The group G is isomorphic to the alternating group A7.

Ordinary character table of $G \cong A7$:

	1a	2a	3a	3b	4a	5a	6a	7a	7b
χ_1	1	1	1	1	1	1	1	1	1
χ_2	6	2	3	0	0	1	-1	-1	-1
χ_3	10	-2	1	1	0	0	1	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$
χ_4	10	-2	1	1	0	0	1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$
χ_5	14	2	2	-1	0	-1	2	0	0
χ_6	14	2	-1	2	0	-1	-1	0	0
χ_7	15	-1	3	0	-1	0	-1	1	1
χ_8	21	1	-3	0	-1	1	1	0	0
χ_9	35	-1	-1	-1	1	0	-1	0	0

Trivial source character table of $G \cong A7$ at p = 2:

Invial source character table of $G = At$ at $p = 2$:																	
Normalisers N_i			N_1							I_3	N_4					N_5	N_6
p-subgroups of G up to conjugacy in G			P_1							3	P_4					P_5	P_6
Representatives $n_j \in N_i$	1a	3a	3b	5a	7a	7b	1a	3a	1a	3a	1a	3b	3a	3d	3c	1a	1a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	56	-4	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	24	0	3	-1	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	24	0	3	-1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	64	4	-2	-1	1	1	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	40	4	4	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	72	0	0	2	2	2	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	100	4	-2	0	2	2	4	4	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	20	2	2	0	-1	-1	4	-2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	22	-2	1	2	1	1	2	2	2	2	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	14	2	-1	-1	0	0	2	2	2	-1	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	30	6	0	0	2	2	2	2	0	0	2	2	2	2	2	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	70	-2	-2	0	0	0	2	2	0	0	2	-1	2	-1	-1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	3	0	1	-1	-1	2	-1	0	0	2	2	-1	-1	-1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	14	-1	2	-1	0	0	2	-1	0	0	2	-1	-1	2	-1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	14	-1	2	-1	0	0	2	-1	0	0	2	-1	-1	-1	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	50	2	-1	0	1	1	2	2	0	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
```

$$P_4 = Group([(1,3)(2,7),(1,7)(2,3)]) \cong C2 \times C2$$

$$P_5 = Group([(1,3)(2,7),(1,7,3,2)(4,6)]) \cong C4$$

$$P_6 = Group([(1,3)(2,7),(2,7)(4,6),(1,7)(2,3)]) \cong D8$$

$N_1 = AlternatingGroup([1..7]) \cong A7$

$$N_2 = Group([(4,5,6),(2,7)(4,5),(1,3)(4,5),(1,2)(3,7)]) \cong (C6 \times C2) : C2$$

$$N_3 = Group([(2,7)(4,6),(1,3)(2,7),(2,6)(4,7),(1,2,6)(3,7,4)]) \cong S4$$

$$N_4 = Group([(4,5,6),(2,7,3),(1,3)(4,5)]) \cong (C3 \times A4) : C2$$

$$N_5 = Group([(1,3)(2,7),(1,2,3,7)(4,6),(2,7)(4,6)]) \cong D8$$

 $P_2 = Group([(1,3)(2,7)]) \cong C2$

 $P_3 = Group([(1,3)(2,7),(2,7)(4,6)]) \cong C2 \times C2$

 $N_6 = Group([(2,7)(4,6),(1,3)(4,6),(1,7)(2,3)]) \cong D8$