Отчёт по Лабораторной № 2

Выполнил студент 2 курса СПбАУ Есиков Сергей

1. PubMed

Задача: Составить список университетов, в которых работают соавторы Pavel Pevzner.

Метод решения

1. Поиск всех научных работ

```
handle = Entrez.esearch(
    db="pubmed",
    term=f"{author_name}[Author]",
    retmax=500,
    usehistory="y"
)
record = Entrez.read(handle)
count = int(record["Count"])
webenv = record["WebEnv"]
query_key = record["QueryKey"]
handle.close()
```

```
handle = Entrez.efetch(
    db="pubmed",
    rettype="xml",
    retmode="xml",
    webenv=webenv,
    query_key=query_key,
    retstart=start,
    retmax=batch_size
)
data = handle.read().decode('utf-8')
handle.close()
```

2. Извлечение аффилиаций по тегам

```
# Метод 1: Поиск стандартных тегов Affiliation aff_pattern = r'<Affiliation[^>]*>([^<]+)</Affiliation>' matches = re.findall(aff_pattern, xml_data)

if matches:
   return {clean_affiliation(m) for m in matches}
```

```
# Метод 2: Резервный поиск в формате Medline ad_pattern = r'AD\s*-\s*([^\n]+)' matches = re.findall(ad_pattern, xml_data) return {clean_affiliation(m) for m in matches}
```

3. Фильтрация потенциальных потворений

Результаты

- Количество уникальных аффилиаций после парсинга: 686
- Количество университетов после доп обработки: 81
- Список университетов в Алфавитном порядке:
 - 1. Academia Sinica
 - 2. Amazon
 - 3. Arima Genomics
 - 4. Ascus Biosciences
 - 5. Australian Centre for Ecogenomics
 - 6. Baylor College of Medicine
 - 7. California Institute of Technology
 - 8. Carnegie Mellon University
 - 9. Cedars-Sinai Medical Center
 - 10. Clemson University
 - 11. Cornell University
 - 12. DNAnexus
 - 13. Digital BioLogic
 - 14. Duke University
 - 15. ETH Zurich
 - 16. Ecole Polytechnique Fédérale de Lausanne
 - 17. Emory University

- 18. Francis Crick Institute
- 19. Harvard University
- 20. Helmholtz Institute
- 21. Howard Hughes Medical Institute
- 22. Illumina
- 23. Jackson Laboratory
- 24. Johns Hopkins University
- 25. Massachusetts Institute of Technology
- 26. Max Planck Institute
- 27. Misvik Biology Ltd
- 28. National Geographic Society
- 29. National Institutes of Health
- 30. National Sun Yat-sen University
- 31. Pacific Biosciences
- 32. Pacific Northwest National Laboratory
- 33. Phase Genomics
- 34. Rockefeller University
- 35. San Diego Zoo Wildlife Alliance
- 36. Scripps Research Institute
- 37. Senckenberg Research Institute
- 38. Sirenas Marine Discovery
- 39. Smithsonian Tropical Research Institute
- 40. Stanford University
- 41. St. Petersburg Academic University
- 42. St. Petersburg State University
- 43. Thermo Fisher Scientific
- 44. University of Alabama
- 45. University of Bari
- 46. University of Birmingham
- 47. University of British Columbia
- 48. University of California, Berkeley
- 49. University of California, Santa Cruz
- 50. University of California San Diego
- 51. University of Chicago
- 52. University of Chicago Marine Biological Laboratory
- 53. University of Colorado Denver
- 54. University of Cambridge
- 55. University of Florida
- 56. University of Geneva
- 57. University of Hamburg
- 58. University of Hawaii at Manoa
- 59. University of Illinois Chicago
- 60. University of Lorraine
- 61. University of Michigan
- 62. University of Minnesota
- 63. University of North Carolina Chapel Hill

- 64. University of Notre Dame
- 65. University of Oklahoma
- 66. University of Oregon
- 67. University of Pennsylvania
- 68. University of Pittsburgh
- 69. University of Porto
- 70. University of Queensland
- 71. University of Regensburg
- 72. University of Rennes 1
- 73. University of São Paulo
- 74. University of Southern California
- 75. University of Tennessee Health Science Center
- 76. University of Texas A&M
- 77. University of Virginia
- 78. University of Washington
- 79. University of Western Australia
- 80. University of Wisconsin-Madison
- 81. University of Tartu

DB-NCBI-PubMed

Задача: Посчитать публикации в PubMed за период [Дата начала] - [Дата конца] и получить их PMC ID.

Метод решения

Поиск осуществляется через прямой запрос к eutils по отдельности на каждый день из запрошенных

Далее после получения ID всех статей идёт поиск тех из них что обладают РМС ID

Извлечение РМ ID и РСМ ID происходит с помощью xml парсинга по тегам

- сам скрипт
- PMC ID

Результаты

Всего найдено РМ ID: 26286 Всего найдено РМС ID: 15118

Результаты сохранены в pmc_list.txt

3. DB-NCBI-volvox

Задача: Скачать кодирующие последовательности (CDS) для организма Volvox в формате FASTA.

Описание организма

Volvox — род пресноводных колониальных зелёных водорослей (*Chlorophyta*), представляющий важную модель в исследованиях эволюции многоклеточности.

Колонии Volvox демонстрируют примитивную форму "разделения труда" между клетками — ключевой этап эволюции сложных организмов.

Метод решения

Обращаемся к DB_NCBI с помощью NCBI E-Utilities

• Установка:

```
& sh -c "$(curl -fsSL
https://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh)"
```

• Сам запрос:

```
& esearch -db nucleotide -query "Volvox[Organism] AND (cds[Feature] OR coding[Title])" | \
efetch -format fasta > volvox_cds.fasta
```

• Пояснения:

- 1. Volvox[Organism] записи для организма Volvox.
- 2. cds[Feature] последовательности с аннотированными кодирующими регионами (CDS).
- 3. coding[Title] записи, где в заголовке есть слово "coding"
- 4. Далее форматирование в FASTA и вывод в файл

Результаты

- Файл с данными: volvox cds.fasta
- Количество последовательностей:

```
& cat ./volvox_cds.fasta | grep '>' | wc -l
03
```

4. DB-Ensembl

Задача: Найти список хромосом и их длину для последнего референса генома мыши.

Метод решения

Прямой запрос к Ensembl REST API с последующей филтрацией json выдачи

1. команда

```
& curl "https://rest.ensembl.org/info/assembly/mus_musculus?content-
type=application/json" | jq '.top_level_region[] |
select(.coord_system == "chromosome") | {name, length}' >> output
```

• сервер

```
https://rest.ensembl.org/info/assembly/mus_musculus
```

• вывод данных

```
content-type=application/json
```

- 2. парсинг json через утилиту jq
 - Начальный корень

```
.top_level_region[]
```

• Выборка по атрибуру coord_system представляющему хромосому

```
select(.coord_system == "chromosome")
```

• Фильтр результата до имени хромосомы и её размера

```
{name, length}
```

3. Вывод в файл

```
>> output
```

Результаты

1: 195154279	2: 181755017	3: 159745316	4: 156860686
5: 151758149	6: 149588044	7: 144995196	8: 130127694
9: 124359700	10: 130530862	11: 121973369	12: 120092757
13: 120883175	14: 125139656	15: 104073951	16: 98008968
17: 95294699	18: 90720763	19: 61420004	

5. DB-UNIPROT

Задача: Найти человеческие белки, содержащие подпоследовательность [Аминокислотная последовательность].

Метод решения

Парсинг всех пептидов доступных на ресурсе и последующее их выравнивание на искомую подпоследовательность

1. Парсинг пептидов

```
curl 'https://rest.uniprot.org/uniprotkb/stream?
fields=accession,sequence&format=tsv&query=(*)+AND
+(model_organism:9606)' > allProteins.txt
```

• https://rest.uniprot.org/uniprotkb/stream

Сервер

fields=accession, sequence

Поля вывода

• format=tsv

Формат вывода

query=(*)+AND+(model_organism:9606)

Параметры запроса

2. Выравнивание

• Поиск включений подстроки дал нулевой результат, так что было принято решение допустить погрешность в 1 букву

- 1. Для этого поиск вхождений был заменен на выравнивание подстроки по белку со следующими параметрами
 - Стоимость совпадения: положительное число n
 - Стоимость несовмадения: 0
 - Стоимость любых решений в сторону гепа: сильно отрицательное число, сравнимо большее n

```
from Bio import Align
from Bio.Seq import Seq

pepride = Seq("AAVGPQKATA")
aligner = Align.PairwiseAligner()
aligner.mode = 'local'
aligner.match_score = 2
aligner.mismatch_score = 0
aligner.open_gap_score = -100
aligner.extend_gap_score = -100
```

2. Далее выравнивание и выбор наилучшего

```
with open("./allProteins.txt") as f:
    i = 1
    for line in f:
        note = line.split()
        alignments = aligner.align(Seq(note[1]), pepride)
        best_alignment = alignments[0] if alignments else None
```

- 3. Если score наилучшего совпадения меньше чем
 - Стоимость совпадения
 - Умноженная на
 - Длину подстроки за вычетом количества допустимых ошибок

Значит выравнивание либо слишком грязное либо вообще отсутствует

```
if (best_alignment) and (best_alignment.score >= 2 * (len(pepride) -
K)):
    print(best_alignment)
    res.write(f"{note[0]}, {note[1]},
{str(best_alignment.coordinates[0])}\n")
else:
    print(i, best_alignment.score if best_alignment else -1, end='\r')
i += 1
```

Результаты

На выходе получилоась два результата, но они одинаковые

EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells.

Имя белка	Длина (а.о.)	UniProt ID
EZHIP	503	Q86X51

Если допустить три ошибка, выборка сильно увеличивается (с двумя ошибками резуьтат не отчиается от первого)

UniProt ID	Длина (а.о.)
O60755	368
P13598	275
P23471	2315
P41225	446
Q86X51	503
Q8NA72	575
Q9NPD3	245
Q9NYZ4	499
Q9Y5L0	923
A0A494C036	1513
A0A494C055	2347
A0A494C087	2354
A0A494C0U4	2059
A0A494C1B4	1908
A0A494C1H9	1494
A0A494C1R4	1487
A0A494C1J5	698
B3KN17	530
С9ЈТ30	390
D6RDG4	547
E9PI41	261

UniProt ID	Длина (а.о.)
J3QRT5	251
Q6FHE2	275
A0A0D9SET9	83
A0A515VFR0	503
A0A994J4D9	302
A8KAP5	275
B2R6H7	923
B3KM69	523
B3KMX1	480
B4DFE7	808
C9J7E5	957
E9PFH4	857
H0Y880	109
J3QKR4	174
J3QQX6	214
J3QRQ1	216
Q59ED3	344
Q6L9N7	108
Q6NXN2	316
Q6WG70	152

количество: 41

...

6. DB-UCSC

Задача: Извлечь последовательность генома кошки (хромосома [Имя], позиции [Start]-[End]).

Метод решения

К сожалению в процессе я столкнулся с проблемой в которой так и не смог разобраться А именно UCSC Tablet Browser категорически отказывался позволять мне сменить датасет на млекопитающих

