

CS2013: Programación III

Teoría: Complejidad Algorítmica I

José Chávez

Agenda

- Invariante de bucle
- Prueba de correctitud
- Notación Big-O


```
void insertion_sort(std::vector<int>& v){
    for(int j = 1; j < v.size(); j++){
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key){
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
    }
}
```



```
void insertion_sort(std::vector<int>& v) {
    for(int j = 1; j < v.size(); j++) {
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key) {
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
    }
    El elemento actual a ser insertado
}
```



```
void insertion_sort(std::vector<int>& v){
    for(int j = 1; j < v.size(); j++){
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key){
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
}
```



```
void insertion_sort(std::vector<int>& v) {
    for(int j = 1; j < v.size(); j++) {
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key) {
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
    }
}
```


A[0,,j-1]	key	Secuencia Desordenada
		5,3,2,1,4,6

A[0,,j-1]	key	Secuencia Desordenada
5	3	2,1,4,6

$$key = v[1]$$

A[0,,j-1]	key	Secuencia Desordenada
3,5		2,1,4,6

A[0,,j-1]	key	Secuencia Desordenada
3,5	2	1,4,6

A[0,,j-1]	key	Secuencia Desordenada
2,3,5		1,4,6

A[0,,j-1]	key	Secuencia Desordenada
2,3,5	1	4,6

A[0,,j-1]	key	Secuencia Desordenada
1,2,3,5		4,6

A[0,,j-1]	key	Secuencia Desordenada
1,2,3,5	4	6

A[0,,j-1]	key	Secuencia Desordenada
1,2,3,4,5		6

A[0,,j-1]	key	Secuencia Desordenada
1,2,3,4,5	6	

A[0,,j-1]	key	Secuencia Desordenada
1,2,3,4,5,6		

El invariante de bucle es una condición que se cumple en cada iteración del bucle

Prueba de correctitud

Para demostrar la correctitud de un algoritmo podemos utilizar el invariante de bucle. Este debe cumplir tres propiedades:

- Inicialización
- 2. Mantenimiento
- 3. Terminación

Inicialización

```
void insertion_sort(std::vector<int>& v){
    for(int j = 1; j < v.size(); j++){
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key){
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
    }
}
```

El invariante de bucle se debe cumple antes de la primera iteración

Inicialización

```
void insertion_sort(std::vector<int>& v){
    for(int j = 1; j < v.size(); j++){
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key){
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
    }
}
```

Cuando j=1, el sub-conjunto A[0,...,j-1] está ordenado porque lo conforma solo un elemento

El invariante de bucle se debe cumple antes de la primera iteración

Mantenimiento

```
void insertion_sort(std::vector<int>& v){
    for(int j = 1; j < v.size(); j++){</pre>
        int key = v[i];
        int i = j-1;
        while(i >= 0 && v[i] > key){
            v[i+1] = v[i]:
```

Si A[0,...,j-1] ya está ordenado, estas líneas insertan el elemento A [j] en la posición correcta

Si el invariante de bucle se cumple antes de un iteración, entonces se debe mantener al final de la iteración

Terminación

```
void insertion_sort(std::vector<int>& v){
    for(int j = 1; j < v.size(); j++){
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key){
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
    }
}
```

```
Al terminar el bucle, cando j=v.size(), la secuencia [0,...,v.size()-1] resulta ordenada
```

Al terminar el bucle, el invariante de bucle ayuda a demostrar la correctitud el algoritmo

Terminación

```
void insertion_sort(std::vector<int>& v) {
    for(int j = 1; j < v.size(); j++) {
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key) {
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
    }
}
```

Al terminar el bucle, el invariante de bucle ayuda a demostrar la correctitud el algoritmo

Se demuestra la correctitud

```
void insertion_sort(std::vector<int>& v){
    for(int j = 1; j < v.size(); j++){
        int key = v[j];
        int i = j-1;
        while(i >= 0 && v[i] > key){
            v[i+1] = v[i];
            i--;
        }
        v[i+1] = key;
    }
}
```

Al cumplirse las tres propiedades se demuestra la correctitud del algoritmo

La notación Big-O es utilizada para determinar la eficiencia de un algoritmo.

La notación Big-O es utilizada para determinar la eficiencia de un algoritmo.

Podemos decir que:

Mientras más rápido es un algoritmo, menos trabajo hace.

La notación Big-O es utilizada para determinar la eficiencia de un algoritmo.

Podemos decir que:

- Mientras más rápido es un algoritmo, menos trabajo hace.
- Mientras más lento es un algoritmo, más trabajo hace.

La notación Big-O es utilizada para determinar la eficiencia de un algoritmo.

Podemos decir que:

- Mientras más rápido es un algoritmo, menos trabajo hace.
- Mientras más lento es un algoritmo, más trabajo hace.

Ejemplo:

Si para resolver un mismo problema, el algoritmo 1 lo realiza en un tiempo O(n) y el algoritmo 2 en $O(n^2)$. Entonces el primer algoritmo es más rápido que el segundo.

La notación Big-O representa una cota superior para una función:

Si escribimos que f(n) = O(g(n)), entonces:

$$0 \le f(n) \le cg(n)$$

Para $n \ge n_0$, donde n_0 y c son números positivos.

Tiempo Constante

Sin importar el tipo de entrada o tamaño, al algoritmo le tomará el mismo tiempo realizar el mismo trabajo.

Tiempo Constante

Sin importar el tipo de entrada o tamaño, al algoritmo le tomará el mismo tiempo realizar el mismo trabajo.

Ejemplo:

```
POSNEG(n):
1. if n > 0
2. imprimir "n es positivo"
3. else
4. imprimir "n no es positivo"
```


Algoritmos de tiempo constante

Si un algoritmo realiza **un número fijo de pasos** para resolver un problema, no importa si es 1, 10, 1000 o 1M, este seguirá siendo de tiempo constante.

Notación: T(n) = O(1)

Ejemplo:

Si el algoritmo requiere 100 pasos para resolver un problema, entonces T(n)=100m. En otras palabras, T(n)=O(1).

Tiempo Lineal

La gran mayoría de los algoritmos no son de tiempo constante. Habitualmente, el trabajo que realiza un algoritmo depende del tamaño de la entrada.

Trabajo de procesar 1000 elementos > **Trabajo** de procesar 10 elementos

En el caso que un algoritmo de tiempo lineal se ejecute primero con una entrada de 50 elementos y luego con otra 100 elementos. El algoritmo realizará el doble de trabajo en segundo caso.

Tiempo Lineal

Un algoritmo de tiempo lineal tienen relación directa con el tamaño de la entrada

Ejemplo:

```
SUMADEUNOS (n):
```

- 1. s = 0
- 2. **for** i=1 to n
- 3. s = s + 1
- 4. return s

Algoritmos de tiempo lineal

Notación: T(n) = O(n)

Ejemplo:

- Si el algoritmo requiere 10n pasos para resolver un problema, entonces T(n)=10n. En otras palabras, T(n)=O(n).
- Si T(n)=10n + 5, entonces T(n) = O(n).

Tiempo Cuadrático

En un algoritmo de tiempo cuadrático el trabajo realizado por el algoritmo también depende del tamaño de la entrada. Estos lucen de la siguiente manera:

```
1. for i=0 to n-1
```

2. **for**
$$j=0$$
 to $n-1$

3. sentencia

Tiempo Lineal vs Tiempo Cuadrático

Si para resolver un problema, un algoritmo necesita n^2 pasos para revolverlo y otro algoritmo requiere n pasos, ¿Cuál escogería?

Supongamos que se tiene 100 elementos, entonces:

- El algoritmo de tiempo lineal realizará 100 pasos para resolver el problema.
- El algoritmo de tiempo cuadrático necesitará 10000 pasos, lo cual es más costoso.

Tiempo Logarítmico

¿Cuál sería la forma más eficiente de buscar un elemento de una secuencia de números ordenada?

Opción 1:

```
BUSQUEDALINEAL(L, e)

1. n = size(L)

2. for i=0 to n-1

3. if L[i] == e

4. return i

5. return -1
```


Opción 1:

```
BUSQUEDALINEAL (L, e)

1. n = size(L)

2. for i=0 to n-1

3. if L[i] == e

4. return i

5. return -1
```

¿Cuál es la complejidad del algoritmo?

Opción 1:

```
BUSQUEDALINEAL (L, e)

1. n = size(L)

2. for i=0 to n-1

3. if L[i] == e

4. return i

5. return -1
```

¿Cuál es la complejidad del algoritmo?

Rpta. O(n)

Opción 1:

```
BUSQUEDALINEAL (L, e)

1. n = size(L)

2. for i=0 to n-1

3. if L[i] == e

4. return i

5. return -1
```

¿Podríamos mejorar este algoritmo?

¿Cuál es la complejidad del algoritmo?

Rpta. O(n)

Opción 2:

Supongamos que L = $\{2,3,4,5,6,7,8,9\}$, entonces

Opción 2:

Supongamos que $L = \{2,3,4,5,6,7,8,9\}$, entonces

Opción 2:

Supongamos que $L = \{2,3,4,5,6,7,8,9\}$, entonces

{2,3,4,5,6,7,8,9}

Opción 2:

Supongamos que $L = \{2,3,4,5,6,7,8,9\}$, entonces

{2,3,4,5,6,7,8,9}

{2,3,4,5}

{6,7,8,8}

Opción 2:

Opción 2:

Opción 2:

Opción 2:

Opción 2:

Ahora busquemos el número 4 en la secuencia L:

{2,3,4,5,6,7,8,9}

{6,7,8,8}

{2,3}

{4,5}

{6,7}

{8,9}

3 Pasos

{3}

{4}

{5}

{6}

{7}

{8}

{9}

Opción 2:

```
BUSQUEDABINARIA(L, e, inicio, final)
1. if inicio <= final
       medio = (inicio + final)// 2
3.
       if L[medio]==e
4.
           return medio
5. else if (L[medio] > e)
6.
            return BUSQUEDABINARIA(L, e, inicio, medio-1)
       else if (L[medio] < e)</pre>
7.
            return BUSQUEDABINARIA(L, e, medio+1, final)
8.
    return -1
```


Opción 2:

```
BUSQUEDABINARIA(L, e, inicio, final)
                                            T(n)=O(\log n)
1. if inicio <= final
       medio = (inicio + final)// 2
3.
        if L[medio]==e
4.
            return medio
5. else if (L[medio] > e)
6.
            return BUSQUEDABINARIA(L, e, inicio, medio-1)
7.
       else if (L[medio] < e)</pre>
            return BUSQUEDABINARIA(L, e, medio+1, final)
8.
    return -1
```


Resumen

En esta sesión se trataron los tópicos siguientes:

- El invariante de bucle
- Prueba de correctitud de algoritmos
- Notación Big-O
- Algoritmos de tiempo constante, lineal, cuadrático y logarítmico.

