CHAP 7 - CONTINUITE - DERIVABILITE

Dans ce chapitre, sauf exception, f désigne une fonction réelle définie sur un ensemble D qui est un intervalle de \mathbb{R} non réduit à un point, ou une réunion de tels intervalles.

On notera \overline{D} l'ensemble D auquel on ajoute les bornes des intervalles qui le définissent, éventuellement $+\infty$ et $-\infty$.

On dira que f est définie au voisinage de a si $a \in \overline{D}$, fini ou infini.

On dira qu'une propriété portant sur f est vraie **au voisinage** de a si elle est vérifiée pour tous les réels de l'intersection de D avec un intervalle centré en a lorsque a est un réel, avec un intervalle de la forme $[A, +\infty[$ si $a = +\infty,$ ou un intervalle de la forme $]-\infty, A]$ si $a = -\infty$.

1 Limites de fonctions - Continuité

Limite finie 1.1

Définition 1

Soit $l \in \mathbb{R}$

• Soit $a \in \overline{D} \cap \mathbb{R}$. On dit que f admet l pour limite en a si on a :

$$\forall \varepsilon > 0, \ \exists r \in \mathbb{R}, \forall x \in D, \ (|x - a| \le r) \Rightarrow (|f(x) - l| \le \varepsilon)$$

On note $f(x) \xrightarrow[x \to a]{} l$.

• Si f est définie au voisinage de $+\infty$ (resp. $-\infty$), on dit que f admet l pour limite en $+\infty$ (resp. $-\infty$) si on a:

$$\forall \varepsilon > 0, \ \exists A \in \mathbb{R}, \forall x \in D, \ (x \geq A \text{ (resp. } x \leq A)) \Rightarrow (|f(x) - l| \leq \varepsilon)$$

On note
$$f(x) \underset{x \to +\infty}{\longrightarrow} l$$
 (resp. $f(x) \underset{x \to -\infty}{\longrightarrow} l$).

Proposition 1

Soit $a \in \overline{D}$. Si f admet une limite en a, alors elle est unique. On la note $\lim_{x \to a} f(x)$, ou $\lim_{a \to a} f(x)$

Remarque 1

Si
$$a \in D$$
 et $\lim_{x \to a} f(x) = l$ alors $l = f(a)$.

Proposition 2

Si f admet un limite en $a \in \overline{D}$, alors f est bornée au voisinage de a.

Définition 2

Soit $a \in D \cap \mathbb{R}$.

- On dit que f admet l pour **limite à droite** en a si $f|_{a,+\infty \cap D}$ a pour limite l en a. Si elle existe, elle est unique; on la note $\lim_{x \to a^+} f(x)$.
- On dit que f admet l pour **limite à gauche** en a si $f|_{]-\infty,a[\cap D}$ a pour limite l en a. Si elle existe, elle est unique; on la note $\lim_{x \to a} f(x)$.

Proposition 3

Soient $l \in \mathbb{R}, a \in \overline{D}$ tel que $\lim_{x \to a^+} f(x)$ et $\lim_{x \to a^-} f(x)$ existent. Alors :

• Si
$$a \in D$$
, $\left(\lim_{x \to a} f(x) = l\right) \Leftrightarrow \left(\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = f(a) = l\right)$.
• Si $a \notin D$, $\left(\lim_{x \to a} f(x) = l\right) \Leftrightarrow \left(\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = l\right)$.

• Si
$$a \notin D$$
, $\left(\lim_{x \to a} f(x) = l\right) \Leftrightarrow \left(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = l\right)$

Théorème 1 Caractérisation séquentielle de la limite

f admet une limite l en $a \in \overline{D}$, si et seulement si pour toute suite (x_n) de D qui converge vers a, la suite $(f(x_n))$ converge vers l.

Définition 3

S'il existe deux réels a et b tels que $\lim_{x\to +\infty}(f(x)-(ax+b))=0$ (resp. $\lim_{x\to -\infty}(f(x)-(ax+b))=0$), on dit que la courbe de f admet la droite d'équation y=ax+b pour **asymptote** en $+\infty$ (resp. $-\infty$). Si a=0 on dit que l'asymptote est **horizontale**, sinon on dit quelle est **oblique**.

1.2 Limite infinie

Définition 4

• Si f est définie au voisinage de $+\infty$ (resp. $-\infty$), on dit que f admet pour limite $+\infty$ en $+\infty$ (resp. $-\infty$) si on a :

$$\forall M \in \mathbb{R}, \exists A \in \mathbb{R}, \forall x \in D, (x \geq A \text{ (resp. } x \leq A)) \Rightarrow (f(x) \geq M)$$

On note
$$f(x) \xrightarrow[x \to +\infty]{} +\infty$$
 (resp. $f(x) \xrightarrow[x \to -\infty]{} +\infty$).

- Si f est définie au voisinage de $+\infty$ (resp. $-\infty$), on dit que f admet pour limite $-\infty$ en $+\infty$ (resp. $-\infty$) si -f admet pour limite $+\infty$ en $+\infty$ (resp. $-\infty$). On note $f(x) \underset{x \to +\infty}{\longrightarrow} -\infty$ (resp. $f(x) \underset{x \to -\infty}{\longrightarrow} -\infty$)
- Si $a \in \overline{D} \cap \mathbb{R}$ et $a \notin D$, on dit que f admet pour limite $+\infty$ (resp. $-\infty$) en a si on a :

$$\forall M \in \mathbb{R}, \ \exists r \in \mathbb{R}, \ \forall x \in D, \ (|x - a| \le r) \Rightarrow (f(x) \ge M \ (\text{resp. } f(x) \le M))$$

On note
$$f(x) \xrightarrow[x \to a]{} +\infty$$
 (resp. $f(x) \xrightarrow[x \to a]{} -\infty$).

Proposition 4

Soit $a \in \overline{D}$. Si f admet $+\infty$ (resp. $-\infty$) comme limite en a, alors elle n'y admet pas d'autre limite, finie ou infinie.

On note
$$\lim_{x\to a} f(x) = +\infty$$
 (resp. $\lim_{x\to a} f(x) = -\infty$).

Remarque 2

On définit comme dans le cas des limites finies la limite infinie à gauche ou à droite de $a \in \overline{D} \cap \mathbb{R}$.

Définition 5

Soit $a \in \overline{D}$. Si $\lim_{x \to a} f(x) = \pm \infty$ on dit que la courbe de f admet la droite d'équation x = a pour asymptote verticale en a.

1.3 Opérations sur les limites

Soient f et g deux fonctions définies sur D et admettant respectivement l et l' comme limites (finies ou infinies) en $a \in \overline{D}$.

Proposition 5 Somme

- \rightarrow Si l et l' sont des réels, alors f+g admet l+l' pour limite en a.
- \rightarrow Si l est $\pm \infty$ et l' est réel, alors f+g admet $\pm \infty$ pour limite en a.
- \rightarrow Si l et l' sont $+\infty$ (resp. $-\infty$), alors f+g admet $+\infty$ (resp. $-\infty$) pour limite en a.
- \rightsquigarrow Si l et l' sont respectivement $+\infty$ et $-\infty$, alors on ne peut rien en déduire pour la limite de f+g. On dit que l'on a une **forme indéterminée**.

Proposition 6 **Produit**

- \rightarrow Si l et l' sont des réels, alors la fg admet ll' pour limite en a.
- \leadsto Si l est $+\infty$ et l' est un réel strictement positif (resp. strictement négatif), alors fg admet $+\infty$ (resp. $-\infty$) pour limite en a.
- \rightarrow Si l est $-\infty$ et l' est un réel strictement positif (resp. strictement négatif), alors fg admet $-\infty$ (resp. $+\infty$) pour limite en a.
- \rightarrow Si l et l' sont tous les deux $+\infty$ ou tous les deux $-\infty$, alors fg admet $+\infty$ pour limite en a.
- \leadsto Si l et l' sont respectivement $+\infty$ et $-\infty$, alors fg admet $-\infty$ pour limite en a.
- → Si l'une des limites est infinie et l'autre est nulle, alors on ne peut rien en déduire pour la limite de fg. On a une forme indéterminée.

Proposition 7 Inverse

On suppose que la fonction f ne s'annule pas au voisinage de a.

- \rightarrow Si l est un réel non nul, alors $\frac{1}{t}$ admet $\frac{1}{l}$ pour limite en a.
- \rightarrow Si l est $+\infty$ ou $-\infty$, alors la $\frac{1}{l}$ admet 0 pour limite en a.
- \rightarrow Si l=0, alors on ne peut rien en déduire pour la limite de $\frac{1}{f}$. On a une forme indéterminée.

Théorème 2

a, b et c désignent des réels ou $+\infty$ ou $-\infty$.

Soient f une fonction définie au voisinage de a et g une fonction telle que $g \circ f$ soit définie au voisinage de a. Si $\lim_{x\to a} f(x) = b$ et $\lim_{x\to b} g(x) = c$ alors $\lim_{x\to a} g\circ f(x) = c$.

Proposition 8

Soient f et g définies au voisinage de a réel, ou infini. Si $\lim_{x\to a} f(x) = 0$ et si g est bornée au voisinage de a, alors $\lim_{x\to a} f(x)g(x) = 0$.

1.4 Théorèmes de comparaison

Théorème 3

Soient f et g des fonctions telles que $f \leq g$ au voisinage de a, fini ou infini.

• Si $\lim_{x\to a} f(x) = l \in \mathbb{R}$ et $\lim_{x\to a} g(x) = l' \in \mathbb{R}$ alors $l \leq l'$. On dit que l'inégalité est conservée par passage à la limite.

- Si $\lim_{x \to a} f(x) = +\infty$ alors $\lim_{x \to a} g(x) = +\infty$. Si $\lim_{x \to a} g(x) = -\infty$ alors $\lim_{x \to a} f(x) = -\infty$.

Remarque 3

Si au voisinage de a on a f < g avec $\lim_{x \to a} f(x) = l \in \mathbb{R}$ et $\lim_{x \to a} g(x) = l' \in \mathbb{R}$, on peut avoir l = l'.

Exemple 1

Soient f et g définies sur \mathbb{R}_+^* par $f(x) = \frac{1}{1+x}$ et $g(x) = \frac{1}{x}$. Pour tout x > 0, f(x) < g(x) et $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0.$

Théorème 4 Théorème d'encadrement

Soient f,g et h trois fonctions telles que $f \leq g \leq h$ au voisinage de a, fini ou infini. Si $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$ alors $\lim_{x \to a} g(x) = l$.

Théorème 5 Théorème de la limite monotone

Soit f une fonction croissante sur un intervalle a, b (a et b étant éventuellement infinis). Alors:

- f admet une limite en b et $\lim_{x \to b} f(x) = \sup\{f(x), x \in]a, b[\}.$ f admet une limite en a et $\lim_{x \to a} f(x) = \inf\{f(x), x \in]a, b[\}.$
- Si $c \in]a, b[$, alors f admet une limite à droite et à gauche de c et $\lim_{x \to c^-} f(x) \le f(c) \le \lim_{x \to c^+} f(x)$.

Remarque 4

- (a) Sous les mêmes hypothèses, si f est majorée (resp. minorée) sur a, b alors sa limite en b (resp. en a) est finie, sinon elle vaut $+\infty$ (resp. $-\infty$).
- (b) Si f est décroissante sur]a,b[, alors $\lim_{x\to a} f(x) = \inf\{f(x),x\in]a,b[\}$, cette limite étant finie si fest minorée, valant $-\infty$ sinon, et $\lim_{x\to a} f(x) = \sup\{f(x), x\in]a, b[\}$, cette limite étant finie si f est majorée, valant $+\infty$ sinon.

1.5 Continuité

Définition 6

Une fonction définie sur D est dite **continue en** $a \in D$ si elle admet une limite en a. Elle est dite continue sur D, ou simplement continue, si elle est continue en tout point de D. On note $C^0(D,\mathbb{R})$ l'ensemble des fonctions continues sur D.

Définition 7

Soit $a \notin D$, tel que $a \in \overline{D} \cap \mathbb{R}$. Si f admet une limite finie l en a, on dit que f est **prolongeable par continuité** en a. Dans ce cas, la fonction q définie sur $D \cup \{a\}$ par q(x) = f(x) pour tout $x \in D$ et q(a) = l est appelée prolongement par continuité de f en a.

Proposition 9

Si f et g sont des fonctions continues en a alors :

- Pour tous réels λ et μ , la fonction $\lambda f + \mu g$ est continue en a.
- La fonction fg est continue en a.
- Si $g(a) \neq 0$ la fonction $\frac{f}{g}$ est continue en a.

Proposition 10

Si f est continue en a et si g est continue en f(a) alors $g \circ f$ est continue en a.

Théorème des valeurs intermédiaires

Si f est continue sur un intervalle I alors f(I) est un intervalle, c'est-à-dire que pour tout $(a,b) \in I^2$, tous les réels compris entre f(a) et f(b) admettent un antécédent par f.

Théorème 7

L'image d'un segment par une fonction continue est un segment, c'est-à-dire que toute fonction continue sur un segment [a, b] est bornée et atteint ses bornes.

Théorème 8 Théorème de bijection

Si f est une fonction continue et strictement monotone sur un intervalle I, alors elle établit une bijection entre I et f(I).

Théorème 9

Si f est une fonction continue et strictement monotone sur un intervalle I, alors sa bijection réciproque est continue et strictement monotone sur f(I), de même monotonie que f.

1.6 Extension aux fonctions complexes

Définition 8

Une fonction complexe définie sur D admet une limite en $a \in \overline{D}$ si les fonctions Re(f) et Im(f) admettent une limite en a.

Si $\lim_{a} \operatorname{Re}(f) = x_0$ et $\lim_{a} \operatorname{Im}(f) = y_0$, on dira alors que le nombre complexe $z_0 = x_0 + \mathrm{i} y_0$ est la limite de f en a.

On note encore $\lim_{x\to a} f(x)$ ou $\lim_a f$ cette limite.

Définition 9

Une fonction complexe définie sur D est dite **continue** en $a \in D$ si elle y admet une limite.

Remarque 5

Les propriétés de conservation de la continuité par somme, produit ou quotient sont toujours vérifiées pour les fonctions à valeurs complexes.

2 Dérivation

2.1 Définitions

Définition 10

Soit $a \in D$.

• On dit que f est **dérivable** en a lorsque le taux d'accroissement en a défini pour $h \in \mathbb{R}^*$ tel que $a+h \in D$ par $h \mapsto \frac{f(a+h)-f(a)}{h}$ admet une limite finie en 0.

Lorsque cette limite existe, on l'appelle **nombre dérivé** de f en a, et on la note f'(a).

On a donc, lorsqu'elle existe:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- On dit que f est **dérivable à droite** de a si le taux d'accroissement admet une limite finie à droite de a. Lorsqu'elle existe cette limite est appelée **nombre dérivé de** f **à droite de** a; on la note $f'_d(a) = \lim_{h \to 0^+} \frac{f(a+h) f(a)}{h}$.
- On dit que f est **dérivable à gauche** de a si le taux d'accroissement admet une limite finie à gauche de a. Lorsqu'elle existe, cette limite est appelée **nombre dérivé de** f à **gauche de** a; on la note $f'_g(a) = \lim_{h \to 0^-} \frac{f(a+h) f(a)}{h}$.

Remarque 6

Si f dérivable est en a on a : $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

Proposition 11

f est dérivable en $a \in D$ si, et seulement si il existe un réel L et une fonction ε tels que $\lim_{h\to 0} \varepsilon(h) = 0$ et pour tout $h \in \mathbb{R}$ tel que $a+h \in D$ on a : $f(a+h) = f(a) + Lh + h\varepsilon(h)$

Définition 11

Dans la proposition précédente, on a L = f'(a). L'expression

$$f(a+h) = f(a) + f'(a)h + h\varepsilon(h)$$

s'appelle le développement limité à l'ordre 1 de f en a.

Définition 12

Si f est dérivable en tout réel de D, on dit qu'elle est **dérivable** sur D et on définit la **fonction dérivée** de f sur D qui à tout réel $x \in D$ associe le nombre dérivé de f en $x : x \mapsto f'(x)$.

On la note f' ou encore $\frac{\mathrm{d}f}{\mathrm{d}x}$ (notation différentielle).

Définition 13

Soient \mathscr{C} la courbe représentative de la fonction f dans un repère, et $a \in D$.

• Si f est dérivable en a, la droite T passant par le point A(a, f(a)) de \mathscr{C} et de coefficient directeur f'(a) est appelée la **tangente** à \mathscr{C} en A. Son équation est

$$y = f(a) + f'(a)(x - a)$$

- Si f est dérivable à droite (resp. à gauche) de a, la droite T passant par le point A(a, f(a)) de \mathscr{C} et de coefficient directeur $f'_d(a)$ (resp. $f'_g(a)$) est appelée la **demi-tangente** à **droite** (resp. demi-tangente à gauche).
- Si $\lim_{h\to 0} \left| \frac{f(a+h) f(a)}{h} \right| = +\infty$ on dit que $\mathscr C$ admet en A une tangente verticale.

Définition 14

Soit f une fonction complexe définie sur D. On dit que f est **dérivable** en $a \in D$ si Re(f) et Im(f) le sont.

On note alors f'(a) = (Re(f))'(a) + i(Im(f))'(a) appelé **nombre dérivé** de f en a.

On dit que f est **dérivable** sur D si f est dérivable en tout réel de D, et on définit dans ce cas la fonction dérivée de f, notée f' telle que Re(f') = (Re(f))' et Im(f') = (Im(f))'

2.2 Propriétés

Proposition 12

Si f est dérivable en $a \in D$, alors f est continue en a.

Attention! La réciproque est fausse.

Proposition 13

Soient f et g des fonctions réelles ou complexes dérivables sur D. Alors :

- Pour tous réels λ et μ la fonction $\lambda f + \mu g$ est dérivable sur D et $(\lambda f + \mu g)' = \lambda f' + \mu g'$.
- La fonction fg est dérivable sur D et (fg)' = f'g + fg'.
- Si f ne s'annule pas sur D, la fonction $\frac{1}{f}$ est dérivable sur D et $\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}$.
- Si g ne s'annule pas sur D, la fonction $\frac{f}{g}$ est dérivable sur D et $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$

Proposition 14 Composition

Si f est dérivable sur D et si g est dérivable sur f(D) alors $g \circ f$ est dérivable sur D et on a :

$$(g \circ f)' = g' \circ f \times f'$$

Théorème 10 Dérivée d'une fonction réciproque

Soient f une fonction continue, strictement monotone sur I telle que f(I) = J, et $a \in I$. Si $f'(a) \neq 0$, alors la fonction réciproque f^{-1} est dérivable en b = f(a) et on a :

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$

2.3 Dérivées successives

Définition 15

Soit f une fonction dérivable sur D. Si sa dérivée f' est elle-même dérivable sur D, on dit que f est deux fois dérivable sur D, et on note f'' la dérivée de sa dérivée, appelée dérivée seconde de f. Par récurrence, on peut ainsi définir, lorsqu'elle existe, la **dérivée** n-ème de f comme la dérivée de sa dérivée (n-1)-ème. Lorsqu'elle existe, on dit que f est n fois dérivable sur D et on note alors sa dérivée n-ème $f^{(n)}$ ou $\frac{\mathrm{d}^n f}{\mathrm{d}x^n}$ (notation différentielle). On dit que f est **indéfiniment dérivable** lorsqu'elle admet une dérivée n-ème pour tout entier n.

Exemple 2

Soit $p \in \mathbb{N}^*$. Pour tout réel x on a :

(a)
$$(\exp)^{(p)}(x) = \exp(x)$$

(b)
$$(\sin)^{(p)}(x) = \sin\left(x + p\frac{\pi}{2}\right)$$
 et $(\cos)^{(p)}(x) = \cos\left(x + p\frac{\pi}{2}\right)$.

Proposition 15

Soient $n \in \mathbb{N}$, f et g deux fonctions n fois dérivables sur D. La fonction f + g est n fois dérivable sur D et on a :

$$(f+q)^{(n)} = f^{(n)} + q^{(n)}$$

Proposition 16 Formule de Leibniz

Soient $n \in \mathbb{N}$, f et g deux fonctions n fois dérivables sur D. La fonction fg est n fois dérivable sur Det on a:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

Définition 16

Soit $n \in \mathbb{N}^*$. On dit que f est de classe C^n sur D, et on note $f \in C^n(D, \mathbb{R})$ si f est n fois dérivable sur D et que sa dérivée n-ème est continue sur D.

On dit que f est de classe C^{∞} sur D, et on note $f \in C^{\infty}(D,\mathbb{R})$ si f est de classe C^n pour tout $n \in \mathbb{N}$.

Proposition 17

Soit $n \in \mathbb{N} \cup \{+\infty\}$. La somme, le produit, le quotient (s'il existe) de fonctions de classes C^n sur D sont de classe C^n sur D.

Proposition 18

Soit $n \in \mathbb{N} \cup \{+\infty\}$. Si $f \in C^n(D, \mathbb{R})$ et $g \in C^n(f(D), \mathbb{R})$, alors $g \circ f \in C^n(D, \mathbb{R})$.

3 Théorèmes fondamentaux

3.1 Extremum local

Définition 17

Soit $a \in D$. f admet un maximum local (resp. minimum local) en a si au voisinage de a, $f(x) \le f(a)$ (resp. $f(x) \ge f(a)$).

Définition 18

Soit f une fonction dérivable sur D. On appelle **point critique** de f tout réel $a \in D$ tel que f'(a) = 0.

Théorème 11

Soient $a \in D$, a n'étant pas une borne de D, et f une fonction dérivable sur D. Si f admet un extremum local en a alors a est un point critique de f.

Attention! La réciproque est fausse.

Exemple 3

La fonction $x \mapsto x^3$ n'admet pas d'extremum sur \mathbb{R} , pourtant sa dérivée s'annule en 0.

Remarque 7

Si a est une borne de D le théorème ne s'applique pas.

Exemple 4

La fonction f définie sur [0,2] par $f(x)=x^2$ admet un maximum en 2 où la dérivée ne s'annule pas.

3.2 Théorème des accroissements finis

Théorème 12 Théorème de Rolle

Soit f une fonction continue sur [a, b] dérivable sur [a, b], telle que f(a) = f(b). Alors il existe $c \in]a,b[$ tel que f'(c)=0.

Théorème 13 Théorème des accroissements finis

Etant donnée une fonction f continue sur [a,b], dérivable sur [a,b], il existe $c \in [a,b]$ tel que

$$f(b) - f(a) = f'(c)(b - a)$$

Théorème 14 Inégalité des accroissements finis

Soit f une fonction continue sur [a, b], dérivable sur [a, b]. Si [f'] est majorée par un réel K alors on a :

$$\forall (x,y) \in [a,b]^2, |f(x) - f(y)| \le K|x - y|$$

Dérivées et variations 3.3

Théorème 15

Soit I un intervalle. On note $\overset{\circ}{I}$ l'intervalle I privé de ses bornes. Alors :

- f est constante si, et seulement si f' = 0 sur I.
- f est croissante (resp. décroissante) si, et seulement si f' ≥ 0 (resp. f' ≤ 0) sur Î.
 f est strictement croissante (resp. strictement décroissante) si, et seulement si f' ≥ 0 (resp. f' ≤ 0) sur $\stackrel{\circ}{I}$ et f' ne s'annule qu'en des points isolés.

Prolongement de la dérivée

Théorème 16

Soit f une fonction continue sur I, dérivable sur $I \setminus \{a\}$. Si f' admet une limite finie en a alors f est dérivable en a et $f'(a) = \lim_{x \to a} f'(x)$.