libVESPo, a library for the Verified Evaluation of Secret Polynomials

& Dynamic proofs of retrievability

■ Jean-Guillaume Dumas¹

Aude Maignan¹

Clément Pernet¹

Daniel S. Roche²

¹Laboratoire Jean Kuntzmann Université Grenoble Alpes France

²Computer Science Department United States Naval Academy Annapolis, Maryland, U.S.A.

RTCA: Mathematical Software and High Performance Algebraic Computing, Lyon, Jun. 2023

Outline

- Dynamic Proof of Retreivability
- Probabilistic Verifiable Computation strategy
- Verified evaluation of secret polynomials
- Public auditing
- Conclusion

Outline

- Dynamic Proof of Retreivability
 - State-of-the-art
 - Lower bound
- Probabilistic Verifiable Computation strategy
- Verified evaluation of secret polynomials
- Public auditing
- Conclusion

Dynamic Proof of Retreivability

The Problem

• Ensure the integrity of remotely-stored data

Challenges

- ⇒ Want efficient reads, updates, and audits
- Prior solutions either don't check everything (incomplete)
 or require replicated and encrypted storage (non-transparent)

Dynamic Proof of Retreivability

The Problem

Ensure the integrity of remotely-stored data

Challenges

- Want efficient reads, updates, and audits
- Prior solutions either don't check everything (incomplete)
 or require replicated and encrypted storage (non-transparent)

Our Work

- ✓ Lower bound: inherent (audit time / complete check / replicated storage) tradeoff
- ✓ New solution: complete checks and transparent storage, but linear-time server cost for audits
- ✓ Privately-verifiable and publicly-verifiable versions
- Experiments show audits are actually fairly fast and cheap on commercial cloud

Client

Honest, but limited brains and memory

Client

Honest, but **limited** brains and memory

Server

Powerful but sneaky; not to be trusted

Client

Honest, but limited brains and memory

Server

Powerful but sneaky; not to be trusted

Data

Owned by client, stored on server

Could be any byte stream (not necessarily an image)

Client

Honest, but **limited** brains and memory

Server

Powerful but sneaky; not to be trusted

Data

Owned by client, stored on server

Could be any byte stream (not necessarily an image)

Hash digest

Basic Operations: Read and Update (hence *Dynamic*)

Basic Operations: Read and Update (hence *Dynamic*)

Basic Operations: Read and Update (hence *Dynamic*)

Level-0 Audit: Nothing

Level-0 Audit: Nothing

Do you still have my data?

Current practice for AWS, MS Azure, etc. : Security is only by Reputation

A Problem for Decentralized Storage Networks such as FileCoin . . .

Level-1 Audit: Trivial

Level-1 Audit: Trivial

Level-2 Audit: Provable Data Possession (PDP)

Level-2 Audit: Provable Data Possession (PDP)

Level-2 Audit: Provable Data Possession (PDP)

Proof of Retrievability (PoR) Storage

Idea ([Cash et al '13], [Shi et al '13]): Redundancy, shuffling, and encryption

- Large errors ⇒ caught by random checks
- Small errors ⇒ error corrected

Stored as

State-of-the-art

Level-3 Audit: Proof of Retrievability (PoR)

Randomly check (3,0)

Decrypt, Decode and check against saved Hash

Repeat O(1) times...

Randomly check (3,0)

Decrypt, Decode and on

Repeat O(1) times...

Existing Work Comparison Summary

	Trivial	DPDP	DPoR
Fast audit (client)	X	✓	✓
Fast audit (server)	X	✓	✓
Complete audit	✓	X	✓
Transparent storage	✓	✓	X

Existing Work Comparison Summary

	Trivial	DPDP	DPoR
Fast audit (client)	X	✓	✓
Fast audit (server)	X	✓	✓
Complete audit	✓	X	✓
Transparent storage	✓	✓	X

You can't have it all:

$$(\text{extra storage size}) \cdot \frac{\text{audit cost}}{\log(\text{audit cost})} \in \Omega(\text{data size})$$

[ADHJMPR, Dynamic Proofs of Retrievability with Low Server Storage (Usenix SECURITY 2021)]

Existing Work Comparison Summary

	Trivial	DPDP	DPoR	[A <u>D</u> HJ <u>MPR</u>]
Fast audit (client)	X	✓	✓	✓
Fast audit (server)	X	✓	✓	×
Complete audit	✓	X	✓	✓
Transparent storage	✓	✓	X	✓

You can't have it all:

```
(\text{extra storage size}) \cdot \frac{\text{audit cost}}{\log(\text{audit cost})} \in \Omega(\text{data size})
```

- New constructions with different trade-off
- Practical deployment on a commercial cloud
 - Computations are usually much cheaper than long-term storage!

Outline

- Dynamic Proof of Retreivability
- Probabilistic Verifiable Computation strategy
 - Linear Algebra Verification
 - Formal security
 - Google cloud experiments
- Verified evaluation of secret polynomials
- Public auditing
- Conclusion

New Strategy for Audits

- Treat data as a $O\left(\sqrt{N}\right) \times O\left(\sqrt{N}\right)$ matrix, in-place
- Client computes a random linear combination of rows during initialization
- For audits:
 - Client chooses a random control vector
 - Server computes corresponding random linear combination of columns
 - Olient checks two dot products for equality

New Strategy for Audits

- Treat data as a $O(\sqrt{N}) \times O(\sqrt{N})$ matrix, in-place
- Client computes a random linear combination of rows during initialization
- For audits:
 - Client chooses a random control vector
 - Server computes corresponding random linear combination of columns
 - Client checks two dot products for equality

Lemma (R. Freivalds, "Probabilistic Machines Can Use Less Running Time", 1977)

For any matrices A, B and random vector x over a large enough field,

 $A \neq B$ implies $Ax \neq Bx$ with high probability.

New Strategy for Audits

- Treat data as a $O\left(\sqrt{N}\right) \times O\left(\sqrt{N}\right)$ matrix, in-place
- Client computes a random linear combination of rows during initialization
- For audits:
 - Client chooses a random control vector
 - Server computes corresponding random linear combination of columns
 - Client checks two dot products for equality

Lemma (R. Freivalds, "Probabilistic Machines Can Use Less Running Time", 1977)

For any matrices **A**, **B** and random vectors **u**, **x** over a large enough field, $\mathbf{A} \neq \mathbf{B}$ implies $(\mathbf{u}^{\mathsf{T}}\mathbf{A})\mathbf{x} \neq \mathbf{u}^{\mathsf{T}}(\mathbf{B}\mathbf{x})$ with high probability.

	Client 🕌	Communications	3 Server
Init	Secret u		

	Client 🕌	Communications	3 Server
Init	Secret u		
Int	Secret $\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}$		

	Client 🕌	Communications	3 Server
Init	Secret u		
IIIIC	Secret $\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}$	A	

	Client 🕌	Communications	3 Server
Init	Secret u		
Inte	Secret $\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}$	A	
Audit	Random x	X	
nuurc			

	Client 🕌	Communications	3 Server
Init	Secret u		
Int	Secret $\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}$	A	
Audit	Random x	X	y = Ax
Audit		у	

	Client 🕌	Communications	3 Server
Init	Secret u		
Inte	Secret $\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}$	A	
Audit	Random x	X	y = Ax
Addit	checks $\mathbf{v}^{T}\mathbf{x} \stackrel{?}{=} \mathbf{u}^{T}\mathbf{y}$	y	

	Client 🕌	Communications	3 Server
Init	Secret u		
Inte	Secret $\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}$	A	
Audit	Random x	X	y = Ax
Audit	checks $\mathbf{v}^{T}\mathbf{x} \stackrel{?}{=} \mathbf{u}^{T}\mathbf{y}$	y	

$$\left\{ \begin{array}{ll} \boldsymbol{v}^{\intercal}\boldsymbol{x} = \boldsymbol{u}^{\intercal}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{u}^{\intercal}\boldsymbol{y} & \hookleftarrow & \text{unmodified } \boldsymbol{A} \\ \\ \boldsymbol{v}^{\intercal}\boldsymbol{x} = \boldsymbol{u}^{\intercal}\boldsymbol{A}\boldsymbol{x} \neq \boldsymbol{u}^{\intercal}\boldsymbol{y}' & \hookleftarrow & \text{w.h.p., otherwise} \end{array} \right.$$

Protocol 1: Privately-verifiable computations for Audits

	Client 🕌	Communications	3 Server
Init	Secret u		
IIIIC	Secret $\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}$	A	
Audit	Random x	X	y = Ax
Addit	checks $\mathbf{v}^{T}\mathbf{x} \stackrel{?}{=} \mathbf{u}^{T}\mathbf{y}$	y	

$$\begin{cases} \mathbf{v}^{\mathsf{T}}\mathbf{x} = \mathbf{u}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{u}^{\mathsf{T}}\mathbf{y} & \Leftarrow & \text{unmodified } \mathbf{A} \\ \mathbf{v}^{\mathsf{T}}\mathbf{x} = \mathbf{u}^{\mathsf{T}}\mathbf{A}\mathbf{x} \neq \mathbf{u}^{\mathsf{T}}\mathbf{y}' & \Leftarrow & \text{w.h.p., otherwise} \end{cases}$$

Merkle Hash trees

For efficient & verified:

- Read/Write of A
- Update of v: $\mathbf{v}'_i \leftarrow \mathbf{v}_j + \mathbf{u}_i(\mathbf{A}'_{ii} - \mathbf{A}_{ij})$

Formal security

Statistical security, even in the presence of a malicious server:

Theorem (Security)

- Correct: With an honest client and an honest server, audits are accepted & reads recover the last updated values of the database;
- Verifiable: The client can always detect, except with negligible probability, if any message even sent by a malicious server deviates from honest behavior;
- Retreivable: In order to pass an audit test with high probability, a malicious server has to have access to the entire memory contents.

Formal security

Statistical security, even in the presence of a malicious server:

Theorem (Security)

- Correct: With an honest client and an honest server, audits are accepted & reads recover the last updated values of the database;
- Verifiable: The client can always detect, except with negligible probability, if any message even sent by a malicious server deviates from honest behavior;
- Retreivable: In order to pass an audit test with high probability, a malicious server has to have access to the entire memory contents.
- For $2^{-\lambda}$ probability of failure: consider DB as a $\sqrt{N/\lambda} \times \sqrt{N/\lambda}$ matrix over λ -bits prime field
- $\Rightarrow O(\sqrt{\lambda N})$ client secret storage, audit communication & computations

Experimental Design

- Open-source implementation written in C using OpenSSL and OpenMP
- Tested on Google Cloud Compute
 - Client : f1-micro shared CPU VM in Belgium
 - Server: n1-standard-2 single-CPU VM in lowa, with attached Local SSD storage

- Data: random files of size 1GB, 10GB, 100GB, 1TB
- Testing performed in May 2021

Open-source client-server code: https://github.com/dsroche/la-por

Google Cloud Compute

(Belgium ≒ Iowa)

Outline

- Dynamic Proof of Retreivability
- Probabilistic Verifiable Computation strategy
- Verified evaluation of secret polynomials
 - Rectangular DB, Structure, outsourcing
 - LHE, Pairings, Parallelization
 - Performance
- Public auditing
- Conclusion

Client Storage (keys):

 \mathbf{u} and \mathbf{v}

Communications (proof size):

 \mathbf{x} and \mathbf{y}

Client time (computations):

$$\mathbf{v}^{\mathsf{T}}\mathbf{x} \stackrel{?}{=} \mathbf{u}^{\mathsf{T}}\mathbf{y}$$

 $O(\sqrt{N})$ might still be too much, e.g., for Decentralized Storage Networks . . .

Client Storage (keys):

(u) and y

Communications (proof size):

Client time (computations):

x and y

 $\mathbf{v}^{\mathsf{T}}\mathbf{x} \stackrel{?}{=} \mathbf{u}^{\mathsf{T}}\mathbf{y}$

DB

 $\mathbf{u}^{\scriptscriptstyle \mathrm{T}}$ $\mathbf{v}^{\scriptscriptstyle \mathrm{T}}$

 $O(\sqrt{N})$ might still be too much, e.g., for Decentralized Storage Networks . . .

• Rectangular database: small, $O(\log(N))$, **u** and **y**

Client Storage (keys):

 (\mathbf{u}) and \mathbf{v}

Communications (proof size):

Client time (computations):

 $\widecheck{\mathbf{x}}$ and $\widecheck{\mathbf{y}}$

 $\mathbf{v}^{\mathsf{T}}\mathbf{x} \stackrel{?}{=} \mathbf{u}^{\mathsf{T}}\mathbf{y}$

DB

u^t V^t

 $O(\sqrt{N})$ might still be too much, e.g., for Decentralized Storage Networks . . .

- Rectangular database: small, $O(\log(N))$, **u** and **y**
- **3** Structure: $\mathbf{u} = [1, \mu, \mu^2, \dots, \mu^{m-1}]$ and $\mathbf{x} = [1, r, r^2, \dots, r^{n-1}], O(1)$
 - ⇒ from **dotproducts** to polynomial evaluation

Client Storage (keys):

and and DB

Communications (proof size):

Client time (computations):

 $O(\sqrt{N})$ might still be too much, e.g., for Decentralized Storage Networks ...

- Rectangular database: small, $O(\log(N))$, **u** and **y**
- Structure: $\mathbf{u} = [1, \mu, \mu^2, \dots, \mu^{m-1}]$ and $\mathbf{x} = [1, r, r^2, \dots, r^{n-1}], O(1)$ ⇒ from **dotproducts** to polynomial evaluation
- Store v. encrypted as w = E(v), on Server

Client Storage (keys):

 (\mathbf{u}) and (\mathbf{v}) and (\mathbf{v})

DB

Communications (proof size):

Client time (computations):

 $\mathbf{v}^{\mathsf{T}}\mathbf{x}$ $\stackrel{?}{=}$ $\mathbf{u}^{\mathsf{T}}\mathbf{y}$

u.

 \mathbf{V}^{T}

O(1), $O(\log N)$, $O(\log N)$

- Rectangular database: small, $O(\log(N))$, **u** and **y**
- **3** Structure: $\mathbf{u} = [1, \mu, \mu^2, \dots, \mu^{m-1}]$ and $\mathbf{x} = [1, r, r^2, \dots, r^{n-1}], O(1)$
 - ⇒ from **dotproducts** to polynomial evaluation
- **3** Store \mathbf{v} , encrypted as $\mathbf{w} = E(\mathbf{v})$, on Server
- **Outsource & Verify**, homomorphic $\mathbf{w}^{\mathsf{T}} \odot \mathbf{x} = E(P_{\mathbf{v}}(r))$, on Server

 $\{P_v(r) = \sum v_i r^i\}$

Client Storage (keys):

 (\mathbf{u}) and (\mathbf{v})

DB

у

Communications (proof size):

Client time (computations):

 $O(1) O(\log N) O(\log N)$

$$O(1)$$
, $O(\log N)$, $O(\log N)$

- f 0 Rectangular database: small, $O(\log(N))$, f u and f y
- ② Structure: $\mathbf{u} = [1, \mu, \mu^2, \dots, \mu^{m-1}]$ and $\mathbf{x} = [1, r, r^2, \dots, r^{n-1}], O(1)$
 - ⇒ from **dotproducts** to polynomial evaluation
- **3** Store **v**, encrypted as $\mathbf{w} = E(\mathbf{v})$, on Server
- **Outsource & Verify**, homomorphic $\mathbf{w}^{\mathsf{T}} \odot \mathbf{x} = E(P_{\mathbf{v}}(r))$, on Server

$$\{P_v(r) = \sum v_i r^i\}$$

⇒ 🔋 [DMPR, VESPo: Verified Evaluation of Secret Polynomials (PoPETS 2023)]

Issues:

- Security: Soundness (evaluation binding) + Privacy (hiding)
- Dynamicity: fast partial updates + without new weaknesses
- Efficiency: fast Client + practical Server

Issues:

- Security: Soundness (evaluation binding) + Privacy (hiding)
- Dynamicity: fast partial updates + without new weaknesses
- Efficiency: fast Client + practical Server

Privacy: hiding via efficient 2*D*-geom. masking of *P*, in the exponents

- (2, 1, d)-**DLM** security assumption (\approx Decision Linear, if \exists pairing)
- [Abdalla et al. Crypto 2015]

Issues:

- Security: Soundness (evaluation binding) + Privacy (hiding)
- **Dynamicity**: fast partial updates + without new weaknesses
- **Efficiency**: fast Client + practical Server

Privacy: hiding via efficient 2D-geom. masking of P, in the exponents

- (2, 1, d)-**DLM** security assumption (\approx Decision Linear, if \exists pairing)
 - [Abdalla et al. Crypto 2015]

$$\alpha \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2, \quad \beta \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2, \quad \Phi \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{2 \times 2}$$

$$\Phi \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{2\times 2}$$

geom. masking
$$\bar{P}(X) \leftarrow P(X)\alpha + \Gamma(X)\beta = \sum_{i=0}^{d} X^{i}(p_{i}\alpha + \Phi^{i}\beta)$$

Issues:

- Security: Soundness (evaluation binding) + Privacy (hiding)
- Oynamicity: fast partial updates + without new weaknesses
- Efficiency: fast Client + practical Server

Privacy: hiding via efficient 2*D*-geom. masking of *P*, in the exponents

- (2, 1, d)-**DLM** security assumption (\approx Decision Linear, if \exists pairing)
- [Abdalla et al. Crypto 2015]

$$\alpha \overset{\$}{\leftarrow} \mathbb{Z}_p^2, \quad \beta \overset{\$}{\leftarrow} \mathbb{Z}_p^2, \quad \Phi \overset{\$}{\leftarrow} \mathbb{Z}_p^{2 \times 2} \qquad \text{geom. masking } \boxed{\bar{P}(X) \leftarrow P(X)\alpha + \Gamma(X)\beta} = \sum_{i=0}^d X^i (p_i \alpha + \Phi^i \beta)$$

• Client Efficiency
$$\Rightarrow$$
 unmasking via $\Gamma(r)\beta = \left(\frac{(r\Phi)^{d+1} - I_2}{r\Phi - I_2}\right)\beta = \sum_{i=0}^d r^i \Phi^i \beta$

Issues:

- Security: Soundness (evaluation binding) + Privacy (hiding)
- Dynamicity: fast partial updates + without new weaknesses
- Efficiency: fast Client + practical Server

Soundness: Evaluation binding

• Difference polynomial, check P(r) with precomputed secret evaluation P(s):

$$P(s) = P(r) + (s - r) \left(\frac{P(X) - P(Y)}{X - Y} \right) (s, r) = P(r) + (s - r) Q_P(s, r)$$
 (1)

Issues:

- Security: Soundness (evaluation binding) + Privacy (hiding)
- Dynamicity: fast partial updates + without new weaknesses
- Efficiency: fast Client + practical Server

Soundness: Evaluation binding

• Difference polynomial, check P(r) with precomputed secret evaluation P(s):

$$P(s) = P(r) + (s - r) \left(\frac{P(X) - P(Y)}{X - Y} \right) (s, r) = P(r) + (s - r) Q_P(s, r)$$
 (1)

- Bilinear Pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$, generated by $g_1, g_2, g_T = e(g_1; g_2)$
- \Rightarrow Server Homorphically computes $g_T^{Q_P(s,r)}\dots$ [linear (linear precomputations)

Issues:

- Security: Soundness (evaluation binding) + Privacy (hiding)
- Opposition
 Dynamicity: fast partial updates + without new weaknesses
- Efficiency: fast Client + practical Server

Soundness: Evaluation binding

• Difference polynomial, check P(r) with precomputed secret evaluation P(s):

$$P(s) = P(r) + (s - r) \left(\frac{P(X) - P(Y)}{X - Y} \right) (s, r) = P(r) + (s - r) Q_P(s, r)$$
 (1)

- Bilinear Pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$, generated by $g_1, g_2, g_T = e(g_1; g_2)$
- \Rightarrow Server Homorphically computes $g_T^{Q_P(s,r)}\dots$ illustrates (# linear precomputations)
- \Rightarrow Client Homorphically checks Equation (1) in \mathbb{G}_T

Goal ⇒ have the server compute:

$$\zeta = E(P(r))$$
, via linear homomorphic encryption (LHE)

Goal \Rightarrow have the server compute: Verify ζ , using, in the exponents:

$$\zeta = E(P(r))$$
, via linear homomorphic encryption (LHE) $P(s) = P(r) + Q_P(s,r)(s-r)$, via pairings

Goal \Rightarrow have the server compute: Verify ζ , using, in the exponents:

$$\zeta = E(P(r))$$
, via linear homomorphic encryption (LHE) $P(s) = P(r) + Q_P(s,r)(s-r)$, via pairings

	Client 🕌	Communications	3 Server
Init	$\mathbf{w} \leftarrow E(P)$, ciphered	W	
	$\mathbf{w} \leftarrow E(P)$, ciphered $\mathcal{K} \leftarrow g_T^{P(s)}$		

Goal \Rightarrow have the server compute: Verify ζ , using, in the exponents:

$$\zeta = E(P(r))$$
, via linear homomorphic encryption (LHE) $P(s) = P(r) + Q_P(s,r)(s-r)$, via pairings

	Client 🕌	Communications	Server
Init	$\mathbf{w} \leftarrow E(P)$, ciphered $\mathcal{K} \leftarrow g_T^{P(s)}$	W	
Audit	Random point <i>r</i>		

Goal \Rightarrow have the server compute: Verify ζ , using, in the exponents:

$$\zeta = E(P(r))$$
, via linear homomorphic encryption (LHE) $P(s) = P(r) + Q_P(s,r)(s-r)$, via pairings

	Client 🕌	Communications	3 Server
Init	$\mathbf{w} \leftarrow E(P)$, ciphered	w	
	$\mathbf{w} \leftarrow E(P)$, ciphered $\mathcal{K} \leftarrow g_T^{P(s)}$		
Audit	Random point <i>r</i>		$\zeta = E(P) \odot [r^i]$

{homomorphic}

Goal \Rightarrow have the server compute: Verify ζ , using, in the exponents:

$$\zeta = E(P(r))$$
, via linear homomorphic encryption (LHE) $P(s) = P(r) + Q_P(s,r)(s-r)$, via pairings

	Client 🕌	Communications	3 Server
Init	$\mathbf{w} \leftarrow E(P)$, ciphered $\mathcal{K} \leftarrow g_T^{P(s)}$	W	
Audit	Random point <i>r</i>	<u>r</u> , ξ, ξ	$\zeta = E(P) \odot [r^{i}]$ $\xi = g_{T}^{Q_{P}(s,r)}$

{homomorphic}

{certificate}

Goal \Rightarrow have the server compute: Verify ζ , using, in the exponents:

$$\zeta = E(P(r))$$
, via linear homomorphic encryption (LHE) $P(s) = P(r) + Q_P(s,r)(s-r)$, via pairings

	Client 🎆	Communications	3 Server
Init	$\mathbf{w} \leftarrow E(P)$, ciphered	W	
	$\mathbf{w} \leftarrow E(P)$, ciphered $\mathcal{K} \leftarrow g_T^{P(s)}$		
Audit	Random point r	<i></i>	$\zeta=E(P)\odot[r^i]$
	Random point r checks $\mathcal{K} \stackrel{?}{=} g_T^{D(\zeta)} \xi^{s-r}$	ζ,ξ	$\xi = g_T^{Q_P(s,r)}$

{homomorphic}

{certificate}

$$\mathcal{K} = g_T^{P(s)}$$
 should be $g_T^{D(\zeta)} \xi^{s-r} = g_T^{P(r) + Q_P(s,r)(s-r)}$

Goal ⇒ have the server compute: Verify $|\zeta|$, using, in the exponents:

$$\zeta = E(P(r))$$
, via linear homomorphic encryption (LHE) $P(s) = P(r) + Q_P(s,r)(s-r)$, via pairings

	Client 🎆	Communications	3 Server
Init	$\mathbf{w} \leftarrow E(P)$, ciphered	W	
	$\mathbf{w} \leftarrow E(P)$, ciphered $\mathcal{K} \leftarrow g_T^{P(s)}$		
Audit	Random point r	<i>r</i>	$\zeta = E(P) \odot [r^i]$
	Random point r checks $\mathcal{K} \stackrel{?}{=} g_T^{D(\zeta)} \xi^{s-r}$	ζ,ξ	$\xi = g_T^{Q_P(s,r)}$

{homomorphic}

{certificate}

$$\text{ } \mathcal{K} = g_T^{P(s)} \text{ should be } g_T^{D(\zeta)} \xi^{s-r} = g_T^{P(r) + Q_P(s,r)(s-r)}$$

A How can the **3** Server efficiently & securely compute $|\xi = g_T^{Q_P(s,r)}|$?

$$\xi = g_T^{Q_P(s,r)}$$

Server: has to compute $\xi = g_T^{Q_P(s,r)}$

Server: has to compute $\xi = g_T^{Q_P(s,r)}$

Lemma

If
$$P(X) = \sum_{i=0}^{d} p_i X^i$$
, then

$$Q_P(s,r) = \sum_{i=1}^d \sum_{k=0}^{i-1} p_i s^{i-k-1} r^k$$

Server: has to compute $\xi = g_T^{Q_P(s,r)}$

Lemma

If
$$P(X) = \sum_{i=0}^{d} p_i X^i$$
, then

$$Q_P(s,r) = \sum_{i=1}^d \sum_{k=0}^{i-1} p_i s^{i-k-1} r^k$$

Sum of 3-terms products:

▲ quadratic?

Server: has to compute $\xi = g_T^{Q_P(s,r)}$

Lemma

If
$$P(X) = \sum_{i=0}^{d} p_i X^i$$
, then

$$Q_P(s,r) = \sum_{i=1}^{d} \sum_{k=0}^{i-1} p_i s^{i-k-1} r^k$$

i = 1 $(s^{0}r^{0}) \cdot p_{1} + i = 2$ $(s^{1}r^{0} + s^{0}r^{1}) \cdot p_{2} + i = 3$ $(s^{2}r^{0} + s^{1}r^{1} + s^{0}r^{2}) \cdot p_{3} + \cdots$

Sum of 3-terms products:

▲ quadratic?

Server: has to compute $\xi = g_T^{Q_P(s,r)}$

Lemma

If
$$P(X) = \sum_{i=0}^{d} p_i X^i$$
, then

$$Q_P(s,r) = \sum_{i=1}^d \sum_{k=0}^{i-1} p_i s^{i-k-1} r^k$$

i = 1 $(s^0r^0) \cdot p_1 + i = 2$ $(s^1r^0 + (s^0r^0)r) \cdot p_2 + i = 3$ $(s^2r^0 + (s^1r^0 + s^0r^1)r) \cdot p_3 + \cdots$

Sum of 3-terms products:

▲ quadratic?

Server: has to compute $\xi = g_T^{Q_P(s,r)}$

Lemma

If
$$P(X) = \sum_{i=0}^{d} p_i X^i$$
, then

$$Q_P(s,r) = \sum_{i=1}^d \sum_{k=0}^{i-1} p_i s^{i-k-1} r^k$$

Sum of 3-terms products:

$$i = 1$$
 $(s^{0}r^{0}) \cdot p_{1} + i = 2$ $(s^{1}r^{0} + (s^{0}r^{0})r) \cdot p_{2} + i = 3$ $(s^{2}r^{0} + (s^{1}r^{0} + s^{0}r^{1})r) \cdot p_{3} + \cdots$

Algorithm Compute $Q_P(s,r)$ in clear

$$\begin{aligned} t &\leftarrow 0, z \leftarrow 0 \\ \textbf{for } i &= 1 \dots d \ \textbf{do} \\ t &\leftarrow s^{i-1} + t \times r \\ z &\leftarrow z + t \times p_i \end{aligned}$$
 end for

return z

Server: has to compute $|\xi = g_T^{Q_P(s,r)}|$

$$\xi = g_T^{Q_P(s,r)}$$

Lemma

If
$$P(X) = \sum_{i=0}^{d} p_i X^i$$
, then

$$Q_P(s,r) = \sum_{i=1}^d \sum_{k=0}^{i-1} p_i s^{i-k-1} r^k$$

Sum of 3-terms products:

- ▲ quadratic? ⇒ linear!
- ▲ not linearly homomorphic?
- \Rightarrow $(p_*s^*) \times r^*$ using **ciphered**×**clear** product
- $\Rightarrow p_* \times s^*$ using a pairing

Algorithm Compute $O_P(s,r)$ in exponents

$$\begin{array}{c} \mathbf{t} \leftarrow 1_{\mathbb{G}_2}, \boldsymbol{\xi} \leftarrow 1_{\mathbb{G}_T} \\ \mathbf{for} \ i = 1 \dots d \ \mathbf{do} \\ \quad t \leftarrow g_1^{s^{i-1}} \cdot t^r \\ \quad \boldsymbol{\xi} \leftarrow \boldsymbol{\xi} \cdot \mathbf{e}(\mathbf{t}; g_2^{p_i}) \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{return} \ \boldsymbol{\xi} \end{array}$$

Server: has to compute $\xi = g_T^{Q_P(s,r)}$

$$\xi = g_T^{Q_P(s,r)}$$

Lemma

If
$$P(X) = \sum_{i=0}^{d} p_i X^i$$
, then

$$Q_P(s,r) = \sum_{i=1}^d \sum_{k=0}^{i-1} p_i s^{i-k-1} r^k$$

Sum of 3-terms products:

- 🛕 quadratic? 👄 linear!
- ▲ not linearly homomorphic?
- \Rightarrow $(p_*s^*) \times r^*$ using **ciphered** \times **clear** product
- $\Rightarrow p_* \times s^*$ using a pairing

Init Client

$$S \leftarrow [g_1^{s^k}]_{k=0..d-1} \qquad S, H$$

$$H \leftarrow [g_2^{p_i}]_{i=1..d} \qquad S, H$$

Algorithm Compute $O_P(s,r)$ in ciphertext

$$\begin{aligned} t &\leftarrow 1_{\mathbb{G}_2}, \xi \leftarrow 1_{\mathbb{G}_T} \\ \text{for } i &= 1 \dots d \text{ do} \\ t &\leftarrow \boxed{S_{i-1}} \cdot t^r \\ \xi &\leftarrow \xi \cdot \textbf{e}(\textbf{t}; \boxed{H_i}) \end{aligned}$$
 end for

return &

Processor oblivious Parallel Server

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

• Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression

$$[\rho_i] = [\ldots, \langle r^5, \ldots, r^8 \rangle, \langle r^9, \ldots, r^{16} \rangle, \ldots]$$

 $\{\log_2(d) \text{ parallel steps}\}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations (generalized Strauß-Shamir trick)

 - Parallel associative reduction: $\zeta \leftarrow \prod_{k=1}^{q} \zeta_k$

 ${q \text{ blocks in parallel}}$

 $\{\log_2(q) \text{ parallel steps}\}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations (generalized Strauß-Shamir trick)
- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations (generalized Strauß-Shamir trick)
- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$
 - **③** Parallel prefix-like, Horner-like on all $S_{i-k-1}^{\rho_k}$
 - $u_\ell = \prod_{k=0}^\ell S_{\ell-k}^{\rho_k}$, for $\ell = 0..(d-1)$ \Rightarrow Family of binary gates $\theta_{\rho_\ell}(a,b) = a \cdot b^{\rho_\ell}$
 - Optimal lower bound: Work $\geq d\left(2-\frac{1}{p}\right)$ on p processors

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations

- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$
 - **1** Parallel prefix-like, Horner-like on all $S_{i-k-1}^{\rho_k}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations
- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$
 - **3** Parallel prefix-like, Horner-like on all $S_{i-k-1}^{\rho_k}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations
- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$
 - **3** Parallel prefix-like, Horner-like on all $S_{i-k-1}^{\rho_k}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations
- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$
 - **3** Parallel prefix-like, Horner-like on all $S_{i-k-1}^{\rho_k}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations
- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$
 - **3** Parallel prefix-like, Horner-like on all $S_{i-k-1}^{\rho_k}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations
- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$
 - **3** Parallel prefix-like, Horner-like on all $S_{i-k-1}^{\rho_k}$
 - Parallel blocks of simultaneous pairings
 - parfor k=1..q do $\left|\bar{\xi}_k[j]\leftarrow\prod_{\ell=b_{k-1}}^{b_k-1}e(u_\ell;\bar{H}_{\ell-1}[j])\right|$ endparfor
 - Parallel associative reduction: $\bar{\xi}[j] \leftarrow \prod_{k=1}^q \bar{\xi}_k[j]$

 ${q \text{ blocks in parallel}}$

 $\{\log_2(q) \text{ parallel steps}\}$

degree
$$d \approx (b \text{ blocks}) \times (q \text{ elements})$$

- Ciphered evaluation : $\zeta = \mathbf{w}^{\mathsf{T}} \odot [r^i]$
 - Parallel geometric progression
 - Parallel blocks of simultaneous exponentiations
- Certificate : $\xi = g_T^{Q_P(s,r)} = \prod_{i=1}^d \prod_{k=0}^{i-1} e(S_{i-k-1}; \bar{H}_i[j])^{\rho_k}$
 - 3 Parallel prefix-like, Horner-like on all $S_{i-k-1}^{\rho_k}$
 - Parallel blocks of simultaneous pairings

VESPo Sequential Performance

- libsnark.git: unciphered, static, circuits verification
- VESPo, open-source C++ Artifact >=: https://github.com/jgdumas/vespo
 - gmp-6.2.1 & linbox-team/givaro-4.2.0 for modular operations
 - linbox-team/fflas-ffpack-2.5.0 for dense linear algebra
 - relic-0.6.0 for Paillier ($\approx 60\%$) & Pairings ($\approx 40\%$)

254-bits poly. eval.	Client 🕌	Proof	🏅 Server (1 core))	
	(1 core)	size	<i>d</i> ° 256	1 024	8 192	131 072
Horner (no verif., no crypt.)	-	-	<0.1ms	0.2ms	1.6ms	32.0ms
libsnark (no crypt.)	3.8ms	287B	0.06s	0.20s	1.32s	18.90s
Here (v. & c. & dyn.)	1.6ms	320B	0.21s	0.80s	6.43s	103.07s

Parallel (OpenMP) Server-side VESPo (xeon 6330, @2.00GHz))

Table: LHE = Paillier-2048: $\zeta \approx 60\%$; Pairing certificate = BN254: $\xi \approx 40\%$

Proof size is 320B; Client verification takes 1.6ms

Parallel (OpenMP) Server-side VESPo (xeon 6330, @2.00GHz))

$$\zeta = E(P(r)) \qquad \& \qquad \xi = g_T^{Q_P(s,r)}$$

Degree	5816	18390	58 154	186 093	426 519	4 026 778
1 core	5.0s	15.7s	49.9s	160.9s	373.8s	3 537.5s
4 cores	1.3s	4.1s	12.7s	40.7s	93.2s	881.9s
8 cores	0.7s	2.2s	6.4s	20.5s	46.8s	441.1s
12 cores	0.5s	1.6s	4.3s	13.7s	31.3s	294.6s
16 cores	0.4s	1.2s	3.7s	10.3s	23.6s	221.2s
20 cores	0.3s	0.9 s	3.0s	8.3 s	19.0s	176.8s

Table: LHE = Paillier-2048: $\zeta \approx 60\%$; Pairing certificate = BN254: $\xi \approx 40\%$

Proof size is 320B; Client verification takes 1.6ms

- Pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
- Any linearly homomorphic cryptosystem (LHE): *E*, *D*

	Client 🕌	Communications	ଌ Server
Init	Secrets μ , s , α , β , Φ		
	$\mathbf{w}^{T} = E([\mu^{i}]^{T}\mathbf{A}), \mathcal{K} = g_{T}^{\bar{P}(s)}$		

- Pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
- Any linearly homomorphic cryptosystem (LHE): *E*, *D*

	Client 🕌	Communications	ଌ Server
Init	Secrets μ , s , α , β , Φ		
11111	$\mathbf{w}^{T} = E\left([\boldsymbol{\mu}^i]^{T}\mathbf{A}\right), \mathcal{K} = g_T^{\bar{P}(s)}$	$A, w, S, \bar{H} \longrightarrow$	

- Pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
- Any linearly homomorphic cryptosystem (LHE): *E*, *D*

	Client 🕌	Communications	ଌ Server
Init	Secrets μ , s , α , β , Φ	_	
	$\mathbf{w}^{T} = E([\boldsymbol{\mu}^i]^{T}\mathbf{A}), \mathcal{K} = g_T^{\bar{P}(s)}$	$A, w, S, \overline{H} \longrightarrow$	
	Random r		
	$\mathbf{c} = ((r\mathbf{\Phi})^{d+1} - I_2)(r\mathbf{\Phi} - I_2)^{-1}\boldsymbol{\beta}$		
Audit			

- Pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
- Any linearly homomorphic cryptosystem (LHE): *E*, *D*

	Client 🕌	Communications	ଌ Server
Init	Secrets μ , s , α , β , Φ		
IIII	$\mathbf{w}^{T} = E([\boldsymbol{\mu}^i]^{T}\mathbf{A}), \mathcal{K} = g_T^{\bar{P}(s)}$	$A, \mathbf{w}, S, \bar{H} \longrightarrow$	
	Random r		$\mathbf{y} = \mathbf{A}[r^i]$
	$\mathbf{c} = \left((r\mathbf{\Phi})^{d+1} - I_2 \right) (r\mathbf{\Phi} - I_2)^{-1} \boldsymbol{\beta}$		$\zeta = \mathbf{w}^{\intercal} \odot [r^i]$
Audit		$\langle y, \langle \zeta, \xi \rangle$	$\xi = g_T^{Q_P(s,r)}$

- Pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
- Any linearly homomorphic cryptosystem (LHE): *E*, *D*

	Client 🕌	Communications	ଌ Server
Init	Secrets μ , s , α , β , Φ		
IIIIC	$\mathbf{w}^{T} = E([\mu^{i}]^{T}\mathbf{A}), \mathcal{K} = g_{T}^{\bar{P}(s)}$	$A, \mathbf{w}, S, \bar{H} \longrightarrow$	
	Random r		$\mathbf{y} = \mathbf{A}[r^i]$
	$\mathbf{c} = \left((r\mathbf{\Phi})^{d+1} - I_2 \right) (r\mathbf{\Phi} - I_2)^{-1} \boldsymbol{\beta}$		$\zeta = \mathbf{w}^{\scriptscriptstyle \intercal} \odot [r^i]$
Audit	checks $\mathcal{K} \stackrel{?}{=} \xi^{s-r} g_T^{D(\zeta)\alpha+c}$	$\langle y, \langle \zeta, \xi \rangle$	$\xi = g_T^{Q_P(s,r)}$
	checks $D(\zeta) \stackrel{?}{=} [\mu^i]^{\intercal} \mathbf{y}$		

Protocol 2: DPoR+VESPo (1 core) benchmarks (xeon 6126, @2.60GHz)

Dynamic Proofs of Retrievability

	Client 🕌			3 Server	
	Storage	Audit Comput.	Audit Comm.	Extra Storage	Audit Comput.
[Shi et al.] Protocol 1	$O(\log N)$ $O(\sqrt{N})$	$O(1)$ $O(\sqrt{N})$	$O(\log N)$ $O(\sqrt{N})$	<i>O</i> (<i>N</i>) <i>o</i> (<i>N</i>)	$O(\log N)$ $N + o(N)$

Downside: a priori slow N + o(N) server-time for audits.

Dynamic Proofs of Retrievability

	Client 🕌			迄 Server	
	Storage	Audit Comput.	Audit Comm.	Extra Storage	Audit Comput.
[Shi et al.]	$O(\log N)$	<i>O</i> (1)	$O(\log N)$	O(N)	$O(\log N)$
Protocol 1	$O(\sqrt{N})$	$O(\sqrt{N})$	$O(\sqrt{N})$	o(N)	N + o(N)
Protocol 2 [VESPo]	$O(\log N)$	$\dot{O}(1)$	$O(\log N)$	o(N)	N + o(N)

Downside: a priori slow N + o(N) server-time for audits.

Dynamic Proofs of Retrievability

	Client 🕌			🏅 Server	
	Storage	Audit Comput.	Audit Comm.	Extra Storage	Audit Comput.
[Shi et al.]	$O(\log N)$	<i>O</i> (1)	$O(\log N)$	O(N)	$O(\log N)$
Protocol 1	$O(\sqrt{N})$	$O(\sqrt{N})$	$O(\sqrt{N})$	o(N)	N + o(N)
Protocol 2 [VESPo]	$O(\log N)$	O(1)	$O(\log N)$	o(N)	N + o(N)

Downside: a priori slow N + o(N) server-time for audits.

But:

- This tradeoff is inherent from our lower bound
- Our Audits are still very inexpensive: 1TB audit on a 4-core VM costs
 - ✓ Example: <5 minutes and \$0.08 USD for 19ms private-verified Protocol 1</p>
- By contrast, storing an extra 1TB on cloud costs from ≈\$50 USD / month

Outline

- Dynamic Proof of Retreivability
- Probabilistic Verifiable Computation strategy
- Verified evaluation of secret polynomials
- Public auditing
- Conclusion

Public Auditing

Goal: Let anyone perform an audit

Problem: Audit depends on client secrets \mathbf{u} , $\mathbf{v}^{\mathsf{T}} = \mathbf{u}^{\mathsf{T}} \mathbf{A}$

Public Auditing

Goal: Let anyone perform an audit

Problem: Audit depends on client secrets \mathbf{u} , $\mathbf{v}^{\mathsf{T}} = \mathbf{u}^{\mathsf{T}} \mathbf{A}$

Solution: Use a hash-like function $h(\alpha)$ which is:

- Collision-resistant
- Linearly homomorphic, i.e., $h(\alpha + \beta) = h(\alpha) \oplus h(\beta) \dots$ (compatible with linear algebra!)

Public Auditing

Goal: Let anyone perform an audit

Problem: Audit depends on client secrets $\mathbf{u}, \mathbf{v}^{\mathsf{T}} = \mathbf{u}^{\mathsf{T}} \mathbf{A}$

Solution: Use a hash-like function $h(\alpha)$ which is:

- Collision-resistant
- Linearly homomorphic, i.e., $h(\alpha + \beta) = h(\alpha) \oplus h(\beta) \dots$ (compatible with linear algebra!)

We pick $h(\alpha) = g^{\alpha}$ and completely switch to **computational security**

- g a DLOG-hard elliptic curve group generator
- LIP security assumption (1D *Decision Linear* variant)

闻 [Abdalla et al. Crypto 2015]

Note: $h(\mathbf{u}) = g^{\mathbf{u}}$ is computed component-wise

Private vs Public Audit

Private vs Public Audit

Private Audit:

•
$$\mathbf{K} \leftarrow g^{\mathbf{u}} = h(\mathbf{u})$$

•
$$\mathbf{W} \leftarrow g^{\mathbf{v}} = h(\mathbf{v}) = h(\mathbf{u}^{\mathsf{T}} \mathbf{A})$$

$$\Rightarrow$$
 $\mathbf{W}^{\mathbf{x}} \stackrel{?}{=} \mathbf{K}^{\mathbf{y}}$.

Details of the **Public** Protocol 3

	Client 🕌	Communications	3 Server
	$s\overset{\$}{\leftarrow} S\subseteq \mathbb{Z}_p$ form $\mathbf{u}=[\mathbf{s}^j]_{j=1m}\in \mathbb{Z}_p^m$	$N = mn \log_2 q$ \mathbb{G} of order p and gen. g	
Init	$\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}, \mathbf{W}^{T} = g^{V} \in \mathbb{G}^n$	of order p and gen. g	
		$ \begin{array}{ccc} \kappa, \lambda, b, \mathbf{A}, \mathbf{W} \longrightarrow & \mathbf{MTInit} \\ r_{\mathbf{A}}, r_{\mathbf{W}} \longleftarrow & \longrightarrow \mathbf{A}, T_{\mathbf{A}}, \mathbf{W}, T_{\mathbf{W}} \end{array} $	
	Publish $r_{\mathbf{A}}$, $r_{\mathbf{W}}$ and $\mathbf{K} = g^{\mathbf{u}}$		Store A, T_A, W, T_W
77 - 1 -		$egin{array}{ll} i,j,\mathbf{A}'_{ij} &\longrightarrow \\ \mathbf{A}_{ij},\mathbf{W}_{j} &\longleftarrow & \mathbf{MTVerifiedReads} & \stackrel{\longleftarrow}{\longleftarrow} \mathbf{A},T_{\mathbf{A}} \\ &\longleftarrow &\mathbf{W},T_{\mathbf{W}} \end{array}$	
Write	$\mathbf{W}_j' = \mathbf{W}_j \cdot \mathbf{K}_i^{\mathbf{A}_{ij}' - \mathbf{A}_{ij}}$		$\mathbf{W}_j' = \mathbf{W}_j \cdot \mathbf{K}_i^{\mathbf{A}_{ij}' - \mathbf{A}_{ij}}$
	Update & Publish $r_{\mathbf{A}}', r_{\mathbf{W}}'$		Update $\mathbf{A}', T_{\mathbf{A}}', \mathbf{W}', T_{\mathbf{W}}'$
	$r \stackrel{\$}{\leftarrow} S \subseteq \mathbb{Z}_p^*$	-	
Audit	form $\mathbf{x} = [r^i]_{i=1n} \in \mathbb{Z}_p^n$	$\mathbf{W} \longleftarrow \mathbf{MTVerifiedRead} \longleftarrow \mathbf{W}, T_{\mathbf{W}}$	form $\mathbf{x} = [r^i]_{i=1n} \in \mathbb{Z}_p^n$
	$\mathbf{W}^x \stackrel{?}{=} \mathbf{K}^y$		y = Ax

Details of the **Public** Protocol 3

	Client 🕌	Communications	3 Server
	$s\overset{\$}{\leftarrow} S\subseteq \mathbb{Z}_p$ form $\mathbf{u}=[\mathbf{s}^j]_{j=1m}\in \mathbb{Z}_p^m$	$N = mn \log_2 q$ \mathbb{G} of order p and gen. g	
Init	$\mathbf{v}^{T} = \mathbf{u}^{T} \mathbf{A}, \mathbf{W}^{T} = g^{V} \in \mathbb{G}^n$		
		$ \begin{array}{ccc} \kappa, \lambda, b, \mathbf{A}, \mathbf{W} \longrightarrow & \mathbf{MTInit} \\ r_{\mathbf{A}}, r_{\mathbf{W}} \longleftarrow & \longrightarrow \mathbf{A}, T_{\mathbf{A}}, \mathbf{W}, T_{\mathbf{W}} \end{array} $	
	Publish $r_{\mathbf{A}}$, $r_{\mathbf{W}}$ and $\mathbf{K} = g^{\mathbf{u}}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Store A, T_A, W, T_W
77 - 1 -		$egin{array}{ll} i,j,\mathbf{A}'_{ij} &\longrightarrow \\ \mathbf{A}_{ij},\mathbf{W}_{j} &\longleftarrow & \mathbf{MTVerifiedReads} & \stackrel{\longleftarrow}{\longleftarrow} \mathbf{A},T_{\mathbf{A}} \\ &\longleftarrow &\mathbf{W},T_{\mathbf{W}} \end{array}$	
Write	$\mathbf{W}_j' = \mathbf{W}_j \cdot \mathbf{K}_i^{\mathbf{A}_{ij}' - \mathbf{A}_{ij}}$		$\mathbf{W}_j' = \mathbf{W}_j \cdot \mathbf{K}_i^{\mathbf{A}_{ij}' - \mathbf{A}_{ij}}$
	Update & Publish $r_{\mathbf{A}}', r_{\mathbf{W}}'$		Update $\mathbf{A}', T_{\mathbf{A}}', \mathbf{W}', T_{\mathbf{W}}'$
	$r \stackrel{\$}{\leftarrow} S \subseteq \mathbb{Z}_p^*$	-	
Audit	form $\mathbf{x} = [r^i]_{i=1n} \in \mathbb{Z}_p^n$	$\mathbf{W} \longleftarrow \mathbf{MTVerifiedRead} \longleftarrow \mathbf{W}, T_{\mathbf{W}}$	form $\mathbf{x} = [r^i]_{i=1n} \in \mathbb{Z}_p^n$
	$\mathbf{W}^{x} \stackrel{?}{=} \mathbf{K}^{y}$		y = Ax

Public Audit Compared to MD5 (xeon 6126, @2.60GHz)

Outline

- Dynamic Proof of Retreivability
- Probabilistic Verifiable Computation strategy
- Verified evaluation of secret polynomials
- Public auditing
- Conclusion

Microbenchmarks (xeon 6126, @2.60GHz)

IGB	10 GB	100 GB	IIB	
12339×12432	39131×39200	123831×123872	396281×396368	
<0.01%	<0.01%	<0.01%	<0.01%	o(N
169KB	535KB	1 693KB	5418KB	0(1
0.29s 0.04s	2.68s 0.30s	29.04s 3.36s	219.7s 41.48s	O(I
169KB	535KB	1 693KB	5418KB	0(√
0.6ms	1.7ms	5.3ms	18.3ms	0(1
	12339×12432 <0.01% 169KB 0.29s 0.04s 169KB	12339×12432 39131×39200 <0.01% <0.01% 169KB 535KB 0.29s 0.04s 2.68s 0.30s 169KB 535KB	12339×12432 39131×39200 123831×123872 <0.01% <0.01% <0.01% 169KB 535KB 1693KB 0.29s 0.04s 2.68s 0.30s 29.04s 3.36s 169KB 535KB 1693KB	12339×12432 39131×39200 123831×123872 396281×396368 <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.0

Protocol 2: Private Rectangular Dynamic-ciphered delegated polynomial evaluation with 254-bits groups

Protocol 2: Private Rectangular Dynamic-cipnered delegated polynomial evaluation with 254-bits groups							
Matrix view	6599×5125	7265×46551	7929×426519	8600×4026778]		
Server extra storage	0.11%	0.10%	0.09%	0.08%	o(N)		
Client storage (keys)	0.94KB	0.94KB	0.94KB	0.94KB	<i>O</i> (1)		
Server Audit (1 12 cores): matrix-vector step	1.1s 0.2s	11.3s 1.3s	113.2s 12.8s	1 147.9s 130.7s	O(N)		
Server Audit (1 12 cores): polynomial step	3.8s 0.4s	35.5s 3.6s	324.1s 30.6s	3 064.8s 283.6s	o(N)		
Communications (proof size)	205KB	226KB	246KB	267KB	$O(\log N)$		
Client Audit (1 core): dotproduct step	3.7ms	4.0ms	4.4ms	4.8ms	$O(\log N)$		
Client Audit (1 core): polynomial step	1.7ms	1.7ms	1.7ms	1.7ms			

Transatlantic Audit times & costs (n1-standard)

cores	Metric	1GB	10GB	100GB	1TB
	regional monthly	\$0.09	\$0.89	\$8.80	\$90.11

Protocol 1 Private-verified audit using 57-bit prime

1	Client Audit	0.0002s	0.0005s	0.0076s	0.0188s
4	Server Audit	0.06s	0.62s	29.08s	278.37s
	Cost	\$0.00002	\$0.0002	\$0.008	\$0.080
16	Server Audit	0.03s	0.22s	1.88s	250.91s
	Cost	\$0.00002	\$0.0002	\$0.001	\$0.175

Protocol 3 Public-verified audit using ristretto255

1	Client Audit	0.5s	1.7s	5.4s	16.8s
4	Server Audit	0.45s	4.37s	51.45s	536.09s
	Cost	\$0.0001	\$0.001	\$0.015	\$0.155
16	Server Audit	0.12s	1.21s	11.87s	357.49s
	Cost	\$0.0001	\$0.001	\$0.008	\$0.249

Summary

Our new DPoR provides:

- ✓ Fast reads/updates
- ✓ Transparent and small server storage
- ✓ Provable retrievability after successful audits
- ✓ Sub-linear Audit bandwidth and client time
- ✓ A public-verifiable variant

Also novel:

Efficient & Verified evaluation of, secret & dynamic, polynomials

Open:

X Efficient & Publicly verified evaluation of, secret & dynamic, polynomials

Thank you

Thank you!