

Problema 1. a) Arătați că pentru $x, y \in \mathbb{R}$ expresia $\{x + y\} - \{y\}$ poate lua doar valorile $\{x\}$ sau $\{x\} - 1$.

b) Fie α un număr irațional. Notăm pentru fiecare $n\in\mathbb{N},\ n\geq 1,$ $a_n=\{n\alpha\}$ și definim șirul $(x_n)_{n\in\mathbb{N}}$ prin

$$x_n = (a_2 - a_1)(a_3 - a_2) \cdots (a_{n+1} - a_n).$$

Arătați că șirul este convergent și determinați limita sa.

Soluţie. Din $y = [y] + \{y\}$ avem $x + y = [y] + [x] + \{x\} + \{y\}$ deci în cazul $\{x\}+\{y\}<1$ avem $\{x+y\}-\{y\}=\{x\}$ iar în cazul $\{x\}+\{y\}\geq 1$ deducem din $x + y = [y] + [x] + 1 + \{x\} + \{y\} - 1$ că $\{x + y\} - \{y\} = \{x\} - 1$ b) Din formula de mai sus $|a_{n+1} - a_n| = \{\alpha\}$ sau $|a_{n+1} - a_n| = 1 - \{\alpha\}$ Notand $b = \max\{\{\alpha\}, 1 - \{\alpha\}\}\$ și observând că 0 < b < 1 (a este iraţional), deducem $\left| \frac{x_{n+1}}{x_n} \right| = b < 1,$ ceea ce atrage $|x_{n+1}| \leq |x_1|b^n$, deci $\lim x_n = 0$ **Problema 2.** Se consideră matricele $A \in \mathcal{M}_{m,n}(\mathbb{C}), B \in \mathcal{M}_{n,m}(\mathbb{C})$ unde $n \leq m$. Stiind că rangAB = n și $(AB)^2 = AB$: a) Arătați că $(BA)^3 = (BA)^2$, b) Determinați BA. **Soluție.** a) Din $(AB)^2 = AB$ prin înmulțire la stânga cu B și la dreapta cu A obtinem $(BA)^3 = (BA)^2$ b) Cum rangul produsului unor matrici este mai mare sau egal cu rangul oricărui factor, din ABAB = AB deducem că rang $BA \ge n$, adică rangBA = nnAceasta înseamnă că matricea pătrată de ordin n BA este inversabilă şi relația dedusă la început $(BA)^3 = (BA)^2$ atrage prin simplificare $BA = I_n$.

Problema 3. Fie $A, B \in \mathcal{M}_2(\mathbb{C})$ două matrice nenule astfel încât $AB + BA = O_2$ și $\det(A + B) = 0$. Să se arate că $\operatorname{tr}(A) = \operatorname{tr}(B) = 0$.

Soluție. Prima condiție din enunț atrage $(A+B)^2 = A^2 + B^2$ și $(A-B)^2 = A^2 + B^2$
De aici deducem şi $\det(A - B) = 0$. Ecuațiile caracteristice pentru $A + B$ şi $A - B$ devin
$A^{2} + B^{2} - \operatorname{tr}(A+B)(A+B) = O_{2}, \ A^{2} + B^{2} - \operatorname{tr}(A-B)(A-B) = O_{2},$
Prin scădere obținem
$\operatorname{tr}(A)B = \operatorname{tr}(B)A.$
Dacă ${\rm tr}(A)=0,$ avem ${\rm tr}(B)=0$ căci altfel ar rezulta $A=O_2,$ în contradicție cu prin ipoteza
Astfel $A = \lambda B$, ccea ce din $AB + BA = O_2$ atrage $\lambda B^2 = O_2$. Rezultă $\lambda = 0$, de unde $\text{tr}(A) = \text{tr}(B) = 0$
Problema 4. Determinați funcțiile $f:[0,1] \to \mathbb{R}$ care verifică relația
$ x - y ^2 \le f(x) - f(y) \le x - y ,$
pentru orice $x, y \in [0, 1]$.
Soluție. Condiția $ f(x) - f(y) \le x - y $ atrage continuitatea funcției f .
Condiția $ x-y ^2 \le f(x)-f(y) $ implică injectivitatea, prin urmare f este strict monotonă.
Cum și $-f$ verifică condițiile din ipoteză, putem presupune f strict crescătoare.
Pentru $x = 0$ și $y = 1$ deducem $0 \le f(1) - f(0) \le 1$ deci $f(1) = f(0) + 1$
Pentru $x \ge y$ obţinem $f(x) - f(y) \le x - y$ sau $y - f(y) \le x - f(x)$ ceea ce înseamnă că funcția dată de $g(x) = x - f(x) + f(0)$ este crescătoare.
Cum $g(0) = g(1) = 0$ rezultă g funcția nulă.
Prin urmare soluțiile sunt funcțiile f_a^\pm cu $f_a^\pm(x)=\pm x+a$ cu $a\in\mathbb{R}$
punct