Serial No.: «Application_Number» X16541

Amendments to the Claims

1. (currently amended) A compound or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by formula (IA):

$$Z_{P} \xrightarrow{(L_{P2})} \xrightarrow{(L_{P1})} \xrightarrow{RP_{3}} \xrightarrow{R} \xrightarrow{R'} \xrightarrow{RT_{3}} \xrightarrow{(IA)} \xrightarrow{RB'} \xrightarrow{(IA)} Z_{TB}$$

wherein

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP₃ and RB are independently selected from hydrogen, halo, C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, -O- C_1 - C_5 alkyl, -S- C_1 - C_5 alkyl, -O- C_1 - C_5 fluoroalkyl, -CN, -NO₂, acetyl, -S- C_1 - C_5 fluoroalkyl, C_2 - C_5 alkenyl, C_3 - C_5 cycloalkyl, or C_3 - C_5 cycloalkenyl;

RP, RT₃, and RB' are independently selected from hydrogen, halo, C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, -O- C_1 - C_5 alkyl, -S- C_1 - C_5 alkyl, -O- C_1 - C_5 fluoroalkyl, -CN, -NO₂, acetyl, -S- C_1 - C_5 fluoroalkyl, C_2 - C_5 alkenyl, C_3 - C_5 cycloalkyl, or C_3 - C_5 cycloalkenyl;

 $(L_{P1}),\,(L_{P2}),\,$ and (L_{TB}) are divalent linking groups independently selected from the group consisting of

X16541

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl;

Z_P is

branched C₃-C₅ alkyl,

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methyl pentenyl,

X16541

3-ethyl-3-hydroxy-4-methylpentynyl,

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

1-hydroxy-2-methyl-1-(methylethyl)propyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentenyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

3-ethyl-3-hydroxy-4,4-dimethylpentenyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

1-hydroxycycyclopentenyl,

1-hydroxycyclohexenyl,

1-hydroxycycloheptenyl,

1-hydroxycyclooctenyl,

1-hydroxycyclopropyl,

1-hydroxycyclobutyl,

1-hydroxycyclopentyl,

1-hydroxycyclohexyl,

2-oxocyclohexyloxy,

2-oxocyclohexylmethyl,

3-methyl-2-oxocyclohexyloxy,

3-methyl-2-oxocyclohexylmethyl,

3,3-dimethyl-2-oxocyclohexyloxy,

3,3-dimethyl-2-oxocyclohexylmethyl,

2-hydroxycyclohexyloxy,

2-hydroxycyclohexylmethyl,

3-methyl-2-hydroxycyclohexyloxy,

3-methyl-2-hydroxycyclohexylmethyl,

3,3-dimethyl-2-hydroxycyclohexyloxy,

Serial No.: «Application_Number»

X16541

 $3, 3-dimethyl-2-hydroxycyclohexylmethyl\;,$

1-hydroxycycloheptyl, or

1-hydroxycyclooctyl;

provided, however, that when

Z_P is

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

3-ethyl-3-hydroxy-4-methylpentynyl,

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentenyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

3-ethyl-3-hydroxy-4,4-dimethylpentenyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl, or

1-hydroxy-2-methyl-1-(methylethyl)propyl;

then (L_{P1}) and (L_{P2}) combine as a bond;

Z_{TB} is selected from

 $-O-(C_1-C_5 \text{ alkyl}),$

-O-(C2-C5 alkenyl),

-O-(C3-C5 cycloalkyl),

- -O-(C3-C5 cycloalkenyl),
- -O-(C₁-C₅ hydroxyalkyl),
- -O-(C₁-C₅ fluoroalkyl),
- -O-(C₁-C₅ alkyl)-phenyl,
- $-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl) NH₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-NH₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -O-(C₁-C₅ alkyl)-N-pyrrolidine,
- -O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl,)
- -O-(C₁-C₅ alkyl)-SO₂-NH₂
- -O-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- -O-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl})$
- -O-(C₁-C₅ alkyl)-S(O)-NH₂
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$

Serial No.: «Application_Number» X16541

- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,
- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- -O-(C₁-C₅ alkyl),
- -O-C(O)-NH₂,
- -O-C(O)-N-(CH₃)₂,
- $-O-C(S)-N-(CH_3)_2$,
- -O-C(O)-O-(C₁-C₅ alkyl),
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 alkyl,)$
- -O-SO₂-NH₂,
- $-O-SO_2-NH-(C_1-C_5 alkyl),$
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,
- $-O-S(O)-(C_1-C_5 \text{ alkyl},)$
- -O-S(O)-NH₂,
- $-O-S(O)-NH-(C_1-C_5 alkyl),$
- $-O-S(O)-N-(C_1-C_5 alkyl)_2$,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C₂-C₅ alkenyl),
- -S-(C3-C5 cycloalkyl),
- -S-(C₃-C₅ cycloalkenyl),
- -S-(C₁-C₅ fluoroalkyl),
- -S-(C₁-C₅ hydroxyalkyl),
- -S-(C₁-C₅ alkyl)-phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-C(O)-OH,

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$\hbox{-S-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}5\hbox{-tetrazolyl},$$

$$\hbox{-S-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-S(O)-}(C_1\hbox{-}C5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$\hbox{-S-}(\operatorname{C}_1\hbox{-C}_5 \text{ alkyl})\hbox{-S(O)-N-}(\operatorname{C}_1\hbox{-C}_5 \text{ alkyl})_2,$$

$$\hbox{-S-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-S(O)-}(C_1\hbox{-}C_5 \ alkyl),$$

$$-SO_2-(C_1-C_5 alkyl),$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \ hydroxyalkyl),$$

$$-SO_2-(C_1-C_5)$$
-phenyl,

$$-SO_2$$
-NH-(C₁-C₅ alkyl),

$$-SO_2$$
-NH-CH₂-C(O)OH,

$$\hbox{-SO}_2\hbox{-NH-CH}_2\hbox{-C(O)}(\hbox{O-C}_1\hbox{-C}_5 \text{ alkyl}),$$

$$-SO_2$$
-NH- $(C_1$ - C_5 alkyl)- $C(O)$ OH,

$$-SO_2$$
-NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),

$$-SO_2$$
-NH-C(O)-(C₁-C₅ alkyl),

$$-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl) NH₂.

$$-SO_2-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl)-C(O)-OH,

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-SO_2$$
-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),

$$-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$-SO_2-(C_1-C_5)$$
-phenyl,

$$-SO_2-N=CHN(C_1-C_5 \text{ alkyl}) 2.$$

$$-S(O)-NH2$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-CH_2-C(O)OH$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)OH$$
,

$$-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH,$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

-S(O)-(C
$$_1$$
-C $_5$ alkyl)-P(O)-(O-C $_1$ -C $_5$ alkyl) $_2$,

$$-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2$$

$$-NHC(S)NH_{2}$$

-NHC(S)NH-(
$$C_1$$
- C_5 alkyl),

-NHC(S)N-
$$(C_1-C_5 \text{ alkyl})_2$$
,

$$\hbox{-NHC}(S) \hbox{NH-}(C_2\hbox{-}C_5 \ alkenyl),$$

$$\hbox{-NHC}(S) \hbox{NH-}(\hbox{C}_3\hbox{-C}_5 \ cycloalkyl),$$

$$\hbox{-NHC}(S) \hbox{NH-}(C_3\hbox{-}C_5 \ cycloalkenyl),$$

$$-NHC(S)NH-(C_1-C_5 fluoroalkyl),$$

$$\hbox{-NHC}(s) \hbox{NH-}(c_1\hbox{-}c_5 \ fluoroalkyl)$$

- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 alkyl)-NH_2$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- -NHC(S)NH-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-y1),
- -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$
- -NHC(O)NH₂,
- -NHC(O)NH-(C₁-C₅ alkyl),
- $-NHC(O)N-(C_1-C_5 \text{ alkyl})_2$,

```
-NHC(O)NH-(C2-C5 alkenyl),
```

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-NH_2$$

-NHC(O)NH-(
$$C_1$$
- C_5 alkyl)-N-(C_1 - C_5 alkyl)₂.

$$-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-NH-(C_1-C_5 alkyl),$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),$$

$$\hbox{-NHC}({\rm O})\hbox{NH-}({\rm C}_1\hbox{-}{\rm C}_5 \text{ alkyl})\hbox{-NH-}\hbox{SO}_2\hbox{-}({\rm C}_1\hbox{-}{\rm C}_5 \text{ alkyl}),$$

$$\hbox{-NHC}(O) \hbox{NH-}(C_1\hbox{-}C_5 \ alkyl) \hbox{-N-pyrrolidin-} 2\hbox{-one},$$

$$\hbox{-NHC}(O)\hbox{NH-}(\hbox{C_1-$$$}\hbox{C_5 alkyl)-C}(O)\hbox{-OH},$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \hbox{ alkyl})\hbox{-}C(O)\hbox{-}O\hbox{-}(C_1\hbox{-}C_5 \hbox{ alkyl}),$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-SO_2-NH_2$$

$$\hbox{-NHC}(\hbox{O})\hbox{NH-}(\hbox{C}_1\hbox{-C}_5\hbox{ alkyl})\hbox{-SO}_2\hbox{-NH-}(\hbox{C}_1\hbox{-C}_5\hbox{ alkyl}),$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-SO_2-N-(C_1-C_5 alkyl)_2$$

```
-NHC(O)NH-(C_1-C_5 alkyl)-P(O)-O-(C_1-C_5 alkyl)_2,
```

- -NH₂,
- $-NH-(C_1-C_5 alkyl),$
- -NH-CH₂-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- -NH-C(O)-NH₂,
- $-NH-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- -NH-C(O)-N- $(C_1-C_5 \text{ alkyl})_2$.
- -NH-C(O)-(C_1 - C_5 alkyl),
- $-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -N(CH₃)(OCH₃),
- $-N(OH)(CH_3),$
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- $-C(O)CH_2S(O)Me$,
- $-C(O)CH_2S(O)Et$,
- $-C(O)CH_2S(O)_2Me$,
- $-C(O)CH_2S(O)_2Et$,
- $-C(O)CH_2CH_2S(O)Me$,
- $-C(O)CH_2CH_2S(O)Et$,
- -C(O)CH₂CH₂S(O)₂Me,
- $\hbox{-C(O)CH$_2CH_2$S(O)$_2$Et},$
- -C(O)CH(Me)CH2CO2H,
- -C(O)CH(Me)CH2CO2Me,

- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- $-C(O)CH(Me)C(Me) _2CO_2H,$
- -C(O)CH(Me)C(Me) 2CO₂Me,
- -C(O)CH(Me)C(Me) 2CO₂Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,
- $-C(O)NMe_2$,
- $-C(O)NH-CH_2-C(O)OH$,
- -C(O)NH-CH₂-C(O)OMe,
- $-C(O)NH-CH_2-C(O)OEt$,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,

- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- -C(O)NH-C(Me)₂-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- $-C(O)NH-CH(CF_3)-C(O)OH$,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)₂-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- $-C(O)NMe-CH_2-C(O)OMe$,
- $-C(O)NMe-CH_2-C(O)OEt$,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- $-C(O)NMe-CH_2-C(O)OH$,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- $-C(O)NMe-C(Me)_2-C(O)OH$,

- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF₃)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH2S(O)Me,
- -C(O)NHCH2S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- $-C(O)NHCH_2CH_2S(O)Et$,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,

- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO₂tBu,
- $-C(O)N(Me)CH_2S(O)Me$,
- $-C(O)N(Me)CH_2S(O)Et$,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- -C(O)N(Me)CH₂CH₂S(O)Me,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH₂CH₂SO₂Me,
- -C(O)N(Me)CH2CH2SO2Et,
- $-CH_2CO_2H$,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH₂NHS(O)Me,
- -CH2NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH2NHSO2Et,
- -CH₂NHS(O)iPr,
- -CH₂NHSO₂iPr,
- -CH2NHS(O)tBu,
- -CH₂NHSO₂tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH2NH(CH2CO2H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,

- $-CH_2S(O)Et$,
- $-CH_2S(O)_2Me$,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,
- $-CH_2S(O)_2iPr$,
- $-CH_2S(O)tBu$,
- $-CH_2S(O)_2tBu$,
- -CH₂CO₂H, CH₂C(O)NH₂,
- $-CH_2C(O)NMe_2$,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- $-CH_2S(O)_2Me$, $CH_2S(O)Me$,
- -CH(OH) CO₂H,
- $-CH(OH)C(O)NH_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt₂,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- $-CH_2CH_2C(O)NHMe,\\$
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- -CH2CH2S(O)2Me,
- -CH₂CH₂S(O)Me,
- $-CH_2CH_2S(O)_2Et$,
- -CH₂CH₂S(O) Et,
- -CH₂CH₂S(O)iPr,

-CH₂CH₂S(O)₂iPr,

 $-CH_2CH_2S(O)tBu,\\$

 $-CH_2CH_2S(O)_2tBu$,

 $-CH_2CH_2S(O)NH_2$,

 $-CH_2CH_2S(O)NHMe,$

 $-CH_2CH_2S(O)NMe_2,\\$

 $-CH_2CH_2S(O)_2NH_2$,

 $-CH_2CH_2S(O)_2NHMe$

 $-CH_2CH_2S(O)_2NMe_2$,

 $-CH_2CH_2CH_2S(O)Me,\\$

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2S(O)\hbox{Et},$

-CH₂CH₂CH₂S(O)₂Me,

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2S(O)_2\hbox{Et},$

CH(Me)CH₂C(O)OH,

 $-C(Me)_2CH_2C(O)OH$,

-5-tetrazolyl,

$$\begin{array}{c|c} O & O \\ \hline \\ C & NH \\ \hline \\ O \\ \end{array} C CH_3$$

Serial No.: «Application_Number»

X16541

- -1,3,4-oxadiazolin-2-one-5-yl,
- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl;

provided that RB is substituted at either the 6 or 7 position of the benzothiophene ring, except that RB is substituted only at the 7 position of the benzothiophene ring when Z_{TB} is at the 6 position.; and

provided that -(L_{TB})- Z_{TB} is substituted at either the 5 or 6 position of the benzothiophene ring; and

X16541

provided that RB is substituted at either the 6 or 7 position of the benzothiophene ring, except that RB is substituted only at the 7 position of the benzothiophene ring when the group – (L_{TB}) - Z_{TB} is at the 6 position.; and

provided that RB' is substituted at either the 4 or 5 position of the benzothiophene ring, except that RB' is substituted only at the 5 position of the benzothiophene ring when the group – (L_{TB}) - Z_{TB} is at the 6 position of the phenyl ring; and

provided that RP is substituted at either the 2, or 5 or 6 position of the phenyl ring.

2. (currently amended) A compound or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by formula (IB):

wherein

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP, RB₄, RT₃, and RB are independently selected from the group consisting of hydrogen, halo, C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, -O- C_1 - C_5 alkyl, -S- C_1 - C_5 alkyl, -O- C_1 - C_5 fluoroalkyl, -CN, -NO₂, acetyl, -S- C_1 - C_5 fluoroalkyl, C_2 - C_5 alkenyl, C_3 - C_5 cycloalkyl, and C_3 - C_5 cycloalkenyl;

RP₃ and RB₇ are independently selected from hydrogen, halo, C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, -O- C_1 - C_5 alkyl, -S- C_1 - C_5 alkyl, -O- C_1 - C_5 fluoroalkyl, -CN, -NO₂, acetyl, -S- C_1 - C_5 fluoroalkyl, C_2 - C_5 alkenyl, C_3 - C_5 cycloalkyl, or C_3 - C_5 cycloalkenyl;

 (L_{P1}) , (L_{P2}) , and (L_{BT}) are divalent linking groups independently selected from the group consisting of

Serial No.: «Application_Number»

X16541

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl;

Z_P is

branched C3-C5 alkyl,

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

- 3-ethyl-3-hydroxypentyl,
- 3-ethyl-3-hydroxypentenyl,
- 3-ethyl-3-hydroxypentynyl,
- 3-ethyl-3-hydroxy-4-methylpentyl,
- 3-ethyl-3-hydroxy-4-methylpentenyl,
- 3-ethyl-3-hydroxy-4-methylpentynyl,
- 3-propyl-3-hydroxypentyl,
- 3-propyl-3-hydroxypentenyl,
- 3-propyl-3-hydroxypentynyl,
- 1-hydroxy-2-methyl-1-(methylethyl)propyl,
- 2-methyl-3-hydroxy-4-dimethylpentyl,
- 2-methyl-3-hydroxy-3-ethylpentyl,
- 2-ethyl-3-hydroxy-3-ethylpentyl,
- 2-ethyl-3-hydroxy-4-dimethylpentyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentenyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
- 1-hydroxycycyclopentenyl,
- 1-hydroxycyclohexenyl,
- 1-hydroxycycloheptenyl,
- 1-hydroxycyclooctenyl,
- 1-hydroxycyclopropyl,
- 1-hydroxycyclobutyl,
- 1-hydroxycyclopentyl,
- 1-hydroxycyclohexyl,
- 2-oxocyclohexyloxy,
- 2-oxocyclohexylmethyl,
- 3-methyl-2-oxocyclohexyloxy,
- 3-methyl-2-oxocyclohexylmethyl,
- 3,3-dimethyl-2-oxocyclohexyloxy,
- 3,3-dimethyl-2-oxocyclohexylmethyl,

X16541

2-hydroxycyclohexyloxy,

2-hydroxycyclohexylmethyl,

3-methyl-2-hydroxycyclohexyloxy,

3-methyl-2-hydroxycyclohexylmethyl,

3,3-dimethyl-2-hydroxycyclohexyloxy,

3,3-dimethyl-2-hydroxycyclohexylmethyl,

1-hydroxycycloheptyl, or

1-hydroxycyclooctyl;

provided, however, that when

Z_P is

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

3-ethyl-3-hydroxy-4-methylpentynyl,

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentenyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

3-ethyl-3-hydroxy-4,4-dimethylpentenyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl, or

1-hydroxy-2-methyl-1-(methylethyl)propyl;

then (L_{P1}) and (L_{P2}) combine as a bond;

Z_{BT} is selected from

$$-O-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl}) \text{ NH}_2$$

$$-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$$

$$-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-O-(C_1-C_5 \text{ alkyl})-C(O)-OH$$
,

$$-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl},)$$

$$-O-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

Serial No.: «Application_Number» X16541

- $\hbox{-O-}(C_1\hbox{-}C_5 \ alkyl) \hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \ alkyl),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl})$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,
- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- -O-(C₁-C₅ alkyl),
- -O-C(O)-NH₂,
- -O-C(O)-N-(CH₃)₂,
- $-O-C(S)-N-(CH_3)_2$,
- $-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 alkyl,)$
- -O-SO₂-NH₂,
- $-O-SO_2-NH-(C_1-C_5 alkyl)$,
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- $-O-S(O)-NH_2$,
- $-O-S(O)-NH-(C_1-C_5 alkyl),$
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C₂-C₅ alkenyl),
- -S-(C₃-C₅ cycloalkyl),
- -S-(C₃-C₅ cycloalkenyl),
- -S-(C₁-C₅ fluoroalkyl),

- -S-(C₁-C₅ hydroxyalkyl),
- -S-(C₁-C₅ alkyl)-phenyl,
- -S-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-C(O)-NH₂
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- -S-(C₁-C₅ alkyl) NH₂.
- $-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- -S-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- -S-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -S-(C₁-C₅ alkyl)-N-pyrrolidine,
- -S-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- -S-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- -S-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- -S-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- $-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -S-(C₁-C₅ alkyl)-5-tetrazolyl,
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl}),$

- -SO₂-(C₂-C₅ alkenyl),
- -SO₂-(C₃-C₅ cycloalkyl),
- -SO₂-(C₃-C₅ cycloalkenyl),
- $-SO_2-(C_1-C_5 \text{ hydroxyalkyl}),$
- -SO₂-(C₁-C₅ fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-NH_2$
- $-SO_2$ -NH-(C₁-C₅ alkyl),
- -SO₂-NH-CH₂-C(O)OH,
- $-SO_2$ -NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NH-(C₁-C₅ alkyl)-C(O)OH,
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NHC(O)-(C₃-C₆ cycloalkyl),
- $-SO_2$ -NH-C(O)-(C₁-C₅ alkyl),
- $-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- -SO₂-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
- -SO₂-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl}) \text{ NH}_2$
- -SO₂-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- -SO₂-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- -SO₂-(C₁-C₅ alkyl)-C(O)-NH₂
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-SO_2-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -SO₂-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -SO₂-(C₁-C₅ alkyl)-N-pyrrolidine,
- -SO₂-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-O-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 alkyl)-C(O)-OH$,

- -SO₂-(C₁-C₅ alkyl)-5-tetrazolyl,
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- -SO₂-(C₁-C₅ alkyl)-SO₂-NH₂
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- -SO₂-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂
- -SO₂-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -SO₂-(C₁-C₅ alkyl),
- -SO₂-(C₂-C₅ alkenyl),
- -SO₂-(C₃-C₅ cycloalkyl),
- -SO₂-(C₃-C₅ cycloalkenyl),
- -SO₂-(C₁-C₅ hydroxyalkyl),
- -SO₂-(C₁-C₅ fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-N=CHN(C_1-C_5 \text{ alkyl})$ 2.
- -S(O)-NH₂
- $-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-NH-CH_2-C(O)OH$
- $-S(O)-NH-(C_1-C_5 alkyl)-C(O)OH$,
- $-S(O)-NH-CH_2-C(O)(O-C_1-C_5 alkyl)$,
- $-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$
- -S(O)HC(O)-(C₃-C₆ cycloalkyl),
- $-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH$$
,

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$-S(O)-N=CHN(C_1-C_5 \text{ alkyl})$$
 2

$$-NHC(S)NH-(C_1-C_5 alkyl),$$

$$-NHC(S)N-(C_1-C_5 \text{ alkyl})_2$$
,

- -NHC(S)NH-(C₁-C₅ fluoroalkyl),
- -NHC(S)NH-C₁-C₅ hydroxyalkyl,
- -NHC(S)NH-(C₁-C₅ fluoroalkyl)
- -NHC(S)NH-phenyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- -NHC(S)NH-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- -NHC(S)NH-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂.
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-NHC(S)NH-(C_1-C_5 alkyl)-S(O)-(C_1-C_5 alkyl),$
- -NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})$
- $-NHC(S)NH-(C_1-C_5 alkyl)-P(O)-(O-C_1-C_5 alkyl)_2$,

```
-NHC(O)NH<sub>2</sub>,
```

$$-NHC(O)N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-NH_2$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}C(O)\hbox{-NH-}(C_1\hbox{-}C_5 \ alkyl),$$

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}C(O)\hbox{-}(C_1\hbox{-}C_5 \ alkyl),$$

-NHC(O)NH-(
$$C_1$$
- C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),

$$\hbox{-NHC}(O) \hbox{NH-}(C_1\hbox{-}C_5 \ alkyl) \hbox{-}$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5\ alkyl)\hbox{-}5\hbox{-}tetrazolyl,$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \ alkyl),$$

- -NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- -NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂
- $-NHC(O)NH-(C_1-C_5 alkyl)-P(O)-O-(C_1-C_5 alkyl)_2$,
- -NH₂.
- $-NH-(C_1-C_5 alkyl),$
- -NH-CH₂-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-NH_2$,
- $-NH-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- -NH-C(O)-N- $(C_1-C_5 \text{ alkyl})_2$.
- -NH-C(O)-(C_1 - C_5 alkyl),
- -NH-SO₂-(C_1 - C_5 alkyl),
- $-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-N(CH_3)(OCH_3),$
- -N(OH)(CH₃),
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- $-C(O)CH_2S(O)Et$,
- $-C(O)CH_2S(O)_2Me$,
- $-C(O)CH_2S(O)_2Et$,
- $-C(O)CH_2CH_2S(O)Me$,
- -C(O)CH2CH2S(O)Et,
- -C(O)CH2CH2S(O)2Me,

- $-C(O)CH_2CH_2S(O)_2Et$,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH2CO2Me,
- -C(O)CH(Me)CH2CO2Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO₂Me,
- -C(O)CH(Me)C(Me) 2CO₂Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,
- $-C(O)NMe_2$,
- $-C(O)NH-CH_2-C(O)OH$,
- $-C(O)NH-CH_2-C(O)OMe$,
- $-C(O)NH-CH_2-C(O)OEt$,

- -C(O)NH-CH₂-C(O)OiPr,
- $-C(O)NH-CH_2-C(O)OtBu$,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- $-C(O)NMe-CH_2-C(O)OH$,
- $-C(O)NMe-CH_2-C(O)OMe$,
- $-C(O)NMe-CH_2-C(O)OEt$,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,

- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)₂-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH2S(O)Me,
- -C(O)NHCH2S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH₂CH₂SO₂Et,
- -C(O)N(Me)S(O)Me,
- $-C(O)N(Me)SO_2Me$,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,

- -C(O)N(Me)SO₂Me,
 - -C(O)N(Me)SO₂Et,
 - -C(O)N(Me)S(O)iPr,
 - $-C(O)N(Me))SO_2iPr$,
 - -C(O)N(Me))S(O)tBu,
 - -C(O)N(Me)SO2tBu,
 - $-C(O)N(Me)CH_2S(O)Me$,
 - $-C(O)N(Me)CH_2S(O)Et$,
 - $-C(O)N(Me)CH_2SO_2Me,$
 - -C(O)N(Me)CH₂SO₂Et,
 - $-C(O)N(Me)CH_2CH_2S(O)Me$,
 - -C(O)N(Me)CH₂CH₂S(O)Et,
 - -C(O)N(Me)CH2CH2SO2Me,
 - -C(O)N(Me)CH₂CH₂SO₂Et,
 - $-CH_2CO_2H$,
 - -CH₂-5-tetrazolyl,
 - -CH₂CO₂Me,
 - -CH₂CO₂Et,
 - -CH₂NHS(O)Me,
 - -CH2NHS(O)Et,
 - -CH₂NHSO₂Me,
 - -CH2NHSO2Et,
 - -CH₂NHS(O)iPr,
 - -CH2NHSO2iPr,
 - -CH2NHS(O)tBu,
 - -CH2NHSO2tBu,
 - -CH₂NHCH₂CH₂SO₂CH₃,
 - -CH2NH(CH2CO2H),
 - $-CH_2N(C(O)Me)(CH_2CO_2H),$

- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- $-CH_2S(O)_2Me$,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- $-CH_2S(O)tBu$,
- -CH₂S(O)₂tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,
- -CH(OH)C(O)NH₂,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt₂,
- $-CH_2CH_2CO_2H$,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{CO}_2\hbox{Me},$
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH2CH2C(O)NMe2,
- -CH₂CH₂-5-tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- -CH₂CH₂S(O)Me,

- $-CH_2CH_2S(O)_2Et$,
- $-CH_2CH_2S(O)$ Et,
- -CH₂CH₂S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- $-CH_2CH_2S(O)tBu,\\$
- $-CH_2CH_2S(O)_2tBu,\\$
- $-CH_2CH_2S(O)NH_2$,
- -CH₂CH₂S(O)NHMe,
- $-CH_2CH_2S(O)NMe_2$,
- $-CH_2CH_2S(O)_2NH_2,\\$
- $\hbox{-CH}_2\hbox{CH}_2\hbox{S}(O)_2\hbox{NHMe}$
- -CH₂CH₂S(O)₂NMe₂,
- $-CH_2CH_2CH_2S(O)Me,\\$
- $-CH_2CH_2CH_2S(O)Et$,
- $-CH_2CH_2CH_2S(O)_2Me$,
- -CH₂CH₂CH₂S(O)₂Et,
- CH(Me)CH₂C(O)OH,
- $-C(Me)_2CH_2C(O)OH$,
 - -5-tetrazolyl,

X16541

- -1,3,4-oxadiazolin-2-one-5-yl,
- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl;

provided that RP is substituted at either the 2, 5, or 6 position of the phenyl ring.

3. (currently amended) A compound or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by formula (IC):

Serial No.: «Application_Number» X16541

$$Z_{p} = \begin{pmatrix} L_{p_{2}} \end{pmatrix} \begin{pmatrix} L_{p_{1}} \end{pmatrix} \begin{pmatrix} L_{p$$

wherein

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP, RB₄, RT₃ and RB are independently selected from the group consisting of hydrogen, halo, C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, -O- C_1 - C_5 alkyl, -S- C_1 - C_5 alkyl, -O- C_1 - C_5 fluoroalkyl, -CN, -NO₂, acetyl, -S- C_1 - C_5 fluoroalkyl, C_2 - C_5 alkenyl, C_3 - C_5 cycloalkyl, and C_3 - C_5 cycloalkenyl;

RP₃ and RB₇ are independently selected from hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, or C₃-C₅ cycloalkenyl;

 (L_{P1}) , (L_{P2}) , and (L_{BT}) are divalent linking groups independently selected from the group consisting of

Serial No.: «Application_Number»

X16541

where m is 0, 1, or 2, and each R40 is independently hydrogen, C₁-C₅ alkyl, or C₁-C₅ fluoroalkyl;

Z_P is

branched C3-C5 alkyl, 3-methyl-3-hydroxypentyl, 3-methyl-3-hydroxypentenyl, 3-methyl-3-hydroxypentynyl, 3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl, 3-ethyl-3-hydroxy-4-methylpentyl, 3-ethyl-3-hydroxy-4-methylpentenyl, 3-ethyl-3-hydroxy-4-methylpentynyl,

X16541

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

1-hydroxy-2-methyl-1-(methylethyl)propyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentenyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

3-ethyl-3-hydroxy-4,4-dimethylpentenyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

1-hydroxycycyclopentenyl,

1-hydroxycyclohexenyl,

1-hydroxycycloheptenyl,

1-hydroxycyclooctenyl,

1-hydroxycyclopropyl,

1-hydroxycyclobutyl,

1-hydroxycyclopentyl,

1-hydroxycyclohexyl,

2-oxocyclohexyloxy,

2-oxocyclohexylmethyl,

3-methyl-2-oxocyclohexyloxy,

3-methyl-2-oxocyclohexylmethyl,

3,3-dimethyl-2-oxocyclohexyloxy,

3,3-dimethyl-2-oxocyclohexylmethyl,

2-hydroxycyclohexyloxy,

2-hydroxycyclohexylmethyl,

3-methyl-2-hydroxycyclohexyloxy,

3-methyl-2-hydroxycyclohexylmethyl,

3,3-dimethyl-2-hydroxycyclohexyloxy,

3,3-dimethyl-2-hydroxycyclohexylmethyl,

Serial No.: «Application_Number» Docket No.:

X16541

1-hydroxycyclooetyl, or 1-hydroxycyclooetyl;

provided, however, that when

 Z_P is

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

3-ethyl-3-hydroxy-4-methylpentynyl,

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentenyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

3-ethyl-3-hydroxy-4,4-dimethylpentenyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl, or

1-hydroxy-2-methyl-1-(methylethyl)propyl;

then (L_{P1}) and (L_{P2}) combine as a bond;

Z_{BT} is selected from

 $-O-(C_1-C_5 \text{ alkyl}),$

-O-(C2-C5 alkenyl),

-O-(C₃-C₅ cycloalkyl),

-O-(C₃-C₅ cycloalkenyl),

- -O-(C₁-C₅ hydroxyalkyl),
- -O-(C₁-C₅ fluoroalkyl),
- -O-(C₁-C₅ alkyl)-phenyl,
- -O-(C₁-C₅ alkyl)-(O)-(C₁-C₅ alkyl),
- -O-(C₁-C₅ alkyl) NH₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -O-(C₁-C₅ alkyl)-N-pyrrolidine,
- -O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl})$
- -O-(C₁-C₅ alkyl)-SO₂-NH₂
- -O-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl})$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$

- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,
- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- -O-(C₁-C₅ alkyl),
- $-O-C(O)-NH_2$,
- -O-C(O)-N-(CH₃)₂,
- -O-C(S)-N-(CH₃)₂,
- $-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -O-(5-tetrazolyl),
- -O-SO₂-(C₁-C₅ alkyl,)
- -O-SO₂-NH₂,
- $\hbox{-O-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \ alkyl),$
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,
- $-O-S(O)-(C_1-C_5 \text{ alkyl},)$
- -O-S(O)-NH₂,
- $-O-S(O)-NH-(C_1-C_5 alkyl),$
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- -S-(C₁-C₅ alkyl),
- -S-(C2-C5 alkenyl),
- -S-(C3-C5 cycloalkyl),
- -S-(C₃-C₅ cycloalkenyl),
- -S-(C₁-C₅ fluoroalkyl),
- -S-(C₁-C₅ hydroxyalkyl),
- -S-(C₁-C₅ alkyl)-phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- -S-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$\hbox{-S-}(C_1\hbox{-}C_5 \hbox{ alkyl})\hbox{-P(O)-}(O\hbox{-}C_1\hbox{-}C_5 \hbox{ alkyl})_2\ ,$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-NH_2$
- $-SO_2$ -NH-(C₁-C₅ alkyl),
- -SO₂-NH-CH₂-C(O)OH,
- $-SO_2$ -NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)OH,
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NHC(O)-(C₃-C₆ cycloalkyl),
- $-SO_2$ -NH-C(O)-(C₁-C₅ alkyl),
- $-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- -SO₂-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl}) \text{ NH}_2$
- $-SO_2$ -(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-SO_2-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -SO₂-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -SO₂-(C₁-C₅ alkyl)-N-pyrrolidine,
- -SO₂-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-O-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- -SO₂-(C₁-C₅ alkyl)-5-tetrazolyl,
- $-SO_2$ -(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- $-SO_2$ -(C₁-C₅ alkyl)-SO₂-NH₂
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$

$$-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5)\hbox{-phenyl},$$

$$-SO_2-N=CHN(C_1-C_5 \text{ alkyl})$$
 2.

$$-S(O)-NH2$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-CH_2-C(O)OH$$

$$-S(O)-NH-(C_1-C_5 alkyl)-C(O)OH$$
,

$$-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),$$

$$-S(O)-NH-C(O)-(C_1-C_5 alkyl),$$

$$-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$$

- -S(O)-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -S(O)-(C₁-C₅ alkyl)-N-pyrrolidine,
- -S(O)-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- -S(O)-(C₁-C₅ alkyl)-5-tetrazolyl,
- -S(O)-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- -S(O)-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- $-S(O)-N=CHN(C_1-C_5 \text{ alkyl})$ 2
- $-NHC(S)NH_2$
- $-NHC(S)NH-(C_1-C_5 alkyl),$
- $-NHC(S)N-(C_1-C_5 \text{ alkyl})_2$,
- -NHC(S)NH-(C2-C5 alkenyl),
- -NHC(S)NH-(C3-C5 cycloalkyl),
- -NHC(S)NH-(C3-C5 cycloalkenyl),
- -NHC(S)NH-(C₁-C₅ fluoroalkyl),
- -NHC(S)NH-C₁-C₅ hydroxyalkyl,
- -NHC(S)NH-(C₁-C₅ fluoroalkyl)
- -NHC(S)NH-phenyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,

```
-NHC(S)NH-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),
```

$$-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),$$

$$-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-(O-C_1-C_5 alkyl),$$

$$-NHC(S)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),$$

$$\hbox{-NHC}(S)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}C(O)\hbox{-NH-}(C_1\hbox{-}C_5 \ alkyl),$$

$$-NHC(S)NH-(C_1-C_5 alkyl)-NH-S(O)-(C_1-C_5 alkyl),$$

$$-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-(C_1-C_5 alkyl),$$

$$-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-NH-(C_1-C_5 alkyl),$$

$$-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-NHC(S)NH-(C_1-C_5 alkyl)-S(O)-NH-(C_1-C_5 alkyl),$$

$$-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-NHC(S)NH-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$

$$-NHC(O)NH2$$
,

$$-NHC(O)NH-(C_1-C_5 alkyl),$$

$$-NHC(O)N-(C_1-C_5 \text{ alkyl})_2$$
,

X16541

```
-NHC(O)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
```

-NHC(O)NH-(
$$C_1$$
- C_5 alkyl)-N-(C_1 - C_5 alkyl)₂.

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-NH_2$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),$$

-NHC(O)NH-(
$$C_1$$
- C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,

$$-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-NH-(C_1-C_5 alkyl),$$

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-(C_1-C_5 alkyl),$$

$$\hbox{-NHC}(O) \hbox{NH-}(C_1\hbox{-}C_5 \ alkyl) \hbox{-N-pyrrolidin-} 2\hbox{-one},$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-$$

$$\hbox{-NHC}(O)\hbox{NH-}(\hbox{C$_1$-C$_5} \ alkyl)\hbox{-5-tetrazolyl},$$

$$\hbox{-NHC}(O)\hbox{NH-}(\hbox{C_1-$$$} \hbox{C_5 alkyl})\hbox{-SO}_2\hbox{-}(\hbox{C_1-$$$$$$$$} \hbox{C_5 alkyl}),$$

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-SO_2-NH_{2,}$$

$$- NHC(O)NH-(C_1-C_5 \ alkyl) - SO_2-N-(C_1-C_5 \ alkyl)_{2,}$$

-NH₂

-NH- $(C_1-C_5 \text{ alkyl})$,

-NH-CH₂-C(O)OH,

 $-N-(C_1-C_5 \text{ alkyl})_2$

 $-NH-C(O)-NH_2$,

-NH-C(O)-NH-(C_1 - C_5 alkyl),

 $-NH-C(O)-N-(C_1-C_5 \text{ alkyl})_2$

-NH-C(O)-(C_1 - C_5 alkyl),

-NH-SO₂-(C_1 - C_5 alkyl),

-NH-S(O)-(C_1 - C_5 alkyl),

-N(CH₃)(OCH₃),

-N(OH)(CH₃),

-N-pyrrolidin-2-one,

-N-pyrrolidine,

-(1-methylpyrrolidin-2-one-3-yl),

-CO₂H,

-CO₂Me,

-CO₂Et,

 $-C(O)CH_2S(O)Me$,

-C(O)CH₂S(O)Et,

 $-C(O)CH_2S(O)_2Me$,

 $-C(O)CH_2S(O)_2Et$,

 $-C(O)CH_2CH_2S(O)Me$,

 $-C(O)CH_2CH_2S(O)Et$,

 $-C(O)CH_2CH_2S(O)_2Me$,

 $-C(O)CH_2CH_2S(O)_2Et$,

-C(O)CH(Me)CH₂CO₂H,

-C(O)CH(Me)CH₂CO₂Me,

-C(O)CH(Me)CH2CO2Et,

-C(O)CH(Me)CH2CO2iPr,

- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO₂H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO₂Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- -C(O)C(O)NMe2,
- -C(O)NH₂,
- $-C(O)NMe_2$,
- $-C(O)NH-CH_2-C(O)OH$,
- $-C(O)NH-CH_2-C(O)OMe$,
- $-C(O)NH-CH_2-C(O)OEt$,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,

- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- $-C(O)NH-CH(CF_3)-C(O)OH$,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)₂-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF₃)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- $-C(O)NMe-CH_2-C(O)OMe$,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- $-C(O)NMe-CH_2-C(O)OH$,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- $-C(O)NMe-C(Me)_2-C(O)OH$,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,

- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- $-C(O)NHCH_2CH_2S(O)Et$,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- $-C(O)N(Me)SO_2Me$,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO₂iPr,
- -C(O)N(Me))S(O)tBu,

- -C(O)N(Me)SO2tBu,
- $-C(O)N(Me)CH_2S(O)Me$,
- -C(O)N(Me)CH₂S(O)Et,
- $-C(O)N(Me)CH_2SO_2Me,\\$
- -C(O)N(Me)CH₂SO₂Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$,
- -C(O)N(Me)CH₂CH₂S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- -C(O)N(Me)CH2CH2SO2Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- $-CH_2CO_2Et$,
- -CH₂NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH2NHSO2Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH2NHCH2CH2SO2CH3,
- -CH2NH(CH2CO2H),
- $-CH_2N(C(O)Me)(CH_2CO_2H),$
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,

- $-CH_2S(O)_2Et$,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- $-CH_2S(O)tBu$,
- -CH₂S(O)₂tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- $-CH_2C(O)NMe_2$,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,
- $-CH(OH)C(O)NH_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt₂,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH2CH2C(O)NMe2,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{-5-tetrazolyl},$
- -CH₂CH₂S(O)₂Me,
- -CH₂CH₂S(O)Me,
- -CH₂CH₂S(O)₂Et,
- -CH₂CH₂S(O) Et,
- -CH2CH2S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- -CH₂CH₂S(O)tBu,

 $-CH_2CH_2S(O)_2tBu$,

 $-CH_2CH_2S(O)NH_2$,

-CH₂CH₂S(O)NHMe,

 $-CH_{2}CH_{2}S(O)NMe_{2}, \\$

 $-CH_2CH_2S(O)_2NH_2$,

 $\hbox{-CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{NHMe}$

-CH₂CH₂S(O)₂NMe₂,

-CH₂CH₂CH₂S(O)Me,

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2S(O)\hbox{Et},$

 $-CH_2CH_2CH_2S(O)_2Me,\\$

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2\hbox{S}(O)_2\hbox{Et},$

CH(Me)CH₂C(O)OH,

 $-C(Me)_2CH_2C(O)OH$,

-5-tetrazolyl,

Page 62 of 132

X16541

- -1,3,4-oxadiazolin-2-one-5-yl,
- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl;

provided that RP is substituted at either the 2, 5, or 6 position of the phenyl ring.

- 4. (currently amended) A compound according to claim 1 or a pharmaceutically acceptable salt or <u>an ester prodrug</u> derivative thereof wherein
- (L_{P1}) , (L_{P2}) , and (L_{TB}) are divalent linking groups independently selected from the group consisting of

X16541

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl; and

- $-CH_2CH_2S(O)_2Me$,
- -CH2CH2S(O)Me,
- -CH₂CH₂S(O)₂Et,
- $-CH_2CH_2S(O)$ Et,
- -CH2CH2S(O)iPr,
- -CH2CH2S(O)2iPr,
- -CH₂CH₂S(O)tBu,
- -CH₂CH₂S(O)₂tBu,

 $- \text{CH}_2 \text{CH}_2 \text{S}(\text{O}) \text{NH}_2,$

 $-CH_2CH_2S(O)NHMe$,

 $-CH_2CH_2S(O)NMe_2,\\$

 $-CH_2CH_2S(O)_2NH_2,\\$

 $\hbox{-CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{NHMe}$

 $-CH_2CH_2S(O)_2NMe_2,\\$

 $-CH_2CH_2CH_2S(O)Me,\\$

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2S(O)\hbox{Et},$

 $-CH_2CH_2CH_2S(O)_2Me$,

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{Et},$

-C(O)OH,

-5-tetrazolyl,

X16541

$$N-N$$
 $N-N$
 $N-N$

-1,3,4-oxadiazolin-2-one-5-yl,

НО

-imidazolidine-2,4-dione-5-yl,

-isoxazol-3-ol-yl, or

-1,3,4-oxadiazolin-2-thione-5-yl.

5. (currently amended) A compound according to claim 2 or a pharmaceutically acceptable salt or an ester prodrug derivative thereof wherein (LP1), (LP2), and (LBT) are divalent linking groups independently selected from the group consisting of

X16541

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5

fluoroalkyl; and

Z_{BT} is selected from

- -O-(C₁-C₅ alkyl)-(O)-(C₁-C₅ alkyl),
- $-O-(C_1-C_5 \text{ alkyl}) \text{ NH}_2$
- -O-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl)₂
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -O-(C₁-C₅ alkyl)-N-pyrrolidine,
- -O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl,)
- -O-(C₁-C₅ alkyl)-SO₂-NH₂
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂
- -O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl})$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,

- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl}),$
- -O-C(O)-NH₂,
- -O-C(O)-N-(CH₃)₂,
- -O-C(S)-N-(CH₃)₂,
- -O-C(O)-O-(C₁-C₅ alkyl),
- -O-(5-tetrazolyl),
- -O-SO₂-(C₁-C₅ alkyl,)
- -O-SO₂-NH₂,
- $-O-SO_2-NH-(C_1-C_5 alkyl),$
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- -O-S(O)-NH₂,
- $-O-S(O)-NH-(C_1-C_5 alkyl),$
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C2-C5 alkenyl),
- -S-(C3-C5 cycloalkyl),
- -S-(C3-C5 cycloalkenyl),
- -S-(C₁-C₅ fluoroalkyl),
- -S-(C₁-C₅ hydroxyalkyl),
- -S-(C₁-C₅ alkyl)-phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-C(O)-NH₂
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$

$$-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5)$$
-phenyl,

$$-SO_2$$
-NH-(C₁-C₅ alkyl),

- -SO₂-NH-CH₂-C(O)OH,
- $-SO_2$ -NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NH-(C₁-C₅ alkyl)-C(O)OH,
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NHC(O)-(C₃-C₆ cycloalkyl),
- $-SO_2$ -NH-C(O)-(C₁-C₅ alkyl),
- $-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-SO_2-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-SO_2$ - $(C_1$ - C_5 alkyl)-C(O)- $(C_1$ - C_5 alkyl),
- -SO₂-(C₁-C₅ alkyl) NH₂.
- -SO₂-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- -SO₂-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-SO_2-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -SO₂-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -SO₂-(C₁-C₅ alkyl)-N-pyrrolidine,
- -SO₂-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- -SO₂-(C₁-C₅ alkyl)-5-tetrazolyl,
- -SO₂-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- -SO₂-(C₁-C₅ alkyl)-SO₂-NH₂
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- -SO₂-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$
- $-SO_2-(C_1-C_5 \text{ alkyl}),$

- -SO₂-(C₂-C₅ alkenyl),
- -SO₂-(C₃-C₅ cycloalkyl),
- -SO₂-(C₃-C₅ cycloalkenyl),
- -SO₂-(C₁-C₅ hydroxyalkyl),
- -SO₂-(C₁-C₅ fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-N=CHN(C_1-C_5 \text{ alkyl})$ 2.
- -S(O)-NH₂
- $-S(O)-NH-(C_1-C_5 alkyl),$
- -S(O)-NH-CH₂-C(O)OH
- -S(O)-NH-(C₁-C₅ alkyl)-C(O)OH,
- $-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),$
- $-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -S(O)-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -S(O)-(C₁-C₅ alkyl)-N-pyrrolidine,
- -S(O)-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),

- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- -S(O)-(C₁-C₅ alkyl)-5-tetrazolyl,
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- $-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2$.
- $-NHC(S)NH_2$
- $-NHC(S)NH-(C_1-C_5 alkyl),$
- $-NHC(S)N-(C_1-C_5 \text{ alkyl})_2$,
- -NHC(S)NH-(C2-C5 alkenyl),
- -NHC(S)NH-(C3-C5 cycloalkyl),
- -NHC(S)NH-(C3-C5 cycloalkenyl),
- -NHC(S)NH-(C₁-C₅ fluoroalkyl),
- -NHC(S)NH-C₁-C₅ hydroxyalkyl,
- -NHC(S)NH-(C₁-C₅ fluoroalkyl)
- -NHC(S)NH-phenyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$

- -NHC(S)NH-(C₁-C₅ alkyl)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-NHC(S)NH-(C_1-C_5 alkyl)-NH-SO_2-(C_1-C_5 alkyl),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- $\hbox{-NHC}(S) \hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}(1\hbox{-methylpyrrolidin-}2\hbox{-one-}$ 3-y1),
- -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- $-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-NH-(C_1-C_5 alkyl),$
- $-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-N-(C_1-C_5 alkyl)_2$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$
- -NHC(O)NH₂,
- $-NHC(O)NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(O)N-(C_1-C_5 alkyl)_2$,
- -NHC(O)NH-(C2-C5 alkenyl),
- -NHC(O)NH-(C3-C5 cycloalkyl),
- -NHC(O)NH-(C3-C5 cycloalkenyl),
- -NHC(O)NH-(C₁-C₅ hydroxyalkyl),

```
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
```

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-NH-}(C_1\hbox{-}C_5 \ alkyl),$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),$$

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}C(O)\hbox{-}(C_1\hbox{-}C_5 \ alkyl),$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-NH-SO}_2\hbox{-}(C_1\hbox{-}C_5 \ alkyl),$$

$$\hbox{-NHC}(O)\hbox{NH-}(\hbox{C_1-$$$} \hbox{C_5 alkyl)-C}(O)\hbox{-OH},$$

$$\hbox{-NHC(O)NH-(C$_1$-C$_5$ alkyl)-SO$_2$-(C$_1$-C$_5$ alkyl),}\\$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-SO_2-NH_2$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \ alkyl),$$

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-NH2$$

$$-NH-(C_1-C_5 \text{ alkyl}),$$

- $-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-NH_2$,
- $-NH-C(O)-NH-(C_1-C_5 alkyl),$
- -NH-C(O)-N- $(C_1-C_5 \text{ alkyl})_2$.
- -NH-C(O)-(C_1 - C_5 alkyl),
- $-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -NH-S(O)-(C_1 - C_5 alkyl),
- -N(CH₃)(OCH₃),
- $-N(OH)(CH_3),$
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- $-C(O)CH_2S(O)Me$,
- $-C(O)CH_2S(O)Et$,
- $-C(O)CH_2S(O)_2Me$,
- -C(O)CH₂S(O)₂Et,
- -C(O)CH₂CH₂S(O)Me,
- $-C(O)CH_2CH_2S(O)Et$,
- -C(O)CH₂CH₂S(O)₂Me,
- $\hbox{-C(O)CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{Et},$
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH₂CO₂Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH2CO2iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,

- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO₂H,
- $-C(O)CH(Me)C(Me) \ _2CO_2Me,$
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- -C(O)C(O)NH₂,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,
- -C(O)NMe2,
- $-C(O)NH-CH_2-C(O)OH$,
- $-C(O)NH-CH_2-C(O)OMe$,
- $-C(O)NH-CH_2-C(O)OEt$,
- -C(O)NH-CH₂-C(O)OiPr,
- $-C(O)NH-CH_2-C(O)OtBu$,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,

- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- -C(O)NH-C(Me)₂-C(O)OEt,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- -C(O)NH-C(Me)₂-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-C(Me)₂-C(O)OH,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF₃)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- $-C(O)NMe-CH_2-C(O)OEt$,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- $-C(O)NMe-CH_2-C(O)OH$,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- $-C(O)NMe-CH(CF_3)-C(O)OH$,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)₂-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,

- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH2S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$,
- $-C(O)N(Me)SO_2Et$,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO₂tBu,
- -C(O)N(Me)CH₂S(O)Me,

- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$,
- -C(O)N(Me)CH₂CH₂S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- $-C(O)N(Me)CH_2CH_2SO_2Et$,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH2NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH₂NHSO₂Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH2NH(CH2CO2H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,

- $-CH_2S(O)_2iPr$,
- -CH₂S(O)tBu,
- -CH₂S(O)₂tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- $-CH_2S(O)_2Me$, $CH_2S(O)Me$,
- -CH(OH) CO₂H,
- $-CH(OH)C(O)NH_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt₂,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- $-CH_2CH_2S(O)_2Me$,
- $-CH_2CH_2S(O)Me$,
- $-CH_2CH_2S(O)_2Et$,
- $-CH_2CH_2S(O)$ Et,
- -CH2CH2S(O)iPr,
- -CH2CH2S(O)2iPr,
- -CH₂CH₂S(O)tBu,
- -CH2CH2S(O)2tBu,
- $-CH_2CH_2S(O)NH_2$,

- -CH₂CH₂S(O)NHMe,
- $-CH_2CH_2S(O)NMe_2$,
- $-CH_2CH_2S(O)_2NH_2$,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{S}(O)_2\hbox{NHMe}$
- $-CH_2CH_2S(O)_2NMe_2$,
- $-CH_2CH_2CH_2S(O)Me,\\$
- $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2S(O)\hbox{Et},$
- $-CH_2CH_2CH_2S(O)_2Me,\\$
- $-CH_2CH_2CH_2S(O)_2Et,\\$

$$\begin{array}{c|c} O & O \\ \hline \\ C & NH \\ \hline \\ O \\ \end{array} CH_3$$

X16541

-1,3,4-oxadiazolin-2-one-5-yl,

-imidazolidine-2,4-dione-5-yl,

-isoxazol-3-ol-yl, or

-1,3,4-oxadiazolin-2-thione-5-yl.

consisting of

6. (currently amended) A compound according to claim 3 or a pharmaceutically acceptable salt or an ester prodrug derivative thereof wherein (L_{P1}), (L_{P2}), and (L_{BT}) are divalent linking groups independently selected from the group

Page 86 of 132

X16541

where m is 0, 1, or 2, and each R40 is independently hydrogen, C₁-C₅ alkyl, or C₁-C₅

fluoroalkyl; and

Z_{BT} is selected from

- -O-(C₁-C₅ alkyl)-(O)-(C₁-C₅ alkyl),
- -O-(C₁-C₅ alkyl) NH₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -O-(C₁-C₅ alkyl)-N-pyrrolidine,
- -O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl,)
- -O-(C₁-C₅ alkyl)-SO₂-NH₂
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂
- -O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl})$
- -O-(C₁-C₅ alkyl)-S(O)-NH₂
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,

- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl}),$
- -O-C(O)-NH₂,
- -O-C(O)-N-(CH₃)₂,
- -O-C(S)-N-(CH₃)₂,
- -O-C(O)-O-(C₁-C₅ alkyl),
- -O-(5-tetrazolyl),
- -O-SO₂-(C₁-C₅ alkyl,)
- -O-SO₂-NH₂,
- $-O-SO_2-NH-(C_1-C_5 alkyl),$
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- -O-S(O)-NH₂,
- $-O-S(O)-NH-(C_1-C_5 alkyl),$
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C2-C5 alkenyl),
- -S-(C3-C5 cycloalkyl),
- -S-(C3-C5 cycloalkenyl),
- -S-(C₁-C₅ fluoroalkyl),
- -S-(C₁-C₅ hydroxyalkyl),
- -S-(C₁-C₅ alkyl)-phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH$,
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-C(O)-NH₂
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5)$$
-phenyl,

$$-SO_2$$
-NH-(C₁-C₅ alkyl),

$$-SO_2$$
-NH-CH₂-C(O)(O-C₁-C₅ alkyl),

$$-SO_2$$
-NH-C(O)-(C₁-C₅ alkyl),

$$-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-SO_2$$
-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),

$$-SO_2-(C_1-C_5 \text{ alkyl}) \text{ NH}_2$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \ alkyl)-C(O)-N-(C_1-C_5 \ alkyl)_2,$$

$$-SO_2-(C_1-C_5 \ alkyl)-NH-SO_2-(C_1-C_5 \ alkyl),\\$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}(1\hbox{-methylpyrrolidin-}2\hbox{-one-}3\hbox{-yl}),$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}C(O)\hbox{-}O\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-OH,$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-P(O)-}(O\hbox{-}C_1\hbox{-}C_5 \text{ alkyl})_2 \;,$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl}),$$

- -SO₂-(C₂-C₅ alkenyl),
- -SO₂-(C₃-C₅ cycloalkyl),
- -SO₂-(C₃-C₅ cycloalkenyl),
- -SO₂-(C₁-C₅ hydroxyalkyl),
- -SO₂-(C₁-C₅ fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-N=CHN(C_1-C_5 \text{ alkyl})$ 2.
- -S(O)-NH₂
- $-S(O)-NH-(C_1-C_5 alkyl),$
- -S(O)-NH-CH₂-C(O)OH
- $-S(O)-NH-(C_1-C_5 alkyl)-C(O)OH$,
- $-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),$
- $-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -S(O)-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -S(O)-(C₁-C₅ alkyl)-N-pyrrolidine,
- -S(O)-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH$$
,

$$-S(O)-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2$$
.

$$-NHC(S)NH_2$$

$$-NHC(S)N-(C_1-C_5 alkyl)_2$$
,

$$-NHC(S)NH-(C_1-C_5 alkyl)-O-(C_1-C_5 alkyl),$$

$$-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

- -NHC(S)NH-(C₁-C₅ alkyl)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-NHC(S)NH-(C_1-C_5 alkyl)-NH-SO_2-(C_1-C_5 alkyl),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- $\hbox{-NHC}(S) \hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}(1\hbox{-methylpyrrolidin-}2\hbox{-one-}$ 3-y1),
- -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- $-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-NH-(C_1-C_5 alkyl),$
- $-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-N-(C_1-C_5 alkyl)_2$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- -NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH₂
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$
- -NHC(O)NH₂,
- $-NHC(O)NH-(C_1-C_5 \text{ alkyl}),$
- $-NHC(O)N-(C_1-C_5 alkyl)_2$,
- -NHC(O)NH-(C2-C5 alkenyl),
- -NHC(O)NH-(C3-C5 cycloalkyl),
- -NHC(O)NH-(C3-C5 cycloalkenyl),
- -NHC(O)NH-(C₁-C₅ hydroxyalkyl),

```
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> fluoroalkyl),
```

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5\ alkyl)\hbox{-NH-}(C_1\hbox{-}C_5\ alkyl),$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-C(O)-NH-(C_1-C_5 alkyl),$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl)\hbox{-}C(O)\hbox{-}(C_1\hbox{-}C_5 \ alkyl),$$

$$-NHC(O)NH-(C_1-C_5 alkyl)-NH-SO_2-(C_1-C_5 alkyl),$$

$$\hbox{-NHC}(O)\hbox{NH-}(\hbox{C_1-$$$}\hbox{C_5 alkyl)-C}(O)\hbox{-OH},$$

-NHC(O)NH-(
$$C_1$$
- C_5 alkyl)-C(O)-O-(C_1 - C_5 alkyl),

$$\hbox{-NHC(O)NH-(C$_1$-C$_5$ alkyl)-SO$_2$-(C$_1$-C$_5$ alkyl),}\\$$

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \ alkyl) \hbox{-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \ alkyl),$$

$$-NHC(O)NH-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-NH2$$

$$-NH-(C_1-C_5 \text{ alkyl}),$$

- $-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-NH_2$,
- $-NH-C(O)-NH-(C_1-C_5 alkyl),$
- -NH-C(O)-N- $(C_1-C_5 \text{ alkyl})_2$.
- -NH-C(O)-(C_1 - C_5 alkyl),
- $-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -NH-S(O)-(C_1 - C_5 alkyl),
- -N(CH₃)(OCH₃),
- $-N(OH)(CH_3),$
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- $-C(O)CH_2S(O)Me$,
- $-C(O)CH_2S(O)Et$,
- $-C(O)CH_2S(O)_2Me$,
- -C(O)CH₂S(O)₂Et,
- -C(O)CH₂CH₂S(O)Me,
- $-C(O)CH_2CH_2S(O)Et$,
- $-C(O)CH_2CH_2S(O)_2Me$,
- $\hbox{-C(O)CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{Et},$
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH₂CO₂Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH2CO2iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,

- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO₂H,
- $-C(O)CH(Me)C(Me) \ _2CO_2Me,$
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO₂tBu,
- -C(O)C(O)OH,
- -C(O)C(O)NH₂,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,
- -C(O)NMe2,
- $-C(O)NH-CH_2-C(O)OH$,
- $-C(O)NH-CH_2-C(O)OMe$,
- $-C(O)NH-CH_2-C(O)OEt$,
- -C(O)NH-CH₂-C(O)OiPr,
- $-C(O)NH-CH_2-C(O)OtBu$,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,

- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- $-C(O)NMe-CH_2-C(O)OEt$,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- $-C(O)NMe-CH(CF_3)-C(O)OH$,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- $-C(O)NMe-C(Me)_2-C(O)OH$,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,

- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$,
- $-C(O)N(Me)SO_2Et$,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- $-C(O)N(Me)CH_2S(O)Me$,

- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$,
- -C(O)N(Me)CH₂CH₂S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- $-C(O)N(Me)CH_2CH_2SO_2Et$,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH₂NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH₂NHSO₂Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH2NH(CH2CO2H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- $-CH_2S(O)Et$,
- $-CH_2S(O)_2Me$,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,

- $-CH_2S(O)_2iPr$,
- -CH₂S(O)tBu,
- -CH₂S(O)₂tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- $-CH_2S(O)_2Me$, $CH_2S(O)Me$,
- -CH(OH) CO₂H,
- $-CH(OH)C(O)NH_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt₂,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- $-CH_2CH_2S(O)Me$,
- $-CH_2CH_2S(O)_2Et$,
- $-CH_2CH_2S(O)$ Et,
- -CH2CH2S(O)iPr,
- -CH2CH2S(O)2iPr,
- -CH₂CH₂S(O)tBu,
- -CH2CH2S(O)2tBu,
- -CH₂CH₂S(O)NH₂,

X16541

- -CH₂CH₂S(O)NHMe,
- $-CH_2CH_2S(O)NMe_2$,
- $-CH_2CH_2S(O)_2NH_2$,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{S}(O)_2\hbox{NHMe}$
- $-\mathsf{CH}_2\mathsf{CH}_2\mathsf{S}(\mathsf{O})_2\mathsf{NMe}_2,$
- $-CH_2CH_2CH_2S(O)Me,\\$
- $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2S(O)\hbox{Et},$
- $-CH_2CH_2CH_2S(O)_2Me,\\$
- $-CH_2CH_2CH_2S(O)_2Et,\\$

-5-tetrazolyl,

$$\begin{array}{c|c} O & O \\ \hline \\ \hline \\ C \\ \hline \\ O \\ \end{array} \text{NH} \begin{array}{c} O \\ \hline \\ S \\ \hline \\ O \\ \end{array} \text{CH}_3$$

X16541

- -1,3,4-oxadiazolin-2-one-5-yl,
- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl.

7. (currently amended) The compound of Claim 1, or a pharmaceutically acceptable salt thereof.

wherein for Formula IA;

R and R' are independently methy or ethyl;

RP and RT₃ are independently, hydrogen or methyl;

RP₃ and RB are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;

X16541

 (L_{P1}) and (L_{TB}) divalent linking groups are both bonds;

 (L_{P2}) is a bond, $-CH_2$ -, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl;

 Z_{TB} is

- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- $-C(O)CH_2S(O)Et$,
- -C(O)CH₂S(O)₂Me,
- $-C(O)CH_2S(O)_2Et$,
- $-C(O)CH_2CH_2S(O)Me$,
- $-C(O)CH_2CH_2S(O)Et$,
- $-C(O)CH_2CH_2S(O)_2Me$,
- $-C(O)CH_2CH_2S(O)_2Et$,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH2CO2Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,

- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- -C(O)C(O)NH₂,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- $-C(O)NH_2$,
- $-C(O)NMe_2$,
- $-C(O)NH-CH_2-C(O)OH$,
- $-C(O)NH-CH_2-C(O)OMe$,
- $-C(O)NH-CH_2-C(O)OEt$,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,

- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- $-C(O)NMe-C(Me)_2-C(O)OH$,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,

- -C(O)NHSO2tBu,
- $-C(O)NHCH_2S(O)Me$,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH₂SO₂Me,
- -C(O)NHCH2SO2Et,
- $-C(O)NHCH_2CH_2S(O)Me$,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH₂CH₂SO₂Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO₂iPr,
- -C(O)N(Me))S(O)tBu,
- $-C(O)N(Me)SO_2tBu$,
- $-C(O)N(Me)CH_2S(O)Me$,
- -C(O)N(Me)CH₂S(O)Et,
- $-C(O)N(Me)CH_2SO_2Me$,
- -C(O)N(Me)CH₂SO₂Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH₂CH₂SO₂Me,
- -C(O)N(Me)CH₂CH₂SO₂Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,

- $\hbox{-CH}_2\hbox{CO}_2\hbox{Me},$
- -CH₂CO₂Et,
- -CH₂NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH₂NHSO₂Et,
- -CH₂NHS(O)iPr,
- -CH₂NHSO₂iPr,
- $-CH_2NHS(O)tBu,\\$
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH2NH(CH2CO2H),
- $-CH_2N(C(O)Me)(CH_2CO_2H),$
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- $-CH_2S(O)tBu$,
- $-CH_2S(O)_2tBu$,
- -CH₂CO₂H, CH₂C(O)NH₂,
- $-CH_2C(O)NMe_2$,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- $-CH_2S(O)_2Me$, $CH_2S(O)Me$,
- -CH(OH) CO₂H,

- -CH(OH)C(O)NH₂,
- -CH(OH)C(O)NHMe,
- $-CH(OH)C(O)NMe_2$,
- $\hbox{-CH}(OH)C(O)NEt_2,$
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- $-CH_2CH_2C(O)NHMe,\\$
- -CH2CH2C(O)NMe2,
- -CH₂CH₂-5-tetrazolyl,
- $-CH_2CH_2S(O)_2Me$,
- -CH₂CH₂S(O)Me,
- -CH₂CH₂S(O)₂Et,
- $-CH_2CH_2S(O)$ Et,
- -CH₂CH₂S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- $-CH_2CH_2S(O)tBu$,
- -CH₂CH₂S(O)₂tBu,
- $-CH_2CH_2S(O)NH_2$,
- $-CH_2CH_2S(O)NHMe,$
- $-CH_2CH_2S(O)NMe_2,\\$
- $-CH_2CH_2S(O)_2NH_2$,
- $-CH_2CH_2S(O)_2NHMe$
- -CH₂CH₂S(O)₂NMe₂,
- -CH2CH2CH2S(O)Me,

Docket No.:

Serial No.: «Application_Number»

X16541

-CH2CH2CH2S(O)Et,

-CH₂CH₂CH₂S(O)₂Me, or

 $-CH_2CH_2CH_2S(O)_2Et$.

8. (currently amended) The compound of claim 2, or a pharmaceutically acceptable salt thereof, wherein for formula IB;

R and R' are independently methy or ethyl;

RP, RB, RB₄, and RT₃ are independently, hydrogen or methyl;

RP₃ and RB₇ are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;

(L_{P1}) and (L_{BT}) divalent linking groups are both bonds;

(L_{P2}) is a bond, -CH₂-, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl;

 Z_{BT} is

-CO₂H,

-CO₂Me,

-CO₂Et,

-C(O)CH₂S(O)Me,

-C(O)CH₂S(O)Et,

-C(O)CH₂S(O)₂Me,

-C(O)CH₂S(O)₂Et,

-C(O)CH2CH2S(O)Me,

-C(O)CH2CH2S(O)Et,

 $-C(O)CH_2CH_2S(O)_2Me$,

-C(O)CH2CH2S(O)2Et,

-C(O)CH(Me)CH2CO2H,

-C(O)CH(Me)CH2CO2Me,

-C(O)CH(Me)CH2CO2Et,

-C(O)CH(Me)CH2CO2iPr,

-C(O)CH(Me)CH2CO2tBu,

- $-C(O)CH(Me)CH(Me)CO_2H$,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO₂tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO₂Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,
- $-C(O)NMe_2$,
- $-C(O)NH-CH_2-C(O)OH$,
- $-C(O)NH-CH_2-C(O)OMe$,
- $-C(O)NH-CH_2-C(O)OEt$,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,

- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- $-C(O)NMe-CH_2-C(O)OMe$,
- $-C(O)NMe-CH_2-C(O)OEt$,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- $-C(O)NMe-CH(CF_3)-C(O)OH$,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- $-C(O)NMe-C(Me)_2-C(O)OH$,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,

- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- $-C(O)NHCH_2CH_2S(O)Me$,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- $-C(O)N(Me)SO_2Me$,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO₂iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO₂tBu,
- -C(O)N(Me)CH₂S(O)Me,

- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$,
- -C(O)N(Me)CH₂CH₂S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- $-C(O)N(Me)CH_2CH_2SO_2Et$,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH₂NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH₂NHSO₂Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH2NH(CH2CO2H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- $-CH_2S(O)Et$,
- $-CH_2S(O)_2Me$,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,

- - $-CH_2S(O)_2iPr$, -CH₂S(O)tBu,
 - -CH₂S(O)₂tBu,
 - -CH₂CO₂H, CH₂C(O)NH₂,
 - -CH₂C(O)NMe₂,
 - -CH₂C(O)NHMe,
 - -CH₂C(O)-N-pyrrolidine,
 - $-CH_2S(O)_2Me$, $CH_2S(O)Me$,
 - -CH(OH) CO₂H,
 - $-CH(OH)C(O)NH_2$,
 - -CH(OH)C(O)NHMe,
 - $\text{-CH}(\text{OH})\text{C}(\text{O})\text{NMe}_2,$
 - -CH(OH)C(O)NEt₂,
 - -CH₂CH₂CO₂H,
 - -CH₂CH₂CO₂Me,
 - -CH₂CH₂CO₂Et,
 - $-CH_2CH_2C(O)NH_2$,
 - -CH₂CH₂C(O)NHMe,
 - -CH₂CH₂C(O)NMe₂,
 - -CH₂CH₂-5-tetrazolyl,
 - $-CH_2CH_2S(O)_2Me,\\$
 - $-CH_2CH_2S(O)Me$,
 - $-CH_2CH_2S(O)_2Et$,
 - $-CH_2CH_2S(O)$ Et,
 - -CH2CH2S(O)iPr,
 - -CH2CH2S(O)2iPr,
 - -CH₂CH₂S(O)tBu,
 - -CH2CH2S(O)2tBu,
 - -CH₂CH₂S(O)NH₂,

X16541

- -CH₂CH₂S(O)NHMe,
- $-CH_2CH_2S(O)NMe_2$,
- -CH2CH2S(O)2NH2,
- -CH2CH2S(O)2NHMe
- -CH₂CH₂S(O)₂NMe₂,
- -CH2CH2CH2S(O)Me,
- -CH₂CH₂CH₂S(O)Et,
- -CH2CH2CH2S(O)2Me, or
- -CH2CH2CH2S(O)2Et.

9. (currently amended) The compound of claim 3, or a pharmaceutically acceptable salt thereof, wherein for formula IC;

R and R' are independently methy or ethyl;

RP, RB, RB₄, and RT₃ are independently, hydrogen or methyl;

RP₃ and RB₇ are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;

(L_{P1}) and (L_{BT}) divalent linking groups are both bonds;

 (L_{P2}) is a bond, $-CH_2$ -, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl;

Z_{BT} is

- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- -C(O)CH2S(O)Et,
- -C(O)CH₂S(O)₂Me,
- $-C(O)CH_2S(O)_2Et$,
- -C(O)CH2CH2S(O)Me,
- -C(O)CH2CH2S(O)Et,
- -C(O)CH2CH2S(O)2Me,

- $-C(O)CH_2CH_2S(O)_2Et$,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH2CO2Me,
- -C(O)CH(Me)CH2CO2Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO₂H,
- -C(O)CH(Me)C(Me) 2CO₂Me,
- -C(O)CH(Me)C(Me) 2CO₂Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,
- $-C(O)NMe_2$,
- $-C(O)NH-CH_2-C(O)OH$,
- $-C(O)NH-CH_2-C(O)OMe$,
- $-C(O)NH-CH_2-C(O)OEt$,

- -C(O)NH-CH₂-C(O)OiPr,
- $-C(O)NH-CH_2-C(O)OtBu$,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- $-C(O)NMe-CH_2-C(O)OH$,
- $-C(O)NMe-CH_2-C(O)OMe$,
- $-C(O)NMe-CH_2-C(O)OEt$,
- $-C(O)NMe-CH_2-C(O)OiPr$,
- -C(O)NMe-CH₂-C(O)tBu,
- $-C(O)NMe-CH_2-C(O)OH$,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,

- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)₂-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH2S(O)Me,
- -C(O)NHCH2S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH₂CH₂SO₂Et,
- -C(O)N(Me)S(O)Me,
- $-C(O)N(Me)SO_2Me$,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,

- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO₂iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- $-C(O)N(Me)CH_2S(O)Me$,
- $-C(O)N(Me)CH_2S(O)Et$,
- $-C(O)N(Me)CH_2SO_2Me$,
- -C(O)N(Me)CH₂SO₂Et,
- $-C(O)N(Me)CH_2CH_2S(O)Me$,
- -C(O)N(Me)CH₂CH₂S(O)Et,
- -C(O)N(Me)CH₂CH₂SO₂Me,
- -C(O)N(Me)CH₂CH₂SO₂Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH₂NHS(O)Me,
- -CH2NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH2NHSO2Et,
- -CH₂NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH2NH(CH2CO2H),
- $-CH_2N(C(O)Me)(CH_2CO_2H),$

- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- $-CH_2S(O)_2Me$,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- $-CH_2S(O)tBu$,
- -CH₂S(O)₂tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,
- -CH(OH)C(O)NH₂,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt₂,
- $-CH_2CH_2CO_2H$,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{CO}_2\hbox{Me},$
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH2CH2C(O)NMe2,
- -CH₂CH₂-5-tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- -CH₂CH₂S(O)Me,

X16541

- -CH2CH2S(O)2Et,
- -CH₂CH₂S(O) Et,
- -CH2CH2S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- $-CH_2CH_2S(O)tBu$,
- -CH₂CH₂S(O)₂tBu,
- $-CH_2CH_2S(O)NH_2$,
- -CH₂CH₂S(O)NHMe,
- $-CH_2CH_2S(O)NMe_2,\\$
- $-CH_2CH_2S(O)_2NH_2$,
- $-CH_2CH_2S(O)_2NHMe$
- $-CH_2CH_2S(O)_2NMe_2$,
- $-CH_2CH_2CH_2S(O)Me,\\$
- $-CH_2CH_2CH_2S(O)Et$,
- $-CH_2CH_2CH_2S(O)_2Me$, or
- - $CH_2CH_2CH_2S(O)_2Et$.

10. (currently amended) The A compound according to claim 1 represented by formulae (C1) to (C22) below or a pharmaceutically acceptable salt or ester prodrug derivative thereof:

C1)

X16541

-----C3)

-----C4)

C7)

C8)

C9)

C10)

C11)

C12)

-----C13)

X16541

-----C14)

C17)

C18)

C19)

C20)

C21)

C22)

11. (currently amended) The compound <u>according to claim 1</u> represented by the structural formula AA or a pharmaceutically acceptable salt or <u>ester prodrug</u> thereof:

12. (currently amended) A compound according to claim 1 or a pharmaceutically acceptable salt or <u>ester prodrug</u> thereof wherein said compound is selected from

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

X16541

13. (currently amended) The <u>ester prodrug</u> derivative of the compound according to claim 1wherein the <u>ester prodrug</u> is a methyl ester; ethyl ester; N,N-diethylglycolamido ester; or morpholinylethyl ester.

- 14. (previously presented) The salt derivative of the compound according to claim 1 wherein the salt is sodium or potassium.
- 15. (previously presented) A pharmaceutical formulation comprising the compound according to claim 1 together with a pharmaceutically acceptable carrier or diluent.
- 16. (currently amended) A formulation <u>according to claim 15</u> for treating osteoporosis comprising:

Ingredient (A1): the vitamin D receptor modulator according to claim 1;

Ingredient (B1):

Serial No.: «Application Number»

X16541

one or more co-agents selected from the group consisting of:

- a. estrogens,
- b. androgens,
- calcium supplements, c.
- d. vitamin D metabolites.
- e. thiazide diuretics.
- f. calcitonin,
- bisphosphonates, g.
- h. SERMS, and
- i. fluorides; and

Ingredient (C1): optionally, a pharmaceutically acceptable carrier or diluent.

17. (Original) The formulation of claim 16 wherein the weight ratio of (A1) to (B1) is from 10:1 to 1:1000.

18-19. (canceled)

20. (currently amended) A method of treating a mammal to prevent or alleviate the pathological effects of Acne, Actinic keratosis, Alopecia, Alzheimer's disease, Benign prostatic hyperplasia, Bladder cancer, Bone maintenance in zero gravity, Bone fracture healing, Breast cancer, Chemoprovention of Cancer, Crohn's disease, Colon cancer, Type I diabetes, Hostgraft rejection, Hypercalcemia, Type II diabetes, Leukemia, Multiple sclerosis, Myelodysplastic syndrome, Insufficient sebum secretion, Osteomalacia, Osteoporosis, Insufficient dermal firmness, Insufficient dermal hydration, Psoriatic arthritis, Prostate cancer, Psoriasis, Renal osteodystrophy, Rheumatoid arthritis, Scleroderma, Skin cancer, Systemic lupus erythematosus, Skin cell damage from, Mustard vesicants, Ulcerative colitis, Vitiligo, or Wrinkles; wherein the method comprises administering a pharmaceutically effective amount of at least one compound according to claim 1 or a pharmaceutically acceptable salt thereof.

- 21. (Original) The method of claim 20 for the treatment of psoriasis.
- 22. (Original) The method of claim 20 for the treatment of osteoporosis.

Serial No.: «Application_Number» X16541

Docket

No.:

23-35. (canceled)