# Calculus III Lecture 12

#### **Todor Milev**

https://github.com/tmilev/freecalc

2020

# Outline

Minima, Maxima

## Outline

Minima, Maxima

2 Lagrange Multipliers

#### License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
   https://creativecommons.org/licenses/by/3.0/us/and the links therein

Function  $f: D \to \mathbb{R}$  defined on a region D in  $\mathbb{R}^2$ , we want to know:

- The largest and the smallest values of *f* attained on *D*, if any;
- The points where these extreme values are attained.

Function  $f: D \to \mathbb{R}$  defined on a region D in  $\mathbb{R}^2$ , we want to know:

- The largest and the smallest values of f attained on D, if any;
- The points where these extreme values are attained.

A point  $P_0$  in D is a point of:

- absolute maximum, if  $f(P) \leqslant f(P_0)$  for all P in D;
- absolute minimum, if  $f(P) \ge f(P_0)$  for all P in D.

Function  $f: D \to \mathbb{R}$  defined on a region D in  $\mathbb{R}^2$ , we want to know:

- The largest and the smallest values of f attained on D, if any;
- The points where these extreme values are attained.

A point  $P_0$  in D is a point of:

- absolute maximum, if  $f(P) \leqslant f(P_0)$  for all P in D;
- absolute minimum, if  $f(P) \ge f(P_0)$  for all P in D.

These notions are relative to the domain D. A point  $P_0$  that is not an extreme point might become one if we focus only around that point.

Function  $f: D \to \mathbb{R}$  defined on a region D in  $\mathbb{R}^2$ , we want to know:

- The largest and the smallest values of f attained on D, if any;
- The points where these extreme values are attained.

A point  $P_0$  in D is a point of:

- absolute maximum, if  $f(P) \leqslant f(P_0)$  for all P in D;
- absolute minimum, if  $f(P) \ge f(P_0)$  for all P in D.

These notions are relative to the domain D. A point  $P_0$  that is not an extreme point might become one if we focus only around that point. A point  $P_0$  in D is a point of:

- local maximum, if there exists an open disk  $B = B_r(P_0)$  centered at  $P_0$  such that  $f(P) \le f(P_0)$  for all P in  $B \cap D$ ;
- local minimum, if there exists an open disk  $B = B_r(P_0)$  centered at  $P_0$  such that  $f(P) \ge f(P_0)$  for all P in  $B \cap D$ .

Function  $f: D \to \mathbb{R}$  defined on a region D in  $\mathbb{R}^2$ , we want to know:

- The largest and the smallest values of f attained on D, if any;
- The points where these extreme values are attained.

A point  $P_0$  in D is a point of:

- absolute maximum, if  $f(P) \leqslant f(P_0)$  for all P in D;
- absolute minimum, if  $f(P) \ge f(P_0)$  for all P in D.

These notions are relative to the domain D. A point  $P_0$  that is not an extreme point might become one if we focus only around that point. A point  $P_0$  in D is a point of:

- local maximum, if there exists an open disk  $B = B_r(P_0)$  centered at  $P_0$  such that  $f(P) \le f(P_0)$  for all P in  $B \cap D$ ;
- local minimum, if there exists an open disk  $B = B_r(P_0)$  centered at  $P_0$  such that  $f(P) \ge f(P_0)$  for all P in  $B \cap D$ .

How do we find points of extreme?

If  $\mathbf{u} = (\nabla f)(P_0)$  exists and is non-zero, then

- f increases along u;
- f decreases along  $-\mathbf{u}$ ;

If  $\mathbf{u} = (\nabla f)(P_0)$  exists and is non-zero, then

- f increases along u;
- f decreases along  $-\mathbf{u}$ ;

If we can move along  $\pm \mathbf{u}$  and stay in D, then  $P_0$  is not an extreme.

If  $\mathbf{u} = (\nabla f)(P_0)$  exists and is non-zero, then

- f increases along u;
- f decreases along -u;

If we can move along  $\pm \mathbf{u}$  and stay in D, then  $P_0$  is not an extreme. If:

- $P_0$  is a point of extreme (minimum or maximum);
- P<sub>0</sub> is an interior point of D, which means that there exists an open disk centered at P<sub>0</sub> and completely included in D;
- directional derivatives at P<sub>0</sub> exist in all directions

then

If  $\mathbf{u} = (\nabla f)(P_0)$  exists and is non-zero, then

- f increases along u;
- f decreases along -u;

If we can move along  $\pm \mathbf{u}$  and stay in D, then  $P_0$  is not an extreme. If:

- $P_0$  is a point of extreme (minimum or maximum);
- P<sub>0</sub> is an interior point of D, which means that there exists an open disk centered at P<sub>0</sub> and completely included in D;
- directional derivatives at P<sub>0</sub> exist in all directions

then 
$$(\nabla f)(P_0) = \mathbf{0}$$
. In particular,  $f_x(P_0) = f_y(P_0) = 0$ .

If  $\mathbf{u} = (\nabla f)(P_0)$  exists and is non-zero, then

- f increases along u;
- f decreases along -u;

If we can move along  $\pm \mathbf{u}$  and stay in D, then  $P_0$  is not an extreme. If:

- $P_0$  is a point of extreme (minimum or maximum);
- P<sub>0</sub> is an interior point of D, which means that there exists an open disk centered at P<sub>0</sub> and completely included in D;
- directional derivatives at P<sub>0</sub> exist in all directions

then  $(\nabla f)(P_0) = \mathbf{0}$ . In particular,  $f_x(P_0) = f_y(P_0) = 0$ .

Geometric Interpretation:

If  $\mathbf{u} = (\nabla f)(P_0)$  exists and is non-zero, then

- f increases along u;
- f decreases along -u;

If we can move along  $\pm \mathbf{u}$  and stay in D, then  $P_0$  is not an extreme. If:

- $P_0$  is a point of extreme (minimum or maximum);
- P<sub>0</sub> is an interior point of D, which means that there exists an open disk centered at P<sub>0</sub> and completely included in D;
- directional derivatives at P<sub>0</sub> exist in all directions

then 
$$(\nabla f)(P_0) = \mathbf{0}$$
. In particular,  $f_X(P_0) = f_V(P_0) = \mathbf{0}$ .

Geometric Interpretation: At an interior point of extreme, the tangent plane to the graph surface is horizontal.

If  $\mathbf{u} = (\nabla f)(P_0)$  exists and is non-zero, then

- f increases along u;
- f decreases along -u;

If we can move along  $\pm \mathbf{u}$  and stay in D, then  $P_0$  is not an extreme. If:

- $P_0$  is a point of extreme (minimum or maximum);
- P<sub>0</sub> is an interior point of D, which means that there exists an open disk centered at P<sub>0</sub> and completely included in D;
- directional derivatives at P<sub>0</sub> exist in all directions

then 
$$(\nabla f)(P_0) = \mathbf{0}$$
. In particular,  $f_X(P_0) = f_V(P_0) = \mathbf{0}$ .

Geometric Interpretation: At an interior point of extreme, the tangent plane to the graph surface is horizontal.

The converse is not true:

If  $\mathbf{u} = (\nabla f)(P_0)$  exists and is non-zero, then

- f increases along u;
- f decreases along -u;

If we can move along  $\pm \mathbf{u}$  and stay in D, then  $P_0$  is not an extreme. If:

- $P_0$  is a point of extreme (minimum or maximum);
- P<sub>0</sub> is an interior point of D, which means that there exists an open disk centered at P<sub>0</sub> and completely included in D;
- directional derivatives at P<sub>0</sub> exist in all directions

then 
$$(\nabla f)(P_0) = \mathbf{0}$$
. In particular,  $f_X(P_0) = f_V(P_0) = 0$ .

Geometric Interpretation: At an interior point of extreme, the tangent plane to the graph surface is horizontal.

The converse is not true: if  $f_x(P_0) = f_y(P_0) = 0$ , then  $P_0$  is not necessarily a point of extreme.

- At points  $P_0$  where some directional derivatives do not exist (suffices that one of  $f_x(P_0)$  or  $f_y(P_0)$  does not exist.);
- At points  $P_0$  in D that are not interior points of D.

- At points  $P_0$  where some directional derivatives do not exist (suffices that one of  $f_x(P_0)$  or  $f_y(P_0)$  does not exist.);
- At points P<sub>0</sub> in D that are not interior points of D.

Important concept: A point P in  $\mathbb{R}^2$  is a boundary point for a region D if every open disk centered at P has points both in D and outside of D. Similar definition for  $\mathbb{R}^3$ , but replace open disk with open ball.

- At points  $P_0$  where some directional derivatives do not exist (suffices that one of  $f_x(P_0)$  or  $f_y(P_0)$  does not exist.);
- At points  $P_0$  in D that are not interior points of D.

Important concept: A point P in  $\mathbb{R}^2$  is a boundary point for a region D if every open disk centered at P has points both in D and outside of D. Similar definition for  $\mathbb{R}^3$ , but replace open disk with open ball. Examples:

D=open unit disk ⇒

- At points  $P_0$  where some directional derivatives do not exist (suffices that one of  $f_x(P_0)$  or  $f_y(P_0)$  does not exist.);
- At points P<sub>0</sub> in D that are not interior points of D.

Important concept: A point P in  $\mathbb{R}^2$  is a *boundary point* for a region D if every open disk centered at P has points both in D and outside of D. Similar definition for  $\mathbb{R}^3$ , but replace open disk with open ball. Examples:

D=open unit disk ⇒set of boundary points = unit circle;

- At points  $P_0$  where some directional derivatives do not exist (suffices that one of  $f_x(P_0)$  or  $f_y(P_0)$  does not exist.);
- At points  $P_0$  in D that are not interior points of D.

Important concept: A point P in  $\mathbb{R}^2$  is a boundary point for a region D if every open disk centered at P has points both in D and outside of D. Similar definition for  $\mathbb{R}^3$ , but replace open disk with open ball. Examples:

- D=open unit disk ⇒set of boundary points = unit circle;
- D=closed unit disk ⇒

- At points  $P_0$  where some directional derivatives do not exist (suffices that one of  $f_x(P_0)$  or  $f_y(P_0)$  does not exist.);
- At points P<sub>0</sub> in D that are not interior points of D.

Important concept: A point P in  $\mathbb{R}^2$  is a *boundary point* for a region D if every open disk centered at P has points both in D and outside of D. Similar definition for  $\mathbb{R}^3$ , but replace open disk with open ball. Examples:

- D=open unit disk ⇒set of boundary points = unit circle;
- D=closed unit disk ⇒set of boundary points = unit circle;

- At points  $P_0$  where some directional derivatives do not exist (suffices that one of  $f_x(P_0)$  or  $f_y(P_0)$  does not exist.);
- At points P<sub>0</sub> in D that are not interior points of D.

Important concept: A point P in  $\mathbb{R}^2$  is a *boundary point* for a region D if every open disk centered at P has points both in D and outside of D. Similar definition for  $\mathbb{R}^3$ , but replace open disk with open ball. Examples:

- D=open unit disk ⇒set of boundary points = unit circle;
- D=closed unit disk ⇒set of boundary points = unit circle;

Notice that a boundary point may or may not be included in *D*.

- At points  $P_0$  where some directional derivatives do not exist (suffices that one of  $f_x(P_0)$  or  $f_y(P_0)$  does not exist.);
- At points P<sub>0</sub> in D that are not interior points of D.

Important concept: A point P in  $\mathbb{R}^2$  is a *boundary point* for a region D if every open disk centered at P has points both in D and outside of D. Similar definition for  $\mathbb{R}^3$ , but replace open disk with open ball. Examples:

- D=open unit disk ⇒set of boundary points = unit circle;
- D=closed unit disk ⇒set of boundary points = unit circle;

Notice that a boundary point may or may not be included in *D*. Strategy for finding extreme points:

- Check the *critical points* of *f*:
  - Points  $P_0$  for which  $f_x(P_0)$  or  $f_y(P_0)$  does not exist;
  - Points  $P_0$  for which  $f_x(P_0) = f_y(P_0) = 0$ .
- Check boundary points included in the domain.

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

All points are interior;

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

• All points are interior; the function is differentiable everywhere.

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

- All points are interior; the function is differentiable everywhere.
- It remains to find the points (x, y) for which  $f_x(x, y) = f_y(x, y) = 0$ .

$$\begin{vmatrix} f_X(x,y) &= 0 \\ f_Y(x,y) &= 0 \end{vmatrix} \iff \begin{vmatrix} 4x^3 - 4y &= 0 \\ 4y^3 - 4x &= 0 \end{vmatrix} \iff \begin{vmatrix} x^3 &= y \\ y^3 &= x \end{vmatrix}$$

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

- All points are interior; the function is differentiable everywhere.
- It remains to find the points (x, y) for which  $f_x(x, y) = f_y(x, y) = 0$ .

$$\begin{vmatrix} f_X(x,y) &= 0 \\ f_Y(x,y) &= 0 \end{vmatrix} \iff \begin{vmatrix} 4x^3 - 4y &= 0 \\ 4y^3 - 4x &= 0 \end{vmatrix} \iff \begin{vmatrix} x^3 &= y \\ y^3 &= x \end{vmatrix}$$

• This system is a non-linear, haven't studied methods for those.

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

- All points are interior; the function is differentiable everywhere.
- It remains to find the points (x, y) for which  $f_x(x, y) = f_y(x, y) = 0$ .

$$\begin{vmatrix} f_X(x,y) &= 0 \\ f_Y(x,y) &= 0 \end{vmatrix} \iff \begin{vmatrix} 4x^3 - 4y &= 0 \\ 4y^3 - 4x &= 0 \end{vmatrix} \iff \begin{vmatrix} x^3 &= y \\ y^3 &= x \end{vmatrix}$$

This system is a non-linear, haven't studied methods for those.
 This system can be solved using ad-hoc methods.

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

- All points are interior; the function is differentiable everywhere.
- It remains to find the points (x, y) for which  $f_x(x, y) = f_y(x, y) = 0$ .

$$\begin{vmatrix} f_X(x,y) &= 0 \\ f_Y(x,y) &= 0 \end{vmatrix} \iff \begin{vmatrix} 4x^3 - 4y &= 0 \\ 4y^3 - 4x &= 0 \end{vmatrix} \iff \begin{vmatrix} x^3 &= y \\ y^3 &= x \end{vmatrix}$$

- This system is a non-linear, haven't studied methods for those.
   This system can be solved using ad-hoc methods.
- There are three values of x that work:

$$x = 0 \Longrightarrow y = 0 \Longrightarrow \text{ Point } (0,0)$$
  
 $x = 1 \Longrightarrow y = 1 \Longrightarrow \text{ Point } (1,1)$   
 $x = -1 \Longrightarrow y = -1 \Longrightarrow \text{ Point } (-1,-1)$ 

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

- All points are interior; the function is differentiable everywhere.
- It remains to find the points (x, y) for which  $f_x(x, y) = f_y(x, y) = 0$ .

$$\begin{vmatrix} f_X(x,y) &= 0 \\ f_Y(x,y) &= 0 \end{vmatrix} \iff \begin{vmatrix} 4x^3 - 4y &= 0 \\ 4y^3 - 4x &= 0 \end{vmatrix} \iff \begin{vmatrix} x^3 &= y \\ y^3 &= x \end{vmatrix}$$

- This system is a non-linear, haven't studied methods for those.
   This system can be solved using ad-hoc methods.
- There are three values of x that work:

$$x = 0 \Longrightarrow y = 0 \Longrightarrow \text{ Point } (0,0)$$
  
 $x = 1 \Longrightarrow y = 1 \Longrightarrow \text{ Point } (1,1)$   
 $x = -1 \Longrightarrow y = -1 \Longrightarrow \text{ Point } (-1,-1)$ 

Typical mistake:

Find the critical points of  $f(x, y) = x^4 + y^4 - 4xy$  on  $D = \mathbb{R}^2$ .

- All points are interior; the function is differentiable everywhere.
- It remains to find the points (x, y) for which  $f_x(x, y) = f_y(x, y) = 0$ .

$$\begin{vmatrix} f_X(x,y) &= 0 \\ f_Y(x,y) &= 0 \end{vmatrix} \iff \begin{vmatrix} 4x^3 - 4y &= 0 \\ 4y^3 - 4x &= 0 \end{vmatrix} \iff \begin{vmatrix} x^3 &= y \\ y^3 &= x \end{vmatrix}$$

- This system is a non-linear, haven't studied methods for those.
   This system can be solved using ad-hoc methods.
- There are three values of x that work:

$$x = 0 \Longrightarrow y = 0 \Longrightarrow \text{Point } (0,0)$$
  
 $x = 1 \Longrightarrow y = 1 \Longrightarrow \text{Point } (1,1)$   
 $x = -1 \Longrightarrow y = -1 \Longrightarrow \text{Point } (-1,-1)$ 

Typical mistake:  $x^9 = x \iff x^8 = 1$ .

#### **Second Derivative Test**

When is an interior critical point a pt. of min/max?

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of *f* as follows.

$$H = \left(\begin{array}{cc} f_{XX} & f_{XY} \\ f_{YX} & f_{YY} \end{array}\right)$$

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

• If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum.

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

• If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example:?

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

• If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .

Todor Milev 2020

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum.

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum. Example: ?

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum. Example: crit. pt. (0, 0) for  $f(x, y) = -x^2 y^2$ .

Todor Milev 2020

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum. Example: crit. pt. (0, 0) for  $f(x, y) = -x^2 y^2$ .
- If  $D(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is neither a minimum nor a maximum. Such points are called *saddle points*.

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum. Example: crit. pt. (0, 0) for  $f(x, y) = -x^2 y^2$ .
- If  $D(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is neither a minimum nor a maximum. Such points are called *saddle points*. Example:?

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum. Example: crit. pt. (0, 0) for  $f(x, y) = -x^2 y^2$ .
- If  $D(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is neither a minimum nor a maximum. Such points are called *saddle points*. Example: crit. pt. (0,0) for  $f(x,y) = x^2 y^2$ .

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum. Example: crit. pt. (0, 0) for  $f(x, y) = -x^2 y^2$ .
- If  $D(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is neither a minimum nor a maximum. Such points are called *saddle points*. Example: crit pt. (0,0) for  $f(x,y) = x^2 y^2$ .
- If  $D(x_0, y_0) = 0$ , then the test is inconclusive.

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum. Example: crit. pt. (0, 0) for  $f(x, y) = -x^2 y^2$ .
- If  $D(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is neither a minimum nor a maximum. Such points are called *saddle points*. Example: crit. pt. (0,0) for  $f(x,y) = x^2 y^2$ .
- If  $D(x_0, y_0) = 0$ , then the test is inconclusive. Examples: ?

When is an interior critical point a pt. of min/max? Define the *Hessian matrix H* of f as follows. Denote by D the determinant of H.

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$
  $D = \det H = f_{xx}f_{yy} - f_{xy}^2$ 

<u>Test</u>: Let  $P(x_0, y_0)$  be an interior critical point of f and suppose that f has continuous second order derivatives around P.

- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) > 0$ , then  $(x_0, y_0)$  is a local minimum. Example: crit. pt. (0, 0) for  $f(x, y) = x^2 + y^2$ .
- If  $D(x_0, y_0) > 0$  and  $f_{xx}(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a local maximum. Example: crit. pt. (0, 0) for  $f(x, y) = -x^2 y^2$ .
- If  $D(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is neither a minimum nor a maximum. Such points are called *saddle points*. Example: crit. pt. (0,0) for  $f(x,y) = x^2 y^2$ .
- If  $D(x_0, y_0) = 0$ , then the test is inconclusive. Examples:  $x^4 + y^4, -x^4 y^4, x^4 y^4$ .

Todor Milev 2020



$$\begin{array}{rcl}
f_{xx} & = \\
f_{xy} & = \\
f_{yy} & = \\
D = f_{xx}f_{yy} - f_{xy}^2 & = 
\end{array}$$



$$f_{xx} = f_{xy} = f_{yy} = D = f_{xx}f_{yy} - f_{xy}^2 = D$$



$$f_{xx} = 12x^{2}$$

$$f_{xy} =$$

$$f_{yy} =$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} =$$



$$f_{xx} = 12x^{2}$$

$$f_{xy} =$$

$$f_{yy} =$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} =$$



$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} =$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} =$$



$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} =$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} =$$



$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} =$$



$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} =$$



$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | f <sub>yy</sub> | $f_{xy}$ | D | Extremum ? |
|-------------|----------|-----------------|----------|---|------------|
| (0,0)       |          |                 |          |   |            |
| (1,1)       |          |                 |          |   |            |
| (-1, -1)    |          |                 |          |   |            |

Todor Milev 2020



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D | Extremum ? |
|-------------|----------|----------|----------|---|------------|
| (0,0)       | ?        | ?        | ?        | ? |            |
| (1,1)       |          |          |          |   |            |
| (-1, -1)    |          |          |          |   |            |

Todor Milev 2020



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | f <sub>yy</sub> | $f_{xy}$ | D       | Extremum ? |
|-------------|----------|-----------------|----------|---------|------------|
| (0,0)       | 0        | 0               | -4       | -16 < 0 |            |
| (1,1)       |          |                 |          |         |            |
| (-1, -1)    |          |                 |          |         |            |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ? |
|-------------|----------|----------|----------|---------|------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | ?          |
| (1, 1)      |          |          |          |         |            |
| (-1, -1)    |          |          |          |         |            |

Todor Milev 2020



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1, 1)      |          |          |          |         |              |
| (-1, -1)    |          |          |          |         |              |

Todor Milev 2020



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | f <sub>yy</sub> | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|-----------------|----------|---------|--------------|
| (0,0)       | 0        | 0               | -4       | -16 < 0 | Saddle point |
| (1,1)       | ?        | ?               | ?        | ?       |              |
| (-1, -1)    |          |                 |          |         |              |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

2020

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1,1)       | 12       | 12       | -4       | 128 > 0 |              |
| (-1, -1)    |          |          |          |         |              |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1, 1)      | 12       | 12       | -4       | 128 > 0 | ?            |
| (-1, -1)    |          |          |          |         |              |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

2020

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1,1)       | 12       | 12       | -4       | 128 > 0 | Local min    |
| (-1, -1)    |          |          |          |         |              |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | f <sub>yy</sub> | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|-----------------|----------|---------|--------------|
| (0,0)       | 0        | 0               | -4       | -16 < 0 | Saddle point |
| (1,1)       | 12       | 12              | -4       | 128 > 0 | Local min    |
| (-1, -1)    | ?        | ?               | ?        | ?       |              |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1, 1)      | 12       | 12       | -4       | 128 > 0 | Local min    |
| (-1, -1)    | 12       | 12       | -4       | 128 > 0 |              |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1,1)       | 12       | 12       | -4       | 128 > 0 | Local min    |
| (-1, -1)    | 12       | 12       | -4       | 128 > 0 | ?            |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1,1)       | 12       | 12       | -4       | 128 > 0 | Local min    |
| (-1, -1)    | 12       | 12       | -4       | 128 > 0 | Local min    |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1,1)       | 12       | 12       | -4       | 128 > 0 | Local min    |
| (-1, -1)    | 12       | 12       | -4       | 128 > 0 | Local min    |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1,1)       | 12       | 12       | -4       | 128 > 0 | Local min    |
| (-1, -1)    | 12       | 12       | -4       | 128 > 0 | Local min    |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0,y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|-------------|----------|----------|----------|---------|--------------|
| (0,0)       | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1,1)       | 12       | 12       | -4       | 128 > 0 | Local min    |
| (-1, -1)    | 12       | 12       | -4       | 128 > 0 | Local min    |



Find the local and global maxima and minima of  $f(x, y) = x^4 + y^4 - 4xy$ .

$$f_{xx} = 12x^{2}$$

$$f_{xy} = -4$$

$$f_{yy} = 12y^{2}$$

$$D = f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 16.$$

The critical points were previously computed.

| $(x_0, y_0)$ | $f_{XX}$ | $f_{yy}$ | $f_{xy}$ | D       | Extremum ?   |
|--------------|----------|----------|----------|---------|--------------|
| (0,0)        | 0        | 0        | -4       | -16 < 0 | Saddle point |
| (1,1)        | 12       | 12       | -4       | 128 > 0 | Local min    |
| (-1, -1)     | 12       | 12       | -4       | 128 > 0 | Local min    |

In this case it turns out that the two local minimum points are actually global minimum points, because

$$f(x,y) = x^4 + y^4 - 4xy = (x^2 - 1)^2 + (y^2 - 1)^2 + 2(x - y)^2 - 2 \ge -2$$
.

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ . Let Q(x,y,z) be a point on  $\mathcal{P}$ .

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ ,

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let  $Q(\underline{x}, \underline{y}, z)$  be a point on  $\mathcal{P}$ . We seek to minimize

$$d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$$
, equivalently to minimize  $f = d^2$ :

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2$$

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize

$$d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$$
, equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0 = f_X(x, y) =$$

$$0 = f_{\mathcal{V}}(x, y) =$$

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize

$$d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$$
, equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0=f_X(x,y) = ?$$

$$0 = f_{\mathcal{V}}(x, y) =$$

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$u = \sqrt{(x - 2)} + (y - 1) + 2$$
, equivalently to infinitize  $t = u$ .

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0 = f_X(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$
  
 $0 = f_Y(x, y) =$ 

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let  $Q(\underline{x}, y, z)$  be a point on  $\mathcal{P}$ . We seek to minimize

$$d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$$
, equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0 = f_x(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = ?$$

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize

$$d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$$
, equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0 = f_x(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y-1) - 4(6-3x-2y) = 12x + 10y - 26$$

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let  $Q(\underline{x}, \underline{y}, z)$  be a point on  $\mathcal{P}$ . We seek to minimize

$$d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$$
, equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0 = f_x(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y-1) - 4(6-3x-2y) = 12x + 10y - 26$$

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize

$$d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$$
, equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0 = f_X(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y - 1) - 4(6 - 3x - 2y) = 12x + 10y - 26$$

From first equation  $x = \frac{10-3y}{5}$ . Substitute in the second eqn.:

$$\frac{14}{5}y - 2 = 0$$
. Finally  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ .

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0 = f_x(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y - 1) - 4(6 - 3x - 2y) = 12x + 10y - 26$$

From first equation  $x = \frac{10-3y}{5}$ . Substitute in the second eqn.:

$$\frac{14}{5}y - 2 = 0$$
. Finally  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ . To find whether  $(\frac{11}{7}, \frac{5}{7})$  is local

extremum, compute Hessian: 
$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} =$$
?

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$
.

To find the critical points, solve the system:

$$0 = f_X(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y-1) - 4(6-3x-2y) = 12x + 10y - 26$$

From first equation  $x = \frac{10-3y}{5}$ . Substitute in the second eqn.:

$$\frac{14}{5}y - 2 = 0$$
. Finally  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ . To find whether  $(\frac{11}{7}, \frac{5}{7})$  is local

extremum, compute Hessian: 
$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} 20 & 12 \\ 12 & 10 \end{pmatrix}$$
.

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$
.

To find the critical points, solve the system:

$$0 = f_x(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y-1) - 4(6-3x-2y) = 12x + 10y - 26$$

From first equation  $x = \frac{10-3y}{5}$ . Substitute in the second eqn.:

$$\frac{14}{5}y - 2 = 0$$
. Finally  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ . To find whether  $(\frac{11}{7}, \frac{5}{7})$  is local

extremum, compute Hessian: 
$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} 20 & 12 \\ 12 & 10 \end{pmatrix}$$
.

$$D = \det H =$$
?

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$a = \sqrt{(x - 2)^2 + (y - 1)^2 + 2}$$
, equivalently to infinitely  $a = a = a$ .

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$
.

To find the critical points, solve the system:

$$0 = f_x(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y - 1) - 4(6 - 3x - 2y) = 12x + 10y - 26$$

From first equation  $x = \frac{10-3y}{5}$ . Substitute in the second eqn.:

$$\frac{14}{5}y - 2 = 0$$
. Finally  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ . To find whether  $(\frac{11}{7}, \frac{5}{7})$  is local

extremum, compute Hessian: 
$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} 20 & 12 \\ 12 & 10 \end{pmatrix}$$
.

$$D = \det H = 200 - 144 = 56$$

Let P(2, 1, 0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$
.

To find the critical points, solve the system:

$$0 = f_X(x, y) = 2(x-2) - 6(6-3x-2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y-1) - 4(6-3x-2y) = 12x + 10y - 26$$

From first equation  $x = \frac{10-3y}{5}$ . Substitute in the second eqn.:

$$\frac{14}{5}y - 2 = 0$$
. Finally  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ . To find whether  $\left(\frac{11}{7}, \frac{5}{7}\right)$  is local

extremum, compute Hessian: 
$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} 20 & 12 \\ 12 & 10 \end{pmatrix}$$
.

$$D = \det H = 200 - 144 = 56$$
 Therefore we have a local ? at  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ ,

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$

To find the critical points, solve the system:

$$0 = f_X(x, y) = 2(x - 2) - 6(6 - 3x - 2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y - 1) - 4(6 - 3x - 2y) = 12x + 10y - 26$$

From first equation  $x = \frac{10-3y}{5}$ . Substitute in the second eqn.:

$$\frac{14}{5}y - 2 = 0$$
. Finally  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ . To find whether  $\left(\frac{11}{7}, \frac{5}{7}\right)$  is local

extremum, compute Hessian: 
$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} 20 > 0 & 12 \\ 12 & 10 \end{pmatrix}$$
.

$$D = \det H = 200 - 144 = 56 > 0$$
. Therefore we have a local minimum at  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ ,

Let P(2,1,0) and let  $\mathcal{P}$  be the plane 3x + 2y + z = 6. Find the shortest distance between P and a point on  $\mathcal{P}$ .

Let Q(x, y, z) be a point on  $\mathcal{P}$ . We seek to minimize  $d = \sqrt{(x-2)^2 + (y-1)^2 + z^2}$ , equivalently to minimize  $f = d^2$ :

$$f(x,y) = (x-2)^2 + (y-1)^2 + z^2 = (x-2)^2 + (y-1)^2 + (6-3x-2y)^2$$
.

To find the critical points, solve the system:

$$0 = f_X(x, y) = 2(x-2) - 6(6 - 3x - 2y) = 20x + 12y - 40$$

$$0 = f_y(x, y) = 2(y-1) - 4(6-3x-2y) = 12x + 10y - 26$$

From first equation  $x = \frac{10-3y}{5}$ . Substitute in the second eqn.:

$$\frac{14}{5}y - 2 = 0$$
. Finally  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ . To find whether  $\left(\frac{11}{7}, \frac{5}{7}\right)$  is local

extremum, compute Hessian: 
$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} 20 & 12 \\ 12 & 10 \end{pmatrix}$$
.

$$D = \det H = 200 - 144 = 56 > 0$$
. Therefore we have a local minimum at  $x = \frac{11}{7}$ ,  $y = \frac{5}{7}$ , and the min. is:  $f(\frac{11}{7}, \frac{5}{7}) = \frac{\sqrt{14}}{7}$ .

Global extreme points are guaranteed to exist if:

- $f: D \to \mathbb{R}$  is continuous, and
- the domain *D* has the following properties:
  - D is bounded: The points in D don't go farther than a certain fixed, finite distance from a fixed point.
  - D is closed: D contains all its boundary points.

The statement above is the **Extreme Value Theorem** 

Global extreme points are guaranteed to exist if:

- $f: D \to \mathbb{R}$  is continuous, and
- the domain *D* has the following properties:
  - D is bounded: The points in D don't go farther than a certain fixed, finite distance from a fixed point.
  - D is closed: D contains all its boundary points.

The statement above is the **Extreme Value Theorem**.

• Why does D have to be bounded:

Global extreme points are guaranteed to exist if:

- $f: D \to \mathbb{R}$  is continuous, and
- the domain *D* has the following properties:
  - D is bounded: The points in D don't go farther than a certain fixed, finite distance from a fixed point.
  - D is closed: D contains all its boundary points.

The statement above is the **Extreme Value Theorem**.

• Why does D have to be bounded: to exclude  $f: \mathbb{R}^2 \to \mathbb{R}$ , f(x, y) = x;

Global extreme points are guaranteed to exist if:

- $f: D \to \mathbb{R}$  is continuous, and
- the domain *D* has the following properties:
  - *D* is *bounded*: The points in *D* don't go farther than a certain fixed, finite distance from a fixed point.
  - D is closed: D contains all its boundary points.

The statement above is the **Extreme Value Theorem**.

- Why does D have to be bounded: to exclude  $f: \mathbb{R}^2 \to \mathbb{R}$ , f(x,y) = x;
- Why does D have to be closed:

Global extreme points are guaranteed to exist if:

- $f: D \to \mathbb{R}$  is continuous, and
- the domain *D* has the following properties:
  - *D* is *bounded*: The points in *D* don't go farther than a certain fixed, finite distance from a fixed point.
  - D is closed: D contains all its boundary points.

The statement above is the **Extreme Value Theorem**.

- Why does D have to be bounded: to exclude  $f: \mathbb{R}^2 \to \mathbb{R}$ , f(x,y) = x;
- Why does D have to be closed: to exclude  $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ ,  $f(x,y) = (x^2 + y^2)^{-1}$ . In this situation the boundary of D is  $\{(0,0)\}$  and is not included in D, so D is not closed.



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z.



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10$$
.





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}$$
.





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x+y)}. \Rightarrow V = xy \frac{10 - xy}{2(x+y)}.$$





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy \frac{10 - xy}{2(x + y)}.$$





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy \frac{10 - xy}{2(x + y)}.$$
  
 $(x, y) \in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}.$ 





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10$$
.  $\Rightarrow z = \frac{10 - xy}{2(x + y)}$ .  $\Rightarrow V = xy \frac{10 - xy}{2(x + y)}$ .  $(x, y) \in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}$ . We're solving:

$$0 = V_x$$

$$0 = V_y$$





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10$$
.  $\Rightarrow z = \frac{10 - xy}{2(x + y)}$ .  $\Rightarrow V = xy \frac{10 - xy}{2(x + y)}$ .  $(x, y) \in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}$ . We're solving:

$$0 = V_X = ?$$

$$0 = V_y$$





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10$$
.  $\Rightarrow z = \frac{10 - xy}{2(x + y)}$ .  $\Rightarrow V = xy \frac{10 - xy}{2(x + y)}$ .  $(x, y) \in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}$ . We're solving:

$$0 = V_X = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$

$$0 = V_y$$





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10$$
.  $\Rightarrow z = \frac{10 - xy}{2(x + y)}$ .  $\Rightarrow V = xy \frac{10 - xy}{2(x + y)}$ .  $(x, y) \in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}$ . We're solving:

$$0 = V_{x} = \frac{-xy^{3} - \frac{1}{2}x^{2}y^{2} + 5y^{2}}{(x+y)^{2}}$$

$$0 = V_{y} = ?$$

$$0 = V_{v} = ?$$





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10$$
.  $\Rightarrow z = \frac{10 - xy}{2(x + y)}$ .  $\Rightarrow V = xy \frac{10 - xy}{2(x + y)}$ .  $(x, y) \in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}$ . We're solving:

$$0 = V_{x} = \frac{-xy^{3} - \frac{1}{2}x^{2}y^{2} + 5y^{2}}{(x+y)^{2}}$$

$$0 = V_{y} = \frac{-yx^{3} - \frac{1}{2}x^{2}y^{2} + 5x^{2}}{(x+y)^{2}}$$

$$0 = V_y = \frac{-yx^3 - \frac{1}{2}x^2y^2 + 5x^2}{(x+y)^2}$$





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy\frac{10 - xy}{2(x + y)}.$$
  
(x, y)  $\in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}.$  We're solving:

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x^2 + y^2)^2}$$

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$
  

$$0 = V_y = \frac{-yx^3 - \frac{1}{2}x^2y^2 + 5x^2}{(x+y)^2}$$

We can assume  $y \neq 0$ ,  $x \neq 0$  (else the volume is zero). Then

$$0 = -xy - \frac{1}{2}x^2 + 5$$

$$0 = -yx - \frac{1}{2}y^2 + 5$$





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy\frac{10 - xy}{2(x + y)}.$$
  
(x, y)  $\in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}.$  We're solving:

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x^2 + y^2)^2}$$

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$
  

$$0 = V_y = \frac{-yx^3 - \frac{1}{2}x^2y^2 + 5x^2}{(x+y)^2}$$

We can assume  $y \neq 0$ ,  $x \neq 0$  (else the volume is zero). Then

$$0 = -xy - \frac{1}{2}x^2 + 5$$

$$0 = -yx - \frac{1}{2}y^2 + 5$$

**Todor Milev** Lecture 12 2020





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10$$
.  $\Rightarrow z = \frac{10 - xy}{2(x + y)}$ .  $\Rightarrow V = xy\frac{10 - xy}{2(x + y)}$ .

$$(x,y) \in \mathcal{R} = \{(x,y) | xy \le 10, x \ge 0, y \ge 0\}.$$
 We're solving:

$$0 = V_{x} = \frac{-xy^{3} - \frac{1}{2}x^{2}y^{2} + 5y^{2}}{(x+y)^{2}}$$

$$0 = V_{y} = \frac{-yx^{3} - \frac{1}{2}x^{2}y^{2} + 5x^{2}}{(x+y)^{2}}$$

$$0 = V_y = \frac{-yx^3 - \frac{1}{2}x^2y^2 + 5x^2}{(x+y)^2}$$

We can assume  $y \neq 0$ ,  $x \neq 0$  (else the volume is zero). Then

$$0 = -xy - \frac{1}{2}x^2 + 5$$

$$0 = -yx - \frac{1}{2}y^2 + 5$$

Therefore  $x^2 = y^2$  and so x = y (both quantities are positive).





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy\frac{10 - xy}{2(x + y)}.$$
  
(x, y)  $\in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}.$  We're solving:

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$

$$0 = V_{x} = \frac{-xy^{3} - \frac{1}{2}x^{2}y^{2} + 5y^{2}}{(x+y)^{2}}$$

$$0 = V_{y} = \frac{-yx^{3} - \frac{1}{2}x^{2}y^{2} + 5x^{2}}{(x+y)^{2}}$$

We can assume  $y \neq 0$ ,  $x \neq 0$  (else the volume is zero). Then

$$0 = -xy - \frac{1}{2}x^2 + 5$$

$$0 = -yx - \frac{1}{2}y^2 + 5$$

Therefore  $x^2 = y^2$  and so x = y (both quantities are positive).

Therefore 
$$\frac{3}{2}x^2 = 5$$
,





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy\frac{10 - xy}{2(x + y)}.$$
  
(x, y)  $\in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}.$  We're solving:

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$

$$0 = V_{x} = \frac{-xy^{3} - \frac{1}{2}x^{2}y^{2} + 5y^{2}}{(x+y)^{2}}$$

$$0 = V_{y} = \frac{-yx^{3} - \frac{1}{2}x^{2}y^{2} + 5x^{2}}{(x+y)^{2}}$$

We can assume  $y \neq 0$ ,  $x \neq 0$  (else the volume is zero). Then

$$0 = -xy - \frac{1}{2}x^2 + 5$$

$$0 = -yx - \frac{1}{2}y^2 + 5$$

Therefore  $x^2 = y^2$  and so x = y (both quantities are positive).

Therefore 
$$\frac{3}{2}x^2 = 5$$
, and so  $x = \sqrt{\frac{10}{3}} = y$ .

**Todor Milev** Lecture 12 2020





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy\frac{10 - xy}{2(x + y)}.$$
  
(x, y)  $\in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}.$  We're solving:

$$0 = V_X = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$

$$0 = V_{x} = \frac{-xy^{3} - \frac{1}{2}x^{2}y^{2} + 5y^{2}}{(x+y)^{2}}$$

$$0 = V_{y} = \frac{-yx^{3} - \frac{1}{2}x^{2}y^{2} + 5x^{2}}{(x+y)^{2}}$$

We can assume  $y \neq 0$ ,  $x \neq 0$  (else the volume is zero). Then

$$0 = -xy - \frac{1}{2}x^2 + 5$$

$$0 = -yx - \frac{1}{2}y^2 + 5$$

Therefore  $x^2 = y^2$  and so x = y (both quantities are positive).

Therefore  $\frac{3}{2}x^2 = 5$ , and so  $x = \sqrt{\frac{10}{3}} = y$ . By EVT max exists

**Todor Milev** Lecture 12 2020





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy\frac{10 - xy}{2(x + y)}.$$
  
(x, y)  $\in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}.$  We're solving:

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$
  

$$0 = V_y = \frac{-yx^3 - \frac{1}{2}x^2y^2 + 5x^2}{(x+y)^2}$$

We can assume  $y \neq 0$ ,  $x \neq 0$  (else the volume is zero). Then

$$0 = -xy - \frac{1}{2}x^2 + 5$$

$$0 = -yx - \frac{1}{2}y^2 + 5$$

Therefore  $x^2 = y^2$  and so x = y (both quantities are positive).

Therefore  $\frac{3}{2}x^2 = 5$ , and so  $x = \sqrt{\frac{10}{3}} = y$ . By EVT max exists  $\Rightarrow$  is achieved for  $x = y = \sqrt{\frac{10}{3}}$ .

> Todor Miley Lecture 12 2020





Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let dimensions of box be x, y, z. We seek to maximize V = xyz.

Restrictions: 
$$xy + 2(zx + zy) = 10. \Rightarrow z = \frac{10 - xy}{2(x + y)}. \Rightarrow V = xy\frac{10 - xy}{2(x + y)}.$$
  
(x, y)  $\in \mathcal{R} = \{(x, y) | xy \le 10, x \ge 0, y \ge 0\}.$  We're solving:

$$0 = V_x = \frac{-xy^3 - \frac{1}{2}x^2y^2 + 5y^2}{(x+y)^2}$$
  

$$0 = V_y = \frac{-yx^3 - \frac{1}{2}x^2y^2 + 5x^2}{(x+y)^2}$$

$$0 = V_y = \frac{-yx^3 - \frac{1}{2}x^2y^2 + 5x^2}{(x+y)^2}$$

We can assume  $y \neq 0$ ,  $x \neq 0$  (else the volume is zero). Then

$$0 = -xy - \frac{1}{2}x^2 + 5$$

$$0 = -yx - \frac{1}{2}y^2 + 5$$

Therefore  $x^2 = y^2$  and so x = y (both quantities are positive).

Therefore  $\frac{3}{2}x^2 = 5$ , and so  $x = \sqrt{\frac{10}{3}} = y$ . By EVT max exists  $\Rightarrow$  is achieved for  $x = y = \sqrt{\frac{10}{3}}$ . Max volume  $V_{max} = \frac{5}{9}\sqrt{30}$ .

> Todor Milev Lecture 12 2020

#### Theorem

Suppose  $\nabla F(P) \neq \mathbf{0}$ . Then  $\nabla F(P)$  is perpendicular to the tangent vector at P of every differentiable curve lying in S passing through P.

#### **Theorem**

Suppose  $\nabla F(P) \neq \mathbf{0}$ . Then  $\nabla F(P)$  is perpendicular to the tangent vector at P of every differentiable curve lying in S passing through P.

#### Proof.

Suppose  $\mathbf{r}(t) = (x(t), y(t), z(t))$  is a curve in S. Compute:

#### Theorem

Suppose  $\nabla F(P) \neq \mathbf{0}$ . Then  $\nabla F(P)$  is perpendicular to the tangent vector at P of every differentiable curve lying in S passing through P.

#### Proof.

Suppose 
$$\mathbf{r}(t) = (x(t), y(t), z(t))$$
 is a curve in  $S$ . Compute: 
$$F(x(t), y(t), z(t)) = 0 \quad \text{apply } \frac{d}{dt}$$

Lecture 12 Todor Milev 2020

#### Theorem

Suppose  $\nabla F(P) \neq \mathbf{0}$ . Then  $\nabla F(P)$  is perpendicular to the tangent vector at P of every differentiable curve lying in S passing through P.

### Proof.

Suppose  $\mathbf{r}(t) = (x(t), y(t), z(t))$  is a curve in S. Compute:

$$F(x(t), y(t), z(t)) = 0 \quad \text{apply } \frac{d}{dt}$$

$$\left(F_{x}\frac{\mathrm{d}x}{\mathrm{d}t}+F_{y}\frac{\mathrm{d}y}{\mathrm{d}t}+F_{z}\frac{\mathrm{d}z}{\mathrm{d}t}\right)_{|x=x(t),y=y(t),z=z(t)}=0$$



Todor Milev Lecture 12 2020

#### Theorem

Suppose  $\nabla F(P) \neq \mathbf{0}$ . Then  $\nabla F(P)$  is perpendicular to the tangent vector at P of every differentiable curve lying in S passing through P.

#### Proof.

Suppose 
$$\mathbf{r}(t) = (x(t), y(t), z(t))$$
 is a curve in  $S$ . Compute:

$$F(x(t), y(t), z(t)) = 0 \quad \text{apply } \frac{d}{dt}$$

$$\left(F_x \frac{dx}{dt} + F_y \frac{dy}{dt} + F_z \frac{dz}{dt}\right)_{|x=x(t), y=y(t), z=z(t)} = 0$$

$$\mathbf{r}'(t) \cdot (F_x, F_y, F_z)_{|x=x(t), y=y(t), z=z(t)} = 0$$



#### **Theorem**

Suppose  $\nabla F(P) \neq \mathbf{0}$ . Then  $\nabla F(P)$  is perpendicular to the tangent vector at P of every differentiable curve lying in S passing through P.

#### Proof.

Suppose 
$$\mathbf{r}(t) = (x(t), y(t), z(t))$$
 is a curve in  $S$ . Compute:

$$F(x(t), y(t), z(t)) = 0 \quad \text{apply } \frac{d}{dt}$$

$$\left(F_x \frac{dx}{dt} + F_y \frac{dy}{dt} + F_z \frac{dz}{dt}\right)_{|x=x(t),y=y(t),z=z(t)} = 0$$

$$\mathbf{r}'(t) \cdot (F_x, F_y, F_z)_{|x=x(t),y=y(t),z=z(t)} = 0$$

$$\mathbf{r}'(t) \cdot (\nabla F)_{|x=x(t),y=y(t),z=z(t)} = 0$$



#### **Theorem**

Suppose  $\nabla F(P) \neq \mathbf{0}$ . Then  $\nabla F(P)$  is perpendicular to the tangent vector at P of every differentiable curve lying in S passing through P.

### Proof.

Suppose 
$$\mathbf{r}(t) = (x(t), y(t), z(t))$$
 is a curve in  $S$ . Compute:

$$F(x(t), y(t), z(t)) = 0 \quad \text{apply } \frac{d}{dt}$$

$$\left(F_x \frac{dx}{dt} + F_y \frac{dy}{dt} + F_z \frac{dz}{dt}\right)_{|x=x(t),y=y(t),z=z(t)} = 0$$

$$\mathbf{r}'(t) \cdot (F_x, F_y, F_z)_{|x=x(t),y=y(t),z=z(t)} = 0$$

$$\mathbf{r}'(t) \cdot (\nabla F)_{|x=x(t),y=y(t),z=z(t)} = 0$$

## Definition (Tangent plane to level surface)

Suppose  $\nabla F(P) \neq 0$ . We define the tangent plane to the surface S at P to be the plane passing through P with normal vector  $\nabla F(P)$ .

### **Problem**

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

### **Problem**

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

• Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$ 

#### **Problem**

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

- Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$
- Suppose the max is achieved at  $P(x_0, y_0, z_0)$ . Let  $\mathbf{r}(t) = (x(t), y(t), z(t))$  be a smooth curve on S such that  $\mathbf{r}(0) = P$ .

#### **Problem**

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

- Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$
- Suppose the max is achieved at  $P(x_0, y_0, z_0)$ . Let  $\mathbf{r}(t) = (x(t), y(t), z(t))$  be a smooth curve on S such that  $\mathbf{r}(0) = P$ .
- Then  $G(\mathbf{r}(t)) = G(x(t), y(t), z(t))$  has maximum at t = 0.

#### **Problem**

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

- Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$
- Suppose the max is achieved at  $P(x_0, y_0, z_0)$ . Let  $\mathbf{r}(t) = (x(t), y(t), z(t))$  be a smooth curve on S such that  $\mathbf{r}(0) = P$ .
- Then  $G(\mathbf{r}(t)) = G(x(t), y(t), z(t))$  has maximum at t = 0.

$$\frac{\mathrm{d}}{\mathrm{d}t}_{|t=0}\left(G(\mathbf{r}(t))\right) = 0$$

### Problem

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

- Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$
- Suppose the max is achieved at  $P(x_0, y_0, z_0)$ . Let  $\mathbf{r}(t) = (x(t), y(t), z(t))$  be a smooth curve on S such that  $\mathbf{r}(0) = P$ .
- Then  $G(\mathbf{r}(t)) = G(x(t), y(t), z(t))$  has maximum at t = 0.

$$\frac{\frac{d}{dt}_{|t=0} (G(\mathbf{r}(t)))}{\left(\frac{\partial G}{\partial x}\frac{dx}{dt} + \frac{\partial G}{\partial y}\frac{dy}{dt} + \frac{\partial G}{\partial z}\frac{dz}{dt}\right)_{|t=0}} = 0$$

### Problem

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

- Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$
- Suppose the max is achieved at  $P(x_0, y_0, z_0)$ . Let  $\mathbf{r}(t) = (x(t), y(t), z(t))$  be a smooth curve on S such that  $\mathbf{r}(0) = P$ .
- Then  $G(\mathbf{r}(t)) = G(x(t), y(t), z(t))$  has maximum at t = 0.

$$\frac{d}{dt}_{|t=0} (G(\mathbf{r}(t))) = 0$$

$$\left(\frac{\partial G}{\partial x}\frac{dx}{dt} + \frac{\partial G}{\partial y}\frac{dy}{dt} + \frac{\partial G}{\partial z}\frac{dz}{dt}\right)_{|t=0} = 0$$

$$\nabla G \cdot \mathbf{r}'(0) = 0$$

#### **Problem**

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

- Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$
- Suppose the max is achieved at  $P(x_0, y_0, z_0)$ . Let  $\mathbf{r}(t) = (x(t), y(t), z(t))$  be a smooth curve on S such that  $\mathbf{r}(0) = P$ .
- Then  $G(\mathbf{r}(t)) = G(x(t), y(t), z(t))$  has maximum at t = 0.

$$\frac{\frac{d}{dt}|_{t=0} (G(\mathbf{r}(t)))}{\left(\frac{\partial G}{\partial x}\frac{dx}{dt} + \frac{\partial G}{\partial y}\frac{dy}{dt} + \frac{\partial G}{\partial z}\frac{dz}{dt}\right)_{|t=0}} = 0$$

$$\nabla G \cdot \mathbf{r}'(0) = 0$$

• Therefore  $\nabla G$  is  $\perp$  to tangent at P of every curve in S through P.

### **Problem**

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

- Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$
- Suppose the max is achieved at  $P(x_0, y_0, z_0)$ . Let  $\mathbf{r}(t) = (x(t), y(t), z(t))$  be a smooth curve on S such that  $\mathbf{r}(0) = P$ .
- Then  $G(\mathbf{r}(t)) = G(x(t), y(t), z(t))$  has maximum at t = 0.

$$\frac{\frac{d}{dt}|_{t=0} (G(\mathbf{r}(t)))}{\left(\frac{\partial G}{\partial x}\frac{dx}{dt} + \frac{\partial G}{\partial y}\frac{dy}{dt} + \frac{\partial G}{\partial z}\frac{dz}{dt}\right)_{|t=0}} = 0$$

$$\nabla G \cdot \mathbf{r}'(0) = 0$$

- Therefore  $\nabla G$  is  $\perp$  to tangent at P of every curve in S through P.
- Therefore  $\nabla F(P)$  and  $\nabla G(P)$  are parallel,

#### **Problem**

Find the maximum of a function G(x, y, z) subject to the variable restriction F(x, y, z) = 0.

- Let  $S = \{(x, y, z) | F(x, y, z) = 0\}.$
- Suppose the max is achieved at  $P(x_0, y_0, z_0)$ . Let  $\mathbf{r}(t) = (x(t), y(t), z(t))$  be a smooth curve on S such that  $\mathbf{r}(0) = P$ .
- Then  $G(\mathbf{r}(t)) = G(x(t), y(t), z(t))$  has maximum at t = 0.

$$\frac{\frac{d}{dt}_{|t=0} (G(\mathbf{r}(t)))}{\left(\frac{\partial G}{\partial x}\frac{dx}{dt} + \frac{\partial G}{\partial y}\frac{dy}{dt} + \frac{\partial G}{\partial z}\frac{dz}{dt}\right)_{|t=0}} = 0$$

$$\nabla G \cdot \mathbf{r}'(0) = 0$$

- Therefore  $\nabla G$  is  $\bot$  to tangent at P of every curve in S through P.
- Therefore  $\nabla F(P)$  and  $\nabla G(P)$  are parallel, i.e., there exists  $\lambda$  s.t.:  $(\nabla G)(P) = \lambda(\nabla F)(P)$ .

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ .

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ . Region:

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ . Region: closed square of vertices (2, 0), (0, 2), (-2, 0), and (0, -2).

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ .

Region: closed square of vertices (2,0), (0,2), (-2,0), and (0,-2). The function is continuous and the domain is bounded and closed. Extreme Value Theorem  $\Longrightarrow f$  has global minimum and maximum points.

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ .

Region: closed square of vertices (2,0), (0,2), (-2,0), and (0,-2). The function is continuous and the domain is bounded and closed. Extreme Value Theorem  $\Longrightarrow f$  has global minimum and maximum points.

### Strategy:

- Find critical points in the interior of the disk;
- Find extreme points on the boundary of the disk;
- Compare the values.

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ .

Region: closed square of vertices (2,0), (0,2), (-2,0), and (0,-2).

The function is continuous and the domain is bounded and closed. Extreme Value Theorem  $\implies$  f has global minimum and maximum points.

### Strategy:

- Find critical points in the interior of the disk;
- Find extreme points on the boundary of the disk;
- Compare the values.

Since f is differentiable everywhere, the interior extreme points are among the solutions of the system

$$\begin{cases} f_X(x,y) = 0 \\ f_Y(x,y) = 0 \end{cases} \iff \begin{cases} y = 0 \\ x = 0 \end{cases}$$

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ .

Extreme points on the boundary: check each of the four sides. For the segment joining (2,0) with (0,2) we get:

Find min/max of 
$$f(x, y) = xy$$
  
Subject to  $g(x, y) = x + y - 2 = 0$ 

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ .

Extreme points on the boundary: check each of the four sides. For the segment joining (2,0) with (0,2) we get:

Find min/max of 
$$f(x, y) = xy$$
  
Subject to  $g(x, y) = x + y - 2 = 0$ 

The Lagrange function is

$$F(x, y, \lambda) = f(x, y) - \lambda g(x, y) = xy - \lambda (x + y - 2)$$

Find the maximum and the minimum values of f(x, y) = xy on the region  $D = \{(x, y) \mid |x| + |y| \le 2\}$ .

Extreme points on the boundary: check each of the four sides. For the segment joining (2,0) with (0,2) we get:

Find min/max of 
$$f(x, y) = xy$$
  
Subject to  $g(x, y) = x + y - 2 = 0$ 

The Lagrange function is

$$F(x, y, \lambda) = f(x, y) - \lambda g(x, y) = xy - \lambda (x + y - 2)$$

The critical points of *F* are the solutions of the system

$$\begin{cases} F_x(x,y,\lambda) &= 0 \\ F_y(x,y,\lambda) &= 0 \\ F_{\lambda}(x,y,\lambda) &= 0 \end{cases} \iff \begin{cases} y-\lambda &= 0 \\ x-\lambda &= 0 \\ x+y=2 &= 0 \end{cases} \iff \begin{cases} x &= 1 \\ y &= 1 \\ \lambda &= 1 \end{cases}$$

$$\bullet (\nabla f)_{(1,1)} = \langle y, x \rangle|_{x=1,y=1} = \langle 1, 1 \rangle.$$

- $\bullet (\nabla f)_{(1,1)} = \langle y, x \rangle|_{x=1, y=1} = \langle 1, 1 \rangle.$
- If we move along the direction of the gradient at (1, 1):
  - the value of the objective would increase;
  - the level curves of f we cross no longer intersect the constraint
  - those levels of f are unattainable on the constraint set x + y = 2.

- $\bullet (\nabla f)_{(1,1)} = \langle y, x \rangle|_{x=1, y=1} = \langle 1, 1 \rangle.$
- If we move along the direction of the gradient at (1, 1):
  - the value of the objective would increase;
  - the level curves of *f* we cross no longer intersect the constraint
  - those levels of f are unattainable on the constraint set x + y = 2.
- The point (1, 1) corresponds to a local maxim.

- $\bullet (\nabla f)_{(1,1)} = \langle y, x \rangle|_{x=1, y=1} = \langle 1, 1 \rangle.$
- If we move along the direction of the gradient at (1, 1):
  - the value of the objective would increase;
  - the level curves of f we cross no longer intersect the constraint
  - those levels of f are unattainable on the constraint set x + y = 2.
- The point (1, 1) corresponds to a local maxim.

Three more critical points on the boundary: (-1, 1), (-1, -1), (1, -1).

- $\bullet (\nabla f)_{(1,1)} = \langle y, x \rangle|_{x=1, y=1} = \langle 1, 1 \rangle.$
- If we move along the direction of the gradient at (1, 1):
  - the value of the objective would increase;
  - the level curves of f we cross no longer intersect the constraint
  - those levels of f are unattainable on the constraint set x + y = 2.
- The point (1, 1) corresponds to a local maxim.

Three more critical points on the boundary: (-1, 1), (-1, -1), (1, -1). Compare the values at all points:

- the global maximum is 1, attained at (1, 1) and (-1, -1);
- the global minimum is -1, attained at (1, -1) and (-1, 1);
- the critical point (0,0) is a saddle point.



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

?



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

$$\nabla V = \lambda \nabla g$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

? 
$$= \nabla V = \lambda \nabla q$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

$$(yz, zx, xy) = \nabla V = \lambda \nabla g$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

$$(yz, zx, xy) = \nabla V = \lambda \nabla g = \lambda$$
?



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

$$(yz, zx, xy) = \nabla V = \lambda \nabla g = \lambda (2z + y, 2z + x, 2y + 2x) .$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

$$(yz, zx, xy) = \nabla V = \lambda \nabla g = \frac{\lambda}{2z + y}, 2z + x, 2y + 2x$$
.

In other words we are solving the following system.

$$yz = \lambda(2z + y)$$

$$xz = \lambda(2z + x)$$

$$xy = \lambda(2x + 2y)$$

$$10 = xy + 2(zx + yz)$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

$$(yz, zx, xy) = \nabla V = \lambda \nabla g = \frac{\lambda}{\lambda} (2z + y, 2z + x, 2y + 2x)$$
.

In other words we are solving the following system.

$$yz = \lambda(2z + y)$$

$$xz = \lambda(2z + x)$$

$$xy = \lambda(2x + 2y)$$

$$10 = xy + 2(zx + yz)$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

$$(yz, zx, xy) = \nabla V = \lambda \nabla g = \lambda (2z + y, 2z + x, 2y + 2x)$$
.

In other words we are solving the following system.

$$yz = \lambda(2z + y)$$

$$xz = \lambda(2z + x)$$

$$xy = \lambda(2x + 2y)$$

$$10 = xy + 2(zx + yz)$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$
.

By the Lagrange multiplier method, we need to solve the system

$$(yz, zx, xy) = \nabla V = \lambda \nabla g = \lambda (2z + y, 2z + x, 2y + 2x)$$
.

In other words we are solving the following system.

$$yz = \lambda(2z + y)$$

$$xz = \lambda(2z + x)$$

$$xy = \lambda(2x + 2y)$$

$$10 = xy + 2(zx + yz)$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

We seek to maximize V = xyz under the restriction

$$g(x, y, z) = xy + 2(zx + yz) - 10 = 0$$

By the Lagrange multiplier method, we need to solve the system

$$(yz, zx, xy) = \nabla V = \lambda \nabla g = \lambda (2z + y, 2z + x, 2y + 2x)$$
.

In other words we are solving the following system.

$$yz = \lambda(2z + y)$$

$$xz = \lambda(2z + x)$$

$$xy = \lambda(2x + 2y)$$

$$10 = xy + 2(zx + yz)$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$yz = \lambda(2z + y)$$

$$xz = \lambda(2z + x)$$

$$xy = \lambda(2x + 2y)$$

$$10 = xy + 2(zx + yz)$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &=& \lambda(2z+y) \\ xz &=& \lambda(2z+x) \\ xy &=& \lambda(2x+2y) \\ 10 &=& xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &=& \lambda(2z+y)x \\ xyz &=& \lambda(2z+x)y \\ xy &=& \lambda(2x+2y) \\ 10 &=& xy+2(zx+yz) \end{vmatrix}$$

From the first two equalities we get  $2\lambda xz + \lambda xy = 2\lambda yz + \lambda xy$ 



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &=& \lambda(2z+y) \\ xz &=& \lambda(2z+x) \\ xy &=& \lambda(2x+2y) \\ 10 &=& xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &=& \lambda(2z+y)x \\ xyz &=& \lambda(2z+x)y \\ xy &=& \lambda(2x+2y) \\ 10 &=& xy+2(zx+yz) \end{vmatrix}$$

From the first two equalities we get  $2\lambda xz + \lambda xy = 2\lambda yz + \lambda xy$ 



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &=& \lambda(2z+y) \\ xz &=& \lambda(2z+x) \\ xy &=& \lambda(2x+2y) \\ 10 &=& xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &=& \lambda(2z+y)x \\ xyz &=& \lambda(2z+x)y \\ xy &=& \lambda(2x+2y) \\ 10 &=& xy+2(zx+yz) \end{vmatrix}$$

From the first two equalities we get  $2\lambda xz + \lambda xy = 2\lambda yz + \lambda xy$  and so

$$\lambda xz = \lambda yz$$
 .



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}$$

From the first two equalities we get  $2\lambda xz + \lambda xy = 2\lambda yz + \lambda xy$  and so

$$\lambda xz = \lambda yz$$
 .

We have that  $\lambda \neq 0, z \neq 0$  (else the volume would be zero). Therefore

$$x = y$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}$$

$$x = y$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= & \lambda(2z+y) \\ xz &= & \lambda(2z+x) \\ xy &= & \lambda(2x+2y) \\ 10 &= & xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= & \lambda(2z+y)x \\ xyz &= & \lambda(2z+x)y \\ xy &= & \lambda(2x+2y) \\ 10 &= & xy+2(zx+yz) \end{vmatrix}$$

We substitute y = x in the third equality to get  $x^2 = 4\lambda x$ 



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= & \lambda(2z+y) \\ xz &= & \lambda(2z+x) \\ xy &= & \lambda(2x+2y) \\ 10 &= & xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= & \lambda(2z+y)x \\ xyz &= & \lambda(2z+x)y \\ xy &= & \lambda(2x+2y) \\ 10 &= & xy+2(zx+yz) \end{vmatrix}$$

We substitute y = x in the third equality to get  $x^2 = 4\lambda x$  and since  $x \neq 0$  we get  $\lambda = \frac{x}{4}$ .

X = V



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= & \lambda(2z+y) \\ xz &= & \lambda(2z+x) \\ xy &= & \lambda(2x+2y) \\ 10 &= & xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= & \lambda(2z+y)x \\ xyz &= & \lambda(2z+x)y \\ xy &= & \lambda(2x+2y) \\ 10 &= & xy+2(zx+yz) \end{vmatrix}$$

We substitute y = x in the third equality to get  $x^2 = 4\lambda x$  and since  $x \neq 0$  we get  $\lambda = \frac{x}{4}$ . We substitute  $\lambda = \frac{x}{4}$  in the original second equality to get  $zx = \frac{x}{4}(2z + x)$ .

x = v



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ . Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}$$

$$x = y$$

We substitute y = x in the third equality to get  $x^2 = 4\lambda x$  and since  $x \neq 0$  we get  $\lambda = \frac{x}{4}$ . We substitute  $\lambda = \frac{x}{4}$  in the original second equality to get  $zx = \frac{x}{4}(2z + x)$ . Since  $x \neq 0$  it follows that  $z = \frac{1}{4}(2z + x)$ 



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= & \lambda(2z+y) \\ xz &= & \lambda(2z+x) \\ xy &= & \lambda(2x+2y) \\ 10 &= & xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= & \lambda(2z+y)x \\ xyz &= & \lambda(2z+x)y \\ xy &= & \lambda(2x+2y) \\ 10 &= & xy+2(zx+yz) \end{vmatrix}$$

$$x = y$$

We substitute y = x in the third equality to get  $x^2 = 4\lambda x$  and since  $x \neq 0$  we get  $\lambda = \frac{x}{4}$ . We substitute  $\lambda = \frac{x}{4}$  in the original second equality to get  $zx = \frac{x}{4}(2z + x)$ . Since  $x \neq 0$  it follows that  $z = \frac{1}{4}(2z + x)$  and so  $z = \frac{x}{2}$ .



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &=& \lambda(2z+y) \\ xz &=& \lambda(2z+x) \\ xy &=& \lambda(2x+2y) \\ 10 &=& xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &=& \lambda(2z+y)x \\ xyz &=& \lambda(2z+x)y \\ xy &=& \lambda(2x+2y) \\ 10 &=& xy+2(zx+yz) \end{vmatrix}.$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}$$

$$x = y \qquad z = \frac{x}{2} .$$

Finally we substitute  $y = x, z = \frac{x}{2}$  in the last equality



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}.$$

Finally we substitute  $y = x, z = \frac{x}{2}$  in the last equality to get  $10 = 3x^2$ .



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}.$$

Finally we substitute  $y = x, z = \frac{x}{2}$  in the last equality to get  $10 = 3x^2$ .

Thus 
$$x = \frac{\sqrt{30}}{3}$$



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}$$

Finally we substitute  $y = x, z = \frac{x}{2}$  in the last equality to get  $10 = 3x^2$ .

Thus 
$$x = \frac{\sqrt{30}}{3}$$
 and therefore  $y = \frac{\sqrt{30}}{3}$ ,  $z = \frac{\sqrt{30}}{6}$ ,



Find the maximal volume of a box with no lid whose surface area is  $10m^2$ .

Let the three dimensions of the box be x, y, z.

$$\begin{vmatrix} yz &= \lambda(2z+y) \\ xz &= \lambda(2z+x) \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix} \Rightarrow \begin{vmatrix} xyz &= \lambda(2z+y)x \\ xyz &= \lambda(2z+x)y \\ xy &= \lambda(2x+2y) \\ 10 &= xy+2(zx+yz) \end{vmatrix}$$

$$x = y \qquad z = \frac{x}{2} .$$

Finally we substitute  $y = x, z = \frac{x}{2}$  in the last equality to get  $10 = 3x^2$ . Thus  $x = \frac{\sqrt{30}}{2}$  and therefore  $y = \frac{\sqrt{30}}{2}$ ,  $z = \frac{\sqrt{30}}{6}$ , our final answer.

Find 
$$\min / \max f(x, y, z)$$
  
Subject to  $g(x, y, z) = 0$   
 $h(x, y, z) = 0$ 

Find min 
$$/ \max f(x, y, z)$$
  
Subject to  $g(x, y, z) = 0$   
 $h(x, y, z) = 0$ 

Each constraint defines a surface  $\Longrightarrow$  their intersection defines a curve.

Find 
$$\min / \max f(x, y, z)$$
  
Subject to  $g(x, y, z) = 0$   
 $h(x, y, z) = 0$ 

Each constraint defines a surface  $\Longrightarrow$  their intersection defines a curve.

Condition:  $(\nabla g)_P(\nabla h)_P$  are non-collinear for each intersection point P The level surface of f through a point of extreme  $P_0$  is tangent to the constraint curve, so  $(\nabla f)(P_0)$  is perpendicular to the curve at  $P_0$ . Constraint curve included in both surfaces  $\Longrightarrow$ 

 $(\nabla g)(P_0)$  and  $(\nabla h)(P_0)$  are perpendicular to the curve  $\Longrightarrow$ 

Todor Milev Lecture 12 2020

Find min 
$$/ \max f(x, y, z)$$
  
Subject to  $g(x, y, z) = 0$   
 $h(x, y, z) = 0$ 

Each constraint defines a surface  $\Longrightarrow$  their intersection defines a curve.

Condition:  $(\nabla g)_P(\nabla h)_P$  are non-collinear for each intersection point P The level surface of f through a point of extreme  $P_0$  is tangent to the constraint curve, so  $(\nabla f)(P_0)$  is perpendicular to the curve at  $P_0$ . Constraint curve included in both surfaces  $\Longrightarrow$ 

 $(\nabla g)(P_0)$  and  $(\nabla h)(P_0)$  are perpendicular to the curve  $\Longrightarrow$ there exist constants  $\lambda$  and  $\mu$  such that

$$(\nabla f)(P_0) = \lambda(\nabla g)(P_0) + \mu(\nabla h)(P_0) .$$

Todor Milev Lecture 12

Find 
$$\min / \max f(x, y, z)$$
  
Subject to  $g(x, y, z) = 0$   
 $h(x, y, z) = 0$ 

Each constraint defines a surface  $\Longrightarrow$  their intersection defines a curve.

Condition:  $(\nabla g)_P(\nabla h)_P$  are non-collinear for each intersection point P The level surface of f through a point of extreme  $P_0$  is tangent to the constraint curve, so  $(\nabla f)(P_0)$  is perpendicular to the curve at  $P_0$ .

Constraint curve included in both surfaces  $\Longrightarrow$ 

 $(\nabla g)(P_0)$  and  $(\nabla h)(P_0)$  are perpendicular to the curve  $\Longrightarrow$ there exist constants  $\lambda$  and  $\mu$  such that

$$(\nabla f)(P_0) = \lambda(\nabla g)(P_0) + \mu(\nabla h)(P_0) .$$

The Lagrange function is in this case

2020 Todor Milev Lecture 12

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

Objective function:

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

• Objective function: f(x, y, z) = x + 2y.

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:  $g(x, y, z) = y^2 + z^2 5$  and h(x, y, z) = x + y + z 1.

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:  $g(x, y, z) = y^2 + z^2 5$  and h(x, y, z) = x + y + z 1.
- Lagrange function:

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:  $g(x, y, z) = y^2 + z^2 5$  and h(x, y, z) = x + y + z 1.
- Lagrange function:

$$F(x, y, z, \lambda, \mu) = x + 2y - \lambda(y^2 + z^2 - 5) - \mu(x + y + z - 1).$$

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:  $g(x, y, z) = y^2 + z^2 5$  and h(x, y, z) = x + y + z 1.
- Lagrange function:

$$F(x, y, z, \lambda, \mu) = x + 2y - \lambda(y^2 + z^2 - 5) - \mu(x + y + z - 1)$$
.

• Critical points of F:

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:  $g(x, y, z) = y^2 + z^2 5$  and h(x, y, z) = x + y + z 1.
- Lagrange function:

$$F(x, y, z, \lambda, \mu) = x + 2y - \lambda(y^2 + z^2 - 5) - \mu(x + y + z - 1)$$
.

• Critical points of *F*:  $(1, \sqrt{5/2}, -\sqrt{5/2})$  and  $(1, -\sqrt{5/2}, \sqrt{5/2})$ 

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:  $g(x, y, z) = y^2 + z^2 5$  and h(x, y, z) = x + y + z 1.
- Lagrange function:

$$F(x, y, z, \lambda, \mu) = x + 2y - \lambda(y^2 + z^2 - 5) - \mu(x + y + z - 1)$$
.

- Critical points of F:  $(1, \sqrt{5/2}, -\sqrt{5/2})$  and  $(1, -\sqrt{5/2}, \sqrt{5/2})$
- Values of objective function at these points:

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:  $g(x, y, z) = y^2 + z^2 5$  and h(x, y, z) = x + y + z 1.
- Lagrange function:

$$F(x, y, z, \lambda, \mu) = x + 2y - \lambda(y^2 + z^2 - 5) - \mu(x + y + z - 1)$$
.

- Critical points of *F*:  $(1, \sqrt{5/2}, -\sqrt{5/2})$  and  $(1, -\sqrt{5/2}, \sqrt{5/2})$
- Values of objective function at these points:

$$f(1, \sqrt{5/2}, -\sqrt{5/2}) = 1 + 2\sqrt{5/2}, \quad f(1, -\sqrt{5/2}, \sqrt{5/2}) = 1 - 2\sqrt{5/2}$$

Find the extreme points of x + 2y on the intersection of the the cylinder  $y^2 + z^2 = 5$  and the plane x + y + z = 1.

- Objective function: f(x, y, z) = x + 2y.
- Constraints:  $g(x, y, z) = y^2 + z^2 5$  and h(x, y, z) = x + y + z 1.
- Lagrange function:

$$F(x, y, z, \lambda, \mu) = x + 2y - \lambda(y^2 + z^2 - 5) - \mu(x + y + z - 1).$$

- Critical points of  $F: (1, \sqrt{5/2}, -\sqrt{5/2})$  and  $(1, -\sqrt{5/2}, \sqrt{5/2})$
- Values of objective function at these points:

$$f(1, \sqrt{5/2}, -\sqrt{5/2}) = 1 + 2\sqrt{5/2}, \quad f(1, -\sqrt{5/2}, \sqrt{5/2}) = 1 - 2\sqrt{5/2}$$

- Constraint set is bounded and closed, function f is continuous  $\Longrightarrow$  f attains its extreme on the constraint  $\Longrightarrow$ 
  - $(1, -\sqrt{5/2}, \sqrt{5/2})$  corresponds to an absolute minimum and  $(1, \sqrt{5/2}, -\sqrt{5/2})$  corresponds to an absolute maximum.
- The minimum value is  $f(1, -\sqrt{5/2}, \sqrt{5/2}) = 1 2\sqrt{5/2}$  and the