Badania Operacyjne

Zadanie 1. Firma usługowa ma zlecenia od klientów. Do obsługi każdego z klientów może wysłać jednego z pracowników Marka lub Andrzeja, przy czym różne są wydajności, koszty obsługi i dostępność tych pracowników (patrz poniższa tabela). Należy określić ile klientów powinien obsłużyć Marek a ile Andrzej, aby załatwić co najmniej 60 zleceń przy minimalnych łącznych kosztach i suma czasów obsługi wszystkich zleceń nie przekraczała 24 godzin.

	Wydajność	Koszt obsługi	Dostępność	
Pracownicy	[liczba klientów /godz.]	[zł/klient]	[godz.]	
Marek	4	500	13	
Andrzej	2	300	20	

- a) Sformułować model problemu w postaci zadania programowania liniowego (całkowitoliczbowego) . Określić co oznaczają poszczególne zmienne decyzyjne i ograniczenia.
- b) Znaleźć graficznie rozwiązanie optymalne i wyliczyć odpowiadającą mu wartość funkcji celu.

Zadanie 2. W sieci teleinformatycznej 6 węzłów: A, B, C, D, E, F jest połączonych następującymi łączami (w nawiasie koszt dzierżawy łącza): A-B (20), A-C(5), B-E(50), B-D(5), C-E(5), D-E(10), D-F(5), E-F(10). Należy wyznaczyć parę ścieżek łączących węzły A i F o najmniejszej sumie kosztów dzierżawy i rozłącznych krawędziowo. Do rozwiązania tego zadania należy zastosować model sieci przepływowych. W tym celu

- a) określić typ modelu,
- b) narysować stosowną sieć przepływową i określić wartości wszystkich parametrów tej sieci.

Zadanie 3. W sesji egzaminacyjnej student ma 7 dni na przygotowanie się do trzech przedmiotów: A, B i C. Na naukę każdego z przedmiotów może poświęcić 0, 1, 2 lub 3 dni. Spodziewane oceny (w punktach) w zależności od czasu przygotowań przedstawia poniższa tabela.

Czas przygotowań							
Przedmiot	0 dni	1 dzień	2 dni	3 dni			
\mathbf{A}	0 pkt.	1 pkt.	3 pkt.	4 pkt.			
В	1 pkt.	2 pkt.	5 pkt.	6 pkt.			
C	2 pkt.	5 pkt.	7 pkt.	10 pkt.			

Należy określić ile dni powinien się uczyć student do przedmiotów A, B i C, aby uzyskać z każdego przedmiotu co najmniej 3 punkty i suma punktów z wszystkich trzech przedmiotów była jak największa.

- (a) Rozwiązać zadanie metodą programowania dynamicznego. **Zdefiniować etapy i stany**, narysować graf przejść między stanami, określić optymalną trajektorię, **podać rozwiązanie i sumę punktów dla tego rozwiązania**.
- (b) Sformułować problem w postaci zadania programowania liniowego (całkowitoliczbowego)...

Zadanie 4. Przed dwoma identycznymi procesorami równoległymi jest 10 zadań do wykonania. Czasy wykonania zadań p_j są podane w poniższej tabeli. Każde zadanie może być wykonywane na dowolnym procesorze. Każdy z procesorów może obsługiwać w danej chwili tylko jedno zadanie. Należy:

- a) określić i narysować harmonogram wykonywania zadań, w którym suma czasów oczekiwania wszystkich zadań będzie najmniejsza,
- b) obliczyć i podać sumę czasów oczekiwania na obsługę wszystkich zadań dla tego harmonogramu.

	Zad. 1	Zad. 2	Zad. 3	Zad. 4	Zad 5.	Zad 6.	Zad. 7	Zad. 8	Zad. 9	Zad.10
p_j	5	11	9	1	13	6	4	10	15	8