Математический сопроцессор

Запуск кода

Name

☐ ImageContentTask(.targets, .props)
☐ Ic(.targets, .props)
☐ marmasm(.targets, .props)
☐ masm(.targets, .props)
☐ MeshContentTask(.targets, .props)
☐ ShaderGraphContentTask(.targets, .props)

Доступные файлы настройки сборки:

Запуск кода

```
#include <iostream>
using namespace std;
int main()
     int a = 5, b = 3, sum;
     __asm {
          mov eax, a;
          mov ebx, b;
                                Консоль отладки Microsoft Visual Studio
          add eax, ebx;
          mov sum, eax;
                               C:\Users\221\sour
                               одом 1887938800
                               Нажмите любую кла
     cout << sum;</pre>
```

Математический сопроцессор?

Важной частью архитектуры микропроцессоров Intel является наличие устройства для обработки числовых данных в формате с плавающей точкой, называемого сопроцессором. Архитектура математическим компьютеров на базе микропроцессоров вначале опиралась исключительно на целочисленную арифметику. С ростом мощи стали появляться устройства для обработки чисел с плавающей точкой.

Возможности

- полная поддержка стандартов IEEE-754 и 854 на арифметику с плавающей точкой. Эти стандарты описывают как форматы данных, с которыми должен работать сопроцессор, так и набор реализуемых им функций;
- поддержка численных алгоритмов для вычисления значений тригонометрических функций, логарифмов и т. п.;
- обработка десятичных чисел с точностью до 18 разрядов, что позволяет сопроцессору выполнять арифметические операции без округления над целыми десятичными числами со значениями до 1018;
- обработка вещественных чисел из диапазона ±3.37x10-4932...1.18x10+4932.

Математический сопроцессор

- использует стек (LIFO Last In First Out)
- -ST(0) ST(7)
- Вершина стека ST(0)
- Дно ST(7)

Команды сопроцессора

- команды передачи данных в вещественном формате;
- команды передачи данных в целочисленном формате;
- команды передачи данных в двоично-десятичном формате.

Математический сопроцессор

Основными командами передачи данных являются

- команда FLD загрузка данных в вершину стека сопроцессора
- команда FST сохранение вершины стека сопроцессора в память

поманды передачи данных

вещественного типа

Команда	Операнды	Пояснение	Описание
FLD	src	TOP _{SWR} -=1; ST(0)=src;	Загрузка операнда в вершину стека
FST	dst	dst=ST(0);	Сохранение вершины стека в память
FSTP	dst	dst=ST(0); TOP _{SWR} +=1;	Сохранение вершины стека в память с выталкиванием
FXCH	ST(i)	ST(0) ↔ ST(i)	Обмен значений ST(0) и ST(i)

Система команд

- все мнемонические обозначения начинаются с символа f (float);
- вторая буква мнемонического обозначения определяет тип операнда в памяти, с которым работает команда: і целое двоичное число; b целое десятичное число; отсутствие буквы вещественное число;
- последняя буква мнемонического обозначения команды р означает, что последним действием команды обязательно является извлечение операнда из стека;
- последняя или предпоследняя буква r (reversed) означает реверсивное следование операндов при выполнении команд вычитания и деления, так как для них важен порядок следования операндов

10

Команды загрузки констант

Команда	Пояснение	Описание
FLDZ	TOP _{SWR} -=1; ST(0)=0;	Загрузка 0
FLD1	TOP _{SWR} -=1; ST(0)=1;	Загрузка 1
FLDPI	TOP _{SWR} -=1; ST(0)=3.1415926535;	Загрузка π
FLDL2T	TOP _{SWR} -=1; ST(0)=3.3219280948;	Загрузка log ₂ 10
FLDL2E	TOP _{SWR} -=1; ST(0)=1.4426950408;	Загрузка log₂e
FLDLG2	TOP _{SWR} -=1; ST(0)=0.3010299956;	Загрузка lg 2
FLDLN2	TOP _{SWR} -=1; ST(0)=0.6931471805;	Загрузка In 2

Арифметические команды

Команда	Операнды	Пояснение	Описание
FADD	dst, src	dst = dst + src;	Сложение вещественное
FADDP	ST(i), ST(0)	ST(i) = ST(i) + ST(0); $TOP_{SWR} += 1;$	Сложение вещественное с выталкиванием
FSUB	dst, src	dst = dst — src;	Вычитание вещественное
FSUBP	ST(i), ST(0)	ST(i) = ST(i) - ST(0); $TOP_{SWR} += 1;$	Вычитание вещественное с выталкиванием
FSUBR	dst, src	dst = src — dst;	Вычитание вещественное реверсивное
FSUBRP	ST(i), ST(0)	ST(i) = ST(0) - ST(i); $TOP_{SWR} += 1;$	Вычитание вещественное реверсивное с выталкиванием
FMUL	dst, src	dst = dst * src;	Умножение вещественное
FMULP	ST(i), ST(0)	ST(i) = ST(i) * ST(0); TOP _{SWR} +=1;	Умножение вещественное с выталкиванием
FDIV	dst, src	dst = dst / src;	Деление вещественное
FDIVP	ST(i), ST(0)	ST(i) = ST(i) / ST(0); TOP _{SWR} +=1;	Деление вещественное с выталкиванием
FDIVR	dst, src	dst = src /dst;	Деление вещественное реверсивное
FDIVRP	ST(i), ST(0)	ST(i) = ST(0) / ST(i); TOP _{SWR} +=1;	Деление вещественное реверсивное с выталкиванием

Арифметические команды

Команда	Пояснение	Описание	
FSQRT	ST(0) = √ST(0)	Вычисление квадратного корня	
FABS	ST(0) = ST(0)	Вычисление модуля	
FCHS	ST(0) = -ST(0)	Изменение знака	
FXTRACT	temp = ST(0); ST(0)=порядок(temp); TOP-=1; ST(0)=мантисса(temp);	Выделение порядка и мантиссы	
FSCALE	$ST(0) = ST(0) \cdot 2^{ST(1)}$	Масштабирование по степеням 2	
FRNDINT	ST(0)=(ST(0))	Округление ST(0)	
FPREM	CT(0) - CT(0) O*CT(1)	Частичный остаток от деления	
FPREM1	ST(0)=ST(0)-Q*ST(1)		

Арифметические команды

Команда	Пояснение	Описание
FSIN	ST(0) = sin(ST(0))	Вычисление синуса
FCOS	ST(0) = cos(ST(0))	Вычисление косинуса
FSINCOS	temp=ST(0); ST(0)=sin(temp); TOP- =1; ST(0)=cos(temp);	Вычисление синуса и косинуса
FPTAN	ST(0)=tg(ST(0)); TOP- =1; ST(0)=1.0;	Вычисление тангенса
FPATAN	ST(1)=atan(ST(1)/ST(0)); TOP+=1;	Вычисление арктангенса
F2XM1	ST(0)=2 ^{ST(0)} -1;	Вычисление выражения y=2 ^x -1
FYL2X	x=ST(0); y=ST(1); TOP+=1; ST(0)=y*log ₂ x;	Вычисление выражения у*log ₂ x
FYL2XP1	x=ST(0); y=ST(1); TOP+=1; ST(0)=y*log ₂ (x+1);	Вычисление выражения y*log ₂ (x+1)

Пример

```
int main(){
 float a, b, res;//обязательно тип данных float
  cin >> a >> b;
  _asm{
    fld a;//st(0) = a
    fld b;//st(0) = b, st(1) = a
    fadd st(0), st(1); // st(0) = st(0) + st(1)
    fstp res; //res = st(0)
  cout << " a + b = " << res;
```