AMENDMENTS TO THE SEQUENCE LISTING

IN THE SEQUENCE LISTING

Please replace the Sequence Listing of record with the Substitute Sequence Listing enclosed herewith.

SEQUENCE LISTING

Osamu OHARA et al.

<120> NOVEL CARCINOMA-ASSOCIATED GENE

<130> 1254-0282PUS1

<140> US 10/535,733

<141> 2005-05-20

<150> JP 2002/338549

<151> 2002-11-21

<160> 7

<170> PatentIn Ver. 2.1

<210> 1

<211> 8982

<212> DNA

<213> Homo sapiens

<400> 1

gcggggccgg	acgccggaca	ccagagcgcg	ggcggcggag	ccagcgggcg	agagagcgcg	60
cggcgggcgc	gggttgccct	cgtcgagagc	catgggcgcg	gcgcggcgcg	gggctgagga	120
tcggcgcggc	ccggaggcgc	tggggaccgg	ggcgcgggcc	cggggccgcc	tttagccggc	180
accgagggcg	cggggccggg	gatgagggcg	cccgccgcgg	ggagcccgtc	tgcgcgccgc	240
ggcaccttcc	cgcccagcga	gcgagcccga	gcaggcagac	gcgcggccgg	cggtctgggg	300
gcgcgccgcc	tcccggtccc	caaaatgtga	agcggggagg	gcggagacgc	agagacggcc	360
cggccgggcg	ccctcgccgc	cctccggcag	ccgcgccgct	ccctccgctg	cacgcccagg	420
cctgagcagc	gaggccaccg	ggccgcgcgc	tcccagcttc	gctcggacgc	ggcttcggcc	480
cgcagagggt	tcgtggcccg	gacgcggcga	gagctgggcc	caggacggtg	cgtccggcct	540
cgcccgcggc	tgctcgcacc	aacaagtttg	aacaatgatc	accgtcaacc	ccgatgggaa	600
gataatggtc	agaagatgcc	tggtcaccct	gagacccttt	cggctttttg	tcctgggcat	660
cggcttcttc	actctctgct	tcctgatgac	gtctctggga	ggccagttct	cggcccggcg	720
cctgggggac	tcgccattca	ccatccgcac	agaagtgatg	gggggccccg	agtcccgcgg	780
cgtcctgcgc	aagatgagcg	acctgctgga	gctgatggtg	aagcgcatgg	acgcactggc.	840
caggctggag	aacagcagtg	agctgcaccg	ggccggcggc	gacctgcact	ttcccgcaga	900
caggatgccc	cctggggccg	gcctcatgga	gcggatccag	gctattgccc	agaacgtctc	960
cgacatcgct	gtgaaggtgg	accagatcct	gcgccacagt	ctgctcctgc	acagcaaggt	1020

gtcagaaggc	cggcgggacc	agtgtgaggc	acccagtgac	cccaagttcc	ctgactgctc	1080
agggaaggtg	gagtggatgc	gtgcccgctg	gacctctgac	ccctgctacg	ccttctttgg	1140
ggtggacggc	accgagtgct	ccttcctcat	ctacctcagt	gaggtcgagt	ggttctgccc	1200
cccgctgccc	tggaggaacc	agacggctgc	ccagagggca	cccaagcccc	tccccaaagt	1260
ccaggcagtt	ttccgaagca	acctgtccca	ccttctggac	ctgatgggca	gcgggaagga	1320
gtccctgatc	ttcatgaaga	agcggaccaa	gaggctcaca	gcccagtggg	cgctggctgc	1380
ccagcgcctg	gcacagaagc	tgggggccac	ccagagggac	cagaagcaga	tcctggtcca	1440
catcggcttc	ctgacggagg	agtccgggga	cgtgttcagc	cctcgggtcc	tgaagggcgg	1500
gcccctaggg	gagatggtgc	agtgggcgga	cattctgact	gcactctatg	tcctgggcca	1560
tggcctgcgg	gtcacagtct	ccctgaagga	gctgcagagt	aacttagggg	taccgccagg	1620
ccggggaagc	tgcccgctca	ccatgcccct	gcccttcgac	ctcatctaca	ccgactacca	1680
cggcctgcag	cagatgaagc	ggcacatggg	actctccttc	aagaagtacc	ggtgccgaat	1740
cagggtcatc	gacaccttcg	ggacggaacc	tgcgtacaac	cacgaggagt	acgccacgct	1800
gcacggctac	cggaccaact	ggggctactg	gaacctcaac	cccaagcagt	tcatgaccat	1860
gtttcctcat	acccccgaca	actccttcat	gggcttcgtg	tccgaggagc	tcaacgagac	1920
ggagaagcgg	ctcatcaaag	gcggcaaggc	cagcaacatg	gccgtggtgt	acggcaagga	1980
ggcgagcatc	tggaagctcc	aggggaagga	gaagttcctg	ggcatcctga	acaaatacat	2040
ggagatccat	ggcaccgtgt	actacgagag	ccagcggccc	cccgaggtgc	cagcctttgt	2100
gaagaaccac	ggcctcttac	cgcagcctga	gtttcagcag	ctgctgcgca	aggccaaact	2160
cttcatcggg	tttggcttcc	cctacgaggg	ccccgccccc	ctggaggcca	tcgccaatgg	2220
ttgcatcttc	ctgcagtccc	gcttcagccc	gccccacagc	tccctcaacc	acgagttctt	2280
ccgaggcaag	cccacctcca	gagaggtgtt	ctcccagcat	ccctacgcgg	agaacttcat	2340
cggcaagccc	cacgtgtgga	cagtcgacta	caacaactca	gaggagtttg	aagcagccat	2400
caaggccatt	atgagaactc	aggtagaccc	ctacctaccc	tacgagtaca	cctgcgaggg	2460
gatgctggag	cggatccacg	cctacatcca	gcaccaggac	ttctgcagag	ctccagaccc	2520
tgccctacca	gaggcccacg	cccgcagag	cccctttgtc	ctggccccca	atgccaccca	2580
cctcgagtgg	gctcggaaca	ccagcttggc	tcctggggcc	tggccccccg	cgcacgccct	2640
gcgggcctgg	ctggccgtgc	ctgggagggc	ctgcaccgac	acctgcctgg	accacgggct	2700

2760 aatctgtgag ccctccttct tccccttcct gaacagccag gacgccttcc tcaagctgca 2820 ggtgccctgt gacagcaccg agtcggagat gaaccacctg tacccggcgt tcgcccagcc 2880 tggccaggag tgctacctgc agaaggagcc tctgctcttc agctgcgccg gctccaacac 2940 caagtaccgc cggctctgcc cctgccgcga cttccgcaag ggccaggtgg ccttgggcca 3000 gggctgtctg tgaatccgcc tctgccgccc tgcctggcac ccacgctggc tctctcctgc 3060 cgcgggagaa agcaccagca ggttctgagc cctggctgct tgtcctcctc gcaaccccc 3120 caggccggag cttccttcct tagccgggaa gctggcagag gagagccgtg cccgggaata ggaggaggca gcatgccgag cccctgggac ctcccaggca ggctccggtt ctctcctggg 3180 gactcacggc agcatcgtgg ccaagcaggt gtcggactgc tcagagtccg catggcccag 3240 3300 gagcaggtgg tcggaggccc ctggctttgt gcaaggccgg atctgggcca ggtggcgaaa 3360 ggggcccagt cgttcttggg cccaggatgg ggcctctaga cttgcaaggg agaggaacag 3420 ggaccagget geeccaeggt ecetgaaggg tecaaggagg ggeecteece atggeeetgg 3480 agagtgggcc tgggtggtac ctgctccagg cagggaaact gggggctcgc ccttctcctg 3540 tgaggggagc caggcacaca gggcccattg gtgtttggga tgtggacaga ggggcagggg 3600 gctgggagaa ggctaagccg aggggtcctg tttgtgcctc cccttagtcc cttccctcc gatttcccga ttcccccacc ctccctctac acttgaggac cacagttggg ggtgtaggga 3660 3720 ccacccagac cctggttgaa ttgtttctct ctcctgcttg ttccaaccct tttcactctg 3780 ggcttctccc aaaacccatc ctggcatgac ctgcaactcc aggtggtgga tttgttccaa 3840 agceteaate cetaceceet ceaaggggea ggttteeagt ecageeteag agateagget ctgggacccc tgcctggggg gtggccttca tgcaccagcc acttccgcag gtgctgactc 3900 3960 cogcactece tggcattttt tgcagacaag ggettgggat ggacceteag ecceatggta cgccctgccc agtttccaga tgccctgtcc acttacccta ggtagccccc caccccatca 4020 gtgccgagtc cttgtcccta cctccagctt cctccagcct caaaccgcct ctggatctag 4080 ctgtccttct ccgagtggca cgcctgccc aggatgccc ctttccctcc ccccatgcc 4140 cagageeeeg cetgeeteag egggteagge etteagaaca etgeeaceea eccagtttta 4200 4260 taatcccgct ccctctccag gcaaccccac ccaccagcct aggcctgctc ctccaccctt cccgggaggc agccccggga tgctgagagt tggtggaggg gccaggctgg acgcttcccg 4320 4380 tgggagtccc ctccagacct ggctggcccc tgcagccaca gaaaccacga tggcaaaaaa 4440 teteattggt teteaaggae taacetgtgg gggaaageaa tagagaeaet etttteetet

ctttttttaa agatttattt cttgaaataa taaatatttt attgggatgt ggcggggccg 4500 4560 4620 4680 cccggaggcg ctggggaccg gggcgcggc ccggggccgc ctttagccgg caccgagggc 4740 geggggeegg ggatgaggge geeegeegeg gggageeegt etgegeege eggeaeette 4800 ccgcccagcg agcgagcccg agcaggcaga cgcgcggccg gcggtctggg ggcgcgccgc 4860 gecetegeeg eceteeggea geegegeege teeeteeget geaegeecag geetgageag 4920 4980 cgaggccacc gggccgcgcg ctcccagctt cgctcggacg cggcttcggc ccgcagaggg 5040 ttegtggeee ggaegeggeg agagetggge eeaggaeggt gegteeggee tegeeeggg 5100 ctgctcgcac caacaagttt gaacaatgat caccgtcaac cccgatggga agataatggt 5160 cagaagatgc ctggtcaccc tgagaccctt tcggcttttt gtcctgggca tcggcttctt 5220 cactetetge tteetgatga egtetetggg aggecagtte teggecegge geetggggga 5280 ctcgccattc accatccgca cagaagtgat ggggggcccc gagtcccgcg gcgtcctgcg 5340 caagatgagc gacctgctgg agctgatggt gaagcgcatg gacgcactgg ccaggctgga gaacagcagt gagctgcacc gggccggcgg cgacctgcac tttcccgcag acaggatgcc 5400 ccctggggcc ggcctcatgg agcggatcca ggctattgcc cagaacgtct ccgacatcgc 5460 tgtgaaggtg gaccagatcc tgcgccacag tctgctcctg cacagcaagg tgtcagaagg 5520 5580 ccggcgggac cagtgtgagg cacccagtga ccccaagttc cctgactgct cagggaaggt 5640 ggagtggatg cgtgcccgct ggacctctga cccctgctac gccttctttg gggtggacgg 5700 caccgagtgc tectteetea tetaceteag tgaggtegag tggttetgee eeeegetgee 5760 ctggaggaac cagacggctg cccagagggc acccaagccc ctccccaaag tccaggcagt 5820 tttccgaagc aacctgtccc accttctgga cctgatgggc agcgggaagg agtccctgat 5880 cttcatgaag aagcggacca agaggctcac agcccagtgg gcgctggctg cccagcgcct ggcacagaag ctgggggcca cccagaggga ccagaagcag atcctggtcc acatcggctt 5940 cctgacggag gagtccgggg acgtgttcag ccctcgggtc ctgaagggcg ggcccctagg 6000 ggagatggtg cagtgggcgg acattetgae tgeactetat gteetgggee atggeetgeg 6060 ggtcacagtc tccctgaagg agctgcagag taacttaggg gtaccgccag gccggggaag 6120

ctgcccgctc accatgcccc tgcccttcga cctcatctac accgactacc acggcctgca 6180 6240 gcagatgaag cggcacatgg gactctcctt caagaagtac cggtgccgaa tcagggtcat 6300 cgacacette gggacggaac etgegtacaa ecaegaggag taegecaege tgeaeggeta 6360 coggaccaac tggggctact ggaacctcaa coccaagcag ttcatgacca tgtttootca 6420 tacccccgac aactccttca tgggcttcgt gtccgaggag ctcaacgaga cggagaagcg 6480 gctcatcaaa ggcggcaagg ccagcaacat ggccgtggtg tacggcaagg aggcgagcat 6540 ctggaagete caggggaagg agaagtteet gggcateetg aacaaataca tggagateca 6600 tggcaccgtg tactacgaga gccagcggcc ccccgaggtg ccagcctttg tgaagaacca 6660 eggeetetta eegeageetg agttteagea getgetgege aaggeeaaac tetteategg 6720 gtttggcttc ccctacgagg gccccgccc cctggaggcc atcgccaatg gttgcatctt 6780 cctgcagtcc cgcttcagcc cgccccacag ctccctcaac cacgagttct tccgaggcaa geocacetee agagaggtgt teteceagea teeetaegeg gagaaettea teggeaagee 6840 6900 ccacgtgtgg acagtcgact acaacaactc agaggagttt gaagcagcca tcaaggccat 6960 tatgagaact caggtagacc cctacctacc ctacgagtac acctgcgagg ggatgctgga 7020 geggateeae geetacatee ageaeeagga ettetgeaga geteeagaee etgeeetaee 7080 agaggeeeae geeeegeaga geeeetttgt eetggeeeee aatgeeaeee aeetegagtg ggeteggaac accagettgg etectgggge etggeeeece gegeaegeee tgegggeetg 7140 7200 gctggccgtg cctgggaggg cctgcaccga cacctgcctg gaccacgggc taatctgtga 7260 geeeteette tteeeettee tgaacageea ggacgeette etcaagetge aggtgeeetg 7320 tgacagcacc gagtcggaga tgaaccacct gtacccggcg ttcgcccagc ctggccagga 7380 gtgctacctg cagaaggagc ctctgctctt cagctgcgcc ggctccaaca ccaagtaccg 7440 coggetetge ecctgoogeg acttoogeaa gggccaggtg gccttgggcc agggctgtct 7500 gtgaatccgc ctctgccgcc ctgcctggca cccacgctgg ctctctcctg ccgcgggaga 7560 aagcaccage aggttetgag eeetggetge ttgteeteet egeaacceee eeaggeegga getteettee ttageeggga agetggeaga ggagageegt geeegggaat aggaggagge 7620 agcatgccga gcccctggga cctcccaggc aggctccggt tctctcctgg ggactcacgg 7680 cagcatcgtg gccaagcagg tgtcggactg ctcagagtcc gcatggccca ggagcaggtg 7740 gtcggaggcc cctggctttg tgcaaggccg gatctgggcc aggtggcgaa aggggcccag 7800 tegttettgg geceaggatg gggeetetag aettgeaagg gagaggaaca gggaeeagge 7860

tgccccacgg	tccctgaagg	gtccaaggag	gggccctccc	catggccctg	gagagtgggc	7920
ctgggtggta	cctgctccag	gcagggaaac	tgggggctcg	cccttctcct	gtgaggggag	7980
ccaggcacac	agggcccatt	ggtgtttggg	atgtggacag	aggggcaggg	ggctgggaga	8040
aggctaagcc	gaggggtcct	gtttgtgcct	ccccttagtc	ccttccctcc	cgatttcccg	8100
attcccccac	cctccctcta	cacttgagga	ccacagttgg	gggtgtaggg	accacccaga	8160
ccctggttga	attgtttctc	tctcctgctt	gttccaaccc	ttttcactct	gggcttctcc	8220
caaaacccat	cctggcatga	cctgcaactc	caggtggtgg	atttgttcca	aagcctcaat	8280
ccctaccccc	tccaaggggc	aggtttccag	tccagcctca	gagatcaggc	tctgggaccc	8340
ctgcctgggg	ggtggccttc	atgcaccagc	cacttccgca	ggtgctgact	cccgcactcc	8400
ctggcatttt	ttgcagacaa	gggcttggga	tggaccctca	gccccatggt	acgccctgcc	8460
cagtttccag	atgccctgtc	cacttaccct	aggtagcccc	ccaccccatc	agtgccgagt	8520
ccttgtccct	acctccagct	tcctccagcc	tcaaaccgcc	tctggatcta	gctgtccttc	8580
tccgagtggc	acgcctgccc	caggatgccc	cctttccctc	cccccatgc	ccagagcccc	8640
gcctgcctca	gcgggtcagg	ccttcagaac	actgccaccc	acccagtttt	ataatcccgc	8700
tccctctcca	ggcaacccca	cccaccagcc	taggcctgct	cctccaccct	tcccgggagg	8760
cagccccggg	atgctgagag	ttggtggagg	ggccaggctg	gacgcttccc	gtgggagtcc	8820
cctccagacc	tggctggccc	ctgcagccac	agaaaccacg	atggcaaaaa	atctcattgg	8880
ttctcaagga	ctaacctgtg	ggggaaagca	atagagacac	tctttttctc	tcttttttta	8940
aagatttatt	tcttgaaata	ataaatattt	tattgggatg	tg		8982

<210> 2 <211> 792

<212> PRT

<213> Homo sapiens

<400> 2

Met Ile Thr Val Asn Pro Asp Gly Lys Ile Met Val Arg Arg Cys Leu
1 5 10 15

Val Thr Leu Arg Pro Phe Arg Leu Phe Val Leu Gly Ile Gly Phe Phe 20 25 30 .

Thr Leu Cys Phe Leu Met Thr Ser Leu Gly Gly Gln Phe Ser Ala Arg 35 40 45

Arg Leu Gly Asp Ser Pro Phe Thr Ile Arg Thr Glu Val Met Gly Gly 50 55 60

Pro 65	Glu	Ser	Arg	Gly	Val 70	Leu	Arg	Lys	Met	Ser 75	Asp	Leu	Leu	Glu	Leu 80
Met	Val	Lys	Arg	Met 85	Asp	Ala	Leu	Ala	Arg 90	Leu	Glu	Asn	Ser	Ser 95	Glu
Leu	His	Arg	Ala 100	Gly	Gly	Asp	Leu	His 105	Phe	Pro	Ala	Asp	Arg 110	Met	Pro
Pro	Gly	Ala 115	Gly	Leu	Met	Glu	Arg 120	Ile	Gln	Ala	Ile	Ala 125	Gln	Asn	Val
Ser	Asp 130	Ile	Ala	Val	Lys	Val 135	Asp	Gln	Ile	Leu	Arg 140	His	Ser	Leu	Leu
Leu 145	His	Ser	Lys	Val	Ser 150	Glu	Gly	Arg	Arg	Asp 155	Gln	Cys	Glu	Ala	Pro 160
Ser	Asp	Pro	Lys	Phe 165	Pro	Asp	Cys	Ser	Gly 170	Lys	Val	Glu	Trp	Met 175	Arg
Ala	Arg	Trp	Thr 180	Ser	Asp	Pro	Cys	Tyr 185	Ala	Phe	Phe	Gly	Val 190	Asp	Gly
Thr	Glu	Cys 195	Ser	Phe	Leu	Ile	Tyr 200	Leu	Ser	Glu	Val	Glu 205	Trp	Phe	Cys
Pro	Pro 210	Leu	Pro	Trp	Arg	Asn 215	Gln	Thr	Ala	Ala	Gln 220	Arg	Ala	Pro	Lys
Pro 225	Leu	Pro	Lys	Val	Gln 230	Ala	Val	Phe	Arg	Ser 235	Asn	Leu	Ser	His	Leu 240
Leu	Asp	Leu	Met	Gly 245	Ser	Gly	Lys	Glu	Ser 250	Leu	Ile	Phe	Met	Lys 255	Lys
Arg	Thr	Lys	Arg 260	Leu	Thr	Ala	Gln	Trp 265	Ala	Leu	Ala	Ala	Gln 270	Arg	Leu
Ala	Gln	Lys 275	Leu	Gly	Ala	Thr	Gln 280	Arg	Asp	Gln	Lys	Gln 285	Ile	Leu	Val
His	Ile 290	Gly	Phe	Leu	Thr	Glu 295	Glu	Ser	Gly	Asp	Val 300	Phe	Ser	Pro	Arg
Val 305	Leu	Lys	Gly	Gly	Pro 310	Leu	Gly	Glu	Met	Val 315	Gln	Trp	Ala	Asp	Ile 320
Leu	Thr	Ala	Leu	Tyr 325	Val	Leu	Gly	His	Gly 330		Arg	Val	Thr	Val 335	
Leu	Lys	Glu	Leu 340	Gln	Ser	Asn	Leu	Gly 345	Val	Pro	Pro	Gly	Arg 350	Gly	Ser
Cys	Pro	Leu 355	Thr	Met	Pro	Leu	Pro 360	Phe	Asp	Leu	Ile	Tyr 365	Thr	Asp	Tyr

His Gly Leu Gln Gln Met Lys Arg His Met Gly Leu Ser Phe Lys Lys Tyr Arg Cys Arg Ile Arg Val Ile Asp Thr Phe Gly Thr Glu Pro Ala Tyr Asn His Glu Glu Tyr Ala Thr Leu His Gly Tyr Arg Thr Asn Trp 410 Gly Tyr Trp Asn Leu Asn Pro Lys Gln Phe Met Thr Met Phe Pro His 420 425 Thr Pro Asp Asn Ser Phe Met Gly Phe Val Ser Glu Glu Leu Asn Glu 440 Thr Glu Lys Arg Leu Ile Lys Gly Gly Lys Ala Ser Asn Met Ala Val Val Tyr Gly Lys Glu Ala Ser Ile Trp Lys Leu Gln Gly Lys Glu Lys 470 475 Phe Leu Gly Ile Leu Asn Lys Tyr Met Glu Ile His Gly Thr Val Tyr 485 490 Tyr Glu Ser Gln Arg Pro Pro Glu Val Pro Ala Phe Val Lys Asn His 505 Gly Leu Leu Pro Gln Pro Glu Phe Gln Gln Leu Leu Arg Lys Ala Lys 515 520 -Leu Phe Ile Gly Phe Gly Phe Pro Tyr Glu Gly Pro Ala Pro Leu Glu 535 Ala Ile Ala Asn Gly Cys Ile Phe Leu Gln Ser Arg Phe Ser Pro Pro 555 His Ser Ser Leu Asn His Glu Phe Phe Arg Gly Lys Pro Thr Ser Arg Glu Val Phe Ser Gln His Pro Tyr Ala Glu Asn Phe Ile Gly Lys Pro 580 His Val Trp Thr Val Asp Tyr Asn Asn Ser Glu Glu Phe Glu Ala Ala Ile Lys Ala Ile Met Arg Thr Gln Val Asp Pro Tyr Leu Pro Tyr Glu 610 615 Tyr Thr Cys Glu Gly Met Leu Glu Arg Ile His Ala Tyr Ile Gln His 630 635 Gln Asp Phe Cys Arg Ala Pro Asp Pro Ala Leu Pro Glu Ala His Ala 645 650 Pro Gln Ser Pro Phe Val Leu Ala Pro Asn Ala Thr His Leu Glu Trp 660 Ala Arg Asn Thr Ser Leu Ala Pro Gly Ala Trp Pro Pro Ala His Ala 675 680 685

Leu Arg Ala Trp Leu Ala Val Pro Gly Arg Ala Cys Thr Asp Thr Cys 695 Leu Asp His Gly Leu Ile Cys Glu Pro Ser Phe Phe Pro Phe Leu Asn Ser Gln Asp Ala Phe Leu Lys Leu Gln Val Pro Cys Asp Ser Thr Glu 730 Ser Glu Met Asn His Leu Tyr Pro Ala Phe Ala Gln Pro Gly Gln Glu 740 745 Cys Tyr Leu Gln Lys Glu Pro Leu Leu Phe Ser Cys Ala Gly Ser Asn 760 755 Thr Lys Tyr Arg Arg Leu Cys Pro Cys Arg Asp Phe Arg Lys Gly Gln 775 Val Ala Leu Gly Gln Gly Cys Leu <210> 3 <211> 11 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic peptide AG <400> 3 Cys Ala Gly Ser Asn Thr Lys Tyr Arg Arg Leu <210> 4 <211> 15 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic peptide RA <400> 4 Cys Arg Ala Pro Asp Pro Ala Leu Pro Glu Ala His Ala Pro Gln 10

<210> 5

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Oligonucleotide primer derived from ${\tt Homo\ sapiens}$

```
<400> 5
gactagttct agatcgcgag cggccgccct ttttttttt tttt
<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide primer
      4470-2043
<400> 6
                                                    23
agatccatgg caccgtgtac tac
<210> 7
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide primer
      4470-2230
<400> 7
                                                    19
gaagatgcaa ccattggcg
```