选择题

I. Please choose the best answer and fill it into following table.

1	2	3	4	5	6	7	8	9	10
В	В	В	A	A	D	С	В	D	A
11									
A									

(1) What is the RISC-V assembly code for the binary:

0000 1110 1001 0101 0010 1000 0010 0011

A, sw x10, 240(x9)

B, sw x9, 240(x10)

C, sd x10, 240(x9)

D, sd x9, 240(x10)

(2) In order to put the content of address A(32 bits) to register x11, which one following is correct?

(A) lui x10, A_upper (B) lui x10, A_upper

ori x10, A_lower lw x11, A_lower(x10)

lw x11, 0(x10)

(C) lui x10, A_upper (D) lui x10, A_upper

orx10, A_lower or x11, A_lower(x10)

lw x11, 0(x10)

where A_upper, A_lower are the high 20 bits and low 12 bits respectively.

(3) For the addition of $0.12345*10^{-2}$ 和 $0.12345*10^{+2}$, the first operation is aligning the exponents. After this operation, the aligned exponent is:

A both -2

 B_{λ} both +2

 C_s one is -2,the other is +2

D, both 0

(4) Which statement is correct?	
(A) In virtual memory, the number of entries of a page table is equals to the physical page number.	
(B) Increasing associativity can reduce Capacity miss.	
(C) asynchronous bus: A bus that uses a handshaking protocol for coordinating usage rather that	ın
a clock; can accommodate a wide variety of devices of differing speeds.	
(5) What is the right presentation of the result of	
$(1.355)_{10}$ - $(2.105)_{10}$?	
A: 1011 1111 0100 0000 0000 0000 0000 00	
B: 1111 1111 1100 1000 0000 0000 0000 00	
C: 1011 0001 0100 1000 0000 0000 0000	
D: 1010 0001 0100 1000 0000 0000 0000 00	
(6) Single-cycle RISC-V datapath cannot complete which of the following operations in one clock cycle.	ζ.
A、 Reading data from and writing data to data memory	
B、ALU computation and writing data to the register file	
C、Updating PC and writing data to data memory	
D、Reading data from register file, ALU computation and writing data to data memory	
(7) () can be reduced by increasing the block size.	
A: Compulsory misses	
B: Capacity misses	
C: Conflict misses	
D: All three misses	
(8) For a virtual memory with TLB, which of following will be run first during	
memory access? ()	
A: test cache hit B: test TLB hit	

(9) In RAID, REDUNDANT means that more disks are used for
A. enlarging capacity of disk system
B. improving transfer rate of system
C. finding and correcting the read/write error
D. improving reliability of disk system
(10) Given a direct-mapped cache with 16 blocks and each block has 4 words. What block number
does byte address 840 map to?
A: 2 B: 3 C: 4 D: 5
(11) Cache's write-through polity means write operation to main memory
A. as well as to cache B. only when the cache is replaced
2
C. when the difference between cache and main memory is found
D. only when direct mapping is used
Chapter 4

C: test physical memory hit D: test dirty bit

1. Pipeline CPU Design

For the above single-cycle datapath, answer the questions:

(1) When execute sub instruction, the control signals PCSrc, ALUSrc, MemWrite, RegWrite, and MemtoReg generated by the controller are respectively (_0 0 0 1 0).

Assuming that the following codes are executed on the above five-stage pipelined datapath:

(2) If there is no forwarding or hazard detection, insert NOPs to ensure correct execution.

(3) If the processor has forwarding, but we forgot to implement the hazard detection unit,

(4) If there is forwarding (shown in following figure), for the first seven cycles, specify the forwarding signals for each cycle.

сус	Forwa	Forwa	
le	rdA	rdB	
1	X	X	No instruction in EX stage yet
	(don't	(don't	
	care)	care)	
2	X	X	No instruction in EX stage yet
3	10	X	EX/MEM.RegisterRd=ID/EX.RegisterRs1

4	X	X	EX/MEM.RegisterRd!=ID/EX.RegisterRs1/2&MEM/WB.Reg
			isterRd!=ID/EX.RegisterRs1/2
5	01	X	MEM/WB.RegisterRd=ID/EX.RegisterRs1
6	X	X	EX/MEM.RegisterRd!=ID/EX.RegisterRs1/2&MEM/WB.Reg
			isterRd!=ID/EX.RegisterRs1/2
7	X	X	New instruction unknown

Chapter 5

1. 书后 5.1 In this exercise we look at memory locality properties of matrix computation. The following code is written in C, where elements within the same row are stored contiguously. Assume each word is a 64-bit integer.

```
for (I=0; I<8;I++)
  for(J=0;J<8000;J++)
   A[I][J]=B[I][0]+A[J][I];</pre>
```

- 1) __2___(the number) 64-bit integers can be stored in a 16-byte cache block.
- 2) (ABC) exhibit temporal locality(multiple choices).
 - A. I B. J C. B[I][0] D.A[J][I] E. A[I][J]
- 3) (\mbox{A}) exhibit spatial locality(multiple choices).
 - A. I B. J C. B[I][0] D.A[J][I] E. A[I][J]
- 2. 书后 5.2 Caches are important to providing a high-performance memory hierarchy to processors. Below is a list of 64-bit memory address references, given as word addresses. 0x03, 0xb4, 0x2b, 0x02, 0xbf, 0x58, 0xbe, 0x0e, 0xb5, 0x2c, 0xba, 0xfd
 - 1) For each of these references, identify the binary word address, the tag, and the index given a direct-mapped cache with 16 one-word blocks. Also list whether each reference is a hit or a miss, assuming the cache is initially empty.

Word	Binary address	Tag	Index	H/M
Address				

0x03	00000011	0	3	М
0xb4	10110100	b	4	М
0x2b	00101011	2	b	М
0x02	00000010	0	2	М
0xbf	10111111	b	f	М
0x58	01011000	5	8	М
0xbe	10111110	b	e	М
0x0e	00001110	0	Ф	М
0xb5	10110101	b	5	М
0x2c	00101010	2	C	М
0xba	10111010	b	a	М
0xfd	11111101	f	d	М

2) For each of these references, identify the binary word address, the tag, the index, and the offset given a direct-mapped cache with two-word blocks and a total size of eight blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty.

Word	Binary address	Tag	Index	H/M
Address				
0x03	00000011	0	1	М
0xb4	10110100	b	2	М
0x2b	00101011	2	5	М
0x02	00000010	0	1	Н
0xbf	10111111	b	7	М
0x58	01011000	5	4	М
0xbe	10111110	b	6	М
0x0e	00001110	0	7	М
0xb5	10110101	b	2	Н
0x2c	00101010	2	6	М
0xba	10111010	b	5	М
0xfd	11111101	f	6	М

Word Address	Binary Address	Tag	Index	Hit/Miss
0x03	0000 0011	0	3	М
Oxb4	1011 0100	ь	4	M
0x2b	0010 1011	2	b	M
0x02	0000 0010	0	2	M
Oxbf	1011 1111	ь	f	M
0x58	0101 1000	5	8	M
Oxbe	1011 1110	ь	e	M
0x0e	0000 1110	0	6	M
0xb5	1011 0101	b	5	M
0x2c	0010 1100	2	С	M
0xba	1011 1010	b	а	M
Oxfd	1111 1101	f	d	M

Word Address	Binary Address	Tag	Index	Offset	Hit/Miss
0x03	0000 0011	0	1	1	M
0xb4	1011 0100	b	2	0	M
0x2b	0010 1011	2	5	1	M
0x02	0000 0010	0	1	0	Н
Oxbf	1011 1111	b	7	1	M
0x58	0101 1000	5	4	0	M
0xbe	1011 1110	b	6	0	Н
0x0e	0000 1110	0	7	0	M
0xb5	1011 0101	b	2	1	Н
0x2c	0010 1100	2	6	0	M
Oxba	1011 1010	b	5	0	M
Oxfd	1111 1101	f	6	1	M

3. 书后 5.5 For a direct-mapped cache design with a 64-bit address, the following bits of the address are used to access the cache.

Tag	Index	Offset
63–10	9–5	4–0

Beginning from power on, the following byte-addressed cache references are recorded.

Address												
Hex	00	04	10	84	E8	AO	400	1E	8C	C1C	В4	884
Dec	0	4	16	132	232	160	1024	30	140	3100	180	2180

- 1) The cache block size (in words) is __4__?
- 2) The cache have __32___ blocks?
- 3) The ratio between total bits required for such a cache implementation over the data storage bits is $__1.21__$.

4. Cache system

(1) Consider a 32 byte direct-mapped write-through & write around cache with 8 byte blocks. Complete the table below for sequence of memory references (occurring from left to right).

Address	00	16	48	08	56	16	08	56	32	00	60
Read/write	r	r	r	r	r	r	r	W	W	r	r
Line#	0	2	1	1	2	2	1	2	2	0	0
Tag	0	0	2	0	2	0	0	2	1	0	3
Hit/miss	М	М	М	М	М	Н	Н	Н	М	Н	М

(2) Consider a 128byte 2-way set associative write-back with 16 byte blocks, assuming LRU replacement. Complete the table below for a sequence of memory references (occurring from left to right)

Address	064	032	064	000	112	064	128	048	240	000

Read/write	r	r	r	r	W	W	r	r	r	W
Set #	2	3	2	0	1	2	2	0	0	0
Tag	1	0	1	0	4	1	4	1	9	0
Hit/miss	М	М	Н	М	М	Н	М	М	М	М
Dirty-set						2			0	0

Please write down the dirty block number 4,0,1

5. Consider a virtual memory system with the following properties:

40-bit virtual byte address, 16KB pages, 36-bit physical byte address

(1). What is the total size of the page table for each process on this processor, assuming that the valid, protection, dirty, and use bits take a total of 4 bits and that all the virtual pages are in use? (assuming that disk addresses are not stored in the page table).

2^40/2^16*40=5*2^29

(2). Assume that the virtual memory system has implemented a TLB with a total of 64 TLB entries. Could the TLB hold a program if the program accessed at least 8 MB of memory at a time? If you want the TLB to hold the program, how large the page size should be?

8MB/16KB=512>64, so it can not hold a program.<math display="inline">8MB/64=128KB, the page size should be <math display="inline">128KB