PRO 2161 SHRIMP BREEDING AND LARVAL REARING

(Cleaner shrimp)

By
Tharindi Galhena
2016/2/29

CONTENT

1.	Introduction	1
	Failures in trial 1	
	Mitigation of previous errors	
	System modifications	
	Spawning chamber	
	Bio filter	
2.	Brood stock and larval feeding	6
3.	Procedure of trial 2	7

1. Introduction

This is the second trial of shrimp breeding. Materials and methods used this trial may overcome errors in the first trial. Modifications are as follows:

- 1. Modified the spawning system
- 2. Modified the spawning chamber

Trial one failure	Results	Modification done in the
		trial 2
Accumulation of feed on	Increase ammonia	Aeration and water inlet
the bottom	level which is	extended to the tank
	harmful to aquatic	bottom
	organisms	
Lack of aeration	Oxygen deficiency	Added an aeration system
Poor water recirculation	Oxygen deficiency	Added two power heads
		and modify the pipe lines
Poor water quality	High ammonia, low	Added a bio filter
	oxygen.	

By providing incoming water at the bottom of the tank

- shrimps can obtain oxygenated water.
- turbulence prevent accumulation of waste on the bottom.
- Turbulence suspend larvae in the water column. Hence they can easily contact with food particles.

- X, Y, Z are new positions of taps. By them water flow of all three tanks can be easily fixed.
- Water flow of the tanks are now about 4L/min.

Also in this trial spawning chamber was modified. Previous spawning chamber was made with a mosquito net. But larvae, who are smaller than mesh of the mosquito net escape from the spawning chamber. This create several issues,

- 1. Larvae escaped through tank outlet pipe.
- 2. Cloth traps set at the outlets block the water circulation.

Therefore spawning chambers are replaced with a smaller mesh cloth (Organdi net) which can retain larvae inside it.

Figure 1: New spawning chamber

Figure 2: Bio filter in the shrimp system

2. Brood stock and larval feeding

Food items used in the previous trial one, using for the trial 2 also.

	Feed	Time
	Egg custard	8.45 AM
brooders	Egg custard	12.45 PM
	Pellet feed	4.45 PM
Larvae- DAY 5	Micro algae	8.00 AM
	Rotifers	11.00AM
	Micro algae	1.00PM
	Rotifers	3.00 PM
		5.00PM
Larvae- DAY 6 to 11	Enriched brine shrimp	8.00 AM
		12.00PM
		4.00PM
Larvae – DAY 12 to 5 months	Brine shrimp	8.00 AM
	Powder feed	12.00PM
	Brine shrimp	4.00PM

Figure 3: Marine chlorella culture in a styrafoam box

Figure 4: Rotifer culture in a styrafoam box

3. Procedure

a. Water quality was monitored prior to introducing brooders.

Parameter	value
NH₃ (ammonia)	0
NO ⁻ ₂ (nitrite)	0.20mg/L
NO-3 (Nitrate)	5.0mg/L
рН	8.0-8.5
Temperature	28°C
Salinity	35

b. Broodstock selection

A pair of Hipolis shrimps with length greater than 5 cm was selected from the back up tank. One shrimp should be larger than the other. Gave a 5 minute fresh water bath prior to introducing to the spawning chamber. Brooders were introduced to the system on 2016/2/16.

- c. Brooders rearing
- > Fed them according to the time table.
- > Siphoned 20% water daily from the system.
- ➤ Give photoperiod of 24 hours.

d. Spawning and hatching

Eggs were clearly visible in females belly on 2016/2/24. One batch of eggs were hatched on 2016/2/29. Male was removed from the chamber. Eggs could be hatched during late night or early morning.

e. Larval rearing

Cleaner shrimps spend their larval stage from 58 to 140 days.

Fed larvae with chlorella according to the time table. 80mL of micro algae containing water was added to a tank per time.

Figure 5: 80 mL feeding spoon