CS245 Midterm Reference Sheets

(3 pages)

Essential laws of propositional logic

Commutativity

$$p \wedge q \mid = q \wedge p$$

$$p \lor q \models q \lor p$$

$$p \leftrightarrow q \mid \mid q \leftrightarrow p$$

Associativity

$$p \wedge (q \wedge r) \mid \exists (p \wedge q) \wedge r$$

$$p \lor (q \lor r) \models (p \lor q) \lor r$$

Distributivity

$$p \lor (q \land r) \models (p \lor q) \land (p \lor r)$$

$$p \wedge (q \vee r) \mid \exists (p \wedge q) \vee (p \wedge r)$$

De Morgan

$$\neg (p \land q) \models \neg p \lor \neg q$$

$$\neg (p \lor q) \models \neg p \land \neg q$$

Double Negation

$$\neg(\neg p) \; \models p$$

Excluded Middle

$$p \vee \neg p \not \models 1$$

Contradiction

$$p \wedge \neg p \models 0$$

Implication

$$p \to q \mid = \neg p \lor q$$

Contrapositive

$$p \to q \mid = \neg q \to \neg p$$

Equivalence

$$p \leftrightarrow q \hspace{0.2cm} \models \hspace{0.2cm} \mid \hspace{0.2cm} (p \rightarrow q) \wedge (q \rightarrow p)$$

Idempotence

$$p \lor p \models p$$

$$p \wedge p \models p$$

Identity

$$p \wedge 1 \models p$$

$$p \lor 0 \models p$$

Domination

$$p \wedge 0 \not\models 0$$

$$p \lor 1 \models 1$$

Absorption I

$$p \lor (p \land q) \models p$$

$$p \land (p \lor q) \models p$$

Absorption II

$$(p \wedge q) \vee (\neg p \wedge q) \models q$$

$$(p \lor q) \land (\neg p \lor q) \models q$$

Continued on next page

Ensubo

Theorem(EQSubs). Let r(u) be a term that contains u as a free variable, and let t_1, t_2 be terms. Let $r(t_i)$ denote r where all instances of u have been replaced by t_i . For any set Σ of first-order logic formulas, we have that $\Sigma \vdash t_1 \approx t_2$ implies $\Sigma \vdash r(t_1) \approx r(t_2)$.

EQtrans

Theorem (EQTrans(k)). Let $k \geq 1$ be a natural number, Σ be a set of first-order logic formulas, and $t_1, t_2, \ldots, t_{k+1}$ be terms. If $\Sigma \vdash t_i \approx t_{i+1}$ for all $1 \leq i \leq k$, then $\Sigma \vdash t_1 \approx t_{k+1}$.

- **PA1**: $\forall x(\neg(s(x)=0))$
- **PA2**: $\forall x \forall y (s(x) = s(y) \rightarrow x = y)$
- $\mathbf{PA3}\,:\,\forall x(x+0=x)$
- **PA4**: $\forall x \forall y (x + s(y) = s(x + y))$
- **PA5**: $\forall x(x \cdot 0 = 0)$
- **PA6**: $\forall x \forall y (x \cdot s(y) = x \cdot y + x)$
- **PA7**: $(A(0) \land \forall x (A(x) \rightarrow A(s(x))) \rightarrow \forall x A(x)$, for each formula A(u) with free variable u.

Theorem (Transitivity of deducibility, (Tr.)) Let $\Sigma, \Sigma' \subseteq \mathsf{Form}(\mathcal{L}^p)$ If $\Sigma \vdash \Sigma'$ and $\Sigma' \vdash A$, then $\Sigma \vdash A$. Theorem. (Finiteness of premise set) If $\Sigma \vdash A$, then there exists a finite $\Sigma^0 \subseteq \Sigma$ such that $\Sigma^0 \vdash A$.

Theorem (Replaceability of syntactically equivalent formulas, (Repl.)) Let $B \mapsto C$. For any A, let A' be constructed from A by replacing some (not necessarily all) occurrences of B by C. Then $A \vdash A'$.

Theorem (exercise) $A_1, A_2, \ldots, A_n \vdash A \text{ iff } \emptyset \vdash A_1 \land \ldots \land A_n \rightarrow A.$ Theorem (exercise) $A_1, \ldots, A_n \vdash A \text{ iff } \emptyset \vdash A_1 \rightarrow (\ldots (A_n \rightarrow A) \ldots).$

The 11 rules of formal deduction (⊢) for propositional logic

Theorem. (Church, 1936) There is no algorithm for deciding the (universal) validity or satisfiability of formulas in first-order logic. 1 undecidable

				1 Mudecidionie
(1)	(Ref)	$A \vdash A$	Reflexivity	Satisficiality of propositional logic is decidable.
(2)	(+)	If $\Sigma \vdash A$,		(\in) If $A \in \Sigma$
		then $\Sigma, \Sigma' \vdash A$.	Addition of premises	then $\Sigma \vdash A$.
(3)	$(\neg -)$	If $\Sigma, \neg A \vdash B$,		
		$\Sigma, \neg A \vdash \neg B,$		/ Total correctness is undecidable.
		then $\Sigma \vdash A$.	¬ elimination	_
(4)	$(\rightarrow -)$	If $\Sigma \vdash A \to B$,		
		$\Sigma \vdash A$,	_	A 1 76-(0) 1/6(0)
		then $\Sigma \vdash B$.	\rightarrow elimination	_ Ø - 7G(g) VG(y)
(5)	$(\rightarrow +)$	If $\Sigma, A \vdash B$,		()) () ()
		then $\Sigma \vdash A \to B$.	\rightarrow introduction	_ Ø /- dy (7G(g) VG(g)))
(6)	$(\wedge -)$	If $\Sigma \vdash A \land B$,		
		then $\Sigma \vdash A$,	. 1	-/ 17.1/ (-G(x)/(G(m))
(-)	()	$\Sigma \vdash B$.	\land elimination	\$\forall \tau \tau \tau \tau \tau \tau \tau \tau
(7)	$(\wedge +)$	$ \begin{array}{c c} \text{If } \Sigma \vdash A, \\ \end{array} $		7 7 7 6 7 6 7 7 6 7 7
		$\Sigma \vdash B$,	1	() - 7x An (100) = 000)
(0)	() (then $\Sigma \vdash A \land B$.	\land introduction	J
(8)	$(\vee -)$	If $\Sigma, A \vdash C$,		
		$\Sigma, B \vdash C,$	\	Ø 1- ∃x(¬Gxx) → YyGxys)
(0)	(\ / \ \	then $\Sigma, A \vee B \vdash C$.	∨ elimination	
(9)	$(\vee +)$	If $\Sigma \vdash A$,		
		then $\Sigma \vdash A \lor B$, $\Sigma \vdash B \lor A$.	∨ introduction	
(10)	(,,)	$\frac{\Sigma \vdash B \lor A.}{\text{If } \Sigma \vdash A \leftrightarrow B,}$	V IIItroduction	-
(10)	$(\leftrightarrow -)$	$\Sigma \vdash A,$		
		then $\Sigma \vdash B$.		M1 ⊆ M2 → Halt
		$ \begin{array}{c c} \text{If } \Sigma \vdash A \leftrightarrow B, \\ \end{array} $		_ 7001 = 7 -
		$\Sigma \vdash B$,		
		then $\Sigma \vdash A$.	\leftrightarrow elimination	$M_1 \not= M_2 \implies \text{not halt}.$
(11)	$(\leftrightarrow +)$	$\frac{\text{If } \Sigma, A \vdash B,}{\text{If } \Sigma, A \vdash B,}$	· · · · · · · · · · · · · · · · · · ·	• (Reflexivity of Equality) $\forall x(x=x)$
(11)	(' ' ')	$\Sigma, B \vdash A,$		• (Symmetry of Equality) $\forall x (x = x)$ • (Symmetry of Equality) $\forall x \forall y ((x = y) \rightarrow (y = x))$
		then $\Sigma \vdash A \leftrightarrow B$.	\leftrightarrow introduction	• (Transitivity of Equality) $\forall x \forall y \forall z ((x=y) \land (y=z) \rightarrow (x=z))$
				_

- (12) $(\forall -)$ If $\Sigma \vdash \forall xA(x)$ is a theorem **then** $\Sigma \vdash A(t)$, where t is any term, is a theorem.
- (13) $(\forall +)$ If $\Sigma \vdash A(u)$ is a theorem and u does not occur in Σ **then** $\Sigma \vdash \forall x A(x)$ is a theorem.
- (14) (\exists -) If Σ , $A(u) \vdash B$ is a theorem, and u does not occur in Σ or in Bthen $\Sigma, \exists x A(x) \vdash B$ is a theorem.
- (15) $(\exists +)$ If $\Sigma \vdash A(t)$ is a theorem then $\Sigma \vdash \exists x A(x)$ is a theorem, where A(x) results from A(t) by replacing some (not necessarily all) occurrences of t by x.
- (16) $(\approx -)$ If $\Sigma \vdash A(t_1)$ is a theorem and $\Sigma \; \vdash \; t_1 pprox t_2$ is a theorem **then** $\Sigma \vdash A(t_2)$ is a theorem, where $A(t_2)$ results from $A(t_1)$ by replacing some (not necessarily all) occurrences of t_1 by t_2 .
- (17) $(\approx +)$ $\emptyset \vdash u \approx u$ is a theorem.

The additional rules of formal deduction for first-order logic are called:

- \forall -elimination for $(\forall -)$; \forall -introduction for $(\forall +)$;
- \exists -elimination for $(\exists -)$; \exists -introduction for $(\exists +)$;
- \approx -elimination for $(\approx -)$; \approx -introduction for $(\approx +)$.

Note: \approx is just another notation for equality, "=".

Continued on next page

Lemma. If $A \vdash A'$ and $B \vdash B'$ then

- $(1) \neg A \vdash \vdash \neg A'.$
- (2) $A \wedge B \mapsto A' \wedge B'$.
- $(3) A \vee B \longmapsto A' \vee B'.$
- $(4) A \rightarrow B \longmapsto A' \rightarrow B'.$
- $(5) A \leftrightarrow B \longmapsto A' \leftrightarrow B'.$

 $\neg \forall x P(x) \models \exists x \neg P(x).$ Theorem (Soundness Theorem). If $\Sigma \vdash A$ then $\Sigma \models A$, where \vdash Lemma. Let A be a formula with atoms p_1, p_2, \ldots, p_n , and let t be means the formal deduction based on the 11 given rules.

 $eg\exists x P(x) \models orall x
eg P(x)$. Theorem (Completeness Theorem). If $\Sigma \models A$ then $\Sigma \vdash A$, where ⊢ means the formal deduction based on the 11 given rules.

- ullet if $A^t=1$ then $p_1',p_2',\ldots,p_n'\ dash\ A$, and
- $\bullet \ \ \text{if} \ A^t = 0 \ \text{then} \ p_1', p_2', \ldots, p_n' \ \vdash \ \neg A \\$

Lemma. A set Σ of formulas is satisfiable iff Σ is consistent.

Formally proved theorems of propositional logic

(proved in Logic06, or "Hints & Answers")

(\in) : If $A \in \Sigma$ then $\Sigma \vdash A$.

(Tr.): Let $\Sigma \subseteq \text{Form}(\mathcal{L}^p)$, $n \geq 1$, and A_1, \ldots, A_n be formulas in $\text{Form}(\mathcal{L}^p)$. If $\Sigma \vdash A_i$ for all $i = 1, \ldots, n$, and $A_1, \ldots, A_n \vdash A$, then $\Sigma \vdash A$.

 $(\neg +)$: If $\Sigma, A \vdash B$ and $\Sigma, A \vdash \neg B$, then $\Sigma \vdash \neg A$.

(Repl.): If $B \mapsto C$ and A' results from A by replacing some (not necessarily all) occurrences of B in A by C, then $A \mapsto A'$.

(Hypothetical Syllogism): $A \to B, B \to C \vdash A \to C$.

(Double-negation): $\neg \neg A \vdash \vdash A$.

\$ - Gray 1 2 Gray)

(Disjunctive Syllogism): $A \vee B, \neg B \vdash A$.

0 + 3x (G(x) Y G(y))

(Contrapositive): $A \to B \ \longmapsto \ \neg B \to \neg A$.

Ø - ∃~ (7G(x) V Yy (G(y))

(Excluded Middle): $\emptyset \vdash A \lor \neg A$.

(Non-Contradiction): $\emptyset \vdash \neg (A \land \neg A)$.

(Inconsistency Rule): $A, \neg A \vdash B$.

(De Morgan): $\neg (A \land B) \vdash (\neg A \lor \neg B)$ and $\neg (A \lor B) \vdash (\neg A \land \neg B)$.

(Implication Rule): $A \to B \quad \longmapsto \quad (\neg A \lor B).$

(Flip-Flop): If $A \vdash B$ then $\neg B \vdash \neg A$.

(a) Inverter

(b) OR gate

(c) AND gate

Annotated program template for if-then-else:

```
 \begin{array}{lll} (|P|) & & & \\ & (|P \wedge B|) & & & \\ & (|Q| \wedge B|) & & & & \\ & (|Q|) & & & & \\ & (|Q|) & & & & \\ & (|Q| \wedge \neg B|) & & & \\ & (|Q| \wedge \neg B|) & & & \\ & (|Q|) & & \\ & (|Q|) & & & \\ & (|Q|) & & & \\ & (|Q|) & & \\ & (|Q
```

Annotated program template for if-then:

Annotations for partial-while

- (a) Prove $P \rightarrow I$ (precondition P implies the loop invariant)
- (b) Prove $(I \land \neg B) \rightarrow Q$ (exit condition implies postcondition)

We need to determine/find the loop invariant !!!

Prenex normal form

- $\exists x A(x) \vee \exists x B(x) \models \exists x (A(x) \vee B(x)).$
- $\exists x \exists y A(x,y) \models \exists y \exists x A(x,y).$
- $Q_1 \times A(x) \wedge Q_2 y B(y) \models Q_1 \times Q_2 y (A(x) \wedge B(y)),$ (x not occurring in B(y), and y not occurring in A(x)).
- $Q_1 \times A(x) \vee Q_2 y B(y) \models Q_1 \times Q_2 y (A(x) \vee B(y)),$ (x not occurring in B(y), and y not occurring in A(x)).

where $Q_1, Q_2 \in \{ \forall, \exists \}$, and \models can be replaced by $\vdash \vdash$.

To examplify item (5) above, if $Q_1 = \forall$ and $Q_2 = \exists$, we have $\forall x A(x) \land \exists y B(y) \models \forall x \exists y (A(x) \land B(y)) \models \exists y B(y) \land \forall x A(x) \models \exists y \forall x (B(y) \land A(x))$.

This only holds if x does not occur in B(y), y does not occur in A(x).