Exercise 1.3. Consider yn = x0 + En where $x \equiv contant$ $\mathcal{E}_n \sim N(0, O_{\epsilon}^2)$ n=1,...,Na) Likelihood: $p(y_n|\theta) \sim N(x\theta, \sqrt{\epsilon}) = \frac{1}{\sqrt{2\pi \sqrt{\epsilon}}} exp(\frac{-(y_n - x\theta)^2}{2\sqrt{\epsilon}})$ x is a constant and θ is given (conditioned) A so En is the only source of randomness P(Y/θ) where Y={7,..., YN} can be obtained under the independence assumption: P(Y,..., YN |θ) cid IT P(Yn |θ) = IT | exp(-(Yn-xθ)) | Z Te²) b) We can use Bayes' theorem $p(\theta|Y) = \frac{p(710)p}{p(7)}$ The lag posterior is then $\log p(\theta|Y) = \log p(Y) + \log p(\theta) - \log p(Y)$ P(O1Y) = P(Y10)P(O) to find the porterior. Node that: & Ce = - logp(Y) is just a constant wrt O, called "evidence" * lag p(410) = lag TTp(x,10) = 2 lagp(x,10) E (4-x0)= 2 42-24x0 and log p(1/10) = = 1 log 2002 + = 1/2 (7n-x0) = Zy - ZNyx0+N202 * logp(0) = = [logZTT of + = [0-Mp) Pulting everything together:

log p(θ/)= = = [= log 2π 0 + = [(γ-×θ)] + [= log 2π 0 + = [(θ-μ)] + (e) = -N log21102 + -1 (2x - ZNy x0 + NXO) + - log21102 + -1 (0-m) + Ce-= = = | log (2110) 2110) + = | 0 (- + Nx) - 20 (Nx + Mp) + (- (this aggregation of θ terms will be well for later) \overline{K} + C) Compare with $\log p(\theta | \mu, \overline{\sigma}) = \frac{1}{2} \log 2\pi \overline{\sigma}^2 + \frac{1}{2} (\theta - \mu)^2$ The can see that the overall structure σ the same, but μ and $\overline{\sigma}$ have more complicated expressions.

