IOT ENABLED SMART FARMING APPLICATION

SPRINT -4

TEAM ID: PNT2022TMID25689

5.5 Receiving commands from IBM cloud using Python program

import time import sys import ibmiotf.application

import ibmiotf.device import random

#Provide your IBM Watson Device Credentials

organization = "157uf3" deviceType = "abcd" deviceId

```
= "7654321" authMethod = "token" authToken =
"87654321"
# Initialize GPIO
def myCommandCallback(cmd): print("Command
received: %s" % cmd.data['command'])
status=cmd.data['command'] if status=="motoron":
print ("motor is on") elif status == "motoroff":
                                                 print
("motor is off") else:
    print ("please send proper command")
try:
       deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
```

```
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
                                data = {
'temp': temp, 'Humid': Humid, 'Mois':
Mois}
    #print data
                   def
myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
% Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
                                                             success =
deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on publish=myOnPublishCallback)
                                     if not success:
print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
```

Disconnect the device and application from the cloud deviceCli.disconnect()

```
ibmiotpublishsubscribe.py - C:\Users\ELCOT\Do
                                                                                                                - ø ×
File Edit Format Run Options Window Help
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
    print ("Command received: %s" % cmd.data['command'])
    status=cmd.data['command']
    if status=="motoron":
    print ("motor is on")
elif status == "motoroff":
    print ("motor is off")
else:
         print ("please send proper command")
try:
         deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
         deviceCli = ibmiotf.device.Client(deviceOptions)
## DO O O Em File Explorer P D 😑 🗘 📺 X4 O D D ibmiotpublishsubs
```


6.Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9.Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

10.Bibliography

IBM cloud reference:https://cloud.ibm.com/

IoT simulator : https://watson-iot-sensor-simulator.mybluemix.net/

OpenWeather: https://openweathermap.org/