1 Úvod

Poznámka (Informační zdroje)

Stránky, diskuze na google docs, Moodle.

Poznámka (Proč algebra)

Diofanctické rovnice (Fermatovy věty, Gaussova celá čísla), kořeny polynomů (Grupy polynomů), geometrie (nekonstruovatelnost), studium abstraktních struktur běžných objektů.

2 Obory

Definice 2.1 (Okruh)

Okruh R je pětice $(R,+,\cdot,-,0)$, kde $+,\cdot:R\times R\to R,-:R\to R,0\in R$ tak, že $(\forall a,b,c\in R)$:

$$a + (b + c) = (a + b) + c,$$

$$a + b = b + a, a + 0 = a, a + (-a) = 0,$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c, a \cdot (b + c) = a \cdot b + a \cdot c, (b + c) \cdot a = b \cdot a + c \cdot b.$$

Definice 2.2 (Komutativní okruh)

Komutativní okruh je okruh, pro který platí $a \cdot b = b \cdot a$.

Definice 2.3 (Okruh s jednotkou)

Okruh s jednotkou je okruh, který má prvek $1 \in R : a \cdot 1 = a$.

Definice 2.4 (Obor (integrity))

Obor (integrity) je komutativní okruh s jednotkou tak, že $0 \neq 1 \land (a \neq 0 \land b \neq 0 \implies a \cdot b \neq 0)$.

Definice 2.5 (Těleso)

Těleso je komutativní okruh s 1, že $0 \neq 1$ a $\forall 0 \neq a \in R \; \exists b \in R : a \cdot b = 1$.

Definice 2.6 (Podokruh)

Podokruh S okruhu R je $(S, +|_S, \cdot|_S, -|_S, 0)$, kde $0 \in S$ a $\forall a, b \in S : a + b \in S \land a \cdot b \in S \land -a \in S$. Značíme $R \leq S$.

1

Definice 2.7 (Podobor)

S je podobor oboru R tehdy, když $S \leq R$ a S je obor.

Definice 2.8 (Podtěleso)

S je podtěleso tělesa R tehdy, když $S \leq R$ a S je těleso.

Definice 2.9 (Gaussova čísla)

 $\mathbb{Z}[i] = \{a + b_i | a, b \in \mathbb{Z}\}$ jsou tzv. Gaussova celá čísla.

 $\mathbb{Q}[i] = \{a + bi | a, b \in \mathbb{Q}\}$ jsou tzv. Gaussova racionální čísla..

2.1 Základní vlastnosti

Tvrzení 2.1

Mějme množinu X s asociativní (tj. (a*b)*c = a*(b*c)) operací $*: X \times X \to X$. Pak hodnota výrazu $a_1*a_2*a_3*\ldots*a_n$ nezávisí na uzávorkování.

 $D\mathring{u}kaz$

Indukcí.

Tvrzení 2.2 (Základní vlastnosti oborů)

Bud R okruh a $a, b, c \in R$.

$$1)a + c = b + c \implies a = b,$$

$$2)a \cdot 0 = 0,$$

$$3) - (-a) = a, -(a + b) = -a + (-b),$$

$$4) - (a \cdot b) = (-a) \cdot b = a \cdot (-b), (-a) \cdot (-b) = a \cdot b,$$

$$5) \textit{Je-li } R \textit{ obor, } pak \ a \cdot c = b \cdot c \land c \neq 0 \implies a = b.$$

Důkaz

L

$$1)(a+c) + (-c) = (b+c) + (-c) \implies a+0 = b+0 \implies a = b,$$

$$2)0 + a \cdot 0 = a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \implies 0 = a \cdot 0.$$

Tvrzení 2.3 (Každé těleso je obor)

 $Z \ existence \ a^{-a} \ vyplývá \ a \neq 0, b \neq 0 \implies ab \neq 0.$

Důkaz (Sporem) $a \neq 0, b \neq 0, ab = 0 \implies b = (a^{-1} \cdot a) \cdot b = a^{-1} \cdot (ab) = a^{-1} \cdot 0 \text{ a podle předchozího tvrzení (část 2) } b = 0 4.$

Tvrzení 2.4

Každý konečný obor je těleso.

 $D\mathring{u}kaz$

Viz skripta.

Definice 2.10

Nechť R je okruh s jednotkou 1. Charakteristika R je nejmenší přirozené číslo n tak, že $\underbrace{1+1+\ldots+1}_{n\text{-krát}}$, pokud takové n neexistuje, říkáme, že charakteritika je 0 (případně ∞).

Prvek $\underbrace{1+1+\ldots+1}_{n\text{-krát}}$ značíme n, obdobně $\underbrace{-1-1-\ldots-1}_{n\text{-krát}}$ značíme -n.

Tvrzení 2.5

Každý obor má charakteristiku 0 nebo p.

 $D\mathring{u}kaz$

Pro 1 je to cvičení. V případě, že charakteristika je $n=k\cdot l,\,k,l\neq 1$, pak $0=k\cdot l$. Jsme v oboru, tedy k=0 nebo l=0. Spor s minimalitou n.

2.2 Izomorfismus

Definice 2.11 (Homomorfismus)

Nechť R,S jsou okruhy. Zobrazení $\varphi:R\to S$ je homomorfismus okruhů, pokud $\forall a,b\in R$:

$$\varphi(a+b) = \varphi(a) + \varphi(b) \wedge \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b).$$

Je-li homeomorfismus φ bijekce, nazývá se izomorfismus.

Poznámka

Inverzní zobrazení k izomorfismu je izomorfismus.

Definice 2.12

Okruhy R, S jsou izomorfní, pokud existuje izomorfismus $\varphi : R \to S$. Značíme $R \simeq S$.

Například

Tzv. prvookruh (tj. všechny prvky tvaru $1+1+\ldots+1$ nějakého okruhu s jedničkou) je izomorfní \mathbb{Z}_n resp. (v tomto případě musíme zahrnout i $-1-1-\ldots-1$) \mathbb{Z} .

2.3 Podílové těleso

Definice 2.13 (Multiplikativní množina)

Necht R je obor. Pak $M\subseteq R$ je multiplikativní množina, pokud $0\notin M, 1\in M$ a $a,b\in M\implies a\cdot b\in M.$

 $Nap \check{r} iklad$

Nejdůležitější MM je $M = R \setminus \{0\}.$

Definice 2.14 (Podílové těleso)

Nechť R je obor a M multiplikativní množina. Definujeme relaci \sim na $R \times M$:

$$(a,b) \sim (c,d) \equiv ad = bc.$$

Blok $[(a,b)]_{\sim}$ nazýváme zlomek a značíme $\frac{a}{b}$.

Na $Q = \left\{ \frac{a}{b} | a \in R, b \in M \right\}$ definujeme operace

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \ \frac{a}{b}\frac{c}{d} = \frac{ac}{bd}, \ -\frac{a}{b} = \frac{-a}{b}, \ 0 = \frac{0}{1}, 1 = \frac{1}{1}.$$

Tedy Q je okruh s jednotkou. $(Q, +, -, \cdot, 0, 1)$ se nazývá lokalizace oboru R v MM M. Pokud $M = R \setminus \{0\}$, pak se nazývá podílové těleso.

Tvrzení 2.6

Máme R, N, Q z předchozí definice. 1) Q je obor. 2) $\left\{\frac{a}{1}|a\in R\right\}$ je podobor Q, který je izomorfni s R. 3) Je-li $M=R\setminus\{0\}$, pak Q je těleso.

Důkaz

- 1) Ověříme axiomy. Triviální. Důležitý je hlavně součin ne0 prvků.
 - 2) Ověříme uzavřenost a obsah jedničky. Ověříme, že zjevné zobrazení je izomorfizmus.

3) Ověříme axiomy. Na tři řádky.

3 Polynomy

3.1 Obory polynomů

Poznámka (Značení)

V celé sekci Polynomů je R komutativní okruh s jednotkou.

Definice 3.1 (Polynom)

Polynom v proměnné x nad okruhem R je výraz tvaru

$$a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_n \cdot x^n,$$

kde $n \ge 0$, $a_1, \ldots, a_n \in R$ a $a_n \ne 0$ vyjma n = 0. a_1, \ldots, a_n jsou koeficienty, x proměnná. Navíc se dodefinovává $a_m = 0 \forall m > n$.

Číslo $n = \deg f$ je stupeň polynomu f. $\deg 0 = -1$. a_n se nazývá vedoucí koeficient a a_0 absolutní člen.

f je monický, pokud $a_n = 1$. Množinu všech polynomů značíme R[x].

Definice 3.2 (Operace na R[x])

$$\sum_{i=0}^{m} a_i x^i + \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{\max(m,n)} (a_i + b_i) x^i; - \sum_{i=0}^{m} a_i x^i = \sum_{i=0}^{m} -a_i x^i;$$
$$\left(\sum_{i=0}^{m} a_i x^i\right) \left(\sum_{i=0}^{n} b_i x^i\right) = \sum_{i=0}^{m+n} \sum_{j+k=i, j, j \ge 0} (a_j \cdot b_k) x^i$$

Tvrzení 3.1

R[x] je komutativní okruh s jednotkou. Navíc je-li R obor, pak i R[x] je obor $\land \deg(fg) = \deg f + \deg g \ \forall f, g \in R[x], f \neq 0 \neq g$.

Důkaz

Jednoduché, ve skriptech. Druhá část přes vedoucí koeficienty (jsou nenulové).

Definice 3.3 (Polynom více proměnných)

Induktivní definicí: Polynom v proměnných x_1, x_2, \ldots, x_m nad okruhem R je polynom v proměnné x_m nad okruhem $R[x_1, \ldots, x_{m-1}]$.

Značíme $R[x_1, ..., x_m] = (R[x_1, ..., x_{m-1}])[x_m].$

Každý $f \in R[x_1, \dots, x_m]$ jde jednoznačně napsat v distribuovaném tvaru (je potřeba

dokázat, ale tím pádem nezáleží na pořadí proměnných):

$$\sum_{k_1, \dots, k_m}^{n} a_{k_1, \dots, k_m} x_1^{k_1} \cdot \dots \cdot x_m^{k_m}.$$

3.2 Hodnota polynomu

Definice 3.4

 $R \leq S$ obory. $f = a_0 + a_1 \cdot x + \ldots + a_n \cdot x^n \in R[x], u \in S$. Hodnota polynomu f po dosazení u je definována:

$$f(u) := a_0 + a_1 \cdot u + \ldots + a_n \cdot u^n \in S.$$

(Operace jsou v oboru S.)

Zobrazení $S \to S$, $u \mapsto f(u)$ nazýváme polynomiální zobrazení dané polynomem f.

3.3 Dělení polynomu se zbytkem

Definice 3.5

 $f,g\in R[x].$ g dělí f, zapisujeme $g|f,\equiv \exists h\in R[x]$ tak, že f=gh.

Je-li R obor a $g|f \neq 0 \implies \deg g \leq \deg f$ z tvrzení výše.

Tvrzení 3.2 (Dělení polynomů se zbytkem)

Nechť R je obor, Q podílové těleso. $f,g \in R[x], g \neq 0$. Pak existuje právě jedna dvojice $q,r \in Q[x]$:

$$f = gq + r \wedge \deg r < \deg g.$$

Je-li navíc g monický, pak $q, r \in R$.

 $fdivg := q \ a \ fmodg := r.$

 $q_0 = 0, r_0 = f$. Induktivně (l(f) := vedoucí koeficient polynomu f):

$$q_{i+1} = q_i + \frac{l(r_i)}{l(g)} x^{\deg r_i - \deg g}, \ r_{i+1} = r_i - \frac{l(r_i)}{l(g)} x^{\deg r_i - \deg g} \cdot g.$$

Vidíme, že stupeň r_i se snižuje, a když deg $r_i < \deg g$, tak skončíme a $r = r_i, q = q_i$.

Jednoznačnost:

$$f = gq + r = g\tilde{q} + \tilde{r} \implies g(q - \tilde{q}) = \tilde{r} - r \implies g|\tilde{r} - r \implies \tilde{r} - r = 0.$$

3.4 Kořeny a dělitelnost

Definice 3.6

At $R \leq S$ jsou obory, $f \in R[x]$, $a \in S$. Pak a je kořen $f \equiv f(a) = 0$.

Tvrzení 3.3

Bud R obor, $f \in R[x]$, $a \in R$. a je kořen $f \Leftrightarrow x - a|f$.

 $D\mathring{u}kaz$

$$\implies$$
: $f = (x - a) \cdot g$ pro nějaké $g \in R[x] \implies f(a) = (a - a) \cdot g(a) = 0$.

Buď $q,r \in R[x]$ podíl a zbytek při dělení f monickým polynomem x-a. $f=(x-a)\cdot q+r,$ deg $r<\deg(x-a)=1 \implies r$ je konstantní polynom. Dosadíme a:

$$0 = f(a) = (a - a)q(a) + r(a) = r(a).$$

r je konstantní $\implies r = 0$. $f = (x - a) \cdot q + 0 \implies x - a|f$.

Pozorování

$$fmodx - a = f(a)$$

Věta 3.4 (Počet kořenů)

R obor, $0 \neq f \in R[x]$. Pak f má nejvýše $\deg f$ kořenů v R.

 $D\mathring{u}kaz$

Indukcí dělením x – kořen.

Definice 3.7 (Vícenásobný kořen)

At $f \in R[x], a \in R$. Pak a je n-násobný kořen $f \equiv (x-a)^n | f$ a $(x-a)^{n-1} / f$.

4 Číselné obory

4.1 Okruhová a tělesová rozšíření

Definice 4.1

Nechť $R \leq S$ jsou komutativní okruhy, $a_1, \ldots, a_n \in S$. Definujeme $R[a_1, \ldots, a_n]$ jako nejmenší podokruh okruhu S, který obsahuje R a a_1, \ldots, a_n . Ten nazveme okruhové rozšíření R o prvky a_1, \ldots, a_n .

Nechť $R \leq S$ jsou tělesa, $a_1, \ldots, a_n \in S$. Definujeme $R(a_1, \ldots, a_n)$ jako nejmenší podtěleso tělesa S, které obsahuje R a a_1, \ldots, a_n . To nazveme tělesové rozšíření R o prvky a_1, \ldots, a_n .

Tvrzení 4.1

Mějme $R \leq S$ komutativní okruhy s 1, $a \in R$. Pak $R[a] = \{f(a)|f \in R[x]\}$. Jsou-li R, S navíc tělesa, pak $R(a) = \left\{\frac{f(a)}{g(a)}|f,g \in q[R],g(a) \neq 0\right\}$.

 $D\mathring{u}kaz$

Dokážeme, že je to podokruh, že obsahuje R i a a že je nejmenší takový.

Pozorování

At $T \leq S$ jsou tělesa, potom $T[a] \subseteq T(a)$.

Ale např. $\mathbb{Q}[i] = \mathbb{Q}(i)$.

Tvrzení 4.2

Nechť $T \leq S$ jsou tělesa, a není kořenem žádného nenulového polynomu z T[x]. Pak $T[a] \neq T(a)$.

 $D\mathring{u}kaz$

Podle předchozího tvrzení $T[a] = \{f(a)|f \in T[x]\}$. Kdyby T[a] = T(a), pak T[a] je těleso, tedy $a^{-1} \in T[a] \implies a^{-1} = f(a)$ pro nějaký $f \in T[x]$, tedy $a \cdot f(a) - 1 = 0$. Tedy a je kořenem $x \cdot f - 1$. 4.

4.2 Algebraická a transcendentní čísla

Definice 4.2

 $a \in \mathbb{C}$ je algebraické, pokud je kořenem nějakého nenulového polynomu $f \in \mathbb{Z}[x]$.

Jinak a je transcendentní.

Poznámka (První důkaz transcendentního čísla) Luvil? $\sum_{i=1}^{\infty} 10^{-i!}$.

Další čísla (19. stol): π , e.

Cantor: náhodné reálné číslo je transcendentní (tj. algebraická čísla jsou spočetná / mají míru 0).

Tvrzení 4.3

Množina algebraických čísel je spočetná.

 $D\mathring{u}kaz$

Indexem polynomu $f = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{Z}[x], f \neq 0$ nazvěme číslo $|a_0| + |a_1| + \ldots + |a_n| + n \in N$. Indexů existuje jen konečně mnoho daného indexu (díky započítání stupně do indexu). Všechny polynomy seřadím podle rostoucího indexu. Nyní už je zřejmě $\mathbb{Z}[x]$ spočetná. Navíc každý polynom má konečně kořenů, tedy, tedy i kořenů je spočetně mnoho.

Tvrzení 4.4

Množina reálných čísel je nespočetná.

5 Elementární teorie čísel

5.1 Dělitelnost a základní věta aritmetiky

Definice 5.1 (Dělitelnost v celých číslech)

At $a, b \in \mathbb{Z}$, b dělí a, značíme b|a, pokud $\exists c \in \mathbb{Z} : a = bc$.

 ± 1 a $\pm a$ se nazývají nevlastní dělitelé, ostatní jsou vlastní.

Tvrzení 5.1

Mějme $a, b \in \mathbb{Z}, b \neq 0$. Pak $\exists !q, r \in \mathbb{Z} : a = qb + r, 0 \leq r < |b|$. Značíme $a \div b = q$ a a mod b = r. Navíc $b | a \Leftrightarrow a \mod b = 0$

Definice 5.2 (Prvočíslo a složené číslo)

Prvočíslo je $p \in \mathbb{Z}, p > 1$, které má pouze nevlastní dělitele. Ostatní přirozená čísla > 1 jsou složená.

Věta 5.2 (Základní věta aritmetiky)

 $\forall a \in \mathbb{Z}, a > 1$ existují po dvou různá prvočísla p_1, \ldots, p_n a $k_1, \ldots, k_n \in \mathbb{N}$ tak, že $a = p_1^{k_1} \cdot \ldots \cdot p_n^{k_n}$. Tento rozklad je až na pořadí jednoznačný.

 $D\mathring{u}kaz$

Později.

5.2 NSD

Definice 5.3 (NSD, NSN)

Největší společný dělitel $a, b \in \mathbb{Z}$ je největší $c \in \mathbb{N}$ takové, že c|a, c|b. Značíme ho NSD(a, b) (neexistuje pro a = b = 0).

Nejmenší společný násobek $a,b\in\mathbb{Z}\setminus\{0\}$ je nejmenší $c\in\mathbb{N}$ tak, že a|c a b|c. Značíme ho $\mathrm{NSN}(a,b)$.

Poznámka

Základní věta aritmetiky $\implies a \cdot b = \text{NSD}(a, b) \cdot \text{NSN}(a, b)$.

Rychlý algoritmus na hledání NSN je Euklidův algoritmus.

Tvrzení 5.3 (Bézoutova rovnost)

 $\forall a,b \in \mathbb{Z}, \, a \neq 0 \,\, nebo \,\, b \neq 0, \, \exists u,v \in \mathbb{Z} \,\, (\textit{B\'{e}zoutovy koeficienty}) \,\, tak, \, \check{z}e \,\, a \cdot u + b \cdot v = \text{NSD}(a,b).$

 $D\mathring{u}kaz$

Rozšířený Euklidův algoritmus.

Lemma 5.4

At p je prvočíslo, $a, b \in \mathbb{Z}$. Pak $p|a \cdot b \implies p|a \vee p|b$.

Poznámka

V obecném oboru neplatí. Např. v $\mathbb{Z}[\sqrt{5}]$ $2|(\sqrt{5}+1)(\sqrt{5}-1)=4$, ale $2 / \sqrt{5}\pm 1$

BÚNO p / a, tedy chceme, aby p | b. p je prvočíslo, tudíž nemá vlastní dělitele \Longrightarrow NSD(p,a) = bud p (to by ale p | a), nebo 1. Dle tvrzení o Bézoutově rovnosti $\exists u, v \in \mathbb{Z}$: pu + av = 1. Vynásobíme b: pbu + abv = b. Ale p | ab, takže p | pbu + abv = b.

Lemma 5.5

 $p \text{ prvo}\check{c}\text{islo}, a_1, \ldots, a_n \in \mathbb{Z}. p|a_1 \cdot \ldots \cdot a_n \implies \exists i : p|a_i.$

 $D\mathring{u}kaz$

Indukcí z předchozího tvrzení.

Důkaz (Základní věta aritmetiky)

Existence: pro spor ať a je nejmenší přirozené číslo, které nemá rozklad na součin. Buď je a prvočíslo, ale pak má rozklad $a=a^1$. Nebo je a složené, tedy $a=b\cdot c, 1< b, c, < a$, ale a bylo nejmenší číslo, které nemá rozklad, tedy b i c mají rozklad. Ale pak součin těchto rozkladů je a.

Jednoznačnost: a nejmenší přirozené číslo, které má 2 rozklady: $a=p_1^{k_1}\cdot\ldots\cdot p_m^{k_m}=q_1^{l_1}\cdot\ldots\cdot q_n^{l_n}$. Pak $p_1|q_1^{l_1}\cdot\ldots\cdot q_n^{l_n}$. Podle předchozího lemmatu $\exists i:p_1|q_i$. Jsou to prvočísla, tedy $p_1=q_i$. Potom $p_1^{k_1-1}\cdot\ldots\cdot p_m^{k_m}=q_1^{l_1}\cdot\ldots\cdot q_i^{k_i-1}\ldots\cdot q_n^{l_n}$ jsou dva rozklady čísla < a. 4.

5.3 Kongruence

Poznámka (Historie)

Symbol \equiv zavedl v roce 1801 Gauss.

Definice 5.4

 $a,b,m\in\mathbb{Z},m\neq 0$. a je kongruentní s b modulo m $(a\equiv b(\mod m)),$ pokud m|a-b. (Ekvivalentně a,b dávají stejný zbytek po dělení m.)

Pozorování

Být kongruentní $\mod m$ je ekvivalence.

Tvrzení 5.6 (Vlastnosti kongruence)

 $a, b, c, d, m \in \mathbb{Z}, m \neq 0.$ $a \equiv b \mod m, c \equiv d \mod m.$

 $a+c=b+d \mod m, \qquad a-c\equiv b-d \mod m, \qquad a\cdot c\equiv b\cdot d \mod m, \qquad a^k\equiv b^k \mod m, k\in\mathbb{N}.$

 $c \neq 0 \implies a \equiv b \mod m \Leftrightarrow ac \equiv bc \mod mc$, $NSD(c, m) = 1 \implies a \equiv b \mod m \Leftrightarrow ac \equiv bc$

Z definice rozepsáním.

 $a \equiv b \mod m \Leftrightarrow \exists q : a - b = mq \Leftrightarrow ac - bc = mcq \Leftrightarrow ac \equiv bc \mod mc.$

 $cu+mv=1, cu=1-mv \implies (ac \equiv bc \mod m \Leftrightarrow a \equiv a(1-mv) \equiv auc \equiv buc \equiv b(1-mv) \not \equiv b \mod m$

5.4 Eulerova věta a RSA

Definice 5.5 (Eulerova funkce)

Eulerova funkce $\varphi(n)$ značí (pro $n \in \mathbb{N}$) počet $k \in \{1,2,\ldots,n\}$ nesoudělných s n, čili $\mathrm{NSD}(k,n)=1.$

Tvrzení 5.7

 $n = p_1^{k_1} \cdot \ldots \cdot p_m^{k_m} \ prvočíselný \ rozklad, \ n > 1. \ Pak \ \varphi(n) = p_1^{k_1-1}(p_1-1) \cdot \ldots \cdot p_m^{k_m-1}(p_m-1).$

 $D\mathring{u}kaz$

Příště.

Věta 5.8 (Eulerova)

Pokud a, m jsou nesoudělná přirozená čísla, pak $a^{\varphi(m)} \equiv 1 \mod m$.

 $Speciálním \ p \v i padem \ je \ Mal \'a \ Fermatova \ v \v eta: p \ prvo \v c \'islo, p \ \not | a \implies a^{p-1} \equiv 1 (\mod p).$

□ Důkaz

 Φ_m nechť značí množinu $\{k\in[m]|\operatorname{NSD}(k,m)=1\}.$ $\varphi(m)=|\Phi_m|.$

Lemma: a, m nesoudělná přirozená čísla, $m \neq 1$. Definujeme zobrazení $f_a : \Phi_m \to \Phi_m$, $k \mapsto ka \mod m$. Pak f_a je dobře definované \wedge je to bijekce.

Důkaz k, a nesoudělná s $m \implies k \cdot a$ nesoudělné s $m \implies k \cdot a \mod m$ nesoudělné s $m \implies k \cdot a \mod m \in \Phi_m$. $f_a(k) = f_a(l) \implies k \cdot a \equiv l \cdot a \mod m \implies k \equiv l \mod m$ (a je nesoudělné s m, tedy můžeme použít tvrzeni výše) $\implies k = l$. f_a je prosté a na konečné množině, tedy je bijekce.

$$\prod_{b \in \Phi_m} b = \prod_{b \in \Phi_m} f_a(b) = \prod_{b \in \Phi_m} (ab \mod m) \equiv a^{\varphi(m)} \prod_{b \in \Phi_m} b$$

 $c=\prod_{b\in\Phi_m}b,\,c\equiv a^{\varphi(m)}c\mod m$ a c je nesoudělné s m, tedy dle tvrzení výše je $1\equiv a^{\varphi(n)}\mod m$.

Poznámka

Lemma z posledního důkazu nám říká, že každý prvek z Φ_m má inverzi v okruhu \mathbb{Z}_m .

Ten můžeme najít buď přes Eulerovu větu, nebo přes Bézoutovu větu. (Druhý způsob je zpravidla rychlejší.)

Poznámka (RSA (Rivest Shamir Adleman)) Šifrovací algoritmus založený na Eulerově větě.

5.5 Čínská zbytková věta

Poznámka

Špatně: Uvedená v knize umění války (počítání vojáků).

Správně: vymyslel ji čínský matematik, který se jmenoval stejně jako legendární generál, autor knihy výše.

Věta 5.9 (Čínská zbytková)

Nechť $m_1, \ldots, m_n \in \mathbb{N}$ po dvou nesoudělná čísla. Označíme $M = m_1 \cdot \ldots \cdot m_N$. Ať $u_1, \ldots, u_n \in \mathbb{Z}$. $Pak^a \exists ! x \in [M-1]_0$ tak, že $x \equiv u_1 \mod m_1, \ldots, x \equiv u_n \mod m_n$.

 $D\mathring{u}kaz$

Jednoznačnost: At $x, y \in [M-1]_0$, pro které platí všechny kongruence. Potom $\forall i : m_i | x - y$, tedy M|x - y. Ale |x - y| < M, tudíž x - y = 0.

Existence: $f:[M-1]0 \to [m_1-1]_0 \times \ldots \times [m_n-1]_0$, $x \mapsto (x \mod m_1,\ldots,x \mod m_n)$. Korektní definice zobrazení (mimochodem je to dokonce isomorfismus okruhů). f je prosté (díky jednoznačnosti). Množiny jsou stejně velké, tedy je to dokonce bijekce, a proto existuje inverze, tudíž prvek (u_1,\ldots,u_n) musí mít obraz při zobrazení f^{-1} , který z definice splňuje vlastnosti hledaného prvku..

 $[M-1]_0 = \{0, 1, \dots, M-1\}$

Důkaz (Vzorec pro eulerovu formuli)

1) $\varphi(p^k) = p^{k-1}(p-1)$. 2) a, b nesoudělná $\implies \varphi(ab) = \varphi(a) \cdot \varphi(b)$. Následně se vzorec dokáže aplikováním hodněkrát 2 na rozklad a jedničky nakonec.

- 1) Počet čísel soudělných s p^k z množiny $[p^k]$ je $p^{k-1},$ tedy počet nesoudělných je $p^k-p^{k-1}.$
 - 2) Funkce z důkazu čínské zbytkové věty je bijekce. Uvažujme zúžení f na $\Phi_{a \cdot b}$. Chceme:

obraz zúžení je $\Phi_a \times \Phi_b$, tedy $\varphi(ab) = |\Phi_{ab}| = |\Phi_a \times \Phi_b| = \varphi(a) \cdot \varphi(b)$. Důkaz:

a) f zobrazí Φ do $\Phi_a \times \Phi_b$, čili, že $\mathrm{NSD}(x, a \cdot b) = 1$ implikuje $\mathrm{NSD}(x \mod a, a) = 1$, $\mathrm{NSD}(x \mod b, b) = 1$. b) f zobrazí $\Phi_{a,b}$ na $\Phi_a \times \Phi_b$, čili pokud $\mathrm{NSD}(u, a) = 1$, $\mathrm{NSD}(v, b) = 1$, pak to jediné x, které se zobrazí na (u, v), leží v $\Phi_{a,b}$.

NSD $(x, ab) = 1 \Leftrightarrow \mathrm{NSD}(x, a) = 1 \land \mathrm{NSD}(x, b) = 1 \Leftrightarrow \mathrm{NSD}(x \mod a, a) = 1 \land \mathrm{NSD}(x \mod b, b) = 1$.

a) je zleva doprava a b) je zprava doleva.

6 Abstraktní dělitelnost

6.1 Dělitelnost a asociovanost

Definice 6.1 (Dělitelnost, asociovanost, inverz)

Robor, $a,b\in R.$ b dělí a v R, značíme b|a, pokud existuje $c\in R$ tak, že $a=b\cdot c.$

a, b jsou asociované v R, pokud a|b, b|a. Značíme a||b.

 $a \in R$ je invertibilní, pokud existuje $b \in R$ tak, že $a \cdot b = 1$ (značíme $b = a^{-1}$).

Pozorování

a je invertibilní $\Leftrightarrow a||1.$

Relace | je reflexivní \wedge tranzitivní.

Tvrzení 6.1

 $R \ obor, \ a,b \in R. \ Pak \ a||b \Leftrightarrow \exists \ invertibilni \ prvek \ q \in R \ tak, \ \check{z}e \ a = bq.$

 $D\mathring{u}kaz$

$$\Leftarrow: (a = bq \implies b|a) \land (b = aq^{-1} \implies a|b).$$

 \implies : $a=0 \implies b=0$. At $a\neq 0$, $(b|a \implies a=bu) \land (a|b \implies b=av) \implies a=bu=auv$. Můžeme vykrátit $a\neq 0$, tj. 1=uv, a u,v jsou tedy invertibilní.

Definice 6.2 (Kongruence)

 $a, b, m \in R : a \equiv b \mod m$, pokud m|a - b.

Pozorování

Je to ekvivalence, zachovává se přičtením a odečtením, ale nemusí platit krácení.

6.2 Kvadratická rozšíření Z

Definice 6.3 (Kvadratické rozšíření \mathbb{Z})

Kvadratické rozšíření \mathbb{Z} je $\mathbb{Z}[\sqrt{s}]=\{a+b\sqrt{s}|a,b\in\mathbb{Z}\}$, kde $s\in\mathbb{Z}$, s není druhá mocnina celého čísla.

 $\ensuremath{\textit{D\'ukaz}}$ (Tvar $\mathbbmss{Z}\left[sqrts\right]$)

Dokáže se uzavřenost.

Definice 6.4

Norma na oboru $\mathbb{Z}[\sqrt{s}]$ je zobrazení \ni : $\mathbb{Z}[\sqrt{s}] \to \mathbb{N} \cup \{0\}, a + b\sqrt{s} \mapsto |a^1 - b^2 s|$.

Tvrzení 6.2

 $\forall u, v \in \mathbb{Z}[\sqrt{s}] \ plati:$

- $1. \ni (u \cdot v) = \ni (u) \cdot \ni (v),$
- 2. $\ni (u) = 1 \Leftrightarrow u \text{ je invertovateln\'e}.$
- 3. Pokud $u|v \ a \ v|u, \ pak \ni (u)|\ni (v) \ (vime \ z \ 1)) \ a\ni (u)\neq\ni (v).$

- 1) vezmu a ověřím. Nebo využiji, že $\ni (u) = |u \cdot u'|$, kde $u' = a b\sqrt{s}$, $u = a + b\sqrt{s}$. Zjistíme, že $(u \cdot v)' = u' \cdot v'$. Potom $|u \cdot v \cdot (u \cdot v)'| = |u \cdot u'| \cdot |v \cdot v'|$.
- 3) $u=0 \implies v=0 \implies v|u.$ At tedy v=uc pro $c\in\mathbb{Z}[\sqrt{s}].$ At $\ni (u)=\ni (v)=\ni (u\cdot c)=\ni (u)\cdot\ni (c) \implies\ni (c)=1 \implies c$ je invert $\implies v||u,$ čili v|u spor. \square

Pozor

Norma nesplňuje trojúhelníkovou nerovnost!

Tvrzení 6.3 (Dělení Gaussových čísel se zbytkem)

$$\forall \alpha, \beta \in \mathbb{Z}[i], \beta \neq 0 \ \exists \gamma, \delta \in \mathbb{Z}[i] : \alpha = \beta \cdot \gamma + \delta \land \ni (\delta) <\ni (\beta).$$

 $\mathbb{Z}[i] \subseteq \mathbb{C}$, tudíž berme $\frac{\alpha}{\beta} \in \mathbb{C}$. Zvolme $\gamma \in \mathbb{Z}[i]$ jako nejbližší hodnotu k $\frac{\alpha}{\beta}$. Položme $\delta = \alpha - \beta \cdot \gamma$. $\frac{\delta}{\beta} = \frac{\alpha}{\beta} - \gamma$, tj. $|\frac{\delta}{\beta}| \leq \frac{\sqrt{2}}{2}$, tj. $\exists \delta \leq \left(\frac{\sqrt{2}}{2}\right)^2 |\beta|^2 < 1 \ni (\beta)$.

Poznámka

Takováto definice dělení se zbytkem funguje ještě pro $\mathbb{Z}[\sqrt{-2}]$ a $\mathbb{Z}[\sqrt{2}]$, ale pro ostatní $\mathbb{Z}[\sqrt{s}]$ už nefunguje.

6.3 Největší společný dělitel

Definice 6.5 (Největší společný dělitel, nesoudělnost a největší společný

Pro $a,b \in R$, R obor řekneme, že $c \in R$ je největší společný dělitel a,b, značíme c = NSD(a,b), pokud 1) $c|a \wedge c|b$ a 2) $\forall d|a,d|b:d|c$.

a, b jsou nesoudělné, pokud NSD(a, b) = 1.

Obdobně definujeme $NSN(a, b) = c \equiv a|c \wedge b|c \wedge \forall d, a|d, b|d : c|d.$

Poznámka

NSD nemusí existovat. Zároveň není jednoznačně určený. Ale je jednoznačně určený až na asociovanost.

6.4 Ireducibilní prvky a rozklady

Definice 6.6 (Vlastní dělitel a ireducibilní prvek)

Robor. $a \in R \setminus \{0\}.$ $b \in R$ je vlastní dělitela, pokudb|a a $b \not || 1$ a $b \not || a.$

 $a \neq 0$ je ireducibilní, pokud $a \not \parallel 1$ a nemá žádné vlastní dělitele.

Definice 6.7 (Ireducibilní rozklad)

Ireducibilní rozklad prvku a je zápis $a||p_1^{k_1}p_2^{k_2}\dots p_n^{k_n}$, kde p_1,\dots,p_n jsou ireducibilní prvky a $p_i \not||p_j$, pro $i \neq j$, a kde $k_1,\dots,k_n \in \mathbb{N}$.

Řekneme, že a má jednoznačný ireducibilní rozklad, pokud má právě 1 rozklad až na pořadí a asociovanost.

6.5 Prvočinitelé

Definice 6.8 (Prvočinitel)

R obor, pak $p \in R, p \not| |1$ je prvočinitel, pokud $\forall a, b \in R : p|a \cdot b \implies p|a \vee p|b$.

 $\begin{array}{c} \textit{Pozorován\'i} \\ \textit{p} \text{ je prvočinitel} \implies \textit{p} \text{ je ireducibiln\'i.} \\ \hline \textit{D\'ukaz} \\ \text{At } \textit{p} = \textit{ab}. \text{ Pak } \textit{p}|\textit{a} \cdot \textit{b} \stackrel{\text{prvo\'cinitel}}{\Longrightarrow} \textit{p}|\textit{a} \vee \textit{p}|\textit{b}. \text{ Z\'arove\'n z\'rejm\'e } \textit{a}|\textit{p} \text{ a} \textit{b}|\textit{p}, \text{ tedy } \textit{p}||\textit{a} \implies \textit{b}||1 \text{ nebo} \\ \textit{p}||\textit{b} \implies \textit{a}||1. \text{ Tedy } \textit{a}, \textit{b} \text{ jsou nevlastn\'i d\'elitel\'e.} \\ \hline \\ \hline \end{array}$

7 Existence a jednoznačnost ireducibilního rozkladu

7.1 Gaussovské obory

Definice 7.1 (Gaussovský obor)

Obor R je gaussovský, pokud $\forall a \in R, a \neq 0, a \not| |1$, má jednoznačný ireducibilní rozklad.

 $P\check{r}iklad$ (Otevřený problém) $\mathbb{Z}[\sqrt{s}]$ je gaussovský pro ∞ mnoho s. (Čeká se, že ano.)

Poznámka (Rozšíření definice ireducibilního rozkladu) a||1, pak řekneme, že ireducibilní rozklad a je $a||1 = \dots^0$.

Tvrzení 7.1 (Vlastnosti gaussovských oborů)

R je gaussovský obor a $a, b \in R$, $a, b \neq 0$. At navíc je $a||p_1^{k_1} \cdot \ldots \cdot p_n^{k_n}$ je ireducibilní rozklad. $Pak \ b|a \Leftrightarrow b||p_1^{l_1} \cdot \ldots \cdot p_n^{l_n}|$ (nemusí být rozklad, protože l_i smí být 0), $kde \ \forall i : 0 \leq l_i \leq k_i$.

Důkaz

 $\Rightarrow: \text{Af } b = rp_1^{l_1} \cdot \ldots \cdot p_n^{l_n} \text{ a } a = q \cdot p_1^{k_1} \cdot \ldots \cdot p_n^{k_n}, \text{ kde } r||1||q. \text{ Chci: } b|a, \text{ \'eili} \ \exists c: a = b \cdot c.$ $c = q \cdot r^{-1} \cdot p_1^{k_1 - l_1} \cdot \ldots \cdot p_n^{k_n - l_n}.$

 $\Longrightarrow: b|a \implies \exists c: a = b \cdot c. \text{ Af } b||q_1^{s_1} \cdot \ldots \cdot q_u^{s_u}, \, c||r_1^{t_1} \cdot \ldots \cdot r_v^{t_v} \text{ jsou ireducibilní rozklady.}$ Zkombinujeme na rozklad $b \cdot c: B \cdot C||q_1^{s_1'} \cdot \ldots \cdot q_u^{s_u'} \cdot r_{i_1}^{t_{i_1}} \cdot \ldots \cdot r_{i_w}^{t_{i_w}} \text{ (vyfiltrujeme z rozkladu } c \text{ ty } r_i, \text{ který jsou asociovány s nějakým } q_j). Máme 2 rozklady <math>b \cdot c = a. \text{ Z jednoznačnosti rozkladů } q_i = p_{\pi(i)} \wedge s_i' = k_{\pi(i)} \geq s_i. \text{ Tudíž } b||p_{\pi(1)}^{s_1} \cdot \ldots \cdot p_{\pi(n)}^{s_n}, \text{ kde } s_i \leq k_{\pi(i)} \text{ (a doplníme chybějící } p_j^0).}$