ЛЕКЦ 9. Функцийн хязгаар. Функцийн тасралтгүй чанар. Багасаж барагдашгүй хэмжигдэхүүн. I, II гайхамшигт хязгаарууд.

Багш С. Уранчимэг

2021 он

- Дарааллын хязгаар.
- Функцийн хязгаар.
- Функцийн тасралтгүй чанар.
- Багасаж барагдашгүй хэмжигдэхүүн.
- I, II гайхамшигт хязгаарууд.

Тодорхойлолт

 $\mathbb{N} o \mathbb{R} : a_n \mapsto n$ функцийг дараалал гэнэ.

Тэмдэглэгээ: $(a_n)_{n\in\mathbb{N}}$ эсвэл $a_1,a_2,a_3,...$

Жишээ (1.)

$$(1,2,3,4,\ldots)=(n)_{n\in\mathbb{N}}$$

$$(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},...)=(\frac{1}{n})_{n\in\mathbb{N}}$$

$$(1,2,4,8,\ldots)=(2^{n-1})_{n\in\mathbb{N}}$$

Тодорхойлолт

Хэрэв $\forall n \in \mathbb{N}$ хувьд $A \leq a_n \leq B$ биелэх A, B олдвол $(a_n)_{n \in \mathbb{N}}$ зааглагдсан дараалал.

 $(a_n)_{n\in\mathbb{N}}$ монотон өсдөг (буурдаг) дараалал $\iff \forall n$ хувьд $a_{n+1}\geq a_n \quad (a_{n+1}\leq a_n)$

Тодорхойлолт

 $(a_n)_{n\in\mathbb{N}}$ дараалал $a\in\mathbb{R}$ руу нийлэх зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь $\forall \varepsilon>0$ тоо авахад $\forall n\geq N(\varepsilon)$ хувьд $|a_n-a|<\varepsilon$ тэнцэтгэл биш биелэгдэх $\exists N(\varepsilon)$.

$$\lim_{n\to\infty}a_n=a$$

гэж тэмдэглэнэ.

Тодорхойлолт

Нийлдэггүй дарааллыг сарнидаг дараалал гэнэ.

Жишээ (2.)

 $(1,\frac{1}{2},\,\frac{1}{3},...)$ дараалал 0 -рүү нийлнэ.

(1,1,1,...) дараалал **1** -рүү нийлнэ.

(1,-1,1,-1,...) дараалал сарнина.

(1,2,3,...) дараалал сарнина.

Теорем

Нийлдэг дараалал бүр зааглагдана.

Зааглагддаг дараалал бүр нийлэхгүй!(Жишээ хар.)

Теорем

Зааглагдсан, монотон дараалал бүр нйилнэ.

• Чанар

$$\lim_{n \to \infty} a_n = a$$
 $\lim_{n \to \infty} b_n = b$ бол

•
$$\lim_{n\to\infty}(a_n\pm b_n)=\lim_{n\to\infty}a_n\pm\lim_{n\to\infty}b_n$$

$$\bullet \lim_{n\to\infty}(c\cdot a_n)=c\cdot \lim_{n\to\infty}a_n$$

$$\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b$$

•
$$\lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{a}{b}$$
 хэрэв $b_n, b \neq 0$

Жишээ (3.)

$$a_n = (1 + \frac{1}{n})^n$$
 $n \in \mathbb{N}$ дараалал нийлэхийг харуул. $a_n = (1 + \frac{1}{n})^n$ $= 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{2 \cdot 3} \cdot \frac{1}{n^3} + \dots + \frac{1}{n^n}$ $= 2 + \frac{1}{2}(1 - \frac{1}{n}) + \frac{1}{2 \cdot 3}(1 - \frac{1}{n})(1 - \frac{2}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n})\dots(1 - \frac{n-1}{n})$ $< 1 + 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n!}$ $< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = 1 + \frac{1}{1 - \frac{1}{2}} = 1 + 2 = 3$ Одоо $n \to (n+1)$ орлуулъя. $a_n < a_{n+1}$ $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.718281828\dots$ Эйлерийн (Euler) тоо

Тодорхойлолт

 $D \subset \mathbb{R}, \quad f: D \to \mathbb{R}$ функц, $\pmb{a} \in \mathbb{R}$ гэе. Хэрэв

$$\lim_{n\to\infty}x_n=a\quad (x_n)_{n\in\mathbb{N}},\quad (x_n)\in D$$

дараалал бүрийн хувьд

$$\lim_{n\to\infty}f(x_n)=C$$

биелэгдвэл

$$\lim_{x\to a}f(x)=C$$

гэж тэмдэглэнэ.

Тодорхойлолт

 $\mathbf{x} \in \mathbb{R}$ хувьд

$$n \le x < n + 1$$

байх цор ганц, бүхэл n тоог [x] гэж тэмдэглэнэ.

Багш С. Уранчимэг

Жишээ (4.)

$$\lim_{x\to -\infty} e^x = ?$$

$$\lim_{x\to -\infty} e^x = 0$$

Жишээ (5.)

$$\lim_{x\to 1}[x]=?$$

$$\nexists \lim_{x \to 1} [x] \iff \lim_{x \to 1-} [x] \neq \lim_{x \to 1+} [x]$$

Тодорхойлолт

 $f:D o\mathbb{R}$ функц, $\pmb{a}\in \pmb{D}$ гэе. Хэрэв

$$\lim_{x\to a}f(x)=f(a)$$

бол f(x) функцийг a цэг дээр тасралтгүй гэнэ. Хэрэв D-ийн бүх цэг дээр f(x) тасралтгүй бол түүнийг D дээр тасралтгүй гэнэ.

Жишээ (6.)

 $e^{x}, x, const$ функцүүд \mathbb{R} дээр тасралтгүй.

Теорем

 $f,g:D\to\mathbb{R}$ функцүүд $a\in D$ цэг дээр тасралтгүй, $r\in\mathbb{R}$ гэе. Тэгвэл

$$f+g$$
, rf , $f\cdot g$

функцүүд \boldsymbol{a} цэг дээр тасралтгүй байна. Хэрэв $\boldsymbol{g}(\boldsymbol{a}) \neq \boldsymbol{0}$ бол

$$\frac{f(a)}{g(a)}$$

функц а цэг дээр мөн тасралтгүй.

Теорем

Хэрэв y=f(x) функц a цэг дээр тасралтгүй, z=g(y) нь A=f(a) дээр тасралтгүй бол

$$z = g(f(x))$$

давхар функц а цэг дээр тасралтгүй байна.

Теорем

 $f:D \to \mathbb{R}$ функц x_0 цэг дээр тасралтгүй байх \iff

$$\forall \varepsilon > 0 \quad \exists \delta \quad \forall x \in D \quad (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon)$$

Теорем

 $f:[a,b] \to \mathbb{R}$ тасралтгүй, эрс өсдөг (эрс буурдаг) ба $A:=f(a),\, B:=f(b)$ гэе. Тэгвэл

$$f^{-1}:[A,B]\to\mathbb{R}\quad([B,A]\to\mathbb{R})$$

урвуу функц нь тасралтгүй ба эрс өсдөг (эрс буурдаг) функц байна.

Жишээ (7.)

 $k \in \mathbb{N}, k > 2$

$$f: \mathbb{R} \to \mathbb{R}, \quad f: X \to X^k$$

тасралтгүй, эрс өсдөг функцийн урвуу нь мөн тасралтгүй, эрс өсдөг функц.

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \quad \sqrt[k]{x} \to x$$

Багш С. Уранчимэг

Теорем (Дундаж утга.)

 $f:[a,b] o\mathbb{R}$ тасралтгүй ба $f(a)<0,\ f(b)>0$ байг. Тэгвэл

$$f(p) = 0$$

байх $p \in [a, b]$ оршино.

Мөрдлөгөө

 $f:[a,b] o \mathbb{R}$ тасралтгүй ба \overline{y} нь f(a) ба f(b) дунд орших тоо бол

$$f(\overline{x}) = \overline{y}$$

байх $\overline{x} \in [a, b]$ ядаж нэг олдоно.

Тодорхойлолт

Тэгрүү тэмүүлдэг хувьсах хэмжигдэхүүнийг багасаж барагдашгүй хэмжигдэхүүн гэнэ.

Теорем

 $\lim f(x) = a$ бол f(x) - a багасаж барагдашгүй хэмжигдэхүүн байна.

Урвуугаар f(x) - a багасаж барагдашгүй хэмжигдэхүүн бол $\lim f(x) = a$ байна.

- Чанар.
- 1. Төгсгөлөг тооны багасаж барагдашгүй хэмжигдэхүүны алгебрийн нийлбэр багасаж барагдашгүй хэмжигдэхүүн байна.
- 2. Дурын тооны багасаж барагдашгүй хэмжигдэхүүний үржвэр багасаж барагдашгүй хэмжигдэхүүн байна.

Тодорхойлолт

Бүх утга нь абсолют хэмжигдэхүүнээрээ ямар нэг төгсгөлөг тооноос хэтрэхгүй байвал зааглагдсан хувьсах хэмжигдэхүүн гэнэ.

3. Багасаж барагдашгүй хэмжигдэхүүнийг зааглагдсан хэмжигдэхүүнээр үржүүлэхэд багасаж барагдашгүй хэмжигдэхүүн байна.

Тодорхойлолт

Хязгааргүй руу тэмүүлж байгаа хувьсах хэмжигдэхүүнийг ихсэж барагдашгүй хэмжигдэхүүн гэнэ.

4. Багасаж барагдашгүй хэмжигдэхүүний урвуу ихсэж барагдашгүй хэмжигдэхүүн байна.

Тодорхойлолт

Хэрэв

$$\lim_{x\to a}\frac{\beta}{\alpha}=A\neq 0$$

бол ижил эрэмбийн багасаж барагдашгүй хэмжигдэхүүн гэнэ.

Тодорхойлолт

Хэрэв

$$\lim_{x \to a} \frac{\beta}{\alpha} = 0$$

бол β -г α -гаас дээд эрэмбийн багасаж барагдашгүй хэмжигдэхүүн гэнэ.

Тодорхойлолт

Хэрэв

$$\lim_{x\to a}\frac{\beta}{\alpha}=1$$

бол эн чацуу багасаж барагдашгүй хэмжигдэхүүн гэнэ.

Теорем

Хэрэв $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ хувьсах хэмжигдэхүүний хувьд

биелэх баu, w нэг ижил a тооруу тэмүүлж байвал v мөн a хязгаартай байна.

I гайхамшигт хязгаар.

Нэг радиустай тойрог авъя. $0 \le x \le \frac{\pi}{2}$

$$S_{\Delta OMA} < S_{cek(OMA)} < S_{\Delta OCA}$$

$$S_{\Delta OMA} = rac{1}{2} \cdot |OA| \cdot |OM| \sin x = rac{1}{2} \sin x$$
 $S_{cek(OMA)} = rac{1}{2} x \cdot |0A|^2$ $S_{\Delta OCA} = rac{1}{2} |OC| \cdot |OA| \sin x = rac{1}{2} tgx$

$$\cos x = \frac{|OA|}{|OC|} = \frac{1}{|OC|} \implies |OC| = \frac{1}{\cos x}$$

$$\sin x < x < tgx$$

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$1 > \frac{\sin x}{x} > \cos x$$

$$\lim_{x \to 0} \cos x = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

II гайхамшигт хязгаар.

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$$

тэнцэтгэл n оронд $\forall x \in \mathbb{R}$ үед биелэхийг харъя. (Жишээ 3.)

$$\forall x \in \mathbb{R}$$
 тооны хувьд $n \leq x \leq n+1$ байх $\exists n \in \mathbb{N}$

$$\frac{1}{n} \ge \frac{1}{x} \ge \frac{1}{n+1} \implies 1 + \frac{1}{n} \ge 1 + \frac{1}{x} \ge 1 + \frac{1}{n+1}$$
$$\left(1 + \frac{1}{n}\right)^{n+1} \ge \left(1 + \frac{1}{x}\right)^{x} \ge \left(1 + \frac{1}{n+1}\right)^{n}$$

 $n o \infty$ үед $x o \infty$ байна.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = e \implies$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Функцийн хязгаарыг олохдоо дараах тэнцлүүдийг хэрэглэнэ.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

$$\lim_{x \to 0} \frac{(1+x)^m - 1}{x} = m$$

Тодорхойгүй хэлбэрийн илэрхийлэлүүд:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, 1^{∞} , 0^{0} , ∞^{0}

Жишээ (8.)

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 + x^2 - x - 1}$$
 хязгаарыг бод.

Бодолт. Хязгаарт шилжвэл $\frac{0}{0}$ хэлбэрийн тодорхойгүй илэрхийлэл гарна.

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 + x^2 - x - 1} = \lim_{x \to 1} \frac{x^2(x - 1) - (x - 1)}{x^2(x + 1) - (x + 1)} = \lim_{x \to 1} \frac{(x - 1)^2(x + 1)}{(x - 1)(x + 1)^2} = \lim_{x \to 1} \frac{x - 1}{x + 1} = \frac{0}{2} = 0$$

Жишээ (9.)

$$\lim_{x\to\infty}\frac{3x^3+2x^2+3x+4}{4x^3+3x^2+2x+1}$$
 хязгаарыг бод.

Бодолт.

$$\lim_{x \to \infty} \frac{3 + \frac{2}{x} + \frac{3}{x^2} + \frac{4}{x^3}}{4 + \frac{3}{x} + \frac{2}{x^2} + \frac{1}{x^3}} = \frac{3}{4}$$

(.01) еешиЖ

$$\lim_{x\to 0}\frac{\sin 4x}{\sqrt{x+4}-2}$$
 хязгаарыг бод.

$$\lim_{x \to 0} \frac{\sin 4x}{\sqrt{x+4}-2} \cdot \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2} = \lim_{x \to 0} \frac{\sin 4x}{x} (\sqrt{x+4}+2)$$

$$= 4 \lim_{x \to 0} \frac{\sin 4x}{4x} (\sqrt{x+4}+2) = 4 \cdot 4 = 16$$

Жишээ (11.)

$$\lim_{x \to \infty} \left(\frac{3x+4}{3x-1} \right)^x \text{ хязгаарыг бод.}$$

$$\lim_{x \to \infty} \left(\frac{3x-1+5}{3x-1} \right)^x = \lim_{x \to \infty} \left(1 + \frac{5}{3x-1} \right)^x = \lim_{x \to \infty} \left[\left(1 + \frac{5}{3x-1} \right)^{\frac{3x-1}{5}} \right]^{\frac{5x}{3x-1}} = e^{5/3}$$

Жишээ (12.)

$$\lim_{x\to 0}\frac{\ln\left(1+\sin x\right)}{e^{3x}-1}$$
 хязгаарыг бод.

$$x \to 0 \implies \sin x \sim x, \ln(1+x) \sim x$$

$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{e^{3x} - 1} = \lim_{x \to 0} \frac{\ln(1 + \sin x)}{\sin x} \cdot \frac{\sin x}{3(e^{3x} - 1)x} =$$

$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{\sin x} \cdot \frac{\sin x}{x} \cdot \frac{1}{3} \cdot \frac{1}{\frac{e^{3x} - 1}{3x}} = 1 \cdot 1 \cdot \frac{1}{3} \cdot \frac{1}{1} = \frac{1}{3}$$

Жишээ (13.)

$$\lim_{x \to 0} \frac{\arcsin \frac{x}{\sqrt{1-x^2}}}{\ln (1-x)}$$
 хязгаарыг бод.

Бодолт.
$$x o 0$$
 үед $\ln(1-x) \sim (-x)$, $\arcsin \frac{x}{\sqrt{1-x^2}} \sim \frac{x}{\sqrt{1-x^2}}$

$$\lim_{x \to 0} \frac{\arcsin \frac{x}{\sqrt{1 - x^2}}}{\ln(1 - x)} = \lim_{x \to 0} \frac{\frac{x}{\sqrt{1 - x^2}}}{-x} = \lim_{x \to 0} \frac{-x^2}{\sqrt{1 - x^2}} = 0$$