

At ESO

Rodrigo Alcaraz de la Osa. Traducció: Eduard Cremades (🗡 @eduardcremades)

La investigació científica

La investigació científica és el procés pel qual, mitjançant l'aplicació del mètode científic, s'aconsegueix ampliar el coneixement o donar solució a problemes científics.

Hipòtesis, lleis i teories

Hipòtesi Una hipòtesi científica és una proposta d'explicació d'un fenomen, comprovable mitjançant el mètode científic.

Llei Les lleis científiques són enunciats, basats en experiments o observacions repetides, que descriuen o prediuen una sèrie de fenòmens naturals.

Teoria Una teoria científica és una explicació d'un aspecte del món natural que pot ser repetidament comprovat i verificat en condicions controlades, d'acord amb el mètode científic.

Magnituds escalars i vectorials

Magnituds escalars

Són aquelles magnituds que queden descrites per un nombre (escalar) i una unitat.

Exemples Massa, volum, densitat, temps, temperatura, energia...

Magnituds vectorials

Són aquelles magnituds que queden descrites per:

- Un **nombre** (escalar).
- Una **unitat**.
- Una direcció.
- Un sentit.
- Un punt d'aplicació.

Exemples Posició, desplaçament, velocitat, acceleració, força...

Magnituds fonamentals i derivades

Magnituds fonamentals del SI

El Sistema Internacional de Unidats (SI) defineix set magnituds fonamentals:

Magnitud	Unitat	Símbol
Temps	Segon	S
Longitud	Metre	m
Massa	Kilogram	kg
Corrent elèctrica	Ampere	Ā
Temperatura	Kelvin	K
Quantitat de substància	Mol	mol
Intensitat lluminosa	Candela	cd

Magnituds derivades

Les magnituds derivades s'obtenen a partir de dues o més magnituds fonamentals.

Exemples Superfície, volum, densitat, velocitat, acceleració, força, pressió, energia...

Analisi dimensional

L'anàlisi dimensional ens permet relacionar les dimensions (unitats) d'una magnitud derivada amb les de les magnituds fonamentals en les quals es basa.

Equació de dimensions

Les **equacions** de **dimensions** són expressions algebraiques en les quals substituïm les magnituds físiques per les seves dimensions (unitats). Per denotar les dimensions d'una magnitud utilitzem la notació de **claudàtors** []. **Destaquem**:

$$[Massa] = M$$
$$[Longitud] = L$$
$$[Temps] = T$$

Sempre que treballem amb equacions de dimensions tractarem d'expressar les dimensions de les magnituds físiques que ens trobarem en funció de M, L y T.

Exemples
$$[S] = L^2$$
; $[V] = L^3$; $[d] = ML^{-3}$; $[v] = LT^{-1}$; $[a] = LT^{-2}$; $[F] = MLT^{-2}$

Exemple

Demostra que l'energia cinètica,

$$E_{\rm c} = \frac{1}{2}mv^2,$$

i l'energia potencial gravitatòria,

$$E_{\rm p} = mgh,$$

tenen les mateixes dimensions, on m és la massa, v és la velocitat, g és l'acceleració de la gravetat i b és l'altura. Utilitza el resultat per definir la unitat d'energia en el SI, el joule (J), en funció de les unitats de massa, longitud i temps del SI.

Solució

Analitzem les dimensions de l'energia cinètica E_c :

$$[E_{c}] = \left[\frac{1}{2}mv^{2}\right] = [m] \cdot [v^{2}] = M \cdot [v]^{2},$$

on hem utilizat els nombres (escalars) que no tenen dimensions.

Necessitem conèixer les dimensions de la velocitat:

$$v = \frac{\Delta x}{\Delta t} \rightarrow [v] = \frac{[\Delta x]}{[\Delta t]} = \frac{L}{T} = LT^{-1}$$

Pel que arribem a:

$$[E_{\rm c}] = \mathsf{M}(\mathsf{L}\mathsf{T}^{-1})^2 = \mathsf{M}\mathsf{L}^2\mathsf{T}^{-2}$$

Analitzem ara les dimensions de l'energia potencial gravitatòria $E_{\mathfrak{p}}$:

$$\begin{bmatrix} E_{p} \end{bmatrix} = \begin{bmatrix} mgh \end{bmatrix} = [m] \cdot [g] \cdot [h] = M \cdot [g] \cdot L$$

Necessitem conèixer les **dimensions** de l'acceleració g:

$$g \equiv a = \frac{\Delta v}{\Delta t} \rightarrow [g] = \frac{[\Delta v]}{[\Delta t]} = \frac{\mathsf{LT}^{-1}}{\mathsf{T}} = \mathsf{LT}^{-2}$$

Pel que arribem a:

$$[E_{\rm p}] = M \cdot LT^{-2} \cdot L = ML^2T^{-2}$$

El joule (J) per tant queda definit com:

$$1 J = 1 \text{ kg m}^2 \text{ s}^{-2}$$

Errors en la mesura

Sempre que es realitza una mesura experimental amb un instrument, aquesta porta associada una incertesa, que fa que sigui impossible obtenir dues mesures *exactament* iguals. Els errors experimentals són la diferència entre els valors mesurats i els valors reals. Distingim entre errors sistemàtics i errors aleatoris.

Errors sistemàtics i errors aleatoris

Error sistemàtic És predictible i típicament constant o proporcional al valor vertader. Sol ser degut a imperfeccions de l'instrument de mesura o dels mètodes d'observació (incloent-hi l'observador). Es pot detectar i eliminar.

Error aleatori Error inevitable que sempre està present en qualsevol mesura. Causat per fluctuacions inherentment impredictibles. Es pot estimar comparant mesures i reduir amitjanant moltes mesures.

Exactitud i precisió

Exactitud És la proximitat dels mesuraments al valor real. És una descripció dels errors sistemàtics.

Precisió És la proximitat dels mesuraments entre si. És una descripció dels errors aleatoris.

Error absolut i error relatiu

Error absolut És la diferència entre el valor mesurat i el valor real:

error absolut = |valor mesurat - valor real|

Té les mateixes dimensions que la magnitud mesurada.

Error relatiu És el quocient entre l'error absolut i el valor real:

error relatiu =
$$\frac{\text{error absolut}}{\text{valor real}} = \frac{|\text{valor mesurat} - \text{valor real}|}{\text{valor real}}$$

És adimensional (sol expressar-se en % multiplicant-lo per 100).

Expressió de resultats

Per regla general, les **incerteses sempre** s'expressen amb **una sola xifra significativa**, **arrodonint** la **mesura** en conseqüència (unitats, desenes, centenes, etc.).

Exemples

- $t = (5.67 \pm 2.00) \text{ s} \rightarrow t = (6 \pm 2) \text{ s}$
- $l = (1307 \pm 202) \, \mu \text{m} \rightarrow l = (1300 \pm 200) \, \mu \text{m}$
- $m = (437 \pm 27) \,\mathrm{g} \rightarrow m = (440 \pm 30) \,\mathrm{g}$
- $I = (17 \pm 3) \,\mathrm{mA} \rightarrow \mathrm{est\grave{a}}$ ben expressada