NLU HW1

Beisong Liu UID: bl1986

March 16, 2025

Question 1

Part (b)

1. input_ids:

These are the numerical representations of tokens. Each token from the input text is mapped to a unique integer based on the tokenizer's vocabulary. These IDs are used by BERT to look up embeddings from the embedding matrix, effectively conveying the textual content of the input.

2. token_type_ids:

These indicate which segment or sentence a token belongs to. For tasks that involve sentence pairs (such as question answering or natural language inference), tokens from the first sentence are typically assigned a value of 0 and tokens from the second sentence a value of 1. This helps BERT understand sentence boundaries and the relationship between different segments.

3. attention_mask:

This is a binary mask that distinguishes between actual tokens and padding tokens. A value of 1 indicates that the corresponding token is valid and should be attended to, while a value of 0 indicates padding. This mask ensures that the model's attention mechanism focuses only on the meaningful parts of the input.

Part (c)

The BERT_{tiny} model was fine-tuned for exactly 4 epochs using each combination of the following hyper-parameters:

• Batch size: 8, 16, 32, 64, 128

• Learning rates: 3e-4, 1e-4, 5e-5, 3e-5

For each GLUE task, a grid search was performed over these (batch size, learning rate) pairs to determine the best fine-tuning configuration.

Question 3

Part (a)

	Validation Accuracy	Learning Rate	Batch Size
Without BitFit	0.888	3e-4	64
With BitFit	0.624	3e-4	16

Table 1: Comparison of validation accuracy, learning rate, and batch size with and without BitFit.

Part (b)

	# Trainable Parameters	Test Accuracy
Without BitFit	4386178	0.876
With BitFit	3074	0.623

Table 2: Comparison of the number of trainable parameters and test accuracy with and without BitFit.

Question:Finally, please comment on your results. How do they compare to the results reported by Zaken et al. (2020)? What does this say about BitFit and its applicability to other pre-trained Transformers?

Performance Comparison

My results show a significant drop in accuracy (from 0.876 to 0.623) when using BitFit. However, in the results reported by Zaken et al. (2020), by using BitFit, they can retain much of a model's performance while drastically reducing the number of trainable parameters. I guess the reason is that:

- The base model I used is already quite small (BERT-Tiny).
- Freezing most parameters further reduces its flexibility to learn the classification task.

Implications for Other Pre-trained Transformers

• Benefit of Fewer Trainable Parameters:

BitFit drastically reduces the memory and computational cost of fine-tuning, making it appealing for large models or constrained deployment environments.

• Performance Trade-Off:

If the underlying model is very small (like BERT-Tiny), freezing all but the bias terms can lead to substantial accuracy drops. Larger models tend to tolerate BitFit better and often show results closer to full fine-tuning.

• Task Dependency:

For tasks with simpler decision boundaries or abundant labeled data, BitFit can still work surprisingly well. However, tasks that require more nuanced understanding may see larger drops in performance.