Group Art Unit: 1646

Examiner: Unassigned

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of:

Nicholas HUNT

Serial No.: 09/750,185

Filed: December 29, 2000

VIRUS LIKE PARTICLES, THEIR PREPARATION AND THEIR USE

PREFERABLY IN PHARMACEUTICAL SCREENING AND FUNCTIONAL

GENOMICS

PRELIMINARY AMENDMENT

Assistant Commissioner of Patents Washington, D.C. 20231

Sir:

For:

Prior to initial examination, please amend the above-identified patent application as follows:

IN THE SPECIFICATION

Replace the first paragraph of the application with the following text:

--This is a continuation in part of ser. no. 09/673,257, filed 25 October 2000, which is a 371 of PCT/EP00/06144, filed 26 June 2000, which is a 365 of ser. no. 60/191,318, filed June 30, 1999, the disclosures of said ser. no. 09/673,257 and said PCT/EP00/06144 being incorporated herein by reference. –

IN THE ABSTRACT

Please substitute the enclosed Abstract with the Abstract filed with the application.

IN THE CLAIMS

Please cancel claims 1-118 without prejudice or disclaimer.

Please add new claims as follows:

--119. A method to selectively incorporate or encapsulate proteinaceous target molecules into virus like particles (VLPs) by:

co-expressing in cells

- (i) said target molecules comprising a first amino acid sequence and a second amino acid sequence and
- (ii) signal molecules comprising a first amino acid sequence and a second amino acid sequence, the latter of which confers on the signal molecules the ability to assemble into virus like particles and preferably to be released into an extracellular environment,

wherein said first amino acid sequences of said signal molecules functionally operate in a non-covalent manner with said first amino acid sequences of said target molecules so as to incorporate or encapsulate said target molecules into said virus like particles.

- 120. The method according to claim 119, wherein said first amino acid sequences of said signal molecules functionally operate with said first amino acid sequences of said target molecules by non-covalent physical forces selected from the group consisting of van der Waals forces, electrostatic forces, stacking interactions, hydrogen bonding and steric fit.
- 121. The method according to claim 119, wherein said signal molecules interact with said target molecules by non-covalent physical forces having a binding constant of $K_{ass} \ge 10^{-6}$ M.

122. The method according to claim 119, wherein said virus like particles are released from said cell by exocytosis, lysis or budding through an appropriate cellular membrane.

123. The method according to claim 122, wherein budding is through the plasma membrane, the endoplasmatic reticulum, Golgi or nuclear membranes.

124. The method according to claim 119, wherein said second amino acid sequence of said target molecules is heterologous to the virus like particle.

125. The method according to claim 124, wherein said second amino acid sequence of said target molecule is chosen from the group consisting of receptors, ion channels, enzymes, adhesion molecules, components of membrane pores, and fragments or derivatives thereof.

126. The method according to claim 125, wherein said receptor is a transmembrane receptor, in particular a G-protein coupled receptor, which is incorporated into an envelope of virus like particles by a budding process.

127. The method according to claim 125, wherein said receptor is a cytosolic or nuclear receptor which is incorporated into or encapsulated by a protein capsid of a naked or enveloped virus like particle.

128. The method according to claim 124, wherein said second amino acid sequence of said target molecule is a luminescent peptide or protein.

129. The method according to claim 119, wherein said second amino acid sequence of said signal molecule comprises at least a fragment of a virus capsid protein, or a

Attorney Docket No.: P66036US1

precursor of a virus capsid protein, or a fragment of a virus envelope protein, or a

precursor of a virus envelope protein.

130. The method according to claim 119, wherein said second amino acid of said signal

molecule comprises at least a fragment of a capsid protein of a virus like particle, or a

precursor of said capsid protein, or a fragment of an envelope protein of a virus like

particle, or a precursor of said envelope protein.

131. The method according to claim 129, wherein said capsid or envelope protein is

derived from capsids or envelopes of virus families selected from the group consisting of

retroviruses, picornaviruses, reoviruses, polyomaviruses, papillomaviruses, parvoviruses,

nodaviruses, coronaviruses, herpesviruses, hepadnaviruses, baculoviruses and

bacteriophages.

132. The method according to claim 131, wherein said second amino acid sequence of

said signal molecule is a structural protein encoded by the gag-gene of retroviruses.

133. The method according to claim 124, wherein said second amino acid sequence of

said signal molecule is encoded by at least a fragment of a retrotransposon, in particular a

Ty element in yeast, a copia element in insects, a copia-like element in insects, VL 30 in

mice, or an IAP gene in mice.

134. A virus like particle obtainable by the method according to claim 119.

135. A reagent kit comprising a virus like particle with incorporated or encapsulated

target molecules according to claim 119.

-4-

136. A medicament or a precursor thereof comprising a virus like particle with

incorporated or encapsulated target molecules according to claim 119.

137. The medicament or a precursor thereof according to claim 136, further comprising

molecules integrated into or attached to the capsid of a naked virus like particle or the

membrane of an enveloped virus like particle, said molecules having the function to

direct said medicament or said precursor thereof to its area of influence.

138. Use of a virus like particle obtainable by the method according to claim 119, for

preparation of a medicament or a precursor thereof for treating or preventing genetic

diseases, tumour diseases, autoimmune or infectious diseases.

139. Use of virus like particles obtainable by the method according to claim 119, in

identification and characterisation of interactions between target molecules incorporated

into distinct populations of virus like particles.

140. Use of virus like particles obtainable by the method according to claim 119, in

identification and characterisation of interactions between target molecules and further

molecules of interest, in particular molecules bound to the surface of cells or beads, or

molecules soluble in aqueous medium, in particular molecules of intracellular functional

location.

141. Use of virus like particles obtainable by the method according to claim 119, in

identification of potentially pharmaceutically active substances.

142. Use of virus like particles obtainable by the method according to 119, in

identification of analytes in diagnostic applications.

-5-

143. A method for identifying compounds that modulate cell surface protein-mediated activity by detecting intracellular transduction of a signal generated upon interaction of the compound with the cell surface protein, comprising:

- comparing the amount of reporter gene product expressed in a first recombinant cell in the presence of the compound with the amount of product in the absence of the compound, or with the amount of product in a second recombinant cell; wherein
- the first recombinant cell contains a reporter gene construct and expresses the cell surface protein;
- the second recombinant cell is identical to the first recombinant cell, except that it
 does not express the cell surface protein or expresses the cell surface protein at a
 predefined level; and
- the reporter gene construct contains:
 - (a) a transcriptional control element that is responsive to the intracellular signal generated by the interaction of an agonist with the cell surface protein;
 - (b) a reporter gene that encodes a translational signal molecule and is in operative association with the transcriptional control element; wherein
- the translational signal molecules are able to assemble into virus like particles which are preferably released into an extracellular environment.
- 144. The method according to claim 143, further comprising, selecting compounds that change the amount of reporter gene product expressed in the first recombinant cell in the presence of the compound compared to the amount of product in the absence of the compound, or compared to the amount of product in the second recombinant cell.
- 145. The method according to claim 143, wherein the cell surface protein is a cell surface receptor, an adhesion molecule, a membrane pore, or an ion channel.

Attorney Docket No.: P66036US1

146. The method according to claim 143, wherein said detectable translational signal

molecule further comprises a luminescent polypeptide, in particular green fluorescent

protein or mutants thereof, or further comprises an entity which acts as a tag for

subsequent labelling with a detectable reagent, or further comprises an enzyme.

147. The method according to claim 143, wherein said compound is an agonist of said

cell surface protein.

148. The method according to claim 143, wherein said compound is an antagonist of said

cell surface protein.

149. The method according to claim 148, further comprising prior to or simultaneously

with comparing the difference in the amount of a reporter gene product, contacting the

recombinant cell with an agonist that activates said cell surface protein, whereby said

translational signal molecule is expressed.

150. The method according to claim 143, wherein the transcriptional control region

includes at least one regulatory element selected from the group consisting of serum

responsive elements, cyclic adenosine monophosphate responsive elements, and elements

responsive to intracellular calcium ion levels.

151. The method according to claim 143, wherein said method is a homogeneous assay,

in particular a homogeneous high throughput assay for screening a plurality of

compounds.

152. The method according to claim 143, wherein said virus like particles are detected

through use of microscopy or spectroscopy, in particular confocal microscopy or

spectroscopy.

-7-

153. The method according to claim 143, wherein said virus like particles are released

from said cell by exocytosis, lysis or budding through an appropriate cell membrane.

154. The method according to 143, wherein said translational signal molecule comprises

at least a fragment of a virus capsid or envelope protein, or a precursor of a virus capsid

or envelope protein.

155. The method according to claim 143, wherein said translational signal molecule

comprises at least a fragment of a capsid or envelope protein of a virus like particle, or a

precursor of said capsid or envelope protein.

156. The method according to claim 156, wherein said capsid or envelope protein is

derived from capsids or envelopes of virus families selected from the group consisting of

retroviruses, picornaviruses, reoviruses, polyomaviruses, papillomaviruses, parvoviruses,

herpesviruses, nodaviruses, coronaviruses. hepadnaviruses, baculoviruses

bacteriophages.

157. The method according to claim 143, wherein said translational signal molecule is

encoded by at least a fragment of a retrotransposon, in particular a Ty element in yeast, a

copia element in insects, a copia-like element in insects, VL30 in mice, or an IAP gene in

mice.

158. A recombinant cell comprising:

D N A that encodes a cell surface protein whose activity is modulatable by

extracellular signals; and

-8-

- a reporter gene construct containing a reporter gene in operative linkage with one or more transcriptional control element that is regulated by said cell surface protein, wherein:

- said reporter gene encodes a translational signal molecule, and

- said translational signal molecules are able of assembling into virus like particles which are preferably released into an extracellular environment.

159. The cell according to claim 158, wherein the transcriptional control element includes at least one regulatory element selected from the group consisting of serum responsive elements, cyclic adenosine monophosphate responsive elements, and elements responsive to intracellular calcium ion levels.

160. The cell according to claim 158, wherein said translational signal molecule further comprises a luminescent polypeptide, in particular green fluorescent protein or mutants thereof, or further comprises an entity which acts as a tag for subsequent labelling with a detectable reagent, or further comprises an enzyme.

161. The cell according to 158, wherein said cell surface protein is a cell surface receptor, an adhesion molecule, a membrane pore, or an ion channel.

162. An assay for screening a plurality of compounds to determine the degree of inhibition or stimulation of a ligand/binding domain interaction or of an enzyme catalysed reaction by said compounds, or to determine the degree of binding of said compounds to a target molecule, or to determine the capability of said compounds to enter into a virus like particle, said assay comprising:

(a) a step selected from the group consisting of

(1) contacting said compounds to be tested with said ligand and said binding domain;

- (2) contacting said compounds to be tested with said enzyme and substrate for said enzyme;
- (3) contacting said compounds to be tested with said target molecule; and
- (4) contacting said compounds with a virus like particle;

wherein said binding domain, or enzyme, or target molecule is incorporated into or encapsulated by virus like particles, and

wherein inhibition, stimulation or binding by or entrance of one or more of said compounds causes a change in the amount of an optically detectable label bound to or encapsulated by said virus like particles present in said assay and/or causes a change in a further property of said virus like particles;

(a) determining said degree of inhibition, stimulation, binding or entrance by:

measuring through use of optical methodologies amounts of said optically detectable label bound to or encapsulated by individual virus like particles and/or measuring the further property of said virus like particles;

comparing said amounts of said optically detectable label bound to or encapsulated by individual virus like particles with an amount of back-ground signal in said assay caused by label that is not bound to or encapsulated by said virus like particles and/or comparing said property of said virus like particle under study with the property of a reference virus like particle;

and determining said degree of inhibition, stimulation, binding or entrance from the difference between said bound/encapsulated and background signal and/or from the difference between said property of the virus like particle under study and the property of a reference virus like particle.

163. The assay according to claim 162, wherein said optical methodology comprises methods of confocal microscopy or spectroscopy.

164. The assay according to claim 162, wherein said optically detectable label is a

fluorescent ligand, or fluorescent substrate, or fluorescent product of an enzymatic

reaction and said optical methodology comprises fluorescent techniques, in particular

fluorescence correlation spectroscopy, fluorescence cross-correlation spectroscopy,

fluorescence intensity distribution analysis, fluorescence lifetime measurements,

fluorescence anisotropy measurements, fluorescence resonance energy transfer, or

combinations thereof.

165. The assay according to claim 162, wherein a further property of said virus like

particles is determined by electrical methodologies.

166. The assay according to claim 165, wherein said electrical methodology comprises

impedance or dielectrophoresis measurements.

167. The assay according to claim 162, wherein said binding domain, or enzyme, or

target molecule is incorporated into or encapsulated by said virus like particles through

fusion to constituents of said virus like particle, in particular through fusion to capsid or

envelope constituents.

168. The assay according to claim 162, wherein said binding domain, or enzyme, or

target molecule is incorporated into or encapsulated by said virus like particles through

non-covalent physical forces between constituents of said virus like particles and said

binding domain, enzyme or target molecule.

169. The assay according to claim 162, wherein said assay is a homogeneous high

throughput assay.

170. An assay for screening a plurality of compounds to determine the degree of inhibition or stimulation of an interaction between at least two target molecules, said assay comprising:

- (a) adding a liquid suspension of first target molecules incorporated into first virus like particles and a liquid suspension of second target molecules incorporated into second virus like particles to a plurality of containers;
- (b) adding a plurality of compounds to be screened for said inhibition or stimulation individually or in combination to said plurality of containers;
- (c) incubating said target molecules incorporated into said virus like particles and said compounds;
- (d) measuring at least one property of said virus like particles; and
- (e) determining the degree of inhibition or stimulation of said interaction between said target molecules by one or more of said compounds.
- 171. The assay according to claim 170, wherein said target molecules are incorporated into said virus like particles through fusion to capsid or envelope constituents of said virus like particles or through non-covalent physical forces between said constituents and said target molecules.
- 172. The assay according to claim 170, wherein an optically determinable property of said virus like particles is measured, preferably by methods of confocal microscopy or spectroscopy.
- 173. The assay according to claim 172, wherein said optically determinable property is measured by use of fluorescent techniques, in particular fluorescence correlation spectroscopy, fluorescence cross-correlation spectroscopy, fluorescence intensity distribution analysis, fluorescence lifetime measurements, fluorescence anisotropy measurements, fluorescence resonance energy transfer, or combinations thereof.

174. The assay according to claim 170, wherein said optically determinable property is measured by light scattering techniques.

175. The assay according to claim 170, wherein at least one further property of said virus like particles is determined, preferably by impedance or dielectrophoresis measurements.

176. The assay according to claim 170, wherein said assay is a homogeneous high throughput assay.

177. An assay for determining intracellular protein-protein interactions, said assay comprising:

- (a) co-expressing in recombinant cells
 - (i) target molecules comprising a first amino acid sequence and a second amino acid sequence, the latter of which is a preferably luminescent reporter, and
 - (ii) signal molecules comprising a first amino acid sequence and a second amino acid sequence, the latter of which confers on the signal molecules the ability to assemble into virus like particles and preferably to be released into an extracellular environment,
- (a) measuring the presence or absence of said preferably luminescent reporter within said virus like particles; and thereby
- (b) determining the degree of protein-protein interaction between the first amino acid sequence of a target molecule and the first amino acid sequence of a signal molecule.

178. The assay according to claim 177, further comprising contacting said recombinant cells with compounds to be screened for their capability to interfere with said protein-protein interaction.

Attorney Docket No.: P66036US1

179. The assay according to claim 178, wherein the compounds to be screened are selected from the group consisting of cDNA expression libraries, genomic D N A

fragments, mRNAs, peptides, proteins and low molecular weight substances.

180. The assay according to claim 177, wherein said assay is homogeneous, preferably a

homogeneous high throughput assay.

181. The assay according to claim 177, wherein the presence or absence of said

preferably luminescent reporter within said virus like particles is measured by

microscopy or spectroscopy, in particular confocal microscopy or spectroscopy.

182. The assay according to claim 177, wherein the presence or absence of said

luminescent reporter within said virus like particles is measured by use of fluorescent

techniques, in particular fluorescence correlation spectroscopy, fluorescence cross

correlation spectroscopy, fluorescence intensity distribution analysis, fluorescence

lifetime measurements, fluorescence anisotropy measurements, fluorescence resonance

energy transfer, or combinations thereof.

183. An assay for identifying nucleic acid sequences which encode intracellular transport

polypeptides or membrane associated translocation polypeptides, said assay comprising:

(a) providing a recombinant cell which comprises a nucleic acid that encodes a fusion

protein comprising a first amino acid sequence and a second amino acid sequence,

wherein said first amino acid sequence confers on the fusion proteins the ability to

assemble into virus like particle and wherein said first amino acid sequence does not

confer on the fusion protein to be transported to a cellular membrane and/or wherein

said first amino acid sequence does not confer on said virus like particles the ability

to be released into an extracellular environment by a budding process through said

-14-

cellular membrane, and said second amino acid sequence is a polypeptide under study;

- (b) expressing said fusion proteins;
- (c) measuring the presence or absence of virus like particles in said extracellular environment; and thereby
- (d) identifying nucleic acid sequences which encode intracellular transport polypeptides or membrane associated translocation polypeptides.
- 184. The assay according to claim 183, wherein a library of D N A molecules is screened in a plurality of recombinant cells.
- 185. The assay according to claim 183, wherein said first amino acid sequence is covalently linked to the C-terminus of said second amino acid sequence.
- 186. The assay according to claim 183, wherein said fusion protein comprises a luminescent reporter molecule covalently linked preferably to the C-terminus of said first amino acid sequence, in particular green fluorescent protein or mutants thereof.
- 187. The assay according to claim 183, wherein said first amino acid sequence is encoded by a mutant gene coding for a virus capsid or envelope protein, or by a mutant gene coding for a precursor of a virus capsid or envelope protein.
- 188. The assay according to claim 183, wherein said first amino acid sequence is encoded by a mutant gene coding for a capsid or envelope protein of a virus like particle, or by a mutant gene coding for a precursor of said capsid or envelope protein.
- 189. The assay according to claim 183, wherein said first amino acid sequence is a structural protein encoded by a mutant of the *gag*-gene of retroviruses.

Attorney Docket No.: P66036US1

190. The assay according to claim 189, wherein the position two after the initiation codon

methionine is changed to any residue which codes for an amino acid that cannot be

modified by myristoylation.

191. The assay according to claim 183, wherein said assay is a homogeneous assay,

preferably a homogeneous high throughput assay.

192. The assay according to claim 183, wherein the presence or absence of virus like

particles in said extracellular environment is measured by optical methods, preferably by

confocal microscopy or spectroscopy.

193. The method according to claim 183, wherein the presence or absence of virus like

particles in said extracellular environment is measured by use of fluorescent techniques,

in particular fluorescence correlation spectroscopy, fluorescence cross-correlation

spectroscopy, fluorescence intensity distribution analysis, fluorescence lifetime

measurements, fluorescence anisotropy measurements, fluorescence resonance energy

transfer, or combinations thereof.

194. A method for identifying substances that modulate receptor-, or membrane pore-, or

ion channel-mediated activity by preferably detecting intracellular transduction of a

signal generated upon interaction of an agonist with said receptor or ion channel,

comprising:

- comparing the amount of reporter gene product expressed in a recombinant cell in the

presence of the substance with the amount of product in the absence of the substance;

wherein

- the first recombinant cell contains a reporter gene construct and expresses the

receptor or ion channel; and

-16-

- the reporter gene construct contains:

(a) a transcriptional control element that is responsive to the intracellular signal

generated by the interaction of an agonist with the receptor, or membrane pore, or ion

channel;

(b) a reporter gene that encodes a translational signal molecule and is in operative

association with the transcriptional control element;

wherein the translational signal molecules are able to assemble into virus like

particles which are preferably released into an extracellular environment.

195. The method according to claim 194, further comprising, comparing the amount of

reporter gene product expressed in the recombinant cell in the presence of the agonist

with the amount of product in the absence of the agonist.

196. The method according to claim 194, further comprising, comparing the amount of

reporter gene product expressed in the recombinant cell in the presence of a first

substance with the amount of reporter gene product in the presence of a second

substance.

197. The method according to claim 194, wherein said substances are selected from the

group consisting of cDNAs, genomic D N A fragments, mRNAs, vectors, peptides or

proteins.

198. A recombinant cell comprising:

- D N A that encodes a receptor, or membrane pore, or ion channel; and

- a reporter gene construct containing a reporter gene in operative linkage with one or

more transcriptional control element that is responsive to an intracellular signal

generated by an interaction of an agonist with said receptor, or membrane pore, or ion

channel, wherein:

-17-

- said reporter gene encodes a translational signal molecule, and

- said translational signal molecules are able of assembling into virus like particles which are preferably released into an extracellular environment.

199. The cell according to claim 198, wherein the transcriptional control region includes at least one regulatory element selected from the group consisting of serum responsive elements, cyclic adenosine monophosphate responsive elements, and elements responsive to intracellular calcium ion levels.

200. The cell according to claim 198, wherein said translational signal molecule further comprises a luminescent polypeptide, in particular green fluorescent protein or mutants thereof, or further comprises an entity which acts as a tag for subsequent labelling with a detectable reagent.

201. A method for identifying substances which specifically modulate signaling pathways and/or a physiological status of a cell by influencing members of such signaling pathways, said method comprising:

- comparing the amount and/or properties of a reporter gene product expressed in a
 recombinant cell in the presence of the substance with the amount and/or properties
 of product in the absence of the substance; wherein
- said cell contains a marker or surrogate marker of said signaling pathway, and
- the production and/or properties of said reporter gene product or its release from the cell is responsive to the properties and/or amount of said marker or surrogate marker or to an intracellular signal generated by said marker or surrogate marker, and
- said reporter gene product comprises (i) a signal molecule and optionally (ii) a detectable moiety, wherein said signal molecules are able to assemble into virus like particle which are preferably released into an extracellular environment.

Attorney Docket No.: P66036US1

202. The method according to claim 201, wherein the reporter gene product is encoded by a reporter gene construct which contains a transcriptional control element that is responsive to the properties and/or concentration of said marker or surrogate marker or to

an intracellular signal generated by said marker or surrogate marker.

203. The method according to claim 202, wherein the transcriptional control element

includes at least one regulatory element selected from the group consisting of serum

responsive elements, cyclic adenosine monophosphate responsive elements, and elements

responsive to intracellular calcium ion levels.

204. The method according to claim 201, wherein said signal molecule comprises at least

a fragment of a virus capsid or envelope protein, or a precursor of a virus capsid or

envelope protein.

205. The method according to claim 201, wherein said signal molecule comprises at least

a fragment of a capsid or envelope protein of a virus like particle, or a precursor of said

capsid or envelope protein.

206. The method according to claim 201, wherein said capsid or envelope protein is

derived from capsids or envelopes of virus families selected from the group consisting of

retroviruses, picornaviruses, reoviruses, polyomaviruses, papillomaviruses, parvoviruses,

nodaviruses, coronaviruses, herpesviruses, hepadnaviruses, baculoviruses and

bacteriophages.

207. The method according to claim 206, wherein said signal molecule comprises a

structural protein encoded by the gag-gene of retroviruses.

208. The method according to claim 201, wherein said detectable moiety comprises a luminescent polypeptide, in particular green fluorescent protein or a mutant thereof, or an entity which acts as a tag for subsequent labelling with a luminescent reagent.

- 209. The method according to claim 201, wherein said detectable moiety comprises a specific protein, in particular an enzyme.
- 210. The method according to claim 201, wherein said substance is selected from the group consisting of low molecular weight compounds, nucleic acids, peptides/proteins, or PNAs.
- 211. The method according to claim 210, wherein a nucleic acid chosen from the group consisting of genomic D N A, cDNA, mRNA, antisense sequences, or a fragment or modified nucleic acid of the foregoing, or a vector is used as said substance.
- 212. The method according to claim 210, wherein said protein is an antibody.
- 213. A method to selectively incorporate or encapsulate a proteinaceous target molecule complex, comprising two or more components, into a virus like particle, or physically associate a proteinaceous target molecule complex with a virus like particle by coexpressing in cells
 - a first component of the target molecule complex, said first component comprising a first amino acid sequence and a second amino acid sequence, and
 - (ii) a second component of the target molecule complex, and
 - (iii) signal molecules comprising a first amino acid sequence and a second amino acid sequence, the latter of which confers on the signal molecules

the ability to assemble into a virus like particle and preferably to be released in an extracellular environment,

wherein said first amino acid sequences of said signal molecules functionally operate in a non-covalent manner with said first amino acid sequence of said first component of the target molecule complex so as to incorporate, or encapsulate said target molecule complex into, or associate said target molecule complex with said virus like particle.

ير نا

- 214. The method according to claim 213, wherein said complexing components of said target molecule complex form homo-dimers, or hetero-dimers, or homo-oligomers, or hetero-oligomers.
- 215. The method according to claim 213, wherein said virus like particles are released from said cells by exocytosis, lysis or budding through an appropriate cellular membrane.
- 216. The method according to claim 215, wherein budding is through the plasma membrane, the endoplasmatic reticulum, Golgi or nuclear membranes.
- 217. The method according to claim 213, wherein said second amino acid sequence of said first component of the target molecule complex is heterologous to the virus like particle.
- 218. The method according to claim 213, wherein said target molecule complex comprises receptors, ion channels, enzymes, adhesion molecules, components of membrane pores, and fragments or derivatives, or subunits, or subtypes thereof.
- 219. The method according to claim 218, wherein said receptor is a cytosolic or nuclear receptor which is incorporated into, or encapsulated by, or physically associated with a protein capsid of a naked or enveloped virus like particle.

220. The method according to claim 218, wherein said receptor is a transmembrane

receptor, in particular a G-protein coupled receptor, which is incorporated into an

envelope of virus like particles by a budding process.

221. The method according to claim 218, wherein said target molecule complex

comprises different subtypes of a given G-protein coupled receptor.

222. The method according to claim 218, wherein said target molecule complex

comprises different classes of G-protein coupled receptor.

223. The method according to claim 218, wherein said target molecule complex

comprises different accessory, ancillary, or other associated factors, or effector

molecules, in particular G-proteins.

224. The method according to claim 213, wherein said first amino acid sequences of said

signal molecules functionally operate with said first amino acid sequences of said first

component of the target molecule complex by non-covalent physical forces selected from

the group consisting of van der Waals forces, electrostatic forces, stacking interactions,

hydrogen bonding and steric fit.

225. The method according to claim 213, wherein said signal molecules interacts with

said first component of the target molecule complex by non-covalent physical forces

having a binding constant of Kass ≥ 10 -6 M.

226. The method according to claim 213, wherein said second amino acid sequences of

said signal molecules comprise at least a fragment of a virus capsid protein, or a

precursor of a virus capsid protein, or a mutant of a virus capsid protein, or a fragment of

-22-

a virus envelope protein, or a precursor of a virus envelope protein, or a mutant of a virus

envelope protein.

227. The method according to claim 213, wherein said second amino acid sequences of

said signal molecules comprise at least a fragment of a capsid protein of a virus like

particle, or a precursor of said capsid protein, or a mutant of said capsid protein, or a

fragment of an envelope protein of a virus like particle, or a precursor of said envelope

protein, or a mutant of said envelope protein.

228. The method according to claim 226, wherein said capsid or envelope protein is

derived from capsids or envelopes of virus families selected from the group consisting of

retroviruses, picornaviruses, reoviruses, polyomaviruses, papillomaviruses, parvoviruses,

nodaviruses, coronaviruses, herpesviruses, hepadnaviruses, baculoviruses and

bacteriophages.

229. The method according to claim 228, wherein said second amino acid sequence of

said signal molecule is a structural protein encoded by the gag-gene of retroviruses.

230. The method according to claim 213, wherein said second amino acid sequence of

said signal molecule is encoded by at least a fragment of a retrotransposon, in particular a

Ty element in yeast, a copia element in insects, a copia-like element in insects, VL 30 in

mice, or an IAP gene in mice.

231. A virus like particle with incorporated, or encapsulated, or physically associated

target molecule complexes obtainable by the method according to claim 213.

232. A reagent kit comprising the virus like particle with incorporated, or encapsulated,

or physically associated target molecule complexes according to claim 231.

-23-

233. A medicament or a precursor thereof comprising a virus like particle with

incorporated, or encapsulated, or physically associated target molecule complexes

according to claim 231.

234. Use of virus like particles obtainable by the method according to claim 213, for the

concentration, isolation, and/or purification of recombinant molecules.

235. A method according to claim 119, for achieving enrichment of substances in a

medium in which cells are arranged when the virus-like particles are released in the

medium, which virus-like particles incorporate, encapsulate or are associated with the

substances.

236. The method of claim 235, wherein the substances are proteins, poly- or

oligonucleotides, organic molecules of lower molecular weight, ions or the like. --

REMARKS

Claims 119-236 are presented for consideration, hereby, in place of original claims 1-118.

The beginning of the specification is amended, hereby, to include the same claim for priority made in the international application, the national stage of which is the parent of the instant CIP. Thus, through the international application, priority is claimed to U.S. provisional application no. 60/191,318, filed June 30, 1999

Favorable action is requested.

Respectfully submitted,

JACOBSON HOLMAN PLLC

By:

William E. Player

Registration No., 31,409

400 Seventh Street, N.W. Washington, D.C. 20004-2201 Atty. Dkt. No.: P66036US1 WEP/vjb

R:\HOME\VBYERS\2001\May\P66036US1-Prel Amdt.doc