

DEPARTMENT OF INFORMATION TECHNOLOGY PILLAIS INSTITUTE OF INFORMATION TECHNOLOGY ENGINEERING, MEDIA STUDIES AND RESEARCH NEW PANVEL - 410 206 UNIVERSITY OF MUMBAI Academic Year 2015-16

Α

Stage One Dissertation Seminar On

'Sentiment Analysis of transliterated hindi and marathi script'

Ву

Mr. Mohammed Arshad Ansari (ME IT)

Under the Guidance of

Prof. Sharvari Govilkar

Introduction

Motivation

Literature Survey

Proposed Approach

Application

Conclusion

Introduction

- Presence of translited text in Literature
- ► Transliteration as vital source of sentiments
- Current state of affairs on the subject
- Why it matters now?

Introduction

Motivation

Literature Survey

Proposed Approach

Application

Conclusion

Motivation

- Reviews
- Discourse Analysis
- ► Feedback Analysis
- Other areas

Introduction

Motivation

Literature Survey

Proposed Approach

Application

Conclusion

Paper	Author	Approach	Result	Limitation
Hindi sub-	Bakliwal,	Usage of	Resource	Doesn't
jective lexi-	Akshat,	sense based	for hindi	work on
con: A lexi-	Piyush	sentiment		translitera-
cal resource	Arora ad	analysis and		tion of hindi
for hindi po-	Vasudev	devlopment		text
liarty classi-	Varma	of HSWN		
fication [1]				

Paper	Author	Approach	Result	Limitation
A frame-	Pooja	Devnagiri	Usage of	Doesn't
work for	Pandey ,	sentiment	negati-	work with
sentiment	Sharvari	analy-	on and	hindi trans-
analysis in	Govilkar	sis using	discourse	literation
hindi using		HWSN	analyse	
HSWN [4]		and use of	improves	
		negation	the result	
		discourse	of polarity	
		analysis	detection	

Paper	Author	Approach	Result	Limitation
Automatic	Kundu,	Statistical	Accuracy	There is a
Detection	Bijoy and	method	upto nearly	great scope
of English	Chandra,	developed	72 percent.	of increa-
words in	Swarup	which is		sing the
Benglish		language		accuracy by
text: A		indepen-		improving
statistical		dent and		methodolo-
approach		can be used		gy.
[2]		to detect		
		any foreign		
		language.		

Paper	Author	Approach	Result	Limitation
Sentiment	Namita	Negation	Accuracy	Transl - ite-
Analysis of	Mittal,	and dis-	upto nearly	ration not
Hindi Re-	Basant	course	81 percent	covered.
view based	Agwarwal,	relation		Scope for
on nega-	Garvit Cho-	were iden-		accuracy
tion and	uhan and	tified and		improve-
discourse	Nitin Bania	HSWN im-		ment.
relation [3]		provement		
		carried out		

Paper	Author	Approach	Result	Limitation
Text Nor-	PYKL Sri-	Language	Accuracy	Negation
malization	niva and	identifica-	upto 85	and dis-
of Code	Shashank	tion and	precent	course
Mix and	Sharma	translite-		analysis
Sentiment		ration to		not being
Analysis [5]		devnagiri		performed.
		script and		
		then using		
		HSWN for		
		sentiment		
		analysis.		

Introduction

Motivation

Literature Survey

Proposed Approach

Application

Conclusion

Proposed Approach: Flow diagram

Proposed Approach

- 1. Text Normalization
- 2. NLP and Sentiment Analysis

Proposed Approach - Text Normalization

- 1. Normalization Process for hindi
 - 1.1 Spelling correction
 - 1.2 Ambiguous words
 - 1.3 Sounds
 - 1.4 Phontic words
 - 1.5 Transliteration
- 2. Dictionary method for marathi using bilingual lexicon

Proposed Approach - NLP and Sentiment Analysis

- 1. POS Tagging to identify nouns, adjectives and adverbs
 - 1.1 Use machine learning to figure out POS for hindi
 - 1.2 In case of marathi, use bilingual dictionary and then tag the statement
- 2. Adjective and Adverb extraction
 - 2.1 Easier to do with POS tagged statements.
 - 2.2 If POS doesn't work, then use lexicon lookup
 - 2.3 Use senti wordnet or HSWN for looking up polarity count
 - 2.4 If lookup fails, use extended wordnet api for getting sense
- 3. Negation and Classification using Classifier
 - 3.1 Figureout negation in statements and then invert the POS tagged adjectives and adverbs
 - 3.2 Semi supervised naive bayes/svm classifier to classify the polarity or -
 - 3.3 Simple summation of polarity will give a result to. Compare the two results

Proposed Approach: Algorithm for language identification

```
Arguments
w: word to identify language for
sentence: sentence to which word belongs
if Leh is None:
         Leh = Qeh(Lhi) for i in Lh
if I em is None:
          Lem = Qem(Lmi) for i in Lm
if not model.
         Model = CRF(FNGram(Leh), FNGram(Lem),
                                                            FN-
Gram(Le))
         if not w in D:
                  w = stem word(w)
                           if w not in D.
                                    w = find most similar word(D,
w)
I = arg max(Model, sentence, w)
return l
```

Algorithm for pos tagged with negetation

Algorithm steps

if max(tags in sentence) is english:

TaggedSentence = POSTaggerEnglish(sentence)

else max(tags in sentence) is hindi:

TaggedSentence = POSTaggerHindi(sentence)

return replace negetive phrases with antonyms(TaggedSentence)

Algorithm for polarity identification

```
Algorithm steps
languageTaggedSentence = (LanguageIdentifier(sentence, word) for
word in sentence).join('')
posTaggedSentence = POSTag(languageTaggedSentence)
polarWords = extractAdjectivesAdverbs(posTaggedSentence)
wordPolarity = dict()
for word in polarWords:
        if word tagged as english:
                 wordPolarity[word] = sentiwordnetPolarity(word)
        elif word tagged as hindi:
                 wordPolarity[word] = hindiSentiwordnetPolari-
ty(word)
        else:
                 hindiWword = hindiMarathiBilingualDictiona-
ry(word)
                 wordPolarity[hindiWord] = hindiSentiwordnetPo-
larity(hindiWord)
                                        return wordPolarity
```

Algorithm to classify polarity

Algorithm steps

Arguments

sentence: sentence to which word belongs

Variables and methods

NaiveBayesClassifier -¿ Trained to return polarity of the entire sentence given tokens with polarity values

LinearCalculation -¿ Simple Summation based polarity classifier

word Dictionary = Polarity Indentification (sentence)

$$\label{lem:condition} \begin{split} \text{return} & \text{NaiveBayesClassifier(wordDictionary)}, & \text{LinearCalculation(wordDictionary)} \end{split}$$

Introduction

Motivation

Literature Survey

Proposed Approach

Application

Conclusion

Application

- 1. Reviews
- 2. Discourse Analysis
- 3. Feedback Analysis
- 4. Other areas

Introduction

Motivation

Literature Survey

Proposed Approach

Application

Conclusion

Conclusion

- 1. Accuracy of 95 percent on target
- 2. Imporvement of transliteration sentiment analysis in general
- 3. Usage of pre trained models over on the fly dynamic models for peformance gains

Introduction

Motivation

Literature Survey

Proposed Approach

Application

Conclusion

References

- Akshat Bakliwal, Piyush Arora, and Vasudeva Varma. "Hindi subjective lexicon: A lexical resource for hindi polarity classification". In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC). 2012. URL: http://web2py.iiit.ac.in/research_centres/publications/download/inproceedings.pdf. a92646aa66336f21.4c5245432731322d3637332e706466.pdf (visited on 12/07/2015).
- Bijoy Kundu and Swarup Chandra. "Automatic detection of English words in Benglish text: A statistical approach". In: Intelligent Human Computer Interaction (IHCI), 2012 4th International Conference on. IEEE, 2012, pp. 1–4. ISBN: 1-4673-4367-6.
- Namita Mittal et al. "Sentiment Analysis of Hindi Review based on Negation and Discourse Relation". In: Sixth International Joint Conference on Natural Language Processing. 2013, p. 45. URL: http://www.basantagarwal.com/wp-

- content/uploads/2013/02/IJCNLP-WORKSHOP_W13-4306.pdf (visited on 12/07/2015).
- Pooja Pandey and Sharvari Govilkar. "A Framework for Sentiment Analysis in Hindi using HSWN". In: International Journal of Computer Applications 119.19 (2015). URL: http://search.proquest.com/openview/ 1549cf02e0848335d2dd7a268e05f025/1?pq-origsite=gscholar (visited on 11/11/2015).
- Shashank Sharma, PYKL Srinivas, and
 Rakesh Chandra Balabantaray. "Text normalization of code
 mix and sentiment analysis". In: Advances in Computing,
 Communications and Informatics (ICACCI), 2015
 International Conference on. IEEE, 2015, pp. 1468–1473.
 URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
 arnumber=7275819 (visited on 11/13/2015).