

RU⁽¹¹⁾ 2 069 198⁽¹³⁾ C1

(51) M⊓K⁶ C 03 C 3/064, 8/24

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 94036217/33, 29.09.1994
- (46) Дата публикации: 20.11.1996
- (56) Ссылки: 1. Патент США N 4949065, кл. Н 01 С 1/012, 1990. 2. Авторское свидетельство СССР N 1247360, кл. С 03 С 3/072, 1990. 3. Саруханишвили А.В. Многомарганцевые боратные и силикатные стекла. - М.: Мир, 1989. 4. Авторское свидетельство СССР N 1608142, кл. С 03 С 3/072, 1990.
- (71) Заявитель: Московский государственный институт электронной техники
- (72) Изобретатель: Петрова В.З., Шутова Р.Ф., Осипенкова Н.Г., Костенич Л.А.
- (73) Патентообладатель: Московский государственный институт электронной техники

(54) СТЕКЛО

(57) Реферат:

Использование: для стеклосвязующих толстопленочных резистивных элементов и может быть использовано в электро-, радиотехнической, электронной и других смежных отраслях промышленности.

Сущность изобретения: стекло содержит в

мас.%: оксид кремния 8...48 БФ SiO 2, оксид марганца 32...61 БФ MnO, оксид бора 4...47 $Б\Phi$ B_2O_3 , оксид меди 1...8 $Б\Phi$ CuO, оксид алюминия $7...21 \text{ Al}_2\text{O}_3$, оксид ванадия 1...8БФ V_2O_5 . Гидролитический класс стекла I-II, температура начала деформации стекла 520 -620°С. 2 табл.

-1-

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 069 198 ⁽¹³⁾ C1

(51) Int. Cl.⁶ C 03 C 3/064, 8/24

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 94036217/33, 29.09.1994

(46) Date of publication: 20.11.1996

- (71) Applicant: Moskovskij gosudarstvennyj institut ehlektronnoj tekhniki
- (72) Inventor: Petrova V.Z., Shutova R.F., Osipenkova N.G., Kostenich L.A.
- (73) Proprietor: Moskovskij gosudarstvennyj institut ehlektronnoj tekhniki

(54) GLASS

(57) Abstract:

FIELD: electrical, radio, electronic and other related industries. SUBSTANCE: glass comprises, wt.-%: 8- 48 silicon oxide; 32-61 manganese oxide; 4-47 boron oxides; 1-8

copper oxide; 7-21 aluminium oxide; 1-8 vanadium oxide. Hydrolytic class of glass I-II, starting glass deformation temperature 520-620 C. EFFECT: improved properties of glass. 2 tbl

2069198

Изобретение относится к составам стекол преимущественно для стеклосвязующих толстопленочных резистивных элементов и может быть использовано в электро-, радиотехнической, электронной и других смежных отраслях промышленности.

В последние годы большое внимание уделяется толстопленочным резистивным элементам, проводящая фаза которых представлена соединениями недрагоценных металлов. Применение таких резисторов позволяет снизить затраты при изготовлении схем.

Известны стекла, применяющиеся в качестве стеклосвязующего для резисторов на основе соединений недрагоценных металлов и являющиеся функциональными, то есть обеспечивающими образование проводящей фазы или некоторой ее части в процессе вжигания резистивных слоев. Применение функциональных стекол в качестве стеклосвязующего в резистивных композициях позволяет повысить однородность распределения фаз что резистивных элементах, улучшает электрофизические свойства получаемых толстопленочных резисторов. Однако ранее разработанные стекла либо не позволяют проводить вжигание резисторов на воздухе [1] либо обладают низкой влагостойкостью [2] что затрудняет и удорожает технологический процесс, а также не позволяет получить резисторы с минимальным сопротивления после воздействия влаги.

Указанная проблема может быть решена путем применения в качестве стеклосвязующего в резистивных композициях стекол, содержащих оксиды марганца, поскольку они имеют высокую влагостойкость и обладают поверхностной электронной проводимостью [3] что обуславливает их применение в качестве функциональных связующих для толстопленочных резистивных элементов.

Наиболее близким к предлагаемому изобретению по составу и технической сущности является стекло [4] содержащее (Mac.): 11.30 SiO₂, 3.24 B₂O₃, 20.67 PbO, 0.8.20 CuO, 0,2.24 MnO. Это стекло используют в качестве стеклосвязующего для получения низкоомных толстопленочных рутениевых резисторов. Однако применение его в качестве стеклосвязующего в резистивных композициях на основе соединений недрагоценных металлов невозможно из-за наличия в составе стекла PbO. Оксид свинца (II) проявляет высокую реакционную способность по отношению к проводящей материалу фазы недрагметальных резисторов, вследствие чего в процессе вжигания в резистивных композициях протекают неконтролируемые химические реакции. Это не позволяет резистивные элементы получать стабильными электрофизическими характеристиками.

ဖ

00

Целью изобретения является снижение реакционной способности стекла по отношению к проводящей фазе недрагметальных резисторов.

Указанная цель достигается тем, что стекло, включающее SiO_2 , MnO, B_2O_3 , CuO дополнительно содержит Al_2O_3 и V_2O_5 , при следующем соотношении компонентов (мас.): SiO_2 8.48

MnO 32.61 B₂O₃ 4.47 CuO 1.8 Al₂O₃ 7.21 V₂O₅ 1.8

Соотношение основных компонентов стекла (SiO₂, MnO, B₂O₃) выбиралось таким образом, чтобы обеспечивалась максимальная влагостойкость данного материала при относительно низкой температуре размягчения стекла и ТКЛР стекла, близком к ТКЛР керамической подложки.

При содержании SiO_2 в стекле менее 8 мас. влагостойкость ухудшается, а в стеклах, содержащих более 48 мас. SiO_2 эффект электронной поверхностной проводимости выражен слабо.

Превышение содержания MnO свыше 61 мас. ведет к тому, что стекла плохо провариваются из-за недостаточного содержания стеклообразователей.

При содержании B_2O_3 более 47 мас. в стеклах наблюдается ликвация, менее 4 мас. стекла теряют способность к пленкообразованию, что ухудшает качество резистивных слоев.

Введение Al_2O_3 повышает влагостойкость стекла, однако содержание Al_2O_3 более 21 мас. нежелательно с точки зрения увеличения тугоплавкости системы.

СиО и V_2O_5 вводили для регулирования сопротивления стекломатериала с целью получения номиналов резисторов в возможно широком диапазоне, а также для достижения оптимальных значений ТКС резисторов. Выбор пределов концентрации СиО обусловлен тем, что как при более низких, так и при более высоких значениях концентраций не достигается оптимального значения ТКС резисторов. Эффект от введения менее 1 мас. V_2O_5 незначителен, а при введении его более 8 мас. ТКС резисторов увеличивается.

Кроме того, введение в состав стекла дополнительно Al₂O₃ и V₂O₅ при указанном выше соотношении остальных компонентов способствует расширению стеклообразования исследуемой системы, сведений о чем ранее не имелось. Это позволяет получить стеклосвязующее для толстопленочных композиционных резистивных материалов, которое, в отличие от известных, инертно по отношению к фазе недрагметальных проводящей резистивных композиций, обладает высокой электропроводностью за счет значительного содержания МпО, имеет хорошую влагостойкость, обусловленную большим содержанием оксидов кремния и алюминия, при этом ТКЛР стекла близок к ТКЛР алюмооксидной керамики, а температура размягчения стекломатериала относительно невелика.

Изобретение поясняется конкретными примерами.

Стекла получали следующим образом. Порошки исходных химически чистых компонентов шихты высушивали, взвешивали в определенных количествах, соответствующих заданным составам стекол (табл. 1), тщательно перемешивали и сплавляли в корундизовых тиглях емкостью 100 мл в печи с карбидкремниевыми

U 2069198

нагревателями. Подъем температуры в печи осуществляли со скоростью 5. 10 °С/мин, при достижении температуры 1350.1450 °С расплав выдерживали в течение 30.45 минут. Расплав вырабатывали в виде образцов требуемой конфигурации, а также гранулировали в воду.

Гранулят стекол высушивали при 110.140 °C в течение 4.5 часов в сушильном шкафу и измельчали до удельной поверхности $600.1000 \, \text{м}^2/\text{кг}$ на планетарной мельнице в халцедоновом барабане.

Изготавливали резистивные композиции, содержащие в заданных соотношениях стеклопорошки и порошки полученные соединений недрагоценных металлов в Затем качестве приводящей фазы. приготовляли пасты для толстопленочных резисторов путем смешивания резистивных композиций с раствором этилцеллюлозы в терпинеоле на пастотерке. Соотношение порошка резистивной композиции и раствора этилцеллюлозы выбиралось таким образом, чтобы обеспечивалось высокое качество трафаретной печати.

Плотность стекол измеряли методом гидростатического взвешивания.

Температуру размягчения и ТКЛР стекол определяли методом дилатометрии по стандартной методике на дилатометре ДКВ-5A.

Гидролитический класс стекол определяли порошковым методом.

Тестовые образцы резисторов для измерения электрофизических параметров изготавливали на подложках из высокоглиноземистой керамики ВК-94. Резистивные элементы формировали из приготовленной пасты методом трафаретной

печати с последующей сушкой и вжиганием в конвейерной печи в воздушной атмосфере при температуре 720 850°C.

Качество толстых пленок оценивали визуально под микроскопом типа МБС-9.

Сопротивление полученных резисторов измеряли омметром E6-10.

Температурную зависимость сопротивления резисторов измеряли при помощи хромельалюмелевого термоэлектрического преобразователя, потенциометра КСП-4 и омметра E6-10.

Результаты испытаний показывают (табл. 2), что на основе стекла заявляемого состава, в отличие от стекла [4] можно получать резистивные пасты, не содержащие драгоценных металлов и обеспечивающие получение резистивных элементов со стабильными электрофизическими параметрами.

В результате улучшения характеристик толстопленочных резистивных элементов, не содержащих драгоценных металлов, обеспечивается повышение качества гибридных интегральных схем, и это дает основание ожидать существенный экономический эффект от их внедрения.

Формула изобретения:

Стекло, включающее SiO_2 , MnO, B_2O_3 , CuO, отличающееся тем, что дополнительно содержит Al_2O_3 и V_2O_5 при следующем соотношении компонентов, мас.

30 SiO₂ 8 48 MnO 32 61 B₂O₃ 4 47 CuO 1 8 Al₂O₃ 7 21 V₂O₅ 1 8

40

35

45

50

55

60

Составы стекол

Наименование оксида	Содержание оксида (мас. %) в стекле N									
	1	2	3	4	5	6	7			
\$102	48,0	9,1	24,6	17,3	12,9	4,2	7,1			
MnO	37,1	32,1	38,7	41,7	55,0	32,8	62,0			
B ₂ O ₃	4,0	35,3	12,3	11,8	6,1	48,0	13,7			
CuO	1,2	7.5	1,1	2,1	5,3	1,1	1,0			
Al ₂ O ₃	7,0	8,7	20,8	19,9	13,5	8,2	13,2			
V ₂ O ₅	2,7	7,3	2,5	7,2	7,2	5,7	3,0			

Примечание: стекло 6— ликвация; стекло 7— не проварилось.

 ${f Z}$

0 6 9

9 8 Таблица 2

Свойства стекол и резисторов на их основе

Наименование свойства	Значение свойств стекол и резисторов							
	1	2	3	4	5	[4]		
Плотность стекла, г/см ³	3,0	2,9	2,9	3,3	3,9	4,6		
Гидролитический класс стекла	11	ll.	l		l	l		
T нд стекла, °С	620	520	565	560	540	470		
ТКЛР · 10 ⁷ в интервале 20 — 600°C, К ⁻¹	52	87	71	76	80	69		
Качество резистивных пленок	удов.	удов.	хор.	хор.	хор.	пузыри		
Разброс номиналов сопротивле- ний резисторов, %	20	20	18	16	15	300		

Примечание: стекло 6— ликвация; стекло 7— не проварилось.