COMP20003 Algorithms and Data Structures Complexity Analysis

Nir Lipovetzky
Department of Computing and
Information Systems
University of Melbourne
Semester 2

So far...

- We have looked at one calculation (fib):
 - Obvious algorithm slow.
 - Memoization faster but takes space.
 - Storing last values in variables more time and space efficient.
- We have estimated computation time by counting operations.

Outline of the first few lectures

- Algorithms: general
- This subject: details
- Algorithm efficiency
- Computational complexity
 - Data structures
 - Basic data structures
 - Algorithms on basic data structures
 - Complexity analysis of algorithms on basic ds's

This lecture

- Formalize approach:
- Characterize run time of any algorithm
 - Identify the most expensive operation.
 - Count that operation.
 - Express in terms of input size n.

Textboook

Skiena: Chapter 2, Algorithm Analysis

Why is complexity analysis important?

T(n) is a function of n...

...T(n) may grow very large as n grows. We want to know this *before* we code.

Why is complexity analysis important?

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01 \mu s$	$0.033 \mu s$	$0.1 \mu s$	1 μs	3.63 ms
20	$0.004~\mu s$	$0.02 \mu s$	$0.086 \mu s$	$0.4 \mu s$	1 ms	77.1 years
30	$0.005 \mu s$	$0.03~\mu s$	$0.147 \mu s$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} { m yrs}$
40	$0.005 \mu s$	$0.04 \mu s$	$0.213 \mu s$	1.6 μs	18.3 min	
50	$0.006~\mu s$	$0.05 \mu s$	$0.282 \mu s$	$2.5 \mu s$	13 days	
100	0.007 μs	$0.1 \mu s$	0.644 μs	10 μs	$4 \times 10^{13} \mathrm{yrs}$	
1,000	$0.010~\mu s$	$1.00 \mu s$	$9.966 \mu s$	1 ms		
10,000	$0.013~\mu s$	$10 \mu s$	$130 \mu \mathrm{s}$	100 ms		
100,000	0.017 μs	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020 \mu s$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023 \mu s$	0.01 sec	0.23 sec	1.16 days		
100,000,000	$0.027 \mu s$	0.10 sec	2.66 sec	115.7 days		
1,000,000,000	$0.030~\mu s$	1 sec	29.90 sec (31.7 years		

Data given assume every operation takes 1 nanosec. Data from Skiena Lecture Notes http://www.cs.suny.edu.au/~skiena

- For two functions f(n) and g(n), we say that f(n) is in O(g(n)) if:
 - There are constants c₀ and N₀, such that
 f(N) < c₀*g(N) for all N > N₀.

- For two functions f(n) and g(n), we say that f(n) is in O(g(n)) if:
 - There are constants c₀ and N₀, such that f(N) < c₀*g(N) for all N > N₀.
- Notice:
 - We are only interested in large N, N > N₀.

Big-O definition

- For two functions f(n) and g(n), we say that f(n) is in O(g(n)) if:
 - There are constants c₀ and N₀, such that f(N) < c₀*g(N) for all N > N₀.
- Examples:
 - $x^2 + 33$ is in $O(x^2)$
 - $x^2 + 33x + 17$ is in $O(x^2)$
 - $15x^2 + 33x + 17$ is in $O(x^2)$

Exercizes

- $x^2 + 33$ is in $O(x^2)$
 - For $c_0 = 2$, $N_0 = \text{sqrt}(33)$: $X^2 + 33 < 2x^2$ for all $N > N_0$
- $x^2 + 33x + 17$ is in $O(x^2)$
 - For $c_0 = 2$, $N_0 = 34$ $X^2 + 33x + 17 < 2x^2$

• $15x^2 + 33x + 17$ is in $O(x^2)$

- Examples:
 - $x^2 + 33$ is in $O(x^2)$
 - $x^2 + 33x + 17$ is in $O(x^2)$
 - $15x^2 + 33x + 17$ is in $O(x^2)$
- Easy way to classify functions into big-O
 - Drop the lower order terms.
 - Forget about constants.

Why?

Why can we drop constants and lower order terms?

Terminology

- Examples:
 - $x^2 + 33$ is in $O(x^2)$
 - $x^2 + 33x + 17$ is in $O(x^2)$
 - $15x^2 + 33x + 17$ is in $O(x^2)$
- Actually all these are also in O(x³)...
- ... and in O(2ⁿ).....
- But we are usually most interested in the closest bound.

Big-O

- Easy way to classify functions into big-O
 - Drop the lower order terms.
 - Forget about constants.
- What does this give us?
 - A theoretical way to compare growth rate.
 - Machine-independent.
 - Ignoring constants not completely practical.

Big-O arithmetic

- If a program is in stages:
 - Stage 1 operates on m inputs, is linear O(m)
 - Then Stage 2 operates on n inputs, is linear O(n)
 - Whole program is
 - $O(m) + O(n) = O(max(m,n)) \leftarrow Big-O Addition$
 - If m << n, then O(n)
- If the program operates on each of n inputs m times, program is
 - $O(m) * O(n) = O(m*n) \leftarrow Big-O Multiplication$

Big-O hierarchy

- Dominance Relation
 - $n! >> 2^n >> n^3 >> n^2 >> n \log n$
 - n log n >> n >> log n >> 1
- The base of *log n* doesn't matter, because:
 - Changing base of log_an → log_cn ?
 - $Log_c n = log_a n * log_c a$
 - Log_ca is a constant and is lost in Big-O notation
 - Doesn't make a big difference:
 - $Log_2(10^7) = 19.9 Log_3(10^7) = 12.5 Log_{100}(10^7) = 3$

Workshops

- Workshops start this week.
- If you haven't been able to enrol, just attend a convenient workshop.
 - To register, send e-mail to madalain@unimelb.edu.au

 Workshops are a great place to clarify concepts and ask questions.

Unix from the student labs

- MobaXterm
- ssh dimefox.eng.unimelb.edu.au (or nutmeg.eng.unimelb.edu.au)
- mkdir <dir_name>
- cd <dir name>
- Is
- touch <filename>
- less <filename>
- MobaXterm (or other) editor --- write your program, remember to save!
- gcc <filename>
- a.out
- gcc –o program_filename>
- ./<program filename>

So far....

- Computational complexity so far
 - Intuitive: Fibonacci
 - Big-O as upper bound
 - Formal Definition
 - Calculation unrolling the loop
 - Discarding constants
 - Discarding lower order terms

Now

- More complicated big-O arithmetic
- Θ- and Ω- notation

This lecture

- Big-O examples and fine points
- Other bounds: O() vs. Ω () vs. Θ ()

Average case vs. worst case

 Concrete analysis of algorithms on basic data structures


```
Loop:
 for(i=0;i<m; i++)
    printf("%d\n",i);
 for (i=0;i<n;i++)
    printf("%d\n",i);
```



```
Loop:
 for(i=0;i<m; i++)
     for (j=0;j<n;j++)
    printf("%d-%d\n",i,j);
```


- Successive operations add:
 - O(m) + O(n) = O(m+n)
- Single loops multiply:
 - O(m)*O(n) = O(mn)
- Smaller variables can drop out:
 - For n > m, O(m+n) = O(n)


```
for(i=0;i<m; i++)
  for (j=0; j<n; j++)
     for (k=0; k < p; k++
          printf("%d-%d-%d\n",i,j,k);
     } /* for k */
  } /* for j */
                                        3-26
  /* for i */
```

Lower order terms

- Previously we showed $x^2 + 3x$ is in $O(x^2)$
- We can drop the 3x lower order term.
- Useful for big-O analysis:
 - $n! >> 2^n >> n^3 >> n^2 >> n \log n >> n >> \log n >> 1$

For Small n

• Do we care?

- f(n) is O(g(n)) means
 f(N) < c₀*g(N) for all N > N₀
- g(N) is an upper bound:
 - y=x is in O(f(x))
 - Note: it is also in O(f(x²)), BUT
- Usually we use O() to mean the lowest upper bound, but by definition it is really any upper bound.

Exercizes

- What is the difference between:
 - $O(log_2N)$ and $O(log_{10}N)$?
 - $O(log_2N)$ and $O(log_2N^2)$?
- What is the complexity of a 2-stage algorithm where stage 1 is in O(n²) and stage2 is in O(m)?
- Is 2^{n+1} in $O(2^n)$?
- Is $(n+1)^5$ in $O(n^5)$?

More exercizes

- Show that big-O relationships are transitive, i.e. that
 - If f(n) = O(g(n)), and
 - g(n) = O(h(n)), then
 - f(n) = O(h(n))

" = " is an accepted abuse of notation

- Upper bound: O(g(n))
 - f(n) is O(g(n)): $f(N) < c_0^*g(N)$ for all $N > N_0$
 - 17x is O(x), 17x is also O(x²)
- Lower bound: $\Omega(g(n))$
 - f(n) is $\Omega(g(n))$ if g(n) is O(f(n))
 - x is $\Omega(x)$, x^2 is $\Omega(x)$

Big-Theta is the growth rate

- Tight bound: $\Theta(g(n))$
 - f(n) is $\Theta(g(n))$ when
 - f(n) is O(g(n)) and f(n) is $\Omega(g(n))$
- Example:
 - $f(x) = x^2$ is:
 - $O(x^2)$, $O(x^3)$, $O(2^x)$
 - $\Omega(x)$, $\Omega(x^2)$, $\Omega(1)$
 - $\Theta(x^2)$

• Given the following functions f(n) and g(n), is f in O(g(n)) or is f in $\Omega(g(n))$, or both?

f(n)	g(n)		
n + 100	n + 200		
log ₂ n	log ₁₀ n		
2 ⁿ	2 ⁿ⁺¹		

Average, worst, and best case analysis

- Given an unsorted list or array of items, searching for one item will require looking at:
 - n items in the worst case
 - n/2 items on average
 - 1 item if you are lucky
- Average case and worst case analysis are useful.

Average, worst, and best case analysis

- Average case and worst case analysis are useful.
- Average case analysis is often difficult.

 Worst case analysis and big-O are the most useful and the most widely used.

Skiena: The Algorithm Design Manual

Chapter 2: Sections 2.1 through 2.4

- Next section:
 - Simple data structures and algorithms.
 - Complexity analysis with concrete examples.