Práctico 0 Álgebra II – Año 2024/1 **FAMAF**

Ejercicios resueltos

(1) Expresar los siguientes números complejos en la forma a + ib. Hallar el módulo y conjugado de cada uno de ellos, y graficarlos.

a)
$$(-1+i)(3-2i)$$
 b) $i^{131}-i^9+1$

b)
$$i^{131} - i^9 + 1$$

c)
$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i}$$

Solución:

3010010N:
a)
$$(-1+i)(3-2i) = -3+3i+2i-2i^2 = -3+5i+2 = \boxed{-1+5i}$$

$$\frac{|(-1+i)(3-2i)| = |-1+5i| = \sqrt{(-1)^2+5^2} = \sqrt{1+25} = \boxed{\sqrt{26}}$$

$$\frac{|(-1+i)(3-2i)| = -1+5i}{|(-1+i)(3-2i)| = -1+5i} = \boxed{-1-5i}$$

b)
$$i^{131} - i^9 + 1 = i^{4 \cdot 32 + 3} - i^{4 \cdot 2 + 1} + 1 = (i^4)^{32} \cdot i^3 - (i^4)^2 \cdot i^1 + 1 = i^3 - i + 1 = -i - i + 1 = 1 - 2i$$

$$|i^{131} - i^9 + 1| = |1 - 2i| = \sqrt{1^2 + (-2)^2} = \sqrt{1 + 4} = \sqrt{5}$$

$$i^{131} - i^9 + 1 = 1 - 2i = 1 + 2i$$

c)
$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i} = \frac{(1+i)(1-2i) + (1-i)(1+2i)}{1^2+2^2} = \frac{2Re(1-2i+i-2i^2)}{5} = \frac{6}{5}$$

$$\frac{\left|\frac{6}{5}\right|}{\left|\frac{1+i}{1+2i} + \frac{1-i}{1-2i}\right|} = \frac{\left|\frac{6}{5}\right|}{\left|\frac{6}{5}\right|} = \frac{6}{5}$$

$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i} = \frac{6}{5} = \frac{6}{5}$$

FIGURA 1. Ejercicio 1

(2) Encontrar números reales x e y tales que 3x + 2yi - xi + 5y = 7 + 5iSolución: Sean $x, y \in \mathbb{R}$, separo las partes real e imaginaria de la ecuación y planteo un sistema de ecuaciones:

$$3x + 2yi - xi + 5y = 7 + 5i \implies \begin{cases} Re(3x + 2yi - xi + 5y) &= Re(7 + 5i) \\ Im(3x + 2yi - xi + 5y) &= Im(7 + 5i) \end{cases}$$

$$\implies \begin{cases} 3x + 5y &= 7 \\ 2y - x &= 5 \end{cases}$$

$$3(2y - 5) + 5y &= 7 \\ 6y - 15 + 5y &= 7 \\ 11y &= 22 \\ y &= 2 \end{cases} \qquad 2 \cdot 2 - 5 = x \\ -1 &= x \end{cases}$$

$$y = 2 \\ x &= -1$$

(3) Probar que si $z \in \mathbb{C}$ tiene módulo 1 entonces $z + z^{-1} \in \mathbb{R}$.

Solución: Sabemos que el inverso de z se puede escribir $z^{-1} = \frac{\overline{z}}{|z|^2}$. Como por hipótesis tenemos que |z| = 1, resulta $z^{-1} = \overline{z}$. Luego:

$$z + z^{-1} = z + \overline{z} = 2\operatorname{Re}(z) \in \mathbb{R}$$

(4) Probar que si $a \in \mathbb{R} \setminus \{0\}$ entonces el polinomio $x^2 + a^2$ tiene siempre dos raíces complejas distintas.

Solución: Se iguala a 0 el polinomio:

$$0 = x^2 + a^2 = x^2 - (ia)^2 = (x + ai)(x - ai) \implies \begin{cases} x_1 = ai \\ x_2 = -ai \end{cases}$$

Se tendrá $x_1 \neq x_2 \Leftrightarrow a \neq 0$.

(5) Demostrar que dados z, z_1 , z_2 en \mathbb{C} se cumple:

$$|\bar{z}| = |z|, \qquad |z_1 z_2| = |z_1| |z_2|.$$

Solución:

Si z = a + bi, entonces $\overline{z} = a - bi$. Luego:

$$|\bar{z}| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|.$$

Si $z_1 = a + bi$, $z_2 = c + di$, entonces $z_1 z_2 = (ac - bd) + (ad + bc)i$. Luego:

$$|z_1 z_2| = \sqrt{(ac - bd)^2 + (ad + bc)^2}$$

$$= \sqrt{a^2c^2 - 2acbd + b^2d^2 + a^2d^2 + 2adbc + b^2c^2}$$

$$= \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2}.$$

Por otro lado,

$$|z_1||z_2| = \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$$

= $\sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2}$,

con lo que resulta que $|z_1 z_2| = |z_1| |z_2|$.

(6) Sean $z = 1 + i \text{ y } w = \sqrt{2} - i$. Calcular:

a)
$$z^{-1}$$
; $1/w$; z/w ; w/z .

b)
$$1 + z + z^2 + z^3 + \cdots + z^{2019}$$

c)
$$(z(z+w)^2 - iz)/w$$
.

Solución:

a)

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{1-i}{2},$$

$$\frac{1}{w} = \frac{1}{\sqrt{2}-i} = \frac{\sqrt{2}+i}{(\sqrt{2}-i)(\sqrt{2}+i)} = \frac{\sqrt{2}+i}{3},$$

$$\frac{z}{w} = \frac{1+i}{\sqrt{2}-i} = \frac{(1+i)(\sqrt{2}+i)}{3} = \frac{\sqrt{2}+1+i(\sqrt{2}+1)}{3},$$

$$\frac{w}{z} = \frac{\sqrt{2}-i}{1+i} = \frac{(\sqrt{2}-i)(1-i)}{2} = \frac{\sqrt{2}-1-i(\sqrt{2}+1)}{2}.$$

b) Por un lado

$$1 + z + z^{2} + z^{3} + \dots + z^{2019} = \frac{1 - z^{2020}}{1 - z} = \frac{1 - (1 + i)^{2020}}{-i} = i(1 - z^{2020}).$$

Por otro lado, tenemos que $1+i=\sqrt{2}e^{i\pi/4}$, luego $z=\sqrt{2}e^{i\pi/4}$, y por lo tanto $z^{2020}=2^{1010}e^{i1010\pi/4}=2^{1010}e^{i252\pi}=2^{1010}e^{i0}=2^{1010}$.

Por lo tanto,

$$1 + z + z^2 + z^3 + \dots + z^{2019} = i(1 - z^{2020}) = i(1 - 2^{1010}).$$

c) Primero calculemos el numerador por partes:

$$z(z+w)^2 = (1+i)(1+i+\sqrt{2}-i)^2 = (1+i)(1+\sqrt{2})^2$$
$$= (1+i)(1+2\sqrt{2}+2) = (1+i)(3+2\sqrt{2})$$
$$= 3+2\sqrt{2}+3i+2i\sqrt{2}.$$

Luego,

$$z(z+w)^{2} - iz = 3 + 2\sqrt{2} + 3i + 2i\sqrt{2} - i(1+i)$$

$$= 3 + 2\sqrt{2} + 3i + 2i\sqrt{2} - i - i^{2}$$

$$= 3 + 2\sqrt{2} + 3i + 2i\sqrt{2} - i + 1$$

$$= 4 + 2\sqrt{2} + 2i + 2i\sqrt{2}.$$

Dividir por w es multiplicar por $\overline{w}/|w|^2 = \frac{\sqrt{2}+i}{3}$, y por lo tanto,

$$\frac{z(z+w)^2 - iz}{w} = \frac{(4+2\sqrt{2}+2i+2i\sqrt{2})(\sqrt{2}+i)}{3}$$

$$= \frac{4\sqrt{2}+4+2\sqrt{2}+2i\sqrt{2}+2\sqrt{2}+2i-2+2\sqrt{2}i+2i^2}{3}$$

$$= \frac{6\sqrt{2}+4+4i}{3}.$$

- (7) Sumar y multiplicar los siguientes pares de números complejos
 - a) 2 + 3i y 4.
 - b) 2 + 3i + 4i.
 - c) 1 + i y 1 i.
 - d) 3 2i + i.

Solución: a)

$$2 + 3i + 4 = 6 + 3i$$
,
 $(2 + 3i) \cdot 4 = 8 + 12i$.

b)

$$2 + 3i + 4i = 2 + 7i$$
,
 $(2 + 3i) \cdot 4i = -12 + 8i$.

c)

$$1 + i + 1 - i = 2$$
,
 $(1 + i) \cdot (1 - i) = 1 - i + i - i^2 = 1 + 1 = 2$.

d)

$$3 - 2i + 1 + i = 4 - i,$$

$$(3 - 2i) \cdot (1 + i) = 3 - 2i + 3i - 2i^{2} = 5 + i.$$

(8) Expresar los siguientes números complejos en la forma a + ib. Hallar el módulo, argumento y conjugado de cada uno de ellos y graficarlos.

a)
$$2e^{i\pi} - i$$
,

b)
$$i^3 - 2i^{-7} - 1$$
,

c)
$$(-2+i)(1+2i)$$
.

Solución:

a)

$$2e^{i\pi} - i = 2(\cos(\pi) + i\sin(\pi)) - i = 2(-1) - i = -2 - i,$$

$$|2e^{i\pi} - i| = \sqrt{(-2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5},$$

$$\overline{2e^{i\pi} - i} = -2 + i.$$

Faltaría calcular el argumento. Debemos calcular heta tal que

$$-2 - i = \sqrt{5}(\cos(\theta) + i\sin(\theta)).$$

Por un lado, $|-2-i| = \sqrt{5}$, y por otro lado, $-2/\sqrt{5} = \cos(\theta)$ y $-1/\sqrt{5} = \sin(\theta)$. Luego, $\theta = \arctan(-1/-2) = \arctan(1/2)$.

b) Como $(-i) \cdot i = 1$, tenemos que $i^{-1} = -i$. Luego, $i^{-7} = (-i)^7 = -i^7 = -i^4 \cdot i^3 = -i^3 = -i \cdot i^2 = i$.

$$i^{3} - 2i^{-7} - 1 = -i - 2i + 1 = 1 - 3i,$$

$$|i^{3} - 2i^{-7} - 1| = \sqrt{1^{2} + (-3)^{2}} = \sqrt{1 + 9} = \sqrt{10},$$

$$\overline{i^{3} - 2i^{-7} - 1} = 1 + 3i.$$

Faltaría calcular el argumento. Debemos calcular heta tal que

$$1 - 3i = \sqrt{10}(\cos(\theta) + i\sin(\theta)).$$

Por un lado, $|1-3i|=\sqrt{10}$, y por otro lado, $1/\sqrt{10}=\cos(\theta)$ y $-3/\sqrt{10}=\sin(\theta)$. Luego, $\theta=\arctan(-3/1)=\arctan(-3)$.

c)

$$(-2+i)(1+2i) = -2+i-4i-2 = -4-3i$$

$$|(-2+i)(1+2i)| = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16+9} = \sqrt{25} = 5,$$

$$\overline{(-2+i)(1+2i)} = -4+3i.$$

Faltaría calcular el argumento. Debemos calcular heta tal que

$$-4 - 3i = 5(\cos(\theta) + i\sin(\theta)).$$

Por un lado, |-4-3i|=5, y por otro lado, $-4/5=\cos(\theta)$ y $-3/5=\sin(\theta)$. Luego, $\theta=\arctan(-3/-4)=\arctan(3/4)$.

(9) Sean $a, b \in \mathbb{C}$. Decidir si existe $z \in \mathbb{C}$ tal que:

- a) $z^2 = b$. ¿Es único? ¿Para qué valores de b resulta z ser un número real?
- b) z es imaginario puro y $z^2 = 4$.
- c) z es imaginario puro y $z^2 = -4$.

Solución:

- a) Si b=0, entonces z=0 es la única solución. Si $b\neq 0$, usaremos la forma polar de b. Si $b=re^{i\theta}$ con $r\neq 0$, entonces $z=\pm \sqrt{r}e^{i\theta/2}$ son los dos valores posible de z tal que $z^2=b$. Ahora bien, $z\in\mathbb{R}$ si y solo si $e^{i\theta/2}\in\mathbb{R}$ si y solo si $\theta/2\in\{0,\pi\}+2\pi\mathbb{Z}$ si y solo si $\theta\in\{0,2\pi\}+4\pi\mathbb{Z}$. Como wl argumento de b es θ , concluimos que $z\in\mathbb{R}$ si y solo si el argumento de b es un múltiplo entero de b0, es decir si b1 es real positivo.
- *b)* Si z es imaginario puro, entonces z=ia para algún $a\in\mathbb{R}$. Luego, $z^2=-a^2=4$, y por lo tanto $a^2=-4$, lo que no tiene solución en \mathbb{R} .
- c) Si z es imaginario puro, entonces z=ia para algún $a\in\mathbb{R}$. Luego, $z^2=-a^2=-4$, y por lo tanto $a^2=4$, lo que tiene solución en \mathbb{R} , a saber, $a=\pm 2$.