgList instance into an existing ClmgDisplay window. Images of the list are appended in a single temporary image for visualization purposes. The function returns immediately.

18.4.4.102 display() [2/3]

Display the current ClmgList instance in a new display window.

Parameters

	disp	Display window.
	display_info	Tells if image information are displayed on the standard output.
	axis	Alignment axis for images viewing.
	align	Appending alignment.
in,out	XYZ	Contains the XYZ coordinates at start / exit of the function.
	exit_on_anykey	Exit function when any key is pressed.

Note

This function opens a new window with a specific title and displays the list images of the current ClmgList instance into it. Images of the list are appended in a single temporary image for visualization purposes. The function returns when a key is pressed or the display window is closed by the user.

18.4.4.103 display() [3/3]

Display the current ClmgList instance in a new display window.

	title	Title of the opening display window.
	display_info	Tells if list information must be written on standard output.
	axis	Appending axis. Can be { 'x' 'y' 'z' 'c' }.
	align	Appending alignment.
in,out	XYZ	Contains the XYZ coordinates at start / exit of the function.
	exit_on_anykey	Exit function when any key is pressed.

18.4.4.104 save()

Save list into a file.

Parameters

filename	Filename to write data to.
number	When positive, represents an index added to the filename. Otherwise, no number is added.
digits	Number of digits used for adding the number to the filename.

18.4.4.105 is_saveable()

Tell if an image list can be saved as one single file.

Parameters

filename	Filename, as a C-string.

Returns

true if the file format supports multiple images, false otherwise.

18.4.4.106 save_gif_external()

Save image sequence as a GIF animated file.

filename	Filename to write data to.
fps	Number of desired frames per second.
nb_loops	Number of loops (0 for infinite looping).

18.4.4.107 save_yuv() [1/2]

Save list as a YUV image sequence file.

Parameters

filename	Filename to write data to.
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.
is_rgb	Tells if the RGB to YUV conversion must be done for saving.

18.4.4.108 save_yuv() [2/2]

Save image sequence into a YUV file.

Parameters

file	File to write data to.
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.
is_rgb	Tells if the RGB to YUV conversion must be done for saving.

18.4.4.109 save_cimg() [1/4]

Save list into a .cimg file.

filename	Filename to write data to.
is_compressed	Tells if data compression must be enabled.

18.4.4.110 save_cimg() [2/4]

Save list into a .cimg file.

Parameters

file	File to write data to.
is_compressed	Tells if data compression must be enabled.

18.4.4.111 save_cimg() [3/4]

Insert the image instance into into an existing .cimg file, at specified coordinates.

Parameters

filename	Filename to write data to.
n0	Starting index of images to write.
x0	Starting X-coordinates of image regions to write.
y0	Starting Y-coordinates of image regions to write.
z0	Starting Z-coordinates of image regions to write.
c0	Starting C-coordinates of image regions to write.

18.4.4.112 save_cimg() [4/4]

```
const CImgList<T>& save_cimg (
    std::FILE *const file,
    const unsigned int n0,
    const unsigned int x0,
    const unsigned int y0,
    const unsigned int z0,
    const unsigned int c0 ) const
```

Insert the image instance into into an existing .cimg file, at specified coordinates.

Parameters

file	File to write data to.
n0	Starting index of images to write.
х0	Starting X-coordinates of image regions to write.
y0	Starting Y-coordinates of image regions to write.
z0	Starting Z-coordinates of image regions to write.
c0	Starting C-coordinates of image regions to write.

18.4.4.113 save_empty_cimg() [1/2]

Save empty (non-compressed) .cimg file with specified dimensions.

Parameters

filename	Filename to write data to.
nb	Number of images to write.
dx	Width of images in the written file.
dy	Height of images in the written file.
dz	Depth of images in the written file.
dc	Spectrum of images in the written file.

18.4.4.114 save_empty_cimg() [2/2]

```
static void save_empty_cimg (  std::FILE *const \ file, \\ const \ unsigned \ int \ nb, \\ const \ unsigned \ int \ dx, \\ const \ unsigned \ int \ dy = 1, \\ const \ unsigned \ int \ dz = 1, \\ const \ unsigned \ int \ dc = 1 \ ) \ [static]
```

Save empty .cimg file with specified dimensions.

file	File to write data to.
nb	Number of images to write.

Parameters

dx	Width of images in the written file.
dy	Height of images in the written file.
dz	Depth of images in the written file.
dc	Spectrum of images in the written file.

18.4.4.115 save_tiff()

Save list as a TIFF file.

Parameters

filename	Filename to write data to.
compression_type	Compression mode used to write data.
voxel_size	Voxel size, to be stored in the filename.
description	Description, to be stored in the filename.
use_bigtiff	Allow to save big tiff files (>4Gb).

18.4.4.116 save_gzip_external()

```
\begin{tabular}{ll} const $\tt CImgList< T>\& save\_gzip\_external ( \\ &const $\tt char *const $\tt filename ) $\tt const $\tt filename ) $\tt const $\tt filename ] $\tt filename ] $\tt const $\tt filename ] $\tt filename ]
```

Save list as a gzipped file, using external tool 'gzip'.

Parameters

```
filename Filename to write data to.
```

18.4.4.117 save_video()

```
const unsigned int fps = 25,
const char * codec = 0,
const bool keep_open = false ) const
```

Save image sequence (using the OpenCV library when available).

Parameters

filename	Filename to write data to.	
fps	Number of frames per second.	
codec	Type of compression (See http://www.fourcc.org/codecs.php to see available codecs).	
keep_open	Tells if the video writer associated to the specified filename must be kept open or not (to allo frames to be added in the same file afterwards).	

18.4.4.118 save_ffmpeg_external()

Save image sequence, using the external tool 'ffmpeg'.

Parameters

filename	Filename to write data to.
fps	Number of frames per second.
codec	Type of compression.
bitrate	Output bitrate

18.4.4.119 get_serialize()

Serialize a ClmgList<T> instance into a raw Clmg<unsigned char> buffer.

is_compressed	tells if zlib compression must be used for serialization (this requires 'cimg_use_zlib' been enabled).
header_size	Reserve empty bytes as a starting header.

18.4.4.120 font()

Return a Clmg pre-defined font with requested height.

Parameters

font_height	Height of the desired font (exact match for 13,23,53,103).
is_variable_width	Decide if the font has a variable (true) or fixed (false) width.

18.4.4.121 FFT() [1/2]

Compute a 1D Fast Fourier Transform, along specified axis.

Parameters

axis	Axis along which the Fourier transform is computed.
invert	Tells if the direct (false) or inverse transform (true) is computed.

18.4.4.122 FFT() [2/2]

Compute n-D Fast Fourier Transform.

Parameters

invert Tells if the direct (false) or inverse transform (true) is computed	ed.
--	-----

18.4.5 Member Data Documentation

18.4.5.1 const_iterator

```
const typedef CImg<T>* const_iterator
```

Simple const iterator type, to loop through each image of a const list instance.

- The $CImgList<T>::const_iterator$ type is defined to be a $const_CImg<T>*$.
- Similar to CImgList<T>::iterator, but for constant list instances.

Index

\sim CImg	atXYZ
Clmg< T >, 146	Clmg< T >, 192
\sim CImgDisplay	atXYZC
CImgDisplay, 386	Clmg< T >, 192, 193
\sim CImgList	autocrop
CImgList< T >, 424	CImg< T >, 274
abs	back
Clmg< T >, 214	CImg< T >, 188
acos	begin
Clmg< T >, 217	CImg< T >, 187
acosh	blur
Clmg< T >, 219	Clmg< T >, 290, 291
append	blur_anisotropic
Clmg< T >, 282	Clmg< T >, 291, 292
append_object3d	blur_bilateral
CImg < T >, 305	Clmg< T >, 292, 293
asin	blur_box
Clmg< T >, 218	CImg< T >, 294
asinh	blur_guided
Clmg< T >, 219	CImg< T >, 295
assign	blur_median
Clmg< T >, 156–159	CImg< T >, 296
ClmgDisplay, 389	blur_patch
CImgList< T >, 432–438	CImg< T >, 295
at	box3d
CImg< T >, 189	CImg< T >, 312
ClmgList< T >, 445	boxfilter
atan	CImg< T >, 294
CImg< T >, 218	button
atan2	CImgDisplay, 396
Clmg< T >, 218	
atanh	Clmg
Clmg< T >, 219	Clmg< T >, 146–150, 152–156
atN	Clmg Library Overview, 41
CImgList< T >, 449, 450	Clmg< T >, 85
atNX	~Clmg, 146
CImgList< T >, 448, 449	abs, 214
atNXY	acos, 217
CImgList< T >, 447, 448	acosh, 219
atNXYZ	append, 282
CImgList< T >, 446, 447	append_object3d, 305
atNXYZC	asin, 218
CImgList< T >, 445, 446	asinh, 219
atof	assign, 156–159
cimg_library::cimg, 68	at, 189
atX	atan, 218
Clmg< T >, 190	atan2, 218
atXY	atanh, 219
Clmg< T >, 191	atX, 190

atXY, 191	div, 220
atXYZ, 192	dot, 236
atXYZC, 192, 193	draw_arrow, 322
autocrop, 274	draw_axes, 343
back, 188	draw_axis, 342
begin, 187	draw_circle, 336
blur, 290, 291	draw_ellipse, 334, 335
blur_anisotropic, 291, 292	draw_fill, 345
blur_bilateral, 292, 293	draw_gaussian, 347
blur_box, 294	draw_graph, 344
blur_guided, 295	draw_grid, 343
blur_median, 296	draw_image, 337
blur_patch, 295	draw_line, 318-321
box3d, 312	draw_mandelbrot, 346
boxfilter, 294	draw_object3d, 348
Clmg, 146–150, 152–156	draw_plasma, 346
Clmg3dtoobject3d, 316	draw_point, 317
clear, 159	draw_polygon, 334
closing, 287, 288	draw_quiver, 341
columns, 275	draw_rectangle, 332, 333
cone3d, 312	draw_spline, 322-325
const_iterator, 379	draw_text, 339, 340
contains, 209, 210	draw_triangle, 325-331
containsXYZC, 208	eigen, 241
convolve, 283	elevation3d, 311
cool_LUT256, 264	ellipsoid3d, 315
correlate, 282	empty, 161
cos, 215	end, 188
cosh, 216	equalize, 261
crop, 274	erf, 213
cross, 240	erode, 285, 286
cube_LUT256, 265	eval, 233, 234
cubic_atX, 196, 197	exp, 213
cubic atX c, 197, 198	FFT, 302, 303
cubic_atXY, 198, 199	fill, 252, 253
cubic_atXY_c, 199	fill_from_values, 253
cubic atXYZ, 200	fillC, 255
cubic atXYZ c, 200	fillX, 253
cubic atXYZ p, 201	fillY, 255
cumulate, 285	fillZ, 255
cut, 259	flag_LUT256, 265
cylinder3d, 313	front, 188
data, 186	get_channel, 276
default_LUT256, 263	get_channels, 277
depth, 185	get_column, 275
deriche, 289	get eigen, 242
diagonal, 239	get_elevation3d, 306
diffusion_tensors, 298	_
dijkstra, 245	0et FF1. 302
	get_FFT, 302 get_gradient, 297
•	get_gradient, 297
dilate, 286, 287	get_gradient, 297 get_hessian, 297
dilate, 286, 287 discard, 256	get_gradient, 297 get_hessian, 297 get_isoline3d, 307
dilate, 286, 287 discard, 256 displacement, 298	get_gradient, 297 get_hessian, 297 get_isoline3d, 307 get_isosurface3d, 309
dilate, 286, 287 discard, 256 displacement, 298 display, 362, 363	get_gradient, 297 get_hessian, 297 get_isoline3d, 307 get_isosurface3d, 309 get_matrix_at, 237
dilate, 286, 287 discard, 256 displacement, 298 display, 362, 363 display_graph, 364	get_gradient, 297 get_hessian, 297 get_isoline3d, 307 get_isosurface3d, 309 get_matrix_at, 237 get_projections2d, 273
dilate, 286, 287 discard, 256 displacement, 298 display, 362, 363 display_graph, 364 display_object3d, 364	get_gradient, 297 get_hessian, 297 get_isoline3d, 307 get_isosurface3d, 309 get_matrix_at, 237 get_projections2d, 273 get_projections3d, 307
dilate, 286, 287 discard, 256 displacement, 298 display, 362, 363 display_graph, 364 display_object3d, 364 distance, 299, 300	get_gradient, 297 get_hessian, 297 get_isoline3d, 307 get_isosurface3d, 309 get_matrix_at, 237 get_projections2d, 273 get_projections3d, 307 get_rows, 276
dilate, 286, 287 discard, 256 displacement, 298 display, 362, 363 display_graph, 364 display_object3d, 364	get_gradient, 297 get_hessian, 297 get_isoline3d, 307 get_isosurface3d, 309 get_matrix_at, 237 get_projections2d, 273 get_projections3d, 307

get_shared_channels, 281	load_dlm, 350
get_shared_points, 278	load_exr, 355
get_shared_row, 279	load_ffmpeg_external, 359
get_shared_rows, 278	load_gif_external, 359
get_shared_slice, 279	load_graphicsmagick_external, 360
get_shared_slices, 279	load_gzip_external, 360
get_slice, 276	load_heif, 360
get_slices, 276	load_imagemagick_external, 360
get_split, 281, 282	load_inr, 355
get_stats, 234	load_jpeg, 350
get_SVD, 244	load_magick, 351
get_symmetric_eigen, 242	load_medcon_external, 361
get_tensor_at, 237	load_minc2, 353
get_vector_at, 236	load_off, 358
haar, 301, 302	load_other, 362
height, 184	load_pandore, 355
histogram, 260	load_parrec, 357
hot_LUT256, 264	load_pdf_external, 361
HSV_LUT256, 263	load_pfm, 351
identity_matrix, 239, 251	load_png, 351
index, 261	load_pnm, 351
invert, 240	load_raw, 357
is_Clmg3d, 211	load_rgb, 352
is_empty, 203	load_rgba, 352
is_inf, 203	load_tiff, 352
is_nan, 203 is_object3d, 211	load_viny_357
is_overlapped, 210	load_yuv, 357 log, 213
is_sameXC, 205	log10, 214
is_sameXY, 204	log2, 214
is_sameXYC, 207	magnitude, 236
is_sameXYZ, 206	map, 262
is_sameXYZC, 208	matchpatch, 299
is sameXZ, 204	matrix, 249, 250
is_sameXZC, 207	max, 223, 225
is_sameYC, 205, 206	max_min, 231
is_sameYZ, 205	maxabs, 227, 229
is sameYZC, 207, 208	min, 222, 223
is_sameZC, 206	min_max, 229
is_shared, 203	minabs, 225, 227
isoline3d, 308	mirror, 269, 270
isosurface3d, 310	move_to, 159, 160
iterator, 145	MSE, 232
jet_LUT256, 264	mul, 220
kth_smallest, 231	noise, 257
label, 262, 263	norm, 258
linear_atX, 193, 194	normalize, 258
linear_atXY, 194, 195	object3dtoClmg3d, 316
linear_atXYZ, 195	offset, 187
linear_atXYZC, 196	opening, 288
lines_LUT256, 264	operator T*, 162
load, 349	operator!=, 181, 182
load_analyze, 353	operator<, 183
load_ascii, 349	operator<<, 178
load_bmp, 350	operator<<=, 177, 178
load_camera, 361	operator>>, 179
load_cimg, 354	operator>>=, 178, 179
load_dcraw_external, 361	operator*, 170, 171

operator*=, 169, 170	save_inr, 373
operator∼, 180	save_jpeg, 367
operator [^] , 177	save_magick, 367
operator $^{\wedge}$ =, 176	save_medcon_external, 378
operator(), 161, 162	save_minc2, 370
operator+, 166, 167	save_off, 375, 376
operator++, 166	save_other, 378
operator+=, 164, 165	save_pandore, 373, 374
operator,, 182, 183	save_pfm, 368
operator-, 168, 169	save_png, 367
operator, 168	save_pnk, 368
operator-=, 167, 168	save_pnm, 368
operator/, 172	save_raw, 374
operator/=, 171	save_rgb, 368
operator=, 163, 164	save_rgba, 370
operator==, 180	save_tiff, 370
operator%, 173	save_video, 376
operator%=, 172, 173	save_yuv, 374, 375
operator&, 174	select, 349
operator&=, 173, 174	sequence, 239, 251
operator , 175, 176	set_linear_atX, 201
operator =, 175	set_linear_atXY, 202
otsu, 260	set_linear_atXYZ, 202
permute_axes, 270	set_matrix_at, 238
pixel_type, 184	set_tensor_at, 238
plane3d, 314	set_vector_at, 238
pow, 220, 221	sharpen, 296
print, 362	shift, 270
project_matrix, 244	shift_object3d, 303, 305
PSNR, 233	sign, 215
quantize, 259	sin, 215
rand, 256	sinc, 216
resize, 266, 267	sinh, 217
resize doubleXY, 269	size, 185
resize_object3d, 305	solve, 240
resize_tripleXY, 269	solve_tridiagonal, 241
RGBtoXYZ, 265	sort, 242, 243
rol, 221, 222	spectrum, 185
ror, 222	sphere3d, 315
rotate, 271, 272	sqr, 212
rotate object3d, 303	sqrt, 212
rotation matrix, 251	streamline, 277
round, 257	string, 246
row, 275	structure tensors, 297
row vector, 246, 247	SVD, 243
save, 365	swap, 160
save analyze, 371	symmetric eigen, 242
save ascii, 365	tan, 216
save_bmp, 366	tanh, 217
save cimg, 371	tensor, 250
save_cpp, 366	texturize_object3d, 306
save_dlm, 366	threshold, 260
save_empty_cimg, 372	torus3d, 313
save exr, 373	transpose, 239
- ·	
save_ffmpeg_external, 376	unroll, 271
save_graphicsmagick_external, 377	value_string, 202
save_gzip_external, 377	value_type, 146
save_imagemagick_external, 378	vanvliet, 289

variance, 231	wait, 67
variance_mean, 232	warn, 63
variance_noise, 232	wget_path, 80
vector, 248, 249	ClmgDisplay, 380
warp, 273	∼CImgDisplay, 386
watershed, 289	assign, 389
width, 184	button, 396
XYZtoRGB, 266	CImgDisplay, 386–388
Clmg3dtoobject3d	close, 400
Clmg< T >, 316	display, 399
cimg_library, 51	empty, 389
cimg_library::cimg, 52	flush, 407
atof, 68	frames_per_second, 398
curl_path, 76	height, 393
date, 75, 76	hide_mouse, 404
dcraw_path, 77	is_closed, 390
dialog, 83	is_key, 391
endianness, 64	is_key_sequence, 392
eval, 62	is_keyESC, 392
exception_mode, 61	key, 397
fclose, 72	keycode, 398
fdate, 73, 75	mouse_x, 395
fempty, 81	mouse_y, 395
ffmpeg_path, 77	move, 400
files, 82	normalization, 393
fopen, 72	operator bool, 390
fread, 80	operator=, 389, 390
fsize, 73	paint, 408
ftype, 81	released_key, 398
fwrite, 81	render, 407
graphicsmagick_path, 77	resize, 401, 402
gunzip_path, 78	screenshot, 389, 408
gzip_path, 78	set_button, 405
imagemagick_path, 78	set_fullscreen, 403
info, 61	set_key, 406
invert_endianness, 64	set_mouse, 404
is_directory, 72	set_normalization, 402
is_file, 73	set_title, 403
load_network, 82	set_wheel, 405, 406
medcon_path, 79	show, 400
minmod, 68	show_mouse, 404
mod, 67	snapshot, 408
openmp_mode, 62	title, 394
output, 60	toggle_fullscreen, 403
round, 68	wait, 407
sleep, 66	wheel, 396
split_filename, 80	width, 393
strcasecmp, 69	window_height, 394
strellipsize, 70	window_width, 394
strncasecmp, 69	window_x, 395
strpare, 71	window_y, 395
strunescape, 71	CImgException, 409
strwindows_reserved, 71	CImgList
system, 63	CImgList< T >, 424–432
temporary_path, 79	CImgList< T >, 410
tic, 66	∼CImgList, 424
time, 66	assign, 432–438
toc, 66	at, 445

atN, 449, 450	save_gzip_external, 474
atNX, 448, 449	save_tiff, 474
atNXY, 447, 448	save_video, 474
atNXYZ, 446, 447	save_yuv, 470
atNXYZC, 445, 446	size, 444
ClmgList, 424–432	split, 460
clear, 433	swap, 439
const_iterator, 476	value_type, 424
contains, 453–456	width, 444
containsN, 452	clear
containsNXYZC, 452	Clmg< T >, 159
data, 444, 445	CImgList< T >, 433
display, 467, 468	close
empty, 439	CImgDisplay, 400
erase, 461	closing
FFT, 476	Clmg< T >, 287, 288
font, 476	columns
get_append, 460	CImg< T >, 275
get_select, 462	cone3d
get_serialize, 475	Clmg< T >, 312
get_shared, 432	const_iterator
get_shared_images, 459	CImg< T >, 379
images, 459	CImgList< T >, 476
insert, 457, 458	contains
is_sameN, 450, 451	Clmg< T >, 209, 210
is_sameNXYZC, 451	CImgList< T >, 453–456
is_sameXYZC, 451	containsN
is_saveable, 469	CImgList< T >, 452
iterator, 423	containsNXYZC
load, 463	CImgList< T >, 452
load_cimg, 463	containsXYZC
load_ffmpeg_external, 465	Clmg< T >, 208
load_gif_external, 466	convolve
load_gzip_external, 466	Clmg< T >, 283
load_parrec, 464	cool_LUT256
load_tiff, 466	CImg< T >, 264
load_video, 465	correlate
load_yuv, 464	CImg< T >, 282
max_min, 456	cos
min_max, 456	Clmg< T >, 215
move_to, 438, 439	cosh
operator Clmg $<$ T $>*$, 441	Clmg< T >, 216
operator<, 443	crop
operator>, 443	CImg< T >, 274
operator(), 440	cross
operator+, 442	CImg< T >, 240
operator,, 442, 443	cube_LUT256
operator=, 441, 442	Clmg< T >, 265
pixel_type, 444	cubic_atX
print, 467	Clmg< T >, 196, 197
push_back, 460, 461	cubic_atX_c
push_front, 461	CImg< T >, 197, 198
remove, 458, 459	cubic_atXY
save, 468	Clmg< T >, 198, 199
save_cimg, 470, 471	cubic_atXY_c
save_empty_cimg, 473	00010_0011
Save empty ching, 475	
	Clmg< T >, 199
save_empty_emg, 475 save_ffmpeg_external, 475 save_gif_external, 469	

cubic_atXYZ_c	CImg< T >, 322
CImg < T >, 200	draw_axes
cubic_atXYZ_p	Clmg $< T >$, 343
CImg < T >, 201	draw_axis
cumulate	CImg< T >, 342
Clmg< T >, 285	draw_circle
curl_path	CImg< T >, 336
cimg_library::cimg, 76	draw_ellipse
cut	Clmg< T >, 334, 335
Clmg< T >, 259	draw fill
cylinder3d	_ CImg< T >, 345
Clmg< T >, 313	draw_gaussian
- 9 ,	Clmg $<$ T $>$, 347
data	draw_graph
Clmg< T >, 186	Clmg< T >, 344
CImgList< T >, 444, 445	draw_grid
date	Clmg< T >, 343
cimg_library::cimg, 75, 76	draw_image
dcraw_path	Clmg< T >, 337
cimg_library::cimg, 77	•
default LUT256	draw_line
CImg< T >, 263	Clmg< T >, 318–321
depth	draw_mandelbrot
Clmg< T >, 185	Clmg< T >, 346
deriche	draw_object3d
	CImg< T >, 348
Clmg< T >, 289	draw_plasma
diagonal	CImg< T >, 346
CImg< T >, 239	draw_point
dialog	CImg< T >, 317
cimg_library::cimg, 83	draw_polygon
diffusion_tensors	Clmg< T >, 334
Clmg< T >, 298	draw_quiver
dijkstra	CImg< T >, 341
Clmg< T >, 245	draw_rectangle
dilate	Clmg< T >, 332, 333
Clmg< T >, 286, 287	draw_spline
discard	$\frac{-1}{\text{Clmg}} < T >$, 322–325
Clmg< T >, 256	draw_text
displacement	Clmg< T >, 339, 340
Clmg< T >, 298	draw triangle
display	Clmg $< T >$, 325–331
Clmg< T >, 362, 363	5g < 1 > , 520 551
ClmgDisplay, 399	eigen
CImgList< T >, 467, 468	Clmg< T >, 241
display_graph	elevation3d
Clmg< T >, 364	Clmg< T >, 311
display_object3d	ellipsoid3d
Clmg< T >, 364	CImg< T >, 315
distance	empty
Clmg< T >, 299, 300	Clmg< T >, 161
distance_dijkstra	ClmgDisplay, 389
Clmg $<$ T $>$, 300	ClmgList $<$ T $>$, 439
distance_eikonal	end
Clmg $< T >$, 301	Clmg< T >, 188
div	endianness
Clmg $<$ T $>$, 220	cimg_library::cimg, 64
dot	equalize
Clmg< T >, 236	Clmg< T >, 261
draw_arrow	erase

a -	
CImgList< T >, 461	cimg_library::cimg, 81
Clmg< T >, 213	get_append
erode	CImgList< T >, 460 get_channel
CImg< T >, 285, 286 eval	Clmg< T >, 276
Clmg< T >, 233, 234	get_channels
cimg_library::cimg, 62	Clmg< T >, 277
exception_mode	get_column CImg< T >, 275
cimg_library::cimg, 61	get_eigen
exp $CImg < T >$, 213	Clmg< T >, 242
	get_elevation3d
FAQ : Frequently Asked Questions., 42 fclose	CImg< T >, 306 get_FFT
cimg_library::cimg, 72	Clmg< T >, 302
fdate	get_gradient
cimg_library::cimg, 73, 75	Clmg< T >, 297
fempty cimg_library::cimg, 81	get_hessian $CImg < T >$, 297
ffmpeg_path	get isoline3d
cimg_library::cimg, 77	CImg< T >, 307
FFT	get_isosurface3d
CImg< T >, 302, 303 CImgList< T >, 476	CImg< T >, 309 get_matrix_at
files	Clmg $<$ T $>$, 237
cimg_library::cimg, 82	get_projections2d
Files IO in Clmg., 49	Clmg< T >, 273
fill CImg< T >, 252, 253	get_projections3d CImg< T >, 307
fill_from_values	get_rows
CImg< T >, 253	CImg< T >, 276
fillC	get_select
CImg< T >, 255 fillX	CImgList< T >, 462 get_serialize
CImg< T >, 253	Clmg< T >, 379
fillY	CImgList< T >, 475
CImg $<$ T $>$, 255 fillZ	get_shared CImgList< T >, 432
Clmg $<$ T $>$, 255	get shared channel
flag_LUT256	Clmg< T >, 281
CImg< T >, 265	get_shared_channels
flush CImgDisplay, 407	CImg< T >, 281 get_shared_images
font	ClmgList< T >, 459
CImgList< T >, 476	get_shared_points
fopen	Clmg< T >, 278
cimg_library::cimg, 72 frames_per_second	get_shared_row CImg< T >, 279
CImgDisplay, 398	get_shared_rows
fread	CImg< T >, 278
cimg_library::cimg, 80	get_shared_slice
front CImg< T >, 188	CImg< T >, 279 get_shared_slices
fsize	Clmg< T >, 279
cimg_library::cimg, 73	get_slice
ftype	Clmg $<$ T $>$, 276
cimg_library::cimg, 81 fwrite	get_slices CImg< T >, 276
	5g 、 1

get_split	CImg< T >, 203
CImg< T >, 281, 282	is_file
get_stats	cimg_library::cimg, 73
CImg < T >, 234	is_inf
get_SVD	CImg< T >, 203
CImg< T >, 244	is_key
get_symmetric_eigen	ClmgDisplay, 391
Clmg< T >, 242	is_key_sequence
get_tensor_at	ClmgDisplay, 392
CImg < T >, 237	is_keyESC
get_vector_at	ClmgDisplay, 392
CImg< T >, 236	
graphicsmagick_path	is_nan
cimg_library::cimg, 77	Clmg $<$ T $>$, 203
gunzip_path	is_object3d
cimg_library::cimg, 78	Clmg< T >, 211
	is_overlapped
gzip_path	Clmg< T >, 210
cimg_library::cimg, 78	is_sameN
haar	CImgList< T >, 450, 451
	is_sameNXYZC
Clmg< T >, 301, 302	CImgList< T >, 451
height	is_sameXC
Clmg< T >, 184	CImg< T >, 205
ClmgDisplay, 393	is_sameXY
hide_mouse	_ CImg< T >, 204
CImgDisplay, 404	is sameXYC
histogram	Clmg< T >, 207
CImg < T >, 260	is sameXYZ
hot_LUT256	Clmg< T >, 206
CImg< T >, 264	_
How pixel data are stored with Clmg., 48	is_sameXYZC
How to use Clmg library with Visual C++ 2005 Express	Clmg $<$ T $>$, 208
Edition ?., 44	ClmgList< T >, 451
HSV LUT256	is_sameXZ
Clmg< T >, 263	CImg $<$ T $>$, 204
5g (1 /), 200	is_sameXZC
identity_matrix	CImg< T >, 207
Clmg< T >, 239, 251	is_sameYC
imagemagick_path	CImg< T >, 205, 206
cimg_library::cimg, 78	is sameYZ
images	Clmg< T >, 205
ClmgList< T >, 459	is sameYZC
index	CImg< T >, 207, 208
Clmg< T >, 261	is sameZC
5	Clmg< T >, 206
info	is saveable
cimg_library::cimg, 61	-
insert	ClmgList $<$ T $>$, 469
CImgList< T >, 457, 458	is_shared
invert	Clmg< T >, 203
Clmg< T >, 240	isoline3d
invert_endianness	CImg< T >, 308
cimg_library::cimg, 64	isosurface3d
is_Clmg3d	CImg< T >, 310
_ Clmg< T >, 211	iterator
is closed	Clmg< T >, 145
ClmgDisplay, 390	CImgList< T >, 423
is_directory	- 9 ,
cimg_library::cimg, 72	jet_LUT256
is_empty	Clmg< T >, 264
IS CITIOLY	Jilly \ 1 /, 204

key	CImg< T >, 351
CImgDisplay, 397	load_medcon_external
keycode	Clmg< T >, 361
CImgDisplay, 398	load_minc2
kth_smallest	Clmg< T >, 353
Clmg< T >, 231	load_network
label	cimg_library::cimg, 82
Clmg< T >, 262, 263	load_off
linear atX	Clmg< T >, 358
Clmg< T >, 193, 194	load_other
linear_atXY	Clmg< T >, 362
Clmg< T >, 194, 195	load_pandore
linear_atXYZ	Clmg< T >, 355
Clmg< T >, 195	load_parrec
linear atXYZC	CImg < T >, 357
-	CImgList< T >, 464
Clmg< T >, 196	load_pdf_external
lines_LUT256	CImg< T >, 361
Clmg< T >, 264	load_pfm
load Clara (T.) 040	CImg< T >, 351
Clmg< T >, 349	load_png
CImgList< T >, 463	CImg< T >, 351
load_analyze	load_pnm
Clmg< T >, 353	CImg< T >, 351
load_ascii	load_raw
CImg< T >, 349	CImg< T >, 357
load_bmp	load_rgb
CImg < T >, 350	Clmg< T >, 352
load_camera	load_rgba
Clmg< T >, 361	Clmg< T >, 352
load_cimg	load tiff
CImg < T >, 354	_ CImg< T >, 352
CImgList< T >, 463	CImgList< T >, 466
load_dcraw_external	load_video
Clmg< T >, 361	Clmg< T >, 358
load_dlm	CImgList< T >, 465
Clmg $< T >$, 350	load_yuv
load_exr	Clmg< T >, 357
Clmg< T >, 355	ClmgList $<$ T $>$, 464
load_ffmpeg_external	log
Clmg< T >, 359	Clmg< T >, 213
CImgList< T >, 465	log10
load_gif_external	Clmg $<$ T $>$, 214
$\frac{-3}{\text{Clmg}} < T >$, 359	log2
ClmgList< T >, 466	Clmg< T >, 214
load_graphicsmagick_external	Gillig< 1 >, 214
Clmg< T >, 360	magnitude
load_gzip_external	Clmg< T >, 236
CImg < T >, 360	map
ClmgList< T >, 466	Clmg< T >, 262
load heif	matchpatch
Clmg< T >, 360	Clmg< T >, 299
load_imagemagick_external	matrix
Clmg $<$ T $>$, 360	Clmg< T >, 249, 250
load_inr	Max
Clmg< T >, 355	Clmg $<$ T $>$, 223, 225
load_jpeg	max_min
Clmg< T >, 350	Clmg< T >, 231
load_magick	CImgList< T >, 456

maxabs	operator<<
Clmg< T >, 227, 229	CImg< T >, 178
medcon_path	operator<<=
cimg_library::cimg, 79	Clmg< T >, 177, 178
min	operator>
Clmg< T >, 222, 223	CImgList $<$ T $>$, 443
min_max	operator>>
Clmg< T >, 229	CImg < T >, 179
CImgList< T >, 456	operator>>=
minabs	Clmg< T >, 178, 179
Clmg< T >, 225, 227	operator*
minmod	Clmg< T >, 170, 171
cimg_library::cimg, 68	operator*=
mirror	CImg < T >, 169, 170
Clmg< T >, 269, 270	operator \sim
mod	Clmg< T >, 180
cimg_library::cimg, 67	$operator^\wedge$
mouse_x	CImg< T >, 177
CImgDisplay, 395	operator^=
mouse_y	CImg< T >, 176
CImgDisplay, 395	operator()
move	Clmg< T >, 161, 162
CImgDisplay, 400	ClmgList< T >, 440
move_to	operator+
Clmg< T >, 159, 160	Clmg< T >, 166, 167
CImgList< T >, 438, 439	ClmgList $<$ T $>$, 442
MSE	operator++
Clmg< T >, 232	Clmg< T >, 166
mul	operator+=
Clmg< T >, 220	Clmg< T >, 164, 165
	operator,
noise	Clmg< T >, 182, 183
Clmg< T >, 257	ClmgList< T >, 442, 443
norm	operator-
Clmg< T >, 258	Clmg< T >, 168, 169
normalization	operator
CImgDisplay, 393	Clmg< T >, 168
normalize	operator-=
Clmg< T >, 258	Clmg< T >, 167, 168
abicat2dtaClmq2d	operator/
object3dtoClmg3d Clmg< T >, 316	CImg< T >, 172
offset	operator/=
Clmg< T >, 187	CImg < T >, 171
	operator=
opening CImg $<$ T $>$, 288	CImg< T >, 163, 164
	ClmgDisplay, 389, 390
openmp_mode	ClmgList< T >, 441, 442
cimg_library::cimg, 62	operator==
operator bool	Clmg $<$ T $>$, 180
ClmgDisplay, 390	_
operator CImg< T > *	operator%
ClmgList $<$ T $>$, 441	Clmg $<$ T $>$, 173
operator T*	operator%=
Clmg $<$ T $>$, 162	Clmg $<$ T $>$, 172, 173
operator!=	operator&
Clmg< T >, 181, 182	CImg < T >, 174
operator<	operator&=
Clmg< T >, 183	Clmg< T >, 173, 174
CImgList< T >, 443	operator
g	•

Clmg< T >, 175, 176	Clmg< T >, 271, 272
operator =	rotate_object3d
Clmg< T >, 175	CImg< T >, 303
otsu	rotation_matrix
CImg< T >, 260	Clmg< T >, 251
output	round
cimg_library::cimg, 60	CImg< T >, 257
	cimg_library::cimg, 68
paint	row
ClmgDisplay, 408	CImg< T >, 275
permute_axes	row_vector
Clmg< T >, 270	Clmg< T >, 246, 247
pixel_type	
CImg< T >, 184	save
CImgList< T >, 444	Clmg< T >, 365
plane3d	CImgList< T >, 468
Clmg< T >, 314	save_analyze
pow	CImg< T >, 371
Clmg< T >, 220, 221	save_ascii
print	CImg $< T >$, 365
CImg< T >, 362	save_bmp
ClmgList< T >, 467	CImg< T >, 366
project matrix	save_cimg
Clmg< T >, 244	CImg< T >, 371
PSNR	CImgList< T >, 470, 471
Clmg< T >, 233	save_cpp
push back	Clmg< T >, 366
ClmgList< T >, 460, 461	save_dlm
push_front	
CImgList< T >, 461	save_empty_cimg
OllingList< 1 /, 401	Clmg< T >, 372
quantize	CImgList< T >, 473
Clmg< T >, 259	save exr
Omig < 1 > , 250	CImg< T >, 373
rand	save_ffmpeg_external
CImg< T >, 256	CImg $<$ T $>$, 376
released key	ClmgList< T >, 475
ClmgDisplay, 398	save_gif_external
remove	ClmgList< T >, 469
ClmgList< T >, 458, 459	save_graphicsmagick_external
render	CImg < T >, 377
ClmgDisplay, 407	save_gzip_external
rocizo	
resize	CImg< T >, 377
Clmg< T >, 266, 267	$ \begin{aligned} &CImg < T >, 377 \\ &CImgList < T >, 474 \end{aligned} $
Clmg< T >, 266, 267 ClmgDisplay, 401, 402	CImg< T >, 377 CImgList< T >, 474 save_imagemagick_external
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY	$ \begin{array}{l} {\rm CImg}{<} {\rm T}>, 377 \\ {\rm CImgList}{<} {\rm T}>, 474 \\ {\rm save_imagemagick_external} \\ {\rm CImg}{<} {\rm T}>, 378 \end{array} $
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY CImg< T >, 269	CImg< T >, 377 CImgList< T >, 474 save_imagemagick_external CImg< T >, 378 save_inr
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY CImg< T >, 269 resize_object3d	$\begin{array}{c} \text{CImg} < \text{T} >, 377 \\ \text{CImgList} < \text{T} >, 474 \\ \text{save_imagemagick_external} \\ \text{CImg} < \text{T} >, 378 \\ \text{save_inr} \\ \text{CImg} < \text{T} >, 373 \\ \end{array}$
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY CImg< T >, 269 resize_object3d CImg< T >, 305	CImg< T >, 377 CImgList< T >, 474 save_imagemagick_external CImg< T >, 378 save_inr CImg< T >, 373 save_jpeg
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY CImg< T >, 269 resize_object3d CImg< T >, 305 resize_tripleXY	$\begin{array}{c} \text{CImg} < \text{T} >, 377 \\ \text{CImgList} < \text{T} >, 474 \\ \text{save_imagemagick_external} \\ \text{CImg} < \text{T} >, 378 \\ \text{save_inr} \\ \text{CImg} < \text{T} >, 373 \\ \text{save_jpeg} \\ \text{CImg} < \text{T} >, 367 \\ \end{array}$
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY CImg< T >, 269 resize_object3d CImg< T >, 305 resize_tripleXY CImg< T >, 269	$\begin{array}{c} \text{CImg} < \text{T} >, 377 \\ \text{CImgList} < \text{T} >, 474 \\ \text{save_imagemagick_external} \\ \text{CImg} < \text{T} >, 378 \\ \text{save_inr} \\ \text{CImg} < \text{T} >, 373 \\ \text{save_jpeg} \\ \text{CImg} < \text{T} >, 367 \\ \text{save_magick} \end{array}$
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY CImg< T >, 269 resize_object3d CImg< T >, 305 resize_tripleXY CImg< T >, 269 Retrieving Command Line Arguments., 50	$\begin{array}{c} \text{CImg}{<} \text{ T} >, 377 \\ \text{CImgList}{<} \text{ T} >, 474 \\ \text{save_imagemagick_external} \\ \text{CImg}{<} \text{ T} >, 378 \\ \text{save_inr} \\ \text{CImg}{<} \text{ T} >, 373 \\ \text{save_jpeg} \\ \text{CImg}{<} \text{ T} >, 367 \\ \text{save_magick} \\ \text{CImg}{<} \text{ T} >, 367 \\ \end{array}$
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY CImg< T >, 269 resize_object3d CImg< T >, 305 resize_tripleXY CImg< T >, 269 Retrieving Command Line Arguments., 50 RGBtoXYZ	CImg< T >, 377 CImgList< T >, 474 save_imagemagick_external CImg< T >, 378 save_inr CImg< T >, 373 save_jpeg CImg< T >, 367 save_magick CImg< T >, 367 save_medcon_external
CImg< T >, 266, 267 CImgDisplay, 401, 402 resize_doubleXY CImg< T >, 269 resize_object3d CImg< T >, 305 resize_tripleXY CImg< T >, 269 Retrieving Command Line Arguments., 50	$\begin{array}{c} \text{CImg}{<} \text{ T} >, 377 \\ \text{CImgList}{<} \text{ T} >, 474 \\ \text{save_imagemagick_external} \\ \text{CImg}{<} \text{ T} >, 378 \\ \text{save_inr} \\ \text{CImg}{<} \text{ T} >, 373 \\ \text{save_jpeg} \\ \text{CImg}{<} \text{ T} >, 367 \\ \text{save_magick} \\ \text{CImg}{<} \text{ T} >, 367 \\ \text{save_medcon_external} \\ \text{CImg}{<} \text{ T} >, 378 \\ \end{array}$
Clmg< T >, 266, 267 ClmgDisplay, 401, 402 resize_doubleXY Clmg< T >, 269 resize_object3d Clmg< T >, 305 resize_tripleXY Clmg< T >, 269 Retrieving Command Line Arguments., 50 RGBtoXYZ Clmg< T >, 265 rol	$\begin{array}{c} \text{CImg}{<}\ T>,\ 377\\ \text{CImgList}{<}\ T>,\ 474\\ \text{save_imagemagick_external}\\ \text{CImg}{<}\ T>,\ 378\\ \text{save_inr}\\ \text{CImg}{<}\ T>,\ 373\\ \text{save_jpeg}\\ \text{CImg}{<}\ T>,\ 367\\ \text{save_magick}\\ \text{CImg}{<}\ T>,\ 367\\ \text{save_medcon_external}\\ \text{CImg}{<}\ T>,\ 378\\ \text{save_minc2} \end{array}$
$\label{eq:clmg_total_constraint} \begin{split} & \text{CImg} < T >, 266, 267 \\ & \text{CImgDisplay, 401, 402} \\ & \text{resize_doubleXY} \\ & \text{CImg} < T >, 269 \\ & \text{resize_object3d} \\ & \text{CImg} < T >, 305 \\ & \text{resize_tripleXY} \\ & \text{CImg} < T >, 269 \\ & \text{Retrieving Command Line Arguments., 50} \\ & \text{RGBtoXYZ} \\ & \text{CImg} < T >, 265 \end{split}$	$\begin{array}{c} \text{CImg}{<} \text{ T} >, 377 \\ \text{CImgList}{<} \text{ T} >, 474 \\ \text{save_imagemagick_external} \\ \text{CImg}{<} \text{ T} >, 378 \\ \text{save_inr} \\ \text{CImg}{<} \text{ T} >, 373 \\ \text{save_jpeg} \\ \text{CImg}{<} \text{ T} >, 367 \\ \text{save_magick} \\ \text{CImg}{<} \text{ T} >, 367 \\ \text{save_medcon_external} \\ \text{CImg}{<} \text{ T} >, 378 \\ \end{array}$
Clmg< T >, 266, 267 ClmgDisplay, 401, 402 resize_doubleXY Clmg< T >, 269 resize_object3d Clmg< T >, 305 resize_tripleXY Clmg< T >, 269 Retrieving Command Line Arguments., 50 RGBtoXYZ Clmg< T >, 265 rol	$\begin{array}{c} \text{CImg}{<}\ T>,\ 377\\ \text{CImgList}{<}\ T>,\ 474\\ \text{save_imagemagick_external}\\ \text{CImg}{<}\ T>,\ 378\\ \text{save_inr}\\ \text{CImg}{<}\ T>,\ 373\\ \text{save_jpeg}\\ \text{CImg}{<}\ T>,\ 367\\ \text{save_magick}\\ \text{CImg}{<}\ T>,\ 367\\ \text{save_medcon_external}\\ \text{CImg}{<}\ T>,\ 378\\ \text{save_minc2} \end{array}$
$\label{eq:clmg_total_constraint} \begin{split} & \text{CImg} < \text{T} >, 266, 267 \\ & \text{CImgDisplay, 401, 402} \end{split}$ $\text{resize_doubleXY} \\ & \text{CImg} < \text{T} >, 269 \\ \text{resize_object3d} \\ & \text{CImg} < \text{T} >, 305 \\ \text{resize_tripleXY} \\ & \text{CImg} < \text{T} >, 269 \\ \text{Retrieving Command Line Arguments., 50} \\ & \text{RGBtoXYZ} \\ & \text{CImg} < \text{T} >, 265 \\ \text{rol} \\ & \text{CImg} < \text{T} >, 221, 222 \end{split}$	$\begin{array}{c} \text{CImg} < \text{T} >, 377 \\ \text{CImgList} < \text{T} >, 474 \\ \text{save_imagemagick_external} \\ \text{CImg} < \text{T} >, 378 \\ \text{save_inr} \\ \text{CImg} < \text{T} >, 373 \\ \text{save_jpeg} \\ \text{CImg} < \text{T} >, 367 \\ \text{save_magick} \\ \text{CImg} < \text{T} >, 367 \\ \text{save_medcon_external} \\ \text{CImg} < \text{T} >, 378 \\ \text{save_minc2} \\ \text{CImg} < \text{T} >, 370 \\ \end{array}$
$\label{eq:clmg_total_constraint} \begin{split} & \text{CImg} < \text{T} >, 266, 267 \\ & \text{CImgDisplay, 401, 402} \end{split}$ $\text{resize_doubleXY} \\ & \text{CImg} < \text{T} >, 269 \\ \text{resize_object3d} \\ & \text{CImg} < \text{T} >, 305 \\ \text{resize_tripleXY} \\ & \text{CImg} < \text{T} >, 269 \\ \text{Retrieving Command Line Arguments., 50} \\ \text{RGBtoXYZ} \\ & \text{CImg} < \text{T} >, 265 \\ \text{rol} \\ & \text{CImg} < \text{T} >, 221, 222 \\ \text{ror} \end{split}$	$\begin{array}{c} \text{CImg}{<} \text{ T} >, 377 \\ \text{CImgList}{<} \text{ T} >, 474 \\ \text{save_imagemagick_external} \\ \text{CImg}{<} \text{ T} >, 378 \\ \text{save_inr} \\ \text{CImg}{<} \text{ T} >, 373 \\ \text{save_jpeg} \\ \text{CImg}{<} \text{ T} >, 367 \\ \text{save_magick} \\ \text{CImg}{<} \text{ T} >, 367 \\ \text{save_medcon_external} \\ \text{CImg}{<} \text{ T} >, 378 \\ \text{save_minc2} \\ \text{CImg}{<} \text{ T} >, 370 \\ \text{save_off} \\ \end{array}$

CImg < T >, 378	Setting Environment Variables, 43
save_pandore	sharpen
Clmg< T >, 373, 374	$CImg < T >, \frac{296}{1}$
save_pfm	shift
CImg< T >, 368	CImg< T >, 270
save_png	shift_object3d
CImg < T >, 367	CImg $< T >$, 303, 305
save_pnk	show
CImg< T >, 368	CImgDisplay, 400
save_pnm	show_mouse
CImg< T >, 368	CImgDisplay, 404
save_raw	sign
CImg< T >, 374	CImg< T >, 215
save_rgb	sin
Clmg< T >, 368	Clmg< T >, 215
save_rgba	sinc
CImg< T >, 370	CImg< T >, 216
save_tiff	sinh
CImg< T >, 370	CImg< T >, 217
CImgList< T >, 474	size
save_video	CImg< T >, 185
CImg < T >, 376	CImgList< T >, 444
CImgList< T >, 474	sleep
save_yuv	cimg_library::cimg, 66
CImg< T >, 374, 375	snapshot
CImgList< T >, 470	CImgDisplay, 408
screenshot	solve
CImgDisplay, 389, 408	CImg < T >, 240
select	solve_tridiagonal
CImg< T >, 349	CImg< T >, 241
sequence	sort
Clmg< T >, 239, 251	CImg < T >, 242, 243
set_button	spectrum
CImgDisplay, 405	CImg< T >, 185
set_fullscreen	sphere3d
CImgDisplay, 403	CImg< T >, 315
set_key	split
CImgDisplay, 406	CImgList< T >, 460
set_linear_atX	split_filename
CImg < T >, 201	cimg_library::cimg, 80
set_linear_atXY	sqr
CImg< T >, 202	CImg< T >, 212
CImg< T >, 202 set_linear_atXYZ	CImg< T >, 212 sqrt
•	•
set_linear_atXYZ	sqrt
set_linear_atXYZ CImg< T >, 202	sqrt CImg< T >, 212
set_linear_atXYZ CImg< T >, 202 set_matrix_at	sqrt CImg< T >, 212 strcasecmp
set_linear_atXYZ CImg< T >, 202 set_matrix_at CImg< T >, 238	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69
set_linear_atXYZ CImg< T >, 202 set_matrix_at CImg< T >, 238 set_mouse	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline
set_linear_atXYZ CImg< T >, 202 set_matrix_at CImg< T >, 238 set_mouse CImgDisplay, 404	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277
set_linear_atXYZ Clmg< T >, 202 set_matrix_at Clmg< T >, 238 set_mouse ClmgDisplay, 404 set_normalization	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277 strellipsize
set_linear_atXYZ CImg< T >, 202 set_matrix_at CImg< T >, 238 set_mouse CImgDisplay, 404 set_normalization CImgDisplay, 402	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277 strellipsize cimg_library::cimg, 70
set_linear_atXYZ Clmg< T >, 202 set_matrix_at Clmg< T >, 238 set_mouse ClmgDisplay, 404 set_normalization ClmgDisplay, 402 set_tensor_at	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277 strellipsize cimg_library::cimg, 70 string
set_linear_atXYZ CImg< T >, 202 set_matrix_at CImg< T >, 238 set_mouse CImgDisplay, 404 set_normalization CImgDisplay, 402 set_tensor_at CImg< T >, 238 set_title	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277 strellipsize cimg_library::cimg, 70 string CImg< T >, 246 strncasecmp
set_linear_atXYZ CImg< T >, 202 set_matrix_at CImg< T >, 238 set_mouse CImgDisplay, 404 set_normalization CImgDisplay, 402 set_tensor_at CImg< T >, 238 set_title CImgDisplay, 403	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277 strellipsize cimg_library::cimg, 70 string CImg< T >, 246 strncasecmp cimg_library::cimg, 69
set_linear_atXYZ Clmg< T >, 202 set_matrix_at Clmg< T >, 238 set_mouse ClmgDisplay, 404 set_normalization ClmgDisplay, 402 set_tensor_at Clmg< T >, 238 set_title ClmgDisplay, 403 set_vector_at	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277 strellipsize cimg_library::cimg, 70 string CImg< T >, 246 strncasecmp cimg_library::cimg, 69 strpare
set_linear_atXYZ Clmg< T >, 202 set_matrix_at Clmg< T >, 238 set_mouse ClmgDisplay, 404 set_normalization ClmgDisplay, 402 set_tensor_at Clmg< T >, 238 set_title ClmgDisplay, 403 set_vector_at Clmg< T >, 238	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277 strellipsize cimg_library::cimg, 70 string CImg< T >, 246 strncasecmp cimg_library::cimg, 69 strpare cimg_library::cimg, 71
set_linear_atXYZ Clmg< T >, 202 set_matrix_at Clmg< T >, 238 set_mouse ClmgDisplay, 404 set_normalization ClmgDisplay, 402 set_tensor_at Clmg< T >, 238 set_title ClmgDisplay, 403 set_vector_at	sqrt CImg< T >, 212 strcasecmp cimg_library::cimg, 69 streamline CImg< T >, 277 strellipsize cimg_library::cimg, 70 string CImg< T >, 246 strncasecmp cimg_library::cimg, 69 strpare

	OL
strunescape cimg_library::cimg, 71	CImg< T >, 232
strwindows_reserved	vector CImg< T >, 248, 249
cimg_library::cimg, 71	5g < 1 > , 2 10, 2 10
SVD	wait
Clmg< T >, 243	cimg_library::cimg, 67
swap	CImgDisplay, 407
Clmg $< T >$, 160	warn
CImgList< T >, 439	cimg_library::cimg, 63
symmetric_eigen	warp
Clmg< T >, 242	Clmg $<$ T $>$, 273
system	watershed $CImg < T >$, 289
cimg_library::cimg, 63	wget_path
tan	cimg_library::cimg, 80
Clmg< T >, 216	wheel
tanh	ClmgDisplay, 396
Clmg< T >, 217	width
temporary_path	Clmg< T >, 184
cimg_library::cimg, 79	CImgDisplay, 393
tensor	CImgList< T >, 444
CImg< T >, 250	window_height
texturize_object3d	ClmgDisplay, 394
Clmg< T >, 306	window_width
threshold	CImgDisplay, 394
Clmg< T >, 260	window_x
tic cimg_library::cimg, 66	CImgDisplay, 395 window_y
time	ClmgDisplay, 395
une	omigbiopias, occ
cima library::cima 66	
cimg_library::cimg, 66 title	XYZtoRGB
title	XYZtoRGB CImg< T >, 266
title CImgDisplay, 394	
title CImgDisplay, 394 toc	
title CImgDisplay, 394 toc cimg_library::cimg, 66	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial : Getting Started., 45	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial : Getting Started., 45 unroll	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type CImg< T >, 146	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type CImg< T >, 146 CImgList< T >, 424	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type CImg< T >, 146 CImgList< T >, 424 vanvliet	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type CImg< T >, 146 CImgList< T >, 424	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type CImg< T >, 146 CImgList< T >, 424 vanvliet CImg< T >, 289	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type CImg< T >, 146 CImgList< T >, 424 vanvliet CImg< T >, 289 variance	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type CImg< T >, 146 CImgList< T >, 424 vanvliet CImg< T >, 289 variance CImg< T >, 231	
title CImgDisplay, 394 toc cimg_library::cimg, 66 toggle_fullscreen CImgDisplay, 403 torus3d CImg< T >, 313 transpose CImg< T >, 239 Tutorial: Getting Started., 45 unroll CImg< T >, 271 Using Display Windows., 47 Using Image Loops., 46 value_string CImg< T >, 202 value_type CImg< T >, 146 CImgList< T >, 424 vanvliet CImg< T >, 289 variance CImg< T >, 231 variance_mean	