

1 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

2 Appellants: Parasnis et al. Attorney Docket No: MICR0173

3 Serial No: 09/533,049 Group Art Unit: 2143

4 Filed: March 22, 2000 Examiner: A. A. Boutah

5 Title: SYSTEM AND METHOD FOR RECORDING A PRESENTATION FOR ON-
DEMAND VIEWING OVER A COMPUTER NETWORK

6 SUBSTITUTE APPEAL BRIEF

7 Bellevue, Washington 98004

8 June 12, 2006

9 TO THE DIRECTOR OF THE PATENT AND TRADEMARK OFFICE:

10 This is an appeal from a final rejection by Examiner Alina. A. Boutah of Group Art Unit
11 2143. A Final Rejection was mailed on February 16, 2005. Appellant filed a timely Notice of
12 Appeal on June 23, 2005 and an Appeal Brief on August 09, 2005. This Substitute Appeal Brief
13 addresses objections raised in a Notification of Non-Compliant Appeal Brief mailed on
14 May 31, 2006.

15 The jurisdiction of this board is invoked under the provisions of 35 U.S.C. § 134 and
16 37 C.F.R. § 41.

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

TABLE OF CONTENTS

REAL PARTY IN INTEREST	3
RELATED APPEALS AND INTERFERENCES	4
STATUS OF THE CLAIMS	5
STATUS OF THE AMENDMENTS	6
SUMMARY OF CLAIMED SUBJECT MATTER	7
GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL	13
ARGUMENT	14
Rejection Under 35 U.S.C. § 103(a)	14
The Combined References Fail to Teach or Suggest Automatic Time Indexing as Recited in Independent Claims 1, 9, 16, 20 and 24	14
The Combined References Fail To Teach or Suggest Automatic Time Indexing When Live Content Is Captured or Data Stream Is Produced as Recited in Independent Claims 1, 9 and 24	16
The Combined References Fail to Teach or Suggest Keyframes and Deltaframes as Recited in Independent Claims 1 and 9	17
The Combined References Fail to Teach or Suggest Generation of Slide Display Commands in Response to Slide Triggering Events as Recited in Independent Claims 1, 9, 16, 20 and 24	19
The Combined References Fail to Teach or Suggest Controlling Display of Slides during Playback as Recited in Independent Claims 1, 9, 20 and 24	24
CONCLUSION	25
APPENDIX	26
Claims on Appeal	26
EVIDENCE APPENDIX	35
Appendix Listing	35
RELATED PROCEEDINGS APPENDIX	36
Appendix Listing	36

REAL PARTY IN INTEREST

The real party in interest in this appeal is hereby identified as Microsoft Corporation, since all right and title in the invention and in the patent application on appeal has been assigned to Microsoft Corporation, as evidenced by a chain of title from the inventors in the patent application identified above to the current assignee, as shown below.

An assignment of all rights and title in the present patent application was made by inventors **Shashank M. Parasnis** (assignment executed on July 14, 2000), **Paul C. Poon** (assignment executed on March 17, 2000), and **Paul O. Warrin** (assignment executed on March 15, 2000) to **Microsoft Corporation**. The assignments were recorded in the U.S. Patent and Trademark Office on July 26, 2000 at Reel 011003, Frame 0922; on March 22, 2000 at Reel 010695, Frame 0410; and on March 22, 2000 at Reel 010695, Frame 0413, respectively.

RELATED APPEALS AND INTERFERENCES

No other appeals or interferences are known to appellants, appellant's undersigned legal representative, or by the assignee of this application that will directly affect or be directly affected by or have a bearing on the Board's decision in this pending appeal.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

STATUS OF THE CLAIMS

Claims 1-4 and 6-29 remain pending in the application on appeal, Claim 5 having been canceled. No claims have been allowed. Claims 1-4 and 6-29 have been rejected under 35 U.S.C. § 103. Appellants hereby appeal that rejection.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

STATUS OF THE AMENDMENTS

A Request for Reconsideration in response to the Final Office Action in this application was mailed on April 08, 2005. An Advisory Action mailed on May 12, 2005, indicated that for purposes of appeal, the amendment would be entered. No further amendment has been filed.

A copy of the claims on appeal, including all amendments actually entered, is appended hereto.

7

8

9

10

11

12

13

14

14

16

17

18

19

20

1

1

1

1

8

20

21

SUMMARY OF CLAIMED SUBJECT MATTER

Independent Claim 1

According to a first aspect of the invention, a method is provided for recording a live presentation (an exemplary flowchart for which is shown in FIGURE 20) including a predefined content portion (e.g., a presentation as described in the specification at page 13, lines 23-32) that includes a plurality of presentation slides (e.g., presentation slide 1813 of FIGURE 24) displayed in response to slide triggering events during the live presentation (e.g., execution of an animation command, see specification, page 38, lines 20-21), and a live portion with live audio and/or visual content performed in conjunction with display of said plurality of presentation slides during the live presentation. The method comprises the steps of generating slide display commands (e.g., slide display script commands, see specification, page 40, lines 7-10) corresponding to said slide triggering events (e.g., block 1613 and block 1614 of FIGURE 20 and related text in specification) captured in real time during the presentation when presented live (e.g., block 1612 of FIGURE 20 and related text in specification), for controlling display of said plurality of presentation slides during playback of a recorded presentation (e.g., see specification, page 43, lines 1-4). It also includes the step of automatically embedding the slide display commands into a data stream as the data stream is produced (e.g., see specification, page 40, lines 10-11, and block 1616 of FIGURE 20), the data stream comprising data corresponding to the live portion of the presentation (e.g., see specification, page 40, line 11), wherein the live content is captured as a plurality of video frames (e.g., video frames 1700 of FIGURE 21) comprising a plurality of keyframes (e.g., dark-lined frames 1708 of FIGURE 21) and deltaframes (e.g., thin-lined frames 1706 of FIGURE 21). The plurality of keyframes and deltaframes are automatically time indexed as the live content is captured to enable synchronization of the slide display commands with the live content (e.g., see specification, page 41, line 32-page 42, line 1). Another step includes saving the data stream with embedded slide display commands to a file (e.g., block 1622 of FIGURE 20) such that when the file is played, said live portion is reproduced and said plurality of presentation slides are displayed in substantial synchrony with said live portion as it is played, thereby replicating the live presentation.

Independent Claim 9

According to a second aspect of the invention, a method is provided for reproducing on a viewing computer a presentation that was previously presented live (an exemplary flowchart for which is shown in FIGURE 22), said viewing computer having a display (e.g., workstation 1186 or

1 personal computer 1182 of FIGURE 9 and monitor 47 of FIGURE 25), said presentation including a
2 predefined content portion with a plurality of presentation slides (e.g., presentation slide 1813 of
3 FIGURE 24) that were displayed in response to slide triggering events (e.g., execution of an
4 animation command, see specification, page 38, lines 20-21) during the presentation when it was
5 presented live, and a live portion comprising live audio and/or visual content performed in
6 conjunction with display of said plurality of presentation slides during the presentation when it was
7 presented live. The method comprises the steps of producing a recording of the presentation when it
8 was presented live by performing the steps of: (1) producing a data stream comprising data
9 corresponding to the live portion of the presentation (e.g., see specification, page 40, lines 21-22 and
10 block 1612 of FIGURE 20), wherein the live portion of the presentation is captured as a plurality of
11 video frames (e.g., video frames 1700 of FIGURE 21) comprising a plurality of keyframes (e.g.,
12 dark-lined frames 1708 of FIGURE 21) and deltaframes (e.g., thin-lined frames 1706 of
13 FIGURE 21); (2) generating slide display commands (e.g., slide display script commands of
14 specification, page 40, lines 7-10) corresponding to said slide triggering events (e.g., block 1613 and
15 block 1614 of FIGURE 20) captured in real time during the presentation when presented live (e.g.,
16 block 1612 of FIGURE 20), each slide display command controlling display of an associated presentation
17 slide when the recording is played (e.g., see specification, page 43, lines 1-4); (3) automatically
18 including the slide display commands with the data corresponding to the live portion of the
19 presentation in the data stream as the data stream is being produced, said slide display commands
20 being automatically time indexed (e.g., see specification, page 40, lines 20-21) in regard to the
21 keyframes and deltaframes within the data stream based upon the time when the slide triggering
22 events occurred in the presentation when presented live; and (4) saving the data stream to a data
23 stream file (e.g., block 1622 of FIGURE 20) that is accessible by the viewing computer. Additional
24 steps include saving the predefined content portion to at least one presentation slide file that is
25 accessible by the viewing computer (e.g., see blocks 1606 and 1608 of FIGURE 20; specification,
26 page 39, line 31-page 40, line 4); accessing the data stream file with the viewing computer (e.g., see
27 blocks 1808 and 1810 of FIGURE 22, specification, page 43, lines 20-32); reproducing the live
28 portion of the presentation on the display of the viewing computer by playing the data stream file
29 (e.g., see block 1812 of FIGURE 22, specification, page 44, lines 22-24); and extracting the slide
30 display commands from the data stream as the slide display commands are encountered while
31 playing the data stream file (e.g., block 1814 of FIGURE 22, see specification, page 44, lines 27-29).

~~

1 The method also includes the step of, in response to each slide display command that is extracted in
2 the preceding step, accessing data corresponding to its associated presentation slide with the viewing
3 computer (e.g., block 1816 of FIGURE 22, specification, page 46, lines 1-11); and reproducing each
4 of the plurality of presentation slides on the display of the viewing computer as data corresponding
5 to that presentation slide is accessed by the viewing computer in the preceding step (e.g., block 1818
6 of FIGURE 22, see specification, page 46, lines 13-16), so that when the presentation is reproduced,
7 the associated presentation slide is displayed at substantially an identical time relative to when
8 displayed during the live portion of the presentation when presented live (e.g., see specification,
9 page 46, lines 17-20).

10 Independent Claim 16

11 According to a third aspect of the invention, a system (e.g., see FIGURE 25) is directed towards
12 recording a live presentation (an exemplary flowchart for which is shown in FIGURE 20) including a
13 predefined content portion having a plurality of presentation slides (e.g., presentation slide 1813 of
14 FIGURE 24) that are displayed in response to slide triggering events (e.g., execution of an animation
15 command, see specification, page 38, lines 20-21) during the live presentation, and a live portion with
16 live audio and/or visual content performed in conjunction with display of said plurality of presentation
17 slides during the live presentation. The system comprises a local computer (e.g., conventional personal
18 computer 20 of FIGURE 25) having a memory (e.g., system memory 22 of FIGURE 25) in which a
19 plurality of machine instructions are stored, a user interface (e.g., a keyboard 40 and a pointing
20 device 42 of FIGURE 25), and a processor (e.g., a processing unit 21 of FIGURE 25) coupled to the
21 memory for executing the machine instructions. The system also comprises a presentation
22 application program (e.g., Microsoft Corporation's POWERPOINT 2000™, see specification, page 13,
23 lines 23-32) comprising a portion of the plurality of machine instructions stored in the memory of the
24 local computer. The presentation application program enables a presenter (e.g., presenter 1150 of
25 FIGURE 9) to change slides during the live presentation in response to slide triggering events (e.g.,
26 block 1613 and block 1614 of FIGURE 20) entered through the user interface (e.g., see
27 specification, page 26, lines 26-32); and slide display commands (e.g., slide display script
28 commands, see specification, page 40, lines 7-10) to be generated in response to the slide triggering
29 events. Furthermore, the system includes an audio capture subsystem (e.g., sound capture circuit 1157
30 of FIGURE 9) that produces a digital audio signal corresponding to the live audio content; and an
31 encoding application module (e.g., see encoding computer 1166 of FIGURE 9) comprising a portion of
32

1 the plurality of machine instructions stored in the memory of the local computer. The encoding
2 application module is used for encoding the digital audio signal into a data stream having a
3 streaming data format (e.g., see specification, page 27, lines 25-29 and block 1612 of FIGURE 20);
4 automatically including the slide display commands with the digital audio signal in the data stream
5 as the digital audio signal is encoded into the data stream (e.g., see specification, page 30, line 32-
6 page 31, line 3), said data stream being automatically time indexed to enable synchronization of the
7 slide display commands with the digital audio signal (e.g., see specification, page 40, lines 20-25);
8 and saving the data stream to a data stream file such that when the data stream file is played (e.g.,
9 block 1622 of FIGURE 20), said audio content is reproduced, and said plurality of presentation
10 slides are displayed in substantial synchrony with said audio content as it is reproduced, thereby
11 replicating the live presentation and a timing with which the presentation slides were displayed
12 during the live presentation in connection with the live audio content (e.g., see specification,
13 page 46, lines 17-20).

14 Independent Claim 20

15 According to a fourth aspect of the invention, a system (e.g., see FIGURE 25) is directed
16 towards recording a live presentation including a predefined content portion having a plurality of
17 presentation slides (e.g., presentation slide 1813 of FIGURE 24) that are displayed in response to slide
18 triggering events during the live presentation (e.g., execution of an animation command, see
19 specification, page 38, lines 20-21), and a live portion comprising live audio content performed in
20 conjunction with display of said plurality of presentation slides during the live presentation. The
21 system comprises a local computer (e.g., conventional personal computer 20 of FIGURE 25) having a
22 memory (e.g., system memory 22 of FIGURE 25) in which a plurality of machine instructions are
23 stored, a user interface (e.g., a keyboard 40 and a pointing device 42 of FIGURE 25), and a processor
24 (e.g., a processing unit 21 of FIGURE 25) coupled to the memory for executing the machine
25 instructions; an audio capture subsystem (e.g., sound capture circuit 1157 of FIGURE 9) that produces a
26 digital audio signal corresponding to the live audio content; and an encoding computer (e.g., see
27 encoding computer 1166 of FIGURE 9) having a memory in which a plurality of machine instructions
28 are stored, and a processor coupled to the memory for executing the machine instructions, the
29 encoding computer being linked in communication with the local computer (e.g., see specification,
30 page 28, lines 27-28) and the audio capture subsystem. The system comprises a portion of the
31 plurality of machine instructions stored in the memory of the encoding computer that comprises an

~~

1 encoding module. Execution of the encoding module performs the functions of encoding the digital
2 audio signal into a data stream (e.g., see block 1612 of FIGURE 20) having a streaming data format
3 (e.g., see specification, page 28, lines 17-24), wherein the data stream is automatically time indexed
4 to enable synchronization of the slide display commands (e.g., slide display script commands, see
5 specification, page 40, lines 7-13) with the digital audio signal; and saving the data stream to a data
6 stream file (e.g., block 1622 of FIGURE 20). The system also comprises a presentation application
7 program (e.g., Microsoft Corporation's POWERPOINT 2000™, see specification, page 13, lines 23-32)
8 comprising a portion of the plurality of machine instructions stored in the memory of the local
9 computer. Execution of the presentation application program enables a presenter to change slides
10 during the live presentation by entering slide triggering events (e.g., execution of an animation
11 command, see specification, page 38, lines 20-21) through the user interface; slide display
12 commands to be generated in response to the slide triggering events (e.g., block 1613 and
13 block 1614 of FIGURE 20); and communication of the slide display commands to the encoding
14 computer (e.g., see block 1614 of FIGURE 20), said slide display commands being automatically
15 included in the data stream with the encoded digital audio signal by the encoding module as the slide
16 display commands are received by the encoding computer (e.g., see block 1616 of FIGURE 20) and
17 as the digital audio signal is encoded into the data stream, such that when the data stream file is
18 played, so that said audio content is reproduced and said plurality of presentation slides are displayed
19 in substantial synchrony with said audio content as it is reproduced, thereby replicating the live
20 presentation and the timing of the presentation slides being displayed in connection with the audio
21 content (e.g., see specification, page 46, lines 17-20).

22 Independent Claim 24

23 A fifth aspect of the invention is directed towards a computer-readable medium having
24 computer-executable instructions for recording a live presentation having a predefined content
25 portion that includes a plurality of presentation slides (e.g., presentation slide 1813 of FIGURE 24)
26 displayed on a computer in response to slide triggering events during the live presentation (e.g.,
27 execution of an animation command, see specification, page 38, lines 20-21), and a live portion
28 comprising live audio and/or visual content performed in conjunction with display of said plurality
29 of presentation slides during the live presentation. Execution of the computer-executable
30 instructions causes a computer to generate slide display commands (e.g., slide display script
31 commands, see specification, page 40, lines 7-10) corresponding to said slide triggering events (e.g.,

1 block 1613 and block 1614 of FIGURE 20) captured in real time during the presentation when
2 presented live, for controlling display of said plurality of presentation slides during playback of a
3 recorded presentation (e.g., see specification, page 43, lines 1-4); automatically embed the slide
4 display commands into a data stream as the data stream is produced (e.g., see specification, page 40,
5 lines 10-11 and block 1616 of FIGURE 20), the data stream comprising data corresponding to the
6 live portion of the presentation (e.g., see specification, page 40, line 11) automatically indexed with
7 timing to ensure that the slide display commands are synchronized with the audio and/or visual
8 content as performed in the live presentation (e.g., see FIGURE 21); and save the data stream with
9 embedded slide display commands to a file (e.g., block 1622 of FIGURE 20), such that when the file
10 is played, said live portion is reproduced and such that said plurality of presentation slides are
11 displayed in substantial synchrony with said live portion (e.g., see specification, page 46,
12 lines 17-20), thereby replicating the live presentation and display of said plurality of presentation
13 slides.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

^^

1 GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

2 A determination as to whether Claims 1-4 and 6-29 are patentable under 35 U.S.C. § 103(a)
3 over "Mastering Microsoft Internet Information Server 4," by Peter Dyson in view of Gomez et al.
4 (U.S. Patent No. 6,697,569) in view of Klemets et al. (U.S. Published Application No. 2001/0013068).

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

^^

ARGUMENT

Rejection Under 35 U.S.C. § 103(a)

The Examiner has rejected Claims 1-4 and 6-29 under 35 U.S.C. § 103(a) as being unpatentable over "Mastering Microsoft Internet Information Server 4," by Peter Dyson (hereinafter "Dyson") in view of Gomez et al. (U.S. Patent No. 6,697,569 - hereinafter "Gomez") in view of Klemets et al. (U.S. Published Application No. 2001/0013068 - hereinafter "Klemets"). (Page 2 in Office Action dated February 16, 2005).

In regards to independent Claims 1, 9, 16, 20, and 24, the Examiner asserts that it would have been obvious to one of ordinary skill in the art to combine the teaching of Dyson with the teaching of Gomez and Klemets, because slide display commands allow users to control the order of the slides, and time indexing the plurality of deltaframes and keyframes permits synchronization for display at the client computer at predetermined points corresponding to the timelines of the video stream. (Page 4 in Office Action dated February 16, 2005). Appellants respectfully disagree for the following reasons. The following discussion only deals with the reference(s) that the Examiner has cited as teaching specific portions of appellants' claims, but appellants also note that none of the other references cited teach or suggest these aspects of appellants' claims.

The Combined References Fail to Teach or Suggest Automatic Time Indexing as Recited in Independent Claims 1, 9, 16, 20 and 24

Independent Claims 1, 9, 16, 20, and 24 all include, in general, the recitation of “automatically time indexing.” Specifically:

- Independent Claim 1 recites in step(c) “**automatically time indexing** the plurality of keyframes and deltaframes...”
- Independent Claim 9 recites in step(a)(iii) “...said slide display commands being **automatically time indexed** in regard to the keyframes and deltaframes...”
- Independent Claim 16 recites in step(d)(ii) “...said data stream being **automatically time indexed**...”
- Independent Claim 20 recites in step(d)(i) “...said data stream being **automatically time indexed**...”
- Independent Claim 24 recites in step(b) “...the data stream comprising data corresponding to the live portion of the presentation **automatically indexed with timing**...”

With respect to independent Claims 1, 9, 16, 20, and 24, the Examiner asserts that Klemets teaches time indexing the plurality of keyframes and deltaframes to enable synchronization of displayable events. (Page 3 of Office Action dated February 16, 2005). The Examiner cites Figure 7

1 and paragraphs 0052, 0053, and 0065-0068 of Klemets in support of her assertion. However,
2 Klemets does not appear to perform time indexing in an **automatic** manner as appellants recite in
3 their claims. Instead, Klemets appears to perform time indexing, if at all, in a **manual** manner.

4 In regard to the concept of time indexing, appellants' specification explains how time
5 indexing is automatically employed, as follows:

6 An exemplary timing sequence is now described with reference to a timeline 1707
7 comprising various timing marks, as shown in the Figure. A frameset comprising 15 video
8 frames, and a corresponding audio waveform is produced in accordance with each of the
9 timing marks. In the timing sequence, a script command for triggering the display of
10 slide 1 is embedded into the stream 8 seconds after the start of the presentation. As a result,
11 this script command will have an inherent time stamp of 8 seconds. In a similar fashion, a
12 script command for displaying slide 2 will have an inherent time stamp of 28 seconds, and
13 the script command for displaying slide 3 will have an inherent time stamp of 62 seconds.
14 Assuming that a first keyframe (not shown) is encoded at 0 seconds (note that the first
15 video frame will always be a keyframe), a keyframe 1708 is **automatically** encoded at 8 seconds,
16 a keyframe 1710 is **automatically** encoded at 24 seconds, and a keyframe 1712 is
17 encoded in accord with the sixth frame of a frameset 1714, due to motion of the
18 presenter, which occurs at approximately 58 seconds. (Emphasis added, see appellants'
19 specification, page 42, lines 6-18.)

20 In contrast, Klemets teaches:

21 **Designer 219** may view frames from video stream 500 displayed in video
22 window 720 for **referencing and selecting appropriate time stamps** to use in generating
23 annotation streams. Within video window 720, VCR function buttons, e.g., a rewind
24 button 724, a play button 726 and a fast forward button 728, are available for designer
25 219 to quickly traverse video stream 500. Since video window 720 is provided as a
26 convenience for designer 219, if designer 219 has **prior knowledge** of the content of the
27 video stream, designer 219 may proceed with the generation of the annotation streams
28 without viewing video window 720. (Emphasis added, Klemets, paragraph 0050.)

29 As shown in FIG. 7, **author tool 700** displays a flipper time track 750, a video time track
30 760, an audio time track 770, a ticker time track 780 and a table of contents (TOC) time
31 track 790. Flipper time track 750 and ticker time track 780 aid designer 217 in generating
32 a flipper annotation stream and a ticker annotation stream, respectively. Another visual
33 control aid, zoom bar 716, enables designer 219 to select the respective portions of the
34 complete time tracks 750, 760, 770, 780 and 790, as defined by start time indicator 712
35 and end time indicator 718, which is currently displayed by **author tool 700** (Emphasis
36 added, Klemets, paragraph 0051).

In accordance with one aspect of the invention, *annotation frames are generated by designer 217* to form customized annotation streams (step 440). A time hairline 715 spanning time tracks 750, 760, 770, 780 and 790 provides designer 217 with a visual aid *to select an appropriate time*, displayed in time indicator 714, for synchronizing a displayable event. The exemplary format of time indicators 712, 714 and 718 are "hours:minutes:seconds." (Emphasis added, Klemets, paragraph 0052.)

Via use of an author tool, a time hairline spanning time tracks provides a designer with a visual aid to select an appropriate time, displayed in a time indicator, for synchronizing a displayable event. (Klemets, paragraph 0052.) In addition, the designer may view frames in the video window for referencing and selecting time stamps for use in generating annotation streams. (Klemets, paragraph 0050.) Thus, it appears that the designer selects an appropriate time to synchronize a displayable event and the designer does so in a manual fashion as opposed to appellants who automatically perform time indexing.

The Combined References Fail To Teach or Suggest Automatic Time Indexing When Live Content Is Captured or Data Stream Is Produced as Recited in Independent Claims 1, 9 and 24

In addition, independent Claims 1, 9, and 24 all recite, in general, that the automatic time indexing occurs “when the live content is captured” (i.e., when the data stream is being produced). Specifically:

- Independent Claim 1 recites in step(c) “automatically time indexing the plurality of keyframes and deltaframes *as the live content is captured...*”
- Independent Claim 9 recites in step(a)(iii) “*...as the data stream is being produced*, said slide display commands being automatically time indexed in regard to the keyframes and deltaframes...”
- Independent Claim 24 recites in step(b) “*...as the data stream is produced*, the data stream comprising data corresponding to the live portion of the presentation automatically indexed with timing...”

With respect to independent Claims 1, 9, and 24, the Examiner additionally asserts that Klemets teaches a live content being captured as a plurality of video frames comprising a plurality of keyframes and deltaframes (Page 3 of Office Action dated February 16, 2005) and cites Figure 7 and paragraphs 0052, 0053, and 0065-0068 of Klemets. However, Klemets does not appear to perform time indexing *when* the live content is being captured or *when* the data stream is produced. Instead, Klemets appears to perform time indexing, if at all, *after* the live content is captured, or *after* the data stream is produced.

Note that in paragraph 0050, Klemets employs a VCR button to enable the designer to

1 traverse the video stream. Thus, it appears that the video stream has already been captured and is
2 being edited after being captured. Also, in paragraph 0050, Klemets discloses that if the designer
3 has “prior knowledge” of the content of the video stream, the designer may proceed with the
4 generation of the annotation streams without the viewing video window. Thus, it is implied that the
5 designer is editing the content of the video stream in a post production environment and not as
6 recited by appellants, whose claims provide for automatically time indexing the keyframes and
7 deltaframes as the live content is being captured, or when the data stream is produced.

8 The Combined References Fail to Teach or Suggest Keyframes and Deltaframes as Recited in
9 Independent Claims 1 and 9

10 Furthermore, independent Claims 1 and 9 also recite, in general, that a “video frame
11 comprises a plurality of keyframes and deltaframes” and that “slide display commands are indexed
12 with the keyframes and deltaframes such that the slide display commands are synchronized with the
13 live content.” Specifically:

- 14 • Independent Claim 1 recites in step(b) “...wherein the live content is captured as
15 a plurality of *video frames comprising a plurality of keyframes and deltaframes*;”
 - 16 • Independent Claim 1 also recites in step(c) “automatically time indexing the
plurality of keyframes and deltaframes as the live content is captured to enable
synchronization of the slide display commands with the live content.”
 - 17 • Independent Claim 9 recites in step(a)(i) “...wherein the live portion of the
18 presentation is captured as a *plurality of video frames comprising a plurality of keyframes
and deltaframes*;”
 - 19 • Independent Claim 9 also recites in step(a)(iii) “...said slide display commands
being automatically time indexed in regard to the *keyframes and deltaframes within the data
stream* based upon the time when the slide triggering events occurred in the presentation
when presented live;”

20 In contrast, Klemets does not appear to time index any slide display commands with
21 keyframes and deltaframes (which are included in appellants’ video stream). Although Klemets
22 discloses at least three frames, including a video frame, an audio frame, and an annotation frame
(Klemets, Abstract, lines 6-8), none of these frames appear to be equivalent to appellants’ keyframes
23 or deltaframes.

24 Note that appellants disclose that “[k]eyframes are video frames that comprise new data, while
25 deltaframes comprise data corresponding to the difference between a current frame and its immediately
26 preceding frame. Preferably, each slide display command will be indexed to a nearest preceding
27 keyframe...” (Specification, page 7, lines 3-6). Furthermore, appellants define a key frame as a frame

1 with new content, as shown in FIGURE 21 as dark-lined frame 1708 (see appellants' specification,
2 page 41, lines 22-23). In addition, a delta frame is a frame that only contains differential data, which
3 are shown in FIGURE 21 as thin-lined frame 1706 (see appellants' specification, page 41, lines 13-
4 15).

5 However, Klemets does not appear to distinguish between video frames as do appellants.
6 Paragraphs 0065-0068, which the Examiner cites as teaching this portion of appellants' claims, are
7 directed towards annotation frames. But annotation frames are apparently different than video
8 frames. It appears that Klemets provides a designer a method of viewing video frames from video
9 stream 500 so that the designer may reference and select appropriate time stamps to use in
10 generating annotation streams (Klemets, paragraph 0050, lines 1-4). This teaching implies that a
11 video frame is apparently a different type of frame than an annotation frame, because the video
12 stream comprising video frames has already been generated and an annotation stream that comprises
13 annotation frames is also to be generated.

14 Since the video stream has been generated, the designer can proceed to build two different
15 types of annotation streams (Klemets, paragraph 0049, lines 3-4). One type of annotation stream is a
16 data annotation stream in which the displayable event data are embedded within the annotation
17 stream (Klemets, paragraph 0049, lines 4-6). The second type of annotation stream is a locator
18 annotation stream in which an event locator points to the location of the displayable data instead of
19 embedding the displayable data (Klemets, paragraph 0049, lines 9-14). Thus, a portion of the output
20 of the designer work is the production of a stream that is separate and different from the video data
21 stream. Note that Klemets discloses that "Locator annotation stream 800a includes an annotation
22 stream header 810a and a plurality of annotation frames 820a, 830a, 840a, ...890a. Each annotation
23 frame includes an event locator and an event time marker" (Klemets, paragraph 0054, lines 3-8).
24 Although it appears that Klemets' annotation stream is derived or generated from the video stream,
25 the annotation frame is still part of an entirely separate data stream, i.e., the annotation stream.
26 Accordingly, Klemets fails to teach an equivalent of a keyframe or deltaframe.

27 It should thus be apparent that if keyframes and deltaframes do not exist in Klemets, it is
28 therefore impossible for Klemets to perform time indexing on keyframes and deltaframes.
29
30
31
^^

1 The Combined References Fail to Teach or Suggest Generation of Slide Display Commands in
2 Response to Slide Triggering Events as Recited in Independent Claims 1, 9, 16, 20 and 24

3 Independent Claims 1, 9, 16, 20, and 24 all recite, in general, that “slide display commands are
4 generated” and “these slide display commands correspond to said slide triggering events.” Specifically:

- 5 • Independent Claim 1 recites in step(a) “generating slide display **commands corresponding to said slide triggering events...**”
 - 6 • Independent Claim 9 recites in step(a)(ii) “generating slide display **commands corresponding to said slide triggering events...**”
 - 7 • Independent Claim 16 recites in step(b)(ii) “slide display **commands** to be generated **in response to the slide triggering events...**”
 - 8 • Independent Claim 20 recites in step(e)(ii) “slide display **commands** to be generated **in response to the slide triggering events...**”
 - 9 • Independent Claim 24 recites in step(a) “generate slide display **commands corresponding to said slide triggering events...**”

10 With respect to independent Claims 1, 9, 16, 20, and 24, the Examiner asserts that Gomez
11 teaches generating slide display commands corresponding to said slide triggering events captured in
12 real time during the presentation when presented live, for controlling display of said plurality of
13 presentation slides. (Page 3 of Office Action dated February 16, 2005). The Examiner references
14 the Abstract; Figure 4; column 1, lines 44 – column 2, line 1; column 3, lines 33-43; and column 7,
15 lines 5-8 and lines 35 to 60. (Page 2 of Advisory Action dated May 12, 2005). Furthermore, the
16 Examiner has also asserted that the flipping of still images is interpreted as generating a slide display
17 command. *Id.* In response to appellants’ argument that the references fail to show certain features
18 of appellants’ claims, the Examiner asserts that the features upon which appellant relies (i.e., HTML
19 script commands) are not recited in the claims. *Id.*

20 The Abstract and other cited portions of Gomez disclose:

21 A full multimedia production such as a seminar, conference, lecture, etc. can
22 be captured in real time using multiple cameras. A live movie of a speaker together
23 with **the speaker's flipping still images** or slide show can be viewed interactively
24 within the same video display screen. The complete production can be stored on a
25 hard drive for retrieval on demand, or sent live to a host server for live distribution
26 throughout a data network. It is also possible to store the complete presentation on
27 portable storage media and/or to send the complete presentation as an e-mail.
28 (Gomez, Abstract - emphasis added.)

29 Powerpoint slideshows etc., and other computer-based presentations are often sent as
30 e-mail the day after the presentation, for conversion to JPEG or other suitable format
31 by the production staff. It is, of course, possible to take stills at the same time as the

1 pictures are presented, which is done when external presenters hold presentations
2 (Gomez, column 1, lines 44-49).

3 The Powerpoint slides, when they arrive by e-mail, are (as mentioned above)
4 converted to JPEG by the streaming production staff. The slides are also resized to fit
5 in an HTML page together with the video window (Gomez, column 1, lines 50-53).

6 The production of streaming videos for 28.8K, 56K and 100K bit rates needs an extra
7 window for the real information shown on slides, etc., because the video window is
8 very small and the information in it is unreadable (Gomez, column 1, lines 54-57).

9 The video film is often manually edited with software like Adobe Premier. After
10 editing, if any, the encoder is used to compress the video and audio to the correct
11 baud-rate, and encode them to a streaming format like ASF (Active Streaming
12 Format) or RMFF (Real Media File Format). The encoding takes the same amount of
time as it takes to run through the movie. This is time consuming (Gomez, column 1,
lines 58-64).

13 To be able to show the JPEG images (e.g. slide show) at the right time (compared to
14 the movie events), synchronization points (time stamps) must be inserted in the
15 stream file (Gomez, column 1, line 65-column 2, line 2).

16 Furthermore, Gomez discloses (with the portion cited by the Examiner in bold):

17 As shown in FIG. 1, an exemplary system according to principles of the invention for
18 automated conversion of a visual presentation into digital data format includes video
19 cameras 11 and 13, a microphone 12, an optional lap top computer 10, and a digital
20 field producer unit 14, also referred to herein as DFP unit or DFP computer. One of
21 the video cameras 13 covers the speaker and provides video information to the live
22 video section 1, and the other video **camera 11 covers the slide show, flip chart,**
white board, etc. and provides the corresponding video information to the still
video section 3. The microphone provides the audio to the sound section 2. In the
example DFP unit of FIG. 1, the live video is encoded 4 (e.g., in MPEG) in real
time during the speaker's visual presentation, and the still video of the slide
show etc. is converted 5 into JPEG files in real time during the presentation
(Emphasis added, Gomez, column 3, lines 25-40).

26 **A synchronizing section 16 of FIG. 1 operates automatically during the speaker's**
27 **presentation to synchronize the still video information from the slide show, flip**
28 **chart etc.** with the live video information from the speaker. Both the live video and
29 the still video can then be streamed live through a server 15 to multiple individual
30 users via a data network 18 such as, for example, the Internet, a LAN, or a data
31 network including a wireless link (Emphasis added, Gomez, column 3, lines 25-48).

1 Finally, Gomez discloses (with the portion cited by the Examiner in bold) :

2 After an event (for example a seminar) has been recorded, a viewer can replay
3 the video recording by performing a similar web connection as in the above-described
4 live broadcast case. A URL is typed into the viewer's web browser, which connects
5 the viewer to the web server 37 in the DFP computer. The web server 37 will then
6 stream out the recorded video information the same as it would be streamed during
7 the live streaming broadcast. The still video images are synchronized as in the live
8 case, and they change in the output video stream at the same relative time as they did
9 during the actual event. The viewer can decide when to start (**or restart**) the video
stream in order to view the event as desired, and can navigate to a particular
part of the recorded event, for example, by using a slider control provided by the
web browser (Emphasis added, Gomez, column 6, line 61-column 7, line 8).

10 FIG. 4 illustrates exemplary operations of the web browser and web server of
11 FIG. 2. The operations of FIG. 4 are advantageously executed during the web
12 browser's processing of the ASF file. When a URL is detected (for example in the
13 form of a Script Command Object) at 410 by the ASF player, the web browser at 420
14 interprets the URL for server destination and protocol to use (e.g., HTTP), connects
15 to the web server and sends the web server a request for the HTML document. At
16 430, the web server accesses the HTML document from storage 172 and extracts
17 therefrom the JPEG file name. At 440, the web server retrieves the JPEG file from
storage 173 and sends it to the browser. At 450, the browser displays the JPEG image
at the appropriate time with respect to the video streaming presentation (Gomez,
column 7, lines 35-49).

18 During replay broadcasts, the web server retrieves and forwards the stored ASF file
19 (containing the encoded/compressed "live" video data) from storage at 171, and also
20 accesses the stored HTML documents, and retrieves and forwards the stored JPEG
21 documents, generally as described above with respect to live streaming operation.
The web browser receives the ASF file and JPEG documents, and synchronously
22 integrates the "still" video images into the "live" video stream using generally the
same procedure discussed above with respect to live streaming operation (Gomez,
column 7, lines 35-60).

23 Nevertheless, Gomez does not appear to generate slide display commands in response to a slide
triggering event, but instead appears to generate a URL in response to a timed interval.

24 It may be helpful to explain how the recitation in the claims of a slide display command relates to
25 an embodiment disclosed in the specification of the present application. First, in regard to "slide display
26 commands," appellants disclose and claim the generation of slide display commands, and the slide
27 display commands are defined in the specification as comprising HTML script commands, as follows:
28

1 In addition to providing the ASF streaming content to the attendees' computers, the
2 system also coordinates the display of the HTML presentation slide files on the
3 attendees' computers so that each slide is displayed and animated in conjunction with the
4 display and animation of the slide during the live broadcast. This function is
5 performed by *slide display commands* (i.e., *HTML script commands*) that are
6 generated in real-time and embedded into the ASF stream. The slide script
7 commands are decoded in the attendees' computers to cause an appropriate slide
specification, page 29, lines 20-27.)

8 In contrast, instead of the generation of a slide display command, Gomez teaches the
9 generation of JPEG files, a corresponding HTML file, an HTML file name, and a URL, none of
10 which are equivalent to slide display **commands**, as defined by appellants.

11 Note that the still video of the slide show is converted into JPEG files in real time during the
12 presentation (Gomez, column 3, lines 38-40). As described in regard to FIGURE 2 of Gomez, the
13 still image control is automated to cause the still image grabber and converter to create a JPEG
14 image of the still video source (Gomez, column 5, lines 36-38). In addition, a corresponding
15 wrapping HTML file is created by an HTML and URL generator (Gomez, column 5, lines 43-45).
16 Furthermore, the HTML filename is sent as a relative URL from the generator to the encoder and
17 streamer for inclusion in the encoded streaming video data (Gomez, column 5, lines 50-55). So
18 when a URL is detected, for example in the form of a Script Command Object, by the ASF player,
19 the web browser uses the URL to request the HTML documents, and once access is provided to the
20 HTML document, the JPEG file name is extracted and retrieved from storage and sent to the browser
21 that displays the JPEG image at the appropriate time (Gomez, column 7, lines 35-49). Thus, Gomez
22 does not generate slide display **commands** that may be HTML slide commands embedded in the
23 ASF stream, but instead generates JPEG file retrieval commands.

24 Also, the Examiner has asserted that the flipping of still images (Gomez, Abstract) is
25 interpreted as generating a slide display command. (Page 2 of Advisory Action dated
26 May 12, 2005). However, it appears to appellants that the flipping of still images should more
27 logically be interpreted as a slide triggering event, as disclosed below. In regards to the generation
28 of the slide display command corresponding to a slide triggering event, note that appellants'
29 specification discloses that:

1 As discussed above, it is necessary to advance the presentation of the various slide show
2 slides on the attendees' computers from a remote machine. In order to perform virtual
3 scenarios such as a one-to-many presentation, a presenter must be able to remotely execute
4 commands on the audience machines to advance the presentation or to execute animation
5 effects. For example, if two users browse the same web page, they are viewing two distinct
6 copies of the same web page. In order for one user to control the web page viewed by the
7 other, some communication needs to occur between them. The communication is
8 accomplished through a combination of two technologies: embedding script commands in
9 an ASF stream, and animations in the POWERPOINT HTML files (i.e., the cached
presentation slides). POWERPOINT is thus able to send events via an audio/video stream
to the online attendee, and the *events trigger commands* on the attendee's computer that
effect actions on the web pages displayed on the attendee's computer. (Emphasis added;
see appellants' specification, page 38, lines 7-19.)

10 As shown in FIGURE 19, the process begins in a block 1500, *wherein a user executes*
11 *commands in POWERPOINT, such as triggering the next animation.* This step
12 generates an event, which is captured using the application object model and converted to a
13 syntax that can be inserted in an ASF format, as indicated by a block 1502. The syntax for
14 the format is generally of the form: **Label Parameter**, where the number of Parameters
15 after Label are generally unrestricted. In the case of POWERPOINT animations, the
syntax is of the form **PPTCMD 1 1.** (Emphasis added; see appellants' specification,
page 38, lines 20-26.)

16 Thus, for example, as indicated in the above citation, a slide triggering event may be the
17 execution of an animation command, such as flipping a still image. But Gomez fails to disclose or
18 suggest the generation of a slide display command as described above and fails to teach or suggest that
19 the generation of a slide display command corresponds to a slide triggering event as described next.

20 Gomez's JPEG file retrieval commands do not correspond to slide triggering events but
21 appear to correspond to a timed interval. Specifically, Gomez discloses that, taking JPEG files as an
22 exemplary output, "each JPEG file produced by the still image grabber and converter portion 21
represents a freezing of the digital video data received from video grabber card in order to produce at
23 a *desired point in time*, a still image associated with the video being recorded by the still video
24 camera 11." (Emphasis added, Gomez, column 4, lines 49-53.) Gomez further teaches that "In
25 addition, the still image control can be automated according to principles of the invention to cause
26 the still image grabber and converter to *periodically create* a JPEG image of the still video source."
(Gomez, column 5, lines 36-39.) Thus, Gomez does not teach or suggest that there is any
27 correspondence between the display of an image and a specific slide triggering event.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
553230
553231
553232
553233
553234
553235
553236
553237
553238
553239
553240
553241
553242
553243
553244
553245
553246
553247
553248
553249
553250
553251
553252
553253
553254
553255
553256
553257
553258
553259
553260
553261
553262
553263
553264
553265
553266
553267
553268
553269
553270
553271
553272
553273
553274
553275
553276
553277
553278
553279
553280
553281
553282
553283
553284
553285
553286
553287
553288
553289
553290
553291
553292
553293
553294
553295
553296
553297
553298
553299
553300
553301
553302
553303
553304
553305
553306
553307
553308
553309
553310
553311
553312
553313
553314
553315
553316
553317
553318
553319
553320
553321
553322
553323
553324
553325
553326
553327
553328
553329
553330
553331
553332
553333
553334
553335
553336
553337
553338
553339
553340
553341
553342
553343
553344
553345
553346
553347
553348
553349
553350
553351
553352
553353
553354
553355
553356
553357
553358
553359
553360
553361
553362
553363
553364
553365
553366
553367
553368
553369
553370
553371
553372
553373
553374
553375
553376
553377
553378
553379
553380
553381
553382
553383
553384
553385
553386
553387
553388
553389
553390
553391
553392
553393
553394
553395
553396
553397
553398
553399
553400
553401
553402
553403
553404
553405
553406
553407
553408
553409
553410
553411
553412
553413
553414
553415
553416
553417
553418
553419
553420
553421
553422
553423
553424
553425
553426
553427
553428
553429
553430
553431
553432
553433
553434
553435
553436
553437
553438
553439
553440
553441
553442
553443
553444
553445
553446
553447
553448
553449
553450
553451
553452
553453
553454
553455
553456
553457
553458
553459
553460
553461
553462
553463
553464
553465
553466
553467
553468
553469
553470
553471
553472
553473
553474
553475
553476
553477
553478
553479
553480
553481
553482
553483
553484
553485
553486
553487
553488
553489
553490
553491
553492
553493
553494
553495
553496
553497
553498
553499
553500
553501
553502
553503
553504
553505
553506
553507
553508
553509
553510
553511
553512
553513
553514
553515
553516
553517
553518
553519
553520
553521
553522
553523
553524
553525
553526
553527
553528
553529
553530
553531
553532
553533
553534
553535
553536
553537
553538
553539
553540
553541
553542
553543
553544
553545
553546
553547
553548
553549
553550
553551
553552
553553
553554
553555
553556
553557
553558
553559
553560
553561
553562
553563
553564
553565
553566
553567
553568
553569
553570
553571
553572
553573
553574
553575
553576
553577
553578
553579
553580
553581
553582
553583
553584
553585
553586
553587
553588
553589
553590
553591
553592
553593
553594
553595
553596
553597
553598
553599
553600
553601
553602
553603
553604
553605
553606
553607
553608
553609
553610
553611
553612
553613
553614
553615
553616
553617
553618
553619
553620
553621
553622
553623
553624
553625
553626
553627
553628
553629
553630
553631
553632
553633
553634
553635
553636
553637
553638
553639
553640
553641
553642
553643
553644
553645
553646
553647
553648
553649
553650
553651
553652
553653
553654
553655
553656
553657
553658
553659
553660
553661
553662
553663
553664
553665
553666
553667
553668
553669
5536610
5536611
5536612
5536613
5536614
5536615
5536616
5536617
5536618
5536619
5536620
5536621
5536622
5536623
5536624
5536625
5536626
5536627
5536628
5536629
5536630
5536631
5536632
5536633
5536634
5536635
5536636
5536637
5536638
5536639
5536640
5536641
5536642
5536643
5536644
5536645
5536646
5536647
5536648
5536649
5536650
5536651
5536652
5536653
5536654
5536655
5536656
5536657
5536658
5536659
5536660
5536661
5536662
5536663
5536664
5536665
5536666
5536667
5536668
5536669
55366610
55366611
55366612
55366613
55366614
55366615
55366616
55366617
55366618
55366619
55366620
55366621
55366622
55366623
55366624
55366625
55366626
55366627
55366628
55366629
55366630
55366631
55366632
55366633
55366634
55366635
55366636
55366637
55366638
55366639
55366640
55366641
55366642
55366643
55366644
55366645
55366646
55366647
55366648
55366649
55366650
55366651
55366652
55366653
55366654
55366655
55366656
55366657
55366658
55366659
55366660
55366661
55366662
55366663
55366664
55366665
55366666
55366667
55366668
55366669
553666610
553666611
553666612
553666613
553666614
553666615
553666616
553666617
553666618
553666619
553666620
553666621
553666622
553666623
553666624
553666625
553666626
553666627
553666628
553666629
553666630
553666631
553666632
553666633
553666634
553666635
553666636
553666637
553666638
553666639
553666640
553666641
553666642
553666643
553666644
553666645
553666646
553666647
553666648
553666649
553666650
553666651
553666652
553666653
553666654
553666655
553666656
553666657
553666658
553666659
553666660
553666661
553666662
553666663
553666664
553666665
553666666
553666667
553666668
553666669
5536666610
5536666611
5536666612
5536666613
5536666614
5536666615
5536666616
5536666617
5536666618
5536666619
5536666620
5536666621
5536666622
5536666623
5536666624
5536666625
5536666626
5536666627
5536666628
5536666629
5536666630
5536666631
5536666632
5536666633
5536666634
5536666635
5536666636
5536666637
5536666638
5536666639
5536666640
5536666641
5536666642
5536666643
5536666644
5536666645
5536666646
5536666647
5536666648
5536666649
5536666650
5536666651
5536666652
5536666653
5536666654
5536666655
5536666656
5536666657
5536666658
5536666659
5536666660
5536666661
5536666662
5536666663
5536666664
5536666665
5536666666
5536666667
5536666668
5536666669
55366666610
55366666611
55366666612
55366666613
55366666614
55366666615
55366666616
55366666617
55366666618
55366666619
55366666620
55366666621
55366666622
55366666623
55366666624
55366666625
55366666626
55366666627
55366666628
55366666629
55366666630
55366666631
55366666632
55366666633
55366666634
55366666635
55366666636
55366666637
55366666638
55366666639
55366666640
55366666641
55366666642
55366666643
55366666644
55366666645
55366666646
55366666647
55366666648
55366666649
55366666650
55366666651
55366666652
55366666653
55366666654
55366666655
55366666656
55366666657
55366666658
55366666659
55366666660
55366666661
55366666662
55366666663
55366666664
55366666665
55366666666
55366666667
55366666668
55366666669
553666666610
553666666611
553666666612
553666666613
553666666614
553666666615
553666666616
553666666617
553666666618
553666666619
553666666620
553666666621
553666666622
553666666623
553666666624
5536666666

1 The Combined References Fail to Teach or Suggest Controlling Display of Slides during Playback
2 as Recited in Independent Claims 1, 9, 20 and 24

3 Independent Claims 1, 9, 20, and 24 all recite, in general, that the slide display commands are
4 for “controlling display of the slides during playback.” Specifically:

- 5 • Independent Claim 1 recites in step(a) “generating slide display commands
6 corresponding to said slide triggering events captured in real time during the presentation
7 when presented live, **for controlling display of said plurality of presentation slides during**
playback of a recorded presentation”
 - 8 • Independent Claim 9 recites in step(a)(ii) “generating slide display commands
9 corresponding to said slide triggering events captured in real time during the presentation
10 when presented live, each slide display command controlling **display of an associated**
presentation slide when the recording is played”
 - 11 • Independent Claim 20 recites in step(c)(iii) “...**said plurality of presentation**
slides are displayed in substantial synchrony ...”
 - 12 • Independent Claim 24 recites in step(a) “generate slide display commands
13 corresponding to said slide triggering events captured in real time during the presentation
14 when presented live, **for controlling display of said plurality of presentation slides during**
playback of a recorded presentation.”

15 Although Gomez discloses in the abstract that a live movie of a speaker together with the
16 slide show can be viewed interactively within the same video display screen or that the complete
17 production can be stored on a hard drive for retrieval on demand, Gomez does not teach or suggest
18 that an actual slide show that the speaker originally presented is replayed. Instead, Gomez discloses
19 that the still image grabber processes the video of the slide show by grabbing images, which are
20 converted into JPEG files in real time during the presentation (Gomez, column 3, lines 37-40).
21 Thus, during replay broadcasts, the web browser that receives the ASF file and the JPEG documents,
22 synchronously integrates the “still” video images into the “live” video stream (Gomez, column 7,
23 lines 57-60). Thus, unlike appellants’ claimed invention, which displays the same plurality of
24 presentation of slides during playback as was presented in the live presentation, during playback,
25 Gomez merely displays a series of still pictures grabbed from the original presentation, which is not
26 equivalent to the recitation in appellants’ claims.

CONCLUSION

The art cited by the Examiner in rejecting Claims 1-4 and 6-29 as obvious does not in combination disclose or suggest the recitation of these claims. Specifically, Klemets fails to teach any equivalent to automatic time indexing, or automatic time indexing when live content is captured, or time indexing to keyframes and deltaframes. In addition, Gomez fails to teach the generation of slide display commands and that the slide display commands correspond to slide triggering events.

Appellants therefore respectfully request that the Board of Patent Appeals and Interferences overrule the Examiner's rejection of the claims and require that the Examiner pass this case to issue without further delay.

Respectfully submitted,

/sabrina k. macintyre/
Sabrina K. MacIntyre
Registration No. 56.912

SKM/RMA:klp

APPENDIX

Claims on Appeal

1. A method for recording a live presentation including a predefined content portion that includes a plurality of presentation slides displayed in response to slide triggering events during the live presentation, and a live portion with live audio and/or visual content performed in conjunction with display of said plurality of presentation slides during the live presentation, the method comprising the steps of:

(a) generating slide display commands corresponding to said slide triggering events captured in real time during the presentation when presented live, for controlling display of said plurality of presentation slides during playback of a recorded presentation;

(b) automatically embedding the slide display commands into a data stream as the data stream is produced, the data stream comprising data corresponding to the live portion of the presentation, wherein the live content is captured as a plurality of video frames comprising a plurality of keyframes and deltaframes;

- (c) automatically time indexing the plurality of keyframes and deltaframes as the live content is captured to enable synchronization of the slide display commands with the live content; and

(d) saving the data stream with embedded slide display commands to a file such that when the file is played, said live portion is reproduced and said plurality of presentation slides are displayed in substantial synchrony with said live portion as it is played, thereby replicating the live presentation.

2. The method of Claim 1, wherein the live portion is captured as it is performed during the live presentation, further comprising the step of encoding the live portion into a digital streaming format, thereby producing the data stream.

3. The method of Claim 2, wherein the step of automatically embedding the slide display commands comprises the step of interleaving the slide display commands into the data stream as the slide display commands are generated.

11

III

iii

111

1 4. The method of Claim 2, wherein the live presentation is performed using a local computer
2 that generates the slide display commands in response to the slide triggering events; and wherein the
3 live portion of the live presentation is captured and encoded into the data stream using an encoding
4 computer linked in communication with the local computer, further comprising the steps of:

5 (a) communicating the slide display commands from the local computer to the
6 encoding computer; and

7 (b) interleaving the slide display commands into the data stream as they are
8 received by the encoding computer.

9 6. The method of Claim 1, wherein the step of automatically time indexing the plurality of
10 keyframes and deltaframes comprises the steps of:

11 (a) adding a plurality of time index values to the data stream;

12 (b) indexing each of said plurality of keyframes to a corresponding time index
13 value based on the time stamp of the keyframe; and

14 (c) indexing each slide display command to a nearest preceding keyframe time
15 index value based on a time stamp of the slide display command.

16 7. The method of Claim 1, wherein the step generating slide display commands comprises the
17 steps of:

18 (a) capturing the slide triggering events as they occur during the live presentation; and

19 (b) generating slide display commands based on the slide triggering events that
20 are captured.

21 8. The method of Claim 1, wherein each presentation slide is associated with a slide file that
22 is saved to a predetermined location, and at least one of the slide display commands references the
23 predetermined location of an associated slide file.

24 9. A method for reproducing on a viewing computer a presentation that was previously
25 presented live, said viewing computer having a display, said presentation including a predefined content
26 portion with a plurality of presentation slides that were displayed in response to slide triggering events
27 during the presentation when it was presented live, and a live portion comprising live audio and/or visual
28 content performed in conjunction with display of said plurality of presentation slides during the
29 presentation when it was presented live, the method comprising the steps of:

30 (a) producing a recording of the presentation when it was presented live by
31 performing the steps of:

(i) producing a data stream comprising data corresponding to the live portion of the presentation, wherein the live portion of the presentation is captured as a plurality of video frames comprising a plurality of keyframes and deltaframes;

(ii) generating slide display commands corresponding to said slide triggering events captured in real time during the presentation when presented live, each slide display command controlling display of an associated presentation slide when the recording is played;

(iii) automatically including the slide display commands with the data corresponding to the live portion of the presentation in the data stream as the data stream is being produced, said slide display commands being automatically time indexed in regard to the keyframes and deltaframes within the data stream based upon the time when the slide triggering events occurred in the presentation when presented live; and

(iv) saving the data stream to a data stream file that is accessible by the viewing computer;

(b) saving the predefined content portion to at least one presentation slide file that is accessible by the viewing computer;

(c) accessing the data stream file with the viewing computer;

(d) reproducing the live portion of the presentation on the display of the viewing computer by playing the data stream file;

(e) extracting the slide display commands from the data stream as the slide display commands are encountered while playing the data stream file;

(f) in response to each slide display command that is extracted in the preceding step, accessing data corresponding to its associated presentation slide with the viewing computer; and

(g) reproducing each of the plurality of presentation slides on the display of the viewing computer as data corresponding to that presentation slide is accessed by the viewing computer in the preceding step, so that when the presentation is reproduced, the associated presentation slide is displayed at substantially an identical time relative to when displayed during the live portion of the presentation when presented live.

10. The method of Claim 9, wherein the viewing computer accesses the data corresponding to the presentation slides with a browser program.

30 | III

31 | //

8

1 11. The method of Claim 10, wherein each of said plurality of presentation slides is
2 associated with a corresponding HTML slide file that is saved to a predetermined location on a
3 network accessible by the viewing computer and at least a portion of said slide display commands
4 comprise a link to the predetermined location of an associated HTML slide file on the network, each
5 of said HTML slide files being opened in the browser program in response to its associated slide
6 display command, said browser program interpreting the HTML slide files to reproduce said
7 plurality of presentation slides.

8 12. The method of Claim 11, wherein the link to each HTML slide files comprises an
9 absolute reference to a location on the network at which the HTML slide file corresponding to the
10 link is stored.

11 13. The method of Claim 12, wherein each of the absolute references comprises a base
12 portion identifying a base directory on a network resource in or below which the HTML slide files
13 are stored, and a relative portion, identifying a location at which the HTML slide files are stored
14 relative to the base directory, further comprising the steps of:

15 (a) passing the base portion to the browser program to indicate a location of the
16 base directory;

17 (b) removing the base portion from each of the links in said slide display
18 commands so as leave only the relative portion of the link; and

19 (c) using the relative portion of each link to enable the browser program to access
20 the HTML file associated with that link.

21 14. The method of Claim 10, wherein the browser program includes a display area having a
22 primary frame, and a secondary frame, a media player screen appearing in the secondary frame, said
23 presentation slide files being reproduced in the primary frame, and said live visual content being
24 reproduced in the media player screen.

25 15. The method of Claim 14, further comprising the steps of:
26 (a) indicating a location at which the data stream file is stored to the viewing computer;
27 (b) directing the data stream to the secondary frame; and
28 (c) playing the data stream in the secondary frame after at least a portion of the
29 data stream file is received, to reproduce the live portion of the presentation.

30 ///

31 ///

^^

1 16. A system for recording a live presentation including a predefined content portion having a
2 plurality of presentation slides that are displayed in response to slide triggering events during the live
3 presentation, and a live portion with live audio and/or visual content performed in conjunction with display
4 of said plurality of presentation slides during the live presentation, the system comprising:

5 (a) a local computer having a memory in which a plurality of machine
6 instructions are stored, a user interface, and a processor coupled to the memory for executing the
7 machine instructions;

8 (b) a presentation application program comprising a portion of the plurality of
9 machine instructions stored in the memory of the local computer, the presentation application
10 program enabling:

11 (i) a presenter to change slides during the live presentation in response to
12 slide triggering events entered through the user interface; and

13 (ii) slide display commands to be generated in response to the slide
14 triggering events;

15 (c) an audio capture subsystem that produces a digital audio signal corresponding
16 to the live audio content; and

17 (d) an encoding application module comprising a portion of the plurality of
18 machine instructions stored in the memory of the local computer, said encoding application module
19 being used for:

20 (i) encoding the digital audio signal into a data stream having a streaming
21 data format;

22 (ii) automatically including the slide display commands with the digital
23 audio signal in the data stream as the digital audio signal is encoded into the data stream, said data
24 stream being automatically time indexed to enable synchronization of the slide display commands
25 with the digital audio signal; and

26 (iii) saving the data stream to a data stream file such that when the data
27 stream file is played, said audio content is reproduced, and said plurality of presentation slides are
28 displayed in substantial synchrony with said audio content as it is reproduced, thereby replicating the
29 live presentation and a timing with which the presentation slides were displayed during the live
30 presentation in connection with the live audio content.

31 ///

1 17. The system of Claim 16, wherein the live portion of the live presentation further
2 comprises live visual content, further including a video capture subsystem that produces a digital
3 video signal corresponding the live visual content, whereby the digital video signal is encoded along
4 with the digital audio signal into the data stream, such that the audio and visual content is reproduced
5 in synchrony when the data stream file is played.

6 18. The system of Claim 17, wherein the live visual content is captured as a plurality of
7 video frames, each being encoded into the data stream with a corresponding time stamp, and the
8 slide display commands are interleaved into the data stream, such that each slide display command
9 has a relative time stamp based on its location in the data stream.

10 19. The system of Claim 18, wherein the plurality of video frames comprises a plurality of
11 keyframes and deltaframes, and the encoding module further performs the functions of:

12 (a) adding a plurality of time index values to the data stream;
13 (b) indexing each of said plurality of keyframes to a corresponding time index
14 value, based on a timestamp of the keyframe; and

15 (c) indexing each slide display command to a nearest preceding keyframe time
16 index value, based on a time stamp of the slide display command.

17 20. A system for recording a live presentation including a predefined content portion having
18 a plurality of presentation slides that are displayed in response to slide triggering events during the
19 live presentation, and a live portion comprising live audio content performed in conjunction with
20 display of said plurality of presentation slides during the live presentation, the system comprising:

21 (a) a local computer having a memory in which a plurality of machine instructions
22 are stored, a user interface, and a processor coupled to the memory for executing the machine
23 instructions;

24 (b) an audio capture subsystem that produces a digital audio signal corresponding
25 to the live audio content;

26 (c) an encoding computer having a memory in which a plurality of machine
27 instructions are stored, and a processor coupled to the memory for executing the machine
28 instructions, the encoding computer being linked in communication with the local computer and the
29 audio capture subsystem;

30 ///

31 ///

^^

(d) a portion of the plurality of machine instructions stored in the memory of the encoding computer comprising an encoding module, execution of the encoding module performing the functions of:

- (i) encoding the digital audio signal into a data stream having a streaming data format, said data stream being automatically time indexed to enable synchronization of the slide display commands with the digital audio signal; and

(ii) saving the data stream to a data stream file; and

(e) a presentation application program comprising a portion of the plurality of machine instructions stored in the memory of the local computer, execution of the presentation application program enabling:

(i) a presenter to change slides during the live presentation by entering slide triggering events through the user interface;

(ii) slide display commands to be generated in response to the slide triggering events; and

(iii) communication of the slide display commands to the encoding computer, said slide display commands being automatically included in the data stream with the encoded digital audio signal by the encoding module as the slide display commands are received by the encoding computer and as the digital audio signal is encoded into the data stream, such that when the data stream file is played, so that said audio content is reproduced and said plurality of presentation slides are displayed in substantial synchrony with said audio content as it is reproduced, thereby replicating the live presentation and the timing of the presentation slides being displayed in connection with the audio content.

21. The system of Claim 20, wherein the live portion of the live presentation further comprises live visual content, further including a video capture subsystem that produces a digital video signal corresponding to the live visual content, said digital video signal being encoded into the data stream by the encoding module executing on the encoding computer, such that the audio content and visual content are reproduced in synchrony when the data stream file is played.

22. The system of Claim 21, wherein the live visual content is captured as a plurality of video frames, each being encoded into the data stream with a corresponding time stamp, and wherein the slide display commands are interleaved into the data stream, such that each slide display command has a relative time stamp based on its location in the data stream.

1 23. The system of Claim 22, wherein the plurality of video frames comprises a plurality of
2 keyframes and deltaframes, and the encoding module further performs the functions of:

3 (a) adding a plurality of time index values to the data stream;
4 (b) indexing each of said plurality of keyframes to a corresponding time index
5 value, based on a time stamp of the keyframe; and
6 (c) indexing each slide display command to a nearest preceding keyframe time
7 index value, based on a time stamp of the slide display command.

8 24. A computer-readable medium having computer-executable instructions for recording a
9 live presentation having a predefined content portion that includes a plurality of presentation slides
10 displayed on a computer in response to slide triggering events during the live presentation, and a live
11 portion comprising live audio and/or visual content performed in conjunction with display of said
12 plurality of presentation slides during the live presentation, execution of the computer-executable
13 instructions causing a computer to:

14 (a) generate slide display commands corresponding to said slide triggering events
15 captured in real time during the presentation when presented live, for controlling display of said
16 plurality of presentation slides during playback of a recorded presentation;

17 (b) automatically embed the slide display commands into a data stream as the data
18 stream is produced, the data stream comprising data corresponding to the live portion of the
19 presentation automatically indexed with timing to ensure that the slide display commands are
20 synchronized with the audio and/or visual content as performed in the live presentation; and

21 (c) save the data stream with embedded slide display commands to a file, such
22 that when the file is played, said live portion is reproduced and such that said plurality of
23 presentation slides are displayed in substantial synchrony with said live portion, thereby replicating
24 the live presentation and display of said plurality of presentation slides.

25 25. The computer-readable medium of Claim 24, wherein execution of the computer-
26 executable instructions further cause the live portion to be captured as it is performed during the live
27 presentation and to be encoded into a digital streaming format.

28 26. The computer-readable medium of Claim 25, wherein the slide display commands are
29 interleaved into the data stream as the slide display commands are generated.

30 ///

31 ///

^^

1 27. The computer-readable medium of Claim 25, wherein the live visual content is captured
2 as a plurality of video frames, each being encoded into the data stream with a corresponding time
3 stamp, and the slide display commands are interleaved into the data stream such that each slide
4 display command has a relative time stamp based on its location in the data stream.

5 28. The computer-readable medium of Claim 25, wherein the plurality of video frames
6 comprises a plurality of keyframes and deltaframes, execution of the computer-executable
7 instructions causing a computer to:

- 8 (a) add a plurality of time index values to the data stream;
- 9 (b) index each of said plurality of keyframes to a corresponding time index value,
10 based on a timestamp of the keyframe; and
- 11 (c) index each slide display command to a nearest preceding keyframe time index
12 value, based on a time stamp of the slide display command.

13 29. The computer-readable medium of Claim 24, wherein:
14 (a) the slide triggering events are captured as they occur during the live
15 presentation;
16 (b) the slide display commands are generated based on the slide triggering events
17 that are captured.

EVIDENCE APPENDIX

Appendix Listing

None

RELATED PROCEEDINGS APPENDIX

Appendix Listing

None