第二章 FORTRAN 语言基础

2.1 字符集与保留字

引子 让我们先从一个简单的示例程序展示 Fortran 语言的基本结构。

简单的 Fortran 示例小程序 开始语句,关键字为 program,必要 program main 注释行,可写程序说明 ! example 表示不需要程序自定义变量 implicit none 自行变量申明, 定义实型变量, 必要 REAL st1,st2,st3,stave 变量赋值 st1=8.5st2=9.0st3 = 8.7计算语句, 运算式 stave = (st1 + st2 + st3)/3.0或者: write(*,*) 变量 或'字符串'输出到屏幕 print *,'stave=',stave 结束语句, 必要 end

2.1.1 字符集

合法字符 Fortran 允许使用的字符包括 (解释语句/注释中可随意使用中文等字符):

- ① 英文字母: A-Z 与 a-z (大小写在 Fortran 中不作区分,如 REAL, real, Real 是完全一致的)
- ② 阿拉伯数字: 0-9
- ③ 特殊符号: 空格 =+-*(),.'':""!&;<>\$?

2.1.2 保留字

保留字 又称为关键字,是 Fortran 中具有特定意义的字符串,例如语句关键字、内部函数名。

语句关键字 有 IF, THEN (选择语句), PROGRAM (程序开始), INTEGER (整型), REAL, READ, PRINT, WRITE, DO (执行循环), END, SUBROUTINE (子程序), FUNCTION 等。

内部函数名 系统内部固有的函数库及其函数名,例如 ABS, SIN, LOG 等。

注意 Fortran 允许保留字作为其他实体的名称(变量名、数组名、函数名、程序名等),但很不推荐。 例如 program program 中的第一个为保留字,第二个为主程序单元名称。

2.2 基本数据类型

2.2.1 提供的数据类型

主要类型 数组类型、派生类型(记录类型)、内部数据类型、指针类型、 公用区类型。

内部数据 整型、实型、复数类型、字符类型、逻辑类型。

注意 不同类型数据具有不同特性,其处理方式有所不同,取值范 围也不同,在处理数据前,必须先声明数据特性。这与 Python

的某些数据自动转换不同。

记录

目前常用的数据库(如 SQL)均为关系数据库,由表组成,第一行为字段名(表征事物基本特征的属性),其余行每行称为一条记录。一个关系数据库由很多条记录组成,读写可以以记录为单位,这就是记录类型。

2.2.2 数据类型的性质

四条性质

- ① 每个数据类型具有唯一确定的名称。
- ② 每个数据类型规定了一个取值范围(值的集合)。
- ③ 每个数据类型规定了其常量数据的表示方法。
- ④ 每个数据类型规定了一组操作。

2.3 常量与变量

2.3.1 常量

常量的概念。在程序运行过程中,其值不能被改变的量称为常量。它在程序中直接生成并直接用于计算和处理。

常量的类型 包含整型、实型、复数、字符型、逻辑型。

2.3.1.1 数值型常量

整型常量 又称为整型常数或整数,包括正数、复数和零值,例如+5、-36、0等。

实型常量 又称为实型常数或<mark>实数</mark>,它具有两种形式:

① 小数形式(100. .56) ② 指数形式(5.35E5 表示5.35×10⁵)

当单精度实数不足以表示一个数的大小或精度时,可以使用双精度实数。只需要将指数部分的 E 改变为 D 即可,例如 6.85746304857D5 具有双精度。

复型常量 又称为复型常数或复数,例如(1.0,1.0)表示1.0+1.0i,(2.1,-4.5)表示2.1-4.5i。

2.3.1.2 字符型常量

字符型常量 又称为字符串,使用一对单引号或双引号括起来的数个非空字符串。例如'a', 'A', 'x+y'等。

注意

- ① 与变量名不同,字符串内部字母区分大小写。
- ② 字符串中间若带有撇号,需要使用转义符或双引号字符串,例如 'I'm a boy.' 或 "I'm a boy"。
- ③ 字符串长度包含空格,"为空字符串,"长度为1。

2.3.1.3 逻辑型常量

逻辑型常量 在 Fortran 中,逻辑常量有且仅有两个: .TRUE. 和 .FALSE. ,两侧有两个小点。

注意 对于逻辑值.TRUE., 其在存储单元字节内每位为 1, 可视为整数-1; 对于.FALSE., 则为 0, 它们均能够直接参与到整数运算。例如: 7+FALSE=7, 1+TRUE=0。

2.3.1.4 符号常量

符号常量 例如圆周率 Π ,重力加速度 g 等数据,关键字为 PARAMETER: 。

定义方式

REAL pi, x, y, z

此时为多个变量

PARAMETER(pi=3.1415926, x=1, y=2, z=3)

此时变为多个常量, 其值不可再次更改

2.3.2 变量

变量的概念 变量在程序运行期间值可以变化,系统为程序中的每一个变量开辟一个内存空间,用来存放值。 因此,使用变量前必须进行定义,否则数据将无处可放。

变量的命名 Fortran 中规定,变量必须以字母开头,随后可接多达 30 个字母、数字或下划线。

例如, Sum\average\student name 是合法变量名, total\M.D.John 都是非法变量名。

变量的类型 总体分为三类五种,即数值型变量(包含整型、实型、复型)、字符型变量与逻辑型变量。

2.3.2.1 整型变量

变量定义 下面为合法声明整型变量的语句,关键字为 INTEGER:

代码定义

INTEGER(KIND=2) a,b,c,d 批量声明长度为 2 的 4 个整型变量 INTEGER(1) e 声明长度为 1 的 1 个整型变量

INTEGER f 声明长度为4(缺省,由计算机位数决定)的1个整型变量

INTEGER::g=123 声明长度为4的1个整型,且初始值为123

注意 符号::在声明中可有可无,若有则可赋初值,否则不可赋初值。如 INTEGER f=123 是非法语句。

2.3.2.2 实型变量

变量定义 下面为合法声明实型变量的语句,关键字为 REAL:

代码定义

 REAL(KIND=4) a,b,c,d
 声明长度为4的4个实型变量

 REAL(8) e
 声明长度为8的1个实型变量

 REAL f
 声明长度为 4 (缺省)的1个实型变量

 REAL ::g=1.23
 声明长度为 4 的 1 个实型,且初始值为 1.23

注意 KIND 值为 8 的实型变量为双精度变量,可由 DOUBLE PRECISION 声明取代。

2.3.2.3 复型变量

变量定义 下面为合法声明复型变量的语句,关键字为 COMPLEX:

代码定义

COMPLEX(KIND=4) a,b,c,d声明长度为4的4个复型变量COMPLEX(8) e声明长度为8的1个复型变量

COMPLEX f 声明长度为 4 (缺省)的 1 个复型变量

COMPLEX ::g=(3,4) 声明长度为 4 的 1 个复型,且初始值为3+4i

2.3.2.4 字符型变量

变量定义 下面为合法声明字符串的语句,关键字为 CHARACTER:

代码定义

CHARACTER a 声明长度为1(缺省默认值)的1个字符型变量

CHARACTER (8) b,c声明长度为8的2个字符型变量CHARACTER (len=4) e,f,g声明长度为4的3个字符型变量CHARACTER *6 h声明长度为6的1个字符型变量CHARACTER ::a='a'声明初值为'a'的字符型变量

CHARACTER (7)::b='Fortran',c 字符串 b 的初值为 Fortran, c 初值为 7 个空格

注意 形如声明语句 CHARACTER *7 h='student' 为非法语句(没有双冒号)。

2.3.2.5 逻辑型变量

变量定义 下面为合法声明逻辑型变量的语句,关键字为 LOGICAL:

代码定义

 LOGICAL(KIND=4) a
 声明长度为4的1个逻辑型变量

 LOGICAL (4) a
 声明长度为4的1个逻辑型变量

LOGICAL a 声明长度为 4 (缺省)的 1 个逻辑型变量 LOGICAL ::a=.True. 声明长度为 4 的 1 个逻辑型,且初始值为真

2.3.3 变量的声明

声明方式 在 Fortran 中,变量类型需要通过类型声明语句来定义,且有两类形式:显式声明和隐式声明。

显式声明即为上文各类型变量代码定义中的声明规则,我们来重点介绍隐式声明(隐含约定)。

I-N 规则 在程序中,凡是变量名用 I, J, K, L, M, N, i, j, k, l, m, n 开头的变量,均被默认为整型变量,以其他字母 开头的变量均被默认为实型变量。例如 id 为整型, total 为实型。

这种隐式声明的方式在Fortran 90/95中不被提倡使用,建议在变量声明前使用IMPLICIT取消该规则。

IMPLICIT 这种语句可以禁止 I-N 规则或重新定义 I-N 规则,它的具体使用方式如下:

IMPLICIT 使用方法

IMPLICIT NONE 关闭默认类型功能,任何变量都需要事先声明

IMPLICIT INTEGER(a,b,c) a,b,c 开头的变量默认为整型

IMPLICIT REAL(m-p) 从 m 到 p 开头的变量都认为是实型

注意 ① 在所有变量声明方法中,类型显式声明语句优先级最高,IMPLICIT 语句次之,I-N 规则最低。

- ② 类型说明语句和 IMPLICIT 语句都是非执行语句。
- ③ 类型说明只在本程序单位内有效。
- ④ IMPLICIT 命令必须置于 PROGRAM 命令的下一行,不能把它放在其他位置。

初始化 直接把数值写在声明的变量后面,使用该方法时,不能省略定义语句中间的冒号::。

或者在声明后,单起一行,例如 real a; a=1

批量初始化 使用 DATA 命令批量按顺序设置: DATA a, b, c, string/1, 2.0, (1.0,2.0), "FORTRAN"/

2.4 运算符和表达式

一般概述 运算符号包括算术运算、字符运算、关系运算和逻辑运算。

2.4.1 算术运算符及其表达式

运算符 + 正号、-负号、*乘号、/除号、**乘方,不同运算符有优先级顺序。例如: (a-b)/c**2+sin(x+y)。

注意 ① 由于用 / 号作为除号,因此在写除法运算式子时应加上必要的括号。

- ② 乘号不能省略。如 asinx,必须写成 a*sin(x)。
- ③ FORTRAN 中无大、中、小括号之分,一律用小括号。
- ④ 乘方按先右后左原则处理。
- ⑤ 对单项运算符(\pm)相当于在它前面有一个运算量 0,如- a^{**} 2 相当于 0- a^{**} 2,而不是(-a)**2。

求值运算 ① 同类型的操作数之间运算的结果仍保持原类型。特别要注意:两个整数相除的商也是整数。例如,5/2 的值是 2 而不等于 2.5,4**(-1) 等于 0,应写为 5**(1./3.) 而不是 5**(1/3)。

② 如果参加运算的两个操作数为不同类型,则编译系统会自动将它们转换成同一类型后进行运算。 转换的规律是:将低级类型转换成高级类型。类型的转换时从左向右进行的,在遇到不同类型的操作数时才进行转换。例如,1/2*1.0 等于 0,而 1./2*1 等于 0.5。

优先级 COMPLEX>REAL>INTEGER, 同一类中长度长的高于长度短的。

2.4.2 关系运算符及其表达式

运算符 .LT. < .LE. <= .EQ.== .NE./= .GT.> .GE.>=

格式 表达式1 关系运算符 表达式2

- ② 如果两个表达式都为字符表达式,则进行关系运算前将其转换成等长字符串,不足末尾补足空格。
- ③ 复数的关系运算只有两种:等于和不等于。
- ④ 对算术表达式进行关系运算,根据它们值的大小决定运算结果。
- ⑤ 对字符表达式进行关系运算,依次比较两字符串相应位置字符的 ASCII 码值大小决定运算结果。

例如

12>34结果为 .FALSE.(4+5*2).LE.10结果为 .FALSE.(4.2,7.3).NE. (7.3,4.2)结果为 .TRUE.

MOD(4,2).EQ.0 4 除以 2 的余数是否等于 0。结果为.TURE.

'banana'<='apple' 结果为 .FALSE.

'is a pen.'<='is a pencil.' 字符.的 ASCII 为 46,而 c 的 ASCII 为 99,结果为.True.