Treadmill Customer Profile

Project Objective

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts. For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.

Product Portfolio:

- The KP281 is an entry-level treadmill that sells for \$1,500;
- The KP481 is for mid-level runners and sells for \$1,750;
- The KP781 treadmill is having advanced features and it sells for \$2,500.

Table of Contents

- Data Exploration and Processing
- Statistical Summary
- Non-Graphical Analysis
- Graphical Analysis

KP281

20

- Marginal & Conditional Probabilities
- Actionable Insights & Recommendations

Data Exploration and Processing

```
import pandas as pd
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         sns.set(color_codes=True)
         import scipy.stats as stats
         import warnings
         warnings.filterwarnings("ignore")
         import os
In [2]: # Importing data
         os.listdir(os.getcwd())
Out[2]: ['.ipynb_checkpoints',
          'aerofit_treadmill_data.csv',
          'Overview of Python Writeup.png',
          'Treadmill Purchase Analysis.ipynb',
          'Treadmill Purchase Analysis.pdf']
         df = pd.read_csv('aerofit_treadmill_data.csv')
         # Get overview of dataset
         df.head()
Out[3]:
           Product Age Gender Education
                                           MaritalStatus Usage Fitness
                                                                      Income Miles
             KP281
                     18
                           Male
                                                  Single
                                                                        29562
                                                                                112
             KP281
                     19
                           Male
                                       15
                                                  Single
                                                                        31836
                                                                                 75
         2
             KP281
                      19
                                       14
                                               Partnered
                                                                        30699
                         Female
             KP281
                     19
                           Male
                                        12
                                                  Single
                                                                        32973
```

35247

47

Partnered

13

```
In [4]: # Shape of dataframe
         df.shape
Out[4]: (180, 9)
In [5]: # Identify name of all columns
         df.columns
dtype='object')
In [6]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 180 entries, 0 to 179
        Data columns (total 9 columns):
         # Column Non-Null Count Dtype
                           180 non-null obje
         ---
             -----
         0 Product1 Age2 Gender
                          180 non-null object
180 non-null int64
         2 Gender 180 non-null object
3 Education 180 non-null int64
4 MaritalStatus 180 non-null object
         5 Usage 180 non-null int64
6 Fitness 180 non-null int64
7 Income 180 non-null int64
8 Miles 180 non-null int64
        dtypes: int64(6), object(3)
        memory usage: 12.8+ KB
In [7]: # Convert columns with object data type
         df['Product'] = df['Product'].astype('category')
         df['Gender'] = df['Gender'].astype('category')
df['MaritalStatus'] = df['MaritalStatus'].astype('category')
In [8]: df.dtypes
        Product category
Out[8]:
        Age
                           int64
        Gender
                        category
        Education
                           int64
        MaritalStatus category
        Usage
                           int64
        Fitness
                            int64
        Income
                            int64
        Miles
                             int64
        dtype: object
In [9]: df.skew()
                     0.982161
        Age
Out[9]:
                    0.622294
        Education
                     0.739494
        Usage
        Fitness
                    0.454800
        Income
                     1.291785
        Miles
                     1.724497
        dtype: float64
        Statistical Summary
```

```
In [10]: df.describe(include='all')
```

Out[10]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.000000	180.000000
	unique	3	NaN	2	NaN	2	NaN	NaN	NaN	NaN
	top	KP281	NaN	Male	NaN	Partnered	NaN	NaN	NaN	NaN
	freq	80	NaN	104	NaN	107	NaN	NaN	NaN	NaN
	mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.577778	103.194444
	std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.684226	51.863605
	min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.000000	21.000000
	25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.750000	66.000000
	50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.500000	94.000000
	75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.000000	114.750000
	max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.000000	360.000000

- there are no missing values in the data
- there are 3 unique products
- KP281 is the most frequent product
- min age is 18, max age is 50, and average age is 28.79
- most of the people have at most 16 years of education
- majority of the data is from male

```
In [11]: # Check for missing values
         df.isnull().sum()
         Product
Out[11]:
                         0
         Gender
                         0
         Education
                        0
                       0
         MaritalStatus
         Usage
                         0
         Fitness
         Income
                         0
         Miles
         dtype: int64
In [12]: # Check for duplicates in dataset
         df.duplicated().sum()
Out[12]:
```

Non-Graphical Analysis

Value Counts

```
In [13]: df['Product'].value_counts()
         KP281
                  80
Out[13]:
         KP481
                  60
         KP781
                  40
         Name: Product, dtype: int64
In [14]: df['Gender'].value_counts()
         Male
                   104
Out[14]:
         Female
                   76
         Name: Gender, dtype: int64
In [15]: df['MaritalStatus'].value_counts()
         Partnered
                      107
Out[15]:
         Single
                       73
         Name: MaritalStatus, dtype: int64
```

Unique Attributes

```
In [16]: df.nunique()
                            3
         Product
Out[16]:
                           32
         Age
         Gender
                            2
         Education
                            8
         MaritalStatus
                         2
         Usage
                            6
         Fitness
         Income
                           62
         Miles
                           37
         dtype: int64
In [17]: df['Product'].unique()
         ['KP281', 'KP481', 'KP781']
Out[17]:
         Categories (3, object): ['KP281', 'KP481', 'KP781']
In [18]: df['Age'].unique()
Out[18]: array([18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
                 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 50, 45, 48, 42],
                dtype=int64)
In [19]: df['Education'].unique()
         array([14, 15, 12, 13, 16, 18, 20, 21], dtype=int64)
Out[19]:
In [20]: df['MaritalStatus'].unique()
         ['Single', 'Partnered']
Out[20]:
         Categories (2, object): ['Partnered', 'Single']
In [21]: df['Usage'].unique()
Out[21]: array([3, 2, 4, 5, 6, 7], dtype=int64)
In [22]: df['Fitness'].unique()
         array([4, 3, 2, 1, 5], dtype=int64)
Out[22]:
In [23]: df['Income'].unique()
         array([ 29562, 31836, 30699, 32973, 35247, 37521, 36384,
                                                                            38658.
                  40932, 34110, 39795, 42069, 44343, 45480, 46617, 48891, 53439, 43206, 52302, 51165, 50028, 54576, 68220, 55713,
                  60261, 67083, 56850, 59124, 61398, 57987,
                                                                    64809,
                  65220, 62535, 48658, 54781, 48556, 58516, 53536,
                                                                            61006,
                  57271, 52291, 49801, 62251, 64741, 70966, 75946, 74701, 69721, 83416, 88396, 90886, 92131, 77191, 52290, 85906,
                 103336, 99601, 89641, 95866, 104581, 95508], dtype=int64)
In [24]: df['Miles'].unique()
Out[24]: array([112, 75, 66, 85, 47, 141, 103, 94, 113, 38, 188, 56, 132,
                 169, 64, 53, 106, 95, 212, 42, 127, 74, 170, 21, 120, 200,
                 140, 100, 80, 160, 180, 240, 150, 300, 280, 260, 360], dtype=int64)
```

Graphical Analysis

Univariate Analysis - Numerical Variables

Distance Plot

```
In [25]: fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12,10))
fig.subplots_adjust(top=1.2)

sns.distplot(df['Age'], kde=True, ax=axis[0,0])
sns.distplot(df['Education'], kde=True, ax=axis[0,1])
sns.distplot(df['Usage'], kde=True, ax=axis[1,0])
sns.distplot(df['Fitness'], kde=True, ax=axis[1,1])
sns.distplot(df['Income'], kde=True, ax=axis[2,0])
sns.distplot(df['Miles'], kde=True, ax=axis[2,1])
plt.show()
```


- Income and Miles are skewed to the right suggesting that they outliers
- most customers has Fitness level 3
- most customer has Income within the range of \$45,000 \$55,000

Count Plot

```
In [26]: fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(22,12))
fig.subplots_adjust(top=1.2)

sns.countplot(data=df, x='Age', ax=axis[0,0])
sns.countplot(data=df, x='Education', ax=axis[0,1])
sns.countplot(data=df, x='Usage', ax=axis[1,0])
sns.countplot(data=df, x='Fitness', ax=axis[1,1])
sns.countplot(data=df, x='Income', ax=axis[2,0])
sns.countplot(data=df, x='Miles', ax=axis[2,1])
plt.show()
```


• people of age 25 are more inclined to buy treadmills compared to older people

Box Plot

```
In [27]: fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12,10))
fig.subplots_adjust(top=1.2)

sns.boxplot(data=df, x='Age', ax=axis[0,0])
sns.boxplot(data=df, x='Education', ax=axis[0,1])
sns.boxplot(data=df, x='Usage', ax=axis[1,0])
sns.boxplot(data=df, x='Fitness', ax=axis[1,1])
sns.boxplot(data=df, x='Income', ax=axis[2,0])
sns.boxplot(data=df, x='Miles', ax=axis[2,1])
plt.show()
```


• Age , Education , Usage , and Fitness have very few outliers

Univariate Analysis - Categorical Variables

Count Plot

```
In [28]: fig, axis = plt.subplots(nrows=1, ncols=3, figsize=(20,6))
sns.countplot(data=df, x='Product', ax=axis[0])
sns.countplot(data=df, x='Gender', ax=axis[1])
sns.countplot(data=df, x='MaritalStatus', ax=axis[2])
plt.show()
```


- most popular treadmill is the KP281
- most of the customers are Male
- most customers that purchase treadmills are Partnered

Bivariate Analysis

Checking if features have any effect on product being purchased.

```
In [29]: fig, axis = plt.subplots(nrows = 1, ncols = 3, figsize=(35,10))
         sns.countplot(data = df, x = 'Product', hue = 'Gender', ax = axis[0])
         sns.countplot(data = df, x = 'Product', hue = 'MaritalStatus', ax = axis[1])
         sns.countplot(data = df, x = 'Age', hue = 'Product', ax = axis[2])
         plt.show()
```

Observations

- Equal number of males and females have purchased the KP281 which is the most desirable
- Most of the purchases were from partnered customers
- Customers of the age 25 are more likely to purchase the KP481

```
attributes = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']
sns.set(color_codes = True)
In [30]:
          fig,axis = plt.subplots(nrows = 2, ncols = 3, figsize = (18,12))
          fig.subplots_adjust(top = 1.2)
          count = 0
          for i in range(2):
               for j in range(3):
                   sns.boxplot(data = df, x = 'Product', y = attributes[count], ax = axis[i,j])
                   count += 1
```


Product vs Age

- KP281 and KP481 share the same customer's median Age .
- Customers between age 25 30 are likely to purchase the KP781.

Product vs Education

- Customers that has over 16 years of education are more likely to purchase KP781.
- Customers with less than 16 years of education have equal chance of purchasing KP281 or KP481 .

Product vs Usage

• Customers who purchased KP781 are likely to use it more than 4 times a week.

Product vs Fitness

• Customers with high fitness level (fitness > 3) have a higher chance of purchasing the KP781.

Product vs Income

• Customers with higher income (income > 60,000) are more likely to purchase the KP781.

Product vs Miles

• Customers that walk/run for more than 120 miles per week are likelier to buy the KP781 .

Correlation Analysis

In [31]:	df.corr()								
Out[31]:		Age	Education	Usage	Fitness	Income	Miles		
	Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618		
	Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284		
	Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130		
	Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702		
	Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473		
	Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000		

Heatmaps

```
In [32]: fig, ax = plt.subplots(figsize=(10,10))
    sns.set(color_codes=True)
    sns.heatmap(df.corr(), ax=ax, annot=True, fmt='0.2f')
    plt.show()
```


Observation

- (Miles & Usage) and (Miles & Fitness) attributes are highly correlated which means fit customers tend to use more treadmills.
- Income and Education shows a strong correlation. Customers with high income and very educated prefer the KP781 treadmill.

Marginal & Conditional Probabilities

What percent of customers have purchased KP281, KP481, or KP781?

```
In [36]: df1 = df[['Product', 'Gender', 'MaritalStatus']].melt()
  (df1.groupby(['variable', 'value'])[['value']].count()/len(df)).mul(100).round(3).astype(str) + '%'
```

Out[36]:

		value
variable	value	
Gender	Female	42.222%
	Male	57.778%
MaritalStatus	Partnered	59.444%
	Single	40.556%
Product	KP281	44.444%
	KP481	33.333%
Gender MaritalStatus	Female Male Partnered Single KP281	57.778% 59.444% 40.556% 44.444%

Obervations

- #### Product
 - 44.44% of the customers have purchased KP281 product.
 - 33.33% of the customers have purchased KP481 product.
 - 22.22% of the customers have purchased KP781 product.
- #### Gender
 - 57.78% of the customers are Male.

KP781 22.222%

- #### MaritalStatus
 - 59.44% of the customers are Partnered .

What is the probability of a customer based on Gender (Male or Female) buying a certain treadmill Product?

```
In [55]:

def p_prod_given_gender(gender, print_marginal=False):
    if gender is not "Female" and gender is not "Male":
        return "Invalid gender value"

df1 = pd.crosstab(index=df['Gender'], columns=df['Product'])
    p_281 = df1['KP281'][gender] / df1.loc[gender].sum()
    p_481 = df1['KP481'][gender] / df1.loc[gender].sum()
    p_781 = df1['KP781'][gender] / df1.loc[gender].sum()

if print_marginal:
    print(f"P(Male): {df1.loc['Male'].sum()/len(df):.2f}")
    print(f"P(Female): {df1.loc['Female'].sum()/len(df):.2f}\n")

print(f"P(KP281/{gender})): {p_281:.2f}")
    print(f"P(KP481/{gender})): {p_281:.2f}")
    print(f"P(KP781/{gender})): {p_781:.2f}\n")

p_prod_given_gender('Male', True)
    p_prod_given_gender('Female')
```

```
P(Male): 0.58
P(Female): 0.42
P(KP281/Male): 0.38
P(KP481/Male): 0.30
P(KP781/Male): 0.32
P(KP281/Female): 0.53
P(KP481/Female): 0.38
P(KP781/Female): 0.09
```

What is the probability of a customer based on MaritalStatus (Single or Partnered) buying a certain treadmill Product ?

```
In [58]:
          def p_prod_given_mstatus(status, print_marginal=False):
              if status is not "Single" and status is not "Partnered":
                  return "Invalid marital status value"
              df1 = pd.crosstab(index=df['MaritalStatus'], columns=df['Product'])
              p_281 = df1['KP281'][status] / df1.loc[status].sum()
p_481 = df1['KP481'][status] / df1.loc[status].sum()
              p_781 = df1['KP781'][status] / df1.loc[status].sum()
              if print_marginal:
                  print(f"P(Single): {df1.loc['Single'].sum()/len(df):.2f}")
                  print(f"P(Partnered): {df1.loc['Partnered'].sum()/len(df):.2f}\n")
              print(f"P(KP281/{status}): {p_281:.2f}")
              print(f"P(KP481/{status}): {p_481:.2f}")
              print(f"P(KP781/{status}): {p_781:.2f}\n")
          p_prod_given_mstatus('Single', True)
          p_prod_given_mstatus('Partnered')
          P(Single): 0.41
          P(Partnered): 0.59
          P(KP281/Single): 0.44
          P(KP481/Single): 0.33
          P(KP781/Single): 0.23
          P(KP281/Partnered): 0.45
          P(KP481/Partnered): 0.34
          P(KP781/Partnered): 0.21
```

Product - Gender

```
product gender = pd.crosstab(index=df['Product'], columns=df['Gender'], margins=True)
In [62]:
          product_gender
          Gender Female Male
Out[62]:
          Product
           KP281
                                80
                      40
                            40
           KP481
                      29
                            31
                                60
                       7
           KP781
                            33
                                40
              ΑII
                      76
                           104 180
```

```
In [63]: # Percentage of a Male customer purchasing a treadmill
    prob = round((product_gender['Male']['All'] / product_gender['All']['All']),2)
    pct = round(prob*100,2)
    pct

Out[63]: 58.0

In [64]: # Percentage of a Female customer purchasing KP781 treadmill
    prob = round((product_gender['Female']['KP781'] / product_gender['All']['All']),2)
    pct = round(prob*100,2)
    pct

Out[64]: 4.0
```

```
In [66]: # Percentage of a customer being a Female given that Product is KP281
prob = round((product_gender['Female']['KP281'] / product_gender['All']['KP281']),2)
pct = round(prob*100,2)
pct
Out[66]: 50.0
```

- Female customer prefer to buy KP281 & KP481
- 50% of female tend to purchase treadmill model KP281

Product - Age

```
In [69]: df2 = df.copy()
In [70]:
          # Extracting 2 new features from Age:
          # "AgeCategory" - Teens, 20s, 30s, and Above 40s
# "AgeGroup" - 14-20, 20-30, 30-40 & 40-60
          bins = [14,20,30,40,60]
          labels = ["Teens", "20s", "30s", "Above 40s"]
          df2['AgeGroup'] = pd.cut(df2['Age'], bins)
          df2['AgeCategory'] = pd.cut(df2['Age'], bins, labels=labels)
In [71]: df2.tail()
Out[71]:
               Product Age
                             Gender
                                      Education MaritalStatus Usage
                                                                     Fitness Income
                                                                                     Miles AgeGroup AgeCategory
          175
                 KP781
                          40
                                Male
                                            21
                                                       Single
                                                                               83416
                                                                                               (30, 40]
                 KP781
                          42
                                Male
                                             18
                                                       Single
                                                                          4
                                                                               89641
                                                                                       200
                                                                                               (40, 60]
                                                                                                          Above 40s
          177
                 KP781
                                                                               90886
                          45
                                Male
                                             16
                                                       Single
                                                                          5
                                                                                        160
                                                                                               (40, 60]
                                                                                                          Above 40s
          178
                 KP781
                          47
                                             18
                                                    Partnered
                                                                              104581
                                                                                        120
                                                                                               (40, 60]
                                                                                                          Above 40s
          179
                 KP781
                          48
                                             18
                                                                               95508
                                                                                        180
                                                                                               (40, 60]
                                                                                                          Above 40s
                                Male
                                                    Partnered
          product_age = pd.crosstab(index=df2['Product'], columns=df2['AgeCategory'], margins=True)
In [73]:
          product_age
Out[73]: AgeCategory Teens 20s 30s Above 40s All
               Product
                KP281
                            6
                               49
                                    19
                                                6
                                                    80
                KP481
                                    23
                                                    60
                               31
                KP781
                           0
                                     6
                                                    40
                               30
                                                4
                    ΑII
                           10 110
                                                12 180
                                    48
          # Percentage of customers with Age between 20s and 30s among all customers
In [96]:
          prob = round((product_age['20s']['All'] / product_age['All']['All']),2)
          pct = round(prob*100,2)
          pct
```

Observations:

61.0

Out[96]:

- Teens don't prefer to buy KP781
- 61% of customers are between 20 and 30 years old

Product - Income

```
labels_income = ["Low Income", "Lower-Middle Income", "Upper-Middle Income", "High Income"]
          df3['IncomeCategory'] = pd.cut(df3['Income'], bins=bins_income, labels=labels_income)
In [77]:
          df3.head()
                                                                                      AgeGroup AgeCategory
Out[77]:
             Product Age
                          Gender
                                  Education
                                            MaritalStatus Usage
                                                                Fitness
                                                                        Income
                                                                                Miles
                                                                                                             IncomeCategory
          0
              KP281
                                                              3
                                                                         29562
                                                                                  112
                       18
                                         14
                                                   Single
                                                                     4
                                                                                         (14, 20]
                             Male
                                                                                                        Teens
                                                                                                                  Low Income
              KP281
                       19
                                         15
                                                              2
                                                                     3
                                                                         31836
                                                                                   75
          1
                             Male
                                                   Single
                                                                                         (14, 20]
                                                                                                        Teens
                                                                                                                  Low Income
          2
              KP281
                       19
                                         14
                                                              4
                                                                     3
                                                                          30699
                                                                                   66
                                                                                         (14, 20]
                           Female
                                                Partnered
                                                                                                        Teens
                                                                                                                  Low Income
              KP281
                       19
                                         12
                                                                          32973
          3
                                                              3
                                                                     3
                                                                                   85
                                                                                         (14, 201)
                             Male
                                                   Single
                                                                                                        Teens
                                                                                                                  Low Income
                                                                                                                 Lower-Middle
               KP281
                       20
                             Male
                                         13
                                                Partnered
                                                                          35247
                                                                                   47
                                                                                         (14, 20]
                                                                                                        Teens
                                                                                                                      Income
          product_income = pd.crosstab(index=df3['Product'], columns=df3['IncomeCategory'], margins=True)
In [79]:
          product_income
Out [79]: IncomeCategory Low Income Lower-Middle Income Upper-Middle Income High Income
                 Product
                   KP281
                                   8
                                                      66
                                                                           6
                                                                                        0
                                                                                            80
                   KP481
                                   6
                                                      47
                                                                           7
                                                                                        0
                                                                                            60
                   KP781
                                   0
                                                      11
                                                                           12
                                                                                       17
                                                                                            40
                      ΑII
                                  14
                                                      124
                                                                           25
                                                                                       17
                                                                                           180
In [81]: # Percentage of a low-income customer purchasing a treadmill
          prob = round((product_income['Low Income']['All'] / product_income['All']['All']),2)
          pct = round(prob*100,2)
          8.0
Out[81]:
          # Percentage of a high-income customer purchasing KP781 treadmill
In [83]:
          prob = round((product_income['High Income']['KP781'] / product_income['All']['All']),2)
          pct = round(prob*100,2)
          pct
          9.0
Out[83]:
In [84]:
          # Percentage of a high-income customer buying treadmill given that Product is KP781
          prob = round((product_income['High Income']['All'] / product_income['All']['KP781']),2)
          pct = round(prob*100,2)
          pct
          42.0
Out[84]:
          Product - Fitness
          product_fitness = pd.crosstab(index=df3['Product'], columns=df3['Fitness'], margins=True)
In [85]:
          product_fitness
Out[85]:
           Fitness 1
                      2
                         3
                                 5
                                     ΑII
          Product
           KP281 1 14 54
                             9
                                 2
                                     80
           KP481 1 12 39
                              8
                                 0
                                     60
           KP781 0
                      0
                          4
                             7 29
                                     40
              All 2 26 97 24 31 180
          # Percentage of a customer having fitness level 5
In [87]:
          prob = round((product_fitness[5]['All'] / product_fitness['All']['All']),2)
          pct = round(prob*100,2)
          pct
```

```
Out[87]:
         # Percentage of a customer with fitness level 5 purchasing KP781 treadmill
In [88]:
          prob = round((product_fitness[5]['KP781'] / product_fitness['All']['All']),2)
          pct = round(prob*100,2)
         16.0
Out[88]:
In [89]:
         # Percentage of a customer with fitness level 5 buying KP781 treadmill given that Product is KP781
          prob = round((product_fitness[5]['KP781'] / product_fitness['All']['KP781']),2)
          pct = round(prob*100,2)
          pct
         72.0
Out[89]:
         Product - Marital Status
In [90]:
         product_marital = pd.crosstab(index=df3['Product'], columns=df3['MaritalStatus'], margins=True)
          product_marital
Out[90]: MaritalStatus Partnered Single All
              Product
               KP281
                            48
                                   32
                                       80
```

```
In [92]: # Percentage of customers who are partnered using treadmills
prob = round((product_marital['Partnered']['All'] / product_marital['All']['All']),2)
pct = round(prob*100,2)
pct
```

Out[92]: 59.0

Actionable Insights & Recommendations

Actionable Insights:

KP481

KP781

AII

36

23

107

24 60

17 40

73 180

- Model KP281 is the best-selling product. 44.0% of all treadmill sales go to model KP281.
- The majority of treadmill customers fall within the \$ 45,000 \\$ 80,000 income bracket.
 - 83% of treadmills are bought by individuals with incomes between \$ 35,000 and \\$ 85,000
 - There are only 8% of customers with incomes below \$ 35000 who buy treadmills.
- 88% of treadmills are purchased by customers aged 20 to 40.
- Miles and Fitness & Miles and Usage are highly correlated, which means if a customer's fitness level is high they use more treadmills.
- KP781 is the only model purchased by a customer who has more than 20 years of education and an income of over \$ 85,000.
- With Fitness level 4 and 5, the customers tend to use high-end treadmills and the average number of miles is above 150 per week

Recommendations:

- KP281 & KP481 are popular with customer income of \$ 45,000 \\$ 60,000 and can be offered by these companies as affordable models.
- KP781 should be marketed as a Premium Model and marketing it to high income groups and educational over 20
 years market segments could result in more sales.
- The KP781 is a premium model, so it is ideally suited for sporty people who have a high average weekly mileage and can be afforded by the high income customers.
- Aerofit should conduct market research to determine if it can attract customers with income under \$ 35,000 to expand its customer base

```
In [97]: df3.to_excel('treadmill_customer_data.xlsx')
```