Linear Algebra and Vector Calculus Notes and Exercises

Somnath Sikdar

January 14, 2020

Contents

1	Linear Algebra Basics	2
	1.1 Linear Functions	2

Chapter 1

Linear Algebra Basics

1.1 Linear Functions

A function $L \colon \mathbf{R}^m \to \mathbf{R}^n$ is a linear function if for all $x, y \in \mathbf{R}^m$ and for all $a, b \in \mathbf{R}$

$$L(a\boldsymbol{x} + b\boldsymbol{y}) = aL(\boldsymbol{x}) + bL(\boldsymbol{y}).$$

It follows (by induction) that for all $x_1, \ldots, x_r \in \mathbf{R}^m$ and all $a_1, \ldots, a_r \in \mathbf{R}$

$$L(a_1\boldsymbol{x}_1 + \dots + a_r\boldsymbol{x}_r) = a_1L(\boldsymbol{x}_1) + \dots + a_rL(\boldsymbol{x}_r).$$

Theorem 1.1. A linear function $L: \mathbf{R}^m \to \mathbf{R}^n$ is completely determined by its effect on the standard basis vectors $\mathbf{e}_1, \dots, \mathbf{e}_m$ of \mathbf{R}^m . An arbitrary choice of vectors $L(\mathbf{e}_1), \dots, L(\mathbf{e}_m)$ of \mathbf{R}^n determines a linear function from \mathbf{R}^m to \mathbf{R}^n .