22

SEQUENCE LISTING

- <110> Frey, Joachim Stuber, Katja Thornton, Julian C Kuzyk, Michael A. Burian, Jan
- Type III Secretion Pathway in Aeromonas Salmonicida, and Uses <120> Therefor
- <130> UBO01/2850/US
- <140> us 10/813,908
- <141> 2004-03-26
- <150> US 10/416,902
- 2001-11-15 <151>
- PCT/CA 01/01589 2001-11-15 <150>
- **<151>**
- <150> US 60/248,864 2000-11-15 <1,51>
- <160> 12
- <170> PatentIn version 3.3
- <210>
- 47 <211>
- <212> PRT
- <213> Aeromonas salmonicida
- <400>
- Glu Leu Lys Arg Leu Ile Arg Leu Leu Pro Val Glu Leu Phe Ser Glu 1 5 10 15
- Glu Glu Gln Arg Gln Asn Leu Leu Gln Cys Cys Gln Gly Ala Leu Asp 20 25 30
- Asn Ala Ile Glu Arg Glu Glu Asp Glu Leu Ser Gly Glu Ser Ser
- <210>
- <211> 123
- <212> PRT
- <213> Aeromonas salmonicida
- <400>
- Met Asn Trp Ile Glu Pro Leu Leu Val Gln Phe Cys Gln Asp Leu Gly 10 15
- Ile Thr Ile Gly Asp Asn Pro His Ser Leu Ile Gln Leu Glu Leu Glu 20 25
- Gin Ser Gly Thr Leu Gin Leu Glu Arg His Gin Gly Gin Leu Thr Leu Page 1

5. 23

35

40

45

Trp Leu Ala Arg Ala Val Pro Trp His Gln Ser Gly Glu Ala Ile Arg Arg Ala Met Thr Leu Thr Ala Ala Ala Gln Gly Pro Ala Leu Pro Val 80 Arg Ser Gly Trp Leu Gly Glu Glu Gln Leu Ile Leu Phe Val Ser Leu Asp Glu Arg Ala Val Thr Leu Pro Gln Leu His Gln Ala Val Thr Thr Leu Thr Arg Leu Gln Arg Glu Val Leu Ala Ser

<210> 3 <211> 121

<212> PRT

<213> Aeromonas salmonicida

<400> 3

Met 5er Arg Ile Thr Ala Ala His Ile Gly Ile Glu Gln Leu Ser Ala 1 10 15

Ile Ser Leu Asp Asp Gln Glu Arg Ser Leu Pro Gly Arg Tyr Ala Leu 20 30

Leu Pro Asp Gly Gln Ser Ile Glu Pro His Ile Ser Arg Leu Tyr Pro 35 40 45

Glu Arg Leu Ala Asr Arg Val Leu Leu Asp Phe Ala Thr Pro Asp Arg 50 60

Gly Phe His Asp Let Leu Arg Pro Val Asp Phe Asn Gln Ala Met Gln 65 70 75

Gly Leu Arg Ser Val Leu Ala Glu Gly Gln Ser Pro Glu Leu Arg Ala 85 90 95

Ala Ala Ala Leu Leu Glu Gln Met His Ala Asp Glu Gln Leu Met Gln 100 105

Met Thr Lev His Lev Lev His Lys Val 115 120

<210> 4 <211> 116

<212> PRT <213> Aeromonas salmonicida

<400> 4

Met Thr Met Val Leu Thr Ser Gln Gln Gln Asp Ala Leu Leu Leu Thr 1 10 15

Gly Trp Leu Gln Leu Gln Tyr Gly His Pro Asp Lys Ala Ser Val Leu 20 25 30

Leu Ala Ala Leu Leu Gln Ile His Pro Asp His Gln Gly Gly Arg Arg 35 40 45

Thr Leu Leu val Ala Leu Leu Lys Glm Gly Glu Gly Glu Ala Ala Leu 50 60 .

Ala His Val Asp Gln Leu Met Gln Gln Gly Glu Ala Asp Gly Pro Leu 65 70 80

Trp Leu Cys Arg Ser Arg Ala Cys Gln Leu Ala Gly Arg Leu Asp Glu 85 90 95

Ala Arg Phe Ala Tyr Gln Gln Tyr Leu Glu Leu Glu Glu Gln Asn Glu 100 105 110

Ser Thr His Pro

<210> 5

<211> 110

<213> Aeromonas salmonicida

<400> 5

Met Thr Met Val Leu Thr Ser Gln Gln Gln Asp Ala Leu Leu Leu Thr 10 15 .

Gly Trp Leu Gln Leu Gln Tyr Gly His Pro Asp Lys Ala Ser Val Leu 20 25

Leu Ala Ala Leu Leu Gln Ile His Pro Asp His Gln Gly Gly Arg Arg
45

Thr Leu Leu Val Ala Leu Leu Lys Gln Gly Glu Gly Glu Ala Ala Leu 50 55 60

Ala His Val Asp Gln Leu Met Gln Gln Gly Glu Ala Asp Gly Pro Leu 65 70 75 80

25

Trp Leu Cys Arg Ser Arg Ala Cys Gln Leu Ala Gly Arg Leu Asp Glu 85 90 95

Ala Arg Phe Ala Tyr Gln Gln Tyr Leu Glu Leu Glu Glu Gln Asn Glu 100 105 110

Ser Thr His Pro 115

<211> 93 <212> PR

PRT Aeromonas sa monicida

Met Leu Val Arg Arg Glu Gly Glu Arg Ala Gly Leu Ala Asn Pro Phe 1 5 15

Ala Ala Leu Tyr Leu Leu Ala Glu Ala Thr Leu Ala Val Leu Gly Pro 20 25 30

Gly His Phe Leu Tyr Gly Asn Val Asp Val Phe Arg Ser Ser Leu 35 40

Ser Ser Glu Arg Leu Gly Arg Phe Tyr Leu Arg Trp Thr Gly Ala Ser 50 55

Glu Pro Glu Pro Gly Trp Phe Met Leu Ala Thr Glu Gln Val Cys Ser 70 75

Leu Arg Asp Met Arg Lys Arg Gln Lys His Gly Leu Ala 85

<210> <211>

Aeromonas sa monicida

<400>

Met Lys Gln Pro Arg Phe Ala Asp His Ser Glu Thr Ile Ser Gln Ala 5 10 15

Glu His Gly Ile Ala Asp Ser Asp His Arg Asn Ala Leu Leu Glm Glu 20 25 30

Met Leu Ala Gly Leu Ala Leu Ser Asp Gln Thr Cys Gln Leu Leu Phe 35

Glu Ala Pro Thr Glu Gln Val Ala Val Ala Glu Gln Glu Leu Leu Ala 50 60 Page 4

Glu ile Gln Arg Arg Gln Ala Leu Leu Pro Ala Gln Pro Gly Glu Gly 65 70 75

Arg Lys Ser Arg Arg Pro Thr Ile Met Arg Gly Leu Met Ile 85

<210> <211> 361

Aeromonas salmonicida

Met Ser Thr Ile Pro Asp Tyr Asn Thr Asn Pro Gly Ala Phe Val Gly
1 10 15

Trp Leu Asp Val Gln Ala Leu Asn Thr Leu Pro Gly Asn Lys Asn Pro 20 25 30

Lys Leu Thr Glu Leu Val Glu Leu Lys Gly Lys Ile Thr Ile Ser 35 40

Ala Asp Ser Ser The Ala Leu Ser Lys Glu Gln Leu Glu Lys Leu Leu 50 60

Ala Ala Tyr Leu The Asp Pro Ala Ser Ile Asn Gly Gly Trp Ala Met 65 75 80

Gly Gln Phe Lys Gly Gln Asp Ala Ala Ile Ala Ala Ile Lys Gly 85 90 95

Val Ile Glu Arg Gly Ala Lys Gln Thr Pro Pro Val Thr His Trp Thr 100 110

The Pro Glu Phe Met Leu Leu Ser Leu Ser Ala Leu Thr Met Glu Arg 115 120 125

Thr Asp Asp Asp Leu Ile Thr Thr Phe Thr Gly Val Met Met Phe Gln 130 140.

Asp Asn Gln Arg Lys Gly Leu Arg Asp Glu Leu Ala Glu Met Thr Ala 150 155 160

Glu Leu Lys Ile Tyr Gly Val Ile Gln Ser Glu Ile Asn Gln Val Leu 165 170

Ser Ala Ala Ser Asn Gln Thr Phe Lys Thr Asn Phe Asn Leu Met Asp 180 185

Tyr Lys Leu Tyr Gly Tyr Glu Ser Leu Ala Lys Phe Met Glu Gly Gly 195 200 205 Glu Phe Lys Leu Ser Lys Met Phe Ser Asp Glu Gln Val Thr Lys 210 220 . Ala Gln Gln Asp Phe Thr Asn Ala Lys Asn Glu Leu Glu Asn Val Thr 225 230 235 240 Ser Thr Ser Leu Asn Pro Lys Ile Gln Ala Glu Ala Lys Thr Asp Tyr 245 255 Glu Arg Lys Lys Ala Ile Phe Glu Glu Ile Val Glu Thr Gln Ile Ile 260 265 270 Thr Leu Lys Thr Phe Leu Glu Ser Asp Leu Lys Lys Ser Gly Ala Met 275 280 285 Ser Gly Ile Glu Ala Glu Tyr Lys Tyr Asp Lys Asp Asn Asn Lys Leu 290 295 300 Gly Asn Phe Ser Thr Ser Val Ser Asp Arg Ser Arg Pro Leu Asn Asp 305 310 320 Leu Val Ser Glu Lys Thr Ala Arg Leu Asn Asp Val Ser Ser Arg Tyr 325 330 335 Asn Ala Ala Ile Glu Ala Leu Asn Arg Phe Ile Gln Lys Tyr Asp Ser 340 345 . 350 Ile Met Arg Asp Ile Leu Gly Ala Ile 355

<210> <211> <212> <213>

Aeromonas salmonicida

<400>. 9

Met Gin Thr Asp Thr Thr Leu Thr Pro Glu Tyr Glu Ala Glu Leu Glu 1 5 10 15

Ala Phe Met Ala Asp Gly Gly Thr Leu Ala Met Leu Gln Asp Ile Ser

Gly Asp Thr Leu Glu Gln Leu Tyr Ala Leu Ala Phe Ser Gln Tyr Gln
35 40 45

Ala Gly Lys Trp Glu Asp Ala His Lys Ile Phe Gln Ala Leu Cys Met 50 60 Leu Asp His Tyr Glu Pro Arg Tyr Phe Leu Gly Leu Gly Ala Cys Arg 65 75 80 Gln Ala Met Gly Glu Phe Glu Thr Ala Val Gln Ser Tyr Ser Phe Gly 85 90 95 Ala Met Leu Asp Leu Lys Asp Pro Arg Phe Pro Phe His Ala Gly Glu 100 105 110 Cys Arg Leu Gln Gly Asp Leu Asn Gly Ala Glu Ser Gly Phe His 115 120 Ser Ala Arg Leu Leu Ala Asp Thr Asp Pro Gln Gln Ala Asp Leu Ala 130 140 Ala Ser Ala Lys Val Met Leu Glu Ala Ile Ala Ile Arg Arg Asp 150 155

10 5678

DNA

Aeromonas salmonicida .

<400> 10 gageteaage ggetgateeg cetgetgeeg gtggagetgt teagtgaaga ggageagege 60 cagaatctgt tgcagtgctg tcagggtgcg ctcgataacg ccatcgagcg ggaagaggat 120 gagttgtctg gagagtcgic atgaactgga ttgaacccct gctggtgcag ttttgccagg 180 atttgggcat caccataggg gataaccccc attcgctgat ccagcttgaa ctggagcaga 240 geggeactet geagetggag egecateagg ggeaactgae cetatggttg geeegegeeg 300 360 tgccctggca tcagagtgqc gaggccattc gccgcgccat gaccttgact gccgcggcgc aagggccggc actgccggtg cgcagcggct ggttggggga ggagcagttg atcctcttcg 420 tetecetgga tgagegggde gtgaetetge eccageteea teaggeegtg accaeeetga 480 cccggttgca gcgagaggig ctggcgtcat gagccggatc actgccgcgc atarcggtat 540 600 cgagcagete agegecater ceetegaega teaggagege ageetgeegg ggegttatge cergitagees gaiggecant ceategaace ceatateage egectetace cegageget 660 ggcggatcgg gtgctgctcg atttcgccac cccggatcgc ggctttcacg acttgctgcg 720 accggtcgat ttcaatcagg cgatgcaggg gctgcgcagt gtgctggcag aggggcagag 780 CCCCGAATTG CGAGCGGCCG CCGCGCTGCT CGAACAAATG CACGCCGATG AACAACTGAT 840 gcagatgacc cttcatctnc tgcacaaggt atgaccatgg tgcttacgtc acagcagcag 900

gatgcgctgc	tgctcaccçg	ctggttgcaa	ctgcaaratg	gccaccctga	caaggcgagc	960
gtgctgctgg	ccgccctgct	gcagatccac	cccgaccatc	agggagggcg	acggaccttg	1020
ctggtggccc	tgctcaaaca	9999929999	gaggcggcgc	tggcccatgt	cgatcagctg	1080
atgcagcaag	9ggaggcc(la	cggcccgctc	tggctctgtc	gcagccgagc	ctgccagttg	1140
gcagggcggc	tggatgaaqc	ccgttttgcc	tatcaacaat	acctcgaact	ggaagagcag	1200
aatgaatcaa	cgcaccctt:g	agttgctgcg	ccggataggc	gaacgcaagg	acatcatgct	1260
ggcgatcctg	ctgctggcca	tcgtctttat	gatggtcttg	ccgctgccgc	cggtggccct	1320
cgatatcctg	attgccatca	acatgaccat	ctcggtggta	ctgctgatga	tggcggttta	-1380
tatcaattcg	ccgctgcagt	tctccgcctt	tccggcggtg	ctgctgatca	ccaccctgtt	1440
ccggcttgcc	ttgtcggtga	gtaccacccg	gatgatcctg	ctgcaggctg	atgcggggca	1500
gatagtctac	accttcggca	acttcgtggt	ggggggcaat	ctggtggtgg	ggatcgtcat	1560
cttcctcatc	atcaccatcg	tccagtttct	ggtgatcacc	aagggctcgg	agcgggtcgc	1620
cgaggtgagc	gcccgctt1:t	ccctcgatgc	catgccgggt	aagcagatga	gtatcgatgg	1680
tgacatgcgc	gccggggtija	tcgacgtgca	cgaggcgcgg	gatcgccgcg	gggtcatcga	1740
gaaggagagc	cagatgttcg	gctccatgga	tggcgccatg	aagtttgtga	agggggacgc	1800
catcgcgggc	ctcatcatca	tcttcgtcaa	catcctcggt	ggcgtcacca	tcggggtgac	1860
ccagaagggg	ttatccgccg	ccgatgcgct	gcagctctac	tccatcctga	cggtgggtga	1920
tggcatggtc	tcccaggtgc	cggcgctgct	gatcgccatc	accgcgggca	ttatcgtcac	1980
ccgggtctcc	tccgaagagt	cttccgatct	gggtaccgat	atcggcgccc	aggtggtggc	2040
ccagcccaag	gcgctactga	tcggcggtct	gctgctggtg	ctgttcgggt	tgatcccggg	2100
cttcccgatg	atcaccttct	ttgcgctgtc	ggccatcgtc	acggcgggcg	gttactttat	2160
cggcttg cga	caacgcaaqg	cgcaaagcag	caacagtcag	gatcttcctg	ccgtgctggc	2220
gcagggggcc	ggggccccag	ctgcccgcag	caagccaaaa	ccgggcagca	agccgcgggg	2280
caagctgg gg	gagaaggagg	agtttgccat	gacggtgccg	ctccttatcg	atgtggatgc	2340
tgctttgcag	gccgagctüg	aggcgat tgc	cctcaacgac	gaactggtgc	gggtgcgccg	2400
cgccctctat	ctcgatctcg	gggtgccttt	cccgggtatt	cacctgcgtt	tcaacgaggg	2460
gatggggcct	ggcgaatacc	tgatccagct	gcaggaggtg	ccggtcgccc	gcggtctgct	2520
gcgcccgggc	catcagctcg	tgcaggagag	cgcctcccag	ctcgatctgc	tggggatccc	2580
ctacgaagag	ggggcgccct	tactgccggg	acaaccgacc	ttgtgggtcg	ctaatgaaca	2640
tcaggagcga	ctggagaact	cacggctggc	caccctcacc	accgatcagg	tgatgacctg	2700
gcatctatcc	catgtgctcc	gggaatatgc	cgaggacttt	atcggcattc	aggagacccg	2760
ctacctgctg	gagcagatgg	aggggagcta	tagcgagctg	gtgaaggagg	cgcaacgcat	2820

catcccgctg	cagcgtatga	ccgaaatttt	gcagcggctg	gtgggggagg	atatctccat	2880
ccgcaacatg	cgcgccatcc	tcgaggcgat	ggtggagtgg	ggccagaagg	agaaggatgt	2940
ggtgcagctc	accgagtaca	tccgtagcag	cctcaagcgc	tacatctgct	acaagtacgc	3000
caacggcaac	aacattttgc	ctgcctatct	gctcgatcag	caggtggagg	agca g ctccg	3060
cggcggcatt	cgccagac1:a	gtgccggcag	ctatctggcg	ctcgatccca	ctattaccca	3120
gagcttcctc	gatcaggtgc	gccacaccgt	cggtgatctg	gcccagatgc	agaacaaacc	3180
ggtgctcatt	gtctccatgg	atatecgeeg	ctatgtgcgc	aagctcatcg	agggggatta	3240
ccatgccctg	ccggtgctct	cctatcagga	gctgacccag	cagaticaata	tccagcccct	3300
cgggagggtc	tgcctgtgag	gggggacccg	ttaacctctg	accccctgat	cccctggctg	3360
caggccaagg	gtgtggcggt	tgcctctcac	tatctggggg	caacccccat	ccagctcggc	3420
cacgctttct	gctatcgcca	aatttatctc	gcctggcggg	ttgatcctac	gacccgacgg	3480
gtctggatca	tgctggtgcg	ccgagagggg	gagcgggctg	gactggccaa	tccctttgcc	3540
gccctctatc	tgetggccga	agccactctg	gctgtactcg	gtccgggcca	tttcctctac	3600
ggcaacgtcg	atgtctttcg	aagcagtagc	ctgagcagtg	aġcgġctag g	ccgcttctac	3660
ttgcgctgga	cgggagccag	tgaacccgag	cccggctggt	tcatgttggc	caccgagcaa	3720
gtctgttcac	tacgggatat	gcgaaaacga	caaaagcacg	gccttgcgtg	acaggcatgt	3780
ccaaaagggc	ctcatagaat	aggagccaag	atgaaacaac	cgcgttttgc	cgaccatagc	3840
gagaccattt	cgcaggcaya	gcatggcart	gccgacagcg	atcaccgcaa	tgccctgttg	3900
caagagatgc	tggctggcct	agccctctcg	gatcagacct	gtcagctgct	gttcgaagcg	3960
ccgaccgagc	aagtggccijt	ggccgagcag	gagttgttgg	cagagatcca	gcgcagacag	4020
gcgttactac	cggcacagcc	gggagagggc	cgcaaaagtc	gccgtcccac	cattatgcgc	4080
ggactgatga	tttaaggagt	cgtgatgagc	acaatccctg	actacaacac	taaccccggc	4140
gcgttcgtcg	gctggcttga	tgtgcaagca	ctgaacacat	tgccgggcaa	taaaaatccc	4200
aagttgaccg	aactggtcga	gctgctcaag	ggcaagatca	ccatcagtgc	tgactcatcg	4260
actgcgctga	gcaaggagca	gctggagaag	ttgc tggctg	cctatctgac	ggatcctgcc	4320
tcgatcaacg	ggggctgggc	gatgggccag	ttcaagggag	gtcaagatgc	cgccattgcc	4380
gccatcaagg	gggtgatcga	gcggggagca	aaacaaaccc	cgccagtcac	ccactggacc	4440
atccctgaat	ttatgctgct	ctccctcagt	gcgctgacca	tggaacgtac	cgatgacgat	4500
ctcatcacga	cctttaccgg	ggtgatgatg	tttcaggaca	atcagcgtaa	agggttgcgg	4560
gatgagctgg	cagagatgic	cgctgagctg	aagatctacg	gggtgatcca	gtccgagatc	4620
aaccaggtgc	tctctgcggc	gtccaaccaa	accttcaaaa	ccaatttcaa	tctgatggat	4680
tacaagctct	atggctatga	gtctctggcc	aaatttatgg	aagggggcga	gttcaagctg	4740

: 31

ttgtcaaaaa tgtttagcga tgagcaggtg acaaaagcac agcaagattt caccaat	gct 4800
aaaaatgagc tggaaaacgt cacgtcgacc agcctaaacc ccaaaatcca ggcggaa	igct 4860
aagaccgatt atgagcgtaa aaaagccatt tttgaggaga tcgtagagac gcagatc	atc 4920
accettaaaa egtteetgga aagtgacetg aagaagageg gegeeatgag tggeata	agaa 4980
gccgagtaca aatatgacaa agacaacaac aagcttggca acttctccac tagtgtg	gagc 5040
gaccgttctc gcccgctcaa cgatctggtc agtgaaaaga ccgcccgcct caacga	cgtc 5100
agttcgcgct acaacgctcc catcgaggca ctcaaccgct ttatccagaa atacga	cagc 5160
atcatgcgcg acattcttcg cgcaatttga ggagagatca tgcagaccga caccacc	cctg 5220
accccggaat atgaagcaea gctggaggcc tttatggctg acggtggtac cctggc	tatg 5280
ctgcaggata tctctggcga caccttggaa cagctctatg ccctggcctt tagccag	gtat 5340
caggccggca agtgggaaga tgctcacaaa atcttccagg ctctctgcat gctgga	tcac 5400
tacgagecae getattteet egggetgggt gettgeegte aggegatggg ggagtt	tgaa 5460
acggcagttc agagttacag ctttggcgcc atgctcgacc tgaaagatcc ccgttt	ccca 5520
tttcatgcag gcgagtgccg gctgcaacaa ggtgatttga acggtgccga gagtgg	cttc 5580
cactcggccc gactgctggc ggacacagat ccccagcagg cagacctggc ggcaag	cgcc 5640
aaggtcatgt tggaagccat cgcaatcaga agggatcc	5678
<210> 11 <211> 30 <212> DNA <213> Artificial <220>	
<pre><223> Synthetic primer.</pre>	
<400> 11 gggaattcga tgagcacant ccctgactac	30
<210> 12 <211> 30 <212> DNA <213> Artificial	
<220> <223> Synthetic primer.	
<400> 12 atgcggccgc aaattgcgcc aagaatgtcg	30
<210> 13 <211> 29 <212> DNA <213> Artificial	
<220> <223> Synthetic primer.	

<400> 13 tcgcggccgc accctttacg ctgattgtc	29
<210> 14 <211> 28 <212> DNA <213> Artificial	
<220> <223> Synthetic primer.	
<400> 14 cggaattcgt tgcgggatga gctggcag	28
<210> 15 <211> 30 <212> DNA <213> Artificia?	
<220> <223> Synthetic primer	
<400> 15 tcgcggccgc actcggcttc tatgccactc	30