First-Order Logic (continued)

(or predicate logic)

Natural numbers

Language

- $L_{arith} = (<, +, \cdot, 0,1,2,...)$
- Alternatively, also $(<, +, \cdot, 0, S) --- 1$ can be S(0), 2 is can be S(S(0))

Structure

- \mathbb{N} as the universe with standard interpretation of <, +, \cdot
- Nonstandard structures exist!

Axioms

- $\forall x : \neg(x < 0)$
- $\forall x, y: x < y \lor x = y \lor y < x$
- ...

Propositions

- Addition is associative:
 - $\forall x, y, z: (x + y) + z = x + (y + z)$
- Prime number:
 - Prime(x) $\equiv \neg \exists y, z (1 < y \land 1 < z \land x = y \cdot z)$
- Twin prime conjecture:
 - $\forall x \exists y : x < y \land Prime(y) \land Prime(y + 2)$

(Finite) Graphs

Language

• $L_{graph} = (E, <)$

Structure

• Any graph (V, E) with < interpreted (arbitrarily)

Axioms (< is the transitive closure of E)

Skipped

Undirected graphs

• $\forall u, v : E(u, v) \rightarrow E(v, u)$

Linked lists

- $\forall u : \neg u < u$
- $\forall u, v : u < v \lor v < u$

n-clique

• $\exists u_1 \dots u_n : \bigwedge_{i,j} u_i < u_j$

Hamiltonicity

• Inexpressible in FOL!

Second-Order Logic

Second-Order (SO) logic extends FOL with second-order variables

- E.g., R^1 (a set variable), R^2 (a relation variable), F^1 (a unary-function variable), F^2 (a binary-function variable) ...
- $\exists F^2 \forall x, y(F^2(x,y) = F^2(y,x) \land \dots)$
- Sound and complete proof system does not exist

Infinity:

•
$$\exists z \exists F^1 ((\forall x, y : F^1(x) = F^1(y) \rightarrow x = y) \land \forall x (F^1(x) \neq z))$$

Hamiltonicity:

Subclasses of second-order logic

Monadic Second-Order (MSO) logic allows set variables only

• E.g.,
$$\exists S (... \exists x (x \in S \land ...))$$

Existential SO (\exists SO) consists of formulae of the form $\exists X_1 \dots \exists X_n : \varphi$

How about ∀SO? ∀MSO?

FOL: Models

Let Σ be a set of L-sentences, and $\mathcal A$ be an L-structure.

 \mathcal{A} is a model of Σ if $\mathcal{A} \models \sigma$ for each $\sigma \in \Sigma$, denoted as $\mathcal{A} \models \Sigma$

 Σ is satisfiable if it has a model

 φ (with free variables $x_1, ..., x_m$) is a logical consequence of Σ if $\mathcal{A} \models \forall x_1, ..., x_m \varphi(x_1, ..., x_m)$ for every model \mathcal{A} of Σ , denoted $\Sigma \models \varphi$

• Special case $\Sigma = \emptyset : \models \varphi$ means φ is satisfied by all structures, i.e., φ is valid

How to check the satisfiability/validity of FOL?

Undecidability of FOL

Church's Theorem (1935): The validity of FOL is undecidable.

Turing proved independently in 1936

Proof: Reduce from the halting problem of 2-Counter Machines.

Undecidability of FOL

For each 2CM M, construct a formula φ_M such that M halts iff. φ_M is valid

$$\varphi_M \equiv (\varphi_{init} \land \varphi_{trans}) \rightarrow \varphi_{final}$$

- φ_{init} : "the initial configuration is reachable"
- ϕ_{trans} : "if conf A is reachable and A can transition to B, B is also reachable"
- φ_{final} : "A final state is reachable"

Undecidability of FOL

Language

- $C = Q \cup \{0\}$
- $F = \{s\}$ with arity(s) = 1
- R = reach with arity(reach) = 3
- Intuitively, reach(q, s(0), 0) means the configuration (q, 1, 0) is reachable

```
\varphi_{init} \equiv reach(q_0, 0, 0)
```

 $\varphi_{final} \equiv \exists x, y : \bigvee_{f \in FinalState} reach(f, x, y)$

$$\varphi_{trans} \equiv \bigwedge_{t \in \Delta} \varphi_t$$

- E.g., if t = (q, z, nz, q', 1, -1), then
- $\varphi_t \equiv \forall x, y \big((reach(q, 0, x) \land x \neq 0 \land s(y) = x) \rightarrow reach(q', s(0), y) \big)$