

Informatique 3: UML

Dr. Ing. NOUBISSI Justin-Hervé

10/01/2022

Uniform Modeling Language (UML)

- Langage de modélisation et de spécification orienté objet
- Notations sous forme graphique
- 14 diagrammes identifiés (UML 2.3)

Les sous-ensembles

- Les vues : organisationnel, dynamique, temporel, architectural, etc.
- Les diagrammes : description graphique du contenu des vues (notions abstraites).
- Les modèles d'élément : briques de base d'UML utilisées dans plusieurs types de diagramme.

Uniform Modeling Language (UML)

9 diagrammes principaux

- Le **Diagramme de classe** : les classes et leurs relations.
- Le **Diagramme d'états** : comportement d'une classe en terme d'états.
- Diagramme d'activité : comportement d'une opération en terme d'actions.
- Le **Diagramme de séquence** : représentation temporelle des objets et de leurs interactions.
- Le **Diagramme des cas d'utilisation** : fonctions du système du point de vue de l'utilisateur.

Uniform Modeling Language (UML)

- 9 diagrammes principaux (suite)
- Le **Diagramme objet**: les objets et leurs relations.
- Le **Diagramme de composant**: composant physique de l'application.
- Le **Diagramme de déploiement**: déploiement des composants sur des dispositifs matériels.
- Le **Diagramme de collaboration**: représentation spatiale des objets, des liens et des interactions.

1. Diagramme de classe

```
Fenetre
-longueur: int
-largeur: int
-position: int[2]
+getTaille(): Rectangle
+setTaille(longueur:int,largeur:int)
+getComposants(): Composants [0..*]
#paint(): void
-formaterTitre(): void
```

Relations

Dépendance : La classe A utilise brièvement la classe B

Association: La classe A est en relation avec la classe B pour un certain temps

Agrégation : La classe A appartient à la classe B

Composition: La classe A fait partie de la classe B

Généralisation (ou Héritage) : La classe A est une classe B

2. Diagramme Objet

Permet d'obtenir une structure statique du système

Utile pour préciser la structure des classes

nom de l'objet

nom de l'objet : classe

3. Diagramme de collaboration

Décrit les interactions entre objets

Extension du diagramme d'objets en insistant sur leurs interactions et en explicitant l'odre d'envoi des messages

4. Diagramme de de cas d'utilisation

Un cas d'utilisation

Représente un élément fonctionnel identifié dans un système

Exemple: Visualisation d'un rapport de travail

Un acteur

« déclenche » un cas d'utilisation

Peut être un humain ou un système externe au cas d'utilisation

Exemple: une horloge système qui déclenche un cas d'utilisation à un instant donné

4. Diagramme de de cas d'utilisation (suite)

4. Diagramme de de cas d'utilisation (suite) Liens entre cas d'utilisation

4. Diagramme de de cas d'utilisation (suite) Liens entre cas d'utilisation

4. Diagramme de de cas d'utilisation (suite)

Liens entre cas d'utilisation

4. Diagramme de de cas d'utilisation (suite)

Acteur principal et acteur secondaire

Un acteur principal produit un résultat observable

Un acteur secondaire est sollicité par le système pour des informations secondaires

4. Diagramme de de cas d'utilisation (suite)

Une fois les cas identifiés, il faut les décrires :

- Description textuelle de toutes les interactions entre les acteurs.
- Début et fin clairement identifiés.
- Variantes possibles :
 - cas nominaux;
 - alternatives;
 - cas d'erreur...
- Spécification des préconditions, enchaînements :
 - besoins interfaces homme-machine;
 - contraintes non fonctionnelles (fréquence, disponibilité, fiabilité, performance)...

4. Diagramme de de cas d'utilisation (suite) Démarche

5. Diagramme de séquence

Objectif

Illustrer les données échangées entre utilisateurs et composants dans un exemple particulier d'utilisation du système.

Corollaire

- Un diagramme de séquence est un scénario.
- Ce n'est pas une description exhaustive du comportement du système.

Conséquences

- Toujours donner un titre à diagramme de séquence.
- Toujours rattacher un diagramme de séquence à un cas d'utilisation.

5. Diagramme de séquence (suite)

Composants d'un diagramme de séquence:

- un axe vertical non gradué (implicite), le temps ;
- des objets et utilisateurs, un par axe
- des messages (flèches entre objets/utilisateurs);
- des étiquettes

Un axe est composé de:

- Un début: quoi, existence
- Une fin: une croix si l'objet meurt.
- Un tracé: épais si actif, pointillé si inactif

5. Diagramme de séquence (suite)

Exemple

Merci pour votre attention