

Autor: Miron Hunia Prowadzący: Miron Hunia

Komputery kwantowe. Algorytm Grovera.

Szybki kurs algebry liniowej

Algebra liniowa bada wektory i funkcje liniowe. Jest kluczowa w opisie komputerów kwantowych

Definicja 1 (Ciało). Ciałem nazywamy zbiór K, na którym możemy dodawać, odejmować, mnożyć i dzielić (nie przez 0) dowolne elementy, i te operacje spełniają arytmetyczne własności do których jesteśmy przyzwyczajeni.

Przykładami ciał są: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_p$.

Przykładami zbiorów, które NIE są ciałami są: \mathbb{Z} (bo nie można dzielić), \mathbb{Z}_{10} (bo nie można dzielić przez 2 ani 5), \mathbb{H} (bo mnożenie nie jest przemienne).

W sercu algebry liniowej jest poniższa definicja:

Definicja 2 (Przestrzeń liniowa). Przestrzenią liniową nad ciałem K (nazywanym **ciałem skalarów**, jego elementy nazywamy **skalarami**) nazywamy zbiór V, którego elementy możemy dodawać, odejmować, oraz mnożyć przez skalary, i te operacje spełniają arytmetyczne własności do których jesteśmy przyzwyczajeni.

Przykładami przestrzeni liniowych są:

- każde ciało
- krotki liczb, np. (x, y, z).
- Wielomiany, np. $\mathbb{R}[x]$.
- R (jako przestrzeń liniowa nad Q)
- Funkcje ciągłe $f: \mathbb{R} \to \mathbb{R}$

Elementy przestrzeni liniowej nazywamy wektorami. Na tym wykładzie wektory będę oznaczał w klamerkach: $|x\rangle$ (nazywa się to notacją Diraca).

Jeślin>0i a_1,\dots,a_n to skalary, a $|x_1\rangle\,,\dots,|x_n\rangle$ to wektory, to wyrażenie

$$a_1 |x_1\rangle + \dots + a_n |x_n\rangle$$

nazywamy kombinacją liniową wektorów $|x_1\rangle, \ldots, |x_n\rangle$.

Zbiór wszystkich wektorów, które są kombinacjami liniowymi wektorów $|x_1\rangle, \ldots, |x_n\rangle$ nazywamy podprzestrzenią rozpiętą przez $|x_1\rangle, \ldots, |x_n\rangle$ i oznaczamy ją span $(|x_1\rangle, \ldots, |x_n\rangle)$.

Jeśli istnieje przedstawienie wektora 0 jako nietrywialna kombinacja liniowa (tj. taka, gdzie nie wszystkie skalary są zerami), to wektory nazywamy liniowo zależnymi. W przeciwnym przypadku nazywamy je liniowo niezależnymi.

Baza i wymiar

Niech V jest przestrzenią liniową. Zbiór wektorów $\mathcal{B} = \{|x_1\rangle, \dots, |x_n\rangle\}$ nazywamy bazą przestrzeni V, jeśli są liniowo niezaleźne i span $(\mathcal{B}) = V$.

Autor: Miron Hunia Prowadzący: Miron Hunia

- 1. Baza zawsze istnieje.
- 2. Zazwyczaj dana przestrzeń liniowa ma wiele różnych baz.
- 3. Każda baza przestrzeni V ma tyle samo elementów.
- 4. Każdy element V można przedstawić jako kombinację liniową elementów bazy na dokładnie 1 sposób.

Rozmiar bazy nazywamy wymiarem V i oznaczamy $\dim V$.

Punkt 4. z powyższej listy daje nam jako wniosek, że dowolną przestrzeń liniową możemy sprowadzić poprzez wybór bazy do systemu współrzędnych $(a_1, \ldots, a_n) \in K^n$, gdzie $n = \dim V$.

Przekształcenia liniowe

 $\phi:V\to W$ (gdzie V,W to przestrzenie liniowe) nazywamy przekształceniem liniowym, jeśli respektuje kombinacje liniowe, czyli

$$\phi(a_1|x_1\rangle + \dots + a_n|x_n\rangle) = a_1\phi(|x_1\rangle) + \dots + a_n\phi(|x_n\rangle)$$

Przekształcenia liniowe tworzą przestrzeń liniową. Jej wymiar to $\dim V \cdot \dim W$. W takim razie przekształcenie liniowe możemy unikalnie zapisać w postaci tabelki nxm, nazywanej macierzq. Wektory możemy traktować jako macierze z jedną kolumną.

Złożenie przekształceń liniowych też jest przekształceniem liniowym i odpowiada mnożeniu macierzy.

Przekształcenia liniowe $\phi: V \to K$ (czyli takie, których zbiór wartości jest jednowymiarowy) nazywamy funkcjonałami. Funkcjonały możemy traktować jako macierze z jednym wierszem.

Prostopadłość i iloczyn hermitowski

Jeśli pracujemy nad ciałem \mathbb{R} , to iloczynem skalarnym wektorów $v=(a_1,\ldots,a_n)$ i $w=(b_1,\ldots,b_n)$ nazywamy $\langle v|w\rangle=a_1b_1+\cdots+a_nb_n$. W szczególności wielkość $\langle v|v\rangle=|v|^2$ to długość wektora v.

Zauważmy, że w ten sposób wektor v zadaje funkcjonał, który posyła $w \mapsto \langle v|w \rangle$. Taki funkcjonał oznaczamy $\langle v|$ i mamy $\langle v|$ $|w \rangle = \langle v|w \rangle$.

Jeśli pracujemy nad ciałem \mathbb{C} , to zamiast tego używamy iloczynu hermitowskiego, który jest zdefiniowany bardzo podobnie:

$$\langle v|w\rangle = a_1\overline{b_1} + \dots + a_n\overline{b_n}$$

W szczególności $\langle w|v\rangle = \overline{\langle v|w\rangle}$.

Dzięki temu wielkość $|v| = \sqrt{\langle v|v\rangle}$ jest zawsze rzeczywista dodatnia, nawet gdy współrzędne wektorów są zespolone.

Wielkość $\langle v|w\rangle$ geometrycznie mierzy nam, jak mały jest kąt α pomiędzy v i w: $\langle v|w\rangle = |v| \cdot |w| \cos \alpha$. W szczególności jeśli v i w wskazują w tym samym kierunku, to $\langle v|w\rangle = |v| \cdot |w|$. Z drugiej strony, jeśli $|v\rangle$ i $|w\rangle$ są prostopadłe, to $\langle v|w\rangle = 0$. W abstrakcyjnych przestrzeniach liniowych w taki właśnie sposób definiuje się prostopadłość i ogólniej kąty pomiędzy wektorami.

Macierze unitarne

Przekształcenia, które zachowują iloczyn hermitowski nazywamy unitarnymi. Innymi słowy, macierz U jest unitarna jeśli dla dowolnych $|x\rangle, |y\rangle$ mamy $\langle x|y\rangle = \langle Ux|Uy\rangle$. Ten warunek możemy przepisać na bardziej kompaktowy: U jest unitarna wtedy i tylko wtedy, gdy

$$U^{\dagger}U = I$$

Autor: Miron Hunia Prowadzący: Miron Hunia

gdzie I to macierz przekształcenia identycznościowego i

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}^{\dagger} = \begin{pmatrix} \overline{a_{11}} & \cdots & \overline{a_{n1}} \\ \vdots & \ddots & \vdots \\ \overline{a_{1n}} & \cdots & \overline{a_{nn}} \end{pmatrix}$$

Przekształcenia unitarne zachowują kąty i długości wektorów, więc możemy o nich myśleć, jak o obrotach i symetriach (w odpowiednio więcej wymiarowej przestrzeni).

Komputer kwantowy

Uporawszy się z całą tą teorią, możemy zacząć gadać o modelu komputera kwantowego. Jest to model abstrakcyjny i pomija kwestie fizyczne związane z faktyczną budową komputera kwantowego.

W kontraście do komputera kwantowego, komputery których używamy na co dzień nazywamy komputerami klasycznymi. Te dwa byty są od siebie fundamentalnie różne - komputery kwantowe **nie są** po prostu komputerami z większą mocą obliczeniową. Ich możliwości i algorytmy są fundamentalnie inne.

Kubit

Kubit to kwantowy odpowiednik bita. Tak jak w komputerze klasycznym, kubit może przyjmować stany $|0\rangle$, $|1\rangle$. Jednak w przeciwieństwie do klasycznych bitów, kubit może być w stanie superpozycji, czyli kombinacji liniowej tych stanów bazowych.

$$|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle$$

Jeśli kubit jest w stanie superpozycji i dokonujemy jego pomiaru, to nadal otrzymamy jeden ze stanów $|0\rangle$ lub $|1\rangle$, odpowiednio z prawdopodobieństwem $|a_0|^2$ lub $|a_1|^2$. Jak się okazuje, współrzędne a_0 i a_1 mogą być liczbami zespolonymi.

W takim razie stan kubitu jest opisywany poprzez dwuwymiarową przestrzeń liniową nad \mathbb{C} . Co więcej, ponieważ prawdopodobieństwa sumują się do 1, to musi zachodzić $|a_0|^2 + |a_1|^2 = 1$, czyli możliwe stany kubita są sferą w tej przestrzeni.

Jak wiemy z algebry liniowej, wybór bazy przestrzeni jest dość dowolny, więc możemy się spodziewać, że możemy dokonywać również pomiarów innych stanów, w rodzaju $|\xi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)$. Możemy uogólnić nasz wzór na prawdopodobieństwo:

Prawdopodobieństwo, że kubit po pomiarze będzie w stanie $\xi = \langle \xi | \psi \rangle \langle \psi | \xi \rangle$

Wiele kubitów

Na komputerze klasycznym, jeśli rejestr (czyli ciąg bitów) jest powiedzmy w stanach $|1\rangle$, $|0\rangle$, $|1\rangle$, to możemy powiedzieć, że stan rejestru to $|101\rangle$, który interpretujemy jako liczba binarna $|5\rangle$.

Na komputerze kwantowym, jeśli kubity są w stanach $|1\rangle$, $|0\rangle$, $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, to na intuicję, stan rejestru powinien wynosić $\frac{1}{\sqrt{2}}(|100\rangle + |101\rangle)$. Tak rzeczywiście jest, i tą intuicję możemy sformalizować używając iloczynu tensorowego \otimes . Stan rejestru składającego się z dwóch kubitów w stanach odpowiednio $|\psi\rangle$ i $|\xi\rangle$ to

$$|\psi\rangle\otimes|\xi\rangle=(a_0|0\rangle+a_1|1\rangle)\otimes(b_0|0\rangle+b_1|1\rangle)=a_0b_0|0\rangle\otimes|0\rangle+a_0b_1|0\rangle\otimes|1\rangle+a_1b_0|1\rangle\otimes|0\rangle+a_1b_1|0\rangle\otimes|1\rangle$$

Stany w rodzaju $|0\rangle \otimes |0\rangle$ zapisujemy skrótowo jako $|00\rangle$.

Przyjrzyjmy się teraz stanowi rejestru.

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Ten stan rejestru jest podejrzany, bowiem nie da się go wyfaktowyzować na iloczyn tensorowy stanów składowych kubitów (dlaczego?). Więcej o tym dalej.

Autor: Miron Hunia Prowadzący: Miron Hunia

Bramki kwantowe

W komputerze klasycznym operacje są wykonywane poprzez bramki logiczne, na przykład bramkę NOT, która posyła 0 na 1 i na odwrót. Jak byśmy się spodziewali, że bramka NOT zadziała na kubicie w stanie $\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$? Jeśli bramka się zaaplikuje do każdego stanu z osobna, to powinniśmy dostać $\frac{1}{2}|1\rangle + \frac{\sqrt{3}}{2}|0\rangle$. Tak faktycznie jest. Matematycznie możemy to ująć, że bramki kwantowe są przekształceniami liniowymi.

Dodatkowo wiemy, że bramka kwantowa U powinna zachowywać długość wektorów (bo stany kwantowe leżą na sferze jednostkowej). W takim razie U musi być przekształceniem unitarnym.

Uwaga. To oznacza w szczególności, że U musi być odwracalne, a to oznacza, że niektóre dość proste bramki znane z komputerów klasycznych, w rodzaju przypisanie bitu na 1, nie są możliwe na komputerze kwantowym. Ten problem rozwiązuje się przez dodanie do rejestru dodatkowych kubitów pomocniczych, i zamiast robić przypisanie, robi się SWAP na dwóch kubitach.

Brama	Reprezentacja Macierzowa	Opis
X (NOT)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	Zamienia stany $ 0\rangle$ i $ 1\rangle$
Z	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Zmienia fazę stanu $ 1\rangle$
H (Hadamard)	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	Wprowadza równą superpozycję stanów $ 0\rangle$ i $ 1\rangle$
$S = \sqrt{Z}$	$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	Pierwiastek kwadratowy z Z
$T = \sqrt{S}$	$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$	Pierwiastek czwartego stopnia z ${\cal Z}$
$CNOT\ (CX, ext{Controlled Not})$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	Kontrolowane NOT, działa na dwóch kubitach
SWAP	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	Zamienia dwa kubity
Toffoli (CCNOT)	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$	Kontrolowany $CNOT$

Tablica 1: Podstawowe bramki kwantowe i ich reprezentacje macierzowe

Autor: Miron Hunia Prowadzący: Miron Hunia

Stany splątane i teleportacja kwantowa

Rozpatrzmy teraz następujący układ kwantowy.

$$|0\rangle$$
 H

Ten układ "wymnaża" się do bramki $(H\otimes I)\cdot CX=\frac{1}{\sqrt{2}}\begin{pmatrix}1&0&1&0\\0&1&0&1\\0&1&0&-1\\1&0&-1&0\end{pmatrix}$. Jego pierwsza kolumna mówi nam,

jaki stan dostaniemy na wyjściu, jeśli podamy mu na wejściu stan $|00\rangle$. Jak widać, będzie to $|\xi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Chwila moment! Widzieliśmy już wcześniej taki stan i stwierdziliśmy, że nie da się go rozłożyć na iloczyn tensorowy stanów dwóch kubitów. Co to znaczy?

W takiej sytuacji stan kubitów pierwszego i drugiego nie jest określony indywidualnie, określony jest jedynie stan całego rejestru. W takich sytuacjach mówimy, że rejestr jest w stanie splątanym. Zbadajmy teraz bramkę

Algorytmy kwantowe

Wyrocznia Deutsch-Jozsa

Przyjmijmy, że mamy daną funkcję $f:\{0,1\}^n \to \{0,1\}$, która spełnia jedną z dwóch własności:

- 1. f(x) = 0 dla każdego x lub f(x) = 1 dla każdego x (f jest stała)
- 2. Moc zbioru $\{x: f(x)=0\}$ jest równa mocy zbioru $\{x: f(x)=1\}$ (f jest zbalansowana)

Naszym celem jest stwierdzenie, czy f (podana na wejściu jako układ logiczny, w jakiejś czarnej skrzynce) jest stała, czy zbalansowana.

Na komputerze klasycznym oczywiście trzeba sprawdzić co najmniej $2^{n-1} + 1$ argumentów, żeby móc odpowiedzieć z pewnością. Okazuje się, że na komputerze kwantowym możemy uzyskać deterministyczne rozwiązanie, które aplikuje f jedynie raz. To daje wykładniczo lepszy rezultat!

Zdefiniujmy teraz problem bardziej formalnie, dla komputera kwantowego. Mamy podany operator U_f ("czarną skrzynkę") jako jakiś nieznany układ kwantowy, która zaaplikowanego do rejestru $|x\rangle|y\rangle$ zwraca $|x\rangle|y\oplus f(x)\rangle$, gdzie \oplus oznacza xor bitowy (czyli dodawanie modulo 2 po współrzędnych).

Możemy wówczas użyć pomysłu, który w nazywany jest "phase kickback". Jeśli oznaczymy $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ przez $|-\rangle$, to:

$$U_f |x\rangle |-\rangle = (-1)^{f(x)} |x\rangle |-\rangle$$

Prowadzacy: Miron Hunia

Autor: Miron Hunia

Wówczas zadanie jest rozwiązywane przez poniższy układ.

Przed zaaplikowaniem U_f rejestr jest w stanie $\frac{1}{\sqrt{2^n}}\sum_x|x\rangle\otimes|-\rangle$. Używając phase kickback, wiemy, że po zaaplikowaniu U_f stan wynosi

$$\frac{1}{\sqrt{2^n}} \left(\sum_x (-1)^{f(x)} |x\rangle \right) \otimes |-\rangle$$

Teraz możemy zignorować ostatni kubit. Aplikując jeszcze raz bramkę $H^{\otimes n}$ dostajemy

$$\frac{1}{2^n} \left(\sum_x \sum_z (-1)^{x \cdot z + f(x)} |z\rangle \right)$$

Skupiając się na samym stanie $|z\rangle=|0\rangle$ dostajemy, że współczynnik przy tym stanie wynosi

$$\frac{1}{2^n} \sum_{x} (-1)^{f(x)}$$

Ta suma wynosi 0 jeśli f jest zbalansowane. Jeśli f jest stałe, to ta suma wynosi 1 lub -1. Zatem jeśli zmierzony stan rejestru po zakończeniu algorytmu to 0 to wiemy, że f jest funkcją stałą, w przeciwnym razie możemy być pewni, że f jest stałe.

Algorytm Grovera

Gwóźdź programu. Tak samo jak algorytm Deutsch-Jozsy, algorytm Grovera jest algorytmem z wyrocznią. W przeciwieństwie do algorytmu Deutsch-Jozsy jednak, algorytm Grovera ma praktyczne zastosowania. Sformułujmy problem. Mamy zaimplementowaną funkcję $f:\{0,1\}^n \to \{0,1\}$, do której dostęp mamy poprzez wyrocznię. Tym razem zakładamy, że f(x) jest równe 1 w dokładnie jednym punkcie, nazwijmy go ω . Nasza wyrocznia jest określona przez $U_{\omega}|x\rangle = |x\rangle$ jeśli $x \neq \omega$ i $U_{\omega}|x\rangle = -|x\rangle$ jeśli $x = \omega$. Można to skrótowo zapisać jako

$$U_{\omega} |x\rangle = (-1)^{f(x)} |x\rangle$$

Algorytm Grovera opiera się na operatorze dyfuzji

$$U_s = 2 |s\rangle \langle s| - I = \begin{pmatrix} \frac{1}{N} & \cdots & \frac{1}{N} \\ \vdots & \ddots & \vdots \\ \frac{1}{N} & \cdots & \frac{1}{N} \end{pmatrix}$$

gdzie $s=H^{\otimes n}|0^{\otimes n}\rangle$ jest wektorem w równej superpozycji wszystkich stanów. Możemy go zaimplementować jak poniżej.

$$0^{\otimes n}\rangle$$
 $H^{\otimes n}$ $X^{\otimes n}$ $H^{\otimes n}$ $H^{\otimes n}$

Ten operator jest operatorem odbicia względem $|s\rangle$. W szczególności jeśli zainicjujemy rejestr w stanie $|s\rangle$, to wykonując operacje U_s i U_ω pozostaniemy w jednej płaszczyźnie, rozpiętej przez stany ortonormalne ω i $s' = \sqrt{\frac{N}{N-1}}(s-\frac{1}{\sqrt{N}}\omega)$. Wtedy U_ω jest operatorem odbicia względem s'. W takim razie ich złożenie U_sU_ω jest obrotem o kąt θ , który jest dwukrotnością kąta między s i s'. Możemy go policzyć iloczynem hermitowskim.

$$\cos\left(\frac{1}{2}\theta\right) = \langle s|s'\rangle = \langle \sqrt{\frac{N-1}{N}}s' + \frac{1}{\sqrt{N}}\omega|s'\rangle = \sqrt{\frac{N-1}{N}}\left\langle s'|s'\right\rangle + \langle \frac{1}{\sqrt{N}}\omega|s'\rangle = \sqrt{\frac{N-1}{N}} + 0 = \sqrt{\frac{N-1}{N}}$$

Autor: Miron Hunia Prowadzący: Miron Hunia

Stąd

$$\frac{\theta}{2} \approx \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1}{N}}$$

Stąd widzimy, że aby wykonać obrót o $\frac{\pi}{2}$ wystarczy nam wykonać około $\frac{\pi\sqrt{N}}{4}$ obrotów. Wylądujemy obok ω z dokładnością do $\frac{\omega}{2}$, co nam pozwala oszacować prawdopodobieństwo, że po pomiarze wyjdzie ω . Oznaczmy przez ψ nasz stan końcowy. Wówczas

$$\left\langle \psi | \omega \right\rangle \left\langle \omega | \psi \right\rangle \geq^2 \left\langle \psi | \psi \right\rangle \left\langle \omega | \omega \right\rangle \cos^2 \left(\frac{\theta}{2} \right) \geq \left(1 - \frac{1}{N} \right)^2 \geq \frac{(N-1)^2}{N^2}$$