

An Introduction to the Classical Theory of Computation 3

Dr. Hugo García Tecocoatzi

Instituto Tecnológico y de Estudios Superiores de Monterrey

August 21 2025

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ②

The Analysis of Computational Problems

Three fundamental questions:

- What is a computational problem?
 - Examples: multiplying numbers, AI tasks.
 - ullet Focus: $decision\ problems
 ightarrow elegant\ general\ theory.$
- 4 How do we design algorithms?
 - Given a problem, what algorithms solve it?
 - Are there general methods for broad classes?
 - How to verify correctness?
- What resources are needed?
 - Algorithms consume time, space, energy.
 - Classify problems by minimal resource requirements.

Quantifying Computational Resources

Why do we need resource quantification?

- Different computational models (e.g., 1-tape vs 2-tape TM) may require different resources.
- We need a model-independent way of comparing algorithms.
- Focus: asymptotic behavior of algorithms, not exact step counts.

Example: Adding two *n*-bit numbers:

Exact gates:
$$n + \log n + 16 \Rightarrow \text{Asymptotic: } O(n) \Rightarrow n$$

Exact vs Asymptotic Resource Analysis

Exact gate count:

$$f(n) = n + 2\log n + 16$$

- Includes constants
- Includes smaller terms
- Precise for each n

Asymptotic behavior:

$$f(n) = O(n) = n$$

- Focuses on growth rate
- Ignores constants
- Dominant term: n

For large n, only the dominant term matters.

Exact vs Asymptotic Resource Analysis

Exact gate count:

$$f(n) = n + 2\log n + 16$$

Asymptotic behavior:

$$f(n) = O(n) = n$$

Figura: N = 10

Figura: N = 1000

For large n, only the dominant term matters.

Big-O Notation

Definition: $f(n) \in O(g(n))$ if there exist constants c, n_0 such that:

$$\forall n \geq n_0 \quad f(n) \leq c \cdot g(n)$$

Interpretation:

- g(n) is an upper bound on f(n) (for large n).
- Captures the worst-case growth rate.
- Example: $24n + 2 \log n + 16 = O(n)$.

Big-Omega Notation

Definition: $f(n) \in \Omega(g(n))$ if there exist constants c, n_0 such that:

$$\forall n \geq n_0 \quad f(n) \geq c \cdot g(n)$$

Interpretation:

- g(n) is a lower bound on f(n) (for large n).
- Captures the **best-case growth rate**.
- Example: $24n + 2 \log n + 16 = \Omega(n)$.

Big-Theta Notation

Definition: $f(n) \in \Theta(g(n))$ if f(n) is both O(g(n)) and $\Omega(g(n))$.

Interpretation:

- g(n) is a **tight bound** on f(n).
- Captures the exact asymptotic growth.
- Example: $24n + 2 \log n + 16 = \Theta(n)$.

 $O = \text{upper bound}, \quad \Omega = \text{lower bound}, \quad \Theta = \text{tight bound}$

Asymptotic Notation: Examples

Big-O (Upper Bound):

$$2n \in O(n^2)$$
 since $2n \le 2n^2$ $\forall n > 0$

• Big- Ω (Lower Bound):

$$2^n \in \Omega(n^3)$$
 since $n^3 \le 2^n$ for large n

Big-⊖ (Tight Bound):

$$7n^2 + \sqrt{n}\log n \in \Theta(n^2)$$

$$7n^2 \le 7n^2 + \sqrt{n}\log n \le 8n^2 \quad \text{for large } n$$

Asymptotic notation captures the **growth rate**, not the exact details.

Asymptotic Notation: Big-O

Asymptotic Notation: Big- Ω

Asymptotic Notation: Big-Θ

Computational Complexity

- Computational complexity studies the time and space resources required to solve computational problems.
- Goal: Prove lower bounds on resources required by the best possible algorithm.
- Complementary to algorithm design:
 - Algorithm design: creates efficient algorithms.
 - Complexity theory: proves how efficient an algorithm *can* be.

Challenges in Defining Complexity

- Different **computational models** may require different resources:
 - Example: multi-tape Turing machines are faster than single-tape Turing machines.
- To compare models, we use input size n (in bits).
- Example: deciding whether an *n*-bit number is prime.

Measuring Computational Resources

- Time complexity: Number of steps as a function of input size.
- Space complexity: Amount of memory required.
- Other resources: Randomness, parallelism, energy.
- Big-O notation formalizes asymptotic growth:

$$O(f(n)) = \{ g(n) \mid g(n) \le cf(n) \text{ for large } n \}.$$

Polynomial vs. Exponential Resources

- Polynomial time/space: resources grow as n^k for some k.
 - Considered efficient (tractable, feasible).
- Exponential time/space: resources grow faster than any polynomial.
 - Considered inefficient (intractable, infeasible).
- Sometimes "exponential" includes functions like $n^{\log n}$, which grow faster than polynomials but slower than 2^n .

Decision Problems

- A decision problem has a yes/no answer.
- Example: Is a given number m prime?
- Importance:
 - Simpler, elegant theory.
 - Forms the foundation of complexity classes.

Decision Problems as Languages

- Formalism: decision problems ↔ languages.
- A language L over alphabet Σ is a subset of Σ^* .
- Example: $\Sigma = \{0, 1\}$, then

 $L = \{ binary strings representing prime numbers \}.$

- A Turing machine decides *L* by halting in:
 - q_Y ("yes") if $x \in L$
 - q_N ("no") if $x \notin L$

Defining Complexity Classes

- For input of length n, let TIME(f(n)) = all problems decidable in time O(f(n)).
- Example: primality testing.
 - Goal: determine if n is prime in as few steps as possible.
 - If solvable in polynomial time: primality $\in P$.
- Captures the **resources required** by the best possible algorithm.

The Complexity Class P

- $P = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$
- In words: all problems solvable in polynomial time.
- Intuitively:
 - Efficient, tractable, feasible problems.
 - Algorithms scale reasonably with input size.
- Examples:
 - Sorting, shortest paths, matrix multiplication, primality testing.

Complexity Classes: P, NP,

- P: Problems solvable in polynomial time by a deterministic Turing machine.
 - Example: sorting $(O(n \log n))$.
- **NP**: Problems whose solutions can be *verified* in polynomial time (but cannot be found).
 - Factoring is an example of a problem in an important complexity class known as NP.

NP-Complete Problems

- A problem is **NP-Complete** if:
 - It is in NP.
 - 2 It is NP-Hard.
- These are the hardest problems in NP.
- Key consequence:
 - If one NP-Complete problem is solved in polynomial time, then all problems in NP can be solved in polynomial time.
 - \Rightarrow This would prove P = NP.

NP-Hard Problems

- A problem is NP-Hard if every problem in NP can be reduced to it in polynomial time.
- NP-Hard problems are at least as difficult as the hardest problems in NP.

Visualizing Complexity Classes

If any NP-Complete problem is solved in polynomial time, then P = NP.

From P to NP

- P contains all problems efficiently decidable by a deterministic Turing machine.
- Next: class NP problems for which a solution can be verified in polynomial time.
- Key question:

Is
$$P = NP$$
?

Discussion Point

Open Problem

Is P = NP? One of the Millennium Prize Problems.

- A "yes" answer: All NP problems efficiently solvable.
- A "no" answer: Inherent barrier between efficient solving and verifying.
- Practical impact: Cryptography, optimization, AI, physics simulations.

Why Complexity Theory Matters for Quantum Computing

- Complexity theory provides a framework for measuring the difficulty of computational problems.
- Classical classes (P, NP, NP-Complete, NP-Hard) serve as benchmarks.
- Quantum algorithms are compared against these classical benchmarks.
- Key question: Can quantum computers efficiently solve problems that are classically intractable?

Quantum Complexity Classes

- Just as classical computation has P and NP, quantum computation introduces new classes:
 - BQP (Bounded-error Quantum Polynomial time): Problems solvable by quantum computers in polynomial time with bounded error.
 - QMA (Quantum Merlin-Arthur): Quantum analogue of NP, where a quantum proof can be verified efficiently.
- Comparing BQP to classical P and NP highlights the potential advantages of quantum computing.

Bridging Classical and Quantum Worlds

- Understanding classical complexity is essential:
 - To define what "speedup" means.
 - To identify which classical problems solve using quantum algorithms (e.g., factoring, search).
 - To avoid overstating quantum advantages.
- This bridge sets the stage for studying algorithms like:
 - Shor's Algorithm (factoring in polynomial time).
 - Grover's Algorithm (quadratic speedup for search).
- Quantum computing does not replace classical computation but it extends it.