Abstract Algebra

Jatinder Singh

September, 2022

Contents

1	Groups	2
2	The Symmetric Group	3
3	Subgroups 3.1 Criteria for Subgroups	5 5
4	Integer Powers of Elements in a Group 4.1 Power of Elements in a Group	6 6 7
5	Cyclic Group	8
6	Cosets and Lagrange's Theorem	10
7	Normal Subgroups and Quotient Groups	12
8	Cosets and Quotient Groups 8.1 Normal Subgroups	14 15 15
9	Isomorphism	16
10	Homomorphism	17

Groups

Definition 1.1. A binary operation \bullet on a set S is a function $\bullet : S \times S \to S$. Notation: $a \bullet b := (a,b) \in S \times S$.

Definition 1.2. Let S be a set and $\bullet : S \times S \to S$ be a binary operation on S. An element $e \in S$ is an **identity element** of the set S if $s \bullet e = s$ and $e \bullet s = s$, $\forall s \in S$.

Theorem 1.3. Let S be a set and $\bullet : S \times S \to S$ be a binary operation on S. Then, there is at most one identity element, implying that if there is an identity element of the set S then it is unique.

Definition 1.4. A pair (G, \bullet) consisting of a set G and a binary operation $\bullet: G \times G \to G$ is a group if the THREE GROUP AXIOMS hold:

1. (Associativity): The binary operation • is associative. So

$$a \bullet (b \bullet c) = (a \bullet b) \bullet c, \forall a, b, c \in G$$

- 2. (Identity) G has an identity element. Since identity element is unique, it is usually denoted by e. So
- 3. (Inverse) Every element of G has an inverse. So

$$\forall a \in G, \exists b \in G \ni a \bullet b = b \bullet a = e$$

The Symmetric Group

Definition 2.1. A bijection whose domain and co-domain are equal is called a **permutation**. The set of permutations on A, (S_A) is the set of all bijections from a finite set A to itself. So $S_A = \{\sigma : \sigma \text{ is a bijection from } A \text{ to } A\}$.

Theorem 2.2. Given any set A, S_A is a group under function composition.

Definition 2.3. If $A = \{1, 2, 3, \dots, n\}$ then S_A is called the symmetric group on n numbers and is written as S_n

Theorem 2.4. Disjoint cycles commute.

Theorem 2.5. Let $\sigma \in S_n$. If $\sigma \neq I$, then σ can be written uniquely (upto the order of the cycles) as a single cycle or a finite product of disjoint cycles.

Definition 2.6. A 2-cycle is called a transposition.

Theorem 2.7. Every transposition is its own inverse.

Theorem 2.8. Any cycle in S_n can be written as the product of transpositions.

Theorem 2.9. Every permutation in S_n can be written as the product of transpositions.

Lemma 2.10. Let $I = \sigma_1 \sigma_2 \cdots \sigma_k$ where $\sigma_1, \sigma_2, \dots, \sigma_k$ are transpositions, then k is even.

Theorem 2.11. Let $\sigma \in S_n$.

Definition 2.12. We say a permutation is even if it can be written as a product of an even number of transpositions. Likewise, a permutation is odd if it can be written as a product of an odd number of transpositions.

Definition 2.13. The set of even permutations in S_n is denoted A_n (alternating group of degree n).

Theorem 2.14. A_n is a subgroup of S_n .

Theorem 2.15. For $n \ge 2$, $|A_n| = \frac{n!}{2}$.

Subgroups

3.1 Criteria for Subgroups

Definition 3.1. A subset H of a group G is a **subgroup** of G if H is a group using the same operation as in G.

Theorem 3.2. If H is a subgroup of a group G then

- 1. the identity element of H is the same as that of G;
- 2. for any $a \in H$, inverse of a in H is the same as the inverse of a in G.

Theorem 3.3 (Subgroup Three Step Test). A subset H of a group G is a subgroup of G if and only if

- (i) H is closed under the operation from G;
- (ii) H contains the identity element e from G; and
- (iii) $\forall a \in H, a^{-1} \in H$.

Theorem 3.4 (Subgroup Two Step Test). A nonempty subset H of a group G is a subgroup of G if and only if

- (i) H is closed under the operation from G;
- (ii) $\forall a \in H, a^{-1} \in H$.

Theorem 3.5 (Subgroup One Step Test). A nonempty subset H of a group G is a subgroup of G if and only if $\forall a, b \in H, ab^{-1} \in H$.

Theorem 3.6. The intersection of two subgroups of a group is a subgroup.

Theorem 3.7. For every integer $n \ge 0$, $n\mathbb{Z}$, is a subgroup of \mathbb{Z} . Moreover every subgroup of \mathbb{Z} is of the form $m\mathbb{Z}$ for some integer $m \ge 0$.

Integer Powers of Elements in a Group

4.1 Power of Elements in a Group

Definition 4.1. Let G be a group with identity e, and let $a \in G$. Then for each integer m, we define a^m as follows:

- $a^0 = e$:
- $a^m = a^{m-1}a, \forall m \ge 1;$
- $a^{-m} = (a^{-1})^m, \forall m \ge 1.$

Lemma 4.2. Let G be a group and let $a, b \in G$ such that ab = ba. Then $b^n a = ab^n, \forall n \in \mathbb{N}$.

Theorem 4.3. Let G be a group with identity e, and let $a, b \in G$ such that ab = ba. Then $(ab)^m = a^m b^m$ for every integer m.

Theorem 4.4 (Laws of Exponents). Let G be a group. For every $a \in G$ and every $m, n \in \mathbb{Z}$;

- (a) $a^{-m} = (a^{-1})^m = (a^m)^{-1}$;
- (b) $a^m a^n = a^{m+n}$;
- (c) $(a^m)^n = a^{mn}$.

4.2 Order of an Element

Definition 4.5 (Order of an Element). Let G be a group and $a \in G$. If there exists a positive integer n such that $a^n = e$, then a is said to be of finite order. If no such integer exists, then a is said to be of infinite order. If a is of finite order, then the least positive integer n such that $a^n = e$ is called the **order** of a.

Notation: The order of an element a is denoted by O(a) or |a|

Theorem 4.6. Let G be a group and $a, b \in G$. Then

- (a) $O(a) = 1 \iff a = e;$
- (b) $O(a) = O(a^{-1});$
- (c) a and gag^{-1} have the same order for all $g \in G$;
- (d) O(ab) = O(ba);
- (e) Suppose a is of infinite order. Then $a^n = e \implies n = 0$;
- (f) Suppose a is of infinite order. Then $a^i = a^j \iff i = j, \forall i, j \in \mathbb{Z}$;
- (g) Suppose a and b have finite order and ab = ba. Then $O(ab) \mid O(a) \cdot O(b)$

Theorem 4.7. If G is a group and $a \in G$ is an element of order n, then

- (a) $a^t = e \iff n \mid t$;
- (b) $a^i = a^j \iff n \mid i j \iff i \equiv j \pmod{n}$.

Theorem 4.8. In a finite group G each element is of finite order. In fact, the order of an element is at most |G|.

Cyclic Group

Definition 5.1. Let G be a group and let $a \in G$. The cyclic subgroup generated by a, denoted $\langle a \rangle$ is defined by

$$\langle a \rangle = \{ a^n : n \in Z \}$$

if the group operation is written in multiplicative notation or

$$\langle a \rangle = \{na : n \in Z\}$$

if the group operation is written in additive notation.

Definition 5.2. A group G is a cyclic group if $G = \langle a \rangle$ for some $a \in G$.

Theorem 5.3. Let G be a group and $a \in G$. Then the following statements are equivalent;

- (a) O(a) = n;
- (b) $|\langle a \rangle| = n$.

Theorem 5.4. Let G be a group and $a \in G$ and O(a) = n. Let $k \in \mathbb{Z}$. Then

- (a) $\langle a^k \rangle = \langle a^{\gcd(k,n)} \rangle$
- (b) *sd*

Definition 5.5. If a group contains some element a such that $G = \langle a \rangle$ then G is called a **cyclic** group and a is called a **generator** of G.

Theorem 5.6. Let G be a finite group of order n and let $a \in G$. Then $O(a) = n \iff G = \langle a \rangle$.

Theorem 5.7. Every cyclic group is abelian.

Theorem 5.8. Every subgroup of a cyclic group is cyclic.

Theorem 5.9. Let G be a finite cyclic group of order n. For each positive integer divisor m of n there is exactly one subgroup of G of order m and these are the only subgroups of G.

Theorem 5.10. Let G be a cyclic group of order n and suppose $G = \langle a \rangle$. Then the set of generators of $G = \{a^k : 1 \le k < n \text{ and } gcd(k, n) = 1\}$.

Corollary 5.10.1. The generators of \mathbb{Z}_n are the integers r such that $1 \le r < n$ and gcd(r, n) = 1.

Theorem 5.11. The subgroups of \mathbb{Z} are exactly $n\mathbb{Z}$ for $n = 0, 1, 2, 3, \cdots$.

Cosets and Lagrange's Theorem

Definition 6.1. Let H be a subgroup of a group G and let $g \in G$. The left coset of H in G determined by g is defined as the following set:

$$gH = \{gh : h \in H\}$$

The right coset is defined similarly by

$$Hg = \{hg : h \in H\}$$

Remark. Since eH = He = H, the subgroup H is both a left and right coset.

Theorem 6.2. If G is an abelian group and H is a subgroup of G then any left coset gH is equal to the right coset Hg.

Theorem 6.3. Let H be a subgroup of a group G and suppose $g_1, g_2 \in G$. The the following statements are equivalent;

- (a) $g_1H = g_2H$;
- (b) $g_2 \in g_1H$;
- (c) $g_1^{-1}g_2 \in H$;
- (d) $g_2H \subseteq g_1H$;
- (e) $Hg_1^{-1} = Hg_2^{-1}$.

Theorem 6.4. Distinct left cosets of H in G are pairwise disjoint.

Theorem 6.5. Let H be a subgroup of a group G. Then

- (a) If $g \in H$ then gH = H;
- (b) If $g \notin H$ then $gH \cap H = \emptyset$.

Theorem 6.6. Let H be a subgroup of a group G. Then the left cosets of H in G, partition G.

Theorem 6.7. Let H be a subgroup of a group G. The number of left cosets of H in G is the same as the number of right cosets of H in G.

Theorem 6.8. Let H be a subgroup of a group G and let $g \in G$. Then |H| = |gH|.

Definition 6.9. Let G be a group and H be a subgroup of G. The index of H in G is the number of left cosets of H in G, denoted by [G:H].

Theorem 6.10 (Lagrange's Theorem). Let G be a finite group and let H be a subgroup of G. Then |G|/|H| = [G:H]. In particular the number of elements in H must divide the number of elements in G.

Corollary 6.10.1. Let G be a finite group of order n. Then the order of every element of G is divisor of n.

Theorem 6.11. Every group of prime order p is cyclic.

Theorem 6.12. Let G be a group of order n > 1. Then G, contains a subgroup of prime order p.

Normal Subgroups and Quotient Groups

Definition 7.1. A subgroup H of a group G is normal in G if gH = Hg for all $g \in G$.

Theorem 7.2. For any group G, $\{e\}$ is a normal subgroup of G.

Theorem 7.3. Let H be a subgroup of G. Then H is normal if and only if $\{left\ cosets\} = \{right\ cosets\}.$

Theorem 7.4. Let G be a finite group and let H be a subgroup of G with index 2. Then H is a normal subgroup of G.

Theorem 7.5. Any subgroup of an abelian group is normal.

Theorem 7.6. Let G be a group and H be a subgroup of G. Then the following statements are equivalent;

- (a) The subgroup H is normal in G;
- (b) $\forall g \in G, gHg^{-1} \subseteq H;$
- (c) $\forall g \in G, gHg^{-1} = H$.

Theorem 7.7. *H* is a normal subgroup of $G \iff \forall g \in G, \forall h \in H, ghg^{-1} \in H$.

Theorem 7.8. Intersection of two normal subgroups is normal.

Theorem 7.9. Let H be a subgroup of a group G and let $g \in G$. Then

- (a) gHg^{-1} is a subgroup of G.
- (b) $|H| = |gHg^{-1}|$
- (c) If G has exactly one subgroup H of order k then H is normal in G.

Theorem 7.10. Let G be a group and let H be a noraml subgroup of G. Let $g \in G$ and $h \in H$. Then $\exists h' \in H \ni hg = gh' \text{ (or } gh = h'g)$.

Theorem 7.11. Let G be a group and let H be a noraml subgroup of G. Let $x_1 \in g_1H$ and $x_2 \in g_2H$. Then $x_1x_2 \in g_1g_2H$

Definition 7.12. Let A adn B be two sets of a group G. Then the composition $A \circ B$ is defined as the set

$$A \circ B = \{ab : a \in A, b \in B\}$$

Theorem 7.13. Suppose H is a subgroup of a group G. The following are equivalent;

- (a) $\forall x, y \in G, \exists g \in G \ni xH \circ yH = gH;$
- (b) $\forall x, y \in G, xH \circ yH = xyH$;
- (c) H is a normal subgroup of G.

Theorem 7.14. Let H be a normal subgroup of G. The cosets of H in G form a group under the operation of set composition.

Cosets and Quotient Groups

Definition 8.1. Let G be a group and H a subgroup of G. The **left coset** of H with representative $g \in G$ is defined as the following set:

$$gH = \{gh : h \in G\}$$

Right cosets are defined similarly by

$$Hg = \{hg : h \in H\}.$$

Remark. Since eH = H = He, the subgroup H is both a left and right coset.

Theorem 8.2. Let H be a subgroup of a group G and suppose that $g_1, g_2 \in G$. The following conditions are equivalent;

- (a) $q_1H = q_2H$;
- (b) $g_2 \in g_1H$;
- (c) $g_1^{-1}g_2 \in H$;
- (d) $g_2H \subseteq g_1H$;
- (e) $Hg_1^{-1} = Hg_2^{-1}$;

Theorem 8.3. Let H be a subgroup of a group G. Then the left cosets of H in G, partition G. That is, the group G is the disjoint union of the left cosets of H in G.

Definition 8.4. Let G be a group and H be a subgroup of G. The **index** of H in G is the number of left cosets of H in G, and is denoted by [G:H].

Theorem 8.5. Let H be a subgroup of a group G. The number of left cosets of H in G is the same as the number of right cosets of H in G.

Lemma 8.6. Let H be a subgroup of a group G with $g \in G$. Then |H| = |gH|.

Theorem 8.7 (Lagrange's theorem). Let G be a finite group and let H be a subgroup of G. Then |G|/|H| = [G:H] is the number of distinct left cosets of H in G. In particular, the number of elements in H must divide the number of elements in G.

Theorem 8.8. Let G be a finite group of order n. Then the order of every element of G is a divisor of n.

Theorem 8.9. Every group of prime order p is cyclic.

Theorem 8.10. Let G be a group of order n > 1. Then G contains a subgroup of prime order p.

8.1 Normal Subgroups

Definition 8.11. A subgroup H of a group G is **normal** in G if gH = Hg for all $g \in G$. That is, a normal subgroup of a group G is one in which the right and left cosets are precisely the same.

Theorem 8.12. Let G be a group, and let H be a subgroup of G with index G. Then G is a normal subgroup of G.

Theorem 8.13. Let H be a subgroup of G. Then H is normal if and only if $\{left\ cosets\} = \{right\ cosets\}.$

Theorem 8.14. Let G be a group and H be a subgroup of G. Then the following statements are equivalent;

- (a) The subgroup H is normal in G;
- (b) $\forall q \in G, qHq^{-1} \subseteq H$;
- (c) $\forall g \in G, gHg^{-1} = H$.

Theorem 8.15. Let G be a group and H be a subgroup of G. Then the subgroup H is normal in G iff $\forall g \in G, \forall h \in H, ghg^{-1} \in H$.

Theorem 8.16. Every subgroup of an abelian group is normal.

8.2 Quotient Group

Isomorphism

Homomorphism

Definition 10.1. A homomorphism between groups (G, \circ) and (G', \bullet) is a function $f: G \to G'$ such that

$$f(g_1 \circ g_2) = f(g_1) \bullet f(g_2)$$

for all $g_1, g_2 \in G$.

Theorem 10.2. Let $f: G \to G'$ be a homomorphism of groups and let e and e' be identity elements of G and G' respectively and let H be a subgroup of G. Then

- (a) f(e) = e';
- (b) $f(g^{-1}) = (f(g))^{-1}, \forall g \in G;$
- (c) f(H) is a subgroup of G';
- (d) If H is cyclic, then f(H) is cyclic;
- (e) If H is abelian, then f(H) is abelian;
- (f) If T is a subgroup of G' then $f^{-1}(T) = \{g \in G : f(g) \in T\}$ is a subgroup of G. Furthermore, if T is normal in G' then $f^{-1}(T)$ is normal in G;

Definition 10.3. Let $f: G \to G'$ be a homomorphism of groups and let e' is the identity element of G'. The set $f^{-1}(\{e\})$ is called the **kernal** of f, and is denoted by ker(f).

Theorem 10.4. Let $f: G \to G'$ be a homomorphism of groups. Then ker(f) is a normal subgroup of G.