Équilibrabilité et nombre d'équilibrage des cycles

Antoine Dailly¹, Laura Eslava², Adriana Hansberg¹, Denae Ventura¹

¹ Instituto de Matemáticas, UNAM Juriquilla, Mexique ² IIMAS, UNAM Ciudad Universitaria, Mexique

Théorie des graphes extrémaux

Densité minimale garantissant une propriété.

Théorie des graphes extrémaux

Densité minimale garantissant une propriété.

Théorème de Turán (1941)

Si G d'ordre n contient strictement plus de $\left(1-\frac{1}{r}\right)\frac{n^2}{2}$ arêtes, alors G contient un K_{r+1} .

Théorie des graphes extrémaux

Densité minimale garantissant une propriété.

Si G d'ordre n contient strictement plus de $\left(1-\frac{1}{r}\right)\frac{n^2}{2}$ arêtes, alors G contient un K_{r+1} .

Théorie de Ramsey

Garantir des sous-structures ordonnées au sein de grandes structures chaotiques.

Théorie des graphes extrémaux

Densité minimale garantissant une propriété.

Théorème de Turán (1941)

Si G d'ordre n contient strictement plus de $\left(1-\frac{1}{r}\right)\frac{n^2}{2}$ arêtes, alors G contient un K_{r+1} .

Théorie de Ramsey

Garantir des sous-structures ordonnées au sein de grandes structures chaotiques.

Théorème de Ramsey (2009)

Pour tout r, si n est suffisamment grand, alors toute 2-coloration des arêtes de K_n contient un K_r monochromatique.

Dans toute cette présentation, on considère des 2-colorations des arêtes de K_n , *i.e.* des partitions de ses arêtes : $E(K_n) = R \sqcup B$.

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

 \Rightarrow Par Ramsey, quand n est suffisamment grand, on a toujours une (0, |E|)-copie ou une (|E|, 0)-copie de G.

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

 \Rightarrow Par Ramsey, quand n est suffisamment grand, on a toujours une (0, |E|)-copie ou une (|E|, 0)-copie de G.

On cherche à garantir l'existence d'une (r, b)-copie de G (pour r > 0 donné).

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

 \Rightarrow Par Ramsey, quand n est suffisamment grand, on a toujours une (0, |E|)-copie ou une (|E|, 0)-copie de G.

On cherche à garantir l'existence d'une (r, b)-copie de G (pour r > 0 donné).

⇒ Besoin d'une certaine densité de chaque classe de couleur.

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

 \Rightarrow Par Ramsey, quand n est suffisamment grand, on a toujours une (0, |E|)-copie ou une (|E|, 0)-copie de G.

On cherche à garantir l'existence d'une (r, b)-copie de G (pour r > 0 donné).

⇒ Besoin d'une certaine densité de chaque classe de couleur.

r-tonalité

Si, pour tout n suffisamment grand, il existe un k(n,r) tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n avec |R|, |B| > k(n,r) contient une (r,b)-copie de G, alors G est r-tonal.

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{\left|\frac{|E|}{2}\right|, \left\lceil\frac{|E|}{2}\right\rceil\}$.

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{\left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \}$.

Équilibrabilité

Soit bal(n, G) le plus petit entier, s'il existe, tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n vérifiant |R|, |B| > bal(n, G) contient une copie équilibrée de G.

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{\left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \}$.

Équilibrabilité

Soit $\mathsf{bal}(n,G)$ le plus petit entier, s'il existe, tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n vérifiant $|R|, |B| > \mathsf{bal}(n,G)$ contient une copie équilibrée de G.

S'il existe un n_0 tel que, pour tout $n \ge n_0$, bal(n, G) existe, alors G est dit équilibrable

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{\left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \}$.

Équilibrabilité

Soit bal(n, G) le plus petit entier, s'il existe, tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n vérifiant |R|, |B| > bal(n, G) contient une copie équilibrée de G.

S'il existe un n_0 tel que, pour tout $n \ge n_0$, bal(n, G) existe, alors G est dit équilibrable et bal(n, G) est appelé son nombre d'équilibrage.

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{ \left \lfloor \frac{|E|}{2} \right \rfloor, \left \lceil \frac{|E|}{2} \right \rceil \}$.

Équilibrabilité

Soit $\mathsf{bal}(n,G)$ le plus petit entier, s'il existe, tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n vérifiant $|R|, |B| > \mathsf{bal}(n,G)$ contient une copie équilibrée de G.

S'il existe un n_0 tel que, pour tout $n \ge n_0$, bal(n, G) existe, alors G est dit/équilibrable et bal(n, G) est appelé son nombre d'équilibrage.

Problème type Ramsey

Problème type extrémal

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

1. Une coupe traversée par la moitié de ses arêtes;

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

- 1. Une coupe traversée par la moitié de ses arêtes;
- 2. Un sous-graphe induit contenant la moitié de ses arêtes.

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

- 1. Une coupe traversée par la moitié de ses arêtes;
- 2. Un sous-graphe induit contenant la moitié de ses arêtes.

 \Rightarrow La preuve donne une borne supérieure subquadratique pour bal(n, G) si G est équilibrable.

- ► Caro, Hansberg, Montejano (2019)
 - ▶ bal $(n, K_4) = n 1$ ou n (selon la valeur de n mod 4)
 - Aucun autre graphe complet avec un nombre pair d'arêtes n'est équilibrable!

- ► Caro, Hansberg, Montejano (2019)
 - ▶ bal $(n, K_4) = n 1$ ou n (selon la valeur de n mod 4)
 - Aucun autre graphe complet avec un nombre pair d'arêtes n'est équilibrable!
- ► Caro, Hansberg, Montejano (2020)
 - Les arbres sont équilibrables
 - ▶ bal $(n, K_{1,k}) = (\frac{k-2}{2}) n \frac{k^2}{8} + \frac{k}{4}$
 - ▶ bal (n, P_{4k}) = bal (n, P_{4k+1}) = $(k-1)n \frac{1}{2}(k^2 k \frac{1}{2})$ bal (n, P_{4k-2}) = bal (n, P_{4k-1}) = $(k-1)n - \frac{1}{2}(k^2 - k)$ $\triangle P_k$ désigne le chemin sur k arêtes (désolé e)

- ► Caro, Hansberg, Montejano (2019)
 - ▶ bal $(n, K_4) = n 1$ ou n (selon la valeur de n mod 4)
 - Aucun autre graphe complet avec un nombre pair d'arêtes n'est équilibrable!
- ► Caro, Hansberg, Montejano (2020)
 - Les arbres sont équilibrables
 - ▶ bal $(n, K_{1,k}) = (\frac{k-2}{2}) n \frac{k^2}{8} + \frac{k}{4}$
 - ▶ bal (n, P_{4k}) = bal (n, P_{4k+1}) = $(k-1)n \frac{1}{2}(k^2 k \frac{1}{2})$ bal (n, P_{4k-2}) = bal (n, P_{4k-1}) = $(k-1)n - \frac{1}{2}(k^2 - k)$ $\land P_k$ désigne le chemin sur k arêtes (désolé e)
- ► Caro, Lauri, Zarb (2020)
 - Nombres d'équilibrage des graphes sur au plus 4 arêtes

- ► Caro, Hansberg, Montejano (2019)
 - ▶ bal $(n, K_4) = n 1$ ou n (selon la valeur de $n \mod 4$)
 - Aucun autre graphe complet avec un nombre pair d'arêtes n'est équilibrable!
- ► Caro, Hansberg, Montejano (2020)
 - Les arbres sont équilibrables
 - ▶ bal $(n, K_{1,k}) = (\frac{k-2}{2}) n \frac{k^2}{8} + \frac{k}{4}$
 - ▶ bal (n, P_{4k}) = bal (n, P_{4k+1}) = $(k-1)n \frac{1}{2}(k^2 k \frac{1}{2})$ bal (n, P_{4k-2}) = bal (n, P_{4k-1}) = $(k-1)n - \frac{1}{2}(k^2 - k)$ $\land P_k$ désigne le chemin sur k arêtes (désolé e)
- ► Caro, Lauri, Zarb (2020)
 - Nombres d'équilibrage des graphes sur au plus 4 arêtes
 - \rightarrow Nous allons étudier les cycles.

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

 $ightharpoonup C_{4k+2}$ n'est pas équilibrable;

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

- $ightharpoonup C_{4k+2}$ n'est pas équilibrable;
- $ightharpoonup C_{4k+\epsilon}$ est équilibrable
- $ightharpoonup C_{4k}$ est équilibrable

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

- $ightharpoonup C_{4k+2}$ n'est pas équilibrable;
- ► $C_{4k+\epsilon}$ est équilibrable, et bal $(n, C_{4k+\epsilon}) = (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$;
- $ightharpoonup C_{4k}$ est équilibrable

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

- $ightharpoonup C_{4k+2}$ n'est pas équilibrable;
- ► $C_{4k+\epsilon}$ est équilibrable, et bal $(n, C_{4k+\epsilon}) = (k-1)n \frac{1}{2}(k^2 k 1 \epsilon)$;
- ► C_{4k} est équilibrable, et $(k-1)n (k-1)^2 \le \text{bal}(n, C_{4k}) \le (k-1)n + 12k^2 + 3k$.

Cycles C_{4k+2}

Proposition

Le cycle C_{4k+2} n'est pas équilibrable.

Preuve par contradiction

Cycles C_{4k+2}

Proposition

Le cycle C_{4k+2} n'est pas équilibrable.

Preuve par contradiction

 C_{4k+2} a une coupe contenant la moitié de ses arêtes.

Cycles C_{4k+2}

Proposition

Le cycle C_{4k+2} n'est pas équilibrable.

Preuve par contradiction

 C_{4k+2} a une coupe contenant la moitié de ses arêtes.

Proposition

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$
$$= (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$$

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

 P_{4k} équilibré \Rightarrow 2k arêtes de chaque couleur

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{3}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

 P_{4k} équilibré \Rightarrow 2k arêtes de chaque couleur

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

 P_{4k} équilibré \Rightarrow 2k arêtes de chaque couleur

On peut refermer le cycle qui sera équilibré

Cycles impairs

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

$$C_{4k+1}$$
 équilibré \Rightarrow Une couleur avec $2k+1$ arêtes

Cycles impairs

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{23}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

$$C_{4k+1}$$
 équilibré \Rightarrow Une couleur avec $2k+1$ arêtes

Cycles impairs

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

 C_{4k+1} équilibré \Rightarrow Une couleur avec 2k+1 arêtes

En retirer une donne un P_{4k} équilibré

Proposition

Pour tout $n \ge 4k$, bal $(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Proposition

Pour tout $n \ge 4k$, bal $(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Preuve

On construit une 2-coloration $R \sqcup B$ sans C_{4k} équilibré et telle que $|B| \geq |R| = (k-1)n - (k-1)^2$.

Proposition

Pour tout $n \ge 4k$, bal $(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Preuve

On construit une 2-coloration $R \sqcup B$ sans C_{4k} équilibré et telle que $|B| \ge |R| = (k-1)n - (k-1)^2$.

Proposition

Pour tout $n \ge 4k$, bal $(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Preuve

On construit une 2-coloration $R \sqcup B$ sans C_{4k} équilibré et telle que $|B| \geq |R| = (k-1)n - (k-1)^2$.

 \Rightarrow Un cycle ne peut avoir qu'au plus 2k-2 arêtes dans R.

Proposition

Soient
$$k>0$$
 et $n\geq \frac{9}{2}k^2+\frac{13}{4}k+\frac{49}{32}$:
$${\rm bal}(n,C_{4k})\leq (k-1)n+12k^2+3k.$$

Preuve par contradiction

Proposition

Soient
$$k>0$$
 et $n\geq \frac{9}{2}k^2+\frac{13}{4}k+\frac{49}{32}$:
$$bal(n,C_{4k})\leq (k-1)n+12k^2+3k.$$

Preuve par contradiction

$$|R|, |B| > \text{bal}(n, P_{4k-2}) \Rightarrow \text{II y a un } P_{4k-2} \text{ équilibré.}$$

$$4k-1$$
 sommets $O---O$

Proposition

Soient
$$k>0$$
 et $n\geq \frac{9}{2}k^2+\frac{13}{4}k+\frac{49}{32}$:
$$bal(n,C_{4k})\leq (k-1)n+12k^2+3k.$$

Preuve par contradiction

$$|R|, |B| > \text{bal}(n, P_{4k-2}) \Rightarrow \text{II y a un } P_{4k-2} \text{ équilibré.}$$

 $\Rightarrow \text{On le ferme avec (wlog) une } B$

$$\begin{array}{c}
4k - 1 \text{ sommets} \\
\hline
0 - - - O
\end{array}$$

$$\begin{array}{c}
2k - 1 \text{ dans } R \\
2k \text{ dans } B
\end{array}$$

Preuve par contradiction (suite)

Preuve par contradiction (suite)

Preuve par contradiction (suite)

Des lemmes forcent les couleurs de E(X), E(Y) et E(X, Y).

Preuve par contradiction (suite)

On ne peut pas avoir $|X|, |Y| \ge k$

Preuve par contradiction (suite)

On ne peut pas avoir $|X|, |Y| \ge k \Rightarrow$ wlog, supposons |X| < k

Preuve par contradiction (suite)

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

II contient $\geq (k-1)n$ arêtes; or $ex(n, P_{2k-1}) \leq (k-1)n$ [FS13]

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

II contient $\geq (k-1)n$ arêtes; or $\exp(n, P_{2k-1}) \leq (k-1)n$ [FS13] \Rightarrow II contient un P_{2k-1} .

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

II contient $\geq (k-1)n$ arêtes; or $\operatorname{ex}(n,P_{2k-1}) \leq (k-1)n$ [FS13] \Rightarrow II contient un P_{2k-1} .

II reste suffisamment d'arêtes dans R pour avoir un $K_{1,2}$.

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

II contient $\geq (k-1)n$ arêtes; or $ex(n, P_{2k-1}) \leq (k-1)n$ [FS13] \Rightarrow II contient un P_{2k-1} .

Il reste suffisamment d'arêtes dans R pour avoir un $K_{1,2}$.

On complète avec des arêtes dans Y, qui seront dans B, et on obtient un C_{4k} équilibré.

 \Rightarrow Contradiction

Équilibrable

Non-équilibrable

 \square valeur exacte de bal(n, G)

 $\begin{bmatrix} --- \end{bmatrix}$ bornes non-triviales pour bal(n, G)

Équilibrable

Non-équilibrable

valeur exacte de bal(n, G)i bornes non-triviales pour bal(n, G)

[Caro, Hansberg, Montejano, 2019]

[Caro, Lauri, Zarb, 2020]

Équilibrable

 \square valeur exacte de bal(n, G)

Non-équilibrable

 $\bigcup_{i=1}^{n}$ bornes non-triviales pour bal(n, G)

[Caro, Hansberg, Montejano, 2019]

[Caro, Lauri, Zarb, 2020]

[D., Eslava, Hansberg, Ventura, 2020+]

Équilibrable

Non-équilibrable

 \square valeur exacte de bal(n, G)

 $|\Box \Box \Box$ bornes non-triviales pour bal(n, G)

 K_n K_2, K_3, K_4

 $n \ge 5$, $\frac{n(n-1)}{2}$ pair

[Caro, Hansberg, Montejano, 2019]

[Caro, Lauri, Zarb, 2020]

[D., Eslava, Hansberg, Ventura, 2020+]

[D., Hansberg, Ventura, 2020+]

Perspectives

- Caractérisation des circulants équilibrables
- ▶ Nombre d'équilibrage

Perspectives

- Caractérisation des circulants équilibrables
- ► Nombre d'équilibrage

[D., Hansberg, Ventura, 2020+]