SOC 7717 Event History Analysis and Sequence Analysis

Week 4: Prepare Survival Data for Analysis in Stata Wen Fan

Spring 2019

I. Overview

In order to analyze survival data it is necessary to specify at least (1) a variable representing survival time (or analysis time) and (2) a variable specifying whether or not the event of interest was observed (called the failure or the censoring variable). Depending on variable availability, sometimes, instead of specifying a variable representing survival time, we can specify the entry and exit dates. This is necessary if subjects enter the study at different times.

In many statistical software programs (such as SAS), these variables must be specified every time a new analysis is performed. In Stata, by contrast, these variables are specified once using the stset command and then used for all subsequent survival analysis (st) commands (until the next stset command).

Stata's st (survival time) suite of commands provide sophisticated tools for survival analysis. In short, with continuous survival time data, once you have stset them—declared the variables summarizing the spell length and failure/censoring status—you can go straight ahead and summarize and analyze the data without referring to those key variables again. It should be noted, however, that the Stata st suite is designed with an emphasis on analysis of continuous survival time data. Although discrete (grouped duration) data may be usefully summarized using st tools, estimation of discrete time hazard models is typically done outside this framework.

II. Assumptions about the original data structure

For now we assume the data are structured in such a way that there is a single record per "subject". And there are no complications arising from left censoring, gaps, left truncation, or multiple events, etc. (These complications can also be

handled using Stata's st suite though. See the textbook for details.) There are no missing values for simplicity. And the data do not need to be weighted.

We shall also assume that variables related to survival time and censoring already exist. Depending on your particular research question, you may have to generate your own survival time and censoring variables in practice.

Finally, for now we assume that there are no time-varying covariates. In this case, all the explanatory variables in our regressions have a fixed value for each subject.

III. Using stset: An example

We use the hrs data as an example. This data set contains a sample of respondents from the Health and Retirement Study, with 33,918 observations and 17 variables.

	use	"hrs	.dta",	clear		
	desc	ribe				
Сс	ntai	ns da	ata fr	om hrs	.dta	
	obs:		33	,918		
7	ars:			17		
٤	size:		1,187	,130		

5126. 1,	107,100			
variable name	storage type	display format	value label	variable label
hhidpn	long	%12.0g		hhidpn: hhold id + person number /num
deathw12	float	%9.0g		R dead by wave 12
deathyr	float	%9.0g		R year of death
firstinyr	float	%9.0g		first interview year
bpw2	byte	%9.0g		had high blood pressure since last wave, wave 2
bpw3	byte	%9.0g		had high blood pressure since last wave, wave 3
bpw4	byte	%9.0g		had high blood pressure since last wave, wave 4
bpw5	byte	%9.0g		had high blood pressure since last wave, wave 5
bpw6	byte	%9.0g		had high blood pressure since last wave, wave 6
bpw7	byte	%9.0g		had high blood pressure since last wave, wave 7
bpw8	byte	%9.0g		had high blood pressure since last wave, wave 8
bpw9	byte	%9.0g		had high blood pressure since last wave, wave 9
bpw10	byte	%9.0g		had high blood pressure since last wave, wave 10
bpw11	byte	%9.0g		had high blood pressure since last wave, wave 11
bpw12	byte	%9.0g		had high blood pressure since last wave, wave 12

4 Feb 2019 18:47

byear	float	%9.0g	year of birth
female	float	%9.0g	female

Sorted by: hhidpn

. list in 10/20, linesize(75) compress

Let's first take a look at a few observations in the data, and the distribution of the failure variable.

10. hhidpn de_12 dea_r fir_~r bpw2 bpw3 bpw4 bpw5 10013040 2015 0 1992 0 0 0 0 bpw6 bpw7 bpw8 bpw10 bpw11 bpw12 bpw9 byear fem_e 0 1947 hhidpn 10038010 bpw2 bpw5 11. de_~12 dea_r fir_r bpw3 bpw4 2015 0 1992 0 0 0 0 bpw6 bpw8 bpw10 bpw11 bpw12 bpw7 bpw9 fem_e byear 0 0 0 0 0 0 0 1936 0

12.	hhid 100380	-	de	e_12 0	dea_r 2015	fir_r 1992	bpw2 0	bpw3 0	bpw4 0	bpw5 0	
	bpw6 0	bpt	47 0	bpw8	1	bpw10 0	bpw11 0	bpw12 0	byear 1943	fem_e 1	

13.	1 1	1	de	0	dea_r 2015	fir_r 1992	bpw2 0	bpw3 0	bpw4 0	bpw5 0
	bpw6 0	bpw	7 0	bpw8 0	bpw9	bpw10 0	bpw11 0	bpw12 0	byear 1941	fem_e 1

14.	hhidpn de 10059020		e_12 0	dea_r 2015	fir _~ r 1992	bpw2	bpw3	bpw4 0	bpw5	
	bpw6	bpv	7 0	bpw8	bpw9	bpw10 0	bpw11 0	bpw12 0	byear 1935	fem_e 1

15.	hhic 100590	1	~		ea_r 2015	fir_r 1992	bpw2	bpw3	bpw4	bpw5
	bpw6	bpv	₃ 7	bpw8	bpw9	bpw10 0	bpw11 0	bpw12 0	byear 1928	fem_e 0

16.	hhidpn 10063010		de	e_12 0	dea_r 2015	fir_r 1992	bpw2	bpw3 0	bpw4	bpw5	
	bpw6	bpv	7 0	bpw8	bpw9	bpw10 0	bpw11 0	bpw12 0	byear 1938	fem_e	

17.	hhio 100750		de	e_12 0	(dea_r 2015	fir_r 1992	bpw2	bpw3	bpw4	bpw5
	bpw6 0	bpw	7 0	bpw8		bpw9	bpw10 0	bpw11 0	bpw12 0	byear 1937	fem_e 1
18.	hhio 100750		de	e_12 1	(dea_r 2007	fir_r 1996	bpw2	bpw3	bpw4	bpw5
	bpw6 0	bpw	7 0	bpw8		bpw9	bpw10	bpw11	bpw12	byear 1927	fem_e 0
19.	hhio 100830		de	e_12 0		dea_r 2015	fir_r 1992	bpw2	bpw3	bpw4	bpw5
	bpw6	bpw	7 0	bpw8		bpw9	bpw10 0	bpw11 0	bpw12	byear 1941	fem_e
20.	hhio 100900		de	e_12 1	(dea_r 1994	fir _r 1992	bpw2	bpw3	bpw4	bpw5
	bpw6	bpw	i7	bpw8	3	bpw9	bpw10	bpw11	bpw12	byear 1934	fem_e
4 1.	1 +1		<u> </u>								
	deathw:	12, M	1								
	ead by ave 12		I	req.		Perc	ent	Cum.			
	0 1			3,202),716			.41 .59	68.41			
	Total		33	3,918		100	.00				

We see that out of the 33,918 respondents in the data, about 68% are censored whereas the other 32% had experienced the event (i.e., death) by the twelfth wave.

Treating year of death as a continuous variable, we stset the data:

```
10716 failures in single-failure-per-subject data
441292 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 18
last observed exit t = 115
```

As will become clear soon, this setup says that each individual enters the study (becomes "at risk") at the date specified by firstinyr. Here we use attained age as the clock, so the origin is year of birth (byear). To use calendar time as the clock, we can specify a fixed date as the time origin (e.g., origin(1980)).

1. Specifying analysis time (origin() and scale())

Analysis time can be obtained in two ways:

- Construct the analysis time yourself and then stset the data;
- Specify stset's origin() and/or scale() options and then stset the data.

If you go with the second approach, analysis time is calculated by Stata as $t = \frac{time - origin}{scale}$. In our case, the analysis time is in fact age, rather than calendar year—it does not make much sense to think that people living in the same calendar year have the same risk of dying, but it is reasonable to assume that people with the same age have roughly similar risk of dying. Therefore, we use origin() to define year of birth as the origin. See below for more discussion on the choice of origin. The scale is just the units in which time is measured. In our example, we want to talk about survival in years, so we keep it as it is. But suppose that we want to evaluate survival risks in decades, we could specify scale(10).

Some other ways to specify origin() include: origin(time 20), origin(time td(15feb2018), origin(time min(diagdate1, diagdate2), origin(event == 3 4). If the time-related variables in your data are recorded using Stata's date format, please read section 6.1 of the textbook carefully.

2. Specifying failure (failure())

In the stset command, failure() specifies the failure event. Note that there is a failure whenever the variable in the parenthesis is not equal to zero and not missing. Also note that if the failure variable contains missing values, it is treated as if it contains 0. Alternatively use the syntax failure(failvar == numlist) in which case the failure cases are those with failvar equal to numlist. In other words, we could have specified stset deathyr, failure(deathw12 == 1) id(hhidpn) origin(time byear) enter(time firstinyr) to get the same results. If failure(.) is not specified, every record is assumed to end in a failure.

3. Specifying the subject-ID variables (id())

If there are multiple records per subject in your data ("long format"), you must use the id() option to specify a subject-ID variable. Even in single-record data ("wide format"), as in our HRS example, it is still recommended to specify an ID variable.

4. Specifying when subjects enter the analysis (enter())

Ideally we want subjects to enter our analysis at the onset of risk, but sometimes our data may contain records reporting values before the subject was really under observation. In the HRS example, respondents entered the survey in different calendar years. To incorporate that information, we add enter(time firstinyr). There are other ways to specify enter() (see the 6.4.5 section of the textbook for more details).

5. Specifying when subjects exit from the analysis (exit())

If you don't specify exit(), Stata assumes a subject exits either when the subject's data run out or upon first failure. There are situations in which you may want subjects to exit earlier or later. Read the 6.3.4 section in our textbook carefully if that's the case.

IV. After stset

After stset, we see that a set of new variables are created in the data, all prefaced with "_". These always have the same names: that's how Stata's survival time estimation commands are able to work, because it knows that, if the data have been stset, then the key variables (duration, failure indicator, etc.) are available. Here are the variables:

. sum _*					
Variable	Obs	Mean	Std. Dev.	Min.	Max
_st	33,918	1	0	1	1
d	33,918	.3159384	.4648954	0	1
_origin	33,918	1938.15	15.20826	1890	1995
_t	33,918	72.98458	11.98638	20	115
_t0	33,918	59.97403	11.21397	18	103

The _st variable is a 0/1 variable, equal to 1 for observations whose data have been stset (it would be zero if one had excluded some cases with an if qualifier, for instance). The _d variable is the failure indicator, another 0/1 variable, and corresponds to the variable deathw12 in this case. Finally, _t0 and _t are variables recording the time span for each case. Each record starts at _t0 and

concludes at _t. This dataset has delayed entry, so the entry times are different. If, however, all cases entered at the same time, then _t0 = 0. In our example, we also have a _origin variable to denote the time of origin, but note that unlike the other four, this variable is not generated by Stata after every stset—it is created when and only when we specify origin() when stset out data.

Typing st by itself shows how the data are currently set.

That there are 10,716 failures, as the output from the stset command says, can be easily verified using tab deathw12. Note that, however, this equality does not have to be the case, especially when there are tied events. The 441292 in the stset output refers to the total number of time periods for which this sample was observed at risk of failure since time t = 0: the sum of study time across all persons. You can get almost all this information more directly using stsum:

The incidence rate, 0.024 = 10716/441292. See also stdes, which comes into its own for description of more complicated survival data structures.

deathw12

(deathyr-origin) analysis time _t: origin: time byear enter on or after: time firstinvr id: hhidpn per subject Category total mean min median no. of subjects 33918 33918 no. of records 1 1 1 (first) entry time 59.97403 18 56 (final) exit time 72.98458 20 74 subjects with gap 0

max

1

103

115

23

1

11

1

The stptime command tabulates the number of events and person time-at risk and calculates event rates:

13.01055

.3159384

0

441292

10716

. stptime, by(female) per(1000)

. stdescribe

time on gap if gap

time at risk

failures

failure _d:

failure _d: deathw12
analysis time _t: (deathyr-origin)

 $\begin{array}{ccc} & \text{origin:} & \text{time byear} \\ \text{enter on or after:} & \text{time firstinyr} \end{array}$

id: hhidpn

	. Interval]	[95% Conf.	rate	failures	person-time	female	
	28.84766 22.22684	27.30379 21.09615	28.065115 21.654118	5079 5637	180972 260320	0 1	
,	24.74739	23.8278	24.283241	10716	441292	total	

Note that you need a subject-ID variable to use the stptime command. ALso note that person-time is in years but the rates are per 1000 person-years.

The strate command performs similar calculations.

. strate female, per(1000)

failure _d: deathw12
analysis time _t: (deathyr-origin)
origin: time byear

enter on or after: time byear enter on or after:

id: hhidpn

Estimated rates (per 1000) and lower/upper bounds of 95% confidence intervals (33918 records included in the analysis)

female	D	Υ	Rate	Lower	Upper
0	5079 5637			27.304 21.096	

The incidence rate ratio (IRR) for men versus women is 28.065/21.654 = 1.30. That is, without controlling for any possible confounding factors, we estimate that men's risk of dying is approximately 30% higher compared with women's risk of dying. This is sometimes called a "crude estimate"; it is not adjusted for potential confounders.

Some of the Stata survival analysis (st) commands are given below. Further details can be found in the manuals or online help.

Command	Function			
stset	Declare data to be survival-time data			
stdes	Describe survival-time data			
stsum	Summarize survival-time data			
stsplit	split Split time-span records			
sts	Generate, graph, list, and test the survivor and			
	cumulative hazard functions			
strate	Tabulate failure rate			
stptime	Calculate person-time at risk and failure rates			
stcox	Estimate Cox proportional hazards model			
stphtest	Test of Cox proportional hazards assumption			

Command	Function
stphplot	Graphical assessment of the Cox proportional hazards assumption
stcoxkm	Graphical assessment of the Cox proportional hazards assumption
streg	Estimate parametric survival models

Once the data have been stset we can use any of these commands without having to specify the survival time or failure time variables.

V. The origin of time

There are several time dimensions along which rates might vary. These differ from one another only in the choice of time origin, the point at which time is zero.

This naturally leads to the question: In which units should we specify time? Could different units have been used? Determining the origin of time is important, because:

- It does make a difference, often substantial, in coefficient estimates and fit of the models.
- The preferred origin is sometimes unavailable, in which case you must use some proxy.
- Many situations occur in which two or more possible time origins are available, but there is no unambiguous criterion for deciding among them.

Some commonly used time scales are listed below:

Origin	Fime Clock
Birth	Age
Any fixed date	Calendar time
First exposure	Time exposed
Entry into study	Time in study
Disease onset	Time since onset
Diagnosis	Time since diagnosis
Start of treatment	Time on treatment

Some suggestions offered by Allison (2010) in choosing the principal time origin:

- Choose a time origin that marks the onset of continuous exposure to risk of the event.
- In experimental studies, choose the time of randomization to treatment as

the time origins.

• Choose the time origin that has the strongest effect on the hazard (e.g., age vs. time since diagnosis).

VI. Nonparametric estimates

1. The life table method

To obtain life table estimation, we use the ltable command, which is not an st command. Thus, the data do not have to be stset to use this command but we need to specify the survival time and failure variable every time we use the command.

- . gen deathage = deathyr byear
- . ltable deathage deathw12 $\,$

		Beg.				Std.		
In	terval	Total	Deaths	Lost	Survival	Error	[95% Conf	[. Int.]
20	21	33918	0	1	1.0000	0.0000		•
23	3 24	33917	0	2	1.0000	0.0000	•	
27	28	33915	0	1	1.0000	0.0000	•	
30	31	33914	0	2	1.0000	0.0000	•	
31		33912	0	3	1.0000	0.0000	•	
32		33909	0	3	1.0000	0.0000	•	
33		33906	0	4	1.0000	0.0000	•	
34		33902	0	4	1.0000	0.0000	•	
35		33898	0	5	1.0000	0.0000	•	
36		33893	0	8	1.0000	0.0000	•	
37		33885	0	6	1.0000	0.0000	•	
38		33879	1	9	1.0000	0.0000	0.9998	1.0000
39		33869	0	8	1.0000	0.0000	0.9998	1.0000
40		33861	0	9	1.0000	0.0000	0.9998	1.0000
41		33852	1	15	0.9999	0.0000	0.9998	1.0000
42		33836	1	23	0.9999	0.0001	0.9997	1.0000
43		33812	0	29	0.9999	0.0001	0.9997	1.0000
44		33783	1	21	0.9999	0.0001	0.9997	1.0000
45		33761	2	37	0.9998	0.0001	0.9996	0.9999
46		33722	1	34	0.9998	0.0001	0.9996	0.9999
47		33687	3	47	0.9997	0.0001	0.9994	0.9998
48		33637	3	63	0.9996	0.0001	0.9993	0.9998
49		33571	5	73	0.9995	0.0001	0.9992	0.9997
50		33493	4	85	0.9993	0.0001	0.9990	0.9996
51		33404	7	117	0.9991	0.0002	0.9988	0.9994
52		33280	16	147	0.9987	0.0002	0.9982	0.9990
53		33117	25	163	0.9979	0.0003	0.9973	0.9983
54		32929	43	211	0.9966	0.0003	0.9959	0.9972
55		32675	58	285	0.9948	0.0004	0.9940	0.9955
56		32332	58	820	0.9930	0.0005	0.9920	0.9939
57		31454	71	866	0.9907	0.0005	0.9896	0.9917
58		30517	96	824	0.9876	0.0006	0.9863	0.9887
59		29597	97	829	0.9843	0.0007	0.9829	0.9856
60		28671	104	810	0.9807	0.0008	0.9791	0.9822
61		27757	131	790	0.9760	0.0009	0.9742	0.9776
62	63	26836	121	752	0.9715	0.0010	0.9696	0.9733

63	64	25963	143	813	0.9661	0.0011	0.9639	0.9681
64	65	25007	141	709	0.9606	0.0012	0.9582	0.9628
65	66	24157	184	748	0.9531	0.0013	0.9506	0.9555
66	67	23225	145	737	0.9471	0.0014	0.9443	0.9497
67	68	22343	206	679	0.9382	0.0015	0.9352	0.9410
68	69	21458	197	557	0.9295	0.0016	0.9263	0.9325
69	70	20704	188	544	0.9209	0.0017	0.9175	0.9242
70	71	19972	181	441	0.9125	0.0018	0.9089	0.9159
71	72	19350	229	464	0.9016	0.0019	0.8978	0.9052
72	73	18657	258	526	0.8889	0.0020	0.8849	0.8928
73	74	17873	285	574	0.8745	0.0022	0.8702	0.8787
74	75	17014	285	793	0.8595	0.0023	0.8549	0.8640
75	76	15936	301	760	0.8429	0.0025	0.8380	0.8476
76	77	14875	291	720	0.8260	0.0026	0.8208	0.8310
77	78	13864	343	704	0.8050	0.0028	0.7995	0.8104
78	79	12817	337	690	0.7833	0.0029	0.7774	0.7890
79	80	11790	352	614	0.7593	0.0031	0.7531	0.7653
80	81	10824	372	592	0.7324	0.0033	0.7259	0.7388
81	82	9860	349	558	0.7057	0.0035	0.6989	0.7125
82	83	8953	414	454	0.6723	0.0037	0.6650	0.6794
83	84	8085	367	466	0.6408	0.0039	0.6332	0.6483
84	85	7252	395	451	0.6048	0.0040	0.5968	0.6127
85	86	6406	396	354	0.5664	0.0042	0.5580	0.5746
86	87	5656	372	284	0.5282	0.0044	0.5195	0.5367
87	88	5000	389	292	0.4858	0.0045	0.4769	0.4947
88	89	4319	376	257	0.4422	0.0046	0.4331	0.4513
89	90	3686	355	240	0.3982	0.0047	0.3889	0.4075
90	91	3091	351	179	0.3516	0.0048	0.3423	0.3610
91	92	2561	298	173	0.3093	0.0048	0.2999	0.3187
92	93	2090	257	141	0.2699	0.0048	0.2606	0.2793
93	94	1692	266	132	0.2258	0.0047	0.2166	0.2350
94	95	1294	160	107	0.1967	0.0046	0.1877	0.2058
95	96	1027	162	96	0.1641	0.0045	0.1554	0.1731
96	97	769	145	77	0.1315	0.0044	0.1232	0.1402
97	98	547	96	45	0.1075	0.0042	0.0994	0.1158
98	99	406	86	38	0.0836	0.0040	0.0760	0.0916
99	100	282	61	32	0.0644	0.0037	0.0573	0.0720
100	101	189	44	19	0.0486	0.0035	0.0421	0.0558
101	102	126	29	10	0.0370	0.0033	0.0310	0.0438
102	103	87	26	10	0.0252	0.0029	0.0200	0.0315
103	104	51	16	7	0.0167	0.0026	0.0122	0.0225
104	105	28	7	6	0.0121	0.0024	0.0080	0.0175
105	106	15	6	0	0.0072	0.0021	0.0040	0.0124
106	107	9	1	1	0.0064	0.0020	0.0033	0.0114
107	108	7	2	0	0.0046	0.0018	0.0020	0.0094
108	109	5	1	0	0.0036	0.0017	0.0014	0.0083
109	110	4	1	0	0.0027	0.0015	0.0009	0.0072
112	113	3	1	0	0.0018	0.0012	0.0004	0.0060
115	116	2	0	2	0.0018	0.0012	0.0004	0.0060

Many of the differences between sts and ltable derive from the underlying assumptions about the nature of the survival time data. With sts, survival times are treated as observations on a continuous variable. In the ltable case, the technique is based on survival data that have been grouped into intervals (or implicitly assumed to be).

2. The Kaplan-Meier method

Estimation of the Kaplan-Meier empirical hazard and survival functions is done very easily in Stata by using either the sts collection of commands or by using the ltable (life table) command omitting the intervals option and including the noadjust option.

For example, after stset the data,

. sts list

failure _d: deathw12
analysis time _t: (deathyr-origin)
origin: time byear
enter on or after: time firstinyr

id: hhidpn

		ıa: n	nıapn					
	Beg.		Net	Survivor	Std.			
Time	Total	Fail	Lost	Function	Error	[95% (Conf.	<pre>Int.]</pre>
18	0	0	-1	1.0000	•			
19	1	0	-1	1.0000	•			
20	2	0	1	1.0000	•			
22	1	0	-2	1.0000				
24	3	0	-3	1.0000	•			
25	6	0	-7	1.0000	•			
26	13	0	-4	1.0000	•			
27	17	0	-2	1.0000	•			
28	19	0	-7	1.0000	•			
29	26	0	-9	1.0000	•			
30	35	0	-9	1.0000	•			
31	44	0	-14	1.0000				
32	58	0	-17	1.0000				
33	75	0	-16	1.0000				
34	91	0	-23	1.0000				
35	114	0	-25	1.0000				
36	139	0	-40	1.0000				
37	179	0	-38	1.0000				
38	217	1	-66	0.9954	0.0046	0.967	7	0.9993
39	282	0	-70	0.9954	0.0046	0.967	7	0.9993
40	352	0	-81	0.9954	0.0046	0.967	7	0.9993
41	433	1	-77	0.9931	0.0051	0.9706	6	0.9984
42	509	1	-112	0.9911	0.0055	0.9704	4	0.9974
43	620	0	-144	0.9911	0.0055	0.9704	4	0.9974
44	764	1	-196	0.9898	0.0056	0.970	1	0.9966
45	959	2	-227	0.9878	0.0058	0.9692		0.9952
46	1184	1	-296	0.9869	0.0059	0.9687	7	0.9946
47	1479	3	-343	0.9849	0.0060	0.9674	4	0.9931
48	1819	3	-415	0.9833	0.0060	0.9663		0.9918
49	2231	5	-556	0.9811	0.0061	0.9646		0.9900
50	2782	4	-712	0.9797	0.0061	0.9634	4	0.9888
51	3490	7	-2406	0.9777	0.0061	0.9618		0.9871
52	5889	16	-2437	0.9751	0.0062	0.9596		0.9847
53	8310	25	-2196	0.9722	0.0062	0.957		0.9820
54	10481	43	-2096	0.9682	0.0062	0.953		0.9783
55	12534	58	-1943	0.9637	0.0062	0.9494		0.9740
56	14419	58	-1183	0.9598	0.0062	0.945		0.9703
57	15544	71	-190	0.9554	0.0062	0.9416		0.9660
58	15663	96	-253	0.9496	0.0062	0.9360		0.9603
59	15820	97	- 75	0.9437	0.0062	0.9303		0.9546
00	10020	01	. 0	0.0401	0.0002	0.0000	-	0.0010

60	15798	104	-159	0.9375	0.0061	0.9243	0.9485
61	15853	131	-93	0.9298	0.0061	0.9167	0.9409
62	15815	121	315	0.9227	0.0061	0.9098	0.9338
63	15379	143	517	0.9141	0.0061	0.9013	0.9253
64	14719	141	447	0.9053	0.0061	0.8927	0.9166
65	14131	184	481	0.8935	0.0061	0.8810	0.9048
66	13466	145	533	0.8839	0.0061	0.8715	0.8952
67	12788	206	448	0.8697	0.0060	0.8573	0.8810
68	12134	197	45	0.8556	0.0060	0.8433	0.8669
69	11892	188	45	0.8420	0.0060	0.8299	0.8534
70	11659	181	-354	0.8290	0.0060	0.8169	0.8404
71	11832	229	-420	0.8129	0.0060	0.8009	0.8243
72	12023	258	-307	0.7955	0.0059	0.7835	0.8068
73	12072	285	-176	0.7767	0.0059	0.7649	0.7880
74	11963	285	62	0.7582	0.0059	0.7465	0.7695
75	11616	301	301	0.7385	0.0058	0.7269	0.7498
76	11014	291	318	0.7190	0.0058	0.7075	0.7302
77	10405	343	325	0.6953	0.0057	0.6839	0.7064
78	9737	337	351	0.6713	0.0057	0.6600	0.6823
79	9049	352	279	0.6452	0.0056	0.6340	0.6561
80	8418	372	234	0.6166	0.0056	0.6056	0.6275
81	7812	349	223	0.5891	0.0055	0.5782	0.5998
82	7240	414	177	0.5554	0.0054	0.5447	0.5660
83	6649	367	226	0.5248	0.0054	0.5142	0.5352
84	6056	395	213	0.4905	0.0053	0.4801	0.5008
85	5448	396	155	0.4549	0.0052	0.4447	0.4650
86	4897	372	123	0.4203	0.0051	0.4103	0.4303
87	4402	389	164	0.3832	0.0050	0.3734	0.3929
88	3849	376	149	0.3457	0.0049	0.3362	0.3553
89	3324	355	153	0.3088	0.0047	0.2996	0.3181
90	2816	351	101	0.2703	0.0046	0.2614	0.2793
91	2364	298	135	0.2362	0.0044	0.2277	0.2449
92	1931	257	106	0.2048	0.0042	0.1966	0.2131
93	1568	266	97	0.1701	0.0040	0.1623	0.1780
94	1205	160	86	0.1475	0.0039	0.1400	0.1551
95	959	162	79	0.1226	0.0037	0.1155	0.1299
96	718	145	58	0.0978	0.0035	0.0912	0.1047
97	515	96	38	0.0796	0.0033	0.0733	0.0862
98	381	86	26	0.0616	0.0031	0.0558	0.0678
99	269	61	28	0.0476	0.0028	0.0423	0.0534
100	180	44	15	0.0360	0.0026	0.0311	0.0414
101	121	29	7	0.0274	0.0024	0.0229	0.0325
102	85	26	10	0.0190	0.0022	0.0151	0.0236
103	49	16	5	0.0128	0.0019	0.0094	0.0171
104	28	7	6	0.0096	0.0018	0.0066	0.0136
105	15	6	0	0.0058	0.0016	0.0032	0.0097
106	9 7	1 2	1	0.0051	0.0016	0.0027	0.0090
107			0	0.0037	0.0014	0.0016	0.0074
108	5 4	1 1	0 0	0.0029	0.0013	0.0011	0.0066
109 112	3	1	0	0.0022	0.0012 0.0010	0.0007 0.0003	0.0057 0.0048
	2	0	2	0.0015 0.0015	0.0010	0.0003	0.0048
115			2	0.0015	0.0010	0.0003	0.0048

By specifying the failure option, you can list the estimate of the cumulative distribution function F(t). Below we also specify at () to produce less detailed output (here, 5 equally spaced survival times).

Time	Beg. Total	Fail	Failure Function	Std. Error	[95% Co	onf. Int.]
18	0	0	0.0000			
50	2782	22	0.0203	0.0061	0.0112	0.0366
82	7240	6028	0.4446	0.0054	0.4340	0.4553
114	3	4666	0.9985	0.0010	0.9952	0.9997
146	2	0	•			

Note: Failure function is calculated over full data and evaluated at indicated times; it is not calculated from aggregates shown at left.

The Kaplan-Meier estimates of S(t) can be plotted by sts graph. Here we add the Greenwood standard errors

```
. sts graph, gw
failure _d: deathw12
analysis time _t: (deathyr-origin)
origin: time byear
enter on or after: time firstinyr
id: hhidpn
. graph export km1.png, width(500) replace
(file km1.png written in PNG format)
```


Figure 1: Kaplan-Meier Estimates of S(t)

If you want the graph to be plotted separately by, for instance, gender, add the by() option. We also add the censored option to display the number of censored observations.

. sts graph, by(female) censored(number)

failure _d: deathw12
analysis time _t: (deathyr-origin) origin: time byear enter on or after: time firstinyr id: hhidpn

. graph export km2.png, width(500) replace
(file km2.png written in PNG format)

Figure 2: Kaplan-Meier Estimates of S(t), by Gender

3. The Nelson-Aalen estimator

. sts list, cumhaz

failure _d: deathw12
analysis time _t: (deathyr-origin)
origin: time byear
enter on or after: time firstinyr

id: hhidpn

				-				
		Std.	Nelson-Aalen	Net		Beg.		
<pre>Int.]</pre>	[95% Conf.	Error	Cum. Haz.	Lost	Fail	Total	Time	
		0.0000	0.0000	-1	0	0	18	
		0.0000	0.0000	-1	0	1	19	
		0.0000	0.0000	1	0	2	20	
		0.0000	0.0000	-2	0	1	22	
		0.0000	0.0000	-3	0	3	24	
		0.0000	0.0000	-7	0	6	25	
		0.0000	0.0000	-4	0	13	26	
	•	0.0000	0.0000	-2	0	17	27	
	•	0.0000	0.0000	-7	0	19	28	
		0.0000	0.0000	-9	0	26	29	
		0.0000	0.0000	-9	0	35	30	
		0.0000	0.0000	-14	0	44	31	
		0.0000	0.0000	-17	0	58	32	

22	75	^	_16	0.0000	0 0000		
33	75	0	-16		0.0000	•	•
34	91	0	-23	0.0000	0.0000	•	•
35	114	0	-25	0.0000	0.0000	•	
36	139	0	-40	0.0000	0.0000		
37	179	0	-38	0.0000	0.0000		•
38	217	1	-66	0.0046	0.0046	0.0006	0.0327
39	282	0	-70	0.0046	0.0046	0.0006	0.0327
40	352	0	-81	0.0046	0.0046	0.0006	0.0327
41	433	1	-77	0.0069	0.0052	0.0016	0.0298
42	509	1	-112	0.0089	0.0055	0.0026	0.0300
43	620	0	-144	0.0089	0.0055	0.0026	0.0300
44	764	1	-196	0.0102	0.0057	0.0034	0.0303
45	959	2	-227	0.0123	0.0059	0.0048	0.0313
46	1184	1	-296	0.0131	0.0059	0.0054	0.0318
47	1479	3	-343	0.0151	0.0060	0.0069	0.0331
48	1819	3	-415	0.0168	0.0061	0.0082	0.0343
49	2231	5	-556	0.0190	0.0062	0.0101	0.0360
50	2782	4	-712	0.0205	0.0062	0.0113	0.0372
51	3490	7	-2406	0.0225	0.0063	0.0130	0.0389
52	5889	16	-2437	0.0252	0.0063	0.0154	0.0412
53	8310	25	-2196	0.0282	0.0063	0.0182	0.0438
54	10481	43	-2096	0.0323	0.0064	0.0220	0.0476
55	12534	58	-1943	0.0369	0.0064	0.0263	0.0519
56	14419	58	-1183	0.0410	0.0064	0.0301	0.0557
	15544		-1183 -190				
57		71		0.0455	0.0064	0.0345	0.0601
58	15663	96	-253	0.0517	0.0065	0.0404	0.0660
59	15820	97	-75	0.0578	0.0065	0.0463	0.0721
60	15798	104	-159	0.0644	0.0065	0.0528	0.0786
61	15853	131	-93	0.0726	0.0066	0.0608	0.0867
62	15815	121	315	0.0803	0.0066	0.0683	0.0944
63	15379	143	517	0.0896	0.0067	0.0774	0.1036
64	14719	141	447	0.0992	0.0067	0.0868	0.1132
65	14131	184	481	0.1122	0.0068	0.0997	0.1263
66	13466	145	533	0.1230	0.0068	0.1103	0.1371
67	12788	206	448	0.1391	0.0069	0.1261	0.1533
68	12134	197	45	0.1553	0.0070	0.1421	0.1697
69	11892	188	45	0.1711	0.0071	0.1577	0.1856
70	11659	181	-354	0.1866	0.0072	0.1730	0.2013
			-420	0.2060	0.0073		
71	11832	229				0.1921	0.2209
72	12023	258	-307	0.2274	0.0074	0.2133	0.2425
73	12072	285	-176	0.2511	0.0076	0.2366	0.2663
74	11963	285	62	0.2749	0.0077	0.2602	0.2904
75	11616	301	301	0.3008	0.0078	0.2858	0.3166
76	11014	291	318	0.3272	0.0080	0.3119	0.3433
77	10405	343	325	0.3602	0.0082	0.3445	0.3766
78	9737	337	351	0.3948	0.0084	0.3786	0.4116
79	9049	352	279	0.4337	0.0087	0.4170	0.4510
80	8418	372	234	0.4779	0.0090	0.4606	0.4958
81	7812	349	223	0.5226	0.0093	0.5047	0.5410
82	7240	414	177	0.5797	0.0097	0.5610	0.5990
83	6649	367	226	0.6349	0.0101	0.6154	0.6551
84	6056	395	213	0.7002	0.0106	0.6796	0.7213
85	5448	396	155	0.7728	0.0112	0.7511	0.7952
86	4897	372	123	0.7728	0.0112	0.8258	0.7352
					0.0119		
87	4402	389	164	0.9372		0.9126	0.9624
88	3849	376	149	1.0349	0.0137	1.0084	1.0620
89	3324	355	153	1.1417	0.0148	1.1130	1.1711
90	2816	351	101	1.2663	0.0162	1.2349	1.2985
91	2364	298	135	1.3924	0.0178	1.3579	1.4277
92	1931	257	106	1.5255	0.0196	1.4874	1.5644
93	1568	266	97	1.6951	0.0222	1.6521	1.7392

94	1205	160	86	1.8279	0.0246	1.7803	1.8767
95	959	162	79	1.9968	0.0279	1.9428	2.0523
96	718	145	58	2.1988	0.0326	2.1358	2.2636
97	515	96	38	2.3852	0.0377	2.3123	2.4603
98	381	86	26	2.6109	0.0449	2.5243	2.7004
99	269	61	28	2.8376	0.0535	2.7348	2.9444
100	180	44	15	3.0821	0.0649	2.9574	3.2120
101	121	29	7	3.3218	0.0787	3.1710	3.4797
102	85	26	10	3.6276	0.0990	3.4387	3.8269
103	49	16	5	3.9542	0.1283	3.7105	4.2138
104	28	7	6	4.2042	0.1593	3.9032	4.5284
105	15	6	0	4.6042	0.2282	4.1780	5.0738
106	9	1	1	4.7153	0.2538	4.2432	5.2399
107	7	2	0	5.0010	0.3244	4.4040	5.6789
108	5	1	0	5.2010	0.3811	4.5053	6.0042
109	4	1	0	5.4510	0.4558	4.6271	6.4216
112	3	1	0	5.7843	0.5646	4.7771	7.0040
115	2	0	2	5.7843	0.5646	4.7771	7.0040

Similarly, you can add the cumhaz option in sts graph to plot the Nelson-Aalen cumulative hazard.

4. The hazard function

You can get a estimated hazard function by:

```
. sts graph, hazard

failure _d: deathw12
analysis time _t: (deathyr-origin)
origin: time byear
enter on or after: time firstinyr
id: hhidpn
. graph export hazard.png, width(500) replace
(file hazard.png written in PNG format)
```

This graph uses the "optimal bandwidth", which is the distance on either side of each time point used in estimating the hazard. You can change the bandwidth with width option:

```
. sts graph, hazard width(3)

failure _d: deathw12
analysis time _t: (deathyr-origin)
origin: time byear
enter on or after: time firstinyr
id: hhidpn
. graph export hazard2.png, width(500) replace
(file hazard2.png written in PNG format)
```

5. Comparison of survival between groups

To run a log rank test in Stata, use sts test. For example:

Figure 3: Hazard Plot h(t), with Optimal Bandwidth

Figure 4: Hazard Plot h(t), with Alternative Bandwidth

. sts test female, logrank

failure _d: deathw12
analysis time _t: (deathyr-origin)
origin: time byear

enter on or after: time firstinyr id: hhidpn

Log-rank test for equality of survivor functions

female	Events observed	Events expected
0	5079 5637	4150.30 6565.70
Total	10716	10716.00
	chi2(1) = Pr>chi2 =	366.67

To get the Wilcoxon test instead, use:

. sts test female, wilcoxon

failure _d: deathw12
analysis time _t: (deathyr-origin)
origin: time byear
enter on or after: time firstinyr
id: hhidpn

Wilcoxon (Breslow) test for equality of survivor functions

female	Events observed	Events expected	Sum of ranks
0	5079 5637	4150.30 6565.70	8514584 -8514584
Total	10716 chi2(1) = Pr>chi2 =	10716.00 340.31 0.0000	0