Metric	Formula	Use Cases
Root Mean Square Error (RMSE)	$\sqrt{\sum (y_i - \widehat{y}_i)^2}$	Results in model predicting the <i>mean</i> ; lower
		↓ is better
Mean Absolute Error (MAE)	$\frac{1}{n} \sum y_i - \widehat{y}_i $	Less sensitive to outliers than RMSE; results in
		model predicting the <i>median;</i> lower ↓ is
		better
R-Squared	$1 - \frac{\sum (\widehat{y}_i - \overline{y})^2}{\sum (y_i - \overline{y})^2}$	Easy to interpret as the percentage of
		variation in the response that is explained by
		the model; higher ↑ is better
Log Likelihood	L	Does not require training/testing split; easy to
		compare linear models; adapts to different
		distributions; higher ↑ is better
Akaike Information Criterion	$2k - 2\log(L)$	Log Likelihood with a penalty for model
(AIC)		complexity; lower ↓ is better
Bayesian Information Criterion	$\log(n) k - 2 \log(L)$	Log Likelihood with a penalty for model
(BIC)		complexity & sample size; lower ↓ is better