```
In [235]:
import requests
import json
betydb = "http://www.betydb.org/api/beta"
In [236]:
import pandas as pd
In [237]:
s4 df = pd.read csv('/Users/curtislisle/Dropbox/ipython-notebooks/D3M/TERRA/terrare
f r/season4date.csv')
/Users/curtislisle/anaconda3/lib/python3.7/site-packages/IPython/core/i
nteractiveshell.py:3057: DtypeWarning: Columns (18,32,35) have mixed ty
pes. Specify dtype option on import or set low memory=False.
  interactivity=interactivity, compiler=compiler, result=result)
In [238]:
s4_df.head()['sitename']
Out[238]:
      MAC Field Scanner Season 4 Range 8 Column 8
0
      MAC Field Scanner Season 4 Range 8 Column 9
1
2
     MAC Field Scanner Season 4 Range 8 Column 10
     MAC Field Scanner Season 4 Range 8 Column 12
3
      MAC Field Scanner Season 4 Range 9 Column 3
Name: sitename, dtype: object
In [239]:
s4 df.columns
Out[239]:
Index(['Unnamed: 0', 'checked', 'result type', 'id', 'citation id', 'si
te_id',
       'treatment id', 'sitename', 'city', 'lat', 'lon', 'scientificnam
e',
       'commonname', 'genus', 'species_id', 'cultivar_id', 'author',
       'citation year', 'treatment', 'date', 'time', 'raw date', 'mont
h',
       'year', 'dateloc', 'trait', 'trait_description', 'mean', 'unit
       'statname', 'stat', 'notes', 'access level', 'cultivar', 'entit
у',
       'method_name', 'view_url', 'edit_url', 'trans_date'],
      dtype='object')
```

localhost:8888/lab 1/43

```
In [240]:
```

```
selected = ['id','cultivar','cultivar_id','date','trans_date','sitename','trait','m
ean','units']
s4sel = s4_df[selected]
```

In [241]:

```
s4sel.head()
```

Out[241]:

	id	cultivar	cultivar_id	date	trans_date	sitename	trait	mean	units
0	6004764469	PI570145	6000000961	2017 May 8	2017-05- 08 12:00:00	MAC Field Scanner Season 4 Range 8 Column 8	canopy_height	13.0	cm
1	6004764470	Pl329510	6000000577	2017 May 8	2017-05- 08 12:00:00	MAC Field Scanner Season 4 Range 8 Column 9	canopy_height	14.0	cm
2	6004764471	PI510757	6000000850	2017 May 8	2017-05- 08 12:00:00	MAC Field Scanner Season 4 Range 8 Column 10	canopy_height	12.0	cm
3	6004764473	Pl329865	6000000815	2017 May 8	2017-05- 08 12:00:00	MAC Field Scanner Season 4 Range 8 Column 12	canopy_height	13.0	cm
4	6004764478	PI569457	6000000935	2017 May 8	2017-05- 08 12:00:00	MAC Field Scanner Season 4 Range 9 Column 3	canopy_height	14.0	cm

If all the measurements were equally distributed, doing a long to wide rollup mechanically using pandas' pivot would work. However, some measurements started later and ended earlier. Some measurements are daily, some are hourly (just in August), so we really need to split up this dataset into major subsets: daily and hourly, then try to pivot these datasets. Or worse, have to hand convert the entries. I elected to just write a custom algorithm to gather all the measurements together, indexed by date.

Write a routine that pivots/rolls up the data by hand, by creating a dictionary with trans_date as its index. Then we can add measurements one at a time...

localhost:8888/lab 2/43

```
In [242]:
```

```
s4hand = \{\}
count = 0
for i in range(len(s4sel)):
   #if count > 40:
         break
   #print(i,s4sel['trans date'][i])
   # if we have never seen this date before, start a new dictionary at this date
   if s4sel['trans date'][i] not in s4hand.keys():
        s4hand[s4sel['trans_date'][i]] = {}
    # if we have not seen this cultivar before on this date, then add a dictionary
 for this cultivar. Is there is a chance we
    # might lose records here?
   if s4sel['cultivar id'][i] not in s4hand[s4sel['trans date'][i]].keys():
        s4hand[s4sel['trans_date'][i]][s4sel['cultivar_id'][i]] = {}
   # add this feature to the dictionary for the correct cultivar on this date.
add a dictionary entry named
    # from the contents in the 'trait' attribute and pull the value from the 'mean'
attribute. This is the heart
    # of the long to wide format conversion.
   s4hand[s4sel['trans_date'][i]][s4sel['cultivar_id'][i]][s4sel['trait'][i]] = s4
sel['mean'][i]
    # add the cultivar and the location (split out from the sitename text). This w
ill be added multiple times,
   # so represents redundant processing, but it works to place the measurements in
cultivar and location
    s4hand[s4sel['trans date'][i]][s4sel['cultivar id'][i]]['cultivar id'] = s4sel[
'cultivar id'][i]
    s4hand[s4sel['trans date'][i]][s4sel['cultivar id'][i]]['season'] = int(s4sel[
'sitename'][i].split(' ')[4])
    s4hand[s4sel['trans date'][i]][s4sel['cultivar id'][i]]['range'] = int(s4sel['s
itename'][i].split(' ')[6])
    s4hand[s4sel['trans date'][i]][s4sel['cultivar id'][i]]['column'] = int(s4sel[
'sitename'][i].split(' ')[8])
    count += 1
print('entered ',count, 'measurements')
```

entered 372363 measurements

localhost:8888/lab 3/43

```
In [243]:
```

```
print('how many different datetime events:')
print(len(s4hand.keys()))
#print(s4hand.keys())
print('print ouf the wide tuple of a particular cultivar at a particular datetime:'
)
print(s4hand['2017-07-08 12:00:00'][6000000861])
print(s4hand['2017-08-08 12:00:00'][6000000861])
how many different datetime events:
```

```
3152
print ouf the wide tuple of a particular cultivar at a particular datet ime:
{'canopy_height': 192.0, 'cultivar_id': 6000000861, 'season': 4, 'rang e': 46, 'column': 3, 'leaf_angle_mean': 0.46521782152400004, 'leaf_angle_alpha': 1.6835253597400002, 'leaf_angle_beta': 1.4356619889500002, 'leaf_angle_chi': 1.71004921126}
{'canopy_height': 293.0, 'cultivar_id': 6000000861, 'season': 4, 'rang e': 46, 'column': 3, 'leaf_angle_mean': 0.460059049579, 'leaf_angle_alp ha': 1.80939043311, 'leaf_angle_beta': 1.5116882921700001, 'leaf_angle_chi': 1.7059298014200002}
```

So, at this point, we have a dictionary (s4hand) which has keys for each different datetime a measurement was entered. There are 3152 different datetime entries. This includes all the dates in August where hand measurements are made. This dictionary can't be scanned in datetime order, but it has accumulated all the tuples. A single dataframe could be made from this dictionary, but a lot of the entries would be empty, since most datetime entries only contain a subset of the measurements.

If the tuples were the same size, we could generate a full pandas dataframe from this dictionary, using the datetime as the index. However, some tuples are wider than others, since not all measurements were made each time. After reviewing this data distribution, it seems best to create subdictionaries for a certain date range with consistent entries, and then convert the subdictionaries to dataframes.

localhost:8888/lab 4/43

```
In [244]:
```

```
for i in s4hand.keys():
    if i >= '2017-08-01' and i <= '2017-08-03':
        print(i)</pre>
```

localhost:8888/lab 5/43

2017-08-02 12:00:00 2017-08-02 13:34:00 2017-08-02 13:32:00 2017-08-02 12:10:00 2017-08-02 12:09:00 2017-08-02 11:03:00 2017-08-02 11:01:00 2017-08-02 13:28:00 2017-08-02 13:46:00 2017-08-02 13:45:00 2017-08-02 13:43:00 2017-08-02 13:42:00 2017-08-02 13:38:00 2017-08-02 12:01:00 2017-08-02 11:16:00 2017-08-02 11:13:00 2017-08-02 13:31:00 2017-08-02 12:14:00 2017-08-02 12:13:00 2017-08-02 12:11:00 2017-08-02 12:08:00 2017-08-02 11:07:00 2017-08-02 11:05:00 2017-08-02 11:00:00 2017-08-02 13:36:00 2017-08-02 13:35:00 2017-08-02 13:33:00 2017-08-02 10:26:00 2017-08-02 10:29:00 2017-08-02 10:30:00 2017-08-02 10:36:00 2017-08-02 10:42:00 2017-08-02 10:49:00 2017-08-02 10:55:00 2017-08-02 11:29:00 2017-08-02 11:31:00 2017-08-02 11:34:00 2017-08-02 11:41:00 2017-08-02 11:45:00 2017-08-02 11:46:00 2017-08-02 11:51:00 2017-08-02 11:53:00 2017-08-02 11:54:00 2017-08-02 11:57:00 2017-08-02 12:20:00 2017-08-02 12:33:00 2017-08-02 12:34:00 2017-08-02 12:53:00 2017-08-02 13:01:00 2017-08-02 13:03:00 2017-08-02 13:06:00 2017-08-02 13:07:00 2017-08-02 13:10:00 2017-08-02 13:17:00 2017-08-02 13:20:00 2017-08-02 13:21:00 2017-08-02 13:22:00

localhost:8888/lab

```
2017-08-02 13:24:00
2017-08-02 13:54:00
2017-08-02 13:55:00
2017-08-02 13:44:00
2017-08-02 13:40:00
2017-08-02 12:05:00
2017-08-02 12:04:00
2017-08-02 12:03:00
2017-08-02 11:59:00
2017-08-02 11:15:00
2017-08-02 11:11:00
2017-08-02 11:10:00
2017-08-02 10:27:00
2017-08-02 10:31:00
2017-08-02 10:35:00
2017-08-02 10:37:00
2017-08-02 10:47:00
2017-08-02 10:43:00
2017-08-02 10:41:00
2017-08-02 10:39:00
2017-08-02 10:50:00
2017-08-02 10:54:00
2017-08-02 10:57:00
2017-08-02 11:28:00
2017-08-02 11:30:00
2017-08-02 11:43:00
2017-08-02 11:44:00
2017-08-02 11:47:00
2017-08-02 11:50:00
2017-08-02 11:52:00
2017-08-02 12:18:00
2017-08-02 12:19:00
2017-08-02 12:22:00
2017-08-02 12:23:00
2017-08-02 12:24:00
2017-08-02 12:31:00
2017-08-02 12:32:00
2017-08-02 12:36:00
2017-08-02 12:54:00
2017-08-02 12:55:00
2017-08-02 12:56:00
2017-08-02 12:57:00
2017-08-02 13:02:00
2017-08-02 13:11:00
2017-08-02 13:52:00
2017-08-02 13:53:00
```

So August 2nd at noon (not August 1st) is when measurements started being taken every few minutes. Lets look at a few...

localhost:8888/lab 7/43

In [134]:

```
print('there are', len(s4hand['2017-08-02 13:52:00'][6000000962].keys()), 'keys in
 this observation: ')
s4hand['2017-08-02 13:52:00']
there are 42 keys in this observation:
Out[134]:
{6000000962: {'absorbance 850': 0.4170000000000004,
  'cultivar_id': 6000000962,
  'season': 4,
  'range': 45,
  'column': 4,
  'roll': -14.82,
  'PhiNO': 0.144000000000000000,
  'PhiNPQ': 0.6,
  'absorbance 530': 1.2,
  'absorbance_605': 1.466,
  'absorbance_730': 0.376,
  'absorbance 880': 0.46,
  'absorbance 940': 0.46,
  'Fs': 4298.7,
  'NPQt': 4.154,
  'qL': 0.363,
  'qP': 0.526,
  'RFd': 0.344,
  'SPAD 530': 73.96,
  'SPAD 605': 100.57,
  'SPAD 730': -8.39,
  'leaf thickness': 0.28,
  'ambient humidity': 39.557617,
  'leaf angle clamp position': 14.87,
  'pitch': -1.28,
  'proximal air temperature': 40.139998999999996,
  'FvP/FmP': 0.486,
  'gH+': 0.0,
  'ECSt': 0.0,
  'leaf temperature differential': -6.329999,
  'Phi2': 0.256,
  'relative chlorophyll': 48.84512428,
  'FmPrime': 5777.98,
  'FoPrime': 2968.0,
  'LEF': 174.076,
  'SPAD 420': 164.67,
  'SPAD 650': 48.85,
  'SPAD 850': -4.34,
  'SPAD 880': 0.01,
  'light intensity PAR': 1511.0,
  'vH+': 0.0,
  'leaf temperature': 306.96}}
```

localhost:8888/lab 8/43

In [245]:

```
print('there are', len(s4hand['2017-08-02 13:53:00'][6000000962].keys()), 'keys in
 this observation: ')
s4hand['2017-08-02 13:53:00']
there are 25 keys in this observation:
Out[245]:
{6000000962: {'absorbance_850': 0.412000000000000,
  'cultivar_id': 6000000962,
  'season': 4,
  'range': 45,
  'column': 4,
  'roll': 28.54,
  'PhiNO': 0.221,
  'PhiNPQ': 0.54,
  'absorbance 530': 1.094,
  'absorbance_605': 1.348,
  'absorbance_730': 0.36200000000000004,
  'absorbance 880': 0.461,
  'absorbance 940': 0.457,
  'Fs': 5446.8,
  'NPQt': 2.447,
  'qL': 0.222,
  'qP': 0.408,
  'RFd': 0.314,
  'SPAD 530': 63.77,
  'SPAD 605': 89.11,
  'SPAD 730': -9.46,
  'leaf thickness': 0.25,
  'ambient humidity': 39.856445,
  'leaf angle clamp position': 32.96,
  'pitch': 17.23}}
```

localhost:8888/lab 9/43

In [298]:

```
print('there are', len(s4hand['2017-08-02 13:11:00'][6000000851].keys()), 'keys in
 this observation: ')
s4hand['2017-08-02 13:11:00']
there are 40 keys in this observation:
Out[298]:
{6000000851: {'absorbance 850': 0.396,
  'cultivar_id': 6000000851,
  'season': 4,
  'range': 26,
  'column': 15,
  'roll': -55.82,
  'PhiNO': 0.195,
  'PhiNPQ': 0.51,
  'absorbance 530': 1.131,
  'absorbance_605': 1.374,
  'absorbance_730': 0.35700000000000004,
  'absorbance 880': 0.446,
  'absorbance 940': 0.441,
  'Fs': 4951.5,
  'NPQt': 2.617,
  'qL': 0.31,
  'qP': 0.513,
  'RFd': 0.418,
  'SPAD 530': 69.06,
  'SPAD 605': 93.29,
  'SPAD 730': -8.34,
  'leaf thickness': 0.1,
  'ambient humidity': 39.974609,
  'leaf angle clamp position': 57.04,
  'pitch': 14.43,
  'proximal air temperature': 39.82,
  'FvP/FmP': 0.574,
  'leaf temperature differential': -1.63,
  'Phi2': 0.295,
  'relative chlorophyll': 46.43594646,
  'FmPrime': 7021.161999999999,
  'FoPrime': 2989.0,
  'LEF': 141.406,
  'SPAD 420': 158.94,
  'SPAD 650': 46.44,
  'SPAD 850': -4.48,
  'SPAD 880': 0.47,
  'light intensity PAR': 1066.0,
  'cultivar': 6000000851,
  'date': '2017-08-02 13:11:00'}}
```

localhost:8888/lab 10/43

In [246]:

```
listFull = []
dateListFull = []
for key in s4hand.keys():
    cultivar_keys = s4hand[key].keys()
    for k in cultivar keys:
        record = s4hand[key][k]
        if ('canopy_height' in record) and ('leaf_angle_alpha' in record) and ('lea
f angle beta' in record):
            record['cultivar'] = k
            record['date'] = key
            #print(key)
            #print(record)
            #break
            # delete columns that are missing data
            if 'panicle count' in record:
                del record['panicle_count']
            if 'panicle surface area' in record:
                del record['panicle_surface_area']
            if 'panicle_volume' in record:
                del record['panicle volume']
            if 'surface temperature' in record:
                del record['surface_temperature']
            if 'chlorophyll_index' in record:
                del record['chlorophyll index']
            if 'leaf_temperature' in record:
                del record['leaf temperature']
            if 'absorbance 730' in record:
                del record['chlorophyll index']
            if 'cultivar_id' in record:
                del record['cultivar id']
            listFull.append(record)
            dateListFull.append(key)
        #break
print(len(augustListFull))
full df = pd.DataFrame(listFull,index=dateListFull)
full df.head()
```

localhost:8888/lab 11/43

9441

Out[246]:

	canopy_height	column	cultivar	date	leaf_angle_alpha	leaf_angle_beta	leaf_an
2017- 05-13 12:00:00	15.0	2	6000000836	2017- 05-13 12:00:00	2.695956	1.977380	1.
2017- 05-13 12:00:00	15.0	15	6000000462	2017- 05-13 12:00:00	3.265980	2.018623	1.9
2017- 05-13 12:00:00	19.0	2	6000000751	2017- 05-13 12:00:00	2.159610	1.809209	1.0
2017- 05-13 12:00:00	13.0	4	6000000916	2017- 05-13 12:00:00	3.042180	2.198751	1.
2017- 05-15 12:00:00	17.0	2	6000000976	2017- 05-15 12:00:00	2.305345	1.872028	1.0

In [247]:

full_df.describe()

Out[247]:

	canopy_height	column	cultivar	leaf_angle_alpha	leaf_angle_beta	leaf_angle_ch
count	9441.000000	9441.000000	9.441000e+03	9441.000000	9441.000000	9441.000000
mean	197.719203	8.541468	6.000001e+09	2.903153	1.825797	1.908666
std	96.712778	4.004024	2.002971e+02	1.076542	0.321239	0.243674
min	12.000000	1.000000	6.000000e+09	0.756692	0.977342	0.756736
25%	114.000000	5.000000	6.000001e+09	2.103990	1.590333	1.767434
50%	208.000000	9.000000	6.000001e+09	2.846314	1.817881	1.906026
75%	271.000000	12.000000	6.000001e+09	3.540884	2.040797	2.048274
max	412.000000	16.000000	6.000001e+09	8.647608	4.171909	4.768680

In [248]:

localhost:8888/lab 12/43

In [249]:

```
returnUniqueCounts(full_df)
```

Out[249]:

	Column_Name	Num_Unique
9	season	1
1	column	16
8	range	53
3	date	55
2	cultivar	351
0	canopy_height	395
4	leaf_angle_alpha	9441
5	leaf_angle_beta	9441
6	leaf_angle_chi	9441
7	leaf_angle_mean	9441

convert the date to a day offset into the year, so we can get an integer to pass into a model.

In [250]:

```
full_df.dtypes
```

Out[250]:

```
canopy_height
                     float64
column
                       int64
cultivar
                       int64
date
                     object
leaf_angle_alpha
                    float64
leaf angle beta
                    float64
                     float64
leaf_angle_chi
leaf_angle_mean
                     float64
range
                       int64
                       int64
season
dtype: object
```

In [251]:

```
full_df['date'] = pd.to_datetime(full_df['date'])
```

In [252]:

```
from datetime import datetime
print(datetime.strptime('2017-05-01 12:00:00', '%Y-%m-%d %H:%M:%S'))
```

```
2017-05-01 12:00:00
```

localhost:8888/lab 13/43

In [253]:

```
# add an offset column that subtracts a "start date" from each of the datetimes in
  the samples. This will give us an offset in days
full_df['day_offset'] = full_df['date'] - datetime.strptime('2017-05-01 12:00:00',
'%Y-%m-%d %H:%M:%S')
```

In [254]:

```
# here is how a timedelta offset is converted to its component part
full_df['day_offset'][0].days
```

Out[254]:

12

In [255]:

```
# pandas series don't like the df['column'].dt.days notation, so just convert to an
int. Divide by the number of microseconds in a day
full_df['day_offset'] = full_df['day_offset'].astype('int64')/ 8640000000000
full_df.head()
```

Out[255]:

	canopy_height	column	cultivar	date	leaf_angle_alpha	leaf_angle_beta	leaf_an
2017- 05-13 12:00:00	15.0	2	6000000836	2017- 05-13 12:00:00	2.695956	1.977380	1.
2017- 05-13 12:00:00	15.0	15	6000000462	2017- 05-13 12:00:00	3.265980	2.018623	1.9
2017- 05-13 12:00:00	19.0	2	6000000751	2017- 05-13 12:00:00	2.159610	1.809209	1.0
2017- 05-13 12:00:00	13.0	4	6000000916	2017- 05-13 12:00:00	3.042180	2.198751	1.7
2017- 05-15 12:00:00	17.0	2	6000000976	2017- 05-15 12:00:00	2.305345	1.872028	1.0

Fit Models to the Season 4 extraction

In [256]:

```
import sklearn
import pandas as pd
```

localhost:8888/lab 14/43

In [257]:

```
# paste code from another notebook that uses 'cdf' as the source dataframe. It
# is easier to just copy to that same variable name
cdf = full_df
```

In [258]:

```
cdf.head()
```

Out[258]:

	canopy_height	column	cultivar	date	leaf_angle_alpha	leaf_angle_beta	leaf_an
2017- 05-13 12:00:00	15.0	2	6000000836	2017- 05-13 12:00:00	2.695956	1.977380	1.
2017- 05-13 12:00:00	15.0	15	6000000462	2017- 05-13 12:00:00	3.265980	2.018623	1.9
2017- 05-13 12:00:00	19.0	2	600000751	2017- 05-13 12:00:00	2.159610	1.809209	1.0
2017- 05-13 12:00:00	13.0	4	6000000916	2017- 05-13 12:00:00	3.042180	2.198751	1.
2017- 05-15 12:00:00	17.0	2	600000976	2017- 05-15 12:00:00	2.305345	1.872028	1.0

In [259]:

```
train_df = cdf[['cultivar','day_offset','range','column','leaf_angle_alpha','leaf_a
ngle_beta','leaf_angle_chi','leaf_angle_mean']]
target_df = cdf['canopy_height']
```

In [260]:

```
X_train = train_df.values
y_train = target_df.values
print(X_train.shape)
print(y_train.shape)
```

(9441, 8) (9441,)

In []:

localhost:8888/lab 15/43

In [261]:

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn import svm
from sklearn.ensemble import GradientBoostingRegressor

tree = DecisionTreeRegressor(max_depth=8).fit(X_train, y_train)
linear_reg = LinearRegression().fit(X_train, y_train)
#svm_mod = svm.SVR().fit(X_train, y_train)
gbr_mod = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=
8, random_state=0, loss='ls').fit(X_train, y_train)

pred_tree = tree.predict(X_train)
pred_tree = tree.predict(X_train)
#pred_svm = svm_mod.predict(X_train)
#pred_svm = svm_mod.predict(X_train)
pred_gbr = gbr_mod.predict(X_train)
```

In [262]:

```
cdf['decision_tree'] = pred_tree
cdf['linearRegression'] = pred_lr
#cdf['svm'] = pred_svm
cdf['gboost'] = pred_gbr
cdf.head()
```

Out[262]:

	canopy_height	column	cultivar	date	leaf_angle_alpha	leaf_angle_beta	leaf_an
2017- 05-13 12:00:00	15.0	2	6000000836	2017- 05-13 12:00:00	2.695956	1.977380	1.
2017- 05-13 12:00:00	15.0	15	6000000462	2017- 05-13 12:00:00	3.265980	2.018623	1.9
2017- 05-13 12:00:00	19.0	2	600000751	2017- 05-13 12:00:00	2.159610	1.809209	1.0
2017- 05-13 12:00:00	13.0	4	600000916	2017- 05-13 12:00:00	3.042180	2.198751	1.
2017- 05-15 12:00:00	17.0	2	6000000976	2017- 05-15 12:00:00	2.305345	1.872028	1.0

localhost:8888/lab 16/43

In [263]:

```
%matplotlib inline
import matplotlib.pyplot as plt

def plot_cultivar(fulldf,cultivar):
    df = fulldf.loc[fulldf['cultivar'] == cultivar]
    minCol = df['column'].min()
    df = df.loc[df['column']==minCol]
    #print(df.shape)
    df = df[['day_offset','canopy_height','decision_tree','gboost']]
    df = df.set_index('day_offset')
    df = df.sort_index()
    print(df)
    df.plot()

#plot_cultivar(cdf,'PI145619')
plot_cultivar(cdf,6000000836)
```

	canopy_height	decision_tree	gboost
day_offset			
12.0	15.0	20.684211	19.914282
15.0	29.0	20.684211	24.810587
32.0	102.0	90.363636	96.840969
35.0	119.0	110.971963	114.542491
36.0	125.0	109.250000	125.781571
38.0	111.0	113.250000	116.642920
39.0	114.0	114.866667	118.596735
40.0	272.0	190.500000	241.614416
46.0	191.0	183.476190	186.047126
55.0	248.0	244.583333	242.984222
61.0	278.0	255.428571	257.851301
62.0	260.0	272.200000	258.050972
64.0	263.0	274.647887	264.090317
65.0	268.0	274.647887	263.217710
120.0	386.0	318.171875	370.444316

localhost:8888/lab

1/7/2020 TERRA-8-plotting-s4

In [264]:

plot_cultivar(cdf,6000000462)

	canopy_height	decision_tree	gboost
day_offset			
33.0	96.0	93.184211	95.295526
35.0	90.0	101.326087	89.041657
36.0	97.0	112.330508	97.400502
39.0	115.0	128.512821	121.455541
40.0	128.0	128.145455	126.195282
45.0	151.0	168.659722	152.864520
46.0	156.0	175.333333	157.547256
47.0	168.0	182.545455	168.697935
54.0	224.0	227.835294	217.687636
55.0	213.0	233.208791	215.623566
56.0	223.0	221.681818	222.594397
60.0	238.0	240.298013	239.141691
61.0	241.0	246.661417	245.439149
65.0	264.0	268.322917	264.207241
68.0	275.0	273.623229	275.614637
117.0	326.0	330.142857	330.534632

localhost:8888/lab 18/43

1/7/2020 TERRA-8-plotting-s4

In [265]:

plot_cultivar(cdf,6000000976)

	canopy_height	decision_tree	gboost
day_offset			
14.0	17.0	20.684211	19.387769
18.0	25.0	23.906250	22.868977
32.0	83.0	90.363636	83.121168
33.0	92.0	91.794872	88.127969
35.0	103.0	110.971963	103.402695
36.0	103.0	109.250000	99.482699
38.0	98.0	139.500000	108.437526
39.0	100.0	119.666667	111.939874
45.0	124.0	138.250000	148.556495

In [266]:

cdf.shape

Out[266]:

(9441, 14)

localhost:8888/lab

In [267]:

```
# calculate the percentage error between the actual and the model
cdf['abserror_gboost'] = 100.0*abs(cdf['canopy_height']-cdf['gboost'])/cdf['canopy_height']
cdf.head()
```

Out[267]:

	canopy_height	column	cultivar	date	leaf_angle_alpha	leaf_angle_beta	leaf_an
2017- 05-13 12:00:00	15.0	2	6000000836	2017- 05-13 12:00:00	2.695956	1.977380	1.7
2017- 05-13 12:00:00	15.0	15	6000000462	2017- 05-13 12:00:00	3.265980	2.018623	1.(
2017- 05-13 12:00:00	19.0	2	600000751	2017- 05-13 12:00:00	2.159610	1.809209	1.0
2017- 05-13 12:00:00	13.0	4	6000000916	2017- 05-13 12:00:00	3.042180	2.198751	1.
2017- 05-15 12:00:00	17.0	2	600000976	2017- 05-15 12:00:00	2.305345	1.872028	1.0

Try to visualize the results across the field by finding the delta at each location between the observed and the model output. Try to use Vega or VegaLite. Checkout the native integration explained here: https://github.com/jupyterlab/jupyterlab/blob/master/examples/vega/vega-extension.ipynb (https://github.com/jupyterlab/jupyterlab/blob/master/examples/vega/vega-extension.ipynb)

localhost:8888/lab 20/43

In [268]:

```
import numpy as np
# find a subset dataframe that contains the locations of a single cultivar in a sin
gle location in the field
grouped = full_df.groupby(['cultivar','column','range'])
print(grouped['abserror_gboost'].agg(np.mean))
```

localhost:8888/lab 21/43

	_		
cultivar	column	range	
6000000207	3	39	1.959442
	9	23	2.987772
6000000208	14	26	13.658223
	15	30	4.115316
6000000209	4	39	2.568294
	13	23	2.316293
6000000210	5	49	2.967921
000000210	8	3	2.360924
6000000213	9	18	2.208314
0000000213		38	
600000014	10		3.314632
6000000214	6	15	7.148491
	8	36	3.379590
6000000215	7	29	6.171198
	13	12	4.779021
6000000216	5	51	1.490319
	15	12	3.004182
6000000217	2	41	3.048583
	9	16	5.426072
6000000219	8	21	6.902944
	10	39	7.450638
6000000220	8	52	2.730343
0000000220	12	17	4.698012
6000000221	8	43	3.824137
0000000221			
6000000000	14	4	1.071039
6000000222	2	13	10.397825
	6	30	5.275479
6000000223	3	8	4.200592
	12	45	5.334738
6000000224	12	23	11.313299
	15	32	4.074744
			• • •
6000001054	16	30	2.248070
		33	2.154391
		35	6.435887
		45	5.031982
		51	5.993431
		54	1.101341
6000001055	2	53	1.468129
	_	54	1.342844
	4	53	2.864378
	-	54	1.445924
	6		1.511219
	6	54	
	8	54	1.884346
	10	54	1.748554
	12	54	2.791232
	14	2	2.651547
		54	1.987334
	15	54	1.851560
6000001056	6	36	4.686068
	15	4	2.469964
6000001057	8	11	5.182114
	14	50	4.172126
6000001059	6	41	18.574027
6000001039	3	49	2.575348
0000001000	10		
6000001061		15	4.143178
6000001061	2	20	3.367249

localhost:8888/lab 22/43

```
46
                                5.346371
             6
6000001062
             6
                     20
                                2.356591
             7
                     46
                                6.223122
6000001063
             9
                     20
                                3.788649
             10
                     46
                                4.255562
Name: abserror_gboost, Length: 727, dtype: float64
```

In [269]:

```
import numpy as np

plotlist = []
# find a subset dataframe that contains the locations of a single cultivar in a sin
gle location in the field
grouped = full_df.groupby(['cultivar','column','range'])
for name,group in grouped:
    mark = {}
    mark['cultivar'] = name[0]
    mark['range'] = name[2]
    mark['column'] = name[1]
    mark['avg_error'] = group['abserror_gboost'].agg(np.mean)
    plotlist.append(mark)
    #print(mark)
print(plotlist[0])
```

```
{'cultivar': 6000000207, 'range': 39, 'column': 3, 'avg_error': 1.95944 18336369188}
```

In [270]:

```
plotdf = pd.DataFrame(plotlist)
plotdf.head()
```

Out[270]:

	avg_error	column	cultivar	range
0	1.959442	3	6000000207	39
1	2.987772	9	6000000207	23
2	13.658223	14	6000000208	26
3	4.115316	15	6000000208	30
4	2.568294	4	6000000209	39

This diagram is 50% overplotted, since each cultivar is planted twice in the plot. We are only plotting one entry per field plot unit, but there are actually 2 plants in each unit.

localhost:8888/lab 23/43

```
In [271]:
```

```
import altair as alt
alt.Chart(plotdf).mark_point().encode(
    x='column:0',
    y='range:0',
    color='avg_error',
    tooltip=[
        alt.Tooltip('cultivar:Q', title='Cultivar'),
        alt.Tooltip('avg_error:Q', title='Avg Err')
    ]
)
```

Out[271]:

In [274]:

```
import altair as alt
alt.Chart(plotdf,title='Season4 - single model using quantitative cultivar').mark_r
ect().encode(
    x='column:0',
    y='range:0',
    color='avg_error',
    tooltip=[
        alt.Tooltip('cultivar:Q', title='Cultivar'),
        alt.Tooltip('avg_error:Q', title='Avg Err %'),
        alt.Tooltip('range:0',title='range'),
        alt.Tooltip('column:0',title='column')
]
```

Out[274]:

In [273]:

```
alt.Chart(plotdf,title="Histogram of error (in percent) of a single model").mark_ba
r().encode(
    alt.X("avg_error:Q", bin=True),
    y='count()',
)
```

Out[273]:

localhost:8888/lab 24/43

encoding)

As an aside, we know the input of the cultivar into the model as a quantitative independent variable is a bad idea.

Redo the model using a categorical variable for the cultivar

```
In [275]:
train df = full df[['cultivar', 'day offset', 'range', 'column', 'leaf angle alpha', 'le
af_angle_beta','leaf_angle_chi','leaf angle mean']]
target df = full df['canopy height']
cultivar df = full df['cultivar']
In [276]:
# now convert the type to categorical if it needs it
train df['cultivar'] = pd.Categorical(train df['cultivar'])
/Users/curtislisle/anaconda3/lib/python3.7/site-packages/ipykernel laun
cher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
In [277]:
# convert the categorical 'cultivar' variable into a set of binary columns (one hot
```

localhost:8888/lab 25/43

train df = pd.concat([train df, pd.get dummies(for dummy, prefix=col)], axis=1)

for col in train df.dtypes[train df.dtypes == 'category'].index:

for_dummy = train_df.pop(col)

In [278]:

```
print(train_df.shape)
train_df.head()
```

(9441, 358)

Out[278]:

	day_offset	range	column	leaf_angle_alpha	leaf_angle_beta	leaf_angle_chi	leaf_angle_r
2017- 05-13 12:00:00	12.0	43	2	2.695956	1.977380	1.756464	0.43
2017- 05-13 12:00:00	12.0	35	15	3.265980	2.018623	1.941012	0.39
2017- 05-13 12:00:00	12.0	42	2	2.159610	1.809209	1.638744	0.47
2017- 05-13 12:00:00	12.0	30	4	3.042180	2.198751	1.732985	0.44
2017- 05-15 12:00:00	14.0	45	2	2.305345	1.872028	1.665387	0.46

5 rows × 358 columns

In [279]:

```
X_train = train_df.values
y_train = target_df.values
print(X_train.shape)
print(y_train.shape)
```

(9441, 358) (9441,)

localhost:8888/lab 26/43

In [280]:

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn import svm
from sklearn.ensemble import GradientBoostingRegressor

tree = DecisionTreeRegressor(max_depth=8).fit(X_train, y_train)
linear_reg = LinearRegression().fit(X_train, y_train)
#svm_mod = svm.SVR().fit(X_train, y_train)
gbr_mod = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=8, random_state=0, loss='ls').fit(X_train, y_train)

pred_tree = tree.predict(X_train)
pred_lr = linear_reg.predict(X_train)
#pred_svm = svm_mod.predict(X_train)
#pred_svm = svm_mod.predict(X_train)
pred_gbr = gbr_mod.predict(X_train)
```

In [281]:

```
train_df['decision_tree'] = pred_tree
train_df['linearRegression'] = pred_lr
#cdf['svm'] = pred_svm
train_df['gboost'] = pred_gbr
train_df['cultivar'] = cultivar_df
train_df.head()
```

Out[281]:

	day_offset	range	column	leaf_angle_alpha	leaf_angle_beta	leaf_angle_chi	leaf_angle_r
2017- 05-13 12:00:00	12.0	43	2	2.695956	1.977380	1.756464	0.43
2017- 05-13 12:00:00	12.0	35	15	3.265980	2.018623	1.941012	0.39
2017- 05-13 12:00:00	12.0	42	2	2.159610	1.809209	1.638744	0.47
2017- 05-13 12:00:00	12.0	30	4	3.042180	2.198751	1.732985	0.44
2017- 05-15 12:00:00	14.0	45	2	2.305345	1.872028	1.665387	0.46

5 rows × 362 columns

localhost:8888/lab 27/43

In [282]:

```
# calculate the percentage error between the actual and the model
results_df = train_df
results_df['canopy_height'] = target_df
results_df['abserror_gboost'] = 100.0*abs(results_df['canopy_height']-results_df['g
boost'])/results_df['canopy_height']
results_df.head()
```

Out[282]:

	day_offset	range	column	leaf_angle_alpha	leaf_angle_beta	leaf_angle_chi	leaf_angle_r
2017- 05-13 12:00:00	12.0	43	2	2.695956	1.977380	1.756464	0.43
2017- 05-13 12:00:00	12.0	35	15	3.265980	2.018623	1.941012	0.39
2017- 05-13 12:00:00	12.0	42	2	2.159610	1.809209	1.638744	0.47
2017- 05-13 12:00:00	12.0	30	4	3.042180	2.198751	1.732985	0.44
2017- 05-15 12:00:00	14.0	45	2	2.305345	1.872028	1.665387	0.46

5 rows × 364 columns

In [283]:

```
import numpy as np

plotlist = []
# find a subset dataframe that contains the locations of a single cultivar in a sin
gle location in the field
grouped = train_df.groupby(['cultivar','column','range'])
for name,group in grouped:
    mark = {}
    mark['cultivar'] = name[0]
    mark['range'] = name[2]
    mark['column'] = name[1]
    mark['avg_error'] = group['abserror_gboost'].agg(np.mean)
    plotlist.append(mark)
    #print(mark)
print(plotlist[0])
```

{'cultivar': 6000000207, 'range': 39, 'column': 3, 'avg_error': 2.88874 5217566597}

localhost:8888/lab 28/43

```
In [284]:
```

```
plotdf = pd.DataFrame(plotlist)
plotdf.head()
```

Out[284]:

	avg_error	column	cultivar	range
0	2.888745	3	6000000207	39
1	3.613159	9	6000000207	23
2	8.235736	14	6000000208	26
3	2.097526	15	6000000208	30
4	7.086046	4	6000000209	39

In [287]:

```
import altair as alt
alt.Chart(plotdf, title="Season4 - single model categorical cultivar").mark_rect().
encode(
    x='column:0',
    y='range:0',
    color='avg_error',
    tooltip=[
        alt.Tooltip('cultivar:Q', title='Cultivar'),
        alt.Tooltip('avg_error:Q', title='Avg Err %'),
        alt.Tooltip('range:0',title='range'),
        alt.Tooltip('column:0',title='column')
    ]
)
```

Out[287]:

In [288]:

```
alt.Chart(plotdf,title="Histogram of error (in percent) of a single model using cat
egorical cultivar").mark_bar().encode(
    alt.X("avg_error:Q", bin=True),
    y='count()',
)
```

Out[288]:

localhost:8888/lab 29/43

In [289]:

```
sorted_df = plotdf.sort_values(by=['avg_error'])
sorted_df.tail(10)
```

Out[289]:

	avg_error	column	cultivar	range
289	25.294329	8	6000000805	6
504	25.437759	7	6000000930	3
305	26.079081	2	6000000813	23
496	27.134445	11	6000000926	22
259	27.248534	2	600000788	22
152	28.923430	5	6000000697	34
495	29.799878	5	6000000926	37
481	32.050962	5	6000000918	35
560	34.515718	3	6000000960	15
561	35.975915	8	6000000960	30

localhost:8888/lab 30/43

In [290]:

```
%matplotlib inline
import matplotlib.pyplot as plt

def plot_cultivar(fulldf,cultivar):
    df = fulldf.loc[fulldf['cultivar'] == cultivar]
    minCol = df['column'].min()
    df = df.loc[df['column']==minCol]
    #print(df.shape)
    df = df[['day_offset','canopy_height','decision_tree','gboost']]
    df = df.set_index('day_offset')
    df = df.sort_index()
    print(df)
    df.plot()

plot_cultivar(cdf,6000000960)
```

```
canopy_height
                            decision_tree
                                                gboost
day_offset
17.0
                                 20.589744
                                            15.926290
                      18.0
19.0
                      19.0
                                 25.586466
                                            20.134351
34.0
                      75.0
                                 98.231092
                                            79.912336
```


So it makes sense that this cultivar would be badly modeled because there are only a few datapoints. The model doesn't have much to go on.

Address Overplotting

localhost:8888/lab 31/43

Next, lets address the overplotting. Is there really overplotting going on, or is there only one plant per square? If we must, We can make a pass through the data and double the number of columns. The first time we encounter a (range,col) pair, plot it at (range,col2), the second time we counter one, plot it at (range,col2+1):

```
In [291]:
plotdf.head()
```

Out[291]:

	avg_error	column	cultivar	range
0	2.888745	3	6000000207	39
1	3.613159	9	6000000207	23
2	8.235736	14	6000000208	26
3	2.097526	15	6000000208	30
4	7.086046	4	6000000209	39

In [295]:

```
plotdf.loc[(plotdf['column'] == 3) & (plotdf['range']==10)]
```

Out[295]:

	avg_error	column	cultivar	range
199	7.81228	3	6000000725	10

In [296]:

```
plotdf.loc[(plotdf['column'] == 10) & (plotdf['range']==42)]
```

Out[296]:

	avg_error	column	cultivar	range
292	9.372365	10	6000000806	42

So, there is only one value per square. Cool, the previous plots are valid...

Plot accuracies for separate models per location

localhost:8888/lab 32/43

In [298]:

full_df.head()

Out[298]:

	canopy_height	column	cultivar	date	leaf_angle_alpha	leaf_angle_beta	leaf_an
2017- 05-13 12:00:00	15.0	2	6000000836	2017- 05-13 12:00:00	2.695956	1.977380	1.
2017- 05-13 12:00:00	15.0	15	6000000462	2017- 05-13 12:00:00	3.265980	2.018623	1.9
2017- 05-13 12:00:00	19.0	2	6000000751	2017- 05-13 12:00:00	2.159610	1.809209	1.0
2017- 05-13 12:00:00	13.0	4	6000000916	2017- 05-13 12:00:00	3.042180	2.198751	1.
2017- 05-15 12:00:00	17.0	2	6000000976	2017- 05-15 12:00:00	2.305345	1.872028	1.(

localhost:8888/lab 33/43

```
In [ ]:
gbr models = {}
predictions = {}
count = 0
grouped = full_df.groupby(['cultivar','column','range'])
for name, group in grouped:
   #print(name)
   # pick the features to use for training
   train df = group[['cultivar','day offset','range','column','leaf_angle_alpha',
'leaf angle beta', 'leaf angle chi', 'leaf angle mean']]
   # identify the 'target' feature to try to predict
   target df = group['canopy height']
   X train = train df.values
   y train = target df.values
   # train a model for this cultivar in this location and store the trained model
 in a dictionary
   gbr_models[name] = GradientBoostingRegressor(n_estimators=100, learning rate=0.
1, max depth=8, random state=0, loss='ls').fit(X train, y train)
   gbr_pred = gbr_models[name].predict(X_train)
   count += 1
    # add the model results back into the dataframe so we can plot the actual and p
redicted against all the indepedent variables
   train_df['gboost'] = gbr_pred
   #put the actual target value back in the dataframe so we can plot results
   train_df['canopy_height'] = target_df
    # store the predicted results in the same dictionary organization and the train
ed models
   predictions[name] = train df
print('finished generating',count,'models')
```

727 models were generated. This is two plants per cultivar, planted in different locations. Lets plot the whole field..

localhost:8888/lab 34/43

```
In [302]:
```

```
count = 0
for key in predictions.keys():
    print(predictions[key])
    count += 1
    if count>2:
        break
```

localhost:8888/lab 35/43

		cultivar	day_offset	range	column	leaf_angle_
alpha \ 2017-05-16	12:00:00	6000000207	15.0	39	3	3.0
29223 2017-05-25	12:00:00	6000000207	24.0	39	3	2.1
09788 2017-06-02 47258	12:00:00	6000000207	32.0	39	3	2.4
2017-06-03 09602	12:00:00	6000000207	33.0	39	3	3.1
2017-06-05 76765	12:00:00	6000000207	35.0	39	3	2.9
2017-06-06 05701	12:00:00	6000000207	36.0	39	3	2.8
2017-06-08 69036		6000000207	38.0	39	3	3.2
2017-06-09 06393		6000000207	39.0	39	3	2.5
2017-06-10 63247		6000000207	40.0	39	3	3.1
2017-08-25 34727 2017-08-26		6000000207	116.0	39	3	1.9
49690 2017-08-29		6000000207	117.0	39 39	3	2.6
27726 2017-07-05		6000000207	65.0	39	3	2.2
08545 2017-06-16		6000000207	46.0	39	3	2.4
02276 2017-06-25	12:00:00	6000000207	55.0	39	3	2.0
51962 2017-07-01	12:00:00	6000000207	61.0	39	3	2.3
24980 2017-07-02	12:00:00	6000000207	62.0	39	3	4.2
98827 2017-06-24 86483	12:00:00	6000000207	54.0	39	3	3.0
2017-07-04 86466	12:00:00	6000000207	64.0	39	3	4.6
\		leaf_angle_b	eta leaf_a	ngle_chi	leaf_	angle_mean
2017-05-16	12:00:00	1.961	442	1.870532		0.420787
2017-05-25		1.673		1.710402		0.461486
2017-06-02		1.713		1.837392		0.431054
2017-06-03	12:00:00	1.913		1.942567		0.403784
2017-06-05	12:00:00	1.894	488	1.910338		0.409748
2017-06-06	12:00:00	1.866	598	1.825539		0.435253
2017-06-08	12:00:00	1.791	071	2.108108		0.383240
2017-06-09		1.684	057	1.881935		0.432157
2017-06-10		1.875	412	1.972441		0.410376
2017-08-25		1.635		1.670653		0.458132
2017-08-26		1.547		1.631517		0.469848
2017-08-29		2.670		1.454754		0.489575
2017-07-05		1.676		1.765525		0.446889
2017-06-16	12:00:00	1.695	992	1.830182		0.437703

/7/2020			TERR	A-8-plotting-	s4	
2017-06-25	12:00:00	1.66	3227	1.70824	3	0.456029
2017-07-01	12:00:00	1.63	5286	1.88080	7	0.425270
2017-07-02				2.04412		0.378729
2017-06-24				1.66500		0.455954
2017-00-24				2.22562		0.343710
2017-07-04	12:00:00	2.24	9309	2.22302	2	0.343/10
		aboost	ganony hoim	·h+		
2017 05 16	10.00.00	gboost	canopy_heig			
2017-05-16		22.004380		.0		
2017-05-25		48.003689		.0		
2017-06-02		89.002743	89			
2017-06-03		95.002346	95			
2017-06-05	12:00:00	113.002056	113	.0		
2017-06-06	12:00:00	116.001794	116	.0		
2017-06-08	12:00:00	132.001485	132	.0		
2017-06-09	12:00:00	141.001287	141	.0		
2017-06-10	12:00:00	150.000832	150	.0		
2017-08-25	12:00:00	316.996744	317	.0		
2017-08-26		316.996744	317			
2017-08-29		317.996118	318			
2017-07-05		267.997617	268			
2017-07-03		189.999918	190			
2017-06-25		231.998696	232			
2017-07-01		251.998352	252			
2017-07-02		256.998162	257			
2017-06-24		228.999029	229			
2017-07-04	12:00:00	264.998007	265	.0		
		cultivar	day_offset	range	column	<pre>leaf_angle_</pre>
alpha \						
2017-06-04	12:00:00	6000000207	34.0	23	9	3.5
23251						
2017-06-15	12:00:00	6000000207	45.0	23	9	2.1
07856						
2017-06-26	12:00:00	6000000207	56.0	23	9	2.2
27275		000000=07				
2017-07-11	12.00.00	6000000207	71.0	23	9	2.2
69778	12.00.00	0000000207	71.0	23	9	2.2
	12-00-00	6000000007	101 0	2.2	0	2 1
2017-08-10	12:00:00	6000000207	101.0	23	9	2.1
69631					_	
2017-07-06	12:00:00	6000000207	66.0	23	9	2.0
18879						
2017-07-03	12:00:00	6000000207	63.0	23	9	3.0
02667						
2017-06-29	12:00:00	6000000207	59.0	23	9	2.2
62433						
2017-06-27	12:00:00	6000000207	57.0	23	9	2.1
15104						
2017-06-30	12:00:00	6000000207	60.0	23	9	2.3
95950					_	
2017-08-15	12.00.00	6000000207	106.0	23	9	2.1
80060	12.00.00	0000000207	100.0	23	9	2.1
	10.00.00	6000000007	107.0	2.2	0	2 2
2017-08-16	12:00:00	6000000207	107.0	23	9	2.3
91059	10 00 00	600000000	400 -			•
2017-08-17	12:00:00	6000000207	108.0	23	9	2.0
29126						
2017-08-19	12:00:00	6000000207	110.0	23	9	1.4
40466						
2017-07-08	12:00:00	6000000207	68.0	23	9	2.0

localhost:8888/lab 37/43

86163

```
leaf_angle_chi
                      leaf angle beta
                                                         leaf_angle_mean
2017-06-04 12:00:00
                             2.170176
                                              1.902906
                                                                 0.407802
2017-06-15 12:00:00
                             1.620150
                                              1.780163
                                                                 0.442374
2017-06-26 12:00:00
                             1.618817
                                              1.838017
                                                                 0.433907
2017-07-11 12:00:00
                             1.680481
                                              1.785684
                                                                 0.445864
2017-08-10 12:00:00
                             1.617949
                                              1.770229
                                                                 0.452774
2017-07-06 12:00:00
                             1.517826
                                              1.815212
                                                                 0.448418
2017-07-03 12:00:00
                             1.882391
                                              1.917758
                                                                 0.416008
2017-06-29 12:00:00
                             1.608030
                                              1.869407
                                                                 0.430638
2017-06-27 12:00:00
                             1.549048
                                              1.850068
                                                                 0.435338
2017-06-30 12:00:00
                             1.685304
                                              1.859280
                                                                 0.426991
2017-08-15 12:00:00
                             1.549229
                                              1.860397
                                                                 0.432775
2017-08-16 12:00:00
                             1.605743
                                              1.900040
                                                                 0.429331
2017-08-17 12:00:00
                             1.545320
                                              1.771559
                                                                0.445108
2017-08-19 12:00:00
                             1.323373
                                              1.644122
                                                                 0.478973
2017-07-08 12:00:00
                             1.683412
                                              1.712009
                                                                 0.456912
                          gboost
                                   canopy_height
2017-06-04 12:00:00
                      104.004135
                                           104.0
2017-06-15 12:00:00
                      185.001983
                                           185.0
2017-06-26 12:00:00
                      232.000915
                                           232.0
2017-07-11 12:00:00
                      286.999317
                                           287.0
2017-08-10 12:00:00
                      308.998876
                                           309.0
2017-07-06 12:00:00
                      263.999850
                                           264.0
2017-07-03 12:00:00
                      259.000124
                                           259.0
2017-06-29 12:00:00
                      247.000285
                                           247.0
2017-06-27 12:00:00
                      239.000559
                                           239.0
2017-06-30 12:00:00
                      247.000285
                                           247.0
2017-08-15 12:00:00
                      310.998703
                                           311.0
2017-08-16 12:00:00
                      312.998284
                                           313.0
2017-08-17 12:00:00
                      311.998911
                                           312.0
2017-08-19 12:00:00
                      312.998284
                                           313.0
2017-07-08 12:00:00
                      272.999487
                                           273.0
                                                               leaf angle
                        cultivar
                                   day_offset
                                               range
                                                       column
alpha \
2017-06-04 12:00:00
                      6000000208
                                         34.0
                                                   26
                                                                        2.4
                                                           14
27119
                      leaf angle_beta
                                        leaf angle chi
                                                         leaf angle mean
gboost
2017-06-04 12:00:00
                             1.726407
                                              1.804362
                                                                 0.443149
91.0
                      canopy height
2017-06-04 12:00:00
                               91.0
```

localhost:8888/lab 38/43

In [316]:

predictions[(6000000207,3,39)]

localhost:8888/lab 39/43

Out[316]:

	cultivar	day_offset	range	column	leaf_angle_alpha	leaf_angle_beta	leaf_angle_chi
2017- 05-16 12:00:00	6000000207	15.0	39	3	3.029223	1.961442	1.870532
2017- 05-25 12:00:00	6000000207	24.0	39	3	2.109788	1.673649	1.710402
2017- 06-02 12:00:00	6000000207	32.0	39	3	2.447258	1.713407	1.837392
2017- 06-03 12:00:00	6000000207	33.0	39	3	3.109602	1.913697	1.942567
2017- 06-05 12:00:00	6000000207	35.0	39	3	2.976765	1.894488	1.910338
2017- 06-06 12:00:00	6000000207	36.0	39	3	2.805701	1.866598	1.825539
2017- 06-08 12:00:00	6000000207	38.0	39	3	3.269036	1.791071	2.108108
2017- 06-09 12:00:00	6000000207	39.0	39	3	2.506393	1.684057	1.881935
2017- 06-10 12:00:00	6000000207	40.0	39	3	3.163247	1.875412	1.972441
2017- 08-25 12:00:00	6000000207	116.0	39	3	1.934727	1.635415	1.670653
2017- 08-26 12:00:00	6000000207	117.0	39	3	1.749690	1.547534	1.631517
2017- 08-29 12:00:00	6000000207	120.0	39	3	2.627726	2.670668	1.454754
2017- 07-05 12:00:00	6000000207	65.0	39	3	2.208545	1.676181	1.765525
2017- 06-16 12:00:00	6000000207	46.0	39	3	2.402276	1.695992	1.830182
2017- 06-25 12:00:00	6000000207	55.0	39	3	2.051962	1.663227	1.708243

localhost:8888/lab 40/43

	cultivar	day_offset	range	column	leaf_angle_alpha	leaf_angle_beta	leaf_angle_chi
2017- 07-01 12:00:00	6000000207	61.0	39	3	2.324980	1.635286	1.880807
2017- 07-02 12:00:00	6000000207	62.0	39	3	4.298827	2.328273	2.044120
2017- 06-24 12:00:00	6000000207	54.0	39	3	3.086483	2.361568	1.665006
2017- 07-04 12:00:00	6000000207	64.0	39	3	4.686466	2.249569	2.225622

In [317]:

```
# calculate the percentage error between the actual and the model
predictions['abserror_gboost'] = 100.0*abs(predictions['canopy_height']-predictions
['gboost'])/predictions['canopy_height']
predictions.head()
```

localhost:8888/lab 41/43

In [318]:

```
import numpy as np
count = 0
plotlist = []
for key in predictions.keys():
    mark = \{\}
    mark['cultivar'] = key[0]
    mark['range'] = key[2]
    mark['column'] = key[1]
    df = predictions[key]
    df['abserror gboost'] = 100.0*abs(df['canopy height']-df['gboost'])/df['canopy
height'l
    mark['avg_error'] = df['abserror_gboost'].agg(np.mean)
    plotlist.append(mark)
    count += 1
print(plotlist[0:5])
[{'cultivar': 6000000207, 'range': 39, 'column': 3, 'avg_error': 0.0024
4314741814779}, {'cultivar': 6000000207, 'range': 23, 'column': 9, 'avg
_error': 0.0005775131558959814}, {'cultivar': 6000000208, 'range': 26,
'column': 14, 'avg error': 0.0}, {'cultivar': 6000000208, 'range': 30,
'column': 15, 'avg_error': 0.0005336198421920244}, {'cultivar': 6000000
209, 'range': 39, 'column': 4, 'avg_error': 0.002820469437681125}]
/Users/curtislisle/anaconda3/lib/python3.7/site-packages/ipykernel laun
cher.py:11: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
  # This is added back by InteractiveShellApp.init path()
In [319]:
plotdf = pd.DataFrame(plotlist)
plotdf.head()
len(plotdf)
```

Out[319]:

727

localhost:8888/lab 42/43

```
In [321]:
```

```
import altair as alt
alt.Chart(plotdf, title="Season4 - model per location categorical cultivar").mark_r
ect().encode(
    x='column:0',
    y='range:0',
    color='avg_error',
    tooltip=[
        alt.Tooltip('cultivar:Q', title='Cultivar'),
        alt.Tooltip('avg_error:Q', title='Avg Err %'),
        alt.Tooltip('range:0',title='range'),
        alt.Tooltip('column:0',title='column')
]
```

Out[321]:

In [322]:

```
plotdf.head()
```

Out[322]:

	avg_error	column	cultivar	range
0	0.002443	3	6000000207	39
1	0.000578	9	6000000207	23
2	0.000000	14	6000000208	26
3	0.000534	15	6000000208	30
4	0.002820	4	6000000209	39

In [324]:

```
alt.Chart(plotdf,title="Histogram of error (%) of a model per location using catego
rical cultivar").mark_bar().encode(
    alt.X("avg_error:Q", bin=True),
    y='count()',
)
```

Out[324]:

In []:

localhost:8888/lab 43/43