pca

June 25, 2021

1 Principal Component Analysis (PCA)

Wir wollen zuerst die PCA anhand eines einfachen Beispiel mit Hilfe der Linearen Algebra "händisch" durchführen. Anschließend verwendenw wir die Klasse PCA aus dem Package sklearn.decomposition.

1.1 Eigenständige Durchführung der PCA

Wir berechnen hierzu die Eigenwerte und Eigenvektoren aus der Koeffizientenmatrix.

Definition: Ein Matrix A multipliziert mit ihrem Eigenvektor \overrightarrow{v} ist gleich dem Produkt aus einem Skalar λ und dem Eigenvektor:

$$A\overrightarrow{v} = \lambda \overrightarrow{v}$$

Hat unser ursprünglicher Datensatz z.B. 5 Dimensionen, so erhalten wir eine 5x5 Koeffizientenmatrix und somit 5 Eigenwerte bzw. Eigenvektoren. Da eine Koeffizientenmatrix immer symmetrisch ist, erhalten wir auch "sinnvolle" Werte (also z.B. keine imaginären Zahlen) und die Vektoren stehen auch senkrecht zueinander.

Wollen wir von n Dimensionen auf k reduzieren, verwenden wir die k Eigenvektoren der größten k Eigenwerte und multiplizieren damit unsere Daten.

Wir wollen dies anhand eines simplen Beispiels zeigen. Wir erstellen dazu zuerst einen, 2-dimensionalen Datensatz und visualisieren die Daten mit einem Scatterplot.

```
Y
    Х
0
    1
         12
1
    3
         34
2
    7
         67
3
    8
         99
4
   10
        133
5
   12
        159
6
   17
        167
7
   25
        198
```


Nun skalieren wir die Daten und zentrieren diese. Wir subtrahieren von den X- und Y-Werten jeweils deren Mittelwerte.

```
plt.scatter(df_centered.X, df_centered.Y)
plt.axvline(x=0, color='k', linestyle='--')
plt.axhline(y=0, color='k', linestyle='--')
plt.title("Beispieldaten für PCA, skaliert und zentriert")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
```


Nun berechnen wir die Kovarianz-Matrix sowie die Eigenwerte (eigw) und Eigenvektoren (eigv).

```
[3]: import numpy as np
kovmatr = pd.DataFrame.cov(df_centered)
print("Kovarianzmatrix:\n")
print(kovmatr)
print()

# Berechne Eigenwerte und Eigenvektoren
eigw, eigv = np.linalg.eig(kovmatr)

print(f"Eigenwerte: {eigw}, \nEigenvektoren:\n {eigv}")
```

Kovarianzmatrix:

```
X Y
X 1.142857 1.068206
Y 1.068206 1.142857

Eigenwerte: [2.2110636 0.07465068],
Eigenvektoren:
[[ 0.70710678 -0.70710678]
[ 0.70710678 0.70710678]]
```

Wir multiplizieren unsere zenrierten Daten mit dem Eigenvektor:

```
[4]: df_1dim1 = df_centered @ eigv[1]
     print(df_1dim1)
    0
        -2.008092
    1
        -1.564013
    2
        -0.800289
    3
        -0.340691
         0.239135
    4
    5
         0.728464
    6
         1.306985
    7
         2.438502
    dtype: float64
```

1.2 Vergleich mit Klasse PCA

Wir verwenden nun die Klasse PCA aus dem Package sklearn.decomposition. Als Daten übergeben wir die skalierten Daten. Eine Zentrierung erledigt die fit-Methode für uns.

```
[5]: from sklearn.decomposition import PCA
     pca = PCA(n_components=1)
     pca.fit(df_scaled)
     print(f"Eigenvektor: {pca.components_}")
     print(f"Eigenwert: {pca.explained variance }")
     print("Tranformierte Daten: \n")
     df_1dim2 = pca.transform(df_scaled)
     print(df_1dim2)
    Eigenvektor: [[0.70710678 0.70710678]]
    Eigenwert: [2.2110636]
    Tranformierte Daten:
    [[-2.00809186]
     [-1.56401257]
     [-0.80028909]
     [-0.34069149]
     [ 0.2391352 ]
     [ 0.72846363]
```

```
[ 1.30698456]
[ 2.43850161]]
```

1.3 Beispiel: PCA mit IRIS

Wir erstellen ein Modell Random Forest (Klassifikation), um die IRIS-Spezies vorherzusagen. Zuerst mit allen 4 Features, danach mit Hilfe von PCA auf 2 Features reduziert. Wir berechnen jeweils die Accuracy.

```
[7]: from sklearn.ensemble import RandomForestClassifier

forest1 = RandomForestClassifier(n_estimators=50).fit(X_train, y_train)
print(forest1.score(X_test, y_test))
```

0.97777777777777

Wir reduzieren mit PCA auf nur 2 Features:

```
[8]: pca = PCA(n_components=2)

X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.fit_transform(X_test)

forest2 = RandomForestClassifier(n_estimators=100).fit(X_train_pca, y_train)
print(forest2.score(X_test_pca, y_test))
```


Wir reduzieren auf nur 2 Features:

Diese 2 Dimensionen können wir nun auch ganz einfach plotten:

```
[9]: %matplotlib inline
  classes = ["Setosa", "Versicolor", "Virginica"]

for i in range(3):
    data = X_train_pca[y_train==i]
    plt.scatter(data[:,0], data[:,1], label=classes[i])
```

plt.legend()
plt.show()

