Chapter 0 Problems

Hui

1 Problem 0.10

You cannot divide either side of the equation by (a - b) because you assume a = b, meaning a - b = 0.

2 Problem 0.11

- a) **Proof:** Basis: Let n = 1. Then, S(1) = 1 and $\frac{1}{2}(1)(1+1) = 1$, which means $S(n) = \frac{1}{2}n(n+1)$ is true for n = 1.
- Induction step: Assume n is an arbitrary but fixed natural number such that $1+2+\ldots+n=\frac{1}{2}n(n+1)$. Then, $1+2+\ldots+n+(n+1)=\frac{1}{2}n(n+1)+(n+1)=\frac{1}{2}n^2+\frac{3}{2}n+1=\frac{1}{2}(n^2+3n+2)=\frac{1}{2}(n+1)((n+1)+1)$. Since $1+2+\ldots+n+(n+1)=\frac{1}{2}(n+1)((n+1)+1)$, $1+2+\ldots+n=\frac{1}{2}n(n+1)$ is true for n+1. Thus, $S(n)=\frac{1}{2}n(n+1)$ for all natural numbers. Q.E.D.
- b) **Proof:** Basis: Let n = 1. Then, C(1) = 1 and $\frac{1}{4}(1)^2(1+1)^2 = 1$, which means $C(n) = \frac{1}{4}n^2(n+1)^2$ is true for n = 1.

Induction step: Assume n is an arbitrary but fixed natural number such that $1^3+2^3+...+n^3=\frac{1}{4}n^2(n+1)^2$. Then, $1^3+2^3+...+n^3+(n+1)^3=\frac{1}{4}n^2(n+1)^2+(n+1)^3=(n+1)^2(\frac{1}{4}n^2+(n+1))=\frac{1}{4}(n+1)^2(n^2+4n+4)=\frac{1}{4}(n+1)^2((n+1)+1)$. Since $1^3+2^3+...+n^3+(n+1)^3=\frac{1}{4}(n+1)^2((n+1)+1)$, $1^3+2^3+...+n^3=\frac{1}{4}n^2(n+1)^2$ is true for n+1. Thus, $C(n)=\frac{1}{4}n^2(n+1)^2$ for all natural numbers. Q.E.D. Conclusion: Because $C(n)=\frac{1}{4}n^2(n+1)^2$ and $S(n)=\frac{1}{2}n(n+1)$ for all natural numbers, $C(n)=S^2(n)$ for all natural numbers.

- 3 Problem 0.12
- 4 Problem 0.13
- 5 Problem 0.14
- 6 Problem 0.15