Pearson Lightbook Physics

Chapter 4 Fission and fusion

Module 4.2 Chain reactions and nuclear reactors

Evaluation and Analysis 4.2.1 Data analysis: Critical mass Total marks 20

Imagine that a particular sample of fissile material is manufactured only in 1 cm cubes. Each cubic centimetre of this material generates 6×10^6 neutrons each second; all of which are capable of going on to cause further fission should they meet another fissile atom. It is a property of this material that each square centimetre of surface area allows up to 3×10^6 of these neutrons to exit the cube every second, therefore these neutrons will not cause further fission. Hence, the quantity of material (in cm³), and the surface area together determine whether a sample of this material is subcritical, critical or supercritical.

- A critical mass is defined as one in which a chain reaction can be sustained.
- A subcritical mass is defined as one in which a chain reaction cannot be sustained.
- A supercritical mass is defined as one in which a chain reaction will increase in rate.

Questions

1 What is the net number of neutrons escaping from a single (1 cm³) cube? (1 mark)

A chain reaction is sustained if there are fewer atoms escaping than there are atoms being produced. Is a single cube able to sustain a chain reaction? (2 marks)

When two or more cubes are joined together to make a cuboid, the following data were obtained. Complete the following table, using your calculations of surface area and the information given above. (5 marks)

Number of cubes used	Total volume (cm³)	Total surface area (cm²)	No. of neutrons produced (× 10 ⁶)	No. of neutrons escaping (× 10 ⁶)	Critical?
2	2		12		
3	3	14			
4		16		48	
6	6			66	
8					

Number of cubes used	Total volume (cm³)	Total surface area (cm²)	No. of neutrons produced (× 10 ⁶)	No. of neutrons escaping (× 10 ⁶)	Critical?
12					
16					
24					
27					
30 (3 × 1 × 10)		86			
36 (3 × 2 × 6)	36	72			
Which of the combinations shown in the table would be (critical?)					(2 marks

4 Which of the combinations shown in the table would be 'cr	itica	ľ?
---	-------	----

(2 marks)

5 Are any of the combinations shown in the table adequate as the final configuration of a nuclear fission bomb?

(1 mark)

6 Look just at the arrangements that have a surface area of 4 cm³ at one end. What difference always occurs between the number of neutrons produced and the number escaping?

(1 mark)

7 With the help of calculations, explain why it is impossible for a rectangular prism of cross-sectional area 4 cm^2 and length n cm to sustain a chain reaction?

(2 marks)

8 Write a formula for the number of neutrons produced in an $n \text{ cm} \times n \text{ cm}$ cube every second.

(2 marks)

9 Write a formula for the number of neutrons escaping from an $n \text{ cm} \times n \text{ cm}$ cube every second.

(1 mark)

10 Show that the smallest cube that will form a supercritical mass is 3 cm × 3 cm × 3 cm. Use calculations incorporating your answers to questions 8 and 9 to support your answer.

(3 marks)