Wahadło matematyczne - opracowanie danych

Konrad Lewandowski

(1)

(2)

(3)

1 Metoda pierwsza

Wyniki pomiarów długości:

$$l = 44.3 cm$$

$$\Delta l = 0.4 \text{cm}$$

$$u(l) = \frac{\Delta l}{\sqrt{3}} = 0.23$$
cm

l - zmierzona długość Δl - niedokładność pomiaru

u(l) - niepewność pomiarowa długości

Wyniki pomiarów czasu:

Nr	$10 \cdot ext{Czas [s]}$
1	13.78
2	13.28
3	13.30
4	13.38
5	13.41
6	13.22
7	13.24
8	13.44
9	13.19
10	13.26

$$10 \cdot \overline{T} = 13.35s \tag{4}$$

$$\Delta T = 268 \text{ms} \tag{5}$$

$$u(T) = \sqrt{\frac{\sum_{i=1}^{10} (T_i - \overline{T})^2}{90}} = 0.0055s$$
 (6)

 \overline{T} - średni czas

 ΔT - niedokładność pomiaru (czas reakcji człowieka^1) u(T) - niepewność pomiarowa czasu

Obliczenie wartości g

$$T = 2 \cdot \pi \cdot \sqrt{\frac{l}{a}} \tag{7}$$

$$g = 4 \cdot l \cdot \left(\frac{\pi}{T}\right)^2 \tag{8}$$

$$g = 4 \cdot 0.443 \text{m} \cdot \left(\frac{3.1416}{1.335 \text{s}}\right)^2 = 9.813 \frac{\text{m}}{\text{s}^2}$$
 (9)

$$u(g) = \sqrt{\left(\frac{\partial g}{\partial l} \cdot u(l)\right)^2 + \left(\frac{\partial g}{\partial T} \cdot u(T)\right)^2}$$
 (10)

$$= \sqrt{\left(\frac{4\pi^2}{T^2} \cdot 0.0023\right)^2 + \left(-\frac{8\pi^2 l}{T^3} \cdot 0.0055\right)} \quad (11)$$

$$=0.096\frac{m}{c^2}$$
 (12)

g- zmierzona wartość przyśpieszenia ziemskiego u(g)- niepewność pomiarowa przyśp. ziemskiego

$$B(g) = g - g_0 = 9.813 - 9.80665 = \mathbf{0.00635} \frac{\text{m}}{\text{s}^2}$$
 (13)

B(q) - błąd pomiaru

 g_0 - standardowa wartość przyśpieszenia ziemskiego

¹http://www.humanbenchmark.com/tests/reactiontime/statistics

Metoda druga $\mathbf{2}$

Wyniki pomiarów:

Nr	Długość [cm]	$10 \cdot \text{Czas [s]}$
1	36.6	12.29
2	29.2	9.68
3	33.2	10.35
4	25.7	9.04
5	17.4	8.25
6	9.4	6.03
7	4.66	13.77
8	43.5	13.18
9	39.2	13.60

$$a = 4.32 \frac{s^2}{m} \tag{14}$$

$$u(a) = 0.53 \frac{s^2}{m} \tag{15}$$

$$u(a) = 0.53 \frac{\text{s}^2}{\text{m}}$$

$$g = \frac{4 \cdot \pi^2}{a} = \mathbf{9.14} \frac{\text{m}}{\text{s}^2}$$
(15)

$$u(g) = \sqrt{\left(\frac{\partial g}{\partial a} \cdot u(a)\right)^2} = 1.11 \frac{\mathrm{m}}{\mathrm{s}^2}$$
 (17)

a - współczynnik regresji²

 $\boldsymbol{u}(\boldsymbol{a})$ - niepewność pomiarowa regresji

g - obliczona wartość przyśpieszenia ziemskiego

u(g) - niepewność pomiarowa przyśp. ziemskiego