Name: Jeremy Florence Course: Math 460

Assignment: GMK #48 Presentation

Due: 4/12/17

48. Let G be a group with identity e and finite order n. Which of the following conditions is sufficient for G to be abelian?

I. n = 6

Counterexample: Let $G = S_3 = \{(), (1,2), (2,3), (1,3), (1,2,3), (1,3,2)\}$, the symmetric group on a set of three elements. It is clear that $|S_3| = 6$. Now consider the elements (1,2) and (2,3) in S_3 . Notice that $(1,2) \cdot (2,3) = (1,2,3)$ but $(2,3) \cdot (1,2) = (1,3,2)$. Hence $(1,2) \cdot (2,3) \neq (2,3) \cdot (1,2)$, so S_3 is not abelian. Thus there exists a group G with order n=6 where G is not abelian. Therefore |G| = 6 is not a sufficient condition for G to be abelian

II. n = 15

Definition: Let G be a group and let p be a prime.

- (1) A group of order p^k for some $k \ge 0$ is a called a *p-group*. Subgroups of G which are *p*-groups are called *p-subgroups*.
- (2) If G is a group of order $p^k m$, where $p \nmid m$, then a subgroup of order p^k is called a Sylow p-subgroup of G.
- (3) The number of Sylow p-subgroups of G will be denoted by n_p .

Sylow's Theorem: Let G be a group of order $p^k m$, where p is a prime not dividing m. Then the following are true:

- (1) Sylow p-subgroups of G exist.
- (2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there exists $g \in G$ such that Q is a subgroup of gPg^{-1} , i.e., Q is contained in some conjugate of P. In particular, any two Sylow p-subgroups of G are conjugate in G.
- (3) $n_p \equiv 1 \pmod{p}$, and n_p divides m

Proof: Let G be a group with order n=15. Since $n=15=3\cdot 5$, and both 3 and 5 are prime, we know that Sylow 3-subgroups of G and Sylow-5 subgroups

of G exist by part (1) of Sylow's Theorem. Now by part (3) of Sylow's Theorem, we know that $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 5$. Thus as 5 is prime it must follow that $n_3 = 1$. Following the same reasoning, we can see that $n_5 = 1$. Let P be the Sylow 3-subgroup in G and let G be the Sylow 5-subgroup in G. Recall that $P \cap Q$ is a subgroup of G and G. Thus by Lagrange's Theorem, we know that $|P \cap Q|$ divides 3 and 5, so it follows that $|P \cap Q| = 1$. That is, $P \cap Q = \{e\}$. Now consider the elements G0 and G1 must divide 15 by Lagrange's Theorem. Hence $|\langle ab \rangle|$ must be 1, 3, 5, or 15. Obviously $|\langle ab \rangle| \neq 1$ because this would imply G1 as and further that G2 are and further that G3 as this would imply that G4 as a Sylow 3-subgroup of G4, and moreover as G3 as this would imply that G4 as a Sylow 3-subgroup of G5, and moreover as G6. Therefore $|\langle ab \rangle| = 1$ 5, which means that G4 generates the entire group G6. Hence G4 is cyclic and therefore also abelian.

III. n is a prime number

Proof: Let G be a group with prime order p. Then |G| > 1, so let $g \in G$ such that $g \neq e$. Then it follows that $|\langle g \rangle| > 1$. Additionally, we know by Lagrange's Theorem that $|\langle g \rangle|$ divides p. Hence either $|\langle g \rangle| = 1$ or $|\langle g \rangle| = p$. Thus as we already know $|\langle g \rangle| > 1$, it must follow that $|\langle g \rangle| = p$. Therefore $\langle g \rangle = G$, and g generates G. Hence G is cyclic and therefore abelian.

IV.
$$(ab)^2 = a^2b^2$$
 for all $a, b \in G$

Proof: Let G be a group such that $(ab)^2 = a^2b^2$ for all $a, b \in G$. Let $a, b \in G$. Then it follows that:

$$(ab)^{2} = a^{2}b^{2}$$
$$(ab)(ab)b^{-1} = a^{2}b^{2}b^{-1}$$
$$aba = a^{2}b$$
$$a^{-1}aba = a^{-1}a^{2}b$$
$$ba = ab.$$

Therefore as ab = ba, we can conclude that G is abelian.

Answer: D (II, III, and IV only)