Questions

- 1) Read the CSVs into dataframes
- 2) Calculate the total car cound and the mean EV range for each Postal Code. How many rows are in this dataframe?
- 787
- 3) Pull a sample of the above dataframe showing the top 5 zip codes (column: Postal Code) with the highest car counts and the mean ranges (column: Electric Range) for each zip code. What does that look like? What are the top 5 zip codes for car count? Save this dataframe as-is for use in question 8.

Postal Code	Car Count	Mean Range
98052	3384	77.608747
98033	2315	92.768035
98012	2265	68.806623
98004	2221	89.060783
98006	2139	84.255727

- 4) Filter the above dataframe so that it only shows counties with over 500 EV cars. How many rows are in the filtered dataframe?
- 85
- 5) What's the most common car model in the filtered dataframe?
- TESLA
- 6) In the dataframe for utilities.csv, filter out all records for outside the state of Washington ("WA"). How many records are in this reduced dataframe?
- 665
- 7) How many unique zip codes are represented in the filtered utilities dataframe?
- 407
- 8) Calculate the mean residential rate (column: res_rate) for each zip code (column: zip) in the filtered utilities dataframe. Inner join this dataframe with the dataframe you saved in question 3 on Postal Code and zip. What does that look like?

zip_code	residential_rate	car_count	car_range
98001	0.054027	537	62.232775

zip_code	residential_rate	car_count	car_range
98002	0.054027	192	74.432292
98003	0.054027	380	61.463158
98004	0.054027	2221	89.060783
98005	0.054027	987	84.045593