Leftist Heaps and Skew Heaps

Leftist Heaps

Target: Speed up merging in O(N).

- Heap: Structure Property + Order Property
 - **\rightarrow** Have to copy one array into another $\longrightarrow \Theta(N)$
 - Use pointers Slow down all the operations

Leftist Heap:

Order Property – the same Structure Property – binary tree, but *unbalanced* **Definition** The null path length, Npl(X), of any node X is the length of the shortest path from X to a node without two children. Define Npl(NULL) = -1.

Note:

 $Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$

【Definition】 The leftist heap property is that for every node X in the heap, the null path length of the left child is at least as large as that of the right child.

The tree is biased to get deep toward the *left*.

Theorem A leftist tree with r nodes on the right path must have at least 2^r – 1 nodes.

Proof: By induction on p. 162.

Note: The leftist tree of N nodes has a right path containing at most $\lfloor \log(N+1) \rfloor$ nodes.

We can perform all the work on the *right* path, which is guaranteed to be **short**.

Trouble makers: Insert and Merge

Note: Insertion is merely a special case of merging.

Declaration:

Merge (recursive version):


```
PriorityQueue Merge ( PriorityQueue H1, PriorityQueue H2 )
{
    if ( H1 == NULL )        return H2;
    if ( H2 == NULL )        return H1;
    if ( H1->Element < H2->Element )       return Merge1( H1, H2 );
    else return Merge1( H2, H1 );
}
```

```
static PriorityQueue
Merge1( PriorityQueue H1, PriorityQueue H2)
   if ( H1->Left == NULL ) /* single node */
         H1->Left = H2; /* H1->Right is already NULL
                              and H1->Npl is already 0 */
  else {
         H1->Right = Merge( H1->Right, H2 );
                                              /* Step 1 & 2 */
         if (H1->Left->Npl < H1->Right->Npl)
                  SwapChildren( H1 );
                                              /* Step 3 */
         H1->Npl = H1->Right->Npl + 1;
  } /* end else */
                                                   What if Npl is NOT
  return H1;
                                                        updated?
                   T_p = O(\log N)
```

Merge (iterative version):

Step 1: Sort the right paths without changing their left children

Step 2: Swap children if necessary

DeleteMin:

Step 1: Delete the root

Step 2: Merge the two subtrees

$$T_p = O(\log N)$$

Skew Heaps -- a simple version of the leftist heaps

Target: Any M consecutive operations take at most $O(M \log N)$ time.

Merge: Always swap the left and right children except that the largest of all the nodes on the right paths does not have its children swapped. No Npl.

[Example] Insert 15

Merge (iterative version):

Note:

- Skew heaps have the advantage that no extra space is required to maintain path lengths and no tests are required to determine when to swap children.
- The second problem to determine precisely the expected right path length of both leftist and skew heaps.

Amortized Analysis for Skew Heaps

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

 D_i = the root of the resulting tree

 $\Phi(D_i) = \text{number of } heavy \text{ nodes}$

[Definition] A node p is *heavy* if the number of descendants of p's right subtree is at least half of the number of descendants of p, and *light* otherwise. Note that the number of descendants of a node includes the node itself.

Leftist Heaps & Skew Heaps

The only nodes whose heavy/light status can change are nodes that are initially on the right path.

$$H_i: l_i + \underbrace{h_i \ (i=1,2)}$$

Along the right path

 $T_{worst} = l_1 + h_1 + l_2 + h_2$

Before merge:
$$\Phi_i = h_1 + h_2 + h$$
 $T_{amortized} = T_{worst} + \Phi_{i+1} - \Phi_i$

After merge: $\Phi_i \le l_1 + l_2 + h$ $\le 2(l_1 + l_2)$

After merge:
$$\Phi_{i+1} \le l_1 + l_2 + h$$
 $\le 2 (l_1 + l_2)$

$$l = O(\log N)$$
 \longrightarrow $T_{amortized} = O(\log N)$

Reference:

Data Structure and Algorithm Analysis in C (2nd Edition): Ch.5, p.161-169; Ch.11, p.435-437; M.A. Weiss 著、 陈越改编,人民邮件出版社,2005