БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Войтко Глеб Георгиевич

Наноструктурированные поверхности диоксида титана для создания фотокаталитически активных гетероструктур

Специальность 000.00.00 — Научно-исследовательская

Курсовая работа

Научный руководитель: д. Хорошко Л. С.

Оглавление

1	Введение	3
2	Методы получения наноструктурированных поверхностей ${\rm TiO_2}$	4
П	Іитература	
	Список литературы	5

Глава 1

Введение

Несомненно, возможность проведения таких сложных химических процессов, как инактивация бактерий или превращение CO_2 в топливо, без использования высоких давлений или повышенных температур и с использованием света в качестве единственного источника энергии, интересна не только с инженерной точки зрения, но и с фундаментальной точки зрения. По этой причине в последние десятилетия активно проводятся исследования в области создания наноматериалов для фотокатализа.

В последние десятилетия исследования и разработки в области синтеза и применения различных наноструктурированных диоксидов титана (нанопроволоки, нанотрубки, нановолокна и наночастицы) приобрели огромный размах - в том чиле по причине наличия у подобных материалов фотокаталитических свойств

Глава 2

Методы получения наноструктурированных поверхностей ${
m TiO_2}$

Литература

- [1] Juan M. Coronado Fernando Fresno, María D. Hernández Alonso, Raquel Portela Design of Advanced Photocatalytic Materials for Energy and Environmental Applications Springer-Verlag London 2013
- [2] Alireza Khataee, G Ali Mansoori Nanostructured Titanium Dioxide Materials World Scientific Publishing Co. Pte. Ltd.
- [3] А.А. Гончаров, А.Н. Добровольский, Е.Г. Костин, И.С. Петрик, Е.К. Фролова Оптические, структурные и фотокаталитические свойства наноразмерных пленок диоксида титана, осажденных в плазме магнетронного разряда Журнал технической физики, 2014, том 84, вып. 6
- [4] Lai-Chang Zhang, Liang-Yu Chen, Liqiang Wang* Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests Adv. Eng. Mater. 2020, 22, 1901258