

Sword 平台介绍

浙江大学 计算机学院 施青松

面向系统能力培养的软硬件实验贯通平台

◎面向系统能力培养目标

充分利用和掌握现代新颖理论和技术,提高学生对计算机系统整体深入理解和计算机系统解题能力,以嵌入式系统为综合实践舞台,提高学生根据应用需求来设计与实现计算机(嵌入式)系统应用的工程实践能力与创新能力,培养具有软硬协同能力的计算机系统研究、开发和应用型人才。引导有兴趣和潜力的同学进入计算机系统结构研究领域

○软硬件实验贯通平台特色

支持核心课程贯通教学。融合贯通计算机组成原理与设计、数 字逻辑设计、操作系统和编译技术等课程知识体系。

可操作贯通教学载体。支持简易计算机系统(SOC)设计与实现实验体系,核心课程贯通教学有了具体教学目标。

可操作可裁剪实验方法。自顶向下:分解计算机系统为IP核; 自底向上:设计计算机系统部件集成替换IP核。可裁剪以适合不同 层次的培养要求

个性化课程设计。DIY计算机系统,让学生在校期间递进式逐步设计实现简易但完整的计算机系统或SOC。

软硬协同的计算思维。体现同一问题不同课程不同教学思想和 思维方法。以图灵机为贯通教学主线,深入理解计算思维。

适应贯通教学的计算机系统(SOC)设计与实现实验体系

核心与辅助课程贯通教学关系图

贯通数字逻辑到嵌入式系统教学一体化实验平台Sword

面向系统能力的计算机课程贯通实验平台

浙江大学 计算机学院 系统结构与系统软件实验室

Sword平台人机交互设备及板级资源

Sword平台板级资源说明

	编号	功能区	编号	功能区	
	1	XC7K160T-1FFG676C	10	10M/100M/1000M以太网	
	2	电源输入及开关	11	12位色VGA	
	3	GPIO(包括按键、拨码开关、	12	HDMI输入(上)	
		LED和7段数码管)		HDMI输出(下)	
	4	SRAM静态存储器	13	FPGA配置(USB-JTAG)	
	5	DDR3 SDRAM动态存储器	14	Pmod™扩展□	
	6	NOR 型并行闪存	15	SFP+光模块接口	
	7	RS232	16	SATA接口	
	8	MicroSD卡槽	17	麦克风输入和单声道耳机接口	
	9	USB-OTG、USB-HID	18	SPI闪存(FPGA配置用)	
NOTIFICAL MATERIAL PROPERTY AND					

FPGA	XC7K70T	XC7K160T (SWORD)	XC7K325T
Logic Cells	65,600	162,240	326,080
BlockRAM (Kb)	4,860	11,700	16,020
DSP Slices	240	600	840
PCIe® Gen2 Blocks	1	1	1
GTX Transceivers (12.5 Gb/s Max Rate)	8	8	16
I/O Pins	300	400	500

淅沙人学系统结构与系统软件实验室

Sword平台: 从数字逻辑到嵌入式系统

浙江大学 计算机学院 系统结构与系统软件实验室

浙江大学数字逻辑实验与课程设计

Step By Step:自底向上开始带你走向**数字系统**世界

14 个基本实验 + 1 个课程设计

- Step By Step 递增实验模块
- 实验从简单到复杂
- □ 模块式增加
- 每个实验内容较少
- □ 最后形成一个整体
- □ 混合功能的计算器

知识学习

- 集成: 很多简单的模块可以组合 成复杂的系统
- 分解: 很复杂的系统可以分解成 简单的模块集合
- 完成硬件描述语言的练习

一 、基本实验

Exp01: 常用数字仪器使用(含基本元器件认识)

Exp02: 二极管与三极管开关电路

Exp03: 74LS 系列门电路芯片认识与测试

Exp04: EDA 工具与实验平台练习

二、设计实验

Exp05: 变量译码器设计与应用 -楼道灯手控实现 M6 Exp06: 多路选择器及其应用 -含测试通道 IP 核 M5 Exp07: 7段数码管显示译码器设计与应用

-含通用分频 IP 核辅助模块 M1

M8

Exp08: 全加器设计-含输入及去抖 IP 核辅助模块 M2、M4

Exp09:加减法器和 ALU 设计实现

Exp10: 锁存器与触发器设计与测试

Exp11: 同步时序电路设计与应用

M9、M4、M2 Exp12: 寄存器堆及寄存器传输设计 M12

Exp13: 计数器/定时器设计与应用-挂钟 M10 Exp14: 移位寄存器设计与应用 M11

三、选修实验(略)

实验辅助模块及数字系统及计算机功能电路模块

四、课程设计

1) 基本要求

- 实现有意义的时序状态机设计,可调用 M1~M6 模块。
- - 存储器读写访问: RAM、ROM(可以是 FPGA内,也可以是 FPGA外板上的);
 - 简单的人机交互 I/O 接口(Switch、Button、LED 和 7 段码)

2) 扩展要求

- VGA (640×480×3bit) 输出显示。
 - 可以用但不限于 VRAM(称为显示缓存,用于暂存要在 VGA 屏幕文字的 ASCII 码)、ROM(称为字符发生器, 用于存放 16×16 显示字符的点阵, 也可以自制 8×8)。
- ▶ 用 PS2 键盘输入交互

3) 课程设计参考案例(手指跳舞机)

不限于此但要有交互功能和简单实用意义,可与后续课程贯通,用程序实现同样的功能:

- □ 七段码显示来指示上下左右(可以是数字或图形);
- □ 按钮 Button 作为上、下、左、右输入反应;
- □ 判断显示和输入交互的正确性,并以交互响应速度设置级别(相当于游戏级别);每一级可允许出错3 次,游戏结束。如果输入正确进入下一级,加快响应速度或其他难度

浙江大学计算机组成实验与课程设计

Step By Step:从门电路开始带你进入计算机系统/SO

- □ 10 个核实现计算机最小系统/SOC
- □ SOC 工程方法: 分解与集成
- □ 系统模块

■ U1: CPU -SCPU INT

□ U2: ROM -ROM B

□ U3: RAM -RAM B

□ U4: 总线 -MIO BUS

□ U5: 七段显示接口

-Sword - 7seg Dev IO

□ U6: 外设1- 七段显示设备

-Sword_7seg_dev

■ U7: 外设 2-GPIO 接口及 LED

-Sword led Dev IO

□ U8: 辅助-通用分频模块-clk div

□ U9: 辅助-机械去抖模块

-Sword Anti jitter

□ U10: 通用计数器 -Counter_x

基本实验(CPU 设计辅助实验)

Lab1: 多路选择器与 CPU 辅助模块设计

数字逻辑实验输出基本模块扩展 Lab2: 七段显示部件(设备)扩展设计

数字逻辑实验输出功能模块扩展

Lab3: IP 核集成 SOC

● 建立 CPU 测试和应用环境,用 10 个 IP 核实现 SOC 硬件系 Lab4: IP 核集成设计 CPU

- 用数据通路和 Datapath 二个 IP 核集成替换 Lab3 的 CPU 相
- 优化数字逻辑输出模块 ALU、Register Files 等模块

二、课程大作业

Local Project1*: MIPS 汇编器设计

实现简单汇编,反汇编工具

Local Project2: 单周期 CPU 设计实现(IP 核集成替换)

- 顶层逻辑原理图设计,集成替换 Lab4 CPU IP 核
- 分四个阶段指导检查,对应四个小实验 Lab5-Lab8
- 数据通路、控制器、指令扩展和中断。

Local Project3: 多周期 CPU 设计实现

- 顶层设计不限定,集成替换 Lab4 CPU IP 核
- 分四个阶段指导检查,对应四个小实验 Lab9-Lab12
- 多周期 SOC 测试平台、数据通路、控制器、指令扩展

三、课程设计(Final Project): 基本 I/O(GPIO)设备设计实现

- CPU 最简单应用,足可应用于控制及相应的领域
 - 微控制器应用或单片机应用或简单 SOC 应用
- 只要再设计简单总线模块,就是你自己实现的 MIPS 单片机
- 只要再设计你用要的应用应用程序,就是你自己的 SOC
 - 用汇编设计有意义的应用程序直接运行
- 对应存储器、外设、I0接口与译码等知识模块
 - GPIO 设备 1: 七段显示部件(设备)
 - GPIO 设备 2: 16 位开关设备 GPIO 设备 4: 4×4 键盘陈列
 - GPIO 设备 3: 16 位 LED 指示器 GPIO 设备 5: 计数器设备, 类同 8253 计数器