Operator Semigroups

Chang Feng

June 14, 2025

1 Spaces and Topologies

- Let E be a locally compact Hausdorf space. (that is $\forall x \in E, x$ has a compact neighborhood).
- $(\mathcal{X}, \|\cdot\|)$: Banach Space.
- $\mathcal{L}(\mathcal{X})$: space of bounded linear operators on \mathcal{X} .

Topologies on $\mathcal{L}(\mathcal{X})$

- (1) Weak Operator Topology (WOT)
 - coarest topology s.t. $\forall f \in \mathcal{X}$, the map $\mathcal{L}(\mathcal{X}) \ni T \mapsto T(f) \in \mathcal{X}$ is continuous, when X is equipped with the weak topology.
 - In other words, $T_n \to T$ if $\langle f^*, T_n f \rangle \to \langle f^*, T f \rangle$, $\forall f^* \in \mathcal{X}^*$
- (2) Strong Operator Topology (SOT)
 - coarest topology s.t. $\forall f \in \mathcal{X}$, the map $\mathcal{L}(\mathcal{X}) \ni T \mapsto T(f) \in \mathcal{X}$ is continuous, when X is equipped with the strong topology.
 - In other words, $T_n \to T$ if $T_n f \to T f$ in \mathcal{X} , for all $f \in \mathcal{X}$ (topology of pointwise convergence).
- (3) Norm Topology (Uniform Topology)
 - Topology induced by the operator norm $(||T|| = \sup\{||Tf|| : ||f|| \le 1\}).$
 - $T_n \to T$ if $||T_n T|| \to 0$.

It turns out for semigroups, weak and strong topology are equivalent in some sense. The norm topology is usually to strong. So we shall work with SOT.

Choices for \mathcal{X} :

Shall use the sup norm

- $C_b(E)$: cts bdd functions on E
- $C_0(E)$: cts bdd functions on E that vanish at ∞ , i.e. $\{f \in C_b(E) : \lim_{\|x\| \to \infty} f(x) = 0\}$.

Often, $C_b(E)$ is not enough to get SCS, need $C_0(E)$ instead.

2 Definition of Semigroups

Definition 2.1 (Monoid)

• An algebraic semigroup is a pairing (M, \circ) , where

- -M: nonempty set
- $-\circ$ is associative binary operation $M\times M\to M$.
- M is a **monoid** if it is an algebraic semigroup and have an unit element. i.e. $\exists e \in M$ s.t. $e \circ a = a \circ e = a, \forall a \in M$.
- A topological monoid is a monoid with a topology, in which o is continuous.

Definition 2.2 (Algebraic Representation)

let M be a monoid. A map $T: M \to \mathcal{L}(\mathcal{X})$ is called an **algebraic representation** if

- (1) T(e) = Id
- (2) $T(a \circ b) = T(a)T(b)$, for all $a, b \in M$.

If in addition, M is a topological monoid and $a \mapsto T(a)$ is continuous when $\mathcal{L}(\mathcal{X})$ is given the strong operator topology, then we say T is **strongly continuous representation**.

*

*

Definition 2.3 (Operator Semigroups)

- A family $\{T_t, t \geq 0\}$ of bounded linear operators on \mathcal{X} is a **semigroup** if
 - 1. $T_0 = Id$
 - 2. $T_{s+t} = T_s T_t, \forall s, t \geq 0.$
- $\{T_t\}$ is strongly continuous semigroup (SCS) if $\lim_{t\downarrow 0} T_t f = f$, $\forall f \in \mathcal{X}$. (notice this is simply right continuity at 0)
- $\{T_t\}$ is contraction semigroup if $||T_t|| \le 1, \forall t \ge 0.$

A useful inequality for SCS:

Proposition 2.4

Let $\{T_t\}$ be SCS on \mathcal{X} , then $\exists M \geq 1, w \geq 0$ s.t.

$$||T_t|| \le Me^{wt}, \quad t \ge 0.$$

In the definition of SCS, it should be $\lim_{s\to t} T_s f = T_t f$, $\forall f \in \mathcal{X}, t \geq 0$. Why is right continuity at 0 sufficient for its definition?

Corollary 2.5 (EK1.2)

Let $\{T_t\}$ be SCS, then $\forall f \in \mathcal{X}, t \mapsto T_t f$ is continuous.

3 Examples

3.1 Translation Semigroups

Take $\mathcal{X} = C_b(\mathbb{R})$.

For fixed speed c > 0, define

$$T_t f(x) = f(x + ct)$$

 $\{T_t\}$ is not SCS.

Figure 1: title

To make $\{T_t\}$ a SCS, need to take $\mathcal{X} = C_0(\mathbb{R})$.

Also note that $\{T_t\}$ is not uniformly continuous! $(T_s \not\to T_t \text{ in operator norm, which is too strong)}.$

• for each t > 0, find $f \in C_0$ with $||f|| \le 1$ but $|f(0) - f(-ct)| \ge 1$. Then we see $||T_t - T_0|| \ge 1$, $\forall t > 0$.

3.2 Flow Semigroups

Consider ODE

$$\begin{cases} X'(t) = F(X(t)), \\ X(0) = x \in \mathbb{R}^d, \end{cases}$$

Assume F is nice enough (for example Lipschitz continuous), such that the ODE has unique solution, denoted X^x .

By uniqueness, we have

$$X^{X^x(s)}(t) = X^x(s+t)$$

Let

$$T_t f(x) = f(X^x(t))$$

3.3 Heat Semigroup

3.4 Poisson Semigroup

Take $\mathcal{X} = l^{\infty}$, the space of bounded sequences $\{x_n\}_{n \in \mathbb{N}_0}$. For $t \geq 0$, define $T_t : l^{\infty} \to l^{\infty}$ by

$$(T_t f)_n := \sum_{m \in \mathbb{N}_0} e^{\lambda t} \frac{(\lambda t)^m}{m!} f_{n+m} = \mathbb{E} \left[f_{n+Pois(\lambda t)} \right]$$

4 Infinitesimal Generators

Definition 4.1 (Operator on Banach Spaces)

- An **operator** on Banach space \mathcal{X} is a pair $(A, \mathcal{D}(A))$ where
 - $-A: \mathcal{D}(A) \to \mathcal{X}$ is a linear map (not necessarily cts)
 - $-\mathcal{D}(A)$ is a subspace of \mathcal{X} .
- The **graph** of A is the linear subspace

$$\Gamma(A) = \left\{ (f,g) \in \mathcal{X} \times \mathcal{X} : f \in \mathcal{D}(A), g = Af \right\}.$$

And the **graph norm** is the map $||f||_{\mathcal{D}(A)} := ||f|| + ||Af||, f \in \mathcal{D}(A)$.

- The operator $(A, \mathcal{D}(A))$ is
 - **closed** if its graph $\Gamma(A)$ is closed.
 - **closable** if the closure of $\Gamma(A)$ defines the graph of a operator $\bar{A}: \mathcal{D}(\bar{A}) \to \mathcal{X}$, (which is necessarily unique and closed).

Recall some basic functional analysis facts:

Proposition 4.2

- 1. A is closable \iff for all sequences $\{f_n\}_n \subset \mathcal{D}(A)$ s.t. $f_n \to 0$, the existence of limit $Af_n \to g$ implies g = 0.
- 2. If A is closed, then $(D(A), \|\cdot\|_{\mathcal{D}(A)})$ is a Banach space.
- 3. (Closed Graph Thm) If A is closed and $\mathcal{D}(A) = \mathcal{X}$, then A is bounded (i.e. cts).

Example 4.3 (Dense but not bdd operators)

Definition 4.4 (Infinitesimal Generator)

The **infinitesimal generator** of SCS $(T_t)_{t\geq 0}$ is the operator $(A, \mathcal{D}(A))$ defined by

$$Af := \lim_{t \to 0} \frac{T_t f - f}{t}, \quad f \in \mathcal{D}(A),$$

where the domain $\mathcal{D}(A)$ is all $f \in \mathcal{X}$ for which the limit exists.