

Homework 8 Solutions

Weihao Li Fudan University

Problem 1

Let
$$\hat x-x=r$$
. Then $||r||=O(\epsilon)$,and
$$\hat x^*A\hat x=(x+r)^*A(x+r)$$

$$=x^*Ax+r^*Ax+x^*Ar+r^*Ar$$

$$=\lambda(1+r^*x+x^*r)+r^*Ar,$$

$$\hat{x}^*\hat{x} = (x+r)^*(x+r)$$

= 1 + r*x + x*r + r*r.

Hence

$$egin{aligned} \left| \left| rac{\hat{x}^* A \hat{x}}{\hat{x}^* \hat{x}} - \lambda
ight| &= \left| \left| rac{r^* A r - \lambda r^* r}{1 + r^* x + x^* r + r^* r}
ight|
ight| \ &\leq \left| \left| r^* A r
ight| + \left| \left| \lambda r^* r
ight|
ight| \ &= (\left| \left| A
ight| + \left| \lambda
ight|) O(\epsilon^2) \ &= (\left| \left| A
ight| + \left| \lambda
ight|) O(\epsilon^2) \end{aligned}$$

Problem 2

Let

$$Q = egin{bmatrix} c & s \ -s & c \end{bmatrix},$$

in which $c=\cos\theta, s=\sin\theta.$ Since

$$[x, y]Q = [cx - sy, sx + cy],$$

we have

$$egin{aligned} 0 &= (cx - sy)^T (sx + cy) \ &= sc(||x||^2 - ||y||^2) + x^T y (c^2 - s^2), \end{aligned}$$

Suppose $x^Ty
eq 0$, we have

$$rac{||y||^2 - ||x||^2}{x^T y} = rac{c^2 - s^2}{cs} = rac{1}{t} - t,$$

in which t= an heta. Let the left hand side be 2d, then solve the equation $t^2+2dt-1=0$, get

$$t=-d\pm\sqrt{d^2+1}$$

we choose the t that has a smaller modulo. Then

$$c = rac{1}{\sqrt{2}\sqrt{d^2+1-2|d|\sqrt{d^2+1}}}, \ s = \sqrt{1-c^2}.$$

That's how Q is constructed.

Problem 3

see jacobi.py
Performance:

When length of side of the matrix is over 1000, the computation get incridibly slow, with sometimes overflow when computing the 2×2 symmetric Schur decomposition. Convergence History(Below in fact is a gif! See <code>convergence_history-1.gif</code> in the package.):

Problem 4

see FRPE.py

first try, 20 vertices

100 trials, $\delta = 0.001$

n	Average k _δ
10.0	125.74
20.0	484.41
40.0	1806.94
80.0	6847.79

second try, 20 vertices, with normalizations

third experiment, 12 vertices, even is red and odd is blue

