QCM 6

lundi 11 décembre

Dans tout ce QCM, I désigne un intervalle de \mathbb{R} .

Question 11 X

Soient f une fonction continue sur I et F une primitive de f sur I. On a

a.
$$\forall t \in I, f'(t) = F(t)$$

0

$$\forall t \in I, F'(t) = f(t)$$

\ c.
$$t \mapsto F(t) + 2$$
 est aussi une primitive de f sur I .

can F(t) + h

$$\times$$
 d. $t \mapsto 2F(t)$ est aussi une primitive de f sur I .

$$(F(h) + 2)' = F'(h) = f(h)$$

e. Aucune des autres réponses

Question 12 X

Soient f et g deux fonctions continues sur I. On note F une primitive de f sur I et G une primitive de g sur I. On a

 $\$ a. 2F + 3G est une primitive de 2f + 3g sur I.

f b. $F \times G$ est une primitive de $f \times g$ sur I.

0

 \swarrow c. Si f et F ne s'annulent pas sur I, $\frac{1}{F}$ est une primitive de $\frac{1}{f}$ sur I.

d. Aucune des autres réponses

Question 13

Une primitive sur \mathbb{R} de $x \longmapsto 3x + 3x^2$ est

a.
$$x \longmapsto 3 + 6x$$

b.
$$x \longmapsto 3x^2 + 3x^3 + 1$$

c.
$$x \longmapsto \frac{3x^2}{2} + 3x^3$$

$$\sqrt{1}$$
 d. $x \longmapsto \frac{3x^2}{2} + x^3 + 2$

e. Aucune des autres réponses

Question 14

Cochez la(les) bonne(s) réponse(s)

- \ \ a. Une primitive de $x \longmapsto \cos(x)$ sur \mathbb{R} est $x \longmapsto \sin(x)$
 - b. Une primitive de $x \longmapsto \cos(x)$ sur \mathbb{R} est $x \longmapsto -\sin(x)$
 - c. Une primitive de $x \longmapsto \sin(x)$ sur \mathbb{R} est $x \longmapsto \cos(x)$
- - e. Aucune des autres réponses

Question 15

Une primitive de $x \longmapsto e^{2x}$ sur $\mathbb R$ est

a.
$$x \longmapsto e^{x^2}$$

b.
$$x \longmapsto e^{2x}$$

c.
$$x \longmapsto 2e^{2x}$$

$$\ \, \ \, \backslash\!\!\!\backslash \ \, \mathrm{d.} \ \, x \longmapsto \frac{e^{2x}}{2}$$

e. Aucune des autres réponses

Question 16

Une primitive de $x \longmapsto \frac{2x+1}{x^2+x+1}$ sur $\mathbb R$ est

a.
$$x \longmapsto \frac{1}{(x^2 + x + 1)^2}$$

$$\$$
 b. $x \longmapsto \ln(x^2 + x + 1)$

c.
$$x \longmapsto -\frac{1}{x^2 + x + 1}$$

d. Aucune des autres réponses

Question 17

Une primitive de $x \longmapsto \frac{1}{x+1}$ sur \mathbb{R}^+ est

a.
$$x \longmapsto -\frac{1}{(x+1)^2}$$

b.
$$x \longmapsto \ln(x)$$

d.
$$x \mapsto \frac{1}{\frac{x^2}{2} + x}$$

e. Aucune des autres réponses

Question 18

La primitive sur $[0,+\infty[$ de $x\longmapsto \sqrt{x}$ qui vaut 0 en 1 est

a.
$$x \longmapsto \frac{1}{2\sqrt{x}} - \frac{1}{2}$$

$$\searrow \searrow b$$
, $x \longmapsto \frac{2x^{\frac{3}{2}}}{3} - \frac{2}{3}$

c.
$$x \longmapsto \frac{2x^{\frac{3}{2}}}{3}$$

d. Aucune des autres réponses

f n

Question 19

Une primitive sur \mathbb{R} de $x \longmapsto \ln(2)$ est $x \longmapsto \ln(2x)$.

a. Vrai

\ N b. Faux

+ 1

Question 20

Toutes les fonctions définies sur I admettent une primitive sur I.

X \ a. Vrai

b. Faux

et continue