R for Data Science - Solutions Manual

Jonathan Mendes de Almeida

Solutions to the exercises in R for Data Science (Garrett Grolemund & Hadley Wickham).

Chapter 1

No exercises in this chapter.

Chapter 2

No exercises in this chapter.

Chapter 3

Prerequisites

```
library(tidyverse)
## -- Attaching packages
## √ ggplot2 2.2.1
                   √ purrr
                           0.2.4
## √ tibble 1.4.2
                   √ dplyr
                           0.7.4
## √ tidyr
         0.8.0
                   √ stringr 1.3.0
## √ readr
          1.1.1
                   \sqrt{\text{forcats 0.3.0}}
## -- Conflicts ------ tidyverse_c
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                 masks stats::lag()
```

To install tidyverse library:

```
install.packages('tidyverse')
```

mpg data frame

```
mpg = ggplot2::mpg
mpg
## # A tibble: 234 x 11
##
     manufacturer model
                                                              hwy fl
                         displ year
                                      cyl trans
                                                 drv
                                                        cty
##
     <chr> <chr>
                         <dbl> <int> <int> <chr> <int> <int> <chr>
## 1 audi a4
## 2 audi a4
                         1.80 1999
                                       4 auto(1~ f
                                                               29 p
                                                         18
                                                         21
                          1.80 1999
                                       4 manual~ f
                                                               29 p
               a4
## 3 audi
                         2.00 2008
                                       4 manual~ f
                                                         20
                                                               31 p
```

```
4 auto(a~ f
    4 audi
                    a4
                               2.00 2008
                                                                   21
                                                                          30 p
                                                                          26 p
##
    5 audi
                    a4
                               2.80
                                     1999
                                               6 \text{ auto}(1~f)
                                                                   16
    6 audi
                               2.80
                                     1999
##
                    a4
                                               6 manual~ f
                                                                   18
                                                                          26 p
##
    7 audi
                               3.10
                                     2008
                                               6 auto(a~ f
                    a4
                                                                   18
                                                                          27 p
##
    8 audi
                    a4 quat~
                               1.80
                                     1999
                                               4 manual~ 4
                                                                   18
                                                                          26 p
##
    9 audi
                    a4 quat~
                               1.80
                                     1999
                                               4 auto(1~ 4
                                                                   16
                                                                          25 p
                                                                          28 p
## 10 audi
                    a4 quat~
                               2.00
                                     2008
                                               4 manual~ 4
                                                                   20
## # ... with 224 more rows, and 1 more variable: class <chr>
```

- displ: car's engine size (in litres)
- hwy: car's fuel efficiency on the highway (in miles per gallon mpg).

3.2.4 Exercises

Exercise 1

```
Run ggplot(data = mpg). What do you see?
ggplot(data = mpg)
```

(Answer) An empty plot. To see some nice plots we should add some geom_function to map some points. Add a good caption for each axis is great to make your plot easier to read and understand!

Exercise 2

How many rows are in mpg? How many columns?

```
nrow(mpg)
## [1] 234
ncol(mpg)
```

[1] 11

(Answer) 234 rows and 11 columns

Alternative method to check the number of rows and columns of a data frame:

glimpse(mpg)

```
## Observations: 234
## Variables: 11
## $ manufacturer <chr> "audi", "audi", "audi", "audi", "audi", "audi", "...
## $ model
               <chr> "a4", "a4", "a4", "a4", "a4", "a4", "a4", "a4", "a4 qua...
               <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0,...
## $ displ
## $ year
               <int> 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1...
## $ cyl
               <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6...
## $ trans
               <chr> "auto(15)", "manual(m5)", "manual(m6)", "auto(av)...
               ## $ drv
               <int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20, 19, 15, 1...
## $ cty
## $ hwy
               <int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28, 27, 25, 2...
               ## $ fl
               <chr> "compact", "compact", "compact", "compact", "comp...
## $ class
```

Exercise 3

What does the drv variable describe? Read the help for ?mpg to find out. run ?mpg in RStudio console and check the 'help' tab)

mpg['drv']

```
## # A tibble: 234 x 1
##
      drv
##
      <chr>
##
  1 f
##
  2 f
##
   3 f
##
   4 f
##
    5 f
##
   6 f
   7 f
##
##
   8 4
   9 4
##
## 10 4
## # ... with 224 more rows
```

(Answer) The drv variable describes the traction control system. There are 3 possible values for drv variable (variable : description):

- **f**: front-wheel drive
- **r**: rear wheel drive
- **4**: 4wd

Make a scatterplot of hwy vs cyl

(Answer) We add a definition of the data used in x,y axis and add geom_point function mapping these points. Here we are using aes(colour = class) (to associate the name of the aesthetic with a variable to display) to plot using a different colour for each class present in our data frame (car type: 2seater, compact, midsize, minivan, pickup, subcompact, suv).

Exercise 5

What happens if you make a scatterplot of class vs drv? Why is the plot not useful?

```
ggplot(data = mpg, aes(x = class, y = drv)) + geom_point()
```


(Answer) This plot is not useful because class and drv are factor variables. Each possible value of these two variables is limited by a set (r, f and 4 are the possible values for drv and 2seater, compact, midsize, minivan, pickup, subcompact and suv are the possible values for class). This plot is pretty useless to perform a data analysis.

3.3.1 Exercises

Exercise 1

What's gone wrong with this code? Why are the points not blue?

```
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, color = "blue"))
```


(Answer) The color argument is not in the correct place. The color argument is included inside the mapping argument so it is treated as an aesthetic, which receives a variable (like we used class as argument in previous exercise). In this case, the color argument is interpreted as a variable with only one value (which is "blue" in this case).

If the goal is to plot all these points using blue, the correct code is:

```
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy), color = "blue")
```


Which variables in mpg are categorical? Which variables are continuous? (**Hint:** type ?mpg (using RStudio console) to read the documentation for the dataset). How can you see this information when you run mpg?

If you are not able to classify each variable as categorical or continuous by checking the description of each variable (by typing ?mpg) you can print the data frame and R will answer this for you (another way to check this information is using the glimpse() function).

mpg

```
## # A tibble: 234 x 11
                                                                            hwy fl
##
      manufacturer model
                               displ year
                                               cyl trans
                                                            drv
                                                                     cty
                               <dbl> <int> <int> <chr>
##
      <chr>
                     <chr>>
                                                            <chr> <int> <int> <chr>
                                1.80
                                       1999
                                                 4 \text{ auto}(1~\text{f})
                                                                             29 p
##
    1 audi
                     a4
                                                                      18
                                                                             29 p
##
    2 audi
                     a4
                                1.80
                                      1999
                                                 4 manual~ f
                                                                      21
                                                 4 manual~ f
                                                                      20
##
    3 audi
                     a4
                                2.00
                                       2008
                                                                             31 p
                     a4
##
                                2.00
                                      2008
                                                 4 auto(a~ f
                                                                      21
                                                                             30 p
    4 audi
##
    5 audi
                     a4
                                2.80
                                      1999
                                                 6 \text{ auto}(1~f)
                                                                      16
                                                                             26 p
##
    6 audi
                     a4
                                2.80
                                       1999
                                                 6 manual~ f
                                                                      18
                                                                             26 p
##
    7 audi
                     a4
                                3.10
                                       2008
                                                 6 auto(a~ f
                                                                      18
                                                                             27 p
                                1.80
##
                                       1999
                                                 4 manual~ 4
                                                                      18
                                                                             26 p
    8 audi
                     a4 quat~
                                                                             25 p
##
    9 audi
                     a4 quat~
                                1.80
                                       1999
                                                 4 auto(1~ 4
                                                                      16
                                       2008
                                                                             28 p
## 10 audi
                     a4 quat~
                                2.00
                                                 4 manual~ 4
                                                                      20
   # ... with 224 more rows, and 1 more variable: class <chr>
```

As you can see, the information is given at top of each column within '<>'. If the variable is categorical, it

will have a class of 'character' (represented as <chr>). So, once you know where to find this is information is easy to anwser which variable is categorical and which is continuous.

model: categorical
displ: continuous
year: continuous
cyl: continuous
trans: categorical
drv: categorical
cty: continuous
hwy: continuous
fl: categorical

• class: categorical

Exercise 3

Map a continuous variable to color, size and shape. How do these aesthetics behave differently for **categorical** *vs* **continuous** variables?

Using the varible cty (city miles per gallon) - which is a continuous variable.

displ

(Answer) When mapped to colour: the continuous variable uses a scale that varies using tons of blue (light to dark).

When mapped to size: the continuous variable uses a scale that varies using different sizes.

These information is easy to verify by checking these two previous plots.

However, when mapped to shape, R will give an error (a continuous variable can not be mapped to shape). This is because shapes does not have a natural order.

Exercise 4

What happens if you map the same variable to multiple aesthetics?

```
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, colour = displ, size = hwy))
```


Mapping one variable to multiple aesthetics is not a good idea because is redundant. Using different variables and the plot will show more information about your dataset. The next plot uses four different variables in aesthetics, which gives useful aditional information when compared to all the previous plots.

```
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, colour = cty, size = cyl))
```


What does the stroke aesthetic do? What shapes does it work with? (Hint: use <code>?geom_point</code> and check the 'help' tab)

```
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, shape = drv), stroke = 5)
```


(Answer) The stroke aesthetic is used to modify the width of the border.

What happens if you map an aesthetic to something other than a variable name, like aes(colour = displ < 5)?

(Answer) The colour indicates if each displ value is less than 4 or not. The ggpplot function will assign the result of this expression (displ < 5, which is going to be true or false) to a temporary variable and then will assign a colour for values > 5 and a different colour for values < 5). This is easy visualize by checking the results of this code:

```
ggplot(data = mpg) + geom_point(mapping = aes(x = hwy, y = cyl, colour = displ < 4))</pre>
```


3.5.1 Exercises

Exercise 1

What happens if you facet on a continuous variable?

(Answer) To remember the variables classification:

Continuous	Categorical
displ	model
year	trans
cyl	drv
cty	fl
hwy	class

Let's plot and see what happens!

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ displ, nrow = 2)
```


As you can see, it converts the continuous variable to a factor and then creates facets for all unique values of it. Facets is particularly useful for **categorical** variables.

Exercise 2

What do the empty cells in plot with $\mathbf{facet_grid}(\mathbf{drv} \sim \mathbf{cyl})$ mean? How do they relate to this plot?

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ cyl)
```


(Answer) The empty cells means that there are no values for the combination of drv and cyl. In this case, there are no cars which the traction control system is 4wd and the number of cylinders is 5, for example (you can check the same for the two others empty cells).

What plots does the following code make? What does . do?

Let's see!

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ .)
```


(Answer) As you can see in these two plots, . ignores a dimension for faceting (x or y axis).

Exercise 4