Mathematics for Machine Learning

— Linear Algebra: Norms, Inner Products & Orthogonality

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

- Norms
- Inner Products
- 3 Lengths & Distances
- 4 Angles and Orthogonality
- Orthonormal Basis
- Inner Product of Functions

Outline

- Norms
- 2 Inner Products
- Lengths & Distances
- 4 Angles and Orthogonality
- Orthonormal Basis
- 6 Inner Product of Functions

Norm

Norm

A norm on a vector space V is a function

$$\|\cdot\|:V\mapsto\mathbb{R}$$
 $\mathbf{x}\mapsto\|\mathbf{x}\|$

such that for $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$ the following hold:

- $\bullet \|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|.$
 - $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.
 - $\|\mathbf{x}\| \geq 0$ and $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$.

ℓ_1 norm & ℓ_2 norm

ℓ_1 norm (Manhattan Norm)

For $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_1 := \sum_{i=1}^n |x_i|.$$

ℓ_2 norm

For $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\mathbf{x}^\top \mathbf{x}}.$$

Outline

- Norms
- 2 Inner Products
- Lengths & Distances
- 4 Angles and Orthogonality
- Orthonormal Basis
- 6 Inner Product of Functions

Dot Product

Dot Product

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\mathbf{x}^{\top}\mathbf{y} = \sum_{i=1}^{n} x_i y_i.$$

General Inner Products

Bilinear Mapping f

Given a vector space V. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\lambda, \psi \in \mathbb{R}$, such that

$$f(\lambda \mathbf{x} + \psi \mathbf{y}, \mathbf{z}) = \lambda f(\mathbf{x}, \mathbf{z}) + \psi f(\mathbf{y}, \mathbf{z})$$

$$f(\mathbf{x}, \lambda \mathbf{y} + \psi \mathbf{z}) = \lambda f(\mathbf{x}, \mathbf{y}) + \psi f(\mathbf{x}, \mathbf{z})$$

General Inner Products

Bilinear Mapping f

Given a vector space V. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\lambda, \psi \in \mathbb{R}$, such that

$$f(\lambda \mathbf{x} + \psi \mathbf{y}, \mathbf{z}) = \lambda f(\mathbf{x}, \mathbf{z}) + \psi f(\mathbf{y}, \mathbf{z})$$
 (linear in the 1st argument)

$$f(\mathbf{x}, \lambda \mathbf{y} + \psi \mathbf{z}) = \lambda f(\mathbf{x}, \mathbf{y}) + \psi f(\mathbf{x}, \mathbf{z})$$
 (linear in the 2nd argument)

Symmetric & Positive Definite (1/6)

Symmetric

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is symmetric if $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$.

Positive Definite

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is positive definite if $\forall \mathbf{x} \in V \setminus \{\mathbf{0}\}$, we have

$$f(\mathbf{x}, \mathbf{x}) > 0$$
 and $f(\mathbf{0}, \mathbf{0}) = 0$.

Symmetric & Positive Definite (1/6)

Symmetric

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is symmetric if $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$.

Positive Definite

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is positive definite if $\forall \mathbf{x} \in V \setminus \{\mathbf{0}\}$, we have

$$f(\mathbf{x}, \mathbf{x}) > 0$$
 and $f(\mathbf{0}, \mathbf{0}) = 0$.

Inner Product

A positive definite & symmetric bilinear mapping $f: V \times V \mapsto \mathbb{R}$ is called an inner product on V and we write $f(\mathbf{x}, \mathbf{y})$ as $\langle \mathbf{x}, \mathbf{y} \rangle$.

4□▶ 4□▶ 4□▶ 4□▶ ■ 900

Symmetric & Positive Definite (2/6)

- Important in machine learning.
 - Matrix decompositions.
 - Key in defining kernels in the SVM (support vector machine).

An Exercise

Exercise

Consider $V = \mathbb{R}^2$. Define that

$$\langle \mathbf{x}, \mathbf{y} \rangle := x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2 x_2 y_2.$$

Show that $\langle \cdot, \cdot \rangle$ is an inner product.

Symmetric & Positive Definite (3/6)

Consider an *n*-dimensional vector space V with an inner product $\langle \cdot \rangle : V \times V \mapsto \mathbb{R}$ and an ordered basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of V.

- Assume that for $\mathbf{x}, \mathbf{y} \in V$,
 - $\mathbf{x} = \sum_{i=1}^n \psi_i \mathbf{b}_i$
 - $\mathbf{y} = \sum_{j=1}^{n-1} \lambda_j \mathbf{b}_j$

for suitable $\psi_i, \lambda_j \in \mathbb{R}$.

By the bilinearity of the inner product, we have

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} \psi_i \mathbf{b}_i, \sum_{j=1}^{n} \lambda_j \mathbf{b}_j \right\rangle$$

Symmetric & Positive Definite (3/6)

Consider an *n*-dimensional vector space V with an inner product $\langle \cdot \rangle : V \times V \mapsto \mathbb{R}$ and an ordered basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of V.

- Assume that for $\mathbf{x}, \mathbf{y} \in V$,
 - $\mathbf{x} = \sum_{i=1}^{n} \psi_i \mathbf{b}_i$
 - $\mathbf{y} = \sum_{j=1}^{n-1} \lambda_j \mathbf{b}_j$

for suitable $\psi_i, \lambda_i \in \mathbb{R}$.

By the bilinearity of the inner product, we have

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^n \psi_i \mathbf{b}_i, \sum_{j=1}^n \lambda_j \mathbf{b}_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \psi_i \langle \mathbf{b}_i, \mathbf{b}_j \rangle \lambda_j = \hat{\mathbf{x}}^\top \mathbf{A} \hat{\mathbf{y}},$$

where $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are the coordinates of \mathbf{b} w.r.t. the basis B.

Symmetric & Positive Definite (3/6)

Consider an *n*-dimensional vector space V with an inner product $\langle \cdot \rangle : V \times V \mapsto \mathbb{R}$ and an ordered basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of V.

- Assume that for $\mathbf{x}, \mathbf{y} \in V$,
 - $\mathbf{x} = \sum_{i=1}^{n} \psi_i \mathbf{b}_i$
 - $\mathbf{y} = \sum_{j=1}^{n-1} \lambda_j \mathbf{b}_j$

for suitable $\psi_i, \lambda_i \in \mathbb{R}$.

By the bilinearity of the inner product, we have

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^n \psi_i \mathbf{b}_i, \sum_{j=1}^n \lambda_j \mathbf{b}_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \psi_i \langle \mathbf{b}_i, \mathbf{b}_j \rangle \lambda_j = \hat{\mathbf{x}}^\top \mathbf{A} \hat{\mathbf{y}},$$

where $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are the coordinates of \mathbf{b} w.r.t. the basis B.

★ Note that the symmetry of the inner product implies that A is symmetric.

Symmetric & Positive Definite (4/6)

The positive definiteness of the inner product implies that

$$\forall \mathbf{x} \in V \setminus \{\mathbf{0}\}: \mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0.$$

Symmetric, Positive Definite Matrix

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ that satisfies the property:

$$\forall \mathbf{x} \in V \setminus \{\mathbf{0}\}: \mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0.$$

is called symmetric, positive definite (or just positive definite).

If only \geq holds, then **A** is called symmetric, positive semidefinite.

Example

Consider the matrices
$$\mathbf{A}_1 = \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix}$$
, $\mathbf{A}_2 = \begin{bmatrix} 9 & 6 \\ 6 & 3 \end{bmatrix}$

• **A**₁ is positive definite (why?)

Example

Consider the matrices
$$\mathbf{A}_1 = \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix}$$
, $\mathbf{A}_2 = \begin{bmatrix} 9 & 6 \\ 6 & 3 \end{bmatrix}$

- **A**₁ is positive definite (why?)
- A₂ is NOT positive definite (why?)

Symmetric & Positive Definite (5/6)

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, positive definite, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = \hat{\mathbf{x}}^{\top} \mathbf{A} \hat{\mathbf{y}}.$$

Symmetric & Positive Definite (5/6)

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, positive definite, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = \hat{\mathbf{x}}^{\top} \mathbf{A} \hat{\mathbf{y}}.$$

This defines an inner product w.r.t. an ordered basis B, where $\hat{\mathbf{x}}, \hat{\mathbf{y}}$ are the coordinates of \mathbf{x}, \mathbf{y} w.r.t. B.

Symmetric & Positive Definite (6/6)

The following properties hold if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.

• $null(A) = \{0\}.$

Symmetric & Positive Definite (6/6)

The following properties hold if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.

- $null(A) = \{0\}.$
 - Since $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} > 0 \Rightarrow \mathbf{A} \mathbf{x} \neq \mathbf{0}$ if $\mathbf{x} \neq \mathbf{0}$.
- For the diagonal elements a_{ii} of \mathbf{A} , $a_{ii} = \mathbf{e}_i^{\top} \mathbf{A} \mathbf{e}_i > 0$.
 - \mathbf{e}_i : the *i*th vector of the standard basis of \mathbb{R}^n .

Outline

- Norms
- 2 Inner Products
- 3 Lengths & Distances
- 4 Angles and Orthogonality
- Orthonormal Basis
- 6 Inner Product of Functions

Remark

• Note that any inner product induces a norm:

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Cauchy-Schwarz Inequality

For an inner product vector space ($V, \langle \cdot \rangle$), the induced norm $\| \cdot \|$ satisfies the Cauchy-Schwarz inequality

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\| \|\mathbf{y}\|.$$

Lengths of Vectors

Example

Compute the length of a vector $\mathbf{x} = [1,1]^{\top} \in \mathbb{R}^2$ using

- Dot product
- $\bullet \ \langle \mathbf{x}, \mathbf{y} \rangle := \mathbf{x}^{\top} \begin{bmatrix} 1 & \frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix} \mathbf{y} = x_1 y_1 \frac{1}{2} (x_1 y_2 + x_2 y_1) + x_2 y_2.$

Distance & Metric

Distance

Consider an inner product space $(V, \langle \cdot \rangle)$. Then, the distance between \mathbf{x} and \mathbf{y} for $\mathbf{x}, \mathbf{y} \in V$ is

$$d(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\| = \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle}.$$

• The mapping $d: V \times V \mapsto \mathbb{R}$ for which (\mathbf{x}, \mathbf{y}) maps to $d(\mathbf{x}, \mathbf{y})$ is called a metric

Distance & Metric

Distance

Consider an inner product space $(V, \langle \cdot \rangle)$. Then, the distance between \mathbf{x} and \mathbf{y} for $\mathbf{x}, \mathbf{y} \in V$ is

$$d(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\| = \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle}.$$

• The mapping $d: V \times V \mapsto \mathbb{R}$ for which (\mathbf{x}, \mathbf{y}) maps to $d(\mathbf{x}, \mathbf{y})$ is called a metric, which satisfies:

Distance & Metric

Distance

Consider an inner product space $(V, \langle \cdot \rangle)$. Then, the distance between \mathbf{x} and \mathbf{y} for $\mathbf{x}, \mathbf{y} \in V$ is

$$d(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\| = \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle}.$$

- The mapping $d: V \times V \mapsto \mathbb{R}$ for which (\mathbf{x}, \mathbf{y}) maps to $d(\mathbf{x}, \mathbf{y})$ is called a metric, which satisfies:
 - positive definite: $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all $\mathbf{x}, \mathbf{y} \in V$ and $d(\mathbf{x}, \mathbf{y}) = 0$ iff $\mathbf{x} = \mathbf{y}$.
 - symmetric: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in V$.
 - triangular inequality: $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$.

Outline

- Norms
- 2 Inner Products
- Lengths & Distances
- 4 Angles and Orthogonality
- Orthonormal Basis
- 6 Inner Product of Functions

Recall from Senior High School Math

Law of Cosines

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Recall from Senior High School Math

Law of Cosines

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Note:

$$\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\langle \mathbf{u}, \mathbf{v} \rangle.$$

Thus,

Recall from Senior High School Math

Law of Cosines

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Note:

$$\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\langle \mathbf{u}, \mathbf{v} \rangle.$$

Thus,

$$\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\| \cos \theta.$$

Angles

Assume that $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}$. Then by the Cauchy-Schwarz inequality,

$$-1 \leq rac{\langle \mathbf{x}, \mathbf{y}
angle}{\|\mathbf{x}\| \|\mathbf{y}\|} \leq 1.$$

Angles

Assume that $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}$. Then by the Cauchy-Schwarz inequality,

$$-1 \leq rac{\langle \mathbf{x}, \mathbf{y}
angle}{\|\mathbf{x}\| \|\mathbf{y}\|} \leq 1.$$

Thus, there exists a unique $\theta \in [0, \pi]$, such that

$$cos(\theta) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Angles

Assume that $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}$. Then by the Cauchy-Schwarz inequality,

$$-1 \leq rac{\langle \mathbf{x}, \mathbf{y}
angle}{\|\mathbf{x}\| \|\mathbf{y}\|} \leq 1.$$

Thus, there exists a unique $\theta \in [0, \pi]$, such that

$$cos(\theta) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

We call θ the angle between **x** and **y**.

Orthogonality

Orthogonality

- Two vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
 - We write $\mathbf{x} \perp \mathbf{y}$.
- If x and y are orthogonal and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$, then x and y are both orthonormal.

Orthogonal Matrix

Orthogonal Matrix

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix iff its columns are orthogonal so that

$$\mathbf{A}\mathbf{A}^{\top} = \mathbf{I} = \mathbf{A}^{\top}\mathbf{A},$$

which implies

$$A^{-1} = A^{\top}$$
.

Remark

Transformations by orthogonal matrices do NOT change the length of a vector.

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^{\top}(\mathbf{A}\mathbf{x}) =$$

Orthogonal Matrix

Orthogonal Matrix

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix iff its columns are orthogonal so that

$$\mathbf{A}\mathbf{A}^{\top} = \mathbf{I} = \mathbf{A}^{\top}\mathbf{A},$$

which implies

$$A^{-1} = A^{\top}$$
.

Remark

Transformations by orthogonal matrices do NOT change the length of a vector.

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^{\top}(\mathbf{A}\mathbf{x}) = \mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} =$$

Orthogonal Matrix

Orthogonal Matrix

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix iff its columns are orthogonal so that

$$\mathbf{A}\mathbf{A}^{\top} = \mathbf{I} = \mathbf{A}^{\top}\mathbf{A},$$

which implies

$$\mathbf{A}^{-1} = \mathbf{A}^{\top}$$
.

Remark

Transformations by orthogonal matrices do NOT change the length of a vector.

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^\top (\mathbf{A}\mathbf{x}) = \mathbf{x}^\top \mathbf{A}^\top \mathbf{A}\mathbf{x} = \mathbf{x}^\top \mathbf{I}\mathbf{x} = \mathbf{x}^\top \mathbf{x} = \|\mathbf{x}\|^2.$$

Let θ be the angle between $\mathbf{A}\mathbf{x}$ and $\mathbf{A}\mathbf{y}$, what is $\cos\theta$?

Outline

- Norms
- 2 Inner Products
- Lengths & Distances
- 4 Angles and Orthogonality
- Orthonormal Basis
- 6 Inner Product of Functions

Orthonormal Basis

Orthonormal Basis

Consider an *n*-dimensional vector space V and a basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of V. If for all $i, j = 1, \dots, n$

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0 \quad \text{for } i \neq j$$
 (1)

$$\langle \mathbf{b}_i, \mathbf{b}_i \rangle = 1, \tag{2}$$

then the basis is called an orthonormal basis.

• Only (1) is satisfied \Rightarrow orthogonal basis.

Example

• The standard basis for \mathbb{R}^n .

•
$$\mathbf{b}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{b}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Outline

- Norms
- 2 Inner Products
- Lengths & Distances
- 4 Angles and Orthogonality
- Orthonormal Basis
- Inner Product of Functions

Inner Product of Functions

Inner Product of Functions

Given two functions $u, v : \mathbb{R} \mapsto \mathbb{R}$, the inner product of u and v can be defined as

$$\langle u, v \rangle := \int_a^b u(x) v(x) dx$$

for lower and upper limits $a, b < \infty$.

Example

Example (Exercise)

- Choose $u(x) = \sin(x)$ and $v(x) = \cos(x)$.
- Define f(x) = u(x)v(x).

Example

Example (Exercise)

- Choose $u(x) = \sin(x)$ and $v(x) = \cos(x)$.
- Define f(x) = u(x)v(x).

- We can observe that f(-x) = -f(x)
- $\bullet \int_{-\pi}^{\pi} u(x)v(x)dx = 0.$

Discussions