Claim Listing

1-27. (canceled)

28. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 90, wherein the compound is selected from the group consisting of:

N-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yllmethyl} methanesulfonamide;

N-[(3-{1-{(cyclopropylmethyl)amino}-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]methanesulfonamide;

 $N-[(3-\{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl\}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]ethanesulfonamide;$

N-[(3-{1-{(cyclopropylmethyl)amino}-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]propane-1-sulfonamide;

 $N-[(3-\{1-\{(\text{cyclopropylmethyl})\text{amino}\}-4-\text{hydroxy-}2-\text{oxo-}1,2-\text{dihydroquinolin-}3-\text{yl}\}-1,1-\text{dioxido-}4H-\text{thieno}[2,3-e][1,2,4]\text{thiadiazin-}7-\text{yl})\text{methyl}]\text{propane-}2-\text{sulfonamide};$

 $N-[(3-\{1-\{(\text{cyclopropylmethyl})\text{amino}\}-4-\text{hydroxy-}2-\text{oxo}-1,2-\text{dihydroquinolin-}3-\text{yl}\}-1,1-\text{dioxido-}4H-\text{thieno}[2,3-e][1,2,4]\text{thiadiazin-}7-\text{yl})\text{methyl}\text{benzenesulfonamide;}$ and

 $N-[(3-\{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl\}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]-1-phenylmethanesulfonamide.$

29-51. (canceled)

52. (previously presented) A compound or a pharmaceutically acceptable salt form, stereoisomer, or tautomer thereof, wherein:

the compound corresponds in structure to formula (VIII):

X is NH, N(alkyl), O, or S;

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoyycarbonylalkyl, alkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkyl, heteroarylsulfonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heteroarylalkyl, nitroalkyl, $R_aR_bN-R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, R_aR_bN

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_{aa}$ - $S(O)R_{aa}$ - $S(O)R_{aa}$, and $R_aC(O)$ -, wherein R^2 and R^3 are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of R_{aa} alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_b)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_{ba}$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$, and $-C(O)NR_aR_b$;

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached, form a fiveor six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl, and heterocycle, wherein said aryl, cycloalkyl, heteroaryl, and heterocycle is optionally substituted with $(R^6)_m$;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN , N_3 -, and R_aS_7 , wherein R^4 is independently substituted with 0, 1, or 2 substituents independently selected from the group consisting of halo, nitro, evano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylearbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heteroeyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -R, $R_a(C)$ -R, R_aC

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$, and - $C(O)NR_aR_b$, wherein each R^6 is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SOR_a , - $C(O)OR_a$, - $C(O)NR_aR_b$, and - $NC(O)R_a$:

 R^7 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylatkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, $R_cR_aN^2$, $R_aC(O)$ -, R_aS -, $R_a(O)$ -, R_aS -, $R_aC(O)$ -, R

R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkenyl, cycloalkenyl, cycloalkenyl, cycloalkenyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkenyl, heteroarylalkenyl, heteroarylalkyl, R_cR_dNc(O)alkyl-, R_cR_dNc(O)alkyl-, R_cR_dNc(O)alkyl-, R_cR_dNc(O)alkyl-, R_cR_dNc(O)-, R_cC(O)-, R_cC(O)alkyl-, R_cR_dNc(O)-, R_cR

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, $-NR_dR_h$, $-CO_R_f$, $-SO_2R_f$, $-SO_2R_f$, $-CO_NR_dR_h$, $-SO_2NR_gR_h$, $-CO_OOR_f$, alkenyl, alkyl, alkynyl, eycloalkyl, eycloalkyl, eycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxylkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -N(R_f)SO_2NR_fR_h, -R(R_f)C(O)NR_fR_h, -R(R_f)C(O)NR_fR

alternatively, R_c and R_{ds} together with the nitrogen atom to which they are attached, form a threeto six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_t), -(alkyl)(NR_tR₃), -SR₅ -S(O)R₅ -S(O)₂R₅ -OR₅ -N(R₀)(R₃), -C(O)R₅ -C(O)OR₅ and -C(O)NR_tR₃;

Re is selected from the group consisting of hydrogen, alkenyl, alkyl, and cycloalkyl;

R₅ R₅, and R₅, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl₃ and heteroarylalkyl; wherein each R₆ R₂, and R₅ is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(O)(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(alkyl), -alkylSO₂alkyl, -N(H)(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)MH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl);

alternatively, R_f and R_g, together with the carbon atom to which they are attached, form a threeto seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl, and heterocycle;

alternatively, R_f and R_h , together with the nitrogen atom to which they are attached, form a threeto seven-membered ring selected from the group consisting of heterocycle and heteroaryl, wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH, -A(alkyl), -N(alkyl), -S(alkyl), -S(alkyl),

-alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(Blkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, $R_s R_b NC(O)$ -, $R_s NC(O)$

m is 0, 1, 2, 3, or 4; and n is 0, 1, or 2.

- 53. (previously presented) The compound, salt, stereoisomer, or tautomer of claim 52, wherein R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl, and heterocycle is optionally substituted with (R⁶)_m.
- 54. (previously presented) The compound, salt, stereoisomer, or tautomer of claim 53, wherein R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of phenyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazolyl, cyclopentyl, cyclohexyl, and thienyl.
- 55. (previously presented) The compound, salt, stereoisomer, or tautomer of claim 54, wherein \mathbb{R}^4 is hydroxy.
- 56. (previously presented) The compound, salt, stereoisomer, or tautomer of claim 55, wherein the compound is selected from the group consisting of:
- 3-(1,1-dioxido-4H-[1,3] oxazolo[5,4-h][1,2,4] benzothia diazin-3-yl)-4-hydroxy-1-(is obutylamino) quino lin-2(1H)-one;
- 3-[8-(chloromethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxyl-(isobutylamino)quinolin-2(1H)-one;
- $3-\{3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-[1,3]\\ oxazolo[5,4-h][1,2,4]benzothiadiazin-8-yl\}propanoie acid;$

```
U.S. Patent Application No. 10/699,513
Response to March 5, 2010 Office Action
July 6, 2010
```

- 3-(8-{[(2-aminoethyl)amino]methyl}-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- methyl {3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-[1,3] oxazolo[5,4-h][1,2,4]benzothiadiazin-8-yl}acetate;
- 4-hydroxy-3-(8-{[(3R)-3-hydroxypyrrolidin-1-y1]methyl}-1,1-dioxido-4H-[1,3]oxazolo[5,4-h] [1,2.4]benzothiadiazin-3-yl)-1-(isobutvlamino)xuinolin-2(1H)-one:
- 3-[1,1-dioxido-8-(pyridinium-1-ylmethyl)-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-4-olate;
- 3-[1,1-dioxido-8-(pyrrolidin-1-ylmethyl)-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[8-(3-aminophenyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hvdroxy-1-(isobutvlamino)auinolin-2(1H)-one:
- 3-[8-(aminomethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxyl-(isobutylamino)quinolin-2(1H)-one;
- 4-hydroxy-3-[8-(hydroxymethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl] -1-(isobutylamino)quinolin-2(1H)-one;
- 3-{8-[(butylamino)methyl]-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl}-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[9-(butylamino)-1,1-dioxido-4H,8H-[1,4]oxazino[2,3-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 4-hydroxy-1-(3-methylbutyl)-3-(8-methyl-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4] benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
- 3-[1,1-dioxido-8-(trifluoromethyl)-4,7-dihydroimidazo[4,5-h][1,2,4] benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 4-hydroxy-3-(8-hydroxy-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl)-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 4-hydroxy-1-(3-methylbutyl)-3-(8-methyl-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4] benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
- 3-[1,1-dioxido-8-(pentafluoroethyl)-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 3-[8-(chloromethyl)-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
 - $\{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4,7-naphthyridin-3-yl]-1,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-dioxido-4,1-di$

dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-8-yl}acetonitrile;

methyl {3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-8-yl}acetate;

3-(9,9-dioxido-6*H*-[1,2,5]thiadiazolo[3,4-*h*][1,2,4]benzothiadiazin-7-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;

3-(8-amino-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4] benzothiadiazin-3-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one; and

4-hydroxy-3-[8-(hydroxymethyl)-1,1-dioxido-4,9-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one.

57. (previously presented) A compound or a pharmaceutically acceptable salt form, stereoisomer, or tautomer thereof, wherein the compound is selected from the group consisting of:

 $\label{eq:N-4-1} N-\{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl\} methanesulfonamide;$

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thicno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]methanesulfonamide;

 $\label{eq:N-(3-{l-((cyclopropylmethyl)amino})-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)methanesulfonamide;$

 $N-\{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl\} sulfamide; and$

 $N-\{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl\}-N-methylsulfamide.$

58-61. (canceled)

- 62. (previously presented) A pharmaccutical composition comprising a therapeutically effective amount of one or more compounds, salts, stereoisomers, or tautomers recited in claim 57 and a pharmaccutically acceptable carrier.
- 63. (previously presented) The pharmaceutical composition of claim 62, wherein the composition further comprises one or more agents selected from the group consisting of a host immune modulator and a second antiviral agent.
- 64. (previously presented) The pharmaceutical composition of claim 63, wherein each of the one or more host immune modulators is selected from the group consisting of interferon-alpha, pegylated-

interferon-alpha, interferon-beta, interferon-gamma, a cytokine, and a vaccine optionally comprising an antigen and an adjuvant.

- 65. (previously presented) The pharmaceutical composition of claim 63, wherein the second antiviral agent inhibits replication of HCV by inhibiting host cellular functions associated with viral replication.
- 66. (previously presented) The pharmaceutical composition of claim 63, wherein the second antiviral agent inhibits the replication of HCV by targeting proteins of the viral genome.
- 67. (previously presented) The pharmaceutical composition of claim 62, wherein the composition further comprises an agent or combination of agents that treat or alleviate symptoms of HCV infection
- 68. (previously presented) The pharmaceutical composition of claim 62, wherein the composition further comprises one or more agents that treat patients for disease caused by hepatitis B (HBV) infection.
- 69. (previously presented) The pharmaceutical composition of claim 68, wherein each of the one or more agents that treat patients for disease caused by hepatitis B (HBV) infection is selected from the group consisting of L-deoxythymidine, adefovir, lamivudine, and tenfovir.
- 70. (previously presented) The pharmaceutical composition of claim 62, wherein the composition further comprises one or more agents that treat patients for disease caused by human immunodeficiency virus (HIV) infection.
- 71. (previously presented) The pharmaceutical composition of claim 70, wherein each of the one or more agents that treat patients for disease caused by human immunodeficiency virus (HIV) infection is selected from the group consisting of ritonavir, lopinavir, indinavir, nelfinavir, saquinavir, amprenavir, atazanavir, tipranavir, TMC-114, fosamprenavir, zidovudine, lamivudine, didanosine, stavudine, tenofovir, zalcitabine, abacavir, efavirenz, nevirapine, delavirdine, TMC-125, L-870812, S-1360, enfuvirtide (T-20), and T-1249.

72-73. (canceled)

74. (previously presented) A method of treating an infection caused by a hepatitis C virus,

wherein the method comprises administering to a patient in need of such treatment a therapeutically effective amount of one or more compounds, salts, stereoisomers, or tautomers recited in claim 57.

75-89. (canceled)

90. (previously presented) A compound, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, wherein:

the compound corresponds in structure to formula (I):

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl, and heterocycle;

R1 is R.R.N-:

R² and R³, together with the carbon atoms to which they are attached, form a five- or sixmembered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl, and heterocycle;

R⁴ is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN-, N₃-, and R_eS-, wherein R⁴ is substituted with 0, 1, or 2 substituents independently selected from the group consisting of halo, nitro, evano, -OH, -NH₂, and -COOH;

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylearbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_xR_bN-, R_xC(O)-, R_xS-, R_x(O)S-, R_xR₀Nalkyl-, R_xQ(O)SN(R_t)-, R_xSO₂N(R_t)-, R_xQ(O)-, R_xQ(O

R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen,

alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, and nitroalkyl;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_iR_b, -OR₅, -CO(R_c), -SR₅, -SOR₅, -SOR₅, -C(O)NR_iR_b, -C(O)NR_iR_b, -C(O)OR₅ alkenyl, alkyl, alkyly, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, and heterocycloalkyl, wherein each R, and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_iR_b), -SR₆, -S(O)R₆, -S(O)₂R₆, -SOR₅, -N(R_c)(R_b), -C(O)R₆, -C(O)NR_iR_b, -C(O)NR_iR_b, -C(O)NR_iR_b, -C(O)NR_iR_b, -C(O)NR_iR_b, and -alkylN(R_c)C(O)NR_iR_b;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached, form a threeto six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR₂), -(alkyl)(NR₂R₃), -SR₅, -S(O)R₅, -S(O)₂R₅, -OR₅, -N(R₂)(R₃), -C(O)OR₅, -C(O)OR₅, and -C(O)NR₃R₃;

R. is selected from the group consisting of hydrogen, alkenyl, alkyl, and cycloalkyl;

 R_f and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl, and heteroarylalkyl, wherein each R_h R_h and R_h is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(O)(alkyl), -SO₂alkyl, -alkyl-OH, -alkyl-O-alkyl, -alkylN(H)₂, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)(C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)NH₂, -C(O)NH₂, -C(O)N(H)₃), and -C(O)N(alkyl), and -C(O)N(alk

alternatively, R_f and R_{3n} together with the nitrogen atom to which they are attached, form a threeto seven-membered ring selected from the group consisting of heterocycle and heteroaryl, wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl,

cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, –OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyla (cycloalkenylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, R_kS_kNalkyl-, R_kO(O)-, R_kR_kNC(O)-, R_kR_kNC(O)-, R_kR_kNC(O)-, R_kSO₂-, R_kSalkyl-, R_kO(Salkyl-, R_kSO₂alkyl-, R_kO(O)-, R_kO(O)-

n is 0, 1, 2, 3, or 4,

91. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 52, wherein: R⁵ is R₉SO₂N(R_i)alkyl-, and

 $R_{\rm a}$ and $R_{\rm b}$, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkenyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, hydroxyalkylcarbonyl, and nitroalkyl.

92. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 52, wherein: R¹ is R₈R₈N-, and

R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, and nitroalkyl.

93-95. (canceled)

96. (previously presented) A method of treating an infection caused by a hepatitis C virus, wherein the method comprises administering to a patient in need of such treatment a therapeutically

effective amount of one or more compounds, salts, stereoisomers, or tautomers recited in claim 52.

97. (previously presented) A method of treating an infection caused by a hepatitis C virus, wherein the method comprises administering to a patient in need of such treatment a therapeutically effective amount of one or more compounds, salts, stereoisomers, or tautomers recited in claim 90.