Math 135 - Proofs Announcemer - HWI due Friday - Next HW will be posted by Friday, due on Monday the 13th /

(will be harder!)

8/30/2010

- HWO is graded a will be returned on Friday

Proof techniques
What did we see last time? - direct - contradiction - in direct - proof by cases

Thm: Suppose n is an integer.

n is odd so n2 is odd of and only it of: need to show "if nodd, then nodd"
and "if nodd, then nodd" (D) =): Assume n odd: n = 2k+| for some $k \in \mathbb{Z}$ $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$ $= 2(2k^2 + 2k) + 1$ So $n^2 \text{ is odd}$. Integer

(D) \Leftarrow : Contrapositive; Assume n is even. n = 21 for $1 \in 7$ $n^2 = 41^2 = 2(21^2)$ so n^2 is even

Prove that if nis an integer, then Suppose n21.
Multiply both sides by n: Suppose n'is negative, so n'<0 If n'is negative, then n'2 is n=0, then $n^2=0$, so $0 \ge 0$.

Show that there exist irrational numbers x and y such that xx is rational, pf: We know Ja is irrational. If $\sqrt{32}$ is rational, then let $x=\sqrt{2}$, $y=\sqrt{2}$.

If $\sqrt{32}$ is irrational let $x=\sqrt{2}$, $y=\sqrt{2}$.

Then $x^{x}=(\sqrt{2}\sqrt{2})^{2}=\sqrt{2}$.

Then $x^{x}=(\sqrt{2}\sqrt{2})^{2}=\sqrt{2}$. Induction A proof technique that is used to prove propositions of the form: Unzi, W>4, Ynzc 1 Show P(1) true (2) Show $\forall k>1, P(k-1) \longrightarrow P(k)$ Since P(1) is true (by 0): $P(1) \rightarrow P(2)$ (by 0): $P(2) \rightarrow P(3)$ (by 0) $P(3) \rightarrow P(4)$ (by 0)

Example: $\forall n \geq 1$, $\sum_{i=n(n+1)}^{i}$ proof: by induction on n Show P(1) is true $\frac{1}{2} = \frac{1+2+3+...+(k-1)}{1+2+...+(k-1)+k} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2$ How to write inductive proofs 3 required parts Base Case: Show P(1) is true Inductive Hypothesis! Assume P(k-1) Inductive Step: Use IH to argue that

Example: Show that the sum of the first $\frac{n}{2i-1} = n^2$ $(1+3+5+...+2n-1)=n^2$ proof: Base case: \(\(\) = 1 Ind. Hyp.: Assume (2i-1)= (n-1)2

Ind: Step:
$$\sum_{i=1}^{n} (2i-1) = \sum_{i=1}^{n-1} (2i-1) + (2n-1)$$

$$= (n-1)^{2} + (2n-1)$$

$$= (2i-1) + (2n-1)$$

$$= (2i-1) + (2n-1)$$

$$= (n-1)^{2} + (2n-1)$$