Notas de Álgebra Linear

Carla Mendes

2022/2023

3. Determinantes

O determinante de uma matriz quadrada sobre \mathbb{K} , $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, é um elemento de \mathbb{K} calculado a partir dos elementos da matriz e que, entre outras aplicações, pode ser usado na resolução de certos sistemas de equações lineares e para decidir sobre a invertibilidade de uma matriz.

3.1 Definição e algumas propriedades

O determinante de uma matriz pode ser definido de diversas formas. No texto que se segue optamos por apresentar uma definição indutiva deste conceito.

Para uma matriz de ordem 1×1

$$A = [a]$$

é fácil concluir que a matriz é invertível se e só se $a \neq 0$.

Dada uma matriz quadrada de ordem 2×2

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

é também simples concluir em que condições a matriz é invertível; aplicando o método de eliminação de Gauss à matriz A, conclui-se que A é invertível se e só se $ad - bc \neq 0$.

Como iremos ver mais à frente, a qualquer matriz $A \in \mathcal{M}_n(\mathbb{K})$, $n \in \mathbb{N}$, podemos associar um elemento de \mathbb{K} com a propriedade de A ser invertível se e só se esse escalar for não nulo. A este elemento de \mathbb{K} chamaremos o determinante de A.

Para matrizes de ordem superior apresentamos uma definição indutiva para o determinante de uma matriz, i.e., define-se o determinante de uma matriz 2×2 em função do determinante de matrizes de ordem 1×1 , define-se o determinante de

uma matriz 3×3 em função do determinante de matrizes de ordem 2×2 , e assim sucessivamente.

No sentido de apresentarmos a definição referida, começamos por introduzir alguma notação.

Dada uma matriz $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K}), n \in \mathbb{N}$, representa-se por A(i|j) a matriz quadrada de ordem n-1, obtida de A retirando a linha i e a coluna j.

Exemplo 3.1.1.
$$Se\ A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & -5 & 1 \end{bmatrix} \ ent \tilde{ao}\ A(2|3) = \begin{bmatrix} 1 & 1 \\ 1 & -5 \end{bmatrix}.$$

Definição 3.1.2. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Chama-se **determinante de A**, e representa-se por det A ou |A|, ao elemento de \mathbb{K} definido da seguinte forma:

i) Se
$$n = 1$$
, então $\det A = a_{11}$.

= -11.

ii) Se
$$n > 1$$
, então $\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A(1|j)$.

Exemplo 3.1.3. Se
$$A = \begin{bmatrix} 2 & 1 \\ 1 & -5 \end{bmatrix}$$
, então

$$\det A = (-1)^{1+1} \times 2 \times \det [-5] + (-1)^{1+2} \times 1 \times \det [1]$$

$$= 1 \times 2 \times (-5) + (-1) \times 1 \times 1$$

$$= -10 - 1$$

Exemplo 3.1.4.
$$Se\ A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & -5 & 1 \end{bmatrix}$$
, $ent\tilde{a}o$

$$\det A = (-1)^{1+1} \times 1 \times \det \begin{bmatrix} 1 & 3 \\ -5 & 1 \end{bmatrix}$$

$$+(-1)^{1+2} \times 1 \times \det \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$

$$+(-1)^{1+3} \times (-1) \times \det \begin{bmatrix} 2 & 1 \\ 1 & -5 \end{bmatrix}$$

$$= 1 \times 1 \times (1 \times 1 - (-5) \times 3)$$

$$-1 \times 1 \times (2 \times 1 - 1 \times 3)$$

$$+1 \times (-1) \times (2 \times (-5) - 1 \times 1)$$

$$= 28.$$

Exemplo 3.1.5. Se $A = [a_{ij}]$ é uma matriz real de ordem 3, então

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}.$$

Dada uma matriz $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ e dados $i, j \in \{1, ..., n\}$, designa-se por **complemento algébrico** do elemento a_{ij} , e representa-se por \widehat{a}_{ij} , o elemento de \mathbb{K} definido por $(-1)^{i+j}$ det A(i|j).

De acordo com a definição que apresentámos para o determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$, o determinante de A é igual à soma dos elementos da linha 1 multiplicados pelos respectivos complementos algébricos, ou seja,

$$\det A = \sum_{j=1}^{n} a_{1j} \widehat{a}_{1j}.$$

O resultado seguinte, que não será aqui demonstrado, estabelece que se procedermos de forma análoga para uma qualquer linha ou uma qualquer coluna de A obtemos também o determinante de A.

Teorema 3.1.6 (Teorema de Laplace). Sejam $n \in \mathbb{N}$ tal que $n \geq 2$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Então, para qualquer $k \in \{1, 2, ..., n\}$,

i)
$$\det A = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A(k|j) = \sum_{j=1}^{n} a_{kj} \hat{a}_{kj}$$
.

ii) det
$$A = \sum_{i=1}^{n} (-1)^{i+k} a_{ik} \det A(i|k) = \sum_{i=1}^{n} a_{ik} \widehat{a}_{ik}$$
. \square

Observação: 1) A expressão indicada em i) designa-se por desenvolvimento do determinante de A ao longo da linha k de A; a expressão indicada em i) designa-se por desenvolvimento do determinante de A ao longo da coluna k de A.

Exemplo 3.1.7.
$$Seja\ A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 0 \\ 1 & -5 & 1 \end{bmatrix}$$
.

Por definição, temos

$$\det A = 1 \begin{vmatrix} 0 & 0 \\ -5 & 1 \end{vmatrix} - 1 \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 0 \\ 1 & -5 \end{vmatrix}$$
$$= 1(0-0) - 1(2-0) + 1(-10-0)$$
$$= -12.$$

Aplicando o teorema de Laplace, desenvolvendo o determinante ao longo da linha $k=2,\ vem$

$$\det A = (-1)^{2+1} \times 2 \times \begin{vmatrix} 1 & -1 \\ -5 & 1 \end{vmatrix}$$
$$= -2(1+5)$$
$$= -12.$$

Teorema 3.1.8. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Então, $\det A^T = \det A$.

Demonstração. A prova segue por indução sobre a ordem n da matriz. Caso base (n = 1): Se $A \in \mathcal{M}_1(\mathbb{K})$, temos $A = [a_{11}] = A^T$ e, portanto, $\det A = \det A^T$.

Passo de indução: Dado $p \in \mathbb{N}$, admitamos, por hipótese de indução, que o determinante de qualquer matriz de $\mathcal{M}_p(\mathbb{K})$ é igual ao determinante da sua transposta. Com base nesta hipótese prova-se facilmente que se $A \in \mathcal{M}_{p+1}(\mathbb{K})$, então det $A^T = \det A$. Com efeito, pelo Teorema de Laplace, e desenvolvendo o determinante da matriz A ao longo de uma linha $k, k \in \{1, 2, \ldots, p+1\}$, temos

$$\det A = \sum_{i=1}^{p+1} (-1)^{k+j} a_{kj} \det A(k|j).$$

Considerando que A(k|j) é uma matriz de $\mathcal{M}_p(\mathbb{K})$ tem-se, por hipótese de indução, det $A(k|j) = \det(A(k|j))^T$, donde resulta que

$$\det A = \sum_{j=1}^{p+1} (-1)^{k+j} a_{kj} \det A^{T}(j|k).$$

Agora, tendo em conta que a_{kj} é o elemento na linha j e coluna k de A^T , conclui-se que $\sum_{j=1}^{p+1} (-1)^{k+j} a_{kj} \det A^T(j|k)$ é o determinante de A^T desenvolvido ao longo da coluna k. Por conseguinte, det $A = \det A^T$.

Do que foi provado conclui-se, pelo Princípio de Indução em \mathbb{N} , que, para todo $n \in \mathbb{N}$, se $A \in \mathcal{M}_n(\mathbb{K})$, então det $A = \det A^T$.

Observação. Do teorema anterior resulta que, dada uma propriedade sobre determinantes expressa em termos de linhas (respectivamente, colunas), podemos sempre enunciar uma propriedade análoga expressa em termos de colunas (respectivamente, linhas).

Teorema 3.1.9. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ uma matriz triangular superior (respectivamente, inferior). Então det $A = a_{11} \times a_{22} \times \cdots \times a_{nn}$.

Demonstração. A prova é realizada por indução sobre n.

Caso base (n = 1): Para n = 1, temos $A = [a_{11}]$ e o resultado é imediato.

Passo de indução: Dado $p \in \mathbb{N}$, admitamos, por hipótese de indução, que para qualquer matriz triangular superior B de $\mathcal{M}_p(\mathbb{K})$, det $B = b_{11} \times b_{22} \times \ldots \times b_{pp}$. Então, para qualquer matriz triangular superior $A \in \mathcal{M}_{p+1}(\mathbb{K})$, prova-se que det $A = a_{11} \times a_{22} \times \cdots \times a_{p+1p+1}$. De facto, aplicando o Teorema de Laplace ao longo da linha p+1 da matriz A e atendendo a que A é uma matriz traingular superior, temos

$$\det A = \sum_{j=1}^{p+1} (-1)^{(p+1)+j} a_{p+1j} \det A(p+1|j) = (-1)^{2(p+1)} a_{p+1p+1} \det A(p+1|p+1).$$

Agora, como A(p+1|p+1) é uma matriz de $\mathcal{M}_p(\mathbb{K})$ e é também uma matriz triangular superior, por hipótese de indução temos det $A(p+1|p+1) = a_{11} \times a_{22} \times \cdots \times a_{pp}$. Logo, det $A = a_{11} \times a_{22} \times \cdots \times a_{p+1p+1}$.

Assim, pelo Princípio de Indução em \mathbb{N} , concluímos que, para todo $n \in \mathbb{N}$, se $A \in \mathcal{M}_n(\mathbb{K})$ é uma matriz triangular superior, então det $A = a_{11} \times a_{22} \times \cdots \times a_{nn}$.

Se A é uma matriz triangular inferior, o resultado segue imediatamente tendo em conta a proposição anterior.

Teorema 3.1.10. *Para* $n \in \mathbb{N}$ *e* $k \in \{1, 2, ..., n\}$, *tem-se*

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \cdots & a_{kn} + b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ b_{k1} & b_{k2} & \cdots & b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Demonstração. Sejam

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-1} & a_{k-2} & \cdots & a_{k-1} & a_{k-1} \\ a_{k1} & a_{k2} & \cdots & a_{k+1} & a_{k+1} & a_{k+1} & \cdots & a_{k+1} & a_{k+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} e B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-1} & a_{k-2} & \cdots & a_{k-1} & a_{k-1} \\ b_{k1} & b_{k2} & \cdots & b_{kn} \\ a_{k+1} & a_{k+1} & \cdots & a_{k+1} & a_{k+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Então, se
$$C = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \cdots & a_{kn} + b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
, temos

$$\det C = \sum_{j=1}^{n} (-1)^{k+j} (a_{kj} + b_{kj}) \det C(k|j)$$

$$= \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det C(k|j) + \sum_{j=1}^{n} (-1)^{k+j} b_{kj} \det C(k|j)$$

$$= \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A(k|j) + \sum_{j=1}^{n} (-1)^{k+j} b_{kj} \det B(k|j)$$

$$= \det A + \det B.$$

Corolário 3.1.11. *Para* $n \in \mathbb{N}$ *e* $k \in \{1, 2, ..., n\}$, *tem-se*

$$\det\begin{bmatrix} a_{11} & \cdots & a_{1\,k-1} & a_{1\,k} + b_{1\,k} & a_{1\,k+1} & \cdots & a_{1\,n} \\ a_{21} & \cdots & a_{2\,k-1} & a_{2\,k} + b_{2\,k} & a_{2\,k+1} & \cdots & a_{k-1\,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,k-1} & a_{n\,k} + b_{n\,k} & a_{n\,k+1} & \cdots & a_{nn} \end{bmatrix} = \\ \det\begin{bmatrix} a_{11} & \cdots & a_{1\,k-1} & a_{1\,k} & a_{1\,k+1} & \cdots & a_{1\,n} \\ a_{21} & \cdots & a_{2\,k-1} & a_{2\,k} & a_{2\,k+1} & \cdots & a_{k-1\,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,k-1} & a_{n\,k} & a_{n\,k+1} & \cdots & a_{nn} \end{bmatrix} + \det\begin{bmatrix} a_{11} & \cdots & a_{1\,k-1} & b_{1\,k} & a_{1\,k+1} & \cdots & a_{1\,n} \\ a_{21} & \cdots & a_{2\,k-1} & b_{2\,k} & a_{2\,k+1} & \cdots & a_{k-1\,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,k-1} & a_{n\,k} & a_{n\,k+1} & \cdots & a_{nn} \end{bmatrix}$$

$$Demonstrac\tilde{a}o. \text{ Imediato pela Proposic}\tilde{a}o 3.1.8.$$

Demonstração. Imediato pela Proposição 3.1.8.

Teorema 3.1.12. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, multiplicando uma sua linha por $\alpha \in \mathbb{K}$. Então

$$\det B = \alpha \det A$$
.

Demonstração. Sejam $n \in \mathbb{N}$ e

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-1} & a_{k-2} & \cdots & a_{k-1} n \\ a_{k1} & a_{k2} & \cdots & a_{k+1} n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} e B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-1} & a_{k-2} & \cdots & a_{k-1} n \\ \alpha \cdot a_{k1} & \alpha \cdot a_{k2} & \cdots & \alpha \cdot a_{kn} \\ a_{k+1} & a_{k+12} & \cdots & a_{k+1} n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Então, desenvolvendo o determinante de B ao longo da sua linha k, tem-se

$$\det B = \sum_{j=1}^{n} (-1)^{k+j} (\alpha \cdot a_{kj}) \det B(k|j)$$
$$= \alpha \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A(k|j)$$
$$= \alpha \det A.$$

Corolário 3.1.13. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, multiplicando uma sua coluna por $\alpha \in \mathbb{K}$. Então,

$$\det B = \alpha \det A$$
.

Demonstração. Imediato pela Proposição 3.1.8.

Corolário 3.1.14. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem uma linha ou coluna só com zeros, então det A = 0.

Demonstração. Se A tem uma linha ou coluna só com zeros, então A tem uma linha ou uma coluna multiplicada por $\alpha=0$. Logo, o resultado é imediato pelo teorema corolário anterior.

Teorema 3.1.15. Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ $e \alpha \in \mathbb{K}$. Então,

$$\det\left(\alpha A\right) = \alpha^n \det A.$$

Demonstração. A prova é realizada por indução sobre n.

Caso base (n = 1): Se $A \in \mathcal{M}_1(\mathbb{K})$ temos $A = [a_{11}]$, pelo que

$$\det(\alpha A) = \det[\alpha a_{11}] = \alpha a_{11} = \alpha^1 \det A.$$

Passo de indução: Seja $p \in \mathbb{N}$. Admitamos, por hipótese de indução, que, para qualquer matriz $A' \in \mathcal{M}_p(\mathbb{K})$, $\det(\alpha A') = \alpha^p \det A'$. Com base nesta hipótese provase que se $A \in \mathcal{M}_{p+1}(\mathbb{K})$, então $\det(\alpha A) = \alpha^{p+1} \det A$. De facto, desenvolvendo o determinante de αA ao longo da linha $k, k \in \{1, 2, ..., p+1\}$, tem-se

$$\det(\alpha A) = \sum_{j=1}^{p+1} (-1)^{k+j} (\alpha a_{kj}) \det(\alpha A)(k|j).$$

Mas $(\alpha A)(k|j) = \alpha A(k|j)$, $A(k|j) \in \mathcal{M}_p(\mathbb{K})$ e, por hipótese de indução,

$$\det \alpha A(k|j) = \alpha^p \det A(k|j).$$

Logo,

$$\det(\alpha A) = \sum_{j=1}^{p+1} (-1)^{k+j} (\alpha a_{kj}) (\alpha^p \det A(k|j))$$

$$= \alpha^{p+1} (\sum_{j=1}^{p+1} (-1)^{k+j} a_{kj} \det A(k|j))$$

$$= \alpha^{p+1} \det A.$$

Assim, pelo Princípio de Indução em \mathbb{N} , conclui-se que, para todo $n \in \mathbb{N}$, se $A \in \mathcal{M}_n(\mathbb{K})$, então $\det(\alpha A) = \alpha^n \det A$.

Teorema 3.1.16. Sejam $n \in \mathbb{N}$ tal que $n \geq 2$ e seja $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A trocando duas das suas linhas, então

$$\det B = -\det A.$$

Demonstração. A prova é realizada por indução sobre a ordem n da matriz. Caso base (n=2): Para n=2 o resultado é válido, pois

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21} = -(a_{21}a_{12} - a_{22}a_{11}) = -\det \begin{bmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{bmatrix}.$$

Passo de indução: Seja $p \in \mathbb{N}$ tal que $p \geq 2$. Admitamos, por hipótese de indução, que se B' é uma matriz obtida de uma matriz $A' \in \mathcal{M}_p(\mathbb{K})$ trocando duas das suas linhas, então det $B' = -\det A'$. Com base nesta hipótese mostra-se que se B é uma matriz obtida de uma matriz $A \in \mathcal{M}_{p+1}(\mathbb{K})$ trocando duas das suas linhas, então det $B = -\det A$. Suponhamos que B é a matriz obtida de A trocando as linhas $i \in j, i \neq j, i, j \in \{1, \ldots, p+1\}$. Como $p+1 \geq 3$, a matriz A tem uma linha $k \in \{1, \ldots, p+1\}$ tal que $k \neq i$ e $k \neq j$. Então, aplicando o Teorema de Laplace ao longo da linha k da matriz A, temos

$$\det A = \sum_{l=1}^{p+1} (-1)^{k+l} \times a_{kl} \times \det A(k|l).$$

Para quaisquer $k, l \in \{1, ..., p+1\}$, a matriz A(k|l) é uma matriz de $\mathcal{M}_p(\mathbb{K})$ e, como $k \neq i$ e $k \neq j$, a matriz B(k|l) é a matriz obtida de A(k|l) trocando as linhas i e j. Por conseguinte, por hipótese de indução, temos det $B(k|l) = -\det A(k|l)$, donde segue que

$$\sum_{l=1}^{p+1} (-1)^{k+l} \times a_{kl} \times \det A(k|l) = \sum_{l=1}^{p+1} (-1)^{k+l} \times a_{kl} \times (-\det B(k|l)).$$

Agora, como a linha k de A é igual à linha k de B, temos

$$\sum_{l=1}^{p+1} (-1)^{k+l} \times a_{kl} \times (-\det B(k|l)) = \sum_{l=1}^{p+1} (-1)^{k+l} \times b_{kl} \times (-\det B(k|l)) = -\det B.$$

Assim, pelo Princípio de Indução em \mathbb{N} , concluímos que, para todo $n \in \mathbb{N}$, se $A \in \mathcal{M}_n(\mathbb{K})$ e B é uma matriz obtida de A trocando duas das suas linhas, então det $B = -\det A$.

Corolário 3.1.17. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A trocando duas das suas colunas, então

$$\det B = -\det A.$$

Demonstração. Resulta do Teorema 3.1.8.

Corolário 3.1.18. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem duas linhas iguais, então det A = 0.

Demonstração. Se trocarmos as duas linhas iguais da matriz A, obtemos a mesma matriz A. Mas, pela Proposição 3.1.16, det $A = -\det A$, pelo que det A = 0.

Corolário 3.1.19. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem duas colunas iguais, então det A = 0.

Teorema 3.1.20. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, substituindo uma sua linha pela sua soma com um múltiplo de outra linha, então

$$\det B = \det A$$
.

Demonstração. Sejam $n, k, p \in \mathbb{N}$ tais que $1 \leq k e$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} e B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} + \alpha \cdot a_{k1} & a_{p2} + \alpha \cdot a_{k2} & \cdots & a_{pn} + \alpha \cdot a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Então

$$\det B = \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} + \alpha \cdot a_{k1} & a_{p2} + \alpha \cdot a_{k2} & \cdots & a_{pn} + \alpha \cdot a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \alpha \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \det A + \alpha \cdot 0 = \det A.$$

Corolário 3.1.21. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, substituindo uma sua coluna pela sua soma com um múltiplo de outra coluna, então

$$\det B = \det A$$
. \square

Considerando algumas das propriedades dos determinantes referidas anteriormente, o cálculo do determinante de uma matriz pode ser realizado recorrendo ao método de eliminação de Gauss.

Teorema 3.1.22. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se U é uma matriz em escada obtida de A por aplicação do método de eliminação de Gauss, então $\det A = \det U$ ou $\det A = -\det U$.

Demonstração. Verificámos atrás que o determinante de uma matriz A não se altera se substituirmos uma das suas linhas pela sua soma com outra multiplicada por um escalar. Assim, se U é uma matriz em escada obtida de A por aplicação do método de eliminação de Gauss, tem-se det $A = (-1)^l \det U$, onde l é o número de trocas de linhas efetuadas até à obtenção da matriz U. Se o número de trocas de linhas realizadas for par, tem-se det $A = \det U$; se o número de trocas de linhas for ímpar, então det $A = -\det U$.

De um modo geral, se $U = [u_{ij}] \in \mathcal{M}_n(\mathbb{K})$ é uma matriz triangular superior (inferior) obtida de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$ efectuando operações elementares sobre as linhas (ou colunas) de A, tem-se

$$\det A = (-1)^l \times \beta \times u_{11} \times u_{22} \times \cdots \times u_{nn},$$

onde l é o número de vezes que trocamos duas linhas ou duas colunas e β é o inverso do produto dos escalares pelos quais multiplicamos as linhas ou colunas.

Exemplo 3.1.23.
$$Seja\ A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 2 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
. $Ent\tilde{a}o$

$$\begin{vmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 2 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{vmatrix} \stackrel{l_2 \to l_2 - 2l_2}{=} \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & -2 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{vmatrix} \stackrel{l_2 \leftrightarrow l_3}{=} - \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 2 \end{vmatrix}$$

$$\stackrel{l_3 \to \frac{1}{2}l_3}{=} - 2 \begin{vmatrix}
1 & 1 & 2 & 2 \\
0 & 1 & 2 & 3 \\
0 & 0 & -1 & \frac{1}{2} \\
0 & 0 & 1 & 2
\end{vmatrix} \stackrel{l_4 \to l_4 + l_3}{=} - 2 \begin{vmatrix}
1 & 1 & 2 & 2 \\
0 & 1 & 2 & 3 \\
0 & 0 & -1 & \frac{1}{2} \\
0 & 0 & 0 & \frac{5}{2}
\end{vmatrix}$$

$$= -2 \times \left(1 \times 1 \times (-1) \times \frac{5}{2}\right) = 5.$$

Facilmente se encontram exemplos de matrizes quadradas A e B tais que $\det(A+B) \neq \det A + \det B$. No entanto, como iremos verificar mais à frente, o determinante do produto de matrizes quadradas é sempre igual ao produto dos determinantes das matrizes fatores. No sentido de estabelecermos tal resultado, começamos por provar alguns resultados auxiliares.

Teorema 3.1.24. Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ e E_1, \ldots, E_s matrizes elementares de $\mathcal{M}_n(\mathbb{K})$. Então

$$\det(E_1 \dots E_s A) = \det(E_1 \dots E_s) \det A.$$

Demonstração. A prova é feita por indução sobre s.

Caso base (s = 1): Pretendemos mostrar que det $E_1A = \det E_1 \det A$. Para provar este resultado vamos considerar os 3 casos seguintes:

- i) E_1 é a matriz obtida de I_n trocando as linhas $i \in j$, com $i \neq j$;
- ii) E_1 é a matriz obtida de I_n multiplicando a linha i por $\alpha \in \mathbb{K} \setminus \{0\}$.
- iii) E_1 é a matriz obtida de I_n substituindo a linha i pela sua soma com a linha j multiplicada por $\alpha \in \mathbb{K}$, com $i \neq j$.

Caso i): Pela Proposição 3.1.16 temos det $E_1 = -\det I_n = -1$ e, uma vez que E_1A é a matriz obtida de A trocando as linhas i e j, também pela Proposição 3.1.16, temos $\det(E_1A) = -\det A$. Logo

$$\det(E_1A) = -\det A = \det E_1 \det A.$$

Caso ii) Pela proposição 3.1.12 temos det $E_1 = \alpha$ det $I_n = \alpha$ e, uma vez que E_1A é a matriz obtida de A multiplicando a linha i por α tem-se det $(E_1A) = \alpha$ det A. Logo

$$\det(E_1 A) = \alpha \det A = \det E_1 \det A.$$

Caso iii): Pela Proposição 3.1.20 temos det $E_1 = \det I_n = 1$ e, uma vez que E_1A é a matriz obtida de A susbstituindo a linha i pela sua soma com a linha j multiplicada por α , tem-se $\det(E_1A) = \det A$. Logo

$$\det(E_1 A) = \det A = \det E_1 \det A.$$

Passo de indução: Dado $k \in \mathbb{N}$, admitamos, por hipótese de indução, que o resultado é válido para o produto de quaisquer k matrizes elementares de $\mathcal{M}_n(\mathbb{K})$ por qualquer matriz de $\mathcal{M}_n(\mathbb{K})$. Então, considerando que

$$\det(E_1 \dots E_k E_{k+1} A) = \det((E_1 \dots E_k)(E_{k+1} A)),$$

pela hipótese de indução tem-se

$$\det(E_1 \dots E_k E_{k+1} A) = \det(E_1 \dots E_k) \det(E_{k+1} A).$$

Além disso, do que foi provado no caso base temos

$$\det(E_{k+1}A) = \det E_{k+1} \det A.$$

Assim,

$$\det(E_1 \dots E_k E_{k+1} A) = \det(E_1 \dots E_k) \det E_{k+1} \det A$$

=
$$\det(E_1 \dots E_k E_{k+1}) \det A.$$

Do que foi provado concluímos, pelo Princípio de Indução em \mathbb{N} , que, para qualquer $s \in \mathbb{N}$, para quaisquer matrizes elementares $E_1, \ldots E_s \in \mathcal{M}_n(\mathbb{K})$ e para qualquer matriz $A \in \mathcal{M}_n(\mathbb{K})$,

$$\det(E_1 \dots E_s A) = \det(E_1 \dots E_s) \det A. \qquad \Box$$

Teorema 3.1.25. Sejam $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_n(\mathbb{K})$. Então,

$$\det(AB) = \det A \det B$$
.

Demonstração. Na prova deste resultado consideramos dois casos: i) A é invertível; ii) A não é invertível.

Caso i): Se A é invertível, então A é equivalente por linhas à matriz I_n . Por conseguinte, existem matrizes elementares $E_1, \ldots E_s \in \mathcal{M}_n(\mathbb{K})$ tais que $A = E_1 \ldots E_s I_n$. Da igualdade anterior, e tendo em conta que toda a matriz elementar é invertível e o produto de matrizes invertíveis é uma matriz invertível, segue que

$$\det(AB) = \det(E_1 \dots E_s B) = \det(E_1 \dots E_s) \det B = \det A \det B.$$

Caso ii): Se A não é invertível, então car(A) < n. Logo existem matrizes elementares $E_1, \ldots, E_s \in \mathcal{M}_n(\mathbb{K})$ tais que

$$E_1 \dots E_s A = A'$$

onde A' é uma matriz triangular superior com um número de linhas não nulas menor do que n, ou seja, A' tem pelo menos uma linha nula.

Da igualdade anterior, e tendo em conta que toda a matriz elementar é invertível, temos

$$A = E_s^{-1} \dots E_1^{-1} A'.$$

Então, atendendo a que inversa de uma matriz elementar é também uma matriz elementar, pelo teorema anterior temos

$$\begin{array}{rcl} \det(AB) & = & \det((E_s^{-1} \dots E_1^{-1}A')B) \\ & = & \det((E_s^{-1} \dots E_1^{-1})(A'B)) \\ & = & \det(E_s^{-1} \dots E_1^{-1})\det(A'B). \end{array}$$

Daqui segue que $\det(AB) = 0$, pois, como A' tem pelo menos uma linha nula, a matriz A'B também tem pelo menos uma linha nula, pelo que $\det(A'B) = 0$. Analogamente, a matriz $A = E_s^{-1} \dots E_1^{-1} A'$ também tem pelo menos uma linha nula e, portanto, $\det A = 0$. Assim,

$$\det(AB) = 0 = 0 \det B = \det A \det B.$$

3.2 Cálculo da inversa a partir da adjunta

No capítulo anterior foram apresentadas várias condições para a caracterização de matrizes invertíveis e apresentou-se um processo para o cálculo da inversa de matrizes invertíveis. Seguidamente apresentamos mais uma caracterização de matrizes invertíveis e um processo para o cálculo da inversa de uma matriz invertível, mas neste caso recorrendo a determinantes.

Definição 3.2.1. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Chama-se matriz adjunta de A, e representa-se por Adj A, à matriz

$$Adj A = \left[\hat{a}_{ij}\right]^T.$$

Exemplo 3.2.2.
$$Seja \ A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 5 & 0 \\ 4 & 0 & 7 \end{bmatrix}$$
.

Como

$$\hat{a}_{11} = (-1)^2 \begin{vmatrix} 5 & 0 \\ 0 & 7 \end{vmatrix} = 35, \quad \hat{a}_{12} = (-1)^3 \begin{vmatrix} 0 & 0 \\ 4 & 7 \end{vmatrix} = 0, \quad \hat{a}_{13} = (-1)^4 \begin{vmatrix} 0 & 5 \\ 4 & 0 \end{vmatrix} = -20,$$

$$\hat{a}_{21} = (-1)^3 \begin{vmatrix} 0 & 3 \\ 0 & 7 \end{vmatrix} = 0, \qquad \hat{a}_{22} = (-1)^4 \begin{vmatrix} 1 & 3 \\ 4 & 7 \end{vmatrix} = -5, \quad \hat{a}_{23} = (-1)^5 \begin{vmatrix} 1 & 0 \\ 4 & 0 \end{vmatrix} = 0,$$

$$\hat{a}_{31} = (-1)^4 \begin{vmatrix} 0 & 3 \\ 5 & 0 \end{vmatrix} = -15, \quad \hat{a}_{32} = (-1)^5 \begin{vmatrix} 1 & 3 \\ 0 & 0 \end{vmatrix} = 0, \quad \hat{a}_{33} = (-1)^6 \begin{vmatrix} 1 & 0 \\ 0 & 5 \end{vmatrix} = 5,$$

temos

$$AdjA = \begin{bmatrix} 35 & 0 & -20 \\ 0 & -5 & 0 \\ -15 & 0 & 5 \end{bmatrix}^T = \begin{bmatrix} 35 & 0 & -15 \\ 0 & -5 & 0 \\ -20 & 0 & 5 \end{bmatrix}.$$

Teorema 3.2.3. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}]_n$ uma matriz quadrada de ordem n sobre \mathbb{K} . Então, se $i \neq j$,

i)
$$a_{i1}\hat{a}_{j1} + a_{i2}\hat{a}_{j2} + \cdots + a_{in}\hat{a}_{jn} = 0.$$

$$ii) \ a_{1i}\hat{a}_{1j} + a_{2i}\hat{a}_{2j} + \cdots + a_{ni}\hat{a}_{nj} = 0.$$

Demonstração. i) Sejam $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ e A' a matriz que se obtém de A substituindo a linha j pela linha i. Então det A' = 0, uma vez que A' tem duas linhas iguais. Por outro lado, aplicando o Teorema de Laplace ao longo da linha j de A', tem-se

$$\det A' = a'_{j1}\hat{a}'_{j1} + a'_{j2}\hat{a}'_{j2} + \dots a'_{jn}\hat{a}'_{jn}$$

$$= a_{i1}(-1)^{j+1} \det A'(j|1) + a_{i2}(-1)^{j+2} \det A'(j|2) + \dots + a_{in}(-1)^{j+n} \det A'(j|n)$$

$$= a_{i1}(-1)^{j+1} \det A(j|1) + a_{i2}(-1)^{j+2} \det A(j|2) + \dots + a_{in}(-1)^{j+n} \det A(j|n),$$

pois, para cada $k \in \{1, ..., n\}$, A'(j|k) = A(j|k). Logo $a_{i1}\hat{a}_{j1} + a_{i2}\hat{a}_{j2} + \cdots + a_{in}\hat{a}_{jn} = 0$.

ii) A prova é análoga à anterior; basta considerar a matriz A' que se obtém de A substituindo a coluna j pela coluna i e desenvolver o determinante ao longo da coluna j de A'.

Teorema 3.2.4. Sejam $n \in \mathbb{N}$ e A uma matriz quadrada de ordem n sobre \mathbb{K} . Então

- i) A é invertível se e só se $\det A \neq 0$.
- ii) $AAdjA = (\det A)I_n$.
- iii) Se A é invertível, então

$$A^{-1} = \frac{1}{\det A} \mathrm{Adj} A.$$

Demonstração. i) Seja $A \in \mathcal{M}_n(\mathbb{K})$ tal que A não é invertível. Então c(A) < n. Seja $F \in \mathcal{M}_n(\mathbb{K})$ uma matriz em escada equivalente por linhas à matriz A. Então $A = E_1 \dots E_s F$, onde E_1, \dots, E_s são matrizes elementares de ordem n. Logo,

$$\det A = \det(E_1 \dots E_s) \det F.$$

Uma vez que c(A) < n, a matriz F tem, pelo menos, uma linha nula. Assim, det F = 0 e, portanto det A = 0.

Reciprocamente, suponhamos que $A = [a_{ij}]_n$ é uma matriz invertível. Então, existe $X \in \mathcal{M}_n(\mathbb{K})$ tal que $AX = I_n = XA$. Ora, como A e X são ambas matrizes quadradas de ordem n, tem-se det A. det $X = \det(AX) = \det I_n = 1$, pelo que det $A \neq 0$.

ii) Pela definição de produto de matrizes, o elemento na linha i e coluna j da matriz $A\mathrm{Adj}A$ é o elemento

$$a_{i1}\hat{a}_{j1} + a_{i2}\hat{a}_{j2} + \cdots + a_{in}\hat{a}_{jn}$$
.

Se i = j, tem-se

$$a_{i1}\hat{a}_{i1} + a_{i2}\hat{a}_{i2} + \cdots + a_{in}\hat{a}_{in} = \det A.$$

Se $i \neq j$,

$$a_{i1}\hat{a}_{i1} + a_{i2}\hat{a}_{i2} + \cdots + a_{in}\hat{a}_{in} = 0.$$

Por conseguinte,

$$A\mathrm{Adj}A = \begin{bmatrix} \det A & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \det A & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \det A \end{bmatrix} = (\det A)I_n$$

iii) Se A é invertível, então, por ii), tem-se

$$A^{-1}A\operatorname{Adj} A = A^{-1}(\det A)I_n,$$

pelo que

$$AdjA = (\det A)A^{-1}.$$

Como det $A \neq 0$, segue que

$$A^{-1} = \frac{1}{\det A} \operatorname{Adj} A.$$

П

Exemplo 3.2.5. Seja $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$. Como det $A = 1 \times 6 - 3 \times 2 = 0$, então a matriz A não é invertível.

Exemplo 3.2.6. Seja

$$A = \left[\begin{array}{rrr} 1 & 0 & 3 \\ 0 & 5 & 0 \\ 4 & 0 & 7 \end{array} \right].$$

 $Como \det A = -25 e$

$$AdjA = \begin{bmatrix} 35 & 0 & -15 \\ 0 & -5 & 0 \\ -20 & 0 & 5 \end{bmatrix},$$

tem-se

$$A^{-1} = \begin{bmatrix} -\frac{35}{25} & 0 & \frac{15}{25} \\ 0 & \frac{5}{25} & 0 \\ \frac{20}{25} & 0 & -\frac{5}{25} \end{bmatrix} = \begin{bmatrix} -\frac{7}{5} & 0 & \frac{3}{5} \\ 0 & \frac{1}{5} & 0 \\ \frac{4}{5} & 0 & -\frac{1}{5} \end{bmatrix}.$$

3.3 Regra de Cramer

Um sistema de n equações lineares em n incógnitas que seja possível e determinado diz-se um sistema de Cramer. O resultado seguinte estabelece como calcular a única solução de um sistema de Cramer recorrendo a deteminantes.

Definição 3.3.1. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Um sistema de equações lineares Ax = b diz-se um **sistema de Cramer** se A é uma matriz invertível.

Teorema 3.3.2. Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ e Ax = b um sistema de equações lineares. Se A é invertível, então o sistema é possível e determinado e a única solução do sistema é o n-uplo $(\alpha_1, \alpha_2, ..., \alpha_n)$, onde

$$\alpha_i = \frac{\det(A^{(i)})}{\det A}, \quad i = 1, 2, ..., n,$$

 $e\ A^{(i)}$ é a matriz quadrada de ordem n obtida de A substituíndo a sua coluna i pela coluna b.

Demonstração. Seja $A = [a_{ij}]_n$ uma matriz invertível. Então c(A) = n. Como $A \in \mathcal{M}_n(\mathbb{K})$ e c(A) = c(A|b) = n, o sistema é possível e determinado. Sendo $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ a única solução do sistema, tem-se $A\alpha = b$. Considerando que $A^{-1} = \frac{1}{\det A} \operatorname{Adj} A$, também se tem

$$A\alpha = b \implies \alpha = A^{-1}b$$

$$\implies \alpha = \frac{1}{\det A} \begin{bmatrix} \hat{a}_{11} & \hat{a}_{21} & \cdots & \hat{a}_{n1} \\ \hat{a}_{12} & \hat{a}_{22} & \cdots & \hat{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{a}_{1n} & \hat{a}_{2n} & \cdots & \hat{a}_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\implies \alpha = \frac{1}{\det A} \begin{bmatrix} \hat{a}_{11}b_1 + \hat{a}_{21}b_2 + \cdots + \hat{a}_{n1}b_n \\ \hat{a}_{12}b_1 + \hat{a}_{22}b_2 + \cdots + \hat{a}_{n2}b_n \\ \vdots \\ \hat{a}_{1n}b_1 + \hat{a}_{2n}b_2 + \cdots + \hat{a}_{nn}b_n \end{bmatrix}.$$

Assim, para cada i = 1, 2, ..., n,

$$\alpha_{i} = \frac{1}{\det A} (\hat{a}_{1i}b_{1} + \hat{a}_{2i}b_{2} + \dots + \hat{a}_{ni}b_{n})$$

$$= \frac{1}{\det A} \begin{vmatrix} a_{11} & \dots & a_{1i-1} & b_{1} & a_{1i+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2i-1} & b_{2} & a_{2i+1} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{ni-1} & b_{n} & a_{ni+1} & \dots & a_{nn} \end{vmatrix}.$$

Exemplo 3.3.3. Consideremos o sistema de equações lineares a seguir indicado

$$\begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = -5 \\ x_2 + 3x_3 + x_4 = 6 \\ 2x_1 + 3x_2 + x_3 + x_4 = 4 \\ x_1 + x_3 + x_4 = 1 \end{cases}$$

O sistema pode ser representado matricialmente por Ax = b, onde

$$A = \begin{bmatrix} 1 & 2 & -3 & 1 \\ 0 & 1 & 3 & 1 \\ 2 & 3 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} -5 \\ 6 \\ 4 \\ 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

Uma vez que $|A| = 20 \neq 0$, a matriz A é invertível e o sistema indicado é um

sistema de Cramer. A única solução deste sistema é $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, onde

$$\alpha_{1} = \frac{\begin{vmatrix} -5 & -2 & -3 & 1 \\ 6 & 1 & 3 & 1 \\ 4 & 3 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 0 & 1 & 1 \\ 20 & 0 & 0 \end{vmatrix}} = \frac{0}{20} = 0, \qquad \alpha_{2} = \frac{\begin{vmatrix} 1 & -5 & -3 & 1 \\ 0 & 6 & 3 & 1 \\ 2 & 4 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 6 & 1 \\ 0 & 1 & 3 & 6 \\ 2 & 3 & 1 & 4 \\ 1 & 0 & 1 & 1 \end{vmatrix}} = \frac{20}{20} = 1,$$

$$\alpha_{3} = \frac{\begin{vmatrix} 1 & 2 & -5 & 1 \\ 0 & 1 & 3 & 6 \\ 2 & 3 & 1 & 4 \\ 1 & 0 & 1 & 1 \end{vmatrix}}{20} = \frac{-20}{20} = -1.$$