

Distributed Intelligent Systems – W4 An Introduction to Localization Methods for Mobile Robots

Outline

- Positioning systems
 - Indoor
 - Outdoor

- Kinematic models
- Odometry

- The 1D problem: error sources and accelerometer-based odometry
- Fusion of proprioceptive and exteroceptive sensory data for 1D localization

Robot Localization

- Key task for:
 - Path planning
 - Mapping
 - Referencing
 - Coordination

- Type of localization
 - Absolute coordinates
 - Local coordinates
 - Topological information

Positioning Systems

Classification axes

- Indoor vs. outdoor techniques
- Absolute vs. relative positioning systems
- Line-of-sight vs. non-line-of-sight
- Underlying physical principle and channel
- Positioning available on-board vs. off-board
- Scalability in terms of number of nodes

Selected Indoor Positioning Systems

- Overhead cameras and Motion Capture Systems (MCSs)
- Impulse Radio Ultra Wide Band (IR-UWB)
- Infrared (IR) + RF technology

2D Single- or Multi-Camera Systems

- Tracking objects with one (or more) overhead cameras
- Absolute positions/poses, available outside the robot/sensor
- Active, passive, or no markers
- Open-source software available (e.g., SwisTrack, developed at DISAL)
- Major issues: light, calibration

Performance 1 camera system		
Accuracy	~ 1 cm (2D)	
Update rate	~ 20-100 Hz	
# agents	~ 100	
Area	$\sim 10 \text{ m}^2$	

3D Multi-Camera Systems

- Called also Motion Capture System (MCS)
- 10-50 cameras
- mm accuracy
- Up to a few hundred Hz update, 2 ms latency
- 6D pose estimation of objects
- 4-5 passive markers per object to be tracked needed
- A few hundreds m³ motion arena
- Open-source and markerless systems exist (but less reliable)

Coordinated ball (Prof. D'Andrea, ETHZ):

http://www.youtube.com/watch?v=hyGJBV1xnJl

Aggressive maneuver (Prof. Kumar, UPenn):

http://www.youtube.com/watch?v=geqip_0Vjec

IR-UWB System - Technology

- Impulse Radio Ultra-Wide Band
- Based on time-of-flight (TDOA, Time Difference of Arrival)
- 6 8 GHz central frequency
- Very large bandwidth (>0.5GHz)
 - → high material penetrability
- Fine time resolution
 - → high theoretical ranging accuracy (order of cm)
- UWB tags (emitters, a few cm, low-power) and multiple synchronized receivers
- Emitters can be unsynchronized but then dealing with interferences not trivial (e.g., Ubisense system synchronized)
- Absolute positions available on the receiving system
- Positioning information can be fed back to tracked devices using a standard narrow-band channel
- Transceiver versions exist (e.g., Eliko system) thanks to progress in UWB chipsets

IR-UWB System – Performances

Ex. State-of-art system (e.g., Ubisense 7000 Series, Compact Tag)

Accuracy	15 cm (3D)
Update rate	34 Hz / tag
# agents	~ 10000
Area	$\sim 1000 \text{ m}^2$

- Degraded accuracy performance if
 - Inter-emitter interferences
 - Non-Line-of-Sight (NLOS) bias
 - Multi-path

Infrared + Radio - Technology

- Belt of IR emitters (LED) and receivers (photodiode)
- IR LED used as antennas; modulated light (carrier 10.7 MHz), RF chip behind
- Range: measurement of the Received Signal Strength Intensity (RSSI)
- Bearing: signal correlation over multiple receivers
- Measure range & bearing can be coupled with standard RF channel (e.g., 802.11) for heading assessment
- Can also be used for 20 kbit/s IR com channel
- Robot ID communicated with the IR channel (ad hoc protocol)

[Pugh et al., *IEEE Trans. on Mechatronics*, 2009]

Infrared + Radio – Performances

- Range: 3.5 m (extensible to a few m)
- Update frequency 25 Hz with 10 neighboring robots (or 250 Hz with 2); extensible to a few hundred Hz with TDMA schemes
- Accuracy range: <10%, generally decrease 1/d
- Accuracy bearing: < 10°
- LOS method
- Extension in 3D possible
- Larger range with more power consumption and dedicated optics; better bearing accuracy with more photodiodes

Selected Outdoor Positioning Techniques

- GPS
- Differential GPS (dGPS)

Global Positioning System

Note: the first and still most prominent example of a GNSS (Global Navigation Satellite System)

Global Positioning System

- Initially 24 satellites (including three spares), 32 as of December 2012, orbiting the earth every 12 hours at a height of 20.190 km.
- Satellites synchronize their transmission (location + time stamp) so that signals are broadcasted at the same time (ground stations updating + atomic clocks on satellites)
- Real time update of the exact location of the satellites:
 - monitoring the satellites from a number of widely distributed ground stations
 - a master station analyses all the measurements and transmits the actual position to each of the satellites
- Location of any GPS receiver is determined through a time of flight measurement (ns accuracy!)
- Exact measurement of the time of flight
 - the receiver correlates a pseudocode with the same code coming from the satellite
 - the delay time for best correlation represents the time of flight.
 - quartz clock on the GPS receivers are not very precise
 - the range measurement with (at least) four satellites allows to identify the three values (x, y, z) for the position and the clock correction ΔT
- Recent commercial GPS receiver devices allows position accuracies down to a few meters with best satellite visibility conditions.
- 200-300 ms latency, so max 5 Hz GPS updates

dGPS

Differential GPS

Odometry

"Using proprioceptive sensory data influenced by the movement of actuators to estimate change in pose over time"

- Idea: navigating a room with the light turned off
- Start: initial position
- Actuators:
 - Legs
 - Wheels
 - Propeller
- Sensors (proprioceptive):
 - Wheel encoders (DC motors), step counters (stepper motors)
 - Inertial measurement units, accelerometers
 - Nervous systems, neural chains

Example of Navigation Heavily Leveraging Odometry

- Example: Cataglyphis desert ant
- Excellent study by Prof. R. Wehner (University of Zuerich, Emeritus)
- Individual foraging strategy
- Underlying mechanisms
 - Dead-reckoning (path integration on neural chains for leg control)
 - Internal compass (polarization of sun light)
 - Local search (around 1-2 m from the nest)
- Extremely accurate navigation: averaged error of a few tens of cm over 500 m path!

- Human in the dark
 - Very **bad** odometry sensors
 - $d_{Odometry} = O(1/m)$
- (Nuclear) Submarine
 - Very good odometry sensors
 - $d_{Odometry} = O(1/10^3 \text{ km})$
- Navigation system in tunnel uses dead reckoning based on
 - Last velocity as measured by GPS
 - Car's odometer, compass

Picture: Courtesy of US Navy

Picture: Courtesy of NavNGo

Odometry using Wheel Encoders or Step Counters

Optical Encoders

- Measure displacement (or speed) of the wheels
- Principle: mechanical light chopper consisting of photo-barriers (pair of light emitter and optical receiver) + pattern on a disc anchored to the motor shaft
- Quadrature encoder: 90° placement of 2 complete photo-barriers, 4x increase resolution + direction of movement
- Integrate wheel movements to get an estimate of the position -> odometry
- Typical resolutions: 64 4096 increments per revolution.
- Note: the e-puck is not endowed with wheel encoders but step counters for the stepper motors

State	Ch A	Ch B
S ₁	High	Low
S ₂	High	High
S_3	Low	High
S_4	Low	Low

Pose (Position and Orientation) of a Differential-Drive Robot

Absolute and Relative Motion of a Differential-Drive Robot

Forward Kinematic Model

How does the robot move given the wheel speeds and geometry?

- Assumption: no wheel slip (rolling mode only)!
- In miniature robots no major dynamic effects due to low mass-

Recap ME/PHY Fundamentals

$$v = \omega r = \dot{\varphi}r$$

v = tangential speed

 ω = rotational speed

r = rotation radius

 φ = rotation angle

C = rotation center

P = peripheral point

Recap ME/PHY Fundamentals

$$v = \omega r = \dot{\varphi}r$$

v = tangential speed

 ω = rotational speed

r = rotation radius

 φ = rotation angle

C = rotation center

P = peripheral point

P'= contact point at time t

Rolling!

Forward Kinematic Model

Linear speed = average wheel speed 1 and 2:

$$v = \frac{r\dot{\varphi}_1}{2} + \frac{r\dot{\varphi}_2}{2}$$

Rotational speed = sum of rotation speeds (wheel 1 forward speed -> ω anticlockwise, wheel 2 forward speed ω clockwise):

$$\omega = \frac{r\dot{\varphi}_1}{2l} + \frac{-r\dot{\varphi}_2}{2l}$$

Idea: linear superposition of individual wheel contributions

Forward Kinematic Model

1.
$$\dot{x}_R = v = \frac{r\dot{\varphi}_1}{2} + \frac{r\dot{\varphi}_2}{2}$$
 Y_I Y_R

2.
$$\dot{y}_{R} = 0$$

3.
$$\dot{\theta}_{R} = \omega = \frac{r\dot{\varphi}_{1}}{2l} + \frac{-r\dot{\varphi}_{2}}{2l}$$
4.
$$\dot{\xi}_{I} = R^{-1}(\theta)\dot{\xi}_{R}$$

4.
$$\dot{\xi}_{I} = R^{-1}(\theta)\dot{\xi}_{R}$$

$$\dot{\xi}_{I} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{r\dot{\phi}_{1}}{2} + \frac{r\dot{\phi}_{2}}{2} \\ 0 \\ \frac{r\dot{\phi}_{1}}{2l} + \frac{-r\dot{\phi}_{2}}{2l} \end{bmatrix}$$

Odometry

- Given our absolute pose over time, we can calculate the robot pose after some time *t* through integration
- Given the kinematic forward model, and assuming no slip on both wheels

$$\xi_{I}(T) = \xi_{I_0} + \int_{0}^{T} \dot{\xi}_{I} dt = \xi_{I_0} + \int_{0}^{T} R^{-1}(\theta) \dot{\xi}_{R} dt$$

- Given an initial pose ξ_{I0} , after time T, the pose of the vehicle will be $\xi_I(T)$
- $\xi_I(T)$ computable with wheel speed 1, wheel speed 2, and parameters r and l

Localization Uncertainities in Odometry

Deterministic Error Sources

- Limited encoder resolution
- Wheel misalignment and small differences in wheel diameter
- > Can be fixed by calibration

Non-Deterministic Error Sources

- From Week 3 (s.17): no deterministic prediction possible → we have to describe them probabilistically
- Example: accelerometer-based odometry

MEMS-Based accelerometer (e.g., on e-puck)

1D Odometry: Error Modeling

- Error happens!
- Odometry error is cumulative.
 - → grows without bound
- We need to be aware of it.
 - \rightarrow We need to model odometry error.
 - \rightarrow We need to model sensor error.
- Multiple independent source of errors with arbitrary distribution combined → Central Limit Theorem → Gaussian assumption reasonable
- Acceleration is random variable A drawn from "mean-free" Gaussian ("Normal") distribution.
 - \rightarrow Position X is random variable with Gaussian distribution.

Mitigating Localization Uncertainities in Odometry Through Exteroceptive Sensors – The 1D Case

Features

- Odometry based position error grows without bound.
- Use relative measurement to features ("landmarks") to reduce position uncertainty
- Feature:
 - Uniquely identifiable
 - Position is known
 - We can obtain relative measurements between robot and feature (usually angle or range).
- Examples:
 - Doors, walls, corners, hand rails
 - Buildings, trees, lanes
 - GPS satellites

Automatic Feature Extraction

- High level features:
 - Doors, persons
- Simple visual features:
 - Edges (Canny Edge Detector 1983)
 - Corner (Harris Corner Detector 1988)
 - Scale Invariant Feature Transformation (2004)
- Simple geometric features
 - Lines
 - Corners
- "Binary" feature

Automatic Feature Extraction

- High level features:
 - Doors, persons
- Simple visual features:
 - Edges (Canny Edge Determine)
 - Corner (Harris Corner De
 - Scale Invariant Feature 7
- Simple geometric features
 - Lines
 - Corners
- "Binary" feature

Feature-Based Localization

Feature-Based Localization

Feature-Based Localization

Sensor Fusion

• Given:

- Position estimate $\underline{X} \leftarrow N(\mu=5; \sigma=1)$
- Range estimate $R \leftarrow N(\mu=3.2; \sigma=1.2)$
- Known location of feature (9 m)
- Can be transformed in
 - Motion-model-based estimate $\underline{X} \leftarrow N(\mu=5; \sigma=1)$
 - Observation-based estimate $\underline{Z} \leftarrow N(\mu=5.8; \sigma=1)$

→ Kalman Filter

- White Gaussian noise distribution for all measurements
- Linear motion and measurement model

Conclusion

Take Home Messages

- There are several localization techniques for indoor and outdoor systems
- Each of the localization methods/positioning system has advantage and drawbacks
- Odometry is an absolute localization method using only proprioceptive sensors but affected by a cumulative error
- Localization errors in odometry can be both deterministic and non-deterministic
- Deterministic errors can be mitigated by calibration, nondeterministic error can be probabilistically modeled and taken into account
- Odometry cumulative errors can be reset by leveraging environmental features
- Information coming from proprioceptive and exteroceptive sensors can be fused through Kalman filtering

Additional Literature – Week 4

Books

- Weston J. and Titterton D, "Strapdown Inertial Navigation", IET, 2005
- Siegwart R., Nourbakhsh I., and Scaramuzza D., "Introduction to Autonomous Mobile Robots, second Edition", MIT Press, 2011.
- Borenstein J., Everett H. R., and Feng L. "Navigating Mobile Robots: Systems and Techniques", A. K. Peters, Ltd., 1996.