ECON3102-005 Chapter 4: Firm Behavior

Neha Bairoliya

Spring 2014

REVIEW AND INTRODUCTION

• The representative consumer supplies labor and demands consumption goods.

REVIEW AND INTRODUCTION

- The representative consumer supplies labor and demands consumption goods.
- The representative firm demands labor and supplies consumption goods.

 Assume a representative firm which owns capital (plant and equipment), hires labor to produce consumption goods.

- Assume a representative firm which owns capital (plant and equipment), hires labor to produce consumption goods.
- Production Function

$$Y=zF(K,N^d)$$

 Assume a representative firm which owns capital (plant and equipment), hires labor to produce consumption goods.

Production Function

$$Y = zF(K, N^d)$$

• Because this is a one-period model, we treat *K* as a **fixed input**. *In* the *SR*, firms cannot vary their capital input.

 Assume a representative firm which owns capital (plant and equipment), hires labor to produce consumption goods.

Production Function

$$Y = zF(K, N^d)$$

- Because this is a one-period model, we treat *K* as a **fixed input**. *In* the *SR*, firms cannot vary their capital input.
- z is called the total factor productivity, as an increase in z makes both K and N^d more productive.

 Assume a representative firm which owns capital (plant and equipment), hires labor to produce consumption goods.

Production Function

$$Y = zF(K, N^d)$$

- Because this is a one-period model, we treat *K* as a **fixed input**. *In* the *SR*, firms cannot vary their capital input.
- z is called the total factor productivity, as an increase in z makes both K and N^d more productive.
- Y is output of consumption goods.

Marginal Product

Definition

The marginal product of a factor of production is the additional output that can be produced with one additional unit of that factor input, holding constant the quantity of other factor inputs.

Marginal Product

Definition

The marginal product of a factor of production is the additional output that can be produced with one additional unit of that factor input, holding constant the quantity of other factor inputs.

• Fixing the value of capital at arbitrary value K*, we let $MP_N(K, N^d)$ denote the marginal product of labor.

Marginal Product

Definition

The marginal product of a factor of production is the additional output that can be produced with one additional unit of that factor input, holding constant the quantity of other factor inputs.

- Fixing the value of capital at arbitrary value K*, we let $MP_N(K, N^d)$ denote the marginal product of labor.
- Similarly, fixing the value of labor at arbitrary vale N , we let $MP_K(K,N^d)$ denote the marginal product of capital.

THE MARGINAL PRODUCT OF LABOR

Production Function, Fixing the Quantity of Capital and Varying the Quantity of Labor

THE MARGINAL PRODUCT OF CAPITAL

Production Function, Fixing the Quantity of Labor and Varying the Quantity of Capital

• Constant returns to scale: $zF(xK, xN^d) = xzF(K, N^d)$, where x is any positive number.

- Constant returns to scale: $zF(xK, xN^d) = xzF(K, N^d)$, where x is any positive number.
 - Increasing returns to scale: $zF(xK, xN^d) > xzF(K, N^d)$. Big firms are more efficient than small firms.

- Constant returns to scale: $zF(xK, xN^d) = xzF(K, N^d)$, where x is any positive number.
 - Increasing returns to scale: $zF(xK, xN^d) > xzF(K, N^d)$. Big firms are more efficient than small firms.
 - Decreasing returns to scale: $zF(xK, xN^d) < xzF(K, N^d)$. Small firms are more efficient than big firms.

- Constant returns to scale: $zF(xK, xN^d) = xzF(K, N^d)$, where x is any positive number.
 - Increasing returns to scale: $zF(xK, xN^d) > xzF(K, N^d)$. Big firms are more efficient than small firms.
 - Decreasing returns to scale: $zF(xK, xN^d) < xzF(K, N^d)$. Small firms are more efficient than big firms.
 - Constant returns to scale means that a large firm replicates how a small firm produces many times over.

- Constant returns to scale: $zF(xK, xN^d) = xzF(K, N^d)$, where x is any positive number.
 - Increasing returns to scale: $zF(xK, xN^d) > xzF(K, N^d)$. Big firms are more efficient than small firms.
 - Decreasing returns to scale: $zF(xK, xN^d) < xzF(K, N^d)$. Small firms are more efficient than big firms.
 - Constant returns to scale means that a large firm replicates how a small firm produces many times over.
 - With CRS, an economy with a large firm is equivalent to an economy with many small firms in production.

- Constant returns to scale: $zF(xK, xN^d) = xzF(K, N^d)$, where x is any positive number.
 - Increasing returns to scale: $zF(xK, xN^d) > xzF(K, N^d)$. Big firms are more efficient than small firms.
 - Decreasing returns to scale: $zF(xK, xN^d) < xzF(K, N^d)$. Small firms are more efficient than big firms.
 - Constant returns to scale means that a large firm replicates how a small firm produces many times over.
 - With CRS, an economy with a large firm is equivalent to an economy with many small firms in production.
 - This is a necessary condition to aggregate all firms in an economy to a representative firm.

• Output increases with increases in either the labor input or the capital input: $(MP_K, MP_N > 0)$.

- Output increases with increases in either the labor input or the capital input: $(MP_K, MP_N > 0)$.
- The marginal product of labor decreases as the labor input increases: $(MP_N \text{ decreases in } N^d)$.

- Output increases with increases in either the labor input or the capital input: $(MP_K, MP_N > 0)$.
- The marginal product of labor decreases as the labor input increases: $(MP_N \text{ decreases in } N^d)$.
- The marginal product of capital decreases as the capital input increases: $(MP_K \text{ decreases in } K)$.

- Output increases with increases in either the labor input or the capital input: $(MP_K, MP_N > 0)$.
- The marginal product of labor decreases as the labor input increases: $(MP_N \text{ decreases in } N^d)$.
- The marginal product of capital decreases as the capital input increases: (MP_K decreases in K).
- The marginal product of labor increases as the quantity of the capital input increases.

THE MARGINAL PRODUCTIVITY OF LABOR

SHIFT IN THE MARGINAL PRODUCT OF LABOR AS K INCREASES

• Increase in $z \Rightarrow$ shift of the production function up

- Increase in $z \Rightarrow$ shift of the production function up
- Also, increase in $z \Rightarrow MP_N$ increases

- Increase in $z \Rightarrow$ shift of the production function up
- Also, increase in $z \Rightarrow MP_N$ increases
- Also, increase in $z \Rightarrow MP_K$ increases

- Increase in $z \Rightarrow$ shift of the production function up
- Also, increase in $z \Rightarrow MP_N$ increases
- Also, increase in $z \Rightarrow MP_K$ increases
- An increase in z could be the discovery of new technologies, a drop in energy prices, changes in government policies.

CHANGES IN TFP: z INCREASES

Effects of an increase in TFP on MP_N

$$Y = zK^{\alpha}(N^d)^{1-\alpha}$$

 A common production function used in economics is the Cobb-Douglas production function:

$$Y = zK^{\alpha}(N^d)^{1-\alpha}$$

• $\alpha + (1 - \alpha) = 1$ implies CRS.

$$Y = zK^{\alpha}(N^d)^{1-\alpha}$$

- $\alpha + (1 \alpha) = 1$ implies CRS.
- In equilibrium, α is the capital share of national income, and $1-\alpha$ is the labor share of national income.

$$Y = zK^{\alpha}(N^d)^{1-\alpha}$$

- $\alpha + (1 \alpha) = 1$ implies CRS.
- In equilibrium, α is the capital share of national income, and $1-\alpha$ is the labor share of national income.
- In the United States, alpha = 0.36 approximately.

SOLOW RESIDUALS

$$Y = zK^{\alpha}(N^d)^{1-\alpha}$$

- $\alpha + (1 \alpha) = 1$ implies CRS.
- In equilibrium, α is the capital share of national income, and $1-\alpha$ is the labor share of national income.
- In the United States, alpha = 0.36 approximately.

•
$$Y = zK^{0.36}(N^d)^{0.64} \Rightarrow$$

$$z = \frac{Y}{K^{0.36}(N^d)^{0.64}}$$

SOLOW RESIDUALS FOR THE UNITED STATES

PROFIT MAXIMIZATION OF THE REPRESENTATIVE FIRM

The goal of the representative firm is to solve:

$$\max_{N^d,K} = zF(K,N^d) - wN^d,$$

where K is fixed, w is given, and π is real profit.

PROFIT MAXIMIZATION OF THE REPRESENTATIVE FIRM (CONTD)

• To maximize profits, the firm chooses $N^d = N$ such that maximum profit $=\pi^* = \text{distance AB}.$

PROFIT MAXIMIZATION OF THE REPRESENTATIVE FIRM (CONTD)

- To maximize profits, the firm chooses
 N^d = N such that maximum profit
 = \pi^* = \text{distance AB}.
- (AE) is the tangent to the production function at N*. The firm maximizes profits when:

$$MP_N = w$$

PROFIT MAXIMIZATION OF THE REPRESENTATIVE FIRM (CONTD)

- To maximize profits, the firm chooses $N^d = N$ such that maximum profit $=\pi^* = \text{distance AB}.$
- (AE) is the tangent to the production function at *N**. The firm maximizes profits when:

$$MP_N = w$$

This is because an extra hour hired produces MP_N units of output and costs w units of the consumption good.
 Hence, labor demand is downward sloping, just like MP_N.

LABOR DEMAND CURVE

Quantity of Labor Demanded, N^d