

Diseño, Verificación y Validación de Sistemas Digitales

Prof. Abisai Ramírez

Práctica 2: Multiplicador

Autores:

José Andrés Hernández Hernández ie704453

ie704453@iteso.mx

Carem Angélica Bernabe Acosta ie693242

ie693242@iteso.mx

Índice

Introducción	3
Planteamiento del problema	4
Microarquitectura	5
Máquina de estados	6
Simulación en	
tarjeta	

Introducción

Esta práctica tiene como objetico el desarrollar un módulo aritmético que calcule la multiplicación, división, raíz cuadrada de un número entero con signo. La interfaz del multiplicador, divisor y raíz cuadrada (MDR), cuadra se muestra en la figura 1, y sus señales se describen en la tabla 1.

Figura 1. Interfaz del MDR

Entradas			
Señal	Descripción		
Data	Es el puerto de entrada de datos de 16 bits.		
Start	Cuando esta señal es igual a 1 lógico, el modulo comienza a		
	trabajar.		
Load	Cuando es igual a 1 lógico, el valor que se encuentra en la señal		
	Data se carga dentro del MDR.		
Ор	Selecciona la operación a realizar:		
	0: Multiplicación		
	1: División		
	2: Raíz cuadrada		
clk	Señal de reloj.		
reset	Señal de reinicio.		
Salidas			
result	Este puerto entrega el resultado de la operación ejecutada, tiene un ancho de 16 bits.		
ready	Cuando es igual a 1 lógico indica que el resultado en el puerto		
	Result es válido.		
Remainder	Es el puerto donde se muestra el residuo de la operaciones de		
	división y raíz cuadrada.		
Load X	Cuando es igual a 1 lógico indica que se debe colocar el valor de X		
	a cargar en el puerto Data .		
Load Y	Cuando es igual a 1 lógico indica que se debe colocar el valor de Y		
	a cargar en el puerto Data .		
error	Indica un error en el resultado.		

Tabla 1. Señales del sistema

Planteamiento del problema

El modulo a diseñar e implementar realiza la multiplicación, división o raíz cuadrada de dos números de 16 bits **X** y **Y** en forma secuencial, **X** y **Y** son números con signo a complemento a dos. Los datos **X** y **Y** son cargados al MDR de la siguiente forma:

Cuando se presiona **Start**, tal que **Start** == 1, al siguiente pulso de reloj la salida **Load X** debe ponerse en uno, indicando que se debe colocar **X** en el puerto **Data**, una vez colocado se presiona **Load**, tal que cuando **Load** == 1 se carga **X** en el MDR. Después de cargar **X**, la **Load Y** de debe poner en uno para indicar que se debe cargar el dato **Y**, seguido de esto se coloca el valor **Y** en el puerto **Data** y se presiona **Load**. Una vez cargados los datos **X** y **Y**, se comienza el cálculo de la operación que indique el puerto **Op**. Durante el proceso de cálculo, los resultados parciales no deben de mostrarse en el puerto **Result**, y cuando se alcance el valor resultante de **X** y **Y**, la señal **ready** debe ponerse en uno lógico. Los resultados parciales deben mostrarse en 16 leds de la tarjeta DE2-115, además el resultado final se mostrará en los displays de 7 segmentos con un led que indique cuando el resultado es negativo, todo esto una vez que **ready** ==1. Cuando la operación a ejecutar es raíz cuadrada, el único dato a cargar es el valor de **X**. La bandera de error se activa cuando se detecte los siguientes casos:

- La multiplicación sobre pase los bits de salida, por ejemplo X=0xFFFF por Y=0xFFFF.
- División entre cero;
- Calculo de la raíz cuadrada de un número negativo.

•

En el caso de existir sobre flujo la salida del MRD se debe saturar, es decir, Resultado = 0xFFFF.

Microarquitectura

Máquina de estados

Simulación en Modelsim

— CORE ———		
∳ dk	St1	
∳ rst	St1	
👍 i_enable	St0	
↓ i_init	St0	
👍 i_dean	St0	
 i_dataX	11	15
 i_dataY	0	7
↓ p i_op	MULT	DIV
🖕 o_done	St0	
🛨 👍 o_result	0	2
± − 4 o_remainder	0	1

Pruebas en la tarjeta

Para la prueba en tarjeta se probaron los valores de 11 como primer valor y 2 como segundo valor, en el caso de la raíz, únicamente toma el primer valor, en los displays despliega el producto en el caso de la multiplicación, en el caso de la división, el cociente se muestra en los displays y el residuo en los leds rojos de esta misma manera se representa la raíz.

Link del video:

https://youtu.be/oNCjn4FacyQ