ASK_09	Romaniak Hubert	Informatyka	Semestr zimowy
		niestacjonarna III rok	2024/25

Zadania

1. Licznik mod 7 asynchroniczny

x_{2_n}	x_{1_n}	x_{0_n}	$x_{2_{n+1}}$	$x_{1_{n+1}}$	$x_{0_{n+1}}$
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	Х	Х	х

Tabela 1 - tabela przejść licznika mod 7 asynchronicznego

Rysunek 1 - schemat logiczny licznika mod 7 asynchronicznego

2. Licznik mod 8 asynchroniczny

x_{2_n}	x_{1_n}	x_{0_n}	$x_{2_{n+1}}$	$x_{1_{n+1}}$	$x_{0_{n+1}}$
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Tabela 2 - tabela przejść licznika mod 8 asynchronicznego

Rysunek 2 - schemat logiczny licznika mod 8 asynchronicznego

3. Licznik mod 10 asynchroniczny

x_{3_n}	x_{2n}	x_{1_n}	x_{0_n}	$x_{3_{n+1}}$	$x_{2_{n+1}}$	$x_{1_{n+1}}$	$x_{0_{n+1}}$
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	Х	х	х	х
1	0	1	1	х	х	х	Х
1	1	0	0	х	х	х	Х
1	1	0	1	х	х	х	Х
1	1	1	0	Х	х	х	Х
1	1	1	1	Х	х	х	х

Tabela 3 - tabela przejść licznika mod 10 asynchronicznego

Rysunek 3 - schemat logiczny licznika mod 10 asynchronicznego

4. Układ zatrzaskujący niepożądane wartości dla licznika mod 10 asynchronicznego

Rysunek 4 - schemat logiczny układu zatrzaskującego niepożądane wartości dla licznika mod 10 asynchronicznego

Działanie układu zatrzaskującego opiera się na czterech przerzutnikach **D-MS** aktywowanych stanem zegara. Przerzutniki "master" zapisują dokładnie wartości licznika. W momencie, gdy wykryty jest sygnał resetu, ich zegar jest ustawiany na stan niski – ich stany zostają ustawione na krótkotrwałe wartości pośrednie.

W tym samym momencie gdy zegar przerzutników "master" jest ustawiany na stan niski, zegar przerzutników "slave" jest ustawiony na stan wysoki. Powoduje to przepisanie krótkotrwałych, pośrednich wartości na wyjście przerzutników, a następnie wyświetlenie ich na diodach i wyświetlaczu 7-segmentowym.

Wnioski

Liczniki asynchroniczne, zaraz przed resetowaniem, przechowują pośrednie wartości. Wartości te można zaobserwować, rozszerzając układ licznika o układ zatrzaskujący te wartości – na przykład za pomocą przerzutników w konfiguracji "master-slave".

W rzeczywistym układzie, ze względu na czas propagacji sygnałów, takie wartości mogą być zaobserwowane i zatrzaśnięte w jeszcze prostszy sposób – bez używania konfiguracji "master-slave", natomiast korzystając z odpowiednio dobranych buforów opóźniających sygnał resetujący.