OLAPBIRCH INTEGRAZIONE DI UN ALGORITMO DI CLUSTERING GERARCHICO A SUPPORTO DELLE TECNOLOGIE OLAP

Relatore: Laureando:

Prof. Michelangelo Ceci M. Cristina Tarantino

Correlatori:

Prof. Alfredo Cuzzocrea Prof. Donato Malerba

Corso di Laurea in Informatica e Tecnologie per la Produzione del Software Facoltà di Scienze MM. FF. NN. Università degli Studi di Bari "Aldo Moro"

Un processo decisionale è influenzato da un **fatto**, ovvero un insieme di **eventi**. Per poterli agevolmente analizzare si usa una rappresentazione concettuale **multidimensionale** i cui assi, chiamati dimensioni di analisi, definiscono diverse prospettive per la loro identificazione.

Data Warehouse Rappresentazione concettuale

Ciascuna dimensione è associata ad una **gerarchia di attributi dimensionali** di aggregazione che ne raggruppa i valori in diversi modi.

Analisi OLAP

Operatore Roll-Up

Operatore Slice-and-Dice

Operatore Drill-Down

Operatore Pivoting

Clustering Gerarchico

Il clustering gerarchico è un approccio di clustering che mira a costruire una gerarchia di cluster, sulla base di relazioni non note a priori.

Contributo

A differenza degli operatori OLAP, esso permette di avere gerarchie anche su attributi continui.

Scopo della Tesi

Permettere l'integrazione e l'interazione di un algoritmo di clustering gerarchico *incrementale* con le tecnologie OLAP

- Riconoscere classi di dati organizzati in un modello multidimensionale (OLAP Data Warehouse) in base ad attributi continui.
- Migliorare le prestazioni in termini di efficacia dei sistemi OLAP.
- Fornire un migliore supporto ai processi decisionali di un'organizzazione, accrescendo, la capacità dei decision maker di esplorare aspetti che normalmente le tecnologie OLAP non permettono di analizzare.

OLAPBIRCH

Interazione con motore OLAP Mondrian

```
<!ELEMENT Hierarchy ((%Relation;)?,(Level)*,
        (MemberReaderParameter)*, (Attribute)+, (Depth) )>
    <!ATTLIST Hierarchy
    hasAll (truelfalse) #REOUIRED
    allMemberName CDATA #IMPLIED
    allMemberCaption CDATA #IMPLIED
    primaryKey CDATA #IMPLIED
    primaryKeyTable CDATA #IMPLIED
    defaultMember CDATA #IMPLIED
    memberReaderClass CDATA #IMPLIED>
    <!ELEMENT Attribute EMPTY>
    <!ATTLIST Attribute
    name CDATA #IMPLIED
    table CDATA #REOUIRED
    column CDATA #REOUIRED
    nameColumn CDATA #REOUIRED
    type (Numeric) Numeric #REOUIRED>
    <!ELEMENT Depth EMPTY>
    <!ATTLIST Depth
```

```
< Attribute name="totalprice" table="orders" column="
         o totalprice" nameColumn="o totalprice" type="Integer"/>
      < Attribute name="orderpriority" table="orders" column="
         o_orderpriority" nameColumn="o_orderpriority" type="
         Integer" />
      < Depth value="10"/>
    </Hierarchy>
  </Dimension>
  <Measure name="guantity" column="l guantity" datatype="Numeric"</pre>
     aggregator="distinct-count" visible="true">
    </Measure>
    <Measure name="extendedprice" column="l_extendedprice"</pre>
       datatype="Numeric" aggregator="distinct-count" visible="
       true">
    </Measure>
    <Measure name="discount" column="l discount" datatype="Numeric</pre>
       " aggregator="distinct-count" visible="true">
    </Measure>
    <Measure name="tax" column="l_tax" datatype="Numeric"</pre>
       aggregator="distinct-count" visible="true">
    </Measure>
  </Cube>
(/Schema>
```

value (Numeric) Numeric #REQUIRED>

Interazione con motore OLAP Mondrian

Attraverso il nuovo file XML, che descrive le dimensioni di interesse, OLAPBIRCH ha tutte le informazioni per procede:

- nel recupero dei dati numerici dal database, attraverso una query SQL codificata dal file XML
- nella costruzione dell'abero dei CF, poichè nel file XML è automaticamente definito lo spazio dimensionale dei dati
- nel controllo della crescita della struttura gerarchica
- nel salvataggio delle etichette dei cluster per ciascun punto, in quanto nel file XML sono specificate le dimension table primarie per una particolare sessione di analisi

OLAPBIRCH

Interazione con motore OLAP Mondrian

Attraverso il nuovo file XML, che descrive le dimensioni di interesse, OLAPBIRCH ha tutte le informazioni per procede:

- nel recupero dei dati numerici dal database, attraverso una guery SQL codificata dal file XMI
- nella costruzione dell'abero dei CF, poichè nel file XML è automaticamente definito lo spazio dimensionale dei dati
- nel controllo della crescita della struttura gerarchica
- nel salvataggio delle etichette dei cluster per ciascun punto, in quanto

Interazione con motore OLAP Mondrian

Attraverso il nuovo file XML, che descrive le dimensioni di interesse, OLAPBIRCH ha tutte le informazioni per procede:

- nel recupero dei dati numerici dal database, attraverso una query SQL codificata dal file XML
- nella costruzione dell'abero dei CF, poichè nel file XML è automaticamente definito lo spazio dimensionale dei dati
- nel controllo della crescita della struttura gerarchica
- nel salvataggio delle etichette dei cluster per ciascun punto, in quanto nel file XML sono specificate le dimension table primarie per una particolare sessione di analisi

Interazione con motore OLAP Mondrian

Attraverso il nuovo file XML, che descrive le dimensioni di interesse, OLAPBIRCH ha tutte le informazioni per procede:

- nel recupero dei dati numerici dal database, attraverso una query SQL codificata dal file XML
- nella costruzione dell'abero dei CF, poichè nel file XML è automaticamente definito lo spazio dimensionale dei dati
- nel controllo della crescita della struttura gerarchica
- nel salvataggio delle etichette dei cluster per ciascun punto, in quanto nel file XML sono specificate le dimension table primarie per una particolare sessione di analisi

TPC Benchmark™H

Risultati sperimentali

Diagramma Livello 7 CF-Tree

■1 ■2 ■3 ■4 ■5 ■6 ■7 ■8 ■9 ■10 ■11 ■12 ■13 ■14 ■15 ■16

Diagramma Livello 7 DBSCAN

Risultati sperimentali

Distribuzione di Totalprice

■ Cluster 1 ■ Cluster 2 ■ Cluster 3

Distribuzione di Quantity

■ Cluster 1 ■ Cluster 2 ■ Cluster 3

Distribuzione di Linenumber

■ Cluster 1 ■ Cluster 2 ■ Cluster 3

Distribuzione di Acctbal

■ Cluster 1 ■ Cluster 2 ■ Cluster 3

Risultati sperimentali

Distribuzione della proprietà Region sul *cluster* 1

Distribuzione della proprietà Region sul *cluster 2*

Distribuzione della proprietà Region sul cluster 3

- mantenere il CF-Tree sempre aggiornato, essendo l'algoritmo di costruzione dello stresso incrementale
- effettuare operazioni di roll-up e drill-down sul CF-Tree in qualsiasi momento e senza lunghe attese
- operare sessioni di analisi su grandi database, indipendentemente dalla piattaforma utilizzata
- identificare cluster qualitativamente soddisfacenti
- scegliere le dimensioni di interesse per una particolare sessione di analisi
- analizzare un DW OLAP senza particolari conoscenze dello stesso, facilitando notevolmente, il processo deduttivo dell'analista

- mantenere il CF-Tree sempre aggiornato, essendo l'algoritmo di costruzione dello stresso incrementale
- effettuare operazioni di roll-up e drill-down sul CF-Tree in qualsiasi momento e senza lunghe attese
- operare sessioni di analisi su grandi database, indipendentemente dalla piattaforma utilizzata
- identificare cluster qualitativamente soddisfacenti
- scegliere le dimensioni di interesse per una particolare sessione di analisi
- analizzare un DW OLAP senza particolari conoscenze dello stesso, facilitando notevolmente, il processo deduttivo dell'analista

- mantenere il CF-Tree sempre aggiornato, essendo l'algoritmo di costruzione dello stresso incrementale
- effettuare operazioni di roll-up e drill-down sul CF-Tree in qualsiasi momento e senza lunghe attese
- operare sessioni di analisi su grandi database, indipendentemente dalla piattaforma utilizzata
- identificare cluster qualitativamente soddisfacenti
- scegliere le dimensioni di interesse per una particolare sessione di analisi
- analizzare un DW OLAP senza particolari conoscenze dello stesso, facilitando notevolmente, il processo deduttivo dell'analista

- mantenere il CF-Tree sempre aggiornato, essendo l'algoritmo di costruzione dello stresso incrementale
- effettuare operazioni di roll-up e drill-down sul CF-Tree in qualsiasi momento e senza lunghe attese
- operare sessioni di analisi su grandi database, indipendentemente dalla piattaforma utilizzata
- identificare cluster qualitativamente soddisfacenti
- scegliere le dimensioni di interesse per una particolare sessione di analisi
- analizzare un DW OLAP senza particolari conoscenze dello stesso, facilitando notevolmente, il processo deduttivo dell'analista

- mantenere il CF-Tree sempre aggiornato, essendo l'algoritmo di costruzione dello stresso incrementale
- effettuare operazioni di roll-up e drill-down sul CF-Tree in qualsiasi momento e senza lunghe attese
- operare sessioni di analisi su grandi database, indipendentemente dalla piattaforma utilizzata
- identificare cluster qualitativamente soddisfacenti
- scegliere le dimensioni di interesse per una particolare sessione di analisi
- analizzare un DW OLAP senza particolari conoscenze dello stesso, facilitando notevolmente, il processo deduttivo dell'analista

- mantenere il CF-Tree sempre aggiornato, essendo l'algoritmo di costruzione dello stresso incrementale
- effettuare operazioni di roll-up e drill-down sul CF-Tree in qualsiasi momento e senza lunghe attese
- operare sessioni di analisi su grandi database, indipendentemente dalla piattaforma utilizzata
- identificare cluster qualitativamente soddisfacenti
- scegliere le dimensioni di interesse per una particolare sessione di analisi
- analizzare un DW OLAP senza particolari conoscenze dello stesso, facilitando notevolmente, il processo deduttivo dell'analista

Grazie

GRAZIE PER LA CORTESE ATTENZIONE!