ALGEBRAIC CURVES AND MODULI PROBLEMS

CHOW HAITAO

1. Preliminaries

Left to be added!

2. Algebraic Curves

Let $C \subseteq \mathbb{P}^n$ be an algebraic curves. It is well known result that there are one-to-one correspondence between following three objects

{line bundles over C} \longleftrightarrow {invertable sheaves over C}/ \sim \longleftrightarrow {divisors over C}/ \sim We need to use these correspondences to prove following result

Theorem 2.1.
$$Pic(C) \simeq H^1(C, \mathcal{O}_C^*)$$

At the very beginning, we need some knowledge about sheaf cohomology. Suppose \mathcal{F} be a sheaf of \mathcal{O}_C -modules over C.

Definition 2.1 (Čech resolution). Let $\mathcal{U} = \{U_i\}$ be open cover of X, i.e. every $U_i \to X$ is open immersion, where X is a scheme, and \mathcal{F} be a \mathcal{O}_X -module. Given an finite index set I, we have a open subset $\bigcap_{i \in I} U_i$ of X. Set

$$C_k(\mathcal{U}, \mathcal{F}) = \prod_{|I|=k} \mathcal{F}(\bigcap_{i \in I} U_i)$$

 $C_*(\mathcal{U},\mathcal{F})$ is called Čech complex of open cover \mathcal{U} and sheaf \mathcal{F} .