PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : A01N 37/40, 31/14, 35/04 A01N 35/10, 37/10, 37/18 A01N 37/34	A1		WO 94/05153 3) International Publication Date: 17 March 1994 (17.03.94)	
(21) International Application Number: PCT/US (22) International Filing Date: 2 September 1993			(72) Inventor; and (75) Inventor/Applicant (for US only): PATEL, Kanu, Maganbhai [US/US]; 149 Fairhill Drive, Wilmington, DE 19808 (US).	
(30) Priority data: 07/942,539 9 September 1992 (09.09	.92)	US	(74) Agents: GREGORY, Theodore, C. et al.; E.I. du Pont de Nemours and Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).	
(60) Parent Application or Grant (63) Related by Continuation US Filed on 9 September 1992			(81) Designated States: JP, KR, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).			Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(54) Title: HERBICIDAL BENZENE COMPOUNI	DS			

(57) Abstract

Herbicidal compositions and method of use involving effective amounts of substituted benzene compounds to control the growth of undesired vegetation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
ΑU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Benin	1E	Ireland	PL	Poland
BR	Brazil	1T	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LÜ	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	ML	Mali	UZ	Uzbekistan
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland		-		

10

15

20

TITLE HERBICIDAL BENZENE COMPOUNDS.

BACKGROUND OF THE INVENTION

This invention relates to agriculturally suitable compositions of certain herbicidal benzene compounds and a method for their use as selective preemergent or postemergent herbicides for controlling the growth of undesired vegetation in crops such as rice.

New compounds effective for controlling the growth of undesired vegetation are in constant demand. In the most common situation, such compounds are sought to selectively control the growth of weeds in useful crops such as cotton, rice, corn, wheat and soybeans, to name a few. Unchecked weed growth in such crops can cause significant losses, reducing profit to the farmer and increasing costs to the consumer. In other situations, herbicides are desired which will control all plant growth. There are many products commercially available for these purposes, but the search continues for products which are more effective, less costly and environmentally safe.

SUMMARY OF THE INVENTION

This invention comprises agriculturally suitable

compositions wherein the active compounds are the
compounds of Formulas I and II, and their method-of-use
as preemergent and/or postemergent herbicides or plant
growth regulants. Accordingly, the compositions of the
invention comprise compounds of the formula

30

$$\mathbb{R}^3$$
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3

10

15

20

wherein

R¹ is Cl, Br, I, OCH₃, OCHF₂, OCF₃ or NO₂;

R² is CN, CO₂R⁴, CHO, C(X)NR¹⁷R¹⁸, C(S)OR⁶, C≡CH,

CHR¹⁹OR²⁰, CH=NOR⁷, CH=CR²¹R²², C(halogen)=NOR⁷,

C(NH₂)=NOR⁷, C(CN)=NOR⁷, CHR¹⁹(halogen),

CHR¹⁹CN, CHR¹⁹C(=O)NH₂, CHR¹⁹CO₂H, or a five
membered heterocyclic ring containing one or

more nitrogen, sulfur, or oxygen atoms and

optionally substituted with one or more CH₃,

CF₃, OCH₃, SCH₃, or halogen;

R³ is n-propyl; C₄-C₁₀ alkyl; n-propyl or C₄-C₇ alkyl each substituted with one or more halogen, OR⁸, SR⁹ or NR¹⁰R¹¹; C₁-C₂ alkyl substituted with OR¹⁶, SR⁹, NR¹⁴R¹⁵, CO₂(C₁-C₂ alkyl) or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; C₃-C₆ cycloalkyl; CH₂(C₃-C₆ cycloalkyl); phenyl, pyridyl, thienyl, furyl, pyrazolyl or thiazolyl, each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; C₂-C₆ alkenyl optionally substituted with one or more halogen or CO₂(C₁-C₂ alkyl); OR¹²; SR¹³; NR¹⁴R¹⁵;

25 O-N=CR³⁰R³¹;

 R^4 is H, C_1-C_2 alkyl,

25

30

- R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are independently H or C_1-C_2 alkyl;
- R^{12} and R^{13} are independently C_1-C_{10} alkyl optionally substituted with one or more halogen, OR^8 , SR^9 , CO_2R^{23} , $C(O)NR^{24}R^{25}$, CN, 5 $Si(CH_3)_3$, $C(R^{26})(OR^{27})(OR^{28})$ or $NR^{10}R^{11}$; C_1-C_3 alkyl substituted with a five- or six-membered heterocyclic ring containing 1-2 heteroatoms selected from the group 1-2 nitrogens, 1 oxygen 10 and 1 sulfur, each ring optionally substituted with 1-2 substituents selected from F, Cl, Br, CH₃, CF₃, OCH₃ and CN; C₃-C₆ alkenyl; or phenyl or benzyl, each ring optionally substituted with one or more CH3, CF3, OCH3, OR29, SCH3 or 15 halogen;
 - R¹⁴ and R¹⁵ are independently H or C₁-C₂ alkyl, or may be taken together along with the nitrogen to which they are attached to form a pyrrolyl, piperidinyl, morpholinyl, pyrazolyl, or imidazolyl ring, each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen;
 - R¹⁶ is H, C₁-C₈ alkyl; benzyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen;
 - R^{17} is H, C_1-C_2 alkyl or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 or halogen;
 - R¹⁸ is H, C₁-C₂ alkyl, C₃-C₆ cycloalkyl, $CH_2(C_3-C_6 \text{ cycloalkyl})$, $O(C_1-C_4 \text{ alkyl})$, O-allyl or may be taken together with R¹⁷ as $-(CH_2)_4-$, $-(CH_2)_5-$ or $-(CH_2CH_2OCH_2CH_2)-$;
- 35 R^{19} is H or C_1-C_2 alkyl;

15

20

25

30

 R^{20} is H or C(O)CH₃;

- ${\bf R}^{21}$ and ${\bf R}^{22}$ are independently H, CN, ${\bf CO_2R^4}$, ${\bf C(X)\,NR^{17}R^{18}}$ or halogen;
- R^{23} , R^{24} , R^{25} and R^{26} are independently H; C_1 - C_3 alkyl; or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 , or halogen;
- R^{27} and R^{28} are independently C_1-C_3 alkyl or may be taken together as $-(CH_2)_2-$ or $-(CH_2)_3-$ optionally substituted with 1-2 CH_3 's;
- 10 X is O or S;
 - R²⁹ is phenyl, pyridyl, thiazolyl, pyrazolyl or pyrrolyl each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen; and
 - R^{30} and R^{31} are each independently H; C_1-C_{10} alkyl; or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 , or halogen; and agriculturally suitable salts thereof.

In the above definitions, the term "alkyl" includes straight chain or branched alkyl, e.g., methyl, ethyl, n-propyl, isopropyl or the different butyl isomers, etc. Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "halogen" means fluorine, chlorine, bromine or iodine.

The agriculturally suitable composition of the invention for controlling the growth of undesired vegetation comprises an effective amount of a compound of Formula I or II as defined above and at least one of the following: surfactant, solid or liquid diluent.

The preferred compositions of the invention for reasons including ease of synthesis and/or greater herbicidal efficacy involve:

 A compound of Formula I or II wherein R¹ is Cl, Br or I;

10

15

25

30

 R^2 is CN, CO_2H , CO_2CH_3 , $CO_2CH_2CH_3$, CHO, $C(O)NH_2$, $C(O)NHCH_3$, $C(O)N(CH_3)_2$, CH_2OH or $CH=NOR^7$ or $C(NH_2)=NOR^7$;

R³ is n-propyl; C₄-C₇ alkyl; C₂ alkyl substituted with phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; CH₂(C₃-C₆ cycloalkyl); phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; or OR¹²;

 R^{12} is C_2-C_4 alkyl;

2. A compound of Preferred 1 wherein R¹ is Cl or Br; R² is CN, CO₂H or C(O)NH₂;

 R^3 is C_4 - C_7 alkyl, $CH_2(C_3$ - C_6 cycloalkyl) or OR^{12} .

Specifically preferred is the compound 2-chloro-4-(2-methylpropoxy) benzamide.

Another embodiment of the invention is a method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a composition comprising a compound of Formula I or II as defined above.

The preferred method of use involves the compositions wherein the above preferred compounds are utilized.

DETAILED DESCRIPTION OF THE INVENTION

The compounds of Formulae I and II can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 1 to 17 below. Many of the compounds disclosed herein are known in the art or can be prepared by well known literature procedures.

In some of the schemes, compounds of Formulae I and 35 II are represented by formulae with a floating \mathbb{R}^3

WO 94/05153 PCT/US93/08096

6

substituent wherein R3 is attached at the 4- and 5-position, respectively (see Formula A below). definitions of $R^{1}-R^{31}$ and X are the same as defined for Formulae I and II above.

5

15

25

$$R^3$$
 A R^2 R^2

 $4-R^3 = Formula I$ $5-R^3 = Formula II$

In cases where the substituent of a starting material is not compatible with the reaction conditions 10 described for any of the reaction schemes, it can be assumed that the substituent is converted to a protected form prior to the described reaction scheme and then deprotected after the reaction using commonly accepted protecting/ deprotecting techniques (as an example, see T. W. Greene and P. G. M. Wuts, "Protective Groups in Organic Synthesis", 2nd Edition, John Wiley and Sons, Inc., New York, 1991). Otherwise alternative approaches known to one skilled in the art are available.

The compounds of this invention are made by the 20 following processes.

Introduction of R¹

Scheme 1 illustrates the preparation of compound 1, a compound of Formula I or II wherein $R^1=NO_2$. nitrobenzenes are commercially available or can be prepared by literature methods. A variety of methods are known in the literature, for example, see J. March, Advanced Organic Chemistry, 3rd Ed., John Wiley and Sons, New York (1985) and references cited therein.

7

Scheme 1

$$\mathbb{R}^3$$
 $\frac{\text{nitration}}{\mathbb{R}^3}$ \mathbb{R}^2

5 Anilines of Formula 2 can be prepared from nitro compounds of Formula 1 by reduction with tin II chloride (Scheme 2). Processes of this type are well known in the literature. For example, see T. Ho and C. M. Hong, Synthesis 1974 45. The aniline of Formula 10 2 can be converted to the halobenzene of Formula 3 (W=Cl, Br, or I) using the Sandmeyer reaction. Alternatively, the phenol of Formula 4 can be obtained from the aniline by preparation of the diazonium salt followed by hydrolysis. Methods of these types are described in Sandler S. R.; Karo W., Organic Functional 15 Group Preparations, Academic: New York, (1983); Chapters 13 and 17.

Scheme 2

Compounds of Formulae I and II wherein R^1 is OCH₃, OCHF₂ or OCF₃ can be prepared by the methods illustrated in Scheme 3.

Scheme 3

5

10

15

20

25

Phenols of Formula 4 can be treated with a methylating agent, such as iodomethane or methylsulfate, and a base such as potassium carbonate, potassium hydroxide, potassium hydride, potassium t-butoxide, sodium hydride, sodium hydroxide or sodium carbonate in an inert solvent such as N,N-dimethylformamide, benzene, toluene, xylene or tetrahydrofuran. The reaction temperature ranges from 0-140°C and reaction time is between 30 minutes and 200 hours.

Upon completion of the reaction, the reaction mixture is concentrated under reduced pressure. Water is then added to the residue and extracted with organic solvent. The organic extract is dried over sodium sulfate or magnesium sulfate and concentrated to provide the crude anisole of Formula 5.

The crude product can be further purified by crystallization, distillation and flash column-chromatography if needed.

Compounds of Formula 6 and 7 are prepared by treating the phenol of Formula 4 with chlorodi-fluoromethane or chlorotrifluoromethane, respectively,

20

25

under literature conditions (K. Morimoto, K. Makino, S. Yamamoto and G. Sakata, *J. Heterocycl. Chem.*, **1990**, 27, 807 and Fuss A.; Koch V., *Synthesis*, **1990**, 604 and 681-685).

5 Introduction of R²

Benzonitriles of Formula 9 can be prepared from the corresponding halobenzenes of Formula 8 by treatment with potassium cyanide or cuprous cyanide (Scheme 4). The halobenzene is dissolved or dispersed in a solvent such as N, N-dimethylformamide or N-methyl-2-pyrrolidone and treated with the cyanide salt at temperatures of 120-180°C for 1 to 24 hours. Aqueous work-up followed by purification by distillation, recrystallization, or column chromatography affords the desired material.

15 Scheme 4

$$\mathbb{R}^3$$
 \mathbb{R}^1
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3

Alternatively, benzonitriles of Formula 9 can be prepared from nitrobenzenes of Formula 10 as illustrated in Scheme 4. The nitrobenzene is reduced to the aniline of Formula 11 by hydrogenation or methods described above. The aniline of Formula 11 can then be converted to the benzonitrile by formation of the diazonium salt followed by treatment with cuprous cyanide (see Sandler S. R.; Karo W., Organic Functional

Group Preparations, Academic: New York, (1983); Chapters 13 and 17).

The benzonitriles of Formula 9 can be converted to compounds of the present invention wherein $R^2=CO_2R^4$, $C(X)NR^{17}R^{18}$, $C(halogen)=NOR^7$ and $C(S)OR^6$ as illustrated in Scheme 5.

Scheme 5

CN
$$30\% \text{ H}_2\text{O}_2$$
 R^1
 $M_2\text{CO}_3$
 $M_2\text{CO}_3$

10

The cyano compound can be converted to the amide of Formula 10 according to Youngdale G. A.; Oglia T. F., J. Med. Chem. 1985, 28, 1790-96 using 30% aqueous hydrogen peroxide, methanol and sodium hydroxide or A. Katritzky; B. Pilarski and L. Urogdi, Synthesis 1989, 950 using 30% aqueous hydrogen peroxide, potassium carbonate and dimethylsulfoxide. addition, the cyano group in compounds of Formula 9 can be converted to carboxylic acids of Formula 11 using about 5-20% aqueous base such as sodium hydroxide or 10 potassium hydroxide (preferably 5%) at about 25 to 100°C for 1 to 24 hours. The carboxylic acid can be converted to the acid chloride of Formula 12 using thionylchloride or phosphorus oxychloride. chloride may be treated with R4OH to provide the 15 corresponding ester of Formula 13 under conditions well known to those versed in the art. In an analogous fashion the acid chloride may be treated with NHR17R18 to provide the corresponding amide of Formula 14.

The thioesters of Formula 15 and the thioamides of Formula 16 can be synthesized by treatment of the aforementioned esters and amides, respectively, with Lawesson's reagent (see Pedersen, B. S., Lawesson, S. O., Tetrahedron 1979, 2433-2437 and references cited therein).

The compounds of Formula 17 can be prepared from the amides of Formula 14 (Scheme 6). The amide is treated with a tetrahalomethane/triphenylphosphine reagent as described in the art (T. Sakamoto et al., Synthesis, 1991, 9, 950-952 and E. C. Taylor et al., J. Org. Chem., 1971, 36, 253).

Scheme 6

The anilines of Formula 11 can be converted to the benzaldehydes of Formula 18 by following the methods taught in H. E. Baumgarten, Ed. Organic Syntheses V, John Wiley, New York (1973) 139-142 or using obvious modifications thereof (Scheme 7).

10 Scheme 7

The benzaldehyde can be oxidized to the

15 corresponding carboxylic acid of Formula 19 using the methods disclosed in Dalcandle, E.; Montanari, F. J. Org. Chem. 1986, 51, 567-569 and Srivastava R. G., Venkataramani Synth. Commun. 1988, 18, 2193-2200. The carboxylic acid functionality can in turn be converted into the R² groups of the present invention as described above and illustrated in Scheme 5.

The benzaldehydes of Formula 18 can also be used to prepare other compounds of the present invention as illustrated in Scheme 8.

Scheme 8

The benzaldehyde of Formula 18 can be converted to the oxime of Formula 20 by reacting it with NH₂OR⁷. The aldehyde of Formula 18 can also be reacted with active methylene compounds of the type CH₂R²¹R²² and a base such as pyridine and potassium carbonate to 10 provide the olefin of Formula 21. The secondary alcohol of Formula 22 (R²=CH(C₁-C₂ alkyl)OH) can be prepared by treatment of the benzaldehyde with (C₁-C₂ alkyl)MgBr. Alcohols of Formulae I and II wherein R²=CH₂OH can be prepared by conventional

10

reduction of benzaldehydes of Formula 18. These benzylic alcohols and the alcohols of Formula 22 can be treated with acetyl chloride or acetic anhydride under standard conditions to prepare compounds wherein R^{20} is C(0) CH₃.

The terminal alkyne of Formula 24 can be synthesized from the benzaldehyde of Formula 18 by the Corey-Fuchs homologation by treating the aldehyde first with carbon tetrabromide/triphenylphosphine to form the dibromoolefin of Formula 23, followed by treatment with n-butyllithium, rearrangement and quench with aqueous acid according to Corey, E. J., Fuchs, P. L., Tetrahedron Lett. 1972, 3769-3772 and references cited therein.

Cyanooximes of Formula 26 wherein R² = C(CN)=NOR⁷ can be prepared as illustrated in Scheme 9. The phenylacetonitrile of Formula 25 is treated with an alkylnitrite under basic conditions using the procedures described in Noland, W. E., ed., Organic Syntheses VI, John Wiley: New York (1988), pp 199-203.

$$R^3$$
 25 (alkyl) ONO R^3 26 R^3 26

Scheme 9

Compounds of Formula I and II wherein $R^2 = CHR^{19}(halogen)$, $CHR^{19}CN$, $CHR^{19}C(=0)NH_2$, and $CHR^{19}CO_2H$ can be prepared using the methods illustrated in Scheme 10. The alcohol of Formula 27 can be prepared using the method described in Scheme 8

 $(R^{19} = C_1 - C_2 \text{ alkyl})$ or by conventional reduction of the benzaldehyde as described previously $(R^{19} = H)$.

Scheme 10

5

Treatment of the benzylic alcohol with a thionyl-10 halide (e.g., thionylchloride) at 25-100°C in an inert solvent such as benzene, toluene or dichloromethane for 2-12 hours produces the halide of Formula 28.
Displacement of the halide with a cyanide salt, for example potassium cyanide, produces the nitrile of Formula 29. This method is described in Sandler, S. R., Karo, W. in Organic Functional Group Preparations, Academic: New York (1983); Chapter 17. The nitrile can be converted to the amide of Formula 30 or the carboxylic acid of Formula 31 using conditions described above for the coversion of nitriles to amides and acids (see Scheme 5).

Introduction of R3

10

15

Scheme 11 illustrates the preparation of compounds of Formula II wherein $R^3 = OR^{12}$ or $O-N=CR^{30}R^{31}$. In order for the nucleophilic aromatic substitution to occur, R^2 must be a powerful electron-withdrawing substituent such as cyano or nitro. The halobenzenes of Formulae 23 and 24 are either commercially available or can be prepared by one skilled in the art using well known methods.

20 Scheme 11

The halobenzene 32 is treated with R¹²OH or

25 HO-N=CR³⁰R³¹ and one equivalent of a base such as sodium hydride, potassium hydride, potassium hydroxide, potassium t-butoxide and sodium hydroxide in an inert solvent such as N, N-dimethylformamide, benzene, toluene, xylene and tetrahydrofuran. The reaction

temperature ranges from 0 to 140°C and reaction time is between 30 minutes and 120 hours.

Upon completion of the reaction, the reaction mixture is concentrated under reduced pressure. Water is then added to the residue and extracted with organic solvent. The organic extract is dried and concentrated to provide crude product. The crude phenylether of Formula 33 or 34 can be further purified by flash column chromatography if needed.

In a similar fashion, $R^{13}SH$ and $R^{14}R^{15}NH$ can be used instead of $R^{12}OH$ or $HO-N=CR^{30}R^{31}$ in the process illustrated in Scheme 11 to afford compounds of Formula II wherein $R^3=R^{13}S$ and $R^{14}R^{15}N$, respectively.

Compounds of Formula I wherein R³=OR¹² can be synthesized as illustrated in Scheme 12. The anisoles of Formula 35 are commercially available or can be synthesized by one skilled in the art by following literature methods or slight modifications thereof. Alternatively, the phenols of Formula 36 can be prepared from the nitro compounds as described above (see Scheme 2).

Scheme 12

25

15

20

The complete demethylation of the methylether can be accomplished using boron tribromide (BBr₃) or other

reagents described in a review by M. V. Bhatt and S. U. Kulkarni, *Synthesis* **1983**, 248-282. The phenol then can be alkylated to produce the R¹² ether of Formula 37.

The thiols can be prepared using the well-known methods four step procedure for converting anilines to thiols illustrated in Scheme 13. These synthetic steps are described in detail in Sandler, S. R.; Karo, W., Organic Functional Group Preparations, Academic: New York (1983), Chapters 16, 13, 4 and 18, respectively. Alkylation of the sulfur with $R^{13}L$ wherein L is a typical leaving group such as bromide, under standard conditions affords compounds of Formulae I and II wherein $R^3 = SR^{13}$.

Scheme 13

20

25

10

5

$$R^2$$
 R^2
 R^2

Compounds of Formulae I and II wherein \mathbb{R}^3 is a mono- or disubstituted amino group and \mathbb{R}^{14} and \mathbb{R}^{15} are separate substituents can be prepared as illustrated in Scheme 14. Treatment of the aniline of Formula 38 with acetic anhydride affords the monoacetyl compound of Formula 39. N-Alkylation with $(C_1-C_2 \text{ alkyl})L$, wherein L is a leaving group such as iodide, affords compounds of Formula 40. Hydrolysis of the acetyl group with base affords the monoalkyl compound. A second

alkylation with $(C_1-C_2 \text{ alkyl})L$ affords the disubstituted compound of Formula 41.

Scheme 14

$$\begin{array}{c|c}
CH_3C-N & base \\
CC_1-C_2 & alkyl) & H
\end{array}$$

$$\begin{array}{c|c}
CC_1-C_2 & alkyl) & H
\end{array}$$

$$\begin{array}{c|c}
CC_1-C_2 & alkyl) & H
\end{array}$$

$$(C_1-C_2 \text{ alkyl})_2N$$

5

Compounds of Formulae I and II wherein R¹⁴ and R¹⁵ are taken together to form a ring can be prepared by nucleophilic aromatic substitution as described above (Scheme 11). Alternatively, the aniline of Formula 38 in Scheme 14 may be alkylated with L-(CH₂)₄-L, L-(CH₂)₅-L or L-(CH₂)₂O(CH₂)₂-L to form the pyrrolidinyl, piperidinyl, and morpholinyl compounds, respectively.

Compounds of Formulae I and II wherein $R^3=CH_2OR^{16}$, CH_2SR^9 , and $CH_2NR^{14}R^{15}$ can be prepared starting from toluenes as illustrated in Scheme 15. The starting toluenes are commercially available or can be prepared

by one skilled in the art following literature methods or obvious modifications thereof.

Scheme 15

$$\begin{array}{c|c}
 & R^2 \\
 & R^1 \\
 & R^1 \\
 & R^2 \\
 & R^1 \\
 & Dase
 \end{array}$$
Results of the second states of the second state

5

25

Toluenes of Formula 42 can be converted to bromomethyl compounds of Formula 43 using one equivalent of N-bromosuccinimide (NBS) in a solvent such as dichloromethane or carbon tetrachloride at a temperature between 25-100°C for 1 to 48 hours. The bromo compound can be converted to ethers of Formula 44 using R¹⁶OH and a base such as triethylamine, pyridine or potassium carbonate in an inert solvent such as N,N-dimethylformamide, benzene, toluene, xylene or tetrahydrofuran. The reaction temperature ranges from 0 to 140°C and reaction time is between 1 hour and 120 hours.

The bromo compound of Formula 43 can be reacted
with R⁹SH or R¹⁴R¹⁵NH instead of R¹⁴OH using the same
procedure outlined in Scheme 15 to prepare compounds of
Formulae I and II wherein R³=CH₂SR⁹ or CH₂NR¹⁴R¹⁵.

Scheme 16 illustrates the synthesis of compounds of Formulae I and II wherein R^3 is n-propyl; C_4 - C_{10} alkyl; n-propyl or C_4 - C_7 alkyl substituted with one or more halogen, OR^8 , SR^9 or $NR^{10}R^{11}$; C_1 - C_3 alkyl substituted

10

15

with OR^{16} , SR^9 , $NR^{14}R^{15}$, $CO_2(C_1-C_2 \text{ alkyl})$, or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 or halogen; $CH_2(C_3-C_6 \text{ cycloalkyl})$, or $C_3-C_6 \text{ alkenyl}$ optionally substituted with one or more halogen or $CO_2(C_1-C_2 \text{ alkyl})$.

The R³² group in the Formulae of Scheme 16 can be n-ethyl; C₃-C₉ alkyl; n-ethyl or C₃-C₆ alkyl substituted with one or more halogen, OR⁸, SR⁹ or NR¹⁰R¹¹; C₁-C₂ alkyl substituted with OR¹⁶, SR⁹, NR¹⁴R¹⁵, CO₂(C₁-C₂ alkyl), or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; C₃-C₆ cycloalkyl; or C₂-C₅ alkenyl optionally substituted with one or more halogen or CO₂(C₁-C₂ alkyl).

The acid chlorides of Formula 45 are commercially available or can be prepared using the methods disclosed herein or commonly known to one skilled in the art.

Scheme 16

20

25

The acid chlorides of Formula 45 can be converted to ketones of Formula 46 using the methods described in Sandler S.R.; Karo W.; Organic Functional Group Preparation; Academic; New York, (1983); Chapter 8. The ketones of Formula 46 can be reduced to the

10

methylene compounds of Formula 47 using a variety of reducing agents, for example sodium borohydride/ aluminum chloride, as described in Hudlicky, M., Reductions in Organic Chemistry, Eillis Horwood: New York; (1984) 107-132.

Compounds of Formulae I and II wherein R³ = alkyl or optionally substituted phenyl, pyridyl, thienyl, furyl, pyrazolyl, or thiazolyl can be prepared using a palladium-catalyzed cross-coupling reaction as illustrated in Scheme 17.

Scheme_17

Treatment of a phenyl bromide with an organozinc reagent of Formula R³Zn(halide) in the presence of tetrakis(triphenylphosphine)palladium (0) affords the R³ substituted compounds of Formulae I and II. Examples of this well-known procedure can be found in:

20 Y. Okamoto et al., J. Organomet. Chem. 1989, 369, 285-290; E. Erdik, Tetrahedron, 1992, 48, 9577-9648; Heathcock, C. H., ed. Organic Syntheses, Vol. 66, John Wiley: New York (1987), pp 67-74; and E. Negishi et al., J. Org. Chem., 1977, 42, 1821-1823.

Compounds of Formulae I and II wherein R³ is optionally substituted phenyl, furyl, thienyl or pyridyl can also be prepared by palladium-catalyzed cross-coupling with arylboronates using the procedures described in N. Miyaura et al., Synth. Commun., 1981, 11, 513, M. A. Siddiqui, V. Snieckus, Tetrahedron Lett., 1988, 5463, and W. J. Thompson et al., J. Org. Chem., 1988, 53, 2052.

20

25

In addition, compounds of Formulae I and II wherein R³ is optionally substituted pyridyl, thiazolyl, pyrrolyl, thienyl or furyl can be prepared by palladium-catalyzed cross-coupling with heteroaryl trialkylstannanes. Examples of the this procedure are also known in the literature. For example, see T. R. Bailey, Tetrahedron Lett., 1986, 4407 and A. Minato et al., Tetrahedron Lett., 1981, 5319.

EXAMPLE 1

10 Step A: Preparation of methyl 2-chloro-4-hydroxy benzoate

Under nitrogen, 6 g of thionyl chloride was added dropwise to ice cold (0°C) methanol (50 mL). The mixture was stirred at ambient temperature for 30 minutes. To this solution was then added 8.6 g of 2-chloro-4-hydroxy benzoic acid. The resulting mixture was heated at reflux for ~12 hours and then concentrated under reduced pressure. The residual solid was suspended in 100 mL of a mixture of hexane: diethyl ether (90:10) and the solid precipitate was collected by filtration, washed with hexane, air dried and then dried in a vacuum oven to provide 6 g of the title product of Step A as a solid, m.p. 126-129°C; NMR (CDCl₃): ppm δ 7.84 (d, 1H); 6.96 (s, 1H); 6.78 (d of d, 1H); 6.35 (b, s, 1H); 3.9 (s, 3H); IR (Nujol): 3300 cm⁻¹, 1700 cm⁻¹ (C=O).

Step B: Preparation of Methyl 2-chloro-4-(2-methyl-propyloxy)benzoate

To 3 g of methyl 2-chloro-4-hydroxy benzoate in

N, N-dimethyl formamide (25 mL), a solution of 3 g of

2-methyl-1-bromo propane in N, N-dimethylformamide

(5 mL) and 3 g of potassium carbonate was added. The

mixture was then heated at 90-95°C for 2 hours. After

heating the mixture was cooled to room temperature and

poured into water (100 mL). The mixture was then

10

extracted with diethylether (2 times with 50 mL). The diethylether extracts were combined, dried over magnesium sulfate and concentrated under reduced pressure to provide crude product. The isolated crude product was purified by silica gel flash column chromatography (Hexane: ethyl-acetate 8:2) to provide after evaporation of eluant 3 g of the title compound of Step B as a clear oil; NMR (CDCl₃): ppm δ 7.88 (d, 1H); 7.0 (s, 1H); 6.8 (d, 1H); 3.89 (s, 3H); 3.74 (d, 2H); 2.0 (m, 1H); 1.035 (d, 6H); IR (Neat): 1730 cm⁻¹ (C=O).

EXAMPLE 2

Preparation of 2-chloro-4-(2-methyl-propyloxy)benzoic acid

15 A mixture of 5 g of methyl 2-chloro-4-hydroxy benzoate, and 1.6 g potassium hydroxide in methanol (30 mL) was heated at reflux for ~3 hours and allowed to stir at ambient temperature for 12 hours. reaction mixture was concentrated under reduced 20 pressure. The residue was dissolved in water (50 mL) and extracted with diethyl ether (25 mL) and the diethyl ether extracts were discarded. The aqueous extract was acidified with concentrated hydrochloric acid to pH ~4 and the resulting solids were collected by filtration, washed with water (50 mL), hexane 25 (50 mL) and dried under vacuum overnight to provide 4.5 q of title compound as a white solid, m.p. 82-84°C; NMR (CDCl₃): ppm δ 8.0 (d, 1H); 7.0 (s, 1H); 6.8 (d, 1H); 3.78 (d, 2H); 2.1 (m, 1H); 1.02 (d, 6H); IR $(Nujol): 1700 cm^{-1} (C=0).$ 30

EXAMPLE 3

Preparation of 2-chloro-4-(2-methylpropyloxy)benzamide

Under nitrogen, 2.6 g of 2-chloro-4-(2-methyl-35 propyloxy)benzoic acid was dissolved in benzene (25 mL)

15

and thionyl chloride (5 mL) was added. The resulting solution was heated at reflux for 3 hours and concentrated under reduced pressure to provide an oil. The oil was dissolved in tetrahydrofuran (20 mL) and cooled to 0°C (ice bath) and 4 mL of aqueous ammonium hydroxide (30%) was added and stirred for 30 minutes. The mixture was concentrated under reduced pressure. To the residue, water (100 mL) was added and the resulting precipitate was collected by filtration, washed with water and dried under vacuum to provide 1.4 g of the title compound as a white solid, m.p. 129-130°C; NMR (CDCl₃): ppm δ 7.85 (d, 1H); 6.92 (s, 1H); 6.86 (d, 1H); 6.6 (b,s, 1H); 6.5 (b,s, 1H); 3.74 (d, 2H); 2.2 (m, 1H); 1.03 (d, 6H); IR (Nujol): 3360, 3170 cm⁻¹ (NH₂), 1635 cm⁻¹ (C=O).

EXAMPLE 4

Step A: Preparation of 2-bromo-5-hydroxy-benzoic acid Under nitrogen, 4.62 g of 2-bromo-5-methoxy benzoic acid was suspended in dichloromethane (50 mL). 20 mixture was cooled to 0°C and boron tribromide (60 mL, 1M solution in dichloromethane) was added dropwise. The clear solution was stirred at ambient temperature for 12 hours, cooled to 5°C. Water (25 mL) was subsequently added dropwise, the mixture stirred for 30 25 minutes and extracted with diethylether (2 times with 50 mL). The diethylether extracts were dried over magnesium sulfate and concentrated under reduced pressure to provide 2.2 g of the title compound of Step A as a solid, m.p. 179-181°C; NMR (Me₂SO-d₆): ppm 30 δ 10.0 (b,s, 1H); 7.48 (d, 1H); 7.13 (s, 1H); 6.8 (m, 1H); IR (Nujol): 1705 cm^{-1} (C=O).

Step B: Preparation of methyl 2-bromo-5-hydroxybenzoate

By the procedure of Example 1, Step A, 1.67 g of 2-bromo-5-hydroxy-benzoic acid was reacted with 5 mL

thionyl chloride in methanol (20 mL). The isolated crude product was washed with hexane and dried under vacuum to provide 1.8 g of title compound of Step B as a white solid, m.p. 92-95°C; NMR (CDCl₃): ppm δ 7.5 (d, 1H); 7.3 (m, 1H); 6.8 (m, 1H); 3.94 (s, 3H); IR (Nujol): 3400 cm⁻¹ (OH); 1700 cm⁻¹ (C=O).

Step C: Preparation of Methyl 2-bromo-5-(2-methyl-propyloxy)benzoate

By the procedure of Example 1, Step B, 1.2 g of methyl 2-bromo-5-hydroxy-benzoate was reacted with 0.816 g potassium carbonate and 0.816 g of 2-methyl-1-bromopropane in N,N-dimethylformamide (20 mL). The isolated crude product was purified by silica gel flash column chromatography (hexane: ethylacetate 8:2) to provide after evaporation of eluant 1 g of the title compound of Step C as an oil. NMR (CDCl₃): ppm δ 7.53 (d, 1H); 7.31 (m, 1H); 6.8 (d of d, 1H); 3.92 (s, 3H); 3.7 (d, 2H); 2.0 (m, 1H); 1.03 (d, 6H); IR (neat): 1740 cm⁻¹ (C=O).

20 EXAMPLE 5

5

10

15

25

35

Preparation of Methyl 2-bromo-5-(2-methyl-propyloxy)benzoic acid

By the procedure of Example 2, 5.5 g of methyl 2-bromo-5-(2-methylpropyloxy)-benzoate was reacted with 1.7 g of potassium-hydroxide in methanol (50 mL) to provide 5 g of title compound as a white solid mp $105-109^{\circ}$ C. NMR (CDCl₃): ppm δ 7.57 (d, 1H); 7.52 (s, 1H); 6.95 (m, 1H); 3.74 (d, 2H); 2.1 (m, 1H); 1.04 (d, 6H); IR (Nujol): 1665 cm⁻¹ (C=O).

30 EXAMPLE 6

<u>Preparation of 2-Bromo-5-(2-methyl-propyloxy)benzamide</u>

By the procedure of Example 3, 1.36 g of product of Example 5 was reacted first with thionylchloride 5 mL, and then 1.7 mL of aqueous ammonium hydroxide to

25

30

35

provide 1 g title compound as a white solid mp $135-137^{\circ}$ C. NMR (CDCl₃): ppm δ 7.47 (d, 1H); 7.21 (s, 1H); 6.8 (d of d, 1H); 6.2 (b,s, 1H); 6.0 (b,s, 1H); 3.72 (d, 2H); 2.0 (m, 1H); 1.02 (d, 6H); IR (Nujol): 3350 cm⁻¹ (NH₂) 1640 cm⁻¹ (C=O).

EXAMPLE 7

Preparation of 2-Chloro-4-(3-trifluoro-methylphenyl)benzonitrile

To 5.4 g of 2-chloro-4-bromo-benzonitrile in 8 mL 10 of ethylene glycol dimethyl ether, 0.01 g of (Ph₃P)₂PdCl₂ was added and stirred at ambient temperature for 15 minutes. To this mixture 5.23 q of 3-trifluoromethylbenzeneboronic acid and 6.38 g of sodium bicarbonate in 40 mL water were added and heated at reflux for 2.5 h. The mixture was then cooled to 15 ambient temperature and extracted two times with 50 mL ethyl acetate. The combined ethyl acetate extracts were washed with 150 mL of 0.5 N aqueous sodium hydroxide and 50 mL of brine. The ethyl acetate 20 extracts were dried over magnesium sulfate and concentrated under reduced pressure to provide the title compound as a white solid, m.p. 92-98°C. ¹H-NMR ppm δ 7.73 (m, 5H); 7.58 (m, 2H); 7.59 (m, $(CDCl_3):$ 1H). IR (Nujol): 2227 (C \equiv N) cm⁻¹.

EXAMPLE 8

Preparation of 2-Chloro-4-(3-trifluoro-methylphenyl)benzamide

To a solution of 1.41 g of the compound of Example 7 in dimethylsulfoxide (8 mL), 1.12 mL of 30% aqueous hydrogen peroxide and 0.28 g of potassium carbonate were added. The mixture exothermed to ~35°C; and was then heated to 60°C for 1 h. The mixture was allowed to come to room temperature and poured into water (50 mL). The resulting solid was collected, washed with 50 mL of water and hexanes and dried under

vacuum overnight to provide the title compound as a white solid, m.p. 138-145°C. 1 H NMR (CDCl₃): ppm δ 7.95 (d, 1H); 7.75 (m, 2H); 7.66 (m, 4H); 6.5 (bs, 1H); 6.0 (bs, 1H). IR (Nujol): 3367 (NH₂) cm⁻¹, 1649 (C=O) cm⁻¹.

EXAMPLE 9

<u>Preparation of 2-Chloro-4-(2-methyl-propyl)benzonitrile</u>

Under nitrogen, isobutylmagnesium chloride (8.6 mL, 2.0 M solution in diethyl ether) was added to a 10 suspension of 2.3 g of zinc chloride in 40 mL of tetrahydrofuran. The mixture was stirred at ambient temperature for 45 minutes. To this mixture was then added 3.6 g of 2-chloro-4-bromo benzonitrile and 0.4 g 15 of tetrakis(triphenylphosphine) palladium (0). resulting mixture was stirred at ambient temperature for 12 h, and then heated at reflux for 2 h. mixture was then cooled to room temperature and acidified with 1 N aqueous hydrochloric acid. mixture was then extracted two times with 50 mL of diethyl ether. The organic layer was washed each with 20 mL of saturated aqueous NaHCO3, water and brine. The diethyl ether extract was dried over magnesium sulfate and concentrated under reduced pressure to provide crude product. The isolated crude product was 25 purified by silica gel flash column chromatography (hexane:ethyl acetate 9:1) to provide after evaporation of eluant 2.12 g of the title compound as a clear oil; ¹H NMR (CDCl₃): ppm δ 7.57 (d, 1H); 7.3 (s, 1H); 7.15 (d, 1H); 2.51 (d, 2H); 1.9 (m, 1H); 0.91 (d, 6H); IR 30 (Neat): $2210 (C \equiv N) cm^{-1}$.

29

EXAMPLE 10

Preparation of 2-Chloro-4-(2-methyl-propyl)benzamide

Using the same procedure described in Example 8, 0.97 g of product of Example 9 was reacted with 1.12 mL 30% aqueous hydrogen peroxide and 0.28 g potassium carbonate in dimethylsulfoxide (8 mL). The isolated crude product was washed with hexanes and dried under vacuum to provide 0.8 g of the title compound as a

white solid, m.p. 97-107°C. ¹H NMR (CDCl₃): ppm δ 7.74 (d, 1H); 7.2 (s, 1H); 7.125 (d, 1H); 6.43 (bs, 1H); 6.05 (bs, 1H); 2.48 (d, 2H); 1.9 (m, 1H); 0.91 (d, 6H). IR (Neat): 3375 (NH₂) cm⁻¹, 1647 (C=O) cm⁻¹.

Using the general procedures described in Schemes 15 1-17 and Examples 1-10 or by obvious modifications thereof, one skilled in the art can prepare the compounds of Tables 1-2.

TABLE 1

 $R^1 = C1$, $R^2 = C(0) NH_2$ cyclobutyl \mathbb{R}^3 cyclopentyl (CH₂)₂CH₃ cyclohexyl (CH₂)₃CH₃ CH2OCH2CH3 CH2OCH2CH2CH3 (CH₂)₄CH₃ (CH₂)₅CH₃ CH2OCH2CH(CH3)2 $CH_2OCH_2(C_6H_5)$ (CH₂) 6CH₃ (CH₂)₇CH₃ CH_2OCH_2 (3 $CF_3-C_6H_4$) CH_2OCH_2 (2C1- C_6H_4) (CH₂)₈CH₃ (CH₂) ₉CH₃ CH_2OCH_2 (3SCH₃-C₆H₄) CH₂CH (CH₃)₂ CH_2OCH_2 (4C1-C₆H₄) CH₂C (CH₃)₃ $CH_2OCH_2(2, 4F-C_6H_3)$ CH2CH2OCH2CH2CH3 CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH₂O (C₆H₅) CH_2CH_2CH (CH_3) $CH_2CH_2CH_3$ $CH_2O(3CF_3-C_6H_4)$ CH2CH (CH3) CH2CH2CH3 $CH_2O(4CF_3-C_6H_4)$ CH2CH (CH2CH3) CH2CH3 $CH_2O(2C1-C_6H_4)$ CH2O (3SCH3-C6H4) $CH_2CH_2CH_2OCH_2CH_3$ CH2CH2CH2CH2OCH3 $CH_2O(2CH_3-C_6H_4)$ CH2CH2CH2-S-CH2CH3 $CH_{2}O(4C1-C_{6}H_{4})$ $CH_2O(2, 4C1-C_6H_3)$ CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2SCH2CH3 CH2CF2CH(CH3)2 CH2SCH2CH2CH3 CH2CH2CH2CF2CH3 CH2SCH2CH(CH3)2 CH2-cyclopropyl $CH_2SCH_2(C_6H_5)$ CH2-cyclobutyl CH_2SCH_2 (3CF₃-C₆H₄) CH₂S (2C1-C₆H₄) CH2-cyclopentyl CH2-cyclohexyl CH2S (4CH3-C6H4) $CH_2S(2,4C1-C_6H_3)$ cyclopropyl

СH₂S (3SCH₃-С₆H₄) $CH_2S(2,6C1-C_6H_3)$ $CH_2S(C_6H_5)$ $CH_2S(3CF_3-C_6H_4)$ CH₂S (2C1-C₆H₄) $CH_2S(4CH_3-C_6H_4)$ $CH_2S(2,6C1-C_6H_3)$ $CH_2S(2,4C1-C_6H_3)$ CH2NHCH2CH3 CH2NHCH2CH2CH3 $CH_2NHCH_2C(C_6H_5)$ CH2NHCH2CH (CH3) 2 CH_2NHCH_2 (3CF₃-C₆H₄) CH_2NHCH_2 (2C1- C_6H_4) CH2NH (C6H5) $CH_2NH(2C1-C_6H_4)$ $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH2 (CH2) 2CH3 осн₂ (сн₂) ₃сн₃ осн₂ (сн₂) ₅сн₃ осн₂с (с₆н₅) OCH₂CH₂CH (CH₃)₂ OCH2-Si(CH3)3 OCH₂ CH CH₂ $OCH_2 (3CF_3 - C_6H_4)$ осн₂ (2С1-С₆н₄) OCH2CH (CH3) 2

O(C ₆ H ₅)	ин (С ₆ н ₅)	CH ₂ (2C1-C ₆ H ₄)
$0(3CF_3-C_6H_4)$	NH (3CF ₃ -C ₆ H ₄)	CH ₂ (4C1-C ₆ H ₄)
$0(2C1-C_6H_4)$	NH (2C1-C ₆ H ₄)	CH ₂ (2, 4C1-C ₆ H ₃)
$O(4SCH_3-C_6H_4)$	NH (3CH ₃ -C ₆ H ₄)	CH ₂ (3SCH ₃ -C ₆ H ₄)
$0(2,4C1-C_6H_3)$	NH(2,4C1-C ₆ H ₃)	CH ₂ (30CH ₃ -C ₆ H ₄)
SCH2CH2CH3	NH (2,6C1-C ₆ H ₃)	CH ₂ (3C1-C ₆ H ₄)
SCH2 (CH2) 2CH3	$N(CH_3)(3CF_3-C_6H_4)$	CH ₂ (2, 6F-C ₆ H ₃)
SCH2 (CH2) 3CH3	и (сн ₃) сн ₂ сн ₂ сн ₃	CH ₂ (2,6C1-C ₆ H ₃)
SCH ₂ (CH ₂) ₅ CH ₃	N (CH ₂) ₄	CH ₂ (3, 4F-C ₆ H ₃)
SCH ₂ (C ₆ H ₅)	N (CH ₂) 5	CH ₂ -Si (CH ₃) ₃
SCH2 (3SCH3-C6H4)	N (CH ₂) 6	ON=C (CH ₃) ₂
SCH2 (20CH3-C6H4)	N(CH2CH2-OCH2CH2)2	$ON=CH(C_6H_5)$
SCH ₂ (2C1-C ₆ H ₄)	сн ₂ со ₂ сн ₃	ON=C (CH ₃) C ₆ H ₅
SCH ₂ (2,4-C ₆ H ₃)	сн ₂ сн ₂ со ₂ сн ₂ сн ₃	OCH ₂ (2, 6-C1-C ₆ H ₃)
$SCH_2(4CF_3-C_6H_4)$	сн ₂ сн ₂ со ₂ сн ₃	осн ₂ (с=сн ₂) сн ₃
S (CH ₃) 3	CH ₂ CH ₂ OCH ₂ CH ₃	OCH ₂ -CH CH ₂
SCH2CH (CH3)2	CH2CH2SCH2CH3	CH ₂
s (c ₆ H ₅)	CH ₂ CH ₂ -NHCH ₂ CH ₃	4F-C ₆ H ₄
S (3CF3-C6H4)	CH2CH2N (CH3) CH2CH3	4C1-C ₆ H ₄
$S(2C1-C_6H_4)$	CH=CH (CH ₃) ₂	4Br-C ₆ H ₄
$S(4OCH_3-C_6H_4)$	CH ₂ CH ₂ CH=CH ₂	2-pyridyl
$S(2,4C1-C_6H_3)$	CH ₂ CH=CH-CH ₃	2-fury1
$S(2,6F-C_6H_3)$	CH=CH-CH ₂ CH ₂ -C1	2-thiazolyl
2 (3CH ₃ -C ₆ H ₄)	CH2CH2CH-C1CH2-C1	2-imidazolyl
NHCH2CH2CH3	С ₆ н ₅	0-2 (3CF ₃ -C ₅ H ₃ N)
$\mathrm{NHCH_2}\left(\mathrm{CH_2}\right)_2\mathrm{CH_3}$	3CF ₃ -C ₆ H ₄	0-2C1-6CF3-C6H3
NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C6H4	
NHCH ₂ (CH ₂) ₅ CH ₃	3CH3-C6H4	$R^1=Br, R^2=C(0)NH_2$
NHCH ₂ CH (CH ₃) ₂	30CH ₃ -С ₆ H ₄	R ³
инсн ₂ (С ₆ н ₅)	2CF ₃ -C ₆ H ₄	(CH ₂) ₂ CH ₃
$\mathrm{NHCH}_{2}\left(\mathrm{3CF}_{3}\mathrm{-C}_{6}\mathrm{H}_{4}\right)$	2,4C1-C ₆ H ₃	(CH ₂) ₃ CH ₃
$NHCH_2$ (2C1-C ₆ H ₄)	2,6C1-C6H3	(CH ₂) ₄ CH ₃
$\mathrm{NHCH}_2(\mathrm{4CH}_3\mathrm{-C}_6\mathrm{H}_4)$	2SCH3-C6H4	(CH ₂) ₅ CH ₃
$NHCH_2(2,4C1-C_6H_3)$	CH ₂ (C ₆ H ₅)	(CH ₂) 6CH ₃
$NHCH_2(2,6C1-C_6H_3)$	CH ₂ (3CF ₃ -C ₆ H ₄)	(CH ₂) ₇ CH ₃

	•
(CH ₂) ₈ CH ₃	CH ₂ O(4CF ₃ -C ₆ H ₄)
(CH ₂) ₉ CH ₃	CH ₂ O(2C1-C ₆ H ₄)
CH ₂ CH (CH ₃) ₂	CH ₂ O(3SCH ₃ -C ₆ H ₄)
CH2CH2CH(CH3)2	CH ₂ O(2CH ₃ -C ₆ H ₄)
$\mathrm{CH_2CH_2CH_2CH}$ ($\mathrm{CH_3}$) 2	CH ₂ O(4C1-C ₆ H ₄)
$\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}$ (CH_3) $\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_3$	CH ₂ O(2,4Cl-C ₆ H ₃)
CH2CH (CH3) CH2CH2CH3	СH ₂ SCH ₂ CH ₃
CH2CH(CH2CH3)CH2CH3	CH ₂ SCH ₂ CH ₂ CH ₃
CH2CH2CH2OCH2CH3	CH2SCH2CH(CH3)2
CH2CH2CH2CH2OCH3	СH ₂ SCH ₂ (С ₆ H ₅)
CH2CH2CH2-S-CH2CH3	CH2SCH2 (3CF3-C6H4)
CH2CH2CH2CH2SCH3	CH ₂ S (2C1-C ₆ H ₄)
CH2CH2CH2NHCH2CH3	CH2S (4CH3-C6H4)
CH2CF2CH (CH3)2	CH ₂ S(2,4C1-С ₆ H ₃)
CH2CH2CH2CF2CH3	СH ₂ S (3SCH ₃ -C ₆ H ₄)
CH ₂ -cyclopropyl	CH ₂ S(2,6C1-С ₆ H ₃)
CH ₂ -cyclobutyl	СH ₂ S (С ₆ H ₅)
CH2-cyclopentyl	CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ -cyclohexyl	СH ₂ S (2C1-С ₆ H ₄)
cyclopropyl	СH ₂ S (4СH ₃ -С ₆ H ₄)
cyclobutyl	CH ₂ S (2,6C1-С6H ₃)
cyclopentyl	CH ₂ S(2,4C1-С6H ₃)
cyclohexyl	CH2NHCH2CH3
CH2OCH2CH3	сн ₂ nнсн ₂ сн ₂ сн ₃
CH2OCH2CH2CH3	CH ₂ NHCH ₂ C(C ₆ H ₅)
CH_2OCH_2CH (CH_3) 2	CH2NHCH2CH (CH3) 2
CH ₂ OCH ₂ (С ₆ H ₅)	CH2NHCH2 (3CF3-C6H4)
CH_2OCH_2 (3CF ₃ -C ₆ H ₄)	CH ₂ NHCH ₂ (2C1-C ₆ H ₄)
CH_2OCH_2 (2C1- C_6H_4)	сн ₂ ин (с ₆ н ₅)
$CH_2OCH_2 (3SCH_3-C_6H_4)$	СН ₂ NH (2С1-С ₆ Н ₄)
CH_2OCH_2 (4C1-C ₆ H ₄)	CH ₂ N(CH ₃)(2C1-C ₆ H ₄)
$CH_2OCH_2(2, 4F-C_6H_3)$	осн ₂ сн ₂ сн ₃
CH2CH2OCH2CH2CH3	осн ₂ (сн ₂) ₂ сн ₃
CH ₂ O(C ₆ H ₅)	осн ₂ (сн ₂) ₃ сн ₃
CH ₂ O(3CF ₃ -C ₆ H ₄)	осн ₂ (сн ₂) ₅ сн ₃

OCH₂C (C₆H₅) OCH₂ (3CF₃-C₆H₄) OCH₂ (2C1-C₆H₄) OCH₂CH (CH₃)₂ O(C₆H₅) O(3CF3-C6H4) O(2C1-C6H4) O(4SCH3-C6H4) O(2,4Cl-C₆H₃) SCH2CH2CH3 SCH₂ (CH₂) ₂CH₃ SCH₂ (CH₂) ₃CH₃ SCH₂ (CH₂) ₅CH₃ SCH₂ (C₆H₅) SCH2 (3SCH3-C6H4) SCH₂ (20CH₃-C₆H₄) SCH2 (2C1-C6H4) SCH₂ (2, 4-C₆H₃) SCH2 (4CF3-C6H4) S (CH3) 3 SCH2CH(CH3)2 S (C₆H₅) $S(3CF_3-C_6H_4)$ S(2C1-C6H4) S (40CH3-C6H4) S(2,4C1-C6H3) S(2,6F-C6H3) 2 (3CH3-C6H4) NHCH2CH2CH3 NHCH₂ (CH₂) ₂CH₃ NHCH₂ (CH₂) ₄CH₃ NHCH₂ (CH₂) ₅CH₃ NHCH₂CH (CH₃)₂ NHCH₂ (C₆H₅) NHCH₂ (3CF₃-C₆H₄)

 $NHCH_2 (2C1-C_6H_4)$ NHCH₂ (4CH₃-C₆H₄) $NHCH_2(2, 4C1-C_6H_3)$ $NHCH_2(2,6C1-C_6H_3)$ NH (C6H5) NH (3CF $_3$ -C $_6$ H $_4$) $NH(2C1-C_6H_4)$ NH $(3CH_3-C_6H_4)$ $NH(2,4C1-C_6H_3)$ $NH(2,6C1-C_6H_3)$ $N(CH_3)(3CF_3-C_6H_4)$ N(CH3)CH2CH2CH3 N(CH2)4 N (CH₂) 5 N(CH₂)6 N(CH2CH2-OCH2CH2)2 CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH2CH2-C1 CH2CH2CH-ClCH2-Cl C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4

2,4C1-C6H3

2,6C1-C₆H₃ 2SCH3-C6H4 $CH_2 (C_6H_5)$ $CH_2 (3CF_3 - C_6H_4)$ $CH_2(2C1-C_6H_4)$ $CH_2(4C1-C_6H_4)$ $CH_2(2,4C1-C_6H_3)$ CH2 (3SCH3-C6H4) $CH_2(30CH_3-C_6H_4)$ $CH_2 (3C1-C_6H_4)$ $CH_2(2, 6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$ $CH_2(3, 4F-C_6H_3)$ CH2-Si (CH3) 3 $ON=C(CH_3)_2$ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ $OCH_2(2, 6-C1-C_6H_3)$ OCH_2 (C=CH₂) CH₃ 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl $0-2 (3CF_3-C_5H_3N)$ 0-2C1-6CF3-C6H3 $R^{1}=I$, $R^{2}=C(0)NH_{2}$ \mathbb{R}^3 (CH₂)₂CH₃ (CH₂)₃CH₃

(CH₂)₄CH₃ (CH₂)₅CH₃ (CH₂) 6CH₃ (CH₂)₇CH₃ (CH₂) 8CH₃ (CH₂) 9CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2 CH2OCH2 (C6H5) $CH_2OCH_2 (3CF_3 - C_6H_4)$ CH_2OCH_2 (2C1- C_6H_4) CH2OCH2 (3SCH3-C6H4) CH2OCH2 (4C1-C6H4)

$CH_2OCH_2(2, 4F-C_6H_3)$	OCH2CH2CH3	NHCH ₂ (CH ₂) ₅ CH ₃
CH2CH2OCH2CH2CH3	осн ₂ (сн ₂) ₂ сн ₃	NHCH ₂ CH (CH ₃) ₂
CH ₂ O(C ₆ H ₅)	осн ₂ (сн ₂) ₃ сн ₃	инсн ₂ (с ₆ н ₅)
CH ₂ O(3CF ₃ -C ₆ H ₄)	осн ₂ (сн ₂) ₅ сн ₃	NHCH ₂ (3CF ₃ -C ₆ H ₄)
$CH_2O(4CF_3-C_6H_4)$	осн ₂ с (с ₆ н ₅)	NHCH ₂ (2C1-C ₆ H ₄)
CH ₂ O(2Cl-C ₆ H ₄)	OCH ₂ (3CF ₃ -C ₆ H ₄)	NHCH ₂ (4CH ₃ -C ₆ H ₄)
CH ₂ O(3SCH ₃ -C ₆ H ₄)	OCH ₂ (2C1-C ₆ H ₄)	NHCH ₂ (2, 4C1-C ₆ H ₃)
CH ₂ O(2CH ₃ -C ₆ H ₄)	OCH ₂ CH (CH ₃) ₂	NHCH ₂ (2,6C1-C ₆ H ₃)
CH ₂ O(4Cl-C ₆ H ₄)	O(C ₆ H ₅)	NH (C ₆ H ₅)
CH ₂ O(2,4Cl-C ₆ H ₃)	O(3CF ₃ -C ₆ H ₄)	NH (3CF ₃ -C ₆ H ₄)
сн ₂ scн ₂ cн ₃	O(2C1-C6H4)	NH (2C1-C ₆ H ₄)
CH ₂ SCH ₂ CH ₂ CH ₃	O(4SCH3-C6H4)	NH (3CH3-C6H4)
CH2SCH2CH(CH3)2	O(2,4Cl-C ₆ H ₃)	NH(2,4C1-C ₆ H ₃)
CH ₂ SCH ₂ (C ₆ H ₅)	sch ₂ ch ₂ ch ₃	NH (2,6C1-C ₆ H ₃)
CH2SCH2 (3CF3-C6H4)	SCH ₂ (CH ₂) ₂ CH ₃	N(CH ₃)(3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)	scн ₂ (сн ₂) ₃ сн ₃	N(CH3)CH2CH2CH3
CH2S (4CH3-C6H4)	scн ₂ (сн ₂) ₅ сн ₃	N (CH ₂) 4
$CH_2S(2,4C1-C_6H_3)$	SCH ₂ (C ₆ H ₅)	N (CH ₂) 5
CH2S (3SCH3-C6H4)	SCH2 (3SCH3-C6H4)	N(CH ₂) ₆
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ (20CH ₃ -C ₆ H ₄)	N(CH2CH2-OCH2CH2)2
CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)	CH2CO2CH3
$CH_2S(3CF_3-C_6H_4)$	SCH ₂ (2, 4-C ₆ H ₃)	CH2CH2CO2CH2CH3
CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)	сн ₂ сн ₂ со ₂ сн ₃
$CH_2S(4CH_3-C_6H_4)$	S (CH ₃) 3	CH ₂ CH ₂ OCH ₂ CH ₃
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ CH (CH ₃) ₂	CH2CH2SCH2CH3
$CH_2S(2,4C1-C_6H_3)$	s (C ₆ H ₅)	CH2CH2-NHCH2CH3
CH2NHCH2CH3	S(3CF3-C6H4)	CH ₂ CH ₂ N (CH ₃) CH ₂ CH ₃
CH2NHCH2CH2CH3	S (2C1-C6H4)	CH=CH (CH ₃) ₂
$CH_2NHCH_2C(C_6H_5)$	S (40CH ₃ -C ₆ H ₄)	CH ₂ CH ₂ CH=CH ₂
CH2NHCH2CH(CH3)2	S(2,4C1-C6H3)	CH ₂ CH=CH-CH ₃
CH_2NHCH_2 (3CF ₃ -C ₆ H ₄)	S(2,6F-C ₆ H ₃)	CH=CH-CH ₂ CH ₂ -Cl
CH_2NHCH_2 (2C1- C_6H_4)	2 (3CH ₃ -C ₆ H ₄)	CH2CH2CH-C1CH2-C1
сн ₂ ин (с ₆ н ₅)	NHCH ₂ CH ₂ CH ₃	С ₆ Н ₅
$CH_2NH(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₂ CH ₃	3CF3-C6H4
$CH_2N(CH_3)(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C6H4

3CH ₃ -C ₆ H ₄
30CH ₃ -C ₆ H ₄
2CF ₃ -C ₆ H ₄
2,4C1-C ₆ H ₃
2,6C1-C6H3
2SCH3-C6H4
CH ₂ (C ₆ H ₅)
$CH_2 (3CF_3 - C_6H_4)$
$CH_2 (2C1-C_6H_4)$
$CH_2(4C1-C_6H_4)$
$CH_2(2,4C1-C_6H_3)$
CH ₂ (3SCH ₃ -C ₆ H ₄)
$CH_2 (30CH_3 - C_6H_4)$
$CH_2(3C1-C_6H_4)$
$CH_2(2,6F-C_6H_3)$
$CH_2(2,6C1-C_6H_3)$
$CH_2(3, 4F-C_6H_3)$
CH_2 -Si(CH_3) ₃
ON=C (CH ₃) ₂
$ON=CH(C_6H_5)$
$ON=C(CH_3)C_6H_5$
$OCH_2(2, 6-C1-C_6H_3)$
OCH ₂ (C=CH ₂) CH ₃
OCH ₂ -CH
CH ₂
4F-C6H4
4C1-C6H4
4Br-C ₆ H ₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
O-2 (3CF ₃ -C ₅ H ₃ N)
0-2C1-6CF ₃ -C ₆ H ₃

$R^{1}=OCH_{3}, R^{2}=C(O)NH_{2}$	СH ₂ OCH ₂ (3CF ₃ -С ₆ H ₄)
R ³	CH ₂ OCH ₂ (2C1-C ₆ H ₄)
(CH ₂) ₂ CH ₃	CH ₂ OCH ₂ (3SCH ₃ -C ₆ H ₄)
(CH ₂) ₃ CH ₃	CH ₂ OCH ₂ (4C1-C ₆ H ₄)
(CH ₂) ₄ CH ₃	CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)
(CH ₂) ₅ CH ₃	CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃
(CH ₂) ₆ CH ₃	CH ₂ O (C ₆ H ₅)
(CH ₂) ₇ CH ₃	CH ₂ O(3CF ₃ -C ₆ H ₄)
(CH ₂) ₈ CH ₃	CH ₂ O(4CF ₃ -C ₆ H ₄)
(CH ₂) ₉ CH ₃	CH ₂ O (2C1-C ₆ H ₄)
CH ₂ CH (CH ₃) ₂	CH ₂ O(3SCH ₃ -C ₆ H ₄)
CH ₂ CH ₂ CH (CH ₃) ₂	CH ₂ O (2CH ₃ -C ₆ H ₄)
CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂	CH ₂ O(4C1-C ₆ H ₄)
СH ₂ CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃	CH ₂ O(2,4C1-C ₆ H ₃)
CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃	CH ₂ SCH ₂ CH ₃
CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃	CH ₂ SCH ₂ CH ₂ CH ₃
CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃	CH ₂ SCH ₂ CH (CH ₃) 2
CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃	CH ₂ SCH ₂ (C ₆ H ₅)
CH ₂ CH ₂ CH ₂ -S-CH ₂ CH ₃	CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃	CH ₂ S (2C1-C ₆ H ₄)
CH ₂ CH ₂ CH ₂ NHCH ₂ CH ₃	CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ CF ₂ CH (CH ₃) ₂	CH ₂ S(2,4C1-C ₆ H ₃)
CH2CH2CH2CF2CH3	СH ₂ S (3SCH ₃ -C ₆ H ₄)
CH ₂ -cyclopropyl	CH ₂ S (2, 6C1-C ₆ H ₃)
CH ₂ -cyclobutyl	CH ₂ S (C ₆ H ₅)
CH ₂ -cyclopentyl	CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ -cyclohexyl	CH ₂ S (2C1-C ₆ H ₄)
1	CH ₂ S (4CH ₃ -C ₆ H ₄)
cyclobutyl	CH ₂ S(2,6C1-C ₆ H ₃)
cyclopentyl	CH ₂ S(2,4C1-C ₆ H ₃)
cyclohexyl	CH ₂ NHCH ₂ CH ₃
СH ₂ OСH ₂ CH ₃	CH ₂ NHCH ₂ CH ₂ CH ₃
	CH ₂ NHCH ₂ C (C ₆ H ₅)
	CH ₂ NHCH ₂ CH (CH ₃) ₂
1	CH ₂ NHCH ₂ (3CF ₃ -C ₆ H ₄)

CH ₂ NHCH ₂ (2C1-С ₆ H ₄)	
CH ₂ NH (С ₆ H ₅)	
$CH_2NH(2C1-C_6H_4)$	
CH ₂ N (CH ₃) (2C1-C ₆ H ₄)
och ₂ ch ₂ ch ₃	
осн ₂ (сн ₂) ₂ сн ₃	
осн ₂ (сн ₂) ₃ сн ₃	
OCH ₂ (CH ₂) ₅ CH ₃	
OCH ₂ C(C ₆ H ₅)	
$OCH_2(3CF_3-C_6H_4)$	
$OCH_2(2C1-C_6H_4)$	
OCH ₂ CH (CH ₃) ₂	
O(C ₆ H ₅)	
$O(3CF_3-C_6H_4)$	
O(2C1-C6H4)	
$O(4SCH_3-C_6H_4)$	
$O(2,4C1-C_6H_3)$	
SCH ₂ CH ₂ CH ₃ □	
SCH_2 (CH_2) $_2CH_3$	
SCH ₂ (CH ₂) ₃ CH ₃	
SCH ₂ (CH ₂) ₅ CH ₃	
SCH ₂ (C ₆ H ₅)	
SCH ₂ (3SCH ₃ -C ₆ H ₄)	
SCH ₂ (20CH ₃ -C ₆ H ₄)	
SCH ₂ (2C1-C ₆ H ₄)	
$SCH_2(2, 4-C_6H_3)$	
$SCH_2(4CF_3-C_6H_4)$	
S (CH ₃) ₃	
SCH ₂ CH (CH ₃) ₂	
s (C ₆ H ₅)	
$S(3CF_3-C_6H_4)$	
$s(2C1-C_6H_4)$	
s (40CH3-C6H4)	
$s(2,4C1-C_6H_3)$	
$S(2, 6F-C_6H_3)$	

2 (3CH ₃ -C ₆ H ₄)
NHCH2CH2CH3
NHCH ₂ (CH ₂) ₂ CH ₃
NHCH ₂ (CH ₂) ₄ CH ₃
инсн ₂ (сн ₂) ₅ сн ₃
NHCH ₂ CH (CH ₃) ₂
инсн ₂ (С ₆ н ₅)
NHCH ₂ (3CF ₃ -C ₆ H ₄)
NHCH ₂ (2C1-C ₆ H ₄)
NHCH ₂ (4CH ₃ -C ₆ H ₄)
NHCH ₂ (2, 4C1-C ₆ H ₃)
NHCH ₂ (2,6C1-C ₆ H ₃)
NH (C ₆ H ₅)
NH (3CF ₃ -C ₆ H ₄)
NH (2C1-C ₆ H ₄)
NH (3CH ₃ -C ₆ H ₄)
NH (2, 4C1-C ₆ H ₃)
NH(2,6C1-C ₆ H ₃)
N(CH ₃) (3CF ₃ -C ₆ H ₄)
N(CH ₃)CH ₂ CH ₂ CH ₃
N(CH ₂) ₄
N(CH ₂) ₅
N (CH ₂) 6
м (СH ₂ CH ₂ -ОСH ₂ CH ₂) ₂
CH ₂ CO ₂ CH ₃
CH ₂ CH ₂ CO ₂ CH ₂ CH ₃
CH ₂ CH ₂ CO ₂ CH ₃
CH ₂ CH ₂ OCH ₂ CH ₃
CH ₂ CH ₂ SCH ₂ CH ₃
CH ₂ CH ₂ -NHCH ₂ CH ₃
CH ₂ CH ₂ N (CH ₃) CH ₂ CH ₃
CH=CH (CH ₃) ₂
CH ₂ CH ₂ CH=CH ₂
CH ₂ CH=CH-CH ₃
CH=CH-CH ₂ CH ₂ -C1

CH2CH2CH-C1CH2-C1 C6H5 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6C1-C₆H₃ 2SCH3-C6H4 $CH_2(C_6H_5)$ CH₂ (3CF₃-C₆H₄) СH₂ (2С1-С₆H₄) CH₂ (4C1-C₆H₄) CH₂ (2, 4C1-C₆H₃) СH₂ (3SCH₃-С₆H₄) CH₂ (30CH₃-C₆H₄) CH₂ (3C1-C₆H₄) $CH_2(2,6F-C_6H_3)$ СH₂ (2,6С1-С₆H₃) CH₂ (3, 4F-C₆H₃) CH2-Si (CH3) 3 $ON=C(CH_3)_2$ ON=CH (C6H5) ON=C (CH3) C6H5 OCH₂ (2, 6-C1-C₆H₃) OCH_2 (C= CH_2) CH_3 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl

2-imidazolyl	CH2OCH2CH3	CH2NHCH2CH2CH3
0-2 (3CF ₃ -C ₅ H ₃ N)	CH ₂ OCH ₂ CH ₂ CH ₃	$CH_2NHCH_2C(C_6H_5)$
0-2C1-6CF ₃ -C ₆ H ₃	СH ₂ OCH ₂ CH (CH ₃) ₂	CH ₂ NHCH ₂ CH (CH ₃) ₂
7 73 -63	CH ₂ OCH ₂ (C ₆ H ₅)	CH ₂ NHCH ₂ (3CF ₃ -C ₆ H ₄)
$R^1 = OCF_2H$, $R^2 = C(0)NH_2$	CH ₂ OCH ₂ (3CF ₃ -C ₆ H ₄)	CH ₂ NHCH ₂ (2C1-C ₆ H ₄)
R ³	CH ₂ OCH ₂ (2C1-C ₆ H ₄)	CH ₂ NH (C ₆ H ₅)
(CH ₂) ₂ CH ₃	CH ₂ OCH ₂ (3SCH ₃ -C ₆ H ₄)	CH ₂ NH (2C1-C ₆ H ₄)
(CH ₂) ₃ CH ₃	CH ₂ OCH ₂ (4C1-C ₆ H ₄)	$CH_2N(CH_3)$ (2C1- C_6H_4)
(CH ₂) ₄ CH ₃	CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)	OCH ₂ CH ₂ CH ₃
(CH ₂) ₅ CH ₃	CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	OCH ₂ (CH ₂) ₂ CH ₃
(CH ₂) ₆ CH ₃	CH ₂ O (C ₆ H ₅)	OCH ₂ (CH ₂) ₃ CH ₃
(CH ₂) ₇ CH ₃	CH ₂ O(3CF ₃ -C ₆ H ₄)	OCH ₂ (CH ₂) ₅ CH ₃
(CH ₂) ₈ CH ₃	CH ₂ O(4CF ₃ -C ₆ H ₄)	OCH ₂ C (C ₆ H ₅)
(CH ₂) ₉ CH ₃	CH ₂ O(2C1-C ₆ H ₄)	OCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ CH (CH ₃) ₂	CH ₂ O(3SCH ₃ -C ₆ H ₄)	OCH ₂ (2C1-C ₆ H ₄)
CH ₂ CH ₂ CH (CH ₃) ₂	CH ₂ O(2CH ₃ -C ₆ H ₄)	OCH ₂ CH (CH ₃) ₂
CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂	CH ₂ O(4Cl-C ₆ H ₄)	O(C ₆ H ₅)
CH ₂ CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃	CH ₂ O(2,4Cl-C ₆ H ₃)	O(3CF3-C6H4)
CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃	CH ₂ SCH ₂ CH ₃	O(2C1-C ₆ H ₄)
CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃	CH ₂ SCH ₂ CH ₂ CH ₃	O(4SCH3-C6H4)
CH2CH2CH2OCH2CH3	CH ₂ SCH ₂ CH (CH ₃) 2	O(2,4C1-C6H3)
CH2CH2CH2CH3	сн ₂ sсн ₂ (с ₆ н ₅)	SCH ₂ CH ₂ CH ₃
CH2CH2CH2-S-CH2CH3	CH2SCH2 (3CF3-C6H4)	SCH ₂ (CH ₂) ₂ CH ₃
CH2CH2CH2CH3	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (CH ₂) ₃ CH ₃
CH2CH2CH2NHCH2CH3	CH ₂ S (4CH ₃ -C ₆ H ₄)	SCH ₂ (CH ₂) ₅ CH ₃
CH2CF2CH(CH3)2	CH ₂ S(2,4C1-C ₆ H ₃)	sсн ₂ (с ₆ н ₅)
CH2CH2CH2CF2CH3	сн ₂ s (3scн ₃ -с ₆ н ₄)	SCH ₂ (3SCH ₃ -C ₆ H ₄)
CH ₂ -cyclopropyl	CH ₂ S(2,6C1-C ₆ H ₃)	SCH ₂ (20СН ₃ -С ₆ Н ₄)
CH ₂ -cyclobutyl	сн ₂ s (с ₆ н ₅)	SCH ₂ (2C1-С ₆ H ₄)
CH2-cyclopentyl	CH ₂ S (3CF ₃ -C ₆ H ₄)	SCH ₂ (2,4-C ₆ H ₃)
CH2-cyclohexyl	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)
cyclopropyl	CH ₂ S (4CH ₃ -C ₆ H ₄)	S (CH ₃) 3
cyclobutyl	CH ₂ S(2,6C1-C ₆ H ₃)	SCH2CH (CH3)2
cyclopentyl	CH ₂ S(2,4C1-C ₆ H ₃)	s (C ₆ H ₅)
cyclohexyl	СH ₂ NHCH ₂ CH ₃	s(3CF ₃ -C ₆ H ₄)

S(2C1-C6H4)
$S(40CH_3-C_6H_4)$
$S(2,4C1-C_6H_3)$
$S(2,6F-C_6H_3)$
$2(3CH_3-C_6H_4)$
NHCH2CH2CH3
NHCH_2 (CH_2) $_2\mathrm{CH}_3$
$\mathrm{NHCH_2}\left(\mathrm{CH_2}\right)_4\mathrm{CH_3}$
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH ₂ CH (CH ₃) ₂
NHCH ₂ (C ₆ H ₅)
$\mathtt{NHCH}_2(\mathtt{3CF}_3\mathtt{-C}_6\mathtt{H}_4)$
$NHCH_2 (2C1-C_6H_4)$
$NHCH_2 (4CH_3 - C_6H_4)$
$NHCH_2(2, 4C1-C_6H_3)$
$NHCH_2(2,6C1-C_6H_3)$
NH (C ₆ H ₅)
NH (3CF ₃ -C ₆ H ₄)
NH (2C1-C ₆ H ₄)
NH (3CH ₃ -C ₆ H ₄)
$NH(2,4C1-C_6H_3)$
$NH(2,6C1-C_6H_3)$
$N(CH_3)(3CF_3-C_6H_4)$
N(CH ₃)CH ₂ CH ₂ CH ₃
N(CH ₂) ₄
N(CH ₂) ₅
N(CH ₂) ₆
$N(CH_2CH_2-OCH_2CH_2)_2$
CH ₂ CO ₂ CH ₃
CH ₂ CH ₂ CO ₂ CH ₂ CH ₃
CH2CH2CO2CH3
CH2CH2OCH2CH3
CH2CH2SCH2CH3
CH2CH2-NHCH2CH3
$CH_2CH_2N(CH_3)CH_2CH_3$

СH=СH (СН ₃) 2	4Br-C ₆ H ₄
CH ₂ CH ₂ CH=CH ₂	2-pyridyl
CH ₂ CH=CH-CH ₃	2-furyl
CH=CH-CH ₂ CH ₂ -Cl	2-thiazolyl
CH ₂ CH ₂ CH-ClCH ₂ -Cl	2-imidazolyl
C ₆ H ₅	0-2 (3CF ₃ -C ₅ H ₃ N)
3CF ₃ -C ₆ H ₄	0-2C1-6CF ₃ -C ₆ H ₃
2C1-C ₆ H ₄	
3CH ₃ -C ₆ H ₄	$R^1 = NO_2$, $R^2 = C(0) NH_2$
зосн ₃ -с ₆ н ₄	R ³
2CF3-C6H4	(CH ₂) ₂ CH ₃
2,4C1-C ₆ H ₃	(CH ₂) ₃ CH ₃
2,6C1-C ₆ H ₃	(CH ₂) ₄ CH ₃
2SCH ₃ -C ₆ H ₄	(CH ₂) ₅ CH ₃
CH ₂ (C ₆ H ₅)	(CH ₂) ₆ CH ₃
CH ₂ (3CF ₃ -C ₆ H ₄)	(CH ₂) ₇ CH ₃
CH ₂ (2C1-C ₆ H ₄)	(CH ₂) ₈ CH ₃
CH ₂ (4C1-C ₆ H ₄)	(CH ₂) ₉ CH ₃
CH ₂ (2, 4C1-C ₆ H ₃)	СH ₂ CH (СH ₃) ₂
CH ₂ (3SCH ₃ -C ₆ H ₄)	CH ₂ C (CH ₃) ₃
CH ₂ (30CH ₃ -C ₆ H ₄)	CH ₂ CH ₂ CH (CH ₃) ₂
CH ₂ (3C1-C ₆ H ₄)	CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂
CH ₂ (2, 6F-C ₆ H ₃)	CH2CH2CH (CH3) CH2CH2CH3
CH ₂ (2,6C1-C ₆ H ₃)	CH2CH (CH3) CH2CH2CH3
CH ₂ (3, 4F-C ₆ H ₃)	CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃
CH ₂ -Si(CH ₃) ₃	CH2CH2CH2OCH2CH3
ON=C (CH ₃) ₂	CH2CH2CH2CH3
ON=CH (C ₆ H ₅)	CH2CH2CH2-S-CH2CH3
$ON=C(CH_3)C_6H_5$	CH2CH2CH2CH2SCH3
OCH ₂ (2, 6-C1-C ₆ H ₃)	CH2CH2CH2NHCH2CH3
OCH ₂ (C=CH ₂) CH ₃	CH ₂ CF ₂ CH (CH ₃) ₂
OCH ₂ -CH	CH2CH2CF2CH3
CH ₂	CH ₂ -cyclopropyl
4F-C ₆ H ₄	CH2-cyclobutyl
4C1-C ₆ H ₄	CH2-cyclopentyl

CH2-cyclohexyl
cyclopropyl
cyclobutyl
cyclopentyl
cyclohexyl
CH ₂ OCH ₂ CH ₃
сн ₂ осн ₂ сн ₂ сн ₃
${ m CH_2OCH_2CH}$ (${ m CH_3}$) 2
CH ₂ OCH ₂ (С ₆ H ₅)
$CH_2OCH_2(3CF_3-C_6H_4)$
CH_2OCH_2 (2C1- C_6H_4)
CH_2OCH_2 (3SCH3-C6H4)
CH_2OCH_2 (4C1-C ₆ H ₄)
CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)
$\mathrm{CH_2CH_2OCH_2CH_2CH_3}$
CH ₂ O(C ₆ H ₅)
$CH_2O(3CF_3-C_6H_4)$
$CH_2O(4CF_3-C_6H_4)$
$CH_2O(2C1-C_6H_4)$
$CH_2O(3SCH_3-C_6H_4)$
$CH_2O(2CH_3-C_6H_4)$
$CH_2O(4C1-C_6H_4)$
$CH_2O(2, 4C1-C_6H_3)$
CH ₂ SCH ₂ CH ₃
сн ₂ scн ₂ cн ₂ cн ₃
CH2SCH2CH(CH3)2
$CH_2SCH_2(C_6H_5)$
CH_2SCH_2 (3CF ₃ -C ₆ H ₄)
$CH_2S(2C1-C_6H_4)$
$CH_2S(4CH_3-C_6H_4)$
$CH_2S(2,4C1-C_6H_3)$
$CH_2S(3SCH_3-C_6H_4)$
СH ₂ S (2, 6C1-С ₆ H ₃)
CH ₂ S (C ₆ H ₅)
$CH_2S(3CF_3-C_6H_4)$

```
CH<sub>2</sub>S (2C1-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub>S (4CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 CH_2S(2,6C1-C_6H_3)
 CH_2S(2,4C1-C_6H_3)
 CH2NHCH2CH3
 CH2NHCH2CH2CH3
 CH_2NHCH_2C(C_6H_5)
 CH2NHCH2CH (CH3) 2
 CH_2NHCH_2(3CF_3-C_6H_4)
 CH_2NHCH_2 (2C1-C_6H_4)
 CH_2NH(C_6H_5)
 CH_2NH(2C1-C_6H_4)
 CH_2N(CH_3)(2C1-C_6H_4)
OCH2CH2CH3
OCH<sub>2</sub> (CH<sub>2</sub>) <sub>2</sub>CH<sub>3</sub>
осн<sub>2</sub> (сн<sub>2</sub>) <sub>3</sub>сн<sub>3</sub>
OCH<sub>2</sub> (CH<sub>2</sub>) <sub>5</sub>CH<sub>3</sub>
OCH<sub>2</sub>C (C<sub>6</sub>H<sub>5</sub>)
OCH<sub>2</sub>CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
OCH2-Si(CH3)3
OCH<sub>2</sub> CH
                 CH<sub>2</sub>
OCH<sub>2</sub> (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
OCH<sub>2</sub> (2C1-C<sub>6</sub>H<sub>4</sub>)
OCH2CH (CH3) 2
O(C6H5)
O(3CF_3-C_6H_4)
O(2C1-C_6H_4)
O(4SCH3-C6H4)
O(2,4C1-C_6H_3)
SCH2CH2CH3
SCH<sub>2</sub> (CH<sub>2</sub>) <sub>2</sub>CH<sub>3</sub>
SCH<sub>2</sub> (CH<sub>2</sub>) <sub>3</sub>CH<sub>3</sub>
SCH2 (CH2) 5CH3
```

SCH₂ (C₆H₅) SCH2 (3SCH3-C6H4) SCH2 (20CH3-C6H4) $SCH_2(2C1-C_6H_4)$ SCH₂ (2,4-C₆H₃) SCH2 (4CF3-C6H4) S (CH3) 3 SCH2CH (CH3) 2 S (C6H5) $S(3CF_3-C_6H_4)$ $S(2C1-C_6H_4)$ S (40CH3-C6H4) $S(2,4C1-C_6H_3)$ S(2,6F-C₆H₃) 2 (3CH3-C6H4) NHCH2CH2CH3 NHCH₂ (CH₂) ₂CH₃ NHCH₂ (CH₂) ₄CH₃ NHCH₂ (CH₂) ₅CH₃ NHCH₂CH (CH₃)₂ $NHCH_2(C_6H_5)$ NHCH₂ (3CF₃-C₆H₄) NHCH₂ (2C1-C₆H₄) $NHCH_2(4CH_3-C_6H_4)$ NHCH₂ (2, 4C1-C₆H₃) $NHCH_2(2,6C1-C_6H_3)$ NH (C6H5) NH (3CF3-C6H4) NH (2C1-C6H4) NH (3CH3-C6H4) NH (2, 4C1-C₆H₃) NH (2,6C1-C6H3) $N(CH_3)(3CF_3-C_6H_4)$ N(CH3)CH2CH2CH3 N (CH₂) 4

N(CH₂)₅N(CH₂)6 $N(CH_2CH_2-OCH_2CH_2)_2$ CH₂CO₂CH₃ CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH_2CH_2N (CH_3) CH_2CH_3 CH=CH (CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH₂CH₂-Cl CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 $2,6C1-C_6H_3$ 2SCH3-C6H4 $CH_2(C_6H_5)$ $CH_2 (3CF_3 - C_6H_4)$ $CH_2 (2C1-C_6H_4)$ CH2 (4C1-C6H4) $CH_2(2, 4C1-C_6H_3)$ $CH_2 (3SCH_3 - C_6H_4)$ CH_2 (30 CH_3 - C_6H_4) $CH_2 (3C1-C_6H_4)$ $CH_2(2,6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$

 $CH_2(3, 4F-C_6H_3)$

CH2-Si(CH3)3 $ON=C(CH_3)_2$ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ осн₂ (2,6-с1-с₆н₃) OCH₂ (C=CH₂) CH₃ осн₂-сн 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl O-2 (3CF₃-C₅H₃N) 0-2C1-6CF3-C6H3 $R^1=C1$, $R^2=C=N$ R^3 (CH₂)₂CH₃ (CH₂)₃CH₃(CH₂)₄CH₃ (CH₂)₅CH₃ (CH₂) 6CH₃ (CH₂)₇CH₃ (CH₂)₈CH₃ (CH₂)₉CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3

CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH₂-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2 $CH_2OCH_2(C_6H_5)$ CH_2OCH_2 (3CF₃-C₆H₄) CH_2OCH_2 (2C1-C₆H₄) CH_2OCH_2 (3SCH₃-C₆H₄) CH_2OCH_2 (4C1-C₆H₄) CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3 СH₂O (С₆H₅) $CH_2O(3CF_3-C_6H_4)$ $CH_2O(4CF_3-C_6H_4)$ CH₂O (2C1-C₆H₄) CH2O (3SCH3-C6H4) $CH_2O(2CH_3-C_6H_4)$ $CH_2O(4C1-C_6H_4)$ CH₂O(2,4C1-C₆H₃) CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH(CH3)2

$CH_2SCH_2(C_6H_5)$	SCH2CH2CH3	NH(2,6C1-C6H3)
$\mathrm{CH_2SCH_2}\left(\mathrm{3CF_3-C_6H_4}\right)$	SCH ₂ (CH ₂) ₂ CH ₃	N(CH ₃) (3CF ₃ -C ₆ H ₄)
$CH_2S(2C1-C_6H_4)$	SCH ₂ (CH ₂) ₃ CH ₃	и (сн ₃) сн ₂ сн ₂ сн ₃
$CH_2S(4CH_3-C_6H_4)$	SCH ₂ (CH ₂) ₅ CH ₃	N (CH ₂) ₄
$CH_2S(2,4C1-C_6H_3)$	SCH ₂ (C ₆ H ₅)	N (CH ₂) 5
CH ₂ S (3SCH ₃ -C ₆ H ₄)	SCH2 (3SCH3-C6H4)	N(CH ₂) ₆
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ (20CH ₃ -C ₆ H ₄)	N(CH2CH2-OCH2CH2)2
CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)	сн ₂ со ₂ сн ₃
CH ₂ S (3CF ₃ -C ₆ H ₄)	SCH ₂ (2, 4-C ₆ H ₃)	сн ₂ сн ₂ со ₂ сн ₂ сн ₃
CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)	сн ₂ сн ₂ со ₂ сн ₃
$CH_2S(4CH_3-C_6H_4)$	S (CH ₃) ₃	сн ₂ сн ₂ осн ₂ сн ₃
CH ₂ S(2,6C1-C ₆ H ₃)	SCH ₂ CH (CH ₃) ₂	CH ₂ CH ₂ SCH ₂ CH ₃
CH ₂ S(2,4C1-C ₆ H ₃)	S (C ₆ H ₅)	CH ₂ CH ₂ -NHCH ₂ CH ₃
CH ₂ NHCH ₂ CH ₃	s (3CF ₃ -C ₆ H ₄)	CH2CH2N (CH3) CH2CH3
CH2NHCH2CH2CH3	S(2C1-C6H4)	CH=CH(CH ₃) ₂
CH2NHCH2C (C6H5)	S (40CH3-C6H4)	CH ₂ CH ₂ CH=CH ₂
CH2NHCH2CH (CH3) 2	S(2,4C1-C6H3)	сн ₂ сн=сн-сн ₃
$CH_2NHCH_2(3CF_3-C_6H_4)$	S(2,6F-C ₆ H ₃)	CH=CH-CH ₂ CH ₂ -C1
CH ₂ NHCH ₂ (2C1-C ₆ H ₄)	2 (3CH ₃ -C ₆ H ₄)	сн ₂ сн ₂ сн-с1сн ₂ -с1
CH ₂ NH (C ₆ H ₅)	NHCH2CH2CH3	С ₆ н ₅
CH ₂ NH (2C1-C ₆ H ₄)	инсн ₂ (сн ₂) ₂ сн ₃	3CF3-C6H4
$CH_2N(CH_3)(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C ₆ H ₄
och ₂ ch ₂ ch ₃	инсн ₂ (сн ₂) ₅ сн ₃	3CH ₃ -С ₆ H ₄
OCH ₂ (CH ₂) ₂ CH ₃	инсн ₂ сн (сн ₃) ₂	30CH3-C6H4
OCH ₂ (CH ₂) ₃ CH ₃	инсн ₂ (с ₆ н ₅)	2CF ₃ -C ₆ H ₄
осн ₂ (сн ₂) ₅ сн ₃	NHCH ₂ (3CF ₃ -C ₆ H ₄)	2,4C1-C6H3
OCH ₂ C(C ₆ H ₅)	NHCH ₂ (2C1-С ₆ H ₄)	2,6C1-C6H3
$OCH_2(3CF_3-C_6H_4)$	NHCH ₂ (4CH ₃ -C ₆ H ₄)	2SCH3-C6H4
OCH ₂ (2C1-C ₆ H ₄)	NHCH ₂ (2, 4C1-C ₆ H ₃)	СH ₂ (С ₆ H ₅)
OCH ₂ CH (CH ₃) ₂	NHCH ₂ (2,6C1-C ₆ H ₃)	CH ₂ (3CF ₃ -C ₆ H ₄)
O(C ₆ H ₅)	ин (С ₆ н ₅)	CH ₂ (2C1-C ₆ H ₄)
O(3CF ₃ -C ₆ H ₄)	NH (3CF ₃ -C ₆ H ₄)	CH ₂ (4C1-C ₆ H ₄)
O(2C1-C6H4)	NH (2C1-C ₆ H ₄)	CH ₂ (2,4Cl-C ₆ H ₃)
O(4SCH3-C6H4)	NH (3CH ₃ -C ₆ H ₄)	CH ₂ (3SCH ₃ -C ₆ H ₄)
O(2,4C1-C ₆ H ₃)	NH (2, 4C1-C ₆ H ₃)	CH ₂ (30CH ₃ -C ₆ H ₄)

 $\begin{array}{c} \text{CH}_2 \, (3\text{C1-C}_6\text{H}_4) \\ \text{CH}_2 \, (2,6\text{F-C}_6\text{H}_3) \\ \text{CH}_2 \, (2,6\text{C1-C}_6\text{H}_3) \\ \text{CH}_2 \, (3,4\text{F-C}_6\text{H}_3) \\ \text{CH}_2\text{-Si} \, (\text{CH}_3) \, 3 \\ \text{ON=C} \, (\text{CH}_3) \, 2 \\ \text{ON=CH} \, (\text{C}_6\text{H}_5) \\ \text{ON=C} \, (\text{CH}_3) \, \text{C}_6\text{H}_5 \\ \text{OCH}_2 \, (2,6\text{-C1-C}_6\text{H}_3) \\ \text{OCH}_2 \, (\text{C=CH}_2) \, \text{CH}_3 \\ \text{OCH}_2 \, \text{CC-CH}_2 \, \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{4F-C}_6\text{H}_4 \\ \text{4C1-C}_6\text{H}_4 \\ \text{4Br-C}_6\text{H}_4 \\ \text{4Br-C}_6\text{H}_4 \end{array}$

4Br-C₆H₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2(3CF₃-C₅H₃N)
0-2Cl-6CF₃-C₆H₃

$R^1=Br$, $R^2=C=N$

R³
(CH₂)₂CH₃
(CH₂)₃CH₃
(CH₂)₄CH₃
(CH₂)₅CH₃
(CH₂)₆CH₃
(CH₂)₇CH₃
(CH₂)₈CH₃
(CH₂)₉CH₃
CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃)₂
CH₂CH₂CH₂CH₂CH₂CH₂CH₃)₂

CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH₂-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2 $CH_2OCH_2(C_6H_5)$ CH_2OCH_2 (3CF₃-C₆H₄) $CH_2OCH_2 (2C1-C_6H_4)$ CH_2OCH_2 (3SCH₃-C₆H₄) CH_2OCH_2 (4Cl- C_6H_4) CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3 CH₂O(C₆H₅) $CH_2O(3CF_3-C_6H_4)$ $CH_2O(4CF_3-C_6H_4)$ $CH_2O(2C1-C_6H_4)$ CH2O (3SCH3-C6H4) CH2O (2CH3-C6H4)

 $CH_2O(4C1-C_6H_4)$

CH₂O(2,4Cl-C₆H₃) CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH (CH3) 2 $CH_2SCH_2(C_6H_5)$ CH_2SCH_2 (3CF₃-C₆H₄) CH₂S (2C1-C₆H₄) $CH_2S(4CH_3-C_6H_4)$ $CH_2S(2, 4C1-C_6H_3)$ $CH_2S(3SCH_3-C_6H_4)$ $CH_2S(2,6C1-C_6H_3)$ CH2S (C6H5) $CH_2S(3CF_3-C_6H_4)$ $CH_2S(2C1-C_6H_4)$ CH2S (4CH3-C6H4) $CH_2S(2,6C1-C_6H_3)$ CH₂S (2, 4C1-C₆H₃) CH2NHCH2CH3 CH2NHCH2CH2CH3 CH2NHCH2C(C6H5) CH2NHCH2CH (CH3) 2 $CH_2NHCH_2(3CF_3-C_6H_4)$ $CH_2NHCH_2(2C1-C_6H_4)$ $CH_2NH(C_6H_5)$ $CH_2NH(2C1-C_6H_4)$ $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH₂ (CH₂) ₂CH₃ OCH₂ (CH₂) ₃CH₃ OCH₂ (CH₂) 5CH₃ OCH₂C (C₆H₅) $OCH_2(3CF_3-C_6H_4)$ OCH₂ (2C1-C₆H₄) OCH₂CH (CH₃)₂ O(C6H5)

$O(3CF_3-C_6H_4)$
$O(2C1-C_6H_4)$
$o(4sch_3-c_6h_4)$
$O(2,4C1-C_6H_3)$
SCH2CH2CH3
SCH2 (CH2) 2CH3
SCH ₂ (CH ₂) 3CH ₃
SCH ₂ (CH ₂) ₅ CH ₃
SCH ₂ (C ₆ H ₅)
$SCH_2(3SCH_3-C_6H_4)$
$SCH_2(2OCH_3-C_6H_4)$
$SCH_2(2C1-C_6H_4)$
$SCH_2(2, 4-C_6H_3)$
$SCH_2(4CF_3-C_6H_4)$
S (CH ₃) 3
SCH ₂ CH (CH ₃) ₂
s (C ₆ H ₅)
$S(3CF_3-C_6H_4)$
$S(2C1-C_6H_4)$
s (40CH3-C6H4)
$s(2,4C1-C_6H_3)$
$S(2,6F-C_6H_3)$
$2(3CH_3-C_6H_4)$
NHCH2CH2CH3
NHCH ₂ (CH ₂) ₂ CH ₃
NHCH ₂ (CH ₂) ₄ CH ₃
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH ₂ CH (CH ₃) ₂
NHCH ₂ (C ₆ H ₅)
NHCH2 (3CF3-C6H4)
NHCH2 (2C1-C6H4)
NHCH ₂ (4CH ₃ -C ₆ H ₄)
NHCH ₂ (2, 4C1-C ₆ H ₃)
NHCH ₂ (2,6C1-C ₆ H ₃)
NH (C ₆ H ₅)

```
NH (3CF3-C6H4)
 NH (2C1-C6H4)
 NH (3CH3-C6H4)
 NH (2, 4C1-C<sub>6</sub>H<sub>3</sub>)
NH (2,6C1-C6H3)
 N(CH_3)(3CF_3-C_6H_4)
N (CH<sub>3</sub>) CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
N(CH<sub>2</sub>)<sub>4</sub>
N (CH<sub>2</sub>) 5
N(CH_2)_6
N(CH_2CH_2-OCH_2CH_2)_2
CH2CO2CH3
CH2CH2CO2CH2CH3
CH2CH2CO2CH3
CH2CH2OCH2CH3
CH2CH2SCH2CH3
CH2CH2-NHCH2CH3
CH2CH2N (CH3) CH2CH3
CH=CH (CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH=CH2
CH2CH=CH-CH3
CH=CH-CH<sub>2</sub>CH<sub>2</sub>-Cl
CH2CH2CH-C1CH2-C1
C6H5
3CF3-C6H4
2C1-C6H4
3CH3-C6H4
30CH3-C6H4
2CF3-C6H4
2,4C1-C6H3
2,6C1-C6H3
2SCH3-C6H4
CH_2(C_6H_5)
CH_2 (3CF_3 - C_6H_4)
СH<sub>2</sub> (2С1-С<sub>6</sub>H<sub>4</sub>)
```

CH₂ (4C1-C₆H₄) $CH_2(2,4C1-C_6H_3)$ CH₂ (3SCH₃-C₆H₄) CH2 (30CH3-C6H4) CH₂ (3C1-C₆H₄) $CH_2(2, 6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$ $CH_2(3, 4F-C_6H_3)$ CH2-Si(CH3)3 $ON=C(CH_3)_2$ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ $OCH_2(2,6-C1-C_6H_3)$ OCH₂ (C=CH₂) CH₃ OCH2-CH 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl 0-2 (3CF₃-C₅H₃N) 0-2C1-6CF₃-C₆H₃ $R^1=I$, $R^2=C=N$ \mathbb{R}^3 (CH₂)₂CH₃ (CH₂)₃CH₃ (CH₂)₄CH₃ (CH₂)₅CH₃ (CH₂) 6CH₃ (CH₂)₇CH₃ (CH₂) 8CH₃

(CH₂)₉CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 $CH_2CH(CH_3)CH_2CH_2CH_3$ CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH₂-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2 $CH_2OCH_2(C_6H_5)$ $CH_2OCH_2 (3CF_3 - C_6H_4)$ CH_2OCH_2 (2C1-C₆H₄) CH_2OCH_2 (3SCH₃-C₆H₄) CH_2OCH_2 (4C1-C₆H₄) CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3 CH2O (C6H5) $CH_2O(3CF_3-C_6H_4)$ $CH_2O(4CF_3-C_6H_4)$

 $CH_2O(2C1-C_6H_4)$ CH2O (3SCH3-C6H4) CH2O (2CH3-C6H4) $CH_2O(4C1-C_6H_4)$ $CH_2O(2,4C1-C_6H_3)$ CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH (CH3) 2 $CH_2SCH_2(C_6H_5)$ CH_2SCH_2 (3CF₃-C₆H₄) $CH_2S(2C1-C_6H_4)$ CH2S (4CH3-C6H4) $CH_2S(2, 4C1-C_6H_3)$ $CH_2S(3SCH_3-C_6H_4)$ $CH_2S(2,6C1-C_6H_3)$ CH2S (C6H5) CH₂S (3CF₃-C₆H₄) $CH_2S(2C1-C_6H_4)$ $CH_2S(4CH_3-C_6H_4)$ $CH_2S(2,6C1-C_6H_3)$ $CH_2S(2, 4C1-C_6H_3)$ CH2NHCH2CH3 CH2NHCH2CH2CH3 $CH_2NHCH_2C(C_6H_5)$ CH2NHCH2CH (CH3) 2 $CH_2NHCH_2(3CF_3-C_6H_4)$ $CH_2NHCH_2(2C1-C_6H_4)$ $CH_2NH(C_6H_5)$ CH2NH (2C1-C6H4) $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH2 (CH2) 2CH3 OCH2 (CH2) 3CH3 OCH2 (CH2) 5CH3 OCH₂C (C₆H₅)

 $OCH_2(3CF_3-C_6H_4)$ $OCH_2(2C1-C_6H_4)$ OCH₂CH (CH₃)₂ O(C6H5) $O(3CF_3-C_6H_4)$ $0(2C1-C_6H_4)$ O(4SCH3-C6H4) $O(2,4C1-C_6H_3)$ SCH2CH2CH3 SCH2 (CH2) 2CH3 SCH2 (CH2) 3CH3 SCH2 (CH2) 5CH3 SCH2 (C6H5) SCH2 (3SCH3-C6H4) SCH₂ (20CH₃-C₆H₄) SCH2 (2C1-C6H4) SCH₂ (2, 4-C₆H₃) SCH2 (4CF3-C6H4) S(CH₂)₂ SCH2CH (CH3) 2 s (C₆H₅) $S(3CF_3-C_6H_4)$ S (2C1-C6H4) S (40CH3-C6H4) S(2,4C1-C6H3) $S(2,6F-C_6H_3)$ 2 (3CH3-C6H4) NHCH2CH2CH3 NHCH2 (CH2) 2CH3 NHCH2 (CH2) 4CH3 NHCH2 (CH2) 5CH3 NHCH2CH (CH3)2 NHCH2 (C6H5) $NHCH_2$ (3CF₃-C₆H₄) NHCH2 (2C1-C6H4)

NHCH₂ (4CH₃-C₆H₄) $NHCH_2(2, 4C1-C_6H_3)$ $NHCH_2$ (2,6C1-C₆H₃) NH (C₆H₅) NH $(3CF_3-C_6H_4)$ $NH(2C1-C_6H_4)$ $NH (3CH_3 - C_6H_4)$ $NH(2,4C1-C_6H_3)$ $NH(2,6C1-C_6H_3)$ $N(CH_3)(3CF_3-C_6H_4)$ N (CH3) CH2CH2CH3 N (CH2) 4 N (CH₂)₅ N (CH₂) 6 N(CH2CH2-OCH2CH2)2 CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3 $CH=CH-CH_2CH_2-C1$ CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3

2,6C1-C6H3

2SCH3-C6H4 CH₂ (C₆H₅) $CH_2 (3CF_3 - C_6H_4)$ $CH_2(2C1-C_6H_4)$ $CH_2 (4C1-C_6H_4)$ $CH_2(2, 4C1-C_6H_3)$ СH₂ (3SCH₃-С₆H₄) CH₂ (30CH₃-C₆H₄) $CH_2 (3C1-C_6H_4)$ $CH_2(2, 6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$ $CH_2(3, 4F-C_6H_3)$ CH_2 -Si(CH_3)₃ $ON=C(CH_3)_2$ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ OCH₂ (2,6-C1-C₆H₃) OCH₂ (C=CH₂) CH₃ 4F-C6H4 4C1-C6H4 4Br-C₆H₄ 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl O-2 (3CF₃-C₅H₃N) O-2C1-6CF3-C6H3 R^1 =OCH₃, R^2 =C=N R3 (CH₂)₂CH₃ (CH₂)₃CH₃ (CH₂)₄CH₃

(CH₂)₅CH₃ (CH₂) 6CH₃ (CH₂)₇CH₃ (CH2) gCH3 (CH₂)₉CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH_2CH_2CH (CH_3) $CH_2CH_2CH_3$ сн₂сн (сн₃) сн₂сн₂сн₃ CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH₂-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2 CH2OCH2 (C6H5) CH2OCH2 (3CF3-C6H4) $CH_2OCH_2(2C1-C_6H_4)$ CH_2OCH_2 (3SCH₃-C₆H₄) $CH_2OCH_2(4C1-C_6H_4)$ $CH_2OCH_2(2, 4F-C_6H_3)$

		,
$\mathrm{CH_2CH_2OCH_2CH_2CH_3}$	OCH ₂ (CH ₂) ₂ CH ₃	NHCH ₂ CH (CH ₃) ₂
CH ₂ O(C ₆ H ₅)	OCH ₂ (CH ₂) ₃ CH ₃	инсн ₂ (С ₆ н ₅)
$CH_2O(3CF_3-C_6H_4)$	осн ₂ (сн ₂) ₅ сн ₃	NHCH ₂ (3CF ₃ -C ₆ H ₄)
$CH_2O(4CF_3-C_6H_4)$	осн ₂ с (с ₆ н ₅)	NHCH ₂ (2Cl-C ₆ H ₄)
$CH_2O(2C1-C_6H_4)$	OCH ₂ (3CF ₃ -C ₆ H ₄)	NHCH ₂ (4CH ₃ -C ₆ H ₄)
CH2O(3SCH3-C6H4)	OCH ₂ (2C1-C ₆ H ₄)	NHCH ₂ (2, 4C1-C ₆ H ₃)
CH ₂ O(2CH ₃ -C ₆ H ₄)	осн ₂ сн (сн ₃) ₂	NHCH ₂ (2,6C1-C ₆ H ₃)
$CH_2O(4C1-C_6H_4)$	O(C ₆ H ₅)	NH (C ₆ H ₅)
CH ₂ O(2,4C1-C ₆ H ₃)	O(3CF3-C6H4)	NH (3CF ₃ -C ₆ H ₄)
CH2SCH2CH3	O(2C1-C6H4)	NH (2C1-C ₆ H ₄)
сн ₂ scн ₂ сн ₂ сн ₃	O(4SCH3-C6H4)	NH (3CH ₃ -C ₆ H ₄)
CH2SCH2CH(CH3)2	O(2,4C1-C ₆ H ₃)	NH(2,4C1-C ₆ H ₃)
CH ₂ SCH ₂ (C ₆ H ₅)	SCH ₂ CH ₂ CH ₃	NH(2,6Cl-C ₆ H ₃)
$CH_2SCH_2(3CF_3-C_6H_4)$	SCH ₂ (CH ₂) ₂ CH ₃	N(CH ₃) (3CF ₃ -C ₆ H ₄)
$CH_2S(2C1-C_6H_4)$	SCH2 (CH2) 3CH3	N(CH ₃)CH ₂ CH ₂ CH ₃
CH ₂ S (4CH ₃ -C ₆ H ₄)	scн ₂ (сн ₂) ₅ сн ₃	N (CH ₂) 4
CH ₂ S (2, 4C1-C ₆ H ₃)	SCH ₂ (C ₆ H ₅)	N (CH ₂) 5
$CH_2S(3SCH_3-C_6H_4)$	SCH ₂ (3SCH ₃ -C ₆ H ₄)	N(CH ₂) ₆
CH ₂ S (2,6C1-C ₆ H ₃)	SCH ₂ (20CH ₃ -C ₆ H ₄)	N(CH2CH2-OCH2CH2)2
CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)	СH ₂ CO ₂ CH ₃
$CH_2S(3CF_3-C_6H_4)$	SCH ₂ (2, 4-C ₆ H ₃)	CH2CH2CO2CH2CH3
$CH_2S(2C1-C_6H_4)$	SCH ₂ (4CF ₃ -C ₆ H ₄)	CH2CH2CO2CH3
CH ₂ S (4CH ₃ -C ₆ H ₄)	S (CH ₃) 3	CH2CH2OCH2CH3
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ CH (CH ₃) ₂	CH ₂ CH ₂ SCH ₂ CH ₃
$CH_2S(2,4C1-C_6H_3)$	S (C ₆ H ₅)	сн ₂ сн ₂ -инсн ₂ сн ₃
CH2NHCH2CH3	S (3CF ₃ -C ₆ H ₄)	CH ₂ CH ₂ N (CH ₃) CH ₂ CH ₃
CH2NHCH2CH2CH3	S(2C1-C ₆ H ₄)	СH=СH (СH ₃) ₂
CH ₂ NHCH ₂ C (C ₆ H ₅)	S (40CH3-C6H4)	CH ₂ CH ₂ CH=CH ₂
CH2NHCH2CH (CH3) 2	$S(2,4C1-C_6H_3)$	CH ₂ CH=CH-CH ₃
$CH_2NHCH_2(3CF_3-C_6H_4)$	S(2,6F-C ₆ H ₃)	CH=CH-CH ₂ CH ₂ -C1
CH_2NHCH_2 (2C1- C_6H_4)	2 (3CH ₃ -C ₆ H ₄)	CH2CH2CH-C1CH2-C1
CH ₂ NH (C ₆ H ₅)	NHCH ₂ CH ₂ CH ₃	C ₆ H ₅
$CH_2NH(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₂ CH ₃	3CF3-C6H4
$CH_2N(CH_3)(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C6H4
OCH ₂ CH ₂ CH ₃	NHCH ₂ (CH ₂) ₅ CH ₃	3CH3-C6H4

30CH ₃ -C ₆ H ₄
2CF3-C6H4
2,4C1-C6H3
2,6C1-C6H3
2SCH3-C6H4
CH ₂ (C ₆ H ₅)
$CH_2(3CF_3-C_6H_4)$
CH ₂ (2C1-C ₆ H ₄)
$CH_2(4C1-C_6H_4)$
$CH_2(2,4C1-C_6H_3)$
CH ₂ (3SCH ₃ -C ₆ H ₄)
CH ₂ (30CH ₃ -C ₆ H ₄)
CH ₂ (3C1-C ₆ H ₄)
$CH_2(2,6F-C_6H_3)$
$CH_2(2,6C1-C_6H_3)$
$CH_2(3, 4F-C_6H_3)$
CH_2 -Si(CH_3) ₃
$ON=C(CH_3)_2$
ON=CH (C_6H_5)
$ON=C(CH_3)C_6H_5$
$OCH_2(2, 6-C1-C_6H_3)$
OCH ₂ (C=CH ₂) CH ₃
OCH ₂ -CH CH ₂
CH ₂
4F-C ₆ H ₄
4C1-C6H4
4Br-C ₆ H ₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2 (3CF ₃ -C ₅ H ₃ N)
0-2C1-6CF3-C6H3

$R^1 = OCF_3$, $R^2 = C = N$	CH2OCH2 (3CF3-C6H4)
R ³	CH ₂ OCH ₂ (2C1-C ₆ H ₄)
(CH ₂) ₂ CH ₃	СH ₂ ОСH ₂ (3SCH ₃ -С ₆ H ₄)
(CH ₂) ₃ CH ₃	CH2OCH2 (4C1-C6H4)
(CH ₂) ₄ CH ₃	CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)
(CH ₂) ₅ CH ₃	CH2CH2OCH2CH2CH3
(CH ₂) 6CH ₃	СH ₂ O (С ₆ H ₅)
(CH ₂) ₇ CH ₃	CH ₂ O(3CF ₃ -C ₆ H ₄)
(CH ₂) ₈ CH ₃	CH ₂ O(4CF ₃ -C ₆ H ₄)
(CH ₂) ₉ CH ₃	CH ₂ O(2C1-C ₆ H ₄)
СH ₂ CH (СH ₃) ₂	CH20 (3SCH3-C6H4)
CH ₂ CH ₂ CH (CH ₃) ₂	CH ₂ O (2CH ₃ -C ₆ H ₄)
Сн ₂ Сн ₂ Сн ₂ Сн (Сн ₃) ₂	CH ₂ O(4C1-C ₆ H ₄)
CH2CH2CH (CH3) CH2CH2CH3	CH ₂ O(2,4C1-C ₆ H ₃)
CH2CH (CH3) CH2CH2CH3	CH ₂ SCH ₂ CH ₃
CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃	СH ₂ SCH ₂ CH ₂ CH ₃
CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃	CH ₂ SCH ₂ CH (CH ₃) 2
CH2CH2CH2CH3	CH ₂ SCH ₂ (C ₆ H ₅)
CH2CH2CH2-S-CH2CH3	CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)
CH2CH2CH2CH3	CH ₂ S (2C1-C ₆ H ₄)
CH2CH2CH2NHCH2CH3	CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ CF ₂ CH (CH ₃) ₂	CH ₂ S(2,4C1-C ₆ H ₃)
CH ₂ CH ₂ CH ₂ CF ₂ CH ₃	CH ₂ S (3SCH ₃ -C ₆ H ₄)
CH ₂ -cyclopropyl	CH ₂ S(2,6C1-С6H ₃)
CH ₂ -cyclobutyl	CH ₂ S (C ₆ H ₅)
CH ₂ -cyclopentyl	CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ -cyclohexyl	CH ₂ S (2C1-C ₆ H ₄)
cyclopropyl	CH ₂ S (4CH ₃ -C ₆ H ₄)
cyclobutyl	CH ₂ S(2,6C1-C ₆ H ₃)
cyclopentyl	CH ₂ S(2,4C1-C ₆ H ₃)
cyclohexyl	CH2NHCH2CH3
CH ₂ OCH ₂ CH ₃	CH2NHCH2CH2CH3
CH ₂ OCH ₂ CH ₂ CH ₃	CH2NHCH2C (C6H5)
CH ₂ OCH ₂ CH (CH ₃) ₂	CH2NHCH2CH(CH3)2
СH ₂ OCH ₂ (С ₆ H ₅)	CH ₂ NHCH ₂ (3CF ₃ -C ₆ H ₄)

 $CH_2NHCH_2(2C1-C_6H_4)$ CH2NH (C6H5) $CH_2NH(2C1-C_6H_4)$ $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH2 (CH2) 2CH3 OCH2 (CH2) 3CH3 OCH2 (CH2) 5CH3 OCH2C (C6H5) OCH_2 (3CF₃-C₆H₄) $OCH_2(2C1-C_6H_4)$ OCH2CH (CH3) 2 O(C6H5) $O(3CF_3-C_6H_4)$ $O(2C1-C_6H_4)$ O(4SCH3-C6H4) $0(2,4C1-C_6H_3)$ SCH2CH2CH3 SCH2 (CH2) 2CH3 SCH2 (CH2) 3CH3 SCH2 (CH2) 5CH3 SCH2 (C6H5) SCH_2 (3SCH₃-C₆H₄) SCH2 (20CH3-C6H4) $SCH_2(2C1-C_6H_4)$ $SCH_2(2, 4-C_6H_3)$ SCH2 (4CF3-C6H4) S (CH3) 3 SCH2CH (CH3) 2 S (C6H5) $S(3CF_3-C_6H_4)$ $S(2C1-C_6H_4)$ S (40CH3-C6H4) S (2, 4C1-C6H3) $S(2,6F-C_6H_3)$

2 (3CH₃-C₆H₄) NHCH2CH2CH3 NHCH2 (CH2) 2CH3 NHCH2 (CH2) 4CH3 NHCH2 (CH2) 5CH3 NHCH2CH (CH3) 2 NHCH2 (C6H5) $NHCH_2$ (3CF₃-C₆H₄) NHCH₂ (2C1-C₆H₄) $NHCH_2$ ($4CH_3-C_6H_4$) $NHCH_2(2, 4C1-C_6H_3)$ $NHCH_2(2,6C1-C_6H_3)$ NH (C₆H₅) NH $(3CF_3-C_6H_4)$ NH (2C1-C6H4) NH (3CH3-C6H4) NH (2, 4C1-C6H3) $NH(2,6C1-C_6H_3)$ $N(CH_3)(3CF_3-C_6H_4)$ N (CH₃) CH₂CH₂CH₃ N(CH₂)₄ N (CH2) 5 N(CH₂)6 N(CH2CH2-OCH2CH2)2 CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH3) 2 CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH2CH2-C1

CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6C1-C6H3 2SCH3-C6H4 $CH_2(C_6H_5)$ $CH_2 (3CF_3 - C_6H_4)$ $CH_2 (2C1-C_6H_4)$ $CH_2 (4C1-C_6H_4)$ $CH_2(2,4C1-C_6H_3)$ CH2 (3SCH3-C6H4) CH_2 (30 $CH_3 - C_6H_4$) CH_2 (3C1- C_6H_4) CH₂ (2, 6F-C₆H₃) $CH_2(2,6C1-C_6H_3)$ CH_2 (3, 4F- C_6H_3) CH2-Si(CH3)3 $ON=C(CH_3)_2$ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ $OCH_2(2, 6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 OCH2-CH 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl

2-imidazolyl	CH ₂ OCH ₂ CH ₃	CH2NHCH2CH2CH3
0-2 (3CF ₃ -C ₅ H ₃ N)	CH2OCH2CH2CH3	CH ₂ NHCH ₂ C(C ₆ H ₅)
0-2C1-6CF ₃ -C ₆ H ₃	СH ₂ ОСH ₂ СH (СH ₃) ₂	CH2NHCH2CH(CH3)
	CH ₂ OCH ₂ (С ₆ H ₅)	CH2NHCH2 (3CF3-C
$R^1 = OCF_2H$, $R^2 = C = N$	CH ₂ OCH ₂ (3CF ₃ -C ₆ H ₄)	CH2NHCH2 (2C1-C6
R ³	CH ₂ OCH ₂ (2C1-C ₆ H ₄)	СH ₂ NH (С ₆ H ₅)
(CH ₂) ₂ CH ₃	CH2OCH2 (3SCH3-C6H4)	CH ₂ NH (2C1-C ₆ H ₄)
(CH ₂) ₃ CH ₃	CH2OCH2 (4C1-C6H4)	CH2N (CH3) (2C1-C
(CH ₂) ₄ CH ₃	CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)	OCH ₂ CH ₂ CH ₃
(CH ₂) ₅ CH ₃	CH2CH2OCH2CH2CH3	осн ₂ (сн ₂) ₂ сн ₃
(CH ₂) 6CH ₃	CH ₂ O(C ₆ H ₅)	осн ₂ (сн ₂) ₃ сн ₃
(CH ₂) ₇ CH ₃	CH ₂ O(3CF ₃ -C ₆ H ₄)	осн ₂ (сн ₂) ₅ сн ₃
(CH ₂) ₈ CH ₃	CH ₂ O(4CF ₃ -C ₆ H ₄)	OCH ₂ C(C ₆ H ₅)
(CH ₂) ₉ CH ₃	CH ₂ O(2C1-C ₆ H ₄)	OCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ CH (CH ₃) ₂	CH2O(3SCH3-C6H4)	OCH ₂ (2C1-C ₆ H ₄)
CH ₂ CH ₂ CH (CH ₃) ₂	CH ₂ O (2CH ₃ -C ₆ H ₄)	осн ₂ сн (сн ₃) ₂
CH2CH2CH2CH(CH3)2	CH ₂ O(4C1-C ₆ H ₄)	о (С ₆ н ₅)
$\mathrm{CH_2CH_2CH}$ ($\mathrm{CH_3}$) $\mathrm{CH_2CH_2CH_3}$	CH ₂ O(2,4C1-C ₆ H ₃)	O(3CF3-C6H4)
CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃	CH2SCH2CH3	O(2C1-C6H4)
CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃	CH2SCH2CH2CH3	O(4SCH3-C6H4)
CH2CH2CH2OCH2CH3	CH2SCH2CH (CH3) 2	O(2,4C1-C6H3)
CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃	CH ₂ SCH ₂ (C ₆ H ₅)	scн ₂ сн ₂ сн ₃
CH2CH2CH2-S-CH2CH3	CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)	scн ₂ (сн ₂) ₂ сн ₃
CH2CH2CH2CH2SCH3	CH ₂ S (2C1-C ₆ H ₄)	scн ₂ (сн ₂) ₃ сн ₃
CH2CH2CH2NHCH2CH3	CH ₂ S (4CH ₃ -C ₆ H ₄)	SCH ₂ (CH ₂) ₅ CH ₃
CH2CF2CH (CH3)2	CH ₂ S (2, 4C1-C ₆ H ₃)	SCH ₂ (C ₆ H ₅)
CH2CH2CH2CF2CH3	CH ₂ S (3SCH ₃ -C ₆ H ₄)	SCH2 (3SCH3-C6H4)
CH ₂ -cyclopropyl	CH ₂ S (2, 6C1-C ₆ H ₃)	SCH ₂ (20CH ₃ -C ₆ H ₄)
CH ₂ -cyclobutyl	СH ₂ S (С ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)
CH ₂ -cyclopentyl	CH ₂ S (3CF ₃ -C ₆ H ₄)	SCH ₂ (2, 4-C ₆ H ₃)
CH ₂ -cyclohexyl	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)
cyclopropyl	CH ₂ S (4CH ₃ -C ₆ H ₄)	S (CH ₃) 3
cyclobutyl	CH ₂ S(2,6C1-C ₆ H ₃)	SCH2CH (CH3)2
cyclopentyl	CH ₂ S(2,4C1-C ₆ H ₃)	s (C ₆ H ₅)
cyclohexyl	CH ₂ NHCH ₂ CH ₃	S(3CF3-C6H4)

 $H_2NHCH_2C(C_6H_5)$ H₂NHCH₂CH (CH₃)₂ H_2 NHC H_2 (3CF₃-C₆ H_4) H_2 NHC H_2 (2Cl- C_6H_4) H₂NH (C₆H₅) H₂NH (2C1-C₆H₄) $H_2N(CH_3)(2C1-C_6H_4)$ CH2CH2CH3 CH₂ (CH₂) ₂CH₃ CH₂ (CH₂) 3CH₃ CH₂ (CH₂) ₅CH₃ CH₂C (C₆H₅) $^{\text{CH}_2}$ (3CF₃-C₆H₄) CH₂ (2C1-C₆H₄) H₂CH (CH₃)₂ C₆H₅) 3CF₃-C₆H₄) 2C1-C₆H₄) 4SCH3-C6H4) 2,4Cl-C₆H₃) H₂CH₂CH₃ H₂ (CH₂) ₂CH₃ H₂ (CH₂) ₃CH₃ H_2 (CH₂) ₅CH₃ H₂ (C₆H₅) H₂ (3SCH₃-C₆H₄) $H_2 (20CH_3 - C_6H_4)$ $H_2(2C1-C_6H_4)$ $H_2(2, 4-C_6H_3)$ $H_2(4CF_3-C_6H_4)$ CH₃)₃ H₂CH (CH₃)₂ C₆H₅) $3CF_3-C_6H_4$)

$s(2C1-C_6H_4)$
s(40CH3-C6H4)
$s(2,4C1-C_6H_3)$
$s(2,6F-C_6H_3)$
2 (3CH ₃ -C ₆ H ₄)
NHCH2CH2CH3
NHCH_2 (CH_2) $_2\mathrm{CH}_3$
NHCH ₂ (CH ₂) ₄ CH ₃
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH2CH (CH3) 2
NHCH ₂ (C ₆ H ₅)
NHCH_2 (3CF $_3$ -C $_6\mathrm{H}_4$)
NHCH ₂ (2C1-C ₆ H ₄)
NHCH ₂ (4CH ₃ -C ₆ H ₄)
$NHCH_2(2, 4C1-C_6H_3)$
$NHCH_2(2,6C1-C_6H_3)$
NH (C ₆ H ₅)
NH (3CF $_3$ -C $_6$ H $_4$)
NH (2C1-C ₆ H ₄)
$NH(3CH_3-C_6H_4)$
$NH(2,4C1-C_6H_3)$
$NH(2,6C1-C_6H_3)$
$N(CH_3)(3CF_3-C_6H_4)$
N(CH ₃)CH ₂ CH ₂ CH ₃
$N(CH_2)_4$
N (CH ₂) ₅
N(CH ₂) ₆
$^{\mathrm{N}\mathrm{(CH_2CH_2-OCH_2CH_2)}_2}$
CH ₂ CO ₂ CH ₃
$\mathrm{CH_2CH_2CO_2CH_2CH_3}$
CH2CH2CO2CH3
CH2CH2OCH2CH3
CH2CH2SCH2CH3
CH2CH2-NHCH2CH3
$\mathrm{CH_2CH_2N}$ ($\mathrm{CH_3}$) $\mathrm{CH_2CH_3}$

СH=СH (СН ₃) 2
CH2CH2CH=CH2
CH ₂ CH=CH-CH ₃
CH=CH-CH ₂ CH ₂ -C1
CH2CH2CH-C1CH2-C1
С ₆ н ₅
3CF3-C6H4
2C1-C ₆ H ₄
3CH ₃ -C ₆ H ₄
30CH ₃ -C ₆ H ₄
2CF3-C6H4
2,4C1-C6H3
2,6C1-C6H3
2SCH3-C6H4
CH ₂ (С ₆ H ₅)
CH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ (2C1-С ₆ H ₄)
CH ₂ (4Cl-C ₆ H ₄)
CH ₂ (2,4C1-C ₆ H ₃)
CH ₂ (3SCH ₃ -C ₆ H ₄)
CH ₂ (30CH ₃ -C ₆ H ₄)
CH ₂ (3C1-C ₆ H ₄)
CH ₂ (2, 6F-C ₆ H ₃)
СH ₂ (2,6С1-С ₆ H ₃)
$CH_2(3, 4F-C_6H_3)$
CH ₂ -Si(CH ₃) ₃
$ON=C(CH_3)_2$
$ON=CH(C_6H_5)$
$ON=C(CH_3)C_6H_5$
осн ₂ (2, 6-с1-с ₆ н ₃)
OCH ₂ (C=CH ₂) CH ₃
OCH ₂ -CH CH ₂
4F-C ₆ H ₄
6-4 4C1-С ₆ н ₄
U *1

2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl 0-2 (3CF₃-C₅H₃N) 0-2C1-6CF_{.3}-C₆H₃ $R^1=NO_2$, $R^2=C=N$ R3 $(CH_2)_2CH_3$ (CH₂)₃CH₃ (CH₂)₄CH₃(CH₂)₅CH₃ $(CH_2)_6CH_3$ (CH₂)₇CH₃ (CH₂) 8CH₃ (CH₂)₉CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH2CH3 СH₂CH (CH₃) CH₂CH₂CH₃ CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH₂-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl

4Br-C6H4

	•	
cyclopropyl	CH ₂ S (4CH ₃ -C ₆ H ₄)	s (СH ₃) 3
cyclobutyl	CH ₂ S(2,6C1-C ₆ H ₃)	SCH2CH(CH3)2
cyclopentyl	CH ₂ S(2,4C1-C ₆ H ₃)	s(C ₆ H ₅)
cyclohexyl	CH2NHCH2CH3	s(3CF3-C6H4)
CH ₂ OCH ₂ CH ₃	CH2NHCH2CH2CH3	s(2C1-C ₆ H ₄)
CH2OCH2CH2CH3	CH ₂ NHCH ₂ C (C ₆ H ₅)	S (40CH3-C6H4)
CH2OCH2CH (CH3)2	CH2NHCH2CH(CH3)2	S(2,4C1-C6H3)
$CH_2OCH_2 (C_6H_5)$	CH2NHCH2 (3CF3-C6H4)	S(2,6F-C ₆ H ₃)
$CH_2OCH_2 (3CF_3-C_6H_4)$	СH ₂ NHCH ₂ (2С1-С ₆ H ₄)	2 (3CH ₃ -C ₆ H ₄)
CH_2OCH_2 (2C1- C_6H_4)	СH ₂ NH (С ₆ H ₅)	NHCH2CH2CH3
CH ₂ OCH ₂ (3SCH ₃ -C ₆ H ₄)	CH2NH (2C1-C6H4)	инсн ₂ (сн ₂) ₂ сн ₃
CH_2OCH_2 (4C1-C6H4)	$CH_2N(CH_3)(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₄ CH ₃
CH_2OCH_2 (2, 4F-C ₆ H ₃)	OCH ₂ CH ₂ CH ₃	NHCH ₂ (СН ₂) ₅ СН ₃
CH2CH2OCH2CH2CH3	осн ₂ (сн ₂) ₂ сн ₃	NHCH2CH (CH3)2
CH ₂ O(C ₆ H ₅)	осн ₂ (сн ₂) ₃ сн ₃	инсн ₂ (С ₆ н ₅)
$CH_2O(3CF_3-C_6H_4)$	осн ₂ (сн ₂) ₅ сн ₃	NHCH ₂ (3CF ₃ -C ₆ H ₄)
$CH_2O(4CF_3-C_6H_4)$	осн ₂ с (с ₆ н ₅)	NHCH ₂ (2C1-C ₆ H ₄)
$CH_2O(2C1-C_6H_4)$	OCH ₂ (3CF ₃ -C ₆ H ₄)	NHCH ₂ (4CH ₃ -C ₆ H ₄)
CH20(3SCH3-C6H4)	OCH ₂ (2C1-C ₆ H ₄)	NHCH ₂ (2, 4C1-C ₆ H ₃)
CH ₂ O (2CH ₃ -C ₆ H ₄)	осн ₂ сн (сн ₃) ₂	NHCH ₂ (2,6C1-C ₆ H ₃)
$CH_2O(4C1-C_6H_4)$	O(C ₆ H ₅)	ин (С ₆ н ₅)
$CH_2O(2,4C1-C_6H_3)$	O(3CF3-C6H4)	NH (3CF ₃ -C ₆ H ₄)
CH2SCH2CH3	O(2C1-C6H4)	NH (2C1-C ₆ H ₄)
CH2SCH2CH2CH3	O(4SCH3-C6H4)	NH (3CH3-C6H4)
CH2SCH2CH (CH3) 2	O(2,4C1-C ₆ H ₃)	NH (2, 4C1-C ₆ H ₃)
$CH_2SCH_2(C_6H_5)$	SCH ₂ CH ₂ CH ₃	NH (2,6C1-C ₆ H ₃)
CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)	SCH ₂ (CH ₂) ₂ CH ₃	N(CH ₃) (3CF ₃ -C ₆ H ₄)
$CH_2S(2C1-C_6H_4)$	SCH ₂ (CH ₂) ₃ CH ₃	N (CH ₃) CH ₂ CH ₂ CH ₃
$CH_2S(4CH_3-C_6H_4)$	SCH ₂ (CH ₂) ₅ CH ₃	N (CH ₂) ₄
$CH_2S(2,4C1-C_6H_3)$	SCH ₂ (C ₆ H ₅)	N (CH ₂) 5
CH ₂ S (3SCH ₃ -C ₆ H ₄)	SCH2 (3SCH3-C6H4)	N (CH ₂) 6
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ (20CH ₃ -C ₆ H ₄)	N(CH ₂ CH ₂ -OCH ₂ CH ₂) ₂
CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)	CH ₂ CO ₂ CH ₃
$CH_2S(3CF_3-C_6H_4)$	SCH ₂ (2,4-C ₆ H ₃)	CH2CH2CO2CH2CH3
$CH_2S(2C1-C_6H_4)$	SCH ₂ (4CF ₃ -C ₆ H ₄)	CH2CH2CO2CH3

CH ₂ CH ₂ OCH ₂ CH ₃
сн ₂ сн ₂ scн ₂ сн ₃
CH2CH2-NHCH2CH3
CH ₂ CH ₂ N (CH ₃) CH ₂ CH ₃
CH=CH (CH ₃) ₂
CH2CH2CH=CH2
CH ₂ CH=CH-CH ₃
CH=CH-CH ₂ CH ₂ -Cl
CH2CH2CH-C1CH2-C1
С ₆ Н ₅
3CF ₃ -C ₆ H ₄
2C1-C6H4
3CH3-C6H4
30CH ₃ -C ₆ H ₄
2CF3-C6H4
2,4C1-C6H3
2,6C1-C6H3
2SCH3-C6H4
CH ₂ (C ₆ H ₅)
$CH_2 (3CF_3 - C_6H_4)$
$CH_2 (2C1-C_6H_4)$
$CH_2(4C1-C_6H_4)$
$CH_2(2,4C1-C_6H_3)$
CH ₂ (3SCH ₃ -C ₆ H ₄)
CH_2 (30 CH_3 - C_6H_4)
$CH_2(3C1-C_6H_4)$
$CH_2(2, 6F-C_6H_3)$
$CH_2(2,6C1-C_6H_3)$
$CH_2(3, 4F-C_6H_3)$
CH_2 -Si(CH_3) ₃
ON=C $(CH_3)_2$
$ON=CH(C_6H_5)$
$ON=C(CH_3)C_6H_5$
$OCH_2(2, 6-C1-C_6H_3)$
OCH_2 (C=CH ₂) CH_3
2. 3

OCH ₂ -CH CH ₂
4F-C ₆ H ₄
4C1-C ₆ H ₄
4Br-C ₆ H ₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2 (3CF ₃ -C ₅ H ₃ N)
0-2C1-6CF ₃ -C ₆ H ₃
$R^1=C1, R^2=CO_2H$
R ³
(CH ₂) ₂ CH ₃
(CH ₂) ₃ CH ₃
(CH ₂) ₄ CH ₃
(CH ₂) ₅ CH ₃
(CH ₂) ₆ CH ₃
(CH ₂) ₇ CH ₃
(CH ₂) ₈ CH ₃
(CH ₂) ₉ CH ₃
CH ₂ CH (CH ₃) ₂
CH ₂ CH ₂ CH (CH ₃) ₂
CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂
CH ₂ CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃
CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃
CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃
CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃
CH ₂ CH ₂ CH ₂ -S-CH ₂ CH ₃
CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃
CH ₂ CH ₂ CH ₂ NHCH ₂ CH ₃
CH ₂ CF ₂ CH (CH ₃) ₂
CH ₂ CH ₂ CH ₂ CF ₂ CH ₃

CH2-cyclopropyl CH₂-cyclobutyl CH₂-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH(CH3)2 $CH_2OCH_2(C_6H_5)$ CH₂OCH₂ (3CF₃-C₆H₄) CH2OCH2 (2C1-C6H4) CH_2OCH_2 (3SCH₃-C₆H₄) CH2OCH2 (4C1-C6H4) CH₂OCH₂ (2, 4F-С₆H₃) CH2CH2OCH2CH2CH3 CH₂O (C₆H₅) $CH_2O(3CF_3-C_6H_4)$ CH₂O (4CF₃-C₆H₄) CH₂O(2C1-C₆H₄) CH2O(3SCH3-C6H4) СH₂O (2СH₃-С₆H₄) CH₂O(4C1-C₆H₄) CH₂O(2,4C1-C₆H₃) CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH(CH3)2 CH2SCH2 (C6H5) $CH_2SCH_2(3CF_3-C_6H_4)$ CH₂S (2C1-C₆H₄) CH2S (4CH3-C6H4) CH₂S (2, 4C1-C₆H₃) CH2S (3SCH3-C6H4)

CH ₂ S(2,6Cl-C ₆ H ₃)	SCH ₂ (20CH ₃ -C ₆ H ₄)	и (Сн ₂ Сн ₂ -оСн ₂ Сн ₂) ₂
CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)	CH ₂ CO ₂ CH ₃
$CH_2S(3CF_3-C_6H_4)$	SCH ₂ (2, 4-C ₆ H ₃)	CH2CH2CO2CH2CH3
CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)	CH2CH2CO2CH3
$CH_2S(4CH_3-C_6H_4)$	S (CH ₃) ₃	CH ₂ CH ₂ OCH ₂ CH ₃
$CH_2S(2,6C1-C_6H_3)$	SCH2CH(CH3)2	CH2CH2SCH2CH3
CH ₂ S(2,4C1-C ₆ H ₃)	s(c ₆ H ₅)	CH2CH2-NHCH2CH3
CH2NHCH2CH3	S(3CF3-C6H4)	сн ₂ сн ₂ и (сн ₃) сн ₂ сн ₃
CH2NHCH2CH2CH3	S(2C1-C6H4)	СH=СH (СН ₃) 2
$CH_2NHCH_2C(C_6H_5)$	S (40CH3-C6H4)	CH2CH2CH=CH2
$\mathrm{CH_2NHCH_2CH}\left(\mathrm{CH_3}\right)_2$	s(2,4C1-C ₆ H ₃)	CH ₂ CH=CH-CH ₃
CH_2NHCH_2 (3CF ₃ -C ₆ H ₄)	S(2,6F-C ₆ H ₃)	CH=CH-CH ₂ CH ₂ -C1
CH_2NHCH_2 (2C1- C_6H_4)	2 (3CH ₃ -C ₆ H ₄)	CH2CH2CH-C1CH2-C1
$CH_2NH(C_6H_5)$	NHCH ₂ CH ₂ CH ₃	C ₆ H ₅
$CH_2NH(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₂ CH ₃	3CF3-C6H4
$CH_2N(CH_3)(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C6H4
OCH ₂ CH ₂ CH ₃	NHCH ₂ (CH ₂) ₅ CH ₃	3CH ₃ -C ₆ H ₄
OCH ₂ (CH ₂) ₂ CH ₃	NHCH ₂ CH (CH ₃) ₂	30CH3-C6H4
OCH ₂ (CH ₂) 3CH ₃	NHCH ₂ (C ₆ H ₅)	2CF3-C6H4
OCH ₂ (CH ₂) ₅ CH ₃	NHCH ₂ (3CF ₃ -C ₆ H ₄)	2,4C1-C ₆ H ₃
$OCH_2C(C_6H_5)$	NHCH ₂ (2C1-C ₆ H ₄)	2,6C1-C6H3
$OCH_2(3CF_3-C_6H_4)$	NHCH ₂ (4CH ₃ -C ₆ H ₄)	2SCH3-C6H4
$OCH_2(2C1-C_6H_4)$	NHCH ₂ (2, 4C1-C ₆ H ₃)	CH ₂ (C ₆ H ₅)
осн ₂ сн (сн ₃) ₂	NHCH ₂ (2,6C1-C ₆ H ₃)	CH ₂ (3CF ₃ -C ₆ H ₄)
O(C ₆ H ₅)	NH (C ₆ H ₅)	CH ₂ (2C1-C ₆ H ₄)
O(3CF ₃ -C ₆ H ₄)	NH (3CF ₃ -C ₆ H ₄)	CH ₂ (4C1-C ₆ H ₄)
O(2C1-C6H4)	NH (2C1-C ₆ H ₄)	CH ₂ (2,4C1-C ₆ H ₃)
O(4SCH3-C6H4)	NH (3CH ₃ -C ₆ H ₄)	CH ₂ (3SCH ₃ -C ₆ H ₄)
O(2,4C1-C ₆ H ₃)	NH (2, 4C1-C ₆ H ₃)	CH ₂ (30CH ₃ -C ₆ H ₄)
sch ₂ ch ₂ ch ₃	NH(2,6C1-C ₆ H ₃)	CH ₂ (3C1-C ₆ H ₄)
SCH ₂ (CH ₂) ₂ CH ₃	$N(CH_3)(3CF_3-C_6H_4)$	$CH_2(2,6F-C_6H_3)$
SCH ₂ (CH ₂) ₃ CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃	$CH_2(2,6C1-C_6H_3)$
scн ₂ (сн ₂) ₅ сн ₃	N (CH ₂) ₄	CH ₂ (3, 4F-C ₆ H ₃)
SCH ₂ (C ₆ H ₅)	N (CH ₂) 5	CH ₂ -Si (CH ₃) 3
SCH ₂ (3SCH ₃ -C ₆ H ₄)	N(CH ₂) ₆	ON=C (CH ₃) ₂
	- 7	

ON=CH (C_6H_5) ON=C (CH_3) C_6H_5 OCH₂ (2, 6-C1-C₆H₃) OCH₂ (C=CH₂) CH₃ OCH₂-CH CH₂

4F-C₆H₄
4Cl-C₆H₄
4Br-C₆H₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2(3CF₃-C₅H₃N)
0-2Cl-6CF₃-C₆H₃

 $R^1=Br$, $R^2=CO_2H$

 \mathbb{R}^3 $(CH_2)_2CH_3$ (CH₂) 3CH₃ (CH₂)₄CH₃(CH₂)₅CH₃ (CH₂) 6CH₃ (CH₂)₇CH₃ (CH₂) 8CH₃ (CH₂) 9CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3

CH2CH2CH2-S-CH2CH3

CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl СH₂OCH₂CH₃ CH2OCH2CH2CH3 CH2OCH2CH(CH3)2 CH₂OCH₂ (С₆H₅) CH_2OCH_2 (3CF₃-C₆H₄) $CH_2OCH_2 (2C1-C_6H_4)$ $CH_{2}OCH_{2}(3SCH_{3}-C_{6}H_{4})$ $CH_2OCH_2(4C1-C_6H_4)$ CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3 $CH_{2}O(C_{6}H_{5})$ $CH_2O(3CF_3-C_6H_4)$ $CH_2O(4CF_3-C_6H_4)$ $CH_2O(2C1-C_6H_4)$ CH2O (3SCH3-C6H4) CH₂O(2CH₃-C₆H₄) CH20 (4C1-C6H4) $CH_2O(2, 4C1-C_6H_3)$ CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH(CH3)2 $CH_2SCH_2(C_6H_5)$

 CH_2SCH_2 (3CF₃-C₆H₄)

CH₂S (2C1-C₆H₄) $CH_2S(4CH_3-C_6H_4)$ $CH_2S(2,4C1-C_6H_3)$ CH₂S (3SCH₃-C₆H₄) $CH_2S(2,6C1-C_6H_3)$ $CH_2S(C_6H_5)$ CH₂S (3CF₃-C₆H₄) CH2S (2C1-C6H4) $CH_2S(4CH_3-C_6H_4)$ CH₂S (2,6C1-С6H₃) $CH_2S(2,4C1-C_6H_3)$ CH2NHCH2CH3 CH2NHCH2CH2CH3 $CH_2NHCH_2C(C_6H_5)$ CH2NHCH2CH (CH3) 2 $CH_2NHCH_2(3CF_3-C_6H_4)$ CH_2NHCH_2 (2C1- C_6H_4) CH2NH (C6H5) CH2NH (2C1-C6H4) $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH₂ (CH₂)₂CH₃ OCH₂ (CH₂) ₃CH₃ OCH₂ (CH₂) 5CH₃ $OCH_2C(C_6H_5)$ $OCH_2 (3CF_3 - C_6H_4)$ $OCH_2(2C1-C_6H_4)$ OCH₂CH (CH₃)₂ O(C6H5) $O(3CF_3-C_6H_4)$ $0(2C1-C_6H_4)$ O(4SCH3-C6H4) O(2,4C1-C6H3) SCH2CH2CH3 SCH2 (CH2) 2CH3

SCH ₂ (CH ₂) 3CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃	CH ₂ (2,6C1-C ₆ H ₃)
SCH ₂ (CH ₂) ₅ CH ₃	N (CH ₂) ₄	CH ₂ (3, 4F-C ₆ H ₃)
SCH ₂ (C ₆ H ₅)	N(CH ₂) ₅	CH2-Si(CH3)3
$SCH_2(3SCH_3-C_6H_4)$	N(CH ₂) ₆	ON=C (CH ₃) ₂
SCH ₂ (20CH ₃ -C ₆ H ₄)	N(CH2CH2-OCH2CH2)2	ON=CH (C ₆ H ₅)
$SCH_2(2C1-C_6H_4)$	сн ₂ со ₂ сн ₃	ON=C (CH ₃) C ₆ H ₅
SCH ₂ (2, 4-C ₆ H ₃)	CH2CH2CO2CH2CH3	OCH ₂ (2, 6-C1-C ₆ H ₃)
$SCH_2(4CF_3-C_6H_4)$	CH2CH2CO2CH3	осн ₂ (с=сн ₂) сн ₃
S (CH ₃) 3	CH2CH2OCH2CH3	OCH ₂ -CH ₂
SCH ₂ CH (CH ₃) ₂	CH2CH2SCH2CH3	CH ₂
s(C ₆ H ₅)	CH ₂ CH ₂ -NHCH ₂ CH ₃	4F-C ₆ H ₄
S(3CF3-C6H4)	CH2CH2N (CH3) CH2CH3	4C1-C ₆ H ₄
S(2C1-C6H4)	СH=СH (СН ₃) 2	4Br-C ₆ H ₄
S (40CH3-C6H4)	CH ₂ CH ₂ CH=CH ₂	2-pyridyl
$S(2,4C1-C_6H_3)$	CH ₂ CH=CH-CH ₃	2-furyl
$S(2,6F-C_6H_3)$	CH=CH-CH ₂ CH ₂ -Cl	2-thiazolyl
2 (3CH ₃ -C ₆ H ₄)	CH ₂ CH ₂ CH-ClCH ₂ -Cl	2-imidazolyl
NHCH ₂ CH ₂ CH ₃	С ₆ н ₅	0-2 (3CF ₃ -C ₅ H ₃ N)
NHCH ₂ (CH ₂) ₂ CH ₃	205 -0 11	O-2C1-6CF ₃ -C ₆ H ₃
NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C ₆ H ₄	
NHCH ₂ (CH ₂) ₅ CH ₃	3CH ₃ -C ₆ H ₄	$R^{1}=I$, $R^{2}=CO_{2}H$
NHCH ₂ CH (CH ₃) ₂	30CH ₃ -С ₆ H ₄	R ³
инсн ₂ (С ₆ н ₅)	2CF3-C6H4	(CH ₂) ₂ CH ₃
$NHCH_2$ (3CF ₃ -C ₆ H ₄)	2,4C1-C ₆ H ₃	(CH ₂) ₃ CH ₃
$NHCH_2(2C1-C_6H_4)$	2,6C1-C ₆ H ₃	(CH ₂) ₄ CH ₃
$NHCH_2(4CH_3-C_6H_4)$	2SCH3-C6H4	(CH ₂) ₅ CH ₃
$NHCH_2(2, 4C1-C_6H_3)$	СH ₂ (С ₆ H ₅)	(CH ₂) ₆ CH ₃
$NHCH_2(2,6C1-C_6H_3)$	CH ₂ (3CF ₃ -C ₆ H ₄)	(CH ₂) ₇ CH ₃
NH (C ₆ H ₅)	CH ₂ (2C1-C ₆ H ₄)	(CH ₂) ₈ CH ₃
NH $(3CF_3-C_6H_4)$	CH ₂ (4C1-C ₆ H ₄)	(CH ₂) ₉ CH ₃
NH (2C1-C ₆ H ₄)	CH ₂ (2,4C1-C ₆ H ₃)	СH ₂ CH (СН ₃) ₂
NH (3CH ₃ -C ₆ H ₄)	CH - (39CH C - P -)	CH ₂ CH ₂ CH (CH ₃) ₂
NH $(2, 4C1-C_6H_3)$	CB - (30CB - C - B -)	CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂
NH $(2, 6C1-C_6H_3)$	CB - /3C1 - C - B - /	CH ₂ CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃
$N(CH_3)(3CF_3-C_6H_4)$	CU - 12 6E-C-U-1	CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃

$\mathtt{CH_2CH}(\mathtt{CH_2CH_3})\mathtt{CH_2CH_3}$
$\mathrm{CH_2CH_2CH_2OCH_2CH_3}$
$\mathrm{CH_2CH_2CH_2CH_3}$
CH ₂ CH ₂ CH ₂ -S-CH ₂ CH ₃
CH2CH2CH2CH2SCH3
CH2CH2CH2NHCH2CH3
CH2CF2CH(CH3)2
CH2CH2CF2CH3
CH2-cyclopropyl
CH ₂ -cyclobutyl
CH2-cyclopentyl
CH2-cyclohexyl
cyclopropyl
cyclobutyl
cyclopentyl
cyclohexyl
CH2OCH2CH3
CH2OCH2CH2CH3
${\rm CH_2OCH_2CH(CH_3)_2}$
$CH_2OCH_2(C_6H_5)$
$CH_2OCH_2 (3CF_3 - C_6H_4)$
CH_2OCH_2 (2C1- C_6H_4)
$\mathrm{CH_2OCH_2}$ (3SCH ₃ -C ₆ H ₄)
CH_2OCH_2 (4C1-C ₆ H ₄)
$CH_2OCH_2(2, 4F-C_6H_3)$
$\mathrm{CH_2CH_2OCH_2CH_2CH_3}$
CH ₂ O (C ₆ H ₅)
$CH_2O(3CF_3-C_6H_4)$
$CH_2O(4CF_3-C_6H_4)$
$CH_2O(2C1-C_6H_4)$
$CH_2O(3SCH_3-C_6H_4)$
$CH_2O(2CH_3-C_6H_4)$
$CH_2O(4C1-C_6H_4)$
$CH_2O(2,4C1-C_6H_3)$
CH ₂ SCH ₂ CH ₃

CH2SCH2CH2CH3
СН ₂ SСН ₂ СН (СН ₃)2
СH ₂ SCH ₂ (С ₆ H ₅)
CH2SCH2 (3CF3-C6H4)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S(2,4C1-C ₆ H ₃)
CH ₂ S (3SCH ₃ -C ₆ H ₄)
CH ₂ S(2,6Cl-C ₆ H ₃)
сн ₂ s (с ₆ н ₅)
CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ S (2Cl-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S(2,6Cl-C ₆ H ₃)
CH ₂ S(2,4C1-C ₆ H ₃)
Сн ₂ nнсн ₂ Сн ₃
СH ₂ NHCH ₂ CH ₂ CH ₃
CH ₂ NHCH ₂ C(C ₆ H ₅)
CH ₂ NHCH ₂ CH (CH ₃) ₂
$CH_2NHCH_2(3CF_3-C_6H_4)$
CH ₂ NHCH ₂ (2C1-С ₆ H ₄)
СH ₂ NH (С ₆ H ₅)
CH ₂ NH (2C1-C ₆ H ₄)
$CH_2N(CH_3)(2C1-C_6H_4)$
осн ₂ сн ₂ сн ₃
осн ₂ (сн ₂) ₂ сн ₃
осн ₂ (сн ₂) ₃ сн ₃
осн ₂ (сн ₂) ₅ сн ₃
осн ₂ с (с ₆ н ₅)
OCH ₂ (3CF ₃ -C ₆ H ₄)
OCH ₂ (2C1-C ₆ H ₄)
OCH ₂ CH (CH ₃) ₂
o(C ₆ H ₅)
O(3CF ₃ -C ₆ H ₄)
O(2C1-C ₆ H ₄)
· ·

O(4SCH3-C6H4) O(2,4C1-C6H3) SCH2CH2CH3 SCH2 (CH2) 2CH3 SCH₂ (CH₂) ₃CH₃ SCH₂ (CH₂) ₅CH₃ SCH2 (C6H5) SCH₂ (3SCH₃-C₆H₄) SCH₂ (20CH₃-C₆H₄) SCH2 (2C1-C6H4) SCH₂ (2, 4-C₆H₃) SCH2 (4CF3-C6H4) S (CH₃) 3 SCH₂CH (CH₃)₂ S (C6H5) S (3CF3-C6H4) S (2C1-C6H4) S (40CH3-C6H4) S(2,4C1-C6H3) S(2,6F-C6H3) 2 (3CH3-C6H4) NHCH2CH2CH3 NHCH₂ (CH₂) ₂CH₃ NHCH2 (CH2) 4CH3 NHCH₂ (CH₂) ₅CH₃ NHCH2CH (CH3) 2 NHCH₂ (C₆H₅) NHCH₂ (3CF₃-C₆H₄) NHCH₂ (2C1-C₆H₄) NHCH₂ (4CH₃-C₆H₄) $NHCH_2(2, 4C1-C_6H_3)$ NHCH₂ (2,6C1-C₆H₃) NH (C₆H₅) NH (3CF3-C6H4) NH (2C1-C6H4)

 $NH(3CH_3-C_6H_4)$ $NH(2,4C1-C_6H_3)$ $NH(2,6C1-C_6H_3)$ $N(CH_3)(3CF_3-C_6H_4)$ N(CH3)CH2CH2CH3 $N(CH_2)_4$ N(CH₂)₅ N (CH₂) 6 N(CH2CH2-OCH2CH2)2 CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 $\mathrm{CH_2CH_2N}$ ($\mathrm{CH_3}$) $\mathrm{CH_2CH_3}$ CH=CH (CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH₂CH₂-Cl CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6Cl-C₆H₃ 2SCH3-C6H4 $CH_2(C_6H_5)$ $CH_2 (3CF_3 - C_6H_4)$ $CH_2(2C1-C_6H_4)$ $CH_2(4C1-C_6H_4)$ $CH_2(2, 4C1-C_6H_3)$

CH2 (3SCH3-C6H4) СH₂ (ЗОСН₃-С₆H₄) $CH_2 (3C1-C_6H_4)$ $CH_2(2,6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$ $CH_2(3, 4F-C_6H_3)$ CH_2 -Si(CH_3)₃ $ON=C(CH_3)_2$ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ $OCH_2(2, 6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 осн₂-сң 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl $0-2 (3CF_3-C_5H_3N)$ 0-2C1-6CF3-C6H3 $R^1 = OCH_3$, $R^2 = CO_2H$ R3 (CH₂)₂CH₃ (CH₂)₃CH₃ (CH₂)₄CH₃(CH₂)₅CH₃ (CH2) 6CH3 (CH₂)₇CH₃ (CH₂)₈CH₃ (CH₂) 9CH₃ CH₂CH (CH₃)₂

CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 $CH_2CH(CH_2CH_3)CH_2CH_3$ CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2 СH₂ОСН₂ (С₆H₅) $CH_2OCH_2(3CF_3-C_6H_4)$ CH2OCH2 (2C1-C6H4) CH_2OCH_2 (3SCH₃-C₆H₄) CH_2OCH_2 (4C1-C₆H₄) CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3 CH₂O (C₆H₅) $CH_2O(3CF_3-C_6H_4)$ CH2O (4CF3-C6H4) $CH_2O(2C1-C_6H_4)$ |CH₂O(3SCH₃-C₆H₄)

$CH_{2}O(2CH_{3}-C_{6}H_{4})$	OCH ₂ CH (CH ₃) ₂	NHCH ₂ (2,6C1-C ₆ H ₃)
$CH_2O(4C1-C_6H_4)$	O(C ₆ H ₅)	ин (С ₆ н ₅)
CH ₂ O(2,4C1-C ₆ H ₃)	O(3CF3-C6H4)	NH (3CF ₃ -C ₆ H ₄)
CH2SCH2CH3	O(2C1-C6H4)	NH (2C1-C6H4)
CH2SCH2CH2CH3	O(4SCH3-C6H4)	NH (3CH3-C6H4)
CH2SCH2CH(CH3)2	O(2,4C1-C ₆ H ₃)	NH(2,4C1-C ₆ H ₃)
CH2SCH2 (C6H5)	SCH2CH2CH3	NH(2,6C1-C6H3)
CH2SCH2 (3CF3-C6H4)	scн ₂ (сн ₂) ₂ сн ₃	N(CH ₃) (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (CH ₂) 3CH ₃	N(CH3)CH2CH2CH3
$CH_2S(4CH_3-C_6H_4)$	SCH2 (CH2) 5CH3	N (CH ₂) ₄
$CH_2S(2,4C1-C_6H_3)$	SCH ₂ (C ₆ H ₅)	N (CH ₂) ₅
CH ₂ S (3SCH ₃ -C ₆ H ₄)	scн ₂ (3scн ₃ -с ₆ н ₄)	N (CH ₂) 6
$CH_2S(2,6C1-C_6H_3)$	scн ₂ (20сн ₃ -с ₆ н ₄)	N (СН ₂ СН ₂ -ОСН ₂ СН ₂) 2
CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)	СH ₂ СО ₂ СН ₃
$CH_2S(3CF_3-C_6H_4)$	SCH ₂ (2,4-C ₆ H ₃)	CH ₂ CH ₂ CO ₂ CH ₂ CH ₃
$CH_2S(2C1-C_6H_4)$	SCH2 (4CF3-C6H4)	CH ₂ CH ₂ CO ₂ CH ₃
CH ₂ S (4CH ₃ -C ₆ H ₄)	s (CH ₃) ₃	CH2CH2OCH2CH3
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ CH (CH ₃) ₂	CH ₂ CH ₂ SCH ₂ CH ₃
CH ₂ S(2,4C1-C ₆ H ₃)	s (C ₆ H ₅)	CH2CH2-NHCH2CH3
CH2NHCH2CH3	S(3CF ₃ -C ₆ H ₄)	CH ₂ CH ₂ N (CH ₃) CH ₂ CH ₃
CH2NHCH2CH2CH3	S (2C1-C ₆ H ₄)	CH=CH (CH ₃) ₂
CH2NHCH2C(C6H5)	S(40CH3-C6H4)	CH ₂ CH ₂ CH≖CH ₂
CH2NHCH2CH (CH3)2	S(2,4C1-C ₆ H ₃)	CH ₂ CH=CH-CH ₃
CH ₂ NHCH ₂ (3CF ₃ -C ₆ H ₄)	s(2,6F-C ₆ H ₃)	CH=CH-CH ₂ CH ₂ -C1
CH ₂ NHCH ₂ (2Cl-C ₆ H ₄)	2(3CH ₃ -C ₆ H ₄)	CH ₂ CH ₂ CH-C1CH ₂ -C1
CH ₂ NH (C ₆ H ₅)	NHCH ₂ CH ₂ CH ₃	С ₆ н ₅
CH ₂ NH (2C1-C ₆ H ₄)	NHCH ₂ (CH ₂) ₂ CH ₃	3CF ₃ -C ₆ H ₄
$CH_2N(CH_3)$ (2C1- C_6H_4)	NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C ₆ H ₄
осн ₂ сн ₂ сн ₃	NHCH ₂ (CH ₂) ₅ CH ₃	3CH ₃ -C ₆ H ₄
OCH ₂ (CH ₂) ₂ CH ₃	NHCH ₂ CH (CH ₃) ₂	30CH3-C6H4
OCH ₂ (CH ₂) ₃ CH ₃	инсн ₂ (с ₆ н ₅)	2CF3-C6H4
OCH ₂ (CH ₂) ₅ CH ₃	NHCH ₂ (3CF ₃ -C ₆ H ₄)	2,4C1-C ₆ H ₃
осн ₂ с (с ₆ н ₅)	NHCH ₂ (2C1-C ₆ H ₄)	2,6C1-C ₆ H ₃
OCH ₂ (3CF ₃ -C ₆ H ₄)	NHCH ₂ (4CH ₃ -C ₆ H ₄)	2SCH3-C6H4
OCH ₂ (2C1-C ₆ H ₄)	NHCH ₂ (2, 4C1-C ₆ H ₃)	CH ₂ (C ₆ H ₅)

 $CH_2 (3CF_3 - C_6H_4)$ $CH_2(2C1-C_6H_4)$ $CH_2(4C1-C_6H_4)$ $CH_2(2,4C1-C_6H_3)$ CH_2 (3SCH3-C6H4) CH_2 (30 CH_3 - C_6H_4) CH_2 (3C1- C_6H_4) $CH_2(2, 6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$ $CH_2(3, 4F-C_6H_3)$ CH2-Si (CH3) 3 $ON=C(CH_3)_2$ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ $OCH_2(2, 6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 осн₂-сң 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl $0-2 (3CF_3-C_5H_3N)$ 0-2C1-6CF3-C6H3 $R^1=OCF_3$, $R^2=CO_2H$ \mathbb{R}^3 (CH2) 2CH3 (CH₂) 3CH₃ (CH₂)₄CH₃ (CH₂) 5CH₃

(CH₂) 6CH₃

(CH₂)₇CH₃ (CH₂)₈CH₃ (CH₂)₉CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH₂-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2 $CH_2OCH_2(C_6H_5)$ CH2OCH2 (3CF3-C6H4) CH2OCH2 (2C1-C6H4) CH2OCH2 (3SCH3-C6H4) $CH_2OCH_2(4C1-C_6H_4)$ $CH_2OCH_2(2, 4F-C_6H_3)$ CH2CH2OCH2CH2CH3 $CH_{2}O(C_{6}H_{5})$

 $CH_2O(3CF_3-C_6H_4)$ CH₂O (4CF₃-C₆H₄) $CH_2O(2C1-C_6H_4)$ $CH_2O(3SCH_3-C_6H_4)$ $CH_2O(2CH_3-C_6H_4)$ $CH_2O(4C1-C_6H_4)$ $CH_2O(2, 4C1-C_6H_3)$ CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH(CH3)2 CH2SCH2 (C6H5) CH_2SCH_2 (3CF₃-C₆H₄) CH₂S (2C1-C₆H₄) $CH_2S(4CH_3-C_6H_4)$ CH₂S (2, 4Cl-C₆H₃) CH2S (3SCH3-C6H4) $CH_2S(2,6C1-C_6H_3)$ CH₂S (C₆H₅) $CH_2S(3CF_3-C_6H_4)$ CH2S (2C1-C6H4) CH2S (4CH3-C6H4) CH₂S (2,6C1-C₆H₃) CH₂S (2, 4C1-C₆H₃) CH2NHCH2CH3 CH2NHCH2CH2CH3 CH2NHCH2C (C6H5) CH2NHCH2CH (CH3) 2 CH_2NHCH_2 (3CF₃-C₆H₄) $CH_2NHCH_2(2C1-C_6H_4)$ $CH_2NH(C_6H_5)$ $CH_2NH(2C1-C_6H_4)$ $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH2 (CH2) 2CH3 осн₂ (сн₂) ₃сн₃

OCH (CH) CH
OCH ₂ (CH ₂) ₅ CH ₃
OCH ₂ C (C ₆ H ₅)
OCH ₂ (3CF ₃ -C ₆ H ₄)
OCH ₂ (2C1-C ₆ H ₄)
OCH ₂ CH (CH ₃) ₂
O(C ₆ H ₅)
O(3CF ₃ -C ₆ H ₄)
$O(2C1-C_6H_4)$
$O(4SCH_3-C_6H_4)$
$O(2,4C1-C_6H_3)$
SCH ₂ CH ₂ CH ₃
$SCH_2(CH_2)_2CH_3$
SCH ₂ (CH ₂) ₃ CH ₃
SCH ₂ (CH ₂) 5CH ₃
SCH ₂ (C ₆ H ₅)
SCH_2 (3SCH ₃ -C ₆ H ₄)
$SCH_2 (2OCH_3 - C_6H_4)$
SCH_2 (2Cl- C_6H_4)
$SCH_2(2, 4-C_6H_3)$
$SCH_2 (4CF_3-C_6H_4)$
S (CH ₃) 3
SCH2CH(CH3)2
s(C ₆ H ₅)
$s(3CF_3-C_6H_4)$
$S(2C1-C_6H_4)$
s (40CH3-C6H4)
$s(2,4C1-C_6H_3)$
$S(2,6F-C_6H_3)$
2 (3CH ₃ -C ₆ H ₄)
NHCH2CH2CH3
NHCH ₂ (CH ₂) ₂ CH ₃
NHCH ₂ (CH ₂) ₄ CH ₃
инсн ₂ (сн ₂) ₅ сн ₃
инсн ₂ сн (сн ₃) ₂
инсн ₂ (С ₆ н ₅)

```
NHCH<sub>2</sub> (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 NHCH<sub>2</sub> (2C1-C<sub>6</sub>H<sub>4</sub>)
 NHCH<sub>2</sub> (4CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 NHCH_2(2,4C1-C_6H_3)
 |NHCH_2(2,6C1-C_6H_3)|
NH (C<sub>6</sub>H<sub>5</sub>)
NH (3CF3-C6H4)
NH (2C1-C<sub>6</sub>H<sub>4</sub>)
NH (3CH3-C6H4)
NH (2, 4C1-C6H3)
NH (2,6C1-C6H3)
N(CH_3)(3CF_3-C_6H_4)
и (сн<sub>3</sub>) сн<sub>2</sub>сн<sub>2</sub>сн<sub>3</sub>
N (CH<sub>2</sub>) 4
N (CH<sub>2</sub>)<sub>5</sub>
N (CH<sub>2</sub>) 6
N(CH2CH2-OCH2CH2)2
CH2CO2CH3
CH2CH2CO2CH2CH3
CH2CH2CO2CH3
CH2CH2OCH2CH3
CH2CH2SCH2CH3
CH2CH2-NHCH2CH3
CH2CH2N (CH3) CH2CH3
CH=CH (CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH=CH2
CH2CH=CH-CH3
CH=CH-CH<sub>2</sub>CH<sub>2</sub>-C1
CH2CH2CH-C1CH2-C1
C<sub>6</sub>H<sub>5</sub>
3CF3-C6H4
2C1-C6H4
3CH3-C6H4
30CH3-C6H4
2CF3-C6H4
```

2,6C1-C₆H₃ 2SCH3-C6H4 $CH_2(C_6H_5)$ CH2 (3CF3-C6H4) $CH_2(2C1-C_6H_4)$ CH₂ (4C1-C₆H₄) $CH_2(2,4C1-C_6H_3)$ CH2 (3SCH3-C6H4) CH₂ (30CH₃-C₆H₄) $CH_2(3C1-C_6H_4)$ $CH_2(2,6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$ $CH_2(3, 4F-C_6H_3)$ CH2-Si (CH3) 3 $ON=C(CH_3)_2$ ON=CH (C6H5) $ON=C(CH_3)C_6H_5$ OCH₂ (2,6-C1-C₆H₃) OCH₂ (C=CH₂) CH₃ OCH2-CH 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl O-2 (3CF₃-C₅H₃N) 0-2C1-6CF3-C6H3 $R^1 = OCF_2H$, $R^2 = CO_2H$ R3 (CH₂)₂CH₃

2,4C1-C6H3

	01	
(CH ₂) ₃ CH ₃	CH2OCH2 (4C1-C6H4)	CH2N(CH3) (2C1-C6H4)
(CH ₂) ₄ CH ₃	CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)	осн ₂ сн ₂ сн ₃
(CH ₂) ₅ CH ₃	CH2CH2OCH2CH2CH3	осн ₂ (Сн ₂) ₂ Сн ₃
(CH ₂) ₆ CH ₃	CH ₂ O(C ₆ H ₅)	осн ₂ (сн ₂) ₃ сн ₃
(CH ₂) ₇ CH ₃	CH ₂ O(3CF ₃ -C ₆ H ₄)	OCH ₂ (CH ₂) ₅ CH ₃
(CH ₂) ₈ CH ₃	CH ₂ O(4CF ₃ -C ₆ H ₄)	осн ₂ с (с ₆ н ₅)
(CH ₂) ₉ CH ₃	CH ₂ O(2C1-C ₆ H ₄)	OCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ CH (CH ₃) ₂	CH ₂ O(3SCH ₃ -C ₆ H ₄)	OCH ₂ (2C1-C ₆ H ₄)
$\mathrm{CH_2CH_2CH}$ ($\mathrm{CH_3}$) 2	CH ₂ O(2CH ₃ -C ₆ H ₄)	OCH ₂ CH (CH ₃) ₂
$\mathrm{CH_2CH_2CH_2CH}$ ($\mathrm{CH_3}$) 2	CH ₂ O(4C1-C ₆ H ₄)	O(C ₆ H ₅)
$\mathrm{CH_2CH_2CH}$ ($\mathrm{CH_3}$) $\mathrm{CH_2CH_2CH_3}$	CH ₂ O(2,4C1-C ₆ H ₃)	O(3CF3-C6H4)
CH2CH(CH3)CH2CH2CH3	СH ₂ SCH ₂ CH ₃	O(2C1-C ₆ H ₄)
$\mathrm{CH}_2\mathrm{CH}(\mathrm{CH}_2\mathrm{CH}_3)\mathrm{CH}_2\mathrm{CH}_3$	CH ₂ SCH ₂ CH ₂ CH ₃	O(4SCH3-C6H4)
CH2CH2CH2OCH2CH3	CH2SCH2CH(CH3)2	O(2,4C1-C ₆ H ₃)
сн ₂ сн ₂ сн ₂ сн ₂ осн ₃	CH ₂ SCH ₂ (C ₆ H ₅)	SCH2CH2CH3
$CH_2CH_2CH_2-S-CH_2CH_3$	CH2SCH2 (3CF3-C6H4)	SCH ₂ (CH ₂) ₂ CH ₃
CH2CH2CH2CH2SCH3	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (CH ₂) 3CH ₃
CH2CH2CH2NHCH2CH3	CH ₂ S (4CH ₃ -C ₆ H ₄)	SCH ₂ (CH ₂) ₅ CH ₃
CH2CF2CH(CH3)2	CH ₂ S (2, 4Cl-C ₆ H ₃)	SCH ₂ (C ₆ H ₅)
CH2CH2CH2CF2CH3	CH ₂ S (3SCH ₃ -C ₆ H ₄)	SCH ₂ (3SCH ₃ -C ₆ H ₄)
CH ₂ -cyclopropyl	CH ₂ S (2,6C1-C ₆ H ₃)	SCH ₂ (20CH ₃ -C ₆ H ₄)
CH ₂ -cyclobutyl	СH ₂ S (С ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)
CH2-cyclopentyl	CH ₂ S (3CF ₃ -C ₆ H ₄)	SCH ₂ (2, 4-C ₆ H ₃)
CH ₂ -cyclohexyl	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)
cyclopropyl	CH ₂ S (4CH ₃ -C ₆ H ₄)	S (CH ₃) 3
cyclobutyl	CH ₂ S (2, 6C1-C ₆ H ₃)	SCH ₂ CH (CH ₃) ₂
cyclopentyl	CH ₂ S (2, 4C1-C ₆ H ₃)	s (C ₆ H ₅)
cyclohexyl	CH ₂ NHCH ₂ CH ₃	S(3CF ₃ -C ₆ H ₄)
CH ₂ OCH ₂ CH ₃	CH2NHCH2CH2CH3	S(2C1-C ₆ H ₄)
CH2OCH2CH2CH3	CH ₂ NHCH ₂ C (C ₆ H ₅)	S (40CH3-C6H4)
CH2OCH2CH (CH3)2	CH ₂ NHCH ₂ CH (CH ₃) ₂	s(2,4C1-C ₆ H ₃)
$CH_2OCH_2(C_6H_5)$	СH ₂ NHCH ₂ (3СF ₃ -С ₆ H ₄)	S(2,6F-C ₆ H ₃)
$CH_2OCH_2 (3CF_3 - C_6H_4)$	CH ₂ NHCH ₂ (2C1-C ₆ H ₄)	2 (3CH ₃ -C ₆ H ₄)
CH ₂ OCH ₂ (2C1-C ₆ H ₄)	CH ₂ NH (C ₆ H ₅)	NHCH2CH2CH3
CH ₂ OCH ₂ (3SCH ₃ -C ₆ H ₄)	СH ₂ NH (2C1-С ₆ H ₄)	NHCH ₂ (CH ₂) ₂ CH ₃

NHCH_2 (CH_2) $_4\mathrm{CH}_3$
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH2CH (CH3) 2
NHCH ₂ (C ₆ H ₅)
$NHCH_2$ (3CF ₃ -C ₆ H ₄)
NHCH ₂ (2C1-C ₆ H ₄)
NHCH ₂ (4CH ₃ -C ₆ H ₄)
$NHCH_2(2,4C1-C_6H_3)$
$NHCH_2(2,6C1-C_6H_3)$
NH (C ₆ H ₅)
NH (3CF ₃ -C ₆ H ₄)
NH (2C1-C ₆ H ₄)
NH (3CH3-C6H4)
NH(2,4C1-C6H3)
$NH(2,6C1-C_6H_3)$
$N(CH_3)(3CF_3-C_6H_4)$
N(CH3)CH2CH2CH3
N (CH ₂) ₄
N (CH ₂) ₅
N (CH ₂) 6
$\text{N}\left(\text{CH}_{2}\text{CH}_{2}\text{-OCH}_{2}\text{CH}_{2}\right)_{2}$
CH ₂ CO ₂ CH ₃
$\mathrm{CH_2CH_2CO_2CH_2CH_3}$
CH2CH2CO2CH3
CH2CH2OCH2CH3
CH ₂ CH ₂ SCH ₂ CH ₃
CH2CH2-NHCH2CH3
$\mathrm{CH_2CH_2N}\left(\mathrm{CH_3}\right)\mathrm{CH_2CH_3}$
CH=CH(CH ₃) ₂
CH2CH2CH=CH2
CH ₂ CH=CH-CH ₃
CH=CH-CH ₂ CH ₂ -Cl
CH2CH2CH-C1CH2-C1
C ₆ H ₅
3CE C - U -

3CF3-C6H4

```
2C1-C6H4
 3CH3-C6H4
 30CH3-C6H4
2CF3-C6H4
2,4C1-C6H3
2,6C1-C6H3
2SCH3-C6H4
CH_2(C_6H_5)
CH_2 (3CF_3 - C_6H_4)
CH_2(2C1-C_6H_4)
CH_2 (4C1-C_6H_4)
CH_2(2,4C1-C_6H_3)
CH<sub>2</sub> (3SCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
CH_2(30CH_3-C_6H_4)
CH<sub>2</sub> (3C1-C<sub>6</sub>H<sub>4</sub>)
CH_2(2,6F-C_6H_3)
CH<sub>2</sub> (2,6Cl-С<sub>6</sub>H<sub>3</sub>)
CH_2(3, 4F-C_6H_3)
CH2-Si (CH3) 3
ON=C(CH_3)_2
ON=CH(C_6H_5)
ON=C(CH_3)C_6H_5
OCH_2(2, 6-C1-C_6H_3)
OCH_2 (C=CH<sub>2</sub>) CH<sub>3</sub>
осн<sub>2</sub>-сң
4F-C6H4
4C1-C_6H_4
4Br-C6H4
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2 (3CF_3-C_5H_3N)
0-2C1-6CF3-C6H3
```

 $R^1 = NO_2$, $R^2 = CO_2H$ R3 $(CH_2)_2CH_3$ (CH₂)₃CH₃ (CH₂)₄CH₃(CH₂)₅CH₃ (CH₂)₆CH₃ (CH₂)₇CH₃ (CH₂)₈CH₃ (CH₂) ₉CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH₂-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH(CH3)2

CH ₂ OCH ₂ (С ₆ H ₅)	CH ₂ NHCH ₂ (3CF ₃ -C ₆ H ₄)
$CH_2OCH_2 (3CF_3-C_6H_4)$	СH ₂ NHCH ₂ (2Cl-С ₆ H ₄)
CH_2OCH_2 (2C1- C_6H_4)	СH ₂ NH (С ₆ H ₅)
CH_2OCH_2 (3SCH3-C6H4)	CH ₂ NH (2C1-C ₆ H ₄)
CH_2OCH_2 (4C1-C6H4)	$CH_2N(CH_3)(2C1-C_6H_4)$
CH_2OCH_2 (2, 4F- C_6H_3)	осн ₂ сн ₂ сн ₃
$CH_2CH_2OCH_2CH_2CH_3$	OCH ₂ (CH ₂) ₂ CH ₃
$CH_2O(C_6H_5)$	осн ₂ (сн ₂) ₃ сн ₃
$CH_2O(3CF_3-C_6H_4)$	осн ₂ (сн ₂) ₅ сн ₃
$CH_2O(4CF_3-C_6H_4)$	осн ₂ с (с ₆ н ₅)
$CH_2O(2C1-C_6H_4)$	OCH ₂ (3CF ₃ -C ₆ H ₄)
$CH_2O(3SCH_3-C_6H_4)$	OCH ₂ (2C1-C ₆ H ₄)
$CH_2O(2CH_3-C_6H_4)$	осн ₂ сн (сн ₃) ₂
$CH_{2}O(4C1-C_{6}H_{4})$	о (c ₆ н ₅)
$CH_2O(2,4C1-C_6H_3)$	O(3CF ₃ -C ₆ H ₄)
CH ₂ SCH ₂ CH ₃	0(2C1-C6H4)
CH2SCH2CH2CH3	O(4SCH3-C6H4)
CH ₂ SCH ₂ CH (CH ₃) 2	O(2,4C1-C ₆ H ₃)
CH ₂ SCH ₂ (C ₆ H ₅)	SCH ₂ CH ₂ CH ₃
$CH_2SCH_2(3CF_3-C_6H_4)$	SCH ₂ (CH ₂) ₂ CH ₃
$CH_2S(2C1-C_6H_4)$	SCH ₂ (CH ₂) ₃ CH ₃
$CH_2S(4CH_3-C_6H_4)$	SCH ₂ (CH ₂) ₅ CH ₃
$CH_2S(2,4C1-C_6H_3)$	SCH ₂ (C ₆ H ₅)
CH ₂ S (3SCH ₃ -C ₆ H ₄)	SCH ₂ (3SCH ₃ -C ₆ H ₄)
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ (20CH ₃ -C ₆ H ₄)
CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)
$CH_2S(3CF_3-C_6H_4)$	SCH ₂ (2, 4-C ₆ H ₃)
$CH_2S(2C1-C_6H_4)$	SCH ₂ (4CF ₃ -C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)	S (CH ₃) ₃
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ CH (CH ₃) ₂
$CH_2S(2, 4C1-C_6H_3)$	S (C ₆ H ₅)
CH ₂ NHCH ₂ CH ₃	S(3CF ₃ -C ₆ H ₄)
CH2NHCH2CH2CH3	S (2C1-C ₆ H ₄)
$CH_2NHCH_2C(C_6H_5)$	S (40CH3-C6H4)
CH ₂ NHCH ₂ CH (CH ₃) ₂	S(2,4C1-C ₆ H ₃)

 $S(2,6F-C_6H_3)$ 2 (3CH3-C6H4) NHCH2CH2CH3 NHCH2 (CH2) 2CH3 NHCH₂ (CH₂) ₄CH₃ NHCH₂ (CH₂) ₅CH₃ NHCH2CH (CH3) 2 NHCH₂ (C₆H₅) NHCH₂ (3CF₃-C₆H₄) NHCH₂ (2C1-C₆H₄) NHCH₂ (4CH₃-C₆H₄) NHCH₂ (2, 4C1-C₆H₃) NHCH₂ (2,6C1-C₆H₃) NH (C₆H₅) NH (3CF3-C6H4) NH (2C1-C6H4) NH (3CH3-C6H4) NH (2, 4C1-C6H3) NH(2,6C1-C₆H₃) $N(CH_3) (3CF_3-C_6H_4)$ N(CH3)CH2CH2CH3 N (CH₂) 4 N (CH₂) 5 N(CH₂)6 N(CH2CH2-OCH2CH2)2 CH₂CO₂CH₃ CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH(CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3

C₆H₅

CH2CH2CH(CH3)2

 $R^1 = OCH_3$, $R^2 = CO_2CH_3$ 3CF3-C6H4 CH=CH-CH2CH2-Cl R3 CH2CH2CH-C1CH2-C1 2C1-C6H4 (CH2) 3CH3 C₆H₅ $R^1=Br$, $R^2=CO_2CH_3$ CH2CH (CH3) 2 3CF3-C6H4 \mathbb{R}^3 CH2CH2CH(CH3)2 2C1-C6H4 (CH₂)₃CH₃CH2-cyclopentyl 3CH3-C6H4 CH2CH (CH3)2 $CH_2O(C_6H_5)$ 30CH3-C6H4 CH2CH2CH(CH3)2 CH2SCH2CH (CH3) 2 2CF3-C6H4 2,4C1-C6H3 CH2-cyclopentyl CH2NHCH2CH (CH3) 2 2,6C1-C6H3 $CH_2O(C_6H_5)$ OCH₂CH (CH₃)₂ CH2SCH2CH (CH3) 2 NHCH2CH (CH3) 2 2SCH3-C6H4 CH2NHCH2CH (CH3) 2 $CH_2(C_6H_5)$ C6H5 $CH_2 (3CF_3 - C_6H_4)$ OCH₂CH (CH₃)₂ 3CF3-C6H4 NHCH2CH (CH3) 2 2C1-C6H4 $CH_2 (2C1-C_6H_4)$ $CH_2 (4C1-C_6H_4)$ C₆H₅ R^1 =OCF₃, R^2 =CO₂CH₃ $CH_2(2, 4C1-C_6H_3)$ 3CF3-C6H4 \mathbb{R}^3 CH_2 (3SCH₃-C₆H₄) 2C1-C6H4 CH_2 (30 CH_3 - C_6H_4) (CH2) 3CH3 $R^1=I$, $R^2=CO_2CH_3$ CH2CH (CH3) 2 $CH_{2}(3C1-C_{6}H_{4})$ R3 $CH_2(2, 6F-C_6H_3)$ CH2CH2CH (CH3) 2 (CH₂)₃CH₃ CH2-cyclopentyl CH_2 (2, 6C1-C₆H₃) CH2CH (CH3) 2 CH₂O (C₆H₅) $CH_2(3, 4F-C_6H_3)$ CH2CH2CH (CH3) 2 CH2SCH2CH (CH3) 2 $R^1=C1$, $R^2=CO_2CH_3$ CH2NHCH2CH (CH3) 2 CH2-cyclopentyl **R**3 OCH₂CH (CH₃)₂ $CH_2O(C_6H_5)$ (CH₂)₃CH₃ CH2SCH2CH (CH3) 2 NHCH2CH (CH3) 2 CH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 C₆H₅ CH2CH2CH(CH3)2 OCH₂CH (CH₃)₂ 3CF3-C6H4 NHCH2CH (CH3) 2 2C1-C6H4 CH2-cyclopentyl CH2O (C6H5) C₆H₅ R^1 =OCF₂H, R^2 =CO₂CH₃ CH2SCH2CH(CH3)2 3CF3-C6H4 \mathbb{R}^3 CH2NHCH2CH(CH3)2 2C1-C6H4 (CH₂)₃CH₃ OCH2CH (CH3) 2 CH2CH (CH3) 2 NHCH2CH (CH3) 2

CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$, $R^2 = CO_2CH_3$ \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=CO_2CH_2CH_3$ \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2

NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=CO_2CH_2CH_3$ R³ (CH₂) 3CH₃ CH2CH (CH3)2 CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=CO_2CH_2CH_3$ R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 R^1 =OCH₃, R^2 =CO₂CH₂CH₃ \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^{1}=OCF_{3}, R^{2}=CO_{2}CH_{2}CH_{3}$ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C_6H_5 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CO₂CH₂CH₃ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2

OCH2CH (CH3) 2

NHCH2CH(CH3)2 R^1 =OCH₃, R^2 =CHO CH2-cyclopentyl R3 CH2O (C6H5) C₆H₅ CH2SCH2CH(CH3)2 3CF3-C6H4 (CH2) 3CH3 CH2NHCH2CH(CH3)2 CH2CH (CH3) 2 2C1-C6H4 OCH2CH (CH3) 2 CH2CH2CH(CH3)2 $R^1=Br$, $R^2=CHO$ CH2-cyclopentyl NHCH2CH (CH3) 2 R3 $CH_2O(C_6H_5)$ C₆H₅ 3CF3-C6H4 (CH₂)₃CH₃ CH2SCH2CH (CH3) 2 CH₂CH (CH₃)₂ CH2NHCH2CH (CH3) 2 2C1-C6H4 OCH2CH (CH3) 2 CH2CH2CH(CH3)2 $R^1 = NO_2$, $R^2 = CO_2CH_2CH_3$ CH2-cyclopentyl NHCH2CH (CH3) 2 \mathbb{R}^3 СH₂O (С₆H₅) C6H5 CH2SCH2CH(CH3)2 (CH₂)₃CH₃ 3CF3-C6H4 CH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 2C1-C6H4 OCH2CH (CH3) 2 CH2CH2CH(CH3)2 R^1 =OCF₃, R^2 =CHO CH2-cyclopentyl NHCH2CH (CH3) 2 R3 $CH_2O(C_6H_5)$ C6H5 CH2SCH2CH (CH3) 2 3CF3-C6H4 (CH2) 3CH3 CH2NHCH2CH (CH3) 2 2C1-C6H4 CH2CH (CH3) 2 OCH2CH (CH3) 2 CH2CH2CH (CH3) 2 $R^1=I$, $R^2=CHO$ NHCH2CH (CH3) 2 CH2-cyclopentyl R³ $C_{6}H_{5}$ $CH_2O(C_6H_5)$ 3CF3-C6H4 (CH₂)₃CH₃ CH2SCH2CH (CH3) 2 CH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 2C1-C6H4 CH2CH2CH(CH3)2 OCH₂CH (CH₃)₂ $R^1=C1$, $R^2=CHO$ NHCH2CH (CH3) 2 CH2-cyclopentyl \mathbb{R}^3 CH₂O (C₆H₅) C₆H₅ CH2SCH2CH (CH3) 2 (CH₂)₃CH₃ 3CF3-C6H4 CH2NHCH2CH (CH3) 2 2C1-C6H4 CH2CH (CH3) 2 OCH₂CH (CH₃)₂ CH2CH2CH(CH3)2 R^1 =OCF₂H, R^2 =CHO CH2-cyclopentyl NHCH2CH (CH3) 2 R3 CH2O (C6H5) C₆H₅ CH2SCH2CH (CH3) 2 3CF3-C6H4 (CH₂)₃CH₃2C1-C6H4 CH2NHCH2CH (CH3) 2 CH₂CH (CH₃)₂

CH2CH2CH(CH3)2

 $\begin{array}{c} {\rm CH_2-cyclopentyl} \\ {\rm CH_2O\,(C_6H_5)} \\ {\rm CH_2SCH_2CH\,(CH_3)\,2} \\ {\rm CH_2NHCH_2CH\,(CH_3)\,2} \\ {\rm OCH_2CH\,(CH_3)\,2} \\ {\rm NHCH_2CH\,(CH_3)\,2} \\ {\rm C_6H_5} \\ {\rm 3CF_3-C_6H_4} \\ {\rm 2Cl-C_6H_4} \\ \\ {\rm R^1=NO_2,\ R^2=CHO} \end{array}$

R¹=NO₂, R²=CHO

R³

(CH₂)₃CH₃

CH₂CH(CH₃)₂

CH₂CH₂CH(CH₃)₂

CH₂-cyclopentyl

CH₂O(C₆H₅)

CH₂SCH₂CH(CH₃)₂

CH₂NHCH₂CH(CH₃)₂

OCH₂CH(CH₃)₂

NHCH₂CH(CH₃)₂

CGH₅

3CF₃-C₆H₄

R¹=Cl, R²=C=CH

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂

2C1-C6H4

C6H5 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=C=CH$ _R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=C=CH$ _R3 (CH₂)₃CH₃

(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 R^1 =OCH₃, R^2 =C=CH R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, R^2 =C=CH R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =C=CH R3 (CH₂)₃CH₃

CH2CH (CH3) 2

CH2CH2CH(CH3)2

CH2-cyclopentyl
CH ₂ O(C ₆ H ₅)
CH2SCH2CH(CH3)2
CH2NHCH2CH (CH3)2
OCH ₂ CH (CH ₃) ₂
NHCH2CH (CH3)2
C ₆ H ₅
3CF3-C6H4
2C1-C6H4
$R^1=NO_2$, $R^2=C=CH$
R ³
(CH ₂) ₃ CH ₃
CH ₂ CH (CH ₃) ₂
CH ₂ CH ₂ CH (CH ₃) ₂
CH ₂ -cyclopentyl
CH ₂ O (C ₆ H ₅)
CH2SCH2CH (CH3)2
CH ₂ NHCH ₂ CH (CH ₃) ₂
OCH ₂ CH (CH ₃) ₂
NHCH ₂ CH (CH ₃) ₂
C ₆ H ₅
3CF ₃ -C ₆ H ₄
2C1-C ₆ H ₄
1 2
R^1 =C1, R^2 =CH=N-OH
R ³
(CH ₂) ₃ CH ₃
CH ₂ CH (CH ₃) ₂
CH ₂ CH ₂ CH (CH ₃) ₂
CH ₂ -cyclopentyl
CH ₂ O (C ₆ H ₅)

CH2SCH2CH(CH3)2

CH2NHCH2CH (CH3)2

OCH2CH (CH3) 2

```
NHCH2CH (CH3) 2
C<sub>6</sub>H<sub>5</sub>
3CF3-C6H4
2C1-C6H4
     R^1=Br, R^2=CH=N-OH
<sub>R</sub>3
 (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
СH<sub>2</sub>CH (СH<sub>3</sub>)<sub>2</sub>
CH2CH2CH(CH3)2
CH2-cyclopentyl
CH_2O(C_6H_5)
CH2SCH2CH(CH3)2
CH2NHCH2CH (CH3) 2
OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
NHCH2CH (CH3) 2
C6H5
3CF3-C6H4
2C1-C6H4
      R^1=I, R^2=CH=N-OH
R3
(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
СH<sub>2</sub>CH (СH<sub>3</sub>)<sub>2</sub>
CH2CH2CH(CH3)2
CH2-cyclopentyl
CH<sub>2</sub>O (C<sub>6</sub>H<sub>5</sub>)
CH2SCH2CH(CH3)2
CH2NHCH2CH (CH3) 2
OCH2CH (CH3) 2
NHCH2CH (CH3) 2
C6H5
3CF3-C6H4
2C1-C6H4
```

```
R^1=OCH<sub>3</sub>, R^2=CH=N-OH
R3
 (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
 CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
 CH2CH2CH(CH3)2
 CH2-cyclopentyl
 СH<sub>2</sub>O (С<sub>6</sub>H<sub>5</sub>)
 CH2SCH2CH(CH3)2
 CH2NHCH2CH (CH3) 2
 OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
 NHCH2CH (CH3) 2
 C6H5
 3CF3-C6H4
2C1-C6H4
    R^1=OCF<sub>3</sub>, R^2=CH=N-OH
R3
 (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH(CH3)2
CH<sub>2</sub>-cyclopentyl
CH<sub>2</sub>O (C<sub>6</sub>H<sub>5</sub>)
 CH<sub>2</sub>SCH<sub>2</sub>CH (CH<sub>3</sub>) 2
CH2NHCH2CH (CH3)2
OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
NHCH2CH (CH3) 2
C6H5
3CF3-C6H4
2C1-C6H4
   R^1=OCF<sub>2</sub>H, R^2=CH=N-OH
\mathbb{R}^3
(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH(CH3)2
```

OCH2CH (CH3) 2

NHCH2CH (CH3) 2 CH2-cyclopentyl R^1 =OCH₃, R^2 =CH=N-OCH₃ \mathbb{R}^3 $CH_2O(C_6H_5)$ C6H5 CH2SCH2CH (CH3) 2 3CF3-C6H4 (CH₂) 3CH₃ 2C1-C6H4 CH2NHCH2CH (CH3) 2 CH2CH (CH3) 2 OCH2CH (CH3) 2 CH2CH2CH(CH3)2 $R^1=Br$, $R^2=CH=N-OCH_3$ CH2-cyclopentyl NHCH2CH (CH3) 2 R^3 CH2O (C6H5) C₆H₅ (CH₂)₃CH₃ CH2SCH2CH (CH3) 2 3CF3-C6H4 CH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 2C1-C6H4 CH2CH2CH(CH3)2 OCH₂CH (CH₃)₂ $R^1=NO_2$, $R^2=CH=N-OH$ CH2-cyclopentyl NHCH2CH (CH3) 2 R^3 CH2O (C6H5) C₆H₅ (CH₂)₃CH₃ CH2SCH2CH (CH3) 2 3CF3-C6H4 CH2NHCH2CH (CH3) 2 CH2CH (CH3) 2 2C1-C6H4 CH2CH2CH(CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 R^1 =OCF₃, R^2 =CH=N-OCH₃ CH2-cyclopentyl R3 CH2O (C6H5) C₆H₅ CH2SCH2CH (CH3) 2 3CF3-C6H4 (CH₂)₃CH₃ 2C1-C6H4 CH2NHCH2CH (CH3) 2 CH₂CH (CH₃)₂ OCH2CH (CH3) 2 CH2CH2CH(CH3)2 $R^1=I$, $R^2=CH=N-OCH_3$ NHCH2CH (CH3) 2 CH2-cyclopentyl R3 C₆H₅ CH₂O (C₆H₅) (CH₂)₃CH₃ 3CF3-C6H4 CH2SCH2CH (CH3) 2 2C1-C6H4 CH2NHCH2CH(CH3)2 CH2CH (CH3) 2 CH2CH2CH (CH3) 2 OCH2CH (CH3) 2 $R^1=C1$, $R^2=CH=N-OCH_3$ CH2-cyclopentyl NHCH2CH (CH3)2 R^3 CH2O (C6H5) C₆H₅ CH2SCH2CH (CH3) 2 (CH₂)₃CH₃ 3CF3-C6H4 CH₂CH (CH₃)₂ CH2NHCH2CH (CH3) 2 2C1-C6H4 CH2CH2CH(CH3)2 OCH2CH (CH3) 2 CH2-cyclopentyl NHCH2CH (CH3) 2 R^1 =OCF₂H, R^2 =CH=N-OCH₃ R3 CH2O (C6H5) C₆H₅ CH2SCH2CH (CH3) 2 3CF3-C6H4 (CH₂)₃CH₃ 2C1-C6H4 CH2NHCH2CH (CH3) 2 CH2CH (CH3) 2

CH2CH2CH(CH3)2

NHCH2CH (CH3) 2 R^1 =OCH₃, CH2-cyclopentyl R²=CH=N-OCH₂CH₃ $CH_2O(C_6H_5)$ C₆H₅ R³ CH2SCH2CH(CH3)2 3CF3-C6H4 2C1-C6H4 CH2NHCH2CH (CH3)2 (CH₂)₃CH₃CH₂CH (CH₃)₂ OCH2CH (CH3) 2 $R^1=Br$, $R^2=CH=N-OCH_2CH_3$ CH2CH2CH(CH3)2 NHCH2CH (CH3) 2 R3 CH2-cyclopentyl C₆H₅ $CH_2O(C_6H_5)$ 3CF3-C6H4 (CH₂) 3CH₃ 2C1-C6H4 CH2CH (CH3) 2 CH2SCH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2NHCH2CH (CH3)2 $R^1=NO_2$, $R^2=CH=N-OCH_3$ CH2-cyclopentyl OCH2CH (CH3)2 R^3 CH2O (C6H5) NHCH2CH (CH3) 2 CH2SCH2CH (CH3) 2 (CH₂) 3CH₃ C₆H₅ CH2NHCH2CH (CH3)2 CH2CH (CH3) 2 3CF3-C6H4 CH2CH2CH (CH3) 2 OCH2CH (CH3) 2 2C1-C6H4 NHCH2CH (CH3) 2 CH2-cyclopentyl R^1 =OCF₃, CH2O (C6H5) C₆H₅ R²=CH=N-OCH₂CH₃ CH2SCH2CH (CH3) 2 3CF3-C6H4 R3 CH2NHCH2CH (CH3)2 2C1-C6H4 (CH₂) 3CH₃ OCH2CH (CH3) 2 CH2CH (CH3) 2 $R^1=I$, $R^2=CH=N-OCH_2CH_3$ NHCH2CH (CH3) 2 CH2CH2CH(CH3)2 R3 C₆H₅ CH2-cyclopentyl (CH₂) 3CH₃ 3CF3-C6H4 CH₂O (C₆H₅) 2C1-C6H4 CH2CH (CH3) 2 CH2SCH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 R^1 =C1, R^2 =CH=N-OCH₂CH₃ CH2-cyclopentyl OCH₂CH (CH₃)₂ R3 CH2O (C6H5) NHCH2CH (CH3) 2 CH2SCH2CH (CH3) 2 (CH₂)₃CH₃ C₆H₅ CH2NHCH2CH (CH3) 2 CH2CH (CH3) 2 3CF3-C6H4 OCH₂CH (CH₃)₂ CH2CH2CH(CH3)2 2C1-C6H4 NHCH2CH (CH3) 2 CH2-cyclopentyl CH2O (C6H5) C₆H₅ R^1 =OCF₂H, CH2SCH2CH (CH3) 2 3CF3-C6H4 R²=CH=N-OCH₂CH₃ CH2NHCH2CH (CH3) 2 2C1-C6H4 R³ OCH2CH (CH3) 2 (CH₂) 3CH₃

CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C_6H_5 3CF3-C6H4 2C1-C6H4 $R^1=NO_2$, R²=CH=N-OCH₂CH₃ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 СH₂CH₂CH (СH₃)₂ CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3)2 NHCH2CH (CH3) 2 C_6H_5 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=C(NH_2)=N-OH$ R³ (CH2) 3CH3 CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl

CH20 (C6H5)

CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = Br$, $R^2 = C(NH_2) = N - OH$ R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-С6H4 $R^{1}=I$, $R^{2}=C(NH_{2})=N-OH$ R^3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5

3CF3-C6H4 2C1-C6H4 R^1 =OCH₃, $R^2 = C(NH_2) = N - OH$ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, $R^2 = C(NH_2) = N - OH$ R³ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

$$R^1 = OCF_2H$$
,
 $R^2 = C(NH_2) = N - OH$

 $R^2=C (NH_2)=N-OH$ R^3 $(CH_2)_3CH_3$ $CH_2CH (CH_3)_2$ $CH_2CH_2CH (CH_3)_2$ $CH_2-cyclopentyl$ $CH_2O (C_6H_5)$ $CH_2SCH_2CH (CH_3)_2$ $CH_2NHCH_2CH (CH_3)_2$ $OCH_2CH (CH_3)_2$ $NHCH_2CH (CH_3)_2$ $NHCH_2CH (CH_3)_2$ C_6H_5

3CF3-C6H4

2C1-C6H4

R¹=NO₂, R²=C (NH₂)=N-OH R³ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃)₂ CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄ R¹=C1, R²=C=N-OCH₃ C1

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

2C1-C₆H₄ R¹=Br,

R²=Ç=N-OCH₃

R3
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $R^1=I$, $R^2=Q=N-OCH_3$

C1

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 R^{1} =OCH₃, R^{2} = φ =N-OCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 R^1 =OCF₃, $R^1=NO_2$, R^2 = φ =N- OCH_3 $R^2=C=N-OCH_3$ \mathbb{R}^3 \mathbb{R}^3 $(CH_2)_3CH_3$ (CH₂)₃CH₃ CH2CH (CH3) 2 CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2-cyclopentyl $CH_2O(C_6H_5)$ CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 NHCH₂CH (CH₃)₂ C_6H_5 C₆H₅ 3CF3-C6H4 3CF3-C6H4 2C1-C6H4 2C1-C6H4 $R^1=C1$, $R^2=C$ (CN)=N-OH R^1 =OCF₂H, $R^2 = C = N - OCH_3$ \mathbb{R}^3 (CH₂)₃CH₃ \mathbb{R}^3 СH₂CH (СH₃)₂ $(CH_2)_3CH_3$ CH2CH2CH(CH3)2 CH2CH (CH3) 2 CH2-cyclopentyl CH2CH2CH(CH3)2 CH2O (C6H5) CH2-cyclopentyl CH2SCH2CH (CH3) 2 CH2O (C6H5) CH2NHCH2CH (CH3) 2 CH2SCH2CH (CH3) 2 OCH₂CH (CH₃)₂ CH2NHCH2CH (CH3) 2 NHCH2CH (CH3) 2 OCH2CH (CH3) 2 C6H5 NHCH2CH (CH3) 2 3CF3-C6H4 C_6H_5 2C1-C6H4 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=C(CN)=N-OH$ R3

(CH₂) 3CH₃

СH₂CH (СH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=C$ (CN)=N-OH (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R^{1} =OCH₃, R^{2} =C (CN)=N-OH R3 (CH₂)₃CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2

R1=Br, R2=CH2CN CH2NHCH2CH (CH3) 2 3CF3-C6H4 R3 OCH2CH (CH3) 2 2C1-C6H4 (CH₂)₃CH₃ NHCH2CH (CH3) 2 $R^1 = NO_2$, $R^2 = C(CN) = N - OH$ СH₂CH (СH₃)₂ C₆H₅ \mathbb{R}^3 3CF3-C6H4 CH2CH2CH(CH3)2 (CH₂)₃CH₃ CH2-cyclopentyl 2C1-C6H4 CH2CH (CH3) 2 CH2O (C6H5) $R^1 = OCF_3$, $R^2 = C(CN) = N - OH$ CH2SCH2CH (CH3) 2 CH2CH2CH(CH3)2 R^3 CH2-cyclopentyl CH2NHCH2CH (CH3) 2 (CH₂)₃CH₃ CH2O (C6H5) OCH2CH (CH3) 2 CH2CH (CH3) 2 CH2SCH2CH (CH3) 2 NHCH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2NHCH2CH (CH3) 2 C₆H₅ CH2-cyclopentyl OCH₂CH (CH₃)₂ 3CF3-C6H4 NHCH2CH (CH3) 2 2C1-C6H4 $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 C6H5 $R^1=I$, $R^2=CH_2CN$ CH2NHCH2CH (CH3)2 3CF3-C6H4 \mathbb{R}^3 OCH2CH (CH3) 2 2C1-C6H4 NHCH2CH (CH3) 2 (CH₂) 3CH₃ $R^1=C1$, $R^2=CH_2CN$ CH2CH (CH2) 2 C₆H₅ R3 CH2CH2CH(CH3)2 3CF3-C6H4 2C1-C6H4 (CH₂)₃CH₃ CH2-cyclopentyl CH2CH (CH3) 2 CH2O (C6H5) R^1 =OCF₂H, CH2CH2CH(CH3)2 CH2SCH2CH (CH3) 2 $R^2=C(CN)=N-OH$ CH2-cyclopentyl CH2NHCH2CH (CH3) 2 \mathbb{R}^3 CH₂O (C₆H₅) OCH2CH (CH3) 2 $(CH_2)_3CH_3$ CH₂SCH₂CH (CH₃) 2 NHCH2CH (CH3) 2 CH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 C₆H₅ OCH₂CH (CH₃)₂ CH2CH2CH(CH3)2 3CF3-C6H4 2C1-C6H4 CH2-cyclopentyl NHCH₂CH (CH₃)₂ C₆H₅ $CH_2O(C_6H_5)$ R^1 =OCH₃, R^2 =CH₂CN CH2SCH2CH(CH3)2 3CF3-C6H4 \mathbb{R}^3 CH2NHCH2CH (CH3) 2 2C1-C6H4 OCH2CH (CH3) 2 (CH₂) 3CH₃ CH2CH (CH3) 2 NHCH2CH (CH3) 2 CH2CH2CH(CH3)2 C₆H₅

CH ₂ -cyclopentyl	NHCH2CH(CH3)2	$R^1=Br, R^2=CH_2C(0)NH_2$
CH ₂ O (C ₆ H ₅)		R ³
	C ₆ H ₅	
CH ₂ SCH ₂ CH (CH ₃) 2	3CF ₃ -C ₆ H ₄	(CH ₂) ₃ CH ₃
CH ₂ NHCH ₂ CH (CH ₃) ₂	2C1-C ₆ H ₄	CH ₂ CH (CH ₃) ₂
OCH ₂ CH (CH ₃) ₂	p1 vo p2 ou ou	CH ₂ CH ₂ CH (CH ₃) ₂
NHCH ₂ CH (CH ₃) ₂	$R^{1}=NO_{2}, R^{2}=CH_{2}CN$	CH ₂ -cyclopentyl
C ₆ H ₅	R ³	CH ₂ O(C ₆ H ₅)
3CF ₃ -C ₆ H ₄	(CH ₂) ₃ CH ₃	CH ₂ SCH ₂ CH (CH ₃) 2
2C1-C ₆ H ₄	CH ₂ CH (CH ₃) ₂	CH ₂ NHCH ₂ CH (CH ₃) ₂
	CH ₂ CH ₂ CH (CH ₃) ₂	OCH ₂ CH (CH ₃) ₂
$R^1 = OCF_3$, $R^2 = CH_2CN$	CH ₂ -cyclopentyl	NHCH ₂ CH (CH ₃) ₂
<u>R</u> ³	СH ₂ O (С ₆ H ₅)	C ₆ H ₅
(CH ₂) ₃ CH ₃	CH2SCH2CH(CH3)2	3CF ₃ -C ₆ H ₄
CH ₂ CH (CH ₃) ₂	CH ₂ NHCH ₂ CH (CH ₃) ₂	2C1-C6H4
CH2CH2CH (CH3)2	осн ₂ сн (сн ₃) ₂	
CH2-cyclopentyl	NHCH2CH (CH3) 2	$R^1=I$, $R^2=CH_2C(0)NH_2$
CH ₂ O(C ₆ H ₅)	C ₆ H ₅	R ³
CH2SCH2CH(CH3)2	3CF ₃ -C ₆ H ₄	(CH ₂) ₃ CH ₃
CH2NHCH2CH (CH3) 2	2C1-C6H4	CH ₂ CH (CH ₃) ₂
OCH ₂ CH (CH ₃) ₂		СH ₂ CH ₂ CH (СH ₃) ₂
NHCH ₂ CH (CH ₃) ₂	$R^1=C1$, $R^2=CH_2C(0)NH_2$	CH ₂ -cyclopentyl
C ₆ H ₅	R ³	CH ₂ O(C ₆ H ₅)
3CF ₃ -C ₆ H ₄	(CH ₂) ₃ CH ₃	CH ₂ SCH ₂ CH (CH ₃) 2
2C1-C6H4	СH ₂ CH (СH ₃) ₂	CH ₂ NHCH ₂ CH (CH ₃) ₂
	сн ₂ сн ₂ сн (сн ₃) ₂	осн ₂ сн (сн ₃) ₂
R^1 =OCF ₂ H, R^2 =CH ₂ CN	CH ₂ -cyclopentyl	NHCH ₂ CH (CH ₃) ₂
R ³	CH ₂ O(C ₆ H ₅)	C ₆ H ₅
(CH ₂) ₃ CH ₃	CH ₂ SCH ₂ CH (CH ₃) 2	3CF3-C6H4
CH ₂ CH (CH ₃) ₂	CH2NHCH2CH (CH3) 2	2C1-C6H4
CH2CH2CH(CH3)2	OCH ₂ CH (CH ₃) ₂	
CH2-cyclopentyl	NHCH ₂ CH (CH ₃) ₂	$R^1 = OCH_3$, $R^2 = CH_2C(O)NH_2$
CH ₂ O (C ₆ H ₅)	С ₆ Н ₅	R ³
CH ₂ SCH ₂ CH (CH ₃) 2	3CF ₃ -C ₆ H ₄	(CH ₂) ₃ CH ₃
CH ₂ NHCH ₂ CH (CH ₃) ₂	2C1-C ₆ H ₄	CH ₂ CH (CH ₃) ₂
OCH ₂ CH (CH ₃) ₂		CH ₂ CH ₂ CH (CH ₃) ₂
2		2 2 . 3/2

 ${
m CH_2-cyclopenty1}$ ${
m CH_2O\,(C_6H_5)}$ ${
m CH_2SCH_2CH\,(CH_3)\,2}$ ${
m CH_2NHCH_2CH\,(CH_3)\,2}$ ${
m OCH_2CH\,(CH_3)\,2}$ ${
m NHCH_2CH\,(CH_3)\,2}$ ${
m NHCH_2CH\,(CH_3)\,2}$ ${
m C_6H_5}$ ${
m 3CF_3-C_6H_4}$ ${
m 2C1-C_6H_4}$

R¹=OCF₃, R²=CH₂C(O)NH₂

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄

 R^{1} =OCF₂H, R^{2} =CH₂C(O)NH₂

2C1-C6H4

OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$, $R^2 = CH_2C(0)NH_2$ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3)2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4

$$R^1=C1$$
,
 $R^2=$
 N
 CF_3

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂

C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C6^H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{1}=I$$
, $R^{2}=$ N CF_{3}

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂

 $\begin{array}{l} {\rm NHCH_2CH\,(CH_3)\,_2} \\ {\rm C_6H_5} \\ {\rm 3CF_3-C_6H_4} \\ {\rm 2Cl-C_6H_4} \end{array}$

$$R^{1}=OCH_{3}$$
,
 $N = O$
 $R^{2}= N$
 CF_{3}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{1=OCF_{3}},$$

$$R^{2}=$$

$$N \longrightarrow CF_{3}$$

 \mathbb{R}^3 $(CH_2)_3CH_3$ $CH_2CH(CH_3)_2$ $CH_2CH_2CH(CH_3)_2$ $CH_2-cyclopentyl$ $CH_2O(C_6H_5)$ $CH_2SCH_2CH(CH_3)_2$ $CH_2NHCH_2CH(CH_3)_2$

 $OCH_2CH (CH_3)_2$ $NHCH_2CH (CH_3)_2$ C_6H_5 $3CF_3-C_6H_4$ $2C1-C_6H_4$

$$R^{1=\text{OCF}_{2}H},$$

$$R^{2}= N O$$

$$CF_{3}$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{2} = NO_{2},$$

$$R^{2} = NO_{2}$$

$$R^{2} = NO_{2}$$

$$R^{2} = NO_{2}$$

$$R^{2} = NO_{2}$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂

 ${\rm CH_2NHCH_2CH\,(CH_3)_2}$ ${\rm OCH_2CH\,(CH_3)_2}$ ${\rm NHCH_2CH\,(CH_3)_2}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2C1-C_6H_4}$

$$R^{1}=C1$$
,
 CH_{3}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)

 $\begin{array}{l} {\rm CH_2SCH_2CH\,(CH_3)\,2} \\ {\rm CH_2NHCH_2CH\,(CH_3)\,_2} \\ {\rm OCH_2CH\,(CH_3)\,_2} \\ {\rm NHCH_2CH\,(CH_3)\,_2} \\ {\rm C_6H_5} \\ {\rm 3CF_3-C_6H_4} \\ {\rm 2C1-C_6H_4} \end{array}$

$$R^{1}=I$$
,
 $O-N$
 $R^{2}=$
 N
 CH

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

$$R^{1}=OCH_{3}$$
,
 $O-N$
 $R^{2}=$
 N
 CH_{3}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl

 $CH_{2}O(C_{6}H_{5})$ $CH_{2}SCH_{2}CH(CH_{3})$ 2 $CH_{2}NHCH_{2}CH(CH_{3})$ 2 $OCH_{2}CH(CH_{3})$ 2 $NHCH_{2}CH(CH_{3})$ 2 $C_{6}H_{5}$ $3CF_{3}-C_{6}H_{4}$ $2C1-C_{6}H_{4}$

$$R^{1}=OCF_{3}$$
,

 $R^{2}=$
 N
 CH_{3}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = OCF_2H$$
,
 $O-N$
 $R^2 = N$
 CH_3

R³
(CH₂) ₃CH₃
CH₂CH (CH₃) ₂
CH₂CH₂CH (CH₃) ₂

CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃) 2
CH₂NHCH₂CH(CH₃) 2
OCH₂CH(CH₃) 2
NHCH₂CH(CH₃) 2
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{1}=NO_{2}$$
,
 $O-N$
 $R^{2}=$
 OH_{3}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2Cl-C₆H₄

$$R^1$$
=Cl, R^2 =CH $_2$ Cl R^3
 $(CH_2)_3CH_3$
 $CH_2CH_2CH_2CH_3)_2$
 $CH_2CH_2CH_3CH_3$
 $CH_2CH_3CH_3CH_3$
 $CH_2CH_3CH_3$

СH₂O (С₆H₅)

 ${\rm CH_2SCH_2CH\,(CH_3)\,2}$ ${\rm CH_2NHCH_2CH\,(CH_3)\,2}$ ${\rm OCH_2CH\,(CH_3)\,2}$ ${\rm NHCH_2CH\,(CH_3)\,2}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2C1-C_6H_4}$

 $R^{1}=Br$, $R^{2}=CH_{2}C1$ R^{3} $(CH_{2})_{3}CH_{3}$ $CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$ $CH_{2}SCH_{2}CH_{2}CH_{2}CH_{3}$ $CH_{2}NHCH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{3}CH_{3}$

3CF3-C6H4

2C1-C6H4

C₆H₅

 $R^{1}=I$, $R^{2}=CH_{2}CI$ R^{3} $(CH_{2})_{3}CH_{3}$ $CH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{3}$ $CH_{2}-Cyclopentyl$ $CH_{2}O_{6}CH_{5}$ $CH_{2}SCH_{2}CH_{2}CH_{3}$ $CH_{2}SCH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{3}CH_{3}$

C₆H₅

3СF₃-С₆H₄ 2С1-С₆H₄

3CF3-C6H4 2C1-C6H4 $R^1 = OCH_3$, $R^2 = CH_2C1$ \mathbb{R}^3 $(CH_2)_3CH_3$ CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, R^2 =CH₂Cl _R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2

 R^1 =OCF₂H, R^2 =CH₂Cl R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O(C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=NO_2$, $R^2=CH_2C1$ R3 (CH₂)₃CH₃CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C6H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

$$R^{1}=I,$$

$$R^{2}=//$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂

$$R^{1=OCF_{3}},$$

$$R^{2}= //$$

$$N \longrightarrow O$$

$$H$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂

 ${\rm OCH_2CH\,(CH_3)_{\,2}}$ ${\rm NHCH_2CH\,(CH_3)_{\,2}}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2Cl-C_6H_4}$

 R^3 $(CH_2)_3CH_3$ $CH_2CH(CH_3)_2$ $CH_2CH_2CH(CH_3)_2$ $CH_2-Cyclopentyl$ $CH_2O(C_6H_5)$ $CH_2SCH_2CH(CH_3)_2$ $CH_2NHCH_2CH(CH_3)_2$ $OCH_2CH(CH_3)_2$ $NHCH_2CH(CH_3)_2$ CGH_5 $3CF_3-C_6H_4$ $2C1-C_6H_4$

$$R^{1}=C1$$
, $R^{2}=$

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂

 ${\rm CH_2NHCH_2CH\,(CH_3)_2}$ ${\rm OCH_2CH\,(CH_3)_2}$ ${\rm NHCH_2CH\,(CH_3)_2}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2C1-C_6H_4}$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)

 ${\rm CH_2SCH_2CH\,(CH_3)\,2}$ ${\rm CH_2NHCH_2CH\,(CH_3)\,_2}$ ${\rm OCH_2CH\,(CH_3)\,_2}$ ${\rm NHCH_2CH\,(CH_3)\,_2}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2C1-C_6H_4}$

$$R^{1}=OCH_{3}$$
, $N\longrightarrow NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 ${f R}^3$ ${{
m (CH}_2)}_{3}{{
m CH}_3}$ ${{
m CH}_2}{{
m CH}}_{2}{{
m CH}_2}{{
m CH}_2}$ ${{
m CH}_2}{{
m CH}_2}{{
m CH}_2}{{
m CH}_2}$ ${{
m CH}_2}-{{
m cyclopentyl}}$

 $\begin{array}{l} \text{CH}_2\text{O}\,(\text{C}_6\text{H}_5) \\ \text{CH}_2\text{SCH}_2\text{CH}\,(\text{CH}_3)\,2 \\ \text{CH}_2\text{NHCH}_2\text{CH}\,(\text{CH}_3)\,_2 \\ \text{OCH}_2\text{CH}\,(\text{CH}_3)\,_2 \\ \text{NHCH}_2\text{CH}\,(\text{CH}_3)\,_2 \\ \text{C}_6\text{H}_5 \\ \text{3CF}_3\text{-C}_6\text{H}_4 \\ \text{2C1-C}_6\text{H}_4 \end{array}$

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopenty1
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂

CH2-cyclopentyl сн₂о (с₆н₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=CH_2OH$ R3 (CH₂)₃CH₃ СH₂CH (СH₃) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =Br, R^2 =CH₂OH R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 осн₂сн (сн₃) 2

NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=CH_2OH$ R³ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4 R^{1} =OCH₃, R^{2} =CH₂OH R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O(C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 R^1 =OCF₂H, R^2 =CH₂OH \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1 = NO_2$, $R^2 = CH_2OH$ \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2

83 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=C1$, \mathbb{R}^2 \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅

3CF3-C6H4

OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C_6H_5 3CF₃- C_6H_4 2C1- C_6H_4

$$R^{1=OCH_3}$$
, $R^{2}=0$

R²= 0 R³ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃)₂ CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2=$ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3)2

OCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂

C₆H₅

3CF₃-C₆H₄ 2C1-C₆H₄

$$C_{6}H_{5}$$
 $3CF_{3}-C_{6}H_{4}$
 $2C1-C_{6}H_{4}$

(CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃)₂ CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅

3CF3-C6H4

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=OCF_3$, $R^2=$ R3 $(CH_2)_3CH_3$ СH₂CH (СH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂

 $OCH_2CH (CH_3)_2$ $NHCH_2CH (CH_3)_2$ C_6H_5 $3CF_3-C_6H_4$ $2C1-C_6H_4$

CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

NHCH₂CH (CH₃)₂

$$C_6H_5$$
 $3CF_3-C_6H_4$
 $2C1-C_6H_4$
 $R^1=Br, R^2=CH_2-O-C-CH_3$
 R^3
(CH₂)₃CH₃

R¹=Br, R²=CH₂-O-C-C R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C6H₅
3CF₃-C₆H₄

R¹=I, R²=CH₂-O-C-CH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂

NHCH2CH (CH3) 2

C₆H₅

2C1-C6H4

NHCH2CH (CH3) 2

C6H5

 $3CF_3-C_6H_4$ 2C1-C6H4 R^1 =OCF₂H, R^2 =CH₂-C-OCH₃ \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$, $R^2 = CH_2 - O - C - CH_3$ \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

87

R¹=C1, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄

R¹=Br, R²=C-OCH₃

 $2C1-C_6H_4$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=I, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCH₃, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₃, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₂H, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄

$$R^1$$
=C1, R^2 =C-NHCH₃

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $CH_2O(C_6H_5)$

CH2SCH2CH (CH3) 2

CH₂NHCH₂CH (CH₃)₂

OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2

C6H5

3CF3-C6H4

2C1-C6H4

3CF3-C6H4

$$R^1 = OCF_3$$
, $R^2 = CH = C$
 $C = N$
 R^3

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCH₅
3CF₃-C₆H₄
2C1-C₆H₄

CH2CH2CH(CH3)2

CH2-cyclopentyl

СH₂O (С₆H₅)

 ${
m CH_2SCH_2CH\,(CH_3)\,2}$ ${
m CH_2NHCH_2CH\,(CH_3)\,2}$ ${
m OCH_2CH\,(CH_3)\,2}$ ${
m NHCH_2CH\,(CH_3)\,2}$ ${
m C_6H_5}$ ${
m 3CF_3-C_6H_4}$ ${
m 2C1-C_6H_4}$

R¹=OCH₃,
O
|| CN (CH₃)₂
R²=CH=C
|| COCH₃
O

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³ (CH₂) ₃CH₃ CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2Cl-C₆H₄

R¹=OCF₂H,
O
II
CN (CH₃)₂
R²=CH=C
COCCH₃
O

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SC₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅

3CF₃-C₆H₄ 2C1-C₆H₄

$$R^{1}=I$$
, $R^{2}=CH=C$

$$COCH_{3}$$

$$COCH_{3}$$

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂

NHCH₂CH (CH₃) ₂ C_6H_5 $3CF_3-C_6H_4$ $2C1-C_6H_4$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl

 ${
m CH_{2}O\,(C_{6}H_{5})}$ ${
m CH_{2}SCH_{2}CH\,(CH_{3})\,2}$ ${
m CH_{2}NHCH_{2}CH\,(CH_{3})\,2}$ ${
m OCH_{2}CH\,(CH_{3})\,2}$ ${
m NHCH_{2}CH\,(CH_{3})\,2}$ ${
m C_{6}H_{5}}$ ${
m 3CF_{3}-C_{6}H_{4}}$ ${
m 2C1-C_{6}H_{4}}$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
, $R^2 = CH = C$

$$COCH_3$$

$$COCH_3$$

$$COCH_3$$

R³ (СН₂) _ЗСН₃ $\begin{array}{l} \text{CH}_2\text{CH} \, (\text{CH}_3) \,_2 \\ \text{CH}_2\text{CH}_2\text{CH} \, (\text{CH}_3) \,_2 \\ \text{CH}_2\text{-cyclopentyl} \\ \text{CH}_2\text{O} \, (\text{C}_6\text{H}_5) \\ \text{CH}_2\text{SCH}_2\text{CH} \, (\text{CH}_3) \,_2 \\ \text{CH}_2\text{NHCH}_2\text{CH} \, (\text{CH}_3) \,_2 \\ \text{OCH}_2\text{CH} \, (\text{CH}_3) \,_2 \\ \text{NHCH}_2\text{CH} \, (\text{CH}_3) \,_2 \\ \text{C}_6\text{H}_5 \\ \text{R}^3 \\ \text{3CF}_3\text{-C}_6\text{H}_4 \\ \text{2Cl}\text{-C}_6\text{H}_4 \end{array}$

 $R^1=C1$, $R^2=CH=CHC-N$ $R^2=CH=CHC-N$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $R^1=Br,$ R²=CH=CHC-N R^3 (CH₂)₃CH₃CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3)2 C6H5 3CF3-C6H4 2C1-C6H4 R²=CH=CHC-N \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl

CH2O (C6H5)

CH2SCH2CH (CH3) 2

CH2NHCH2CH (CH3) 2

OCH2CH (CH3) 2

NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

2C1-C6H4

 R^1 =OCH₃, R²=CH=CHC- N R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C6H5 3CF3-C6H4 2C1-C6H4 R1=OCF3, R²=CH=CHC- N ВЗ (CH₂)₃CH₃CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 осн₂сн (сн₃) 2 NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

2C1-C₆H₄

$$R^{1}=OCF_{2}H,$$

$$R^{2}=CH=CHC-N$$
O

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
,

 $R^2 = CH = CHC - N$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅

2C1-C6H4

 $R^1 = I$, $R^2 = CH = CHCOCH_3$ \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R1=OCH3, R²=CH=CHCOCH₃ R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH₂NHCH₂CH (CH₃) 2

 $OCH_2CH (CH_3)_2$ $NHCH_2CH (CH_3)_2$

 $C_{6}H_{5}$ $3CF_{3}-C_{6}H_{4}$ $2C1-C_{6}H_{4}$

R¹=OCF₂H,

O

R²=CH=CHCOCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

2C1-C6H4

R¹= NO₂, R²=CH=CHCOCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=Cl, R²=CH=CH₂

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂

осн₂сн (сн₃) ₂ инсн₂сн (сн₃) ₂ с₆н₅

3CF₃-C₆H₄ 2C1-C₆H₄

 R^1 =Br, R^2 =CH=CH $_2$ R^3 (CH $_2$) $_3$ CH $_3$ CH $_2$ CH(CH $_3$) $_2$

CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=I, R²=CH=CH₂

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂

C6H5

3CF3-C6H4

2C1-C6H4

 R^{1} =OCH₃, R^{2} =CH=CH₂ R^{3} (CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂

CH2NHCH2CH(CH3)2

OCH2CH (CH3) 2 NHCH2CH (CH3) 2 $C_{6}H_{5}$ 3CF3-C6H4 $2C1-C_6H_4$ R^1 =OCF₃, R^2 =CH=CH₂ \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CH=CH₂ \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4

2C1-C6H4

(CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R3 (CH₂)₃CH₃CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O(C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1=Br$, $R^2=CH=C$ CNH_2 \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

$$R^1$$
=OCH₃, R^2 =CH=C CNH_2 CNH_2 O

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCH₃CH₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
, $R^2 = CH = C$

$$CNH_2$$

$$CNH_2$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1$$
=C1, R^2 =CH=C CN

CIR³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1=I$$
, $R^2=CH=C$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

$$R^1$$
=OCF₃, R^2 =CH=C CN

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
, $R^2 = CH = C$

CH23 CH3

(CH2) 3CH3

CH2CH (CH3) 2

CH2CH2CH (CH3) 2

CH2-cyclopentyl

CH2O (C6H5)

CH2SCH2CH (CH3) 2

CH2NHCH2CH (CH3) 2

OCH2CH (CH3) 2

NHCH2CH (CH3) 2

CH6H5

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
CH₆H₅

3CF₃-C₆H₄ 2C1-C₆H₄

R1=OCF2H, R²=C-NH-OCH₂CH=CH₂ \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$ R²=C-NH-OCH₂CH=CH₂ R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH (CH3) 2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 $R^1 = NO_2$, $R^2 = CNH - OCH_3$ <u>R</u>3 (CH₂)₃CH₃ CH2CH (CH3) 2 ${\rm CH_2CH_2CH}$ (${\rm CH_3}$) 2 CH2-cyclopentyl $CH_{2}O(C_{6}H_{5})$ CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=CNHCH_2$ R3 (CH₂) 3CH₃ CH2CH (CH3)2 CH₂CH₂CH (CH₃)₂

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2Cl-C₆H₄

101 $R^1=Br$, $R^2=CNHCH_2$ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=CNHCH_2$ \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4

2C1-C6H4

 R^1 =OCH₃, R²=CNHCH₂ R3 (CH₂)₃CH₃CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, R²=CNHCH₂ _R3 $(CH_2)_3CH_3$ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2

C₆H₅

3CF₃-C₆H₄ 2C1-C₆H₄

$$R^1 = OCF_2H$$
,

 $R^2 = CNHCH_2$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
, $R^2 = CNHCH_2$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 $R^1=Br$, $R^2=C-NH$

CH2SCH2CH (CH3) 2

CH2NHCH2CH (CH3)2

OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2

C6H5

3CF3-C6H4

$$R^1=OCF_3$$
, $R^2=C-NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = OCF_2H$$
,

 $R^2 = C - NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

(CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃)₂ CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

C6H5

3CF3-C6H4

$$R^1=Br$$
, CF_3

$$R^2=C-NH$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopenty1
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = OCH_3$$
,
 CF_3
 $R^2 = C-NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

$$R^{1}=OCF_{2}H,$$

$$R^{2}=C-NH$$

$$R^{2}=C-NH$$

$$R^{2}=C-NH$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
CGH₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
,

 CF_3
 $R^2 = C - NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅

$$R^1$$
=C1, R^2 =C-NH

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1=Br$$
, $R^2=C-NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
, $R^2 = C - NH$

R3 (CH₂)₃CH₃CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C_6H_5 $3CF_3-C_6H_4$

2C1-C6H4

 \mathbb{R}^3 (CH₂)₃CH₃CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3)2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

2C1-C6H4

TABLE 2

	•	
R^1 =C1, R^2 =CN	C ₆ H ₅	CH ₂ SCH ₂ CH (CH ₃) 2
\mathbb{R}^3	3CF ₃ -C ₆ H ₄	CH2NHCH2CH(CH3)2
(CH ₂) ₃ CH ₃	2C1-C6H4	осн ₂ сн (сн ₃) ₂
CH ₂ CH (CH ₃) ₂	'	NHCH2CH (CH3)2
CH2CH2CH (CH3)2	$R^1=Br$, $R^2=CN$	С ₆ н ₅
CH2-cyclopentyl	R ³	3CF3-C6H4
CH ₂ O (C ₆ H ₅)	(CH ₂) ₃ CH ₃	2C1-C6H4
CH2SCH2CH (CH3) 2	СH ₂ CH (СH ₃) ₂	
CH2NHCH2CH (CH3)2	сн ₂ сн ₂ сн (сн ₃) ₂	R^1 =OCF ₃ , R^2 =CN
OCH ₂ CH (CH ₃) ₂	CH ₂ -cyclopentyl	R ³
NHCH2CH (CH3)2	СH ₂ O (С ₆ H ₅)	(СH ₂) ₃ СH ₃

 $\begin{array}{l} {\rm CH_2CH\,(CH_3)\,_2} \\ {\rm CH_2CH_2CH\,(CH_3)\,_2} \\ {\rm CH_2-cyclopentyl} \\ {\rm CH_2O\,(C_6H_5)} \\ {\rm CH_2SCH_2CH\,(CH_3)\,_2} \\ {\rm CH_2NHCH_2CH\,(CH_3)\,_2} \\ {\rm OCH_2CH\,(CH_3)\,_2} \\ {\rm NHCH_2CH\,(CH_3)\,_2} \\ {\rm C_6H_5} \\ {\rm 3CF_3-C_6H_4} \\ {\rm 2Cl-C_6H_4} \end{array}$

R¹=OCF₂H, R²=CN

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $R^{1}=NO_{2}$, $R^{2}=CN$ R^{3} $(CH_{2})_{3}CH_{3}$ $CH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{3}$ $CH_{2}-cyclopentyl$ $CH_{2}O_{3}CH_{3}$ $CH_{2}CH_{3}CH_{3}$ $CH_{2}CH_{3}CH_{3}$

CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=CNH_2$ R3 $(CH_2)_3CH_3$ СH₂CH (СH₃) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=CNH_2$ R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2R3

3CF3-C6H4

2C1-C6H4

 $R^1 = OCF_3$, $R^2 = CNH_2$ \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2 = CNH_2$ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1 = NO_2$, $R^2 = CNH_2$ \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ ${\rm CH_2SCH_2CH}$ (${\rm CH_3}$) 2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1=C1$, $R^2=C=CH$ \mathbb{R}^3 (CH₂)₃CH₃CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1=Br$, $R^2=C=CH$ \mathbb{R}^3 (CH₂)₃CH₃CH2CH (CH3) 2

CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_3$, $R^2 = C = CH$ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH (CH3) 2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2 = C = CH$ _R3 (CH₂)₃CH₃ CH2CH (CH3) 2

R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 CH2CH2CH(CH3)2 OCH₂CH (CH₃)₂ CH2-cyclopentyl NHCH2CH (CH3) 2 CH20 (C6H5) C₆H₅ CH2SCH2CH (CH3) 2 3CF3-C6H4 CH2NHCH2CH (CH3)2

OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$, $R^2 = C = CH$ \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4

2C1-C6H4

O || R¹=Br, R²=COH

 \mathbb{R}^3 $(\mathrm{CH_2})_3\mathrm{CH_3}$ $\mathrm{CH_2CH}(\mathrm{CH_3})_2$ $\mathrm{CH_2CH_2CH}(\mathrm{CH_3})_2$ $\mathrm{CH_2-cyclopentyl}$ $\mathrm{CH_2O}(\mathrm{C_6H_5})$

 ${\rm CH_2SCH_2CH\,(CH_3)\,2}$ ${\rm CH_2NHCH_2CH\,(CH_3)\,_2}$ ${\rm OCH_2CH\,(CH_3)\,_2}$

NHCH₂CH (CH₃)₂

 $C_{6}H_{5}$ $3CF_{3}-C_{6}H_{4}$ $2C1-C_{6}H_{4}$

 $R^1 = OCF_3$, $R^2 = COH$

 R^3 $(CH_2)_3CH_3$ $CH_2CH(CH_3)_2$ $CH_2CH_2CH(CH_3)_2$ CH_2 -cyclopentyl $CH_2O(C_6H_5)$

CH₂SCH₂CH (CH₃) 2

 ${\rm CH_2NHCH_2CH}$ (${\rm CH_3}$) 2

OCH₂CH (CH₃)₂

 $\mathrm{NHCH_{2}CH}\left(\mathrm{CH_{3}}\right)_{2}$

C₆H₅

 $3CF_3-C_6H_4$

2C1-C6H4

R¹= OCF₂H, R²=COH

R³
(CH₂) 3CH₃
CH₂CH (CH₃) 2
CH₂CH₂CH (CH₃) 2
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃) 2
CH₂NHCH₂CH (CH₃) 2
OCH₂CH (CH₃) 2
NHCH₂CH (CH₃) 2
C6H₅

 $2C1-C_6H_4$ $R^1=NO_2, R^2=COH$

3CF3-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂

 CH_2 NHCH $_2$ CH (CH $_3$) $_2$ OCH $_2$ CH (CH $_3$) $_2$

NHCH₂CH (CH₃)₂

С₆н₅

3CF3-C6H4

2C1-C6H4

 R^{1} =C1, R^{2} =COCH₃ R^{3} $(CH_{2})_{3}CH_{3}$ $CH_{2}CH_{3}(CH_{3})_{2}$ $CH_{2}CH_{2}CH_{3}(CH_{3})_{2}$ CH_{2} -cyclopentyl

CH₂O (C₆H₅)

 CH_2SCH_2CH (CH_3) 2 CH_2NHCH_2CH (CH_3) 2

OCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂ C₆H₅

3CF₃-C₆H₄

2C1-C₆H₄

R¹=Br, R²=COCH₃

R³ (СН₂) _ЗСН₃

СH₂CH (СH₃)₂

CH₂CH₂CH (CH₃)₂

CH₂-cyclopentyl

СH₂O (С₆H₅)

CH2SCH2CH(CH3)2

CH₂NHCH₂CH (CH₃)₂

OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

2C1-C6H4

R¹= OCF₃, R²=COCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C6H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹= OCF₂H, R²=COCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 $R^1 = NO_2$, $R^2 = COCH_3$ \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4

(CH₂) 3CH₃

СH₂CH (СH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3)2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_3$, $R^2 = CH$ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_{2}O(C_{6}H_{5})$ CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2 = CH$ \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl

 ${\rm CH_{2}O\,(C_{6}H_{5})}$ ${\rm CH_{2}SCH_{2}CH\,(CH_{3})\,2}$ ${\rm CH_{2}NHCH_{2}CH\,(CH_{3})\,2}$ ${\rm OCH_{2}CH\,(CH_{3})\,2}$ ${\rm NHCH_{2}CH\,(CH_{3})\,2}$ ${\rm C_{6}H_{5}}$ ${\rm 3CF_{3}-C_{6}H_{4}}$ ${\rm 2C1-C_{6}H_{4}}$

 $R^1 = NO_2$, $R^2 = CH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 R^1 =C1, R^2 =COCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂

OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 $2C1-C_6H_4$ $R^1=Br, R^2=COCH_3$ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_3$, $R^2 = COCH_3$ \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅

3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2 = COCH_3$ \mathbb{R}^3 (CH₂)₃CH₃ СH₂CH (СH₃) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$, $R^2 = COCH_3$

R⁻= NO₂, R²=COCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C6H₅
3CF₃-C₆H₄

2C1-C6H4

R¹=C1, R²=CH₂OH R³ (CH₂)₃CH₃ CH₂CH(CH₃)₂ CH₂CH₂CH(CH₃)₂ CH₂-cyclopentyl CH₂O(C₆H₅) CH₂SCH₂CH(CH₃)₂ CH₂NHCH₂CH(CH₃)₂ OCH₂CH(CH₃)₂ NHCH₂CH(CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

R¹=Br, R²=CH₂OH R³ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃)₂ CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

 R^{1} =OCF₃, R^{2} =CH₂OH R^{3} (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂

CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CH₂OH R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4

R¹=NO₂, R²=CH₂OH R³ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃)₂ CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =C1, R^2 =CNHCH₃ R3 (CH₂) 3CH₃ СH₂CH (СH₃) 2 CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =Br, R^2 =CNHCH₃ RЗ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2

CH2NHCH2CH (CH3) 2

OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

2C1-C6H4

R¹= OCF₃, R²=CNHCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄

 $R^1 = OCF_2H$, $R^2 = CNHCH_3$

R3

2C1-C6H4

(CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃)₂ CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅

3CF3-C6H4

2C1-C6H4

 $R^1 = NO_2$, $R^2 = CNHCH_3$

(CH₂)₃CH₃

СH₂CH (СH₃)₂

 $\text{CH}_2\text{CH}_2\text{CH}$ (CH_3) 2

CH2-cyclopentyl

CH₂O (C₆H₅)

CH2SCH2CH (CH3) 2

CH2NHCH2CH(CH3)2

OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2

С₆Н₅ R³

3CF3-C6H4

2C1-C6H4

 $R^1=C1$,

R²=C=C CNH₂

R3

(CH₂) 3CH₃

СH₂СH (СH₃) ₂

CH₂CH₂CH (CH₃)₂

CH₂-cyclopentyl

СH₂O (С₆H₅)

CH2SCH2CH(CH3)2

CH2NHCH2CH (CH3)2

OCH₂CH (CH₃)₂

NHCH2CH (CH3)2

C6H5

3CF3-C6H4

2C1-C6H4

R3

(CH₂) 3CH₃

CH₂CH (CH₃)₂

CH₂CH₂CH (CH₃)₂

CH2-cyclopentyl

CH₂O (C₆H₅)

CH2SCH2CH (CH3) 2

CH2NHCH2CH (CH3)2

OCH2CH (CH3) 2

NHCH₂CH (CH₃)₂

C₆H₅

3CF3-C6H4

2C1-C6H4

R¹=OCF₃,
CN
R²=C=C
CNH

R3

(CH₂)₃CH₃

СH₂CH (СH₃)₂

CH2CH2CH(CH3)2

CH2-cyclopentyl

СH₂O (С₆H₅)

CH2SCH2CH(CH3)2

CH2NHCH2CH (CH3)2

OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

Formulation

5

10

Compositions of this invention comprising the active compounds of Formula I or II will generally be used in formulation with an agriculturally suitable carrier comprising a liquid or solid diluent or an organic solvent. Useful formulations may be in the form that includes dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates, dry flowables and the like, consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred

WO 94/05153 PCT/US93/08096

118

liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up 100 weight percent.

	We.	nt	
	<u>Active</u> Ingredient	<u>Diluent</u>	Surfactant
Wettable Powders	25-90	0-74	1-10
Oil Suspensions, Emulsions, Solutions, (including Emulsifiable Concentrates)	5-50	40-95	0-15
Dusts	1-25	70-99	0-5
Granules and Pellets	0.01-99	5-99.99	0-15
High Strength Compositions	90-99	0-10	0-2

et al., Handbook of Insecticide Dust Diluents and
Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey.
Typical liquid diluents and solvents are described in
Marsden, Solvents Guide, 2nd Ed., Interscience, New
York, 1950. McCutcheon's Detergents and Emulsifiers

Annual, Allured Publ. Corp., Ridgewood, New Jersey, as
well as Sisely and Wood, Encyclopedia of Surface Active
Agents, Chemical Publ. Co., Inc., New York, 1964, list
surfactants and recommended uses. All formulations can
contain minor amounts of additives to reduce foam,
caking, corrosion, microbiological growth, etc.

Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer mill or fluid energy mill. Water-dispersible granules can be produced be agglomerating a fine powder composition; see for example, Cross et al., Pesticide Formulations,

25

Washington, D.C., 1988, pp 251-259. Suspensions are prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can also be prepared as taught in DE 3,246,493.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16

15 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4;

20 Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by
25 weight and all formulations are worked up in
conventional ways. Compound numbers refer to compounds
in Index Table A.

EXAMPLE A

High Strength Concentrate

30	Compound 1	98.5%
	silica aerogel	0.5%
	synthetic amorphous fine silica	1.0%

EXAMPLE B

Wettable Powder

35 Compound 1 65.0%

WO 94/05153 PCT/US93/08096

120

	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%
5	EXAMPLE C	
	Granule	
	Compound 1	10.0%
	attapulgite granules (low volative	
	matter, 0.71/0.30 mm; U.S.S. No.	
10	25-50 sieves)	90.0%
	EXAMPLE D	
	Extruded Pellet	
	Compound 1	25.0%
	anhydrous sodium sulfate	10.0%
15	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%
	Tests results indicate that the compounds	s of the
	present invention are highly active preemerge	ent and/or
20	postemergent herbicides and/or plant growth :	regulants.
	Many of them have utility for broad-spectrum	pre-
	and/or postemergence weed control in areas w	nere
	complete control of all vegetation is desired	d such as
	around fuel storage tanks, industrial storage	e areas.
25	parking lots, drive-in theaters, around bill	ooards and
	highway and railroad structures. Some of the	e compounds
	are useful for the control of selected grass	and
	broadleaf weeds with tolerance to important a	agronomic
	crops which include but are not limited to be	arley,
30	cotton, wheat, corn, soybeans and rice. Thos	se skilled
	in the art will appreciate that not all compo	ounds are
	equally effective against all weeds. Alterna	atively,
	the subject compounds are useful to modify pl	Lant
	growth.	

WO 94/05153 PCT/US93/08096

121

In certain instances, combinations with other herbicides having a similiar spectrum of control but a different mode of action will be particularly advantageous for resistance management.

5 UTILITY

10

15

20

Test results indicate that compositions of this invention are herbicidally active postemergence and preemergence. The compositions of this invention are particularly useful for the control of barnyardgrass (Echinochloa crus-galli) in crops especially upland and rice (Oryza sativa).

A herbicidal effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general terms, a herbicidally effective amount is a rate from 0.005 to 10 kg/ha with a preferred rate range of 0.01 to 1 kg/ha. One skilled in the art can easily determine effective application rates for desired level of weed control.

The compositions of this invention may include as active compounds the compounds of Formulas I or II alone or in combination with other commercial herbicides, insecticides, or fungicides. 25 The following list exemplifies some of the herbicides suitable for use in mixtures. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control. Examples of other herbicides with which compounds of this 30 invention can be formulated are: acetochlor, acifluorfen, acrolein, 2-propenal, alachlor, ametryn, amidosulfuron, ammonium sulfamate, amitrole, anilofos, asulam, atrazine, barban, benefin, bensulfuron methyl, bensulide, bentazon, benzofluor, benzoylprop, bifenox, 35

bromacil, bromoxynil, bromoxynil heptanoate, bromoxynil octanoate, butachlor, buthidazole, butralin, butylate, cacodylic acid, 2-chloro-N, N-di-2-propenylacetamide, 2-chloroallyl diethyldithiocarbamate, chloramben, chlorbromuron, chloridazon, chlorimuron ethyl, 5 chlormethoxynil, chlornitrofen, chloroxuron, chlorpropham, chlorsulfuron, chlortoluron, cinmethylin, cinosulfuron, clethodim, clomazone, cloproxydim, clopyralid, calcium salt of methylarsonic acid, cyanazine, cycloate, cycluron, cyperquat, cyprazine, 10 cyprazole, cypromid, dalapon, dazomet, dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate, desmedipham, desmetryn, dicamba, dichlobenil, dichlorprop, diclofop, diethatyl, difenzoquat, diflufenican, dimepiperate, dinitramine, dinoseb, 15 diphenamid, dipropetryn, diquat, diuron, 2-methyl-4,6dinitrophenol, disodium salt of methylarsonic acid, dymron, endothall, S-ethyl dipropylcarbamothicate, esprocarb, ethalfluralin, ethametsulfuron methyl, 20 ethofumesate, fenac, fenoxaprop, fenuron, salt of fenuron and trichloroacetic acid, flamprop, fluazifop, fluazifop-P, fluchloralin, flumesulam, flumipropyn, fluometuron, fluorochloridone, fluorodifen, fluoroglycofen, flupoxam, fluridone, fluroxypyr, 25 fluzasulfuron, fomesafen, fosamine, glyphosate, haloxyfop, hexaflurate, hexazinone, imazamethabenz, imazapyr, imazaquin, imazamethabenz methyl, imazethapyr, imazosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, karbutilate, lactofen, 30 lenacil, linuron, metobenzuron, metsulfuron methyl, methylarsonic acid, monoammonium salt of methylarsonic acid, (4-chloro-2-methylphenoxy) acetic acid, S, S'-dimethyl-2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethy1)-3,5-pyridinedicarbothioate, mecoprop,

mefenacet, mefluidide, methalpropalin, metha-

and xylachlor.

benzthiazuron, metham, methazole, methoxuron, metolachlor, metribuzin, 1,2-dihydropyridazine-3,6dione, molinate, monolinuron, monuron, monuron salt and trichloroacetic acid, monosodium salt of methylarsonic acid, napropamide, naptalam, neburon, nicosulfuron, nitralin, nitrofen, nitrofluorfen, norea, norflurazon, oryzalin, oxadiazon, oxyfluorfen, paraquat, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2nitroacetophenone oxime-O-acetic acid methyl ester, 10 pretilachlor, primisulfuron, procyazine, profluralin, prometon, prometryn, pronamide, propachlor, propanil, propazine, propham, prosulfalin, prynachlor, pyrazolate, pyrazon, pyrazosulfuron ethyl, quinchlorac, quizalofop ethyl, rimsulfuron, secbumeton, sethoxydim, 15 siduron, simazine, 1-(a,a-dimethylbenzyl)-3-(4methylphenyl)urea, sulfometuron methyl, trichloroacetic acid, tebuthiuron, terbacil, terbuchlor, terbuthylazine, terbutol, terbutryn, thifensulfuron 20 methyl, thiobencarb, triallate, trialkoxydim, triasulfuron, tribenuron methyl, triclopyr, tridiphane, trifluralin, trimeturon, (2,4-dichlorophenoxy)acetic acid, 4-(2,4-dichlorophenoxy) butanoic acid, vernolate,

Compositions comprising a combination of a compound of Formula I or II with one or more of the following herbicides may be particularly useful for weed control in rice: bensulfuron methyl, N-[2-(2-methoxyethoxyphenyl sulfonyl]-N'-4,6-dimethoxy-1,3,5-triazin-2-ylurea, N-[[(4,6-dimethoxypyrimidin-2-yl)amino]carbonyl]-1-methyl-4-(2-methyl-2H-tetrazol-5-yl)-1H-pyrazole-5-sulfonamide, mefenacet, metsulfuron methyl, molinate, pyrazosulfuron ethyl, quinclorac, N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]-3-methyl-5-(2,2,2-trifluoroethyl)-4-isothiazole-

sulfonamide, 3-chloro-N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]imidazo-[1,2-a]pyridine-3-sulfonamide, S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridine-carbothioate, and butachlor.

Selective herbicidal properties of compositions comprising the compounds of Formulas I or II were discovered in greenhouse tests as described below.

INDEX TABLE A

$$R^3$$

Compounds of Formula II wherein:

CMPD	R1	R ²	R ³	mp (°C)
1	Cl	CO ₂ CH ₃	OCH ₂ CH (CH ₃) ₂	oil
2	Cl	CO ₂ H	OCH ₂ CH (CH ₃) ₂	82-84
3	Cl	C (O) NH ₂	OCH ₂ CH (CH ₃) ₂	129-30
4	NO_2	C≡N	C ₆ H ₅	117-118
5	NO_2	C (O) NH ₂	C ₆ H ₅	193.5-195.5
6	NO_2	CO ₂ H	C ₆ H ₅	203-206
7	NO_2	со ₂ сн ₃	C ₆ H ₅	58-60.5
8	Cl	C (O) NH ₂	OCH ₂ C ₆ H ₅	137-140
9	Cl	C (O) NH ₂	OCH ₂ CH ₂ CH (CH ₃) ₂	137-139
10	Cl	CO ₂ CH ₃	OCH ₂ C ₆ H ₅	47-51
11	Cl	CO ₂ H	OCH ₂ C ₆ H ₅	135-138
12	Cl	CO ₂ H	OCH ₂ CH ₂ CH (CH ₃) ₂	76-82
13	Cl	CO ₂ CH ₃	OCH ₂ CH ₂ CH (CH ₃) ₂	oil
14	Cl	CO ₂ CH ₃	OCH ₂ CH ₂	oil '
15	Cl	со2н	OCH ₂ CH ₂ CH ₂	123-127

16	Cl	со ₂ сн ₃	$OCH_2C(CH_3)(OCH_3)_2$	113-118
17	Cl	СНО	OCH ₂ CH (CH ₃) ₂	oil
18	Cl	C (O) NH ₂	OCH ₂ CH CH ₂	134-136
19	Cl	со ₂ сн ₃	$OCH_2(2,6F-C_6H_3)$	82-86
20	Cl	CO ₂ CH ₃	СH ₂ ОСН ₂ -С-СН ₃	oil
21	Cl	со ₂ сн ₃	OCH ₂ CO ₂ CH ₃	oil
22	Cl	сн ₂ он	OCH ₂ CH (CH ₃) ₂	oil
23	Cl	со ₂ сн ₃	$\operatorname{OCH_2CH} \stackrel{\operatorname{CH_2}}{\stackrel{\mid}{\subset} \operatorname{H_2}}$	oil
24	Cl	CH=N-OH	OCH2CH (CH3)2	79-81
25	Cl	со2н	$OCH_2(2, 6-FC_6H_3)$	167-171
26	Cl	CO ₂ H	СH ₂ ОСH ₂ -С-СH ₃	89-92
27	Cl	с (0) NH ₂	$OCH_2(2,6-FC_6H_3)$	175-176
28	Cl	C (O) NH ₂	OCH ₂ CH $<$ CH ₂ CH ₂	149-151
29	Cl	C (O) NH ₂	$\begin{array}{c} \text{OCH}_2\text{CH} < \begin{bmatrix} \text{CH}_2 \\ \text{CH}_2 \\ \end{bmatrix} \\ \text{OCH}_2 - \text{C-CH}_3 \end{array}$	115-117
43	Cl	CO2CH2CH (CH3) 2	OCH ₂ CH (CH ₃) ₂	105-107
44	Cl	C≡N	OCH ₂ CH (CH ₃) ₂	37-41
45	Cl	$C(NH_2) = N-OH(trans)$	OCH ₂ CH (CH ₃) ₂	81-84
46	Cl	$C(NH_2) = NOH(cis)$	OCH ₂ CH (CH ₃) ₂	110-124
47	Cl	C (O) NHCH2CF3	OCH ₂ CH (CH ₃) ₂	94-97
48	Cl	C (O) NHOCH3	OCH ₂ CH (CH ₃) ₂	82-85
49	NO_2	C≡N	CH=CHCO ₂ CH ₃	160-165
50	NO_2	C (O) NH ₂	CH=CHCO ₂ CH ₃	150-177
51	Cl	$C(NH_2) = N - OC(O)OCH_3$	OCH ₂ CH (CH ₃) ₂	98-101
52	Cl	$C(C1)=N-OCH_3$	OCH2CH (CH3)2	oil
53	Cl	CH=CBr ₂	OCH ₂ CH (CH ₃) ₂	oil
54	Cl	C≡N	3-CF ₃ C ₆ H ₄	92-98
55	Cl	C (O) NH ₂	3-CF ₃ C ₆ H ₄	138-145
56				
-	Cl	C (O) NH ₂	3-C1C ₆ H ₄	122-128

58	Cl	C (O) NH ₂	4-0CH ₃ C ₆ H ₄	180-184
59	Cl	C (O) NH ₂	4-C1C6H4	198-202
60	Cl	C (O) NH ₂	4-FC ₆ H ₄	167-170
61	Cl	с (0) NH ₂	4-BrC ₆ H ₄	>250
62	Cl	C (O) NH ₂	$(4-CH_2CH_2CH_2CH_3)C_6H_4$	196-200
63	Cl	C≡N	C≡CCH ₂ CH ₂ CH ₃	oil
64	Br	СНО	сн ₂ сн ₂ сн ₂ сн ₃	oil
65	Cl	C≡N	$CH_2CH_2CH_2CH_2CH_3$	oil
66	Cl	C≡N	CH ₂ CH ₂ CH ₂ CH ₃	oil
67	Cl	C≡N	CH ₂ CH (CH ₃) ₂	oil
68	Cl	C≡N	CH2CH2CH(CH3)2	oil
69	Cl	C≡N	$CH_2Si(CH_3)_3$	oil
70	Cl	C (O) NH ₂	CH2CH2CH2CH3	91-99
71	Cl	C (0) NH ₂	CH2CH2CH2CH3	118-121
72	Cl	C (0) NH ₂	CH2CH2CH(CH3)2	88-107
73	Cl	C (O) NH ₂	CH ₂ CH (CH ₃) ₂	97-107
74	Cl	C≡N	C=C-Si(CH ₃) ₃	106-109
75	Cl	$C(NH_2) = N - OH$	CH ₂ CH ₂ CH (CH ₃) ₂	gum
76	Cl	C=N	2-C4H3O	79-83
7 7	Cl	C (0) NH ₂	2-C4H3O	86-125
78	Cl	C≡N	N _s	116-131
79	Cl	C≡N		120-135
80	Cl	C (0) NH ₂		164-174
81	Cl	(CO) NH ₂	N s	168-172

82 C1 C≡N CH₃ 111-112

83 Cl C≡N CH₃
CeH₅
N
130-141

84 Cl C≡N 112-115
N
-N

85 C1 C(O)NH₂

CH₃

CH₃

CH₃

86 Br CH=N-OH $CH_2CH_2CH_3$ oil 87 Cl $C(O)NH_2$ $C6^{H_5}$ 135-150

—N CHO

88 C1 (CO) NH₂ 83-98

89 C1 C=N C1 Oil

90 Cl C≡N 117-121

91	Cl	C≡N	C1	oil
92	Cl	C (O) NH ₂		>250
93	Cl	C≡N	CH ₃	163-168
94	Cl	С (O) NH ₂	CH ₃	151-164
95	Cl	C=N	-O-N=CH-C ₆ H ₅	oil
96	Cl	C≔N	-O-N=C (CH ₃) ₂	125-128
97	Cl	C (O) NH ₂	N C6H5	161-163
98	Cl	C (O) NH ₂	CI CF3	163-172
99	Cl	C (0) NH ₂	-O-N=C (CH ₃) ₂	129-130
100	Cl	C≡N	CH=CHOCH ₃	62-70
101	C1	C≡N	$-OCH_2C(O)N(CH_3)C_6H_5$	105-109
102	Cl	C(CN) = N - OH	-осн ₂ сн (сн ₃) ₂	oil
103	Cl	C (0) NH ₂	-o-(CF ₃	108-120
			<u> </u>	

105	Cl	C≡N	-0-CF3	58-69
106	Cl	C≡N	CH ₃	170-172
107	NO2	C≡N	C (O) CH ₂ CH (CH ₃) ₂	oil
108	NO ₂	C=N	-C (O) CH CH ₂	106-117
109	Cl	CH ₂ -N	-осн ₂ сн (сн ₃) ₂	55-64
110	Cl	N CF3	-осн ₂ сн (сн ₃) ₂	oil
111	Cl	NH	-осн ₂ сн (сн ₃) ₂	124-127
112	Cl	C (O) NHNHC (CH ₃) ₃	-осн ₂ сн (сн ₃) ₂	50-64
113	Cl	C (0) NHN-C (0) NHCH ₂ CH ₃ C (CH ₃) ₃	-OCH ₂ CH (CH ₃) ₂	oil
114	Cl	C=N	C (O) CH (OCH ₃) ₂	135-141
115	Cl	C≆CH	OCH ₂ CH (CH ₃) ₂	oil
116	Cl	CH ₂ Cl	OCH ₂ CH (CH ₃) ₂	oil
117	Cl	CH ₂ CN	OCH ₂ CH (CH ₃) ₂	oil
118	Cl	CH ₂ C (0) NH ₂	OCH ₂ CH (CH ₃) ₂	102-110
119	I	C (O) OH	CH ₂ CH ₂ CH ₂ CH ₃	82-89
121	Br	C≡N	OCH ₂ CH (CH ₃) ₂	oil
122	Br	C (O) NH ₂	OCH ₂ CH (CH ₃) ₂	98-111
123	NO_2	C≡N	OCH ₂ CH (CH ₃) ₂	oil
124	NO_2	C (O) NH ₂	OCH ₂ CH (CH ₃) ₂	123-125

125 C1 C=N
$$CH_2$$
 78-81 CH_3 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3

INDEX TABLE B

Compounds of Formula I wherein:

CMPD	R ¹	R ²	R ³	mp (°C)
30	Br	со ₂ сн ₃	OCH ₂ CH (CH ₃) ₂	oil
31	Br	CO ₂ H	$OCH_2CH(CH_3)_2$	105-109
32	Br	C (0) NH ₂	$OCH_2CH(CH_3)_2$	135-137
38	NO_2	co_2 Сн $_2$ Сн (Сн $_3$) $_2$	OCH ₂ CH (CH ₃) ₂	38-42
39	NO_2	CO ₂ H	OCH ₂ CH (CH ₃) ₂	oil
40	NO_2	СНО	$OCH_2CH(CH_3)_2$	45-48
41	NO_2	HC=N-OH	OCH2CH (CH3)2	96-102
42	NO_2	C≔N	OCH ₂ CH (CH ₃) ₂	68-77
120	NO_2	$CH=C(CN)_2$	OCH ₂ CH (CH ₃) ₂	78-85

INDEX TABLE C

Spectral Data

CMPD

1 NMR (CDCl₃): ppm δ 7.88 (d, 1H); 7.0 (s, 1H); 6.8 (d, 1H); 3.89 (s, 3H); 3.74 (d, 2H); 2.0 (m, 1H); 1.035 (d, 6H)

IR (Neat): $1730 \text{ cm}^{-1} \text{ (C=O)}$

```
ppm \delta 7.87 (d, 1H); 6.96 (s, 1H); 6.8 (d, 1H);
13 NMR (CDCl<sub>3</sub>):
                        4.0 (m, 2H); 3.89 (s, 3H); 1.8 (m, 1H); 1.67
                        (m, 2H); 0.97 (d, 6H)
                        1725 \text{ cm}^{-1} \text{ (C=O)}
     IR (Neat):
14 NMR (CDCl<sub>3</sub>):
                        ppm \delta 7.88 (d, 1H); 7.0 (s, 1H); 6.8 (d, 1H);
                        5.3 (m, 1H); 4.07 (m, 4H); 4.06 (m, 2H); 3.89
                        (s, 3H)
     IR (Neat):
                        1720 \text{ cm}^{-1} \text{ (C=O)}
                       ppm \delta 10.5 (s, 1H); 7.88 (d, 1H); 6.93 (s,
17 NMR (CDCl<sub>3</sub>):
                        1H); 6.8 (d of d, 1H); 3.86 (d, 2H); 2.1 (m,
                        1H); 1.05 (d, 6H)
                       1680 \text{ cm}^{-1} \text{ (C=O)}
    IR (Neat):
20 NMR (CDCl<sub>3</sub>):
                       ppm \delta 7.87 (d, 1H); 6.98 (s, 1H); 6.8 (d of d,
                       1H); 5.0 (s, 2H); 4.64 (s, 2H); 3.9 (s, 3H);
                       1.82 (s, 3H)
                       1725 \text{ cm}^{-1} \text{ (C=O)}
    IR (Neat):
21 NMR (CDCl<sub>3</sub>):
                       ppm \delta 7.89 (d, 1H); 6.98 (s, 1H); 6.8 (d of d,
                       1H); 4.68 (s, 2H); 3.9 (s, 3H); 3.88 (s, 3H)
                       1755; 1720 cm^{-1} (C=O)
    IR (Neat):
                       ppm \delta 7.34 (d, 1H); 6.93 (s, 1H); 6.8 (d of d,
22 NMR (CDC13):
                       1H); 4.77 (d, 2H); 3.71 (d, 2H); 2.15 (m, 1H);
                       1.8 (s, 1H); 1.026 (d, 6H)
                       3400 \text{ cm}^{-1} \text{ (C=O)}
    IR (Neat):
23 NMR (CDCl<sub>3</sub>):
                       ppm \delta 7.87 (d, 1H); 6.98 (s, 1H); 6.8 (m, 1H);
                       5.0 (d, 2H); 4.64 (s, 2H); 3.9 (s, 3H); 1.82
                       (s, 3H)
                       1725 \text{ cm}^{-1} \text{ (C=O)}
    IR (Neat):
30 NMR (CDCl<sub>3</sub>):
                       ppm \delta 7.53 (d, 1H); 7.31 (m, 1H); 6.8 (d of d,
                       1H); 3.92 (s, 3H); 3.7 (d, 2H); 2.0 (m, 1H);
                       1.03 (d, 6H)
                       1740 \text{ cm}^{-1} \text{ (C=O)}
    IR (Neat):
39 NMR (CDCl<sub>3</sub>):
                       ppm \delta 8.0 (d, 1H); 7.5 (b, s, 1H); 7.2 (s,
                       1H); 6.8 (d, 1H); 3.8 (d, 2H); 2.0 (m, 1H);
                       1.02 (d, 6H)
                       3400, 1712 \text{ cm}^{-1}
    IR (Neat):
```

```
52 NMR (CDCl<sub>3</sub>):
                       ppm \delta 7.37 (d, 1H); 6.95 (s, 1H); 6.8 (d, 1H);
                       4.0 (s, 3H); 3.73 (d, 2H); 2.1 (m, 1H); 1.02
                       (d, 6H
                       1601 (C=N) cm^{-1}
     IR (Neat):
53 NMR (CDCl<sub>3</sub>):
                       ppm \delta 7.6 (d, 1H); 7.5 (s, 1H); 6.93 (s, 1H);
                       6.8 (d, 1H); 3.71 (d, 2H); 2.08 (m, 1H); 1.01
                       (d, 6H)
                       ppm \delta 7.568 (m, 2H); 7.52 (d, 1H); 2.413 (m,
63 NMR (CDCl<sub>3</sub>):
                       2H); 1.64 (m, 2H); 1.047 (t, 3H)
    IR (Neat):
                       2229 (C≡N) cm<sup>-1</sup>
64 NMR (CDCl<sub>3</sub>):
                       ppm \delta 10.4 (s, 1H); 7.84 (d, 1H); 7.468 (s,
                       1H); 7.25 (d, 1H); 2.63 (m, 2H); 1.37 (m, 2H);
                       0.94 (m, 3H)
                       2748; 1692 (C=O) cm<sup>-1</sup>
    IR (Neat):
65 NMR (CDCl3):
                       ppm \delta 7.55 (d, 1H); 7.32 (s, 1H); 7.19 (d,
                       1H); 2.62 (t, 2H); 1.62 (m, 2H); 1.32 (m, 4H);
                       0.89 (t, 3H)
                       2231 (C≡N) cm<sup>-1</sup>
    IR (Neat):
                       ppm \delta 7.56 (d, 1H); 7.32 (s, 1H); 7.198 (d,
66 NMR (CDCl<sub>3</sub>):
                       1H); 2.64 (t, 2H); 1.602 (m, 2H); 1.38 (m,
                       2H); 0.93 (t, 3H)
                       2231 cm<sup>-1</sup> (C≡N)
    IR (Neat):
67 NMR (CDCl3):
                      ppm \delta 7.57 (d, 1H); 7.3 (s, 1H); 7.151 (d,
                       1H); 2.51 (d, 2H); 1.9 (m, 1H); 0.91 (d, 6H)
    IR (Neat):
                       2210 (C≡N) cm<sup>-1</sup>
                      ppm \delta 7.55 (d, 1H); 7.32 (s, 1H); 7.198 (d,
68 NMR (CDCl<sub>3</sub>):
                       1H); 2.646 (t, 2H); 1.5-1.6 (m, 3H); 0.93 (d,
                       6H)
                      2231 (C = N) cm<sup>-1</sup>
    IR (Neat):
69 NMR (CDCl<sub>3</sub>):
                      ppm \delta 7.48 (d, 1H); 7.1 (s, 1H); 6.95 (d, 1H);
                      2.14 (s, 2H); 0.006 (s, 9H)
                      2210 \text{ cm}^{-1} \text{ (C=N)}
    IR (Neat):
                      ppm \delta 7.41 (d, 1H); 7.23 (s, 1H); 7.08 (d,
75 NMR (CDCl<sub>3</sub>):
                      1H); 6.5 (bs, 1H); 4.94 (bs, 2H); 2.6 (t, 2H);
                      1.6 (m, 1H); 1.49 (m, 2H); 0.93 (d, 6H)
```

 $1649 (C = N) cm^{-1}$ IR (Nujol): 86 NMR (CDCl3): ppm δ 8.5 (s, 1H); 8.4 (s, 1H); 7.7 (d, 1H); 7.4 (s, 1H); 2.6 (m, 2H); 1.6 (m, 2H); 1.27 (m, 2H); .97 (m, 3H)89 NMR (CDCl3): ppm δ 7.8 (s, 1H); 7.6 (m, 2H); 7.26 (m, 1H); 7.0 (s, 1H); 6.8 (d, 1H) 2232 cm⁻¹ (C≡N) IR (Neat): 91 NMR (CDCl₃): ppm δ 7.6 (d, 1H); 7.53 (s, 1H); 7.32 (d, 1H); 7.11 (d, 1H); 7.09 (s, 1H); 6.83 (d, 1H) $2230 \text{ cm}^{-1} \text{ (C=N)}$ IR (Neat): 95 NMR (CDCl3): ppm δ 7.65 (m, 4H); 7.48 (m, 3H); 7.26 (m, 1H); 7.1 (t, 1H) + isomer2229 cm⁻¹ (C=N), 1631 (C=N) cm⁻¹ IR (Neat): ppm δ 7.42 (d, 1H); 6.99 (s, 1H); 6.83 (m, 102 NMR (CDCl₃): 1H); 3.74 (d, 2H); 2.08 (m, 1H); 1.02 (d, 6H) 3313 cm⁻¹ (OH), 2195 cm⁻¹ (C=N) IR (Neat): 107 NMR (CDCl3): ppm δ 8.82 (s, 1H); 8.34 (d, 1H); 8.05 (d, 1H); 2.92 (d, 2H); 2.3 (m, 1H); 1.03 (d, 6H) 2234 (C=N); 1695 (C=O) cm⁻¹ IR (Neat): ppm δ 7.55 (d, 1H); 7.0 (s, 1H); 6.85 (d, 1H); 110 NMR (CDCl3): 3.76 (d, 2H); 2.1 (m, 1H); 1.04 (d, 6H) IR (Neat): 1599, 1556 (C=N) cm⁻¹ 113 NMR (CDCl₃): ppm δ 9.125 (s, 1H); 7.4 (d, 1H); 6.866 (s, 1H); 6.8 (d, 1H); 5.3 (t, 1H); 3.72 (d, 2H); 3.01 (m, 2H); 2.08 (m, 1H); 1.4 (s, 9H); 1.0 (m, 9H) 1700, 1602 (C=O) cm⁻¹ IR (Neat): 115 NMR (CDCl3): ppm δ 7.4 (d, 1H); 6.95 (s, 1H); 6.78 (d, 1H); 3.7 (d, 2H); 3.27 (s, 1H); 2.08 (m, 1H); 1.01 (d, 6H) IR (Neat): 116 NMR (CDCl₃): $ppm \delta 7.33 (d, 1H); 6.945 (s, 1H); 6.8 (d, 1H); 6.8 (d,$ 1H); 4.67 (s, 2H); 3.7 (d, 2H); 2.04 (m, 1H); 1.01 (d, 6H)

WO 94/05153 PCT/US93/08096

134

117 NMR (CDCl₃): ppm δ 7.38 (d, 1H); 6.95 (s, 1H); 6.83 (d,

1H); 3.76 (s, 2H); 3.7 (d, 2H); 2.08 (m, 1H);

1.02 (d, 6H)

IR (Neat): 2251 (C=N) cm^{-1}

121 NMR(CDCl₃): ppm δ 7.55 (d, 1H); 7.18 (s, 1H); 6.9 (d, 1H);

3.75 (d, 2H); 2.05 (m, 1H); 1.03 (d, 6H)

IR (Neat): 2229 (C=N) cm⁻¹

123 NMR (CDCl₃): ppm δ 7.79 (d, 2H); 7.27 (m, 1H); 3.87 (d,

2H); 2.1 (m, 1H); 1.06 (d, 6H)

IR (Neat): 2229 (C=N) cm^{-1}

TEST A

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), bush bean (Phaseolus vulgaris), cheatgrass (Bromus secalinus), 5 chickweed (Stellaria media), cocklebur (Xanthium pensylvanicum), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria spp.), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), 10 morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sicklepod (Cassia obtusifolia), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena 15 fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. the same time, these crop and weed species were also 20 treated with postemergence applications of test chemicals. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, 25 after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table A, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

Table A		COI	MPOU	JND		Table A		CO	MPO	JND	
Rate 2000 g/ha	1	4	5	6	7	Rate 2000 g/ha	1	4	5	6	7
POSTEMERGENCE						PREEMERGENCE					
Barley	0	-	-	-	-	Barley	0	-	-	_	-
Barnyardgrass	1	10	10	8	6	Barnyardgrass	0	10	10	8	8
Bedstraw	2	-	_	_	-	Bedstraw	0	-	_	_	_
Blackgrass	0	_	-	_	-	Blackgrass	0	-	-	-	_
Bush bean	_	0	1	6	2	Cheatgrass	0	-	-	_	-
Cheatgrass	0	_	-	-	-	Chickweed	_	-	_	-	_
Chickweed	4	-	-	-	-	Cocklebur	0	0	10	-	0
Cocklebur	0	0	1	1	1	Corn	0	0	9	2	0
Corn	0	0	0	0	1	Cotton	0	-	_	-	_
Cotton	0	0	1	1	2	Crabgrass	0	0	0	0	4
Crabgrass	1	0	0	5	1	Giant foxtail	0	-	-	-	-
Giant foxtail	0	-	-	-	-	Lambsquarter	-	-	-	_	-
Lambsquarter	-	-	-	-	-	Morningglory	0	0	10	0	0
Morningglory	2	0	0	1	2	Nutsedge	0	0	0	0	0
Nutsedge	0	0	0	0	0	Rape	0	-	-	-	-
Rape	0	-	-	-	-	Rice	0	0	3	1	0
Rice	0	0	0	0	1	Sicklepod	-	0	1	0	0
Sicklepod	_	0	0	1	1	Sorghum	0	0	0	0	0
Sorghum	0	0	0	0	1	Soybean	0	0	0	0	0
Soybean	0	0	0	1	1	Sugar beet	-	-	-	-	-
Sugar beet	0	-	-	-	-	Velvetleaf	0	-	-	-	-
Velvetleaf	0	-	-	-	-	Wheat	0	0	0	0	0
Wheat	0	0	0	0	1	Wild buckwheat	0	-	-	-	-
Wild buckwheat	0	-	-	-	-	Wild oat	0	0	0	0	0
Wild oat	2	0	0	0	1						

0
c
_
c
C
C
0
0
c
c
c
0
0
0
0
0
0
0
0
0
0

	63																				0						
	62																				0						
	19																				0						
	09		0	10	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	59		0	თ	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	7	1	0	0	0	0	0	0	0
	28		0	ထ	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
	57		0	σ	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
	26		0	ტ	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	t	0	0	0	0	0	0	0
	52		0	10	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
£	54		0	7	0	0	ı	0	0	0	0	0	8	0	0	0	0	0	8	i	۲	0	0	4	0	0	0
COMPOUNT	53		0	~	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	ო	0	0	0
Š	52		0	4	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
_	51		0	ი	0	0	. 1	0	0	0	0	0	0	0	0	0	ı	0	0	ı	0	0	0	0	0	0	0
	20		0	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
	49		0	-	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
	48		0	œ	0	0	ı	0	0	0	-	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	7.7		0	7	0	0	ı	0	0	0	0	0	0	0	ı	0	0	0	0	ı	0	0	0	0	0	0	0
	94		~	10	0	0	1	0	0	0	0	N	0	0	ı	0	0	0	0	ŧ	0	0	0	0	~	0	ო
	45		Н	თ	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	~	0	Н
	44,		0	6	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	42,		0	ო	0	0	i	0	0	0	~	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	41 ,		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	ŧ	0	0	0	0	0	0	0
	40 4		0	0	0	0	ı	0	0	0	0	0	0	0	0	0.	0	0	0	ı	0	0	0	0	0	0	0
	39 4		0	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	38		0	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
Table A	Rate 400 g/ha	POSTEMERGENCE	Barley	Barnyardgrass	Bedstraw	Blackgrass	Bush bean	Cheatgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Giant foxtail	Lambsquarter	Morningglory	Nutsedge	Rape	Rice	Sicklepod	Sorghum	Soybean	Sugar beet	Velvetleaf	Wheat	Wild buckwheat	Wild oat

٥,		_	۸1	_	~		٥١		_	_	_	_	_		_	_	_	_					_	_	۰,	
o,																										
0																										
0																										
89		4	ω	7	4	ı	ო	ന	S	5	0	ω	9	ω	o,	80	Ŋ	m	ı	Ŋ	ιΩ	80	ω	4	10	4
88		0	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
87		0	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
86		0	4	0	-1	ı	Н	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	8
85		0	9	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	I	0	0	0	0	0	0	0
84		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
83		0	0	0	0	ł	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
82		0	~	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
81		0	ო	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	i	0	0	0	0	0	0	0
80		0	ო	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
79		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
78		0	Ŋ	0	0	i	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
11		0	Н	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
94		0	Н	0	0	ı	0	0	0	0	0	0	0	4	0	0	0	0	1	0	0	ო	0	0	0	0
75		0	10	0	0	ŧ	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
74		0	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	j	0	0	0	0	0	0	0
73		0	œ	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
72		0	6	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
71		0	Q	0	0	ı	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
70		0	ω	ı	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
69		0	4	0	0	ł	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
89		0	œ	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
6 7		0	ω	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
99		0	ထ	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0
65		0	4	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
		0	Ŋ	0	0	ı	0	0	0	0	0	0	0	0	0	ı	0	0	ı	0	0	0	0	0	0	0
๙	POSTEMERGENCE	Barley	Barnyardgrass	Bedstraw	Blackgrass	Bush bean	Cheatgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Giant foxtail	Lambsquarter	Morningglory	Nutsedge	Rape	Rice	Sicklepod	Sorghum	Soybean	Sugar beet	Velvetleaf	Wheat	Wild buckwheat	Wild oat
	64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 9	64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	400 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 9 ERGENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 9 ERGENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 9 GENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 9 GENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 GENCE O O O O O O O O O O O O O O O O O O O	O g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 GENCE O O O O O O O O O O O O O O O O O O O	GENCE 0 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 GENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GENCE $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	GENCE 0 0 d/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 GENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 GENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 GENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 GENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ba 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 91 91 75 76 77 78 79 80 81 85 86 87 88 89 99 99 89 91 91 80 91 91 80 91 80 91 91 80 91 91 80 91<	0 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 90 81 82 83 84 85 86 87 88 89 90 91 91 92 GENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bay 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 83 84 85 86 87 88 89 90 91 91 92 83 84 85 86 87 88 89 90 91 91 92 83 84 85 86 87 88 89 90 91 91 92 83 84 88 88	400 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 90 81 82 83 84 85 86 87 86 99 91 91 91 92 MARRGENCE 3.	## 400 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 PMERGENCE **********************************	## 400 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 19 80 81 82 83 84 85 86 87 88 89 90 91 91 PAPERGENCE **********************************	#MCRICENCE MACRICENCE MACRIC	400 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 9 MMERGENCE 9440 g/ha 9450 g/ha 9450 g/la 945	400 g/ha 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 86 89 89 90 91 91 94 94 94 94 94 94 94 94 94 94 94 94 94	#MARKAGENICE #M	400 g/ha 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	400 g/ha 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Table A												ີ່ວິ	COMPOUND	ð									
Rate 400 g/ha POSTEMERGENCE	93 94	94	95	96	97	86	99 1(1001	101	103 1	104	105	106	101	108	109	110	111	112	113	114	115	116
Barley	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	-	ო	0	8	∞	ო	വ	0	۵	N	0	8	က	-	ø,	9	თ	Ŋ	0	ო	4
Bedstraw	0	0	0	0	0	~	0	0	-	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Blackgrass	0	0	0	0	0	0	0	0	-	Н	Н	н	0	0	0	0	0	0	0	0	0	0	7
Bush bean	ı	ı	ı	i	ı	1	ı	ı	ı	1	i	1	ı	ı	1	ı	ı	1	1	ı	ı	ı	ı
Cheatgrass	0	0	0	0	0	0	0	0	0	0	0	н	0	0	0	0	0	0	0	0	0	0	4
Chickweed	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0
Cocklebur	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corn	0	0	0	0	0	H	0	0	0	0	0	-	0	8	~	0	0	0	0	ო	0	0	0
Cotton	0	0	0	0	7	4	0	0	0	0	0	0	0	0	Н	0	0	0	0	0	0	0	0
Crabgrass	0	0	0	0	0	01	0	0	0	0	0	~	0	0	7	0	7	0	0	ო	0	0	Н
Giant foxtail	0	0	0	0	0	N	0	0	0	0	0	7	0	0	-	0	0	0	0	0	0	0	0
Lambsquarter	0	0	0	0	0	7	0	0	1	0	0	Н	0	0	0	0	0	0	0	0	0	0	0
Morningglory	0	0	0	0	0	Н	0	ı	7	0	0	Н	0	0	0	0	0	0	0	0	0	0	0
Nutsedge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
Rape	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ო	0	0	0	0	0	0	0	0
Rice	1.	ı	ı	1	0	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	7
Sicklepod	1	ı	1	1	ı	t	1	ı	ı	ı	ı	1	ı	ı	ı	i	ı	i	ı	ı	1	ı	ı
Sorghum	0	0	0	0	0	~	0	0	0	0	0	7	0	0	Н	0	0	0	0	0	0	0	7
Soybean	0	0	0	0	0	4	0	0	0	7	0	0	0	0	0	4	0	0	0	-	0	0	0
Sugar beet	0	0	7	0	7	m	0	0	0	ო	0	0	0	0	m	0	0	0	0	0	0	0	0
Velvetleaf	0	0	0	0	0	m	0	0	0	0	0	ო	0	0	ო	0	0	0	0	0	0	0	0
Wheat	0	0	0	0	0	0	0	0	0	н	0	0	0	0	0	0	0	0	0	0	0	0	0
Wild buckwheat	0	0	0	0	0	4	0	0	0	0	0	4	0	0	0	ı	0	0	0	0	0	0	4
Wild oat	0	0	0	0	0	7	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A	CC	MPO	JND	Table A	CC	OMPOU	JND
Rate 400 g/ha	117	118	120	Rate 400 g/ha	117	118	120
POSTEMERGENCE				POSTEMERGENCE			
Barley	0	0	0	Morningglory	0	0	0
Barnyardgrass	2	2	2	Nutsedge	0	0	0
Bedstraw	2	0	0	Rape	0	0	0
Blackgrass	1	0	0	Rice	0	0	2
Bush bean	-	-	-	Sicklepod	-	-	_
Cheatgrass	0	0	0	Sorghum	0	0	2
Chickweed	3	0	0	Soybean	0	0	1
Cocklebur	0	0	0	Sugar beet	0	-	0
Corn	0	0	0	Velvetleaf	0	0	0
Cotton	0	0	0	Wheat	0	0	0
Crabgrass	0	0	1	Wild buckwheat	2	0	0
Giant foxtail	0	0	1	Wild oat	0	0	0
Lambsquarter	6	_	3				

Table A													U	Š.	COMPOUND	ρ											
Rate 400 g/ha	8	က	©	თ	10	11	12 1	13	14]	15 1	1 9 1	17 1	181	9 2	202	1 2	2 2	3 2,	4 2	5 2(6 27	7 28	3 29	30	31	32	
PREEMERGENCE																											
Barley	0	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Barnyardgrass	4	10	7	7	0	0	0	0	0	0	0	N	0	0	0	0											
Bedstraw	0	0	0	0	თ	ı	ı	6	0	0	0	0	4	0	0	0											
Blackgrass	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0											
Cheatgrass	0	თ	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Chickweed	0	0	ı	1	ı	0	ı	ı	ı	ı	ı	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Cocklebur	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Cotton	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Crabgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Giant foxtail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Lambsquarter	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Morningglory	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Nutsedge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Rape	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Sicklepod	ı	ı	ı	ı	ı	i	í	1	ı	ı	ı	1	1	i	ı	1											
Sorghum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Soybean	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Sugar beet	0	ო	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Velvetleaf	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Wild buckwheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Wild oat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000
0 0
5 6
) c
o c
o c

Table A													č	ğ	TMECOMMO	_													
Rate 400 g/ha	64	65	99	29	89	69	. 02	7.1.7	72 7	13 7	4 7	5 7	9	7 7	8 7	9 80	81	. 82	83	84	82	86	87	88	83	90	91	92	
Barley	0	0	0	0	0	0	0	0	0	0	0												_	C	~	0	C	c	
Barnyardgrass	7	러	9	n	9	0	~	0	6	7	0	. .	0	0		. "		, c	0	0	9	` -	· C		្រ	0	· c	· c	
Bedstraw	0	0	0	0	0	1	0	0	0	0	0												0	0	0	0	N	0	
Blackgrass	0	0	0	0	0	0	0	0	0	0	0												0	0	-	0	-	0	
Cheatgrass	1	0	0	0	0	0	0	0	0	0	0												0	0	N	0	~	0	
Chickweed	0	0	0	0	0	0	0	0	0	0	0												0	0	0	0	0	0	
Cocklebur	0	0	0	0	0	0	0	0	0	0	0												0	0	0	0	0	0	
Corn	0	0	0	0	0	0	0	0	0	0	0												0	0	0	0	0	0	
Cotton	ı	0	0	0	0	0	0	0	0	0	0												0	0	0	0	0	0	
Crabgrass	0	0	0	0	0	0	0	0	0	0	0												0	0	4	4	0		
Giant foxtail	0	0	0	0	0	0	0	0	0	0	0												0	0	9	0	0	0	
Lambsquarter	0	0	0	0	0	0	0	0	0	0	0												0	0	I	0	0	0	
Morningglory	0	0	0	0	0	0	0	0	0	0	0												0	0	0	0	ß	0	
Nutsedge	0	ı	0	0	0	ı	ı	ı	i	ı	0												0	0	0	0	0	0	
Rape	0	0	0	0	0	0	0	0	0	0	0												0	0	7	0	ო	0	
Rice	0	0	7	Н	0	0	0	0	0	0	0												0	0	0	0	0	0	
Sicklepod	1	ı	1	ı	1	1	ı	1	ı	ı	ı												1	1	1	1	i	. 1	
Sorghum	0	0	0	0	0	0	0	0	0	0	0												0	0	0	0	C	C	
Soybean	0	0	0	0	0	0	0	0	0	0	0												0	ı	0	-	0	0	
Sugar beet	0	0	0	0	0	0	0	0	0	0	0												0	0	ω	0	~		
Velvetleaf	0	0	0	0	0	0	0	0	0	0	0												0	0	9	0	0	0	
Wheat	0	0	0	0	0	0	0	0	0	0	0												0	0	-	0	0	0	
Wild buckwheat	0	0	0	0	0	0	0	0	0	0	0												0	0	-	0	0	0	
Wild oat	0	0	0	0	0	0	0	0	0	0	0												0	0	4	0	C		

Table A												8	COMPOUNT	Ą									
Rate 400 g/ha	93	94	95	96	97	98	66	100	101	103	104	105	106 1	107	108	: 601	110	111	112	113	114	115	116
PREEMERGENCE																							
Barley	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	7	0	0	4	ო	ო	0	4	0	0	0	8	0	7	4	7	4	0	N	80
Bedstraw	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blackgrass	0	0	0		0	0	0	0	0	0	Н	0	0	0	0	0	0	0	0	0	0	0	0
Cheatgrass	0	0	0		0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chickweed	0	0	~		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Cocklebur	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corn	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass	0	1	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Giant foxtail	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lambsquarter	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Morningglory	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nutsedge	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ı	0	ı	0
Rape	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rice	0	0	0		0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0
Sicklepod	ı	١	ı		i	i	ı	ı	ı	ı	ı	1	•	1	1	ı	ı	ı	ı	ı	ı	ŧ	ı
Sorghum	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Soybean	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sugar beet	0	0	0		0	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Velvetleaf	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wheat	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wild buckwheat	0	0	0		0	0	0	0	0	0	0	0	0	0	ო	0	0	0	0	0	0	0	0
Wild oat	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A	C	OMPO	JND	Table A	COMP	DUND
Rate 400 g/ha	117	118	120	Rate 200 g/ha	102	119
PREEMERGENCE				POSTEMERGENCE		
Barley	0	0	0	Barley	0	0
Barnyardgrass	4	4	1	Barnyardgrass	7	3
Bedstraw	0	0	0	Bedstraw	0	0
Blackgrass	0	0	0	Blackgrass	0	0
Cheatgrass	0	0	0	Bush bean	-	-
Chickweed	0	-	0	Cheatgrass	0	0
Cocklebur	0	0	0	Chickweed	0	2
Corn	0	0	0	Cocklebur	0	0
Cotton	0	0	0	Corn	0	0
Crabgrass	0	0	0	Cotton	0	0
Giant foxtail	0	0	0	Crabgrass	0	2
Lambsquarter	0	-	0	Giant foxtail	0	3
Morningglory	0	0	0	Lambsquarter	0	4
Nutsedge	0	0	0	Morningglory	0	0
Rape	0	0	0	Nutsedge	0	0
Rice	0	0	1	Rape	0	2
Sicklepod	-	-	-	Rice	0	0
Sorghum	0	0	0	Sicklepod	-	-
Soybean	0	0	0	Sorghum	0	0
Sugar beet	0	0	0	Soybean	0	0
Velvetleaf	0	0	0	Sugar beet	0	2
Wheat	0	0	0	Velvetleaf	0	3
Wild buckwheat	0	0	0	Wheat	0	0
Wild oat	0	0	0	Wild buckwheat	0	0
				Wild oat	0	0

Table A	COMPOUND	Table A	COMPOUND
Rate 200 g/ha	102 119	Rate 200 g/ha	102 119
PREEMERGENCE		PREEMERGENCE	
Barley	0 0	Morningglory	0 0
Barnyardgrass	7 2	Nutsedge	0 0
Bedstraw	0 3	Rape	0 0
Blackgrass	0 0	Rice	0 0
Cheatgrass	0 0	Sicklepod	
Chickweed	0 3	Sorghum	0 0
Cocklebur	0 0	Soybean	0 0
Corn	0 0	Sugar beet	0 0
Cotton	0 0	Velvetleaf	0 0
Crabgrass	0 0	Wheat	0 0
Giant foxtail	0 0	Wild buckwheat	0 0
Lambsquarter	0 0	Wild oat	0 0

TEST B

Seeds of barnyardgrass (Echinochloa crus-galli), cheatgrass (Bromus secalinus), cocklebur (Xanthium pensylvanicum), crabgrass (Digitaria spp.), giant foxtail (Setaria faberii), morningglory (Ipomoea spp.), 5 sorghum (Sorghum bicolor), velvetleaf (Abutilon theophrasti), and wild oat (Avena fatua) were planted into a sandy loam soil and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were also 10 treated postemergence with test chemicals. Plants ranged in height from two to eighteen cm and were in the two to three leaf stage for the postemergence treatment. Treated plants and untreated controls were 15 maintained in a greenhouse for approximately eleven days, after which all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table B, are based on a 0 to 10 scale where 0 is no effect and 10 is 20 complete control. A dash (-) response means no test results.

Table B	C	COME	OUI	4D	Table B	(COMI	OUI	AD
Rate 2000 g/ha	2	3	43	45	Rate 2000 g/ha	2	3	43	45
POSTEMERGENCE					PREEMERGENCE				
Barnyardgrass	6	10	3	10	Barnyardgrass	9	10	0	9
Cheatgrass	0	0	0	0	Cheatgrass	0	0	0	0
Cocklebur	0	0	1	0	Cocklebur	0	0	0	0
Crabgrass	2	1	2	0	Crabgrass	0	0	0	0
Giant foxtail	1	1	1	0	Giant foxtail	0	0	0	0
Morningglory	1	0	1	0	Morningglory	0	0	0	0
Sorghum	1	1	1	0	Sorghum	0	0	0	0
Velvetleaf	1	1	1	0	Velvetleaf	0	0	0	0
Wild oats	1	1	1	0	Wild oats	0	0	0	0

WO 94/05153 PCT/US93/08096

149

Table B	COMPOUND	Table B COM	POUND
Rate 1000 g/ha	2 3	Rate 1000 g/ha	2
POSTEMERGENCE		PREEMERGENCE	
Barnyardgrass	2 10	Barnyardgrass	9
Cheatgrass	0 0	Cheatgrass	0
Cocklebur	0 0	Cocklebur	0
Crabgrass	1 0	Crabgrass	0
Giant foxtail	0 0	Giant foxtail	0
Morningglory	0 0	Morningglory	0
Sorghum	0 1	Sorghum	0
Velvetleaf	0 0	Velvetleaf	0
Wild oats	0 0	Wild oats	0

TEST C

The test chemicals were formulated in a non-phytoxic solvent and applied to water that covered the soil surface (flood application). Seeds of barnyardgrass (Echinochloa crus-galli), and rice (Oryza sativa) were planted in silt loam soil in separate containers. Containers of barnyardgrass and rice were grown for ten days (barnyardgrass at 2 leaf stage) and flooded one day prior to treatment. Water depth was maintained at approximately 2.5 cm for the duration of the test.

All plant species were grown using normal greenhouse practices. Treated plants were compared to untreated controls and visually evaluated eleven to fifteen days after treatment. Plant response ratings, summarized in Table C, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

10

WO 94/05153

35

150

	Table C	COMPO	UND				
	Rate 250 g/ha	28					
	POSTEMERGENCE						
	Barnyardgrass 2	100					
5	Rice Japonica	0					
	Table C		COI	MPOU	ND		
	Rate 62 g/ha	3	9	28	46	55	
	POSTEMERGENCE						
10	Barnyardgrass 2	100	90	100	100	100	
	Rice Japonica	0	30	0	15	0	
	Table C		COM	OUNI)		
	Rate 16 g/ha	3	9	28	46	55	
15	POSTEMERGENCE						
	Barnyardgrass 2	100	40	95	95	95	
	Rice Japonica	0	0	0	0	0	
	Table C		COM	1POU	1D		
20	Rate 4 g/ha	3	9	28	46	55	
	POSTEMERGENCE						
	Barnyardgrass 2	95	20	85	90	80	
	Rice Japonica	0	0	0	0	0	
25	Table C		COM	POUN	ĪD		
	Rate 1 g/ha	3	9	46	55		
	POSTEMERGENCE						
	Barnyardgrass 2	65	0	65	60		
	Rice Japonica	0	0	0	0		
30							
	TEST D						

Plastic pots were partially filled with silt loam soil then saturated with water. Japonica rice (Oryza sativa) seedlings, barnyardgrass (Echinochloa crusgalli) and watergrass (Echinochloa walteri) were grown

WO 94/05153 PCT/US93/08096

151

to the 1, 2 and 3 leaf stages and planted. After planting, water levels were raised to 3 cm above the soil surface and maintained at this level throughout the test. Chemical treatments were formulated in a non-phytotoxic solvent and applied directly to the paddy water. Treated plants and controls were maintained in a greenhouse for approximately 21 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table D, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table D	COMPOUND	Table D	COMPOUND
Rate 500 g/ha	3 46	Rate 250 g/ha	3 46
FLOOD		FLOOD	
Barnyardgrass 2	- 100	Barnyardgrass 2	- 100
Barnyardgrass 3	100 100	Barnyardgrass 3	100 100
Japonica 1	0 35	Japonica 1	0 20
Japonica 2	- 0	Japonica 2	- 0
Watergrass 2	- 0	Watergrass 2	- 0
Watergrass 3	85 -	Watergrass 3	90 -

Table D	COM	POUNI	D	5	Table	D	CC	MPO	JND
Rate 125 g/ha	3	46		1	Rate	32 g/ha	3	28	46
FLOOD				1	FLOOD				
Barnyardgrass 2	-	100		1	Barnya	rdgrass 2	-	85	100
Barnyardgrass 3	100	100		1	Barnya	rdgrass 3	98	85	100
Japonica 1	0	0			Japoni	ca 1	0	0	0
Japonica 2	-	0		Ċ	Japoni	ca 2		0	0
Watergrass 2	_	0		V	Waterg.	rass 2	-	0	0
Watergrass 3	80	_		V	Waterg	rass 3	75	-	-
Rate 64 g/ha	3	28	46	F	Rate	16 g/ha	3	28	46
FLOOD				F	FLOOD				
Barnyardgrass 2		98	100	F	Barnya	rdgrass 2	-	60	98
Barnyardgrass 3	100	98	100	F	Barnya:	rdgrass 3	75	70	95
Japonica 1	0	0	10	č	Japoni	ca 1	0	0	0
Japonica 2	-	0	0	č	Japoni	ca 2	-	0	0
Watergrass 2	_	0	0	¥	Waterg	rass 2	_	0	0
Watergrass 3	80	-	_	V	Waterg:	rass 3	50	-	_
Rate 8 g/ha	3	28	46	F	Rate	4 g/ha	28	46	
FLOOD				F	FLOOD				
Barnyardgrass 2	-	35	80	E	Barnya:	rdgrass 2	25	70	
Barnyardgrass 3	75	40	85	E	Barnya	rdgrass 3	30	70	
Japonica 1	0	0	0	J	Japonio	ca 1	0	0	
Japonica 2	-	0	0	J	Japonio	ca 2	0	0	
Watergrass 2	-	0	0	W	Naterg	cass 2	0	0	
Watergrass 3	45	-	_	W	Naterg:	rass 3	-	_	

15

TEST E

Plastic pots were partially filled with clay loam soil. Transplanted seedlings of Japonica rice (Oryza sative) and seeds of barnyardgrass (Echinoghloa oryzicola) were planted in flooded pots. Plants were then grown to the 2 leaf, 2.5 leaf and 3 leaf stages for testing. At test, water levels for all plantings were kept to 3 cm above the soil surface. Chemical treatments were formulated in a non-phytotoxic solvent and applied directly to the paddy water. Treated plants and controls were maintained in a greenhouse for approximately 21 to 28 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

Table E C	OMPOUND	Table E C	OMPOUND
Rate 1000 g/ha	3	Rate 250 g/ha	3
Barnyardgrass 2	50	Barnyardgrass 2	50
Rice 1	10	Rice 1	25
Rice 2	10	Rice 2	10
Rate 500 g/ha	3	Rate 125 g/ha	3
Barnyardgrass 2	50	Barnyardgrass 2	40
Rice 1	15	Rice 1	0
Rice 2	10	Rice 2	0

(

What is claimed is:

1. A composition for controlling the growth of undesired vegetation comprising an effective amount of a compound of Formula I or II

$$R^3$$
 R^2
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3
 R^3

wherein

R¹ is Cl, Br, I, OCH₃, OCHF₂, OCF₃ or NO₂;
R² is CN, CO₂R⁴, CHO, C(X)NR¹⁷R¹⁸, C(S)OR⁶, C≡CH,
CHR¹⁹OR²⁰, CH=NOR⁷, CH=CR²¹R²², C(halogen)=NOR⁷,
C(NH₂)=NOR⁷, C(CN)=NOR⁷, CHR¹⁹(halogen),
CHR¹⁹CN, CHR¹⁹C(=O)NH₂, CHR¹⁹CO₂H, or a fivemembered heterocyclic ring containing one or
more nitrogen, sulfur, or oxygen atoms and
optionally substituted with one or more CH₃,
CF₃, OCH₃, SCH₃, or halogen;

 R^3 is n-propyl; C_4-C_{10} alkyl; n-propyl or C_4-C_7 20 alkyl each substituted with one or more halogen, OR^8 , SR^9 or $NR^{10}R^{11}$; C_1-C_2 alkyl substituted with OR^{16} , SR^9 , $NR^{14}R^{15}$, $CO_2(C_1-C_2)$ alkyl) or phenyl optionally substituted with one or more CH3, CF3, OCH3, SCH3 or halogen; C₃-C₆ cycloalkyl; CH₂(C₃-C₆ cycloalkyl); phenyl, 25 pyridyl, thienyl, furyl, pyrazolyl or thiazolyl, each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; C₂-C₆ alkenyl optionally substituted with one or more 30 halogen or $CO_2(C_1-C_2 \text{ alkyl})$; OR^{12} ; SR^{13} ; $NR^{14}R^{15}$; $C(=X)R^{12}$;

(H,
$$C_1$$
- C_2 alkyl) (H, C_1 - C_2 alkyl) OCH₂C CH₂ CH₂

or $O-N=CR^{30}R^{31}$; R^4 is H, C_1-C_2 alkyl,

5

 ${\rm R}^6,~{\rm R}^7,~{\rm R}^8,~{\rm R}^9,~{\rm R}^{10}$ and ${\rm R}^{11}$ are independently H or C_1-C_2 alkyl;

 ${\it R}^{12}$ and ${\it R}^{13}$ are independently ${\it C}_1{\it -C}_{10}$ alkyl 10 optionally substituted with one or more halogen, OR^8 , SR^9 , CO_2R^{23} , $C(O)NR^{24}R^{25}$, CN, $Si(CH_3)_3$, $C(R^{26})(OR^{27})(OR^{28})$ or $NR^{10}R^{11}$; C_1-C_3 alkyl substituted with a five- or six-membered heterocyclic ring containing 1-2 heteroatoms 15 selected from the group 1-2 nitrogens, 1 oxygen and 1 sulfur, each ring optionally substituted with 1-2 substituents selected from F, Cl, Br, CH₃, CF₃, OCH₃ and CN; C₃-C₆ alkenyl; or phenyl or benzyl, each ring optionally substituted 20 with one or more CH3, CF3, OCH3, OR29, SCH3 or halogen;

25

 ${\bf R}^{14}$ and ${\bf R}^{15}$ are independently H or ${\bf C}_1{\bf -C}_2$ alkyl, or may be taken together along with the nitrogen to which they are attached to form a pyrrolyl, piperidinyl, morpholinyl, pyrazolyl, or imidazolyl ring, each optionally substituted with one or more CH3, CF3, OCH3, SCH3, or halogen;

- R¹⁶ is H, C₁-C₈ alkyl; benzyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen;
- R^{17} is H, C_1-C_2 alkyl or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 or halogen;
- R¹⁸ is H, C₁-C₂ alkyl, C₃-C₆ cycloalkyl, $CH_2(C_3-C_6)$ 10 cycloalkyl), $O(C_1-C_4)$ alkyl), O-allyl or may be taken together with R^{17} as $-(CH_2)_4-$, $-(CH_2)_5-$ or $-(CH_2CH_2OCH_2CH_2)-$;
 - R^{19} is H or C_1-C_2 alkyl;
 - \mathbb{R}^{20} is H or C(0)CH₃;
- 15 R^{21} and R^{22} are independently H, CN, CO_2R^4 , $C(X)NR^{17}R^{18}$ or halogen;
 - R^{23} , R^{24} , R^{25} and R^{26} are independently H; C_1 - C_3 alkyl; or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 , or halogen;
- 20 R^{27} and R^{28} are independently C_1-C_3 alkyl or may be taken together as $-(CH_2)_2-$ or $-(CH_2)_3-$ optionally substituted with 1-2 CH_3 's;
 - X is O or S;
- R²⁹ is phenyl, pyridyl, thiazolyl, pyrazolyl or pyrrolyl each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen; and
 - R³⁰ and R³¹ are each independently H; C₁-C₁₀ alkyl; or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen;
- and agriculturally suitable salts thereof and at least one of the following: surfactant, solid or liquid diluent.
 - 2. The composition of Claim 1 wherein R^1 is Cl, Br or I;

ን

35

- R^2 is CN, CO_2H , CO_2CH_3 , $CO_2CH_2CH_3$, CHO, C(O)NH₂, C(O)NHCH₃, C(O)N(CH₃)₂, CH₂OH or CH=NOR⁷;
- R³ is n-propyl; C₄-C₇ alkyl; C₂ alkyl substituted with phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; CH₂(C₃-C₆ cycloalkyl); phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; or OR¹²;

 R^{12} is C_2-C_4 alkyl;

10 3. The compositions of Claim 2 wherein

R¹ is Cl or Br;

 \mathbb{R}^2 is CN, $\mathbb{CO}_2\mathbb{H}$ or $\mathbb{C}(0)\mathbb{NH}_2$;

 R^3 is C_4-C_7 alkyl, $CH_2(C_3-C_6$ cycloalkyl) or OR^{12} .

- 4. The composition of Claim 1 where the compound is 2-chloro-4-(2-methylpropoxy) benzamide.
- 5. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 1.
- 20 6. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 2.
- 7. A method for controlling the growth of
 undesired vegetation which comprises applying to the
 locus to be protected an effective amount of the
 composition of Claim 3.
- A method for controlling the growth of undesired vegetation which comprises applying to the
 locus to be protected an effective amount of the composition of Claim 4.
 - 9. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 4.

Internatic Application No PCT/US 93/08096

4					1703 33708030
IPC 5	A01N37/40 A01N37/18	A01N31/14 A01N37/34	A01N35/04	A01N35/10	A01N37/10
According to	o International Patent Cla	ssification (IPC) or to b	oth national classificati	on and IPC	
	SEARCHED				
Minimum de IPC 5	AO1N	lassification system foll	owed by classification s	ymbols)	
Documentati	on searched other than m	inimum documentation	to the extent that such o	documents are included in	n the fields searched
Electronic da	ata base consulted during	the international search	(name of data base and	, where practical, search	terms used)
C. DOCUM	ENTS CONSIDERED T	O BE RELEVANT			
Category *	Citation of document, wi	th indication, where ap	propriate, of the relevan	t passages	Relevant to claim No.
х	1973	715 (R.J. TH	EISSEN) 4 Dec	ember	1,5
A	GB,A,900 56	1 (HOOKER) 1	July 1962		
A .	GB,A,901 55	3 (VELSICOL)	18 July 1962		
A	FR,A,1 216	998 (PHILIPS)	29 April 19	60	
A	US,A,3 169 8 1965	849 (A.J. LEI	MIN) 16 Febru	ary	
^	US,A,3 982 September 1		RA ET AL.) 28		
Furth	er documents are listed in	the continuation of box	с. Х	Patent family members	are listed in annex.
* Special cate	gories of cited documents	:	orpo la	ter document published a	fter the international filing date
"A" documer	nt defining the general stated to be of particular rele	te of the art which is no	. 0	r priority date and not in	conflict with the application but nciple or theory underlying the
"E" earlier d	ocument but published on		-1	avention	evance; the claimed invention
filing de	nt which may throw doubt	s on priority claim(s) or	c ' is	annot be considered nove	or cannot be considered to when the document is taken alone
citation	crited to establish the pub or other special reason (a	s specified)	1 0	ocument of particular rele annot be considered to in	evance; the claimed invention volve an inventive step when the
other m			n a	ocument is combined with nents, such combination b	h one or more other such docu- eing obvious to a person skilled
"P" document later that	nt published prior to the in on the priority date claime	ternational filing date t d	M.	n the art. ocument member of the a	ame patent family
Date of the a	ctual completion of the in	ternational search		ate of mailing of the inter	
5	January 1984			20, 01, 94	
Name and ma	ailing address of the ISA European Patent Office	P.B. 5818 Petenties		uthorized officer	
	NL - 2280 HV Rijswiji Tel. (+31-70) 340-2040	k	-		
	Fax: (+31-70) 340-301			Decorte, D	

Int tional application No.

PCT/US 93/08096

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)							
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:								
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:							
2. X 3	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims searched completely: : 2-4, 6-9 Claims searched incompletely: 1, 5; only their subject matter as defined in claims 2-4, and 6-9 has been searched completely. (see attached sheet) Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).							
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)							
	ernational Searching Authority found multiple inventions in this international application, as follows:							
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.							
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.							
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:							
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:							
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.							

FURTHER INFORMATION CONTINUED FROM PCT/ISA/

1

In accordance with the last paragraph of Chapter III, Point 3.6 of the PCT Search Guidelines, the subject matter of claims 1 and 5 has not been exhaustively searched. Only its subject matter as further defined in the compositions claims 2, 3 and 4 as well as in the corresponding use claims 6-9 has been exhaustively searched.

Additional arguments for limiting the scope of the search could be found in the following considerations:

Each of the claimed compounds comprised in the Markush Formula I and II, is a compound resulting from the variation of the values of each of the three substituents (which embrace a vast array of independently varying radicals which are heterogeneous in structure - in particular R1 - on an 1,2,4 tri-substituted nucleus which represents a special istructural) technical feature of the herbicide derivatives according to the invention.

It appears from e.g. US-A- 3.776.715 (see column 1 , line 19 - line 24) that herbicidal compounds comprising this structural element are known in the prior art.

In this perspective it is not possible (starting from the plethora of individual compounds and without making assumptions having no basis in the application documents) to unambiguously determine a (or a plurality of) GENERALISED set(s) of distinct features which could be considered as special technical features of a solution or of a plurality of alternative solutions to an accordingly formulated problem underlying the invention as a whole.

Consequently the wording of claims 1 and 5 does not comply with Art 5, and Rule 6.3(a), which require that an invention should be clearly defined in terms of the features supported by the invention. These should be identifiable from an appropriate technical statement, supported by the description of the problem and the solution thereto proposed.

The application does not comply with rule 5.1(a) ii and iii in that the description does not provide the common feature(s) of the compounds embraced by the breadth of the definition of claim 1 in a useful manner for understanding the invention and carrying out the search.

Info....ation on patent family members

Internatio Application No
PCT/US 93/08096

		PCT/US 93/08096	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A-3776715	04-12-73	US-A- 3929455 US-A- 3873302 US-A- 3873303 BE-A- 749444 CA-A- 971973 DE-A,B,C 2019821 FR-A- 2040235 GB-A- 1232368 NL-A- 7005783 US-E- RE32550 US-E- RE32316 US-E- RE31831 US-A,B 3652645 US-A- 3784635 US-E- RE32243 US-E- RE32216	30-12-75 25-03-75 25-03-75 23-10-70 29-07-75 12-11-70 22-01-71 19-05-71 27-10-70 24-11-87 30-12-86 12-02-85 28-03-72 08-01-74 09-09-86 29-07-86
GB-A-900561		NONE	
GB-A-901553		AT-A- 224976 AU-B- 250929 BE-A- 589221 CH-A- 410517 FR-A- 1240715 IT-A- 615450 LU-A- 37507 LU-A- 37509 NL-C- 122754 NL-A- 241973 NL-A- 6510535 US-A- 3013050 US-A- 3013051 US-A- 3013052 US-A- 3013053 US-A- 3013055 US-A- 3013055 US-A- 3013056 US-A- 3013057 US-A- 3013057 US-A- 3013059	25-10-65

Info...iation on patent family members

Internatio Application No
PCT/Us 93/08096

				. 20,00030
Patent document cited in search report	Publication date	Patent family member(s)		Publication date
GB-A-901553		US-A-	3013060	
		US-A-	3013061	
		US-A-	3013062	
		US-A-	3130205	
		US-A-	3138446	
FR-A-1216998		BE-A-	572662	
		CH-A-	427405	
		DE-B-	1133176	
		GB-A-	862863	
		NL-C-	97486	
		NL-A-	222165	
		0A-A-	793	15-11 - 67
		US-A-	3027248	
US-A-3169849		NONE		
US-A-3982931	28-09-76	BE-A-	723592	08-05-69
		CH-A-	511557	31-08-71
		DE-A-	1807509	17-07-69
		FR-A-	1593132	25-05-70
		GB-A-	1242579	11-08-71
		NL-A-	6815727	13-05-69
		0A-A-	2924	15-12-70
		SE-B-	355929	14-05-73
	•	US-A-	3835189	10-09-74