ESC201T: Introduction to **Electronics**

Lecture 27: Transistors

B. Mazhari Dept. of EE, IIT Kanpur

Transistor

Current I_O is much more sensitive to V_{IN} than V_O

Building Amplifiers with non-linear devices

Amplifier will work properly (with small distortion only if we restrict the amplitude of input signal to small values.

How small depends on the nature of nonlinearity. The stronger the non-linearity the lesser the signal amplitude.

Bipolar Junction Transistor (BJT)

NPN PNP

More Realistic View

BJT is not symmetric: emitter and collector cannot be simply interchanged

Top View

Background

If doping in N region is much larger than doping in p region then $I_{\rm N} >> I_{\rm P}$

Basic Transistor Operation

We will assume that doping in emitter is much more than base so that electron current is much larger than hole current

$$I_N >> I_P$$

In the reverse biased junction current is small because there are very few electrons in P and holes in N-region

Basic Transistor Operation

$$I = I_N + I_P$$

$$I_E = I_N + I_P$$

$$I_{\scriptscriptstyle B}\cong I_{\scriptscriptstyle P}$$

Current Gain:
$$\beta = \frac{I_C}{I_B} = \frac{I_N}{I_P} >> 1$$

Transistor action

Current is affected by base-emitter voltage and not by collector-base voltage

Alternative representation

$$\beta = \frac{I_C}{I_B}$$

$$I_{C} = I_{S} \left(e \times p \left(\frac{V_{BE}}{V_{T}} \right) - 1 \right)$$

$$I_{B} = \frac{I_{C}}{\beta_{F}}$$

Transistor Characteristics

Transistors

Transistor

Current I_O is much more sensitive to V_{IN} than V_O

$$\frac{\partial I_{O}}{\partial V_{in}} >> \frac{\partial I_{O}}{\partial V_{o}}$$

Field Effect Principle

$$\frac{\partial I_O}{\partial V_{in}} >> \frac{\partial I_O}{\partial V_o}$$

Modulation of conductivity using electric field

Transconductance

METHOD AND APPARATUS FOR CONTROLLING ELECTRIC CURRENTS

Filed Oct. 8, 1926

The invention relates to a method of and apparatus for controlling the flow of an electric current between two terminals of an electrically conducting solid by establishing a 5 third potential between said terminals; and is particularly adaptable to the amplification of oscillating currents such as prevail, for example, in radio communication. Heretofore, thermionic tubes or valves have been 10 generally employed for this purpose; and the present invention has for its object to dispense entirely with devices relying upon the transmission of electrons thru an evacuated space and especially to devices of this char-15 acter wherein the electrons are given off from an incandescent filament. The invention has for a further object a simple, substantial and inexpensive relay or amplifier not involving the use of excessive voltages, and

NMOS Enhancement mode transistor: Inversion Mode Transistor

No channel exists when gate voltage is zero and current is zero as well.

Depletion Region is formed near the Si/SiO₂ interface

But something interesting happens: electron density at the surface also increases

At a sufficiently large voltage (>V_{THN}) a channel of electrons forms at the Si/SiO2 interface.

Conductivity modulation at the surface?

$$p = N_A = 10^{16} cm^{-3}$$
$$n = \frac{n_i^2}{p} \cong 10^4 cm^{-3}$$

Surface carrier density can be changed from P-type to N-type

Surface Carrier Density

Strong Inversion

Electrons are accumulated at the surface $n_{S}>>N_{A}$

Simplified Symbols and structure

Operation of the MOSFET

$$C'_{ox} = \frac{c_{ox}}{t_{ox}}$$
 Inversion charge/area: $Q_{inv} = -C_{ox}(V_{GS} - V_{THN})$

When a positive drain voltage is applied, current flows from drain to source and inversion charge density decreases from source to drain end.

$$I_{DS} = \frac{V_{DS}}{R_{ch}} > 0$$

Any further increase in drain bias is absorbed in a small region next to the drain and rest of channel is not much affected and thus current becomes constant.

BJI P N P P

MOSFET

