I. Selección única. (total de la sección: 7 puntos)

A continuación, se presentan 7 ítems de selección única, para cada uno de ellos seleccione, entre las 4 opcione aquella que a su juicio responda correctamente a la pregunta o situación planteada. Debe reportar las opciones marcad en la tabla de respuesta de la primera página del examen.

1. [1 punto] Sean P, S y T proposiciones simples. Si se sabe que $(P \lor \neg S)$ es falsa y $[(P \lor \neg S) \leftrightarrow \neg T]$ es falsa P=F
S=V: 7S=F entonces con certeza se cumple que:

- B) $(P \lor T \lor \neg S)$ es verdadera.
- C) P es falsa, S es verdadera y T es verdadera.
- D) $(P \vee \neg S \vee \neg T)$ es falsa.
- 2. [1 punto] Sean Q y T dos proposiciones simples. Al utilizar las leyes de la lógica para simplificar la proposiciones simples. compuesta $\neg Q \lor (Q \land T)$ se obtiene como resultado:
- A) Vo
- B) -Q X
- C) F₀ √

- JQV(QAT) (TOVA) A (TOVIT) VO A (TQ VT)
- 3. [1 punto] Considere los conjuntos $A = \{-7, -3, 3\}$ y $B = \{5, 6, 9\}$, sobre los cuales se define las siguien proposiciones:
 - I. $(\forall y \in A)(\exists z \in B)[\{y, z\} \in G]$, donde $G = \{\{-7, 9\}, \{-3, 5\}, \{3, 9\}\}$
 - II. $(\forall m \in A)(\exists x \in B)[(x+m) \in \{2,11\}]$

De las proposiciones anteriores, ¿cuál o cuáles son con certeza verdaderas?

- A) Ambas.
- B) Solo la I.
- Ninguna.
- D) Solo la II.
- I)[{y,z}eg] -7 7 6 X
- II ((x+m) € {2,11} 3+ x = 11 /2

4. [1 punto] Considere los conjuntos $A = \{-5, 1, 8\}$ y $B = \{-1, 2, 5\}$, sobre los cuales se define las siguientes A Existe un solo w para todo z

I. $(\exists w \in A)(\forall z \in B)[(w, z) \in H]$, donde $H = \{(1, -1), (1, 2), (8, 5)\} \times$

II. $(\exists n \in A)(\forall p \in B)[p-n \text{ es un número negativo}]$

De las proposiciones anteriores, ¿cuál o cuáles son con certeza verdaderas?

B) Solo la I.

B) Solo la I.

X Solo la II.

D) Ambas.

II)
$$\begin{bmatrix} p-n & es & un & número & negativo \end{bmatrix}$$
 $2-8=-6$
 $5-8=-3$

D) Ambas.

- I. La proposición $\neg (P \land Q) \rightarrow Y$ es equivalente a $(P \land Q) \lor Y$.
- II. La proposición $P \vee (P \wedge Q)$ es equivalente a $P \wedge Q$.

Con certeza, ¿cuál o cuáles afirmaciones son verdaderas?

A) Solo la II.

- B) Ninguna.
- C) Ambas.
- Solo la I.

6. [1 punto] Sean Q, T y X tres proposiciones lógicas cualesquiera. De las premisas:

- 1. $\neg Q \rightarrow T$ Premisa
- 2. $X \wedge \neg T$ Premisa

Se puede concluir que:

- A) $\neg Q \lor \neg X$
- B) $Q \wedge \neg X$
- $D) \neg Q \wedge \neg X$

- 7. [1 punto] Sea B y M conjuntos no vacíos. Considere las siguientes proposiciones: Conjunto ASB = {x/xeA > xeB}
 - I. Si $\{z\} \in P(M)$, entonces $z \subseteq M$.

Partes P(x) = { χ II. Si $X \in P(B)$, entonces $(\forall w) [w \in X \to w \in B]$.

¿Cuál o cuáles afirmaciones son con certeza verdaderas?

- A) Ambas. X
- B) Solo la II. X
- Solo la I.
- D) Ninguna.

Respuesta corta. (total de la sección: 3 puntos)

A continuación, se presentan 3 ítems de respuesta corta. Resuelva cada uno de ellos y anote el resultado en la lín indicada. Debe reportar su respueta en la tabla de respuesta de la primera página del examen.

8. [1 punto] Considere los conjuntos $A = \{-1, \{2\}\}$ y $B = \{\{-1, \{2\}\}\}$. La presentación por extensión del conjuntos $A = \{-1, 2\}\}$, corresponde a: $\{-1, 2\}\}$ - $\{-1, 2, \{-1, 2\}\}$

9. [1 punto] El conjunto: $P(\{\emptyset, -1\})$ expresado por extensión corresponde a: $\{X \mid X \subseteq \{\emptyset, -1\}\}$

Scanned with CamScanner

III. Desarrollo. (total de la sección: 16 puntos)

A continuación, se presentan 5 preguntas. Para cada una de ellas resuelva en el espacio en blanco lo solicitado. Justifique cada uno de los paso que lo llevaron a obtener su respuesta.

11. [4 puntos] Sean P y Q proposiciones simples. Construya la tabla de verdad para la proposición compuesta $[P \to (Q \land \neg P)] \leftrightarrow P$. Determine si la proposición dada es tautología, falacia o eventualidad.

	P	7P	Q	QATP	P>(QATP)	[P>(QATP)] ->P
	V	F	V	F	F	F
1/	V	F	F	F	F	5
7	pF.	V	V	V	V	F
/	F	V	F	FV	V	F

12. [3 puntos] Sean A y B conjuntos arbitrarios tal que: |A| = 19 y |B - A| = 6. Determine la cardinalidad del conjunto $(A \cup B) \otimes \mathcal{P}(A)$. Justifique.

19 = 6 ANB X = 25 19 25 A B 13. [3 puntos] Sean B y D dos conjuntos definidos sobre un universo U. Use las leyes de conjuntos para simplifica completamente el siguiente conjunto:

 $[A \cup \overline{B \cup A}] \cap \overline{B}$

En cada paso debe justificar indicando la ley de conjunto utilizada.

14. [3 puntos] Considere las proposiciones simples P, Q, R, S y T. Demuestre la validez de Ta partir de la siguientes premisas. En cada paso debe indicar la ley de la lógica o la regla de inferencia empleada.

1.
$$\neg P \rightarrow Q$$
 Premisa
2. $\neg (P \lor \neg R)$ Premisa
3. $S \lor \neg (R \land Q)$ Premisa
4. $T \rightarrow \neg S$ Premisa
Premisa
De 5) por DN
 $\Rightarrow \neg T$ De 6) y 1) por MT
 $\Rightarrow P$ De 12) y 3) por SD
 $\Rightarrow P$ De 13) y H) por MT
 $\Rightarrow P$ De 10) por DM
 $\Rightarrow P$ De 10) por DM
 $\Rightarrow P$ De 10) por adi
 $\Rightarrow P$ De 11) por adi

Scanned with CamScanner

15. [3 puntos] Sean A, B y C conjuntos cualesquiera. Muestre que:

