Project rubric for (authors' names):

My name:

Criterion	Expert (1)	Skilled (2)	Apprentice (3)	Learner (4)	(5)
Presentation	Information clearly, attractively presented. Fonts	Information clear and attractive.	Information presented clearly. Font	Structure, graphics and	
	reflect importance of items. Graphics clarify topics.	Font or graphics confusing. Structure	uneven. Structure and graphics are	text unclear or missing.	
	Structure helps audience to understand.	helps audience to understand.	confusing or unclear.	Fonts uneven.	
Use of	Correct verb tenses, grammar and spelling. Text is	Correct verb tenses, grammar and	Correct verb tenses, punctuation and	Major grammatical errors.	
language	easy to read.	spelling. Text is difficult to read.	spelling. Some grammatical mistakes.		
Scientific	Authors' use of technical language shows they	Language shows authors understand	Language shows that authors	Informal language:	
language	understand their subject's background	the background knowledge of the	understand the background knowledge	authors do not seem to	
	knowledge. They minimise their use of jargon and	subject. Jargon is appropriate. Not all	of the subject. Too much jargon and	understand the subject	
	define all necessary terms and acronyms.	terms and acronyms are defined.	undefined acronyms.	properly. Some scientific	
				terms incorrectly.	
Abstract	Clear, complete, understandable, creates interest.	Clear and complete, but too long.	Clear, understandable, but incomplete.	Absent, confusing.	
Introduction	Explains purpose and significance of research	Justifies adequately the significance	Information justifying significance of	Argument only poorly	
	(question, adaptive theory and research	of research question and hypothesis	research question and hypothesis is too	justifies the research	
	hypothesis) using logical, well-referenced	to the field of investigation.	covoluted or poorly referenced.	question and hypothesis.	
	background argument.				
Adaptive	Theory is dynamical, rheolectic and operationally	Theory is verifiable and believable	Theory plausible, but not indicated by	Theory is implausible or	
theory	verifiable based on background argument.	but not on basis of argument.	background argument.	absent.	
Research	Causally justified by theory; expresses directed	Hypothesis justified, IV operational,	Hypothesis is plausible but IV and DVs	Hypothesis relationship is	
hypothesis	<i>relationship</i> from a single, measurable IV to DVs.	but DV not clearly defined.	not clearly defined.	unclear.	
Model	Specifies objects and their attributes, operations	Objects and outputs clearly	Object attributes/operations or outputs	Model not presented	
specification	and relations. Specifies program parameters and	presented. Parameters unclear.	are not clear	clearly.	
	outputs (emergent or regular).				
Null	Experiment tests a null hypothesis, not just	Null hypothesis is present and used,	Null hypothesis is given, but not	Null hypothesis is missing.	
hypothesis	verifying a special case of research hypothesis.	but unclearly or invalidly formulated.	considered when discussing conclusions.		
Alignment	Complete reference patterns align with literature.	Reference relations or data missing.	Reference behaviours missing/unclear.	Patterns missing / unclear.	
Method	Processes explained clearly enough to replicate	Methods specific and clear enough	Methods too unclear to be sure whether	Methods not provided, or	
design	the investigation. Provides data that accurately	that I could replicate investigation.	they are appropriate for investigating	inappropriate for	
	investigate research/null hypothesis.	Data appropriate to null hypothesis.	the research/null hypothesis.	investigating hypotheses.	
Results	Measurements in several formats (tables, graphs)	Measurement data in several	Measurement data not organised to aid	Data unfitting/missing.	
	to show trends. Justifies analysis; describes errors.	formats. Errors not described.	understanding of knowledge gained.	Figure labels inadequate.	
Conclusions	Discussion makes clear whether data support or	Conclusions explain whether data	Conclusions make clear whether results	Conclusions are	
	reject the null hypothesis. Demonstrate authors'	support or reject null hypothesis.	support or reject null hypothesis, but	inconsistent with the data.	
	understanding of results, and express implications,	Demonstrate authors' understanding	authors only partly understand their		
	applications and remaining uncertainties.	and synthesis of the results.	relevance for current paradigms.		
Citations,	Up-to-date reliable scientific sources, cited	References properly cited, and most	References properly cited but some are	References not provided	
references	properly according to given guidelines.	are reliable scientific sources.	non-scientific or out of date.	or improperly cited.	

Code structure	Code is clearly organised and formatted using short, coherent code blocks and methods, clean and logical indentation, and clear line-breaking (lines under 80 characters) to make it very easy to follow.	Code is easy to read with minor formatting/indentation mistakes, e.g.: bracket-matching.	Code is generally easy to follow, but logical formatting is poor.	Code is readable only by someone who knows what it is supposed to be doing.
Clarity and coherence	Has a clear, consistent conceptual metaphor. Program header comment clearly states this metaphor. Coding components (comments, variable and method names) consistently declare their role by reference to this metaphor.	Conceptual metaphor is present, but unclearly stated. Coding components mostly refer to this metaphor for clarity.	Conceptual metaphor is present, but unclearly stated. Relationship of coding components to this metaphor are generally unclear. Use of magic numbers.	Program has no clear conceptual metaphor.
Comments	Comments and accompanying documentation explain clearly what the code is doing by using clear, simple language and appropriately positioned and formatted comments.	Header and inline comments make the code easier to understand.	Inline comments are embedded in the code and separate logical code sections.	Inline comments are embedded in the code.
Variable naming	Variables' names express clearly and succinctly their purpose in program.	Variable names are awkwardly long but express their purpose clearly.	Variable names express only unclearly their purpose in program.	Variable names express their purpose only very vaguely.
Data types	Variable types (array, logical,) are used appropriately to produce correct results.	Variable types used appropriately to produce mostly correct results.	Variable types are used appropriately but produce incorrect results.	Variable types are used inappropriately/incorrectly.
Control structures	Control structures (selection, iteration,) are used appropriately to produce correct results.	Control structures appropriately used to give mostly correct results.	Control structures used appropriately but produce incorrect results.	Control structures are used inappropriately/incorrectly.
Modularity (classes)	Module architecture is clear and easy to follow. Data and method responsibility cleanly packaged into functional modules to minimise rippling.	Modularity is clear and easy to follow but responsibility allocation permits some rippling.	Modularity is easy to follow but global data permit excessive rippling.	Data-, but not method-, responsibility is allocated modularly.
Factorising	Code is factorised cleanly to avoid redundancy.	Some unnecessary data duplication.	Functionality duplicated unnecessarily.	Broad duplication of code.
Execution	Program runs correctly with no logic errors and displays appropriate output.	Program runs correctly with no logic errors, but inappropriate output.	Program runs correctly with no logic errors.	Program runs with logic errors.
Validation	Program fulfils all specifications, and performs exception-checking for errors and out-of-range data.	Program runs and meets all specifications. Performs some checking for entry and range errors.	Program produces correct results but displays them incorrectly. Some checking for entry and range errors.	Program gives correct results but displays them incorrectly. No error-checking.
Efficiency	The code is extremely efficient, storing multiply used data and reducing processing steps without sacrificing readability or comprehensibility.	The code is efficient without sacrificing readability or comprehensibility.	The code is fairly efficient without sacrificing readability or comprehensibility.	Code is inefficiently patched together from mismatching partial solutions.
Total =	/ 25 =			