문제 1-PT01: 주어진 암호문 집합들을 암호 알고리즘 E에 의해 생성된 것과 랜덤 함수에 의해 생성된 것으로 분류하고 그러한 결론을 내리게 된 과정을 상세히 기술하시오.

이 문제는 기존 AES와 다른 구조(ARK-SR-SB'-MK- ARK-SR-SB'-MK- ARK-SR-SB'-MK- ARK)로 축소 된 알고리즘이다.

해당 문제를 풀기 위해 차분 분석을 생각하였는데, 그 이유는 평문과 비밀키가 주어졌기 때문이다. 평문과 비밀키를 갖고 있을 경우 선택 평문 공격을 할 수 있기 때문이다.

먼저 주어진 평문 데이터 PT01.dat를 분석해보자. PT01.dat에 있는 평문들을 2개씩 짝을 지어 XOR 할 경우 모든 값이 '00 00 00 b3 09 00 00 00 45 00 00 00 00 00 00 '을 나타낸다. 이를 보기 쉽게 나타내면 아래 그림과 같다.

 00
 00
 00
 b3

 09
 00
 00
 00

 00
 45
 00
 00

 00
 00
 0b
 00

PlainText01 XOR PlainText02 =

위 표를 차분 분석하기 위해 문제에서 제공하는 AES 구조로 따라가 보았다.

	00	00	00	b3			00)	00		00		b3			
	09	00	00	00			00)	00		00		09	7		
	00	45	00	00			00)	00		00		45			
ARK:	00	00	0b	00		> SR:	00)	00		00		0b		->	
														,		
	00	00	00	X			00	_	00		00	_	4			
	00	00	00	09			00	-	00		00	I				
an'.	00	00	00	Y		1 (17.	00	-	00		00	+	<u> </u>			
SB':	00	00	00	0b	->	MK:	00		00		00	I)] -	->	
					7									7		
	00	00	00	A			00		00	\rightarrow	00	_	<u>A</u>	4		
	00	00	00	В	-		00		00		В	+	00	4		
ARK:	00	00	00	С	4	> SR:	00)	С		00	_	00		->	
ALV.	00	00	00	D		> 2V·	D		00		00		00	J	-/	
	00	00	00	S(A)			Г		S(C	1)	3B		2S(λ)	ĺ	
	00	00	В	00			D D		3S(-	2B		25(S(A			
	00	00 S(C)	00	00			3D	<u> </u>			В		<u>`</u>			
SB':	D	00	00	00	->	MK:	2D		2S(S(C		В		S(A 3S(->	>
U.D	ט	00	00	00		1,111			3(0	.)	Ь		33(A)	i	
	D	S(C)	3B	2S	(A)		Γ	D		S(C)	3E	3	2S((A)	
	D	3S(C	_				ŀ	3S	(C)	21	_	S(A		D		
	3D	2S(C	_	S(A			ŀ	В	(0)	S(.		31	-	2S((C)	
ARK:	2D	S(C)	_		(A)	-> SI	}: ├	3S	(A)	21		S(C		В		->
	20	0(0)	10	1 **	()		L		()			-(-	-/			
	?	?	?	?	1											
	3S(C)	2B	S(A)	D												
	?	?	?	?	1											
SB':	3S(A)	2D	S(C)	В	1											
		-			_											

차분 분석을 하기 위해서는 입력 단계의 마지막 차분 값과 출력 차분 값을 비교해야 한다. 그

렇다면 출력 차분을 구해보자.

출력 차분을 구하기 위해서는 비밀키 쌍을 XOR 해준 뒤, XOR 한 값을 역연산을 해주면 된다.

CTOX의 비밀키 쌍을 XOR한 값을 SC라고 칭할 경우,

	SC00	SC01	SC02	SC03
	SC04	SC05	SC06	SC07
	SC08	SC09	SC10	SC11
SC:	SC12	SC13	SC14	SC15

-> ARK:

SC00	SC01	SC02	SC03
SC04	SC05	SC06	SC07
SC08	SC09	SC10	SC11
SC12	SC13	SC14	SC15

 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?

Inverse MK: ?

이렇게 출력 차분을 구할 수 있다. 이때 3라운드에서 나온 마지막 SB' 값과 출력 결과물인 비밀키의 차분 값이 같은 경우를 찾아주면 해당 비밀키가 PT01으로부터 나온 암호문임을 확인할 수 있다.

이 방식으로 전체 데이터를 비교한 결과 높은 확률로 PT01으로부터 나온 암호문은 CT04임을 확인할 수 있었다.

문제 1-PT02:

PT02 같은 경우는 PT01과 같이 접근을 하려고 했으나 PT02는 PT01처럼 일관성 있는 차분 특성을 가진 평문들의 집합이 아니었다. 다른 특징을 찾아보니 아래와 같은 특징을 발견할 수 있었다.

A9	AA	??	95
F3	8F	98	E9
80	88	C8	9C
1A	41	44	A4

위 표를 이용하여 차분 분석을 시작해보겠다.

_				
	00	00	Χ	00
	00	00	00	00
Ī	00	00	00	00
	00	00	00	00

-> ARK:

00	00	Χ	00
00	00	00	00
00	00	00	00
00	00	00	00

-> SR:

00	00	Χ	00
00	00	00	00
00	00	00	00
00	00	00	00

-> SB':

00	00	Y	00
00	00	00	00
00	00	00	00
00	00	00	00

-> MC:

00	00	Y	00	
00	00	3Y	00	
00	00	2Y	00	
00	00	Y	00	

00 00 2Y 00 00 00 Y 00 00 00 00 ARK: 00 00 3Y 00

-> SR:

00	00	2Y	00
00	Y	00	00
Y	00	00	00
00	00	00	3Y

	00	00	Ζ	00		Z	3Y	2Z	3Y	
	00	Y	00	00		3Z	2Y	Z	3Y	
•	Z	00	00	00		2Z	Y	Z	F	
SB':	00	00	00	3Y	-> MC:	Ζ	Y	3Z	F	->
					_					
	Z	3Y	2Z	3Y		Z	3Y	2Z	3Y	
	3Z	2Y	Z	3Y		2Y	Z	3Y	3Z	
	2Z	Y	Z	F		Z	F	2Z	Y	
ARK:	Z	Y	3Z	F	-> SR:	Y	3Z	F	Z	_>
										-
	?	?	?	?						
	2Y	Z	3Y	3Z						
	?	?	?	?						
SB':	Y	3Z	F	Z						

차분 분석을 하기 위해서는 입력 단계의 마지막 차분 값과 출력 차분 값을 비교해야 한다. 그 렇다면 출력 차분을 구해보자.

출력 차분을 구하기 위해서는 비밀키 쌍을 XOR 해준 뒤, XOR 한 값을 역연산을 해주면 된다.

CTOX의 비밀키 쌍을 XOR한 값을 SC라고 칭할 경우,

	SC00	SC01	SC02	SC03		SC00	SC01	SC02	SC03	
	SC04	SC05	SC06	SC07		SC04	SC05	SC06	SC07	
	SC08	SC09	SC10	SC11		SC08	SC09	SC10	SC11	
SC:	SC12	SC13	SC14	SC15	-> ARK:	SC12	SC13	SC14	SC15	->

 ?
 ?
 ?

 ?
 ?
 ?

 ?
 ?
 ?

 ?
 ?
 ?

Inverse MK:

이렇게 출력 차분을 구할 수 있다. 이때 3라운드에서 나온 마지막 SB' 값과 출력 결과물인 비밀키의 차분 값이 같은 경우를 찾아주면 해당 비밀키가 PT02으로부터 나온 암호문임을 확인할 수 있다.

이 방식으로 전체 데이터를 비교한 결과 높은 확률로 PT02으로부터 나온 암호문은 CT01임을 확인할 수 있었다.

문제 2: 다음 평문-암호문을 만족시키는 키의 * 부분을 복구 하고, 풀이를 위한 구현코드를 제출하시오.

 7]: b2
 5b
 75
 67
 f4
 4f
 64
 d6
 07
 f0
 ef
 de
 b1
 db
 6d
 26

위 문제는 5군대의 키 값을 복구하는 문제로 전수조사를 하면 되겠다고 생각하여 그렇게 접근하였다.

마지막 '2*'을 제외한 부분을 00으로 채우고 5중 for 문을 돌려 1씩 증가하는 형태로 키 값을 복구 하였으며 마지막 '2*'은 앞자리가 2임을 밝혔으므로 20~30까지의 값들로만 조사하였다. 뒤에서부터 '++' 하는 방식으로 다소 시간이 오래 걸렸지만 앞에서부터 '++'했을 경우에는 전자보다 시간이 감소되었음을 확인할 수 있었다.