Continual Learning with Deep Generative Replay

NIPS 2017

Hanul Shin

Massachusetts Institute of Technology SK T-Brain skyshin@mit.edu Jung Kwon Lee, Jaehong Kim, Jiwon Kim

SK T-Brain {jklee,xhark,jk}@sktbrain.com

2023.03.10 내부미팅 이소영

Contents

- 1. Abstract
- 2. Introduction & Related Works
- 3. Generative Replay
- 4. Experiments
- 5. Discussion

Abstract

- Solving multiple task (assuming sequential) → catastrophic forgetting
 - Replaying all previous data: large memory, access limit (in real world)

- **Deep Generative Replay**: Cooperative dual model architecture
 - Deep generative model ("generator") + task solving model ("solver")
 - Hippocampus: generative nature, short-term memory system in primate brain
 - Training data = sampled previous tasks data +(interleave) new task data
 - Test: several sequential learning settings involving image classification tasks

Introduction & Related Works – continual learning

- Supervised learning : 데이터에 대한 정답이 주어진 상태에서 학습
 - Challenges : Incomplete, Growing Datasets (데이터는 시간의 흐름에 따라 끊임 없이 성장한다)
 - 연구의 방향이나 시장의 수요에 따라 데이터/클래스가 세분화
 - 증감된 데이터/클래스에 따라 새로운 task 부여

2017년도

ImageNet 22,000 classes

2018년도

ImageNet 100,000 classes 2019년도

ImageNet 120,000 classes

Introduction & Related Works – continual learning

- Neurophysiological aspects (humans and large primate brain)
 - Complementary Learning Systems (CLS) & Plasticity and stability dilemma
 - 배경 지식은 일반화하여 장기기억으로 저장되어 있음
 - 새롭게 지식을 배울 때 배경지식을 활용하고, 새로운 정보(단기기억) 중 중요도를 잘 판별해서 배경지식(장기기억)으로 저장
 - 새롭게 무언가 배웠다고 해서 이전에 배운 것들을 잘 못하지 않음

b) Complementary Learning Systems (CLS) theory

Parisi et al. (2019) Continual lifelong learning with neural networks: A review.

Introduction & Related Works – continual learning

- Continual learning scenario
 - 여러 task를 하나의 모델에 순차적으로 학습하여 최종적으로 모든 task의 수행이 가능한 모델을 학습

Continual Learning ≈ Lifelong Learning ≈ Incremental Learning ≈ Online Multi-task Learning

- Challenges: catastrophic forgetting (McCloskey and Cohen, 1989)
 - model's performance on **previously learned tasks abruptly degrades** when trained for a new task
 - 새로운 task에 대해 학습하게 되면 신경망모델이 이전에 배운 task에 대해서는 네트워크가 까먹는 현상

Introduction & Related Works

- Continual learning 대표적인 접근 방법
 - 1. Regularization approach : 현재 task update 시, 이전 task에서 중요했던 파라미터는 조금만 변경되도록 regularization term 추가
 - 2. Dynamic Architecture : 새로운 task를 수용하기 위해 네트워크 구조를 동적으로 변경
 - 3. Memory Replay : 이전 task들의 data를 저장, 현재 task update에 사용. 생물학적인 기억 메커니즘을 모방하자는 아이디어

Introduction & Related Works

- In paper ...
- Hippocampus: more than a simple experience replay buffer
 - Reactivation of the memory traces yields rather flexible outcomes
 - better paralleled with a **generative model** than a replay buffer
 - → deep **generative replay** framework
 - **b)** Complementary Learning Systems (CLS) theory

Parisi et al. (2019) Continual lifelong learning with neural networks: A review.

Introduction & Related Works

- "Scholar" model: generator-solver pair
 - Without referring to past data
 - Learn the new task without forgetting its own knowledge
 - Retains previously acquired knowledge by the concurrent replay of generated pseudo-data
 - Update the generator and solver networks : generated data & new data
 - Any deep generative model as a generator

Generative Replay - Terminology

• Sequence of task : $T = (T_1, T_2, \dots, T_N)$

Definition 1

- task T_i 는 데이터 분포 D_i 에 대해 모델을 최적화하는 것
- D_i 의 학습용 데이터는 (x_i, y_i) 로 주어진다.
- Scholar : generator-solver pair

Definition 2

- Scholar $H = \langle G, S \rangle$ tuple
- generator G: generative model that produces real-like samples
- solver S: task solving model parameterized by θ
- Solver $^{ extstyle |}$ objective function $\mathbb{E}_{(m{x},m{y})\sim D}[L(S(m{x}; heta),m{y})]$

Generative Replay

- Training a sequence of scholar models : $(H_i)_{i=1}^N$
 - H_n (n > 1) learns T_n & knowledge of H_{n-1}

(a) Sequential Training

Generative Replay

- New generator input: x & x'
 - *x* : current task input
 - x': old generator replayed inputs

- New solver training : using (x, y) & (x', y')
 - y': old solver's output to x'

• x and x' mixed at a ratio that depends on the desired importance of a new task compared to the older tasks.

Generative Replay

$$\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim D}[L(S(\boldsymbol{x};\theta),\boldsymbol{y})]$$

$$L_{train}(\theta_i) = r \underbrace{\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y}) \sim D_i}[L(S(\boldsymbol{x};\theta_i),\boldsymbol{y})]}_{\text{Current Task}} + (1-r) \underbrace{\mathbb{E}_{\boldsymbol{x}' \sim G_{i-1}}[L(S(\boldsymbol{x}';\theta_i),S(\boldsymbol{x}';\theta_{i-1}))]}_{\text{Old Scholar}}$$

$$L_{test}(\theta_i) = r \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim D_i}[L(S(\boldsymbol{x}; \theta_i), \boldsymbol{y})] + (1 - r) \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim D_{past}}[L(S(\boldsymbol{x}; \theta_i), \boldsymbol{y})]$$
 (D_{past} : 과거 데이터의 누적 분포)

• 첫 번째 solver는 replayed 데이터가 없기 때문에 i = 1 에서 두번째 항은 무시

- Generator: WGAN-GP
- Figure notation
 - GR: Generative Replay. (our model) assuming a situation when the generator is perfect
 - ER: Exact Replay. (upper bound) replayed actual past data paired with the predicted targets from the old solver
 - Noise: generated samples do not resemble the real distribution at all
 - Replaying random gaussian noises paired with recorded responses
 - None: baseline of naively trained solver network

- Learning **independent tasks**: MNIST pixel permutation task
 - Solver: classify pixel permuted inputs into the original classes

Task 1 (permutation 1)

Figure 2: Schematic of the permuted MNIST task protocol.

Gido van de Ven and Andreas S. Tolias.

Three scenarios for continual learning. arXiv:1904.07734, 2019.

Learning new domains

• Tested if the model can incorporate the knowledge of a new domain with generative replay

GR: maintained its performance on the first task while accomplishing the second one

None slightly better performance on new task: network was solely optimized to solve the new task

Learning new domains

Samples from trained generator in MNIST to SVHN experiment

The samples are diverted into ones that mimic either SVHN or MNIST input images

Experiments 2'

Learning new domains

Generative replay is compatible with other continual learning models

• Learning **new classes**

Sequentially trained on 5 tasks each task: MNIST images belong to 2 out of 10 labels

Discussion

- Deep generative replay framework
 - Scholar model: generator and solver
- Benefit
 - Maintains the former knowledge: input-target pairs produced from the saved networks (not old data)
 - Ease of balancing the former and new task performances
 - Flexible knowledge transfer
- Defect
 - Heavily depends on the quality of the generator

Moreover: language

LAMOL (Lifelong Language Learning with Effective Generative Replay)

Moreover: language

- LAMOL
- Text Prediction model = 일종의 generative model
 - 새로운 task를 학습하기 전 이전 tasks의 데이터 분포를 따르는 샘플 생성

Moreover: language

• LAMOL

END