KELAYAKAN TEKNIS PENGENDALIAN PERSIMPANGAN PADA JALAN LINGKAR TANJUNG BENOA, KABUPATEN BADUNG-BALI

I Nyoman Widana Negara

Program Studi Teknik Sipil, Fakultas Teknik, Universitas Udayana E-mail: widananegara24@gmail.com

Abstrak: Menetapkan lokasi dan alternatif desain persimpangan yang tepat menjadi faktor utama untuk studi kelayakan teknis persimpangan pada rencana Jalan Lingkar (ring road) Tanjung Benoa. Tujuan penelitian adalah untuk mempoleh lokasi dan jenis yang tepat berdasarkan volume lalu lintas, kinerja dan umur pelayanan persimpangan. Data yang digunakan adalah data volume lalu lintas di survei secara manual selama lima jam dan data sekunder seperti topografi, LHR, jumlah penduduk diambil dari instansi terkait. Analisis alihan lalu lintas (diversion) menuju jalan lingkar menggunakan Matrik Asal Tujuan (MAT) diselesaikan Fratar Trip Production Model. Rancangan penelitian menerapkan analisis perbandingan dengan menguji terhadap 4 (empat) skenario desain persimpangan daengan menggunakan Manual Kapasitas Jalan Indonesia sebagai acuan. Hasil analisis dari keempat skenario diperoleh bahwa Skenario 4 menunjukkan kinerja persimpangan yang paling baik (DS<0,7) dengan masa pelayanan 10 tahun, disusul Skenario 3 dengan indikator kinerja persimpangan DS<0,7, tetapi masa pelayanan kurang dari 10 tahun, dibandingkan dengan Skenario 2 memiliki kinerja persimpangan sangat jelek (DS>0,7) dan kemungkinan kemacetan persimpangan terjadi pada awal jalan dibuka tahun 2017. Sedangkan Skenario 1 (tanpa proyek) masih mampu memberikan masa pelayanan sampai 5 tahun lagi (tahun 2022) dengan indikator kinerja DS<0,7. Disamping itu, Skenario 4 lebih memberikan peluang untuk digabung menjadi satu ruas antara Jalan Lingkar Tanjung Benoa dengan jalan Pratama Raya dengan tipe jalan 4/2D.

Kata kunci: studi kelayakan teknis, persimpangan, jalan lingkar, Tanjung Benoa, Nusadua

TECHNICAL FEASIBILITY OF CONTROLLING INTERSECTION ON THE TANJUNG BENOA RING ROAD. BADUNG REGENCY-BALI

Abstract: Establishing the right location and alternative design intersection is the main factor for Intersection Technical Feasibility Study on the Tanjung Benoa Ring Road plan. The purpose of the study is to obtain the appropriate location and type of intersection based on traffic volume, performance and service life Data used is traffic volume data which is manually surveyed for 5 hours and secondary data such as topography, LHR, populations were taken from the relevant agencies, Analysis of diversion of traffic towards the Ring Road using the Destination Origin Matrix (O-D) was analyzed by the Fratar trip production model. The design of the study applies comparative analysis by examining 4 (four) scenarios of design intersection and Indonesian Road Capacity Manual as a reference. The results of the analysis of the four scenarios obtained that Scenario 4 shows the best intersection performance (DS <0.7) with a service period more than 10 years, followed by Scenario 3 with DS of <0.75, but service period is less than 10 years, while Scenario 2 has very poor junction performance (DS> 0.7) and the possibility of intersection jams were occurred at the beginning of the road opened in 2017. While Scenario1 (without project) is still able to provide service for up to 5 more years (in 2022) with DS performance indicators <0.7. In addition, Scenario 4 provides more opportunities to be merged into one segment between the Tanjung Benoa Ring Road and the Pratama Raya Road with a 4/2D road type.

Keyword: technical feasibility study, intersection, ring road,-Tanjung benoa, Nusadua

PENDAHULUAN

Indutri pariwisata Kabupaten Badung sedang berkembang pesat baik dari sisi fasilitas hotel dan destinasi wisata dimana salah satunya adalah destinatasi Tanjung Benoa yang berkembang secara alamiah. Akses jalan kawasan Tanjung Benoa yang didukung oleh Jalan Raya Pratama Utara merupakan jalan 2 lajur dan 2 arah (2/2UD), telah mengalami kemacetan setiap harinya, baik pada kondisi normal maupun musim wisatawan (Departemen Pemukiman dan Prasarana Wilayah, 2002; Departemen Pemukiman dan Prasarana Wilayah, 2004). Pemerintah Kabupaten Badung melaksanakan pengembangan Kawasan Wisata Tanjung Benoa dengan peningkatan infrastruktur dan jaringan transportasi berupa perencanaan jalan lingkar (ring road) yang mengacu pada Rencana Tata Ruang Ruang Wilayah Kab. Badung (Perda No.26 Tahun 2013) dan Perda No. 16 Tahun 2009 tentang rencana Tata Ruang Wilavah Provinsi Bali. Akses ialan lingkar Tanjung Benoa dibuat dengan tujuan untuk mengurangi beban lalu lintas dan kemacatan koridor jalan Pratama Utara, seperti tertuang pada Studi Kalayakan (PT. Maratama Cipta Mandiri, 2013). Hasil kajian studi kelayakan jalan lingkar Tanjung Benoa yang direncanakan adalah tipe jalan 4/2D berupa jembatan diatas perairan. Untuk melengkapi hasil studi kelayakan jalan lingkar tersebut diperlukan analisis kelayakan persimpangan yang memenuhi standar teknis dan kinerja. Tujuan penelitian ini adalah untuk memperoleh lokasi dan tipe persimpangan yang cocok dari aspek volume lalu lintas, kinerja dan masa pelayanan.

TINJAUAN PUSTAKA

Studi kelayakan (Feasibility Study) adalah studi yang menilai proyek dimasa akan datang, penilaian berupa rekomendasi proyek tersebut layak dikerjakan atau ditunda, berpedoman pada studi kelayakan proyek jalan dan jembatan (Departemen Pekerjaan Umum, 2005). Kelayakan teknis persimpangan berpedoman pada:

a). Lalu lintas meliputi; a) perancangan geometri dan evaluasi manfaat perlu diketahui besarnya volume lalu lintas sekarang dan prakiraan lalu lintas masa depan, b) analisis lalu lintas yang menghasilkan LHR tahunan, baik untuk tahun dasar maupun untuk berikutnya

- selama umur rencana dan c) prakiraan lalu lintas pada tahun-tahun berikutnya setelah tahun dasar diperoleh melalui suatu model prakiraan. Model prakiraan tersebut dapat merupakan ekstrapolasi dari data historis atau merupakan hasil proses perencanaan transportasi yang lebih komprehensif yang mengikuti kaidah teori perencanaan transportasi.
- Geometrik meliputi; a) elemen-elemen geometri jalan dan persimpangan b) penampang jalan tergantung pada volume lalu lintas yang diperkirakan akan melewatinya, dan tingkat kinerja yang ingin dicapai dan c) jenis persimpangan dan metoda pengendaliannya ditetapkan sesuai dengan hirarki jalan dan volume lalu lintas rencana yang melewatinya. Jenis pengendalian persimpangan dapat berupa pengendalian prioritas, dengan alat pemberi isyarat lalu lintas (APILL), dengan jalan layang (flyover) dan underpass, atau dengan persimpangan tak sebidang lainnya.

Persimpangan

Persimpangan adalah perpotongan 2 (dua) atau lebih ruas jalan (Departemen Pekerjaan Umum, 1997). Persimpangan diklasifikasikan atas persimpangan sebidang dan persimpangan sebidang. Sistem pengendalian tidak persimpangan terdiri dari persimpangan prioritas, bundaran dan dengan alat pemberi isyarat lalu lintas (APILL). Perencangan persimpangan mengacu pada ketentuan perencanaan persimpangan sebidang Pd-T-02-2002, perencanaan bundaran sebidang Pd-T-20-2004. dan Manual Kapasitas Jalan Indonesia (Departemen Pekerjaan Umum, 1997).

Peramalan Lalu Lintas

Pemilihan pengendalian persimpangan dikategorikan sebagai perencanaan (planning) sehingga umur rencana bisa sampai 10 tahun atau lebih (Departemen Pekerjaan Umum, Peramalan 1997). lalu lintas dengan pertumbuhan 6% (PT.Marata Cipta Mandiri, 2013) dengan pedoman tahun dasar (base line) 2017, prosentase LHR pada jam pucak (k) sebesar 7% dan peak hour factor (PHF) sebesar 0,95 (Departemen Pekerjaan Umum, 1997). Volume Jam Perencanaan (VJP) dihitung dengan rumus (1) sbb:

$$VJP = \frac{kLHRT}{PHF} \tag{1}$$

Keterangan

VJP adalah Volume jam perencanaan (kend/jam)

LHRt = Lalu lintas harian rata-rata tahun (kend/hari).

Alihan Volume Lalu Lintas (Traffic Diversion)

Pergerakan lalu lintas dipersimpangan sangat sehingga diperlukan penting, perkiraan pengalihan arus lalu (diversion) dari jalan lama ke Jalan Lingkar Tanjung Benoa. Analisis alihan lalu lintas menggunakan Matrik Asal -Tujuan (MAT) diselesaikan dengan Fratar Trip Distribution model (Black, 1981), dengan rumus (2) dan (3) sbb:

$$\sum_{i=1}^{j} (0ij) = \sum_{i=1}^{j} (Dij)$$
 Penyelesian sel pada MAT dengan

menerapkan rumus 3.

$$(Tid) = \text{Oij } (Ei. Ed)/E$$
 (3)
Keterangan

Tid = Perjalanan akan yang akan datang(kend/jam)

Qij = Perjalanan saat ini (kend/jam)

Ei dan Ed = factor koreksi asal dan tujuan Nilai sel MAT dilakukan teknik iterasi sehingga total produksi dan tarikan mendekati faktor koreksi yang kecil antara 0,95-1.

Persimpangan Bundaran Sebidang

Analisis kinerja dengan Bundaran Sebidang (round about) berpedoman pada Manual **Kapasitas** Jalan Indonesia (Departemen Pekerjaan Umum, 1997). Kapasitas bundaran adalah arus lalu lintas total (smp/jam) pada bagian jalinan yang mencapai kapasitas dihitung dengan rumus (4);

$$C = (135Ww^{1.3} + (1 + We/Ww)^{1.5} + (1 + \frac{Pw}{3})^{0.5} + (1 + Ww/Lw)^{-1.8} Fcs x Fsru$$
(4)

Keterangan;

C = Kapasitas bundaran (smp/jam)

Ww = Lebar jalinan (m)

We = Lebar rata-rata pintu/ pendekat

masuk, We + (W1+W2)/2

Lw = Panjang Jalinan (m)

Pw = Prosentase lalu lintas menjalin

Fcs = Faktor penyesuaian ukuran kota

Fsru = Faktor penyesuaian hambatan

samping

Kinerja bundaraan risiko penutupan bundaran akibat arus lalu lintas yang menjalin yang diukur dengan degree of saturation (DS) < 0, 75.

Persimpangan Prioritas

Kapasitas persimpangan sebidang prioritas adalah jumlah maksiumu lalu lintas yang dapat dialirkan persimpangan pada kondisi geometrik, lalu lintas dan lingkungan sesuai kondisi lapangan (Departemen Pekerjaan Umum, 1997), dinyatakan dengan rumus (5);

C = Co x Fcw x Fm x Fcs x Fsf x Frt x Flt xFmi

Keterangan

C = Kapasitas persimpangan (smp/jam)

Co = Kapasitas dasar (smp/jam)

Fcw, Fm, Fcs, Fsf, Frt, Flt, Fmi = factor penyesuaian kapasitas.

Kinerja persimpangan prioritas diukur dengan degree of saturation (DS) < 0,75.

Persimpangan Alat Pemberi Isyarat Lalu Lintas (APILL)

Kapasitas persimpangan dengan APILL adalah jumlah lalu lintas maksimum yang dapat dialirkan selama waktu hijau sesuai dengan kondisi lalu lintas, geometri dan lingkungan dilapangan (Departemen Pekerjaan Umum, 1997), dengan rumus (6);

$$C = S \times g/cau \tag{6}$$

Keterangan:

C = kapasitas (smp/jam)

S = Arus jenuh (smp/jam hijau)

g = Waktu hijau (detik)

c = Panjang siklus (detik)

Waktu siklus adalah waktu untuk urutan lengkap dan indikasi sinyal atau fase dengan standar minimal 40 detik dan maksimal 130 detik, yang dinyatakan dengan rumus:

$$C_{au} = (1.5 \text{ x LTI} + 5)/(1-\text{IFR})$$
 (7)
Keterangan:

= Panjang siklus (dtk) C_{au}

LT = Jumlah waktu yang hilang

setiap siklus (dtk)

FR = ratio arus dengan arus jenuh (Q/S)

> FR_{crit}= Nilai FR tertinggi (kritis) dari kelompok fase.

> **IFR** $=\Sigma(FR_{crit})$ persimpangan flow ratio

Alokasi waktu hijau (green time) adalah waktu nyala hijau pada suatu pendekat atau fase dinyatakan dengan rumus 8;

gi =
$$(C_{ua} - LTI) \times PRi \ge 10 \text{ dtk}$$
 (8)

Keterangan:

gi = Tampilan waktu hijau pada fase i (dtk).

 C_{ua} = Waktu siklus (dtk).

LTI = Waktu hilang total per siklus (dtk).

PRi = Rasio Fase FR_{crit} / Σ (FR_{crit}). Ukuran kinerja persimpangan dengan APILL diukur dari tundaan (*delay*) dengan indikator tingkat pelayanan Departemen Pekerjaan Umum, 1997), seperti Tabel 1

METODE PENELITIAN

Lokasi Peneltian

Lokasi peneltian adalah Rencana Jalan Langkar Tanjung Benoa terletak di Desa Tanjung Benoa, Nusadua, Kecamatan Kuta Selatan. Hasil studi kalayakan, jalan lingkar 4 lajur 2 jalur terbagi (4/2D) direncanakan berupa jembatan diatas perairan Teluk Benoa. Rencana jalan tersebut berawal pada persimpangan Bundaran existing menyisir perairan tepi barat dan berakhir diujung Tanjung Benoa, seperti Gambar 1.

METODE PENELITIAN

Data lalu lintas pada bundaran dilakukan survei langsung dilapangan selama 5 jam dengan teknik manual, sedangkan data sekunder berupa peta topografi, alu lintas harian rata-rata (LHR), jumlah penduduk di

peroleh dari instansi terkait. Pengalihan lalu lintas (*traffic diversion*) menggunakan Matrik Asal Tujuan (MAT) dianalisis dengan Fratar *Trip Distribution Model*. Rancangan penelitian menerapkan teknik perbandaingan (*comparative analysis*) dengan pengujian 4 (empat) Skenario alternative desain persimpangan sbb:

- 1. Skenario 1: (*do Nothing*) tidak ada proyek jalan lingkar
- 2. Skenario 2: (*with project*), jalan lingkar berawal pada persimpangan Bundaran Jl. Pratama Raya Jl. Pratama Jl. BTID (rekomendasi Studi Kelayakan).
- 3. Skenario 3; (*with project*), jalan lingkar berawal pada persimpangan bundaran dan redisain persimpangan bundaran lama (*existing*).
- 4. Skenario 4: (with project), titik awal jalan lingkar digeser ke barat kurang lebih 200 m dari persimpangan bundaran existing, sehingga terdapat 2 persimpangan yaitu persimpangan baru dikendalikan dengan APILL tipe 322L dan persimpangan bundaran lama (existing).

4 (empat) Skanario alternative disain persimpangan tersebut seperti terlihat pada Gambar 2.

Tabel 1. Tingkat Pelayanan Persimpangan dengan APILL

Tuber 1. Tingkat I eta janan I eta inpangan dengan	in inc
Tundaan (detik/smp)	Tingkat Pelayanan
< 5,0	A
5,0 – 14,99	В
15,0 – 24,99	C
25,0 – 39,99	D
40,0-60,0	Е
> 60,0	F

Gambar 1. Rencana *Trace* Jalan Lingkar Tanjung Benoa

Pelaksanaan studi kelayakan ini menggunakan metode pendekatan perbandingan antara kondisi dengan proyek (with project) dan tanpa proyek (without project) dengan ukuran kinerja dan waktu pelayanan persimpangan yang mengacu pada pedoman Departemen Pekerjaan Umum tahun 1997.

HASIL DAN PEMBAHASAN Lalu Lintas Existing

Survei pergerakan lalu lintas selama 5 jam dari pukul 11.00 sampai dengan pukul 17.00 dan hasil analisis arus jam puncak terjadi pada pukul 11.30 sampai dengan pukul 12.30 dengan ringkasan seperti Tabel 2.

Gambar 2. Empat Skenario Alternative Disain Persimpangan

Tabel 2. Ringkasan Analisis Jam Puncak

No	Pendekat	Danganakan	Arus	(Q) Kend/	jam	Q	Q total
NO	Pendekat	Pergerakan	MC	KR	KB	kend/jam	kend/jam
		LT	375	200	4	579	
D	Bypass Ngurah Rai	ST	84	65	5	154	810
D Bypass Ngur	Dypass Nguran Kar	RT	65	8	0	73	010
		U-turn	2	1	1	4	
		LT	58	55	1	114	
Α	Pratama Utara	ST	342	37	0	379	1.342
A	Fratallia Otara	RT	588	249	10	847	1.342
		U-turn	1	1	0	2	
		LT	55	4	0	59	
В	ITDC	ST	57	70	2	129	263
ь	TIDC	RT	45	28	0	73	203
		U-Turn	1	1		2	
		LT	45	8	0	53	
С	Pratama Selatan	ST	399	43	0	442	561
C	r rataina Selatan	RT	55	9	0	64	301
		U-Turn	1	1		2	

Paramalan Lalu Lintas dan Volume Jam Perencanaan (VJP)

Hasil analisis peramalan LHR dan Volume Jam Perencanaan (VJP) dapat dilihat pada Tabel 3 dan Tabel 4 secara berurutan.

Pengalihan Lalu Lintas pada Jalan Lingkar Tanjng Benoa.

Analisis pengalihan (diversion) berdasarkan Tabel 1 dan target Tabel 3 diperoleh MAT dasar 2017 seperti Tabel 5.

Tabel 3. Peramalan LHR

NO	RUAS	VJP 2017		VJP 2022		VJP 2	2027	VJP 2037	
	KUAS	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	Bypass Ngr. Rai	1.387	1.363	1.751	1.720	2.484	2.440	4.449	4.370
2	Pratama Utara	1.438	1.375	1.816	1.736	2.576	2.462	4.613	4.409
3	BTDC	226	200	285	253	404	359	724	642
4	Pratama Selatan	381	385	481	486	682	690	1.221	1.236

Tabel 4. Ringkasan Volume Jam Perencanaan (VJP)

NO RUAS		VJP	VJP 2017		VJP 2022		VJP 2027		2037
NO	NO RUAS	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	Bypass Ngr. Rai	1.387	1.363	1.751	1.720	2.484	2.440	4.449	4.370
2	Pratama Utara	1.438	1.375	1.816	1.736	2.576	2.462	4.613	4.409
3	BTDC	226	200	285	253	404	359	724	642
4	Pratama Selatan	381	385	481	486	682	690	1.221	1.236

Tabel 5. MAT Dasar 2017

	1	2	3	4	5	Oij	Target Otij	Eoij
1	5	290	154	73	290	811	1.215	1,498
2	424	7	68	227	508	1.235	755	0,612
3	129	29	5	59	44	266	200	0,752
4	53	177	64	3	265	562	335	0,596
5	424	10	46	152	2	633	500	0,790
Dij	1034	513	337	514	1.109	3.506		
Dtij	1195	480	220	340	725		3.005	
Ed	1,156	0,937	0,653	0,661	0,654			0,857
T7 .								

Keterangan

- 1. O-D Jalan Pratama Raya (Akses ke Jalan Bypass Ngurah Rai)

- O-D salah Pratama Kaya (Akses ke salah Byp
 O-D kaki Jalan Pratama Utara
 O-D Kaki Jalan BTIC
 O-D kaki jalan Pratama Selatan
 O-D kaki jalan Baru Lingkar Tanjung Benoa

Hasil iterasi MAT Tabel.4, didapatkan peramalan MAT-2027 dapat dilihat pada Tabel 6 dan Tabel 7 secara berurutan.

Tabel 6. Peramalan MAT Tahun 2017

D O	1	2	3	4	5	Oij	Target Otij	Eoij
1	30	393	173	162	439	1.197	1.215	1,015
2	487	2	15	95	146	744	755	1,015
3	151	8	1	25	13	197	200	1,015
4	102	76	23	3	127	330	335	1,015
5	425	2	8	55	1	493	500	1,015
Dij	1195	480	220	340	725	2.960		
Dtij	1195	480	220	340	725		3.005	_

Tabel 7. Peramalan MAT Tahun 2027

D O	1	2	3	4	5	Oij	Target Otij	Eoij
1	40	494	175	207	563	1.479	1.530	1,035
2	609	2	14	116	178	919	950	1,034
3	186	9	1	30	15	242	250	1,034
4	130	92	22	4	158	406	420	1,034
5	534	3	8	68	2	614	635	1,033
Dij	1499	600	220	425	915	3.660		
Dtij	1500	600	220	425	915		3.785	
Ed	1,000	1,000	1,000	1	1,000	·		1,034

Tabel 8. Ringkasan Volume Jam Perencanaan Tahun 2017 sampai dengan 2027

No	Pendekat	Pergerakan		VJP- 2017 (Kend/jam)			JP- 201 end/jan		VJP- 2027 (Kend/jam)		
			MC	KR	KB	MC	KR	KB	MC	KR	KB
		LT (Jalan Baru)	386	76	9	462	91	11	745	146	18
	Drimaga	LT	345	68	8	405	80	10	666	131	16
D	Bypass Ngurah Rai	ST	107	34	7	128	40	8	208	65	12
	- 18	RT	141	31	2	168	37	3	273	60	4
		U-turn	12	21	1	15	25	1	24	41	2
		LT	2	1	0	2	1	0	4	1	0
	Jalan Baru	ST	6	2	1	7	2	1	11	3	1
E	Lingkar	RT (Pratama	20	20	0	24	2.4	0			0
	Tanjung Benoa	Selatan)	29	29	0	34	34	0	55 727	55	0
	2011011	RT (Ngurah Rai)	379	74	0	448	87	0	727	141	0
		U-turn	1	2	1	1	1	1	1	2	1
		LT	9	3	1	11	3	1	18	5	1
	Pratama	ST	49	49	0	58	58	0	94	95	0
Α	Utara	RT	356	160	0	421	189	0	687	307	0
		RT (Jalan Baru)	123	27	0	147	32	0	237	51	0
		U-turn	1	2	0	1	2	0	1	3	0
		LT	13	13	0	15	16	0	24	25	0
		ST	77	78	0	93	94	0	151	151	0
В	BTDC	RT (Jalan Baru)	10	3	0	13	3	0	20	5	0
		RT (Pratama -	_	•		_		0			
		Utara)	6	2	0	7	2	0	12	3	0
		U-Turn	0	1	0	0	1	0	1	2	0
		LT	75	34	0	90	41	0	146	66	0
	C Pratama Selatan	ST(Jalan Baru)	108	23	0	130	28	0	210	45	0
C		ST (Pratama-Utara)	64	14	0	76	17	0	125	27	0
		RT	7	12	0	8	14	0	13	23	0
		U-Turn	3	4	0	2	3	0	4	4	0

Tabel 6 menunjukkan bahwa total volume lalu lintas memasuki persimpangan (Qtot) sebesar 2.960 kend/jam, sedangkan alihan (*diversion*) volume lalu lintas pada jalan lingkar (*road road*) Tanjung Benoa sebesar 1.218 kend/jam (41,14%).

Peramalan Volume Jam Perencanaan (VJP)

Berdasarkan MAT Tabel 5 sampai dengan Tabel 7 dengan komposisi lalu lintas existing 2017, diperoleh Volume Jam Perencanaan (VJP) Tahun 2017, tahun 2022 dan tahun 2027, seperti pada Tabel 8.

Analisis Kinerja Persimpangan Skenario 1 (Do Nothing)

Hasil analisis kinerja Skenario 1, (without project/ Do Nothing) menunjukkan tanpa pembangunan jalan lingkar Tanjung Benoa, kinerja persimpangan Bundaran existing cukup baik dengan umur pelayanan 5 (tahun) dengan acuan DS < 0.75, seperti terlihat pada Tabel 9.

Analisis Kinerja Persimpangan Skenario 2 (with project)

Hasil analsisis Skenario 2 (*With Project*), memperlihatkan <u>kinerja yang paling buruk</u> dengan indikator DS>1, seperti pada Tabel 10. Artinya jika awal proyek jalan lingkar Tanjung Benoa pada persimpangan bundaran lama (existing), pada saat jalan dibuka (tahun 2017) persimpangan sudah macet.

Analisis Kinerja Persimpangan Skenario 3 (with project)

Hasil analisis Skenario 3 (with project) menunjukkan bahwa kinerja persimpangan cukup bagus dimana DS<0,75 dan umur pelayanan 5 sampai 10 tahun. Hasil analisis memperlihatkan Skenario 3 lebih baik dari Skenario 1 dan Skenario 2, seperti ditunjukkan Tabel 11.

Tabel 9. Ringkasan Kinerja Persimpangan Existing Skenario 1 (without project).

No	Jalinan		DS		T	undaan (detik/sm	p)
No	Jannan	2017	2022	2027	2017	2022	2027
1	AB	0,31	0,51	0,69			
2	BC	0,49	0,88	1,18	7	9.11	1.548,5
3	CD	0,38	0,77	1,03	,	>,11	1.540,5
4	DA	0,35	0,51	0,68			
Pe	rliku	DS<0,75	DS>0,75	DS>0,75	d<9,1 dtk	d>9,1 dtk	d>9,1 dtk

Tabel 10. Ringkasan Kinerja Persimpangan Skenario 2

No	Jalinan		DS	Tundaa	Tundaan (dtk/smp)			
NO	Jailliali	2017	2022	2017	2022			
1	AB	0,50	0,61					
2	BC	0,91	1,14					
3	CD	0,68	0,74	12,31	170.181			
4	DE	1,03	1,48					
5	EA	0,85	1,02					
Pe	rilaku	DS > 0,75	DS > 0,75	d > 9,1 dtk	d > 9,1 dtk			

Tabel 11. Kinerja Alternatif Persimpangan Skenario 3

			DS		Т	Tundaan (d) dtk/sr	np
No	Jalinan	2017	2022	2027	2017	2022	2027
1	AB	0,30	0,49	0,79			
2	BC	0,53	0,81	1,26			
3	CD	0,43	0,43	0,61	7,46	8,20	31.372,8
4	DE	0,39	0,49	0,74			
5	EA	0,29	0,36	0,46			
Per	rilaku	DS>0,75	DS>0,75	DS>0,75	d>9,1 dtk	d>9,1 dtk	d>9,1 dtk

Tabel 12. Rangkuman Kinerja Persimpangan Bundaran Existing Skenario 4

No	Jalinan		DS		Tundaan (dtk/smp)				
NO	Jaiillali	2017	2022	2027	2017	2022	2027		
1	AB	0,25	0,34	0,45					
2	BC	0,42	0,56	0,75	7.32	7,48	8,04		
3	CD	0,33	0,44	0,59	1,32	7,40	0,04		
4	DE	0,25	0,34	0,28					
Per	rilaku	DS<0,75	DS<0,75	DS<0,75	d<9,1 dtk	d<9,1 dtk	d<9,1 dtk		

Tabel 13. Rangkuman Kinerja Persimpangan 2 Skenario 4

Pendekat	Kinerja Persimpangan-2 dengan APILL								
	Panjang antrian (m)			Tundaan (dtk/smp)			Tingkat pelayanan		
	2017	2022	2027	2017	2022	2027	2017	2022	2027
U (Ring Road)	12	15	19						
T (Raya Pratama)	20	26	35	10,56	11,38	12,46	LOS B	LOS B	LOS B
B (Raya Pratama)	20	26	34						

Analisis Kinerja Persimpangan Skenario 4 (with project)

Hasil analisis Skenario 4 diperoleh kinerja persimpangan 1 (bundaran *existing*) merupakan kinerja yang baik dengan indikasi DS <0,75 dengan umur pelayanan lebih dari 10 tahun, seperti terlihat pada Tabel 12, sedangkan persimpangan 2 dengan APILL 2 fase menawarkan kinerja sangat bagus (DS<0,75) dengan umur pelayanan lebih dari 10 tahun, seperti ditunjukkan Tabel 13.

SIMPULAN DAN SARAN Simpulan

Hasil analisis dari keempat skenario diperoleh bahwa Skenario 4 menunjukkan kinerja persimpangan yang paling baik (DS<0,7) dengan masa pelayanan 10 tahun, disusul Skenario dengan indikator persimpangan DS<0,7, tetapi masa pelayanan kurang dari 10 tahun. Sedangkan Skenario 2 memiliki kinerja persimpangan sangat jelek (DS>0,7) dan kemungkinan kemacetan persimpangan terjadi pada awal jalan dibuka tahun 2017. Skenario 1 (tanpa proyek) masih mampu memberikan masa pelayanan sampai 5 tahun lagi (tahun 2022) dengan indikator kinerja DS<0,7.

Saran

- Skenario 2 sebaiknya dihindari karena kemacaten mungkin terjadi pada saat jalan dibuka dan sebaiknya memilih Skenario 3 dan atau Skenario 4.
- 2. Pilihan Skenario 4 lebih memberikan peluang untuk digabung menjadi satu ruas

antara Jalan Lingkar Tanjung Benoa dengan Jalan Pratama Raya dengan tipe jalan 4/2D.

UCAPAN TERIMA KASIH

Terima kasih kepada Konsultan Perencana PT.Wisma Karma dan PT. Maratama Cipta Mandiri atas data topografi dan lalu lintas untuk mendukung penelitian ini.

DAFTAR PUSTAKA

- Black, J. 1981. *Urban Transport Planning: Theory and Practice*. Croom Helm Ltd .London.
- Departemen Pekerjaan Umum (1997), *Manual Kapasitas Jalan Indonesia*. Departemen Pekerjaan Umum, Jakarta
- Departemen Pekerjaan Umum (2005), *Studi Kelayakan Proyek Jalan dan Jembatan*, Pd. T-18-2005-B. Departemen Pekerjaan Umum, Jakarta
- Departemen Pemukiman dan Prasarana Wilayah (2002), *Tata cara Perencanaan Geometrik Persimpangan Sebidang, Pt T-*02-2002-B. Departemen Pemukiman dan Prasarana Wilayah, Jakarta
- Departemen Pemukiman dan Prasarana Wilayah (2004), *Tata cara Perencanaan Bundaran Sebidang*, *Pt T-20-2004-B*. Departemen Pemukiman dan Prasarana Wilayah, Jakarta
- PT. Maratama Cipta Mandiri (2013), Study Kelayakan jalan Lingkar Tanjung Benoa, Nusadua, Kecamatan Kuta Selatan, Kabupaten Badung.