import pandas as pd

df_flights = pd.read_csv('/content/flights.csv')
df_flights.head()

₽		Year	Month	DayofMonth	DayOfWeek	Carrier	OriginAirportID	OriginAirportName	OriginCity	OriginState	DestAirportID
	0	2013	9	16	1	DL	15304	Tampa International	Tampa	FL	12478
	1	2013	9	23	1	WN	14122	Pittsburgh International	Pittsburgh	PA	13232
	2	2013	9	7	6	AS	14747	Seattle/Tacoma International	Seattle	WA	11278
	3	2013	7	22	1	00	13930	Chicago O'Hare International	Chicago	IL	11042
	4	2013	5	16	4	DL	13931	Norfolk International	Norfolk	VA	10397

df_flights.isnull().sum()

Year	0
Month	0
DayofMonth	0
DayOfWeek	0
Carrier	0
OriginAirportID	0
OriginAirportName	0
OriginCity	0
OriginState	0
DestAirportID	0
DestAirportName	0
DestCity	1
DestState	1
CRSDepTime	1
DepDelay	1
DepDel15	88
CRSArrTime	1
ArrDelay	1
ArrDel15	1
Cancelled	1
dtype: int64	

df_flights[df_flights.isnull().any(axis=1)][['DepDelay','DepDel15']]

	DepDelay	DepDel15
171	0.0	NaN
359	0.0	NaN
429	0.0	NaN
545	0.0	NaN
554	0.0	NaN
7273	0.0	NaN
7436	0.0	NaN
7686	0.0	NaN
7787	0.0	NaN
7963	NaN	NaN

88 rows x 2 columns

 $\label{lights_describe} $$ df_flights.isnull().any(axis=1)].DepDelay.describe() $$$

```
count 87.0 mean 0.0 std 0.0 min 0.0 25% 0.0 75% 0.0
```

max

0.0

```
Name: DepDelay, dtype: float64
df_flights.DepDel15 = df_flights.DepDel15.fillna(0)
df flights.isnull().sum()
                                                                   0
            Year
            Mon+h
                                                                   0
           DavofMonth
                                                                   0
            DavOfWeek
                                                                  0
           Carrier
                                                                   0
           OriginAirportID
            OriginAirportName
            OriginCity
           OriginState
                                                                   0
           DestAirportID
                                                                   0
           DestAirportName
                                                                   0
           DestCity
                                                                   1
            DestState
                                                                   1
           CRSDepTime
                                                                  1
            DepDelay
                                                                   1
            DepDel15
            CRSArrTime
           ArrDelay
            ArrDel15
            Cancelled
                                                                   1
            dtype: int64
# Function to show summary stats and distribution for a column
def show_distribution(var_data):
          from matplotlib import pyplot as plt
          # Get statistics
         min val = var data.min()
         max_val = var_data.max()
         mean_val = var_data.mean()
         med_val = var_data.median()
         mod_val = var_data.mode()[0]
         print(var data.name, '\nMinimum: \{:.2f\} \land (i..2f) \land (i
                                                                                                                                                                                                                                                   mean val,
                                                                                                                                                                                                                                                   med val,
                                                                                                                                                                                                                                                   mod val,
                                                                                                                                                                                                                                                   max val))
          # Create a figure for 2 subplots (2 rows, 1 column)
          fig, ax = plt.subplots(2, 1, figsize = (10,4))
         # Plot the histogram
         ax[0].hist(var data)
          ax[0].set_ylabel('Frequency')
         # Add lines for the mean, median, and mode
          ax[0].axvline(x=min_val, color = 'gray', linestyle='dashed', linewidth = 2)
          ax[0].axvline(x=mean_val, color = 'cyan', linestyle='dashed', linewidth = 2)
          ax[0].axvline(x=med_val, color = 'red', linestyle='dashed', linewidth = 2)
         ax[0].axvline(x=mod_val, color = 'yellow', linestyle='dashed', linewidth = 2)
         ax[0].axvline(x=max_val, color = 'gray', linestyle='dashed', linewidth = 2)
         # Plot the boxplot
         ax[1].boxplot(var_data, vert=False)
         ax[1].set_xlabel('Value')
          # Add a title to the Figure
          fig.suptitle(var data.name)
          # Show the figure
          fig.show()
# Call the function for each delay field
delayFields = ['DepDelay','ArrDelay']
for col in delayFields:
          show distribution(df flights[col])
```

DepDelay Minimum:-20.00 Mean:10.42 Median:-1.00 Mode:0.00 Maximum:1172.00

ArrDelay Minimum:-62.00 Mean:6.44 Median:-3.00 Mode:0.00

Maximum:1175.00

DepDelay

ArrDelay


```
# Trim outliers for ArrDelay based on 1% and 90% percentiles
ArrDelay_01pcntile = df_flights.ArrDelay.quantile(0.01)
ArrDelay_90pcntile = df_flights.ArrDelay.quantile(0.90)
df_flights = df_flights[df_flights.ArrDelay < ArrDelay_90pcntile]
df_flights = df_flights[df_flights.ArrDelay > ArrDelay_01pcntile]
```

Trim outliers for DepDelay based on 1% and 90% percentiles
DepDelay_01pcntile = df_flights.DepDelay.quantile(0.01)
DepDelay_90pcntile = df_flights.DepDelay.quantile(0.90)
df_flights = df_flights[df_flights.DepDelay < DepDelay_90pcntile]
df_flights = df_flights[df_flights.DepDelay > DepDelay_01pcntile]

View the revised distributions
for col in delayFields:
 show_distribution(df_flights[col])

DepDelay Minimum:-10.00 Mean:-0.88 Median:-2.00 Mode:0.00 Maximum:16.00

ArrDelay Minimum:-32.00 Mean:-5.10 Median:-6.00 Mode:0.00 Maximum:35.00

df_flights.describe()

	Year	Month	DayofMonth	DayOfWeek	OriginAirportID	DestAirportID	CRSDepTime	DepDelay	DepDel15	CRSArr1
count	6240.0	6240.000000	6240.000000	6240.000000	6240.000000	6240.000000	6240.000000	6240.000000	6240.000000	6240.00
mean	2013.0	6.991987	15.708974	3.921795	12752.336699	12727.852885	1284.576282	-0.881891	0.016506	1457.70
std	0.0	2.003987	8.842494	2.005835	1511.446400	1501.361465	470.351131	5.596320	0.127423	492.51
min	2013.0	4.000000	1.000000	1.000000	10140.000000	10140.000000	20.000000	-10.000000	0.000000	1.00
25%	2013.0	5.000000	8.000000	2.000000	11292.000000	11292.000000	851.000000	-5.000000	0.000000	1050.00
50%	2013.0	7.000000	16.000000	4.000000	12892.000000	12892.000000	1239.000000	-2.000000	0.000000	1442.00
75%	2013.0	9.000000	23.000000	6.000000	14100.000000	14057.000000	1655.000000	1.000000	0.000000	1845.00
max	2013.0	10.000000	31.000000	7.000000	15376.000000	15376.000000	2359.000000	16.000000	1.000000	2359.00

#mean departure and arrival delays

df_flights[delayFields].mean()

DepDelay -0.881891 ArrDelay -5.098718 dtype: float64

#How do the carriers compare in terms of arrival delay performance? for col in delayFields:

df_flights.boxplot(column=col, by='Carrier', figsize=(8,8))

Boxplot grouped by Carrier

Are some days of the week more prone to arrival days than others? for col in delayFields:

df_flights.boxplot(column=col, by='DayOfWeek', figsize=(8,8))

Boxplot grouped by DayOfWeek

#Which departure airport has the highest average departure delay?
departure_airport_group = df_flights.groupby(df_flights.OriginAirportName)

mean_departure_delays = pd.DataFrame(departure_airport_group['DepDelay'].mean()).sort_values('DepDelay', ascending=False)
mean_departure_delays.plot(kind = "bar", figsize=(12,12))
mean_departure_delays

 $\label{lights.boxplot(column='ArrDelay', by='DepDel15', figsize=(12,12))} df_flights.boxplot(column='ArrDelay', by='DepDel15', figsize=(12,12))$

#Which route (from origin airport to destination airport) has the most late arrivals?
Add a routes column
routes = pd.Series(df_flights['OriginAirportName'] + ' > ' + df_flights['DestAirportName'])
df_flights = pd.concat([df_flights, routes.rename("Route")], axis=1)
Group by routes
route_group = df_flights.groupby(df_flights.Route)
pd.DataFrame(route_group['ArrDel15'].sum()).sort_values('ArrDel15', ascending=False)

ArrDel15

Route	
Newark Liberty International > San Francisco International	3.0
Baltimore/Washington International Thurgood Marshall > Orlando International	3.0
Dallas/Fort Worth International > San Antonio International	3.0
San Francisco International > Los Angeles International	3.0
Kahului Airport > Honolulu International	3.0
Jacksonville International > Nashville International	0.0
Jacksonville International > Miami International	0.0
Jacksonville International > Luis Munoz Marin International	0.0
Jacksonville International > John F. Kennedy International	0.0
William P Hobby > Will Rogers World	0.0

1824 rows × 1 columns

```
#Which route has the highest average arrival delay?
pd.DataFrame(route_group['ArrDelay'].mean()).sort_values('ArrDelay', ascending=False)
```

ArrDelay

Route	
Raleigh-Durham International > William P Hobby	34.0
Miami International > Denver International	33.0
Orlando International > Kansas City International	31.0
Port Columbus International > Minneapolis-St Paul International	30.0
Ronald Reagan Washington National > Nashville International	29.0
Newark Liberty International > Seattle/Tacoma International	-31.0
Chicago O'Hare International > Sacramento International	-31.0
John F. Kennedy International > Long Beach Airport	-32.0
John F. Kennedy International > San Antonio International	-32.0
Austin - Bergstrom International > Washington Dulles International	-32.0

1824 rows × 1 columns