Exploiting Imprecise Information Sources in Sequential Decision Making Problems under Uncertainty

N.Drougard

under D.Dubois, J-L.Farges and F.Teichteil-Königsbuch supervision
doctoral school: EDSYS institution: ISAE-SUPAERO
laboratory: ONERA-The French Aerospace Lab

retour sur innovation

Issue: incorrect human assessment of the machine state \rightarrow accident risk

Issue: incorrect human assessment of the machine state

ightarrow accident risk

Issue: incorrect human assessment of the machine state

ightarrow accident risk

π -POMDP without actions: π -Hidden Markov Process

- lacktriangle system space \mathcal{S} : set of human assessments o hidden
- **observation space** \mathcal{O} : feedbacks/human manipulations

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks" $o \pi \left(s_B', o_f' \mid s_A \right) = 1$ "but may lose a feedback" $o \pi \left(s_A', o_f' \mid s_A \right) = \frac{2}{3}$

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

- observation: machine feedback $o'_f \in \mathcal{O}$:
- "human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$
 - observation: **human manipulation** $o'_m \in \mathcal{O}$:
- "manipulation o_m' is normal under s_A " $o \pi \left(s_B', o_m' \mid s_A\right) = 1$ "is abnormal" $o = \frac{1}{3}$

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

■ observation: **human manipulation** $o'_m \in \mathcal{O}$:

"manipulation
$$o_m'$$
 is normal under s_A " $\to \pi \left(s_B', o_m' \mid s_A\right) = 1$
"is abnormal" $\to = \frac{1}{2}$

■ impossible cases: possibility degree 0

Qualitative Possibilistic Hidden Markov Process: π -HMP, detection & diagnosis tool for HMI (with Sergio Pizziol)

Qualitative Possibilistic Hidden Markov Process: π -HMP, detection & diagnosis tool for HMI (with Sergio Pizziol)

- estimation of the human assessment
 ⇔ possibilistic belief state
- detection of human assessment errors + diagnosis
- validated with pilots on flight simulator missions

- lack of proof of optimality in indefinite horizon settings
- criterion/algorithm/proof
- curse of dimensionality:
 - \rightarrow belief space size of a π -POMDP: exponential in $\#\mathcal{S}$
- lacksquare in practice, part of $s \in \mathcal{S}$ is visible
 - \Rightarrow complexity reduction
- lack of possibilistic strategy evaluation
- demonstration of usefulness when probabilities are imprecise

- lack of proof of optimality in indefinite horizon settings
- criterion/algorithm/proof
- curse of dimensionality:
 - ightarrow belief space size of a $\pi ext{-POMDP}$: exponential in $\#\mathcal{S}$
- lacksquare in practice, part of $s \in \mathcal{S}$ is visible
 - ⇒ complexity reduction
- lack of possibilistic strategy evaluation
- demonstration of usefulness when probabilities are imprecise

- lack of proof of optimality in indefinite horizon settings
- criterion/algorithm/proof
- curse of dimensionality:
 - \rightarrow belief space size of a π -POMDP: exponential in $\#\mathcal{S}$
- lacksquare in practice, part of $s \in \mathcal{S}$ is visible
 - \Rightarrow complexity reduction
- lack of possibilistic strategy evaluation
- demonstration of usefulness when probabilities are imprecise

- lack of proof of optimality in indefinite horizon settings
- criterion/algorithm/proof
- curse of dimensionality:
 - \rightarrow belief space size of a π -POMDP: exponential in $\#\mathcal{S}$
- lacksquare in practice, part of $s \in \mathcal{S}$ is visible
 - \Rightarrow complexity reduction
- lack of possibilistic strategy evaluation
- demonstration of usefulness when probabilities are imprecise

Indefinite Horizon, Mixed-Observability, Simulations contribution UAI 2013

Indefinite Horizon

criterion, DP scheme, optimal strategy

indefinite horizon criterion:

maximizing

qualitative modeling

$$\min_{t=0}^{\#\delta} \min \left\{ \pi \Big(s' \Big| s, \delta_t(s) \Big), \Psi(s) \right\}$$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

Indefinite Horizon

criterion, DP scheme, optimal strategy

indefinite horizon criterion:

maximizing

$$\min_{t=0}^{\#\delta} \min \left\{ \pi \Big(s' \Big| s, \delta_t(s) \Big), \Psi(s) \right\}$$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

Dynamic Programming scheme: # iterations < #S

- lacksquare assumption: \exists artificial "stay" action as in classical planning/ γ counterpart
- criterion non decreasing with iterations

Indefinite Horizon

criterion, DP scheme, optimal strategy

indefinite horizon criterion:

maximizing

$$\min_{t=0}^{\#\delta} \min \left\{ \pi \Big(s' \Big| s, \delta_t(s) \Big), \Psi(s) \right\}$$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

Dynamic Programming scheme: # iterations < #S

- lacksquare assumption: \exists artificial "stay" action as in classical planning/ γ counterpart
- criterion non decreasing with iterations
- action update for states increasing the criterion
- proof of optimality of the resulting stationary strategy

Mixed-Observability (MOMDP, Ong et al., 2005) π -Mixed-Observable Markov Decision Process (π -MOMDP)

graphical model of a π -MOMDP:

Mixed-Observability: system state $s \in S = S_v \times S_h$ *i.e.* state s = visible component s_v & hidden component s_h

qualitative modeling

Mixed-Observability (MOMDP, Ong et al., 2005) π -Mixed-Observable Markov Decision Process (π -MOMDP)

graphical model of a π -MOMDP:

Mixed-Observability: system state $s \in S = S_v \times S_h$ *i.e.* state s = visible component $s_v \&$ hidden component s_h

■ belief states only over S_h (component s_v observed)

Mixed-Observability (MOMDP, Ong et al., 2005)

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

graphical model of a π -MOMDP:

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_{v} \times \mathcal{S}_{h}$ *i.e.* state $s = \text{visible component } s_{v} \& \text{hidden component } s_{h}$

- belief states only over S_h (component s_v observed)
- $\rightarrow \pi$ -POMDP: belief space $\Pi_{\mathcal{L}}^{\mathcal{S}}$ $\#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}}$
 - $\to \pi$ -MOMDP: computations on $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h}$

 $\#\mathcal{X} \sim \#\mathcal{S}_{\mathsf{v}} \cdot \#\mathcal{L}^{\#\mathcal{S}_{h}} \stackrel{\sim}{\ll} \#\Pi_{\mathcal{L}}^{\mathcal{S}}$

π -MOMDP for robotics with imprecise probabilities simulations with machine vision behavior imprecisely known

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Recognition mission: robot on a grid, targets T1 & T2

π -MOMDP for robotics with imprecise probabilities simulations with machine vision behavior imprecisely known

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Recognition mission: robot on a grid, targets T1 & T2

in reality, misperception probability in the error zone: $P_{bad} > \frac{1}{2}$

π -MOMDP for robotics with imprecise probabilities simulations with machine vision behavior imprecisely known

- goal: reach the object A
- probabilistic model inappropriate with too imprecise probabilities - noisy observations of the

Recognition mission: robot on a grid, targets T1 & T2

in reality, misperception probability in the error zone: $P_{bad} > \frac{1}{2}$

Factored π -MOMDP and computations with ADDs qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored π -MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h} = \text{Boolean variables } (X_1, \dots, X_n) + \text{independence assumptions } \Leftarrow \text{graphical model}$

Factored π -MOMDP and computations with ADDs qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored π -MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h} =$ Boolean variables (X_1, \dots, X_n) + independence assumptions \Leftarrow graphical model

■ factorization: transition functions $T_i^a = \pi\left(X_i' \mid parents(X_i'), a\right)$ stored as Algebraic Decision Diagrams (ADD)

probabilistic case: SPUDD (Hoey et al., 1999)

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

■ factorization ⇒ each DP steps divided into n stages
 → smaller ADDs ⇒ faster computations

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

- factorization ⇒ each DP steps divided into n stages
 → smaller ADDs ⇒ faster computations
- computations on trees: CU Decision Diagram Package.

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

d-Separation
$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l)$

$$\beta_i \in \Pi_{\mathcal{L}}^{\mathcal{S}_{h,i}}$$
, belief over $s_{h,i}$

Natural factorization: belief independence

- $\perp \!\!\! \perp$ assumptions on state & observation variables
 - \rightarrow belief variable factorization
 - ightarrow additional computation savings

Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD (Hoey et al., 1999)

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. pessimistic) criterion

Experiments - perfect sensing: Navigation problem

PPUDD vs SPUDD (Hoey et al., 1999)

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. pessimistic) criterion

Performances, function of the problem index

reached goal frequency

steps to reach the goal

the higher the better

the lower the better

Experiments – perfect sensing: Navigation problem

computation time

max size of ADDs

- PPUDD + M2 (pessimistic criterion)

 faster with same performances as SPUDD
- SPUDD only solves the first 5 instances
- verified intuition: ADDs are smaller

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL (*Kurniawati et al.*, 2008, solver MOMDP) symbolic HSVI (*Sim et al.*, 2008, solver POMDP)

RockSample benchmark: recognize and sample "good" rocks

Experiments - imperfect sensing: RockSample problem

PPUDD vs APPL (*Kurniawati et al.*, 2008, solver MOMDP) symbolic HSVI (*Sim et al.*, 2008, solver POMDP)

RockSample benchmark: recognize and sample "good" rocks

computation time:

probabilistic solvers, prec. 1 PPUDD, exact resolution

average of rewards

APPL stopped when PPUDD end

- approximate model + exact resolution solver
 - → improvement of computation time and performances

Thank you!

produced work:

- Qualitative Possibilistic Mixed-Observable MDPs,
 UAI-2013
- Structured Possibilistic Planning Using Decision Diagrams, AAAI-2014
- Planning in Partially Observable Domains with Fuzzy
 Epistemic States and Probabilistic Dynamics, SUM-2015
- Processus Décisionnels de Markov Possibilistes à Observabilité Mixte, Revue d'Intelligence Artificielle (RIA journal)
- A Possibilistic Estimation of Human Attentional Errors, submitted to IEEE-TFS journal