Corner Rank: Portfolio Optimization with Minimal Turnover and Alpha Persistence

Mathew Thiel¹ Yago Mateos²

¹Applied Math and Statistics Master's Student Stony Brook University, Stony Brook, New York

²Applied Math and Statistics PhD Student Stony Brook University, Stony Brook, New York

SQA Alphathon, October 9th 2024

Table of Contents

Project Summary
Strategy Outline

Methodology
Asset Selection
Optimization Function and Constraints

Results

In-Sample
Out-of-Sample

References

Strategy Outline

Basic Methodology:

- ► Select candidate alphas, prioritizing extreme alphas with values closest to their next period returns.
- ▶ Optimize portfolio weights with a turnover preference parameter and constraints that limit changes in weights.
- ► Rebalance weekly with each update in alpha data.

Benefits:

- Low transaction costs.
- ▶ Preservation of alpha signals in the portfolio.

Asset Selection

Focuses on extreme alpha values versus their next-period returns:

- Organize alpha versus next-period return into a grid.
- 2. Define the selection area as a product of the distance from the center of the grid and the distance to the diagonal.
- 3. Select the top (bottom) 30% from each corner on the diagonal.

Figure: Example of selected assets.

SQA Alphathon 2024

Optimization Function

$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{\Sigma}_t \mathbf{w} + \lambda_{L1} \left(\mathbb{1}' w_{i,+} + \mathbb{1}' w_{i,-} \right)$$
 (1)

Following Chitsiripanich et al. (2024) [1] with additional constraints:

- w: the vector of portfolio weights for each asset in the universe.
- $\mathbf{w_{i,+}}$ and $\mathbf{w_{i,-}}$: the positive and negative weight deviations, respectively.
- Σ_t : the asset return covariance matrix, defined as:

$$\Sigma_t = \beta \Sigma_f \beta^T + \sigma_r^2 \tag{2}$$

where β is the factor loadings, Σ_f is the factor covariance matrix, and σ_r^2 is the diagonal matrix of residual variance.

• λ_{L1} : the L1 regularization parameter which controls turnover preference.

Mathew Thiel, Yago Mateos Corner Rank SQA Alphathon 2024

Basic Weight Constraints

1. Portfolio weights must sum to zero:

$$\sum_{i}^{n} w_{i} = 0$$

2. Positive weights must sum to one:

$$\sum_{i}^{n} \max(w_i, 0) = 1$$

3. Total change in weights is greater than or equal to zero: **w***:

$$\mathbf{w} + \mathbf{w}_+ - \mathbf{w}_- = \mathbf{w}^*$$

4. Weights must meet minimum threshold:

$$w_i \geq \tau \quad \lor \quad w_i \leq -\tau \quad \lor \quad w_i = 0$$

Asset Weight Constraints

1. New long assets have positive weights:

$$0 \leq w_i \leq 1, \quad \forall i \in I_{t+1}^+ \setminus A_t^s$$

2. New short assets have negative weights:

$$-1 \leq w_i \leq 0, \quad \forall i \in I_{t+1}^- \setminus A_t^I$$

3. Previous portfolio assets must have weights between 0 and their previous weight:

$$w_{t,i}^* \leq w_i \leq 0, \quad \forall i \in A_t^s \setminus (I_{t+1}^+ \cup I_{t+1}^-)$$

$$0 \leq w_i \leq w_{t,i}^*, \quad \forall i \in A_t^l \setminus (I_{t+1}^+ \cup I_{t+1}^-)$$

4. Assets changing direction are removed:

$$w_i = 0, \quad \forall i \in (I_{t+1}^+ \cap A_t^s) \cup (I_{t+1}^- \cap A_t^l)$$

SQA Alphathon 2024

In-Sample

Description	Annualised Return	% of Return
Portfolio Returns % (Gross)	5.50%	100.00%
Transaction & Shorting Costs $\%$	-0.14%	-2.46%
Portfolio Returns % (Net)	5.36%	97.40%
Portfolio Factor Returns (Net)	0.66%	11.94%
Implied Portfolio Alpha (Net)	4.68%	84.95%

Table: In-Sample Performance, 2017-12-27 to 2024-07-31

Out-of-Sample

Description	Annualised Return	% of Return
Portfolio Returns % (Gross)	1.91%	100.00%
Transaction & Shorting Costs $\%$	-0.21%	-11.09%
Portfolio Returns % (Net)	1.70%	88.76%
Portfolio Factor Returns (Net)	-0.44%	-23.27%
Implied Portfolio Alpha (Net)	2.15%	112.26%

Table: Out-Sample-Performance, 2014-08-13 to 2021-06-09

Distribution of Alphas In-Sample

Figure: In-Sample Alpha Breakdown, 2017-12-27 to 2024-07-31

Distribution of Alphas Out-of-Sample

Figure: Out of Sample Alpha Breakdown, 2014-08-13 to 2021-06-09

Mathew Thiel, Yago Mateos Corner Rank SQA Alphathon 2024

References

[1] S. Chitsiripanich, M. S. Paolella, P. Polak, and P. S. Walker. Smoothing Out Momentum and Reversal, Aug. 2024.

Contact Information

• Mathew Thiel: mathew.thiel@stonybrook.edu

• Yago Mateos: yago.mateos@stonybrook.edu