Due Date: 9th January 2017

NAME: Toby Thomas DATE: 27/12/2016

Question 1 (6 marks)

Please submit a table with the values obtained integrating the functions 2, 3, 4, and 5 from Tutorial 9 between 2 and 5. Perform the integration using the 1D rectangle, trapezium and Simpson's rules with 15 intervals.

Function	Rectangle	Trapezium	Simpson's
2	292 · 51	270.44	-
3	- 1.91	-1.77	_
4	1.14	1.10	_
5	16.69	15.66	_

Question 2: (6 marks)

Please submit the following table with the values obtained integrating function 3 from Tutorial 9 between 0 and 1 using the 1D Trapezium rule. Calculate the error between the analytic and the numerical solution. Discuss the relationship between the number of intervals and the error.

Real 1.54** 954**

Intervals	Trapezium rule	Error
4	1.53034	0.0192
8	1.54476	0.0048
16	1.54835	0.0012
32	1.54925	2. 9 ×10-4
64	1.54947	7 × 10-3

Question 3: (6 marks)

Please submit a table with the values of the mean signal intensity in the RA, RV, LA, and LV regions from Tutorial 10. Use 10 intervals in the x and y direction for the trapezium and rectangle rules and 3x3 gauss points for the Gauss method.

RV = [251 351 151 201]

RA = [201 251 201 251]

LA = [301 351 301 351]

LV = [381 411 220 251]

Region	Rectangle	Trapezium	Gaussian
RA	76.07	76 24	76.59
RV	72.66	72.70	73.05
LA	(01.91	102.03	162.42
LV	98.35	98.76	99.38

Question 4: (10 marks)

Please modify the MATLAB files Integrate_image.m and Gauss_2D_tut.m from Tutorial 10 to integrate an analytic function $f(x,y)=x^4e^{y^2}$, instead on an image, using the Gaussian quadrature. You can use the same structure we have seen in Tutorial 9 to integrate 1D functions. Then hand in the code and fill in the table below for the following integral:

$$\int_0^2 \int_{-1}^0 x^4 e^{y^2} \, dx \, dy$$

Number of Gauss Points in each direction	Gaussian Integration	
1	0.33 98	
3	2-5731	
5	3.1910	

Question 5: (2 marks)

Please describe in less than 100 words which of the Newton-Cotes methods you would use to integrate function f(x)=cos(x)+sin(2x) over $[0,2\pi]$ and why.

Use Simpson's method

f(x) = ccs(z) + sin(2z) is a non linear function

So we should fit a quadratic to get the most carrote

Solution f(z)

hTT

