Reinforcement learning (II)

IA 2023/2024

Conținut

Introducere

Învățarea pasivă

Învățarea activă Q-learning Deep Q-learning

Curs 8

Reinforcement learning

- Proces de decizie Markov
 - Mulţimea de stări S, multimea de actiuni A
 - Modelul de tranziții P(s'|s, a) este cunoscut
 - Funcția de recompensă R(s)
 este cunoscută
 - ► Calculează o politică optimă

- ► Învățare cu întărire
 - Se bazează pe procese de decizie Markov, dar:
 - Modelul de tranziții este necunoscut
 - Funcția de recompensă este necunoscută
 - Învață o politică optimă

3/41

Tipuri de învățare cu întărire

Pasivă/activă

► Pasivă: agentul execută o politică fixă și o evaluează

Agentul nu are control asupra acțiunilor sale; robotică

Activă: agentul își actualizează politica pe măsură ce învață

FII, UAIC Curs 8 IA 2023/2024 4 / 41

Tipuri de învățare cu întărire

Bazată pe model/fără model

- Bazată pe model: învață modelul de tranziții și recompense și îl folosește pentru a descoperi politica optimă
- Fără model: descoperă politica optimă fără a învăța modelul

5 / 41

FII, UAIC Curs 8 IA 2023/2024

Conținut

Introducere

Învățarea pasivă

Bazată pe model: ADP Fără model: TD-learning

Învățarea activă Q-learning Deep Q-learning

Concluzi

FII, UAIC

Învățarea pasivă

- Politica este fixă: în starea s execută întotdeauna acțiunea $\pi(s)$
- lacktriangle Scopul: învață cât de bună este politica π
 - ightharpoonup învață utilitatea $U^{\pi}(s)$

cum?

execută politica și învață din experiență

abordare similară cu pasul (1) de evaluare a politicii din cadrul algoritmului *Iterarea politicilor*; diferența: nu cunoaștem modelul de tranziții P(s'|s,a) și nici R(s)

Învățarea pasivă este o modalitate de explorare a mediului.

FII, UAIC Curs 8

Învățarea pasivă

► Agentul execută o serie de încercări (*trials*)

$$(1,1)_{-.04} \rightsquigarrow (1,2)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (1,2)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (1,2)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightarrow (1,3$$

$$(2,3)_{-.04} \rightsquigarrow (3,3)_{-.04} \rightsquigarrow (4,3)_{+1}$$

$$(1,1)_{-.04} \rightsquigarrow (1,2)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (2,3)_{-.04} \rightsquigarrow (3,3)_{-.04} \rightsquigarrow$$

$$(3,2)_{-.04} \rightsquigarrow (3,3)_{-.04} \rightsquigarrow (4,3)_{+1}$$

$$(1,1)_{-.04} \rightsquigarrow (2,1)_{-.04} \rightsquigarrow (3,1)_{-.04} \rightsquigarrow (3,2)_{-.04} \rightsquigarrow (4,2)_{-1}$$

- ▶ Politica este aceeasi, dar mediul este nedeterminist
- Scopul este să învețe utilitatea așteptată $U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(S_t)\right]$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

Conținut

Introducere

Învățarea pasivă

Bazată pe model: ADP

Fără model: TD-learning

Învățarea activă Q-learning Deep Q-learning

Concluzii

FII, UAIC Curs 8

Învățarea bazată pe model

Programarea dinamică adaptivă (ADP)

1. Învățăm modelul de tranziții Estimăm $P(s'|s, \pi(s))$ și R(s) din încercări.

Utilizăm un tabel de probabilități (cât de des apare rezultatul unei acțiuni și estimăm probabilitatea de tranziție)

Exemplul 1: acțiunea *Right* este executată de 3 ori în starea (1,3) și în 2 cazuri starea rezultantă este (2,3) P((2,3)|(1,3)|P(nht) = 2/3

 $\implies P((2,3)|(1,3), Right) = 2/3$

2. Rezolvăm MDP

10 / 41

FII, UAIC Curs 8 IA 2023/2024

Programarea dinamică adaptivă (ADP)

 Învățarea modelului empiric Exemplu:

Input Policy π

Assume: $\gamma = 1$

Observed (s, a, s', R) Transitions

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 1

Episode 3

E, north, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Episode 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Episode 4

Learned Model

 $\widehat{T}(s,a,s')$ T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

 $\widehat{R}(s, a, s')$ R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

Programarea dinamică adaptivă

2. Utilizăm programarea dinamică pentru rezolvarea procesului de decizie Markov.

Probabilitățile și recompensele învățate se introduc în ecuațiile Bellman (politica fixă).

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

Se rezolvă sistemul de ecuații liniare cu necunoscutele $U^{\pi}(s)$.

ADP este ineficientă dacă spațiul stărilor este mare

- ▶ sistem de ecuații liniare de ordin *n*
- ▶ jocul de table: 10⁵⁰ ecuații cu 10⁵⁰ necunoscute

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

12 / 41

Conținut

Introducere

Învățarea pasivă

Bazată pe model: ADP

Fără model: TD-learning

Învățarea activă Q-learning Deep Q-learning

Concluzi

FII, UAIC Curs 8

Învătare fără model

1. Estimarea directă a utilitătii

Utilitatea unei stări este recompensa totală asteptată de la acea stare înainte (reward-to-go)

Exemplu:
$$(1,1)_{-.04} \rightsquigarrow (1,2)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (1,2)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (1,1)_{-.04} \rightsquigarrow (1,2)_{-.04} \rightsquigarrow (1,3)_{-.04} \rightsquigarrow (2,3)_{-.04} \rightsquigarrow (3,3)_{-.04} \rightsquigarrow (3,2)_{-.04} \rightsquigarrow (3,3)_{-.04} \rightsquigarrow (4,3)_{+1} (1,1)_{-.04} \rightsquigarrow (2,1)_{-.04} \rightsquigarrow (3,1)_{-.04} \rightsquigarrow (3,2)_{-.04} \rightsquigarrow (4,2)_{-1}$$
 Prima încercare produce:

- - ightharpoonup în starea (1,1) recompensa totală 0.72 (1 .04 x 7)
 - ▶ în starea (1,2) două recompense totale 0.76 si 0.84
 - ▶ în starea (1,3) două recompense totale 0.80 si 0.88
- Utilitatea estimată: media valorilor esantionate
 - V(1.1) = 0.72, U(1.2) = 0.80, U(1.3) = 0.84 etc.

Estimarea directă a utilității

- Presupune că utilitățile sunt independente (fals)
 Nu ține cont de faptul că utilitatea unei stări depinde de utilitățile stărilor succesoare (constrângerile date de ecuațiile Bellman)
 - căutarea într-un spațiu mult mai mare
 - convergența este foarte lentă
- Avem toate episoadele dinainte

15 / 41

FII, UAIC Curs 8 IA 2023/2024

2. Învățarea diferențelor temporale (Temporal Differences)

- Combină avantajele celor două abordări anterioare (Estimarea directă a utilității și Programarea dinamică adaptivă)
 - actualizează doar stările direct afectate
 - satisface aproximativ ecuatiile Bellman
- Scopul: estimarea utilităților $U^{\pi}(s)$, date episoadele generate utilizând politica π .
 - Acțiunile sunt decise de politica π .
- Utilitățile sunt ajustate după fiecare tranziție observată.

Exemplu:

- ▶ După prima încercare: estimările $U^{\pi}(1,3) = 0.84$, $U^{\pi}(2,3) = 0.92$.
- Fie tranziția $(1,3) \rightarrow (2,3)$ în a doua încercare. Constrângerea dată de ecuația Bellman impune ca $U^{\pi}(1,3) = -0.04 + U^{\pi}(2,3) = 0.88 \ (\gamma = 1)$.
- Estimarea initială $U^{\pi}(1,3) = 0.84$ este mai mică \rightarrow se actualizează

Învățarea diferențelor temporale

Ecuația diferențelor temporale utilizează diferența utilităților între stări succesive:

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

 α rata de învătare

- Actualizarea implică doar succesorul s', pe când condițiile de echilibru (ec. Bellman) implică toate stările următoare posibile
- Metoda aplică o serie de corecții pentru a converge
- Obs: metoda nu are nevoie de un model de tranziții P pentru a realiza actualizările

FII, UAIC Curs 8 IA 2023/2024 17 / 41

Diferente temporale: pseudocod

```
function PASSIVE-TD-AGENT(percept) returns an action
```

inputs: percept, a percept indicating the current state s' and reward signal r'**persistent**: π , a fixed policy

> U, a table of utilities, initially empty N_s , a table of frequencies for states, initially zero s, a, r, the previous state, action, and reward, initially null

```
if s' is new then U[s'] \leftarrow r'
if s is not null then
    increment N_s[s]
     U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])
if s'.TERMINAL? then s, a, r \leftarrow \text{null else } s, a, r \leftarrow s', \pi[s'], r'
return a
```

Demo: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Învățarea diferențelor temporale: exemplu

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

B, east, C, -2

C, east, D, -2

Invătarea diferentelor temporale

- lacktriangle Rata de învățare lpha determină viteza de convergență la utilitatea reală
- ightharpoonup Valoarea medie a $U^{\pi}(s)$ va converge la valoarea corectă
 - suficiente încercări, tranzițiile rare apar rar
 - ightharpoonup dacă α este o functie care scade pe măsură ce nr. de vizitări ale unei stări creste, atunci $U^{\pi}(s)$ converge la valoarea corectă
 - funcția $\alpha(n) = 1/n$ sau $\alpha(n) = 1/(1+n) \in (0,1]$

FII, UAIC Curs 8

Diferențe temporale vs. Programare dinamică adaptivă

- TD nu are nevoie de model, ADP este bazată pe model
- ► TD utilizează doar succesorul observat pentru actualizare și nu toți succesorii
- TD converge mai lent, dar execută calcule mai simple

► TD poate fi văzut ca o aproximare a ADP

Conținut

Introducere

Învățarea pasivă

Bazată pe model: ADP Fără model: TD-learning

Învățarea activă Q-learning Deep Q-learning

Concluzi

FII, UAIC

Învățarea pasivă vs. învățarea activă

- Agentul pasiv are o politică fixă vs. agentul activ trebuie să decidă actiunile
- Agentul pasiv învață (probabilitățile tranzițiilor și) utilitățile stărilor și alege acțiunile optime

VS.

Agentul activ își actualizează politica pe măsură ce învață

- scopul este să învețe politica optimă
- ▶ însă, funcția utilitate nu este cunoscută decât aproximativ

FII, UAIC Curs 8 IA 2023/2024 23 / 41

Exploatare vs. explorare

Dilema exploatare-explorare a agentului

- să își maximizeze utilitatea, pe baza cunoștințelor curente, sau
- să își îmbunătățească cunoștințele

Este necesar un compromis între

- exploatare
 - agentul oprește învățarea și execută acțiunile date de politică
- explorare
 - agentul învață încercând acțiuni noi

FII, UAIC Curs 8

Dilema exploatare - explorare: soluții

Metoda ϵ -greedy

- ▶ Fie $\epsilon \in [0, 1]$
- ► Actiunea următoare selectată va fi:
 - ightharpoonup o acțiune aleatoare, cu probabilitatea ϵ
 - ightharpoonup acțiunea optimă, cu probabilitatea $1-\epsilon$
- Implementare
 - ightharpoonup inițial $\epsilon=1$ (explorare)
 - ightharpoonup când se termină un episod de învățare, ϵ scade (de ex. cu 0.05) crește progresiv rata de exploatare
 - $ightharpoonup \epsilon$ nu scade niciodată sub un prag, de ex. 0.1
 - agentul are mereu o șansă de explorare, pentru a evita optimele locale

25 / 41

FII, UAIC Curs 8 IA 2023/2024

Conținut

Învățarea pasivă

Învățarea activă Q-learning Deep Q-learning

FII, UAIC Curs 8

Algoritmul Q-Learning (Watkins, 1989)

- Algoritmul Q-Learning învată o funcție acțiune-valoare Q(s,a) (Q quality). Q(s,a) valoarea asociată realizării acțiunii a în starea s.
 - Relația dintre utilități și valorile Q: $U(s) = max_aQ(s, a)$.
- Ecuatiile adevărate la echilibru când valorile Q sunt corecte

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

Acestea pot fi utilizate într-un proces iterativ care calculează valorile Q exacte.

IA 2023/2024

27 / 41

FII, UAIC Curs 8

Algoritmul Q-Learning

- ▶ Un agent TD care învață o funcție Q nu are nevoie de un model probabilist P(s'|s,a) (învățare fără model).
- Pentru fiecare eșantion (s, a, s', r), se actualizează valoarea Q. Ecuația de actualizare pentru TD Q-Learning:

$$Q(s, a) = Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

(executând acțiunea a în starea s rezultă s')

Coeficientul de învățare α determină viteza de actualizare a estimărilor; de obicei, $\alpha \in (0,1)$

FII, UAIC Curs 8 IA 2023/2024 28 / 41

Algoritmul Q-Learning: pseudocod

```
function Q-LEARNING-AGENT(percept) returns an action inputs: percept, a percept indicating the current state s' and reward signal r' persistent: Q, a table of action values indexed by state and action, initially zero N_{sa}, a table of frequencies for state-action pairs, initially zero s, a, r, the previous state, action, and reward, initially null if TERMINAL?(s) then Q[s, None] \leftarrow r' if s is not null then increment N_{sa}[s, a] Q[s, a] \leftarrow Q[s, a] + \alpha(N_{sa}[s, a])(r + \gamma \max_{a'} Q[s', a'] - Q[s, a]) s, a, r \leftarrow s', argmax_{a'} f(Q[s', a'], N_{sa}[s', a']), <math>r' return a
```

f funcție de explorare

- Q-learning converge la o politică optimă
- Q-Learning este mai lent decât ADP

4 D > 4 A > 4 B > 4 B > B 900

29 / 41

FII, UAIC Curs 8 IA 2023/2024

Q-learning: exemplu

Pacman is in an unknown MDP where there are three states [A, B, C] and two actions [Stop, Go]. We are given the following samples generated from taking actions in the unknown MDP. For the following problems, assume $\gamma=1$ and $\alpha=0.5$.

(a) We run Q-learning on the following samples:

s	a	s'	r
Α	Go	В	2
С	Stop	A	0
В	Stop	A	-2
В	Go	С	-6
С	Go	Α	2
Α	Go	A	-2

What are the estimates for the following Q-values as obtained by Q-learning? All Q-values are initialized to 0.

$$Q(C, Stop) =?, Q(C, Go) =?$$

FII, UAIC Curs 8 IA 2023/2024 30 / 41

SARSA

Ecuatia de actualizare

$$Q(s,a) = Q(s,a) + \alpha(R(s) + \gamma Q(s',a') - Q(s,a))$$

(s', a') perechea (starea următoare, acțiunea următoare)

SARSA utilizează abordarea TD: se actualizează tabelul Q după fiecare pas până cand soluția converge/nr. max. de iterații.

Exemplu aplicație: Windy Gridworld http://www.incompleteideas.net/book/ebook/node64.html

31 / 41

FII, UAIC Curs 8

Conținut

Introducere

Învățarea pasivă

Bazată pe model: ADP Fără model: TD-learning

Învățarea activă

Q-learning

Deep Q-learning

Concluzi

FII, UAIC

Deep Reinforcement Learning

Utilizează o rețea neurală (profundă) pentru a aproxima valorile Q

intrare: o stare
 ieșire: o estimare a lui Q, pentru fiecare acțiune posibilă

Deep Reinforcement Learning

ightharpoonup Considerăm ec. de actualizare a valorii Q (derivată din ec. Bellman):

$$Q(s, a) = Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$
$$= (1 - \alpha)Q(s, a) + r + \gamma \max_{a'} Q(s', a')$$

- Funcția de cost: eroarea medie patratică dintre valorea Q prezisă și valorea țintă Q^* (nu se cunoaște).
 - Valoarea țintă: $target(s') = r + \gamma max_{a'}Q(s', a')$ Minimizăm $loss(s, a, s') = (Q(s, a) - target(s'))^2$.
- ▶ Utilizăm metoda *Gradient descent* pentru a optimiza funcția de cost

Descriere: https://deeplearningmath.org/deep-reinforcement-learning.html Demo: https://cs.stanford.edu/people/karpathy/reinforcejs/

FII, UAIC Curs 8 IA 2023/2024 34 / 41

Deep Q-learning

Probleme:

- lacktriangle eşantioanele sunt corelate ightarrow rețeaua nu poate generaliza
- ightharpoonup target(s') este o estimare \rightarrow convergentă lentă/alg. nu e stabil

Solutii:

- $ightharpoonup \epsilon$ -greedy policy
- \triangleright experience replay: memorăm experiențele (s, a, r, s') și le folosim pentru antrenare (mini-batch)

35 / 41

Double Deep Q-network

 valoarea țintă se modifică la fiecare iterație; soluție: o rețea separată pentru a estima valoarea țintă

▶ la fiecare *C* iterații, parametrii din rețeaua de predicție sunt copiați în rețeaua țintă

Function approximation

$$\hat{U}_{\theta}(s) = \theta_1 f_1(s) + \theta_2 f_2(s) + \dots \theta_n f_n(s)$$

 $f_1, \ldots f_n$ atribute

RL învață valorile parametrilor $\theta=\theta_1,\dots\theta_n$ a.i. funcția de evaluare \hat{U}_{θ} aproximează funcția utilitate.

- actualizează parametrii după fiecare încercare
- lacktriangle utilizează o funcție de eroare și calculează gradienții în raport cu heta

$$E_j(s) = (\hat{U}_{\theta}(s) - u_j(s))^2/2$$

 $u_j(s)$ recompensa totală observată din starea s pentru încercarea j

$$\theta_i \leftarrow \theta_i - \alpha \frac{\delta E_j(s)}{\delta \theta_i} = \theta_i + \alpha (u_j(s) - \hat{U}_{\theta}(s)) \frac{\delta \hat{U}_{\theta}(s)}{\delta \theta_i}$$

ightharpoonup putere de generalizare (stări vizitate ightarrow stări nevizitate)

FII, UAIC Curs 8 IA 2023/2024 37 /41

Alte abordări

Metode de tip policy gradient: învață o politică parametrizată (fără a decide acțiunea pe baza valorilor).

$$\pi(a|s,\theta) = Pr\{A_t = a|S_t = s, \theta_t = \theta\}$$

Scopul: identificarea parametrilor θ a.i. să maximizăm performanța $J(\theta)$. Parametrii sunt actualizați utilizând *Gradient Ascent* $\theta_{t+1} = \theta_t + \alpha \widehat{\nabla J(\theta_t)}$.

Politica poate fi stochastică.

Metode de tip *actor-critic*: învață atât politica cât și valorile.

ChatGPT utilizează *Proximal policy optimization*: https://openai.com/research/openai-baselines-ppo.

FII, UAIC Curs 8 IA 2023/2024 38 / 41

Conținut

Introducere

Învățarea pasivă

Bazată pe model: ADP Fără model: TD-learning

Învățarea activă Q-learning Deep Q-learning

Concluzii

FII, UAIC Curs 8

Concluzii

- Învățarea cu întărire este necesară pentru agenții care evoluează în medii necunoscute
- ► Învățarea pasivă presupune evaluarea unei politici date
- ▶ Învătarea activă presupune învățarea unei politici optime

Bibliografie

- Artificial Intelligence: A modern Approach. Ch. 21. Reinforcement Learning
- Sutton&Barto. Reinforcement Learning. An introduction http://incompleteideas.net/book/RLbook2020.pdf

FII, UAIC Curs 8