-1

الف)

Wt < 0 : i Wt > : iii

ب)

Wt < 0 : iv

ج)

Wt < 0 : v

ر)

f=|y-y0|

Wt < 0 : ii

Wt > 0: iv

_۲

V1(X0) = max(0.5 * (0 + 0)), 1 * (6 + 0) + 0.5 * (6 + 0)) = 9

V1(X1) = max(1 * (0 + 0) + 0.5 * (0 + 0) + 0.5 * (0 + 0), 0.5 * (0 + 0), 0.5 * (0 + 0)) = 0

V1(X2) = max(1 * (5 + 0) + 0.5 * (5 + 0) + 0.5 * (5 + 0), 0.5 * (0 + 0), 0.5 * (0 + 0)) = 10

V1(X3) = max(1 * (24 + 0) + 0.5 * (24 + 0), 0.5 * (0 + 0)) = 36

V2(X0) = max(1 * (6 + 0.5 * 9) + 0.5 * (6 + 0.5 * 9), 0.5 * (0 + 0)) = 15.75

$$V2(X1) = \max(1 * (0 + 0) + 0.5 * (0 + 0) + 0.5 * (0 + 0), 0.5 * (0 + 0.5 * 9), 0.5 * (0 + 0.5 * 10)) = 2.5$$

$$V2(X2) = \max(1 * (5 + 0.5 * 10) + 0.5 * (5 + 0.5 * 10) + 0.5 * (5 + 0.5 * 10),$$

0.5 * (0 + 0), 0.5 * (0 + 0.5 * 36)) = 40

$$V2(X3) = max(1 * (24 + 0.5 * 36) + 0.5 * (24 + 0.5 * 36), 0.5 * (0 + 0.5 * 10)) = 63$$

٣_ الف)

$$V\pi(si) = i, i = 3, 4, 5, 6$$

$$V1\pi(s1) = V1\pi(s2) = (1/6) * (-1 + 0) + (1/6) * (-1 + 0) + (1/6) * (-1 + 0) + (1/6) * (-1 + 0) + (1/6) * (-1 + 0) + (1/6) * (-1 + 0) + (1/6) * (-1 + 0) = (1/6) * (-6)$$

$$V2\pi(s1) = V2\pi(s2) = (1/6) * (-1 + (1/6) * (-6)) + (1/6) * (-1 + (1/6) * (-1 + 6)) + (1/6) * (-1 + 3) + (1/6) * (-1 + 4) + (1/6) * (-1 + 5) + (1/6) * (-1 + 6) = (1/6 + 2/6^2) * (-6) + (1/6) * 18$$

$$V3\pi(s1) = V3\pi(s2) = (1/6) * (-1 + (1/6 + 2/6^2) * (-6) + (1/6) * 18) + (1/6) * (-1 + (1/6 + 2/6^2) * (-6) + (1/6) * 18) + (1/6) * (-1 + 3) + (1/6) * (-1 + 4) + (1/6) * (-1 + 5) + (1/6) * (-1 + 6) = (1/6 + 2/6^2 + 2^2/6^3) * (-6) + (1/6 + 2/6^2) * 18$$

$$=> V\pi(s1) = V\pi(s2) = 12/4 = 3$$

ب) ارزش مورد انتظار پس از انجام عملیات تاس برای هر حالت s:

$$3 = ((1+6-) + (1+5-) + (1+4-) + (1+3-) + (1+3-) + (1+3-))/6$$

حالت	s1	s2	s3	s4	s5	s6
pi0	تاس	تاس	تمام	تمام	تمام	تمام
pi1	تاس	تاس	تمام/تاس	تمام	تمام	تمام

ج) بله همگرا می شوند کافیست برای حالت ۳ اتمام انتخاب شود.

-۴

الف)

نادر ست

چون ممکن است در حالتی چند اکشن ما را به حداکثر ارزش برساند و دو سیاست مختلف هردو بهینه باشند ولی متفاوت چون در این حالت اکشن متفاوتی از بین این اکشن ها انجام دهند.

ب)

درست

برای مثال در یک MDP که دو حالت ترمینال A و B دارد، به طوری که پاداش لحظه ای رفتن به A برابر 1 و پاداش لحظه ای رفتن به B برابر 10 باشد و بقیه پاداش های لحظه ای صفر باشند، اگر فاصله A از مبدأ یک قدم به شمال و فاصله B از مبدأ دو قدم به جنوب باشد، در صورتی که گاما (γ) کمتر از 0.1 باشد، سیاست بهینه عامل را به شمال و اگر بیشتر باشد، عامل را به جنوب می برد.

ج)

بله

چون پس از گذر زمان، فرایند یادگیری بهتر شده و exploration دیگر مهم نیست.

(2

عامل: رباتی که در یک ماز در حال حرکت است.

محیط: ماز با دیوارها و موانع.

توضیح: در این مثال بهتر است که عامل مبتنی بر مدل باشد. عامل با داشتن یک مدل دقیق از ماز و موانع آن، می تواند مسیر خود را با کارایی بیشتری برنامه ریزی کند و از برخوردهای غیر ضروری جلوگیری کند. با یک مدل، عامل میتواند سناریوهای مختلف را در ماز مجازی شبیهسازی کند، از آنها یاد بگیرد و عملکرد خود را بدون نیاز به کاوش فیزیکی در ماز واقعی بهبود بخشد.

عامل: یک بازیکن هوشمند در بازی شطرنج. محیط: محیط بازی شطرنج با قوانین مشخص. توضیح: در این مثال، بهتر است عامل بر پایه مدل نباشد و بر اساس تجربه عمل کند. چرا که بازی شطرنج قوانین دقیق و قابل پیشبینی دارد و استفاده از مدل نمیتواند اطلاعات بیشتری در اختیار عامل قرار دهد. به جای آن، بازیکن میتواند از تجربه خود و تجربه حریفانش در بازی شطرنج برای ارزیابی حرکات و انتخاب بهترین راهبرد استفاده کند.

عامل: ربات خودران در محیط شهری پرترافیک. محیط: محیط شهری با خیابانها، تقاطعها، خودروها و پیادهروها. توضیح: در این مثال، بهتر است عامل بر پایه مدل باشد. چرا که در یک محیط پیچیده مانند

شهر با ترافیک شلوغ، داشتن مدل دقیق از قوانین ترافیک و رفتار خودروها و پیادهروها به عامل کمک میکند تا تصمیمات بهتری درباره حرکت و رانندگی اتخاذ کند. همچنین، با استفاده از مدل، عامل میتواند تجربیات مجازی را جمعآوری کرده و راهبردهای جدید را برای حل مسائل ترافیکی در شهر آزمایش کند.

-5

$$.V(A): 0 + 0.5 * - 1 + 0 = -0.5$$

$$.V(B): 0 + 0.5 * - 1 + 0 = -0.5$$

$$.V(C): 0 + 0.5 * 32 + 0 = 16$$

$$.V(A): 0.5 * - 0.5 + 0.5 * - 1 - 0.5 = -1$$

$$.V(B)$$
: 0.5 * - 0.5 + 0.5 * - 99 + 0 = -49.75

.Q(A, East):
$$0 + 0.5 * - 1 + 0 = -0.5$$

.Q(B, East):
$$0 + 0.5 * - 1 + 0 = -0.5$$

.Q(C, East):
$$0 + 0.5 * 32 + 0 = 16$$

.Q(A, East):
$$0.5 * - 0.5 + 0.5 * - 1 + 0 = -0.75$$

.Q(B, East):
$$0.5 * - 0.5 + 0.5 * - 99 + 16 = -41.75$$

$$.Q(A, South) = 0$$

$$.Q(A, East) = -0.75$$

$$.Q(B, East) = -41.75$$

-9

الف) مقدار بهینه حالت (3، 2) به صورت زیر تعیین می شود: حداکثر مقدار را بین 0 به اضافه 0.5 بر ابر مقدار حالت (3, 1) و (3, 1) و (3, 1) به اضافه (3, 1) بر ابر مقدار حالت (3, 1) و (3, 1) بداکثر مقدار (3, 1) است.

مقدار بهینه حالت (2, 2) به صورت زیر تعیین می شود: حداکثر مقدار را بین 0 به اضافه 0.5 بر ابر مقدار حالت (1, 2) ، -100 به اضافه 0.5 بر ابر مقدار حالت (2, 1) بگیرید، -80 به علاوه 0.5 بر ابر مقدار حالت (3, 2). حداکثر مقدار 0.5 است.

مقدار بهینه حالت (1، 2) به صورت زیر تعیین می شود: حداکثر مقدار را بین 25 به اضافه 0.5 بر ابر مقدار حالت (1، 1)، 0 به اضافه 0.5 بر ابر مقدار حالت (1، 3) و 0 بگیرید. به اضافه 0.5 بر ابر مقدار حالت (2، 2). حداکثر مقدار 0.5 است.

(ب

در قسمت اول:

Q-value عمل S را در حالت (1، S) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر S است] اضافه کنید. مقدار به روز شده S است. اضافه کنید. مقدار به روز شده S است.

Q-value عمل E را در حالت (1، 2) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر \mathbb{Q} -value برابر حداکثر \mathbb{Q} -value فعلی، که \mathbb{Q} است] اضافه کنید. مقدار به روز شده \mathbb{Q} است.

Q-value عمل S را در حالت (2، 2) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر S است] اضافه کنید. مقدار به روز شده S است.

در قسمت دوم:

Q-value عمل S را در حالت (1، S) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر S برابر حداکثر S برابر حداکثر S برابر حداکثر S است] اضافه کنید. مقدار به روز شده S است.

Q-value عمل E را در حالت (1، 2) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر [0 به علاوه 0.5 برابر حداکثر Q-value فعلی، که 50- است] اضافه کنید. مقدار به روز شده -12.5 است.

Q-value عمل E را در حالت (2، 2) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر E به اضافه کنید. مقدار به روز E برابر E برابر E برابر حداکثر E به روز E برابر E برابر E به روز E برابر حداکثر E به صورت زیر به روز E به روز به روز E به روز به روز

Q-value عمل N را در حالت (3، 2) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر [+100 به اضافه کنید. مقدار به روز شده +50 است] اضافه کنید. مقدار به روز شده +50 است.

در قسمت سوم:

Q-value عمل S را در حالت (1، S) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر S است] اضافه کنید. مقدار به روز شده S است. اضافه کنید. مقدار به روز شده S است.

Q-value عمل E را در حالت (1، 2) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر E به اضافه کنید. مقدار به Q-value فعلی، که 0 است] اضافه کنید. مقدار به روز شده E است.

Q-value عمل E را در حالت (2، 2) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و 0.5 برابر [0 به علاوه 0.5 برابر حداکثر Q-value فعلی، که 50+ است] اضافه کنید. مقدار به روز شده +12.5 است.

Q-value عمل S را در حالت (3، 2) به صورت زیر به روز کنید: 0.5 برابر مقدار قبلی را بگیرید و Q-value برابر [80+ به اضافه Q-value برابر حداکثر Q-value فعلی، که Q-value اضافه کنید. مقدار به روز شده Q-value است.

بنابراین، مقادیر Q به شرح زیر است:

$$Q((3, 2), N) = 50+ Q((1, 2), S) = 0 Q((2, 2), E) = 12.5+ Q((3, 2), N) = 50+.$$

بیایید وزن ها را به صورت w1، w2 و w3 نشان دهیم. می توانیم تابع w3 را به صورت زیر بیان کنیم:

$$Qf(s, a) = w1 * f1(s) + w2 * f2(s) + w3 * f3(a)$$

در مرحله اول، به روز رسانی وزن به صورت زیر محاسبه می شود:

$$w1 \leftarrow 0 + 0.5 * ((-100 + 0) - 0) * f1((2, 2), S) = -50 * 2 = -100$$

 $w2 \leftarrow 0 + 0.5 * ((-100 + 0) - 0) * f2((2, 2), S) = -50 * 2 = -100$
 $w3 \leftarrow 0 + 0.5 * ((-100 + 0) - 0) * f3((2, 2), S) = -50 * 2 = -100$

$$Qf((1, 2), N) = -1 * f1((1, 2), N) + 1 * f2((1, 2), N) + 2 * f3((1, 2), N) = -1 + 2 + 1 = 2$$

$$Qf((1, 2), S) = -1 * f1((1, 2), S) + 1 * f2((1, 2), S) + 2 * f3((1, 2), S) = -1 + 2 + 2 = 3$$

$$Qf((1, 2), W) = -1 * f1((1, 2), W) + 1 * f2((1, 2), W) + 2 * f3((1, 2), W) = -1 + 2 + 4 = 5$$

بنابراین، عمل انتخاب شده، اقدامی است که مقدار Q را به حداکثر می رساند که در این مورد W است.