

Christa van IJzendoorn

- Physical geographer
- PhD in Coastal Engineering

Impact of grain size

Natural grain size variability

Grain size = design factor

Single fraction

Multi-fraction

Multi-fraction transport

- Sediment transport is governed by
 - Transport capacity of the wind
 - Sediment supply
- Grain size related to both

Multi-fraction transport

- Sediment transport is governed by
 - Transport capacity of the wind
 - Sediment supply
- Grain size related to both

Transport capacity

Calculation of transport:

$$Q = C \sqrt{\frac{d}{D}} \frac{\rho_a}{g} \left(u_* - u_{t,*} \right)^3$$

$$\frac{d}{D} = 1$$
Bagnold (1937)

Calculated per fraction

Transport capacity

Calculation of transport:

$$Q = C \sqrt{\frac{d}{D}} \frac{\rho_a}{g} (u_* - u_{t,*})^3$$
Bagnold (1937)

Threshold shear velocity:

$$u_{t,*} = A \sqrt{\frac{\rho_{s-}\rho_a}{\rho_a}} g(d)$$

Transport capacity

Calculation of transport:

$$Q = C \sqrt{\frac{d}{D}} \frac{\rho_a}{g} (u_* - u_{t,*})^3$$
Bagnold (1937)

Shear velocity:

$$u_* = u_w \frac{\kappa}{\ln \frac{z}{z_0}} \qquad \Rightarrow \qquad z_0 = \frac{k_s}{30} = \frac{d}{30}$$

Multi-fraction transport

- Sediment transport is governed by
 - Transport capacity of the wind
 - Sediment supply
- Grain size related to both

Sand Motor after 10 years:

without sorting

with sorting

Increased sediment availability due to hydraulic mixing

Summary

- Grain size affects aeolian sediment transport
 - Transport capacity
 - Sediment supply
- Transport capacity calculated per grain size fraction
- Sediment supply:
 - Represented using vertical layering
 - Can decrease due to coarsening
 - Can increase due to hydraulic mixing
- Model simulations can be used to quantify these effects

PhD work

- Measurements of grain size variability
- Simulated effect in model simulations

300

Grain size (μm)

400

500

940 grain

Contact: c.o.vanijzendoorn@tudelft.nl

Questions?

Contact: c.o.vanijzendoorn@tudelft.nl