The Fellegi-Sunter Model of Record Linkage

Olivier Binette

August 26, 2020

Today's goal: Introduce the Fellegi-Sunter *model* of record linkage.

Focus on:

- Motivating example and some fundamental ideas.
- Databases, records and attributes.
- Pairwise record comparisons.
- Model parameters: m and u distributions, matching weights, and matching configuration matrix.

- Model estimation and linkage rules
- Sadinle (2017) and McVeigh (2020) go into more detail here.

Today's goal: Introduce the Fellegi-Sunter *model* of record linkage.

Focus on:

- Motivating example and some fundamental ideas.
- Databases, records and attributes
- Pairwise record comparisons.
- Model parameters: m and u distributions, matching weights, and matching configuration matrix.

- Model estimation and linkage rules
- Sadinle (2017) and McVeigh (2020) go into more detail here.

Today's goal: Introduce the Fellegi-Sunter *model* of record linkage.

Focus on:

- Motivating example and some fundamental ideas.
- Databases, records and attributes.
- Pairwise record comparisons.
- Model parameters: m and u distributions, matching weights, and matching configuration matrix.

- Model estimation and linkage rules.
- Sadinle (2017) and McVeigh (2020) go into more detail here.

Today's goal: Introduce the Fellegi-Sunter *model* of record linkage.

Focus on:

- Motivating example and some fundamental ideas.
- Databases, records and attributes.
- Pairwise record comparisons.
- Model parameters: m and u distributions, matching weights, and matching configuration matrix.

- Model estimation and linkage rules.
- Sadinle (2017) and McVeigh (2020) go into more detail here.

Outline:

- 1. Newcombe et al. (1959): "Automatic Linkage of Vital Records"
 - Provides a motivating example and introduces key ideas.
- 2. Fellegi and Sunter (1969): "A Theory for Record Linkage"
 - I will focus on the record linkage *model* rather than the theory.
 - I will deviate a little bit from the original paper in order to introduce the key supplemental idea of "Bayesian FS."

References: see "(Almost) All of Entity Resolution"

- 1. pp. 11 13
- 2. pp. 13 19

Outline:

- 1. Newcombe et al. (1959): "Automatic Linkage of Vital Records"
 - Provides a motivating example and introduces key ideas.
- 2. Fellegi and Sunter (1969): "A Theory for Record Linkage"
 - I will focus on the record linkage *model* rather than the theory.
 - I will deviate a little bit from the original paper in order to introduce the key supplemental idea of "Bayesian FS."

References: see "(Almost) All of Entity Resolution"

- 1. pp. 11 13
- 2. pp. 13 19

Newcombe et al. (1959)

Newcombe et al. (1959). Published in *Science*:

Automatic Linkage of Vital Records*

Computers can be used to extract "follow-up" statistics of families from files of routine records.

H. B. Newcombe, J. M. Kennedy, S. J. Axford, A. P. James

What they did:

 Introduced an automatic (probabilistic) record linkage technique and implemented it on the Datatron 205 computer.

Two things here:

- Stated record linkage as a statistical problem and proposed the first unsupervised probabilistic RL approach.
- They showed that a computer could be programed to perform RL.

What they did:

 Introduced an automatic (probabilistic) record linkage technique and implemented it on the Datatron 205 computer.

Two things here:

- Stated record linkage as a statistical problem and proposed the first unsupervised probabilistic RL approach.
- They showed that a computer could be programed to perform RL.

Their applied goal: to link **34,138 birth records** from 1955 in British Columbia **to 114,471 marriage records** in the preceding ten year period.

	Marriage record	Birth record
Husband's family name	Ayad	Ayot
Wife's family name	Barr	Barr
Husband's initials	JΖ	JΖ
Wife's initials	МТ	ВТ
Husband's birth province	AB	AB
Wife's birth province	PE	PE

Table 1: Example of identify information from compared marriage and birth records. This is adapted and translated from Table I of Newcombe (1969). AB and PE represent the Canadian provinces of Alberta and Prince Edward Island.

Newcombe's algorithm:

- 1. Sort records by the Soundex coding of family names.
- 2. Where Soundex coding agrees, and informal likelihood ratio test determines whether or not to link.

Soundex coding:

- $Olivier \longrightarrow O416$
- $Oliver \longrightarrow O416$
- $Olivia \longrightarrow O410$
- \blacksquare Rebecca \longrightarrow R120
- Rebbeka → R120
- Beka → B200

Newcombe's algorithm:

- 1. Sort records by the Soundex coding of family names.
- 2. Where Soundex coding agrees, and informal likelihood ratio test determines whether or not to link.

Soundex coding:

- Olivier → O416
- Oliver 0416
- Olivia \longrightarrow O410
- Rebecca → R120
- Rebbeka → R120
- Beka → B200

Likelihood ratio test:

- Imagine that two records agree on the husband's first initial J.
- Let p_L be the probability of this given that the records are actually a match, and let p_F be the probability of this given that the records are not a match.
- Let p_R be the proportion of the initial "J" among husbands.

Then

$$p_L \approx p_R$$
, $p_F \approx p_R^2$

SC

$$\log(p_L/p_F) \approx -\log(p_R)$$
.

Likelihood ratio test:

- Imagine that two records agree on the husband's first initial J.
- Let p_L be the probability of this given that the records are actually a match, and let p_F be the probability of this given that the records are not a match.
- Let p_R be the proportion of the initial "J" among husbands.

Then

$$p_L \approx p_R$$
, $p_F \approx p_R^2$

SO

$$\log(p_L/p_F) \approx -\log(p_R)$$
.

Likelihood ratio test:

- Imagine that two records agree on the husband's first initial J.
- Let p_L be the probability of this given that the records are actually a match, and let p_F be the probability of this given that the records are not a match.
- Let p_R be the proportion of the initial "J" among husbands.

Then

$$p_L \approx p_R$$
, $p_F \approx p_R^2$

SO

$$\log(p_L/p_F) \approx -\log(p_R)$$

Likelihood ratio test:

- Imagine that two records agree on the husband's first initial J.
- Let p_L be the probability of this given that the records are actually a match, and let p_F be the probability of this given that the records are not a match.
- Let p_R be the proportion of the initial "J" among husbands.

Then

$$p_L \approx p_R$$
, $p_F \approx p_R^2$

SC

$$\log(p_L/p_F) \approx -\log(p_R)$$
.

Likelihood ratio test:

- Imagine that two records agree on the husband's first initial J.
- Let p_L be the probability of this given that the records are actually a match, and let p_F be the probability of this given that the records are not a match.
- Let p_R be the proportion of the initial "J" among husbands.

Then

$$p_L \approx p_R$$
, $p_F \approx p_R^2$

SO

$$\log(p_L/p_F) \approx -\log(p_R)$$
.

Likelihood ratio test:

- Imagine that two records agree on the husband's first initial J.
- Let p_L be the probability of this given that the records are actually a match, and let p_F be the probability of this given that the records are not a match.
- Let p_R be the proportion of the initial "J" among husbands.

Then

$$p_L \approx p_R$$
, $p_F \approx p_R^2$

SO

$$\log(p_L/p_F) \approx -\log(p_R)$$
.

Likelihood ratio test:

- Imagine that two records agree on the husband's first initial J.
- Let p_L be the probability of this given that the records are actually a match, and let p_F be the probability of this given that the records are not a match.
- Let p_R be the proportion of the initial "J" among husbands.

Then

$$p_L \approx p_R$$
, $p_F \approx p_R^2$

SO

$$\log(p_L/p_F) \approx -\log(p_R)$$
.

Likelihood ratio test (cont'd):

• If the initial is very common, e.g. $p_R = 0.1$, then

$$\log(p_L/p_F) \approx -\log(0.1) \approx 2.3$$

is weights in a little bit for a match.

• If the initial is not at all common, e.g. $p_R = 0.0001$, then

$$\log(p_L/p_F) \approx -\log(0.0001) \approx 9.2$$

weights in much more in favor of a match.

Likelihood ratio test (cont'd):

• If the initial is very common, e.g. $p_R = 0.1$, then

$$\log(p_L/p_F) \approx -\log(0.1) \approx 2.3$$

is weights in a little bit for a match.

• If the initial is not at all common, e.g. $p_R = 0.0001$, then

$$\log(p_L/p_F) \approx -\log(0.0001) \approx 9.2$$

weights in much more in favor of a match.

Performance:

- Processed 10 record pairs per minute.
- About 98.3% of the true matches were detected, and about 0.7% of the linked records were not actual matches.
- "by far the largest part of the effort" was the preparation of punched card files reproducing marriage records in an adequate format.

Caveat:

 Not clear how exactly the probabilities for the likelihood ratio test were computed in all cases.

Performance:

- Processed 10 record pairs per minute.
- About 98.3% of the true matches were detected, and about 0.7% of the linked records were not actual matches.
- "by far the largest part of the effort" was the preparation of punched card files reproducing marriage records in an adequate format.

Caveat:

 Not clear how exactly the probabilities for the likelihood ratio test were computed in all cases.

Fellegi and Sunter (1969). Published in JASA:

A THEORY FOR RECORD LINKAGE*

IVAN P. FELLEGI AND ALAN B. SUNTER Dominion Bureau of Statistics

A mathematical model is developed to provide a theoretical framework for a computer-oriented solution to the problem of recognizing those records in two files which represent identical persons, objects or events (said to be matched).

What this paper does:

 It formalizes the approach of Newcombe et al. (1959) in a decision-theoretic framework.

Given a pair of records, it considers three possible actions:

- to link them;
- to call them a possible link; or
- to *not link* them.

An "optimal" decision rule is proposed for this.

Here I'm focusing on the model rather than the decision-theoretic framework.

What this paper does:

 It formalizes the approach of Newcombe et al. (1959) in a decision-theoretic framework.

Given a pair of records, it considers three possible actions:

- to *link* them;
- to call them a *possible link*; or
- to not link them.

An "optimal" decision rule is proposed for this.

Here I'm focusing on the model rather than the decision-theoretic framework.

What this paper does:

 It formalizes the approach of Newcombe et al. (1959) in a decision-theoretic framework.

Given a pair of records, it considers three possible actions:

- to *link* them;
- to call them a *possible link*; or
- to not link them.

An "optimal" decision rule is proposed for this.

Here I'm focusing on the model rather than the decision-theoretic framework.

Basic elements:

- Two databases A and B
 - Duplication accross but not within databases (bipartite record linkage).
- Records with corresponding attributes or fields
 - Name, age, address, SSN, etc.

What we want to do:

 Figure out which records refer to the same entity (a person, object or event.)

How we'll do that:

- We'll compare records in pairs from databases A and B, as to obtain multidimensional measures of similarity.
- Based on the measures of similarity, we'll try to group together the records which refer to the same entity.

What we want to do:

 Figure out which records refer to the same entity (a person, object or event.)

How we'll do that:

- We'll compare records in pairs from databases A and B, as to obtain multidimensional measures of similarity.
- Based on the measures of similarity, we'll try to group together the records which refer to the same entity.

	Field 1	Field 2	Field 3
Record no.	First name	Last name	Age
1	Olivier	Binette	25
2	Peter	Hoff	NA
i:	i:	÷	:
N_1	Beka	Steorts	NA
	Field 1	Field 2	Field 3
Record no.	First name	Last name	Age
1	Oliver	Binette	NA
2	Brian	K	NA
:	:	:	:
N_2	Frances	Hung	NA

Let $i=1,2,\ldots,N_1\times N_2$ enumerate the set of all record pairs in $A\times B$.

Comparison vectors:

 For the *i*th pair of records, we compute a corresponding comparison vector

$$\gamma_i = (\gamma_i^{(1)}, \gamma_i^{(2)}, \dots, \gamma_i^{(k)}).$$

- Each γ_i^j compares the *j*th field of the records.
- For example, if the *j*th field is "age," we could have $\gamma_i^J=0$ if ages are the same, and $\gamma_i^J=1$ if ages different.

Let $i=1,2,\ldots,N_1\times N_2$ enumerate the set of all record pairs in $A\times B$.

Comparison vectors:

 For the *i*th pair of records, we compute a corresponding comparison vector

$$\gamma_i = (\gamma_i^{(1)}, \gamma_i^{(2)}, \dots, \gamma_i^{(k)}).$$

- Each γ_i^j compares the *j*th field of the records.
- For example, if the *j*th field is "age," we could have $\gamma_i^j = 0$ if ages are the same, and $\gamma_i^j = 1$ if ages different.

Let $i=1,2,\ldots,N_1\times N_2$ enumerate the set of all record pairs in $A\times B$.

Comparison vectors:

 For the *i*th pair of records, we compute a corresponding comparison vector

$$\gamma_i = (\gamma_i^{(1)}, \gamma_i^{(2)}, \dots, \gamma_i^{(k)}).$$

- Each γ_i^j compares the *j*th field of the records.
- For example, if the *j*th field is "age," we could have $\gamma_i^j = 0$ if ages are the same, and $\gamma_i^j = 1$ if ages different.

Let $i=1,2,\ldots,N_1\times N_2$ enumerate the set of all record pairs in $A\times B$.

Comparison vectors:

 For the *i*th pair of records, we compute a corresponding comparison vector

$$\gamma_i = (\gamma_i^{(1)}, \gamma_i^{(2)}, \dots, \gamma_i^{(k)}).$$

- Each γ_i^j compares the *j*th field of the records.
- For example, if the *j*th field is "age," we could have $\gamma_i^j = 0$ if ages are the same, and $\gamma_i^j = 1$ if ages different.

Binary comparisons:

$$\quad \quad \boldsymbol{\gamma}_{i}^{j} \in \{0,1\}$$

Levels of agreement/disagreement:

•
$$\gamma_i^j \in \{0, 1, 2, \dots, L_i\}$$

How they're obtained:

- You choose!
- Use string distance functions to compare names

Binary comparisons:

•
$$\gamma_i^j \in \{0, 1\}$$

Levels of agreement/disagreement:

•
$$\gamma_i^j \in \{0, 1, 2, \dots, L_j\}$$

How they're obtained:

- You choose!
- Use string distance functions to compare names

Binary comparisons:

•
$$\gamma_i^j \in \{0, 1\}$$

Levels of agreement/disagreement:

•
$$\gamma_i^j \in \{0, 1, 2, \dots, L_j\}$$

How they're obtained:

- You choose!
- Use string distance functions to compare names.

The set $\{\gamma_k\}_{j=1}^{N_1 \times N_2}$ of computed comparison vectors becomes the **observed data** for the Fellegi-Sunter model.

Next component of the model:

- The matching configuration $r = \{r_j\}_{j=1}^{N_1 \times N_2}$, with $r_j = 1$ if the jth record pair matches, and $r_j = 0$ otherwise.
 - This is the adjacency list representation. We can also use a matching configuration matrix.
- This is not a very efficient representation for bipartite matching.
 Saindle (2017) instead uses a matching labeling.

The set $\{\gamma_k\}_{j=1}^{N_1 \times N_2}$ of computed comparison vectors becomes the **observed data** for the Fellegi-Sunter model.

Next component of the model:

- The matching configuration $r = \{r_j\}_{j=1}^{N_1 \times N_2}$, with $r_j = 1$ if the jth record pair matches, and $r_i = 0$ otherwise.
 - This is the adjacency list representation. We can also use a matching configuration matrix.
- This is not a very efficient representation for bipartite matching.
 Saindle (2017) instead uses a matching labeling.

- For record pairs that are a match $(r_j = 1)$, we assume that $\gamma \sim m$ independently.
- For record pairs that are *unmatched* $(r_j = 0)$, we assume that $\gamma \sim u$ independently.
- More precisely,

$$p\left(\left\{\gamma_{j}\right\}_{j=1}^{N_{1}\times N_{2}}\mid r,m,u\right)=\left(\prod_{j:r_{j}=1}m(\gamma_{j})\right)\times\left(\prod_{j:r_{j}=0}u(\gamma_{j})\right)$$

- For record pairs that are a match $(r_j = 1)$, we assume that $\gamma \sim m$ independently.
- For record pairs that are *unmatched* $(r_j = 0)$, we assume that $\gamma \sim u$ independently.
- More precisely,

$$p\left(\left\{\gamma_{j}\right\}_{j=1}^{N_{1}\times N_{2}}\mid r,m,u\right)=\left(\prod_{j:r_{j}=1}m(\gamma_{j})\right)\times\left(\prod_{j:r_{j}=0}u(\gamma_{j})\right)$$

- For record pairs that are a match $(r_j = 1)$, we assume that $\gamma \sim m$ independently.
- For record pairs that are *unmatched* $(r_j = 0)$, we assume that $\gamma \sim u$ independently.
- More precisely,

$$p\left(\left\{\gamma_{j}\right\}_{j=1}^{N_{1}\times N_{2}}\mid r,m,u\right)=\left(\prod_{j\,:\,r_{j}=1}m(\gamma_{j})\right)\times\left(\prod_{j\,:\,r_{j}=0}u(\gamma_{j})\right).$$

$$p\left(\left\{\gamma_{j}\right\}_{j=1}^{N_{1}\times N_{2}}\mid r,m,u\right)=\left(\prod_{j\,:\,r_{j}=1}m(\gamma_{j})\right)\times\left(\prod_{j\,:\,r_{j}=0}u(\gamma_{j})\right).$$

- Estimate model parameters.
- Define a prior p(r, m, u).
- Obtain a posterior

$$p(r \mid \{\gamma_j\}_{j=1}^{N_1 \times N_2}) = \int p(r, m, u \mid \{\gamma_j\}_{j=1}^{N_1 \times N_2}) \, dm \, du$$

$$\propto \int p(\{\gamma_j\}_{j=1}^{N_1 \times N_2} \mid r, m, u) p(r, m, u) \, dm \, du$$

- Estimate model parameters.
- Define a prior p(r, m, u).
- Obtain a posterior

$$p(r \mid \{\gamma_j\}_{j=1}^{N_1 \times N_2}) = \int p(r, m, u \mid \{\gamma_j\}_{j=1}^{N_1 \times N_2}) \, dm \, du$$

$$\propto \int p(\{\gamma_j\}_{j=1}^{N_1 \times N_2} \mid r, m, u) p(r, m, u) \, dm \, du$$

- Estimate model parameters.
- Define a prior p(r, m, u).
- Obtain a posterior

$$p(r \mid \{\gamma_j\}_{j=1}^{N_1 \times N_2}) = \int p(r, m, u \mid \{\gamma_j\}_{j=1}^{N_1 \times N_2}) \, dm \, du$$

$$\propto \int p(\{\gamma_j\}_{j=1}^{N_1 \times N_2} \mid r, m, u) p(r, m, u) \, dm \, du$$

- Estimate model parameters.
- Define a prior p(r, m, u).
- Obtain a posterior

$$p(r \mid \{\gamma_j\}_{j=1}^{N_1 \times N_2}) = \int p(r, m, u \mid \{\gamma_j\}_{j=1}^{N_1 \times N_2}) \, dm \, du$$

$$\propto \int p(\{\gamma_j\}_{j=1}^{N_1 \times N_2} \mid r, m, u) p(r, m, u) \, dm \, du$$

- This is **not** what Fellegi-Sunter originally proposed
- Originally, FS proposed to estimate m and u on their own.
- Then, define the log-likelihood ratio (matching weight)

$$W(\gamma_j) = \log \frac{m(\gamma_j)}{u(\gamma_j)}$$

Say that the jth pair is a match if $W(\gamma_j)$ is large, that they're not a match if $W(\gamma_j)$ is small: this is a likelihood ratio test.

- This is not what Fellegi-Sunter originally proposed
- Originally, FS proposed to estimate m and u on their own.
- Then, define the log-likelihood ratio (matching weight)

$$W(\gamma_j) = \log \frac{m(\gamma_j)}{u(\gamma_j)}$$

• Say that the jth pair is a match if $W(\gamma_j)$ is large, that they're not a match if $W(\gamma_j)$ is small: this is a likelihood ratio test.

- This is not what Fellegi-Sunter originally proposed
- Originally, FS proposed to estimate m and u on their own.
- Then, define the log-likelihood ratio (matching weight)

$$W(\gamma_j) = \log \frac{m(\gamma_j)}{u(\gamma_j)}.$$

• Say that the jth pair is a match if $W(\gamma_j)$ is large, that they're not a match if $W(\gamma_j)$ is small: this is a likelihood ratio test.

- This is not what Fellegi-Sunter originally proposed
- Originally, FS proposed to estimate m and u on their own.
- Then, define the log-likelihood ratio (matching weight)

$$W(\gamma_j) = \log \frac{m(\gamma_j)}{u(\gamma_j)}.$$

• Say that the jth pair is a match if $W(\gamma_j)$ is large, that they're not a match if $W(\gamma_j)$ is small: this is a likelihood ratio test.

- You consider all record pairs independently.
- You could link records a and b, and b and c, and yet say that a and c are not a match. This is incoherent.
- In the bipartite record linkage framework, we want to specify a prior on r which reflects the fact that there is duplication across but not within databases.

- You consider all record pairs independently.
- You could link records a and b, and b and c, and yet say that a and c are not a match. This is incoherent.
- In the bipartite record linkage framework, we want to specify a prior on r which reflects the fact that there is duplication across but not within databases.

- You consider all record pairs independently.
- You could link records a and b, and b and c, and yet say that a and c are not a match. This is incoherent.
- In the bipartite record linkage framework, we want to specify a prior on r which reflects the fact that there is duplication across but not within databases.

- You consider all record pairs independently.
- You could link records a and b, and b and c, and yet say that a and c are not a match. This is incoherent.
- In the bipartite record linkage framework, we want to specify a prior on r which reflects the fact that there is duplication across but not within databases.

- Newcombe (1958) proposed a likelihood ratio test approach to record linkage based on probability heuristics.
- I've introduced the very basic components of the Fellegi-Sunter model
- Sadinle (2017) and McVeigh (2020) provide information about the priors and about model fitting.

- Newcombe (1958) proposed a likelihood ratio test approach to record linkage based on probability heuristics.
- I've introduced the very basic components of the Fellegi-Sunter model
- Sadinle (2017) and McVeigh (2020) provide information about the priors and about model fitting.

- Newcombe (1958) proposed a likelihood ratio test approach to record linkage based on probability heuristics.
- I've introduced the very basic components of the Fellegi-Sunter model
- Sadinle (2017) and McVeigh (2020) provide information about the priors and about model fitting.