实验报告

(实验六 数字通信中的帧检测及频偏校正)

班级: 通信2班

姓名: 杨承翰

学号: 210210226

课程名称: 通信原理实验

指导教师: 高林

日期: 12.18

实验六 数字通信中的帧检测及频偏校正

一、 实验目的

理解帧同步和频偏校正的原理和实现方法。

二、实验预习

了解帧同步和频偏校正的基本原理,以及基于训练序列相关性的帧同步算法和基于 Moose 算法的频偏校正算法。

三、实验内容

本实验包含发送端和接收端两个主程序。发送端主程序的前面板如实验指导书中图 6.1 所示,首先是 USRP 的基本参数设置,包括 IP 地址、载波频率、采样率等;接下来是信道设置,包括信道模型和噪声能量等;然后是调制设置,包括调制类型和脉冲成形的相关参数;最后是调制后的星座图、眼图和 IQ 波形。接收端主程序的前面板如实验指导书中图 6.2 所示,开始的设置与发送端基本相同,在解调显示部分是接收解调后的文本以及它的星座图、眼图、 IQ 波形和误码率曲线。可以通过这些来判断程序是否正确。

在本次实验中,需要完成 Exercises Sliding Correlator.vi 帧同步子程序和 Exercises Moose.vi 频偏校正子程序,并打开发送和接收主程序,查看实验效果。 完成实验后,需要提交上述子程序,并完成实验报告。

四、 实验任务

3.1 完成 Exercises Sliding Correlator.vi 的完整设计图

3.2 完成 Exercises Moose.vi 的完整设计图

3.3 配置 USRP 参数,运行主程序,记录并分析结果。

结果分析:通过观察实验结果星座图和误码率及解调文本信息,可以看出能够很好地完成帧同步和频偏校正,输出正确的结果,将误码率控制在 0.15 以下。这说明基于训练序列相关性的帧同步算法和基于 Moose 算法的频偏校正算法能够很好实现。

五、 扩展问题

1、(帧同步)使用 AWGN 信道,设置信道的噪声功率为 5dB,当关闭信道延时估测超过 1 个码元时间($d \neq d$)时,系统的误码率会发生怎样的变化?

在 AWGN 信道下,当关闭信道延时估测时,系统的误码率会随着码元同步偏差 d与实际码元同步位置 d 之间的差距增大而增大。这是因为,关闭信道延时估测后,接收端无法准确地识别码元的起始位置,从而导致符号错位和干扰等现象,进而影响系统正确解码的能力。

具体来说,由于设置信道的噪声功率为 5dB,即存在较高的噪声干扰,当关闭信道延时估测后,码元同步偏差 d与实际码元同步位置 d 之间的差距增大,会导致接收端对码元的判决出现错误。这样就会使误码率随着码元同步偏差的增加而增加,即误码率将随着 d与 d 之间的差距的增加而增大。

因此,在 AWGN 信道下,关闭信道延时估测可能会导致系统误码率的增加,需要采取合适的码元同步技术来确保码元同步精度,从而降低误码率。

2、(频偏校正)描述采样误差和过采样因子 N 之间的关系,并从发送端程序前面板的信号星座图观察这一关系。

采样误差是指数字化信号在采样过程中产生的误差,即采样点与原始模拟信号之间的差异。采样误差的大小与采样率有关,而过采样因子 N 是指采样率与信号带宽之比。

在理论上,过采样可以提高信号重建的精度和准确性,从而降低采样误差。 过采样可以通过增加采样点的数量,在更短的时间内对信号进行更多次的采样, 从而更准确地获取信号的细节信息。

观察发送端程序前面板的信号星座图可以得到以下观察结果:

- 1. 低过采样因子: 当过采样因子较低时, 星座图中的点可能会分散且不规则。 这是因为采样率较低, 无法充分捕捉到信号的高频成分, 从而导致较大的采样误 差。
- 2. 适当的过采样因子:随着过采样因子的增加,星座图中的点逐渐聚集并形成清晰的星座图案。这是因为增加了采样点的数量,能够更准确地表示信号的形态,从而减小了采样误差。
- 3. 过高的过采样因子: 当过采样因子过高时, 星座图中的点可能会过于密集, 甚至重叠在一起。这是因为增加了冗余的采样点, 超出了信号的实际需要, 不会 讲一步减小采样误差。

因此,适当选择合理的过采样因子可以在保证信号质量的同时,尽量减小采 样误差。过高的过采样因子可能会浪费系统资源而不带来明显的性能提升。需要 根据具体应用场景和要求,综合考虑信号带宽、计算复杂度和资源消耗等因素来 选择适当的过采样因子。

六、 总结和实验心得

本实验让我收获很大,动手能力增强的同时理论基础更加扎实,在此次实验中,我加深了对于通信原理知识的理解,而且锻炼了我的实验思维,可以拓展课本之外的能力,让自己不仅仅依靠书本上的知识发展自己的认知,我认为本课程极具教育意义。