Chapitre 5: Intégration sur un segment de fonctions à valeurs dans C

I Intégration des fonctions à valeurs dans C.

Dans tout ce paragraphe, I désigne un intervalle infini de \mathbb{R} , a et b deux réels, et on convient que si a > b, la notation [a,b] désigne le segment [b,a].

A) Notations et rappels

Soit $f: I \to \mathbb{C}$ une fonction (dite « complexe, d'une variable réelle »)

Soient Re f et Im f les parties réelles et imaginaires de f (c'est-à-dire les fonctions de I dans \mathbb{R} définies par : $\forall x \in I, f(x) = \text{Re}(f(x)) + i \text{Im}(f(x))$)

On rappelle que f est continue sur I si et seulement si Re f et Im f sont continues sur I.

On notera de plus \overline{f} et |f| les fonctions définies sur I par : $\forall x \in I, \overline{f}(x) = \overline{f(x)}$ et $\forall x \in I, |f|(x) = |f(x)|$. Bien entendu, si f est continue sur I, alors \overline{f} et |f| le sont aussi.

B) Fonctions continues par morceaux sur un segment

Soit $f:[a,b] \to \mathbb{C}$. On dit que f est continue par morceaux sur [a,b] lorsqu'il existe une subdivision $\sigma = (x_0, x_1,...x_n)$ de [a,b] telle que, pour tout $i \in [1,n]$:

- f est continue sur $|x_{i-1}, x_i|$
- f a une limite (dans \mathbb{C}) à droite en x_{i-1}
- f a une limite (dans \mathbb{C}) à gauche en x_i

(C'est la définition analogue à celle qui concerne les fonctions à valeurs dans \mathbb{R}) On prouve immédiatement que, pour $f:[a,b] \to \mathbb{C}$:

f continue par morceaux \Leftrightarrow Re f et Im f continues par morceaux.

Et donc, aisément :

Si f et g sont continues par morceaux sur [a,b], alors les fonctions \overline{f} , |f| $\lambda f + \mu g$ (où $\lambda, \mu \in \mathbb{C}$) sont aussi continues par morceaux.

C) Définition

Soit $f:[a,b] \to \mathbb{C}$, continue par morceaux. On peut définir :

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} \operatorname{Re}(f(t))dt + i \int_{a}^{b} \operatorname{Im}(f(t))dt$$

Remarque : s'il se trouve que f est à valeurs réelles, on retrouve bien l'intégrale de f sur [a,b] au sens du chapitre précédent.

D) Premières propriétés

En utilisant la définition et les propriétés des intégrales des fonctions réelles, on établit aisément les propriétés suivantes :

1) Linéarité

Si f et g sont deux fonctions complexes continues par morceaux sur [a,b], alors pour tous $\lambda, \mu \in \mathbb{C}$:

$$\int_{a}^{b} (\lambda f + \mu g)(t)dt = \lambda \int_{a}^{b} f(t)dt + \mu \int_{a}^{b} g(t)dt$$

Remarque : la relation de définition du \underline{C}) peut maintenant être vue comme une conséquence de la linéarité.

2) Conjugaison

Si
$$f:[a,b] \to \mathbb{C}$$
 est continue par morceaux : $\int_a^b \overline{f}(t)dt = \overline{\int_a^b f(t)dt}$

3) Chasles

Si f est une fonction complexe continue par morceaux sur un segment contenant a, b, c:

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

4) Fonctions « presque partout égales »

Si f et g sont continues par morceaux sur [a,b] et si f et g ne diffèrent que sur un nombre fini de points, alors $\int_a^b f(t)dt = \int_a^b g(t)dt$.

Il en résulte, comme pour les fonctions à valeurs dans \mathbb{R} , que le calcul de l'intégrale d'une fonction continue par morceaux se ramène au calcul d'une somme d'intégrales de fonctions continues.

5) Majoration du module

Soit $f:[a,b] \to \mathbb{C}$, continue par morceaux.

Si
$$a \le b$$
, alors $\left| \int_a^b f(t)dt \right| \le \int_a^b \left| f(t) \right| dt$

Démonstration :

Posons
$$\int_a^b f(t)dt = re^{i\theta}$$
, avec $(r,\theta) \in \mathbb{R}^+ \times \mathbb{R}$ (alors $\left| \int_a^b f(t)dt \right| = r$)

Alors

$$r = e^{-i\theta} \int_a^b f(t)dt = \int_a^b e^{-i\theta} f(t)dt$$

Soient u et v les parties réelles et imaginaires de la fonction $t \mapsto e^{-i\theta} f(t)$.

Alors
$$r = \int_a^b u(t)dt + i \int_a^b v(t)dt$$
. Donc $\int_a^b v(t)dt = 0$ et $\int_a^b u(t)dt = r$.

Or, pour tout
$$t \in [a,b]$$
, $u(t) \le |u(t) + iv(t)| = |e^{-i\theta} f(t)| = |f(t)|$

Donc
$$r = \int_a^b u(t) \le \int_a^b |f(t)| dt$$
.

E) Intégrale d'une fonction continue et primitives

Rappels:

Soit $f: I \to \mathbb{C}$. Alors f est dérivable si et seulement si $\operatorname{Re} f$ et $\operatorname{Im} f$ sont dérivables, et on a alors : $\forall x \in I$, $f'(x) = (\operatorname{Re} f)'(x) + i(\operatorname{Im} f)'(x)$

Soit $f: I \to \mathbb{C}$, dérivable. Si $\forall x \in I, f'(x) = 0$, alors $\exists k \in \mathbb{C}, \forall x \in I, f(x) = k$ (évident puisque $f' = 0 \Leftrightarrow (\text{Re } f)' = (\text{Im } f)' = 0$, et I est un intervalle)

Soit $f: I \to \mathbb{C}$. Une primitive de f (sur I) est une fonction $F: I \to \mathbb{C}$, dérivable, telle que F' = f. Si f admet une primitive F, alors l'ensemble des primitives de f est l'ensembles des fonctions F + k, k décrivant \mathbb{C} . (C'est un corollaire du point précédent)

Exemple:

Rappelons que pour z = u + iv avec $(u, v) \in \mathbb{R}^2$, on définit e^z par :

$$e^z = e^u e^{iv} = e^u (\cos v + i \sin v)$$

Soit $m \in \mathbb{C}$, et soit $f : \mathbb{R} \to \mathbb{C}$ la fonction définie par : $\forall x \in \mathbb{R}, f(x) = e^{mx}$.

Alors f est dérivable sur \mathbb{R} et : $\forall x \in \mathbb{R}$, $f'(x) = me^{mx}$.

En effet, si on pose $m = \alpha + i\beta$ avec $(\alpha, \beta) \in \mathbb{R}^2$, on a:

$$\forall x \in \mathbb{R}, f(x) = e^{\alpha x} (\cos \beta x + i \sin \beta x).$$

Donc f est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$:

$$f'(x) = e^{\alpha x} (\alpha \cos \beta x - \beta \sin \beta x) + ie^{\alpha x} (\alpha \sin \beta x + \beta \cos \beta x)$$
$$= e^{\alpha x} (\alpha e^{i\beta x} + \beta ie^{i\beta x}) = me^{mx}$$

Il en résulte que si $m \in \mathbb{C}^*$, la fonction $x \mapsto \frac{1}{m} e^{mx}$ est une primitive sur \mathbb{R} de la fonction $x \mapsto e^{mx}$.

Théorème:

Soit $f: I \to \mathbb{C}$, continue. Alors, pour tout $a \in I$:

La fonction $F: I \to C$ est dérivable, de dérivée f. $x \mapsto \int_a^x f(t)dt$

Conséquence 1 :

Soit $f: I \to \mathbb{C}$, continue. Alors f admet des primitives sur I, et, de plus, pour chaque $a \in I$, $x \mapsto \int_a^x f(t)dt$ est l'unique primitive de f sur I qui prenne la valeur 0 en a.

Conséquence 2 :

Soit $\hat{f}:[a,b] \to \mathbb{C}$, continue, et soit F une primitive de f sur [a,b]. Alors: $\int_a^b f(t)dt = F(b) - F(a) \text{ (qu'on note } [F(x)]_a^b)$

Démonstration du théorème :

Avec les hypothèses du théorème, notons $f_1 = \text{Re } f$ et $f_2 = \text{Im } f$.

Alors, pour tout $x \in I$: $\int_a^x f(t)dt = \int_a^x f_1(t)dt + i \int_a^x f_2(t)dt$, et on sait que les fonctions $x \mapsto \int_a^x f_1(t)dt$ et $x \mapsto \int_a^x f_2(t)dt$ sont dérivables sur I, de dérivées respectives f_1 et f_2 (puisque f_1 et f_2 sont continues), d'où le résultat.

Les conséquences du théorème se démontrent exactement comme dans le cas réel.

Application à la recherche de primitives des fonctions réelles.

Exemple:

Nous allons déterminer une primitive sur $\mathbb R$ de la fonction réelle $x\mapsto e^{3x}\cos 2x$. On peut le faire à partir de deux intégrations par partie, mais on peut faire autrement :

Pour tout $x \in \mathbb{R}$, on a $\int_0^x e^{3t} \cos 2t dt = \text{Re}\left(\int_0^x e^{(3+2i)t} dt\right)$ (selon la définition du \underline{C})

Or,
$$\int_0^x e^{(3+2i)t} dt = \left[\frac{e^{(3+2i)t}}{3+2i} \right]_0^x = \frac{1}{3+2i} (e^{(3+2i)x} - 1) = \frac{3-2i}{13} (e^{3x} (\cos 2x + i \sin 2x) - 1)$$

Donc
$$\int_0^x e^{3t} \cos 2t dt = \frac{e^{3x}}{13} (3\cos 2x + 2\sin 2x) - \frac{3}{13}$$

F) Intégration par parties

Rappel:

Soient $f,g:I\to\mathbb{C}$

Si f et g sont continues, alors fg est continue.

Si f et g sont dérivables, alors fg est dérivable, de dérivée (fg)' = f'g + fg'.

Soit $n \in \mathbb{N}$. Une fonction $f: I \to \mathbb{C}$ est dite de classe C^n (sur I) lorsqu'elle est n fois dérivable sur I et lorsque sa dérivée n-ième est continue sur I.

On établit aisément que f est de classe C^n si et seulement si $\operatorname{Re} f$ et $\operatorname{Im} f$ le sont.

De ces résultats, on tire immédiatement, comme dans le cas réel :

Théorème:

Soient $f,g:[a,b]\to\mathbb{C}$.

Si f et g sont de classe C^1 sur [a,b]:

$$\int_a^b f'(t)g(t)dt = \left[f(t)g(t)\right]_a^b - \int_a^b f(t)g'(t)dt$$

Conséquence : Formule de Taylor avec reste intégral (à l'ordre n-1)

Si $f:[a,b] \to \mathbb{C}$ est de classe C^n $(n \ge 1)$ sur [a,b]:

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!}f^{(n-1)}(a) + \int_a^b \frac{(b-x)^{n-1}}{(n-1)!}f^{(n)}(x)dx$$

(La démonstration est analogue à celle fait dans le cas réel : faire une récurrence)

Conséquence : Inégalité de Taylor-Lagrange (à l'ordre n-1)

Si f est de classe C^n $(n \ge 1)$ sur [a,b], et si M désigne un majorant du module de $f^{(n)}$ sur [a,b] (il en existe car une fonction complexe continue sur un segment de $\mathbb R$ est bornée), alors :

$$\left| f(b) - \left(f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!} f''(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!} f^{(n-1)}(a) \right) \right| \le \frac{\left| b-a \right|^n}{n!} M$$

Démonstration

Selon le théorème précédent, il suffit de montrer que :

$$\left| \int_{a}^{b} \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) dx \right| \le \frac{|b-a|^{n}}{n!} M$$

• Si $a \le b$, on a alors:

$$\left| \int_{a}^{b} \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) dx \right| \le \int_{a}^{b} \left| \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \right| dx$$

Or, pour tout
$$x \in [a,b]$$
, $\left| \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \right| = \frac{(b-x)^{n-1}}{(n-1)!} \left| f^{(n)}(x) \right| \le M \frac{(b-x)^{n-1}}{(n-1)!}$

D'où, selon les résultats concernant les intégrales de fonctions réelles :

$$\int_{a}^{b} \left| \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \right| dx \le M \int_{a}^{b} \frac{(b-x)^{n-1}}{(n-1)!} dx = M \left[-\frac{(b-x)^{n}}{n!} \right]_{a}^{b} = M \frac{(b-a)^{n}}{n!}$$

• Si $b \le a$, on procède de même en écrivant :

$$\left| \int_{a}^{b} \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) dx \right| = \left| \int_{b}^{a} \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) dx \right|$$

et que, pour tout
$$x \in [a,b]$$
, $\left| \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) \right| = \frac{(x-b)^{n-1}}{(n-1)!} \left| f^{(n)}(x) \right|$.

Remarque importante (rappel)

Pour n=1, on obtient l'inégalité des accroissements finis, mais on rappelle que l'égalité des accroissements finis est fausse pour les fonctions à valeurs dans \mathbb{C} :

Si
$$f(x) = x^2 + ix^3$$
 sur [0,1], il n'existe pas de $c \in [0,1]$ tel que $f(1) - f(0) = (1-0)f'(c)$ car il faudrait que $1 + i = 2c + 3ic^2$, ce qui est impossible.

G) Changement de variable

Théorème :

Soit $\varphi:[a,b]\to\mathbb{R}$ de classe C^1 , et soit $f:I\to\mathbb{C}$, continue, avec $\varphi([a,b])\subset I$.

Alors
$$\int_{a}^{b} f(\varphi(t)\varphi'(t)dt = \int_{\varphi(a)}^{\varphi(b)} f(u)du$$

La démonstration est analogue à celle faite dans le cas où f est à valeurs réelles, en utilisant bien sûr le fait que si $F: I \to \mathbb{C}$ est une primitive de f sur I, alors $F \circ \varphi$ est dérivable sur [a,b] et $\forall t \in [a,b], (F \circ \varphi)'(t) = F'(\varphi(t)) \times \varphi'(t) = f(\varphi(t)) \times \varphi'(t)$

H) Remarque importante pour finir

De même que l'égalité des accroissements finis est fausse pour les fonctions à valeurs dans \mathbb{C} , le théorème de la moyenne est faux aussi pour f à valeurs dans \mathbb{C} . (même exemple que pour l'égalité des accroissements finis)

II Intégration des fonctions rationnelles (à coefficients dans C)

A) Méthode générale

Rappel:

Soit $F \in \mathbb{C}(X)$, admettant des pôles complexes $a_1, a_2, ... a_p$ avec les multiplicités $n_1, n_2, ... n_p$. Alors F se décompose en éléments simples dans $\mathbb{C}(X)$ sous la forme :

$$F = E + \sum_{i=1}^{p} \left(\sum_{j=1}^{n_i} \frac{\lambda_{i,j}}{(X - a_i)^j} \right)$$

Où E est un polynôme à coefficients dans $\mathbb C$ (qui est la partie entière de F), et où les $\lambda_{i,j}$ sont des éléments de $\mathbb C$.

Soit maintenant I un intervalle de \mathbb{R} ne contenant aucun pôle de F. Pour trouver une primitive de $t \mapsto F(t)$ sur I, on est donc ramené à la recherche de primitives des fonctions polynôme et des fonctions du type $t \mapsto \frac{1}{(t-a)^n}$, où $a \in \mathbb{C}, n \in \mathbb{N}^*$.

- Cas des fonctions polynomiales : évident
- Cas de $t \mapsto \frac{1}{(t-a)^n}$, où $n \ge 2$:

Soit I un intervalle de \mathbb{R} ne contenant pas a.

Alors la fonction $t \mapsto \frac{1}{(t-a)^n}$ admet sur *I* la primitive $t \mapsto \frac{-1}{n-1} \frac{1}{(t-a)^{n-1}}$.

(La vérification est immédiate en dérivant...)

- Cas de $t \mapsto \frac{1}{t-a}$ (Les logarithmes de complexes ne sont pas au programme !!)
- Si $a \in \mathbb{R}$, on sait que $t \mapsto \frac{1}{t-a}$ admet sur $]-\infty, a[$ et sur $]a,+\infty[$ la primitive $t \mapsto \ln|t-a|$.

- Si $a \notin \mathbb{R}$, alors $t \mapsto \frac{1}{t-a}$ est défini sur \mathbb{R} tout entier, et :

$$\forall t \in \mathbb{R}, \frac{1}{t-a} = \frac{t-\overline{a}}{(t-a)(t-\overline{a})} = \frac{t-\overline{a}}{t^2-st+p} \text{ avec } s = a+\overline{a} \text{ et } p = a\overline{a}.$$

Donc $(s, p) \in \mathbb{R}^2$ et $s^2 - 4p < 0$.

On a aussi:
$$\forall t \in \mathbb{R}, \frac{t - \overline{a}}{t^2 - st + p} = \frac{\frac{1}{2}(2t - s) + \frac{s}{2} - \overline{a}}{t^2 - st + p}.$$

Ainsi, une primitive de $t \mapsto \frac{2t-s}{t^2-st+p}$ sur \mathbb{R} est $t \mapsto \ln(t^2-st+p)$.

On doit donc maintenant trouver une primitive sur R de $t \mapsto \frac{\frac{s}{2} - \overline{a}}{t^2 - st + p}$.

On a, en mettant sous forme canonique : $\forall t \in \mathbb{R}, t^2 - st + p = \left(t - \frac{s}{2}\right)^2 + p - \frac{s^2}{4}$

De plus, on a $p - \frac{s^2}{4} > 0$. On introduit alors $k \in \mathbb{R}_+^*$ tel que $k^2 = p - \frac{s^2}{4}$.

Ainsi, pour $x_0, x \in \mathbb{R}$, on a:

$$\int_{x_0}^{x} \frac{dt}{t^2 - st + p} = \int_{x_0}^{x} \frac{dt}{\left(t - \frac{s}{2}\right)^2 + k^2} = \int_{u = \frac{1}{k}\left(t - \frac{s}{2}\right)}^{\frac{1}{k}\left(x - \frac{s}{2}\right)} \frac{\int_{\frac{1}{k}\left(x - \frac{s}{2}\right)}^{\frac{1}{k}\left(x - \frac{s}{2}\right)}}{k^2 u^2 + k^2} = \frac{1}{k} \left[\operatorname{Arctan} u \right]_{\frac{1}{k}\left(x_0 - \frac{s}{2}\right)}^{\frac{1}{k}\left(x - \frac{s}{2}\right)}$$

Ainsi, une primitive de $t \mapsto \frac{1}{t^2 - st + p}$ sur \mathbb{R} est $t \mapsto \frac{1}{k} \operatorname{Arctan} \left(\frac{1}{k} (t - \frac{s}{2}) \right)$

Finalement, une primitive de $t \mapsto \frac{1}{t-a}$ sur \mathbb{R} est :

$$t \mapsto \frac{1}{2}\ln(t^2 - st + p) + \left(\frac{s}{2} - \overline{a}\right) \frac{1}{\sqrt{p - \frac{s^2}{4}}} \operatorname{Arctan}\left(\frac{t - \frac{s}{2}}{\sqrt{p - \frac{s^2}{4}}}\right)$$

(Bien entendu, il vaut mieux retenir la méthode que la formule, surtout dans ce dernier cas...!)

B) Cas des fractions rationnelles à coefficients dans R.

D'abord, bien sûr, on sait faire, puisque c'est un cas particulier du \underline{A}): on décompose la fraction rationnelle dans \mathbb{C} et on intègre...

On peut quand même remarquer que si $F \in \mathbb{R}(X)$, sa partie entière est à coefficients réels, les coefficients apparaissant dans les parties polaires relatives à des pôles réels sont réels (voir le cours sur les fractions rationnelles), et enfin les pôles complexes non réels sont conjugués deux à deux, avec les mêmes multiplicités, et si la

partie polaire relative à un pôle
$$a \in \mathbb{C} \setminus \mathbb{R}$$
 est $\frac{\lambda_1}{X-a} + \frac{\lambda_2}{(X-a)^2} + ... + \frac{\lambda_n}{(X-a)^n}$, alors

celle relative à \overline{a} est $\frac{\overline{\lambda_1}}{X-\overline{a}} + \frac{\overline{\lambda_2}}{(X-\overline{a})^2} + ... + \frac{\overline{\lambda_n}}{(X-\overline{a})^n}$ (cela résulte du fait que pour tout $t \in \mathbb{R}$ non pôle de F, $\overline{F(t)} = F(t)$, puisque $F \in \mathbb{R}(X)$, et de l'unicité de la décomposition en éléments simples).

Ainsi, lorsqu'il apparaît un terme $\frac{\lambda}{X-a}$ (avec $a \in \mathbb{C} \setminus \mathbb{R}$ et $\lambda \in \mathbb{C}$), il apparaîtra aussi $\frac{\overline{\lambda}}{X-\overline{a}}$. Donc, au lieu d'intégrer séparément ces deux termes, on peut plutôt les regrouper :

$$\frac{\lambda}{X-a} + \frac{\overline{\lambda}}{X-\overline{a}} = \frac{(\lambda + \overline{\lambda})X - (\lambda \overline{a} + \overline{\lambda}a)}{X^2 - (a + \overline{a})X + a\overline{a}} = \frac{\alpha X + \beta}{X^2 - sX + p}$$

Où $\alpha, \beta, s, p \in \mathbb{R}$ et $s^2 - 4p < 0$

Ensuite, on intègre $t \mapsto \frac{\alpha t + \beta}{t^2 - st + p}$ comme dans le cas complexe...

Cependant, regrouper les termes en $\frac{\lambda}{(X-a)^n}$ et $\frac{\overline{\lambda}}{(X-\overline{a})^n}$ pour $n \ge 2$ avant d'intégrer n'a aucun intérêt (on peut le faire après)

C) Exemples

• Déjà, il n'est pas toujours utile de décomposer systématiquement :

Une primitive de $t \mapsto \frac{15t^2 + 4t}{(5t^3 + 2t^2 + 1)^7}$ est $t \mapsto \frac{-1}{6} \frac{1}{(5t^3 + 2t^2 + 1)^6}$

• Recherche d'une primitive de $t \mapsto \frac{1}{t^2 - 1}$ sur $I =]-\infty, -1[,]1, +\infty[$ ou]-1, 1[:

$$\frac{1}{X^2 - 1} = \frac{1}{2} \left(\frac{1}{X - 1} - \frac{1}{X + 1} \right), \text{ donc } \forall t \in I, \frac{1}{t^2 - 1} = \frac{1}{2} \left(\frac{1}{t - 1} - \frac{1}{t + 1} \right).$$

Ainsi, une primitive de $t \mapsto \frac{1}{t^2 - 1}$ sur I est $t \mapsto \frac{1}{2} \left(\ln|t - 1| - \ln|t + 1| \right)$, soit aussi $t \mapsto \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right|$

• Recherche d'un primitive de $t \mapsto \frac{1}{(t^3 - 1)^2} \text{ sur } I =]-\infty, 1[\text{ ou }]1, +\infty[$:

Décomposition en éléments simples dans $\mathbb{C}(X)$:

La partie entière est nulle, et la décomposition est de la forme :

$$\frac{1}{(X^3-1)^2} = \frac{\alpha_1}{(X-1)} + \frac{\alpha_2}{(X-1)^2} + \frac{\beta_1}{(X-j)} + \frac{\beta_2}{(X-j)^2} + \frac{\gamma_1}{(X-j^2)} + \frac{\gamma_2}{(X-j^2)^2}$$
(1)

(En utilisant le fait que $\forall t \in \mathbb{R} \setminus \{1\}, \frac{1}{(t^3 - 1)^2}$ est égal à son conjugué et l'unicité de

la décomposition en éléments simples, on montre que $\alpha_1, \alpha_2 \in \mathbb{R}, \gamma_1 = \overline{\beta_1}, \gamma_2 = \overline{\beta_2}$ mais on peut faire autrement dans ce cas)

En remplaçant X par jX, on obtient :

$$\frac{1}{(X^3 - 1)^2} = \frac{\alpha_1}{jX - 1} + \frac{\alpha_2}{(jX - 1)^2} + \frac{\beta_1}{jX - j} + \frac{\beta_2}{(jX - j)^2} + \frac{\gamma_1}{jX - j^2} + \frac{\gamma_2}{(jX - j^2)^2}
= \frac{j^2 \alpha_1}{X - j^2} + \frac{j \alpha_2}{(X - j^2)^2} + \frac{j^2 \beta_1}{X - 1} + \frac{j \beta_2}{(X - 1)^2} + \frac{j^2 \gamma_1}{X - j} + \frac{j \gamma_2}{(X - j)^2}$$

Donc, par unicité de la décomposition en éléments simples

$$\gamma_1 = j^2 \alpha_1$$
, $\gamma_2 = j \alpha_2$, $\beta_1 = j^2 \gamma_1 = j \alpha_1$, $\beta_2 = j \gamma_2 = j^2 \alpha_2$

Il nous reste donc à trouver α_1 , α_2

En multipliant (1) par $(X-1)^2$, on obtient :

$$\frac{1}{(X^2 + X + 1)^2} = \alpha_1(X - 1) + \alpha_2 + (X - 1)^2 G$$

Où G est une fraction rationnelle dont 1 n'est pas pôle.

En remplaçant X par 1, on obtient $\alpha_2 = \frac{1}{9}$

En dérivant formellement cette dernière égalité, on a alors :

$$\frac{-2(2X+1)}{(X^2+X+1)^3} = \alpha_1 + 2(X-1)G + (X-1)^2 G'$$

En prenant la valeur en 1, on a alors $\alpha_1 = -\frac{2}{9}$

Ainsi:

$$\frac{1}{(X^3-1)^2} = \frac{1}{9} \left(\frac{-2}{(X-1)} + \frac{1}{(X-1)^2} + \frac{-2j}{(X-j)} + \frac{j^2}{(X-j)^2} + \frac{-2j^2}{(X-j^2)^2} + \frac{j}{(X-j^2)^2} \right)$$

En regroupant $\frac{j}{(X-j)}$ et $\frac{j^2}{(X-j^2)}$, on obtient :

$$\frac{1}{(X^3-1)^2} = \frac{1}{9} \left(\frac{-2}{(X-1)} + \frac{1}{(X-1)^2} + \frac{2X+4}{X^2+X+1} + \frac{j^2}{(X-j)^2} + \frac{j}{(X-j^2)^2} \right)$$

On a

$$\frac{2X+4}{X^2+X+1} = \frac{2X+1}{X^2+X+1} + \frac{3}{X^2+X+1}$$

Et
$$\frac{1}{X^2 + X + 1} = \frac{1}{(X + \frac{1}{2})^2 + \frac{3}{4}}$$

Or, pour tout $x_0, x \in \mathbb{R}$, on a :

$$\int_{x_0}^{x} \frac{dt}{\left(t + \frac{1}{2}\right)^2 + \frac{3}{4}} = \underset{\substack{t + \frac{1}{2} = \frac{\sqrt{3}}{2} \\ dt = \frac{\sqrt{3}}{2} du}}{\underset{\substack{t = \frac{\sqrt{3}}{2} du}}{+ \frac{\sqrt{3}}{2} du}} \frac{2}{\sqrt{3}} \int_{\frac{2}{\sqrt{3}}(x_0 + \frac{1}{2})}^{\frac{2}{\sqrt{3}}(x_0 + \frac{1}{2})} \frac{du}{u^2 + 1} = \frac{2}{\sqrt{3}} \left[\operatorname{Arctan} u \right]_{\frac{2}{\sqrt{3}}(x_0 + \frac{1}{2})}^{\frac{2}{\sqrt{3}}(x_0 + \frac{1}{2})}.$$

Donc une primitive de $t \mapsto 3 \times \frac{1}{t^2 + t + 1}$ sur $\mathbb{R} \operatorname{est} t \mapsto 2\sqrt{3}\operatorname{Arctan}\left(\frac{2}{\sqrt{3}}(t + \frac{1}{2})\right)$.

D'autre part, une primitive de $t \mapsto \frac{j^2}{(t-j)^2} + \frac{j}{(t-j^2)^2}$ sur \mathbb{R} est :

$$t \mapsto -\left(\frac{j^2}{t-j} + \frac{j}{t-j^2}\right)$$
, soit aussi $t \mapsto -\left(\frac{-t+1}{t^2+t+1}\right)$.

Ainsi, une primitive sur *I* de $t \mapsto \frac{1}{(t^3-1)^2}$ est la fonction :

$$t \mapsto \frac{1}{9} \left(-2\ln|t-1| - \frac{1}{t-1} + \ln(t^2 + t + 1) + 2\sqrt{3}\operatorname{Arctan}\left(\frac{2}{\sqrt{3}}(t + \frac{1}{2})\right) + \frac{t-1}{t^2 + t + 1}\right)$$

III Primitives des fonctions $t \mapsto e^{\alpha t} P(t)$ où $\alpha \in \mathbb{C}^*$ et $P \in \mathbb{C}[X]$

Soit $\alpha \in \mathbb{C}^*$, $P \in \mathbb{C}[X]$, et soit $f : \mathbb{R} \to \mathbb{C}$ définie par $\forall t \in \mathbb{R}, f(t) = e^{\alpha t} P(t)$. f est continue sur \mathbb{R} ; cherchons une primitive de f.

Etude:

Soit $Q \in \mathbb{C}[X]$, quelconque, et soit $g : \mathbb{R} \to \mathbb{C}$ définie par $\forall t \in \mathbb{R}, g(t) = e^{\alpha t}Q(t)$.

Alors g est dérivable, et $\forall t \in \mathbb{R}, g'(t) = e^{\alpha t} (\alpha Q(t) + Q'(t))$.

On a donc les équivalences :

$$g'=f \Leftrightarrow \forall t \in \mathbb{R}, \alpha Q(t) + Q'(t) = P(t)$$

$$\Leftrightarrow \alpha O + O' = P$$

(La deuxième équivalence se justifie par le fait que deux polynômes qui coïncident sur une infinité de valeurs sont égaux)

Un peu d'algèbre :

Soit $n \in \mathbb{N}$ tel que $\deg(P) \le n$

Soit
$$\varphi: \mathbb{C}_n[X] \to \mathbb{C}_n[X]$$

 $Q \mapsto \alpha Q + Q'$

(la définition a bien un sens car si $Q \in \mathbb{C}_n[X]$, alors $\alpha Q + Q' \in \mathbb{C}_n[X]$)

Alors φ est linéaire (vérification immédiate), et comme $\alpha \neq 0$, on remarque que :

$$\forall Q \in \mathbb{C}_n[X], \deg(\varphi(Q)) = \deg(Q)$$

Ainsi, φ est injective (puisque $\varphi(Q) = 0 \Rightarrow \deg(\varphi(Q)) = -\infty = \deg(Q) \Rightarrow Q = 0$)

Comme φ est un endomorphisme en dimension finie, φ est bijective.

Ainsi, il existe un unique $Q \in \mathbb{C}_n[X]$ tel que $\alpha Q + Q' = P$, et on a même $\deg P \leq \deg Q$

Conclusion:

Les primitives de $t \mapsto e^{\alpha t} P(t)$ sur \mathbb{R} sont les $t \mapsto e^{\alpha t} Q(t) + \text{cte}$, où Q est un certain polynôme de même degré que P (on l'obtient par identification)

Ce résultat est faux pour $\alpha = 0$ (en particulier parce que Q est de même degré que P)

Intérêt:

On peut ainsi obtenir les primitives des fonctions réelles de la forme :

$$t \mapsto e^{\alpha t} P(t) \cos(\omega t)$$
 et $t \mapsto e^{\alpha t} P(t) \sin(\omega t)$ (où $\alpha, \omega \in \mathbb{R}$, et $P \in \mathbb{R}[X]$).

Exemple:

Recherche de primitives de $f_1: t \mapsto e^t(t^2+1)\cos(2t)$ et $f_2: t \mapsto e^t(t^2+1)\sin(2t)$

Soit $f = f_1 + if_2$. Alors $\forall t \in \mathbb{R}$, $f(t) = e^{(1+2i)t}(t^2 + 1)$, et si F est une primitive de f, alors $\operatorname{Re} F$ est une primitive de f_1 et $\operatorname{Im} F$ une primitive de f_2 .

On cherche *F* sous la forme $F(t) = e^{(1+2i)t} (\alpha t^2 + \beta t + \gamma)$

Alors
$$\forall t \in \mathbb{R}, F'(t) = e^{(1+2i)t}((1+2i)(\alpha t^2 + \beta t + \gamma) + (2\alpha t + \beta))$$

Donc
$$F' = f \Leftrightarrow \alpha(1+2i) = 1$$
 et $\beta(1+2i) + 2\alpha = 0$ et $\gamma(1+2i) + \beta = 1$

$$\Leftrightarrow \alpha = \frac{1}{1+2i} \text{ et } \beta = \frac{-2\alpha}{1+2i} \text{ et } \gamma = \frac{1}{1+2i} (1-\beta)$$

D'où, après calculs, on obtient qu'une primitive de f est F donnée par :

$$\forall t \in \mathbb{R}, F(t) = \frac{1}{125} e^{(1+2i)t} \left(25(1-2i)t^2 + 10(3+4i)t + (3-46i) \right)$$

Ainsi:

$$\forall t \in \mathbb{R}, f_1(t) = \text{Re}(F(t)) = \frac{1}{125} e^t \left((25t^2 + 30t + 3)\cos(2t) - (-50t^2 + 40t - 46)\sin(2t) \right)$$

$$\forall t \in \mathbb{R}, f_2(t) = \operatorname{Im}(F(t)) = \frac{1}{125} e^{t} \left((25t^2 + 30t + 3)\sin(2t) + (-50t^2 + 40t - 46)\cos(2t) \right)$$

IV Complément : règle de Bioche

On cherche l'intégrale d'une fraction rationnelle F en $\cos \theta$ et $\sin \theta$

$$(\int_a^b F(\cos\theta,\sin\theta)d\theta)$$

Si $F(\cos\theta,\sin\theta)d\theta$ (attention au $d\theta$!) est inchangé par $\theta\mapsto -\theta$, faire le changement de variable $u=\cos\theta$ peut être utile pour calculer l'intégrale.

Si c'est inchangé par $\theta \mapsto \pi - \theta$, faire le changement de variable $u = \sin \theta$

Si c'est inchangé par $\theta \mapsto \pi + \theta$, faire le changement de variable $u = \tan \theta$