1. 有五个进程P1、P2、P3、P4、P5,它们同时依次进入就绪队列,它们的优先数和需要的处理器时间如下表

进程	处理器时间	优先级(数小优 先级高)
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

忽略进行调度等所花费的时间, 回答下列问题:

(1) 写出采用"先来先服务"、"短作业(进程)优先"、"非抢占式的优先数"和 "轮转法"等调度 算法,进程执行的次序。(其中轮转法的时间片为 2)

先来先服务: P1, P2, P3, P4, P5 短作业优先: P2, P4, P3, P5, P1 非抢占式优先数: P2, P5, P1, P3, P4

轮转法: P1, P2, P3, P4, P5, P1, P5, P1, P5, P1

(2) 分别计算上述算法中各进程的周转时间和等待时间,以及平均周转时间。

	周转时间	等待时间	平均周转时间
先来先	P1: 10	P1:0	13.4
服务	P2: 11	P2:10	
	P3: 13	P3:11	
	P4: 14	P4:13	
	P5: 19	P5:14	
短作业	P2: 1	P2:0	7
优先	P4: 2	P4:1	
	P3: 4	P3:2	
	P5: 9	P5:4	
	P1: 19	P1:9	
非抢占	P2:1	P2:0	12
式优先	P5:6	P5:1	
数	P1:16	P1:6	
	P3:18	P3:16	
	P4:19	P4:18	
轮转法	P2:3	P2:2	10
	P3:5	P3:3	
	P4:6	P4:5	
	P5:17	P5:10	
	P1:19	P1:10	

2. 死锁产生的四个必要条件是什么?

互斥条件, 请求和保持条件, 不可剥夺条件, 环路等待条件

3. 某系统中有 n 个进程和 m 台打印机,系统约定: 打印机只能一台一台地申请、一台一台地释放,每个进程需要同时使用的打印机台数不超过 m。如果 n 个进程同时需要使用打印机的总数小于 m+n,试讨论,该系统可能发生死锁吗?并简述理由。

设 i 进程共需求 Pi 个打印机,则 Pi<m 且 P1+···+Pn < n + m

设每个进程当前占用了 Xi 个打印机

对于最坏的情况,每个进程都可能占用了 m-1 个打印机,即 X1+···+Xn <= n * (m-1)

设 i 进程在当前基础上还需要 Yi 个打印机,则若存在 Yi=0,则该进程已被满足,申请的资源可以被释放,若存在死锁则任意 Yi>0

由于每个进程申请的打印机不超过 m, 所以 Xi+Yi <= m

每个进程又都至少在等一个打印机, 即 Y1+···+Yn >= n

因此,对于所有进程,(X1+Y1)+···+(Xn+Yn)>=(X1+···+Xn)+n

又 Xi+Yi=Pi、 因此(X1+Y1)+···+(Xn+Yn) < n + m

即(X1+···+Xn) < m, 即当前占用的打印机总数<m, 所以至少存在一个打印机可以分配给某个进程, 从而不会有死锁。

4. 什么是进程之间的同步关系? 什么是进程之间的互斥关系?

进程同步: 系统中各进程之间能有效地共享资源和相互合作, 从而使程序的执行具有可再现性的过程称为进程同步。

进程互斥:两个或两个以上的进程,不能同时进入关于同一组共享资源的临界区,否则可能发生与时间有关的错误。

5. 假设具有5个进程的进程集合P= {P0, P1, P2, P3, P4}, 系统中有三类资源 A, B, C, 假设在某时刻有如下状态:

	Allocation				Max			Available			
	A	В	С	A	В	С	Α	В	С		
P0	0	0	3	0	0	4	1	4	0		
P1	1	0	0	1	7	5					
P2	1	3	5	2	3	5					
P3	0	0	2	0	6	4					
P4	0	0	1	0	6	5					

- (1) 根据上表内容, 当前系统是否处于安全状态? 是
- (2) 若系统中的可利用资源 Available 为 (0,6,2), 系统是否安全? 若系统处在安全状态, 请 给出安全序列; 若系统处在非安全状态, 简要说明原因。

(0,6,2)只能满足 P0,P3

这两个进程释放后,变为(0,6,8),剩下的三个均无法满足。 因此不安全。