CVXOPT:

A Python Based Convex Optimization Suite

11 May 2012 Industrial Engineering Seminar Andrew B. Martin

Easy and Hard

 Easy Problems - efficient and reliable solution algorithms exist

 Once distinction was between Linear/Nonlinear, now Convex/Nonconvex

Outline

What is CVXOPT?

How does CVXOPT solve problems?

What are some interesting applications of CVXOPT?

Convex Sets

For any x,y
 belonging to the set
 C, the chord
 connecting x and y
 is contained within
 C.

Convex Functions

 A real valued function mapping a set X to R where X is a convex set and for any x, y belonging to X

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$$

 $0 \le t \le 1$

Convex Programming

Minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $i = 1,..., m$
 $a_i^T x = b_i$ $i = 1,..., p$

Convex objective

Convex inequality constraint functions

Affine equality constraint functions

Linear Programming

minimize
$$c^T x$$

subject to $Gx + s = h$
 $Ax = b$
 $s \succ 0$

maximize
$$-h^T z - b^T y$$

subject to $G^T z + A^T y + c = 0$
 $z \succeq 0$.

Supply Chain Modeling (Forestry)

Quadratic Programming

minimize
$$(1/2)x^TPx + q^Tx$$

subject to $Gx \leq h$
 $Ax = b$

- Least Squares and Constrained Least Squares
- Quantitative Finance

Second Order Cone Programming

minimize
$$c^T x$$

subject to $G_k x + s_k = h_k$, $k = 0, ..., M$
 $Ax = b$
 $s_0 \succeq 0$
 $s_{k0} \geq ||s_{k1}||_2$, $k = 1, ..., M$

- Robust Linear Programming
- Truss design, robotic grasping force, antenna design

Example: Robust LP

Minimize $c^T x$ subject to $a_i^T x \leq b_i \quad \forall a_i \in E_i \quad i = 1,...,m$ $E_i = \{\bar{a}_i + P_i u \mid ||u||_2 \le 1\} \quad P_i \in \Re^{nxn}$ $\sup\{a_i^T x \mid a_i \in \mathbf{E}_i\} \leq b_i$ $\sup \{a_i^T x \mid a_i \in E_i\} = \bar{a}_i^T x + ||P_i^T x||_2$ Minimize $c^T x$ subject to $\bar{a}^{T} x + \|P_{i}^{T} x\|_{2} \le b_{i} \quad i = 1,..., m$

Semidefinite Programming

minimize
$$c^T x$$

subject to $G_0 x + s_0 = h_0$
 $G_k x + \mathbf{vec}(s_k) = \mathbf{vec}(h_k), \quad k = 1, \dots, N$
 $Ax = b$
 $s_0 \succeq 0$
 $s_k \succeq 0, \quad k = 1, \dots, N$

Structural optimization, experiment design

Geometric Programming

Minimize
$$f_0(x)$$

Subject to $f_i(x) \le 1$ $i = 1,...,n$
 $h_j(x) = 1$ $j = 1,...,m$

- Posynomial objective and inequality constraint functions.
- Monomial equality constraint functions

Globally Optimal Points

Any locally optimal point is globally optimal!

 No concern of getting stuck at suboptimal minimums.

Overview CVXOPT

 Created by L. Vandenberghe and J. Dahl of UCLA

- Extends pythons standard libraries
 - Objects matrix and spmatrix

 Defines new modules e.g. BLAS, LAPACK, modeling and solvers

cvxopt.solvers

- Cone solvers: conelp, coneqp
- Smooth nonlinear solvers: cp, cpl
- Geometric Program solver: gp
- Customizable: kktsolver

Cone Programs

minimize
$$(1/2)x^TPx + q^Tx$$

subject to $Gx + s = h$
 $Ax = b$
 $s \succeq 0$

 s belongs to C, the Cartesian product of a nonnegative orthant, a number of second order cones and a number of positive semidefinite cones

Cone Solvers

 Apply Primal-Dual Path following Interior Point algorithms with Nesterov-Todd Scaling to the previous problem

Specify cone dimension with variable dims

Separate QP and LP solvers

solvers.coneqp

coneqp(P, q, G, h, A, b, dims, kktsolver)

- Linearize Central Path Equations (Newton Equations)
 - Solving these is the most expensive step

Transform N.E. into KKT system

solvers.coneqp

Central Path Equations

$$\begin{bmatrix} 0 \\ 0 \\ s \end{bmatrix} + \begin{bmatrix} P & A^T & G^T \\ A & 0 & 0 \\ G & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -c \\ b \\ h \end{bmatrix}, \quad (s, z) \succ 0, \quad z = -\mu g(s)$$

Newton Equations

$$\begin{bmatrix} P & A^T & G^T \\ A & 0 & 0 \\ G & 0 & -W^T W \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

solvers.coneqp

KKT System

$$\begin{bmatrix} P & A^T & G^T W^{-1} \\ A & 0 & 0 \\ W^{-T} G & 0 & -I \end{bmatrix} \begin{bmatrix} x \\ y \\ Wz \end{bmatrix} = \begin{bmatrix} a \\ b \\ W^{-T} c \end{bmatrix}$$

Constrained Regression

minimize
$$||Ax - b||_2^2$$

subject to $x \succeq 0$
 $||x||_2 \le 1$

$$A = \begin{bmatrix} 0.3 & 0.6 & -0.3 \\ -0.4 & 1.2 & 0.0 \\ -0.2 & -1.7 & 0.6 \\ -0.4 & 0.3 & -1.2 \\ 1.3 & -0.3 & -2.0 \end{bmatrix}, \qquad b = \begin{bmatrix} 1.5 \\ 0.0 \\ -1.2 \\ -0.7 \\ 0.0 \end{bmatrix}.$$

```
>> from cvxopt import matrix, solvers
>> A = matrix([ [ .3, -.4, -.2, -.4, 1.3 ], [ .6, 1.2, -1.7, .3, -.3 ], /
.3, .0, .6, -1.2, -2.0]
>> b = matrix([1.5, .0, -1.2, -.7, .0])
>> m, n = A.size
>>> I = matrix(0.0, (n,n))
>> I[::n+1] = 1.0
>> G = matrix([-I, matrix(0.0, (1,n)), I])
>> h = matrix(n*[0.0] + [1.0] + n*[0.0])
>> dims = {'l': n, 'q': [n+1], 's': []}
>> x = solvers.coneqp(A.T*A, -A.T*b, G, h, dims)['x']
>> print(x)
7.26e-01]
6.18e-01]
3.03e-01]
```

solvers.conelp

- Coneqp demands strict primal-dual feasibility. Conelp can detect infeasibility.
- Embeds primal and dual LPs into one LP
- Algorithm similar to coneqp except two QR factorizations used to solve KKT System

solvers.conelp

Self-dual Cone LP

Minimize 0

$$\begin{bmatrix} 0 \\ 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & G^T & C \\ -A & 0 & 0 & b \\ -G & 0 & 0 & h \\ -c^T & -b^T & -h^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ \tau \end{bmatrix}, \quad (s, \kappa, z, \tau) \succ 0$$

dims = {'l': 2, 'q': [4, 4], 's': [3]}

Nonlinear Solvers

```
minimize f_0(x)

subject to f_k(x) \leq 0, k = 1, ..., m

Gx \leq h

Ax = b.
```

- Solvers.cpl for linear objective problems
- User specifies F function to evaluate gradients and hessian of constraints
- Solvers.cpl(F, G, h, A, b, kktsolver)

solvers.cpl

KKT System

$$\begin{bmatrix} H & A^T & \tilde{G}^T \\ A & 0 & 0 \\ \tilde{G} & 0 & -W^T W \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} = \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix},$$

$$H = \sum_{k=0}^{m} z_{k} \nabla^{2} f_{k}(x), \quad \tilde{G} = [\nabla f_{1}(x) ... \nabla f_{m}(x) G^{T}]^{T}$$

solvers.cp

```
minimize t

subject to f_0(x) \le t

f_k(x) \le 0, \quad k = 1, \dots, m

Gx \le h

Ax = b.
```

- For problems with a nonlinear objective function
- Problem transformed into epigraph form and solvers.cpl algorithm applied

solvers.cp

Robust Least Squares

from cvxopt import solvers, matrix, spdiag, sqrt, div

```
def robls(A, b, rho):
    m, n = A.size
    def F(x = None, z = None):
        if x is None : return 0, matrix(0.0, (n,1))
        y = A * x - b
        w = sqrt(rho + y **2)
        f = sum(w)
        Df = div(y, w).T * A
        if z is None : return f, Df
        H = A.T * spdiag(z[0] * rho * (w ** - 3)) * A
        return f, Df, H
        return solvers.cp(F)['x']
```

Minimize
$$\sum_{k=1}^{m} \phi((Ax-b)_k)$$
where $\phi(u) = \sqrt{\rho + u^2}$

Geometric Solver

```
minimize f_0(x) = \mathbf{lse}(F_0x + g_0)

subject to f_i(x) = \mathbf{lse}(F_ix + g_i) \le 0, i = 1, ..., m

Gx \le h

Ax = b
```

- GP transformed to equivalent convex form and solvers.cp is applied
- Solvers.gp(F, G, h, A, b)

Exploiting Structure

- None of the previously mentioned solvers take advantage of problem structure
- User specified kktsolvers and python functions allow for customization
- Potential for better than commercial software performance

Exploiting Structure

M	N	CVXOPT	CVXOPT/BLAS	MOSEK 1.15	MOSEK 1.17
500	100	0.12	0.06	0.75	0.40
1000	100	0.22	0.11	1.53	0.81
1000	200	0.52	0.25	1.95	1.06
2000	200	1.23	0.60	3.87	2.19
1000	500	2.44	1.32	3.63	2.38
2000	500	5.00	2.68	7.44	5.11
2000	1000	17.1	9.52	32.4	12.8

 L1-norm approximation solution times for six randomly generated problems of dimension mxn (ref)

Interlude: iPython

Interactive Programming Environment

• explore algorithms, and perform data analysis and visualization.

• It facilitates experimentation - new ideas can be tested on the fly

iPython - Features

Magic Commands - e.g. %run

Detailed Exception Traceback

OS Shell Commands

Extensive GUI support

Facility Layout Problem

As Nonlinearly Constrained Program

As Geometric Program

As Quadratic Program

Nonlinearly Constrained Facility Layout Problem

Minimize
$$W + H$$

Subject to $w_k h_k \leq Area_{min}$
 $x_k + w_k \leq x_j$
 $x_k + w_k \leq W$
 $y_k + h_k \leq y_j$
 $y_k + h_k \leq H$
 $1/\alpha \leq w_k / h_k \leq \alpha$

200 Modules

Geometric Program

Minimize
$$W * H$$

Subject to $x_{j} * x_{i}^{-1} + w_{j} * x_{i}^{-1} \le 1$
 $x_{j} * W^{-1} + w_{j} * W^{-1} \le 1$
 $y_{j} * y_{i}^{-1} + h_{j} * y_{i}^{-1} \le 1$
 $y_{j} * H^{-1} + h_{j} * H^{-1} \le 1$
 $Area_{min} * w_{j}^{-1} * h_{j}^{-1} \le 1$
 $1/\alpha \le w_{j} * h_{j}^{-1} \le \alpha$

Quadratic Program

Minimize
$$\sum_{i} \sum_{j} flow_{i,j} * \begin{vmatrix} x_{i} - x_{j} \\ y_{i} - y_{j} \end{vmatrix}_{2}^{2} + \beta(W + H)$$
subject to
$$x_{j} + w_{j} \leq x_{i}$$

$$x_{j} + w_{j} \leq W$$

$$y_{j} + h_{j} \leq y_{i}$$

$$y_{j} + h_{j} \leq H$$

$$-w_{j} \leq -\sqrt{Area_{\min}}$$

$$-h_{j} \leq -\sqrt{Area_{\min}}$$

$$1/\alpha \leq w_{j}/h_{i} \leq \alpha$$

65 Modules

Closing

 CVXOPT: Software for Convex Optimization

How will you use it?

andrew.b.martin@dal.ca

References