Forecasting issues

Forecast Padawan 2 November 17, 2016

The goal of this experiment is to design the best model to forcaste the number of issue in the per day in the comming two weeks. We think that this could help Open Source organisation to manage there human ressources.

Load the data

```
#install.packages('forecast')

library('forecast')

library(knitr)

#load the data frame

issues.csv <- read.csv("issues/julialang_julia.csv")

commits.csv <- read.csv("commits/julialang_julia.csv")

issues.csv$date = as.POSIXlt(as.Date(issues.csv$date,format='%m/%d/%Y'))

commits.csv$date = as.POSIXlt(as.Date(commits.csv$date,format='%m/%d/%Y'))</pre>
```

keep the last 12 months

```
to_date <- issues.csv$date[length(issues.csv$date)]
from_date <- to_date
from_date$year <- from_date$year - 1

issues.csv <- subset(issues.csv, date <= to_date & date >= from_date)
commits.csv <- subset(commits.csv, date <= to_date & date >= from_date)
```

```
#loading issues and commits into a ts object
issues.ts <- ts(issues.csv$number_of_issues, frequency = 7)
Acf(issues.ts, lag.max = 14, main = "")</pre>
```



```
commits.ts <- ts(commits.csv$number_of_commits, frequency = 7)
plot(issues.ts, main = 'Issues', bty = 'l', ylab = 'Number of Issues')</pre>
```

Issues

plot(commits.ts, main = 'Commits', bty = '1', ylab = 'Number of Commits')

Commits


```
time <- time(issues.ts)</pre>
n.sample <- 14
n.valid <- 21
separate.train.test <- function(timeserie, n.valid) {</pre>
  time <- time(timeserie)</pre>
  n.train <- length(timeserie) - n.valid</pre>
  results = list()
  results$train.ts <- window(timeserie, start=time[1], end=time[n.train])</pre>
  results$valid.ts <- window(timeserie, start=time[n.train+1], end=time[n.train+n.valid])
  return(results)
}
all.issues <- sapply(0:(n.sample - 1), function(i) return(separate.train.test(window(issues.ts,start=timest))
issues <- separate.train.test(issues.ts, n.valid)</pre>
commits <- separate.train.test(commits.ts, n.valid)</pre>
mean.all.accuracy <- function(all.forecast) {</pre>
  Reduce("+", all.forecast['summary',])/length(all.forecast['summary',])
}
```

plot.all.residuals <- function(all.forecast) {</pre>

```
plot(1, type="1", main="Residuals", xlim=c(48.5, 53.3), ylim=c(-30, 30), xlab = 'Week', ylab = 'Error
sapply(1:n.sample, function(i) lines(all.forecast['residual',i]$residual))
    return(NULL)
}

plot.all.pred <- function(all.forecast) {
    plot(issues.ts, main="Prediction",xlim=c(30, 53.3), xlab = 'Week', ylab = 'Number of Issues')
    if (class(all.forecast['pred',1]$pred) == "forecast") {
        sapply(1:n.sample, function(i) lines(all.forecast['pred',i]$pred$mean, col=rgb(0, 0, 1, 0.5)))
    } else {
        sapply(1:n.sample, function(i) lines(all.forecast['pred',i]$pred, col=rgb(0, 0, 1, 0.5)))
    }
    return(NULL)
}

hist.all.residuals <- function(all.forecast) {
    residuals <- sapply(1:n.sample, function(i) as.numeric(all.forecast['residual',i]$residual))
    boxplot(residuals)
    hist(residuals)
    quantile(residuals,c(0.975,0.95,0.05,0.025))
}</pre>
```

Naive Forecast

Naive

```
naive.forecast <- function(sample) {
  results = list()
  results$valid <- sample$valid.ts
  results$pred <- naive(sample$train.ts, h=n.valid)
  results$residual <- sample$valid.ts - results$pred$mean
  results$summary <- accuracy(results$pred, sample$valid.ts)

  return(results)
}
all.naive.forecast <- sapply(1:n.sample, function(i) return(naive.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.naive.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0238173	6.690828	5.236218	-12.86230	41.78262	1.002643	-0.2787088	NA
Test set	0.1394558	6.978572	5.914966	-14.08305	47.98660	1.132777	0.3294768	1.229262

```
plot.all.pred(all.naive.forecast)
```


NULL

plot.all.residuals(all.naive.forecast)

NULL

hist.all.residuals(all.naive.forecast)


```
## 97.5% 95% 5% 2.5%
## 14.000 12.000 -11.350 -12.675
```

Seasonal Naive

```
snaive.forecast <- function(sample) {
  results = list()
  results$valid <- sample$valid.ts
  results$pred <- snaive(sample$train.ts, h=n.valid)
  results$residual <- sample$valid.ts - results$pred$mean
  results$summary <- accuracy(results$pred, sample$valid.ts)

  return(results)
}
all.snaive.forecast <- sapply(1:n.sample, function(i) return(snaive.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.snaive.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.0170509	6.586269	5.222487	-12.85417	42.34831	1.0000000	0.1758323	NA
Test set	-0.5850340	6.251959	5.074830	-14.17575	41.37955	0.9720907	0.0345263	1.056669

NULL

plot.all.residuals(all.snaive.forecast)

NULL

hist.all.residuals(all.snaive.forecast)


```
## 97.5% 95% 5% 2.5%
## 14.00 10.00 -11.00 -14.35
```

Smoothing

Holt Winter

```
hw.forecast <- function(sample) {
  results = list()
  results$valid <- sample$valid.ts
  results$model <- ets(sample$train.ts, model = "ZAA")
  results$pred <- forecast(results$model, h=n.valid)
  results$residual <- sample$valid.ts - results$pred$mean
  results$summary <- accuracy(results$pred, sample$valid.ts)

  return(results)
}
all.hw.forecast <- sapply(1:n.sample, function(i) return(hw.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.hw.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0271828	4.986111	3.882105	-13.30617	32.63851	0.7433471	0.0909490	NA
Test set	-0.7128420	4.629126	3.784447	-17.11348	32.23754	0.7246322	0.2126386	0.7492468

plot.all.pred(all.hw.forecast)

NULL

plot.all.residuals(all.hw.forecast)

NULL

hist.all.residuals(all.hw.forecast)


```
## 97.5% 95% 5% 2.5%
## 9.093400 8.171099 -7.805061 -8.517816
```

Double differencing

```
ma.dd.forecast <- function(sample) {
   train.issues.d1 <- diff(sample$train.ts, lag = 1)
   train.issues.d1.d7 <- diff(train.issues.d1, lag = 7)

ma.trailing <- rollmean(train.issues.d1.d7, k = 7, align = "right")
   last.ma <- tail(ma.trailing, 1)
   ma.trailing.pred <- ts(c(ma.trailing, rep(last.ma, n.valid)), start=c(3, 1), frequency = 7)

ma.dd.pred.d1 <- train.issues.d1
   ma.dd.pred <- sample$train.ts

for(i in 1:(n.valid/7)) {
   ma.dd.pred.d1 <- ma.trailing.pred + lag(ma.dd.pred.d1,k = -7)
   ma.dd.pred <- ma.dd.pred.d1 + lag(ma.dd.pred,k = -8)
}

results = list()
results$valid <- sample$valid.ts</pre>
```

```
results$pred <- ma.dd.pred
results$residual <- sample$valid.ts - results$pred
results$summary <- accuracy(results$pred, sample$valid.ts)

return(results)
}
all.ma.dd.forecast <- sapply(1:n.sample, function(i) return(ma.dd.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.ma.dd.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	0.7784257	8.033107	6.441205	-3.438831	50.79643	0.1573949	1.378406

plot.all.pred(all.ma.dd.forecast)

Prediction

NULL

```
plot.all.residuals(all.ma.dd.forecast)
```


NULL

hist.all.residuals(all.ma.dd.forecast)


```
## 97.5% 95% 5% 2.5%
## 17.63571 14.10000 -13.05000 -16.57857
```

Regression

Linear additive regression

```
regr.add.forecast <- function(sample) {
  results = list()
  results$valid <- sample$valid.ts
  results$model <- tslm(sample$train.ts ~ season)
  results$pred <- forecast(results$model, h=n.valid)
  results$residual <- sample$valid.ts - results$pred$mean
  results$summary <- accuracy(results$pred, sample$valid.ts)

  return(results)
}
all.regr.add.forecast <- sapply(1:n.sample, function(i) return(regr.add.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.regr.add.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.0000000	5.588445	4.398678	-19.19098	39.53468	0.8422578	0.3783599	NA
Test set	-0.5230361	4.388761	3.542433	-15.07922	29.89041	0.6784011	0.2107481	0.7257861

plot.all.pred(all.regr.add.forecast)

NULL

plot.all.residuals(all.regr.add.forecast)

NULL

hist.all.residuals(all.regr.add.forecast)


```
## 97.5% 95% 5% 2.5%
## 9.204082 8.510204 -7.455667 -8.145833
```

linear multiplicative regression

```
regr.mult.forecast <- function(sample) {
    results = list()
    results$valid <- sample$valid.ts
    results$model <- tslm(sample$train.ts ~ season, lambda = 1)
    results$pred <- forecast(results$model, h=n.valid)
    results$residual <- sample$valid.ts - results$pred$mean
    results$summary <- accuracy(results$pred, sample$valid.ts)

    return(results)
}
all.regr.mult.forecast <- sapply(1:n.sample, function(i) return(regr.mult.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.regr.mult.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.000000	5.588445	4.398678	-15.59050	34.98281	0.8422578	0.3783599	NA
Test set	-1.523036	4.625507	3.860092	-23.23226	34.57178	0.7391587	0.2107481	0.7953356

NULL

plot.all.residuals(all.regr.mult.forecast)

NULL

hist.all.residuals(all.regr.mult.forecast)


```
## 97.5% 95% 5% 2.5%
## 8.204082 7.510204 -8.455667 -9.145833
```

Arima

```
arima.forecast <- function(sample) {
    results = list()
    results$valid <- sample$valid.ts
    results$model <- Arima(sample$train.ts, order=c(1,0,0), seasonal=c(1,1,1))
    results$pred <- forecast(results$model, h=n.valid)
    results$residual <- sample$valid.ts - results$pred$mean
    results$summary <- accuracy(results$pred, sample$valid.ts)

    return(results)
}
all.arima.forecast <- sapply(1:n.sample, function(i) return(arima.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.arima.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.4264553	5.083153	3.969447	-11.30950	33.11801	0.7600731	-0.0067769	NA
Test set	-2.0917555	5.169223	4.034230	-25.90281	35.57975	0.7724997	0.1558786	0.8695223

NULL

plot.all.residuals(all.arima.forecast)

NULL

hist.all.residuals(all.arima.forecast)

97.5% 95% 5% 2.5% ## 9.048025 7.443001 -10.006371 -11.020427