Estructuras algebraicas en Computación Cuántica:

estudio de algoritmos clásicos de simulación de circuitos cuánticos de Clifford

José Alberto Azorín Puche

21 de julio de 2021

- Introducción
 - Computación Cuántica y simulación
 - Qubits y puertas cuánticas
- 2 El formalismo estabilizador
 - El grupo estabilizador
 - Puertas de Clifford
 - La matriz estabilizadora
- 3 Algoritmo de Gottesman-Knill
 - Puertas cuánticas en el algoritmo
 - Medida de un qubit
- 4 Algoritmo de Aaronson-Gottesman
 - Planteamiento del algoritmo
 - Eficiencia del algoritmo
- 5 Conclusions

- 1 Introducción
 - Computación Cuántica y simulación
 - Qubits y puertas cuánticas
- 2 El formalismo estabilizado
 - El grupo estabilizador
 - Puertas de Clifford
 - La matriz estabilizadora
- 3 Algoritmo de Gottesman-Knill
 - Puertas cuánticas en el algoritmo
 - Medida de un qubit
- 4 Algoritmo de Aaronson-Gottesman
 - Planteamiento del algoritmo
 - Eficiencia del algoritmo
- 5 Conclusions

Computación...; cuántica?

Computación Cuántica e Información Cuántica:1

estudio de tareas de procesamiento de la información mediante el uso de sistemas cuánticos (átomos, moléculas, etc.).

Figura: IBM Q

 $^{^{1}}$ N. Nielsen, I.L. Chuang, *Quantum Computation and Quantum Information*, Cambridge U. P. , 2010

Algoritmo de Aaronson-Gottesman

Simulación clásica

Aplicaciones:

- Depuración de ordenadores cuánticos.
- Simulación clásica de sistemas cuánticos.
- Construcción de potentes ordenadores híbridos.
- Importancia de recursos cuánticos en computación cuántica.

Teorema de Gottesman-Knill

Sea un circuito cuántico constituido únicamente por puertas de Clifford y medidas dentro del grupo de Pauli, siendo la preparación uno de los estados básicos del sistema. Dicho circuito puede simularse de forma eficiente en un ordenador clásico.

El gubit: la unidad básica de información

$$\begin{array}{ccc} \text{Bit clásico} & & \text{Bit cuántico (qubit)} \\ b \in \{0,1\} \cong \mathbb{Z}_2 & & \Longrightarrow & |\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle \in \mathbb{C}^2 \end{array}$$

Sistema de n qubits:

El formalismo estabilizador

$$\mathcal{H}^{(n)} = \bigotimes_{i=1}^{n} \mathcal{H}^{(1)} = (\mathbb{C}^{2})^{\otimes n} \quad \Rightarrow \quad \mathcal{H}^{(n)} = \mathbb{C}^{2^{n}}$$

$$\mathcal{B}_{n} = \left\{ \bigotimes_{i=1}^{n} q_{i} \mid q_{i} \in \mathcal{B}_{1} \right\} \equiv \left\{ \left| x_{1} ... x_{n} \right\rangle \mid x_{i} = 0, 1 \right\}$$

$$\downarrow \downarrow$$

$$|\psi\rangle = \alpha_{0} \mid 0 ... 000 \rangle + \alpha_{1} \mid 0 ... 001 \rangle + \alpha_{2} \mid 0 ... 010 \rangle$$

$$+ \cdots + \alpha_{2^{n}-2} \mid 1 ... 110 \rangle + \alpha_{2^{n}-1} \mid 1 ... 111 \rangle$$

Puertas cuánticas sobre un qubit

Matrices unitarias de dimensión 2. ¡Son operaciones reversibles!

Puerta de fase

$$P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad - \boxed{P} - \boxed{P}$$

Puerta Hadamard

$$H |0\rangle = |+\rangle$$
 $H |+\rangle = |0\rangle$
 $H |1\rangle = |-\rangle$ $H |-\rangle = |1\rangle$

Matrices de Pauli

$$X \equiv \sigma_{\mathsf{x}} = \left(\begin{array}{cc} \mathsf{0} & \mathsf{1} \\ \mathsf{1} & \mathsf{0} \end{array}\right)$$

$$Y \equiv \sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)$$

$$Z \equiv \sigma_z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Más puertas cuánticas

■ Puerta cNOT (controlled-X):

а	b	$ cNOT ab\rangle = a b\oplusa\rangle$
0	0	00⟩
0	1	$ 01\rangle$
1	0	$ 11\rangle$
1	1	10⟩

"Puerta" de medida:

$$Z = (+1) |0\rangle\langle 0| + (-1) |1\rangle\langle 1|$$

- Introducción
 - Computación Cuántica y simulación
 - Qubits y puertas cuánticas
- El formalismo estabilizador
 - El grupo estabilizador
 - Puertas de Clifford
 - La matriz estabilizadora
- - Puertas cuánticas en el algoritmo
 - Medida de un qubit
- 4 Algoritmo de Aaronson-Gottesman
 - Planteamiento del algoritmo
 - Eficiencia del algoritmo
- 5 Conclusions

El grupo estabilizador

Dados G grupo y X conjunto, llamamos **estabilizador** de $x \in X$ en G a

$$\mathsf{Stab}(x) = \{ g \in G \, | \, \mathsf{ac}(g, x) = x \}.$$

Grupo de Pauli

$$\mathcal{P}_n := \left\{ \left. u \cdot \bigotimes_{i=1}^n P_i \, \right| \, u \in \{\pm 1, \pm i\} \,, \, P_i \in \{I, X, Y, Z\} \, \, \forall i \in \{1, ..., n\} \right\}$$

Grupo estabilizador de un estado $|\psi\rangle$

$$\mathcal{S}(|\psi\rangle) = \{ T \in \mathcal{P}_n \mid T \mid \psi\rangle = |\psi\rangle \} \equiv \mathcal{S}$$

$$2^n \text{ elementos } \Rightarrow n \text{ generadores}$$

Código estabilizador asociado a un grupo G

$$\mathcal{V} := \{ |\psi\rangle : \sigma |\psi\rangle = |\psi\rangle \ \forall \sigma \in G \}$$

Aplicación de puertas cuánticas

$$U |\psi\rangle = UT |\psi\rangle = UTU^{\dagger}U |\psi\rangle , \ \forall T \in \mathcal{S}$$

Puerta	Entrada	Salida
	X	Χ
X	Y	-Y
	Z	-Z
	X	-X
Y	Y	Y
	Z	-Z
	X	-X
Z	Y	-Y
	Z	Z
	X	Z
Н	Y	-Y
	Z	X

Puerta	Entrada	Salida
	Χ	Y
P	Y	-X
	Z	Z
	X_1	X_1X_2
	X_2	X_2
	X_1X_2	X_1
	Y_1	Y_1X_2
cNOT	Y_2	Z_1Y_2
	Y_1Y_2	$-X_1Z_2$
	Z_1	Z_1
	Z_2	Z_1Z_2
	Z_1Z_2	Z_2

iertas de Ciliford

$$\mathcal{S}\left(\ket{\psi}\right) = \mathcal{S} \implies U\ket{\psi} = UT\ket{\psi} = UTU^{\dagger}U\ket{\psi}, \ \forall T \in \mathcal{S}.$$

 Dados G grupo y A conjunto, se define el normalizador de A en G como

$$N_G(A) = \{g \in G \mid gAg^{-1} = A\}.$$

Grupo de Clifford

$$N_{\mathcal{U}_n}(\mathcal{P}_n) = \{ U \in \mathcal{U}_n \mid UTU^{-1} \in \mathcal{P}_n, \forall T \in \mathcal{P}_n \}$$

El formalismo estabilizador

00000

Figura: Circuito de corrección del error "invertir un qubit".

QEC. Código de inversión del qubit

Codificación

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
$$|\psi\rangle_c = \alpha |000\rangle + \beta |111\rangle$$
$$S = \langle Z_1 Z_2, Z_2 Z_3 \rangle$$

Codificación

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
$$|\psi\rangle_c = \alpha |000\rangle + \beta |111\rangle$$
$$S = \langle Z_1 Z_2, Z_2 Z_3 \rangle$$

Las matrices de Pauli conmutan/anticonmutan

$$X^2 = +I$$
 $Y^2 = +I$ $Z^2 = +I$
 $XY = +iZ$ $YZ = +iX$ $ZX = +iY$
 $YX = -iZ$ $ZY = -iX$ $XZ = -iY$

■ **Etiquetas:** vectores $(x_a, z_a) \in \mathbb{Z}_2^{2n}$ tales que

$$T_a = i^{-x_a \cdot z_a} \left(X_1^{x_{a1}} \otimes ... \otimes X_n^{x_{an}} \right) \left(Z_1^{z_{a1}} \otimes ... \otimes Z_n^{z_{an}} \right) \;, \quad x_a, z_a \in \mathbb{Z}_2^n$$

- Computación Cuántica y simulación
- Qubits y puertas cuánticas
- 2 El formalismo estabilizador
 - El grupo estabilizador
 - Puertas de Clifford
 - La matriz estabilizadora
- 3 Algoritmo de Gottesman-Knill
 - Puertas cuánticas en el algoritmo
 - Medida de un qubit
- 4 Algoritmo de Aaronson-Gottesman
 - Planteamiento del algoritmo
 - Eficiencia del algoritmo
- 5 Conclusions

$$U|\psi\rangle = UT|\psi\rangle = UTU^{\dagger}U|\psi\rangle$$
, $\forall T \in \mathcal{S}$

Puerta	Entrada	Salida
Н	Χ	Z
''	Z	X
P	Χ	Y
	Z	Z
	X_1	X_1X_2
	X_2	X_2
cNOT	X_1X_2	X_1
CINOI	Z_1	Z_1
	Z_2	Z_1Z_2
	Z_1Z_2	Z_2

La medida en el formalismo estabilizador

Sea G un grupo y $A \subset G$. Definimos el **centralizador** de A en G como

$$C_G(A) = \{g \in G \mid g * a = a * g \ \forall a \in A\}.$$

$$Z = (+1) |0\rangle\langle 0| + (-1) |1\rangle\langle 1|$$
 $S = \langle T_1, ..., T_n\rangle$

Caso I: Z_a anticonmuta con, al menos, un generador de S.

$$\left|\psi'\right\rangle = \frac{I \pm Z_{\mathsf{a}}}{\sqrt{2}} \left|\psi\right\rangle \quad \mathsf{y} \quad \mathcal{S}' = \left\langle \pm Z_{\mathsf{a}}, \mathcal{C}_{\mathcal{S}}(Z_{\mathsf{a}})\right\rangle.$$

Caso II: Z_a conmuta con todos los generadores de S.

$$|\psi'\rangle = |\psi\rangle$$
 y $\mathcal{S}' = \mathcal{C}_{\mathcal{S}}(Z_{\mathsf{a}}) = \mathcal{S}.$

Eficiencia del algoritmo

Problema a resolver: pertenencia a un grupo.

- Caso I: $O(n^2)$.

 Productos de operadores que anticonmutan con Z_a .
- Caso II: $O(n^3)$.

 Resolución de sistema de ecuaciones.

$$\pm Z_a = T_1^{c_1} \cdot ... \cdot T_n^{c_n}, \qquad (c_1, ..., c_n) \in \mathbb{Z}_2^n$$

- Computación Cuántica y simulación
- Qubits y puertas cuánticas
- 2 El formalismo estabilizador
 - El grupo estabilizador
 - Puertas de Clifford
 - La matriz estabilizadora
- 3 Algoritmo de Gottesman-Knil
 - Puertas cuánticas en el algoritmo
 - Medida de un qubit
- 4 Algoritmo de Aaronson-Gottesman
 - Planteamiento del algoritmo
 - Eficiencia del algoritmo
- 5 Conclusions

Conclusions

Nueva matriz estabilizadora

• Se define una subrutina **rowsum(h,i)** que suma las filas R_h y R_i : ejecuta la composición de los generadores correspondientes.

Ideas del algoritmo

- Aplicación de puertas cuánticas:
 Fórmulas explícitas para actualizar la matriz estabilizadora.
- Medida de un qubit:

$$(R_h|R_i) = z_h \cdot x_i - z_i \cdot x_h \pmod{2} = \bigoplus_{j=1}^n (x_{ij}z_{hj} \oplus x_{hj}z_{ij})$$

- Caso I: $\exists p \in \{n+1,...,2n\}$ tal que $x_{pa} = 1$.
- **Caso II:** No existe tal $p \Rightarrow \sum_{h=1}^{n} c_h R_{h+n} = \pm Z_a$.

Eficiencia del algoritmo

Producto simpléctico ⇒ resolución de sistemas de ecuaciones.

 \uparrow rowsum $\Longrightarrow \uparrow$ coste

Complejidad: $O(n^2)$

Figura: Experimento test del algoritmo de Aaronson-Gottesman².

²S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*, Phys. Rev. A 70, 052328 (2004).

- Computación Cuántica y simulación
- Qubits y puertas cuánticas
- 2 El formalismo estabilizado
 - El grupo estabilizador
 - Puertas de Clifford
 - La matriz estabilizadora
- 3 Algoritmo de Gottesman-Knil
 - Puertas cuánticas en el algoritmo
 - Medida de un qubit
- 4 Algoritmo de Aaronson-Gottesman
 - Planteamiento del algoritmo
 - Eficiencia del algoritmo
- 5 Conclusions

Conclusions

- Quantum Computation needs classical simulations.
- Clifford circuits are essential for classical simulations.
- Gottesman-Knill theorem ⇒ they are efficiently simulable.
- Mathematical tools: theory group, symplectic product.
- Gottesman-Knill algorithm $\implies O(n^3)$.
- Aaronson-Gottesman algorithm $\implies O(n^2)$.

Thank you for your attention!

Puertas cuánticas en el algoritmo de Aaronson-Gottesman

Para cada fila $i \in \{1, ..., 2n\}$:

■ Hadamard sobre el qubit a:

$$r_i := r_i \oplus x_{ia}z_{ia}.$$

Intercambiamos x_{ia} y z_{ia} .

■ Puerta de fase sobre a:

$$r_i := r_i \oplus x_{ia}z_{ia}.$$

 $z_{ia} := z_{ia} \oplus x_{ia}.$

cNOT $a \rightarrow b$:

$$r_i := r_i \oplus x_{ia} z_{ib} (x_{ib} \oplus z_{ia} \oplus 1).$$

 $x_{ib} := x_{ib} \oplus x_{ia}, z_{ia} := z_{ia} \oplus z_{ib}.$

Puerta	Entrada	Salida
Н	X	Z
	Z	X
P	Χ	Y
	Z	Z
	X_1	X_1X_2
	X_2	X_2
cNOT	X_1X_2	X_1
CINOI	Z_1	Z_1
	Z_2	Z_1Z_2
	Z_1Z_2	Z_2

Algoritmo de Aaronson-Gottesman

La medida en el algoritmo de Aaronson-Gottesman

$$(R_h|R_i) = z_h \cdot x_i - z_i \cdot x_h \pmod{2} = \bigoplus_{j=1}^n (x_{ij}z_{hj} \oplus x_{hj}z_{ij})$$

- Caso I: $\exists p \in \{n+1,...,2n\}$ tal que $x_{pa} = 1$.
 - rowsum(i, p) para todo $i \neq p$ tal que $x_{ia} = 1$.
 - $ightharpoonup R_p o R_{p-n}$ y $Z_a o R_p$ (fase r_p aleatoria).
- **Caso II:** No existe tal $p \Rightarrow \sum_{h=1}^{n} c_h R_{h+n} = \pm Z_a$.

$$c_i = \sum_{h=1}^n c_h(R_i|R_{h+n}) = \left(R_i \left| \sum_{h=1}^n c_h R_{h+n} \right. \right) = \left(R_i|Z_a\right) \quad i \in \{1, ..., n\}$$

■ rowsum(2n + 1, i + n) para todo $i \in \{1, ..., n\}$ tal que $x_{ia} = 1$.

Figura: Circuito para teleportar el estado $|\psi\rangle$.

$$\ket{\psi_0} = \ket{\psi}\ket{eta_{00}} = \left[a\ket{0}rac{\ket{00}+\ket{11}}{\sqrt{2}} + b\ket{1}rac{\ket{00}+\ket{11}}{\sqrt{2}}
ight]$$

Figura: Circuito para teleportar el estado $|\psi\rangle$.

$$\ket{\psi_2} = rac{1}{2} \left[\ket{00} \left(a \ket{0} + b \ket{1}
ight) + \ket{01} \left(a \ket{1} + b \ket{0}
ight) \\ + \ket{10} \left(a \ket{0} - b \ket{1}
ight) + \ket{11} \left(a \ket{1} - b \ket{0}
ight) \right].$$