Séries numériques

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

Premiers résultats

QCOP SER. 1

Soit $(u_n)_n \in \mathbb{K}^{\mathbb{N}}$.

- 1. Donner la définition de « la série $\sum_{n} u_n$ est convergente ».
- 2. Montrer que :

$$\sum_{n} u_n \text{ converge } \implies u_n \longrightarrow 0.$$

3. Étudier la nature des séries suivantes :

$$\sum_{n\geqslant 0} \arctan(12n!) \quad \text{et} \quad \sum_{n\geqslant 1} \ln\left(\frac{n+1}{n}\right).$$

QCOP SER.2

Soit $(u_n)_n$ une suite de nombres réels positifs.

On pose, pour $N \in \mathbb{N}$, $U_N := \sum_{n=0}^N u_n$.

- 1. Quelle est la monotonie de $(U_N)_N$?
- 2. Montrer que : $\sum_n u_n \text{ converge } \iff (U_N)_N \text{ est majorée.}$
- 3. Ceci reste-il vrai si l'on ne suppose plus que $(u_n)_n$ est à valeurs positives?

Deux séries de référence

QCOP SER.3

Soit $a \in \mathbb{C}$.

1. Compléter :

$$a^n \longrightarrow 0 \iff \dots$$

- **2.** Soit $N \in \mathbb{N}$. Rappeler l'expression de $\sum_{k=0}^{N} a^k$ pour $a \neq 1$.
- **3.** Montrer que :

$$\sum_{n} a^{n} \text{ converge } \iff |a| < 1.$$

4. On suppose que |a| < 1. Déterminer :

$$\sum_{n=0}^{+\infty} a^n \quad \text{et} \quad \sum_{n=1}^{+\infty} a^n.$$

QCOP SER.4

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$.

1. a) Soit $n \in \mathbb{N}$. Calculer :

$$\sum_{k=0}^n (u_{k+1}-u_k).$$

- **b)** En déduire que $\sum_{n} (u_{n+1} u_n)$ converge si, et seulement si, $(u_n)_n$ converge.
- **2.** On suppose que $u_{n+1} u_n \longrightarrow 0$.

Montrer que la série

$$\sum_{n} (u_{n+2} - 2 u_{n+1} + u_n)$$

converge.

Théorèmes de comparaison

QCOP SER.5

Soient $(a_n)_n, (b_n)_n$ deux suites de nombres

$$a_n \sim b_n$$
.

- réels positifs telles que

QCOP SER.6

- 1. Rappeler la règle de comparaison pour les séries à termes positifs.
- **2.** Montrer qu'il existe $N_1 \in \mathbb{N}$ tel que $\exists N_1 \in \mathbb{N}: \ \forall n \geqslant N_1, \ \frac{1}{2}b_n \leqslant a_n \leqslant \frac{3}{2}b_n.$
- 3. Montrer que $\sum a_n$ et $\sum b_n$ sont de même nature.
- 4. Ce résultat reste-il valable si l'on ne suppose plus $(a_n)_n$ et $(b_n)_n$ à valeurs positives ?

suites de nombres réels positifs.

On pose, pour
$$N\geqslant N_0$$
, $A_N:=\sum_{n=N_0}^N a_n$ et $B_N:=\sum_{n=N_0}^N b_n$.

Soit $N_0 \in \mathbb{N}$. Soient $(a_n)_{n \geqslant N_0}, (b_n)_{n \geqslant N_0}$ deux

1. Compléter :

$$\sum_{n\geqslant N_0} a_n \text{ converge } \iff (A_N)_{N\geqslant N_0} \dots$$

2. On suppose que :

$$\begin{cases} \exists \textit{N}_1 \geqslant \textit{N}_0: \ \forall \textit{n} \geqslant \textit{N}_1, \ \textit{a}_\textit{n} \leqslant \textit{b}_\textit{n} \\ \sum_{\textit{n} \geqslant \textit{N}_0} \textit{b}_\textit{n} \ \text{converge}. \end{cases}$$

- a) Montrer que $(A_N)_{N\geqslant N_0}$ est majorée.
- **b)** En déduire que $\sum_{n \ge N_0} a_n$ converge.
- c) Montrer que $\sum_{n=0}^{+\infty} a_n \leqslant \sum_{n=0}^{+\infty} b_n$.

QCOP SER.7

- 1. Énoncer la règle de comparaison pour les séries à termes positifs.
- **2.** Soient $(u_n)_n, (v_n)_n \in \mathbb{K}^{\mathbb{N}}$

Montrer que :

$$\frac{u_n = o(v_n)}{\sum_n |v_n| \text{ converge}} \implies \sum_n |u_n| \text{ converge}.$$

3. Soit $\sum_{n} u_n$ une série numérique.

Montrer que :

$$n^2 u_n \longrightarrow 0 \implies \sum_n u_n$$
 converge.

QCOP SER.8

- 1. Énoncer la règle de comparaison pour les séries à termes positifs.
- **2.** Soient $(u_n)_n, (v_n)_n \in \mathbb{K}^{\mathbb{N}}$.

Montrer que :

$$\frac{u_n = \mathcal{O}(v_n)}{\sum_{n} |v_n| \text{ converge}} \implies \sum_{n} |u_n| \text{ converge}.$$

3. Soit $\sum_{n=1}^{\infty} u_n$ une série numérique telle que $(n^2u_n)_n$ est bornée.

Montrer que $\sum_{n} u_n$ converge.

Comparaison série-intégrale

QCOP SER.9

1. Soit $f:[1,+\infty[\longrightarrow \mathbb{R}]$ une fonction continue et décroissante.

Soient $m, n \in \mathbb{N}^*$ tels que $m \geqslant n$.

Montrer que :

$$\int_{n}^{m} f(t) dt + f(m) \leqslant \sum_{k=n}^{m} f(k) \leqslant f(n) + \int_{n}^{m} f(t) dt.$$

- **2.** On note, pour $n \in \mathbb{N}^*$, $H_n := \sum_{k=1}^n \frac{1}{k}$.
 - a) Montrer que $\sum_{n\geqslant 1}\frac{1}{n}$ diverge.
 - **b)** Montrer que $H_n \sim \ln(n)$.

QCOP SER. 10

Soit $\alpha \in \mathbb{R}$.

- 1. On suppose que $\alpha \leq 0$. Montrer que $\sum_{n} \frac{1}{n^{\alpha}}$ diverge.
- **2.** On suppose que $\alpha > 0$.
 - a) Soit $N \in \mathbb{N}^*$. Montrer que :

$$I_N + \frac{1}{N^{\alpha}} \leqslant \sum_{n=1}^N \frac{1}{n^{\alpha}} \leqslant 1 + I_N,$$

où
$$I_N \coloneqq \int_1^N \frac{1}{t^{\alpha}} dt$$
.

On n'utilisera pas une « formule toute faite » de comparaison série-intégrale mais on l'établira dans ce cas particulier.

b) En déduire la nature de $\sum_{n} \frac{1}{n^{\alpha}}$ en distinguant les cas :

$$\alpha \in]0,1[, \quad \alpha = 1, \quad \text{et} \quad \alpha > 1.$$

Convergence absolue

QCOP SER.11

Soit $\sum_{n} u_n$ une série numérique.

- 1. Définir « $\sum_{n} u_n$ est absolument convergente ».
- 2. Montrer que, si $\sum_n u_n$ est absolument convergente, alors $\sum_n u_n$ est convergente.

 On fera d'abord la preuve dans le cas où $(u_n)_n$ est à valeurs réelles, puis on utilisera le résultat

établi pour en déduire le cas où $(u_n)_n$ est à valeurs complexes.

- 3. Montrer que la réciproque est fausse en général.
- 4. Écrire la contraposée du résultat démontré.

Séries alternées

QCOP SER.12 *

Soit $(a_n)_n$ une suite de nombres réels positifs, décroissante et de limite nulle.

On pose, pour $N \in \mathbb{N}$, $S_N \coloneqq \sum_{n=0}^N (-1)^n a_n$.

- 1. a) Montrer que $(S_{2N})_N$ et $(S_{2N+1})_N$ sont adjacentes.
 - **b)** Compléter :

$$\begin{cases} \sum_{n} (-1)^{n} a_{n} \dots \\ \forall N \in \mathbb{N}, \quad \dots \leqslant \sum_{n=0}^{+\infty} (-1)^{n} a_{n} \leqslant \dots \end{cases}$$

- c) En déduire que $\left|\sum_{n=0}^{+\infty} (-1)^n a_n\right| \leqslant a_0$.
- **2.** On suppose que $\sum_{n} (-1)^{n} a_{n}$ est convergente. Montrer que :

$$\forall n \in \mathbb{N}, \quad \left| \sum_{k=n+1}^{+\infty} (-1)^k a_k \right| \leqslant a_{n+1}.$$