1 Metalle mit Ingo

1.1 Eigenschaften metallischer Elemente

Physikalische Eigenschaften

- Leitfähigkeit
 - elektrischen
 - thermische
- Metallischer Glanz
- Duktilität (Formbarkeit)
- Nicht Lichtdurchlässig

Chemische Eigenschaften

- niedrige Elektronegativität
- bildet bevorzugt Kationen
- Meist basische Hydroxide!?
 - niedrige Oxidationsstufe: JA Beispiel: $Cr(OH)_2 + H_2O \longrightarrow Cr^{2+} + 2OH^- + H_2O$
 - − hohe Oxidationsstufe: NEIN Beispiel: $Cr(OH)_6$ (gibt's nicht) wird zu $CrO_2(OH)_2$ − > H_2CrO_4 $H_2CrO_4 + 2H_2O \longrightarrow CrO_4^{2-} + 2H_3O^+$

1.2 Elektrisches Verhalten

1.2.1 Betrachtung des spezifischen Widerstands

• Metalle: 10^{-4} bis $10^{-6}\Omega \cdot \text{cm}^{-1}$

• Halbleiter: 10^1 bis $10^4 \Omega \cdot \text{cm}^{-1}$

• Isolator: $> 10^{10} \Omega \cdot \text{cm}^{-1}$

1.2.2 Betrachtung der thermischen Verhaltens der Leitfähigkeit

Siehe Folie

1.3 Definition des metallischen Zustands

Phänomenologisch: schwierig, da makroskopische Eigenschaften wie Glanz, Duktilität verändert werden können.

Temperaturabhängigkeit der elektrischen Leitfähigkeit: schwierig, da andere Stoffklassen ähnliche Eigenschaften aufweisen.

1.4 Die chemische Bindung in Metallen

1.4.1 Ketelaar-Diagramm

Man stelle sich ein Dreieck vor mit den Eckenbeschriftungen ionische Bindung NaCl, kovalente Bindung Cl₂ und metallisch Na

1.4.2 Das Elektronengasmodell

- Die Metallatome geben eine gewisse Zahl an Valenzelektronen ab, es verbleiben positiv geladene Atomrümpfe
- Die Elektronen sind zwischen den Atomrümpfen frei beweglich, ähnlich eines Gases > Elektronengas (versagt bei der Beschreibung der Wärmekapazität von Metallen)

1.4.3 Das Bändermodell

- Elektronen können nur bestimmte Energien aufweisen
 - -> Orbitale (hier Atomorbitale)
- Beim Übergang von Ein- zu Mehratomsystemen
 - -> Übergang von Atom- zu Molekülorbitalen

Li₃: + + + =
$$\sigma_b$$

+ - + = σ_{ab}
+ | + = σ_{nb}

- Beim Übergang von Mehr- zu Vielatomsystemen
 - > Übergang von Molekülorbital zu (Orbital-) Bändern
 - -> Valenzband: mit Valenzelektronen besetzt, höchster besetzte Zustand: HOMO
 - -> Leitungsband: frei, niedrigste unbesetzte Zustand: LUMO

Fermikante = Ort zwischen Besetzt und Unbesetzt

1.5 Strukturen der Metalle

Übersicht:

- kubisch-innenzentriert
- hexagonal dichteste Packung
- kubisch dichteste Packung
- eigener Strukturtyp
- unbekannt

1.5.1 Die kubisch-innenzentrierte Kugelpackung

(bcc = body-centered cubis), W(olfram)-Typ

 $\underline{\text{C}}$ oordination $\underline{\text{N}}$ umber = 8 + 6 Koordinationspolyeder = Rhombododecaeder Raumerfüllung = 68% Siehe Folie für näheres.

1.5.2 Die dichtesten Packungen

Hexagonal-dichteste Kugelpackung (hcp = hexagonal close packed), M(a)g(nesium)-Typ

CN=12 Koordinationspolyeder = Antikuboktaeder Raumerfüllung = 74%

Kubisch-dichteste Kugelpackung (ccp=cubic close packed), Cu(pfer)-Typ

CN = 12Koorinationspolyeder = Kuboktaeder

Varianten der dichtesten Kugelpackungen

hc-Typ

hhc-Typ

Kommen vor und nach einer Schicht dieselbe Schicht, so ist diese hexagonal umgeben. (Kurz: h)

Sind die Schichten vor und nach der betrachteten Schicht nicht gleich, so ist die betrachtete Schicht kubisch umgeben. (Kurz: c)

Siehe Folie.

Variation der Kristallstruktur der Metalle. (Abhängig von Druck und Temperatur)

Fe: α (bcc) $\longrightarrow \gamma$ (ccp) $\longrightarrow \delta$ (bcc) Erster Schritt bei ca. 900°, zweiter schritt bei ca. 1400°

Na: bcc \longrightarrow ccp \longrightarrow transparente Modifikation, kein Metall mehr

Dabei läuft der erste Schritt bei 656 Pa ab und der letzte bei > 100 GPa

1.5.3 Aufgefüllte dichteste Packungen

Oktaederlücken

```
hcp-Abfolge: A c B (A,B = Schichten, c = Lücken) N(\text{Oktaederlücken}) = N(\text{Packungsteilchen}) ccp Abfolge: A c B a C b A (A,B,C = Schichten, a,b,c = Lücken)
```

• Tetraederlücken

```
hcp:Abfolge: A \beta \alpha B \alpha \beta A \beta (A,B = Schichten, \alpha, \beta = Lücken) N(\text{Tetraederlücken}) = 2N(\text{Packungsteilchen}) Tetraederlücken ccp:Abfolge: A \beta c \alpha B \gamma a \beta C \alpha b \gamma A (A,B,C = Schichten, \alpha, \beta, \gamma = Tetraederlücken, a, b, c = Oktaederlücken)
```