Lifting for block sensitivity

There exists a constant $c \ge 0$ such that the following holds. Let $f: \{0,1\}^n \to \{0,1\}$ be any boolean function, and let $g: [q] \times [q] \to \{0,1\}$ be low discrepancy gadget function such that $q \ge c$. Then

$$P^{CC}(f \circ g^n) = \Omega(bs(f) \cdot \log q)$$

Previous approach: Information complexity [HN12] Reduction [Zha09][GP14]

Our approach: Simulation!

Raz-McKenzie's simulation [RM99,GPW15]

To show the simulation is correct,

1) Thickness Lemma: Average (degree) to worst (degree) reduction (or sunflower lemma [LMMPZ20]) to keep the disperser property: $g^n(X_I, Y_I) = \{0,1\}^I$ (g is gadget function and I is unfixed coordinates)

To show the simulation is efficient,

2) Projection Lemma: Potential function argument and probabilistic method to ensure

 $g(X_i, Y_i) = Z_i$ and potential function decreases by at least $\Omega(\log q)$ in each "query iteration"

Raz-McKenzie's simulation [RM99,GPW15]

 $f \circ g^n$

 $f: \{0,1\}^n \to \{0,1\}$

However, **Thickness Lemma** has gadget size barrier:

Average (degree) to worst (degree) reduction (or sunflower lemma [LMMPZ20]) need $q = \Omega(n)$

Gadget size is a fundamental parameter in lifting theorems and their applications [GP16, GJW16, GR18].

Our simulation

To show the simulation is correct, we follow the decision tree path in each "query iteration" We don't need Thickness Lemma!

To show the simulation is efficient,

2) **Projection Lemma:** Potential function argument and low-discrepancy property [CFKMP19] to ensure potential function decreases by at least $\Omega(\log q)$ in each "query iteration"

Our simulation

 $f \circ g^n$

How to keep a long path? Block sensitivity of $f:\{0,1\}^n \to \{0,1\}$ (a lower bound of query complexity)

WLOG Assume $bs(f, 0^n) = n$, we could find a query path with $\Omega(n)$ length by always answer 0.

We need a new **Projection Lemma:**

- 1) Projection condition: $e_i \notin g^n(X, Y)$
- Key Observation: Our projection can be delayed
- 2) Potential function: density of 0^n
- 3) Keep $g(X_i, Y_i) = 0$

Projection Lemma

WLOG Assume $bs(f, 0^n) = n$,

1) Potential function: density of 0^n We define $D_0^I \coloneqq \{(x,y) \in [q]^I \times [q]^I \colon g^I(x,y) = 0^I\}$.

For each $I \subseteq [n]$ and $R = X \times Y \subseteq [q]^I \times [q]^I$, we define it's potential function as

$$E(R) := \log \frac{|R \cap D_0^I|}{|D_0^I|}$$

2) Projection condition: if $e_i \notin g^n(X,Y)$, we do projection on i and keep $g(X_i,Y_i)=0$

Do projection on Alice's side: Find a $u \in [q]$

$$X' = \{x \in X : x_i = u\} \text{ and } Y' = \{y \in Y : g(u, y_i) = 0\}$$

Do projection on Bob's side: Find a $v \in [q]$

$$Y' = \{y \in Y : y_i = v\} \text{ and } X' = \{x \in X : g(x_i, v) = 0\}$$

Potential function argument

Assume
$$bs(f, 0^n) = n$$
, $E(R) := \log \frac{|R \cap D_0^I|}{|D_0^I|}$

By average argument,

potential function decrease by at least O(1) in each "communication iteration"

if $e_i \notin g^n(X, Y)$, we do projection on i and keep $g(X_i, Y_i) = 0$

potential function increase by at least $\Omega(\log q)$ in each "query iteration"

Low-discrepancy gadget [CFKMP19]: Fix $(x_{I\setminus i}, y_{I\setminus i})$ with $g^{I\setminus i}(x_{I\setminus i}, y_{I\setminus i}) = 0^{I\setminus i}$, If $e_i \notin g^I(X_I, Y_I)$ then $|X_i||Y_i| \leq q$

By average argument, either we could do projection on Alice' side or Bob' s side to increase potential function.

Reference

[RM99] Separation of the monotone nc hierarchy.

[Zha09] On the Tightness of the Buhrman-Cleve-Wigderson Simulation

[HN12] On the virtue of succinct proofs: amplifying communication complexity hardness to time–space trade-offs in proof complexity.

[GP14] Communication Lower Bounds via Critical Block Sensitivity

[GPW15] Deterministic Communication vs. Partition Number

[CFKMP19] Query-to-communication lifting using low-discrepancy gadgets