CS372 FORMAL LANGUAGES & THE THEORY OF COMPUTATION

Dr. Nguyen Thi Thu Huong.

Phone: +84 24 38696121, Mobi: +84 903253796

Email: huongnt@soict.hust.edu.vn,

huong.nguyenthithu@hust.edu.vn

Unit 3 Closure Properties, Regular Expressions

Closure Properties

- We carry out operations on one or more languages to obtain a new language
- It's helpful when interesting properties are preserved
- A variety of operations which preserve regularity, i.e. the universe of regular languages is closed under these operations: union, intersection, complementation, star, concatenation

Regular operations

Union: ∪

Example: $0 \cup 1$;

 Concatenation: ° (In writing regular expressions, no character is used to represent this operation)

Example: 0 1

Star*

Example: 0*

Theorem

 The class of regular languages is closed under the union operation.

PROOF IDEA

- Given regular languages L_1 and L_2 and want to prove that $L_1 \cup L_2$ is regular.
- The idea is to take two NFAs, N₁ and N₂ for L₁ and L₂, and combine them into one new NFA,
 N

Construction of an NFA N to recognize L₁ U L₂

Add a new start state that branches to the start states of the old machine with ε arrows

Formal Description

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize L_1 , $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2 .
Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $L_1 \cup L_2$.
1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
2. The state q_0 is the start state of N .

- The set of accept states F = F₁ ∪ F₂.
 Define δ so that for any q ∈ Q and any a ∈ Σ ∪ ε,
- $$\begin{split} \delta(q, a) &= \delta_1(q, a) \text{ if } q \in Q1 \\ \delta_2(q, a) \text{ if } q \in Q2 \\ \{q_1, q_2\} \text{ if } q = q_0 \text{ and } a = \epsilon \\ \emptyset \text{ if } q = q_0 \text{ and } a \neq \epsilon. \end{split}$$

Theorem

- The class of regular languages is closed under the concatenation operation
- PROOF IDEA Take two NFAs, N₁ and N₂ for L₁ and L₂, and combine them into a new NFA N
 - Assign N's start state to be the start state of N₁.
 - The accept states of N_1 have additional ϵ arrows to the start state of N_2
 - The accept states of N are the accept states of N₂
 - N accepts when the input can be split into two parts,
 the first accepted by N₁ and the second by N₂

Construction of N to recognize L₁ L₂

Formal description

```
Let N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) recognize L_1, N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) recognize L_2.
Construct N = (Q, \Sigma, \delta, q_1, F_2) to recognize L_1 L_2.
1. Q = Q_1 \cup Q_2.
```

- 2. The start state q_1 is the same as the start state of N_1 .
- 3. The accept states F_2 are the same as the accept states of N_2 .
- 4. Define δ so that for any $q \in Q$ and any $a \in \Sigma \cup \epsilon$,

$$\begin{split} \delta(q,\,a) &= \; \delta_1(q,\,a) \; q \in Q_1 \; \text{and} \; q \not\in F_1 \\ \delta_1(q,\,a) \; q \in F_1 \; \text{and} \; a \neq \epsilon \\ \delta_1(q,\,a) \; \cup \; \{q_2\} \; q \in F_1 \; \text{and} \; a = \epsilon \\ \delta_2(q,\,a) \; q \in Q_2. \end{split}$$

Theorem

- The class of regular languages is closed under the star operation.
- Proof idea
 - Take an NFA N_1 for L_1 and modify it to recognize $L_1^{\ *}$
 - N like N_1 with additional ϵ arrows returning to the start state from the accept states.
 - Modify N so that it accepts ε

Construction of N to recognize L₁*

Formal description

- Let N₁ = (Q₁, Σ, δ₁, q₁, F1) recognize L₁.
 Construct N = (Q, Σ, δ, q₀, F) to recognize L₁* .
 1. Q = {q₀} ∪ Q₁.
 2. The state q₀ is the new start state.
 - 3. $F = \{q_0\} \cup F_1$.
 - $\delta(q, a) = \delta_1(q, a)$ if $q \in Q_1$ and $q \notin F_1$ $\delta_1(q, a)$ if $q \in F_1$ and $a \neq \epsilon$ $\delta_1(q, a) \cup \{q_1\}$ if $q \in F_1$ and $a = \epsilon$ $\{q1\}$ if $q = q_0$ and $a \neq \epsilon$.

Regular expression

Have you ever seen a regular expression?

Parse: username@domain.TLD (top level domain)

Regular expression

```
3 saved
                      index.js
Files
                           const phoneNumbers = [
index.js
                             '097.123.1234',
                            '091-303-0001',
                            '0123 123 324'
                           1:
                           function sanitize(phoneNumbers) {
                             return phoneNumbers.map(str => {
                               return str.replace(/[. -]/g, '');
                       9
                      10
                             });
                      11
                      12
                      13
                           sanitize(phoneNumbers);
                      14
                      15
                           Expected:
                      16
                      17
                      18
                            '0971231234',
                            '0913030001',
                      19
                      20
                            '0123123324'
                      21
                      22
```

```
https://CaringGlumInterchangeability.nhim175.repl.run
node v10.15.2 linux/amd64
=> [ '0971231234', '0913030001', '0123123324' ]
```

Regular expression

- Similar to arithmetic expression, we can use the regular operations to build up expressions describing languages, which are called regular expressions.
- Example is: (0∪1)0*.
- Applications
 - Patterns for searching
 - Description of tokens for scanner generators
 - Pattern in programming languages like
 Python, in tools of UNIX like owk, grep

FORMAL DEFINITION OF A REGULAR EXPRESSION

Say that R is a regular expression if R is

- 1. a for some a in the alphabet Σ ,
- 2. ε,
- 3. Ø,

Assume r₁ and r₂ are regular expressions denote languages R₁ and R₂

- 4. $(r_1 + r_2)$, is the regular expression denotes $R_1 \cup R_2$
- 5. $(r_1 r_2)$, is the regular expressions denotes $R_1 \circ R_2$
- 6. (r_1^*) , is the regular expression denotes R_1^*

Precedence of regular operations

- Precedence
 - Stars
 - Concatenations
 - Unions
 - Example

$$((0((0+1)^*))0)=0(0+1)^*0$$

• $rr^* = r^*r = r^+$

Examples

- Assume that the alphabet Σ is{0,1}
 - 1. $0*10* = \{w | w \text{ contains a single 1} \}$.
 - 2. $(0+1)*1(0+1)* = \{w | w \text{ has at least one } 1\}.$
 - 3. $\Sigma^*001\Sigma^* = \{w | w \text{ contains the string } 001 \text{ as a substring} \}$.
 - 4. $1*(0+1)* = \{w | w \text{ begin with at least one } 1\}.$

Equivalence of regular expressions and finite automata

- Theorem: A language is regular if and only if some regular expression describes it.
- To prove the theorem, let's divide it into 2 lemmas:
 - Lemma: If a language is described by a regular expression, then it is regular
 - Lemma: If a language is regular, then it is described by a regular expression

- Given a regular expression R describing some language A.
- Convert R into an NFA recognizing A.

- We consider the six cases in the formal definition of regular expressions.
 - 1. ϵ (empty string)
 - 2. a (a is a symbol)
 - 3. A+B (union)
 - 4. AB (concatenation)
 - 5. A* (star)

- Without loss of generality, we show that language L defined by regular expression E is accepted by for some NF A with
 - 1. Exactly one accepting state
 - 2. No arcs into the initial state
 - 3. No arcs out of the accepting state
- The proof is by structural induction on R, following the recursive definition of regular expressions.

NFAs for the empty set, a and &

An NFA for A B

An NFA for A*

Example: Building NFA for 01*+1

Model of a scanner generator

Error message

How a scanner program is built?

- The scanner program is built from an deterministic finite automaton
- We need a process to convert from a set of regular expression to a deterministic finite automaton

Conversion of Finite Automata to Regular Expression

- Using the concept of generalized nondeterministic finite automaton, GNFA in a special form:
 - The start state has transition arrows going to every other state but no arrow coming in from any other state.
 - There is only a single accept state, and it has arrows coming in from every other state but no arrow going to any other state.
 - The accept state is not the same as the start state.
 - Except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself.

Method

- Convert a DFA into a GNFA in the special form
- Convert a GNFA into a regular expression
- Method details will be left for the presentation (pp 70-76, Sipser's book)