High-Dimensional Variable Selection in Nonlinear Models that Controls the False Discovery Rate

Lucas Janson

Harvard University Department of Statistics

CMSA Big Data Conference, August 18, 2017

Collaborators: Emmanuel Candès (Stanford), Yingying Fan, Jinchi Lv (USC)

Problem Statement

Given:

- Y an outcome of interest (AKA response or dependent variable),
- X_1, \ldots, X_p a set of p potential explanatory variables (AKA covariates, features, or independent variables),

How can we select important explanatory variables with few mistakes?

Given:

- Y an outcome of interest (AKA response or dependent variable),
- X_1, \ldots, X_p a set of p potential explanatory variables (AKA covariates, features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

Medicine/genetics/health care

Given:

- Y an outcome of interest (AKA response or dependent variable),
- X_1, \ldots, X_p a set of p potential explanatory variables (AKA covariates, features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

- Medicine/genetics/health care
- Economics/political science

Given:

- Y an outcome of interest (AKA response or dependent variable),
- X_1, \ldots, X_p a set of p potential explanatory variables (AKA covariates, features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

- Medicine/genetics/health care
- Economics/political science
- Industry/technology

What is an important variable?

What is an important variable?

We consider X_j to be unimportant if the conditional distribution of Y given X_1, \ldots, X_p does not depend on X_j . Formally, X_j is unimportant if it is conditionally independent of Y given X_{-j} :

$$Y \perp\!\!\!\perp X_j \,|\, X_{\text{-}j}$$

What is an important variable?

We consider X_j to be unimportant if the conditional distribution of Y given X_1, \ldots, X_p does not depend on X_j . Formally, X_j is unimportant if it is conditionally independent of Y given X_{-j} :

$$Y \perp \!\!\! \perp X_j \mid X_{\text{-}j}$$

Markov Blanket of Y: smallest set S such that $Y \perp \!\!\! \perp X_{-S} \mid X_S$

What is an important variable?

We consider X_j to be unimportant if the conditional distribution of Y given X_1, \ldots, X_p does not depend on X_j . Formally, X_j is unimportant if it is conditionally independent of Y given X_{-j} :

$$Y \perp \!\!\! \perp X_j \mid X_{-j}$$

Markov Blanket of Y: smallest set S such that $Y \perp \!\!\! \perp X_{-S} \mid X_S$

For GLMs with no stochastically redundant covariates, equivalent to $\{j\,:\, \beta_j=0\}$

What is an important variable?

We consider X_j to be unimportant if the conditional distribution of Y given X_1, \ldots, X_p does not depend on X_j . Formally, X_j is unimportant if it is conditionally independent of Y given X_{-j} :

$$Y \perp \!\!\! \perp X_j \mid X_{-j}$$

Markov Blanket of Y: smallest set S such that $Y \perp \!\!\! \perp X_{-S} \mid X_S$

For GLMs with no stochastically redundant covariates, equivalent to $\{j\,:\, \beta_j=0\}$

To make sure we do not make too many mistakes, we seek to select a set \hat{S} to control the **false discovery rate (FDR)**:

$$\mathsf{FDR}(\hat{S}) = \mathbb{E}\left(\frac{\#\{j \text{ in } \hat{S} : X_j \text{ unimportant}\}}{\#\{j \text{ in } \hat{S}\}}\right) \leq q \text{ (e.g. 10\%)}$$

"Here is a set of variables \hat{S} , 90% of which I expect to be important"

New interpretation of knockoffs solves the controlled variable selection problem

- ullet Allows any model for Y and X_1,\ldots,X_p
- ullet Allows any dimension (including p>n)
- Finite-sample control (non-asymptotic) of FDR
- Practical performance on real problems

New interpretation of knockoffs solves the controlled variable selection problem

- ullet Allows any model for Y and X_1,\ldots,X_p
- Allows any dimension (including p > n)
- Finite-sample control (non-asymptotic) of FDR
- Practical performance on real problems

Analysis of the genetic basis of Crohn's Disease (WTCCC, 2007)

- $\approx 5,000$ subjects ($\approx 40\%$ with Crohn's Disease)
- ullet pprox 375,000 single nucleotide polymorphisms (SNPs) for each subject

New interpretation of knockoffs solves the controlled variable selection problem

- ullet Allows any model for Y and X_1,\ldots,X_p
- Allows any dimension (including p > n)
- Finite-sample control (non-asymptotic) of FDR
- Practical performance on real problems

Analysis of the genetic basis of Crohn's Disease (WTCCC, 2007)

- $\approx 5,000$ subjects ($\approx 40\%$ with Crohn's Disease)
- ullet pprox 375,000 single nucleotide polymorphisms (SNPs) for each subject

Original analysis of the data made 9 discoveries by running marginal tests and selecting p-values to target a FDR of 10%

New interpretation of knockoffs solves the controlled variable selection problem

- ullet Allows any model for Y and X_1,\ldots,X_p
- Allows any dimension (including p > n)
- Finite-sample control (non-asymptotic) of FDR
- Practical performance on real problems

Analysis of the genetic basis of Crohn's Disease (WTCCC, 2007)

- $\approx 5,000$ subjects ($\approx 40\%$ with Crohn's Disease)
- ullet pprox 375,000 single nucleotide polymorphisms (SNPs) for each subject

Original analysis of the data made 9 discoveries by running marginal tests and selecting p-values to target a FDR of 10%

Model-free knockoffs used the same FDR of 10% and made 18 discoveries, with many of the new discoveries confirmed by a larger meta-analysis

	Low dimensions	$\begin{array}{c} Model \ for \\ Y \end{array}$	Asymptopic regime	Sparsity	Random design
OLSp + BHq	Yes	Yes	No	No	No

	Low dimensions	$\begin{array}{c} Model \ for \\ Y \end{array}$	Asymptopic regime	Sparsity	Random design
OLSp + BHq	Yes	Yes	No	No	No
MLp + BHq	Yes	Yes	Yes	No	No

	Low dimensions	$\begin{array}{c} Model \ for \\ Y \end{array}$	Asymptopic regime	Sparsity	Random design
OLSp + BHq	Yes	Yes	No	No	No
MLp + BHq	Yes	Yes	Yes	No	No
HDp+BHq	No	Yes	Yes	Yes	Yes

	Low dimensions	$\begin{array}{c} Model \ for \\ Y \end{array}$	Asymptopic regime	Sparsity	Random design
OLSp + BHq	Yes	Yes	No	No	No
MLp + BHq	Yes	Yes	Yes	No	No
HDp+BHq	No	Yes	Yes	Yes	Yes
Orig KnO	Yes	Yes	No	No	No

	Low dimensions	$\begin{array}{c} Model \ for \\ Y \end{array}$	Asymptopic regime	Sparsity	Random design
OLSp + BHq	Yes	Yes	No	No	No
MLp + BHq	Yes	Yes	Yes	No	No
HDp + BHq	No	Yes	Yes	Yes	Yes
Orig KnO	Yes	Yes	No	No	No
New KnO	No	No	No	No	Yes*

The Knockoffs Idea

 $m{y}$ and $m{X}_j$ are $n \times 1$ column vectors of data: n draws from the random variables Y and X_j , respectively; design matrix $m{X} := [m{X}_1 \cdots m{X}_p]$

 $m{y}$ and $m{X}_j$ are n imes 1 column vectors of data: n draws from the random variables Y and X_j , respectively; design matrix $m{X} := [m{X}_1 \cdots m{X}_p]$

(1) Construct knockoffs: Knockoffs $ilde{X}_j$ must satisfy, $(ilde{X}:=[ilde{X}_1\cdots ilde{X}_p])$

$$[\boldsymbol{X}\,\tilde{\boldsymbol{X}}]^{\top}[\boldsymbol{X}\,\tilde{\boldsymbol{X}}] = \left[\begin{array}{cc} \boldsymbol{X}^{\top}\boldsymbol{X} & \boldsymbol{X}^{\top}\boldsymbol{X} - \mathrm{diag}\{\boldsymbol{s}\} \\ \boldsymbol{X}^{\top}\boldsymbol{X} - \mathrm{diag}\{\boldsymbol{s}\} & \boldsymbol{X}^{\top}\boldsymbol{X} \end{array} \right]$$

 $m{y}$ and $m{X}_j$ are n imes 1 column vectors of data: n draws from the random variables Y and X_j , respectively; design matrix $m{X} := [m{X}_1 \cdots m{X}_p]$

(1) Construct knockoffs: Knockoffs $ilde{X}_j$ must satisfy, $(ilde{X}:=[ilde{X}_1\cdots ilde{X}_p])$

$$[\boldsymbol{X}\,\tilde{\boldsymbol{X}}]^{\top}[\boldsymbol{X}\,\tilde{\boldsymbol{X}}] = \left[\begin{array}{cc} \boldsymbol{X}^{\top}\boldsymbol{X} & \boldsymbol{X}^{\top}\boldsymbol{X} - \mathrm{diag}\{\boldsymbol{s}\} \\ \boldsymbol{X}^{\top}\boldsymbol{X} - \mathrm{diag}\{\boldsymbol{s}\} & \boldsymbol{X}^{\top}\boldsymbol{X} \end{array} \right]$$

- (2) Compute knockoff statistics:
 - ullet Sufficiency: W_j only a function of $[m{X}\, ilde{m{X}}]^ op [m{X}\, ilde{m{X}}]$ and $[m{X}\, ilde{m{X}}]^ op m{y}$
 - ullet Antisymmetry: swapping values of $oldsymbol{X}_j$ and $oldsymbol{ ilde{X}}_j$ flips sign of W_j

 $m{y}$ and $m{X}_j$ are n imes 1 column vectors of data: n draws from the random variables Y and X_j , respectively; design matrix $m{X} := [m{X}_1 \cdots m{X}_p]$

(1) Construct knockoffs: Knockoffs $ilde{X}_j$ must satisfy, $ig(ilde{X}:=[ilde{X}_1\cdots ilde{X}_p]ig)$

$$[\boldsymbol{X}\,\tilde{\boldsymbol{X}}]^{\top}[\boldsymbol{X}\,\tilde{\boldsymbol{X}}] = \left[\begin{array}{cc} \boldsymbol{X}^{\top}\boldsymbol{X} & \boldsymbol{X}^{\top}\boldsymbol{X} - \mathrm{diag}\{\boldsymbol{s}\} \\ \boldsymbol{X}^{\top}\boldsymbol{X} - \mathrm{diag}\{\boldsymbol{s}\} & \boldsymbol{X}^{\top}\boldsymbol{X} \end{array} \right]$$

- (2) Compute knockoff statistics:
 - ullet Sufficiency: W_j only a function of $[m{X}\, ilde{m{X}}]^ op [m{X}\, ilde{m{X}}]$ and $[m{X}\, ilde{m{X}}]^ op m{y}$
 - ullet Antisymmetry: swapping values of $oldsymbol{X}_j$ and $ilde{oldsymbol{X}}_j$ flips sign of W_j
- (3) Find the knockoff threshold:
 - ullet Order the variables by decreasing $|W_i|$ and proceed down list
 - Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$

 $m{y}$ and $m{X}_j$ are n imes 1 column vectors of data: n draws from the random variables Y and X_j , respectively; design matrix $m{X} := [m{X}_1 \cdots m{X}_p]$

(1) Construct knockoffs: Knockoffs $ilde{X}_j$ must satisfy, $ig(ilde{X}:=[ilde{X}_1\cdots ilde{X}_p]ig)$

$$[\boldsymbol{X}\,\tilde{\boldsymbol{X}}]^{\top}[\boldsymbol{X}\,\tilde{\boldsymbol{X}}] = \left[\begin{array}{cc} \boldsymbol{X}^{\top}\boldsymbol{X} & \boldsymbol{X}^{\top}\boldsymbol{X} - \mathrm{diag}\{\boldsymbol{s}\} \\ \boldsymbol{X}^{\top}\boldsymbol{X} - \mathrm{diag}\{\boldsymbol{s}\} & \boldsymbol{X}^{\top}\boldsymbol{X} \end{array} \right]$$

- (2) Compute knockoff statistics:
 - ullet Sufficiency: W_j only a function of $[m{X}\ ilde{m{X}}]^ op [m{X}\ ilde{m{X}}]$ and $[m{X}\ ilde{m{X}}]^ op m{y}$
 - ullet Antisymmetry: swapping values of $oldsymbol{X}_j$ and $oldsymbol{ ilde{X}}_j$ flips sign of W_j
- (3) Find the knockoff threshold:
 - ullet Order the variables by decreasing $|W_i|$ and proceed down list
 - Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$

Comments:

- Finite-sample FDR control and leverages sparsity for power
- Requires data follow low-dimensional $(n \ge p)$ Gaussian linear model
- ullet Canonical approach: condition on X, rely heavily on model for y

(1) Construct knockoffs:

- Artificial versions ("knockoffs") of each variable
- Act as controls for assessing importance of original variables

(1) Construct knockoffs:

- Artificial versions ("knockoffs") of each variable
- · Act as controls for assessing importance of original variables

(2) Compute knockoff statistics:

- Scalar statistic W_i for each variable
- Measures how much more important a variable appears than its knockoff
- ullet Positive W_j denotes original more important, strength measured by magnitude

- (1) Construct knockoffs:
 - Artificial versions ("knockoffs") of each variable
 - · Act as controls for assessing importance of original variables
- (2) Compute knockoff statistics:
 - Scalar statistic W_i for each variable
 - Measures how much more important a variable appears than its knockoff
 - ullet Positive W_j denotes original more important, strength measured by magnitude
- (3) Find the knockoff threshold: (same as before)
 - ullet Order the variables by decreasing $|W_j|$ and proceed down list
 - Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$

(1) Construct knockoffs:

- Artificial versions ("knockoffs") of each variable
- Act as controls for assessing importance of original variables

(2) Compute knockoff statistics:

- Scalar statistic W_i for each variable
- Measures how much more important a variable appears than its knockoff
- ullet Positive W_j denotes original more important, strength measured by magnitude
- (3) Find the knockoff threshold: (same as before)
 - ullet Order the variables by decreasing $|W_j|$ and proceed down list
 - Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$

Coin-flipping property: The key to knockoffs is that steps (1) and (2) are done specifically to ensure that, conditional on $|W_1|,\ldots,|W_p|$, the signs of the $unimportant/null\ W_j$ are independently ± 1 with probability 1/2

New Interpretation of Knockoffs

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Explicitly,

rows of
$$\boldsymbol{X} = (X_{i,1}, \dots, X_{i,p}) \stackrel{\text{iid}}{\sim} G$$

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Explicitly,

rows of
$$\boldsymbol{X} = (X_{i,1}, \dots, X_{i,p}) \stackrel{\text{iid}}{\sim} G$$

- As compared to original knockoffs, removes
 - Restriction on dimension
 - Linear model requirement for $Y \,|\, X_1, \dots, X_p$
 - ullet "Sufficiency" constraint for W_j

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Explicitly,

rows of
$$\boldsymbol{X} = (X_{i,1}, \dots, X_{i,p}) \stackrel{\text{iid}}{\sim} G$$

- As compared to original knockoffs, removes
 - Restriction on dimension
 - Linear model requirement for $Y \mid X_1, \dots, X_p$
 - "Sufficiency" constraint for W_j
- ullet The rows of X must be i.i.d., not the columns (covariates)

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Explicitly,

rows of
$$\boldsymbol{X} = (X_{i,1}, \dots, X_{i,p}) \stackrel{\text{iid}}{\sim} G$$

- As compared to original knockoffs, removes
 - Restriction on dimension
 - Linear model requirement for $Y \mid X_1, \dots, X_p$
 - "Sufficiency" constraint for W_j
- ullet The rows of X must be i.i.d., not the columns (covariates)
- ullet Nothing about y's distribution is assumed or need be known

Knockoffs Without a Model for Y (Candès et al., 2016)

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Explicitly,

rows of
$$\boldsymbol{X} = (X_{i,1}, \dots, X_{i,p}) \stackrel{\text{iid}}{\sim} G$$

where G can be arbitrary but is assumed known

- As compared to original knockoffs, removes
 - Restriction on dimension
 - Linear model requirement for $Y \mid X_1, \dots, X_p$
 - ullet "Sufficiency" constraint for W_j
- ullet The rows of X must be i.i.d., not the columns (covariates)
- Nothing about y's distribution is assumed or need be known
- Robust to overfitting X's distribution in preliminary experiments

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n=800, p=1500, and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. $n=800,\ p=1500,$ and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. $n=800,\ p=1500,$ and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.

When is it appropriate?

- 1. Subjects sampled from a population, and
- 2a. X_j highly structured, well-studied, or well-understood, OR

When is it appropriate?

- 1. Subjects sampled from a population, and
- 2a. X_j highly structured, well-studied, or well-understood, OR
- 2b. Large set of unsupervised X data (without Y's)

When is it appropriate?

- 1. Subjects sampled from a population, and
- 2a. X_j highly structured, well-studied, or well-understood, OR
- 2b. Large set of unsupervised X data (without Y's)

For instance, many genome-wide association studies satisfy all conditions:

1. Subjects sampled from a population (oversampling cases still valid)

When is it appropriate?

- 1. Subjects sampled from a population, and
- 2a. X_j highly structured, well-studied, or well-understood, OR
- 2b. Large set of unsupervised X data (without Y's)

For instance, many **genome-wide association studies** satisfy all conditions:

- 1. Subjects sampled from a population (oversampling cases still valid)
- 2a. Strong spatial structure: linkage disequilibrium models, e.g., Markov chains, are well-studied and work well

When is it appropriate?

- 1. Subjects sampled from a population, and
- 2a. X_j highly structured, well-studied, or well-understood, OR
- 2b. Large set of unsupervised X data (without Y's)

For instance, many genome-wide association studies satisfy all conditions:

- 1. Subjects sampled from a population (oversampling cases still valid)
- 2a. Strong spatial structure: linkage disequilibrium models, e.g., Markov chains, are well-studied and work well
- 2b. Other studies have collected same or similar SNP arrays on different subjects

The New Knockoffs Procedure

(1) Construct knockoffs: Exchangeability

$$[\boldsymbol{X}_1\cdots\boldsymbol{X}_j\cdots\boldsymbol{X}_p\,\tilde{\boldsymbol{X}}_1\cdots\tilde{\boldsymbol{X}}_j\cdots\tilde{\boldsymbol{X}}_p]\stackrel{\mathcal{D}}{=}[\boldsymbol{X}_1\cdots\tilde{\boldsymbol{X}}_j\cdots\boldsymbol{X}_p\,\tilde{\boldsymbol{X}}_1\cdots\boldsymbol{X}_j\cdots\tilde{\boldsymbol{X}}_p]$$

The New Knockoffs Procedure

(1) Construct knockoffs: Exchangeability

$$[\boldsymbol{X}_1\cdots\boldsymbol{X}_j\cdots\boldsymbol{X}_p\ \tilde{\boldsymbol{X}}_1\cdots\tilde{\boldsymbol{X}}_j\cdots\tilde{\boldsymbol{X}}_p]\stackrel{\mathcal{D}}{=}[\boldsymbol{X}_1\cdots\tilde{\boldsymbol{X}}_j\cdots\boldsymbol{X}_p\ \tilde{\boldsymbol{X}}_1\cdots\boldsymbol{X}_j\cdots\tilde{\boldsymbol{X}}_p]$$

(2) Compute knockoff statistics:

- \bullet Variable importance measure Z
- Antisymmetric function $f_j: \mathbb{R}^2 \to \mathbb{R}$, i.e.,

$$f_j(\boldsymbol{z_1}, \boldsymbol{z_2}) = -f_j(\boldsymbol{z_2}, \boldsymbol{z_1})$$

ullet $W_j=f_j(Z_j,\widetilde{Z}_j)$, where Z_j and \widetilde{Z}_j are the variable importances of X_j and \widetilde{X}_j , respectively

The New Knockoffs Procedure

(1) Construct knockoffs: Exchangeability

$$[\boldsymbol{X}_1\cdots\boldsymbol{X}_j\cdots\boldsymbol{X}_p\,\tilde{\boldsymbol{X}}_1\cdots\tilde{\boldsymbol{X}}_j\cdots\tilde{\boldsymbol{X}}_p]\stackrel{\mathcal{D}}{=}[\boldsymbol{X}_1\cdots\tilde{\boldsymbol{X}}_j\cdots\boldsymbol{X}_p\,\tilde{\boldsymbol{X}}_1\cdots\boldsymbol{X}_j\cdots\tilde{\boldsymbol{X}}_p]$$

- (2) Compute knockoff statistics:
 - Variable importance measure Z
 - Antisymmetric function $f_j: \mathbb{R}^2 \to \mathbb{R}$, i.e.,

$$f_j(\boldsymbol{z_1}, \boldsymbol{z_2}) = -f_j(\boldsymbol{z_2}, \boldsymbol{z_1})$$

- ullet $W_j=f_j(Z_j,\widetilde{Z}_j)$, where Z_j and \widetilde{Z}_j are the variable importances of X_j and \widetilde{X}_j , respectively
- (3) Find the knockoff threshold: (same as before)
 - Order the variables by decreasing $|W_i|$ and proceed down list
 - Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$

Step (1): Construct Knockoffs

Knockoff Construction

Proof that valid knockoff variables can be generated for any X distribution

Knockoff Construction

Proof that valid knockoff variables can be generated for any X distribution

If (X_1,\ldots,X_p) multivariate Gaussian, exchangeability reduces to matching first and second moments when X_j , \tilde{X}_j swapped

For $Cov(X_1, \ldots, X_p) = \Sigma$:

$$Cov(X_1, ..., X_p, \tilde{X}_1, ..., \tilde{X}_p) = \begin{bmatrix} \mathbf{\Sigma} & \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} \\ \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} & \mathbf{\Sigma} \end{bmatrix}$$

For non-Gaussian X, still second-order-correct approximate knockoffs

Knockoff Construction

Proof that valid knockoff variables can be generated for any X distribution

If (X_1,\ldots,X_p) multivariate Gaussian, exchangeability reduces to matching first and second moments when $X_j,\,\tilde{X}_j$ swapped

For
$$Cov(X_1, \ldots, X_p) = \Sigma$$
:

$$Cov(X_1, ..., X_p, \tilde{X}_1, ..., \tilde{X}_p) = \begin{bmatrix} \mathbf{\Sigma} & \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} \\ \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} & \mathbf{\Sigma} \end{bmatrix}$$

For non-Gaussian X, still second-order-correct approximate knockoffs

- ullet Linear algebra and semidefinite programming to find good s
- Recently: construction for Markov chains and HMMs (Sesia et al., 2017)
- Constructions also possible for grouped variables (Dai and Barber, 2016)

Step (2): Compute Knockoff Statistics

Strategy for Choosing Knockoff Statistics

Recall W_j an antisymmetric function f_j of Z_j and \widetilde{Z}_j (the variable importances of X_j and \widetilde{X}_j , respectively):

$$W_j = f_j(Z_j, \widetilde{Z}_j) = -f_j(\widetilde{Z}_j, Z_j)$$

Strategy for Choosing Knockoff Statistics

Recall W_j an antisymmetric function f_j of Z_j and \widetilde{Z}_j (the variable importances of X_j and \widetilde{X}_j , respectively):

$$W_j = f_j(Z_j, \widetilde{Z}_j) = -f_j(\widetilde{Z}_j, Z_j)$$

For example,

- ullet Z is magnitude of fitted coefficient eta from a lasso regression of $oldsymbol{y}$ on $[oldsymbol{X} oldsymbol{ ilde{X}}]$
- $f_j(z_1, z_2) = z_1 z_2$

Strategy for Choosing Knockoff Statistics

Recall W_j an antisymmetric function f_j of Z_j and \widetilde{Z}_j (the variable importances of X_j and \widetilde{X}_j , respectively):

$$W_j = f_j(Z_j, \widetilde{Z}_j) = -f_j(\widetilde{Z}_j, Z_j)$$

For example,

- ullet Z is magnitude of fitted coefficient eta from a lasso regression of $oldsymbol{y}$ on $[oldsymbol{X} oldsymbol{X}]$
- $f_j(z_1, z_2) = z_1 z_2$

Lasso Coefficient Difference (LCD) statistic:

$$W_j = |\beta_j| - |\tilde{\beta}_j|$$

Recall exchangeability property: for any j,

$$\begin{bmatrix} \boldsymbol{X}_1 \cdots \boldsymbol{X}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \tilde{\boldsymbol{X}}_j \\ \stackrel{\mathcal{D}}{=} [\boldsymbol{X}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \boldsymbol{X}_j \cdots \tilde{\boldsymbol{X}}_p] \end{bmatrix}$$

Recall exchangeability property: for any j,

$$[oldsymbol{X}_1 \cdots oldsymbol{X}_j \cdots oldsymbol{X}_p \ ilde{oldsymbol{X}}_1 \cdots oldsymbol{ ilde{X}}_j \cdots oldsymbol{ ilde{X}}_p]$$

$$\stackrel{\mathcal{D}}{=} [oldsymbol{X}_1 \cdots oldsymbol{ ilde{X}}_j \cdots oldsymbol{X}_p \ ilde{oldsymbol{X}}_1 \cdots oldsymbol{X}_j \cdots oldsymbol{ ilde{X}}_p]$$

Coin-flipping property for W_j :

Recall exchangeability property: for any j,

$$[oldsymbol{X}_1 \cdots oldsymbol{X}_j \cdots oldsymbol{X}_p \ ilde{oldsymbol{X}}_1 \cdots oldsymbol{ ilde{X}}_j \cdots oldsymbol{ ilde{X}}_p]$$

$$\stackrel{\mathcal{D}}{=} [oldsymbol{X}_1 \cdots oldsymbol{ ilde{X}}_j \cdots oldsymbol{X}_p \ ilde{oldsymbol{X}}_1 \cdots oldsymbol{X}_j \cdots oldsymbol{ ilde{X}}_p]$$

$$\left(Z_{j},\widetilde{Z}_{j}\right):=\left(Z_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right),\ \ \widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right)\right)$$

Recall exchangeability property: for any j,

$$[\boldsymbol{X}_1 \cdots \boldsymbol{X}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \tilde{\boldsymbol{X}}_p]$$

$$\stackrel{\mathcal{D}}{=} [\boldsymbol{X}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \boldsymbol{X}_j \cdots \tilde{\boldsymbol{X}}_p]$$

$$(Z_{j}, \widetilde{Z}_{j}) := (Z_{j}(\boldsymbol{y}, [\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots]), \quad \widetilde{Z}_{j}(\boldsymbol{y}, [\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots]))$$

$$\stackrel{\mathcal{D}}{=} (Z_{j}(\boldsymbol{y}, [\cdots \tilde{\boldsymbol{X}}_{j} \cdots \boldsymbol{X}_{j} \cdots]), \quad \widetilde{Z}_{j}(\boldsymbol{y}, [\cdots \tilde{\boldsymbol{X}}_{j} \cdots \boldsymbol{X}_{j} \cdots]))$$

Recall exchangeability property: for any j,

$$\begin{bmatrix} \boldsymbol{X}_1 \cdots \boldsymbol{X}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \tilde{\boldsymbol{X}}_p \end{bmatrix}$$

$$\stackrel{\mathcal{D}}{=} \begin{bmatrix} \boldsymbol{X}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \boldsymbol{X}_j \cdots \tilde{\boldsymbol{X}}_p \end{bmatrix}$$

$$\begin{split} \left(Z_{j}, \widetilde{Z}_{j} \right) &:= \left(Z_{j} \left(\boldsymbol{y}, \left[\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots \right] \right), \quad \widetilde{Z}_{j} \left(\boldsymbol{y}, \left[\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots \right] \right) \right) \\ &\stackrel{\mathcal{D}}{=} \left(Z_{j} \left(\boldsymbol{y}, \left[\cdots \tilde{\boldsymbol{X}}_{j} \cdots \boldsymbol{X}_{j} \cdots \right] \right), \quad \widetilde{Z}_{j} \left(\boldsymbol{y}, \left[\cdots \tilde{\boldsymbol{X}}_{j} \cdots \boldsymbol{X}_{j} \cdots \right] \right) \right) \\ &= \left(\widetilde{Z}_{j} \left(\boldsymbol{y}, \left[\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots \right] \right), \quad Z_{j} \left(\boldsymbol{y}, \left[\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots \right] \right) \right) \end{split}$$

Recall exchangeability property: for any j,

$$\begin{bmatrix} \boldsymbol{X}_1 \cdots \boldsymbol{X}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \tilde{\boldsymbol{X}}_j \\ \stackrel{\mathcal{D}}{=} [\boldsymbol{X}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \boldsymbol{X}_j \cdots \tilde{\boldsymbol{X}}_p] \end{bmatrix}$$

$$\begin{aligned}
\left(Z_{j}, \widetilde{Z}_{j}\right) &:= \left(Z_{j}\left(\boldsymbol{y}, \left[\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots\right]\right), \quad \widetilde{Z}_{j}\left(\boldsymbol{y}, \left[\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots\right]\right)\right) \\
&\stackrel{\mathcal{D}}{=} \left(Z_{j}\left(\boldsymbol{y}, \left[\cdots \tilde{\boldsymbol{X}}_{j} \cdots \boldsymbol{X}_{j} \cdots\right]\right), \quad \widetilde{Z}_{j}\left(\boldsymbol{y}, \left[\cdots \tilde{\boldsymbol{X}}_{j} \cdots \boldsymbol{X}_{j} \cdots\right]\right)\right) \\
&= \left(\widetilde{Z}_{j}\left(\boldsymbol{y}, \left[\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots\right]\right), \quad Z_{j}\left(\boldsymbol{y}, \left[\cdots \boldsymbol{X}_{j} \cdots \tilde{\boldsymbol{X}}_{j} \cdots\right]\right)\right) \\
&= \left(\widetilde{Z}_{j}, Z_{j}\right)
\end{aligned}$$

Recall exchangeability property: for any j,

$$\begin{bmatrix} \boldsymbol{X}_1 \cdots \boldsymbol{X}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \tilde{\boldsymbol{X}}_j \\ \stackrel{\mathcal{D}}{=} \begin{bmatrix} \boldsymbol{X}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \boldsymbol{X}_j \\ \end{bmatrix}$$

$$\begin{aligned}
\left(Z_{j},\widetilde{Z}_{j}\right) &:= \left(Z_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right), \quad \widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right)\right) \\
&\stackrel{\mathcal{D}}{=} \left(Z_{j}\left(\boldsymbol{y},\left[\cdots\tilde{\boldsymbol{X}}_{j}\cdots\boldsymbol{X}_{j}\cdots\right]\right), \quad \widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\tilde{\boldsymbol{X}}_{j}\cdots\boldsymbol{X}_{j}\cdots\right]\right)\right) \\
&= \left(\widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right), \quad Z_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right)\right) \\
&= \left(\widetilde{Z}_{j},Z_{j}\right)
\end{aligned}$$

$$W_j = f_j(Z_j, \widetilde{Z}_j) \stackrel{\mathcal{D}}{=} f_j(\widetilde{Z}_j, Z_j)$$

Recall exchangeability property: for any j,

$$\begin{bmatrix} \boldsymbol{X}_1 \cdots \boldsymbol{X}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \tilde{\boldsymbol{X}}_j \\ \stackrel{\mathcal{D}}{=} \begin{bmatrix} \boldsymbol{X}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \boldsymbol{X}_j \\ \end{bmatrix}$$

$$\begin{aligned}
\left(Z_{j},\widetilde{Z}_{j}\right) &:= \left(Z_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right), \quad \widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right)\right) \\
&\stackrel{\mathcal{D}}{=} \left(Z_{j}\left(\boldsymbol{y},\left[\cdots\tilde{\boldsymbol{X}}_{j}\cdots\boldsymbol{X}_{j}\cdots\right]\right), \quad \widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\tilde{\boldsymbol{X}}_{j}\cdots\boldsymbol{X}_{j}\cdots\right]\right)\right) \\
&= \left(\widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right), \quad Z_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right)\right) \\
&= \left(\widetilde{Z}_{j},Z_{j}\right)
\end{aligned}$$

$$W_j = f_j(Z_j, \widetilde{Z}_j) \stackrel{\mathcal{D}}{=} f_j(\widetilde{Z}_j, Z_j) = -f_j(Z_j, \widetilde{Z}_j) = -W_j$$

Recall exchangeability property: for any j,

$$\begin{bmatrix} \boldsymbol{X}_1 \cdots \boldsymbol{X}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \tilde{\boldsymbol{X}}_j \\ \stackrel{\mathcal{D}}{=} \begin{bmatrix} \boldsymbol{X}_1 \cdots \tilde{\boldsymbol{X}}_j \cdots \boldsymbol{X}_p \ \tilde{\boldsymbol{X}}_1 \cdots \boldsymbol{X}_j \\ \end{bmatrix}$$

$$\begin{split} \left(Z_{j},\widetilde{Z}_{j}\right) &:= \left(Z_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right), \quad \widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right)\right) \\ &\stackrel{\mathcal{D}}{=} \left(Z_{j}\left(\boldsymbol{y},\left[\cdots\tilde{\boldsymbol{X}}_{j}\cdots\boldsymbol{X}_{j}\cdots\right]\right), \quad \widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\tilde{\boldsymbol{X}}_{j}\cdots\boldsymbol{X}_{j}\cdots\right]\right)\right) \\ &= \left(\widetilde{Z}_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right), \quad Z_{j}\left(\boldsymbol{y},\left[\cdots\boldsymbol{X}_{j}\cdots\tilde{\boldsymbol{X}}_{j}\cdots\right]\right)\right) \\ &= \left(\widetilde{Z}_{j},Z_{j}\right) \end{split}$$

$$W_j \stackrel{\mathcal{D}}{=} -W_j$$

Adaptivity and Prior Information in W_j

Recall LCD: $W_j=|eta_j|-| ilde{eta}_j|$, where eta_j , $ilde{eta}_j$ come from ℓ_1 -penalized regression

Adaptivity

ullet Cross-validation (on $[X\ ilde{X}])$ to choose the penalty parameter in LCD

Adaptivity and Prior Information in W_j

Recall LCD: $W_j=|eta_j|-| ilde{eta}_j|$, where eta_j , $ilde{eta}_j$ come from ℓ_1 -penalized regression

Adaptivity

- ullet Cross-validation (on $[X\ ilde{X}])$ to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference

Adaptivity and Prior Information in W_j

Recall LCD: $W_j=|eta_j|-| ilde{eta}_j|$, where eta_j , $ilde{eta}_j$ come from ℓ_1 -penalized regression

Adaptivity

- ullet Cross-validation (on $[X\ ilde{X}])$ to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
 - E.g., fit random forest and ℓ_1 -penalized regression; derive feature importance from whichever has lower CV error—still strict FDR control

Adaptivity and Prior Information in W_j

Recall LCD: $W_j=|eta_j|-| ilde{eta}_j|$, where eta_j , $ilde{eta}_j$ come from ℓ_1 -penalized regression

Adaptivity

- ullet Cross-validation (on $[X\ ilde{X}])$ to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
 - E.g., fit random forest and ℓ₁-penalized regression; derive feature importance from whichever has lower CV error—still strict FDR control
- ullet Can even let analyst look at (masked version of) data to choose Z function

Adaptivity and Prior Information in W_j

Recall LCD: $W_j=|eta_j|-| ilde{eta}_j|$, where eta_j , $ilde{eta}_j$ come from ℓ_1 -penalized regression

Adaptivity

- ullet Cross-validation (on $[X\ ilde{X}])$ to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
 - E.g., fit random forest and ℓ₁-penalized regression; derive feature importance from whichever has lower CV error—still strict FDR control
- ullet Can even let analyst look at (masked version of) data to choose Z function

Prior information

ullet Bayesian approach: choose prior and model, and Z_j could be the posterior probability that X_j contributes to the model

Adaptivity and Prior Information in W_j

Recall LCD: $W_j=|\beta_j|-|\tilde{\beta}_j|$, where β_j , $\tilde{\beta}_j$ come from ℓ_1 -penalized regression

Adaptivity

- ullet Cross-validation (on $[X\ ilde{X}])$ to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
 - E.g., fit random forest and ℓ₁-penalized regression; derive feature importance from whichever has lower CV error—still strict FDR control
- ullet Can even let analyst look at (masked version of) data to choose Z function

Prior information

- ullet Bayesian approach: choose prior and model, and Z_j could be the posterior probability that X_j contributes to the model
- Still strict FDR control, even if wrong prior or MCMC has not converged

Step (3): Find the Knockoff Threshold

$$\mathsf{FDR} = \mathbb{E}\left(rac{\#\{\mathsf{null}\; oldsymbol{X}_j\; \mathsf{selected}\}}{\#\{\mathsf{total}\; oldsymbol{X}_j\; \mathsf{selected}\}}
ight)$$

$$\begin{split} \mathsf{FDR} \; &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\; \boldsymbol{X}_j \; \mathsf{selected}\}}{\#\{\mathsf{total}\; \boldsymbol{X}_j \; \mathsf{selected}\}}\right) \\ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\; \mathsf{positive}\; |W_j| > \hat{\tau}\}}{\#\{\mathsf{positive}\; |W_j| > \hat{\tau}\}}\right) \end{split}$$

$$\begin{split} \mathsf{FDR} \ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \boldsymbol{X}_j\ \mathsf{selected}\}}{\#\{\mathsf{total}\ \boldsymbol{X}_j\ \mathsf{selected}\}}\right) \\ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \mathsf{positive}\ |W_j| > \hat{\tau}\}}{\#\{\mathsf{positive}\ |W_j| > \hat{\tau}\}}\right) \\ &\approx \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \mathsf{negative}\ |W_j| > \hat{\tau}\}}{\#\{\mathsf{positive}\ |W_j| > \hat{\tau}\}}\right) \end{split}$$

$$\begin{split} \mathsf{FDR} &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ X_j \ \mathsf{selected} \} }{\# \{ \mathsf{total} \ X_j \ \mathsf{selected} \} } \right) \\ &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{positive} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\approx \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\leq \mathbb{E} \left(\frac{\# \{ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\hat{\tau} \end{split}$$

GWAS Application

2007 case-control study by WTCCC

• $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis
- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis
- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)
- Entire analysis took 6 hours of serial computation time; 1 hour in parallel

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis
- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)
- Entire analysis took 6 hours of serial computation time; 1 hour in parallel
- Knockoffs made twice as many discoveries as original analysis

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis
- Strong spatial structure: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)
- Entire analysis took 6 hours of serial computation time; 1 hour in parallel
- Knockoffs made twice as many discoveries as original analysis
 - Some new discoveries confirmed in larger study

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis
- Strong spatial structure: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)
- Entire analysis took 6 hours of serial computation time; 1 hour in parallel
- Knockoffs made twice as many discoveries as original analysis
 - Some new discoveries confirmed in larger study
 - Some corroborated by work on nearby genes: promising candidates

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis
- Strong spatial structure: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)
- Entire analysis took 6 hours of serial computation time; 1 hour in parallel
- Knockoffs made twice as many discoveries as original analysis
 - Some new discoveries confirmed in larger study
 - Some corroborated by work on nearby genes: promising candidates
 - Similar result when HMM knockoffs applied to same data (Sesia et al., 2017)

Discussion

Summary and Next Steps

By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust

Summary and Next Steps

By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust

Some future directions for research:

• Theoretical: rigorous guarantees on robustness

Summary and Next Steps

By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust

Some future directions for research:

- Theoretical: rigorous guarantees on robustness
- ullet Methodological: develop knockoff constructions for new X distributions

Summary and Next Steps

By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust

Some future directions for research:

- Theoretical: rigorous guarantees on robustness
- ullet Methodological: develop knockoff constructions for new X distributions
- ullet Applied: team up with domain experts who know/control their X, e.g., gene knockout/knockdown, climate change modeling

Summary and Next Steps

By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust

Some future directions for research:

- Theoretical: rigorous guarantees on robustness
- ullet Methodological: develop knockoff constructions for new X distributions
- ullet Applied: team up with domain experts who know/control their X, e.g., gene knockout/knockdown, climate change modeling

Thank you!

Appendix

References

- Barber, R. F. and Candès, E. J. (2015). Controlling the false discovery rate via knockoffs. *Ann. Statist.*, 43(5):2055–2085.
- Candès, E., Fan, Y., Janson, L., and Lv, J. (2016). Panning for gold: Model-free knockoffs for high-dimensional controlled variable selection. *arXiv* preprint *arXiv*:1610.02351.
- Dai, R. and Barber, R. F. (2016). The knockoff filter for fdr control in group-sparse and multitask regression. arXiv preprint arXiv:1602.03589.
- Sesia, M., Sabatti, C., and Candès, E. (2017). Gene hunting with knockoffs for hidden markov models. arXiv preprint arXiv:1706.04677.
- Wen, X. and Stephens, M. (2010). Using linear predictors to impute allele frequencies from summary or pooled genotype data. *Ann. Appl. Stat.*, 4(3):1158–1182.
- WTCCC (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature*, 447(7145):661–678.

Simulations in Low-Dimensional Linear Model

Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures. The design matrix is i.i.d. $\mathcal{N}(0,1/n)$, n=3000, p=1000, and y comes from a Gaussian linear model with 60 nonzero regression coefficients having equal magnitudes and random signs. The noise variance is 1.

Simulations in Low-Dimensional Nonlinear Model

Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures. The design matrix is i.i.d. $\mathcal{N}(0,1/n)$, n=3000, p=1000, and y comes from a binomial linear model with logit link function, and 60 nonzero regression coefficients having equal magnitudes and random signs.

Simulations in High Dimensions

Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures. The design matrix is i.i.d. $\mathcal{N}(0,1/n)$, n=3000, p=6000, and y comes from a binomial linear model with logit link function, and 60 nonzero regression coefficients having equal magnitudes and random signs.

Simulations in High Dimensions with Dependence

Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures. The design matrix has AR(1) columns, and marginally each $X_j \sim \mathcal{N}(0,1/n)$. n=3000, p=6000, and y follows a binomial linear model with logit link function, and 60 nonzero coefficients with random signs and randomly selected locations.

Checking Sensitivity to Misspecification Error

Checking Sensitivity to Misspecification Error

Checking Sensitivity to Misspecification Error

Can actually check sensitivity to misspecification error!

Robustness on Real Data

Figure: Power and FDR (target is 10%) for model-free knockoffs applied to subsamples of a chromosome 1 of real genetic design matrix; $n \approx 1,400$.

$$\mathrm{Cov}(X_1,\ldots,X_p)=\mathbf{\Sigma}$$
, need:

$$\operatorname{Cov}(X_1,\ldots,X_p, ilde{X}_1,\ldots, ilde{X}_p) = \left[egin{array}{cc} oldsymbol{\Sigma} & oldsymbol{\Sigma} - \operatorname{diag}\{oldsymbol{s}\} \ oldsymbol{\Sigma} & oldsymbol{\Sigma} \end{array}
ight]$$

 $\mathrm{Cov}(X_1,\ldots,X_p)=\mathbf{\Sigma}$, need:

$$\operatorname{Cov}(X_1, \dots, X_p, \tilde{X}_1, \dots, \tilde{X}_p) = \begin{bmatrix} \mathbf{\Sigma} & \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} \\ \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} & \mathbf{\Sigma} \end{bmatrix}$$

• Equicorrelated (EQ) (fast, less powerful): $s_j^{\sf EQ} = 2\lambda_{\sf min}(\Sigma) \wedge 1$ for all j

 $\mathrm{Cov}(X_1,\ldots,X_p)=\mathbf{\Sigma}$, need:

$$Cov(X_1, ..., X_p, \tilde{X}_1, ..., \tilde{X}_p) = \begin{bmatrix} \mathbf{\Sigma} & \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} \\ \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} & \mathbf{\Sigma} \end{bmatrix}$$

- Equicorrelated (EQ) (fast, less powerful): $s_j^{\rm EQ} = 2\lambda_{\rm min}(\mathbf{\Sigma})\wedge 1$ for all j
- Semidefinite program (SDP) (slower, more powerful):

 $\mathrm{Cov}(X_1,\ldots,X_p)=\mathbf{\Sigma}$, need:

$$\operatorname{Cov}(X_1, \dots, X_p, \tilde{X}_1, \dots, \tilde{X}_p) = \begin{bmatrix} \mathbf{\Sigma} & \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} \\ \mathbf{\Sigma} - \operatorname{diag}\{\mathbf{s}\} & \mathbf{\Sigma} \end{bmatrix}$$

- Equicorrelated (EQ) (fast, less powerful): $s_j^{\sf EQ} = 2\lambda_{\sf min}(\Sigma) \wedge 1$ for all j
- Semidefinite program (SDP) (slower, more powerful):

- (New) Approximate SDP:
 - ullet Approximate Σ as block diagonal so that SDP separates
 - Bisection search scalar multiplier of solution to account for approximation
 - faster than SDP, more powerful than EQ, and easily parallelizable

Algorithm 1 Sequential Conditional Independent Pairs

$$\begin{array}{ll} \text{for } j = \{1, \ldots, p\} \text{ do} \\ \big| & \text{Sample } \tilde{X}_j \text{ from } \mathcal{L}(X_j \,|\, X_{-j}, \, \tilde{X}_{1:j-1}) \text{ conditionally independently of } X_j \\ \text{end} \end{array}$$

Algorithm 1 Sequential Conditional Independent Pairs

$$\begin{array}{ll} \text{for } j = \{1, \ldots, p\} \text{ do } \\ \big| & \text{Sample } \tilde{X}_j \text{ from } \mathcal{L}(X_j \,|\, X_{\text{-}j},\, \tilde{X}_{1:j-1}) \text{ conditionally independently of } X_j \\ \text{end} \end{array}$$

Proof sketch (discrete case):

 \bullet Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{\text{-}j}, X_j, \tilde{X}_{1:j-1})$

Algorithm 1 Sequential Conditional Independent Pairs

$$\begin{array}{ll} \text{for } j = \{1, \ldots, p\} \text{ do} \\ \big| & \text{Sample } \tilde{X}_j \text{ from } \mathcal{L}(X_j \,|\, X_{\text{-}j}, \, \tilde{X}_{1:j-1}) \text{ conditionally independently of } X_j \\ \text{end} \end{array}$$

Proof sketch (discrete case):

- \bullet Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{\text{-}j}, X_j, \tilde{X}_{1:j-1})$
- \bullet Conditional PMF of $\tilde{X}_j \,|\, X_{1:p}, \tilde{X}_{1:j-1}$ is

$$\frac{\mathcal{L}(X_{-j}, \tilde{X}_{j}, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.$$

Algorithm 1 Sequential Conditional Independent Pairs

$$\begin{array}{ll} \text{for } j = \{1, \ldots, p\} \text{ do} \\ \big| & \text{Sample } \tilde{X}_j \text{ from } \mathcal{L}(X_j \,|\, X_{\text{-}j},\, \tilde{X}_{1:j-1}) \text{ conditionally independently of } X_j \\ \text{end} \end{array}$$

Proof sketch (discrete case):

- \bullet Denote PMF of $(X_{1:p},\tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{\text{-}j},X_{j},\tilde{X}_{1:j-1})$
- \bullet Conditional PMF of $\tilde{X}_j \,|\, X_{1:p}, \tilde{X}_{1:j-1}$ is

$$\frac{\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.$$

$$\frac{\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}$$

Algorithm 1 Sequential Conditional Independent Pairs

$$\begin{array}{ll} \text{for } j = \{1, \ldots, p\} \text{ do} \\ \big| & \text{Sample } \tilde{X}_j \text{ from } \mathcal{L}(X_j \,|\, X_{\text{-}j},\, \tilde{X}_{1:j-1}) \text{ conditionally independently of } X_j \\ \text{end} \end{array}$$

Proof sketch (discrete case):

- \bullet Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{\text{-}j}, X_j, \tilde{X}_{1:j-1})$
- \bullet Conditional PMF of $\tilde{X}_j \,|\, X_{1:p}, \tilde{X}_{1:j-1}$ is

$$\frac{\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.$$

$$\frac{\mathcal{L}(X_{-j}, X_{j}, \tilde{X}_{1:j-1})\mathcal{L}(X_{-j}, \tilde{X}_{j}, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}$$

Algorithm 1 Sequential Conditional Independent Pairs

$$\begin{array}{ll} \text{for } j = \{1, \ldots, p\} \text{ do} \\ \big| & \text{Sample } \tilde{X}_j \text{ from } \mathcal{L}(X_j \,|\, X_{\text{-}j},\, \tilde{X}_{1:j-1}) \text{ conditionally independently of } X_j \\ \text{end} \end{array}$$

Proof sketch (discrete case):

- \bullet Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{\text{-}j}, X_j, \tilde{X}_{1:j-1})$
- ullet Conditional PMF of $ilde{X}_j \,|\, X_{1:p}, ilde{X}_{1:j-1}$ is

$$\frac{\mathcal{L}(X_{-j}, \tilde{X}_{j}, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.$$

$$\frac{\mathcal{L}(X_{-j}, \tilde{X}_{j}, \tilde{X}_{1:j-1})\mathcal{L}(X_{-j}, X_{j}, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}$$

Algorithm 1 Sequential Conditional Independent Pairs

$$\begin{array}{ll} \text{for } j = \{1, \ldots, p\} \text{ do} \\ \big| & \text{Sample } \tilde{X}_j \text{ from } \mathcal{L}(X_j \,|\, X_{\text{-}j},\, \tilde{X}_{1:j-1}) \text{ conditionally independently of } X_j \\ \text{end} \end{array}$$

Proof sketch (discrete case):

- \bullet Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{\text{-}j}, X_j, \tilde{X}_{1:j-1})$
- \bullet Conditional PMF of $\tilde{X}_j \,|\, X_{1:p}, \tilde{X}_{1:j-1}$ is

$$\frac{\mathcal{L}(X_{-j}, \tilde{X}_{j}, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.$$

$$\frac{\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_{u} \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}$$

$$\mathsf{FDR} \ = \mathbb{E}\left(rac{\#\{\mathsf{null}\ oldsymbol{X}_j\ \mathsf{selected}\}}{\#\{\mathsf{total}\ oldsymbol{X}_j\ \mathsf{selected}\}}
ight)$$

$$\begin{split} \mathsf{FDR} \ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \boldsymbol{X}_j\ \mathsf{selected}\}}{\#\{\mathsf{total}\ \boldsymbol{X}_j\ \mathsf{selected}\}}\right) \\ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \mathsf{positive}\ |W_j| > \hat{\tau}\}}{\#\{\mathsf{positive}\ |W_j| > \hat{\tau}\}}\right) \end{split}$$

$$\begin{split} \mathsf{FDR} &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ X_j \ \mathsf{selected} \} }{\# \{ \mathsf{total} \ X_j \ \mathsf{selected} \} } \right) \\ &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{positive} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\approx \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \ q \end{split}$$

$$\begin{split} \mathsf{FDR} &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ X_j \ \mathsf{selected} \} }{\# \{ \mathsf{total} \ X_j \ \mathsf{selected} \} } \right) \\ &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{positive} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\approx \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\leq \mathbb{E} \left(\frac{\# \{ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \end{split}$$

$$\begin{split} \mathsf{FDR} &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ X_j \ \mathsf{selected} \} }{\# \{ \mathsf{total} \ X_j \ \mathsf{selected} \} } \right) \\ &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{positive} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\approx \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\leq \mathbb{E} \left(\frac{\# \{ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\hat{\tau} \end{split}$$

$$\mathsf{mFDR} \ = \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \boldsymbol{X}_j\ \mathsf{selected}\}}{q^{-1} + \#\{\mathsf{total}\ \boldsymbol{X}_j\ \mathsf{selected}\}}\right) = \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \mathsf{positive}\ |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\mathsf{positive}\ |W_j| > \hat{\tau}\}}\right)$$

$$\begin{split} \mathsf{FDR} &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \boldsymbol{X}_j \ \mathsf{selected} \}}{\# \{ \mathsf{total} \ \boldsymbol{X}_j \ \mathsf{selected} \}} \right) \\ &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{positive} \ |W_j| > \hat{\tau} \}}{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \}} \right) \\ &\approx \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{negative} \ |W_j| > \hat{\tau} \}}{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \}} \right) \\ &\leq \mathbb{E} \left(\frac{\# \{ \mathsf{negative} \ |W_j| > \hat{\tau} \}}{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \}} \right) \\ &\hat{\tau} \end{split}$$

$$\begin{split} \mathsf{mFDR} \; &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\; \boldsymbol{X}_j \; \mathsf{selected}\}}{q^{-1} + \#\{\mathsf{total}\; \boldsymbol{X}_j \; \mathsf{selected}\}}\right) = \mathbb{E}\left(\frac{\#\{\mathsf{null}\; \mathsf{positive}\; |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\mathsf{positive}\; |W_j| > \hat{\tau}\}}\right) \\ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\; \mathsf{positive}\; |W_j| > \hat{\tau}\}}{1 + \#\{\mathsf{null}\; \underset{\mathsf{negative}}{\mathsf{negative}}\; |W_j| > \hat{\tau}\}} \cdot \frac{1 + \#\{\mathsf{null}\; \underset{\mathsf{negative}}{\mathsf{negative}}\; |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\mathsf{positive}|W_j| > \hat{\tau}\}}\right) \end{split}$$

$$\begin{split} \mathsf{FDR} &= \mathbb{E} \left(\frac{\#\{\mathsf{null} \ \boldsymbol{X}_j \ \mathsf{selected}\}}{\#\{\mathsf{total} \ \boldsymbol{X}_j \ \mathsf{selected}\}} \right) \\ &= \mathbb{E} \left(\frac{\#\{\mathsf{null} \ \mathsf{positive} \ |W_j| > \hat{\tau}\}}{\#\{\mathsf{positive} \ |W_j| > \hat{\tau}\}} \right) \\ &\approx \mathbb{E} \left(\frac{\#\{\mathsf{null} \ \mathsf{negative} \ |W_j| > \hat{\tau}\}}{\#\{\mathsf{positive} \ |W_j| > \hat{\tau}\}} \right) \\ &\leq \mathbb{E} \left(\frac{\#\{\mathsf{negative} \ |W_j| > \hat{\tau}\}}{\#\{\mathsf{positive} \ |W_j| > \hat{\tau}\}} \right) \\ &\hat{\tau} \end{split}$$

$$\begin{split} \mathsf{mFDR} \ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \boldsymbol{X}_j\ \mathsf{selected}\}}{q^{-1} + \#\{\mathsf{total}\ \boldsymbol{X}_j\ \mathsf{selected}\}}\right) = \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \mathsf{positive}\ |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\mathsf{positive}\ |W_j| > \hat{\tau}\}}\right) \\ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \mathsf{positive}\ |W_j| > \hat{\tau}\}}{1 + \#\{\mathsf{null}\ \mathsf{negative}\ |W_j| > \hat{\tau}\}} \cdot \underbrace{\frac{1 + \#\{\mathsf{null}\ \mathsf{negative}\ |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\mathsf{positive}|W_j| > \hat{\tau}\}}}_{\leq \ q \ \mathsf{by}\ \mathsf{definition}\ \mathsf{of}\ \hat{\tau}} \end{split}$$

$$\begin{split} \mathsf{FDR} &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \boldsymbol{X}_j \ \mathsf{selected} \} }{\# \{ \mathsf{total} \ \boldsymbol{X}_j \ \mathsf{selected} \} } \right) \\ &= \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{positive} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\approx \mathbb{E} \left(\frac{\# \{ \mathsf{null} \ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\leq \mathbb{E} \left(\frac{\# \{ \mathsf{negative} \ |W_j| > \hat{\tau} \} }{\# \{ \mathsf{positive} \ |W_j| > \hat{\tau} \} } \right) \\ &\hat{\tau} \end{split}$$

$$\begin{split} \mathsf{mFDR} \ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \boldsymbol{X}_j\ \mathsf{selected}\}}{q^{-1} + \#\{\mathsf{total}\ \boldsymbol{X}_j\ \mathsf{selected}\}}\right) = \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \mathsf{positive}\ |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\mathsf{positive}\ |W_j| > \hat{\tau}\}}\right) \\ &= \mathbb{E}\left(\frac{\#\{\mathsf{null}\ \mathsf{positive}\ |W_j| > \hat{\tau}\}}{1 + \#\{\mathsf{null}\ \mathsf{negative}\ |W_j| > \hat{\tau}\}} \cdot \underbrace{\frac{1 + \#\{\mathsf{null}\ \mathsf{negative}\ |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\mathsf{positive}|W_j| > \hat{\tau}\}}}_{\leq q \ \mathsf{by}\ \mathsf{definition}\ \mathsf{of}\ \hat{\tau}} \right) \end{split}$$