The Lecture Title

Scribe: Your Name

Date: Day, Mon, Date Year

1 Complex Roots and Bell Numbers

Consider writing $\frac{1}{1+x^2}$ as a series:

$$\frac{1}{1+x^2} = \sum (-x^2)^n = \sum (-1)^n x^{2n}$$

Notice that if n is odd, the coefficient of x^n is odd - otherwise, the coefficient is $(-1)^n$.

However, we could also decompose this into linear terms that are

Consider the recurrence relation $a_n = -a_{n-2}$, $a_0 = 0$, $a_1 = 1$. If we apply the technique we learned last class, we can consider the characteristic polynomial:

$$x^2 + 1 = 0 \implies x = \pm i$$

Therefore, $a_n = Ai^n + B(-i)^n$. Plugging in our initial conditions, we have

$$A+B=0$$
 $Ai-Bi=1 \rightarrow A=-rac{i}{2}$ $B=rac{i}{2}$

Altogether, this gives $a_n = -\frac{1}{2}i \cdot i^n + \frac{1}{2} \cdot i(-i)^n$. This is a really complex way to express a clearly periodic sequence of period 4 - why would we ever need to use complex numbers if we have functions (ie. \sin and \cos) that can do this periodicity for us?

Let us backtrack and see if we can find a way to do this using trigonometric functions by applying DeMoivre's Theorem. Notice that the roots of the characteristic polynomial can be expressed as

$$r_1 = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

$$r_2 = \cos\frac{\pi}{2} - i\sin\frac{\pi}{2}$$

Notice that if we raise to the nth power, we have

$$a_n = Ar_1^n + Br_2^n = A\left(\cos\frac{\pi n}{2} + i\sin\frac{\pi n}{2}\right) + B\left(\cos\frac{\pi n}{2} - i\sin\frac{\pi n}{2}\right)$$

If we combine like terms, we have

$$a_n = (A+B)\cos\left(\frac{n\pi}{2}\right) + (A-B)\sin\left(\frac{n\pi}{2}\right)$$

The Lecture Title Page 2

Since all of the terms of the sequence are real, we must force A and B to have the same real part. In general, we can always just solve instead for the coefficients of \sin and \cos instead.

$$a_n = C\cos\left(\frac{n\pi}{2}\right) + D\sin\left(\frac{n\pi}{2}\right)$$

When we plug in:

$$a_0 = 0 = C \cos 0 \implies C = 0$$

 $a_1 = 1 = D \sin \frac{\pi}{2} \implies D = 1$

which gives

$$a_n = \sin \frac{\pi n}{2}$$

We can use a similar method to find the roots of unity for $a_n = -a_{n-6}$.

Let's do this for $a_n = a_{n-1} - a_{n-2}, a_1 = 1, a_2 = 0$. Notice that the characteristic polynomial is

$$x^2 - x + 1 = 0 \implies x = \frac{1 \pm \sqrt{3}i}{2}$$

This is a 6th root of unity, so we can note that we can simply write this as a the linear combination:

$$a_n = A\cos\frac{n\pi}{3} + B\sin\frac{n\pi}{3}$$

We plug in our initial conditions:

$$a_1 = \frac{1}{2}A + \frac{3}{2}B = 1$$

$$a_2 = -\frac{1}{2}A + \frac{3}{2}B = 0$$

$$\implies A = 1, B = \frac{1}{\sqrt{3}}$$

This gives $a_n = \cos \frac{n\pi}{3} + \frac{1}{\sqrt{3}} \sin \frac{n\pi}{3}$

2 Bell Numbers

Recall the **Bell number** B_n is the number of non-empty partitions of a set of n elements. By definition of the Stirling numbers, we have this is equal to

$$B_n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix}$$

The Lecture Title Page 3

Recall also that $x^n = \sum_{k=0}^n {n \brace k} x^k$. This is kind of close to the Bell numbers, but we can use this to get to an explicit formula for the Bell numbers.

Let *X* be a random variable. Using linearity of expectation, we have that

$$E[X] = \sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} E[X^{\underline{k}}]$$

We are looking for a random variable X, then, such that $E[X^{\underline{k}}] = 1$ - this will give a computation for B_n .

It turns out that one exists! Let $X \sim \operatorname{Poisson}(\lambda)$. The **Poisson distribution** is the limiting case of the binomial distribution. A diagram of the Poisson distribution is included below.

The probability distribution function for a Poissson distribution - if $X \sim \text{Poisson}(\lambda)$, then $P(x=k) = \frac{\lambda^k}{k!} e^{-\lambda}$. To prove this is valid, we have to show that:

$$P(x=k)=\sum_{k=0}^{\infty}P(x=k)=\sum_{k=0}^{\infty}\frac{\lambda^k}{k!}e^{-\lambda}=e^{-\lambda}\sum_{k=0}^{\infty}\frac{\lambda^k}{k!}=e^{-\lambda}e^{\lambda}=1$$
 We now compute $E[X]$ for the Poisson distribution:

$$E[X] = \sum_{k=0}^{\infty} kP(x=k) = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda$$

We can compute the expected values we want using a moment-generating function, but we can write these out explicitly:

$$E[X^n] = \sum_{k=0}^{\infty} k^n P(x=k) = \sum_{k=0}^{\infty} k^n \frac{\lambda^k}{k!} e^{-\lambda}$$

To find $E[X^{\underline{k}}]$, we can instead look start with $E[t^X]$ and take successive derivatives (this is the **factorial generating function**):

$$E[t^X] = \sum_{k=0}^{\infty} t^k P(x=k) = \sum_{k=0}^{\infty} t^k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(t\lambda)^k}{k!} = e^{-\lambda} (e^{t\lambda}) = e^{\lambda(t-1)}$$

Notice that if we take successive derivatives with respect to t, we have:

$$\frac{d^n}{dt^n}e^{\lambda(t-1)} = \lambda^n e^{\lambda(t-1)}$$

Differentiating the sum, we have that this is also

$$E[X^{\underline{n}}t^{X-n}] = e^{-\lambda} \sum_{k=0}^{\infty} \frac{k^{\underline{n}}t^{k-n}\lambda^k}{k!}$$

When plugging in t = 1 we obtain that

$$E[X^{\underline{n}}] = \lambda^n$$

The Lecture Title Page 4

If we let $X \sim \text{Poisson}(\lambda = 1)$, and thus $E[X^{\underline{n}}] = 1$, we can compute B_n :

$$E[X^n] = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!} = \sum_{k=0}^n {n \brace k} = B_n$$

We can also construct a recursive relation for the Bell numbers using a combinatorial argument. Notice that the element n+1 of the set $\{1,2,\ldots n,n+1\}$ can be put in a subset of any choice of k other elements, and then partitioning the remaining B_{n-k} elements. This gives the recursiion relation

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_{n-k}$$