Geometry

affine hyperplane: a set of the form $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{a} \cdot \mathbf{x} = t\}$

halfspace: a set of the form $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{a} \cdot \mathbf{x} \ge t\}$

polyhedron: an intersection of a finite number of half spaces, has form $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$

polytope: a bounded polyhedron

convex hull: $conv(a_1, ..., a_k) = \{\sum_i \lambda_i a_i : \sum_i \lambda_i = 1, \lambda_i \ge 0\}$

vertex: there exists a linear program for which \mathbf{x} is the unique optimal solution.

extreme point: is not the convex combination of any two other points in \mathcal{P} .

basic solution: in \mathbb{R}^n all equality constraints and a total of n linearly independent constraints active

Linear Programming (A is an $m \times n$ matrix)

equality standard form: $\min / \max \{ \mathbf{c} \cdot \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0} \}$, col. basis m vars. allowed to be $\neq 0$ $(m \le n)$

inequality standard form: $\min / \max \{ \mathbf{c} \cdot \mathbf{x} : \mathbf{A}\mathbf{x} \ge \mathbf{b} \}$, row basis: n active constraints $(n \le m)$

degenerate solution: a basic solution in \mathbb{R}^n with more than n constraints active

complexity: Depends on algorithm — ellipsoid method is poly-time, but simplex is (in general) not.

Simplex (equality standard form, min problem, "basis" refers to column basis)

BFS for a basis β : $\mathbf{x}_{\beta} = \mathbf{B}^{-1}\mathbf{b}$ with nonbasis entries 0 (where $\mathbf{B} = \mathbf{A}_{\beta}$)

reduced cost: $c_j - \mathbf{c}_{\beta}^{\mathsf{T}} \mathbf{B}^{-1} \operatorname{col}_j(\mathbf{A})$ [Bland: pick smallest index from all good reduced costs to enter basis]

what exits? for $\mathbf{u} = \mathbf{B}^{-1} \operatorname{col}_j(\mathbf{A}), \ \ell = \arg\min_{k:u_k>0} \frac{x_{\beta(k)}}{u_k} \text{ exits}^2 \text{ basis [Bland: if tie, pick smallest index]}$

certificate: $\lambda^{\intercal} = \mathbf{c}_{\beta}^{\intercal} \mathbf{B}^{-1}$ (requires β to be optimal)

Phase I: Mult. by -1 to get $\mathbf{b} \ge \mathbf{0}$, solve $\min\{\mathbf{1} \cdot \mathbf{w} : \mathbf{A}\mathbf{x} + \mathbf{w} = \mathbf{b}; \mathbf{x} \ge \mathbf{0}; \mathbf{w} \ge 0\}$, start BFS: $\mathbf{w} = \mathbf{b}, \mathbf{x} = \vec{0}$.

Duality (\mathcal{P} denotes the min LP and \mathcal{D} denotes the dual max LP for this <u>entire</u> section)

Weak duality: If x is feasible in \mathcal{P} and λ feasible in \mathcal{D} . Then $\lambda \cdot \mathbf{b} \leq \mathbf{x} \cdot \mathbf{c}$.

Strong duality: If \mathcal{P} has a finite optimal solution \mathbf{x} , then \mathcal{D} has a finite optimal solution λ and $\lambda \cdot \mathbf{b} = \mathbf{x} \cdot \mathbf{c}$.

Complementary Slackness 1: If x is <u>feasible</u> in \mathcal{P} and λ is <u>feasible</u> in \mathcal{D} , then

$$\lambda_i(\text{row}_i(\mathbf{A}) \cdot \mathbf{x} - b_i) \ge 0 \text{ for all } i \text{ and } x_j(c_j - \text{col}_j(\mathbf{A}) \cdot \boldsymbol{\lambda}) \ge 0 \text{ for all } j$$

Complementary Slackness 2: If x is optimal in \mathcal{P} and λ is optimal in \mathcal{D} , then

$$\lambda_i(\text{row}_i(\mathbf{A}) \cdot \mathbf{x} - b_i) = 0 \text{ for all } i \text{ and } x_j(c_j - \text{col}_j(\mathbf{A}) \cdot \boldsymbol{\lambda}) = 0 \text{ for all } j. \text{ In particular,}$$

$$\lambda_i \neq 0 \rightarrow \text{row}_i(\mathbf{A}) \text{ active in } \mathcal{P} \quad \text{and} \quad x_j \neq 0 \rightarrow \text{row}_j(\mathbf{A}^{\intercal}) = \text{col}_j(\mathbf{A}) \text{ active in } \mathcal{D} \quad (+ \text{ contrapositives})$$

Unbounded

NO

NO

YES

Infeasible

NO

YES

YES

Farkas: Exactly one of the following is true: (1) $\exists \mathbf{x} \geq \mathbf{0}$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$, (2) $\exists \boldsymbol{\lambda}$ s.t. $\mathbf{A}^{\mathsf{T}}\boldsymbol{\lambda} \geq \mathbf{0}$ and $\mathbf{b} \cdot \boldsymbol{\lambda} < 0$

minimize $\mathbf{c} \cdot \mathbf{x}$	$\mathbf{maximize} \ \boldsymbol{\lambda} \cdot \mathbf{b}$		
$row_i(\mathbf{A}) \cdot \mathbf{x} \ge b_i$	$\lambda_i \ge 0$		Finite O
$row_i(\mathbf{A}) \cdot \mathbf{x} \le b_i$	$\lambda_i \leq 0$	Finite Ont	YES
$row_i(\mathbf{A}) \cdot \mathbf{x} = b_i$	λ_i free	Finite Opt Unbounded	NO
$x_j \ge 0$	$\operatorname{col}_{j}(\mathbf{A}) \cdot \boldsymbol{\lambda} \leq c_{j}$	Infeasible	NO NO
$x_j \leq 0$	$\operatorname{col}_j(\mathbf{A}) \cdot \boldsymbol{\lambda} \geq c_j$	mieasible	NO
x_j free	$\operatorname{col}_j(\mathbf{A}) \cdot \boldsymbol{\lambda} = c_j$		

¹What is "good" will depend on whether LP is min (< 0) or max (> 0). If none are "good", you are at optimum.

²If all are nonpositive, problem is unbounded.