

23MA203-PROBABILITY AND STATISTICS

Second Semester

(Regulation 2023) CA1 -QUESTION BANK

Q.No	Part A- Questions	Mark s	CO's	Bloom 's Level
1.	A bag contains 3 red, 6 white and 7 black balls, Find out the probability that two balls drawn are red and white?	2	CO1	K2
2.	$(3c_1*6c_1)/16c_2=3/20$ Derive the moment generating function of the distribution given by $f(x) = \gamma e^{-\gamma x}, x > 0.$ $E(e^{tx}) = \frac{\gamma}{\gamma - t}$	2	CO1	K2
3.	For a binomial distribution, mean is 2 and variance is $4/3$. Find out the first term of the distribution : np=2 and npq= $4/3$ Solving p= $1/3$ and n= 6 First term= $nc_x p^x q^{n-x} = 64/729$ for $x = 0$.	2	CO1	K2
4.	State any two properties of probability mass function $(i) \ p_i \ge 0$ $(ii) \sum_{i=1}^{n} p_i = 1$	2	CO1	K1
5.	Let X be a random variable with E(X)=1, E[X(X-1)]= 4. Find Var(X), Var(3-2X). E(X)=1, E[X(X-1]) = 4 \Rightarrow E[X ² - X] =4 \Rightarrow E[X ²] - E[X] =4 \Rightarrow E[X ²] - 1 =4 \Rightarrow E[X ²] = 5 $Var(X) = E[X^2] = (E[X])^2 = 5 - 1 = 4$ $Var(2-3X) = (-3)^2 Var(X) = 9 \times 4 = 36$ $\because Var(aX+b) = (a)^2 Var(X)$	2	CO1	К3

	If the r.v has the mgf $M_x(t) = \frac{2}{2-t}$, determine the variance of X.	2	CO1	K3
6.	$M_{x}(t) = \frac{2}{2-t} = \frac{2}{2\left(1-\frac{t}{2}\right)} = \left(1-\frac{t}{2}\right)^{-1} = 1+\left(\frac{t}{2}\right)+\left(\frac{t}{2}\right)^{2}+\left(\frac{t}{2}\right)^{3}+\cdots$ $= 1+\frac{1}{2}\left(\frac{t}{1!}\right)+\frac{1}{2}\left(\frac{t^{2}}{2!}\right)+\frac{3}{4}\left(\frac{t^{3}}{3!}\right)+\cdots$ $\mu'_{r} = \text{coefficient of }\left(\frac{t^{r}}{r!}\right) \text{ in } M_{x}(t), \qquad \therefore \mu'_{1} = \frac{1}{2}, \mu'_{2} = \frac{1}{2}$ $\text{Var}(X) = \mu'_{2} - \left(\mu'_{1}\right)^{2} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$			
7.	If the probability that a target is destroyed on any one shot is 0.5, calculate the probability that it would be destroyed on 6th attempt Given $p = 0.5 q = 0.5$ By Geometric distribution $P[X = x] = q^x p, x = 0,1,2$ since the target is destroyed on 6th attempt $x = 5$ Required probability $= q^x p = (0.5)^6 = 0.0157$	2	CO2	K2
8.	A continuous random variable X has the density function $f(x) = 3x^2, 0 \le x \le 1$, find α such that $P(X \le \alpha) = P(X > \alpha)$. $1 - P(x > \alpha) = P(x \le \alpha)$ therefore $2P(X > \alpha) = 1$ $\Rightarrow 2\int_{\alpha}^{1} 3x^2 dx = 1$ $\Rightarrow \alpha = 1$	2	CO1	K2
9.	One percent of jobs arriving at a computer system need to wait until weekends for scheduling, owing to core-size limitations. Calculate the probability that among a sample of 200 jobs there are no jobs that have to wait until weekends. $p = 0.01, \ n = 200, \ \lambda = np = 2, X \text{ is the no. of jobs that have to wait}$ $P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!} = \frac{e^{-2}(2)^x}{x!} \Rightarrow P(X = 0) = \frac{e^{-2}(2)^0}{0!} = e^{-2} = 0.1353.$	2	CO1	K2

10.	The number of monthly breakdown of a computer is a r.vhaving a Poisson distribution with mean equal to 1.8. calculatethe probability that this computer will function for a month with only one breakdown. Mean = $\lambda = np = 1.8$ $P(X = x) = \frac{e^{-\lambda}\lambda^{x}}{x!} = \frac{e^{-l.8}(1.8)^{x}}{x!} \Rightarrow P(X = 1) = \frac{e^{-l.8}(1.8)^{l}}{1!} = 0.2975.$	2	CO2	K2
11.	If X is a Uniformly distributed r.v with mean 1 and variance $\frac{4}{3}$, Determine $P(X<0)$. Mean = $\frac{a+b}{2} = 1 \Rightarrow a+b=2$ and variance = $\frac{\left(b-a\right)^2}{12} = \frac{4}{3} \Rightarrow b-a=4$ By solving the above eqns. We get $a = -1$ and $b = 3$ $f(x) = \frac{1}{b-a} \text{ in } a < x < b = \frac{1}{6}, -3 < x < 3$ $P(X<0) = \int_{-1}^{0} f(x) dx = \int_{-1}^{0} \frac{1}{4} dx = \frac{1}{4} \left[x\right]_{-1}^{0} = \frac{1}{4}.$	2	CO2	K2
12.	The time required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{2}$. Calculate the conditional probability that a repair takes at 11h given that its direction exceeds 8h? $P(X \ge 11 / X > 8) = P(X > 3) = \frac{1}{3} \left(\frac{e^{-\frac{x}{2}}}{2} \right) dx = \frac{1}{2} \left(\frac{e^{-\frac{x}{2}}}{-1/2} \right) = e^{-1.5} = 0.2231$	2	CO2	K2
13.	If X and Y are independent binomial variates following $B\left(5,\frac{1}{2}\right)$ and $B\left(7,\frac{1}{2}\right)$ respectively. Determine $P\left[X+Y=3\right]$. By additive property, $X+Y$ is also a binomial variate with parameters $n_1+n_2=12$ & $p=\frac{1}{2}$ $P(Z=z)=nC_zp^zq^{n-z}; z=0,1,2,3n$ $\therefore P\left[X+Y=3\right]=12C_3\left(\frac{1}{2}\right)^3\left(\frac{1}{2}\right)^9=\frac{55}{2^{10}}$	2	CO2	K2

	If a r.v 'X' is uniformly distributed over (-3,3), then compute P ($ X-2 < 2$).	2	CO2	K2
14.	$f(x) = \frac{1}{b-a}$ in $a < x < b = \frac{1}{6}, -3 < x < 3$			
	P(X-2 < 2) = P(-2 < X-2 < 2) = P(0 < X < 4)			
	$= \int_{0}^{3} f(x)dx = \int_{0}^{3} \frac{1}{6}dx = \frac{1}{6} [x]_{0}^{3} = \frac{1}{2}.$			
	If a random variable X takes values 1, 2, 3, 4 such that $2P(X=1) =$	2	CO2	K2
	3P(X=2) = P(X=3) = 5P(X=4). Determine the probability			
	distribution of X			
15.				
	Let $2P(X=1) = 3P(X=2) = P(X=3) = 5P(X=4) = k$ Then $P(X=1) = k/2$, $P(X=2) = k/3$, $P(X=3) = k$, $P(X=4) = k/5$			
	WKT $\sum P(X)=1$			
	$k/2 + k/3 + k + k/5 = 1 \Rightarrow k = 30/61$			
	X=x 1 2 3 4			
Q.No	Part B- Questions			
1	Find the mgf,mean and variance of Poisson distribution.	8	CO2	K3
	X 10015	0	CO1	K2
	If $P(X = x) = \frac{x}{15}$, $x = 1,2,3,4,5$ i) Find P(x=1 or x=2)	8	CO1	K3
2	ii) $P(1/2 < x < 5/2 / x > 1)$			
	iii) Distribution function of x			
	Find E(X), E(2x-2), Var(x) The property of a scidents in a year attributed to taxif drivers in a	0	CO2	V2
3	The number of accidents in a year attributed to taxi drivers in a locality follows Poisson distribution with an average 2. Out of	8	CO2	K3
	500 taxi drivers of that area, what is the number of drivers with			
	at least 3 accidents in a year? The distribution function of a random variable X is given by	8	CO1	K3
4	$F(x) = 1 - (1+x)e^{-x}$, $x \ge 0$. Find the density function, mean variance			
	of X	0	602	160
_	The length of the shower in a tropical island in a rainy season has an exponential distribution with parameter 2, time being	8	CO2	K3
5	measured in minutes. What is the probability that it will last for			
	at least one more minute?			

6	Trains arrive at a station at 15 minutes interval starting at 4 a.m. If passengers arrive at a station at a time that is uniformly distributed between 9.00 a.m. and 9.30 a.m., find the probability that he has to wait for the train for (i) less than 6 minutes (ii) more than 10 minutes	8	CO2	K3
7	Out of 800 families with 4 children each, how many families would be expected to have (i)2 boys and 2 girls (ii) at least 1 boy (iii) at most 2 girls and (iv) Children of both the genders. Assume equal probabilities for boys and girls.	8	CO2	K3
8	State and prove the memoryless property of Geometric distribution	8	CO2	K3
9	6 dice are thrown 729 times how many times would you expect to have at least 3 dice should show a five or six.	8	CO2	K3
10	The probability that a razor blade manufactured by a firm is defective is $1/500$. Blades are supplied in packets of 5 each. In a lot of $10,000$ packets, how many packets would (i) be free defective blades? (ii) contains exactly one defective blade?(e ^{-0.01} =0.99) Let X be the number of defective blades in a packet of 5 blades. Then, X is B (n = 5, p = $1/500$)	8	CO2	K3

	UNIT 5									
Q.No	Part A- Questions	Mark s	CO's	Bloom 's Level						
1.	A garment was sampled on 10 consecutive hours of production. The number of defects found per garment is given below: Defects:5,1,7,0,2,3,4,0,3,2.Compute upper and lower control limits for monitoring number of defects.(Apr/May 2019) Solution: $\overline{C} = 2.7$, $UCL = 7.6295$ $LCL = -2.2295$.	2	6	K2						
2.	When de we use X and R charts? In <u>statistical quality control</u> , the X and R chart is a type of <u>control</u> <u>chart</u> used to monitor <u>variables data</u> when samples are collected at regular intervals.	2	6	K1						
3.	Define Tolerance limits "A (p, $1-\alpha$) upper tolerance limit (TL) is simply an $1-\alpha$ upper confidence limit for the 100 p percentile of the population." A tolerance interval can be seen as a statistical version of a probability interval. "In the parameters-known case, a 95% tolerance interval and a 95% prediction interval are the same.	2	6	K1						
4.	Define control chart A control chart provides a basis for deciding whether the variation in the output is due to random causes or due to assignable causes. It will assist us in making decisions whether to adjust the process or not	2	6	K1						
5.	Define Statistical quality control: It is the procedure or method for the control of quality by the application of the theory of probability to the results of inspection samples of the population.	2	6	K1						
6.	What are attributes? Attributes are the characteristics of products which are not measurable. Such characteristic can be felt by their presence or	2	6	K2						

	absence.			
	What are the types of control charts?	2	6	K2
7.	Type of control charts: i) Control charts for variables ii) Control			
	charts for attributes.			
	What are the control charts for variables: The control charts for	2	6	K2
	variables:			
8.	i) The mean charge or X-chart,			
	ii) The range chart or R-Chart,			
	iii) σ – chart.			
	Name any two advantages of control charts?	2	6	K2
	(i). In general it helps us to rectify the faults and errors during the			
0	process.			
9.	(ii). By quality control methods, we contain and hold the			
	variability in the production process due to change variation			
	only, by maintaining the control specifications can be predicted.			
	What is the procedure for drawing X-R charts:	2	6	K1
	The X and R charts are constructed usually in the same graph			
10.	sheet on the basis of number of samples drawn from production			
	process. These samples called rational sub groups or sub groups			
	are random samples.			
	What are the control limits for mean?	2	6	K1
	$= \frac{\sum \overline{x_i}}{N}, \text{ where } N \text{ is the No of samples}$			
11.	$UCL = \mu + \frac{3\sigma}{\sqrt{n}}$, and $LCL = \mu - \frac{3\sigma}{\sqrt{n}}$			
	$\mu = \overline{x}, \ \sigma = \frac{R}{d_2} \ where \ \overline{R} = \frac{\sum R_i}{N}$			
	$UCL = \overline{\overline{X}} + A_2 \overline{R} \text{ and } LCL = \overline{\overline{X}} - A_2 \overline{R}$			
	where $A_2 = \frac{3}{d_2 \sqrt{n}}$			
	What are the tools used in statistical quality control?	2	6	K2
10	1) Descriptive Statistics			
12.	2) Statistical Process Control (SPC)			
	3) Acceptance Sampling			
13.	Define p-chart.	2	6	K1
	Sol: Control chart for fraction defectives is called p-chart.			
14.	Define C-chart.	2	6	K1

	Sc	ol: Co													
	The tot	tal nu	mber	of de	fects	in 20 յ	oieces	of clo	oth is 2	220.	What a	re	2	6	K2
15.	UCL a	nd LC	CL?												
	UCL =	20.95	and	LCL =	= 1.05										
							PA	RT-B							
	The fol	llowir	ng are	the s	ampl	e mea	ns an	d rang	ges for	r 10	sample	s	8	6	K4
	each of		_		-			•	-		-				
	and co														
	Sam 1 2 3 4 5 6 7 8 9 10														
1.	ple														
	no														
	Mea	12.	13.	13.	12.	13.	14.	12.	15.	13.	14.				
	$n \bar{x}$	8	1	5	9	2	1	1	5	9	2				
	Ran	2.1	3.1	3.9	2.1	1.9	3.0	2.5	2.8	2.5	2.0				
	ge R														
2	Write a	a shor	t note	e on S	tatisti	cal Q	uality	Cont	rol				8	6	K3
_															
	The following data gives readings of 10 samples of size 5 each in											8	6	K4	
													O	0	IX4
	the production of a certain product. Draw control chart for mean														
	and range with its control limits.										_				
	Sar	mple no			1 2			3	4		5				
3		X		4	3	49		37	44	!	45				
		R		5		6		5	7		7				
	6		7	1	8	9		10							
	37		51	4	6	43		47							
	4		8		6	4		6							
	A plan	t prod	duces	pape	r for 1	newsp	rint a	nd ro	lls of	pap	er are		8	6	К3
4	inspect	ted fo	r defe	ects. T	he re	sult of	f insp	ection	of 20	roll	s of pap	ers			
	are giv	en dr	aw th	ie con	trol c	hart fo	or the	giver	data	•					
	9,10,8,1														
	The nu						-		-		ırniture	e is	8	6	K4
	record					_	_								
	Draw t							write	the c	omn	nents				
5	about t			_											
	i)the m	_	emen	t sets	a goa	l of 5	scrato	th mai	ks on	an	average	3			
	per pie			, 1		1			1		. 1				
	ii) the	mana	geme	nt do	es not	set th	ie ave	erage 1	numb	er of	marks	per			
	piece.														

	Sample Number	1	2	3	4 5	5	6	7	8	9		10				
	Scratch Mark	6	3	14	7 2		5	12	4	TF	7	3	(
	Sample Number	11	12	13	14 1	5 1	16	17	18	Uı	9	20				
	Scratch Mark	2	7	6	8 4	1	10	5	4	1	3	9				
	To mon	itor tl	ne ma	nufac	turing	g pro	ces	s of la	apto	ps, a	qu	ality	l <u> </u>	8	6	K4
	control engineer randomly selects 50 laptops from the production line, each day over a period of 20 days. The laptops are inspected															
													pected			
	for certa	ain de	efects	and the	he nu	mber	of	defec	tive	lapt	ops	four	nd			
	each da	y is re	ecord	ed in	the fo	llowi	ng	table	:							
	Constru	ıct NI	chai	rt and	state	whet	her	the p	oroce	ess i	s in	cont	rol.			
	Day	er of ops cted	Defe	ber of ective otops	D:	ay	Number of Laptops Inspected			Number of Defective Laptops		9				
6	1	50)		4	- 1	1	5	0	\top	(6				
	2	50)		8	1	2	5	0		1	1				
	3	50 50		6		1.	3	5	0	$oldsymbol{\perp}$	5					
	4			1	10	+	14	50		╄	3					
	5	50	$\overline{}$		4	1:	$\overline{}$		0	╄		2				
	6	50	_		3	10	_		0	╀		3				
	8	50		n	7	1	$\overline{}$		60 60	╫	_	9				
	9	50		-	8	1	-		60	+	_	2	C			
	10	50		PE(4PLI		-		50		_	4				
7	Mobile manufacturer inspects 30 mobiles at the end of the day of production and notes the number of defective mobiles. This procedure is continued up to 12 days and 2, 1, 3, 0, 2, 1, 0, 5, 2, 0, 3, 1 defective mobile are found. Is the production process under control with respect to the proportion defective?												4	6	К3	
8	A garm The nui :5,1,7,0, monitor	mber (2,3,4,0	of de 1,3,2.	fective Comp	e per g oute th	garm ne up	ent	is giv	en b	elo	W			4	6	К3
	Constru	ıct a c	ontro	ol char	t for c	lefec	tive	s for	the f	ollo	wir	ng da	ta	8	6	K4
9	Sampi no	Sample 1		3			6	5 !	7	8	9 10)			
	No. Inspe	ct 90	0 65	5 85	70	80	8	$0 \mid 7$	0	95	90	7	5			
	ed															

	No. of defecti ves	9	7	3	2	9	5	3	9	6	7			
	As part of manufact each inspection	urer ecte	decio d bolt	des to (larg	monge bur	itor t ndle)	he nu of clo	mber th. Th	of de e dat	fects	found	8	6	K4
10	Bolt of Cloth	1	2	3	4	5	6 7	8	9	10				
	Number of Defects	10	19	5	9	2	8 7	13	3	E 2	E			
	Bolt of Cloth	11	12	13	14	15	16 1	7 18	19	20				
	Number of Defects	22	4	6	9	7	2 5	12	4	2	_			