Estructures bàsiques MOS

Rosa M. Badia Ramon Canal DM Tardor 2004 – Actualitzat tardor 2020

Estructura general d'una porta MOS:

Resistència d'un transistor MOS

- La resistència d'un transistor indica una aproximació de la quantitat de corrent que pot transmetre.
- La resistència R és:
 - directament proporcional a la longitud L del canal.
 - inversament proporcional a la amplada W del canal.
- Degut a la diferent mobilitat dels electrons i els forats, la resistència d'un transistor pMOS Rsp es aproximadament dues vegades més gran que la resistència d'un transistor nMOS Rs.

$$R_{sp} \approx 2 R^s$$

- Las dimensiones del transistor s'indiquen com:
- L/W valors reals, L:W ratio entre valors (cada unitat = 2λ)

Corba de transferència de voltatge ideal

• El comportament real es més complex y depèn de les resistències y capacitats dels transistors

Corba de transferència de voltatge real

 La corba de transferència determina els marges de soroll (NM) i la regió d'indeterminació per l'entrada.

- Alta integració
- Consum estàtic alt si V_{out} = 0V
- Zeros lògics degradats

La relació Rpu/Rpd és crítica

• $R_{pu} \ge 4R_{pd}$

Relacio Rpu/Rpd amb divisors de tensió

$$\frac{V_{DD} - GND}{R_{\text{pu}}} = \frac{V_{out} - GND}{R_{pd}}$$

$$V_{out} = \frac{R_{pd}}{R_{pd}}$$

$$V_{out} = \frac{R_{pd}}{R_{pd}}$$

- Duplicació de la lògica
- Baix consum estàtic
- Funcions lògiques simètriques

Comportament simètric si R_{pu}=R_{pd} (tenint en compte que 1R_{sp} = 2R_s)

Retards en l'inversor CMOS

Estructures nMOS

Estructures CMOS

Càlcul resistències

• Resistències en sèrie

$$R_{\text{sèrie}} = R_A + R_B$$

Resistències en paral·lel

$$1/R_{paral \cdot lel} = 1/R_A + 1/R_B$$

Estructures bàsiques MOS

Rosa M. Badia Ramon Canal DM Tardor 2004 – Actualitzat tardor 2020

