

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

DISTRIBUTED SYSTEMS

Chapter 3: Naming in Distributed Systems

Outline

- 1. Names. Identifiers and Address
- 2. Flat Naming
- 3. Structured Naming

1. Names. Identifiers and Address

Entity & Name

Entity, A.P

Location independent

Identifier

- □ 3 properties:
 - 1. An identifier refers to at most one entity.
 - 2. Each entity is referred to by at most one identifier.
 - 3. An identifier always refers to the same entity (it is never reused)
- □ Problems: The exhaustion of Identifier
- Solutions:
 - Extending the namespace
 - □ Re-assign identifier to new entities

Resolving names and identifiers to addresses

- Centralized approach
 - □ Name-to-address binding
 - □ Problem: not appropriate to large network
- □ Distributed naming systems

URI, URL và URN

□ URI:

- a string of characters used to identify a resource.
- interact with representations of the resource over a network
- URL and URN
- It comprises 5 parts: scheme, authority, path, query and fragment

□ URN:

- □ ISBN 0486275574 (run:isbn:0-486-27557-4)
- □ URL:
 - file:///home/username/RomeoAndJuliet.pdf

2. Flat naming

2.1. Definition

- Identifiers are simply random bit strings (unstructured)
- It does not contain any information of location
- □ Goal: how flat names can be resolved
 - 1. Simple solutions
 - 2. Home-based Approaches
 - 3. Distributed Hash Tables
 - 4. Hierachical Approaches

2.2. Simple Solutions

- **□ 2.2.1. Broadcasting and Multicasting**
- **□ 2.2.2.** Forwarding pointers

2.2.1. Broadcasting and Multicasting

- Condition: System supports broadcasting facilities:
 - A message containing the identifier of the entity is broadcasted to all other machines.
 - Each machine is requested to check whether it has that entity.
 - Only the machines that can offer an access point for the entity send a reply message containing the address of that access point.

Example: ARP

2.2.1. Broadcasting and Multicasting

□ Scalability problem:

- Wast network bandwidth by request messages
- Too many hosts may be interrupted by requests they cannot answer.

2.2.2. Forwarding Pointer

■ When an entity moves from A to B, it leaves behind in A a reference to its new location at B.

Forwarding Pointer mechanism

Forwarding Pointer mechanism

Advantage:

■ Simplicity: By using a traditional naming service, a client can look up the current address by following the chain of forwarding pointers.

Drawbacks

- A chain of FP can become so long → locating that entity is expensive.
- All intermediate nodes have to maintain their part of the chain.
- \blacksquare Broken links \rightarrow cannot reach the entity

Solution: Redirecting a FP

2.3. Home-based Approaches

Solution for stable home problem

22 Subnode of the root, responsible? for handling requests for E Domain where E currently resides Alternative, and better choice_ for a subnode to handle E Current route Alternative route of lookup request of lookup request Client requesting the current address of E

2.4. Distributed Hash Tables

- □ Chord system
- □ Create the ring with prev(n) and succ(n)
- □ Use finger table to determine the succ(k) of key k
- □ FTp is the finger table of node p:

$$FT_p[i] = succ(p+2^{i-1})$$

 \square To look up a key k, node p will then immediately forward the request to node q:

$$q = FT_p[j] \le k < FT_p[j+1]$$

Update the finger tables after inserting a new node

Chord system with finger tables

2.5. Hierarchical Approaches

Looking-up

Caching

An entity having two addresses in different leaf domains

Updating

3. Structured Naming

Structured Name Space

A general naming graph

Name Spaces

- □ Leaf node:
 - No outgoing edge
 - Store information of its address
- **□** Directory node:
 - Outgoing edge
 - Store a table with info (edge label, node identifier)
- □ Path name: N: <label1, label2, label3, label4, ...>
- Absolute path name/Relative path name

Name resolution

- □ Consider a path name: N:<label1, label2, ..., labeln>
- □ Start at node N of the naming graph, where the name label1 is looked up in the directory table, and which returns the identifier of the node to which label1 refers.
- Continue at the identified node by looking up the name label2
- □ So on ...
- Relatively with the UNIX file system

General organization of the UNIX file system

File system in UNIX

Directory node (folder)

Disque logique

Disque logique

Hard link

Hard link (cont.)

Soft link

Soft link

Mounting

Merging

Naming service

- □ Functions:
 - Adding names
 - Removing names
 - Looking up names
- □ Naming service is implemented by name servers
- □ In large-scale distributed systems (many entities, large geographical area) → distribute the implementation of a name space over multiple name servers

Hierarchical organization

Global layer

- root node + directory nodes logically close to the root (children)
- Stability (rarely changed)
- represent organization, or group of organization

Administrational layer

represent groups of entities that belong to the same organization

Managerial layer

consist of nodes that may change regularly

DNS name space

Comparison of three layers

Item	Global	Administrational	Managerial
Geographical scale of network	Worldwide	Organization	Department
Total number of nodes	Few	Many	Vast numbers
Responsiveness to lookups	Seconds	Milliseconds	Immediate
Update propagation	Lazy	Immediate	Immediate
Number of replicas	Many	None or few	None
Is client-side caching applied?	Yes	Yes	Sometimes

Implementation of Name Resolution

- Depend on the distribution of a name space across multiple name servers
- Each client has a name resolver
- **□** 2 ways of implementation of name resolution:
 - Iterative name resolution
 - Recursive name resolution

Iterative name resolution

Recursive name resolution

Recursive vs. iterative name resolution

Example: DNS

Security risk of recursive name resolution

Amplification attack

Problem: ICMP or UDP has no authentication mechanism

53

dig ANY isc.org @x.x.x.x

; <<>> DiG 9.7.3 <<>> ANY isc.org @x.x.x.x

64 bytes query

```
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5147
;; flags: qr rd ra; QUERY: 1, ANSWER: 27, AUTHORITY: 4, ADDITIONAL: 5
:: OUESTION SECTION:
;; ANSWER SECTION:
                                                                                                         ns-int.isc.org. hostmaster.isc.org. 2012102700 7200 3600 24796800 3600
isc.org.
isc.org
                                                                                                         10 mx.paol.isc.org.
                                                                                                        10 mx.ams1.isc.org.isc.org. 4084 "$Id: isc.org,v 1.1724 2012-10-23 00:36:09 bind Exp $"
                                                                                                                                                                                                                                                    "v=spf1 a mx ip4:204.152.184.0/21 ip4:149.20.0.0/16 ip6:2001:04F8::0/32 ip6:2001:500:60::65/128 -all"
isc.org
                                                                                                     isc.org
BkiOBrN/9Bexipiks3jRhZatEsXn3dTy47R09Uix5WcJt+xzqZ7+ysyI
isc.org
isc.org
                                                                                                        AAA 5 2 7200 20121125230752 20121026230752 4442 isc.org. httAcroNNMbvXU/m-21FeaftyUviONTp/utlnEksp1Wow4020MaSc9 /rH/20Dogh462Mml mediaHenakdehBiGzwpyUmdfavVt-rFSNINGAlf F wps2e30752 4442 isc.org. butAcroNNMbvXU/m-21FeaftyUviONTp/utlnEksp1Wow4020MaSc9 /rH/20Dogh462Mml mediaHenakdehBiGzwpyUmdfavVt-rFSNINGAlf F wps2e30752 4442 isc.org. butAcroNNMbvXU/m-21FeaftyUmdfavVt-rFSNINGAlf F wps2e30752 4442 isc.org. butAcroNNMbvXU/m-21FeaftyUmdfavVt
isc.org
                                                                                                        NSEC 5 2 3600 20121125230752 20121026230752 4442 isc.org. rylhqfary004545v93hWYDwg1hwHQorlKxLeRLk20LaUlwYTyu^nix1-7jb MedVCVhxF7qfadqu8x7LbFovyNEUI6sn721Y80cnGwszKBp6tVpgw60cr PlOrmacGl1arXLwHXBFbmarg2Asa68Sira0PcbmakGPLCGwsAVRP-VJQs FHY-
DNSKEY 5 2 7200 20121125230126 20121026230126 4442 isc.org. jlcgwhrquB3w0hv2IPovzE/1QaBM/eDCV27DdJ3AuowilA3abYQ25VUB BK82+mxxsET2UGhv64crpbGTNJF3OsMxNOAFA0QYphomt0jg3OYq+AC L2j92kx8ZdEhx4bHE162pm+GFVBHLLLmXKKLb4VffLvGQT15Yrjy4jb MCDUGHZCGAUAGBCH27G6AFD40ANDANDAFA0QYphomt0jg3OYq+AC L2j92kx8ZdEhx4bHE162Z PKR2BH212520126 2012125230126 20121026230126 12892 isc.org. jlcgwhrwFEv01E222Kq+biTg1rmGlKoPl7piToToBBlqpy7F6KBgy; fK662C+gVXxX0ABGVq=766-FP-2UHLUEIGentC3V4Hz1ME10227DH2GPA0DG9mAFGMBCH27G40T95mmY1qxcCKUbM00qhtdu-4/8-d6L18
isc.org.
                                           484
nlrD/vEi4R1SL12bD5VBtaxczOz+2BEQLveUt/UusSlqhYcFjdCYbHq
                                                                                                       JGQziTJv9ssbEDHT7COc05qG+A1Av5tNN5aq7OHWa0VE+Ux0nH7JUy0N ch1kVecPbXJVHRF97CEH5wCDEqcFkAyyhaXXh02fqBGf0N8R5mIcqO/F DRdXjA==
                                                                                                        SPF 5 2 7200 20121125230752 20121026230752 4442 isc.org. IB/bo9HPjr6aZqPRkzf9bXyK8TpBFj3HNQloghrguMSBfcMfmJqHxKyD ZoLKZKQk9kPeztau6hj2YnyBoTd0zIVJ5fVSqJPuNqxwmZh9HMs140r3 9Hmbnk07Fe+Lu5AD0s6+E9qayi3wCOwunBgUkkFsC8BjiiGrRKcY8GhC kak=
isc.org.
                                                                                                        A 5 2 7200 20121125230752 20121026230752 4442 isc.org. Vis+qg95DibkkZ5kblevCBpRUq12/M9UwthPVCKleciglLftlMC9WUzq U13FBbri5CKD/YNXqyvjxyvmZfkQLDUmffjDB+ZGqBxSpG8j1fDwK6nl hWbKf7QSe4LuJZyEqXFekPl6CmVyZCTITUh2TnDmRgsoxrvroqoePWhp 8+E=
                                                                                                        ns.isc.afilias-nst.info.
isc.org
                                                                                                         ams.sns-pb.isc.org.
isc.org.
                                                                                                        ns.isc.afilias-nst.info.
                                                                                                         ams.sns-pb.isc.org.
                                                                                                        ord.sns-pb.isc.org.
isc.org.
                                                                                                        sfba.sns-pb.isc.org.
;; ADDITIONAL SECTION:
                                                                                                        199.6.1.65
2001:500:60::65
mx.amsl.isc.org.
                                           484
                                                                                AAAA
mx.paol.isc.org.
```


sip. udp.isc.org.

3,223 byte response

2001:4f8:0:2::2b 0 1 5060 asterisk.isc.org.

DNS Terminology, Components, and Concepts

Top-Level Domain

Hosts

SubDomain

Fully Qualified Domain Name (FQDN)

Name Server

Zone File

Records

Record types

Start of Authority (SOA)

A and AAAA Records

```
host IN A IPv4_address host IN AAAA IPv6_address
```

CNAME records

Record types

MX records

```
IN MX 10 mail1.domain.com.
IN MX 50 mail2.domain.com.
mail1 IN A 111.111.111
mail2 IN A 222.222.222
```

NS records

```
IN NS ns1.domain.com.
IN NS ns2.domain.com.
ns1 IN A 111.222.111.111
ns2 IN A 123.211.111.233
```

