Problem 1

(a)

Means over time

(b)

Imposing the estamability restrictions and fitting the general two-way anova model For j=(2,3,4,5) we have: $E[Y_{ij}]=\mu+\alpha_2 I(group2)+\beta_i Itimej+\gamma_{2j} I(group=2)I(time=j)$

	Month	0	6	12	20	24
ł	\overline{P}	μ	$\mu + \beta_2$	$\mu + \beta_3$	$\mu + \beta_4$	$\mu + \beta_5$
	\overline{A}	$\mu + \alpha_2$	$\mu + \alpha_2 + \beta_2 + \gamma_{22}$	$\mu + \alpha_2 + \beta_3 + \gamma_{23}$	$\mu + \alpha_2 + \beta_4 + \gamma_{24}$	$\mu + \alpha_2 + \beta_5 + \gamma_{25}$

Treatment effect $= \boldsymbol{\delta} = (\gamma_{22}, \gamma_{23}, \gamma_{24}, \gamma_{25})^T$

 $\pmb{\delta}$ represents the treament effect on the changes in mean cholesterol level over time

Γ	$\hat{\delta}$	\hat{se}
	$\gamma_{22} = 12.272$	6.194
	$\gamma_{23} = 16.418$	6.752
	$\gamma_{24} = 4.977$	7.011
L	$\gamma_{24} = 6.903$	9.887

(c) Wald Chi-square test

 $H_0: \delta = 0$

 $H_1: \delta \neq 0$

Wald $\chi^2 = 7.86$ df=4

p-value= .0968 > .05 Thus fail to reject H_0

Not enough evidence to suggest δ is not equal to 0. The mean response profiles are statistically the same for the two groups.

(d)

	Month	0	6	12	20	24
l	\overline{P}	μ	$\mu + \beta_2$	$\mu + \beta_3$	$\mu + \beta_4$	$\mu + \beta_5$
Į	\overline{A}	μ	$\mu + \beta_2 + \gamma_{22}$	$\mu + \beta_3 + \gamma_{23}$	$\mu + \beta_4 + \gamma_{24}$	$\mu + \beta_5 + \gamma_{25}$

Treatment effect =
$$\boldsymbol{\delta} = (\gamma_{22}, \gamma_{23}, \gamma_{24}, \gamma_{25})^T$$

 $\pmb{\delta}$ represents the treament effect on the changes in mean cholesterol level over time

$$\begin{bmatrix} \hat{\delta} & \hat{se} \\ \gamma_{22} = 9.478 & 5.596 \\ \gamma_{23} = 12.886 & 5.85 \\ \gamma_{24} = 1.614 & 6.208 \\ \gamma_{24} = 3.003 & 9.064 \end{bmatrix}$$

(e)

$$t = time \quad x = I(group2)$$
group 1: $E(Y_{ij}) = \beta_1 + \beta_2 * t_{ij} + \beta_3 * t_{ij}^2$

group 2:
$$E(Y_{kj}) = \alpha_1 + \alpha_2 * t_{kj} + \alpha_3 * t_{kj}^2$$

Restrictions:
$$E(Y_i 1) = E(Y_{k1}), \quad \beta_1 = \alpha_1$$

Γ	Month	0	6	12	20	24
	P	μ	$\mu + 6t + 36t^2$	$\mu + 12t + 144t^2$	$\mu + 20t + 400t^2$	$\mu + 24t + 576t^2$
	A	μ	$\mu + 6t + 36t^2$	$\mu + 12t + 144t^2 +$	$\mu + 20t + 400t^2 +$	$\mu + 24t + 576t^2 +$
			$+6xt + 36xt^2$	$+12xt + 144xt^2$	$20xt + 400xt^2$	$24xt + 576xt^2$

Treatment effect
$$= \boldsymbol{\delta} = (xt, xt^2)^T$$

 δ represents the treament effect on the changes in mean cholesterol level over time

$$\begin{bmatrix} \hat{\delta} & | \hat{se} \\ \hline xt = 1.937 & .823 \\ xt^2 = -.086 & .037 \end{bmatrix}$$

Wald Chi-square test

 $H_0: \delta = 0$

 $H_1: \delta \neq 0$

Wald $\chi^2 = 5.89 \text{ df} = 2$

p-value= .0527 > .05 Thus fail to reject H_0

Not enough evidence to suggest δ is not equal to 0. The mean response profiles are statistically the same for the two groups.

(f)

Treatment Effect on the changes in mean cholesterol level over time $= \lambda = (\alpha_2, \gamma_{23}, \gamma_{24}, \gamma_{25})$

$$\begin{bmatrix} \hat{\lambda} & \hat{se} \\ \alpha_2 = 12.272 & 6.194 \\ \gamma_{23} = 4.028 & 5.979 \\ \gamma_{24} = -8.07 & 6.097 \\ \gamma_{25} = -5.226 & 8.901 \end{bmatrix}$$

(g) Wald Chi-square test

 $H_0: \lambda = 0$

 $H_0: \lambda = 0$ $H_1: \lambda \neq 0$

Wald $\chi^2 = 7.99 \text{ df} = 4$

p-value= .0919 > .05 Thus fail to reject H_0

Not enough evidence to suggest λ is not equal to 0. The mean response profiles are statistically the same for the two groups.

(h)

Treatment Effect on the changes in mean cholesterol level over time $= \lambda^* = (\alpha_2, \gamma_{23}, \gamma_{24}, \gamma_{25})$

$$\begin{bmatrix} \hat{\lambda^*} & \hat{se} \\ \hline \alpha_2 = 9.023 & 5.653 \\ \gamma_{23} = 4.144 & 5.937 \\ \gamma_{24} = -7.394 & 6.03 \\ \gamma_{25} = -5.218 & 8.842 \end{bmatrix}$$

(i) Wald Chi-square test

$$H_0: \lambda^* = 0$$

$$H_1: \lambda^* \neq 0$$

Wald
$$\chi^2 = 6.54 \text{ df} = 4$$

p-value= .1623 > .05 Thus fail to reject H_0

Not enough evidence to suggest λ^* is not equal to 0. The mean response profiles are statistically the same for the two groups.

(j) Full LRT test

$$H_0: \lambda^* = 0$$

$$H_1: \lambda^* \neq 0$$

$$-2Log(L)_{Full} = 3218.6 \text{ df} = 8$$

$$-2Log(L)_{Reduced} = 3225.1 \text{ df}=4$$

$$\chi^2 = 3225.1 - 3218.6 = 6.5 \text{ df} = 4$$

p-value= .165 > .05 Thus fail to reject H_0

Not enough evidence to suggest λ^* is not equal to 0. The mean response profiles are statistically the same for the two groups.

- (k) You need the following assumptions to guarantee $\lambda = \lambda^*$:
 - 1) No interaction
 - 2) At baseline the two groups have the same mean