Семинар по функциональному анализу. 315 группа, 27.04.20 (42-ой день карантина)

"Вполне непрерывные операторы"

Перед решением задач по этой теме рекомендуется самостоятельно прочитать параграфы 20.1 –20.4 (стр. 212 – 219) из книги В.А. Треногина "Функциональный анализ".

Линейный ограниченный оператор A, действующий из нормированного пространства X в нормированное пространство Y, называется вполне непрерывным, если замкнутый единичный шар пространства X он переводит в предкомпактное множество пространства Y.

Замечание. Вспомните критерии предкомпактности множеств в пространствах $C[a, b], L_2[a, b]$ и l_2 !

Теорема 1. Если оператор A вполне непрерывен, то любое ограниченное множество в X он переводит в предкомпактное множество в Y.

Теорема 2. Множесство $\sigma(X,Y)$ вполне непрерывных операторов является подпространством в L(X,Y).

Теорема 3. $Ecnu\ X\ unu\ Y\ конечномерно,\ то\ любой\ непрерывный\ линейный\ оператор\ вполне\ непрерывен.$

Теорема 4. Если $A = \lim_{n \to \infty} A_n$ (в смысле операторной нормы), где A_n – вполне непрерывны или конечномерны, то A вполне непрерывен.

Теорема 5. Пусть $A \in L(X,Y)$, $B \in L(Y,Z)$. Если хотя бы один из этих операторов вполне непрерывен, то вполне непрерывным будет и их произведение BA.

Теорема 6. Пусть $A \in \sigma(X,Y)$. Если $x_n \to x_0$, $n \to \infty$ слабо, то $Ax_n \to Ax_0$, $n \to \infty$ сильно.

Иногда последнюю теорему используют в качестве определения вполне непрерывного оператора.

Задача 1 (ТПС, 16.1 (a,б)). Какие из следующих операторов $A: C[0,1] \to C[0,1]$ являются вполне непрерывными?

1.
$$(Ax)(t) = tx(t)$$
;

2.
$$(Ax)(t) = \int_0^t x(\tau) d\tau$$
.

Решение:

а) Оператор не является вполне непрерывным. Рассмотрим, например, совокупность функций $x_n = t^n$. Эти функции лежат в единичном шаре (ограничены в совокупности), но совокупность функций $A(x_n) = t^{n+1}$ не образует предкомпактное множество (т.к. поточечно функции сходятся к элементу не из пространства C[0,1]).

б) Оператор является вполне непрерывным:

$$A(B_1(0)) = \left\{ y(t) = \int_0^t x(\tau)d\tau : x(\tau) \in B_1(0) \right\} = X.$$

Множество X является равномерно ограниченным ($\forall y \in X \|y\|_{C[0,1]} \le 1$), и составляющие его функции являются равностепенно непрерывны:

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall t_1, t_2: |t_1 - t_2| \le \delta \Rightarrow \forall y \in X \ |y(t_1) - y(t_2)| = \left| \int_{t_1}^{t_2} x(\tau) d\tau \right| \le |t_1 - t_2| < \varepsilon,$$

если $\delta < \varepsilon$. По теореме Арцела-Асколи множество X является предкомпактным в C[0,1].

Задача 2 (ТПС, 16.3). При каком условии на функцию $\varphi(t) \in C[0,1]$ оператор $A: C[0,1] \to C[0,1], (Ax)(t) = \varphi(t)x(t)$ будет вполне непрерывным?

Решение: Пусть существует $t_0 \in [0,1]$: $\varphi(t_0) \neq 0$. Построим последовательность $x_n(t) \in C[0,1]$: $x_n(t_0) = 1 = \sup_{[0,1]} |x_n(t)|, \ x_n(t) = 0$ при $|t-t_0| \geq 1/n$. Тогда последовательность $\{x_n\}$ является ограниченной, а $\{Ax_n\}$ — не является предкомпактным множеством. Значит, оператор A не является вполне непрерывным. То есть для вполне непрерывности подходит только нулевая функция $\varphi(t)$.

Задача 3 (ТПС, 16.10). *Будет ли вполне непрерывен оператор вложения* $A: l_1 \to l_2, \ Ax = x?$

Решение: Нет. Пример: $x_n = (0, 0, ..., 0, 1, 0, ...)$ (1 стоит на n-ом разряде).

Задача 4 (ТПС, 16.23). Пусть оператор A непрерывен, оператор A^*A вполне непрерывен. Доказать, что A вполне непрерывен.

Решение: Рассмотрим ограниченную последовательность $\{x_n\}$: $||x_n|| \leq M$. Тогда можно выделить подпоследовательность $\{x_{n_k}\}$, для которой $A^*Ax_{n_k}$ — фундаментальная. Но $||Ax_{n_k1}-Ax_{n_k2}||^2 \leq 2M||A^*Ax_{n_k1}-A^*Ax_{n_k2}||$. Следовательно, последовательность Ax_{n_k} является фундаментальной, а значит оператор A вполне непрерывен.

Задача 5 (ТПС, 16.24). Доказать, что если оператор A вполне непрерывен, то и A^* вполне непрерывен.

Peшение: Если A вполне непрерывен, то и AA^* – вполне непрерывен. Но $AA^* = (A^*)^*A^*$. Следовательно, в силу предыдущей задачи, A^* вполне непрерывен.

Домашнее задание: № 16.1(в,г,д), 16.5, 16.7, 16.9, 16.12, 16.20, 16.26.