

# 元朗公立中學校友會鄧兆棠中學 YLPMSAA Tang Siu Tong Secondary School

# 數學 必修部分 試題專輯

(附評卷參考及考生表現評論)

2023

# 中四 第一次考試

- 一元二次方程 直線的方程

**CCHY** 

# 考試範圍

#### 考試目標

必修部分考試之目的為測驗考生:

- 1. 對課程及評估指引中數學內容、概念、技巧及原理之認識;
- 2. 對數學符號之熟悉及應用;
- 3. 以適當數學技巧解決多樣問題之能力;及
- 4. 以數學方式溝通及表達論據之能力。

#### 本次考試課程內容撮要

- 1. 一元二次方程(一)
- 2. 一元二次方程(二)
- 3. 直線的方程

此外,考生須具有中一至中三數學科課程中基礎部分及非基礎部分的知識。

#### 試卷形式

本次考試只考試卷一:

# 試卷一 $(1\frac{1}{2}$ 小時) (佔 100%)

本卷分為兩部,全部題目均須作答。甲部題目範圍為必修部分中基礎課題及中一至中三數學科課程中基礎部分。乙部題目範圍為必修部分和中一至中三數學科課程中基礎部分及非基礎部分。甲部會再分為兩部份,甲部(1)(佔23分)包括約七題簡易問題;甲部(2)(佔23分)包括約七題較難問題。乙部(佔24分)包括四題至七題問題。

# 本次考試不設試卷二 (多項選擇題)

# 元朗公立中學校友會鄧兆棠中學 2023至2024年度第一次考試 中四級數學 卷一

#### 試卷及答題紙

| 姓名: |            | 班別: | _( | ) | 成績 | :                    |
|-----|------------|-----|----|---|----|----------------------|
| 日期: | 14/11/2023 |     |    |   | 時間 | : 8:30 a.m10:00 a.m. |

#### 考生須知:

- 1. 本試卷總分為70分。
- 2. 本試卷分三部分,即甲部(1)、甲部(2)和乙部。
- 3. 本試卷各題均須作答。
- 4. 除特別指明外,須詳細列出所有算式。
- 5. 除特別指明外,數值答案須用真確值,或準確至三位有效數字的近似值表示。
- 6. 本試卷的附圖不一定依比例繪成。

甲(1)部 (23分)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

1. 化簡 
$$\frac{(a^2b^{-2})^4}{a^7b^8}$$
,並以正指數表示答案。 (3 分)

2. 使 
$$c$$
 成為公式  $\frac{c+h}{c-y}=m$  的主項。 (3 分)

- 3. 因式分解

  - (a)  $4x^2 12xy + 9y^2$ ; (b)  $16z^2 4x^2 + 12xy 9y^2$

# 自學題

- 4. 直線  $L_1$  的斜率為 1,而  $L_2$  的傾角為  $60^\circ$ 。
  - (a) 求  $L_1$  的傾角。
  - (b) 求  $L_2$  的斜率。

(4 分)

5. 解方程  $3x+2+x^2=0$ 。

- S.4 數學第一次考試卷一試卷及答題紙
- 6. 給定一個底半徑為 3 cm 及高為 (6+t) cm 的圓錐。若圓錐的斜高為 (9+2t) cm,求 t。 (4 分)

7. 解方程  $(x-4)^2 = x-4$ 。

| S.4       | 數學第一次考試卷一試卷及答題紙                                          |       |
|-----------|----------------------------------------------------------|-------|
|           | (2)部 (23分)                                               |       |
| ***<br>8. | *************************************                    | ****  |
|           |                                                          | (2分)  |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
| 9.        | 已知 $kx^2 + 2kx + (k+1) = 0$ 有實根,求 $k$ 的取值範圍。             |       |
|           |                                                          | (3 分) |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
|           |                                                          |       |
| 10        | . 已知直線 $L$ 的 $x$ 截距和 $y$ 截距分別為 $23$ 和 $24$ 。求直線 $L$ 的方程。 |       |
| 10.       |                                                          | (3 分) |

- 11. 直線  $L_1$ : x-3y+7=0 與直線  $L_2$ : 3x-y-11=0相交於  $P \circ$ 
  - (a) 求 P 的坐標。

(3 %)

(b) 求通過 P 而且垂直於  $L_1$  的直線方程。 (2 分)

- S.4 數學第一次考試卷一試卷及答題紙
- 12. 給定一個半徑為 r 的圓形,分別設其面積和周界為 A 和 p。
  - (a) 以 r 表 A 和 p。

(2 分)

(b) 若 A 比 p 大  $99\pi$ ,求 r 的值。 (2 分)

- 13. 考慮  $y=ax^2+bx+c$  的圖像。已知該圖像通過 P 和 Q 兩點,而 P 和 Q 兩點的 x 座標分別為 0 和 h。
  - (a) (i) 求 P 的座標。

(1 分)

(ii) 求 Q 的座標。 (1 分)

(b) 斜率為 m 的直線 L 通過 P 和 Q 兩點,求 m。

(2 分)

(c) 當 h=0,證明 m=b。

(2分)

- 14. 考慮  $\omega = \left(\frac{1+i}{1-i}\right)^{2023}$ 。
  - (a) 化簡  $\frac{1+i}{1-i}$ 。

(2分)

(b) 利用 (a), 化簡 ω。

- 15. 點 A 和 B 的座標分別為 (3,6) 和 (6,0)。 P 是 AB 上的內分點,使得 AP:PB=1:r。
  - (a) 求 P 的座標,答案以 r 表示。

(2 分) (b) 證明通過 *OP* 的直線方程為 6rx - (6+3r)y = 0。

(2 分) (c) 若 OP 與 x-y+2023=0 垂直,求 r 的值。

(2 分)

- 16. 直線  $mx+y-m^2=0$  與 x 軸和 y 軸分別相交於 A 和 B 兩點,而 P 是 AB 的中點。當中 m 為正實常數。
  - (a) 以m 表達P的座標。

(4分)

(b) 求  $\Delta OAP$  的面積和  $\Delta OBP$  的面積的比例。

(2分)

17. 考慮  $y = x^2 - (\alpha + \beta)x + \alpha\beta$  的圖像, $\alpha < \beta$ 。

(a) 有人宣稱該圖像和 x 軸有 2 個相異的相交點,你同意嗎?試解釋你的答案。

(3 分)

(b) 設那 2 個相交點為 A 和 B, 寫出 AB 的中點座標。

(1分)

(c) 求 AB 的垂直平分線的直線方程。

本次考試不設試卷二 (多項選擇題)

#### 評卷參考

本文件供閱卷員參考而設,並不應被視為標準答案。考生以及沒有參與評卷工作的教師在詮釋文件內容時應小心謹慎。

#### 一般閱卷原則

- 1. 評卷時,閱卷員須跟循評卷參考的評分標準給分,這是十分重要的。很多時考生會運用評卷參考以外的方法而得到正確答案,一般來說,只要運用合理的方法而取得正確答案,該考生應可獲得該部分的**所有分數**(除題目特別指明特定方法外)。閱卷員應有耐性地評閱評卷參考以外的解題方法。
- 2. 在評卷參考中,分數會分為下列三類:

 「M」分
 使用正確方法的得分;

 「A」分
 正確答案的得分;

沒有「M」或「A」的分 正確地完成證題或推演得題目所給的答案的得分。

某些題目由數部分組成,而較後部分的答案卻需依賴較前部分所得的結果。在這情況下,若考生因為前部分錯誤的結果而導致後部分的答案錯誤,但卻能運用正確的方法去解題,則方法正確的步驟可給「M」分,而相應的答案將沒有「A」分(除特別指明外)。

- 3. 為方便閱卷員評卷,評卷參考已盡量詳盡。當然,考生的答案多不會如評卷參考般濟楚列 寫出來,諸如欠缺某幾個步驟或將步驟隱含於字裏行間。如遇到類似情況,閱卷員應運用 他們的專業知識去判斷是否給分。一般來說,如考生的答案顯示他已運用相關的概念或技 巧,則該部分應予給分。
- 4. 評卷時過有不清楚的地方,應以考生的利益為依歸。
- 5. 評卷參考中,塗上陰影的部分代表可省略的步驟,有外框的部分代表運用不同方法的答案。所有分數答案必須化簡。

# 試卷一

| Solution                          | Mark   | rs Remarks                      |
|-----------------------------------|--------|---------------------------------|
|                                   | IVIATK | AS INCHIAIKS                    |
| 1. $\frac{(a^2b^{-2})^4}{a^7b^8}$ |        |                                 |
| $a^8b^{-8}$                       |        | , , ,                           |
| $=\frac{a^8b^{-8}}{a^7b^8}$       | 1M     |                                 |
| $a^{8-7}$                         |        | $x^p$                           |
| $=\frac{a}{b^{8+8}}$              | 1M     | for $\frac{x^p}{x^q} = x^{p-q}$ |
|                                   | 1A     |                                 |
| $=\frac{a}{b^{16}}$               |        |                                 |
|                                   |        | -(3)                            |
| c+h                               |        |                                 |
| $2.  \frac{c+h}{c-y} = m$         |        |                                 |
| c + h = mc - my                   | 1M     |                                 |
| h + my = (m-1)c                   | 1M     |                                 |
| $c = \frac{h + my}{m - 1}$        | 1A     |                                 |
| m-1                               |        |                                 |
|                                   |        | -(3)                            |
| 3. (a) $4x^2 - 12xy + 9y^2$       |        |                                 |
| $=(2x-3y)^2$                      | 1A     |                                 |
| (                                 |        |                                 |
| (b) $16z^2 - 4x^2 + 12xy - 9y^2$  |        |                                 |
| $= (4z)^2 - (2x - 3y)^2$          | 1M     |                                 |
| = (4z + 2x - 3y)(4z - 2x + 3y)    | 1A     |                                 |
|                                   |        | -(3)                            |
| A ( ) I 的陌名                       |        |                                 |
| 4. (a) $L_1$ 的傾角 = $\arctan(1)$   | 1M     | 1M for arctangent               |
| $=45^{\circ}$                     | 1A     | · ·                             |
| =43                               | IA.    |                                 |
| (b) L <sub>2</sub> 的斜率            |        |                                 |
| $=\tan(60^{\circ})$               | 1M     | 1M for tangent                  |
| $=\sqrt{3}$                       | 1A     |                                 |
| - 43                              |        | -(4)                            |
|                                   |        |                                 |
|                                   |        |                                 |
|                                   |        |                                 |
|                                   |        |                                 |
|                                   |        |                                 |
|                                   |        |                                 |
|                                   |        |                                 |
|                                   |        |                                 |
|                                   |        |                                 |
|                                   |        |                                 |

| Solution                                                      | Marks | Remarks                              |
|---------------------------------------------------------------|-------|--------------------------------------|
| $5. \ 3x + 2 + x^2 = 0$                                       |       |                                      |
| $x^2 + 3x + 2 = 0$                                            | 1M    | for general form                     |
| (x+1)(x+2) = 0                                                | 1M    | for factorize                        |
| x+1=0 或 $x+2=0x=-1$ 或 $x=-2$                                  | 1A    |                                      |
| x − −1                                                        | IA    |                                      |
| 2 . 2 . 2 . 0                                                 |       |                                      |
| $3x+2+x^2=0$                                                  | 1M    | for comparal forms                   |
| $x^2 + 3x + 2 = 0$                                            | I IVI | for general form                     |
| $x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$ | 1M    | for quadratic formula                |
| $\begin{bmatrix} 2 \cdot 1 \\ -3 + 1 \end{bmatrix}$           |       |                                      |
| $x = \frac{-3 \pm 1}{2}$                                      |       |                                      |
|                                                               |       |                                      |
| $x = \frac{-3+1}{2}$ $\implies$ $x = \frac{-3-1}{2}$          |       |                                      |
| $x = -2$ $\overrightarrow{s}$ $x = -1$                        | 1A    |                                      |
|                                                               | (3)   | accept any reasonable                |
|                                                               |       | method                               |
| 6. $3^2 + (6+t)^2 = (9+2t)^2$                                 | 1M    | for Duthaganas theorem               |
|                                                               |       | for Pythagoras theorem               |
| $t^2 + 8t + 12 = 0$                                           | 1M    | for general form 1A for both correct |
| t=-2 或 $t=-6$ (捨去)                                            | 1A+1A | 1A for reject                        |
|                                                               | (4)   |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |
|                                                               |       |                                      |

| Solution                                                                    | Marks          | Remarks                                        |
|-----------------------------------------------------------------------------|----------------|------------------------------------------------|
| 7. $(x-4)^2 = x-4$<br>$(x-4)^2 - (x-4) = 0$<br>(x-4)(x-4-1) = 0             | 1M<br>1M       |                                                |
| (x-4)(x-5) = 0<br>$x-4=0$ $\implies x-5=0$                                  |                | for $pq = 0$<br>$\Rightarrow p = 0$ or $q = 0$ |
| $x=4$ $\vec{x}$ $x=5$                                                       | 1A             |                                                |
| $(x-4)^2 = x-4$<br>$x-4=1$ $\overrightarrow{x}$ $x-4=0$                     | 1M+1M          | for eliminate $(x-4)$<br>for $(x-4) = 0$       |
| x-5=0 或 $x-4=0x=4$ 或 $x=5$                                                  | 1A             | 101 (x-4) = 0                                  |
| $(x-4)^2 = x-4$                                                             |                |                                                |
| $x^{2}-8x+16=x-4$ $x^{2}-9x+20=0$ $x=4                                    $ | 1M<br>1M<br>1A | for expand for general form                    |
| и—т », и—з                                                                  | (3)            |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |
|                                                                             |                |                                                |

| 4 $k^2 - 4k(k+1) \ge 0$ 及 $k \ne 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Solution                                             | Marks         | Remarks                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|-----------------------------|
| 2x - y - 1 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8. $\frac{y-5}{x-3}=2$                               | 1M            | for point slope form        |
| 9. 判別式 $\geq 0$ 及 $k \neq 0$ $4k^2 - 4k(k+1) \geq 0$ 及 $k \neq 0$ $-4k \geq 0$ 及 $k \neq 0$ $k \leq 0$ 及 $k \neq 0$ $k \leq 0$ 及 $k \neq 0$ $k < 0$ $10. \frac{y - 0}{x - 23} = \frac{24 - 0}{0 - 23}$ $24x + 23y - 552 = 0$ 11.(a) $\begin{bmatrix} \frac{x}{23} + \frac{y}{24} = 1 \\ 24x + 23y - 552 = 0 \end{bmatrix}$ 11.(a) $\begin{bmatrix} \frac{x - 3y + 7 = 0}{3x - y - 11 = 0} \\ 3(3y - 7) - y - 11 = 0 \\ 3(3y - 7) - y - 11 = 0 \end{bmatrix}$ 11.(b) $\begin{bmatrix} x = 5 \\ y = 4 \\ \therefore P \text{ Discertible} \end{bmatrix}$ 11.(c) $\begin{bmatrix} x = 5 \\ y = 4 \\ \therefore P \text{ Discertible} \end{bmatrix}$ 11.(d) $\begin{bmatrix} x = 3y + 7 = 0 \\ 3x - y - 11 = 0 \\ 3(3y - 7) - y - 11 = 0 \end{bmatrix}$ 11.(e) $\begin{bmatrix} x = 5 \\ y = 4 \\ \therefore P \text{ Discertible} \end{bmatrix}$ 11.(f) $\begin{bmatrix} x = 5 \\ y = 4 \\ \therefore P \text{ Discertible} \end{bmatrix}$ 11.(a) $\begin{bmatrix} x = 3y + 7 = 0 \\ 3x - y - 11 = 0 \\ 3(3y - 7) - y - 11 = 0 \end{bmatrix}$ 12.(a) $\begin{bmatrix} x = 3y + 7 = 0 \\ 3x - y - 11 = 0 \\ 3x - y - 11 = 0 \end{bmatrix}$ 13. In withhold 1A if the above step is skipped  14. In withhold 1A if the above step is skipped  15. In the shape $\begin{bmatrix} x - y - 4 \\ x - 5 \\ y - 4 \\ x - 5 \end{bmatrix}$ 16. In the shape $\begin{bmatrix} y - 4 \\ x - 5 \\ y - 4 \\ x - 5 \end{bmatrix}$ 17. In the shape $\begin{bmatrix} y - 4 \\ x - 5 \\ y - 4 \\ x - 5 \end{bmatrix}$ 18. In the shape $\begin{bmatrix} y - 4 \\ x - 5 \\ y - 4 \\ x - 5 \end{bmatrix}$ 19. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ x - 5 \end{bmatrix}$ 10. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ x - 5 \end{bmatrix}$ 110. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ x - 5 \end{bmatrix}$ 111. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ x - 5 \end{bmatrix}$ 112. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ x - 5 \end{bmatrix}$ 113. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ x - 5 \end{bmatrix}$ 114. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ y - 4 \end{bmatrix}$ 115. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ y - 4 \end{bmatrix}$ 116. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ y - 4 \end{bmatrix}$ 117. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ y - 4 \end{bmatrix}$ 118. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ y - 4 \end{bmatrix}$ 119. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \\ y - 4 \end{bmatrix}$ 119. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 120. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 130. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 140. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 151. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 162. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 179. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 180. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 180. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 180. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 180. In the shape $\begin{bmatrix} y - 4 \\ y - 4 \end{bmatrix}$ 181. In the shape | 2x - y - 1 = 0                                       | 1A            | or equivalent               |
| 4 $k^2 - 4k(k+1) \ge 0$ 及 $k \ne 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | (2)           |                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9. 判別式≥0及 <i>k</i> ≠ 0                               | 1M            |                             |
| ## Second Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | 1A            | for $b^2 - 4ac$             |
| ## 10. $\frac{y-0}{x-23} = \frac{24-0}{0-23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |               |                             |
| 10. $\frac{y-0}{x-23} = \frac{24-0}{0-23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | 1A            |                             |
| $\frac{x}{23} + \frac{y}{24} = 1$ 1M+1M       for x-int and y-int for intercept form or equivalent $24x + 23y - 552 = 0$ 1A       for x-int and y-int for intercept form or equivalent         11.(a) $\begin{cases} x - 3y + 7 = 0 \\ 3x - y - 11 = 0 \end{cases}$ accept any reasonable method         11.(a) $\begin{cases} x = 5 \\ y = 4 \end{cases}$ 1A       withhold 1A if the above step is skipped         (b) $L_1$ 的解率 = $\frac{1}{3}$ 1M       withhold 1A if the above step is skipped         (b) $L_1$ 的解率 = $-3$ 1M       IM         所需自線方程: $\frac{y - 4}{x - 5} = -3$ 1A       or equivalent         12.(a) $A = \pi r^2$ 1A       1A       1A         12.(a) $A = \pi r^2$ 1A       1A       1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | (3)           |                             |
| $\frac{x}{23} + \frac{y}{24} = 1$ 1M+1M       for x-int and y-int for intercept form or equivalent $24x + 23y - 552 = 0$ 1A       for x-int and y-int for intercept form or equivalent         11.(a) $\begin{cases} x - 3y + 7 = 0 \\ 3x - y - 11 = 0 \end{cases}$ accept any reasonable method         11.(a) $\begin{cases} x = 5 \\ y = 4 \end{cases}$ 1M       for system of linear equations         1A       withhold 1A if the above step is skipped         (b) L1 的斜率 = $\frac{1}{3}$ IM         所需自線方程:       1A       or equivalent         12.(a) $A = \pi r^2$ 1A       1A         12.(a) $A = \pi r^2$ 1A       1A         12.(a) $A = \pi r^2$ 1A       1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10. $y-0$ _ 24-0                                     | 1 1 1 1 1 1 1 | for (23,0) and (0,24)       |
| $\frac{x}{23} + \frac{y}{24} = 1$ $24x + 23y - 552 = 0$ $11.(a) \begin{cases} x - 3y + 7 = 0 \\ 3x - y - 11 = 0 \\ 3(3y - 7) - y - 11 = 0 \end{cases}$ $\begin{cases} x = 5 \\ y = 4 \\ \therefore P \text{ fine Max} = \frac{1}{3} \\ \text{所需自線方程:} \\ \frac{y - 4}{x - 5} = -3 \\ 3x + y - 19 = 0 \end{cases}$ $12.(a) \begin{cases} A = \pi r^2 \\ P = 2\pi r \end{cases}$ $1A = 1A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |                             |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24x + 23y - 352 = 0                                  | IA            | or equivalent               |
| 24x + 23y - 552 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{x}{x} + \frac{y}{x} = 1$                      | 1M+1M         |                             |
| 11.(a) $\begin{cases} x-3y+7=0 \\ 3x-y-11=0 \\ 3(3y-7)-y-11=0 \end{cases}$   1M   for system of linear equations   1M   1A   withhold 1A if the above step is skipped   1A   withhold 1A if the above step is skipped   1A   IM   IM   IA   withhold 1A if the above step is skipped   1A   IA   IA   IA   withhold 1A if the above step is skipped   1A   IA   IA   IA   IA   IA   IA   IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | 1A            | _                           |
| 11.(a) $\begin{cases} x-3y+7=0 \\ 3x-y-11=0 \\ 3(3y-7)-y-11=0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               | accept any reasonable       |
| $\begin{cases} x = 5 \\ y = 4 \\ \therefore P \text{ 的座標為 } (5,4) \end{cases}$ (b) $L_1$ 的斜率 = $\frac{1}{3}$ 所需斜率 = $-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |               | method                      |
| $\begin{cases} x = 5 \\ y = 4 \\ \therefore P \text{ 的座標為 } (5,4) \end{cases}$ (b) $L_1$ 的斜率 = $\frac{1}{3}$ 所需斜率 = $-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{cases} x - 3y + 7 = 0 \\ 11.(a) \end{cases}$ | 1M            |                             |
| $\begin{cases} x = 5 \\ y = 4 \\ \therefore P \text{ 的座標為 } (5,4) \end{cases}$ (b) $L_1$ 的斜率 = $\frac{1}{3}$ 所需斜率 = $-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3(3y-7)-y-11=0                                       |               | equations                   |
| 【 $y=4$<br>∴ $P$ 的座標為 $(5,4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |               | withhold 1A if the above    |
| (b) $L_1$ 的斜率 = $\frac{1}{3}$ 所需斜率 = $-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | 1A            |                             |
| (b) $L_1$ 的斜率 = $\frac{1}{3}$<br>所需斜率 = $-3$<br>1M<br>所需直線方程:<br>$\frac{y-4}{x-5} = -3$<br>3x+y-19=0<br>11A or equivalent 12.(a) $A = \pi r^2$ 1A 1A 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ∴ P 的座標為 (5,4)                                       | (2)           |                             |
| 所需斜率 = $-3$ 所需直線方程: $\frac{y-4}{x-5} = -3$ $3x + y - 19 = 0$ 12.(a) $A = \pi r^2$ $p = 2\pi r$ 1A  1A  1A  1A  1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | (3)           |                             |
| 所需斜率 = $-3$ 所需直線方程: $\frac{y-4}{x-5} = -3$ $3x + y - 19 = 0$ 12.(a) $A = \pi r^2$ $p = 2\pi r$ 1A  1A  1A  1A  1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) $L_1$ 的斜率 = $\frac{1}{2}$                        |               |                             |
| $\frac{y-4}{x-5} = -3$ $3x + y - 19 = 0$ $1A$ $(2)$ $12.(a)  A = \pi r^2$ $p = 2\pi r$ $1A$ $1A$ $1A$ $1A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                    | 1M            |                             |
| $\frac{y-4}{x-5} = -3$ $3x + y - 19 = 0$ $1A$ $(2)$ $12.(a)  A = \pi r^2$ $p = 2\pi r$ $1A$ $1A$ $1A$ $1A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) (表) 七/(D) ·                                      |               |                             |
| $3x + y - 19 = 0$ $1A$ $(2)$ $12.(a)  A = \pi r^2$ $p = 2\pi r$ $1A$ $1A$ $1A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |               |                             |
| 12.(a) $A = \pi r^2$ 1A 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | 1             |                             |
| 12.(a) $A = \pi r^2$ $p = 2\pi r$ 1A 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3x + y - 19 = 0                                      |               | or equivalent               |
| $p = 2\pi r$ 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |               |                             |
| \-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                    | (2)           |                             |
| (b) $\pi r^2 - 2\pi r = 99\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) $\pi r^2 - 2\pi r = 99\pi$                       | 1M            |                             |
| $r^2 - 2r - 99 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | 1111          |                             |
| r=11 或 $r=-9$ (捨去)  1A for both correct and reject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r=11或r=-9 (捨去)                                       |               | for both correct and reject |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | [(2)          |                             |

| 3.4 安区 | 字第一人专政位一計位多与 Solution                    | Marks | Remarks                      |
|--------|------------------------------------------|-------|------------------------------|
| 13.(a) |                                          | 1A    |                              |
|        |                                          | (1)   |                              |
|        |                                          |       |                              |
| (a)    | (ii) $Q(h,ah^2+bh+c)$                    | 1A    |                              |
|        |                                          | (1)   |                              |
|        | 12 . 11 .                                |       |                              |
| (b)    | $m = \frac{ah^2 + bh + c - c}{h - 0}$    | 1M    |                              |
|        | h = 0                                    |       |                              |
|        | $m = \frac{ah^2 + bh}{h}$                |       |                              |
|        | m = ah + b                               | 1A    |                              |
|        | m - un + v                               | (2)   |                              |
|        |                                          | (2)   |                              |
| (c)    | 當 h=0 :                                  |       |                              |
|        | m = a(0) + b                             | 1M    |                              |
|        | m = b                                    | 1     | f.t.                         |
|        |                                          | (2)   |                              |
|        | 1.;                                      |       |                              |
| 14.(a) | $\frac{1+i}{1-i}$                        |       |                              |
|        |                                          | 43.6  | withhold 1M and 1A if this   |
|        | $=\frac{1+i}{1-i}\times\frac{1+i}{1+i}$  | 1M    | step is skipped              |
|        | $=\frac{2i}{2}$                          |       |                              |
|        |                                          |       |                              |
|        | =i                                       | 1A    |                              |
|        |                                          | (2)   |                              |
| (b)    |                                          |       |                              |
| (0)    |                                          |       |                              |
|        | $= \left(\frac{1+i}{1-i}\right)^{2023}$  |       |                              |
|        |                                          | 1 M   | for vaina magnit of (a)      |
|        | $= i^{2023}$ $4 \times 505 + 3$          | 1M    | for using result of (a)      |
|        | $=i^{4\times505+3}$                      | 43.5  | - 4                          |
|        | $= \left(1\right)^{505} \left(-i\right)$ | 1M    | for $i^4 = 1$                |
|        | =-i                                      | 1A    | accept any reasonable method |
|        |                                          | (3)   | memod                        |
|        |                                          | (-)   |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        |                                          |       |                              |
|        | · · · · · · · · · · · · · · · · · · ·    |       | 1                            |

|        | Solution                                                           | Marks        | Remarks                                                |
|--------|--------------------------------------------------------------------|--------------|--------------------------------------------------------|
| 15.(a) | P 的座標 $= \left(\frac{6+3r}{1+r}, \frac{6r}{1+r}\right)$            | 1M+1A<br>(2) | 1M for point of division formula 1A for correct answer |
| (b)    | $OP$ 的斜率 $= \frac{6r}{6+3r}$                                       | 1M           |                                                        |
|        | OP 的 y 截距=0  OP 的直線方程為: $y = \frac{6r}{6+3r}x$ $6rx - (6+3r)y = 0$ | 1(2)         | accept any reasonable methods f.t.                     |
| (c)    | x-y+2023=0 的斜率:<br>= $-\frac{1}{-1}$<br>= 1                        |              |                                                        |
|        | $\frac{6r}{6+3r} = -1$ $6r = -6 - 3r$ $9r = -6$                    | 1M           | for consider slope                                     |
|        | $r = -\frac{2}{3}$                                                 | 1A<br>(2)    |                                                        |
|        |                                                                    |              |                                                        |
|        |                                                                    |              |                                                        |
|        |                                                                    |              |                                                        |
|        |                                                                    |              |                                                        |

|        | Solution                                                   | Marks     | Remarks                                    |
|--------|------------------------------------------------------------|-----------|--------------------------------------------|
| 16.(a) | $x$ 截距 = $-\frac{-m^2}{m}$ = $m$                           | 1A        | can be absorb                              |
|        | y                                                          | 1A        | can be absorb                              |
|        | P 的座標                                                      |           |                                            |
|        | $=\left(\frac{m+0}{2},\frac{0+m^2}{2}\right)$              | 1M        | for using mid-point formula                |
|        | $=\left(\frac{m}{2},\frac{m^2}{2}\right)$                  | 1A        |                                            |
|        |                                                            | (4)       |                                            |
| (b)    | AP = PB                                                    |           |                                            |
|        | $\Rightarrow AP:PB=1:1$                                    | 1M        | withhold 1M if this is not mentioned       |
|        | ⇒ $\triangle OAP$ 的面積: $\triangle OBP$ 的面積 = 1:1           | 1A<br>(2) | f.t.                                       |
| 17 (2) | ν                                                          |           |                                            |
| 17.(a) | $y = x^2 - (\alpha + \beta)x + \alpha\beta$                |           |                                            |
|        | $=(x-\alpha)(x-\beta)$                                     |           |                                            |
|        | $y=0 \Rightarrow x=\alpha \not \equiv x=\beta$             | 1M        | for x-int                                  |
|        | $\alpha < \beta \Rightarrow \alpha \neq \beta$             | 1M        | for $\alpha \neq \beta$                    |
|        | ⇒ 有 2 個相異的相交點<br>                                          | 1A        | f.t.                                       |
|        | 判別式 $= (\alpha + \beta)^2 - 4\alpha\beta$                  | 13.4      | f 1:                                       |
|        |                                                            | 1M        | for discriminant                           |
|        | $= (\alpha - \beta)^2$ $> 0  (\because \alpha \neq \beta)$ | 1M        | for $\forall x \in \mathbb{R} \ x^2 \ge 0$ |
|        | ⇒有 2 個相異的相交點                                               | 1         | and $\alpha - \beta \neq 0$ f.t.           |
|        | 一月 2 旧印在共和州在大湖上                                            | (3)       |                                            |
|        | $(\alpha + \beta)$                                         |           |                                            |
| (b)    | $\left(\frac{\alpha+\beta}{2},0\right)$                    | 1A        |                                            |
|        |                                                            | (1)       |                                            |
| (c)    | AB 的斜率=0                                                   | 1M        |                                            |
|        | ⇒AB 的垂直平分線是鉛垂線                                             | 1M        |                                            |
|        | 所需直線方程:                                                    |           |                                            |
|        | $x = \frac{\alpha + \beta}{2}$                             | 1A        |                                            |
|        |                                                            | (3)       |                                            |
|        |                                                            |           |                                            |

#### 試卷二

本次考試不設試卷二(多項選擇題)

# 考生表現

# 試卷一

本年度 4C 班共有 33 考生應考。平均得分為 25.3/70 分(36.14%)。考生於甲部的表現一般較乙部為佳。

# 甲部(1)

| 題號        | 一般表現                                                            |
|-----------|-----------------------------------------------------------------|
| 1         | 良好。大約 66.7% 考生能化簡給定的數式。                                         |
| 2         | 平平。只有大約一半考生能正確地移項。                                              |
| 3 (a) (b) | 平平。只有大約一半考生能因式分解二次多項式。<br>甚差。只有大約 18% 考生能利用(a)的結果因式分解在(b)給定的數式。 |
| 4 (a) (b) | 平平。只有大約一半考生能透過逆函數輸入斜率求得傾角。<br>良好。大約 70.0% 考生能求得斜率並以根式表示答案。      |
| 5         | 甚佳。大約 87.9% 考生能以各種方法求得根。                                        |
| 6         | 甚差。只有大約 27.3% 考生能利用畢氏定理寫出正確的方程,當中只有極少考生意<br>識到有不合理的根並將其捨去。      |
| 7         | 平平。只有大約一半考生能透過各種方法化簡方程並求得根。                                     |

# S.4 數學第一次考試考生表現

# 甲部(2)

|    | 題號  |      | 一般表現                                                                                                                     |
|----|-----|------|--------------------------------------------------------------------------------------------------------------------------|
| 8  |     |      | 甚佳。大約 81.8% 考生能以各種方法求直線方程。有少數同學在化簡方程時因正負號運算出錯而未能求得正確的方程。                                                                 |
| 9  |     |      | 良好。大約 75.8% 考生能寫出 $\Delta \geq 0$ 。有少量考生錯誤地認為 $(a+b)^2 = a^2 + b^2$ 。不過,全數考生均未能透過二次方程定義中的 $a \neq 0$ 列出 $k \neq 0$ 這個條件。 |
| 10 |     |      | 甚差。只有大約 21.2% 考生能利用截距式或點斜式求直線方程。有不少同學因錯誤地認為該直線通過(23, 24)而未能寫出正確的方程。                                                      |
| 11 | (a) |      | 良好。大約 70.0% 考生能以聯立方程求得相交點的座標。                                                                                            |
|    | (b) |      | 甚差。只有大約27.3% 考生能利用互相垂直的直線的斜率特性求得所需斜率。                                                                                    |
| 12 | (a) |      | 甚差。大約63.6% 考生忘記了小學時曾學習過的圓形面積和周界公式。                                                                                       |
|    | (b) |      | 甚差。只有大約 24.2% 考生能正確地列出方程並將其寫成一般式。有部份考生沒有<br>捨去不合理的根。                                                                     |
| 13 | (a) | (i)  | 甚差。只有大約33.3% 考生能透過座標幾何的基本概念求得座標。                                                                                         |
|    |     | (ii) | 甚差。只有極少考生能透過座標幾何的基本概念求得座標。                                                                                               |
|    | (b) |      | 甚差。只有大約 21.2% 考生能計算兩點的斜率。                                                                                                |
|    | (c) |      | 甚差。只有極少考生能透過代入法完成證明。                                                                                                     |

# S.4 數學第一次考試考生表現

# 乙部

| 題號 |                   | 一般表現                                                                                                                                             |  |  |  |
|----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 14 | (a)<br>(b)        | 良好。大約 60.6% 考生能以共軛對的特性化簡份母包含複數的份數。<br>良好。大約 70.0% 考生能以虛數特性化簡給定的數式。                                                                               |  |  |  |
| 15 | (a)<br>(b)<br>(c) | 甚差。只有大約 21.2% 考生能透過內分點公式求得座標。<br>甚差。只有極少考生能計算兩點的斜率。<br>甚差。只有極少考生能完成證明。                                                                           |  |  |  |
| 16 | (a)<br>(b)        | 甚差。只有極少考生能利用給定的直線方程一般式求得截距並正確地寫出中點。<br>甚差。只有極少考生理解中點的幾何意義得出兩個三角形是一對等底同高三角形。                                                                      |  |  |  |
| 17 | (a)<br>(b)<br>(c) | 甚差。只有極少考生理解根的特性和判別式之間的邏輯關係從而完成推論。<br>甚差。只有3位考生理解根和截距的關係並正確地寫出中點。<br>甚差。全數考生未能掌握鉛垂線方程的概念。有少數考生嘗試利用點斜式求所需垂直<br>平分線的直線方程,但因未意識到鉛垂線的斜率為未定義而未能求得直線方程。 |  |  |  |

#### S.4 數學第一次考試考生表現

# 一般建議

#### 考生應注意以下各點:

- 1. 掌握基本數學課題,如指數、因式分解、主項變換、恆等式及不等式;
- 2. 列出關鍵步驟及清楚解釋如何從前題得出結論;
- 3. 定義任何使用的符號;
- 4. 發展較強的無圖思考能力;
- 5. 探索題目不同部分之間的關係。

