Convolutional Learning on SCs

Node-edge-triangle interactions

• SCCNN $_k^l:\{x_{k-1}^{l-1},x_k^{l-1},x_{k+1}^{l-1}\}\to x_k^l$, with simplicial order k and layer l

$$\mathbf{x}_k^l = \sigma(\mathbf{H}_{k,d}^l \mathbf{x}_{k,d}^{l-1} + \mathbf{H}_k^l \mathbf{x}_k^{l-1} + \mathbf{H}_{k,u}^l \mathbf{x}_{k,u}^{l-1})$$

Convolution based (Ebli et al. 2020; Roddenberry et al. 2021; Yang et al. 2022, 2023) Message passing (Bodnar et al. 2021)

$$\mathbf{x}_0^l = \sigma(\mathbf{H}_0^l \mathbf{x}_0^{l-1} + \mathbf{H}_{0,\mathbf{u}}^l \mathbf{B}_1 \mathbf{x}_1^{l-1})$$

$$\mathbf{x}_1^l = \sigma(\mathbf{H}_{1,\mathbf{d}}^l \mathbf{B}_1^\top \mathbf{x}_0^{l-1} + \mathbf{H}_1^l \mathbf{x}_1^{l-1} + \mathbf{H}_{1,\mathbf{u}}^l \mathbf{B}_2 \mathbf{x}_2^{l-1})$$

$$\mathbf{x}_2^l = \sigma(\mathbf{H}_{2,\mathbf{d}}^l \mathbf{B}_2^\top \mathbf{x}_1^{l-1} + \mathbf{H}_2^l \mathbf{x}_2^{l-1})$$

Properties: locality, symmetry
Dirichlet energy perspective
Hodge-invariant
Stability to weights perturbations

Simplex prediction

Generalization of link prediction

Table 2: Simplex prediction (AUC, \uparrow).

Methods	2-simplex	3-simplex
Mean (Benson et al., 2018)	$62.8{\pm}2.7$	63.6 ± 1.6
MLP	68.5 ± 1.6	69.0 ± 2.2
GNN (Defferrard et al., 2016)	93.9 ± 1.0	96.6 ± 0.5
SNN (Ebli et al., 2020)	92.0 ± 1.8	95.1 ± 1.2
PSNN (Roddenberry et al., 2021)	95.6 ± 1.3	98.1 ± 0.5
SCNN (Yang et al., 2022a)	96.5 ± 1.5	98.3 ± 0.4
Bunch (Bunch et al., 2020)	98.3 ± 0.5	98.5 ± 0.5
MPSN (Bodnar et al., 2021b)	98.1 ± 0.5	99.2 ± 0.3
SCCNN	$98.7 {\pm} 0.5$	$99.4 {\pm} 0.3$

