ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

	ВЕРЖД Іректор	•
		А.К. Мазуров
«	»	2010 г.

Н.В. Чухарева

Расчет простых и сложных газопроводов

Методические указания к выполнению практических работ по курсу «Подготовка, транспорт и хранение скважинной продукции» для студентов IV курса, обучающихся по направлению 130500 «Нефтегазовое дело», специальности 130501 «Проектирование, сооружение и эксплуатация газонефтепроводов и газонефтехранилищ»

Издательство
Национального исследовательского
Томского политехнического университета

УДК 621.438(075.8) ББК 31.363я73 Ч-96

Чухарева Н.В.

Ч-96 Расчет простых и сложных газопроводов. Методические указания к выполнению практических работ по курсу «Подготовка, транспорт и хранение скважинной продукции» для студентов IV курса, обучающихся по направлению 130500 «Нефтегазовое дело», специальности 130501 «Проектирование, сооружение и эксплуатация газонефтепроводов и газонефтехранилищ» / Н.В. Чухарева. — Томск: Изд-во Томского политехнического университета, 2010. — 13 с.

УДК 621.438(075.8) ББК 31.363я73

Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры транспорта и хранения нефти и газа ИГНД «05» марта 2010 г.

Зав. кафедрой ТХНГ	
кандидат технических наук	А.В. Рудаченко
Председатель учебно-методической	
комиссии	В.М. Передерин

Рецензент

К.т.н., инженер ПО магистральных газопроводов ООО «Газпром трансгаз Томск» г. Томска $A.B.\ \Gamma$ ерасимов

- © Чухарева Н.В., 2010
- © Национальный исследовательский

Томский политехнический университет, 2010

© Оформление. Издательство Томского политехнического университета, 2010

СОДЕРЖАНИЕ

1.	Техн	нологические расчеты газопроводов	4
		Гидравлический расчет простых газопроводов	
	1.2.	Определение коэффициента гидравлического сопротивления	6
	1.3.	Задания для самостоятельной работы	8

1. Технологические расчёты газопроводов

При движении реального газа по трубопроводу происходит значительное падение давления по длине в результате преодоления гидравлических сопротивлений.

Газ – сжимаемая система. При движении газа по трубопроводу величина плотности газа будет монотонно убывать от начального участка к конечному, так как $\rho = f(P)$.

C учётом закон на сохранения массы транспортируемой системы ($\rho \cdot \upsilon = \text{const}$) линейная скорость течения такой системы будет монотонно возрастать от начального участка к конечному.

Пример.

Массовый расход (*G*) транспортируемого газа по *трубопроводу* (*d* = 1020, $\delta = 10$ *мм*) составляет 180 кг/с. Найти скорости течения газа в начале (υ_1) и в конце (υ_2) участка газопровода, если известно, что плотность газа в начале участка равна 45 кг/м³, а в конце 25 кг/м³.

Решение.

1. Находим скорость течения газа в начальном участке газопровода (v_I) :

$$Q = \frac{G}{\rho} = v \cdot S, \quad m^3 / c \quad - o \delta b e m н b i \check{u} pac x o \partial; \tag{1}$$

$$S = \frac{\pi \cdot d^2}{4}, \quad M^3 / c - n \pi o \mu a \partial b c e ч e н u я; \tag{2}$$

$$v_{1} = \frac{Q}{S} = \frac{4 \cdot G}{\rho_{1} \cdot \pi \cdot d^{2}} = \frac{4 \cdot 180}{45 \cdot 3,14 \cdot 1,02^{2}} = 4,9 \quad \text{м/c-скорость газа в на-}$$
(3)

чальном участке.

2. Находим скорость течения газа в начальном участке газопровода (v_2) :

$$v_2 = \frac{4 \cdot G}{\rho_2 \cdot \pi \cdot d^2} = \frac{4 \cdot 180}{25 \cdot 3,14 \cdot 1,02^2} = 8,82 \quad \text{м/c-скорость газа в началь-}$$
(4)

ном участке.

То есть скорость течения газа к концу участка газопровода увеличивается $\left(\frac{8,82}{4,9}=1,8\right)$ в 1,8 раза по сравнению со скоростью в его начале.

1.1. Гидравлический расчет простых газопроводов

Установившееся изотермическое (T=const) движение газа в газопроводе описывается системой трех уравнений:

Уравнение Бернулли, закон сохранения энергии:

$$\frac{dP}{g \cdot \rho_z} + \frac{\upsilon \cdot d\upsilon}{2g} + dz + \lambda \cdot \frac{dx}{d} \cdot \frac{\upsilon^2}{2g} = 0.$$
 (5)

Уравнение состояния:

$$P = \rho_{\mathcal{E}} \cdot R_{\mathcal{E}} \cdot T \cdot z, \tag{6}$$

 ∂e $R_z = R/M$.

Закон сохранения массы, выражающийся в постоянстве массового расхода:

$$G = \rho_{\varepsilon} \cdot v \cdot s = const. \tag{7}$$

При этом следует помнить, что изотермический процесс описывается уравнением Бойля-Мариотта:

$$P/\rho = const.$$
 (8)

Для расчета массового расхода газа по трубопроводу основной является формула.

$$\frac{P_1^2 - P_2^2}{2 \cdot z \cdot R_2 \cdot T} = \frac{\lambda \cdot 16 \cdot G^2 \cdot L}{2 \cdot \pi^2 \cdot d^5}.$$
 (9)

Или

$$G = \frac{\pi \cdot d^2}{4} \cdot \sqrt{\frac{\left(P_1^2 - P_2^2\right) \cdot d}{\lambda \cdot z \cdot R_z \cdot T \cdot L}}, \, \kappa \varepsilon / c.$$
 (10)

В системе СИ размерности используемых величин следующие:

G – массовый расход газа, кг/с;

d - внутренний диаметр газопровода, м; $P_1^{\ 2}, P_2^{\ 2}$ — давление в начале и конце газопровода, соответственно, Па:

λ - коэффициент гидравлического сопротивления;

 R_{z} - газовая постоянная, Дж/(к $z^{*}K$);

R – универсальная газовая постоянная, равная 8314 Дж/(кмоль*K);

T – абсолютная температура газа, K;

L – длина газопровода, м;

υ - линейная скорость газа, м/с;

 $\rho_{\rm c}$ – плотность газа, кг/ ${\rm M}^3$.

По уравнению состояния для газа и воздуха имеем:

$$\frac{R_{c}}{\rho_{c}} = \frac{R_{e}}{\rho_{e}}$$
 или $R_{c} = \frac{R_{e} \cdot \rho_{e}}{\rho_{c}} = \frac{R_{e}}{\rho}$, (11)

 $ho = \rho_{e}/\rho_{e}$ – относительная плотность газа по воздуху. где

Объемный расход газа, приведенный к стандартным условиям:

$$V_{z} = \frac{G}{\rho_{cy}} = \frac{G}{\rho \cdot \rho_{\theta}},\tag{12}$$

где ρ_{cy} – плотность газа при c.y.

Подставив значения R_2 и G, получим:

$$V_{z} = k_{o} \cdot \sqrt{\frac{\left(P_{1}^{2} - P_{2}^{2}\right) \cdot d^{5}}{\lambda \cdot z \cdot \rho \cdot T \cdot L}},$$
(13)

где

$$k_o = \frac{\pi}{4} \cdot \frac{1}{\rho_e \cdot \sqrt{R_e}}.$$

При *стандартных условиях* (t = 20 °C, P = 760 мм рт. ст.) плотность воздуха $\rho_{\rm B}$ = 1,205 кг/м³ и $R_{\rm B}$ = $\frac{R_0}{28,96}$ = $\frac{8314,3}{28,96}$ = $287\frac{\mathcal{A}\mathcal{H}}{\kappa z \cdot {\rm K}}$, k_0 = 3,87·10⁻².

И соответственно:

$$V_r = 3.87 \cdot 10^{-2} \cdot \sqrt{\frac{(P_1^2 - P_2^2)}{\lambda \cdot \rho \cdot z \cdot T \cdot L}}.$$
 (14)

При *нормальных условиях* (t = 0°C, P = 760 мм рт. ст.) плотность воздуха ρ_B = 1,293 кг/м³ и R_B = 287 Дж/кг·К, k_0 = 3,59·10⁻².

1.2. Определение коэффициента гидравлического сопротивления

Значение коэффициента гидравлического сопротивления λ рассчитывается в зависимости от режима движения газа и шероховатости труб по тем же формулам, что и для нефтепровода.

Для *гидравлических гладких* труб λ не зависит от шероховатости внутренней поверхности трубы и рассчитывается по формуле:

$$\lambda = 0.067 \cdot \left(\frac{158}{\text{Re}}\right)^{0.2} = \frac{0.1844}{\text{Re}^{0.2}}.$$
 (15)

При *квадратичном режиме* течения λ не зависит от Re, и является функцией относительной шероховатости:

$$\lambda = 0.067 \cdot \left(\frac{2\Delta}{d}\right)^{0.2}.\tag{16}$$

По универсальной формуле ВНИИ газа:

$$\lambda = 0.067 \cdot \left(\frac{158}{\text{Re}} + \frac{2\Delta}{d}\right)^{0.2}.\tag{17}$$

Значение числа *Re* для смеси газов:

$$\operatorname{Re}_{C} = \frac{v_{C} \cdot d \cdot \rho_{C}}{\mu_{C}}, \tag{18}$$

 $2 \partial e \mu_{C} - вязкость смеси газов;$

 ho_C – плотность смеси газов в условиях трубопровода, кг/м 3 .

$$\rho_C = \frac{P_{CP}}{P_0} \cdot \frac{T_0}{T_{CP}} \cdot \frac{1}{z} \cdot \rho_0, \tag{19}$$

где ρ_o – плотность смеси газов при Н.У., кг/м³;

 P_{cp} и P_o – соответственно среднее давление в трубопроводе и барометрическое, Πa ;

 T_{CP} и T_o — соответственно средняя температура перекачки и температура абсолютного нуля (273.15 K).

$$P_{CP} = \frac{2}{3} \cdot \left(P_1 + \frac{P_2^2}{P_1 + P_2} \right). \tag{20}$$

При технических расчетах λ (с учетом местных сопротивлений) можно принимать:

$$\lambda = (1,03-1,05) \cdot \lambda_{TP}. \tag{21}$$

Обычно течение газа происходит при высоких скоростях, когда сопротивление определяется только шероховатостью труб (квадратичная зона). Так как шероховатость не зависит от диаметра трубопровода, можно считать, что λ зависит только от диаметра газопровода.

Одной из формул для оценки величины λ , как функции диаметра ($\lambda = f(d)$, получившей широкое распространение, является формула $Be\~u-mayma$:

$$\lambda = 0.009407 / \sqrt[3]{d}$$
 (22)

Формула Веймаута (6.159) может использоваться при ориентировочных расчетах диаметра и пропускной способности простого газопровода. В этом случае расчетные формулы имеют вид:

$$d = \left[\frac{G^2 \cdot z \cdot R_{\Gamma} \cdot T \cdot L}{65 \cdot (P_1^2 - P_2^2)} \right]^{\frac{3}{16}},$$
(23)

$$G = d^{\frac{8}{3}} \sqrt{\frac{65 \cdot (P_1^2 - P_2^2)}{z \cdot R_{\Gamma} \cdot T \cdot L}} \,. \tag{24}$$

Из формулы (6.151) можно получить выражение для определения длины L, диаметра d и конечного давления P_2 при известном начальном P_1 :

$$P_{2} = \sqrt{P_{1}^{2} - \frac{\lambda \cdot \rho \cdot z \cdot T \cdot V_{\Gamma}^{2} \cdot L \cdot 10^{4}}{3,87^{2} \cdot d^{5}}}, \ \Pi a.$$
 (25)

1.3. Задания для самостоятельной работы Типовая задача 1

Пример. Известно отношение давлений (P_1/P_2) 1,4 в сечениях 1 и 2 газопровода постоянного диаметра. Течение изотермическое, известна скорость газа (v_1) 20 м/с. Найти v_2 .

Решение.

Учитывая *закон сохранения массы* транспортируемой системы (ρ·υ = const) и уравнение состояния

$$\begin{split} P = & \rho_{\it c} \cdot R_{\it c} \cdot T \cdot z, \\ P_1/P_2 = & \rho_1/\rho_2 \;,\;\; \rho_1/\rho_2 \;=\; \upsilon_2/\upsilon_1 \;\;, \upsilon_2 = 31,5 \;\text{м/c}. \\ \frac{P_1}{P_2} = & \frac{\rho_1}{\rho_2} \;\;,\; \text{а также} \; \frac{\rho_1}{\rho_2} = \frac{\upsilon_1}{\upsilon_2}, \; \text{таким образом} \;\; \upsilon_2 = \frac{P_1}{P_2} \cdot \upsilon_1 = 1,4 \cdot 20 = 28 \;\; \textit{м/c} \;. \end{split}$$

Задание. Известно отношение давлений P_1/P_2 в сечениях 1 и 2 газопровода постоянного диаметра. Течение изотермическое, известна скорость газа v_1 , м/с. Найти v_2 . Исходные данные представлены в табл. 1.

Исходные данные к задаче 1

Таблица 1

	Варианты														
Параметр	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P_1/P_2	4	3	2	3,5	4,2	2,8	3,2	1,9	2,4	1,5	2,5	3,8	4,4	5	5,5
V_1 , M/c	25	15	20	16	28	18	22	14	26	21	30	35	31	40	44

Варианты															
Параметр	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
P_1/P_2	7	6	6,5	6,2	4,5	2,3	7,3	8	7,7	7,5	1,8	3,3	5,3	7,1	6,8
V_1 , M/c	33	42	46	48	22	29	38	20	45	19	17	16	23	49	50

Типовая задача 2

Пример. Определить массовый и объемный расходы для газопровода длиной 100 км, с наружным диаметром 720 мм и толщиной стенок 10 мм. Абсолютное давление в начале газопровода $p_{H} = 5 \, M\Pi a$, в конце $p_{K} = 1, 1$ *МПа*. Плотность газа при стандартных условиях $\rho_c = 0.8 \ \kappa c/m^3$, газовая постоянная $R = 8,31 \, \text{Дж/(моль} \cdot K)$. Коэффициент динамической вязкости μ $= 12 \cdot 10^{-6} \, \Pi a \cdot c$, коэффициент сжимаемости z = 0.93. Температура грунта на глубине заложения газопровода 5 °C. Эквивалентная шероховатость внутренней поверхности труб $\Delta = 0.2 \, \text{мм}$.

Решение.

1. Задаваясь квадратичным законом получаем

$$\lambda = 0,067 \cdot \left(\frac{2 \cdot 0, 2 \cdot 10^{-3}}{720}\right)^{0.2} = 0,0149 \cdot$$

2. В соответствии с расчетное значение принимают $\lambda = 0.0157$.

По находим массовый расход для газопровода:
$$G_{\scriptscriptstyle M} = \frac{3,\!14\cdot 0,\!75^2}{4} \cdot \sqrt{\frac{\left(5^2-1,\!1^2\right) \cdot 10^{12}\cdot 0,\!75}{0,\!0157\cdot 0,\!93\cdot 8,\!31\cdot 278\cdot 100\cdot 10^3}} = 855,\,\kappa\varepsilon/c\,\cdot$$

Оцениваем объемный расход газопровода:

Задание. Определить массовый суточный расход газа, который можно передать по газопроводу, уложенному из труб диаметром d мм, на расстояние L км. Абсолютное давление газа на выкиде компрессорной станции P_1 МПа, в конце участка P_2 МПа, плотность газа ρ_ε при атмосферном давлении (0,1 МПа) и температуре перекачки 20 $^{\circ}$ С. Газ считать совершенным, течение изотермическим. Исходные данные в табл. 2.

Указание. Для расчета коэффициента гидравлического сопротивления вспользоваться формулой Веймаута.

Перевод внесистемных	с единиц в единицы СИ
Единицы дан	вления
$1 \text{ repo}/\text{ov}^2$	09066 5 По

Единицы давления						
1 кгс/см ²	98066,5 Па					
1 ат (атмосфера техническая)	≈0,1 МПа					
1 атм (атмосфера физическая)	101,325 кПа					
1 мм рт.ст.	133,322 Па					
1 мм вод.ст.	9,80665 Па					
Единицы динамической вязкости						
1 Пауз	0,1 Па*с					

Таблица 2 Исходные данные к задаче 2

Папанашын	Варианты												
Параметры	1	2	3	4	5	6	7	8	9	10			
Диаметр газопровода, мм	326	420	280	312	500	380	412	400	300	480			
Длина газопровода, км	185	150	68	90	30	80	60	50	65	70			
$\mathbf{P_1}$, МПа	6,5	5,2	6,6	5,6	8,0	7,5	7,0	7,2	6,8	5,0			
\mathbf{P}_{2} , МПа	4,7	3,4	5,5	4,5	6,8	5,0	4,6	5,2	3,8	3,2			
$ρ_r$, $κΓ/M^3$	0,86	0,80	0,74	0,88	0,9	0,68	0,78	0,62	0,70	0,72			
Папамати	Варианты												
Параметры	11	12	13	14	15	16	17	18	19	20			
Диаметр газопровода, мм	529	630	720	820	920	1020	630	820	1200	1020			
Длина газопровода, км	20	30	40	50	60	70	80	90	10	100			
$\mathbf{P_1}$, МПа	0,6	0,8	6,6	6,8	7	7,2	7,3	7,4	0,5	7,5			
\mathbf{P}_{2} , МПа	0,1	0,15	1	1,5	1,3	2	1,8	1,4	0,2	1,2			
$\rho_{\rm r}$, kg/m ³	0,75	0,8	1,2	1,02	0,9	0,88	1,3	1,21	1,5	1,6			
	Варианты												
Параметры	21	22	23	24	25	26	27	28	29	30			
Диаметр газопровода, мм	630	420	326	500	380	1200	1020	412	820	400			
Длина газопровода, км	30	50	90	35	80	40	20	100	60	75			
$\mathbf{P_1}$, МПа	0,9	7,0	6,6	0,75	0,5	6,4	5,5	0,8	7,2	5,2			
\mathbf{P}_{2} , МПа	0,4	2,4	1,5	0,15	0,1	1,2	1,8	0,25	1,6	1,3			
ρ_{Γ} , κ Γ/M^3	0,8	1,2	0,88	0,9	0,74	1,6	1,2	1,3	1,6	0,86			

Ответы к типовой задаче №2

№ вар	V2, м/с				
1	25				
2	15				
3	20				
4	16				
2 3 4 5 6	28				
6	18				
7	22				
8	14				
9	26				
10	21				
11	30				
12	35				
13	31				
14	40				
15	44				
16	33				
17	42				
18	46				
19	48				
20	22				
21	29				
22	38				
23	20				
23 24	45				
25	19				
26	17				
27	16				
28	23				
29	49				
30	50				

№ вар	λ	Gм, кг/с	Q, млн
312 вар	7.0	GM, KI/C	м3/сут
1	0,01366822	86,23885608	8,663996704
2	0,0125613	164,9306145	17,81250636
3	0,0143791	77,04053835	8,995003396
4	0,01386967	81,64783614	8,016333003
5	0,01185208	628,8458302	60,3691997
6	0,01298743	245,7157126	31,22034937
7	0,01264209	332,2371712	36,80165588
8	0,01276726	317,4661821	44,2404486
9	0,01405219	146,4008331	18,07004569
10	0,01201445	336,5896667	40,39076001
11	0,01163142	125,6601201	14,47604583
12	0,01097331	217,1680705	23,45415162
13	0,01049559	2229,22613	160,5042814
14	0,01005032	2867,426134	242,8878608
15	0,00967212	3689,478997	354,1899837
16	0,00934511	4522,830833	444,0597545
17	0,01097331	1197,278453	79,57296792
18	0,01005032	2341,50973	167,1954055
19	0,00885233	1222,89628	70,43883
20	0,00934511	4050,360506	218,7194673
21	0,01097331	222,8097391	24,06345182
22	0,0125613	477,4405138	34,37571699
23	0,01366822	176,9904894	17,37724805
24	0,01185208	101,5187332	9,74579839
25	0,01298743	21,53344617	2,514175336
26	0,00885233	8388,000526	452,9520284
27	0,00934511	6357,861645	457,7660385
28	0,01264209	37,06510411	2,463403842
29	0,01005032	2770,511675	149,6076305
30	0,01276726	262,0685954	26,32875191

Учебное издание

ЧУХАРЕВА Наталья Вячеславовна

РАСЧЕТ ПРОСТЫХ И СЛОЖНЫХ ГАЗОПРОВОДОВ

Методические указания к выполнению практических работ по курсу «Подготовка, транспорт и хранение скважинной продукции» для студентов IV курса, обучающихся по направлению 130500 «Нефтегазовое дело», специальности 130501 «Проектирование, сооружение и эксплуатация газонефтепроводов и газонефтехранилищ»

Научный редактор кандидат технических наук, доцент

А.В. Рудаченко

Подписано к печати 00.00.2011. Формат $60 \times 84/16$. Бумага «Снегурочка».

Печать Xerox. Усл. печ. л. 000. Уч.-изд. л. 000. Заказ XXX. Тираж XXX экз.

Томский политехнический университет
Система менеджмента качества
Томского политехнического университета сертифицирована

NATIONAL QUALITY ASSURANCE по стандарту ISO 9001:2000

МЗААТЕЛЬСТВО ТПУ. 634050, г. Томск, пр. Ленина, 30. Тел. / факс: 8(3822) 56-35-35. www.tpu.ru