Analisi Matematica 1 Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

Capitolo 1	Derivate	Pagina 4
1.1	Classificazione dei punti di non derivabilità	4
1.2	Teorema di de l'Hopital	6

Capitolo 1

Derivate

Definizione 1.0.1: Derivate unilatere

Sia I intervallo , $f: I \to \mathbb{R}$ e x_0 un punto interno ad I.

1. Se esiste il limite

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} \in \overline{\mathbb{R}}$$

(cioè, il limite sinistro del rapporto incrementale), esso viene detto derivata sinistra di f in x_0 e si indica con $f'_{-}(x_0)$

2. Analogamente per la derivata destra

Teorema 1.0.1 Legame fra la derivata e le derivate unilatere

Siano $f: I \to \mathbb{R} \in \mathfrak{X}'$ punto interno ad I. Allora

$$\exists f'(x_0) \in \overline{\mathbb{R}}$$
 se e solo se

$$\exists f'_+(x_0) \in \overline{\mathbb{R}}, \ \exists f'_-(x_0) \in \overline{\mathbb{R}} \quad e \quad f'(x_0)_- = f'(x_0)_+$$

Dimostrazione: Inserire dimostrazione

1.1 Classificazione dei punti di non derivabilità

Siano I intervallo , $f: I \to \mathbb{R}$ e x_0 un punto interno ad I tale che

- f è continua in x_0
- f non è derivabile in x_0

Allora si presentano questi casi

- 1. Punto angoloso;
- 2. Punto a tangente verticale;
- 3. Cuspide

Definizione 1.1.1: Punto angoloso

Diciamo che x_0 è un **punto angoloso** se

$$\exists f'_{-}(x_0), \ f'_{+}(x_0) \in \overline{\mathbb{R}}, \quad (f'_{-}(x_0) \neq f'_{+}(x_0))$$

e almeno una delle due è finita

Figura 1.1:

Osservazione: Se x_0 è un punto angoloso $\nexists f'(x_0)$ perché $f'_+(x_0) \neq f'_-(x_0)$

Definizione 1.1.2: Punto di flesso a tangente verticale

Diciamo che x_0 è un punto di flesso a tangente verticale se

$$\exists f'(x_0) \in \{-\infty, +\infty\}$$

Definizione 1.1.3: Cuspide

Diciamo che x_0 è un **punto di cuspide** se

$$\exists f'_{-}(x_0), f'_{+}(x_0) \in \{-\infty, +\infty\}, \quad f'_{-}(x_0) \neq f'_{+}(x_0)$$

Osservazione: Dei tre tipi di punti di non derivabilità

 $f'(x_0)$ esiste se x_0 è punto di flesso a tangente verticale non esiste se x_0 è punto di cuspide o punto angoloso

Osservazione: In tutti i casi classificati una, fra derivata destra e derivata sinistra della funzione del punto, esiste (finita o infinita). Nel prossimo esempio, f è continua in x_0 , ma

$$\exists f'_{-}(x_0), f'_{+}(x_0)$$

Il caso in cui ho continuità e non esiste almeno una fra le due non viene classificato

Esempio 1.1.1

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

f è continua in $x_0 = 0$:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

N.B.

 $|x\sin\frac{1}{x}| = |x||\sin\frac{1}{x}| \le |x| \quad \forall x \in \mathbb{R} \implies graf(f) \ \text{è compreso fra } y = x \ \text{e } y = -x$

Figura 1.2: Non esiste né la derivata destra né quella sinistra

Diamo uno strumento per lo studio delle forme indeterminate

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$

o riconducibili ad esse.

1.2 Teorema di de l'Hopital

Teorema 1.2.1 Il teorema di de l'Hopital per le f.i. $\frac{0}{0}$

Siano $f,g:(a,b)\to\mathbb{R}$ funzioni continue su (a,b) e sia $x_0\in(a,b)$ tale che $f(x_0)=g(x_0)=0$. Supponiamo

- 1. f, g derivabili in $(a, b) \setminus \{x_0\}$ 2. $g'(x) \neq 0 \quad \forall x \in (a, b) \setminus \{x_0\}$; 3. ESISTA il limite $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = L \in \overline{\mathbb{R}}$

Allora esiste anche il limite

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = L \in \overline{\mathbb{R}}$$

Commentiamo l'ipotesi:

$$\begin{cases} f(x_0) = g(x_0) = 0\\ f, g \text{ continue in } x_0 \end{cases}$$

Quindi $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ è una forma indeterminata $\frac{0}{0}$.

Ricordiamo che f, g derivabili in $(a,b)\setminus\{x_0\}$.

Questo è in vista del fatto che considero $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$

$$g'(x) \neq 0 \quad \forall (a,b) \setminus \{x_0\}$$

L'ipotesi misteriosa è $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$. Se valgono tutte le ipotesi e esiste il limite allora

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

la validità dell'uguaglianza è condizionata al fatto che il secondo limite esista.

Teorema 1.2.2 Il teorema di de l'Hopital per le f.i. $\frac{\infty}{\infty}$

Siano $f,g:\,(a,b)\to\mathbb{R}$ funzioni continue su (a,b) e sia $x_0\in(a,b)$. Supponiamo inoltre che:

- 1. f, g derivabili in $(a, b) \setminus \{x_0\}$
- 2. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ 3. $g'(x) \neq 0 \quad \forall x \in (a, b) \setminus \{x_0\};$
- 4. ESISTA il limite $\lim_{x\to x_0}\frac{f'(x)}{g'(x)}=L\in\overline{\mathbb{R}}$

Allora esiste anche il limite

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = L \in \overline{\mathbb{R}}$$

Osservazione: Anche per le f.i. $\frac{\infty}{\infty}$, l'uguaglianza

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

è condizionata al fatto che il secondo limite esista.

Esempio 1.2.1 (Esempio di applicazione)

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{(1 - \cos(x))'}{(x^2)'} = \lim_{x \to 0} \frac{\sin(x)}{2x} = \frac{1}{2}$$

Esempio 1.2.2

$$\lim_{x\to 0} x \log(|x|)$$

La riformulo come f.i. quoziente, ho due possibilità

- $\lim_{x\to 0} x \log(|x|) = \lim_{x\to 0} \frac{\log(|x|)}{\frac{1}{x}}$
- $\lim_{x\to 0} x \log(|x|) = \lim_{x\to 0} \frac{x}{\frac{1}{x}}$

Conviene utilizzare la prima riscrittura per l'applicazione di de l'Hopital.

$$\lim_{x \to 0} x \log(|x|) = \lim_{x \to 0} \frac{\log(|x|)}{\frac{1}{x}} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\frac{|x|}{x} \frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0} \frac{1}{x} (-x^2) = 0$$

Esempio 1.2.3

$$\lim_{x \to 0^+} x^x = 1$$

La forma esponenziale si riconduce alla forma del prodotto

$$x^x = \exp(\log(x^x)) = \exp(x \log(x)) \to 1$$

$$\lim_{x \to 0^+} x \log(x) = 0$$

A volte è necessario applicare il teorema di de l'Hopital più volte

$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right) = \lim_{x \to 0^+} \frac{\sin(x) - x}{x \sin(x)} = \lim_{x \to 0^+} \frac{\cos(x) - 1}{\sin(x) + x \cos(x)}$$

Non siamo arrivati ad una conclusione quindi dobbiamo ripetere il procedimento

$$\lim_{x \to 0^+} \frac{-\sin(x)}{\cos(x) + \cos(x) - x\sin(x)} = \lim_{x \to 0^+} \frac{-\sin(x)}{2\cos(x) - x\sin(x)} = 0$$

A posteriori vedo che tutte le uguaglianze condizionate sono vere.

Esempio 1.2.4

$$\lim_{x \to +\infty} x^n e^{-x} = \lim_{x \to +\infty} \frac{x^n}{e^x}$$

$$\lim_{x\to +\infty}\frac{x^n}{e^x}=\lim_{x\to +\infty}\frac{nx^{n-1}}{e^x}$$

è una forma indeterminata se $n \geq 2$

$$= \lim_{x \to +\infty} \frac{n(n-1)x^{n-2}}{e^x}$$

è una forma indeterminata se $n \geq 3$. Applico il teorema di de l'Hopital n volte

$$\lim_{x \to +\infty} \frac{n!}{e^x} = 0$$

Esempio 1.2.5

$$f(x) = x^2 \sin(\frac{1}{x}), \quad g(x) = \sin(x)$$

Provo ad applicare il teorema di de l'Hopital per

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x})}{\sin(x)} \quad \left[\frac{0}{0}\right]$$

$$= \lim_{x \to 0} \frac{2x \sin(\frac{1}{x}) + x^2 \left(-\frac{1}{x^2}\right) \cos(\frac{1}{x})}{\cos(x)}$$

$$= \lim_{x \to 0} \frac{2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})}{\cos(x)}$$

Siccome $\nexists \lim_{x\to 0} \cos(\frac{1}{x})$ il $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ non esiste. Quindi non posso applicare il teorema di de l'Hopital, non sono autorizzato a scrivere =. L'uguaglianza non vale. Infatti

$$\lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x})}{\sin(x)}$$

esiste.

Teorema 1.2.3 Teorema del limite della derivata (enunciato per le derivate destre)

Sia $f:[a,b)\to\mathbb{R}$ una funzione continua in a e derivabile in (a,b). Se esiste, finito o no, il limite $\lim_{x\to a^+}f'(x)$, allora esiste anche $f'_+(a)$ e si ha che

$$f'_+(a) = \lim_{x \to a^+ f'(x)}$$

"La derivata destra di f in a coincide con il limite destre di f' in a".

Dimostrazione: Considero

$$f'_{+}(a) = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}$$

Quando calcolo questo limite mi trovo in una f.i. $\frac{0}{0}$, infatti f è continua in a per ipotesi $\Longrightarrow f(x) \to f(a)$ per $x \to a^+ \Longrightarrow f(x) - f(a) \to 0$ per $x \to a^+$. Le ipotesi del teorema mi permettono di applicare il teorema di de l'Hopital

$$= \lim_{x \to a^+} \frac{(f(x) - f(a))'}{(x - a)'} = \lim_{x \to a^+} \frac{f'(x)}{1} = \lim_{x \to a^+} f'(x)$$

Per ipotesi, ho richiesto che $\exists \lim_{x\to a^+} f'(x)$. L'uguaglianza non è più condizionata e deduco

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^+} f'(x)$$

⊜

Osservazione: Sotto ipotesi analoghe vale anche il risultato per

$$f'_{-}(b) = \lim_{x \to b^{-}} f'(x)$$

Ma si consiglia negli esercizi di non usare i limiti unilateri di f' al posto delle derivate unilatere.