Θεωρία Ομάδων 2 Πρώτο πακέτο Ασκήσεων

Ονομ/νο: Νούλας Δ ημήτριος AM: 1112201800377 (προπτυχιαχό) email: dimitriosnoulas@gmail.com

Άσκηση 1) Αν η $\phi: X \to Y$ είναι μια σχεδόν ισομετρία μεταξύ μετρικών χώρων, τότε η ϕ έχει σχεδόν αντίστροφη, δηλαδή υπάρχει σχεδόν ισομετρία $\psi: Y \to X$ και M>0 έτσι ώστε $d_X(\psi \circ \phi(x), x) \leq M$ και $d_Y(\phi \circ \psi(y), y) \leq M$ για κάθε $x \in X, y \in Y$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Η ϕ είναι σχεδόν ισομετρία από τον X στον Y άρα υπάρχουν $\lambda>0, \varepsilon\geq0$ με

$$\frac{1}{\lambda}d(x_1, x_2) - \varepsilon \le d(\phi(x_1), \phi(x_2)) \le \lambda d(x_1, x_2) + \varepsilon$$

και υπάρχει $K \geq 0$ με $d(\phi(x),y) \leq K$. (Μπορώ να κάνω παραδοχή και να πάρω $R = \max$ από τις τρεις σταθερές)

Αν $x \in X$ υπάρχει $y \in Y$ με $d(\phi(x), y) \leq K$ δηλαδή $\phi(x) \in N_K(y)$ δηλαδή $x \in \phi^{-1}(N_K(y))$

Άρα η οικογένεια $\{\phi^{-1}(N_K(y))\}_{y\in Y}$ καλύπτει τον X. Έτσι από αξίωμα επιλογής διαλέγουμε $\psi(y)\in\phi^{-1}(N_K(y))$ και έτσι ορίζεται η ψ .

Έχουμε:

$$\phi(\phi^{-1}(N_K(y)) \subseteq N_K(y)$$

δηλαδή

$$d(\phi \circ \psi(y), y) \le K$$

Μετά έχουμε $\psi \circ \phi(x) \in \phi^{-1}(N_K(\phi(x)))$ και άρα $\phi \circ \psi \circ \phi(x) \in \phi(\phi^{-1}(N_K(\phi(x))) \subseteq N_K(\phi(x))$

Επομένως:

$$d(\psi \circ \phi(x), x) < \lambda d(\phi \circ \psi \circ \phi(x), \phi(x)) + \varepsilon < \lambda K + \varepsilon$$

Άρα θέτω $M=\max\{K,\lambda K+\varepsilon\}$ και έχω τις ζητούμενες συνθήκες. Αρκεί να επιβεβαιωθεί ότι η ψ είναι σχεδόν ισομετρία.

Εμφύτευση:

$$d(\psi(y_1), \psi(y_2)) \le \lambda d(\phi \circ \psi(y_1), \phi \circ \psi(y_2)) + \lambda \varepsilon$$

$$\le \lambda (d(\phi \circ \psi(y_1), y_1) + d(y_1, y_2) + d(\phi \circ \psi(y_2), y_2)) + \lambda \varepsilon$$

$$\le \lambda (2M + \varepsilon) + \lambda d(y_1, y_2)$$

$$\le \varepsilon' + \lambda d(y_1, y_2)$$

Για την άλλη ανισότητα:

$$d(y_1, y_2) \le d(y_1, \phi \circ \psi(y_1)) + d(\phi \circ \psi(y_1), \phi \circ \psi(y_2)) + d(y_2, \phi \circ \psi(y_2))$$

άρα

$$d(\phi \circ \psi(y_1), \phi \circ \psi(y_2)) \ge d(y_1, y_2) - d(y_1, \phi \circ \psi(y_1)) - d(y_2, \phi \circ \psi(y_2))$$

Χρησιμοποιώντας ότι η ϕ είναι σχεδόν ισομετρία:

$$d(\psi(y_1), \psi(y_2)) \ge \frac{1}{\lambda} d(\phi \circ \psi(y_1), \phi \circ \psi(y_2)) - \frac{\varepsilon}{\lambda}$$
$$\ge \frac{1}{\lambda} d(y_1, y_2) - \frac{2M + \varepsilon}{\lambda}$$
$$\ge \frac{1}{\lambda} d(y_1, y_2) - \varepsilon'$$

όπου θέσαμε $\varepsilon' = \max\{\frac{2M+\varepsilon}{\lambda}, \lambda(2M+\varepsilon)\}$

Σχεδόν επί:

$$\begin{split} d(\psi(y),x) & \leq d(\psi(y),\psi\circ\phi(x)) + d(x,\psi\circ\phi(x)) \\ & \leq \lambda d(y,\phi(x)) + \lambda\varepsilon + M \\ & \leq \lambda K + \lambda\varepsilon + M \\ & \leq \lambda M + \lambda\varepsilon + M = C \end{split}$$

άρα σχεδόν επί.

Άσκηση 2) Αν X και Y είναι μετρικοί χώροι γράφουμε $X \underset{qi}{\sim} Y$ αν ο X είναι σχεδόν ισομετρικός με τον Y. Αποδείξτε ότι η σχέση $X \underset{qi}{\sim} Y$ είναι σχέση ισοδυναμίας.

Aπόδειξη.

Η ταυτοτική απεικόνιση του X είναι σχεδόν ισομετρία και άρα $X \underset{ai}{\sim} X.$

Στην άσκηση 1 δείξαμε ότι αν $X \mathop{\sim}_{qi} Y$ τότε $Y \mathop{\sim}_{qi} X$.

Έστω $f:X\to Y$ και $g:Y\to Z$ (λ,ε) -σχεδόν ισομετρίες. Μπορούμε να θεωρήσουμε ίδιο $\lambda=\max\{\lambda_1,\lambda_2\}$ και όμοια $\varepsilon=\max\{\varepsilon_1,\varepsilon_2\}$. Μάλιστα θα μπορούσαμε να θεωρήσουμε μια σταθερά $\max\{\varepsilon,\lambda\}$ για διευκολία στις πράξεις.

Ισχυρισμός: $gf:X\to Z$ σχεδόν ισομετρία.

$$d(gf(x_1), gf(x_2)) \le \lambda d(f(x_1), f(x_2)) + \varepsilon \le \lambda (\lambda d(x_1, x_2) + \varepsilon) + \varepsilon = \lambda^2 d(x_1, x_2) + \lambda \varepsilon + \varepsilon$$

$$d(gf(x_1),gf(x_2)) \geq \frac{1}{\lambda}d(f(x_1),f(x_2)) - \varepsilon \geq \frac{1}{\lambda}\left(\frac{1}{\lambda}d(x_1,x_2) - \varepsilon\right) - \varepsilon = \frac{1}{\lambda^2}d(x_1,x_2) - (\varepsilon + \frac{\varepsilon}{\lambda})$$

θέτουμε $k=\max\{\varepsilon+\frac{\varepsilon}{\lambda},\lambda\varepsilon+\varepsilon\}$ και τότε $gf:X\to Z$ είναι (λ^2,k) - σχεδόν εμφύτευση.

Θεωρούμε τώρα ότι f,g είναι σχεδόν επί με κοινή σταθερά $M\geq 0$

Έστω $z\in Z$, υπάρχει $y\in Y$ έτσι ώστε $d(g(y),z)\leq M$ και για το y υπάρχει $x\in X$ ώστε $d(f(x),y)\leq M$

$$d(z,gf(x)) \leq d(z,g(y)) + d(g(y),gf(x)) \leq M + \lambda d(y,f(x)) + \varepsilon \leq M + \lambda M + \varepsilon$$

άρα και $gf: X \to Z$ σχεδόν επί.

Άσκηση 3) Έστω H μια υποομάδα μιας πεπερασμένα παραγόμενης ομάδας G. Τότε η ένθεση $H\hookrightarrow G$ είναι σχεδόν ισομετρία να και μόνο αν η H είναι πεπερασμένου δείκτη στη G. Γενικότερα,

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Αν η H έχει πεπερασμένο δείχτη, τότε έχουμε δείξει στην θεωρία ότι η δράση της H (περιορισμός της δράσης της G) στο $\Gamma(G,S)$ για οποιοδήποτε σύνολο γεννητόρων της G (πεπερασμένο από υπόθεση) ικανοποιεί τις συνθήκες του θεμελιώδους θεωρήματος της γεωμετρικής θεωρίας ομάδων. Άρα έχουμε ότι $H \underset{qi}{\sim} \Gamma(G,S)$ και ειδικότερα, η H είναι και αυτή πεπερασμένα παραγόμενη. Τώρα έχουμε δείξει στις προηγούμενες ασκήσεις ότι η σχέση σχεδόν ισομετρίας επάγει σχέση ισοδυναμίας στην κλάση των μετρικών χώρων και άρα αφού

$$G \underset{qi}{\sim} \Gamma(G, S)$$

έχουμε $H \underset{q_i}{\sim} G$.

Εδώ δεν δείξαμε ότι η ένθεση είναι σχεδόν ισομετρία, αλλά από την απόδειξη του θεωρήματος παίρνουμε ότι $i\circ\phi:H\to G\to \Gamma(G,S)$ είναι σχεδόν ισομετρία και η ϕ είναι σχεδόν ισομετρία. Με βάση τις προηγούμενες ασκήσεις, η ϕ έχει σχεδόν ισομετρική αντίστροφη, άρα και η i είναι σχεδόν ισομετρία.

Αντίστροφα, έστω ότι $H \underset{qi}{\sim} G$, δηλαδή η ένθεση είναι σχεδόν ισομετρία και έστω ένα τυχαίο σύμπλοκο Hg με $g \not\in H$.

Έχουμε ότι η $i:H\hookrightarrow G$ είναι σχεδόν επί και άρα υπάρχει $M\geq 0$ έτσι ώστε για κάθε $x\in G$ να υπάρχει $h\in H$ με $d(x,i(h))=d(x,h)\leq M$. Άρα υπάρχει $h\in H$ με $d(g,h)\leq M$ και $d(g,h)=||h^{-1}g||_S$ όπου S είναι ένα πεπερασμένο σύνολο γεννητόρων της G. Επιπλέον, έχουμε ότι το σύνολο των $\{x\in G:\ ||x||_S\leq M\}$ είναι πεπερασμένο, αφού η G είναι πεπερασμένα παραγόμενη, δηλαδή έχουμε ένα πεπερασμένο αλφάβητο και άρα μπορούμε να φτιάξουμε πεπερασμένες λέξεις κάτω από ένα μήκος. Γράφουμε το στοιχείο $h^{-1}g$ ως

$$h^{-1}g = s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n}, \quad s_i \in S, \varepsilon_i \in \{\pm 1\}$$

και έτσι:

$$Hg = H(hh^{-1}g) = H(h^{-1}g) = H(s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n})$$

δηλαδή το τυχόν σύμπλοκο γράφεται με συγκεκριμένο αντιπρόσωπο με μήκος μικρότερο του M, οι οποίοι είναι πεπερασμένοι. Άρα έχουμε πεπερασμένα το πλήθος σύμπλοκα και άρα $[G:H]<\infty.$

Άσχηση 4) Έστω $\phi:G_1\to G_2$ ομομορφισμός μεταξύ πεπερασμένα παραγόμενων ομάδων. Δείξτε ότι αν η ϕ είναι σχεδόν ισομετριχή εμφύτευση, τότε ο πυρήνας $\ker\phi$ είναι πεπερασμένος και ότι η ϕ είναι σχεδόν ισομετρία αν και μόνο αν ο πυρήνας $\ker\phi$ είναι πεπερασμένος και η εικόνα $im\phi$ πεπερασμένου δείχτη στην G_2 . Ιδιαιτέρως, αν N πεπερασμένη κανονιχή υποομάδα μιας πεπερασμένα παραγόμενης ομάδας G, τότε $G \sim G/N$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Έστω
$$g \in ker \phi$$
. Τότε $||g|| = d(g,1) \le \lambda(\phi(g),\phi(1)) + \varepsilon = \lambda d(1_{G_2},1_{G_2}) + \lambda \varepsilon = \lambda \varepsilon$

Αφού η ομάδα G_1 είναι πεπερασμένα παραγόμενη έχουμε πεπερασμένα στοιχεία με μήχος κάτω από ένα συγκεκριμένο φράγμα. Άρα αν ϕ ισομετρική εμφύτευση έπεται ότι ο πυρήνας $ker\phi$ είναι πεπερασμένος.

Αν τώρα η ϕ είναι και σχεδόν επί, θεωρούμε ως προς άτοπο ότι η εικόνα $Im\phi$ έχει άπειρο δείκτη και δουλεύουμε με το ίδιο επιχείρημα με την άσκηση 3,

Αντίστροφα, υποθέτουμε ότι $ker\phi$ πεπερασμένος και $Im\phi$ πεπερασμένου δείκτη.

Αν S_2 ένα σύνολο γεννητόρων της G_2 , Θεωρούμε αντιπρόσωπους για τα δεξιά σύμπλοκα $(Im\phi)y_1,\ldots(Im\phi)y_n$ και θέτουμε $M=\max\{||y_i||_{S_2}:i=1,\ldots,n\}$

Έστω $y\in G_2$, τότε το y θα ανήκει σε ένα μοναδικό σύμπλοκο $(Im\phi)y_i$ έτσι ώστε $yy_i^{-1}\in Im\phi$, δηλαδή υπάρχει $x\in G_1$ με $\phi(x)=yy_i^{-1}$

Συνεπώς
$$d(\phi(x), y) = d(yy_i^{-1}, y) = ||y_i^{-1}||_{S_2} \le M$$

άρα φ σχεδόν επί.

Αν S_1 ένα σύνολο γεννητόρων της G_1 , τότε εφόσον ο πυρήνας είναι πεπερασμένος, υπάρχει τουλάχιστον ένας γεννήτορας $s\in S_1$ με $\phi(s)\neq 1$, δηλαδή αν θέσουμε $\lambda=\max\{||\phi(s)||_{S_1}:s\in S_1\}$ τότε $\lambda\geq 1$. Θεωρούμε $g_1,g_2\in G_1$. Αν το στοιχείο $g_2^{-1}g_1$ γράφεται ως γινόμενο $n=d(g_1,g_2)$ γεννητόρων από το S_1 τότε το $\phi(g_2^{-1}g_1)$ θα έχει μια παράσταση ως

$$\phi(g_2^{-1}g_1) = \phi(s_1^{\varepsilon_1} \cdots s_m^{\varepsilon_m}) = \phi(s_1^{\varepsilon_1}) \cdots \phi(s_m^{\varepsilon_m})$$

με $m \leq n$ όπου έχουμε διώξει τους γεννήτορες που φτιάχνον στοιχεία του πεπερασμένου πυρήνα $ker\phi$ και θέτουμε $\varepsilon=n-m$.

Άρα με τις ιδιότητες του ομομορφισμού έχουμε:

$$d(\phi(g_1),\phi(g_2)) = ||\phi(g_2^{-1}g_1)|| \leq m \cdot \lambda \leq n \cdot \lambda = \lambda d(g_1,g_2) \leq \lambda d(g_1,g_2) + \varepsilon$$

αφού έχουμε μήκη m στοιχείων με μήκος κάτω από λ . Όμοια κάθε ένα από αυτά τα στοιχεία $\phi(s_i^{\varepsilon_i})$ έχει μήκος πάνω από 1 αφού έχουμε διώξει τα στοιχεία του πυρήνα, άρα:

$$||\phi(g_2^{-1}g_1)|| \ge m \cdot 1 = n \cdot 1 - \varepsilon \ge n \frac{1}{\lambda} - \varepsilon = \frac{1}{\lambda} d(g_1, g_2) - \varepsilon$$

άρα ϕ σχεδόν ισομετρία.

Έστω N πεπερασμένη κανονική υποομάδα μιας πεπερασμένα παραγόμενης G. Τότε η φυσική προβολή $\pi:G\to G/N$ είναι επιμορφισμός, άρα και σχεδόν επί. Έχουμε και το πεπερασμένο του $[G:Im\pi]=1$ αλλά το επιμορφισμός μας αρκεί. Επιπλέον $ker\pi=N$ πεπερασμένο και άρα έχουμε και το σχεδόν εμφύτευση. Συνεπώς $G \underset{ai}{\sim} G/N$.

Άσκηση 5) Έστω T_n το δέντρο του οποίου κάθε κορυφή είναι άκρο ακριβώς n το πλήθος (γεωμετρικών) ακμών (κάθε ακμή θεωρούμε ότι έχει μήκος 1). Δείξτε απ ευθείας (δηλ. χωρίς να κάνετε χρήση του $F_4 \underset{qi}{\sim} F_3$) ότι $T_4 \underset{qi}{\sim} T_3$.

Aπόδειξη.

Χρωματίζουμε με τρία χρώματα κόκκινο, πράσινο και μπλε κάθε ακμή του δέντρου T_3 έτσι ώστε σε κάθε κορυφή να βρίσκεται μια ακμή από κάθε χρώμα. Ορίζουμε μια $\phi:T_3\to T_4$ με την οποία κολλάμε τις άκρες κάθε ακμής κόκκινου χρώματος, δηλαδή στέλνουμε ολόκληρη την ακμή σε ένα σημείο. Έτσι, κάθε κορυφή θα έχει πλέον 4 ακμές, δύο μπλε και δύο πράσινες και άρα είναι το δέντρο T_4 .

Από τον ορισμό, η φ είναι επί και άρα και σχεδόν επί.

Έστω $x_1,x_2\in T_3$. Οι αποστάσεις στο T_4 δεν γίνονται μεγαλύτερες αλλά μόνο μικραίνουν στην περίπτωση που περνάμε στο $[x_1,x_2]\subseteq T_3$ πάνω από ακμή με κόκκινο χρώμα. Φυσικά, δεν έχουμε κύκλους στο δέντρο και το $[x_1,x_2]$ είναι η γεωδαισιακή των δύο σημείων. Άρα

$$d(\phi(x_1), \phi(x_2)) \le d(x_1, x_2) \le 2d(x_1, x_2) + 1$$

Τώρα για ένα τυχαίο (γεωδαισιακό) μονοπάτι $[\phi(x_1),\phi(x_2)]$ στο T_4 αυτό στην πιο εξαντλητική περίπτωση προέρχεται από μονοπάτι $[x_1,x_2]$ το οποίο έχει ακέραιο μήκος, δηλαδή τα x_1,x_2 είναι κορυφές, καθώς και πριν την κάθε μπλε ή πράσινη ακμή που μεταφέρεται στο T_4 να περάσαμε από κόκκινη ακμή. Μαζί με την μία έξτρα κόκκινη ακμή που μπορεί να διασχίσαμε στο τέλος του $[x_1,x_2]$ παίρνουμε ότι:

$$d(x_1, x_2) \le 2d(\phi(x_1), \phi(x_2)) + 1$$

και άρα

$$\frac{1}{2}d(x_1,x_2)-1 \leq \frac{1}{2}d(x_1,x_2)-\frac{1}{2} \leq d(\phi(x_1),\phi(x_2))$$

άρα με την ϕ έχουμε $T_3 \underset{qi}{\sim} T_4$.