- ▶ 概率图模型
 - ▶ 是什么,为什么需要概率图模型。
- > 基本问题
 - ▶ 模型表示
 - ▶ 有向图, 无向图, 道德化, 盘式记法。
 - ▶ 团,极大团,全局、局部、部分马尔科夫性,分离…
 - ▶ 学习和推断。
 - ▶ 最大似然, EM算法。
 - ▶ 精确推断:变量消去、信念传播
 - ▶ 近似推断: MCMC采样(随机近似)、变分推断(确定性近似)
- ▶ 具体模型
 - ▶ 隐马尔科夫模型
 - > 条件随机场
- ▶ 话题模型

(本章内容比较多, 且与第七章关联较大)

复习必须看第七章

一、引子

● 生成式: 计算联合分布 P(Y,R,O)

● 判别式: 计算条件分布 P(Y, R|O)

□ 符号约定

● Y为关心的变量的集合, O为可观测变量集合, R为其他变量集合

推断inference

利用已知变量推测未知变量的条件分布

• 推断的目的是通过生成式或判别式模型,得到条件概率分布P (Y|O)

概率图模型

一类用图来表达变量相关关系的概率模型

直接利用概率求和规则消去变量R的时间和空间复杂度为**指数级别**0(2^{|Y|+|R|}),需要一种能够简洁紧凑表达变量间关系的工具

■ 图模型提供了一种描述框架.

结点:随机变量(集合)边:变量之间的依赖关系

□ 分类:

● 有向图: 贝叶斯网

• 使用有向无环图表示变量之间的依赖关系

• 无向图: 马尔可夫网

• 使用无向图表示变量间的相关关系

有向图能分析出独立性关系

二、隐马尔可夫模型

Hidden Markov Model, HMM结构最简单的贝叶斯网

状态变量是隐藏的,表示所有时刻系统状态,下一时刻状态只与上一时刻真实状态有关 观测变量表示所有时刻的观测值,只与当前时刻的隐变量有关 所有状态联合分布:

$$P(x_1, y_1, \dots, x_n, y_n) = P(y_1)P(x_1 \mid y_1) \prod_{i=2}^n P(y_i \mid y_{i-1})P(x_i \mid y_i) .$$

生成序列:

通过指定状态空间 \mathcal{Y} 、观测空间 \mathcal{X} 和上述三组参数, 就能确定一个隐马尔可夫模型, 通常用其参数 $\lambda = [\mathbf{A}, \mathbf{B}, \pi]$ 来指代. 给定隐马尔可夫模型 λ , 它按如下过程产生观测序列 $\{x_1, x_2, \ldots, x_n\}$:

- (1) 设置 t=1, 并根据初始状态概率 π 选择初始状态 y_1 ;
- (2) 根据状态 y_t 和输出观测概率 **B** 选择观测变量取值 x_t ;
- (3) 根据状态 y_t 和状态转移矩阵 A 转移模型状态, 即确定 y_{t+1} ;
- (4) 若 t < n, 设置 t = t + 1, 并转到第 (2) 步, 否则停止.

三、马尔可夫随机场

Markov Random Field, MRF 典型的马尔可夫网, 无向图

势函数(因子),用于定义概率分布函数

团:全连接子图

极大图:无法再添加点以保持全连接性(无法被其他团包含,可以分解成全部都是极大团)

多个变量之间的联合概率分布能基于团分解为多个因子的乘积,每个因子仅与一个团相关 找极大团与概率无关,难

- □ 基于极大团的势函数:
 - 通过极大团构造势函数。若团Q不是一个极大团,则必然被一个极大团Q*包含,这意味着变量 \mathbf{x}_Q 的关系不仅体现在势函数 ψ_Q 中,还体现在 ψ_{Q^*} 中
 - 联合概率分布可以使用极大团定义
 - 假设所有极大团构成的集合为 C^*

$$P(\mathbf{x}) = \frac{1}{Z^*} \prod_{Q \in \mathcal{C}^*} \psi_Q(\mathbf{x}_Q)$$

- ullet 其中, \mathbf{Z}^* 是规范化因子 $Z^* = \sum_{\mathbf{x}} \prod_{Q \in \mathcal{C}^*} \psi_Q(\mathbf{x}_Q)$
- □ 借助"分离"的概念,若从结点集A中的结点到B中的结点 都必须经过结点集C中的结点,则称结点集A,B被结点集C分 离,称C为分离集 (separating set)

- □ **全局**马尔可夫性 (global Markov property) : 在给定**分离集**的条件下,两个变量子集条件独立
 - 若令A,B,C对应的变量集分别为 \mathbf{x}_{A} , \mathbf{x}_{B} , \mathbf{x}_{C} ,则 \mathbf{x}_{A} 和 \mathbf{x}_{B} 在 \mathbf{x}_{C} 给定的条件下独立,记为 \mathbf{x}_{A} \perp \mathbf{x}_{B} \mid \mathbf{x}_{C}
- 图模型简化:

□ 得到图模型的联合概率为:

$$P(x_A, x_B, x_C) = \frac{1}{Z} \psi_{AC}(x_A, x_C) \psi_{BC}(x_B, x_C)$$

GMM

Kmeans进阶版

两部的生成式模型:第一步确定z,第二部采样x,得到P(x,z)联合分布

likelihood函数

高斯的似然是二次函数

singular fit畸形拟合

因为样本点自己就是一个高斯分布时最大,不能让样本自己独立

EM:期望+最大化

平均场

z不能一味选最简单的,还要考虑事实需求

z拆成M份

zj服从的最优分布与假设无关

优秀分布, 需要你调的参数很少

[[折中的问题折中解决: q (z) 怎么来的?