Stat 135 Lab1

Leomart Crisostomo 2/13/2018

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
load("/Users/Leomart/Desktop/Stat135/KaiserBabies.rda")
plot(density(infants$bwt), xlab = "Birth Weight (oz)", main = "Male Babies, Oakland Kaiser 1960s")
```

Male Babies, Oakland Kaiser 1960s

plot(density(infants\$bwt,bw=1), xlab = "Birth Weight (oz)", main = "Male Babies, Oakland Kaiser 1960s")

Male Babies, Oakland Kaiser 1960s

plot(density(infants\$bwt,adjust=0.5), xlab = "Birth Weight (oz)", main = "Male Babies, Oakland Kaiser 1

Male Babies, Oakland Kaiser 1960s

hist(infants\$bwt)

Histogram of infants\$bwt


```
hist(infants$bwt[!infants$smoke=="Now"],breaks=50,col=rgb(0,0,1,.3),
xlab="Birthweight (ounces)",main="Birthweight")
hist(infants$bwt[infants$smoke=="Now"],breaks=50,col=rgb(1,0,0,.3),add=T)
legend(50,40,legend=c("Non-smokers","Smokers"),
fill=c(rgb(0,0,1,.3),rgb(1,0,0,.3)))
```

Birthweight


```
mean(infants$bwt)
## [1] 119.5769
sd(infants$bwt)
## [1] 18.23645
summary(infants$bwt)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
      55.0
           108.8
                    120.0
                           119.6
                                   131.0
                                            176.0
boxplot(infants$bwt)
180
140
100
80
                                        9
qqnorm(infants$bwt)
qqline(infants$bwt)
```


qqnorm(infants\$wt)
qqline(infants\$wt)

Normal Q-Q Plot

X=runif(1000)
qqnorm(X)

X=rexp(1000)
qqnorm(X)
qqline(X)

Normal Q-Q Plot


```
X=rnorm(1000)
qqnorm(X)
qqline(X)
```


set.seed(7)
mysample=sample(na.omit(infants\$wt),10)
Part 1
1a
true_average = mean(infants\$bwt)
x_bar = mean(mysample)
estimated_se = sd(mysample) / sqrt(length(mysample))
95% CI Interval
interval = c(x_bar - 1.96*estimated_se, x_bar + 1.96*estimated_se)
interval

```
## [1] 125.0711 144.3289
# 1b
# creates 1000 95% Confidence Interval
thousand_interval = c()
thousand_averages = c()
num_interval = 0
for (i in 1:1000)
{
    sample = sample(na.omit(infants$wt),10)
    std_error = sd(sample) / sqrt(length(sample))
    thousand_averages = c(thousand_averages, mean(sample))
    ci_interval = c(mean(sample) - 1.96*std_error, mean(sample) + 1.96*std_error )
    thousand_interval = c(thousand_interval, ci_interval)
    if(ci_interval[1] <= true_average & ci_interval[2] >= true_average){
```

```
num_interval = num_interval +1
}
}
# I expect 95% (950 intervals) of the intervals cover the true average
cat("I expect 95% (950 intervals) of the intervals cover the true average")
## I expect 95\% (950 intervals) of the intervals cover the true average
# The number of 95% CI that has true average is in num_interval
cat("The number of 95% CI that has true average is", num_interval)
## The number of 95% CI that has true average is 736
# 1c
sd_averages = sd(thousand_averages)
sd_averages
## [1] 6.740372
estimated_se
## [1] 4.912682
cat('The SD of the sample averages, ', sd_averages, ', is not very close to the estimated standard err
estimated_se)
## The SD of the sample averages, 6.740372 , is not very close to the estimated standard error, 4.912
hist(thousand averages)
                         Histogram of thousand_averages
```


cat('As we can see in the histogram, the shape looks very close to a bell shaped curve, normal distribu
The qq plot shows that most of the points are in the line, so the sample average follows the normal cur
')

As we can see in the histogram, the shape looks very close to a bell shaped curve, normal distributi ## The qq plot shows that most of the points are in the line, so the sample average follows the normal

```
# the confidence interval seems not valid
# Part 2
# 2a
bootStrap = function(mySample, popSize = NULL, B = 1000, repl = FALSE){
if (repl) {
# Bootstrap should be done the same way as original sample, usually without rep
return(replicate(B, mean(sample(mySample, length(mySample), TRUE))))
} else {
vals = sort(unique(mySample))
counts = table(mySample)
# makes the bootstrap pop as rounded version of sample, not quite right
bootPop = rep(vals, round(counts * popSize / length(mySample)))
return(list(bootPop,
bootSamps = replicate(B,mean(sample(bootPop, length(mySample), FALSE))))
)
}
bootstrap_averages = bootStrap(mysample, 10, repl = TRUE)
hist(bootstrap_averages)
abline(v=x_bar,col="red")
```

Histogram of bootstrap_averages


```
interval = c(x_bar - 1.96*estimated_se, x_bar + 1.96*estimated_se)
interval
## [1] 125.7439 133.8161
# 1h
# creates 1000 95% Confidence Interval
thousand_interval = c()
thousand averages = c()
num interval = 0
for (i in 1:1000)
sample = sample(na.omit(infants$wt),100)
std error = sd(sample) / sqrt(length(sample))
thousand_averages = c(thousand_averages, mean(sample))
ci_interval = c(mean(sample) - 1.96*std_error, mean(sample) + 1.96*std_error )
thousand_interval = c(thousand_interval, ci_interval)
if(ci_interval[1] <= true_average & ci_interval[2] >= true_average){
num_interval = num_interval +1
}
}
# I expect 95% (950 intervals) of the intervals cover the true average
cat("I expect 95% (950 intervals) of the intervals cover the true average")
## I expect 95% (950 intervals) of the intervals cover the true average
# The number of 95% CI that has true average is in num_interval
cat("The number of 95% CI that has true average is", num_interval)
## The number of 95% CI that has true average is 2
sd_averages = sd(thousand_averages)
sd_averages
## [1] 2.000529
estimated_se
## [1] 2.059253
cat('The SD of the sample averages, ' , sd_averages, ', is very close to the estimated standard error,
estimated se)
## The SD of the sample averages, 2.000529, is very close to the estimated standard error, 2.059253
hist(thousand averages)
```

Histogram of thousand_averages

qqnorm(thousand_averages)
qqline(thousand_averages)

Normal Q-Q Plot

cat('As we can see in the histogram, the shape looks very close to a bell shaped curve, normal distribution to the qq plot shows that most of the points are in the line, so the sample average follows the normal curve.

As we can see in the histogram, the shape looks very close to a bell shaped curve, normal distributi ## The qq plot shows that most of the points are in the line, so the sample average follows the normal

```
# The confidence interval is valid
# Part 2
# 2a
hist(bootstrap_averages)
abline(v=x_bar,col="red")
```

Histogram of bootstrap_averages


```
bootstrap_sd = sd(bootstrap_averages)
cat('The SD of the sample averages from using bootstrap, ' , bootstrap_sd, ', is very close to the estimated_se)
```

The SD of the sample averages from using bootstrap, 4.721071, is very close to the estimated stand # 2b quantile(bootstrap_averages, probs = c(0.025, 0.975))

```
## 2.5% 97.5%
## 125.1 144.1
ci_interval
```

[1] 125.1747 132.2253

cat("The 95% confidence interval from the bootstrap is closer to the 95% confidence interval of the bootstrap

The 95% confidence interval from the bootstrap is closer to the 95% confidence interval of the boots