DEVRELER ve SİSTEMLER

BIMU2058 - CSBM2092

Yrd. Doç. Dr. Fatih KELEŞ

İÇERİK

- Düğüm- çevre
- Kirchhoff'un akımlar yasası (KCL)
- Kirchhoff'un gerilimler yasası (KVL)
- Tek çevreye sahip devre
- Tek düğüm-çiftine sahip devre
- Seri-paralel bağlamalar
- Gerilim ve akım bölücüler

Düğüm (node), Yol (path), Çevre (loop), Dal (branch)

- Bu iki devre eşdeğer devrelerdir.
- Burada 3 düğüm (node) ve 5 dal (branch) vardır.
- Iki veya daha fazla elemanın bağlantı noktasına düğüm denir.
- ▶ Bir düğüm dizisi bir **yol**u ifade eder. (bir düğümden birden fazla geçilmez)
- Kapalı bir yola **çevre** denir. (devre) (başladığı düğümde biter)
- Her bir devre elemanı **dal**ı ifade eder.

Kirchhoff Yasaları

- Devreler genelde, gerilimlerin ve akımların tamamını belirlemek için analiz edilir.
- Ohm yasasına ek olarak sadece iki yasaya ihtiyaç vardır.
- Bu yasalar Kirchhoff'un akımlar ve gerilimler yasalarıdır.
- Yükün ve enerjinin korunumunu basit olarak yeniden ifade eder.

Kirchhoff'un Akımlar Yasası (KCL)

KCL: Herhangi bir düğüme giren (ilişkin) akımların cebirsel toplamı sıfırdır.

Bir düğüm yük biriktiremez ve devre elemanı değildir.

$$i_A + i_B + (-i_C) + (-i_D) = 0$$

Kirchhoff'un Akımlar Yasası (KCL)

- Düğüme giren akımlar sıfırdır:
- $i_A + i_B + (-i_C) + (-i_D) = 0$

Giren akımlar, çıkan akımlara eşittir: $i_A + i_B = i_C + i_D$

Genel durum:

$$\sum_{n=1}^{N}i_n=0 \quad i_1+i_2+i_3+\cdots+i_N=0 \quad \begin{array}{c} \textit{Giren akımlar (+)} \\ \textit{Cikan akımlar (+)} \end{array}$$

KCL Uygulaması Örneği

Gerilim kaynağının 3 A'lik akım sağladığı biliniyorsa R_3 direncinin üzerinden akan akımı bulunuz.

Kirchhoff'un Gerilimler Yasası (KVL)

KVL: Herhangi bir kapalı yol (çevre) boyunca gerilim düşümlerinin cebirsel toplamı sıfıra eşittir.

· A ve B noktaları arasındaki potansiyel farkı yolun seçiminden bağımsızdır.

$$v_1 = v_2 - v_3$$

Kirchhoff'un Gerilimler Yasası (KVL)

▶ Genel durum:

$$\sum_{n=1}^{N} v_n = 0 \qquad v_1 + v_2 + v_3 + \dots + v_N = 0$$

 Gerilim referans yönü çevre yönü ile aynı ise bu gerilim düşümü; cebirsel toplama (+) işaretli olarak, çevre yönü ile ters ise (-) işaretli olarak alınır. (çevre yönü: saat yönü ya da saat yönüne ters yön)

$$-v_1 + v_2 - v_3 = 0$$

KVL Uygulaması Örneği

 v_{R2} ve v_x gerilimlerini bulunuz.

$$4 - 36 + v_{R2} = 0$$
, $v_{R2} = 32 \text{ V}$

$$4 - 36 + 12 + 14 + v_x = 0$$
, $v_x = 6 \text{ V}$

veya artık v_{R2} bilindiğine göre; $-32 + 12 + 14 + v_x = 0$, $v_x = 6$ V

KVL, KCL ve Ohm Yasasının Uygulanması

 i_x akımını ve v_x gerilimini bulunuz.

KVL, KCL ve Ohm Yasasının Uygulanması

 v_r gerilimini ve i_r akımını bulunuz.

İmkânsız Devreler

Devre modelleri bir ideallestirmeden ibaret

olduğu için fiziksel olarak mantıksız devrelerin oluşmamasına da yol gösterici olabilir.

Ideal bağımsız kaynaklardan dolayı a ve c

devreleri olamaz! Nedenleri ?..

Paralel Dirençler

KCL kullanılarak:

$$\frac{1}{R_{\rm es}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

(veya $G_{es} = G_1 + G_2 + ... + G_N$)

Paralel İki Direnç

$$R_{\text{eq}} = R_1 || R_2$$

$$= \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

çarpım / toplam

Gerilim Bölücü

Seri dirençler, üzerilerinde düşen gerilimi büyüklükleriyle <u>doğru orantılı</u> olarak <u>paylaşırlar</u>.

$$v_1 = \frac{R_1}{R_1 + R_2} v$$

$$v_2 = \frac{R_2}{R_1 + R_2} v$$

Gerilim Bölücü Örneği

$$v_x(t) = ?$$

 $v_x(t) = 4 \sin t V$

Akım Bölücü

Paralel dirençler, üzerilerinden geçen akımı büyüklükleriyle <u>ters orantılı</u> olarak <u>paylaşırlar</u>.

$$i_1 = i \frac{R_2}{R_1 + R_2}$$

$$i_2 = i \frac{R_1}{R_1 + R_2}$$

Akım Bölücü Örneği

 $i_3(t) = 1.333 \sin t \ V$