Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică

Secția: Informatică engleză Curs: Dynamical Systems

Primăvara 2024

Seminar 4

1. For each k > 0 we consider the differential equation

$$\dot{x} = -k(x - 21),$$

which is the model of Newton for cooling processes, here x(t) being the temperature of a cup of tea at time t.

(a) Find its flow. (b) An experiment revealed the following fact. A cup of tea with initial temperature of $49^{\circ}C$ has a temperature of $37^{\circ}C$ after 10 minutes. Find the initial temperature of a cup of tea such that after 20 minutes the tea has $37^{\circ}C$.

Theorem 1 Let $f \in C^1(\mathbb{R})$ and $\eta^* \in \mathbb{R}$ be such that $f(\eta^*) = 0$.

If $f'(\eta^*) < 0$ then η^* is an attractor equilibrium point of $\dot{x} = f(x)$.

If $f'(\eta^*) > 0$ then η^* is a repeller equilibrium point of $\dot{x} = f(x)$.

- **2.** Let 0 < c < 1 be a parameter and consider the scalar dynamical system $\dot{x} = x(1-x) cx$.
- a) Find its equilibria and study their stability using the linearization method.
- b) Represent its phase portrait.
- c) When x(t) > 0 is considered to be the density of fish in a lake, and 0 < c < 1 to be the rate of fishing, try to predict the fate of the fish from the lake interpreting the theoretical result obtained at a) and b). \diamond
- **3.** Represent the phase portrait of the scalar dynamical system $\dot{x} = x x^3$. Find $\varphi(t, -1)$ and $\varphi(t, 0)$ and justify. Specify the properties of the functions $\varphi(t, -2)$, $\varphi(t, 3)$ and, respectively, $\varphi(t, -0.5)$.
 - 4. Represent the phase portrait of the scalar dynamical systems
- a) $\dot{x} = x x^3 + 1$; b) $\dot{x} = -x^3$; c) $\dot{x} = x^3$; d) $\dot{x} = -x^2$. Try to use the linearization method.