NOM: Prénom: Note:

1. Calculer les rangs et les traces des matrices $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}$. Ces matrices sont-elles équivalentes? semblables? Justifier.

2. Calculer la signature de la permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$. On justifiera sa réponse.

3. Calculer le déterminant D = $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 3 & 3 \\ 1 & 3 & 6 & 6 \\ 1 & 3 & 6 & 10 \end{vmatrix}$. On précisera les opérations effectuées.

4. On munit $E = \mathcal{C}^0([0,\pi],\mathbb{R})$ du produit scalaire $(f,g) \in E^2 \mapsto \langle f,g \rangle = \int_0^\pi f(t)g(t)$ dt et on pose $f_n \colon x \in [0,\pi] \mapsto \sin(nx)$. Montrer que la famille $(f_n)_{n \in \mathbb{N}}$ est orthogonale.

5. Soient n et k des entiers naturels tels que k < n - 1. Calculer pour $x \in \mathbb{R}$,

$$D(x) = \begin{vmatrix} (x+1)^k & 2^k & 3^k & \cdots & n^k \\ (x+2)^k & 3^k & 4^k & \cdots & (n+1)^k \\ \vdots & & & \vdots \\ (x+n)^k & (n+1)^k & (n+2)^k & \cdots & (2n-1)^k \end{vmatrix}$$