

Лабораторная работа. Создание сети, состоящей из коммутатора и маршрутизатора

Топология

Таблица адресации

Устройство	Интерфейс	IP адрес/префикс	Шлюз по умолчанию
R1	G0/0/0	192.168.0.1 /24	_
		2001:db8:acad::1/64	
		fe80::1	
	G0/0/1	192.168.1.1 /24	_
		200:db8:acad:1::1/64	
		fe80::1	
S1	VLAN 1	192.168.1.2 /24	192.168.1.1
PC-A	NIC	192.168.1.3 /24	192.168.1.1
		2001:db8:acad:1::3/64	fe80::1
РС-В	NIC	192.168.0.3 /24	192.168.0.1
		2001:db8:acad::3/64	fe80::1

Задачи

Часть 1. Настройка топологии и инициализация устройств

Часть 2. Настройка устройств и проверка подключения

Общие сведения/сценарий

Это комплексная лабораторная работа, предназначенная для повторения рассмотренных ранее команд IOS. В этой лабораторной работе вы соедините оборудование кабелями в соответствии со схемой топологии. Затем вы настроите устройства согласно таблице адресации. После сохранения конфигурации вы проверите ее, выполнив тестирование сетевого подключения.

После настройки устройств и проверки сетевого подключения вы, воспользовавшись командами IOS, получите с этих устройств сведения, необходимые для подготовки ответов на вопросы о сетевом оборудовании.

Эта лабораторная работа содержит минимум инструкций по выполнению команд, необходимых для настройки маршрутизатора. Проверьте свои знания: настройте устройства, не обращаясь к приведенной информации или предыдущим упражнениям.

Примечание: Маршрутизаторы, используемые в практических лабораторных работах CCNA, - это Cisco 4221 с Cisco IOS XE Release 16.9.4 (образ universalk9). В лабораторных работах используются коммутаторы Cisco Catalyst 2960 с Cisco IOS версии 15.2(2) (образ lanbasek9). Можно использовать другие маршрутизаторы, коммутаторы и версии Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и результаты их выполнения могут отличаться от тех, которые показаны в лабораторных работах. Правильные идентификаторы интерфейса см. в сводной таблице по интерфейсам маршрутизаторов в конце лабораторной работы.

Примечание. Убедитесь, что у всех маршрутизаторов и коммутаторов была удалена начальная конфигурация. Обратитесь к инструктору за информацией о процедуре инициализации и перезагрузки маршрутизатора и коммутатора.

Шаблон **default bias**, по умолчанию используемый диспетчером базы данных коммутации Switch Database Manager (SDM), не предоставляет возможностей IPv6-адресации. Убедитесь, что SDM использует шаблон **dual-ipv4-and-ipv6** или **lanbase-routing**. Новый шаблон будет использоваться после перезагрузки даже в случае, если конфигурация не была сохранена.

```
S1# show sdm prefer
```

Чтобы назначить шаблон **dual-ipv4-and-ipv6** в качестве шаблона диспетчера базы данных коммутатора по умолчанию, используйте следующие команды:

```
S1# configure terminal
S1(config)# sdm prefer dual-ipv4-and-ipv6 default
S1(config)# end
S1# reload
```

Необходимые ресурсы

- 1 Маршрутизатор (Cisco 4221 с универсальным образом Cisco IOS XE версии 16.9.4 или аналогичным)
- 1 коммутатор (Cisco 2960 с ПО Cisco IOS версии 15.2(2) с образом lanbasek9 или аналогичная модель)
- 2 ПК (ОС Windows с программой эмуляции терминалов, такой как Tera Term)
- Консольные кабели для настройки устройств Cisco IOS через консольные порты.
- Кабели Ethernet, расположенные в соответствии с топологией

Примечание. Интерфейсы Gigabit Ethernet на маршрутизаторах Cisco 4221 определяют скорость автоматически, поэтому для подключения маршрутизатора к PC-В можно использовать прямой кабель Ethernet. При использовании другой модели маршрутизатора Cisco может возникнуть необходимость использовать перекрестный кабель Ethernet.

Инструкции

Часть 1. Настройка топологии и инициализация устройств

Шаг 1. Создайте сеть согласно топологии.

- а. Подключите устройства, показанные в топологии, и кабели соответствующим образом.
- b. Включите все устройства в топологии.

Шаг 2. Выполните инициализацию и перезагрузку маршрутизатора и коммутатора.

Если ранее на маршрутизаторе или коммутаторе были сохранены файлы конфигурации, выполните инициализацию и перезагрузку устройств, чтобы восстановить конфигурацию по умолчанию.

Часть 2. Настройка устройств и проверка подключения

В части 2 вы настроите топологию сети и такие базовые параметры, как IP-адреса интерфейсов, доступ к устройствам и пароли. Имена устройств и адресные данные можно найти в разделах Ошибка! Источник ссылки не найден. и Ошибка! Источник ссылки не найден. в начале этой лабораторной работы.

Шаг 1. Присвойте интерфейсам ПК данные о статическом IP-адресе.

- а. Настройте на компьютере РС-А IP-адрес, маску подсети и параметры шлюза по умолчанию.
- b. Настройте на компьютере PC-B IP-адрес, маску подсети и параметры шлюза по умолчанию.
- с. Протестируйте компьютер РС-В, отправив компьютеру РС-А эхо-запрос из окна командной строки.

Примечание. Если эхо-запросы не выполняются, возможно, необходимо отключить брандмауэр Windows.

Почему проверка связи не удалась?

Шаг 2. Настройте маршрутизатор.

- а. Подключитесь к маршрутизатору с помощью консоли и активируйте привилегированный режим EXEC.
- b. Войдите в режим конфигурации.
- с. Назначьте маршрутизатору имя устройства.
- d. Отключите поиск DNS, чтобы предотвратить попытки маршрутизатора неверно преобразовывать введенные команды таким образом, как будто они являются именами узлов.
- e. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- f. Назначьте **cisco** в качестве пароля консоли и включите вход в систему по паролю.
- g. Назначьте cisco в качестве пароля VTY и включите вход в систему по паролю.
- h. Зашифруйте открытые пароли.
- і. Создайте баннер с предупреждением о запрете несанкционированного доступа к устройству.
- Настройте и активируйте на маршрутизаторе оба интерфейса.
- к. Для каждого интерфейса введите описание, указав, какое устройство к нему подключено.
- I. Команда ipv6 unicast-routing включает маршрутизацию IPv6.
 - R1(config) # ipv6 unicast-routing
- т. Сохраните текущую конфигурацию в файл загрузочной конфигурации.
- n. Настройте на маршрутизаторе время.
 - **Примечание.** Вопросительный знак (?) позволяет открыть справку с правильной последовательностью параметров, необходимых для выполнения этой команды.
- о. Протестируйте компьютер РС-В, отправив компьютеру РС-А эхо-запрос из окна командной строки.

Примечание. Если эхо-запросы не выполняются, возможно, необходимо отключить брандмауэр Windows.

Успешно ли выполнена проверка связи? Дайте пояснение.

Шаг 3. Настройте коммутатор.

На этом шаге необходимо настроить имя хоста, интерфейс VLAN 1 и шлюз по умолчанию.

- а. Подключитесь к коммутатору с помощью консольного подключения и активируйте привилегированный режим EXEC.
- b. Войдите в режим конфигурации.
- с. Присвойте коммутатору имя устройства.
- d. Отключите поиск DNS, чтобы предотвратить попытки маршрутизатора неверно преобразовывать введенные команды таким образом, как будто они являются именами узлов.
- е. Настройте и активируйте на коммутаторе интерфейс VLAN 1.
- f. Настройте шлюз по умолчанию для коммутатора S1.
- д. Сохраните текущую конфигурацию в файл загрузочной конфигурации.

Шаг 4. Проверьте наличие сквозного подключения.

- а. С РС-А отправьте эхо-запрос на РС-В.
- b. С S1 отправьте эхо-запрос на РС-В.

Все проверки должны быть пройдены успешно.

Часть 3. Отображение сведений об устройстве

В части 3 вы будете использовать команды **show** для получения информации об интерфейсе и маршрутизации от маршрутизатора и коммутатора.

Шаг 1. Отобразите таблицу маршрутизации на маршрутизаторе.

а. Выполните команду **show ip route** на маршрутизаторе, чтобы ответить на следующие вопросы.

Какой код используется в таблице маршрутизации для обозначения сети с прямым подключением?

Сколько записей маршрутов закодированы с символом «С» в таблице маршрутизации?

Какие типы интерфейсов связаны с маршрутами, закодированными с символом «С»?

b. Используйте команду **show ipv6 route** для просмотра таблицы маршрутизации IPv6 на R1.

Шаг 2. Выведите на маршрутизатор R1 сведения об интерфейсе.

а. С помощью команды **show interface g0/0/1** ответьте на следующие вопросы.

Опишите работоспособное состояние интерфейса G0/0/1.

Назовите MAC-адрес интерфейса G0/1.

Каким образом в этой команде отображается адрес в Интернете?

b. Для получения информации об IPv6 введите команду интерфейса show ipv6 interface .

Шаг 3. Выведите на маршрутизатор и коммутатор сводный список интерфейсов.

Для проверки конфигурации интерфейса можно использовать несколько команд. Одна из наиболее удобных — команда **show ip interface brief**. Выходные данные команды содержат сводный список интерфейсов устройства с указанием статуса каждого интерфейса.

- а. Введите команду **show ip interface brief** на маршрутизаторе R1.
 - R1# show ip interface brief
- b. Чтобы просмотреть сведения об интерфейсе IPv6, введите команду **show ipv6 interface brief** на R1.
 - R1# show ipv6 interface brief
- с. Введите команду **show ip interface brief** на коммутаторе S1.
 - S1# show ip interface brief

Вопросы для повторения

- 1. Если интерфейс G0/0/1 выключен администратором, какая команда конфигурации интерфейса позволит его включить?
- 2. Что произойдет в случае неправильной конфигурации интерфейса G0/0/1 на маршрутизаторе с IP-адресом 192.168.1.2?

Сводная таблица по интерфейсам маршрутизаторов

Модель маршрутизатора	Интерфейс Ethernet № 1	Интерфейс Ethernet № 2	Последовательный интерфейс № 1	Последовательный интерфейс № 2
1 800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
4221	Gigabit Ethernet 0/0/0 (G0/0/0)	Gigabit Ethernet 0/0/1 (G0/0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
4300	Gigabit Ethernet 0/0/0 (G0/0/0)	Gigabit Ethernet 0/0/1 (G0/0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)

Примечание. Чтобы определить конфигурацию маршрутизатора, можно посмотреть на интерфейсы и установить тип маршрутизатора и количество его интерфейсов. Перечислить все комбинации конфигураций для каждого класса маршрутизаторов невозможно. Эта таблица содержит идентификаторы для возможных комбинаций интерфейсов Ethernet и последовательных интерфейсов на устройстве. Другие типы интерфейсов в таблице не представлены, хотя они могут присутствовать в данном конкретном маршрутизаторе. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это официальное сокращение, которое можно использовать в командах Cisco IOS для обозначения интерфейса.