Lab 02 Week 01 Worksheet

R Functions Glossary

This glossary provides an overview of key R functions used in **Lab 09**, explaining their **purpose** and **general use** in data processing and manipulation.

Data Import & Management

Function	Description	Example
<pre>read_csv() setwd() / getwd() write_csv()</pre>	Reads a CSV file into a tibble Sets or gets the working directory Writes a data frame to a CSV file	<pre>read_csv("data.csv") setwd("path/to/folder") write_csv(df, "output.csv")</pre>

Data Wrangling (dplyr)

Function	Description	Example
filter()	Filters rows based on condition(s)	filter(unit_price > 0)
<pre>mutate()</pre>	Adds or transforms variables	<pre>mutate(total = unit_price * unit_quantity)</pre>
arrange()	Sorts rows by variables	arrange(shopper_id)
drop_na()	Removes rows with missing values	drop_na()
<pre>group_by() + summarize()</pre>	Groups data and summarizes it	group_by(shopper_id) %>%
		<pre>summarize(avg_items = mean(unit_quantity))</pre>
<pre>distinct()</pre>	Selects distinct rows	<pre>distinct(shopper_id, store id)</pre>
select()	Selects columns	<pre>select(total_spent, avg_items)</pre>

Joins

Function	Description	Example
<pre>inner_join()</pre>	Keeps only matching rows from both tables	<pre>inner_join(df1, df2, by = "key")</pre>

Function	Description	Example
left_join()	Keeps all rows from the left table	<pre>left_join(df1, df2, by = "key")</pre>
right_join()	Keeps all rows from the right table	right_join(df1, df2, by = "key")
<pre>full_join()</pre>	Combines all rows from both tables	<pre>full_join(df1, df2, by = "key")</pre>

Summary Statistics

Function	Description	Example
datasummary_skim()	Summary of numeric or categorical data	<pre>datasummary_skim(df, type = "numeric")</pre>
datasummary()	Custom summary table	<pre>datasummary(var1 + var2 ~ Mean + SD, data = df)</pre>

Visualizations

Function	Description	Example
ggpairs()	Pairwise scatter/density plots	ggpairs(df %>% select(x, y, z))
<pre>fviz_nbclust()</pre>	Plots to determine number of clusters	<pre>fviz_nbclust(scaled_data, kmeans, method = "wss")</pre>

Clustering

Function	Description	Example
<pre>scale() kmeans()</pre>	Standardizes variables Performs k-means clustering	<pre>scale(df) kmeans(data, centers = 3, nstart = 25)</pre>

Other Tools & Utilities

Function	Description	Example
<pre>length(unique()) quantile()</pre>	Counts distinct elements Returns quantiles	<pre>length(unique(df\$shopper_id)) quantile(df\$total_spent, 0.999)</pre>
set.seed()	Use this with kmeans() so you can reproduce your results	set.seed(123)

Helpful Tips

- Use left_join() when you want to keep all rows from your base dataset.
- Use group_by() with summarise() to collapse and summarize grouped data.
- Standardize your variables before clustering using scale().
- Use fviz_nbclust() to help determine the best number of clusters.
- Always inspect your summary statistics and visualize your data before running models.

Remember: Each step in data cleaning, joining, and clustering depends on your research question. Document your decisions clearly!