Primeira Lista de Preparação para a LV IMO e XXIV Olimpíada Iberoamericana de Matemática Nível III

▶ PROBLEMA 1

Seja p um primo positivo para o qual existe um inteiro positivo a tal que p divide $2a^2 - 1$. Prove que existem inteiros b e c tais que $p = 2b^2 - c^2$.

▶ PROBLEMA 2

Cada uma das circunferências k_1 , k_2 e k_3 é tangente externamente às outras duas. Seja T o ponto de tangência entre k_1 e k_2 . Uma das tangentes externas comuns de k_1 e k_2 corta k_3 nos pontos P e Q. Prove que a tangente interna comum de k_1 e k_2 corta o arco PQ mais próximo de T no ponto médio desse arco.

▶ PROBLEMA 3

Sejam k, m e n inteiros positivos com $m \le n$. Sejam $0 \le a_1 \le \cdots \le a_{m+n}$ números reais. Prove que

$$\sqrt[k+1]{\frac{a_1^{k+1} + \dots + a_m^{k+1}}{m}} \le \sqrt[k]{\frac{a_1^k + \dots + a_{m+n}^k}{m+n}}$$

▶ PROBLEMA 4

Prove que para todo grafo simples G com n vértices, existem alguns grafos simples S_1, S_2, \ldots, S_k com as seguintes propriedades:

- (a) Todo S_i é um grafo bipartido completo;
- (b) Toda aresta de G está contida em um número ímpar de grafos S_i ;
- (c) Toda aresta do complemento de G está contida em um número par de grafos S_i ;
- (d) $k \leq \frac{3n}{4}$.

▶ PROBLEMA 5

Seja ABC um triângulo não equilátero. Considere os triângulos equiláteros XYZ tais que os vértices X, Y e Z estão sobre as retas BC, CA e AB, respectivamente. Mostre que o lugar geométrico dos centros de tais triângulos XYZ é um par de retas paralelas perpendiculares à reta de Euler do triângulo ABC.

▶ PROBLEMA 6

Dado um tabuleiro $(2^n-1)\times(2^{n+1}-1)$ no qual cada casa possui um número inteiro. Prove que é possível apagar 2^n-1 colunas do tabuleiro de modo que em cada uma das linhas do tabuleiro $(2^n-1)\times 2^n$ resultante a soma dos inteiros seja par.

▶ PROBLEMA 7

Seja $q \ge 1$ um inteiro. Prove que existe um inteiro C_q tal que para todo conjunto finito A de inteiros vale a desigualdade $|A+q\cdot A| \ge (q+1)|A|-C_q$.

 $(A + q \cdot A \text{ \'e o conjunto dos inteiros que podem ser expressos como } a + qa' \text{ onde } a \text{ e } a' \text{ são elementos de } A.)$

▶ PROBLEMA 8

Sejam a, b e c números reais positivos. Prove que

$$\sqrt[3]{7a^2b+1} + \sqrt[3]{7b^2c+1} + \sqrt[3]{7c^2a+1} \le \frac{23}{12}(a+b+c) + \frac{1}{12}\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)$$