Assignment No. 6

6CS371: Advanced Database System Lab

Name: Jay Shirgupe PRN: 21510026

Batch: T-7
TY CSE

Introduction

In today's business landscape, efficient data management is crucial for enterprises to thrive. This report outlines the design and implementation of a data warehouse tailored for a multi-store enterprise's customer order processing system.

Objective and Scope:

The goal is to develop a data warehouse that consolidates data from various sources to facilitate comprehensive analysis and decision-making. This includes integrating customer information, store inventory, and sales records to optimize operations.

Importance of Data Warehousing:

A data warehouse enhances operational efficiency, optimizes inventory management, and improves customer satisfaction. It empowers stakeholders to make informed decisions by providing a holistic view of the enterprise's performance and enabling complex analytics through OLAP capabilities.

Business Requirements

Data Integration:

 Consolidate customer information, store inventory, and sales records from various sources.

Analysis and Decision Support:

- Enable comprehensive analysis of customer behavior, sales trends, and inventory management.
- Support informed decision-making for strategic planning and resource allocation.

Operational Efficiency:

- Streamline order processing, inventory management, and fulfillment processes to improve efficiency.
- Minimize stockouts and optimize supply chain operations.

Customer Satisfaction:

- Ensure timely order fulfillment and personalized service to enhance customer satisfaction.
- Anticipate customer needs and provide exceptional experiences.

Scalability and Flexibility:

• Design the data warehouse to scale with the enterprise's growth and adapt to evolving data needs.

User-Friendly Interface:

• Develop an intuitive interface for querying, reporting, and visualizing insights.

Security and Compliance:

• Implement robust security measures to protect sensitive data and ensure compliance with regulations.

Functional Specification

Input Requirements:

- Data sources: Operational databases containing customer information, store inventory, and sales records.
- Data formats: Structured data formats compatible with ETL (Extract, Transform, Load) processes.
- Data extraction methods: Automated processes for extracting data from source databases while ensuring data integrity and consistency.

ETL Processes:

- Extraction: Retrieve data from operational databases, including customer data, store inventory, and sales transactions.
- Transformation: Cleanse, standardize, and transform raw data into a consistent format suitable for analysis.
- Loading: Load transformed data into the data warehouse's storage structure, ensuring efficient data storage and retrieval.

Data Warehouse Design

To design the data warehouse for the customer order processing system, we will follow the star schema model, which consists of a central fact table surrounded by denormalized dimension tables. Below is the proposed design:

Dimension Tables:

Customer Dimension (Dim_Customer):

- Attributes: Customer_id (Primary Key), Customer_name, City_id (Foreign Key), First_order_date
- Description: Contains information about customers, including their unique identifier, name, city, and the date of their first order.

Store Dimension (Dim_Store):

- Attributes: Store_id (Primary Key), City_id (Foreign Key), Phone
- Description: Stores details about each store, including its unique identifier, city location, and contact phone number.

Item Dimension (Dim_Item):

- Attributes: Item_id (Primary Key), Description, Size, Weight, Unit_price
- Description: Holds information about items available in the inventory, such as item ID, description, size, weight, and unit price.

Time Dimension (Dim_Time):

- Attributes: Time_id (Primary Key), Order_date
- Description: Contains time-related information, such as order dates, for analyzing trends over time.

Fact Table:

Order Fact Table (Fact_Order):

- Attributes: Order_no (Primary Key), Customer_id (Foreign Key), Store_id (Foreign Key), Item_id (Foreign Key), Quantity_ordered, Ordered_price, Time_id (Foreign Key)
- Description: Stores detailed information about each customer order, including order number, customer ID, store ID, item ID, quantity ordered, ordered price, and time of the order.

Data Cube Implementation (in MySQL)

