Protocolo IP

Álvaro González Sotillo

10 de diciembre de 2017

$\mathbf{\acute{I}ndice}$

1.	Protocolo IP	2
2.	Protocolo IP	2
3.	Direcciones IP	4
4.	Clases IP	5
5 .	CIDR	7
6.	Redes reservadas	9
7.	Referencias	9

1. Protocolo IP

2. Protocolo IP

- Internet Protocol (RFC 791)
- Es un protocolo de la capa 3 (red) del modelo OSI
- Entre sus funciones se encuentran:
 - Dividir paquetes grandes en paquetes más pequeños
 - Encontrar la ruta necesaria para enviar un paquete individual
 - Determinar si un paquete recibido es correcto

2.1. Estructura paquete IP

2.2. Longitud de la cabecera

- IP no tiene un tamaño de cabecera fijo
- Algunas opciones del protocolo añaden palabras de 32 bits
- Por eso se necesita saber dónde empiezan los datos en cada paquete

2.3. Código de redundancia

- El checksum se calcula como la suma (sin acarreo) de todas las palabras de 32 bits de la cabecera
 - Excepto el propio checksum
- Sirve para detectar errores de transmisión
- Es adicional al que pueda tener la capa de transporte

2.4. Identificación del paquete y fragment offset

- Todos los paquetes IP tienen un identificador único: identification y fragment offset
- Originalmente, un paquete se manda en un solo fragmento
 - \bullet Con fragment offset a 0
- Si se necesita dividir (MTU del nivel de enlace insuficiente)
 - Se parte en varios fragmentos
 - Cada uno de ellos indica el lugar de su primer byte de datos
- Cada fragmento puede volverse a dividir
- En el destino, se espera a que lleguen todos los fragmentos antes de enviarlo al protocolo de nivel superior

2.5. TTL (tiempo de vida)

- El enrutamiento IP puede tener problemas
 - Es posible que haya bucles en las rutas que hagan que un paquete de vueltas por siempre
- Para evitarlo, el paquete se descarta pasado un tiempo en segundos (originalmente)
 - Actualmente, el tiempo de vida se mide en saltos
- Generalmente, los paquetes se envían con TTL suficiente para atravesar Internet (64 o 255)
- Intenta hacer ping a Google con un TTL de 10. ¿es suficiente? ¿y con 20?

3. Directiones IP

- Una dirección IP consta de 32 bits
- Por convenio, se representa como 4 números decimales, uno por cada byte

192.168.1.1 1100000010101000000000100000001

3.1. Direcciones IP ¿qué identifican?

- Las direcciones no se asignan por host.
- Se asignan a interfaces del host
 - Un equipo con dos enlaces a la red tendrá dos direcciones IP
 - Los enlaces a la red pueden ser a la misma red o a redes distintas
- También un mismo interfaz puede tener más de una IP

3.2. Red y Host

- Las direcciones IP se asignan al montar la red, nocomo las MAC
 - Las direcciones MAC se asignan por el fabricante de la tarjeta, quedando distribuidas casi aleatoriamente
 - Las direcciones IP se estructuran de una forma jerárquica
- La dirección IP contiene dos partes

- Una parte identifica a la red
- Otra parte identifica al host/enlace dentro de la red

4. Clases IP

- En las primeras versiones de IP había unas normas fijas para definir qué parte de la dirección era host y qué parte red
- Los primeros bits de la dirección definen la clase a la que pertenece

4.1. Ejercicio de clases IP

- Ejemplo:
 - 192.168.1.1
 - En binario: 110000001010100000000000100000001
 - Clase C
- ¿De qué clases son las siguientes direcciones IP?
 - 192.168.20.1
 - 127.0.0.1
 - 169.254.12.9
 - 241.82.9.9
 - 216.239.59.147
 - 85.112.7.243
 - 199.16.156.198

4.2. Parte de red y host

- La clase define qué bits de la dirección son parte de la red y qué parte es del host
- Ejemplo: La clase C tiene 24 bits para la red y 8 para el host

4.3. Ejercicio de parte de red y host

- ¿Cuáles son las direcciones de red y de host de las siguientes direcciones IP?
 - 192.168.20.1
 - 127.0.0.1
 - 169.254.12.9
 - 241.82.9.9
 - 216.239.59.147
 - 85.112.7.243
 - 199.16.156.198

4.4. Dirección de red

- La red IP tiene una dirección propia
 - No puede ser utilizada por un host dentro de la red
 - La dirección de la red tiene la parte del host a ceros.

192.168.1.1 Red 192.168.1 Host 1 192.168.1.0

4.5. Dirección de host

- El host tiene una dirección propia dentro de la red
 - Con ceros en la parte de la red
 - No puede haber una red con todos sus bits a cero

192.168.1.1	Parte de red	Dirección de red	Host	Dirección de Host
	192.168.1	192.168.1.0	1	0.0.0.1

4.6. Resumen de direcciones de red y host

Bits de red	Bits de host	Significado
0	0	El propio host *
0	host	Host indicado dentro de mi red ^{**}
red	0	Dirección de la red
1	1	Difusión a mi red $*$
red	1	Difusión a la red indicada (broadcast)

* En desuso

4.7. ¿Para qué sirve la red y el host?

- Cuando un host va a enviar un paquete
 - Decide si el destino está en su misma red
 - Si está en su misma red, se encarga la capa de enlace (posiblemente con ARP)
 - Si no está en su red, envía el paquete al router
 - Y el router está en su misma red

4.8. Problemas de las clases IP

- En un principio, IP tenía suficientes direcciones y redes para todo el mundo
- La creciente demanda de direcciones IP supuso problemas
 - Ejemplo: Una empresa con 3000 hosts debe reservar una red de clase B, con más de 65000 direcciones (muchas direcciones desperdiciadas)
 - Si reserva más de una red de clase B (unas 12), hay que configurar muchas redes en los routers intermedios.
- Últimamente (desde 1985) las direcciones IP ya no se dividen en clases, utilizándose CIDR (Classless Internet Domain Routing)

5. CIDR.

- Classles Internet Domain Routing
- La dirección IP ya no da información acerca de los bits reservados para red y para host
- Las redes se identifican por la dirección de la red y el número de bits destinado a la misma
 - 172.16.0.0/12
 - 198.18.0.0/15

5.1. Máscara de red

- Con CIDR las parte de la dirección red y host se calcula mediante las máscaras de red
- La máscara de red es un número binario:
 - Tantos 1's como el tamaño de la red CIDR
 - \bullet Los 0's necesarios para completar hasta los 32 bits
- Las máscaras de red también se expresan como 4 números decimales separados por puntos.

5.2. Ejercicio

- ¿Qué máscaras de red tienen las siguientes redes?
 - 172.16.0.0/12
 - 198.18.0.0/15
 - 198.18.0.0/30
 - 192.168.255.0/24
 - 172.31.0.0/16

5.3. Dirección de red

- Con CIDR, la dirección de red sigue siendo la que tiene todos los bits del host a 0, y la de broadcast a 1.
- Sin embargo, ya no es tan fácil como con clases
 - Los bits de la red no son múltiplos de 8
- Se utiliza una máscara de red, realizando la operación AND con la dirección IP para encontrar la dirección de red
- Ejemplo
 - La dirección IP es 192.168.20.100/26
 - \bullet La máscara de red son 26 1's \rightarrow 255.255.255.192
 - La dirección pertenece a la red

```
255.255.255.192
AND 192.168.020.100
-----192.168.020.064
```

• La red a la que pertenece es 192.168.20.64/26

5.4. Subnetting y supernetting

- Utilizando máscaras de red pueden saltarse los límites de las clases IP
 - Una red grande puede dividirse en varias redes pequeñas (subnetting)
 - Varias redes pequeñas pueden reunirse en una red más grande (supernetting)

5.5. Subnetting

- Consiste en crear subredes pequeñas dentro de una red de clase A, B o C
- Ejemplo
 - Conseguir 4 redes a partir de una red clase C
 - Hay que aumentar la máscara de red 2 bits (4 posibilidades)

	Redes	Primer host	Último host	Broadcast
Red original	192.168.20.0/24	192.168.20.1	192.168.20.254	192.168.20.255
Primera subred	192.168.20.0/26	192.168.20.1	192.168.20.62	192.168.20.63
Segunda subred	192.168.20.64/26	192.168.20.65	192.168.20.126	192.168.20.127
Tercera subred	192.168.20.128/26	192.168.20.129	192.168.20.190	192.168.20.191
Cuarta subred	192.168.20.192/26	192.168.20.193	192.168.20.254	192.168.20.255

http://www.aprendaredes.com/cgi-bin/ipcalc/ipcalc_cgi

5.6. Supernetting

- A partir de varias redes pequeñas (generalmente clase C), conseguir una más grande
- Ejemplo
 - Conseguir una red con más de 1000 hosts a partir de redes clase C
- \blacksquare Tenemos las 32 redes 192.168.0.0 a la 192.168.31.0
- Reducimos la máscara en 5 bits \rightarrow 192.168.0.0/19

Red	Primer host	Último host	Broadcast	Máscara
192.168.0.0/19	192.168.0.1	192.168.31.254	192.168.31.255	255.255.255.224

6. Redes reservadas

■ IANA, por medio de RFC's, ha reservado varias redes para usos concretos. Algunos ejemplos son:

Red	Uso
127.0.0.0/8	"loopback", utilizado para enviar paquetes IP al propio host
10.0.0.0/8	Red privada (RFC 1918)
172.16.0.0/12	Red privada (RFC 1918)
192.168.0.0/16	Red privada (RFC 1918)
169.254.0.0/16	Link Local o APIPA. Direcciones automáticas en redes pequeñas sin servidor DHCP

6.1. CIDR: Redes reservadas

- En el estándar CIDR se reserva la primera y última red de cada partición
 - Por ejemplo, al dividir la red de clase C 192.168.20.0/24 en 4 redes (pasando a máscara /26), las redes 192.168.20.0/26 y 192.168.20.192/26 quedan reservadas
 - La mayoría de routers e implementaciones de IP pueden trabajar con ellas, pero es mejor no utilizarlas para no tener problemas con equipos antiguos.

7. Referencias

■ Formatos:

- Transparencias
- PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex