DM3. Série des restes

On note:

 S_0 l'ensemble des suites $u=(u_n)_n$ qui tendent vers zéro, S_{AC} l'ensemble des suites $u=(u_n)_n$ telles que la série $\sum u_n$ soit absolument convergente.

Si u est un élément de S_{AC} on note $S_n(u)$ (ou S_n) la somme partielle d'ordre n de la série, et $R_n(u)$ (ou R_n) le reste d'ordre n.

Le but de ce problème est d'étudier la convergence de la série de terme général R_n , lorsqu'elle est définie.

- 1. (a) Vérifier que S_0 et S_{AC} sont deux espaces vectoriel. Quelle inclusion y a t'il entre ces espaces?
 - (b) Montrer que l'application $\phi: \left\{ \begin{array}{l} S_{AC} \to S_0 \\ (u_n)_n \mapsto (R_n)_n \end{array} \right.$ est correctement définie et qu'elle est linéaire.
 - (c) L'application ϕ sst elle injective? Surjective?

Dans la suite on dira que la série $\sum u_n$ est absolument convergente d'ordre 1 si la suite (R_n) est dans S_{AC} , autrement dit, si la série $\sum R_n$ est aussi absolument convergente. On note E_1 l'ensemble des suites convergentes d'ordre 1. Lorsque la série de terme général R_n converge, on peut a son tour considérer son reste ρ_n qui tend vers 0. On dira que la série $\sum u_n$ est d'ordre 2 si la série de terme général ρ_n converge absolument. Par récurrence, pour tout entier $p \geq 1$ on dira que $\sum u_n$ est d'ordre p, si la série $\sum R_n$ est d'ordre p = 1. On notera E_p l'ensemble des séries d'ordre p.

- (d) Démontrer que E_p est un espace vectoriel (utiliser l'application ϕ eet faire une récurrence sur p).
- 2. Un exemple : On suppose $u_n = aq^n$.
 - (a) A quelle condition, la suite u est elle dans S_{AC} ? Calculer alors R_n .
 - (b) La série est elle absolument convergente d'ordre 1? Si oui, calculer la somme de la série $\sum R_n$.

Si p est un entier supérieur ou égal à deux, la série est elle d'ordre p?

- 3. Dans cette question $u \in S_{AC}$ est une suite à termes positifs .
 - (a) Pour n > 0, exprimer la somme partielle $\sum_{k=0}^{n} R_k$ en fonction de R_n et de $\sum_{k=0}^{n} k u_k$.
 - (b) On suppose que $\sum R_n$ converge. Montrer successivement :
 - i. La série $\sum nu_n$ converge
 - ii. La suite $(nR_n)_n$ converge
 - iii. $nR_n \to 0$ quand n tend vers l'infini.
 - (c) On suppose que $\sum nu_n$ converge. Montrer que $nR_n \to 0$. En déduire que $\sum R_n$ converge et exprimer sa somme à l'aide de $\sum nu_n$.
 - (d) Les espaces vectoriels E_1 et E_2 sont ils égaux? Quelle inclusion les relie?
 - (e) Un exemple : on pose $u_n=\frac{1}{n!}.$ On rappelle que la somme $\sum_{0}^{\infty}u_n=e.$

Etablir que $\sum R_n$ converge et calculer $\sum_{0}^{\infty} R_n$.

- 4. Dans cette question (u_n) et (v_n) sont deux suites positives qui vérifient $u_n \sim v_n$. On note $R_n(u)$ et $R_n(v)$ les restes d'ordre n de chacune de ces séries.
 - (a) Démontrer que $R_n(u) \sim R_n(v)$.
 - (b) Soit p un entier. En déduire, à l'aide d'une récurrence soignée que (u_n) est d'ordre p si et seulement si (v_n) est d'ordre p.
- 5. Dans cette question on étudie le cas $u_n = \frac{1}{(n+1)^{\alpha}}$. (α réel strictement plus grand que 1)
 - (a) Etablir l'inégalité $\int_{n+1}^{n+2} \frac{dt}{t^{\alpha}} \le u_n \le \int_{n}^{n+1} \frac{dt}{t^{\alpha}}$.
 - (b) Démontrer que $R_n(u) \sim \frac{C}{n^{\alpha-1}}$, où C est une constante que l'on calculera en fonction de α .
 - (c) Pour quelles valeurs de α la série $\sum u_n$ est elle d'ordre 1? d'ordre p?
- 6. Soit $u \in S_{AC}$ est une suite à terme quelconques. On suppose que la suite $(nu_n)_n$ est dans S_{AC} . Montrer que la série $\sum u_n$ est absolument convergente d'ordre 1.
- 7. Dans cette question, on garde les hypothèses de la question précédente et l'on définit une suite double :

$$v_{n,p} = \begin{cases} u_n & \text{si } n > p \\ 0 & \text{sinon} \end{cases}$$

En utilisant cette suite double, et le théorème de Fubini, redémontrer le résultat de la question précédente.

8. Le cas des séries alternées.

Dans cette question , f désigne une fonction positive, convexe, décroissante et tendant vers zéro en $+\infty$. On pose $u_n=(-1)^n f(n)$ et on note encore R_n le reste d'ordre n.

- (a) Etablir une égalité reliant les trois nombres R_n , f(n+1) et le reste d'ordre n de la série $\sum (-1)^n (f(n) f(n+1))$.
- (b) En déduire la convergence de la série de terme général R_n .
- (c) Peut on en déduire que la suite (u_n) est d'ordre 1?
- (d) On suppose de plus que l'on a $f(n) \sim_{n\infty} f(n+1)$. Déterminer un équivalent de R_n . Ceci permet il de redémontrer la convergence de la série de terme général R_n ?
- 9. Un exemple : Dans cette question, $u_n = \frac{(-1)^n}{n+1}$.
 - (a) Vérifier que l'on a $u_n = \int_0^1 (-1)^n t^n dt$.
 - (b) Prouver que $R_n=\int_0^1\frac{(-1)^{n+1}t^{n+1}dt}{1+t}$ (on pourra calculer la somme $\sum_{k=n+1}^mu_k$ puis prouver que pour toute fonction continue g on a $\lim_{m\to\infty}\int_0^1f(t)t^mdt=0)$
 - (c) Calculer $\sum_{0}^{\infty} R_n$.