# Komputerowe systemy rozpoznawania

2019/2020

Prowadzący: dr inż. Marcin Kacprowicz

poniedziałek, 12:00

| Data oddania: | Ocena: |
|---------------|--------|
|               |        |

Radosław Grela 216769 Jakub Wachała 216914

# Zadanie 1: ekstrakcja cech, miary podobieństwa, klasyfikacja

# 1. Cel

Celem naszego zadania było stworzenie aplikacji do klasyfikacji tekstów za pomocą metody k-NN (k najbliższych sąsiadów) oraz różnych metryk i miar podobieństwa, a następnie porównać kategorie z tymi wygenerowanymi przez aplikację.

# 2. Wprowadzenie

Głównym zagadnieniem projektowym, z którym mieliśmy do czynienia w ramach zadania 1 była klasyfikacja statystyczna tekstów na podstawie wektora wyekstrahowanych cech. Do przeprowadzenia eksperymentu zaimplementowaliśmy algorytm k-najbliższych sąsiadów.

Algorytm k-najbliższych sąsiadów (k-NN - k-nearest neighbors) to jeden z algorytmów zaliczanych do grupy algorytmów leniwych. Jest to taka grupa algorytmów, która szuka rozwiązania dopiero, gdy pojawia się wzorzec testujący. Przechowuje wzorce uczące, a dopiero później wyznacza się odległość wzorca testowego względem wzorców treningowych. [8]

Algorytm ten działa w taki sposób, że dla każdego wzorca testowego obliczana jest odległość za pomocą wybranej metryki względem wzorców treningowych, a następnie wybierana jest k najbliższych wzorców treningowych. Wynik wyznaczony jest jako najczęstszy element wśród nich. W naszym zadaniu odległość ta jest równa skali podobieństwa tekstów, a im ta odległość jest mniejsza, tym lepiej.

## 2.1. Ekstrakcja cech

Do ekstrakcji cech charakterystycznych tekstu utworzyliśmy wektor cech, który opisuje tekst za pomocą 11 cech. Liczba słów zawsze jest liczona po zastosowaniu stop-listy oraz stemizacji, bez znaków przestankowych.

•  $C_1$  - Stosunek słów kluczowych do wszystkich słów w pierwszych 10% tekstu. Obliczona jest za pomocą wzoru:

$$C_1 = s_{k10}/s_{10} \tag{1}$$

gdzie

 $s_{k10}$  - liczba słów kluczowych,

 $s_{10}$  - liczba wszystkich słów w pierwszych 10% tekstu.

Przed normalizacją cecha  $C_1$  zawierała się w wartościach  $\in [0,1]$ .

•  $C_2$  - Stosunek słów kluczowych do wszystkich słów w ostatnich 10% tekstu. Obliczona jest za pomocą wzoru:

$$C_2 = s_{k90}/s_{90} \tag{2}$$

gdzie

 $s_{k90}$  - liczba słów kluczowych,

 $s_{90}$  - liczba wszystkich słów w ostatnich 10% tekstu.

Przed normalizacją cecha  $C_2$  zawierała się w wartościach  $\in [0, 0.5]$ .

•  $C_3$  - Stosunek słów kluczowych do wszystkich słów w dokumencie. Obliczona jest za pomocą wzoru:

$$C_3 = s_k/s \tag{3}$$

gdzie

 $s_k$  - liczba słów kluczowych,

s - liczba wszystkich słów w dokumencie.

Przed normalizacją cecha  $C_3$  zawierała się w wartościach  $\in [0, 0.155]$ .

•  $C_4$  - Stosunek słów kluczowych, których ilość liter  $\in (0,4]$  do wszystkich słów w dokumencie. Obliczona jest za pomocą wzoru:

$$C_4 = s_k/s \tag{4}$$

gdzie

 $s_k$  - liczba słów kluczowych, których ilość liter  $\in (0,4]$ ,

s - liczba wszystkich słów w dokumencie.

Przed normalizacją cecha  $C_4$  zawierała się w wartościach  $\in [0, 0.075]$ .

•  $C_5$  - Stosunek słów kluczowych, których ilość liter jest  $\geq 8$  do wszystkich słów w dokumencie. Obliczona jest za pomocą wzoru:

$$C_5 = s_k/s \tag{5}$$

gdzie

 $s_k$  - liczba słów kluczowych,

s - liczba wszystkich słów w dokumencie.

Przed normalizacją cecha  $C_5$  zawierała się w wartościach  $\in [0, 0.1]$ .

•  $C_6$  - Stosunek linii do ilości akapitów. Obliczona jest za pomocą wzoru:

$$C_6 = l/a \tag{6}$$

gdzie

l - liczba linii,

a - liczba akapitów.

Przed normalizacją cecha  $C_6$  zawierała się w wartościach  $\in [1, 14]$ .

•  $C_7$  - Stosunek słów, których ilość liter jest większa niż 6 do wszystkich słów. Obliczona jest za pomocą wzoru:

$$C_7 = s_6/s \tag{7}$$

gdzie

 $s_6$  - liczba słów których ilość liter jest większa niż 6,

s - liczba wszystkich słów w dokumencie.

Przed normalizacją cecha  $C_7$  zawierała się w wartościach  $\in [0, 0.591]$ .

•  $C_8$  - Stosunek słów kluczowych, których ilość liter jest  $\leq 6$  do wszystkich słów w dokumencie. Obliczona jest za pomocą wzoru:

$$C_8 = s_{6m}/s \tag{8}$$

gdzie

 $s_{6m}$  - liczba słów kluczowych, których ilość liter jest  $\leq 6$ ,

s - liczba wszystkich słów w dokumencie.

Przed normalizacją cecha  $C_8$  zawierała się w wartościach  $\in [0.409, 1]$ .

•  $C_9$  - Ilość słów unikalnych. Jest to liczba słów, które wystąpiły w tekście co najmniej raz. Przykładowo, dla zdania "Być albo nie być" ilość słów unikalnych jest równa 3 (być, albo, nie).

Przed normalizacją cecha  $C_9$  przyjmuje wartości  $\in [1,420]$ .

- $C_{10}$  Ilość słów, których ilość liter  $\in [5,8]$ . Pseudokod obliczający wartość cechy  $C_{10}$ :
  - $-C_{10}=0$
  - Dla każdego słowa w artykule:
    - Jeżeli długość słowa>=5 i długość słowa <=8:
      - $-C_{10}++;$
  - Zwróć  $C_{10}$

Przed normalizacją cecha  $C_{10}$  zawierała się w wartościach  $\in [1, 574]$ .

 C<sub>11</sub> - Najczęściej występujące słowo kluczowe. Jest to cecha tekstowa, której podobieństwo z innym słowem mierzymy jedną z dwóch miar podobieństwa ciągów znaków opisanych w sekcji Metryki i miary podobieństwa.

#### 2.2. Wyznaczanie słów kluczowych

Wyznaczenie słów kluczowych przebiega w następujący sposób: na początek za pomocą klasy WordCounter zliczane są wszystkie słowa w artykułach oraz jednocześnie dodawane do odpowiednich list w tej klasie. Każda zmienna jest listą stringów o nazwie wordCountDictionary + nazwa kraju. Dodatkowo, przechowywany jest słownik typu  $\langle string, int \rangle$ , którego kluczem jest

słowo, a wartość to ilość wystąpień tego słowa we wszystkich artykułach. Po podliczeniu wszystkich słów oraz przydzieleniu do odpowiednich list wybieramy po 18 najpopularniejszych słów dla każdego kraju, które występują tylko w tym jednym konkretnym kraju. Na koniec 18\*6=108 słów zostaje słowami kluczowymi. Cały proces wyznaczania słów kluczowych jest dokonywany po zastosowaniu stop-listy oraz po stemizacji. Ponadto, proces wybierania słów kluczowych pomija 20% wszystkich podliczonych słów, aby proces dopasowywania słów kluczowych do krajów nie trwał zbyt długo.

# 2.3. Metryki i miary podobieństwa

Do liczenia odległości pomiędzy artykułami oraz obliczenia miary podobieństwa używaliśmy 3 metryk i 2 miar podobieństwa ciągów tekstowych.

1. Metryka Euklidesowa - aby obliczyć odległość  $d_e(x,y)$  między wektorami x i y należy obliczyć pierwiastek kwadratowy z sumy kwadratów różnic wartości współrzędnych wektora o tych samych indeksach. Wzór jest następujący [5]:

$$d_e(x,y) = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$$
(9)

gdzie  $x_i$  i  $y_i$  to cechy wektora.

2. Metryka uliczna - odległość  $d_m(x,y)$  jest równa sumie wartości bezwzględnych z różnic wartości współrzędnych wektora o tych samych indeksach [3]:

$$d_m(x,y) = \sum_{n=1}^{N} |x_n - y_n|$$
 (10)

gdzie  $x_i$  i  $y_i$  to cechy wektora.

3. Metryka Czebyszewa - odległość  $d_c(x, y)$  w tej metryce jest równa maksymalnej wartości bezwględnych różnic współrzędnych punktów x oraz y, zgodnie ze wzorem [4]:

$$d_c(x,y) = \max_i |x_i - y_i| \tag{11}$$

gdzie  $x_i$  i  $y_i$  to cechy wektora.

4. Miara n-gramów - metoda ta określa podobieństwo łańcuchów tekstowych  $s_1$ ,  $s_2$  w oparciu o ilość wspólnych podciągów n-elementowych, czyli n-gramów [2]:

$$sim_n(s_1, s_2) = \frac{1}{N - n + 1} \sum_{i=1}^{N - n + 1} h(i)$$
 (12)

gdzie

h(i)=1, jeśli n-elementowy podciąg zaczynający się od i-tej pozycji w  $s_1$  występuje co najmniej raz w  $s_2$ , w przeciwnym razie h(i)=0

N-n+1 - ilość możliwych n-elemenetowych podciągów w  $s_1$ .

W naszym programie n jest stałe i wynosi 3.

5. Uogólniona miara *n-gramów* (Miara Niewiadomskiego) - ta miara jest ulepszoną wersją miary n-gramów. Bada ona podobieństwo poprzez sprawdzenie podciągów różnej długości od jedno- do N-elementowych, gdzie N jest długością słowa [2]:

$$\mu_N(s_1, s_2) = \frac{2}{N^2 + N} \sum_{i=1}^{N(s_1)} \sum_{j=1}^{N(s_1)-i+1} h(i, j)$$
(13)

gdzie

h(i,j)=1, jeśli *i*-elementowy podciąg w słowie  $s_1$  zaczynający się od *j*-tej pozycji w słowie  $s_1$  pojawia się co najmniej raz w słowie  $s_2$ , w przeciwnym razie h(i,j)=0

 $N(s_1), N(s_2)$  – ilość liter w słowach  $s_1$  i  $s_2$ ;

 $N = max\{(s_1), N(s_2)\}$ 

 $\frac{N^2+N}{2}$  - ilość możliwych podciągów od 1-elementowych do N-elementowych w słowie o długości N.

Aby porównać wektory za pomocą metryk w algorytmie k-NN, najpierw wyznaczamy miarę podobieństwa z ostatniej, 11 cechy, która jest cechą tekstową. Wyznaczamy ją za pomocą jednej z dwóch miar. Ponieważ w tych miarach im bliżej 1, tym lepiej, odejmujemy tą liczbę od 1, a następnie używamy jej w metryce.

## 2.4. Miary jakości

W wynikach klasyfikacji używamy następujących miar jakości [9]:

• Accuracy:

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} \tag{14}$$

Precision

$$PPV = \frac{TP}{TP + FP} \tag{15}$$

Recall

$$TPR = \frac{TP}{TP + FN} \tag{16}$$

Oznaczenia użytych symboli:

TP - miara prawdziwie pozytywna (true positive)

TN - miara prawdziwie negatywna (true negative)

FP - miara fałszywie pozytywna (false positive)

FN - miara fałszywie negatywna (false negative)

# 3. Opis implementacji

Nasza aplikacja została utworzona w języku C# i jest to aplikacja konsolowa. Poniżej opisane zostały wszystkie klasy oraz dane zawarte w naszym projekcie:

— Klasa Program to klasa główna naszego programu. Jest swego rodzaju kontrolerem dla pozostałych klas. Znajduje się tutaj funkcja *main*, która rozpoczyna wykonywanie programu.

- W katalogu *dane* znajdują się wszystkie pliki z artyukłami, które są wykorzystywane do badań.
- Klasa Metric jest klasą abstrakcyjną. Odpowiada za obliczenia odległości tekstów. Po tej klasie dziedziczą klasy: EuclideanMetric, ChebyshewMetric oraz ManhattanMetric.
- Klasa Measure jest klasą abstrakcyjną. Po niej dziedziczą klasy *GeneralizedNGramsMeasure* i *NGramsMeasure*, które odpowiadają za obliczanie miar podobieństwa łańcuchów tekstowych.
- Klasa Feature jest klasą abstrakcyjną. Po niej dziedziczy 10 klas: Feature 1-10, które reprezentują każdą z 10 wyekstrahowanych przez nas cech.
- Klasa Stemmer to klasa, która odpowiada za stemizację tekstów. Została ona zapożyczona z [6]
- Klasa StopwordTool jest klasą odpowiedzialną za usuwanie słów znajdujących się na stopliście. Również została znaleziona i zapożyczona z Internetu ze strony [7]
- WordCounter jest używany do zliczania słów wszystkich artykułów i podania ich liczności. Potrzebny głównie do wyznaczenia słów kluczowych.
- Klasa KeyWords odpowiada za wyznaczenie 100 słów kluczowych. Metoda wyznaczania słów kluczowych została opisana w sekcji 2.
- Klasa FileReader odpowiada za otwieranie każdego pliku z artykułami
- FileParser to klasa odpowiedzialna za parsowanie danych z konkretnego pliku.
- Article to klasa reprezentująca artykuł. Zawiera takie cechy jak: tekst oryginalny, tekst przetworzony, place, classifiedPlace, wektor cech.
- Klasa Neighbor to klasa, która przechowuje artykuł oraz obliczoną wartość algorytmu k-NN dla konkretnego, obecnie sprawdzanego artykułu w algorytmie. Wykorzystujemy ją, aby znaleźć najbliższych k sąsiadów.
- KNN to klasa odpowiedzialna za algorytm k najbliższych sąsiadów. Na rysunku 1 przedstawiony został wynik z konsoli po przykładowym uruchomieniu programu, natomiast na rysunku 2 przedstawiony został diagram UML naszego programu.

```
Settings: k=2 , training=30%, test=70%, metric=EuclideanMetric

Place Precision Recall

usa 80,892 81,183

canada 8,921 11,524

france 0,621 0,595

japan 7,925 5,949

west-germany 9,459 5,578

uk 12,559 12,841

Accuracy: 66,415
```

Rysunek 1. Wynik z przykładowego uruchomienia programu.



Rysunek 2. Diagram UML.

# 4. Materially i metody

Wykonana przez nas klasyfikacja została wykonana za pomocą wszystkich trzech metryk oraz dwóch miar podobieństwa. Każdy przypadek testowy był klasyfikowany dla dziesięciu różnych wartości k najbliższych sąsiadów: 2, 3, 4, 5, 7, 10, 13, 15, 20, 25.

Klasyfikacji dokonywaliśmy tylko na tych tekstach, które miały jedną z etykiet: west-germany, usa, france, uk, canada, japan i były to ich jedyne etykiety.

Dokonaliśmy pięciu różnych podziałów na dane testowe oraz treningowe:

- -30% dane treningowe, 70% dane testowe
- 50% dane treningowe, 50% dane testowe
- 70% dane treningowe, 30% dane testowe
- 80% dane treningowe, 20% dane testowe
- 85% dane treningowe, 15% dane testowe

Poniżej zostały opisane 4 wykonane przez nas eksperymenty.

## 4.1. Badanie zależności Accuracy od parametru k

W tym eksperymencie badaliśmy wpływ doboru parametru k na Accuracy. Program został uruchomiony dla 10 różnych wartości  $k \in \{2, 3, 4, 5, 7, 10, 13, 15, 20, 25\}$ .

Klasyfikacja tekstów została wykonana dla stałej wartości podziału zbioru cech na testowe i treningowe. Był to podział 50% dane treningowe, 50% dane testowe.

Metryką, jakiej użyliśmy była metryka euklidesowa.

# 4.2. Badanie wyników klasyfikacji w zależności od wartości proporcji podziału zbioru

W tym eksperymencie badaliśmy wpływ wartości proporcji podziału zbioru na Accuracy. Program został uruchomiony dla k=10.

Badane podziały były następujące:

- 30% dane treningowe, 70% dane testowe
- -50% dane treningowe, 50% dane testowe
- 70% dane treningowe, 30% dane testowe
- 80% dane treningowe, 20% dane testowe
- 85% dane treningowe, 15% dane testowe

Metryką, jakiej użyliśmy była metryka uliczna.

#### 4.3. Badanie zależności Accuracy od wyboru metryki

W tym eksperymencie badaliśmy zależność Accuracy od wyboru metryki. Program został uruchomiony dla k=13. Podział na dane treningowe i testowe był stały i wynosił 70% treningowe i 30% testowe.

#### 4.4. Badanie zależności Accuracy od wyboru podzbioru cech

W tym eksperymencie badaliśmy zależność Accuracy od wyboru podzbioru cech. Program został uruchomiony dla k=20. Metryka, jakiej użyliśmy to

metryka Czebyszewa. Podział na dane treningowe i testowe był stały i wynosił 50% treningowe i 50% testowe. Podzbiory cech jakie badaliśmy były następujące:

- Wszystkie cechy
- $-C_1, C_2, C_3, C_4, C_5, C_{11}$
- $-C_6, C_7, C_8, C_9, C_{10}$
- $-C_1, C_2, C_3, C_8, C_9, C_{10}$
- $-C_4, C_5, C_6, C_7, C_{11}$

# 5. Wyniki

# 5.1. Badanie wyników klasyfikacji w zależności od parametru k

| Parametr k | Accuracy [%] |
|------------|--------------|
| 2          | 67,705       |
| 3          | 73,921       |
| 4          | 74,900       |
| 5          | 76,799       |
| 7          | $78,\!312$   |
| 10         | 79,024       |
| 13         | $79,\!365$   |
| 15         | $79,\!410$   |
| 20         | $79,\!632$   |
| 25         | 79,795       |

Tabela 1. Zależność Accuracy od wartości k.



Rysunek 3. Wykres przedstawiający zależność Accuracy od wartości k (dane treningowe/testowe 50%/50%, Metryka euklidesowa).

# 5.2. Badanie wyników klasyfikacji w zależności od podziału na dane treningowe i testowe

| Dane treningowe/testowe | Accuracy [%] |
|-------------------------|--------------|
| 30/70                   | 78,325       |
| 50/50                   | 78,979       |
| 70/30                   | 81,409       |
| 80/20                   | 82,911       |
| 85/15                   | $83,\!667$   |

Tabela 2. Zależność Accuracy od pięciu wartości proporcji podziału zbioru dla k=10, metryka uliczna.



Rysunek 4. Wykres przedstawiający zależność Accuracy od pięciu wartości proporcji podziału zbioru, k=10, metryka uliczna.

# 5.3. Badanie zależności Accuracy od wyboru metryki

| Metryka        | Accuracy [%] |
|----------------|--------------|
| euklidesowa    | 81,409       |
| Czebyszewa     | $81,\!335$   |
| ${ m uliczna}$ | 81,384       |

Tabela 3. Zależność Accuracy od wyboru metryki dla k=13 i podziału 70/30.



Rysunek 5. Wykres przedstawiający zależność Accuracy od wyboru metryki dla k=13 i podziału 70/30.

# 5.4. Badanie różnic w wyborze podzbioru cech

| Podzbiór cech                     | Accuracy [%] |
|-----------------------------------|--------------|
| Wszystkie cechy                   | 79,573       |
| $C_1, C_2, C_3, C_4, C_5, C_{11}$ | 79,81        |
| $C_6, C_7, C_8, C_9, C_{10}$      | 79,558       |
| $C_1, C_2, C_3, C_8, C_9, C_{10}$ | $79,\!662$   |
| $C_4, C_5, C_6, C_7, C_{11}$      | 79,78        |

Tabela 4. Zależność Accuracy od wyboru podzbioru cech dla k=20, podziału 50/50i metryki Czebyszewa.



Rysunek 6. Wykres przedstawiający zależność Accuracy od wyboru podzbioru cech, k=20, podział 50/50, metryka Czebyszewa.

# 6. Dyskusja

#### 6.1. Wyniki klasyfikacji w zależności od parametru k

Dobór odpowiedniej wartości parametru k ma duży wpływ na wynik klasyfikacji. Im większa wartość k, tym większa skuteczność klasyfikacji. Można to zauważyć na rysunku 3, jak i również tabeli 1. Największy skok widać między k=2 a k=3. Natomiast przy wartościach wyższych niż 10 różnica jest bardzo niewielka. Najlepsze wyniki klasyfikacji były osiągane, gdy k=25 - ok. 80%, natomiast najgorsze, gdy k=2 - ok. 68%.

# 6.2. Wyniki klasyfikacji w zależności od podziału na dane treningowe i testowe

W przypadku podziału na dane testowe i treningowe, dla większej ilości danych treningowych algorytm był w stanie lepiej zaklasyfikować teksty i skuteczność klasyfikacji była wyższa. Dla badanych przez nas podziałów największą skuteczność osiągnął podział 85% dane treningowe i 15% dane testowe. Najgorsza jakość klasyfikacji została osiągnięta dla podziału 30% treningowe / 70% testowe.

Analizując rysunek 4 oraz tabelę 2 największy skok wystąpił między podziałami 50/50 a 70/30. W przypadku tego drugiego podziału algorytm był w stanie się lepiej nauczyć.

## 6.3. Zależność Accuracy od wyboru metryki

Wybór metryki w przypadku klasyfikowania artykułów wg kategorii places miał bardzo mały wpływ na wyniki klasyfikacji. Widać to na rysunku 5, a najlepiej w tabeli 3. Pomiędzy najlepszym wynikiem dla metryki euklidesowej, a najgorszym dla metryki Czebyszewa różnica była mniejsza niż 0.1 p.p. Możemy więc powiedzieć, że w przypadku algorytmu k-NN wybór metryki ma minimalny wpływ na wyniki klasyfikacji, jednak najlepszą metryką jest metryka euklidesowa.

#### 6.4. Różnice w wyborze podzbioru cech

Jak można zauważyć na rysunku 6 oraz tabeli 4, najlepszą wartość klasyfikacji (79.81%) osiągnął podzbiór składający się z cech:  $C_1, C_2, C_3, C_4, C_5, C_{11}$ . Są to cechy zależne od słów kluczowych. Natomiast cechy niezależące od słów kluczowych, tj.  $C_6, C_7, C_8, C_9, C_{10}$  osiągnęły wynik najgorszy (79.558%). Dla wszystkich cech ten wynik był podobny do wyniku dla cech 6-10. Różnice w skuteczności są niewielkie, lecz zauważalne.

## 7. Wnioski

- Liczba k sąsiadów ma spory wpływ na skuteczność klasyfikacji. Jednakże, zmiana metryki, bądź podziału na dane testowe i treningowe również ma wpływ na wynik klasyfikacji.
- Również istotny jest podział artykułów na dane testowe i treningowe.
- W przypadku zbyt małej ilości danych treningowych wystąpi zjawisko niedouczenia.
- W przypadku zbyt dużej ilości danych treningowych wystąpi zjawisko przeuczenia.
- Wybór metryki ma minimalny, bliski zeru wpływ na wyniki klasyfikacji.
- Najlepszymi cechami do klasyfikacji tekstów będą te cechy, które zależą od słów kluczowych, ale tylko wtedy, gdy te zostaną wybrane równomiernie dla każdej kategorii.

# Literatura

- [1] Niewiadomski, Adam. Methods for the Linguistic Summarization of Data: Applications of Fuzzy Sets and Their Extensions. Akademicka Oficyna Wydawnicza EXIT. Warszawa, 2008. ISBN 978-83-60434-40-6
- [2] https://ftims.edu.p.lodz.pl/pluginfile.php/132368/mod\_folder/content/0/ksr-wyklad-2009.pdf?forcedownload=1 [dostęp 22.03.2020]
- [3] https://en.wikipedia.org/wiki/Taxicab geometry [dostep 01.04.2020]
- [4] https://en.wikipedia.org/wiki/Chebyshev distance [dostęp 01.04.2020]
- [5] https://en.wikipedia.org/wiki/Euclidean distance [dostep 01.04.2020]
- [6] https://tartarus.org/martin/PorterStemmer/csharp.txt [dostep 22.03.2020]
- [7] https://www.dotnetperls.com/stopword-dictionary [dostep 22.03.2020]
- [8] http://home.agh.edu.pl/ horzyk/lectures/miw/KNN.pdf [dostęp 22.03.2020]
- [9] https://pl.wikipedia.org/wiki/Tablica pomy%C5%82ek [dostep 01.04.2020]