

Operacioni pojačavači - uvod

Prenosna karakteristika

Osobine idealnog OP

- R_{IN} = ∞ Ω (ne postoje struje koje ulaze ili izlaze iz V₊ i V₋)
- $R_{OUT} = 0 \Omega$ (nema ograničenja izlazne struje)
- A_V = ∞ (beskonačno naponsko pojačanje)

U praksi, osobine realnih OP su približno jednake osobinama idealnog OP.

Negativna povratna sprega

- U svim kolima koja će ovde biti razmatrana, OP se koristi u konfiguraciji sa negativnom povratnom spregom.
- Negativna povratna sprega omogućava da se deo izlaznog signala vrati do invertujućeg ulaza (V₋).
- Najvažnija osobina negativne povratne sprege je da dovodi do toga da naponi na invertujućem i neinvertujućem ulazu budu približno jednaki (V+ ≈ V-).

Invertujući pojačavač

Pronaći naponsko pojačanje A_V za kolo prikazano na slici:

$$\begin{split} I_{2} &= I_{1} \\ I_{1} &= \frac{V_{in} - V_{-}}{R_{1}} = \frac{V_{in}}{R_{1}} \\ V_{-} - R_{2} \cdot I_{2} - V_{out} &= 0 \Longrightarrow V_{out} = -R_{2} \cdot I_{2} \\ V_{out} &= -R_{2} \cdot \frac{V_{in}}{R_{1}} \\ A_{v} &= \frac{V_{out}}{V_{in}} = -\frac{R_{2}}{R_{1}} \end{split}$$

Ako se usvoje pretpostavke koje važe za idealan OP u prisustvu negativne povratne sprege, važi:

- Usled beskonačne ulazne otpornosti, struja na oba ulaza je jednaka nuli => I₁=I₂
- Usled dejstva negativne povratne sprege, napon na V- je približno jednak naponu na V+ (tj. V- je na "virtuelnoj masi")
 Naponsko pojačanje je negativno, otuda naziv invertujući pojačavač

Varijante invertujućeg pojačavača

$$v_{out} = -(v_1 + v_2 + ... + v_n) = -\sum_{i=1}^{n} v_i$$

<-SABIRAČ

Kada je
$$R_1 = 2 \cdot R$$
, $a R_i = 2 \cdot R_{i-1}$ $za 2 \le i \le n$:

$$v_{out} = -\sum_{i=1}^{n} \frac{v_i}{2^i}$$

<- D/A KONVERTOR (V1 JE MSB)

Neinvertujući pojačavač

Pronaći naponsko pojačanje A_v za kolo prikazano na slici:

$$R_{in} \to \infty \Longrightarrow I_{2} = I_{1}$$

$$V_{-} = V_{+} = V_{in}$$

$$I_{1} = \frac{V_{in}}{R_{1}}$$

$$V_{out} - R_{2} \cdot I_{2} - R_{1} \cdot I_{1} = 0$$

$$V_{out} = I_{1} \cdot (R_{1} + R_{2}) = \frac{V_{in}}{R_{1}} \cdot (R_{1} + R_{2})$$

$$A_{v} = \frac{V_{out}}{V_{in}} = 1 + \frac{R_{2}}{R_{1}}$$

- Av je uvek veće od 0 => neinvertujući pojačavač
- Za R₁ = ∞ i R₂ = 0, A₀=1 => jedinični pojačavač (bafer)

Diferencijalni pojačavač

Kada je zadovoljeno da je $R_2/R_1=R_4/R_3$:

$$\frac{R_2}{R_1} = \frac{R_4}{R_3} \Rightarrow V_{out} = \left(1 + \frac{R_2}{R_1}\right) \cdot \frac{R_2}{\left(1 + \frac{R_2}{R_1}\right) \cdot R_1} \cdot V_b - \frac{R_2}{R_1} \cdot V_a = \underbrace{\left(1 + \frac{R_2}{R_1}\right) \cdot R_1}_{Out} \cdot \left(1 + \frac{R_2}{R_1}\right) \cdot R_1$$

Izraz za izlazni napon pokazuje da kolo pojačava razliku ulaznih napona. => DIFERENCIJALNI POJAČAVAČ

Instrumentacioni pojačavač

Pronaći izlazni napon V_{out} u funkciji od ulaznih napona V_a i V_b, za kolo prikazano na slici:

Ideja: desni deo seme ima strukturu diferencijalnog pojačavača. Potrebno je odrediti napone V₁ i V₂, a zatim iskoristiti već izveden izraz za diferencijalni pojačavač.

Instrumentacioni pojačavač

$$\begin{split} I &= \frac{V_a - V_b}{R_1} \\ V_1 - R_2 \cdot I - V_a &= 0 \Rightarrow V_1 = V_a + \frac{R_2}{R_1} \cdot (V_a - V_b) \\ V_b - R_2 \cdot I - V_2 &= 0 \Rightarrow V_2 = V_b - \frac{R_2}{R_1} \cdot (V_a - V_b) \\ V_{out} &= \frac{R_4}{R_3} \cdot (V_2 - V_1) = \frac{R_4}{R_3} \cdot (1 + 2\frac{R_2}{R_1}) \cdot (V_b - V_a) \end{split}$$

Zadatak 1

Odrediti prenosnu karakteristiku $V_{out} = f(V_{in})$ za kolo prikazano na slici, a zatim odrediti vrednost otpornika R_6 , tako da je naponsko pojačanje A_v =4.

Rešenje

- OP1 zajedno sa otpornicima R₃ i R₄ čini neinvertujući pojačavač
- OP2 zajedno sa otpornicima R1 i R2 čini invertujući pojačavač

Zadatak 2

Odrediti prenosnu karakteristiku V_{out} = f(V_a,V_b) za kolo prikazano na slici.

$$V_{out} = \frac{R_3 R_4}{R_1 R_5} V_a + \frac{R_3 R_6}{R_2 R_7} V_b$$