Geometria różniczkowa Lista 6

- 1. Udowodnij, że jeśli $\gamma: (0,1) \to M$ jest geodezyjna i $\lim_{t\to 0^+} \gamma(t) = p$, to istnieje $v \in T_pM$, taki że $\gamma = \gamma_v$.
- 2. Podaj przykład metryki riemannowskiej na 2 wymiarowym torusie, takiej że pewne dwa punkty torusa da sie połączyć nieprzeliczalnie wieloma geodezyjnymi.
- 3. Opisz geodezyjne w produkcie dwóch rozmaitości riemannowskich.
- 4. Niech (M, g) będzie n wymiarową rozmaitością riemannowską.
 - Pokaż, że Ric(X,Y) = Ric(Y,X)
 - Niech g_{λ} będzie przeskalowaną metryką g, tzn: $g_{\lambda}(X,Y)=\lambda^2 g(X,Y)$. Pokaż, że $Ric_{g_{\lambda}}=Ric_g$ oraz $\kappa_{g_{\lambda}}=\lambda^{-2}\kappa_g$.
 - Pokaż, że $Ric(X,X) = \sum_{i=2}^{n} \kappa(X,e_i)$ gdzie X,e_2,\ldots,e_n jest bazą ON przestrzeni stycznej.
- 5. Skrytykuj następującą wariację na temat krzywizny Ricciego: $NieRic(X,Y) = Tr(Z \mapsto R(X,Y)Z)$.
- 6. Pokaż, że cofnięcie wiązki jest wiązką.
- 7. Pokaż, że krzywizny sekcyjne wyznaczają pełny tensor krzywizny. Dokładniej: niech V będzie przestrzenią z iloczynem skalarnym. Załóżmy, że R i R' są 3-liniowymi odwzorowaniami $V \times V \times V \to V$ spełniającymi wszystkie cztery tożsamości (symetrie krzywizny) z wykładu. Załóżmy też, że dla każdej ortonormalnej pary wektorów $X,Y \in V$ zachodzi $\langle R(X,Y)Y,X \rangle = \langle R'(X,Y)Y,X \rangle$. Udowodnij, że wówczas R=R'. Czy jeśli założymy tylko, że powyższa równość zachodzi dla par wektorów (X,Y) pochodzących z pewnej ortonormalnej bazy V, to teza pozostanie prawdziwa?
- 8. Niech $M=M_{n\times n}(\mathbf{R})$ i niech G będzie podrozmaitością M i zarazem grupą z operacją mnożenia macierzy. Załóżmy ponadto, że G jest zawarta w zbiorze macierzy ortogonalnych. Przestrzenie styczne T_xG możemy utożsamiać z podprzestrzeniami M, bo M jest przestrzenią liniową. Niech $\mathrm{Lie}(G)=T_eG$ (gdzie e=I) i niech iloczyn skalarny na Lie będzie zadany wzorem $\langle a,b\rangle=\mathrm{Tr}(ab^T)$. Z $a\in\mathrm{Lie}(G)$ wiążemy pole wektorowe X_a na G zadane tak: $(X_a)_x=xa$ (sprawdź, że $(X_a)_x\in T_xG$); pola tej postaci nazywamy lewoniezmienniczymi. Wreszcie na G zadajemy metrykę Riemanna żądając, by iloczyn skalarny dwóch pól lewoniezmienniczych był funkcją stałą (innymi słowy jeśli $u,v\in T_xG$, to $\langle u,v\rangle_x=\langle x^{-1}u,x^{-1}v\rangle_e$). Niech ∇ będzie koneksją Levi-Civity tej metryki, zaś R tensorem krzywizny koneksji ∇ . Uzasadnij, że
 - (a) Elementy Lie(G) to macierze antysymetryczne oraz, że iloczyn skalarny na Lie(G) jest dodatnio określony.
 - (b) Dla dowolnego $y\in G$ przekształcenia $G\ni x\mapsto yx\in G$ oraz $G\ni x\mapsto xy\in G$ są izometriami powyższej metryki Riemanna.
 - (c) $t \mapsto e^{ta}$ (eksponens macierzy) jest krzywą całkową pola X_a .
 - (d) $\phi_t^a(x) = xe^{ta}$ jest potokiem pola X_a .
 - (e) $[X_a, X_b] = X_{[a,b]}$ (gdzie [a, b] = ab ba).
 - (f) Jeśli $X,\,Y,\,Z$ są polami lewoniezmienniczymi, to

$$\langle [X,Y],Z\rangle = \langle [Z,X],Y\rangle, \qquad \nabla_X Y = \frac{1}{2}[X,Y], \qquad R(X,Y)Z = -\frac{1}{4}[[X,Y],Z].$$

- (g) G ma nieujemną krzywiznę sekcyjną, tzn. dla dowolnego $x \in G$ i dowolnych $u, v \in T_xG$ mamy $\langle R(u,v)v,u \rangle \geqslant 0$.
- (h) Dla $a \in \text{Lie}(G)$ geodezyjna γ_a jest dana wzorem $\gamma_a(t) = e^{ta}$.
- (i) Dla $a \in \text{Lie}(G)$ eksponens riemannowski $exp_e(a)$ pokrywa sie z eksponensem macierzowym e^a .