

Example #1

Let's consider the interpretation v where v(p) = F, v(q) = T, v(r) = T. Does v satisfy the following propositional formulas?

1.
$$(p \to \neg q) \lor \neg (r \land q)$$

2.
$$(\neg p \lor \neg q) \to (p \lor \neg r)$$

■ v satisfy 1 but doesn't satisfy 2

Use the truth tables method to determine whether $(p \to q) \lor (p \to \neg q)$

p	q	$p \rightarrow q$	$\neg q$	$p \rightarrow \neg q$	$(p \to q) \lor (p \to \neg q)$
T	T	T	F	F	T
T	F	F	T	T	T
\boldsymbol{F}	T	T	F	T	T
\boldsymbol{F}	F	T	T	T	T

 $The \ formula \ is \ valid \ since \ it \ is \ satisfied \ by \ every \ interpretation$

3

Example #3

Use the truth tables method to determine whether $p \to (q \land \neg q)$ and $\neg p$ are logically equivalent.

p	q	$q \wedge \neg q$	$p \to (q \land \neg q)$	$\neg p$
T	T	F	F	F
T	F	F	F	F
\boldsymbol{F}	T	F	T	T
\boldsymbol{F}	\boldsymbol{F}	F	T	T

The two formulas are **equivalent** since for every possible interpretation they evaluate to the same truth values.

Example #4

Let A = "Aldo is Italian" and B = "Bob is English".

Formalize the following sentences:

- 1. "Aldo isn't Italian"
- 2. "Aldo is Italian while Bob is English"
- 3. "If Aldo is Italian then Bob is not English"
- 4. "Aldo is Italian or if Aldo isn't Italian then Bob is English"
- 5. "Either Aldo is Italian and Bob is English, or neither Aldo is Italian nor Bob is English"
- *1*. ¬*A*
- 2. $A \wedge B$
- 3. $A \rightarrow \neg B$
- 4. $A \lor (\neg A \to B)$ logically equivalent to $A \lor B$
- 5. $(A \wedge B) \vee (\neg A \wedge \neg B)$ logically equivalent to $A \leftrightarrow B$

Example #5

5

 $Socrate\ says:$

"If I'm guilty, I must be punished; I'm guilty. Thus I must be punished."

Is the argument logically correct?

Solution. The argument is logically correct: if p means "I'm guilty" and q means "I must be punished", then:

$$(p \to q) \land p \models q$$
 (modus ponens)

Example #6

"If I'm guilty, I must be punished; I'm not guilty. Thus I must not be punished."

Is the argument logically correct?

Solution. The argument is not logically correct:

$$(p \to q) \land \neg p \nvDash \neg q$$

 $\ \, \textit{consider for instance} \,\, v(p) = \textit{F and} \,\, v(q) = \textit{T}$

7

Example #7

Prove the following equivalences using truth tables.

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

P	Q	R	$(Q \wedge R)$	$P \vee (Q \wedge R)$	$(P \lor Q)$	$(P \vee R)$	$(P \lor Q) \land (P \lor R)$
T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

This equivalence is true!

Show that $\neg (p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$

Solution:

$$\neg(p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg(\neg p \land q) \qquad \text{by the second De Morgan law} \\ \equiv \quad \neg p \land [\neg(\neg p) \lor \neg q] \qquad \text{by the first De Morgan law} \\ \equiv \quad \neg p \land (p \lor \neg q) \qquad \text{by the double negation law} \\ \equiv \quad (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{by the second distributive law} \\ \equiv \quad F \lor (\neg p \land \neg q) \qquad \text{because } \neg p \land p \equiv F \\ \equiv \quad (\neg p \land \neg q) \lor F \qquad \text{by the commutative law} \\ \qquad \qquad \qquad \qquad \qquad \qquad \text{for disjunction} \\ \equiv \quad (\neg p \land \neg q) \qquad \text{by the identity law for } \mathbf{F}$$

9

Exercises:

For each of the following, use a truth table to establish if it is a correct logical consequence.

(i)
$$\{p \to q, \neg q\} \models \neg p$$

(ii)
$$\{q, \neg p \rightarrow \neg q\} \models p$$

(iii)
$$\{a \rightarrow b, b \rightarrow c\} \models a \rightarrow c$$

(iv)
$$\{a \rightarrow \neg b, b \rightarrow \neg c\} \models \neg a \rightarrow \neg c$$

Note: As it will be studied later, the "," should be interpreted as " $^{\prime\prime}$ ".