实验 5-1 报告

学号: 2016K8009929029

姓名: 张丽玮

一、实验任务(10%)

第一阶段实现环境的变化,在虚拟 cpu 上完成一个类 SRAM 接口到 AXI 接口的转换桥,方便后续实验。

- (1) 完全带握手的类 SRAM 接口到 AXI 接口的转换桥 RTL 代码编写。
- (2) 通过简单的读写测试。

二、实验设计(30%)

设计了类 SRAM 接口到 AXI 接口的转换桥。

类 SRAM 接口为 inst\data 双通道,AXI 接口为 r/w 双通道;转换桥内部采用 r/w 双通道独立状态机.

				- Y- \
信号	位宽	方向	功能	备注
AXI 时钟与	复位信号	} \		
aclk	1	input	AXI 时钟	
aresetn	1	input	AXI 复位,低电平有效	
读请求地	址通道,	(以 ar 开头)		
arid	[3:0]	master—>slave	读请求的 ID 号	取指为 0 取数为 1
araddr	[31:0]	master—>slave	读请求的地址	
arlen	[7:0]	master->slave	读请求控制信号,请求传输的长度(数据传输拍数)	固定为0
arsize	[2:0]	master—>slave	读请求控制信号,请求传输的大小(数据传输每拍的字节数)	
arburst	[1:0]	master—>slave	读请求控制信号, 传输类型	固定为 2'b01
arlock	[1:0]	master—>slave	读请求控制信号,原子锁	固定为0
arcache	[3:0]	master—>slave	读请求控制信号,CACHE 属性	固定为0
arprot	[2:0]	master—>slave	读请求控制信号,保护属性	固定为0
arvalid	1	master—>slave	读请求地址握手信号,读请求地址有效	
arready	1	slave—>master	读请求地址握手信号, slave 端准备好接受地址传输	
读请求数	据通道,	(以 r 开头)		
rid	[3:0]	slave—>master	读请求的 ID 号,同一请求的 rid 应和 arid 一致	指今回来为0

				数据回来为1	
rdata	[31:0]	slave—>master	读请求的读回数据		
rresp	[1:0]	slave—>master	读请求控制信号,本次读请求是否成功完成	可忽略	
rlast	1	slave—>master	读请求控制信号,本次读请求的最后一拍数据的指示信号	可忽略	
rvalid	1	slave—>master	读请求数据握手信号,读请求数据有效		
rready	1	master—>slave	读请求数据握手信号, master 端准备好接受数据传输		
写请求地址通道, (以 aw 开头)					
awid	[3:0]	master—>slave	写请求的 ID 号	固定为1	
awaddr	[31:0]	master—>slave	写请求的地址	17.	
awlen	[7:0]	master->slave	写请求控制信号,请求传输的长度(数据传输拍数)	固定为0	
awsize	[2:0]	master—>slave	写请求控制信号,请求传输的大小(数据传输每拍的字节	1 X 13	
			数)	K)	
awburst	[1:0]	master—>slave	写请求控制信号, 传输类型	固定为 2'b01	
awlock	[1:0]	master->slave	写请求控制信号, 原子锁	固定为0	
awcache	[3:0]	master—>slave	写请求控制信号,CACHE 属性	固定为0	
awprot	[2:0]	master—>slave	写请求控制信号,保护属性	固定为0	
awvalid	1	master->slave	写请求地址握手信号,写请求地址有效		
awready	1	slave—>master	写请求地址握手信号, slave 端准备好接受地址传输		

写请求数据通道,		(以w开头)		
wid	[3:0]	master—>slave	写请求的 ID 号	固定为1
wdata	[31:0]	master->slave	写请求的写数据	
wstrb	[3:0]	master—>slave	写请求控制信号,字节选通位	
wlast	1	master—>slave	写请求控制信号,本次写请求的最后一拍数据的指示信号	固定为1
wvalid	1	master->slave	写请求数据握手信号,写请求数据有效	
wready	1	slave—>master	写请求数据握手信号, slave 端准备好接受数据传输	
写请求响应通道, (以 b 开头)				
bid	[3:0]	slave—>master	写请求的 ID 号,同一请求的 bid、wid 和 awid 应一致	可忽略
bresp	[1:0]	slave—>master	写请求控制信号,本次写请求是否成功完成	可忽略
bvalid	1	slave—>master	写请求响应握手信号,写请求响应有效	
bready	1	master—>slave	写请求响应握手信号,master 端准备好接受写响应	

以上为这个转换桥的接口设置。

独立状态机一个 always 块控制读,一个 always 块控制写,这样实现读写独立,就可以同时执行。但是因为读写有相关——读后写相关、写后读相关,因此增加了一个阻塞延迟信号。

写后读的阻塞延迟,根据 w_status 判断。

读后写的阻塞延迟,根据 r_status 判断。

三、实验过程(60%)

(一) 实验流水账

11月28日,下午4点到晚上10点,阅读任务书,弄清楚新环境的框架

11月29日,下午4点到第二天2点,写转换桥代码,测试xxx

11月30日,下午6点到晚上12点,debug,通过一部分测试,继续debug

12月1日,下午6点到晚上10点,通过测试

(二) 错误记录

具体描述实验过程中的错误,环境问题、仿真阶段、上板阶段的都可以记录。

1、错误1

(1) 错误现象

测试点 Opass 之后读取数据一直 xxx

(2) 分析定位过程

有 Z 调 Z, 有 X 调 X, 发现 inst 和 data 的 ok 信号一直是 0

(3) 错误原因

逻辑出了问题,握手了也没有接收数据

(4) 修正效果

可以读入数据

(5) 归纳总结(可选)

看波形真的很头秃。

2、错误2

(1) 错误现象

读 0x00008002 和 0x00008000 错误

(2) 分析定位过程

0x00008000 是第一条请求,第一条请求未成功

(3) 错误原因

valid 信号未初始化,

(4) 修正效果

增加了初始化。

(5) 归纳总结(可选)

无。

3、错误3

(1) 错误现象

读 0x00008040 有误。

(2) 分析定位过程

跟踪波形发现前一条的写指令没有执行,因此读到的是上一条指令的值。

(3) 错误原因

只进行了读写独立处理, 但是没有考虑读后写、写后读相关

(4) 修正效果

增加了延迟阻塞信号,判断冲突,如果冲突进行阻塞。

(5) 归纳总结(可选)

调试波形的时候不仅要考虑当前错误值,可能还要追溯前面几条找到根源。

四、实验总结(可选)

很长一段时间没有理解实验到底要我们做什么,可能因为换了环境,不是在原 cpu 基础上改。

一开始以为这个握手信号和上学期计组实现的差异不大,写一个简单的状态机判断读写就行,然后发现差得很大······听课的时候草草听过去了但是没实际概念,实际进行的时候就知道这个东西调起来很烦有很多坑······

现在对于接下来两周实验充满了畏惧。