Integração numérica de equações diferenciais

Marcos Benício de A. Alonso

A partir de casos particulares usaremos os métodos de Euler e Runge-Kutta para resolver equações diferenciais por integração. O objetivo é comparar ambos métodos a partir do erro gerado para saber o mais preciso.

I. DERIVAÇÃO NUMÉRICA

Consideremos a seguinte função

$$f(x) = \frac{\sin(x^2)e^{x/3}}{\sqrt{x^2 + 4}}. (1)$$

Queremos encontrar o valor da derivada (i.e, a inclinação da reta tangente) em x=3 a partir do método de Euler. O método de Euler se resume a escrever a equação diferencial na forma de uma reta secante, que ao fazer $\delta x \to 0$ se torna uma reta tangente nesse ponto com certa inclinação (derivada) em x. Portanto, escrevemos o método de Euler para uma função qualquer f(x):

$$\frac{df(x)}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{2}$$

aplicando o método para derivar a função (1):

$$\frac{df_{aprox}(x)}{dx} \mid_{x=3} \approx \frac{\frac{\sin(x^2)e^{x/3}}{\sqrt{x^2+4}} - \frac{\sin((x+\Delta x)^2)e^{(x+\Delta x)/3}}{\sqrt{(x+\Delta x)^2+4}}}{\Delta x}.$$
 (3)

O valor exato dessa derivada é:

$$\frac{df(x)}{dx}\mid_{x=3} = -4.08962569474024825348626 \tag{4}$$

Quanto menor Δx melhor é a aproximação. Usarei $\Delta x = 10^{-i}$; com i de 0 a 8. Os valores obtidos estão na tabela a seguir, sendo o erro relativo percentual dado pela seguinte equação:

$$Erro(\%) = \frac{100 \times |f'_{aprox}(x) - f'(x)|}{f'(x)},$$
(5)

onde $f'_{aprox}(x) = \frac{df_{aprox}(x)}{dx}$ e $f'(x) = \frac{df(x)}{dx}$.

Δx	$\left \frac{df_{aprox}(x)}{dx} \right _{x=3}$	Erro relativa percentual(%)
10^{-8}	-4.08962572	± 0.00000079
10^{-7}	-4.089626	± 0.000016
10^{-6}	-4.08963	± 0.00016
10^{-5}	-4.08969	± 0.0016
10^{-4}	-4.090	± 0.016
10^{-3}	-4.096	± 0.16
10^{-2}	-4.15	±1.58
10^{-1}	-4.50	± 10.28
10^{-0}	-0.55	± 86.43

TABLE I. tabela com os dados obtidos a partir do método de Euler

A partir desses valores temos o seguinte gráfico em escala log por log, de Δx pelos respectivos erros relativos $(\frac{Erro(\%)}{100})$.

FIG. 1. Gráfico na escala log por log para Δx em função dos respectivas erros relativos

Isso mostra que o erro cresce exponencialmente conforme diminuímos Δx . Ao analisar o gráfico e a tabela, vemos valores razoáveis para $\frac{\mathrm{d}f(x)}{\mathrm{d}x}\mid_{x=3}$ no intervalo $10^{-8} \leq \Delta x \leq 10^{-3}$, tendo um erro máximo de 0.16% do valor exato para $\Delta x = 10^{-3}$.

II. INTEGRAÇÃO NUMÉRICA

A. Método de Euler

Na seção anterior encontramos o valor da derivada de uma função num ponto, agora temos interesse em encontrar a função que satisfaz uma equação diferencial. Para isso usaremos dois métodos de integração, de Euler e de Runge-Kutta.

Vamos considerar a seguinte equação diferencial:

$$\frac{dy}{dt} = -\frac{e^{\frac{t}{2}}\sin(5t) + 5e^{\frac{t}{2}}\cos(5t)}{2} + y,\tag{6}$$

cuja condição de contorno é y(0) = 1.

Analiticamente, a solução dessa EDO é:

$$y(t) = e^t + e^{\frac{t}{2}} \operatorname{sen}(5t). \tag{7}$$

A partir da equação diferencial combinada a equação (1), recaímos num mapa logístico que podemos resolver por iteração.

$$y(t + \Delta t) = e^{\frac{t}{2}} \left(-\frac{1}{2} sin(5t) + 5cos(5t) \right) \Delta t + y(t)(\Delta t + 1)$$

$$\tag{8}$$

Comparando os valores analíticos e numéricos, temos a seguinte tabela, com os respectivos erros relativos percentuais para os pontos t = 1, 2, 3, 4, 5. Observe como esse erro se torna pequeno a medida que diminuímos Δt

t	Valor analítico	$\Delta t = 0.1$	$\Delta t = 0.05$	$\Delta t = 0.01$	$\Delta t = 0.005$	$\Delta t = 0.001$
1	1.137	$1.622 \pm 42.627\%$	$1.388 \pm 22.061\%$	$1.189 \pm 4.548\%$	$1.163 \pm 2.283\%$	$1.142 \pm 0.458\%$
2	5.910	$7.380 \pm 24.871\%$	$6.698 \pm 13.307\%$	$6.077 \pm 2.820\%$	$5.994 \pm 1.421\%$	$5.927 \pm 0.286\%$
3	22.999	$24.751 \pm 7.615\%$	$24.026 \pm 4.461\%$	$23.233 \pm 1.015\%$	$23.118 \pm 0.516\%$	$23.023 \pm 0.104\%$
4	61.343	$60.820 \pm 0.853\%$	$61.410 \pm 0.107\%$	$61.422 \pm 0.127\%$	$61.388 \pm 0.0712\%$	$61.353 \pm 0.015\%$
5	146.801	$139.345 \pm 5.078\%$	$143.741 \pm 2.084\%$	$146.333 \pm 0.318\%$	$146.577 \pm 0.152\%$	$146.758 \pm 0.029\%$

TABLE II. Comparação dos valores analíticos e numéricos para os pontos t=1,2,3,4,5

Em seguida plotei o gráfico dos pontos gerados pelo mapa iterativo com $\Delta t = 0.05$ junto a função (7).

B. Método de Runge-Kutta

Resolveremos a mesma equação diferencial faremos agora utilizando o método de Runge-Kutta

$$\frac{dy}{dt} = -\frac{e^{\frac{t}{2}}\sin(5t) + 5e^{\frac{t}{2}}\cos(5t)}{2} + y. \tag{9}$$

Vamos comparar brevemente os resultados de $2^{\underline{a}}$ ordem e de $4^{\underline{a}}$ ordem do método de Runge-Kutta entre si e com o método de Euler, usando para isso $\Delta t = 0.05$ fixo.

sabendo que $\frac{dy}{dt}=f(t,y)$ e comparando com a equação 6, podemos aplicar diretamente o método de Ruge-Kutta de $2^{\underline{a}}$ ordem:

$$k_1 = \Delta t f(t_n, y_n)$$

$$k_2 = \Delta t f\left(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_1\right)$$

$$y_{n+1} = y_n + k_1$$

$$(10)$$

FIG. 2. Comparação entre a solução analítica y(t) e a solução numérica para o método de Euler com $\Delta t = 0.05$

ou o de $4^{\underline{\mathbf{a}}}$ ordem que é

$$k_{1} = \Delta t f(t_{n}, y_{n})$$

$$k_{2} = \Delta t f\left(t_{n} + \frac{1}{2}\Delta t, y_{n} + \frac{1}{2}k_{1}\right)$$

$$k_{3} = \Delta t f\left(t_{n} + \frac{1}{2}, y_{n} + \frac{1}{2}k_{2}\right)$$

$$k_{4} = \Delta t f(t_{n} + \Delta t, y_{n} + k_{3})$$

$$y_{n+1} = y_{n} + \frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}.$$
(11)

dessa forma será possível obter os seguintes gráficos a partir de simulações númericas.

FIG. 3. Comparação entre a solução analítica y(t) e a solução numérica para o metodo de Runge-Kutta de $2^{\underline{a}}$ ordem com $\Delta t=0.05$

FIG. 4. Comparação entre a solução analítica y(t) e a solução numérica para o metodo de Runge-Kutta de $4^{\rm a}$ ordem com $\Delta t=0.05$

A aproximação numérica através do uso do método de Runge-Kutta quando comparado ao método de Euler é muito mais precisa, inclusive visualmente nos gráficos. Ao analisar o gráfico 2, imediatamente notamos que muitos pontos estão com um afastamento muito grande do valor analítico, diferentemente do que acontece nos gráficos 3 e 4. Nestes gráficos os valores numéricos estão bem próximos da curva analítica, em que é quase imperceptível algum afastamente.

Ao comparar o método de Runge-Kutta de $2^{\underline{a}}$ ordem ao de $4^{\underline{a}}$ ordem, pode-se ver o quanto melhor o de $4^{\underline{a}}$ ordem consegue se aproximar do valor analítico. Para facilitar este tipo de observação, dei um zoom em ambos os gráficos. Com isso,a partir das barras de erro podemos extrair a conclusão já esperada, de que o método de Runge-Kutte de $4^{\underline{a}}$ ordem tem uma aproximação superior ao de $2^{\underline{a}}$ ordem e que por conseguinte é superior ao método de Euler.