Subject Index

A	for steady problems, 103
Aortic valve, 458	in transient problems, 104
	Babuška-Brezzi (BB) restrictions,
regurgitation, 469	circumvention of, 106
stenosis, 469	boundary conditions
	discretization using, 112
R	fictitious boundaries, 110
	real boundaries, 112
Bed friction, 358	data input module, 486
Biofluid dynamics	boundary data, 486
aortic valve, 458	data and flags, 487
domain discretization	mesh data, nodal coordinates and
boundary layer meshing, 473	connectivity, 486
surface meshing, 472	preliminary subroutines and checks, 487
flow solution, 473, 476	first-order pressure error, elimination of, 110
human arterial system, flow in, 451-452	fully explicit form, 100
coronary flow, 456	governing equations, nondimensional
heart, 452	form of, 89
reflections, 458	inviscid problem, two- and single-step
image-based subject-specific flow modeling	algorithms on, 114
geometrical potential force (GPF), 471–472	mass diagonalization, 99
image segmentation, 471	output module, 490
numerical solution, 464	pressure error, dual time stepping to remove, 116
aortic valve regurgitation, 469	quasi- (nearly) implicit form, 101
aortic valve stenosis, 469	semi-implicit form, 100
cardiomyopathy, 469	single-step version, 107
coronary arteriosclerosis, 469	solution module, 487
exercise, 468	boundary conditions, 489
initial and boundary conditions, 472	•
initialization, 464–466	convergence to steady state, 490 shock capture, 488
terminal vessels, 462	*
vessel branching, 460	simultaneous equations, semi-implicit form, 490
Boundary conditions, 489	steps, 489
Boundary data, 486	time step, 488
Boundary layer–inviscid flow coupling	spatial discretization and solution procedure, 94
coupling techniques, 515, 517	split, general remarks, 90
direct couplings, 515	split, temporal discretization, 91
semi-inverse couplings, 515	splitting error, 109
Boussinesq assumption, 285	time step limits, evaluation of, 101
Bristol channel, 334	Closed domains, finite element models, 356–357
Buoyancy driven flows, 215	Compressible flows, 298
subjuncy universitions, 213	Compressible high-speed gas flow
	boundary conditions, subsonic and supersonic
C	flow, 227
	Euler equation, 228
Cardiomyopathy, 469	Navier-Stokes equations, 229
Carotid artery, segmentation of, 472	Euler equation, preliminary examples for, 234
Characteristic-based split (CBS) algorithm	Euler problems, adaptive refinement and shock
artificial compressibility	capture in, 238

h-refinement process and mesh	FIC, 47
enrichment, 243	GLS, 45
steady-state two-dimensional problems,	Petrov-Galerkin methods, 39
h-refinement and remeshing in, 245	subgrid scale (SGS) approximation, 46
governing equations, 226	variational principle in, 43
inviscid Euler solution coupling, boundary	transients
layer, 271	mathematical background, 54
numerical approximations and the CBS	possible discretization procedures, 55
algorithm, 230	*
shock capture, 231	Convection/wave refraction, 372
residual-based methods, 233	Convective acceleration effects, 1
second derivative—based methods, 232	Coronary arteriosclerosis, 469
,	
variable smoothing, 234	D
steady state, three-dimensional inviscid	D
examples in, 246	Dam break, 334
complete aircraft, flow patterns, 253	Data, and flags, 487
THRUST, supersonic car, 255	Data input module, 486
three-dimensional viscous problems, 271	Delaunay graph method, 444
transient two- and three-dimensional	Detached eddy simulation (DES), 305
problems, 256	Direct numerical simulation (DNS), 306
viscous problems, in two dimensions, 260	Discontinuous Galerkin finite elements
both shock and boundary layer, adaptive	(DGFE), 414
refinement in, 262	
boundary layers and shocks, special adaptive	Discretization procedure, 315
refinement for, 264	Domain discretization
Conservation of energy, 90, 128	boundary layer meshing, 473
Conservation of mass, 89, 127	surface meshing, 472
Conservation of momentum, 89, 127	Drag calculation, 497
Constant porosity medium, 319	Drying areas, 346
Convection-diffusion equations	Dual time stepping approach, 90, 117
vector-valued variables	Dynamic viscosity, 5
Taylor-Galerkin method, 499	
two-step predictor-corrector methods, 501	_
Convection-diffusion-reaction equation	E
boundary conditions for, 78	Edge-based finite element
characteristic-based methods	formulation, 511
characteristic-Galerkin procedures, 58	Electromagnetic scattering problems, 392
mesh updating and interpolation methods, 57	Element formulation, recasting of, 252
radiation, boundary conditions, 66	Ellipsoidal type infinite elements, 368
simple explicit characteristic-Galerkin	* **
procedure, 60	Energy conservation, 9, 88
nonlinear waves and shocks, 71	Energy transfer, 9
pure convection, treatment of, 76	Engineering judgement, 238
scalar variables, Taylor-Galerkin procedures	Enrichment functions, 398
for, 70	Equation of state, 90
steady-state condition, 71	Euler equations, 10–11
steady-state problem, mutiple dimension, 49	Exploding pressure vessel, 257
GLS and FIC, 53	
streamline (upwind) Petrov-Galerkin	_
weighting (SUPG), 49	F
steady-state problem, one dimension	FIC. See Finite increment calculus (FIC)
halancing diffusion in 43	Finite element formulation

of fluid equations, 437–438	Forced convection, 316–318
of solid dynamics, 438	Free surface flows
Finite elements incorporating wave shapes, 392, 394	arbitrary-Lagrangian-Eulerian (ALE) methods, 197, 210
discontinuous enrichment method, 398-399	implementation, 211
products of polynomials and waves, 394-395	Eulerian methods, 197, 200
sums of polynomials and waves, 397–398	hydrostatic adjustment, 203
T-complete systems, 404	mesh regeneration methods, examples
Trefftz-type finite elements, 401	using, 204
ultra weak formulation, 399-400	mesh updating/regeneration methods, 202
Finite increment calculus (FIC), 47, 53	Lagrangian methods, 196–197
Finite volume technique, 2	
Flow formulation, 166	
Flow heat transfer	G
discretization procedure, 315	Colorkin loost squares approximation
forced convection, 316–318	Galerkin least-squares approximation
generalized porous medium flow	(GLS), 45, 53
approach, 310–313	Gauss-Lobatto/Gauss-Chebyshev-Lobatto schemes, 414
natural convection, 318–319, 321	
Flow solution, 473, 476	Generalized porous medium flow approach, 310–313. See also Flow heat transfer
Fluid dynamics	Geometrical potential force (GPF), 471–472
finite volume approximation, 25	GLS. See Galerkin least-squares approximation
Galerkin and finite elements, 18	(GLS)
general remarks and classification of, 1	(GLS)
governing equations of	
boundary conditions, 10	Н
constitutive relations for, 6	"
energy conservation and equation of	Helmholtz wave equation, 332–333
state, 8	Horizontal velocity component distributions, 133
mass conservation, 7	Human arterial system, flow in, 451–452
momentum conservation: dynamic	coronary flow, 456
equilibrium, 7	heart, 452
Navier-Stokes and Euler equations, 10	reflections, 458
velocity/strain rates and stresses in, 5	Hypersonic inviscid flow, 246
inviscid/incompressible flow, 12, 14	
velocity potential solution, 12	
strong and weak forms, 15	
weak form of equations, 16	Incompressibility constraint, 1
weighted residual approximation, 17	Incompressible flow, 12
Fluid-structure interaction	Incompressible Newtonian laminar flows
multidimensional problems, 435	adaptive mesh refinement
equations and discretization, 435-437	element elongation, 146
mesh moving procedures, 441–442	example of, 149
segregated approach, 440	first derivative (gradient) based
one-dimensional fluid-structure	refinement, 149
interaction, 424	local patch interpolation, superconvergent
boundary conditions, 429	values, 145
characteristic analysis, 427-428	nodes second derivatives, estimation of, 146
equations, 424–425	second gradient (curvature) based
results, 433	refinement, 143
solution method, Taylor-Galerkin	variables, choice of, 149
method, 430–431	basic equations, 127

incompressible flows, CBS algorithm for	Linear triangles, 509
fully explicit artificial compressibility	Local time stepping, 101
form, 129	Long and medium waves
quasi-implicit solution, 139	bed friction, 358
semi-implicit form, 129	closed domains, finite element
slow flows, mixed and penalty formulations	models, 356–357
incompressible elasticity, analogy with, 151	convection and wave refraction, 372
mixed and penalty discretization, 151	ellipsoidal type infinite elements, 368
transient problems, adaptive mesh generation	and equations, 355
for, 149	infinite elements, 366
Incompressible non-Newtonian flows	infinite elements, accuracy of, 371
metal and polymer forming	linking to exterior solutions, 375
changing boundaries, transient problems	linking to boundary integrals, 376
with, 170	linking to series solutions, 376
elastic spring-back and viscoelastic fluids, 175	local nonreflecting boundary conditions
forming, steady-state problems of, 167	(NRBCs), 363, 365
viscoplasticity and plasticity, 163	mapped periodic (unconjugated) infinite
transient metal forming, direct displacement	elements, 366
approach to, 186	modeling surface waves, 358
viscoelastic flows, 178	short-wave problem, 359
governing equations, 180	stokes waves, 381–383
Infinite elements, 366	three-dimensional effects, 377
accuracy of, 371	cnoidal and solitary waves, 381
ellipsoidal type infinite elements, 368	large-amplitude water waves, 379
mapped periodic (unconjugated) infinite	transient problems, 374
elements, 366	Trefftz-type infinite elements, 372
Trefftz-type infinite elements, 372	unbounded domains, 359
wave envelope (or conjugated) infinite	domain integrals, 362
elements, 369–370	incident waves, 362
Intel Nehalem quad-core, 140	nodal values, 362
Internal carotid artery (ICA), 473	wave diffraction, 360-361
Internal-external subdivision, 102	wave problems, 359
Interpolation error, 143	unbounded problems, 362
Inviscid engine intake, 254	wave envelope (or conjugated) infinite
Inviscid flow, 12, 238, 246	elements, 369–370
Inviscid flow past full aircraft, 253	
Inviscid shock interaction, 246	
Isothermal flow, 236	M
	Mapped periodic (unconjugated) infinite
	elements, 366
K	Mass conservation, 87
$\kappa - l \text{ model}, 290$	Mass-weighted (Favre) time averaging, 300
Kolmogorov length scale, 283	Maxwell model, 178
Kolmogorov velocity, 283	Mesh data, nodal coordinates and connectivity, 486
Kutta-Joukoski condition, 209	Mesh moving procedures, 441–442
	Mesh updating, 203
	and interpolation methods, 57
L	Modeling surface waves, 358
-	Momentum conservation, 8, 88
Large eddy simulation (LES), 286, 303–304	Monotonically integrated LES (MILES), 286, 305
Lawrence Livermore National Laboratory, 187	Multidimensional problems, 435
Lid-driven cavity, incompressible flow in, 129	equations and discretization, 435–437
Linear tetrahedron, 509	

finite element formulation of fluid	Q
equations, 437–438	
finite element formulation of solid	Quasi-implicit forms, 315
dynamics, 438	Quasi-implicit solution, 139
monolithic fluid-structure interaction	
formulation, 439	D
mesh moving procedures, 441-442	R
Delaunay graph method, 444	Reynolds-averaged Navier-Stokes (RANS), 286
Laplacian smoothing, 445	Riemann shock tube, 235
solution to partial differential	
equations, 444	
spring analogy, 442–443	S
segregated approach, 440	Sailing boat, 209
Multigrid method, 252, 519–520	Scalar variables, Taylor-Galerkin procedures for, 70
Multiple wave speeds, 504	Secant viscosity, 163–164
	Second-order Runge-Kutta scheme, 503
M	Self-adjoint differential equations, 493
N	Semi-implicit forms, 198, 315
Natural convection, 318–319, 321	Semi-inverse coupling, 515
Navier-Stokes equations, 10–11, 309, 328	Severn Estuary, tsunami wave in, 339
in nonconservative form, 495	Shallow-water problems
Newton-Cotes integration scheme, 412–413	basis of, 328–331
Nondimensional scales, 313	drying areas, 346
Nonlinear waves, and shocks, 71	numerical approximation, 332-333
Nonreflecting boundary conditions (NRBCs),	shallow-water transport, 346-348
363, 365	steady-state solutions, 343
Numerical approximation, 332–333	transient one-dimensional problems, 334
	tsunami waves, 339
_	two-dimensional periodic tidal motions, 344-345
0	Shallow-water transport, 346–348
One-dimensional fluid–structure interaction, 424	Shock capture, 488
boundary conditions, 429	Short waves
prescribed forward area, pressure, and	background, 389–390
velocity, 429	developments in, 391
characteristic analysis, 427–428	discontinuous Galerkin finite elements
equations, 424–425	(DGFE), 414
results, 433	electromagnetic scattering problems, 392
solution method, Taylor-Galerkin method,	finite elements incorporating wave shapes,
430–431	392, 394
One-equation models, 287	discontinuous enrichment method, 398–399
Output module, 490	products of polynomials and waves, 394–395 sums of polynomials and waves, 397–398
	T-complete systems, 404
_	Trefftz-type finite elements, 401
P	ultra weak formulation, 399–400
Parallel computation, 252	problem, 359
Partition of unity finite elements (PUFE), 397	refraction
Periodic wave, 334	caused by flows, 410
Petrov-Galerkin methods, 39	wave speed refraction, 405–406
weighting functions, continuity requirements	spectral finite elements for, 412–413
for, 42	wave modeling, errors in, 391
Preliminary subroutines and checks, 487	Shuttle launch, 259

Simple explicit characteristic-Galerkin	monotonically integrated LES (MILES), 305
procedure, 60	nondimensional, 289
Simultaneous equations, semi-implicit form, 490	$\kappa - l \text{ model}, 290$
Solitary wave, 334	Spalart-Allmaras model, 290
propagation, 212	one-equation models, 287
Solution method, Taylor-Galerkin method, 430–431	Spalart-Allmaras model, 287–288
Solution module, 487	Wolfstein $\kappa - l$ model, 287
Spalart-Allmaras model, 287–288, 290, 521	rectangular channel, 292
Spring analogy, 442–443	relation between κ , ε , and ν_T , 286
Steady-state flow, 167	Reynolds-averaged Navier-Stokes, 286
Steady-state rolling process	shortest distance to solid wall, 291
with thermal coupling, 170	solution procedure, 292-293, 296
Steady-state solutions, 343	standard SGS model, 304
Stokes waves, 381–383	time averaging, 284–285
Stream function, 14, 498	two-equation models, 288
Stream traces, and pressure contours, 132	standard $\kappa - \varepsilon$ model, 288
Subgrid scale (SGS) approximation, 46	Turbulent kinetic energy dissipation rate, 284
Submerged hydrofoil, 204	Two-dimensional periodic tidal motions, 334-335
Subsonic inviscid flow, 116	Two-dimensional transient supersonic flow, 238
Supercritical flow, 344	Two-equation models, 288
Supersonic inviscid flow, 246	
_	U
T	Unbounded domains, 359
T-complete systems, 404	Unbounded problems, 362
Three-dimensional effects, 377	Unconditionally unstable, 502
Three-dimensional lid-driven cavity solution, 133	•
Thwaites compressible method, 515	
Time domain solutions, 390	V
Transient extrusion problem, 175	-
Transient metal forming, direct displacement	Vertical velocity component distributions, 133
approach to, 186	Vessel branching, 460
Transient one-dimensional problems, 334	Viscous problems, in two dimensions, 260
Transient problems, 374	Volume of fluid (VOF) method, 202
Transonic viscous flow, 267	
Trefftz-type finite elements, 401	\A/
Trefftz-type infinite elements, 372	W
Tsunami waves, 339	Wall shear stress (WSS), 476
Turbulence models, 521	Wave envelope (or conjugated) infinite elements,
κ -ω model, 522	369–370
Spalart-Allmaras model, 521	Wave speed refraction
Turbulent flows	plane wave basis finite elements, 407
compressible flows, 298	problems, 408-409
detached eddy simulation (DES), 305	stepped cylinder, plane scattered by, 409
direct numerical simulation (DNS), 305	weighted residual scheme, 406
large eddy simulation (LES), 303-304	Weighted residual scheme, 406
mass-weighted (Favre) time averaging, 300	Wolfstein $\kappa - l$ model, 287