

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

	по лаоора	аторнои рас	ооте № _2	
Название:	Трудоёмкостн	ь алгоритм	ов умножения	я матриц
Дисциплина:	Анализ алгор	<u>ИТМОВ</u>		
Студент	ИУ7-52Б		(П	Е.В. Брянская
	(Группа)		(Подпись, дата)	(И.О. Фамилия)
Преподаватель				Л.Л. Волкова
			(Подпись, дата)	(И.О. Фамилия)

Оглавление

B	ведеі	ние	3
1	Ана	алитическая часть	4
2	Кон	иструкторская часть	5
	2.1	Стандартный алгоритм умножения матриц	5
	2.2	Алгоритм Винограда	6
	2.3	Алгоритм Винограда (оптимизированный)	6
	2.4	Требования к ПО	7
	2.5	Заготовки тестов	7
3	Tex	нологическая часть	10
	3.1	Выбранный язык программирования	10
	3.2	Листинг кода	10
	3.3	Результаты тестов	12
	3.4	Оценка трудоёмкости	16
	3.5	Оценка времени	17
4	Исс	ледовательская часть	19
2.	у пто	лонио	20

Введение

Трудоёмкость алгоритма - это зависимость стоимости операций от линейного(ых) размера(ов) входа(ов).

Модель вычислений трудоёмкости должна учитывать следующие оценки.

- 1) Стоимость базовых операций. К ним относятся: =, +, -, *, /, ==, !=, <, <=, >=, %, +=, -=, *=, /=, [], < <, >. Каждая из операций имеет стоимость равную 1.
- 2) Оценка цикла. Она складывается из стоимости тела, инкремента и сравнения.
- 3) Оценка условного оператора if. Положим, что стоимость перехода к одной из веток равной 0. В таком случае, общая стоимость складывается из подсчета условия и рассмотрения худшего и лучшего случаев.

Оценка характера трудоёмкости даётся по наиболее быстрорастущему слагаемому.

В этой лабораторной работе будет оцениваться трудоёмкость алгоритмов умножения матриц.

1. Аналитическая часть

Цель данной работы – оценить трудоёмкость алгоритмов умножения матриц и получить практический навык оптимизации алгоритмов.

Для достижения поставленной цели необходимо решить ряд следующих задач:

- 1) дать математическое описание;
- 2) описать алгоритмы умножения матриц;
- 3) дать теоретическую оценку трудоёмкости алгоритмов;
- 4) реализовать эти алгоритмы;
- 5) провести замеры процессорного времени работы алгоритмов на материале серии экспериментов;
- 6) провести сравнительный анализ алгоритмов.

Умножение осуществляется над матрицами $A[M \times N]$ и $B[N \times Q]$. Число столбцов первой матрицы должно совпадать с числом строк второй, а таком случае можно осуществлять умножение. Результатом является матрица $C[M \times Q]$, в которой число строк столько же, сколько в первой, а столбцов, столько же, сколько во второй.

В основе стандартного алгоритма умножения матриц лежит следующая формула:

$$c_{i,j} = \sum_{k=1}^{N} (a_{i,k} \times b_{k,j})$$
(1.1)

Существует и другой алгоритм умножения - алгоритм Винограда. Обозначим строку $A_{i,*}$ как \overrightarrow{u} , $B_{*,j}$ как \overrightarrow{v} .

Пусть $u = (u_1, u_2, u_3, u_4)$ и $v = (v_1, v_2, v_3, v_4)$, тогда их произведение равно

$$u \cdot v = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3 + u_4 \cdot v_4 \tag{1.2}$$

Выражение (1.2) можно преобразовать в следующее:

$$u \cdot v = (u_1 + v_2) \cdot (u_2 + v_1) + (u_3 + v_1) \cdot (u_4 + v_3) - u_1 \cdot u_2 - u_3 \cdot u_4 - v_1 \cdot v_2 - v_3 \cdot v_4 \quad (1.3)$$

Алгоритм Винограда основывается на раздельной работе со слагаемыми из выражения (1.3).

2. Конструкторская часть

Рассмотрим и оценим работу алгоритмов на матрицах $A[M \times N]$ и $B[N \times Q]$.

2.1. Стандартный алгоритм умножения матриц

В основе этого алгоритма лежит формула (1.1). То есть для вычисления произведения двух матриц, каждая строка первой матрицы почленно умножается на каждый столбец второй, и затем подсчитывается сумма таких произведений, и полученный результат записывается в соответствующую ячейку результурующей матрицы.

Схема алгоритма представлена на Рис.2.1.

Рис. 2.1 — Стандартный алгоритм умножения матриц

2.2. Алгоритм Винограда

Цель данного алгоритма - сократить долю умножений в самом тяжёлом, затратном участке кода. Для этого используется формула (1.3).

Некоторые из слагаемых можно вычислить заранее и использовать повторно для каждой строки первой матрицы и для каждого столбца второй. Таким образом, трудо-ёмкость алгоритма уменьшается за счёт сокращения количества производимых операций.

В этом алгоритме важно учитывать, что при нечётном значении N, необходимо вычислять дополнительное слагаемое $u_N \cdot v_N$.

Схема алгоритма представлена на Рис.2.2.

2.3. Алгоритм Винограда (оптимизированный)

Алгоритм призван уменьшить трудоёмкость алгоритма, чтобы это сделать были использованы следующие оптимизации.

- 1) Видоизменён цикл по k, изменён шаг и условие. Таким образом, ушла необходимость в целочисленном делении, и в теле цикла не требуется больше умножать k на 2 каждый раз.
- 2) Введена вспомогательная переменная buf, в которую записывается промежуточнее значение соответсвующей ячейки матрицы, и затем, конечный результат переносится в саму матрицу. Тем самым, уменьшается количество обращений к элементам матрицы, находящимся по конкретному адресу.
- 3) Заранее высчитываются некоторые значения, например, n 1, которые далее используюся во вложенных циклах.
- 4) Используется дополнительная переменная t=k-1, чтобы сократить число подсчетов этого значения на каждом шаге цикла.
- 5) Объединён цикл 3 и 4, что позволило избежать ещё одного вложенного цикла.

Схема алгоритма представлена на Рис.2.3.

2.4. Требования к ПО

Для корректной работы алгоритмов и проведения тестов необходимо выполнить следующее.

- 1) Обеспечить возможность ввода двух матриц через консоль и выбора алгоритма для умножения.
- 2) В случае ввода размеров матриц, не удовлетворяющих главному условию, вывести соответствующее сообщение. Программа не должна аварийно завершаться.
- 3) Программа должна рассчитать искомую матрицу и вывести её на экран.
- 4) Реализовать функцию замера процессорного времени, которое выбранный метод затрачивает на вычисление результата. Дать возможность пользователю ввести размер рассматриваемых матриц через консоль. Вывести результаты замеров на экран.

2.5. Заготовки тестов

При проверке на корректность работы реализованных функций необходимо провести следующие тесты:

- умножение матриц размером 1×1 ;
- квадратные матрицы;
- прямоугольные матрицы;
- \bullet чётное и нечётное значение N.

Рис. 2.2 — Алгоритм Винограда

Рис. 2.3 — Оптимизированный алгоритм Винограда

3. Технологическая часть

3.1. Выбранный язык программирования

Для выполнения этой лабораторной работы был выбран язык программирования C++, так как есть большой навык работы с ним и с подключаемыми библиотеками, которые также использовались для проведения тестирования и замеров.

Использованная среда разработки - Visual Studio.

3.2. Листинг кода

Ниже представлены Листиги 3.1 - 3.3 функций, реализующих алгоритмы поиска расстояний.

Листинг 3.1 — Стандартный алгоритм умножения матриц

Листинг 3.2 — Алгоритм Винограда

```
matrix_t winograd_mult(matrix_t a, matrix_t b, int m, int n, int q)

arr_t mulH = create_array(m);
arr_t mulV = create_array(q);
matrix_t c = create_matrix(m, q);

for (int i = 0; i < m; i++)

{</pre>
```

```
mulH[i] = 0;
9
      for (int k = 0; k < n / 2; k++)
10
        mulH[i] = mulH[i] + a[i][2 * k] * a[i][2 * k + 1];
11
    }
12
13
    for (int i = 0; i < q; i++)
14
15
      mulV[i] = 0;
16
      for (int k = 0; k < n / 2; k++)
17
18
        mulV[i] = mulV[i] + b[2 * k][i] * b[2 * k + 1][i];
19
    }
20
^{21}
    for (int i = 0; i < m; i++)
22
      for (int j = 0; j < q; j++)
23
^{24}
        c[i][j] = -mulH[i] - mulV[j];
         for (int k = 0; k < n / 2; k++)
26
          c[i][j] = c[i][j] + (a[i][2 * k] + b[2 * k + 1][j]) *
27
                      (a[i][2 * k + 1] + b[2 * k][j]);
28
      }
29
30
    if (n % 2)
31
      for (int i = 0; i < m; i++)
32
         for (int j = 0; j < q; j++)
33
          c[i][j] = c[i][j] + a[i][n-1] * b[n-1][j];
34
35
36
    return c;
37 }
```

Листинг 3.3 — Оптимизированный алгоритм Винограда

```
matrix_t winograd_mult(matrix_t a, matrix_t b, int m, int n, int q)

arr_t mulH = create_array(m);
arr_t mulV = create_array(q);
double buf;

matrix_t c = create_matrix(m, q);

for (int i = 0; i < m; i++)</pre>
```

```
{
10
       buf = 0;
11
       for (int k = 1; k < n; k += 2)
12
         buf += a[i][k] * a[i][k - 1];
13
       mulH[i] = buf;
14
    }
15
16
    for (int i = 0; i < q; i++)
17
18
       buf = 0;
19
       for (int k = 1; k < n; k += 2)
20
         buf += b[k][i] * b[k - 1][i];
21
       mulV[i] = buf;
22
    }
23
24
    int temp = n - 1;
^{25}
26
    for (int i = 0; i < m; i++)
27
       for (int j = 0; j < q; j++)
28
29
         buf = -(mulH[i] + mulV[j]);
30
         for (int k = 1, t = 0; k < n; k += 2, t += 2)
31
           buf += (a[i][k] + b[t][j]) * (a[i][t] + b[k][j]);
32
         c[i][j] = buf;
33
34
         if (n % 2)
35
           c[i][j] += a[i][temp] * b[temp][j];
36
37
38
    return c;
39
40 }
```

3.3. Результаты тестов

Для тестирования были написаны функции, проверяющие, согласно заготовкам выше, случаи. Выводы о корректности работы делаются на основе сравнения результатов.

Все тесты пройдены успешно. Сами тесты представлены ниже (Листинг 3.4).

```
Листинг 3.4 — Тесты

bool mult_cmp(matrix_t a, matrix_t b, int m, int q)
```

```
_{2}|_{\{}
    matrix t c1 = standart mult(a, b, m, n, q);
    matrix t c2 = winograd mult(a, b, m, n, q);
    bool res = cmp matrix (c1, c2, m, q);
    free matrix(&c1, m, q);
    free matrix(&c2, m, q);
9
10
    return res;
1.1
12 }
_{14} // Матрицы размером 1 \times 1
void test size 1 1()
16 {
    int n = 1;
17
18
    matrix_t a = create_matrix(n, n);
19
    matrix t b = create matrix(n, n);
20
21
    a[0][0] = 15;
22
    b[0][0] = -7;
24
    if (!mult cmp(a, b, n, n, n))
25
26
      cout << endl << FUNCTION << "FAILED" << endl;
27
      free matrix(&a, n, n);
28
      free matrix(&b, n, n);
29
      return;
^{30}
31
32
    free matrix(&a, n, n);
33
    free matrix(&b, n, n);
35
    cout << endl << FUNCTION << "OK" << endl;
37 }
39 // Квадратные матрицы
40 void test square matr()
41 {
```

```
int n[] = { 2, 6, 10 };
42
43
    for (int i = 0; i < sizeof(n) / sizeof(n[0]); i++)
44
    {
45
      matrix t a = random \ fill \ matrix(n[i], n[i]);
46
      matrix t b = random fill matrix (n[i], n[i]);
47
48
      if (!mult cmp(a, b, n[i], n[i], n[i]))
49
50
        cout << endl << FUNCTION << " FAILED" << endl;</pre>
51
        free matrix(&a, n[i], n[i]);
        free matrix(&b, n[i], n[i]);
53
         return;
54
      }
55
56
      free matrix(&a, n[i], n[i]);
57
      free matrix(&b, n[i], n[i]);
58
59
      cout << endl << FUNCTION << "OK" << endl;
60
61
62 }
64 // Прямоугольные матрицы
  void test rectangulat matr()
66 {
    int m[] = \{ 2, 6, 10 \};
67
    int n[] = \{ 1, 4, 7 \};
    int q[] = \{ 3, 4, 8 \};
69
70
    for (int i = 0; i < sizeof(n) / sizeof(n[0]); i++)
71
    {
72
      matrix t a = random fill matrix(m[i], n[i]);
73
      matrix t b = random fill matrix (n[i], q[i]);
74
75
      if (!mult cmp(a, b, m[i], n[i], q[i]))
76
77
        cout << endl << __FUNCTION__ << " FAILED" << endl;
78
        free matrix(&a, m[i], n[i]);
79
        free matrix(&b, n[i], q[i]);
80
         return;
81
```

```
}
82
       free matrix(&a, m[i], n[i]);
83
       free matrix(\&b, n[i], q[i]);
84
85
       cout << endl << FUNCTION << "OK" << endl;
86
87
88 }
89
90 // Матрицы с чётным размером
  void test even size()
92 {
     int m[] = \{ 2, 4 \};
93
     int n[] = { 6, 2 };
94
     int q[] = \{ 2, 8 \};
95
96
97
     for (int i = 0; i < sizeof(n) / sizeof(n[0]); i++)
98
99
       matrix t a = random fill matrix(m[i], n[i]);
100
       matrix t b = random fill matrix (n[i], q[i]);
101
102
       if (!mult cmp(a, b, m[i], n[i], q[i]))
103
104
         cout << endl << FUNCTION << " FAILED" << endl;</pre>
105
         free matrix(&a, m[i], n[i]);
106
         free matrix(&b, n[i], q[i]);
107
         return;
108
       }
109
110
       free matrix(&a, m[i], n[i]);
111
       free_matrix(&b, n[i], q[i]);
112
113
       cout << endl << FUNCTION << "OK" << endl;
114
115
116 }
117
118 // Матрицы с нечётным размером
119 void test odd size()
120 {
     int m[] = { 3, 3 };
121
```

```
int n[] = \{ 3, 1 \};
122
     int q[] = \{ 5, 7 \};
123
125
     for (int i = 0; i < sizeof(n) / sizeof(n[0]); i++)
126
     {
127
       matrix t a = random fill matrix(m[i], n[i]);
128
       matrix t b = random fill matrix (n[i], q[i]);
129
130
       if (!mult cmp(a, b, m[i], n[i], q[i]))
131
132
         cout << endl << FUNCTION << " FAILED" << endl;</pre>
133
         free matrix(\&a, m[i], n[i]);
134
         free matrix(&b, n[i], q[i]);
135
          return;
136
       }
137
138
       free matrix(&a, m[i], n[i]);
139
       free matrix(&b, n[i], q[i]);
140
141
       cout << endl << FUNCTION << "OK" << endl;
142
143
144 }
145
   void run tests()
147 {
     test size 1 1();
148
     test square matr();
149
     test rectangulat matr();
150
     test even size();
     test odd size();
152
153 }
```

3.4. Оценка трудоёмкости

Произведём оценку трудоёмкости приведённых алгоритмов. Рассмотрим умножение матриц $A[M \times N]$ и $B[N \times Q]$.

Стандартный алгоритм

$$f_{st} = 2 + M(2 + 2 + Q(3 + 2 + 2 + N(2 + 1 + 2 + 2 + 1 + 2)))$$

$$f_{st} = 2 + 4M + 7MQ + 10MNQ$$

Алгоритм Винограда (неоптимизированный)

$$f_{w} = 2 + M(2 + 3 + 2 + \frac{N}{2}(12 + 3)) + 2 + Q(2 + 3 + 2 + \frac{N}{2}(12 + 3)) + 2 + M(2 + 2 + Q(7 + 2 + 3)) + \frac{N}{2}(23 + 3)) + 1 + \begin{bmatrix} 0, & \text{s.c.} \\ 2 + M(2 + 2 + Q(13 + 2)), & \text{x.c.} \end{bmatrix}$$

$$f_{w} = 7 + 11M + 7Q + \frac{15}{2}MN + \frac{15}{2}NQ + 12MQ + 13MNQ + \begin{bmatrix} 0, & \text{s.c.} \\ 2 + 4M + 15MQ, & \text{x.c.} \end{bmatrix}$$

Алгоритм Винограда (оптимизированный)

$$f_{wop} = 2 + M(2 + 1 + 2 + \frac{N}{2}(7 + 2) + 2) + 2 + Q(2 + 1 + 2 + \frac{N}{2}(7 + 2) + 2) + 2 + 2 + M(2 + 2) + Q(2 + 4 + 3 + \frac{N}{2}(3 + 12) + 3 + 1 + \begin{bmatrix} 0, & \text{s.c.} \\ 8, & \text{s.c.} \end{bmatrix})$$

$$f_{wop} = 8 + 11M + 7Q + 4.5MN + 4.5NQ + 13MQ + 7.5MNQ + \begin{bmatrix} 0, & \text{s.c.} \\ 8MQ, & \text{s.c.} \end{bmatrix}$$

3.5. Оценка времени

Процессорное время измеряется с помощью функции QueryPerformanceCounter библиотеки windows.h. Осуществление замеров показано ниже (Листинг 3.5).

Листинг 3.5 — Замеры процессорного времени

```
void test time(matrix t(*f)(matrix t, matrix t, int, int, int), int n)
_{2}| {
    matrix t a = random fill matrix(n, n);
    matrix t b = random fill matrix(n, n);
    matrix t c;
    int num = 0;
    start measuring();
    while (get measured() < 3 * 1000)
10
1\,1
      c = f(a, b, n, n, n);
12
      free matrix(&c, n, n);
13
      num++;
14
    }
15
16
```

```
double t = get measured() / 1000;
17
    cout << "Выполнено" << num << " операций за " << t << " секунд" << endl;
18
    cout << "Время: " << t / num << endl;
20
    free matrix(&a, n, n);
21
    free matrix(&b, n, n);
23 }
^{24}
void test range (vector < int > &n)
26 \mid \left\{ \right.
    for (int key : n)
27
28
      cout << endl << "Размер тестируемых матриц: " << key << "x" <<
29
     key \ll endl;
30
      cout << endl << "-----Standart-----" << endl;</pre>
31
      test time(standart mult, key);
      cout << endl << "------Winograd------" << endl;
33
       test time(winograd mult, key);
34
       cout << endl << "-----Winograd (improved)-----" << endl;</pre>
35
       test time(winograd opt mult, key);
36
    }
38 }
```

4. Исследовательская часть

Для проведения замеров процессорного времени использовались квадратные матрицы. Их содержимое генерируется случайным образом. Было проведено две серии экспериментов, ориентированных на выявление чувствительности алгоритмов к чётным и нечётным значениям N.

- 100, 200, 300, 400, 500
- 101, 201, 301, 401, 501

Каждый замер проводится 5 раз для получения более точного среднего результата. В таблице 4.1 и таблице 4.2 представлены результаты замеров процессорного времени работы реализаций алгоритмов (в сек).

Таблица 4.1 — Результаты измерений (чётная размерность)

Размер n	50	100	200	300	400	500
Алгоритм						
Стандартный	$5.1 * 10^{-4}$	$4.1 * 10^{-3}$	0.037	0.133	0.322	0.777
Виноград	$3.5 * 10^{-4}$	$2.9 * 10^{-3}$	0.027	0.096	0.237	0.559
Виноград	$3.4 * 10^{-4}$	$2.5 * 10^{-3}$	0.024	0.084	0.207	0.474
(оптимизированный)						

Таблица 4.2 — Результаты измерений (нечётная размерность)

Размер п						
/	51	101	201	301	401	501
Алгоритм						
Стандартный	$5.4 * 10^{-4}$	$4.2 * 10^{-3}$	0.037	0.133	0.329	0.838
Виноград	$4.2 * 10^{-4}$	0.003	0.028	0.098	0.240	0.6
Виноград	$3.5 * 10^{-4}$	$2.5 * 10^{-3}$	0.025	0.082	0.206	0.512
(оптимизированный)						

Заключение