$\tau_{1-}^{\#2} \uparrow^{\alpha}$	$\tau_{1}^{#1} + \alpha$	$\sigma_{1}^{\#2} \dagger^{\alpha}$	$\sigma_{1^{-}}^{*1}\dagger^{lpha}$	$ au_{1}^{#1} + ^{lphaeta}$	$\sigma_{1+}^{\#2} + \alpha \beta$	$\sigma_{1^+}^{\sharp 1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	0	$\sigma_{1^{+}lphaeta}^{*1}$
0	0	0	0	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\sigma_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	$\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$-\frac{\sqrt{2} k}{t_1 + k^2 t_1}$	$ au_{1}^{\#1}{}_{lphaeta}$
i kr5+2k ³ r5	0	$-\frac{1}{\sqrt{2}(k^2r_5+2k^4r_5)}$	1 k ² r ₅	0	0	0	$\sigma_{1^-\alpha}^{\#1}$
$-\frac{i(6x^2r_5+t_1)}{\sqrt{2}k(1+2x^2)^2r_5}$	0	$\frac{6k^2r_5+t_1}{2(k+2k^3)^2r_5t_1}$	$-\frac{1}{\sqrt{2}(k^2r_5+2k^4r_5)}$	0	0	0	$\sigma_{1^-lpha}^{\#2}$
0	0	0	0	0	0	0	$\iota_{1^{-}\alpha}^{\#1}$
$\frac{t_{1} s_{4} s_{5} s_{7} s_{7}}{t_{1} + s_{4} s_{7}}$	0	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	$-\frac{i}{kr_5+2k^3r_5}$	0	0	0	$ au_{1^-lpha}^{\#2}$

$f_{1}^{#2} + \alpha$	$f_{1}^{#1} \dagger^{\alpha}$	$\omega_{1^{-}}^{#2} +^{\alpha}$	$\omega_{1^{-}}^{\#1} + \alpha$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1}^{#2} \dagger^{\alpha\beta}$	$\omega_{1}^{#1} \dagger^{\alpha\beta}$	
0	0	0	0	$\frac{ikt_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$k^2 r_5 - \frac{t_1}{2}$	$\omega_{1^{+}lphaeta}^{*1}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+\alpha\beta}^{\#2}$)
0	0	0	0	0	0	$-\frac{ikt_1}{\sqrt{2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$
$t^{2}y^{2}$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	0	0	0	$\omega_{1^-~lpha}^{\#1}$
$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	<u>†1</u> 3	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^- ~lpha}^{\#2}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
$\frac{2k^{2}t_{1}}{3}$	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	<u> </u>	0	0	0	$f_{1^-\alpha}^{\#2}$

 $\tau_{2^{+}\alpha\beta}^{\#1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

0

 $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$

0

0

 $\frac{2}{t_1}$

Source constraints					
SO(3) irreps	#				
$\sigma_{0^{+}}^{\#1} == 0$	1				
$\tau_{0^{+}}^{\#1} == 0$	1				
$\tau_{0^{+}}^{\#2} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + ik \sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\tau_{2^{+}}^{\#1\alpha\beta} - 2ik\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5				
Total #:	17				
$\omega_{0^{+}}^{\#1} f_{0^{+}}^{\#1} f_{0^{+}}^{\#2} \omega_{0^{+}}^{\#2}$	#1				

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0^{+}}^{\#1}$ †	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	-t ₁

$\omega_{2^{+}\alpha\beta}^{\#1}f_{2^{+}\alpha\beta}^{\#1}\omega_{2^{-}\alpha\beta\chi}^{\#1}$							
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0				
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2				

Lagrangian density

$-\frac{1}{3}t_1 \omega_i^{\alpha}$	$\omega_{\kappa\alpha}^{\kappa} - t_1 \omega_{\kappa}^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime} - r_5 \partial_{\iota} \omega_{\kappa}^{\kappa\lambda} \partial^{\iota} \omega_{\lambda\alpha}^{\alpha} - r_5 \partial_{\alpha} \omega_{\lambda\theta}^{\alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} +$
$r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}$	$_{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda}-r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}{}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}+2r_{5}\partial_{\theta}\omega_{\lambda}^{\alpha}{}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}-$
$\frac{1}{2} t_1 \partial^{\alpha} f_{\theta}$	$f_{\alpha\kappa}\partial^{\kappa}f_{\alpha}^{\theta}-\frac{1}{2}t_{1}\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta}-\frac{1}{2}t_{1}\partial^{\alpha}f_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda}+$
$\frac{1}{3}t_1 \omega_{\kappa\alpha}$	${}^{\alpha}\partial^{\kappa}f^{\prime}{}_{,}+\frac{1}{3}t_{1}\omega_{\kappa\lambda}{}^{\lambda}\partial^{\kappa}f^{\prime}{}_{,}+\frac{2}{3}t_{1}\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f^{\prime}{}_{,}-$
$\frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}$	$_{\lambda}\partial^{\kappa}f^{\prime}_{\prime} + 2t_{1} \omega_{\prime\kappa\theta}\partial^{\kappa}f^{\prime\theta} - \frac{1}{3}t_{1} \omega_{\prime\alpha}{}^{\alpha}\partial^{\kappa}f^{\prime}_{\kappa} - \frac{1}{3}t_{1} \omega_{\prime\lambda}{}^{\lambda}\partial^{\kappa}f^{\prime}_{\kappa} +$
$\frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}$	$f_{\kappa} \partial^{\kappa} f_{\lambda \alpha} + \frac{1}{2} t_{1} \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} + \frac{1}{2} t_{1} \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} -$
$\frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}$	$f_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}{}_{\theta}\partial^{\lambda}\omega_{\kappa}^{\theta\kappa} - r_{5}\partial_{\theta}\omega_{\lambda}^{\alpha}{}_{\alpha}\partial^{\lambda}\omega_{\kappa}^{\theta\kappa}$
Added s	ource term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

$\sigma_{0^{ ext{-}}}^{\#1}\dagger$	$\tau_{0^{+}}^{#2}$ †	$\tau_{0^{+}}^{*1}$ †	$\sigma_{0^+}^{*1}$ †	
0	0	0	0	$\sigma_{0^+}^{\#1}$
0	0	0	0	$\tau_0^{\#1}$
0	0	0	0	$t_{0}^{\#2}$
$-\frac{1}{t_1}$	0	0	0	$\sigma_{0}^{\#1}$

 $\frac{\text{Unitarity conditions}}{r_5 < 0 \&\& t_1 < 0 \mid\mid t_1 > 0}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

0

 $\sigma_2^{\#_1} \dagger^{\alpha\beta\chi}$

(No massive particles)