Thermische Eigenschaften von Gitterschwingungen

Gitteranteil der spezifischen Wärme Anharmonische Effekte (Wärmeleitung, Wärmeausdehnung)

Dispersionsrelation für 3D-Bravaisgitter ohne Basis

Y.Fujii *et al.*, *Phys. Rev. B* **10**, 3647 (1974)

Dispersionsrelation für 3D-Bravaisgitter mit Basis

Hauptsymmetrierichtungen

KBr, NaCl-Struktur, Neutronenstreuung

A. D. B. Woods et al., Phys. Rev. 131, 1025 (1963)

Ibach/Lüth, 6. Aufl., S. 90

Dispersionrelation: Gitter mit zweiatomiger Basis

$$\omega^{2} = c \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \pm c \sqrt{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{2} - \frac{4}{M_{1}M_{2}} \sin^{2} \frac{qd}{2}}$$

Kopitzki/Herzog, 5. Aufl., S. 88

bisher: 2 unterschiedliche Massen m, M und feste Federkonstante C analog: feste Masse m und 2 alternierende Federkonstanten C₁ und C₂

Phononen-Energie

```
bekannt: "<u>Phot</u>on" = <u>Lichtquant</u> = Energiequant einer Lichtwelle
Quantisierung = Diskretisierung der möglichen Amplitudenwerte
des E- und B-Feldes
```

analog: "Phonon" = Energiequant einer Gitterauslenkungswelle

Quantisierung = **Diskretisierung** der möglichen Amplitudenwerte der atomaren Auslenkung,

d.h. der harmonischen Schwingung

```
Quantenmechanik: für harmonischen Oszillator
Energie E = ħω ( n + ½ )

↑ ↑
Besetzungs- Nullpunkts-
zahl energie
```

Thermische Schwingungen im Festkörper Elastische Wellen im Festkörper

Angeregte Phononen

Phonon hat keinen reellen physikalischen Impuls,

weil Summe der Auslenkungen, bzw. $\partial u/\partial t$, $\partial v/\partial t$ über den gesamten Kristall = 0 (Ausnahme: akustische Phononen für k \rightarrow 0, entspricht Translation)

ABER: Wellenvektor k bestimmt relative Phase der Atomauslenkungen Relevant für Wechselwirkungsprozesse, z.B. Anregung von Phonon durch Lichtwelle (= Lichtabsorption)

Absorption der Energie aus Lichtwelle (ω , k) durch Atomauslenkungswelle (ω ', k') funktioniert <u>nur</u>, wenn sowohl die Frequenz passt (d.h. ω '= ω), als auch die *Phasen* von E-Feld und Atomauslenkungswelle *für alle Atome* übereinstimmen, d.h. auch die Wellenvektoren **k** und **k**' müssen gleich sein.

Analogon zur Energie- und Impulserhaltung

→ sinnvolle Def.: Quasi-Impuls = ħk

außerdem: weil k nur eindeutig bis auf \pm n·2 π /a: \hbar k ~ \hbar k \pm n· \hbar 2 π /a d.h. für Quasi-Impulserhaltung: statt $\mathbf{k'} = \mathbf{k}$ ergibt sich: $\mathbf{k'} = \mathbf{k} + \mathbf{G}$.

VI.5.3 Zahlenwerte: Phononfrequenzen

hier: Werte bei k = 0, d.h. im Zentrum der BZ bestimmt mittels IR- und Ramanspektroskopie

- Trends: (i) in Gruppe IV $\omega_{LO} = \omega_{TO} \ \ \, \text{wg. kovalenter Bindung}$ keine zusätzliche E-Feldkräfte für LO in Verbindungen $\omega_{LO} > \omega_{TO}$
 - (ii) Abnahme der Frequenz mit zunehmender Masse (vgl. $\omega = (k/\mu)^{1/2}$)
 - (iii) mit steigender Polarität (III-V ightarrow II-VI): Zunahme Abstand $\,\omega_{LO}^{}$ $\,\omega_{TO}^{}$

Spezifische Wärme von Ge und Si

Plancksche / Bose-Verteilungsfunktion $\langle n \rangle$

Dispersionsflächen in 3D

Reale Zustandsdichte in 3D

festes 36Ar, fcc, Neutronenstreuung

Zustandsdichte

Dispersionsrelation

Y.Fujii *et al.*, *Phys. Rev. B* **10**, 3647 (1974)

Zustandsdichte von Diamant

Zustandsdichte

Dispersionsrelation

Spezifische Wärme von Diamant

Kittel, 14. Aufl., S. 139

Reale und Debye-Zustandsdichte im Vergleich

Ibach/Lüth, 6. Aufl., S. 116

Spezifische Wärme im Debye-Modell

Ibach/Lüth, 6. Aufl., S. 120

Einstein-Modell

$$c_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = 3Nk_{B} \left(\frac{\hbar\omega}{k_{B}T}\right)^{2} \frac{\exp\left(\frac{\hbar\omega}{k_{B}T}\right)}{\left[\exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1\right]^{2}}$$

Einstein-Temperatur
$$\theta_E = \frac{h \omega_E}{k_B}$$

• hohe Temperatur $T>> \theta_{\scriptscriptstyle E}$

$$\Rightarrow c_V = 3Nk_B$$

• tiefe Temperatur $T < \theta_E$

$$\Rightarrow c_{\scriptscriptstyle V} \propto \exp\!\left(-rac{ heta_{\scriptscriptstyle E}}{T}
ight)$$
 ; aber Exp. $c_{\scriptscriptstyle V} \propto T^{\scriptscriptstyle 3}$

A. Einstein, Ann. Phys. 22, 180 (1907)

Li 344 0.85	Be 1440 2.00	Debye-Temperatur und Wärmeleitfähigkeit															90 29	N	0	F		Ne 75
Na	Mg														Al	Si		P	s	С	:	Ar
158 1.41	400 1.56	Tieftemperaturgrenze von Ø, ir Kelvin 428 Wärmeleitzahl bei 300 K, in W cm ⁻¹ K ⁻¹ 2.37															8					92
K	Ca	Sc	Ti		V	Cr	Mr	F	e C	Co		Ni C		Zn	Ga G		a As		Se	В	r	Kr
93 1.02	280	360 0.16	420 0.22		880 0.31	630 0.94	410 0.0		1,000,000,000	45 .00	450 0.91	24 4.	01	327 1.16		374 0.60		282 0.50	90 0.02	2		72
Rb	Sr	Y	Zr		Nb	Mo	Тс	R	u R	th	Pd	Ag	g	Cd	ln	Şn	w	Sb	Те	ī		Xe
56 0.58	147	280 0.17	291 0.2		275 0.54	450 1.38	0.5			80 .50	274 0.72		.29	2 09 0.97	108 0.82	200 0.6		211 0.24	153 0.0			64
Cs	Ва	Laβ	Hf		Та	w	Re	0	s II	•	Pt	A	ı	Hg	ΤI	Pb		Bi	Po	A	t	Rn
3 8 0.36	no 🐗	142 0.14	252 0.2		240 0.58	400 1.74	43 0.4	2224000		20 .47	240 0.72	2 3.	5 17	71.9	78.5 0.46	0.3	. //wappre	11 9 0.08				
Fr	Ra	Ac		Ce	Pr	N	d	Pm	Sm	Eu	· T	Gd	Tb	21	ð.		Er	Tr	n	Yb	Lu	
				0.1	1 0.		.16		0.13			200 0.11	0.1				0.1			120 0.35	210 0.1	
			Ī	Th	Pa	U		Np	Pu	An	n	Cm	Bk	Cf	f Es	5	Fm	M	d	No	Lr	,
				0.5)7 .28	0.06	0.07							116000						

Phononenstreuung und Umklapp-Prozesse

Mittlere Freie Weglänge, T groß

Mittlere freie Weglänge T klein

Wärmeleitfähigkeit

Beiträge zur Wärmeleitung

