MATH2033 Mathematical Analysis **Problem Set 6**

Limits of function

Problem 1

Prove the following limits using the definition of limits (ε - δ definition)

(a)
$$\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$$
.

(b)
$$\lim_{x\to c} x^3 = c^3$$
, where $c \in \mathbb{R}$

(a)
$$\lim_{x\to 1} \frac{x}{x+1} = \frac{1}{2}$$
.
(b) $\lim_{x\to c} x^3 = c^3$, where $c \in \mathbb{R}$.
(c) $\lim_{x\to 0} x \sin\frac{1}{x} = 0$ and $\lim_{x\to \frac{\pi}{2}} x \cos x = 0$.

Problem 2

Prove the following limits using the definition of limits

(a)
$$\lim_{x\to\infty}\cos\frac{1}{x}=1$$
 (\bigcirc Hint: Recall that $\frac{1}{x}\to 0$ when $x\to\infty$, so $\frac{1}{x}<\frac{\pi}{2}$ when x is large).

(b)
$$\lim_{x \to -\infty} e^x = 0$$

(c) $\lim_{x \to \infty} e^x = \infty$

(c)
$$\lim_{x\to\infty} e^x = \infty$$

Problem 3

We let [x] denotes the greatest integer less than or equal to x.

(a) We let c be an integer. Determine if the limits $\lim[x]$ exists.

(\bigcirc Hint: Try an example when c=3)

(b) We let d be a non-integer. Determine if the limits $\lim_{x \to d} [x]$ exists

Problem 4

We let $f: \mathbb{R} \to \mathbb{R}$ be a function which $\lim_{x \to 0} f(x) = L \in \mathbb{R}$. Let a > 0 be a positive number and define $g: \mathbb{R} \to \mathbb{R}$ as g(x) = f(ax).

- (a) Show that $\lim_{x\to 0} g(x) = L$ using the definition of limits.
- (b) Redo (a) using the sequential limits theorem.

Problem 5

(a) We let $f: \mathbb{R} \to \mathbb{R}$ be a function which $\lim_{x \to x_0} f(x) = L$. Show that there exists $\delta > 0$ and M > 0 such that |f(x)| < M for all $|x - x_0| < \delta$.

(Hint: You can consider the definition of limits)

(b) We let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions which $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Using the definition of limits (ε - δ definition), prove that $\lim_{x \to a} f(x)g(x) = LM$.

 \bigcirc Hint: Write f(x)g(x) - LM = f(x)g(x) - f(x)M + f(x)M - LM. Also, the result in (a) is also useful.)

Problem 6

We let $f: \mathbb{R} \to \mathbb{R}$ be a function given by

$$f(x) = \begin{cases} x & if \ x \in \mathbb{Q} \\ 0 & if \ otherwise \end{cases}$$

- (a) Show that $\lim_{x\to 0} f(x)$ exists. (b) Show that $\lim_{x\to c} f(x)$ does not exist for any $c\neq 0$.

Continuity

Problem 7

We consider a function $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)=\frac{[x]}{x}$, where [x] denotes the greatest integer less than or equal to x.

- (a) Determine if f(x) is continuous at x=1.
- **(b)** Determine if f(x) is continuous at x = 2.5.

Problem 8

- (a) We let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two continuous functions on \mathbb{R} , show that the function $h(x) = \min(f(x), g(x))$ is continuous on \mathbb{R} .
- (b) We let $f_1, f_2, ..., f_n : \mathbb{R} \to \mathbb{R}$ be n continuous functions on \mathbb{R} . Using the result of (a), show that $p(x) = \min(f_1(x), f_2(x), ..., f_n(x))$ is continuous on \mathbb{R} .
 - (CHint: You can try mathematical induction)

Problem 8

We consider a function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x - x^3 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if otherwise} \end{cases}.$$

- (a) Show that the function is continuous at x=0 and $x=\pm 1$.
- (b) Show that the function is not continuous at point $x = x_0$ where $x_0 \neq 0, -1, 1$.

Problem 9

Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which f is discontinuous at any point on \mathbb{R} but |f| is continuous on \mathbb{R} .

Problem 10

We let $f,g:\mathbb{R}\to\mathbb{R}$ be two continuous functions on \mathbb{R} such that f(r)=g(r) for all $r\in\mathbb{Q}$. Show that f(x) = g(x) for all $x \in \mathbb{R}$.

Problem 11

- (a) Show that the equation $x = \cos x$ has a solution in the interval $\left[0, \frac{\pi}{2}\right]$.
- **(b)** Show that the equation $x^4 + 7x^3 9 = 0$ has at least two real solutions.

Problem 12

We let L>0 be a positive number and let $f:[a,b]\to\mathbb{R}$ be a continuous function. Suppose that for any $n\in\mathbb{N}$, there exists $x_n\in[a,b]$ such that

$$|f(x_n) - L| < \frac{1}{2^n}.$$

Show that there exists $x^* \in [a, b]$ such that $f(x^*) = L$.

Problem 13

We let $f:[a,b] \to \mathbb{R}$ be a continuous function on [a,b]. Suppose that there exists $c \in (a,b)$ such that f(c) > f(x) for all $x \in [a,b]$, show that f(x) is not injective.

(©Hint: Draw a figure and get some idea)