

CLASSES PRÉPARATOIRES INTÉGRÉES 2ème année

S3 - ALG3. Noyau image d'applications linéaires

Exercice 1. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (x + y + z, -x + 2y + 2z). On appelle $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (f_1, f_2)$ la base canonique de \mathbb{R}^2

- 1. Montrer que f est une application linéaire,
- 2. Donner une base et la dimension de ker(f) et une base et la dimension de Im(f).

Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (-2x + y + z, x - 2y + z).

- 1. Montrer que f est une application linéaire,
- 2. Donner une base de ker(f),
- 3. En déduire dim(Im(f)),
- 4. Donner une base de Im(f)).

Exercice 3. On considère l'application $h: \mathbb{R}^2 \to \mathbb{R}^2$ définie par h(x,y) = (x-y, -3x+3y).

- 1. Montrer que h est une application linéaire.
- 2. Montrer que h est ni injective ni surjective.
- 3. Donner une base de son noyau et une base de son image.

Exercice 4. Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$f(x_1, x_2, x_3) = (x_1 - x_3, 2x_1 + x_2 - 3x_3, -x_2 + 2x_3).$$

Et soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3

- 1. Calculer $f(e_1)$, $f(e_2)$ et $f(e_3)$,
- 2. Déterminer les coordonnées de $f(e_1)$, $f(e_2)$ et $f(e_3)$ dans la base canonique,
- 3. Calculer une base de ker(f) et une base de Im(f).

Exercice 5. Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$f(x, y, z) = (-2x + y + z, x - 2y + z, x + y - 2z).$$

- 1. Montrer que f est une application linéaire,
- 2. Donner une base de ker(f), en déduire dim(Im(f)),
- 3. Donner une base de Im(f).

Exercice 6. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

Soit f de \mathbb{R}^3 dans \mathbb{R}^3 définie pour tout $u=(x,y,z)\in\mathbb{R}^3$ par :

$$f(u) = (6x - 4y - 4z, 5x - 3y - 4z, x - y)$$

- 1. Montrer qu'il existe un vecteur $a \in \mathbb{R}^3$, non nul, tel que ker(f) = Vect(a), déterminer un vecteur qui convient,
- 2. Soit $b = e_1 + e_2$ et $c = e_2 e_3$
 - (a) Calculer f(b) et f(c),
 - (b) En déduire que $\{b,c\}$ est une base de Im(f),
 - (c) Déterminer une ou plusieurs équations caractérisant Im(f).

(d) A-t-on $ker(f) \oplus Im(f) = \mathbb{R}^3$?

Exercice 7. Soit f un endomorphisme de \mathbb{R}^3 dont l'image de la base canonique (e_1, e_2, e_3) est :

$$\begin{cases}
f(e_1) = -7e_1 - 6e_2 \\
f(e_2) = 8e_1 + 7e_2 \\
f(e_3) = 6e_1 + 6e_2 - e_3
\end{cases}$$
(1)

- 1. Pour tout vecteur $x = x_1e_1 + x_2e_2 + x_3e_3$ déterminer fof(x),
- 2. En déduire que f est inversible (c'est-à-dire bijective) et déterminer f^{-1} .

Exercice 8. Exercice 13. Soit l'application f de \mathbb{R}^4 dans \mathbb{R}^3 définie pour tout $u=(x,y,z,t)\in\mathbb{R}^4$ par :

$$f(x, y, z, t) = (x + y, z + t, x + y + z + t)$$

- 1. Montrer que f est une application linéaire,
- 2. Déterminer une base de ker(f),
- 3. Déterminer une base de Im(f).

Exercice 9. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 Soit f un endomorphisme de \mathbb{R}^3 défini par :

$$\begin{cases}
f(e_1) = 2e_1 + e_2 + 3e_3 \\
f(e_2) = e_2 - 3e_3 \\
f(e_3) = -2e_2 + 2e_3
\end{cases}$$
(2)

- 1. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ un vecteur. Déterminer l'image par f du vecteur x.
- 2. Soient

$$E = \{x \in \mathbb{R}^3, \ f(x) = 2x\} \ \ et \ \ F = \{x \in \mathbb{R}^3, \ f(x) = -x\}$$

Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^3 ,

- 3. Déterminer une base de E et une base de F.
- 4. Y a-t-il $E \oplus F = \mathbb{R}^3$?

Exercice 10. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 Soit f un endomorphisme de \mathbb{R}^3 défini par :

$$\begin{cases}
f(e_1) = \frac{1}{3} (-e_1 + 2e_2 + 2e_3) \\
f(e_2) = \frac{1}{3} (2e_1 + -e_2 + 2e_3) \\
f(e_3) = \frac{1}{3} (2e_1 + 2e_2 - e_3)
\end{cases}$$
(3)

Soient

$$E = \{x \in \mathbb{R}^3, \ f(x) = -x\} \ et \ F = \{x \in \mathbb{R}^3, \ f(x) = x\}$$

- 1. Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^3
- 2. Montrer que $e_1 e_2$ et $e_1 e_3$ appartiennent à E et que $e_1 + e_2 + e_3$ appartient à F.
- 3. Que peut-on en déduire sur les dimensions de E et de F?
- 4. Déterminer $E \cap F$
- 5. A-t-on $E \oplus F = \mathbb{R}^3$?
- 6. Calculer $f^2 = fof$ et en déduire que f est bijective et déterminer f^{-1}