Problem Statement

Forecasting the number of views to the pages so that you can predict and optimize the ad placement for your clients.

We are provided with the data of 145k wikipedia pages and daily view count for each of them.

The clients belong to different regions and need data on how their ads will perform on pages in different languages.

```
import pandas as pd
In [1]:
        import numpy as np
        import pylab as p
        import matplotlib.pyplot as plot
        import re
        import os
        import seaborn as sns
        from collections import Counter
In [2]: import warnings
        warnings.filterwarnings("ignore")
        warnings.simplefilter("ignore")
In [3]:
        !gdown 1RPOLd 74kMrpkTg35X843h0rZIsSJSMF
        Downloading...
        From: https://drive.google.com/uc?id=1RPOLd 74kMrpkTg35X843hOrZIsSJSMF (https://drive.google.com/uc?id=1RPOL
        Ld 74kMrpkTg35X843hOrZIsSJSMF)
        To: /content/train_1.csv
        100% 278M/278M [00:04<00:00, 59.8MB/s]
In [4]: | train = pd.read_csv('train_1.csv')
```

In [5]: train.head(10)

_			
$^{\circ}$	111	- I D	- I •
w	u	- 1 -	ЭI.
_	٠. ٠	- L -	· 」。

	Page	2015- 07-01	2015- 07-02	2015- 07-03	2015- 07-04	2015- 07-05	2015- 07-06	2015- 07-07	2015- 07-08	2015- 07-09	 2016- 12-22	2016- 12-23	2016- 12-24	2016- 12-25
0	2NE1_zh.wikipedia.org_all- access_spider	18.0	11.0	5.0	13.0	14.0	9.0	9.0	22.0	26.0	 32.0	63.0	15.0	26.0
1	2PM_zh.wikipedia.org_all-access_spider	11.0	14.0	15.0	18.0	11.0	13.0	22.0	11.0	10.0	 17.0	42.0	28.0	15.0
2	3C_zh.wikipedia.org_all-access_spider	1.0	0.0	1.0	1.0	0.0	4.0	0.0	3.0	4.0	 3.0	1.0	1.0	7.0
3	4minute_zh.wikipedia.org_all- access_spider	35.0	13.0	10.0	94.0	4.0	26.0	14.0	9.0	11.0	 32.0	10.0	26.0	27.0
4	52_Hz_I_Love_You_zh.wikipedia.org_all-access_s	NaN	 48.0	9.0	25.0	13.0								
5	5566_zh.wikipedia.org_all-access_spider	12.0	7.0	4.0	5.0	20.0	8.0	5.0	17.0	24.0	 16.0	27.0	8.0	17.0
6	91Days_zh.wikipedia.org_all- access_spider	NaN	 2.0	7.0	33.0	8.0								
7	A'N'D_zh.wikipedia.org_all- access_spider	118.0	26.0	30.0	24.0	29.0	127.0	53.0	37.0	20.0	 64.0	35.0	35.0	28.0
8	AKB48_zh.wikipedia.org_all- access_spider	5.0	23.0	14.0	12.0	9.0	9.0	35.0	15.0	14.0	 34.0	105.0	72.0	36.0
9	ASCII_zh.wikipedia.org_all- access_spider	6.0	3.0	5.0	12.0	6.0	5.0	4.0	13.0	9.0	 25.0	17.0	22.0	29.0

10 rows × 551 columns

Checking for reasons for null values

```
In [6]: days = [r for r in range(1, len(train.columns))]
    plot.figure(figsize=(10,7))
    plot.xlabel('Day')
    plot.ylabel('Null values')
    plot.plot(days, train.isnull().sum()[1:])
```

Out[6]: [<matplotlib.lines.Line2D at 0x7d6e12fcc220>]

The null values are decreasing over time. So null values are caused because some pages were not created from the beginning.

Treating null values

```
In [7]: train=train.dropna(how='all')
train=train.dropna(thresh=356)
```

```
In [8]: train=train.fillna(0)
train.tail()
```

Out[8]:

	Page						2015- 07-06				 2016- 12-22		
144994	Lucía_Hoyos_es.wikipedia.org_all-access_spider	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 3.0	2.0	
144995	XXx_(película)_es.wikipedia.org_all-access_spider	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 6.0	4.0	
144996	¿Volverías_con_tu_ex?_es.wikipedia.org_all-acc	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 20.0	7.0	
144997	Alicia_a_través_del_espejo_(película)_es.wikip	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 10.0	24.0	
144999	El_libro_de_la_selva_(película_de_2016)_es.wik	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 11.0	11.0	

5 rows × 551 columns

EDA

```
In [9]: def split_page(page):
             w = re.split('_|\.', page)
             return ' '.join(w[:-5]), w[-5], w[-2], w[-1]
          li = list(train.Page.apply(split_page))
          df = pd.DataFrame(li)
          df.columns = ['Title', 'Language', 'Access_type', 'Access_origin']
          df = pd.concat([train, df], axis = 1)
          df.head()
In [10]:
Out[10]:
                                         2015- 2015- 2015- 2015- 2015- 2015- 2015- 2015-
                                                                                                       2016- 2016- 2016- 2016-
                                                                                                                                       201
                                  Page
                                        07-01 07-02 07-03 07-04 07-05 07-06 07-07 07-08 07-09 ...
                                                                                                      12-26 12-27 12-28 12-29 12-30 12-3
                 2NE1 zh.wikipedia.org all-
                                          18.0
                                                11.0
                                                        5.0
                                                             13.0
                                                                    14.0
                                                                           9.0
                                                                                  9.0
                                                                                       22.0
                                                                                              26.0 ...
                                                                                                              20.0
                                                                                                                     22.0
                                                                                                                           19.0
                                                                                                                                  18.0
                                                                                                        14.0
                                                                                                                                        20
                           access spider
                 2PM zh.wikipedia.org all-
            1
                                          11.0
                                                14.0
                                                       15.0
                                                             18.0
                                                                    11.0
                                                                          13.0
                                                                                 22.0
                                                                                       11.0
                                                                                              10.0 ...
                                                                                                         9.0
                                                                                                              30.0
                                                                                                                     52.0
                                                                                                                           45.0
                                                                                                                                  26.0
                                                                                                                                        20
                           access_spider
                   3C zh.wikipedia.org all-
            2
                                           1.0
                                                 0.0
                                                        1.0
                                                              1.0
                                                                     0.0
                                                                           4.0
                                                                                  0.0
                                                                                        3.0
                                                                                               4.0 ...
                                                                                                               4.0
                                                                                                                            3.0
                                                                                                                                   4.0
                                                                                                         4.0
                                                                                                                      6.0
                                                                                                                                        17
                           access spider
               4minute_zh.wikipedia.org_all-
                                          35.0
                                                13.0
                                                       10.0
                                                                          26.0
                                                                                              11.0 ...
                                                                                                                           19.0
                                                             94.0
                                                                     4.0
                                                                                 14.0
                                                                                        9.0
                                                                                                        16.0
                                                                                                              11.0
                                                                                                                     17.0
                                                                                                                                  10.0
                                                                                                                                        11
                           access spider
                 5566 zh.wikipedia.org all-
            5
                                          12.0
                                                 7.0
                                                        4.0
                                                              5.0
                                                                    20.0
                                                                           8.0
                                                                                       17.0
                                                                                              24.0 ...
                                                                                                       32.0
                                                                                                              19.0
                                                                                                                    23.0
                                                                                                                           17.0
                                                                                  5.0
                                                                                                                                 17.0
                                                                                                                                        50
                           access spider
           5 rows × 555 columns
```

```
In [13]: language_counts = df['Language'].value_counts()

# Create a count plot
sns.countplot(data=df, x='Language')
```

Out[13]: <Axes: xlabel='Language', ylabel='count'>


```
In [15]: language_counts = df['Access_type'].value_counts()

# Create a count plot
sns.countplot(data=df, x='Access_type')
```

Out[15]: <Axes: xlabel='Access_type', ylabel='count'>


```
In [17]: language_counts = df['Access_origin'].value_counts()

# Create a count plot
sns.countplot(data=df, x='Access_origin')
```

Out[17]: <Axes: xlabel='Access_origin', ylabel='count'>

	Page	2015- 07-01	2015- 07-02	2015- 07-03	2015- 07-04	2015- 07-05	2015- 07-06	2015- 07-07	2015- 07-08	2015- 07-09	 2016- 12-25	2016- 12-26	2016- 12-27	2016- 12-28	2016- 12-29	201 12-3
Language																
commons	7213	7213	7213	7213	7213	7213	7213	7213	7213	7213	 7213	7213	7213	7213	7213	72
de	15505	15505	15505	15505	15505	15505	15505	15505	15505	15505	 15505	15505	15505	15505	15505	1550
en	19744	19744	19744	19744	19744	19744	19744	19744	19744	19744	 19744	19744	19744	19744	19744	1974
es	11516	11516	11516	11516	11516	11516	11516	11516	11516	11516	 11516	11516	11516	11516	11516	1151
fr	14630	14630	14630	14630	14630	14630	14630	14630	14630	14630	 14630	14630	14630	14630	14630	1463
ja	17172	17172	17172	17172	17172	17172	17172	17172	17172	17172	 17172	17172	17172	17172	17172	1717
ru	12329	12329	12329	12329	12329	12329	12329	12329	12329	12329	 12329	12329	12329	12329	12329	1232
www	5530	5530	5530	5530	5530	5530	5530	5530	5530	5530	 5530	5530	5530	5530	5530	553
zh	14187	14187	14187	14187	14187	14187	14187	14187	14187	14187	 14187	14187	14187	14187	14187	1418
9 rows × 5	54 colur	mns														
_																

```
In [20]: # Checking another way of fetching the language out of the string
                        def lang(Page):
                                   val = re.search('[a-z][a-z].wikipedia.org',Page)
                                   if val:
                                             return val[0][0:2]
                                  return 'no_lang'
                        df['Language']=df['Page'].apply(lambda x: lang(str(x)))
In [21]: df.groupby('Language').count() #now the count has increased. You can go back and get it sorted
Out[21]:
                                                                                                                                                             2015-
                                                                                                                                                                             2015-
                                                                                                                                                                                            2015-
                                                                                                                                                                                                                                                 2016-
                                                                                                                                                                                                                                                                 2016-
                                                                                                                               2015-
                                                                                                                                              2015-
                                                                                                                                                                                                                   2016-
                                                                                                                                                                                                                                  2016-
                                                                                                                                                                                                                                                                                2016-
                                                   Page
                                                                                                                07-04
                                                                                                                              07-05
                                                                                                                                              07-06
                                                                                                                                                            07-07
                                                                                                                                                                            07-08
                                                                                                                                                                                           07-09 ...
                                                                                                                                                                                                                   12-25
                                                                                                                                                                                                                                 12-26
                                                                                                                                                                                                                                                 12-27
                                                                                                                                                                                                                                                                12-28
                                                                                                                                                                                                                                                                                12-29
                          Language
                                         de 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 17123 171
                                                 21938 21938 21938 21938 21938 21938 21938
                                                                                                                                                                          21938 21938 ... 21938 21938 21938 21938
                                                 13397 13397 13397 13397 13397 13397 13397 13397 13397 ... 13397 13397 13397 13397
                                                                                                                                                                                                                                                                              13397 13397 13
                                                16717 16717 16717 16717 16717 16717 16717 16717 16717 16717 ... 16717 16717 16717 16717 16717 16717 16717 167
                                                  19115 19115 19115 19115 19115 19115 19115 19115 19115 19115 19115 ... 19115 19115 19115 19115 19115 19115 19115
                              no_lang 13856 13856
                                                                                13856 13856
                                                                                                              13856 13856
                                                                                                                                           13856 13856
                                                                                                                                                                           13856 13856 ... 13856 13856 13856
                                                                                                                                                                                                                                                               13856
                                                                                                                                                                                                                                                                              13856
                                                                                                                                                                                                                                                                                              13856 13
                                                 14109 14109
                                                                                14109
                                                                                               14109
                                                                                                              14109 14109
                                                                                                                                           14109 14109
                                                                                                                                                                          14109 14109 ... 14109 14109
                                                                                                                                                                                                                                              14109
                                                                                                                                                                                                                                                               14109
                                                                                                                                                                                                                                                                              14109
                                         zh 14791 14791 14791 14791 14791 14791 14791 14791 14791 14791 ... 14791 14791 14791 14791 14791 14791 14791 14791
                        8 rows × 554 columns
```

In [22]: df_language=df.groupby('Language').mean().transpose()
df_language

Out[22]:

Language	de	en	es	fr	ja	no_lang	ru	zh
2015-07-01	774.426269	3861.418270	1140.148541	505.989352	620.425007	107.428551	670.765965	280.230884
2015-07-02	763.878176	3848.940651	1089.566843	509.238500	712.459639	112.593533	682.374796	280.646745
2015-07-03	733.166910	3654.264017	1002.042323	489.659688	643.454355	106.425664	632.463605	278.785275
2015-07-04	672.798867	3804.480354	940.835112	523.400191	808.439236	90.827223	594.882132	281.481036
2015-07-05	782.125153	3929.175312	1023.180190	513.872346	775.587654	100.659353	633.532072	300.263944
2016-12-27	1123.751153	6415.150971	1078.762559	846.143028	808.217578	161.744515	1007.479977	364.880738
2016-12-28	1066.064241	6208.003464	1117.616705	774.151223	807.662046	186.088770	953.722801	371.549185
2016-12-29	1036.503358	6630.178002	1067.152571	757.718610	885.257233	157.015156	917.736339	342.295788
2016-12-30	986.052678	5490.552740	813.258789	712.405097	981.830133	162.524682	822.712028	344.481847
2016-12-31	938.918939	5367.033777	782.740240	658.079739	1230.408789	140.588265	911.081579	352.220337

550 rows × 8 columns

In [23]: df_language.reset_index(inplace=True)
 df_language.set_index('index', inplace=True)

```
In [24]: df_language.plot(figsize=(12,7))
    plot.ylabel('Views per Page')
```

Out[24]: Text(0, 0.5, 'Views per Page')

In [25]: ## English gets most amount of views followed by spanish

```
In [26]: # printing English
df_language['en'].plot(figsize=(12,7))
plot.ylabel('Views per Page')
```

Out[26]: Text(0, 0.5, 'Views per Page')


```
In [27]: total_view=df_language.copy()
```

Checking the stationarity

Making the time series stationary

```
In [31]: ts=total_view[['en']]
In [32]: ts = ts.reset_index()
In [33]: ts.index = pd.to_datetime(ts.index)
In [34]: ts.set_index('index', inplace=True)
```

In [35]: ts

Out[35]:	Language	en
	index	
	2015-07-01	3861.418270
	2015-07-02	3848.940651
	2015-07-03	3654.264017
	2015-07-04	3804.480354
	2015-07-05	3929.175312
	2016-12-27	6415.150971
	2016-12-28	6208.003464
	2016-12-29	6630.178002
	2016-12-30	5490.552740
	2016-12-31	5367.033777
	550 rows ×	1 columns

In [36]: import statsmodels.api as sm
model = sm.tsa.seasonal_decompose(ts, period=7) # Knowing the right period is V.Imp and You can use ACF to g
model.plot();

In [37]: model.resid.plot()

Out[37]: <Axes: xlabel='index'>

In [38]: df_test(model.resid.dropna())

ADF Stastistic: -11.435041

p-value: 0.000000

In [39]: | ## We can see that aur series is now stationary, we can also try diffrencing to see what results we can get.

Remove trend and seasonality with differencing

In [41]: ts_diff.dropna(inplace=True)
 df_test(ts_diff)

ADF Stastistic: -8.261352

p-value: 0.000000

In [42]: #Also the p value is 0. So we can say that our graph is now stationery. Now we can apply the ARIMA model

Plot the autocorreltaion and partial auto correlation functions

In [44]: ts.diff(7) # Out[44]: Language en index 2015-07-01 NaN 2015-07-02 NaN 2015-07-03 NaN 2015-07-04 NaN 2015-07-05 NaN 2016-12-27 804.087291 **2016-12-28** 997.424970 **2016-12-29** 1346.841371 **2016-12-30** 561.319309 **2016-12-31** 120.887136

ARIMA MODEL

550 rows × 1 columns

In [45]: from statsmodels.tsa.statespace.sarimax import SARIMAX
 from pandas import DataFrame

```
In [46]: model = SARIMAX(ts, order=(1,1,1))
         model fit = model.fit(disp=0)
         /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency i
         nformation was provided, so inferred frequency D will be used.
           self._init_dates(dates, freq)
         /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency i
         nformation was provided, so inferred frequency D will be used.
           self._init_dates(dates, freq)
In [47]: model_fit.predict(12)
Out[47]: 2015-07-13
                       4210.297557
         2015-07-14
                       4174.226495
         2015-07-15
                       4197.775650
         2015-07-16
                       3902.374198
         2015-07-17
                       3945.629070
         2016-12-27
                       6062.278727
         2016-12-28
                       6317.880194
                       6130.967200
         2016-12-29
         2016-12-30
                       6516.814683
         2016-12-31
                       5480.984400
         Freq: D, Name: predicted mean, Length: 538, dtype: float64
In [48]: train = ts[:-20]
         test = ts[-20:]
In [49]: ## In ARMA family models, for getting p (Auto-regressive order) we look at PACF plot, there is a cut-off at
```

```
In [50]: model = SARIMAX(train, order=(2, 1, 2))
         fitted = model.fit(disp=-1)
         # Forecast
         fc = fitted.forecast(20, alpha=0.02)
         # Make as pandas series
         fc_series = pd.Series(fc, index=test.index)
         # PLot
         plot.figure(figsize=(12,5), dpi=100)
         plot.plot(train, label='training')
         plot.plot(test, label='actual')
         plot.plot(fc series, label='forecast')
         plot.title('Forecast vs Actuals')
         plot.legend(loc='upper left', fontsize=8)
         /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model.py:473: ValueWarning: No frequency i
         nformation was provided, so inferred frequency D will be used.
           self. init dates(dates, freq)
         /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model.py:473: ValueWarning: No frequency i
         nformation was provided, so inferred frequency D will be used.
           self. init dates(dates, freq)
```

Out[50]: <matplotlib.legend.Legend at 0x7d6db1697130>

Forecast vs Actuals


```
In [51]: mape = np.mean(np.abs(fc.values - test.values)/np.abs(test.values))
    rmse = np.mean((fc.values - test.values)**2)**.5
    print("mape:", mape)
    print("rsme:", rmse)
```

mape: 0.08213219335167705 rsme: 624.4451158083979

using exogenous data

```
import statsmodels.api as sm
In [54]:
         train=ts[:530]
         test=ts[530:]
         model=sm.tsa.statespace.SARIMAX(train,order=(1, 1, 1),seasonal order=(1,1,1,7),exog=exog[:530])
         results=model.fit()
         fc=results.forecast(20,dynamic=True,exog=pd.DataFrame(exog[530:]))
         # Make as pandas series
         fc_series = pd.Series(fc)
         # PLot
         train.index=train.index.astype('datetime64[ns]')
         test.index=test.index.astype('datetime64[ns]')
         plot.figure(figsize=(12,5), dpi=100)
         plot.plot(train, label='training')
         plot.plot(test, label='actual')
         plot.plot(fc series, label='forecast')
         plot.title('Forecast vs Actuals')
         plot.legend(loc='upper left', fontsize=8)
         /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model.py:473: ValueWarning: No frequency i
         nformation was provided, so inferred frequency D will be used.
           self. init dates(dates, freq)
         /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model.py:473: ValueWarning: No frequency i
         nformation was provided, so inferred frequency D will be used.
           self. init dates(dates, freq)
```

Out[54]: <matplotlib.legend.Legend at 0x7d6daed52080>

Forecast vs Actuals


```
In [55]: mape = np.mean(np.abs(fc.values - test.values)/np.abs(test.values))
    rmse = np.mean((fc.values - test.values)**2)**.5
    print("mape:",mape)
    print("rsme:",rmse)
```

mape: 0.10347693827344548 rsme: 737.5231800914678

Facebook Prophet

```
In [56]: # !pip install pystan~=2.14
# !pip install fbprophet
```

```
In [57]: ts_df = ts.reset_index().copy()
         ts_df.columns = [['ds', 'y']]
In [58]: df2=ts_df.copy()
         df2['exog'] = exog
         df2.columns = ['ds', 'y', 'exog']
         df2.head()
Out[58]:
                   ds
                              y exog
          0 2015-07-01 3861.418270
                                   0
          1 2015-07-02 3848.940651
          2 2015-07-03 3654.264017
          3 2015-07-04 3804.480354
          4 2015-07-05 3929.175312
                                   0
         In [59]: df2[:-20].info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 530 entries, 0 to 529
         Data columns (total 3 columns):
              Column Non-Null Count Dtype
                      530 non-null
                                      object
          0
              ds
          1
                      530 non-null
                                      float64
              У
                      530 non-null
                                      int64
              exog
         dtypes: float64(1), int64(1), object(1)
         memory usage: 12.5+ KB
```

```
In [60]: from prophet import Prophet
         m = Prophet(weekly seasonality=True)
         m.fit(df2[['ds', 'y']][:-20])
         future = m.make future dataframe(periods=20,freq="D")
         forecast = m.predict(future)
         fig = m.plot(forecast)
         INFO: prophet: Disabling yearly seasonality. Run prophet with yearly seasonality=True to override this.
         INFO:prophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.
         DEBUG:cmdstanpy:input tempfile: /tmp/tmpbugd82zr/bihxspqn.json
         DEBUG:cmdstanpy:input tempfile: /tmp/tmpbugd82zr/ewtm9c 1.json
         DEBUG:cmdstanpy:idx 0
         DEBUG:cmdstanpy:running CmdStan, num threads: None
         DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.10/dist-packages/prophet/stan model/prophet model.bi
         n', 'random', 'seed=19574', 'data', 'file=/tmp/tmpbugd82zr/bihxspqn.json', 'init=/tmp/tmpbugd82zr/ewtm9c 1.
         json', 'output', 'file=/tmp/tmpbugd82zr/prophet model92hqy3a1/prophet model-20230928175519.csv', 'method=op
         timize', 'algorithm=lbfgs', 'iter=10000']
         17:55:19 - cmdstanpy - INFO - Chain [1] start processing
         INFO:cmdstanpy:Chain [1] start processing
         17:55:19 - cmdstanpy - INFO - Chain [1] done processing
```

INFO:cmdstanpy:Chain [1] done processing


```
model2=Prophet(interval width=0.9, weekly seasonality=True, changepoint prior scale=1)
In [61]:
         model2.add regressor('exog')
         model2.fit(df2[:-20])
         forecast2 = model2.predict(df2)
         fig = model2.plot(forecast2)
         INFO:prophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.
         INFO:prophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.
         DEBUG:cmdstanpy:input tempfile: /tmp/tmpbugd82zr/b44qqhs1.json
         DEBUG:cmdstanpy:input tempfile: /tmp/tmpbugd82zr/6mz6nkr4.json
         DEBUG:cmdstanpy:idx 0
         DEBUG:cmdstanpy:running CmdStan, num threads: None
         DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.10/dist-packages/prophet/stan model/prophet model.bi
         n', 'random', 'seed=63734', 'data', 'file=/tmp/tmpbugd82zr/b44qqhs1.json', 'init=/tmp/tmpbugd82zr/6mz6nkr4.
         json', 'output', 'file=/tmp/tmpbugd82zr/prophet model ejkvmlw/prophet model-20230928175519.csv', 'method=op
         timize', 'algorithm=lbfgs', 'iter=10000']
         17:55:19 - cmdstanpy - INFO - Chain [1] start processing
         INFO:cmdstanpy:Chain [1] start processing
         17:55:20 - cmdstanpy - INFO - Chain [1] done processing
```

INFO:cmdstanpy:Chain [1] done processing


```
In [62]: y_true = df2['y'].values
    y_pred = forecast2['yhat'].values

plot.plot(y_true, label='Actual')
    plot.plot(y_pred, label='Predicted')
    plot.legend()
    plot.show()
```


In [63]: mape = np.mean(np.abs(forecast2['yhat'][-20:] - df2['y'][-20:].values)/np.abs(df2['y'][-20:].values))
print("mape:",mape)

mape: 0.06757807513038254

Questionnaire

1. Defining the problem statements and where can this and modifications of this be used?

Forecasting the number of views to the pages so that you can predict and optimize the ad placement for your clients.

The same can be used for predicting the future sale in a online store, predicting the using pattern of streaming app etc.

2. Write 3 inferences you made from the data visualizations

The amount of null values decresing over the time. This is because some website were not there from start

There the more number of pages in English Language

The desktop and mobile user are almost similar

3. What does the decomposition of series do?

Decomposition remove trend and seasonlity from the time series data.

4. What level of differencing gave you a stationary series?

1 level of differening gave a stationary data

5. Difference between arima, sarima & sarimax.

ARIMA is a basic time series forecasting model that consist of three main component; AutoRegressive (AR), Moving Average (MA) and Residual

SARIMA is an extension of ARIMA model that takes into account easonlity in time series data

SARIMAX is an extension of SARIMA that allows for the inclusion of exogenous variable which are external factors that can influence the time series

	Large number of viewers are English speaking
	Followed by Chinese and Spanish
	7.10
	7. What other methods other than grid search would be suitable to get the model for all languages?
	Random serach
	Bayesian Optimization
In [63]:	

6. Compare the number of views in different languages