C O G N I T O

María L. PÉREZ SAURA

Martín PIERANGELI

Marcelo M. RAPONI

Javier C. RODRÍGUEZ

MACHINE LEARNING UNSAM 2021

HEART FAILURE PREDICTION

DATASET 299 PACIENTES 12 FEATURES 1 TARGET

BINARIAS

anaemia: Disminución de glóbulos rojos o hemoglobina

sex: Mujer u hombre

smoking: Si el paciente fuma

diabetes: Si el paciente tiene diabetes

high_blood_pressure: Si el paciente tiene hipertensión

CONTINUAS

age: Edad del paciente (años)

creatinine_phosphokinase: Nivel de enzimas CPK en sangre (mcg/L)

ejection fraction: Porcentaje de sangre eyectada del corazón por contracción (%)

platelets: Plaquetas en sangre (kiloplatelets/mL)

serum_creatinine: Nivel de creatinina sérica en sangre (mg/dL)

serum_sodium: Nivel de sodio sérica en sangre (mEq/L)

time: Periodo de seguimiento (días)

TARGET

DEATH_EVENT: Si el paciente falleció durante el periodo de seguimiento

Fuente: https://www.kaggle.com/andrewmvd/heart-failure-clinical-data

ALGUNAS OBSERVACIONES

creatinine_phosphokinase.mean() = 581.8 mcg/L (valor normal <120) Valores altos en pacientes con AC o Pericarditis posterior a un AC

ejection_fraction.mean() = 38% (valor mínimo crítico = 41%) La disminución puede deberse a un AC o Alta Presión

serum_creatinine.mean() = 1.4 mg/dL (valor normal: mujeres < 1.1,
hombres < 1.3)</pre>

Valores altos indican problemas renales, muy relacionado con la presión y el corazón

En general, los valores están por fuera de lo normal, lo que indica que los pacientes sufren definitivamente complicaciones relacionadas.

serum sodium.mean() = 136.7 mEg/L (valores normales 135-140)

platelets.mean() = 98k/mL (valor mínimo normal = 150)

También se concluyó que el feature "time" era muy determinante y, en la práctica, indeterminable.

Por lo que se decidió dropear este feature.

SELECCIÓN DE FEATURES

De la matriz de correlación reconocemos que los features binarios (patologías de base) son poco determinantes del target.

Para confirmar la hipótesis y descartarlos utilizamos RFECV:

RFECV o "Recursive Feature Elimination with Cross-Validation" es una herramienta de sklearn.feature_selection que verifica las feature_importance de un Random Forest grande en validación cruzada.

```
('age', True) ('anaemia', False)
('creatinine_phosphokinase', True)
('diabetes', False)
('ejection_fraction', True)
('high_blood_pressure', False)
('platelets', True) ('serum_creatinine',
True) ('serum_sodium', True) ('sex',
False) ('smoking', False) ('time', True)
```

PREPROCESADO FINAL

Con los 6 features decididos (variables continuas sin time) y los datos de entrenamiento recortados:

Primero estandarizamos los datos usando **StandardScaler()** del módulo de *sklearn.preprocessing* ya que para la mayoría de los algoritmos de clasificación es casi una condición necesaria.

Luego decidimos realizar un **oversampling** de los datos por 2 motivos:

- Desbalance de clases target (163 "0s" vs 76 "1s").
- Dataset chico sumado a los splits de testeo.

Entonces aplicamos la función **SMOTE**.

SMOTE es un algoritmo de oversampleo de la libreria de imblearn (imbalanced learn) desarrollada por el MIT

Como resultado, obtenemos un dataset balanceado 50-50 de 326 samples.

BASELINE

Definimos la métrica a utilizar: **RECALL**

Queremos reducir los FN, es decir, pacientes que diríamos que NO tienen riesgo pero SI lo tienen en realidad.

Perceptron Optimizado

max_iter=40000 penalty="l2" alpha=1e-3 eta0=0.04

Para optimizar utilizamos "GridSearchCV" para un trazo grueso y "validation_curve" para ajustes finos, ambos del paquete de sklearn.model_selection

Logistic Regression

Cross Valida	tion Score: precision		0.108 f1-score	support
	precision	recatt	11-30016	Suppor c
0	0.72	0.72	0.72	163
1	0.72	0.72	0.72	163
accuracy			0.72	326
macro avg	0.72	0.72	0.72	326
weighted avg	0.72	0.72	0.72	326

SVC gamma=1.17 C=0.15

Random Forest

n_estimators=400 min_impurity_decrease=2e-4 max_depth = 8

Cross Validati	on Score:	0.867 +/-	0.109	
	precision	recall	f1-score	support
0	0.86	0.78	0.82	163
1	0.80	0.87	0.83	163
accuracy			0.83	326
macro avg	0.83	0.83	0.82	326
weighted avg	0.83	0.83	0.82	326

La hiperparametrización en Decision Trees y Random Forest no dió resultados notorios.

ADA Boosting

base_estimator=DecisionTreeClassifier() learning_rate=0.2

Cross Validat	ion Score:	0.811 +/-	0.077	
	precision	recall	f1-score	support
0	0.71	0.63	0.67	163
1	0.67	0.74	0.70	163
accuracy			0.68	326
macro avg	0.69	0.68	0.68	326
weighted avg	0.69	0.68	0.68	326

Extreme Gradient Boosting

use_label_encoder=False objective='binary:hinge' learning_rate=0.05 n_estimators=500

	precision	recall	f1-score	support
9	0.81	0.79	0.80	163
1	0.79	0.81	0.80	163
accuracy			0.80	326
macro avg	0.80	0.80	0.80	326
weighted avg	0.80	0.80	0.80	326

resultados
resultados
considerando que
necesita datos para
validación y los splits
en nuestro dataset son
muy costosos.

Voting Soft y Hard

Usamos los 3 algoritmos parametrizados que consideramos mejores: RF, LR y SVC

0.2

0.0

0.2

0.2

0.4

Recall

0.8

0.8

0.6

False Positive Rate

Neuronal Network

Loss: Binary Cross-Entropy Optimizer: Adam (Ir = 1e-4)

Metrics: Recall Epochs: 600 Batch = 32

Earling Stopping

```
input = keras.layers.Input(shape=[6,])
flatten = keras.layers.Flatten()(input)
hidden1 = keras.layers.Dense(100, activation="relu")(flatten)
dropout = keras.layers.Dropout(rate=0.2)(hidden1)
hidden2 = keras.layers.Dense(100, activation="relu")(hidden1)
output = keras.layers.Dense(1, activation="sigmoid")(hidden2)
model = keras.models.Model(inputs=[input], outputs=[output])
```


En resumen...

- Las hiperparametrización logró mejorar el score de entrenamiento en casi todos los casos.
- Hay una caída sustancial en los scorings de testing. Era esperable tras observar la alta varianza en entrenamiento.
- Se observó mejores resultados en modelos con mas "bias".
- SMOTE fue una herramienta indispensable para nuestro análisis y los scorings.

