Compact implementations of pairings

Anthony Van Herrewege

Lejla Batina & Miroslav Knezevic Prof. Dr. Ir. I. Verbauwhede & Prof. Dr. Ir. B. Preneel

22 May 2009

Outline

Outline

- 1 Problem
- 2 Pairings
- 3 Implementation
- 4 Results

- 1 Problem
- 2 Pairings
- 3 Implementation
- 4 Results

Pro:

- Pro:
 - High security per bit

- Pro:
 - High security per bit
 - Very fast implementations

- Pro:
 - High security per bit
 - Very fast implementations
- Contra:

- Pro:
 - High security per bit
 - Very fast implementations
- Contra:
 - How to establish the key?

Pro:

- Pro:
 - No key establishment necessary

- Pro:
 - No key establishment necessary
 - Central location with everyone's key

- Pro:
 - No key establishment necessary
 - Central location with everyone's key
- Contra:

- Pro:
 - No key establishment necessary
 - Central location with everyone's key
- Contra:
 - Need for certificate authorities, . . .

Pro:

- Pro:
 - Public key deduced from ID

- Pro:
 - Public key deduced from ID
 - No need for certificates

- Pro:
 - Public key deduced from ID
 - No need for certificates
- Extra's:

- Pro:
 - Public key deduced from ID
 - No need for certificates
- Extra's:
 - Non-interactive key establishment

- Pro:
 - Public key deduced from ID
 - No need for certificates
- Extra's:
 - Non-interactive key establishment
 - Date-stamped encryption

- Pro:
 - Public key deduced from ID
 - No need for certificates
- Extra's:
 - Non-interactive key establishment
 - Date-stamped encryption
- Contra:

- Pro:
 - Public key deduced from ID
 - No need for certificates
- Extra's:
 - Non-interactive key establishment
 - Date-stamped encryption
- Contra:
 - How to issue new keys, ...?

Outline

- 2 Pairings

What?

Pairings

■ Mathematical construction discovered in the 40's

What?

- Mathematical construction discovered in the 40's
- Allow implementation of ID-based cryptography

What?

- Mathematical construction discovered in the 40's
- Allow implementation of ID-based cryptography
- Strength based on discrete logarithm problem

How?

Several available pairings:

Weil, Tate,
$$\eta_T$$
, Ate, . . .

Tate pairing:

$$\hat{e}(P,Q) : E(\mathbb{F}_q)[l] \times E(\mathbb{F}_q)[l] \mapsto \mu_l$$

$$\mu_l \in \mathbb{F}_{q^k}^*$$

Outline

- 1 Problem
- 2 Pairings
- 3 Implementation
- 4 Results

Restrictions

Avoid the use of flip-flops and muxes:

Cell	Area $\left[\frac{\text{gate}}{\text{bit}}\right]$
D flip-flop (reset)	6
D flip-flop (no reset)	5.5
D latch	4.25
3 input MUX	4
2 input XOR	3.75
2 input MUX	2.25
2 input NAND	1
NOT	0.75

Implementation

MALU - Addition & Reduction in \mathbb{F}_{2^m}

$$R = (T+B \pmod{P_{\mathsf{in}}})_{0:m-2} \ll 1$$

$$mod_{\mathsf{u}} = (T+B \pmod{P_{\mathsf{in}}})_{m-1}$$

MALU - Addition & Reduction in \mathbb{F}_{2^m}

Optimized MALU needs $\Delta = m - (\text{Hamm}(P) - 1)$ less XOR's:

\mathbb{F}_{2^m} Multiplication & Addition

\mathbb{F}_{2^m} Multiplication & Addition

No FSM needed, simple logic:

\mathbb{F}_{2^m} Multiplication & Addition

Speed up calculation through daisy-chaining MALUs:

Controller for Miller's algorithm

Memory design

Starting design:

$$\overline{t} = O\left(\frac{n^2}{3}\right)$$
 $\overline{w} = O\left(\frac{n^3}{3}\right)$

Implementation

Memory design

Final design:

$$\overline{t} = O\left(\frac{n}{4}\right)$$
 $\overline{w} = O\left(n\right)$

lacktriangle Remove reset from registers $\left(-0.5\,rac{\mathrm{gate}}{\mathrm{bit}}
ight)$

- \blacksquare Remove reset from registers $\left(-0.5\,\frac{\rm gate}{\rm bit}\right)$
- Implement clock gating:

- Remove reset from registers $\left(-0.5 \frac{\text{gate}}{\text{bit}}\right)$
- Implement clock gating:

- Remove reset from registers $\left(-0.5 \frac{\text{gate}}{\text{bit}}\right)$
- Implement clock gating:

- Remove reset from registers $\left(-0.5 \frac{\text{gate}}{\text{bit}}\right)$
- Implement clock gating:

Outline

- 1 Problem
- 2 Pairings
- 3 Implementation
- 4 Results

Runtime

■ FSM with 553 states

Runtime

- FSM with 553 states
- Total n° of clockcycles c for one pairing:

$$c = 21681 + 4322 + 2998 \cdot \left\lceil \frac{m}{d} \right\rceil$$

Results

Runtime

- FSM with 553 states
- Total n° of clockcycles c for one pairing:

$$c = 21681 + 4322 + 2998 \cdot \left\lceil \frac{m}{d} \right\rceil$$

Synthesis

Implementation	Area [gates]		Power @ 10 kHz $[nW]$			
·			amic	Leakage		
Basic	28 876		512		117	
No Reset	27596	96%	395	77%	107	92%
CG 1	27751	96%	94	18%	109	94%
CG 2	27713	96%	59	12%	102	88%
CG 3	27734	96%	96	19%	110	94%

Synthesis - Continued

Component	Opp. [gates]		
MALU	458	1.7%	
\mathbb{F}_{2m} core			
Logic	783	2.8%	
Registers	962	3.5%	
Controller			
Logic	13044	47%	
Registers	12487	45%	
Total	27 734	100%	

Comparison

	This	Beuchat	
	1 MALU	2 MALUs	et al.
Field	$\mathbb{F}_{2^{163}}$	$\mathbb{F}_{2^{163}}$	$\mathbb{F}_{3^{97}}$
Pairing	Tate	Tate	η_T
Security [bit]	652	652	922
Technology $[\mu m]$	0.13	0.13	0.18
Area [gates]	27430	28155	193765
f [MHz]	10.3	5.44	200
Calc. time $[\mu s]$	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$	46.7
Power $[mW]$	$98.3 \cdot 10^{-3}$	$48.6 \cdot 10^{-3}$	672
Efficiency $\left[\frac{nJ}{\text{bit}}\right]$	7.54	3.73	34.0

Results

Conclussion

lacktriangle Very small: $<30{\rm k}$ gates

Conclussion

- Very small: < 30k gates
- Extremely low power: < 220 nA

Conclussion

- Very small: < 30k gates
- Extremely low power: < 220 nA
- Energy efficiency improvement up to $25 \times$ possible

Conclussion

- Very small: < 30k gates
- Extremely low power: < 220 nA
- lacktriangle Energy efficiency improvement up to 25 imes possible

Definitely possible to use in constrained environments

Results

The end

Questions?

