

Índice

1. R-Tree

Objetos!

Bounding Box

Minimum Bounding Box

Minimum Bounding Box

R-Tree: Nodo

Formato del R-tree: (bounding box, puntero del nodo hijo)

Formato del R-tree: (bounding box, puntero del nodo hijo)

- 1. Cada nodo hoja (a menos que sea la raíz) puede albergar hasta M entradas, mientras que el número mínimo de entradas permitido es $m \le M/2$.
- 2. El número de entradas que cada nodo interno puede almacenar está de nuevo entre $m \le M/2$ y M.
- 3. El número mínimo permitido de entradas en el nodo raíz es 2, a menos que sea una hoja (en este caso, puede contener cero o una sola entrada).
- 4. Todas las hojas del R-tree están en el mismo nivel.

R-Tree: Árbol

Solución 1

Solución 1

Solución 2

Solución 1

Solución 2

¿Cuál es mejor?

En general, el algoritmo de construcción del R-tree tiene como objetivo minimizar la suma de áreas o perímetros de todos los MBB.

Un rectángulo con un perímetro más pequeño *por lo general* tiene un área más pequeña, pero no al revés.

¿Como determinamos el solapamiento entre dos MBB?

Una estrategia es analizar dimensión por dimensión

Sin perder generalidad, hacemos: $x_c = \max(x_a, x_c)$

Una estrategia es analizar dimensión por dimensión

Sin perder generalidad, hacemos: $x_c = \max(x_a, x_c)$

Caso 1: $x_a \qquad x_c \qquad x_b \qquad x_d$

Caso 2: $x_a \qquad x_c \qquad x_d \qquad x_b$

Caso 3: $x_a \qquad x_b \qquad x_c \qquad x_d$

$$\ell_x = \max(0, \min(x_b, x_d) - \max(x_a, x_c))$$

$$\ell_y = \max(0, \min(y_b, y_d) - \max(y_a, y_c))$$

$$S = \ell_x \ell_y$$

R-Tree: insert

Algorithm insert(u, p)

```
    if u is a leaf node then
    add p to u
    if u overflows then
        /* namely, u has B + 1 points */
        handle-overflow(u)
    else
    v ← choose-subtree(u, p)
        /* which subtree under u should we insert p into? */
        insert(v, p)
```


R-Tree: Choose-subtree

Devolver al nodo cuyo MBB requiera el **mínimo** aumento de perímetro para cubrir p.

En caso de empate, retorna el MBB más pequeño.

R-Tree: Overflow Handling

Algorithm handle-overflow(u)

- 1. split(u) into u and u'
- 2. **if** *u* is the root **then**
- 3. create a new root with u and u' as its child nodes
- 4. else
- 5. $w \leftarrow$ the parent of u
- 6. update MBR(u) in w
- 7. add u' as a child of w
- 8. **if** *w* overflows **then**
- 9. handle-overflow(w)

R-Tree: Splitting

Linear Split

- 1. Elija dos objetos como semillas, de modo que estén lo más separados posible.
- 2. Considera cada objeto restante en un orden aleatorio y asígnalo al nodo que requiera la menor ampliación de su MBB.

Quadratic Split

- 1. Elija dos objetos como semillas para los dos nodos, de modo que crean el mayor espacio muerto posible.
- 2. Asigne los objetos restantes a uno de los dos grupos. Para cada objeto, calcule el aumento en el área de la MBB que resultaría de añadir el rectángulo a cada grupo. Asigne el objeto al grupo que suponga el menor aumento de área. En caso de empate, asigna el rectángulo al grupo con menor área o menor número de elementos.

Evite que cualquier nodo tenga menos elementos que el valor mínimo asignado!

R-Tree: Splitting

Linear Split

Quadratic Split

Pero... Hay otra forma...

R-Tree: Splitting a leaf node

Sea S un conjunto de B+1 puntos. Divida S en dos conjuntos disjuntos S_1 y S_2 para **minimizar** la suma del perímetros de MBR(S_1) y MBR(S_2), sujeto a la condición de que $|S_1| \ge 0.4M$ y $|S_2| \ge 0.4M$

Algorithm split(u)

- 1. m = the number of points in u
- 2. sort the points of u on x-dimension
- 3. **for** i = [0.4B] to m [0.4B]
- 4. $S_1 \leftarrow$ the set of the first *i* points in the list
- 5. $S_2 \leftarrow$ the set of the other *i* points in the list
- calculate the perimeter sum of $MBR(S_1)$ and $MBR(S_2)$; record it if this is the best split so far
- 7. Repeat Lines 2-6 with respect to y-dimension
- 8. return the best split found

R-Tree: Splitting a leaf node

Sea S un conjunto de B+1 puntos. Divida S en dos conjuntos disjuntos S_1 y S_2 para **minimizar** la suma del perímetros de MBR(S_1) y MBR(S_2), sujeto a la condición de que $|S_1| \ge 0.4M$ y $|S_2| \ge 0.4M$

Hay **3** posibles divisiones a lo largo de la dimensión x. Recuerde que cada nodo debe tener al menos 0.4M=4 puntos (aquí M=10).

R-Tree: Splitting a internal node

Sea S un conjunto de B+1 rectángulos. Divida S en dos conjuntos disjuntos S_1 y S_2 para minimizar la suma del perímetros de MBR(S_1) y MBR(S_2), sujeto a la condición de que $|S_1| \ge 0.4M$ y $|S_2| \ge 0.4M$

```
Algorithm split(u)
/* u is an internal node */
```

- 1. m = the number of points in u
- 2. sort the rectangles in u by their left boundaries on the x-dimension
- 3. **for** i = [0.4B] to m [0.4B]
- 4. $S_1 \leftarrow$ the set of the first *i* rectangles in the list
- 5. $S_2 \leftarrow$ the set of the other *i* rectangles in the list
- 6. calculate the perimeter sum of $MBR(S_1)$ and $MBR(S_2)$; record it if this is the best split so far
- 7. Repeat Lines 2-6 with respect to the right boundaries on the x-dimension
- 8. Repeat Lines 2-7 w.r.t. the y-dimension
- 9. return the best split found

R-Tree: Splitting a internal node

Sea S un conjunto de B+1 rectángulos. Divida S en dos conjuntos disjuntos S_1 y S_2 para minimizar la suma del perímetros de MBR(S_1) y MBR(S_2), sujeto a la condición de que $|S_1| \ge 0.4M$ y $|S_2| \ge 0.4M$

Hay **3** posibles divisiones con respecto a los límites izquierdos en la dimensión x. Recuerda que cada nodo debe tener al menos 0.4M = 4 puntos (aquí M = 10).

R-Tree: Delete

- 1. Encuentra el nodo hoja que contiene la entrada E
- 2. Eliminar E de este nodo
- 3. Si está incompleto:
 - Elimine el nodo y su referencia en el padre
 - Vuelva a insertar los huérfanos (otras entradas) en el árbol usando el algoritmo de inserción.
- 4. Si durante este proceso el nodo raíz tiene un solo elemento, la altura del árbol puede disminuir.

