5.1	Limits of sums, products, and quotients
	Theorem: Assume that $a_n \rightarrow L$ and $b_n \rightarrow M$, as $n \rightarrow \infty$
	- Linearity Theorem: ran + sbn > rl + sM, for any r.s ∈ R
	- Product Theorem: anbn → L·M
	- Quotient Theorem: $\frac{b_n}{a_n} \Rightarrow \frac{M}{L}$, any $L \neq 0$
	- the limit theorems actually give the limit L of the sequence
	- the limit theorems give a quick way of proving convergence without using E-N arguments
	Theorem: Algebraic Operations for Infinite Limits
	$- a_n \to \infty \qquad \begin{cases} b_n \to \infty , b_n \to L > 0 \\ b_n \text{ bounded below} \end{cases} \Rightarrow a_n + b_n \to \infty$
	$- A_n \to \infty \qquad \begin{cases} b_n \to \infty , b_n \to L > 0 \\ b_n & bounded & below \end{cases} \Rightarrow A_n + b_n \to \infty$ $- A_n \to \infty \qquad \begin{cases} b_n \to \infty , b_n \to L > 0 \\ b_n & \geq k > 0 & \text{for } n \gg 1 \end{cases} \Rightarrow A_n b_n \to \infty$
	$- \alpha_n \rightarrow \infty \implies \frac{1}{\alpha_n} \rightarrow 0$
	- $a_n \Rightarrow 0$ and $a_n \Rightarrow 0$ for all $n \Rightarrow \frac{1}{\alpha_n} \Rightarrow \infty$
5.2	Comparison Theorems
	Theorem: Squeeze Theorem for Limits of Sequences
	- We are given three sequences $\{a_n\}$, $\{b_n\}$, and $\{C_n\}$, such that $a_n \leq b_n \leq C_n$ for $n \gg 1$.
	Suppose that $an \neq L$ and $Cn \Rightarrow L$, then $b_n \neq L$
	Theorem: Squeeze Theorem for Infinite Limits
	$-a_n \rightarrow \infty$, $b_n \ge a_n \Rightarrow b_n \rightarrow \infty$
5.3	Location Theorems
	- tell how the location of the terms of a convergent sequence are related to the location of their limit
	Theorem: Limit Location Theorem
	$-\alpha_n \leq M$ for $n \gg 1 \Rightarrow \sum_{n \to \infty} \alpha_n \leq M$
	- an 2M for N) (=> L an 2 M
	Theorem: Sequence Location Theorem
	- Assuming $\{a_n\}$ converges, $\{a_{n \neq \infty} a_n < M \Rightarrow a_n < M \text{ for } n > 1\}$ $\{a_{n \neq \infty} a_n > M \Rightarrow a_n > M \text{ for } n > 1\}$
	$\left \begin{array}{ccc} L_{n \to \infty} & a_n > M \end{array} \right \Rightarrow \left \begin{array}{ccc} A_n > M \end{array} \right \text{ for } \left n \right> $

5.4	Subsequences, Non-existance of Limits
	Definition:
	- A subsequence of [an] is a sequence composed of terms of [an] and having the form
	ani, anz,, ani,, where ni < n2 <
	Theorem: Subsequence Theorem
	- If [an] converges, every subsequence also converges, and to the same limit
	$\lim_{n \to \infty} a_n = L \implies \lim_{n \to \infty} a_{n_1} = L \text{for every subsequence } \{a_n\}$
	- Subsequences play an important role in showing limits do not exist
5.5	Two Common Mistakes