Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 10 martie 2018

CLASA a VIII-a - Soluții și barem

Varianta 2

Problema 1. Arătați că, dacă $m, n \in \mathbb{N}^*$, atunci

$$\left\{\frac{m}{n}\right\} + \left\{\frac{n}{m}\right\} \neq 1.$$

Gazeta Matematică

Problema 2. Fie $a, b, c \in [1, \infty)$. Demonstrați că

$$\frac{a\sqrt{b}}{a+b} + \frac{b\sqrt{c}}{b+c} + \frac{c\sqrt{a}}{c+a} + \frac{3}{2} \le a+b+c.$$

Soluție. Din inegalitatea mediilor avem $a+b \geq 2\sqrt{ab}$ și analoagele, de unde rezultă $\frac{a\sqrt{b}}{a+b} + \frac{b\sqrt{c}}{b+c} + \frac{c\sqrt{a}}{c+a} + \frac{3}{2} \leq \frac{\sqrt{a}}{2} + \frac{\sqrt{b}}{2} + \frac{\sqrt{c}}{2} + \frac{3}{2} \dots 3\mathbf{p}$ Vom arăta că $\sqrt{a} \leq 2a-1$ pentru orice $a \geq 1$. Într-adevăr, relația precedentă este echivalentă cu $(2\sqrt{a}-1)(\sqrt{a}-1) \geq 0$, relație evidentă pentru orice $a \geq 1 \dots 2\mathbf{p}$

Din inegalitatea de mai sus și analoagele ei obținem că $\frac{\sqrt{a}}{2} + \frac{\sqrt{b}}{2} + \frac{\sqrt{c}}{2} + \frac{3}{2} \le a + b + c$ **2p**

Problema 3. Fie paralelipipedul dreptunghic ABCDA'B'C'D'. Notăm cu M, N și P mijloacele muchiilor [AB], [BC], respectiv [BB']. Fie $\{O\} = A'N \cap C'M$.

- a) Arătați că punctele D, O, P sunt coliniare.
- b) Arătați că $MC' \perp (A'PN)$ dacă și numai dacă ABCDA'B'C'D' este cub.
- b) Notăm AB = 2x, BC = 2y, BB' = 2z. $C'M \perp (A'PN) \Leftrightarrow C'M \perp A'N$ şi $C'M \perp DP$. Aplicăm succesiv teorema lui Pitagora. În $\triangle C'BC$, $\triangle C'BM$, $\triangle A'BA$,

 $\triangle A'BN, \triangle DBA, \triangle DBP, \triangle BMN, \triangle DAM \text{ obţinem } OM^2 = \frac{1}{9}C'M^2 = \frac{1}{9}(4z^2 + 4y^2 + x^2), \\ ON^2 = \frac{1}{9}A'N^2 = \frac{1}{9}(4z^2 + 4x^2 + y^2), OD^2 = \frac{4}{9}DP^2 = \frac{4}{9}(4y^2 + 4x^2 + z^2), \\ MN^2 = 4y^2 + x^2. \text{ Din } C'M \perp A'N \text{ rezultă că } \triangle MNO \text{ este dreptunghic în } O \text{ și, prin aplicarea teoremei lui Pitagora, } MN^2 = MO^2 + ON^2 \text{ ceea ce conduce la } x^2 + y^2 = 2z^2$ (*). La fel, din $C'M \perp DP$, aplicând teorema lui Pitagora în triunghiul MDO avem $DM^2 = DO^2 + OM^2$, ceea ce ne conduce la relația $x^2 + z^2 = 2y^2$ (**). Din (*) și (**) rezultă x = y = z, de unde rezultă că ABCDA'B'C'D' este cub.

Problema 4. a) Considerăm numerele naturale nenule a, b, c astfel încât a < b < c și $a^2 + b^2 = c^2$. Demonstrați că dacă $a_1 = a^2$, $a_2 = ab$, $a_3 = bc$, $a_4 = c^2$, atunci $a_1^2 + a_2^2 + a_3^2 = a_4^2$ și $a_1 < a_2 < a_3 < a_4$.

- b) Demonstrați că, oricare ar fi $n \in \mathbb{N}$, $n \geq 3$, există numerele naturale nenule a_1, a_2, \ldots, a_n care verifică relațiile $a_1^2 + a_2^2 + \ldots + a_{n-1}^2 = a_n^2$ și $a_1 < a_2 < \ldots < a_{n-1} < a_n$.
- **Soluție.** a) Avem $a_1^2 + a_2^2 + a_3^2 = a^4 + a^2b^2 + b^2c^2 = a^2(a^2 + b^2) + b^2c^2 = a^2c^2 + b^2c^2 = (a^2 + b^2)c^2 = c^4 \dots 1p$

b) Pentru n = 3, un exemplu este $a_1 = 3$, $a_2 = 4$, $a_3 = 5$ (3 < 4 < 5 şi $3^2 + 4^2 = 5^2$).

Pentru $n \geq 4$ putem alege $a_1 = 7, \ a_2 = 8, \ a_3 = 10, \dots, \ a_{n-2} = 2n$. Evident, suma $a_1^2 + a_2^2 + \dots + a_{n-2}^2$ este impară. Fie $N \in \mathbb{N}$ astfel ca $a_1^2 + a_2^2 + \dots + a_{n-2}^2 = 2N + 1$. Atunci $N \geq 3$. Definim atunci $a_{n-1} = N$ și $a_n = N + 1$.

Avem $a_1^2 + a_2^2 + \ldots + a_{n-2}^2 + a_{n-1}^2 = 2N + 1 + N^2 = (N+1)^2 = a_n^2$ şi $a_1 < a_2 < \ldots < a_{n-2} < a_{n-1} < a_n$. Toate inegalitățile sunt evidente în afară de penultima: $a_{n-2} \le \sqrt{2N+1} < N = a_{n-1}$ revine la $N^2 > 2N+1$, adică la $(N-1)^2 > 2$, evident adevărat pentru $N \ge 3 \ldots 5$