

PO: Precision Oncology Course Running PanDrugs

PanDrugs

www.pandrugs.org

PanDrugs is a web tool for prioritizing cancer therapies based on individual genomics data.

PanDrugs

www.pandrugs.org

- GScore (0 to 1): Measures the relevance of genetic variants in cancer.
- DScore (-1 to 1): Measures the drug efficacy against different targets.

PanDrugs

www.pandrugs.org

Based on these two scores, PanDrugs outputs a ranking of the best therapeutic candidates for a particular patient.

Input 1: Gene list

Steps

- 1. Query PanDrugs using the Genes section
- 2. Load Example 3 (Genes Involved in PI3K-AKT-mTOR pathway)
- 3. Query the database with these genes

Questions

PANDRUGS

Input 1: Gene list

- Are all the genes in PanDrugs? How many drugs are in each approval status?
- Which is the most abundant mechanism of action?
- How can we find the best therapeutic candidates?
- Where are the evidences for these best therapeutic candidates?
- Is there any drug suggested by a gene that is discarded by another?

PANDRUGS

Input 1: Gene list

- Genes in PanDrugs: 17/17. Approval status: 120 approved, 175 in clinical trials and 360 experimental drugs
- Most abundant MoA: Serine/Threonine kinases
- Best therapeutic candidates: They appear in the green part of the plot and marked with a star in the table
- Evidences: Press "+" to expand an entry and check the PubMed and ClinicalTrials.org links to find the source of each relationship
- Drug suggested by a gene and discarded by another: Marked with a "!" or the label "Both"

Input 2: Gene ranking

Steps

- 1. Query PanDrugs using the Gene Ranking section
- 2. Load Example file (Expression data for the top 500 up-regulated genes in a lung adenocarcinoma patient with *EGFR* alteration from TCGA)
- 3. Query the database with these genes

Questions

PANDRUGS

Input 2: Gene ranking

- How many genes are in PanDrugs?
- Which are the best candidates according to PanDrugs?
- What are the evidences for the drugs that rank higher in the assignments?
- Is there any drug approved for the same cancer type?

PANDRUGS

Input 2: Gene ranking

- How many genes are in PanDrugs? 114
- Which are the best candidates according to PanDrugs? None
- What are the evidences for the drugs that rank higher in the assignments? Press "+" for Vorinostat, Paclitaxel and Bortezomib
- Is there any drug approved for the same cancer type? e.g.
 Paclitaxel, Pemetrexed and Gemcitabine. You can rerun PanDrugs selecting just "Lung" to filter out drugs with no evidence in lung

Input 3: VCF

PANDRUGS

Steps

- 1. Query PanDrugs using the Genomic Variant section
- 2. Load Example file (VCF of melanoma patient with mutant *BRAF* from TCGA)
- 3. Query the database with this file

Questions

PANDRUGS

Input 3: VCF

- Which are the suggested therapies? Do they match the specific alterations?
- What are the evidences for the gene with the highest GScore in the first best therapeutic candidate?
- Is there any drug suggested by a gene that is discarded by another?
- Is there any drug approved for the same cancer type? Is there any drug in cancer clinical trials for this cancer type?
- Could a drug repositioning approach be used?

PANDRUGS

Input 3: VCF

- Therapy and alterations: In the table, if you press "+" you'll see the variant-drug associations for the variants in the VCF
- Highest GScore of the 1st BTC: BCL2 in Bortezomib. Click in the links for further information
- Drug suggested and discarded by different genes: e.g. Paclitaxel
- Approved drug for the same cancer type: Vemurafenib. In clinical trials: Not specified
- Could a drug repositioning approach be used? Yes, but
 Vemurafenib seems the best option

PANDRUGS

Therapy and alterations

If you expand a table row pressing "+" you'll get info por a particular drug-gene pair 1.

VEMURAFENIB is a drug approved by FDA that acts as an inhibitor of BRAF Interaction: (G) |-- D

Alteration(s): "mutation (V600E, V600D, V600K, V600M, V600G, V600R)" (according to CancerGenomeInterpreter), "mutation (V600E)" (according to FDA), "mutation" (according to TARGET-CGA, ClearityFoundationBiomarkers), "mutation (D594G, G464V, G466V, G496A, G606E, K601E, L597Q, L597R, N486_P490del, N581S, P731T, V600D, V600K); gene fusion (CUX1-BRAF, MACF1-BRAF, WASFL-BRAF); rearrange (intron 9, intron 10)" (according to CIViC), "mutation (V600E, V600K)" (according to DoCM), "mutation (activating, K601E + S363F, L597R, L597S, V600D, V600E, V600K, V600M, V600R, V600X)" (according to JAX-ClinicalKnowledgebase) and "mutation (V600E, codon 600 missense, V600K)" (according to MyCancerGenome)

RAF inhibitor(Cma p) and Serine/thre onine kinases(KEG

CGI DoCM FDA GtPI MCGCT

0.9400

0.8091

Variant information in gene BRAF: c.1799T>A / p.Val600Glu missense variant

Find more info for VEMURAFENIB and BRAF in: [PubMed] [ClinicalTrials.gov]

 $|(\mathbf{S})(\mathbf{P})(\mathbf{C})|$

ClinVar

IPR000719: Protein kinase domain

Sensitivity

PANDRUGS

Therapy and alterations

In some entries you have information about sensitivity/resistance 2 associated variants 3.

VEMURAFENIB is a drug approved by FDA that acts as an inhibitor of BRAF Interaction: Alteration(s): "mutation (V600E, V600D, V600K, V600M, V600G, V600R)" (according to CancerGenomeInterpreter), "mutation (V600E)" (according to FDA), "mutation" (according to TARGET-CGA, ClearityFoundationBiomarkers), "mutation (D594G, G464V, G466V, G496A, G606E, K601E, L597Q, L597R, N486_P490del, N581S, P731T, V600D, V600K); gene fusion (CUX1-BRAF, MACF1-BRAF, WASFL-

BRAF); rearrange (intron 9, intron 10)" (according to CIViC), "mutation (V600E, V600K)" (according to DoCM), "mutation (activating,

K601E + S363F, L597R, L597S, V600D, V600E, V600K, V600M, V600R, V600X)" (according to JAX-ClinicalKnowledgebase) and

Find more info for VEMURAFENIB and BRAF in: [PubMed] [ClinicalTrials.gov]

"mutation (V600E, codon 600 missense, V600K)" (according to MyCancerGenome)

RAF inhibitor(Cma p) and Serine/thre onine kinases(KEG

CGI

DoCM DB FDA GtPI CKB MCG **MCGCT**

Variant information in gene BRAF: c.1799T>A / p.Val600Glu missense variant (S) (P) (C)

ClinVar

IPR000719: Protein kinase domain

Sensitivity

0.9400

0.8091

PANDRUGS

Therapy and alterations

Below you have the variant(s) found in your VCF for that gene 4.

VEMURAFENIB is a drug approved by FDA that acts as an inhibitor of BRAF

Interaction: 6 - 0

Alteration(s): "mutation (V600E, V600D, V600K, V600M, V600G, V600R)" (according to CancerGenomeInterpreter), "mutation (V600E)" (according to FDA), "mutation" (according to TARGET-CGA, ClearityFoundationBiomarkers), "mutation (D594G, G464V, G466V, G496A, G606E, K601E, L597Q, L597R, N486_P490del, N581S, P731T, V600D, V600K); gene fusion (CUX1-BRAF, MACF1-BRAF, WASFL-BRAF); rearrange (intron 9, intron 10)" (according to CIViC), "mutation (V600E, V600K)" (according to DoCM), "mutation (activating, K601E + S363F, L597R, L597S, V600D, V600E, V600K, V600M, V600R, V600X)" (according to JAX-ClinicalKnowledgebase) and "mutation (V600E, codon 600 missense, V600K)" (according to MyCancerGenome)
Find more info for VEMURAFENIB and BRAF in: [PubMed] [ClinicalTrials.gov]

Sensitivity

RAF inhibitor(Cma p) and Serine/thre onine kinases(KEG G) CIV CC

0.9400

0.8091

DoCM DB
FDA GtPI
CKB MCG
MCGCT
OKB

PGKB

CGA TCT

Variant information in gene BRAF: c.1799T>A / p.Val600Glu missense variant S P C ClinVar IPR000719: Protein kinase domain

4

PANDRUGS

Therapy and alterations

In this case, our BRAF variant (p.Val600Glu or V600E) is associated with sensitivity to VEMURAFENIB according to CancerGenomeInterpreter, FDA, DoCM, JAX-ClinicalKnowledgebase and MyCancerGenome.

VEMURAFENIB is a drug approved by FDA that acts as an inhibitor of BRAF

Interaction: (G) - D

Alteration(s): "mutation (V600E, V600D, V600K, V600M, V600G, V600R)" (according to CancerGenomeInterpreter), "mutation (V600E)" (according to FDA), "mutation" (according to TARGET-CGA, ClearityFoundationBiomarkers), "mutation (D594G, G464V, G466V, G496A, G606E, K601E, L597Q, L597R, N486_P490del, N581S, P731T, V600D, V600K); gene fusion (CUX1-BRAF, MACF1-BRAF, WASFL-BRAF); rearrange (intron 9, intron 10)" (according to CIViC), "mutation (V600E, V600K)" (according to DoCM), "mutation (activating, K601E + S363F, L597R, L597S, V600D, V600E, V600K, V600M, V600R, V600X)" (according to JAX-ClinicalKnowledgebase) and "mutation (V600E, codon 600 missense, V600K)" (according to MyCancerGenome) Find more info for VEMURAFENIB and BRAF in: [PubMed] [ClinicalTrials.gov]

Sensitivity

RAF inhibitor(Cma p) and Serine/thre onine kinases(KEG

0.9400

0.8091

MCGCT

Input 4: VCF

PANDRUGS

Steps

- 1. Query PanDrugs using the Genomic Variant section
- 2. Load the VCF without annotations from the exercise of the CHP patient
- 3. Query the database with this file

Input 4: VCF

Data: https://drive.google.com/file/d/1BknV7nyQDrUJ6LgAxh4ln8qVriUNI8-F/view?usp=sharing

Questions

PANDRUGS

Input 4: VCF

- Which are the suggested therapies?
- Is there any drug suggested by a gene that is discarded by another?
- Is there any drug approved for the same cancer type? Is there any drug in cancer clinical trials for this cancer type?
- Could a drug repositioning approach be used?

PANDRUGS

Input 4: VCF

- Which are the suggested therapies? The BTC marked with a star
- Drug suggested and discarded by different genes: e.g.
 Regorafenib ("Both") or Trametinib ("!")
- Approved drug for the same cancer type: Regorafenib is approved for colon. In clinical trials: Not specified
- Drug repositioning: Trametinib (skin cancer) could be used because the patient has a variant in *PIK3CA* (p.His1047Arg) associated to sensitivity to this drug. Also, they don't show any of the variants in *MAP2K1* associated with resistance to Trametinib.

Thanks!

