Table A: Empirical Cumulative Distribution of τ

Significance level	0.01	0.025	0.05	0.10							
Sample Size T	The a	The τ statistic: No Constant or Time Trend ($a_0=a_2=0$)									
25	-2.65	-2.26	-1.95	-1.60							
50	-2.62	-2.25	-1.95	-1.61							
100	-2.60	-2.24	-1.95	-1.61							
250	-2.58	-2.24	-1.95	-1.62							
300	-2.58	-2.23	-1.95	-1.62							
∞	-2.58	-2.23	-1.95	-1.62							
	The	The τ_{μ} statistic: Constant but No Time Trend $(a_2 = 0)$									
25	-3.75	-3.33	-2.99	-2.62							
50	-3.59	-3.22	-2.93	-2.60							
100	-3.50	-3.17	-2.89	-2.59							
250	-3.45	-3.14	-2.88	-2.58							
500	-3.44	-3.13	-2.87	-2.57							
∞	-3.42	-3.12	-2.86	-2.57							
		The τ_{τ} statistic: C	onstant + Time Trend	I							
25	-4.38	-3.95	-3.60	-3.24							
50	-4.15	-3.80	-3.50	-3.18							
100	-4.05	-3.73	-3.45	-3.15							
250	-3.99	-3.69	-3.43	-3.13							
500	-3.97	-3.67	-3.42	-3.13							
∞	-3.96	-3.67	-3.41	-3.12							

Source: The table is reproduced from Fuller (1996).

Table B: Empirical Distribution of Φ

Significance level	0.10	0.05	0.025	0.01
Sample size T			Φ_1	
25	4.12	5.18	6.30	7.88
50	3.94	4.86	5.80	7.06
100	3.86	4.71	5.57	6.70
250	3.81	4.63	5.45	6.52
500	3.79	4.61	5.41	6.47
∞	3.78	4.59	5.38	6.43
			Φ_2	
25	4.67	5.68	6.75	8.21
50	4.31	5.13	5.94	7.02
100	4.16	4.88	5.59	6.50
250	4.07	4.75	5.40	6.22
500	4.05	4.71	5.35	6.15
∞	4.03	4.68	5.31	6.09
			Φ_3	
25	5.91	7.24	8.65	10.61
50	5.61	6.73	7.81	9.31
100	5.47	6.49	7.44	8.73
250	5.39	6.34	7.25	8.43
500	5.36	6.30	7.20	8.34
∞	5.34	6.25	7.16	8.27

Table C: Critical Values for the Engle-Granger Cointegration Test

T	1%	5%	10%	1%	5%	10%			
		Two Variables		Three Variables					
50	-4.123	-3.461	-3.130	-4.592	-3.915	-3.578			
100	-4.008	-3.398	-3.087	-4.441	-3.828	-3.514			
200	-3.954	-3.368	-3.067	-4.368	-3.785	-3.483			
500	-3.921	-3.350	-3.054	-4.326	-3.760	-3.464			
		Four Variables		Five Variables					
50	-5.017	-4.324	-3.979	-5.416	-4.700	-4.348			
100	-4.827	-4.210	-3.895	-5.184	-4.557	-4.240			
200	-4.737	-4.154	-3.853	-5.070	-4.487	-4.186			
500	-4.684	-4.122	-3.828	-5.003	-4.446	-4.154			

The critical values are for cointegrating relations (with a constant in the cointegrating vector) estimated using the Engle-Granger methodology.

Source: Critical values are interpolated using the response surface in MacKinnon (1991).

Table D: Residual Based Cointegration Test with I(1) and I(2) Variables

			Intercep	ot Only		Linear Trend				
		m ₂	= 1 value	_	= 2 value	m ₂	= 1 value	$m_2 = 2$ prob-value		
m_1	T	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05	
0	50	-4.18	-3.51	-4.70	-4.02	-4.66	-4.01	-5.14	-4.45	
	100	-4.09	-3.42	-4.51	-3.86	-4.55	-3.90	-4.93	-4.31	
	250	-4.02	-3.38	-4.35	-3.80	-4.41	-3.83	-4.81	-4.20	
1	50	-4.65	-3.93	-5.15	-4.40	-5.11	-4.42	-5.62	-4.89	
	100	-4.51	-3.89	-4.85	-4.26	-4.85	-4.26	-5.23	-4.62	
	250	-4.39	-3.80	-4.71	-4.18	-4.73	-4.19	-5.11	-4.50	
2	50	-4.93	-4.30	-5.54	-4.77	-5.47	-4.74	-5.98	-5.17	
	100	-4.81	-4.25	-5.29	-4.59	-5.21	-4.58	-5.59	-4.93	
	250	-4.77	-4.16	-5.06	-4.49	-5.07	-4.51	-5.35	-4.80	
3	50	-5.38	-4.71	-5.76	-5.08	-5.89	-5.13	-6.23	-5.48	
	100	-5.20	-4.56	-5.58	-4.92	-5.52	-4.91	-5.97	-5.25	
	250	-5.05	-4.48	-5.44	-4.83	-5.38	-4.78	-5.69	-5.07	
4	50	-5.81	-5.09	-6.24	-5.48	-6.35	-5.47	-6.64	-5.82	
	100	-5.58	-4.93	-5.88	-5.20	-5.86	-5.20	-6.09	-5.50	
	250	-5.39	-4.28	-5.64	-5.07	-5.66	-5.08	-5.95	-5.34	

Note: m_1 is the number of I(1) variables and m_2 is the number of I(2) variables on the right-hand side of the multicointegrating relationship.

Source: The critical values for the intercept only case are from Haldrup (1994) and critical values for the linear trend are from Engsted, Gonzalo and Haldrup (1997).

Table E: Empirical Distributions of the $\lambda_{\rm max}$ and $\lambda_{\rm trace}$ Statistics

Significance level											
	10%	5%	2.5%	1%	10%	5%	2.5%	1%			
$\lambda_{ m max}$ and $\lambda_{ m trace}$ statistics without any deterministic regressors											
n-r	m		max		J	$\lambda_{ m tra}$					
1	2.86	3.84	4.93	6.51	2.86	3.84	4.93	6.51			
2	9.52	11.44	13.27	15.69	10.47	12.53	14.43	16.31			
3	15.59	17.89	20.02	22.99	21.63	24.31	26.64	29.75			
4	21.56	23.80	26.14	28.82	36.58	39.89	42.30	45.58			
5	27.62	30.04	32.51	35.17	54.44	59.46	62.91	66.52			
$\lambda_{ m max}$ and $\lambda_{ m trace}$ statistics with drift											
n-r		$\lambda_{_{1}}$	max	trace		$\lambda_{ ext{trace}}$					
1	2.69	3.76	4.95	6.65	2.69	3.76	4.95	6.65			
2	12.07	14.07	16.05	18.63	13.33	15.41	17.52	20.04			
3	18.60	20.97	23.09	25.52	26.79	29.68	32.56	35.65			
4	24.73	27.07	28.98	32.24	43.95	47.21	50.35	54.46			
5	30.90	33.46	35.71	38.77	64.84	68.52	71.80	76.07			
	1 .	and 1 or	tatiatiaa wi	th a consta	unt in the co	intoquotino	tow				
	λ _{max} ε			ui a consta	nt in the co						
		Λ,	max			λ_{tra}	ce				
1	7.52	9.24	10.80	12.97	7.52	9.24	10.80	12.95			
2	13.75	15.67	17.63	20.20	17.85	19.96	22.05	24.60			
3	19.77	22.00	24.07	26.81	32.00	34.91	37.61	41.07			
4	25.56	28.14	30.32	33.24	49.65	53.12	56.06	60.16			
5	31.66	34.40	36.90	39.79	71.86	76.07	80.06	84.45			

Source: Osterwald-Lenum (1992).

Table F: Critical Values for $\beta_1 = 0$ in the Error–Correction Model

k		$T^a = 50$	$T^a = 100$	$T^a = 200$	$T^a = 500$
		No	Intercept or Trend	$\mathbf{d} (d=0)$	
2	1%	-3.309	-3.259	-3.235	-3.220
	5%	-2.625	-2.609	-2.602	-2.597
	10%	-2.273	-2.268	-2.266	-2.265
3	1%	-3.746	-3.683	-3.652	-3.633
	5%	-3.047	-3.026	-3.016	-3.009
	10%	-2.685	-2.680	-2.677	-2.675
4	1%	-4.088	-4.015	-3.979	-3.957
	5%	-3.370	-3.348	-3.337	-3.331
	10%	-3.000	-2.997	-2.995	-2.994
			ercept but no Trend		
2	1%	-3.954	-3.874	-3.834	-3.811
	5%	-3.279	-3.247	-3.231	-3.221
	10%	-2.939	-2.924	-2.916	-2.911
3	1%	-4.268	-4.181	-4.138	-4.112
	5%	-3.571	-3.538	-3.522	-3.512
	10%	-3.216	-3.205	-3.199	-3.195
4	1%	-4.537	-4.446	-4.401	-4.374
	5%	-3.819	-3.789	-3.774	-3.765
	10%	-3.453	-3.447	-3.444	-3.442
			tercept and Trend		
2	1%	-4.451	-4.350	-4.299	-4.269
	5%	-3.778	-3.733	-3.710	-3.696
	10%	-3.440	-3.416	-3.405	-3.398
3	1%	-4.712	-4.605	-4.552	-4.519
	5%	-4.014	-3.971	-3.949	-3.935
	10%	-3.662	-3.643	-3.634	-3.629
4	1%	-4.940	-4.831	-4.776	-4.743
	5%	-4.221	-4.182	-4.162	-4.150
	10%	-3.857	-3.846	-3.840	-3.837

Note: T^a is the adjusted sample size equal to T-(2k-1)-d where T is the usable sample size, d is the number of deterministic regressors, and k is the number of I(1) variables in the model. The critical values are calculated using equation (26) in Ericsson and MacKinnon (2002).

Table G: Critical Values for Threshold Unit Roots

Panel (a): Consistent Estimate of the Threshold Using the TAR M	Model
--	-------

T	No Lagged Changes				Or	One Lagged Change				Four Lagged Changes			
	90%	95%	97.5	99%	90%	95%	97.5	99%	90%	95%	97.5	99%	
50	5.15	6.19	7.25	8.64	5.55	6.62	7.66	9.10	5.49	6.55	7.59	9.00	
100	5.08	6.06	6.93	8.19	5.39	6.34	7.30	8.54	5.38	6.32	7.29	8.56	
250	5.11	6.03	6.88	8.04	5.26	6.12	6.99	8.14	5.36	6.29	7.15	8.35	

Panel (b): Consistent Estimate of the Threshold Using the M-TAR Model

	No Lagged Changes				Or	One Lagged Change				Four Lagged Changes			
	90%	95%	97.5	99%	90%	95%	97.5	99%	90%	95%	97.5	99%	
50	5.02	6.05	7.09	8.59	4.98	6.07	7.15	8.56	4.93	5.96	7.01	8.48	
100	4.81	5.77	6.73	7.99	4.77	5.71	6.56	7.90	4.74	5.70	6.67	7.97	
250	4.70	5.64	6.51	7.64	4.64	5.54	6.40	7.56	4.64	5.54	6.39	7.61	

Panel (c): Known Threshold Value in the M-TAR Model

	No Lagged Changes				Or	One Lagged Change				Four Lagged Changes			
	90%	95%	97.5	99%	90%	95%	97.5	99%	90%	95%	97.5	99%	
50	4.21	5.19	6.15	7.55	4.12	5.11	6.05	7.25	3.82	4.73	5.65	6.84	
100	4.11	5.04	5.96	7.10	4.08	4.97	5.87	7.06	3.81	4.72	5.63	6.83	
250	4.08	4.97	5.83	6.91	4.05	4.93	5.78	6.83	3.69	4.71	5.63	6.78	

