Tarea

Fecha de entrega: 10 de noviembre de 2016

- 1. Sea t > 0 y $h(x) = ||x||_1$. Calcule $\text{prox}_{th}(x)$.
- 2. Considere la función $f(\beta) = \sum_{i=1}^{n} \left(-y_i x_i^T \beta + \log(1 + \exp(x_i^T \beta)) \right)$ con $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$. Usando los datos del archivo Datos.csv, donde la última columna corresponde a los valores de y_i , minimice $h(\beta) = f(\beta) + \lambda \|\beta\|_1$ con diferentes valores de $\lambda > 0$. Para todos lo métodos inicie las iteraciones en $\beta_0 = 0$ y grafique $\log(h(\beta_k) h^*)$ en cada iteración. Grafique además $\|\beta^*\|_1$ para cada valor de λ . ¿Puede encontrar algún método que sea mejor para valores pequeños de λ ? ¿Para grandes?
 - a) Use el método del subgradiente. Explique claramente la forma de escoger el subgradiente y el tamaño de los pasos. Sugerencia: Consulte el ejemplo 3.1.5.5 (página 133) del libro de Nesterov.
 - b) Use el método del subgradiente estocástico. Explique cómo lo hace.
 - c) Use el método proximal con backtracking.
 - d) Use el método proximal acelerado.
- 3. Considere el problema de minimizar $\sum_{i=1}^{n} f_i(\eta_i) + \lambda \|\beta\|_1$ sujeto a $\eta_i \beta = 0$ para $i = 1, \ldots, m$, con $f_i(\eta) = -y_i x_i^T \eta + \log(1 + \exp(x_i^T \eta))$. Note que este problema es equivalente al anterior. Implemente el siguiente algoritmo ADMM con consenso:

$$\eta_i^{k+1} := \underset{\eta}{\operatorname{argmin}} \left(f_i(\eta) + \frac{\alpha_k}{2} \| \eta - \beta^k + \mu_i^k \|^2 \right)
\beta^{k+1} := \underset{\beta}{\operatorname{argmin}} \left(\lambda \| \beta \|_1 + \frac{n\alpha_k}{2} \| \beta - \bar{\eta}^{k+1} - \bar{\mu}^k \|^2 \right)
\mu_i^{k+1} := \mu_i^k + \eta_i^{k+1} - \beta^{k+1},$$

donde $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Mauricio Junca