1. Graph the equation below.

$$f(x) = -(x-1)^2 + 11$$

Α.

C.

D.

В.

- E. None of the above.
- 2. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$10x^2 - 13x + 2 = 0$$

- A. $x_1 \in [-1.4, -0.1]$ and $x_2 \in [-0.18, 0.82]$
- B. $x_1 \in [1.4, 2.4]$ and $x_2 \in [10.22, 12.22]$
- C. $x_1 \in [-1.1, 1.2]$ and $x_2 \in [1.12, 6.12]$
- D. $x_1 \in [-9, -8.5]$ and $x_2 \in [8.08, 11.08]$
- E. There are no Real solutions.
- 3. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$81x^2 + 90x + 25$$

A.
$$a \in [-6, 2], b \in [41, 49], c \in [-0.4, 2.6], and $d \in [41, 52]$$$

B.
$$a \in [9, 10], b \in [5, 9], c \in [6.2, 12.3], and $d \in [0, 10]$$$

C.
$$a \in [22, 29], b \in [5, 9], c \in [1.7, 5], and $d \in [0, 10]$$$

D.
$$a \in [3, 7], b \in [5, 9], c \in [26.6, 27.5], and $d \in [0, 10]$$$

- E. None of the above.
- 4. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 + 25x - 36 = 0$$

A.
$$x_1 \in [-0.71, -0.32]$$
 and $x_2 \in [2.39, 2.41]$

B.
$$x_1 \in [-45.74, -44.28]$$
 and $x_2 \in [19.97, 20.18]$

C.
$$x_1 \in [-9.57, -7.92]$$
 and $x_2 \in [0.04, 0.25]$

D.
$$x_1 \in [-2.53, -1.43]$$
 and $x_2 \in [0.75, 0.81]$

E.
$$x_1 \in [-4.18, -3.5]$$
 and $x_2 \in [0.26, 0.64]$

5. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$11x^2 - 12x + 3 = 0$$

A.
$$x_1 \in [0.31, 0.51]$$
 and $x_2 \in [0.1, 0.8]$

B.
$$x_1 \in [3.88, 4.32]$$
 and $x_2 \in [6.8, 8]$

C.
$$x_1 \in [-3.3, -2.62]$$
 and $x_2 \in [2.1, 4.3]$

D.
$$x_1 \in [-1.63, 0.2]$$
 and $x_2 \in [-0.9, 0.2]$

- E. There are no Real solutions.
- 6. Graph the equation below.

$$f(x) = -(x+1)^2 + 20$$

C.

В.

D.

E. None of the above.

7. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 - 50x + 24 = 0$$

A. $x_1 \in [0.18, 0.28]$ and $x_2 \in [3.53, 4.07]$

B. $x_1 \in [0.62, 0.83]$ and $x_2 \in [0.84, 1.28]$

C. $x_1 \in [19.98, 20.03]$ and $x_2 \in [29.73, 30.11]$

D. $x_1 \in [0.55, 0.73]$ and $x_2 \in [1.47, 2.23]$

E. $x_1 \in [0.33, 0.55]$ and $x_2 \in [1.9, 2.69]$

8. Write the equation of the graph presented below in the form f(x) = $ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [-1, 0], b \in [4, 7], \text{ and } c \in [-7, -4]$
- B. $a \in [0, 5], b \in [4, 7], \text{ and } c \in [0, 4]$
- C. $a \in [0, 5], b \in [4, 7], and c \in [4, 8]$
- D. $a \in [0, 5], b \in [-4, -3], \text{ and } c \in [0, 4]$
- E. $a \in [-1, 0], b \in [-4, -3], \text{ and } c \in [-7, -4]$
- 9. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$54x^2 - 69x + 20$$

- A. $a \in [5.94, 7.72], b \in [-5, -3], c \in [5, 13], and <math>d \in [-6, -3]$
- B. $a \in [0.23, 1.4], b \in [-49, -43], c \in [1, 3], and <math>d \in [-24, -23]$
- C. $a \in [1.09, 2.11], b \in [-5, -3], c \in [27, 28], and <math>d \in [-6, -3]$
- D. $a \in [11.78, 12.62], b \in [-5, -3], c \in [3, 6], and <math>d \in [-6, -3]$
- E. None of the above.
- 10. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [0.5, 2.3], b \in [2, 6], and <math>c \in [-1, 1]$
- B. $a \in [-1.2, 0.5], b \in [2, 6], and <math>c \in [-8, -5]$
- C. $a \in [-1.2, 0.5], b \in [-7, 0], \text{ and } c \in [-8, -5]$
- D. $a \in [0.5, 2.3], b \in [-7, 0], \text{ and } c \in [-1, 1]$
- E. $a \in [0.5, 2.3], b \in [2, 6], \text{ and } c \in [8, 10]$

2790-1423 Summer C 2021