Class Excercise 1

Tobias Hoesli, Miguel, Patrick Stöckli

2023-03-13

Introduction

For this excersise we will be using the dataset **Quality of Government** Dataset. You can find the codebook here.

Regressionanalyisis

```
source("../code/regression.R")
#Load package "labelled" to generate table
library(stargazer)
##
## Please cite as:
   Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
#Generate a well-formatted table
stargazer(regression_a, regression_b, regression_c,
          title="Regression on the Share of Women in Parliament (Lower and Single Houses) ",
          dep.var.caption="",
          dep.var.labels.include=FALSE,
          covariate.labels=c("Islam", "Level of Democracy", "Real GDP per Capita"),
          digits=2,
          keep.stat=c("rsq", "adj.rsq", "n"),
          notes=c("Notes: Standard errors in parentheses."),
          notes.align = "c",
          notes.label="",
          no.space=TRUE,
          type = 'latex')
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Mon, Mar 13, 2023 - 15:38:49

Including Plots

You can also embed plots, for example:

Table 1: Regression on the Share of Women in Parliament (Lower and Single Houses)

	(1)	(2)	(3)
Islam	-6.58^{***}	-6.38**	-7.49^{***}
Level of Democracy	(2.24)	(2.66) 0.04	(2.60) 0.28
Real GDP per Capita		(0.30)	$(0.30) \\ 0.0000$
Constant	18.94***	18.60***	(0.0000) $18.21***$
	(0.95)	(2.56)	(2.53)
Observations	187	187	159
\mathbb{R}^2	0.04	0.04	0.10
Adjusted \mathbb{R}^2	0.04	0.03	0.08

 $\label{eq:problem} $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$ Notes: Standard errors in parentheses.}$

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.