Do we Need Features for Morphosyntax?

Thomas Graf

Stony Brook University mail@thomasgraf.net http://thomasgraf.net

ZAS Jun 26, 2017

Why Route 27

- ► Many Surface to Deep mappings
- ► Systematize first, then implement at Deep level

- ► Many Surface to Deep mappings
- ► Systematize first, then implement at Deep level

- ► Many Surface to Deep mappings
- ► Systematize first, then implement at Deep level

- ► Many Surface to Deep mappings
- ► Systematize first, then implement at Deep level

- ► Many Surface to Deep mappings
- ► Systematize first, then implement at Deep level

- Many Surface to Deep mappings
- ► Systematize first, then implement at Deep level

A Case Study: *ABA and PCC

*ABA Generalization (Bobaljik 2012)

Two paradigmatic cells cannot be syncretic to the exclusion of any intervening cell.

- (1) a. smart, smarter, smartest (AAA)
 - b. good, better, best (ABB)
 - c. * good, better, goodest (ABA)

Person Case Constraint (PCC; Bonet 1994; Walkow 2012)

The well-formedness of clitic combinations is contingent on their person specification.

(2) Roger le/*me leur a présenté. Roger 3SG.ACC/1SG.ACC 3PL.DAT has shown 'Roger has shown me/him to them.'

A Case Study: *ABA and PCC

*ABA Generalization (Bobaljik 2012)

Two paradigmatic cells cannot be syncretic to the exclusion of any intervening cell.

- (1) a. smart, smarter, smartest (AAA)
 - b. good, better, best (ABB)
 - c. * good, better, goodest (ABA)

Person Case Constraint (PCC; Bonet 1994; Walkow 2012)

The well-formedness of clitic combinations is contingent on their person specification.

(2) Roger le/*me leur a présenté. Roger 3sg.Acc/1sg.Acc 3pl.DAT has shown 'Roger has shown me/him to them.'

Outline

- 1 The *ABA Generalization: Monotonicity
- 2 *ABA Revisited: Graph-Theoretic Approach
 - Application to Pronoun Syncretism
 - Computational Motivation
 - Beyond 3-Cell Systems
- 3 Person Case Constraint

Monotonicity Graph Theory PCC Conclusion

*ABA: A First Account

- ▶ Syncretism: multiple cells mapped to the same output
- ► A mapping that produces ABA violates monotonicity.

Monotonicity for Pronoun Syncretism

- ► Suppose 3 < 2 < 1 (Zwicky 1977)
- ▶ A function **f** is **monotonic** iff $x \le y$ implies $f(x) \le f(y)$.
- No monotonic function from {1,2,3} to {A,B,C} can produce ABA!
- ▶ This holds irrespective of the structure of $\{A, B, C\}$.

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

1 2 3

A B C

Patterns:

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns:

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC,

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC,

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC, AAB = AAC,

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC, AAB = AAC,

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC, AAB = AAC, ABB = ACC,

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC, AAB = AAC, ABB = ACC,

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC, AAB = AAC, ABB = ACC, ABC

► Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC, AAB = AAC, ABB = ACC, ABC

Ionotonicity Graph Theory PCC Conclusion

A More General View: Graph Structure Preservation

The General Idea

- *ABA is about structure preservation.
- Syncretism is modification of a base graph.
- ▶ Modification must not contradict orderings of base graph.

Definition (Weakly Non-Inverting Graph Mappings)

- Given input graph G and output graph G'
 - ► x < y iff y is reachable from x in G,
- ► A mapping from G to G' is weakly non-inverting iff

```
x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y
```

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \land y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- ► Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \land y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \land y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \land y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \land y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \wedge y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

Weakly Non-Inverting Graph Mappings

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \land y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

Weakly Non-Inverting Graph Mappings

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- ► And the mapping must be weakly non-inverting:

$$x \triangleleft y \land y \blacktriangleleft x \rightarrow x \blacktriangleleft y$$

- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- ► Then the previous set of graphs describes the class of attested syncretisms.

- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- ► Then the previous set of graphs describes the class of attested syncretisms.

- ► Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- ► Then the previous set of graphs describes the class of attested syncretisms.

- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- ► Then the previous set of graphs describes the class of attested syncretisms.

- ► Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- ► Then the previous set of graphs describes the class of attested syncretisms.

- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- ► Then the previous set of graphs describes the class of attested syncretisms.

- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- ► Then the previous set of graphs describes the class of attested syncretisms.

Ionotonicity Graph Theory PCC Conclusion

Why Weakly Non-Inverting Maps?

- ► The restriction to weakly non-inverting maps reduces computational complexity.
- These graph mappings correspond to strictly 1-local string mappings.
- Those are the weakest class of mappings.
- So the *ABA generalization has a third-factor explanation: (Chomsky 2005)
 - ▶ independent base hierarchy of cells
 - computationally limited changes to hierarchy

Scaling to Larger Systems

- ► Some morphosyntactic phenomena have many different cells. case syncretism, noun stem allomorphy
- ▶ Those do not scale well for feature combinatorics.
- Weakly non-inverting maps still obey *ABA if output graphs must be connected:

$$\forall x, y[x \triangleleft y \lor y \triangleleft x]$$

Weakly non-inverting + strong connectedness = base arrows must not be removed

Case Syncretism

- ► Modified case hierarchy as base (Blake 2001)
- ► Allows syncretism of both Acc & Dat and Acc & Gen (Harðarson 2016)

Interim Summary

- ► Weakly non-inverting graph mappings preserve aspects of the base order.
- ► This structure preservation derives the *ABA generalization.
- ▶ Some ad hoc stipulations are still needed in certain cases.
- ► Those reflect aspects of the syntactic mechanisms, which the graph-theoretic view abstracts away from.

Phenomenon	Target graph	Constraints
Pronoun allomorphy Adjectival gradation Case syncretism Noun stem suppletion	(weakly) connected (weakly) connected connected connected	none $2 \blacktriangleleft 1 \to 3 \blacktriangleleft 1$ none $\neg \exists \mathbf{z} [\mathbf{z} \triangleleft \mathbf{x}] \to (\mathbf{y} \blacktriangleleft \mathbf{x} \to \mathbf{x} \blacktriangleleft \mathbf{y})$ $\exists \mathbf{z} [\mathbf{z} \triangleleft \mathbf{x}] \to (\mathbf{x} \blacktriangleleft \mathbf{y} \leftrightarrow \mathbf{y} \blacktriangleleft \mathbf{x})$

The Graph-Theoretic View of the Person Case Constraint

▶ There are four attested variants of the PCC: S(trong)-PCC DO must be 3. (Bonet 1994) U(Itrastrong)-PCC DO is less prominent than IO, where 3 is less prominent than 2, and 2 is less prominent than 1. (Nevins 2007) W(eak)-PCC 3IO combines only with 3DO. (Bonet 1994) M(e first)-PCC If IO is 2 or 3, then DO is not 1. (Nevins 2007)

- ► But symmetric variants have been discovered. (Stegovec 2016)
- ► This looks like a mess!

A More Systematic Perspective (Walkow 2012)

IO↓/DO→	1	2	3	IO↓/DO→	1	2	3
1	NA	√	$\overline{\hspace{1em}}$	1	NA	*	
2	*	NA	\checkmark	2	*	NA	\checkmark
3	*	*	NA	3	*	*	NA
L	J-PC	С		S	-PCC		
IO↓/DO→	1	2	3	IO↓/DO→	1	2	3
1	NA	√	$\overline{}$	1	NA	✓	√
2	\checkmark	NA	\checkmark	2	*	NA	\checkmark
3	*	*	NA	3	*	\checkmark	NA
W-PCC			M1-PCC				

Graph-Theoretic Unification

Generalized PCC

y must not be reachable from x.

Standard PCCs:

$$y = IO, x = DO$$

Symmetric PCCs:

$$y = DO, x = IO$$

W	1	2	3
1	NA	√	√
2	\checkmark	NA	\checkmark
3	*	*	ΝΔ

NA

W	1	2	3
1	NA	√	✓
2	\checkmark	NA	\checkmark
3	*	*	NA

NA

NA

M1	1	2	3
1	NA	✓	√
2	*	NA	\checkmark
3	*	1	NA

Overview of Relevant Graph Classes

Phenomenon	Target graph	Constraints
Pronoun allomorphy Adjectival gradation Case syncretism Noun stem suppletion	(w-)connected (w-)connected connected connected	none $2 \blacktriangleleft 1 \rightarrow 3 \blacktriangleleft 1$ none $\neg \exists \mathbf{z} [\mathbf{z} \triangleleft \mathbf{x}] \rightarrow (\mathbf{y} \blacktriangleleft \mathbf{x} \rightarrow \mathbf{x} \blacktriangleleft \mathbf{y})$
PCC	w-connected	$\exists z[z \triangleleft x] \rightarrow (x \blacktriangleleft y \leftrightarrow y \blacktriangleleft x)$ $\neg \exists z[z \triangleleft x] \rightarrow (y \blacktriangleleft x \rightarrow x \blacktriangleleft y)$ $\neg \exists z[x \triangleleft z] \rightarrow \neg \exists z[x \blacktriangleleft z]$

Conclusion

- ► Graphs generalize across domains of morphosyntax
- No need for features, talk directly about cells
- Scales better than combinatorics
- Can be a theory of markedness rather than well-formedness
- ► But: a lot of work still to be done Gender Case Constraint, inverse marking, resolved agreement, ...

References I

- Blake, Barry J. 2001. Case. Cambridge: Cambridge University Press.
- Bobaljik, Jonathan D. 2012. *Universals in comparative morphology: Suppletion, superlatives, and the structure of words*. Cambridge, MA: MIT Press.
- Bonet, Eulàlia. 1994. The Person-Case Constraint: A morphological approach. In *The Morphology-Syntax Connection*, number 22 in MIT Working Papers in Linguistics, 33–52.
- Chomsky, Noam. 2005. Three factors in language design. Linguistic Inquiry 36:1–22.
- Goldsmith, John. 1976. Autosegmental phonology. Doctoral Dissertation, MIT.
- Harðarson, Gísli Rúnar. 2016. A case for a Weak Case Contiguity Hypothesis a reply to Caha. *Natural Language and Linguistic Theory* 34:1329–1343.
- Nevins, Andrew. 2007. The representation of third person and its consequences for person-case effects. *Natural Language and Linguistic Theory* 25:273–313.
- Stegovec, Adrian. 2016. A Person Case Constraint without Case. Ms., University of Connecticut.
- Walkow, Martin. 2012. *Goals, big and small*. Doctoral Dissertation, University of Massachusetts Amherst.
- Zwicky, Arnold. 1977. Hierarchies of person. In Chicago Linguistic Society, volume 13, 714–733.