CS 3460

Introduction to Random Number Generation

Random Number Generation

- Sophisticated capability
- "easily" generate different distributions
 - uniform, normal, exponential, plus more
- Part of the standard library <random>
- Legacy random number generation
 - rand and srand
 - don't use them, just don't!

Concepts

- Device
 - A non-deterministic uniform random number generator
- Engine
 - Pseudo random number generator
- Distribution
 - What kind of random number distribution
 - uniform, normal, binormal, exponential, plus more

Concepts – Fitting Together

Application

Distribution

Engine

Device

Random Device

- Uniform random number generator
 - Specifically; non-deterministic uniform random bit generator
- Could be a hardware device, might be software based
 - If software, pseudo-random number generator
- Implements the () operator
 - Updates its internal state
 - Returns a generated value
- Important Note: This isn't what you want your application to use for the random numbers. This is just something to provide entropy (initial seed) to a random number engine.

std::random device - Code Demo

Random Number Engine

- Produces pseudo-random numbers, from an initial seed
- Implements the () operator; same as random device
- C++ provides several different engines
 - Linear Congruential
 - Mersene Twister
 - Subtract with carry

Random engine- Code Demo

Random Number Distributions

- Don't always want uniform distributions, might want something else
 - Nature of application determines which to use
- Provided distribution categories
 - Uniform (2 types)
 - Bernoulli (4 types)
 - Poisson (5 types)
 - Normal (6 types)
 - Sampling (3 types)

Random distribution – Code Demo

Random Shuffle - Code Demo