32. Công thức tính năng lượng từ trường của ống dây

1. Định nghĩa

Khi trong ống dây tự cảm có dòng điện thì trong ống dây có năng lượng, đó là năng lượng từ trường của ống dây.

2. Công thức - đơn vị đo

Công thức tính năng lượng từ trường:

$$\mathbf{W}_{L} = \frac{1}{2} \mathbf{L}.\mathbf{i}^{2}$$

Trong đó:

 $+\ W_L$ là năng lượng từ trường, có đơn vị Jun (J);

+ L là độ tự cảm, có đơn vị henri (H);

+ i là cường độ dòng điện, có đơn vị ampe (A).

3. Mở rộng

Từ công thức năng lượng từ trường trong ống dây, ta suy ra độ tự cảm và cường độ dòng điện

$$+ L = \frac{2W_L}{i^2}$$

$$+~i = \sqrt{\frac{2\,W_L}{L}}$$

4. Bài tập ví dụ

Bài 1: Một ống dây có hệ số tự cảm L = 0,1 (H), cường độ dòng điện qua ống dây là 2 (A). Năng lượng từ trường trong ống có độ lớn là bao nhiều?

Bài giải:

Năng lượng từ trường là
$$W_L = \frac{1}{2}L.i^2 = \frac{1}{2}0,1.2^2 = 0,2$$
 (J)

Đáp án: 0,2 J

Bài 2: Một ống dây có hệ số tự cảm L = 0,1 (H), năng lượng trong ống dây là 0,5J. Tính cường độ dòng điện qua ống dây.

Bài giải:

Năng lượng từ trường là $W_L = \frac{1}{2}L.i^2 => i = \sqrt{\frac{2W_L}{L}} = \sqrt{\frac{2.0,5}{0,1}} = 3,14(A)$

Đáp án: i = 3,14 A