Ch 2. 一维随机变量及其分布

钟友良

zhongyl@scut.edu.cn

```
Ch1. 12.
```

A:无偏号

思想を、
$$C_0^3$$

P[...] = $\frac{C_0^2}{C_0^2}$

 $P(A_n) = \frac{a}{a+b}$

随机变量

随机变量是根据出现的试验结果取实值的变量. 换言之, 随机变量以一定的概率取相应的函数值. 请指出下面随机现象结果的区别:

- ▶ 掷一次骰子, 出现的点数
- ▶ 家用电器的使用寿命
- ▶ 掷一枚硬币,观察向上的面
- ▶ 抽取一件产品, 检查其是否合格

例子

- ▶ 掷一次骰子, 出现的点数 $X \in \{1, 2, 3, 4, 5, 6\}$
- ▶ 家用电器的使用寿命 $X \in [0, \infty)$
- ▶ 掷一枚硬币, 观察向上的面 $X \in \{0(正面), 1(反面)\}$
- 抽取一件产品, 检查其是否合格X ∈ {0(合格), 1(不合格)}

随机变量的定义

定义 2.1.1

设 (Ω, \mathcal{F}, P) 为概率空间, 称映射 $X: \Omega \to \mathbb{R}$ 为随机变量, 如果对于任意 $x \in \mathbb{R}$, 有

这个定义包含了下面几个意思

- ▶ 随机变量是从样本空间到实轴的 映射
- ▶ (R测) 对于 任意 的 $x \in \mathbb{R}$, 满足 (1) (反例

例 2.1.1

- ▶ 投骰子 $\omega_i = \{\text点数为 i\}$
- ▶ 基本事件空间 $\Omega_1 = \{\omega_1, \ldots, \omega_6\}$
- ▶ 事件 $A = \{\omega_1, \omega_3, \omega_5\}$ 和 $B = \{\omega_2, \omega_4, \omega_6\}$
- ▶ 事件域 $\mathcal{F}_3 = \{\Omega_1, \emptyset, A, B\}$
- ▶ 概率空间 $(\Omega_1, \mathcal{F}_3, P)$ \mathcal{B} $2 \frac{1}{2}$ $4 \circ 6 \circ$ 定义映射

$$X:\Omega_1 o\mathbb{R}$$
 function $\omega_i\mapsto i$

由 $\{\omega \in \Omega_1 | X(\omega) \le 2\} = \{\omega_1, \omega_2\} \notin \mathcal{F}_3$ 得 X 不是 $(\Omega_1, \mathcal{F}_3, P)$ 上的随机变量。

随机变量和事件

假设, 给定 $a < b \in \mathbb{R}$

$$A = \{\omega : X(\omega) < a\} = (-\infty, a)$$
 $B = \{\omega : X(\omega) < b\} = (-\infty, b)$
请定义下面的事件
$$\bar{A}, \quad \bar{B}, \quad A \cap B, \quad A - B$$

$$[a, +\infty) \quad [b, +\infty)$$

$$\bar{A} \in A$$

分布函数

定义 2.1.2

$$F_X(x) = P(\{\omega \in \Omega : X(\omega) \le x\}), \forall x \in \mathbb{R}$$

以后将 $\{\omega \in \Omega : X(\omega) \le x\}$ 简写为 $X \le x$.

分布函数和事件

根据分布函数的定义, 显然的

$$P(a < X \le b) = F_X(b) - F_X(a), \forall a < b \in \mathbb{R}$$

根据概率的上下连续性, 对于 $\forall a < b \in \mathbb{R}$, 有下面的事实

$$P(X = a) = F_X(a) - F_X(a - 0),$$

$$P(a \le X \le b) = F_X(b) - F_X(a - 0),$$

$$P(a \le X < b) = F_X(b - 0) - F_X(a - 0),$$

$$P(a < X < b) = F_X(b - 0) - F_X(a)$$

当 $F_X(x)$ 在 a 连续时, $F_X(a-0) = F_X(a+0) = F_X(a)$.

分布函数的性质

▶ 有界性 $0 \le F_X(x) \le 1, \forall x \in \mathbb{R}$

证明.

因为对于任给的 $x \in \mathbb{R}$, $F_X(x)$ 表示事件 $\{\omega \in \Omega : X(\omega) < x\}$ 的概率, 根据概率的有界性可得.

- ▶ <mark>单调性</mark> 对于任意的 $x_1 < x_2$,有 $F_X(x_1) \le F_X(x_2)$ 并且 $\lim_{x \to -\infty} F_X(x) = 0$, $\lim_{x \to +\infty} F_X(x) = 1$.

课堂练习

▶ 向半径为 r 的圆内随机抛一点, 求此点到圆心距离 X 的分布函数, 并且求 $P(X > \frac{2r}{3})$

□袋中有 5 个球, 编号为 1,2,3,4,5, 从中任取 3 个, 以 X 表示 3 个球中最大的号码, 求 X

的分布函数,并作图.

一维离散型随机变量

当随机变量只能取有限个或者可数个函数值的时候, 称为 <mark>离散型随机变量</mark>.

设一个定义在概率空间 $\{\Omega, \mathcal{F}, P\}$ 上的随机变量 $\{X\}$ 只有可数个取值, 记作 $a_1, a_2, \dots, a_n, \dots$, 且

$$P(X=a_i)=p_i, i=1,2,\cdots,n,\cdots$$

通常称

$$X \sim \left(egin{array}{cccc} a_1 & a_2 & \cdots & a_n & \cdots \ p_1 & p_2 & \cdots & p_n & \cdots \end{array}
ight)$$

的右端为 X 的 $\frac{\partial}{\partial r}$ $\frac{\partial}$

分布列的性质

- $p_i \ge 0, i = 1, 2, \cdots$
- ► X 的分布函数为

$$F_X(x) = P(X \le x) = \sum_{a_i \le x} p_i$$

 $F_X(x)$ 的图像为右连续的阶梯函数.

$$P(b < X \le c) = \sum_{b < a_i \le c} p_i$$

课堂练习

一汽车沿着街道行驶,需要经过三个红绿灯,若每个信号灯显示红绿两种信号的时间相等,且各个信号灯工作相互独立.以 X 表示该汽车首次遇到红灯前已经通过的路口数,求 X 的分布列

$$X \sim \begin{pmatrix} 0 & 1 & 2 & \geqslant 3 \\ \frac{1}{2} & (\frac{1}{2})^2 & (\frac{1}{2})^3 & 1 - \frac{1}{2} - (\frac{1}{2})^3 \end{pmatrix}$$