Table 1. Results of phenotypic run differentiation analyses¹ for the 2004 through 2022 biological years (March 1 through February 28 annually) of lower Yuba River Chinook salmon based on VAKI Riverwatcher™ net upstream passage observations at DPD, corrected for periods of VAKI system

outages².

outages.	Early-Migrating		Late-Migrating		Total Spring-Run Chinook Salmon		Fall-Run Chinook Salmon		Total Chinook Salmon	
	Spring-Run		Spring-Run							
Year	Chinook Salmon		Chinook Salmon							
	Estimate	% Ad-	Estimate	% Ad-	Estimate	% Ad-	Estimate	% Ad-	Estimate	% Ad-
	LStillate	Clip	LStillate	Clip	LStillate	Clip	LStillate	Clip	LStillate	Clip
2004	509	11.8%	1,109	6.2%	1,618	8.0%	3,716	2.6%	5,334	4.2%
2005	1,978	23.1%	3,297	10.1%	5,275	15.0%	5,815	2.1%	11,090	8.2%
2006	374	9.6%	1,082	5.3%	1,456	6.4%	3,174	3.1%	4,630	4.1%
2007	285	13.0%	68	0.0%	353	10.5%	1,007	2.7%	1,360	4.7%
2008	372	2.7%	948	3.8%	1,320	3.5%	1,182	18.4%	2,502	10.6%
2009	693	30.2%	1,915	16.5%	2,608	20.1%	1,950	11.8%	4,558	16.6%
2010	2,988	59.7%	751	44.7%	3,739	56.7%	2,645	15.9%	6,384	39.8%
2011	59	47.5%	2,301	24.8%	2,360	25.4%	5,396	21.0%	7,756	22.4%
2012	807	59.4%	1,482	16.6%	2,289	31.7%	4,368	24.7%	6,657	27.1%
2013	2,053	4.7%	1,993	7.3%	4,046	6.0%	7,345	13.5%	11,391	10.9%
2014	618	12.1%	1,404	8.8%	2,022	9.8%	7,187	16.6%	9,209	15.1%
2015	50	8.0%	185	15.1%	235	13.6%	4,780	20.3%	5,015	20.0%
2016 ²	NA	NA	NA	NA	NA	NA	NA	NA	1,888	22.9%
2017 ²	NA	NA	NA	NA	NA	NA	NA	NA	1,644	25.5%
2018	66	80.3%	219	78.5%	285	78.9%	2,775	34.2%	3,060	38.4%
2019 ³	NA	NA	NA	NA	NA	NA	NA	NA	2,691	18.8%
2020	227	4.0%	1,110	8.6%	1,337	7.8%	2,531	19.9%	3,868	15.7%
2021	1,246	37.5%	423	11.3%	1,669	30.9%	2,914	15.2%	4,583	20.9%
2022	178	24.4%	162	24.7%	340	24.4%	2,789	18.2%	3,129	18.9%

¹ Run differentiation between spring-run and fall-run Chinook salmon for all years included in the evaluation was conducted using the methodology described in Poxon and Bratovich (2020).

² The 2016 and 2017 annual time series were deemed inappropriate for count correction and run separation analyses due to long periods of VAKI Riverwatcher™ system outages that resulted in incomplete datasets for both years. No estimates (run-differentiated or overall) are possible for these years. The total number of Chinook salmon for these years represent raw counts as affected by VAKI Riverwatcher™ system outages, and do not represent estimated annual abundances.

³ The 2019 annual time series was deemed inappropriate for run separation analysis due to an extended closure (February 13, 2019 through September 10, 2019) of the DPD North Ladder, which fundamentally altered the temporal patterns of passage at DPD on which the run separation analysis is based. As a result, the only possible annual abundance estimate for the 2019 annual time series is Total Chinook Salmon.