Prosody-aware SpeechT5 For Expressive Neural TTS

- ICASSP 2023
- Microsoft, China / Microsoft Research Asia
- Paper, Demo, Github

최예린 서강대학교 인공지능학과

Email: lakahaga@u.sogang.ac.kr

2023.5.17

Overview

- 기존 SpeechT5 에 prosody modeling 구조를 추가
 - prosody 정보를 explicit하게 고려할 수 있도록 함
- 기존 prosody modeling 관련 pre-training
 - decoder만 혹은 prosody encoder만 사전 학습하는 방식으로 이루어짐
- SpeechT5
 - text와 speech 에 대해 unified modal representation을 학습하는 모델
 - 여기에 prosody 를 Explicit하게 고려할 수 있는 모듈을 추가하여
 - Prosody에 대해서 encoder, encoder, prosody encoder를 Jointly pretraining 하는 방법 제안
- OOD 데이터에 대해서 좋은 성능을 보임

Remind) SpeechT5

- SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing
 - github

Encoder-decoder module and six modal-specific pre/post nets

- Pre-net: raw input을 Shared encoder/ decoder에 알맞은 feature 로 바꿈
 - Text-encoder pre-net: / Speech-encoder pre-net: Convolution feature extractor
 - Speech-decoder pre-net: Tacotron2 and decoder pre-net
 - stack of linear layer-relu-dropouts
- Post-net: decoder에서 생성된 것을 각 modality 에 맞게 변환
 - Speech-decoder post-net: linear projection
 - text-decoder post-net: linear projection to vocab size

Backbone) DelightfulTTS

- DelightfulTTS: The Microsoft Speech Synthesis System for Blizzard Challenge 2021
 - <u>Demo</u>, <u>Github</u>(coqui, implementation in progress)

Variance adaptor

- 최대한 다양한 정보를 학습하는 variance adaptor 구성
 - Prosody predictor: GST의 reference encoder
 - Utterance-level prosody predictor
 - 기존 GST와 동일
 - CNN-GRU-Style token layer(Attention)
 - Phoneme-level prosody predictor
 - Input: utt-level prosody predictor의 output + phoneme encoder의 output
 - Attention
 - Q: phoneme encoder의 output
 - K,V: utt-level prosody predictor ≥ output
- Blizzard Challenge 2021 1등

Prosody-aware Speech T5

● 기존 SpeechT5의 encoder와 decoder 사이에 variance adaptor를 추가

(a) Prosody-aware SpeechT5

- Variance adaptor
 - Shared encoder의 last hidden state로 부터 Prosody를 예측할 수 있도록 학습
- pre-training에서는 phoneme label이 없기 때문에 duration predictor를 없애고,
- Use cross-attention to align mapping of encoder output to target frame-level features
 - Q: shared encoder output
 - K,V: variance adaptor output
- Text data는 prosodic information이 없기 때문에 variance adaptor를 지나지 않음
- Main block을 transformer에서 conformer로 변경
 - Shared encoder: 12 conformer blocks
 - Shared decoder: 6 conformer blocks

Prosody Encoder 구조

- ProsoSpeech: Enhancing Prosody with Quantized Vector Pre-training In TTS
 - ICASSP 2022, Zhejiang University, Speech Lab Alibaba

- Noisy audio를 사용하여 prosody encoder를 pretrain
- Word-level prosody vector
 encoding
- ProsodyAwareSpeechT5에서 차용한 구조는 LPV
 Predictor
 - Encoder output으로부터 prosody vector를 예측하도록 훈련

- LPV Predictor
 - LPV: Latent Prosody Vector
 - Text input으로부터 word-level LPV sequence를 예측
 - 이때 정답값으로 prosody encoder에서 encoding한 LPV를 사용
 - Self-attention based autoregressive architecture

Prosody-aware Speech T5

Pretraining Loss

$$\mathcal{L} = \mathcal{L}_{speecht5} + \mathcal{L}_{pitch}^{s} + \mathcal{L}_{utt}^{s} \tag{1}$$

$$\mathcal{L}_{speecht5} = \mathcal{L}_{mlm}^{s} + \mathcal{L}_{1}^{s} + \mathcal{L}_{bce}^{s} + \mathcal{L}_{mle}^{t} + \mathcal{L}_{d}^{joint}$$
 (2)

• Speech T5 Loss

- Speech representation learning loss
 - Cross-entropy loss over masked time steps in acoustic unit sequence
- Speech reconstruction loss
 - L1 loss between generated features and the GT features of input speech
 - Binary cross entropy loss for the stop token
- Text reconstruction loss
 - Maximum likelihood estimation of reconstructing original text from corrupted text input
- Diversity loss
 - Entropy loss of averaged softmax distribution of discrete representation in shared code-book

Prosody-aware Speech T5

Pretraining Loss

$$\mathcal{L} = \mathcal{L}_{speecht5} + \mathcal{L}_{pitch}^{s} + \mathcal{L}_{utt}^{s} \tag{1}$$

$$\mathcal{L}_{speecht5} = \mathcal{L}_{mlm}^s + \mathcal{L}_1^s + \mathcal{L}_{bce}^s + \mathcal{L}_{mle}^t + \mathcal{L}_d^{joint}$$
 (2)

- Pitch loss
 - L1 loss between predicted pitch and GT pitch
- Utterance-level prosody prediction loss
 - L1 loss between predicted utt-level prosody vector and the vector extracted from utt-level reference encoder

Pre-training with noisy audio

Prosody

(d) Pre-training

TTS Finetuning

(b) Acoustic Model in Neural TTS

- DelightfulTTS에서 phoneme-level prosody predictor를 제외한 구조
- Pretrain과 Finetune의 inconsistency
 - Sub-word vs Phoneme
 - Frame-level vs Phoneme-level
 - AR vs Parallel
- 해결 방법
 - Encoder의 첫 layer는 새로 initialize
 - Pretrained embedding을 모두 update
- 먼저 multi-speaker에 대해 tts-finetuning
 - 300 hours of English corpus (내부 코퍼스)
 - 29 speakers
- 이후, 특정 화자에 대해 adapt하는 과정 진행
 - 10 hours of single female speakers

Experiment

- 훈련 데이터
 - Pretrain:
 - Speech: LibriSpeech 960 hours + LibriLigth audios
 - Text: LibriSpeeech transcript (40M sentences)
 - TTS finetune
 - 300 hours of English corpus (내부 코퍼스): 29 speakers
 - 이후 10 시간 분량의 여성 단화자 코퍼스에 대해 학습
- 평가데이터
 - In-domain data
 - 훈련에서 제외된 테스트셋
 - OOD data
 - News, Audiobook에서 각각 30문장
 - Robustness test data
 - 다른 도메인에서 랜덤하게 선정된 100문장 (1795 단어를 포함)

Result

Table 1. Subjective and objective results of different models. Issue rate is computed at word-level on the robustness test set. Prosody issues include word-level incorrect stress, intonation, tone and pause. Prosody statistics are calculated on the two OOD test sets (News and Audiobook). Positive CMOS scores indicate that the prosody-aware SpeechT5 is better than baseline.

Model	CMOS			Issue Rate	Prosody Statistics	
Model	In-domain	News (OOD)	Audiobook (OOD)	Prosody	Pitch Std	Pitch Range
Avg. Word Number per Sentence	12	23	31	_	-	-
Baseline	0.00	0.00	0.00	1.63%	33.687	166.488
+ prosody-aware SpeechT5	-0.016	0.154	0.114	1.32%	37.378	177.503
Relative Issue Rate Reduction	-	_	-	19.02%	-	-

- Baseline: SpeechT5
- Subjective evaluation
 - CMOS: 긴 문장들에 대해서도 좋은 성능 (in domain은 baseline이 더 좋음
 - Prosody Issue Rate: word-level에서 Incorrect stress, intonation, tone, pause의 비율을 측정한 것
 - Robustness test data에 대해서 측정
 - Relative Issue Rate Reduction: baseline에 비해 감소한 비율
- Objective evaluation
 - Prosody statistics
 - Baseline에 비해 다양한 pitch 를 합성

Ablation Study

• Pretrain 데이터 및 structure에 대한 비교

Table 2. Performance of training prosody-aware SpeechT5 with different strategies. Conformer is used in baseline neural TTS model.

Pre-trainin	CMOS		
Pre-training Data	Encoder-Decoder	News	Audiobook
LibriSpeech (960h)	Conformer	-0.090	-0.062
LibriLight (60kh)	Transformer	0.00	-0.006
LibriLight (60kh)	Conformer	0.154	0.114

- 동일 데이터셋에 대해서는 Transformer 보다는 Conformer 가 좋고
- 동일한 Conformer에 대해서는 대용량 데이터인 LibriLight를 사용하여 Pre-train 했을 때 더성능이 좋음

Ablation Study

• Pretraining module에 대한 ablation study

Table 3. Comparison of pre-training different modules and their combinations. Encoder + Variance Adaptor + Decoder are all used in prosody-aware SpeechT5.

Pre-training Modules	CMOS		
Fie-training Wiodules	News	Audiobook	
Prosody-aware SpeechT5	0.00	0.00	
w/o Decoder and Variance Adaptor	0.027	-0.077	
w/o Encoder and Variance Adaptor	0.033	-0.076	

• w/o Variance Adaptor = SpeechT5

- Decoder와 Variance adaptor는 pretrain하지 않고, TTS 학습했을 때
 - 즉, encoder만 pretrain 했을 때
- Encoder와 Variance adaptor는 pretrain하지 않고, TTS 학습했을 때
 - 즉, decoder만 pretrain 했을 때
- 두가지 경우 모두 News에 대해서는 오히려 성능이 좋아지지만 Audiobook에 대해서는 성능이 떨어진다.
 - Prosody가 더 필요한 음성에서 Variance adaptor가 없을 때 성능이 떨어짐

Conclusion

- 기존 SpeechT5에 variance adptor를 추가하여 Prosody 정보를 포함한 pretrain 방법을 제시하여
- OOD data에 대해서 TTS의 성능을 높임
- Direct Speech-to-Speech modeling 방법에 적용
 - Audio 모델의 장점 -> prosody 등 text에 없는 정보를 활용 가능
 - Prosody 를 pretrain 과정에서 포함해야 할 것
 - 본 논문에서 제시한 pretrain 구조를 참고할 수 있을 것

감사합니다.