February 24, 2023

G1.1.1 Random Sample

A sample $X_1, ..., X_n$ from a population with CDF F_X :

- $X_1, ..., X_n$ are independent
- $X_1, ..., X_n$ have the same distribution, same CDF F_X

A function of a sample, such as $h(X_1, ..., X_n)$, is a statistic

G1.1.2 Mean and Standard Deviation

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

G1.1.3 Linear Combination of RVs

For
$$Y = a_1X_1 + \cdots + a_nX_n$$
, we have:
 $E[Y] = a_1E[X_1] + \cdots + a_nE[X_n]$

If
$$X_1, ..., X_n$$
 are independent, then:

$$V[Y] = a_1^2 V[X_1] + \cdots + a_n^2 V[X_n]$$

+ Theorems

For $X_1, ..., X_n$ independent such that $X_i \sim N(\mu_i, \sigma_i^2)$ and $Y = a_1 X_1 + \cdots + a_n X_n$, then:

$$Y \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_1^2\right)$$

• If $X_1, ..., X_n$ is a sample with distribution $N(\mu, \sigma^2)$, then: $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

G1.1.5 T-Distribution

For $Z \sim N(0,1)$ and $U \sim \chi^2(r)$ that are independent:

$$T = \frac{Z}{\sqrt{\left(\frac{U}{r}\right)}} \sim t(r)$$

Quantiles of the T-Distribution

 $P(T > t_{\alpha}(r)) = \alpha$ with $t_{\alpha}(r)$, the upper quantile of order α **Properties:**

- $t_{1-\alpha}(r) = -t_{\alpha}(r)$ since it's symmetric about t = 0
- As $r \to \infty$, the *t* distribution goes to N(0,1)

G1.1.4 Standard Normal Distribution

For $X \sim N(\mu, \sigma^2)$, the standard normal distribution is:

$$Z = \frac{X - \mu}{\sigma} \sim N(0,1)$$

For a sample from a population with distribution $N(\mu, \sigma^2)$:

$$\frac{\bar{X} - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} \sim N(0,1), \text{ since } \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

+ Theorems

- If $Z \sim N(0,1)$, then $Z^2 \sim \chi^2(r)$
- For X_1, \dots, X_n independent RVs such that $X_i \sim \chi^2(r_i)$: If $W = X_1 + \dots + X_n$, then $W \sim \chi^2(r_1 + \dots + r_n)$
- ▶ For $X_1, ..., X_n$ a sample from a $N(\mu, \sigma^2)$ distribution:

If
$$W = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2$$
, then $W \sim \chi^2(n)$

- For $X_1, ..., X_n$ a sample from a $N(\mu, \sigma^2)$ distribution:
 - \bar{X} and S^2 are independent

•
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

G2.1.3 Binomial Approximation with a Normal

Define the following:

- $Y \sim binom(n, p)$ with CDF $F_Y(y)$
- $W = \frac{Y np}{\sqrt{np(1-p)}}$, the standardized version of Y

For *n* where $np \ge 5$ and $np(1-p) \ge 5$, apply the theorem:

$$F_Y(y) \approx \phi \left(\frac{y + 0.5 - np}{\sqrt{np(1-p)}} \right)$$
 where ϕ is the CDF of $N(0,1)$

G1.1.6 F-Distribution

For
$$U_1 \sim \chi^2(r_1)$$
 and $U_2 \sim \chi^2(r_2)$: $F = \frac{(U_1/r_1)}{(U_2/r_2)} \sim F(r_1, r_2)$

+ Quantiles of the F-Distribution

 $P(F > F_{\alpha}(r_1, r_2)) = \alpha$ with $F_{\alpha}(r_1, r_2)$, the upper quantile of order

Properties:

- $F \sim F(r_1, r_2) \rightarrow \frac{1}{F} \sim F(r_2, r_1)$
- In another form: $F_{1-\alpha}(r_1, r_2) = \frac{1}{F_{\alpha}(r_2, r_1)}$

G2.1.1 Order Statistics

Given X_1,\ldots,X_n , a sample with CDF F(x) and PDF f(x): Sorting gives the order statistics Y_1,\ldots,Y_n where $Y_1\leq \cdots \leq Y_n$

CDF and PDF of Y_r for $1 \le r \le n$:

$$F_r(y) = \sum_{k=r}^n \binom{n}{k} \left(F(y) \right)^k \left(1 - F(y) \right)^{n-k}$$

$$f_r(y) = \binom{n}{r-1, 1, n-r} \left(F(y)\right)^{r-1} \left(f(y)\right) \left(1 - F(y)\right)^{n-r}$$

Binomial Formulas:

•
$$\binom{kl}{r-1}$$
, $\binom{n}{5}$, $\binom{n-r}{r-1} = \frac{n!}{(r-1)!}$

G1.2.1 Sample Percentile

For 0 , the <math>(100p)th sample percentile denoted $\tilde{\pi}_p$ is:

- If (n+1)p is an integer, then $\tilde{\pi}_p = y_{(n+1)p}$
- Otherwise, then: $\exists r, a, b$ such that $(n + 1)p = r + \frac{a}{b}$ So $\tilde{\pi}_p = \left(1 - \frac{a}{b}\right) y_r + \left(\frac{a}{b}\right) y_{r+1}$

G1.2.2 Quartiles

- $q_1 = \tilde{\pi}_{0.25}$
- $q_2 = \widetilde{m} = \widetilde{\pi}_{0.5}$, the median
- $q_3 = \tilde{\pi}_{0.75}$
- $IQR = q_3 q_1$

G2.1.2 Population Percentile

The (100p)th population percentile, denoted π_p satsifies:

$$P\big[X \leq \pi_p\big] = p$$

Given the order statistics Y_1, \dots, Y_n , and the CDF of a binomial distribution F(x):

$$P[Y_i < \pi_p < Y_j] = F(j-1) - F(i-1)$$

G1.2.3 Central Tendencies

- Sample Mean: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ Sample Median: $\tilde{m} = \begin{cases} y_{(n+1) \times \frac{1}{2}}, & n \text{ is odd} \\ \frac{y_{\underline{n}} + y_{(\underline{n}) + 1}}{2}, & n \text{ is even} \end{cases}$

+ Theorems

- The sample mean \bar{x} minimizes : $\sum_{i=1}^{\infty} (x_i \theta)^2$
- ▶ The median of the sample \widetilde{m} minimizes: $\sum |x_i \theta|$

G1.3.1 Point Estimation

- Sample standard deviation: $S = \sqrt{S^2}$
- kth sample moment: $M_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$
- *k*th sample central moment: $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^k$

Expected Value Formulas

G1.3.2 Statistics

- If a statistic $h(X_1, ..., X_n)$ estimates θ , then it's an estimator for θ , denoted by $\hat{\theta} = h(X_1, ..., X_n)$
- A point estimate $\hat{\theta}$ for θ is $h(x_1, ..., x_n)$ where $x_1, ..., x_n$ are observed values from a sample
- An estimator $\hat{\theta}$ for θ is unbiased if $E[\hat{\theta}] = \theta$

G1.3.3 Maximum Likelihood Estimator (MLE)

We want to maximize the likelihood functions:

•
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

•
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$
 • $\ln(L(\theta)) = \sum_{i=1}^{n} \ln(f(x_i, \theta))$

We maximize the likelihood functions using either one:

$$\bullet \ \frac{\delta L(\theta)}{\delta \theta} = 0$$

•
$$\frac{\delta \ln(L(\theta))}{\delta \theta} = 0$$

Maximized at $(\theta_1, ..., \theta_k) = (h_1(x_1, ..., x_n), ..., h_k(x_1, ..., x_n))$:

- The MLEs are $\hat{\theta}_i = h_i(X_1, ..., X_n)$
- The maximum likelihood estimates are $\hat{\theta}_i = h_i(x_1, ..., x_n)$

G1.3.4 Method of Moments

Given a random sample $X_1, ..., X_k$ from a population with unknown θ_i , we need to estimate the unknown parameters

We get $E[X] = M_1$, if we can solve for θ_i , we stop otherwise: We get $E[X^2] = M_2$, we get a system of equations, and if we can solve for θ_i , we stop, otherwise, we get $E[X^3] = M_3$ and so on...

G5.1.1 Linear Regression

Study the relationship between the independent variable x, the regressor, and the dependent variable *Y*, the response variable

Let $(x_1, Y_1), ..., (x_n, Y_n)$ be the sample for the regression model

G5.1.2 Linear Regression Assumptions

- ▶ For the general regression model:
 - $\circ \quad E[Y] = \alpha_1 + \beta x$
 - $\circ Y = \alpha_1 + \beta x + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2) \text{ so } E[\epsilon] = 0$
- ▶ For the random sample:
 - $\circ \quad \alpha_1 = \alpha \beta \bar{x}$
 - $\circ Y_i = \alpha + \beta(x_i \bar{x}) + \epsilon_i$
 - $\circ \ \epsilon_i \sim (iid) \ N(0, \sigma^2)$
- $\therefore Y_i \sim N(\alpha + \beta(x_i \bar{x}), \sigma^2)$

G5.1.3 Notation for Linear Regression

- $S_{xx} = \sum_{i=1}^{n} (x_i \bar{x})^2 = \left(\sum_{i=1}^{n} x_i^2\right) n\bar{x}^2$
- $S_{xy} = \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y}) = \left(\sum_{i=1}^{n} y_i^2\right) n\bar{x}\bar{y}$

G5.1.4 MLEs for α , β , σ^2

- $\hat{\beta} = \frac{S_{xy}}{S_{xx}} \qquad \hat{\sigma}^2 = \frac{S_{yy} \hat{\beta}S_{xy}}{\pi}$

+ Common Formulas

+ CDF $F_X(a)$ Formulas

- $F_X(a) = P[X \le a] = \int_a^a f_X(a) \, da$
- $P[a < X \le b] = F_X(b) F_X(a) = \int_a^b f_X(a) da$

+ Bernoulli Distribution $X \sim bern(p)$

- $P_X(a) = p^a (1-p)^{1-a}$ E[X] = p
- $\hat{p} = \frac{1}{n} \sum_{i=1}^{n-1} X_i = \bar{X}$ Var[X] = p(1-p)

+ Binomial Distribution $X \sim binom(n, p)$

- $P_X(a) = {n \choose a} p^a (1-p)^{n-a} \qquad E[X] = np$
- $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$
- Var[X] = np(1-p)

+ Geometric Distribution $X \sim geom(p)$

- $P_X(a) = p(1-p)^{a-1}$ $E[X] = \frac{1}{p}$ $\hat{p} = \frac{n}{\sum_{i=1}^{n} X_i}$ $Var[X] = \frac{1-p}{p^2}$

+ Poisson Distribution $X \sim pois(\lambda)$

- $P_X(a) = \frac{\lambda^a e^{-\lambda}}{a!}$ $E[X] = \lambda$
- $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \bar{X} \qquad \qquad \text{Var}[X] = \lambda$

+ Exponential Distribution $X \sim \exp(\lambda)$

- $f_X(a) = \lambda e^{-\lambda a}$ $F_X(a) = 1 e^{-\lambda a}$ $Var[X] = \frac{1}{\lambda^2}$
- $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \bar{X} \to \hat{\lambda} = \frac{1}{\hat{\theta}} = \frac{1}{\bar{X}}$

+ Normal Distribution $X \sim N(\mu, \sigma^2)$

- $F_X(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{\frac{y^2}{2}} dy \qquad Var[X] = \sigma^2$
- $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$ $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$