미래과학자 양성프로그램

이산대수 기반 공개키 암호 방식 연구

수학

Kit Rechnology Institute of the state of the

김 화 영 윤 창 호 장 민 지도교사 김 형 섭 금오공과대학교 응용수학과 교수 유 원 석

경산과학고등학교 1학년 강 민 석

1. 서론

현대사회가 점점 정보화 사회로 발전함에 따라 다양한 종류의 정보를 교환하는데 필요한 대량 정보시스템이 구축되고, 이에 따라 정보를 안전하게 교환할 수 있는 암호방법의 중요성이 강조되고 있다. 이러한 암호방법 중 1980년대부터 소개된 공개키 암호방법은 키의 배송문제와 관리문제를 해결하고 다양하게 응용되는 장점이 있어 현재도 여러 가지 알고리즘이 발표되어 활용되고 있다.

2. 연구 배경

공개키 암호 알고리즘은 대부분 풀기 어려운 계산 문제 즉, 이산대수 문제에 근거를 두고 개발되었으나 컴퓨터 계산 능력의 발전에 따라 보안성의 문제 때문에 현재는 소수의 알고리즘만이 실용화되고 있다([4]). 따라서 공개키 암호 알고리즘의 안전성을 높일 수 있는 여러 가지 방안을 연구하고 새로운 암호 알고리즘을 개발할 필요가 있다.

3. 연구 방법

이 연구를 수행하기 위하여 먼저 배낭암호([1]), 타원곡선 암호([3]) 등의 안전성의 문제점을 알아보고 이를 개선하기 위한 여러 가지 방안을 연구한다. 이 과정에서 행렬의 성질과 벡터의 직교 공간의 성질을 응용하여 보안성을 높이는 방법을 연구하며, 배낭암호, 타원곡선암호 등을 혼합한 새로운 암호알고리즘을 개발한다.

4. 연구 결과

이 연구에서는 배낭암호와 타원곡선암호에서 이용하고 있는 이산대수 문제를 응용하여 보안성이 강화된 새로운 세 개의 공개키 알고리즘을 개발하고,이 중 하나의 알고리즘에 대해서는 전산프로그램으로 개발하여 컴퓨터를통해 암호화 및 복호화 과정을 실행한다.

(1) 행렬과 초월증가수열을 이용한 공개키 암호 알고리즘 1

내낭암호 알고리즘을 개선한 것으로서 기존 초월증가수열 이외에도 벡터 공간에서 벡터의 독립성과 직교성을 이용하여 안정성을 높여준다([2]).

단 계	행위자	내용
준 비	수신자	① 양의 정수 n , l , k 를 $k < l \le n$ 이 되도록 택하고, $a_1 + a_2 + \cdots + a_n < m$ 을
		만족하는 초월증가수열 a_1, a_2, \cdots, a_n 을 \mathbb{Z}_m 에서 택한다.
		② \mathbb{Z}_m 의 원소로 된 벡터 $\vec{x}=(x_1,x_2,\cdots,x_l)$ 와 $l\times n$ 행렬 B 를
		$\vec{x}B = (a_1, a_2, \cdots, a_n) \pmod{m}$
		가 되도록 선택한다.
		③ \mathbb{Z}_m^l 에서 서로 독립이면서 $ec{x}$ 에 서로 직교하는 벡터들
		$\overrightarrow{u_1}, \overrightarrow{u_2}, \cdots, \overrightarrow{u_k}$
		를 선택한다.
		행렬 B 와 벡터 $\overrightarrow{u_1},\overrightarrow{u_2},\cdots,\overrightarrow{u_k}$ 를 공개한다.
		길이가 n 인 이진평문 \overrightarrow{m} 과 공개키 B , $\overrightarrow{u_1}$, $\overrightarrow{u_2}$, \cdots , $\overrightarrow{u_k}$ 가 주어질 때,
암		① Span $\{\overrightarrow{u_1},\overrightarrow{u_2},\cdots,\overrightarrow{u_k}\}$ 에서 임의로 n 개의 벡터를 택하고, 이들 벡터들을 각
호	송신자	열로 놓은 크
화		기 $l \times n$ 의 행렬을 H 라고 한다.
		② 암호문 $\vec{C} = (B + H)\vec{m}^T \pmod{m}$ 을 만든다.
복 호 화	수신자	$y \equiv \overrightarrow{x} \overrightarrow{c} \pmod{m}$ 을 계산하면,
		$y \equiv a_1 m_1 + a_2 m_2 + \dots + a_n m_n \pmod{m}$ 이 되어 이진평문 \vec{m} 을 구할 수 있다.

(2) 행렬과 초월증가수열을 이용한 공개키 암호 알고리즘 2

앞에서 소개한 공개키 암호 알고리즘과는 달리 아래에 소개하는 알고리즘 에서는 송신자가 임의로 행렬을 선택하여 메시지를 간단하게 암호화 할 수 있는 장점이 있다.

Ж L	있는 상점이 있다.					
단 계	행위자	내용				
윤 비	수신자	① 이진평문의 블록 단위와 행렬의 크기 $(n \times n)$ 로 사용할 n 을 선택한다. ② 초월증가수열로 이루어진 행렬 $A = (a_1, a_2, \cdots, a_n)$ 와 $a_1 + a_2 + \cdots + a_n < m$ 을 만족하는 m 을 선택한다. ③ 비밀키 행렬 $K = (k_1, k_2, \cdots, k_n)$ 와 $k_1 s_1 + k_2 s_2 + \cdots + k_n s_n \equiv 0 \pmod{m}$ 을 만족하는 $k_i, s_i \in \mathbb{Z}_m (1 \le i \le n)$ 을 선택하고, 모든 열이 $\begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix}$ 으로 된 $n \times n$ 행렬을 S 라 하자. ③ $KB \equiv (a_1, a_2, \cdots, a_n) \pmod{m}$ 을 만족하는 $n \times n$ 행렬 B 를 선택한다.				
하 와 하	송신자	① $n \times n$ 행렬 $P = \begin{bmatrix} p_{ij} \end{bmatrix} (p_{ij} \in \mathbb{Z}_m, \ 1 \leq i, j \leq n)$ 을 임의로 선택한다. ② 행렬 S 와 P 및 행렬 B 를 사용하여 이진평문 $M = (m_1, m_2, \cdots, m_n), \ m_i \in \{0,1\}$ 을 $(SP + B)M^T \equiv C^T (mod \ m)$ 에 의하여 C 로 암호화 한다. 즉, $(SP + B)\begin{bmatrix} m_1 \\ m_2 \\ \vdots \\ m_n \end{bmatrix} \equiv \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} (mod \ m)$ 을 계산하여 M 을 $C = (c_1, c_2, \cdots, c_n)$ 으로 암호화한다.				
봐 성 화	수신자	암호문 C^T 의 왼쪽에 비밀키 K 를 곱하여 얻은 숫자 α 는 $\alpha \equiv a_1m_1 + a_2m_2 + \cdots + a_nm_n (mod\ m)$ 이 되므로, 초월증가수열의 성질을 이용하여 이진평문 $M = (m_1, m_2, \cdots, m_n)$ 을 복호화할 수 있다.				

(3) 타원곡선암호와 초월증가수열을 응용한 새로운 공개 암호키 3

이 알고리즘은 타원곡선암호와 배낭암호 알고리즘을 동시에 응용하여 안전성을 높인 것으로, 수신자가 준비해야 하는 과정은 타원곡선 암호 알고리즘과 동일하나 송신자가 메시지를 암호화하면서 초월증가수열을 이용하기 때문에 배낭암호 보다 안전성이 높다.

단 계	행위자	내용			
준 비	수신자	 ①유한체 F = GF(p) = Z_p 위의 타원곡선군 E(F)를 택하고, E(F)의 원소 중 큰 위수를 갖는 원소 P를 택한다. ② 임의의 정수 α 를 택하고, Q = αP인 Q를 계산한다. (F = GF(p), E(F))및 P와 Q를 공개키로 공개하고, α는 비밀키로 보관한다. 			
함 성 화	송신자	① 임의의 정수 k 를 택하여 kP , $kQ = (c_1, c_2)$ 를 계산한다. ② 초월증가수열 $a_1, a_2, \cdots, a \sum_{i=1}^n a_i < p$) 을 택하고, $b_i \equiv c_1 a_i \equiv (mod \ p)$ 를 계산한다. ③ 보내고자 하는 이진평문 $x = (x_1, x_2, \cdots, x_n)$ 으로부터 $S \equiv \sum_{i=1}^n b_i x_i \ (mod \ p)$ 를 계산하고, 암호문으로 $C \equiv c_2 S \ (mod \ p)$ 를 구한다. ④ 초월증가수열 $a_1, a_2, \cdots, a_n, \ kP, C$ 를 보낸다.			
부	수신자	① $\alpha kP = (c_1, c_2)$ 를 계산한다. ② $c_1^{-1}c_2^{-1}C \equiv c_1^{-1}c_2^{-1}(c_2S) \equiv \sum_{i=1}^n a_i x_i \pmod{p}$ 로부터 이진평문 $x = (x_1, x_2, \cdots, x_n)$ 을 얻는다.			

5. 결론 및 제언

이 연구에서 개발한 공개키 암호 알고리즘은 벡터 공간에서의 직교성, 행렬이론, 초월증가수열 등을 응용하고 기존의 알고리즘을 복합적으로 응용함으로써 기존의 타원곡선암호나 배낭암호 알고리즘에 비해 안정성이 높다. 따라서 이 연구에서 개발한 새로운 암호 알고리즘 개발에 대한 창의적 결과는 향후 암호학의 발전에 기여할 것으로 기대한다.

6. 참고 문헌

- [1] 김흥수, 공개키 다항식을 사용한 배낭 암호 방식, 東州大學, 1999
- [2] 정보통신부, 공개키 암호알고리즘 개발에 관한 연구, 한국정보보호센터, 1999
- [3] 황규범, 이시창, 정명인, 암호학의 이해, 경문사, 2009
- [4] James A. Buchmann, Introduction to Crytography. Springer, 2000