# RZN-AEM05 User Guide



FCC ID: 2AHDBRZN-AEM05

# 1. Introduction

The RZN-AEN05 module provides designers with a ready-made component that provides a fully integrated solution for applications, using the IEEE802.15.4 standard in the 2.4-2.5GHz ISM frequency band [1], including JenNet-IP and ZigBee Smart Energy, and can be quickly and easily included in product designs. The modules integrate all of the RF components required, removing the need to perform expensive RF design and test. Products can be designed by simply connecting sensors and switches to the module IO pins. The modules use NXP's single chip IEEE802.15.4 Wireless Microcontroller, allowing designers to make use of the extensive chip development support material. Hence, this range of modules allows designers to bring wireless applications to market in the minimum time with significantly reduced development effort and cost.

# 2.Pin Configurations



| Pin | Pin Functions |  |             | Signal   | Description |      |                                        |
|-----|---------------|--|-------------|----------|-------------|------|----------------------------------------|
| No  | Primary       |  | Alternate F | unctions |             | Type |                                        |
| 1   | ADC1          |  |             |          |             | 3.3V | Analogue to Digital Input              |
| 2   | SPICLK        |  |             |          | PWM2        | CMOS | SPI Master Clock Output or PWM2 Output |

| 3  | SPIMISO |           |            |           |                    | CMOS | SPI Master In Slave Out Input                                                                                                                    |
|----|---------|-----------|------------|-----------|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 4  | SPIMOSI |           |            |           | PWM3               | CMOS | SPI Master In Slave Out Input or PWM3 Output                                                                                                     |
| 5  | SPISEL0 |           |            |           |                    | CMSO | SPI Select From Module – SS0 Output                                                                                                              |
| 6  | DIO0    | SPISEL1   | ADC3       |           |                    | CMOS | DIO0, SPI Master Select Output 1 or ADC input 3                                                                                                  |
| 7  | DIO1    | SPISEL2   | ADC4       | PC0       |                    | CMOS | DIO1, SPI Master Select Output 2, ADC input 4 or Pulse Counter 0 Input                                                                           |
| 8  | DIO2*   |           | RFRX       | TIM0CK_GT |                    | CMOS | DIO2, Radio Receive Control Output or<br>Timer0 Clock/Gate Input                                                                                 |
| 9  | DIO3*   |           | RFTX       | TIM0CAP   |                    | CMOS | DIO3, Radio Transmit Control Output or Timer0 Capture Input                                                                                      |
| 10 | DIO4    | CTS0      | JTAG_TCK   | TIM0OUT   | PC0                | CMOS | DIO4, UART 0 Clear To Send Input,<br>JTAG CLK Input, Timer0 PWM Output,<br>or Pulse Counter 0 input                                              |
| 11 | DIO5    | RTS0      | JTAG_TMS   | PWM1      | PC1                | CMOS | DIO5, UART 0 Request To Send Output,<br>JTAG Mode Select Input, PWM1 Output or<br>Pulse Counter 1 Input                                          |
| 12 | DIO6    | TXD0      | JTAG_TDO   | PWM2      |                    | CMOS | DIO6, UART 0 Transmit Data Output,<br>JTAG Data Output or PWM2 Output                                                                            |
| 13 | DIO7    | RXD0      | JTAG_TDI   | PWM3      |                    | CMOS | DIO7, UART 0 Receive Data Input, JTAG<br>Data Input or PWM 3 Output                                                                              |
| 14 | DIO8    | TIM0CK_GT | PC1        | PWM4      |                    | CMOS | DIO8, Timer0 Clock/Gate Input, Pulse<br>Counter1 Input or PWM 4 Output                                                                           |
| 15 | DIO9    | TIM0CAP   | 32KXTALIN  | RXD1      | 32KIN              | CMOS | DIO9, Timer0 Capture Input, 32K<br>External Crystal Input, UART 1 Receive<br>Data Input or 32K external clock Input                              |
| 16 | DIO10   | TIM0OUT   | 32KXTALOUT |           |                    | CMOS | DIO10, Timer0 PWM Output or 32K<br>External Crystal Output                                                                                       |
| 17 | VDD     |           |            |           |                    | 3.3V | Supply Voltage                                                                                                                                   |
| 18 | GND     |           |            |           |                    | 0V   | Digital Ground                                                                                                                                   |
| 19 | DIO11   | PWM1      | 0700       | TXD1      |                    | CMOS | DIO11, PWM1 Output or UART 1 Transmit Data Output                                                                                                |
| 20 | DIO12   | PWM2      | CTS0       | JTAG_TCK  | ADO or<br>SPISMOSI | CMOS | DIO12, PWM2 Output, UART 0 Clear To Send Input, JTAG CLK Input, Antenna Diversity Odd Output or SPI Slave Master Out Slave In Input              |
| 21 | DIO13   | PWM3      | RTS0       | JTAG_TMS  | ADE or<br>SPISMISO | CMOS | DIO13, PWM3 Output, UART 0 Request To Send Output, JTAG Mode Select Input, Antenna Diversity Even output or SPI Slave Master In Slave Out Output |
| 22 | RESETN  |           |            |           |                    | CMOS | Reset input                                                                                                                                      |
| 23 | DIO14   | SIF_CLK   | TXD0 TXD1  | JTAG_TDO  | SPISEL1 or         | CMOS | DIO14, Serial Interface Clock,                                                                                                                   |
|    |         |           |            |           | SPISSEL            |      | UART 0 Transmit Data Output,<br>UART 1 Transmit Data Output, JTAG Data<br>Output, SPI Master Select Output 1 or SPI<br>Slave Select Input        |
| 24 | DIO15   | SIF_D     | RXD0 RXD1  | JTAG_TDI  | SPISEL2            | CMOS | DIO15, Serial Interface Data or<br>Intelligent Peripheral Data Out                                                                               |
| 25 | DIO16   | COMP1P    | SIF_CLK    | SPISMOSI  |                    | CMOS | DIO16, Comparator Positive Input, Serial<br>Interface clock or SPI Slave Master Out<br>Slave In Input                                            |
| 26 | DIO17   | COMP1M    | PWM4       | I2C DATA  | SPISIMO            | CMOS | DIO17, Comparator Negative Input, Serial<br>Interface Data or SPI Slave Master In<br>Slave Out Output                                            |
| 27 | ADC2    |           |            |           |                    | 3.3V | Analogue to Digital Input                                                                                                                        |

# 3. Specifications

## 3.1 Mechanical Information

1) Size : 16 x 30 x 1 (mm)

2) Antenna : uFl connector Type External Antenna (Max gain : 2 dBi)

## 3.2 Electrical Characteristics

In most cases, the Electrical Characteristics are the same for both module and chip. They are described in detail in the chip datasheet. Where there are differences, they are detailed below.

## 3.2.1 Maximum Ratings

Exceeding these conditions will result in damage to the device.

| Parameter                 | Min   | Max        |
|---------------------------|-------|------------|
| Device supply voltage VDD | -0.3V | 3.6V       |
| All Pins                  | -0.3V | VDD + 0.3V |
| Storage temperature       | -40°C | 150°C      |

## 3.2.2 Operating Conditions

| Supply                    | Min   | Max  |
|---------------------------|-------|------|
| VDD                       | 2.0V  | 3.6V |
| Ambient temperature range | -40°C | 85°C |

## 3.3 Radio Transceiver

| Typical RF Chara       | cteristics     | Notes                               |  |
|------------------------|----------------|-------------------------------------|--|
| Receive sensitivity    | -95dBm         | Nominal for 1% PER, as per 802.15.4 |  |
| Maximum Transmit power | +9.5 dBm       | Nominal                             |  |
| RSSI range             | -95 to −10 dBm |                                     |  |
| RF Port impedance      | 50 ohm         | 2.4 – 2.5GHz                        |  |
| VSWR(max)              | 2:1            | 2.4 – 2.5GHz                        |  |

# 4. Programming

## 4.1 circuit for programming

## 4.1.1 External circuit for Programming



## 4.1.2 Entering Programming Mode

To put the module into programming mode, tie MISO to 0V while releasing RESET. This causes the device to read zeros back from the Flash memory during initialisation and, as a result, to enter programming mode. If you are using the module in conjunction with a serial dongle then the signal PGM is available to put the device into programming mode. To allow this signal to operate correctly from the Flash programming software, the signal should be connected to the module

## 4.2 Flash programming

Step 1 In the Program File field of the JN51xx Flash Programmer interface, browse for the application (.bin) file to be downloaded to Flash memory.

Alternatively, the application remembers previously downloaded files and these can be selected from the drop-down list.

Step 2 In the Target drop-down list, select the Custom Flash option, as illustrated below.



**Target Options** 

The "hidden" field under the Target list now becomes visible and accessible

Step 3 In this new field, browse to find and select your custom Flash programmer firmware image (see below).



**Custom Programming File Browser** 



**Note 1:** The following message appears when the mouse hovers over the new **Browse** field: *The custom flash programmer firmware that implements low level flash programming commands.* 

**Note 2:** Even when using this procedure just to upload a custom Flash programmer to RAM, an application binary file must be specified in the **Program File** field.

## Step 4 Click on the Program button.

The JN51xx Flash Programmer now uploads the custom Flash programmer to RAM. Once the upload has finished, the custom Flash programmer automatically programs your application into the Flash chip.



Thickness: 3.5mm

## **FCC Statement**:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### FCC Radiation Exposure Statement

This modular complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: 2AHDBRZN-AEM05 Or Contains FCC ID: 2AHDBRZN-AEM05

When the module is installed inside another device, the user manual of the host must contain below warning statements;

- 1. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
- (1) This device may not cause harmful interference.
- (2) This device must accept any interference received, including interference that may cause undesired operation.
- 2. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The devices must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the product

Any company of the host device which install this modular with limit modular approval should perform the test of radiated emission and spurious emission according to FCC part 15C: 15.247 and 15.209 requirement, Only if the test result comply with FCC part 15C: 15.247 and 15.209 requirement then the host can be sold legally.

## **RF Exposure**

"This equipment complies with FCC radiation exposure limits set forth for an uncontrolled envi-ronment. This equipment should be installed and operated with minimum distance 20cm be-tween the radiator and your body. This transmitter must not be co-located or operating in con-junction with any other antenna or transmitter."