MOVIE RATINGS AND REVIEWS

PRI 2021/2022

Caio Nogueira Carlos Lousada Tomás Mendes

- Data collected in Kaggle scrapped from IMDB and RottenTomatoes;
- Dataset contains over 9,000 movies with up to 20 reviews per movie (after preprocessing);
- Statistical analysis was performed to better understand the dataset

- Introduction to Solr because it suits our problem better;
- Usage of a single document with all information to be retrieved
- Indexation of relevant fields for information retrieval
- Evaluation of 3 different systems
 Schemaless, Schema-only and
 Schema+Weights

Improvements Introduced

- Synonyms for query expansion
- OpenNLP to perform multiple tasks
 - Named-Entity Recognition
 - Chunker
 - Parts of Speech
- Learning to Rank
- Graphical Interface

Indexing Process - OpenNLP Field types

Field Type	Filter	
standard_text	ASCIIFoldingFilterFactory	
	LowerCaseFilterFactory	
	SynonymGraphFilterFactory	
	EnglishPossessiveFilterFactory*	
	EnglishMinimalStemFilterFactory*	
daterange	DateRangeField	
□ nlp_text*	All Filters Used in standard_text	
	OpenNLPPOSFilterFactory	
	OpenNLPChunkerFilterFactory	

Synonyms

```
filter

"class": "solr.SynonymGraphFilterFactory",
    "synonyms": "synonyms.txt",
    "expand": "false",
    "ignoreCase": "true"
}
```


Named-Entity Recognition

- People: people's names identifies characters, actors,... (e.g., "Barack Obama", "James Bond");
- **Organizations**: Organizations' names identifies organizations relevant in the movies (e.g., "FBI", "Army");
- **Dates**: Important dates in the movies identifies weekdays, months or holidays (e.g., "1940s", "Sunday").

Learning to Rank (feature extraction)

Name	Params
maximize_votes	q: {!func}scale(total_votes, 0, 1)
maximize_rating	q: {!func}scale(total_votes, 0, 1)
review_bm25	q: {!dismax qf='review_content'}\${text}
description_bm25	q: {!dismax qf='movie_info'}\${text}
original_score	{}

Learning to Rank (training SVM Rank model)

- SVM variant adapted to Information Retrieval problem.
- Combines documents in pairs (comparable) => Pairwise Transformation.
- Weights are given by the model's coefficients (hyperplane coordinates).

Results comparison

To compare results, we used 2 different systems:

- Using a schema and applying weights;
- Using an improved schema, LTR and applying weights.

Information Needs - Comparison

IN2 - Movies about slavery

Query (q): slave

Query filters (qf): original_title^1, movie_info^5, review_content^3

Information Needs + Comparison

IN4 - Movies about true crime stories

Query (q): true crime story

Query fields (qf): movie_info^3, review_content^5

Phrase Slop (ps): 3

Information Needs + Comparison

IN5 - Christmas movies for the family

Query (q): Christmas time

Phrase Slop (ps): 5

Query fields (qf): original_title^4, movie_info^3, review_content^2

Filter query (fq): genres: "Kids & Family"

	Milestone 2 (Boosted)	Milestone 3 (Improved)
P@10	0.70	0.90
AvP	0.91	1.00

Conclusions

Mean Average Precision (5 information needs)

Boosted System (M2)	Improved System (M3)
0.9228332	0.9577162

Future Work

- Train our own models used in semantical analysis (OpenNLP)
- Feed more data to *rankSVM* ranking model, collected through user feedback