Gli oscilloscopi analogici

- Struttura generale
- Modi operativi
- Trigger
- Doppia traccia

Testi consigliati

- C. Offelli Strumentazione elettronica Edizioni Libreria Progetto - Padova - 1991
- G. Costanzini, U. Garnelli Strumentazione e misure elettroniche - Zanichelli - Bologna
- C. Offelli, D. Petri Lezioni di strumentazione elettronica - CittàStudiEdizioni - Milano - 1994

- Strumento dotato di uno schermo su cui un punto luminoso può essere spostato variando le sue coordinate X ed Y tramite due tensioni V_x e V_y
- Una volta illuminato un punto, la luminosità permane per un certo periodo (persistenza), per cui facendo muovere il punto 'velocemente' l'oscilloscopio mostra delle 'linee' o 'tracce'

Modi operativi:

1) curva parametrica: date due generiche tensioni $V_x(t)$ e $V_y(t)$ sullo schermo appare la curva parametrica:

$$\begin{cases} X = V_{x}(t) \\ Y = V_{y}(t) \end{cases}$$

L'oscilloscopio è utilizzato in modalità

XY

Modalità XY

Modi operativi:

2) andamento nel tempo di una tensione $V_y(t)$. La tensione $V_x(t)$ (normalmente generata *all'interno* dell'oscilloscopio) è proporzionale al tempo, sullo schermo si ottiene:

$$\begin{cases} X = V_{x}(t) = k \cdot t \\ Y = V_{y}(t) \end{cases} \Rightarrow Y = V_{y}\left(\frac{X}{k}\right)$$

Funzionamento dell'oscilloscopio in base dei tempi

Modalità base dei tempi

 Vi è anche la possibilità di intervenire con una modulazione sull'intensità del fascio elettronico ("tutto o niente")

si agisce sull'asse z

- Due blocchi di comandi:
- Asse verticale
 - Sensibilità
 - Posizione
- Asse orizzontale
 - Velocità di scansione
 - Posizione

Asse verticale Attenuatore calibrato

- Consente di variare il fattore di deflessione verticale (V/div) a scatti ed in modo continuo
- Scatti TARATI in progressione 1-2-5 (esempio: 10mV/div, 20mV/div, 50mV/div 1V/div, 2V/div, 5V/div)
- Regolazione continua del fattore di defl. CON PERDITA DELLA CONOSCENZA del FATTORE DI SCALA ('uncal')

Asse verticale

- parametri principali
 - banda passante a -3dB
 - tempo di risposta (o salita)Ts=0.35/Banda
 - sensibilità (V/div) (fino a 100nV/div) con incertezza qualche %
 - impedenza di ingresso tipica 1MΩ//10pF con incerteza qualche % ed alcuni pF

Asse orizzontale Regolatore Tarato

- Consente di variare la velocità di scansione (s/div) a scatti ed in modo continuo
- Scatti TARATI in progressione 1-2-5 (esempio: 10ms/div, 20ms/div, 50ms/div 1s/div, 2s/div, 5s/div)
- Regolazione continua della vel. di scansione CON PERDITA DELLA CONOSCENZA della VELOCITA' di SCANSIONE('uncal')

Asse orizzontale

- Velocità di scansione
 - minima velocità di scansione 0
 - massima velocità 10ns/div
 - incertezza della velocità di scansione (qualche percento)

Problema della Sincronizzazione

- La traccia rimane visualizzata solo per pochi secondi
- Per continuare a vedere la traccia si deve ripetere continuamente la visualizzazione (SPAZZOLATA)

Sincronizzazione

 Se la spazzolata inizia in un istante casuale si hanno sullo schermo tracce diverse ogni volta

Sincronizzazione

Per avere una traccia 'stabile' in molti casi è sufficiente che il pennello elettronico parta quando il segnale da visualizzare:

- assume un valore prefissato
- ha la derivata di un determinato segno (pendenza)

Si deve generare un impulso di trigger che comanda l'inizio della visualizzazione

Sincronizzazione

porzione di traccia visualizzata = $0.75 T_y$

Tipi di trigger

- INT ricavato dal segnale inviato all'asse y (lucido precedente)
- EXT ricavato da un generico segnale fornito dall'esterno
- LINE ottenuto dall'alimentazione di rete

Problema...

Se il segnale non soddisfa mai le condizioni di trigger lo schermo rimane 'buio' e non si hanno informazioni su cosa stia succedendo.

Soluzione...

Auto trigger

Si usa il comando 'GATE'

gate: NORMAL

- La traccia parte quando arriva l'impulso di trigger
- Nessun impulso ⇒ nessuna traccia (schermo nero)

gate: AUTO

• La traccia parte se:

- arriva un impulso di trigger: la traccia parte regolarmente
- è trascorso un certo tempo dall'ultima visualizzazione la traccia parte SENZA sincronizzazione

gate: SINGLE

 detto anche one-shot o single-sweep

 ogni singola spazzolata deve essere abilitata mediante un comando esterno (tasto o segnale)

Problema con segnali a 'punto di trigger multiplo'

Soluzione: Hold Off

Introduce un tempo dopo la visualizzazione in cui il trigger è 'accecato' e non fa partire la traccia.

Viene indicato in frazione dell'intervallo visualizzato

Si vuole una doppia (quadrupla) traccia

- si hanno due (quattro) canali di ingresso (A e B, C e D)
- Due soluzioni:
 - si costruisce un oscilloscopio con possibilità di disegnare CONTEMPORANEAMENTE due tracce
 - Si usa lo stesso punto luminoso per le due (quattro) tracce

Con un unico punto luminoso:

- Si disegnano le tracce in modo alternato (ALTERNATE)
- Si disegnano le tracce insieme 'saltando' da una traccia all'altra (CHOPPED)

ALTERNATE

- una spazzolata: con il segnale A
- una spazzolata con il segnale B

Quando partono le tracce ?

ALTERNATE

 Primo caso: gli impulsi di sincronismo sono ricavati da uno solo dei due canali

esempio

- sincronismo canale A
- SE le tracce sono sincronizzate è conservata la relazione di fase

ALTERNATE

ALTERNATE

 Secondo caso: gli impulsi di trigger sono ottenuti alternativamente da entrambi i canali

 le tracce sono sincronizzate, ma si è persa la relazione di fase

CHOPPED

- sono visualizzate alternativamente piccolissime porzioni dei due segnali
- il segnale di trigger dipende da un unico canale (A o B)
- è conservata la relazione di fase
- non è garantito il sincronismo di entrambe le tracce

CHOPPED

si ha spegnimento del fascetto elettronico durante la commutazione fra i segnali

Stadio di ingresso

