FYS4130 - Oblig 1

Vetle A. Vikenes (Dated: March 1, 2022)

TASK 1 - BLACK BOX NUMERICAL METHOD

We want to find the isothermal compressibility at constant T and N,

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{TN},\tag{1}$$

with a black box numerical method which gives us values for P and N as function of intput parameters T, V, and μ which we may vary. The derivatives we're able to compute with our numerical method is the partial derivative of either P or N with respect to one of the input parameters, when the other two are held constant. We must therefore rewrite equation (1), such that it only contains such derivatives. To begin, we use the chain rule on the reciprocal of the partial derivative in equation (1)

$$\begin{split} \left(\frac{\partial P}{\partial V}\right)_{T,N} &= \frac{\partial (P,T,N)}{\partial (V,T,N)} = \frac{\partial (P,T,N)}{\partial (V,T,\mu)} \cdot \frac{\partial (V,T,\mu)}{\partial (V,T,N)} \\ &= \frac{\partial (P,N,T)}{\partial (V,\mu,T)} \cdot \frac{\partial (\mu,V,T)}{\partial (N,V,T)} = \frac{\partial (P,N,T)}{\partial (V,\mu,T)} \Big/ \left(\frac{\partial N}{\partial \mu}\right)_{V,T}. \end{split}$$

The last factor is a partial derivative we're able to compute, by computing the change in N as we vary μ only. For the other factor, we expand the jacobian, using its definition

$$\frac{\partial(P,N,T)}{\partial(V,\mu,T)} = \left(\frac{\partial P}{\partial V}\right)_{\mu,T} \left(\frac{\partial N}{\partial \mu}\right)_{V,T} - \left(\frac{\partial P}{\partial \mu}\right)_{V,T} \left(\frac{\partial N}{\partial V}\right)_{\mu,T}. \tag{2}$$

We see that the four partial derivatives in equation (2) are taken with respect to either V, with the other input parameters held constant, or μ with the other input parameters held constant. Measuring the change in P and N with these constraints is thus something our numerical method is capable of, and we have successfully reduced κ_T into multiple partial derivatives we're able to solve. The resulting expression for κ_T becomes

$$\kappa_{T} = -\frac{1}{V} \left[\frac{\partial(P, N, T)}{\partial(V, \mu, T)} \middle/ \left(\frac{\partial N}{\partial \mu} \right)_{V, T} \right]^{-1} = -\frac{1}{V} \left(\frac{\partial N}{\partial \mu} \right)_{V, T} \middle/ \frac{\partial(P, N, T)}{\partial(V, \mu, T)}$$

$$= -\frac{1}{V} \left(\frac{\partial N}{\partial \mu} \right)_{V, T} \left[\left(\frac{\partial P}{\partial V} \right)_{\mu, T} \left(\frac{\partial N}{\partial \mu} \right)_{V, T} - \left(\frac{\partial P}{\partial \mu} \right)_{V, T} \left(\frac{\partial N}{\partial V} \right)_{\mu, T} \right]^{-1}.$$

TASK 2 - PARTIAL DERIVATIVE

We want to rewrite the partial derivative

$$\left(\frac{\partial P}{\partial U}\right)_{G,N}.$$

In this task we will need the standard set of second derivatives given in Swendsen, and we list them here for convenience

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,N} \tag{3}$$

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T N} \tag{4}$$

$$c_P = \frac{T}{N} \left(\frac{\partial S}{\partial T} \right)_{PN} \tag{5}$$

(6)

We begin by applying the chain rule to the Jacobian, which enables us to get a partial derivative containing U and G in the denominator only.

$$\left(\frac{\partial P}{\partial U}\right)_{G,N} = \frac{\partial (P,G,N)}{\partial (U,G,N)} = \frac{\partial (P,G,N)}{\partial (P,T,N)} \cdot \frac{\partial (P,T,N)}{\partial (U,G,N)} = \left(\frac{\partial G}{\partial T}\right)_{P,N} \frac{\partial (P,T,N)}{\partial (U,G,N)} \\
= -S / \frac{\partial (U,G,N)}{\partial (P,T,N)}, \tag{7}$$

where we used the differential form of the Gibbs free energy, $dG = -SdT + VdP + \mu dN$, to solve the first partial derivative of G with respect to T at constant P and N. The second factor was written in terms of the reciprocal such that the thermodynamic potentials in the Jacobian appear in the nominator.

We will now find an expression for $\partial(U, G, N)/\partial(P, T, N)$. To avoid partial derivatives containing U and G simultaneously, we expand the expression by using the definition of Jacobians.

$$\begin{split} \frac{\partial(U,G,N)}{\partial(P,T,N)} &= \left(\frac{\partial U}{\partial P}\right)_{T,N} \left(\frac{\partial G}{\partial T}\right)_{P,N} - \left(\frac{\partial U}{\partial T}\right)_{P,N} \left(\frac{\partial G}{\partial P}\right)_{T,N} \\ &= -S \left(\frac{\partial U}{\partial P}\right)_{T,N} - V \left(\frac{\partial U}{\partial T}\right)_{P,N}, \end{split} \tag{8}$$

where the last equation follow from the definition of dG and the partial derivatives of it. For the partial derivative of U with respect to T at constant P and N, we consider the differential form of fundamental relation in the energy representation, which at constant N becomes

$$dU = TdS - PdV$$

$$\implies \left(\frac{\partial U}{\partial T}\right)_{P,N} = T\left(\frac{\partial S}{\partial T}\right)_{P,N} - P\left(\frac{\partial V}{\partial T}\right)_{P,N}$$

$$= Nc_P - PV\alpha, \tag{9}$$

where we used equations (5) and (3) for the two partial derivatives.

For the partial derivative of U with respect to P with T and N held constant we apply the chain rule

$$\left(\frac{\partial U}{\partial P}\right)_{T,N} = \frac{\partial (U,T,N)}{\partial (P,T,N)} = \frac{\partial (U,T,N)}{\partial (V,T,N)} \cdot \frac{\partial (V,T,N)}{\partial (P,T,N)} = \left(\frac{\partial U}{\partial V}\right)_{T,N} \left(\frac{\partial V}{\partial P}\right)_{T,N} \\
= \left(\frac{\partial U}{\partial V}\right)_{T,N} (-V\kappa_T). \tag{10}$$

Equation (4) was used to rewrite the second partial derivative. For the other partial derivative, we once again use the previously mentioned expression for dU with N held constant

$$\left(\frac{\partial U}{\partial V}\right)_{T,N} = T\left(\frac{\partial S}{\partial V}\right)_{T,N} - P. \tag{11}$$

To proceed with the final partial derivative we will first use a Maxwell relation. We notice that S is differentiated with respect to V at constant T and N, so we can use the differential form of the Helmholtz free energy to derive the Maxwell relation.

$$\begin{split} \mathrm{d}F &= -S\mathrm{d}T - P\mathrm{d}V + \mu\mathrm{d}N \implies -\left(\frac{\partial F}{\partial T}\right)_{V,N} = S \\ \left(\frac{\partial S}{\partial V}\right)_{T,N} &= -\left[\frac{\partial}{\partial V}\left(\frac{\partial F}{\partial T}\right)_{V,N}\right]_{T,N} = -\left[\frac{\partial}{\partial T}\left(\frac{\partial F}{\partial V}\right)_{T,N}\right]_{V,N} = \left(\frac{\partial P}{\partial T}\right)_{V,N}. \end{split}$$

We rewrite the last partial derivative using the chain rule

$$\left(\frac{\partial P}{\partial T}\right)_{V,N} = \frac{\partial(P,V,N)}{\partial(T,V,N)} = \frac{\partial(P,V,N)}{\partial(P,T,N)} \cdot \frac{\partial(P,T,N)}{\partial(T,V,N)} = -\frac{\partial(V,P,N)}{\partial(T,P,N)} \cdot \frac{\partial(P,T,N)}{\partial(V,T,N)} \\
= -\left(\frac{\partial V}{\partial T}\right)_{P,N} / \left(\frac{\partial V}{\partial P}\right)_{T,N} = -V\alpha/(-V\kappa_T) = \frac{\alpha}{\kappa_T}, \tag{12}$$

where in the last step equations (3) and (4) were used to rewrite the nominator and denominator, repsectively. Equation (10) can now be solved, by inserting equation (12) into equation (11)

$$\left(\frac{\partial U}{\partial P}\right)_{T,N} = -V\kappa_T \left(\frac{\partial U}{\partial V}\right)_{T,N} = -V\kappa_T \left(T\frac{\alpha}{\kappa_T} - P\right)$$
$$= -VT\alpha + PV\kappa_T$$

Inserting equation (10) and (9) into equation (8) we get

$$\frac{\partial(U,G,N)}{\partial(P,T,N)} = -S\left(-VT\alpha + PV\kappa_T\right) - V\left(Nc_P - PV\alpha\right) = -V\left[SP\kappa_T + Nc_P - ST\alpha - PV\alpha\right] \tag{13}$$

Finally, inserting equation (13) into equation (7) we arrive at the final expression

$$\left(\frac{\partial P}{\partial U}\right)_{G,N} = -S \left[\frac{\partial (U,G,N)}{\partial (P,T,N)}\right]^{-1} = \frac{S/V}{SP\kappa_T + Nc_P - ST\alpha - PV\alpha} \tag{14}$$

TASK 3