MLADS

MACHINE LEARNING, AI, AND DATA SCIENCE CONFERENCE

June 2–4, 2020 June 9–11, 2020

How to interpret model prediction using interpretability tools on Azure Machine Learning?

Fatemeh Zamanian (Fatemeh.Zamanian@microsoft.com)
John Ehrlinger (John.Ehrlinger@microsoft.com)
Cheng Zhan (Zhan.Cheng@microsoft.com)

Session goals

- · In this level 100 session, you will learn:
 - Why ML Interpretability is important,
 - · An overview of SHAP, one of the most robust methods for ML Interpretability,
 - How to apply Azure Machine Learning Interpret tools for:
 - · Regression use case Tabular data,
 - · Generic image classification use case,
 - · Limitations of Azure Machine Learning Interpret tools.

Why ML Interpretability is important? What vs. Why?

- Modern ML techniques have enabled us to develop highly accurate models [the "What" question]
 - These generate very complex models which are often difficult to understand.
- For many high-stakes applications, understanding of these "black box" models are essential to gain the trust of stakeholders [the "Why" question]
 - This determines the success of the project, without which it is almost impossible to deploy these models into production.
- ML Interpretability addresses the trade-off between the "What" and the "Why"
 - Use complex model with high confidence.

What do we expect from a ML Interpretability tool?

From interpretably module, we will learn:

- Global point of view: From all the features in the model, which are most important.
- · Local point of view: For any single prediction from a model, the marginal contribution of each feature in the data on that instance of prediction.

Why SHAP?

Here, we will learn about SHAP (**SH**apley **A**dditive **E**xplanation):

- · Based on Shapley, from coalitional game theory,
- Mathematically very sound and robust,
- Provides both local and global explanation,
- · Model agnostic,
- Can be applied to any type of data,
- · Integrated within Azure Machine Learning Interpretability toolkit.

For this data, this is "fit" from ML: Black Box ML: $y = f(x_1, x_2)$

У	x_1	x_2
1	-1	1
14	1	4
1	2	-1
11	4	1
4	-1	2
-1	1	-1

For this data, this is "fit" from ML: Black Box ML: $y = f(x_1, x_2)$

How to break down the target between features?

У	x_1	x_2
1	-1	1
14	1	4
1	2	-1
11	4	1
4	-1	2
-1	1	-1

For this data, this is "fit" from ML: Black Box ML: $y = f(x_1, x_2)$

How to break down the target between features?

$$y = f(x_1, x_2) = 2x_1 + 3x_2$$

у	x_1	x_2	I_{x_1}	I_{x_2}
1	-1	1	-2	3
14	1	4	2	12
1	2	-1	4	-3
11	4	1	8	3
4	-1	2	-2	6
-1	1	-1	2	-3

For this data, this is "fit" from ML: Black Box ML: $y = f(x_1, x_2)$

How to break down the target between features?

$$y = f(x_1, x_2) = 2x_1 + 3x_2$$

- For instance i of the data (row i) the effect of $x_{1,i}$ on y_i is $2x_{1,i}$
- For instance i of the data (row i) the effect of $x_{2,i}$ on y_i is $3x_{2,i}$

у	x_1	x_2	I_{x_1}	I_{x_2}
1	-1	1	-2	3
14	1	4	2	12
1	2	-1	4	-3
11	4	1	8	3
4	-1	2	-2	6
-1	1	-1	2	-3

- · We know the "effect" of each feature for each instance of data.
- · Which feature is "more" important?

у	x_1	x_2	I_{x_1}	I_{x_2}
1	-1	1	-2	3
14	1	4	2	12
1	2	-1	4	-3
11	4	1	8	3
4	-1	2	-2	6
-1	1	-1	2	-3

- · We know the "effect" of each feature for each instance of data.
- · Which feature is "more" important?

У	x_1	x_2	I_{x_1}	I_{x_2}
1	-1	1	-2	3
14	1	4	2	12
1	2	-1	4	-3
11	4	1	8	3
4	-1	2	-2	6
-1	1	-1	2	-3

- · We know the "effect" of each feature for each instance of data.
- · Which feature is "more" important?

у	x_1	x_2	I_{x_1}	I_{x_2}
1	-1	1	-2	3
14	1	4	2	12
1	2	-1	4	-3
11	4	1	8	3
4	-1	2	-2	6
-1	1	-1	2	-3

- · We know the "effect" of each feature for each instance of data.
- Which feature is "more" important?

Local view: For some instances, x_1 has bigger impact and for others x_2 has bigger impact.

У	x_1	x_2	I_{x_1}	I_{x_2}
1	-1	1	-2	3
14	1	4	2	12
1	2	-1	4	-3
11	4	1	8	3
4	-1	2	-2	6
-1	1	-1	2	-3

- · We know the "effect" of each feature for each instance of data.
- Which feature is "more" important?

Local view: For some instances, x_1 has bigger impact and for others x_2 has bigger impact.

How about **global view**?

у	x_1	x_2	I_{x_1}	I_{x_2}
1	-1	1	-2	3
14	1	4	2	12
1	2	-1	4	-3
11	4	1	8	3
4	-1	2	-2	6
-1	1	-1	2	-3

- · We know the "effect" of each feature for each instance of data.
- Which feature is "more" important?

Local view: For some instances, x_1 has bigger impact and for others x_2 has bigger impact.

How about **global view**?

$x_{1 \text{ total}} = \frac{\sum I_{x_{1,i}} }{\sum_{i=1}^{N} I_{x_{1,i}} } = \frac{20}{6} = 3.34$	
N = 6	
$_{16} \text{ x}_{2,\text{total}} = \frac{\sum I_{x_{2,i}} }{N} = \frac{30}{6} = 5$	

у	x_1	<i>x</i> ₂	I_{x_1}	I_{χ_2}
1	-1	1	-2	3
14	1	4	2	12
1	2	-1	4	-3
11	4	1	8	3
4	-1	2	-2	6
-1	1	-1	2	-3

Globally, in this space, $-1 \le x_1 \le 4 \& -1 \le x_2 \le 4$, x_2 , comparing to x_1 , is more important.

How about more complex models?

 How to answer these questions for a more complex ML model?

 For any single prediction from a model, what is the <u>"fair"</u> contribution of each feature?

- Which features in the model are more "important"?
- SHAP provides answers to both questions and "sheds light" on "black box" models.

Shapley Values

- The goal of SHAP is to <u>explain</u> the prediction of an instance, by computing the <u>marginal</u> <u>contribution of each feature</u> to the prediction.
- The SHAP explanation method computes
 <u>Shapley values</u> from <u>coalitional game theory</u>
 - The **feature** values of a data instance act as **players** in a coalition.
 - Shapley values tell us how to <u>fairly</u> distribute the "**payout**" (= the **prediction**) among all the features.

game	score	Α	В	•••	С
1	y_1	<i>x</i> ₁₁	<i>x</i> ₁₂	•	x_{1M}
2	y_2	x_{21}	x_{22}	•	x_{2M}
3	y_3	<i>x</i> ₃₁	<i>x</i> ₃₂	•	x_{3M}
4	y_4	<i>x</i> ₄₁	x_{42}	•	x_{4M}
•	•	•	•	•	•
		•			
•	•	•	•	•	•
N	y_N	x_{N1}	x_{N2}	•	x_{NM}

- Suppose we have a game with 3 players, A, B, C and they have scored Y for a given game,
- Supposed we have trained a model, F, to predict target, Y,
- Let's see how to estimate "marginal" contribution of player (i.e. feature) A to score (i.e. target) Y for game i, based on coalition game theory, <u>this is</u> <u>the Shapley value of A for instance i</u>

game	score	A	В	С
i	Y	A	В	С

- Suppose we have a game with 3 players, A, B, C and they have scored Y for a given game,
- Supposed we have trained a model, F, to predict target, Y,
- Let's see how to estimate "marginal" contribution of player (i.e. feature) A to score (i.e. target) Y for game i, based on coalition game theory, <u>this is</u> <u>the Shapley value of A for instance i</u>

Coalition Exclude A	Target Estimation Exclude A
Ø	F(Ø)
В	F(B)
С	F(<i>C</i>)
В, С	F(B,C)

game	score	A	В	С
i	Y	A	В	С

- Suppose we have a game with 3 players, A, B, C and they have scored Y for a given game,
- Supposed we have trained a model, F, to predict target, Y,
- Let's see how to estimate "marginal" contribution of player (i.e. feature) A to score (i.e. target) Y for game i, based on coalition game theory, <u>this is</u> <u>the Shapley value of A for instance i</u>

game	score	A	В	C	
i	Y	A	В	С	

Coalition Exclude A	Target Estimation Exclude A	Coalition Include A	Target Estimation Include A
Ø	F(Ø)	A	F(<i>A</i>)
В	F(B)	A, B	F(A,B)
С	F(<i>C</i>)	А, С	F(A,C)
В, С	F(B,C)	A,B,C	F(A, B, C)

- Suppose we have a game with 3 players, A, B, C and they have scored Y for a given game,
- Supposed we have trained a model, F, to predict target, Y,
- Let's see how to estimate "marginal" contribution of player (i.e. feature) A to score (i.e. target) Y for game i, based on coalition game theory, <u>this is</u> <u>the Shapley value of A for instance i</u>

game	score	A	В	С
i	Y	A	В	С

Coalition Exclude A	Target Estimation Exclude A	Coalition Include A	Target Estimation Include A	Difference in Target Estimation
Ø	F(Ø)	A	F(<i>A</i>)	$F(A) - F(\emptyset)$
В	F(B)	A, B	F(A,B)	F(A,B)-F(B)
С	F(<i>C</i>)	А, С	F(A,C)	F(A,C) - F(C)
В, С	F(B,C)	A, B, C	F(A,B,C)	F(A,B,C) - F(B,C)

game	score	A	В	С
i	Y	A	В	С

Coalition Exclude A	Target Estimation Exclude A	Coalition Include A	Target Estimation Include A	Difference in Target Estimation	weight
Ø	F(Ø)	A	F(A)	$F(A) - F(\emptyset)$	1/3
В	F(B)	A, B	F(A,B)	F(A,B) - F(B)	1/6
С	F(C)	А, С	F(A,C)	F(A,C) - F(C)	1/6
В, С	F(B,C)	A,B,C	F(A, B, C)	F(A,B,C) - F(B,C)	1/3

Shapley value of A for instance i is the weighted average of marginal contributions for all the coalitions:

$$\frac{|S|!(N-|S|-1)!}{N!}$$

$$\frac{1}{3} \big(F(A) - F(\emptyset) \big) + \frac{1}{6} \big(F(A,B) - F(B) \big) + \frac{1}{6} \big(F(A,C) - F(C) \big) + \frac{1}{3} \big(F(A,B,C) - F(B,C) \big)$$

Robustness

$$\varphi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (N - |S| - 1)!}{N!} (v(S \cup \{i\}) - v(S))$$

The Shapley value is the only method that meets the criteria for a "fair" payout for each player (feature):

- **Efficiency:** sum of the Shapley values for all features in each instance, equals to the total coalition value, i.e. difference between prediction, and expected value.
- **Symmetry:** all features have a fair chance to join the game, i.e. if two instances of a feature contribute equally to all possible collations, the Shapley values are the same.
- **Dummy:** if a feature has no contribution to any coalition, then the Shapley value of that feature is zero.
- **Additivity:** the combined Shapley values of any pair of games, is the sum of the Shapley values of each game, $\varphi(v+v')=\varphi(v)+\varphi(v')$

What about SHAP?

- The disadvantage of using Shapley values is that it is computationally very expensive,
 - For M features and N observation, to calculate the entire Shapley values "matrix", we have $N \times 2^{M}$ possible coalitions.
 - Plus, the absence of a feature in each coalition must be "simulated" by drawing random instances.
- What SHAP brings to the table, is to address these issues.

How SHAP helps with computational overhead?

SHAP optimizes the number of coalitions based on different scenarios:

1. LinearExplainer:

· For linear models.

2. TreeExplainer:

- Tree-based models,
- · This relaxes the dependency to background data,
- Reduces the complexity space from $O(TL2^M)$ to $O(TLD^2)$.

3. KernelExplainer:

- · Model agnostic,
- · Reduces the complexity space from 2^M to 2M + 2048, based on weights in Shapley formula,
- · Missing features are simulated from background data.

4. DeepExplainer:

· This is a high-speed approximation algorithm for SHAP values in deep learning models.

Azure Machine Learning-Interpret

Overview of different methods in AML-interpret

SHAP

- Both local and global interpretability
- Can be applied to any type of data
- Both model agnostic and model specific tools
- Provides marginal contribution of features to prediction of target
- Incorporates the interactions between features

Mimic

- Both local and global interpretability
- Model agnostic, based on global surrogate models
- Approximate explanation
- Applicable to tabular data
- Provides marginal contribution of features to prediction of target
- Incorporates the interactions between features

<u>Feature</u> <u>permutation</u>

- Provides global explanation
- Model agnostic
- Univariate model explanation
- Applicable to tabular data
- Provides
 explanation based
 on the effect of
 the feature on
 model
 performance

LIME

- Provide local interpretability
- Model agnostic
- Applicable to tabular and image data

Demo

- Regression use case using Azure ML Interpret
 Image classification using Azure ML Interpret
 Image classification using OSS SHAP

Session Goals

- · Why interpretability is important.
- SHAP, one of the most robust tools for ML interpretability:
 - · is applicable to any type of model,
 - · is applicable to any type of data,
 - · provides both local and global interpretability.
- How to apply Azure Machine Learning Interpret tools for:
 - · A regression use case,
 - · A generic image classification use cases:
 - · Explain on super-pixels from azureml toolkit,
- · Limitations of Azure Machine Learning Interpret tools and work-arounds
- Notebooks are available for future reference <u>https://github.com/microsoft/AML_Interpret_usecases</u>

Reference 1
Reference 2

Azure Machine Learning-Interpret

Thank you for attending the MLADS Conference and helping to build a strong community

To find recordings, presentations, and other resources from the event, go to: http://aka.ms/spring2020mlads

More information about the Machine Learning Community: http://aka.ms/wwc-ml More information about the Artificial Intelligence Community: http://aka.ms/wwc-ai

© Copyright Microsoft Corporation. All rights reserved.