CSCI 190 Discrete Mathematics Applied to Computer Science Exam 1

Name:	
I IMILIO .	

Read these instructions before proceeding.

- Closed book. Closed notes. You can use calculator.
- You have **80 minutes** to complete this exam.
- No questions will be answered during the examor immediately afterwards. Answer each question as best you can. Partial credit will be awarded for reasonable efforts. If a question contains an ambiguity or a misprint, then say so in your answer, providing the answer to a reasonable interpretation of the question; give your assumptions.
- Answer the problems on the blank spaces provided for each problem.
- Box your answers.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q 9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Total
(6)	(7)	(7)	(6)	(6)	(8)	(4)	(4)	(4)	(4)	(6)	(6)	(5)	(6)	(5)	(5)	(6)	(5)	(100)
	, ,	` ′	` '	, ,	` ′	` ′	` ′	` ′	` ´	` '	` '	` '	` ´			` ´		, í

1. (6 pts) Determine whether the proposition is TRUE or FALSE. No justifications needed.

a) 1 + 11 = 12 if and only if 2 + 2	= 22. (2 pts)
-------------------------------------	----------------------

2. (7 pts) Determine whether $(p \rightarrow q) \land (\neg p \rightarrow q) \equiv q$ using truth table.

3. (7 pts) Prove that $(\neg p \land (\neg q \rightarrow p)) \rightarrow q$ is a tautology using propositional equivalence and the laws of logic.

If you give it a try, then you will be	good.
a) contrapositive (2 pts)	
b) converse (2 pts)	
c) inverse (2 pts)	
5. (6 pts) Suppose the variable x F(x): x is friendly	represents people, and T(x): x is tall A(x): x is angry.
Write the statement using these pr	edicates and any needed quantifiers.
a) Some people are not angry	v. (3 pts)
b) All tall people are friendly.	(3 pts)
6. (8 pts) Consider the following the "if x and y are odd into Give a direct proof of this theorem.	tegers, then x + y is even".
7. (4 pts) Draw two Venn diagrar Are they the same?	ms for A ∩ (B U C) and B ∩ (A U C) .
8. (4 pts) determine whether the gift the set is a power set, give the s	given set is the power set of some set. (Answer " Yes " or " No ") set of which it is a power set.
a) {Ø, {Ø}, {b}, {Ø, b}} (2 pts)
b) {{Ø}, {a}, {b}, {a,b}} (2 pts	s)

4. (6 pts) Write the contrapositive, converse, and inverse of the following:

9. (4 pts) Just answer "yes" or "no" in the box. No justifications needed.							
(a) Suppose $f: N \to N$ has the rule $f(n) = 2n + 1$. Determine whether f is onto. (1 pts)							
(b) Suppose f:N \rightarrow N has the rule f(n) = 2n + 1. Determine whether f is 1-1. (1 pts)							
(c) Suppose f: $Z \rightarrow Z$ has the rule f(n) = $2n^2 - 1$. Determine whether f is 1-1. (1 pts)							
(d) Suppose f: $Z \rightarrow Z$ has the rule f(n) = $2n^2 - 1$. Determine whether f is onto Z. (1 pts)							
10. (4 pts) Find a_n (a formula that generates the following sequence $a_1, a_2, a_3 \dots$)							
a) 20, 24, 28, 32, 36, (2 pts)							
b) -1, 2, -4, 8, -16, 32, (2 pts)							
11. (6 pts) Suppose A = $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ and B = $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$							
Find (a) the <i>join</i> of A and B.							
(b) the <i>meet</i> of A and B.							
(c) the Boolean product of A and B.							

12. (6 pts)

Show (step by step) how the binary search algorithm searches for **43** in the following list: 1 5 8 15 21 35 43.

13. (5 pts) Arra No justifications			ctions in	a list so each i	s big-O d	of the next one	in the list.
			n^3 ,	n⁴ log n,	2 ⁿ ,	1111	
14. (6 pts) (a) Give the best comparisons).		alysis of a li	near sea	arch of a list of s	size n (co	unting the num	ber of
(b) Give the wor s comparisons).		nalysis of a	linear se	earch of a list of	fsize n (c	ounting the nu	mber of
15. (5 pts) Prov	e or disp	rove: For all	integers	s a, b, c, if a c	and b c ,	then ab c² .	
16. (5 pts) Find	the prin	ne factoriza	ition of 6	5,600 .			
17. (6 pts) (a) Convert (135))10 to bas	se 2	(3 pt	s)			
(b) Convert (111	1000101	l)2 to base	16. (3	pts)			
18. (5 pts) A m	essage h	as been <i>en</i>	crypted	using the funct	ion f(x) =	$(x + 3) \mod 26$	j.

If the message in coded form is $\mbox{\bf UHRSHQ}$, $\mbox{\it decode}$ the message.