高中基础

1 高中基础

1.1 根式有理化

若分母(或分子)是两个无理数相加(或相减),则把分子和分母同乘这两个无理数的和(或差),分母(或分子)就变成了有理数例:

$$\sqrt{x^2 + 1} - x = \frac{\sqrt{x^2 + 1} - x}{1}$$

$$= \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}$$

$$= \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x} = \frac{1}{\sqrt{x^2 + 1} + x}$$

1.2 立方差公式

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
 Fig.

$$\frac{1}{1-x} - \frac{3}{1-x^3} \\
= \frac{1+x+x^2}{(1-x)(1+x+x^2)} - \frac{3}{1-x^3} \\
= \frac{1+x+x^2-3}{1-x^3} \\
= \frac{x+x^2-2}{1-x^3}$$

1.3 因式分解

1.
$$x^2 + (a+b)x + ab = (x+a)(x+b)$$

$$x^2 - x - 2$$

$$= x^2 + (2 - 1)x + (2 \times (-1)) = (x + 2)(x - 1)$$

1.4 不等式

- $||a| |b|| \le |a b|$
- $|a \pm b| \le |a| + |b|$

1.5 对数函数

- 1. $log_a(M \times N) = log_aM + log_aN$
- $2 \cdot \log_a \frac{M}{N} = \log_a M \log_a N$
- $3 \cdot log_a M^N = Nlog_a M$
- $4 \cdot log_{a^N} M = \frac{1}{N} log_a M$
- 5, ln1 = 0
- 6. lne = 1
- 7, $M^N = e^{ln(M^N)} = e^{NlnM}$

1.6 三角函数

1、倍角公式: $sin2\alpha = 2sin\alpha cos\alpha$

2 函数

2.1 取整函数

y = [x] 向左取整: $x - 1 < [x] \le x$

一般搭配夹逼准则

2.2 分段函数

例题

设
$$f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| = 1 \ g(x) = e^x, \\ -1, & |x| > 1 \end{cases}$$
 求 $f[g(x)]$ 和 $g[f(x)]$

解

所有的 x 都换成 g(x):

$$f[g(x)] = \begin{cases} 1, & |e^x| < 1 \ \mathbb{I} x < 0 \\ 0, & |e^x| = 1 \ \mathbb{I} x = 0 \\ -1, & |e^x| > 1 \ \mathbb{I} x > 0 \end{cases}$$

所有的 x 都换成 f(x):

$$g[f(x)] = e^{f(x)} = \begin{cases} e, & |x| < 1 \\ 1, & |x| = 1 \\ e^{-1}, & |x| > 1 \end{cases}$$

2.3 奇偶性

若 $\forall x \in D$,有 f(-x) = -f(x),则 f(x) 为奇函数 若 $\forall x \in D$,有 f(-x) = f(x),则 f(x) 为偶函数

2.4 单调性

若 $\forall x_1, x_2 \in D$ 且 $x_1 < x_2$,有 $f(x_1) < f(x_2)$,则 f(x) 在 D 上单调递增

函数

若 $\forall x_1, x_2 \in D$ 且 $x_1 < x_2$,有 $f(x_1) > f(x_2)$,则 f(x) 在 D 上单调 递减

2.5 有界性

若 $\exists M > 0$,对 $\forall x \in D$,有 $|f(x)| \leq M$,则 f(x) 有界 若 $\forall x \in D$,有 $f(x) \geq M_1$,则 f(x) 有下界 若 $\forall x \in D$,有 $f(x) \leq M_2$,则 f(x) 有上界

例题

 $y = x \cos x$ 在 $(-\infty + \infty)$ 是否有界? 是否为 $x \to +\infty$ 的无穷大?

解

取 $x = 2k\pi \in (-\infty + \infty)$ 时, $y = 2k\pi$ 大于任意的常数 M,所以函数无界

取 $x = \frac{\pi}{2} + 2k\pi \in (x + \infty)$ 时, y = 0, 所以不是无穷大

2.6 周期性

若 $\exists T>0$, 对 $\forall x\in D$ 且 $x+T\in D$, 有 f(x+T)=f(x), 则 f(x) 有周期 T

3 极限

3.1 要分左右极限的情况

- 1、分段函数的分段点处
- 2、e 的无穷大型,如 $\lim_{x\to 1} e^{\frac{1}{x-1}}$
- 3、 $arctan\infty$ 型,如 $arctan \frac{1}{x-1}$

例题

设
$$f(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \end{cases}$$
, $x + 1, & x > 0$

证明当 $x \to 0$ 时, f(x) 的极限不存在

解

$$\lim_{\substack{x \to 0^{-} \\ \lim_{x \to 0^{+}} f(x) = x + 1 = 1}} f(x) = x - 1 = -1$$

由于左右极限不相等, 所以极限不存在

3.2 极限的四则运算

设 $\lim f(x) = A \lim g(x) = B$,则:

- $1, \lim[f(x) \pm g(x)] = A \pm B$
- $2, \lim[f(x)g(x)] = AB$
- 3. $\lim \frac{f(x)}{g(x)} = \frac{A}{B} (B \neq 0)$

若 $\lim f(x)$ 存在 $\lim g(x)$ 不存在,则 $\lim [f(x) \pm g(x)]$ 不存在,其他情况都没有结论

3.3 多项式除多项式求极限

$$\lim_{x \to \infty} \frac{a_0 x^m + \dots + a_m x^0}{b_0 x^n + \dots + b_n x^0} = \begin{cases} \frac{a_0}{b_0}, & m = n \\ 0, & m < n \\ \infty, & m > n \end{cases}$$

例:

$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 + 2}{7x^3 + 5x^2 - 3} = \frac{3}{7}$$

3.4 复合函数求极限

如果 f(x) 连续,且 g(x) 有极限 A,则:

$$\lim_{x\to x_0}f[g(x)]=f[\lim_{x\to x_0}g(x)]=f(A)$$

例题

求极限
$$\lim_{x\to 3} \sqrt{\frac{x-3}{x^2+9}}$$

解

$$\lim_{x\to 3}\sqrt{rac{x-3}{x^2+9}}$$
 $f=\sqrt{u}$ 是连续函数,且 $u=rac{x-3}{x^2+9}$ 有极限,则

$$= \sqrt{\lim_{x \to 3} \frac{x-3}{x^2+9}}$$
$$= \sqrt{\frac{1}{6}}$$

3.5 幂指函数求极限

若 $\lim f(x) = A > 0$ 且 $\lim g(x) = B$,则: $\lim f(x)^{g(x)} = A^B$

3.6 夹逼准则

函数 A > B > C,函数 A 的极限是 X,函数 C 的极限也是 X,那 么函数 B 的极限就一定是 X

例题

求极限
$$\lim_{x\to 0^+} x[\frac{1}{x}]$$

解

使用取整函数的性质 $x-1 < [x] \le x$ $\Rightarrow \frac{1}{x} - 1 < [\frac{1}{x}] \le \frac{1}{x}$ 由于 $x \to 0^+$,知 x > 0 $\Rightarrow 1 - x < x[\frac{1}{x}] \le 1$ 由于 $\lim_{x \to 0^+} (1 - x) = 1$,且 $\lim_{x \to 0^+} 1 = 1$ 由夹逼准则可得 $\lim_{x \to 0^+} x[\frac{1}{x}] = 1$

3.7 单调有界准则

单调递增且有上界,则有极限,单调递减且有下界,则有极限

例题

证明数列 $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}}$ 有极限, 并求极限

解

设
$$x_{n+1}=\sqrt{2+x_n}$$
, $x_1=\sqrt{2}$ 由 $x_1<\sqrt{2}<2$,设 $x_k<2$,则 $x_{k+1}=\sqrt{2+x_k}<\sqrt{2+2}=2$ 可知 $x_n<2$,即数列有上界 2 判断单调性:

$$x_{n+1} - x_n$$
 $= \sqrt{2 + x_n} - x_n$
根式有理化
 $= \frac{x_n + 2 - x_n^2}{\sqrt{x_n + 2} + x_n}$
 $= \frac{(2 - x_n)(1 + x_n)}{\sqrt{x_n + 2} + x_n}$

由于 $1+x_n, \sqrt{x_n+2}, x_n$ 都大于 0,此时整个式子的正负由 $2-x_n$ 决定

由于 x_n 的上界为 2,则 $2-x_n>0$

$$x_{n+1} - x_n > 0 \ \mathbb{P} \ x_{n+1} > x_n$$

则数列单调递增

由单调有界准则知,数列有极限

无穷小

令
$$\lim_{x \to \infty} x_n = A$$

在 $x_{n+1} = \sqrt{2 + x_n}$ 两端取极限 $\lim_{x \to \infty} x_{n+1} = \lim_{x \to \infty} \sqrt{2 + x_n}$ $\lim_{x \to \infty} x_{n+1} = \sqrt{2 + A}$ $\lim_{x \to \infty} x_{n+1}$ 可以看作是 x_n 的子列 子列与数列极限相同,则 $\lim_{x \to \infty} x_{n+1} = A$ 即 $A = \sqrt{2 + A}$ $A = 2$ 或 $A = -1$ 由于数列大于 0 ,则 $A = 2$

3.8 重要极限

1.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$
$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

1、推广 $\lim_{A\to 0} \frac{\sin A}{A} = 1$,其中 A 为任意的表达式

$$2, \lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$
$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

2、推广: $\lim(1+A)^B = e$, 其中 A 和 B 为任意的表达式,且 $A \to 0$, $B \to \infty$

4 无穷小

无穷小:极限为0的函数,(0也是无穷小)

有界函数 × 无穷小仍是无穷小

设 α 和 β 是无穷小,且 $\alpha \neq 0$,若 $\lim \frac{\beta}{\alpha} = 0$,则 β 是比 α 的高阶无穷小,记为: $\beta = o(\alpha)$

$$o(x^{2}) \pm o(x^{2}) = o(x^{2})$$

$$o(x^{2}) \pm o(x^{3}) = o(x^{2})$$

$$x^{2}o(x^{3}) = o(x^{5})$$

$$o(x^{2})o(x^{3}) = o(x^{5})$$

$$o(2x^{2}) = o(x^{2})$$

例题

求极限 $\lim_{x\to\infty} \frac{\sin x}{x}$

解

$$\lim_{x \to \infty} \frac{\sin x}{x}$$

$$= \lim_{x \to \infty} \sin x \frac{1}{x}$$
有界函数 × 无穷小 = 无穷小

4.1 常用的等价

若 $\lim \frac{\beta}{\alpha} = 1$,则 β 与 α 是等价无穷小,记为: $\beta \sim \alpha$

$$\beta \sim \alpha \Leftrightarrow \beta = \alpha + o(\alpha)$$

x 的高次方 $\pm x$ 的低次方 $\sim x$ 的低次方 例: $x^3 + 3x \sim 3x$

若 $\alpha \sim \alpha_1$ 且 $\beta \sim \beta_1$,则 $\lim \frac{\beta}{\alpha} = \lim \frac{\beta_1}{\alpha_1}$

当 $x \to 0$ 时, $\sin x \sim x$

当 $x \to 0$ 时, $\arcsin x \sim x$

当 $x \to 0$ 时, $\arctan x \sim x$

当 $x \to 0$ 时, $ln(1+x) \sim x$

 $\stackrel{\text{up}}{=} x \rightarrow 0$ 时, $e^x - 1 \sim x$

当 $x \to 0$ 时, $1 - \cos x \sim \frac{1}{2}x^2$

当 $x \to 0$ 时, $\sec x - 1 \sim \frac{1}{2}x^2$

 $\stackrel{\text{"}}{=} x \to 0$ 时, $(1 + \alpha x)^{\beta} - 1 \sim \alpha \beta x$

 $\stackrel{\text{up}}{=} x \rightarrow 0$ 时, $\alpha^x - 1 \sim x ln \alpha$

5 连续

若 f(x) 在 x_0 处连续,则 $\lim_{x\to x_0} f(x) = f(x_0)$

连续 ±×÷连续 = 连续

连续 \pm 不连续=不连续 若 f(x) 连续 g(x) 也连续,则 f[g(x)] 连续

单调连续函数的反函数也连续,且单调性相同

初等函数在其定义域内都连续

闭区间内连续函数必有界

推广: f(x) 在 $(a\ b)$ 内连续,且 $\lim_{x\to a^+} f(x)$ 和 $\lim_{x\to b^-} f(x)$ 都存在,则 f(x) 在 $(a\ b)$ 内有界

例题

求极限
$$\lim_{x\to 2} \frac{x^3-1}{x^2-5x+3}$$

解

函数连续,则函数值与极限相等,直接代入极限 23-1 7

$$\lim_{x \to 2} \frac{x^3 - 1}{x^2 - 5x + \sqrt{3}} = \frac{2^3 - 1}{2^2 - 5 \times 2 + 3} = \frac{7}{-3}$$

5.1 零点定理

f(x) 在 $(a\ b)$ 内连续,且 $\lim_{x\to a^+} f(x)$ 和 $\lim_{x\to b^-} f(x)$ 异号,则 $\exists \xi\in (a\ b)$,使得 $f(\xi)=0$

5.2 间断点

第一类间断点

1、可去间断点:左右极限均存在且相等

2、跳跃间断点:左右极限均存在且不相等

第二类间断点

左右极限至少一个不存在

1、无穷间断点: $x \to x_0^-$ 或 $x \to x_0^+$ 时, $f(x) \to \infty$

2、振荡间断点: $x \to x_0^-$ 或 $x \to x_0^+$ 时,f(x) 上下振荡

6 常用极限

例:
$$\lim_{x \to 0^-} e^{\frac{1}{x}} = 0$$

$$2$$
、 当 $a > 1$ 时, $\lim_{x \to +\infty} a^x = +\infty$

例:
$$\lim_{x \to 0^+} e^{\frac{1}{x}} = +\infty$$

$$3 \cdot \lim_{x \to \infty} \frac{\text{对数函数}}{\text{指数函数}} = 0$$

例:
$$\lim_{x \to \infty} \frac{\ln x}{x^a} = 0$$

7 各种类型的极限

0 比 0 型

求极限
$$\lim_{x\to 3} \frac{x-3}{x^2-9}$$

解

代入极限发现这是 $\frac{0}{0}$ 型的极限 则需要先消去0因子,再代入极限

$$\lim_{x \to 3} \frac{x-3}{x^2-9} = \lim_{x \to 3} \frac{x-3}{(x+3)(x-3)} = \lim_{x \to 3} \frac{1}{x+3} = \frac{1}{3+3} = \frac{1}{6}$$

无穷比无穷型

求极限
$$\lim_{x\to\infty} \frac{3x^3+4x^2+2}{7x^3+5x^2-3}$$

解

代入极限发现这是 ≈ 型的极限

则需要先消去 ∞ 因子,再代入极限

$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 + 2}{7x^3 + 5x^2 - 3}$$

$$分子分母同除以最高次方$$

$$= \lim_{x \to \infty} \frac{3 + \frac{4}{x} + \frac{2}{x^3}}{7 + \frac{5}{x} - \frac{3}{x^3}}$$

代入极限

$$=\frac{3+0+0}{7+0-0}=\frac{3}{7}$$

由此可推出多项式除多项式求极限的公式

各种类型的极限 15

0 乘无穷型

求极限
$$\lim_{x \to \infty} x(\sqrt{x^2 + 1} - x)$$

解

代入极限发现这是 $0\cdot\infty$ 型的极限 则需要先化成 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型的极限,再继续求 $\lim_{x\to\infty}x(\sqrt{x^2+1}-x)$ 根式有理化

$$=\lim_{x\to\infty}\frac{x}{\sqrt{x^2+1}+x}$$
此时已变成 $\frac{\infty}{\infty}$ 型的极限

在 $x \to \infty$ 时, $x^2 + 1$ 中的常数 1 对整体 $x^2 + 1$ 的影响微乎其微,所以常数 1 可以忽略

$$= \lim_{x \to \infty} \frac{x}{\sqrt{x^2} + x} = \lim_{x \to \infty} \frac{x}{x + x} = \frac{1}{2}$$

无穷减无穷型

求极限
$$\lim_{x\to 1} (\frac{1}{1-x} - \frac{3}{1-x^3})$$

解

代入极限发现这是 $\infty - \infty$ 型的极限则需要先化成 $\frac{0}{0}$ 或 $\frac{\infty}{0}$ 型的极限,再继续求 $\lim_{x \to 1} (\frac{1}{1-x} - \frac{3}{1-x^3})$ 使用立方差公式化简 $\lim_{x \to 1} \frac{x+x^2-2}{1-x^3}$

此时已变成 $\frac{0}{0}$ 型的极限

因式分解

$$= \lim_{x \to 1} \frac{(x+2)(x-1)}{(1-x)(1+x+x^2)}$$

$$= -\frac{1+2}{1+1+1} = -1$$

1 的无穷次方型

求极限
$$\lim_{x\to 0} (1+2x)^{\frac{3}{sinx}}$$

解

代入极限发现这是 1^{∞} 型的极限则需要凑重要极限 2,即 $(1+x)^{\frac{1}{x}}$ $\lim_{x\to 0} (1+2x)^{\frac{3}{sinx}}$ $=\lim_{x\to 0} (1+2x)^{\frac{1}{2x}\frac{6x}{sinx}}$ 幂指函数求极限 $=\lim_{x\to 0} (1+2x)^{\frac{1}{2x}\lim_{x\to 0}\frac{6x}{sinx}}$ $=e^6$

0 的 0 次方型

求极限
$$\lim_{x\to 0^+} x^{sinx}$$

解

代入极限发现这是 0^0 型的极限则需要变形成 e^{ln} 的形式

 $= \lim_{x \to 0^+} e^{sinx \cdot lnx}$ 此时变成了 $0.\infty$ 型的极限 所以继续化成 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型的极限

将乘法变成除法:
$$=e^{\lim_{x\to 0^+}\frac{\ln x}{\frac{1}{\sin x}}}$$
$$=e^{x\to 0^+}\frac{e^{\ln x}}{e^{\cos x}}$$

用洛必达法则

$$\lim_{\substack{\lim \\ = e^{x \to 0^{+}} \\ - \lim_{\substack{x \to 0^{+} \\ x}} } \frac{\frac{1}{x}}{-cscxcotx}}$$

$$= e^{x \to 0^{+}}$$

$$= e^{x \to 0^{+}}$$

$$= e^{x \to 0^{+}}$$

$$= e^{0} = 1$$