

4.	The pet current is reduced
	$\frac{1}{2} = \frac{\sqrt{8} - \epsilon_{ind} t}{R}$
	Fact is reduced
	F = L L B $voh' I F = 0$
50	box will slow until, cind = VB, i
and	moves at steady-state speed Vss = VB

	The LINEAR	R MACHINE AS	×	
V _β =	What has	FLORD God.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lied
	after ma	chine reaches: $\frac{\angle}{F_{Lang}} = F_{Lang} - F_{ino}$	steady -state?	
1	. Fret	= FLOAD - FIND	(bar will:	slow down,

	NE AS A GENERATOR
What happens if we apply	a force in the
direction of motion of a	
1. Fret = Fapp + Fino	bor acclepates to rigi
2. end = v Bl	- 4 > \/
L. Eind = V BX	eind t > VB
3. 1 = VB - EIND	i < 0 (reverses direc
5. / = R	1 < 0 (reverses direc

1. SAME MACHINE ACTS AS BOTH A
MOTOR AND A GENERATOR.
2. When Cood > VB => generator
when Y8 > Eind => motor
3. When machine moved rapidly to right it was a generalor.
when machine moved slowly to right 17 was a motor.
The machine did NOT reverse direction

4	INEAR MACHINE EXAMPLE
G	iven: VB = 120 , R = 0.3 12 , B = 0.1 T, L=10m
a)	What is the max. starting current?
	$i' = \frac{V_B - e_{ind}}{R} = \frac{120 - (0 \text{ at start-qp})}{0.3} = \frac{400}{R}$
b)	What is the steedy-state velocity?
	end = VBl = VB at steady-stake
	$V = \frac{V\beta}{\beta L} = \frac{120}{(0.1)(10m)} = 120 \frac{m}{s}$

c) What is steady-state speed if a 30-N force pointing to the right is applied?

Steady-state occurs when
$$|F_{ino}| = |F_{npp}| = i NB$$

so $L = \frac{30N}{(10m)(0.1)} = 30^{\frac{1}{2}}$ upword in bar then $e_{ind} = V_B + iR = 120 + 30(0.3) = 129V$

and $V = \frac{e_{ind}}{BL} = \frac{129}{(0.1)(10)} = \frac{129}{129}$

The machine is acting as a generator,

d) What is the electoral mech power produced by the har?

$$P_{mech} = F \cdot V = 30N \cdot 129^{m/s} = 3,870^{m/s}$$

$$P_{elect} = e_{ind} \cdot 6 = 129^{m/s} \cdot 30^{-4} = 3,870^{m/s}$$

e) What is the steady-state speed if a 30N force in the left direction is applied to the bar.

Fopp = Fino = ilb at steady-state

i = Fino = 30# (down through bar)

eind = VB - iR = 120 - 9 = 111 V

Vss = eind/sl = 111 (0.1) (10) = 111 m/s

the machine is acting as a motor.

f) If the bar is initially unloaded and the magnetic field changes to 0.08T, find Vss.

initially Eind = VB since bar is unloaded

finally Eind = VB also since bar will still be unloaded.

Cind = VB = Vss BL

Vss = (0.08)(10m) = 150 m/s

When the flux is reduced, the bar will speed-up. This also happens in de motols.