Anuvind MP

AM.EN.U4AIE22010

import numpy as np

1) Define a NumPy array to represent the vector v = [1, 5, 2].

```
v = np.array([1, 5, 2])
v

array([1, 5, 2])
```

2) Define a NumPy array to represent the vector w = [0, ..., 8].

```
w = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])
w
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
```

3) Define a NumPy array to represent the matrix

$$A = \begin{bmatrix} 2 & 5 & 6 \\ 3 & 2 & 1 \\ 4 & 9 & 3 \end{bmatrix}$$

4) Define a NumPy array to represent the matrix

$$B = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix}$$

5) Extract the third element of v.

v[2]

- _ 2
- 6) Extract the second, third, and fourth elements of w.

```
w[1:4]
```

A[0,	1]
$\overrightarrow{\Rightarrow}$	5
8)	Extract the second column of <i>B</i> .
B[:,	1]
→	array([1, 4, 7])
9)	Calculate the transpose of A .
А.Т	
₹	array([[2, 3, 4],
10) Calculate determinant of A (using the function linalg.det)	
np.l:	inalg.det(A)
$\overline{\Rightarrow}$	82.9999999999
11) Calculate the inverse of A .	
np.l:	inalg.inv(A)
₹	array([[-0.03614458, 0.46987952, -0.08433735], [-0.06024096, -0.21686747, 0.19277108], [0.22891566, 0.02409639, -0.13253012]])
12) Calculate Av .	
np.de	pt(A, v)
₹	array([39, 15, 55])
13) Calculate the matrix product AB .	
np.do	ot(A, B)
₹	array([[51, 64, 77],
14) Caclulate $3A^2 + 2A$.	
	uared = np.dot(A, A) A_squared + 2 * A
→	array([[133, 232, 117], [54, 88, 71], [149, 213, 132]])

7) Extract the element in the first row and the second column of A.

15) Solve the system of linear equations Ax = v for x.