School of Computing and Information Systems The University of Melbourne

COMP90049 INTROCTION to MACHINE LEARNING (Semester 1, 2021)

Week 5

- 1. How is **holdout** evaluation different to **cross-validation** evaluation? What are some reasons we would prefer one strategy over the other?
- 2. A **confusion matrix** is a summary of the performance of a (supervised) classifier over a set of development ("test") data, by counting the various instances:

		Actual			
		a	b	c	d
Classified	а	10	2	3	1
	b	2	5	3	1
	c	1	3	7	1
	d	3	0	3	5

- (i). Calculate the classification accuracy of the system. Find the error rate for the system.
- (ii). Calculate the **precision**, **recall** and **F-score** (where $\beta = 1$) for class d.
- (iii). Why can't we do this for the whole system? How can we consider the whole system?
- 3. For the following dataset:

JC C.								
ID	Outl	Тетр	Humi	Wind	PLAY			
TRAINING INSTANCES								
A	S	h	h	F	N			
В	S	h	h	T	N			
C	O	h	h	F	Y			
D	r	m	h	F	Y			
E	r	c	n	F	Y			
F	r	c	n	T	N			
TEST INSTANCES								
G	О	С	n	T	?			
Н	\mathbf{s}	m	h	F	?			

- (i). Classify the test instances using the method of **0-R**.
- (ii). Classify the test instances using the method of 1-R. (for H assume Outl = s)
- 4. Given the above dataset, we wished to perform feature selection on this dataset, where the class is PLAY:
 - (i). Which of Humi and Wind has the greatest *Pointwise Mutual Information* for the class Y? What about N?
 - (ii). Which of the attributes has the greatest Mutual Information for the class, as a whole?