Linear-Chain Conditional Random Fields (CRF)

• Intuição, usos e aprendizados

Fábio Capuano de Souza fabiocapsouza@gmail.com

CRF: motivação

 Problemas que precisam prever uma sequência de saídas para uma sequência de entradas.

- Exemplos:
 - Segmentação: classificar cada pixel de uma imagem
 - Há uma relação grande entre a classe de pixels vizinhos
 - NLP: Sequence Labeling
 - Classificar cada token de um texto em um vocabulário de Tags
 - Part of Speech (POS), NER (Named Entity Recognition), ...

NER: modelamento

- Sequence tagging: tarefa a nível de token (token-level) onde deve-se classificar cada token da sequência de entrada
 - Identificação e classificação simultâneas das entidades
- Esquema de tagging:
 - Vocabulário de tags, com tags distintas para cada classe
 - IOB2: B (begin), I (in), O (out)
 - O, B-PER, I-PER, B-ORG, I-ORG, etc

CRF: motivação

- As saídas de redes neurais recorrentes, como LSTM, são independentes entre si
 - $\circ P(y_i | x_1, ..., x_n)$
- Porém, as labels nem sempre são de fato independentes
- Sequence Labeling impõe restrições rígidas nas labels
 - Tags I- nunca podem suceder tag O
 - Tag I-PER não pode suceder B-ORG ou I-ORG

CRF

- O CRF permite incluir dependência entre labels
 - \circ Linear-Chain: "P($y_i | X, y_{i-1}$)"
- O CRF é um modelo para prever a sequência de labels mais provável para uma sequência de entradas
 - ∘ P(Y | X)

CRF: Transições

- Parâmetros do CRF
 - Matriz de Transição entre classes + Transições inicial e final
 - Aij: custo de transicionar da classe i para a classe j
 - K classes: K² + 2K parâmetros

```
A = \begin{bmatrix} C(\text{cont. em A}) & C(\text{ir B p/ A}) & C(\text{ir C p/ A}) & C(\text{começar c/ A}) & C(\text{acabar em A}) \\ C(\text{ir A p/ B}) & C(\text{cont. em B}) & C(\text{ir C p/ B}) & C(\text{começar c/ B}) & C(\text{acabar em B}) \\ C(\text{ir A p/ C}) & C(\text{ir B p/ C}) & C(\text{cont. em C}) & C(\text{começar c/ C}) & C(\text{acabar em C}) \end{bmatrix}
```

CRF: função de custo

$$egin{cases} \mathbf{X}=(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n) & \longrightarrow & \mathbf{P}: \mathsf{matriz} \, \mathsf{de} \, \mathsf{scores} \, \mathsf{de} \ \mathbf{y}=(y_1,y_2,\ldots,y_n) & & \mathsf{tamanho} \, \mathsf{n} \, \mathsf{x} \, \mathsf{K} \ \mathbf{y}=(y_1,y_2,\ldots,y_n) & & \mathsf{val} \, \mathsf{$$

Dados **P** e **y**, o score de uma sequência de predições **y** é dado por: (y0: start e yn: end)

$$s(\mathbf{X}, \mathbf{y}) = \sum_{i=0}^{n} A_{y_i, y_{i+1}} + \sum_{i=1}^{n} P_{i, y_i}$$

CRF: Exemplo de score

$$s(\mathbf{X}, \mathbf{y}) = \sum_{i=0}^{n} A_{y_i, y_{i+1}} + \sum_{i=1}^{n} P_{i, y_i}$$

y = (A, B, B); n = 3; K=2
$$P = \begin{bmatrix} P_{1,A} & P_{2,A} \\ P_{2,A} & P_{1,B} & P_{2,B} \end{bmatrix}$$

$$s(X, y) = A_{start, A} + P_{1,A} + A_{A, B} + P_{2,B}^{2, B} + A_{B, B} + P_{3, B} + A_{B, end}$$

CRF: Função de custo

- n = 3; K=2
- Kⁿ possíveis sequências y
- $2^3 = 8$ scores

$$s(X, (A, A, A)) = A_{start, A} + P_{1,A} + A_{A,A} + P_{2,A} + A_{A,A} + P_{3,A} + A_{A, end}$$

$$s(X, (A, B, B)) = A_{start, A} + P_{1,A} + A_{A,B} + P_{2,B} + A_{B,B} + P_{3,B} + A_{B, end}$$
(...)
$$s(X, (B, B, B)) = A_{start, B} + P_{1,B} + A_{B,B} + P_{2,B} + A_{B,B} + P_{3,B} + A_{B, end}$$

Probabilidade de uma sequência: Softmax entre todas as possíveis sequências $\mathbf{Y}_{\mathbf{x}}$

$$p(\mathbf{y}|\mathbf{X}) = \frac{e^{s(\mathbf{X},\mathbf{y})}}{\sum_{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}} e^{s(\mathbf{X},\widetilde{\mathbf{y}})}}.$$

CRF: Função de custo

Custo: maximizar o log da probabilidade da sequência correta

Probabilidade da **sequência correta y**: Softmax entre todas as possíveis sequências $\mathbf{Y}_{\mathbf{X}}$

$$p(\mathbf{y}|\mathbf{X}) = \frac{e^{s(\mathbf{X},\mathbf{y})}}{\sum_{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}} e^{s(\mathbf{X},\widetilde{\mathbf{y}})}}.$$

$$\log(p(\mathbf{y}|\mathbf{X})) = s(\mathbf{X}, \mathbf{y}) - \log\left(\sum_{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}} e^{s(\mathbf{X}, \widetilde{\mathbf{y}})}\right)$$
$$= s(\mathbf{X}, \mathbf{y}) - \underset{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}}{\log \operatorname{add}} s(\mathbf{X}, \widetilde{\mathbf{y}}), \quad (1)$$

CRF: Treinamento e Inferência

- Treinamento vai aprender os custos das transições A
- Após o treinamento, a predição para um exemplo precisa encontrar a sequência de maior score

$$\mathbf{y}^* = \operatorname*{argmax}_{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}} s(\mathbf{X}, \widetilde{\mathbf{y}}).$$

- Cálculo do score de todas as sequências é intratável se feito de forma "inocente"
 - Algoritmos eficientes com programação dinâmica
 - Cálculo de todos os scores: Forward-backward algorithm
 - Predição: Viterbi Decoding

PyTorch: biblioteca

- pytorch-crf: https://pytorch-crf.readthedocs.io/en/stable/
- Camada CRF:
 - forward(emissions, tags, mask=None, reduction='sum')
 - Usado somente durante o treinamento
 - Retorna a log-probability da sequência correta -> custo
 - decode(emissions, mask=None)
 - Inferência com Viterbi Decoding
 - Retorna a sequência de tags mais provável

Impacto do CRF em NER

Table 3: Results of NER task (Precision, Recall and micro F1-score) on the test set (MiniHAREM). Best results in bold. Reported values are the average of multiple runs with different random seeds. (*): primary metric.

Architecture	Total scenario			Selective scenario		
	Prec.	Rec.	F1 (*)	Prec.	Rec.	F1 (*)
CharWNN [22]	67.2	63.7	65.4	74.0	68.7	71.2
LSTM-CRF [3]	72.8	68.0	70.3	78.3	74.4	76.3
BiLSTM-CRF+FlairBBP [24]	74.9	74.4	74.6	83.4	81.2	82.3
mBERT	71.6	72.7	72.2	77.0	78.8	77.9
mBERT + CRF	74.1	72.2	73.1	80.1	78.3	79.2
BERTimbau Base	76.8	77.1	77.2	81.9	82.7	82.2
BERTimbau Base + CRF	78.5	76.8	77.6	84.6	81.6	83.1
BERTimbau Large	77.9	78.0	77.9	81.3	82.2	81.7
BERTimbau Large + CRF	79.6	77.4	78.5	84.9	82.5	83.7

Colab com implementação de exemplo

Toy example:

https://colab.research.google.com/drive/1xtS5Wts8JEQDHf7VGs-9VQJFknLEvSeF