计算斐波那契数列 实验报告

吴佳龙 2018013418

摘要

本次实验结合理论分析和程序设计,运用了不同的方法求解斐波那契数列的第n项,具体地,这些方法为:暴力递归法、通项公式法、递推法、矩阵快速幂方法,并比较了他们的结果正确性和计算时间,实验结果与理论分析相符。

1 问题

比较计算斐波那契数列的各种方法。

说明:为了避免高精度整数对于计算时间的影响,本次实验中的结果统一使用unsigned long long 类型存储,即计算结果为斐波那契数列对于 $2^w = 2^{64}$ 自然溢出的结果。

2 实验环境

操作系统: Windows 10 IDE: Visual Studio 2017

处理器: 3.1 GHz 双核 Intel Core i5

3 算法分析

本次实验共实现五种算法,分别在以下 4 个小节中进行算法描述与分析。

3.1 暴力递归

函数原型 ull fibo_brute_recursive(int n);

算法描述 递归地调用

$$\label{eq:constraint} \begin{split} & \text{fibo_brute_recursive}(n-2) \ + \\ & \text{fibo_brute_recursive}(n-1) \end{split}$$

边界条件 n==0 和 n==1

时间复杂度分析 递归式

$$T(n) = T(n-1) + T(n-2)$$

的解为

$$T(n) = \Theta(Fib(n)) = \Theta((\frac{1+\sqrt{5}}{2})^n)$$

这是因为

$$c_1Fib(n-2) \le T(n-2) \le c_2Fib(n-2),$$

$$c_1Fib(n-1) \le T(n-1) \le c_2Fib(n-1)$$

$$\implies c_1Fib(n) \le T(n) \le c_2Fib(n)$$

空间复杂度分析 栈深度 $\Theta(n)$

3.2 通项公式

函数原型 ull fibo_formula(int n);

算法原理 斐波那契数列的通项公式为

$$Fib(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

当 n 足够大时,可忽略后一项,因此

$$Fib(n) = \text{round}(\frac{1}{\sqrt{5}}\phi^n), \forall n \ge 0, \phi = \frac{1+\sqrt{5}}{2}$$

算法描述 求 ϕ^n 可采用快速幂算法,具体地,有递归和非递归两种形式。

递归地,
$$\phi^n = (\phi^{\lfloor \frac{n}{2} \rfloor})^2$$
 或 $\phi^n = (\phi^{\lfloor \frac{n}{2} \rfloor})^2 \times \phi$ 。
非递归地,记 $n = \sum_{i=1}^w b_i 2^i$,有

$$\phi^n = \prod_{b_i = 1} \phi^{2^i}$$

 ϕ^{2^i} 可递推求得。

本次实验中, 实现了非递归的形式。

时间复杂度分析 递归地,

$$T(n) = T(n/2) + \Theta(1) \Rightarrow T(n) = \Theta(\lg n)$$

非递归地,

$$T(n) = \Theta(w) = \Theta(\lg n)$$

空间复杂度分析 Θ(1)

误差分析 浮点数存储存在误差,若 x_1, x_2 的两个近似值 x_1^*, x_2^* 的误差为 $\varepsilon(x_1^*), \varepsilon(x_2^*)$ 有

$$\varepsilon\left(x_{1}^{*}\cdot x_{2}^{*}\right)\approx\left|x_{1}^{*}\right|\cdot\varepsilon\left(x_{2}^{*}\right)+\left|x_{2}^{*}\right|\cdot\varepsilon\left(x_{1}^{*}\right)$$

在计算 ϕ^n 时,误差

$$E(n) \approx 2\phi^{\frac{n}{2}} E(\frac{n}{2})$$
$$\approx n\phi^{n} \varepsilon(\phi) \approx nFib(n)\varepsilon(\phi)$$

当误差积累到接近 1 时,该算法计算结果可能 出现错误。

3.3 递推

函数原型 ull fibo_brute_recursive(int n);

算法描述 从初始值出发,运用递推公式

$$Fib(n) = Fib(n-1) + Fib(n-2)$$

时间复杂度分析 为求 Fib(n) 共递推 n 次,

$$T(n) = \Theta(n)$$

空间复杂度分析 Θ(1)

3.4 矩阵快速幂

函数原型 ull fibo_mat_recursive(int n); ull fibo_mat_nonrecursive(int n);

算法原理

Theorem 1.

$$\left[\begin{array}{cc} F_{n+1} & F_n \\ F_n & F_{n-1} \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right]^n$$

算法描述 对斐波那契矩阵 $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ 应用快速幂算法。

在本次实验中,实现了递归和非递归的两种形式,试图比较他们的计算时间差异。

时间复杂度分析 与实数形式的快速幂算法类似,计算两个 2×2 矩阵的乘积的复杂度是 $\Theta(1)$ 的,因此递归和非递归版本都有

$$T(n) = \Theta(\lg n)$$

空间复杂度分析 $\Theta(1)$

4 结果分析

4.1 结果正确性

有符号 64 位整数的精确表示保证了暴力 递归法、递推法和矩阵快速幂方法的结果的正 确性。

对于通项公式法,调用不同大小的 n ,部分计算结果和误差见表 4.1。

Table 1: 通项公式法的实际误差

18516 1. 遗类五八仏的关阶庆左			
n	通项公式法结果	真实值	误差
75	2111485077978050	2111485077978050	0
76	3416454622906706	3416454622906707	1
77	5527939700884755	5527939700884757	2
78	8944394323791463	8944394323791464	1
79	14472334024676218	14472334024676221	3
80	23416728348467676	23416728348467685	9
81	37889062373143896	37889062373143906	10
82	61305790721611584	61305790721611591	7
83	99194853094755488	99194853094755497	9
84	160500643816367040	160500643816367088	48

结果分析 在本次实验的环境下,通项公式法在 n > 75 的情况下出现误差,这与双精度浮点数约有 15 或 16 位有效数字,以及误差分析中通项公式法的误差积累约为 $nFib(n)\varepsilon(\phi)$ 相符合。

4.2 计算时间

在不同尺度的输入 n 的情况下,测得不同算法的计算时间如图 1, 2, 3

Figure 1: $n \in [0,44]$, 不同算法计算时间(单位 us)

Figure 2: $n \in [0, 10^8]$,不同算法计算时间(单位 us)

Figure 3: $n \in [2^0, 2^{30}]$,不同算法计算时间(单位 us)

结果分析 从图 1 可以看到,暴力递归法的计 算时间呈指数级增长,符合上文对其时间复杂 辅助数组存储第一次调用 Fib(n) 时计算的值, 度的分析, 其余算法远远快于暴力递归法。

从图 2 可以看到, 递推法的计算时间呈线 性增长,符合其时间复杂度,矩阵快速幂方法 远远快于递推法。需要注意的是,此时 n 已经 远远超过通项公式法的误差能够承受的范围。

从图 3 可以看到,矩阵快速幂方法的计算 时间随着 n 指数增长时线性增长, 而递推法指 数增长,再次印证了时间复杂度的分析。但是 由于 $\lg n$ 仍然过小,递归调用对于计算时间的 影响仍不显著, 递归与非递归形式地矩阵快速 幂速度相当。

5 总结:不同方法的比较

暴力递归 复杂度是指数级,不能接受。

如果修改成记忆化的形式,即:通过一维 在之后调用相同的 n 的时候直接返回存储的 值,则可以把时间复杂度降到 $\Theta(n)$,但是空间 复杂度仍然劣于递推法。

通项公式法 能够快速地 $(T(n) = \Theta(\lg n))$ 求 出第 n 项的值, 但是由于浮点数误差的积累, 当 n 过大时, 计算结果不准确。

递推 相比通项公式法和快速幂法,如果设立 一个一维数组存储临时计算值,则在一次计算 之后能够得到 $0 \sim n$ 所有项的值。

矩阵快速幂 能够快速地 $(T(n) = \Theta(\lg n))$ 求 出第 n 项的值,且不会产生通项公式法中的误 差积累。在仅求一项的情况下是一种非常合适 的算法。