开放词汇目标检测 CVPR2023

(Open-Vocabulary Object Detection)

报告人:徐静远

Preliminary

Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers

Aligning Bag of Regions for Open-Vocabulary Object Detection

总结与思考

Preliminary

开放词汇检测任务

作者单位

Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers:RO-VIT

Dahun Kim Anelia Angelova Weicheng Kuo Google Research, Brain Team

{mcahny, anelia, weicheng}@google.com

Aligning Bag of Regions for Open-Vocabulary Object Detection: BARON

Size Wu¹ Wenwei Zhang¹ Sheng Jin^{2,3} Wentao Liu^{3,4} Chen Change Loy^{1*}

¹S-Lab, Nanyang Technological University

³ SenseTime Research and Tetras.AI

⁴ Shanghai AI Laboratory

{size001, wenwei001, ccloy}@ntu.edu.sg {jinsheng, liuwentao}@sensetime.com

Contents

Preliminary

gion-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers (RO-ViT)

igning Bag of Regions for Open-Vocabulary Object Detection (BARON)

思考

Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers (RO-ViT)

motivation

以往的视觉语言模型是为图像级别的任务设计 (分类,检索),本文重新设计预训练范式

Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers (RO-ViT)

method

在ALIGN模型上做了两点改变:

- 1.使用区域级的位置编码;
- 2.使用focal loss取代CEloss

Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers (RO-ViT)

Results

method	pretrained model	detector backbone	\mathbf{AP}_r	AP	
ConvNet based:					
DetPro-Cascade [13]	ViT-B/32	R-50	20.0	27.0	
Detic-CN2 [63]	ViT-B/32	R-50	24.6	32.4	
RegionCLIP [60]	R-50x4	R-50x4	22.0	32.3	
ViLD-Ens [19]	ViT-B/32	R-152	18.7	26.0	
ViLD-Ens [19]	ViT-L/14	EffNet-B7	21.7	29.6	
ViLD-Ens [19]	EffNet-B7	EffNet-B7	26.3	29.3	
VL-PLM [57]	ViT-B/32	R-50	17.2	27.0	
OV-DETR [53]	ViT-B/32	R-50	17.4	26.6	
Rasheed et al. [41]	ViT-B/32	R-50	21.1	25.9	
PromptDet [14]	ViT-B/32	R-50	21.4	25.3	
ViT based:					
OWL-ViT [35]	ViT-H/14	ViT-H/14	23.3	35.3	
OWL-ViT [35]	ViT-L/14	ViT-L/14	25.6	34.7	
RO-ViT (ours)	ViT-B/16	ViT-B/16	28.0	30.2	
RO-ViT (ours)	ViT-L/14	ViT-L/14†	31.4	34.0	
RO-ViT (ours)	ViT-L/16	ViT-L/16	32.1	34.0	

method	pretrained model	detector backbone	novel AP	AP
ConvNet based:				
ViLD [19]	ViT-B/32	R-50	27.6	51.3
OV-DETR [53]	ViT-B/32	R-50	29.4	52.7
w/ pseudo box labels:				
XPM et al. [25]	R-50	R-50	27.0	41.2
RegionCLIP [60] †	R-50x4	R-50x4	39.3	55.7
PromptDet [14]	ViT-B/32	R-50	26.6	50.6
VL-PLM [57]	ViT-B/32	R-50	34.4	53.5
Rasheed et al. [41] ‡	ViT-B/32	R-50	36.9	51.5
w/ weak supervision:				
Detic-CN2 [63]	ViT-B/32	R-50	24.6	32.4
ViT based:*				
RO-ViT (ours)	ViT-B/16	ViT-B/16	30.2	41.5
RO-ViT (ours)	ViT-L/16	ViT-L/16	33.0	47.7

Table 2. COCO open-vocabulary object detection (box AP50).

Table 1. LVIS open-vocabulary object detection (mask APs).

预训练bs=16384, iter=500k, ALIGN: 1024TPU

Contents

Preliminary

Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers (RO-ViT)

igning Bag of Regions for Open-Vocabulary Object Detection
(BARON) (BARON)

Aligning Bag of Regions for Open-Vocabulary Object Detection (BARON)

motivation

以往的ovod方法试图对齐区域图像特征与文本特征。 本文希望对齐区域图像特征与伪文本特征。

Aligning Bag of Regions for Open-Vocabulary Object Detection (BARON)

Method

- (a) BARON整体基于faster-rcnn的框架图; (b) 训练过程中对齐伪文本
- (c) 形成区域袋; (d) InfoNCE对比训练

Aligning Bag of Regions for Open-Vocabulary Object Detection (BARON)

Table 2. Comparison with state-of-the-art methods on OV-LVIS. * denotes the re-implemented ViLD [15] reported in DetPro [10].

Experiment

Method Ensemb	Encomble	Learned Prompt	Object Detection			Instance segmentation				
	Ensemble		AP_r	AP_c	AP_f	AP	AP_r	AP_c	AP_f	AP
ViLD [15]	-	-	16.3	21.2	31.6	24.4	16.1	20.0	28.3	22.5
OV-DETR [52]	-	-	-	-	-	-	17.4	25.0	32.5	26.6
BARON (Ours)	-	-	17.3	25.6	31.0	26.3	18.0	24.4	28.9	25.1
ViLD [15]	✓	-	16.7	26.5	34.2	27.8	16.6	24.6	30.3	25.5
ViLD* [15]	✓	-	17.4	27.5	31.9	27.5	16.8	25.6	28.5	25.2
BARON (Ours)	✓	-	20.1	28.4	32.2	28.4	19.2	26.8	29.4	26.5
DetPro [10]	✓	✓	20.8	27.8	32.4	28.4	19.8	25.6	28.9	25.9
BARON (Ours)	✓	✓	23.2	29.3	32.5	29.5	22.6	27.6	29.8	27.6

Table 1. Comparison with state-of-the-art methods on OV-COCO benchmark. We separately compare our approach with methods distilling knowledge from CLIP and approaches using COCO caption. † means using proposals produced by MAVL [34].

Method	Supervision	Backbone	ackbone Detector		AP ₅₀ ^{base}	AP ₅₀
ViLD [15]	CLIP	ResNet50-FPN	FasterRCNN	27.6	59.5	51.2
OV-DETR [52]	CLIP	ResNet50	DeformableDETR	29.4	61.0	52.7
BARON (Ours)	CLIP	ResNet50-FPN	FasterRCNN	34.0	60.4	53.5
OVR-CNN [53]	Caption	ResNet50-C4	FasterRCNN	22.8	46.0	39.9
RegionCLIP [56]	Caption	ResNet50-C4	FasterRCNN	26.8	54.8	47.5
Detic [58]	Caption	ResNet50-C4	FasterRCNN	27.8	51.1	45.0
PB-OVD [13]	Caption	ResNet50-C4	FasterRCNN	30.8	46.1	42.1
VLDet [28]	Caption	ResNet50-C4	FasterRCNN	32.0	50.6	45.8
BARON (Ours)	Caption	ResNet50-C4	FasterRCNN	33.1	54.8	49.1
Rasheed et al. [41] [†]	CLIP + Caption	ResNet50-C4	FasterRCNN	36.6	54.0	49.4
BARON (Ours) [†]	CLIP + Caption	ResNet50-C4	FasterRCNN	42.7	54.9	51.7

Contents

Preliminary

A Simple Baseline for Open-Vocabulary Semantic Segmentation with Pre-trained Vision-language Model

Open-Vocabulary Semantic Segmentation with Maskadapted CLIP

总结与思考

总结

省时省力

泛化能力弱し

ViLD, DetPro, F-VLM, BARON

基于已有模型微调的

基**于预训练**的 (cvpr22->23:9篇->32篇)

泛化能力强

耗时耗力

RegionCLIP, GLIP, RO-ViT

思考

- · 提供两种不同任务的路线,理解不同的 motivation,抛砖引玉。
- 基于预训练路线的,天花板高一点,但是训练难度大、要求高
- 基于已有模型路线的,依赖于CLIP模型能力,在该模型基础上寻找 motivation做改进
- 固定VLM成为固定范式,改进集中在设计head, loss,实现区域级别的对齐

