Discrete Factors

- 1 x = sample(1.5);2 y = (int) x;3 if (x < 1.0)
- 4 o = 1 + y;
- 5 else

6 if
$$(t(x) > 0.3)$$

- Discrete factors: real value -> discrete value
 - predicate
 - type cast
 - discrete mathematical library functions

Theorem 1: Given two sample executions, if all of their DFs produce the **same** discrete values, they must have the **same** mathematical output function.

Tracing the DFs

2:0

3:T

H(a)=0.T

a

1.0

0.3

2
$$y = (int) x$$
;

3 if
$$(x < 1.0)$$

$$4 o = 1 + y;$$

6 if
$$(t(x) > 0.3)$$

White-box Sampling Algorithm

- To sample region [a, b]:
 - if H(a) ≠ H(b)
 - if $|a-b| \ge \tau$, take another sample at c = (a+b)/2;
 - Otherwise, stop.
 - if H(a) = H(b), then stop
- Repeat the process

Experiments: Efficiency

program	native	white-box	overhead	# of samples †
168.wupwise	2.05	2.14	4%	2
171.swim	0.15	0.15	1%	2
172.mgrid	3.31	3.32	0%	2
173.applu	0.06	0.07	6%	2
178.galgel	0.69	0.70	10%	416
183.equake	0.20	0.21	6%	66
187.facerec	1.23	1.25	2%	117
188.ammp	2.72	2.73	0%	2
191.fma3d	0.02	0.02	0%	2
200.sixtrack	2.22	2.27	2%	2
301.apsi	1.75	1.77	1%	167
deisotope	0.02	0.02	0%	55
AVERAGE			2.67%	1 (71)17(7

Experiments: Effectiveness

- Measuring the sampling quality
 - Comparing against the ideal curve.

Goal

 To achieve the precision of a high sampling rate with the cost of a low sampling rate.

Case study: 178.galgel

Outline

- Overview
- External Errors
 - White-box Sampling (OOPSLA 2012)
- Internal Errors
 - On-the-fly detection of instability problems (OOPSLA 2013)

Internal Errors

```
float x, z;
```


$$X = 100.0;$$

- x = input();
- z = f(x);
- 4 if (z > 0.5)
- printf ("hit");
- 6 else
- 7 printf ("miss");

2. Are the computed results reliable?

miss

Floating-Point Representation

▶ IEEE 754-1985

- \triangleright 0.9997₁₀ => 0x3F7FEC57
 - \circ 0.9997₁₀ \approx 1.111111111110110001010111₂*2⁻¹
 - 0.9997 = 0.999700009822 + (-0.000000009822)

ideal

represented

