ПРАВИТЕЛЬСТВО САНКТ-ПЕТЕРБУРГА KOMUTET ПО HAYKE И ВЫСШЕЙ ШКОЛЕ

CAHKT-ПЕТЕРБУРГСКОЕ ГОСУЛАРСТВЕННОЕ OБPA30BATE/IЬHOE УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "АВТОТРАНСПОРТНЫЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЙ КОЛЛЕДЖ"

PACYETHO-FPA PUYECKUE PAGOTH 5-7

Специальность 190604 – Техническое обслуживание и ремонт автомобильного транспорта

Дисциплина Техническая механика

РАБОЧАЯ ТЕТРАЛЬ

AT3MK2. PT__O_. 000

Студента группы __-_ ____

Nº PΓP	Nº5	Nº6	Nº7
Оценка			
Подпись преподавателя			
Дата			

Содержание

1 Расчетно–графическая работа №5 Кручение	3
2 Расчетно–графическая работа № 6 Гипотезы прочности	10
3 Расчетно–графическая работа № 7 Устойчивость сжатых стержней	18
Литепатипа	23

Изм. Лист	№ докум.	Подп.	Дата	AT3MK2. PT0_ 000			
Разраб. Пров.				Расчетно графические работы	/lum.	Лист 2	Листов 23
Т.контр. Н.контр. Утв.				по технической механике	/	руппа	-

1 Расчетно-графическая работа № 5. Кручение

1.1 Исходные данные

Для заданной системы скручивающих моментов, действующих на ступенчатый стальной вал, построить эпюру крутящих моментов по длине вала, вычислить диаметр вала круглого поперечного сечения каждый ступени из условия прочности и жёсткости и построить эпюру углов поворота поперечных сечений по длине вала.

$$M_1 = \underline{\qquad} \quad \kappa H M \qquad M_2 = \underline{\qquad} \quad \kappa H M \qquad M_3 = \underline{\qquad} \quad \kappa H M$$

$$l_1 = \underline{\qquad} \quad M \qquad \qquad l_2 = \underline{\qquad} \quad M \qquad \qquad l_3 = \underline{\qquad} \quad M$$

$$[T_K] = \underline{\qquad} \quad M \Pi a \qquad [\varphi_0] = \underline{\qquad} \quad \frac{\rho a \overline{\partial}}{C}$$

$$G = 8.10^4 M \Pi a$$

Схема нагрузки вала в соответствии с рисунком 1.1.

Масштаб____ м = 1 мм

Рисунок 1.1 – Исходная схема вала

					ATOMICO DE O OOO	/IUCIT
Изм	Лист	№ доким.	Подп.	Лата	A 1 JMKZ. P 1U UUU	3
VISI'I.	/ IULIII	ту иикціч.	I IUUI I.	Дата		

1.2 Нахождение неизвестного скручивающего момента $M_{\!\scriptscriptstyle 0}$

Неизвестный скручивающий момент M_{0} находим из условия равновесия вала

$$\sum_{\kappa=1}^{n} M_{\kappa} = 0 \quad M_{1} M_{2} M_{3} M_{0} = 0$$

$$M_{0} = M_{1} M_{2} M_{3} = \dots = \kappa H M$$

1.3 Вычисление значения крутящего момента на участках вала – эпюра М_к

$$Mz_1 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \kappa H \cdot M$$

$$Mz_3 =$$
_____ = $\kappa H \cdot M$

1.4 Вычисление диаметра вала на каждой ступени из условия прочности

Вычисление диаметра вала d, мм, производится по формуле (1.1)

$$d^{np} \geqslant \sqrt[3]{\frac{16 \cdot Mz_1}{\pi \cdot [\tau_{\kappa} J]}}, \qquad (1.1)$$

					·
					A
1/3M	Nucm	№ докум.	Подп.	Дата	

4*T3MK2. PT__0_. 000*

где Mz – крутящий момент на даном участке вала, Н·мм; [т,] – допускаемое касательные напряжения, МПа.

$$d_1^{np} \ge \sqrt[3]{\frac{16 \cdot Mz_1}{\pi \cdot [\tau_{\kappa}]}} = \sqrt[3]{\frac{16 \cdot 16}{3.14 \cdot 16}} = 1$$

$$d_2^{np} \ge \sqrt[3]{\frac{16 \cdot Mz_2}{\pi \cdot [\tau_{\kappa}]}} = \sqrt[3]{\frac{16 \cdot 16}{3.14 \cdot 16}} = 100$$

$$d_3^{np} \ge \sqrt[3]{\frac{16 \cdot Mz_3}{\pi \cdot [\tau_K]}} = \sqrt[3]{\frac{16 \cdot 16}{3,14 \cdot 16}} = 100$$

1.5 Вычисление диаметра вала на каждой степени из условия жёсткости

Вычисление диаметра вала d, мм, производится по формуле (1.2)

$$d^{*ecm} \ge \sqrt{\frac{32 Mz}{\pi \cdot G \cdot [\varphi_0]}}$$
 (1.2)

где Mz — крутящий момент на данном участке вала, H·мм; G = 8·10 ⁴ MПа — модуль сдвига для стали; [Ф₀] — допускаемый угол закручивания, ^{рад}мм

$$d_1^{\text{XECM}} \ge \sqrt{\frac{32 \cdot Mz_1}{\pi \cdot G \cdot [\varphi_0]}} = \sqrt{\frac{32}{3.14 \cdot 8 \cdot 10^4}} =$$
______MM

Mam /lucm	№ доким.	Подп.	Дата

$$d_2^{*ecm} \ge \sqrt{\frac{32 \cdot Mz_2}{\pi \cdot G \cdot [\varphi_0]}} = \sqrt{\frac{32 \cdot 10^4}{3,14 \cdot 8 \cdot 10^4}} = 1$$

1.6 Определение диаметра вала на каждой ступени

$$d_1 = \max (d_1^{np}; d_1^{xecm}) = \underline{\qquad} \text{MM}$$

$$d_2 = \max (d_2^{np}; d_2^{x \tilde{e} c m}) = \underline{\qquad} MM$$

$$d_3 = \max \left(d_3^{np}, d_3^{xecm}\right) =$$
______MM

Округляем значения диаметров в большую сторону до целых мм

$$d_1 = \underline{\hspace{1cm}} MM$$

$$d_2 = \underline{\hspace{1cm}} MM$$

$$D_3 =$$
 MM

1.7 Вычисление полярных моментов инерции круглого поперечного сечения вала на каждой ступени

Вычисление полярного момета инерции Yp, мм ⁴, круглого поперечного сечения производится по формуле (1.3)

Изм. Лист	№ докум.	Подп.	Дата	

$$Y_p = \frac{\pi \cdot d^4}{32}$$
 (1.3)

где d – (мм) – диаметр вала

$$Yp_1 = \frac{\pi \cdot d_1^4}{32} = \frac{3.14}{32} =$$

$$Yp_2 = \frac{\pi \cdot d_2^4}{32} = \frac{3.14}{32} =$$

$$Yp_3 = \frac{\pi \cdot d_3^4}{32} = \frac{3.14}{32} =$$

1.8 Вычмсление углов поворота поперечных сечений отдельных участков вала

Вычисление углов поворота ф, рад, производится по фрмуле (1.4)

$$\varphi = \frac{Mz \cdot l}{G \cdot Yp} \tag{1.4}$$

где Mz — крутящий момент на данном участке вала H·мм; l — длина данного участка вала, мм;

G = 8·10 4 МПа — модуль сдвига для стали; Yp — полярный момент инерции круглого поперечного сечения вала на каждом цчастке, мм.

$$\varphi_1 = \frac{Mz_1 \cdot l}{G \cdot Yp_1} = \frac{1}{8 \cdot 10^4} = pad$$

M3M. /TUCTT	№ докум.	Подп.	Дата

$$\varphi_2 = \frac{Mz_2 \cdot l}{G \cdot Y p_2} = \frac{1}{8 \cdot 10^4} = 1$$

$$\varphi_3 = \frac{Mz_3 l}{G Y \rho_3} = \frac{1}{8 \cdot 10^4} = \rho a \overline{d}$$

1.9 Вычисление углов поворота пограничных сечения вала.

Считаем левый конец вала закрепленным, тогда:

$$\varphi_A = 0$$

$$\varphi_B = \varphi_1 = \underline{\quad} pa\overline{\partial}$$

$$\varphi_C = \varphi_1 + \varphi_2 = \underline{\quad} + \underline{\quad} = \underline{\quad} pa\overline{\partial}$$

$$\varphi_D = \varphi_1 + \varphi_2 + \varphi_3 = \underline{\quad} + \underline{\quad} = \underline{\quad} pa\overline{\partial}$$

1.10 Построение эпор

Эпюры представлены в соответствии с рисунком 1.2

Рисунок 1.2 – Эпюры крутящих моментов и углов закручивания.

L						
					ATOMICO DE O OOO	Лист
Изм	/IUCM	№ докум.	Подп.	Дата	A 1 314K Z. P 1U UUU	9

2 Расчетно-графическая работа №6 Гипотезы прочности

2.1 Исходные данные

Для заданной системы сил, действующих на вал, используя гипотезу наибольших касательных напряжений, вычислить значение диаметра вала, учитывая совместное действие изгиба и кручения.

$$F_1 =$$
____ KH $Q =$ ___ M $K_1 =$ ___
 $D_1 =$ ___ M $D =$ ___ M $K_2 =$ ___
 $D_2 =$ ___ M $U =$ ___ M $U =$ ___ M

Схема нагрузки вала в соответствии с рисунком 2.1.

Масштаб ___ м = 1 мм Рисунок 2.1 – Исходная схема вала

				F	
-					
	VI3M.	Aucm	№ докцм.	Подп.	Дата

2.2 Расчетная схема вала

Освободим вал в точках А и В от опор, заменяя их действие реакциями данных связей. Пренебрегая размерами самого вала, представим его в виде прямой линии, совпадающей с осью вала. Перенесем все нагрузки, действующие на вал, на эту прямую. В случае параллельного переноса сил добавим моменты в соответствии с теоремой Пуансо о параллельном переносе сил.

$$M_1 = __ = _ = _ = _ KH:M$$
 $M_2 = _ = _ = _ KH:M$

Расчетную схему вала начертим в соответствии с исходной схемой на рисунке 2.

2.3 Нахождение силы F_2 и опорных реакций вала

Выберем такое положение пространственной системы координат XYZ, при котом начало координат совпадает с точной A — точкой опоры вала. Составим уравнения равновесия относительно выбранной системы координат

$$\sum_{\kappa=1}^{n} \chi_{\kappa} = 0 \qquad \bigcirc$$

Изм	Лист	№ докум.	Подп.	Дата

$$\sum_{K=1}^{n} y_{K} = 0$$

$$\sum_{K=1}^{n} Z_{K} = 0$$

$$\sum_{k=1}^{n} Z_{k} = 0$$

$$\sum_{\kappa=1}^{n} M_{\chi} (\bar{F}_{\kappa}) = 0$$

$$\sum_{\kappa=1}^{n} M_{y} (\bar{F}_{\kappa}) = 0 \quad \text{(5)}$$

$$\sum_{\kappa=1}^{n} M_{Z} \left(\bar{F}_{\kappa} \right) = 0 \quad \stackrel{\text{(6)}}{=}$$

Решая систему уравнений, найдем неизвестные силы:

$$(5) => X_B = \underline{\qquad} KH$$

Выполняем проверку. Для этоо выбираем новое положение пространственной системы координат $X_1 Y_1 Z_1$, при которой начало координат совпадает с точкой В – точкой опоры вала. Составим уравнения равновесия относительно выбранной системы координат $X_1 Y_1 Z_1$ которые не использовались для

M3M.	Nucm	№ докум.	Подп.	Дата

AT3MK2. PT_0_000

нахождения неизвестных усилий

$$\sum_{\kappa=1}^{n} \mathcal{M}_{\chi_{1}} \quad \widehat{F_{\kappa}} = \underline{\qquad} =$$

$$\sum_{\kappa=1}^{n} M_{y_1} \left(\overline{F_{\kappa}} \right) = \underline{\hspace{1cm}} =$$

2.3 Вычисление значения крутящего момента – эпюра Mz

$$M_Z =$$
____ = $\kappa H \cdot M$

2.4 Вычисление значений изгибающего момента от нагрузок, расположенных в вертикальной плоскости – зиюра М_х

$$\mathcal{M}_{\chi}^{(1)} = \underline{\qquad} = \underline{\qquad} \kappa \mathcal{H} \cdot \mathcal{M}$$

$$M_{\chi}^{(2)} =$$
 = $\kappa H \cdot M$

$$\mathcal{M}_{\chi}^{(3)} = \underline{\qquad} \quad \kappa H \cdot M$$

$$M_{\chi}^{(4)} =$$
 = $\kappa H \cdot M$

$$M_{\chi}^{(5)} =$$
____ = __ KH·M

 $M_{\chi}^{(6)} =$ ___ = __ KH·M

2.5 Вычисление значений изгибающего момента от нагрузок, расположенных в вертикальной плоскости – эиюра М,

$$M_{y}^{(1)} =$$
 = ___ KHM

 $M_{y}^{(2)} =$ = __ KHM

 $M_{y}^{(3)} =$ = ___ KHM

 $M_{y}^{(4)} =$ = ___ KHM

 $M_{y}^{(5)} =$ = ___ KHM

 $M_{y}^{(6)} =$ = ___ KHM

2.7 Определение эквивалентного момента

Эквивалентный момент по гипотезе наибольших касательных напряжений определяется по формуле (2.2)

$$M_{3/1/2} = \sqrt{M_{\chi}^2 + M_{y}^2 + M_{z}^2},$$
 (2.2)

где М_х — изгибающий момент от нагрузок, расположенных в вертикальной плоскости, кН:М; М_у — изгибающий момент от нагрузок, расположенных в горизонтальной плоскости, кН:М; М_г — крутящий момент, кН:М.

Эквивалентный момент вычисляем в наиболее напряженных сечениях

Опасным является то сечение, в котором Мэкв наибольший.

$$M^{(L)}$$
экв = ___ кН:М.- наибольший эквивалентный момент

Nam /luciti	№ докум.	Подп.	Дата

2.8 Определение диаметра вала

Вычисление диаметра вала d, мм, производится по формуле (2.3)

$$d \ge \sqrt[3]{\frac{32 \cdot M \ni \kappa B}{\pi [\sigma]}}, \qquad (2.3)$$

где Мэкв.— эквивалентный момент, Н·мм. [a] — дпускаемое нормальное напряжение, МПа.

$$d \ge \sqrt[3]{\frac{32}{3.14.70}} =$$
_____MM

Округляем значение диаметра в большую сторону до целых мм:

	T	1	Т
Nam Muciti	№ докум.	Подп.	Дата

3 Расчетно-графическая работа №7. Устойчивость сжатых стержней

3.1 Исходные данные

Определить допускаемую нагрузку для стойки из стали Ст3, [σ_c] = 160 МПа. С каким коэффициентом запаса устойчивости работает стойка при нагрузке, равной допускаемой.

Схема нагрузки стойки в соответствии с рисунком 3.1

Рисунок 3.1 – Схема нагрузки стойки

					ATAMK2 PT 0 000	Лист
Изм	Nucm	№ докум.	Подп.	Дата	71727712.77	18

3.2 Вычисление главных моментов инерции и площади поперечного сечения стойки

Поперечное сечение стойки состоит из профильного проката, поэтому, используя ГОСТ, определим площадь и моменты инерции отдельных составляющих относительно собственных главных центральных осей

$$A^{\Gamma OCT} = \underline{\qquad} CM^2$$

$$Y_{x1}^{\Gamma OCT} =$$
______ CM^4

$$Y_{y1}^{\Gamma OCT} =$$
______ CM^4

Определяем площадь и главные моменты инерции опасного сечения стойки

$$A = \underline{\hspace{1cm}} CM^2$$

$$Y_{x} = \underline{\hspace{1cm}} \mathcal{L} M^{4}$$

$$Y_{\nu} = \underline{\hspace{1cm}}$$

Определяем минимальный момент инерции

$$Y_{min} = \min_{min} (Y_x, Y_x) = \underline{\qquad} CM^4$$

Изм	Nucm	№ докум.	Подп.	Дата

3.3 Определение минимальноо радиуса инерции поперечного сечения стойки

Минимальный радиус инерции поперечного сечений стойки вычисляется по формуле (3.1)

$$i_{min} = \sqrt{\frac{Y_{min}}{A}}$$
 (3.1)

где Y_{min} — минимальный момент инерции поперечного сечения, см 4 ;

A – площадь поперечного сечения стойки, см²

3.4 Определение гибкости стойки

Гибкость стойки определяется по формуле (3.2)

$$\lambda = \frac{\mu \cdot l}{l_{min}} \tag{3.2}$$

где l — длина стойки; см i_{min} — минимальный радиус инерции поперечного сечения, см; µ — коэффициент приведения длины

$$\mu = _{--}$$
 (pucyhok 12.9, [1]) $\lambda = _{--}$

VI3M. /JUCITI	№ докум.	Подп.	Дата

3.5 Определение допускаемой нагрузки

Допускаемую нагрузку определяем по формуле (3.3)

$$[F] = \varphi \cdot [\sigma_r] \cdot A \qquad (3.3)$$

где [o_c] – допускаемые нормальные напряжения по сжатию, МПа;

А – площадь поперечного сечения стойки, мм²
 φ – коэффициент продольного изгиба

3.6 Определение критической силы

Если X < 60, то критическую силу вычисляем по формуле (3.4)

$$F_{KD} = \sigma_{I} \cdot A$$
 (3.4)

где $\sigma_T = 230$ МПа – предел текучести стали ст3; А – площадь поперечного сечения стойки, мм².

Если 60 ≤ λ < 100, то критическую силу вычисляем по формуле (3.5)

$$F_{\kappa\rho} = A \cdot (a - b \cdot \lambda) \tag{3.5}$$

1/3M.	Лист	№ докцм.	Подп.	Дата

Eсли $\lambda > 100$, то критическую силу вычисляем по формуле (3.6)

$$F_{\kappa\rho} \frac{\pi^2 E A}{\lambda^2}$$
 (3.6)

где $E = 2,2\cdot 10^{-5}$ МПа — модуль Юнга для стали ст3, при условии, что гибкость стойки

определяем критическую силу:

3.7 Определение коэффициента запаса устойчивости

Коэффициент запаса устойчивости определяем по формуле (3.7).

$$[n_y] = \frac{F_{\kappa p}}{[F]} \tag{3.7}$$

где F_{кр} – критическая сила, кН; [F] – допускаемая нагрузка, кН

VI3M.	Nucm	№ докум.	Подп.	Дата

Литература

- 1 **Ицкович, Г.М.**, "Сопротивление материалов", М.; "Высшая школа", 1982 г.
- 2 **Никитин, Е.М.**, "Теоретическая механика", М.; "Наука" 1988 г.
- 3 **ГОСТ 8239-86**. Сталь прокатная. Балки двутавровые.
- 4 ГОСТ 8240-86. Сталь прокатная. Швеллеры.
- 5 ГОСТ 8509-86. Сталь прокатная, угловая равнобокая.

Изм	Nucm	№ докум.	Подп.	Дата