Molecular Disease Mechanisms

Lecture 6: Cancer and Mitochondria

Dr. Hailey Gahlon ETH Laboratory of Toxicology hailey.gahlon@hest.ethz.ch

Lecture 6, Part 1

CANCER AND MITOCHONDRIA

After this lecture you will be able to:

- 1. Understand mitochondrial anatomy and function
- 2. Aspects of mitochondrial dysregulation in cancer

Mitochondria – The Power House

Mitochondria Anatomy

- Size of bacteria
 - (0.5 µm diameter and 1.0 µm length)
- Smooth outer membrane, folded inner membrane
 - (# invaginations = cristae)
- Proteins for:
 - OXPHOS = bound to inner membrane
 - TCA = within inner membrane space

Mitochondria and Cancer

Nuclear-Mitochondria Crosstalk (PolG mutations)

Organelle dynamics

Apoptosis

Metabolic reprogramming

mtDNA genome

Reactive oxygen species

Metabolic Reprogramming

Review on Warburg Effect

Alterations in glucose utilization

Electron transfer sites forming NADH and FADH₂

Oxidative phosphorylation - OXP

- Metabolic pathway that enzymes oxidize nutrients to release energy used to make ATP
- Takes place in the mitochondrial matrix
- Electron transport chain: free energy of electron transfer from NADH and FADH₂ to O₂ through protein bound redox centers coupled to ATP synthesis.
 - 4 enzyme complexes and ATP synthase

Electron transport chain

ATP Synthase and Cancer

Mitochondria Genome

mtDNA vs nDNA

mtDNA	nDNA		
ds circular	ds linear		
Single chromosome	Several chromosomes		
16,569 bp -37 proteins	3.3 billion bp -30,000 proteins		
No histones	Histone packing		
No introns (non coding)	Many introns		
Cell cycle independent replication	S-phase replication		
Maternal inheritance	Maternal and Paternal Inheritance (Recombination events)		

mtDNA mutations and cancer

b Mitochondrial regions harboring common mutations in different cancer sites

mtDNA mutations and cancer

Several mtDNA mutations have been identified in various types of human cancer.

Mutations have been found to be present in both the non-coding region and coding regions of the mtDNA.

Table 4 Mutations in complex V

Region	Nucleotide change	Nucleotide position	Cancer type	Amino acid change	Ref number
ATPase6	T-C	8996	Pancreatic	MET-THR	Jones et al. (2001)
ATPase6	T-G	9070	Pancreatic	SER-ALA	Jones et al. (2001)
ATPase6	A-G	8701	Thyroid	THR-ALA	Maximo et al. (2002)
ATPase6	T-C	9137	Thyroid	ILE-THR	Maximo et al. (2002)
ATPase6	A-G	8716	Thyroid	LYS-GLU	Maximo et al. (2002)

mtDNA replication: DNA Pol Gamma

Mutations in mitochondrial DNA polymerase γ promote breast tumorigenesis

Keshav K. Singh, 1,* Vanniarajan Ayyasamy, 1 Kjerstin M. Owens, 1 Manika Sapru Koul, 2 and Marija Vujcic 1

Breast tumors contained mutations in mtDNA. Mutations in POLG are known to cause mutations in mtDNA.

The mtDNA mutator mice that harbor the <u>mutation in the exonuclease domain</u> (that abolishes the POLG proof reading activity) show a marked reduction in lifespan due to the increased rate of mtDNA mutation

It is possible that mtDNA mutations do not initiate tumorigenesis, i.e., transform normal cells, but rather are involved in the promoting tumorigenesis.

Take home message: POLG gene mutations in human cancer suggest a role for POLG in human tumorigenesis.

J Human Genet, 2009.

Concluding remarks on cancer

