Analysis and Generation of Pseudo-Industrial MaxSAT Instances

Carlos Ansótegui

DIEI, UdL, Lleida, Spain

Jordi Levy

IIIA, CSIC, Barcelona, Spain

María Luisa Bonet

LSI, UPC, Barcelona, Spain

Chu Min Li

Université de Picardie Jules Verne, Paris, France

CCIA'12, Alacant, Spain

Modeling "Real" Problems

- SAT and MaxSAT are central problems in AI
- They are NP-complete... but this is in the worst case
- State-of-the-art SAT and MaxSAT solvers (heuristics, backjumping, learning, restarts, SAT-base MaxSAT solvers . . .) are of practical use with real-world SAT and MaxSAT instances. . . Why???
- Generating pseudo-real instances can help us to solve real instances

• Human heights follows a normal distribution with mean 70 inches

• Cumulative Distribution: F(x) = % persons with height $\ge x$

$$F(x) = \int_{x}^{\infty} f(x) dx$$

• How decays the tail:

Exponentially: $f^{\text{exp}}(x) \sim e^{-\beta x}$ $F^{\text{exp}}(x) \sim e^{-\beta x}$ Powerlaw: $f^{\text{pow}}(x) \sim x^{-\alpha}$ $F^{\text{pow}}(x) \sim x^{-\alpha+1}$

$$f^{exp}(x) \sim e^{-\beta x}$$

$$F^{exp}(x) \sim e^{-\beta x}$$

$$F^{pow}(x) \sim x^{-\alpha+3}$$

• How decays the tail:

Exponentially:
$$f^{exp}(x) \sim e^{-\beta x}$$
 $F^{exp}(x) \sim e^{-\beta x}$ **Powerlaw:** $f^{pow}(x) \sim x^{-\alpha}$ $F^{pow}(x) \sim x^{-\alpha+1}$

- Modify the scale:
 - Exponential: we get a line in the logarithmic scale
 - Powerlaw: we get a line in the double-logarithmic scale

- logarithmic scale
- Decay as

$$F^{exp}(x) \sim e^{-0.53x}$$

Giants are very rare

Personal Income

- logarithmic scale
- Decay as

$$F^{exp}(x) \sim e^{-0.53x}$$

Giants are very rare

- logarithmic scale
- Decay as

$$F^{exp}(x) \sim e^{-0.53x}$$

- double-logarithmic scale
- Decay as

$$F^{pow}(x) \sim x^{-2.5}$$

Riches are not so rare

Empirical data k_1, \ldots, k_n ,

• Estimate α (or β) maximizing $P(k_1, \ldots, k_n \mid \alpha)$

Empirical data k_1, \ldots, k_n ,

• Estimate α (or β) maximizing $P(k_1, \ldots, k_n \mid \alpha)$

$$P^{pow}(k_1,\ldots,k_n\,|\,\alpha) = \prod_{i=1}^n \frac{\alpha-1}{k_{min}} \,\left(\frac{k_i}{k_{min}}\right)^{-\alpha}$$

$$\frac{\partial}{\partial \alpha} \log P^{pow}(x_1, \dots, x_n \mid \alpha) =$$

$$= \frac{n}{\alpha - 1} - \sum_{i=1}^n \log \frac{k_i}{k_{min}} = 0$$

We get

$$\hat{\alpha} = 1 + \frac{n}{\sum_{i=1}^{n} \log(k_i/k_{min})}$$

For the discrete case, a good approx. for larges k_{min} is

$$\hat{\alpha} = 1 + \frac{n}{\sum_{i=1}^{n} \log \frac{k_i}{k_{min} - 1/2}}$$

Empirical data k_1, \ldots, k_n ,

• Estimate α (or β) maximizing $P(k_1, \ldots, k_n \mid \alpha)$

$$P^{pow}(k_1,\ldots,k_n\,|\,\alpha) = \prod_{i=1}^n \frac{\alpha-1}{k_{min}} \,\left(\frac{k_i}{k_{min}}\right)^{-\alpha} P^{exp}(k_1,\ldots,k_n\,|\,\beta) = \prod_{i=1}^n (1-e^{-\beta}) \,e^{-\beta(k_i-k_{min})}$$

$$\frac{\partial}{\partial \alpha} \log P^{pow}(x_1, \dots, x_n \mid \alpha) =$$

$$= \frac{n}{\alpha - 1} - \sum_{i=1}^n \log \frac{k_i}{k_{min}} = 0$$

We get

$$\hat{lpha} = 1 + rac{n}{\sum_{i=1}^n \log(k_i/k_{min})}$$

$$\begin{split} \frac{\partial}{\partial \beta} \log P^{exp} \big(k_1, \dots, k_n \, | \, \beta \big) &= \\ &= \frac{n \, e^{-\beta}}{1 - e^{-\beta}} - \sum_{i=1}^n \big(k_i - k_{min} \big) = 0 \end{split}$$

We get

$$\hat{\beta} = \log\left(\frac{n}{\sum_{i=1}^{n}(k_i - k_{min})} + 1\right)$$

For the discrete case, a good approx. for larges k_{min} is

$$\hat{\alpha} = 1 + \frac{n}{\sum_{i=1}^{n} \log \frac{k_i}{k_{min} - 1/2}}$$

Empirical data k_1, \ldots, k_n ,

• Estimate α (or β) maximizing $P(k_1, \ldots, k_n \mid \alpha)$

$$\hat{\alpha} = 1 + \frac{n}{\sum_{i=1}^{n} \log \frac{k_i}{k_{min} - 1/2}}$$
 $\hat{\beta} = \log \left(\frac{n}{\sum_{i=1}^{n} (k_i - k_{min})} + 1 \right)$

• Compute the error for every possible k_{min} as

$$\Delta^{pow}(k_{min}) = \max_{k > k_{min}} \{ |F^{emp}(k) - F^{pow}(k; \hat{\alpha}, k_{min})| \}$$

Empirical data k_1, \ldots, k_n

• Estimate α (or β) maximizing $P(k_1, \ldots, k_n \mid \alpha)$

$$\hat{\alpha} = 1 + \frac{n}{\sum_{i=1}^{n} \log \frac{k_i}{k_{min} - 1/2}} \qquad \hat{\beta} = \log \left(\frac{n}{\sum_{i=1}^{n} (k_i - k_{min})} + 1 \right)$$

• Compute the error for every possible k_{min} as

$$\Delta^{pow}(k_{min}) = \max_{k \ge k_{min}} \{ |F^{emp}(k) - F^{pow}(k; \hat{\alpha}, k_{min})| \}$$

• Estimate k_{min} as the value resulting into the smallest error

$$\Delta^{pow} = \min_{k_{min} \ge 1} \Delta(k_{min})$$

• If $\Delta^{pow} > \Delta^{exp}$ the distribution is powerlaw

Two Models of Graphs

Erdös-Rényi Graphs

- For every pair < v_i, v_j >,
 put an edge with probability p
- Arity of nodes follows a binomial distribution

$$P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$

Scalefree Graphs

- There is not a formal definition
- Arity of nodes follows a powerlaw distribution

$$P(k) = C k^{-\alpha}$$

They are also self-similar

Bi-partite graph: Nodes: are variables w and clauses c

Edges: **v**—**c** if clause **c** contains variable **v**

Bi-partite graph: Nodes: are variables **(v)** and clauses **(c)**

Edges: \mathbf{v} — \mathbf{c} if clause \mathbf{c} contains variable \mathbf{v}

Arity of nodes: **v** number of occurrences

c size

Bi-partite graph: Nodes: are variables v and clauses c Edges: **v**—**c** if clause **c** contains variable **v** Arity of nodes: \mathbf{v} number of occurrences $\approx 4.25 * 3 = 12.75$ \mathbf{c} size = 3 Random 3-CNF Number of var occurrences very close to the mean

Bi-partite graph: Nodes: are variables **v** and clauses **c** Edges: \mathbf{v} — \mathbf{c} if clause \mathbf{c} contains variable \mathbf{v} Hubs: very frequent variables c very large clauses Random 3-CNF Industrial Instance

Study of some Families (Variables)

					Powerlaw			Exponential			
Family	inst	n	E[V]	Var [V]	α k	pow min	Δ^{pow}	β	k _{min}	Δ^{exp}	
cmu	3	16678	7.95	12.11	3.49	5	0.072	0.224	4	0.176	
een	12	739744	7.60	13.26	2.67	10	0.043	0.054	15	0.136	
fuhs	2	73486	9.05	14.56	2.79	62	0.075	0.181	4	0.158	
goldb	11	114038	21.02	88.71	2.05	21	0.042	0.003	100	0.204	
grieu	9	6914	364.21	42.23	1.77	100	0.577	0.004	100	0.538	
ibm	38	4985723	10.75	23.97	2.63	7	0.027	0.017	45	0.083	
manol	59	7827736	6.93	16.24	2.95	57	0.059	0.017	76	0.033	
mizh	13	725644	12.49	148.12	4.09	15	0.172	0.034	22	0.247	
narai	6	9642548	9.72	16.38	3.85	5	0.152	0.109	1	0.347	
palac	2	298266	10.82	60.55	1.84	20	0.087	0.003	100	0.074	
post	10	12906872	7.90	44.15	2.57	12	0.132	0.135	1	0.334	
schup	7	2196731	8.09	12.40	2.59	41	0.120	0.063	9	0.182	
simon	12	798804	7.78	11.96	2.53	14	0.028	0.022	50	0.065	
uts	10	1420464	13.01	74.70	1.76	69	0.111	0.003	75	0.088	
velev	60	8442829	88.31	379.04	1.82	13	0.030	0.003	87	0.287	
random	40	400000	12.75	3.57	18.65	24	0.019	0.777	25	0.008	
SAT'08	100	27964721	13.30	113.48	2.29	12	0.051	0.003	73	0.254	

Study of some Families (Clauses)

					Powerlaw			Exponential		
Family	inst	m	<i>E</i> [<i>C</i>]	Var [C]	α .	K _{min}	Δ^{pow}	β β	k _{min}	Δ^{exp}
cmu	3	53769	2.46	1.21	5.35	3	0.126	1.778	3	0.048
een	12	2278059	2.47	0.69	3.80	4	0.044	2.420	3	0.046
fuhs	2	256742	2.59	0.82	4.89	5	0.041	2.182	3	0.020
goldb	11	710559	3.37	1.46	10.48	5	0.158	4.803	5	0.008
grieu	9	961030	2.62	0.76	8.54	26	0.108	3.878	3	0.020
ibm	38	21084555	2.54	1.57	3.77	6	0.023	0.375	4	0.032
manol	59	23244626	2.33	0.47						
mizh	13	3036234	2.98	0.91	1.58	1	0.328	0.408	1	0.334
narai	6	37639556	2.49	2.05	3.33	2	0.088	1.113	2	0.090
palac	2	1274356	2.53	9.33	1.71	4	0.116	1.055	2	0.116
post	10	42441234	2.40	1.39	3.33	2	0.143	2.884	33	0.053
schup	7	6947242	2.56	1.36	4.30	4	0.093	2.585	3	0.046
simon	12	2675233	2.32	0.90	3.76	4	0.033	0.498	5	0.026
uts	10	7101806	2.60	11.56	3.63	2	0.114	0.004	35	0.116
velev	60	253221473	2.94	9.01	3.35	72	0.042	0.021	28	0.040
random	40	1700000	3.00	0.00						
SAT'08	100	140942860	2.64	5.68	3.03	17	0.054	0.074	10	0.068

Cumulative Distributions for some Families (1)

- Vars follows a powerlaw with $\alpha \approx 2.6$
- Clauses follows a powerlaw with $\alpha \approx 3.8$

Cumulative Distributions for some Families (2)

- Vars follows a powerlaw with $1.8 \le \alpha \le 3.5$
- Clauses follows an exponential

Cumulative Distributions for some Families (3)

- Vars does not seem to follow any "simple" distribution
- neither Clauses, or there are very few values

Cumulative Distributions for some Families (4)

In general:

- Vars follows a powerlaw distribution in more cases than clauses
- ullet α is bigger for clauses than for vars

Instantiating Variables: How Formula Decreases

- 3 heuristics: Random Heuristics (RH), Jeroslow-Wang (JW) and Most-Frequent (MF)
- RH has the same effect in all families
- JW is better than RH
- JW is not so good in random 3CNF as in industrial instances, but still better than RH
- JW and MF have the same effect

Instantiating Variables: How Formula Decreases

- 3 heuristics: Random Heuristics (RH), Jeroslow-Wang (JW) and Most-Frequent (MF)
- RH has the same effect in all families
- JW is better than RH
- JW is not so good in random 3CNF as in industrial instances, but still better than RH
- JW and MF have the same effect

Instantiating Variables: How Formula Decreases

- 3 heuristics: Random Heuristics (RH), Jeroslow-Wang (JW) and Most-Frequent (MF)
- RH has the same effect in all families
- JW is better than RH
- JW is not so good in random 3CNF as in industrial instances, but still better than RH
- JW and MF have the same effect

- Experiments with the IBM family
- RH preserve the scalefree structure

- Experiments with the IBM family
- RH preserve the scalefree structure
- JW and MF instantiate frequent variables and could destroy the scalefree structure

- Experiments with the IBM family
- RH preserve the scalefree structure
- JW and MF instantiate frequent variables and could destroy the scalefree structure

			ran	dom			Jeroslo	w-Wan	g	Most freq.				
		Powerlaw		Exponential		Powerlaw		Exponential		Powerlaw		Exponential		
			Δ^{pow}	β	Δ^{exp}		Δ^{pow}	/-	Δ^{exp}		Δ^{pow}	J	Δ^{exp}	
0	%	2.63	0.027	0.017	0.083	2.63	0.027	0.017	0.083	2.63	0.027	0.017	0.083	
1	%	2.56	0.027	0.017	0.078	2.72	0.017	0.046	0.036	2.79	0.020	0.052	0.034	
2	%	2.57	0.025	0.017	0.076	2.82	0.015	0.083	0.026	2.89	0.012	0.093	0.030	
5	%	2.59	0.020	0.018	0.075	3.27	0.029	0.218	0.019	3.39	0.029	0.250	0.014	
10	%	2.62	0.021	0.019	0.077	5.79	0.023	0.407	0.014	5.90	0.023	0.510	0.021	

- Experiments with the IBM family
- RH preserve the scalefree structure
 α is preserved
- JW and MF destroy the structure after instantiating 5% of the variables
 - α is increased

		ran	dom		Jeroslow-Wang				Most freq.				
	Pow	Powerlaw		Exponential		Powerlaw E		Exponential		Powerlaw		nential	
		Δ^{pow}	<i> </i>	Δ^{exp}	_ ~	Δ^{pow}	P	Δ^{exp}		Δ^{pow}	/-	Δ^{exp}	
0%	2.63	0.027	0.017	0.083	2.63	0.027	0.017	0.083	2.63	0.027	0.017	0.083	
1%	2.56	0.027	0.017	0.078	2.72	0.017	0.046	0.036	2.79	0.020	0.052	0.034	
2%	2.57	0.025	0.017	0.076	2.82	0.015	0.083	0.026	2.89	0.012	0.093	0.030	
5%	2.59	0.020	0.018	0.075	3.27	0.029	0.218	0.019	3.39	0.029	0.250	0.014	
10%	2.62	0.021	0.019	0.077	5.79	0.023	0.407	0.014	5.90	0.023	0.510	0.021	

- Experiments with the IBM family
- RH preserve the scalefree structure
- JW and MF destroy the structure after instantiating 5% of the variables

After instantiating 5% vars the assignment is inconsistent

Experiments with Real SAT Solvers

- Solver: Satz Family: IBM
- Formula under the longest assignment found after 1h of search: α is increased but the formula is still scalefree

Experiments with Real SAT Solvers

- Solver: Minisat Family: IBM
- Formula under the longest assignment found after 1000s of search: α is increased but the formula is still scalefree

Experiments with Real SAT Solvers

- Solver: Minisat Family: IBM
- Formula under the longest assignment found after 1000s of search: α is increased but the formula is still scalefree
- Original formula plus clauses learned after 200000 decisions: α is decreased substantially
- Instantiated or working formula (plus learned clauses) after 200000 decisions: α is approximately as in the original formula

Experiments with Random 3CNF Formulas

- Solver: Minisat Family: Random 3CNF
- Learned clauses makes the formula scalefree
- For the working formula $\alpha \approx 3$

Conclusions

- Most industrial SAT formulas seems to be scalefree
- Contrarily to what one could expect formulas does not loose scalefree structure after instantiating most frequent variables
- Learning seems to help to preserve scalefree structure
- Even more, learning seems to make random 3CNF formulas scalefree
- Solvers specialized in industrial instances seem to take profit of their scalefree structure

Open Question:

- Why many industrial SAT instances are scalefree? Preferential attachment?
- Why the scalefree structure helps? Is it true?
- How we can take more advantage of the structure?

