DSP_HW1

msh

March 2024

Exercise 1

设 $\mathbf{x}(nT_s)=e^{-nT_s}$ 为一指数函数, $\mathbf{n}=0,1,\cdots,\infty$,而 T_s 为抽样间隔,求 $\mathbf{x}(\mathbf{n})$ 的自相关函数 $T_x(mT_s)$ 。

$$r_x(mT_s) = \sum_{n=0}^{\infty} e^{-nT_s} e^{-(n+m)T_s} = e^{-mT_s} \sum_{n=0}^{\infty} e^{-2nT_s}$$
 (1)

即

$$r_x(mT_s) = \frac{e^{-mT_s}}{1 - e^{-2T_s}} \tag{2}$$

式中 $m \ge 0$, 并有 $r_x(-mT_s) = r_x(mT_s)$

Exercise 2

证明以下自相关函数的性质 1 和 2。

性质 1: 若 x(n) 是实信号,则 $r_x(m)$ 为实偶函数,即 $r_x(m) = r_x(-m)$ 。 由实信号自相关函数的定义 $r_x(m) = \sum_{n=-\infty}^{\infty} x(n)x(n+m)$,得 $r_x(-m) = \sum_{n=-\infty}^{\infty} x(n)x(n-m)$

令 k=n-m, 则 n=k+m, 因为 n 的取值范围为 $-\infty \sim \infty$, 对固定的延迟 m, k 的取值范围也是 $-\infty \sim \infty$.

因此,原式变为 $r_x(-m) = \sum_{k=-\infty}^{\infty} x(k+m)x(k)$ 再将 k 换成 n 即 $r_x(m) = r_x(-m)$

性质 2: 若 x(n) 是复信号,则 $r_x(m)$ 满足 $r_x(m) = r_x^*(-m)$ 。由复信号自相关函数的定义 $r_x(m) = \sum_{n=-\infty}^{\infty} x^*(n)x(n+m)$ 有 $r_x^*(-m) = \sum_{n=-\infty}^{\infty} (x^*(n)x(n+m))^* = \sum_{n=-\infty}^{\infty} x(n)x^*(n-m)$ 令 k=n-m,则 n=k+m,因为 n 的取值范围为 $-\infty \sim \infty$,对固定的延迟 m,k 的取值范围也是 $-\infty \sim \infty$. 因此,原式变为 $r_x^*(-m) = \sum_{k=-\infty}^{\infty} x(k+m)x^*(k)$ 即 $r_x(m) = r_x^*(-m)$ 。

Exercise 3

令 $x(n) = A_1 cos(2\pi f_1 n T_s) + A_2 sin(2\pi f_2 n T_s)$, 其中 A_1, A_2, f_1, f_2 为常数,求 x(n) 的自相关函数 $r_x(m)$

 $\mathbf{x}(\mathbf{n})$ 可表示为 $\mathbf{x}(\mathbf{n})=\mathbf{u}(\mathbf{n})+\mathbf{v}(\mathbf{n})$ 的形式,其中 $\mathbf{u}(\mathbf{n})=A_1cos(2\pi f_1nT_s)$, $\mathbf{v}(\mathbf{n})=A_2sin(2\pi f_2nT_s)$ $\mathbf{u}(\mathbf{n})$, $\mathbf{v}(\mathbf{n})$ 的周期分别为 $N_1=\frac{1}{f_1T_s}$, $N_2=\frac{1}{f_2T_s}$; $\mathbf{x}(\mathbf{n})$ 的周期 N 则为两者的最小公倍数。

由周期信号自相关函数的定义,有

$$r_x(m) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)x(n+m) = r_u(m) + r_v(m) + r_{uv}(m) + r_{vu}(m)$$
 (3)

```
x(n) = A, cos (IT, I, n), + Az sin (2T, f. n),
W1.3
                                                                      (012x = C(-S)
         Yx(m) = Yu(m) + Yv(m) + Yuv(m) + Yvu(m)
                                                                          = 1-251
= 200-1.
C = 00-55
         Y_{K}(m) = \frac{1}{N} \sum_{i=1}^{N-1} [A_{i}(\omega)(2\pi f_{i}) \times A_{i}(\omega)(2\pi f_{i}) + m) T_{i}]
               - Ai N-1 [ (0) (ZT.f. nTs). (1) ZT.f. nTs. cos ZT.f. mTs - sin ZT.f. nTs. sin ZT.f. mTs)
                = A12 (032x fimT, Z ( 1+(0)47finTs)
                 - Air SINZT fimT, No SIN 4TJINTI
                由于和的的正文性上划第二股为《
                程Yu(m)= A2 cos ztfimTs
            同門 =) Yv(m) = At cos(ZTfzmTs.
            = A.A. Z (052TCf.nts [sinzTf.nts.cuszTf.mts + coszTf.nts.sinzTf.m
                        = AAI W COSZA SIMTS Z COSZA SIMTS SINZA SIMTS
                          + A.Az sinzrifimti Z corzrifints. coszrifints.
                   与 sit sit 中 = 即於 这 性, 军 Yuv cm) = 0.
fi=fi 对, 有 Yuv cm) = AiAi sin 2 Tifi mTi.
              可程. f. #f, 可, Yru (m)=0
     fi=fi=t, Yvu (m) = A.B. sinztfimT,
```

Exercise 4

表题 1.15 给出的是从 1770 年至 1869 年这 100 年间每年 12 个月所记 录到的太阳黑子出现次数的平均值(请将此数据输入计算机中并以数据文件 的形式保存,第 11 章,12 章还要用到)

- (1) 输出该数据的图形。
- (2) 对该数据做自相关函数,输出其自相关函数的图形,观察太阳黑子活动 的周期 (取 M=32)
- (3) 将该数据除去均值,再重复(2)的内容比较除去均值前、后对做自相关 函数的影响。信号 $\mathbf{x}(\mathbf{n}),\mathbf{n}=0,1,\cdots,N-1$ 的均值是 $\mu_x=\frac{1}{N}\Sigma_{n=0}^{N-1}x(n)$ 。 表題 1.15 太阳黑子的年平均出现次数 [2.3]

								2000
丰丽	1	15	太阳黑	ZM	在 证	145 th	III Vor	16 2.3
20K 1894	1.	13	V b0 42	T 111	4-		IN: /A	WY.

年份	次数	年份	次数	年份	次数	年份	次数
1770	101	1792	60	1814	14	1836	122
1771	82	1793	47	1815	35	1837	138
1772	66	1794	41	1816	46	1838	103
1773	35	1795	21	1817	41	1839	86
1774	31	1796	16	1818	30	1840	63
1775	7	1797	6	1819	24	1841	37
1776	20	1798	4	1820	16	1842	24
1777	92	1799	7	1821	· 7	1843	11
1778	154	1800	14	1822	4	1844	15
1779	125	1801	34	1823	2	1845	40
1780	85	1802	45	1824	8	1846	62
1781	68	1803	43	1825	17	1847	98
1782	38	1804	48	1826	36	1848	124
1783	23	1805	42	1827	50	1849	96
1784	10	1806	28	1828	62	1850	66
1785	24	1807	10	1829	67	1851	64
1786	83	1808	8	1830	71	1852	54
1787	132	1809	2	1831	48	1853	39
1788	131	1810	0	1832	28	1854	21
1789	118	1811	1	1833	8	1855	7
1790	90	1812	5	1834	13	1856	4
1791	67	1813	12	1835	57	1857	23

续表

年份	次数	年份	次数	年份	次数	年份	次数
1858	55	1861	77	1864	47	1867	7
1859	94	1862	59	1865	30	1868	37
1860	96	1863	44	1866	16	1869	74

