CS528 virtualization

A Sahu Dept of CSE, IIT Guwahati

Outline

- What is Cloud Computing?
- (HPC, Data Center, Grid) Vs Cloud
- Virtualization : Driving factors

Cloud computing takes virtualization to the next step

- You don't have to own the hardware
- You "rent" it as needed from a cloud
- There are public clouds
 - e.g. Amazon EC2, and now many others (Microsoft, IBM, Sun, and others ...)
- A company can create a private one
 - With more control over security, etc.

Virtualization

- Abstraction of computer resources.
- Virtualization hides the physical characteristics of computing resources
 - From their users, be they applications, or end users.
- Virtualization: Abstraction for "Compatibility and Portability"

Virtualization

- Virtualization includes making a single physical resource
 - such as a server, an operating system, an application, or storage device
 - appear to function as multiple virtual resources
- Also include making multiple physical resources
 - such as storage devices or servers
 - appear as a single virtual resource

Truck on Train: Compatible for Speedy Transportation

Mobile Multi Charger: Portability

EV charger: Portability

	N. America	Japan	EU and the rest of markets	China	All Markets _{except EU}
AC	000	000	000	000	
	J1772 (Type 1)	J1772 (Type 1)	Mennekes (Type 2)	GB/T	
DC	00	o ×		o o o	
	CCS1	CHAdeMO	CCS2	GB/T	Tesla

Virtualization Basic

- In OS, Classic example FILE as abstract virtual object
- File read/write:
 - fwrite: write data to File
 - fread: read data from File
- Underlying target File may be in HDD, Buffer, SSD, Network File, CDROM
- Internal may be diff but externally the same call

Virtualization Basic

- Example: Virtual BOX, QEMU, Wine, Dalvik, JVM
- QEMU: ARM emulation on X86
- JVM and Dalvik: Java byte code and in Andriod
- Oracle Virtual BOX
 - Running MS Window OS on Linux Host
 - Running Linux on MS Window Host
- Cygwin: Running Linux App on Window
 - Assume running shell script and GIMP in Window
- Wine
 - Running MS Window app on Linux, Running your favorite MS-Office in Linux

Virtualization Basic

- In OS, Classic example FILE as abstract virtual object
- File read/write:
 - fwrite: write data to File
 - fread: read data from File
- Underlying target File may be in HDD, Buffer, SSD, Network File, CDROM
- Internal may be diff but externally the same call

Virtualization

- Virtual workspaces
 - An abstraction of an execution environment that can be made dynamically available to authorized clients by using well-defined protocols,
 - Resource quota (e.g. CPU, memory share),
 - Software configuration (e.g. O/S, provided services).

Virtualization

- Virtual WS Implement on Virtual Machines (VMs):
 - Abstraction of a physical host machine,
 - Hypervisor intercepts and emulates instructions from VMs,
 - and allows management of VMs,
 - VMWare, Xen, etc.
- Provide infrastructure API:
 - Plug-ins to hardware/support structures

App App App
OS OS OS
Hypervisor
Hardware

Virtualized Stack

Virtual Machines

 VM technology allows multiple virtual machines to run on a single physical machine.

Performance: Para-virtualization (e.g. Xen) is very close to raw physical performance!

Virtual Machine

- What is Virtual Machine (VM)?
 - VM is a software implementation of a machine (i.e. a computer) that executes programs like a real machine.
- Terminology:
 - Host (Target): The primary environment where will be the target of virtualization.
 - Guest (Source): The virtualized environment where will be the source of virtualization.

The Use of Computers

Virtualization

Virtualization -- a Server for Multiple Applications/OS

Virtualization -- a Server for Multiple Applications/OS

- Hypervisor is a software program
 - that manages multiple operating systems (or multiple instances of the same operating system)
 - on a single computer system.
- The hypervisor manages the system's
 - processor, memory, and other resources to allocate what each operating system requires.
- Hypervisors are designed for a particular processor architecture
 - and may also be called virtualization managers.

Capacity Utilization

Logical view of Cloud System

n Tasks

Cloud System

Why now?

- 1960—1999
 - IBM, CP-40, CP/CMS, S/360-370, VM370, Virtual
 PC, VMware
- 2000—2005
 - IBM z/VM, Xen
- 2006
 - Intel VT-x
 - AMD's AMD-V
- 2008—

Hardware evolution

- Faster CPU clock than ever
 - Though almost hit its top
- More CPU cores in a single chip
 - -32/64-core CPUs already in the market
- Multi-core architectures make parallel processing more realizable
- Virtualization support on chip from CPU manufacturers (e.g., Intel, AMD)

Virtualization

- Binary translation is the most established technology for full virtualization
- Hardware assist is the future of virtualization, but it still has a long way to go
- Para-virtualization delivers performance benefits with maintenance costs
 - Xen
 - VMWare, VBox
- OS level Virtualization: Container/Kubernetics

Issues in Virtualization for Cloud-Computing

- Aspects and expectation from
 - End-user
 - Operator/Manager

Virtualization

Issues in Virtualization for Cloud-Computing

- Virtualization implemented on
 - a single machine (with multi-core CPUs)
 - a cluster of machines (with multi-core CPUs)
- The state-of-the-art
 - Running a Xen or a cluster of Xens

Issues in Virtualization for Cloud-Computing

Abiquo/abicloud may provide partial solutions

Running multiple OS and applications

- Virtualization: One physical hardware can run multiple
 OS and applications through a hypervisor.
- A hypervisor is the virtualization manager on a physical hardware.

LOGICAL VIEW

Virtualization Layer - Optimize HW utilization, power, etc.

PHYSICAL VIEW

Cloud Computing

- Features of Clouds
 - Scalable, Enhanced Quality of Service (QoS)
 - Specialized and Customized, Cost Effective
 - Simplified User Interface

Task to VM and VM to PM

- Task VM Mapping
 - Optimization for Speed, Portability,...
- VM to PM Mapping
 - Optimization for Energy, Cost, Reliability

Virtualization in Five Abstraction Levels

Application JVM/.NET CLR/Panot Level Library/API WINE/LXRun/vCuda Level Jail/Virtual Environment OS Level /FVM/Docker/Container H/W Abst Layer **Vmware/Xen/L4/Virtual PC/Virtual Box** (HAL) Level

ISA Level

Vovhs/QEMU/BIRD/Dynamo