Algoritmi e Strutture Dati

a.a. 2013/14

Compito del 12/06/2014

Cognome:		Nome:	
Matricola:		E-mail:	
		rte I sercizio vale 2 punti)	
chiave massir	ro binario di ricerca <i>T</i> , scrivere la fi ma di un sottoalbero di <i>T</i> radicato ne	el nodo x (x è un nodo dell'albero T	
	i questa funzione? Quale è il caso m		
	o le seguenti funzioni utilizzando le i		
	o le seguenti funzioni utilizzando le i	elazioni <i>O, Ω</i> e Θ:	
	o le seguenti funzioni utilizzando le n $f(n)$	elazioni O , Ω e Θ : $g(n)$	

3. Si riempia la tabella sottostante, specificando le complessità degli algoritmi indicati in funzione della tipologia di grafo utilizzato:

	Grafo sparso	Grafo denso
Dijkstra (array)		
Dijkstra (heap)		
Bellman-Ford		

Supponendo che il grafo sia aciclico, quale algoritmo conviene usare? Perché?

Algoritmi e Strutture Dati

a.a. 2013/14

Compito del 12/06/2014

Cognome:	Nome:
	T
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

1. In una tabella Hash di **m** = **17** posizioni, inizialmente vuota, devono essere inserite le seguenti chiavi numeriche nell'ordine indicato:

Indicare per ogni chiave la posizione finale dove viene allocata in questi due casi:

a. Funzione Hash: $h(k) = k \mod m$

Risoluzione delle collisioni mediante concatenamento

b. La tabella è a indirizzamento aperto e la scansione è eseguita per doppio Hashing:

$$h(k, i) = (k \mod m + i * 2^{k \mod 5}) \mod m$$

Si devono indicare tutte le posizioni scandite nella tabella.

2. Progettare un algoritmo **efficiente** per stabilire se un albero binario è **quasi completo**, cioè tutti i livelli dell'albero sono completamente riempiti, tranne eventualmente l'ultimo che ha le foglie addossate a sinistra. Calcolare la complessità al caso pessimo dell'algoritmo indicando, e risolvendo, la corrispondente relazione di ricorrenza.

La rappresentazione dell'albero binario utilizza esclusivamente i campi left, right e key.

Per l'esame da 12 CFU, deve essere fornita una funzione C.

Per l'esame da 9 CFU, è sufficiente specificare lo pseudocodice.

3. Si scriva l'algoritmo di Kruskal, si dimostri la sua correttezza, si fornisca la sua complessità computazionale e si simuli accuratamente la sua esecuzione sul seguente grafo

4. Si supponga di voler cambiare una banconota da *P* euro in monete da *a*₁, *a*₂, ..., *a*_k euro. E' possibile? In caso affermativo, qual è il minimo numero di monete da utilizzare per effettuare il cambio? Per esempio, se si volesse cambiare una banconota da 5 euro in monete da 1 e da 2 euro, sarebbero necessarie almeno 3 monete. Se si disponesse soltanto di monete da 2 euro, invece, il cambio non sarebbe possibile.

Si formuli questo problema come un problema di cammini minimi su grafi. (Suggerimento: si costruisca un grafo con P + 1 vertici numerati da 0 a P e si inseriscano archi e pesi in modo tale che i cammini dal vertice 0 al vertice P corrispondano a possibili sequenze di monete da utilizzare per il cambio.)

A titolo esemplificativo, si consideri il caso di una banconota da P = 10 euro e monete da $a_1 = 1$ e $a_2 = 2$ euro. Si costruisca il grafo corrispondente e si utilizzi l'algoritmo di Dijkstra per risolvere il problema.