Université Badji Mokhtar, Département de Mathématiques.

2021/2022

Licence Mathématiques 3^{ième} année

Matière: Mesure et intégration

Devoir à domicile n° 1

Exercice 1 Soient (E, \mathcal{E}, μ) un espace mesuré et f une application mesurable de E dans lui même.

- 1) Une partie $A \in \mathcal{E}$ est dite <u>stable</u> par f si $f(A) \subset A$. La *tribu stable*, \mathcal{M} , est l'ensemble de telles parties de E.
 - (a) \mathcal{M} est-elle une σ -algèbre? Si f est bijective?
 - (b) Montrer que A est stable par f si et seulement si $A \subset f^{-1}(A)$.
- 2) Une partie $A \in \mathcal{E}$ est dite <u>invariante</u> par f si $f^{-1}(A) = A$. La tribu Invariante, \mathcal{F} , est l'ensemble de telles parties de E. Montrer que \mathcal{F} est une σ -algèbre sur E.

Exercice 2 Soient X un ensemnle non vide et $\{A_1, A_2, \ldots, A_n\}$ est une partition de X $\left(X = \bigcup_{i=1}^n A_i \text{ et } A_i \cap A_j = \emptyset \text{ pour } i \neq j\right). \text{ Montrer que la famille}$

$$\mathcal{F} = \left\{ \bigcup_{i \in I} A_i, \text{ où } I \subset \{1, 2, \dots, n\} \right\}$$

est la tribu sur X engendrée par $\{A_1, A_2, \ldots, A_n\}$.

Exercice 3

1- Déterminer la limite de $\{A_n\}_{n\geq 1}$ pour

(a)
$$A_n = \begin{bmatrix} \frac{1}{n}, n \end{bmatrix}, n \ge 1.$$
 (b) $A_n = \begin{bmatrix} -\frac{1}{n}, 1 \end{bmatrix}, n \ge 1.$

2- Soit I un intervalle borné de \mathbb{R} . Montrer que pour tout intervalle $J \subset I$ on a $\lambda(I/J) = \lambda(I) - \lambda(J)$.

A rermettre le premier jour de la reprise des cours le Dimanche 21 Novembre 2021.

Corrigé du devoir

Exercice 1 f est fonction mesurable $\iff f(A) \in \mathcal{E}$, pour tout $A \in \mathcal{E}$.

- 1) $\mathcal{M} = \{A \in \mathcal{E} / A \text{ est stable par } f\} = \{A \in \mathcal{E} / f(A) \subset A\}$
- a) $\mathcal M$ n'est pas forcément une tribu. Prenons l'exemple suivant

Exemple 1

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto 1$

$$A = \{1\} \in \mathcal{B}(\mathbb{R}) \text{ et } f(A) = \{1\} \subset A, \text{ mais }$$

$$A^{c} = \mathbb{R} \setminus \{1\} =]-\infty, 1[\cup]1, +\infty[\Longrightarrow f(A^{c}) = \{1\} \not\subseteq A^{c}.$$

Donc $A^c \notin \mathcal{M}$.

Si f est une fonction bijective, $\mathcal M$ n'est pas forcément une tribu. Prenons l'exemple suivant

Exemple 2

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{x}{2}$$

$$A=\left[0.1\right]\in\mathcal{B}\left(\mathbb{R}\right)$$
 et $f\left(A\right)=\left[0.1/2\right]\subset A,$ mais

$$A^c =]-\infty, 0[\cup]1, +\infty[\Longrightarrow f(A^c) =]-\infty, 0[\cup]1/2, +\infty[\nsubseteq A^c]$$

Donc $A^c \notin \mathcal{M}$.

 $1) \iff$

Supposons que A est stable par la fonction $f \iff f(A) \subset A \implies f^{-1}(f(A)) \subset f^{-1}(A)$. Mais on sait que $A \subset f^{-1}(f(A))$, alors on obtient: $A \subset f^{-1}(A)$.

(⇐=)

Supposons que $A \subset f^{-1}(A) \Longrightarrow f(A) \subset f(f^{-1}(A)) = A$, alors $f(A) \subset A$. Donc A est stable par f.

2)

$$\mathcal{F} = \left\{ A \in \mathcal{E} \ / \ f^{-1}(A) = A \right\}.$$

Montrons que \mathcal{F} est une σ -algèbre sur E.

- (\star) $f^{-1}(E) = E \Longrightarrow E \in \mathcal{F}.$
- (\star) Soit $A \in \mathcal{F} \iff f^{-1}(A) = A$. On sait que

$$f^{-1}(A^c) = (f^{+-1}(A))^c = A^c,$$

alors $A^c \in \mathcal{F}$.

$$(\star)$$
 Soit $(A, B) \in \mathcal{F}^2 \iff f^{-1}(A) = A$ et $f^{-1}(B) = B$, alors

$$A \cup B = f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B)$$
,

alors $A \cup B \in \mathcal{F}$.

 (\star) Soit $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{F}\iff f^{-1}(A_n)=A_n$; pour tout $n\in\mathbb{N}$, alors

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} f(A_n) = f\left(\bigcup_{n\in\mathbb{N}} A_n\right),$$

alors $\bigcup A_n \in \mathcal{F}$.

Par conséquent \mathcal{F} est une σ -algèbre sur E.

Exercice 2 Soient X un ensemnle non vide et $\{A_1, A_2, \ldots, A_n\}$ est une partition de X . Montrons d'abord que la famille $\mathcal{F} = \left\{ \bigcup_{i \in I} A_i, \text{ où } I \subset \{1, 2, \dots, n\} \right\}$ est une σ -algèbre sur X.

- (\star) Comme $\{A_1, A_2, \ldots, A_n\}$ est une partition de X, alors $X = \bigcup A_i$, alors $X \in \mathcal{F}$.
- (\star) Soit $A \in \mathcal{F} \iff$ Il exsite $I \subset \{1, 2, \ldots, n\}$ telle que $A = \bigcup A_i$.

$$A^{c} = X \setminus \bigcup_{i \in I} A_{i} = \bigcup_{i=1}^{n} A_{i} \setminus \bigcup_{i \in I} A_{i} = \bigcup_{i \in \{1, 2, \dots, n\} \setminus I} A_{i}$$
$$= \bigcup_{i \in I^{c}} A_{i},$$

où $I^c \subset \{1, 2, \ldots, n\}$. Donc $A^c \in \mathcal{F}$.

 (\star) Soit $(A,B) \in \mathcal{F}^2 \iff$ Il existe I_1 et $I_2 \subset \{1,2,\ldots,n\}$ telle que $A = \bigcup_{i \in I_1} A_i$ et

$$B = \bigcup_{i \in I_2} A_i.$$

$$A \cup B = \left(\bigcup_{i \in I_1} A_i\right) \cup \left(\bigcup_{i \in I_2} A_i\right) = \bigcup_{i \in (I_1 \cup I_2)} A_i,$$

où $I_1 \cup I_2 \subset \{1, 2, \ldots, n\}$. Donc $A \cup B \in \mathcal{F}$.

 (\star) Comme $\{1, 2, \ldots, n\}$ est un ensemble fini, la réunion dénombrable de parties de cet ensemble est en effet une réunion finie. Donc \mathcal{F} est ensemble fini, ce qui nous permet de dire que la vérification de la troixième condition nous suffit et qu'on n'est pas obligé de démontrer la dernière condition.

Par conséquent \mathcal{F} est une σ -algèbre sur E.

Montrons maintenant que $\mathcal{F} = \sigma(\{A_1, A_2, \ldots, A_n\})$.

$$(*)$$
 (\subset)

Soit $A \in \mathcal{F} \iff$ Il exsite $I \subset \{1, 2, \ldots, n\}$ telle que $A = \bigcup_{i \in I} A_i \implies A \in \sigma(\{A_1, A_2, \ldots, A_n\})$.

Alors $\mathcal{F} \subset \sigma(\{A_1, A_2, \ldots, A_n\})$

(*) (>) On a $A_i \in \mathcal{F}$, pour $i = 1, 2, \dots, n \Longrightarrow \{A_1, A_2, \dots, A_n\} \subset \mathcal{F} \Longrightarrow \sigma(\{A_1, A_2, \dots, A_n\}) \subset \sigma(\mathcal{F}) = \mathcal{F}$.

D'où l'égalité voulue.

Exercice 3

$$\frac{2n \operatorname{Color} S}{1-\text{ (a) } A_n = \left[\frac{1}{n}, n\right], \ n \ge 1. \text{ Alors } A_n \subset A_{n+1}, \forall n \ge 1 \Longrightarrow \lim_{n \to +\infty} A_n = \bigcup_{n \ge 1} \left[\frac{1}{n}, n\right] =]0, +\infty[.$$

(b)
$$A_n = \left[-\frac{1}{n}, 1 \right], n \ge 1.$$
Alors $A_{n+1} \subset A_n, \forall n \ge 1 \Longrightarrow \lim_{n \to +\infty} A_n = \bigcap_{n \ge 1} \left[-\frac{1}{n}, 1 \right] = [0, 1].$

2- Soit I un intervalle borné de \mathbb{R} , alors I=(a,b), où $-\infty < a < b < +\infty$. Soit J un intervalle $\subset I$, alors J=(c,d) telle que $-\infty < a < c < d < b < +\infty$. On a dans ce cas

$$\begin{array}{lll} \lambda(I/J) & = & \lambda([(a,c) \cup (d,b)]) = \lambda\left((a,c)\right) + \lambda\left((d,b)\right) \\ & = & (c-a) + (b-d) = (b-a) - (d-c) \\ & = & \lambda(I) - \lambda(J). \end{array}$$