

Correction to "Organic Acids Tunably Catalyze Carbonic Acid Decomposition"

Manoj Kumar, Daryle H. Busch, Bala Subramaniam, and Ward H. Thompson*

J. Phys. Chem. A 2014, 118 (27), 5020-5028. DOI: 10.1021/jp5037469

In our recent paper on the gas-phase decomposition of carbonic acid, incorrect conformations of some of the free monocarboxylic acids were used for calculating the reactant energies in the acid-catalyzed reaction, which introduced an error

Figure 3. Calculated free-energy profile (298.15 K, 1 atm) of formic acid-catalyzed (left) and water-catalyzed (right) gas-phase decomposition of $\rm H_2CO_3$.

of \sim 4.0 kcal/mol in some of the calculated data. Here, we correct that error. The corrected entries of Table 1 are provided here along with amended Figures 3–5.

These changes also modify some of the conclusions: (1) the monosubstituted carboxylic acids are always better catalysts than the unsubstituted one, formic acid (Table 1). Moreover, while the carboxylic acids still exhibit linear correlations between the reaction free-energy barrier and the acid pK_a , the relationship differs between acids with electron-withdrawing groups (e.g., chlorinated substituents) and electron-releasing groups (e.g., alkyl substituents); see Figure 4. The same appears to be true of the Hammett correlation (Figure 5).

Finally, the estimated effective rate constant for the formic acid-catalyzed decomposition, accounting for atmospheric concentrations of the acid, is $k_{\rm HCOOH}^{\rm eff}(T)=8.0\times 10^{-6}~{\rm s}^{-1}$, which, while smaller than that estimated in the original paper, is still an order of magnitude faster than for the water-catalyzed reaction, $k_{\rm H,O}^{\rm eff}(T)=8.0\times 10^{-7}~{\rm s}^{-1}$.

ACKNOWLEDGMENTS

We thank Bo Long, GuiZhou MinZu University, for bringing this error to our attention.

Table 1. M06-2X/aug-cc-pVTZ Calculated Zero Point-Corrected Energies, ΔE , and Free Energies, ΔG , (in kcal/mol) of Various Species Involved in the Uncatalyzed and Catalyzed Gas-Phase Decomposition of a H_2CO_3 Molecule^a

	Int ₁		TS		Int ₂		P	
catalyst	ΔE	ΔG	ΔE	ΔG	ΔΕ	ΔG	ΔE	ΔG
formic acid	-10.8	-0.5	1.6	12.9	-15.5	-7.5	-4.4	-12.1
acetic acid	-12.0	-1.9	0.3	11.3	-15.7	-7.2	-4.4	-12.1
monochloroacetic acid	-11.7	-2.3	0.3	10.8	-16.8	-10.6	-4.4	-12.1
dichloroacetic acid	-10.2	0.2	1.7	13.2	-16.0	-6.5	-4.4	-12.1
trichloroacetic acid	-10.4	0.0	2.0	14.0	-16.3	-7.8	-4.4	-12.1
propionic acid	-13.1	-2.2	-0.8	11.0	-16.9	-8.7	-4.4	-12.1
butyric acid	-12.8	-1.5	-0.4	11.8	-16.6	-6.7	-4.4	-12.1

^aEnergies are reported with respect to the separated reactants.

Published: October 20, 2014

Figure 4. Calculated reaction free-energy barriers versus pK_a for the acid-catalyzed H_2CO_3 decomposition (top panel), tautomerization of vinyl alcohol, (middle panel), and isomerization of a methoxy radical (bottom panel).

Figure 5. Calculated Hammett correlation between the reaction free-energy barriers of the acid-catalyzed H_2CO_3 decomposition and σ -values of the acids.