# Udacity SDC Term 2 PID Controller Project Write up

Date: 07/23/2017 Cohort: January 2017 Student: JC Estoup

### **PID Controller**

The goal of this project is to implement a PID controller onto the track of the simulator.

### Code Review.

The code to review is into main.cpp and pid.cpp, after the mentions TODO. The main explanation I will procure in this note, is how I used to tune the P, I and D parameters.

For, this, instead of embedding videos, I will use the lesson 16, chapter 11 to show what the parameter tuning were doing on my vehicle.

## 1. Proportional:

So, initially I set up all the parameters to 1, and then I saw the car was oscillating a lot around center line, so I decided to get back to the lesson 16 chapter 11, where there is a graph of the impact of each parameter. I started to play with Kp parameter, the proportional one, and setting Kd and Ki to 0. I played with Kp around order of magnitudes to understand how the variable was impacting behaviour. I saw the following on the graph:



By playing with the controller for the project, I realized that the 0.5 threshold was pretty accurate.

# 2 Integral

The project hasn't an original offset, and none of the parameters except 0 where giving a good result. However, the table below shows the implication of Integral parameter tuning.



# 3 Derivative. Similar as both parameters above, I tuned the parameter Kd to understand it's impliaction.

| Kd  | Effect                                                                        | Note                                                                                  |
|-----|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 30  | 1.0                                                                           | Super stiff steering, converges very slowly                                           |
| 3   | 10<br>08<br>06<br>04<br>02<br>00<br>0 20 40 60 60 100                         | Removes oscillation and converges after 1 oscillation (after passing the middle lane) |
| 0.3 | 100<br>075<br>030<br>030<br>025<br>-035<br>-030<br>-0.75<br>0 20 40 60 80 100 | Too loose. The parameter is not high enough and dampers the oscillations very slowly. |

After applying this tuning to the project, I found out that the following parameter were the most accurate for my controller.

$$Kp = -0.5$$

$$Ki = 0$$

$$Kd = -10$$