Задача А. Флойд

Имя входного файла: floyd.in Имя выходного файла: floyd.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами. Гарантируется, что в Пример графе нет циклов отрицательного веса.

Формат входных данных

В первой строке вводится единственное число N (1 $\leq N \leq$ 100) — количество вершин графа. В следующих N строках по N чисел задается матрица смежности графа (*j*-ое число в *i*-ой строке — вес ребра из вершины *i* в вершину *j*). Все числа по модулю не превышают 100. На главной диагонали матрицы — всегда нули.

Формат выходных данных

Выведите N строк по N чисел — матрицу расстояний между парами вершин, где j-ое число в i-ой строке равно весу кратчайшего пути из вершины i в j.

Пример

•	
floyd.in	floyd.out
4	0 5 7 13
0 5 9 100	12 0 2 8
100 0 2 8	11 16 0 7
100 100 0 7	4 9 11 0
4 100 100 0	

Задача В. Сумма расстояний

Имя входного файла: sumdist.in Имя выходного файла: sumdist.out Ограничение по времени: 2 секунды 256 мебибайт Ограничение по памяти:

Дан связный граф. Требуется найти сумму расстояний между всеми парами вершин.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно $(1 \le n \le 1000, 0 \le m \le 10000)$.

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \leqslant b_i, e_i \leqslant n).$

Гарантируется, что граф связен.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число сумму попарных расстояний между вершинами.

sumdist.out
16

Задача С. Лабиринт знаний

Имя входного файла: maze.in Имя выходного файла: maze.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Участникам сборов подарили билеты на аттракцион "Лабиринт знаний". Лабиринт представляет собой N комнат, занумерованных от 1 до N, между некоторыми из которых есть двери. Когда человек проходит через дверь, показатель его знаний изменяется на определенную величину, фиксированную для данной двери. Вход в лабиринт находится в комнате 1, выход — в комнате N. Каждый участник сборов проходит лабиринт ровно один раз и наибрает некоторое количество знаний (при входе в лабиринт этот показатель равен нулю). Ваша задача — показать наилучший результат.

Формат входных данных

Первая строка входного файла содержит целые числа N (1 < N < 2000) количество комнат и M ($1 \le M \le 10\,000$) — количество дверей. В каждой из следующих M строк содержится описание двери — номера комнат, из которой она ведет и в которую она ведет (через дверь в лабиринте можно ходить только в одну сторону), а также целое число, которое прибавляется к количеству знаний при прохождении через дверь (это число по модулю не превышает 10000). Двери могут вести из комнаты в нее саму, между двумя комнатами может быть более одной двери.

Формат выходных данных

В выходной файл выведите ":)" — если можно пройти лабиринт и получить неограниченно большой запас знаний, ": (" — если лабиринт пройти нельзя, и максимальное количество набранных знаний в противном случае.

Пример

maze.in	maze.out
2 2	5
1 2 5	
1 2 -5	
1 2 -5	

Задача D. Path. Кратчайший путь

Имя входного файла:path.inИмя выходного файла:path.outОграничение по времени:2 secondsОграничение по памяти:64 megabytes

Дан взвешенный ориентированный граф и вершина s в нем. Требуется для каждой вершины u найти длину кратчайшего пути из s в u.

Формат входных данных

Первая строка входного файла содержит n, m и s — количество вершин, ребер и номер выделенной вершины соответственно ($2 \le n \le 2\,000, 1 \le m \le 5\,000$).

Следующие m строк содержат описание ребер. Каждое ребро задается стартовой вершиной, конечной вершиной и весом ребра. Вес каждого ребра — целое число, не превосходящее 10^{15} по модулю. В графе могут быть кратные ребра и петли.

Формат выходных данных

Выведите n строк — для каждой вершины u выведите длину кратчайшего пути из s в u, '*' если не существует путь из s в u и '-' если не существует кратчайший путь из s в u.

Пример

path.in	path.out
6 7 1	0
1 2 10	10
2 3 5	-
1 3 100	-
3 5 7	-
5 4 10	*
4 3 -18	
6 1 -1	

Задача Е. Диаметр графа

Имя входного файла: diameter.in Имя выходного файла: diameter.out Ограничение по времени: 1 секунды Ограничение по памяти: 16 мегабайт

Дан связный взвешенный неориентированный граф.

Рассмотрим пару вершин, расстояние между которыми максимально среди всех пар вершин. Расстояние между ними называется диаметром графа. Эксцентриситетом вершины v называется максимальное расстояние от вершины v до других вершин графа. Радиусом графа называется наименьший из эксцентриситетов вершин. Найдите диаметр и радиус графа.

Формат входных данных

В первой строке входного файла единственное число: N ($1 \le N \le 100$) — количество вершин графа. В следующих N строках по N чисел — матрица смежности графа, где -1 означает отсутствие ребра между вершинами, а любое неотрицательное число — присутствие ребра данного веса. На главной диагонали матрицы всегда нули; веса рёбер не превышают 1000.

Формат выходных данных

В выходной файл выведите два числа - диаметр и радиус графа.

Пример

diameter.in	diameter.out
4	8
0 -1 1 2	5
-1 0 -1 5	
1 -1 0 4	
2 5 4 0	

Задача F. Дейкстра

Имя входного файла: dijkstra.in Имя выходного файла: dijkstra.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Дан ориентированный взвешенный граф. Найдите кратчайшее расстояние от одной заданной вершины до другой.

Формат входных данных

В первой строке входного файла три числа: N,~S и F ($1\leqslant N\leqslant 2000, 1\leqslant S, F\leqslant N$), где N — количество вершин графа, S — начальная вершина, а F — конечная. В следующих N строках по N чисел — матрица смежности графа, где -1 означает отсутствие ребра между вершинами, а любое неотрицательное число — присутствие ребра данного веса. На главной диагонали матрицы всегда нули.

Формат выходных данных

Вывести искомое расстояние или -1, если пути не существует.

Пример

dijkstra.in	dijkstra.out
3 1 2	6
0 -1 2	
3 0 -1	
-1 4 0	

Задача G. Расстояние между вершинами

Имя входного файла: distance.in Имя выходного файла: distance.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный взвешенный граф. Найти вес минимального пути между двумя вершинами.

Формат входных данных

Первая строка входного файла содержит натуральные числа N, M, S и $F(N \leq 5\,000, M \leq 100\,000, 1 \leq S, F \leq N, S \neq T)$ — количество вершин и ребер графа а также номера вершин, длину пути между которыми требуется найти.

Следующие M строк по три натуральных числа b_i , e_i и w_i — номера концов i-ого ребра и его вес соответственно ($1 \le b_i$, $e_i \le n$, $0 \le w_i \le 100\,000$).

Формат выходных данных

Первая строка должна содержать одно натуральное число — вес минимального пути между вершинами S и F. Во второй строке через пробел выведите вершины на кратчайшем пути из S в F в порядке обхода.

Если путь из S в F не существует, выведите -1.

Пример

- 1	· F · · · · · - F	
	distance.in	distance.out
	4 4 1 3	3
	1 2 1	1 2 3
	3 4 5	
	3 2 2	
	4 1 4	