Classification

Classification Model

Logistic Regression

Random Forest Classification

Machine Learning A-Z

K-NN	Simple to understand, fast and efficient	Need to choose the number of neighbours k
SVM	Performant, not biased by outliers, not sensitive to overfitting	Not appropriate for non linear problems, not the best choice for large number of features
Kernel SVM	High performance on nonlinear problems, not biased by outliers, not sensitive to overfitting	Not the best choice for large number of features, more complex
Naive Bayes	Efficient, not biased by outliers, works on nonlinear problems, probabilistic approach	Based on the assumption that features have same statistical relevance
Decision Tree Classification	Interpretability, no need for feature scaling, works on both linear / nonlinear problems	Poor results on too small datasets, overfitting can easily occur

Powerful and accurate, good performance on

many problems, including non linear

Pros

Probabilistic approach, gives informations

about statistical significance of features

Cons

The Logistic Regression Assumptions

No interpretability, overfitting can easily

occur, need to choose the number of trees

© SuperDataScience