

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(10) Numéro de publication internationale

(43) Date de la publication internationale 28 septembre 2006 (28.09.2006)

(51) Classification internationale des brevets : A62D 3/00 (2006.01) C07C 29/62 (2006.01) C07C 31/36 (2006.01) COTC 31/42 (2006.01) C07C 29/88 (2006.01)

(21) Numéro de la demande internationale : PCT/EP2006/062444

(22) Date de dépôt international: 19 mai 2006 (19.05.2006)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 20 mai 2005 (20.05.2005) 05104321.4 EP 0505120 20 mai 2005 (20.05.2005) FR 60/734.635 8 novembre 2005 (08.11.2005) 60/734,657 8 novembre 2005 (08.11.2005)

US US 60/734,636 8 novembre 2005 (08.11.2005) US 8 novembre 2005 (08.11.2005) US 60/734.627 60/734.634 8 novembre 2005 (08.11.2005) US 8 novembre 2005 (08.11.2005) US 60/734.658 8 novembre 2005 (08.11.2005) HS 60/734.637 60/734,659 8 novembre 2005 (08.11.2005) US

(71) Déposant (pour tous les États désignés sauf US) : SOLVAY (Société Anonyme) [BE/BE]; Rue du Prince Albert, 33, B-1050 Brussels (BE).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement): KRAFFT, Philippe [FR/BE]; Avenue Simonne, 21a, B-1640 Rhode Saint Genèse (BE), GILBEAU, Patrick [BE/BE]; Chemin de la Fontenelle, 20, B-7090 Braine-le-Comte (BE). BALTHASART, Dominique [BE/BE]; Rue du Château Bevaerd, 150, B-1120 Bruxelles (BE). SMETS,

WO 2006/100315 A2 Valentine [BE/BE]: 27. Avenue Charles Gilisquet, B-1030 Bruxelles (BE).

- (74) Mandataires: VANDE GUCHT, Anne etc.; SOLVAY (Société Anonyme), Intellectual Property Department, Rue de Ransbeek, 310, B-1120 Brussels (BE),
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible): AE, AG, AL, AM, AT, AU. AZ. BA. BB. BG. BR. BW. BY. BZ. CA. CH. CN. CO. CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA. MD. MG. MK. MN. MW. MX. MZ. NA. NG. NI. NO. NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC. VN: YU. ZA. ZM. ZW.
- (84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible) : ARIPO (BW, GH. GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR. GB. GR. HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- sur requête du déposant, avant l'expiration du délai mentionné à l'article 21.2)a)
- sans rapport de recherche internationale, sera republiée dès réception de ce rapport
- sans classification: titre et abrégé non vérifiés par l'administration chargée de la recherche internationale

En ce aui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et

[Suite sur la page suivante]

(54) Title: METHOD FOR MAKING A CHLOROHYDRIN BY CHLORINATING A POLYHYDROXYLATED ALIPHATIC HYDROCARBON

(54) Titre: PROCEDE DE FABRICATION D'UNE CHLORHYDRINE PAR CHLORATION D'UN HYDROCARBURE ALI-PHATIOUE POLY HYDROXYLE

(57) Abstract: The invention concerns a method for making a chlorohydrin including the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, whereof the alkali 🔁 and/or alkaline-earth metal content is not more than 5g/kg, an oxidizing agent and an organic acid to obtain a mixture containing at least chlorohydrin and by-products; (b) subjecting at least part of the mixture obtained at step (a) to one or more treatments in steps subsequent to step (a); oxidizing at a temperature not less than 800 °C at least at one of the steps subsequent to step (a).

(57) Abrégé: Procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes: (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, dont la teneur en métaux alcalins et/ou alcalino-terreux est inférieure ou égale à 5 g/kg, un agent oxydant et un acide organique de façon à obtenir un mélange contenant au moins de la chlorhydrine et des sous-produits (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) (c) on oxyde à une température supérieure ou égale à 800 °C à au moins une des étapes ultérieures à l'étape (a).

Process for preparing a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon

The present patent application claims the benefit of patent application FR 05.05120 and of patent application EP 05104321.4, both filed on 20 May 2005, and of provisional US patent applications 60/734659, 60/734627, 60/734657, 60/734658, 60/734635, 60/734634, 60/734637 and 60/734636, all filed on 8 November 2005, the content of all of which is incorporated here by reference.

5

10

15

20

25

30

The present invention relates to a process for preparing a chlorohydrin, more specifically to a process for preparing a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon.

Chlorohydrins are reaction intermediates in the preparation of epoxides. Dichloropropanol, for example, is a reaction intermediate in the preparation of epichlorohydrin and of epoxy resins (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol. 2, page 156, John Wiley & Sons, Inc.).

According to known processes it is possible to obtain dichloropropanol in particular by hypochlorinating allyl chloride, by chlorinating allyl alcohol and by hydrochlorinating glycerol. This latter process has the advantage that the dichloropropanol can be obtained starting from fossil raw materials or from renewable raw materials, and it is known that natural petrochemical resources, from which the fossil materials are obtained, such as petroleum, natural gas or coal, for example, are limited in their terrestrial availability.

Application WO 2005/054167 of SOLVAY SA describes a process for preparing dichloropropanol by reacting glycerol with hydrogen chloride in the presence of a catalyst such as adipic acid as catalyst. In this process the dichloropropanol is separated from the other products of the reaction and the latter are recycled to the glycerol chlorination reactor. It is possible to take off a fraction of these other reaction products via a purge and to subject said fraction to various treatment prior to possible discharge. Discharge does not constitute a solution which is acceptable from an environmental standpoint. Moreover, the extra cost associated with the pre-discharge treatment may be prohibitive for the economics of the process.

The objective of the invention is to provide a process for preparing a chlorohydrin that does not exhibit these drawbacks.

The invention accordingly provides a process for preparing a chlorohydrin, comprising the following steps:

- 5 (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof whose alkali metal and/or alkaline earth metal content is less than or equal to 5 g/kg, a chlorinating agent and an organic acid are reacted so as to give a mixture containing at least chlorohydrin and other compounds
- 10 (b) at least part of the mixture obtained in step (a) is subjected to one or more treatments in steps subsequent to step (a)
 - (c) at least one of the steps subsequent to step (a) consists in oxidation at a temperature greater than or equal to 800°C.

It has been found that, by using, in step (a) of the process, a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof which has an alkali metal and/or alkaline earth metal content of less than or equal to 5 g/kg it is possible to subject a part of the mixture obtained in step (a) to oxidation at a temperature greater than or equal to 800°C, and to obtain the following advantages:

1) recovery of the chlorinating agent;

15

25

30

35

- recovery of the useful energy content of the compounds of the reation mixture:
- 3) reduction in the amount and toxicity of the compounds for discharge.

Without wishing to be bound by any particular theoretical explanation, it is thought that the oxidation at a temperature greater than or equal to 800°C can be conducted under satisfactory conditions because the formation of deposits in the oxidation plant and the risk of degradation to its refractory materials are reduced as a result of the low alkali metal and/or alkaline earth metal content of the compounds burnt.

The term "polyhydroxylated aliphatic hydrocarbon" refers to a hydrocarbon which contains at least two hydroxyl groups attached to two different saturated carbon atoms. The polyhydroxylated aliphatic hydrocarbon may contain, but is not limited to, from 2 to 60 carbon atoms.

Each of the carbons of a polyhydroxylated aliphatic hydrocarbon bearing the hydroxyl functional group (OH) cannot possess more than one OH group and must have sp3 hybridization. The carbon atom carrying the OH group may be primary, secondary or tertiary. The polyhydroxylated aliphatic hydrocarbon used in the present invention must contain at least two sp3-hybridized carbon atoms carrying an OH group. The polyhydroxylated aliphatic hydrocarbon includes any hydrocarbon containing a vicinal diol (1,2-diol) or a vicinal triol (1,2,3-triol), including the higher, vicinal or contiguous orders of these repeating units. The definition of the polyhydroxylated aliphatic hydrocarbon also includes, for example, one or more 1,3-, 1,4-, 1,5- and 1,6-diol functional groups. The polyhydroxylated aliphatic hydrocarbon may also be a polymer such as polyvinyl alcohol. Geminal diols, for example, are excluded from this class of polyhydroxylated aliphatic hydrocarbons.

The polyhydroxylated aliphatic hydrocarbons may contain aromatic moieties or heteroatoms, including, for example, heteroatoms of halogen, sulphur, phosphorus, nitrogen, oxygen, silicon and boron type, and mixtures thereof.

10

15

20

25

30

35

Polyhydroxylated aliphatic hydrocarbons which can be used in the present invention comprise, for example, 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1-chloro-2,3-propanediol (chloropropanediol), 2-chloro-1,3-propanediol (chloropropanediol), 1,5-pentanediol, cyclohexanediols, 1,2-butanediol,

1,2-cyclohexanedimethanol, 1,2,3-propanetriol (also known as "glycerol" or "glycerin"), and mixtures thereof. With preference the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, chloropropanediol and 1,2,3-propanetriol, and mixtures of at least two thereof. More preferably the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol, chloropropanediol and 1,2,3-propanetriol, and mixtures of at least two thereof. 1,2,3-Propanetriol or glycerol is the most preferred.

The esters of polyhydroxylated aliphatic hydrocarbon may be present in the polyhydroxylated aliphatic hydrocarbon and/or may be produced in the process for preparing the chlorohydrin and/or may be prepared prior to the process for preparing the chlorohydrin. Examples of esters of the polyhydroxylated aliphatic hydrocarbon comprise ethylene glycol monoacetate, propanediol monoacetates, glycerol monoacetates, glycerol monostearates, glycerol diacetates and mixtures thereof.

The term "chlorohydrin" is used here in order to describe a compound containing at least one hydroxyl group and at least one chlorine atom attached to different saturated carbon atoms. A chlorohydrin which contains at least two hydroxyl groups is also a polyhydroxylated aliphatic hydrocarbon. Accordingly the starting material and the product of the reaction may each be chlorohydrins. In that case the "product" chlorohydrin is more chlorinated than the starting chlorohydrin, in other words has more chlorine atoms and fewer hydroxyl groups than the starting chlorohydrin. Preferred chlorohydrins are chloroethanol, chloropropanol, chloropropanediol, dichloropropanol and mixtures of at least two thereof. Dichloropropanol is particularly preferred. Chlorohydrins which are more particularly preferred are 2-chloroethanol, 1-chloropropan-2-ol, 2-chloropropan-1-ol, 1-chloropropane-2,3-diol, 2-chloropropane-1,3-diol, 1,3-dichloropropan-2-ol, 2,3-dichloropropan-1-ol and mixtures of at least two thereof.

5

10

15

20

2.5

30

35

The polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon, or the mixture thereof in the process according to the invention may be obtained starting from fossil raw materials or starting from renewable raw materials.

By fossil raw materials are meant materials obtained from the processing of petrochemical natural resources, such as petroleum, natural gas and coal, for example. Among these materials preference is given to organic compounds containing 2 and 3 carbon atoms. When the polyhydroxylated aliphatic hydrocarbon is glycerol, allyl chloride, allyl alcohol and "synthetic" glycerol are particularly preferred. By "synthetic" glycerol is meant a glycerol generally obtained from petrochemical resources. When the polyhydroxylated aliphatic hydrocarbon is ethylene glycol, ethylene and "synthetic" ethylene glycol are particularly preferred. By "synthetic" ethylene glycol is meant an ethylene glycol generally obtained from petrochemical resources. When the polyhydroxylated aliphatic hydrocarbon is propylene glycol, propylene and "synthetic" propylene glycol are particularly preferred. By "synthetic" propylene glycol is meant a propylene glycol generally obtained from petrochemical resources.

By renewable raw materials are meant materials obtained from the processing of renewable natural resources. Among these materials preference is given to "natural" ethylene glycol, "natural" propylene glycol and "natural" glycerol. "Natural" ethylene glycol, propylene glycol and glycerol are obtained

for example by conversion of sugars by thermochemical processes, it being possible for these sugars to be obtained starting from biomass, as described in "Industrial Bioproducts: Today and Tomorrow", Energetics, Incorporated for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56. One of these processes is, for example, the catalytic hydrogenolysis of sorbitol obtained by thermochemical conversion of glucose. Another process is, for example, the catalytic hydrogenolysis of xylitol obtained by hydrogenation of xylose. The xylose may for example be obtained by hydrolysis of the hemicellulose present in maize fibres. By "natural glycerol" or "glycerol obtained from renewable raw materials" is meant, in particular, glycerol obtained during the production of biodiesel or else glycerol obtained during conversions of animal or vegetable oils or fats in general, such as saponification, transesterification or hydrolysis reactions.

5

10

15

20

25

30

35

Among the oils which can be used in the process of the invention, mention may be made of all common oils, such as palm oil, palm kernel oil, copra oil, babassu oil, former or new (low erucic acid) colza oil, sunflower oil, maize oil, castor oil and cotton oil, peanut oil, soya bean oil, linseed oil and crambe oil, and all oils obtained, for example, from sunflower plants or colza plants obtained by genetic modification or hybridization.

It is also possible to employ used frying oils, various animal oils, such as fish oils, tallow, lard and even squaring greases.

Among the oils used mention may also be made of oils which have been partly modified by means, for example, of polymerization or oligomerization, such as, for example, the "stand oils" of linseed oil and of sunflower oil, and blown vegetable oils.

A particularly suitable glycerol may be obtained during the conversion of animal fats. Another particularly suitable glycerol may be obtained during the production of biodiesel. A third, very suitable glycerol may be obtained during the conversion of animal or vegetable oils or fats by transesterification in the presence of a heterogeneous catalyst, as described in documents FR 2752242, FR 2869612 and FR 2869613. More specifically, the heterogeneous catalyst is selected from mixed oxides of aluminium and zinc, mixed oxides of zinc and titanium, mixed oxides of zinc, titanium and aluminium, and mixed oxides of bismuth and aluminium, and the heterogeneous catalyst is employed in the form of a fixed bed. This latter process can be a process for producing biodiesel.

The latter process has at least two advantages over the processes based on saponification, transesterification or hydrolysis reactions which do not employ a heterogeneous catalyst. The first advantage is that the contamination of the glycerol with alkali metal and/or alkaline earth metal elements is reduced. These elements originate, for example, from the homogeneous basic reagents used in the transesterification or saponification reactions (alkaline bases) or originate from operations of neutralizing, using alkaline bases, the acidic homogeneous catalysts used during transesterification or acidic hydrolysis reactions. The use of heterogeneous catalysts as described above makes it possible substantially to reduce the contamination of the glycerol with alkali metal and alkaline earth metal elements, and also with other metallic elements. The second advantage is that the contamination of the glycerol with non-glyceric organic matter is reduced. This non-glyceric matter includes, for example, carboxylic acids, salts of carboxylic acids, fatty acid esters such as mono-, di- and triglycerides and the esters of fatty acids with the alcohols used in the transesterification.

10

15

20

25

30

35

In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon may be as described in the patent application entitled "Process for preparing chlorohydrin by converting polyhydroxylated aliphatic hydrocarbons", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin wherein a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof whose total metal content, expressed in elemental form, is greater than or equal to 0.1 µg/kg and less than or equal to 1000 mg/kg is reacted with a chlorinating agent.

In the process according to the invention it is preferred to use glycerol obtained starting from renewable raw materials.

In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof may be a crude product or a purified product, such as are specifically disclosed in application WO 2005/054167 of SOLVAY SA, from page 2 line 8 to page 4 line 2.

In the process for preparing a chlorohydrin according to the invention, the alkali metal and/or alkaline earth metal content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture

thereof is less than or equal to 5 g/kg, often less than or equal to 1 g/kg, more particularly less than or equal to 0.5 g/kg and in certain cases less than or equal to 0.01 g/kg. The alkali metal and/or alkaline earth metal content of the glycerol is generally greater than or equal to 0.1 µg/kg.

In the process for preparing a chlorohydrin according to the invention the alkali metals are generally lithium, sodium, potassium and cesium, often sodium and potassium, and frequently sodium.

5

10

15

20

25

30

35

In the process for preparing a chlorohydrin according to the invention, the lithium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 $\mu g/kg$.

In the process for preparing a chlorohydrin according to the invention, the sodium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 µg/kg.

In the process for preparing a chlorohydrin according to the invention, the potassium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μ g/kg.

In the process for preparing a chlorohydrin according to the invention, the rubidium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μ g/kg.

In the process for preparing a chlorohydrin according to the invention, the cesium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly

less than or equal to 2 mg/kg. This content is generally greater than or equal to $0.1 \,\mu g/kg$.

In the process for preparing a chlorohydrin according to the invention the alkaline earth metal elements are generally magnesium, calcium, strontium and barium, often magnesium and calcium and frequently calcium.

5

10

15

20

25

30

35

In the process for preparing a chlorohydrin according to the invention, the magnesium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μ g/kg.

In the process for preparing a chlorohydrin according to the invention, the calcium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 µg/kg.

In the process for preparing a chlorohydrin according to the invention, the strontium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μ g/kg.

In the process for preparing a chlorohydrin according to the invention, the barium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 µg/kg.

In the process for preparing a chlorohydrin according to the invention the alkali and/or alkaline earth metals are generally present in the form of salts, frequently in the form of chlorides, sulphates and mixtures thereof. Sodium chloride is the most often encountered.

In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof may contain elements other than alkali

metals and alkaline earth metals. Among such elements consideration may be given to sulphur, iron, nickel, chromium, copper, lead, arsenic, cobalt, titanium, vanadium, tin, tellurium, cadmium, antimony, mercury, selenium, zinc, aluminium, phosphorus and nitrogen. These elements may be located in the second portion obtained in step (b). Within the glycerol the sulphur content is generally less than or equal to 500 mg/kg and the nitrogen content is generally less than or equal to 500 mg/kg amount of metallic elements other than alkali metals and alkaline earth metals is generally less than or equal to 1 mg/kg for each of these elements, preferably less than or equal to 0.5 mg/kg.

5

10

15

20

25

30

35

In the process for preparing a chlorohydrin according to the invention, the chlorinating agent may be as described in application WO 2005/054167 of SOLVAY SA, from page 4 line 25 to page 6 line 2.

In the process for preparing a chlorohydrin according to the invention, the chlorinating agent may be hydrogen chloride as described in application WO 2005/054167 of SOLVAY SA, from page 4 line 30 to page 6 line 2.

Particular mention is made of a chlorinating agent which may be aqueous hydrochloric acid or hydrogen chloride which is preferably anhydrous. The hydrogen chloride may originate from a process for pyrolysing organic chlorine compounds, such as, for example, from a vinyl chloride production, from a process for producing 4,4-methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI), from metal pickling processes or from the reaction of an inorganic acid such as sulphuric or phosphoric acid with a metal chloride such as sodium chloride, potassium chloride or calcium chloride.

In one advantageous embodiment of the process for preparing a chlorohydrin according to the invention, the chlorinating agent is gaseous hydrogen chloride or an aqueous solution of hydrogen chloride, or a combination of the two.

In the process for preparing a chlorohydrin according to the invention, the hydrogen chloride may be an aqueous solution of hydrogen chloride or may be preferably anhydrous hydrogen chloride, obtained from a plant for producing allyl chloride and/or for producing chloromethanes and/or a chlorinolysis plant and/or a plant for high-temperature oxidation of chlorine compounds, as described in the application entitled "Process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon with a chlorinating agent", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin from a polyhydroxylated aliphatic hydrocarbon, from an ester of a polyhydroxylated aliphatic hydrocarbon or from a mixture thereof, and from a chlorinating agent, the chlorinating agent comprising at least one of the following compounds: nitrogen, oxygen, hydrogen, chlorine, an organic hydrocarbon compound, an organic halogen compound, an organic oxygen compound and a metal.

Particular mention is made of an organic hydrocarbon compound which is selected from saturated or unsaturated aliphatic and aromatic hydrocarbons and mixtures thereof.

Particular mention is made of an unsaturated aliphatic hydrocarbon which is selected from acetylene, ethylene, propylene, butene, propadiene, methylacetylene and mixtures thereof, of a saturated aliphatic hydrocarbon which is selected from methane, ethane, propane, butane and mixtures thereof and of an aromatic hydrocarbon which is benzene.

Particular mention is made of an organic halogen compound which is an organic chlorine compound selected from chloromethanes, chloroethanes, chloropropanes, chlorobutanes, vinyl chloride, vinylidene chloride, monochloropropenes, perchloroethylene, trichloroethylene, chlorobutadienes, chlorobenzenes and mixtures thereof.

Particular mention is made of an organic halogen compound which is an organic fluorine compound selected from fluoromethanes, fluoroethanes, vinyl fluoride, vinylidene fluoride and mixtures thereof.

Particular mention is made of an organic oxygen compound which is selected from alcohols, chloroalcohols, chloroethers and mixtures thereof.

Particular mention is made of a metal selected from alkali metals, alkaline earth metals, iron, nickel, copper, lead, arsenic, cobalt, titanium, cadmium, antimony, mercury, zinc, selenium, aluminium, bismuth and mixtures thereof.

Mention is made more particularly of a process wherein the chlorinating agent is obtained at least partly from a process for preparing allyl chloride and/or a process for preparing chloromethanes and/or a process of chlorinolysis and/or a process for oxidizing chlorine compounds at a temperature greater than or equal to 800°C.

In one particularly advantageous embodiment of the process for preparing a chlorohydrin according to the invention, the hydrogen chloride is an aqueous solution of hydrogen chloride and does not contain gaseous hydrogen chloride.

20

25

5

10

15

30

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in a reactor as described in application WO 2005/054167 of SOLVAY SA on page 6 lines 3 to 23.

Mention is made particularly of a plant made of or covered with materials which are resistant, under the reaction conditions, to the chlorinating agents, particularly to hydrogen chloride. Mention is made more particularly of a plant made of enamelled steel or of tantalum.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of the polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in apparatus which is made of or covered with materials that are resistant to chlorinating agents, as described in the patent application entitled "Process for preparing a chlorohydrin in corrosion-resistant apparatus", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin that includes a step in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent containing hydrogen chloride and to at least one other step carried out in an apparatus made of or covered with materials resistant to the chlorinating agent, under the conditions in which that step is realized. Mention is made more particularly of metallic materials such as enamelled steel, gold and tantalum and of non-metallic materials such as high-density polyethylene, polypropylene, poly(vinylidene fluoride), polytetrafluoroethylene, perfluoroalkoxyalkanes and poly(perfluoropropyl vinyl ether), polysulphones and polysulphides, and unimpregnated and impregnated graphite.

In the process for preparing a chlorohydrin according to the invention, the reaction of a polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated aliphatic hydrocarbon or a mixture thereof with the chlorinating agent may be carried out in a reaction medium, as described in the application entitled "Continuous Process for Preparing Chlorohydrins". filed in the name of SOLVAY SA on the

35

5

10

15

20

25

same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a continuous process for producing chlorohydrin in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid in a liquid reaction medium whose steady-state composition comprises polyhydroxylated aliphatic hydrocarbon and esters of polyhydroxylated aliphatic hydrocarbon for which the sum of the amounts, expressed in moles of polyhydroxylated aliphatic hydrocarbon, is greater than 1.1 mol % and less than or equal to 30 mol %, the percentage being based on the organic part of the liquid reaction medium.

The organic part of the liquid reaction medium consists of all of the organic compounds of the liquid reaction medium, in other words the compounds whose molecule contains at least one carbon atom.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof and the chlorinating agent may be carried out in the presence of a catalyst as described in application WO 2005/054167 of SOLVAY SA from page 6 line 28 to page 8 line 5.

Mention is made particularly of a catalyst based on a carboxylic acid or on a carboxylic acid derivative having an atmospheric boiling point of greater than or equal to 200°C, especially adipic acid and derivatives of adipic acid.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof and the chlorinating agent may be carried out at a catalyst concentration, temperature and pressure and for residence times as described in the application

WO 2005/054167 of SOLVAY SA from page 8 line 6 to page 10 line 10.

Mention is made particularly of a temperature of at least 20°C and not more than 160°C, of a pressure of at least 0.3 bar and not more than 100 bar and of a residence time of at least 1 h and not more than 50 h.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the

30

35

5

10

15

20

chlorinating agent may be carried out in the presence of a solvent as described in application WO 2005/054167 of SOLVAY SA at page 11 lines 12 to 36.

Mention is made particularly of organic solvents such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether, a non-aqueous solvent which is miscible with the polyhydroxylated aliphatic hydrocarbon, such as chloroethanol, chloropropanol, chloropropanediol, dichloropropanol, dioxane, phenol, cresol and mixtures of chloropropanediol and dichloropropanol, or heavy products of the reaction such as at least partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon with the chlorinating agent may be carried out in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon, as described in the application entitled "Process for preparing a chlorohydrin in a liquid phase", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin wherein a polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon and having a boiling temperature under a pressure of 1 bar absolute of at least 15°C more than the boiling temperature of the chlorohydrin under a pressure of 1 bar absolute.

In the process for preparing a chlorohydrin according to the invention the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent is preferably carried out in a liquid reaction medium. The liquid reaction medium may be a single-phase or multi-phase medium.

The liquid reaction medium is composed of all of the dissolved or dispersed solid compounds, dissolved or dispersed liquid compounds and dissolved or dispersed gaseous compounds at the temperature of the reaction.

The reaction medium comprises the reactants, the catalyst, the solvent, the impurities present in the reactants, in the solvent and in the catalyst, the reaction intermediates, the products and the by-products of the reaction.

By reactants are meant the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon and the chlorinating agent.

20

5

10

15

25

30

Among the impurities present in the polyhydroxylated aliphatic hydrocarbon mention may be made of carboxylic acids, salts of carboxylic acids, esters of fatty acid with the polyhydroxylated aliphatic hydrocarbon, esters of fatty acids with the alcohols used in the transesterification, and inorganic salts such as alkali metal or alkaline earth metal sulphates and chlorides.

When the polyhydroxylated aliphatic hydrocarbon is glycerol, the impurities in the glycerol that may be mentioned include carboxylic acids, salts of carboxylic acids, fatty acid esters such as mono-, di- and triglycerides, esters of fatty acids with the alcohols used in the transesterification and inorganic salts such as alkali metal or alkaline earth metal sulphates and chlorides.

5

10

15

20

25

30

35

Among the reaction intermediates mention may be made of monochlorohydrins of the polyhydroxylated aliphatic hydrocarbon and their esters and/or polyesters, the esters and/or polyesters of the polyhydroxylated aliphatic hydrocarbon and the esters of polychlorohydrins.

When the chlorohydrin is dichloropropanol, the reaction intermediates that may be mentioned include glycerol monochlorohydrin and its esters and/or polyesters, the esters and/or polyesters of glycerol and the esters of dichloropropanol.

The ester of polyhydroxylated aliphatic hydrocarbon may therefore be, at each instance, a reactant, an impurity of the polyhydroxylated aliphatic hydrocarbon or a reaction intermediate.

By products of the reaction are meant the chlorohydrin and water. The water may be the water formed in the chlorination reaction and/or water introduced into the process, for example via the polyhydroxylated aliphatic hydrocarbon and/or the chlorinating agent, as described in the application WO 2005/054167 of SOLVAY SA at page 2 lines 22 to 28 to page 3 lines 20 to 25, at page 5 lines 7 to 31 and at page 12 lines 14 to 19.

Among the by-products mention may be made for example of the partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon.

When the polyhydroxylated aliphatic hydrocarbon is glycerol, the byproducts that may be mentioned include, for example, the partially chlorinated and/or esterified oligomers of glycerol.

The reaction intermediates and the by-products may be formed in the different steps of the process, such as, for example, during the step of preparing the chlorohydrin and during the steps of separating off the chlorohydrin.

The liquid reaction medium may therefore contain the polyhydroxylated aliphatic hydrocarbon, the chlorinating agent in solution or dispersion in the form of bubbles, the catalyst, the solvent, the impurities present in the reactants, in the solvent and in the catalyst, such as dissolved or solid salts, for example, the reaction intermediates, the products and the by-products of the reaction.

Steps (a), (b) and (c) of the process according to the invention may be carried out in batch mode or in continuous mode. It is preferred to carry out all of the steps in continuous mode.

In the preparation process according to the invention, the organic acid may be a product originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon, or a product not originating from this process. In this latter case the product in question may be an organic acid which is used in order to catalyse the reaction of the polyhydroxylated aliphatic hydrocarbon with the chlorinating agent, and/or an acid generated in the process for preparing the chlorohydrin. Consideration is given, for example, to acids generated starting from aldehydes present in the polyhydroxylated aliphatic hydrocarbon or formed during the preparation of the chlorohydrin. The organic acid may also be a mixture of an organic acid originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon, and an organic acid not originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon.

In the process according to the invention, the esters of the polyhydroxylated aliphatic hydrocarbon may originate from the reaction between the polyhydroxylated aliphatic hydrocarbon and the organic acid, before, during or within the steps which follow the reaction with the chlorinating agent.

In the process according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture may be carried out in accordance with the methods as described in the application WO 2005/054167 of SOLVAY SA from page 12 line 1 to page 16 line 35 and page 18 lines 6 to 13. These other compounds are those mentioned above and include unconsumed reactants, the impurities present in the reactants, the catalyst, the solvent, the reaction intermediates, the water and the by-products of the reaction.

Particular mention is made of separation by azeotropic distillation of a water/chlorohydrin/chlorinating agent mixture under conditions which minimize the losses of chlorinating agent, followed by isolation of the chlorohydrin by decantation.

25

30

35

20

5

10

In the process for preparing a chlorohydrin according to the invention, the isolation of the chlorohydrin and of the other compounds from the reaction mixture may be carried out in accordance with methods of the kind described in patent application EP 05104321.4, filed in the name of SOLVAY SA on 20/05/2005 and the content of which is incorporated here by reference. A separation method including at least one separating operation intended to remove the salt from the liquid phase is particularly preferred.

5

10

15

20

25

30

35

Particular mention is made of a process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent wherein the polyhydroxylated aliphatic hydrocarbon, an ester of the polyhydroxylated aliphatic hydrocarbon or a mixture thereof that is used comprises at least one solid or dissolved metal salt, the process including a separation operation intended to remove part of the metal salt. Mention is made more particularly of a process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent wherein the polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof that is used comprises at least one chloride and/or a sodium and/or potassium sulphate and in which the separating operation intended to remove part of the metal salt is a filtering operation. Particular mention is also made of a process for preparing a chlorohydrin wherein (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent in a reaction mixture, (b) continuously or periodically, a fraction of the reaction mixture containing at least water and the chlorohydrin is removed, (c) at least a part of the fraction obtained in step (b) is introduced into a distillation step and (d) the reflux ratio of the distillation step is controlled by providing water to the said distillation step. Mention is made very particularly of a process for preparing a chlorohydrin wherein (a) a polyhydroxylated aliphatic hydrocarbon. an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with hydrogen chloride in a reaction mixture, (b) continuously or periodically, a fraction of the reaction mixture containing at least water and chlorohydrin is removed, (c) at least part of the fraction obtained in step (b) is introduced into a distillation step in which the ratio between the hydrogen chloride concentration and the water concentration in the fraction

introduced into the distillation step is smaller than the hydrogen chloride/water concentration ratio in the binary azeotropic hydrogen chloride/water composition at the distillation temperature and pressure.

In the process for preparing a chlorohydrin according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture from chlorination of the polyhydroxylated aliphatic hydrocarbon may be carried out in accordance with methods as described in the application entitled "Process for preparing a chlorohydrin", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

5

10

15

20

25

30

35

Particular mention is made of a process for preparing a chlorohydrin which comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid so as to give a mixture containing the chlorohydrin and esters of the chlorohydrin, (b) at least part of the mixture obtained in (a) is subjected to one or more treatments subsequent to step (a), and (c) the polyhydroxylated aliphatic hydrocarbon is added to at least one of the steps subsequent to step (a), in order to react at a temperature greater than or equal to 20°C with the esters of the chlorohydrin, so as to form, at least partly, esters of the polyhydroxylated aliphatic hydrocarbon. Mention is made more particularly of a process in which the polyhydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is dichloropropanol.

In the process for preparing a chlorohydrin according to the invention, the separation of the chlorohydrin and the other compounds from the reaction mixture from chlorination of the polyhydroxylated aliphatic hydrocarbon may be carried out in accordance with methods as described in the application entitled "Process for preparing a chlorohydrin starting from a polyhydroxylated aliphatic hydrocarbon", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent in a reactor which is supplied with one or more liquid streams containing less than 50 % by weight of the polyhydroxylated aliphatic hydrocarbon, of the ester of polyhydroxylated aliphatic hydrocarbon or of the mixture thereof relative to the weight of the entirety of the liquid streams introduced into the reactor.

More particular mention is made of a process comprising the following steps:

(a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent so as to give at least one mixture containing the chlorohydrin, water and the chlorinating agent, (b) at least a fraction of the mixture formed in step (a) is removed, and (c) the fraction removed in step (b) is subjected to an operation of distillation and/or stripping wherein the polyhydroxylated aliphatic hydrocarbon is added in order to isolate, from the fraction removed in step (b), a mixture containing water and the chlorohydrin and exhibiting a reduced chlorinating agent content as compared with the fraction removed in step (b).

In the process for preparing a chlorohydrin according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture from chlorination of the polyhydroxylated aliphatic hydrocarbon may be carried out in accordance with methods as described in the application entitled "Process for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference. Particular mention is made of a process for preparing a chlorohydrin that comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent so as to give a mixture containing the chlorohydrin, chlorohydrin esters and water, (b) at least a fraction of the mixture obtained in step (a) is subjected to a distillation and/or stripping treatment so as to give a portion concentrated in water, in chlorohydrin and in chlorohydrin esters, and (c) at least a fraction of the portion obtained in step (b) is subjected to a separating operation in the presence of at least one additive so as to obtain a moiety concentrated in chlorohydrin and in chlorohydrin esters and containing less than 40 % by weight of water.

The separating operation is more particularly a decantation.

In the process according to the invention, when the chlorohydrin is chloropropanol, it is generally employed in the form of a mixture of compounds comprising the isomers of 1-chloropropan-2-ol and 2-chloropropan-1-ol. This mixture generally contains more than 1 % by weight of the two isomers, preferably more than 5 % by weight and particularly more than 50 %. The mixture commonly contains less than 99.9 % by weight of the two isomers, preferably less than 95 % by weight and more particularly less than 90 % by

30

35

5

10

15

20

weight. The other constituents of the mixture may be compounds originating from the processes for preparing the chloropropanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

The mass ratio of the isomers, 1-chloropropan-2-ol and 2-chloropropan-1-ol, is commonly greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25.

5

10

15

20

25

30

35

In the process according to the invention, when the chlorohydrin is chloroethanol, it is generally employed in the form of a mixture of compounds comprising the 1-chloroethan-2-ol isomer. This mixture generally contains more than 1 % by weight of the isomer, preferably more than 5 % by weight and particularly more than 50 %. The mixture commonly contains less than 99.9 % by weight of the isomer, preferably less than 95 % by weight and more particularly less than 90 % by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the chloroethanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

In the process according to the invention, when the chlorohydrin is chloropropanediol, it is generally employed in the form of a mixture of compounds comprising the isomers of 1-chloropropane-2,3-diol and 2-chloropropane-1,3-diol. This mixture generally contains more than 1 % by weight of the two isomers, preferably more than 5 % by weight and particularly more than 50 %. The mixture commonly contains less than 99.9 % by weight of the two isomers, preferably less than 95 % by weight and more particularly less than 90 % by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the chloropropanediol, such as residual reactions, reaction by-products, solvents and, in particular, water.

The mass ratio between the 1-chloropropane-2,3-diol and 2-chloropropane-1,3-diol isomers is commonly greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25. In the process according to the invention, when the chlorohydrin is dichloropropanol, it is generally employed in the form of a mixture of compounds comprising the isomers of 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol. This mixture generally contains more than 1 % by weight of the two isomers, preferably more than 5 % by weight and in particular more than 50 %. The mixture commonly contains

less than 99.9 % by weight of the two isomers, preferably less than 95 % by weight and more particularly less than 90 % by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the dichloropropanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

5

10

15

20

25

30

35

The mass ratio between the 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol isomers is commonly greater than or equal to 0.01, often greater than or equal to 0.4, frequently greater than or equal to 1.5, preferably greater than or equal to 3.0, more preferredly greater than or equal to 7.0 and with very particular preference greater than or equal to 20.0. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25.

The chlorohydrin obtained in the process according to the invention may include a heightened amount of halogenated ketones, in particular of chloroacetone, as described in the patent application FR 05.05120 of 20/05/2005, filed in the name of the applicant, and the content of which is incorporated here by reference. The halogenated ketone content may be reduced by subjecting the chlorohydrin obtained in the process according to the invention to an azeotropic distillation in the presence of water or by subjecting the chlorohydrin to a dehydrochlorination treatment as described in this application from page 4 line 1 to page 6 line 35.

Particular mention is made of a process for preparing an epoxide wherein halogenated ketones are formed as by-products and which comprises at least one treatment of removal of at least a portion of the halogenated ketones formed. Mention is made more particularly of a process for preparing an epoxide by dehydrochlorinating a chlorohydrin of which at least one fraction is prepared by chlorinating a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof, a treatment of dehydrochlorination and a treatment by azeotropic distillation of a water/halogenated ketone mixture, which are intended to remove at least a portion of the halogenated ketones formed, and a process for preparing epichlorohydrin wherein the halogenated ketone formed is chloroacetone.

The chlorohydrin obtained in the process according to the invention may be subjected to a dehydrochlorination reaction in order to produce an epoxide, as described in the patent applications WO 2005/054167 and FR 05.05120, both filed in the name of SOLVAY SA.

The term "epoxide" is used herein to describe a compound containing at least one oxygen bridged on a carbon-carbon bond. Generally speaking, the carbon atoms of the carbon-carbon bond are adjacent and the compound may contain atoms other than carbon atoms and oxygen atoms, such as hydrogen atoms and halogens. The preferred epoxides are ethylene oxide, propylene oxide and epichlorohydrin.

5

10

15

20

25

30

35

The dehydrochlorination of the chlorohydrin may be carried out as described in the application entitled "Process for preparing an epoxide starting from a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing an epoxide wherein a reaction mixture resulting from the reaction between a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent, the reaction mixture containing at least 10 g of chlorohydrin per kg of reaction mixture, is subjected to a subsequent chemical reaction without intermediate treatment.

Mention is also made of the preparation of an epoxide that comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid so as to form the chlorohydrin and chlorohydrin esters in a reaction mixture containing the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon, water, the chlorinating agent and the organic acid, the reaction mixture containing at least 10 g of chlorohydrin per kg of reaction mixture, (b) at least a fraction of the reaction mixture obtained in step (a), this fraction having the same composition as the reaction mixture obtained in step (a), is subjected to one or more treatments in steps subsequent to step (a), and (c) a basic compound is added to at least one of the steps subsequent to step (a) in order to react at least partly with the chlorohydrin, the chlorohydrin esters, the chlorinating agent and the organic acid so as to form the epoxide and salts.

The process for preparing the chlorohydrin according to the invention, may be integrated within an overall plan for preparation of an epoxide, as described in the application entitled "Process for preparing an epoxide starting from a chlorohydrin", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing an epoxide that comprises at least one step of purification of the epoxide formed, the epoxide being at least partly prepared by a process of dehydrochlorinating a chlorohydrin, the latter being at least partly prepared by a process of chlorinating a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof.

In a first embodiment of the process according to the invention a part of the mixture obtained in step (a) is withdrawn and this part is subject to oxidation at a temperature greater than or equal to 800°C during the withdrawal.

In a second embodiment of the process according to the invention a part of the mixture obtained in step (a) is withdrawn and at least part of the mixture obtained in step (a) is subjected to one or more treatments in steps subsequent to step (a) so as to give one or more treated parts, and at least one of the treated parts is subjected to oxidation at a temperature greater than or equal to 800°C.

The treatment of step (b) may be a separating operation, for example a decantation operation, or a filtration, centrifugation, extraction, washing, evaporation, stripping, distillation, adsorption or absorption operation or combinations of at least two thereof

By oxidation is meant a reaction in the presence of at least one oxidizing agent. The oxidizing agent may be selected from water, oxygen, oxides of chlorine, oxides of nitrogen, mixtures thereof with one another and their mixtures with nitrogen.

The oxidation temperature is greater than or equal to 800°C and more particularly greater than or equal to 1000°C. This temperature is generally less than or equal to 10 000°C and often less than or equal to 1500°C, frequently less than or equal to 1450°C and more particularly less than or equal to 1400°C. High-temperature oxidation is generally carried out at a pressure which is generally greater than or equal to 0.1 bar, often greater than or equal to 0.5 bar and more particularly greater than or equal to 0.8 bar. This pressure is generally less than or equal to 3 bar, preferably less than or equal to 2.5 bar and frequently less than or equal to 1.0 s. often greater than or equal to 1.5 s and more particularly greater than or equal to 1.0 s, often greater than or equal to 1.5 s and more particularly greater than or equal to 1 s. This duration is generally less than or equal to 20 s, frequently less than or equal to 15 s and in particular less than or equal to 10 s. An example of an oxidation process at a temperature greater than or equal to 800°C is that in which organic chlorine compounds and oxygen

20

5

10

15

25

30

compounds in the form of carbon dioxide, hydrogen chloride and water are oxidized. Another example of an oxidation process at a temperature greater than or equal to 800°C is that in which organic chlorine compounds and oxygen compounds are oxidized in a plasma at a temperature which is generally greater than or equal to 3000°C.

5

10

15

20

25

30

35

In the process according to the invention the chlorinating agent, hydrogen chloride for example, generated in step (c) may be recycled to step (a) after optional processing. This processing may consist for example in an operation of absorption in an aqueous solution, followed by optional partial desorption of gaseous hydrogen chloride. This recycling is particularly advantageous when the chlorinating agent contains hydrogen chloride.

A description of high-temperature oxidation processes may be found in the reference "Ullmann's Encyclopedia of Industrial Chemistry, Fifth, Completely Revised Edition, 1985, Volume A13, pages 292-293".

In the process according to the invention, the polyhydroxylated aliphatic hydrocarbon is preferably glycerol and the chlorohydrin is preferably dichloropropanol.

When the chlorohydrin is dichloropropanol, the process according to the invention may be followed by preparation of epichlorohydrin by dehydrochlorination of dichloropropanol, and the epichlorohydrin may be used in the production of epoxy resins.

Figure 1 shows a particular scheme of plant which can be used for implementing the separating process according to the invention.

A reactor (4) is supplied in continuous mode or in batch mode with a polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated aliphatic hydrocarbon or a mixture thereof, via line (1), and with catalyst via line (2); chlorinating agent is supplied in continuous mode or in batch mode via line (3); a distillation column (6) is supplied via line (5) with vapours produced in reactor (4); a stream is taken off from column (6) via line (7) and is introduced into a condenser (8); the stream obtained from the condenser is introduced via line (9) into a phase separator (10), in which aqueous and organic phases are separated. A fraction of the separated aqueous phase is optionally recycled via line (11) to the top of the column in order to maintain the reflux. Fresh water may be introduced into line (11) via line (12). The production of chlorohydrin is distributed between the organic phase taken off via line (14) and the aqueous phase taken off via line (13). The residue from column (6) may be recycled to

reactor (4) via line (15). A fraction of the heavy products is taken off from reactor (4) via the purge (16) and is introduced via line (17) into an evaporator (18), in which a partial operation of evaporation is conducted, for example, by heating or by gas scavenging with nitrogen or with water vapour; the gaseous phase containing the majority of the chlorinating agent from stream (17) is recycled via line (19) to column (6) or via line (20) to reactor (4); a distillation or stripping column (22) is supplied with the liquid phase coming from stripping apparatus (18) via line (21); and the major part of the chlorohydrin is recovered at the top of column (22) via line (23).

5

10

15

20

25

30

35

The residue containing heavy compounds is recycled to reactor (4) via line (31); a fraction of these heavy compounds is taken off and is introduced into a pretreatment unit (34) via line (32); the heavy compounds which can be utilized in the process for chlorinating the polyhydroxylated aliphatic hydrocarbon are recycled to reactor (4) via line (35), and the non-utilizable heavy compounds are passed via line (36) into a high-temperature oxidizing unit (37) which is supplied with air via line (38), and from which a stream containing hydrogen chloride is taken off via line (41). The oxidizing unit may be optionally supplied with another stream of combustible substances (39) containing, optionally, chlorine compounds from other preparations, such as the synthesis of chloroalkanes, the synthesis of tetrachloromethane and perchloroethylene by chlorinolysis, and the synthesis of 1,2-dichloroethane. Provision of water or of an aqueous solution of hydrogen chloride may be optionally carried out via line (40) in order to reduce the chlorine content of the stream containing the hydrogen chloride produced. The hydrogen chloride obtained from the high-temperature oxidizing unit (37) is optionally recycled to the chlorinating agent supply of reactor (4) via line (42). The filtering column (25) is in that case short-circuited.

Optionally the heavy compounds obtained from column (22) are passed via line (24) to filtering unit (25), in which the liquid and solid phases are separated; a fraction of the liquid phase is recycled via line (26) to reactor (4). The recycling of the heavy compounds to reactor (4) via line (31) is in that case short-circuited. The solid may be taken off from filtering unit (25) via line (27) in the form of a solid or a solution. Solvents may be added to filtering unit (25) via lines (28) and (29) for washing and/or dissolving the solid, and may be taken off via line (27). A fraction of the liquid phase recycled to reactor (4) via line (26) is taken off and passed to a pretreatment unit (34) via line (33).

Optionally a stream is taken off from purge (16) and introduced via line (30) into filtering unit (25). Stripping apparatus (18) and distillation column (22) are in that case short-circuited.

Optionally the stream taken off from purge (16) directly supplies

5 pretreatment unit (34). The filtering column is in that case short-circuited.

Optionally the unit for pretreating heavy compounds (34) is short-circuited.

CLAIMS

- 1. Process for preparing a chlorohydrin, comprising the following steps:
- (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof whose alkali metal and/or alkaline earth metal content is less than or equal to 5 g/kg, a chlorinating agent and an organic acid are reacted so as to give a mixture containing at least chlorohydrin and other compounds

5

15

- (b) at least part of the mixture obtained in step (a) is subjected to one or more treatments in steps subsequent to step (a)
- 10 (c) at least one of the steps subsequent to step (a) consists in oxidation at a temperature greater than or equal to 800°C.
 - Process according to Claim 1, wherein the alkali metals and/or alkaline earth metals are present in the form of chlorides, sulphates or mixtures thereof.
 - 3. Process according to Claim 2, wherein the alkali metal chloride is sodium.
 - 4. Process according to Claim 2, wherein the alkali metal chloride is potassium.
 - 5. Process according to any one of Claims 1 to 4, wherein the alkali metal and/or alkaline earth metal content of the polyhydroxylated aliphatic hydrocarbon, of the ester of polyhydroxylated aliphatic hydrocarbon or of the mixture thereof is less than or equal to 1 g/kg, preferably less than or equal to 0.5 g/kg and with particular preference less than or equal to 0.01 g/kg.
- 6. Process according to any one of Claims 1 to 5, wherein the
 polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic
 hydrocarbon or the mixture thereof is obtained starting from renewable raw
 materials.
 - 7. Process according to any one of Claims 1 to 6, wherein the polyhydroxylated aliphatic hydrocarbon is selected from ethylene glycol,

propylene glycol, chloropropanediol, glycerol and mixtures of at least two thereof.

- 8. Process according to any one of Claims 1 to 6, wherein the chlorohydrin is selected from chloroethanol, chloropropanol, chloropropanolal, dichloropropanol and mixtures of at least two thereof.
- Process according to Claim 7 to 8, wherein the polyhydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is dichloropropanol.

5

10

15

20

- 10. Process according to any one of Claims 1 to 9, wherein the chlorinating agent is a combination of gaseous hydrogen chloride and an aqueous solution of hydrogen chloride, or an aqueous solution of hydrogen chloride.
- 11. Process according to any one of Claims 1 to 10, according to which, in the subsequent step, a part of the mixture obtained in step (a) is withdrawn and this part is subjected to oxidation at a temperature greater than or equal to 800°C during the withdrawal.
- 12. Process according to any one of Claims 1 to 11, wherein the treatment of step (b) is a separating operation selected from decantation, filtration, centrifugation, extraction, washing, evaporation, stripping, distillation and adsorption operations or combinations of at least two thereof.
- 13. Process according to any one of Claims 1 to 12, wherein the oxidation of step (c) is carried out at a temperature less than or equal to 1500°C, at a pressure greater than or equal to 0.1 and less than or equal to 2 bar and for a duration greater than or equal to 1.5 seconds and less than or equal to 20 seconds.
- 14. Process according to any one of Claims 1 to 13, wherein the oxidation of step (c) is carried out in the presence of at least one oxidizing agent selected from water, oxygen, oxides of chlorine, oxides of nitrogen, mixtures thereof with one another and their mixtures with nitrogen.
- 15. Process according to Claim 14, wherein a gas containing hydrogen chloride is generated in oxidation step (c).

- 16. Process according to Claim 15, wherein the hydrogen chloride generated in oxidation step (c) is separated off and recycled to step (a) after optional processing.
- 17. Process according to any one of Claims 1 to 16, wherein steps (a), (b) 5 and (c) are conducted continuously.
 - $18.\ Process$ for preparing dichloropropanol, comprising the following steps :
 - (a) glycerol whose alkali metal and/or alkaline earth metal content is less than or equal to 5 g/kg, hydrogen chloride and an organic acid are reacted so as to give a mixture containing at least dichloropropanol and by-products
 - (b) at least a fraction of the mixture obtained in step (a) is withdrawn and said fraction is subjected to oxidation at a temperature greater than or equal to 1000°C.
 - Process according to Claim 9, followed by preparation of epichlorohydrin by dehydrochlorination of dichloropropanol.

15

20. Process according to Claim 19, wherein the epichlorohydrin is used in the production of epoxy resins.

ABSTRACT

Process for preparing a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon

Process for preparing a chlorohydrin, comprising the following steps:

- (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof whose alkali metal and/or alkaline earth metal content is less than or equal to 5 g/kg, a chlorinating agent and an organic acid are reacted so as to give a mixture containing at least chlorohydrin and by-products
- (b) at least part of the mixture obtained in step (a) is subjected to one or more treatments in steps subsequent to step (a)
- (c) at least one of the steps subsequent to step (a) consists in oxidation at a temperature greater than or equal to 800°C.

No figure.

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle

Bureau international

français

R NAMERI I MENDE ING REGI REGI REGIRENT IN DE KOM REGIRENTE INDITIEN EN REGIRENTE GER

(10) Numéro de publication internationale

(43) Date de la publication internationale 28 septembre 2006 (28.09.2006)

(21) Numéro de la demande internationale :
PCT/EP2006/062444

(22) Date de dépôt international : 19 mai 2006 (19.05.2006)

(22) Date de depot international : 19 mai 2000 (19.03.2000

(26) Langue de publication : français

Langue de publication :

(30) Données relatives à la priorité : 20 mai 2005 (20.05.2005) EP 05104321.4 0505120 20 mai 2005 (20.05.2005) FR 60/734,635 8 novembre 2005 (08.11.2005) US 60/734,657 8 novembre 2005 (08.11.2005) HS 60/734,636 8 novembre 2005 (08.11.2005) US US 60/734,627 8 novembre 2005 (08.11.2005) 60/734,634 8 novembre 2005 (08.11.2005) US 8 novembre 2005 (08.11.2005) US 60/734.658 60/734.637 8 novembre 2005 (08.11.2005) US 60/734.659 8 novembre 2005 (08.11.2005) TIC

(71) Déposant (pour tous les États désignés sauf US): SOLVAY (Société Anonyme) [BE/BE]; Rue du Prince Albert. 33. B-1050 Brussels (BE).

(72) Inventeurs; et

(25) Langue de dépôt :

(75) Inventeurs/Déposants (pour US seulement): KRAFFT, Philippe [FR/BE]; Avenue Simonne, 21a, B-1640 Rhode Saint Genèse (BE). Patrick [BE/BE]; Chemin de la Fontenelle, 20, B-7090 Braine-le-Comte (BE). BALTHASAKT, Dominique [BE/BE]; Rue du Château Bevaerd. 150. B-1120 Bruxelles (BE). SMETS.

WO 2006/100315 A2

Valentine [BE/BE]; 27, Avenue Charles Gilisquet, B-1030
Bruxelles (BE).

- (74) Mandataires: VANDE GUCHT, Anne etc.; SOLVAY (Société Anonyme), Intellectual Property Department, Rue de Ransbeek, 310, B-1120 Brussels (BE).
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, D, II, N, IS, P, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, F, FR, GB, GR, HU, IE, IS, TT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GG, GW, ML, MR, NE, SN, TD, TG).

Publiée :

- sur requête du déposant, avant l'expiration du délai mentionné à l'article 21.2)a)
- sans rapport de recherche internationale, sera republiée dès réception de ce rapport
- sans classification; titre et abrégé non vérifiés par l'administration chargée de la recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et

(Suite sur la page suivante)

(54) Title: METHOD FOR MAKING A CHLOROHYDRIN BY CHLORINATING A POLYHYDROXYLATED ALIPHATIC HYDROCARBON

(54) Tite: PROCEDE DE FABRICATION D'UNE CHLORHYDRINE PAR CHLORATION D'UN HYDROCARBURE ALIPHATIQUE POLY HYDROXYLE

(57) Abstract: The invention concerns a method for making a chlorohydrin including the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, whereof the alikal if and/or alkaline-earth metal content is not more than 5g/kg, an oxidizing agent and an organic acid to obtain a mixture containing least chlorohydrin and by-products; (b) subjecting at least part of the mixture obtained at step (a) to one or more treatments in steps

subsequent to step (a); oxidizing at a temperature not less than 800 °C at least at one of the steps subsequent to step (a).

(57) Abrégé: Procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes: (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, dont la teneur en métaux alcalins et/ou alcalino-terue us inférieure ou égale à 5 g/kg, un agent oxydant et un acide organique de fact oà obtenir un mélange contenant au moins de la chlorhydrine et des sous-produits (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) (c) on oxyde à une température supérieure ou égale à 800 °C à au moins une des étapes ultérieures à l'étape (a) (c) on oxyde à une température supérieure ou égale à 800 °C à au moins une des étapes ultérieures à l'étape (a) (c) on oxyde à une température supérieure ou égale à 800 °C à au

WO 2006/100315 A2

abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

10

15

20

25

Procédé de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxylé

La présente demande de brevet revendique le bénéfice de la demande de brevet FR 05.05120 et de la demande de brevet EP 05104321.4, déposées le 20 mai 2005 et des demandes de brevet US provisoires 60/734659, 60/734627, 60/734657, 60/734658, 60/734635, 60/734634, 60/734637 et 60/734636, déposées le 8 novembre 2005, dont les contenus sont ici incorporés par référence.

La présente invention se rapporte à un procédé de fabrication d'une chlorhydrine, plus spécifiquement à un procédé de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxylé.

Les chlorhydrines sont des intermédiaires réactionnels dans la fabrication des époxydes. Le dichloropropanol, par exemple, est un intermédiaire réactionnel dans la fabrication de l'épichlorhydrine et des résines époxy (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol. 2, page 156, John Wiley & Sons, Inc.).

Selon des procédés connus, on peut obtenir le dichloropropanol notamment par hypochloration du chlorure d'allyle, par chloration de l'alcool allylique et par hydrochloration du glycérol. Ce dernier procédé présente l'avantage que le dichloropropanol peut être obtenu au départ de matières premières fossiles ou de matières premières renouvelables et il est connu que les ressources naturelles pétrochimiques, dont sont issues les matières fossiles, par exemple le pétrole, le gaz naturel ou le charbon, disponibles sur la terre sont limitées.

La demande WO 2005/054167 de SOLVAY SA décrit un procédé de fabrication de dichloropropanol par réaction entre du glycérol et du chlorure d'hydrogène en présence d'un catalyseur tel que l'acide adipique comme catalyseur. Dans ce procédé, on sépare le dichloropropanol des autres produits de la réaction et on recycle ces derniers au réacteur de chloration du glycérol. On peut soutirer une fraction de ces autres produits de réaction via une purge et soumettre cette fraction à différents traitements avant une éventuelle mise en décharge. La mise en décharge ne constitue pas une solution acceptable d'un point de vue environnemental. De plus, le surcoût lié au traitement préalable à la mise en décharge peut être prohibitif pour l'économie du procédé.

25

30

Le but de l'invention est de fournir un procédé de préparation d'une chlorhydrine qui ne présente pas ces inconvénients.

L'invention concerne dès lors un procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes :

- 5 (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, dont la teneur en métaux alcalins et/ou alcalino-terreux est inférieure ou égale à 5 g/kg, un agent oxydant et un acide organique de façon à obtenir un mélange contenant au moins de la chlorhydrine et des autres composés
- 10 (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a)
 - (c) au moins une des étapes ultérieures à l'étape (a) consiste en une oxydation à une température supérieure ou égale à 800 °C).

On a trouvé qu'en utilisant à l'étape (a) du procédé un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, ayant une teneur en métaux alcalin et/ou alcalin-terreux inférieure ou égale à 5 g/kg, on pouvait soumettre une partie du mélange obtenu à l'étape (a) à une oxydation à une température supérieure ou égale à 800 °C, et obtenir les avantages suivants:

1) récupérer de l'agent de chloration.

composés brûlés.

- récupérer le contenu énergétique valorisable des composés du milieu réactionnel
- 3) réduire la quantité et la toxicité des composés à mettre en décharge. Sans vouloir être lié par une quelconque explication théorique, on pense que l'oxydation à température supérieure ou égale à 800 °C peut être menée dans des conditions satisfaisantes parce que la formation de dépôts dans l'installation d'oxydation et le risque de dégradation des matériaux réfractaires de celle-ci sont réduits suite à la faible teneur en métaux alcalin et/ou alcalino-terreux des
- L'expression « hydrocarbure aliphatique poly hydroxylé » se rapporte à un hydrocarbure qui contient au moins deux groupements hydroxyles attachés à deux atomes de carbone différents saturés. L'hydrocarbure aliphatique poly hydroxylé peut contenir, mais n'est pas limité à, de 2 à 60 atomes de carbone.

Chacun des carbones d'un hydrocarbure aliphatique poly hydroxylé portant

35 le groupement hydroxyle (OH) fonctionnel ne peut pas posséder plus d'un
groupement OH, et doit être d'hybridation sp3. L'atome de carbone portant le

10

15

20

25

30

35

groupement OH peut être primaire, secondaire ou tertiaire. L'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention doit contenir au moins deux atomes de carbone d'hybridation sp3 portant un groupement OH. L'hydrocarbure aliphatique poly hydroxylé inclut n'importe quel hydrocarbure contenant un diol vicinal (1,2-diol) ou un triol vicinal (1,2,3-triol) y compris des ordres plus élevés de ces unités répétitives, vicinales ou contiguës. La définition de l'hydrocarbure aliphatique poly hydroxylé inclut aussi par exemple un ou plus de groupements fonctionnels 1,3-, 1,4-, 1,5- et 1,6-diol. L'hydrocarbure aliphatique poly hydroxylé peut aussi être un polymère tel que l'alcool polyvinylique. Les diols géminés, par exemple, sont exclus de cette classe d'hydrocarbures aliphatiques poly hydroxylés.

Les hydrocarbures aliphatiques poly hydroxylés peuvent contenir des entités aromatiques ou des hétéro atomes incluant par exemple les hétéro atomes de type halogène, soufre, phosphore, azote, oxygène, silicium et bore, et leurs mélanges.

Des hydrocarbures aliphatiques poly hydroxylés utilisables dans la présente invention comprennent par exemple, le 1,2-éthanediol (éthylène glycol), le 1,2-propanediol (propylène glycol), le 1,3-propanediol, le 1-chloro-2,3-propanediol (chloropropanediol), le 2-chloro-1,3-propanediol (chloropropanediol), le 1,4-butanediol, le 1,5-pentanediol, les cyclohexanediols, le 1,2-butanediol, le 1,2-cyclohexanediméthanol, le 1,2,3-propanetriol (aussi connu comme « glycérol » ou « glycérine »), et leurs métanges. De façon préférée, l'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention inclut par exemple le 1,2-éthanediol, le 1,2-propanediol, le 1,3-propanediol, le chloropropanediol et 1,2,3-propanetriol, et les métanges d'au

1,3-propanediol, le chloropropanediol et 1,2,3-propanetriol, et les mélanges d'au moins deux d'entre-eux. De façon plus préférée, l'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention inclut par exemple le 1,2-éthanediol, le 1,2-propanediol, le chloropropanediol et 1,2,3-propanetriol, et les mélanges d'au moins deux d'entre-eux. Le 1,2,3-propanetriol ou glycérol est le plus préféré.

Les esters d'hydrocarbure aliphatique poly hydroxylé peuvent être présents dans l'hydrocarbure aliphatique poly hydroxylé et/ou être produits dans le procédé de fabrication de la chlorhydrine et/ou être fabriqués préalablement au procédé de fabrication de la chlorhydrine. Des exemples d'esters de l'hydrocarbure aliphatique poly hydroxylé comprennent le monoacétate de

10

15

20

25

30

35

l'éthylène glycol, les monoacétates de propanediol, les monoacétates de glycérol, les monostéarates de glycérol, les diacétates de glycérol et leurs mélanges.

L'expression « chorhydrine » est ici utilisée pour décrire un composé contenant au moins un groupement hydroxyle et au moins un atome de chlore attaché à des différents atomes de carbone saturés. Une chlorhydrine qui contient au moins deux groupements hydroxyles est aussi un hydrocarbure aliphatique poly hydroxylé. Donc, le matériau de départ et le produit de la réaction peuvent chacun être des chlorhydrines. Dans ce cas, la chlorohydrine « produit » est plus chlorée que la chlorhydrine de départ, c'est-à-dire qu'elle a plus d'atomes de chlore et moins de groupements hydroxyles que la chlorhydrine de départ. Des chlorhydrines préférées sont le chloroéthanol, le chloropropanol, le chloropropanediol, le dichloropropanol est particulièrement préféré. Des chlorhydrines plus particulièrement préférées sont le 2-chloropropane-2-ol, le 2-chloropropane-1-ol, le 1-chloropropane-2,3-diol, le 1,3-dichloropropane-2-ol, le 2,3-dichloropropane-1-ol et les mélanges d'au moins deux d'entre-eux.

L'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, dans le procédé selon l'invention peuvent être obtenus au départ de matières premières fossiles ou au départ de matières premières renouvelables, de préférence au départ de matières premières renouvelables.

Par matières premières fossiles, on entend désigner des matières issues du traitement des ressources naturelles pétrochimiques, par exemple le pétrole, le gaz naturel, et le charbon. Parmi ces matières, les composés organiques comportant 2 et 3 atomes de carbone sont préférés. Lorsque l'hydrocarbure aliphatique poly hydroxylé est le glycérol, le chlorure d'allyle, l'alcool allylique et le glycérol « synthétique » sont particulièrement préférés. Par glycérol « synthétique », on entend désigner un glycérol généralement obtenu à partir de ressources pétrochimiques. Lorsque l'hydrocarbure aliphatique poly hydroxylé est l'éthylène glycol, l'éthylène et l'éthylène glycol « synthétique » sont particulièrement préférés. Par éthylène glycol « synthétique », on entend désigner un éthylène glycol généralement obtenu à partir de ressources pétrochimiques. Lorsque l'hydrocarbure aliphatique poly hydroxylé est le propylène glycol, le propylène et le propylène glycol « synthétique » sont particulièrement préférés. Par propylène glycol « synthétique », on entend

30

35

désigner un propylène glycol généralement obtenu à partir de ressources pétrochimiques.

Par matières premières renouvelables, on entend désigner des matières issues du traitement des ressources naturelles renouvelables. Parmi ces matières, 5 l'éthylène glycol « naturel », le propylène glycol « naturel » et le glycérol « naturel » sont préférés. De l'éthylène glycol, du propylène glycol et du glycérol « naturels » sont par exemple obtenus par conversion de sucres via des procédés thermochimiques, ces sucres pouvant être obtenus au départ de biomasse, comme décrit dans "Industrial Bioproducts: Today and Tomorrow, 10 Energetics, Incorporated for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56". Un de ces procédés est par exemple l'hydrogénolyse catalytique du sorbitol obtenu par conversion thermochimique du glucose. Un autre procédé est par exemple l'hydrogénolyse catalytique du xylitol obtenu par 15 hydrogénation du xylose. Le xylose peut par exemple être obtenu par hydrolyse de l'hemicellulose contenue dans les fibres de maïs. Par « glycérol naturel » ou « glycérol obtenu à partir de matières premières renouvelables » on entend désigner en particulier du glycérol obtenu au cours de la fabrication de biodiesel ou encore du glycérol obtenu au cours de transformations de graisses ou huiles 20 d'origine végétale ou animale en général telles que des réactions de saponification, de trans-estérification ou d'hydrolyse.

Parmi les huiles utilisables dans le procédé de l'invention, on peut citer toutes les huiles courantes, comme les huiles de palmiste, de coprah, de babassu, de colza ancien ou nouveau, de tournesol, de maïs, de ricin et de coton, les huiles d'arachide, de soja, de lin et de crambe et toutes les huiles issues par exemple des plantes de tournesol ou de colza obtenues par modification génétique ou hybridation.

On peut même utiliser des huiles de friture usagées, des huiles animales variées, comme les huiles de poisson, le suif, le saindoux et même des graisses d'équarrissage.

Parmi les huiles utilisées, on peut encore indiquer des huiles partiellement modifiées par exemple par polymérisation ou oligomérisation comme par exemple les "standolies" d'huiles de lin, de tournesol et les huiles végétales soufflées.

Un glycérol particulièrement adapté peut être obtenu lors de la transformation de graisses animales. Un autre glycérol particulièrement adapté.

10

15

20

25

30

35

peut être obtenu lors de la fabrication de biodiesel. Un troisième glycérol tout particulièrement bien adapté peut être obtenu lors de la transformation de graisses ou d'huiles, animales ou végétales, par trans-estérification en présence d'un catalyseur hétérogène, tel que décrit dans les documents FR 2752242, FR 2869612 et FR 2869613. Plus spécifiquement, le catalyseur hétérogène est choisi parmi les oxydes mixtes d'aluminium et de zinc, les oxydes mixtes de zinc et de titane, les oxydes mixtes de zinc, de titane et d'aluminium, et les oxydes mixtes de bismuth et d'aluminium, et le catalyseur hétérogène est mis en œuvre sous la forme d'un lit fixe. Ce dernier procédé peut être un procédé de fabrication de biodiesel.

Ce dernier procédé présente au moins deux avantages par rapport aux procédés basés sur des réactions de saponification, de trans-estérification ou d'hydrolyse qui ne font pas appel à un catalyseur hétérogène. Le premier avantage est que la contamination du glycérol par des éléments alcalins et/ou alcalino-terreux est réduite. Ces derniers proviennent par exemple, des réactifs basiques homogènes utilisés dans les réactions de trans-estérification ou de saponification (bases alcalines) ou proviennent des opérations de neutralisation, par des bases alcalines, des catalyseurs homogènes acides utilisés lors des réactions de trans-estérification ou d'hydrolyse acide. L'utilisation de catalyseurs hétérogènes tels que décrits ci-dessus permet de réduire fortement la contamination du glycérol par les éléments alcalins et alcalino-terreux, ainsi que par d'autres éléments métalliques. Le deuxième avantage est que la contamination du glycérol par des matières organiques non glycérineuses est réduite. Ces matières non glycérineuses comprennent par exemple les acides carboxyliques, les sels d'acides carboxyliques, les esters d'acide gras tels que les mono-, les di- et les triglycérides et les esters d'acides gras avec les alcools utilisés lors de la trans-estérification.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'hydrocarbure aliphatique poly hydroxylé peut être tel que décrit dans la demande de brevet intitulée « Procédé de préparation de chlorhydrine par conversion d'hydrocarbures aliphatiques poly hydroxylés » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine dans lequel on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un

10

15

20

25

30

35

mélange d'entre eux, dont la teneur totale en métaux exprimés sous forme d'éléments est supérieure ou égale à 0,1 µg/kg et inférieure ou égale à 1 000 mg/kg, avec un agent de chloration.

Dans le procédé selon l'invention, on préfère utiliser du glycérol obtenu au départ de matières premières renouvelables.

Dans le procédé de fabrication d'une chlorhdyrine selon l'invention, l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, peut être un produit brut ou un produit épuré, tels que spécifiquement divulgués dans la demande

WO 2005/054167 de SOLVAY SA, de la page 2, ligne 8, à la page 4, ligne 2.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en métaux alcalins et/ou alcalino-terreux de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est inférieure ou égale à 5 g/kg, souvent inférieure ou égale à 1 g/kg, plus particulièrement inférieure ou égale à 0,5 g/kg et dans certains cas inférieure ou égale à 0,01 g/kg. La teneur métaux alcalins et/ou alcalino-terreux du glycérol est généralement supérieure ou égale à 0,1 μg/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, les métaux alcalins sont généralement le lithium, le sodium, le potassium et le césium, souvent le sodium et le potassium, et fréquemment le sodium.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en lithium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en sodium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0.1 1 g/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en potassium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg

15

20

25

30

35

et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en rubidium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en césium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, les éléments alcalino-terreux sont généralement le magnésium, le calcium, le strontium et le barium, souvent le magnésium et le calcium et fréquemment le calcium.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en magnésium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en calcium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en strontium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0.1 ug/kg.

10

15

20

25

30

35

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en barium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 ug/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, les métaux alcalins et/ou alcalino-terreux sont généralement présents sous la forme de sels, fréquemment sous la forme de chlorures, de sulfates et de leurs mélanges. Le chlorure de sodium est le plus souvent rencontré.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, peut contenir d'autres éléments que les métaux alcalins et alcalino-terreux. Parmi ceux-ci, on pense au soufre, au fer, au nickel, au chrome, au cuivre, au plomb, à l'arsenic, au cobalt, au titane, au vanadium, à l'étain, au tellure, au cadmium, à l'antimoine, au mercure, au sélénium, au zinc, à l'aluminium, au phosphore et à l'azote. Ces éléments peuvent se retrouver dans la deuxième portion obtenue à l'étape (b). Dans le glycérol, la teneur en soufre est généralement inférieure ou égale à 500 mg/kg et la teneur en azote est généralement inférieure ou égale à 500 mg/kg. La teneur en éléments métalliques autres que les métaux alcalins et alcalino-terreux est pour chacun de ces éléments généralement inférieure ou égale à 1 mg/kg, de préférence inférieure ou égale à 0,5 mg/kg.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'agent de chloration peut être tel que décrit dans la demande WO 2005/054167 de SOLVAY SA. de la page 4, ligne 25, à la page 6, ligne 2.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'agent de chloration peut être du chlorure d'hydrogène peut être tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, de la page 4, ligne 30, à la page 6, ligne 2.

Mention particulière est faite d'un agent de chloration qui peut être de l'acide chlorhydrique aqueux ou du chlorure d'hydrogène de préférence anhydre. Le chlorure d'hydrogène peut provenir d'un procédé de pyrolyse de composés organiques chlorés comme par exemple d'une fabrication de chlorure de vinyle, d'un procédé de fabrication de 4,4-méthylènediphenyl diisocyanate (MDI) ou dede toluène diisocyanate (TDI), de procédés de décapage des métaux ou d'une

WO 2006/100315

5

10

15

20

25

30

35

réaction entre un acide inorganique comme l'acide sulfurique ou phosphorique et un chlorure métallique tel que le chlorure de sodium, le chlorure de potassium ou le chlorure de calcium.

Dans un mode de réalisation avantageux du procédé de fabrication d'une chlorhydrine selon l'invention, l'agent de chloration est du chlorure d'hydrogène gazeux ou une solution aqueuse de chlorure d'hydrogène ou une combinaison des deux.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, le chlorure d'hydrogène peut être une solution aqueuse de chlorure d'hydrogène ou du chlorure d'hydrogène de préférence anhydre, issu d'une installation de fabrication de chlorure d'allyle et/ou de fabrication de chlorométhanes et/ou de chlorinolyse et/ou d'oxydation à haute température de composés chlorés tels que décrit dans la demande initiulée « Procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé et un agent de chloration » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine à partir d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, et d'un agent de chloration, ce dernier contenant au moins un des composés suivants : azote, oxygène, hydrogène, chlore, un composé organique hydrocarboné, un composé organique halogéné, un composé organique oxygéné et un métal.

Mention particulière est faite d'un composé organique hydrocarboné qui est choisi parmi les hydrocarbures aromatiques, aliphatiques saturés ou insaturés et leurs mélanges.

Mention particulière est faite d'un hydrocarbure aliphatique insaturé qui est choisi parmi l'acétylène, l'éthylène, le propylène, le butène, le propadiène, le méthylacétylène, et leurs mélanges, d'un hydrocarbure aliphatique saturé qui est choisi parmi le méthane, l'éthane, le propane, le butane, et leurs mélanges, et d'un hydrocarbure aromatique qui est le benzène.

Mention particulière est faite d'un composé organique halogéné qui est un composé organique chloré choisi parmi les chlorométhanes, les chloroéthanes, les chloropropanes, les chlorobutanes, le chlorure de vinyle, le chlorure de vinylidène, les monochloropropènes, le perchloroéthylène, le trichloréthylène, les chlorobutadiène, les chlorobenzènes et leurs mélanges.

10

15

20

25

30

35

Mention particulière est faite d'un composé organique halogéné qui est un composé organique fluoré choisi parmi les fluorométhanes, les fluorore de vinyle, le fluorure de vinylidène, et leurs mélanges.

Mention particulière est faite d'un composé organique oxygéné qui est choisi parmi les alcools, les chloroalcools, les chloroéthers et leurs mélanges

Mention particulière est faite d'un métal choisi parmi les métaux alcalins, les métaux alcalino-terreux, le fer, le nickel, le cuivre, le plomb, l'arsenic, le cobalt, le titane, le cadmium, l'antimoine, le mercure, le zinc, le sélénium, l'aluminium, le bismuth, et leurs mélanges.

Mention est plus particulièrement faite d'un procédé dans lequel l'agent de chloration est issu au moins partiellement d'un procédé de fabrication de chlorure d'allyle et/ou d'un procédé de fabrication de chlorométhanes et/ou d'un procédé de chlorinolyse et/ou d'un procédé d'oxydation de composés chlorés à une température supérieure ou égale à 800 °C.

Dans un mode de réalisation particulièrement avantageux du procédé de fabrication d'une chlorhydrine selon l'invention, le chlorure d'hydrogène est une solution aqueuse de chlorure d'hydrogène et ne comprend pas de chlorure d'hydrogène gazeux.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration, peut être effectuée dans un réacteur tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, à la page 6, lignes 3 à 23.

Mention est particulièrement faite d'une installation réalisée en, ou recouverte de, matériaux résistants dans les conditions de la réaction aux agents de chloration, en particulier au chlorure d'hydrogène. Mention est plus particulièrement faite d'une installation réalisée en acier émaillé ou en tantale.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration, peut être effectuée dans des équipements, réalisés en ou recouverts de, matériaux résistant aux agents de chloration, tels que décrit dans la demande intitulée « Procédé de fabrication d'une chlorhydrine dans des équipements résistant à la corrosion » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.

10 -

15

20

25

30

35

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine comprenant une étape dans laquelle on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, à une réaction avec un agent de chloration contenant du chlorure d'hydrogène et au moins une autre étape effectuée dans un équipement, réalisé en ou recouvert de, matériaux résistant à l'agent de chloration, dans les conditions de réalisation de cette étape. Mention est plus particulièrement faite de matériaux métalliques tels que l'acier émaillé, l'or et le tantale et de matériaux, non-métalliques tels que le polyéthylène haute densité, le polypropylène, le poly(fluorure-de-vinylidène), le polytétrafluoroéthylène, les perfluoro alcoxyalcanes et le poly(perfluoropropylvinyléther), les polysulfones et les polysulfures, le graphite et le graphite imprégné.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, et l'agent de chloration, peut être effectuée dans un milieu réactionnel, tel que décrit dans la demande intitulée « Procédé continu de fabrication de chlorhydrines » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé continu de production de chlorhydrine dans lequel on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, avec un agent de chloration et un acide organique dans un milieu réactionnel liquide dont la composition à l'état stationnaire comprend de l'hydrocarbure aliphatique poly hydroxylé et des esters de l'hydrocarbure aliphatique poly hydroxylé et seneurs exprimée en mole d'hydrocarbure aliphatique poly hydroxylé est supérieure à 1,1 mol % et inférieure ou égale à 30 mol %, le pourcentage étant rapporté à la partie organique du milieu réactionnel liquide.

La partie organique du milieu réactionnel liquide consiste en l'ensemble des composés organiques du milieu réactionnel liquide c'est-à-dire les composés dont la molécule contient au moins 1 atome de carbone.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration,

10

15

20

2.5

30

35

peut être effectuée en présence d'un catalyseur tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, de la page 6, ligne 28, à la page 8, ligne 5.

Mention est particulièrement faite d'un catalyseur basé sur un acide carboxylique ou sur un dérivé d'acide carboxylique ayant un point d'ébullition atmosphérique supérieur ou égal à 200 °C, en particulier l'acide adipique et les dérivés de l'acide adipique.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration peut être effectuée à une concentration en catalyseur, une température, à une pression et pour des temps de séjour tels que décrits dans la demande WO 2005/054167 de SOLVAY SA, de la page 8, ligne 6 à la page 10, ligne 10.

Mention est particulièrement faite d'une température d'au moins 20 °C et d'au plus 160 °C, d'une pression d'au moins 0,3 bar et d'au plus, 100 bar, et d'un temps de séjour d'au moins 1 h et d'au plus 50 h.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration peut être effectuée en présence d'un solvant tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, à la page 11, lignes 12 à 36.

Mention est particulièrement faite d'un solvant organique tel qu'un solvant organique chloré, un alcool, une cétone, un ester ou un éther, un solvant non aqueux miscible avec l'hydrocarbure aliphatique polyhydroxylé tel que le chlroéthanol, le chloropropanol, le chloropropanediol, le dichloropropanol, le dioxanne, le phénol, le crésol, et les mélanges de chloropropanediol et de dichloropropanol, ou des produits lourds de la réaction tels que les oligomères de l'hydrocarbure aliphatique poly hydroxylé au moins partiellement chlorés et/ou estérifiés.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé et l'agent de chloration peut être effectuée en présence d'une phase liquide comprenant des composés lourds autres que l'hydrocarbure aliphatique poly hydroxylé, comme décrit dans la demande intitulée « Procédé de fabrication d'une chlorhydrine dans une phase liquide » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine, dans lequel on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, à une réaction avec un agent de chloration, en présence d'une phase liquide comprenant des composés lourds autres que l'hydrocarbure aliphatique poly hydroxylé et dont la température d'ébullition sous une pression de 1 bar absolu est d'au moins 15 °C supérieure à la température d'ébullition de la chlorhydrine sous une pression de 1 bar absolu.

Dans le procédé de fabrication de l'époxyde selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration est préférentiellement effectuée dans un milieu réactionnel liquide. Le milieu réactionnel liquide peut être mono- ou multiphasique.

10

15

20

25

30

Le milieu réactionnel liquide est constitué par l'ensemble des composés solides dissous ou dispersés, liquides dissous ou dispersés et gazeux dissous ou dispersés, à la température de la réaction.

Le milieu réactionnel comprend les réactifs, le catalyseur, le solvant, les impuretés présentes dans les réactifs, dans le solvant et dans le catalyseur, les intermédiaires de réaction. les produits et les sous-produits de la réaction.

Par réactifs, on entend désigner l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé et l'agent de chloration.

Parmi les impuretés présentes dans l'hydrocarbure aliphatique poly hydroxylé, on peut citer les acides carboxyliques, les sels d'acides carboxyliques, les esters d'acide gras avec l'hydrocarbure aliphatique poly hydroxylé, les esters d'acides gras avec les alcools utilisés lors de la trans-estérification, les sels inorganiques tels que les chlorures et les sulfates alcalins ou alcalino-terreux.

Lorsque l'hydrocarbure aliphatique poly hydroxylé est le glycérol, on peut citer parmi les impuretés du glycérol les acides carboxyliques, les sels d'acides carboxyliques, les esters d'acide gras tels que les mono-, les di- et les triglycérides, les esters d'acides gras avec les alcools utilisés lors de la transestérification, les sels inorganiques tels que les chlorures et les sulfates alcalins ou alcalino-terreux.

Parmi les intermédiaires réactionnels on peut citer les monochlorhydrines de l'hydrocarbure aliphatique poly hydroxylé et leurs esters et/ou polyesters, les esters et/ou polyesters de l'hydrocarbure aliphatique poly hydroxylé et les esters des polychlorhydrines.

WO 2006/100315 PCT/EP2006/062444

Lorsque la chlorhydrine est le dichloropropanol, on peut citer parmi les intermédiaires réactionnels, la monochlorhydrine de glycérol et ses esters et/ou polyesters, les esters et/ou polyesters de glycérol et les esters de dichloropropanol.

L'ester d'hydrocarbure aliphatique poly hydroxylé peut donc être selon le cas, un réactif, une impureté de l'hydrocarbure aliphatique poly hydroxylé ou un intermédiaire réactionnel.

5

10

15

20

25

30

35

Par produits de la réaction, on entend désigner la chlorhydrine et l'eau. L'eau peut être l'eau formée dans la réaction de chloration et/ou de l'eau introduite dans le procédé, par exemple via l'hydrocarbure aliphatique poly hydroxylé et/ou l'agent de chloration, tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, à la page 2, lignes 22 à 28, à la page 3, lignes 20 à 25, à la page 5, lignes 7 à 31 et à la page 12, lignes 14 à 19.

Parmi les sous-produits, on peut citer par exemple, les oligomères

l'hydrocarbure aliphatique poly hydroxylé partiellement chlorés et/ou estérifiés.

Lorsque l'hydrocarbure aliphatique poly hydroxylé est le glycérol, parmi les sous-produits, on peut citer par exemple, les oligomères du glycérol partiellement chlorés et/ou estérifiés.

Les intermédiaires réactionnels et les sous-produits peuvent être formés dans les différentes étapes du procédé comme par exemple, au cours de l'étape de fabrication de la chlorhydrine et au cours des étapes de séparation de la chlorhydrine.

Le milieu réactionnel liquide peut ainsi contenir l'hydrocarbure aliphatique poly hydroxylé, l'agent de chloration dissous ou dispersé sous forme de bulles, le catalyseur, le solvant, les impuretés présentes dans les réactifs, le solvant et le catalyseur, comme des sels dissous ou solides par exemple, le solvant, le catalyseur, les intermédiaires réactionnels, les produits et les sous-produits de la réaction.

Les étapes (a), (b) et (c) du procédé selon l'invention peuvent être effectuées en mode batch ou en mode continu. On préfère effectuer toutes les étapes en mode continu.

Dans le procédé de fabrication selon l'invention, l'acide organique peut être un produit provenant du procédé de fabrication de l'hydrocarbure aliphatique poly hydroxylé ou un produit ne provenant pas de ce procédé. Dans ce dernier cas, il peut s'agir d'un acide organique utilisé pour catalyser la réaction entre l'hydrocarbure aliphatique poly hydroxylé et l'agent de chloration

et/ou d'un acide généré dans le procédé de fabrication de la chlorhydrine. On pense par exemple à des acides générés au départ d'aldéhydes présents dans l'hydrocarbure aliphatique poly hydroxylé ou formés lors de la fabrication de la chlorhydrine. L'acide organique peut aussi être un mélange d'acide organique provenant du procédé de fabrication de l'hydrocarbure aliphatique poly hydroxylé et d'un acide organique ne provenant pas du procédé de fabrication l'hydrocarbure aliphatique poly hydroxylé.

5

10

15

20

25

30

35

Dans le procédé selon l'invention, les esters de l'hydrocarbure aliphatique polyhydroxylé peuvent provenir de la réaction entre l'hydrocarbure aliphatique polyhydroxylé et l'acide organique, avant, pendant ou dans les étapes qui suivent la réaction avec l'agent de chloration.

Dans le procédé selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel peut être effectuée selon les modes tels que décrits dans la demande WO 2005/054167 de SOLVAY SA, de la page 12, ligne 1, à la page 16, ligne 35 et à la page 18, lignes 6 à 13. Ces autres composés sont ceux mentionnés ci-dessus et comprennent les réactifs non consommés, les impuretés présentes dans les réactifs, le catalyseur, le solvant, les intermédiaires réactionnels. L'eau et les sous produits de la réaction.

Mention particulière est faite d'une séparation par distillation azéotropique d'un mélange eau/chlorhydrine/agent de chloration dans des conditions minimisant les pertes en agent de chloration suivie d'une séparation de la chlorhydrine par décantation.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel, peut être effectuée selon des modes tels que décrits dans la demande de brevet EP 05104321.4 déposée au nom de SOLVAY SA le 20/05/2005 dont le contenu est ici incorporé par référence. Un mode de séparation comprenant au moins une opération de séparation destinée à enlever le sel de la phase liquide est particulièrement préféré.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, et un agent de chloration dans lequel l'hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, utilisé contient au moins un sel métallique solide ou dissous, le procédé comprenant une opération de séparation destinée à enlever une partie du sel

35

métallique. Mention est plus particulièrement est faite d'un procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, et un agent de chloration dans lequel l'hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly 5 hydroxylé ou un mélange d'entre eux, utilisé contient au moins un chlorure et/ou un sulfate de sodium et/ou potassium et dans lequel l'opération de séparation destinée à enlever une partie du sel métallique est un opération de filtration. Mention est aussi particulièrement faite d'un procédé de fabrication d'une chlorhydrine dans lequel (a) on soumet un hydrocarbure aliphatique poly 10 hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, à une réaction avec un agent de chloration dans un milieu réactionnel, (b) on prélève en continu ou périodiquement une fraction du milieu réactionnel contenant au moins de l'eau et la chlorhydrine, (c) au moins une 15 partie de la fraction obtenue à l'étape (b) est introduite dans une étape de distillation et (d) le taux de reflux de l'étape de distillation est contrôlé en fournissant de l'eau à ladite étape de distillation. Mention est tout particulièrement faite d'un procédé de fabrication d'une chlorhydrine dans lequel (a) on soumet un hydrocarbure aliphatique poly hydroxylé,un ester d'un 20 hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, à une réaction avec du chlorure d'hydrogène dans un milieu réactionnel, (b) on prélève en continu ou périodiquement une fraction du milieu réactionnel contenant au moins de l'eau et la chlorhydrine. (c) au moins une partie de la fraction obtenue à l'étape (b) est introduite dans une étape de distillation, dans lequel le rapport 25 entre la concentration en chlorure d'hydrogène et la concentration en eau dans la fraction introduite dans l'étape de distillation est plus petit que le rapport de concentrations chlorure d'hydrogène/eau dans la composition binaire azéotropique chlorure d'hydrogène/eau à la température et à la pression de distillation.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l'hydrocarbure aliphatique polyhydroxylé peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de fabrication d'une chlorhydrine » déposée au nom de SOLVAY SA, le même jour que la présente demande, et dont le contenu est ici incorporé par référence.

10

15

20

25

30

35

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes (a) on fait réagir un hydrocarbure aliphatique polyhydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, avec un agent de chloration et un acide organique de façon à obtenir un mélange contenant de la chlorhydrine et des esters de la chlorhydrine, (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) et (c) on ajoute de l'hydrocarbure aliphatique polyhydroxylé à au moins une des étapes ultérieures à l'étape (a), pour qu'il réagisse à une température supérieure ou égale à 20 °C, avec les esters de la chlorhydrine de façon à former au moins partiellement des esters de l'hydrocarbure aliphatique polyhydroxylé. Mention est plus particulièrement faite d'un procédé dans lequel l'hydrocarbure aliphatique polyhydroxylé est le glycérol et la chlorhydrine est le dichloropropanol.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l'hydrocarbure aliphatique polyhydroxylé peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de fabrication d'une chlorhydrine au départ d'un hydrocarbure aliphatique poly hydroxylé » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication de chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, et un agent de chloration dans un réacteur qui est alimenté en un ou plusieurs flux liquides contenant moins de 50 % en poids de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique polyhydroxylé, ou du mélange d'entre eux, par rapport au poids de la totalité des flux liquides introduits dans le réacteur. Mention plus particulière est faite d'un procédé comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique polyhydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, avec un agent de chloration de façon à obtenir au moins un milieu contenant du de la chlorhydrine, de l'eau et de l'agent de chloration, (b) on prélève au moins une fraction du milieu formé à l'étape (a) et (c) on soumet la fraction prélevée à l'étape (b) à une opération de distillation et/ou de stripping dans laquelle on ajoute de l'hydrocarbure aliphatique poly hydroxylé de façon à séparer de la

10

15

20

25

30

35

fraction prélevée à l'étape (b) un mélange contenant de l'eau et de la chlorhydrine présentant une teneur réduite en agent de chloration comparée à celle de la fraction prélevée à l'étape (b).

Dans le procédé de fabrication de l'époxyde selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l'hydrocarbure aliphatique polyhydroxylé peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de conversion d'hydrocarbures aliphatiques poly hydroxylés en chlorhydrines » déposée au nom de SOLVAY SA le même jour que la présente demande et dont les contenus sont ici incorporés par référence. Mention particulière est faite d'un procédé de préparation d'une chlorhydrine comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique polyhydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, avec un agent de chloration de facon à obtenir un mélange contenant de la chlorhydrine, des esters de chlorhydrine et de l'eau, (b) on soumet au moins une fraction du mélange obtenu à l'étape (a) à un traitement de distillation et/ou de stripping de façon à obtenir une partie concentrée en eau, en chlorhydrine et en esters de chlorhydrine, et (c) on soumet au moins une fraction de la partie obtenue à l'étape (b) à une opération de séparation en présence d'au moins un additif de facon à obtenir une portion concentrée en chlorhydrine et en esters de chlorhydrine et qui contient moins de 40 % en poids d'eau.

L'opération de séparation est plus particulièrement une décantation.

Dans le procédé selon l'invention, lorsque la chlorhydrine est le chloropropanol, celui-ci est généralement mis en œuvre sous la forme d'un mélange de composés comprenant les isomères de 1-chloropropane-2-ol et de 2-chloropropane-1-ol. Ce mélange contient généralement plus de 1 % en poids des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloropropanol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.

Le rapport massique entre les isomères 1-chloropropane-2-ol et 2-chloropropane-1-ol est usuellement supérieur ou égal à 0,01, de préférence supérieur ou égal 0,4. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25. WO 2006/100315

5

10

15

20

25

30

35

Dans le procédé selon l'invention, lorsque la chlorhydrine est le chloroéthanol, celui-ci est généralement mis en œuvre sous la forme d'un mélange de composés comprenant l'isomère 1-chloroéthane-2-ol. Ce mélange contient généralement plus de 1 % en poids de l' isomère, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids de l' isomère, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloroéthanol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.

Dans le procédé selon l'invention, lorsque la chlorhydrine est le chloropropanediol, celui-ci est généralement mis en œuvre sous la forme d'un mélange de composés comprenant les isomères de 1-chloropropane-2,3-diol et de 2-chloropropane-1,3-diol. Ce mélange contient généralement plus de 1 % en poids des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloropropanediol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.

Le rapport massique entre les isomères 1-chloropropane-2,3-diol et 2-chloropropane-1,3-diol est usuellement supérieur ou égal à 0,01, de préférence supérieur ou égal à 0,4. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25. Dans le procédé selon l'invention, lorsque la chlorhydrine est le dichloropropanol, celui-ci est généralement mis en œuvre sous la forme d'un mélange de composés comprenant les isomères de 1,3-dichloropropane-2-ol et de 2,3-dichloropropane-1-ol. Ce mélange contient généralement plus de 1 % en poids des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du dichloropropanol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.

10

15

20

30

35

Le rapport massique entre les isomères 1,3-dichloropropane-2-ol et 2,3-dichloropropane-1-ol est usuellement supérieur ou égal à 0,01, souvent, supérieur ou égal 0,4, fréquemment supérieur ou égal à 1,5, de préférence supérieur à ou égal à 3,0, de manière plus préférée supérieur ou égal à 7,0 et de manière tout particulièrement préférée supérieur ou égal à 20,0. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25.

La chlorhydrine obtenue dans le procédé selon l'invention peut contenir une teneur élevée en cétones halogénées, en particulier en chloroacétone, comme décrit dans la demande de brevet FR 05.05120 du 20/05/2005 déposée au nom de la demanderesse, et dont le contenu est ici incorporé par référence. La teneur en cétone halogénée peut être réduite en soumettant la chlorhydrine obtenue dans le procédé selon l'invention à une distillation azéotropique en présence d'eau ou en soumettant la chlorhydrine à un traitement de déshydrochloration comme décrit dans cette demande, de la page 4, ligne 1, à la page 6, ligne 35.

Mention particulière est faite d'un procédé de fabrication d'un époxyde dans lequel des cétones halogénées sont formées comme sous-produits et qui comprend au moins un traitement d'élimination d'au moins une partie des cétones halogénées formées. Mention est plus particulièrement faite d'un procédé de fabrication d'un époxyde par déshydrochloration d'une chlorhydrine dont au moins une fraction est fabriquée par chloration d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, d'un traitement de déshydrochloration et d'un traitement par distillation azéotropique d'un mélange eau-cétone halogénée destinés à éliminer au moins une partie des cétones halogénées formées et d'un procédé de fabrication d'épichlorhydrine dans lequel la cétone halogénée formée est la chloroacétone.

La chlorhydrine obtenue dans le procédé selon l'invention peut être soumise à une réaction de déshydrochloration pour produire un époxyde comme décrit dans les demandes de brevet WO 2005/054167 et FR 05.05120 déposées au nom de SOLVAY SA

L'expression « époxyde » est utilisée ici pour décrire un composé comportant au moins un oxygène ponté sur une liaison carbone-carbone. Généralement les atomes de carbone de la liaison carbone-carbone sont adjacents et le composé peut contenir d'autres atomes que des atomes de carbone et d'oxygène, tels que des atomes d'hydrogène et des halogènes. Les époxydes préférés sont l'oxyde d'éthylène, l'oxyde de propylène et l'épichlorhydrine.

10

15

20

25

30

35

La déshydrochloration de la chlorhydrine peut être effectuée comme décrit dans la demande intitulée « Procédé de fabrication d'un époxyde au départ d'un hydrocarbure aliphatique poly hydroxylé et d'un agent de chloration » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'un époxyde dans lequel on soumet un milieu réactionnel résultant de la réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, et un agent de chloration, le milieu réactionnel contenant au moins 10 g de chlorhydrine par kg de milieu réactionnel. à une réaction chimique ultérieure sans traitement intermédiaire.

Mention est également faite de fabrication d'un époxyde comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, avec un agent de chloration et un acide organique de façon à former de la chlorhydrine et des esters de chlorhydrine dans un milieu réactionnel contenant de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, de l'eau, l'agent de chloration et l'acide organique, le milieu réactionnel contenant au moins 10 g de chlorhydrine par kg de milieu réactionnel, (b) on soumet au moins une fraction du milieu réactionnel obtenu à l'étape (a), fraction qui a la même composition que le milieu réactionnel obtenu à l'étape (a), à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) et (c) on ajoute un composé basique à au moins une des étapes ultérieures à l'étape (a) pour qu'il réagisse au moins partiellement avec la chlorhydrine, les esters de chlorhydrine, l'agent de chloration et l'acide organique de façon à former de l'époxyde et des sels.

Le procédé de fabrication de la chlorhydrine selon l'invention peut être intégré dans un schéma global de fabrication d'un époxyde tel que décrit dans la demande intitulée « Procédé de fabrication d'un époxyde au départ d'une chlorhydrine » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'un époxyde comprenant au moins une étape de purification de l'époxyde formé, l'époxyde étant au moins en partie fabriqué par un procédé de déshydrochloration d'une chlorhydrine, celle-ci étant au moins en partie fabriquée par un procédé de

10

15

20

25

30

35

chloration d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux.

Dans un premier mode de réalisation du procédé selon l'invention, on prélève une partie du mélange obtenu à l'étape (a) et on soumet cette partie à une oxydation à une température supérieure ou égale à 800 °C, pendant le prélèvement.

Dans un deuxième mode de réalisation du procédé selon l'invention, on prélève une partie du mélange obtenu à l'étape (a) et on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) de façon à obtenir une ou plusieurs parties traitées et on soumet au moins une des parties traitées à une oxydation à une température supérieure ou égale à 800 °C.

Le traitement de l'étape (b) peut être une opération de séparation par exemple, une opération de décantation, de filtration, de centrifugation, d'extraction, de lavage, d'évaporation, de stripping, de distillation, d'adsorption, d'absorption ou les combinaisons d'au moins deux d'entre-elles.

Par oxydation, on entend désigner une réaction en présence d'au moins un agent oxydant. L'agent oxydant peut être sélectionné parmi l'eau, l'oxygène, les oxydes de chlore, les oxydes d'azote, leurs mélanges et leurs mélanges avec l'azote.

La température d'oxydation est supérieure ou égale à 800 °C et de plus particulièrement supérieure ou égale à 1000 °C. Cette température est généralement inférieure ou égale à 10 000 °C, souvent inférieure ou égale 1500 °C, fréquemment inférieure ou égale à 1450 °C et plus particulièrement inférieure ou égale à 1400 °C. L'oxydation à haute température est généralement réalisée à une pression généralement supérieure ou égale à 0,1 bar, souvent supérieure ou égale à 0.5 bar et plus particulièrement supérieure ou égale à 0.8 bar. Cette pression est généralement inférieure ou égale à 3 bar de préférence inférieure ou égale à 2.5 bar et fréquemment inférieure ou égale à 1 bar. La durée de la réaction d'oxydation est généralement supérieure ou égale à 1,0 s, souvent supérieure ou égale à 1,5 s et plus particulièrement supérieure ou égale à 1 s. Cette durée est généralement inférieure ou égale à 20 s, fréquemment inférieure ou égale à 15 s et de façon particulière inférieure ou égale à 10 s. Un exemple de procédé d'oxydation à une température supérieure ou égale à 850 °C est celui dans lequel on oxyde des composés organiques chlorés et oxygénés sous forme de gaz carbonique, de chlorure d'hydrogène et d'eau. Un autre exemple

10

15

20

25

30

35

de procédé d'oxydation à une température supérieure ou égale à 800 °C est celui dans lequel on oxyde des composés organiques chlorés et oxygénés dans un plasma à une température généralement supérieure ou égale à 3000 °C

Dans le procédé selon l'invention, l'agent de chloration, par exemple le chlorure d'hydrogène, généré dans l'étape (c) peut être recyclé à l'étape (a) après un éventuel traitement. Ce traitement peut par exemple consister en une opération d'absorption dans une solution aqueuse suivie d'une éventuelle désorption partielle de chlorure d'hydrogène gazeux. Ce recyclage est particulièrement intéressant lorsque l'agent de chloration contient du chlorure d'hydrogène.

Une description des procédés d'oxydation à haute température peut être trouvée à la référence « « Ullmann's Encyclopedia of Industrial Chemistry, Fifth, Completely Revised Edition, 1985, Volume A13, pages 292-293 ».

Dans le procédé selon l'invention, l'hydrocarbure aliphatique polyhydroxylé est de préférence le glycérol et la chlorhydrine est de préférence le dichloropropanol.

Lorsque la chlorhydrine est le dichloropropanol, le procédé selon l'invention peut être suivi d'une fabrication d'épichlorhydrine par déshydrochloration de dichloropropanol et l'épichlorhdyrine peut entrer dans la fabrication de résines époxy.

La Figure 1 montre un schéma particulier d'installation utilisable pour mettre en œuvre le procédé de séparation selon l'invention.

Un réacteur (4) est alimenté en mode continu ou en mode batch avec un hydrocarbure aliphatique poly hydroxylé, unester d'hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, via la ligne (1) et en catalyseur via la ligne (2), l'alimentation en agent de chloration est réalisée en mode continu ou en mode batch via la ligne (3), une colonne de distillation (6) est alimentée via la ligne (5) avec des vapeurs produites dans le réacteur (4), un flux est soutiré de la colonne (6) via la ligne (7) et est introduit dans un condenseur (8), le flux issu du condenseur est introduit via la ligne (9) dans un décanteur (10) dans lequel des phases aqueuses et organiques sont séparées. Une fraction de la phase aqueuse séparée est optionnellement recyclée via la ligne (11) au sommet de la colonne pour maintenir le reflux. De l'eau fraîche peut être introduite dans la ligne (11) via la ligne (12). La production de chlorhydrine est distribuée entre la phase organique soutirée via la ligne (14) et la phase aqueuse soutirée via la ligne (15).

10

15

20

25

30

35

Une fraction des produits lourds est soutirée du réacteur (4) via la purge (16) et est introduite via la ligne (17) dans un évaporateur (18) dans lequel une opération partielle d'évaporation est menée par exemple par chauffage ou par balayage gazeux avec de l'azote ou de la vapeur d'eau, la phase gazeuse contenant la plus majeure partie de l'agent de chloration du flux (17) est recyclée via la ligne (19) à la colonne (6) ou via la ligne (20) au réacteur (4), une colonne de distillation ou de stripping (22) est alimentée avec la phase liquide en provenance de l'appareil de stripping (18) via la ligne (21), la majeure partie de la chlorhydrine est recueillie au sommet de la colonne (22) via la ligne (23).

Le résidu qui contient des composés lourds est recyclé au réacteur (4) via la ligne (31), on soutire une fraction de ces compsoés lourds et on l'introduit dans une unité de prétraitement (34) via la ligne (32), les composés lourds valorisables dans le procédé de chloration de l'hydrocarbure aliphatique poly hydroxylé sont recyclés au réacteur (4) via la ligne (35) et les composés lourds non valorisables sont envoyés via la ligne (36) dans une unité d'oxydation à haute température (37) alimentée en air via la ligne (38), dont on soutire un flux contenant du chlorure d'hydrogène via la ligne (41). L'unité d'oxydation peut être ontionnellement alimentée par un autre flux de substances combustibles (39) contenant éventuellement des composés chlorés d'autres fabrications tels que la synthèse de chloroalkanes, la synthèse de tétrachlorométhane et de perchloroéthylène par chlorinolyse et la synthèse du 1,2-dichloroéthane. Un appoint d'eau ou d'une solution aqueuse de chlorure d'hydrogène peut être optionnellement réalisé via la ligne (40) afin de réduire la teneur en chlore dans le flux contenant du chlorure d'hydrogène produit. Le chlorure d'hydrogène issu de l'unité d'oxydation à haute température (37) est optionnellement recyclé à l'alimentation en agnet de chloration du réacteur (4) via la ligne (42). La colonne de filtration (25) est alors court-circuitée.

Optionnellement, les composés lourds issus de la colonne (22) sont envoyés via la ligne (24) dans l'unité de filtration (25) dans laquellé des phases liquides et solides sont séparées, une fraction de la phase liquide est recyclée via la ligne (26) au réacteur (4). Le recyclage des composés lourds au réacteur (4) via la ligne (31) est alors court-circuité. Le solide peut être soutiré de l'unité de filtration (25) via la ligne (27) sous la forme d'un solide ou d'une solution. Des solvants peuvent être ajoutés à l'unité de filtration (25) via les lignes (28) et (29) pour le lavage et/ou la dissolution du solide et soutirés via la ligne (27). Une

fraction de la phase liquide recyclée au réacteur (4) via la ligne (26) est soutirée et envoyée dans une unité de prétraitement (34) via la ligne (33).

Optionnellement, un flux est soutiré de la purge (16) et introduit via la ligne (30) dans l'unité de filtration (25). L'appareil de stripping (18) et la colonne de distillation (22) sont alors court-circuités.

Optionnellement le flux soutiré de la purge (16) alimente directement l'unité de prétraitement (34). La colonne de filtration est alors court-circuitée.

Optionnellement, l'unité de prétraitement des composés lourds (34) est court-circuitée.

15

REVENDICATIONS

- 1 Procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes :
- (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, dont la teneur en métaux alcalins et/ou alcalino-terreux est inférieure ou égale à 5 g/kg, un agent de chloration et un acide organique de façon à obtenir un mélange contenant au moins de la chlorhydrine et des autres composés
- (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou
 plusieurs traitements dans des étapes ultérieures à l'étape (a)
 - (c) au moins une des étapes ultérieures à l'étape (a) consiste en une oxydation à une température supérieure ou égale à 800 °C.
 - 2 Procédé selon la revendication 1 dans lequel les métaux alcalins et/ou alcalino-terreux sont présents sous la forme de chlorures, de sulfates ou de leurs mélanges.
 - 3 Procédé selon la revendication 2 dans lequel le chlorure alcalin est du sodium
 - 4 Procédé selon la revendication 2 dans lequel le chlorure alcalin est du potassium.
- 5 Procédé selon l'une quelconque des revendications 1 à 4 dans lequel la teneur en métaux alcalins et/ou alcalino-terreux de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est inférieure ou égale à 1 g/kg, de préférence inférieure ou égale à 0,5 g/kg et de façon particulièrement préférée inférieure ou égale à 25 0.01 g/kg.
 - 6 Procédé selon l'une quelconque des revendications 1 à 5 dans lequel l'hydrocarbure aliphatique polyhydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, est obtenu au départ de matières premières renouvelables.

15

- 7 Procédé selon l'une quelconque des revendications 1 à 6 dans lequel l'hydrocarbure aliphatique polyhydroxylé est choisi parmi l'éthylène glycol, le propylène glycol, le chloropropanediol, le glycérol et les mélanges d'au moins deux d'entre-eux.
- 8 Procédé selon l'une quelconque des revendications 1 à 6 dans lequel la chlorhydrine est choisie parmi le chloroéthanol, le chloropropanol, le chloropropanediol, le dichloropropanol et les mélanges d'au moins deux d'entre-eux.
 - 9 Procédé selon la revendication 7 à 8 dans lequel l'hydrocarbure aliphatique polyhydroxylé est le glycérol et la chlorhydrine est le dichloropropanol.
 - 10 Procédé selon l'une quelconque des révendications 1 à 9 dans lequel l'agent de chloration est une combinaison de chlorure d'hydrogène gazeux et d'une solution aqueuse de chlorure d'hydrogène ou une solution aqueuse de chlorure d'hydrogène.
 - 11 Procédé selon l'une quelconque des revendication 1 à 10 selon lequel, dans l'étape ultérieure, on prélève une partie du mélange obtenu à l'étape (a) et on soumet cette partie à une oxydation à une température supérieure ou égale à 800 °C, pendant le prélèvement.
- 20 12 Procédé selon l'une quelconque des revendications 1 à 11 dans lequel le traitement de l'étape (b) est une opération de séparation choisie parmi les opérations de décantation, de filtration, de centrifugation, d'extraction, de lavage, d'évaporation, de stripping, de distillation, d'adsorption ou les combinaisons d'au moins deux d'entre-elles.
- 25 13 Procédé selon l'une quelconque des revendications 1 à 12 dans lequel l'oxydation de l'étape (c) est effectuée à une température inférieure ou égale à 1500 °C, à une pression supérieure ou égale à 0,1 et inférieure ou égale à 2 bar et pendant une durée supérieure ou égale à 1,5 seconde et inférieure ou égale à 20 secondes.
- 30 14 Procédé selon l'une quelconque des revendications 1 à 13 dans lequel l'oxydation de l'étape (c) est effectuée en présence d'au moins un agent oxydant

sélectionné parmi l'eau, l'oxygène, les oxydes de chlore, les oxydes d'azote, leurs mélanges et leurs mélanges avec l'azote.

- 15 Procédé selon la revendication 14 dans lequel on génère, dans l'étape d'oxydation (c) un gaz contenant du chlorure d'hydrogène.
- 5 16 Procédé selon la revendication 15 dans lequel le chlorure d'hydrogène généré à l'étape d'oxydation (c) est séparé et recyclé à l'étape (a) après traitement éventuel
 - 17 Procédé selon l'une quelconque des revendications 1 à 16 dans lequel les étapes (a), (b) et (c) sont menées en continu.
- 10 18 Procédé de fabrication de dichloropropanol comprenant les étapes suivantes :
 - (a) on fait réagir du glycérol dont la teneur en métaux alcalins et/ou alcalinoterreux est inférieure ou égale à 5 g/kg, du chlorure d'hydrogène et un acide organique de façon à obtenir un mélange contenant au moins du dichloropropanol et des sous-produits
 - (b) on soutire au moins une fraction du mélange obtenu à l'étape (a) et on soumet ladite fraction à une oxydation à une température supérieure ou égale à 1000 °C
- 19 Procédé selon la revendication 9 suivi d'une fabrication
 d'épichlorhydrine par déshydrochloration de dichloropropanol
 - 20 Procédé selon la revendication 19 dans lequel l'épichlorhdyrine entre dans la fabrication de résines époxy.

