Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Кафедра компьютерных систем и программных технологий

Отчет о лабораторной работе №5

Курс: Администрирование компьютерных сетей

Тема: Перенос сети в Cisco Packet Tracer

Выполнил студент группы 13541/3	Д.В. Круминьш (подпись)
Преподаватель	И.А. Малышев (подпись)

1 Цели работы

- 1. Ознакомиться с Cisco Packet Tracer, и выполнить в нем:
 - Построение компьютерной сети(из прошлых работ);
 - Настроить сервисы DNS, DHCP, TFTP;
 - Выполнить тестирование сети.

2 Построение компьютерной сети

Средствами Cisco Packet Tracer была построена следующая схема:

Рис. 1: Схема компьютерной сети

С помощью инструментов, были расставлены компьютеры, коммутаторы и роутеры типа **generic**, а также связаны между собой. По сравнению с работами в WMware, в данном случае:

- Вместо NetBSD и FreeBSD были использованы роутеры;
- Вместо интернета выступает сервер с http страницой.

Сегмент	Адрес узла	Описание	
сети	ларео усла	Описание	
NET_1	192.168.32.1	Сервер, с DNS и HTTP сервисами.	
NET_2	192.168.40.32	Компьютер, со статическим адресом.	
NET_3	192.168.80.1	Сервер, с DHCP сервисом.	
NET_3 192.168.80.3	Компьютер, адрес которого получен от DHCP		
	192.100.00.3	сервера.	
NET_3	192.168.80.128	Компьютер, со статическим адресом.	
NET_4	192.168.120.1	Сервер, с ТҒТР сервисом.	
NET_4	192.168.120.15	Компьютер, со статическим адресом.	

Таблица 1: Описание узлов компьютерной сети

2.1 Настройка адреса узла

Для присвоения адреса какому-либо узлу, необходимо зайти в пункт **IP Configuration** и далее:

- Выбрать **DHCP**, если в сегменте сети имеется DHCP сервер;
- Выбрать **Static**, если адрес предполагается статическим, и далее заполнить следующие поля:
 - IP Address:
 - Subnet Mask;
 - Default Gateway;
 - DNS Server.

После насктройки узла, для применения последних изменений рекомендуется перезагрузить его.

2.2 Настройка сервисов

Настройка DNS сервиса была произведена на узле с адресом 192.168.32.1. Для настройки необходимо выбрать, в меню настройки узла, пункт **DNS**, включить сервис и добавить новую запись.

В данной работе была добавлена запись, со следующими параметрами:

- name www.mypage.com
- address 192.168.32.1

То есть в данном случае, настраиваемый узел и является конечным узлом для данного доменного имени.

Также, для данного узла, был включен HTTP сервис, где уже имеется предварительно сгенерированная http-страница.

Настройка DHCP сервиса была произведена на узле с адресом 192.168.32.1. При которой были заполнены следующие поля:

- Interface FastEthernet0;
 - единственный интерфейс данного узла.
- **Default Gateway** 192.168.80.2;
 - шлюзом по умолчанию выступает интерфейс роутера, подключенный к данной(NET_3) подсети.
- **DNS Server** 192.168.32.1;
 - предварительно настроенный DNS серверс из подсети NET_1.
- Start IP Address 192.168.80.3;
 - начала диапазона по выдаче IP-адресов.
- Subnet Mask 255.255.255.0;
 - маска подсети.
- Maximun number of Users 100;
 - максимальное количество пользователей.

Настройка TFTP сервиса была произведена на узле с адресом 192.168.120.15. Где его необходимо было включить, и для удобства удалить предварительно сгенерированные в нем файлы.

2.3 Настройка роутеров

В сети имеются два роутера(**Router 1** и **Router2**), которые выполняют функцию связующего звяна между подсетями.

Роутер	Сеть	Адрес интерфейса
Router 1	NET_1	192.168.32.128
Router 1	NET_2	192.168.40.57
Router 2	NET_2	192.168.40.2
Router 2	NET_3	192.168.80.2
Router 2	NET_2	192.168.120.2

Таблица 2: Описание интерфейсов роутеров

Также, для корректной работы сети была добавлена маршрутизация. Для этого на Router 1, в настройках был выбран пункт **RIP Routing**, в который были добавлены следующие подсети:

- 192.168.32.0;
- 192.168.40.0.

И для Router 2 соответственно:

- 192.168.40.0;
- 192.168.80.0;
- 192.168.120.0.

3 Проверка

3.1 Проверка команды ping по адресу

Откроем на узле 192.168.40.32(сеть NET_2) утилиту **Command Prompt**, в которой введем команды **ipconfig** и **ping** в которой укажем адрес 192.168.120.15(сеть NET_4).

```
Reply from 192.168.120.15: bytes=32 time=1ms TTL=127
Reply from 192.168.120.15: bytes=32 time=1ms TTL=127
Reply from 192.168.120.15: bytes=32 time<1ms TTL=127

Ping statistics for 192.168.120.15:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli—seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Как видно из лога, команда пинг была успешна.

3.2 Проверка команды ping по доменному имени

Откроем на узле 192.168.80.3(сеть NET_3) утилиту **Command Prompt**, в которой введем команды **ipconfig** и **ping** в которой укажем доменное имя **www.mypage.com**.

```
C:\>ipconfig
FastEthernetO Connection:(default port)
  Link-local IPv6 Address ..... FE80::201:42FF:FE0B:D82B
  C:\ > ping www.mypage.com
Pinging 192.168.32.1 with 32 bytes of data:
Reply from 192.168.32.1: bytes=32 time<1ms TTL=126
Reply from 192.168.32.1: bytes=32 time=10ms TTL=126
Reply from 192.168.32.1: bytes=32 time=11ms TTL=126
Reply from 192.168.32.1: bytes=32 time=13ms TTL=126
Ping statistics for 192.168.32.1:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 13ms, Average = 8ms
```

Как видно из лога, доменное имя было преобразовано в адрес, по которому и была произведена команда ping.

3.3 Проверка доступа к web странице

На узле, с адресом 192.168.80.3(сеть NET_3) была открыта утилита - браузер, в которой был введен адрес **www.mypage.com**.

Рис. 2: Web Browser

Как и ожидлось, страница была успешно загружена.

3.4 Проверка TFTP

Ha Router 2 была открыта консоль, в которой были выполнены следующие команды:

```
Router>enable
Router#show flash
System flash directory:
File Length Name/status
 3
     5571584 pt1000-i-mz.122-28.bin
     28282 sigdef-category.xml
             sigdef-default.xml
     227537
[5827403 bytes used, 58188981 available, 64016384 total]
63488K bytes of processor board System flash (Read/Write)
Router#copy flash tftp
Source filename []? pt1000-i-mz.122-28.bin
Address or name of remote host []? 192.168.120.1
Destination filename [pt1000-i-mz.122-28.bin]? temp.file
[OK - 5571584 \text{ bytes}]
```

5571584 bytes copied in 0.147 secs (8684467 bytes/sec)

Разберем действия:

- 1. Командой **enable** был совершен переход в привелегированный режим, можно заметить по символу решетки;
- 2. Командой **show flash** было выведено содержимое флеш-памяти, в данном случае это необходимо для тестовой загрузки по TFTP;
- 3. Командой **copy flash tftp** сообщаем о начале загрузке файла по tftp, где далее указывается файл(ы), tftp сервер для загрузки, а также новое имя файла(ов).

На TFTP сервере, в настройках TFTP появится выбранный ранее файл с указанным именем.

Вывод

В данной работе был получен опыт по работе в Cisco Packet Tracer.

По сравнению с прошлыми работами, где построение происходило с помощью WMware, в данном случае сеть была построена и настроена гораздо быстрее.

Построение и настройка были выполнены с помощью встроенных инструментов, которые в общем виде имитируют реальное оборудование. Если сравнивать с WMware, то в нем были рассмотрена настройка сети на конкретных системах(FreeBSD, NetBSD), в то время как в Cisco Packet Tracer это было сделано на лишь приближенных к реальности устройствах.

В общем случае Cisco Packet Tracer будет полезен при проектировании сети, но даст не так много опыта как WMware при настройке реальных систем.