ТЕХНИЧЕСКОЕ ЗАДАНИЕ

на разработку ПО для вычисления коэффициентов линейной регрессии на основе анализа рядов входных данных.

1. В качестве исходных данных предоставляется массив в формате *.CSV с количеством строк от 6 до 12 и неизменным количеством рядов 13.

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
1	1,56	1,57	1,87	1,06	2,39	0,71	3,31	2,25	1,84	1,27	0,42	0,631	65,00
2	1,55	1,56	1,85	1,05	2,36	0,71	3,29	2,22	1,83	1,27	0,42	0,633	65,00
3	1,55	1,56	1,82	1,05	2,33	0,69	3,22	2,19	1,82	1,24	0,42	0,622	65,30
4	1,61	1,62	1,95	1,09	2,49	0,74	3,40	2,34	1,90	1,32	0,43	0,639	65,00
5	1,61	1,61	1,93	1,09	2,46	0,73	3,37	2,31	1,89	1,31	0,43	0,637	65,30
6	1,56	1,57	1,86	1,06	2,37	0,70	3,25	2,22	1,84	1,26	0,42	0,621	65,20
7	1,61	1,62	1,91	1,09	2,44	0,72	3,34	2,29	1,90	1,30	0,43	0,639	65,30
8	1,60	1,60	1,89	1,09	2,41	0,72	3,30	2,27	1,88	1,28	0,42	0,624	65,40
9	1,62	1,62	1,93	1,10	2,46	0,73	3,36	2,31	1,90	1,30	0,43	0,638	65,10
10	1,60	1,60	1,90	1,08	2,43	0,72	3,33	2,28	1,88	1,29	0,43	0,637	64,80
11	1,59	1,60	1,91	1,08	2,44	0,73	3,35	2,29	1,87	1,30	0,43	0,650	65,10
12	1,62	1,63	1,90	1,10	2,43	0,72	3,36	2,28	1,91	1,30	0,43	0,648	64,60

Где, ряды A - L — факторные признаки (интенсивности N1-N12); ряд M — результативный признак (% содержание железа FE лаб); строки 1 - 12 — результаты измерения указанные в хронологическом порядке.

- 2. Произвести операции умножения (66 комбинаций) и деления (66 комбинаций) построчно между рядами факторных признаков. Пример A1*B1, A2*B2, A12*B12.
- 3. Произвести корреляционный анализ 144 рядов полученных результатов (66 рядов перемножения, 66 рядов деления, 12 первоначальных рядов A-L) относительно результативного ряда М.
- 4. Ряд с максимальным по модулю значением корреляции взять за исходные данные для расчёта коэффициентов линейной регрессии b и а уравнения вида y1=b+a*x1 Где, y1 Fe расч для x1;
 - b свободный коэффициент линейной регрессии (сдвиг по оси у (Fe расч));
 - а- коэффициент наклона линейной регрессии;
 - х1 комбинация с максимальной корреляцией.
- 5. Программа должны выдавать список корреляций по всем комбинациям. Значение максимальной корреляции. Ряд значений комбинаций с максимальной корреляцией и коэффициенты а и b искомой прямой, в табличном виде Fe расч и разницу между Fe расч и Fe лаб.

Пример расчета:

- 1. Перебором определили, что для исходных данных п.1 максимальное значение модуля корреляции к FE лаб имеет множество отношения N5/N10. Значение корреляции -0,8245
- 2. Для определения коэффициентов прямой берется значения FE лаб и значения множества N5/N10
- 3. Определяются коэффициенты уравнения FE = b + a*(N5/N10) (например МНК)