Planche nº 44. Fonctions de deux variables réelles

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice no 1 (** I)

Etudier l'existence et la valeur éventuelle des limites suivantes (hors programme):

1)
$$\frac{xy}{x^2 + y^2}$$
 en $(0,0)$ 2) $\frac{x^2y^2}{x^2 + y^2}$ en $(0,0)$ 3) $\frac{x^3 + y^3}{x^2 + y^4}$ en $(0,0)$ 4) $\frac{(x^2 - y)(y^2 - x)}{x + y}$ en $(0,0)$ 5) $\frac{1 - \cos\sqrt{|xy|}}{|y|}$ en $(0,0)$

Exercice nº 2 (*** I) (hors programme)

$$\mathrm{Pour}\;(x,y)\in\mathbb{R}^2,\,\mathrm{on\;pose}\;f(x,y)=\left\{\begin{array}{l} \frac{xy(x^2-y^2)}{x^2+y^2}\;\mathrm{si}\;(x,y)\neq(0,0)\\ 0\;\mathrm{si}\;(x,y)=(0,0) \end{array}\right..\,\mathrm{Montrer\;que\;f\;est\;de\;classe}\;C^1\;(\mathrm{au\;moins})\;\mathrm{sur}\;\mathbb{R}^2.$$

Exercice nº 3 (*T)

Soit f une application de \mathbb{R}^2 dans \mathbb{R} de classe C^1 . On dit que f est positivement homogène de degré r (r réel donné) si et seulement si $\forall \lambda \in]0, +\infty[, \forall (x, y) \in \mathbb{R}^2, f(\lambda x, \lambda y) = \lambda^r f(x, y).$

Montrer pour une telle fonction l'identité d'EULER:

$$\forall (x,y) \in \mathbb{R}^2 \ x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = rf(x,y).$$

Exercice nº 4 (** I)

- 1) Extrema de la fonction $f:(x,y)\mapsto x^2y+\ln\left(1+y^2\right)$. 2) Extrema de la fonction $f:(x,y)\mapsto -2(x-y)^2+x^4+y^4$.

Exercice no 5 (*** I)

Résoudre les équations aux dérivées partielles suivantes :

- 1) $2\frac{\partial f}{\partial x} \frac{\partial f}{\partial u} = 0$ en posant u = x + y et v = x + 2y.
- 2) $x \frac{\partial f}{\partial u} y \frac{\partial f}{\partial x} = 0 \text{ sur } \mathbb{R}^2 \setminus \{(0,0)\} \text{ en passant en polaires.}$

Exercice nº 6 (***IT)

- 1) Soient $\alpha > 0$ puis $T = \{(u, v) \in \mathbb{R}^2 / u > 0, v > 0 \text{ et } u + v < \alpha\}$. Montrer que T est un ouvert de \mathbb{R}^2 .
- 2) Déterminer le maximum du produit des distances d'un point M intérieur à un triangle ABC aux cotés de ce triangle (on admettra l'existence d'un maximum).

Exercice nº 7 (*)

Minimum de f(x,y) =
$$\sqrt{x^2 + (y-\alpha)^2} + \sqrt{(x-\alpha)^2 + y^2}$$
, a réel donné.

Exercice n° 8 (*T) On munit l'espace \mathbb{R}^3 d'un repère orthonormé $\mathscr{R} = \left(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$.

- 1) Soit $\mathscr S$ la surface d'équation $z=\frac{1}{2}\left(x^2-y^2\right)$. Equation du plan tangent à $\mathscr S$ en le point (2,1,3/2) et plus généralement en un point (x_0, y_0, z_0) de \mathscr{S} .
- 2) Déterminer les points de ${\mathscr S}$ en lesquels le plan tangent passe par O.