ChemComm RSC Publishing

COMMUNICATION

View Article Online

Cite this: Chem. Commun., 2013, 49 1449

Received 24th September 2012, Accepted 2nd January 2013

DOI: 10.1039/c2cc36918d

www.rsc.org/chemcomm

A solution ¹⁷O-NMR approach for observing an oxidized cysteine residue in Cu,Zn-superoxide dismutase[†]

Shinya Hanashima, ab Noriko Fujiwara, * Kana Matsumoto, Noriyuki Iwasaki, d Guo-qing Zheng, e Hidetaka Torigoe, f Keiichiro Suzuki, Naoyuki Taniguchi bah and Yoshiki Yamaquchi*ab

Solution ¹⁷O-NMR application to biological macromolecules is extremely limited. We describe here ¹⁷O-NMR observation of the ¹⁷O₂-oxidized cysteine side chain of human Cu,Zn-superoxide dismutase in solution using selective ¹⁷O₂ oxidation. ¹⁷O-NMR with the aid of ¹⁷O-labeling has wide potential to probe the environment and dynamics of oxidizable functionalities in proteins.

¹⁷O-NMR is a direct, non-degrading method for detecting oxygen-containing functionalities like hydroxyl (-OH), ether (-O-), carbonyl (C=O), phosphate (P=O), and sulfoxide (S=O) groups. It has found wide application in organic chemistry to identify structure and reaction mechanisms based on the wide chemical-shift range and distinguishable oxidation states. In contrast, its use in biological applications for protein analysis has been hampered by low sensitivity because the natural abundance of NMR active ¹⁷O is only 0.0037%. A clear signal usually requires stable-isotope labeling using a ¹⁷O-donatable species. Another drawback is that the ¹⁷O-NMR signal is broader than those obtained by ¹H- and ¹³C-NMR because 17 O has a quadrupole moment (I = 5/2). For these reasons, solid-state ¹⁷O-NMR is more applicable for biological samples.²⁻⁴ In contrast, solution ¹⁷O-NMR spectroscopy has been limited to protein-ligand interactions with ¹⁷O-labeled low-molecular-weight ligands, such as ¹⁷O-labeled carbon monoxide binding to heme proteins and ¹⁷O-labeled palmitic acid, oxalate and biotin binding to model proteins. 5-9 As yet, no attempts have been made to observe solution ¹⁷O-NMR signals directly derived from ¹⁷O-labeled proteins.

The thiol group of cysteine (Cys) residues in proteins is susceptible to reactive oxygen species (ROS). Upon oxidation by ROS, the thiol group can form a disulfide by recruiting a surrounding thiol group or oxo-acid derivatives involving sulfenic acid (-SOH), sulfinic acid (-SO₂H) and sulfonic acid (-SO₃H). The produced oxo-acid at Cys potentially alters the local hydrogen-bond environment and electrostatic polarities and might induce structural and dynamic changes in the protein. Actually, such a modified Cys side chain often influences protein function. 10-14

Human Cu, Zn-superoxide dismutase (SOD1) is a key enzyme for protecting cells against the highly reactive superoxide anion radical by converting it to hydrogen peroxide. SOD1 is a homodimer containing one copper ion and one zinc ion in each 16-kDa subunit (Fig. 1). Mutations in the SOD1 gene have been found in patients with familial amyotrophic lateral sclerosis (FALS). The FALS-linked mutant SOD1 proteins have a propensity to form aggregates that are

Fig. 1 Structure of the SOD1 dimer (pdb: 1SPD). Cys¹¹¹ is shown in magenta, Zn in orange, and Cu in blue. ¹⁷O₂-oxidized SOD1 contains three forms as in 1, 2, and 3.

^a Structural Glycobiology Team, RIKEN ASI, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama, Japan. E-mail: yyoshiki@riken.jp; Fax: +81 48-467-9620; Tel: +81 48-467-9619

^b Disease Glycoprobe Team, RIKEN-Max Planck Joint Research Center, RIKEN ASI, Saitama 351-0198, Japan

^c Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan. E-mail: noriko-f@hyo-med.ac.jp; Fax: +81 798-46-3164; Tel: +81 798-45-6357

^d Bruker Daltonics K.K., Kanagawa 221-0022, Japan

^e Department of Physics, Okayama University, Okayama 700-8530, Japan

^fDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan

g Disease Glycomics Team, RIKEN ASI, Saitama 351-0198, Japan

h The RIKEN-Osaka University Alliance Laboratory, The Institute of Scientific and Industrial Research, Osaka University, Osaka 565-0871, Japan

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/ c2cc36918d

implicated in neuronal toxicity. Even wild-type SOD1 aggregates after oxidation, and gains properties reminiscent of FALS mutant SOD1s. We previously reported that the free –SH group on Cys¹¹¹ of human SOD1 (1) is selectively oxidized to –SO₂H (2) and –SO₃H (3) under atmospheric oxygen (Fig. 1).¹⁵ Intriguingly, only a Cys¹¹¹ at one of the subunits is asymmetrically air oxidized.^{15–17} The oxidation of Cys¹¹¹ affects aggregation and resulting cytotoxicity.^{18,19} Immunohistochemical analysis using a specific antibody against Cys¹¹¹–SO₃H indicated labeling of Lewy-body-like hyaline inclusions

and vacuole rims in the spinal cord of FALS model mice.¹⁵

Communication

A method for analysing the chemical environment and function of R-SO₂H/R-SO₃H forms of Cys residues will therefore help understand the role of oxidized proteins in such conformational changes and associated disease processes. Previously ¹³C-NMR has been used for the investigation of oxidized Cys, coupled with mass spectrometry. 20 The C_{β} chemical shift of Cvs is known to reflect the oxidative state of the sulfhydryl group. In this context, we considered that ¹⁷O-NMR might be an alternative and efficient technique to identify the R-SO_nH group on Cys residues in a non-degrading manner. Furthermore, the direct observation technique includes the potential to analyse the structural property of the R-SO_nH group because the chemical shifts and line-widths of the R-SO_nH signal could be good reporters of the surrounding environment. Here we selectively label Cys111-SH of human recombinant SOD1 with ¹⁷O and successfully analyse it using solution ¹⁷O-NMR.

Oxidation of Cys¹¹¹-SH SOD1 by ¹⁷O₂-gas was performed according to previously reported protocols with some modifications.15 The oxidation state of 17O-SOD1 was confirmed using peptide-mapping combined ESI-TOF MS (Fig. S1 and S2, ESI[†]). The molar ratio of 1:2:3=63:16:21 based on the HPLC profile of the peptides was identical to the previously reported pattern.15 1H-NMR spectra of Cu2+- and Cu+-forms of ¹⁷O₂-oxidized SOD1 were measured to evaluate their structural identities (Fig. S3 and S4, ESI†). To monitor the oxidation state of the Cu cation and the structure of the catalytic site, NMR signals of imine protons on the His side chains chelating Zn²⁺ and the Cu cation were utilized as a probe. 21 The reduced SOD1 is of the Cu⁺-form as evidenced by the presence of sharp His signals (Fig. S4(b) and (c), ESI†), while the original and re-oxidized SOD1 is of the Cu²⁺-form, which was judged by the broadening of most His signals due to the paramagnetic effect of Cu²⁺ (Fig. S4(a) and (d), ESI[†]). Although the three forms, 1, 2 and 3, are contained in ¹⁷O₂-oxidized SOD1, prepared via the above-mentioned procedure, only a single pattern of ¹H-NMR signals was observed (Fig. S3 and S4, ESI[†]), showing that oxidation of Cys111 of SOD1 does not induce large structural differences in the protein. In contrast, reduction of Cu²⁺ to Cu⁺ induces structural changes, as observed in ¹H-NMR and CD spectra (Fig. S3 and S5, ESI†).

Before performing ¹⁷O-NMR on the ¹⁷O-SOD1, the standard ¹⁷O-chemical shifts of R-SO₃H and R-SO₂H were confirmed using AcNH-Cys-SO₃H **8** and AcNH-Cys-SO₂H **9** (Fig. 2). As to ¹⁷O-NMR spectra of AcNH-Cys-SO₃H **8**, a signal was observed at 171 ppm (line-width: 720 Hz; Fig. 2a). In contrast, as shown in Fig. 2b, AcNH-Cys-SO₂H **9** provided a broader signal at 141 ppm (line-width: 1890 Hz), which would be due to the

Fig. 2 17 O-NMR spectra of *N*-acetylated cysteinesulfonic acid **8** (a; 1.4 M) and cysteinesulfinic acid **9** (b; 1.0 M) in 10 mM phosphate buffer (pH 5.0) at 20 °C. A 17 O-signal with natural abundance was detected at chemical shifts of 171 ppm (a) and 141 ppm (b), respectively.

unsymmetrical oxygen nucleus. The results indicate that the ¹⁷O-NMR technique apparently distinguishes between Cys-SO₂H and Cys-SO₃H in terms of chemical shifts and linewidths.

Then, our interest shifted to observe Cys¹¹¹-SO₃H/-SO₂H signals in ¹⁷O₂-oxidized SOD1 by ¹⁷O-NMR. We expected that it would be potentially possible because a quadrupole central transition signal would be observed at the slow motion limit (discussed later).^{8,9} In fact, clear ¹⁷O-NMR spectra of ¹⁷O₂-oxidized SOD1 in the Cu²⁺-form, Cu⁺-form, and peptide mixture-form were successfully obtained (Fig. 3). First, the spectrum of ¹⁷O₂-oxidized SOD1 (Cu²⁺-form) showed a signal at 165 ppm (line-width: 470 Hz) (Fig. 3a). To examine the paramagnetic Cu²⁺ effect, Cu²⁺ at the catalytic centre was reduced with isoascorbic acid or 2-mercaptoethanol to form Cu⁺.^{22,23} As shown in Fig. 3b, the Cu⁺-form prepared by addition of isoascorbic acid gave a sharp ¹⁷O-NMR signal at 164 ppm (line-width: 130 Hz). Reduction with 2-mercaptoethanol also

Fig. 3 $^{17}\text{O-NMR}$ spectra of $^{17}\text{O}_2$ -oxidized SOD1. All spectra were measured in 10 mM phosphate buffer (pH 5.0) at 20 $^{\circ}\text{C}$; (a) original Cu²⁺-form, (b) Cu⁺-form prepared by addition of isoascorbic acid (10 mM). (c) SOD1 peptide mixture produced by treatment with lysylendopeptidase.

ChemComm Communication

provides the Cu⁺-form, giving an identical signal (data not shown). Hence the signal-broadening effect observed in Fig. 3a is partially caused by a Cu2+ paramagnetic effect. The distance between the Cu cation at the active site and Cys¹¹¹ is about 19 Å based on a previously reported SOD1 structure (PDB ID: 1SPD; Fig. 1).24 Although the distance is rather far for such a paramagnetic effect from the active site Cu²⁺ to ¹H (usually sensitive up to 11 Å) and ¹³C (up to 6 Å) nuclei, ¹⁷O-nuclei at Cys¹¹¹ still experience a paramagnetic effect.²² The slight down-field shift by 1 ppm of the Cys¹¹¹-SO₃H signal from Cu⁺-SOD1 indicates the subtle structural or environmental difference between Cu²⁺-SOD1 and Cu⁺-SOD1. A previous NMR study showed that the copper ion in the Cu⁺-bound dimer form moves further inside the active cavity (\sim 1.7 Å) and thus His63 loses the coordination to the Cu ion.²³ Since additional structural comparisons have not been reported, further experiments are necessary to establish the conformational differences between Cu²⁺-SOD1 and Cu⁺-SOD1. The ¹⁷O-NMR line width is highly dependent on $\omega_0 \tau_c$. where ω_0 is the Larmor angular frequency of the ¹⁷O nucleus under detection and τ_{c} is the molecular rotational correlation time. For biological macromolecules at high magnetic fields (slow motion limit, $\omega_0 \tau_c \gg 1$), the ¹⁷O signal is expected to show a relatively narrow spectral line. For the SOD1 dimer under the experimental conditions, $\omega_0 \tau_c$ is estimated to be 9 $(\tau_c = 4\pi \eta r^3/3kT$, where η is the viscosity of water, k is the Boltzmann constant, T is the temperature and r is the effective hydrodynamic radius of the protein, 2.5 nm (ref. 25)). This condition is expected to provide a rather sharp line width, consistent with the observation of a sharp ¹⁷O-NMR signal.

Although the sample includes both the Cys111-SO3H form and the Cys¹¹¹-SO₂H form in a 16:21 ratio (Fig. S1, ESI[†]), only one signal was observed (Fig. 3a and b). The reason is likely to be due to broadening out of a signal especially that from the Cys¹¹¹-SO₂H form. Actually, a broad signal is observed even in the free amino acid form, AcNH-Cys-SO₂H 9 (Fig. 2). Another possibility is due to overlapping of signals from Cys¹¹¹-SO₂H and -SO₃H. However, this seems unlikely because the chemical shifts of R-SO₂H and R-SO₃H are 30 ppm apart in the free amino acid form.

In order to examine the molecular size-dependent ¹⁷O relaxation property, a ¹⁷O₂-oxidized SOD1 peptide mixture was prepared by guanidine-DTT treatment and lysylendopeptidase digestion. The molecular weight of the peptide (residues 92-122) containing Cys¹¹¹-SO₃H is 3300 (Fig. S2, ESI[†]). ¹⁵ Since the peptide mixture does not contain metal ions, the Cu²⁺ paramagnetic effect can be excluded. The 17O-NMR spectra of the digest exhibited a sharp signal at 171 ppm with a line-width of 250 Hz, which is analogous to the signal obtained with AcNH-Cys-SO₃H 8 (Fig. 2a). The signal is therefore attributed to Cys¹¹¹-SO₃H in the peptide. However, no signals were observed at 141 ppm, corresponding to Cys¹¹¹-SO₂H. The selective observation of the Cys¹¹¹-SO₃H signal is likely attributable to an inherent property due to the symmetrical oxygen nucleus.

In conclusion, we have described here the first example of solution ¹⁷O-NMR for Cys¹¹¹–SO₃H/SO₂H on SOD1, a homo-dimeric protein composed of 16 kDa subunits. The chemical shifts and line-widths of Cys¹¹¹-SO₃H on SOD1 were distinct in the Cu²⁺- and Cu⁺-forms as well as the peptide-digested form, which strongly

suggests environmental, structural and dynamic differences. Our results suggest that observing Cys-SO₃H by ¹⁷O labelling and ¹⁷O-NMR could be very useful for investigating protein structure and dynamics, complementing the conventional ¹H-, ¹³C- and ¹⁵N-NMR studies. Further, the method can potentially be applied to the study of the functional modulation of proteins containing Met or catalytic Cys by oxidative stress. Our progress in solution ¹⁷O-NMR when combined with an efficient ¹⁷O-labeling strategy promises to change that and direct and precise analysis of such biological molecules becomes feasible.

We thank Prof. Makoto Fujita and Dr Sota Sato (The University of Tokyo) for mass analysis and Dr Kentaro Ihara (KEK) for figure preparation. We thank Ms Noriko Tanaka for secretarial assistance. This work was supported by Grants-in-Aid for Scientific Research grants (19500313, 23591259), the Japan Foundation for Applied Enzymology and Global COE program of Osaka University from the MEXT, Japan.

Notes and references

- 1 D. W. Boykin, ¹⁷O NMR Spectroscopy in Organic Chemistry, CRC Press, Florida, 1990.
- 2 K. Yamada, Annu. Rep. NMR Spectrosc., 2010, 70, 115.
- 3 G. Wu, Prog. Nucl. Magn. Reson. Spectrosc., 2008, 52, 118.
- 4 V. Lemaitre, M. R. de Planque, A. P. Howes, M. E. Smith, R. Dupree and A. Watts, J. Am. Chem. Soc., 2004, 126, 15320.
- 5 K. D. Park, K. M. Guo, F. Adebodun, M. L. Chiu, S. G. Sligar and E. Oldfield, Biochemistry, 1991, 30, 2333.
- 6 H. C. Lee and E. Oldfield, J. Am. Chem. Soc., 1989, 111, 1584.
- 7 H. C. Lee, K. Cummings, K. Hall, L. P. Hager and E. Oldfield, J. Biol. Chem., 1988, 263, 16118.
- 8 J. Zhu and G. Wu, J. Am. Chem. Soc., 2011, 133, 920.
- 9 J. Zhu, I. C. Kwan and G. Wu, J. Am. Chem. Soc., 2009, 131, 14206.
- 10 J. Blackinton, M. Lakshminarasimhan, K. J. Thomas, R. Ahmad, E. Greggio, A. S. Raza, M. R. Cookson and M. A. Wilson, J. Biol. Chem., 2009, 284, 6476.
- 11 K. G. Reddie and K. S. Carroll, Curr. Opin. Chem. Biol., 2008, 12, 746.
- 12 L. B. Poole and K. J. Nelson, Curr. Opin. Chem. Biol., 2008, 12, 18.
- 13 T. J. Phalen, K. Weirather, P. B. Deming, V. Anathy, A. K. Howe, A. van der Vliet, T. J. Jonsson, L. B. Poole and N. H. Heintz, J. Cell Biol., 2006, 175, 779.
- 14 X. Fu, S. Y. Kassim, W. C. Parks and J. W. Heinecke, J. Biol. Chem., 2001, 276, 41279.
- 15 N. Fujiwara, M. Nakano, S. Kato, D. Yoshihara, T. Ookawara, H. Eguchi, N. Taniguchi and K. Suzuki, J. Biol. Chem., 2007, 282, 35933.
- 16 S. V. Seetharaman, D. D. Winkler, A. B. Taylor, X. Cao, L. J. Whitson, P. A. Doucette, J. S. Valentine, V. Schirf, B. Demeler, M. C. Carroll, V. C. Culotta and P. J. Hart, Biochemistry, 2010, 49, 5714.
- 17 K. Ihara, N. Fujiwara, Y. Yamaguchi, H. Torigoe, S. Wakatsuki, N. Taniguchi and K. Suzuki, Biosci. Rep., 2012, 32, 539.
- 18 X. Chen, H. Shang, X. Qiu, N. Fujiwara, L. Cui, X. M. Li, T. M. Gao and J. Kong, Neurochem. Res., 2012, 37, 835.
- D. A. Bosco, G. Morfini, N. M. Karabacak, Y. Song, F. Gros-Louis, P. Pasinelli, H. Goolsby, B. A. Fontaine, N. Lemay, D. McKenna-Yasek, M. P. Frosch, J. N. Agar, J. P. Julien, S. T. Brady and R. H. Brown Jr, Nat. Neurosci., 2010, 13, 1396.
- 20 E. J. Crane 3rd, J. Vervoort and A. Claiborne, Biochemistry, 1997, 36, 8611,
- 21 I. Bertini, F. Capozzi, C. Luchinat, M. Piccioli and M. S. Viezzoli, Eur. J. Biochem., 1991, 197, 691.
- 22 W. Bermel, I. Bertini, I. C. Felli, R. Kummerle and R. Pierattelli, J. Am. Chem. Soc., 2003, 125, 16423.
- 23 L. Banci, I. Bertini, F. Cramaro, R. Del Conte and M. S. Viezzoli, Eur. J. Biochem., 2002, 269, 1905.
- 24 H. X. Deng, A. Hentati, J. A. Tainer, Z. Iqbal, A. Cayabyab, W. Y. Hung, E. D. Getzoff, P. Hu, B. Herzfeldt, R. P. Roos, C. Warner, G. Deng, E. Soriano, C. Smyth, H. E. Parge, A. Ahmed, A. D. Roses, R. A. Hallewell, M. A. Pericak-Vance and T. Siddique, Science, 1993, 261, 1047.
- 25 R. Rakhit, J. P. Crow, J. R. Lepock, L. H. Kondejewski, N. R. Cashman and A. Chakrabartty, J. Biol. Chem., 2004, 279, 15499.