

MCSC-202

Rohit Raj Karki

 $\begin{array}{c} \text{CE-2020(21)} \\ \text{Kathmandu University} \end{array}$

1. Compute and find the absolute, relative and percentage errors.:

i) 1.3254 + 0.56 + 27.2879604 + 0.0375

Solution:

Exact Value = 29.2108604
Approximate Value = 29.12
Absolute Error =
$$|x - x_1|$$
= $|29.2108604 - 29.12|$
= 0.0008608
Relative Error = $\frac{\text{Absolute Error}}{x}$
= $\frac{0.0008608}{29.2108604}$
= 0.000294
Percentage Error = $E_R * 100\%$
= 0.00294%

ii) 4.6 * 0.128 **Solution:**

Exact Value =
$$0.5888$$
Approximate Value = 0.59
Absolute Error = $|x - x_1|$
= $|0.5888 - 0.59|$
= 0.0012
Relative Error = $\frac{\text{Absolute Error}}{x}$
= $\frac{0.0012}{0.5888}$
= 0.002038
Percentage Error = $E_R * 100\%$
= 0.2038%

iii) $\frac{0.995*1.53}{1.592}$ **Solution:**

Exact Value =
$$0.95625$$

Approximate Value = $\frac{0.995 * 1.53}{1.592} = \frac{1.52235}{1.592} = \frac{1.522}{1.592} = 0.9560301508 = 0.9560$
Absolute Error = $|x - x_1|$
= $|0.95625 - 0.9560|$
= 0.00025
Relative Error = $\frac{\text{Absolute Error}}{x}$
= $\frac{0.00025}{0.95625}$
= 0.0002614
Percentage Error = $E_R * 100\%$
= 0.02614%

Exact Value =
$$0.003531125 = 0.003531$$
Approximate Value = 0.0036
Absolute Error = $|x - x_1|$
= $|0.003531 - 0.0036|$
= 0.000069
Relative Error = $\frac{\text{Absolute Error}}{x}$
= $\frac{0.000069}{0.003531}$
= 0.01954
Percentage Error = $E_R * 100\%$
= 1.95%

2.Compute the maximum absolute and relative error in $u = \frac{5x^3y^2}{z^5}$ when x = 3.25, y = 45.129 and z = 0.577.

Solution:

$$u = \frac{5x^3y^2}{z^5}$$

$$u = \frac{5*(3.25)^3*(45.929)^2}{0.577^5}$$

$$= 5465783.71$$

$$\delta u_{max} = ?$$

$$\frac{\partial u}{\partial x} = \frac{15x^2y^2}{z^5} = \frac{15*(3.25)^2*(45.929)^2}{0.577^5} = 5045338.809$$

$$\frac{\partial u}{\partial y} = \frac{10x^3y}{z^5} = \frac{10*(3.25)^3*(45.929)}{0.577^5} = 242229.3297$$

$$\frac{\partial u}{\partial z} = \frac{-25x^3y^2}{z^6} = \frac{-25*(3.25)^3*(45.929)^2}{0.577^6} = -47363810.31$$

$$\delta x = \delta y = \delta z = 0.0005$$

$$\begin{split} \delta u &= |\frac{\partial u}{\partial x} \delta x| + |\frac{\partial u}{\partial y} \delta y| + |\frac{\partial u}{\partial z} \delta z| \\ &= |5045338.809*0.0005| + |242229.3297*0.0005| + |-47363810.31*0.0005| \\ &= 26325.68922 \end{split}$$

Relative Error =
$$\frac{\delta u}{u} = \frac{26325.68922}{5465783.71}$$

= 0.004816

3. Calculate a real root correct to four significant figures of the following equations:

a)Bisection method:

$$i)x^3 - 4x - 9 = 0, (2,3)$$

Solution: $f(x) = x^3 - 4x - 9 = 0$

Tolerance = 4 decimal places

 $\epsilon = 1/2 * 10 - 4 = 0.0005$

	6()	6(1) . 0(.)	I		
	f(a) < 0(-)	f(b) > 0(+)			
n	b	b	X	f(x)	Remarks
1	2.5	3	2.5	-3.375	f(x) < 0
2	2.5	3	2.75	0.79688	f(x) > 0
3	2.625	2.75	2.625	-1.4121	f(x) < 0
4	2.6875	2.75	2.6875	-0.33911	f(x) < 0
5	2.6875	2.75	2.7188	0.22092	f(x) > 0
6	2.7031	2.7188	2.7031	-0.061077	f(x) < 0
7	2.7031	2.7188	2.7109	0.079423	f(x) > 0
8	2.7031	2.7109	2.707	0.0090492	f(x) > 0
9	2.7051	2.707	2.7051	-0.026045	f(x) < 0
10	2.7061	2.707	2.7061	-0.0085056	f(x) < 0
11	2.7061	2.707	2.7065	0.0002699	f(x) > 0
12	2.7063	2.7065	2.7063	-0.0041183	f(x) < 0
13	2.7064	2.7065	2.7064	-0.0019243	f(x) < 0
14	2.7065	2.7065	2.7065	-0.00082725	f(x) < 0

ii)
$$2x\cos(2x) - (x+1)2 = 0, (-3, -2)$$

Solution:
$$f(x) = 2x\cos(2x) - (x+1)2 = 0, (-3, -2)$$

Tolerance = 4 decimal places

 $\epsilon = 1/2 * 10 - 4 = 0.0005$

	f(a) < 0(-)	f(b) > 0(+)			
n	b	b	X	f(x)	Remarks
1	-3	-2	-2.5	-3.6683	f(x) < 0
2	-2.5	-2	-2.25	-0.61392	f(x) < 0
3	-2.25	-2	-2.125	0.63025	f(x) > 0
4	-2.25	-2.125	-2.1875	0.038076	f(x) > 0
5	-2.25	-2.1875	-2.2188	-0.28084	f(x) < 0
6	-2.2188	-2.1875	-2.2031	-0.11956	f(x) < 0
7	-2.2031	-2.1875	-2.1953	-0.040279	f(x) < 0
8	-2.1953	-2.1875	-2.1914	-0.00098519	f(x) < 0
9	-2.1914	-2.1875	-2.1895	0.018574	f(x) > 0
10	-2.1914	-2.1895	-2.1904	0.0088019	f(x) > 0

b)False Position:

i)
$$xlog_{10}x - 1.2 = 0, (2,3)$$

Solution:

$$f(2) = xlog_{10}x - 1.2 = 0$$

$$= 2 * log_{10} * 2 - 1.2$$

$$= -0.597 < 0$$

$$f(3) = xlog_{10}x - 1.2$$

$$= 3 * log_{10} * 3 - 1.2$$

$$= 0.23136 > 0$$

Tolerance = 4 decimal places $\epsilon = 1/2*10^{-4} = 0.0005$

a(-)	b(+)	f(a)	f(b)	c	f(c)
				$c = \frac{af(b) - bf(a)}{f(b) - f(a)}$	
2	3	-0.59794	0.23136	2.72102	-0.01709
2.72102	3	-0.01709	0.23136	2.74021	-0.00038
2.74021	3	-0.00038	0.23136	2.74063	-0.000014
2.74063	3	-0.000014	0.23136	2.74064	-0.000005

...The required root is 2.74064.

ii) $x^3 - 4x - 9 = 0, (2,3)$

Solution:

$$f(2) = x^{3} - 4x - 9 = 0$$

$$= 2^{3} - 4 * 2 - 9$$

$$= < 0$$

$$f(3) = x^{3} - 4x - 9$$

$$= 3^{3} - 4 * 3 - 9$$

$$= > 0$$

n	a(-)	b(+)	c	f(a)	f(b)	f(c)
			$c = \frac{af(b) - bf(a)}{f(b) - f(a)}$			
1	2	3	2.6	-9	6	-1.824
2	2.6	3	2.84	-1.824	6	2.5463
3	2.6	2.84	2.656	-1.824	2.5463	-0.88853
4	2.656	2.84	2.7328	-0.88853	2.5463	0.47726
5	2.656	2.7328	2.6758	-0.88853	0.47726	-0.54435
6	2.6758	2.7328	2.7129	-0.54435	0.47726	0.11428
7	2.6758	2.7129	2.6956	-0.54435	0.11428	-0.19617
8	2.6956	2.7129	2.7099	-0.19617	0.11428	0.060066
9	2.6956	2.7099	2.7046	-0.19617	0.060066	-0.034645
10	2.7046	2.7099	2.7086	-0.034645	0.060066	0.037824
11	2.7046	2.7086	2.7061	-0.034645	0.037824	-0.0081667
12	2.7061	2.7086	2.7073	-0.0081667	0.037824	0.013806
13	2.7061	2.7073	2.7063	-0.0081667	0.013806	-0.0042666
14	2.7063	2.7073	2.7067	-0.0042666	0.013806	0.0024487
15	2.7063	2.7067	2.7064	-0.0042666	0.0024487	-0.0026815

d) Newton-Raphson: i) $e^x - \cot x = 0, x_0 = 0.8$

Solution: a = 0.8

$$f(a) = e^{x} - \cot x$$

$$= e^{0.8} - \cot(0.8)$$

$$= 1.2543$$

$$f'(a) = e^{x} + (\csc(x))^{2}$$

$$= e^{0.8} + (\csc(0.8))^{2}$$

$$= 4.1688$$

a	f(a)	f'(a)	c	f(c)
0.8	1.2543	4.1688	0.49912	-0.18711
0.49912	-0.18708	6.0121	0.53023	-0.00650
0.53023	-0.0064888	5.6091	0.53139	-0.000004

ii)
$$1.05 - 1.04x + lnx = 0, x_0 = -1$$

Solution: a = -1

$$f(a) = 1.05 - 1.04x + lnx$$

$$= 1.05 - 1.04 * -1 + ln(-1)$$

$$= Undefined$$

$$f'(a) = -1.04 + \frac{1}{x}$$

$$= -2.04$$

There is no solution.

e)Fixed point iteration:

i)
$$xe^x = 1, x0 = 1$$

Solution:

$$f(x)xe^x - 1$$

$$x = \frac{1}{e^x}$$
 we choose
$$g(x) = \frac{1}{e^x}$$

X	g(x)
1	0.367879
0.367879	0.692201
0.692201	0.500474
0.500474	0.606244
0.606244	0.545396
0.545396	0.579612
0.579612	0.560115
0.560115	0.571143
0.571143	0.564879
0.564879	0.568429
0.568429	0.566415
0.566415	0.567557
0.567557	0.566909
0.566909	0.567276
0.567276	0.567068
0.567068	0.567186
0.567186	0.567119

 \therefore The required root is 0.5671.

ii)
$$cos x = 3x - 1, x_0 = 2$$
 Solution:

$$x = \frac{\cos x + 1}{3}$$
If $g(x) = \frac{\cos x + 1}{3}$

$$g'(x) = \frac{-1}{3}\sin x < 1$$

$$x = \cos^{-1}(3x - 1)$$

$$x = \cos^{-1}(3x - 1)$$
If $g(x) = \cos^{-1}(3x - 1)$

$$g'(x) = \frac{-1}{\sqrt{1 - (3x - 1)^2}} * 3$$

$$= \frac{-3}{\sqrt{6x - 9x^2}}$$

So we consider, $g(x) = \frac{\cos x + 1}{3}$

X	g(x)
2	0.194618
0.194618	0.660374
0.660374	0.596588
0.596588	0.609086
0.609086	0.606724
0.606724	0.607173
0.607173	0.607088
0.607088	0.607104
0.607104	0.607101
0.607101	0.607102
0.607102	0.607102

4. Use the Newton method and Generalized newton method to obtain a real root of the equation (x+2)3(x-2)=0 correct to 0.0001 with initial guess $x_0=3$. Solution:

a	f(a)	f'(a)	c
3	125	200	2.375
2.375	31.403	105.27	2.0767
2.0767	5.197	71.577	2.0041
2.0041	0.2631	64.394	2
2	0.00080294	64.001	2

$$x = 2.00000$$

5. Solve the following systems of nonlinear equations using Newton-Raphson method accurate to 3 decimal places:

i)
$$x^2 + 4y^2 - 16 = 0$$
, $xy^2 - 4 = 0$, $x_0 = y_0 = 1.5$ **Solution:**

$$f(x,y) = x^{2} + 4y^{2} - 16$$
$$g(x,y) = xy^{2} - 4$$

Then,

$$\frac{\partial f}{\partial x} = 2x$$
$$\frac{\partial f}{\partial y} = 8y$$
$$\frac{\partial g}{\partial x} = y^2$$
$$\frac{\partial g}{\partial y} = 2xy$$

X	у	f	g	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$	$\frac{\partial g}{\partial x}$	$rac{\partial g}{\partial y}$	D	D_1
1.5	1.5	-4.75	-0.625	3	12	2.25	4.5	-13.5	13.875
0.472222	2.15278	2.7608	-1.81151	0.944444	17.2222	4.63445	2.03318	-77.8953	-36.8114
0.944797	1.96656	0.362039	-0.346138	1.88959	15.7325	3.86735	3.716	-53.8212	-6.79094
1.07097	1.92839	0.0217473	-0.0173808	2.14195	15.4271	3.71869	4.13051	-48.5214	-0.357963
1.07835	1.92596	7.81236e-05	-6.2866e-05	2.1567	15.4077	3.70931	4.15371	-48.1934	-0.00129312
1.07838	1.92595	1.03156e-09	-8.28222e-10	2.15676	15.4076	3.70928	4.1538	-48.1922	-1.70458e-08

D_2	nx	ny
-8.8125	0.472222	2.15278
14.5057	0.944797	1.96656
2.05419	1.07097	1.92839
0.1181	1.07835	1.92596
0.000425368	1.07838	1.92595
5.61262e-09	1.07838	1.92595

6. Solve the following system of equations using iteration method correct to 3 significant figures.

i)
$$x^2 - 2x - y + 0.5 = 0$$
, $x^2 + 4y^2 - 4 = 0$, $x_0 = 0$, $y_0 = 1$
Solution:

$$f(x,y) = x^2 - 2x - y + 0.5$$

$$g(x,y) = x^2 + 4y^2 - 4$$

$$x = \frac{x^2 - y + 0.5}{2}$$

$$y = \frac{4 - x^2}{4}$$

$$F(x,y) = \frac{x^2 - y + 0.5}{2}$$

$$G(x,y) = \sqrt{\frac{4 - x^2}{4}} = \frac{1}{2}(4 - x^2)^1/2$$

$$\frac{\partial F}{\partial x} = x$$

$$\frac{\partial F}{\partial y} = -0.5$$

$$\frac{\partial G}{\partial y} = \frac{x}{2\sqrt{4 - x^2}}$$

$$\frac{\partial G}{\partial y} = 0$$

At (0,1)

$$\begin{split} |\frac{\partial F}{\partial x}| + |\frac{\partial F}{\partial y}| &< 1 \\ |\frac{\partial G}{\partial x}| + |\frac{\partial G}{\partial y}| &< 1 \end{split}$$

So, Now,

X	у	F(x,y)	G(x,y)
0	1	-0.25	1
-0.25	1	-0.21875	0.9921
-0.2187	0.9921	-0.2221	0.9940
-0.2221	0.9940	-0.2223	0.9938
-0.2223	0.9938	-0.2222	0.9938
-0.2222	0.9938	-0.2222	0.9938

$$x = -0.2222$$

 $y = 0.9938$

ii)
$$x^2 + y^2 + z^2 + 10x - 4 = 0$$
, $x^2 - y^2 + z^2 + 10y - 5 = 0$, $x^2 + y^2 - z^2 + 10z - 6 = 0$ Solution:

$$f(x,y,z) = x^2 + y^2 + z^2 + 10x - 4 = 0$$

$$g(x,y,z) = x^2 - y^2 + z^2 + 10y - 5 = 0$$

$$h(x,y,z) = x^2 + y^2 - z^2 + 10z - 6 = 0$$

$$x = F(x,y,z) = \frac{4 - x^2 - y^2 - z^2}{10}$$

$$y = G(x,y,z) = \frac{5 - x^2 + y^2 - z^2}{10}$$

$$z = H(x,y,z) = \frac{6 - x^2 - y^2 + z^2}{10}$$

$$\begin{split} \frac{\partial F}{\partial x} &= -0.2x & \frac{\partial F}{\partial y} &= -0.2y \\ \frac{\partial F}{\partial z} &= -0.2z & \frac{\partial G}{\partial x} &= -0.2x \\ \frac{\partial G}{\partial y} &= 0.2y & \frac{\partial G}{\partial z} &= 0.2z \\ \frac{\partial H}{\partial x} &= -0.2x & \frac{\partial H}{\partial y} &= -0.2y \\ \end{split}$$

At (0,1)

$$\begin{split} &|\frac{\partial F}{\partial x}| + |\frac{\partial F}{\partial y}| + |\frac{\partial F}{\partial z}| < 1 \\ &|\frac{\partial G}{\partial x}| + |\frac{\partial G}{\partial y}| + |\frac{\partial G}{\partial z}| < 1 \\ &|\frac{\partial H}{\partial x}| + |\frac{\partial H}{\partial y}| + |\frac{\partial H}{\partial z}| < 1 \end{split}$$

X	у	Z	F(x,y)	G(x,y)	Н
0	0	0	0.4	0.5	0.6
0.4	0.5	0.6	0.323	0.473	0.595
0.323	0.473	0.595	0.331792	0.476537	0.602597
0.331792	0.476537	0.602597	0.32997	0.475388	0.602595
0.32997	0.475388	0.602595	0.330201	0.475399	0.602825
0.330201	0.475399	0.602825	0.330157	0.475357	0.602836

$$x = 0.330201$$

 $y = 0.475399$
 $z = 0.602825$

7. Solve the following systems using LU decomposition method taking $l_{ii}=1$

$$x + 2y + 3z = 14$$

 $2x + 20y + 26z = 120$
 $3x + 26y + 70z = 265$

Solution:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 20 & 26 \\ 3 & 26 & 70 \end{bmatrix} B = \begin{bmatrix} 14 \\ 120 \\ 265 \end{bmatrix}$$

Then A = LU

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 20 & 26 \\ 3 & 26 & 70 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ L_{21} & L_{21}U_{21} + U_{22} & L_{21}U_{13} + U_{23} \\ L_{31}U_{11} & L_{31}U_{12} + L_{32}U_{22} & L_{31}U_{13} + L_{32}U_{23} + U_{33} \end{bmatrix}$$

$$U_{11} = 1$$
 $U_{12} = 2$ $U_{13} = 3$ $U_{21} = 2$ $U_{31} = \frac{3}{U_{11}} = \frac{3}{1} = 3$

2nd row,

$$U_{22} = a_{22} - L_{21}U_{12}$$

$$= 20 - 2 * 2$$

$$= 16$$

$$U_{23} = a_{23} - L_{21}U_{13}$$

$$= 26 - 2 * 3$$

$$= 20$$

2nd col,

$$U_{22}L_{32} = a_{32} - L_{31}U_{12}$$
$$= \frac{26 - 3 * 2}{16}$$
$$L_{32} = 5/4$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & \frac{5}{4} & 1 \end{bmatrix} U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 16 & 20 \\ 0 & 0 & 36 \end{bmatrix}$$

Now,

$$L\vec{Y} = \vec{B}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & \frac{5}{4} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 14 \\ 120 \\ 265 \end{bmatrix}$$

$$y_1 = 14$$
$$y_2 = 92$$
$$y_3 = 108$$

Then

$$L\vec{Y} = \vec{B}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 16 & 20 \\ 0 & 0 & 36 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 14 \\ 120 \\ 265 \end{bmatrix}$$

$$x = 1$$
$$y = 2$$
$$z = 3$$

8. Solve the following systems using LU decomposition method taking $u_{ii}=1$.

$$4x + 8y + 4z = 28$$

 $x + 5y + 4z$ - $3w = 13$
 $x + 4y + 7z + 2w = 23$
 $x + 3y$ - $2w = 4$

Solution:

$$A = \begin{bmatrix} 4 & 8 & 4 & 0 \\ 1 & 5 & 4 & -3 \\ 1 & 4 & 7 & 2 \\ 1 & 3 & 0 & -2 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} B = \begin{bmatrix} 28 \\ 13 \\ 23 \\ 4 \end{bmatrix}$$

If A = LU

Then equation 1 becomes

$$LU\vec{X} = \vec{B}$$

If we set

$$U\vec{X} = \vec{Y} \tag{1}$$

$$L\vec{Y} = \vec{B} \tag{2}$$

$$\begin{bmatrix} 4 & 8 & 4 & 0 \\ 1 & 5 & 4 & -3 \\ 1 & 4 & 7 & 2 \\ 1 & 3 & 0 & -2 \end{bmatrix}$$

$$R_1 \rightarrow R_1 * 1/4$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 5 & 4 & -3 \\ 1 & 4 & 7 & 2 \\ 1 & 3 & 0 & -2 \end{bmatrix}$$

$$R_2 = R_2 - R_1, R_3 = R_3 - R_1, R_4 \rightarrow R_4 - R_1$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 3 & 3 & -3 \\ 0 & 2 & 6 & 2 \\ 0 & 1 & -1 & -2 \end{bmatrix}$$

$$R_2 \rightarrow R_2 * 1/3$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 2 & 6 & 2 \\ 0 & 1 & -1 & -2 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - 2 * R_2, R_4 \rightarrow R_4 - R_2$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

$$R_3 \rightarrow R_3 * 1/4$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

$$R_4 \rightarrow R_4 + 2R_2$$

 $R_4 \rightarrow R_4 + 2R_3$

$$U = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Now, A=LU

$$\begin{bmatrix} 4 & 8 & 4 & 0 \\ 1 & 5 & 4 & -3 \\ 1 & 4 & 7 & 2 \\ 1 & 3 & 0 & -2 \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 8 & 4 & 0 \\ 1 & 5 & 4 & -3 \\ 1 & 4 & 7 & 2 \\ 1 & 3 & 0 & -2 \end{bmatrix} = \begin{bmatrix} l_{11} & 2l_{11} & l_{11} & 0 \\ l_{21} & 2l_{21} + l_{22} & l_{21} + l_{22} & -l_{22} \\ l_{31} & 2l_{32} + l_{32} & l_{31} + l_{32} + l_{33} & -l_{32} + l_{33} \\ l_{41} & 2l_{41} + l_{42} & l_{41} + l_{42} + l_{43} & -l_{42} + l_{43} + l_{44} \end{bmatrix}$$

On equating,

$$\begin{split} l_{11} &= 4, l_{21} = 1, l_{31} = 1, l_{41} = 1 \\ l_{22} &= 3 \\ 2l_{31} + l_{32} = 4, 2l_{41} + l_{42} = 3 \\ l_{32} &= 2, l_{42} = 1 \\ \\ l_{31} + l_{32} + l_{33} = 7 \\ 1 + 2 + l_{33} = 7 \\ l_{33} &= 4 \\ \\ l_{41} + l42 + l_{43} = 0 \\ 1 + 1 + l_{43} = 0 \\ l_{43} &= -2 \\ \\ - l_{42} + l_{43} + l_{44} = -2 \end{split}$$

So,

$$L = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & 1 & -2 & 1 \end{bmatrix}$$

 $l_{44} = 1$

Using forward substitution,

$$4y_1 = 8 \Rightarrow y_1 = 2$$

$$y_1 + 3y_2 = 13 \Rightarrow 2 + 3y_2 = 13 \Rightarrow y_2 = 11/3$$

$$y_1 + 2y_2 + 4y_3 = 23$$

$$\Rightarrow 2 + 2 * 11/3 + 4y_3 = 23 \Rightarrow y_3 = 41/12$$

$$y_1 + y_2 - 2y_3 + y_4 = 4$$

$$\Rightarrow 2 + 11/3 - 2 * 41/12 + y_4 = 4$$

$$\Rightarrow y_4 = 31/6$$

Again,

$$U\vec{X} = \vec{Y}$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 2 \\ 11/3 \\ 41/12 \\ 31/6 \end{bmatrix}$$

Using backward substitution,

$$\begin{split} w &= 31/6 \\ z + w &= 41/12 \Rightarrow z = 41/12 - 31/6 = -7/4 \\ y + z - w &= 11/3 \Rightarrow y = 11/7 + 7/4 + 31/6 = 127/12 \\ x + 2y + z &= 2 \Rightarrow x = 2 - 2 * \frac{127}{12} + \frac{7}{4} = \frac{-209}{12} \end{split}$$

9. Solve the following tidiagonal systems using Thomas Algorithm:

$$4x + 8y = 8$$

$$8x + 18y + 2z = 18$$

$$2y + 5z + 1.5w = 0.5$$

$$1.5z + 1.75w = -1.75$$

Solution: The augmented matrix is:

$$A = \begin{bmatrix} 4 & 8 & 0 & 0 & : & 8 \\ 8 & 18 & 2 & 0 & : & 18 \\ 0 & 2 & 5 & 1.5 & : & 0.5 \\ 0 & 0 & 1.5 & 1.75 & : & -1.75 \end{bmatrix}$$

Given i = 4,

$$\alpha_1 = b_1 = 4$$

$$\alpha_2 = b_2 - \frac{a_2 c_1}{\alpha_1}$$

$$= 18 - \frac{8 * 8}{4}$$

$$= 2$$

$$\alpha_3 = b_3 - \frac{a_3 c_2}{\alpha_2} = 5 - \frac{2 * 2}{2} = 3$$

$$\alpha_4 = b_4 - \frac{a_4 c_3}{\alpha_3} = 175 - \frac{1.5 * 1.5}{3} = 1$$

$$\begin{split} \beta_1 &= \frac{b_1}{b_1} = 2 \\ \beta_2 &= \frac{d_2 - a_2 \beta_1}{\alpha_2} = \frac{18 - 8 * 2}{2} = 1 \\ \beta_3 &= \frac{d_3 - a_3 \beta_2}{\alpha_3} = -\frac{1}{2} \\ \beta_4 &= \frac{d_4 - a_4 \beta_3}{\alpha_4} = \frac{-175 - 1.5 * -1/2}{1} = -1 \end{split}$$

Let $x_n = b_n$ i.e $x_4 = b_4 = -1$

$$x_{3} = \beta_{3} - \frac{c_{3}x_{4}}{\alpha_{3}}$$

$$= -1/2 - \frac{-1.5 * -1}{3}$$

$$= 0$$

$$x_{2} = \beta_{2} - \frac{c_{2}x_{3}}{\alpha_{2}}$$

$$= 1 - \frac{2 * 0}{2} = 1$$

$$x_{1} = \beta_{1} - \frac{c_{1}x_{2}}{\alpha_{1}}$$

$$= 2 - \frac{8 * 1}{4} = 0$$

$$\therefore x = 0, y = 1, z = x_3 = 0, w = x_4 = -1$$