Formulaire de dérivation

IUT de Sceaux, GEA2

Jérôme Casse

email: jerome.casse.math@gmail.com

webpage: https://sites.google.com/view/jcasse/enseignement

1 Dérivées des fonctions usuelles

Fonction	Dérivée
f(x) = b	f'(x) = 0
$f(x) = a \times x + b$	f'(x) = a
$f(x) = x^{\alpha}$	$f'(x) = \alpha x^{\alpha - 1}$
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$

En particulier pour $f(x) = x^{\alpha}$, on a

α	Fonction	Dérivée
2	$f(x) = x^2$	f'(x) = 2x
3	$f(x) = x^3$	$f'(x) = 3x^2$
$\frac{1}{2}$	$f(x) = x^{1/2} = \sqrt{x}$	$f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$
-1	$f(x) = x^{-1} = \frac{1}{x}$	$f'(x) = -x^{-2} = \frac{-1}{x^2}$

2 Règles de calculs des dérivées

Fonction	Dérivée
f(x) + g(x)	f'(x) + g'(x)
$a \times f(x)$	$a \times f'(x)$
$f(x) \times g(x)$	$f'(x) \times g(x) + f(x) \times g'(x)$
f(x)	$f'(x) \times g(x) - f(x) \times g'(x)$
$\overline{g(x)}$	$g(x)^2$
f(g(x))	$g'(x) \times f'(g(x))$