Optimización de viajes compartidos en taxis utilizando algoritmos evolutivos

Gabriel Fagúndez de los Reyes Renzo Massobrio

Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Contenido

- Introducción
- Descripción del problema
- Métodos para la resolución del problema
- 4 Evaluación
- 5 Conclusiones y trabajo futuro

Introducción

Acentuación ortográfica

La acentuación ortográfica en algunas palabras del idioma español elimina la ambigüedad de una oración.

Clasificación de palabras con acento ortográfico

- Sin ambigüedad: única forma correcta de escribir estas palabras, p.ej. *acentuación*.
- Con ambigüedad: cambian su significado si son escritas con o sin acentuación ortográfica, p.ej.: verbos (canto/cantó, hable/hablé), sustantivos (papa/papá, secretaria/secretaría).

Introducción

Restauración de acentos ortográficos en palabras con ambigüedad

- No es trivial.
- Involucra aspectos de desambiguación de significado.
- Requiere examinar el contexto de cada palabra.

Adverbios interrogativos

- Gran dependencia con el contexto en el que aparecen.
- Particularmente difíciles de desambigüar.

Descripción del problema

¿Qué es un adverbio interrogativo?

- Los adverbios son palabras invariables que complementan el significado de un verbo, un adjetivo u de otro adverbio.
- Pueden funcionar de forma interrogativa, p.ej. ¿dónde nació?
- Pueden formularse de forma directa o indirecta, p.ej. ¿Adónde os marcháis? o Dime adónde saldréis.
- En una frase pueden presentarse adverbios interrogativos y no interrogativos, p.ej. ¿por qué algunas enfermedades de origen vírico, como los catarros o la gripe, pueden sufrirse en repetidas ocasiones?

Descripción del problema

Problema a resolver

Dado un texto del que fueron quitados todos los acentos ortográficos de sus adverbios, se debe clasificar cada palabra en una de las siguientes clases:

- O. Toda palabra que no un adverbio.
- **SIN**_**TILDE**. Si se trata de un adverbio no interrogativo.
- **CON_TILDE**. Si se trata de un adverbio interrogativo.

Descripción del problema

Corpus de trabajo

- Basado en la unión del corpus CESS Treebanks y CoNLL 2002.
- Consta de un total de aprox. 560,000 tokens, de los cuales:
 - 18,000 son adverbios no interrogativos.
 - 240 son adverbios interrogativos.
- Gran mayoría de los tokens del corpus no son adverbios.
 - 99,96 % de éxito en clasificador de línea base.

Métodos para la restauración de acentos

Clasificadores propuestos

- Se aborda el problema de la restauración de acentos ortográficos como un problema de clasificación.
- Según nuestro conocimiento no existen antecedentes de trabajos previos orientados a resolver el problema planteado.
- Se presentan dos técnicas de aprendizaje automático para la resolución del problema:
 - Clasificador basado en Support Vector Machines (SVM).
 - Clasificador basado en Conditional Random Fields (CRF).

Clasificador basado en SVM

- Implementado utilizando la herramienta SVM light y SVM Tool.
 - SVMTool es un generador de etiquetadores de secuencias.
- Atributos utilizados para la clasificación.
 - Ventana de 5 tokens centrada en el token a etiquetar.
 - Etiquetas de los dos tokens previos al token a etiquetar.
 - Bigramas y trigramas de tokens y etiquetas de tokens.

•
$$(t_{-2}, t_{-1})$$
, (t_0, t_{+1}) , (e_{-2}, e_{-1}) , (t_{-1}, t_{+1}, t_{+2}) , etc.

- Información de puntuación en la oración.
- Información tipográfica, p.ej.: mayúsculas, minúsculas, etc.

¿Cómo no nos habremos dado cuenta?

Clasificador basado en CRF

- Implementado utilizando la herramienta MALLET.
- Atributos utilizados para la clasificación.
 - Conjunciones de atributos del token anterior y siguiente.
 - conj(-1,0) y conj(0,+1).
 - Atributo que marca la presencia de un token que generalmente precede o sucede a un adverbio.
 - PREV-SINT, NEXT-SINT, PREV-CONT y NEXT-CONT.
 - Información de puntuación en la oración.
 - Información tipográfica, p.ej. mayúsculas, minúsculas, etc.

Metodología de evaluación

- Se dividió el corpus en 10 partes de tamaño similar.
- Se realizaron 10 entrenamientos con $\frac{9}{10}$ del corpus y se evaluó utilizando el $\frac{1}{10}$ restante.
- Se utilizaron métricas clásicas para la evaluación.
 - Precisión, Recall y Medida-F.

Cuadro: Matriz de confusión del clasificador basado en SVM.

	0	SIN_TILDE	CON_TILDE	
0	54322,1	0,0	0,0	
SIN_TILDE	0,0	1867,4	0,3	
CON_TILDE	0,0	19,3	4,5	

Cuadro: Matriz de confusión del clasificador basado en CRF.

	0	SIN_TILDE	CON_TILDE
0	54322,1	0,0	0,0
SIN_TILDE	0,0	1867,7	0,8
CON_TILDE	0,1	16,0	7,7

Análisis experimental

- Confusión en la clasificasión de adverbios interrogativos.
 - 98,46 % de errores del clasificador basado en SVM.
 - 95, 26 % de errores del clasificador basado en CRF.
- Mayores causas de este tipo de error.
 - Adverbios interrogativos indirectos.
 - Adverbios no interrogativos contenidos en frases interrogativas.

	Precisión		Recall		F _{0,5}	
Etiqueta	SVM	CRF	SVM	CRF	SVM	CRF
0	1.00	1.00	1.00	1.00	1.00	1.00
SIN_TILDE	0.99	0.99	1.00	1.00	0.99	1.00
CON_TILDE	0.94	0.91	0.18	0.33	0.31	0.48

- Ambos clasificadores presentan una alta Precisión.
 - Se comete una cantidad muy pequeña de errores de Tipo I.
- El clasificador basado en CRF presenta mejores resultados para la métrica de *Recall*.
 - El clasificador basado en CRF comete una menor cantidad de errores de Tipo II.

		Precisión		Recall		F _{0,5}	
Adverbio	Cantidad	SVM	CRF	SVM	CRF	SVM	CRF
qué	142	0.94	0.92	0.23	0.42	0.36	0.57
cómo	72	1.00	0.89	0.14	0.23	0.24	0.36
dónde	18	0.67	1.00	0.11	0.17	0.19	0.29
cuándo	4	0.00	0.00	0.00	0.00	0.00	0.00
cuánto	2	0.00	0.00	0.00	0.00	0.00	0.00

- Mejores resultados con mayor cantidad de ejemplos.
- Adverbio *qué* cuenta con la mayor cantidad ocurrencias y es con el que se obtienen los mejores resultados.
 - ¿Es necesario aumentar el tamaño del corpus?

Conclusiones

Trabajo realizado y resultados obtenidos

- Se presentó el problema de la restauración automática de acentos ortográficos en adverbios interrogativos.
- Se construyó un corpus de trabajo.
- Se propusieron dos implementaciones para su resolución: clasificador basado en SVM y clasificador basado en CRF.
- En promedio valores de $F_{0,5}$ para adverbios interrogativos de 0,48 con CRF y 0,31 con SVM.
- Resultados mejoran al aumentar ejemplos de entrenamiento.
- Llegando a valores de F_{0.5} de hasta 0,57 con CRF.

Trabajo futuro

Principales líneas de trabajo a futuro

- Realizar un análisis estadístico de los resultados obtenidos.
- Construcción de un corpus de mayor porte.
 - ¿mejoran los resultados al aumentar la cantidad de ejemplos?
 - tokens que preceden y suceden a adverbios utilizados en el clasificador CRF, ¿son extensibles a otros corpus?
- Agregación de otras técnicas para aumentar la información de contexto.
 - p.ej.: etiquetado gramatical, análisis morfosintáctico, etc.

Gracias por su atención

Tipos de errores

- Positivos Verdaderos (PV) son elementos de la clase buscada que fueron correctamente identificados.
- Negativos Verdaderos (NV) son elementos que no pertenecen a la clase buscada que fueron correctamente ignorados y clasificados en una clase diferente.
- Falsos Positivos (FP), o errores de Tipo I, son elementos que pertenecen a otra clase y que fueron incorrectamente clasificados en la clase buscada.
- Falsos Negativos (FN), o errores de Tipo II, son elementos que pertenecen a clase buscada y que fueron incorrectamente clasificados en otra clase.

Métricas

$$P = \frac{PV}{PV + FP} \tag{1}$$

$$R = \frac{PV}{PV + FN} \tag{2}$$

$$F_{\alpha} = \frac{P \times R}{(1 - \alpha)P + (\alpha)R} \tag{3}$$

$$F_{0,5} = \frac{2 \times P \times R}{P + R} \tag{4}$$

Ejemplos

- Si de él careciéramos, ¿para qué/SIN_TILDE unas tareas que/SIN_TILDE requieren esfuerzo, dedicación, capacidad y que/SIN_TILDE —además— no mejoran ninguna economía?
- ¿No se debate permanentemente —como/CON_TILDE toda religión y toda demencia— en el conflicto entre lo real y lo ficticio, lo percibido y lo proyectado, lo que/SIN_TILDE constriñe y lo que/SIN_TILDE exalta, los milagros y las bromas pesadas?
- -Que/CON_TILDE cómo/SIN_TILDE va a llamarse el chiquillo?
- "Un experimento probará la preparación y las capacidades para el contexto militar del futuro, y sirve para que/SIN_TILDE veamos cómo/SIN_TILDE cada una de las fuerzas se desempeñará en una guerra".