Quantification across scales

class - 3 (8.8.24)

LS2103 (Autumn 2024)

Dr. Neelanjana Sengupta Associate Professor, DBS

https://www.iiserkol.ac.in/~n.sengupta/

Details of LS2103 (Autumn 2024)

Level: 2 Type: Theory Credits: 3.0

Course Code	Course Name	Instructor(s)
LS2103	Biophysics	Neelanjana Sengupta

Syllabus

- Heat as a form of energy: Concept of free energy; free energy transduction; order/disorder in biology; forces and energies
- Molecular interactions: Physical basis and implications in biology
- Dimensions and Units: Dimensional analysis; biomolecules dimensions, arrangements, internal energies
- · Special properties of water: Importance in biology
- Overview of structures inside cells: Dimensions, crowding, basic functioning principles, timescales of cellular processes; energies/forces inside live cells. Modes of information transfer;
- · Distributions in nature: Origin, implications

Course modules:

I. Introduction: What is Biophysics?

II. Quantification in Biology:

- Time and Length scales; Dimensional analysis
- Avogadro's Number; pH; concentrations

III. Distributions:

- Thermal motion and velocity distribution
- Normal distributions, deviations
- Ideal Gas Laws; Equilibrium; Boltzmann distribution
- Equipartition; role of k_BT in biology
- Entropy in Biology
- Free Energy, Activation, Scaling Barriers

Course modules:

- IV. Connecting the Microscopic and Macroscopic Pictures
 - Brownian Motion
 - Diffusion(*) and Dissipation
 - Reynold's number
 - Osmotic machine
 - Hydrophobicity
 - Depletion forces

Neutrophil chasing bacteria

Red blood cell ~8 μm

What are the approx. sizes of:

- a) the neutrophil?
- b) the bacteria it is chasing?
- c) If the movie was in "real time", what would be the average speed of the bacterium? Does that match with the neutrophil's speed?

Table 1.1: Rules of thumb for biological estimates.

	Quantity of interest	Symbol	Rule of thumb		
E. coli					
	Cell volume Cell mass Cell cycle time Cell surface area Macromolecule concentration in cytoplasm Genome length Swimming speed	V _{E. coli} m _{E. coli} t _{E. coli} A _{E. coli} c _{E. coli} c _{E. coli} N ^{E. coli} bp V _{E. coli}	$\approx 1 \mu\text{m}^3$ $\approx 1 pg$ $\approx 3000 s$ $\approx 6 \mu\text{m}^2$ $\approx 300 mg/mL$ $\approx 5 \times 10^6 bp$ $\approx 20 \mu\text{m/s}$		
Yeast					
	Volume of cell Mass of cell Diameter of cell Cell cycle time Genome length	V _{yeast} m _{yeast} d _{yeast} t _{yeast} N ^{yeast} Nbp	≈60 µm ³ ≈60 pg ≈5 µm ≈200 min ≈10 ⁷ bp		
Organelles					
	Diameter of nucleus Length of mitochondrion Diameter of transport vesicles	d _{nucleus} I _{mito} d _{vesicle}	≈5 µm ≈2 µm ≈50 nm		

Table 1.1: Rules of thumb for biological estimates.

	Quantity of interest	Symbol	Rule of thumb
E. coli			
	Cell volume Cell mass Cell cycle time Cell surface area Macromolecule concentration in cytoplasm Genome length Swimming speed	V _{E. coli} m _{E. coli} t _{E. coli} A _{E. coli} c ^{macromol} E. coli N ^{E. coli} bp V _{E. coli}	$\approx 1 \mu m^3$ $\approx 1 pg$ $\approx 3000 s$ $\approx 6 \mu m^2$ $\approx 300 mg/mL$ $\approx 5 \times 10^6 bp$ $\approx 20 \mu m/s$

- I. What is the "surface-to-volume" ratio of E. coli?
 - Unit?
 - How is this expected to scale with size of organism?
- II. What is the average cell cycle duration of E. coli in days?
- III. Approx. how many times it's 'body size' does E. coli cover per second?
 - How would you compare this movement with that of a fastest humans? (Usain Bolt's speed \sim 12.4 m/s, ie. \sim 10 x 1.2 m/s)

I. Construct a model for the "surface-to-volume" ratio of E. coli

Surface-to-Volume ratios of organisms (in general)

- The (S/A) ratio is high for prokaryotes
- It reduces in complex multicellular organisms
 - It is not very sensitive to size in multi-cellular organisms

Bacteria: Surface to Volume (S/V) ratio

- Within a species, size can be variable
- But (S/V) generally maintained if the conditions do not change
- What triggers bacteria shape and size changes?

(B) Hold shape constant

Table 1.1: Rules of thumb for biological estimates.

y of interest	Symbol	Rule of thun	nb
ume of molecule nsity of water cosity of water		V _{H2} Ο ρ η	$\approx 10^{-2} \text{ nm}^3$ 1 g/cm ³ $\approx 1 \text{ centipoise}$ $(10^{-2} \text{ g/(cm s)})$
drophobic embedding energy		≈E _{hydr}	2500 cal/(mol nm ²)
	ume of molecule nsity of water cosity of water drophobic embedding	ume of molecule nsity of water cosity of water drophobic embedding	ume of molecule $V_{\text{H}_2\text{O}}$ isity of water ρ cosity of water η drophobic embedding $\approx E_{\text{hydr}}$

- What is the approx. radius of water molecule?
- What is the "E_{hydr}" given above?

Table 1.1: Rules of thumb for biological estimates.

		Quantity of interest	Symbol	Rule of thumb	
Amino	acids and				
proteii	ns				
		Radius of "average" protein Volume of "average" protein Mass of "average" amino acid Mass of "average" protein Protein concentration in cytoplasm		r _{protein} V _{protein} M _{aa} M _{protein} C _{protein}	≈2 nm ≈25 nm ³ ≈100 Da ≈30,000 Da ≈150 mg/mL
		Characteristic force of protein motor		F _{motor}	≈5 pN
		Characteristic speed of protein motor		v _{motor}	≈200 nm/s
		Diffusion constant of "average" protein in cytoplasm		D _{protein}	$\approx 10 \mu m^2/s$

• How does mass of a typical amino acid, and a typical protein, compare with mass of a water molecule?

Table 1.1: Rules of thumb for biological estimates.

	Quantity of interest	Symbol	Rule of thumb	
Lipid bilayers				
	Thickness of lipid bilayer Area per molecule Mass of lipid molecule		d A _{lipid} m _{lipid}	\approx 5 nm $\approx \frac{1}{2}$ nm ² \approx 800 Da

- Consider that a protein of radius 1 nm displaces water to embed into a lipid bilayer.
- Estimate the energetic cost in kcal/mol.

DNA			
	Length per base pair	l _{bp}	≈1/3 nm
	Volume per base pair	V _{bp}	≈1 nm ³
	Charge density	λ _{DNA}	2 e/0.34 nm
	Persistence length	ξp	50 nm