SC626-Systems and Control Laboratory

Amey Samrat Waghmare

203230013 Indian Institute of Technology, Bombay

August 4, 2021

Overview

- Week 1: Robotics System Toolbox and Kinematics Model
- 2 Week 2: Simulation of Bicycle Kinematics Model
- Week 3: Path Tracking for Bicycle Kinematics Model
- 4 Week 5: Reference Vehicle Tracking

Week 1: Robotics System Toolbox and Kinematics Model

- The Robotics System Toolbox of MATLAB provides tools and algorithms for designing and simulations of Mobile Robots.
- Following algorithms are available,
 - Mapping
 - Path planning
 - Path following and Motion Control
- They are available as MATLAB Objects and Simulink Blocks.

Kinematics Model

Dynamics is the study of motion in which force acting on a system are modelled.

Kinematics is the study of mathematics of the motion of the robot and is based on the geometric relationship of the system.

- Unicycle Kinematics Model
- Oifferential Drive Kinematics Model
- Bicycle Kinematics Model
- 4 Ackerman Kinematics Model

Week 2: Bicycle Kinematics Model

Figure: Bicycle Kinematics Model

Equations of Bicycle Kinematics Model

$$\dot{x} = v \cos(\theta)$$

$$\dot{y} = v \sin(\theta)$$

$$\dot{\theta} = \omega = \frac{v}{L} \tan(\psi)$$

- Inputs to this Model are,
 - Linear Speed v
 - Angular Speed ω

- Outputs of the model,
 - ▶ States of the system x, y, θ

5/16

Week 2: Simulation of Bicycle Kinematics Model

Simulation of Bicycle Kinematic Model using Simulink

Amey Samrat Waghmare 203230013

Week 3: Path Tracking for Bicycle Kinematics Model

Figure: Path Tracking

Figure: Skewed Elliptical Path

Comparison for Skewed Elliptical Path			
-	$P(P_1,P_2) = (10,1.5)$	$PI(P_1,I_1) = (10,1), (P_2,I_2) = (5,4)$	
MSE _X	0.1918	0.1959	
MSE _Y	0.7887	0.6471	
$MSE_{ heta}$	0.2342	0.1494	

Figure: Skewed Elliptical Path Trajectory

9/16

Week 5: Reference Vehicle Tracking

Figure: Reference Robot and Controlled Robot

Kinematics of Controlled Vehicle,

$$\dot{x} = u_1 cos(\theta)$$
 $\dot{y} = u_1 sin(\theta)$
 $\dot{\theta} = \frac{u_1}{L} tan(\phi)$
 $\dot{\phi} = u_2$

Kinematics of Reference Vehicle,

$$\dot{x_r} = u_{1r}cos(\theta_r)$$
 $\dot{y_r} = u_{1r}sin(\theta_r)$
 $\dot{\theta_r} = \frac{u_{1r}}{L}tan(\phi_r)$
 $\dot{\phi_r} = u_{2r}$

Figure: Vehicle Tracking for circular path

Figure: States of Reference vehicle and Controlled Vehicle for Circular path

Error

_	$k_1 = 5, k_2 = 5, k_3 = 15, k_4 = 9$	$k_1 = 5, k_2 = 2, k_3 = 10, k_4 = 5$
MSE _X	0.7100	0.6929
MSE _Y	1.2503	1.2627
$MSE_{ heta}$	0.3936	0.3276
MSE_{ϕ}	0.3044	0.2643

Performance Index for Nonlinear Controller

_	$PI(P_1,I_1) = (4,0.5), (P_2,I_2) = (2,1)$	K = (5,2,10,5)
MSE _X	0.7338	0.6929
MSE _Y	1.6879	1.2627
$MSE_{ heta}$	0.2075	0.3276

Comparison of PI Controller with Nonlinear Controller

References

- Robotics System Toolbox, MATLAB User manual.
- Mobile Robot Kinematics
- Advanced Robotics 2: Forward Kinematics of Car-Like Mechanisms
- Springer Handbook of Robotics
- SC626-Lab Report 203230013

Thank You