

ΕΡΓΑΣΙΑ ΤΕΛΕΣΤΙΚΟΎ ΕΝΙΣΧΥΤΗ ΗΛΕΚΤΡΟΝΙΚΗ ΙΙΙ

ΓΚΟΥΖΙΩΚΑΣ ΙΩΑΝΝΗΣ ΑΕΜ 8127 ΕΙΣΧΥΤΗΣ 2 ΒΑΘΜΙΔΩΝ ΜΕ ΕΙΣΟΔΟ ΝΜΟΣ

οι προδιαγραφές μου συμφωνα με το ΑΕΜ 8127 ειναι οι παρακατω:

ΠΡΟΔΙΑΓΡΑΦΕΣ	ΤΙΜΕΣ ΜΕ ξ=27
CL	2.27 pF
SR	>18.27 V/µsec
Vdd	1.881 V
Vss	-1.881 V
GB	7.27 MHz
Α	20.27 dB
P	<50.27 mW

APXIKA

Φτιάχνω τον αλγόριθμο στο matlab με τις τιμες....

επιλέω **L=1 nm** το θέλω μεγαλύτερο από το μικρότερο της τεχνολογίας

Ο ΑΛΓΟΡΙΘΜΟΣ ΜΟΥ ΒΓΑΖΕΙ ΤΙΣ ΕΞΗΣ ΤΙΜΕΣ

A	Сс	Р	W1	W2	W3	W4	W5	W6	W7	W8
131.2	2.499	0.0008	3.276	3.276	1	1	2.9	6.55	9.53	2.9
97 dB	4 pF	W	nm	nm	nm	nm	nm	nm	nm	nm

To L=1 nm pantou

Ακολουθεί η προσομοίωση

το αρχίκο κύκλωμα είναι

IREF=I5

1) Κύκλωμα για slew rate

προσομοίωση για slew rate κανοντας simulation time domain και προσθετοντας trace MAX(D(V(M6:d)))

Προκύπτει SR=14 το οποίο είναι κάτω από την προδιαγραφή μου,άρα πρέπει να το μεγαλώσω...Είναι SR=I5/Cc άρα μικραίνω το Cc και το κανω 1.5pF

το νέο slew rate μου είναι 21 συνεπώς είναι >18.27

2) τώρα θα ελέγξω το Αν(κέρδος) και το GB κάνοντας simulation AC SWEEP και TRACE DB(VD(M6)/VG(M1))

το Av=22 άρα είναι καλό,ενώ το GB βγαίνει 5.8<7.27 Mhz Συνεπώς πρέπει αν το αυξήσω...

από τον τύπο GB=gm1/Cc kai gm1=kn*(W/L)*Voν αλλάζω το W1 ανεβάζοντάς το στο W1=11μm και W2=11μm αφού έχουν το ίδιο W

αποτέλεσμα:

το GB γίνεται 10MHz > 7.27MHz ενώ το κέρδος παραμένει σχεδόν το ίδιο τώρα ελέγχω την Ισχύ στον ενισχυτή...προσθέτω τις ισχύς...

βγαίνει 944uW<50m άρα είναι οντώς ορίων

ελέγχω το περιθώριο φάσης κάνοντας simulation με TRACE DB(VD(M6)/VG(M1)) για το κέρδος και P(VD(M7)/VG(M1)) για το περιθώριο.....

Βγαίνει 43 μοίρες συνεπώς πρέπει να το βελτιώσω

ανεβάζοντας το ρεύμα στην βαθμίδα 2

συνεπώς ανεβάζοντας τα W6=12 και W7=16

((W/L)6/(W/L)4)=2((W/L)7/(W/L)5)

τώρα βγαίνει 64 μοίρες καλύπτει την προδιαγραφή με Av=23 και GB=10

Ξαναελέγχω την ισχύ η οποία ξαναβγαίνει εντός οριών

ενώ για το slew rate όταν το ξαναελέγχω

βγαίνει SR=24 συνεπώς και έδω είμαι καλά

άρα οι τελικές τιμές ειναι οι:

W1	W2	W3	W4	W5	W6	W7	W8	
11μm	11μm	1μm	1μm	2.9µm	12μm	16µm	2.9µm	

Και οι προδιαγραφές

	Αρχικές	Τελικές	
SR	>18.27 V/μsec	24	
GB	>7.27MHz	10Mhz	
Av	>20.27dB	23dB	
P	<50.27mW	944μW	
περιθωριο	>55	64	

Ακολουθεί Θερμοκρασιακή Ανάλυση

<u>για</u> 0 20 30 40 50 60 70 βαθμούς Κελσίου Για το slew Rate

Παρατηρώ ότι για όλες τις θερμοκρασίες ικανοποιείται το slew rate....όσο πέφτει η θερμοκρασία το slew rate αυξάνει

...Στη Συνέχεια για το Αν και το GB

το κέρδος παραμένει σταθερό για τις διάφορες θερμοκρασίες...

ομοιώς και το GB παραμένει οντώς ορίων

Για το περιθώριο φάσης

Τέλος για τις ισχύς...κάνοντας simulation και χρησιμοποιώντας TRACE (I(M5:d)-I(M6:d)) * 2*2.028

