Sistemas Digitais

1º Ano de Engenharia Informática

Гrabalho Prático n.º 2	
Álgebra de Boole	
Grupo	
Diogo António Costa Medeiros	n.° <u>70633</u>
	n.°
	n.°

Objectivos

- Verificar com medições algumas leis e teoremas da Álgebra Booleana
- Usar as leis e teoremas para simplificar expressões booleanas

Referências

- TAUB, Herbert, "Circuitos Digitais e Microprocessadores", McGraw-Hill
- Texas Instruments online [http://www.ti.com/]

Material

- Placa RH21
- Circuito Integrado (CI) 74LS04 inversor (NOT)
- Circuito Integrado (CI) 74LS08 AND, duas entradas
- Circuito Integrado (CI) 74LS11 AND, três entradas
- Circuito Integrado (CI) 74LS32 OR, duas entradas

1. Leis fundamentais da Álgebra Booleana

As leis fundamentais da Álgebra Booleana são importantes como meio para a avaliação e simplificação de expressões booleanas, e formam a base a partir da qual surgem outros teoremas.

1.1 Leis comutativas

As duas leis comutativas (ao lado) afirmam simplesmente que a A + B = B + A ordem da adição ou multiplicação lógicas não é importante. $A \cdot B = B \cdot A$

1.2 Leis associativas

As duas leis associativas (ao lado, exemplo para três variáveis) oferecem a possibilidade de **agrupar termos** da adição ou da multiplicação lógicas de qualquer forma. A + (B + C) = (A + B) + C $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

1.3 Lei distributiva

A lei distributiva possibilita a **expansão por multiplicação termo-a-termo**. De modo inverso, também permite a **factorização de uma expressão** (vulgo. "pôr em evidência"). Ao contrário da Álgebra tradicional, na Álgebra Booleana também existe a distributividade da adição em relação à multiplicação (página seguinte).

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

 $A + (B \cdot C) = (A + B) \cdot (A + C)$

As oito leis que se seguem, agrupadas em quatro pares, são diferentes da Álgebra usual e formam a coluna vertebral da Álgebra Booleana. Cada par tem as operações **AND** (multiplicação lógica) e **OR** (adição lógica), e cada lei pode ser facilmente visualizada em termos de **portas lógicas**.

1.4 Operações com 0

Preencha as tabelas de verdade apresentadas em baixo com os **valores lógicos** obtidos experimentalmente e conclua quanto à **regra geral** (à esquerda).

$$A + 0 = A$$
 $A + 0 = A$
 $A +$

1.5 Operações com 1

Preencha as tabelas de verdade apresentadas em baixo com os **valores lógicos** obtidos experimentalmente e conclua quanto à **regra geral** (à esquerda).

1.6 Operações duma variável com ela própria

Preencha as tabelas de verdade apresentadas em baixo com os **valores lógicos** obtidos experimentalmente e conclua quanto à **regra geral** (à esquerda).

1.7 Operações duma variável com o seu complemento

Preencha as tabelas de verdade apresentadas em baixo com os **valores lógicos** obtidos experimentalmente e conclua quanto à **regra geral** (à esquerda).

1.8 Elementos neutros e elementos absorventes

Preencha a tabela seguinte com as conclusões que se podem tirar dos pontos anteriores.

	Adição lógica (OR)	Multiplicação lógica (AND)
Elemento Neutro:	0	1
Elemento Absorvente:	1	0

2. Teoremas Booleanos

As leis básicas da Álgebra Booleana que se seguem podem ser usadas para obter um sem-número de teoremas úteis:

$$\overline{\overline{A}} = A$$

$$A + AB = A$$

$$A \cdot (A + B) = A$$

$$A + \overline{A}B = A + B$$

$$A + \overline{A}B = A + B$$

$$A \cdot (\overline{A} + B) = AB$$

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

$$A \cdot (\overline{A} + B) = AB$$

$$(A + B)(\overline{A} + C)(B + C) = (A + B)(\overline{A} + C)$$

$$AB + A\overline{B} = A$$

$$(A + B) \cdot (A + B) = A$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A + B} = \overline{A \cdot B}$$

O último par de teoremas (coluna da direita), devido a **DeMorgan**, são expressões paras as portas **NAND** (\overline{AB}) e **NOR** (\overline{AB}) . Estes dois teoremas devem ser memorizados, pois são muito úteis na simplificação de expressões contendo complementos.

2.1 Desenhe o circuito lógico para $(A + B)(\overline{A} + C)$:

2.2 Desenhe o circuito lógico para $AC + \overline{A}B$:

2.3 Verifique, **por indução** (**prática**), o teorema $(A+B)(\overline{A}+C) = AC + \overline{A}B$. Para tal **implemente o circuito lógico** correspondente ao primeiro membro, aplique nas entradas os valores lógicos apresentados na tabela de verdade em baixo e registe os valores de saída na mesma tabela. Proceda de igual modo para o segundo membro da igualdade.

A	0	0	0	0	1	1	1	1
B	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1
$(A+B)(\overline{A}+C)$	0	0	1	1	0	1	0	1
$AC + \overline{A}B$	0	0	1	1	0	1	0	1

2.4 Use a **indução** (**teórica**) para provar o teorema $AB = A(\overline{A} + B)$. **Não implemente** os circuitos — sirva-se apenas da seguinte **tabela**:

A	В	\overline{A}	AB	$\overline{A} + B$	$A(\overline{A}+B)$
0	0	1	0	1	0
1	0	0	0	0	0
0	1	1	0	1	0
1	1	0	1	1	1
			1		1

2.5 Use a **indução** (**prática**), **implementando os circuitos**, para verificar a equivalência dos dois circuitos lógicos apresentados a seguir:

