	Hyderabad - 500 031. DEPARTMENT OF : CSE
	NAME OF THE LABORATORY : DAR
(Name K.S.I.SIVANI Roll No052 Page No. 47
	PRELAB QUESTIONS-4:
1)	What are the different types of graphs?
	Give example for each.
	-> Different types of graphs are Undirected
	graphs, directed graphs, weighted graphs, unweighted
	graphs, complete graphs, trues, sparse graphs.
2)	How to detect cycle in the graph using degrees
	of nodes of graph? Analyze the time complexity?
	>> bool isagclic() { bool * visited =
	-> bool has Gycle (inint n)
	{ = int visited[10]; int i;
	for (i=0; i<0; i++)
	{ if (visited[i] ==1)
	continue;
	il (dfs (i, visited, -1))
	2 Metwan true;

(Autonomous)
(Affiliated to Osmania University)

	Hyderabad - 500 031. DEPARTMENT OF : CSE
	NAME OF THE LABORATORY : DAR
	Name K.S.T.SIVANI Roll No052 Page No. 48
3)	What are the walks, trails, paths, cycles, and circuits in graph? Explain with an example:
	circuits in graph? Explain with an example:
	Walk: sequence of vertices and eages of a graph
	if we triaverse a graph then we get a walk.
	if we traverse a graph then we get a walk. Trail: open walk in which no edge is repeated.
\rightarrow	circuit: Traversing a graph such that not an
	edge is sepected and it is closed also ie it is
	a closed trail.
\rightarrow	Path: It is a trail in which neither vertices nor
	edges are repeated i.e. if we traverse graph such
	that we do not grepeat a vertex and nor we
9	repeat an edge 'also known as open walk.
->	Lycle: Traversing a graph such that we do not
	suepeat a ventez nor we suepeat a edge but
	stepeat a vertex nor we suspect a edge but the starting and ending vertex must be same i.e. we can suspect starting and ending vertex
	i.e. we can suspeat starting and ending vertex

only then we get acycle.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) (Affiliated to Osmania University)

	Hyderabad - 500 031. DEPARTMENT OF : CSE
	NAME OF THE LABORATORY : DAA Name K·S·I·SIVANI Roll No052 Page No. 49
4)	What are the complete graphs, wheels, hypercube, bipartite graph?
	Hypercube is the graph formed from the vortices and edges of n-dimensional hypercube.
	* If cube graph Q3 is the graph formed by the
	8 vertices and 12 edges of 3 - D cube. On has 2 vertices and is a regular graph with
->	nedges touching each vertex. Bipartite graph / bigraph is a graph whose vertices can
	be divided into a disjoint and independent sets. It is a graph that does not contain any odd-
	length cycles.
	Complete graph is a simple undirected graph in which every pair of distinct vertices is connected a unique edge.

(Affiliated to Osmania University)
Hyderabad - 500 031.

n	E	D	٨	D	4	AA	-		ulle	0	-
	-		M			IV		IA	-	U	r

CSE

NAME OF THE LABORATORY : DAA Name K.S. I. SIVANI 50 _Roll No. ___052 LAB PROGRAMS -4. Programs to implement dis Greedy algorithm. Coins problem. #include astdio.h> # include (stalib.h) int b[10] = {0}; int c=0, j=0; #define & 9 void coins (int n) { int abid = {1000,500,100,50,20,10,5,2,1}; inti; が(0>0) { for(i=0; kx; i++) { 4(a[i] <= n) { b[i] = a[i];

j++; break; } }

(Affiliated to Osmania University)
Hyderabad - 500 031.

DEPARTMENT OF

: CSE

Name K.S.I. SIVANI Roll No. -052 Page No. 51

n=n-a(i];

coins(n); }

int main()

int m;

printf("Enter the amount:");

scanf("%d",&m);

coins(m);

printf("Minimum no. of notes sequired:%d\n",

for(int i=o; (<c;i+t))

{ printf("%d\t", b[i]);}

setumo; }

setumo; }

* Output:

Enter the amount: 70
Minimum no. of notes required: 2
50 20
Enter the amount: 121
Minimum no. of notes required: 3

20

(AUTONOMOUS)
(Affiliated to Osmania University)
Hyderabad - 500 031.

Sec.	SPEED MADE	 Die News		-	TV	-	-
			10 AS				-
	L- 100	H BH	81/8	900	V3 B		Rose

: CSE

NAME OF THE LABORATORY : DAR

Name K.S.I.SIVANI Roll No. -052 Page No. 52

2) Scheduling and counting the jobs done by a person.

include astdio. h>

#include KStdlib.h>

typedel struct

{ int start; int end; } Job;

int main ()

fint n,isk;

printf ("Enter the no. of jobs:"); Scanf ("%d", &n);

printf ("Enter the avoival and end time for each process: \n");

Job j[n], temp;

for(i=0; ikn; i++)

{ scanf("%d", &j[i].start); scanf("%d", &j[i].end);}

for(i=0; i<n; i++)

{ for(k=0; KKn; k++)

(AUTONOMOUS)
(Affiliated to Osmania University)
Hyderabad - 500 031.

DEPARTMENT OF

: CSE

NAME OF THE LABORATORY : DAA

Name K·S·I·SIVANI Roll No. -052 Page No. 53.

4 (j[k].end >j[k+1].end) { temp = j[k]; j[K] = i[K+]. j[k+]=temp;} printf ("Tobs done by the person: "); printf("Olt"); k=0% for (i=1; kn; i++) ج فله (إلاناً علم start >= إلا .end) { printf("%d't",i); } geturno;

Outputs:

Enter the no. of jobs: 6

the avoival and end time for each process: Enter

9 5 9

Jobs done by the person: 0 1 3 4

11 1 11 11 2 an 1 1 1 1 1 1 1

11 61 11 11