DAY 8

Spanning Tree

A tree T is said to be a *spanning tree* of a connected graph G if T is a subgraph of G and T contains all vertices of G. For instance, the subgraph in heavy lines in Fig. 3-17 is a spanning tree of the graph shown.

Fig. 3-17 Spanning tree.

A spanning tree is a sub-graph of G that includes all the vertices of G. The edges of the graphs which are present in the tree are called **branches** and remaining edges of the graph are called **chords**.

Solve

Identify the branches and chords from T2 and T3.

Constructing a ST

Cutting-down Method:

- 1. Start choosing any cycle in G.
- 2. Remove one of cycle's edges.
- 3. Repeat this procedure until there are no cycle left.

Constructing a ST

Building-up Method

- 1. Select edges of G one at a time. in such a way that no cycles are created.
- 2. Repeat this procedure until all vertices are included.

General Properties of Spanning Tree

- A connected graph G can have more than one spanning tree.
- All possible spanning trees of graph G, have the same number of edges and vertices.
- The spanning tree does not have any cycle (loops).
- Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning tree is **minimally connected**.
- Adding one edge to the spanning tree will create a circuit or loop, i.e.
 the spanning tree is maximally acyclic.

Application of Spanning Tree

- Network connectivity with minimum wiring
- Computer Network Routing Protocol
- Cluster Analysis
- •Electronic circuit board design
- **■**Biomedical image analysis

Solve

Define a Spanning Forest with appropriate diagram.

Relation between Branch and Chord

Тнеовем 3-12

With respect to any of its spanning trees, a connected graph of n vertices and e edges has n-1 tree branches and e-n+1 chords.

$$n = 7, e = 14$$

Branch =
$$(n-1) = 6$$

Chord =
$$(e-n+1) = 8$$

Fig. 3-17 Spanning tree.

Fig. 3-18 Farm with walled plots of land.

Branch =
$$(n-1) = 9$$

Chord =
$$(e-n+1) = 6$$

Rank and Nullity

rank
$$r = n - k$$
,
nullity $\mu = e - n + k$.

rank of G = number of branches in any spanning tree (or forest) of G, nullity of G = number of chords in G, rank + nullity = number of edges in G.

Kirchhoff's Matrix-tree Theorem

Steps:

- 1. Construct the Laplacian Matrix Q for G which can be done as:
 - a) for i != j if vertex i and j are adjacent in G, then q_{ij} = -1. else, q_{ij} = 0
 - b) for i = = j $q_{ii} = degree of vertex i in G.$
- 2. From Q, construct matrix Q' by deleting any one row and any one column from Q.
- 3. Calculate determinant of Q' to get total no. of ST in G.

Q =	3	-1	-1	-1
	-1	2	0	-1
	-1	0	2	-1
	-1	-1	-1	3

By deleting row 1 and column 1 we get:

	т	-	т
	2	0	-1
Q' =	0	2	-1
	-1	-1	3

$$Det(Q') = 2 X [(2X3) - (-1)X(-1)] - 0 + (-1) X [0X(-1) - (2)X(-1)] = 8$$

Solve

Calculate the number of Spanning Tree in the above graph