Programare Logică

Metoda Algebrei Iniţiale

Semantica termenilor

 (S,Σ) signatură, X mulţime de variabile

Teoremă. Fie A o (S, Σ) -algebră. Orice funcție $\boldsymbol{a}: X \to A$ se extinde la un unic (S, Σ) -morfism $\tilde{\boldsymbol{a}}: T_{\Sigma}(X) \to A$.

- $ullet X = \emptyset$ Corolar. T_Σ este (S, Σ) -algebră iniţială.
- $lacksquare A = T_\Sigma(Y)$ Corolar. Orice substituţie $\nu: X \to T_\Sigma(Y)$ se extinde la un unic morfism de (S, Σ) -algebre $\tilde{\nu}: T_\Sigma(X) \to T_\Sigma(Y)$.

Semantica termenilor

 (S,Σ) signatură, X mulţime de variabile

Teoremă. Fie A o (S, Σ) -algebră. Orice funcţie $\boldsymbol{a}: X \to A$ se extinde la un unic (S, Σ) -morfism $\tilde{\boldsymbol{a}}: T_{\Sigma}(X) \to A$.

- $m{a}:X o A$ atribuire $m{ ilde{a}}(t)$ este rezultatul evaluării termenului $t\in T_\Sigma(X)$ în A
- $\blacksquare X = \emptyset$

Corolar. T_{Σ} este (S, Σ) -algebră iniţială.

Fie $S_A: T_\Sigma \to A$ unicul morfism. Orice termen $t \in T_\Sigma$ are o unică interpretare $S_A(t)$ în algebra A.

Semantica instrucţiunii de atribuire x:=e

- X este mulţimea variabilelor, $x \in X$, $e \in T_{\Sigma}(X)$
- $\blacksquare D$ este Σ -algebra datelor
- lacktriangleo stare a memoriei este o funcţie $a:X\to D$
- semantica unei instrucţiuni descrie modul în care instrucţiunea modifică starile memoriei
- $$\begin{split} & \blacksquare Mem := \{ \boldsymbol{a} : X \to D | \ \boldsymbol{a} \ \text{funcţie} \} \\ & Sem(x := e) : Mem \to Mem \\ & Sem(x := e)(\boldsymbol{a})(y) := \left\{ \begin{array}{ll} \tilde{\boldsymbol{a}}(e) & \mathsf{dacă} \ y = x, \\ \tilde{\boldsymbol{a}}(y) & \mathsf{dacă} \ y \neq x. \end{array} \right. \end{split}$$

Adîncimea termenilor

 (S,Σ) signatură multisortată

- $ullet D = (D_S, D_\Sigma), \, D_s := \mathbb{N} \ ext{or.} \ s \in S$ $ext{dacă} \ \sigma :
 ightarrow s \ ext{atunci} \ D_\sigma := 0,$ $ext{dacă} \ \sigma : s_1 \ldots s_n
 ightarrow s, \, k_1, \ldots, \, k_n \in \mathbb{N}$ $ext{} D_\sigma(k_1, \ldots, k_n) := 1 + max(k_1, \ldots, k_n)$
- ${f J}_D:T_\Sigma o D$ unicul morfism dc. $t=\sigma(t_1,\ldots,t_n)$ at. arb(t):=

$$arb(t_1)$$
 \cdots $arb(t_n)$

 $lacksquare{\mathbb{Z}}_D(t) = \mathsf{adincimea} \; arb(t)$

Semantica algebrei iniţiale pentru limbaje definite de g.i.c.

- ■Unei g.i.c. neambigue $G = (S_0, N, T, P)$ îi asociem signatura $\mathcal{G} = (S = N, \Sigma = P)$
- ■Definim \mathcal{G} -algebra Lang(G) astfel încât $L(G) = \mathcal{S}_{G,S_0}(T_{\Sigma,S_0})$, unde $\mathcal{S}_G: T_{\Sigma} \to Lang(G)$ este unicul \mathcal{G} -morfism. Deoarece G este neambiguă, morfismul $\mathcal{S}_G: T_{\Sigma} \to Lang(G)$ este injectiv.
- Pentru $w \in L(G)$ exista un unic $t \in T_{\Sigma S_0}$ astfel încât $S_G(t) = w$. Vom scrie $t_w = S_G^{-1}(w)$.
- Pentru orice \mathcal{G} -algebră \mathcal{A} , unicul \mathcal{G} -morfism $\mathcal{S}_A:T_\Sigma\to\mathcal{A}$ îi asociază lui t_w o interpretare în \mathcal{A} , şi anume $\mathcal{S}_A(t_w)$.
- $\blacksquare Sem(w) = \mathcal{S}_{\mathcal{A}}(t_w) = \mathcal{S}_{\mathcal{A}}(\mathcal{S}_G^{-1}(w))$ oricare $w \in L(G)$

Semantica algebrei iniţiale

- $ullet \Sigma$ instrucţiunile, w (t_w) program, A maşină, $Sem(w) = \mathcal{S}_A(t_w)$ execuţia programului w pe maşina A
- lacktriangledown w sintaxa concretă, t_w sintaxa abstractă, A algebra semantică, A_s domeniu semantic or. $s \in S$ $\mathcal{S}_A(t)$ denotația termenului t

Aplicaţii

Vom prezenta următoarele aplicaţii ale metodei algebrei iniţiale:

- semantica unui șir de cifre ca număr natural,
- semantica limbajului unui minicalculator,
- ■reprezentarea expresiilor în formă poloneză inversă,
- modelarea algebrică a compilării unei expresii aritmetice folosind o maşina cu stivă şi acumulator.

Gramatici independente de context

- $\blacksquare G = (S_0, N, T, P)$
 - N este mulţimea neterminalelor
 - T este mulțimea terminalelor
 - S_0 este simbolul de start
 - $P \subseteq N \times (N \cup T)^*$ multimea productiilor

$$S_0\in N$$
, $T\cap N=\emptyset$, o producţie $p=(A,\omega)\in P$ va fi descrisă prin
$$p\mid A\longrightarrow \omega$$

$G = (S_0, N, T, P)$ g.i.c. neambiguă

- Definim signatura $\mathcal{G} = (S, \Sigma)$ astfel:
 - \blacksquare neterminalele devin sorturi: S=N
 - producţiile devin simboluri de operaţie:

$$p\in \Sigma_{n_1\cdots n_k,n}\Leftrightarrow p=(n,t_0n_1t_1\cdots n_kt_k)\in P,$$
 unde $n,n_1,\ldots,n_k\in N$ și $t_0,\ldots,t_k\in T^*.$

Observăm că

$$p: n_1 \cdots n_k \to n \Leftrightarrow [p] \ n \longrightarrow t_0 n_1 t_1 \cdots n_k t_k$$
.

Vom scrie simplu $\Sigma = P$.

$G = (S_0, N, T, P)$ g.i.c. neambiguă

•Exemplu. descrierea unui număr natural ca şir de cifre

Gramatica G	Signatura \mathcal{G}
$N = \{\langle cifra \rangle, \langle nat \rangle\}$	S = N
$T = \{0, \dots, 9\}, S_0 = \langle nat \rangle$	
$P = \{c0, \cdots, c9, p1, p2\}$	$\Sigma = \{$
$[ci]\ \langle cifra angle \longrightarrow i, i=0,9$	$ci : \rightarrow \langle cifra \rangle, i = 0, 9$
$[p1]\ \langle nat\rangle \longrightarrow \langle cifra\rangle$	$p1: \langle cifra \rangle \to \langle nat \rangle$
$[p2]\ \langle nat\rangle \longrightarrow \langle nat\rangle \langle cifra\rangle$	$p2: \langle nat \rangle \langle cifra \rangle \to \langle nat \rangle \}$

$G = (S_0, N, T, P)$ g.i.c. neambiguă

Am definit signatură multisortată $\mathcal{G}=(S=N,\Sigma=P)$. Construim o \mathcal{G} -algebră care va permite definirea limbajului generat de gramatică prin metoda algebrei iniţiale.

- $\blacksquare Lang(G) = (L_S, L_\Sigma) \mathcal{G}$ -algebră
 - $\blacksquare L_n = T^*$, oricare $n \in N$

$$p: n_1 \cdots n_k \to n \in \Sigma \text{ si } (w_1, \dots, w_k) \in (T^*)^k$$

$$L_p(w_1,\ldots,w_k)=t_0w_1\cdots w_kt_k,$$

unde $[p] n \longrightarrow t_0 n_1 t_1 \cdots n_k t_k$ în P.

Limbajul L(G)

- $\blacksquare T_{\Sigma}$ este \mathcal{G} -algebră iniţială.
- ■Teoremă (metoda algebrei iniţiale).

Dacă $S_G: T_\Sigma \to Lang(G)$ unicul \mathcal{G} -morfism atunci pentru orice neterminal $n \in N$

$$\{w \in T^* \mid n \stackrel{*}{\Rightarrow} w\} = \mathcal{S}_{G,n}(T_{\Sigma,n})$$

In particular $L(G) = \mathcal{S}_{G,S_0}(T_{\Sigma,S_0})$.

Dem. ⊆ inducţie după lungimea derivării.

⊇ inducţie structurală.

Algebra arborilor de derivare

Arbore de derivare pentru *G*:

- frunzele sunt terminale,
- nodurile interioare sunt neterminale,
- rădăcina este neterminal,
- dacă un nod are eticheta $n \in N$, iar succesorii săi sunt etichetaţi cu $x_1, \ldots, x_k \in N \cup T$, atunci $(n, x_1 \cdots x_k) \in P$ Teoremă. Mulţimea arborilor de derivare are o structura canonică de \mathcal{G} -algebră, Arb, care este izomorfă cu algebra termenilor T_{Σ} . Prin urmare, algebra arborilor de derivare Arb este o \mathcal{G} -algebră iniţială.

Semantica unui şir de cifre

Semantica unui şir de cifre ca număr natural

$$G = (S_0, N, T, P)$$
, unde $N = \{\langle cifra \rangle, \langle nat \rangle\}$, $S_0 = \langle nat \rangle$, $T = \{0, \dots, 9\}$, $P = \{c0, \dots, c9, p1, p2\}$

$$\mathbf{\mathcal{G}} = (S = N, \Sigma = P)$$

$$\Sigma = \{ci : \rightarrow \langle cifra \rangle \mid i = 0, 9\} \cup$$

$$\{p1 : \langle cifra \rangle \rightarrow \langle nat \rangle,$$

$$p2 : \langle nat \rangle \langle cifra \rangle \rightarrow \langle nat \rangle\}$$

Semantica unui şir de cifre

■ Definim $\mathcal{A} = (A_S, A_{\Sigma})$ \mathcal{G} -algebră:

$$A_{\langle cifra \rangle} = \{0, \dots, 9\} \subseteq \mathbb{N}, A_{\langle nat \rangle} = \mathbb{N},$$
 $A_{ci} = i \in A_{\langle cifra \rangle}, i = 0, 9 \text{ (operaţie constantă)}$
 $A_{p1} : \{0, \dots, 9\} \to \mathbb{N}, A_{p1}(i) = i,$
 $A_{p2} : \mathbb{N} \times \{0, \dots, 9\} \to \mathbb{N}, A_{p2}(m, i) = m * 10 + i$

■Dacă $S_A: T_\Sigma \to \mathcal{A}$ şi $S_G: T_\Sigma \to Lang(G)$ sunt unicele morfisme definite pe T_Σ , atunci semantica unui sir de cifre $w \in L_{\langle nat \rangle}$ este $Sem(w) = \mathcal{S}_A(\mathcal{S}_G^{-1}(w))$.

Semantica unui şir de cifre

$$Sem(\overline{25}) = S_A(T_{p2}(T_{p1}(T_{c2}), T_{c5})) = A_{p2}(A_{p1}(A_{c2}), A_{c5}) = A_{p1}(A_{c2}) * 10 + 5 = A_{c2} * 10 + 5 = 2 * 10 + 5 = 25.$$

0	1	2	3	4	+	(Œ	Μ	ON
5	6	7	8	9	*)	,	Е	OFF

- M este celula de memorie
- E comanda de evaluare
- $val(IF\ e1, e2, e3) = val(e2)$ daca val(e1) = 0 $val(IF\ e1, e2, e3) = val(e3)$ daca $val(e1) \neq 0$

$$[ci] \langle cifra \rangle \longrightarrow i, i = 0, 9$$

$$[p1] \langle nat \rangle \longrightarrow \langle cifra \rangle$$

$$[p2] \langle nat \rangle \longrightarrow \langle nat \rangle \langle cifra \rangle$$

$$[r1] \langle exp \rangle \longrightarrow \langle nat \rangle$$

$$[r2] \langle exp \rangle \longrightarrow M$$

$$[r3] \langle exp \rangle \longrightarrow \langle exp \rangle + \langle exp \rangle$$

$$[r4] \langle exp \rangle \longrightarrow IF \langle exp \rangle, \langle exp \rangle, \langle exp \rangle$$

$$[r5] \langle exp \rangle \longrightarrow (\langle exp \rangle)$$

$$[I1] \langle inst \rangle \longrightarrow \langle exp \rangle E \ OFF$$

$$[I2] \langle inst \rangle \longrightarrow \langle exp \rangle E \langle inst \rangle$$

$$[Pr] \langle prog \rangle \longrightarrow ON \langle inst \rangle$$

- La pornirea calculatorului memoria M este initializată cu 0. La apăsarea butonului E, expresia de pe ecran este evaluată folosind valoarea celulei M. Valoarea astfel obţinută este afişată pe ecran şi este introdusă în M.
- Un program este un şir de instrucţiuni $ON\ e1\ E\ e2\ E\cdots en\ E\ OFF$

Semantica lui este şirul de numere care apare pe ecran, adică un element din \mathbb{N}^+ .

 $\blacksquare Sem(w) \in \mathbb{N}^+$, unde w este un program

O instrucţiune este o secvenţă care se execută dintr-o anumită stare a memoriei

$$e1 \ E \ e2 \ E \cdots en \ E \ OFF$$

Semantica unei instrucţiuni va fi o funcţie $I: \mathbb{N} \to \mathbb{N}^+$.

- $\blacksquare Sem(I) \in \mathbb{N} \to \mathbb{N}^+$, unde I este o instructione
- Expresiile sunt termeni în variabila M. Pentru fiecare evaluare se foloseşte valoarea curentă a memoriei M. Semantica unei expresii e este o funcţie $e: \mathbb{N} \to \mathbb{N}$
 - $\blacksquare Sem(e) \in \mathbb{N} \to \mathbb{N}$, unde e este o expresie
- Notaţie $A \rightarrow B := \{f \mid f : A \rightarrow B \text{ funcţie}\}\$

Algebra semantică

Definim operatiile A_p , cu $p \in \Sigma$

• este o \mathcal{G} -algebra, unde G = (S, P), $S = \{\langle cifra \rangle, \langle nat \rangle, \langle expr \rangle, \}$ $\langle inst \rangle, \langle proq \rangle \}$ $\Sigma = \{c0, \dots, c9, p1, p2, r1, \dots, r5, I1, I2, Pr\}$ Definim $\mathcal{A}=(A_S,A_\Sigma)$ $A_{\langle cifra \rangle} = \{0, \dots, 9\}, A_{\langle nat \rangle} = \mathbb{N},$ $A_{\langle expr \rangle} = \{e : \mathbb{N} \to \mathbb{N} \mid e \ functie\},$ $A_{\langle inst \rangle} = \{I : \mathbb{N} \to \mathbb{N}^+ \mid I \ functie\},$ $A_{\langle prog \rangle} = \mathbb{N}^+$

Algebra semantică

- \bullet A_{ci} , A_{p1} , A_{p2}
- $A_{r1}(k): \mathbb{N} \to \mathbb{N}, A_{r1}(k)(m) = k$
- $A_{r2}: \mathbb{N} \to \mathbb{N}, A_{r2}(m) = m,$
- $A_{r3}: A_{\langle expr \rangle} \times A_{\langle expr \rangle} \to A_{\langle expr \rangle}$,

$$A_{r3}(e1, e2)(m) = e1(m) + e2(m),$$

•
$$A_{r4}: A_{\langle expr \rangle} \times A_{\langle expr \rangle} \times A_{\langle expr \rangle} \to A_{\langle expr \rangle}$$
,

$$A_{r4}(e1, e2, e3)(m) = \text{daca } e1(m) = 0 \text{ atunci } e2(m) \text{ altfel } e3(m),$$

- $A_{r5}: A_{\langle expr \rangle} \to A_{\langle expr \rangle}, A_{r5}(e) = e,$
- $A_{I1}: A_{\langle expr \rangle} \to A_{\langle inst \rangle}, A_{I1}(e)(m) = e(m),$
- $A_{I2}: A_{\langle expr \rangle} \times A_{\langle inst \rangle} \to A_{\langle inst \rangle}, A_{I2}(e, I) = e(m)I(e(m)),$
- $A_{Pr}: A_{\langle inst \rangle} \to A_{\langle prog \rangle}, A_{Pr}(I) = I(0).$

Semantica algebrei initiale

- $S_A:T_\Sigma\to\mathcal{A}$ unicul morfism
- $S_G: T_\Sigma \to Lang(G)$ unicul morfism
- $w \in L(G)$, $t_w \in T_{\Sigma}$, $\mathcal{S}_G(t_w) = w$ (t este unic) semantica lui w este $Sem(w) = \mathcal{S}_A(t_w)$

Exemplu:

$$w = ON \ 5 + M \ E \ OFF$$

$$t_w = T_{\langle Pr \rangle} (T_{\langle I1 \rangle} (T_{\langle r3 \rangle} (T_{\langle r1 \rangle} (T_{\langle p1 \rangle} (T_{\langle c5 \rangle})), T_{\langle r2 \rangle})))$$

$$Sem(w) = \mathcal{S}_A(t) =$$

$$A_{\langle Pr \rangle} (A_{\langle I1 \rangle} (A_{\langle r3 \rangle} (A_{\langle r1 \rangle} (A_{\langle p1 \rangle} (A_{\langle c5 \rangle})), A_{\langle r2 \rangle})))$$

Semantica algebrei initiale

$$w = ON \ 5 + M \ E \ OFF$$

$$Sem(w) = A_{\langle Pr \rangle} (A_{\langle I1 \rangle} (A_{\langle r3 \rangle} (A_{\langle r1 \rangle} (A_{\langle p1 \rangle} (A_{\langle c5 \rangle})), A_{\langle r2 \rangle}))) =$$

$$A_{\langle I1 \rangle} (A_{\langle r3 \rangle} (A_{\langle r1 \rangle} (A_{\langle p1 \rangle} (A_{\langle c5 \rangle})), A_{\langle r2 \rangle}))(0) =$$

$$A_{\langle r3 \rangle} (A_{\langle r1 \rangle} (A_{\langle p1 \rangle} (A_{\langle c5 \rangle})), A_{\langle r2 \rangle})(0) =$$

$$A_{\langle r1 \rangle} (A_{\langle p1 \rangle} (A_{\langle c5 \rangle}))(0) + A_{\langle r2 \rangle}(0) =$$

$$A_{\langle p1 \rangle} (A_{\langle c5 \rangle}) + 0 =$$

$$A_{\langle c5 \rangle} + 0 =$$

$$5 + 0 = 5$$