

Unsupervised Learning - Part 2

Machine Learning for Engineering Applications

Fall 2023

Hierarchical Tree

- Hierarchical clustering algorithms is that it allows us to plot → help with the interpretation of the results by creating meaningful taxonomies.
- Another advantage of hierarchical → do not need to specify the number of clusters up front.
- Two types of hierarchical:
 - Agglomerative
 - Divisive

Divisive

- Start with one cluster that wraps all of the samples
- Iteratively split the cluster into smaller clusters until each cluster only contains one sample
- Agglomerative (Main focus)
 - Start with each sample as an individual cluster
 - Merge the closest pairs of clusters until only one cluster remains

- Agglomerative Types
 - Single Linkage
 - Complete Linkage
- Single Linkage:
 - Compute the distances between the most similar members for each pair of clusters
 - Merge the two clusters for which the distance between the most similar members is the smallest

- Agglomerative Types
 - Single Linkage
 - Complete Linkage
- Complete Linkage (*main focus*):
 - Opposite of the single linkage
 - Compare the most dissimilar members to perform the merge

Most dissimilar members (complete linkage)

- Agglomerative Complete Linkage Steps
- 1. Compute the distance matrix of all samples
- 2. Represent each data point as a singleton cluster
- 3. Merge the two closest clusters based on the distance between the most dissimilar (distant) members
- 4. Update the similarity matrix
- 5. Repeat steps 2-4 until one single cluster remains

Example code

```
import pandas as pd
import numpy as np
np.random.seed(123)
variables = ['X', 'Y', 'Z']
labels = ['ID 0','ID 1','ID 2','ID 3','ID 4']
X = np.random.random.sample([5,3])*10
df = pd.DataFrame(X, columns=variables, index=labels)
df
```

Example code

df = pd.DataFrame(X, columns=variables, index=labels)

	Х	Y	Z
ID_0	6.964692	2.861393	2.268515
ID_1	5.513148	7.194690	4.231065
ID_2	9.807642	6.848297	4.809319
ID_3	3.921175	3.431780	7.290497
ID_4	4.385722	0.596779	3.980443

Step 1: Distance Matrix

Step 1: Distance Matrix

	ID_0	ID_1	ID_2	ID_3	ID_4
ID_0	0.000000	4.973534	5.516653	5.899885	3.835396
ID_1	4.973534	0.000000	4.347073	5.104311	6.698233
ID_2	5.516653	4.347073	0.000000	7.244262	8.316594
ID_3	5.899885	5.104311	7.244262	0.000000	4.382864
ID_4	3.835396	6.698233	8.316594	4.382864	0.000000

• Step 2-5

```
from scipy.cluster.hierarchy import linkage
row clusters = linkage(df.values,
                  ... method='complete',
                  ... metric='euclidean')
pd.DataFrame (row clusters,
             ... columns=['row label 1',
             ... 'row label 2',
             ... 'distance',
             ... 'no. of items in clust.'],
             ... index=['cluster %d' %(i+1) for i in
             ... range(row clusters.shape[0])])
```

Step 2-5

 The 1st & 2nd columns denote the most dissimilar members in each cluster

• The 3rd column reports the distance between those members.

	row label 1	row label 2	distance	no. of items in clust.
cluster 1	0.0	4.0	3.835396	2.0
cluster 2	1.0	2.0	4.347073	2.0
cluster 3	3.0	5.0	5.899885	3.0
cluster 4	6.0	7.0	8.316594	5.0

 The 4th column returns the count of the members in each cluster

Dendrogram figure

```
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import set link color palette
set link color palette(['black'])
row dendr = dendrogram (row clusters,
... labels=labels,
... color threshold=np.inf )
plt.tight layout()
plt.ylabel('Euclidean distance')
plt.show()
```

Dendrogram figure

• Dendrogram Heatmap (code in the textbook)

SKLearn Agglomerative

Agglomerative Complete Linkage (3 groups)

```
from sklearn.cluster import AgglomerativeClustering
ac = AgglomerativeClustering(n clusters=3, # 0 1 2
                          ... affinity='euclidean',
                          ... linkage='complete')
labels = ac.fit predict(X)
print('Cluster labels: %s' % labels)
Cluster labels: [1 0 0 2 1]
```

Agglomerative Complete Linkage (2 groups - Prunning)

```
from sklearn.cluster import AgglomerativeClustering
ac = AgglomerativeClustering(n clusters=2, # 0 1
                          ... affinity='euclidean',
                          ... linkage='complete')
labels = ac.fit predict(X)
print('Cluster labels: %s' % labels)
Cluster labels: [0 1 1 0 0]
```

Density-based Spatial Clustering of Apps with Noise (DBSCAN)

 Density-based clustering assigns cluster labels based on dense regions of points

• The notion of density is defined as the number of points within a specified radius ε

- Labels are assigned
- A point is considered a core point if at least a specified number (MinPts) of neighboring points fall within the specified radius ε
- A border point is a point that has fewer neighbors than MinPts within ε , but lies within the ε radius of a core point
- All other points that are neither core nor border points are considered noise points

- After labeling
- Form a separate cluster for each core point or connected group of core points
 - Core points are connected if they are no farther away than ε
- Assign each border point to the cluster of its corresponding core point.


```
from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.2, min samples=5, metric='euclidean')
y db = db.fit predict(X)
plt.scatter(X[y db==0,0], X[y db==0,1], c='lightblue',
          ... edgecolor='black', marker='o', s=40,
          ... label='cluster 1')
plt.scatter(X[y db==1,0], X[y db==1,1], c='red',
          ... edgecolor='black', marker='s', s=40,
          ... label='cluster 2')
plt.legend()
plt.show()
```


- Summary of unsupervised methods
 - Create to quickly see how they get classified without any labels
 - Problems can occur is there are a lot of features for all 3 techniques
 - Parameter tunning will have to be evaluated in all techniques
 - Knowing the number of cluster (classes) will be a huge advantage, but not a requirement.