Алгоритм А*

Тимофей Фролов

07.12.2022

История создания

- Оригинальная статья июль 1968 года
- Название "A Formal Basis for the Heuristic Determination of Minimum Cost Paths"
- ► Авторы: Peter E. Hart, Nils J. Nilsson, Bertram Raphael

Используемые обозначения

- ▶ Множество вершин {n_i}
- lacktriangle Множество направленных рёбер $\{e_{ij}\}$, ребру e_{ij} отвечает вес c_{ij}
- Функция $\Gamma: n_i \to \{(n_j, c_{ij})\}$ по вершине получаем всех потомков, с весами соответствующих рёбер
- ▶ Подграф $G_n \subset \{n_i\}$ множество вершин, достижимых из $n \in \{n_i\}$
- ightharpoonup Функция $h(n_i,n_j)$ минимальная длина пути из вершины n_i в вершину n_i

Постановка задачи

- Собственно, задача:
 - **▶** "Стартовая" вершина $s \in \{n_i\}$
 - ▶ Множество "целевых" вершин $T \subset G_s$
 - $h(n) := \min_{t \in T} h(n, t)$
 - ▶ Цель найти h(s) и путь, при котором оно достигается
- Дополнительные требования, чтобы можно было использовать A*
 - $ightharpoonup \exists \delta > 0 : \forall i, j : c_{ij} > \delta$
 - Известна некоторая дополнительная информация о природе графа (объясню позднее)

Идея алгоритма

- ightharpoonup Введём g(n)=h(s,n) минимальная длина пути из вершины s в вершину n
- lacktriangle Введём f(n) длина оптимального пути из s в $t\in T$, проходящего через n
 - f(n) = g(n) + h(n)
 - ightharpoonup Выгодно брать точки с наименьшим f(n) из всех имеющихся.
 - ► $f(n) = f(s) \ \forall n$, лежащей на оптимальном пути
 - ► $f(n) > f(s) \, \forall n$, не лежащей на оптимальном пути
 - ▶ Вычисление f(n) ???
- ▶ Вводим $\hat{f}(n)$ аппроксимацию функции f(n).
 - $\hat{f}(n) = \hat{g}(n) + \hat{h}(n)$
 - $\hat{g}(n)$ расстояние минимального найденного пути до вершины п
 - $\hat{h}(n)$ функция, которую мы вводим из дополнительных знаний о природе вершин и рёбер
 - $\forall n \in G : \hat{h}(n) \leq h(n)$
 - \blacktriangleright $\forall m, n \in G: h(m, n) + \hat{h}(n) >= \hat{h}(m)$

Собственно, алгоритм

- 1. Помечаем s "открытой", вычисляем $\hat{\mathit{f}}(s)$
- 2. Выбираем открытую вершину n c наименьшим значением \hat{f} (в случае, если таких несколько, выбираем вершину c наименьшим значением \hat{h})
- 3. Если $n \in T$, n искомая вершина. Строим обратный путь до s, завершаем исполнение алгоритма
- 4. Иначе помечаем n "закрытой", помечаем всех не закрытых потомков n открытыми, вычисляем для них значение \hat{f} , возвращаемся к пункту 2

Псевдокод

```
1: procedure AStar(s, T)
2:
3:
4:
5:
6:
7:
8:
9:
11:
          open \leftarrow \{s\}
          closed \leftarrow \emptyset
          g[s] \leftarrow 0
          f[s] \leftarrow g[s] + h(s)
          while open \neq \emptyset do
              n \leftarrow \min\{open\} // comparing by f
              if n \in T then
                   break:
                 end if
                 open.pop(n)
 12:
                 closed.push(n)
 13:
                 for (e, c) \in \Gamma(n) do
                     if e ∉ closed then
                          open.push(e)
 16:
                          g[e] \leftarrow g[n] + c
 17:
                          f[e] \leftarrow g[e] + h(e)
 18:
19:
20:
21:
22:
23:
                          prev[e] \leftarrow n
                     end if
                 end for
             end while
             path = []
             while n \neq s do
 24:
25:
                 path.pushleft(n)
                 n \leftarrow prev[n]
 26:
27:
             end while
             return path
```

Пример работы

▶ Тык

Свойства алгоритма А*

- Алгоритм является допустимым
- Алгоритм является оптимальным
- Асимптотическая сложность
 - ▶ Временная сложность $O(b^d)$, где b среднее количество потомков у узла, d глубина искомого пути
 - lacktriangle Полиноминальная, если $|\hat{h}(x) h(x)| = O(\log h(x))$
 - Объём используемой памяти O(b^d) храним информацию о каждой посещённой вершине
 - ▶ В случае $\hat{h}(n) = 0 \ \forall n \ \mathsf{A}^*$ эквивалентен алгоритму Дейкстры