

BIOMECATRÓNICA

Modelado en el dominio de la frecuencia

Transformada de Laplace

La transformada de Laplace es una transformación de dominio en la que un sistema dinámico, su entrada y su salida son consideradas entidades separadas y sus relaciones algebraicas

Viene dada por la integral

$$F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$$

Análisis en el dominio de Laplace

El proceso de análisis del comportamiento dinámico de un sistema en dominio de Laplace implica los siguientes pasos:

- 1. Conversión de las EDOs a ecuaciones algebraicas
- 2. Cálculos algebraicos para hallar las soluciones necesarias
- 3. Inversión de los resultados para llevarlos al dominio del tiempo

EIA Inversión de la transformada de Laplace

El proceso de invertir la transformada de Laplace implica solucionar una integral de Bromwich usando el teorema de los residuos de Cauchy

$$f(t) = \sum \text{Res}(F(s)e^{st})$$

Un método alternativo, pero también basado en residuos, es la expansión en fracciones parciales

Dada la siguiente EDO, solucione para y(t) si las condiciones iniciales son $y(0)=1, \dot{y}(0)=2$ y la entrada es un escalón de amplitud 32

$$\frac{d^2y(t)}{dt^2} + 12\frac{dy(t)}{dt} + 32y(t) = x(t)$$

Halle la transformada inversa de

$$F(s) = \frac{10}{s(s+2)(s+3)^2}$$

$$G(s) = \frac{s^3}{s^3 + 18s^2 + 104s + 192}$$

Función de transferencia

Función que relaciona algebraicamente la salida de un sistema con su entrada, bajo condiciones iniciales nulas y permite separar la entrada, el sistema y la salida

Representa el modelo matemático de un sistema dinámico en el dominio de Laplace

FIA Función de transferencia

$$a_n \frac{d^n c(t)}{dt^n} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} + \dots + a_0 c(t) = b_m \frac{d^m r(t)}{dt^m} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \dots + b_0 r(t)$$

$$G(s) = \frac{C(s)}{R(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

Halle la respuesta al escalón y la rampa del sistema con función de transferencia

$$G(s) = \frac{s}{(s+4)(s+8)}$$

TEIA Modelo de circuitos eléctricos

Component	Voltage-current	Current-voltage	Voltage-charge		Admittance $Y(s) = I(s)/V(s)$
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-\\\\\- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
Inductor	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

EIA Modelo de sistemas mecánicos

Component	Force-velocity	Force-displacement	
Spring $x(t)$ $f(t)$ K	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = Kx(t)	K
Viscous damper $x(t)$ $f(t)$	$f(t) = f_{v}v(t)$	$f(t) = f_{v} \frac{dx(t)}{dt}$	$f_{v}s$
Mass $x(t)$ $f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms^2

EIA Analogías electromecánicas

Mecánico	Eléctrico		
Fuerza	Voltaje		
Masa	Inductancia		
Fricción	Resistencia		
Elasticidad	Recíproco de capacitancia		
Desplazamiento	Carga		
Velocidad	Corriente		

TEIA Modelos generalizados

Sistemas de diferente naturaleza tienen comportamientos similares, por lo que los modelos se pueden caracterizar por dos tipos de variables: esfuerzo y flujo

Las relaciones entre ellas vienen dada por

$$\psi = R\zeta$$

$$\psi = \frac{1}{C} \int_0^t \zeta \, dt$$

$$\psi = L \frac{d\zeta}{dt}$$

Variables generalizadas

	Eléctrico	Mecánico	Fluídico	Térmico
Esfuerzo	Voltaje	Fuerza	Presión	Temperatura
e	v	F	P	T
Flujo	Corriente	Velocidad	Caudal	Caudal
f	i	v	Q	q

Elementos de resistencia

$$\Delta P = Q R_{\rm f}$$

$$\Delta\theta = Q R_{t}$$

(d)

$$\Delta \phi = Q\,R_{\rm c}$$

Elementos de capacitancia

Leyes de conexión

$$(\psi_{a} - \psi_{b}) + (\psi_{b} - 0) + (0 - \psi_{a}) = 0$$
$$\zeta_{1} + (-\zeta_{2}) + (-\zeta_{3}) = 0$$

Elementos eléctricos, fluídicos, térmicos y químicos

Elementos mecánicos

$$R = R_{\rm m1} + R_{\rm m2}$$

$$C = \left(\frac{1}{C_{\text{m1}}} + \frac{1}{C_{\text{m2}}}\right)^{-1}$$

Ejemplo 7: Modelo lineal del pulmón

Modelo lineal del pulmón

EIA Bibliografia

- Enderle, J.D. and Bronzino, J.D. (2012) *Introduction to biomedical engineering*. Amsterdam: Elsevier/Academic Press.
- Khoo, M.C.K. (2018) *Physiological control systems: Analysis, simulation, and estimation*. Piscataway, NJ, Hoboken, NJ: IEEE Press; Wiley.
- Laveneziana, P. *et al.* (2019) *ERS statement on respiratory muscle testing at rest and during exercise*, *European Respiratory Journal*, 53(6), p. 1801214.
- Milsum, J.H. (1966) *Biological Control Systems Analysis*. London: McGraw-Hill.