Notes on Smith normal form and homology

Christophe Vuillot, ¹ Alessandro Ciani, ² and Barbara Terhal^{3, 4}

¹ Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France

² Institute for Quantum Computing Analytics (PGI-12),

Forschungszentrum Jülich, 52425 Jülich, Germany

³ QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands

⁴ DIAM, EEMCS Faculty, Delft University of Technology,

Van Mourik Broekmanweg 6, 2628 XE, Delft, The Netherlands

We show how to compute homology groups using the Smith normal form.

I. SMITH NORMAL FORM

Definition 1. (Smith normal form). Let A be a $m \times n$ integer matrix $A \in \mathbb{Z}^{m \times n}$. The Smith normal form of A is a factorization A = USV where

- $S \in \mathbb{Z}^{m \times n}$ is "diagonal" meaning $S_{ij} = 0$ for $i \neq j$;
- Each diagonal entry of S divides the next one that is $S_{ii}|S_{i+1,i+1}$ and they are called the elementary divisors of A;
- $U \in \mathbb{Z}^{m \times m}$, $V \in \mathbb{Z}^{n \times n}$ are invertible over \mathbb{Z} (unimodular), or equivalently $\det U$, $\det V = \pm 1$.

Every integer matrix has a unique Smith normal form. Also the number of nonzero elementary divisors coincides with the rank of the matrix.

II. HOMOLOGY FROM THE SMITH NORMAL FORM

We use the same notation introduced in the discussion of homological rotor codes in Ref.[1]. Consider two integer matrices $H_X \in \mathbb{Z}^{r_x \times n}$ and $H_Z \in \mathbb{Z}^{r_z \times n}$ such that

$$H_X H_Z^T = 0. (1)$$

This relation defines a chain complex C where H_X and H_Z^T play the role of the boundary maps. We are interested in understanding the structure of the homology group

$$H_1(\mathcal{C}, \mathbb{Z}) = \ker(H_Z^T)/\mathrm{im}(H_X). \tag{2}$$

Notice that in our convention H_X and H_Z^T are matrices that act from the right on r_x -dimensional and n-dimensional row vectors, respectively. This means that elements of $\ker(H_Z^T)$ are n-dimensional row vectors \boldsymbol{v} such that $\boldsymbol{v}H_Z^T=0$, while elements of $\operatorname{im}(H_X)$ are n-dimensional row vectors \boldsymbol{u} such that there exists a r_x -dimensional row vector \boldsymbol{v} that gives $\boldsymbol{u}=\boldsymbol{v}H_X$. Since H_Z^T is an integer matrix it has a unique Smith normal form

$$H_Z^T = U_Z S_Z V_Z, (3)$$

with $U_Z \in \mathbb{Z}^{n \times n}$, $S_Z \in \mathbb{Z}^{n \times r_z}$ and $V_Z \in \mathbb{Z}^{r_z \times r_z}$. Analogously, we introduce the unique Smith normal form for H_X

$$H_X = U_X S_X V_X, \tag{4}$$

with $U_X \in \mathbb{Z}^{r_x \times r_x}$, $S_X \in \mathbb{Z}^{r_x \times n}$ and $V_X \in \mathbb{Z}^{n \times n}$.

Let us consider S_Z and its kernel ker (S_Z) . S_Z has the following structure

$$S_Z = \begin{pmatrix} z_1 & & & & & \\ & z_2 & & & & \\ & & \ddots & & & \\ & & & z_{\text{rank}(H_Z)} & & \\ & & 0 & & 0 \end{pmatrix}$$
 (5)

with z_k the elementary divisors of H_Z^T and where the 0s denote zero matrices of suitable dimensions. Since S_Z is diagonal it is immediate to understand that its kernel is generated by the standard *n*-dimensional row unit vectors

$$\ker(S_Z) = \operatorname{span}\{e_{\operatorname{rank}(H_Z)+k}\}, \quad k = 1, \dots, n - \operatorname{rank}(H_Z). \tag{6}$$

In fact, notice that the first rank (H_Z) of $e_{\text{rank}(H_Z)+k}$ are all zeros and thus

$$e_{\operatorname{rank}(H_Z)+k}S_Z = 0, \quad \forall k = 1, \dots, n - \operatorname{rank}(H_Z).$$
 (7)

From this it also follows that

$$\mathbf{e}_{\operatorname{rank}(H_Z)+k}U_Z^{-1}H_Z^T = \mathbf{e}_{\operatorname{rank}(H_Z)+k}S_Z V_Z = 0, \tag{8}$$

which shows that $e_{\text{rank}(H_Z)+k}U_Z^{-1} \in \text{ker}(H_Z^T)$. Moreover, since H_Z^T and S_Z have same rank it follows that

$$\ker(H_Z^T) = \operatorname{span}\{\boldsymbol{e}_{\operatorname{rank}(H_Z)+k}U_Z^{-1}, \quad k = 1, \dots, n - \operatorname{rank}(H_Z)\}. \tag{9}$$

We remark that no notion of orthogonality is needed. From Eq. (9) we can interpret U_Z^{-1} as a map from the $\ker(S_Z)$ to $\ker(H_Z^T)$. More colloquially $e_{\operatorname{rank}(H_Z)+k}U_Z^{-1}$ are simply the last $n-\operatorname{rank}(H_Z)$ rows of U^{-1} . We proceed similarly for the image of H_X . Let us consider the image of S_X . S_X has the following structure

with x_{ℓ} the elementary divisors of H_X and where the 0s denote zero matrices of suitable dimensions. Therefore the image of S_X are linear combinations of $x_{\ell}e_{\ell}$, that is

$$\operatorname{im}(S_X) = \operatorname{span}\{x_{\ell} \mathbf{e}_{\ell}, \quad \ell = 1, \dots, \operatorname{rank}(H_X)\}. \tag{11}$$

Now we want to show that if $x_{\ell}e_{\ell} \in \operatorname{im}(S_X)$, then $x_{\ell}e_{\ell}V_X \in \operatorname{im}(H_X)$. In fact, $x_{\ell}e_{\ell} \in \operatorname{im}(S_X)$ implies that \exists a r_x -dimensional integer vector \boldsymbol{v}_{ℓ} [2] such that

$$\mathbf{v}_{\ell}S_{X} = x_{\ell}\mathbf{e}_{\ell} \implies \mathbf{v}_{\ell}U_{X}^{-1}H_{X}V_{X}^{-1} = x_{\ell}\mathbf{e}_{\ell} \implies \underbrace{\mathbf{v}_{\ell}U_{X}^{-1}}_{\mathbf{v}_{\ell}'}H_{X} = x_{\ell}\mathbf{e}_{\ell}V_{X},$$
 (12)

which shows that $\exists v'_{\ell}$ such that $\exists v'_{\ell}H_X = x_{\ell}e_{\ell}V_X$ and thus $x_{\ell}e_{\ell}V_X \in \text{im}(H_X)$. Additionally,

$$\operatorname{im}(H_X) = \operatorname{span}\{x_{\ell} \mathbf{e}_{\ell} V_X, \quad \ell = 1, \dots, \operatorname{rank}(H_X)\}. \tag{13}$$

What this shows is that the image of H_X is generated by $x_\ell V_X^{(\ell)}$ with $V_X^{(\ell)}$ the ℓ -th row of V_X with $\ell = 1, \ldots, \operatorname{rank}(H_X)$. In what follows, we will argue that the first $\operatorname{rank}(H_X)$ rows of V_X are related to the torsion part of $H_1(\mathcal{C}, \mathbb{Z})$. First, it can be shown that

$$H_1(\mathcal{C}, \mathbb{Z}) \cong \bigoplus_{\ell=1}^{\operatorname{rank}(H_X)} \mathbb{Z}/x_\ell \oplus \mathbb{Z}^{r_x - \operatorname{rank}(H_X)}.$$
 (14)

The parts of $H_1(\mathcal{C}, \mathbb{Z})$ isomorphic to $\bigoplus_{\ell=1}^{\operatorname{rank}(H_X)} \mathbb{Z}/x_\ell$ and to $\mathbb{Z}^{r_x-\operatorname{rank}(H_X)}$ are called the torsion part and free part of $H_1(\mathcal{C},\mathbb{Z})$, respectively. From the previous discussion we conclude that the torsion part is generated by the first

 $\operatorname{rank}(H_X)$ rows of V_X , where we need to exclude the rows associated with the elementary divisors that are trivially 1, since these rows would be in $\operatorname{im}(H_X)$. Accordingly, in the homological rotor code construction of Ref. [1] the ℓ -th row of V_X with $x_{\ell} > 1$ identifies a generalized Pauli X on a x_{ℓ} -dit. We highlight the fact that the torsion part of $H_1(\mathcal{C}, \mathbb{Z})$ is completely characterized by H_X , and if $\operatorname{rank}(H_X) = r_x$, we can immediately conclude that $H_1(\mathcal{C}, \mathbb{Z})$ has no free part.

Finally, we need to characterize the free part of $H_1(\mathcal{C},\mathbb{Z})$. Let us define the *n*-dimensional row vectors

$$\mathbf{w}_{\ell} = \mathbf{e}_{\ell} V_X U_Z, \quad \ell = 1, \dots, \text{rank}(H_X).$$
 (15)

We notice that $\forall \ell = 1, \ldots, \operatorname{rank}(H_X)$

$$\mathbf{w}_{\ell}S_{Z} = \mathbf{e}_{\ell}V_{X}U_{Z}U_{Z}^{-1}H_{Z}^{T}V_{Z}^{-1} = \mathbf{e}_{\ell}V_{X}H_{Z}^{T}V_{Z}^{-1} = 0,$$
(16)

since the first $\operatorname{rank}(H_X)$ are in $\ker(H_Z^T)$. Eq. (16) implies that the first $\operatorname{rank}(H_Z^T)$ entries of the vectors \boldsymbol{w}_ℓ are zeros and that $\boldsymbol{w}_\ell \in \ker S_Z$. Let us denote by \overline{W} the $\operatorname{rank}(H_X) \times n$ matrix whose rows are the \boldsymbol{w}_ℓ vectors. The matrix \overline{W} has the following structure

$$\overline{W} = \begin{pmatrix} 0 & W \end{pmatrix}, \tag{17}$$

where W is the $\operatorname{rank}(H_X) \times (n - \operatorname{rank}(H_Z^T))$ matrix with the nonzero elements of the \boldsymbol{w}_{ℓ} . Remember that since $\boldsymbol{w}_{\ell} \in \ker(S_Z)$ it follows that $\boldsymbol{w}_{\ell}U_Z^{-1} \in \ker H_Z^T$. Let us consider the Smith normal form of W

$$W = U_W S_W V_W, (18)$$

with $U_W \in \mathbb{Z}^{\operatorname{rank}(H_X) \times \operatorname{rank}(H_X)}$, $S_W \in \mathbb{Z}^{\operatorname{rank}(H_X) \times (n-\operatorname{rank}(H_Z^T))}$ and $V_W \in \mathbb{Z}^{(n-\operatorname{rank}(H_Z^T)) \times (n-\operatorname{rank}(H_Z^T))}$. Since $\operatorname{rank}(W) = \operatorname{rank}(H_X)$, S_W has $\operatorname{rank}(H_X)$ elementary divisors. Let us consider V_W and in particular its first $\operatorname{rank}(H_X)$ rows and denote them by $V_W^{(\ell)}$. Eq. (18) implies that we can write the nonzero part of \boldsymbol{w}_ℓ as a linear combination of the rows $V_W^{(\ell)}$. Specifically, adding $\operatorname{rank}(H_Z^T)$ zeros at the beginning of $V_W^{(\ell)}$ we can write

$$\mathbf{w}_{\ell} = \sum_{\ell'=1}^{\text{rank}(H_X)} U_W^{(\ell\ell')} s_{\ell'} \left(0 \ V_W^{(\ell')} \right), \tag{19}$$

where $U_W^{\ell\ell'}$ is the elements of U_W at position (ℓ, ℓ') and $s_{\ell'}$ the elementary divisors of S_W . Eq. (19) and Eq (16) imply that

$$\left(0 \ V_W^{(\ell')}\right) \in \ker(S_Z), \tag{20}$$

but since the \mathbf{w}_{ℓ} can be written as a linear combination of the $\begin{pmatrix} 0 & V_W^{(\ell')} \end{pmatrix}$ we conclude that $\begin{pmatrix} 0 & V_W^{(\ell')} \end{pmatrix} U_Z^{-1}$ is in the torsion part of $H_1(\mathcal{C}, \mathbb{Z})$ for any $\ell' = 1, \ldots, \operatorname{rank}(H_X)$. How about the remaining $n - \operatorname{rank}(H_X) - \operatorname{rank}(H_Z^T)$ rows of V_W ? Let us define additional n-dimensional row vectors $\mathbf{w}_{\operatorname{rank}(H_X)+k}$ as

$$\boldsymbol{w}_{\operatorname{rank}(H_X)+k} = \left(0 \ V_W^{(\operatorname{rank}(H_X)+k)}\right), \quad k = 1, \dots, n - \operatorname{rank}(H_Z^T) - \operatorname{rank}(H_X). \tag{21}$$

Clearly, by construction, these are also in $\ker(S_Z)$, but since they are linearly independent of the first $\operatorname{rank}(H_X)$ rows, we conclude that $\boldsymbol{w}_{\ell}U_Z^{-1}$ is not in the torsion part of $H_1(\mathcal{C},\mathbb{Z})$ and so they must be in the free part and indeed generate it.

To summarize, using the definitions of the \mathbf{w}_{ℓ} for $\ell = 1, \ldots, \operatorname{rank}(H_X)$ in Eq. (15) and of $\mathbf{w}_{\operatorname{rank}(H_X)+k}$ for $k = 1, \ldots, n - \operatorname{rank}(H_Z^T) - \operatorname{rank}(H_X)$ in Eq. (21), $H_1(\mathcal{C}, \mathbb{Z})$ is generated by

$$L_{X} = \begin{pmatrix} L_{X}^{(\text{tor})} \\ L_{X}^{(\text{free})} \end{pmatrix} = \begin{pmatrix} \boldsymbol{w}_{1} \\ \vdots \\ \boldsymbol{w}_{\text{rank}(H_{X})} \\ \boldsymbol{w}_{\text{rank}(H_{X})+1} \\ \vdots \\ \boldsymbol{w}_{n-\text{rank}(H_{Z}^{T})-\text{rank}(H_{X})} \end{pmatrix} U_{Z}^{-1}.$$

$$(22)$$

^[1] C. Vuillot, A. Ciani, and B. M. Terhal, Homological Quantum Rotor Codes: Logical Qubits from Torsion, arXiv e-prints , arXiv:2303.13723 (2023), arXiv:2303.13723 [quant-ph].

^[2] The vectors \mathbf{v}_{ℓ} are simply the r_x -dimensional standard unit vectors.