А.А. Васильев

А.И. Сон

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО» ФИЗИКО-МЕХАНИЧЕСКИЙ ИНСТИТУТ ВЫСШАЯ ШКОЛА ПРИКЛАДНОЙ МАТЕМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ФИЗИКИ

Отчет о прохождении преддипломной практики на тему: «Генерация реалистичной водной поверхности»

Сон Артёма Игоревича, гр. 5030102/00201

Направление подготовки: 01.03.02 Прикладная математика и информатика.

Место прохождения практики: СПбПУ, ФизМех, ВШПМиВФ.

Сроки практики: с 03.05.2024 по 31.05.2024.

Руководитель практики от ФГАОУ ВО «СПбПУ»: Чуканов Вячеслав Сергеевич,

Консультант практики от ФГАОУ ВО «СПбПУ»: Васильев Антон Аркадьевич,
ведущий программист компьютерной графики компании "Saber Interactive".

Оценка: ______

Руководитель практики
от ФГАОУ ВО «СПбПУ» В.С. Чуканов

Дата: 31.05.2024

Обучающийся

Консультант практики

от ФГАОУ ВО «СПбПУ»

СОДЕРЖАНИЕ

Введение	3
Глава 1. Постановка задачи	4
1.1. Техническое задание	4
1.2. Ожидаемый результат	4
Глава 2. Обзор существующих решений	4
2.1. Теоретические основы SPH	5
2.2. Моделирование жидкости частицами	5
2.2.1. Давление	6
2.2.2. Вязкость	7
2.2.3. Поверхностное натяжение	7
Глава 3. Название третьей главы: разработка программного обеспечения	7
3.1. Название параграфа	7
3.2. Название параграфа	7
3.3. Выводы	7
Глава 4. Название четвёртой главы. Апробация результатов исследования, а именно: метода, алгоритма, модели исследования	8
4.1. Название параграфа	8
4.2. Название параграфа	8
4.3. Выводы	8
Заключение	9
Словарь терминов	10
Список использованных источников	11
Приложение 1. Краткие инструкции по настройке издательской системы IATEX	12
Приложение 2. Некоторые дополнительные примеры	14

введение

ГЛАВА 1. ПОСТАНОВКА ЗАДАЧИ

1.1. Техническое задание

Требуется разработать и реализовать алгоритмы для визуализации водной поверхности:

- Алгоритм симуляции жидкости
- Алгоритм извлечения поверхности жидкости
- Алгоритм инициализации пены

1.2. Ожидаемый результат

Ожидаемым результатом работы является проект, осуществляющий физически корректную симуляцию воды в реальном времени. Помимо этого, ожидаемым результатом работы является отчёт о производительности демонстрируемых алгоритмов.

ГЛАВА 2. ОБЗОР СУЩЕСТВУЮЩИХ РЕШЕНИЙ

Среди самых распространенных подходов к симуляции жидкости можно выделить три подхода:

- Подход Эйлера
 Область симуляции делится на сетку, в каждом элементе считается векторное поле скоростей
- Подход Лагранжа
 Жидкость представляется множеством частиц со своей массой, плотностью, скоростью
- Heightfield
 Высота поверхности воды представляется некоторой функцией, что уменьшает размерность задачи

В предложенном алгоритме предлагается использовать подход Лагранжа, так как область симуляции не ограничена сеткой, в отличие от подхода Эйлера. А также симуляция позволяет моделировать брызги, которые невозможны, если уменьшить размерность задачи, как в heightfield подходе.

2.1. Теоретические основы SPH

Для симуляции частиц был выбран метод Smoothed Particle Hydrodynamics (SPH).

SPH - метод интерполяции для системы частиц, в котором векторное поле, определеное только в конечном количестве точек, может быть вычислено в любой точке пространства путем апроксимации.

Скалярная велечина A может быть интерполирована в точке r как взвешенная сумма вклада всех остальных частиц.

$$A_s(r) = \sum_{i} m_j \frac{A_j}{\rho_j} W(r - r_j, h)$$
 (2.1)

Здесь j итерирует по всем частицам, m_j - масса частицы j, r_j - положение частицы j, ρ_j - плотность, A_j - значение поля в точке r_j . Функция W(r,h) называется сглаживающей ядерной функцией с радиусом h.

Массы каждой частицы постоянны и одинаковы на протяжении всей симуляции, в то время как плотность необходимо апроксимировать на каждом шаге. Получим выражение для плотности частицы в точке r подстановкой в уравнение (2.1).

$$\rho_{S}(r) = \sum_{j} m_{j} \frac{\rho_{j}}{\rho_{j}} W(r - r_{j}, h) = \sum_{j} m_{j} W(r - r_{j}, h)$$
 (2.2)

Вычисление производных затрагивает только сглаживающую функцию, поэтому:

$$\nabla A_S(r) = \sum_j m_j \frac{A_j}{\rho_j} \nabla W(r - r_j, h)$$
 (2.3)

$$\nabla^2 A_s(r) = \sum_j m_j \frac{A_j}{\rho_j} \nabla^2 W(r - r_j, h)$$
 (2.4)

2.2. Моделирование жидкости частицами

Поведение жидкости описывается векторным полем скоростей v, полем плотностей ρ и полем давлений p. Изменение этих величин со временем описывается двумя уравнениями. Первое уравнение неразрывности:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 \tag{2.5}$$

И уравнение Навье-Стокса, описывывающее движение:

$$\rho(\frac{\partial v}{\partial t} + v \cdot \nabla v) = -\nabla p + \rho g + \mu \nabla^2 v, \tag{2.6}$$

где g - внешние силы, µ - коэффициент вязкости

Использование частиц вместо стационарной сетки упрощает эти два уравнения. Во-первых, так как число частиц не изменяется и каждая частица имеет постоянную массу, то сохранение массы гарантировано, и уравнение (2.5) может быть опущено. Во-вторых, выражение $\frac{\partial v}{\partial t} + v \cdot \nabla v$ в (2.6) может быть заменено на $\frac{dv}{dt}$. Так как частицы двигаются вместе с жидкостью, то частная производная векторного поля скоростей просто производная скоростей частиц по времени, а конвективное слогаемое $v \cdot \nabla v$ не нужно.

Справа в (2.6) остаются три слагаемых моделирующих плотности сил. Давление $(-\nabla p)$, внешние силы ρg , взякость $\mu \nabla^2 v$. Таким образом, если $f = -\nabla p + \rho g + \mu \nabla^2 v$, то ускорение частицы:

$$a_i = \frac{dv_i}{dt} = \frac{f_i}{\rho_i},\tag{2.7}$$

2.2.1. Давление

Применение SPH апроксимации к слогаемому давления в (2.6) дает

$$-\nabla p(r_i) = -\sum_j m_j \frac{p_j}{\rho_j} \nabla W(r_i - r_j, h)$$
 (2.8)

Эта сила не симметрична в отношении двух различных частиц, для исправления этого предлагается (цитирование):

$$-\nabla p(r_i) = -\sum_j m_j \frac{p_i + p_j}{2\rho_j} \nabla W(r_i - r_j, h)$$
(2.9)

Для вычисления давления используется формула идеального газа

$$p = k\rho, \tag{2.10}$$

где k - газовая константа, зависящая от температуры.

Но для численной стабильности симуляции используется смещенная величина

$$p = k(\rho - \rho_0), \tag{2.11}$$

где ρ_0 - плотность покоя.

2.2.2. Вязкость

Применяя апроксимацию к слогаемому вязкости в (2.6) получаем

$$\mu \nabla^2 v(r_i) = \mu \sum_j m_j \frac{v_j}{\rho_j} \nabla^2 W(r_i - r_j, h)$$
 (2.12)

Эти силы также асимметричны, но так как вязкость зависит от разности скоростей, а не от их абсолютного значения, то симметричной их можно сделать таким образом:

$$\mu \nabla^2 v(r_i) = \mu \sum_j m_j \frac{v_j - v_i}{\rho_j} \nabla^2 W(r_i - r_j, h).$$
 (2.13)

2.2.3. Поверхностное натяжение

ГЛАВА 3. НАЗВАНИЕ ТРЕТЬЕЙ ГЛАВЫ: РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Хорошим стилем является наличие введения к главе. Во введении может быть описана цель написания главы, а также приведена краткая структура главы.

3.1. Название параграфа

3.2. Название параграфа

3.3. Выводы

Текст выводов по главе 3.

ГЛАВА 4. НАЗВАНИЕ ЧЕТВЁРТОЙ ГЛАВЫ. АПРОБАЦИЯ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ, А ИМЕННО: МЕТОДА, АЛГОРИТМА, МОДЕЛИ ИССЛЕДОВАНИЯ

Хорошим стилем является наличие введения к главе. Во введении может быть описана цель написания главы, а также приведена краткая структура главы.

4.1. Название параграфа

4.2. Название параграфа

Пример ссылки на литературу [0].

4.3. Выводы

Текст выводов по главе 4.

ЗАКЛЮЧЕНИЕ

Заключение (2 – 5 страниц) обязательно содержит выводы по теме работы, конкретные предложения и рекомендации по исследуемым вопросам. Количество общих выводов должно вытекать из количества задач, сформулированных во введении выпускной квалификационной работы.

Предложения и рекомендации должны быть органически увязаны с выводами и направлены на улучшение функционирования исследуемого объекта. При разработке предложений и рекомендаций обращается внимание на их обоснованность, реальность и практическую приемлемость.

Заключение не должно содержать новой информации, положений, выводов и т. д., которые до этого не рассматривались в выпускной квалификационной работе. Рекомендуется писать заключение в виде тезисов.

Последним абзацем в заключении можно выразить благодарность всем людям, которые помогали автору в написании ВКР.

СЛОВАРЬ ТЕРМИНОВ

 ${f TeX}$ — язык вёрстки текста и издательская система, разработанные Дональдом Кнутом.

LaTeX — язык вёрстки текста и издательская система, разработанные Лэсли Лампортом как надстройка над TeX.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 0. *Автономова Н. С.* Философский язык Жака Деррида. М.: Российская политическая энциклопедия (РОССПЭН), 2011. 510 с. (Сер.: Российские Пропилеи).
- 0. *Котельников И. А.*, *Чеботаев П.* 3. LaTeX по-русски. 3-е изд. Новосибирск: Сибирский Хронограф, 2004. 496 с. URL: http://www.tex.uniyar.ac.ru/doc/kotelnikovchebotaev2004b.pdf (дата обращения: 06.03.2019).
- 0. *Песков Н. В.* Поиск информативных фрагментов описаний объектов в задачах распознавания: дис. . . . канд. канд. физ.-мат. наук: 05.13.17 / Песков Николай Владимирович. М., 2004. 102 с.
- 0. Положение о порядке проведения государственной итоговой аттестации по образовательным программам высшего образования программам бакалавриата, программам специалитета и программам магистратуры (в редакции приказа от 03.05.2018 № 946). 2018. URL: https://dep.spbstu.ru/userfiles/files/prev/docs/for_students/gia_03_05_2018.pdf (дата обращения: 06.03.2019).
- 0. Руководство студента СПбПУ по подготовке выпускной квалификационной работы и сопутствующих документов с помощью LaTeX / B. A. Пархоменко [и др.]. 2018. URL: https://github.com/ParkhomenkoV/SPbPU-student-thesis-template/blob/master/Author_guide_SPbPU-student-thesis.pdf (дата обращения: 06.03.2019).
- 0. *Kotelnikov I. A.*, *Chebotaev P. Z.* LaTeX in Russian. 3rd ed. Novosibirsk: Sibiskiy Hronograph, 2004. 496 p. URL: http://www.tex.uniyar.ac.ru/doc/kotelnikovchebotaev2004b.pdf (visited on 06.03.2019); (in Russian).
- 0. SPbPU-student-thesis-template. URL: https://github.com/ParkhomenkoV/SPbPU-student-thesis-template (visited on 06.03.2019).

Приложение 1

Краткие инструкции по настройке издательской системы РТЕХ

Приложение 2

Некоторые дополнительные примеры