Machine Learning in Cardiac Imaging

Outline

LEARNING FROM CLINICIANS

- 1. Incorporating non-imaging data into image-based machine learning
- 2. Exploiting multi-modal imaging data

MACHINE LEARNING IN ACQUISITION/RECONSTRUCTION/ANALYSIS

- 3. Automated quality control in large-scale imaging databases
- 4. Machine learning for robust MR reconstruction

Learning from cardiologists

How do doctors make clinical decisions?

1. Incorporating non-imaging data into image-based machine learning

Background

- Cardiac resynchronisation therapy (CRT) involves implanting a pacemaker to treat heart failure
- Using standard clinical selection criteria, ~30% of patients do not respond to treatment
- Research in the clinical literature has identified specific activation patterns that are associated with CRT response*, but these require manual inspection of imaging data by expert cardiologists

Aim

 Use machine learning to automatically learn imaging/non-imaging features to predict positive CRT response

Electrical impulse

KING'S College LONDON

^{*} Sohal et al., JACC, 2013; Jackson et al, Heart Rhythm 2014

Data

Database:

34 patients selected for CRT

Pre-treatment tagged/cine/LGE MR

Follow-up data (positive/negative response to treatment)

Non-imaging data:

Table 1

Description of the non-motion data derived from the clinical evaluation of the patient, from the ECG analysis and from 2D echocardiography imaging. For continuous data values, the third column reports mean and standard deviation over the entire cohort, while for categorical (binary) data values, the fourth column reports the counts of the corresponding categories.

Biomarker	Description	Mean/std dev	Frequency
Aetiology	Ischaemic/non-ischaemic	NA	13/21
EDV_m	End-Diastolic Volume from 3D geometry (cm3)	281/127	NA
EDV	End-Diastolic Volume from 2D echo (cm3)	214/91	NA
ESV	End-Systolic Volume from 2D echo (cm3)	164/84	NA
EF	Ejection Fraction from 2D echo (%)	24.7/9.3	NA
Gender	Male/Female	NA	24/10
LBBB	Strict Left-Bundle Branch Block: yes/no	NA	23/11
NYHA	New York Heart Association classes (I-IV)	2.7/0.5	NA
QOL	Quality of Life questionnaire score	48/27	NA
QRS_d	QRS duration (ms)	146/22	NA
QRS _{cat}	QRS category < 150 ms/ > 150 ms	NA	18/16
Rhythm	Sinus/Atrial fibrillation	NA	28/6
6MWD	6 min walking distance (m)	269/137	NA

Multiple kernel learning

Motion atlas

Segmentation of LV from cine MR:

Motion estimation from tagged MR:

Transport of motion/deformation data:

Peressutti et al, Med Image Anal, 2017

Random projections with task-based subspace

A. King – Machine Learning in Cardiac Imaging

Multiple kernel learning for CRT response prediction - results

Classification results:

	Non-motion kernels only	Motion kernels only	Both motion and non- motion kernels
Accuracy	85.3	88.2	91.2
Sensitivity	100	100	100
Specificity	37.5	50	62.5
PPV	83.8	86.7	89.7
NPV	100	100	100

Sensitivity = proportion of responders chosen for treatment

Specificity = proportion of non-responders who would not be chosen for treatment

Multiple kernel learning for CRT response prediction – kernel weights

CRT response prediction – the role of spatial scale of the motion features

Sensitivity = proportion of responders chosen for treatment

Specificity = proportion of non-responders who would not be chosen for treatment

Learning from cardiologists

How do doctors make clinical decisions?

2. Exploiting multi-modal imaging data

Background:

- MR is considered to be the 'gold standard' for cardiac functional assessment
- US is more commonly used due to its low cost, ease of use and portability

Exploiting multi-modal imaging data

Aim:

- Use a database of paired MR/US data sets to exploit multimodal data in a diagnostic pipeline
- Pipeline should be based on data from a single modality (US)

A multimodal cardiac motion atlas

Multiview dimensionality reduction

Multi-view dimensionality reduction algorithms

- Canonical correlation analysis (CCA) on MR/US displacements
 - Determines directions where X and Y have maximum correlation between modalities
- Partial least squares regression (PLS) on MR/US displacements
 - Determines directions where X and Y have maximum covariance between modalities

Single view dimensionality reduction algorithm

- Principal component analysis (PCA) on MR displacements only
 - Determines directions of maximum data variance in single modality

Multimodal atlas: results

 CCA and PLS have lower errors than PCA.

 $E_{d}(MR-US)$ – embedding error $E_{D}(MR-MR)$ – Reconstruction error for MR $E_{D}(US-US)$ – Reconstruction error for US $E_{D}(MR-US)$ – Prediction error

 PLS has lower errors and better reconstructed volumes compared to CCA.

The task

Classification of normal vs. dilated cardiomyopathy:

Clinical database:

- 50 healthy volunteers
- 14 dilated cardiomyopathy patients

Image protocol (LV):

- Multi-slice short-axis MR sequence
- 3D tagged MR sequence (3DTAG).
- 3D apical ultrasound sequence (3DUS).

Stratified k-fold cross-validation

- Imbalanced data
- # low dimensions set to retain 90% of the variance
- 8 folds and 100 repetitions

Multiview classification

2.a. Single modality US method

3. Multiple modality two-step method

Multiview learning

Multiview learning

Multiview learning - results

Proposed method	BACC (%)	SEN (%)	SPE (%)		
1. Multiple modality one-step method					
MLDA	82.18 (15.0)*	80.50 (26.5)	83.86 (9.9)		
MvLapSVM	92.71 (10.4)*	89.00 (20.8)	95.14 (6.8)		
Comparative approaches	BACC (%)	SEN (%)	SPE (%)		
2.a. Sin	gle modality US n	nethod			
$PCA_{US} + LDA$	74.79 (15.8)	71.05 (28.6)	78.57 (10.1)		
$\mathrm{PCA_{US}} + \mathrm{SVM_{rbf}}$	87.32 (12.9)	84.50 (23.2)	90.14 (6.6)		
2.b. Single modality MR method:					
$\mathrm{PCA}_{\mathrm{MR}} + \mathrm{LDA}$	84.21 (15.4)*	74.00 (28.8)	90.43 (6.8)		
$PCA_{MR} + SVM_{rbf}$	90.89 (11.7)*	86.50 (22.3)	95.29 (6.7)		
3. Multiple modality two-step method					
PLS + LDA	80.07 (16.8)*	75.51 (27.1)	81.86 (9.5)		
$\mathrm{PLS} + \mathrm{SVM}_{\mathrm{rbf}}$	90.39 (12.1)*	87.50 (21.8)	90.57 (10.9)		

- One-step multiview learning outperforms two-step approach
- One-step multiview learning performs almost as well as the 'gold standard' of MRbased classification

BACC: balanced accuracy

SEN: sensitivity SPE specificity

* Student's t-test (99% confidence)

Regional multiview learning

Weighted majority voting:

For each AHA segment each subject is classified. The results are combined using weighted majority voting with weights determined at training by a randomised search on hyper parameters

Puyol-Anton et al., IEEE Trans Biomed Eng, 2018

Regional multiview learning - results

Global Methods	BACC (%)	SEN (%)	SPE (%)
MLDA	82.18 (15.0)	80.50 (26.5)	83.86 (9.9)
MvLapSVM	92.71 (10.4)	89.00 (20.8)	95.14 (6.8)
Regional Methods	BACC (%)	SEN (%)	SPE (%)
Regional Methods MLDA	BACC (%) 87.71 (12.6)*	SEN (%) 85.00 (23.1)	SPE (%) 90.43 (6.7)

- Regional approach has higher accuracy
- Highest accuracy was 94% using regional MvLapSVM.

BACC: balanced accuracy

SEN: sensitivity SPEL specificity

* Student's t-test (99% confidence)

SmartHeart project

5 year grant involving:

- King's College London
- Imperial College London
- Queen Mary University London
- Oxford University

"To develop a diagnosis-driven 'smart MR scanner' that it is no longer a mere imaging device but instead becomes a highly sophisticated diagnostic tool" ...

3. Automated quality control in large-scale imaging databases

Cardiac MR

Adopted from Ferreira et al., JCMR, 2013.

- Need for high quality images
- Wide range of artefacts
- Manual labelling tedious for large datasets
- Need for automatic quality assessment tools

- UK Biobank is a large scale database of imaging/non-imaging data
- Will eventually consist of cardiac MR images from 100,000 subjects (currently ~27,000)

Cardiac MR quality issues

- 1. Off-axis (4ch)*
- Left Ventricular Outflow Tract
- 5 chamber look
- 2. Motion related artefacts (SAX)^{\$}
- Breathing
- Mis-triggering
- Arrhythmia

Good Planning

Good Quality

Bad Planning

Motion Artefact

4-chamber cine cardiac MR

- Good 4-chamber CMR image shows all chambers clearly, enables right and left atrium analysis
- Planned using 2-chamber and short axis images
- Mistakes in planning lead to 'off axis' images

Left ventricular outflow tract (LVOT)

- Off-axis acquisitions often show the Left Ventricular Outflow Tract (LVOT)
- Challenges RA and LA analysis
- Automatic LVOT detection can assist automatic quality control/planning

Bad Planning

C1 C2 Method 32@ 32@ 5x5 5x5 1. Contrast Normalisation 2. Region of Interest Extraction 3. Training a CNN Model Input: 2D 4chamber cardiac MR **Output: LVOT= 0 or 1** 128 2D Dataset **CNN Model for Learning**

- Similar to Lenet* Model
- Dropout 0.5 after each layer
- ReLU Activation

Experimental results

Dataset:

- 123 Good Quality Image and 123 LVOT images from UK Biobank
- 5 temporal frames of each sequence, 615 images for each class

Methods	Accuracy	Precision	Recall
K-Nearest Neighbours	0.613	0.604	0.602
Linear SVM	0.732	0.741	0.736
Decision Tree	0.651	0.626	0.619
Random Forests	0.598	0.613	0.610
Adaboost	0.718	0.729	0.727
Naive Bayesian	0.653	0.625	0.637
Discriminant Analysis	0.669	0.684	0.643
CNN w.o Augmentation	0.801	0.811	0.781
CNN	0.826	0.828	0.821

$$\label{eq:accuracy} \text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

LVOT

Good Quality Image Good Quality Attention Map*

Oksuz et al., ISBI 2018

^{*} Zhou et al., CVPR, 2016

Cardiac MR quality issues

1. Off-axis (4ch)*

Left Ventricular Outflow Tract 5 chamber look

2. Motion related issues (SAX)^{\$}

Breathing
Mis-triggering
Arrhythmia

Good Quality

Motion Artefact

Cardiac cine MR acquisition

Motion Artefact

Dataset

- 105 subjects with motion artefacts (breathing, mistriggering, arrhythmia)
- 53 for mistriggering, 23 for breathing, 24 arrhythmia, 4 mixed
- 105 artefact images, 3360 good quality images
- DATA IMBALANCE ...

Arrhythmia

Breathing

Mistriggering

Good Quality

Data imbalance

1. More data

- Difficult task in many medical imaging applications.
- Not plausible to generate more real low quality medical data.

2. Resampling dataset

- Add copies of instances from the under-represented class.
- Delete some data from the over-represented class.

3. Generate synthetic samples

 Generate synthetic examples that best represent the original data from the under-represented class.

K-space corruption

Oksuz et al., MICCAI 2018

KING'S College LONDON

Synthetic images

Oksuz et al., MICCAI 2018

3D CNN model

Experimental Results

Dataset:

- 105 Artefact Images, 3360 Good quality Images
- Dataset balanced with augmentation

Precision =
$$\frac{TP}{TP + FP}$$
 Recall = $\frac{TP}{TP + FN}$
Accuracy = $\frac{TP + TN}{TP + FP + FN + TN}$
2 * (Recall * Precision)

Methods	Accuracy	Precision	Recall	F1-score
K-Nearest Neighbours	0.952	0.074	0.268	0.116
Linear SVM	0.968	0.721	0.385	0.502
Decision Tree	0.951	0.250	0.385	0.303
Random Forests	0.958	0.320	0.315	0.317
Adaboost	0.960	0.230	0.567	0.327
Naive Bayesian	0.801	0.527	0.183	0.111
Variance of Laplacian	0.958	0.113	0.161	0.133
NIQE *	0.958	0.210	0.248	0.227
CNN with no augmentation	0.968	0.700	0.466	0.560
CNN with translational augmentation	0.974	0.750	0.600	0.667
CNN with k-space augmentation	0.977	0.779	0.642	0.704
CNN with k-space+translational augmentation	0.982	0.809	0.652	0.722
				

Use of UK biobank data for analysis of factors influencing cardiac health

STACOM poster: Puyol-Anton, et al. "Learning associations between clinical information and motion-based descriptors using a large scale MR-derived cardiac motion atlas"

SmartHeart project

5 year grant involving:

- King's College London
- Imperial College London
- Queen Mary University London
- Oxford University

"To develop a diagnosis-driven 'smart MR scanner' that it is no longer a mere imaging device but instead becomes a highly sophisticated diagnostic tool" ...

Acquisition

4. Machine learning for robust MR reconstruction

Aim:

MR motion artefact correction during reconstruction

Approaches:

- Denoising in image space (c to a)
- Denoising in k-space (d to b)
- End-to-end (d to a)*

(a) Good quality image

(c) Corrupted image

(b) Good quality k-space

(d) Corrupted k-space

Automap

Image reconstruction by domain transform manifold learning

- Developed for high quality image reconstruction from under-sampled kspace
- Insufficient image quality for corrupted k-space

Oksuz et al., MICCAI MLMIR, 2018

* Zhu et al., Nature, 2018

Automap-GAN setup

Adversarial setup for motion artefact correction

Improved robustness and deblurring of the image outputs

Experimental results

Dataset:

- Synthetically generated corruptions
- 75000 2D images for training, 2500 for testing

testing			
Methods	RMSE	PSNR	SSIM
Inverse Fourier Transform	0.045	27.8	0.883
Proposed-ImageNET	0.032	31.1	0.766
Automap-Cardiac	0.029		
Proposed-Cardiac	0.027	35.1	0.850

RMSE =
$$\sqrt{\frac{1}{N_x N_y} \sum_{x=0}^{N_x} \sum_{y=0}^{N_y} (r(x, y) - p(x, y))^2}$$

PSNR =
$$20log_{10}$$

$$\left(\frac{\sum_{x=0}^{N_x} \sum_{y=0}^{N_y} r(x,y)^2}{\sqrt{\sum_{x=0}^{N_x} \sum_{y=0}^{N_y} (r(x,y) - p(x,y))^2}}\right)$$

SSIM
$$(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

In-vivo example

(a) K-space

(b) Motion corrupted image

(c) Proposed

QUESTIONS??

Ilkay Oksuz

Esther Puyol Anton

Bram Ruijsink

Devis Peressutti

Matt Sinclair

Claudia **Prieto**

Julia **Schnabel**

Rene **Botnar**

andrew.king@kcl.ac.uk

@atoandyking

Group web site: SmartHeart project:

UK Biobank:

https://kclmmag.org/

https://wp.doc.ic.ac.uk/smartheart/

http://www.ukbiobank.ac.uk/

