东南大学电工电子实验中心 实验报告

第 2 次实验

头红	或名称: <u>/</u>	业用 Multisim	软件 上。	具设计	电路验证网络风	E 埋
院	(系):	自动化	专	业:	自动化	
姓	名:	邹滨阳	学	号:	08022305	
实	验室:		实验:	组别:		
同组	且人员:		实验时	寸间: <u>2</u>	2023年10月3	0 日
评詞	产成绩:		审阅	教师:		

一、实验目的

- (1)通过实验加深对参考方向、基尔霍夫定理、叠加定理、戴维南定理的理解;
 - (2) Multisim 软件入门: 元器件配置、电路连接、电路参数测试;
 - (3) 通过学习对实验结果的分析对比,了解虚拟仿真与实物实验的差异。

二、 实验原理(预习报告内容即预习要求相关内容,如无,则简述相关的理论知识

点。不得大篇幅复制教学计划内容)

- 1, 复习基尔霍夫定理
- 2,复习叠加定理
- 3,复习戴维南定理
- 4, 确定实验电路及参数

5, 查找资料, 了解二极管特性。

二极管由 P 型半导体、 N 型半导体、一个 PN 结、电极引线和管壳封装而成。将 P 型半导体与 N 型半导体制作在同一块半导体(硅 Si 或锗 Ge)基片上,在交界面上会形成 PN 结。

- ▶ PN 结外加正向电压: P 区接正极, N 区接负极, 称为正偏
- ▶ PN 结外加反向电压: P 区接负极, N 区接正极, 称为反偏
- ▶ PN 结正偏: 容易导电
- ▶ PN 结反偏:不容易导电
- ▶ 正向特性

外加正向电压时,若正向电压很小,不足以克服 PN 结内电场的 阻挡作用,正向电流几乎为零,这一段称为**死区**;

当正向电压大于阈值电压 U_{th} (开启电压),正向电流开始明显增大;当大于导通电压,二极管处于完全导通状态,此时两端电压变化很小。硅(锗)管的开启电压为 0.6

(0.2) V, 导通电压为 0.7 (0.3) V。

▶ 反向特性

外加反向电压不超过一定范围时,会形成反向电流,二极管处于**截止状态**; 反向电流很小($i\approx-I_s$),且几乎不变,称 I_s 为反向饱和电流。

> 反向击穿特性

外加反向电压超过某一数值时,反向电流会突然增大,这称为**电击穿**,二极管的反向击穿电压 U_{BR} 一般在几十伏以上。

静态开关特性

加正向电压时导通,电压降很小(≈0.7 V),近似看做是一闭合开关; 外加反向电压时二极管截止,反向电流很小(<1 μA),故近似看做是一断开开关。

> 动态开关特性

二极管在动态过程中其内部电荷的建立和消散都需要时间,此时间虽短(约为几纳秒),但毕竟存在,故影响二极管的开关速度。

> 理想二极管

当管子正向偏置时,其电压降为零伏;而当管子反向偏置时,其电阻为无穷大,电流为零。

三、 实验内容

1、基尔霍夫定理、叠加定理的验证

(1) 自行设计电路或者按图 1 所示实验电路建立电路。用电压表和电流表测量各电阻两端电压和各支路电流。分析说明测量结果。

图 1 实验电路

仿真电路图:

表 1 测量数据

状态	测量参数						
1八心	U1 (V)	U2 (V)	U3 (V)	I1 (A)	12 (A)	13 (A)	
E1、E2 同时作用	6.82	8.82	3.18	0.015	0.017	0.032	
E1 单独作用	8.49	-1.51	1.51	0.018	-2.961m	0.015	
E2 单独作用	-1.67	10.33	1.67	-3.554m	0.02	0.017	
叠加结果	6.82	8.82	3.18	0.014m	0.017	0.032	

实验结果分析:

由测量结果知,在误差允许范围内,基尔霍夫定理、叠加定理成立。可见基尔霍夫定律和叠加定理适用于线性网络。

(2) 将 300 Ω 电阻改成 1N4009 的二极管(正极连接到 A 点上),自行建立表格,记录测量数据,计算测量结果并分析说明测量结果。

仿真电路图:

表 2 测量数据 (自行建立表格)

70 00 00 00 00 00 00 00 00 00 00 00 00 0						
状态	测量电路					
	U1(V)	U2(V)	U3(V)	11(A)	12(A)	13(A)
V1V2 同时	9.143	11.143	0.857	0.019	0.022	0.041
仅有 V1	9.256	-0.744	0.744	0.02	-1.458m	0.018
仅有 V2	-0.755	11.245	0.755	-1.607m	0.022	0.02
叠加后	8.501	10.501	1.499	0.018	0.021	0.038

实验结果分析:

由测量结果知,在误差允许范围内,基尔霍夫定理、叠加定理不成立。

可见基尔霍夫定律,叠加定理不适用于非线性电阻。这是因为二极管的伏安特性是非线性的,它的电阻随着电压和电流的变化而变化。因此,不能简单地将两个电源的效应相加,而要考虑二极管的导通状态和电压降。

2、设计电路,验证戴维南定理

(1) 开路电压测量仿真电路

(2) 短路电流测量仿真电路

(3) 建立等效电路,验证戴维南定理。

等效电路

表 3 测量数据

Uoc (V)	Isc (A)	Ro (Ω)	13 (A)
10.959	0.045	243.533	0.032

实验结果分析:

由测量结果知,在误差允许范围内,戴维南定理成立。可见戴维南定理适用于线性 或非线性网络。这是因为戴维南定理只要求网络满足叠加原理和比例原理,而不要求网 络中的元件具有恒定的阻抗。因此,只要在确定戴维南等效电压和等效内阻时保持二极 管的状态不变,就可以将任意两点间的网络用一个等效的戴维南源代替。

四、实验使用仪器设备(使用软件)

本实验使用了 Multisim 软件来进行虚拟仿真。Multisim 是一款功能强大的电路设计和仿真软件,可以帮助工程师、学生和教授模拟电子电路和原型化印刷电路板。Multisim 提供了丰富的元器件库、直观的图形界面、多种仿真模式和分析工具,可以方便地搭建、测试和优化复杂的电路。

五、实验总结

(实验误差分析、实验出现的问题及解决方法、思考题(如有)、收获体会等)

本实验通过虚拟仿真的方式验证了基尔霍夫定理、叠加定理和戴维南定理在不同类型的网络中的适用性和局限性。通过对比测量数据和理论计算结果,分析了误差产生的原因和影响因素。通过改变元件参数和连接方式,观察了网络特性的变化。通过使用Multisim 软件,提高了电路设计和仿真的能力和效率。

实验过程中遇到的问题和解决方法如下:

在使用 Multisim 软件时,要注意选择合适的元件型号、属性和参数,以保证仿真结果的准确性和可靠性。

在进行叠加定理的验证时,要注意消除其他电源时的方法,不能简单地删除电源元件,而要用短路或开路代替,以保持网络结构不变。

在进行戴维南定理的验证时,要注意保持二极管的状态不变,不能在测量开路电压和短路电流时改变二极管的导通或截止状态,否则会影响戴维南等效电压和等效内阻的计算。

思考题:

①电流表的内阻参数默认值为 $1n\Omega$,电压表的内阻参数默认值为 $1M\Omega$,本实验中他们是否需要重新设置? 应如何考虑他们对电路测试结果的影响。

电压表内阻远大于被测电阻,而电流表内阻远小于被测电阻,所以电压表分流和电流表分压都很小,所以误差可以忽略。

②分析实验过程中测量值出现负值的原因。

若该支路的电流实际为由左向右,当电流表为左正右负时,电流表测量值为正,当 电流表为左负右正时,电流表测量值为负;同理,电压表也是如此。所以这与参考方向, 与正方向以及电压表和电流表的正负接法有关。

体会:本实验让我深入理解了网络定理的含义和应用,掌握了使用 Multisim 软件进行电路设计和仿真的方法,锻炼了我的实验技能和分析能力。我认识到网络定理是电路分析和简化的重要工具,可以帮助我快速求解复杂的电路问题。我也意识到虚拟仿真与实物实验之间存在一定的差异,需要注意误差的来源和控制。我还发现了自己在实验中存在的不足之处,需要在今后的学习中加以改进。

六、参考资料 (预习、实验中参考阅读的资料)