

Neural Representation Learning for Graphs

Mathias Niepert

NEC Labs Europe Heidelberg

Leuven, Belgium December 11th

NEC Labs Europe: What do we do?

- \sim 80 researchers, 22 nationalities
- Research lab, no product development
- Main objectives:
 - 1. Research output for top tier conferences
 - 2. Stable prototypes for technology transfer
 - 3. Patent applications
- Product prototypes based on lab's research

Research Collaborations

NEC Japan (business units and central labs)

NEC

- Digital Health
- Retail
- Finance
- Networked Systems
- EU Projects
 - Exploration of applications not coming from NEC
 - Foster collaborations with research community
 - Understand trends and problems in the SME market
- Third party Collaborations
 - DKFZ
 - University of Heidelberg medical school

Main Research Themes

- Multi-Modal Learning and Reasoning
 - Combining different attribute types and modalities
 - Knowledge graphs for multi-modal learning (combining deep learning and logical reasoning)

- Graph-based (Relational) Machine Learning
 - Learning graph representations
 - Unsupervised and semi-supervised learning

- Systems and ML
 - ML for Systems and Systems for ML
 - CPU/GPU/network optimizations etc.
 - Deep learning for data networks

Technological Challenges

ML that works without much labelled data (unsupervised and semi-supervised learning) Labelled Data Data

Interpretable and Explainable Al

Blood pressure

Diabetes

Diet

Ability to combine different data modalities (data integration, multi-modal learning)

(listen), English: / toʊki.oʊ/), officially Tokyo Metropolis,[6] is the capital of Japan and one of its 47 prefectures,[7]

(Japanese: [to:kjo:]

Tokyo

Latitude: 35.65

Efficiency and support of real time predictions (network speed if required)

Applicable to several business use cases (horizontal technology)

Graph-Based Machine Learning

Example Applications – Drug Discovery

Learn representations for entire graphs Graph classification/ regression problems

Example Applications – Patient Outcome Prediction

Example Applications – Recommender Systems

Example Applications – Polypharmacy Prediction

Example Applications – Knowledge Base Completion

Outline of the First Part of our Lecture

- 1. Basic Concepts
- 2. Two Perspectives on Learning from Graphs
 - Knowledge Graph = Tensor (KB completion, evaluation, etc.)
 - Learning from Local Structure (learning from paths and neighborhoods)
- 3. Some Practical Observations

Matrix Factorization

r 5 x 6 matrix						
X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆	
X_{21}	X_{22}	X ₁₂	X ₂₄	X_{25}	X ₂₆	
X ₃₁	X_{32}	X_{33}	X ₃₄	X ₃₅	X ₃₆	
X ₄₁	X ₄₂	X ₄₃	X ₄₄	X ₄₅	X ₄₆	
X ₅₁	X ₅₂	X ₅₃	X ₅₄	X ₅₅	X ₅₆	

The Differential Programming Approach

 Step 1: Assume users and movies are represented with one-hot encoding and define encoding function f for users and movies

One-hot encoding

[00100000]

Embedding (dimension size=3)

Score = $\begin{bmatrix} 0.2 \\ 0.9 \\ -1.6 \end{bmatrix}$ \bullet $\begin{bmatrix} 0.8 \\ -1.2 \\ 0.5 \end{bmatrix}$ = [-1.72]

- Step 2: Define scoring function between user-movie pairs
- Step 3: Define a loss between scorings and actual existing user ratings
- Step 4: Apply gradient decent to train the model "end-to-end"

Loss =
$$(-1.72 - 3)^2$$

Observed rating

Two Perspectives on Learning from Graph Data

1. The multi-relational graph as a **3D tensor**

Two Perspectives on Learning from Graph Data

The multi-relational graph as a 3D tensor

1. The multi-relational graph as a **3D tensor**

Nickel et al, A Three-Way Model for Collective Learning on Multi-Relational Data, 2011

© Maximilian Nickel

RESCAL

• Step 1: Choose the representation (encoding) for entities and relations

Entities: $e_i =$ Relation types: $W_r =$

■ Step 2: Choose scoring function for triples (h, r, t) = coordinates in the 3D tensor

$$s(h,r,t) = \boldsymbol{e}_h^T \cdot \boldsymbol{W}_r \cdot \boldsymbol{e}_t$$

Step 3: Choose loss function

$$\sum_{h,r,t} (T_{\{h,r,t\}-s(h,r,t)})^{2}$$

- DistMult: well-performing KB embedding methodSimplifies RESCAL; relation matrix only non-zero in diagonal
 - Triple: (h, r, t) $\mathbf{S}(\begin{bmatrix} \mathbf{e}_h & \mathbf{e}_t & \mathbf{e}_r \\ \mathbf{f}_t & \mathbf{e}_t & \mathbf{e}_t \end{bmatrix}) = \mathbf{f}_t \mathbf{$

Geometric interpretation: Absolute value is the volume of the 3D parallelogram spanned by the three vectors

TransE learns embeddings of entities and relations

TransE learns embeddings of entities and relations

Geometric interpretation: Relation vector translates (moves) head entity embedding to tail entity embedding

Knowledge Graph Representations

Many alternative scoring functions have been proposed

Model	Scoring Function	Relation parameters	
RESCAL (Nickel et al., 2011)	$e_s^T W_r e_o$	$W_r \in \mathbb{R}^{K^2}$	
TransE (Bordes et al., 2013b)	$ (e_s+w_r)-e_o _p$	$w_r \in \mathbb{R}^K$	
NTN (Socher et al., 2013)	$u_r^T f(e_s W_r^{[1D]} e_o + V_r \begin{bmatrix} e_s \\ e_o \end{bmatrix} + b_r)$	$W_r \in \mathbb{R}^{K^2D}, b_r \in \mathbb{R}^K$ $V_r \in \mathbb{R}^{2KD}, \mathbf{u}_r \in \mathbb{R}^K$	
DistMult (Yang et al., 2015)	$\langle w_r, e_s, e_o \rangle$	$w_r \in \mathbb{R}^K$	
HolE (Nickel et al., 2016b)	$w_r^T(\mathcal{F}^{-1}[\overline{\mathcal{F}[e_s]}\odot\mathcal{F}[e_o]]))$	$w_r \in \mathbb{R}^K$	
ComplEx	$\operatorname{Re}(\langle w_r, e_s, \bar{e}_o \rangle)$	$w_r \in \mathbb{C}^K$	

Trouillon et al. 2016

Knowledge Graph Embeddings

What do they actually learn?

- Fine grained latent types of entities
- Latent representation of relation types

What do they not learn?

- Relational rules with constants
- E.g., relation true if married to PersonX
- Approximate vs. exact entity type

Majority of KB embedding approaches are outperformed by simple relational baselines

- First observed by Toutanova et al, 2015
- Holds true for dense KBs (e.g. FB15k) but not for sparser ones (e.g., FB15k-237)
- Embedding methods outperform purely relational models on sparse KBs

© Corby Rosset

Two Perspectives on Learning from Graph Data

Learning from Local Graph Structures

Paths / random walks

Local Neighborhoods

NB: Learning from local structures can capture global properties through a recursive propagation process between nodes

Representation Learning for Knowledge Graphs

- **Observation:** Effective representations are often composed bottom-up from **local** representations
 - Weight sharing
 - Hierarchical features
 - Model tractability
- Example: Convolutional neural networks

© Yann LeCun

Question: What is a suitable notion of **locality** in knowledge graphs?

Learning From Random Walks and Paths

Basic idea: **Mine frequent paths** in the graph and use these paths as features for some learning method

Methods for Path Extraction

Perform a large number of **Random Walks**

Keep the paths most frequently encountered

Methods for Learning from Single-Relational Paths

Interpret every walk as a sentence (sequence of nodes visited)

Train word embedding method such as Word2vec

Continuous bag of nodes

DeepWalk

(a) Random walk generation.

(b) Representation mapping.

(c) Hierarchical Softmax.

Skip-gram model

Results in node embeddings to be used for other tasks

Methods for Learning from Multi-Relational Paths

- Interpret every walk as a logical rule: "If path is present, then set feature to 1"
- Combine these features with simple classifier such as logistic regression

Good feature to predict "locatedIn"

Lao and Cohen, Path Ranking Algorithm, 2010

Two Perspectives on Learning from Graph Data

Learning from Local Graph Structures

NB: Learning from local structures can capture global properties through a recursive propagation process between nodes

Strengths of CNNs

- Implicit feature hierarchy based on local features
- Parameter sharing across data points

Straightforward for regular graphs

Challenging for irregular graphs

The Big Question of Graph CNNs

How do we **aggregate neighborhood information** into **fixed-size** representations? → requirement for **weight sharing**

Aggregation direction

- Feature transformations are applied **locally** for each node on its neighborhood
- Requires ability to work with **highly heterogeneous** neighborhood structures

A Spectrum Of Methods

Patchy [ICML 2016] Neighborhood Normalization

High variance Low bias

Learning CNNs for Graphs

Image CNN

- Grid graph required (spatial order)
- Works <u>only</u> for images

Standard CNN moves over image

Graph CNN

- Arbitrary input graph
- Node attributes
- Edge attributes

Neighborhood Normalization

6

 (ω)

Feature Visualization

small instances of input graphs

A Spectrum Of Methods

Patchy [ICML 2016] Neighborhood Normalization

GCN [ICLR 2017] Average Pooling

High variance Low bias Low variance High bias

Leverage adjacency structure

Treat neighboring nodes as exchangeable

Graph Convolutional Networks

- Compute a **weighted sum** of the node features where weights are determined by **global node adjacency** information
- Essentially average pooling of the (latent) node features
- Similar to message passing algorithm, aggregation and parameter updates performed in each iteration

Graph Convolutional Networks

A Spectrum Of Methods

Patchy [ICML 2016] Neighborhood Normalization

GCN [ICLR 2017] Average Pooling

High variance Low bias

Leverage complete adjacency structure

Approximate lifted learning = clustering of structurally similar entities in the graphs

Treat neighboring nodes as exchangeable

Embedding propagation (EP)

Input data Initial (incomplete) data 000 $\bigcirc\bigcirc$ X XXXXXX 000 X X XO X X X O O 000 XXX $\bigcirc \times \bigcirc \times \bigcirc \bigcirc$ 000 X X XX • • • × $\bigcirc \bigcirc \bigcirc$ X X X

```
df_patients = ep_utils.get_small_patient_df()
```


Embedding propagation (EP)


```
demographic_cols = ['gender', 'race']
graph = GraphCreator.get_graph(
    df_patients,
    demographic_cols,
    identity_index='index'
)
```


Embedding propagation (EP)

Input data Initial (incomplete) data T .: $\bigcirc \bigcirc X$ 000 XXXXXX 000 X X XO x x x O • 000 X X X0 x • x 00 000 X X XX • • • × X X X000 Induce graph Patient graph 0

Embedding propagation (EP)


```
target_column = [
    'has_cm' # this is the target variable
]

ep = EP.get_ep(
    df_patients,
    graph,
    ignore_cols=target_column
)

ep_fit = ep.fit()
```


GraphAI: Embedding propagation (EP)

Embedding propagation (EP):

Embedding propagation (EP) workflow

EP use case: patient outcome prediction (datasets)

Name		Cardiac (Computation in Cardiology Challenge, 2012)	Stroke (Custom MIMIC benchmark)	General (MIMIC benchmarks from [Harutyunyan et al., 2017])
Task(s)		In-hospital mortality (binary classification)	Long-term (10 year) stroke readmission (binary classification)	 In-hospital mortality (binary classification) Length of stay (regression) Discharge destination (multiclass classification)
Time of prediction		2-days after ICU admission	End of ICU admission	2-days after ICU admission
Number of Patients		4 000	159	21 102
Outcomes		4000 \$1000 Deceased (554) Survived (3443)	150 Readmitted for stroke (43) No record of readmission (116) Strong 100 On the control of t	Length of Stay Distribution A Total Control of Stay Distribution A Total Control of Stay Distribution Length of Stay Distribution
Modalities	Time series	37	65	17
	Demographics	0	0	5
	Free text	0	0	6
	Other	2 (SOFA and SAPS-I)	1 (primary ICD diagnosis)	3 (admission type, location, and diagnosis)
Graph construction		Sequential Organ Failure Assessment and Severity of Disease	International Classification of Diseases (ICD) – Medical Diagnosis Codes	Similarity of admission descriptions

EP use case: patient outcome prediction (results)

Detailed Results

Time series modality only

All data modalities

