0. Grundlegendes

Menge

Eine Menge ist eine abgegrenzte Gesamtheit von unt\erscheidbaren Dingen. Diese heißen Elemente der Menge.

Beschreibung von Mengen

- durch Aufzählen aller Elemente $(M = \{1, 3, 3, 7\}, M = \{2, 4, 6, 8, ...\})$
- durch eine die Elemente charakterisierende Eigenschaft E ($M=\{x|x$ hat die eigenschaft $E\}$)

Beispiel

 $M = \{x | x \text{ ist eine positive, gerade und ganze Zahl}\}$

Symbole für spezielle Zahlenmengen

 $\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{R}, \emptyset$ Sei M eine Menge.

Dann $a \in M$: a ist Element von MDann $a \notin M$: a ist nicht Element von M

Beispiel

 $1 \in \mathbb{N}, \frac{2}{3} \in \mathbb{Z}$

Teilmengen

N, Mseien Mengen Nheißt Teilmenge von M,wenn jedes Element aus Nzu Mgehört:

$$N \subseteq M$$

Beispiel

 $\begin{array}{l} \mathbb{N}\subseteq\mathbb{N}_0\subseteq\mathbb{Z}\subseteq\mathbb{R}\subseteq\emptyset\\ \emptyset\subseteq M \text{ und } M\subseteq M \text{ gilt für jede Menge} \end{array}$

Aussage

A und B Aussagen (= Aussagesätze unserer Sprache, denen genau einen Wahrheitswert W(wahr) oder F(falsch) zugeordnet werden kann)

 $A \implies B$: aus A folgt $B \setminus A \iff B$: A ist äquivalent zu B

Abbildung

Seien D und W zwei nichtleere Mengen. Unter einer Abbildung von D nach W versteht man eine Vorschrift f, die jedem $x \in D$ eindeutig ein $y \in W$ zuordnet. Man schreibt y = f(x). f(x) heißt das Bild von x unter der Abbildung f. Man gibt die Abbildung an durch: $f: D \to W, x \mapsto f(x)$. D heißt Definintionsbereich, W heißt Zielbereich. Die Menge $f(D) = \{f(x) | x \in D\} \subseteq W$ heißt das Bild von f oder die Bildmenge von f. Man schreibt: f(D) = Imf.

Beispiele

- (1) $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2$
- (2) Sei D eine Menge. Dann heißt die Abbildung $Id: D \to D$ mit Id(x) = x für $x \in D$ die Identität von D.

Seien G und H zwei nichtleere Mengen. \ Dann heißt die Menge $G \times H = \{(g,h)|g \in G, h \in H\}$ das kartesische Produkt G und H.

Definition

- (1) Sei G eine nichtleere Menge. Dann heißt eine Abbildung $*: G \times G \to G$ mit $(g,g') \mapsto g*g' \in G$ eine innere Verknüpfung auf G.
- (2) Seien K und V nichtleere Mengen. Dann heißt eine Abbildung $\cdot: K \times V \to V$ mit $(\alpha, v) \mapsto \alpha \cdot v \in V$ eine äußere Verknüpfung auf V.

Beispiele

 $(1) + : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \text{ mit } (a, b) \mapsto a + b \text{ und } : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \text{ mit } (a, b) \mapsto a \cdot b$

sind innere Verknüpfungen auf \mathbb{R} (2) $\cdot : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ mit $(n, x) \mapsto n \cdot x \in \mathbb{R}$ ist eine äußere Verknüpfung auf \mathbb{R} .

Bemerkungen

- (1) In \mathbb{R} mit der inneren Verknüpfung + gelten die die folgenden Gesetze:
 - (G1) Assoziativgesetz: (a + b) + c = a + (b + c)
 - (G2) Es gibt ein Element $0 \in \mathbb{R}$ mit 0 + a = a = a + 0 für alle $a \in \mathbb{R}$ (Existenz des neutralen Elements)
 - (G3) Zu jedem $a \in \mathbb{R}$ existiert ein $-a \in \mathbb{R}$ mit a + (-a) = 0 (Existenz des inversen Elements)
 - (G4) Kommutativgesetz: a + b = b + a

Man sagt: $(\mathbb{R}, +)$ ist eine abelsche Gruppe.

(2) Ebenso ist $\mathbb{R}\setminus 0$ mit der Verknüpfung · eine abelsche Gruppe: Assoziativgesetz und Kommutativgesetz: $\sqrt{}$ neutrales Element: 1

neutrales Element: I inverses Element zu $a:\frac{1}{a}$

(3) In $\mathbb R$ mit den inneren Verknüpfungen + und · gelten die Distributivgesetze: $a\cdot (b+c)=a\cdot b+a\cdot c$ und $(b+c)\cdot a=b\cdot a+c\cdot a$.

Man sagt wegen (1), (2), (3): \mathbb{R} ist eine Körper. (Anderes Beispiel eines Körpers: \mathbb{C})