Exercice 1 : Des éoliennes toujours plus grandes !

- **1.** Il s'agit d'une conversion d'énergie mécanique (rotation des pales grâce au vent) en énergie électrique.
- **2.** L'élément de l'éolienne réalisant cette conversion énergétique est l'alternateur.
- **3.** L'augmentation du diamètre de l'hélice et de la hauteur du mât des éoliennes permet d'accéder à des puissances plus élevées.

Complément : L'augmentation du diamètre de l'hélice permet de capter davantage d'énergie cinétique, augmentant ainsi la puissance de l'éolienne. L'augmentation de la hauteur des mâts des éoliennes s'explique quant à elle par le fait que les vents sont plus forts et plus réguliers en altitude.

- 4. La puissance totale du parc est 68 × 8 = 496 MW.
- **5.** Il manque des informations telles que la distribution de la vitesse du vent dans le temps, ou encore la valeur de l'énergie cinétique associée au vent en fonction de sa vitesse.

Exercice 2 : Optimiser l'utilisation d'une cellule photovoltaïque

Courbes pour les questions 1, 3 et 6 :

Le dipôle ohmique a une résistance de 4,0 Ω donc la droite rouge est tracée telle que :

$$I=\frac{1}{4}U.$$

2. Schématisation du montage :

- **4.** Par lecture graphique, les coordonnées du point de fonctionnement sont à l'intersection de la courbe I = f(U) pour la cellule (courbe bleue) et de la droite I = f(U) pour le dipôle ohmique (courbe rouge) car le courant I est le même dans la cellule et dans la résistance R. Le point de fonctionnement est à une tension aux bornes du dipôle ohmique qui vaut 12,9 V et I = 3,2 A.
- **5.** $P = U \times I = 12,9 \times 3,2 = 41 \text{ W}$
- **6.** On constate aisément qu'en utilisant un dipôle ohmique de résistance $R' > 4,0 \Omega$, dont la caractéristique apparaît en pointillé sur la figure (question 1), la puissance électrique délivrée par la cellule photovoltaïque est plus grande : $P' = 15,0 \times 3,1 = 47 \text{ W} > 41 \text{ W}$. Ainsi, le dipôle ohmique de résistance $R = 4,0 \Omega$ ne maximise pas la puissance électrique délivrée par le module photovoltaïque.