6

Orthogonality and Least Squares

6.3

ORTHOGONAL PROJECTIONS

ORTHOGONAL PROJECTIONS

• The orthogonal projection of a point in \mathbb{R}^2 onto a line through the origin has an important analogue in \mathbb{R}^n .

• Given a vector \mathbf{y} and a subspace W in \mathbb{R}^n , there is a vector $\hat{\mathbf{y}}$ in W such that $(1)\hat{\mathbf{y}}$ is the unique vector in W for which $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to W, and $(2)\hat{\mathbf{y}}$ is the unique vector in W closest to \mathbf{y} . See the following figure.

- These two properties of \hat{y} provide the key to finding the least-squares solutions of linear systems.
- Theorem 8: Let W be a subspace of \mathbb{R}^n . Then each yin \mathbb{R}^n can be written uniquely in the form
- (1) $y = \hat{y} + z$ where \hat{y} is in W and z is in W^{\perp} .
- In fact, if $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ is any orthogonal basis of W, then

(2)
$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

and
$$z = y - \hat{y}$$
.

• The vector $\hat{\mathbf{y}}$ in (1) is called the **orthogonal projection of y onto** W and often is written as $\operatorname{proj}_{W}\mathbf{y}$. See the following figure:

The orthogonal projection of y onto W.

- **Proof:** Let $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ be any orthogonal basis for W, and define $\hat{\mathbf{y}}$ by (2).
- Then \hat{y} is in W because \hat{y} is a linear combination of the basis $\mathbf{u}_1, \dots, \mathbf{u}_p$.

- Let $z = y \hat{y}$.
- Since \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$, it follows from (2) that

$$z \cdot u_1 = (y - \hat{y}) \cdot u_1 = y \cdot u_1 - \left(\frac{y \cdot u_1}{u_1 \cdot u_1}\right) u_1 \cdot u_1 - 0...0 - 0$$

= $y \cdot u_1 - y \cdot u_1 = 0$

- Thus z is orthogonal to u_1 .
- Similarly, z is orthogonal to each u_j in the basis for W.
- Hence z is orthogonal to every vector in W.
- That is, **z** is in W^{\perp} .

- To show that the decomposition in (1) is unique, suppose \mathbf{y} can also be written as $\mathbf{y} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$, with $\hat{\mathbf{y}}_1$ in W and \mathbf{z}_1 in W^{\perp} .
- Then $\hat{y} + z = \hat{y}_1 + z_1$ (since both sides equal y), and $\hat{y} \hat{y}_1 = z_1 z$
- This equality shows that the vector $\mathbf{v} = \hat{\mathbf{y}} \hat{\mathbf{y}}_1$ is in W and in W^{\perp} (because \mathbf{z}_1 and \mathbf{z} are both in W^{\perp} , and W^{\perp} is a subspace).
- Hence $v \cdot v = 0$, which shows that v = 0.
- This proves that $\hat{y} = \hat{y}_1$ and also $z_1 = z$.

• The uniqueness of the decomposition (1) shows that the orthogonal projection \hat{y} depends only on W and not on the particular basis used in (2).

• Example 1: Let
$$u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

• Solution: The orthogonal projection of y onto W is

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2$$

$$= \frac{9}{30} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \frac{9}{30} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{15}{30} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix}$$

$$y - \hat{y} = \begin{bmatrix} 1 \\ 2 \\ - \end{bmatrix} - \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$$

- Theorem 8 ensures that $y \hat{y}$ is in W^{\perp} .
- To check the calculations, verify that $y \hat{y}$ is orthogonal to both \mathbf{u}_1 and \mathbf{u}_2 and hence to all of W.
- The desired decomposition of y is

$$y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} + \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$$

• If $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ is an orthogonal basis for W and if \mathbf{y} happens to be in W, then the formula for $\operatorname{proj}_W \mathbf{y}$ is exactly the same as the representation of \mathbf{y} given in Theorem 5 in Section 6.2.

- In this case, $proj_w y = y$.
- If y is in $W = \operatorname{Span}\{u_1, \dots, u_p\}$, then $\operatorname{proj}_W y = y$.

■ Theorem 9: Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that

(3)
$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$$
 for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

- The vector $\hat{\mathbf{y}}$ in Theorem 9 is called **the best** approximation to \mathbf{y} by elements of W.
- The distance from y to v, given by ||y v||, can be regarded as the "error" of using v in place of y.
- Theorem 9 says that this error is minimized when $v = \hat{y}$.

• Inequality (3) leads to a new proof that \hat{y} does not depend on the particular orthogonal basis used to compute it.

• If a different orthogonal basis for W were used to construct an orthogonal projection of y, then this projection would also be the closest point in W to y, namely, ŷ.

• **Proof:** Take v in W distinct from ŷ. See the following

figure:

The orthogonal projection of y onto W is the closest point in W to y.

- Then $\hat{y} v$ is in W.
- By the Orthogonal Decomposition Theorem, $y \hat{y}$ is orthogonal to W.
- In particular, $y \hat{y}$ is orthogonal to $\hat{y} v$ (which is in W).

Since

$$y - v = (y - \hat{y}) + (\hat{y} - v)$$

the Pythagorean Theorem gives

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{v}\|^2$$

- (See the colored right triangle in the figure on the previous slide. The length of each side is labeled.)
- Now $\|\hat{y} v\|^2 > 0$ because $\hat{y} v \neq 0$, and so inequality (3) follows immediately.

Example 4: The distance from a point yin \mathbb{R}^n to a subspace W is defined as the distance from y to the nearest point in W. Find the distance from y to $W = \text{Span}\{u_1, u_2\}$, where

$$\mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

• Solution: By the Best Approximation Theorem, the distance from \mathbf{y} to W is $\|\mathbf{y} - \hat{\mathbf{y}}\|$, where $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$.

• Since $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for W,

$$\hat{\mathbf{y}} = \frac{15}{30}\mathbf{u}_1 + \frac{-21}{6}\mathbf{u}_2 = \frac{1}{2}\begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix} - \frac{7}{2}\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} = \begin{bmatrix} -1\\ -8\\ 4 \end{bmatrix}$$

$$y - \hat{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$$

$$\|\mathbf{y} - \hat{\mathbf{y}}\|^2 = 3^2 + 6^2 = 45$$

The distance from y to W is $\sqrt{45} = 3\sqrt{5}$.

Theorem 10:

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then $\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2 + \dots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p$ (4)
If $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_p]$, then $\operatorname{proj}_W \mathbf{y} = UU^T \mathbf{y} \text{ for all } \mathbf{y} \text{ in } \mathbb{R}^n$ (5)

Proof:

Formula (4) follows immediately from (2) in Theorem8.

- Also, (4) shows that $\operatorname{proj}_{W} \mathbf{y}$ is a linear combination of the columns of U using the weights.
- The weights can be written as $\mathbf{u}_1^T \mathbf{y}, \mathbf{u}_2^T \mathbf{y}, \dots, \mathbf{u}_p^T \mathbf{y}$
 - showing that they are the entries in U^T **y** and justifying (5).