Descriptive statistics
Significance tests
Linear models
Examples

Introduction to R Statistical analysis

Arni Magnusson

Hafro, 8 Nov 2010

Outline

- 1 Descriptive statistics mean, median, sd, loess
- 2 Significance tests t.test, chisq.test
- 3 Linear models Im, aov, glm
- 4 Examples t.test, aov, lm, chisq.test, glm

Outline

- 1 Descriptive statistics mean, median, sd, loess
- 2 Significance tests t.test, chisq.test
- 3 Linear models Im, aov, glm
- Examples t.test, aov, lm, chisq.test, glm

Statistical functions

```
rivers
min(rivers)
max(rivers)
range(rivers)
quantile(rivers)
sum(rivers)
mean(rivers)
median(rivers)
sd(rivers)
var(rivers)
```

```
mtcars
```

```
cor(mtcars$hp, mtcars$disp)
cor(mtcars)
```

Loess smoother

```
plot(dist \sim speed, data=cars) lofit <- loess(dist \sim speed, data=cars)fit lines(carsspeed, lofit, lwd=2, col="red")
```

Outline

- Descriptive statistics mean, median, sd, loess
- 2 Significance tests t.test, chisq.test
- 3 Linear models Im, aov, glm
- Examples t.test, aov, Im, chisq.test, glm

t.test

t.test(x1, x2)

?t.test

chisq.test

```
chisq.test(obs, exp)
```

?chisq.test

Outline

- 1 Descriptive statistics mean, median, sd, loess
- 2 Significance tests t.test, chisq.test
- 3 Linear models Im, aov, glm
- Examples t.test, aov, lm, chisq.test, gln

Linear regression

```
lm(formula, data)
lm(y \sim x)
lm(y \sim x1+x2)
lm(dist \sim speed, data=cars)
?1m
```

Formula syntax

$$\sim$$
 is a function of

$$y \sim x$$

$$y \sim x1 + x2$$

$$\texttt{y} \, \sim \, \texttt{x1} \, + \, \texttt{x2} \, + \, \texttt{x1:x2}$$

$$y \sim x1 + I(x2+x3)$$

$$y \sim x1 * x2$$

$$y \sim x1 * x2 - x2$$

$$y \sim . + x3$$

Fixing the intercept or slope

$$\begin{array}{lll} \text{lm}(y \sim 1) & \text{estimate intercept only, null model} \\ \\ \text{lm}(y \sim -1 + x) & \text{estimate slope, fix intercept at 0} \\ \\ \text{lm}(\text{offset}(y-3) \sim -1 + x) & \text{estimate slope, fix intercept at 3} \\ \\ \text{lm}(y \sim \text{offset}(3*x)) & \text{estimate intercept, fix slope at 3} \\ \end{array}$$

?formula

aov

aov(formula, data)

?aov

```
glm(formula, data, family, link)
```

```
?glm
?family
```

- gaussian
- binomial
- poisson

. . .

Modelling tools

```
coef(model)
                              coefficient
                              predictions
predict(model)
fitted(model)
                              fitted values
residuals(model)
                              residuals
                              estimates, SE, p values, R^2
summary(model)
anova(model)
                              p values
                              AIC value
AIC(model)
                              modify
update(model, formula)
add1(model, candidates)
                              add one term
drop1(model, candidates)
                             drop one term
step(model, candidates)
                              add and drop iteratively
```

Outline

- 1 Descriptive statistics mean, median, sd, loess
- 2 Significance tests t.test, chisq.test
- 3 Linear models Im, aov, glm
- 4 Examples t.test, aov, lm, chisq.test, glm

Chick weights (t.test)

- Assume equal variance in both groups? var.equal=T
- Don't use functions like black box; do once by hand if possible

Plant growth (aov)

```
PlantGrowth boxplot(weight \sim group, data=PlantGrowth) aov(weight \sim group, data=PlantGrowth) summary(aov(weight \sim group, data=PlantGrowth))
```

```
cars
head(cars)
plot(dist \sim speed, data=cars)
mylm <- lm(dist \sim speed, data=cars)
abline(mylm)
summary(mylm)
par(mfrow=c(2,2))
plot(mylm)
```

Try log-log transformation

```
\begin{array}{l} \texttt{par}(\texttt{mfrow=c(1,1)}) \\ \texttt{plot}(\texttt{log}(\texttt{dist}) \sim \texttt{log}(\texttt{speed}), \ \texttt{data=cars}) \\ \\ \texttt{mylog} \leftarrow \texttt{lm}(\texttt{log}(\texttt{dist}) \sim \texttt{log}(\texttt{speed}), \ \texttt{data=cars}) \\ \texttt{abline}(\texttt{mylog}) \\ \texttt{summary}(\texttt{mylog}) \end{array}
```

Model comparison: visualize fit

Model comparison: diagnostic plots

```
par(mfrow=c(2,2))
plot(mylm, main="normal")

dev.new()

par(mfrow=c(2,2))
plot(mylog, main="log-log")
```

Model comparison: R^2 and AIC

```
summary(mylm)
summary(mylog)

names(summary(mylm))
summary(mylm)$r.s
summary(mylog)$r.s
```

```
AIC(mylm, mylog)
```

```
ToothGrowth
head (ToothGrowth)
summary (ToothGrowth)
boxplot(len \sim supp, data=ToothGrowth)
plot(len \sim dose, data=ToothGrowth)
plot(len \sim log(dose), data=ToothGrowth)
```

```
library(lattice)
xyplot(len \sim log(dose) | supp, data=ToothGrowth,
        panel=function(...){panel.xyplot(...);
        panel.lmline(...)})
Same line, different intercept, different slope, or both different
lm(len \sim log(dose), data=ToothGrowth) # coefs 2
lm(len \sim log(dose) + supp, data = ToothGrowth)
                                                   # 3
lm(len \sim log(dose): supp, data=ToothGrowth)
                                                   # 3
lm(len \sim log(dose)*supp, data=ToothGrowth)
```

Forward selection

```
 \begin{tabular}{ll} add1 (lm(len $\sim 1$, data=ToothGrowth), \\ . $\sim \log(dose)*supp$, test="F") \\ \\ add1 (lm(len $\sim \log(dose)$, data=ToothGrowth), \\ . $\sim \log(dose)*supp$, test="F") \\ \\ add1 (lm(len $\sim \log(dose)$+supp$, data=ToothGrowth), \\ . $\sim \log(dose)*supp$, test="F") \\ \\ \end{tabular}
```

Backward selection

Plot model predictions

```
mylm <- lm(len \sim log(dose)*supp,
            data=ToothGrowth)
plot(len \sim \log(\text{dose}), data=ToothGrowth,
     subset=supp=="OJ", ylim=c(0,35),
     pch=16, col="orange")
points(len \sim log(dose), data=ToothGrowth,
       subset=supp=="VC", pch=16, col="blue")
```

Plot model predictions

```
d \leftarrow c(0.5, 1, 2)
ojfit <- predict(mylm,
                  data.frame(dose=d, supp=factor("OJ")))
vcfit <- predict(mylm,</pre>
                  data.frame(dose=d,
                  supp=factor("VC")))
lines(log(d), ojfit, lwd=2, col="orange")
lines(log(d), vcfit, lwd=2, col="blue")
```

Other approaches

```
\begin{tabular}{ll} example (boxplot) & \\ anova (lm(len \sim factor(dose)*supp, \\ & \\ data=ToothGrowth)) \end{tabular}
```

Should dose be a linear term or a factor?

The question is whether we're interested only in 0.5/1/2 mg doses, or also in predicting the effect of other doses

Nonlinear models might be more appropriate

Fuel efficiency (multiple lm)

Stepwise selection: starting from null model

```
\label{eq:mylm1} \begin{tabular}{ll} \tt mylm1 &<- step(lm(I(1/mpg) \sim 1, data=mtcars), \\ . \sim cyl+disp+hp+drat+wt+qsec \\ +factor(vs)+factor(am)+gear+carb) \end{tabular}
```

Stepwise selection: starting from full model

```
mylm2 <- step(lm(I(1/mpg) \sim cyl+disp+hp+drat+wt +qsec+factor(vs)+factor(am) +gear+carb, data=mtcars))
```

Fuel efficiency (multiple lm)

```
Model comparison: AIC
```

```
summary(mylm1)
```

summary(mylm2)

```
AIC(mylm1, mylm2)
```

Extra credit

```
Now repeat the lm() examples
```

using the linest() function in Excel

Horse kicks

DAS GESETZ

KLEINEN ZAHLEN

UNIVERSITY OF WASHINGTON LIBRARY

Dn. L. von BORTKEWITSCH

Endlich ergiebt die Rechnung:

$$\begin{cases} \epsilon_0'(x) \}^2 = 4,36 \ (0,21); & \{ \epsilon_0''(x) \}^2 = 5,48 \ (0,70); \\ \epsilon_0'(x) = 2,09 \ (0,05); & \epsilon_0''(x) = 2,34 \ (0,17). \end{cases}$$

§ 12.

4. Beispiel: Die durch Schlag eines Pferdes im preufsischen Heere Getöteten.

In nachstehender Tabelle sind die Zahlen der durch Schlag eines Pferdes verunglückten Militärpersonen, nach Armeecorps ("G." bedeutet Gardecorps) und Kalenderjahren nachgewiesen.")

Horse kicks

```
kick <- read.table("c:/shop/kick.txt",</pre>
                     header=T)
kick
head(kick)
xtabs(N \sim Corps + Year, data=kick)
tapply(kick$N, kick$Corps, sum)
barplot(tapply(kick$N, kick$Corps, sum))
```

Horse kicks

```
IX is before V, fix that
lev <- c("G", as.character(as.roman(c(1:11,14,15))))
kick$Corps <- ordered(kick$Corps, levels=lev)
barplot(tapply(kick$N, kick$Corps, sum))</pre>
```

Horse kicks (chisq.test)

```
Does the "deaths-due-to-horse-kicks" rate very between corps?
chisq.test(tapply(kick$N, kick$Corps, sum))
Does the "deaths-due-to-horse-kicks" rate very between years?
barplot(tapply(kick$N, kick$Year, sum))
chisq.test(tapply(kick$N, kick$Year, sum))
```

Horse kicks (glm)

```
par(mfrow=c(2,1))
barplot(tapply(kick$N, kick$Corps, sum),
        main="Deaths by Corps")
barplot(tapply(kick$N, kick$Year, sum),
        main="Deaths by Year")
kick.0 <- glm(N \sim 1, data=kick, family=poisson)
anova(step(kick.0, . \sim factor(Year)*Corps),
           test="Chisq")
```