

Intégration

Exercice 1. Calculer les intégrales suivantes:

1.

$$\int_0^1 \frac{\arctan x}{(x+1)^2} dx$$

2.

$$\int_0^{\frac{\pi}{6}} \frac{1}{\cos^3} \, \mathrm{d}x$$

3. Avec $\alpha \in]0, \pi[$

$$\int_0^{\frac{\pi}{2}} \frac{\sin \alpha}{1 + \cos \alpha \cos x} \, \mathrm{d}x$$

$\mathcal{E}_{xercice 2}$.

1. Soit $f \in \mathcal{C}([0;1],\mathbb{R})$. Établir

$$\int_{0}^{\pi} t f(\sin t) dt = \frac{\pi}{2} \int_{0}^{\pi} f(\sin t) dt$$

2. En déduire la valeur de

$$I_n = \int_0^{\pi} \frac{x \sin^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} \, dx$$

 $\mathcal{E}_{xercice\ 3.}$ Soient $f:[0;1]\to\mathbb{R}$ une application de classe \mathcal{C}^2 et

$$S_n = \sum_{k=1}^n f(k/n^2) - nf(o)$$

Déterminer la limite de la suite (S_n) .

Exercice 4. Soient $f \in \mathcal{C}([0,1])$ et $n \in \mathbb{N}^*$ tels que

$$\forall k \in \{0...n-1\}, \quad \int_0^1 x^k f(x) \, \mathrm{d}x = 0$$

Montrer que f s'annule au moins n fois sur]0,1[.

Exercice 5. Calculer

$$\int_{0}^{\sqrt{3}} \arcsin\left(\frac{2t}{1+t^2}\right) dt$$

Exercice 6. Soit $f \in \mathcal{C}^{\circ}([0,1],\mathbb{R})$ tel que $f(1) \neq 0$. Donner un équivalent de

$$\int_0^1 x^n f(x) \, \mathrm{d}x$$

Indication : On pourra commencer par le cas où f est C^1 .