EE 202 Homework #1 (Due: March 2, 2006)

1) The natural response of a 2^{nd} order circuit for two sets of initial conditions at time t = 0 is given as follows:

Set 1	Set 2
$V_c(t) = 2e^{-2t} u(t)$	$V_c(t) = 4e^{-3t} u(t)$
$i_L(t) = 1e^{-2t} u(t)$	$i_L(t) = 8e^{-3t} u(t)$

- **a)** Find the form of the solution for $\begin{bmatrix} Vc(t) \\ i_L(t) \end{bmatrix}$
- **b)** Tell how the order of the circuit relates to number of dynamic components. What are the natural frequencies of the circuit?
- **c**) Find a circuit such that it has all passive elements and independent sources and its natural frequencies are on the imaginary axis.

Op-Amp is assumed to be in linear region.

- i) First express e_d in terms of e_a , e_b and e_c then write node equations in terms of e_A , e_B , e_C . (You should have a 3x3 matrix differential equation.)
- ii) For $R = 1\Omega$; C = 1F, find $\mathbf{R_f}$ so that circuit has a natural frequency at $s = -\frac{1}{6}$. What are the other natural frequencies? Is this circuit stable?

3) Write Node, Mesh equations for the circuit.

4) Obtain the state equations for the circuit.

5) $\begin{array}{c|c} \mathbf{i_L} \\ \hline 0.5\mathbf{F} \\ \hline \end{array} \begin{array}{c|c} \mathbf{i_L} \\ \hline 2\Omega \\ \hline \end{array} \begin{array}{c|c} \mathbf{i_L} \\ \hline \end{array}$

- i) Find the natural freguencies using MNA.
- ii) Find the natural freguencies using state equations.

<u>Note</u>: For part i) you may use symbolic processing capabilities of MATLAB. Type the following to see an example for symbolic evaluation of determinants.

matrix M
$$\Rightarrow$$
 syms D
>> M = [D+1 5*D; 2*D D];
>> det (M)
>> solve (det(M))