1 Sats (integraler och symmetri)

Antar f integrerbar

• Om f är udda, så är $\int_{-a}^{a} f(x) dx = 0$

• Om f är jämn, så är $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

• Om f har period P, så är $\int_a^{a+p} f(x) \ dx = \int_b^{b+p} f(x) \ dx$ för alla a och b.

2 Exempel

$$\int_{\frac{3\pi}{8}}^{\frac{5\pi}{8}} \cos^3 x \, dx = \begin{bmatrix} t = x - \frac{\pi}{2} \\ x = \frac{5\pi}{8} \Leftrightarrow t = \frac{\pi}{8} \\ x = \frac{3\pi}{8} \Leftrightarrow t = -\frac{\pi}{8} \\ dt = dx \\ \cos x = \cos\left(t + \frac{\pi}{2}\right) = -\sin t \end{bmatrix} = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^3 t \, dt = 0$$

1

3 Exempel

Funktionen $f(x) = \cos^3 x = \frac{1}{2} + \frac{1}{2}\cos 2x$ har perioden π

Integralen av cos2x över en period är noll.

Ifall man integrerar över ett helt antal perioder, dvs om $b-a=(heltal)\pi$, så är alltså

$$\int_{a}^{b} \cos^{2} x \ dx = \int_{a}^{b} \frac{1}{2} \ dx + \int_{a}^{b} \frac{1}{2} \cos 2x \ dx = \frac{1}{2} (b - a)$$

4 Exempel (Summauppskattning med integraler)

Vi ska uppskatta hur stor n! är. Låt $S_n=\ln(n!)=\ln(1\times 2\times 3\times \cdots \times n)=\ln 1+\ln 2+\ln 3+\cdots +\ln n$

Jämför följande tre figurer:

1.

$$A_n = \int_1^n \ln x \, dx = \left[x \ln x - x \right]_1^n = (n \ln n - n) - (0 - 1) = \ln(n^n) + (1 - n)$$

$$Area = \ln 2 + \dots + \ln n = S_n$$

3.

$$Area = A_n + \ln n$$

(Area2) < (Area3)

Alltså:

$$A_n < S_n < A_n + \ln n$$

(exp är växande) $\implies e^{A_n} < e^{S_n} < e^{An + \ln n}$ $\implies e^{ln(n^n) + (1-n)} < e^{ln(n!)} < e^{ln(n^n)} + (1-n) + \ln n$ $\implies n^n e^{1-n} < n! < n^{n+1} e^{1-n}$

5 Generaliserade integraler

Riemanns def av besämd integral kräver <u>begränsat</u> intervall [a, b] och <u>begränsad</u> integrand f(x).

5.1 Definition

Om fär integrerbar på intervallet $[a,\omega]$ för alla $\omega>a$ Så definierar vi den generaliserade integralen

$$\int_{a}^{\infty} f(x) \ dx = \lim_{\omega \to \infty} \int_{a}^{\omega} f(x) \ dx$$

om gränsvärdet existerar ändligt (då sägs integralen vara <u>konvergent;</u> annars divergent).

5.2 Exempel

$$\int_{1}^{\omega}\frac{dx}{x^{2}}=\left[-\frac{1}{x}\right]_{1}^{\omega}=1-\frac{1}{\omega}\rightarrow1,\omega\rightarrow\infty$$

 ${så}$

$$\int_{1}^{\infty} \frac{dx}{x^2} = 1$$

5.3 Exempel

$$\int_{1}^{\omega} \frac{dx}{x} = \ln x \to \infty, \omega \to \infty$$

så $\int_1^\infty \frac{dx}{x}$ är divergent

5.4 Exempel

$$\begin{split} \int_2^\omega \frac{dx}{x^2 - 1} &= \dots = \left[\frac{1}{2} \left(\ln|x - 1| - \ln|x + 1| \right) \right]_2^\omega = \\ &\qquad \frac{1}{2} \left(\ln\left| \frac{x - 1}{x + 1} \right| - \ln\frac{1}{3} \right) = \\ &\qquad \frac{1}{2} \left(\ln\left| \frac{1 - \frac{1}{\omega}}{1 + \frac{1}{\omega}} \right| + \ln 3 \right) \to \frac{1}{2} \left(\ln 1 + \ln 3 \right) = \frac{\ln 3}{2}, \omega \to \infty \end{split}$$

Alltså $\int_2^\infty \frac{dx}{x^2 - 1} = \frac{\ln 3}{2}$

5.5 Definition

Antag att f är obegränsad på intervallet [a, b] (eller]a, b]) men begränsad och integrerbar på varje delintervall av typen [c, b] där $a < b \le b$

Då sätter vi $\int_a^b f(x)\ dx = \lim_{c\to a^+} \int_a^b f(x)\ dx$ (om gränsvärde existerar (ändligt))

5.6Exempel

$$f(x)=\frac{1}{\sqrt{x}}$$
är obegränsat på intervallet $]0,1]$ För $0< c \leq 1$ är $\int_c^1 \frac{dx}{\sqrt{x}}=\left[2\sqrt{x}\right]_c^1=2-2\sqrt{c}\to 2, c\to 0^+$ Så $\int_0^1 \frac{dx}{\sqrt{x}}=2$

$$Så \int_0^1 \frac{dx}{\sqrt{x}} = 2$$

5.7

Om integralen är generaliserad på flera sätt måste man dela upp den i delar som var och en är generaliserade på vara ett sätt.

Exempel 5.8

$$\int_0^\infty \frac{dx}{x^2} = \int_0^1 \frac{dx}{x^2} + \int_1^\infty \frac{dx}{x^2}$$

är divergent.

5.9 Exempel

$$\int_{-1}^{1} \frac{dx}{x} = \int_{-1}^{0} \frac{dx}{x} + \int_{0}^{1} \frac{dx}{x}$$

$$\int_{-1}^{1} \frac{dx}{x} = (fel!) = \left[\ln|x| \right]_{-1}^{1} = \ln 1 - \ln 1 = 0$$