

Network Theorems (Thevenin's and Norton's Theorems)

Course Instructors:

Manav Bhatnagar, Subashish Dutta, Debanjan Bhaumik, Harshan
Jagadeesh
Department of Electrical Engineering, IITD

1

Introduction

One of the main uses of Thevenin's and Norton's theorems is the replacement of a large part of a circuit, often a complicated and uninteresting part, with a very simple equivalent

☐ The new, simpler circuit enables us to make rapid calculations of the voltage, current, and power which the original circuit is able to deliver to a load

Introduction(contd.)

- ☐ It also helps us to choose the best value of this load resistance
- ☐ In a transistor power amplifier, for example, the Thévenin or Norton equivalent enables us to determine the maximum power that can be taken from the amplifier and delivered to the speakers

3

Thevenin's Theorem

Thevenin's theorem tells us that it is possible to replace everything except the load resistor(R_L) with an independent voltage source(V_{TH}) in series with a resistor(R_{TH})

Fig. 1 (a) A complex network including a load resistor R_L . (b) A Thevenin equivalent network connected to the load resistor R_L .

Procedure To Determine Thevenin's Equivalent Circuit

- \square Make the Load resistor R_L as open circuit
- \square Now, define a voltage V_{TH} or V_{oc} (Thevenin's voltage) across the open circuited terminals of R_L and determine V_{TH} or V_{oc}
- \square V_{oc} is the voltage that could be measured by a voltmeter at the output
- To determine R_{TH} (Thevenin's resistance or the equivalent resistance seen from the open circuited terminals of R_L), we proceed as follows:
- ☐ Deactivate all the independent sources, i.e., short circuit the voltage source and open circuit the current source

5

Contd.

- lacktriangle Measure the resistance at across the open circuited terminals of R_L
- ☐ Finally, we can obtain the Thevenin's equivalent circuit as shown in Fig. 1(b)

6

Problem 1(Independent source)

 \Box Find V_X by first finding V_{TH} and R_{TH} to the left of A-B

Fig. 2: Circuit for Problem 1

7

Solution

 \square We first open circuit the terminals of A-B to obtain V_{TH} as shown below:

☐ Using voltage division rule, we get:

$$V_{AB} = V_{TH} = \frac{(30)(6)}{6+12} = 10V$$

 \square To get R_{TH} , we deactivate all the independent sources as described in the procedure as follows:

$$R_{TH} = 12||6 + 4 = 8\Omega$$

9

9

Solution(contd.)

☐ Now, the Thevenin's equivalent circuit can be obtained as:

Using voltage division rule, we get:

$$\therefore V_X = \frac{(10)(2)}{8+2} = 2V$$

10

Problem 2(Scenario of Dependent Source)

□ Determine the Thevenin equivalent of the circuit shown below:

Fig.3: A given network whose Thevenin equivalent is desired

1

11

Solution

- $oldsymbol{\square}$ To find V_{TH} , we note that $v_x = V_{TH}$ and that the dependent source current must pass through the $2k\Omega$ resistor, since no current can flow through the $3k\Omega$ resistor.
- ☐ Using KVL around the outer loop:

$$4 + 2 \times 10^3 \left(\frac{v_x}{4000} \right) = v_x$$

and

$$V_{TH}=v_x=8V$$

- \Box The dependent source prevents us from determining directly R_{TH}
- ☐ Therefore, we short circuit the output terminals of the given circuit and determine the short-circuited current (I_{sc})
- Upon short-circuiting the output terminals in figure, it is apparent that $v_x = 0$ and therefore the dependent current source becomes inactive

1

13

Solution(contd.)

☐ Hence,
$$I_{sc} = \frac{4}{5 \times 10^3} = 0.8 \text{mA}$$

$$\Box$$
 Thus, $R_{TH} = \frac{V_{TH}}{I_{SC}} = \frac{8}{0.8 \times 10^{-3}} = 10 k\Omega$

☐ Therefore, the thevenin's equivalent circuit is as shown below:

1.0

Norton's Theorem

Using Norton's theorem, we obtain an equivalent composed of an independent current source (I_N) in parallel with a resistor (R_N)

Fig.4: A Norton equivalent network connected to the load resistor R_L

15

Procedure To Determine Norton's Equivalent Circuit

- \square Make the Load resistor R_L as short circuit
- Now, define a current I_N or I_{sc} (Norton's current) across the short-circuited terminals of R_L and determine I_N or I_{sc}
- ☐ The procedure for determining R_N (Norton's equivalent resistance) is same as that of R_{TH}
- ☐ Finally, we can obtain the Norton's equivalent circuit as shown in Fig. 4

Problem 3 (Independent source)

ullet Find the Norton's equivalent circuit for the network faced by the $1k\Omega$ load resistor

Fig. 5: Circuit for Problem 3

17

17

Solution

- \square We first define the node voltage (V_a)at the upper terminal of 2mA current source
- Now, we short circuit the $1k\Omega$ load resistor and determine the short-circuited current I_N or I_{sc} using nodal analysis as follows:

$$\frac{V_a - 4}{2k\Omega} - 2mA + \frac{V_a - 0}{3k\Omega} = 0$$

$$\Rightarrow V_a = 4.8V$$

$$\therefore I_N = \frac{V_a}{3k} = 1.6 \text{mA}$$

18

- Now, to determine R_N , the $1 k\Omega$ load resistor is open circuited
- Moreover, we deactivate all the independent sources, i.e., voltage source is shortcircuited and current source is open-circuited
- We get: $R_N = 2kΩ + 3kΩ = 5kΩ$ and the Norton's equivalent circuit is as shown below:

19

19

Problem 4(Scenario of Dependent Source)

☐ For the circuit shown below, find the Norton's equivalent circuit to the left of terminals A-B

Fig. 6 Circuit for Problem 4

Solution

 \square In case of a dependent source, R_N is obtained as:

$$R_N = \frac{V_{oc}}{I_{sc}} = \frac{V_{AB}}{I_{sc}}$$

- ☐ Where $V_{oc} = V_{AB}$ is the open-circuited voltage across the load resistor
- We first find V_{AB} : $V_{AB} = (-25I_s)(40)$ $= -1000I_s$

2

21

Solution(contd.)

- To find I_{sc} , the output terminals are short-circuited and due to this the entire current of $25I_s$ flows through the short-circuited arm
- \Box Therefore, $I_{sc} = -25 I_s$

- Note that we have obtained V_{AB} in terms of I_{S} , i.e., $V_{AB} = -1000I_{S}$
- lacktriangle Now, $I_{\mathcal{S}}$ can be obtained using mesh analysis as follows:

follows:
$$-5 + 1000I_s + 1000I_s = 0$$

$$\implies I_s = 2.5 \text{mA}$$

V D IKΛ

23

Solution(contd.)

☐ The Norton's equivalent circuit is as shown below:

Problem 5 (Another Scenario of Dependent Source)

☐ For the circuit shown below, find the Norton's equivalent circuit

Fig. 7 Circuit for Problem 5

25

25

Solution

- Dependent voltage source depends upon the current i
- i=0 for short circuit or open circuit
- So the dependent voltage source of 1.5i value is inactive
- It is not possible to determine the value of I_{SC} and V_{OC}

- Let us apply a 1A current source at the O/P nodes
- Then $R_N = \frac{v_{test}}{1}$
- As i = -1 A
- · Apply nodal analysis at A

$$\frac{v_{test} - 1.5(-1)}{3} + \frac{v_{test}}{2} = 1$$

- $v_{test} = 0.6 \text{V}$
- $R_N = 0.6 \text{ ohm}$

2