FCC CERTIFICATION On Behalf of China Industries Ltd T/A Wow! Stuff

Attacknid, Combat Creatures Model No.: CC-1001 FCC ID: YCR-CC-1001T

Prepared for : China Industries Ltd T/A Wow! Stuff

Address : Creative Industries Centre, Wolverhampton Science Park,

Wolverhampton, WV10 9TG, UK

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20121513
Date of Test : Jul. 6-Jul. 27, 2012
Date of Report : Jul. 27, 2012

TABLE OF CONTENTS

Desci	ription	Page
Test I	Report Certification	
	GENERAL INFORMATION	Δ
1.1.		
1.1.	•	
1.3.		
	MEASURING DEVICE AND TEST EQUIPMENT	
	SUMMARY OF TEST RESULTS	
	FUNDAMENTAL AND HARMONICS RADIATED EMISSION FOR SEC	` /
4.1.		
4.2.		
4.3. 4.4.		
4.4.		
4.6.		
	SPURIOUS RADIATED EMISSION FOR SECTION 15,249(D)	
5.1.		
5.2.		14
5.3.		
5.4.		
5.5.		
5.6.		
6. B	BAND EDGES	20
6.1.		
6.2.	A	
6.3.	e	
6.4.	Test Procedure	20
6.5.	The Measurement Result	21
7. A	ANTENNA REQUIREMENT	23
7.1.	The Requirement	23
7.2.	*	

APPENDIX I (TEST CURVES)

Test Report Certification

Applicant : China Industries Ltd T/A Wow! Stuff

Manufacturer : Wey Hing Plastics Factory

EUT Description : Attacknid, Combat Creatures

(A) MODEL NO.: CC-1001

(B) Trade Name.: Wow Stuff

(C) POWER SUPPLY: 3V DC ("AAA" batteries $2\times$)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section15.249 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Jul. 4-Jul. 27, 2012	
Prepared by:	Terry. Yorg	
	(Engineer)	
Approved & Authorized Signer :	Searle)	
	(Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Attacknid, Combat Creatures

Model Number : CC-1001

Power Supply : 3V DC ("AAA" batteries $2\times$)

Operate Frequency : 2433-2481MHz

Applicant : China Industries Ltd A/T Wow! Stuff

Address : Creative Industries Centre, Wolverhampton Science

Park, Wolverhampton, WV10 9TG, UK.

Manufacturer : Wey Hing Plastics Factory

Address : Block 83 rd, NianTian YangGang Industry Road, NianTian

FuYong, BaoAn, Shenzhen, China

Date of sample received: Jul. 6, 2012

Date of Test : Jul.6-Jul. 27, 2012

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2 (9kHz-30MHz)

- - ,

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 7, 2012	Jan. 7, 2013
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 7, 2012	Jan. 7, 2013
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 7, 2012	Jan. 7, 2013
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 7, 2012	Jan. 7, 2013
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 7, 2012	Jan. 7, 2013
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 7, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 7, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 7, 2012	Jan. 7, 2013
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 7, 2012	Jan. 7, 2013
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 7, 2012	Jan. 7, 2013

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.249(a)	Fundamental and Harmonics Radiated Emission	Compliant
Section 15.249(d)	Spurious Radiated Emission	Compliant
Section 15.249(d)	Band Edge	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: "N/A" means "Not applicable".

4. FUNDAMENTAL AND HARMONICS RADIATED EMISSION FOR SECTION 15.249(A)

4.1.Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Attacknid, Combat Creatures)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

(EUT: Attacknid, Combat Creatures)

4.2. The Emission Limit

4.2.1.For intentional radiators, According to section 15.249(a), Operation within the frequency band of 2.4 to 2.4835GHz, The fundamental field strength shall not exceed 94 dB μ V/m and the harmonics shall not exceed 54 dB μ V/m.

Fundamental	Field Strength of Fundamental	Field Strength of harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

4.2.2.According to section 15.249(e), as shown in section 15.35(b), the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3. Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1. Attacknid, Combat Creatures(EUT)

Model Number : CC-1001 Serial Number : N/A

Manufacturer : Wey Hing Plastics Factory

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in TX modes measure it.. We are select 2433 MHz, 2451MHz and 2481MHz TX frequency to transmit.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 1000 kHz.

4.6. The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test: Jul 26, 2012 Temperature: 25°C

EUT: Attacknid, Combat Creatures Humidity: 50%

Model No.: CC-1001 Power Supply: 3V DC ("AAA" batteries 2×)

Test Mode: TX 2433MHz Test Engineer: Ricky

Fundamental Radiated Emissions

Frequency	Reading(dBμV/m)	Factor(dB)	Result(dBµV/m)		$\mu V/m$) Limit(dB $\mu V/m$)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2433.000	75.02	78.87	-7.44	67.58	71.43	94	114	-26.42	-42.57	Vertical
2433.000	58.37	82.38	-7.37	51.00	75.01	94	114	-23.00	-38.99	Horizontal

Harmonics and spurious Radiated Emissions

Frequency	Reading(dBμV/m)	Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
4866.000	37.17	45.32	-0.39	36.78	44.93	54	74	-17.22	-29.07	Vertical
4866.000	46.76	53.71	-0.31	46.45	53.40	54	74	-7.55	-20.60	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test: Jul 26, 2012

EUT: Attacnid, Combat Creatures

Model No.: CC-1001

Temperature: 25°C

Humidity: 50%

Power Supply: 3V DC ("AAA" batteries 2×)

Test Mode: TX 2451MHz

Test Engineer: Ricky

Fundamental Radiated Emissions

Frequency	Reading(dBμV/m)	Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2451.00	87.58	93.83	-7.33	80.25	86.50	94	114	-13.75	-27.50	Horizon
2451.00	78.58	84.24	-7.33	71.25	76.91	94	114	-22.75	-37.09	Vertical

Harmonics and Spurious Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
5285.395	47.57	52.93	0.97	48.54	53.90	54	74	-5.46	-20.10	Vertical
4902.000	45.40	51.50	0.57	45.97	52.07	54	74	-8.03	-21.93	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test: Jul 26, 2012 Temperature: 25°C

EUT: Attacnid, Combat Creatures Humidity: 50%

Model No.: CC-1001 Power Supply: 3V DC ("AAA" batteries 2×)

Test Mode: TX 2481MHz Test Engineer: Ricky

Fundamental Radiated Emissions

Frequency	Reading(dBμV/m)	Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2481.00	83.24	90.13	-7.38	75.86	82.75	94	114	-18.14	-31.25	Horizon
2481.00	53.64	85.63	-7.38	46.26	78.25	94	114	-47.74	-35.75	Vertical

Harmonics and Spurious Radiated Emissions

Frequency	Reading(dBμV/m)	Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
4962.00	32.76	39.02	0.00	32.76	39.02	54	74	-21.24	-34.98	Vertical
4962.00	37.98	44.52	0.00	37.98	44.52	54	74	-16.02	-29.48	Horizontal
7898.164	25.16	31.15	6.29	31.45	37.44	54	74	-22.55	-36.56	Vertical

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

5. SPURIOUS RADIATED EMISSION FOR SECTION 15.249(D)

5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Attacknid, Combat Creatures)

5.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: Attacknid, Combat Creatures)

5.2. The Emission Limit For Section 15.249(d)

5.2.1.Emission radiated outside of the specified frequency bands, except for harmonics, shall be comply with the general radiated emission limits in Section 15.209.

Radiation Emission Measurement Limits According to Section 15.209

1									
	Limit								
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is						
30 - 88	100	40	performed with Average detector.						
88 - 216	150	43.5	Except those frequency bands mention above, the						
216 - 960	200	46	final measurement for frequencies below						
Above 960	500	54	1000MHz is performed with Quasi Peak detector.						

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1. Attacknid, Combat Creatures (EUT)

Model Number : CC-1001 Serial Number : N/A

Manufacturer : Wey Hing Plastics Factory

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 2433-2481MHz. We are select2433MHz, 2451MHz,2481MHz TX frequency to transmit.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 100 kHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

5.6. The Emission Measurement Result

PASS.

Date of Test:	Jul 26, 2012	Temperature:	25°C
EUT:	Attacknid, Combat Creatures	Humidity:	50%
Model No.:	CC-1001	Power Supply:	3V DC ("AAA" batteries 2×)
Test Mode:	TX 2433MHz	Test Engineer:	Ricky

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:Jul 26, 2012Temperature:25°CEUT:Attacknid, Combat CreaturesHumidity:50%Model No.:CC-1001Power Supply:3V DC ("AAA" batteries 2×)Test Mode:TX 2451MHzTest Engineer:Ricky

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
_	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	Jul 26, 2012	Temperature:	25°C
EUT:	Attacknid, Combat Creatures	Humidity:	50%
Model No.:	CC-1001	Power Supply:	3V DC ("AAA" batteries 2×)
Test Mode:	TX 2481MHz	Test Engineer:	Ricky

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

6. BAND EDGES

6.1.The Requirement

6.1.1.Band Edge from 2400MHz to 2483.5MHz. Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

6.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.2.1. Attacknid, Combat Creatures (EUT)

Model Number : CC-1001 Serial Number : N/A

Manufacturer : Wey Hing Plastics Factory

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT and simulator as shown as Section 4.1.
- 6.3.2. Turn on the power of all equipment.
- 6.3.3. Let the EUT work in TX modes measure it. The transmit frequency are 2433-2481MHz. We are select 2433MHz and 2481MHz TX frequency to transmit.

6.4. Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

6.5. The Measurement Result

Pass.

Date of Test:Jul 26, 2012Temperature:25°CEUT:Attacknid, Combat CreaturesHumidity:50%Model No.:CC-1001Power Supply:3V DC ("AAA" batteries 2×)Test Mode:TX 2433MHzTest Engineer:Rickey

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	_	-	-	-	-	-	-	-	_	Vertical
-	-	_	-	_	-	_	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams in appendix I display the measurement of QP (up to 1G) and peak (above 1G) values.

Date of Test:	Jul 26, 2012	Temperature:	25°C
EUT:	Attacknid, Combat Creatures	Humidity:	50%
Model No.:	CC-1001	Power Supply:	3V DC ("AAA" batteries $2\times$)
Test Mode:	TX 2481MHz	Test Engineer:	Ricky

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(c	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	-	-	-	-	-	-	-	ı	-	Vertical
-	_	-	-	-	-	_	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams in appendix I display the measurement of QP (up to 1G) and peak (above 1G) values.

7. ANTENNA REQUIREMENT

7.1.The Requirement

7.1.1.According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2. Antenna Construction

Antenna -

APPENDIX I (Test Curves)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #255

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures Mode: Transmitting 2433MHz

Model: CC-1001

Horizontal Polarization: Power Source: DC 3V Date: 2012/07/25

Time: 6:40:24

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #256

Standard: FCC Radiated 15.209 Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % Attacknid, Combat Creatures

Mode: Transmitting 2433MHz

Manufacturer: Wey Hing Plastics Factory

Model: CC-1001

Polarization: Vertical Power Source: DC 3V Date: 2012/07/25 Time: 6:43:37

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #263

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Attacknid, Combat Creatures

Mode: Transmitting 2451MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Polarization: Horizontal Power Source: DC 3V Date: 2012/07/25 Time: 7:42:00

Engineer Signature: Ricky

Distance: 3m

300

400

600 700

1000.0 MHz

30.000

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization:

Power Source: DC 3V

Engineer Signature: Ricky

Date: 2012/07/25 Time: 7:44:21

Vertical

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #264

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures

Mode:

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Note:

Transmitting 2451MHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #262

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures

Mode: Transmitting 2481MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Polarization: Horizontal Power Source: DC 3V Date: 2012/07/25 Time: 7:39:52

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #261

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures

Mode: Transmitting 2481MHz

Manufacturer: Wey Hing Plastics Factory

Model: CC-1001

Polarization: Vertical Power Source: DC 3V Date: 2012/07/25 Time: 7:36:56

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #243

Standard: FCC PART 15.209 Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures

Mode: Transmitting 2433MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Polarization: Horizontal Power Source: DC 3V Date: 2012/07/25

Time: 5:36:36

Engineer Signature: Ricky

80.	0 dBuV									
		3	*	ļ				1	limit1	
70		ļ			ļļ		14	44	mmtz	
		3				1				
60					·	····			· · · · · · · · · · · · · · · · · · ·	*********
24		1		İ	*	Ì		1 1		
50	*************						1	1	*******	100
40	physical and a filter and a second of the second			h-1 - k k - 40 - 10 - M	h or many with	Mysers	Washi.	- Lander	and phy phy	Mary James
	للاملة ومن والماران	when the thought when	Metamphiling of sendants	www.hullusuh.n			Educid a Kanad	ALMA .		
	White he had been been the contraction of			1	1 (4	1 1	1 1		
30				a de consessor	·	en de la composición		freeter.		
30 20										
20									******	****

20 10 0.0										
20 10 0.0			000	3000	500		7000 8000	9000		18000.0 MH
20 10 0.0								Height (cm)	Degree (deg.)	18000.0 MH:
20 10 0.0	1000.000 Freq.	20 Reading	000 Factor	3000 Result	500 Limit	0 6000 Margin		Height		
20 10 0.0	1000.000 Freq. (MHz)	Reading (dBuV)	Pactor (dB)	3000 Result (dBuV)	500 Limit (dBuV)	00 6000 Margin (dB)	Detector	Height		
20 10 0.0	Freq. (MHz) 2433.000	Reading (dBuV) 82.38	Factor (dB) -7.37	3000 Result (dBuV) 75.01	Limit (dBuV) 114.00	00 6000 Margin (dB) -38.99	Detector peak AVG	Height		

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: R#1534

Standard: FCC Part 15.209 Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Attacknid ,Combat Creatures

Mode: Trasmitting 2433MHz

Model: CC-1001

Manufacturer: Wey HIng Plastics Factory

Polarization: Horizontal Power Source: DC 3V

Date: 12/27/05 Time: 10:05:15

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #244

Standard: FCC PART 15.209
Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Attacknid, Combat Creatures

Mode: Transmitting 2433MHz
Model: CC-1001

Manufacturer: Wev Hing Plastics Factory

Polarization: Vertical Power Source: DC 3V Date: 2012/07/25

Time: 5:47:26

Engineer Signature: Ricky

ote:										
80.	0 dBuV									
		1			1 1	· ·		11	limit1	
70					ļ		ļļ	ļļ	limit2	*
60	(4.50)-6.50								******	******
50										
40			بردادين	Marin wat Arm	MANA	mym	Maddada	as Jundan	and hardy with	MA
30	pedan speditus fed services	identification of the state of	allandan (1/4)			Υ				
		1		1	1 1		1 1	1 1		
20					+		 		******	*****
20 10										
10										
10	1000.000	20	000	3000	500	0 6000	7000 8000	9000		18000.0 MHz
10 0.0		Reading (dBuV)	Factor (dB)	3000 Result (dBuV)	500 Limit (dBuV)	0 6000 Margin (dB)		9000 Height (cm)	Degree (deg.)	18000.0 MHz
10 0.0	1000.000 Freq.	Reading	Factor	Result	Limit	Margin		Height		18000.0 MHz Remark
10 0.0	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Height		50 50
10	Freq. (MHz) 2433.000	Reading (dBuV) 78.87	Factor (dB) -7.44	Result (dBuV) 71.43	Limit (dBuV) 114.00	Margin (dB) -42.57	Detector peak	Height		50 50

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: R#1535

Standard: FCC Part 15.209 Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Attacknid ,Combat Creatures

Mode: Transmitting 2433MHz

Model: CC-1001

Manufacturer: Wey HIng Plastics Factory

Polarization: Vertical Power Source: DC 3V

Date: 12/27/05 Time: 10:09:22

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #247 Standard: FCC PART 15.209 Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Transmitting 2451.00MHz

Polarization: Horizontal Power Source: DC 3V Date: 2012/07/25 Time: 5:54:19

Engineer Signature: Ricky

Distance: 3m

	V	O	τε	
•	-	-		

Mode:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2451.000	93.83	-7.33	86.50	114.00	-27.50	peak	-			
2	2451.000	87.58	-7.33	80.25	94.00	-13.75	AVG				
3	4902.000	51.50	0.57	52.07	74.00	-21.93	peak				
4	4902.000	45.40	0.57	45.97	54.00	-8.03	AVG				

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: R#1536

Standard: FCC Part 15.209

Test item: Radiation Test

dBuV/m

Temp.(C)/Hum.(%) 25 C / 50 % EUT: Attacknid , Combat Creatures

Mode: Transmitting 2451MHz

Manufacturer: Wey Hing Plastics Factory

Model: CC-1001

Note:

70.0

Distance: 3m

Polarization: Vertical

Date: 12/07/05

Time: 10:14:45

Power Source: AC 120V/60Hz

Engineer Signature: Ricky

50	1									
50	entersent benedictived property	national state of the second	Medical productions	named the formal managers	ndifficulty college deplete	Myshamadon	halintandom dadan	how the particular	market the section	the was a supply the party of the same
40		************		*********		********	********	******	K-2185-1168	*******
30									24445447	
20		*************								
10							********		******	
0.0										

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #248

Standard: FCC PART 15.209
Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %
EUT: Attacknid, Combat Creatures
Mode: Transmitting 2451.00MHz

Model: CC-1001

Note:

Manufacturer: Wey Hing Plastics Factory

Polarization: Vertical Power Source: DC 3V Date: 2012/07/25

Time: 5:57:59
Engineer Signature: Ricky

90.0	dBuV		

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2451.000	84.24	-7.33	76.91	114.00	-37.09	peak				
2	2451.000	78.58	-7.33	71.25	94.00	-22.75	AVG				
3	5285.395	52.93	0.97	53.90	74.00	-20.10	peak				
4	5285.395	47.57	0.97	48.54	54.00	-5.46	AVG				

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: R#1537

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Attacknid ,Combat Creatures

Mode: Transmitting 2451MHz

Model: CC-1001

Manufacturer: Wey HIng Plastics Factory

Note:

Polarization: Horizontal
Power Source: DC 3V
Date: 12/27/05

Date: 12/27/05 Time: 10:18:36

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #284

Standard: FCC PART 15.209 Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid , Combat Creatures

Mode: Transmitting 2481MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Polarization: Vertical Power Source: DC 3V Date: 2012/07/25 Time: 6:14:09

Engineer Signature: Ricky

N	ot	e:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2481.000	85.63	-7.38	78.25	114.0	-35.75	peak			
2	2481.000	53.64	-7.38	46.26	94.00	-47.74	AVG			
3	4962.000	39.02	0.00	39.02	74.00	-34.98	peak			
4	4962.000	32.76	0.00	32.76	54.00	-21.24	AVG			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: R#1538

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Attacknid , Combat Creatures

Mode: Transmitting 2481MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Power Source: DC 3V Date: 12/27/05

Time: 10:23:55

Polarization:

Engineer Signature: Ricky

Horizontal

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #252

Standard: FCC PART 15.209 Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures

Mode: Transmitting 2481MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Engineer Signature: Ricky Distance: 3m

Date: 2012/07/25

Time: 6:14:09

Polarization: Horizontal

Power Source: DC 3V

N	_	÷	^	٠
IA	v	L	C	٠

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2481.000	90.13	-7.38	82.75	114.00	-31.25	peak			11	
2	2481.000	83.24	-7.38	75.86	94.00	-18.14	AVG				
3	4962.000	44.52	0.00	44.52	74.00	-29.48	peak			1: : =	
4	4962.000	37.98	0.00	37.98	54.00	-16.02	AVG				
5	7898.164	31.15	6.29	37.44	74.00	-36.56	peak				-7
6	7898.164	25.16	6.29	31.45	54.00	-22.55	AVG				

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: R#1539

Standard: FCC Part 15.209

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Attacknid ,Combat Creatures

Mode: Transmitting 2481MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Note:

Polarization: Vertical Power Source: DC 3V

Date: 12/27/05 Time: 10:27:11

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #246

Standard: FCC PART 15.205 Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %
EUT: Attacknid, Combat Creatures
Mode: Transmitting 2433MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Polarization: Horizontal Power Source: DC 3V Date: 2012/07/25 Time: 5:51:26

Engineer Signature: Ricky

Distance: 3m

Limit

(dBuV)

Margin

(dB)

Detector

Height

(cm)

Degree

(deg.)

Remark

Freq.

(MHz)

No.

Reading

(dBuV)

Factor

(dB)

Result

(dBuV)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #245
Standard: FCC PART 15.205
Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures

Mode: Transmitting 2433MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Polarization: Vertical Power Source: DC 3V Date: 2012/07/25 Time: 5:50:01

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #253
Standard: FCC PART 15.205
Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures Mode: Transmitting 2481MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Polarization: Horizontal Power Source: DC 3V Date: 2012/07/25 Time: 6:18:18

Engineer Signature: Ricky

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #254
Standard: FCC PART 15.205
Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Attacknid, Combat Creatures

Mode: Transmitting 2481MHz

Model: CC-1001

Manufacturer: Wey Hing Plastics Factory

Polarization: Vertical Power Source: DC 3V Date: 2012/07/25 Time: 6:19:26

Engineer Signature: Ricky

