I	Имя, ф 	амилия	и номе	р групг	іы:							
1.	а	b	С	d	e	f	18a	b	С	d	e	f
2.	a	b	c	d	e		19. a	b	\Box c		e	
3.	a	b	c	d	e	f	20. a	b	c	d	e	
4.	a	b	c	d	e		21. a	b	\Box c	d	e	
5.	a	b	c	d	e		22. a	b	\Box c	d	e	
6.	a	b	С	d	e	f	23. a	b	\Box c	d	e	\Box f
7.	a	b	С	d	e	f	24. a	b	\Box c	d	e	
8.	a	b	С	d	e	∐ f	25. a	b	\Box c	d	e	
9.	∐ a	b	С	d	e	∐ f	26. a	b	\Box c	d	e	\Box f
10.	∐ a	b	С	∐ d	e	∐ f	27. a	b	С	d	e	f
11.	a	b	c	d	e	∐ f	28. a	b	С	d	e	f
12.	a	b	c	d	e	f	29. a	b		d	e	f
13.	a	b	c	d	e	f □_f	30. a	b	\Box c	d	e	
14.15.	☐ a	Ъ	c		e e	r	31. a	b	\Box c	d	e	
16.		b	С		е	f	32. a	b	С	d	е	f
17.	a	b	С	d	e	f	33. a	b	С	d	е	

Удачи!

	a) χ_1^2	с) нет верного ответа	e) χ_2^2				
	b) t_3	d) χ_3^2	f) χ_2				
2.	По 100 наблюдениям за нормально распределенной случайной величиной с известной дисперсией, Вася проверял гипотезу $H_0: \mu=10$ при альтернативной гипотезе $H_1: \mu>10$. Оказалось, что выборочное среднее $\bar{X}=12$. Вася рассчитал тестовую статистику и P-значение. После этого Вася решил попробовать изменить альтернативную гипотезу на $H_1: \mu \neq 10$.						
	Как при этом изменилось P-значе		потезу на $H_1: \mu \neq 10$.				
	а) Выросло, насколько - неиз- вестно	вестно c) нет верного ответа	e) Упало вдвое f) Выросло вдвое				
3.	b) Упало, насколько - неиз- d) Не изменилось f) Выросло вдвое Величины X и Y одинаково распределены с нулевым математическим ожиданием и дисперсией 3. Вектор (X,Y) имеет многомерное нормальное распределение с корреляцией 0.6 . Найдите $\mathbb{E}(Y\mid X=3)$.						
		-) 0	-) 1.00				
	a) 1.8b) 0.64	c) 0 d) 0.6	e) 1.92 f) нет верного ответа				
4	Ковариационная матрица вектора	$X = (X_1, X_2)$ where but	· · · · ·				
1.	повариационная матрица векторе	$\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}.$					
	Найдите дисперсию разности эле	ментов вектора, $Var(X_1 - X_2)$.					
	a) 6	с) нет верного ответа	e) 12				
	b) 15	d) 18	f) 2				
5.	Величины $Z_1, Z_2,, Z_n$ независим	мы и нормальны $\mathcal{N}(0,1).$					
	Какое распределение имеет случайная величина $\frac{2Z_1^2}{Z_2^2 + Z_7^2}$?						
	a) $F_{1,2}$	c) $F_{7,2}$	e) $F_{1,7}$				
	b) $F_{2,7}$	d) t ₂	f) нет верного ответа				
6.	По случайной выборке размером «Халява приди» равна 0.2.	400 студентов из всех студентов В	ышки доля любителей кричать				

Найдите правую границу 95%-й асимптотического доверительного интервала для вероятности то-

го, что случайно выбираемый студент Вышки любит кричать «Халява приди».

1. Пусть $X,\,Y,\,Z$ — независимые стандартные нормальные случайные величины.

Какое распределение имеет случайная величина $X^2 + Y^2 + Z^2$?

a) 0.259

c) 0.239

e) 0.319

b) 0.279

d) нет верного ответа

f) 0.299

7. Случайные величины $X_1, ..., X_n$ независимы и имеют функцию плостности

$$f(x;\,\theta) = \begin{cases} \frac{1}{\theta} x e^{-x/\sqrt{\theta}} & \text{при } x > 0, \\ 0 & \text{при } x \leq 0, \end{cases}$$

где $\theta > 0$.

Найдите оценку неизвестного параметра θ методом максимального правдоподобия.

a)
$$(\sum_{i=1}^{n} X_i/2n)^2$$

c)
$$\sqrt{\sum_{i=1}^{n} X_i/n}$$

d) $\sqrt{\sum_{i=1}^{n} X_i/2n}$

e)
$$\sum_{i=1}^{n} X_i/n$$

b)
$$\sum_{i=1}^{n} \sqrt{X_i}/n$$

d)
$$\sqrt{\sum_{i=1}^n X_i/2n}$$

8. Дана реализация выборки: -1, 1, 0, 2.

Найдите выборочный начальный момент второго порядка.

a) 1.5

- с) нет верного ответа
- e) 1

b) 0.5

d) 0

f) 1.2

9. Пусть X_1, \dots, X_7 — выборка из распределения Бернулли с параметром θ .

Найдите информацию Фишера о параметре θ , содержащуюся в выборке.

a) $\frac{1}{\theta^2-\theta}$

c) 7θ

e) $7\theta(1-\theta)$

b) $\frac{1}{a^{2}}$

- d) нет верного ответа
- f) $\frac{7}{a^{2}}$

10. Величина X имеет F-распределение с 6 и 13 степенями свободы.

Какое распределение имеет величина $Y = X^{-1}$?

a) $F_{6.13}$

c) χ_{19}^2

e) $F_{1/13,1/6}$

b) $F_{1/6,1/13}$

d) $F_{13.6}$

f) нет верного ответа

11. Пусть X_1, \ldots, X_n — выборка из распределения Бернулли с параметром θ .

Выберите верное утверждение об эффективности оценки $\hat{\theta} = \bar{X}$, дисперсии и информации Фишеpa.

- неэффективна, а) оценка $\operatorname{Var}(\hat{\theta}) = \frac{n}{p(1-p)}$ и $I(\theta) = \frac{p(1-p)}{n}$
- с) оценка неэффективна, $\mathrm{Var}(\hat{\theta})=\frac{p(1-p)}{n}$ и $I(\theta)=np(1-p)$
- Оценка эффективна, $\operatorname{Var}(\hat{\theta}) = \frac{p(1-p)}{n}$ и $I(\theta) = \frac{n}{p(1-p)}$ е) оценка

- b) оценка неэффективна, $\operatorname{Var}(\hat{\theta}) = \frac{p(1-p)}{n} \operatorname{u} I(\theta) =$
- оценка эффективна, $\operatorname{Var}(\hat{\theta}) = \frac{n}{p(1-p)}$ и $I(\theta) = \frac{p(1-p)}{r}$
- f) нет верного ответа

поненциального распределения с $\lambda=4$.

a) 1.2

e) 0.8

	b) 1.25	d) нет верного ответа	f) 0.75				
13.	Величины $Z_1, Z_2,, Z_n$ независимы и нормальны $\mathcal{N}(0, 1)$.						
	Какое распределение имеет случайная величина $\frac{Z_1\sqrt{n-3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$?						
	a) t_{n-3}	c) $F_{1,n-2}$	e) $\mathcal{N}(0,1)$				
	b) нет верного ответа	d) t_{n-1}	f) χ_{n-4}^{2}				
14.	При каком условии последователи	ьность оценок \hat{a}_n параметра a явл	яется состоятельной?				
	a) $\mathbb{E}((\mathbb{E}(\hat{a}_n) - a)^2) \xrightarrow{\mathbb{P}} \hat{a}_n$	c) $\mathbb{E}((\hat{a}_n - a)^2) \stackrel{\mathbb{P}}{\to} 0$	е) нет верного ответа				
	b) $\mathbb{E}((\hat{a}_n - a)^2) \stackrel{\mathbb{P}}{\to} \hat{a}_n$	d) $\mathbb{E}((\hat{a}_n - a)^2) \stackrel{\mathbb{P}}{\to} a$	f) $\hat{a}_n \stackrel{\mathbb{P}}{\to} a$				
15.	Выберите верное определение эф \mathcal{K} .	фективности оценки $\hat{ heta}_n$ параметр	ра θ в некотором классе оценок				
	a) $\mathbb{E}(\hat{ heta}_n) = heta$	класса $\mathcal K$ и любого $ heta$ вы-	d) $\hat{\theta}_n \stackrel{P}{\to} \theta$				
	b) $\operatorname{Var}(\hat{\theta}_n) = \frac{\sigma^2}{n}$	полнено $\mathbb{E}((\hat{\theta}_n - \theta)^2) \leq \mathbb{E}((T - \theta)^2)$	е) нет верного ответа				
	c) Для любой оценки T из	$\mathbb{E}((I-b))$	f) $Var(\hat{\theta}_n) \to 0$				
16.	16. Случайные величины X и Y распределены нормально с неизвестным математическим ож ем и неизвестной дисперсией. Для тестирования гипотезы о равенстве дисперсий выбираю наблюдений случайной величины X и 30 наблюдений случайной величины Y .						
Какое распределение может иметь статистика, используемая в данном случае?							
	a) χ^2_{49}	c) $F_{29,19}$	e) χ^2_{48}				
	b) $F_{20,30}$	d) нет верного ответа	f) t ₄₈				
17.	По выборке из одного наблюдения $x=1$ с помощью критерия Колмогорова Айк тестирует гипотезу о том, что выборка была получена из стандартного нормального распределения.						
	Укажите, чему равняется значение	е тестовой статистики с точносты	о до двух знаков после запятой.				
	a) 0.16	c) 0.76	е) нет верного ответа				
	b) 0.84	d) 0.36	f) 0.15				
18.	Найдите дисперсию выборочного	среднего, построенного по случа	йной выборке размера n из экс-				

12. По выборке из пяти наблюдений 1,0,-2,0,1 рассчитайте отношение неисправленной выбороч-

ной оценки дисперсии к несмещенной (исправленной) оценке дисперсии.

c) 1

	a) 4n	c) $\frac{1}{4n^2}$	е) нет верного ответа			
	b) $\frac{n}{16}$	d) $\frac{1}{16n}$	f) $\frac{1}{4n}$			
19.	По выборке X_1,\dots,X_n из нормального распределения с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Известно, что $\sum_{i=1}^n (X_i-\bar{X})^2=270$.					
	Чему может быть равна тестовая статистика?					
	a) 9	c) 15	e) 27			
	b) 6	d) нет верного ответа	f) 3			
20.	. Для случайной выборки 1, 2, 3, 4, 5 из нормального распределения найдите границы 95%-го доверительного интервала для математического ожидания.					
	a) [3.08, 5.92]	с) нет верного ответа	e) [1.04, 4.96]			
	b) [1.54, 5.46]	d) [0.86, 5.14]	f) [-4.02, 1, 02]			
21.	. При проверке гипотезы $H_0: \mu=4$ по 4 наблюдениям $X_1,\dots,X_4\sim \mathcal{N}(\mu,16)$ против двусторонней альтернативной гипотезы оказалось, что $\bar{X}=7.$					
	При каком наименьшем уровне значимости нулевая гипотеза будет отвергнута?					
	a) 0.13	c) 0.05	e) 0.32			
	b) 0.24	d) 0.45	f) нет верного ответа			
22.	Величина $\hat{ heta}$ имеет нормальное рас	спределение $\mathcal{N}(2; 0.01^2)$.				
	Какое примерное распределение имеет $\hat{ heta}^2$ согласно дельта-методу?					
	а) нет верного ответа	c) $\mathcal{N}(4; 2 \cdot 0.01^2)$	e) $\mathcal{N}(4; 16 \cdot 0.01^2)$			
	b) $\mathcal{N}(4; 8 \cdot 0.01^2)$	d) $\mathcal{N}(4; 4 \cdot 0.01^2)$	f) $\mathcal{N}(2; 4 \cdot 0.01^2)$			
23.	По выборке X_1, \dots, X_n из нормал ем, проверяется гипотеза о диспер	ьного распределения с неизвестн рсии $H_0:\sigma^2=30$ против $H_a:\sigma^2=30$	ым математическим ожидани- ≠ 30.			
	Какое распределение будет иметь тестовая статистика?					
	a) χ_{n-1}^2	c) t_n	e) t_{n-1}			
	b) нет верного ответа	d) $\mathcal{N}(0,1)$	f) χ_n^2			
24. Пусть X_1, \ldots, X_n — случайная выборка из распределения с плотностью распределения						
		$f(x; \theta) = \begin{cases} \frac{2x}{\theta^2} & \text{при } x \in [0; \theta], \\ 0 & \text{при } x \notin [0; \theta], \end{cases}$				

где $\theta > 0$.

Используя начальный момент 2-го порядка, при помощи метода моментов найдите оценку неизвестного параметра θ .

a)
$$\sqrt{\frac{2}{n}\sum_{i=1}^{n}X_i^2}$$

c)
$$\sqrt{\sum_{i=1}^n X_i^2}$$

e)
$$\frac{2}{3}\bar{X}$$

b)
$$\sqrt{\frac{n}{2} \sum_{i=1}^{n} X_i^2}$$

d)
$$\frac{3}{2}\bar{X}$$

- f) нет верного ответа
- 25. Отличница Машенька получает только 8, 9 или 10. За все годы обучения Маша получила 40 восьмёрок, 50 девяток и 30 десяток.

Найдите значение статистики Пирсона для проверки гипотезы о том, все отличные оценки имеют равную вероятность.

a) 35

c) 5

e) 25

b) 15

d) 55

- f) нет верного ответа
- 26. Есть два неизвестных параметра, θ и γ . Вася проверяет гипотезу H_0 : $\theta=1$ и $\gamma=2$ против альтернативной гипотезы о том, что хотя бы одно из равенств нарушено.

Выберите верное утверждение об асимптотическом распределении статистики отношения правдоподобия, LR.

- а) И при H_0 , и при H_a , $LR\sim$ c) Если верна H_0 , то $LR\sim\chi_1^2$ d) И при H_0 , и при H_a , $LR\sim$ b) Если верна H_a , то $LR\sim\chi_2^2$ χ_1^2
- е) нет верного ответа

- f) Если верна H_0 , то $LR \sim \chi_2^2$
- 27. Пусть X_1, X_2 случайная выборка из нормального распределения с неизвестным математическим ожиданием μ и неизвестной дисперсией σ^2 .

Найдите значение константы c, при котором оценка $\hat{\mu} = cX_1 + (1-c)X_2$ является наиболее эффективной.

a) 1/2

c) 1/4

e) 2/5

- b) нет верного ответа
- d) 1/3

- f) 1/5
- 28. Пусть $X \sim \chi_2^2$ и $Y \sim \chi_3^2$ независимые случайные величины.

Какое распределение имееет случайная величина X + Y?

a) χ_1^2

c) χ_5^2

e) χ_5

- b) нет верного ответа
- d) χ_6^2

- f) $\mathcal{N}(0;2)$
- 29. Величина X имеет t-распределение с 5 степенями свободы.

Какое распределение имеет величина $Y = X^2$?

a) $F_{1.5}$

- с) нет верного ответа
- e) $F_{5.5}$

b) χ_5^2

d) $F_{5,1}$

- f) t_{25}
- 30. Имеются две случайных выборки $X_1,...,X_{31}$ и $Y_1,...,Y_{41}$ из нормальных распределений. Известно, что $\sum_{i=1}^{31}(X_i-\bar{X})^2=120$ и $\sum_{i=1}^{41}(Y_i-\bar{Y})^2=400$.

Найдите возможное значение статистики, проверяющей гипотезу о равенстве дисперсий данных распределений.

a) 0.3

c) 2.52

е) нет верного ответа

b) 2.5

d) 3.33

f) 2

31. Выборочные доли, вычисленные по двум независимым выборкам из распределений Бернулли с неизвестными вероятностями успеха, оказались равны 0.75. Каждая выборка содержит 100 наблюдений.

Найдите длину 95%-го доверительного интервала для разницы вероятностей успеха.

a) 0.06

с) нет верного ответа

e) 0.24

b) 0.19

d) 0.94

f) 0.61

32. Винни-Пух строит доверительный интервал для разности математических ожиданий по двум независимым нормальным выборкам размера m и n при неизвестных равных дисперсиях.

Какое распределение ему можно использовать?

a) $\mathcal{N}(0; m+n-2)$

c) $t_{m-1,n-1}$

e) χ_{m+n-2}^2

b) t_{m+n}

d) нет верного ответа

f) t_{m+n-2}

33. Известно истинное значение параметра, $\theta=1$, и информация Фишера о параметре θ , заключенная в одном наблюдении, $I_1(\theta)=8$.

Найдите примерное распределение оценки максимального правдоподобия $\hat{\theta}$ параметра θ , найденной по ста наблюдениям случайной выборки.

a) $\mathcal{N}(1, 1/8)$

c) $\mathcal{N}(1, 1/800)$

e) $\mathcal{N}(1, 1/\sqrt{800})$

b) $\mathcal{N}(1, 1/\sqrt{8})$

d) $\mathcal{N}(1, 8)$

f) нет верного ответа