Evaluating the Impacts of Sea-Level Model Structural Uncertainty on Coastal Adaptation

Rochester Institute of

Technology

Kelly Feke, Carolina Estevez Loza, & Tony Wong, School of Mathematics and Statistics, Rochester Institute of Technology tony.wong@rit.edu

Introduction

- Sea-level rise and coastal flooding pose significant risks to coastal communities
- Efficacy of strategies to manage these risks depends on:
 - uncertainty in future emissions pathways
 - uncertainty in future socioeconomic change
 - uncertainty in geophysical factors (e.g., climate sensitivity)
 - uncertainty stemming from numerous plausible representations of processes within a computational model, so which structure is employed or "correct" is uncertain (i.e., model structural uncertainty)
- Model averaging can address this, but introduces new uncertainties (e.g., *Is the "correct" model within the set of models used?*But also... *There isn't* a "correct" model...)
- Can be preferable to *characterize* deep uncertainties through multiple probability density functions (pdfs) instead of attempts to *quantify* it.
- So, we use the U.S. Gulf of Mexico coast as a case study region to ask:

 What are the relative impacts of scenario and model structural deep uncertainties on coastal adaptation and impacts?

Workflow

Sea-level projections using CMIP6 models

Antarctic & Greenland ice sheets, thermal expansion, and glaciers and ice caps contributions to global sea levels¹

Deep uncertainties

Structural: 20 GCM configurations (see CMIP6 Models Used ↘)
Scenario: 3 SSP-RCP pathways (1000 simulations x SSP1-2.6, SSP2-4.5, SSP5-8.5)

Downscaling to local sea-level change

Local sea level *fingerprints* to get local sea-level change due to global contributions from ice sheets, thermal expansion, glaciers/ice caps for U.S. Gulf of Mexico Coast

Local coastal impacts using MimiCIAM

Mimi Coastal Impact and Adaptation Model² to estimate net present value (NPV) of total adaptation costs from **protection** or **retreat**, and damages from **inundation, wetland loss,** and **flooding**

ANOVA and partial η^{\square} & ω^{\square} effect sizes

Effect sizes $\eta^{\Box} \& \omega^{\Box}$ quantify portion of variance in output explained by group membership (which model/scenario?), accounting for variance explained by other variables

$m^2 = \frac{SS_{between}}{}$	General guidelines:	
$SS_{between} + SS_{within}$	Effect size	η^2 or ω^2
	Small	0.0099
ω^\square is similar, corrects for	Medium	0.0588
sample vs population bias	Large	0.1379

Results

Net present value (NPV) of total least-cost adaptation costs for U.S. Gulf of Mexico coast

Analysis of Variance in NPV, stemming from scenario and model structural uncertainties

Overall model			
Uncertainty	partial η^2	partial ω^2	
model	0.60	0.60	
scenario	0.70	0.70	
model:scenario interaction	0.09	0.09	

Conditioned on SSP1-2.6			
Uncertainty	η^{2}	ω^2	
model	0.16	0.16	
Moderate/large			
	effect ³		

Condition	ed on 88	P2-4.5	
Uncertainty	$\overline{\eta^2}$	ω^2	
model	0.19	0.19	
Moderate/large			
	eff	effect	

Condition	ed on SS	P5-8.5	
Uncertainty	η^{2}	ω^2	
model	0.68	0.68	
	Large effect		

CMIP6 Models Used

Model	Center	N	Model (cont.)	Center
ACCESS-CM2	CSIRO & ARCCSS	11	NM-CM4-8	INM
ACCESS-ESM1-5	CSIRO & ARCCSS	11	NM-CM5-0	INM
CanESM5	CCCma	11	PSL-CM6A-LR	IPSL
CMCC-CM2-SR5	CMCC	N	ЛIROC6	MIROC
CNRM-CM6-1	CNRM & CERFACS	N	∕IPI-ESM1-2-HR	MPI-M
CNRM-CM6-1-HR	CNRM & CERFACS	N	∕IPI-ESM1-2-LR	MPI-M
CNRM-ESM2-1	CNRM & CERFACS	N	∕IRI-ESM2-0	MRI
EC-Earth3	EC-Earth-Cons.	N	lorESM2-LM	NCC
EC-Earth3-Veg	EC-Earth-Cons.	N	lorESM2-MM	NCC
HadGEM3-GC31-LL	MOHC	L	JKESM1-0-LL	MOHC

Take-aways

- Substantial variation in adaptation costs across models...
- even in the median/low quantiles
- even when conditioned on a single scenario
- Effect size on NPV from model structural uncertainty comparable to scenario uncertainty
- When conditioned on scenario...
- ... have a moderate/large effect size in low & moderate GHG/socioeconomic scenarios (SSP1-2.6, SSP2-4.5), and
- ... a large effect size in high-end scenario (SSP5-8.5)

Digital version

of this poster:

References

- L. Hermans et al. 2021, doi: 10.1029/2020GL092064
- 2. Wong et al. 2022, doi: 10.1029/2022EF003061
- 3. Cohen 1988, doi: 10.4324/9780203771587

Acknowledgements

This material is based upon work supported by the National Science Foundation under Award No. DMS-2213432. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

