Two-Legged Robot System Identification With Artificial Neural Networks

Burak Çatalbaş, Bahadır Çatalbaş and Ömer Morgül Department of Electrical and Electronics Engineering, Bilkent University catalbas@ee.bilkent.edu.tr, cbahadir@ee.bilkent.edu.tr, morgul@ee.bilkent.edu.tr

IEEE Bilkent Graduate Research Conference

INTRODUCTION

- Two-Legged Robot System Identification is an important topic of research.
- The robot platforms have a dynamic structure with flight & contact phases.
- This hybrid dynamic structure and non-linear dynamics make it harder to calculate the system Jacobian needed for the adaptive control methods.
- Different neural networks are used in this study to make system identification.
- Supervised training is done with central pattern generator creating stable walking datasets, which are used by feedforward and recurrent networks.

DATASET

- Data is generated from a 2-legged robot system model with 4 parts & 6 joints.
- System models non-linear dynamics too, such as ground response and friction.
- Hybrid dynamic robot platform is combined with Central Pattern Generator:
 - > It consists of 6 Matsuoko oscillators with coupling.
 - The samples are taken with 100 Hz frequency for a duration of 10 seconds.
 - → In total, 380 training, 189 verification and 141 test patterns are generated.

RESULTS

- Multiple tables are given as results for 2, 3 and 5-layer networks.
- Both recurrent and feedforward neural networks are compared:
 - → Recurrent networks are used with different neuron amounts.
 - > Feedforward networks are applied in this manner as well:
 - → In addition, different input delays are also applied to them.
- The best result is obtained by recurrent (LSTM) networks:
 - The largest neuron amount and least number of layers is used.
 - → Reasons: Increased capability of network and less complexity.
 - \rightarrow 1.77% test error is the best one, also for the training phases.

TABLO II: Single Hidden Layer Neural Network							
IADLO II. Siligie Hiddell Layer Neural Network	TABLO	II:	Single	Hidden	Layer	Neural	Networks

Number of	HL Neuron	HL Neuron	Input	System Characterization Error (RMSE)			Number of	HL Neuron HL Neuron Input			System Characterization Error (RMSE)			
Weights	Type	Number	Delay	Training	Verification	Test	Weights	Type	Number	Delay	Training	Verification	Test	
·	LSTM	N=50	d=[1]	$1,61 \cdot 10^{-2}$	$1,99 \cdot 10^{-2}$	$2,38 \cdot 10^{-2}$		LSTM	N=50	d=[1]	$1,29 \cdot 10^{-2}$	$1,78 \cdot 10^{-2}$	$2,16\cdot 10^{-2}$	
	20111	11-50	G=[1]		1,00-10		38828	FF (tanh)	N=168	d=[1]	$2,28 \cdot 10^{-2}$	$2,57 \cdot 10^{-2}$	$2,8 \cdot 10^{-2}$	
18628	FF (tanh)	N=291	d=[1]	$3, 1 \cdot 10^{-2}$	$3,28 \cdot 10^{-2}$	$3,43 \cdot 10^{-2}$	30020	FF (tanh)	N=156	d=[1,2]	$2,12\cdot 10^{-2}$	$2,4\cdot 10^{-2}$	$2,59 \cdot 10^{-2}$	
10020	FF (tanh)	N=203	d=[1,2]	$2,88\cdot10^{-2}$	$3,07 \cdot 10^{-2}$	$3,23 \cdot 10^{-2}$		FF (tanh)	N=146	d=[1,2,3]	$2,08 \cdot 10^{-2}$	$2,35 \cdot 10^{-2}$	$2,55\cdot 10^{-2}$	
	FF (tanh)	N=155	d=[1,2,3]	$2,84 \cdot 10^{-2}$	$3,05 \cdot 10^{-2}$	$3,26 \cdot 10^{-2}$		FF (tanh)	N=137	d=[1,2,3,4]	$2,07 \cdot 10^{-2}$	$2,31\cdot 10^{-2}$	$2,49 \cdot 10^{-2}$	
	EE (tanh)	N_126	1 4 11 2 2 41	0.00 10-2	1 2 00 10-2	1 2 17 10-2		LSTM	N=100	d=[1]	$0.89 \cdot 10^{-2}$	$1,44 \cdot 10^{-2}$	$2,03 \cdot 10^{-2}$	
<u> </u>	FF (tanh)	N=126	d=[1,2,3,4]	$2,83 \cdot 10^{-2}$	$3,02 \cdot 10^{-2}$	$3,17 \cdot 10^{-2}$		FF (tanh)	N=340	d=[1]	$2,14\cdot 10^{-2}$	$2,57 \cdot 10^{-2}$	$2,68 \cdot 10^{-2}$	
	LSTM	N=100	d=[1]	$1,17 \cdot 10^{-2}$	$1,62 \cdot 10^{-2}$	$1,97 \cdot 10^{-2}$	137628	FF (tanh)	N=328	d=[1,2]	$1,98 \cdot 10^{-2}$	$2, 2 \cdot 10^{-2}$	$2,47 \cdot 10^{-2}$	
57228	FF (tanh)	N=894	d=[1]	$3,3\cdot 10^{-2}$	$3,44 \cdot 10^{-2}$	$3,57 \cdot 10^{-2}$		FF (tanh)	N=316	d=[1,2,3]	$2,01 \cdot 10^{-2}$	$2,38 \cdot 10^{-2}$	$2,52\cdot10^{-2}$	
37228	FF (tanh)	N=622	d=[1,2]	$2,89 \cdot 10^{-2}$	$3,09 \cdot 10^{-2}$	$3,22 \cdot 10^{-2}$		FF (tanh)	N=304	d=[1,2,3,4]	$1,96 \cdot 10^{-2}$	$2,34 \cdot 10^{-2}$	$2,42\cdot 10^{-2}$	
	FF (tanh)	N=477	d=[1,2,3]	$2,84 \cdot 10^{-2}$	$3 \cdot 10^{-2}$	$3, 2 \cdot 10^{-2}$	TABLO IV: Four Hidden Layer Neural Networks							
	FF (tanh)	N=387	d=[1,2,3,4]	$2,78 \cdot 10^{-2}$	$2,98 \cdot 10^{-2}$	$3,16 \cdot 10^{-2}$	N	TTT N	L TIT N	T	G		(DMCE)	
	r om r	1 37 200	1 1 643	0.01.10-2	1 1 0 10-2	1 77 10-2	Number of	HL Neuron	HL Neuron	Input	System Cha	racterization Er	ror (RMSE)	
	LSTM	N=200	d=[1]	$0,81\cdot10^{-2}$	$1,3\cdot10^{-2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Weights	Type	Number	Delay	Training	Verification	Test	
104400	FF (tanh)	N=3038	d=[1]	$3,37 \cdot 10^{-2}$	$3,55 \cdot 10^{-2}$	$3,64 \cdot 10^{-2}$		LSTM	N=50	d=[1]	$1,16\cdot 10^{-2}$	$1,72\cdot 10^{-2}$	$2,33 \cdot 10^{-2}$	
194428	FF (tanh)	N=2114	d=[1,2]	$3,06 \cdot 10^{-2}$	$3,24 \cdot 10^{-2}$	$3,36 \cdot 10^{-2}$	79228	FF (tanh)	N=152	d=[1]	$1,95 \cdot 10^{-2}$	$2,36 \cdot 10^{-2}$	$2,92 \cdot 10^{-2}$	
						<u> </u>		FF (tanh)	N=148	d=[1,2]	$1,78 \cdot 10^{-2}$	$2,28 \cdot 10^{-2}$	$2,42 \cdot 10^{-2}$	
	FF (tanh)	N=1620	d=[1,2,3]	$3,02 \cdot 10^{-2}$	$3,14 \cdot 10^{-2}$	$3,34 \cdot 10^{-2}$		FF (tanh)	N=144	d=[1,2,3]	$1,82 \cdot 10^{-2}$	$2,3\cdot 10^{-2}$	$2,44 \cdot 10^{-2}$	
	FF (tanh)	N=1314	d=[1,2,3,4]	$2,85 \cdot 10^{-2}$	$3,06 \cdot 10^{-2}$	$3,16 \cdot 10^{-2}$		FF (tanh)	N=140	d=[1,2,3,4]	$1,86 \cdot 10^{-2}$	$2,3\cdot 10^{-2}$	$2,54 \cdot 10^{-2}$	

CONCLUSION & FUTURE WORK

- In this work, system identification is done by different neural networks using a synthetic dataset generated with CPG.
- In comparison, recurrent neural network is the best choice, while delayed inputs can improve feedforward ones better.
- High number of neurons with less number of layers seems as the best strategy to follow in this type of problems.
 - → As a future work, using other initialization, optimizer and regularization techniques can improve the performance.

ACKNOWLEDGEMENTS

TABLO III: Double Hidden Layer Neural Networks

Bahadır Çatalbaş was, and Burak Çatalbaş is supported by National Scientific and Technological Council of Turkey, TUBITAK.

IMPORTANT REFERENCES

- [1] B. Çatalbaş, "Recurrent neural network learning with an application to the control of legged locomotion," Master's thesis, Bilkent University, 2015.
- [2] S. Hochreiter, and J. Schmidhuber, "Long short-term memory.", Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
- [3] A. V. D. Schaft and H. Schumaher, An introduction to hybrid dynamical systems. Springer London, 2000, vol. 251.
- [4] W. T. Miller, P. J. Werbos, and R. S. Sutton, *Neural networks for control*. MIT press, 1995.
- [5] V. Kasparian and C. Batur, "Model reference based neural network adaptive controller," ISA transactions, vol. 37, no. 1, pp. 21-39, 1998.