In re Application of: Evans and Forman

Application No.: 09/155,252 Filed: September 21, 1998

Page 2

PATENT Attorney Docket No.: SALK1470-2

24. (New) A method according to claim 21, wherein said PPAR-γ-selective modulator is a prostaglandin-J₂, a prostaglandin-D₂, a precursor of prostaglandin-J₂ or prostaglandin-D₂, or structure **I**, wherein structure **I** is defined as follows:

(I)

wherein:

A is hydrogen or a leaving group at the α - or β - position of the ring, or A is absent when there is a double bond between C^{α} and C^{β} of the ring;

X is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl or substituted alkynyl group having in the range of 2 up to 15 carbon atoms; and

Y is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl or substituted alkynyl group having in the range of 2 up to 15 carbon atoms;

provided, however, that A is not hydroxy when:

X is: $-(CH_2)_6$ -COOH, and

Y is: $-CH = CH + CH(OH) - (CH_2)_4 - CH_3$, or $-(CH_2)_2 - CH(OH) - (CH_2)_4 - CH_3$;

or

X is: $-CH_2 - CH = CH - (CH_2)_3 - COOH$, and

Y: -CH = CH - CH(OH) - (CH₂)₄ - CH₃, or-CH = CH - CH(OH) - CH₂ - CH = CH - CH₂ - CH₃. In re Application of: Evans and Forman

Application No.: 09/155,252 Filed: September 21, 1998

Page 3

PATENT Attorney Docket No.: SALK1470-2

25. (New) A method according claim 22, wherein said PPAR- γ antagonist is a prostaglandin-J₂, a prostaglandin-D₂, a precursor of prostaglandin-J₂ or prostaglandin-D₂, or structure **I**, wherein structure **I** is defined as follows:

wherein:

A is hydrogen or a leaving group at the α - or β - position of the ring, or A is absent when there is a double bond between C^{α} and C^{β} of the ring;

X is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl or substituted alkynyl group having in the range of 2 up to 15 carbon atoms; and

(I)

Y is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl or substituted alkynyl group having in the range of 2 up to 15 carbon atoms; provided, however, that A is not hydroxy when:

Y is:
$$-CH = CH - CH(OH) - (CH_2)_4 - CH_3$$
, or

or

X is:
$$-CH_2 - CH = CH - (CH_2)_3 - COOH$$
, and

Y is:
$$-CH = CH - CH(OH) - (CH_2)_4 - CH_3$$
, or $-CH = CH - CH(OH) - CH_2 - CH = CH - CH_2 - CH_3$.

Application No.: 09/155,252 Filed: September 21, 1998

Page 4

PATENT Attorney Docket No.: SALK1470-2

26. (New) A method according to claim 23, wherein said PPAR- γ agonist is a prostaglandin- J_2 , a prostaglandin- D_2 , a precursor of prostaglandin- J_2 or prostaglandin- D_2 , or structure I is defined as follows:

wherein:

A is hydrogen or a leaving group at the α - or β - position of the ring, or A is absent when there is a double bond between C^{α} and C^{β} of the ring;

X is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl or substituted alkynyl group having in the range of 2 up to 15 carbon atoms; and

(I)

Y is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl or substituted alkynyl group having in the range of 2 up to 15 carbon atoms; provided, however, that A is not hydroxy when:

X is:
$$-(CH_2)_6$$
 - COOH, and
Y is $-CH = CH - CH(OH) - (CH_2)_4 - CH_3$, or $-(CH_2)_2$ - CH(OH) - (CH₂)₄ - CH₃;

or

X is:
$$-CH_2 - CH = CH - (CH_2)_3 - COOH$$
, and

Y is:
$$-CH = CH - CH(OH) - (CH2)4 - CH3, or -CH = CH - CH(OH) - CH2 - CH = CH - CH2 - CH3.$$