数学分析笔记整理

BigfufuOuO

2022 年 5 月 19 日

目录

1 常微分方程初步			7步	2
	1.1	一阶常	微分方程	2
		1.1.1	可分离变量形方程	2
		1.1.2	齐次方程	3
		1.1.3	一阶线性微分方程	3

Chapter 1

常微分方程初步

既然是初步,则要求不会太多. 提供几种常见的常微分方程. 此处常微分方程是指,只有一个自变量的未知函数 $F(x,y',y'',\cdots,y^{(n)})=0$.

1.1 一阶常微分方程

1.1.1 可分离变量形方程

对于形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x) \cdot h(y)$$

的自变量与因变量可分离的方程:

 $1^{\circ} h(y) \neq 0$ 时, 方程改写为

$$\frac{1}{h(y)} \mathrm{d}y = g(x) \mathrm{d}x$$

两边积分得 H(y) = F(x) + C. 其中 C 是任意常数 (一般统一将常数写在右边). H(y), F(x) 分别是 1/h(y), g(x) 的原函数.

此时 H(y) = F(x) + C 为隐式解. 形如 y = f(x) 的为显式解.

 $2^{\circ} h(y) = 0$ 时,若 $\exists y_0$ 使得 $h(y_0) = 0$,则 $y = y_0$ 是一个特解.

例 1.1.1. 解微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = y \ln x$.

解. $(1)y \neq 0$,则 $1/y dy = \ln x dx \Rightarrow \ln |y| = x \ln x - x + C$. 故 $|y| = e^{x \ln x - x} \cdot e^C \Rightarrow y = \pm e^C \cdot e^{x \ln x - x}$.

记 $C = \pm e^C$,则解为 $y = C \cdot e^{x \ln x - x}$.

(2)y = 0 时,可知显然成立. 故 y = 0 是方程的解,将其代人 (1) 的通解得 C = 0. 故方程的解为 $y = C \cdot e^{x \ln x - x} (C \in \mathbb{R})$.

1.1.2 齐次方程

对于形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y)$$

的方程. f 满足一定范围内的 x, y, t, 均有 $f(x, y) = t^n f(tx, ty)$, 则称之为 n 次齐次函数.

由齐次方程有 $f(1,\frac{y}{x})=f(x,y)$,则原方程转化为 $\frac{y}{x}=\varphi(1,\frac{y}{x})=\varphi(\frac{y}{x})$. 令 $u=y/x(x\neq 0)$,则 $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{u\mathrm{d}x+x\mathrm{d}u}{dx}=u+x\frac{\mathrm{d}u}{\mathrm{d}x}$. 或 x=0(注意! 不要漏解).

所以原方程转化为 $x\frac{\mathrm{d}x}{\mathrm{d}x}+u=\varphi(u)$,分离变量得 $\frac{\mathrm{d}u}{\varphi(u)-u}=\frac{\mathrm{d}x}{x}$ 或 $\varphi(u)-u=0$ (注意! 不要漏解).

例 1.1.2. 解微分方程 $(y^2 - 2xy)dx + x^2dy = 0$.

解. 令 u = y/x,转化为方程 $x \frac{\mathrm{d}u}{\mathrm{d}x} = u - u^2$.

 $(1)u - u^2 \neq 0$,即 $u \neq 0, 1$ 时,分离变量得 $\frac{\mathrm{d}u}{u - u^2} = \frac{\mathrm{d}x}{x} \Rightarrow \ln|u| - \ln|1 - u| = \ln|x| + \ln|C|$. 化简得 $\frac{y}{x - u} = Cx(C \in \mathbb{R})$.

(2)u = 0,1 时,得 y = 0 或 y = x.

 $2^{\circ} x = 0$ 代入原方程成立.

故解为
$$\frac{y}{x-y} = Cx(C \in \mathbb{R}), y = 0, y = x, x = 0.$$

例 1.1.3. 解微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x + y \tan \frac{x}{y}}$.

解 (**简要**). 化简得 $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{x}{y} + \tan\frac{x}{y}$. 注意此时 x 在分子,故令 u = x/y,其余做法与例1.1.2类似.

例 1.1.4. 解微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$, 其中 $a_i, b_i, c_i (i = 1, 2)$ 为常数.

 \mathbf{K} (简要). 由于 c_1, c_2 的存在, RHS^1 无法齐次化 (即同除以 x 或 y). 但可以配凑系数使得 $c_1 = c_2$ 消失. 即令

$$c_1 = a_1 h + b_1 k$$
$$c_2 = a_2 h + b_2 k$$

代入原式得
$$\frac{\mathrm{d}(y+k)}{\mathrm{d}(x+h)} = \frac{a_1(x+h) + b_1(y+k)}{a_2(x+h) + b_2(y+k)}$$
. 令 $u = \frac{y+k}{x+h}$ 即可. 然后再解出 h,k 代入.

1.1.3 一阶线性微分方程

最好的办法:记公式.

¹右式. LHS 表示左式.