In [56]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [57]:

```
1 df = pd.read_csv('Salaries_and_Benefits_by_Job_Title.csv')
```

In [58]:

1 df.head(10)

Out[58]:

	Year	Department	Job Code	Wages	Overtime	Fixed Benefits	Variable Benefits	Total	ObjectId
0	16	Parks & Community Services	AMG605 - Office Asst - PBM	3941.08	NaN	NaN	449.57	4390.65	1
1	17	Parks & Community Services	AMG605 - Office Asst - PBM	5891.99	NaN	NaN	537.20	6429.19	2
2	18	Parks & Community Services	AMG605 - Office Asst - PBM	5103.08	NaN	NaN	449.30	5552.38	3
3	14	Parks & Community Services	AMG605 - Office Asst - PBM	10426.25	NaN	NaN	1205.97	11632.22	4
4	15	Parks & Community Services	AMG605 - Office Asst - PBM	24947.10	NaN	NaN	2802.44	27749.54	5
5	16	Parks & Community Services	AMG605 - Office Asst - PBM	13880.15	330.25	NaN	1585.59	15795.99	6
6	16	Parks & Community Services	AMG605 - Office Asst - PBM	408.38	NaN	NaN	46.82	455.20	7
7	14	Parks & Community Services	AMG605 - Office Asst - PBM	6683.04	NaN	NaN	791.34	7474.38	8
8	15	Parks & Community Services	AMG605 - Office Asst - PBM	603.49	NaN	NaN	69.98	673.47	9
9	16	Parks & Community Services	AMG605 - Office Asst - PBM	3315.25	NaN	NaN	386.38	3701.63	10

In [59]:

1 df.shape

Out[59]:

(17061, 9)

```
In [60]:
```

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17061 entries, 0 to 17060
Data columns (total 9 columns):
    Column
                        Non-Null Count Dtype
    -----
_ _ _
                        -----
                                        ----
0
    Year
                        17061 non-null object
 1
    Department
                        17059 non-null object
 2
    Job Code
                       17059 non-null object
 3
                       17051 non-null float64
    Wages
 4
    Overtime
                        5822 non-null
                                        float64
 5
    Fixed Benefits
                        13220 non-null float64
 6
    Variable Benefits 17058 non-null float64
 7
    Total
                        17061 non-null float64
                        17061 non-null int64
 8
    ObjectId
dtypes: float64(5), int64(1), object(3)
memory usage: 1.2+ MB
In [61]:
   df.columns
 1
 2
Out[61]:
Index(['Year', 'Department', 'Job Code', 'Wages', 'Overtime', 'Fixed Bene
fits',
       'Variable Benefits', 'Total', 'ObjectId'],
      dtype='object')
In [62]:
    #Checking for null values
   df.isna().sum()/len(df)*100
Out[62]:
Year
                      0.000000
Department
                      0.011723
Job Code
                      0.011723
Wages
                      0.058613
Overtime
                     65.875388
Fixed Benefits
                     22.513335
Variable Benefits
                     0.017584
Total
                      0.000000
```

Cleaning the data

ObjectId

dtype: float64

0.000000

In [63]:

```
# Replacing Nan values with zeros

df = df.fillna(0)

#Checking Null values in the data set filling them with zero

missing = df.isna().sum()/len(df)*100

print(missing)
```

```
0.0
Year
Department
                      0.0
Job Code
                      0.0
                      0.0
Wages
Overtime
                      0.0
Fixed Benefits
                      0.0
Variable Benefits
                      0.0
Total
                      0.0
ObjectId
                      0.0
dtype: float64
```

In [64]:

```
# Checking the duplicate values in the dataset

duplicate = df.duplicated().sum()
print(f'There are {duplicate} values in the data set; we will remove them.')
```

There are 0 values in the data set; we will remove them.

In [65]:

```
#Coverting Year and datetime

df.fillna(0, inplace=True)

df = df[df['Year'] != 'GRAND TOTAL']

#Converting Year to datetime
df['Year'] = pd.to_datetime(df['Year'], format='%y')
```

In [66]:

```
1 #Dropping unnecesssary tables
2
3 df.drop('ObjectId', axis=1, inplace=True)
```

In [67]:

1 df.describe()

Out[67]:

	Wages	Overtime	Fixed Benefits	Variable Benefits	Total
count	17060.000000	17060.000000	17060.000000	17060.000000	17060.000000
mean	53302.911835	2774.128028	8952.195555	9921.904735	74951.140152
std	45716.315837	7344.560637	7593.812323	8482.791280	63715.445536
min	-10196.860000	-993.240000	-14318.710000	-570.060000	-19061.650000
25%	7599.760000	0.000000	1.577500	1465.520000	10160.372500
50%	52356.670000	0.000000	11201.400000	9580.790000	75959.800000
75%	92012.095000	766.167500	16837.395000	16791.315000	129080.477500
max	327212.890000	91382.760000	30023.230000	52370.630000	395086.700000

In [68]:

```
df['Total Wages'] = df['Wages'] + df['Overtime'] + df['Fixed Benefits'] + df['Varia
df.head(10)
```

Out[68]:

	Year	Department	Job Code	Wages	Overtime	Fixed Benefits	Variable Benefits	Total	Total Wages
0	2016- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	3941.08	0.00	0.0	449.57	4390.65	4390.65
1	2017- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	5891.99	0.00	0.0	537.20	6429.19	6429.19
2	2018- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	5103.08	0.00	0.0	449.30	5552.38	5552.38
3	2014- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	10426.25	0.00	0.0	1205.97	11632.22	11632.22
4	2015- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	24947.10	0.00	0.0	2802.44	27749.54	27749.54
5	2016- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	13880.15	330.25	0.0	1585.59	15795.99	15795.99
6	2016- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	408.38	0.00	0.0	46.82	455.20	455.20
7	2014- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	6683.04	0.00	0.0	791.34	7474.38	7474.38
8	2015- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	603.49	0.00	0.0	69.98	673.47	673.47
9	2016- 01-01	Parks & Community Services	AMG605 - Office Asst - PBM	3315.25	0.00	0.0	386.38	3701.63	3701.63

Top 5 Department Wages

In [69]:

```
department_wages = df.groupby('Department')['Total Wages'].sum()
print("Top 5 Department by Total Wages:")
print(department_wages.head().to_string())
```

```
Top 5 Department by Total Wages: Department
```

0	-87.69
All Depts	5089.70
City Attorney	27731982.45
City Clerk	13233865.89
City Council	2501277.44

Data Visualizations

Total Wages by Department

In [70]:

```
plt.figure(figsize=(14,8))
department_wages.sort_values(ascending=False).plot(kind='bar')
plt.title('Total Wages by Department')
plt.xlabel('Department')
plt.ylabel('Total Wages')
plt.xticks(rotation=45)

plt.show()
```


In [71]:

```
plt.figure(figsize=(10,6))

df.groupby('Year')['Total Wages'].mean().plot(kind='bar')

plt.title('Average Wages Over the Years')

plt.ylabel('Average Wages')

plt.xlabel('Year')

plt.show()
```


In [72]:

```
plt.figure(figsize=(10,4))
sns.heatmap(df.corr(), annot=True, cmap='BuPu', fmt='.2f', linewidths=1)
plt.show()
```


The top 5 Departments with the highest wages are namely:

Fire Police Parks & Community Services Utilities Transportation

Model Building

In [73]:

```
1 from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import StandardScaler
 3
   from sklearn.linear_model import LogisticRegression
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.neighbors import KNeighborsClassifier
   from xgboost import XGBClassifier
7
8
   from sklearn.metrics import accuracy_score
9
10
   import warnings
   warnings.filterwarnings('ignore')
11
```

In [79]:

```
from sklearn.preprocessing import LabelEncoder
 2
 3 df.fillna(0, inplace=True)
4 df['Total Wages'] = df['Wages'] + df['Overtime'] + df['Fixed Benefits'] + df['Vari
   df = df[df['Year'] != 'GRAND TOTAL']
   X = df.drop(['Year', 'Department', 'Job Code', 'Total'], axis=1)
   y =df['Department']
 7
9
   # Cleaning 'Department' column by stripping whitespace
   df['Department'] = df['Department'].str.strip()
10
11
   # Checking unique values in 'Department'
12
   unique_departments = df['Department'].unique()
13
   print(unique_departments)
15
16 # Encode the target variable using LabelEncoder
   label_encoder = LabelEncoder()
17
   y_encoded = label_encoder.fit_transform(df['Department'])
19
20 X = df.drop(['Year', 'Department', 'Job Code', 'Total'], axis=1)
21 y = y_{encoded}
22 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_star
```

['Parks & Community Services' 'Finance & Asset Management'

- 'Transportation' 'Community Development' 'City Attorney' 'Utilities'
- 'Development Services' 'Fire' 'City Clerk' 'Information Technology'
- 'City Manager' 'Human Resources' 'Miscellaneous Non-Departmental'
- 'Police' 'City Council' 'All Depts' nan]

In [80]:

```
#Scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

MODELING

In [81]:

```
1
   models = {
 2
        'Logistic Regression': LogisticRegression(),
 3
        'Decision Tree': DecisionTreeClassifier(),
 4
        'Random Forest': RandomForestClassifier(),
 5
        'K Neighbors': KNeighborsClassifier(),
        'XGBoost': XGBClassifier(),
 6
 7
    }
 8
 9
10
   results = {}
11
   for name, model in models.items():
12
13
        model.fit(X_train_scaled, y_train)
        y_pred = model.predict(X_test_scaled)
14
15
        accuracy = accuracy_score(y_test, y_pred)
        results[name] = accuracy
16
```

In [82]:

```
plt.figure(figsize=(10, 6))
sns.barplot(x=list(results.values()), y=list(results.keys()), palette='viridis')
plt.xlabel('Accuracy')
plt.ylabel('Model')
plt.title('Model Accuracy Comparison')
plt.savefig('Model Accuracy Comparison.png')
plt.show()
```


In []:

1