Coursework 2

Joseph Mulray COMP1211 November 23, 2017

1 (a) How many bytes in total can be stored in the cache?

Block size is 32 bytes = 2^4 = 4 bits

Lines is 32 bytes = 2^4 = 4 bits

Cache size = $2^4 \times 2^4 = 2^8 = 256$ bytes

256 bytes

(b) Describe how the memory address is divided into tag, line number and byte number, giving the number of bits for each.

Block size is 32 bytes = 2^4 = 4 bits

Lines is 32 bytes = 2^4 = 4 bits

Main memory = $2Mbytes = 2^{21}$

Main memory can store 2^{21} bytes, so it requires a 21-bit address

Tag is 21 - (4 + 4) = 13 bits

Tag	Line	Word	
13 bits	4 bits	4 bits	

(c) Into which lines would bytes with each of the following addresses be stored

Line numbers:

- (a) 13
- (b) 3
- (c) 13
- (d) 10

(d) What other bytes are stored along with it in the same cache line?

0000110000011 0001 0000 through 0000110000011 0001 1111 are stored in that line.

2. Describe how a main memory address is divided into tag, set number and byte number, giving the number of bits for each.

Main memory is 4Mbytes = $2^2 \times 2^{22} = 2^{24}$

24bit memory address

Cache is 64Kbytes = $2^6 \times 2^{10} = 2^{16}$

Block Size is 16bytes = 2^4

Lines = $2^{16} / 2^4 = 2^{12}$

Block Set (K) = 2

Since the blockset is 2 we reduce the Lines by half by removing one bit from Lines and moving it into tag leaving 11 bits to identify the Set and 7 bits to identify the Tag.

Tag	Set	Word	
7 bits	11 bits	4 bits	

3. Show the resulting changes to the values held in registers (PC, AC and IR) and memory when a computation is started with a value of 100 in the PC, and the following values held in memory:

PC	IR	AC	520	521	522
100	4520	0120			
101	8522	0127			
102	6521			0127	