Trigonométrie

Dans tout ce cours, le plan est muni d'un **repère orthonormé direct** $(O, \overrightarrow{e_x}, \overrightarrow{e_y})$. **Rappel** : Le fait que le repère soit direct signifie que le sens de rotation du vecteur $\overrightarrow{e_x}$ vers le vecteur $\overrightarrow{e_y}$ est, par convention, considéré comme le sens positif. On dit que c'est le **sens trigonométrique**.

I Angles orientés

1.1 Mesure d'un angle orienté

Déf.

Cercle trigonométrique

Le **cercle trigonométrique** est le cercle de centre O et de rayon 1. Il est noté \mathcal{T} .

Le fait que le repère soit direct fait que le cercle trigonométrique est orienté « de $\overrightarrow{e_x}$ vers $\overrightarrow{e_y}$ », c'est-à-dire que le sens positif de parcours est le sens trigonométrique (sens antihoraire).

Angle orienté

Un **angle orienté** est un couple (\vec{u}, \vec{v}) de deux vecteurs **non nuls.**

Les angles orientés (\vec{u}, \vec{v}) et (\vec{v}, \vec{u}) sontPour deux angles différents. L'ordre des vecteurs dans un angle orienté est donc important.

cela, les angles orientés sont représentés par un arc de cercle muni d'une flèche.

Pour mesurer un angle (\vec{u}, \vec{v})

- 1) On place les deux vecteurs en l'origine O.
- **2)** Ils dirigent deux demi-droites qui coupent le cercle trigonométrique \mathcal{T} aux points U et V.
- 3) Une mesure de l'angle (\vec{u}, \vec{v}) est la la longueur algébrique ℓ de l'arc de cercle UV. Notons-la θ_0 .

Les mesures d'angles obtenues par ce procédé sont exprimées en radians. Les mesures en degrés sont proportionnelles, avec par convention 180° pour π radians.

Exemples: Angles droits

Vecteurs colinéaires

On constate que la mesure d'un angle d'un angle n'est pas unique, car pour aller de U à V, on peut parcourir le cercle dans deux sens mais aussi faire des tours supplémentaires de cercle (de périmètre 2π).

Propr.

- 1) Si l'angle orienté (\vec{u}, \vec{v}) admet pour mesure θ_0 , ses autres mesures sont les nombres $\theta_0 + 2k\pi$, où $k \in \mathbb{Z}$.
 - 2) Chaque angle orienté a donc une infinité de mesures.
 - 3) Parmi ces mesures, une seule se trouve dans l'intervalle $]-\pi,\pi]$: c'est la mesure principale de l'angle (\vec{u},\vec{v}) .

Exercice 1 \blacktriangleright Quelle est la mesure principale d'un angle de mesure $\frac{3\pi}{2}$? $\frac{5\pi}{6}$? $-\frac{7\pi}{5}$?

Quand un angle (\vec{u}, \vec{v}) admet pour mesure θ_0 , on écrira

 $(\vec{u}, \vec{v}) \equiv \theta_0$ [2 π], qui se lit : « (\vec{u}, \vec{v}) est congru à θ_0 modulo 2 π ».

Cela signifie les mesures de l'angle (\vec{u}, \vec{v}) sont les nombres réels θ_0 à qui on ajoute un multiple de 2π .

Propr. • Calcul sur les congruences

Soit $\theta, \varphi, \theta', \varphi', \psi$ des réels quelconques, α un réel strictement positif.

1) Si
$$\theta \equiv \phi$$
 [α], alors $\theta + \psi \equiv \phi + \psi$ [α].

2) Si
$$\begin{cases} \theta \equiv \phi \ [\alpha] \\ \theta' \equiv \phi' \ [\alpha], \end{cases}$$
 alors $\theta + \theta' \equiv \phi + \phi' \ [\alpha].$

3) Si
$$\theta \equiv \phi$$
 [α] et $\lambda > 0$, alors $\lambda \theta \equiv \lambda \phi$ [$\lambda \alpha$].

1.2 Relation de Chasles pour les angles et conséquences

 Relation de Chasles pour les angles Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs non nuls. Alors :

$$(\vec{u}, \vec{w}) \equiv (\vec{u}, \vec{v}) + (\vec{v}, \vec{w}) [2\pi].$$

Ce résultat provient de l'additivité des longueurs algébriques intervenant dans les mesures d'angles.

Illustration.

Propr. • Calcul sur les mesures d'angles

Soit \vec{u} et \vec{v} deux vecteurs non nuls. Alors :

1)
$$(\vec{v}, \vec{u}) \equiv -(\vec{u}, \vec{v}) [2\pi],$$

2)
$$(\vec{u}, \vec{u}) \equiv 0$$
 $[2\pi]$ et $(\vec{u}, -\vec{u}) \equiv \pi$ $[2\pi]$,

3) Si
$$\lambda > 0$$
, alors $(\lambda \vec{u}, \vec{v}) \equiv (\vec{u}, \vec{v}) \equiv (\vec{u}, \lambda \vec{v})$ [2 π].

Illustrations.

Définition des fonctions trigonométriques

Cosinus et sinus

• Cosinus et sinus d'un réel

Soit θ un réel quelconque. On place sur le cercle trigonométrique l'unique point M_{θ} tel que l'angle $(\overrightarrow{e_x}, \overrightarrow{OM_{\theta}})$ mesure θ radians. On appelle $cos(\theta)$ l'abscisse du point M_{θ} et $sin(\theta)$ l'ordonnée du point M_{θ} .

Un cosinus se lit donc sur l'axe des abscisses, un sinus sur l'axe des ordonnées, après avoir reporté l'angle dans un cercle trigonométrique (de rayon 1).

- 1) On a : $\forall \theta \in \mathbb{R}$, $\cos^2(\theta) + \sin^2(\theta) = 1$.
 - 2) $\forall \theta \in \mathbb{R}, -1 \le \cos(\theta) \le 1 \text{ et } -1 \le \sin(\theta) \le 1.$
 - 3) Valeurs remarquables:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	kπ
$\cos(\theta)$							
sin(θ)							

II.2 Tangente

Déf. • Tangente d'une nombre réel

Soit θ un nombre réel quelconque. Si $\theta \not\equiv \frac{\pi}{2}$ [π], on définit la **tangente de \theta** par :

le
$$\theta$$
 par : $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$.

Rem. \diamond La condition vient de $\cos(\theta) = 0 \iff M_{\theta} = J$ ou $M_{\theta} = J'$ $\iff \theta \equiv \frac{\pi}{2} [2\pi] \text{ ou } \theta \equiv -\frac{\pi}{2} [2\pi]$

$$\Leftrightarrow \theta \equiv \frac{\pi}{2} \ [\pi].$$

Une tangente se lit sur la tangente au cercle trigonométrique au point I.

Cas où
$$\theta \in \left] -\pi, -\frac{\pi}{2} \right[\cup \left] \frac{\pi}{2}, \pi \right[$$

Propr. • 1) Pour tout $\theta \not\equiv \frac{\pi}{2} [\pi]$, $1 + \tan^2(\theta) = \frac{1}{\cos^2(\theta)}$

2)	θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$k\pi$	
	tan(θ)								

Angles associés et équations trigonométriques

Formules d'angles associés

Les formules suivantes sont à connaître ou à retrouver rapidement à l'aide d'un dessin (voir ci-contre):

$$cos(\theta + 2\pi) = cos(\theta)$$
 $cos(-\theta) = cos(\theta)$ $cos(\theta + \pi) = -cos(\theta)$

$$\sin(\theta + 2\pi) = \sin(\theta)$$
 $\sin(-\theta) = -\sin(\theta)$ $\sin(\theta + \pi) = -\sin(\theta)$

$$tan(\theta + 2\pi) = tan(\theta)$$
 $tan(-\theta) = -tan(\theta)$ $tan(\theta + \pi) = tan(\theta)$

Interprétations pour les fonctions trigonométriques

- La fonction cosinus est paire et 2π -périodique,
- La fonction sinus est impaire et 2π -périodique,
- La fonction trangente est impaire et π -périodique,

$$\cos(\pi - \theta) = \cos(\theta)$$
 $\cos(\theta + \frac{\pi}{2}) = -\sin(\theta)$ $\cos(\frac{\pi}{2} - \theta) = \sin(\theta)$

$$\sin(\pi - \theta) = -\sin(\theta)$$
 $\sin(\theta + \frac{\pi}{2}) = \cos(\theta)$ $\sin(\frac{\pi}{2} - \theta) = \cos(\theta)$

$$\sin(\pi - \theta) = -\sin(\theta) \qquad \sin(\theta + \frac{\pi}{2}) = \cos(\theta) \qquad \sin(\frac{\pi}{2} - \theta) = \cos(\theta)$$

$$\tan(\pi - \theta) = -\tan(\theta) \qquad \tan(\theta + \frac{\pi}{2}) = -\frac{1}{\tan(\theta)} \qquad \tan(\frac{\pi}{2} - \theta) = \frac{1}{\tan(\theta)}$$

Exercice 2 ▶ Quelques proriétés géométriques des courbes peut-on tirer des autres relations d'angles associées?

III.2 Équations trigonométriques fondamentales

$$\cos(\theta) = \cos(\phi) \iff \theta \equiv \phi \ [2\pi]$$
 ou $\theta \equiv -\phi \ [2\pi].$

$$cos(\theta) = 0 \iff \theta \equiv \frac{\pi}{2} [\pi]$$

 $cos(\theta) = 1 \iff \theta \equiv 0 [2\pi]$

$$\sin(\theta) = \sin(\phi) \iff \theta \equiv \phi \ [2\pi]$$

ou $\theta \equiv \pi - \phi \ [2\pi].$

$$\sin(\theta) = 0 \iff \theta \equiv 0 \ [\pi]$$

 $\sin(\theta) = 1 \iff \theta \equiv \frac{\pi}{2} \ [2\pi]$

$$tan(\theta) = tan(\phi) \iff \theta \equiv \phi \ [\pi]$$

$$tan(\theta) = 0 \iff \theta \equiv 0 \ [\pi]$$

$$tan(\theta)$$
 non défini \iff $\theta \equiv \frac{\pi}{2} [\pi]$

$$\begin{cases} \cos(\theta) = \cos(\varphi) \\ \sin(\theta) = \sin(\varphi) \end{cases} \iff \theta \equiv 0 \ [2pi].$$

III.3 Exemples de résolution

Exercice 3 ► Résoudre les équations et inéquations suivantes :

- 1) $\cos(x) = -\frac{\sqrt{3}}{2}$,
- 2) $\sin(2x) = -\sin(x \frac{\pi}{4})$,
- 3) $\cos(x) = \sin(2x)$,
- **4)** $\cos(x) \ge -\frac{1}{2}$,
- **5)** $tan(x) \le 1$.

III.4 Et quand le deuxième membre n'est pas une valeur remarquable?

• Théorème définissant arc-cosinus, arc-sinus et arc-tangente

- 1) Soit $t \in [-1, 1]$. Il existe, dans l'intervalle $[0, \pi]$, un unique nombre dont le cosinus vaut t. On l'appelle **arc-cosinus de** t et on le note **arccos**(t).
- 2) Soit $t \in [-1,1]$. Il existe, dans l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, un unique nombre dont le sinus vaut t. On l'appelle **arc-sinus de** t et on le note **arcsin**(t).
- 3) Soit $t \in \mathbb{R}$. Il existe, dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, un unique nombre dont la tangente vaut t. On l'appelle **arc-tangente de** t et on le note **arctan(t)**.

Remarque. Ce théorème se démontre à l'aide du théorème de la valeur intermédiaire : il provient de la stricte monotonie des fonctions trigonométriques sur chaque intervalle où on cherche la solution de l'équation.

Exercice **4** ► Résolution de l'équation $cos(x) = \frac{3}{5}$.

IV Formules d'addition et conséquences

Dans tout ce paragraphe, a et b désigne deux réels quelconques (sauf mention contraire).

IV.1 Formules d'addition pour sinus et cosinus

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$

Démo. $\stackrel{\text{CP}}{\longrightarrow}$ En plaçant le point M du cercle trigonométrique correspondant à l'angle a+b et en calculant les coordonnées cartésiennes du vecteur \overrightarrow{OM} de deux manières différentes. Pour les deux autres formules, angles associés.

IV.2 Formules d'addition pour tangente

Soit a et b deux réels non congrus à $\frac{\pi}{2}$ modulo π .

Si
$$a + b \not\equiv \frac{\pi}{2} [\pi]$$
, Si $a - b \not\equiv \frac{\pi}{2} [\pi]$,
 $\tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a) \tan(b)}$ $\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a) \tan(b)}$

Démo. $\stackrel{\frown}{\circ}$ En partant des formules d'addition pour cosinus et sinus puis en divisant numérateur et dénominateur par $\cos(a)\cos(b)$.

IV.3 Formules de duplication

$$cos(2a) = cos^{2}(a) - sin^{2}(a)$$
 $sin(2a) = 2 sin(a) cos(a).$
= $2 cos^{2}(a) - 1$
= $1 - 2 sin^{2}(a)$

Les <u>trois</u> formules pour le cosinus doivent être bien connues. Elles permettent de linéariser $\cos^2(a)$ et $\sin^2(a)$.

Démo. $^{\circ}$ On applique les formules d'addition avec b=a.

IV.4 Formules de linéarisation

Le but des formules de linéarisation est de transformer un produit de cosinus/sinus en une somme.

$$\cos^{2}(a) = \frac{1 + \cos(2a)}{2} \qquad \sin^{2}(a) = \frac{1 - \cos(2a)}{2}$$
$$\cos(a)\cos(b) = \frac{1}{2}\left(\cos(a-b) - \cos(a+b)\right)$$
$$\sin(a)\sin(b) = \frac{1}{2}\left(\cos(a-b) + \cos(a+b)\right)$$
$$\sin(a)\cos(b) = \frac{1}{2}\left(\sin(a+b) - \sin(a-b)\right).$$

Démo. Se retrouvent en combinant les formules d'addition.

Ces formules s'avèrent utiles, par exemple, pour le calcul intégral.

Exercice 5
$$\blacktriangleright$$
 Calculer $\int_0^{2\pi} \cos^2(t) dt$.

IV.5 Formules de factorisation

Inversement, les formules de factorisation permettent de transformer une somme en produit.

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(q) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

Démo. $^{\odot}$ On introduit $a=\frac{p+q}{2}$ et $b=\frac{p-q}{2}$. Ainsi p=a+b et q=a-b. Il suffit d'appliquer les formules d'addition pour conclure.

On peut ainsi déterminer amplitude et phase d'une superposition de deux sinusoïdes de même fréquence et de même amplitude.

Exercise 6 Factoriser
$$f(t) = 3\cos(\omega t + \frac{\pi}{3}) + 3\cos(\omega t - \frac{\pi}{2})$$
.

V Coordonnées polaires

V.1 Coordonnées polaires

Les coordonnées polaires $[r:\theta]$ sont une approche alternative aux coordonnées cartésiennes (x,y) pour repérer un point dans le plan.

- Def. On considère le plan muni d'un repère orthonormé direct $(O, \overrightarrow{e_x}, \overrightarrow{e_y})$. Soit *M* un point distinct de l'origine. On appelle :
 - 1) rayon polaire de M la distance r = OM,
 - 2) angle polaire de M toute mesure θ de l'angle $(\overrightarrow{e_r}, \overrightarrow{OM})$,
 - 3) coordonnées polaires de M tout couple $[r:\theta]$ (noté entre crochets).

L'angle polaire θ de M n'est pas unique : comme c'est une mesure d'angle, il est défini modulo 2π .

L'origine O a pour rayon polaire r = 0 mais n'a pas d'angle polaire (l'angle $(\overrightarrow{e_x}, \overrightarrow{0})$ n'existe pas).

Exercice 7 ► Déterminer les coordonnées polaires des points A, B, C, D de coordonnées cartésiennes (1,-1), (0,2), (-3,0) et (2,0).

Exercice 8 Placer dans le plan les points de coordonnées polaires $[2:-\frac{\pi}{3}], [\frac{1}{2}:\frac{3\pi}{4}]$ et $[2:\frac{5\pi}{3}].$

V.2 Conversions entre coordonnées polaires et coordonnées cartésiennes

La conversion des coordonnées polaires vers les coordonnées cartésiennes est assez simple. Les coordonnées cartésiennes sont données par les deux formules suivantes.

• Soit M un point de coordonnées cartésiennes (x, y) et de coordonnées polaires $[r:\theta]$. Alors

$$\begin{cases} x = r \cos(\theta) \\ y = r \sin(\theta) \end{cases}$$

Démo. $^{\circ}$ On introduit le vecteur $\vec{u} = \frac{1}{r} \overrightarrow{OM}$ et on détermine ses coordonnées cartésiennes en fonction de θ , puis on en déduit les coordonnées cartésiennes de \overrightarrow{OM} , donc du point M.

Exercice 9 \blacktriangleright Si M a pour coordonnées polaires $[3:\frac{5\pi}{6}]$, quelles sont ses coordonnées

Dans l'autre sens (coordonnées cartésiennes vers coordonnées polaires), la conversion est un peu plus délicate.

- 1) Le rayon polaire est donné par la formule : $r = OM = \sqrt{x^2 + y^2}$.
- **2)** Pour l'angle polaire θ :

- **a.** Si M est sur l'axe des ordonnées, on peut prendre $\theta = \pm \frac{\pi}{2}$ suivant la position de M.
- **b.** Sinon, on utilise les formules du passage polaire → cartésien pour obtenir $cos(\theta)$ et $sin(\theta)$. On peut parfois deviner une valeur de θ qui convient. Sinon...
- c. On a $tan(\theta) = \frac{y}{r}$. On en déduit que $\theta \equiv \arctan(\frac{y}{r})$ mais modulo π seule**ment.** Pour obtenir une congruence modulo 2π , on regarde dans quel quadrant se trouve le point M et on ajoute π si nécessaire.

Exercice 10 \blacktriangleright Déterminer les coordonnées polaires du point M de coordonnées cartésiennes (x, y) lorsque:

1)
$$x = -2$$
 et $y = -2\sqrt{3}$,

2)
$$x = 3$$
 et $y = -4$.

3)
$$x = -1$$
 et $y = 2$.

Calcul d'amplitude et de phase

But. On souhaite écrire une combinaison linéaire de $cos(\theta)$ et $sin(\theta)$:

$$x = a\cos(\theta) + b\sin(\theta)$$

sous une forme faisant apparaître une amplitude r et un déphasage φ :

$$x = r \cos(\theta - \varphi).$$

Méthode.

- 1) On considère le point M de coordonnées cartésiennes (a, b) et on détermine ses coordonnées polaires $[r:\varphi]$.
- 2) On a donc $a = r \cos(\varphi)$ et $b = r \sin(\varphi)$, que l'on remplace dans l'expression.
- 3) On factorise par r et on utilise la formule d'addition pour le cosinus.

Exemples.

On traite sur les notes de cours :

- 1) $\frac{1}{2}\cos(\theta) \frac{\sqrt{3}}{2}\sin(\theta)$, 2) $-2\cos(\theta) + 2\sin(\theta)$,
- **3)** $2\cos(\theta) 3\sin(\theta)$.