

Europäisches Patentamt European Patent Office Office européen des brevets

① Veröffentlichungsnummer: 0 548 710 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 92121142.1

2 Anmeldetag: 11.12.92

(1) Int. Cl.5: C07D 491/048, A01N 43/90, //(C07D491/048,307:00,239:00))

Priorität: 21.12.91 DE 4142570

(3) Veröffentlichungstag der Anmeldung: 30.06.93 Patentblatt 93/26

 Benannte Vertragsstaaten: BE CH DE ES FR GB IT LI NL SE

71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

Erfinder: Rheinheimer, Joachim, Dr. **Merziger Strasse 24** W-6700 Ludwigshafen(DE) Erfinder: Baumann, Ernst, Dr. Wormser Landstrasse 119a

Erfinder: Vogelbacher, Uwe Josef, Dr.

Niedererdstrasse 56 W-6700 Ludwigshafen(DE) Erfinder: Saupe, Thomas, Dr.

W-6720 Speyer(DE)

Kressenwiesenweg 13 W-6902 Sandhausen(DE) Erfinder: Bratz, Matthias, Dr.

Schwabsgasse 2 W-6720 Speyer(DE)

Erfinder: Meyer, Norbert, Dr. Dossenheimer Weg 22 W-6802 Ladenburg(DE) Erfinder: Gerber, Matthias, Dr. Brandenburgerstrasse 24 W-6703 Limburgerhof(DE)

Erfinder: Westphalen, Karl-Otto, Dr.

Mausbergweg 58 W-6720 Speyer(DE)

Erfinder: Walter, Helmut, Dr. **Gruenstadter Strasse 82** W-6719 Obrigheim(DE) Erfinder: Kardorff, Uwe, Dr.

D 3,4

W-6800 Mannheim 1(DE)

- Glykolaldehyd- und Milchsäurederivate, deren Herstellung und herbizide Verwendung.
- Glykolaldehyd- und Milchsäurederivate sowie deren Schwefelanaloge der Formel!

$$R^{1} - C - CH - X - N$$

$$N = X$$

Zum Verbleib Bitte nicht zurücksenden am 6. SEP 1995

Erlediat

I

Patentschriftensammlung

in der R1 bis R3 die in der Beschreibung genannte Bedeutung haben, X für Sauerstoff, Schwefel oder eine Einfachbindung steht und Y eine ggf. substituierte C2-C4-Alkylen oder C2-C4-Alkylen oder

sowie umweltverträgliche Salze der Verbindungen I, Verfahren zur Herstellung der Verbindungen I und derem herbizide Verwendung.

Die vorliegende Erfindung betrifft Glykolaldehyd- und Milchsäurederivate sowie deren Schwefellanaloge der Formel I

$$R^{1} - C - CH - X - N = X$$

in der die Substituenten folgende Bedeutung haben:

R¹ Wasserstoff;

5

10

15

20

25

30

35

40

45

50

55

eine Succinylimidoxygruppe;

ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend zwei bis dreif Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Rester tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

ein Rest

in dem m für 0 oder 1 steht und R¹⁴ und R¹⁵, die gleich oder unterschiedlich sind, die folgende Bedeutung haben:

Wasserstoff;

 C_1-C_6 -Alkyl, C_3-C_6 -Alkinyl, C_3-C_6 -Alkinyl, wobei diese Reste jeweils ein bis fünf Halogenatome und/oder ein bis zwei der folgenden Gruppen tragen können: C_1-C_6 -Alkoxy, C_3-C_6 -Alkinyloxy, C_3-C_6 -Alkinyloxycarbonyl, C_3-C_6 -Alkinyloxycarbonyl, C_3-C_6 -Alkinyloxycarbonyl, C_3-C_6 -Alkinyloxycarbonyl, bis- C_1-C_6 -Dialkylamino, cyclo- C_1-C_6 -Alkyl, optionelli substituiertes Phenyl;

optionell substituiertes cyclo-C3-C6-Alkyl;

optionell substituiertes Phenyl;

oder R¹⁴ mit R¹⁵ gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₄-C₇-Alkylenkette oder gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₃-C₆-Alkylenkette mit einem Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff:

R¹ ferner eine Gruppe

$$- O(CH_2) - C - N R^{16}$$

 R^1 ferner in der R^{16} und R^{17} , die gleich oder unterschiedlich sind, für Wasserstoff, C_1 - C_6 -Alkyl, optionell substituiertes Phenyl, C_3 - C_6 -Alkinyl oder C_3 - C_6 -Alkinyl stehen können und I die Werte 1,

2, 3 oder 4 annimmt; eine Gruppe

5

10

15

20

25

30

35

40

45

50

55

in der R¹⁸ für C₁-C₆-Alkyl, optionell substituiertes Phenyl, C₁-C₆-Halogenalkyl, C₃-C₆-Alkinyl oder

C₃-C₆-Alkinyl steht, I die Werte 1, 2, 3 oder 4 und k die Werte 0, 1 oder 2 annehmen kann; R¹ ferner einen Rest OR⁵, worin R⁵ bedeutet:

- a) Wasserstoff, ein Alkalimetallkation, das Äquivalent eines Erdalkalimetallkations, das Ammoniumkation oder ein organisches Ammoniumion;
- b) eine C₃-C₁₂-Cycloalkylgruppe, welche ein bis drei C₁-C₄-Alkylreste tragen kann;
- c) eine C1-C10-Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₃-C₁₂-Cycloalkyl, C₁-C₈-Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die aromatischen Reste ihrerseits jeweils ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen können: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy und/oder C₁-C₄-Alkythio;
- d) eine C₁-C₁₀-Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein 5-gliedriger Heteroaromat enthaltend ein bis drei Stickstoffatome, oder ein 5-gliedriger Heteroaromat enthaltend ein Stickstoffatom und ein Sauerstoff- oder Schwefelatom, welche ein bis vier Halogenatome und/oder ein bis zwei der folgenden Reste tragen können: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy und/oder C₁-C₄-Alkylthio;
- e) eine C2-C6-Alkylgruppe, welche in der 2-Position einen der folgenden Reste trägt: C1-C6-Alkoxyimino, C₃-C₆-Alkinyloxyimino, C₃-C₆-Halogenalkenyloxyimino oder Benzyloxyimino;
- f) eine C₃-C₆-Alkinyl- oder eine C₃-C₆-Alkinylgruppe, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;
- g) ein Phenylrest, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyi, C₁-C₄-Halogenalkyi, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C1-C4-Alkylthio;
- h) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy und/oder C₁-C₄-Alkylthio;
- i) eine Gruppe -N = CR^6R^7 , worin R^6 und R^7 bedeuten:
- C1-C20-Alkyl, welches seinerseits einen Phenylrest, eine C1-C4-Alkoxy- und/oder eine C1-C4-Alkylthiogruppe tragen kann;
- Phenyl;
- oder R⁶, R⁷ gemeinsam eine C₃-C₁₂-Alkylenkette, welche ein bis drei C₁-C₃-Alkylgruppen tragen kann
- R1 ferner ein Rest

$$\longrightarrow O(CH_2)_{\Gamma} \longrightarrow P \longrightarrow OR^{18}$$

$$OR^{18}$$

in dem R¹⁸ und I die oben genannte Bedeutung haben, R¹ ferner ein Rest

in dem R¹⁹ für die Reste C₁-C₆-Alkyl oder Phenyl steht, die ihrerseits ein bis vier der folgendem Substituenten tragen können:

Halogen, Nitro, Cyano, C1-C6-Alkyl;

- R² Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkyl-thio;
- R³ Wasserstoff;

5

10

15

20

25

30

35

40

45

50

 \mathbb{R}^3

eine C₁-C₈-Alkyl-, C₂-C₈-Alkinyl-, C₂-C₈-Alkinyl-, Phenyl-, C₃-C₈-Cycloalkenyl- oder C₃-Cycloalkenyl- oder C₃-Cycloalkenyl- oder C₃-Cycloal

- i) Hydroxy, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkyl, Phenylcarbonyl, C₃-C₁₂-Cycloalkyl, C₃-C₁₂-Cycloalkenyl;
- ii) einen 5-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen, sowie ein bis vier Stickstoffatome oder ein bis zwei Stickstoffatome sowie zusätzlich ein Schwefeloder Sauerstoffatom, welcher ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl oder Phenyl, das seinerseits ein bis drei Halogenatome und/oder ein bis drei Methylgruppen tragen kann;
- iii) einen Thienylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;
- iv) einen Pyridylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;
- v) einen Naphthyl-, Chinolin-, Benzoxazolyl-, Benzthiazolyl-, Benzthienyl-, Indazolyl- oder Benztriazolylrest, welcher jeweils ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder C₁-C₂-Halogenalkyl;
- vi) einen Phenylrest, der seinerseits ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Dialkylamino, und/oder C₁-C₄-Alkylthio oder Nitro;
- vii) einen 5- oder 6-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen sowie ein bis zwei Sauerstoff- oder Schwefelatome, der außerdem folgende Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Nitro;
- ferner einen 5- oder 6-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen, sowie ein bis vier Stickstoffatome oder ein bis zwei Stickstoffatome sowie zusätzlich ein Schwefel- oder Sauerstoffatom, welcher ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxy oder Phenyl, das seinerseits ein bis drei Halogenatome und/oder ein bis drei Methylgruppen tragen kann;
 - einen Pyridylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;
 - einen Naphthyl-, Chinolin-, Benzoxazolyl-, Indazolyl- oder Benztriazolylrest, welcher jeweils ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder C₁-C₂-Halogenalkyl;
 - einen 5- oder 6-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen sowie ein bis zwei Sauerstoff- oder Schwefelatome, der außerdem folgende Reste tragen kann: Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy;

R³ gemeinsam mit R¹ eine optionell substituierte C₃-C₅-Alkylenkette, in der eine CH₂-Gruppe durch Sauerstoff, Schwefel oder Stickstoff ersetzt sein kann;

- X ein Sauerstoffatom, ein Schwefelatom oder eine Einfachbindung;
- Y eine C₂-C₄-Alkylen oder C₂-C₄-Alkenylenkette, wobei eine Methylengruppe jeweils durch eine Oxo-Gruppe (= 0) substituiert sein kann und/oder die Alkylen- bzw. Alkenylenkette durch C₁-C₄-Alkyl,

wobei in den oben genannten Fällen der Ausdruck optionell substituiert jeweils bedeutet, daß die sobezeichneten Gruppen einen oder mehrere der folgenden Substituenten tragen können: Halogen, Nitro, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, sowie umweltverträgliche Salze der Verbindungen I.

Weiterhin betrifft die Erfindung Verfahren zur Herstellung der Verbindung I, sowie ihre Verwendung als Herbizide und Wachstumsregulatoren.

In der Literatur (EP-A 347 811, EP-A 400 741, EP-A 422 751 und EP-A 409 368) sind herbizid wirksame Glykolaldehyd- und Milchsäurederivate sowie deren Schwefelanaloge beschrieben. Ihre Wirkung ist jedoch oftmals unbefriedigend.

Daher war es ein Ziel, neue Glykolaldehyd- und Milchsäurederivate sowie deren Schwefelanaloge mit verbesserten herbiziden Eigenschaften sowie mit pflanzenwachstumsregulierenden Eigenschaften zu finden.

Entsprechend dieser Aufgabe wurden die eingangs definierten Verbindungen der Formel I gefunden. Außerdem wurden Verfahren zur Herstellung der Verbindungen I und Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses mit den Verbindungen I gefunden. Es wurde außerdem gefunden, daß Glykolaldehyd- und Milchsäurederivate der vorstehend definierten allgemeinen Formel I ausgezeichnete pflanzenwachstumsregulierende Eigenschaften besitzen.

Gegenstand der Erfindung sind neben den racemischen Verbindungen I auch die optisch aktiven (R-bzw. S-Konfiguration) wenn R³ ≠ Wasserstoff ist.

Verbindungen der Formel I erhält man beispielsweise, indem man ein entsprechend substituiertes. Glykolaldehyd- und Milchsäurederivat der Formel II mit einer entsprechenden Verbindung der Formel III in Gegenwart einer Base umsetzt.

20

25

30

R¹³SO₂ in Formel III bedeutet eine Übliche nucleofuge Abgangsgruppe, beispielsweise Arylsulfonyl wie Phenyl- oder substituiertes Phenylsulfonyl, wobei als Substituenten ein oder mehrere, z.B. 1 bis 3 niedermolekulare Alkyl- oder Alkoxyreste wie C¹-C⁴-Alkyl oder Alkoxy oder Halogen, z.B. Chlor, Fluor oder Brom in Betracht kommen; oder Alkylsulfonyl wie C¹-C⁴-Alkylsulfonyl, z.B. Methylsulfonyl oder Halogenal-kylsulfonyl. Als Base können Alkali- oder Erdalkalimetallhydride wie NaH und CaH², Alkalimetallhydroxide wie NaOH und KOH, Alkalimetallalkohole wie Kaliumtert.-butylat, Alkalimetallcarbonate wie Na²CO₃ und K²CO₃, Alkalimetallamide wie NaNH² und Lithiumdiisopropylamid oder tertiäre Amine Verwendung finden. Bei Einsatz einer anorganischen Base kann man einen Phasentransferkatalysator zusetzen, wenn dies den Umsatz fördert.

Die Zwischenprodukte der Formel II sind in vielen Fällen bekannt oder können nach üblichen. Methoden, ausgehend von bekannten Vorprodukten hergestellt werden (vgl. z.B. EP-A 347 811, EP-A 400 741, EP-A 422 751 und EP-A 409 368).

Die Sulfone der allgemeinen Formel III erhält man, indem man ein entsprechendes 2-Alkylthio-5,6-dihydrofuran[2,3]pyrimidin (s. Collect. Czech. Chem. Commun. 32, 1582 (1967))

D D FP

durch Oxidationsmittel wie z.B. Chlor in Wasser oder Wasserstoffperoxid in Eisessig oxydiert unter milden Bedingungen.

Die Herstellung anellierter Pyrimidine ist weiterhin beispielsweise beschrieben in

Bull. Soc. Chim. France (1969), Seite 4344

5

10

15

20

25

30

35

$$HS \stackrel{N}{\longrightarrow} R$$

$$HS \stackrel{N}{\longrightarrow} R$$

$$HO \xrightarrow{N} \stackrel{OH}{=} R$$

Verbindungen der Formel I können auch dadurch hergestellt werden, daß man von den entsprechenden Carbonsäuren, d.h. Verbindungen der Formel I, in denen R¹ Hydroxyl bedeutet, ausgeht und diese zunächst auf übliche Weise in eine aktivierte Form wie ein Halogenid, ein Anhydrid oder Imidazolid überführt und dieses dann mit einer entsprechenden Hydroxylverbindung HOR¹ umsetzt. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und erfordert oft die Zugabe einer Base, wobei die oben genannten in Betracht kommen. Diese beiden Schritte lassen sich beispielsweise auch dadurch vereinfachen, daß man die Carbonsäure in Gegenwart eines wasserabspaltenden Mittels wie eines Carbodiimids auf die Hydroxylverbindung einwirken läßt.

Außerdem können Verbindungen der Formel I auch dadurch hergestellt werden, daß man von den Salzen der entsprechenden Carbonsäuren ausgeht, d.h. von Verbindungen der Formel I, in denen R¹ für OM steht, wobei M ein Alkalimetallkation oder das Äquivalent eines Erdalkalimetallkations sein kann. Diese Salze lassen sich mit vielen Verbindungen der Formel R¹-A zur Reaktion bringen, wobei A eine übliche nucleofuge Abgangsgruppe bedeutet, beispielsweise Halogen wie Chlor, Brom, lod oder gegebenenfalls durch Halogen, Alkyl oder Halogenalkyl substituiertes Aryl- oder Alkylsulfonyl wie z.B. Toluolsulfonyl und Methylsulfonyl oder eine andere äquivalente Abgangsgruppe. Verbindungen der Formel R¹-A mit einem reaktionsfähigen Substituenten A sind bekannt oder mit dem allgemeinen Fachwissen leicht zu erhalten. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und erfordert wieder oftmals die Zugabe einer Base, wobei die oben genannten in Betracht kommen.

Im Hinblick auf die herbizide Wirksamkeit sind Verbindungen 1 bevorzugt, bei denen die Substituenten folgende Bedeutung haben:

R¹ Wasserstoff;

5

10

15

20

25

30

35

40

45

50

55

eine Succinylimidoxygruppe;

ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat wie Pyrrolyl, Pyrazolyl, Imidazolyl und Triazolyl, welcher ein bis zwei Halogenatome, insbesondere Fluor und Chlor und/oder ein bis zwei der folgenden Reste tragen kann:

Alkyl, wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, vorzugsweise Methyl, Ethyl und 1-Methylethyl,

Halogenalkyl wie Fluormethyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl, insbesondere Difluormethyl, Trifluormethyl, 2,2,2-Trifluorethyl und Pentafluorethyl;

Alkoxy wie vorstehend genannt, mit ein bis vier Kohlenstoffatomen, Halogenalkoxy wie Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Dichlorfluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, insbesondere Trifluormethoxy und/oder

Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio, insbesondere Methylthio und Ethylthio; einen Rest

in dem m für 0 oder 1 und R¹⁴ und R¹⁵, die gleich oder unterschiedlich sein können, die folgende Bedeutung haben:

Wasserstoff;

Alkyl wie insbesondere Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl;

Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 2-Methyl-3-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 2-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-3-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl, 2-Butenyl, 3-Methyl-2-butenyl und 3-Methyl-2-pentenyl;

Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Alkinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-1-methyl-2-propinyl, vorzugsweise 2-Propinyl, 2-Butinyl, 1-Methyl-2-propinyl und 1-Methyl-2-butinyl, insbesondere 2-Propinyl;

wobei diese Alkyl-, Alkinyl- oder Alkinylgruppen jeweils ein bis fünf Halogenatome, besonders

C1-C6-Alkoxy, wie vorstehend genannt, C3-C6-Alkenyloxy, C3-C6-Alkinyloxy, C1-C6-Alkylthio, C3-C6-Alkenylthio, C3-C6-Alkinylthio, wobei die in diesen Resten vorliegenden Alkyl-, Alkenyl- und Alkinylbestandteile vorzugsweise den bei R¹ im einzelnen genannten Bedeutungen entsprechen; C1-C6-Halogenalkoxy wie Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Dichlorfluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluoret-

hoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, insbesondere Trifluormethoxy;

Cyano:

5

10

15

20

25

30

35

40

45

C1-C6-Alkylcarbonyl wie insbesondere Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl, 1,1-Dimethylethylcarbonyl, Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 1,1-Dimethylpropylcarbonyl, 1,2-Dimethylpropylcarbonyl, 2,2-Dimethylpropylcarbonyl, 1-Ethylpropylcarbonyl, Hexylcarbonyl, 1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl, 3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl, 1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl, 1,3-Dimethylbutylcarbonyl, 2,2-Dimethylbutylcarbonyl, 2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl, 1-Ethylbutylcarbonyl, 2-Ethylbutylcarbonyl, 1,1,2-Trimethylpropylcarbonyl, 1,1,2-Trimethylpropylcarbonyl, 1-Ethyl-1-methylpropylcarbonyl und 1-Ethyl-2-methylpropylcarbonyl;

C₁-C₆-Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methylethoxycarbonyl, Butyloxycarbonyl, 1-Methylpropyloxycarbonyl, 2-Methylpropyloxycarbonyl, 1,1-Dimethylethoxycarbonyl, n-Pentyloxycarbonyl, 1-Methylbutyloxycarbonyl, 2-Methylbutyloxycarbonyl, 3-Methylbutyloxycarbonyl, 1,2-Dimethylpropyloxycarbonyl, 1,1-Dimethylpropyloxycarbonyl, 2,2-Dimethylpropyloxycarbonyl, 1-Ethylpropyloxycarbonyl, n-Hexyloxycarbonyl, 1-Methylpentyloxycarbonyl, 2-Methylpentyloxycarbonyl, 3-Methylpentyloxycarbonyl, 4-Methylpentyloxycarbonyl, 1,2-Dimethylbutyloxycarbonyl, 1,3-Dimethylbutyloxycarbonyl, 2,3-Dimethylbutyloxycarbonyl, 1,1-Dimethylbutyloxycarbonyl, 2,2-Dimethylbutyloxycarbonyl, 3,3-Dimethylbutyloxycarbonyl, 1,1,2-Trimethylpropyloxycarbonyl, 1,2,2-Trimethylpropyloxycarbonyl, 1-Ethylbutyloxycarbonyl, 2-Ethylbutyloxycarbonyl, 1-Ethyl-2-methylpropyloxycarbonyl, n-Heptyloxycarbonyl, 1-Methylhexyloxycarbonyl, 2-Methylhexyloxycarbonyl, 3-Methylhexyloxycarbonyl, 4-Methylhexyloxycarbonyl, 5-Methylhexyloxycarbonyl, 1-Ethylpentyloxycarbonyl, 2-Ethylpentyloxycarbonyl, 1-Propylbutyloxycarbonyl und Octyloxycarbonyl, insbesondere Methoxycarbonyl, Ethoxycarbonyl, 1-Methylethoxycarbonyl und 1-Methylpropyloxycarbonyl;

C₃-C₆-Alkenyl, C₃-C₆-Alkinylcarbonyl, C₃-C₆-Alkenyloxycarbonyl und C₃-C₆-Alkinyloxycarbonyl, wobei die Alkenyl- bzw. Alkinylreste vorzugsweise wie voranstehend im einzelnen aufgeführt, definiert sind:

bis-C₁-C₆-Dialkylamino wie insbesondere Dimethylamino, Diethylamino, Dipropylamino, N-Propyl-N-methylamino, N-Propyl-N-ethylamino, Diisopropylamino, N-Isopropyl-N-methylamino, N-Isopropyl-N-ethylamino, N-Isopropyl-N-propylamino;

cyclo-C₃-C₆-Alkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl;

optionell substituiertes Phenyl wie insbesondere Phenyl, 2-Chlorphenyl, 3-Chlorphenyl, 4-Chlorphenyi, 2-Fluorphenyi, 3-Fluorphenyi, 4-Fluorphenyi, 2-Methylphenyi, 3-Methylphenyi, 4-Methylphenyi, 4-Methylph nyl, 2-Trifluormethylphenyl, 3-Trifluormethylphenyl, 4-Methoxyphenyl, 3-Methoxyphenyl, 2-Methoxyphenyl;

optionell substituiertes cyclo-C3-C6-Alkyl; wie vorstehend im einzelnen genannt, beispielsweise 1-Methylthiocyclopropyl, 1-Methylcyclohexyl, 1-Methylcyclopropyl, 1-Methoxycyclohexyl,

R14 mit R15 gemeinsam eine zu einem Ring geschlossene optionell substituierte C4-C7-Alkylenkette oder gemeinsam eine zu einem Ring geschlossene optionell substituierte C₃-C₅-Alkylenkette mit einem Heteroatorn, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff wie $-(CH_2)_4-$, $-(CH_2)_5-$, $-(CH_2)_6-$, $-(CH_2)_7-$, $-(CH_2)_2-$ O- $-(CH_2)_2-$, $-CH_2-$ O $-(CH_2)_3-$, $-(CH_2)_2-$ S- $-(CH_2)_2-$ S- $-(CH_2)_2-$ S- $-(CH_2)_3-$ S- $-(CH_$ CH₂-S-(CH₂)₃-, -CH₂-O-(CH₂)₂-, -CH₂-S-(CH₂)₂-, -(CH₂)₂-NH-(CH₂)₂-, -(CH₂)₂-, (CH₃)-(CH₃)-(CH₃)-(CH₂)₂-;

R¹ ferner eine Gruppe

$$- O(CH_2) - C - N R^{16}$$

in der R^{16} und R^{17} , die gleich oder unterschiedlich sind, für Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl, jeweils wie vorstehend für R^{14}/R^{15} genannt oder optionell substituiertes Phenyl stehen und I die Werte 1, 2, 3 oder 4 annimmt; R^1 ferner eine Gruppe

$$- O(CH_2) - S - R^{18}$$

in der R^{18} für C_1 - C_6 -Alkyl, optionell substituiertes Phenyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Alkinyl oder C_3 - C_6 -Alkinyl, jeweils wie voranstehend für R^{14}/R^{15} im einzelnen genannt, steht, I die Werte 1, 2, 3 oder 4 und k die Werte 0, 1 oder 2 annehmen;

R¹ ferner einen Rest OR⁵, worin R⁵ bedeuten kann:

5

10

15

20

25

30

35

40

45

50

55

Wasserstoff, das Kation eines Alkalimetalls oder das Kation eines Erdalkalimetalls wie Lithium, Natrium, Kalium, Calcium, Magnesium und Barium oder ein umweltverträgliches organisches Ammoniumion oder Ammonium [NH4*];

ein C₃-C₁₂-Cycloalkyl, insbesondere C₃-C₆-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclobexyl, das gegebenenfalls durch ein bis drei C₁-C₄-Alkylreste substituiert ist;

C₁-C₁₀-Alkyl wie insbesondere Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylputyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl; n-Heptyl, 1-Methylhexyl, 2-Methylhexyl, 3-Methylhexyl, 4-Methylhexyl, 5-Methylhexyl, 1-Ethylpentyl, 2-Ethylpentyl, 1-Propylbutyl und Octyl, welches ein bis fünf der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor und/oder einen der folgenden Reste tragen kann:

C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₃-C₁₂-Cycloalkyl, C₁-C₈-Alkoxycarbonyl, Phenoxy oder Phenylcarbonyl, wobei die aromatischen Reste ihrerseits jeweils ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkythio;

eine C₁-C₁₀-Alkylgruppe wie vorstehend für R⁵ genannt, welche ein bis fünf Halogenatome, insbesondere Fluor und/oder Chlor tragen kann und einen der folgenden Reste trägt: ein 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, oder ein 5-gliedriger Heteroaromat enthaltend ein Stickstoffatom und ein Sauerstoff oder Schwefelatom, welche ein bis vier Halogenatome und/oder ein bis zwei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio. Insbesondere seien genannt: 1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl, 1-Benzimidazolyl, 1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl,

5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl, 3-Isopropylisoxazol-5-yl, 3-Methylisoxazol-5-yl, Oxazol-2-yl, Thiazol-2-yl, Imidazol-2-yl, 3-Ethylisoxazol-5-yl, 3-Phenylisoxazol-5-yl, 3-tert.-Butylisoxazol-5-yl; thiazol-2-yl, 3-Ethylisoxazol-5-yl, 3-Phenylisoxazol-5-yl, 3-tert.-Butylisoxazol-5-yl;

eine C_2 - C_6 -Alkylgruppe, welche in der 2-Position einen der folgenden Reste trägt: C_1 - C_6 -Alkoxyimino, C_3 - C_6 -Alkinyloxyimino, C_3 - C_6 -Alkinyloxyimino, coder Benzyloxyimino; eine C_3 - C_6 -Alkinyl- oder eine C_3 - C_6 -Alkinylgruppe, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

ein Phenylrest, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Restertragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio. Insbesondere seien genannt: 1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl, 1-Benzimidazolyl, 1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl, 5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl, 3,4-Dichlorimidazol-1-yl;

eine Gruppe -N = CR6R7, worin R6 und R7 bedeuten:

unverzweigtes oder verzweigtes C_1-C_{20} -Alkyl, vorzugsweise C_1-C_{15} -Alkyl, insbesondere C_1-C_{2-1} -Alkyl, welches einen Phenyl, einen C_1-C_4 -Alkoxy und/oder einen C_1-C_4 -Alkylthiotest tragen kann; Phenyl oder gemeinsam C_3-C_{12} -Alkylen, vorzugsweise C_4-C_7 -Alkylen, welches ein bis drei C_1-C_3 -Alkylgruppen, vorzugsweise Methyl- oder Ethylgruppen tragen kann.

R¹ ferner ein Rest

in dem R¹⁸ und I die oben genannte Bedeutung haben, oder R¹ ein Rest

35

40

45

50

55

5

10

15

20

25

30

in dem R¹⁹ für die Reste C₁-C₆-Alkyl oder Phenyl steht, die ihrerseits ein bis vier der folgendem Substituenten tragen können: Halogen, Nitro, Cyano, C₁-C₆-Alkyl;

R²

Halogen, wie Fluor, Chlor, Brom, insbesondere Fluor oder Chlor, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyll, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio wie vorstehend im Fall von R¹⁴/R¹⁵ im einzelnen genannt;

R³ Wasserstoff;

eine C_1 - C_8 -Alkyl-, C_1 - C_8 -Alkinyl-, C_1 - C_8 -Alkinyl-, Phenyl-, C_3 - C_8 -Cycloalkenyl- oder C_3 - C_8 -Cycloalkylgruppe, die jeweils bis zu 5 Halogenatome und unabhängig voneinander bis zu 3 der folgenden Substituenten tragen können: Hydroxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkyl, Phenylcarbonyl, C_3 - C_1 -Cycloalkyl, C_3 - C_1 -Cycloalkenyl;

einen 5-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen sowie ein bis vier Stickstoffatome oder ein bis zwei Stickstoffatome sowie zusätzlich ein Schwefel- oder Sauerstoffatom, welcher ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl oder Phenyl, das seinerseits ein bis drei Halogenatome und/oder ein bis drei Methylgruppen tragen kann, beispielsweise seien genannt:

3-Isopropylisoxazol-5-yl, 3-Methylisoxazol-5-yl, Oxazol-2-yl, Thiazol-2-yl, Imidazol-2-yl, 3-Ethylisoxazol-5-yl, 3-Phenylisoxazol-5-yl, 3-tert.-Butylisoxazol-5-yl, 3-Isopropylisoxazolin-5-yl, 3-Ethylisoxazolin-5-yl, 3-Phenylisoxazolin-5-yl, 3-tert.-Butylisoxazolin-5-yl, 4-Phenylthiazol-2-yl, 4-Phenylthiazol-2-yl, 4-Dimethylthiazol-2-yl, 4-Dimethyloxazol-2-yl, 3-Methyl-4-phenylthiazol-2-yl, 3-Methyl-3-phenylthiazol-2-yl, 5-

5

10

15

20

25

30

35

40

45

50

55

 \mathbb{R}^3

Phenyl[1,3,4]oxadiazol-2-yl, 1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 1-Imidazolyl, [1,2,4]-Triazol-1-yl;

einen Thienylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;

einen Pyridylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;

einen Naphthyl-, Chinolin-, Benzoxazolyl-, Benzthiazolyl-, Benzthienyl-, Indazolyl- oder Benztriazolylrest, welcher jeweils ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder C₁-C₂-Halogenalkyl; einen Phenylrest, der seinerseits ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkyl, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano, Nitro, C₁-C₄-Dialkylamino, und/oder C₁-C₄-Alkylthio;

einen 5- oder 6-gliedrigen Heterocyclus enthaltend keine, eine oder zwei Doppelbindungen sowie ein bis zwei Sauerstoff- oder Schwefelatome, der außerdem folgende Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy; beispielsweise seien genannt: Tetrahydropyran-4-yl, Tetrahydrothiopyran-3-yl, Tetrahydropyran-3-yl, [2,6]-Dithiacyclohexyl, [2,5]-Dithiacyclopentyl, [2,6]-Dioxacyclohexyl, Dihydropyran-3-yl;

einen 5- oder 6-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen sowie ein bis vier Stickstoffatome oder ein bis zwei Stickstoffatome sowie zusätzlich ein Schwefel- oder Sauerstoffatom, welcher ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C1-C4-Alkyl,C1-C4-Alkylthio, C1-C4-Halogenalkyl, C1-C4-Halogenalkoxy, C1-C4-Alkoxy oder Phenyl, das seinerseits ein bis drei Halogenatome und/oder ein bis drei Methylgruppen tragen kann; beispielsweise seien folgende Heterocyclen aufgeführt: Oxazol-2-yl, Thiazol-2-vl, Imidazol-2-yl, 3-Methylisoxazol-5-yl, Isopropylisoxazol-5-yl, Ethylisoxazol-5-yl, 3-Phenylisoxazol-5-yl, 3-t.-Butylisoxazol-5-yl, 3-lsopropylisoxazolin-5-yl, Ethylisoxazolin-5-yl, 3-Phenylisoxazolin-5-yl, 3-tert.-Butylisoxazolin-5-yl, 4-Phenylthiazol-2-yl, 4-Phenyloxazol-2-yl, 4,5-Dimethylthiazol-2-yl, 4,5-Dimethyloxazol-2-yl, 3-Methyl-4-phenylthiazol-2-yl, 4-Methyl-3-phenylthiazol-2-yl, 3-Methyl-4-phenyloxazol-2-yl, 4-Methyl-3-phenyloxazol-2-yl, 5-Phenyl[1,3,4]oxadiazol-2-yl, 1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 1-lmidazolyl, [1,2,4]-Triazol-1-yl, Morpholin-1-yl, 3,5-Dimethylmorpholin-1-yl, 1-Piperidyl;

einen Pyridylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;

einen Naphthyl-, Chinolin-, Benzoxazolyl, Indazolyloder Benztriazolylrest, welcher jeweils ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder C₁-C₂-Halogenalkyl;

einen 5- oder 6-gliedrigen Heterocyclus enthaltend keine, eine oder zwei Doppelbindungen sowie ein bis zwei Sauerstoff- oder Schwefelatome, wie Tetrahydropyran-4-yl, Tetrahydrothiopyran-3-yl, Tetrahydropyran-3-yl, [2,6]-Dithiacyclohexyl, [2,5]-Dithiacyclopentyl, [2,6]-Dioxacyclohexyl, (2,5]-Dioxacyclopentyl, 1-Methyl-[2,6]-dithiacyclohexyl, Dihydropyran-3-yl;

wobei der Heterocyclus außerdem folgende Reste tragen kann: Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy;

 R^3 gemeinsam mit R^1 eine ggf. substituierte C_3 - C_5 -Alkylenkette, in der eine CH_2 -Gruppe durch Sauerstoff, Schwefel oder Stickstoff ersetzt sein kann wie - $(CH_2)_3$ -,- $(CH_2)_4$ -, - $(CH_2)_5$, - $(CH_2)_2$ -O-, - $(CH_2)_3$ -O-, - $(CH_2)_3$ -O-, - $(CH_2)_3$ -NH-, - $(CH_2)_4$ -N(CH₃)-, - $(CH_2)_3$ -S-, - $(CH_2)_4$ -S-, - $(CH_3)_2$ -CH₂)-S;

x ein Sauerstoffatom, ein Schwefelatom oder eine Einfachbindung; im letztgenannten Fall ist der CH(R³)-Rest direkt am Pyrimidylrest gebunden;

eine C₂-C₄-Alkylen oder C₂-C₄-Alkenylenkette, in der jeweils eine Methylengruppe durch eine Oxo-Gruppe substituiert sein kann, wie -CH₂-CH₂-, -(CH₂)₃-, -(CH₂)₄-, -CH = CH-, -CH₂-CO-, -CO-CH₂-, -CH₂-CO-, -CH = CH-CO-, oder in der die Alkylen- bzw. Alkenylenkette durch C₁-C₄-Alkyl, Phenyl, C₁-C₄-Alkoxy oder C₁-C₄-Alkoxycarbonyl substituiert sein kann.

Die Verwendung des Ausdrucks "optionell substituiert" bedeutet jeweils, daß die so bezeichneten Gruppen einen oder mehrere, z.B. 1 bis 3 der folgenden Substituenten tragen können: Halogen, Nitro, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio.

Als Salze der Verbindungen I kommen landwirtschaftlich brauchbare Salze, beispielsweise Alkalimetallsalze, insbesondere das Kalium- oder Natriumsalz, Erdalkalimetallsalze, insbesondere das Calcium- Magnesium- oder Bariumsalz, Mangan-, Kupfer-, Zink- oder Eisensalze sowie Ammonium-, Phosphonium-, Tetraalkylammoniumsalze, Benzyltrialkylammoniumsalze, Trialkylsulfoniumsalze oder Trialkylsulfoxoniumsalze in Betracht.

Besonders bevorzugt sind Verbindungen der Formel I, bei denen

- R² Methoxy oder Ethoxy,
- X ein Sauerstoffatom und
- Y eine Ethylengruppe bedeuten
- und die übrigen Reste die oben ausgeführte Bedeutung haben.

Ferner sind besonders bevorzugt Milchsäurederivate der Formel I, in der R^1 eine Gruppe OR^5 bedeutet und R^5 für Wasserstoff, C_1 - C_{10} -Alkyl, Benzyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl steht, R^2 Methoxy, R^3 Wasserstoff oder C_1 - C_8 -Alkyl, das wie in Anspruch 1 genannt substituiert sein kann, X Sauerstoff oder Schwefel und Y eine C_2 H₄-Kette bedeuten.

Weiterhin sind besonders bevorzugt Milchsäurederivate der Formel I, in der R^1 eine Gruppe OR^5 bedeutet und R^5 für eine Gruppe $-N = CR^6R^7$ steht, in der R^6 bzw. R^7 einen C_1-C_4 -Alkylrest, der unsubstituiert oder durch Phenyl, C_1-C_4 -Alkoxy und/oder C_1-C_4 -Alkylthio substituiert ist, oder einen Phenylrest darstellt oder R^6 zusammen mit R^7 eine C_3-C_6 -Alkylenkette bildet, die durch C_1-C_3 -Alkyl substituiert sein kann, R^2 Methoxy, R^3 Wasserstoff oder C_1-C_8 -Alkyl, das wie in Anspruch 1 genannt substituiert sein kann, X Sauerstoff oder Schwefel und Y eine C_2H_4 -Kette bedeuten.

Beispiel für bevorzugte Verbindungen sind in der nachfolgenden Tabelle aufgeführt:

25

15

30

35

40

45

Tabelle

 $\begin{array}{c|c}
 & R_3 \\
 & & \\
 & R_1
\end{array}$ $\begin{array}{c|c}
 & X \\
 & N \\
 & N
\end{array}$ $\begin{array}{c|c}
 & R_2 \\
 & N
\end{array}$

R ¹	R ³	R ²	х
OH .	Methyl	OCH ₃	0
OH	Ethyl	OCH ₃	0
OH	n-Propyl	OCH ₃	0
OH	i-Propyl	OCH ₃	0
OH	t-Butyl	OCH ₃	0
ОН	n-Butyl	OCH ₃	0
ОН	i-Butyl	OCH ₃	0
ОН	Cyclopropyl	OCH ₃	0
ОН	Cyclobutyl	OCH ₃	0
OH	Cyclopentyl	OCH ₃	0
OH	Cyclohexyl	OCH ₃	0
ОН	1-Methylthiocyclopropyl	OCH ₃	0
ОН	2-Fluor-2-propyl	OCH ₃	0
ОН	2-Phenyl-2-propyl	OCH ₃	0
ОН	Phenyl	OCH ₃	0
OH	1-Phenyl-1-ethyl	OCH ₃	0
ОН	2-Thienyl-2-propyl	OCH ₃	0
ОН	1-Naphthyl-1-ethyl	OCH ₃	0
OH	sekButyl	OCH ₃	0
OH	Methyl	OCH ₃	s
OH	Ethyl	OCH ₃	s
OH	n-Propyl	OCH ₃	s
OH	i-Propyl	OCH ₃	s
OH	t-Butyl	OCH ₃	s
OH	n-Butyl	OCH ₃	s
OH	i-Butyl	OCH ₃	s
OH	Cyclopropyl	OCH ₃	s

	71	In ²	1-0	_
	R ¹	R ³	R ²	x
	ОН	Cyclobutyl	OCH ₃	s
5	ОН	Cyclopentyl	OCH ₃	s
	ОН	Cyclohexyl	OCH ₃	s
	ОН	1-Methylthiocyclopropyl	OCH ₃	s
40	ОН	2-Fluor-2-propyl	OCH ₃	s
10	ОН	2-Phenyl-2-propyl	OCH ₃	S
	ОН	Phenyl	OCH ₃	S
	ОН	1-Phenyl-1-ethyl	OCH ₃	S
15	ОН	2-Thienyl-2-propyl	OCH ₃	s
- -	ОН	1-Naphthyl-1-ethyl	OCH ₃	s
	ОН	sekButyl	OCH ₃	s
	OCH ₃	Methyl	OCH ₃	0
20	OCH ₂ CH=CH ₂	Ethyl	OCH ₃	0
	OCH ₂ CH=CH ₂	n-Propyl	OCH ₃	0
	OCH ₂ CH=CH ₂	i-Propyl	OCH ₃	0
	Propargyloxy	i-Propyl	OCH ₃	0
25	H	i-Propyl	OCH ₃	0
	OCH ₂ CH=CH ₂	t-Butyl	OCH ₃	0
	trans-3-Chlor-2- propen-1-yloxy	n-Butyl	OCH ₃	0
30	OCH ₂ CH=CH ₂	i-Butyl	OCH ₃	0
	OCH ₂ CH-CH ₂	Cyclopropyl	OCH ₃	0
:	OCH ₂ CH=CH ₂	Cyclobutyl	OCH3	0
	OCH ₂ CH=CH ₂	Cyclopentyl	OCH ₃	0
35	OCH ₂ CH-CH ₂	Cyclohexyl	OCH ₃	0
	OCH ₂ CH=CH ₂	1-Methylthiocyclopropyl	OCH ₃	0
	OCH ₂ CH=CH ₂	2-Fluor-2-propyl	OCH ₃	0
40	OCH ₂ CH=CH ₂	2-Phenyl-2-propyl	OCH ₃	0
-	OCH ₂ CH=CH ₂	Phenyl	OCH ₃	0
	OCH ₂ CH=CH ₂	1-Phenyl-1-ethyl	OCH ₃	0
	OCH ₂ CH=CH ₂	2-Thienyl-2-propyl	OCH ₃	0
45	OCH ₂ CH=CH ₂	1-Naphthyl-1-ethyl	OCH ₃	0
	OCH ₂ CH=CH ₂	sekButyl	OCH ₃	0
	Cyclohexyloxy	Methyl	OCH ₃	0
	2-Ethoxyimino-1-ethoxy	Ethyl	OCH ₃	0
50	2-Methoxyimino-1-ethoxy	n-Propyl	OCH ₃	0

	R ¹	R ³	R ²	х
	2-Allyloxyimino-1-ethoxy	i-Propyl	OCH ₃	0
5	2-Allyloxyimino-1-propoxy	i-Propyl	ОСН3	0
-	2-Benzyloxyimino-1-ethoxy	i-Propyl	OCH ₃	0
	2-Allyloxyimino-1-ethoxy	t-Butyl	OCH ₃	0
	2-Allyloxyimino-1-ethoxy	n-Butyl	OCH3	0
10	2-Allyloxyimino-1-propoxy	i-Butyl	OCH ₃	0
	2-Allyloxyimino-1-ethoxy	Cyclopropyl	OCH ₃	0
	2-Allyloxyimino-1-ethoxy	Cyclobutyl	OCH ₃	0
15	2-Allyloxyimino-1-ethoxy	Cyclopentyl	OCH ₃	0
75	2-Allyloxyimino-1-ethoxy	Cyclohexyl	OCH ₃	0
-	2-Allyloxyimino-1-ethoxy	1-Methylthiocyclopropyl	OCH ₃	0
	2-Allyloxyimino-1-ethoxy	2-Fluor-2-propyl	OCH ₃	0
20	2-Allyloxyimino-1-ethoxy	2-Phenyl-2-propyl	OCH ₃	0
	2-Allyloxyimino-1-ethoxy	Phenyl	OCH ₃	0
	2-Allyloxyimino-l-ethoxy	1-Phenyl-1-ethyl	OCH ₃	0
	2-Allyloxyimino-1-ethoxy	2-Thienyl-2-propyl	OCH ₃	0
25	2-Allyloxyimino-1-ethoxy	1-Naphthyl-1-ethyl	OCH ₃	0
	2-Allyloxyimino-1-ethoxy	sekButyl	OCH ₃	0
	2-Propaniminoxy	i-Propyl	OCH ₃	0
	1-Phenyl-1-ethaniminoxy	i-Propyl	OCH ₃	0
30	Cyclohexaniminoxy	i-Propyl	OCH ₃	0
	Benzyloxy	i-Propyl	OCH ₃	0
	4-Chlorbenzyloxy	i-Propyol	OCH ₃	0
	Methylthiomethoxy	i-Propyl	OCH ₃	0
35	Ethoxycarbonylmethoxy	i-Propyl	OCH ₃	0
	1-Imidazolyl	i-Propyl	OCH ₃	0
	1-Pyrazolyloxy	i-Propyl	OCH ₃	0
40	N, N-Dimethylaminoxy	i-Propyl	OCH ₃	0
70	2-Chlorethoxy	i-Propyl	OCH ₃	0
	2-Methylsulfonylethoxy	i-Propyl	OCH ₃	0
	1-Piperidinyloxy	i-Propyl	OCH ₃	0
45	Succinylimidoxy	i-Propyl	OCH ₃	0
	Methylsulfonamido	i-Propyl	OCH ₃	0
	OH	2-Methyl-3-buten-2-yl	OCH ₃	0
:	OH	E-1-Chlor-3-methyl-1-buten-3-yl	OCH ₃	0
50	OH	3-Buten-2-yl	OCH ₃	0

	R1	R ³	R ²	х
	OH	1-Cyclopentyl-1-ethyl	OCH3	0
5	ОН	1-Cyclopentyl-1-ethyl	OCH ₃	0
	ОН	Tetrahydropyran-4-yl	OCH ₃	0
	ОН	Tetrahydrothiopyran-3-yl	OCH ₃	0
	ОН	Tetrahydropyran-3-yl	OCH ₃	0
10	ОН	3-Isopropylisoxazolin-5-yl	OCH ₃	0
	ОН	2-Methyl-3-butin-2-yl	OCH ₃	0
	ОН	3-Butin-2-yl	OCH ₃	0
15	ОН	1-(3'-Isopropyl-isoxazolin- 5'-yl)-1-ethyl	OCH ₃	0
	ОН	1-(Tetrahydropyran-3'-y1)- 1-ethyl	OCH ₃	٥
	ОН	Cyclopentylmethyl	OCH ₃	0
20	ОН	Cyclopropylmethyl	OCH ₃	0
	ОН	1-Cyclopropyl-1-ethyl	OCH ₃	0
	ОН	1-Cyclopentyl-1-ethyl	OCH ₃	0
25	ОН	2-(4'-Methylphenyl)-2- propyl	OCH ₃	0
	ОН	2-(3'-Trifluormethyl- phenyl)-2-propyl	OCH ₃	0
	ОН	2-(4'-Chlorphenyl)-2-propyl	OCH ₃	0
30	ОН	1-(2'-Methoxyphenyl)-1-ethyl	OCH ₃	0
	ОН	2,6-Dimethylbenzyl	OCH ₃	0
	ОН	1-(2',6'Dimethyl-phenyl)-1- ethyl	OCH ₃	°
35	ОН	2-(Thiazol-2'-yl)-2-propyl	OCH ₃	0
	ОН	1-(4'-Phenylthiazol- 2'-yl)-ethyl	OCH ₃	0
	ОН	2-Methyl-3-buten-2-yl	OCH ₃	s
40	ОН	E-1-Chlor-3-methyl-1-buten-3-yl	OCH ₃	s
	ОН	3-Buten-2-yl	OCH ₃	s
	ОН	1-Cyclopentyl-1-ethyl	OCH ₃	s
	ОН	1-Cyclopropyl-1-ethyl	OCH ₃	S
45	ОН	Tetrahydropyran-4-yl	OCH ₃	s
	ОН	Tetrahydrothiopyran-3-yl	OCH ₃	s
	ОН	Tetrahydropyran-3-yl	OCH ₃	s
	ОН	3-Isopropylisoxazolin-5-yl	OCH ₃	T
50	ОН	2-Methyl-3-butin-2-yl	OCH ₃	s

	R ¹	. R ³	R ²	Х
	ОН	3-Butin-2-yl	OCH ₃	s
5	ОН	1-(3'-Isopropyl-isoxazolin- 5'-yl)-1-ethyl	OCH ₃	s
	ОН	1-(Tetrahydropyran- 3'-y1)-1-ethyl	OCH ₃	S
	ОН	Cyclopentylmethyl	OCH ₃	S
10	ОН	Cyclopropylmethyl	OCH ₃	s
	ОН	1-Cyclopropyl-1-ethyl	OCH ₃	s
	ОН	1-Cyclopentyl-1-ethyl	OCH ₃	S
	ОН	2-(4'-Methylphenyl)-2-propyl	OCH ₃	S
15	ОН	2-(3'-Trifluormethyl- phenyl)-2-propyl	OCH ₃	s
	ОН	2-(4'-Chlorphenyl)-2-propyl	OCH ₃	S
	ОН	1-(2'-Methoxyphenyl)-1-ethyl	OCH ₃	s
20	ОН	2,6-Dimethylbenzyl	OCH ₃	S
	ОН	1-(2',6'-Dimethyl-phenyl)- 1-ethyl	OCH ₃	S
٠	ОН	2-(Thiazol-2'-yl)-2-propyl	OCH ₃	S
25	ОН	1-(4'-Phenylthiazol- 2'-yl)-1-ethyl	OCH ₃	s
	Ethoxy	3-Buten-2-yl	OCH ₃	S
	Ethoxy	1-Cyclopropyl-1-ethyl	ОСН3	s
30	Ethoxy	1-Cyclopentyl-1-ethyl	OCH ₃	S
	Ethoxy	Tetrahydropyran-4-yl	OCH ₃	s
	Ethoxy	Tetrahydrothiopyran-3-yl	OCH ₃	s
	Ethoxy	Tetrahydropyran-3-yl	OCH ₃	s
35	Ethoxy	3-Isopropylisoxazolin-5-yl	OCH ₃	s
	Ethoxy	2-Methyl-3-butin-2-yl	OCH3	s
	Ethoxy	3-Butin-2-yl	OCH ₃	s
40	Ethoxy	1-(3'-Isopropyl-isoxazolin- 5'-yl)-1-ethyl	OCH ₃	s
	Ethoxy	1-(Tetrahydropyran- 3'-yl)-1-ethyl	OCH ₃	s
	Ethoxy	Cyclopentylmethyl	OCH ₃	s
45	Ethoxy	Cyclopropylmethyl	OCH ₃	s
	Ethoxy	1-Cyclopropyl-1-ethyl	OCH ₃	s
	Ethoxy	1-Cyclopentyl-1-ethyl	OCH ₃	s
50	Ethoxy	2-(4'-Methylphenyl)-2-propyl	OCH ₃	s

	\mathbb{R}^1	R ³	R ²	x
5	Ethoxy	2-(3'-Trifluormethyl- phenyl)-2-propyl	OCH ₃	s
	Ethoxy	2-(4'Chlorphenyl)-2-propyl	OCH ₃	s
	Ethoxy	1-(2'Methoxyphenyl)-1-ethyl	OCH ₃	s
	Ethoxy	2,6-Dimethylbenzyl	OCH ₃	s
10	Ethoxy	1(2',6'-Dimethyl-phenyl)- 1-ethyl	OCH ₃	s
	Ethoxy	2-(Thiazol-2'-yl)-2-propyl	OCH ₃	s
15	Ethoxy	1-(4'-Phenylthiazol- 2'-yl)-1-ethyl	OCH ₃	s
	Ethoxy	3-Buten-2-yl	OCH ₃	0
	Ethoxy	1-Cyclopentyl-1-ethyl	OCH ₃	0
	Ethoxy	1-Cyclopropyl-1-lethyl	OCH ₃	0
20	Ethoxy	Tetrahydropyran-4-yl	OCH ₃	0
	Ethoxy	Tetrahydrothiopyran-3-yl	OCH ₃	0
	Ethoxy	Tetrahydropyran-3-yl	OCH ₃	0
	Ethoxy	3-Isopropylisoxazolin-5-yl	OCH ₃	0
25	Ethoxy	2-Methyl-3-butin-2-yl	OCH ₃	0
	Ethoxy	3-Butin-2-yl	OCH ₃	0
	Ethoxy	1-(3'-Isopropyl-isoxazolin- 5'-yl)-1-ethyl	OCH ₃	0
30	Ethoxy	1-(Tetrahydropyran- 3'-yl)-1-ethyl	OCH ₃	0
	Ethoxy	Cyclopentylmethyl	OCH ₃	0
	Ethoxy	Cyclopropylmethyl	OCH ₃	0
35	Ethoxy	1-Cyclopropyl-1-ethyl	OCH ₃	0
	Ethoxy	1-Cyclopentyl-1-ethyl	OCH ₃	0
	Ethoxy	2-(4'-Methylphenyl)-2-propyl	OCH ₃	0
40	Ethoxy	2-(3'-Trifluormethyl- phenyl)-2-propyl	OCH ₃	0
**	OH	2(4'-Chlorphenyl)-2-propyl	OCH ₃	0
	ОН	1-(2'-Methoxyphenyl)-1-ethyl	OCH ₃	0
	ОН	2,6-Dimethylbenzyl	OCH ₃	0
45	ОН	1-(2',6'-Dimethylphenyl)- 1-ethyl	OCH ₃	0
	ОН	2(Thiazol-2'-yl)-2-propyl	OCH ₃	0
	ОН	1-(4'-Phenylthiazol- 2'-yl)-1-ethyl	OCH ₃	0
50	ОН	i-Propyl	OC ₂ H ₅	0

Die Verbindungen I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall

möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

25

40

45

Die Verbindungen I eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen. Als inerte Zusatzstoffe kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, vernetzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Losungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkylund Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gew.-%, vorzugsweise zwischen 0,5 und 90 Gew.-%, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 bis 100 %, vorzugsweise 95 bis 100 % (nach NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen I können beispielsweise wie folgt formuliert werden:

- I. Man vermischt 90 Gew.-Teilen der Verbindung Nr. 1 mit 10 Gew.-Teilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist;
- II. 20 Gew.-Teile der Verbindung Nr. 5 werden in einer Mischung gelöst, die aus 80 Gew.Teilen Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew. Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.- Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100.000 Gew.-Teilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- III. 20 Gew.-Teile der Verbindung Nr. 1 werden in einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100.000 Gew.-Teilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- IV. 20 Gew.-Teile des Wirkstoffs Nr. 5 werden in einer Mischung gelöst, die aus 25 Gew.-Teilen Cyclohexanon, 65 Gew.-Teilen einer Mineralölfraktion vom Siedepunkt 210 bis 280 °C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100.000 Gew.-Teilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- V. 20 Gew.-Teile des Wirkstoffs Nr. 1 werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphtalin-α-sulfonsäure, 1 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 60 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20.000 Gew.-Teilen Wasser erhält man eine

Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.

VI. 3 Gew.-Teilen des Wirkstoffs Nr. 1 werden mit 97 Gew.-Teilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das enthält 3 Gew.-% des Wirkstoffs enthält.

VII. 30 Gew.-Teilen des Wirkstoffs Nr. 1 werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

VIII. 20 Gew.-Teile des Wirkstoffs Nr. 1 werden mit 2 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 2 GEw.-Teilen Natriumsalz eines Phenolsulfonsäurenarnstoff-formaldehyd-Kondensates und 68 Gew.-Teilen eines paraffinischen-Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3, vorzugsweise 0,01 bis 1 kg/ha aktive Substanz (a.S.).

In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

20

5

10

30

35

40

50

	Botanischer Name	Deutscher Name
	Allium cepa	Küchenzwiebel
5	Ananas comosus	Ananas
	Arachis hypogaea	Erdnuß
	Asparagus officinalis	Spargel
	Beta vulgaris spp. altissima	Zuckerrübe
10	Beta vulgaris spp. rapa	Futterrübe
	Brassica napus var. napus	Raps
	Brassica napus var. napobrassica	Kohlrübe
	Camellia sinensis	Teestrauch
15	Carthamus tinctorius	Saflor - Färberdistel
	Carya illinoinensis	Pekannußbaum
	Citrus limon	Zitrone
20	Citrus sinensis	Apfelsine, Orange
20	Coffea arabica (Coffea canephora,	Kaffee
	Coffea liberica)	
	Cucumis sativus	Gurke
25	Cynodon dactylon	Bermudagras
	Daucus carota	Möhre
	Elaeis guineensis	Ölpalme
	Fragaria vesca	Erdbeere
30	Glycine max	Sojabohne
	Gossypium hirsutum (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium)	Baumwolle
35	Helianthus annuus	Sonnenblume
	Hevea brasiliensis	Parakautschukbaum
	Hordeum vulgare	Gerste
	Humulus lupulus	Hopfen
40 ·	Ipomoea batatas	Süßkartoffeln
	Juglans regia	Walnußbaum
	Lens culinaris	Linse
	Linum usitatissimum	Faserlein
45	Lycopersicon lycopersicum	Tomate
	Malus spp.	Apfel
	Manihot esculenta	Maniok
50	Medicago sativa	Luzerne
30	Musa spp.	Obst- und Mehlbanane

$\overline{}$
$\overline{}$

	Botanischer Name	Deutscher Name
-	Nicotiana tabacum (N. rustica)	Tabak
5	Olea europaea	Ölbaum
	Oryza sativa	Reis
	Phaseolus lunatus	Mondbohne
	Phaseolus vulgaris	Buschbohnen
10	Picea abies	Rotfichte
	Pinus spp.	Kiefer
	Pisum sativum	Gartenerbse
15	Prunus avium	Süßkirsche
	Prunus persica	Pfirsich
	Pyrus communis	Birne
	Ribes sylvestre	Rote Johannisbeere
20	Ricinus communis	Rizinus
	Saccharum officinarum	Zuckerrohr
	Secale cereale	Roggen
25	Solanum tuberosum	Kartoffel
20	Sorghum bicolor (S. vulgare)	Mohrenhirse
	Theobroma cacao	Kakaobaum
	Trifolium pratense	Rotklee
30	Triticum aestivum	Weizen
	Triticum durum	Hartweizen
	Vicia faba	Pferdebohne
35	Vitis vinifera	Weinrebe
JJ	Zea mays	Mais

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Verbindungen I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate, Chinolincarbonsäurederivate, Sulfonylharnstoffe, Aryloxy-, Heteroaryloxyphenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die neuen Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Synthesebeispiele

Beispiel 1

5 Herstellung von 2-Methylsulfonyl-4-methoxy-5,6-dihydrofuran[2,3-d]pyrimidin

2-Methylthio-4-chlor-5,6-dihydrofuran[2,3-d]pyrimidin

Zu einer Suspension von 65,8 g (0,357 mol) 2-Methylthio-4-hydroxy-5,6-dihydrofuran[2,3-d]pyrimidina (Collect. Czech. Chem. Commun. 32, 1582 (1967)) in 900 ml Chlorbenzol tropft man bei 125-130 °C 212,0 g (1,07 mol) Trichlormethylchlorformiat in 3 Std. zu, wobei dreimal je 0,5 ml DMF zugesetzt wird. Nach 1stündigem Rühren bei 130 °C wird das Reaktionsgemisch im Vakuum eingeengt und der Rückstand (74 g Öl) an Kieselgel chromatographiert (Toluol-Cyclohexan-Gemisch 9:1). Ausbeute: 17,0 g des o.g. Products vom Fp. 68-71 °C.

2-Methylthio-4-methoxy-5,6-dihydrofuran[2,3-d]pyrimidin

17,0 g (84 mmol) 2-Methylthio-4-chlor-5,6-dihydrofuran[2,3-d]pyrimidin werden in 90 ml Methanol gegeben, bei 45 °C 21,1 g (0,117 mol) 30 %ige Natriummethylat-Lösung zugetropft und 2 Std. bei 50 °C nachgerührt. Nach Neutralisieren auf pH 6 mit etwas Eisessig wird das Reaktionsgemisch in 350 ml Eiswasser eingerührt. Nach Absaugen, Waschen mit Wasser und Trocknen erhält man 15,1 g des o.g. Produkts vom Fp. 90-92 °C.

2-Methylsulfonyl-4-methoxy-5,6-dihydrofuran[2,3-d]pyrimidin

In eine Mischung von 15,1 g (76 mmol) 2-Methylthio-4-methoxy-5,6-dihydrofuran[2,3-d]pyrimidin in 120 ml Methylenchlorid und 76 ml Wasser leitet man bei 0 bis 5 °C unter Rühren Chlor ein, bis die Reaktionsmischung blaß gelb gefärbt ist. Nach 30minütigem Nachrühren wird die organische Phase abgetrennt und die Wasserphase mit 100 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden getrocknet und eingeengt. Aus dem Rückstand (16,7 g) isoliert man nach Chromatographie an Kieselgel (Toluol-Essigester-Gemisch 4:1) 5,5 g des o.g. Produkts vom Fp. 122-24 °C.

Beispiel 2

5 Herstellung von 2-Methylsulfonyl-4-methyl-5,6-dihydrofuran[2,3-d]pyrimidin

Analog zu Beispiel 1 erhält man aus 2-Methylthio-4-methyl5,6-dihydrofuran[2,3-d]pyrimidin (Callect. Czech. Chem. Commun. 32, 1582 (1967)) das obige Produkt vom Fp. 85-90 °C in 80 % Ausbeute. In entsprechender Weise sind die in Tabelle 2 aufgeführten Sulfone III erhältlich.

40

15

25

50

Tabelle

R ¹³	R ²
CH ₃	Cl
CH ₃	OCHF ₂
СН3 .	OC ₂ H ₅
C ₆ H ₅	ОСН3

Beispiel 3

5

10

15

20

25

Allgemeine Vorschrift zur Herstellung von Verbindungen der Formel I aus 2-Methylsulfonyl-4-methyl-5,6-dihydrofuran[2,3-d]pyrimidin und Milchsäurederivaten der Formel HX-CHR³-COOH:

Zu 7 mmmol eines Milchsäurederivates HX-CHR³-COOH in 15 ml trockenem Dimethylsulfoxid werden 1,57 g (14 mmol) Kalium-tert.-butylat zugegeben und 1 Stunde bei Raumtemperatur gerührt. Nach Zugabe von 1,61 g (7 mmol) 2-Methylsulfonyl-4-methyl-5,6-dihydrofuran[2,3-d]pyrimidin wird das Reaktionsgemisch 48 Stunden bei Raumtemperatur gerührt und dann auf 300 ml Wasser, dem 2,5 ml Phosphorsäure zugesetzt sind, gegeben. Man extrahiert mit Essigsäureethylester, trocknet über Natriumsulfat und entfernt das Lösungsmittel im Vakuum. Das Rohrprodukt kann bei Bedarf durch Chromatographie an Silica-Gel gereinigt werden. Handelt es sich um einen Feststoff, so kann er auch durch Umkristallisieren aus einem geeigneten Lösungsmittel weiter gereinigt werden.

Soll ein Milchsäurederivat HX-CHR³-COR¹ umgesetzt werden, bei dem R¹ kein acides Proton trägt, soverwendet man nur ein Aquivalent (7 mmol) Kalium-tert.-butylat.

Gemäß dieser allgemeinen Vorschrift wurden die in nachstehender Tabelle aufgeführten Verbindungen hergestellt.

Tabelle 1

 $\begin{array}{c|c}
 & R_3 \\
 & N \\
 & N
\end{array}$ $\begin{array}{c|c}
 & OCH_3 \\
 & N \\
 & OCH_3
\end{array}$

Nr.	R ¹	R ³	phys. Daten Fp. [°C]
1	ОН	i-Propyl	188-190
2	ОН	Cyclopropyl	
3	ОН	2-Phenyl-2-propyl	285-286
4	ОН	2-Butyl	
5	ОН	tertButyl	170-173
6	ОН	Cyclopentyl	134-135
7	ОН	Phenyl	
8	ОН	Benzyl	179-180 (L-Enantiomer)
9	ОН	1-Phenyl-1-ethyl	135-137
10	ONa	Benzyl	123-127
11	ОН	2-Hydroxy-1,1-dimethyle- thyl	151-153 (Racemat)
12	ОН	2-Hydroxy-1,1-dimethyle- thyl	154-156 (D-Enantiomer)
13		O-CH ₂ -C (CH ₃) ₂ -	140-141 (Racemat)
14		O-CH ₂ -C (CH ₃) ₂ -	134-136 (D-Enantiomer)
15	OCH ₃	2-Fluor-2-propyl	Ö1
16	ОН	2-Fluor-2-propyl	165-169

Anwendungsbeispiele

Die herbizide Wirkung der Verbindungen I ließ sich durch Gewächshausversuche zeigen:
Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zwecke der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bei einer Wuchshöhe von 3 bis 15 cm mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,25 und 0,5 kg/ha a.S.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10-25 °C bzw. 20-35 °C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name	Abkürzung	Deutscher Name
Glycine max	GLXMA	Sojabohne
Avena fatua	AVEFA	Flughafer
Amaranthus retroflexus	AMARE	Zurückgekrümmter Fuchsschwanz
Stellaria media	STEME	Vogelmiere
Sinapis alba	SINAL	Weißer Senf
Triticum aestivum	TRZAS	Sommerweizen

Mit 0,5 bzw. 0,25 kg/ha aktive Substanz erzielt man sehr gute herbizide Wirkung, z.B. mit den Beispielen Nr. 5 und 6. Dabei zeigt die Verbindung 5 eine gute Selektivität in der Beispielkultur Weizen, während Verbindung 6 ausgesprochen selektiv in Soja wirkt.

Patentansprüche

1. Glykolaldehyd- und Milchsäurederivate sowie deren Schwefelanaloge der Formel I

$$R^{1} - C - CH - X - N = N$$

$$N = N$$

$$0$$

$$0$$

$$1$$

in der die Substituenten folgende Bedeutung haben:

R¹ Wasserstoff;

eine Succinylimidoxygruppe;

ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend zwei bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

ein Rest

50

55

10

15

20

30

35

40

in dem m für 0 oder 1 steht und R¹⁴ und R¹⁵, die gleich oder unterschiedlich sind, die folgende Bedeutung haben:

Wasserstoff;

5

10

15

20

25

30

35

40

45

50

55

 C_1-C_6 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, wobei diese Reste jeweils ein bis fünf Halogenatome und/oder ein bis zwei der folgenden Gruppen tragen können: C_1-C_6 -Alkoxy, C_3-C_6 -Alkenyloxy, C_3-C_6 -Alkinyloxy, C_1-C_6 -Alkylthio, C_3-C_6 -Alkenylthio, C_3-C_6 -Alkinylthio, C_1-C_6 -Halogenalkoxy, Cyano, C_1-C_6 -Alkylcarbonyl, C_3-C_6 -Alkenylcarbonyl, C_3-C_6 -Alkinyloxycarbonyl, C_3-C_6 -Alkinyloxycarbonyl, bis- C_1-C_6 -Diakylamino, cyclo- C_1-C_6 -Alkyl, optionell substituiertes Phenyl;

optionell substituiertes cyclo-C₃-C₆-Alkyl; -----

optionell substituiertes Phenyl; oder R¹⁴ und R¹⁵ gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₄-C₇-Alkylenkette oder gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₃-C₆-Alkylenkette mit einem Heteroatom, ausgewahlt aus der Gruppe Sauerstoff, Schwefell

oder Stickstoff;

R1 ferner eine Gruppe

$$- \circ (CH_2)_{\Gamma} - C - N \Big|_{R^{16}}$$

in der R^{16} und R^{17} , die gleich oder unterschiedlich sind, für Wasserstoff, C_1 - C_6 -Alkyl, optionell substituiertes Phenyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl stehen und I die Werte 1, 2, 3 oder 4 annimmt;

R1 ferner eine Gruppe

$$- O(CH_2)_1 - S - R^{18}$$

in der R¹⁸ für C₁-C₆-Alkyl, optionell substituiertes Phenyl, C₁-C₆-Halogenalkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl steht, I die Werte 1, 2, 3 oder 4 und k die Werte 0, 1 oder 2 annehmen; R¹ ferner einen Rest OR⁵, worin R⁵ bedeutet:

- a) Wasserstoff, ein Alkalimetallkation, das Äquivalent eines Erdalkalimetallkations, das Ammoniumkation oder ein organisches Ammoniumion;
- b) eine C₃-C₁₂-Cycloalkylgruppe, welche ein bis drei C₁-C₄-Alkylreste tragen kann;
- c) eine C₁-C₁₀-Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₃-C₁₂-Cycloalkyl, C₁-C₈-Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die aromatischen Reste ihrerseits jeweils ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkythio;
- d) eine C₁-C₁₀-Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein 5-gliedriger Heteroaromat enthaltend ein bis drei Stickstoffatome, oder ein 5-gliedriger Heteroaromat enthaltend ein Stickstoffatom und ein Sauerstoffoder Schwefelatom, welche ein bis vier Halogenatome und/oder ein bis zwei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;
- e) eine C₂-C₆-Alkylgruppe, welche in der 2-Position einen der folgenden Reste trägt: C₁-C₆-Alkoxyimino, C₃-C₆-Alkenyloxyimino, C₃-C₆-Halogenalkenyloxyimino oder Benzyloxyimino;

- f) eine C₃-C₆-Alkenyl- oder eine C₃-C₆-Alkinylgruppe, wobei diese Gruppen ihrerseits eine bis fünf Halogenatome tragen können;
- g) ein Phenylrest, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;
- h) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;
- i) eine Gruppe -N = CR^6R^7 , worin R^6 und R^7 bedeuten: C_1 - C_2 0-Alkyl, welches seinerseits einen Phenylrest, eine C_1 - C_4 -Alkoxy- und/oder eine C_1 - C_4 -Alkylthiogruppe tragen kann; Phenyl oder R^6 , R^7 gemeinsam eine C_3 - C_{12} -Alkylenkette, welche ein bis drei C_1 - C_3 -Alkylgruppen tragen kann;

R¹ ferner ein Rest

5

10

15

20

25

30

35

40

45

50

55

$$-$$
 O (CH₂) P $-$ OR¹⁸

in dem R¹⁸ und I die oben genannte Bedeutung haben, R¹ ferner ein Rest

- in dem R¹⁹ für die Reste C₁-C₆-Alkyl oder Phenyl steht, die ihrerseits ein bis vier der folgenden Substituenten tragen können:
- Halogen, Nitro, Cyano, C₁-C₆-Alkyl;

 R² Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio;
- R³ Wasserstoff;
 - eine C₁-C₈-Alkyl-, C₂-C₈-Alkenyl-, C₂-C₈-Alkinyl-, Phenyl-, C₃-C₈-Cycloalkenyl- oder C₃-C₈-Cycloalkylgruppe, die jeweils ein bis fünf Halogenatome und unabhängig voneinander ein bis drei der folgenden Substituenten tragen können:
 - i) Hydroxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkyl, Phenylcarbonyl, C_3 - C_{12} -Cycloalkyl, C_3 - C_{12} -Cycloalkenyl;
 - ii) einen 5-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen, sowie ein bis vier Stickstoffatome oder ein bis zwei Stickstoffatome sowie zusätzlich ein Schwefel- oder Sauerstoffatom, welcher ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl oder Phenyl, das seinerseits ein bis drei Halogenatome und/oder ein bis drei Methylgruppen tragen kann;
 - iii) einen Thienylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;
 - iv) einen Pyridylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;

v) einen Naphthyl-, Chinolin-, Benzoxazolyl-, Benzthiazolyl-, Benzthienyl-, Indazolyl- oder Benztriazolylrest, welcher jeweils ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder C₁-C₂-Halogenalkyl;

vi) einen Phenylrest, der seinerseits ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano, Nitro, C₁-C₄-Dialkylamino, und/oder C₁-C₄-Alkylthio;

vii) einen 5- oder 6-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen sowie ein bis zwei Sauerstoff- oder Schwefelatome, der außerdem folgende Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Nitro:

R³ ferner einen 5- oder 6-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen, sowie ein bis vier Stickstoffatome oder ein bis zwei Stickstoffatome sowie zusätzlich ein Schwefel- oder Sauerstoffatom, welcher ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxy oder Phenyl, das seinerseits ein bis drei Halogenatome und/oder ein bis drei Methylgruppen tragen kann;

einen Pyridylrest, der ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder Nitro;

einen Naphthyl-, Chinolin-, Benzoxazolyl-, Indazolyl- oder Benztriazolylrest, welcher jeweils ein bis drei Halogenatome und/oder einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder C₁-C₂-Halogenalkyl;

einen 5- oder 6-gliedrigen Heterocyclus, enthaltend keine, eine oder zwei Doppelbindungen sowie ein bis zwei Sauerstoff- oder Schwefelatome, der außerdem folgende Reste tragen kann: Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy;

R³ gemeinsam mit R¹ eine optionell substituierte C₃-C₅-Alkylenkette, in der eine CH₂-Gruppe durch Sauerstoff, Schwefel oder Stickstoff ersetzt sein kann;

X ein Sauerstoffatom, ein Schwefelatom oder eine Einfachbindung;

5

10

15

20

25

30

35

45

50

55

Y eine C₂-C₄-Alkylen oder C₂-C₄-Alkenylenkette, wobei eine Methylengruppe jeweils durch eine Oxo-Gruppe (= 0) substituiert sein kann und/oder die Alkylen- bzw. Alkenylenkette durch C₁-C₄-Alkyl, Phenyl, C₁-C₄-Alkoxy oder C₁-C₄-Alkoxycarobnyl substituiert sein kann;

wobei in den oben genannten Fällen der Ausdruck optionell substituiert jeweils bedeutet, daß die so bezeichneten Gruppen einen oder mehrere der folgenden Substituenten tragen können: Halogen, Nitro, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, sowie umweltverträgliche Salze der Verbindungen I.

2. Glykolaldehyd- und Milchsäurederivate der Formel I gemäß Anspruch 1, in der R² Methoxy und X Sauerstoff bedeuten und R¹ und R³ die in Anspruch 1 genannte Bedeutung haben.

3. Milchsäurederivate der Formel I gemäß Anspruch 1, in der R¹ eine Gruppe OR⁵ bedeutet und R⁵ für Wasserstoff, C₁-C₁₀-Alkyl, Benzyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl steht, R² Methoxy, R³ Wasserstoff oder C₁-C₆-Alkyl, das wie in Anspruch 1 genannt substituiert sein kann, X Sauerstoff oder Schwefel und Y eine C₂H₄-Kette bedeuten.

4. Milchsäurederivate der Formel I gemäß Anspruch 1, in der R¹ eine Gruppe OR⁵ bedeutet und R⁵ für eine Gruppe -N = CR⁶ R² steht, in der R⁶ bzw. R² einen C₁-C₄-Alkylrest, der unsubstituiert oder durch Phenyl, C₁-C₄-Alkoxy und/oder C₁-C₄-Alkylthio substituiert ist, oder einen Phenylrest darstellt oder R⁶ zusammen mit R² eine C₃-C₆-Alkylenkette bildet, die durch C₁-C₃-Alkyl substituiert sein kann, R² Methoxy, R³ Wasserstoff oder C₁-C₃-Alkyl, das wie in Anspruch 1 genannt substituiert sein kann, X Sauerstoff oder Schwefel und Y eine C₂-H₄-Kette bedeuten.

5. Herbizides Mittel oder Mittel zur Beeinflussung des Pflanzenwachstums, enthaltend eine Verbindung der Formel I gemäß Anspruch 1 und übliche inerte Zusatzstoffe..

6. Herbizides Mittel oder Mittel zur Beeinflussung des Pflanzenwachstums, enthaltend und übliche inerte Zusatzstoffe und eine Verbindung der Formel I gemäß Anspruch 1, in der R¹ eine Gruppe OR⁵ bedeutet und R⁵ für Wasserstoff, C₁-C₁₀-Alkyl, Benzyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl steht, R² Methoxy, R³ Wasserstoff oder C₁-C₈-Alkyl, das wie in Anspruch 1 genannt substituiert sein kann, X Sauerstoff oder Schwefel und Y eine C₂H₄-Kette bedeuten.

- 7. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge einer Verbindung der Formel I gemäß Anspruch 1 auf die Pflanzen oder deren Lebensraum einwirken läßt.
- 8. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man eine bioregulatorisch wirksame Menge einer Verbindung der Formel I gemäß Anspruch 1 auf die Pflanzen oder derem Lebensraum einwirken läßt.
- 9. Verfahren zur Herstellung der Glykolaldehyd- und Milchsäurederivate der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man Glykolaldehyd- bzw. Milchsäurederivate der Formel II

$$\begin{array}{c|c}
 & 0 & R^3 \\
 & \parallel & \parallel \\
 & R^1 - C - CH - XH
\end{array}$$

mit Sulfonen der Formel III

$$R^{13}SO_{2} \stackrel{R^{2}}{\swarrow} N - Y$$

$$N \stackrel{}{\searrow} V - Y$$

$$N \stackrel{}{\longrightarrow} V - Y$$

$$N \stackrel{}$$

wobei die Reste R¹ bis R³, X und Y die in Anspruch 1 genannte Bedeutung haben und R¹³ SO₂ eine übliche nukleofuge Abgangsgruppe darstellt, in Gegenwart einer Base umsetzt.

30

15

40

45

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anneldung

EP 92 12 1142

EINSCHLÄGIGE DOKUMENTE				
etegorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der madgeblichen Teile		Betrifft Anspruch	ELASSIFICATION DER ANMELDUNG (in. CL5) CO7D491/048 A01N43/90 //(C07D491/048, 307:00,239:00)
),A	EP-A-0 400 741 (SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ) * Ansprüche 1,17 *		1,5	
P,A	EP-A-0 490 224 (BASF AKTIENGESELLSCHAFT) * Ansprüche 1,3 *		1,5	
	•		•	
				•
	s. mere			
				a an analysis of the second of
		:		
				SACHGEBIETE (bs. Cl.5)
				C07D
				AOIN
		•		
				1
Der vo	orliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
DEN HAAG		Abeldahtan der Recherche 30 MAERZ 1993		VOYIAZOGLOU D.
X : vos Y : vos	EATEGORIE DER GENANNTEN I besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindun deren Verbffestlichung derselben Kast	tut Rach dom . g mit einer D : in der Am	ing zugrunde liegende entickument, das jelt Anmeldetatum veröffe seldung angeführtes E Gründen angeführtes	atlicht worden ist
A : tec	hnologischer Hintergrund htschriftliche Offenberung ischenliteratur	-	er gleichen Patentfazz	ille, überelastimmendes

epo porm 1933 dale (poed)