§4. Свойства степенных рядов внутри интервала сходимости

Приведём без доказательства некоторые свойства степенных рядов, которые являются следствиями общих свойств функциональных рядов, рассмотренных в §§1,2. Пусть дан степенной ряд

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (4.1)$$

интервал сходимости которого $E = (x_0 - R, x_0 + R)$.

Свойство 1. В интервале сходимости $(x_0 - R, x_0 + R)$ сумма степенного ряда (4.1) является непрерывной функцией.

Свойство 2. Степенной ряд можно почленно интегрировать по промежутку [a,b], целиком лежащему в интервале сходимости, то есть для любых a и b из этого интервала справедливо равенство

$$\int_{a}^{b} \sum_{n=0}^{\infty} a_{n}(x-x_{0})^{n} = \sum_{n=0}^{\infty} \int_{a}^{b} a_{n}(x-x_{0})^{n} dx = \sum_{n=0}^{\infty} a_{n} \left(\frac{(b-x_{0})^{n+1}}{n+1} - \frac{(a-x_{0})^{n+1}}{n+1} \right).$$

Свойство 3. Степенной ряд можно почленно дифференцировать на интервале сходимости, то есть

$$\left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right)^{n} = \sum_{n=0}^{\infty} \left(a_n (x - x_0)^n\right)^{n} = \sum_{n=1}^{\infty} a_n n (x - x_0)^{n-1}.$$

При этом радиус сходимости ряда из производных равен радиусу сходимости исходного ряда.

Свойство 4. (Вторая теорема Абеля). Если степенной ряд (4.1) сходится на конце интервала сходимости хотя бы условно, то его сумма непрерывна на этом конце.

Замечание 4.1. Степенной ряд в своём интервале сходимости ведёт себя по отношению к операциям дифференцирования и интегрирования так же, как и многочлен с конечным числом членов.

Операции почленного интегрирования и дифференцирования часто используются при вычислении сумм степенных рядов.

Пример 4.1. Найти область сходимости и сумму степенного ряда $\sum_{n=1}^{\infty} n \, x^{n-1}$.

▶ Интервалом сходимости этого ряда является (-1,1) (проверьте самостоятельно). Обозначим сумму ряда s(x). Возьмём произвольное число $x \in (-1,1)$ и проинтегрируем почленно данный ряд.

$$\int_{0}^{x} s(x) dx = \int_{0}^{x} \left(\sum_{n=1}^{\infty} n x^{n-1} \right) dx = \sum_{n=1}^{\infty} \int_{0}^{x} n x^{n-1} dx = \sum_{n=1}^{\infty} \frac{n x^{n}}{n} \Big|_{0}^{x} = \sum_{n=1}^{\infty} x^{n} = x^{n}$$

$$= x(1 + x + x^{2} + \dots + x^{n} + \dots) = x \frac{1}{1 - x} = \frac{x}{1 - x}.$$

Получили равенство $\int_{0}^{x} s(x) dx = \frac{x}{1-x}$, продифференцировав которое, получим $s(x) = \frac{1}{(1-x)^2}$.

Пример 4.2. Найти область сходимости и сумму ряда $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

▶ Интервалом сходимости этого ряда является (-1, 1) (проверьте самостоятельно). Обозначим сумму ряда s(x). Продифференцируем почленно

$$s'(x) = \left(\sum_{n=1}^{\infty} \frac{x^n}{n}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^n}{n}\right)' = \sum_{n=1}^{\infty} x^{n-1} = 1 + x + x^2 + \dots + x^n + \dots = \frac{1}{1-x}.$$

Получили равенство $s'(x) = \frac{1}{1-x}$, возьмём $x \in (-1, 1)$ и проинтегрируем его

$$s(x) - s(0) = \int_{0}^{x} s'(x)dx = \int_{0}^{x} \frac{1}{1 - x} dx = -\ln|1 - x|,$$

а поскольку s(0)=0, и (1-x)>0 при $x\in (-1,1)$, то окончательно получим, что $s(x)=-\ln(1-x)$. Заметим, что при x=-1 исходный ряд сходится условно, следовательно, $\sum_{n=1}^{\infty}\frac{(-1)^n}{n}=-1+\frac{1}{2}-\frac{1}{3}+\ldots+(-1)^n\frac{1}{n}+\ldots=-\ln 2,$ причём порядок членов ряда менять нельзя. (Здесь для утверждения того, что сумма последнего

членов ряда менять нельзя. (Здесь для утверждения того, что сумма последнег числового ряда равна −ln2, применена вторая теорема Абеля.) ◀