The Fundamental Theorem of Arithmetic

MTH 350 -- Module 4A

A composite number is any integer that is not prime.

True

False

What would the NEGATION of the definition of "prime number" say? Fill in the blank: An integer n>1 is "not prime" if...

Join by Web

- 1 Go to PollEv.com
- 2 Enter TALBERT
- 3 Respond to activity

The Fundamental Theorem of Arithmetic says that every integer greater than or equal to 1 can be factored into a product of two or more prime numbers, and this factorization is unique up to the ordering of the factors.

True

False

Consider the number 120. This number can be factored in two different ways: $120=2\times60$ and $120=10\times12$. Does this contradict the "uniqueness" part of the Fundamental Theorem of Arithmetic?

Join by Web

Mathematical induction review

Background

- Mathematical induction: Good tool for proving results where recursion is involved (something is defined or computed by using smaller versions of itself)
- Example: n!, the factorial function. Define 0! = 1, and then define n! as n * (n-1)! for all n > 0.
- Recursive definitions always have a "base case" and then an "inductive step"
- So do proofs by induction.

Suppose we are proving: For all integers $n \geq 7, n! > 3^n$. We would begin the proof by

Demonstrating that $0! > 3^0$

Demonstrating that $1! > 3^1$

Demonstrating that $7! > 3^7$

Assuming that $k! > 3^k$ for all integers $k \geq 7$

Assuming that for some integer $n, k! > 3^k$ for all integers in the range $7 \le k \le n$

None of these

Suppose we are proving: For all integers $n \geq 7, n! > 3^n$. Once we've established the base case, we would then

Demonstrate that $8! > 3^8$

Prove that $k! > 3^k$ for all integers $k \geq 7$

Assume that $k! > 3^k$ for all integers $k \geq 7$

Assume that for some integer $n, k! > 3^k$ for all integers in the range $7 \le k \le n$

None of these

Suppose we are proving: For all integers $n\geq 7, n!>3^n$. Once we've assumed the inductive hypothesis $(k!>3^k$ for all integers in the range $7\leq k\leq n$ for some n), we then

None of these

Prove that $n! > 3^n$

Prove that $(n + 1)! > 3^{n+1}$

Assume that $(n + 1)! > 3^{n+1}$

What this looks like in practice

Base case: We can compute that 7! = 5040 and $3^7 = 2187$. So $7! > 3^7$.

Inductive hypothesis: Now fix a value of n and assume that $k! > 3^k$ for all $0 \le k \le n$.

We want to show that $(n+1)! > 3^{n+1}$.

$$(n+1)! = (n+1) \cdot (n!)$$
 $> (n+1) \cdot 3^n$
 $\geq (7+1) \cdot 3^n$
 $= 8 \cdot 3^n$
 $> 3 \cdot 3^n$
 $= 3^{n+1}$

Predicates

Predicate: Like a logical statement, but has a variable.

Predicates are functions from the natural numbers to {True, False}

Example: P(n) ="The integer n is prime". P(3) = True, P(6) = False.

Example: $P(n) = "n! > 3^n$ ". This returns False for n = 1, 2, 3, 4, 5, 6 and True otherwise.

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic. Every integer greater than 1 is either prime or a product of primes. Furthermore, this factorization is unique up to the order of the factors.

Has both existence and uniqueness parts.
Strategy of the existence proof: Prove it with induction because **factoring is recursive**.

```
factor(p) = p if p is prime
Otherwise if n = ab, factor(n) =
factor(a)*factor(b)
```

In groups: Work out the framework for the existence proof

The Fundamental Theorem of Arithmetic. Every integer greater than 1 is either prime or a product of primes. Furthermore, this factorization is unique up to the order of the factors.

Let P(n) = "n is either a prime or a product of primes".

- What is the base case here, and what do you need to do to prove it?
- What is the inductive hypothesis?
- What would you need to prove, once you assume the inductive hypothesis?

Euclid's Lemma. Let a and b be integers, and let p be prime. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Theorem 4.5. Let a, b, and c be integers. If $c \mid ab$ and gcd(c, a) = 1, then $c \mid b$.

Euclid's Lemma (Strong Form). Let a_1, a_2, \ldots, a_n be integers, and let p be prime. If $p \mid a_1 a_2 \cdots a_n$, then $p \mid a_i$ for some i with $1 \le i \le n$.

For uniqueness, first note that 2 is prime and therefore cannot be factored in any non-trivial way. Thus, 2 (like any prime) has a unique—and trivial—prime factorization. Now assume that, for some $n \geq 2$, every integer between 2 and n, inclusive, has a factorization into primes that is unique up to the order of the factors. Suppose also that for some primes $p_1, p_2, \ldots p_j$, and q_1, q_2, \ldots, q_k ,

$$\underline{\hspace{1cm}} = n + 1 = \underline{\hspace{1cm}}.$$

By Euclid's Lemma, $p_1 \mid q_i$ for some i with $1 \le i \le k$. Without loss of generality, assume that $p_1 \mid q_1$. Then $p_1 = q_1$, and so

$$p_2 p_3 \cdots p_j = q_2 q_3 \cdots q_k \le n.^{\odot} \tag{4.3}$$

The induction hypothesis then implies that j=k, and the factors on each side of equation (4.3) can be re-ordered and/or re-numbered so that $p_i=q_i$ for all i with $2 \le i \le j = k$. Thus, the factorization of n+1 into primes is unique up to the order of the factors, as desired.

Feedback:

http://gvsu.edu/s/1zN