СОДЕРЖАНИЕ

1 Введение	2
2 Цели	2
3 Выводы	2
4 Рекомендации	2
5 Заключение	2
6 Содержание отчета	2
6.1 Исходные данные и описание работы	2
6.2 Выбор и валидация расчетной модели	3
6.3 Определение основных характеристик модели	4
Список литературы	5

Подп. и дата									
Инв. № дубл.									
Взам. инв. №									
Подп. и дата									
По									
		Лист	№ докум.	Подп.	Дата				
цл.	Разј		Целищев			Л	ит.	Лист	Листов
Инв. № подл.	Про	В.						1	5
. Nº	TT								
AHB	н. к Утв	онтр.							
\vdash	Утв								

- 2 ЦЕЛИ
- 2.1 Выбор и определение параметров расчетной модели
- 2.2 Определение сопротивления движению груза даунриггера при подводном движении на скоростях от 0.5 до $2~\rm m/c$ с заглублением от 0.5 до $50~\rm meteoremath{\rm Meteoremath{\rm Meteoremath{\rm g}}}$ с нормальной температурой среды, с учетом удерживающего троса диаметром $1~\rm mm.;$
- 2.3 Определение устойчивости движения груза дауриггера во всем диаппазоне приведенном в п. 2.2.
 - 3 ВЫВОДЫ
 - 4 РЕКОМЕНДАЦИИ
 - 5 ЗАКЛЮЧЕНИЕ
 - 6 СОДЕРЖАНИЕ ОТЧЕТА
 - 6.1 Исходные данные и описание работы

Груз даунриггера применяется для заглубления и стабидизации глубины движения приманки при рыбной ловле на глубинах от 2 до 20 метров при скоростях движения судна от 0.5 до 2 м/с. Общий вид груза даунрингера приведен на рисунке 1.

Поскольку ловля с помощью даунриггера производится в летнее время, а характеристики воды в открытых водоемах изменяются незначительно, то расчеты выполним при температуре воды $15\ ^{0}C.$

Подп. и дата
№ подл.

Инв. № дубл.

Взам. инв. №

Изм	Лист	№ докум.	Подп.	Дата

Рисунок 1 – Общий вид модели груза даунриггера

6.2 Выбор и валидация расчетной модели

Поскольку точные данные по лобовому сопротивлению груза даунриггера отсутсвуют, то для разработки расчетной сетки используем доступные экспериментальные данные по лобовому сопротивлению:

– обтекании цилиндра при направлении вектора набегающего потока направленном под прямым углом к оси цилиндра [1];

При движении груза необходимо учитывать удельное (по глубине погружения) сопротивлеие троса подвеса груза. В этом случае модель сопротивления, изложенная в [1], может также использоваться для валидации применяемой модели и коэффициентов сопротивления.

Изм	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

- 6.3 Определение основных характеристик модели
- 6.3.1 Определение основных характеристик среды и режима движения жидкости

Для воды в нормальных условиях характеристики жидкости:

- а) плотность, $\kappa \Gamma/M^2$: 1000
- б) динамическая вязкость, $\Pi a \cdot c$ [2]: $1006 \cdot 10^{-6}$
- в) кинематическая вязкость, $\frac{M^2}{C}$ [2]: $1.006 \cdot 10^{-6}$
- 6.3.2 Определение основных характеристик движения жидкости
- 6.3.2.1 В качестве характерного размера даунриггера примем: максимальльный диаметр «тела», равный 0.05 м. Для этого характерного размера число Рейнолдса равно:

$$Re = \frac{u \cdot L}{\nu} \tag{1}$$

По расчету:

Инв. № дубл.

Взам. инв. №

Инв. № подл.

$$Re = \frac{(0,5...2) \cdot 0,05}{1.006 \cdot 10^{-6}} = 24850,89...99403,58$$
 (2)

Исходя из числа Рейнолдса видно, что движение жидкости при обтекании груза даунриггера турбулентное.

Характерный размер подвесного троса — диаметр, равный $0.0005\dots0.001$ м. Для этого характерного размера число Рейнолдса равно:

$$Re = \frac{(0,5...2) \cdot (0,0005...0.001)}{1.006 \cdot 10^{-6}} = 248,509...1988,07$$
 (3)

6.3.2.2 Исходя из числа Рейнолдса видно, что движение жидкости при обтекании троса подвеса переходное, от ламинарного к турбулентному. Для определения коэффициента сопротивления движению воспользуемся зависимостью 2.

Изм Лист № докум. Подп. Дата

Лист

СПИСОК ЛИТЕРАТУРЫ

- $1. \ [S.\ l.: s.\ n.]. URL: \ http://scienceworld.wolfram.com/physics/CylinderDrag.html.$
- 2. Вязкость воды [Текст]. [Б. м. : б. и.]. URL: http://thermalinfo.ru/svojstva-zhidkostej/voda-i-rastvory/vyazkost-vody-h2o.

Подп. и дата	svojstva-zhidkostej/voda-i-rastvory/vyazkost-vody-h2o.	
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
Инв. № подл.		Лист
Инг	Изм Лист № докум. Подп. Дата Копировал	5 Формат А4