Выполнил: ЧжаоЛян

Группа: ИУ5И-22М

1 Random Forest Classifier

2 LogisticRegression

```
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
# Загрузка набора данных SMS Spam Collection
data = pd.read_csv( filepath_or_buffer: 'SMSSpamCollection', sep='\t', header=None, names=['label', 'message'])
data['label'] = data['label'].map({'ham': 0, 'spam': 1}) # Преобразование меток в бинарные значения
y = data['label']
# Разделение набора данных на тренировочную и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split( *arrays: X, y, test_size=0.2, random_state=42)
# <u>Извлечение признаков</u> с <u>использованием</u> CountVectorizer
count_vectorizer = CountVectorizer(stop_words='english')
X_train_counts = count_vectorizer.fit_transform(X_train)
X_test_counts = count_vectorizer.transform(X_test)
# <u>Извлечение</u> признаков с использованием TfidfVectorizer
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
```

```
rf_classifier_counts = RandomForestClassifier(random_state=42)
rf_classifier_counts.fit(X_train_counts, y_train)
y_pred_rf_counts = rf_classifier_counts.predict(X_test_counts)
rf_classifier_tfidf = RandomForestClassifier(random_state=42)
rf_classifier_tfidf.fit(X_train_tfidf, y_train)
y_pred_rf_tfidf = rf_classifier_tfidf.predict(X_test_tfidf)
# Определение и обучение логистической регрессии
lr_classifier_counts = LogisticRegression(max_iter=1000, random_state=42)
lr_classifier_counts.fit(X_train_counts, y_train)
v_pred_lr_counts = lr_classifier_counts.predict(X_test_counts)
lr_classifier_tfidf = LogisticRegression(max_iter=1000, random_state=42)
lr_classifier_tfidf.fit(X_train_tfidf, y_train)
y_pred_lr_tfidf = lr_classifier_tfidf.predict(X_test_tfidf)
# Оценка производительности классификаторов
print("Random Forest c CountVectorizer:")
print("Точность:", accuracy_score(y_test, y_pred_rf_counts))
print(classification_report(y_test, y_pred_rf_counts))
print("Random Forest c TfidfVectorizer:")
print("Точность:", accuracy_score(y_test, y_pred_rf_tfidf))
print(classification_report(y_test, y_pred_rf_tfidf))
print("Логистическая регрессия с CountVectorizer:")
print("Точность:", accuracy_score(y_test, y_pred_lr_counts))
print(classification_report(y_test, y_pred_lr_counts))
print("Логистическая регрессия с TfidfVectorizer:")
print("Точность:", accuracy_score(y_test, y_pred_lr_tfidf))
print(classification_report(y_test, y_pred_lr_tfidf))
```

Выводы:

Random Forest c CountVectorizer:									
Точность: 0.9766816143497757									
	precision	recall	f1-score	support					
0	0.97	1.00	0.99	966					
1	1.00	0.83	0.90	149					
accuracy			0.98	1115					
macro avg	0.99	0.91	0.95	1115					
weighted avg	0.98	0.98	0.98	1115					
Random Forest c TfidfVectorizer:									
Точность: 0.9811659192825112									
	precision	recall	f1-score	support					
0	0.98	1.00	0.99	966					
1	1.00	0.86	0.92	149					
accuracy			0.98	1115					
macro avg	0.99	0.93	0.96	1115					
weighted avg	0.98	0.98	0.98	1115					

	Логистическая регрессия с CountVectorizer:								
ı	Точность: 0.9856502242152466								
		precision	recall	f1-score	support				
	0	0.98	1.00	0.99	966				
	1	1.00	0.89	0.94	149				
	accuracy			0.99	1115				
	macro avg	0.99	0.95	0.97	1115				
	weighted avg	0.99	0.99	0.99	1115				
	Логистическая регрессия с TfidfVectorizer:								
	Точность: 0.9695067264573991								
		precision	recall	f1-score	support				
	Θ	0.97	1.00	0.98	966				
	1	1.00	0.77	0.87	149				
	accuracy			0.97	1115				
	macro avg	0.98	0.89	0.93	1115				
	weighted avg	0.97	0.97	0.97	1115				

- 1. **Наилучшая точность** была достигнута при использовании логистической регрессии с CountVectorizer (0.9857).
- 2. **Random Forest** также показал хорошие результаты, особенно с TfidfVectorizer (0.9812), который был лучше, чем с CountVectorizer (0.9767).
- 3. **Precision** для класса 1 (спам) был высоким для всех моделей, но **Recall** для этого класса был ниже, особенно для логистической регрессии с TfidfVectorizer (0.77).
- **4. F1-score** для класса 1 был наивысшим у логистической регрессии с CountVectorizer (0.94), что указывает на лучшую сбалансированность между precision и recall.

Общий вывод: Для данного набора данных наилучшей комбинацией является логистическая регрессия с CountVectorizer. Эта комбинация показала наивысшую точность и хорошие метрики precision и recall для обоих классов.