

Квантовая оптика

- Квантовой оптикой называется раздел оптики, занимающийся изучением явлений, в которых проявляются квантовые свойства света:
- Тепловое излучение
- Фотоэффект
- Эффект Комптона
- Фотохимические процессы
- Эффект Рамана *Квантовая оптика* это раздел оптики, в котором изучают статистические свойства световых полей и квантовое проявление этих свойств в процессах взаимодействия света с веществом.

К концу XIX в физик победила теория о волновой природе света (интерференция, дифракция), но остались вопросы, которые волновая теория не могла объяснить (фотоэффект, линейчатые спектры излучения атомов, полосатые спектры молекул, тепловое излучение (ТИ).

Уильям Генрих Брэгг: «Свет ведёт себя подобно волнам по понедельникам, средам и пятницам, подобно частицам по вторникам, четвергам и субботам и ни с чем не сравним по воскресеньям».

Нобелевская премия по физике 1915г., совместно с сыном (Уильямом Лоуренсом Брэггом), «За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей». Премия стала уникальной, так как первый и единственный раз премию получили отец и сын. История знает родственником, которые стали лауреатами, но чтобы оба одновременно и за

Колебания электрических зарядов, входящих в состав вещества, обусловливают электромагнитное излучение, которое сопровождается потерей энергии веществом. При рассеянии и отражении света формирование вторичных световых волн и продолжительность излучения веществом происходит за время, сравнимое с периодом световых колебаний.

Если же излучение продолжается в течение времени, значительно превышающем период световых колебаний, то возможны два типа излучения: люминесценция и тепловое излучение.

Тепловое излучение – электромагнитное излучение широкого спектрального состава, испускаемое веществом и обусловленной тепловыми колебаниями зарядов, возникающее за счет его внутренней энергии.

Опыт показывает, что единственным видом излучения, которое может находиться в равновесии с излучающими телами, является тепловое излучение.

- Все другие виды свечения (излучения света), возбуждаемые за счет любого другого вида энергии, кроме теплового, называются люминесценцией, это виды неравновесного излучения:
- Люминесценцией называется излучение, избыточное над тепловым излучением тела при данной температуре и имеющее длительность, значительно превосходящую период излучаемых волн.
- Люминесцирующие вещества люминофоры.

Люминесценция

- радиолюминесценция
- хемилюминесценция
- триболюминесценция
- фотолюминесценция
- электролюминесценция
- флуоресценция

Люминесценция (от латинского luminescence) - «свечение».

Tep

Электролюминесценция - возникает при пропускании электрического тока через определённые типы люминофоров. Разряд в газе сопровождающийся свечением. Возбужденные атомы отдают энергию в виде световых волн. В результате этого разряда в газе сопровождается свечением.

Радиолюминесценция – возникает при возбуждении вещества ионизирующим излучением.

Термолюминесценция (термостимулированная люминесценция) - свечение, возникающее в процессе нагревания вещества

Катодолюминесценция - физическое явление, заключающееся в свечении (люминесценции) вещества, облучаемого быстрыми электронами (катодными лучами).

Хемилюминесценция – свечение при некоторых химических реакциях, идущих с выделением энергии (источник света остается холодным). Большинство биохимических реакций сопровождается сверхслабым свечением, собственным излучением клеток и тканей. Хемилюминесценция в биосистемах – биохемилюминесценция.

Некоторые организмы излучают сравнительно яркий свет, хорошо видимый невооруженным глазом – биолюминесценция.

- *Тепловое равновесие* означает, что излучающее тело и поле излучения имеют одинаковую температуру, сколько тело излучает, столько и поглощает для данной длины волны (частоты) и температуры.
- Тепловое излучение:
 - 1) не зависит от материала, излучающего тела и его формы;
- 2) зависит от длины волны (частоты) и температуры, причем спектр

без скачков, сплошной спектр;

- 3) тепловое излучение изотропно, т.е. вероятность испускания излучения разных длин волн и поляризаций равновероятно во всех направлениях;
- 4) однородно; 5) неполяризовано;
- 6) ТИ приводит к термодинамическому равновесию систему тел,

обменивающуюся излучением;

Нагретые тела передают тепло от одного к другому тремя

Спектр теплового излучения:

В общем случае любое тело отражает, поглощает и пропускает падающее на него излучение. Поток излучения, падающего на тело можно записать:

или где

- коэффициент отражения или отражательная способность,
- коэффициент поглощения или поглощательная способность,
- коэффициент пропускания или пропускательная способность.

Если тело не пропускает излучение, то .

В общем случае коэффициенты зависят от частоты

Если тело полностью поглощает падающее на него излучение любой частоты и не отражает его, то: и - тело называют абсолютно черным (АЧТ).

Если тело полностью отражает излучение и не поглощает его, то: и - тело называют абсолютно белым.

Если коэффициент поглощения , то тело называют серым.

Если поглощательная способность зависит от длины волны (или частоты), то тело называют *селективным* поглотителем.

Наряду с поглощением, отражением и пропусканием, все тела сами способны испускать ЭМВ, т.е. *светиться*. Все виды испускания можно разделить на два класса:

1. Равновесное излучение – тепловое излучение . Это свечение при нагревании, называют температурным или

График спектральной поглощательной способности тела:

1- АЧТ; 2- серое тело; 3- реальное тело

- Среди излучающих и поглощающих тел особое место занимает АЧТ – абсолютно черное тело (и .
- АЧТ полностью поглощает падающее на него излучение.
- Если АЧТ раскалить, то оно будет светиться ярче, чем серое.

Если на фарфоре нанести рисунок желтой, зеленой и черной краской, а затем нагреть до высокой температуры, то черный рисунок будет светиться ярче, чем зеленой и желтый.

- Пример раскаленного АЧТ Солнце.
- Модель АЧТ предложен Луммером и Вином это термоизолированная полость с зеркальными стенками и бесконечно малым отверстием, попав в него ЭМ излучение бесконечное число раз отражается и не

Характеристики теплового излучения:

 Поле излучения принято характеризовать потоком излучения.

Поток излучения – это энергия переносимая излучением через произвольную поверхность в единицу времени:

2. Энергетическая светимость – энергия электромагнитных волн, испускаемых единицей площади поверхности тела в единицу времени во всём спектральном диапазоне частот.

Спектральные характеристики ТИ:

3. Энергетическая светимость в интервале частот (длин волн) от до (или от до обозначают -

Испускательная способность тела (спектральная плотность излучения) – энергия излучения, испускаемая единицей площади поверхности тела в единицу времени в единичном интервале частот -

Если в интервале до, то - называют *спектральной энергетической светимостью*.

4. Энергетическая светимость тела во всем интервале частот (длин волн) – интегральная характеристика, зависит от температуры:

Характеристики, зависящие от частоты - называются *спектральными*.

5. Поглощательная способность тела – отношение поглощенного телом потока электромагнитных волн к падающему потоку для единичного интервала частот)

, безразмерная физическая величина

6. Спектральная плотность энергетической светимости (излучательная способность) связана с объемной плотностью излучения соотношением:

$$E_{v,T} = \frac{c}{4}u(v,T)$$

Связь между спектральными характеристиками излучения по частоте и длине волны

Характеристики излучения, зависящие от частоты (ν) или длины волны λ излучения *называются* спектральными.

Учитывая, что

Используем связ, получим: .

Знак минус показывает, что увеличивается, частота уменьшается, и наоборот.

Получим: или

Правило Прево (1809 г.): При тепловом равновесии, если два тела поглощают разные количества энергии, то и излучение у них должно быть различным. Так, нагревая кристалл кварца и кусок стали до высокой температуры, наблюдаем яркое каление стали, кристалл же кварца совсем не светится. Таким образом, обнаруживается большая способность к излучению

поглощающих, $T = \frac{f}{f}$

 $lpha_{\omega,T}$ $lpha_{\omega,T}$

Теоретическое объяснение излучения АЧТ привело к понятию квантования энергии.

1. Закон Кирхгофа

Рассмотрим замкнутую полость ,внутри которой находится несколько тел в вакууме. Температура поддерживается постоянной. Тела между собой и с оболочкой могут обмениваться энергией только путем испускания и поглощения

JMB

Через некоторое время установиться термодинамическое равновесие, температура равна Т, температуре оболочки. То есть тело, обладающее большей испускательной способности теряет в единицу времени больше энергии с единицы поверхности, чем тело с меньшей испускательной способностью, а так как Т = const, то тело которое испускает больше, должно больше и поглощать.

Кирхгоф установил, что:

$$\left(\frac{r_{\omega,T}}{a_{\omega,T}}\right)_{1} = \left(\frac{r_{\omega,T}}{a_{\omega,T}}\right)_{2} = \dots = r_{\omega,T}^{0} = f(\omega,T)$$

$$\left(\frac{r_{\omega,T}}{a_{\omega,T}}\right)_1 = \left(\frac{r_{\omega,T}}{a_{\omega,T}}\right)_2 = \dots = r_{\omega,T}^{0} = f(\omega,T)$$

- это отношение не зависит от природы тела, для всех универсальная функция,
- Отношение спектральной лучеиспускательной способности к спектральной
 - поглощательной способности, есть величина постоянная
- Так как для АЧТ поглощательная способность =1, то лучеиспускательная способность по закону Кирхгофа:

- Функция Кирхгофа равна лучеиспускательной способности АЧТ при определенной температуре Т и в определенном интервале

Следствия из закона Кирхгофа:

- Так как для любого тела, не АЧТ, поглощательная
 способность, то лучеиспускательная способность то есть при любой температуре излучение АЧТ наибольшее;
- 2. Если поглощательная способность тела то и спектральная лучеиспускательная способность, из чего следует, что если тело не поглощается некоторых частот (длин волн), то оно их и не излучает, и наоборот.
- з. Если излучательная способность АЧТ равна нулю, то есть то и излучательная способность любого тела равна нулю, то есть
- если АЧТ тело некоторых длин волн (частот) не излучает, то их не
 - излучает и любое другое тело.

По функции Кирхгофа можно найти излучательную способность любого тела, если для него известен коэффициент поглощения то есть:

Закон Кирхгофа и модель АЧТ позволяют проводить количественные определения интенсивности ТИ.

Для доказательства закона Кирхгофа рассмотрим теплоизолированную полость А с малым отверстием, внутри которой находится тело В. Полость А нагрета и обменивается теплом с телом В через поле излучения полости С. В состоянии теплового равновесия температура полости А, тела В и поля излучения С одинаковы и равны Т. В опыте имеется возможность измерять поток

Абсолютно черное тела (АЧТ)

- Абсолютно черных тел в природе не существует.
- Сажа или платиновая чернь имеют поглощательную способность близкую к единице, но только в ограниченном интервале частот.
- Хорошей моделью такого тела является почти замкнутая полость, снабженная малым отверстием,
- Испускательная способность такого устройства очень бли(эморТк)
 причем Т означает температуру стенок полости. Луч, попавший
 внутрь, после многократных отражений обязательно поглощается,
 причём луч любой частоты.

в теоретических работах
$$f(\omega,T) \Leftrightarrow f(\omega,T) = \frac{2\pi c}{\omega^3} \varphi(\lambda,T) = \frac{\lambda^2}{2\pi c} \varphi(\lambda,T)$$
 в экспериментальных: $\varphi(\lambda,T)$

2. Законы Вина

- законы опытные (экспериментальные).

Вильгельм Вин – лауреат нобелевской премии за ТИ в 1911 году.

Постоянная Вина соответствует длине волны при T=1K. Закон смещения показывает смещение максимума в сторону коротких волн при увеличении температуры.

Второй закон Вина

Второй закон Вина утверждает: *максимальная испускательная* способность АЧТ пропорциональна пятой степени его температуры:

вторая постоянная Вина

Позднее из общих соотношений термодинамики и электродинамики Вин получил следующее выражение для функции Кирхгофа:

Из этой формулы следует закон Стефана-Больцмана:

Для Солнца максимум энергетической светимости приходится на λ =470 нм. Если Солнце считать АЧТ, то из закона Вина следует, что температура поверхности Солнца приблизительно 6000К.

Если считать, что кожа человека близка по свойствам к АЧТ, то максимусоотношений термодинамики им спектра излучения при температуре 36 (309К) лежит в диапазоне ИК спектра (9400нм).

Пусть поверхность тела приблизительно 1, разность температур со средой 10К, тогда поверхность тела излучает приблизительно 60 Вт, только в ИК диапазоне, на этом

3. Закон Стефана-Больцмана

Австрийский физик Иозеф Стефан экспериментально и Людвиг Больцман теоретически установили:

если вычислить площадь под кривой равна энергетической светимости абсолютно чёрного тела:

- постоянная Стефана-Больцмана Излучение АЧТ определяется его абсолютной температурой.

Для серых тел: , где – коэффициент серости, Законы Вина и Сьефана-Больцмана хорошо согласуются с экспериментальными данными.

Абсолютно черное тело (АЧТ)

Абсолютно черное тело

Температурный интервал в <u>Кельвинах</u>	Цвет
до 1000	Красный
1000—1500	Оранжевый
1500—2000	Жёлтый
2000—4000	Бледно-жёлтый
4000—5500	Желтовато-белый
5500—7000	Чисто белый
7000—9000	Голубовато-белый
9000—15000	Бело-голубой
15000—∞	Голубой

Формула Рэлея-Джинса

Следующая попытка объяснить кривых теплового излучения, исходя из законом классической физики и опираясь на закон Вина была сделана Рэлеем и Джинсом. Из уравнений Максвелла для ЭМП следует, что с энергетической точки зрения «чёрное» излучение в полости эквивалентно системе из бесконечно большого числа не взаимодействующих друг с другом гармонических излучателей (радиационных осцилляторов), причем собственные частоты последних равны частотам соответствующих компонент чёрного излучения. Методами статистической физики было получено следующее выражение для функции Кирхгофа:

Где -величина, пропорциональная плотности радиационных осцилляторов, - средняя энергия осциллятора. По классическому закону о равномерном распределении энергии по степеням свободы, формула принимает вид:

4. Формула Рэлея-Джинса

Заряд осциллятора, все частные свойства осциллятора выпали из формулы: ведь если мы достигли равновесия с одним осциллятором, то должно быть равновесия и с любым другим осциллятором. Полученная формула достаточно хорошо согласуется с экспериментом в области малых частот, но резко расходится с ним в коротковолновой части излучения, что видно на графике. Однако, при , хотя 0.

Рост излучения до бесконечности при переходу к ультрафиолетовой или рентгеновской частям спектра назвали ультрафиолетовой катастрофой.

Классический подход для описания теплового излучения привел к парадоксальному результату.

Формула Рэлея-Джинса

5. Формула Планка

Все попытки описать ТИ зашли в тупик, классическая физика оказалась несостоятельной.

В 1900 году немецкий физик Макс Планк выдвинул гипотезу о том, что энергия осцилляторов может принимать только определенные дискретные значения, равные целому числу элементарных порций энергии - эти порции он назвал квантами (quantum – количество),

где - частота излучения.

- постоянная Планка,
- = приведенная постоянная Планка.

Тогда энергия может быть записана: .

Идет обмен квантами между полем излучения и телом осциллятора.

В состоянии равновесия распределение колебаний по значениям энергии должно подчиняться закону Больцмана, то есть вероятность того или иного значения величины энергии осциллятора может быть определено:

Тогда можно найти среднюю энергию:

Тогда из формулы Рэлея-Джинса можно получить формулу Планка:

$$f(\boldsymbol{\omega}, \boldsymbol{T}) = \frac{\hbar \boldsymbol{\omega}^3}{4 \pi^2 c^2} \cdot \frac{1}{\exp\left(\frac{\hbar \boldsymbol{\omega}}{k T}\right) - 1}$$

В состоянии равновесия распределение колебаний по значениям энергии должно подчиняться закону Больцмана, то есть вероятность того или иного значения величины энергии осциллятора может быть определено:

Тогда можно найти среднюю энергию:

Тогда из формулы Рэлея-Джинса можно получить формулу Планка:

$$f(\boldsymbol{\omega}, \boldsymbol{T}) = \frac{\hbar \boldsymbol{\omega}^3}{4 \pi^2 c^2} \cdot \frac{1}{\exp\left(\frac{\hbar \boldsymbol{\omega}}{k T}\right) - 1}$$

$$f(\omega, T) = \frac{\hbar \omega^3}{4\pi^2 c^2} \cdot \frac{1}{\exp\left(\frac{\hbar \omega}{kT}\right) - 1}$$

Эта формула хорошо согласуется с экспериментом во всех диапазонах частот (длин волн) от нуля до бесконечности. Из этой формулы можно получить все законы:

- 1. Закон Вина виден явно:
- 2. При малых частотах: переход к закону Рэлея-Джинса

$$f(\omega, T) = \frac{\hbar \omega^3}{4\pi^2 c^2} \cdot \frac{1}{\exp\left(\frac{\hbar \omega}{kT}\right) - 1}$$

При больших частотах: -

При увеличении частоты функция уменьшается, чего нет в формуле Рэлея-Джинса.

Вывод законов Стефана – Больцмана и Смещения Вина из формулы Планка

$$R_T^* = \int_0^\infty r_{\omega,T}^* d\omega = \frac{\hbar}{4\pi c^2} \left(\frac{kT}{\hbar}\right)^4 \int_0^\infty \frac{x^3 dx}{e^x - 1} = \frac{\pi^2 k^4}{60 c^2 \hbar^3} T^4 = \sigma T^4$$

$$\frac{d r_{\lambda,T}^*}{d \lambda} = 0, \quad T \cdot \lambda_m = \frac{2 \pi \hbar c}{4,965 k} = b$$

Оптическая пирометрия

Оптическая пирометрия – это метод бесконтактного (дистанционного) измерения температуры нагретых тел. Приборы для измерения температуры бесконтактным методом называются - пирометры. С их помощью можно измерять температуру звезд, Солнца, расплавленного металла, нити накаливания ламп и т.д.

Так, при комнатной температуре приходится на далёкую ИК- область и не регистрируется человеческим глазом, так что излучение тела воспринимается как тепло. При повышении температуры появляется видимое свечение, от вишнёво-красного при более низкой температуре до белого. Спектральные свойства излучения нагретых тел широко используются в науке и технике для бесконтактного определения температуры. На спектральный состав и интенсивность излучения сильно влияет отличие свойств тела от АЧТ. Степень серости исследуемых тел, как правило известна и обычно зависит от частоты излучения.

REALITY THE TAMES TOWN TO THE TOWN TO THE TAMES TO THE TA

Оптическая пирометрия

Три типа температур:

- 1. Истинная температура -
- <u>Цветовая</u> температура, определяется по положению максимума функции Планка (закон Вина). Цветовая температура совпадает с истинной температурой тела.
- 3. Яркостную температуру измеряют по испускательной способности: для чего надо знать коэффициент черноты тела (закон Стефана Больцмана). Для выделения излучения с данной длиной волны используется светофильтр.
- 4. Радиационная температура измеряют по энергетической светимости серого тела: ,

Тепловое излучение

Тепловое излучение

Излучение тел, вызванное их нагреванием

Существует при любой температуре

- при низких Т длинноволновые (ИК) ЭМ волны
- при высоких Т- короткие (УФ) ЭМ волны

Может находиться в равновесии с излучаемым его телом

Тепловое равновесие

$$\Delta W_{$$
излуч $}=\Delta W_{$ поглощ

тело излучает

температура тела ↓

Источник излучения

Ускоренно движущиеся заряженные частицы

Следует отличать тепловое излучение от люминесценции

Люминесценция Свечение тел, вызванное ВНЕШНИМ воздействием

Существует, пока есть внешнее воздействие

Характеристики теплового излучения

Спектральная плотность энергетической светимости

физическая величина, численно равная энергии излучения с единицы поверхности за единицу времен в единичном интервале частот $E_{_{\nu,\,T}}$

 $E_{v,T} = \frac{dW_{usy}}{dv}$

Энергетическая светимость

энергия излучения с единицы поверхности за единицу времени в интервале частот от 0 до ∞

$$E_T = \int_0^\infty E_{\nu,T} d\nu$$

Поглощательная способность (спектральная поглощательная способность

Абсолютно черное тело

Тело, обладающее свойством поглощать все падающее на его поверхность ЭМ излучение любого спектрального состава примеры:

идеализация, модель

$$\varepsilon_{v,T} = \frac{dW_{usn}}{dv}$$

$$\varepsilon_T = \int_0^\infty \varepsilon_{\nu,T} d\nu$$

$$A_{v,T} = \frac{dW_{noг,low}}{dW_{na\partial}} = 1$$

•Вход в пещеру

Сажа

•Черный бархат

•Окно извне

•Торец трубы

•Отверстие в замкнутой полости

спектральная плотность энергетической светимости **АЧТ**

энергетическая светимость АЧТ

поглощательная способность АЧТ

Закон Кирхгофа

функция

Кирхгофа

$$E_{v,T} = \frac{dW_{ush}}{dv}$$

 $A_{v,T} = \frac{dW_{noz,low}}{dW_{nad}}$

НЕ зависит от природы тела

является для всех тел одной и той же функцией частоты (длины волны) и температуры

Спектральная плотность энергетической светимости

Энергия излучения с единицы поверхности за единицу времени в единичном интервале частот

Поглощательная способность

Отношение поглощенной энергии к той энергии, которая подводится к данной поверхности

Отношение спектральной плотности энергетической светимости любого тела к его поглощательной способности есть величина, равная спектральной плотности энергетической светимости АЧТ (функция Кирхгофа)

Следствия из закона Кирхгофа

- **1.** Поглощает энергию, то оно при этой температуре и не излучает $A_{v,t}=0$
- **Максимальной спектральной плотностью** энергетической светимости обладает абсолютно черное тело **A**_{v,т}=1

1893 - Вин впервые установил вид функции Кирхгофа

$$\varepsilon_{v,T} = v^3 f\left(\frac{v}{T}\right)$$
 \rightarrow некоторая неизвестная Вину функция

1879 - эксперимент - Стефан

1884 - теоретическое обоснование - Больцман

Закон Стефана-Больцмана

$$\varepsilon_T = \sigma T^4$$

$$\mathcal{E}_{T} = \sigma T^{4} \sigma = 5,67.10^{-8} \frac{Bm}{M^{2}\kappa^{2}}$$

постоянная Стефана-Больцмана

Спектральная плотность энергетической светимости пропорциональна температуре в 4 степени

Энергетическая светимость АЧТ численно равна энергии излучения с единицы поверхности за единицу времени

$$W = \sigma T^4 St$$

энергия излучения c площади S за время t

Закон смещения Вина

При повышении температуры , соответствующая максимуму спектральной плотности энергетической светимости смещается в сторону коротких длин волн

Ультрафиолетовая катастрофа

Формула Рэлея-Джинса

Определение функции

ntensity (arb.)

0.8

0.6

0.4

0.2

0.0

0

$$\varepsilon_{\nu,T}$$
 - ?

фактически

2500

3000nm

$$\varepsilon_{v,T} = \frac{2\pi v^2}{c^2} kT$$

Кирхгофа Исходя из законов статистической физики о равнораспределении по степеням свободы

4000 K

500

3000 K

1000

в единичном Энергия, интервале частот излучаемая с 1 м² за 1 с

по всем частотам

1500

wavelength (nm)

2000

$$\varepsilon_T = \int_0^\infty \frac{2\pi v^2}{c^2} \, kT \, dv = \infty$$

удовлетворительно описывает излучение только в области длинных волн

Энергия, излучаемая с любой площади НЕ может быть

Квантовая гипотеза

Макс Планк

Предложил согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела

Квантовая гипотеза атомы излучают энергию не непрерывно, а определенными порциями — квантами, причем энергия кванта пропорциональна частоте колебания

$$E = h\nu = h\frac{c}{\lambda}$$

$$\varepsilon_{v,T} = \frac{2\pi v^2}{c^2} \frac{hv}{e^{\frac{hv}{kT}} - 1}$$

Функция Кирхгофа по Планку

Исследовательские задания:

- Опишите на основе методологии научного исследования работы Планка по изучению излучения абсолютно черного тела
- Исследуйте зависимость спектральной плотности энергетической светимости от частоты по формуле, полученной Планком на основе квантовой гипотезы

с точки зрения квантовой физики

$$\varepsilon_{v,T} = \frac{2\pi v^2}{c^2} \frac{hv}{e^{\frac{hv}{kT}} - 1}$$

Функция Кирхгофа по Планку

законы теплового излучения

2. Формула Рэлея-Джинса полагая

$$h\nu << kT$$

$$\varepsilon_{v,T} = \frac{2\pi v^2}{c^2} kT$$

3. Закон смещения Вина

$$\frac{d\varepsilon_{v,T}}{dv} = 0$$

$$\frac{v_m}{T} = b_1$$

$$\lambda_m T = b$$

4. Закон Стефана-Больцмана

$$\varepsilon_{T} = \int_{0}^{\infty} \frac{2\pi v^{2}}{c^{2}} \frac{hv}{e^{\frac{hv}{kt}} - 1} = \frac{2\pi^{5}k^{4}}{15c^{2}h^{3}} T^{4} = \left| \frac{2\pi^{5}k^{4}}{15c^{2}h^{5}} = \sigma \right| = \sigma T^{4}$$