

Siemens 0022 Seq Listing.txt

<110> Wirtz, et al.

<120> METHODS AND COMPOSITIONS FOR THE PREDICTION, DIAGNOSIS, PROGNOSIS, PREVENTION AND TREATMENT OF MALIGNANT NEOPLASIA

<130> 2007674-0022

<140> 10/576,900

<160> 512

<170> PatentIn version 3.1

<210> 1

<211> 3846

<212> DNA

<213> Homo sapiens

<400> 1						
gcctcccgcc	agctcgccctc	gggaaacagg	acgcgcgtga	gctcaggcgt	ccccgccccca	60
gctttctcg	gaaccatgaa	ccccaaactgc	gcccggtgcg	gcaagatcgt	gtatcccacg	120
gagaagggtga	actgtctgg	taagttctgg	cataaagcat	gcttccattg	cgagacctgc	180
aagatgacac	tgaacatgaa	gaactacaag	ggctacgaga	agaagcccta	ctgcaacgca	240
cactacccca	agcagtccct	caccatggtg	gcggacacccc	cgaaaacacct	tcgcctcaag	300
caacagagt	agctccagag	tcaggtgcgc	tacaaggagg	agtttgagaa	gaacaagggc	360
aaagggttca	gcgttagtggc	agacacgccc	gagctccaga	gaatcaagaa	gaccaggac	420
cagatcagta	atataaaaata	ccatgaggag	tttgagaaga	gccgcatggg	ccctagcggg	480
ggcgagggca	tggagccaga	gcgtcggat	tcacaggacg	gcagcagcta	ccggcggccc	540
ctggagcagc	agcagccctc	ccacatcccg	accagtgc	cggttacca	gcagccccag	600
cagcagccgg	tggcccagtc	ctatggtgc	tacaaggaggc	ctgcagcccc	agtctccata	660
cagcgcagcg	ccccaggatgg	tggcggaaag	cggtaccgcg	cggttatga	ctacagcggc	720
gcccgcacgg	acgggtcttc	cttccaggac	ggggacacca	tcgtcaacgt	gcagcagatc	780
gacgacggct	ggatgtacgg	gacgggtggag	gcgcacggcg	acacggggat	gctgcccggc	840
aactacgtgg	aggccatctg	aacccggagc	gcccccatct	gtcttcagca	cattccacgg	900
catcgcatcc	gtcctggcg	tgagccgtcc	attcttcagt	gtctctgttt	tttaaaacct	960
gcgacagctt	gtgattccct	cccctttcc	agcttctttt	gccaactgaa	gccttctct	1020
gccacttctg	cgggctccct	cctctggcag	gcttcccccg	tgatcgactt	tttggttttc	1080
tctctgtat	gaacgggtat	gggcctct	gggggaggca	gggttggaat	gggagacctg	1140
ttggcctgtg	ggcctcacct	gccccctgt	tctctccct	cacatcctcc	tgcccagctc	1200
ctcacatacc	cacacattcc	agggctgggg	tgagcctgac	tgccaggacc	ccaggtcagg	1260
ggctccctac	attccccaga	gtgggatcca	tttcttggtt	cctgggatgg	cgatggggac	1320
tctgccctg	tgttagggacc	agtgggatgg	gctctacctc	tcttctcaa	agagggggct	1380
ctgcccacct	ggggctctc	tccctacctc	cctcttcagg	ggcaacaaca	ggagaatggg	1440
gttcctgtg	tggggcgaat	tcatccccctc	cccgcgcg	ccttcgcaca	ctgtgathtt	1500
gccctctcgc	ccacgcagac	ctgcagcggg	caaagagctc	ccgaggaagc	acagcttgg	1560
tcaggttctt	gccttctta	attttaggg	cagctacccg	aaggaggggg	acaaggagtt	1620
ctcttccgca	gcccccttc	ccacgcccac	ccccagtctc	cagggaccc	tgcctgcctc	1680
ctaggctgg	agccatggtc	ccgaatgt	ggcgaagggt	gcctcaggac	cttttggct	1740
tcagccccc	tcaaaaaaaa	ggatctgggt	taggtggccg	ctccctccctg	ctccctcatgg	1800
gaagatgtct	cagagccttc	catgacccctc	cctccccagc	ccaatgcca	gtggacttgg	1860
agctgcacaa	agtcagcagg	gaccactaaa	tctccaagac	ctggtgtc	gaggcaggag	1920
catgtatgtc	tgcagggtgc	tgacacgcaa	gtgtgtgagt	gtgagtgt	gagatggggc	1980
gggggtgtgt	ctgttaggtgt	ctctgggcct	gtgtgtgggt	ggggttatgt	gagggtatga	2040
agagctgtct	tcccctgaga	gtttcctcag	aacccacagt	gagaggggg	ggctcctggg	2100
gcagagaagt	tccttaggtt	ttcttggaa	tgaattct	cctttcccccc	atctctgagt	2160
ggaggaagcc	caccaatctg	cccttgcag	tgtgtcaggg	tggaaaggtaa	gagggttgg	2220
tggagttggg	gctgccatag	ggtctgcagc	ctgctggggc	taagcggtgg	aggaaggctc	2280

Siemens 0022 Seq Listing.txt

tgtcaactcca	ggcatatgtt	tccccatctc	tgtctggggc	tacagaatag	ggtggcagaa	2340
gtgtcaccct	gtgggtgtct	ccctcggggg	ctcttccct	agacctcccc	ctcaactaca	2400
taaagctccc	ttgaagcaag	aaagagggtc	ccagggctgc	aaaactggaa	gcacagcctc	2460
ggggatgggg	aggaaagac	ggtctatat	ccagttccct	ctctctgctc	atgggtggct	2520
gtgacaaccc	tggcctcaact	tgattcatct	ctggttttct	tgccaccctc	tggagatccc	2580
catccctt	tcatctcgag	cccaaccagg	ccctgccatt	ggcctcttgt	ccctggcac	2640
acttgtaccc	acaggtgagg	ggcagggac	gaagggtattg	gcctgttcaa	caatcagtc	2700
tcatgggtgt	tttgtcaac	tgcttggtaa	ttgatttggg	gatgtttgcc	ccgaatgaga	2760
ggtttagggaa	aagactgtgg	gtggggaggc	cctgcctgac	ccatccctt	tccttctgg	2820
ccccagccta	ggtggaggca	agtggaatat	cttataattgg	gcgatttggg	ggctcgggga	2880
ggcagagaat	ctcttggggag	tcttgggtgg	cgctgggtca	ttctgttcc	tcttgcattc	2940
aaagcacaat	gtggatttgg	ggaccaaagg	tcagggacac	atccccttag	aggacctgag	3000
tttggggagag	tggtgagtgg	aaggaggag	cagcaagaag	cagctgttt	tcactcaagct	3060
taattctcct	tcccagataa	ggcaagccag	tcatggaaatc	ttgtctgcagg	ccctccctct	3120
actcttcctg	tccaaaaat	aggggccgtt	ttcttacaca	ccccagaga	gaggaggac	3180
tgtcacactg	gtgctgagtg	accggggggct	gctggggcgtc	tgtttcttac	caaaccatc	3240
catccctaga	agagcacaga	gccctgggg	gctggggctgg	gctgggctga	gcccctgtc	3300
ttctctacag	tccacagagg	tcttcagct	catttaattcc	cagggaaagag	gcatcaaagc	3360
tagaatgtga	atataacttt	tgtggccaa	tactaagaat	aacaagaagc	ccagtggta	3420
ggaaagtgcg	tttcccacgc	actgcctcct	gttttctccc	tctcatgtcc	ctccaggaa	3480
aatgacttta	ttgcttaatt	tctgccttcc	ccccctcaca	catgcacttt	tgggccttt	3540
ttttagctg	gaaaaaaaaa	aataccaccc	tacaaacctg	tatttaaaaa	gaaacagaaa	3600
tgaccacgtg	aaatttgcct	ctgtccaaac	atttcatccg	tgtgtatgtg	tatgtgtgt	3660
agtgtgtgaa	gccgcccagt	catctttta	tatgggggtt	ttgtctcatt	ttgtctgtt	3720
ttggtcccct	ccctcggtgg	cttgctcg	ggatcaaacc	tttctggcct	gttatgattc	3780
tgaacatttgc	acttgaacca	caagtgaatc	tttctccctgg	tgactcaaata	aaaagtataaa	3840
ttttta						3846

<210> 2

<211> 1711

<212> DNA

<213> Homo sapiens

<400> 2

gagggaaggc	aggaaggagg	cagccgaagg	ccgagctggg	tggctggacc	gggtgctggc	60
tgcgcgcgt	gtttcggct	cccacggcct	ctccccatgcg	ctgaggggagc	ccggctgcgg	120
gccggccgcg	ggagggggagg	ctcccttcca	ttgtccagaa	gaccagcatg	tcccggggcc	180
cttaccacc	ctcccaggag	atccccatgg	aggtcttcga	ccccagcccg	cagggcaaat	240
acagcaagag	gaaaggggcg	ttcaaacgg	cagatggggag	cacgtcctcg	gataaccat	300
ccaacagctt	tgtccgcccag	ggctcagcgg	agtcctacac	cagccgtcct	tcagactctg	360
atgtatctct	ggaggaggac	cgggaaagcct	taaggaagga	agcagagcgc	caggcattag	420
cgcagctcga	gaaggccaaag	accaagccag	ttgcatttgc	tgtgcggaca	aatgttggct	480
acaatccgtc	tccaggggat	gaggtgcctg	tgcagggagt	ggccatcacc	ttcgagccca	540
aagacttcct	gcacatcaag	gagaaataca	ataatgactg	gtggatcggg	cggctggta	600
aggagggctg	tgaggttggc	ttcattccca	gccccgtcaa	actggacagc	tttcgcctgc	660
tgcaggaaca	gaagctgcgc	cagaaccgccc	tcggctccag	caaatcaggc	gataactcca	720
gttccagtct	ggggatgtgt	gtgactggca	cccgccgccc	cacacccct	gccagtgcct	780
aacagaagca	gaagtcgaca	gagcatgtgc	ccccctatga	cgtgtgcct	tccatgaggc	840
ccatcatcct	ggtgggaccg	tcgctcaagg	gctacgaggt	tacagacatg	atgcagaaaag	900
ctttatttga	cttcttgaag	catcggttt	atggcaggat	ctccatcact	cgtgtgacgg	960
cagatatttc	cctggctaa	cgctcagttc	tcaacaaccc	cagcaaacac	atcatcattg	1020
agcgcctccaa	cacacgctcc	agcctggctg	aggtgcagag	tgaardatcgag	cgaatcttcg	1080
agctggcccg	gacccttcag	ttggtcgtc	ttgatgtcgta	caccatcaat	caccctggccc	1140
agctgtccaa	gacctcgctg	gccccatca	ttgtttatc	caagatcacc	tctcccaagg	1200
tacttcaaag	gctcatcaag	tcccggaggaa	agtcctcagtc	caaaccaccc	aatgtccaaa	1260
tagcggccctc	ggaaaagctg	gcacagtgcc	ccccctgaaat	gttgcacatc	atccctggatg	1320
agaaccaatt	ggaggtatgc	tgcgagcatc	tggcggagta	tttgcagacc	tattggagg	1380
ccacacaccc	gcccagcgc	acgccaccca	atccgcgtct	gaaccgcacc	atggctaccg	1440
cagccctgcg	ccgtagccct	gccccgtct	ccaacctcctc	ggtacaggtg	ctcacccctgc	1500
tcaggagaaa	cctcggcttc	tggggcgggc	tggagtcctc	acagcggggc	agtgtggtgc	1560

Siemens 0022 Seq Listing.txt

cccaggagca	ggaacatgcc	atgttagtggg	cgcctcgccc	gtctccctc	ctgctctggg	1620
gtcggaaactg	gagtgcaggg	aacatggagg	aggaaggggaa	gagcttatt	ttgtaaaaaaaa	1680
ataagatgag	cggcaaaaaaa	aaaaaaaaaa	a			1711

<210> 3

<211> 698

<212> DNA

<213> Homo sapiens

<400> 3

ttttcccttc	gctgctgcgg	ccgcagccat	gagtatgctc	aggcttcaga	agaggctcgc	60
ctctagtgtc	ctccgctgtg	gcaagaagaaa	ggtctggta	gaccccaatg	agaccaatga	120
aatcgccaat	gc当地actccc	gtcagcagat	ccggaaagctc	atcaaagatg	ggctgatcat	180
ccgcaagcct	gtgacgggtcc	attcccgggc	tgc当地gccc	aaaaacacct	tggcccgccg	240
gaagggcagg	cacatggggca	taggttaagcg	gaagggtaca	gccaatgccc	gaatgccaga	300
gaaggtcaca	tggatgagga	gaatgaggat	tttgc当地ccgg	ctgctcagaa	gataccgtga	360
atctaagaag	atcgatcgcc	acatgtatca	cagcctgtac	ctgaagggtga	aggggaatgt	420
gttcaaaaac	aaggcgattc	tcatgaaaca	catccacaaag	ctgaaggcag	acaaggcccc	480
caagaagctc	ctggctgacc	aggctgaggc	ccgc当地ggct	aagaccaagg	aagcacgcaa	540
gc当地cgtaa	gagcgcctcc	aggccaaagaa	ggaggagatc	atcaagactt	tatccaagga	600
ggaagagagcc	aagaaataaa	acctcccact	ttgtctgtac	atactggcct	ctgtgattac	660
atagatcagc	cattaaaata	aaacaagcct	taatctgc			698

<210> 4

<211> 5810

<212> DNA

<213> Homo sapiens

<400> 4

gggaagatgg	cggcggccctc	gagcacccctc	ctcttcttgc	cgccggggac	ttcagattga	60
tccttcccg	gaagagtgg	gactgctgg	ggcctgcgtc	ccgggatccc	gagccaaactt	120
gttccctccg	ttagtgggtg	ggaaggggctt	atccctttgt	ggcggatcta	gtttctccctc	180
gccttcagga	tggaaagctca	ggggggaaac	cgaggagtc	aaaaagctga	gtaagatgag	240
ttctctctg	gaacggctcc	atgcaaaaatt	taacaaaat	agacccctgga	gtgaaaccat	300
taagctgtg	cgtcaagtca	tggagaagag	gttgtatg	agttctggag	ggcatcaaca	360
tttggtcagc	tgtttggaga	cattgcagaa	ggctctcaa	gtacatctt	taccagcaat	420
gactgatcgt	tttgagtc	tagcaggaca	aatggactg	ggctctcatc	tcagtgccag	480
tggcactgaa	tgttacatca	cgtcagatat	gttctatgt	gaagtgcagt	tagatctgc	540
aggacagctt	tgtgatgtaa	aagtgc	ccatggggag	aatctgtga	gctgtccgga	600
gcttgtacag	cagctaaggg	aaaaaaattc	tgtgaattt	tctaaggcacc	ttaagggcct	660
tgttaatctg	tataaccttc	caggggacaa	caaactgaag	actaaaatgt	acttggctct	720
ccaatccta	gaacaagatc	tttctaaaat	ggcaattatg	tactggaaag	caactaatgc	780
tggcccttg	gataagattc	ttcatgaaag	tgtggctat	ctcacaccaa	ggagtggggg	840
tcatttaatg	aacctgaagt	actatgtctc	tccttctgac	ctactggatg	acaagactgc	900
atctcccatc	attttgcatg	agaataatgt	ttctcgatct	ttgggcatga	atgcatcagt	960
gacaatgaa	ggaacatctg	ctgtgtacaa	actccaaatt	gcaccattaa	ttatgggtc	1020
acatccagtt	gacaataaaat	ggaccccttc	cttctccctca	atcaccagtg	ccaacagtgt	1080
tgtatctccct	gcctgtttct	tcttggaaatt	tcccccagcc	atcccgat	ctagagcatt	1140
tgttcagaaa	ctgcagaact	gcacaggaat	tccattgttt	gaaactcaac	caacttatgc	1200
accctgtat	gaactgtatca	ctcagggttga	gttatcaaaag	gaccctgacc	ccataccctt	1260
gaatcacaac	atgagattt	atgctgtct	tcctgggtcag	cagcactgt	atttcctcaa	1320
caaggatgct	cctcttccag	atggccgaag	tctacaggga	acccttggta	gcaaaaatcac	1380
ctttcagcac	cctggccgag	ttccttcttat	cctaaatctg	atcagacacc	aagtggccct	1440
taacacccctc	atggaaagct	gtgtcaaaaag	aactattctg	aaagaagatt	tcctgggct	1500
tctccaattt	gaagtgtgtc	ctctc	gtctcggttc	agcgtatctt	ttcagcaccc	1560
tgtgaatgac	tccctgggtgt	gtgtggtaat	ggatgtgcag	ggcttaacac	atgtgagctg	1620
taaactctac	aaaggcgtgt	cggatgcact	gatctgcaca	gatgacttca	ttgccaaagt	1680

Siemens 0022 Seq Listing.txt

tgttcaaaga	tgtatgtcca	tccctgtac	gatgagggct	attcggagga	aagctgaaac	1740
cattcaagcc	gacaccccag	caactgtccct	cattgcagag	acagttaag	acatggtaa	1800
aaagaacctg	ccccccgcta	gcagcccagg	gtatggcatg	accacaggca	acaacccaat	1860
gagtggtacc	actacatcaa	ccaacacctt	tccggggggtt	cccattgcca	ccttgtttaa	1920
tatgagcatg	agcatcaaag	atcggcatga	gtcggtggc	catggggagg	acttcagcaa	1980
ggtgtctcg	aacccaattt	ttaccagttt	gttgc当地	acagggaaacg	gggggtctac	2040
cattggctcg	agtccgaccc	ctcctcatca	cacgccc当地	cctgtctt	cgatggccgg	2100
caacaccaag	aaccacccga	tgctcatgaa	ccttctcaa	gataatctg	cccaggattt	2160
ctcaacccctt	tatggaagca	gccctttaga	aaggcagaac	tccttccg	gctcaccccg	2220
catggaaata	tgctcgggga	gcaacaagac	caagaaaaag	aagtcatcaa	gattaccacc	2280
tgagaaacca	aagcaccaga	ctgaagatga	ctttcagagg	gagctat	aatggatgt	2340
tgactcacag	aaccctatct	ttgatgtcaa	catgacagct	gacacgctgg	atacgccaca	2400
catcaactca	gctccaagcc	agtgtacac	tcccccaaca	acttaccac	aaccagtacc	2460
tcaccccaa	cccaactt	aaaggatgtt	ccgactatcc	agttcagaca	gcattggccc	2520
agatgtact	gacatcctt	cagacattgc	agaagaagct	tctaaacttc	ccagcaactag	2580
tgatgattgc	ccagccattt	gcacccctct	tcgagattt	tcaagctctg	ggcattctca	2640
gagtaccctg	tttgactctg	atgtcttca	aactaacaat	aatggaaaatc	catacactga	2700
tccagctgat	cttattgtcag	atgctgtcg	aagccccagt	agtactctc	ctaccatca	2760
tttttttcat	gatggagtag	atttcaatcc	tgattttt	aacagccaga	gccaaagtgg	2820
tttggagaa	gaatattttt	atgaaagcag	ccaaagtggg	gataatgt	atttcaaaagg	2880
atttgcatct	caggcactaa	atacttggg	gttgccaaat	cttggagg	ataatgggga	2940
gaccaagttt	aaggcaata	accacccgaa	cacagttat	ttcagattt	ttttagttag	3000
cggcaagct	tttagtctctg	cagatctt	ggagcatcac	agtgttagt	agggtccctt	3060
actgaccact	ggggactttag	ggaaagaaaa	gactcaaaag	agggttaaagg	aggcaatgg	3120
caccagtaat	agtactctct	cggggcccg	attagacagc	aaaccaggaa	agcgcagtcg	3180
gaccccttct	aatgatgggaa	aaagcaaaga	taagcctca	aagcggaaaga	aggcagacac	3240
tgagggaaag	tctccatctc	atagttctt	taacagactt	tttacccac	ctaccatgt	3300
aggtggatct	aaatcgccag	gcagtcagg	agatctcg	actccccag	gtgttgcac	3360
accaccatt	cccaaaatca	ctattcagat	tcctaaggga	acagtgtatgg	ttggcaagcc	3420
ttcctctcac	agtcaatct	ccagcagtgg	ttctgtgtt	tcctcaggca	gcaaaagcca	3480
ccatagccat	tcttcctcct	cttcctcatc	tgcttccacc	tcagggaaaga	tgaaaagcag	3540
taaatcagaa	gggtcatcaa	gttccaaat	aatgtcaat	atgtattctt	gcccagggtc	3600
ttctggatct	agccagtc	aaaattcattc	ccagtcgtgg	gggaagccag	gtccctctcc	3660
cataaccaag	catggactga	gcagtcgtc	tagcagcacc	aatgtgaaac	ctcaaggaaa	3720
gccatcatca	cttatgtatc	cttcttaag	taaaccaaac	atatcccctt	ctcattcaag	3780
gccaccttga	ggctctgaca	agcttgc	tccaaatgaag	cctgttctg	gaactccctc	3840
atcccttaaa	gccaagttcc	ctatcgttc	aggttctgt	gttctctata	tgtctggaaac	3900
tagtcaagc	tctggcatga	agtcatctt	agggttagga	tcctcagg	cgttgc	3960
aaaaactccc	ccatcatctt	attcctgtac	gycatcttcc	tcctctttt	cctcaagtg	4020
ctcttcatcg	tatcctctc	agaaccagca	ttggagttt	aaagaaaaat	ctcccagcag	4080
aaacaagaag	ccgtccttga	cagctgtcat	agataaaactg	aagcatgggg	ttgtcaccag	4140
tggccctggg	ggtaagacc	cactggacgg	ccagatgggg	gtgagcacaa	atttccag	4200
ccatccatcg	tccctcaaaac	ataacatgtc	aggaggagag	tttcagg	agcgtgagaa	4260
aagtgataaa	gacaaatcaa	aggttccac	ctccgggagt	tcagtgatt	tttcaagaa	4320
gacctcagag	tcaaaaaat	ttgggagcac	aggtgtggc	aaaattatca	tcaagtaac	4380
tgatggaggc	tcccctagca	ttaaagccaa	agtacttt	cagaaacctg	gggaaagttag	4440
tggagaaggg	cttaggcctc	aatggctt	ttctaaaaac	tatggcttc	cactcatcg	4500
tggttccact	ccaaagcatg	agcgtggctc	tcccgccat	agtaagtctc	cagcatatac	4560
cccccaaaat	ctggacagtc	aaagtggatc	aggcttcc	atagcagaga	aatcttatac	4620
gaatagtccc	agctcagac	atggatcc	accacttcc	gaatacagca	cagagaaaca	4680
taagaagcac	aaaaaggaaa	agaagaaat	aaaagacaaa	gatagggacc	gagaccggg	4740
caaagaccga	gacaagaaaa	aatctcatag	catcaagcc	gagagttgt	ccaaatcacc	4800
catctttca	gaccagtcc	tgtctatgc	aaatgtatc	atcttatct	cagacagacc	4860
ctcaaggctc	agcccaagact	ttatgatgg	ggagggaaat	gatgtatctt	ttgtatgtgg	4920
cctgatgggg	aatttaggaac	tttatttctt	aaaagaaaaca	ggggccagagg	aaaaaaaaact	4980
attgataat	ttataggca	accacataa	gggggtgagtc	agacagg	gatgggtt	5040
agaatctaa	atggcatggc	tttgacatca	agctgggtg	attagaaagg	catatccaga	5100
cccttataaa	gaaaccacag	gttggat	ttgttaccag	gaatgttt	ttgttccctgt	5160
gccagaaaa	aatgtaaaat	acttgctt	gaaaggagg	gggggtgggag	gggtgttaggg	5220
agagggaaagg	gagggaaaca	gttttgggg	aaatattat	atatattt	ttctccctt	5280
ttccatcttt	aggccatgtt	ttaaactcat	tttagtgc	gtatgt	ggctggccag	5340
aaaatgaaaa	agcaatacat	tccttgatgc	atttgcata	aggtgttca	actttgtt	5400
aggttagttgt	ccgtttgag	catggcaaa	tgaaggactt	ttgtcatttt	ggacacttaa	5460

Siemens 0022 Seq Listing.txt

gtaattttg	gtgtctgttt	cttaggagt	actggggag	ggaagattat	tttagctatt	5520
tatTTGaat	atTTAACCC	tttatCTGTT	TGTTTTATA	cAGTTTCG	ttCTAAATCT	5580
atgaggTTA	gggttcaaaa	TGATGGAAGG	CCGAAGAGCA	aggCTTATAT	GGTGGTAGGG	5640
agCTTATAGC	ttGTGCTAAT	ACTGTAGCAT	CAAGCCCAG	CAAATTAGTC	AGAGCCGCC	5700
tttagAGTTA	aatataatAG	aaaaACCAAA	ATGATATTTC	TATTTAGGA	GGGTTAAAT	5760
aggGTTcaga	gATCATAGGA	ATATTAGGAG	ttacCTCTCT	GTGGAGGTAT		5810

<210> 5

<211> 5515

<212> DNA

<213> Homo sapiens

<400> 5

ctttttcccc	tttttcaggT	caggggaaag	ggaatGCCCA	attcAGAGAG	acatGGGGC	60
aagaaggacg	ggagtggagg	agCTTCTGGA	actttgcAGC	cgtcatCGGG	aggcggcAGC	120
tctaACAGCA	gagAGCGTCA	ccgCTTGTa	TGGAAGCACA	AGCAGCATAA	gtccAAACAC	180
tccaaAGACA	TGGGTTGGT	GACCCCCGAA	GCAGCATCCC	TGGGcacAGT	TATCAAACCT	240
ttggTGGAGT	ATGATGATAT	CAGCTCTGAT	TCCGACACCT	TCTCCGATGA	CATGGCCTTC	300
aaactAGACC	GAAGGGAGAA	CGACGAACGT	CGTGGATCAG	ATCGAGCAGA	CCGCCTGCAC	360
aaACATCGTC	ACCACCAgCA	CAGGCGTTCC	CGGGACTTAC	TAAAAGCTAA	ACAGACCGAA	420
aaAGAAAAAA	GCCAAGAAGT	CTCCAGCAAG	TGGGGATCAG	TGAAGGACCG	GATATCGGGA	480
AGTTCAAGC	GTTCGAATGA	GGAGACTGAT	GACTATGGGA	AGGCGCAGGT	AGCCAAAAGC	540
AGCAGCAAGG	AATCCAGGTC	ATCCAAGCTC	CACAAGGAGA	AGACCAAGGA	AGAACCGGGAG	600
CTGAAGTCTG	GGCACAAAGA	CCGGAGTAAGA	AGTCATCGAA	AAAGGGAAAC	ACCCAAAAGT	660
TACAAAACAG	TGGACAGCCC	AAAACGGAGA	TCCAGGAGCC	CCCACAGGAA	GTGGTCTGAC	720
AGCTCCAAC	AAGATGATAG	CCCCTCGGGA	GCTTCTTATG	GCCAAGATTAA	TGACCTTAGT	780
CCCTCACGAT	CTCATACCTC	GAGCAATTAT	GACTCCTACAA	AGAAAAGTCC	TGGAAGTACC	840
TCGAGAAGGC	AGTCGGTCAg	TCCCCCTTAC	AAGGAGCCTT	CGGCCCTACCA	GTCCAGCACC	900
CGGTACCCGA	GCCCTTACAG	TAGGCGACAG	AGATCTGTCA	GTCCCTATAG	CAGGAGACGG	960
TCGTCAGCT	ACGAAAGAAG	TGGCTCTTAC	AGCAGGGCGAT	CGCCCACTTC	CTATGGTCGA	1020
AGGCAGGTCCA	GCAGCCCTT	CCTGAGCAAG	CGGTCTCTGA	GTGCGAGTCC	ACTCCCCAGT	1080
AGGAAATCCA	TGAAGTCCAG	AAGTAGAAGT	CCTGCATATT	CAAGACATT	ATCTTCTCAT	1140
AGTAAAGAAGA	AGAGATCCAG	TTCACGCAgT	CGTCATTCTCA	GTATCTCACC	TGTCAAGGCTT	1200
CCACTTAATT	CCAGTCTGGG	AGCTGAACTC	AGTAGGAAAG	AGAAGGAAAG	AGCAGCTGCT	1260
GCTGCTGAG	CAAAGATGGA	TGGAAGGAG	TCCAAGGGGT	CACCTGTT	TTTGCTAGA	1320
AAAGAGAAACA	GTCAGTAGA	GGCTAAGGAT	TGAGGTTTG	AGTCTAAAGAA	GTТАCCCAAGA	1380
AGTGTAAAT	TGAAAAAAATC	TGCCCCAGAT	ACTGAACTGG	TGAATGTAAC	ACATCTAAAC	1440
ACAGAGGTA	AAAATTCTC	AGATACAGGG	AAAGTAAAGT	TGGATGAGAA	CTCCAGAAAG	1500
CATTTGTTA	AAGATTGAA	AGCACAGGGA	ACAAGAGACT	CTAAACCCAT	AGCACTGAAA	1560
GAGGAGATTG	TTACTCCAAA	GGAGACAGAA	ACATCAGAAA	AGGAGACCCC	TCCACCTCTT	1620
CCCAACAATTG	CTTCTCCCCC	ACCCCTCTA	CCAACACTA	CCCTCCACC	TCAAGACACCC	1680
CCTTGCAC	CTTGCCCTCC	AATACCAGCT	CTTCCACAGC	AACCACCTCT	GCCTCCTCT	1740
CAGCCAGCAT	TTAGTCAGGT	TCCTGTTCC	AGTACTTCAA	CTTGGCCCC	TTCTACTCAC	1800
TCAAAGACAT	CTGCTGTGTC	CTCTCAGGCA	AATTCTCAGC	CCCTGTACA	GGTTTCTGTG	1860
AAGACTCAAG	TATCTGTAAC	AGCTGCTATT	CCACACCTGA	AAACTTCAAC	GTGCGCTCCT	1920
TTGCCCTCC	CACCCATT	ACCTGGAGGT	GATGACATGG	ATAGTCCAAA	AGAAACTCTT	1980
CCTTCAAAAC	CTGTGAAGAA	AGAGAAGGAA	CAGAGGACAC	GTCACTTACT	CACAGACCTT	2040
CCTCTCCCTC	CAGAGCTCCC	TGGTGGAGAT	CTGTCTCCCC	CAGACTCTCC	AGAACCAAAG	2100
GCAATCACAC	CACCTCAGCA	ACCATATAAA	AAGAGACCAA	AAATTGTTG	TCCTCGTTAT	2160
GGAGAAAGAA	GACAAACAGA	AAGCGACTGG	GGGAAACGCT	GTGTTGACAA	GTGGACATT	2220
ATGGGGATT	TTGGAGAAGG	AACCTATGGC	CAAGTATATA	AAGCAGGGGA	CAAAGACACA	2280
GGAGAACTAG	TGGCTCTGAA	GAAGGTGAGA	CTAGACAAATG	AGAAAGAGGG	CTTCCCAATC	2340
ACAGCCATT	GTGAAATCAA	AATCCCTCGT	CAGTTAATTC	ACCGAAGTGT	TGTTAACATG	2400
AAGGAATTG	TCAAGATAAA	ACAAGATGCA	CTGGATTTC	AGAAGGACAA	AGGTGCCTT	2460
TACCTTGTAT	TTGAGTATAT	GGACCATGAC	TAAATGGGAC	TGCTAGAATC	TGGTTGGTG	2520
CACTTTCTG	AGGACCATAT	CAAGTCGTT	ATGAAACAGC	TAATGGAAGG	ATTGGAATAC	2580
TGTCAACAAA	AGAATTTCCT	GATCGGGAT	ATTAAGTGT	CTAACATTTC	GCTGAATAAC	2640
AGTGGGCAAA	TCAAACATGC	AGATTGGA	CTTGCTCGGC	TCTATAACTC	TGAAGAGAGT	2700
CGCCCTTACA	CAAACAAAGT	CATTACTTG	TGGTACCGAC	CTCCAGAACT	ACTGCTAGGA	2760
GAGGAACGTT	ACACACCAGC	CATAGATGTT	TGGAGCTGTG	GATGTATTCT	TGGGAACTA	2820

Siemens 0022 Seq Listing.txt

ttcacaaaaga	agcctatttt	tcaaggcaat	ctggaaactgg	ctcagctaga	actgtatcgc	2880
cgactttgtg	gtagcccttg	tccagctgtg	tggcctgatg	ttatcaaact	gccctacttc	2940
aacaccatga	aaccgaagaa	gcaatatcg	aggcgctcac	gagaagaatt	ctctttcatt	3000
ccttctgcag	cacttgattt	attggaccac	atgctgacac	tagatcctag	taagcgggtc	3060
acagctgaac	agaccctaca	gagcacttc	cttaaagatg	tcgaactcag	aaaaatggct	3120
cctccagacc	tccccccactg	gcaggattgc	catgagttgt	ggagtaagaa	acggcgacgt	3180
cagcgacaaa	gtgggttgtt	agtcaagag	ccacctccat	ccaaaacttc	tcgaaaagaa	3240
actacccctag	ggacaagtac	tgagcctgtg	aagaacagca	gcccagcacc	acctcagcct	3300
gctcctggca	aggtggagtc	tggggctggg	gatgcaatag	gcctgctga	catcacacaa	3360
cagctgaatc	aaagtgaatt	ggcagtgta	ttaaacctgc	tgcagagcca	aaccgacctg	3420
agcatccctc	aatggcaca	gctgcttaac	atccactcca	accaggagat	gcagcagcag	3480
ctggaaagccc	tgaaccaatc	catcagtgcc	ctgacggaa	ctacttccca	gcagcaggac	3540
tcagagacca	tggccccaga	ggagtcctt	aaggaagcac	cctctgcccc	agtgtatcctg	3600
ccttcagcag	aacagatgac	ccttgaagct	tcaagcacac	cagctgacat	gcagaatata	3660
ttggcagttc	tcttgagtca	gctgatgaaa	acccaagagc	cagcaggcag	tctggagggaa	3720
aacaacagtg	acaagaacag	tggccacag	gggccccgaa	gaactcccac	aatgcccacag	3780
gaggaggcag	cagcatgtcc	tcctcacatt	cttccaccag	agaagaggcc	ccctgagccc	3840
cccgacccctc	caccgcgcgc	acccctaccc	cctctgggt	aaggcgatct	ttccagcgcc	3900
ccccagggat	tgaaccccagc	cgtgacagcc	gccttgcgtc	aacttttac	ccagcctgaa	3960
gcagagccctc	ctggccaccc	gccacatgag	caccaggcc	tgagaccaat	ggagttactcc	4020
acccgacccc	gtccaaacag	gacttatgga	aaactgtatg	ggcctgaaac	agggttcagt	4080
gccattgaca	ctgatgaacg	aaactctgg	ccagccttg	cagaatcctt	gttccagacc	4140
ctgggtgaaga	acaggacctt	ctcagctct	ctgagccacc	ttggggagtc	cagcagtac	4200
cagggcacag	ggtcagtgca	gtttccaggg	gaccaggacc	tccgtttgc	cagggtcccc	4260
ttagcgttac	acccgggtgt	cgggcaacca	tccctgaa	ctgagggaa	cagcaattct	4320
gtggtacatg	cagagaccaa	attgcaaaac	tatggggagc	tggggccagg	aaccactggg	4380
gccagcagct	caggagcagg	ccttcaactgg	ggggggcccaa	ctcagtcctc	tgcttatgg	4440
aaactctatc	ggggggcctac	aagagtccca	ccaagagggg	gaagagggag	aggagttcct	4500
tactaacc	gagacttcag	tgtcctgaaa	gattccttcc	ctatccatcc	ttccatccag	4560
ttctctgat	cttaatgaa	atcatttgcc	agagcgaggt	aatcatctgc	atttggctac	4620
tgccaaagctg	tccgttgat	tccttgctca	cttgctacta	gcaggcgact	tagaaataa	4680
tgatgttggc	accagttccc	cctggatggg	ctatagccag	aacatttact	tcaactctac	4740
cttagtagat	acaagttagag	aatatggaga	gatcattac	attgaaaagt	aatgtttta	4800
ttagttcatt	gcctgcactt	actggtcgg	agagagaa	aacagttca	gtatttgagat	4860
ggctcaggag	aggctcttt	atttttaaag	ttttgggggt	gggggttgc	tgtggttct	4920
ttcttttggaa	tttaatatta	gggtgtttgg	gtttttttcc	tttaaagaga	atagtgttca	4980
caaaatttga	gctgctctt	ggcttttgc	ataagggaaa	cagatggcc	tggctgattt	5040
gaataaatgt	ttcttcctc	tccaccatct	cacatttgc	tttaaagtga	acacttttc	5100
cccatttggc	atcttgaaca	tactttttt	ccaaataaat	tactcatct	taaagttac	5160
tccacttga	caaaagat	gcccttc	ctgcacataa	agcagggtgt	agaacgtggc	5220
attttttggc	aagttaggtag	actttaccc	gtcttttcc	tttttgc	atgtgtgtc	5280
tctctctc	tttctctc	tctctctc	tctctctc	tctgtctgc	tcgcttgc	5340
gctctcgctg	tttctctc	tttggggcat	ttgtttggaa	aaaatcggt	agatgccaa	5400
gaacctggga	taattcttta	cttttttga	aataaaggaa	aggaaattca	aaaaaaaaaa	5460
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaa	5515

<210> 6

<211> 6131

<212> DNA

<213> Homo sapiens

<400> 6

gaatttctagg	cccagttctg	tgtttccct	gtgtgttcc	aggcagggtca	gtttccctcc	60
atgggcctct	gtaagatgag	gagttggaga	ggtacattct	caggctactt	tcaactccca	120
gccaagtgc	tcaagagtcc	caggcagcac	cagcacccct	atctccaagg	cctcctgtatg	180
tgtgtctcta	tttagaactt	aatccaaacct	acccaacatc	agatcagtgt	tttaccagcc	240
caaggcccct	ggggagcctc	ctagagggag	agagccctgc	ccacccagat	tgagggtaaa	300
ggcctccccg	tgtctcattt	tgtaccacca	cagtgcctgg	cacatggtag	acatcaaaat	360
gtgtgtgtcg	aaagtataat	tgaaggttgt	tatatatgtc	agctagagtg	tctggaggggg	420
cagaatgtg	ggtctaaaac	atacaaattgc	tccaaatggg	gtgtgggcaa	gggtctgtct	480

Siemens 0022 Seq Listing.txt

acaccaggct	gtgattacct	gctcacatac	atgtgtctat	ctgagtaggg	gtatgttac	540
tattttcta	caccacaggg	tgaggaacag	gtatatgtgt	gcatgtgtat	gcatccgtgt	600
gtgtgtgtat	gtgtgtgtgc	atgagtgtgt	gtgtgtgtgt	ccaagccac	ctcttcaacc	660
tgtgccattt	gtatctgtgt	ctggccaaat	gagagtgtt	aaagtgtgac	cacaagataa	720
aacagaact	tcc tacctcc	cttataaaga	cagctgtctg	acctacctcc	ccttggccac	780
tcttgggatt	actggggttt	gcttcagtat	tttcagattt	ttcagaaggg	gaggagaatg	840
cttgagtctc	atccaggaac	ttaggcagtt	ctcagcactg	cctgctcctc	ctccctcaaa	900
taaccaagtc	tgaagaccag	gagagaaaagc	cgctgggtgga	ctggtcacct	gtctggcagt	960
gggaggagga	gagttaggat	tttcttaggt	ggaatccaga	cttagaccct	cccctccacc	1020
cccagatggg	tggtgcacag	gctcatctcg	cggccccctcc	ccactccacc	ctaacatgga	1080
tacgccccca	acaaccaagg	aaagatctcc	catcggtctga	ctccacagat	acacacatgt	1140
ccccacagac	acacacacgc	ccatgcagag	gcacagacat	ccaggcacat	ctttccctt	1200
ctctgtcttt	cccttgggtt	gaatttcgtt	tagccacata	tgttgtgtgt	gcgtgaggg	1260
gggtggggga	ggggcagaca	gggatgaggg	atggcatgtt	gccacacatct	acctatggg	1320
ctcgcccgag	ggacgcccct	tacagccatc	ctgggagggg	gtctcagctg	tccctttgtg	1380
gccaaggggg	ccctcctggg	gagtgggggc	aagcacagag	gtcccttctc	cccaaccgg	1440
ggtctgtcc	ctgacccacc	ttggggccct	gcagggggagg	aatatggacag	agcgggacc	1500
tgagggagca	tagaatttggc	caccacgac	ccccagtg	cagcttgc	accccatgt	1560
tcccgtgagg	gggtcttat	atacaggggg	caactcctcc	cacccctc	tcaatccctg	1620
ctttccctgc	gttggggcggg	gagggggagg	cgccagaata	atttattt	ttcccttatt	1680
tatthaattt	tttttttttt	ttttttggat	agagagtac	agatggcgc	gggtcccccgg	1740
ggagccggct	ctccccccagt	gcagacgc	gccaatcacc	gtctctcatg	tgatagctg	1800
tgcccgtgac	gtgccaagcc	catatggct	ggcatagagg	ctggtacccc	gcctggtaga	1860
gatgccacac	tcgctccgc	gttcgcatt	cgctctgaag	acgcggcgc	ccgcccctt	1920
gaggagccgc	tgccccccgt	ccctgaagat	gggggaacaa	tgaardaa	gagaagatcc	1980
ctcttctccc	ccctctctct	tttgccttct	ccccccctcc	cctccctct	cccttctact	2040
cctctccgag	gtaagttgtc	cgaaagggag	cgagatctga	cccggccgtt	gggaggaggg	2100
gcggcagctt	cgccccacag	gaggggtcctc	aaatacctcc	ttcctggat	gatgcccccc	2160
tcattgggtg	ggcatcggag	ggcccccagg	ttctctctcc	cttaggggct	gcagcccagg	2220
gggctgcaga	ggaggtgtct	ctgcctgcga	ttggctcggt	ggggggggaa	ggcaggatca	2280
cgagggggaa	tatgcgaaga	ggccgagac	gaggaccct	ccatgttgt	ccaaaaaagc	2340
ctgcccaccc	tccccaccac	cgaaaaaaagg	gaagcaaaca	aacaattt	gatttttccc	2400
ccatcaatcc	caaataacaa	cgagatctga	agagcctt	gggagggagt	cagcttgaag	2460
ggggaaagggg	gttccctgacc	gcagagggga	cgactggc	tcgcttctc	cagtctctc	2520
cccaccccc	gctgcttcag	tcctcgccgc	ccagagccgg	ctccgggagc	tggggacgca	2580
tcggcttagag	gagacgatcc	tcccgcctc	gaaatttggg	gtgcgggggt	gggggcccgg	2640
caaggggccgg	cgccgcagcca	agttgcaat	tggatttagg	agcgtgggg	tgagagccac	2700
gggaggggtg	agggagctgg	ggccgggggc	ccggggccgc	agagcgcgg	gcggggcagc	2760
tgtccccacc	ggcgccgcgac	cagccctct	ccaccgc	gagagaacac	gttttcagg	2820
cgagcgcgc	gcctccctcg	gcaaaagat	ctggtccct	aaacccccac	ccggtccctg	2880
ccctgaccct	gagaagaagc	aggcgcgggg	agcagcccc	cattcaagcg	aggggcggag	2940
ccggggccca	gcgcggggga	gagggctgg	gccgagatcc	caggccggca	ccggggtagg	3000
gctggggccgg	ctctggggcg	ggcaggcggc	ggaggtggc	atccaggta	gcctaggcag	3060
gagccgcac	gagactcggg	ggtggaggag	ggttgtggg	gggcgtcggt	accccagcgc	3120
gcccctact	ttgtgtgtc	tgtctccct	tcccgcccc	ggggcgccct	caggcaccat	3180
gctgaccgc	ctgttcagcg	agccccct	tctctcgac	gtgccaagt	tcgcccagct	3240
gggcgacggc	gaagacgac	agccgaggag	cgacaagg	gacgcgcgc	caccgcacc	3300
gcctgcgc	ggggcagggg	ctccggggcc	agccccggcg	gccaaaggcc	tccctctccg	3360
tggagaagag	gggacggagg	ccacgttgg	cgaggta	gaggaaggcg	agctgggggg	3420
agaggaggag	gaggaagagg	aggagaaga	aggactgg	gaggcggagg	gcgagcggcc	3480
caagaagcgc	ggggccaa	agcgaagat	gaccaagg	cgcttggac	gctccaagct	3540
tcggcggcag	aaggcgaac	cgccggagcg	caaccgc	cacgac	acgcagcc	3600
ggacaacctg	cgcaagggtgg	tgcctgc	ctccaagac	cagaagctgt	ccaagatcg	3660
gacgtgcgc	ctagccaaga	actatatct	ggcgtctcg	gagatcc	gctccggcaa	3720
gcggccagac	ctagtgtcc	acgtgcagac	tctgtca	ggttgtc	agccccacc	3780
caatctgt	gcccgtgt	tgcagtc	ctctcgca	ttccctacgg	agcaaggcgc	3840
cgacggtgcc	ggccgcttcc	acggctc	cgccccgtt	gccatgc	cctaccgt	3900
cccggtctcg	cgccctggcg	gcgcac	cgaggcgggg	ggcggccctgg	gcggcggcgc	3960
ggcgcacgc	ctgcggaccc	acggctact	cgccgcctac	gagacgtgt	atgcggcggc	4020
aggcggtggc	ggcgcgagcc	cggactaca	gagtc	tacgagg	cgctcagccc	4080
cccgctctgt	ctcaatggca	acttctact	caagg	tcctcgccc	accacgagaa	4140
aagctaccac	tactctatgc	actactcggc	gctgcccgt	tcgcgcac	gccacggct	4200
agtcttcggc	tcgtcggt	tgcgcgggg	cgtccact	gagaatct	tgtttacga	4260

Siemens 0022 Seq Listing.txt

tatgcacctt	caccacgacc	ggggccccc	at gtacgaggag	ctcaatgcgt	ttttcataa	4320
ctgagacttc	gcgcggctc	cc	ttttgcctt	tgccgc	ccctgtcccc	4380
gcccccagca	gcgcaggta	caccccatc	ctaccccgc	gccgggcgc	gggagcggc	4440
caccggctct	gcgcgtctcc	ttgggcagcg	cagtctgtt	acctgtgggt	ggcctgtccc	4500
aggggcctcg	cttccccca	gggactcgcc	ttctctctcc	ccaagggtt	ccctccctct	4560
ctctcccaag	gaagtcttct	ccagggac	ctctccggg	gctcccttga	ggcacccctc	4620
ccccattccc	aatatcttc	ctgaggtt	ctcctcccc	tcctccctgc	aggcccaagg	4680
cgttggtaag	ggggcagctg	agcaatggaa	cgcgttccc	ccttcattt	ttattttaaa	4740
aacagacacc	cagctgccga	ggcaaaaagg	agccaggcgc	tccctcttc	ttgaagaggg	4800
tagtat	tttgcggag	cccggcc	ctg gaacgc	cccttc	tccagtctcc	4860
gcgtttgcg	attttaattt	tggcgggagg	ggaagtggat	tgagaggaaa	gagagagggc	4920
aagacaattt	gttaactagaa	tccgtttt	cctttccctt	tttttaaaca	aacaacata	4980
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aagctaagag	gcgacggaa	ccgaacgcag	5040
agtccggatc	ggagagaaaa	cgcaga	agg acttttagaa	gcaataaaag	gaaaaaaaaa	5100
aaaaaaaaaa	aaaaacaaac	aaaaaaaac	cactactacc	aataatcaa	gacacaaata	5160
tctatgcaag	gaggctccac	tgagc	ctcgc ggccc	ggcccggg	tgccccgccc	5220
ggcctgcggg	ccgccccggcc	cgagc	gcgg tctgact	tttgtga	gggggcgc	5280
ggcgc	ccccctcc	agg	ttttac aatcgtgac	tcggagat	ggggccccag	5340
tgccactg	ccccc	ccgtccc	cg	tttttttt	aaaaacctgt	5400
ttccaaattt	gtatggat	gcaaa	ctgttgcgg	tttggggagg	gagggttgc	5460
atgaaagaca	cacgcacacc	acacc	gcacaggc	cccggc	gcgtccgggg	5520
ggcagaagga	ggtgagctc	ccggc	ctcccccggc	ccattctgtc	ccctcc	5580
tgtaggggt	gggatggaga	cctgggg	ca gccccaccc	tgccggact	tgccctcggt	5640
gggtgc	cacc	cggtgtctgg	agagagtatt	ttttgttca	aggagtctc	5700
ttggctt	tag ctgggggt	ggcggg	ggtctgagg	ctcc	agttcccc	5760
aaaaaggggc	aaaaggagac	cctct	ccggaggc	gggatcaggc	atccaaatac	5820
acgatg	aaaatgcaatcc	cacagg	gcacac	actcacccac	acacacgca	5880
tttac	tttgcatt	gaagat	gaa	ctcccgtcg	tgcattgcgt	5940
gtttctgtt	atgtaatga	cgattaataa	atattatgt	aatagagat	caaagccg	6000
ccgg	tttctc	acgg	tttgcattt	ggggggagg	gaagtttga	6060
gggtgatgaa	ggcagagtgt	caagt	gactg	tgcagaggc	aaacagaggg	6120
aaaa	agcact	g				6131

<210> 7

<211> 2020

<212> DNA

<213> Homo sapiens

<400> 7

gctactgagg	ccgcggagcc	ggactgc	gggttgggg	agagccgggg	ccgtggctga	60
catggagcag	ccctg	ctgc	gaggccgc	c	ctgaggtggg	120
gatgagaag	ctgccc	cagg	agctgacccg	agacttggag	cgcagc	180
ctccctggc	tcc	tactgt	cccacagcc	gagc	tcgcac	240
tgagaagcga	agg	ccatct	ctgatgtcc	ccgcac	tgtctt	300
cctgctt	cc	tgc	tctgc	cttgc	tcac	360
gaacttggag	cagg	gatcat	tcc	actgaat	acc	420
cctggc	ttc	ctgc	ctggact	cctagg	cttgc	480
ctgg	tttgc	tttgc	gttgc	gttgc	tcaagg	540
cctct	ctg	ctgc	agg	gttgc	tttgc	600
cctgc	cttgc	tttgc	gttgc	tttgc	tttgc	660
ggagc	tttgc	tttgc	gttgc	tttgc	tttgc	720
tgct	tttgc	tttgc	gttgc	tttgc	tttgc	780
atc	tttgc	tttgc	gttgc	tttgc	tttgc	840
ccagg	tttgc	tttgc	gttgc	tttgc	tttgc	900
gttt	tttgc	tttgc	gttgc	tttgc	tttgc	960
caagac	tttgc	tttgc	gttgc	tttgc	tttgc	1020
gatc	tttgc	tttgc	gttgc	tttgc	tttgc	1080
gcagc	tttgc	tttgc	gttgc	tttgc	tttgc	1140
cgtgg	tttgc	tttgc	gttgc	tttgc	tttgc	1200
tttgc	tttgc	tttgc	gttgc	tttgc	tttgc	1260

Siemens 0022 Seq Listing.txt

gggagagaat	ggccctgggg	gcttcatgt	gctcaagtgc	gccagtaacc	cccggttttg	1320
caccttgc	tggattctta	atacagatct	caaggggccgc	ctgccccgg	acctcatcca	1380
ccagggctc	cgcccacca	tgttgaatt	tgccttcac	ctgcacagc	gcatcagcga	1440
gctgggggccc	cgggcgtgac	tgtgccccct	caccctgtc	gggcagggt	cctgtcgcca	1500
ccacttccag	agccagaaag	ggtgcagtt	gggctcgac	tgcccacatg	ggacctggcc	1560
ccaggctg	accctccacc	gagccacgca	gtgcctggag	ttgactgact	gagcaggctg	1620
tgggtggag	cactggactc	cggggcccca	ctggctggag	gaagtgggt	ctggcctgtt	1680
gatgttaca	tggccctgt	cctcctggag	gaccagattg	ctctccccca	ccttgccagg	1740
gcagggctg	ggctgggcac	ctgacttgc	tggggaggac	caggccctg	ggcagggcag	1800
ggcagcctgt	caccctgtg	aagatgaagg	ggctcttcat	ctgcctgcgc	tctcgtcggt	1860
tttttagga	ttattgaaag	agtctggac	ccttgttgg	gagtgggtgg	caggtggggg	1920
tgggctgctg	gcatgaatc	tctgcctc	ccaggctgtc	cccctcctcc	cagggcctcc	1980
tggggac	ttgtattaag	ccaattaaaa	acatgaattt			2020

<210> 8

<211> 1730

<212> DNA

<213> Homo sapiens

<400> 8

gtggtaggg	tgactgggg	ctaggcacta	ggccttttgt	gcaggcgcc	gaggacktgg	60
ttgcacttc	ccttctgggg	atatgccctt	gagcccgaggc	agaggagagc	acagcccaagg	120
gcaggacctg	gcagccctg	tacagagccc	agagggggca	tcagttctg	ctggcctgc	180
tctgttaca	gacaasctgc	tgtccctccct	gcaaagggg	gtgggtgggg	cagaggccaa	240
ktgccagggg	ggcacaaggc	tggcatgtg	gctggcatga	gacgggtgt	gagtaatgtc	300
aggcacctgg	aggcattgac	cccaggac	tggaccccag	acctctgacc	gtggggcagc	360
cagcgccag	gtaccccaac	ccctgccc	gttccggcgt	ccccccatta	gtgagtctt	420
gctctactt	tagcatctg	caccagagg	gtcgaaaata	gcccctggag	aagggggagg	480
agggggctat	ttaaaggggcc	tggagggg	gagagaatg	ggagtgtatc	tggctac	540
agagctgagc	tgcgagggtgt	cggaggagaa	ctgtgagcgc	cgggaggcct	tctgggcaga	600
atggaaaggat	ctgacactgt	ccacacggcc	cgaggaggg	tgagtgtgg	tctgctagag	660
tccctgcctc	tgcctccccc	gagcaccc	actgagccat	gaggccagag	catgaagccc	720
tggagaaatt	tctgggggtt	ggggcaggaa	aatgccc	tggggagagc	aaaggggaac	780
cacccttcct	gc(cc)ccaggt	cccagcagcc	caggggagcc	ccccacccag	cctgtgc	840
gagagcaaca	gctcccagga	gctca	cctccctct	ccccagctgc	tccctgc	900
aggaggacac	ccagagacat	gagactacc	accaggagg	gcagtgc	gtgctgg	960
agcgctcgcc	ctggctgtat	atgcggatgg	gcatcctcg	ccgtggctg	caggagtacc	1020
agctgccta	ccagcggtt	ctgccc	ccatctt	ccctgcca	atgggcgc	1080
ccaaggagga	gcgtgaggac	acccccatcc	agcttcagga	gctgtggcg	ctggagacag	1140
ccctgggtgg	ccagtgtgt	gaccggc	agggtggctg	gatcacaaag	cagctgc	1200
ctgtggtgcc	tgtcagcaag	cccggtgc	tgcgtc	cctgtccc	tccatgtccc	1260
aggaagcaca	gagaggctg	gaggactgt	gacttgg	ccgtgtg	cgccccctgg	1320
gctggggccct	tcttgtctag	gac	ggggcagc	gctggcc	ggctgttt	1380
tagtttgc	agagtgggg	gctaggg	gggggagc	gaggcc	tgcctgag	1440
ccctgagttc	ccaaaggggag	gtggcagag	acagtgg	ctaagggt	agagttgg	1500
gccagcacag	ctgaggaccc	tcagcccc	gagaagg	aaaaggtact	gtgagg	1560
agagggtcct	gggaggagtg	gccc	aggaaaatgt	gaggga	tggAACGTC	1620
taggcagaag	aa	ggagggg	gtgaaaagg	cagagg	gtgg	1680
ccccagcac	cctctgttag	tgccgcaata	aatgct	catgtgc		1730

<210> 9

<211> 3799

<212> DNA

<213> Homo sapiens

<400> 9

ctggactgg gtggtaacca gcaagccagc tggcatccgc atccagggtt tggtaatg

60

Siemens 0022 Seq Listing.txt

atgtctcgtg	gagaatatgg	aggggctggt	gccaggactg	tccttggctt	tgcctcgaaa	120
tgtgaacggg	gtcagtgacc	tctaaaacta	acctgcctct	cagttctgaa	tccagacaga	180
atcaaatcctc	agctgtgtct	cgctccacac	cccctgcctt	ggaagccagg	gaagggttgg	240
ggtgctaggg	ggtcaggctc	ccctctgtga	cccctgcagc	tgttgtggtg	actcatgtcc	300
caacctagct	gcctctccca	aggagacttt	cccctggac	aagggggagg	aatggcatg	360
gaggaggccc	acatcaagcg	gggcaggaa	cccacgggg	caggagctgg	gctgggtgacc	420
tacccagggc	agaagggccc	gggactcatc	cagaggggaa	ggaagggggtc	ttcaggaaga	480
ccacggagat	gccacaggca	gaattggctt	cccatctggg	agatagggtg	ggagaccctg	540
gcattttgac	agccagaacc	tggggtgctg	agcagaatct	tcatgcctgg	cctggccccc	600
ttcggagggg	agctggaggg	ttgggtgcga	gaggagtggg	gtcagagccc	ctacatccgc	660
aggaccccaa	atcggtggg	cccccaaggcc	cggactgcgc	tccccgggtt	ccccggcggc	720
cctccgcgaa	tgcgtccctgc	ccctccctg	cccaagccct	ctgcctcac	ccgggtccgg	780
cgccgcccc	gaagtggcgg	gaacaaccctg	aaccgcacc	ttctgtccctc	gggagcccc	840
agataagcgg	ctgggaaccc	gcggggcccg	caggggagggc	ccggctgttc	cgcccgctaa	900
gtgcatttagc	acagctcacc	tcccctatcg	cgcctgccc	cgacggggca	gtgcgcgc	960
ctgctctggg	gc(cccccggag	cgaccacgc	ggaggccgg	acggactgtc	ctttctgggg	1020
cggggtgggg	aggggggtgtc	gctggggggc	ccgggtggcat	agcaacggac	gagagaggcc	1080
tggaggaggg	gggggggggg	ggagtgtgt	ggcagttcta	agggaaagggt	gggtgtctggg	1140
acgggtgtcc	gggggggggg	ggagcctggc	gggggtctggg	gcctctgcgc	ggagggcgct	1200
gchgagggggaa	aactggggaa	agggcctaat	tccccagttc	ccacccctgaa	tcagggaaaga	1260
gaaggggcgg	gctgctgggc	aaaagagggt	aatggctgcg	gggggctgg	gaagagagat	1320
ggggggggcc	ggccggccggg	ggtgagggggg	tctaaagatt	gtgggggtga	ggaaactgagg	1380
gtggggggcg	cccaagaggcg	ggactcgggg	cgggggcaggc	gaggcggagg	gcgagggtcg	1440
cgggagcaag	tacggagccg	gggggtgtgg	ggacgatttc	cgctcagcc	gccgccccac	1500
tcacccctcg	tgtgtctgca	gcccggacac	taagggagat	ggatgaatgg	gtggggagga	1560
tgcggcgcac	atggcccccgg	gcggctcggc	ggtcagctgc	cgccccca	gcggaccgg	1620
cgggggccggg	gtcggggcggt	agaaaaaagg	gccgcgaggc	gagcggggca	ctgggcggac	1680
cgcgccggca	gcatgagcgg	cgcagaccgt	agccccaaatg	cgggcgcagc	ccctgactcg	1740
gccccggggcc	aggcggcggt	ggcttcggcc	taccagcgct	tcgagccgc	cgcctaccc	1800
cgcaacaact	acgcgcccccc	tcgcggggac	ctgtcgaacc	cgaacggcgt	cgggccgtgg	1860
aagctgcgct	gcttggcgca	gacccctcgcc	accgggtggc	gggggaaact	gaggcacag	1920
ggacaagagg	tcgtcggggg	gtgaaagcag	gcccggggaa	ataaaaaagaa	ggaaagggag	1980
acagaccagg	cgccctaacag	atggggacca	agaaaacaaga	gataagctgag	aggtgcaaac	2040
agaagagaaa	aaggagcaac	atcccttagg	agggggggcag	aggagagaga	gttggagaga	2100
ggggggccggag	agtgtcgaga	attgagagct	aaagggtgggg	atgcaggaca	gactgagggt	2160
gagatgcata	ggaggaaatgg	gaggcagatg	ttggacaggg	gtgagaaact	ccaggatttc	2220
ctcgctgagc	ctggctggta	ggtatagttt	ttttctttct	ttttctttat	tttattttca	2280
tttattttact	tatttttttt	tttgagacgg	ttttcgctc	ttgttgcctt	ttgttgcctt	2340
ggctggagta	caatggcgcc	atctcggttc	actgcacact	ccgcctcccc	gggttcaagc	2400
gattcttgc	cctcagcttc	cctagtagct	gggattacag	gcatgcggcc	ccatgcctgg	2460
ctaattttt	tgtatttttt	gtagagacgg	gacttctcca	tgttgtcag	gctggtctcg	2520
aactcccaac	cttaggatcc	acccaccccg	ggctcccaaa	gtgctggat	tacagggtgt	2580
agccactgcg	cccgcccgagt	aggtatagtc	ttctagatgt	gaaacctgag	tctcagagcg	2640
gtgaagttcc	cttccgaagg	gcagccatg	ttggagctgg	gttcagtcta	actctggggc	2700
caatgccttt	tccagatgg	gacacatttgc	cagaggagaa	ggaagaacta	gagagaggca	2760
gggagatgca	ggggagggaa	ggtaaggag	gcaggggctg	cctgggctgg	ctggcaccag	2820
gaccctttc	ctctggccctg	cccaggtgaa	gtgtccggac	gcaccctcat	cgacatttgt	2880
tcaggccccca	ccgtgtacca	gctgtcagt	gcctgcagcc	actttgagga	catcaccatg	2940
acagattttcc	tggagggtcaa	ccgcccaggag	ctggggcgct	ggctgcagga	ggagccgggg	3000
gccttcaact	ggagcatgt	cagccaaat	gcctgcctca	ttgagggcaa	gggttaagga	3060
ctgggggtgt	agggttgggg	aggaggttc	ccatagatgt	gctgtttggg	gcaacagagg	3120
cctgagcgta	gaacagcctt	gagccctgccc	ttgtgcctcc	tgcacaggga	atgtggcag	3180
gataaggagc	gccagctcg	agccagggtt	aaacgggtcc	tgcccatg	cgtgcaccag	3240
ccccagcccc	tgggtgtctgg	gagcccgact	cccctgccttgc	ctgacggccct	ggtctctg	3300
ttctgttgc	aggctgtgt	cccagatttc	gccagctttc	agcggggccct	ggaccacatc	3360
accacgcgtc	tgaggcctgg	ggggcaccc	ctccatcg	ggggcccttgg	ggagtcgtgg	3420
tacctggctg	gggaggcccg	gctgacgggt	gtgcctgtt	ctgaggagga	ggtgagggag	3480
gccctggctc	gtatgtggct	caaggccgg	gacctcccg	ccttatatcat	gcctgcccac	3540
cttcagacag	gctgttagatgt	tgtcaagggtc	gtcttcttc	cctgggctca	gaagggttgg	3600
ctgtgaggcc	tgtacctgg	gcccgttggc	ccccacccac	ctggattccc	tgttctttga	3660
agtggccact	aataaagaaa	taataccctg	ccgctgcgtt	cagtgtgt	tgtggctctc	3720
ctgggaagca	gcaagggccc	agagatctga	gtgtccgggt	agggagaca	ttcacccctag	3780
gcttttttc	cagaagctt					3799

Siemens 0022 Seq Listing.txt

<210> 10

<211> 4530

<212> DNA

<213> Homo sapiens

<400> 10

aattctcgag	ctcgtcgacc	ggtcgacgag	ctcgagggtc	gacgagctcg	agggcgcgcg	60
cccgcccccc	accctcgca	gcaccccgcg	ccccgcgcgg	tcccagccgg	gtccagccgg	120
agccatgggg	ccggagccgc	agtgagcacc	atggagactgg	cggccttgg	ccgctgggg	180
ctccctctcg	ccctcttgc	ccccggagcc	gcgagcaccc	aagtgtgcac	cggcacagac	240
atgaagctgc	ggctccctgc	cagtcccgg	acccacactgg	acatgctccg	ccacactctac	300
caggcctgcc	agggtggtgca	gggaaacctg	gaactcacct	acctgcccac	aatgccagc	360
ctgtccttcc	tgcaggatat	ccaggagggt	cagggtctacg	tgctcatcg	tcacaaccaa	420
gtgaggcagg	tccactgca	gaggctgcgg	attgtgcgag	gcacccagct	ctttgaggac	480
aactatggcc	tggcgctgct	agacaatgg	gaccgcgtga	acaataccac	ccctgtcaca	540
ggggccccc	caggaggcct	gccccggct	cagctcgaa	gcctcacaga	gatcttggaa	600
ggaggggtct	tgtatccagcg	gaacccccc	ctctgtctacc	aggacacgt	tttgtggaa	660
gacatcttcc	acaagaacaa	ccagctggct	ctcacactga	tagacaccaa	ccgctctcg	720
gcctgccacc	cctgttctcc	gatgtgtaa	ggctcccgct	gctggggaga	gagttctgag	780
gattgtcaga	gcctgacgcg	cactgtctgt	gccgggtgg	gtgcccgtg	caaggggcca	840
ctgcccactg	actgctgcca	tgagcagtgt	gctggccgg	gcacgggccc	caagcactct	900
gactgcctgg	cctgcctcca	cttcaaccac	agtggcatct	gtgagctgca	ctgcccagcc	960
ctggtcacct	acaacacaga	cacgtttgg	tccatgccc	atcccgaggg	ccggtatata	1020
ttcggcgcca	gctgtgtgac	tgcctgtccc	tacaactacc	tttctacgga	cgtgggatcc	1080
tgcaccctcg	tctgccccct	gcacaaccaa	gagggtgacag	cagaggatgg	aacacagcg	1140
tgtgagaagt	gcagcaagcc	ctgtggccga	gtgtgtctatg	gtctgggcat	ggagcacttg	1200
cgagaggta	ggcagttac	cagtggcaat	atccaggagt	ttgctggctg	caagaagatc	1260
tttgggagcc	tgcatttct	gccggagagc	tttgtatgggg	accacagctc	caacactgcc	1320
ccgctccagc	cagagcagct	ccaagtgtt	gagactctgg	aagagatcac	agtttaccta	1380
tacatctcag	catggccgg	cagccgtcct	gacctcagcg	tctttcagaa	cctgcaagta	1440
atccggggac	gaattctgca	caatggcgcc	tactcgctga	ccctgtcaagg	gctgggcatc	1500
agctggctgg	ggctgctgc	actggggaa	ctggggcagtg	gactggccct	catccacat	1560
aacaccacc	tctgtctcg	gcacacgg	ccctgggg	agcttctcg	gaacccgcac	1620
caagctctc	tccacactgc	caacccggca	gaggacgag	gtgtgggca	gggcctggcc	1680
tgccaccagg	tgtgcggccc	aggcactgc	ttgggtccag	ggcccacca	gtgtgtcaac	1740
tgcagccagt	tccctcggg	ccaggagtgc	gtggaggaat	gccgagact	gcaggggctc	1800
cccagggagt	atgtgaatgc	caggcactgt	ttgcccgtgc	accctgagtg	tcagccccag	1860
aatggctcg	tgacctgttt	tggaccgg	gctgaccagt	gtgtggctg	tgcccactat	1920
aaggaccctc	ccttctcgct	ggcccgtgc	cccagcggt	tgaaacctga	cctctccat	1980
atgcccattct	ggaagtttcc	agatgaggag	ggcgcatgcc	agccttgc	catcaactgc	2040
acccactcct	gtgtggacct	ggatgacaag	ggctgcccc	ccgagcagag	agccagccct	2100
ctgacgtcca	tctgtctcg	gggtgggtgg	attctgtctg	tcgtgttct	gggggtggc	2160
tttgggatcc	tcatcaagcg	acggcagcag	aagatccgga	agtacacgt	gcggagactg	2220
ctgcagaaaa	cggagctgg	ggagccgt	acacctagcg	gagcgatgcc	caaccaggcg	2280
catatgcgg	tccgtaaaga	gacggagctg	aggaagggtg	aggtgcttgg	atctggcgt	2340
tttggcacag	tctacaaggg	catctggatc	cctgtatgggg	agaatgtgaa	aattccagtg	2400
gccatcaaag	tgttgaggga	aaacacatcc	cccaaagcc	acaagaat	tttagacaa	2460
gcatacgta	tggctgggt	gggctccca	tatgtctcc	gccttctgg	catctgcctg	2520
acatccacgg	tgcagctgg	gacacagctt	atgcccattg	gctgcctctt	agaccatgtc	2580
cgggaaaacc	gccccggcc	gggctccca	gacctgctga	actgggtat	gcagattgccc	2640
aaggggatga	gctacctgg	ggatgtgcgg	ctcgataca	gggacttggc	cgctcgaaac	2700
gtgtgtgtca	agagtccaa	ccatgtcaaa	attacagact	tcgggtgtgg	tcgggtgtgg	2760
gacatttgc	agacagagta	ccatgcagat	ggggggcaagg	tgcccatcaa	gtggatggcg	2820
ctggagtc	tttcccgcc	gccccgtacc	caccagagt	atgtgtggag	ttatgggtgt	2880
actgtgtgg	agctgtatgc	ttttggggcc	aaaccttacg	atgggatccc	agcccgggag	2940
atccctgacc	tgttgaaaa	gggggagcgg	ctgccccagc	cccccatctg	caccatttgat	3000
gtctacatga	tcatgttca	atgttgatg	attgactctg	aatgtcgccc	aagattccgg	3060
gagttgggtgt	ctgaatttctc	ccgcatggcc	agggaccccc	agcgcttgg	ggtcatccag	3120
aatgaggact	tggcccgac	cagtccctg	gacagcacct	tctaccgctc	actgctggag	3180

Siemens 0022 Seq Listing.txt

gacgatgaca	tgggggaccc	ggtgatgct	gaggagtttc	tgttacccca	gcagggcttc	3240
ttctgtccag	accctgcccc	gggcgttgg	gcatgttcc	accacaggca	ccgcagctca	3300
tctaccagga	gtggcggtgg	ggacctgaca	ctaggctgg	agccctctga	agaggaggcc	3360
cccaggctc	cactggcacc	ctccgaaggg	gctggctccg	atgtatttga	tgtgacccctg	3420
ggaatgggg	cagccaaggg	gctcaaagc	ctcccccacac	atgacccca	ccctctacag	3480
cggtagctg	aggacccac	agtacccctg	ccctctgaga	ctgatggcta	cgttgcccccc	3540
ctgacctgca	gcccccagcc	tgaatatgtg	aaccagccag	atgttcggcc	ccagccccct	3600
tcgccccgag	aggccctct	gcctgctgcc	cgacctgctg	gtgccactct	ggaaaggggcc	3660
aagactctct	ccccagggaa	aatggggtc	gtcaaagacg	tttttgccctt	tgggggtgccc	3720
gtggagaacc	ccgagtactt	gacacccag	ggaggagctg	cccctcagcc	ccaccctcct	3780
cctgccttca	gcccagcctt	cgacaacctc	tattactggg	accaggaccc	accagagcgg	3840
ggggctccac	ccagcacctt	caaagggaca	cctacggcag	agaacccaga	gtacctgggt	3900
ctggacgtgc	cagtgtgaac	cagaaggcca	agtccgcaga	agccctgtatg	tgtcctcagg	3960
gagcaggaa	ggcctgactt	ctgctggcat	caagagggtgg	gagggccctc	cgaccaccc	4020
cagggaaacc	tgccatgcca	ggaacctgtc	ctaaggaaacc	ttcccttcctg	cttgagttcc	4080
cagatggctg	gaaggggtcc	agcctcggtt	gaagagggaa	agcactgggg	agtctttgtg	4140
gattctgagg	ccctgccccaa	tgagactcta	gggtccagtg	gatgccacag	cccagcttgg	4200
ccctttctt	ccagatcctg	ggtaactgaaa	gccttagggg	agctggccctg	agaggggaag	4260
cggccctaa	ggagtgtcta	agaacaaaag	cgacccatcc	agagactgtc	cctgaaacct	4320
agtactgccc	cccatgagga	aggaacagca	atgggtgtcag	tatccaggct	ttgtacagag	4380
tgctttctg	tttagtttt	actttttt	ttttgtttt	ttaaagacga	aataaagacc	4440
caggggagaa	tgggtgttgt	atggggaggc	aagtgtgggg	ggtccttctc	cacacccact	4500
ttgtccattt	gcaaataatat	tttggaaaac				4530

<210> 11

<211> 2205

<212> DNA

<213> Homo sapiens

<400> 11

cacagggtc	ccccccgcct	ctgacttctc	tgtccgaagt	cgggacaccc	tccttaccacc	60
tgttagagaag	cgggagtgga	tctgaaataa	atccaggaa	tctgggggtt	cctagacgga	120
gccagacttc	ggaacgggtt	tcctgtact	cctgttgggg	ctccctccagg	acaagggcac	180
acaactgggtt	ccgttaagcc	cctctctcgc	ttagacgc	tggagcttgg	tctgtctcca	240
cctcatctta	gcagctctcc	ggaagaccc	tggccagccc	ctgggacccc	tctgggact	300
ccccggcccc	ctgataccccc	tctgcttgag	gaggtaaaga	ggtcccagcc	tctcctcatc	360
ccaaaccac	gcagggaaact	tcgagaggag	gagaggcg	ccacccctt	ccccctctatc	420
cccaaccctt	tccctgagct	ctgcagtcct	ccctcacaga	gccccattct	ccccggcccc	480
tccagtgcaa	gggggctgtct	cccccgat	gccagccccc	ccccatgtatg	aaaggtgtac	540
agtgaggatg	gggcctgtcag	gtctgtggag	gtggcagcag	gtgccacagc	tcgcccacgt	600
tgtgaatgc	tgtgtcagcg	agctcacg	ttgagcga	agacctgggg	gttgtggag	660
tgccacccccc	acctagcact	ggagcggtt	ttggaggacc	acgagtccgt	gttggaaatg	720
caggctgcct	ggcccggtgg	cggagatagc	cgcttcgtt	tccggaaaaa	tttcgccaag	780
tacgaactgt	tcaagagatc	cccacactcc	ctgttcccag	aaaaaatgtt	ctccagctgt	840
ctcgatgcac	acactggtat	atcccata	gacccatcc	agaacccctt	aatgttggc	900
agctttctg	agatccaggg	cttctgcag	ctgcggggtt	caggacggaa	gttttggaaa	960
cgcttttct	gtttctgtcg	ccgatctggc	ctctattact	ccaccaagg	cacccatctaa	1020
gatccgaggc	acctgcagta	cgtggcagat	gtgaacgagt	ccaaacgtt	cgttgtgac	1080
cagggccgca	agctctacgg	gatgcccact	gacttcgg	tctgttca	ccccaaacaa	1140
cttcgaaatg	gacacaaggg	gcttcggatc	ttctgcagt	aagatgagca	gagccgcacc	1200
tgctggctgg	ctgccttccg	cctcttcaag	tacgggggtc	agctgtacaa	gaattaccag	1260
caggcacatc	ctcgccatct	gatccatct	tgtttgggtt	ccccacccctt	gagaagtgc	1320
tcagataata	ccctgggtggc	catggatctc	cttggccat	ctggcggtt	cattggaaac	1380
ccccgggagg	ctctgagtgt	ggccctggag	gaggcccagg	cctggaggaa	gaagacaaac	1440
caccgcctca	gcccgtccat	gccagcc	ggcacgaggc	tcagtgac	catccaccc	1500
acccaaactct	ggttccacgg	gcccatttcc	cgtgaggaga	gccagcggct	tattggacag	1560
cagggcttgg	tagacggcc	gttctggc	cgggagagtc	agcggaaacc	ccagggctt	1620
gtcctcttct	tgtgcccac	gcagaaatgt	aaggattatc	tcatcttgc	gagcgaggag	1680
gagggtcgccc	tgtacttcag	catggatgt	ggccagaccc	gttctactga	cctgctgcag	1740
ctcgtggagt	tccaccagct	gaaccgcggc	atcctgcct	gcttgctgc	ccattgctgc	1800

Siemens 0022 Seq Listing.txt

acgcgggtgg	ccctctgacc	aggccgtgga	ctggctcatg	cctcagcccg	ccttcaggct	1860
gcccgcgcc	cctccaccca	tccagtggac	tctggggcgc	ggccacaggg	gacgggatga	1920
ggagcggag	ggttccgcca	ctccagttt	tcctctgtc	tcttgcctc	cctcagatag	1980
aaaacagccc	ccactccagt	ccactcctga	cccctctct	caagggagg	ccttgggtgg	2040
ccccctctcc	ttctccttagc	tctggaggtg	ctgctctagg	gcagggatt	atgggagaag	2100
tggggcagc	ccaggcgggtt	tcacccccca	cactttgtac	agaccgagag	gccagttgat	2160
ctgctctgtt	ttatactagt	gacaataaag	attatttttt	gatac		2205

<210> 12

<211> 2177

<212> DNA

<213> Homo sapiens

<400> 12

gaattcgcgg	ccgctggttt	gcagctgctc	cgtcatctgt	cggcccgcacg	ctatctcgcg	60
ctcgtgtcga	ggcccggtc	ggctccttgt	ccccgggtgcg	agggttaacg	cgaggccccg	120
gcctcgtgtca	ccggactagg	ccgtgacccc	gggtgcccatt	aagcaggagg	gctcggcgcg	180
gcgcgcgcgc	gcggacaagg	cgaaaccgc	gcccggcgga	ggagaacaag	aaccccccacc	240
gccgcggccc	ccccaggatg	tggagatgaa	agaggaggca	gcgacgggtg	gcgggtcaac	300
ggggggaggca	gacggcaaga	cggcggcggc	agcgggttgag	cactcccagc	gagagcttgg	360
cacagtacc	ttggaggaca	tcaaggagca	cgtaaaacag	ctagagaaag	cggtttcagg	420
caaggagccg	agattcgtgc	tgcggccct	gcggatgtcg	cctttcacat	cacgcccct	480
caaccactat	gttctgtata	aggctgtgca	gggcttcttc	acttcaaata	atgccactcg	540
agactttttt	ctcccccattcc	tggaaagagcc	catggacaca	gaggctgatt	tacagttccg	600
tcccccgcacg	ggaaaagactg	cgtcgacacc	cctcctgcct	gaagtggaaag	cctatctcca	660
actcctctgt	gtcatcttca	tgtaaacacag	caagcgctac	aaagaggcac	agaagatctc	720
tgtatgtctg	atgcagaaga	tcagttactca	gaaccgcgg	gcccttagacc	ttgtagccgc	780
aaagtgttac	tattatcagc	cccggtcta	ttagttcttg	gacaagctgg	atgtggtgcg	840
cagcttcttg	catgctcgcc	tccggacagc	tacgcttcgg	catgacgcag	acgggcaggc	900
caccctgttg	aacctcctgc	tgcggattta	cctacactac	agctgttacg	accaggctga	960
gaagctggtg	tccaagtctg	tgttcccaga	gcaggccaa	aacaatgtgt	gggcccaggta	1020
cctctactac	acagggcgaa	tcaaagccat	ccagctggag	tacttaggg	cccgaggaaac	1080
gatgaccaac	gccttcgcga	aggccctca	gcacacagct	gtcggcttca	aacagacgg	1140
gcacaacgtt	ctcatctgtgg	tggagctttt	gctggggggag	atccctgacc	ggctgcagtt	1200
ccgcccggcc	tcctctcaagc	gctactcat	gcccttatttc	cttctgactc	aagctgtcag	1260
gacaggaaac	ctagccaatgt	tcaaccagg	cctggatcag	tttggggaga	agtttcaagc	1320
agatgggacc	tacaccctaa	ttatccggct	ggggcacaac	tgattaaga	cagggttacg	1380
catgatcagc	ctctccattt	cccgaaatctc	cttggctgac	atcgccccaga	agctgcagtt	1440
ggatagcccc	gaagatgcag	atttcattgt	tgccttggcc	atccgggatg	gtgtcatgaa	1500
ggccagcatc	aaccacgaga	agggttatgt	ccaatccaag	gagatgattt	acatctattc	1560
cacccgagag	ccccagctag	ccttcacca	gcccacatctc	ttctgcctag	atatccacaa	1620
catgtctgtc	aaggccatga	gttttctcc	caaatctgtac	aacaaggact	tggagtctgc	1680
agaggaacgg	cgtgagcgg	aacagcagga	cttggagttt	gccaaggaga	tggcagaaga	1740
tgtatgtac	agttccctt	gagctggggg	gctggggagg	ggttaggggaa	atggggacag	1800
gctctttccc	ccctgggggt	ccctgtccca	gggcactgtc	cccattttcc	cacacacagc	1860
tcataatgt	cattctgtca	gggggtgggg	gtgctggggag	ccagccaccc	tgacctcccc	1920
cagggctcct	ccccagccgg	tgacttactg	tacagcaggc	aggagggtgg	gcaggcaacc	1980
tccccgggca	gggtccctggc	cagcaatgt	ggggcaggag	gggaaggata	gttctgtgt	2040
ctcctttagg	gagtggggga	ctagaactgg	gatgtcttgg	cttgtatgtt	ttttgaagct	2100
tcgattatga	tttttaaaca	ataaaaaatgt	ctcccaaaaa	aaaaaaaaaa	aaaaaaaaaa	2160
aaagcggccg	cgaattc					2177

<210> 13

<211> 2960

<212> DNA

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 13

ctggccgttc	caggcgtcta	tcagcggtc	agcctttgtt	cagctgttct	gttcaaacac	60
tctggggcca	ttcaggcctg	gggtggggcag	cgggaggaaag	ggagtttgag	gggggcaagg	120
cgacgtcaaa	ggaggatcaag	agattccaca	atttcacaaa	acttcgc当地	acagctttt	180
gttccaaccc	ccctgcattt	tcttgacac	caaatttgc当地	taaatcctgg	gaagttatta	240
ctaagcctta	gtcgtggccc	caggtaattt	cctcccgaggc	ctccatgggg	ttatgtataa	300
agggccccct	agagctgggc	cccaaaacag	cccggagcct	gcagcccagc	cccaccaga	360
cccatggctg	gacctgccac	ccagagcccc	atgaagctga	tgggtgagtg	tcttggccca	420
ggatggaga	gcccgcgtcc	ctggcatggg	agggaggctg	gtgtacaga	ggggctgggg	480
atccccgttc	tggaaatggg	gattaaaggc	acccagtgtc	ccc gagagg	cctcaggtgg	540
tagggAACAG	catgtctcct	gagccgctc	tgtccccagc	cctgcagctg	ctgctgtggc	600
acagtgcact	ctggacagtg	caggaagcca	ccccccctggg	ccctgc当地	tccctgc当地	660
agagcttcct	gctcaagtgc	tttagagcaag	tgaggaagat	ccagggcgat	ggcgacgcgc	720
tccaggagaa	gctgggtgagt	gaggtgggtg	agagggtgt	ggagggaaagc	ccgggtgggg	780
gagctaaggg	ggatggaaact	gcagggccaa	catcctctgg	aaggagacatg	ggagaatatt	840
aggagcagt	gagctggggg	aggctggaa	gggacttggg	gaggaggacc	ttgtgggg	900
cagtgc当地	gagggtgccc	tggatggg	gtggaggcat	cacattcagg	agaaaaggca	960
agggccccc	tgagatcaga	gagtgggggt	gcagggcaga	gagaaactga	acagccttgc	1020
aggacatgg	gggaggggaa	agaccagaga	gtcggggagg	accgggaag	gagcggcgac	1080
ccggccacgg	cgagtctcac	ttagcatcct	tccatcccc	gtgtgc当地	tacaagctgt	1140
gccaccccg	ggagctgggt	ctgctggac	actctctgg	catccctgg	gctccctga	1200
cgagctgccc	cagccaggcc	ctgc当地	tgagtgtcag	gaaaggataa	ggctaatgag	1260
gaggggaaag	gagaggagga	acaccatgg	gtctccccc	gtctccaggt	tccaaagctgg	1320
gggcctgacg	tatctcaggc	agcacccct	aactcttcc	ctctgtctca	caggcaggct	1380
gctttagcca	actccatagc	ggcctttcc	tctaccagg	gctctgc当地	gccctggaa	1440
ggatcccccc	cgagttgggt	cccaccc	acacactga	gctggacgtc	gccgacttt	1500
ccaccaccat	ctggcagcag	gtgagctt	ttgggc当地	tggcaaggt	cgtgctggca	1560
ttctggcac	cacagccgg	cctgttatg	gcccctgtcc	atgctgtcag	cccccagcat	1620
ttcctcattt	gtataaacgc	ccactcagaa	gggccc当地	actgatcaca	gtttcccc	1680
acagatggaa	gaactgggg	tggccctgc	cctgc当地	accagggtg	ccatgccc	1740
cttcgc当地	gtcttccagc	gcccggcagg	aggggtcctg	gttgc当地	atctgc当地	1800
cttcctggag	gtgtcgta	gcgttctac	ccaccc	cagccctgag	ccaagccctc	1860
cccatccat	gtatccat	ctattaata	tttatgtct	ttaagctc	atatttaaa	1920
acagggaa	gcagaacgg	gccc当地	tctgtgtct	tccctgc当地	tctgagttc	1980
attctctgc	ctgttagcgt	gagaaaaagc	ttctgtcc	ccatccccc	gactgggagg	2040
tagataggt	aataccaagt	atttattact	atgactgtc	ccc当地	gctctgc当地	2100
gggcactgg	atgagccgc	gtgagccct	gtcctgt	gtccc当地	gggaccctt	2160
agagatcag	gtctcccac	tgggagacaa	gaaatccctg	ttaatatt	aaacagcagt	2220
gttccccc	atggccctt	caccc	tctggc当地	gccgactgc	cagcggccc	2280
tgcatccct	tggctgt	gccc当地	aaggaggt	ggccagagct	gggaggcatt	2340
gccctgggt	cccacgaatt	tgctgggg	tctcg	tttcttaaga	ctttgggac	2400
atggttgac	tccc当地	caccgacgt	tctctgtt	ttctgggtgg	cctcgggaca	2460
cctgccc	ccccacgagg	gtcaggact	tgactctt	taggcccagg	cagggtc当地	2520
gacatttgc	ttgctggat	gggactgggg	atgtgggg	gagcagacag	gaggaatcat	2580
gtcaggcctg	tgtgtgaaag	gaagctcc	tgtc当地	caccc	ccccccactc	2640
accagtgtcc	cctccactgt	cacattgtaa	ctgaacttca	ggataataaa	gtgtttgc当地	2700
ccagtcacgt	ccttcctcct	tcttgagtc	agctggtgc当地	tggccagg	ctggggagg	2760
ggctgaaggg	tgggagaggg	cagaggagg	tccgggagg	ggtctgggg	ggaggtccag	2820
ggaggaggag	gaaagttctc	aagttct	gacattcatt	ccgttagc	atatttatct	2880
gagcacctac	tctgtgcaga	cgctgggct	agtgtgggg	acacagcagg	gaacaaggca	2940
gacatgaa	ctgcactcga					2960

<210> 14

<211> 850

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

Siemens 0022 Seq Listing.txt

<222> (3)..(4)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (9)..(9)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (11)..(11)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (18)..(18)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (202)..(202)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (205)..(205)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (273)..(273)
<223> n=a, c, g or t

<220>
<221> misc_feature

Siemens 0022 Seq Listing.txt

<222> (327)..(327)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (367)..(367)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (581)..(581)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (599)..(599)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (628)..(628)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (673)..(673)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (675)..(675)

<223> n=a, c, g or t

<220>

<221> misc_feature

Siemens 0022 Seq Listing.txt

<222> (682)..(682)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (693)..(693)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (698)..(698)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (700)..(700)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (720)..(720)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (730)..(730)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (734)..(734)

<223> n=a, c, g or t

<220>

<221> misc_feature

Siemens 0022 Seq Listing.txt

<222> (742)..(743)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (746)..(746)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (748)..(748)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (752)..(752)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (762)..(762)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (767)..(767)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (777)..(777)

<223> n=a, c, g or t

<220>

<221> misc_feature

Siemens 0022 Seq Listing.txt

<222> (783)..(784)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (789)..(789)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (794)..(794)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (797)..(798)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (803)..(805)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (810)..(810)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (817)..(817)

<223> n=a, c, g or t

<220>

<221> misc_feature

Siemens 0022 Seq Listing.txt

<222> (826)..(827)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (831)..(832)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (834)..(834)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (837)..(838)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (840)..(840)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (844)..(844)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (846)..(848)

<223> n=a, c, g or t

<400> 14

ttnncttnt ngccatgncc agttcaactc agcctctcag ttccacacgg acaacatgcg
ggaccctctg aaccgagtcc tggccaacct gttccctgctc atctcctcca tcctgggtc

60

120

Siemens 0022 Seq Listing.txt

tcgcaccgct	ggcccccaca	cccagttcg	gcagtgggtc	atggaggagt	gtgtggactg	180
cctggagcag	ggtggccgtg	gnagnctct	gcagttcatg	cccttcacca	ccgtgtcgga	240
actggtaag	gtgtcagcca	tgtctagccc	canggtggtt	ctggccatca	cggacctcag	300
cctgcccc	ggccgcagg	tggctgntaa	agccattgt	gcactctgag	gggcttgca	360
tggccnagt	gggggctggg	gactggcgca	gccccaggcg	cctccaaggg	aagcagttag	420
gaaagatgag	gcatcgcc	tcacatccgt	tccacatgt	gcaagagcct	ctagcggctt	480
ccagttcccc	gctcctgact	cctgactcca	ggatgtctcc	cggttcttc	tttcaaaat	540
tttcctctcc	atcttgctgg	caactgagga	gagttagcag	nctggaccac	aagcccagng	600
ggtcacccct	gtgttgcgc	cggccagncc	aggagtagtc	ttaccccttg	aggaacttcc	660
ttggatggaa	agnngtttt	tntgttgt	gtntgtgnan	gtgttttcg	gggttttttn	720
gggcaatata	ttangggaat	cnnccntncg	cncattttt	cntagagct	ccccggngga	780
aanntctna	tccnctnnct	ttnnnctccn	tcacctnct	tcttnntct	nntntnnncn	840
tccnccnnnc						850

<210> 15

<211> 2309

<212> DNA

<213> Homo sapiens

<400> 15

ccccggcgc	aggaggcggg	cggcccgccc	ccaccggccc	cccatggac	cccccagcac	60
ggggcgctga	gaccccccgc	tcgctcccc	gccccggctcg	gcgcgccac	ccagggatct	120
ctggacagga	caagactccg	aagctactcc	cccagcacac	agccgggac	ccacaaaccc	180
agcttgc	cagccctccc	acctgccact	ccctggcccc	tcccaccgccc	cgccccctt	240
ggggcgcagg	gcatggtgt	aaaggccaag	tgctgaggcg	ggtatcatgg	tgctgtgcc	300
ctagggctg	ggtggcaggg	ggtgggtggc	ctgtgggtgt	gccggggggg	ccagtgtgcc	360
cacccca	tcttggcgt	ctggagggca	tcctggatgg	aattgaagt	aatggAACAG	420
aagccaagca	aggtggagtg	tgggtcagac	ccagaggaga	acagtgc	gtcaccagat	480
ggaaagcgaa	aaagaaagaa	cggccaaatgt	tccctgaaaa	ccagcatgtc	agggtatatc	540
cctagttacc	tggacaaaaga	cgagcagtgt	gtcgtgtgt	gggacaaggc	aactggttat	600
cactaccgct	gtatcacttg	tgagggctgc	aagggtctt	ttcggccac	aatccagaag	660
aacccatc	ccacctattc	ctgcaaaat	gacagctgt	gtgtcattga	caagatcacc	720
cgcaatc	gcagactgt	ccgctcaag	aagtgc	ccgtgggcat	ggccatggac	780
ttggttctag	atgactcgaa	gccccggcc	aagcgtaa	tgatttagca	gaaccgggag	840
cgccggcgg	aggaggat	gatccatca	ctgcagcagc	gaccagagcc	cactcgtaa	900
gagtggatc	tgtatccat	tgccacagag	gccccatcgc	gcaccaatgc	ccagggcagc	960
cattggaaac	agaggcggaa	attccccc	gatgacatt	gccagt	cattgtctcc	1020
atgcggac	gagacaaggt	ggacctggaa	ggcttcagcg	agtttacca	gatcatcacc	1080
ccggccatca	cccggtgtgt	ggactttg	aaaaaaactgc	ccatgttctc	cgagctgcct	1140
tgcgaagacc	agatcatcc	cctgaagggg	tgctgtcatgg	agatcatgtc	cctgcggcgc	1200
gctgtccgct	acgaccctg	gagcgcacacc	ctgacgctg	gtggggagat	ggctgtcaag	1260
cgggagcgc	tcaagaatgg	cgccctggc	gtagtctcc	acgcacat	tgaactggc	1320
aagtactt	ctgccttta	cctggatgac	acggaaatgg	ctctgtgc	ggctgtgct	1380
ctaattgtcaa	cagaccgctc	ggccctgct	tgtgtggaca	agatcgagaa	gagtcaggag	1440
gcgtac	tggcggtcg	gcactacgtc	aaccaccgca	aacacaacat	tccgcacttc	1500
tggccca	tgctgtat	ggagagagaa	gtgcagagtt	cgattctgt	caagggggca	1560
cgccgcaga	gccggccggg	cgggtcact	ggcgtccacc	cgaaaggaca	gcagcttctc	1620
ggaatgcat	ttgttcaggg	tccgcagg	cggcagct	agcagcagct	tggtaagcg	1680
ggaagtctcc	aggggccgt	tcttcagc	cagagccg	agagccgc	gcagcgtctc	1740
ctggagctgc	tccaccgaa	cggaattctc	catgccc	cggtctgtgg	ggaagacgac	1800
agcagtgt	cgactcccc	gagctctct	gaggaggaa	cggaggtct	cgaggacctg	1860
gcaggcaat	cagcctctcc	ctgaagcccc	ccagaaggcc	gatggggaa	gagaaggagt	1920
gccat	ctcccgaggcc	tctgccccaa	gagcaggagg	tgcctgaa	ctgggagcgt	1980
gggctcagca	gggctgggtca	cctccatcc	cgtaagacca	ccttcccttc	ctcagcaggc	2040
caaacatggc	cagactccct	tgcttttgc	tgtgtat	cctctgcct	ggatgcctt	2100
cccccttct	ctgcctggc	acatcttact	tgcctttga	ggccccaact	caagtgtcac	2160
ctccttcc	agctccccca	ggcagaaata	gttgtctgt	cttccttgg	tcatgcttct	2220
actgtgacac	ttatctcact	gtttataat	tagtcggc	tgagtctgtt	tcccaagcta	2280
gactgtgtct	gaatcatgtc	tgtatccc				2309

Siemens 0022 Seq Listing.txt

<210> 16

<211> 2355

<212> DNA

<213> Homo sapiens

<400> 16

ccgttgcctc	aacgtccaac	ccttctgcag	ggctgcagtc	cggccacccc	aagaccttgc	60
tgcagggtgc	ttcggatcct	gatcgtagt	cgcgggggcc	actccccgcc	cttagccagt	120
gcccaggggg	caacagcggc	gatcgaacc	tctagttta	gtcaagggtcc	agtttgaatg	180
accgctctca	gctggtaag	acatgaccac	cctggactcc	aacaacaaca	caggtggcgt	240
catcacctac	attggctcca	gtggctccctc	ccaaagccgc	accagccctg	aatccctcta	300
tagtgacaac	tccaatggca	gcttcaggc	cctgacccaa	ggctgtccca	cctacttccc	360
accatcccc	actggctccc	tcacccaaga	cccggtcg	tcctttggga	gcattccacc	420
cagcctgagt	gatgacggct	cccccttcc	ctcatcttcc	tcgtcgat	cctcctccctc	480
cttctataat	gggagcccc	ctggggatct	acaagtggcc	atggaggaca	gcagccgagt	540
gtccccccagc	aagagcacca	gcaacatcac	caagctgaat	ggcatggtgt	tactgtgtaa	600
agtgtgtggg	gacggtgcct	cgggcttcca	ctacgggtgt	ctcgccctgcg	agggctgcaa	660
gggcttttc	cgtcgagca	tccagcagaa	catccagtagc	aaaaggtgtc	tgaagaatga	720
gaattgctcc	atcgccgc	tcaatcgcaa	ccgctgccag	caatgtcgct	tcaagaatgt	780
tctctctgt	ggcatgtctc	gagacgctgt	gcgttttggg	cgcattccca	aacgagagaa	840
gcagcggatg	cttgctgaga	tgcagagtgc	catgaacctg	gccaaacaacc	agttgagcag	900
ccagtggcccg	ctggagactt	cacccaccca	gcacccccc	ccaggcccc	tgggccccctc	960
gccacccccc	gctccggctc	cctcaccct	ggtgggcttc	tcccagttc	cacaacagct	1020
gacgcctccc	agatccccaa	gcccgtggcc	caacgtggag	gatgtgat	cccagggtggc	1080
ccgggccccat	cgagagatct	tcacccatgc	ccatgacaag	ctgggcagct	cacctggcaa	1140
cttcaatgccc	aaccatgcat	caggtagccc	tccagccacc	accccacatc	gctggggaaaa	1200
tcagggctgc	ccacctgccc	ccaatgacaa	caacacccctg	gctggccagc	gtcataacga	1260
ggccctaaat	ggtctgcgccc	aggctccctc	ctcctaccct	cccacctggc	ctcctggccc	1320
tgcacaccac	agctgcccacc	agtccaaacag	caacgggcac	cgtctatgcc	ccacccacgt	1380
gtatgcagcc	ccagaaggca	aggcacctgc	caacagtccc	cggcaggggca	actcaaagaa	1440
tgttctgt	gcatgtctc	tgaacatgt	cccgcatgga	cgcagtgggc	gaacgggtgca	1500
ggagatctgg	gaggattct	ccatgagctt	cacggccgc	gtgggggagg	tggtagagtt	1560
tgccaaacac	atccgggct	tccgtgac	ttctcagat	gaccaagtca	ccctgcttaa	1620
ggctggcacc	tttgggggtgc	tgatgggtgc	tttgcgttgc	ttgttcaacg	tgaaggacca	1680
gacagtgtat	tttctaagcc	ggaccaccta	cagcgtcg	gagcttggtg	ccatgggcat	1740
gggagacctg	ctcagtgcca	tgttcgactt	cagcgagaag	ctcaactccc	tggcgcttac	1800
cgaggaggag	ctgggccc	tcacccgg	ggtgtttgtc	tctgcagacc	gctcgggcat	1860
ggagaattcc	gcttcgggt	agcagctcca	ggagacgctg	ctggggctc	ttcgggctct	1920
gggtctgaag	aaccggccct	tggagacttc	ccgcttcacc	aagctgctgc	tcaagctgcc	1980
ggacctgtcg	accctgaaca	acatgcattc	cgagaagctg	ctgtccttcc	gggtggacgc	2040
ccagtgtacc	gccggccgg	ccttcgtcc	ctgccccctt	gtacagaatc	gaactctgca	2100
cttctctctc	cttacgaga	cgaaaaggaa	aagcaaacc	gaatcttatt	tatattgtta	2160
taaaatattc	caagatgac	ctctggcccc	ctgagccttc	ttgtaaatac	ctgcctccct	2220
ccccccatcac	cgaacttccc	ctcctccct	attnaaacca	ctctgtctcc	cccacaaaccc	2280
tccctggcc	ctctgatttgc	ttctgttcc	gtctcaaatc	caatagttca	cagctaaaaa	2340
aaaaaaaaaaa	aaaag					2355

<210> 17

<211> 4119

<212> DNA

<213> Homo sapiens

<400> 17

gaattccgtt	gctgtcgac	acacacacac	acacacacac	acaccccaac	acacacacac	60
acaccccaac	acacacacac	acacacacac	acacacacac	acacacacac	acacagcggg	120
atggccgagc	gccgcacgc	tagcgc	ggactagcta	tccagcctcc	cagcagcc	180
tgcgacggc	gccccggcgt	agtacccgc	cgggtgg	cgttccgt	aagatggcgg	240

Siemens 0022 Seq Listing.txt

accggccggcg	gcagcgcgct	tcgcaagaca	ccgaggacga	ggaatctgg	gtttcgggct	300
ccgacagcgg	cggctccccg	ttgcggggag	gcgggagctg	cagcggtagc	gccggaggcg	360
gcggcagcgg	ctctctgcct	tcacagcgcg	gaggccgaac	cggggccctt	catctgcggc	420
gggtggagag	cggggcgccc	aagagtgcgt	aggagtgcga	gtgtgagagt	gaagatggca	480
ttgaaggta	tgcgttctc	tcggattatg	aaagtgcaga	agactcgaa	ggtgaagaag	540
gtgaatacag	tgaagaggaa	aactccaaag	ttggagctgaa	atcagaagct	aatgatgtcg	600
ttaattttc	aacaaaagaa	gagaagggag	aagaaaagcc	tgacaccaa	agcactgtga	660
ctggagagag	gcaaagtggg	gacggacagg	agagcacaga	gcctgtggag	aacaaagtgg	720
gtaaaaagg	ccctaagcat	ttggatgatg	atgaagatcg	gaagaatcca	gcatacatac	780
ctcggaaagg	gctcttctt	gagcatgatc	ttcgagggca	aactcaggag	gaggaagtca	840
gacccaaagg	gcgtcagcga	aagctatgga	aggatgaggg	tcgctggag	catgacaagt	900
tccggaaaga	tgagcaggcc	ccaaagtccc	gacaggagct	cattgctctt	tatggttatg	960
acattcgctc	agctcataat	cctgtatgaca	tcaaaccctg	aagaatccgg	aaaccccgat	1020
atgggagtcc	tccacaaaga	gatccaaact	ggaacgggta	gcggctaaac	aagtctcatc	1080
gccaccagg	tcttgggggc	acccttaccac	caaggacatt	tattaacagg	aatgctgcag	1140
gtaccggccg	tatgtctgca	cccaggaat	atttctcgatc	tggggcttc	aaggaaggtc	1200
gtgctgttt	taggcctgt	gaagctggg	ggcagcatgg	tggccgtct	ggtgagactg	1260
ttaagcatga	gatttagtt	cggtcacggc	gcctagagca	gacttctgt	agggatccat	1320
ctccagaagc	agatgtccca	gtgctggca	gccttgagaa	ggaagaggca	gcctcagagc	1380
caccagtc	tgcctctgat	gctgcacacc	cacccctgta	taggcccatt	gagaagaaat	1440
cctattcccg	ggcaagaaga	actcgacca	aagttggaga	tgcagtcaag	cttgcagagg	1500
aggtgcccc	tccctctgaa	ggactgattc	cagcacctcc	agtcccagaa	accacccaa	1560
ctccacccat	taagactggg	acctggaaag	ctccgggtga	ttctagtaca	agtggacttg	1620
agcaagatgt	ggcacaacta	aatatagcag	aacagaatgg	gagtccgggg	cagccttctt	1680
tcctgcaacc	acgggaactt	cgaggtatgc	ccaaccatat	acacatggga	gcaggaccc	1740
cacccatgtt	taaccggatg	gaagaaatgg	gtgtccaggg	tggtcgagcc	aaacgctatt	1800
catcccacg	gcaaagacct	gtgccagagc	ccccccccc	tccagtgcac	atcagtatca	1860
tggagggaca	ttactatgat	ccactgcagt	tccaggggacc	aatctatacc	catggtgaca	1920
gcccctcccc	gctgcctcca	cagggcatgc	ttgtgcagcc	aggaatgaac	cttccccacc	1980
caggtttaca	tccccaccag	acaccagctc	ctctgccccaa	tccaggccctc	tatcccccc	2040
cagtgtccat	gtctccagga	cagccaccac	ctcagcagg	gtttgctct	acttacttt	2100
ctgctccagg	cgtcatgaac	tttggtaatc	ccagttaccc	ttatgctcca	ggggcactgc	2160
ctccccccacc	accgcctcat	ctgtatccat	atacacaggg	cccatcacag	gtatatggag	2220
gagtgaccta	ctataacccc	gcccagcagc	aggtgcagcc	aaagccctcc	ccaccccccga	2280
ggactcccc	gccagtcacc	atcaagcccc	ctccacctga	gtttaaagc	aggggttcca	2340
gttaatacaa	gtttctgaat	attttaaatc	tttaacatcat	ataaaaagca	gcagaggtga	2400
gaactcagaa	gagaaatata	gctggctatc	tactaccaga	agggcttcaa	agatataagg	2460
tgtggctct	accagcaaac	agctgaaaga	ggaggacccc	tgccttccct	tgaggacagg	2520
ctctagagag	aggagagaaac	aatgtgaccc	cgtcccatct	tcaacttca	cttgagttgg	2580
ctgtgtccg	gggagcagag	agagccagac	agccccaaac	ttctgagtt	agatacagaa	2640
gcccattgtct	tctgctgttc	ttcacttctg	gaaaattgaa	gtgtctctg	ttcccaagga	2700
agctccctcc	tgttgtttt	gttttctaag	atgttcattt	ttaaagctg	gcttcttatc	2760
cttaatatta	tttaatattt	ttctcttgt	ttctgtttct	tgctctct	ccctgccttt	2820
aaatgaaaca	agtcttagtct	tctggtttc	tagccctct	ggattccctt	ttgacttttc	2880
cgtgcattcc	agataatgg	aatgtatca	gccagccctc	cccaccaat	ctaaaaagac	2940
ctggcccttc	acttttagtt	ggcatttgtt	atcctcttgc	atacttgcat	tcccttaact	3000
ctaaccctgt	ggaagcatgg	ctgtctgcac	agagggctcc	attgtgcaga	aaagctcaga	3060
gttaggtgg	aggagccctt	ctcttgact	taggtttta	ggagctgag	catccatcaa	3120
tacctgtact	atgatgggct	tctgtctct	gctgaggggcc	aataccctac	tgtggggaga	3180
gatggcacac	cagatgtctt	tgtgagaaag	ggatgggtga	gtgagagcct	ttgcctttag	3240
gggtgtgtat	tcacatagtc	ctcagggtct	agtcttttg	ggttaagtgg	attagagggc	3300
cttgcttctc	ttctttccat	tcttcttgct	acacccctt	tccagtgtct	gtggaccaat	3360
gcatctctt	aaaggcaaat	attatccagc	aagcagtcta	ccctgtccct	tgcaatttgct	3420
cttctccacg	tctttctgc	tacaatgtt	ttagatgtt	ctaccttatt	ttccccgaat	3480
tctatTTT	tccttgccaga	cagaatataa	aaactcctgg	gcttaaggcc	taaggaagcc	3540
agtacccatc	tggcaagg	ctcctatctt	ttctccctat	ccatggcact	aaacccatcc	3600
tctgctgcct	ctgtggaaaga	gattcttatt	actgcagtc	atacgtctgc	cagggttaac	3660
ctggccactg	tccctgtcct	tctacagaac	ctgagggcaa	agatggtggc	tgtgtctctc	3720
cccggtaatg	tcactgtttt	tattcctcc	atctagcagc	tggcctaattc	actctgagtc	3780
acagggtgtgg	gatggagagt	ggggagaggc	acttaatcg	taaccccaa	ggagggaaata	3840
actaagagat	tcttcttaggg	gtagctggg	gttgtgcctt	ttgtaggctg	ttcccttgc	3900
cttaaacctg	aagatgtctc	ctcaagcctg	tggcagcat	gccagattc	ccagacccat	3960
agacactgtg	agagttgtct	ctgttggtcc	actgtgttt	gttgcagaga	tttttccatg	4020

Siemens 0022 Seq Listing.txt

tgtgggggtg tttttgtta ctgtttaaa gggtgccat ttgtgatcg cattgtact	4080
tggagataat aaaatttaga ctataaactt gaaaaaaaaaa	4119

<210> 18

<211> 2653

<212> DNA

<213> Homo sapiens

<400> 18

gagcgcggct ggagttgct gctgccgctg tgcagttgt tcagggcctt gtggcggtga	60
gtccgagagg ctgcgtgtga gagacgttag aaggatccctg cactgaggag gtggaaagaa	120
gaggattgtct cgaggaggcc tggggctgt gagaacggcg agctgggtga aggctgcggg	180
ttccggcgag gcctgagctg tgctgtcgtc atgcctcaaa cccgatccca ggcacaggct	240
acaatcaggat ttccaaaaaaag gaagctgtct cgggcattga acaaagctaa aaactccagt	300
gatgccaac tagaaccacaa aatgtccaa accgttaacct gtttcctcg tgtaaaagcc	360
ctgcctctca gccccaggaa acgtctggc gatgacaacc tatgcaacac tccccattha	420
cctccttgtt ctccaccaaa gcaaggcaag aaagagaatg gtcccctca ctcacataca	480
cttaaggggac gaagattggt atttgacaat cagctgacaa ttaagtctcc tagaaaaga	540
gaactagcca aagttcacca aaacaaaata ctttcttcag ttggaaaaaaag tcaagagatc	600
acaacaaatt ctgagcagag atgtccactg aagaaaagaat ctgcattgtgt gagactattc	660
aagcaagaag gcacttgcta ccagcaagca aagctgggtcc tgaacacagc tgcccagat	720
cggctgcctg ccagggaaaag ggagatggat gtcattcagga atttcttgc ggaacacatc	780
tgtggggaaaa aagctggaaag cctttacctt tctgggtcctc ctggacttgg aaaaactgccc	840
tgcttaagcc ggattctgca agacccaaag aaggaactgaa aaggctttaa aactatcatg	900
ctgaattgca tgccttgag gactgcccag gctgtattcc cagctattgc tcaggagatt	960
tgtcaggaag aggtatccag gccagctggg aaggacatgaa tgaggaaattt ggaaaaacat	1020
atgactgcag agaaggcccc catgattgtg ttggattttgg acgagatggaa tcaactggac	1080
agcaaaggcc aggatgtattt gtacacgcta tttgaatggc catggctaaag caattctcac	1140
ttgggtctga ttggatttgc taataccctg gatctcacag atagaattctt acctaggctt	1200
caagcttagag aaaaatgtaa gccacagctg ttgaactttc caccttatac cagaatccatg	1260
atagtcacta ttttgcagaatc tcgacttaat caggtatcta gagatcaggat tctggacaat	1320
gctgcagttc aattctgtgc ccgcaaaatc tctgtgtttt caggagatgt tgccaaagca	1380
ctggatgtttt gcaggagagc tatttgcattt gtagagtcag atgtcaaaag ccagactatt	1440
ctcaaaaccac tgcctgtatg taaatcacct tctggccctc tgatccccaa gagggttgg	1500
cttattccaca tatcccaatg catctcagaa gttgatggta acaggatgac cttggccaa	1560
gaggaggcac aagttccctt ccctttcag cagaagatgtt tggttgc tttgtatgtc	1620
ttgatcaggc agttggaaaat caaagaggc actctggggaa agtttatgtt agcctacagt	1680
aaagtctgtc gcaaacagca ggtggcggtt gtggaccagt cagagtgtttt gtcactttca	1740
gggctcttgg aagccagggg catttttaga ttaaagagaa acaaggaaac ccgtttgaca	1800
aagggtttt tcaagattgtt agagaaagaa atagaacatg ctctgaaaaga taaagcttta	1860
attggaaaata tcttagctac tggattgcct taaattcttc tcttacaccc caccggaaag	1920
tattcagctg gcatttagat agctacagtc ttcattttag tgctttcacac attcgggcct	1980
aaaaacaaat atgacctttt ttacttgcag ccaatgttattt ttaatctata gattctttaa	2040
tattagcaca gaataatattt ttgggtctt actattttta cccataaaag tgaccaggtt	2100
gaccctttt aattacattt actacttcta ccacttgcgtt atctctagcc aatgtgcctt	2160
caagtgtaca gatctgtgtt gaggaaatgtg tgtatattttt ccttttcgtt tgctcaaaaca	2220
tgagtgggtt tttttttttt ttgtttttttt gttgttgcgtt tttttggggc gctctcacc	2280
ctgttgcctt ggctggagtg caatggcgctt ttctctgtcctc actacagcac ccgttccca	2340
gggtgaagtg attctcttgc ctcagccctt ccagtagctg ggattacagg tgccacccac	2400
cgcgccttgc taattttttt attttttagta gagaacgggt tttaccatgt tggccaggct	2460
ggtcttgcac tcctgaccctt caagtgtatctt gcccacccctt gcctccctaa gtgcgtggat	2520
tataggcggtt agccaccatgtt ctcagccattt aagttttttt gtttggaaact ttaagtttag	2580
ggtaagaaga atgaaaaatgtt tccagaaaaaa tgcaagcaag tccacatggaa gattttggagg	2640
acactgttta aag	2653

<210> 19

<211> 2907

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 19

gccatctggg	cccaggcccc	atgccccgag	gaggggttgt	ctgaagccca	ccagagcccc	60
ctgcccact	gtctgcctcc	cttctgactg	tggccgcttg	gcatggccag	caacagcagc	120
tcctgcccga	cacctggggg	cgggcacctc	aatgggtacc	cggtgcctcc	ctacgccttc	180
ttcttcctcc	ctatgtggg	tggactctcc	ceggcaggcg	ctctgaccac	tctccagcac	240
cagttccag	ttagtggata	tagcacacca	ttcccagcca	ccattgagac	ccagagcagc	300
agttctgaag	agatagtgcc	cagccctccc	tcgcccacccc	ctctaccccg	catctacaag	360
ccttgcttg	tctgtcagga	caagtctca	ggttaccact	atggggtgt	cgccctgtgag	420
ggctgcaagg	gcttcttccg	ccgcagcata	cagaagaaca	tgggttacac	gtgtcacccgg	480
gacaagaact	gcatcatcaa	caaggtgacc	ccgaaccgct	gccagtaactg	ccgactgcag	540
aagtgcctt	aagtgggcat	gtccaaggag	tctgtgagaa	acgaccgaaa	caagaagaag	600
aaggagggtc	ccaagcccg	gtgctctgag	agctacacgc	tgacgcccga	gggtggggag	660
ctcattgaga	agggtgcgca	agcgcaccag	gaaaccttcc	ctgccccttg	ccagctgggc	720
aaatacacta	cgaacaacag	ctcagaacaa	cgtgtctctc	tggacattga	cctctgggac	780
aagttcagt	aactcttc	caagtgcata	attaagactg	tggagttcgc	caagcagctg	840
cccgccctca	ccaccctcac	catcgccgac	cagatcaccc	tcctcaaggc	tgccctgc	900
gacatctga	tccctgcggat	ctgcacgcgg	tacaccccc	agcaggacac	catgaccctc	960
tcggacgggc	tgaccctgaa	ccggacccag	atgcacaacg	ctggccttcgg	ccccctcacc	1020
gacctggct	ttgccttcgc	caaccagctg	ctgcccctgg	agatggatga	tgcgagacg	1080
gggctgctca	gcgcctatctg	cctcatctgc	ggagaccggc	aggacctgga	gcagccggac	1140
cggggtgaca	tgtgcagga	gccgcgtctg	gaggcgctaa	aggtctacgt	gcggaagcgg	1200
aggccagcc	gccccccacat	gttcccaag	atgctaatga	agattactga	cctgcgaagc	1260
atcagcgcca	agggggctga	gcgggtgatc	acgctgaaga	tggagatccc	gggctccatg	1320
ccgcctctca	tccaggaaat	gttggagaac	ttagggggcc	tggacactct	gagcggacag	1380
ccgggggggt	ggggggggga	cggggggtggc	ctggcccccc	cgccaggcag	ctgtagcccc	1440
agcctcagcc	ccagctccaa	cagaagcagc	ccggccaccc	actccccgt	accgcccacg	1500
ccacatggac	acagccctcg	ccctccgccc	cggttttct	ctgcctttct	accgaccatg	1560
tgaccccgca	ccagccctgc	ccccacctgc	cctccgggc	agtactgggg	acccctccctg	1620
ggggacgggg	agggaggagg	cagcgaactcc	ttggacagag	gcctgggccc	tcagtggact	1680
gcctgctccc	acagcctggg	ctgacgtcag	aggccgagc	caggaactga	gtgaggcccc	1740
tggtcctggg	tctcaggatg	gttcctgggg	gcctctgttt	catcaagaca	ccccctctg	1800
cagctcacca	catcttcata	accagcaaac	ggcaggaccc	ggctccccc	tcctcagaac	1860
tcacaagcca	ttgctcccca	gctggggaaac	cttcacccctc	ccccctgc	ggttgggtgac	1920
agaggggggt	ggacaggggc	gggggggttc	ccctgtatcc	accctgccc	accaacccca	1980
ggttattttt	ctcgctgggt	ttgttttat	ttaattttt	ttgttttgc	tttttaata	2040
agaattttca	tttaaagcac	atttatactg	aggaatttg	tgctgtgtat	tggggggagc	2100
tggatccaga	gctggagggg	gtgggtccgg	gggaggggat	ggctcggaa	gggcccccac	2160
tctccttca	tgtccctgt	ccccccagtt	ctccctcctca	gcctttcc	cctcagttt	2220
ctctttaaaa	ctgtgaagta	ctaacttcc	aaggcctgcc	ttccctccc	tcccactgga	2280
gaagccgcca	gc(cc)ctttct	ccctctgcct	gaccactgg	tgtggacgg	gtggggcagc	2340
cctgaaagga	caggctccctg	gccttggcac	ttgcctgcac	ccaccatgag	gcatggagca	2400
gggcagagca	agggccccgg	gacagattt	tcccagacct	ggctcctcgg	cagagctgcc	2460
tcccggtcagg	gcccacatca	tctaggctcc	ccagccccca	ctgtgaaggg	gctggccagg	2520
ggcccgagct	gccccccaccc	ccggcctcag	ccaccagcac	ccccataggg	cccccagaca	2580
ccacacacat	gcccgtgcgc	acacacacaa	acacacacac	actggacagt	agatggggcg	2640
acacacactt	ggcccaggtt	cctccatttc	cctggcctgc	ccccccaccc	caacctgtcc	2700
caccccccgt	ccccctccct	accccgagg	acggggcctac	aggggggtct	ccccctcaccc	2760
ctgcacccccc	agctggggga	gctggctctg	ccccgaccc	tttaccagg	gttggggcc	2820
cctccctgt	gagcccggtg	gtgcacctgt	tactgttggg	ctttccactg	agatctactg	2880
gataaaagat	aaagttctat	ttatttct				2907

<210> 20

<211> 2096

<212> DNA

<213> Homo sapiens

<220>

Siemens 0022 Seq Listing.txt

<221> misc_feature

<222> (23)..(23)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (27)..(27)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (80)..(80)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (120)..(120)

<223> n=a, c, g or t

<400> 20

agatgtttaa	aaatactttg	atnctcngtt	tccacacctc	ttaaatttgc	tttccctatg	60
ttaaatatac	agtcatcacn	ttgctgaaaa	aagttcgcaa	tgagaacaat	catctaaaan	120
tggctgtaac	taggtcaggc	gcccgtgctc	atgcctgtaa	tcccaccact	ttgggaggcc	180
gaggcaattg	gatcacctga	ggtcaggatt	ttgagaccag	cttgaccaac	atggtggaat	240
cccatctcta	ctaaaaatac	aaaaaattag	ccgggtgtgg	tggcacaccc	ctgtaatccc	300
acctacttcag	gaggctgagg	cagaaaaatc	ccttgaaccc	aggaggcaaa	ggttgcattg	360
agccgaaata	acaccactgc	actccagcct	ggacgataga	gtgagacccc	atctcaaaaa	420
aagagcagct	gtgacacaatg	cctgtattga	attgcaggtc	agtcttccac	ctccactacc	480
ggtgc当地	aaagggctgc	cccaaaagga	actaaaaggg	atccagctt	gaattcttgt	540
gtctctcaaa	agcctgatcc	tgccaaaacc	aagaatcggc	gcaaaaggaa	gccatccact	600
tctgtatgatt	ctgactctaa	ttttgagaaa	attgtttcga	aagcagtac	aagcaaggtg	660
agtgttgc	ctagtcagtc	cttttgcgt	agatgttctg	aaacacgtaa	ctaagccatt	720
gttcttaaaa	atttggcata	tctttaagaa	aattaactct	catattctgt	tagctttac	780
tgtacatatt	tagtttaac	aaagttaaat	atgccactta	tttggccat	ggaagagttg	840
gccttagatc	tgcttcttat	tacttggtag	aaaatagaaa	actccttgaa	tatagtgtct	900
tgatacattt	tttacattt	caattatgtt	gtcagattta	caatgtgaa	gttacctggg	960
cttttctctt	tttagaaatcc	aagggggaga	gtgatgactt	ccatatggac	tttgactcag	1020
ctgtggctcc	tcgggcaaaa	tctgtacggg	caaagaaaacc	tataaagtac	ctggaaagagt	1080
cagatgaaga	tgatctgttt	taaaatgtga	ggcgattatt	ttaagtaatt	atcttaccaa	1140
gcccaagact	ggttttaaag	ttacctgaag	ctttaactt	cctccccct	gaatttagtt	1200
tggggaaagg	gttttttagta	caagacatca	aagtgaagta	aagcccaagt	gttctttagc	1260
tttttataat	actgtataaa	tagtgaccaat	ctcatgggca	ttgtttctt	ctctgctttg	1320
tctgtgtttt	gagtctgctt	tttttgtctt	taaaacctga	tttttaagtt	cttctgaact	1380
gtagaataat	ctatctgatc	acttcagcgt	aaagcagttt	gtttattaac	catccactaa	1440
gctaaaacta	gaggcagttt	atttaaaagt	gtcactcttc	ctccctttct	actttcagta	1500
gatatgagat	agagcataat	tatctgtttt	atcttagtt	tatacataat	ttaccatcat	1560
atagaacttt	atggttctag	tacagatact	ctactacact	cagcccttta	tgtgc当地	1620

Siemens 0022 Seq Listing.txt

ttttcttaa	gcaatgagaa	attgctcatg	ttcttcactt	tctcaaatac	tcagaggccg	1680
aagaaaaaca	cttggctgt	gtctataact	tgacacagtc	aatagaatga	agaaaattag	1740
agtagttatg	tgattatttc	agctcttgc	cgtgtcccc	tggctgcctc	tgagtctgaa	1800
tctcccaaag	agagaaacca	atttctaaga	ggactggatt	gcagaagact	cggggacaac	1860
atttgatcca	agatcttaaa	tgttatattt	ataaccatgc	tcagcaatga	gctatttagat	1920
tcattttggg	aaatctccat	aatttcaatt	tgtaaacttt	gttaagacct	gtctacattt	1980
ttatatgtgt	gtgacttgag	taatgttattc	aacgtttttt	taaatatttta	ctatgttttt	2040
ctattagcta	aattccaaca	attttgtact	ttaataaaat	gttctaaaca	ttgaaa	2096

<210> 21

<211> 2160

<212> DNA

<213> Homo sapiens

<400> 21

agccccctgc	ccctcgccgc	cccccgccgc	ctgcctggc	cgggccgagg	atgcggcgca	60
gcgcctcgcc	ggccaggctt	gtccccctcc	ggcacgcctg	ctaacttccc	ccgctacgtc	120
cccgttcgccc	cggccggccgc	ccccgtctcc	ccgcggccctc	cgggtccggg	tcctccagga	180
cggccaggcc	gtgcccgcgt	gtgcccctcc	ccgctcgccc	gchgccccgc	cgctccccgc	240
ctgcgcggcag	cggccccgcgc	ccgcgccccca	gtcctcgggc	ggtccatgtct	gccccctctgc	300
ctcgtggccg	ccctgtgtct	ggccggccggg	cccggggccga	gcctggcga	cgaagccatc	360
cactgcccgc	cctgctccga	ggagaagctg	gchgcgtgtcc	gccccccctgt	gggctgcgag	420
gagctgggtc	gagaggcggg	ctgcggctgt	tgcgccactt	gchccctggg	cttggggatg	480
ccctgcgggg	tgtacaccccc	cggttgcggc	tcggggcctgc	gctgctaccc	gccccgaggg	540
gtggagaagc	ccctgcacac	actgtgcac	gggcaaggcg	tgtgcataa	gctggcgag	600
atcgaggcca	tccaggaaag	cctgcagccc	tctgacaagg	acgagggtga	ccaccccaac	660
aacagcttca	gcccctgttag	cgcccatacgac	cgtgggtgcc	tgcagaagca	ttcgccaaa	720
attcgagacc	ggagcaccag	tggggcaag	atgaaggctc	atggggcgc	ccgggagggat	780
gcccggctg	tgccccaggg	ctccctgcag	agcagactgc	accgggcgt	ggagcggctg	840
gcccgttcac	agagccgcac	ccacgaggac	ctctacttca	tccccatccc	caactgcac	900
cgcaacggca	acttccaccc	caagcgtgt	cacccagctc	tggatggcga	gcgtggcaag	960
tgctgggtgt	tgaccggaa	gacgggggtg	aagcttccc	ggggcctgg	gccaaagggg	1020
gagctggact	gccaccagct	ggctgacagc	tttcgagat	gaggcctgc	agcaggccag	1080
ggactcagcg	tccctgtcta	ctccctgtct	ctggaggctc	caagactgc	ccagagttga	1140
gtctgagtc	gatcctgtc	tctgcctgc	gcccagaat	tccctcaaa	tgcgcgtgt	1200
cacgtgtcg	tgtgtgtcg	tgtgtgtgt	tttgtgagca	tgggtgtgc	cttggggtaa	1260
gccagagct	gggggtttct	ctttgtgtt	acacagccca	agaggactga	gactggcact	1320
tagcccaaga	ggctgagcc	ctgggtgtt	tccagatcga	tcctggattc	actcactcac	1380
tcattccctc	actcatccag	ccacccaaaa	acatttactg	accatgtact	acgtgccagc	1440
tctagtttc	agccctggga	ggttttattt	tgacttcctc	tgattttgc	atgtggagac	1500
actcctataa	ggagagttca	agcctgtggg	atgaaaaaaa	tctcatttccc	agagtcaag	1560
gagaagagac	atgtacctt	accatgtcc	ttcctctcaa	gctagcccag	agggtgggag	1620
cctaaggaag	cgtggggtag	cagatggagt	aatggtcacg	aggtccagac	ccactcccaa	1680
agctcagact	tgccaggctc	ccttctctt	cttccccagg	tccttcctt	aggtctgg	1740
gttgcaccat	ctgcttgggtt	ggctggcagc	tgagagccct	gctgtgggag	agcgaagggg	1800
gtcaaaggaa	gacttgaagc	acagaggct	aggagggtgg	ggtacattt	tctgagcagt	1860
cagggtggaa	agaaaagaatg	caagagtgg	ctgaatgtgc	ctaattggaga	agacccacgt	1920
gctagggat	gagggggcttc	ctgggtcctg	ttcccctacc	ccatttgg	tcacagccat	1980
gaagtccaccg	ggatgaacct	atccctccag	tggctgcctc	cctgttagctc	tgccctccctc	2040
tccatatctc	cttcccctac	acccctcc	ccacacccctc	ctactccct	ggcatacttc	2100
tggcttgact	ggatgaaagg	agacttagga	acctaccagt	tggccatgat	gtcttttctt	2160

<210> 22

<211> 2215

<212> DNA

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 22

ctgcaggag	ccatgattgc	accactgcac	tccagcctgg	gcaacagagt	gagaccatgt	60
ctcaagaaaa	aaaaaaaaaga	aagaaccac	tgctctaggc	taaatcccag	ccagagttgg	120
agccaccagg	ctaaactggc	ctgtttccc	tcatttcctt	ccccgaaggt	atgcctgtgt	180
caagatgagg	tacacggacga	ttacatcgga	gacaacacca	cagttgacta	cactttgttc	240
gagtcttgt	gctccaagaa	ggacgtgcgg	aactttaaag	cctggttcct	cccttatcatg	300
tactccatca	tttgtttcggt	gggcctactg	ggcaatgggc	tggtctgttt	gacctataatc	360
tatttcaaga	ggctcaagac	catgaccgat	acctacctgc	tcaacctggc	ggtggcagac	420
atccctttcc	tccgtaccct	tcccttctgg	gcctacagcg	cggccaagtc	ctgggtcttc	480
ggtgtccact	tttgcagaagct	catcttgc	atctacaaga	tgagttctt	cagtggcatg	540
ctcctacttc	tttgcatacg	cattgaccgc	tacgtggcca	tcgtccaggc	tgtctcagct	600
caccgcacc	gtgcccgcgt	ccttctcatc	agcaagctgt	cctgtgtggg	catctggata	660
ctagccacag	tgcctctccat	cccagagctc	ctgtacagtg	acctccagag	gagcagcagt	720
gagcaagcga	tgcgtatgctc	tctcatcaca	gagcatgtgg	aggccttat	caccatccag	780
gtggcccaga	ttgtgtatcggt	cttctggc	cccctgtctgg	ccatgagctt	ctgttacatt	840
gtcatcatcc	gcaccctgtct	ccaggcacgc	aactttgagc	gcaacaaggc	catcaagggt	900
atcatcgctg	ttgtctgtgg	cttcatagtc	ttccagctgc	cctacaatgg	ggtggtctgt	960
gcccagacgg	tggccaact	caacatcacc	agtagcac	gtgagctcag	taagcaactc	1020
aacatcgctt	acgacgtcact	ctacagcctg	gcctgcgtcc	gctgtgcgt	caaccctttc	1080
ttgtacgcct	tcatcgccgt	caagttccgc	acgatctt	tcaagcttt	caaggacctg	1140
ggctgcctca	gccaggagca	gctccggcag	ttgtcttcct	gtcggcacat	ccggcgctcc	1200
tccatgagt	ttggaggccga	gaccaccacc	accttctccc	cataggcgac	tcttctgcct	1260
ggactagagg	gacccccc	agggtccctg	gggtggggat	agggagcaga	tgcaatgact	1320
caggacatcc	ccccgccaa	agctgctcag	gaaaagcag	ctctccctc	agagtgcag	1380
ccctgctcca	gaagtttagct	tcaccccaat	cccagctacc	tcaaccaatg	ccgaaaaaga	1440
cagggctgtat	aagctaacac	cagacagaca	acactggaa	acagaggcta	ttgtccctta	1500
aaccaaaaac	tggaaagtgaa	agtccagaaa	ctgttcccac	ctgctggagt	gaaggggcca	1560
aggaggggtga	gtgcaagggg	cgtgggagtg	gcctgaagag	tcctctgaat	gaaccttctg	1620
gcctccca	gactcaa	ctcagaccag	ctcttccgaa	aaccaggcct	tatctccaa	1680
accagagata	gtggggagac	ttcttggctt	ggtgaggaaa	agcggacatc	agctggtaa	1740
acaaactctc	tgaacccctc	cctccatcgt	tttcttca	gtcctccaag	ccagcggaa	1800
tggcagctgc	cacgccc	taaaagcaca	ctcatccc	ca	tcgtcc	1860
caggctctca	acaggggaga	gtgtgtgtt	tcctgcaggc	cagggcagct	gcctccgcgt	1920
gatcaaagcc	acactctgg	ctccagagtg	ggatgacat	gcactcagct	tttgctcca	1980
ctggatggg	aggagaggac	aaggaaatg	tcaggggggg	ggaggggtgac	agtggccgccc	2040
caaggccacg	agcttgcatt	ttgttcttt	tcacaggac	tgaaaacctc	tcctcatgtt	2100
ctgctttcga	ttcgtaaga	gagcaacatt	ttacccacac	acagataaa	ttttcccttg	2160
aggaaacaac	agctttaaaa	gaaaaaagaa	aaaaaaagct	ttgttaagtca	agttag	2215

<210> 23

<211> 958

<212> DNA

<213> Homo sapiens

<400> 23

ggggccggac	gcgaggggcg	gggcgagcgc	gggacaaagg	gaagcgaagc	cggagctgcg	60
ggcgctttt	ctgcccgcgg	tgtctcagat	tcattcttaa	ggaactgaga	acttaatctt	120
ccaaaatgtc	aaaaagacca	tcttatgccc	caccccccac	cccagctcct	gcaacacaaa	180
tgcccagcac	accagggtt	gtgggataca	atccatacag	tcatctgc	tacaacaact	240
acaggctgg	agggaccc	agcacaaca	gccgggtcac	ggcatccct	ggtatcacga	300
ttccaaaacc	cccaagacca	ccagataagc	cgctgtatgc	ctacatgagg	tacagcagaa	360
aggtctgg	ccaagtaaa	gcttccaacc	ctgacaaaa	gttggggag	attggcaaga	420
ttatttgg	catgtggcga	gatctactg	atgaagaaa	acaagaat	ttaaacgaat	480
acgaagcaga	aaagatagag	tacaatgaat	ctatgaaggc	ctatcataat	tcccccgcgt	540
accttgc	cataaatgc	aaaagtctg	cagaagctgc	tttagaggaa	gaaagtgcac	600
agagacaatc	tcgcatggag	aaaggagaac	cgtacatgag	cattcagcct	gctgaagatc	660
cagatgatta	tgcgtatggc	tttcaatga	agcatacagc	caccggccgt	ttccagagaa	720
accaccgcct	catcagtgaa	attcttagt	agagtgtgt	gccagacgtt	cggtcagtt	780
tcacaacacg	tagaatgcag	gtcctcaa	ggcaggtcca	gtccttaatg	gttcatcagc	840
gaaaactaga	agctgaactt	tttcaatag	aggaacgaca	ccaggagaag	aagaggaaat	900

Siemens_0022_Seq_Listing.txt

tcctggaaag cacagattca tttaacaatg ääcttaaaaag gttgtgcggc ctgaaaagt 958

<210> 24

<211> 6483

<212> DNA

<213> Homo sapiens

<400> 24

aagcttcaa	ttgcagttca	accacctgtt	acatatcttc	agaaaaaaat	cacaacctct	60
caacttcaac	ttccctcttct	ataaattaga	aataacaata	accacacctg	taacccacgc	120
actttggag	gccaggcag	gcagatcaag	aggtgaggag	attgagacca	tcctggctaa	180
catgataaa	ccctgtctct	accaaaaaga	caaaaaatta	gccaggatcg	gtggcacaca	240
cctgttagtcc	cagctactcg	ggaggctgag	gcaggagaat	ggcgtgaacc	cgggagggtgg	300
agcttgca	gagccgagat	ggcgcactg	cactccagcc	tggcgacag	agcaagcctc	360
cgtctaaaaa	aaaaaaaaaga	aagaagaaaa	gaaagaaaaa	aaagaataaa	taataaccac	420
cattcctatc	tcaacagctt	gttctagaaa	tttttaaagc	acagatcac	aaacagcact	480
acataattgt	aaaacatgtt	tgaatataa	catccaaaca	acagaatgt	catagcctat	540
gggttagatat	aatcttatac	aatgtaccaa	aatccaaatt	tacttcacta	gacaaactgt	600
tataccaaat	tctgtacaca	gtatatccaa	gaaaatgtt	tgtttttatt	gagaaactga	660
acctagctt	ggaacacatgt	tgcacagtct	agttcataat	attttgtca	agtatcattc	720
tctaataatag	atttacattt	ttgcaagcaa	atttttactt	gcaatcgtaa	catatccaaa	780
ttttcccttt	ttactcaatc	agaacttagt	gtaaagtact	acaagttatg	tcttcggatt	840
tcatgctaag	aaaataatgc	agattttctg	cattattatg	gtcttcacag	aaaccttaac	900
tatgatgaat	ttaaaagtgc	aaaataatcc	aggataactt	tatgatttca	catttttaa	960
tgttaaaaat	aatgcacatca	ttaatttagaa	aattctaaaa	tcattacttc	cactttctta	1020
ggcaaaatata	caatataactc	tcatttgcca	aataaattaa	aagatctcct	acaaacacaa	1080
tctcctaaat	tgtggtttta	tggcttaat	gttttatgt	tggcaactat	tgatgctagt	1140
taaaatttta	gaaactcttt	cttttgatt	ccctacagg	gtctacaaga	accttattgt	1200
agcatgatcc	tgccagactt	tatactattt	gttgcctcaa	ttaaaactgt	ttaaaacatg	1260
aatttggaaaa	atcttattttt	aactataatt	ttgttagctg	aactttttt	tctaaacttt	1320
gcaaacattc	tatgcaaccc	gaatttagtgc	tgagaaaaatt	ggatcttaat	ggttgctcaa	1380
tgttctcaa	caggtgaaaa	gcataataaa	acatgtctat	ctgaactcca	cccatttca	1440
atttcaacat	agcataccctc	gtgttatttc	ttagggcaaa	ttcaaaattt	tacatattag	1500
gatgggttat	tacttagat	aatttgcata	atcataagcc	aaagatgtc	agttggcaaa	1560
aagaaaacaa	tgtaaatgaa	caaactctaa	cacatgtgaa	cacccctct	cagtatataa	1620
aggcttgtca	ctgtcccttg	tagcaggcac	tccctgggt	aaacagcatc	accatgtctg	1680
ttcgatacag	ctcaagcaag	cactactctt	cctcccgca	tggaggagga	ggaggaggag	1740
gaggatgtgg	aggaggagga	ggaggtgtcat	ccctaagaat	ttctagcagc	aaaggctccc	1800
ttgggtggagg	atttagctca	ggggggttca	gtgggtggctc	tttagccgt	ggagagctcg	1860
gtgggggatg	cttggggggc	tcatcagggt	gctatggagg	attaggaggt	tttgggtggag	1920
gtagcttca	tgaaagctat	ggaagtagca	gctttgggtt	gagttatgg	ggcagcttg	1980
gagggggcaa	tttcggaggt	ggcagcttt	gtgggggcag	cttgggtgg	ggcggcttg	2040
gtggaggcgg	cttggagga	ggcttgggt	gtggattttg	aggagatgtt	ggccttctct	2100
ctggaaatga	aaaagtaacc	atgcagaatc	tgaatgaccc	cctggcttcc	tacttggaca	2160
aagttcgggc	tctggaagaa	tcaaactatg	agcttggagg	caaataatcaag	gagtggatg	2220
aaaagcatgg	caactcacat	cagggggagc	ctcgtgacta	cagcaaatac	tacaaaacca	2280
tcgatgacct	taaaaatca	gtaagaggt	tttttaaattc	cagctttaag	tatcttgctc	2340
atgtaatcca	gacagatgaa	tcttaaattt	agcacaatgt	ggctgttcc	tatgcttacc	2400
catgttactt	tcttccttca	aaaataaccc	agtctcatca	aagataaaaca	tctgtgaac	2460
tatggtcatg	gcaatcttca	tccagcaagt	gtgttacttg	tcttaagagg	atgggagatt	2520
tactaagcac	ttttgagggtt	ttaatgagca	tacaatgt	ccacagttaa	aatatgtcg	2580
gctatttaca	aatgttagaaa	ctgaaaaaaa	ääätcatgt	atgaatcaga	acaaaatgtt	2640
attcagactg	ataacaagcc	atattcagta	ccaaatgtgc	aagaaaaat	aattttccag	2700
tatgaaaatg	ggacactgct	tgcttcaag	gaatttctg	attgttacca	ttgtgtacca	2760
gttcagactg	tatTTTATTA	ttagtattt	tcatgagtt	aacaaatgtca	ggtgtgagtc	2820
agccaaagca	tggctgaaat	acatgaaat	cacatgtct	aaaagaggag	ggcacactt	2880
caggaataca	tcttatataat	tccagttatg	tttcagaaag	gaataattcg	tgtacagaaa	2940
tacaagactg	gagaaaattcc	aagagaacaa	ataattcaaa	gttaagtata	tgggtaagcc	3000
tgcaatattt	catattttaa	ataaaaaatt	ttcccaagat	tttgcataag	aacaacataa	3060
aagtgcagag	tgcattctatg	tcactacaaa	agccatctat	gcacatgtacc	tcttctcaaa	3120

Siemens 0022 Seq Listing.txt

taactgtgcc	tctccctcca	gattctcaac	ctaacaactg	ataatgc	caa	catcctgctt	3180				
cagatcgaca	atgc	caggct	ggc	agctgat	gacttc	aggc	3240				
ttgtataata	ctat	cacaac	gaata	catca	gtgg	tttta	aca	atgactt	gggatgc	3300	
caataacatt	tacat	ttt	tgaat	tcacc	caa	aggtaaa	tag	tattg	gat	3360	
aaatttcca	tgt	cagtgtt	ac	ctt	ttt	gg	caat	at	aaaat	gca	3420
gtaactgcta	agg	ttt	cattaa	acc	ctt	acttc	taa	gaga	act	gtacat	3480
aatattgcca	ttacat	gaga	tca	actat	gtt	gcttt	taa	atgt	tct	ctgccc	3540
acatctcccc	tatata	agtt	ataacc	agta	ttg	atcat	gct	ttt	ca	ggtatg	3600
tgaggttagct	ctg	gc	cc	gaga	gc	tgacat	cc	c	cgta	gggtg	3660
tgagctgacc	ctg	acc	aa	agg	ctg	gaa	ttt	gac	cctg	ta	3720
ggcctatctg	aaga	aga	acc	acg	agg	gac	aca	aa	aa	ccc	3780
agagagttca	ttat	gg	tcct	cgt	ta	gat	ttt	ctca	aa	aggaa	3840
gaaagacctt	cga	aa	atgtgt	ccact	gg	tgat	gtg	gaa	atg	ctgccc	3900
tgttgatctg	act	ca	actt	tga	ata	acat	gaga	agccaa	at	gaca	3960
aaaccgc	aaa	gat	gctgaa	cct	gg	ttca	aaa	agg	ta	tttata	4020
aaactcatgg	agg	ttt	tat	ttt	caga	at	ttc	tcac	tt	tttaat	4080
ctagagcaag	ga	act	gacta	caga	aa	att	tg	taata	acatt	gaac	4140
atctgagatt	act	gaa	att	tg	ac	gta	atgt	aca	gct	tgac	4200
actggc	ctt	g	tat	tt	taa	c	tct	ca	ac	ttt	4260
gctcac	ctaa	ga	at	tg	ca	aa	aa	at	tg	aaa	4320
aca	aa	at	gt	tt	at	gg	gg	aa	at	gt	4380
aaactg	aaat	gtt	ttt	gat	ttt	ttt	ttt	ttt	ttt	ttt	4440
taat	gc	c	tt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	4500
aagcc	cac	aaa	aaat	cc	ttt	ttt	ttt	ttt	ttt	ttt	4560
gg	tc	ct	gt	c	ttt	ttt	ttt	ttt	ttt	ttt	4620
tt	g	ca	ac	ttt	ttt	ttt	ttt	ttt	ttt	ttt	4680
at	taa	gat	cc	ttt	ttt	ttt	ttt	ttt	ttt	ttt	4740
agg	taa	at	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	4800
gg	ctt	at	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	4860
gt	ac	aaaa	aa	agg	ttt	ttt	ttt	ttt	ttt	ttt	4920
tt	c	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	4980
tt	cc	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5040
ag	ct	acc	cc	c	ttt	ttt	ttt	ttt	ttt	ttt	5100
cg	gagg	cc	gg	cc	ttt	ttt	ttt	ttt	ttt	ttt	5160
cg	gg	cc	gg	cc	ttt	ttt	ttt	ttt	ttt	ttt	5220
cg	gg	cc	gg	cc	ttt	ttt	ttt	ttt	ttt	ttt	5280
cg	gg	cc	gg	cc	ttt	ttt	ttt	ttt	ttt	ttt	5340
cg	gt	gg	tt	cc	ttt	ttt	ttt	ttt	ttt	ttt	5400
c	ag	cc	gg	cc	ttt	ttt	ttt	ttt	ttt	ttt	5460
tt	cc	gg	gg	cc	ttt	ttt	ttt	ttt	ttt	ttt	5520
tt	cc	gg	gg	cc	ttt	ttt	ttt	ttt	ttt	ttt	5580
tt	at	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	5640
tt	tt	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	5700
tt	aa	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	5760
at	cc	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	5820
ag	ta	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	5880
tg	aa	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	5940
tt	tt	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	6000
tt	at	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	6060
gt	at	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	6120
tt	tc	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	6180
tc	ag	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	6240
ag	ca	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	6300
ta	at	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	6360
aa	at	cc	cc	aa	ttt	ttt	ttt	ttt	ttt	ttt	6420
tt	aa	tt	tt	tt	ttt	ttt	ttt	ttt	ttt	ttt	6480
taa	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6483

<210> 25

<211> 1871

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 25

atgttggcc acctccccca	ggccatggat ctctccaaca	acaccatgtc actctcagtg	60	
cgcacccccc	gactgtcccg	gcggctctcc tcgagatgt	tgataggcag acccaggggc	120
atgtctgctt	ccagtgttgg	aagtggttat gggggaaatgt	ccttggctt tggagccagc	180
tgtgggggag	gttttctgc	tgcttccatg tttggttcta	gttccggctt tgggggtggc	240
tccggaaagtt	ccatggcagg	aggactgggt gctggttatg	ggagagccct ggggtggaggt	300
agctttggag	ggctgggat	gggatttggg ggcagcccag	gaggtggctc tcttaggtatt	360
ctctcgggca	atgatggagg	ccttcttct ggatcagaaa	aagaaactat gcaaaaatctt	420
aatgatagat	tagcttccta	cctggataag gtgcgagctc	tagaagaggc taatactgag	480
ctagaaaaata	aaattcgaga	atggtatgaa acacgaggaa	ctggactgc agatgcttca	540
cagagcgatt	acagcaaata	ttatccactg attgaagacc	tcagaataa gatcattca	600
gccagcattg	gaaatgccc	gctcccttgc cagattgaca	atgcgagact agctgctgag	660
gacttcagga	tgaagtatga	aatgaactg gccctgcgcc	agggcgtaga ggccgacatc	720
aatggcctgc	gcccgggtgc	ggacgagctg accctgacca	ggaccgacct ggagatgcag	780
atcgagagcc	tgaacgagga	gctggcctac atgaagaaga	accacgagga tgagctcaa	840
agcttcggg	tggccggccc	aggcgaggc acgtgataaa	tggacgctgc ccccgagtg	900
gacctcacca	ggctccctcaa	tgatatgcgg ggcgcatatg	aaaccatcgc tgagcagaat	960
cggaaaggacg	ctgaagcctg	gttcattgaa aagagcgggg	agctccgtaa ggagattagc	1020
accaacaccg	agcagcttca	gtccagcaag agcgaggta	ccgacctgc tcgcgcctt	1080
cagaacctgg	agatcgagct	acagttccag ctcgcctatg	agaaatccct ggaggactcc	1140
ttggccgaag	ccgagggcga	ttactgcgc cagctgtccc	aggtgcagca gctcatcagc	1200
aacctggagg	cacagctgct	ccaggtgcgc ggggacgcag	agcgcacaa cgtggaccac	1260
cagcggctgc	tgaatgtcaa	ggcccgcctg gagctggaga	tttagaccta ccggccgcctg	1320
ctggacgggg	aggcccaagg	tgtatgtttg gaggaaatgt	tatttgtac agactccaa	1380
tcacaagcac	agtcaactga	ttcctctaaa gacccaacca	aaaccggaaa aatcaagaca	1440
gttgcgcagg	agatgggtaa	tggtgagggt gtctcatctc	aagttcagga aattgaagaa	1500
ctaattgtaaa	atttcacaaag	atctgccttca tgattggttc	cttaggaaca agaaattttac	1560
aagtagaaaat	tattcttttc	agagtaacat gctgtattac	ttcaatccct atttttgtct	1620
gttccatttt	cttggattc	cctattcaca ttaatccctt	tttgccttc taaaacaata	1680
ttcagtcaca	agtcattttg	gtcatgttgg tctttgtaac	aaatcaaaaat taccttat	1740
cctctggac	aactggagta	gtcttttaac gaactttctt	ctggtaaccc ggaatatttt	1800
cttaatcata	gagctttact	caagtagtat tgttttataa	gagtaatttga taataaaaga	1860
tgaatgtaa	a			1871

<210> 26

<211> 1447

<212> DNA

<213> Homo sapiens

<400> 26

ctgcaactgg ttctgcgagg	gctccttcaa tggcagcgag	aaggagacta tgcagttcct	60
gaacgaccgc ctggccagct	acctggagaa ggtgcgtcac	gtggagcggg acaacgcgg	120
gctggagaac ctcatccggg	agcggctctca	gcagcaggag ccctgtctgt	180
ccagtcctac ttcaagacca	ttgaggagct	ccagcagaag atccgtgtca	240
gaatgcagg ctgggtgtc	agatcgacaa	tgccaagctg gtcgcagatg	300
caagtaccag acggagcgt	ccctgcggca	gctgggtggag tccgacatca	360
caggattctg gatgagctg	ccctgtgcag	gtctgacccgt gaggcccaga	420
gaaggaggag ctgctgtccc	tcaagcagaa	ccatgagcag gaagtcacaa	480
ccagcttgg aaccgcctca	acgtggaggt	ggacgctgtct cccgtgtgg	540
ggtccttgaac gagaccaggaa	atcagatgaa	ggccctgggt gaaaccaacc	600
ggagcaatgg ttccacgc	agacccggaga	gctgaacaaag caggtgtat	660
gcagctgcag tcctaccagg	cggagatcat	cgagctgaga cgccacgtca	720
gatcgagctg caggcccagc	acaacctgcg	atactctcg gaaaacacgc	780
cgaggcccgc tacagctccc	agctgtccca	ggtgcagagc ctgatcacca	840
ccagctggcg gagatccgc	gtgaccttgg	gcggcagaac caggagtatc	900
ggacgtgcgg ggcggctgg	agtgtgagat	caacacatac cggagcctgc	960
ggactgcaag ctgccttcca	acccctgcgc	caccacaaat gcatgtaaa	1020

Siemens 0022 Seq Listing.txt

atcctgtgtc accaattcctt	gtggtcctcg ttcccgctgt	gggccttgca acacctttgg	1080
gtactagata cccctggggcc	agcagaagta tagcatgaag	acagaactac catcggtggg	1140
ccagttctgc ctctctgaca	accatcagcc accggacccc	accccgaggc atcaccacaa	1200
atcatggtct ggaaggagaa	caaatccccca gcgttgggt	ctgactctga gcctaggct	1260
actgatcctc ctcaccccaag	gtccctctcc ttagtca	ctgagttctg atggtcagag	1320
gttggagctg tgacagtggc	atacgaggtg tttgttctc	tctgctgctt ctacctttat	1380
tgcagttccc caaatcgccc	aataaactt cctcttgcaa	agcagacaaa aaaaaaaaaa	1440
aaaaaaa			1447

<210> 27

<211> 261

<212> PRT

<213> Homo sapiens

<400> 27

Met Asn Pro Asn Cys Ala Arg Cys Gly Lys Ile Val Tyr Pro Thr Glu			
1 5 10 15			
Lys Val Asn Cys Leu Asp Lys Phe Trp His Lys Ala Cys Phe His Cys			
20 25 30			
Glu Thr Cys Lys Met Thr Leu Asn Met Lys Asn Tyr Lys Gly Tyr Glu			
35 40 45			
Lys Lys Pro Tyr Cys Asn Ala His Tyr Pro Lys Gln Ser Phe Thr Met			
50 55 60			
Val Ala Asp Thr Pro Glu Asn Leu Arg Leu Lys Gln Gln Ser Glu Leu			
65 70 75 80			
Gln Ser Gln Val Arg Tyr Lys Glu Glu Phe Glu Lys Asn Lys Gly Lys			
85 90 95			
Gly Phe Ser Val Val Ala Asp Thr Pro Glu Leu Gln Arg Ile Lys Lys			
100 105 110			
Thr Gln Asp Gln Ile Ser Asn Ile Lys Tyr His Glu Glu Phe Glu Lys			
115 120 125			
Ser Arg Met Gly Pro Ser Gly Gly Glu Gly Met Glu Pro Glu Arg Arg			
130 135 140			
Asp Ser Gln Asp Gly Ser Ser Tyr Arg Arg Pro Leu Glu Gln Gln Gln			
145 150 155 160			
Pro His His Ile Pro Thr Ser Ala Pro Val Tyr Gln Gln Pro Gln Gln			
165 170 175			
Gln Pro Val Ala Gln Ser Tyr Gly Gly Tyr Lys Glu Pro Ala Ala Pro			
180 185 190			
Val Ser Ile Gln Arg Ser Ala Pro Gly Gly Gly Lys Arg Tyr Arg			
195 200 205			
Ala Val Tyr Asp Tyr Ser Ala Ala Asp Glu Asp Glu Val Ser Phe Gln			
210 215 220			
Asp Gly Asp Thr Ile Val Asn Val Gln Gln Ile Asp Asp Gly Trp Met			
225 230 235 240			
Tyr Gly Thr Val Glu Arg Thr Gly Asp Thr Gly Met Leu Pro Ala Asn			
245 250 255			
Tyr Val Glu Ala Ile			
260			

<210> 28

<211> 478

<212> PRT

<213> Homo sapiens

<400> 28

Met Val Gln Lys Thr Ser Met Ser Arg Gly Pro Tyr Pro Pro Ser Gln			
1 5 10 15			

Siemens 0022 Seq Listing.txt

Glu Ile Pro Met Glu Val Phe Asp Pro Ser Pro Gln Gly Lys Tyr Ser
20 25 30
Lys Arg Lys Gly Arg Phe Lys Arg Ser Asp Gly Ser Thr Ser Ser Asp
35 40 45
Thr Thr Ser Asn Ser Phe Val Arg Gln Gly Ser Ala Glu Ser Tyr Thr
50 55 60
Ser Arg Pro Ser Asp Ser Asp Val Ser Leu Glu Glu Asp Arg Glu Ala
65 70 75 80
Leu Arg Lys Glu Ala Glu Arg Gln Ala Leu Ala Gln Leu Glu Lys Ala
85 90 95
Lys Thr Lys Pro Val Ala Phe Ala Val Arg Thr Asn Val Gly Tyr Asn
100 105 110
Pro Ser Pro Gly Asp Glu Val Pro Val Gln Gly Val Ala Ile Thr Phe
115 120 125
Glu Pro Lys Asp Phe Leu His Ile Lys Glu Lys Tyr Asn Asn Asp Trp
130 135 140
Trp Ile Gly Arg Leu Val Lys Glu Gly Cys Glu Val Gly Phe Ile Pro
145 150 155 160
Ser Pro Val Lys Leu Asp Ser Leu Arg Leu Leu Gln Glu Gln Lys Leu
165 170 175
Arg Gln Asn Arg Leu Gly Ser Ser Lys Ser Gly Asp Asn Ser Ser Ser
180 185 190
Ser Leu Gly Asp Val Val Thr Gly Thr Arg Arg Pro Thr Pro Pro Ala
195 200 205
Ser Ala Lys Gln Lys Gln Lys Ser Thr Glu His Val Pro Pro Tyr Asp
210 215 220
Val Val Pro Ser Met Arg Pro Ile Ile Leu Val Gly Pro Ser Leu Lys
225 230 235 240
Gly Tyr Glu Val Thr Asp Met Met Gln Lys Ala Leu Phe Asp Phe Leu
245 250 255
Lys His Arg Phe Asp Gly Arg Ile Ser Ile Thr Arg Val Thr Ala Asp
260 265 270
Ile Ser Leu Ala Lys Arg Ser Val Leu Asn Asn Pro Ser Lys His Ile
275 280 285
Ile Ile Glu Arg Ser Asn Thr Arg Ser Ser Leu Ala Glu Val Gln Ser
290 295 300
Glu Ile Glu Arg Ile Phe Glu Leu Ala Arg Thr Leu Gln Leu Val Ala
305 310 315 320
Leu Asp Ala Asp Thr Ile Asn His Pro Ala Gln Leu Ser Lys Thr Ser
325 330 335
Leu Ala Pro Ile Ile Val Tyr Ile Lys Ile Thr Ser Pro Lys Val Leu
340 345 350
Gln Arg Leu Ile Lys Ser Arg Gly Lys Ser Gln Ser Lys His Leu Asn
355 360 365
Val Gln Ile Ala Ala Ser Glu Lys Leu Ala Gln Cys Pro Pro Glu Met
370 375 380
Phe Asp Ile Ile Leu Asp Glu Asn Gln Leu Glu Asp Ala Cys Glu His
385 390 395 400
Leu Ala Glu Tyr Leu Glu Ala Tyr Trp Lys Ala Thr His Pro Pro Ser
405 410 415
Ser Thr Pro Pro Asn Pro Leu Leu Asn Arg Thr Met Ala Thr Ala Ala
420 425 430
Leu Arg Arg Ser Pro Ala Pro Val Ser Asn Leu Gln Val Gln Val Leu
435 440 445
Thr Ser Leu Arg Arg Asn Leu Gly Phe Trp Gly Gly Leu Glu Ser Ser
450 455 460
Gln Arg Gly Ser Val Val Pro Gln Glu Gln Glu His Ala Met
465 470 475

<210> 29

<211> 196

<212> PRT

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 29

Met Ser Met Leu Arg Leu Gln Lys Arg Leu Ala Ser Ser Val Leu Arg
1 5 10 15
Cys Gly Lys Lys Lys Val Trp Leu Asp Pro Asn Glu Thr Asn Glu Ile
20 25 30
Ala Asn Ala Asn Ser Arg Gln Gln Ile Arg Lys Leu Ile Lys Asp Gly
35 40 45
Leu Ile Ile Arg Lys Pro Val Thr Val His Ser Arg Ala Arg Cys Arg
50 55 60
Lys Asn Thr Leu Ala Arg Arg Lys Gly Arg His Met Gly Ile Gly Lys
65 70 75 80
Arg Lys Gly Thr Ala Asn Ala Arg Met Pro Glu Lys Val Thr Trp Met
85 90 95
Arg Arg Met Arg Ile Leu Arg Arg Leu Leu Arg Arg Tyr Arg Glu Ser
100 105 110
Lys Lys Ile Asp Arg His Met Tyr His Ser Leu Tyr Leu Lys Val Lys
115 120 125
Gly Asn Val Phe Lys Asn Lys Arg Ile Leu Met Glu His Ile His Lys
130 135 140
Leu Lys Ala Asp Lys Ala Arg Lys Lys Leu Leu Ala Asp Gln Ala Glu
145 150 155 160
Ala Arg Arg Ser Lys Thr Lys Glu Ala Arg Lys Arg Arg Glu Glu Arg
165 170 175
Leu Gln Ala Lys Lys Glu Glu Ile Ile Lys Thr Leu Ser Lys Glu Glu
180 185 190
Glu Thr Lys Lys
195

<210> 30

<211> 1566

<212> PRT

<213> Homo sapiens

<400> 30

Met Ser Ser Leu Leu Glu Arg Leu His Ala Lys Phe Asn Gln Asn Arg
1 5 10 15
Pro Trp Ser Glu Thr Ile Lys Leu Val Arg Gln Val Met Glu Lys Arg
20 25 30
Val Val Met Ser Ser Gly Gly His Gln His Leu Val Ser Cys Leu Glu
35 40 45
Thr Leu Gln Lys Ala Leu Lys Val Thr Ser Leu Pro Ala Met Thr Asp
50 55 60
Arg Leu Glu Ser Ile Ala Gly Gln Asn Gly Leu Gly Ser His Leu Ser
65 70 75 80
Ala Ser Gly Thr Glu Cys Tyr Ile Thr Ser Asp Met Phe Tyr Val Glu
85 90 95
Val Gln Leu Asp Pro Ala Gly Gln Leu Cys Asp Val Lys Val Ala His
100 105 110
His Gly Glu Asn Pro Val Ser Cys Pro Glu Leu Val Gln Gln Leu Arg
115 120 125
Glu Lys Asn Ser Asp Glu Phe Ser Lys His Leu Lys Gly Leu Val Asn
130 135 140
Leu Tyr Asn Leu Pro Gly Asp Asn Lys Leu Lys Thr Lys Met Tyr Leu
145 150 155 160
Ala Leu Gln Ser Leu Glu Gln Asp Leu Ser Lys Met Ala Ile Met Tyr
165 170 175
Trp Lys Ala Thr Asn Ala Gly Pro Leu Asp Lys Ile Leu His Gly Ser
180 185 190

Siemens 0022 Seq Listing.txt

val Gly Tyr Leu Thr Pro Arg Ser Gly Gly His Leu Met Asn Leu Lys
 195 200 205
 Tyr Tyr Val Ser Pro Ser Asp Leu Leu Asp Asp Lys Thr Ala Ser Pro
 210 215 220
 Ile Ile Leu His Glu Asn Asn Val Ser Arg Ser Leu Gly Met Asn Ala
 225 230 235 240
 Ser Val Thr Ile Glu Gly Thr Ser Ala Val Tyr Lys Leu Pro Ile Ala
 245 250 255
 Pro Leu Ile Met Gly Ser His Pro Val Asp Asn Lys Trp Thr Pro Ser
 260 265 270
 Phe Ser Ser Ile Thr Ser Ala Asn Ser Val Asp Leu Pro Ala Cys Phe
 275 280 285
 Phe Leu Lys Phe Pro Gln Pro Ile Pro Val Ser Arg Ala Phe Val Gln
 290 295 300
 Lys Leu Gln Asn Cys Thr Gly Ile Pro Leu Phe Glu Thr Gln Pro Thr
 305 310 315 320
 Tyr Ala Pro Leu Tyr Glu Leu Ile Thr Gln Phe Glu Leu Ser Lys Asp
 325 330 335
 Pro Asp Pro Ile Pro Leu Asn His Asn Met Arg Phe Tyr Ala Ala Leu
 340 345 350
 Pro Gly Gln Gln His Cys Tyr Phe Leu Asn Lys Asp Ala Pro Leu Pro
 355 360 365
 Asp Gly Arg Ser Leu Gln Gly Thr Leu Val Ser Lys Ile Thr Phe Gln
 370 375 380
 His Pro Gly Arg Val Pro Leu Ile Leu Asn Leu Ile Arg His Gln Val
 385 390 395 400
 Ala Tyr Asn Thr Leu Ile Gly Ser Cys Val Lys Arg Thr Ile Leu Lys
 405 410 415
 Glu Asp Ser Pro Gly Leu Leu Gln Phe Glu Val Cys Pro Leu Ser Glu
 420 425 430
 Ser Arg Phe Ser Val Ser Phe Gln His Pro Val Asn Asp Ser Leu Val
 435 440 445
 Cys Val Val Met Asp Val Gln Gly Leu Thr His Val Ser Cys Lys Leu
 450 455 460
 Tyr Lys Gly Leu Ser Asp Ala Leu Ile Cys Thr Asp Asp Phe Ile Ala
 465 470 475 480
 Lys Val Val Gln Arg Cys Met Ser Ile Pro Val Thr Met Arg Ala Ile
 485 490 495
 Arg Arg Lys Ala Glu Thr Ile Gln Ala Asp Thr Pro Ala Leu Ser Leu
 500 505 510
 Ile Ala Glu Thr Val Glu Asp Met Val Lys Lys Asn Leu Pro Pro Ala
 515 520 525
 Ser Ser Pro Gly Tyr Gly Met Thr Thr Gly Asn Asn Pro Met Ser Gly
 530 535 540
 Thr Thr Thr Ser Thr Asn Thr Phe Pro Gly Gly Pro Ile Ala Thr Leu
 545 550 555 560
 Phe Asn Met Ser Met Ser Ile Lys Asp Arg His Glu Ser Val Gly His
 565 570 575
 Gly Glu Asp Phe Ser Lys Val Ser Gln Asn Pro Ile Leu Thr Ser Leu
 580 585 590
 Leu Gln Ile Thr Gly Asn Gly Ser Thr Ile Gly Ser Ser Pro Thr
 595 600 605
 Pro Pro His His Thr Pro Pro Val Ser Ser Met Ala Gly Asn Thr
 610 615 620
 Lys Asn His Pro Met Leu Met Asn Leu Leu Lys Asp Asn Pro Ala Gln
 625 630 635 640
 Asp Phe Ser Thr Leu Tyr Gly Ser Ser Pro Leu Glu Arg Gln Asn Ser
 645 650 655
 Ser Ser Gly Ser Pro Arg Met Glu Ile Cys Ser Gly Ser Asn Lys Thr
 660 665 670
 Lys Lys Lys Ser Ser Arg Leu Pro Pro Glu Lys Pro Lys His Gln
 675 680 685
 Thr Glu Asp Asp Phe Gln Arg Glu Leu Phe Ser Met Asp Val Asp Ser

Siemens 0022 Seq Listing.txt

690 695 700
 Gln Asn Pro Ile Phe Asp Val Asn Met Thr Ala Asp Thr Leu Asp Thr
 705 710 715 720
 Pro His Ile Thr Pro Ala Pro Ser Gln Cys Ser Thr Pro Pro Thr Thr
 725 730 735
 Tyr Pro Gln Pro Val Pro His Pro Gln Pro Ser Ile Gln Arg Met Val
 740 745 750
 Arg Leu Ser Ser Ser Asp Ser Ile Gly Pro Asp Val Thr Asp Ile Leu
 755 760 765
 Ser Asp Ile Ala Glu Glu Ala Ser Lys Leu Pro Ser Thr Ser Asp Asp
 770 775 780
 Cys Pro Ala Ile Gly Thr Pro Leu Arg Asp Ser Ser Ser Ser Gly His
 785 790 795 800
 Ser Gln Ser Thr Leu Phe Asp Ser Asp Val Phe Gln Thr Asn Asn Asn
 805 810 815
 Glu Asn Pro Tyr Thr Asp Pro Ala Asp Leu Ile Ala Asp Ala Ala Gly
 820 825 830
 Ser Pro Ser Ser Asp Ser Pro Thr Asn His Phe Phe His Asp Gly Val
 835 840 845
 Asp Phe Asn Pro Asp Leu Leu Asn Ser Gln Ser Gly Phe Gly
 850 855 860
 Glu Glu Tyr Phe Asp Glu Ser Ser Gln Ser Gly Asp Asn Asp Asp Phe
 865 870 875 880
 Lys Gly Phe Ala Ser Gln Ala Leu Asn Thr Leu Gly Val Pro Met Leu
 885 890 895
 Gly Gly Asp Asn Gly Glu Thr Lys Phe Lys Gly Asn Asn Gln Ala Asp
 900 905 910
 Thr Val Asp Phe Ser Ile Ile Ser Val Ala Gly Lys Ala Leu Ala Pro
 915 920 925
 Ala Asp Leu Met Glu His His Ser Gly Ser Gln Gly Pro Leu Leu Thr
 930 935 940
 Thr Gly Asp Leu Gly Lys Glu Lys Thr Gln Lys Arg Val Lys Glu Gly
 945 950 955 960
 Asn Gly Thr Ser Asn Ser Thr Leu Ser Gly Pro Gly Leu Asp Ser Lys
 965 970 975
 Pro Gly Lys Arg Ser Arg Thr Pro Ser Asn Asp Gly Lys Ser Lys Asp
 980 985 990
 Lys Pro Pro Lys Arg Lys Lys Ala Asp Thr Glu Gly Lys Ser Pro Ser
 995 1000 1005
 His Ser Ser Ser Asn Arg Pro Phe Thr Pro Pro Thr Ser Thr Gly
 1010 1015 1020
 Gly Ser Lys Ser Pro Gly Ser Ala Gly Arg Ser Gln Thr Pro Pro
 1025 1030 1035
 Gly Val Ala Thr Pro Pro Ile Pro Lys Ile Thr Ile Gln Ile Pro
 1040 1045 1050
 Lys Gly Thr Val Met Val Gly Lys Pro Ser Ser His Ser Gln Tyr
 1055 1060 1065
 Thr Ser Ser Gly Ser Val Ser Ser Ser Gly Ser Lys Ser His His
 1070 1075 1080
 Ser His Ser Ser Ser Ser Ser Ser Ala Ser Thr Ser Gly Lys
 1085 1090 1095
 Met Lys Ser Ser Lys Ser Glu Gly Ser Ser Ser Ser Lys Leu Ser
 1100 1105 1110
 Ser Ser Met Tyr Ser Ser Gln Gly Ser Ser Gly Ser Ser Gln Ser
 1115 1120 1125
 Lys Asn Ser Ser Gln Ser Gly Gly Lys Pro Gly Ser Ser Pro Ile
 1130 1135 1140
 Thr Lys His Gly Leu Ser Ser Gly Ser Ser Ser Thr Lys Met Lys
 1145 1150 1155
 Pro Gln Gly Lys Pro Ser Ser Leu Met Asn Pro Ser Leu Ser Lys
 1160 1165 1170
 Pro Asn Ile Ser Pro Ser His Ser Arg Pro Pro Gly Gly Ser Asp
 1175 1180 1185

Siemens 0022 Seq Listing.txt

Lys	Leu	Ala	Ser	Pro	Met	Lys	Pro	Val	Pro	Gly	Thr	Pro	Pro	Ser
1190						1195					1200			
Ser	Lys	Ala	Lys	Ser	Pro	Ile	Ser	Ser	Gly	Ser	Gly	Gly	Ser	His
1205						1210					1215			
Met	Ser	Gly	Thr	Ser	Ser	Ser	Ser	Gly	Met	Lys	Ser	Ser	Ser	Gly
1220						1225					1230			
Leu	Gly	Ser	Ser	Gly	Ser	Leu	Ser	Gln	Lys	Thr	Pro	Pro	Ser	Ser
1235						1240					1245			
Asn	Ser	Cys	Thr	Ala	Ser	Ser	Ser	Ser	Phe	Ser	Ser	Ser	Gly	Ser
1250						1255					1260			
Ser	Met	Ser	Ser	Ser	Gln	Asn	Gln	His	Gly	Ser	Ser	Lys	Gly	Lys
1265						1270					1275			
Ser	Pro	Ser	Arg	Asn	Lys	Lys	Pro	Ser	Leu	Thr	Ala	Val	Ile	Asp
1280						1285					1290			
Lys	Leu	Lys	His	Gly	Val	Val	Thr	Ser	Gly	Pro	Gly	Gly	Glu	Asp
1295						1300					1305			
Pro	Leu	Asp	Gly	Gln	Met	Gly	Val	Ser	Thr	Asn	Ser	Ser	Ser	His
1310						1315					1320			
Pro	Met	Ser	Ser	Lys	His	Asn	Met	Ser	Gly	Gly	Glu	Phe	Gln	Gly
1325						1330					1335			
Lys	Arg	Glu	Lys	Ser	Asp	Lys	Asp	Lys	Ser	Lys	Val	Ser	Thr	Ser
1340						1345					1350			
Gly	Ser	Ser	Val	Asp	Ser	Ser	Lys	Lys	Thr	Ser	Glu	Ser	Lys	Asn
1355						1360					1365			
Val	Gly	Ser	Thr	Gly	Val	Ala	Lys	Ile	Ile	Ile	Ser	Lys	His	Asp
1370						1375					1380			
Gly	Gly	Ser	Pro	Ser	Ile	Lys	Ala	Lys	Val	Thr	Leu	Gln	Lys	Pro
1385						1390					1395			
Gly	Glu	Ser	Ser	Gly	Glu	Gly	Leu	Arg	Pro	Gln	Met	Ala	Ser	Ser
1400						1405					1410			
Lys	Asn	Tyr	Gly	Ser	Pro	Leu	Ile	Ser	Gly	Ser	Thr	Pro	Lys	His
1415						1420					1425			
Glu	Arg	Gly	Ser	Pro	Ser	His	Ser	Lys	Ser	Pro	Ala	Tyr	Thr	Pro
1430						1435					1440			
Gln	Asn	Leu	Asp	Ser	Glu	Ser	Glu	Ser	Gly	Ser	Ser	Ile	Ala	Glu
1445						1450					1455			
Lys	Ser	Tyr	Gln	Asn	Ser	Pro	Ser	Ser	Asp	Asp	Gly	Ile	Arg	Pro
1460						1465					1470			
Leu	Pro	Glu	Tyr	Ser	Thr	Glu	Lys	His	Lys	Lys	His	Lys	Lys	Glu
1475						1480					1485			
Lys	Lys	Lys	val	Lys	Asp	Lys	Asp	Arg	Asp	Arg	Asp	Arg	Asp	Lys
1490						1495					1500			
Asp	Arg	Asp	Lys	Lys	Lys	Ser	His	Ser	Ile	Lys	Pro	Glu	Ser	Trp
1505						1510					1515			
Ser	Lys	Ser	Pro	Ile	Ser	Ser	Asp	Gln	Ser	Leu	Ser	Met	Thr	Ser
1520						1525					1530			
Asn	Thr	Ile	Leu	Ser	Ala	Asp	Arg	Pro	Ser	Arg	Leu	Ser	Pro	Asp
1535						1540					1545			
Phe	Met	Ile	Gly	Glu	Glu	Asp	Asp	Asp	Leu	Met	Asp	Val	Ala	Leu
1550						1555					1560			

Ile Gly Asn
1565

<210> 31

<211> 1490

<212> PRT

<213> Homo sapiens

<400> 31

Met Pro Asn Ser Glu Arg His Gly Gly Lys Lys Asp Gly Ser Gly Gly

1

5

10

15

Siemens 0022 Seq Listing.txt

Ala Ser Gly Thr Leu Gln Pro Ser Ser Gly Gly Gly Ser Ser Asn Ser
 20 25 30
 Arg Glu Arg His Arg Leu Val Ser Lys His Lys Arg His Lys Ser Lys
 35 40 45
 His Ser Lys Asp Met Gly Leu Val Thr Pro Glu Ala Ala Ser Leu Gly
 50 55 60
 Thr Val Ile Lys Pro Leu Val Glu Tyr Asp Asp Ile Ser Ser Asp Ser
 65 70 75 80
 Asp Thr Phe Ser Asp Asp Met Ala Phe Lys Leu Asp Arg Arg Glu Asn
 85 90 95
 Asp Glu Arg Arg Gly Ser Asp Arg Ser Asp Arg Leu His Lys His Arg
 100 105 110
 His His Gln His Arg Arg Ser Arg Asp Leu Leu Lys Ala Lys Gln Thr
 115 120 125
 Glu Lys Glu Lys Ser Gln Glu Val Ser Ser Lys Ser Gly Ser Met Lys
 130 135 140
 Asp Arg Ile Ser Gly Ser Ser Lys Arg Ser Asn Glu Glu Thr Asp Asp
 145 150 155 160
 Tyr Gly Lys Ala Gln Val Ala Lys Ser Ser Ser Lys Glu Ser Arg Ser
 165 170 175
 Ser Lys Leu His Lys Glu Lys Thr Arg Lys Glu Arg Glu Leu Lys Ser
 180 185 190
 Gly His Lys Asp Arg Ser Lys Ser His Arg Lys Arg Glu Thr Pro Lys
 195 200 205
 Ser Tyr Lys Thr Val Asp Ser Pro Lys Arg Arg Ser Arg Ser Pro His
 210 215 220
 Arg Lys Trp Ser Asp Ser Ser Lys Gln Asp Asp Ser Pro Ser Gly Ala
 225 230 235 240
 Ser Tyr Gly Gln Asp Tyr Asp Leu Ser Pro Ser Arg Ser His Thr Ser
 245 250 255
 Ser Asn Tyr Asp Ser Tyr Lys Lys Ser Pro Gly Ser Thr Ser Arg Arg
 260 265 270
 Gln Ser Val Ser Pro Pro Tyr Lys Glu Pro Ser Ala Tyr Gln Ser Ser
 275 280 285
 Thr Arg Ser Pro Ser Pro Tyr Ser Arg Arg Gln Arg Ser Val Ser Pro
 290 295 300
 Tyr Ser Arg Arg Arg Ser Ser Ser Tyr Glu Arg Ser Gly Ser Tyr Ser
 305 310 315 320
 Gly Arg Ser Pro Ser Pro Tyr Gly Arg Arg Arg Ser Ser Ser Pro Phe
 325 330 335
 Leu Ser Lys Arg Ser Leu Ser Arg Ser Pro Leu Pro Ser Arg Lys Ser
 340 345 350
 Met Lys Ser Arg Ser Arg Ser Pro Ala Tyr Ser Arg His Ser Ser Ser
 355 360 365
 His Ser Lys Lys Lys Arg Ser Ser Ser Arg Ser Arg His Ser Ser Ile
 370 375 380
 Ser Pro Val Arg Leu Pro Leu Asn Ser Ser Leu Gly Ala Glu Leu Ser
 385 390 395 400
 Arg Lys Lys Lys Glu Arg Ala Ala Ala Ala Ala Ala Lys Met Asp
 405 410 415
 Gly Lys Glu Ser Lys Gly Ser Pro Val Phe Leu Pro Arg Lys Glu Asn
 420 425 430
 Ser Ser Val Glu Ala Lys Asp Ser Gly Leu Glu Ser Lys Lys Leu Pro
 435 440 445
 Arg Ser Val Lys Leu Glu Lys Ser Ala Pro Asp Thr Glu Leu Val Asn
 450 455 460
 Val Thr His Leu Asn Thr Glu Val Lys Asn Ser Ser Asp Thr Gly Lys
 465 470 475 480
 Val Lys Leu Asp Glu Asn Ser Glu Lys His Leu Val Lys Asp Leu Lys
 485 490 495
 Ala Gln Gly Thr Arg Asp Ser Lys Pro Ile Ala Leu Lys Glu Glu Ile
 500 505 510
 Val Thr Pro Lys Glu Thr Glu Thr Ser Glu Lys Glu Thr Pro Pro Pro

Siemens 0022 Seq Listing.txt

	515														
Leu	Pro	Thr	Ile	Ala	Ser	Pro	Pro	Pro	Pro	Leu	Pro	Thr	Thr	Thr	Pro
530						535					540				
Pro	Pro	Gln	Thr	Pro	Pro	Leu	Pro	Pro	Leu	Pro	Pro	Ile	Pro	Ala	Leu
545						550					555				560
Pro	Gln	Gln	Pro	Pro	Leu	Pro	Pro	Ser	Gln	Pro	Ala	Phe	Ser	Gln	Val
						565					570				575
Pro	Ala	Ser	Ser	Thr	Ser	Thr	Leu	Pro	Pro	Ser	Thr	His	Ser	Lys	Thr
						580					585				590
Ser	Ala	val	Ser	Ser	Gln	Ala	Asn	Ser	Gln	Pro	Pro	Val	Gln	Val	Ser
						595					600				605
val	Lys	Thr	Gln	val	Ser	Val	Thr	Ala	Ala	Ile	Pro	His	Leu	Lys	Thr
						610					615				620
Ser	Thr	Leu	Pro	Pro	Leu	Pro	Leu	Pro	Pro	Leu	Leu	Pro	Gly	Gly	Asp
625						630					635				640
Asp	Met	Asp	Ser	Pro	Lys	Glu	Thr	Leu	Pro	Ser	Lys	Pro	Val	Lys	Lys
						645					650				655
Glu	Lys	Glu	Gln	Arg	Thr	Arg	His	Leu	Leu	Thr	Asp	Leu	Pro	Leu	Pro
						660					665				670
Pro	Glu	Leu	Pro	Gly	Gly	Asp	Leu	Ser	Pro	Pro	Asp	Ser	Pro	Glu	Pro
						675					680				685
Lys	Ala	Ile	Thr	Pro	Pro	Gln	Gln	Pro	Tyr	Lys	Lys	Arg	Pro	Lys	Ile
						690					695				700
Cys	Cys	Pro	Arg	Tyr	Gly	Glu	Arg	Arg	Gln	Thr	Glu	Ser	Asp	Trp	Gly
705						710					715				720
Lys	Arg	Cys	Val	Asp	Lys	Phe	Asp	Ile	Ile	Gly	Ile	Ile	Gly	Glu	Gly
						725					730				735
Thr	Tyr	Gly	Gln	Val	Tyr	Lys	Ala	Arg	Asp	Lys	Asp	Thr	Gly	Glu	Leu
						740					745				750
val	Ala	Leu	Lys	Lys	Val	Arg	Leu	Asp	Asn	Glu	Lys	Glu	Gly	Phe	Pro
						755					760				765
Ile	Thr	Ala	Ile	Arg	Glu	Ile	Lys	Ile	Leu	Arg	Gln	Leu	Ile	His	Arg
						770					775				780
Ser	Val	Val	Asn	Met	Lys	Glu	Ile	Val	Thr	Asp	Lys	Gln	Asp	Ala	Leu
						785					790				800
Asp	Phe	Lys	Lys	Asp	Lys	Gly	Ala	Phe	Tyr	Leu	Val	Phe	Glu	Tyr	Met
						805					810				815
Asp	His	Asp	Leu	Met	Gly	Leu	Leu	Glu	Ser	Gly	Leu	Val	His	Phe	Ser
						820					825				830
Glu	Asp	His	Ile	Lys	Ser	Phe	Met	Lys	Gln	Leu	Met	Glu	Gly	Leu	Glu
						835					840				845
Tyr	Cys	His	Lys	Lys	Asn	Phe	Leu	His	Arg	Asp	Ile	Lys	Cys	Ser	Asn
						850					855				860
Ile	Leu	Leu	Asn	Asn	Ser	Gly	Gln	Ile	Lys	Leu	Ala	Asp	Phe	Gly	Leu
						865					870				880
Ala	Arg	Leu	Tyr	Asn	Ser	Glu	Glu	Ser	Arg	Pro	Tyr	Thr	Asn	Lys	Val
						885					890				895
Ile	Thr	Leu	Trp	Tyr	Arg	Pro	Pro	Glu	Leu	Leu	Leu	Gly	Glu	Glu	Arg
						900					905				910
Tyr	Thr	Pro	Ala	Ile	Asp	Val	Trp	Ser	Cys	Gly	Cys	Ile	Leu	Gly	Glu
						915					920				925
Leu	Phe	Thr	Lys	Lys	Pro	Ile	Phe	Gln	Ala	Asn	Leu	Glu	Leu	Ala	Gln
						930					935				940
Leu	Glu	Leu	Ile	Ser	Arg	Leu	Cys	Gly	Ser	Pro	Cys	Pro	Ala	Val	Trp
						945					950				955
Pro	Asp	Val	Ile	Lys	Leu	Pro	Tyr	Phe	Asn	Thr	Met	Lys	Pro	Lys	Lys
						965					970				975
Gln	Tyr	Arg	Arg	Arg	Leu	Arg	Glu	Glu	Phe	Ser	Phe	Ile	Pro	Ser	Ala
						980					985				990
Ala	Leu	Asp	Leu	Leu	Asp	His	Met	Leu	Thr	Leu	Asp	Pro	Ser	Lys	Arg
						995					1000				1005
Cys	Thr	Ala	Glu	Gln	Thr	Leu	Gln	Ser	Asp	Phe	Leu	Lys	Asp	Val	
						1010					1015				1020

Siemens 0022 Seq Listing.txt

Glu	Leu	Ser	Lys	Met	Ala	Pro	Pro	Asp	Leu	Pro	His	Trp	Gln	Asp
1025						1030						1035		
Cys	His	Glu	Leu	Trp	Ser	Lys	Lys	Arg	Arg	Arg	Gln	Arg	Gln	Ser
1040						1045						1050		
Gly	Val	Val	Val	Glu	Glu	Pro	Pro	Pro	Ser	Lys	Thr	Ser	Arg	Lys
1055						1060						1065		
Glu	Thr	Thr	Ser	Gly	Thr	Ser	Thr	Glu	Pro	Val	Lys	Asn	Ser	Ser
1070						1075						1080		
Pro	Ala	Pro	Pro	Gln	Pro	Ala	Pro	Gly	Lys	Val	Glu	Ser	Gly	Ala
1085						1090						1095		
Gly	Asp	Ala	Ile	Gly	Leu	Ala	Asp	Ile	Thr	Gln	Gln	Leu	Asn	Gln
1100						1105						1110		
Ser	Glu	Leu	Ala	Val	Leu	Leu	Asn	Leu	Leu	Gln	Ser	Gln	Thr	Asp
1115						1120						1125		
Leu	Ser	Ile	Pro	Gln	Met	Ala	Gln	Leu	Leu	Asn	Ile	His	Ser	Asn
1130						1135						1140		
Pro	Glu	Met	Gln	Gln	Gln	Leu	Glu	Ala	Leu	Asn	Gln	Ser	Ile	Ser
1145						1150						1155		
Ala	Leu	Thr	Glu	Ala	Thr	Ser	Gln	Gln	Gln	Asp	Ser	Glu	Thr	Met
1160						1165						1170		
Ala	Pro	Glu	Glu	Ser	Leu	Lys	Glu	Ala	Pro	Ser	Ala	Pro	Val	Ile
1175						1180						1185		
Leu	Pro	Ser	Ala	Glu	Gln	Met	Thr	Leu	Glu	Ala	Ser	Ser	Thr	Pro
1190						1195						1200		
Ala	Asp	Met	Gln	Asn	Ile	Leu	Ala	Val	Leu	Leu	Ser	Gln	Leu	Met
1205						1210						1215		
Lys	Thr	Gln	Glu	Pro	Ala	Gly	Ser	Leu	Glu	Glu	Asn	Asn	Ser	Asp
1220						1225						1230		
Lys	Asn	Ser	Gly	Pro	Gln	Gly	Pro	Arg	Arg	Thr	Pro	Thr	Met	Pro
1235						1240						1245		
Gln	Glu	Glu	Ala	Ala	Ala	Cys	Pro	Pro	His	Ile	Leu	Pro	Pro	Glu
1250						1255						1260		
Lys	Arg	Pro	Pro	Glu	Pro	Pro	Gly	Pro	Pro	Pro	Pro	Pro	Pro	Pro
1265						1270						1275		
Pro	Pro	Leu	Val	Glu	Gly	Asp	Leu	Ser	Ser	Ala	Pro	Gln	Glu	Leu
1280						1285						1290		
Asn	Pro	Ala	Val	Thr	Ala	Ala	Leu	Leu	Gln	Leu	Leu	Ser	Gln	Pro
1295						1300						1305		
Glu	Ala	Glu	Pro	Pro	Gly	His	Leu	Pro	His	Glu	His	Gln	Ala	Leu
1310						1315						1320		
Arg	Pro	Met	Glu	Tyr	Ser	Thr	Arg	Pro	Arg	Pro	Asn	Arg	Thr	Tyr
1325						1330						1335		
Gly	Asn	Thr	Asp	Gly	Pro	Glu	Thr	Gly	Phe	Ser	Ala	Ile	Asp	Thr
1340						1345						1350		
Asp	Glu	Arg	Asn	Ser	Gly	Pro	Ala	Leu	Thr	Glu	Ser	Leu	Val	Gln
1355						1360						1365		
Thr	Leu	Val	Lys	Asn	Arg	Thr	Phe	Ser	Gly	Ser	Leu	Ser	His	Leu
1370						1375						1380		
Gly	Glu	Ser	Ser	Ser	Tyr	Gln	Gly	Thr	Gly	Ser	Val	Gln	Phe	Pro
1385						1390						1395		
Gly	Asp	Gln	Asp	Leu	Arg	Phe	Ala	Arg	Val	Pro	Leu	Ala	Leu	His
1400						1405						1410		
Pro	Val	Val	Gly	Gln	Pro	Phe	Leu	Lys	Ala	Glu	Gly	Ser	Ser	Asn
1415						1420						1425		
Ser	Val	Val	His	Ala	Glu	Thr	Lys	Leu	Gln	Asn	Tyr	Gly	Glu	Leu
1430						1435						1440		
Gly	Pro	Gly	Thr	Thr	Gly	Ala	Ser	Ser	Ser	Gly	Ala	Gly	Leu	His
1445						1450						1455		
Trp	Gly	Gly	Pro	Thr	Gln	Ser	Ser	Ala	Tyr	Gly	Lys	Leu	Tyr	Arg
1460						1465						1470		
Gly	Pro	Thr	Arg	Val	Pro	Pro	Arg	Gly	Gly	Arg	Gly	Arg	Gly	Val
1475						1480						1485		
Pro	Tyr													

Siemens 0022 Seq Listing.txt

1490

<210> 32

<211> 381

<212> PRT

<213> Homo sapiens

<400> 32

Met Leu Thr Arg Leu Phe Ser Glu Pro Gly, Leu Leu Ser Asp Val Pro
 1 5 10 15
 Lys Phe Ala Ser Trp Gly Asp Gly Glu Asp Asp Glu Pro Arg Ser Asp
 20 25 30
 Lys Gly Asp Ala Pro Pro Pro Pro Pro Ala Pro Gly Pro Gly Ala
 35 40 45
 Pro Gly Pro Ala Arg Ala Ala Lys Pro Val Pro Leu Arg Gly Glu Glu
 50 55 60
 Gly Thr Glu Ala Thr Leu Ala Glu Val Lys Glu Glu Gly Glu Leu Gly
 65 70 75 80
 Gly Glu Glu Glu Glu Glu Glu Glu Gly Leu Asp Glu Ala
 85 90 95
 Glu Gly Glu Arg Pro Lys Lys Arg Gly Pro Lys Lys Arg Lys Met Thr
 100 105 110
 Lys Ala Arg Leu Glu Arg Ser Lys Leu Arg Arg Gln Lys Ala Asn Ala
 115 120 125
 Arg Glu Arg Asn Arg Met His Asp Leu Asn Ala Ala Leu Asp Asn Leu
 130 135 140
 Arg Lys Val Val Pro Cys Tyr Ser Lys Thr Gln Lys Leu Ser Lys Ile
 145 150 155 160
 Glu Thr Leu Arg Leu Ala Lys Asn Tyr Ile Trp Ala Leu Ser Glu Ile
 165 170 175
 Leu Arg Ser Gly Lys Arg Pro Asp Leu Val Ser Tyr Val Gln Thr Leu
 180 185 190
 Cys Lys Gly Leu Ser Gln Pro Thr Thr Asn Leu Val Ala Gly Cys Leu
 195 200 205
 Gln Leu Asn Ser Arg Asn Phe Leu Thr Glu Gln Gly Ala Asp Gly Ala
 210 215 220
 Gly Arg Phe His Gly Ser Gly Pro Phe Ala Met His Pro Tyr Pro
 225 230 235 240
 Tyr Pro Cys Ser Arg Leu Ala Gly Ala Gln Cys Gln Ala Ala Gly Gly
 245 250 255
 Leu Gly Gly Ala Ala His Ala Leu Arg Thr His Gly Tyr Cys Ala
 260 265 270
 Ala Tyr Glu Thr Leu Tyr Ala Ala Gly Gly Gly Ala Ser Pro
 275 280 285
 Asp Tyr Asn Ser Ser Glu Tyr Glu Gly Pro Leu Ser Pro Pro Leu Cys
 290 295 300
 Leu Asn Gly Asn Phe Ser Leu Lys Gln Asp Ser Ser Pro Asp His Glu
 305 310 315 320
 Lys Ser Tyr His Tyr Ser Met His Tyr Ser Ala Leu Pro Gly Ser Arg
 325 330 335
 His Gly His Gly Leu Val Phe Gly Ser Ser Ala Val Arg Gly Gly Val
 340 345 350
 His Ser Glu Asn Leu Leu Ser Tyr Asp Met His Leu His His Asp Arg
 355 360 365
 Gly Pro Met Tyr Glu Glu Leu Asn Ala Phe Phe His Asn
 370 375 380

<210> 33

<211> 445

<212> PRT

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 33
Met Ser Lys Leu Pro Arg Glu Leu Thr Arg Asp Leu Glu Arg Ser Leu
1 5 10 15
Pro Ala Val Ala Ser Leu Gly Ser Ser Leu Ser His Ser Gln Ser Leu
20 25 30
Ser Ser His Leu Leu Pro Pro Pro Glu Lys Arg Arg Ala Ile Ser Asp
35 40 45
Val Arg Arg Thr Phe Cys Leu Phe Val Thr Phe Asp Leu Leu Phe Ile
50 55 60
Ser Leu Leu Trp Ile Ile Glu Leu Asn Thr Asn Thr Gly Ile Arg Lys
65 70 75 80
Asn Leu Glu Gln Glu Ile Ile Gln Tyr Asn Phe Lys Thr Ser Phe Phe
85 90 95
Asp Ile Phe Val Leu Ala Phe Phe Arg Phe Ser Gly Leu Leu Leu Gly
100 105 110
Tyr Ala Val Leu Gln Leu Arg His Trp Trp Val Ile Ala Val Thr Thr
115 120 125
Leu Val Ser Ser Ala Phe Leu Ile Val Lys Val Ile Leu Ser Glu Leu
130 135 140
Leu Ser Lys Gly Ala Phe Gly Tyr Leu Leu Pro Ile Val Ser Phe Val
145 150 155 160
Leu Ala Trp Leu Glu Thr Trp Phe Leu Asp Phe Lys Val Leu Pro Gln
165 170 175
Glu Ala Glu Glu Glu Arg Trp Tyr Leu Ala Ala Gln Val Ala Val Ala
180 185 190
Arg Gly Pro Leu Leu Phe Ser Gly Ala Leu Ser Glu Gly Gln Phe Tyr
195 200 205
Ser Pro Pro Glu Ser Phe Ala Gly Ser Asp Asn Glu Ser Asp Glu Glu
210 215 220
Val Ala Gly Lys Lys Ser Phe Ser Ala Gln Glu Arg Glu Tyr Ile Arg
225 230 235 240
Gln Gly Lys Glu Ala Thr Ala Val Val Asp Gln Ile Leu Ala Gln Glu
245 250 255
Glu Asn Trp Lys Phe Glu Lys Asn Asn Glu Tyr Gly Asp Thr Val Tyr
260 265 270
Thr Ile Glu Val Pro Phe His Gly Lys Thr Phe Ile Leu Lys Thr Phe
275 280 285
Leu Pro Cys Pro Ala Glu Leu Val Tyr Gln Glu Val Ile Leu Gln Pro
290 295 300
Glu Arg Met Val Leu Trp Asn Lys Thr Val Thr Ala Cys Gln Ile Leu
305 310 315 320
Gln Arg Val Glu Asp Asn Thr Leu Ile Ser Tyr Asp Val Ser Ala Gly
325 330 335
Ala Ala Gly Val Val Ser Pro Arg Asp Phe Val Asn Val Arg Arg
340 345 350
Ile Glu Arg Arg Arg Asp Arg Tyr Leu Ser Ser Gly Ile Ala Thr Ser
355 360 365
His Ser Ala Lys Pro Pro Thr His Lys Tyr Val Arg Gly Glu Asn Gly
370 375 380
Pro Gly Gly Phe Ile Val Leu Lys Ser Ala Ser Asn Pro Arg Val Cys
385 390 395 400
Thr Phe Val Trp Ile Leu Asn Thr Asp Leu Lys Gly Arg Leu Pro Arg
405 410 415
Tyr Leu Ile His Gln Ser Leu Ala Ala Thr Met Phe Glu Phe Ala Phe
420 425 430
His Leu Arg Gln Arg Ile Ser Glu Leu Gly Ala Arg Ala
435 440 445
<210> 34
<211> 167

Siemens 0022 Seq Listing.txt

<212> PRT

<213> Homo sapiens

<400> 34

Met Ala Thr Ser Glu Leu Ser Cys Glu Val Ser Glu Glu Asn Cys Glu
1 5 10 15
Arg Arg Glu Ala Phe Trp Ala Glu Trp Lys Asp Leu Thr Leu Ser Thr
20 25 30
Arg Pro Glu Glu Gly Cys Ser Leu His Glu Glu Asp Thr Gln Arg His
35 40 45
Glu Thr Tyr His Gln Gln Gly Gln Cys Gln Val Leu Val Gln Arg Ser
50 55 60
Pro Trp Leu Met Met Arg Met Gly Ile Leu Gly Arg Gly Leu Gln Glu
65 70 75 80
Tyr Gln Leu Pro Tyr Gln Arg Val Leu Pro Leu Pro Ile Phe Thr Pro
85 90 95
Ala Lys Met Gly Ala Thr Lys Glu Glu Arg Glu Asp Thr Pro Ile Gln
100 105 110
Leu Gln Glu Leu Leu Ala Leu Glu Thr Ala Leu Gly Gln Cys Val
115 120 125
Asp Arg Gln Glu Val Ala Glu Ile Thr Lys Gln Leu Pro Pro Val Val
130 135 140
Pro Val Ser Lys Pro Gly Ala Leu Arg Arg Ser Leu Ser Arg Ser Met
145 150 155 160
Ser Gln Glu Ala Gln Arg Gly
165

<210> 35

<211> 282

<212> PRT

<213> Homo sapiens

<400> 35

Met Ser Gly Ala Asp Arg Ser Pro Asn Ala Gly Ala Ala Pro Asp Ser
1 5 10 15
Ala Pro Gly Gln Ala Ala Val Ala Ser Ala Tyr Gln Arg Phe Glu Pro
20 25 30
Arg Ala Tyr Leu Arg Asn Asn Tyr Ala Pro Pro Arg Gly Asp Leu Cys
35 40 45
Asn Pro Asn Gly Val Gly Pro Trp Lys Leu Arg Cys Leu Ala Gln Thr
50 55 60
Phe Ala Thr Gly Glu Val Ser Gly Arg Thr Leu Ile Asp Ile Gly Ser
65 70 75 80
Gly Pro Thr Val Tyr Gln Leu Leu Ser Ala Cys Ser His Phe Glu Asp
85 90 95
Ile Thr Met Thr Asp Phe Leu Glu Val Asn Arg Gln Glu Leu Gly Arg
100 105 110
Trp Leu Gln Glu Glu Pro Gly Ala Phe Asn Trp Ser Met Tyr Ser Gln
115 120 125
His Ala Cys Leu Ile Glu Gly Lys Gly Glu Cys Trp Gln Asp Lys Glu
130 135 140
Arg Gln Leu Arg Ala Arg Val Lys Arg Val Leu Pro Ile Asp Val His
145 150 155 160
Gln Pro Gln Pro Leu Gly Ala Gly Ser Pro Ala Pro Leu Pro Ala Asp
165 170 175
Ala Leu Val Ser Ala Phe Cys Leu Glu Ala Val Ser Pro Asp Leu Ala
180 185 190
Ser Phe Gln Arg Ala Leu Asp His Ile Thr Thr Leu Leu Arg Pro Gly
195 200 205

Siemens 0022 Seq Listing.txt

Gly His Leu Leu Leu Ile Gly Ala Leu Glu Glu Ser Trp Tyr Leu Ala
 210 215 220
 Gly Glu Ala Arg Leu Thr Val Val Pro Val Ser Glu Glu Glu Val Arg
 225 230 235 240
 Glu Ala Leu Val Arg Ser Gly Tyr Lys Val Arg Asp Leu Arg Thr Tyr
 245 250 255
 Ile Met Pro Ala His Leu Gln Thr Gly Val Asp Asp Val Lys Gly Val
 260 265 270
 Phe Phe Ala Trp Ala Gln Lys Val Gly Leu
 275 280

<210> 36

<211> 1255

<212> PRT

<213> Homo sapiens

<400> 36
 Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu
 1 5 10 15
 Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys
 20 25 30
 Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
 35 40 45
 Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
 50 55 60
 Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val
 65 70 75 80
 Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu
 85 90 95
 Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr
 100 105 110
 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro
 115 120 125
 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser
 130 135 140
 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln
 145 150 155 160
 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn
 165 170 175
 Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys
 180 185 190
 His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser
 195 200 205
 Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys
 210 215 220
 Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys
 225 230 235 240
 Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu
 245 250 255
 His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val
 260 265 270
 Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg
 275 280 285
 Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu
 290 295 300
 Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln
 305 310 315 320
 Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys
 325 330 335
 Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu
 340 345 350

Siemens 0022 Seq Listing.txt

Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys
 355 360 365
 Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp
 370 375 380
 Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe
 385 390 395 400
 Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro
 405 410 415
 Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg
 420 425 430
 Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu
 435 440 445
 Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly
 450 455 460
 Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val
 465 470 475 480
 Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr
 485 490 495
 Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His
 500 505 510
 Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys
 515 520 525
 Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys
 530 535 540
 Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys
 545 550 555 560
 Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys
 565 570 575
 Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp
 580 585 590
 Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu
 595 600 605
 Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln
 610 615 620
 Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys
 625 630 635 640
 Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Val Ser
 645 650 655
 Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly
 660 665 670
 Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg
 675 680 685
 Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly
 690 695 700
 Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu
 705 710 715 720
 Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys
 725 730 735
 Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile
 740 745 750
 Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu
 755 760 765
 Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg
 770 775 780
 Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu
 785 790 795 800
 Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg
 805 810 815
 Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly
 820 825 830
 Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala
 835 840 845
 Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe

Siemens 0022 Seq Listing.txt

850	855	860													
Gly	Leu	Ala	Arg	Leu	Leu	Asp	Ile	Asp	Glu	Thr	Glu	Tyr	His	Ala	Asp
865					870				875						880
Gly	Gly	Lys	Val	Pro	Ile	Lys	Trp	Met	Ala	Leu	Glu	Ser	Ile	Leu	Arg
					885			890						895	
Arg	Arg	Phe	Thr	His	Gln	Ser	Asp	Val	Trp	Ser	Tyr	Gly	Val	Thr	Val
					900			905					910		
Trp	Glu	Leu	Met	Thr	Phe	Gly	Ala	Lys	Pro	Tyr	Asp	Gly	Ile	Pro	Ala
					915			920				925			
Arg	Glu	Ile	Pro	Asp	Leu	Leu	Glu	Lys	Gly	Glu	Arg	Leu	Pro	Gln	Pro
					930			935			940				
Pro	Ile	Cys	Thr	Ile	Asp	Val	Tyr	Met	Ile	Met	Val	Lys	Cys	Trp	Met
					945			950			955			960	
Ile	Asp	Ser	Glu	Cys	Arg	Pro	Arg	Phe	Arg	Glu	Leu	Val	Ser	Glu	Phe
					965			970					975		
Ser	Arg	Met	Ala	Arg	Asp	Pro	Gln	Arg	Phe	Val	Val	Ile	Gln	Asn	Glu
					980			985					990		
Asp	Leu	Gly	Pro	Ala	Ser	Pro	Leu	Asp	Ser	Thr	Phe	Tyr	Arg	Ser	Leu
					995			1000				1005			
Leu	Glu	Asp	Asp	Asp	Met	Gly	Asp	Leu	Val	Asp	Ala	Glu	Glu	Tyr	
					1010			1015			1020				
Leu	Val	Pro	Gln	Gln	Gly	Phe	Phe	Cys	Pro	Asp	Pro	Ala	Pro	Gly	
					1025			1030			1035				
Ala	Gly	Gly	Met	Val	His	His	Arg	His	Arg	Ser	Ser	Ser	Thr	Arg	
					1040			1045			1050				
Ser	Gly	Gly	Gly	Asp	Leu	Thr	Leu	Gly	Leu	Glu	Pro	Ser	Glu	Glu	
					1055			1060			1065				
Glu	Ala	Pro	Arg	Ser	Pro	Leu	Ala	Pro	Ser	Glu	Gly	Ala	Gly	Ser	
					1070			1075			1080				
Asp	Val	Phe	Asp	Gly	Asp	Leu	Gly	Met	Gly	Ala	Ala	Lys	Gly	Leu	
					1085			1090			1095				
Gln	Ser	Leu	Pro	Thr	His	Asp	Pro	Ser	Pro	Leu	Gln	Arg	Tyr	Ser	
					1100			1105			1110				
Glu	Asp	Pro	Thr	Val	Pro	Leu	Pro	Ser	Glu	Thr	Asp	Gly	Tyr	Val	
					1115			1120			1125				
Ala	Pro	Leu	Thr	Cys	Ser	Pro	Gln	Pro	Glu	Tyr	Val	Asn	Gln	Pro	
					1130			1135			1140				
Asp	Val	Arg	Pro	Gln	Pro	Pro	Ser	Pro	Arg	Glu	Gly	Pro	Leu	Pro	
					1145			1150			1155				
Ala	Ala	Arg	Pro	Ala	Gly	Ala	Thr	Leu	Glu	Arg	Ala	Lys	Thr	Leu	
					1160			1165			1170				
Ser	Pro	Gly	Lys	Asn	Gly	Val	Val	Lys	Asp	Val	Phe	Ala	Phe	Gly	
					1175			1180			1185				
Gly	Ala	Val	Glu	Asn	Pro	Glu	Tyr	Leu	Thr	Pro	Gln	Gly	Gly	Ala	
					1190			1195			1200				
Ala	Pro	Gln	Pro	His	Pro	Pro	Pro	Ala	Phe	Ser	Pro	Ala	Phe	Asp	
					1205			1210			1215				
Asn	Leu	Tyr	Tyr	Trp	Asp	Gln	Asp	Pro	Pro	Glu	Arg	Gly	Ala	Pro	
					1220			1225			1230				
Pro	Ser	Thr	Phe	Lys	Gly	Thr	Pro	Thr	Ala	Glu	Asn	Pro	Glu	Tyr	
					1235			1240			1245				
Leu	Gly	Leu	Asp	Val	Pro	Val									
					1250			1255							

<210> 37

<211> 532

<212> PRT

<213> Homo sapiens

<400> 37

Met Glu Leu Asp Leu Ser Pro Pro His Leu Ser Ser Ser Pro Glu Asp

Siemens 0022 Seq Listing.txt

Siemens 0022 Seq Listing.txt
Gln Leu Asn Arg Gly Ile Leu Pro Cys Leu Leu Arg His Cys Cys Thr
515 520 525

Arg Val Ala Leu
530

<210> 38

<211> 534

<212> PRT

<213> Homo sapiens

<400> 38

Met Lys Gln Glu Gly Ser Ala Arg Arg Arg Gly Ala Asp Lys Ala Lys
1 5 10 15
Pro Pro Pro Gly Gly Glu Gln Glu Pro Pro Pro Pro Pro Ala Pro
20 25 30
Gln Asp Val Glu Met Lys Glu Glu Ala Ala Thr Gly Gly Ser Thr
35 40 45
Gly Glu Ala Asp Gly Lys Thr Ala Ala Ala Val Glu His Ser Gln
50 55 60
Arg Glu Leu Asp Thr Val Thr Leu Glu Asp Ile Lys Glu His Val Lys
65 70 75 80
Gln Leu Glu Lys Ala Val Ser Gly Lys Glu Pro Arg Phe Val Leu Arg
85 90 95
Ala Leu Arg Met Leu Pro Ser Thr Ser Arg Arg Leu Asn His Tyr Val
100 105 110
Leu Tyr Lys Ala Val Gln Gly Phe Phe Thr Ser Asn Asn Ala Thr Arg
115 120 125
Asp Phe Leu Leu Pro Phe Leu Glu Glu Pro Met Asp Thr Glu Ala Asp
130 135 140
Leu Gln Phe Arg Pro Arg Thr Gly Lys Ala Ala Ser Thr Pro Leu Leu
145 150 155 160
Pro Glu Val Glu Ala Tyr Leu Gln Leu Leu Val Val Ile Phe Met Met
165 170 175
Asn Ser Lys Arg Tyr Lys Glu Ala Gln Lys Ile Ser Asp Asp Leu Met
180 185 190
Gln Lys Ile Ser Thr Gln Asn Arg Arg Ala Leu Asp Leu Val Ala Ala
195 200 205
Lys Cys Tyr Tyr Tyr His Ala Arg Val Tyr Glu Phe Leu Asp Lys Leu
210 215 220
Asp Val Val Arg Ser Phe Leu His Ala Arg Leu Arg Thr Ala Thr Leu
225 230 235 240
Arg His Asp Ala Asp Gly Gln Ala Thr Leu Leu Asn Leu Leu Arg
245 250 255
Asn Tyr Leu His Tyr Ser Leu Tyr Asp Gln Ala Glu Lys Leu Val Ser
260 265 270
Lys Ser Val Phe Pro Glu Gln Ala Asn Asn Asn Glu Trp Ala Arg Tyr
275 280 285
Leu Tyr Tyr Thr Gly Arg Ile Lys Ala Ile Gln Leu Glu Tyr Ser Glu
290 295 300
Ala Arg Arg Thr Met Thr Asn Ala Leu Arg Lys Ala Pro Gln His Thr
305 310 315 320
Ala Val Gly Phe Lys Gln Thr Val His Lys Leu Leu Ile Val Val Glu
325 330 335
Leu Leu Leu Gly Glu Ile Pro Asp Arg Leu Gln Phe Arg Gln Pro Ser
340 345 350
Leu Lys Arg Ser Leu Met Pro Tyr Phe Leu Leu Thr Gln Ala Val Arg
355 360 365
Thr Gly Asn Leu Ala Lys Phe Asn Gln Val Leu Asp Gln Phe Gly Glu
370 375 380
Lys Phe Gln Ala Asp Gly Thr Tyr Thr Leu Ile Ile Arg Leu Arg His
385 390 395 400

Siemens 0022 Seq Listing.txt

Asn Val Ile Lys Thr Gly Val Arg Met Ile Ser Leu Ser Tyr Ser Arg
405 410 415
Ile Ser Leu Ala Asp Ile Ala Gln Lys Leu Gln Leu Asp Ser Pro Glu
420 425 430
Asp Ala Glu Phe Ile Val Ala Lys Ala Ile Arg Asp Gly Val Ile Glu
435 440 445
Ala Ser Ile Asn His Glu Lys Gly Tyr Val Gln Ser Lys Glu Met Ile
450 455 460
Asp Ile Tyr Ser Thr Arg Glu Pro Gln Leu Ala Phe His Gln Arg Ile
465 470 475 480
Ser Phe Cys Leu Asp Ile His Asn Met Ser Val Lys Ala Met Arg Phe
485 490 495
Pro Pro Lys Ser Tyr Asn Lys Asp Leu Glu Ser Ala Glu Glu Arg Arg
500 505 510
Glu Arg Glu Gln Gln Asp Leu Glu Phe Ala Lys Glu Met Ala Glu Asp
515 520 525
Asp Asp Asp Ser Phe Pro
530
<210> 39

<211> 207

<212> PRT

<213> Homo sapiens

<400> 39
Met Ala Gly Pro Ala Thr Gln Ser Pro Met Lys Leu Met Ala Leu Gln
1 5 10 15
Leu Leu Leu Trp His Ser Ala Leu Trp Thr Val Gln Glu Ala Thr Pro
20 25 30
Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu
35 40 45
Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys
50 55 60
Leu Val Ser Glu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu
65 70 75 80
Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser
85 90 95
Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
100 105 110
Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile
115 120 125
Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala
130 135 140
Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala
145 150 155 160
Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala
165 170 175
Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser
180 185 190
Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
195 200 205
<210> 40

<211> 989

<212> PRT

<213> Homo sapiens

<400> 40

Met Lys Val Val Asn Leu Lys Gln Ala Ile Leu Gln Ala Trp Lys Glu

Siemens 0022 Seq Listing.txt

1 5 10 15
 Arg Trp Ser Tyr Tyr Gln Trp Ala Ile Asn Met Lys Lys Phe Phe Pro
 20 25 30
 Lys Gly Ala Thr Trp Asp Ile Leu Asn Leu Ala Asp Ala Leu Leu Glu
 35 40 45
 Gln Ala Met Ile Gly Pro Ser Pro Asn Pro Leu Ile Leu Ser Tyr Leu
 50 55 60
 Lys Tyr Ala Ile Ser Ser Gln Met Val Ser Tyr Ser Ser Val Leu Thr
 65 70 75 80
 Ala Ile Ser Lys Phe Asp Asp Phe Ser Arg Asp Leu Cys Val Gln Ala
 85 90 95
 Leu Leu Asp Ile Met Asp Met Phe Cys Asp Arg Leu Ser Cys His Gly
 100 105 110
 Lys Ala Glu Glu Cys Ile Gly Leu Cys Arg Ala Leu Leu Ser Ala Leu
 115 120 125
 His Trp Leu Leu Arg Cys Thr Ala Ala Ser Ala Glu Arg Leu Arg Glu
 130 135 140
 Gly Leu Glu Ala Gly Thr Pro Ala Ala Gly Glu Lys Gln Leu Ala Met
 145 150 155 160
 Cys Leu Gln Arg Leu Glu Lys Thr Leu Ser Ser Thr Lys Asn Arg Ala
 165 170 175
 Leu Leu His Ile Ala Lys Leu Glu Glu Ala Ser Ser Trp Thr Ala Ile
 180 185 190
 Glu His Ser Leu Leu Lys Leu Gly Glu Ile Leu Thr Asn Leu Ser Asn
 195 200 205
 Pro Gln Leu Arg Ser Gln Ala Glu Gln Cys Gly Thr Leu Ile Arg Ser
 210 215 220
 Ile Pro Thr Met Leu Ser Val His Ala Glu Gln Met His Lys Thr Gly
 225 230 235 240
 Phe Pro Thr Val His Ala Val Ile Leu Leu Glu Gly Thr Met Asn Leu
 245 250 255
 Thr Gly Glu Thr Gln Ser Leu Val Glu Gln Leu Thr Met Val Lys Arg
 260 265 270
 Met Gln His Ile Pro Thr Pro Leu Phe Val Leu Glu Ile Trp Lys Ala
 275 280 285
 Cys Phe Val Gly Leu Ile Glu Ser Pro Glu Gly Thr Glu Glu Leu Lys
 290 295 300
 Trp Thr Ala Phe Thr Phe Leu Lys Ile Pro Gln Val Leu Val Lys Leu
 305 310 315 320
 Lys Lys Tyr Ser His Gly Asp Lys Asp Phe Thr Glu Asp Val Asn Cys
 325 330 335
 Ala Phe Glu Phe Leu Leu Lys Leu Thr Pro Leu Leu Asp Lys Ala Asp
 340 345 350
 Gln Arg Cys Asn Cys Asp Cys Thr Asn Phe Leu Leu Gln Glu Cys Gly
 355 360 365
 Lys Gln Gly Leu Leu Ser Glu Ala Ser Val Asn Asn Leu Met Ala Lys
 370 375 380
 Arg Lys Ala Asp Arg Glu His Ala Pro Gln Gln Lys Ser Gly Glu Asn
 385 390 395 400
 Ala Asn Ile Gln Pro Asn Ile Gln Leu Ile Leu Arg Ala Glu Pro Thr
 405 410 415
 Val Thr Asn Ile Leu Lys Thr Met Asp Ala Asp His Ser Lys Ser Pro
 420 425 430
 Glu Gly Leu Leu Gly Val Leu Gly His Met Leu Ser Gly Lys Ser Leu
 435 440 445
 Asp Leu Leu Ala Ala Ala Ala Ala Thr Gly Lys Leu Lys Ser Phe
 450 455 460
 Ala Arg Lys Phe Ile Asn Leu Asn Glu Phe Thr Thr Tyr Gly Ser Glu
 465 470 475 480
 Glu Ser Thr Lys Pro Ala Ser Val Arg Ala Leu Leu Phe Asp Ile Ser
 485 490 495
 Phe Leu Met Leu Cys His Val Ala Gln Thr Tyr Gly Ser Glu Val Ile
 500 505 510

Siemens 0022 Seq Listing.txt

Leu Ser Glu Ser Arg Thr Gly Ala Glu Val Pro Phe Phe Glu Thr Trp
 515 520 525
 Met Gln Thr Cys Met Pro Glu Glu Gly Lys Ile Leu Asn Pro Asp His
 530 535 540
 Pro Cys Phe Arg Pro Asp Ser Thr Lys Val Glu Ser Leu Val Ala Leu
 545 550 555 560
 Leu Asn Asn Ser Ser Glu Met Lys Leu Val Gln Met Lys Trp His Glu
 565 570 575
 Ala Cys Leu Ser Ile Ser Ala Ala Ile Leu Glu Ile Leu Asn Ala Trp
 580 585 590
 Glu Asn Gly Val Leu Ala Phe Glu Ser Ile Gln Lys Ile Thr Asp Asn
 595 600 605
 Ile Lys Gly Lys Val Cys Ser Leu Ala Val Cys Ala Val Ala Trp Leu
 610 615 620
 Val Ala His Val Arg Met Leu Gly Leu Asp Glu Arg Glu Lys Ser Leu
 625 630 635 640
 Gln Met Ile Arg Gln Leu Ala Gly Pro Leu Phe Ser Glu Asn Thr Leu
 645 650 655
 Gln Phe Tyr Asn Glu Arg Val Val Ile Met Asn Ser Ile Leu Glu Arg
 660 665 670
 Met Cys Ala Asp Val Leu Gln Gln Thr Ala Thr Gln Ile Lys Phe Pro
 675 680 685
 Ser Thr Gly Val Asp Thr Met Pro Tyr Trp Asn Leu Leu Pro Pro Lys
 690 695 700
 Arg Pro Ile Lys Glu Val Leu Thr Asp Ile Phe Ala Lys Val Leu Glu
 705 710 715 720
 Lys Gly Trp Val Asp Ser Arg Ser Ile His Ile Phe Asp Thr Leu Leu
 725 730 735
 His Met Gly Gly Val Tyr Trp Phe Cys Asn Asn Leu Ile Lys Glu Leu
 740 745 750
 Leu Lys Glu Thr Arg Lys Glu His Thr Leu Arg Ala Val Glu Leu Leu
 755 760 765
 Tyr Ser Ile Phe Cys Leu Asp Met Gln Gln Val Thr Leu Val Leu Leu
 770 775 780
 Gly His Ile Leu Pro Gly Leu Leu Thr Asp Ser Ser Lys Trp His Ser
 785 790 795 800
 Leu Met Asp Pro Pro Gly Thr Ala Leu Ala Lys Leu Ala Val Trp Cys
 805 810 815
 Ala Leu Ser Ser Tyr Ser Ser His Lys Gly Gln Ala Ser Thr Arg Gln
 820 825 830
 Lys Lys Arg His Arg Glu Asp Ile Glu Asp Tyr Ile Ser Leu Phe Pro
 835 840 845
 Leu Asp Asp Val Gln Pro Ser Lys Leu Met Arg Leu Leu Ser Ser Asn
 850 855 860
 Glu Asp Asp Ala Asn Ile Leu Ser Ser Pro Thr Asp Arg Ser Met Ser
 865 870 875 880
 Ser Ser Leu Ser Ala Ser Gln Leu His Thr Val Asn Met Arg Asp Pro
 885 890 895
 Leu Asn Arg Val Leu Ala Asn Leu Phe Leu Leu Ile Ser Ser Ile Leu
 900 905 910
 Gly Ser Arg Thr Ala Gly Pro His Thr Gln Phe Val Gln Trp Phe Met
 915 920 925
 Glu Glu Cys Val Asp Cys Leu Glu Gln Gly Gly Arg Gly Ser Val Leu
 930 935 940
 Gln Phe Met Pro Phe Thr Thr Val Ser Glu Leu Val Lys Val Ser Ala
 945 950 955 960
 Met Ser Ser Pro Lys Val Val Leu Ala Ile Thr Asp Leu Ser Leu Pro
 965 970 975
 Leu Gly Arg Gln Val Ala Ala Lys Ala Ile Ala Ala Leu
 980 985

<210> 41

<211> 490

Siemens 0022 Seq Listing.txt

<212> PRT

<213> Homo sapiens

<400> 41
Met Glu Gln Lys Pro Ser Lys Val Glu Cys Gly Ser Asp Pro Glu Glu
1 5 10 15
Asn Ser Ala Arg Ser Pro Asp Gly Lys Arg Lys Arg Lys Asn Gly Gln
20 25 30
Cys Ser Leu Lys Thr Ser Met Ser Gly Tyr Ile Pro Ser Tyr Leu Asp
35 40 45
Lys Asp Glu Gln Cys Val Val Cys Gly Asp Lys Ala Thr Gly Tyr His
50 55 60
Tyr Arg Cys Ile Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr
65 70 75 80
Ile Gln Lys Asn Leu His Pro Thr Tyr Ser Cys Lys Tyr Asp Ser Cys
85 90 95
Cys Val Ile Asp Lys Ile Thr Arg Asn Gln Cys Gln Leu Cys Arg Phe
100 105 110
Lys Lys Cys Ile Ala Val Gly Met Ala Met Asp Leu Val Leu Asp Asp
115 120 125
Ser Lys Arg Val Ala Lys Arg Lys Leu Ile Glu Gln Asn Arg Glu Arg
130 135 140
Arg Arg Lys Glu Glu Met Ile Arg Ser Leu Gln Gln Arg Pro Glu Pro
145 150 155 160
Thr Pro Glu Glu Trp Asp Leu Ile His Ile Ala Thr Glu Ala His Arg
165 170 175
Ser Thr Asn Ala Gln Gly Ser His Trp Lys Gln Arg Arg Lys Phe Leu
180 185 190
Pro Asp Asp Ile Gly Gln Ser Pro Ile Val Ser Met Pro Asp Gly Asp
195 200 205
Lys Val Asp Leu Glu Ala Phe Ser Glu Phe Thr Lys Ile Ile Thr Pro
210 215 220
Ala Ile Thr Arg Val Val Asp Phe Ala Lys Lys Leu Pro Met Phe Ser
225 230 235 240
Glu Leu Pro Cys Glu Asp Gln Ile Ile Leu Leu Lys Gly Cys Cys Met
245 250 255
Glu Ile Met Ser Leu Arg Ala Ala Val Arg Tyr Asp Pro Glu Ser Asp
260 265 270
Thr Leu Thr Leu Ser Gly Glu Met Ala Val Lys Arg Glu Gln Leu Lys
275 280 285
Asn Gly Gly Leu Gly Val Val Ser Asp Ala Ile Phe Glu Leu Gly Lys
290 295 300
Ser Leu Ser Ala Phe Asn Leu Asp Asp Thr Glu Val Ala Leu Leu Gln
305 310 315 320
Ala Val Leu Leu Met Ser Thr Asp Arg Ser Gly Leu Leu Cys Val Asp
325 330 335
Lys Ile Glu Lys Ser Gln Glu Ala Tyr Leu Leu Ala Phe Glu His Tyr
340 345 350
Val Asn His Arg Lys His Asn Ile Pro His Phe Trp Pro Lys Leu Leu
355 360 365
Met Lys Glu Arg Glu Val Gln Ser Ser Ile Leu Tyr Lys Gly Ala Ala
370 375 380
Ala Glu Gly Arg Pro Gly Gly Ser Leu Gly Val His Pro Glu Gly Gln
385 390 395 400
Gln Leu Leu Gly Met His Val Val Gln Gly Pro Gln Val Arg Gln Leu
405 410 415
Glu Gln Gln Leu Gly Glu Ala Gly Ser Leu Gln Gly Pro Val Leu Gln
420 425 430
His Gln Ser Pro Lys Ser Pro Gln Gln Arg Leu Leu Glu Leu Leu His
435 440 445
Arg Ser Gly Ile Leu His Ala Arg Ala Val Cys Gly Glu Asp Asp Ser

Siemens 0022 Seq Listing.txt

450		455		460											
Ser	Glu	Ala	Asp	Ser	Pro	Ser	Ser	Ser	Glu	Glu	Glu	Pro	Glu	Val	Cys
465					470				475						480
Glu	Asp	Leu	Ala	Gly	Asn	Ala	Ala	Ser	Pro						
					485				490						
<210>	42														
<211>	614														
<212>	PRT														
<213>	Homo sapiens														
<400>	42														
Met	Thr	Thr	Leu	Asp	Ser	Asn	Asn	Asn	Thr	Gly	Gly	Val	Ile	Thr	Tyr
1						5				10				15	
Ile	Gly	Ser	Ser	Gly	Ser	Ser	Pro	Ser	Arg	Thr	Ser	Pro	Glu	Ser	Leu
							20		25					30	
Tyr	Ser	Asp	Asn	Ser	Asn	Gly	Ser	Phe	Gln	Ser	Leu	Thr	Gln	Gly	Cys
							35		40				45		
Pro	Thr	Tyr	Phe	Pro	Pro	Ser	Pro	Thr	Gly	Ser	Leu	Thr	Gln	Asp	Pro
						50		55			60				
Ala	Arg	Ser	Phe	Gly	Ser	Ile	Pro	Pro	Ser	Leu	Ser	Asp	Asp	Gly	Ser
65						70				75				80	
Pro	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Phe	Tyr	Asn
							85		90				95		
Gly	Ser	Pro	Pro	Gly	Ser	Leu	Gln	Val	Ala	Met	Glu	Asp	Ser	Ser	Arg
						100		105				110			
val	Ser	Pro	Ser	Lys	Ser	Thr	Ser	Asn	Ile	Thr	Lys	Leu	Asn	Gly	Met
						115		120			125				
Val	Leu	Leu	Cys	Lys	Val	Cys	Gly	Asp	Val	Ala	Ser	Gly	Phe	His	Tyr
						130		135			140				
Gly	Val	Leu	Ala	Cys	Glu	Gly	Cys	Lys	Gly	Phe	Phe	Arg	Arg	Ser	Ile
145						150				155				160	
Gln	Gln	Asn	Ile	Gln	Tyr	Lys	Arg	Cys	Leu	Lys	Asn	Glu	Asn	Cys	Ser
						165			170			175			
Ile	Val	Arg	Ile	Asn	Arg	Asn	Arg	Cys	Gln	Gln	Cys	Arg	Phe	Lys	Lys
						180		185				190			
Cys	Leu	Ser	Val	Gly	Met	Ser	Arg	Asp	Ala	Val	Arg	Phe	Gly	Arg	Ile
						195		200			205				
Pro	Lys	Arg	Glu	Lys	Gln	Arg	Met	Leu	Ala	Glu	Met	Gln	Ser	Ala	Met
						210		215			220				
Asn	Leu	Ala	Asn	Asn	Gln	Leu	Ser	Ser	Gln	Cys	Pro	Leu	Glu	Thr	Ser
225						230				235			240		
Pro	Thr	Gln	His	Pro	Thr	Pro	Gly	Pro	Met	Gly	Pro	Ser	Pro	Pro	Pro
						245			250			255			
Ala	Pro	Val	Pro	Ser	Pro	Leu	Val	Gly	Phe	Ser	Gln	Phe	Pro	Gln	Gln
						260		265				270			
Leu	Thr	Pro	Pro	Arg	Ser	Pro	Ser	Pro	Glu	Pro	Thr	Val	Glu	Asp	Val
						275		280			285				
Ile	Ser	Gln	Val	Ala	Arg	Ala	His	Arg	Glu	Ile	Phe	Thr	Tyr	Ala	His
						290		295			300				
Asp	Lys	Leu	Gly	Ser	Ser	Pro	Gly	Asn	Phe	Asn	Ala	Asn	His	Ala	Ser
305						310				315				320	
Gly	Ser	Pro	Pro	Ala	Thr	Thr	Pro	His	Arg	Trp	Glu	Asn	Gln	Gly	Cys
						325			330			335			
Pro	Pro	Ala	Pro	Asn	Asp	Asn	Asn	Thr	Leu	Ala	Ala	Gln	Arg	His	Asn
						340		345				350			
Glu	Ala	Leu	Asn	Gly	Leu	Arg	Gln	Ala	Pro	Ser	Ser	Tyr	Pro	Pro	Thr
						355		360			365				
Trp	Pro	Pro	Gly	Pro	Ala	His	His	Ser	Cys	His	Gln	Ser	Asn	Ser	Asn
						370		375			380				
Gly	His	Arg	Leu	Cys	Pro	Thr	His	Val	Tyr	Ala	Ala	Pro	Glu	Gly	Lys

Siemens 0022 Seq Listing.txt

385	390	395	400	
Ala	Pro Ala Asn Ser Pro Arg Gln Gly Asn Ser Lys Asn Val	Leu	Leu	
	405	410	415	
Ala	Cys Pro Met Asn Met Tyr Pro His Gly Arg Ser Gly Arg	Thr	Val	
	420	425	430	
Gln	Glu Ile Trp Glu Asp Phe Ser Met Ser Phe Thr Pro Ala Val Arg			
	435	440	445	
Glu	Val Val Glu Phe Ala Lys His Ile Pro Gly Phe Arg Asp Leu Ser			
	450	455	460	
Gln	His Asp Gln Val Thr Leu Leu Lys Ala Gly Thr Phe Glu Val	Leu		
	465	470	475	480
Met	Val Arg Phe Ala Ser Leu Phe Asn Val Lys Asp Gln Thr Val Met			
	485	490	495	
Phe	Leu Ser Arg Thr Thr Tyr Ser Leu Gln Glu Leu Gly Ala Met Gly			
	500	505	510	
Met	Gly Asp Leu Leu Ser Ala Met Phe Asp Phe Ser Glu Lys Leu Asn			
	515	520	525	
Ser	Leu Ala Leu Thr Glu Glu Leu Gly Leu Phe Thr Ala Val Val			
	530	535	540	
Leu	Val Ser Ala Asp Arg Ser Gly Met Glu Asn Ser Ala Ser Val Glu			
	545	550	555	560
Gln	Leu Gln Glu Thr Leu Leu Arg Ala Leu Arg Ala Leu Val Leu Lys			
	565	570	575	
Asn	Arg Pro Leu Glu Thr Ser Arg Phe Thr Lys Leu Leu Leu Lys Leu			
	580	585	590	
Pro	Asp Leu Arg Thr Leu Asn Asn Met His Ser Glu Lys Leu Leu Ser			
	595	600	605	
Phe	Arg Val Asp Ala Gln			
	610			

<210> 43

<211> 703

<212> PRT

<213> Homo sapiens

<400> 43

Met	Ala Asp Arg Arg Arg Gln Arg Ala Ser Gln Asp Thr Glu Asp Glu			
1	5	10	15	
Glu	Ser Gly Ala Ser Gly Ser Asp Ser Gly Gly Ser Pro Leu Arg Gly			
	20	25	30	
Gly	Gly Ser Cys Ser Gly Ser Ala Gly Gly Gly Ser Gly Ser Leu			
	35	40	45	
Pro	Ser Gln Arg Gly Arg Thr Gly Ala Leu His Leu Arg Arg Val			
	50	55	60	
Glu	Ser Gly Gly Ala Lys Ser Ala Glu Glu Ser Glu Cys Glu Ser Glu			
	65	70	75	80
Asp	Gly Ile Glu Gly Asp Ala Val Leu Ser Asp Tyr Glu Ser Ala Glu			
	85	90	95	
Asp	Ser Glu Gly Glu Gly Glu Tyr Ser Glu Glu Glu Asn Ser Lys			
	100	105	110	
Val	Glu Leu Lys Ser Glu Ala Asn Asp Ala Val Asn Ser Ser Thr Lys			
	115	120	125	
Glu	Glu Lys Gly Glu Glu Lys Pro Asp Thr Lys Ser Thr Val Thr Gly			
	130	135	140	
Glu	Arg Gln Ser Gly Asp Gly Gln Glu Ser Thr Glu Pro Val Glu Asn			
	145	150	155	160
Lys	Val Gly Lys Lys Gly Pro Lys His Leu Asp Asp Asp Glu Asp Arg			
	165	170	175	
Lys	Asn Pro Ala Tyr Ile Pro Arg Lys Gly Leu Phe Phe Glu His Asp			
	180	185	190	
Leu	Arg Gly Gln Thr Gln Glu Glu Val Arg Pro Lys Gly Arg Gln			

Siemens 0022 Seq Listing.txt

	195	200	205												
Arg	Lys	Leu	Trp	Lys	Asp	Glu	Gly	Arg	Trp	Glu	His	Asp	Lys	Phe	Arg
210					215					220					
Glu	Asp	Glu	Gln	Ala	Pro	Lys	Ser	Arg	Gln	Glu	Leu	Ile	Ala	Leu	Tyr
225					230					235					240
Gly	Tyr	Asp	Ile	Arg	Ser	Ala	His	Asn	Pro	Asp	Asp	Ile	Lys	Pro	Arg
					245					250					255
Arg	Ile	Arg	Lys	Pro	Arg	Tyr	Gly	Ser	Pro	Pro	Gln	Arg	Asp	Pro	Asn
					260					265					270
Trp	Asn	Gly	Glu	Arg	Leu	Asn	Lys	Ser	His	Arg	His	Gln	Gly	Leu	Gly
					275					280					285
Gly	Thr	Leu	Pro	Pro	Arg	Thr	Phe	Ile	Asn	Arg	Asn	Ala	Ala	Gly	Thr
					290					295					300
Gly	Arg	Met	Ser	Ala	Pro	Arg	Asn	Tyr	Ser	Arg	Ser	Gly	Gly	Phe	Lys
305					310					315					320
Glu	Gly	Arg	Ala	Gly	Phe	Arg	Pro	Val	Glu	Ala	Gly	Gly	Gln	His	Gly
					325					330					335
Gly	Arg	Ser	Gly	Glu	Thr	Val	Lys	His	Glu	Ile	Ser	Tyr	Arg	Ser	Arg
					340					345					350
Arg	Leu	Glu	Gln	Thr	Ser	Val	Arg	Asp	Pro	Ser	Pro	Glu	Ala	Asp	Ala
					355					360					365
Pro	Val	Leu	Gly	Ser	Pro	Glu	Lys	Glu	Glu	Ala	Ala	Ser	Glu	Pro	Pro
					370					375					380
Ala	Ala	Ala	Pro	Asp	Ala	Ala	Pro	Pro	Pro	Pro	Asp	Arg	Pro	Ile	Glu
385					390					395					400
Lys	Lys	Ser	Tyr	Ser	Arg	Ala	Arg	Arg	Thr	Arg	Thr	Lys	Val	Gly	Asp
					405					410					415
Ala	Val	Lys	Leu	Ala	Glu	Glu	Val	Pro	Pro	Pro	Pro	Glu	Gly	Leu	Ile
					420					425					430
Pro	Ala	Pro	Pro	Val	Pro	Glu	Thr	Thr	Pro	Thr	Pro	Thr	Lys	Thr	
					435					440					445
Gly	Thr	Trp	Glu	Ala	Pro	Val	Asp	Ser	Ser	Thr	Ser	Gly	Leu	Glu	Gln
					450					455					460
Asp	Val	Ala	Gln	Leu	Asn	Ile	Ala	Glu	Gln	Asn	Trp	Ser	Pro	Gly	Gln
465					470					475					480
Pro	Ser	Phe	Leu	Gln	Pro	Arg	Glu	Leu	Arg	Gly	Met	Pro	Asn	His	Ile
					485					490					495
His	Met	Gly	Ala	Gly	Pro	Pro	Pro	Gln	Phe	Asn	Arg	Met	Glu	Glu	Met
					500					505					510
Gly	Val	Gln	Gly	Gly	Arg	Ala	Lys	Arg	Tyr	Ser	Ser	Gln	Arg	Gln	Arg
					515					520					525
Pro	Val	Pro	Glu	Pro	Pro	Ala	Pro	Pro	Val	His	Ile	Ser	Ile	Met	Glu
					530					535					540
Gly	His	Tyr	Tyr	Asp	Pro	Leu	Gln	Phe	Gln	Gly	Pro	Ile	Tyr	Thr	His
545					550					555					560
Gly	Asp	Ser	Pro	Ala	Pro	Leu	Pro	Pro	Gln	Gly	Met	Leu	Val	Gln	Pro
					565					570					575
Gly	Met	Asn	Leu	Pro	His	Pro	Gly	Leu	His	Pro	His	Gln	Thr	Pro	Ala
					580					585					590
Pro	Leu	Pro	Asn	Pro	Gly	Leu	Tyr	Pro	Pro	Pro	Val	Ser	Met	Ser	Pro
					595					600					605
Gly	Gln	Pro	Pro	Pro	Gln	Gln	Leu	Leu	Ala	Pro	Thr	Tyr	Phe	Ser	Ala
					610					615					620
Pro	Gly	Val	Met	Asn	Phe	Gly	Asn	Pro	Ser	Tyr	Pro	Tyr	Ala	Pro	Gly
625					630					635					640
Ala	Leu	Pro	Pro	Pro	Pro	Pro	His	Leu	Tyr	Pro	Asn	Thr	Gln	Ala	
					645					650					655
Pro	Ser	Gln	Val	Tyr	Gly	Gly	Val	Thr	Tyr	Tyr	Asn	Pro	Ala	Gln	Gln
					660					665					670
Gln	Val	Gln	Pro	Lys	Pro	Ser	Pro	Pro	Arg	Arg	Thr	Pro	Gln	Pro	Val
					675					680					685
Thr	Ile	Lys	Pro	Pro	Pro	Pro	Glu	Val	Val	Val	Ser	Arg	Gly	Ser	Ser
					690					695					700

Siemens 0022 Seq Listing.txt

<210> 44

<211> 560

<212> PRT

<213> Homo sapiens

<400> 44

Met	Pro	Gln	Thr	Arg	Ser	Gln	Ala	Gln	Ala	Thr	Ile	Ser	Phe	Pro	Lys
1		5				10					15				
Arg	Lys	Leu	Ser	Arg	Ala	Leu	Asn	Lys	Ala	Lys	Asn	Ser	Ser	Asp	Ala
		20				25					30				
Lys	Leu	Glu	Pro	Thr	Asn	Val	Gln	Thr	Val	Thr	Cys	Ser	Pro	Arg	Val
		35				40					45				
Lys	Ala	Leu	Pro	Leu	Ser	Pro	Arg	Lys	Arg	Leu	Gly	Asp	Asp	Asn	Leu
		50				55					60				
Cys	Asn	Thr	Pro	His	Leu	Pro	Pro	Cys	Ser	Pro	Pro	Lys	Gln	Gly	Lys
		65			70			75				80			
Lys	Glu	Asn	Gly	Pro	Pro	His	Ser	His	Thr	Leu	Lys	Gly	Arg	Arg	Leu
		85				90					95				
Val	Phe	Asp	Asn	Gln	Leu	Thr	Ile	Lys	Ser	Pro	Ser	Lys	Arg	Glu	Leu
		100				105					110				
Ala	Lys	Val	His	Gln	Asn	Lys	Ile	Leu	Ser	Ser	Val	Arg	Lys	Ser	Gln
		115				120					125				
Glu	Ile	Thr	Thr	Asn	Ser	Glu	Gln	Arg	Cys	Pro	Leu	Lys	Lys	Glu	Ser
		130				135					140				
Ala	Cys	Val	Arg	Leu	Phe	Lys	Gln	Glu	Gly	Thr	Cys	Tyr	Gln	Gln	Ala
		145			150					155			160		
Lys	Leu	Val	Leu	Asn	Thr	Ala	Val	Pro	Asp	Arg	Leu	Pro	Ala	Arg	Glu
		165				170					175				
Arg	Glu	Met	Asp	Val	Ile	Arg	Asn	Phe	Leu	Arg	Glu	His	Ile	Cys	Gly
		180				185					190				
Lys	Lys	Ala	Gly	Ser	Leu	Tyr	Leu	Ser	Gly	Ala	Pro	Gly	Thr	Gly	Lys
		195				200					205				
Thr	Ala	Cys	Leu	Ser	Arg	Ile	Leu	Gln	Asp	Leu	Lys	Lys	Glu	Leu	Lys
		210				215					220				
Gly	Phe	Lys	Thr	Ile	Met	Leu	Asn	Cys	Met	Ser	Leu	Arg	Thr	Ala	Gln
		225			230					235			240		
Ala	Val	Phe	Pro	Ala	Ile	Ala	Gln	Glu	Ile	Cys	Gln	Glu	Glu	Val	Ser
		245				250					255				
Arg	Pro	Ala	Gly	Lys	Asp	Met	Met	Arg	Lys	Leu	Glu	Lys	His	Met	Thr
		260				265					270				
Ala	Glu	Lys	Gly	Pro	Met	Ile	Val	Leu	Val	Leu	Asp	Glu	Met	Asp	Gln
		275				280					285				
Leu	Asp	Ser	Lys	Gly	Gln	Asp	Val	Leu	Tyr	Thr	Leu	Phe	Glu	Trp	Pro
		290				295					300				
Trp	Leu	Ser	Asn	Ser	His	Leu	Val	Leu	Ile	Gly	Ile	Ala	Asn	Thr	Leu
		305			310					315			320		
Asp	Leu	Thr	Asp	Arg	Ile	Leu	Pro	Arg	Leu	Gln	Ala	Arg	Glu	Lys	Cys
		325				330					335				
Lys	Pro	Gln	Leu	Leu	Asn	Phe	Pro	Pro	Tyr	Thr	Arg	Asn	Gln	Ile	Val
		340				345					350				
Thr	Ile	Leu	Gln	Asp	Arg	Leu	Asn	Gln	Val	Ser	Arg	Asp	Gln	Val	Leu
		355				360					365				
Asp	Asn	Ala	Ala	Val	Gln	Phe	Cys	Ala	Arg	Lys	Val	Ser	Ala	Val	Ser
		370				375					380				
Gly	Asp	Val	Arg	Lys	Ala	Leu	Asp	Val	Cys	Arg	Arg	Ala	Ile	Glu	Ile
		385			390					395			400		
Val	Glu	Ser	Asp	Val	Lys	Ser	Gln	Thr	Ile	Leu	Lys	Pro	Leu	Ser	Glu
		405				410					415				
Cys	Lys	Ser	Pro	Ser	Glu	Pro	Leu	Ile	Pro	Lys	Arg	Val	Gly	Leu	Ile
		420				425					430				

Siemens 0022 Seq Listing.txt

His Ile Ser Gln Val Ile Ser Glu Val Asp Gly Asn Arg Met Thr Leu
 435 440 445
 Ser Gln Glu Gly Ala Gln Asp Ser Phe Pro Leu Gln Gln Lys Ile Leu
 450 455 460
 Val Cys Ser Leu Met Leu Leu Ile Arg Gln Leu Lys Ile Lys Glu Val
 465 470 475 480
 Thr Leu Gly Lys Leu Tyr Glu Ala Tyr Ser Lys Val Cys Arg Lys Gln
 485 490 495
 Gln Val Ala Ala Val Asp Gln Ser Glu Cys Leu Ser Leu Ser Gly Leu
 500 505 510
 Leu Glu Ala Arg Gly Ile Leu Gly Leu Lys Arg Asn Lys Glu Thr Arg
 515 520 525
 Leu Thr Lys Val Phe Phe Lys Ile Glu Glu Lys Glu Ile Glu His Ala
 530 535 540
 Leu Lys Asp Lys Ala Leu Ile Gly Asn Ile Leu Ala Thr Gly Leu Pro
 545 550 555 560
 <210> 45

<211> 462

<212> PRT

<213> Homo sapiens

<400> 45
 Met Ala Ser Asn Ser Ser Cys Pro Thr Pro Gly Gly His Leu
 1 5 10 15
 Asn Gly Tyr Pro Val Pro Pro Tyr Ala Phe Phe Phe Pro Pro Met Leu
 20 25 30
 Gly Gly Leu Ser Pro Pro Gly Ala Leu Thr Thr Leu Gln His Gln Leu
 35 40 45
 Pro Val Ser Gly Tyr Ser Thr Pro Ser Pro Ala Thr Ile Glu Thr Gln
 50 55 60
 Ser Ser Ser Ser Glu Glu Ile Val Pro Ser Pro Pro Ser Pro Pro Pro
 65 70 75 80
 Leu Pro Arg Ile Tyr Lys Pro Cys Phe Val Cys Gln Asp Lys Ser Ser
 85 90 95
 Gly Tyr His Tyr Gly Val Ser Ala Cys Glu Gly Cys Lys Gly Phe Phe
 100 105 110
 Arg Arg Ser Ile Gln Lys Asn Met Val Tyr Thr Cys His Arg Asp Lys
 115 120 125
 Asn Cys Ile Ile Asn Lys Val Thr Arg Asn Arg Cys Gln Tyr Cys Arg
 130 135 140
 Leu Gln Lys Cys Phe Glu Val Gly Met Ser Lys Glu Ser Val Arg Asn
 145 150 155 160
 Asp Arg Asn Lys Lys Lys Glu Val Pro Lys Pro Glu Cys Ser Glu
 165 170 175
 Ser Tyr Thr Leu Thr Pro Glu Val Gly Glu Leu Ile Glu Lys Val Arg
 180 185 190
 Lys Ala His Gln Glu Thr Phe Pro Ala Leu Cys Gln Leu Gly Lys Tyr
 195 200 205
 Thr Thr Asn Asn Ser Ser Glu Gln Arg Val Ser Leu Asp Ile Asp Leu
 210 215 220
 Trp Asp Lys Phe Ser Glu Leu Ser Thr Lys Cys Ile Ile Lys Thr Val
 225 230 235 240
 Glu Phe Ala Lys Gln Leu Pro Gly Phe Thr Thr Leu Thr Ile Ala Asp
 245 250 255
 Gln Ile Thr Leu Leu Lys Ala Ala Cys Leu Asp Ile Leu Ile Leu Arg
 260 265 270
 Ile Cys Thr Arg Tyr Thr Pro Glu Gln Asp Thr Met Thr Phe Ser Asp
 275 280 285
 Gly Leu Thr Leu Asn Arg Thr Gln Met His Asn Ala Gly Phe Gly Pro
 290 295 300

Siemens 0022 Seq Listing.txt

Leu Thr Asp Leu Val Phe Ala Phe Ala Asn Gln Leu Leu Pro Leu Glu
 305 310 315 320
 Met Asp Asp Ala Glu Thr Gly Leu Leu Ser Ala Ile Cys Leu Ile Cys
 325 330 335
 Gly Asp Arg Gln Asp Leu Glu Gln Pro Asp Arg Val Asp Met Leu Gln
 340 345 350
 Glu Pro Leu Leu Glu Ala Leu Lys Val Tyr Val Arg Lys Arg Arg Pro
 355 360 365
 Ser Arg Pro His Met Phe Pro Lys Met Leu Met Lys Ile Thr Asp Leu
 370 375 380
 Arg Ser Ile Ser Ala Lys Gly Ala Glu Arg Val Ile Thr Leu Lys Met
 385 390 395 400
 Glu Ile Pro Gly Ser Met Pro Pro Leu Ile Gln Glu Met Leu Glu Asn
 405 410 415
 Ser Glu Gly Leu Asp Thr Leu Ser Gly Gln Pro Gly Gly Gly Arg
 420 425 430
 Asp Gly Gly Leu Ala Pro Pro Gly Ser Cys Ser Pro Ser Leu
 435 440 445
 Ser Pro Ser Ser Asn Arg Ser Ser Pro Ala Thr His Ser Pro
 450 455 460
 <210> 46

<211> 1531

<212> PRT

<213> Homo sapiens

<400> 46
 Met Glu Val Ser Pro Leu Gln Pro Val Asn Glu Asn Met Gln Val Asn
 1 5 10 15
 Lys Ile Lys Lys Asn Glu Asp Ala Lys Lys Arg Leu Ser Val Glu Arg
 20 25 30
 Ile Tyr Gln Lys Lys Thr Gln Leu Glu His Ile Leu Leu Arg Pro Asp
 35 40 45
 Thr Tyr Ile Gly Ser Val Glu Leu Val Thr Gln Gln Met Trp Val Tyr
 50 55 60
 Asp Glu Asp Val Gly Ile Asn Tyr Arg Glu Val Thr Phe Val Pro Gly
 65 70 75 80
 Leu Tyr Lys Ile Phe Asp Glu Ile Leu Val Asn Ala Ala Asp Asn Lys
 85 90 95
 Gln Arg Asp Pro Lys Met Ser Cys Ile Arg Val Thr Ile Asp Pro Glu
 100 105 110
 Asn Asn Leu Ile Ser Ile Trp Asn Asn Gly Lys Gly Ile Pro Val Val
 115 120 125
 Glu His Val Glu Lys Met Tyr Val Pro Ala Leu Ile Phe Gly Gln
 130 135 140
 Leu Leu Thr Ser Ser Asn Tyr Asp Asp Asp Glu Lys Lys Val Thr Gly
 145 150 155 160
 Gly Arg Asn Gly Tyr Gly Ala Lys Leu Cys Asn Ile Phe Ser Thr Lys
 165 170 175
 Phe Thr Val Glu Thr Ala Ser Arg Glu Tyr Lys Lys Met Phe Lys Gln
 180 185 190
 Thr Trp Met Asp Asn Met Gly Arg Ala Gly Glu Met Glu Leu Lys Pro
 195 200 205
 Phe Asn Gly Glu Asp Tyr Thr Cys Ile Thr Phe Gln Pro Asp Leu Ser
 210 215 220
 Lys Phe Lys Met Gln Ser Leu Asp Lys Asp Ile Val Ala Leu Met Val
 225 230 235 240
 Arg Arg Ala Tyr Asp Ile Ala Gly Ser Thr Lys Asp Val Lys Val Phe
 245 250 255
 Leu Asn Gly Asn Lys Leu Pro Val Lys Gly Phe Arg Ser Tyr Val Asp
 260 265 270

Siemens 0022 Seq Listing.txt

Met Tyr Leu Lys Asp Lys Leu Asp Glu Thr Gly Asn Ser Leu Lys Val
 275 280 285
 Ile His Glu Gln Val Asn His Arg Trp Glu Val Cys Leu Thr Met Ser
 290 295 300
 Glu Lys Gly Phe Gln Gln Ile Ser Phe Val Asn Ser Ile Ala Thr Ser
 305 310 315 320
 Lys Gly Gly Arg His Val Asp Tyr Val Ala Asp Gln Ile Val Thr Lys
 325 330 335
 Leu Val Asp Val Val Lys Lys Asn Lys Gly Gly Val Ala Val Lys
 340 345 350
 Ala His Gln Val Lys Asn His Met Trp Ile Phe Val Asn Ala Leu Ile
 355 360 365
 Glu Asn Pro Thr Phe Asp Ser Gln Thr Lys Glu Asn Met Thr Leu Gln
 370 375 380
 Pro Lys Ser Phe Gly Ser Thr Cys Gln Leu Ser Glu Lys Phe Ile Lys
 385 390 395 400
 Ala Ala Ile Gly Cys Gly Ile Val Glu Ser Ile Leu Asn Trp Val Lys
 405 410 415
 Phe Lys Ala Gln Val Gln Leu Asn Lys Lys Cys Ser Ala Val Lys His
 420 425 430
 Asn Arg Ile Lys Gly Ile Pro Lys Leu Asp Asp Ala Asn Asp Ala Gly
 435 440 445
 Gly Arg Asn Ser Thr Glu Cys Thr Leu Ile Leu Thr Glu Gly Asp Ser
 450 455 460
 Ala Lys Thr Leu Ala Val Ser Gly Leu Gly Val Val Gly Arg Asp Lys
 465 470 475 480
 Tyr Gly Val Phe Pro Leu Arg Gly Lys Ile Leu Asn Val Arg Glu Ala
 485 490 495
 Ser His Lys Gln Ile Met Glu Asn Ala Glu Ile Asn Asn Ile Ile Lys
 500 505 510
 Ile Val Gly Leu Gln Tyr Lys Lys Asn Tyr Glu Asp Glu Asp Ser Leu
 515 520 525
 Lys Thr Leu Arg Tyr Gly Lys Ile Met Ile Met Thr Asp Gln Asp Gln
 530 535 540
 Asp Gly Ser His Ile Lys Gly Leu Leu Ile Asn Phe Ile His His Asn
 545 550 555 560
 Trp Pro Ser Leu Leu Arg His Arg Phe Leu Glu Glu Phe Ile Thr Pro
 565 570 575
 Ile Val Lys Val Ser Lys Asn Lys Gln Glu Met Ala Phe Tyr Ser Leu
 580 585 590
 Pro Glu Phe Glu Glu Trp Lys Ser Ser Thr Pro Asn His Lys Lys Trp
 595 600 605
 Lys Val Lys Tyr Tyr Lys Gly Leu Gly Thr Ser Thr Ser Lys Glu Ala
 610 615 620
 Lys Glu Tyr Phe Ala Asp Met Lys Arg His Arg Ile Gln Phe Lys Tyr
 625 630 635 640
 Ser Gly Pro Glu Asp Asp Ala Ala Ile Ser Leu Ala Phe Ser Lys Lys
 645 650 655
 Gln Ile Asp Asp Arg Lys Glu Trp Leu Thr Asn Phe Met Glu Asp Arg
 660 665 670
 Arg Gln Arg Lys Leu Leu Gly Leu Pro Glu Asp Tyr Leu Tyr Gly Gln
 675 680 685
 Thr Thr Thr Tyr Leu Thr Tyr Asn Asp Phe Ile Asn Lys Glu Leu Ile
 690 695 700
 Leu Phe Ser Asn Ser Asp Asn Glu Arg Ser Ile Pro Ser Met Val Asp
 705 710 715 720
 Gly Leu Lys Pro Gly Gln Arg Lys Val Leu Phe Thr Cys Phe Lys Arg
 725 730 735
 Asn Asp Lys Arg Glu Val Lys Val Ala Gln Leu Ala Gly Ser Val Ala
 740 745 750
 Glu Met Ser Ser Tyr His His Gly Glu Met Ser Leu Met Met Thr Ile
 755 760 765
 Ile Asn Leu Ala Gln Asn Phe Val Gly Ser Asn Asn Leu Asn Leu Leu

Siemens 0022 Seq Listing.txt

770	775	780
Gln Pro Ile Gly Gln Phe Gly Thr Arg Leu His	Gly Gly Lys Asp Ser	
785	790	795
Ala Ser Pro Arg Tyr Ile Phe Thr Met Leu Ser	Ser Ser Leu Ala Arg	Leu
805	810	815
Leu Phe Pro Pro Lys Asp Asp His	Thr Leu Lys Phe Leu Tyr	Asp Asp
820	825	830
Asn Gln Arg Val Glu Pro Glu Trp Tyr Ile Pro	Ile Ile Pro Met Val	
835	840	845
Leu Ile Asn Gly Ala Glu Gly Ile Gly Thr	Gly Trp Ser Cys Lys Ile	
850	855	860
Pro Asn Phe Asp Val Arg Glu Ile Val Asn	Asn Ile Arg Arg	Leu Met
865	870	875
Asp Gly Glu Glu Pro Leu Pro Met Leu	Pro Ser Tyr Lys Asn	Phe Lys
885	890	895
Gly Thr Ile Glu Glu Leu Ala Pro Asn	Gln Tyr Val Ile Ser	Gly Glu
900	905	910
Val Ala Ile Leu Asn Ser Thr Thr	Ile Glu Ile Ser Glu	Leu Pro Val
915	920	925
Arg Thr Trp Thr Gln Thr Tyr Lys Glu Gln	Val Leu Glu Pro Met	Leu
930	935	940
Asn Gly Thr Glu Lys Thr Pro Pro Leu Ile	Thr Asp Tyr Arg Glu	Tyr
945	950	955
His Thr Asp Thr Thr Val Lys Phe Val Val	Lys Met Thr Glu Glu	Lys
965	970	975
Leu Ala Glu Ala Glu Arg Val Gly	Leu His Lys Val Phe	Lys Leu Gln
980	985	990
Thr Ser Leu Thr Cys Asn Ser Met	Val Leu Phe Asp His	Val Gly Cys
995	1000	1005
Leu Lys Lys Tyr Asp Thr Val	Leu Asp Ile Leu Arg	Asp Phe Phe
1010	1015	1020
Glu Leu Arg Leu Lys Tyr	Tyr Gly Leu Arg Lys	Glu Trp Leu Leu
1025	1030	1035
Gly Met Leu Gly Ala Glu Ser	Ala Lys Leu Asn	Asn Gln Ala Arg
1040	1045	1050
Phe Ile Leu Glu Lys Ile Asp	Gly Lys Ile Ile	Ile Glu Asn Lys
1055	1060	1065
Pro Lys Lys Glu Leu Ile Lys	Val Leu Ile Gln Arg	Gly Tyr Asp
1070	1075	1080
Ser Asp Pro Val Lys Ala	Trp Lys Glu Ala Gln	Gln Lys Val Pro
1085	1090	1095
Asp Glu Glu Glu Asn Glu	Ser Asp Asn Glu	Lys Glu Thr Glu
1100	1105	1110
Lys Ser Asp Ser Val Thr Asp	Ser Gly Pro Thr Phe	Asn Tyr Leu
1115	1120	1125
Leu Asp Met Pro Leu Trp Tyr	Leu Thr Lys Glu	Lys Lys Asp Glu
1130	1135	1140
Leu Cys Arg Leu Arg Asn	Glu Lys Glu Gln Glu	Leu Asp Thr Leu
1145	1150	1155
Lys Arg Lys Ser Pro Ser Asp	Leu Trp Lys Glu	Asp Leu Ala Thr
1160	1165	1170
Phe Ile Glu Glu Leu Glu Ala	Val Glu Ala Lys	Glu Lys Gln Asp
1175	1180	1185
Glu Gln Val Gly Leu Pro	Gly Lys Gly Lys	Ala Lys Gly Lys
1190	1195	1200
Lys Thr Gln Met Ala Glu	Val Leu Pro Ser Pro	Arg Gly Gln Arg
1205	1210	1215
Val Ile Pro Arg Ile Thr	Ile Glu Met Lys Ala	Glu Ala Glu Lys
1220	1225	1230
Lys Asn Lys Lys Lys Ile	Lys Asn Glu Asn Thr	Glu Gly Ser Pro
1235	1240	1245
Gln Glu Asp Gly Val Glu	Leu Glu Gly Leu Lys	Gln Arg Leu Glu
1250	1255	1260

Siemens 0022 Seq Listing.txt

Lys	Lys	Gln	Lys	Arg	Glu	Pro	Gly	Thr	Lys	Thr	Lys	Gln	Thr	
1265						1270			1275					
Thr	Leu	Ala	Phe	Lys	Pro	Ile	Lys	Lys	Gly	Lys	Lys	Arg	Asn	Pro
1280						1285			1290					
Trp	Ser	Asp	Ser	Glu	Ser	Asp	Arg	Ser	Ser	Asp	Glu	Ser	Asn	Phe
1295						1300			1305					
Asp	Val	Pro	Pro	Arg	Glu	Thr	Glu	Pro	Arg	Arg	Ala	Ala	Thr	Lys
1310						1315			1320					
Thr	Lys	Phe	Thr	Met	Asp	Leu	Asp	Ser	Asp	Glu	Asp	Phe	Ser	Asp
1325						1330			1335					
Phe	Asp	Glu	Lys	Thr	Asp	Asp	Glu	Asp	Phe	Val	Pro	Ser	Asp	Ala
1340						1345			1350					
Ser	Pro	Pro	Lys	Thr	Lys	Thr	Ser	Pro	Lys	Leu	Ser	Asn	Lys	Glu
1355						1360			1365					
Leu	Lys	Pro	Gln	Lys	Ser	Val	Val	Ser	Asp	Leu	Glu	Ala	Asp	Asp
1370						1375			1380					
Val	Lys	Gly	Ser	Val	Pro	Leu	Ser	Ser	Ser	Pro	Pro	Ala	Thr	His
1385						1390			1395					
Phe	Pro	Asp	Glu	Thr	Glu	Ile	Thr	Asn	Pro	Val	Pro	Lys	Lys	Asn
1400						1405			1410					
Val	Thr	Val	Lys	Lys	Thr	Ala	Ala	Lys	Ser	Gln	Ser	Ser	Thr	Ser
1415						1420			1425					
Thr	Thr	Gly	Ala	Lys	Lys	Arg	Ala	Ala	Pro	Lys	Gly	Thr	Lys	Arg
1430						1435			1440					
Asp	Pro	Ala	Leu	Asn	Ser	Gly	Val	Ser	Gln	Lys	Pro	Asp	Pro	Ala
1445						1450			1455					
Lys	Thr	Lys	Asn	Arg	Arg	Lys	Arg	Lys	Pro	Ser	Thr	Ser	Asp	Asp
1460						1465			1470					
Ser	Asp	Ser	Asn	Phe	Glu	Lys	Ile	Val	Ser	Lys	Ala	Val	Thr	Ser
1475						1480			1485					
Lys	Lys	Ser	Lys	Gly	Glu	Ser	Asp	Asp	Phe	His	Met	Asp	Phe	Asp
1490						1495			1500					
Ser	Ala	Val	Ala	Pro	Arg	Ala	Lys	Ser	Val	Arg	Ala	Lys	Lys	Pro
1505						1510			1515					
Ile	Lys	Tyr	Leu	Glu	Glu	Ser	Asp	Glu	Asp	Asp	Leu	Phe		
1520						1525			1530					

<210> 47

<211> 258

<212> PRT

<213> Homo sapiens

<400> 47

Met	Leu	Pro	Leu	Cys	Leu	Val	Ala	Ala	Leu	Leu	Leu	Ala	Gly	Pro	
1				5		10			15						
Gly	Pro	Ser	Leu	Gly	Asp	Glu	Ala	Ile	His	Cys	Pro	Pro	Cys	Ser	Glu
				20		25			30						
Glu	Lys	Leu	Ala	Arg	Cys	Arg	Pro	Pro	Val	Gly	Cys	Glu	Glu	Leu	Val
				35		40			45						
Arg	Glu	Pro	Gly	Cys	Gly	Cys	Ala	Thr	Cys	Ala	Leu	Gly	Leu	Gly	
				50		55			60						
Met	Pro	Cys	Gly	Val	Tyr	Thr	Pro	Arg	Cys	Gly	Ser	Gly	Leu	Arg	Cys
65					70				75			80			
Tyr	Pro	Pro	Arg	Gly	Val	Glu	Lys	Pro	Leu	His	Thr	Leu	Met	His	Gly
						85			90			95			
Gln	Gly	Val	Cys	Met	Glu	Leu	Ala	Glu	Ile	Glu	Ala	Ile	Gln	Glu	Ser
					100			105			110				
Leu	Gln	Pro	Ser	Asp	Lys	Asp	Gly	Asp	His	Pro	Asn	Asn	Ser	Phe	
					115			120			125				
Ser	Pro	Cys	Ser	Ala	His	Asp	Arg	Arg	Cys	Leu	Gln	Lys	His	Phe	Ala
					130			135			140				

Siemens 0022 Seq Listing.txt

Lys Ile Arg Asp Arg Ser Thr Ser Gly Gly Lys Met Lys Val Asn Gly
145 150 155 160
Ala Pro Arg Glu Asp Ala Arg Pro Val Pro Gln Gly Ser Cys Gln Ser
165 170 175
Glu Leu His Arg Ala Leu Glu Arg Leu Ala Ala Ser Gln Ser Arg Thr
180 185 190
His Glu Asp Leu Tyr Ile Ile Pro Ile Pro Asn Cys Asp Arg Asn Gly
195 200 205
Asn Phe His Pro Lys Gln Cys His Pro Ala Leu Asp Gly Gln Arg Gly
210 215 220
Lys Cys Trp Cys Val Asp Arg Lys Thr Gly Val Lys Leu Pro Gly Gly
225 230 235 240
Leu Glu Pro Lys Gly Glu Leu Asp Cys His Gln Leu Ala Asp Ser Phe
245 250 255
Arg Glu

<210> 48

<211> 378

<212> PRT

<213> Homo sapiens

<400> 48

Met Asp Leu Gly Lys Pro Met Lys Ser Val Leu Val Val Ala Leu Leu
1 5 10 15
Val Ile Phe Gln Val Cys Leu Cys Gln Asp Glu Val Thr Asp Asp Tyr
20 25 30
Ile Gly Asp Asn Thr Thr Val Asp Tyr Thr Leu Phe Glu Ser Leu Cys
35 40 45
Ser Lys Lys Asp Val Arg Asn Phe Lys Ala Trp Phe Leu Pro Ile Met
50 55 60
Tyr Ser Ile Ile Cys Phe Val Gly Leu Leu Gly Asn Gly Leu Val Val
65 70 75 80
Leu Thr Tyr Ile Tyr Phe Lys Arg Leu Lys Thr Met Thr Asp Thr Tyr
85 90 95
Leu Leu Asn Leu Ala Val Ala Asp Ile Leu Phe Leu Leu Thr Leu Pro
100 105 110
Phe Trp Ala Tyr Ser Ala Ala Lys Ser Trp Val Phe Gly Val His Phe
115 120 125
Cys Lys Leu Ile Phe Ala Ile Tyr Lys Met Ser Phe Phe Ser Gly Met
130 135 140
Leu Leu Leu Cys Ile Ser Ile Asp Arg Tyr Val Ala Ile Val Gln
145 150 155 160
Ala Val Ser Ala His Arg His Arg Ala Arg Val Leu Leu Ile Ser Lys
165 170 175
Leu Ser Cys Val Gly Ile Trp Ile Leu Ala Thr Val Leu Ser Ile Pro
180 185 190
Glu Leu Leu Tyr Ser Asp Leu Gln Arg Ser Ser Ser Glu Gln Ala Met
195 200 205
Arg Cys Ser Leu Ile Thr Glu His Val Glu Ala Phe Ile Thr Ile Gln
210 215 220
Val Ala Gln Met Val Ile Gly Phe Leu Val Pro Leu Leu Ala Met Ser
225 230 235 240
Phe Cys Tyr Leu Val Ile Ile Arg Thr Leu Leu Gln Ala Arg Asn Phe
245 250 255
Glu Arg Asn Lys Ala Ile Lys Val Ile Ile Ala Val Val Val Phe
260 265 270
Ile Val Phe Gln Leu Pro Tyr Asn Gly Val Val Leu Ala Gln Thr Val
275 280 285
Ala Asn Phe Asn Ile Thr Ser Ser Thr Cys Glu Leu Ser Lys Gln Leu
290 295 300

Siemens 0022 Seq Listing.txt

Asn Ile Ala Tyr Asp Val Thr Tyr Ser Leu Ala Cys Val Arg Cys Cys
305 310 315 320
Val Asn Pro Phe Leu Tyr Ala Phe Ile Gly Val Lys Phe Arg Asn Asp
325 330 335
Leu Phe Lys Leu Phe Lys Asp Leu Gly Cys Leu Ser Gln Glu Gln Leu
340 345 350
Arg Gln Trp Ser Ser Cys Arg His Ile Arg Arg Ser Ser Met Ser Val
355 360 365
Glu Ala Glu Thr Thr Thr Phe Ser Pro
370 375
<210> 49

<211> 411

<212> PRT

<213> Homo sapiens

<400> 49
Met Ser Lys Arg Pro Ser Tyr Ala Pro Pro Pro Thr Pro Ala Pro Ala
1 5 10 15
Thr Gln Met Pro Ser Thr Pro Gly Phe Val Gly Tyr Asn Pro Tyr Ser
20 25 30
His Leu Ala Tyr Asn Asn Tyr Arg Leu Gly Gly Asn Pro Ser Thr Asn
35 40 45
Ser Arg Val Thr Ala Ser Ser Gly Ile Thr Ile Pro Lys Pro Pro Lys
50 55 60
Pro Pro Asp Lys Pro Leu Met Pro Tyr Met Arg Tyr Ser Arg Lys Val
65 70 75 80
Trp Asp Gln Val Lys Ala Ser Asn Pro Asp Leu Lys Leu Trp Glu Ile
85 90 95
Gly Lys Ile Ile Gly Gly Met Trp Arg Asp Leu Thr Asp Glu Glu Lys
100 105 110
Gln Glu Tyr Leu Asn Glu Tyr Glu Ala Glu Lys Ile Glu Tyr Asn Glu
115 120 125
Ser Met Lys Ala Tyr His Asn Ser Pro Ala Tyr Leu Ala Tyr Ile Asn
130 135 140
Ala Lys Ser Arg Ala Glu Ala Ala Leu Glu Glu Glu Ser Arg Gln Arg
145 150 155 160
Gln Ser Arg Met Glu Lys Gly Glu Pro Tyr Met Ser Ile Gln Pro Ala
165 170 175
Glu Asp Pro Asp Asp Tyr Asp Asp Gly Phe Ser Met Lys His Thr Ala
180 185 190
Thr Ala Arg Phe Gln Arg Asn His Arg Leu Ile Ser Glu Ile Leu Ser
195 200 205
Glu Ser Val Val Pro Asp Val Arg Ser Val Val Thr Thr Ala Arg Met
210 215 220
Gln Val Leu Lys Arg Gln Val Gln Ser Leu Met Val His Gln Arg Lys
225 230 235 240
Leu Glu Ala Glu Leu Leu Gln Ile Glu Glu Arg His Gln Glu Lys Lys
245 250 255
Arg Lys Phe Leu Glu Ser Thr Asp Ser Phe Asn Asn Glu Leu Lys Arg
260 265 270
Leu Cys Gly Leu Lys Val Glu Val Asp Met Glu Lys Ile Ala Ala Glu
275 280 285
Ile Ala Gln Ala Glu Glu Gln Ala Arg Lys Arg Gln Glu Glu Arg Glu
290 295 300
Lys Glu Ala Ala Glu Gln Ala Glu Arg Ser Gln Ser Ser Ile Val Pro
305 310 315 320
Glu Glu Glu Gln Ala Ala Asn Lys Gly Glu Glu Lys Lys Asp Asp Glu
325 330 335
Asn Ile Pro Met Glu Thr Glu Glu Thr His Leu Glu Glu Thr Thr Glu
340 345 350

Siemens 0022 Seq Listing.txt

Ser Gln Gln Asn Gly Glu Glu Gly Thr Ser Thr Pro Glu Asp Lys Glu
 355 360 365
 Ser Gly Gln Glu Gly Val Asp Ser Met Ala Glu Glu Gly Thr Ser Asp
 370 375 380
 Ser Asn Thr Gly Ser Glu Ser Asn Ser Ala Thr Val Glu Glu Pro Pro
 385 390 395 400
 Thr Asp Pro Ile Pro Glu Asp Glu Lys Lys Glu
 405 410

<210> 50

<211> 593

<212> PRT

<213> Homo sapiens

<400> 50
 Met Ser Val Arg Tyr Ser Ser Lys His Tyr Ser Ser Arg Ser
 1 5 10 15
 Gly Gly Gly Gly Gly Gly Cys Gly Gly Gly Gly Val Ser
 20 25 30
 Ser Leu Arg Ile Ser Ser Lys Gly Ser Leu Gly Gly Phe Ser
 35 40 45
 Ser Gly Gly Phe Ser Gly Gly Ser Phe Ser Arg Gly Ser Ser Gly Gly
 50 55 60
 Gly Cys Phe Gly Gly Ser Ser Gly Gly Tyr Gly Gly Leu Gly Gly Phe
 65 70 75 80
 Gly Gly Gly Ser Phe His Gly Ser Tyr Gly Ser Ser Ser Phe Gly Gly
 85 90 95
 Ser Tyr Gly Gly Ser Phe Gly Gly Asn Phe Gly Gly Ser Phe
 100 105 110
 Gly Gly Gly Ser Phe Gly Gly Phe Gly Gly Gly Phe Gly
 115 120 125
 Gly Gly Phe Gly Gly Phe Gly Gly Asp Gly Gly Leu Leu Ser Gly
 130 135 140
 Asn Glu Lys Val Thr Met Gln Asn Leu Asn Asp Arg Leu Ala Ser Tyr
 145 150 155 160
 Leu Asp Lys Val Arg Ala Leu Glu Glu Ser Asn Tyr Glu Leu Glu Gly
 165 170 175
 Lys Ile Lys Glu Trp Tyr Glu Lys His Gly Asn Ser His Gln Gly Glu
 180 185 190
 Pro Arg Asp Tyr Ser Lys Tyr Lys Thr Ile Asp Asp Leu Lys Asn
 195 200 205
 Gln Ile Leu Asn Leu Thr Thr Asp Asn Ala Asn Ile Leu Leu Gln Ile
 210 215 220
 Asp Asn Ala Arg Leu Ala Ala Asp Asp Phe Arg Leu Lys Tyr Glu Asn
 225 230 235 240
 Glu Val Ala Leu Arg Gln Ser Val Glu Ala Asp Ile Asn Gly Leu Arg
 245 250 255
 Arg Val Leu Asp Glu Leu Thr Leu Thr Lys Ala Asp Leu Glu Met Gln
 260 265 270
 Ile Glu Ser Leu Thr Glu Glu Leu Ala Tyr Leu Lys Lys Asn His Glu
 275 280 285
 Glu Glu Met Lys Asp Leu Arg Asn Val Ser Thr Gly Asp Val Asn Val
 290 295 300
 Glu Met Asn Ala Ala Pro Gly Val Asp Leu Thr Gln Leu Leu Asn Asn
 305 310 315 320
 Met Arg Ser Gln Tyr Glu Gln Leu Ala Glu Gln Asn Arg Lys Asp Ala
 325 330 335
 Glu Ala Trp Phe Asn Glu Lys Ser Lys Glu Leu Thr Thr Glu Ile Asp
 340 345 350

Siemens 0022 Seq Listing.txt

Asn Asn Ile Glu Gln Ile Ser Ser Tyr Lys Ser Glu Ile Thr Glu Leu
355 360 365
Arg Arg Asn Val Gln Ala Leu Glu Ile Glu Leu Gln Ser Gln Leu Ala
370 375 380
Leu Lys Gln Ser Leu Glu Ala Ser Leu Ala Glu Thr Glu Gly Arg Tyr
385 390 395 400
Cys Val Gln Leu Ser Gln Ile His Ala Gln Ile Ser Ala Leu Glu Glu
405 410 415
Gln Leu Gln Gln Ile Arg Ala Glu Thr Glu Cys Gln Asn Thr Glu Tyr
420 425 430
Gln Gln Leu Leu Asp Ile Lys Ile Arg Leu Glu Asn Glu Ile Gln Thr
435 440 445
Tyr Arg Ser Leu Leu Glu Gly Glu Gly Ser Ser Gly Gly Gly Arg
450 455 460
Gly Gly Gly Ser Phe Gly Gly Tyr Gly Gly Ser Ser Gly Gly
465 470 475 480
Gly Ser Ser Gly Gly Tyr Gly Gly His Gly Gly Ser Ser Gly
485 490 495
Gly Gly Tyr Gly Gly Ser Ser Gly Gly Ser Ser Gly Gly Gly
500 505 510
Tyr Gly Gly Ser Ser Ser Gly Gly His Gly Gly Ser Ser Ser
515 520 525
Gly Gly His Gly Gly Ser Ser Gly Gly Tyr Gly Gly Ser Ser
530 535 540
Gly Gly Gly Gly Gly Tyr Gly Gly Ser Ser Gly Gly Gly Ser
545 550 555 560
Ser Ser Gly Gly Gly Tyr Gly Gly Ser Ser Ser Gly Gly His Lys
565 570 575
Ser Ser Ser Ser Gly Ser Val Gly Glu Ser Ser Ser Lys Gly Pro Arg
580 585 590
Tyr

<210> 51
<211> 494
<212> PRT
<213> Homo sapiens

<400> 51
Met Asp Leu Ser Asn Asn Thr Met Ser Leu Ser Val Arg Thr Pro Gly
1 5 10 15
Leu Ser Arg Arg Leu Ser Ser Gln Ser Val Ile Gly Arg Pro Arg Gly
20 25 30
Met Ser Ala Ser Ser Val Gly Ser Gly Tyr Gly Gly Ser Ala Phe Gly
35 40 45
Phe Gly Ala Ser Cys Gly Gly Phe Ser Ala Ala Ser Met Phe Gly
50 55 60
Ser Ser Ser Gly Phe Gly Gly Ser Gly Ser Ser Met Ala Gly Gly
65 70 75 80
Leu Gly Ala Gly Tyr Gly Arg Ala Leu Gly Gly Ser Phe Gly Gly
85 90 95
Leu Gly Met Gly Phe Gly Gly Ser Pro Gly Gly Ser Leu Gly Ile
100 105 110
Leu Ser Gly Asn Asp Gly Gly Leu Leu Ser Gly Ser Glu Lys Glu Thr
115 120 125
Met Gln Asn Leu Asn Asp Arg Leu Ala Ser Tyr Leu Asp Lys Val Arg
130 135 140
Ala Leu Glu Glu Ala Asn Thr Glu Leu Glu Asn Lys Ile Arg Glu Trp
145 150 155 160

Siemens 0022 Seq Listing.txt

Tyr Glu Thr Arg Gly Thr Gly Thr Ala Asp Ala Ser Gln Ser Asp Tyr
 165 170 175
 Ser Lys Tyr Tyr Pro Leu Ile Glu Asp Leu Arg Asn Lys Ile Ile Ser
 180 185 190
 Ala Ser Ile Gly Asn Ala Gln Leu Leu Leu Gln Ile Asp Asn Ala Arg
 195 200 205
 Leu Ala Ala Glu Asp Phe Arg Met Lys Tyr Glu Asn Glu Leu Ala Leu
 210 215 220
 Arg Gln Gly Val Glu Ala Asp Ile Asn Gly Leu Arg Arg Val Leu Asp
 225 230 235 240
 Glu Leu Thr Leu Thr Arg Thr Asp Leu Glu Met Gln Ile Glu Ser Leu
 245 250 255
 Asn Glu Glu Leu Ala Tyr Met Lys Lys Asn His Glu Asp Glu Leu Gln
 260 265 270
 Ser Phe Arg Val Gly Gly Pro Gly Glu Val Ser Val Glu Met Asp Ala
 275 280 285
 Ala Pro Gly Val Asp Leu Thr Arg Leu Leu Asn Asp Met Arg Ala Gln
 290 295 300
 Tyr Glu Thr Ile Ala Glu Gln Asn Arg Lys Asp Ala Glu Ala Trp Phe
 305 310 315 320
 Ile Glu Lys Ser Gly Glu Leu Arg Lys Glu Ile Ser Thr Asn Thr Glu
 325 330 335
 Gln Leu Gln Ser Ser Lys Ser Glu Val Thr Asp Leu Arg Arg Ala Phe
 340 345 350
 Gln Asn Leu Glu Ile Glu Leu Gln Ser Gln Leu Ala Met Lys Lys Ser
 355 360 365
 Leu Glu Asp Ser Leu Ala Glu Ala Glu Gly Asp Tyr Cys Ala Gln Leu
 370 375 380
 Ser Gln Val Gln Gln Leu Ile Ser Asn Leu Glu Ala Gln Leu Leu Gln
 385 390 395 400
 Val Arg Ala Asp Ala Glu Arg Gln Asn Val Asp His Gln Arg Leu Leu
 405 410 415
 Asn Val Lys Ala Arg Leu Glu Leu Glu Ile Glu Thr Tyr Arg Arg Leu
 420 425 430
 Leu Asp Gly Glu Ala Gln Gly Asp Gly Leu Glu Glu Ser Leu Phe Val
 435 440 445
 Thr Asp Ser Lys Ser Gln Ala Gln Ser Thr Asp Ser Ser Lys Asp Pro
 450 455 460
 Thr Lys Thr Arg Lys Ile Lys Thr Val Val Gln Glu Met Val Asn Gly
 465 470 475 480
 Glu Val Val Ser Ser Gln Val Gln Glu Ile Glu Glu Leu Met
 485 490

<210> 52

<211> 361

<212> PRT

<213> Homo sapiens

<400> 52

Cys Asn Trp Phe Cys Glu Gly Ser Phe Asn Gly Ser Glu Lys Glu Thr
 1 5 10 15
 Met Gln Phe Leu Asn Asp Arg Leu Ala Ser Tyr Leu Glu Lys Val Arg
 20 25 30
 His Val Glu Arg Asp Asn Ala Glu Leu Glu Asn Leu Ile Arg Glu Arg
 35 40 45
 Ser Gln Gln Gln Glu Pro Leu Leu Cys Pro Ser Tyr Gln Ser Tyr Phe
 50 55 60
 Lys Thr Ile Glu Glu Leu Gln Gln Lys Ile Leu Cys Ser Lys Ser Glu
 65 70 75 80

Siemens 0022 Seq Listing.txt

Asn Ala Arg Leu Val Val Gln Ile Asp Asn Ala Lys Leu Ala Ala Asp
 85 90 95
 Asp Phe Arg Thr Lys Tyr Gln Thr Glu Gln Ser Leu Arg Gln Leu Val
 100 105 110
 Glu Ser Asp Ile Asn Ser Leu Arg Arg Ile Leu Asp Glu Leu Thr Leu
 115 120 125
 Cys Arg Ser Asp Leu Glu Ala Gln Met Glu Ser Leu Lys Glu Glu Leu
 130 135 140
 Leu Ser Leu Lys Gln Asn His Glu Gln Glu Val Asn Thr Leu Arg Cys
 145 150 155 160
 Gln Leu Gly Asp Arg Leu Asn Val Glu Val Asp Ala Ala Pro Ala Val
 165 170 175
 Asp Leu Asn Gln Val Leu Asn Glu Thr Arg Asn Gln Tyr Glu Ala Leu
 180 185 190
 Val Glu Thr Asn Arg Arg Glu Val Glu Gln Trp Phe Ala Thr Gln Thr
 195 200 205
 Glu Glu Leu Asn Lys Gln Val Val Ser Ser Ser Glu Gln Leu Gln Ser
 210 215 220
 Tyr Gln Ala Glu Ile Glu Leu Arg Arg Thr Val Asn Ala Leu Glu
 225 230 235 240
 Ile Glu Leu Gln Ala Gln His Asn Leu Arg Tyr Ser Leu Glu Asn Thr
 245 250 255
 Leu Thr Glu Ser Glu Ala Arg Tyr Ser Ser Gln Leu Ser Gln Val Gln
 260 265 270
 Ser Leu Ile Thr Asn Val Glu Ser Gln Leu Ala Glu Ile Arg Ser Asp
 275 280 285
 Leu Glu Arg Gln Asn Gln Glu Tyr Gln Val Leu Leu Asp Val Arg Ala
 290 295 300
 Arg Leu Glu Cys Glu Ile Asn Thr Tyr Arg Ser Leu Leu Glu Ser Glu
 305 310 315 320
 Asp Cys Lys Leu Pro Ser Asn Pro Cys Ala Thr Thr Asn Ala Cys Glu
 325 330 335
 Lys Pro Ile Gly Ser Cys Val Thr Asn Pro Cys Gly Pro Arg Ser Arg
 340 345 350
 Cys Gly Pro Cys Asn Thr Phe Gly Tyr
 355 360

<210> 53

<211> 3282

<212> DNA

<213> Homo sapiens

<400>	53						
atgaaggaga	tggtaggagg	ctgctgcgt	tgttcggacg	agaggggctg	ggccgagaac	60	
ccgctggct	actgcgtgg	gcacgcgtgc	agcgtggccg	tccaccaagc	ttgctatggc	120	
atcgttcagg	tgccaacggg	accctggttc	tgccggaaat	gtgaatctca	ggagcgagca	180	
gccagggtga	ggtgtgagct	gtgcccacac	aaagacgggg	cattgaagag	gactgataat	240	
ggaggctggg	cacacgtgg	gtgtgccctc	tacatccccg	aggtgcaatt	tgccaaacgtg	300	
ctcaccatgg	agcccatcg	gctgcagtac	gtgcctcatg	atcgcttcaa	caagacctgt	360	
tacatctgcg	aggagacggg	ccgggagagc	aaaggcggct	cgggagcctg	catgaccctgt	420	
aaccggccat	gatgtcgaca	agcttccac	gtcacctgtg	ccccaatggc	aggcttgctg	480	
tgtgaggaag	aagtgtgg	ggtggacaac	gtcaagtact	gcccgtactg	caaataccac	540	
ttcagcaaga	tgaagacatc	ccggcacagc	agcggggggag	gcggaggagg	cgctggagga	600	
ggaggtggca	gcatgggggg	aggtggcagt	ggtttcatct	ctgggaggagg	aagccggtca	660	
gcctcaccat	ccacgcagca	ggagaagcac	cccacccacc	acgagagggg	ccagaagaag	720	
agtgcggaaa	acaaaagaacg	ccttaagcag	aagcacaaga	agcggcctga	gtcgcccccc	780	
agcatcctca	ccccggccgt	ggtccccact	gctgacaagg	tctcctcctc	ggcttcctct	840	
tcctccacc	acgaggccag	cacgcaggag	acctctgaga	gcagcaggga	gtcaaagggg	900	
aaaaagtctt	ccagccatag	cctgagtcat	aaagggaga	aactgagcag	tgggaaaggt	960	

Siemens 0022 Seq Listing.txt

gtgagcagtt	ttacctccgc	ctccttct	tcctcctc	cttcctc	ctctgggggg	1020
cccttcagc	ctgcagtctc	gtccctgcag	agctccccctg	acttctctgc	attccccaaag	1080
ctggagcagc	cagaggagga	caagtactcc	aagcccacag	cccccgcccc	ttcagccccct	1140
ccttctccct	cagctcccg	gccccccaag	gctgaccttt	ttgagcagaa	ggtgtcttc	1200
tctggctttg	ggcccatcat	gchgctctcc	accaccacct	ccagctcagg	ccgggcccgg	1260
gcccctccc	ctggggacta	taagtctccc	cacgtcacgg	ggtctggggc	ctcggcaggc	1320
acccacaac	ggatgcccgc	actgagtgcc	accctgtgc	ctgctgatga	gaccctgtag	1380
acaggcctga	aggagaagaa	gcacaaagcc	agcaagagaa	gccggcatgg	gccaggccgt	1440
cccaaggcga	gccggAACAA	ggagggcaact	ggggggcccg	ctgccccatc	ttggcccagt	1500
gcccagctgg	ctggctttac	cggcactgct	gcctcaccct	tctctggagg	ttccctgtc	1560
agctccggcc	tgggaggtct	gtcctcccga	acctttggc	cttctggag	cttgcccagc	1620
ttgagcctgg	agtccccctt	actagggca	gycatctaca	ccagtaataa	ggaccccatac	1680
tcccacagtg	gccccatgtct	gccccatgtc	tgcagcaccc	ctctctcctc	cagcctcctg	1740
gggccccccag	ggacctcg	cctgccccgc	ctcagccgct	ccccgttac	cagcacccctc	1800
ccctccctt	ctgcttctat	ctccaccact	cagggtttt	ctctggctgg	ctctacccctt	1860
agcctccctt	ctacccacat	cttggaaacc	ccatgggtg	ccgttaatcc	cttcctctcc	1920
caagctgaga	gcagccacac	agagccagac	ctggaggact	gcagcttcg	gtgtcgffff	1980
acctcccttc	aggagagtc	gtcttcatg	tccccatca	gcagccctcc	cgcactcttc	2040
gaccagacag	cctctgcacc	ctgtggggc	gcccagtag	accggcggc	cccagggacg	2100
actaacatgg	agcagcttct	ggagaagcag	ggcgcacggg	aggccggcgt	caacatctg	2160
gagatgctga	aggcgtgc	cgcgtgcag	aaggagaacc	agcggctgca	agagcagatc	2220
ctgagcctga	cggccaaaaaa	ggagcggctg	cagattctca	acgtgcagct	ctctgtgccc	2280
ttcccgtccc	tgccctgctc	cctgcctgccc	gccaacggcc	ctgtccctgg	gccctatggc	2340
ctgcctcccc	aagccgggag	cagcactcc	ttgagcacca	gcaagagccc	tccgggaaag	2400
agcagcctcg	gcctggacaa	ctcgctgtcc	acttcttctg	aggaccaca	ctcaggctgc	2460
ccgagccgca	gcagctcg	gctgtccctc	cacagcacgc	ccccaccgt	gcccctcctc	2520
cagcagagcc	ctgcccactc	gcccctggcc	ctgcctgggg	cccctgcccc	actcccgccc	2580
cagccgcaga	acggggttgg	ccgggcaccc	ggggcagcgg	ggctggggc	catgcccatt	2640
gctgagggc	tgttgggggg	gctggcaggc	agtggggggc	tgcccctcaa	tgggctcctt	2700
gggggggttga	atggggccgc	tgcccccaac	cccgcgaact	tgagccaggc	tggcggggcc	2760
cccacgctgc	agctgcccagg	ctgtctcaac	agccttacag	agcagcagag	acatctcatt	2820
cagcagaag	agcagcagct	ccagcaactc	cagcagctcc	tggcctcccc	gcagctgacc	2880
ccggaacacc	agactgttg	ctaccagat	atccagcaga	tccagcagaa	acgggagctg	2940
cagcgtctgc	agatggctgg	gggctccctag	ctgcccattgg	ccagcctgt	ggcagggaaagc	3000
tccacccccc	tgtgtctgc	gggttacccct	ggcctgtc	ccacagcgtc	tgctccaccc	3060
ctgctcccg	ctggagccct	agtggctccc	tcgcttggca	acaacacaag	tctcatggcc	3120
gcagcagctg	cagctgc	agtagcagca	gcaggcggac	ctccagtc	cactgcccag	3180
accaaccct	tcctcagcc	gtcgggagca	gagggcagt	gcccgtggcc	caaaggaggg	3240
accgctgaca	aaggagcctc	agccaaccag	gaaaaaggct	aa		3282

<210> 54

gagagcccg	acaggaagag	ggtacagctt	tgtgcagg	acatgcccac	tgcagccctc	60
cagcctctgg	tccccagagc	ggactttgga	agctgaactg	cttttgtgc	tggaaagactt	120
atgttataat	ttacccctgg	tggaccagg	tcgtacaaa	ggcaacgc	ccccagtc	180
cccaactcccg	accccgaaat	catgcac	actacacgg	tcaaaatcac	agagctgaac	240
ccccaccc	tgtgtccct	ctgcgggggg	tacttcatcg	acgcccac	tatcgtggag	300
tgcctgcatt	cccccgtca	aacctgcac	gtgcgtc	tggagaccaa	caaatactgc	360
cccatgtgt	acgtgcaggt	ccataaaacc	cgccgcgtc	tgagcatcg	gtctgacaaa	420
acacttcaag	acattgtcta	caaattggc	cctgggttt	ttaaagatga	gatgaaacgg	480
cggcgggatt	tctatgc	gtacccctg	acggagg	ccaacgg	caatgaggac	540
cggcggcagg	tcttggagca	ggagaaggg	gctctgag	atgatgagat	tgtcagc	600
tccatcgaaat	tctacgaagg	tgccagg	cgggatgaga	agaagg	cctggagaat	660
ggggatgggg	acaaagagaa	aacagggt	cgcttc	gatgccc	agccatgacc	720
gtcatgcac	ttgccaagtt	tctccgcaac	aagatggat	tgcccag	gtacaagg	780

Siemens 0022 Seq Listing.txt

gaggttctgt	acgaggacga	gccactgaag	gaatactaca	ccctcatgga	catgcctac	840
atctacccct	ggcggcggaa	cgggcctctc	cccctaagt	accgtgtcca	gccagcctgc	900
aaggcgctca	ccctagccac	ggtgcccacc	ccctccgagg	gcaccaacac	cagcggggcg	960
tccgagtgtg	agtcaagtcag	cgacaaggct	cccagccctg	ccaccctgcc	agccacctcc	1020
tcctccctgc	ccagccccagc	cacccatcc	catggctctc	ccagttccca	tgggccttca	1080
gccaccacc	ctacctcccc	cactcccc	tcgacagcca	gtggggccac	cacagctgcc	1140
aacggggta	gcttgaactg	cctgcagaca	ccatcctcca	ccagcagggg	gcbcagaatg	1200
actgtcaacg	gcgctcccg	gccccctta	acttgaggcc	agggaccctc	tcccttcttc	1260
cagccaagcc	tctccactcc	ttccacttt	tctggccct	tttttccact	tcttctactt	1320
tccccagctc	ttccccacctt	gggggtgggg	gcccgggttt	ataaataaat	atatatatat	1380
atgtacatag	aaaaaaccaa	atatacatac	ttattttcta	tggaccaacc	agattaattt	1440
aatgcacaca	ggaaaacaac	tttatgtgt	tgtgtatgt	tggaaaatgg	tgttcattt	1500
ttttgggggg	ggcttgtgt	aatttgcgt	ttttgggggt	gcctggagat	gaactggatg	1560
ggccactgga	gtctcaataa	agcttcgcac	catccctcgct	gttttccaag	gcagggtgt	1620
tgttggggc	cccttcagac	ccaaagctt	aggcatgatt	ccaactggct	gcatatagga	1680
gtcagttaga	attgtttctt	tctctcccc	tttctctccc	catcttggct	gtgtccctgc	1740
ctctgaccag	tgccgc	ccgcgttgtt	gaatgtccag	aaattgctaa	aaacagtgcc	1800
ttttacaaat	gcagtttattc	cctgggtctg	aggagcaagt	gcaggggtgg	ggtggcacct	1860
gcatcacctc	cttccttgc	agtggaaact	ttgtgcaag	aatagatagt	tctgcctt	1920
ttttttttt	ttcctgtgt	tgtggcttt	gcatcattt	tcttgtggaa	aagaagattc	1980
aggccctgag	aggctctcagc	tcttgagga	gggctaaggc	tttagcattt	tgaagcgtg	2040
caccccccacc	aaccttaccc	tcacccggga	accctcacta	gcaggactgg	tggtgagtc	2100
tcacacctggg	ccttagagtgg	aagtgggggt	gggttaacct	cacacaagca	cagatcccag	2160
actttgccag	aggcaaacag	ggaattccgc	cgatactgac	gggctccagg	agtcgtcgcc	2220
acactcg						2227

<210> 55

<211> 4283

<212> DNA

<213> Homo sapiens

<400> 55

ttcgggaaa	gagccaaacc	ctggcggttgg	ggggcccccggg	cggggagcc	ctcccgcggt	60
ccacagcgac	gcctgcccag	ccctccccc	cttccggctc	cggcacgggg	ccccgaggcg	120
ttcggaggcc	aggcggttt	ctgtcaggcc	cggggaggag	ggggccgggg	ggcgcccgct	180
gcctcccccgg	gacgggcccgt	accacgcgga	cggggaggac	ggggccaggg	gactgcaggg	240
cggtgcacc	gcccgggggc	gggggtcgga	gcggggccggc	gggctccccc	ggcggggccg	300
ggagggccgg	gcgtggggcg	gacggaaacc	ccggggccggg	gtgggaggt	acgggacggg	360
cgcgaccatg	gcccgtgt	ggagcggggg	ttgggatcgg	tccggggggag	gcctgaggcc	420
gctggcttgt	gcgtgtctc	cggccccccc	ctctttcgcc	gccggccgg	ccgccccggg	480
catgtcgcc	aactgcacca	gcaccacggc	ggtggcggt	gcccgcgtca	gcccagcaa	540
gaccaagacc	aagaagaagc	atttcgtgt	ccagaaagt	aagctattcc	gggccagcga	600
gccgatcc	agcgtcctga	tgtgggggt	gaaccacacg	atcaatgac	tgagcaatgt	660
tcctgttcct	gtcatgtctaa	tgccagatga	tttcaaagcc	tacagcaaga	tcaagggtgg	720
caatcatctc	ttcaataaagg	agaacctgcc	cagccgttt	aagtttaagg	agtattgccc	780
catgggtttc	cggaaaccttc	gggaggggtt	tggaaattgt	gatcaggatt	accagaattc	840
agtgcgcgc	agcgc	tcaacagtga	cagccaggt	cggtgtggca	cgcgtttc	900
caccactac	gaccggcgct	ttgtcatcaa	gactgtgtcc	agcggaggacg	tggcggagat	960
gcacaaacatc	ttaaagaat	accaccgtt	tatagtggag	tgtcatggca	acacgccttt	1020
gcccacgtt	ctgggcgtatgt	accgcctgac	cggtgtgtgt	gtggaaacct	acatgggtgt	1080
taccagaaac	gttgc	atcggtc	tgtgc	aagtatgacc	tcaagggttc	1140
tacgggtg	agagaagcg	gacgacaagg	gaaggccaa	gacttgccaa	cattcaaaga	1200
caatgacttc	ctcaatgaag	ggcagaagct	gcatgtggga	gaggagatgt	aaaagaactt	1260
cctggagaaa	ctgaagcg	acgttgagtt	cttggcacag	ctgaagatca	tggactacag	1320
cctgtcggt	ggcatccac	acgtggaccg	ggcagagcag	gaggagatgg	aggtggagga	1380
gcgggcagag	gacgaggagt	gtgagaatga	ttgggtgggt	ggcaacctac	tctgctctta	1440
tggcacac	ccggacagcc	ctggcaac	cctcagctt	cctcggttct	ttggtc	1500
ggaatttcgac	ccctctgtt	acgtctatgc	catgaaaagc	catgaaaagtt	cccccaagaa	1560
ggaggtgtat	ttcatggcca	tcattgat	cctcacgcca	tacgatacaa	agaagaaagc	1620

Siemens 0022 Seq Listing.txt

tgcacatgct	gccaaaacgg	tgaaacacgg	ggcagggggcc	gagatctcgta	ctgtgaaccc	1680
tgagcagtac	tccaaacgct	tcaacaggtt	tatgtccaac	atcctgacgt	agttctcttc	1740
taccttcagc	cagagccaga	gagctggata	tggggtcggg	gatcgggagt	tagggagaag	1800
ggtgtatttgc	ggctagatgg	gaggggtggg	gcagagtcgg	gtttgggagg	gcttttagcaa	1860
tgagactgca	gcctgtgaca	ccgaaaagaga	ctttagctga	agaggagggg	gatgtgttgt	1920
gtgtgcaccc	gctcacagga	tgtAACCCCA	CCTTCTGCCT	ACCCTTGATT	TTTCTCCCC	1980
atttgacacc	caggtaaaaa	aggggttccc	tttttggtag	CTTGTAAACCT	TTAAGATAAC	2040
cttggggcta	gagatgactt	cgtgggtta	tttgggtttt	gtttctgaaa	tttcattgtct	2100
ccaggtttgc	tatttataat	catatttcat	cagcctaccc	accctcccc	tctttgtctga	2160
gctctcagtt	cccttcaatt	aaagagatac	ccagtagacc	cagcacaagg	gtccttccag	2220
aaccaagtgc	tatggatgcc	agattggaga	ggtcagacac	ctcgccctgc	tgcathttct	2280
cttgcctgga	ttaactttgt	aatttatgg	gtattgtgca	caacttcctc	cacctttccc	2340
ttggattcaa	gtaaaaactg	ttgcattatt	cctccatct	gtctggaata	caccaggta	2400
acaccagaga	tctcagatca	gaatcagaga	tctcagaggg	gaataagttc	atcctcatgg	2460
gatggtgagg	ggcaggaaag	cggctggct	cttggacacc	tggttctcag	agaacccctgt	2520
gatgatcacc	caagccccag	gctgtcttag	cccctggagt	tcagaagtcc	tctctgtaaa	2580
gcctgcctcc	caactggta	agaggaacta	gagttacctt	ggatttatca	ggaccctcat	2640
gtttaaatgg	ttatccct	ttggaaaac	ttcagaaact	gatgtatcaa	atgaggccct	2700
gtgcctcga	tctatccct	tcttccttct	gaccctctcc	caggactct	tacttcttagc	2760
cgaactcta	gctctggca	gatcttcaag	cgcctggagt	gttttttagc	agagacacct	2820
cgttaagctc	cggatgacc	ttgttaggaga	tctgtctccc	tgtgcctgga	gagttacagc	2880
cagcaaggtg	ccccatctt	agagtgtgtt	gttccaaacgt	gaggtggctt	cctagttaca	2940
tgaggatgt	atccaggaaa	tccagtttg	aggcttgatg	tggttttga	cctggccctca	3000
gccttgggc	tgttttccct	tgttgcctt	ctctagactt	ttagcagatc	tgccagccac	3060
aggctttttt	ggaaggagtg	gcttcctgca	ggttccac	ctgcctcgg	agcctgcccac	3120
ccaggccctc	agaactgagc	cacaggctgc	tctggccagg	agagaaacag	ctctgttgtt	3180
ctgcatttggg	ggaggtacat	tcctgcacat	tctcacccccc	tcaaccagga	actggggatt	3240
tggatgaga	tatggtcaga	ctttagata	accccaaaga	tgtgaagatc	gtttgtgaaa	3300
ccatittgaa	tgaatagatt	ggtttctgt	ggctccctcc	aaacctggcc	aagcccagct	3360
tccgaagcag	gaaccagcac	tgtctctgt	cctgactcac	agcatatagg	tcagggaaaga	3420
atggagacgg	catttttgg	cttcacttggg	gctgttgat	tggatggaa	accttctgga	3480
agaggcagat	gggggtcaaa	ccactgcctt	ggcccccagga	agggggccata	gttaggtctg	3540
aacaactgcc	gcaagaccac	tacatgactt	agggaaactt	aaaccaactg	gctcatggag	3600
aaaacaaatt	tgacttggg	aaggattat	gttaggataa	tgtttggact	tgatttcccc	3660
acgtcataat	gaagaatgg	agtttggatc	tgctcctcg	caggcgcagc	atctctgaa	3720
cttggaaaggc	tgtcttccag	cctccaaacc	tggccaaaggc	cagcttccga	agcagggaaacc	3780
agcactgtct	ctgtgcctga	ctcacagcat	ataggtcagg	aaagaatgg	gacggcattc	3840
ttggacttca	cttggggctgc	tggatttggat	gggaaaccctt	ctggaaagagg	cagatgggg	3900
tcaaaccact	gccttggccc	caggaagggg	ccataggtag	gtctgaacaa	ctggcccaag	3960
accactacat	gacttaggg	acttggaaacc	aactggctca	tggaaaaaac	aaatttgact	4020
tggaaagg	attatgttag	aataatgttt	ggacttgatt	tcccccacgtc	ataatgaaga	4080
atggaaagt	ggatctgctc	ctcgctcaggc	gcagcatctc	tgaagcttgg	aaagctgtct	4140
tccagcagcc	tccgtggccct	cgggttccct	ccggcttctc	tgcattttgt	ctgctgatca	4200
tgttgcata	atgtgtatgg	aaagtgtaaac	acatttcttac	tggtaaaga	cgactaccag	4260
gtatctaact	tgtttaaacat	tga				4283

<210> 56

<211> 6140

<212> DNA

<213> Homo sapiens

<400> 56

gcggccgcag	cctgagccag	ggccccctcc	ctcgtcagga	ccggggcagc	aagcaggccc	60
ggggcagg	ccggcacc	ccatgcgagg	cgagctctgg	ctccctgg	tgggtctcag	120
ggaggcgtcc	ccggcgtcga	gcccccagcc	cggagcagg	cacgtatgg	gcccaggctc	180
tggatgggc	gccaagg	ccgtgcgggg	ctggaaaccgg	agagcccgg	agagccctgg	240
gcatgtgtca	gagccggaca	ggaccagg	gagccaggac	ctgggtgggg	gcaccctggc	300
catggacacg	ctgcccagata	acaggaccag	ggtgggtggag	gacaaccaca	gctattatgt	360
gtcccgctc	tatggccccc	gcgagcccc	cagccgggaa	ctgtgggtag	atgtggccga	420

Siemens 0022 Seq Listing.txt

ggccaaccgg	agccaaagtga	agatccacac	aatactctcc	aacaccccacc	ggcaggccttc	480
gagagtggtc	ttgtcccttg	atttcccttt	ctacgggcat	cctctgcggc	agatcaccat	540
agcaactgga	ggcttcatct	tcatggggga	cgtatccat	cgatgctca	cagctactca	600
gtatgtggcg	ccccctgatgg	ccaacctcaa	ccctggctac	tccgacaact	ccacagttgt	660
ttacttgcac	aatggggacag	tctttgttgt	ttagtgggac	cacgtttac	tccaaggctg	720
ggaagacaag	ggcagttca	ccttcaggc	agctctgcac	catgacggcc	gcattgttt	780
tgcctataaa	gagatcccta	tgtctgtccc	ggaaatcagc	tcctccca	atccgtcaa	840
aaccggccta	tcggatgcct	tcatgattct	caatccatcc	ccggatgtgc	cagaatctcg	900
gcgaaggagc	atcttgaat	accaccgcat	agagctggac	cccagcaagg	tcaccagcat	960
gtcggccgtg	gagttcaccc	cattggcgc	ctgcctgcag	cataggagct	gtgacgcctg	1020
catgtcctca	gacctgacct	tcaactgcag	ctgggtccat	gtcctccaga	gatgctccag	1080
tggcttgac	cgttatcgcc	aggagtggat	ggactatgac	tgtgcacagg	aggcagaggg	1140
caggatgtgc	gaggacttcc	aggatgagga	ccacgactca	gcctccctg	acacttcctt	1200
cagcccttat	gatggagacc	tcaccactac	ctcctccccc	ctcttcatcg	acagcctcac	1260
cacagaagat	gacaccaagt	tgaatcccta	tgcaggagga	gacggccctc	agaacaacct	1320
gtcccccaag	acaaggggca	ctcctgtca	cctgggcacc	atcgtggca	tcgtgtggc	1380
agtcctcctc	gtggcggcca	tcatcttgc	tggaaatttac	atcaatggcc	accccacatc	1440
caatgtcg	ctcttcctca	tcgagcgtag	acctcaccac	tggccagcca	tgaagttcg	1500
cagccaccct	gaccattcca	cctatgcgg	gggtggagccc	tcgggccc	agaaggaggg	1560
cttcatggag	gctgagcagt	gctgagaaca	ccaagtctcc	cctttaaga	ctttaggcc	1620
acagaaaaga	cagttaaagc	aaagaagaga	agtactttt	cctggccct	cccagcatgc	1680
cctgggtctg	gatggagatg	tggttatgg	ctccagagct	gctttcg	tcgtcagcac	1740
accccgaaaata	ttgaagaggg	ggccaaaaaa	caaccacatg	gatttttat	aggaacaaca	1800
acctaattctc	atccctttt	gatgcaggg	ttctcttctg	tgtcttgtaa	ccatgaaaca	1860
gcagaagaac	taacataact	aactccattt	ttgtttaagg	ggcccttacc	tattctgtca	1920
ccttaggttag	gataacttta	gagcactgac	ataaaaacgca	aaaacaggaa	tcatggcgtt	1980
tgcaaaaacta	actctgggat	taaaggggaa	gcatgttaaa	agctactgt	ttttgttaaa	2040
gatttatagg	aatgaggagg	tttggctatt	gtcacatgac	agactgttag	ccaaggacaa	2100
agaagttctg	caaaccctcc	ctggaccctt	gctgggttcc	agatgtctgc	gggtgtcagc	2160
cccttcctt	cccccgaccc	aaacataaaa	gacaaggcaa	agcccgata	attttaaagac	2220
ggttctttag	gacattagtc	caccatctt	ttgggttgc	ggctctccga	aataaagtcc	2280
ctttccctgc	tccaactcct	tgtctctcaa	cgtattggct	atgacgcagc	aagcagaatg	2340
aatttggact	cagttacagg	ctgtcaatgg	tctgctctgt	agcagtctca	gagcctcccc	2400
gaccactac	ctggagatag	ccagatagcc	agatgccctg	ctcctggcca	cctttaaagc	2460
ccctgcata	gacacagggt	aactaaagt	agattgggg	ctgctgcatt	ccaggttccc	2520
tagactcaca	agctggtcct	tggccaggt	cagtgctca	cgcctgtat	cccagcactt	2580
tgggaggctg	aggcaggcgg	atcaccctgaa	gtcagaagg	tgagaccagc	ctggccaaca	2640
taattaaat	gtctctacta	aaaataaaaa	aaatttagctg	ggtgtggta	cgcttgcctg	2700
tatcccagct	actcaggaag	ctgagacacg	agaatactt	gaacctggga	ggcagaggtt	2760
gcagttagct	cagatagtgc	cactgcact	cagcctgggt	gacagagcga	gactccgtct	2820
aaaaaaaaaa	aaaagaaaagc	agaacctcat	ggctatagag	ttggcatttt	agccccagct	2880
tctgtagctc	tgaaaaggctt	aagaaggat	tctctccatc	tgttaaacac	agtatagtg	2940
ctctcagccc	ttggggcat	ttatcatggg	agggaaagtca	aataaagagga	gagaaaaagaa	3000
ctcaagggggg	aaactgcatt	tttaggctt	gctctttac	cttgcctt	ctactcagaa	3060
ccaataactt	ctgcatcaaa	acatgttaca	gcctgcata	agggtttac	cccaacctgc	3120
agcccaaggct	tccctgggt	agcttgcata	ggcggccac	atttaccatg	tggggctccc	3180
tattctgtat	gcctgttgc	tgccgggtt	actcaactg	ctgttctgt	gtcagtgcct	3240
gtacataacct	ccaaaggcg	gacttgcct	ataaaatattt	ttcccttc	gaactggatt	3300
ttataggcat	taaagacaag	tcgggtggct	agggggctcc	ttgagacata	cctagcagg	3360
aactgcaggt	ggattctgtt	gagaggcaaa	gcacctgat	ggttgggaca	caggcagctg	3420
gcatgggagg	gactttttt	gagacagggt	ctcactgtgt	cgcaggggc	aaggatgccc	3480
aaagacacca	ggttggagag	gcacccgcca	actactgt	ttccctggag	cctgcattgt	3540
cctgtgggg	ggggaggcgt	aggggtctac	ggctgcctg	gatgggtgt	cacagtgt	3600
gaagtaccta	cctcccttgc	ttgctggact	gtcagccat	cgcaggggc	gccacaagac	3660
ccatgtctcc	atctggtcat	actccatagc	taccaagtt	acctgtctca	aactttggag	3720
aactggatct	gtccaataaa	cgcttatttg	gccaaggctg	atggctcg	cctgtactcc	3780
cagcacttgc	ggaggcgt	gtggggagggt	tgcttgcac	cagggtttt	agaccagctt	3840
gggcaacaac	aacaaaaat	ccagggtgtgg	tggggtgcac	ctgtagtccc	agctactagg	3900
gaggctgagc	caggaggatc	acttgagccc	gggagggttga	ggctgcagtg	gggggtcata	3960
atcatgccac	tgtactccag	cctgggtgac	agatgagac	cctgtctcc	aaaaaaaaaaa	4020
aaaaaaaaaa	acggaaaaaaag	aaatgcttac	atgttcagg	atccgtttaga	caatcattaa	4080
ctctatgaga	tgcttgcgtt	tattttttt	ggagacttgc	tccaagtgtt	ttggcttaag	4140
aaatccatag	gcctcttgc	gtgacacatc	tcttagtactt	tttgtcataa	acaaacaggc	4200

Siemens 0022 Seq Listing.txt

catctgccgc	caaatacata	cactccccat	gccactgaca	tcctatgggt	cagccaggct	4260
tgcttgcact	gaggccgagg	catctggAAC	tttctctGCC	tgcaggggCT	agcagcagAG	4320
gcttcaccgc	atcaccacCC	cttcctccAC	tcctgacATT	ctttccCTTC	agggatccAA	4380
aatggtgtgc	cgagctccCA	gtggggaaAC	gtgtgtAGA	gttggggAGT	gagatgAGT	4440
gtgctgtCCA	tgaatcAGG	ccacAGcagg	aactGCCCA	ctggCCATT	gagacacACA	4500
cagggtgtAA	atgctctGCT	ggtgggCtGT	gtttccCTCA	ttcagAGAGC	tctgttACAG	4560
cccactgtGT	cTTtagaAG	cttgaAGGA	acccAACTCT	ttgctgCACT	gtcCTTTTC	4620
ttcctcaaat	tcagaccCTC	cttccACCGG	cacCCCCCTA	ctccACCCCTC	agctCTTCCt	4680
tgcctggTTT	atcaaggCAGA	gctgaggCCC	cacGTTCCA	actctgATTG	tcactTGcat	4740
cttcacAAAG	gataaACCAC	ggagcaACTG	gaaaACCATC	agccaAGCgt	tcggatGAGT	4800
ctggTTATTG	gtccACCCCC	gaccAGATTc	cTTACACTT	aactCACTTC	tttCTTTGGC	4860
aatgaccCTC	atgacATgtA	taatGGGTa	tgactaAGAA	gaggCTGTa	tctaACATT	4920
atttgctGCC	atttttACT	ctggggAGAA	gcagCCCCAA	ctcatCACTG	gaaaAGAACT	4980
ccccCTGCAA	accagCTAAA	tttgataATT	taaACCCCT	gcccTTAAA	cttCTCACAG	5040
agctggggAG	tttgtggCAA	ctttccaAGT	caaggTCTG	tttagAAAGT	cttCTCACAC	5100
atggccAGGT	gcagtggCTC	acgcCTGTAG	tcccAGGTAC	ttgggAGCCT	gaggcAGGAG	5160
gattgcttGA	gctcaggAGT	tcaaggCTG	agagAGCTAT	gatcatCCCA	ctgcatttGT	5220
ttaaaaATTTA	atTTTAAAT	tttgtgttGTT	ttatcAGGGG	tctctgtac	agtgtatCTG	5280
tgtatgtttG	tgtgtgtGTT	tgtatacAGC	tttgTTTAAT	gttttgAGCA	ataagatATG	5340
cacacacAGG	tatTTTGTtG	ctaaAGAGAT	tggacaAGGT	tgtagCTGTG	ctcaggCTTC	5400
agcttggttT	gttaaATTGA	gagataAAACA	atgacaAGAG	ctgcAGGCCA	accacACTAT	5460
tcaaaaAGCA	aagtgttCac	cactAAAGCT	aaccATTcat	ctggTTGCAG	gcaaggCTAA	5520
ggctctCTCT	cctctAGTTc	ctggAACAGA	ctcacAGATT	ggcatGAAGC	actgatCAGG	5580
ggctgcaCTC	agactCCCTG	gccAAgCaaa	cTACACCCAG	aagagtCAGT	gtcacAGATA	5640
tgtgcggGCC	aatctCTGTC	tccAAAACCC	tacCTGAACt	taatGGTAGA	attcaaAGAT	5700
ctggggACTG	aggGCACCCCA	gccttCTAAA	acacaATGTA	ttcatgtGTT	tagtGtaAAC	5760
tctctGCATG	gattCTCAGT	gttaATAATA	aaAGGAAGCA	ttcttttaca	actcCTGtG	5820
tgtgcAAAAG	aaagtgcAAA	ggatttggAG	tggcATTCCG	aagatCACCA	cacataCCtt	5880
ggttctgtG	gctgctGAAC	tccgacttCT	tcgCTGAGAC	atgactGTGG	gaacAGCCTC	5940
cagctatCTG	ctcatcAGAG	gtgCTTCCt	caacCTCCTG	caccACCTCC	aagagaAAACA	6000
gcctaaaaAG	aaACCCcAGC	tgtttactTA	tattGGTCTG	taatCCCTG	gaagtaAAACC	6060
ccatgcATTt	ttatctACTG	tctgaggACa	tacaATAAAT	ctgagAAAGT	ctatGCTGTC	6120
aaaaaaaaAA	aaaaaaaaAA					6140

<210> 57

<211> 2098

<212> DNA

<213> Homo sapiens

<400> 57

gcaggaggcac	gtggagaggc	cgggtAGCCA	cagcggcAGC	tccagCCCG	cccggcAGCG	60
acatggAAAGA	tatacaaACAA	aatgcggAAC	tgaaaAGCAC	tcaggAGCAG	tctgtGCCG	120
cagaaAGTGC	agcggttttG	aatgactACA	gtttaACCAA	atctcatGAA	atggAAAATG	180
tggacAGTGG	agaaggCCCA	gccaATGAAG	atgaAGACAT	aggAGATGAT	tcaatGAAAG	240
tgaaAGATGA	atacAGTgAA	agagATGAGA	atgtttAAAT	gtcagaACCC	atgggAAATG	300
cagaAGAGCC	tgaaATCCCT	tacAGCTATT	caAGAGAATA	taatGAATAT	gaaaACATTA	360
agttggAGAG	acatGTTGTC	tcattcGATA	gtAGCAGGCC	aaccAGTGA	aagatGAACT	420
gcgtatGtGtG	tggattatCC	tgcAtCAGCT	tcaatGtCtt	aatgttCAT	aagcgaAGCC	480
atactgttGA	acgcccATTc	cagtgtAAATC	agtgtggggC	atctttACT	cagaaaAGGTa	540
acctCCtCCG	ccacattAA	ctgcACACAG	gggAAAAACC	ttttAAgtGT	cacctCTGCA	600
actatGcatG	ccaaAGAAGA	gatgcGCTC	cgggGCATCT	taggACACAT	tctgtggAGA	660
aaccCTACAA	atgtgAGTT	tgtggAAAGGA	gttacaAGCA	gagaAGTTCC	tttgaggAGC	720
acaaggAGCG	ctggcgtACA	tttcttcAGA	gcactGACCC	agggGACACT	gcaagtGCGG	780
aggcaAGACA	catcaaAGAC	gagatGGAA	gtgaaAGAGC	tctcgTACTG	gacagATTA	840
caagcaATGT	ggcaAAACGA	aaaAGCTAA	tgcCTCAGAA	attcattGgt	gagaAGCGCC	900
actgCTTGA	tgtcaACTAT	aattcaAGTt	acatgtATGA	gaaAGAGAGT	gagctcatac	960
agACCCGcat	gatggacCAA	gccatACA	acGCCATCAG	ctatTTGGC	gccGAAGCCC	1020
tgtgCCCTT	ggtccAGACA	ccgcCTGCTC	ccacCTCGA	gatggttCCA	tttatCAGCA	1080
gcatgtatCC	catagCCCTC	acccGGGCTG	agatgtCAA	cggtGCCCT	caagAGCTGG	1140

Siemens 0022 Seq Listing.txt

aaaggaaaaag	catcctcctt	ccagagaaga	gcgtgccttc	tgagagaggc	ctctctccca	1200
acaatagtgg	ccacgactcc	acggacactg	acagcaacca	tgaagaacgc	cagaatcaca	1260
tctatcagca	aatcacatg	gtcctgtctc	gggcccgc当地	tgggatgcca	cttctgaagg	1320
aggttccccg	ctcttacgaa	ctcctcaagc	ccccgc当地	ctgccc当地	gactctgtca	1380
aagtgtatcg	caaggaaggg	gaggtgatgg	atgtgtatcg	gtgtgaccac	tgccgc当地	1440
tcttcttgg	ctatgtatcg	ttcacgattc	acatgggctg	ccacggcttc	cgtgaccctt	1500
tcgagtgtaa	catgtgttgg	gatcgaaagcc	atgatcggtt	tgaattctcg	tctcacatag	1560
ccagaggaga	acacagaagc	ctgctgaagt	gaatatctgg	tctcaggat	tgctc当地	1620
tattcagcat	cggttctaaa	aacagtttgc	ctcgcc当地	agattgtct	caaaccatac	1680
tcagttccaa	acttcttttc	ataccatttt	tagctgttt	cacagggta	gccagagaaa	1740
cactgtcttc	cttcagaaat	tattcgc当地	ttagcatat	tattactttt	gtgaaaccctt	1800
tgtttccca	tcagggactt	gaattttatg	gaattttaaaa	gccaaaaagg	tatttggtca	1860
ttatcttcta	cagcagttgg	atgagttgtc	ccggagatgt	gctatatgaa	acattcttc	1920
tgagatata	caaccacacg	tggaaaagcc	tttcagtc当地	acatgcaa	ccacaaagag	1980
gaagagctga	ccagctgacc	ttgctggaa	gcctc当地	tctgcccttc	acaggctgaa	2040
gggttaagat	ctaattctccc	taatctaaat	gacagtctaa	gagtaagtaa	aagaacag	2098

<210> 58

<211> 2947

<212> DNA

<213> Homo sapiens

<400> 58

atgccaattc	ctcctcccccc	gccaccccca	cctggtcctc	ctccacctcc	cacatttc当地	60
caggcaaca	cagagcagcc	caagctgagt	agagatgagc	agcggggctg	aggcgccctc	120
ttacaggaca	tttgc当地	gaccaagctg	aagaaggta	ccaacattaa	tgatcgagg	180
gctcccatcc	tcgagaagcc	gaaaggaagc	agtggtggt	atggctctgg	aggagctg	240
ctgcagccca	agggaggtct	cttccaaagga	ggagtgtctg	agcttc当地	tgtgggagcc	300
aaggatgtt	cagagaaccc	agctgttaag	ccagccctgc	aaatccccag	ttctcgagct	360
gctgccccaa	ggcctccag	atctggcc	agcggggctc	ctcaggatga	tacagacagc	420
agccgggcct	cactcccaga	actgccccgg	atgcagagac	cctcttacc	ggacctctct	480
cggcctaata	ccaccagcag	tacgggcatg	aagcacagct	cctctgcccc	tccccccacca	540
cccccaaggc	ggcgtgccaa	cgcacccccc	acacctctgc	ctatgcacag	cagcaaagcc	600
ccgcctaca	acagagagaa	acccttgcca	ccgacgcctg	gacaaaggct	tcacccttgt	660
cgagagggac	ctcctgctcc	accccccagtc	aaaccaccc	cttcccttgt	aatatcaga	720
acaggaccaa	gtggccagtc	tctggctct	cctccctccg	cttaccgcca	gcctccttgt	780
gtccccatg	gaccctctag	ccccactaat	gagtctgccc	ctgagctg	acagagacac	840
aattcttgc	ataggaagac	accaggccct	gtcagaggct	tagcacctcc	tccacccacc	900
tcggccccc	catctttact	gagtaatagg	ggacctcccc	cagccgaga	ccctccca	960
cggggagcag	ctcctccacc	cccaccaccc	gtgatccgaa	atggtgccag	ggatgctccc	1020
cctcccccac	caccataccg	aatgc当地	tcagaacccc	cgagccgagg	aaagccccca	1080
cctccaccct	caaggacgccc	agctggcc	ccccctcc	ctccaccg	cctgaggaat	1140
ggccacagag	attctatcac	cactgtccgg	tctttcttgg	atgatcttga	gtcaaagtat	1200
tcctccatc	cagttagaaga	ctttctgtct	ccagaagaat	ataaacactt	tcagaggata	1260
tatcccagca	aaacaaaccg	agctgccc	ggagccccac	ctctgccc	cattctcagg	1320
tgaaggctgg	cttgggccc	ttcctcagga	aaaggatgga	ccttctcttc	ttctcagatg	1380
gtcccttcca	ttccccctgaa	acctgcatg	gagctctaa	catgttctc	caatgcaatc	1440
aagccctaga	ctccaaatgt	cctcccagct	cacccatc	tatgcatctc	atctctggat	1500
tttgtatca	gactctat	tgacagtagg	atctcaaacc	ctgcatcc	ccttcctcca	1560
gcaaggccctg	ctagccacat	gaggaacaag	tttccgtgtc	ttctgc当地	ctcttggg	1620
aaggtgcctt	gttgtatga	attaactcac	tgttagggca	gggtggagaa	ttgtactcct	1680
tccttcct	gtccactgt	ggggaaagctt	ggcaggatata	ttatattca	tcatttagga	1740
ggctggcatg	accaggactt	atgggtggg	ggggagcatt	tttagtgaag	caagaaagga	1800
gtttgccaag	aagtgtatcg	ttttaaaggt	catatgg	gaaaggccaa	ggaattgggt	1860
ctgctttt	tttgggggta	ttttttttt	tttctcacct	gctgcccccc	cacccacc	1920
ccccaggat	aaattggat	taaactacta	atactaata	gttgaactt	acatttaata	1980
aaaagaaaagg	gtgaaataaa	ctgaagacca	ttttagaact	agtcagttt	ctgcagcaaa	2040
gggaacagga	gccatttggaa	ccctctgg	cccctcacc	cactgttca	gggtgctagg	2100
ctgaggatg	ttttcctcc	cccttaccgc	ccatgccc	gaaagaaaag	tcactttt	2160

Siemens 0022 Seq Listing.txt

tggagggcat cattcattcc	tgattcacaa	äéccccaaaaa	cctctggtgg	gagataggaa	2220
gatagggcgt ggcctgggc	cttaaccta	atcttgtgtc	tgcctcagtc	tttctgact	2280
gccctgaag ttgtcagtgg	ctcttctgt	ccttcagccc	ctggaaggtg	ctccaggata	2340
acaagaagg gcaggttcaa	gcccctcatg	gaaggagctg	gcttggggg	gctgcaaagg	2400
acttttaagt cctgcctgt	ctgaagttca	cagcccacct	gactgagcag	actcttcctg	2460
ttccttctc taccaccctt	gcctttccag	gactgcacgg	ttaacacag	cagagtacag	2520
aagggtgaag aagtggacag	aggcttatga	agatattcag	atactttct	atgcccggaa	2580
gcacaaagac ttgttgaga	ttgcctcg	ttcagtagat	cttccttggc	agccagccat	2640
aggttgggg	ttgtcttcc	gggtccctaaa	gagcacagag	aaaatggagg	2700
aggttagaag ctgattggat	gaggacttct	tttttccga	cagcaggatg	gggctcttgg	2760
gctccacaca ccagatgctt	tgggttcta	caactgttgc	tatgtgtaga	gggtgctcag	2820
agcgtggcat gagagcaagg	agaccatggc	tactcttga	aatggatggg	aaaaatttagc	2880
ttaaaaattt aatcacgaga	ttgcgccact	gcactccagc	ctggcgcaca	gagccagact	2940
ccgtctc					2947

<210> 59

<211> 784

<212> DNA

<213> Homo sapiens

<400> 59

gagcgggttgc gcagtgaagg	ctagacccgg	tttactggaa	ttgctctggc	gatcgagggg	60
tccttagtaca ccgcaatcat	gtctattatg	tcctataacg	gagggggcgt	catggccatg	120
aaggggaaaga actgtgtggc	catcgctgca	gacaggcgt	tcgggatcca	ggcccagatg	180
gtgaccacgg acttccagaa	gatcttccc	atgggtgacc	ggctgtacat	cggctctggcc	240
gggctcgcca ctgacgtcca	gacagttgcc	cagcgcctca	agttccggct	gaacctgtat	300
gagttgaagg aagggtcgca	gatcaaacct	tataccctca	tgagcatgg	ggccaaccc	360
ttgtatgaga aacggtttgg	cccttactac	actgagccag	tcatggccgg	tttggacccg	420
aagaccttta agcccttcat	ttgctctcta	gacctcatcg	gctgccccat	gttgactgat	480
gactttgtgg tcagtgccac	ctgcggcga	caaatgtacg	gaatgtgtga	gtccctctgg	540
gagcccaaca tgatccgga	tcaccctgtt	gaaaccatct	cccaagccat	gctgaatgct	600
gtggaccggg atgcagtgtc	aggcatggg	gtcattgtcc	acatcatcga	gaaggacaaa	660
atcaccacca ggacactgaa	ggcccgaaatg	gactaaccct	gttcccagag	cccacttttt	720
tttctttttt tgaataaaaa	tagcctgtct	ttcaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	780
aaaa					784

<210> 60

<211> 3033

<212> DNA

<213> Homo sapiens

<400> 60

atactcctaa gtcctcccc	cggcgccgag	ccagggagaa	aggatggccg	gcctggccgc	60
gcgggttggtc ctgctagctg	gggcagcggc	gctggcgagc	ggctcccagg	gcgaccgtga	120
gccgggtgtac cgcgactgct	tactgcagtg	cgaaagagcag	aactgctctg	ggggcgctct	180
gaatcacttc cgctcccgcc	agccaatcta	catgagtcta	gcaggctgga	cctgtcggg	240
cgactgtaa tatgagtgt	tgtgggtcac	cggtgggctc	tacctccagg	aagggtcacaa	300
agtgcctcag ttccatggca	agtggccctt	ttcccggttc	ctgttcttgc	aagagccggc	360
atcggccgtg gcctcggttc	tcaatggcct	ggccagccct	gtgatgctct	gccgctaccg	420
cacccctgtg ccagcctcct	cccccatgt	ccacacctgt	gtggccttgc	cctgggtgtc	480
cctcaatgca tggttctgt	ccacagtctt	ccacaccagg	gacactgacc	tcacagagaa	540
aatggactac ttctgtgcct	ccactgtcat	cctacactca	atctacctgt	gctgcgtcag	600
gtgagcctgc ctgggtggct	gcaggggcaa	aatcgaaccc	tggggggcaga	aagggtcac	660
ccagccttcc ctggggggcc	ttcttacta	gtctcccaac	acctacgccc	cccaaccccc	720
aacacatcag ctgtcctggg	tgaggactct	ggggtaggac	tggggccct	ggctcctgac	780

Siemens 0022 Seq Listing.txt

aaggagctgt	agcacttgct	gcccagctgt	ggcctgtttg	gtggggagag	gggttagtgac	840
ttcaggggcc	atgcaccaat	gttggggga	ggagatgctt	cagggaatgc	tgctctgggg	900
atggggccacc	tgcctctga	gcaaccctgg	acgggtggggc	aggaccgtgg	ggctgcagca	960
cccagctgt	gtcagtgcct	tccggctct	cctgctgctc	atgctgaccg	tgcacgtctc	1020
ctacctgagc	ctcatccgct	tcgactatgg	ctacaacctg	gtggccaacg	tggctattgg	1080
cctggtaac	gtggtgtgg	ggctggcctg	gtgcctgtgg	aaccagcggc	ggctgcctca	1140
cgtgcgaag	tgcgtgg	tggcttgc	gctgcagggg	ctgtccctgc	tcgagctgct	1200
tgacttcca	ccgctcttct	gggtcctgga	tgcccattgc	atctggcaca	tcagcaccat	1260
ccctgtccac	gtcctctttt	tcagcttct	gaaagatgac	agcctgtacc	tgctgaagga	1320
atcagaggac	aagttcaagc	tggactgaag	accttggagc	gagtcgtccc	cagtgggat	1380
cctgcccccg	ccctgctggc	ctccctctc	ccctcaaccc	ttgagatgat	tttctctttt	1440
caacttcttgc	aacttggaca	tgaaggatgt	gggcccagaa	tcatgtggcc	agcccacccc	1500
ctgttggccc	tcaccagcct	tggagtctgt	tcttagggaaag	gcctcccagc	atctggact	1560
cgagagtggg	cagccccctc	accccttgg	gctgaactgg	ggtggaaactg	agtgtgttct	1620
tagcttacc	gggaggacag	ctgctgttt	cctcccccacc	agcctccctcc	ccacatcccc	1680
agctgcctgg	ctgggtctctg	aagccctctg	tctacctgg	agaccaggga	ccacaggcct	1740
tagggataca	gggggtcccc	ttctgttacc	accccccacc	ctcctccagg	acaccactag	1800
gtgggtctgg	atgcttgc	tttggccagc	caaggttccac	ggcgttcc	cccatggat	1860
cttgaggggac	caagctgctg	ggattgggaa	ggagtttccac	cttgaccgtt	gcccctagcca	1920
ggttccagg	aggcctcacc	atactccctt	tcagggccag	ggctccagca	agcccaggc	1980
aaggatctg	tgcgtctgtc	tgttggagag	cctgcccacc	tgtgtcggg	gtgtgggcca	2040
ggctgtgtc	ataggtgaca	ggggccgtgag	catggggctc	ggtgtgtgt	agctcaggcc	2100
taggtgcga	gtgtggagac	gggtgttgc	ggggaaagagg	tgtgcttca	aagtgtgtgt	2160
gtgcaggggg	tgggtgtgtt	agcgtgggtt	aggggaacgt	gtgtgcgt	gctgggtggc	2220
atgtgagatg	agtgactgccc	ggtaatgtt	tccacagttt	agaggttgg	gcaggatgag	2280
ggaatctgt	caccatcaat	aatcacttgc	ggagcggccag	ctctgccc	gacgccaccc	2340
gggcggacag	ccaggagctc	tccatggcca	ggctgcctgt	gtgcattgtt	cctgtctgg	2400
gcccccttgc	ccgcctctg	caaaccctac	agggtcccca	cacaacagt	ccctccagaa	2460
gcagccccctc	ggaggcagag	gaagaaaaat	ggggatggct	ggggctct	ccatcctcc	2520
tttctcttgc	ccttcgcatg	gctggcttc	ccctccaaa	cctccattcc	cctgctgcca	2580
gcccccttgc	catagcctga	ttttggggag	gaggaagggg	cgatttgg	gagaaggga	2640
gaaagcttat	ggctgggtct	gttttcttcc	cttcccagag	ggtcttactg	ttccagggt	2700
gccccaggc	aggcaggggc	cacactatgc	ctgcgccttgc	gtaaaggtga	ccctgcct	2760
ttaccagcag	ccctggcatt	ttccctggccc	acaggaatag	aatggagg	gctccagaaa	2820
ctttccatcc	caaaggcagt	ctccgtgg	gaagcagact	ggattttgc	tctgccc	2880
acccctgtc	cctctttgag	ggaggggagc	tatgttagga	ctccaacctc	agggactcgg	2940
gtggcctg	ctagcttctt	ttgatactga	aaacttttaa	ggtggggaggg	tggcaaggga	3000
tgtgtcttaat	aaatcaattc	caagcctcac	ctg			3033

<210> 61

<211> 1174

<212> DNA

<213> Homo sapiens

<400> 61

aagctcctcc	cccgccggcg	agccagggag	aaaggatggc	cggcctggcg	gcgcgggttg	60
tcctgcttagc	tggggcagcg	gcgcctggcg	gcggctccca	ggggcaccgt	gagccgggt	120
accgcgactg	cgtactgcag	tgcgaagagc	agaactgctc	tgggggcgt	ctgaatcact	180
tccgctcccg	ccagccaatt	tacatgagtc	tagcaggctg	gacctgtcgg	gacgactgt	240
agtatgatgt	tatgtgggtc	accgttggc	tctaccttca	ggaaggtcac	aaagtgcctc	300
agttccatgg	caagtggccc	ttctcccgtt	ttctgttctt	tcaagagccg	gcatcggcc	360
tggcctcg	tctcaatggc	ctggccagcc	ttgtgtatgt	ctgcgcgtac	cgcacccctcg	420
tgcacccctc	ctccccccatg	taccacacct	gtgtggcc	cgcctgggt	tccctcaatg	480
catggttctg	gtccacagtc	ttccacacca	ggacactga	cctcacagag	aaaatggact	540
acttctgtc	ctccactgtc	atcctactact	caatctac	gtgcgtcg	aggaccgtgg	600
ggctgcagca	cccaagctgt	gtcagtgcct	tccggctt	cctgcgtc	atgctgaccg	660
tgcacgtctc	ctacctgagc	ctcatccgct	tcgactatgg	ctacaacctg	gtggccaacg	720
tggctattgg	cctggtaac	gtggtgtgg	ggctggcctg	gtgcctgtgg	aaccagcggc	780
ggctgcctca	cgtgcgaag	tgcgtgg	tggcttgc	gctgcagg	ctgtccctgc	840

Siemens 0022 Seq Listing.txt

tcgagctgct	tgacttccca	ccgctttct	gggtcctgga	tgcccatgcc	atctggcaca	900
tcagcaccat	ccctgtccac	gtccttttt	ttagcttct	ggaagatgac	agcctgtacc	960
tgctgaagga	atcaggagac	aagttaaagc	tggttgaagc	agactggatt	tttgctctgc	1020
ccctgacccc	ttgtccctct	ttgaggggagg	ggagctatgc	taggactcca	acctcaggga	1080
ctcggtggc	ctgcgttagc	ttctttgtat	actaaaaact	tttaaggtgg	gagggtggca	1140
aggatgtgc	ttaataaaatc	aattccaagc	ctca			1174

<210> 62

<211> 3167

<212> DNA

<213> Homo sapiens

<400> 62						60
aagctctcc	cccgccggcg	agccaggagg	aaaggatggc	cggcctggcg	gcgcgggtgg	120
tcctgttagc	tggggcagcg	ggcgtggcg	gcccgtccca	gggcgaccgt	gagccgggtgt	180
accgcgactg	cgtactgcag	tgcgaagagc	agaactgctc	tggggcgct	ctgaatca	240
tccgctcccg	ccagccaaatc	tacatgagtc	tagcaggctg	gacctgtcg	gacgactgt	300
agatgatgt	tatgtgggtc	accgtggggc	tctacctcca	ggaaggtcac	aaagtgcctc	360
agttccatgg	caagtggccc	ttctcccggt	tcctgttctt	tcaagagccg	gcatggccg	420
tggcctcggt	tctcaatggc	ctggccagcc	ttgtgtatgt	ctgcccgtac	cgcacccctcg	480
tgccagccctc	ctccccccatg	taccacacct	gtgtggccctt	cgccctggatg	agaaaactga	540
ggcacagcaa	ggctaaataaa	cttgcctaag	gacacacagg	aaatgcagag	ccaggaactg	600
aaccctggca	gtctggctgt	agggcttgca	ttcttaatga	taccactacc	tcccaaatact	660
gagggaaagg	tgtccctcaa	tgcatgttgc	ttgtccacag	tcttccacac	cagggacact	720
gacctcacag	agaaaatgg	ctacttctgt	gcctccactg	tcattctaca	ctcaatctac	780
ctgtgtcg	tcaggtgagc	ctgcctgggt	ggctgcaggg	gcaaaatcga	accctgggg	840
cagaaagggg	tcacccagcc	ttcccctggg	ggccttcttc	actagtctcc	caacacctac	900
gccccccaac	ccccaaacaca	tcagctgtcc	ttggtgagga	ctctgggtta	ggactgggg	960
ccctggctcc	tgacaaggag	ctgttagcact	tgctgcccag	ctgtggcctg	tttgggtggg	1020
agaggggtag	tgacttcagg	ggccatgcac	caatgttggg	gggaggagat	gcttcaggg	1080
atgctgtct	ggggatgggc	cacctgccc	ctgagcaacc	ctggacggtg	ggcaggacc	1140
gtggggctgc	agcacccacg	tgtgtcagt	gccttccggg	ctctctctgt	gctcatgt	1200
accgtgcacg	tctcctacct	gagccctcatc	cgcttcgact	atggctacaa	cctggtgcc	1260
aacgtggcta	ttggcctgggt	caacgtggtg	ttgtggctgg	cttggtgcc	gtggaaaccag	1320
cgcggtgtc	ctcacgtgc	caagtgcgt	ttgggtgggt	tgctgtcg	ggggctgtcc	1380
ctgctcgagc	tgttgcactt	cccaccgctc	ttctgggtcc	tggatggcca	tgccatctgg	1440
cacatcagca	ccatcccgt	ccacgtcctc	tttttcaggt	ttcttggaaaga	tgacagcc	1500
tacctgtgt	aggaatcaga	ggacaagttc	aagctggact	gaagaccc	gagcgagt	1560
gccccagtgg	ggatctgtcc	ccgcctgtc	ttggcctccct	tctccctca	acccttgaga	1620
tgattttctc	tttcaactt	tttgaactt	gacatgaagg	atgtgggccc	agaatcatgt	1680
ggccagccca	ccccctgtt	gcccctacca	gccttggagt	ctgttctagg	gaaggcc	1740
cagcatctgg	gactcgagag	ttggcagccc	ctcttacccc	tggagctgaa	ctgggggtgg	1800
actgagtg	ttcttagctc	taccgggagg	acagctgc	gtttctccc	caccagcc	1860
ctccccacat	ccccagctgc	ctggctgggt	cctgaagccc	tctgtctacc	ttggagacca	1920
gggaccacag	gcctttaggg	tacaggggg	ccccttctgt	taccaccc	caccctcc	1980
caggacacca	ctaggtgggt	ctggatgc	tttcttggc	cagccaaggt	tcacggc	2040
tctccccatg	ggatcttgag	ggaccaagct	gttgggattt	ggaaggagtt	tcaccctgac	2100
cgttgcctta	gccaggttcc	caggaggcct	caccatacc	ccttcaggg	ccagggctcc	2160
agcaagccca	gggcaaggat	cctgtgtgc	tgtctgggtt	agacgcgtcc	accgtgt	2220
gggaggtgtgg	gccaggctga	gtgcataaggt	gacagggccg	tgagcatggg	cctgggtgt	2280
tgtgagctca	ggccttaggt	cgcagtgtgg	agacgggtgt	tgtcggggaa	gaggtgtgg	2340
ttcaaatgt	gtgtgtgc	gggggtgggt	tgttagcgt	ggtagggga	acgtgtgt	2400
gcgtgttgtt	gggcgtgtga	gatgagtgc	tgccgtgt	tgtgtccaca	tttgagaggt	2460
tggagcagga	ttagggaaatc	ctgtcaccat	caataatcac	tttggagcg	ccagctctgc	2520
ccaagacgcc	acctggccgg	acagccagga	gtctccatg	gccaggctgc	ctgtgtgc	2580
gttccctgtc	tgtgtcccc	ttgcccgcct	cctgc	tcacagggtc	cccacaca	2640
agtgcctcc	agaagcagcc	cctcgaggc	agagaaagga	aaatggggat	ggctgggg	2700
ctctccatcc	ttctttctc	tttgccttc	catggctggc	tttcccctcc	aaaacctcca	2760
ttccctgtct	ggccatagc	tttgcata	tttgggtgg	ggaggaggaa	ggggcgattt	

Siemens 0022 Seq Listing.txt

gagggagaag	gggagaaaagc	ttatggctgg	gtctggtttc	ttcccttccc	agagggtctt	2820
actgttccag	ggtggcccca	gggcaggcag	gggccacact	atgcctgcgc	cctggtaaaag	2880
gtgaccctg	ccatTTacca	gcagccctgg	catgttccctg	ccccacagga	atagaatggaa	2940
gggagctcca	gaaactttcc	atcccaaagg	cagtctccgt	ggttgaagca	gactggattt	3000
ttgctctgcc	cctgaccctt	tgtcccttct	tgagggaggg	gagctatgct	aggactccaa	3060
cctcaggac	tcgggtggcc	tgcgcttagct	tctttgata	ctgaaaactt	ttaaggtggg	3120
agggtggcaa	gggatgtgct	taataaatca	attccaagcc	tcacctg		3167
<210>	63					
<211>	2733					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(2694)..(2694)					
<223>	n=a, c, g or t					
<220>						
<221>	misc_feature					
<222>	(2724)..(2724)					
<223>	n=a, c, g or t					
<400>	63					
agggagaag	gatggccggc	ctggccgcgc	gtttggtctt	gctagctggg	gcagcggcgc	60
tggcgagcgg	ctcccagggc	gaccgtgagc	cggtgttaccg	cgactgcgtt	ctgcagtgcg	120
aagagcagaa	ctgtctctggg	ggcgcctctga	atcaacttccg	ctcccgccag	ccaaatctaca	180
tgagttctagc	aggctggacc	tgtcgggacg	actgtttagtta	tgagttgtatg	tggttcacccg	240
ttggggctcta	cctccaggaa	ggtcacaaaag	tgccttcagg	ccatggcaag	tggcccttct	300
cccggttcct	gttctttcaa	gagccggcat	cggccgtggc	ctcggttctc	aatggccctgg	360
ccagccgtt	gatgtctctgc	cgctaccgc	ccttcgtggc	agccttcctcc	cccatgttacc	420
acacctgtt	ggcccttcgccc	tggttgttccc	tcaatgcatt	gttctggtcc	acagtcttcc	480
acaccaggaa	cactgaccta	cagaaaaat	ggactacttc	tgtgccttct	gtatcctaca	540
ctcaacttac	ctgtgtctgc	tcaggaccgt	ggggctgcag	caccctactg	tggtaaagt	600
ccttccgggc	tctcctgtct	ctcatgttga	ccgtgcacgt	ctccatcacctg	agcctcatcc	660
gcttcgacta	tggctacaac	ctgggtggcca	acgtggctat	tggctggtc	aacgtgggt	720
gggtggctggc	ctgggtgcctg	tggaaaccagc	ggcggctgccc	tcacgtgcgc	aagtgcgtgg	780
ttgtgtgtctt	gtgtgtcgag	gggctgtccc	tgctcgagct	gcttgacttc	ccaccgcctt	840
tctgggtcct	ggatgcccatt	gccatctggc	acatcagcac	catccctgtc	cacgtccctt	900
ttttcagctt	tcttggaaat	gacagctgt	acctgttggaa	ggaatcagag	gacaagtca	960
agctggactg	agaccttgg	gcgaagtctg	ccccagtggg	gatcttgcctt	ccgcctgtct	1020
ggcctccctt	ctccccctaa	cccttggat	gattttctt	tttcaacttc	ttgaacttgg	1080
acatgaagga	tgtggggccca	gaatcatgtt	gccagcccac	ccccgttgg	ccctcaccag	1140
ccttggagtc	tgttcttaggg	aaggccccc	agcatctggg	actcgagat	gggcagcccc	1200
tctacccctt	ggactgaact	gggggttggaa	tgagtgtgtt	cttagcttca	ccggggaggac	1260
agctgcctgt	ttccctcccc	ccagccctt	ccccacatcc	ccagctgcct	ggctgggtcc	1320
tgaaggccctc	tgtcttccct	ggagaccagg	gtaccacagg	ccttagggat	acaggggggtc	1380
cccttctgtt	accacccccc	acccttccccc	aggacacccac	taggtgttgc	tggatgttgc	1440
ttctttggcc	agccaagggtt	cacggcgatt	ctccccatgg	gatcttggagg	gaccaagctg	1500
ctgggatgg	gaaggagttt	caccctgacc	gttgccttag	ccaggttccc	aggaggccctc	1560
accatactcc	ctttcaggggc	cagggttccca	gcaaggccag	ggcaaggatc	ctgtgtctgc	1620

Siemens 0022 Seq Listing.txt

gtctggttga	gaggcctgcca	ccgtgtgtcg	ggagtgtggg	ccaggctgag	tgcataagggt	1680
acagggccgt	gagcatgggc	ctgggtgtgt	gtgagctcg	gccttaggtgc	gcagtgtgga	1740
gacgggtgtt	gtcggggaaag	aggtgtggct	tcaaagtgt	tgtgtgcagg	gggtgggtgt	1800
gttagcgtgg	gttaggggaa	cgtgtgtcg	cgtgtgtgt	ggcatgtgag	atgagtact	1860
gccggtaat	gtgtccacag	tttagaggggt	ggagcaggat	gaggaaatcc	tgtcaccatc	1920
aataatact	tgtggagcgc	cagctctgcc	caagacgcca	cctggccgga	cagccaggag	1980
ctctccatgg	ccaggctgccc	tgtgtcatg	ttccctgtct	ggtggccctt	tgcccgcctc	2040
ctgcaaacct	cacagggtcc	ccacacaaca	gtgccctcca	gaagcagccc	ctcgaggca	2100
gaggaaggaa	aatggggatg	gctggggctc	tctccatcct	cctttctcc	ttgccttcgc	2160
atggctggcc	ttccccctcca	aaacccat	ccccctgtcg	ccagccctt	tgccatagcc	2220
tgatTTTGGG	gaggaggaag	gggcgatttg	agggagaagg	ggagaaaagct	tatggctggg	2280
tctggtttct	tcccttccca	gagggctta	ctgttccagg	gtggcccccag	gcagcagggc	2340
cacactatgc	ctgcgcctg	gtaaaggtga	cccctgccc	ttaccagcag	ccctggcatg	2400
ttccctggcc	acaggaataag	aatggggga	gctccagaaa	ctttccatcc	caaaggcagt	2460
ctccgtggtt	gaagcagact	ggattttgc	tctcccccgt	acccttgc	cctctttgag	2520
ggagggggagc	tatgcttagga	ctccaaacctc	agggactcgg	gtggccctgcg	ctagcttctt	2580
ttgataactga	aaacttttaa	ggtggggagg	tggcaaggg	tgtgcttaag	cggccgcgaa	2640
ttcaaaaagc	ttctcgagag	tacttctaga	gcggccgcgg	gcccatcgat	tttnccaccc	2700
gggtgggtta	cccaggtaag	tgtnccttcat	atc			2733

<210> 64

<211> 2546

<212> DNA

<213> Homo sapiens

<400> 64

aagctcctcc	cccgccggcg	agccagggag	aaaggatggc	cggcctggcg	gcgcgggtgg	60
tcctgttagc	tggggcagcg	gcgcgtggcg	gcggctccca	gggcgaccgt	gagccgggtgt	120
accgcgactg	cgtactgcag	tgcgaagagc	agaactgctc	tgggggcgct	ctgaatcaact	180
tccgctcccg	ccagccaatc	tacatgagtc	tagcaggctg	gacctgtcg	gacgactgt	240
agtatgatgt	tatgtgggtc	accgtgggc	tctacctcca	ggaaggtcac	aaagtgcctc	300
agttccatgg	caagtggccc	ttctcccggt	tcctgttctt	tcaagagccg	gcatcggccg	360
tggcctcggt	tctcaatggc	ctggccagcc	tgggtatgt	ctgcccgtac	cgcacccctcg	420
tgccaggctc	ctccccccatg	taccacacct	gtgtggccctt	cgcctgggtg	tccctcaatg	480
catggtctcg	gtccacacgtc	ttccacacca	gggacactga	cctcacagag	aaaatggact	540
acttctgtgc	ctccactgtc	atccatact	caatctact	gtgtgcgtc	aggcctggtc	600
aacgtggtgt	ggtggctggc	ctgggtcctg	tggaccaggc	ggcggctgccc	tcacgtgcgc	660
aagtgcgtgg	tgggtgttct	gctgtgcag	gggctgtccc	tgctcgagct	gcttgacttc	720
ccaccgctc	tctgggtccct	ggatgcccct	gcatctggc	acatcagcac	catccctgtc	780
cacgtctct	ttttcagctt	tctggaaagat	gacagcctgt	acctgctgaa	ggaatcagag	840
gacaaggatca	agctggactg	aagaccttgg	agcgagtctg	ccccagtggg	gatcctgccc	900
ccggccctgct	ggcctccctt	ctccccctcaa	cccttgagat	gatttctct	tttcaacttc	960
ttgaacctgg	acatgaagaga	tgtggggccca	gaatcatgt	gccagcccac	ccccctgtgg	1020
ccctcaccag	ccttggagtc	tgttctaggg	aaggcctccc	agcatctggg	actcgagagt	1080
gggcagccccc	tctacccctt	ggagctgaac	tggggtgggaa	ctgagtgtgt	tcttagctct	1140
accggggagga	cagctgcctg	tttccctcccc	accagcctcc	tccccacatc	cccagctgccc	1200
tggctgggtc	ctgaaggccct	ctgtctacct	gggagaccag	ggaccacagg	ccttagggat	1260
acaggggggtc	cccttctgtt	accacccccc	accctcctcc	aggacaccac	tagtgggtgc	1320
tggatgcttg	ttctttggcc	agccaagggt	cacggcgatt	ctccccatgg	gatcttgagg	1380
gaccaagctg	ctgggatttg	gaaggagttt	caccctgacc	gttgccttag	ccaggttccc	1440
aggaggcctc	accatactcc	ctttcagggc	cagggctcca	gcaagcccg	ggcaaggatc	1500
ctgtgtcgct	gtctgggtga	gagcctgcca	ccgtgtgtcg	ggagtgtggg	ccaggctgag	1560
tgcataagggt	acagggccgt	gagcatgggc	ctgggtgtgt	gtgagctcg	gccttaggtgc	1620
gcagtgtgga	gacgggtgtt	gtcggggaaag	agggtgtggct	tcaaagtgt	tgtgtgcagg	1680
gggtgggtgt	gttagcgtgg	gttaggggaa	cgtgtgtcg	cgtgtgtcg	ggcatgtgag	1740
atgagtgtact	gcccgtgtat	gtgtccacag	tttagaggggt	ggagcaggat	gagggaaatcc	1800
tgtcaccatc	aataatact	tgtggagcgc	cagctctgcc	caagacgcca	cctggccgga	1860
cagccaggag	ctctccatgg	ccaggctgcc	tgtgtgcgt	ttccctgtct	ggtgccttct	1920
tgccgcctc	ctgcaaacct	cacagggtcc	ccacacaaca	gtgccctcca	gaagcagccc	1980

Siemens 0022 Seq Listing.txt

ctcggaggca	gaggaaggaa	aatggggatg	gttggggctc	tctccatcct	cctttctcc	2040
ttgccttcgc	atggctggcc	ttcccctcca	aaacacctcat	tccctgtcg	ccagccccctt	2100
tgccatagcc	tgatTTTggg	gaggaggaag	gggcgatttg	agggagaagg	ggagaaagct	2160
tatggctgg	tctggTTCT	tcccttccca	gagggtctta	ctgttccagg	gtggccccag	2220
ggcaggcagg	ggccacacta	tgcctgcGCC	ctggtaaagg	tgaccctcgc	catttaccag	2280
cagccCTGGC	atgttccTGC	cccacaggaa	taqaatggag	ggagetcCAG	aaactttCCA	2340
tcccaaaggc	agtctccGTG	gttgaAGCAG	actggattt	tgctctGCC	ctgaccCCTT	2400
gtccCTCTT	gagggagggg	agctatgcta	ggactCCAAc	ctcaggGACT	cgggtggCCT	2460
gCGCTAGCTT	ctttgatac	tgaaaactt	taaggTggga	gggtggcaag	ggatgtgCtt	2520
aataaatcaa	ttccaagcct	cacctg				2546

<210> 65

<211> 2683

<212> DNA

<213> Homo sapiens

<400> 65						60
aagctctcc	cccgccggcg	agccaggag	aaaggatggc	cggcctggcg	gcgcgggtgg	120
tcctgttagc	tgggcagcg	gctggcgca	gcggctccca	gggcgaccgt	gagccggtgt	180
accgcgactg	cgtactgcag	tgcgaagagc	agaactgctc	tggggcgct	ctgaatact	240
tccgctcccg	ccagccaatc	tacatgagtc	tagcaggctg	gacctgtcg	gacgactgta	300
agtatgagtg	tatgtgggtc	accgttgggc	tctacctcca	ggaaggtcac	aaagtgcctc	360
agttccatgg	caagtggccc	ttctcccggt	tcctgttctt	tcaagagccg	gcatcgcccg	420
tggcctcggt	tctcaatggc	ctggccagcc	ttgtgtatgt	ctgcccgtac	cgcacccctcg	480
tgcacgcctc	ctccccccatg	taccacacct	gtgtggccctt	cgcctgggtg	tccctcaatg	540
catggttctg	gtcccacagtc	ttccacacca	gggacactga	cctcacagag	aaaatggact	600
acttctgtgc	cttccactgttc	atcctacact	caatctacct	gtgctgcgtc	aggaccgtgg	660
ggctgcagca	cccagctgtg	gtcagtgcct	tccgggctct	cctgctgctc	atgctgaccg	720
tgcacgtctc	ctacctgagc	ctcatccgct	tcgactatagg	ctacaacctg	gtggccaacg	780
tggctattgg	cctggtaaac	gtggtgtgg	ggctggcctg	gtgcctgtgg	aaccagccgc	840
ggctgcctca	cgtgcgcaag	tgcgtgggt	ttgtcttgc	gctgcagggg	ctgtccctgc	900
tcgagctgct	tgacttccca	ccgctttct	gggtcctgga	tgcccatgcc	atctggcaca	960
tcagcaccat	ccctgtccac	gtccttttt	ttagctttt	ggaagatgac	agcctgtacc	1020
tgctgaagga	atcagaggac	aagttcaagc	tggactgaag	accttggac	gagtctgccc	1080
cagtggggat	cctgcccccg	ccctgtggc	ctcccttctc	ccctcaacc	tttagatgat	1140
tttctcttt	caactcttg	aacttggaca	tgaaggatgt	gggcccagaa	tcatgtggcc	1200
agcccacccc	ctgtggccc	tcaccagcct	ttggatctgt	tctagggaaag	gcctcccagc	1260
atctgggact	cgagatggg	cagccctct	acctcctgg	gctgaactgg	gttggaaactg	1320
agtgtttct	tagcttacc	gggaggacag	ctgcctgtt	cctcccccacc	agcctccctc	1380
ccacatcccc	agctgcctgg	ctgggtcctg	aagccctctg	tctacctgg	agaccaggg	1440
ccacaggcct	taggataca	gggggtcccc	ttctgttacc	accccccacc	ctccctccagg	1500
acaccactag	gtgggtctgg	atgctgttc	tttggccagc	caagttcac	ggcgatttctc	1560
cccatgggat	cttgaggggac	caagctgtg	ggattgggaa	ggagtttac	cctgaccgtt	1620
gccctagcca	ggttcccagg	aggcctacc	atactccctt	tcagggccag	ggctccagca	1680
agcccaggc	aaggatcctg	tgctgtgtc	ttgttgagag	cctgcccacc	tgtgtcggga	1740
gtgtgggcca	ggctgagtgc	ataggtgaca	gggcccgtgag	catgggcctg	gtgtgtgtg	1800
agctcaggcc	taggtgcgc	gtgtggagac	gggtgttg	ggggaaagagg	tgtggcttca	1860
aagtgtgtgt	gtgcaggggg	ttgggtgttt	agcgtggg	aggggaacgt	gtgtgcgcgt	1920
gctgggggc	atgtgagatg	agtgtactg	ggtgaatgt	tccacagt	agaggttgg	1980
gcaggatgag	gaaatcctgt	caccatcaat	aatcacttg	ggagcgccag	ctctgccc	2040
gacgccaccc	gggcggacag	ccaggagctc	tccatggcca	ggctgcctgt	gtgcattgtt	2100
cctgtctgt	ggccctttgc	ccgcctcctg	caaacctcac	agggtcccc	cacaacagt	2160
ccctccagaa	gcagccccctc	ggaggcagag	gaaggaaaat	ggggatggct	ggggctctct	2220
ccatcctcct	tttctcttgc	ccttcgcatg	gttggcctt	ccctccaaaa	cctccattcc	2280
cctgctgcca	ggccctttgc	catagcctga	ttttggggag	gaggaagggg	cgatttgagg	2340
gagaagggga	gaaagcttat	ggctgggtct	ggtttcttcc	cttcccagag	ggtcttactg	2400
ttccagggtg	ggcccagggc	aggcaggggc	ttttttatgc	ctgcgcctg	gttaaagggt	2460
ccctgccccat	ttaccagcag	ccctggcatg	ttcctgcccc	acaggaatag	aatggaggga	2520
gctccagaaa	tttccatcc	caaaggcagt	ctccgtgg	gaagcagact	ggattttgc	

Siemens 0022 Seq Listing.txt

tctgccccctg accccttgc cctcttgag ggaggggagc tatgttagga ctccaaacctc	2580
agggactcgg gtggcctgcg ctagcttctt ttgatactga aaactttaa ggtgggaggg	2640
tggcaaggga tgtgcttaat aaatcaattc caagcctcac ctg	2683

<210> 66

<211> 2341

<212> DNA

<213> Homo sapiens

<400> 66

aagctcctcc cccggcggcg agccagggag aaaggatggc cggcctggcg gcgcgggtgg	60
tcctgcttagc tggggcagcg gcgcctggcg gcccgcaccgt gagccgggtgt	120
accgcgactg cgtactgcag tgcgaagagc agaactgcgc tggggggcgct ctgaatcact	180
tccgcctcccg ccagccaatc tacatgagtc tagcaggcg gaccgtgtcg gacgactgta	240
agtatgagtg tatgtgggtc accgttgggc tcacgttcca ggaaggtcac aaagtgcctc	300
agttccatgg caagtggccc ttctcccggt tccgtgttcc tcaagagccg gcatcggccg	360
tggcctcggt ttcataatggc ctggccagcc tgggtatgtct ctgcgcgtac cgcaccttcg	420
tgcgcaggctc ctccccatc taccacaccc tgggtggccct cgcctgggtg tccctcaatg	480
catggttctg gtccacagtc ttccacacca gggacactga cctcacagag aaaatggact	540
acttctgtgc ctccactgtc atcctacact caatctaccc tggctgcgtc agctttctgg	600
aagatgacag cctgtacctg ctgaaggaat cagaggacaa gttcaagctg gactgaagac	660
cttggagcga gtctgccccca gtggggatcc tgccccccggc ctgctggcct cccttctccc	720
ctcaaccctt gagatgattt tctctttca acttcttgc aa cttggacatg aaggatgtgg	780
gcccgagaatc atgtggccag cccacccctt gttggccctc accagcctt gagtctgttc	840
tagggaaaggc ctcccagcat ctgggactcg agagtgggca gcccctctac tccctggagc	900
tgaactgggg tggaaactgag tggttctta gctctaccgg gaggacagct gcccgtttcc	960
tccccaccag ctcctccccc acatccccag ctgcctggct gggctctgaa gcccctctgtc	1020
tacctggag accagggacc acaggcccta gggatacagg gggtccctt ctgttaccac	1080
ccccccaccct cttccaggac accacttagt ggtgtctggat gcttgcctt tggccaggca	1140
aggttcacgg cgattctccc catggatct tgaggacacca agctgctggg attgggaagg	1200
agtttcaccc tgaccgttgc cctagccagg ttcccaggag gcctcaccat actccctttc	1260
agggccaggg ctccagcaag cccaggccaa gatccctgtg ctgtgtctg ttgagagaccc	1320
tgccacccgtg tgcggggagt gttggccagg ctgagtgcat aggtgacagg gccgtgagca	1380
tgggcctggg tgggtgtgag ctccaggcata ggtgcgcagt gttggagacgg gttgtgtcg	1440
ggaagaggtg tgcttcaaa gttgtgtgt gcaggggggtg gttgtgttag cgtgggttag	1500
ggaacgtgt gtgcgcgtgc tgggtggcat gtgagatgag tgactgcgg tgaatgtgtc	1560
cacagttagg aggttggagg aggtgaggg aatccctgtca ccatcaataa tcacttgtgg	1620
agcgcacgt ctggccaaaga cgcacccctgg gggacacggc aggagcttc catggccagg	1680
ctgcctgtgt gcatgttccc tgcgttgc ccctttggcc gcctctgtca aacctcacag	1740
ggtccccaca caacagtgcc ctccagaagc agccccctgg aggcagagga agggaaaatgg	1800
ggatggctgg ggcctctcc atccctctt tcccttgc ttcgcatttgc tggccttccc	1860
ctccaaaacc tccattcccc tgcgttgc ccctttggcc tagctgtatt ttggggagga	1920
ggaagggcg atttgaggga gaaggggaga aagtttatgg ctgggtctgg ttcttcctt	1980
tcccagaggg tcttactgtt ccagggtggc cccaggggcag gcaggggcca cactatgcct	2040
gcgccttggg aaaggtgacc ctcgcattt accagcagcc ctggcatgtt ctcgccttccc	2100
aggaatagaa tggaggggagc tccagaaact ttccatccca aaggcagtct cctgtgggtga	2160
agcagactgg atttttgctc tgccttgcac cccttgc tctttgaggg aggggagacta	2220
tgcttaggact ccaacctca gggactcgggt ggcctgcgt agcttctttt gatactgaaa	2280
acttttaagg tggagggtg gcaaggatg tgcttaataa atcaattcca agcctcacct	2340

g

<210> 67

<211> 2109

<212> DNA

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 67

gattcggccg	gagctgccag	cggggaggct	gcagccgcgg	gttgttacag	ctgctggagc	60
agcagcggcc	cccgctcccg	ggaaccgttc	ccccggccgtt	gatcttcggc	cccacacgaa	120
cagcagagag	gggcagcagg	atgaatgtgg	gcacaagcga	cagcaggggt	aacccaaca	180
cgcgggtat	gaacagccgt	ggcatctggc	tctcttacgt	gctggccatc	ggtctccccc	240
acatcgtgct	gctgagcatc	ccgtttgtga	gtgtccctgt	cgtctggacc	ctcaccaacc	300
tcattcacaa	catgggcata	tatatcttc	tgcacacgt	gaaggggaca	cccttgaga	360
ccccggacca	gggcaaggcg	aggctctaa	cccactggg	gcagatggat	tatggggtcc	420
agttcacggc	ctctcggaag	ttcttgacca	tcacacccat	cgtgtgtac	ttcctcacca	480
gcttctacac	taagtacgac	cagatccatt	ttgtgctcaa	caccgtgtcc	ctgatgagcg	540
tgcttatccc	caagctgccc	cagctccacg	gagtcggat	tttttgaatc	aataagtact	600
gagagtgcag	ccccttcccc	tgcccagggt	gjcaggggag	ggtagggta	aaaggcatgt	660
gctgcaacac	tgaagacaga	aagaagaagc	ctctggacac	tgccagagat	gggggttgag	720
cctctggcct	aatttcccccc	ctcgcttccc	ccagtagcca	acttggagta	gcttgtatgt	780
gggttggggt	aggccccctg	ggctctgacc	ttttctgaat	tttttgcatt	cttccttttg	840
cttttgaat	agagactcca	tggagttgt	catggaatgg	gctggctcc	tggctgaac	900
atggaccacg	cagttgcac	aggaggccag	ggggaaaaac	cctgtca	tgttgtccct	960
caggcagcca	aagacttta	acccttgcac	aggggacaga	ggccgtacg	gtttctggat	1020
tgtttcactg	tgatttcttag	ttttttcga	tgccatgcac	tgtgtgttt	tgtgtatgg	1080
agcaagtgt	ggatgggtct	ttgccttct	gggttagggag	ctgtcta	caagtcccg	1140
gcttttggca	gcttctctgc	aaccacccgt	gggtcctgt	tgggagtggg	gagggtcagg	1200
ttggggaaaag	atggggtaga	gtgtagatgg	cttgggttcca	gaggtgaggg	ggccagggct	1260
gctgcatcc	tggcctgggt	gaggttgggg	agctgttaga	gagctagtga	gtcgagactt	1320
agaagaatgg	ggccacata	cagcagggaa	ctgggtgtaa	ggagggaggg	gtagggacag	1380
aagctagacc	caatctccct	tgggatgtgg	gcagggaggg	aagcaggctt	ggagggttaa	1440
tttaccaca	gaatgtgata	gtaatagggg	agggaggctg	ctgtgggtt	aactcttggg	1500
ttggctgtt	ggtagacagg	ttggggaaaag	gcccgtgagt	cattgtaa	acaggtccaa	1560
cttggccctg	actcctgcgg	gggtatgggg	aagctgtgac	agaaacgtg	gtgtctgtgg	1620
tcctctgcag	gccctcaccc	cttaacttcc	tcatgcac	tggcactggg	cagggccct	1680
catgtggcag	ccacatgtgg	cgttggagg	ccacccatg	tggggtctgt	gttgagagtc	1740
ctgttagatc	cctgctcaag	cagcacagag	gaaggggcaa	gacgtggcct	gtaggcactg	1800
tctcaggctg	cagagaagaa	agtggggccg	ggagcctgag	cctgggctgg	agccttctcc	1860
cctcccccagt	tggacttaggg	gcagttttaa	ttttgaaaag	gtgtgggtcc	ctgtgtcctt	1920
ttccagggggt	ccaaggaaac	aggaggggtc	actgggcctg	ttttctccct	cctgaccctg	1980
catctccac	cctgtgtatc	atagggaaact	ttcaccttaa	aatctttcta	agcaaagtgt	2040
gaataggatt	tttactccct	ttgtacagta	ttctgaggaa	cgcaataaaa	agggcaacat	2100
gtttctgtt						2109

<210> 68

<211> 2423

<212> DNA

<213> Homo sapiens

<400> 68

gagagccgag	ctagcgacga	gcagtcgtt	cggccgcgg	cgccgcggg	ggtgggtggag	60
gcctagccgg	agccgagagg	tctctgttc	ccgtcccacg	gtcccgccgt	caccctcccg	120
gcgcggcgtc	cccgccccgg	aactcccccgg	cctgtccctgg	gccccccggc	tgtgcactcc	180
gctcgccgca	gcgcggccgg	cggccgcac	ccgccccggcc	catgaggagg	gacgtgaacg	240
gagtaccat	gagcagggtt	gagatgttct	caaatacgta	tgaagctgt	atcaataaaa	300
aactcccaa	agaactccctg	ttacggat	tttctttct	agatgttgtt	accctgtgcc	360
gctgtgtca	gttctccagg	gcctggat	ttctggctt	ggatggcagt	aactggcagc	420
gaattgacat	atttgattt	cagaggata	ttgagggccg	agtagtggag	aatatttcaa	480
aacgtatgtt	gggtttttta	cgaaatgtt	gttttcgtgg	atgtcttgg	gtgggagaca	540
atgcattaa	aacctttgca	aaaactgca	ggAACATTGA	agtactgtat	ctaaatgggt	600
gtacaaagac	aacagacgt	acatgtacta	gccttagcaa	gttctgttcc	aaactcaggc	660
actttgactt	ggcttcctgt	acatcaataa	caaacatgtc	tctaaaagct	ctgagtggagg	720
gatgtccact	gttggagcg	ttgaacattt	cctgggtgt	ccaagtaacc	aaggatggca	780
ttcaagcact	agtgggggc	tgtgggggtc	tcaaggccctt	attctaaaaa	ggctgcacgc	840

Siemens 0022 Seq Listing.txt

agctagaaga	tgaagctctc	aagtacatag	gtgcacactg	ccctgaactg	gtgactttga	900
acttgcagac	ttgcttgcaa	atcacagatg	aaggctctcat	tactatatgc	agagggtgcc	960
ataagttaca	atccctttgt	gcctctggct	gctccaacat	cacagatgcc	atcctgaatg	1020
ctcttaggtca	gaactgccc	cggcttagaa	tatttggaaat	ggcaagatgt	tctcaattaa	1080
cagatgtgg	cttaccact	ctagccagga	attgccatga	acttggaaaag	atggacctgg	1140
aaggagtgt	tcagataaca	gatagcacat	taatccaact	ttctatacac	tgtcctcgac	1200
ttcaagtatt	gagtctgtct	cacttgagc	tgatcacaga	tgatggaaatt	cgtcacctgg	1260
ggaatggggc	ctgcgccccat	gaccagctgg	aggtgattga	gctggacaac	tgcccactaa	1320
tcacagatgc	atcccggag	cacttgaaga	gctgtcatag	ccttgagcgg	atagaactct	1380
atgactgcca	gcaaatacaca	cgggctggaa	tcaagagact	caggaccat	ttacccaata	1440
ttaaagtcca	cgcctacttc	gcacccgtca	ctccacccccc	atcagtaggg	ggcagcagac	1500
agcgcttctg	cagatgctgc	atcatcctat	gacaatggag	gtggtaacc	ttggcgaact	1560
gagttattaa	tgacacttct	agagctaccg	tggagtctct	ccagtggaaag	caaccccaagt	1620
gttctgagca	agggttacaa	agtggggag	ggcagtgtcc	agatccccag	agccacacat	1680
acatacacat	acacaccctt	accccccattc	actctagctt	tgtgaccatg	ggactgaagt	1740
tttgtatggc	tttttatca	agtagattgg	taaaatttaa	ccattccctgt	tgaggtgccc	1800
ataagaaaat	cataggccaa	gatagggagg	ggcattccag	caaaccctgt	gttaatgcta	1860
ctgtgggttt	taaatttttg	tctagggtt	tcttggggaa	ttttagaaca	gcatctgt	1920
tcctccgggg	tcaagaaaaag	catggaaaga	caatatatga	tgtacccagg	gaccagaaag	1980
aaaattctt	tgcatcttag	aatgtttaga	cattcattgt	gactaaagag	tttctatgct	2040
tccttggttc	catgccaaca	tgctgagcat	gctcacaaag	aaggctcg	cattcctcct	2100
gtgttttagt	attggccca	gaggttccct	aatgggttc	cttggaaatca	ctgtggtcca	2160
aatgttaattc	ttacacactc	aaattatcac	tgtctgttagc	acacttgc	acctgtctta	2220
cattctctgt	tgctcccccc	cacacttctg	ctcagtcgt	cacctgttca	gtctgttac	2280
tcactcaatt	gttacccctt	tgctttgtc	gtgttttagt	tttgcatttt	aatgatttag	2340
ttgggattac	caaacatttt	ttaaaaagat	attatcaata	aatattttt	taattctaaa	2400
ttttaaaaaa	aaaaaaaaaa	aaa				2423

<210> 69

<211> 1841

<212> DNA

<213> Homo sapiens

<400> 69

agctgggacc	ggaggggtgag	cccggcagag	gcagagacac	acgcggagag	gaggagaggc	60
tgagggaggg	aggtggagaa	ggacgggaga	ggcagagaga	ggagacacgc	agagacactc	120
aggagggggag	agacaccgag	acgcagagac	actcaggagg	ggagagacac	cgagacgcag	180
agacaccctag	gccggggagc	gchgaggagc	gaggcagaca	cctggctcag	cgagcgcggg	240
gggcgagccc	cgagtcggca	gagccctgggg	ggggggccag	ccggggcgcc	gaccctcc	300
ccgctccgc	gccctccccc	cggcggcac	ggtattttt	tccgtgcgc	aacagccctc	360
ctcctctct	cgccgcacag	cccgccgcct	cgccggggga	gcccagcaca	gaccgccc	420
gggaccctga	gtcgcgcacc	ccagcccccac	cgcccacccc	gchgcgcctg	gaccctaagg	480
accgcaagaa	gatccagttc	tcgggtcccc	cgccccctag	ccagtcgcac	ccccgcccagg	540
tggagatgt	ccggcgcagg	agaccaacgc	ctgcccattc	gttccggctc	tcagagcact	600
cctcaccaga	ggaggaagcc	tccccccacc	agagagcc	aggagagggg	caccatctca	660
agtcgaagag	acccaacccc	tgtcctaca	caccacctt	gctgaaagct	gtgcagcgc	720
ttgctgagtc	tcacctgcag	tctatcagca	atttgaatga	gaaccaggcc	tcagaggagg	780
aggatgagct	gggggagctt	cgggagctgg	gttatccaag	agaggaagat	gaggaggaag	840
aggaggatga	tgaagaagag	gaagaagaag	aggacagcca	ggctgaagtc	ctgaaggtca	900
tcaggcagtc	tgctgggcaa	aagacaacct	gtggccaggg	tctggaaaggg	ccctgggagc	960
gcccacccccc	tctggatgag	tccgagagag	atggaggctc	tgaggacca	gttggaaagacc	1020
cagcactaag	tgagcctggg	gaggaacctc	agcgccttc	ccccctctgag	cctggcacat	1080
aggcaccctag	cctgcatttc	ccaggaggaa	gtggagggga	catcgtcttt	ccccagaaac	1140
ccactctatc	ctcacccctgt	tttgcatttc	tcccctcgcc	tgcttagggct	gcggcttctg	1200
acttctagaa	gactaaggct	ggtctgtgtt	tgcttgcattt	cccacccctt	gctgataccc	1260
agagaacctg	ggcacttgct	gcctgatgcc	caccctgtcc	agtattttc	ccattcacc	1320
agcggggaggt	gggatgtgag	acagccaca	ttggaaaatc	cagaaaacccg	ggaacaggga	1380
tttgccttc	acaattctac	tccccagatc	ctcccccctg	gacacaggag	acccacagg	1440
caggacccta	agatctgggg	aaaggagggtc	ctgagaacct	tgaggtaccc	tttagatcctt	1500

Siemens 0022 Seq Listing.txt

ttctacccac	tttcctatgg	aggattccaa	gtcaccactt	ctctcacccg	cttctaccag	1560
ggtccaggac	taaggcgaaa	ttctccatag	cctcaacatt	ttgggaatct	tcccttaatc	1620
acccttgctc	ctccctgggt	cctggaaagat	ggactggcag	agacctctt	gttgcgttt	1680
gtgcttgat	gccaggaatg	ccgccttagtt	tatgtccccg	gtggggcaca	cagcgggggg	1740
cggccaggaaa	tccttgcctt	ccagctgctc	tgcccccttc	cccttcttcc	ctgactccag	1800
gcctgaaccc	ctcccggtct	gtaataaaatc	tttgtaaata	a		1841

<210> 70

<211> 748

<212> DNA

<213> Homo sapiens

<400> 70

ggccgcgatg	agcggggagc	cggggcagac	gtccgtacg	ccccctccc	aggaggtcga	60
gccgggcagt	gggggtccgc	tcgtgtgg	gtactgtgaa	ccctgcggc	tcgaggcgac	120
ctacccggag	ctggccagtg	ctgtgaagga	gcagtatccg	ggcatcgaga	tcgagtcgcg	180
cctcgggggc	acaggtgcct	ttgagataga	gataaatgga	cagctgggt	tctccaagct	240
ggagaatggg	ggctttccct	atgagaaaga	tctcattgag	gccatccgaa	gagccagtaa	300
tggagaaaacc	ctagaaaaga	tcaccaacag	ccgtcctccc	tgcgtcatcc	tgtgactgca	360
caggactctg	ggttcctgct	ctgttgcgg	gtccaaacct	tggtctccc	ttggtcctgc	420
tgggagctcc	ccctgcctct	ttccccctact	tagtcctta	gcaaagagac	cctggccctcc	480
actttgcctt	ttgggtacaa	agaaggaata	gäagattccg	tggccttggg	ggcaggagag	540
agacactctc	catgaacact	tctccagcca	cctcataccc	cctttccagg	gtaagtgc	600
acgaaagccc	atgtccactct	tcgcctcgg	aatacctgtc	tatgtccaca	gattttat	660
attctccctt	aacccagggc	aatgtcagct	attggcagta	aagtggcgct	acaaacacta	720
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	748

<210> 71

<211> 795

<212> DNA

<213> Homo sapiens

<400> 71

tacggctgcg	agaagacgac	agaagctaga	cccaatctcc	tttgggatgt	gggcaggagg	60
ggaaggcaggc	tttgagggtt	aatttaccca	cagaatgtga	tagtaatagg	ggagggaggc	120
tgctgcgggt	ttaactccctg	ggttggctgt	tggtagaca	ggtggggaaa	aggcccgtga	180
gtcattgtaa	gcacaggtcc	aacttggccc	tgactcctgc	gggggtatgg	ggaagctgt	240
acagaaacga	tgggtgctgt	ggtcctctgc	aggccctcac	cccttaactt	cctcatacacag	300
actggcactg	ggcaggggcct	ctcatgtggc	agccacatgt	ggcgttgtga	ggccacccca	360
tgtggggtct	gtgggtgagag	tcctgttagga	tccctgctca	agcagcacag	aggaaggggc	420
aagacgtggc	ctgttaggcac	tgtctcagcc	tgcagagaag	aaagtgaggc	cgggagcctg	480
agcctggggct	ggagccttct	cccctcccc	gttggactag	ggcagtttt	aattttgaaa	540
agggtgtgggt	ccctgtgtcc	tcttccaggg	gtccaaggga	acaggagagg	tcactggcc	600
tgttttctcc	ctcctgacc	tgcatctccc	accccggtgt	tcatagggaa	ctttcacctt	660
aaaatcttcc	taagcaaagt	gtgaatagga	tttttactcc	ctttgtacag	tattctgaga	720
aacgcaaata	aaaggcAAC	atgtttctgt	aaaaaaaaaa	aaaaagtacg	aaaaaaaaaa	780
aaaaaaaaaa	aaaaaa					795

<210> 72

<211> 2356

<212> DNA

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400>	72					
ggcacgaggc	cggaagtgc	ctctagagcg	gtggtaaaac	tggcagttga	cggctccctgg	60
gactagatcc	cgcgaggtag	cccccaact	atttctctac	gttttctctt	gatcctcccg	120
aatcttcca	gatccgcgt	gtgaggaatc	gtctccaccc	tcatgggggg	cggagacccgt	180
aatctgaaga	agagctggca	cccgccagacc	ctcaggaatg	tggagaaagt	gtggaaaggcc	240
gagcagaagc	atgaggctga	gcggaaagaag	attgaggagc	ttcagcggga	gctgcgagaa	300
gagagagccc	gggaagagat	gcagcgctat	gcggaggatg	ttggggccgt	caagaaaaaa	360
gaagaaaagt	tggactggat	gtaccagggt	cctggggga	tggtaaccg	tgacgagatc	420
ctgctggggc	gccccattga	caaataatgtt	tttggagaaga	tggaggagaa	ggaggcaggc	480
tgctcttctg	aaacaggact	tctcccgaggc	tctatcttg	ccccatcagg	tgccaaattcc	540
cttcttgaca	tggccagcaa	gatccgggag	gaccactt	tcatcatcag	gaagaaggag	600
gaggagaaaa	aacgagaggt	attaaataat	ccagtggaaa	tgaagaaaat	caaagaattg	660
ttgcaaatga	gtctggaaaa	aaaggagaag	aagaaaaaaga	aggagaagaa	aaagaagcac	720
aagaaacata	agcacagaag	ctcgagtagt	gatcggttcca	gcagcgagga	tgagcacagt	780
gcagggagat	cacagaagaa	gatggcaat	tcctcccccgt	tttgtccaa	agtcccttgg	840
tatggcttac	agttccggaa	ctctgaccgt	aaccagggtc	ttcagggtcc	tctgacagca	900
gagcaaaaga	gagggcatgg	gatgaagaac	cattccagat	ccagaagctc	ctcccactca	960
cccccaagac	atgcccagcaa	gaagagcacc	agggaaaggcag	gttccggga	caggaggct	1020
cgatccctgg	gcagaagggtc	acgggtccca	agacccagca	aactgcacaa	ctctaagggt	1080
aacaggagag	agacaggcaca	aacttaggac	ccatccatct	aaaagaggt	tcaccaaagg	1140
cgacatgctc	ccggatacac	cagaaaactc	tctgcagagg	aatttagagcg	aaaacggcaa	1200
gagatgttgg	aaaacgccaa	atggggggag	gaggagagac	tgaacatctt	caagaggcat	1260
gctaaggatg	aggaacacggg	gcagaggcta	gagaagctgg	actcccggtt	tgggaagttc	1320
atccaccgca	tgaagctgg	gagtgcacatc	acttcctccc	tggaggatcg	ggtgaagcgg	1380
aatatctact	ctttacagag	aacttcggta	gctctggaga	agaactttat	aaaaagatga	1440
aaactgtccc	ctctcttatt	gttttccgt	cattttccag	ggaagctgt	gaccctttaa	1500
ttctcttatt	aagagttcaa	atgacttctt	tcacagatgt	caaaccacca	gtgttcaag	1560
tgaccctgct	tcatttgagtc	ctgaaacagc	tcacttcctt	tgagagctag	tgtgacttgc	1620
tttggggac	actcagtaac	tttgggtttt	gactctttaa	cgggtggca	ctggaccatc	1680
tcgggtggag	tgcttgcc	actctggaaag	gctgtccct	gggggtgtga	tgtttatcat	1740
gccacttcct	tcttacctgt	gccaacagac	ctatttcaact	gcctcagcgt	acaccagacc	1800
cttcagaaac	ctctctgggt	tcacccagat	agattgtgt	tactgagaca	aatgaacgtt	1860
tacttgattt	agaagataat	gtgacagaat	gatgtcaggt	tagtcaaag	ccaagggagt	1920
gacagaatct	ggaaaatcaa	acaatacaaa	aagccctaaa	tgaactgtt	actatttgat	1980
ctttggatgt	aaaattgtaa	tgcgtatatg	tacaaatgt	caatttttac	atgcttttaa	2040
aaaaggttag	cttgtgaaa	ataccctgtt	tggtaatgt	ctttaactggg	taatagaacc	2100
acattgaacc	ttgatggcaa	gtaatacaat	aaaggcaggcc	agctcgttt	tctctctgaa	2160
tctggctgg	tttaggaggag	cctgggttta	tcgacgagat	ctggagatc	tattcttttc	2220
cactgcttgc	agtctccaat	gtaggcagtg	taaaggatata	gtaaaatgt	tttaggagtc	2280
agaaccaaata	tgccaaatatg	ctccatggct	cctaaaggaa	aataaaatgg	aagtttttaa	2340
aaaaaaaaaaa	aaaaaaa					2356

<210> 73

<211> 1646

<212> DNA

<213> Homo sapiens

<400>	73					
gtggaatgtc	atcagttaag	gctattttca	tttcttttgt	ggatcttcag	ttgcttcagg	60
ccatctggat	gtatacatgc	aggcacagg	gaatatgtat	gcttagctt	ggttcagagg	120
cctgacacct	caggctgcc	aatgtggaaag	attttaaatac	ttgaaccaat	accctccctcc	180
aaaaaactga	aattggcttc	tgtttctgag	ttggtccagg	cgcaatgtt	agcgtattt	240
aggaaatcac	aagaattgt	gttaaggaga	tggatgtgg	agggatatg	attgccgtt	300
gaagccttgc	tgatgtgtat	agattccgt	gctttccatct	ggtggggggag	aagagaactt	360
tctttggatg	ccggcaactac	acaacaggcc	tcacccctgtat	ggacattctg	gacacacatg	420
gggacaagtgc	tttagatgaa	ctggattctg	ggctccaagg	tcaaaaaggct	gagtttcaa	480
ttctggataa	tgttagactca	acgggagagt	tgatgtgtag	attacccaaa	gaaataacaa	540

Siemens 0022 Seq Listing.txt

tttcaggcag	tttccagggc	ttccaccatc	agaaaatcaa	gatatcgtag	aaccggatat	600
cccagcaga	tctggctacc	cttgaaaaca	ggaagctgaa	gagggaaacta	ccctttcat	660
tccgatcaat	taatacggaa	aaaaacctgt	atctggtag	agaaaactctg	gagacggtaa	720
aggagggaaac	cctgaaaagc	gaccggcaat	ataaaatttg	gagccagatc	tctcagggcc	780
atctcagcta	taaacacaag	ggccaaaggg	aagtgaccat	ccccccaaat	cgggtccctga	840
gctatcgagt	aaagcagctt	gtcttcccc	acaaggagac	gatgagaaag	tctttgggtt	900
cggaggattc	cagaaacatg	aaggagaagt	tggaggacat	ggagagtgtc	ctcaaggacc	960
tgacagagga	gaagagaaaa	gatgtgctaa	actccctcgc	taagtgcctc	ggcaaggagg	1020
atattcgga	ggatcttaga	caaagagtat	ctgaggtcct	gatttccggg	gagctacaca	1080
tggaggaccc	agacaaggct	ctccctaagca	gccttttaa	tgctgctggg	gtcttggtag	1140
aagcgcgtgc	aaaagccatt	ctggacttcc	tggatgccc	gctagagctg	tctgaagagc	1200
agcagtttgt	ggctgaggcc	ctggagaagg	ggacccttcc	tctgttgaag	gaccaggta	1260
aatctgtcat	ggagcagaac	tggatgagc	tggccagcag	tcctcctgac	atggactatg	1320
accctgagggc	acgaattctc	tgtgcgtgt	atgttgttg	ctctatcctg	ctggagctgg	1380
ctgaggggcc	tacctctgtc	tcttccta	tacaaaaggc	ctttctcc	acaagccctc	1440
gggtttcc	tttaccagtc	tgtcctca	gccatcgcca	ctaccatcct	gtcaccagtg	1500
ggacctcttt	aaaacaagca	gccaaccatt	cttgatgta	tcccattcgc	tccatgttaa	1560
catccaaaac	cagcctggat	ttcatacatg	gacttctgtat	taaaagtggc	aggttgtgca	1620
tgttaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1646

<210> 74

<211> 3340

<212> DNA

<213> Homo sapiens

<400> 74

cgggcgcucca	gagacagcgc	cgcctcagat	atcctgctgg	atgacattgt	ccttaccat	60
tctctttcc	tcccgcacgg	gaaatttctg	caggagctac	accagtactt	tgttcggca	120
ggaggcatgg	agggccctga	agggctgggc	cggaagcaag	cctgtctagc	catgcttctc	180
catttcttgg	acacctacca	ggggctgctt	caagaggaag	agggggcccgg	ccacatcatc	240
aaggatctat	acctgctaat	tatgaaggac	gagtccctt	accagggcct	ccgagagac	300
actctgagggc	tgcaccagct	ggtggagacg	gtggaactaa	agattccaga	ggagaaccag	360
ccacccagca	agcagggtga	gccactcttc	cgccacttcc	gccggataga	ctcctgtctg	420
cagaccgggg	tggccttccg	gggctctgat	gagatcttct	gccgtgtata	catgcctgac	480
cactcttatg	tgaccatacg	cagccgcctt	ttagcatctg	tgcaggacat	tctgggtctt	540
gtgacggaga	aacttcaata	ttcagaggag	cccgcggggc	gtgaggattc	cttcattctg	600
gtagctgtgt	cctcctctgg	agagaaggtc	cttctccagc	ccactgagga	ctgtttttc	660
accgcactgg	gcatcaacag	ccacctgtt	gcctgttactc	gggacagacta	tgaggctctg	720
gtgccccctcc	ccgaggagat	ccaggcttcc	cctggagaca	cagagatcca	ccgagtggag	780
cctgaggacg	ttgccaacca	cctaactgccc	ttccacttgg	agctgttccg	atgtgtcat	840
gagctggagt	tcgtggacta	cgtgttccac	ggggagcgcg	gccgcgggaa	gacggccaac	900
ttggagctgc	tgctgcagcg	ctgcagcgag	gtcacgcact	gggtggccac	cgaagtgtctg	960
ctctgcgagg	ccccgggcaa	gcgcgcgcag	ctgctcaaga	agttcatcaa	gatgcggcc	1020
ctctcaagc	agaaccagga	cctgtgtct	ttctacgcg	tggcatggg	gctggacaac	1080
gccgctgtca	gccgccttc	actcacctgg	gagaagctgc	cagggaaatt	caagaacttg	1140
tttcgaaat	ttgagaaccc	gacggacccc	tgcaggaacc	acaaaagcta	ccgagaagt	1200
atctccaaaa	tgaagccccc	tgtgattccc	ttcgtccctc	tgatcctcaa	agacctgact	1260
ttcctgcacg	aagggagtaa	gacccttgc	gatggtttgg	tgaacatcg	gaagctgcat	1320
tcagtggccg	aaaaagttag	gacaatccgc	aaataccgga	gccggccccc	ttgcctggac	1380
atggaggcat	cccccaatca	cctgcagacc	aaggcctatg	tgcgcctatc	tcaggtcatc	1440
gacaaccaga	acctccctt	cgagctctcc	tacaagctgg	aggccaaacag	tcagtgagag	1500
tggaggctcc	agtcagaccc	gccagatcct	tgggcaccc	gcactcaagc	actttgcacg	1560
atgtctcaac	caacatctga	catcttccc	gtggagcaac	ttcgtctcc	acgggaaaga	1620
ggtcgatgga	tttaccctg	gaccataag	tctgttcatc	ctgtgaagt	ccccctccca	1680
ttgctccctt	aagccaaaac	tacactttgc	tggttccctgt	ccccctctgag	aaaggggata	1740
gaaagctccct	tcctctatcg	cctcccatcg	agatctgttc	tggggatgga	gcttccaact	1800
tcctcttgca	gcagggaaaga	atgctgctca	ccttctgtc	ttgcagagtg	ggattgtggg	1860
agggattggc	agccttcttc	tccaccacct	gtccagcttc	ttcctgttca	gggctgggac	1920
ccccaggaat	attatgttgc	cgtgtgtgt	tgtgtgtgt	tgtgtgtgt	tgtgtgtgt	1980

Siemens 0022 Seq Listing.txt

tgtgtttctt	tttagggagc	aggagtgcattt	ctggtaatgg	agggtggatg	tttgtgtgtgc	2040
tggggagggg	tccctctgtt	tgggtctacc	cttgcactt	ctgcccctgg	atggtgcgaa	2100
gtgctttctc	caccccccaca	ctccctgctc	agctcctcg	gctgccctgc	atgcccaggc	2160
tttgtgagcca	aggtgtttt	tggggcagg	atgtcgac	ggtgggaggg	tttacccatc	2220
agcccttgca	agtcccccac	tcagggctct	ggaagggtcca	ggatgggct	ctgtgagag	2280
gttaaaagat	gctcaggaa	acacaggcct	cagctgccta	gaggaccctc	cccctgcctt	2340
gcagtgggct	cgggttagagc	agtatcgag	gctagggttg	tctgtgtccc	acactcctgc	2400
tttttgggat	atctaactgc	taaggaggaa	gttgcacatcc	cccttctggc	tcatgtgtct	2460
gacaccaaca	acatggtctc	cgtccctctc	tcttagactc	tcccttgc	ctccccatag	2520
agctgggtg	gggtggatcc	ctatactggg	gcaggcaggc	ccaaagtggg	ggagggggat	2580
ggcagagact	gtaaaggcgc	cactggactc	tggcaaggcc	tttattacct	ttactccctc	2640
cctctccat	caccagcctc	aaggcctgag	gggtgcagg	gctctggca	gctactgggt	2700
gaggtttcct	ggcacagact	cacccttctt	tctggcacca	ctcttccct	tttgaagaga	2760
cagcaacagc	cgtacaaaa	gcagctgctg	ctcctgttat	gagggtgtat	atattttta	2820
cccaaagctc	tgaattgtt	catttatttt	ttaaaactca	aagagggaaa	gagccttgc	2880
tcatatgtga	acattgtatc	ataggtaatg	ttgtacagac	cttttatac	agtgtatgt	2940
cttggccctg	cagcaaaaaat	cctctatgg	cataggaggt	gctgtgtccc	atgccttctt	3000
gcccgtacag	tgtcccatgg	gcccccttct	gctccctg	cccttccctgc	tactgctgat	3060
gcactgtcct	cccccgtcag	cccctggctt	cccagccttc	ctcctgaccc	tttccaaacag	3120
ccttggaaact	ccagctgcca	ccaccctctg	ggtcgacac	tgggaccac	tggcccagtc	3180
ttggctgtg	cttaccctta	gccttgatgc	ctggccagg	acccccagcc	ccctcccggt	3240
gcccgtcagc	ttaacacagag	tgaaccatgt	gtattgtaca	ggcgcgggtt	tcattgcaga	3300
aaccgctggg	tggagaagaa	gccgataaa	tctatgaatc			3340

<210> 75

<211> 4005

<212> DNA

<213> Homo sapiens

<400> 75

ggcaacagt	ctgcccac	gtggacacca	gatccctgg	gctctgg	agcaagtgg	60
atctctgg	tgtcagtgg	gctgggtgaa	gaccagagg	aaactgcaga	ggtaccac	120
cccacatgt	cccaagggtat	gtccagccca	ctgctgg	gaggccatgc	tgtcagttt	180
gcgcctgt	atgagccca	gaggaccctg	caccggcac	ccagccccag	cctgcccac	240
cagtgttctt	actacaccac	ggaaggctgg	ggagccagg	ccctgtatgg	ccccgtgccc	300
tgcattgggc	cccttggcc	actccagcaa	gcccccacagg	tggaggccaa	agccacctgc	360
ttcctggcgt	cccttgggt	gaaggcctt	gggaccccg	aggaccttga	ctcctacatt	420
gacttctac	tggagaggct	caatcatgg	atccctggaa	tggacccac	tttccagctg	480
tttccccca	ggactgggg	ctcccaggct	gagctggccc	agagcaccat	gtcaatgaga	540
aagaaggagg	aatctgaagc	tttggacata	aagtacatcg	aggtgaccc	cgccagatca	600
aggtgcac	atggcccca	gcactgtcc	agccccctcg	tcaccccgcc	tttccggctcc	660
cctcgcagtg	gtggcctct	cctttccaga	gacgtcccc	gagagacacg	aagcagcagt	720
gagagcctca	tcttctctgg	gaaccagg	agggggcacc	agccccctc	ccccccctca	780
gagggtctct	cccttcgacc	cccaaattcc	cccaaggatct	caatccctt	catggggagg	840
aaggcctcga	ccccccatgg	tttgggttcc	ccgctgg	tttcccaag	actggagaag	900
cggctggag	gcctggcccc	acagcggggc	agcaggatct	ctgtgtgtc	agccagccca	960
gtgtctgtat	tcaatgtat	gtttggaa	agccaggccc	tcctgcactc	cagcaactcc	1020
agccatcagt	catcttccag	atccttggaa	agtccaggcc	acttccctc	cagcctccac	1080
agccttggct	cagtgtccct	gtgtacaaga	cccaggatct	tccaggctcc	cagaacaccc	1140
accctaacc	tgggccaacc	cagaacaccc	cactctccac	cactggccaa	agaacatgcc	1200
agcatctgcc	ccccatccat	ccaactcc	atgggtggaca	tacccattgt	gtgtatcaac	1260
ggctgcccag	aaccagggtc	ttctccaccc	cagcggaccc	caggacacca	gaactccgtt	1320
caacctggag	ctgtttctcc	cagaacaccc	tgtccaggcc	ccaggagcaa	cagccagacc	1380
ctgtcagat	ccccctttac	cacatggcc	gagggtcccg	ccaggggacat	gcagccccacc	1440
atgaagttcg	tgtatggacac	atctaaatac	tgggtta	caaacatcac	ccgagagcaa	1500
gcaatcgac	tgtctggagaa	ggaggagcc	ggggctttt	tcatagggaa	cagcttca	1560
taccgggtc	ctttcggcc	ggccctgaag	gtcaggagg	ttcccgcgtc	tgctcagaat	1620
cgaccagg	aggacagcaa	tgaccatcc	tgtacacttcc	tcatcgatc	gtctgccaaa	1680
ggagtgcac	tcaaaggagc	agatgaggag	ccctactt	ggagcctctc	tgccttcgt	1740

Siemens 0022 Seq Listing.txt

tgccagcatt	ccatcatggc	cctggccctg	ccctgcacaa	tcaccatccc	acagagagaa	1800
ctggagggtg	cagatggggc	ctcgactct	acagacagcc	cagccctctg	ccagaagaaa	1860
tctgcgggct	gccacaccc	gtacctgagc	tca	gagaccc	gactggagcc	1920
ctggccgtc	agaaaagccat	ctccaccacc	ttttaggg	acatccccc	cacgcccacc	1980
gtggtcact	tca	agagcaggc	atcactctga	ctgatgtcca	gaggaagggt	2040
ttttccggc	gcattacc	actcaccacc	ctccgcttct	gtggtatgg	ccctgagcaa	2100
cgaaagtggc	agaagtactg	caaaccctcc	tggatcttt	ggttgtggc	caagagccag	2160
acagagcctc	aggagaacgt	atgcccac	tttgcggagt	atgacatgg	ccagccagcc	2220
tcgcaggta	tcggctgg	gactgc	ctgcaggacg	cagaaaggat	gtagggaga	2280
gactgcctgt	gcacctaacc	aacacctcc	ggggctcgct	aaggagcccc	cctccacccc	2340
ctgaatgggt	gtggcttg	gcatattga	cagaccaatc	tatggacta	gggggattgg	2400
catcaagttg	acacccttga	ac	ctgtat	gccttcagca	gtcaccatca	2460
ccgggcctca	gttccctca	tca	tagaaga	agaccaatag	acaagatcag	2520
atgctgtgg	gcatttgaa	atgctctcc	atgattctga	agcatgcaca	cctctgaaga	2580
cccctgcatg	aaaataaac	ccaaggaccc	tctgacccca	tcgacctgg	ccctgcccac	2640
acaacagtct	gagcaagaga	cctgcagcc	ctgtttcgt	gcagacagca	gtgcctggc	2700
ggtgacccac	ggggctctg	gcttgagct	ggtatgg	aagaactgac	tacaaaacag	2760
gaatggatag	actctat	ttccat	tttccctctg	ttcc	cactttctgg	2820
gtggctttt	gggtccaccc	agccaggat	ctgcaggcc	agctgggt	gttatttagg	2880
gcagctcagc	aggggaaact	tgtccctat	gtcagaggag	accagctgt	cctgcacccc	2940
cttgcagatg	agatcacc	catcttct	ttccacttgg	tttttattt	tattttttt	3000
gagacagatg	cttactgtca	cccagctg	actgcagtt	tgtatctag	gctcactgca	3060
acctccac	cccagg	actcattatc	ctgcctcagg	ctcccgagta	gctgggatta	3120
caggcatgt	caactcacc	agctaattt	gtat	tttag	gttccaccat	3180
gttggccagg	ctggcttga	actcctgacc	gcaggtaatc	cac	tttccattcc	3240
agtgcggg	ttacaggcgc	aagccaccc	gcccagctc	tttccattcc	ttgataggcg	3300
agtattccaa	agctggtac	gtagctgccc	taatgttgc	tattaggcgg	cgggggcaga	3360
gataaggggcc	atctctctgt	gattctgc	cagctctgt	cttgcgt	cctccccc	3420
cccacgc	aa	acacacaca	cacacacaca	cacacacaca	cacacacaca	3480
cacgc	ct	tactgtat	tggcttcaac	cagcctcaca	gccacacgg	3540
agtcaagaat	gcaaagaggc	cgcttcc	taa	ggttgc	ctctatcc	3600
cacccac	ccccac	ccaccc	ccacccagcc	tccagaagct	ctccgcagg	3660
cctgagg	taaggaaacc	acc	cttaccgg	ggttgc	agggtcagg	3720
ctcttgc	tct	acgaggag	agtgc	ccctccc	gccaagg	3780
cattatctt	ggccaagg	ggcctgac	gttatgatt	cac	tttccattcc	3840
aggctgagat	cagcccac	agccag	ttgttgc	ccgcgc	aagtctgc	3900
aatgtgagat	gagg	ttctca	aggtcacagg	cccc	tttccattcc	3960
ccccatata	ctctgt	taca	gtaaaaataa	agc	tttccattcc	4005

<210> 76

<211> 1093

<212> PRT

<213> Homo sapiens

<400> 76

Met	Lys	Glu	Met	Val	Gly	Gly	Cys	Cys	Val	Cys	Ser	Asp	Glu	Arg	Gly
1					5				10					15	
Trp	Ala	Glu	Asn	Pro	Leu	Val	Tyr	Cys	Asp	Gly	His	Ala	Cys	Ser	Val
							20		25					30	
Ala	Val	His	Gln	Ala	Cys	Tyr	Gly	Ile	Val	Gln	Val	Pro	Thr	Gly	Pro
							35		40				45		
Trp	Phe	Cys	Arg	Lys	Cys	Glu	Ser	Gln	Glu	Arg	Ala	Ala	Arg	Val	Arg
							50		55				60		
Cys	Glu	Leu	Cys	Pro	His	Lys	Asp	Gly	Ala	Leu	Lys	Arg	Thr	Asp	Asn
							65		70				75		80
Gly	Gly	Trp	Ala	His	Val	Val	Cys	Ala	Leu	Tyr	Ile	Pro	Glu	Val	Gln
							85		90				95		
Phe	Ala	Asn	Val	Leu	Thr	Met	Glu	Pro	Ile	Val	Leu	Gln	Tyr	Val	Pro
							100		105				110		

Siemens 0022 Seq Listing.txt

His Asp Arg Phe Asn Lys Thr Cys Tyr Ile Cys Glu Glu Thr Gly Arg
 115 120 125
 Glu Ser Lys Ala Ala Ser Gly Ala Cys Met Thr Cys Asn Arg His Gly
 130 135 140
 Cys Arg Gln Ala Phe His Val Thr Cys Ala Gln Met Ala Gly Leu Leu
 145 150 155 160
 Cys Glu Glu Glu Val Leu Glu Val Asp Asn Val Lys Tyr Cys Gly Tyr
 165 170 175
 Cys Lys Tyr His Phe Ser Lys Met Lys Thr Ser Arg His Ser Ser Gly
 180 185 190
 Gly Gly Gly Gly Ala Gly Gly Gly Ser Met Gly Gly Gly
 195 200 205
 Gly Ser Gly Phe Ile Ser Gly Arg Arg Ser Arg Ser Ala Ser Pro Ser
 210 215 220
 Thr Gln Gln Glu Lys His Pro Thr His His Glu Arg Gly Gln Lys Lys
 225 230 235 240
 Ser Arg Lys Asp Lys Glu Arg Leu Lys Gln Lys His Lys Lys Arg Pro
 245 250 255
 Glu Ser Pro Pro Ser Ile Leu Thr Pro Pro Val Val Pro Thr Ala Asp
 260 265 270
 Lys Val Ser Ser Ser Ala Ser Ser Ser His His Glu Ala Ser Thr
 275 280 285
 Gln Glu Thr Ser Glu Ser Ser Arg Glu Ser Lys Gly Lys Lys Ser Ser
 290 295 300
 Ser His Ser Leu Ser His Lys Gly Lys Lys Leu Ser Ser Gly Lys Gly
 305 310 315 320
 Val Ser Ser Phe Thr Ser Ala Ser Ser Ser Ser Ser Ser Ser Ser
 325 330 335
 Ser Ser Gly Gly Pro Phe Gln Pro Ala Val Ser Ser Leu Gln Ser Ser
 340 345 350
 Pro Asp Phe Ser Ala Phe Pro Lys Leu Glu Gln Pro Glu Glu Asp Lys
 355 360 365
 Tyr Ser Lys Pro Thr Ala Pro Ala Pro Ser Ala Pro Pro Ser Pro Ser
 370 375 380
 Ala Pro Glu Pro Pro Lys Ala Asp Leu Phe Glu Gln Lys Val Val Phe
 385 390 395 400
 Ser Gly Phe Gly Pro Ile Met Arg Phe Ser Thr Thr Thr Ser Ser Ser
 405 410 415
 Gly Arg Ala Arg Ala Pro Ser Pro Gly Asp Tyr Lys Ser Pro His Val
 420 425 430
 Thr Gly Ser Gly Ala Ser Ala Gly Thr His Lys Arg Met Pro Ala Leu
 435 440 445
 Ser Ala Thr Pro Val Pro Ala Asp Glu Thr Pro Glu Thr Gly Leu Lys
 450 455 460
 Glu Lys Lys His Lys Ala Ser Lys Arg Ser Arg His Gly Pro Gly Arg
 465 470 475 480
 Pro Lys Gly Ser Arg Asn Lys Glu Gly Thr Gly Gly Pro Ala Ala Pro
 485 490 495
 Ser Leu Pro Ser Ala Gln Leu Ala Gly Phe Thr Ala Thr Ala Ala Ser
 500 505 510
 Pro Phe Ser Gly Gly Ser Leu Val Ser Ser Gly Leu Gly Gly Leu Ser
 515 520 525
 Ser Arg Thr Phe Gly Pro Ser Gly Ser Leu Pro Ser Leu Ser Leu Glu
 530 535 540
 Ser Pro Leu Leu Gly Ala Gly Ile Tyr Thr Ser Asn Lys Asp Pro Ile
 545 550 555 560
 Ser His Ser Gly Gly Met Leu Arg Ala Val Cys Ser Thr Pro Leu Ser
 565 570 575
 Ser Ser Leu Leu Gly Pro Pro Gly Thr Ser Ala Leu Pro Arg Leu Ser
 580 585 590
 Arg Ser Pro Phe Thr Ser Thr Leu Pro Ser Ser Ser Ala Ser Ile Ser
 595 600 605
 Thr Thr Gln Val Phe Ser Leu Ala Gly Ser Thr Phe Ser Leu Pro Ser

Siemens 0022 Seq Listing.txt

610	615	620
Thr His Ile Phe Gly Thr Pro Met Gly Ala Val Asn Pro Leu Leu Ser		
625	630	635
Gln Ala Glu Ser Ser His Thr Glu Pro Asp Leu Glu Asp Cys Ser Phe		640
645	650	655
Arg Cys Arg Gly Thr Ser Pro Gln Glu Ser Leu Ser Ser Met Ser Pro		
660	665	670
Ile Ser Ser Leu Pro Ala Leu Phe Asp Gln Thr Ala Ser Ala Pro Cys		
675	680	685
Gly Gly Gln Leu Asp Pro Ala Ala Pro Gly Thr Thr Asn Met Glu		
690	695	700
Gln Leu Leu Glu Lys Gln Gly Asp Gly Glu Ala Gly Val Asn Ile Val		
705	710	715
Glu Met Leu Lys Ala Leu His Ala Leu Gln Lys Glu Asn Gln Arg Leu		720
725	730	735
Gln Glu Gln Ile Leu Ser Leu Thr Ala Lys Lys Glu Arg Leu Gln Ile		
740	745	750
Leu Asn Val Gln Leu Ser Val Pro Phe Pro Ala Leu Pro Ala Ala Leu		
755	760	765
Pro Ala Ala Asn Gly Pro Val Pro Gly Pro Tyr Gly Leu Pro Pro Gln		
770	775	780
Ala Gly Ser Ser Asp Ser Leu Ser Thr Ser Lys Ser Pro Pro Gly Lys		
785	790	795
Ser Ser Leu Gly Leu Asp Asn Ser Leu Ser Thr Ser Ser Glu Asp Pro		800
805	810	815
His Ser Gly Cys Pro Ser Arg Ser Ser Ser Leu Ser Phe His Ser		
820	825	830
Thr Pro Pro Pro Leu Pro Leu Leu Gln Gln Ser Pro Ala Thr Leu Pro		
835	840	845
Leu Ala Leu Pro Gly Ala Pro Ala Pro Leu Pro Pro Gln Pro Gln Asn		
850	855	860
Gly Leu Gly Arg Ala Pro Gly Ala Ala Gly Leu Gly Ala Met Pro Met		
865	870	875
Ala Glu Gly Leu Leu Gly Gly Leu Ala Gly Ser Gly Gly Leu Pro Leu		880
885	890	895
Asn Gly Leu Leu Gly Gly Leu Asn Gly Ala Ala Ala Pro Asn Pro Ala		
900	905	910
Ser Leu Ser Gln Ala Gly Gly Ala Pro Thr Leu Gln Leu Pro Gly Cys		
915	920	925
Leu Asn Ser Leu Thr Glu Gln Gln Arg His Leu Leu Gln Gln Gln Glu		
930	935	940
Gln Gln Leu Gln Gln Leu Gln Gln Leu Ala Ser Pro Gln Leu Thr		
945	950	955
Pro Glu His Gln Thr Val Val Tyr Gln Met Ile Gln Gln Ile Gln Gln		960
965	970	975
Lys Arg Glu Leu Gln Arg Leu Gln Met Ala Gly Gly Ser Gln Leu Pro		
980	985	990
Met Ala Ser Leu Leu Ala Gly Ser Ser Thr Pro Leu Leu Ser Ala Gly		
995	1000	1005
Thr Pro Gly Leu Leu Pro Thr Ala Ser Ala Pro Pro Leu Leu Pro		
1010	1015	1020
Ala Gly Ala Leu Val Ala Pro Ser Leu Gly Asn Asn Thr Ser Leu		
1025	1030	1035
Met Ala Ala Ala Ala Ala Ala Ala Val Ala Ala Gly Gly		
1040	1045	1050
Pro Pro Val Leu Thr Ala Gln Thr Asn Pro Phe Leu Ser Leu Ser		
1055	1060	1065
Gly Ala Glu Gly Ser Gly Gly Pro Lys Gly Gly Thr Ala Asp		
1070	1075	1080
Lys Gly Ala Ser Ala Asn Gln Glu Lys Gly		
1085	1090	

Siemens 0022 Seq Listing.txt

<211> 344

<212> PRT

<213> Homo sapiens

<400> 77
Met His Arg Thr Thr Arg Ile Lys Ile Thr Glu Leu Asn Pro His Leu
1 5 10 15
Met Cys Ala Leu Cys Gly Gly Tyr Phe Ile Asp Ala Thr Thr Ile Val
20 25 30
Glu Cys Leu His Ser Phe Cys Lys Thr Cys Ile Val Arg Tyr Leu Glu
35 40 45
Thr Asn Lys Tyr Cys Pro Met Cys Asp Val Gln Val His Lys Thr Arg
50 55 60
Pro Leu Leu Ser Ile Arg Ser Asp Lys Thr Leu Gln Asp Ile Val Tyr
65 70 75 80
Lys Leu Val Pro Gly Leu Phe Lys Asp Glu Met Lys Arg Arg Arg Asp
85 90 95
Phe Tyr Ala Ala Tyr Pro Leu Thr Glu Val Pro Asn Gly Ser Asn Glu
100 105 110
Asp Arg Gly Glu Val Leu Glu Gln Glu Lys Gly Ala Leu Ser Asp Asp
115 120 125
Glu Ile Val Ser Leu Ser Ile Glu Phe Tyr Glu Gly Ala Arg Asp Arg
130 135 140
Asp Glu Lys Lys Gly Pro Leu Glu Asn Gly Asp Gly Asp Lys Glu Lys
145 150 155 160
Thr Gly Val Arg Phe Leu Arg Cys Pro Ala Ala Met Thr Val Met His
165 170 175
Leu Ala Lys Phe Leu Arg Asn Lys Met Asp Val Pro Ser Lys Tyr Lys
180 185 190
Val Glu Val Leu Tyr Glu Asp Glu Pro Leu Lys Glu Tyr Tyr Thr Leu
195 200 205
Met Asp Ile Ala Tyr Ile Tyr Pro Trp Arg Arg Asn Gly Pro Leu Pro
210 215 220
Leu Lys Tyr Arg Val Gln Pro Ala Cys Lys Arg Leu Thr Leu Ala Thr
225 230 235 240
Val Pro Thr Pro Ser Glu Gly Thr Asn Thr Ser Gly Ala Ser Glu Cys
245 250 255
Glu Ser Val Ser Asp Lys Ala Pro Ser Pro Ala Thr Leu Pro Ala Thr
260 265 270
Ser Ser Ser Leu Pro Ser Pro Ala Thr Pro Ser His Gly Ser Pro Ser
275 280 285
Ser His Gly Pro Pro Ala Thr His Pro Thr Ser Pro Thr Pro Pro Ser
290 295 300
Thr Ala Ser Gly Ala Thr Thr Ala Ala Asn Gly Gly Ser Leu Asn Cys
305 310 315 320
Leu Gln Thr Pro Ser Ser Thr Ser Arg Gly Arg Lys Met Thr Val Asn
325 330 335
Gly Ala Pro Val Pro Pro Leu Thr
340

<210> 78

<211> 416

<212> PRT

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 78

Met Ser Ser Asn Cys Thr Ser Thr Thr Ala Val Ala Val Ala Pro Leu
 1 5 10 15
 Ser Ala Ser Lys Thr Lys Thr Lys Lys His Phe Val Cys Gln Lys
 20 25 30
 Val Lys Leu Phe Arg Ala Ser Glu Pro Ile Leu Ser Val Leu Met Trp
 35 40 45
 Gly Val Asn His Thr Ile Asn Glu Leu Ser Asn Val Pro Val Pro Val
 50 55 60
 Met Leu Met Pro Asp Asp Phe Lys Ala Tyr Ser Lys Ile Lys Val Asp
 65 70 75 80
 Asn His Leu Phe Asn Lys Glu Asn Leu Pro Ser Arg Phe Lys Phe Lys
 85 90 95
 Glu Tyr Cys Pro Met Val Phe Arg Asn Leu Arg Glu Arg Phe Gly Ile
 100 105 110
 Asp Asp Gln Asp Tyr Gln Asn Ser Val Thr Arg Ser Ala Pro Ile Asn
 115 120 125
 Ser Asp Ser Gln Gly Arg Cys Gly Thr Arg Phe Leu Thr Thr Tyr Asp
 130 135 140
 Arg Arg Phe Val Ile Lys Thr Val Ser Ser Glu Asp Val Ala Glu Met
 145 150 155 160
 His Asn Ile Leu Lys Lys Tyr His Gln Phe Ile Val Glu Cys His Gly
 165 170 175
 Asn Thr Leu Leu Pro Gln Phe Leu Gly Met Tyr Arg Leu Thr Val Asp
 180 185 190
 Gly Val Glu Thr Tyr Met Val Val Thr Arg Asn Val Phe Ser His Arg
 195 200 205
 Leu Thr Val His Arg Lys Tyr Asp Leu Lys Gly Ser Thr Val Ala Arg
 210 215 220
 Glu Ala Ser Asp Lys Glu Lys Ala Lys Asp Leu Pro Thr Phe Lys Asp
 225 230 235 240
 Asn Asp Phe Leu Asn Glu Gly Gln Lys Leu His Val Gly Glu Ser
 245 250 255
 Lys Lys Asn Phe Leu Glu Lys Leu Lys Arg Asp Val Glu Phe Leu Ala
 260 265 270
 Gln Leu Lys Ile Met Asp Tyr Ser Leu Leu Val Gly Ile His Asp Val
 275 280 285
 Asp Arg Ala Glu Gln Glu Glu Met Glu Val Glu Glu Arg Ala Glu Asp
 290 295 300
 Glu Glu Cys Glu Asn Asp Gly Val Gly Gly Asn Leu Leu Cys Ser Tyr
 305 310 315 320
 Gly Thr Pro Pro Asp Ser Pro Gly Asn Leu Leu Ser Phe Pro Arg Phe
 325 330 335
 Phe Gly Pro Gly Glu Phe Asp Pro Ser Val Asp Val Tyr Ala Met Lys
 340 345 350
 Ser His Glu Ser Ser Pro Lys Lys Glu Val Tyr Phe Met Ala Ile Ile
 355 360 365
 Asp Ile Leu Thr Pro Tyr Asp Thr Lys Lys Lys Ala Ala His Ala Ala
 370 375 380
 Lys Thr Val Lys His Gly Ala Gly Ala Glu Ile Ser Thr Val Asn Pro
 385 390 395 400
 Glu Gln Tyr Ser Lys Arg Phe Asn Glu Phe Met Ser Asn Ile Leu Thr
 405 410 415

<210> 79

<211> 500

<212> PRT

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 79
 Met Arg Gly Glu Leu Trp Leu Leu Val Leu Val Leu Arg Glu Ala Ala
 1 5 10 15
 Arg Ala Leu Ser Pro Gln Pro Gly Ala Gly His Asp Glu Gly Pro Gly
 20 25 30
 Ser Gly Trp Ala Ala Lys Gly Thr Val Arg Gly Trp Asn Arg Arg Ala
 35 40 45
 Arg Glu Ser Pro Gly His Val Ser Glu Pro Asp Arg Thr Gln Leu Ser
 50 55 60
 Gln Asp Leu Gly Gly Thr Leu Ala Met Asp Thr Leu Pro Asp Asn
 65 70 75 80
 Arg Thr Arg Val Val Glu Asp Asn His Ser Tyr Tyr Val Ser Arg Leu
 85 90 95
 Tyr Gly Pro Ser Glu Pro His Ser Arg Glu Leu Trp Val Asp Val Ala
 100 105 110
 Glu Ala Asn Arg Ser Gln Val Lys Ile His Thr Ile Leu Ser Asn Thr
 115 120 125
 His Arg Gln Ala Ser Arg Val Val Leu Ser Phe Asp Phe Pro Phe Tyr
 130 135 140
 Gly His Pro Leu Arg Gln Ile Thr Ile Ala Thr Gly Gly Phe Ile Phe
 145 150 155 160
 Met Gly Asp Val Ile His Arg Met Leu Thr Ala Thr Gln Tyr Val Ala
 165 170 175
 Pro Leu Met Ala Asn Phe Asn Pro Gly Tyr Ser Asp Asn Ser Thr Val
 180 185 190
 Val Tyr Phe Asp Asn Gly Thr Val Phe Val Val Gln Trp Asp His Val
 195 200 205
 Tyr Leu Gln Gly Trp Glu Asp Lys Gly Ser Phe Thr Phe Gln Ala Ala
 210 215 220
 Leu His His Asp Gly Arg Ile Val Phe Ala Tyr Lys Glu Ile Pro Met
 225 230 235 240
 Ser Val Pro Glu Ile Ser Ser Ser Gln His Pro Val Lys Thr Gly Leu
 245 250 255
 Ser Asp Ala Phe Met Ile Leu Asn Pro Ser Pro Asp Val Pro Glu Ser
 260 265 270
 Arg Arg Arg Ser Ile Phe Glu Tyr His Arg Ile Glu Leu Asp Pro Ser
 275 280 285
 Lys Val Thr Ser Met Ser Ala Val Glu Phe Thr Pro Leu Pro Thr Cys
 290 295 300
 Leu Gln His Arg Ser Cys Asp Ala Cys Met Ser Ser Asp Leu Thr Phe
 305 310 315 320
 Asn Cys Ser Trp Cys His Val Leu Gln Arg Cys Ser Ser Gly Phe Asp
 325 330 335
 Arg Tyr Arg Gln Glu Trp Met Asp Tyr Gly Cys Ala Gln Glu Ala Glu
 340 345 350
 Gly Arg Met Cys Glu Asp Phe Gln Asp Glu Asp His Asp Ser Ala Ser
 355 360 365
 Pro Asp Thr Ser Phe Ser Pro Tyr Asp Gly Asp Leu Thr Thr Thr Ser
 370 375 380
 Ser Ser Leu Phe Ile Asp Ser Leu Thr Thr Glu Asp Asp Thr Lys Leu
 385 390 395 400
 Asn Pro Tyr Ala Gly Gly Asp Gly Leu Gln Asn Asn Leu Ser Pro Lys
 405 410 415
 Thr Lys Gly Thr Pro Val His Leu Gly Thr Ile Val Gly Ile Val Leu
 420 425 430
 Ala Val Leu Leu Val Ala Ala Ile Ile Leu Ala Gly Ile Tyr Ile Asn
 435 440 445
 Gly His Pro Thr Ser Asn Ala Ala Leu Phe Phe Ile Glu Arg Arg Pro
 450 455 460
 His His Trp Pro Ala Met Lys Phe Arg Ser His Pro Asp His Ser Thr
 465 470 475 480
 Tyr Ala Glu Val Glu Pro Ser Gly His Glu Lys Glu Gly Phe Met Glu
 485 490 495

Siemens 0022 Seq Listing.txt

Ala Glu Gln Cys
500

<210> 80

<211> 509

<212> PRT

<213> Homo sapiens

<400> 80
Met Glu Asp Ile Gln Thr Asn Ala Glu Leu Lys Ser Thr Gln Glu Gln
1 5 10 15
Ser Val Pro Ala Glu Ser Ala Ala Val Leu Asn Asp Tyr Ser Leu Thr
20 25 30
Lys Ser His Glu Met Glu Asn Val Asp Ser Gly Glu Gly Pro Ala Asn
35 40 45
Glu Asp Glu Asp Ile Gly Asp Asp Ser Met Lys Val Lys Asp Glu Tyr
50 55 60
Ser Glu Arg Asp Glu Asn Val Leu Lys Ser Glu Pro Met Gly Asn Ala
65 70 75 80
Glu Glu Pro Glu Ile Pro Tyr Ser Tyr Ser Arg Glu Tyr Asn Glu Tyr
85 90 95
Glu Asn Ile Lys Leu Glu Arg His Val Val Ser Phe Asp Ser Ser Arg
100 105 110
Pro Thr Ser Gly Lys Met Asn Cys Asp Val Cys Gly Leu Ser Cys Ile
115 120 125
Ser Phe Asn Val Leu Met Val His Lys Arg Ser His Thr Gly Glu Arg
130 135 140
Pro Phe Gln Cys Asn Gln Cys Gly Ala Ser Phe Thr Gln Lys Gly Asn
145 150 155 160
Leu Leu Arg His Ile Lys Leu His Thr Gly Glu Lys Pro Phe Lys Cys
165 170 175
His Leu Cys Asn Tyr Ala Cys Gln Arg Arg Asp Ala Leu Thr Gly His
180 185 190
Leu Arg Thr His Ser Val Glu Lys Pro Tyr Lys Cys Glu Phe Cys Gly
195 200 205
Arg Ser Tyr Lys Gln Arg Ser Ser Leu Glu Glu His Lys Glu Arg Cys
210 215 220
Arg Thr Phe Leu Gln Ser Thr Asp Pro Gly Asp Thr Ala Ser Ala Glu
225 230 235 240
Ala Arg His Ile Lys Ala Glu Met Gly Ser Glu Arg Ala Leu Val Leu
245 250 255
Asp Arg Leu Ala Ser Asn Val Ala Lys Arg Lys Ser Ser Met Pro Gln
260 265 270
Lys Phe Ile Gly Glu Lys Arg His Cys Phe Asp Val Asn Tyr Asn Ser
275 280 285
Ser Tyr Met Tyr Glu Lys Glu Ser Glu Leu Ile Gln Thr Arg Met Met
290 295 300
Asp Gln Ala Ile Asn Asn Ala Ile Ser Tyr Leu Gly Ala Glu Ala Leu
305 310 315 320
Cys Pro Leu Val Gln Thr Pro Pro Ala Pro Thr Ser Glu Met Val Pro
325 330 335
Val Ile Ser Ser Met Tyr Pro Ile Ala Leu Thr Arg Ala Glu Met Ser
340 345 350
Asn Gly Ala Pro Gln Glu Leu Glu Arg Lys Ser Ile Leu Leu Pro Glu
355 360 365
Lys Ser Val Pro Ser Glu Arg Gly Leu Ser Pro Asn Asn Ser Gly His
370 375 380
Asp Ser Thr Asp Thr Asp Ser Asn His Glu Glu Arg Gln Asn His Ile
385 390 395 400

Siemens 0022 Seq Listing.txt

Tyr Gln Gln Asn His Met Val Leu Ser Arg Ala Arg Asn Gly Met Pro
 405 410 415
 Leu Leu Lys Glu Val Pro Arg Ser Tyr Glu Leu Leu Lys Pro Pro Pro
 420 425 430
 Ile Cys Pro Arg Asp Ser Val Lys Val Ile Asp Lys Glu Gly Glu Val
 435 440 445
 Met Asp Val Tyr Arg Cys Asp His Cys Arg Val Leu Phe Leu Asp Tyr
 450 455 460
 val Met Phe Thr Ile His Met Gly Cys His Gly Phe Arg Asp Pro Phe
 465 470 475 480
 Glu Cys Asn Met Cys Gly Asp Arg Ser His Asp Arg Tyr Glu Phe Ser
 485 490 495
 Ser His Ile Ala Arg Gly Glu His Arg Ser Leu Leu Lys
 500 505

<210> 81

<211> 440

<212> PRT

<213> Homo sapiens

<400> 81

Met Pro Ile Pro Pro Pro Pro Pro Pro Pro Pro Pro Gly Pro Pro Pro Pro
 1 5 10 15
 Pro Thr Phe His Gln Ala Asn Thr Glu Gln Pro Lys Leu Ser Arg Asp
 20 25 30
 Glu Gln Arg Gly Arg Gly Ala Leu Leu Gln Asp Ile Cys Lys Gly Thr
 35 40 45
 Lys Leu Lys Lys Val Thr Asn Ile Asn Asp Arg Ser Ala Pro Ile Leu
 50 55 60
 Glu Lys Pro Lys Gly Ser Ser Gly Gly Tyr Gly Ser Gly Gly Ala Ala
 65 70 75 80
 Leu Gln Pro Lys Gly Gly Leu Phe Gln Gly Gly Val Leu Lys Leu Arg
 85 90 95
 Pro Val Gly Ala Lys Asp Gly Ser Glu Asn Leu Ala Gly Lys Pro Ala
 100 105 110
 Leu Gln Ile Pro Ser Ser Arg Ala Ala Ala Pro Arg Pro Pro Val Ser
 115 120 125
 Ala Ala Ser Gly Arg Pro Gln Asp Asp Thr Asp Ser Ser Arg Ala Ser
 130 135 140
 Leu Pro Glu Leu Pro Arg Met Gln Arg Pro Ser Leu Pro Asp Leu Ser
 145 150 155 160
 Arg Pro Asn Thr Thr Ser Ser Thr Gly Met Lys His Ser Ser Ser Ala
 165 170 175
 Pro Pro Pro Pro Pro Pro Gly Arg Arg Ala Asn Ala Pro Pro Thr Pro
 180 185 190
 Leu Pro Met His Ser Ser Lys Ala Pro Ala Tyr Asn Arg Glu Lys Pro
 195 200 205
 Leu Pro Pro Thr Pro Gly Gln Arg Leu His Pro Gly Arg Glu Gly Pro
 210 215 220
 Pro Ala Pro Pro Pro Val Lys Pro Pro Pro Ser Pro Val Asn Ile Arg
 225 230 235 240
 Thr Gly Pro Ser Gly Gln Ser Leu Ala Pro Pro Pro Pro Tyr Arg
 245 250 255
 Gln Pro Pro Gly Val Pro Asn Gly Pro Ser Ser Pro Thr Asn Glu Ser
 260 265 270
 Ala Pro Glu Leu Pro Gln Arg His Asn Ser Leu His Arg Lys Thr Pro
 275 280 285
 Gly Pro Val Arg Gly Leu Ala Pro Pro Pro Pro Thr Ser Ala Ser Pro
 290 295 300

Siemens 0022 Seq Listing.txt

Ser Leu Leu Ser Asn Arg Pro Pro Pro Pro Ala Arg Asp Pro Pro Ser
305 310 315 320
Arg Gly Ala Ala Pro Pro Pro Pro Pro Val Ile Arg Asn Gly Ala
325 330 335
Arg Asp Ala Pro Pro Pro Pro Pro Tyr Arg Met His Gly Ser Glu
340 345 350
Pro Pro Ser Arg Gly Lys Pro Pro Pro Pro Ser Arg Thr Pro Ala
355 360 365
Gly Pro Pro Pro Pro Pro Pro Leu Arg Asn Gly His Arg Asp
370 375 380
Ser Ile Thr Thr Val Arg Ser Phe Leu Asp Asp Phe Glu Ser Lys Tyr
385 390 395 400
Ser Phe His Pro Val Glu Asp Phe Pro Ala Pro Glu Glu Tyr Lys His
405 410 415
Phe Gln Arg Ile Tyr Pro Ser Lys Thr Asn Arg Ala Ala Arg Gly Ala
420 425 430
Pro Pro Leu Pro Pro Ile Leu Arg
435 440
<210> 82
<211> 205
<212> PRT
<213> Homo sapiens

<400> 82
Met Ser Ile Met Ser Tyr Asn Gly Gly Ala Val Met Ala Met Lys Gly
1 5 10 15
Lys Asn Cys Val Ala Ile Ala Ala Asp Arg Arg Phe Gly Ile Gln Ala
20 25 30
Gln Met Val Thr Thr Asp Phe Gln Lys Ile Phe Pro Met Gly Asp Arg
35 40 45
Leu Tyr Ile Gly Leu Ala Gly Leu Ala Thr Asp Val Gln Thr Val Ala
50 55 60
Gln Arg Leu Lys Phe Arg Leu Asn Leu Tyr Glu Leu Lys Glu Gly Arg
65 70 75 80
Gln Ile Lys Pro Tyr Thr Leu Met Ser Met Val Ala Asn Leu Leu Tyr
85 90 95
Glu Lys Arg Phe Gly Pro Tyr Tyr Thr Glu Pro Val Ile Ala Gly Leu
100 105 110
Asp Pro Lys Thr Phe Lys Pro Phe Ile Cys Ser Leu Asp Leu Ile Gly
115 120 125
Cys Pro Met Val Thr Asp Asp Phe Val Val Ser Gly Thr Cys Ala Glu
130 135 140
Gln Met Tyr Gly Met Cys Glu Ser Leu Trp Glu Pro Asn Met Asp Pro
145 150 155 160
Asp His Leu Phe Glu Thr Ile Ser Gln Ala Met Leu Asn Ala Val Asp
165 170 175
Arg Asp Ala Val Ser Gly Met Gly Val Ile Val His Ile Ile Glu Lys
180 185 190
Asp Lys Ile Thr Thr Arg Thr Leu Lys Ala Arg Met Asp
195 200 205
<210> 83
<211> 190
<212> PRT
<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 83
Leu Thr Arg Ser Cys Ser Thr Cys Cys Pro Ala Val Ala Cys Leu Val
1 5 10 15
Gly Arg Gly Val Val Thr Ser Gly Ala Met His Gln Cys Trp Gly Glu
20 25 30
Glu Met Leu Gln Gly Met Leu Leu Trp Gly Trp Ala Thr Cys Pro Leu
35 40 45
Ser Asn Pro Gly Arg Trp Gly Arg Thr Val Gly Leu Gln His Pro Ala
50 55 60
Val Val Ser Ala Phe Arg Ala Leu Leu Leu Met Leu Thr Val His
65 70 75 80
Val Ser Tyr Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu Val
85 90 95
Ala Asn Val Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu Ala Trp
100 105 110
Cys Leu Trp Asn Gln Arg Arg Leu Pro His Val Arg Lys Cys Val Val
115 120 125
Val Val Leu Leu Leu Gln Gly Leu Ser Leu Leu Glu Leu Leu Asp Phe
130 135 140
Pro Pro Leu Phe Trp Val Leu Asp Ala His Ala Ile Trp His Ile Ser
145 150 155 160
Thr Ile Pro Val His Val Leu Phe Phe Ser Phe Leu Glu Asp Asp Ser
165 170 175
Leu Tyr Leu Leu Lys Glu Ser Glu Asp Lys Phe Lys Leu Asp
180 185 190
<210> 84
<211> 368
<212> PRT
<213> Homo sapiens

<400> 84
Ala Pro Pro Pro Ala Ala Ser Gln Gly Glu Arg Met Ala Gly Leu Ala
1 5 10 15
Ala Arg Leu Val Leu Leu Ala Gly Ala Ala Ala Leu Ala Ser Gly Ser
20 25 30
Gln Gly Asp Arg Glu Pro Val Tyr Arg Asp Cys Val Leu Gln Cys Glu
35 40 45
Glu Gln Asn Cys Ser Gly Gly Ala Leu Asn His Phe Arg Ser Arg Gln
50 55 60
Pro Ile Tyr Met Ser Leu Ala Gly Trp Thr Cys Arg Asp Asp Cys Lys
65 70 75 80
Tyr Glu Cys Met Trp Val Thr Val Gly Leu Tyr Leu Gln Glu Gly His
85 90 95
Lys Val Pro Gln Phe His Gly Lys Trp Pro Phe Ser Arg Phe Leu Phe
100 105 110
Phe Gln Glu Pro Ala Ser Ala Val Ala Ser Phe Leu Asn Gly Leu Ala
115 120 125
Ser Leu Val Met Leu Cys Arg Tyr Arg Thr Phe Val Pro Ala Ser Ser
130 135 140
Pro Met Tyr His Thr Cys Val Ala Phe Ala Trp Val Ser Leu Asn Ala
145 150 155 160
Trp Phe Trp Ser Thr Val Phe His Thr Arg Asp Thr Asp Leu Thr Glu
165 170 175
Lys Met Asp Tyr Phe Cys Ala Ser Thr Val Ile Leu His Ser Ile Tyr
180 185 190
Leu Cys Cys Val Arg Thr Val Gly Leu Gln His Pro Ala Val Val Ser

Siemens 0022 Seq Listing.txt

195	200	205
Ala Phe Arg Ala Leu Leu Leu Met Leu Thr Val His Val Ser Tyr		
210	215	220
Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu Val Ala Asn Val		
225	230	235
Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu Ala Trp Cys Leu Trp		
245	250	255
Asn Gln Arg Arg Leu Pro His Val Arg Lys Cys Val Val Val Val Leu		
260	265	270
Leu Leu Gln Gly Leu Ser Leu Leu Glu Leu Leu Asp Phe Pro Pro Leu		
275	280	285
Phe Trp Val Leu Asp Ala His Ala Ile Trp His Ile Ser Thr Ile Pro		
290	295	300
Val His Val Leu Phe Phe Ser Phe Leu Glu Asp Asp Ser Leu Tyr Leu		
305	310	315
Leu Lys Glu Ser Glu Asp Lys Phe Lys Leu Val Glu Ala Asp Trp Ile		
325	330	335
Phe Ala Leu Pro Leu Thr Pro Cys Pro Ser Leu Arg Glu Gly Ser Tyr		
340	345	350
Ala Arg Thr Pro Thr Ser Gly Thr Arg Val Ala Cys Ala Ser Phe Phe		
355	360	365
<210> 85		
<211> 190		
<212> PRT		
<213> Homo sapiens		

<400> 85		
Leu Thr Arg Ser Cys Ser Thr Cys Cys Pro Ala Val Ala Cys Leu Val		
1	5	10
Gly Arg Gly Val Val Thr Ser Gly Ala Met His Gln Cys Trp Gly Glu		
20	25	30
Glu Met Leu Gln Gly Met Leu Leu Trp Gly Trp Ala Thr Cys Pro Leu		
35	40	45
Ser Asn Pro Gly Arg Trp Gly Arg Thr Val Gly Leu Gln His Pro Ala		
50	55	60
Val Val Ser Ala Phe Arg Ala Leu Leu Leu Met Leu Thr Val His		
65	70	75
Val Ser Tyr Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu Val		
85	90	95
Ala Asn Val Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu Ala Trp		
100	105	110
Cys Leu Trp Asn Gln Arg Arg Leu Pro His Val Arg Lys Cys Val Val		
115	120	125
Val Val Leu Leu Leu Gln Gly Leu Ser Leu Leu Glu Leu Leu Asp Phe		
130	135	140
Pro Pro Leu Phe Trp Val Leu Asp Ala His Ala Ile Trp His Ile Ser		
145	150	155
Thr Ile Pro Val His Val Leu Phe Phe Ser Phe Leu Glu Asp Asp Ser		
165	170	175
Leu Tyr Leu Leu Lys Glu Ser Glu Asp Lys Phe Lys Leu Asp		
180	185	190
<210> 86		
<211> 318		
<212> PRT		
<213> Homo sapiens		

Siemens 0022 Seq Listing.txt

<400> 86
Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala Ala
1 5 10 15
Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg Asp Cys
20 25 30
Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala Leu Asn His
35 40 45
Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala Gly Trp Thr Cys
50 55 60
Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val Thr Val Gly Leu Tyr
65 70 75 80
Leu Gln Glu Gly His Lys Val Pro Gln Phe His Gly Lys Trp Pro Phe
85 90 95
Ser Arg Phe Leu Phe Gln Glu Pro Ala Ser Ala Val Ala Ser Phe
100 105 110
Leu Asn Gly Leu Ala Ser Leu Val Met Leu Cys Arg Tyr Arg Thr Phe
115 120 125
Val Pro Ala Ser Ser Pro Met Tyr His Thr Cys Val Ala Phe Ala Trp
130 135 140
Val Ser Leu Asn Ala Trp Phe Trp Ser Thr Val Phe His Thr Arg Asp
145 150 155 160
Thr Asp Leu Gln Arg Lys Trp Thr Thr Ser Val Pro Pro Val Ser Tyr
165 170 175
Thr Gln Ser Thr Cys Ala Ala Ser Gly Pro Trp Gly Cys Ser Thr Gln
180 185 190
Leu Trp Ser Ser Ala Phe Arg Ala Leu Leu Leu Leu Met Leu Thr Val
195 200 205
His Val Ser Tyr Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu
210 215 220
Val Ala Asn Val Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu Ala
225 230 235 240
Trp Cys Leu Trp Asn Gln Arg Arg Leu Pro His Val Arg Lys Cys Val
245 250 255
Val Val Val Leu Leu Leu Gln Gly Leu Ser Leu Leu Glu Leu Leu Asp
260 265 270
Phe Pro Pro Leu Phe Trp Val Leu Asp Ala His Ala Ile Trp His Ile
275 280 285
Ser Thr Ile Pro Val His Val Leu Phe Phe Ser Phe Leu Glu Asp Asp
290 295 300
Ser Leu Tyr Leu Leu Lys Glu Ser Glu Asp Lys Phe Lys Leu
305 310 315
<210> 87

<211> 226

<212> PRT

<213> Homo sapiens

<400> 87
Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala Ala
1 5 10 15
Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg Asp Cys
20 25 30
Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala Leu Asn His
35 40 45
Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala Gly Trp Thr Cys
50 55 60

Siemens 0022 Seq Listing.txt

Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val Thr Val Gly Leu Tyr
65 70 75 80
Leu Gln Glu Gly His Lys Val Pro Gln Phe His Gly Lys Trp Pro Phe
85 90 95
Ser Arg Phe Leu Phe Phe Gln Glu Pro Ala Ser Ala Val Ala Ser Phe
100 105 110
Leu Asn Gly Leu Ala Ser Leu Val Met Leu Cys Arg Tyr Arg Thr Phe
115 120 125
Val Pro Ala Ser Ser Pro Met Tyr His Thr Cys Val Ala Phe Ala Trp
130 135 140
Val Ser Leu Asn Ala Trp Phe Trp Ser Thr Val Phe His Thr Arg Asp
145 150 155 160
Thr Asp Leu Thr Glu Lys Met Asp Tyr Phe Cys Ala Ser Thr Val Ile
165 170 175
Leu His Ser Ile Tyr Leu Cys Cys Val Arg Pro Gly Gln Arg Gly Val
180 185 190
Val Ala Gly Leu Val Pro Val Glu Pro Ala Ala Ala Ala Ser Arg Ala
195 200 205
Gln Val Arg Gly Gly Gly Leu Ala Ala Ala Gly Ala Val Pro Ala Arg
210 215 220
Ala Ala
225
<210> 88

<211> 320

<212> PRT

<213> Homo sapiens

<400> 88
Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala Ala
1 5 10 15
Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg Asp Cys
20 25 30
Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala Leu Asn His
35 40 45
Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala Gly Trp Thr Cys
50 55 60
Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val Thr Val Gly Leu Tyr
65 70 75 80
Leu Gln Glu Gly His Lys Val Pro Gln Phe His Gly Lys Trp Pro Phe
85 90 95
Ser Arg Phe Leu Phe Phe Gln Glu Pro Ala Ser Ala Val Ala Ser Phe
100 105 110
Leu Asn Gly Leu Ala Ser Leu Val Met Leu Cys Arg Tyr Arg Thr Phe
115 120 125
Val Pro Ala Ser Ser Pro Met Tyr His Thr Cys Val Ala Phe Ala Trp
130 135 140
Val Ser Leu Asn Ala Trp Phe Trp Ser Thr Val Phe His Thr Arg Asp
145 150 155 160
Thr Asp Leu Thr Glu Lys Met Asp Tyr Phe Cys Ala Ser Thr Val Ile
165 170 175
Leu His Ser Ile Tyr Leu Cys Cys Val Arg Thr Val Gly Leu Gln His
180 185 190
Pro Ala Val Val Ser Ala Phe Arg Ala Leu Leu Leu Leu Met Leu Thr
195 200 205
Val His Val Ser Tyr Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn
210 215 220
Leu Val Ala Asn Val Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu
225 230 235 240

Siemens 0022 Seq Listing.txt
Ala Trp Cys Leu Trp Asn Gln Arg Arg Leu Pro His Val Arg Lys Cys
245 250 255
Val Val Val Val Leu Leu Leu Gln Gly Leu Ser Leu Leu Glu Leu Leu
260 265 270
Asp Phe Pro Pro Leu Phe Trp Val Leu Asp Ala His Ala Ile Trp His
275 280 285
Ile Ser Thr Ile Pro Val His Val Leu Phe Phe Ser Phe Leu Glu Asp
290 295 300
Asp Ser Leu Tyr Leu Leu Lys Glu Ser Glu Asp Lys Phe Lys Leu Asp
305 310 315 320
<210> 89

<211> 217

<212> PRT

<213> Homo sapiens

<400> 89
Ala Pro Pro Pro Ala Ala Ser Gln Gly Glu Arg Met Ala Gly Leu Ala
1 5 10 15
Ala Arg Leu Val Leu Leu Ala Gly Ala Ala Ala Leu Ala Ser Gly Ser
20 25 30
Gln Gly Asp Arg Glu Pro Val Tyr Arg Asp Cys Val Leu Gln Cys Glu
35 40 45
Glu Gln Asn Cys Ser Gly Gly Ala Leu Asn His Phe Arg Ser Arg Gln
50 55 60
Pro Ile Tyr Met Ser Leu Ala Gly Trp Thr Cys Arg Asp Asp Cys Lys
65 70 75 80
Tyr Glu Cys Met Trp Val Thr Val Gly Leu Tyr Leu Gln Glu Gly His
85 90 95
Lys Val Pro Gln Phe His Gly Lys Trp Pro Phe Ser Arg Phe Leu Phe
100 105 110
Phe Gln Glu Pro Ala Ser Ala Val Ala Ser Phe Leu Asn Gly Leu Ala
115 120 125
Ser Leu Val Met Leu Cys Arg Tyr Arg Thr Phe Val Pro Ala Ser Ser
130 135 140
Pro Met Tyr His Thr Cys Val Ala Phe Ala Trp Val Ser Leu Asn Ala
145 150 155 160
Trp Phe Trp Ser Thr Val Phe His Thr Arg Asp Thr Asp Leu Thr Glu
165 170 175
Lys Met Asp Tyr Phe Cys Ala Ser Thr Val Ile Leu His Ser Ile Tyr
180 185 190
Leu Cys Cys Val Ser Phe Leu Glu Asp Asp Ser Leu Tyr Leu Leu Lys
195 200 205
Glu Ser Glu Asp Lys Phe Lys Leu Asp
210 215
<210> 90

<211> 153

<212> PRT

<213> Homo sapiens

<400> 90
Met Asn Val Gly Thr Ala His Ser Glu Val Asn Pro Asn Thr Arg Val
1 5 10 15
Met Asn Ser Arg Gly Ile Trp Leu Ser Tyr Val Leu Ala Ile Gly Leu
Page 100

Siemens 0022 Seq Listing.txt

20	25	30
Leu His Ile Val Leu Leu Ser Ile Pro Phe Val Ser Val Pro Val Val		
35	40	45
Trp Thr Leu Thr Asn Leu Ile His Asn Met Gly Met Tyr Ile Phe Leu		
50	55	60
His Thr Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ala		
65	70	75
Arg Leu Leu Thr His Trp Glu Gln Met Asp Tyr Gly Val Gln Phe Thr		
85	90	95
Ala Ser Arg Lys Phe Leu Thr Ile Thr Pro Ile Val Leu Tyr Phe Leu		
100	105	110
Thr Ser Phe Tyr Thr Lys Tyr Asp Gln Ile His Phe Val Leu Asn Thr		
115	120	125
Val Ser Leu Met Ser Val Leu Ile Pro Lys Leu Pro Gln Leu His Gly		
130	135	140
Val Arg Ile Phe Gly Ile Asn Lys Tyr		
145	150	
<210> 91		
<211> 436		
<212> PRT		
<213> Homo sapiens		

<400> 91		
Met Arg Arg Asp Val Asn Gly Val Thr Lys Ser Arg Phe Glu Met Phe		
1	5	10
Ser Asn Ser Asp Glu Ala Val Ile Asn Lys Lys Leu Pro Lys Glu Leu		
20	25	30
Leu Leu Arg Ile Phe Ser Phe Leu Asp Val Val Thr Leu Cys Arg Cys		
35	40	45
Ala Gln Val Ser Arg Ala Trp Asn Val Leu Ala Leu Asp Gly Ser Asn		
50	55	60
Trp Gln Arg Ile Asp Leu Phe Asp Phe Gln Arg Asp Ile Glu Gly Arg		
65	70	75
Val Val Glu Asn Ile Ser Lys Arg Cys Gly Gly Phe Leu Arg Lys Leu		
85	90	95
Ser Leu Arg Gly Cys Leu Gly Val Gly Asp Asn Ala Leu Arg Thr Phe		
100	105	110
Ala Gln Asn Cys Arg Asn Ile Glu Val Leu Asn Leu Asn Gly Cys Thr		
115	120	125
Lys Thr Thr Asp Ala Thr Cys Thr Ser Leu Ser Lys Phe Cys Ser Lys		
130	135	140
Leu Arg His Leu Asp Leu Ala Ser Cys Thr Ser Ile Thr Asn Met Ser		
145	150	155
Leu Lys Ala Leu Ser Glu Gly Cys Pro Leu Leu Glu Gln Leu Asn Ile		
165	170	175
Ser Trp Cys Asp Gln Val Thr Lys Asp Gly Ile Gln Ala Leu Val Arg		
180	185	190
Gly Cys Gly Leu Lys Ala Leu Phe Leu Lys Gly Cys Thr Gln Leu		
195	200	205
Glu Asp Glu Ala Leu Lys Tyr Ile Gly Ala His Cys Pro Glu Leu Val		
210	215	220
Thr Leu Asn Leu Gln Thr Cys Leu Gln Ile Thr Asp Glu Gly Leu Ile		
225	230	235
Thr Ile Cys Arg Gly Cys His Lys Leu Gln Ser Leu Cys Ala Ser Gly		
245	250	255
Cys Ser Asn Ile Thr Asp Ala Ile Leu Asn Ala Leu Gly Gln Asn Cys		
260	265	270
Pro Arg Leu Arg Ile Leu Glu Val Ala Arg Cys Ser Gln Leu Thr Asp		

Siemens 0022 Seq Listing.txt

275	280	285
Val Gly Phe Thr Thr Leu Ala Arg Asn Cys His Glu Leu Glu Lys Met		
290	295	300
Asp Leu Glu Glu Cys Val Gln Ile Thr Asp Ser Thr Leu Ile Gln Leu		
305	310	315
Ser Ile His Cys Pro Arg Leu Gln Val Leu Ser Leu Ser His Cys Glu		
325	330	335
Leu Ile Thr Asp Asp Gly Ile Arg His Leu Gly Asn Gly Ala Cys Ala		
340	345	350
His Asp Gln Leu Glu Val Ile Glu Leu Asp Asn Cys Pro Leu Ile Thr		
355	360	365
Asp Ala Ser Leu Glu His Leu Lys Ser Cys His Ser Leu Glu Arg Ile		
370	375	380
Glu Leu Tyr Asp Cys Gln Gln Ile Thr Arg Ala Gly Ile Lys Arg Leu		
385	390	395
Arg Thr His Leu Pro Asn Ile Lys Val His Ala Tyr Phe Ala Pro Val		
405	410	415
Thr Pro Pro Pro Ser Val Gly Gly Ser Arg Gln Arg Phe Cys Arg Cys		
420	425	430
Cys Ile Ile Leu		
435		
<210> 92		
<211> 204		
<212> PRT		
<213> Homo sapiens		

<400> 92			
Met Asp Pro Lys Asp Arg Lys Lys Ile Gln Phe Ser Val Pro Ala Pro			
1	5	10	15
Pro Ser Gln Leu Asp Pro Arg Gln Val Glu Met Ile Arg Arg Arg			
20	25	30	
Pro Thr Pro Ala Met Leu Phe Arg Leu Ser Glu His Ser Ser Pro Glu			
35	40	45	
Glu Glu Ala Ser Pro His Gln Arg Ala Ser Gly Glu Gly His His Leu			
50	55	60	
Lys Ser Lys Arg Pro Asn Pro Cys Ala Tyr Thr Pro Pro Ser Leu Lys			
65	70	75	80
Ala Val Gln Arg Ile Ala Glu Ser His Leu Gln Ser Ile Ser Asn Leu			
85	90	95	
Asn Glu Asn Gln Ala Ser Glu Glu Glu Asp Glu Leu Gly Glu Leu Arg			
100	105	110	
Glu Leu Gly Tyr Pro Arg Glu Glu Asp Glu Glu Glu Glu Asp Asp			
115	120	125	
Glu Glu Glu Glu Glu Glu Asp Ser Gln Ala Glu Val Leu Lys Val			
130	135	140	
Ile Arg Gln Ser Ala Gly Gln Lys Thr Thr Cys Gly Gln Gly Leu Glu			
145	150	155	160
Gly Pro Trp Glu Arg Pro Pro Pro Leu Asp Glu Ser Glu Arg Asp Gly			
165	170	175	
Gly Ser Glu Asp Gln Val Glu Asp Pro Ala Leu Ser Glu Pro Gly Glu			
180	185	190	
Glu Pro Gln Arg Pro Ser Pro Ser Glu Pro Gly Thr			
195	200		
<210> 93			
<211> 115			
<212> PRT			

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 93
Met Ser Gly Glu Pro Gly Gln Thr Ser Val Ala Pro Pro Pro Glu Glu
1 5 10 15
Val Glu Pro Gly Ser Gly Val Arg Ile Val Val Glu Tyr Cys Glu Pro
20 25 30
Cys Gly Phe Glu Ala Thr Tyr Leu Glu Leu Ala Ser Ala Val Lys Glu
35 40 45
Gln Tyr Pro Gly Ile Glu Ile Glu Ser Arg Leu Gly Gly Thr Gly Ala
50 55 60
Phe Glu Ile Glu Ile Asn Gly Gln Leu Val Phe Ser Lys Leu Glu Asn
65 70 75 80
Gly Gly Phe Pro Tyr Glu Lys Asp Leu Ile Glu Ala Ile Arg Arg Ala
85 90 95
Ser Asn Gly Glu Thr Leu Glu Lys Ile Thr Asn Ser Arg Pro Pro Cys
100 105 110

Val Ile Leu
115

<210> 94

<211> 144

<212> PRT

<213> Homo sapiens

<400> 94
Met Gly Ala Val Val Leu Cys Arg Pro Ser Pro Leu Asn Phe Leu Ile
1 5 10 15
Gln Thr Gly Thr Gly Gln Gly Leu Ser Cys Gly Ser His Met Trp Arg
20 25 30
Cys Glu Ala Thr Pro Cys Gly Val Cys Gly Glu Ser Pro Val Gly Ser
35 40 45
Leu Leu Lys Gln His Arg Gly Arg Gly Lys Thr Trp Pro Val Gly Thr
50 55 60
Val Ser Ala Cys Arg Glu Glu Ser Glu Ala Gly Ser Leu Ser Leu Gly
65 70 75 80
Trp Ser Leu Leu Pro Ser Pro Val Gly Leu Gly Ala Val Leu Ile Leu
85 90 95
Lys Arg Cys Gly Ser Leu Cys Pro Leu Pro Gly Val Gln Gly Asn Arg
100 105 110
Arg Gly His Trp Ala Cys Phe Leu Pro Pro Asp Pro Ala Ser Pro Thr
115 120 125
Pro Cys Ile Ile Gly Asn Phe His Leu Lys Ile Phe Leu Ser Lys Val
130 135 140

<210> 95

<211> 425

<212> PRT

<213> Homo sapiens

<400> 95
Met Gly Gly Gly Asp Leu Asn Leu Lys Lys Ser Trp His Pro Gln Thr
Page 103

Siemens 0022 Seq Listing.txt

1 5 10 15
 Leu Arg Asn Val Glu Lys Val Trp Lys Ala Glu Gln Lys His Glu Ala
 20 25 30
 Glu Arg Lys Lys Ile Glu Glu Leu Gln Arg Glu Leu Arg Glu Glu Arg
 35 40 45
 Ala Arg Glu Glu Met Gln Arg Tyr Ala Glu Asp Val Gly Ala Val Lys
 50 55 60
 Lys Lys Glu Glu Lys Leu Asp Trp Met Tyr Gln Gly Pro Gly Gly Met
 65 70 75 80
 Val Asn Arg Asp Glu Tyr Leu Leu Gly Arg Pro Ile Asp Lys Tyr Val
 85 90 95
 Phe Glu Lys Met Glu Glu Lys Glu Ala Gly Cys Ser Ser Glu Thr Gly
 100 105 110
 Leu Leu Pro Gly Ser Ile Phe Ala Pro Ser Gly Ala Asn Ser Leu Leu
 115 120 125
 Asp Met Ala Ser Lys Ile Arg Glu Asp Pro Leu Phe Ile Ile Arg Lys
 130 135 140
 Lys Glu Glu Glu Lys Lys Arg Glu Val Leu Asn Asn Pro Val Lys Met
 145 150 155 160
 Lys Lys Ile Lys Glu Leu Leu Gln Met Ser Leu Glu Lys Lys Glu Lys
 165 170 175
 Lys Lys Lys Glu Lys Lys Lys His Lys Lys His Lys His Arg
 180 185 190
 Ser Ser Ser Asp Arg Ser Ser Glu Asp Glu His Ser Ala Gly
 195 200 205
 Arg Ser Gln Lys Lys Met Ala Asn Ser Ser Pro Val Leu Ser Lys Val
 210 215 220
 Pro Gly Tyr Gly Leu Gln Val Arg Asn Ser Asp Arg Asn Gln Gly Leu
 225 230 235 240
 Gln Gly Pro Leu Thr Ala Glu Gln Lys Arg Gly His Gly Met Lys Asn
 245 250 255
 His Ser Arg Ser Arg Ser Ser His Ser Pro Pro Arg His Ala Ser
 260 265 270
 Lys Lys Ser Thr Arg Glu Ala Gly Ser Arg Asp Arg Arg Ser Arg Ser
 275 280 285
 Leu Gly Arg Arg Ser Arg Ser Pro Arg Pro Ser Lys Leu His Asn Ser
 290 295 300
 Lys Val Asn Arg Arg Glu Thr Gly Gln Thr Arg Ser Pro Ser Pro Lys
 305 310 315 320
 Lys Glu Val Tyr Gln Arg Arg His Ala Pro Gly Tyr Thr Arg Lys Leu
 325 330 335
 Ser Ala Glu Glu Leu Glu Arg Lys Arg Gln Glu Met Met Glu Asn Ala
 340 345 350
 Lys Trp Arg Glu Glu Glu Arg Leu Asn Ile Leu Lys Arg His Ala Lys
 355 360 365
 Asp Glu Glu Arg Glu Gln Arg Leu Glu Lys Leu Asp Ser Arg Asp Gly
 370 375 380
 Lys Phe Ile His Arg Met Lys Leu Glu Ser Ala Ser Thr Ser Ser Leu
 385 390 395 400
 Glu Asp Arg Val Lys Arg Asn Ile Tyr Ser Leu Gln Arg Thr Ser Val
 405 410 415
 Ala Leu Glu Lys Asn Phe Met Lys Arg
 420 425

<210> 96

<211> 394

<212> PRT

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 96
 Met Phe Ser Val Phe Glu Glu Ile Thr Arg Ile Val Val Lys Glu Met
 1 5 10 15
 Asp Ala Gly Gly Asp Met Ile Ala Val Arg Ser Leu Val Asp Ala Asp
 20 25 30
 Arg Phe Arg Cys Phe His Leu Val Gly Glu Lys Arg Thr Phe Phe Gly
 35 40 45
 Cys Arg His Tyr Thr Thr Gly Leu Thr Leu Met Asp Ile Leu Asp Thr
 50 55 60
 His Gly Asp Lys Trp Leu Asp Glu Leu Asp Ser Gly Leu Gln Gly Gln
 65 70 75 80
 Lys Ala Glu Phe Gln Ile Leu Asp Asn Val Asp Ser Thr Gly Glu Leu
 85 90 95
 Ile Val Arg Leu Pro Lys Glu Ile Thr Ile Ser Gly Ser Phe Gln Gly
 100 105 110
 Phe His His Gln Lys Ile Lys Ile Ser Glu Asn Arg Ile Ser Gln Gln
 115 120 125
 Tyr Leu Ala Thr Leu Glu Asn Arg Lys Leu Lys Arg Glu Leu Pro Phe
 130 135 140
 Ser Phe Arg Ser Ile Asn Thr Arg Glu Asn Leu Tyr Leu Val Thr Glu
 145 150 155 160
 Thr Leu Glu Thr Val Lys Glu Glu Thr Leu Lys Ser Asp Arg Gln Tyr
 165 170 175
 Lys Phe Trp Ser Gln Ile Ser Gln Gly His Leu Ser Tyr Lys His Lys
 180 185 190
 Gly Gln Arg Glu Val Thr Ile Pro Pro Asn Arg Val Leu Ser Tyr Arg
 195 200 205
 Val Lys Gln Leu Val Phe Pro Asn Lys Glu Thr Met Arg Lys Ser Leu
 210 215 220
 Gly Ser Glu Asp Ser Arg Asn Met Lys Glu Lys Leu Glu Asp Met Glu
 225 230 235 240
 Ser Val Leu Lys Asp Leu Thr Glu Glu Lys Arg Lys Asp Val Leu Asn
 245 250 255
 Ser Leu Ala Lys Cys Leu Gly Lys Glu Asp Ile Arg Gln Asp Leu Glu
 260 265 270
 Gln Arg Val Ser Glu Val Leu Ile Ser Gly Glu Leu His Met Glu Asp
 275 280 285
 Pro Asp Lys Pro Leu Leu Ser Ser Leu Phe Asn Ala Ala Gly Val Leu
 290 295 300
 Val Glu Ala Arg Ala Lys Ala Ile Leu Asp Phe Leu Asp Ala Leu Leu
 305 310 315 320
 Glu Leu Ser Glu Glu Gln Gln Phe Val Ala Glu Ala Leu Glu Lys Gly
 325 330 335
 Thr Leu Pro Leu Leu Lys Asp Gln Val Lys Ser Val Met Glu Gln Asn
 340 345 350
 Trp Asp Glu Leu Ala Ser Ser Pro Pro Asp Met Asp Tyr Asp Pro Glu
 355 360 365
 Ala Arg Ile Leu Cys Ala Leu Tyr Val Val Val Ser Ile Leu Leu Glu
 370 375 380
 Leu Ala Glu Gly Pro Thr Ser Val Ser Ser
 385 390
 <210> 97

<211> 456

<212> PRT

<213> Homo sapiens

<400> 97

Met Glu Gly Pro Glu Gly Leu Gly Arg Lys Gln Ala Cys Leu Ala Met
 Page 105

Siemens 0022 Seq Listing.txt

1 5 10 15
 Leu Leu His Phe Leu Asp Thr Tyr Gln Gly Leu Leu Gln Glu Glu Glu
 20 25 30
 Gly Ala Gly His Ile Ile Lys Asp Leu Tyr Leu Leu Ile Met Lys Asp
 35 40 45
 Glu Ser Leu Tyr Gln Gly Leu Arg Glu Asp Thr Leu Arg Leu His Gln
 50 55 60
 Leu Val Glu Thr Val Glu Leu Lys Ile Pro Glu Glu Asn Gln Pro Pro
 65 70 75 80
 Ser Lys Gln Val Lys Pro Leu Phe Arg His Phe Arg Arg Ile Asp Ser
 85 90 95
 Cys Leu Gln Thr Arg Val Ala Phe Arg Gly Ser Asp Glu Ile Phe Cys
 100 105 110
 Arg Val Tyr Met Pro Asp His Ser Tyr Val Thr Ile Arg Ser Arg Leu
 115 120 125
 Ser Ala Ser Val Gln Asp Ile Leu Gly Ser Val Thr Glu Lys Leu Gln
 130 135 140
 Tyr Ser Glu Glu Pro Ala Gly Arg Glu Asp Ser Leu Ile Leu Val Ala
 145 150 155 160
 Val Ser Ser Ser Gly Glu Lys Val Leu Leu Gln Pro Thr Glu Asp Cys
 165 170 175
 Val Phe Thr Ala Leu Gly Ile Asn Ser His Leu Phe Ala Cys Thr Arg
 180 185 190
 Asp Ser Tyr Glu Ala Leu Val Pro Leu Pro Glu Glu Ile Gln Val Ser
 195 200 205
 Pro Gly Asp Thr Glu Ile His Arg Val Glu Pro Glu Asp Val Ala Asn
 210 215 220
 His Leu Thr Ala Phe His Trp Glu Leu Phe Arg Cys Val His Glu Leu
 225 230 235 240
 Glu Phe Val Asp Tyr Val Phe His Gly Glu Arg Gly Arg Arg Glu Thr
 245 250 255
 Ala Asn Leu Glu Leu Leu Gln Arg Cys Ser Glu Val Thr His Trp
 260 265 270
 Val Ala Thr Glu Val Leu Leu Cys Glu Ala Pro Gly Lys Arg Ala Gln
 275 280 285
 Leu Leu Lys Lys Phe Ile Lys Ile Ala Ala Leu Cys Lys Gln Asn Gln
 290 295 300
 Asp Leu Leu Ser Phe Tyr Ala Val Val Met Gly Leu Asp Asn Ala Ala
 305 310 315 320
 Val Ser Arg Leu Arg Leu Thr Trp Glu Lys Leu Pro Gly Lys Phe Lys
 325 330 335
 Asn Leu Phe Arg Lys Phe Glu Asn Leu Thr Asp Pro Cys Arg Asn His
 340 345 350
 Lys Ser Tyr Arg Glu Val Ile Ser Lys Met Lys Pro Pro Val Ile Pro
 355 360 365
 Phe Val Pro Leu Ile Leu Lys Asp Leu Thr Phe Leu His Glu Gly Ser
 370 375 380
 Lys Thr Leu Val Asp Gly Leu Val Asn Ile Glu Lys Leu His Ser Val
 385 390 395 400
 Ala Glu Lys Val Arg Thr Ile Arg Lys Tyr Arg Ser Arg Pro Leu Cys
 405 410 415
 Leu Asp Met Glu Ala Ser Pro Asn His Leu Gln Thr Lys Ala Tyr Val
 420 425 430
 Arg Gln Phe Gln Val Ile Asp Asn Gln Asn Leu Leu Phe Glu Leu Ser
 435 440 445
 Tyr Lys Leu Glu Ala Asn Ser Gln
 450 455

<210> 98

<211> 715

<212> PRT

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 98
 Met Ser Gln Val Met Ser Ser Pro Leu Leu Ala Gly Gly His Ala Val
 1 5 10 15
 Ser Leu Ala Pro Cys Asp Glu Pro Arg Arg Thr Leu His Pro Ala Pro
 20 25 30
 Ser Pro Ser Leu Pro Pro Gln Cys Ser Tyr Tyr Thr Thr Glu Gly Trp
 35 40 45
 Gly Ala Gln Ala Leu Met Ala Pro Val Pro Cys Met Gly Pro Pro Gly
 50 55 60
 Arg Leu Gln Gln Ala Pro Gln Val Glu Ala Lys Ala Thr Cys Phe Leu
 65 70 75 80
 Pro Ser Pro Gly Glu Lys Ala Leu Gly Thr Pro Glu Asp Leu Asp Ser
 85 90 95
 Tyr Ile Asp Phe Ser Leu Glu Ser Leu Asn Gln Met Ile Leu Glu Leu
 100 105 110
 Asp Pro Thr Phe Gln Leu Leu Pro Pro Gly Thr Gly Gly Ser Gln Ala
 115 120 125
 Glu Leu Ala Gln Ser Thr Met Ser Met Arg Lys Lys Glu Glu Ser Glu
 130 135 140
 Ala Leu Asp Ile Lys Tyr Ile Glu Val Thr Ser Ala Arg Ser Arg Cys
 145 150 155 160
 His Asp Trp Pro Gln His Cys Ser Ser Pro Ser Val Thr Pro Pro Phe
 165 170 175
 Gly Ser Pro Arg Ser Gly Gly Leu Leu Ser Arg Asp Val Pro Arg
 180 185 190
 Glu Thr Arg Ser Ser Ser Glu Ser Leu Ile Phe Ser Gly Asn Gln Gly
 195 200 205
 Arg Gly His Gln Arg Pro Leu Pro Pro Ser Glu Gly Leu Ser Pro Arg
 210 215 220
 Pro Pro Asn Ser Pro Ser Ile Ser Ile Pro Cys Met Gly Ser Lys Ala
 225 230 235 240
 Ser Ser Pro His Gly Leu Gly Ser Pro Leu Val Ala Ser Pro Arg Leu
 245 250 255
 Glu Lys Arg Leu Gly Gly Leu Ala Pro Gln Arg Gly Ser Arg Ile Ser
 260 265 270
 Val Leu Ser Ala Ser Pro Val Ser Asp Val Ser Tyr Met Phe Gly Ser
 275 280 285
 Ser Gln Ser Leu Leu His Ser Ser Asn Ser Ser His Gln Ser Ser Ser
 290 295 300
 Arg Ser Leu Glu Ser Pro Ala Asn Ser Ser Ser Leu His Ser Leu
 305 310 315 320
 Gly Ser Val Ser Leu Cys Thr Arg Pro Ser Asp Phe Gln Ala Pro Arg
 325 330 335
 Asn Pro Thr Leu Thr Met Gly Gln Pro Arg Thr Pro His Ser Pro Pro
 340 345 350
 Leu Ala Lys Glu His Ala Ser Ile Cys Pro Pro Ser Ile Thr Asn Ser
 355 360 365
 Met Val Asp Ile Pro Ile Val Leu Ile Asn Gly Cys Pro Glu Pro Gly
 370 375 380
 Ser Ser Pro Pro Gln Arg Thr Pro Gly His Gln Asn Ser Val Gln Pro
 385 390 395 400
 Gly Ala Ala Ser Pro Ser Asn Pro Cys Pro Ala Thr Arg Ser Asn Ser
 405 410 415
 Gln Thr Leu Ser Asp Ala Pro Phe Thr Thr Cys Pro Glu Gly Pro Ala
 420 425 430
 Arg Asp Met Gln Pro Thr Met Lys Phe Val Met Asp Thr Ser Lys Tyr
 435 440 445
 Trp Phe Lys Pro Asn Ile Thr Arg Glu Gln Ala Ile Glu Leu Leu Arg
 450 455 460

Siemens 0022 Seq Listing.txt

Lys Glu Glu Pro Gly Ala Phe Val Ile Arg Asp Ser Ser Ser Tyr Arg
465 470 475 480
Gly Ser Phe Gly Leu Ala Leu Lys Val Gln Glu Val Pro Ala Ser Ala
485 490 495
Gln Asn Arg Pro Gly Glu Asp Ser Asn Asp Leu Ile Arg His Phe Leu
500 505 510
Ile Glu Ser Ser Ala Lys Gly Val His Leu Lys Gly Ala Asp Glu Glu
515 520 525
Pro Tyr Phe Gly Ser Leu Ser Ala Phe Val Cys Gln His Ser Ile Met
530 535 540
Ala Leu Ala Leu Pro Cys Lys Leu Thr Ile Pro Gln Arg Glu Leu Gly
545 550 555 560
Gly Ala Asp Gly Ala Ser Asp Ser Thr Asp Ser Pro Ala Ser Cys Gln
565 570 575
Lys Lys Ser Ala Gly Cys His Thr Leu Tyr Leu Ser Ser Val Ser Val
580 585 590
Glu Thr Leu Thr Gly Ala Leu Ala Val Gln Lys Ala Ile Ser Thr Thr
595 600 605
Phe Glu Arg Asp Ile Leu Pro Thr Pro Thr Val Val His Phe Glu Val
610 615 620
Thr Glu Gln Gly Ile Thr Leu Thr Asp Val Gln Arg Lys Val Phe Phe
625 630 635 640
Arg Arg His Tyr Pro Leu Thr Thr Leu Arg Phe Cys Gly Met Asp Pro
645 650 655
Glu Gln Arg Lys Trp Gln Lys Tyr Cys Lys Pro Ser Trp Ile Phe Gly
660 665 670
Phe Val Ala Lys Ser Gln Thr Glu Pro Gln Glu Asn Val Cys His Leu
675 680 685
Phe Ala Glu Tyr Asp Met Val Gln Pro Ala Ser Gln Val Ile Gly Leu
690 695 700
Val Thr Ala Leu Leu Gln Asp Ala Glu Arg Met
705 710 715

<210> 99

<211> 35

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 99

ccatatataa aaccactgtc ctgtcctttg tggct

35

<210> 100

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

Siemens 0022 Seq Listing.txt

<400> 100
cccccatctg tctgtctata tttgtc 26
<210> 101
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 101
tgcctacgct gacgactatg tg 22
<210> 102
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 102
tttggttttc tacaactgtt gctat 25
<210> 103
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 103
gggctccaca caccagatg 19
<210> 104
<211> 21
<212> DNA
<213> Artificial sequence

Siemens 0022 Seq Listing.txt

<220>

<223> PCR primer

<400> 104
acgctctgag caccctctac a 21

<210> 105

<211> 31

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 105
tgtcacaggg actgaaaacc ttcctcatg t 31

<210> 106

<211> 17

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 106
cccaaggcca cgagctt 17

<210> 107

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 107
tggctctc ttaacgaatc gaaa 24

<210> 108

<211> 29

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 108

ctggtaaaac aaactctctg aaccctcc

29

<210> 109

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 109

tggtgaggaa aagcggacat

20

<210> 110

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 110

ctggcttgga ggacagtgaa g

21

<210> 111

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 111

ccaagccctc cccatcccat gtat

<210> 112

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 112

gaggtgtcgt accgcgttct a

21

<210> 113

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 113

ccgttctgct ctcccctgtc t

21

<210> 114

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 114

ccagacccgc ttcactgacc tgc

23

<210> 115

<211> 20

<212> DNA

<213> Artificial sequence

Siemens 0022 Seq Listing.txt

<220>

<223> PCR primer

<400> 115
cgccctgtact tcagcatgga 20

<210> 116

<211> 18

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 116
gcgggttcagc tggtggaa 18

<210> 117

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 117
accccgaggc atcaccacaa atcat 25

<210> 118

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 118
agttctgcct ctctgacaac cat 23

<210> 119

<211> 23

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Artificial sequence

<220>

<223> PCR primer

<400> 119

taggctcaga gtcagaccca aac

23

<210> 120

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 120

ccctcggtgg cttgtgctcg g

21

<210> 121

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 121

aagccgccag ttcatctttt t

21

<210> 122

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 122

cttgtgttgc aagtcaaatg ttcaag

25

Siemens 0022 Seq Listing.txt

<210> 123

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 123

tctgcctgcg ctctcgtcgg t

21

<210> 124

<211> 18

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 124

gggctgggca cctgactt

18

<210> 125

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 125

cccaacaagg gtcccagact

20

<210> 126

<211> 17

<212> DNA

<213> Artificial sequence

<220>

Siemens 0022 Seq Listing.txt

<223> PCR primer
<400> 126
cggcgcatgg agcggcg 17
<210> 127
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 127
cccaagggac ttcgtgaatg 20
<210> 128
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 128
ggcgatccct gatgacaagt a 21
<210> 129
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer#
<400> 129
agcaccaact gtgaaccagg tacaatggc 29
<210> 130
<211> 19
<212> DNA
<213> Artificial sequence

Siemens 0022 Seq Listing.txt

<220>

<223> PCR primer

<400> 130
gagggaggct ctgcgttgg

19

<210> 131

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 131
tcacacaactag cgggtgagga g

21

<210> 132

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 132
tgccatggaa cggcgtgagc g

21

<210> 133

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 133
tgaggtttcc tcccaaatcg ta

22

<210> 134

Siemens 0022 Seq Listing.txt

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 134

cagctcaagg gaagctgtca tc

22

<210> 135

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 135

ccccccacatg ttccccaaaga tgct

24

<210> 136

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 136

ggaggcgctta aagggtctacg t

21

<210> 137

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

Siemens 0022 Seq Listing.txt

<400> 137
tgatgcttcg caggtcagta a 21

<210> 138

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 138
ctcctggccc tcctaaagct gaagcc 26

<210> 139

<211> 17

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 139
ggacgcgtgg gcttttc 17

<210> 140

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 140
tgtggctgtg gacacctttc 20

<210> 141

<211> 25

<212> DNA

<213> Artificial sequence

Siemens 0022 Seq Listing.txt

<220>

<223> PCR primer

<400> 141
ccacaagctg aaggcagaca aggcc 25

<210> 142

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 142
gcggattctc atggaacaca 20

<210> 143

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 143
ggtcagccag gagttcttg 20

<210> 144

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 144
accacacctgc gcaggttgc cag 23

<210> 145

<211> 18

Siemens 0022 Seq Listing.txt

<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 145
cgccatgcacg acctgaac 18

<210> 146
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 146
gtctcgatct tggacagctt ctg 23

<210> 147
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 147
acactgtcca cacggcccgaa gg 22

<210> 148
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer
<400> 148
ctgggcagaa tggaaaggatc t 21

Siemens 0022 Seq Listing.txt

<210> 149

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 149

gggactctag cagaccaca ct

22

<210> 150

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 150

cacccacacctg gattccctgt tc

22

<210> 151

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 151

ctttcagaca ggcgttagatg atg

23

<210> 152

<211> 29

<212> DNA

<213> Artificial sequence

<220>

Siemens 0022 Seq Listing.txt

<223> PCR primer

<400> 152

gggttattatt tccttatttag gtgccactt

29

<210> 153

<211> 30

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 153

ttccctaagg ctttcagtag ccaggatctg

30

<210> 154

<211> 18

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 154

ccagcttggc cctttcct

18

<210> 155

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 155

gaatgggtcg cttttgttct tag

23

<210> 156

<211> 22

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Artificial sequence

<220>

<223> PCR primer

<400> 156

tcacggacct cagcctgccc ct

22

<210> 157

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 157

tggtaagggt gtcagccatg t

21

<210> 158

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 158

tcagagtgca gcaatggctt t

21

<210> 159

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 159

acctcccttcc ccagctcccc

20

<210> 160

Siemens 0022 Seq Listing.txt

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 160

ggcaacatct tacttgtcct ttga

24

<210> 161

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 161

ccaaggaagc acagacaact atttc

25

<210> 162

<211> 30

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 162

tcctccctat ccatggcact aaaccacttc

30

<210> 163

<211> 19

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

Siemens 0022 Seq Listing.txt

<400> 163		
tggcaaggg ctccatct		19
<210> 164		
<211> 21		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer		
<400> 164		
gttacccttg gcagacgtat g		21
<210> 165		
<211> 31		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer		
<400> 165		
tgcctctgag tctgaatctc ccaaagagag a		31
<210> 166		
<211> 31		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer		
<400> 166		
gagtagttat gtgattttt cagctttga c		31
<210> 167		
<211> 21		
<212> DNA		
<213> Artificial sequence		

Siemens 0022 Seq Listing.txt

<220>

<223> PCR primer

<400> 167
tcaaatttg tcccccagtc t 21

<210> 168

<211> 34

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 168
cagaaattcg gaagacagaa ctattgtcat gcct 34

<210> 169

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 169
gatttagtaac ccatagcagt tgaaggt 27

<210> 170

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 170
atttactgac ggtggctctga acatac 26

<210> 171

<211> 31

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 171
tgacagactc caaatcacaa gcacagtcaa c 31

<210> 172

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 172
tgatggtttg gaggaaagtt tattt 25

<210> 173

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 173
tttggttggg tcttttagagg aatc 24

<210> 174

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 174

tgccaaaccat gcatcaggtt gccc

<210> 175

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 175

cagctcacct ggcaacttca

20

<210> 176

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 176

cctgattttc ccagcgatgt

20

<210> 177

<211> 19

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 177

cggcgctccc ggttctgct

19

<210> 178

<211> 20

<212> DNA

<213> Artificial sequence

Siemens 0022 Seq Listing.txt

<220>

<223> PCR primer

<400> 178 tggccaagcg taagctgatt 20

<210> 179

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer

<400> 179 gctgcagtga tcggatcatc t 21

<210> 180

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> MLLT6

<400> 180 caccatggag cccatcggtgc tg 22

<210> 181

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> MLLT6 for

<400> 181 atccccgagg tgcaatttg 19

<210> 182

<211> 21

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Artificial Sequence

<220>

<223> MLLT6 rev

<400> 182
agcgatcatg aggacgtac t

21

<210> 183

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> ZNF144

<400> 183
cctgccagag ataggagacc cagacagct

29

<210> 184

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> ZNF144 for

<400> 184
atccccctga gcctttca

19

<210> 185

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> ZNF144 rev

<400> 185
cagcctctgg tcccacat

19

Siemens 0022 Seq Listing.txt

<210> 186

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> PIP5K2B

<400> 186

tgatcatcaa ttccaaacct ctcccgaa

28

<210> 187

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> PIP5K2B for

<400> 187

ccccatggtg ttccgaaac

19

<210> 188

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> PIP5K2B rev

<400> 188

tgccaggagc ctccataacc

19

<210> 189

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

Siemens 0022 Seq Listing.txt

<223> TEM7

<400> 189

cagccttcta aaacacaatg tattcatgt

29

<210> 190

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> TEM7 for

<400> 190

cctgaactta atggtagaat tcaaagatc

29

<210> 191

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> TEM7 rev

<400> 191

tattaacact gagaatccat gcagaga

27

<210> 192

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> ZNFN1A3

<400> 192

tatctggtct cagggattgc tcctatgtat tcagc

35

<210> 193

<211> 20

<212> DNA

<213> Artificial Sequence

Siemens 0022 Seq Listing.txt

<220>

<223> ZNFN1A3 for

<400> 193
cacagagccc tgctgaagtg

20

<210> 194

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> ZNFN1A3 rev

<400> 194
gcgaggatcat tggtttttag aaa

23

<210> 195

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> WIRE

<400> 195
ctgtgatccg aaatggtgcc ag

22

<210> 196

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> WIRE for

<400> 196
ccgtctccac atccaaacct

20

<210> 197

Siemens 0022 Seq Listing.txt

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> WIRE rev

<400> 197

acccatgcat tcggtaggt

20

<210> 198

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PSMB3

<400> 198

agtggcacct gcgccgaaca a

21

<210> 199

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PSMB3 for

<400> 199

ccccatggtg actgatgact t

21

<210> 200

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PSMB3 rev

Siemens 0022 Seq Listing.txt

<400> 200	ccagaggac tcacacattc c	21
<210> 201		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> MGC9753		
<400> 201	ccagaaactt tccatcccaa aggcagtct	29
<210> 202		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> MGC9753 for		
<400> 202	ctgccccaca ggaatagaat g	21
<210> 203		
<211> 23		
<212> DNA		
<213> ARTIFICIAL SEQUENCE		
<220>		
<223> MGC9753 rev		
<400> 203	aaaaatccag tctgcttcaa cca	23
<210> 204		
<211> 20		
<212> DNA		
<213> ARTIFICIAL SEQUENCE		

Siemens 0022 Seq Listing.txt

<220>

<223> ORMDL3

<400> 204
agctgccccca gctccacgga

20

<210> 205

<211> 21

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> ORMDL3 for

<400> 205
tccctgatga gcgtgcttat c

21

<210> 206

<211> 28

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> ORMDL3 rev

<400> 206
tctcagtaact tattgattcc aaaaatcc

28

<210> 207

<211> 25

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> MGC15482

<400> 207
tccagtgaa gcaacccag tgttc

25

<210> 208

<211> 25

Siemens 0022 Seq Listing.txt

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> MGC15482 for

<400> 208

cacttctaga gctaccgtgg agtct

25

<210> 209

<211> 22

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> MGC15482 rev

<400> 209

ccctcacttt gtaacccttg ct

22

<210> 210

<211> 20

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> PPP1R1B

<400> 210

cagcgtggcg caacaaccca

20

<210> 211

<211> 21

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> PPP1R1B for

<400> 211

gggattgttt cgccacacat a

21

Siemens.0022 Seq Listing.txt

<210> 212
<211> 20
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> PPP1R1B rev

<400> 212
ccgatgttaa ggcccatagc 20

<210> 213
<211> 27
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> MGC14832
<400> 213

taaaatgtcc ggccaacatg agttccc 27

<210> 214
<211> 17
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> MGC14832 for

<400> 214
cgcagtgcct ggcacat 17

<210> 215
<211> 20
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
Page 139

Siemens .0022 Seq Listing.txt

<223> MGC14832 rev

<400> 215

gacacccccc gacctatgga

20

<210> 216

<211> 25

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> LOC51242

<400> 216

cagtgacctc tcccggttccc ttgga

25

<210> 217

<211> 20

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> LOC51242 for

<400> 217

tgggtccctg tgtcctcttc

20

<210> 218

<211> 20

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> LOC51242 for

<400> 218

agggtcagga gggagaaaaac

20

<210> 219

<211> 26

<212> DNA

Siemens 0022 Seq Listing.txt

<213> ARTIFICIAL SEQUENCE

<220>

<223> FLJ20291

<400> 219

ccagtccccca cccgtttaaag agtcaa

26

<210> 220

<211> 24

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> FLJ20291 for

<400> 220

tttgtgggacaca ctcagtaact ttgg

24

<210> 221

<211> 20

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> FLJ20291 rev

<400> 221

acaaggcactc ccaccgagat

20

<210> 222

<211> 24

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> PRO2521

<400> 222

agtctgtcct cactgccatc gccat

24

<210> 223

Siemens 0022 Seq Listing.txt

<211> 21

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> PRO2521 for

<400> 223

aaggcctctgg gttttccctt t 21

<210> 224

<211> 20

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> PRO2521 rev

<400> 224

cccaactggtg acaggatggt 20

<210> 225

<211> 23

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> LINK-GEFII

<400> 225

catctgacat ctttcccgtg gag 23

<210> 226

<211> 21

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> LINK-GEFII for

Siemens 0022 Seq Listing.txt

<400> 226		
ctttgcacga tgtctcaacc a		21
<210> 227		
<211> 18		
<212> DNA		
<213> ARTIFICIAL SEQUENCE		
<220>		
<223> LINK-GEFII rev		
<400> 227		
tttcccggtgg agcaggaa		18
<210> 228		
<211> 26		
<212> DNA		
<213> ARTIFICIAL SEQUENCE		
<220>		
<223> CTEN		
<400> 228		
ccgcccgccta atatgcaaca ttaggg		26
<210> 229		
<211> 23		
<212> DNA		
<213> ARTIFICIAL SEQUENCE		
<220>		
<223> CTEN for		
<400> 229		
cgagtattcc aaagctggta tcg		23
<210> 230		
<211> 24		
<212> DNA		
<213> ARTIFICIAL SEQUENCE		

Siemens 0022 Seq Listing.txt

<220>

<223> CTEN rev

<400> 230
atcacagaga gatggccctt atct

24

<210> 231

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S946 forward primer

<400> 231
acagtctatac aagcagaaaa atcct

25

<210> 232

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S946 reverse primer

<400> 232
tgccgtgccca gagaga

16

<210> 233

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1181 forward primer

<400> 233
gacaacagag cgagactccc

20

<210> 234

<211> 20

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1181 reverse primer

<400> 234

gcccagcctg tcacttattc

20

<210> 235

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2026 forward primer

<400> 235

tggtcattcg acaacgaa

18

<210> 236

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2026 reverse primer

<400> 236

cagcatggta tgcaatcc

18

<210> 237

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S838 forward primer

<400> 237

Siemens 0022 Seq Listing.txt

20

ctccagaatc cagaccatga

<210> 238

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S838 reverse primer

<400> 238

aggacagtgt gtagcccttc

20

<210> 239

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S250 forward primer

<400> 239

ggaagaatca aatagacaat

20

<210> 240

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S250 reverse primer

<400> 240

gctggccata tatatatattta aacc

24

<210> 241

<211> 23

<212> DNA

<213> Artificial Sequence

Siemens 0022 Seq Listing.txt

<220>

<223> D17S1818 forward primer

<400> 241
cataggtatg ttcagaaaatg tga 23

<210> 242

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1818 reverse primer

<400> 242
tgcctactgg aaaccaga 18

<210> 243

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S614 forward primer

<400> 243
aaggggaaagg ggctttcaaa gct 23

<210> 244

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S614 reverse primer

<220>

<221> misc_feature

<222> (1)..(1)

<223> n=a, c, g or t

Siemens 0022 Seq Listing.txt

<400> 244		
nggagggtgc agtgagccaa gat		23
<210> 245		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> D17S2019 forward primer		
<400> 245		
caaaaagctta tgatgctcaa acc		23
<210> 246		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> D17S2019 reverse primer		
<400> 246		
ttgtttccct ttgactttct ga		22
<210> 247		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> D17S608 forward primer		
<400> 247		
taggttcacc tctcattttc ttcatg		25
<210> 248		
<211> 24		
<212> DNA		
<213> Artificial Sequence		

Siemens 0022 Seq Listing.txt

<220>
<223> D17S608 reverse primer
<220>
<221> misc_feature
<222> (17)..(17)
<223> n=a, c, g or t

<400> 248
gtctgggtct ttatggngct tgtg

24

<210> 249
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S1655 forward primer
<400> 249
cggaccagag tggccatgg
<210> 250
<211> 20
<212> DNA
<213> Artificial Sequence

20

<220>
<223> D17S1655 reverse primer
<400> 250
gcatacagca ccctctacct
<210> 251
<211> 25
<212> DNA
<213> Artificial Sequence

20

Siemens 0022 Seq Listing.txt

<220>

<223> D17S2147 forward primer

<400> 251
aggggagaat aaataaaatc tgtgg 25

<210> 252

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2147 reverse primer

<400> 252
caggagttag acactctcca tg 22

<210> 253

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S754 forward primer

<400> 253
tggattcaact gactcagcct gc 22

<210> 254

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S754 reverse primer

<400> 254
gcgtgtctgt ctccatgtgt gc 22

<210> 255

<211> 18

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1814 forward primer

<400> 255

tccccaatga cggtgatg

18

<210> 256

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1814 reverse primer

<400> 256

ctggaggttg gcttgtggat

20

<210> 257

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2007 forward primer

<400> 257

ggtcccacga atttgctg

18

<210> 258

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2007 reverse primer

<400> 258

ccacccagaa aaacaggaga

20

Siemens 0022 Seq Listing.txt

<210> 259

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1246 forward primer

<400> 259

tcgatccct gaccttgtga

20

<210> 260

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1246 reverse primer

<400> 260

ttgtcacccc attgccttcc

20

<210> 261

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1979 forward primer

<400> 261

ccttggatag attcagctcc c

21

<210> 262

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

Siemens 0022 Seq Listing.txt

<223> D17S1979 reverse primer

<400> 262

cttgtccctt ctcaatcctc c

21

<210> 263

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1984 forward primer

<400> 263

ttaaggcaagg ttttaattaa gctgc

25

<210> 264

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1984 reverse primer

<400> 264

gattacagtg ctccctctcc c

21

<210> 265

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> G11580 forward primer

<400> 265

ggtttaatt aagctgcatt gc

22

<210> 266

<211> 21

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Artificial Sequence

<220>

<223> G11580 reverse primer

<400> 266

gattacagtg ctccctctcc c

21

<210> 267

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1867 forward primer

<400> 267

agtttgacac tgaggcttg

20

<210> 268

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1867 reverse primer

<400> 268

tttagacttg gtaactgccg

20

<210> 269

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1788 forward primer

<400> 269

tgcagatgcc taagaacttt tcag

24

<210> 270

Siemens 0022 Seq Listing.txt

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1788 reverse primer

<400> 270

gccatgatct cccaaagcc

19

<210> 271

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1836 forward primer

<400> 271

tcgaggattat ggtgagcc

18

<210> 272

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1836 reverse primer

<400> 272

aaactgtgtg tgtcaaagga tact

24

<210> 273

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1787 forward primer

Siemens 0022 Seq Listing.txt

<400> 273
gctgatctga agccaatga 19
<210> 274
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S1787 reverse primer
<400> 274
tacatgaagg catggctcg 19
<210> 275
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S1660 forward primer
<400> 275
ctaatataat cctgggcaca tgg 23
<210> 276
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S1660 reverse primer
<400> 276
gctgcggacc agacagat 18
<210> 277
<211> 22
<212> DNA
<213> Artificial Sequence

Siemens 0022 Seq Listing.txt

<220>

<223> D17S2154 forward primer

<400> 277
gataaaaaaca agcactggct cc

22

<210> 278

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2154 reverse primer

<400> 278
cccacggctt tcttgatcta

20

<210> 279

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1955 forward primer

<400> 279
tgtaatgtaa gccccatgag g

21

<210> 280

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1955 reverse primer

<400> 280
cactcaactc aacagtctaa aggtg

25

<210> 281

<211> 25

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2098 forward primer

<400> 281

gtgagttcaa gcataaat tatcc

25

<210> 282

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2098 reverse primer

<400> 282

attcaggctc agttcactgc ttc

23

<210> 283

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S518 forward primer

<400> 283

gatccagtgg agactcagag

20

<210> 284

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S518 reverse primer

<400> 284

Siemens 0022 Seq Listing.txt

20

tagtctctgg gacacccaga

<210> 285

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S518 forward primer

<400> 285

attcctgagt gtctaccctg ttgag

25

<210> 286

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S518 reverse primer

<400> 286

actgactgcg ccactgc

17

<210> 287

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D11S4358 forward primer

<400> 287

tcgagaagga caaaatcacc

20

<210> 288

<211> 20

<212> DNA

<213> Artificial Sequence

Siemens 0022 Seq Listing.txt

<220>
<223> D11S4358 reverse primer
<400> 288
gaacagggtt agtccattcg 20
<210> 289
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S964 forward primer
<400> 289
gttcttcctt cttgtgggg 19
<210> 290
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S964 reverse primer
<400> 290
agtcaagctga gattgtgcc 19
<210> 291
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> D19S1091 forward primer
<400> 291
caagccaaga catccccagtt 20
<210> 292
<211> 20
<212> DNA

Siemens 0022 Seq Listing.txt

<213> Artificial Sequence

<220>

<223> D19S1091 reverse primer

<400> 292
ccccacacac agctcatatg

20

<210> 293

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1179 forward primer

<400> 293
ttttctctct cattccattg gg

22

<210> 294

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1179 reverse primer

<400> 294
gcaacagagg gagactccaa

20

<210> 295

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> D10S2160 forward primer

<400> 295
tcccatcccg taagacctc

19

Siemens 0022 Seq Listing.txt

<210> 296

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> D10S2160 reverse primer

<400> 296

tatggagtagtac ctactctatg ccagg 25

<210> 297

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1230 forward primer

<400> 297

attcaaagct ggatcccttt 20

<210> 298

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S1230 reverse primer

<400> 298

agctgtgaca aatgcctgtta 20

<210> 299

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

Siemens 0022 Seq Listing.txt

<223> D17S1338 forward primer
<400> 299
tcacctgaga ttgggagacc 20
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S1338 reverse primer
<400> 300
aagatgggc aggaatgg 18
<210> 301
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S2011 forward primer
<400> 301
tcactgtcct ccaagccag 19
<210> 302
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> D17S2011 reverse primer
<400> 302
aaacaccaca ctctccccctg 20
<210> 303
<211> 20
<212> DNA
<213> Artificial Sequence

Siemens 0022 Seq Listing.txt

<220>

<223> D17S2011 forward primer

<400> 303
ttcttggct tcccgtagcc 20

<210> 304

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2011 reverse primer

<400> 304
ggggcagacg acttctcctt 20

<210> 305

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2038 forward primer

<400> 305
ggggatacaa cctttaagt tcc 23

<210> 306

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2038 reverse primer

<400> 306
attcacctaa tgaggattct tcttt 25

<210> 307

Siemens 0022 Seq Listing.txt

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2091 forward primer

<400> 307

gctgaaatag ccatcttgag ctac 24

<210> 308

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S2091 reverse primer

<400> 308

tccgcattcct ttttaagagg cac 23

<210> 309

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S649 forward primer

<400> 309

cttcactctt ttcagctgaa gagg 24

<210> 310

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> D17S649 reverse primer

Siemens 0022 Seq Listing.txt

<400> 310 tgacgtgcta tttcctgttt tgtct	25
<210> 311	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> D17S1190 forward primer	
<400> 311 gttttgtgct atgcctgc	18
<210> 312	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> D17S1190 reverse primer	
<400> 312 caacacacta ccccagga	18
<210> 313	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> M87506 forward primer	
<400> 313 actcctcatc tgtagggtct	20
<210> 314	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

Siemens 0022 Seq Listing.txt

<220>

<223> M87506 reverse primer

<400> 314
gagtccgcta cctgagtgct

20

<210> 315

<211> 4617

<212> DNA

<213> Homo sapiens

<400>	315	60
gcctggagac	taacagctgc	tcggaaaggagg
ggggcgccg	gcttctgtg	cagccccccag
tgcaggactt	ggtcccctctg	gggcgccccta
agcaacctcc	cccgcffffcc	cctcccccgg
ggaagggctc	cttcaaaaatc	cgcctcagtc
gctccggcgg	tggggatggg	accggcaaga
cgagccgtac	agacatggg	ggctctgcgg
agttgacaag	aactcaaagt	gcctttctc
aaactgtgtc	gcttgtggat	gtggacattt
caactcccc	tccctccctcg	agaagaagcc
tgcctacatc	tgtccttgt	gctccgatgg
cgcctcctcc	accccatgccc	ccagatgcat
aatccctgca	cagccaaccc	ccacagcacc
gcagcttgc	agccggcctt	cgagagttgg
attggaaaga	tgcagagatg	aagctgaaag
acagttgt	tccctcgatc	atcctgagcc
acactagaat	ggagcactac	agaggaacct
accgctgtca	atctgttgta	gagtttatta
agtttctcta	tttcttaaga	tccagggttc
tctatccagt	gtccccgattt	agcaatgtca
tacgacagct	cgtcaggata	gatcacatcc
cttatatccg	aaagttctac	tactatgatc
aagcgcagct	catttccaaa	cagaagcaag
cctgtggtc	accaccaagg	gcatttgggt
agctaccatg	aaaagaagag	gaaaagttag
agacttttgt	tccccacgc	gccctggggc
ggggctccac	ctcacacccca	cccctgggca
tggaagaagt	ctcaacactg	tttcttttc
tggatggaa	aactcacctt	gaaggcagtt
gcgaagggtg	agcagggtcca	aagaagggtt
ctgggtccaa	aggcagagt	agactctgt
tgaggtttgc	aaaggactgg	gagttctga
ggcagctgtt	gtaggagcga	gagagaaaagg
caaaacctag	ccaattggcc	ttagctggga
gtttagaaac	ctgagttcag	aaacacctt
aattccttaa	gttccatgac	ctgaagttaa
cccccttgaga	taactgtaca	tgtcaactgt
ccagctgtca	tggcaatcgt	gttcccata
gctgaattta	atggagcatg	tttccaggtt
agttagtgtt	acttccatgt	gcctgtcagc
aatacagctc	ccacagttgt	gctcttccta
gatttcctta	ggtcagagga	gagcatcgca
ccacttctgg	gatggggaggt	tctcacgtt
		agcaagggtt
		tctgtatttt
		cttctgttca

Siemens 0022 Seq Listing.txt

ccagacattt	ccggatcaga	tcctgctgg	ctccactcac	tggaaagtct	gccagatgcc	2640
gatttgagag	ctgcctgtcc	ctgcttcag	gaggagcggg	gagaaaaact	ccaatggct	2700
ttaatgttt	ctgcagctgg	ccatggcaa	ttcatatgac	attgtgagtt	tgcttccta	2760
tagagctgct	ctggggagag	gttgcatt	gagatgtaac	agtggagctg	ttgggtctc	2820
atgactccctt	tgcggtgttt	ccatggact	ctcttctgg	gttccccatg	cttatagtt	2880
cctcggtca	caagacagat	actaatgtca	gtttgtg	ttccgtatgg	ttgggtggg	2940
gccccagtgt	cctggtaatt	tataggactg	cctcatctgg	gagcattgcc	ttcttccta	3000
gtcccacgtg	gagtgaccag	tcttcctc	tgtagctgaa	cagggaggaa	acttgcacca	3060
ttacctgact	gtggaagggt	ggcccacaag	atgagctgt	caccataaac	acagcccacc	3120
tctgatttgt	catgtggta	ctcttcttc	cttggcttcc	atggtagtat	taccaactaa	3180
gcaagattgt	gatcccagaa	attggcttag	catgtgagtg	ttgcctcg	agagtacaag	3240
taatataact	cgccatctt	caggaagtgc	caccccaata	tagagcctga	agttggaaatc	3300
tgtttagatc	cttgggtggc	tgatatacag	cctggatct	ttctttttt	tgttccttt	3360
caaccaccca	taattttat	attattttt	agtgtgtgt	tgccctggctt	tgcgctagat	3420
attgttagaaa	acaaaaaaagg	taaaagacgt	aatatgtgc	ctaaggggac	ttttaggtga	3480
ctgctgcaca	tcaagcagaa	aatcaaggac	tatctaaaga	cgtttatagt	agataagatc	3540
aggtagacc	agatggctg	ggaaagttct	gtgcctctg	ggcttgggt	tgtgtcaat	3600
ggcaggacag	acagttagat	gaaaacaca	ttagaaaaag	caaggaagca	aaaatctgca	3660
tggcatgtac	tgaacagtgc	acagccctgt	tagagcaaca	tggtaaaga	atcctttcca	3720
gtgcggttt	ctagatggaa	gttcccgac	caccaggcag	acctgagtg	cgaggggtt	3780
tgatggtag	gtggagccca	aagccaaag	gagttagca	ggctctg	cattgcccagg	3840
gcctcaactat	ggtcagctca	ggccatgtga	gggaggcaga	gcctccgcac	ccccctgtt	3900
actggggttt	cttctggaga	actcatacat	tcaggtacaa	aacaaaccaa	ctgaggaggt	3960
gtgacccaac	ctcaccaccc	accttctcc	tcctggggag	tgtcg	aactgtgtct	4020
gtgtcagtgc	actggtccca	gccctggccg	cagcctagtc	ctttctctgt	ggagtgggct	4080
gcaaaacagc	agcgcaagag	gagacagtct	tcgtcaggt	tgggtgtt	tgccctgc	4140
gggtggcctt	gcacagagca	gttagggaa	gatgaggggg	aggcatgggg	ctgggcccac	4200
tctctggat	acagcctgt	cagagagtaa	atggagcaga	ggaacaggt	tggcagcacc	4260
tgcccttcac	ctccctgacc	aggccctgtcc	cteetccg	agtgcgtgt	agagctcatt	4320
taaatgtatt	cctttctagg	tctggcgcg	gtggctc	cctgtatcc	cagcaactt	4380
ggaggctgag	gtgggtggat	catgaggtcg	ggagttcaag	accagctgg	ccaaacagtg	4440
aaaccctatc	tctactaaaa	tacaaaatt	agctggcat	ggtggcatgc	gcctgttagt	4500
ccagctactt	gggaggctga	gacaggagaa	ttgcttgaac	ccaggaggcg	gaggttgcac	4560
tgagccgaga	ttgcgcact	gccctctagc	ctagacgaca	gagttagact	ccatctc	4617

<210> 316

<211> 1713

<212> DNA

<213> Homo sapiens

<400> 316

gagcacgtgc	gcgtccctcgc	tgctcacatt	tcggcggagg	gcgcgtccc	tggaaaattc	60
caactcctgt	ctagctccac	cctatgcggc	ttttctccct	cccgacgctc	ttcactctca	120
gctcccttcc	cggcggccctt	tgcggaaca	agatggcagc	ccccatcac	caagggttct	180
cttgcatttac	gagggttttg	ggctgtgtt	ctcggcagcc	agttctgtgt	actcagtc	240
cagctatagt	tccagtaaga	actaaaaac	gtttcacacc	tccttattat	caacctaata	300
ttaaaaacaga	aaaggaggtt	atgcaacatg	cccggaaagc	aggattgtt	attcctccag	360
aaaaatcgg	ccgttccata	catctggct	gtacagctgg	tatattgtat	gcctatgttc	420
ctcctgaggg	tgtatgcacgc	atatcatctc	tttcaagga	gggactgata	gagagaactg	480
aacgaatgaa	gaagactatg	gcatcacaag	tgtcaatcc	gaggataaaa	gactatgt	540
ccaactttaa	aataaaggac	ttccctgaaa	aagctaagg	tatctttatt	gaagctcacc	600
tttgtctaaa	taatctcagac	catgaccgac	ttcataccct	gttaactgaa	cactgtttt	660
cagacatgac	ttgggacatc	aaatataaga	ccgtccgctg	gagcttgt	gaatctttag	720
agccctctca	tgttgttca	gttcgtgtt	caagatgtat	gaaccaggc	aacgtgtacg	780
gccagatcac	cgtacgcatg	cacacccggc	agactctg	catctatgac	cggtttggcc	840
ggttgtatgt	tggacagggaa	gatgtaccc	aggatgtct	ggagtagt	gtattcgaaa	900
agcagttgac	aaaccctat	ggaagctgga	aatgcatac	caagatgtt	ccccatggg	960

Siemens 0022 Seq Listing.txt

cacccctaa	gcagcccatt	cttaagacgg	tatgtatccc	tggccctcag	ctgaaaccag	1020
aagaagaata	tgaaggaggca	caaggagagg	cccagaagcc	tcagctagcc	tgatgacaaa	1080
aatgacttct	agggtgaagc	ctgggtgatg	aggctgctgg	aagcttgaa	gtctcccat	1140
ccccatgc	tataaaaaga	actaccttt	ttctctccca	tcctgctcag	gtctttcag	1200
cagtctcatc	atcagcaacc	atgactgatg	actgggcctt	agcaggtggc	aggtataaca	1260
tggccatgga	caacttctt	ttttaaattt	tatgtctagc	ttctgagtc	agatgaaaga	1320
cagtatgtt	cagagaacat	tggatatcg	tttttccac	agcagggact	gtgagagaca	1380
accagcagca	tcctctttgt	aatcacaggg	cagggatcg	agtttgaat	gaaatgttgt	1440
cagggtgtt	gaaaaatttt	ggtgagttct	gcacattttc	cctggttcag	gctgggcatt	1500
gaccagcatt	cagatggcag	aagtggaaaga	tgagcctact	tgtgagcgat	tgactttaa	1560
ggaaatgaag	actggggaaag	aataatttagt	gtttataaga	cattaagag	gcccttttc	1620
ataactgac	tcactgatga	atcagcattt	gcattttatg	gaaaaatata	aatccaaaga	1680
aataatttat	cccttaaaaaa	aaaaaaaaaa	aaa			1713

<210> 317

<211> 5632

<212> DNA

<213> Homo sapiens

<400> 317

gtggcgatca	tggcaagttt	gaagtttct	gactccttcc	ggaggagcc	ccgggacccc	60
ggggagtaac	agggtgtctgg	aggctgaagg	gtggagggg	tcctggattt	gggttttgc	120
tgtgaaactc	ccctccaccc	tcctctctcg	cacccaccca	ccccctcacc	cccttcttt	180
tccgtcctt	gaaaatggtg	tccaaagctca	cgtcgctcca	gcaagaactc	ctgagcgc	240
tgctgagctc	cggggtcacc	aaggaggtgc	tggttcaggc	cttggaggag	ttgctgc	300
ccccgaactt	cggggtgaag	ctggagacgc	tgccccctgtc	ccctggcagc	ggggccgagc	360
ccgacaccaa	gccggctttc	catactctca	ccaacggcca	cgcaagggc	cgcttgcc	420
gcgacgaggg	ctccgaggac	ggcga	atgacacacc	tcccatc	aaggagctgc	480
aggcgctcaa	caccgaggag	gcggcggagc	agcgggcgga	gttgcacccg	atgctcagtg	540
aggaccctt	gagggctgtct	aaaatgatca	agggttacat	gcagcaacac	aacatcccc	600
agagggaggt	gttcgtatgc	accggcctga	accgtcgca	ccttc	catctcaaca	660
agggcacccc	atgaa	cagaacgtg	ccgtctgt	cacctgg	gtcagaa	720
aacgagagat	cttccgacaa	ttcaaccaga	cagtccagag	ttctggaaat	atgacagaca	780
aaagcgtca	ggatcagtc	ctgtttct	ttccagagg	cagtc	agccatggc	840
ctgggcagtc	cgtatgtcc	tgctctgagc	ccaccaacaa	gaatgcgc	cgcaacc	900
tcaaattgggg	gcccgcgtcc	cagcaatct	tgtaccaggc	ctacatcg	aaaaagaacc	960
ccagcaagga	agagagagag	gccttagtgg	aggaatgca	caggcagaa	tgttgcagc	1020
gaggggtgtc	cccccacaaa	gcccacggcc	tggctccaa	cttgg	gagggtcg	1080
tctacaactg	gttgc	cgcaggaagg	aggaggatt	ccggcaaaag	ctggccatgg	1140
acgcctata	ctccaaaccag	actcacagcc	tgaaccctt	gcttccc	ggctcccc	1200
accaccagcc	cagctcctt	cctccaaaca	agctgtcagg	agtgc	agccagcagg	1260
gaaacaatga	gatcacttcc	tcctcaacaa	tcagtcacca	tggcaacagc	gcatggta	1320
ccagccagtc	ggttttacag	caagtctccc	cagccagc	ggacc	cacaatctcc	1380
tctcacctga	tgtaaaatg	atctcagtct	caggaggagg	tttgc	gtcagcac	1440
tgacgaat	ccacagc	tcccaccata	atccccagca	atctcaaaac	ctcatcatg	1500
caccccttc	tggagtcatg	gcaattgcac	aaagcctcaa	caccc	gcacagagt	1560
tccctgtcat	caacagtgt	gcccgcagcc	tggcagcc	gcagcc	cagttctcc	1620
agcagctgca	cagccctcac	cagcagcccc	tcatgcagca	gagcc	agccacatgg	1680
cccagcagcc	cttcatggca	gctgtgactc	agctgcagaa	ctcacat	tacgcacaca	1740
agcaggaacc	cccccagat	tcccacac	cccgg	atctcaatg	gtggc	1800
ataccagcag	catcgtaca	ctcacaaca	tgtctcaag	taaacagtgt	cctctacaag	1860
cctggatgat	cccacacacc	acttacttgc	tgcgcaacaa	caaggacc	gttttccaca	1920
ccatcaccc	ctgggcagct	gtcatggaaa	agcccagtga	cctgacc	acctgcgaga	1980
gttccctgt	tacctgacgg	acgtcctgct	ggcacctcag	acaatccact	ctcaggagcg	2040
cagcccaag	cccgat	ttctatgca	gtattgcac	aatgc	ccacgatgtc	2100
aaggactcct	gtctgtc	gaggtgggag	acaaggaacc	tccgaagagg	aagcaagaaa	2160
gccgtactgt	ctatgtt	atcctc	gaacaaactg	atgcgaa	ttgaatctgt	2220

Siemens 0022 Seq Listing.txt

tactgaaatg	aggagagagaag	gacatgtgct	attgaactga	gccaaacaca	ctgtaaaatat	2280
ccacagactc	cctccccctgc	ccccatccca	aatgatctg	agatttctt	taaagaagta	2340
aatttgtcca	atggctgtaa	actataaaact	actgtattha	agtcaattt	cccctctgtg	2400
tcctctcccc	tctgcccctgt	atataaact	aaagtgtcta	ttagtttct	ttgtaaaaggt	2460
cagagtcaaa	atttcaaaaag	tgatctgtcc	cctctccct	catggagaaa	catcctaagt	2520
ggsaagtgaa	gcccccttgc	ctctcccg	aggcctggac	acttatgggg	acagcatacc	2580
ttggactgac	taccagctaa	ctccagtctc	ctgacattaa	gacacacctc	tggatccctg	2640
gaggggctga	atgttagtgt	tcagagtaac	atgccagctt	cctgtgggccc	aggagcttcag	2700
ccgtgcactc	cctaagaaac	cccaggcgag	gaaaactggc	tgtttgatag	cagaagaaaa	2760
agttgcagtc	tcagaaaagcc	ttccattaaa	acaatttatt	ttatcactaa	aaaaaaagtgg	2820
cgatcatggc	aagttagaag	ttttctgact	ccttcggag	gagcctccgg	gaccccgggg	2880
agtaacaggt	gtctggaggc	tgaagggtgg	aggggttctt	ggatttgggt	tttgcttgtg	2940
aaactccct	ccaccctcct	ctctcgacc	cacccacccc	ctcacccct	tctttttccg	3000
tccttgaaaa	atggtgtcca	agctcacgtc	gctccagcaa	gaactcctga	gcccctgtct	3060
gagctccggg	gtcaccaagg	aggtgctgt	tcagggctt	gaggagttgc	tgccatcccc	3120
gaacttcggg	gtgaagctgg	agacgctgcc	cctgtcccct	ggcagcgggg	ccgagccgaa	3180
caccaagccg	gtcttccata	ctctcaccaa	cgccacacgccc	aaggccgcgt	tgtccggcga	3240
cgagggtc	gaggacggcg	acgactatga	cacacccctcc	atccctcaagg	agctgcaggc	3300
gctcaacacc	gaggaggcg	cgagcagcg	ggcgagggtg	gaccggatgc	tcagtggagga	3360
cccttgagg	gctgctaaaa	tgatcaaggg	ttacatgcag	caacacaaca	tccccccagag	3420
ggaggtggtc	gatgtcaccc	gcctgaacca	gtcgcaccc	tcccagcatc	tcaacaaggg	3480
cacccctatg	aagacccaga	agcgtccgc	tctgtacacc	tggtagtca	gaaagcaacg	3540
agagatcc	cgacaattca	accagacagt	ccagagttt	ggaaatatga	cagacaaaag	3600
cagttagat	cagctgctgt	ttctcttcc	agagttca	caacagagcc	atgggcctgg	3660
gcagtccat	gatgcctgt	ctgagccac	caacaagaag	atgcgcgc	accgggttcaa	3720
atggggccc	gcttccacgc	aaatttgt	ccaggcctac	gatcgccaaa	agaaccccg	3780
caaggaagag	agagaggcct	tagtggagga	atgcaacagg	gcagaatgtt	tgcagcgagg	3840
ggtgtcccc	tccaaagccc	acggcctggg	ctccaaactt	gtcactgagg	tccgtgtcta	3900
caactgttt	gcaaaccgc	ggaaggagga	ggcattccgg	caaagctgg	ccatggacgc	3960
ctatactcc	aaccagactc	acagctgaa	ccctctgtc	tcccacggct	ccccccacca	4020
ccagcccg	tccctccctc	caaacaagct	gtcaggagtg	cgctacagcc	agcagggaaa	4080
caatgagatc	acttccctcc	caacaatcag	tcaccatggc	aacagcgca	tggtgaccag	4140
ccagtcgtt	ttacagcaag	tctcccccagc	cagcctggac	ccagggcaca	atctcccttc	4200
acctgtatgt	aaaatgtatct	cagtctcagg	aggaggttg	ccccccagtca	gcacccgtac	4260
gaatattcc	agcctctccc	accataatcc	ccagcaatct	caaacaccta	tcatgacacc	4320
cctctcttgg	gtcatggcaa	ttgcacaaag	cctcaacacc	tcccaagcac	agagtgtccc	4380
tgtcatcaac	agtgtggccg	gcagcctggc	agccctgtcag	cccgtccagt	tctcccaagca	4440
gctgcacacg	ccttaccacgc	agccccat	gcagcagagc	ccaggcagcc	acatggccca	4500
gcagcccttc	atggcagctg	tgactcag	gcagaactca	cacatgtacg	cacacaagca	4560
ggaacccccc	cagtattccc	acacccccc	gtttccat	gcaatgggtgg	tcacagatac	4620
cagcagcatc	agtagactca	ccaacatgtc	ttcaagtaaa	cagtgtcc	tacaagcctg	4680
gtgatgccc	cacaccactt	acttctgtcg	caacaacaag	gaccctgttt	tccacaccat	4740
caccctctgg	gcagctgtca	tggaaaagcc	cagtgtaccc	accagcacct	gcgagaggc	4800
cctgcttacc	tgacggacgt	cctgctggca	cctcagacaa	tccactctca	ggagcgcagc	4860
ccgaagccca	gtttcccttc	tatgcagat	tgccacaat	cctctccac	gatgtcaagg	4920
actccctgt	gtcttggagg	tggagacaa	ggaacctccg	aagaggaagc	aagaagccg	4980
tactgtctat	gttgtatcc	ttcatcgaac	aaactgtatc	gaaaacttga	atctgttact	5040
gaaatgagga	gagaaggaca	tgtgttatt	aactgagcc	aacacactgt	aaatatccac	5100
agactccctc	ccctgcccccc	atcccaaat	atcttgcagat	ttctttttaaa	gaagtaaatt	5160
tgtccaatgg	ctgtttaacta	taaactact	taattaaat	caatttcccc	tctgtgtct	5220
ctcccccctg	ccctgtatata	aatactaaag	tgtcttatt	ttttttttgt	aaaggtcaga	5280
gtcaaaat	caaaaatgtat	ctgtccctc	tccctctat	gagaaacatc	ctaagtggga	5340
agtgaagccc	cttgtccctc	cccgcgaggc	ctggacactt	atggggacag	catacccttgg	5400
actgactacc	agtaactcc	agtctctgt	cattaagaca	caccccttgg	tccctggagg	5460
ggctgaatgt	atgtgttcag	agtaacatgc	cagcttcc	tggccagga	gctcagccgt	5520
gcactccct	agaaacccca	gggcagggaa	actggcttt	tgatagcaga	agaaaaagtt	5580
gcagtctc	aaagccctcc	attaaaaacaa	tttattttat	cactaaaaaa	aa	5632

<210> 318

<211> 3123

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 318

gaactgtggc	gctttctggg	taaagatgga	cgtccacat	ctcttcgc	ggctcgccgc	60
ggggccaaa	ttcgacacga	gacgcttctc	ggcagacgca	gctcgattcc	agatagaaaa	120
aaggaaatat	gactttgatt	cttcggaggt	gtttcaggg	ctggactttt	ttggaaacaa	180
gaagtctgtc	ccaggtgtgt	gtggagcatc	acaaacacat	cagaagcccc	aaaatggaga	240
aaaaaaagaa	gagagcctaa	ctgaaaggaa	gaggagcag	agcaagaaaa	aaaggaagac	300
gatgacttca	gagacaggggt	ttcacatgt	tggccagtat	ggtctcgatc	tcctgaccc	360
gtgatttacc	cacccctggg	tcccaaagt	ctgggattac	agatgtgagc	caccacgccc	420
agccagaat	tgcttcccaa	gaagaaggt	ctactataca	gtggatgtca	tctgttagaag	480
caaagattga	agacaaaaaaa	gttcagagag	aaagtaact	aacttccgga	aagttggaga	540
atctcagaaa	agaaaagata	aacttctgc	gaaataaaca	aaaattcac	gtccaaggaa	600
ccgatcc	tgaccatcc	gctacatttgc	accaacttga	ccagaaat	aaaatcaatt	660
ctcgactact	tcagaacatt	ctagatgcag	gcttccaaat	gcctacgcca	atccaaatgc	720
aagccatccc	agttatgctg	catggcggg	aacttctggc	ttctgtcc	actggatctg	780
aaaaaacatt	agcttttagc	attccatttt	taatgcagtt	gaaacaaccc	gcaaaataaag	840
gcttcagagc	cctgattata	tcaccaacac	gagaacttgc	cagccagatt	cacagagagt	900
taataaaaaat	ttctgaggga	acaggattca	gaatacacat	gatccacaaa	gcagcagtgg	960
cagccaaagaa	atttggacct	aatcatcta	aaaagttga	tattttgt	actactccaa	1020
atcgactaat	ctatatttata	aagcaagatc	ccccccggaa	cgacctagca	agtgttgagt	1080
ggctttagt	agacgaatca	gataaaactgt	ttgaagatgg	aaaaactggg	ttcagagacc	1140
agctggcttc	cattttcctg	gcctgcacat	cccacaaggt	ccgaagagct	atgttcagtg	1200
caactttgc	atatgatgtt	gaacagtgg	gaaaactcaa	cctggacaaat	gtcatcagt	1260
tgtccattgg	agcaaggaat	tctgcagtag	aaactgtaga	acaagagctt	ctcttttttg	1320
gatctgagac	cggaaaactt	ctggccgtga	gagaacttgt	aaaaagggt	ttcaatccac	1380
ctgttcttgc	ttttgttcag	tccatgaaa	gggctaaaga	actttttcat	gagctcatat	1440
atgaaggat	taatgtggat	gttattcatg	cagagagaac	acaacaacag	agagataaca	1500
cagtccacag	tttcagagca	ggaaaaatct	gggttctgt	ttgtacagcc	ttgctagcaa	1560
gagggattga	ttttaaaggt	gtgaacttgg	tgatcaacta	tgactttcca	actagctcg	1620
tggaaatata	ccacaggata	ggtcgaactg	gaagagcagg	gaataaggga	aaagcaatta	1680
cattttcac	tgaggatgt	aagccattat	taagaaggct	tgctaatgtt	atacagcagg	1740
ctgggtgtcc	tgtaccagaa	tacataaaag	tttttcagaa	actactaagc	aaacaaaaga	1800
aaaagatgt	taaagaaacca	ttggaaagg	agaggattag	tacaactcca	aatgtttct	1860
tagaaaaaagc	taaggataaa	cagagaaagg	tcactggta	gaacagcaag	aagaaagtag	1920
ctcttgaaga	caaaagttaa	aaacagactt	aaaaataact	gtcccgaaaa	tgtatTTT	1980
tgatcccgac	atgaatgtt	ttttcatgga	atacttgaag	tcttacagtc	acctgtacca	2040
aacatttgc	atcaactaca	agtacatggg	actgggtata	aatgatccta	aactataaag	2100
tcagtttcaa	ttttaggtgt	cctttttt	ttcctgtaga	gatgagggtc	ttgccatgtt	2160
gtccaggctg	gtcttgaact	cctgacctca	cacaatcc	ctgccttagc	ctccctgagta	2220
actgagatta	caggcacaag	ctgctgcacc	cagctctgt	ggtgactttt	aatgtattat	2280
acaatggaaa	taacattcat	tgacatttct	gtggtttggaa	tccaggaga	tacttcttat	2340
agaaaaacaa	atgtttatgc	aaaaataac	acccaaatgt	ggtgactct	taaggacttt	2400
tcccttcaag	tgtgaaggaa	ggtgtatgt	atgctgtgg	gaggcatctg	gaacagaaat	2460
tcaaaaataaa	gccttgacat	taaataccccc	ttccactgt	cactttgtgg	atggtagcat	2520
gagctgtcta	ccaaagaagaa	acctgctgt	ctcttaattt	taatatttcc	taattttgtt	2580
atggcccttt	gtgttgtgaa	ccacaacaaa	gagaggcc	ttttgtggct	ggttattcc	2640
gttccctggg	attttaattt	ctttgtct	ttaagtatcc	ttgtatttgg	tacgtataac	2700
cttagtgctg	tcataatgtt	gcacaagatc	atgatcagct	tctcccttcc	ttcattttct	2760
gtgatttaac	catgttctt	cctgtctt	tccatattaa	atattttt	tgaataactga	2820
taaacatttt	atccgtat	ggaagaatgt	tcttgttact	tgatataact	ctgtcttcat	2880
tctcttacag	tttatctttc	tttaggttga	ttgtgcctca	tttaataagt	agatcttac	2940
ttaagctaaa	ggattatgt	catatgg	ttggagactat	tagtatttt	atttttctca	3000
aaatatgagt	tttgtacaat	ggaatgaaaa	agtgaacttca	tatacgtaag	actggcgct	3060
aagaatgact	tgaatgttat	cagtactacc	acagaactat	aatatacatt	gcctttctc	3120
agc						3123

<210> 319

Siemens 0022 Seq Listing.txt

<211> 1817

<212> DNA

<213> Homo sapiens

<400> 319

caaccatcct	gaagctacag	gtgctccctc	ctggaatctc	caatggattt	cagtgcaga	60
agcttcaca	gaagcctgag	ctcctccctg	caggccccctg	tagtcagttac	agtgggcatt	120
cagcgccctg	ggacgacacc	cagcgttata	gggggtgtctg	gaggccgggg	catccgcatt	180
tccaactcca	gacacacggg	gaactatggg	agcgatctca	caggcggcgg	ggacctgttt	240
gttggcaatg	agaaaaatggc	catcgagaac	ctaaatgacc	gtctagcgag	ctacctagaa	300
aagggtgcgg	ccctggagca	gtccaaactcc	aaacttgaag	tgcaaataaa	gcagtggtag	360
gaaaccacg	ccccgagggc	tggtcgcac	tacagtgcac	attacagaca	aattgaagag	420
ctgcgaagtc	agattaagga	tgctcaactg	aaaaatgttc	ggtgtgtcct	gcaaattttag	480
aatgctaaac	tggctgtctg	ggacttcaga	ctgaagttat	agactgagag	aggaatacgt	540
ctaacagtgg	aagctgtatct	ccaaggccctg	ataaagggtct	tttgatgacc	aaccctacat	600
aaaacagatt	tggagattca	aattgaagaa	ctgaataaaag	acctgtct	cctcaaaaag	660
gagcatcagg	aggaagtgcg	tggcttacac	aagcatctgg	gcaacactgt	caatgtggag	720
gtttagtctg	ctccaggccct	gaaccttggc	gtcatcatga	atgaaatgg	gcagaagttat	780
gaagtcatgg	cccagaagaa	ccttcaagag	gccaaagaac	atttttagag	acagactgca	840
gttctgcagc	aacaggtcac	agtgaatact	gaagaattaa	aaggaactga	ggttcaacta	900
acggagctga	gacgcacccct	ccagagcctt	gagatagaac	tccagtcctt	tctcagcatg	960
aaagagtctt	tggagcacac	tctagaggag	accaaggccc	gttacagcag	ccagttagcc	1020
aacctccagt	cgctgtttag	ctctctggag	gcccaactga	tgcagattcg	gagtaacatg	1080
gaacgcaga	acaacgaata	ccatatcctt	cttgacataa	agactcgact	tgaacaggaa	1140
attgctactt	accggccctt	tctggagga	gaagacgtaa	aaactacaga	atatcagttt	1200
agcaccctgg	aagagagaga	tataaagaaa	accaggaaga	ttaagacagt	cgtcaagaa	1260
gttagtgatg	gcaaggtcgt	gtcatctgaa	gtcaaagagg	tggaaagaaaa	tatctaaata	1320
gctaccagaa	ggagatgctg	ctgaggtttt	gaaagaaaatt	tggctataat	cttatctttg	1380
ctccctgcaa	gaaatcagcc	ataagaaagc	actattataa	ctctgcagtg	attagaaggg	1440
gtgggggtggc	ggaatccta	tttattcagac	tctgtatgt	aatataaatg	ttttactctag	1500
aggagctgca	aattgcctgc	aaaaatgaaa	tccagtgagc	actagaatat	ttaaaacatc	1560
attactgcca	tctttatcat	gaagcacatc	aattacaacg	tgttagaccac	ctaataatcaa	1620
ttttaggtt	atgtttctgt	aaatttgcatt	acattttcaat	tataactaaac	cttcacaaagt	1680
agaggaatcc	atgtaaattt	caaataaacc	actttctaat	tttttcctgt	ttctgaaaaaa	1740
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1800
aaaaaaaaaa	aaaaaaaaaa					1817

<210> 320

<211> 1474

<212> DNA

<213> Homo sapiens

<400> 320

ggcagatgaa	atataagatt	catcaaccac	atttgacagc	ccatggcagg	tttcctgttt	60
tccatcggtcc	ctctgcaggt	cacagacaca	cagagcccg	ccgtggcagg	ctcagccggg	120
gtccggggct	gctaacaacg	gctacattcc	tccccccagg	ccaaggggaa	tcctgagcgc	180
aggccagggt	tgtttgggtt	tgaggtgtgc	tgggatgaaa	ggcacccctgg	aagtggaaagg	240
ttcggtcatt	cattaattaa	ttacatctat	aatttgggtt	ttgttcttaa	gagcgagttc	300
tttgaagta	cttccttca	aacagtgact	gccacaaaagg	catcagatat	tcaccaccc	360
ctcggctgcc	tcagcacacg	aagtttattt	ctgggacctg	agatcctgtt	ctgagctggc	420
tttcccttct	ccaggctcgc	tcaccctccc	tttagagata	gtggatggta	agatgaccaa	480
tgctcagatt	attcttctca	ttgacaatgc	caggatggca	gtggatgact	tcaacctcaa	540

Siemens 0022 Seq Listing.txt

gaaatggaga	agcatcatgt	gccaaagtgc	ttaatgtca	atgtgaagg	ggatacagg	600
cccagggaa	atctgattaa	ggtcctggag	gatatgagac	aagaatata	gcttataata	660
aagaagaagc	atcgagactt	ggacacttgg	tataaagaac	agtctgcagc	catgtccca	720
gaggcagcca	gtccagccac	tgtgcagagc	agacaagg	acatccacga	actgaagcgc	780
acattccagg	ccctggagat	tgacctgcag	acacagtaca	gcacaaaatc	tgctttgaa	840
aacattttat	ccgagaccca	gtctcggtac	tcctgcaagc	tccaggacat	gcaagagatc	900
atctccca	atgaggagga	actgacgcag	ctacgcctat	aactggagcg	gcagaacaat	960
gaatacc	tgctgctggg	catcaaacc	cacctggaga	aggaaatcac	cacgtaccga	1020
cggtctctgg	agggagagag	tgaagggaca	cggagaaga	caaagtgcag	catgaaagt	1080
tctgcaactc	caaagatcaa	ggccataacc	caggagacca	tcaacggaa	attagttctt	1140
tgtcaagtga	atgaaatcca	aaagcacgca	tgagaccaat	gaaagttcc	gcctgttga	1200
aatctattt	tcccccaagg	aaagtccctg	cacagacacc	agtgagttag	ttctaaaaga	1260
tacccttgg	attatcagac	tcagaaactt	ttatttttt	tttctgtaac	agtctcacca	1320
gacttctcat	aatgctctta	atatttgca	cttttcta	caaagtgcga	gtttatgagg	1380
gtaaagctct	actttccat	tgcagccctc	agattctcat	cattttgcat	ctatttgt	1440
gccaataaaaa	ctccgcacta	gcaaaaaaaaa	aaaa			1474

<210> 321

<211> 754

<212> DNA

<213> Homo sapiens

<400>	321					
caatcaaacc	cataaatacc	acagactcta	atagccatgg	attgctgtgc	ctctcgaggc	60
tgca	gtgtcc	ccacccggcc	tgccaccacc	atctgctcct	ctgacaaatc	120
ggagtctg	cc	tgcccagcac	ctgcccacac	acagtttgt	tactggagcc	180
gacaactgtc	cccc	accctgt	ccacattcct	ta	gcccctgcg	240
aactcc	tgcc	aggcactcc	aggcctggag	accctcaacc	tcaccacctt	300
tgctgtg	gagc	cc	aagaggctgc	taatggatgg	ctac	360
gattgaaaaa	gtca	acata	aagctttagc	attcacctat	ctcag	420
tactctgtt	g	tagaaattgg	aacaaggatg	gtactaccac	aatcaccccc	480
aagagaccaa	gaa	actttca	atgaccattc	agctataacc	aactgcagtt	540
gatgc	cata	gcttcctgaa	gctgtcgat	tccttcata	taaagtgtct	600
gtgg	tttgg	aa	tttctgttt	tcagtttgg	gtggtatctt	660
ttc	atgatta	tcc	ataaaaa	tttacatct	ctggcatagc	720
aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	754

<210> 322

<211> 749

<212> DNA

<213> Homo sapiens

<400>	322					
aagaaaactga	aagctaacc	gacgcccatt	gccatggatt	gctgtgcctc	tcgcagctgc	60
agtgtcccc	ctgggcctgc	caccacatc	tgctcctccg	acaaatcctg	ccgctgtgga	120
gtctgc	cc	ccagcacctg	cccacacaca	gtttggttac	tggagccat	180
aactgtcccc	cacc	ctgc	cattcctcag	ccctgcgtgc	ccac	240
tcctgc	cac	actccggg	cctggagacc	ctcaacctca	ccac	300
tgtgagcc	gc	ctccaa	aggctgtga	tggatggcta	tttgc	360
cgaagaatcc	aga	agactgtc	ccttcagtat	tcacttgct	cagtagttt	420
aggtagacca	gat	gacccag	atatgaagaa	cttac	tttggatgg	480

Siemens 0022 Seq Listing.txt

gaaaagtatt	tttatgggtt	atttagctga	aaaaccattt	ggttcctgtg	ggcaggtaaa	540
ttagtttat	tagaaaaata	ctgttcaat	ctttaagacc	tcagattaca	tgttcttgat	600
catattgctt	cctggctctt	gtttctgtt	ctgggtattt	tcatagaaga	aaatttcttg	660
gtgggttttc	caataaaacta	tatttctctg	gcaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	720
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	749

<210> 323

<211> 440

<212> DNA

<213> Homo sapiens

<400> 323

gtgtccctg	agataggtgg	atataaaaga	cccatagagg	acaaccttgt	agaagaaagc	60
cttccttgc	cacaaaacat	tgtcctggtc	cactgtca	atgtcttgct	tgattccta	120
tctccaagga	tgtcgacgc	tccccactgg	cctggccacc	actatctgcc	cctctgacat	180
aagctgtcaa	tgtgaagtct	gcctaccagg	cacctgtcct	catgagatca	gcctccttca	240
gcccacctgc	tgtgaacacgt	gcccctgcct	ggctgcatgc	ctgactccta	tgtgccatcc	300
tgttactgc	tcaacaaatg	ccaccaggct	ccaaccctga	gcgggctctc	tgtcaccacc	360
tgcattccaga	gtgtgaacca	ccttgcgtct	agccaaagag	cttggccaca	ttaccctgag	420
gacccatcgt	agtccattaa	g				440

<210> 324

<211> 614

<212> DNA

<213> Homo sapiens

<400> 324

agacttctct	caactcaaca	aaaaccacc	tcccattgcc	atgtattgct	gtgctctccg	60
ctcctgcagc	gtccccaccg	gccctgccc	cacccctgc	tcatttgata	aaagctggcg	120
ctgtggagtc	tgcctaccct	gcacctgccc	acatgagatc	agccctcc	agcccatctg	180
ctgtgacacc	tgcctccac	cctgctgcaa	gcctgataacc	tatgtccaa	tttgtggct	240
gctcaacaac	tgtcaccgg	ctccggact	gagtgggatc	aacctgacca	cctatgttca	300
gcctggctgt	gagagtcct	gtgagccccc	ctgttaacca	gccgagtctg	cacaggttcc	360
gtgaggtggc	tgcctcaatgt	cctctgcacc	atctgggctt	cagcaactcac	tactgcctac	420
atcaaggctt	aggccatccc	aatccccggg	gccaagtctt	gatgaatctt	cttaattatt	480
tgcacatttg	ggtaccattt	gagacctccc	ttctgtcttt	taggctattt	catcactctt	540
tgagaaataa	ccatccatgg	cattgtttaa	taaactttat	tctggcttag	aaaaaaaaaa	600
aaaaaaaaaa	aaaa	aaaa	aaaa	aaaa	aaaa	614

<210> 325

<211> 1193

<212> DNA

<213> Homo sapiens

<400> 325

Siemens 0022 Seq Listing.txt

cagaaactcc	tccaagcaac	ctaactctta	accacaacttc	tgacaccatg	acctgctgcc	60
agaccagctt	ctgtggatat	cccagttct	éatcagttg	gacctgtggc	tccagctgct	120
gccagccaag	ctgctgttag	accagctgct	gcccagccacg	cagctgccag	actagcttct	180
gcggatttcc	cagcttctca	accagtggga	cctgcagcctc	cagttgtgc	cagccaaagct	240
gctgtgagac	cagctgctgc	cagccaaagct	gctgtgagac	cagctgctgc	cagccaaagct	300
gctgccagat	cagctcctgc	ggaactggct	gtggcatttg	tggcggcatc	agctatggcc	360
aggagggcag	cagtggagct	gtgagcaccc	gtatcagggt	gtgcggccca	gacagtctg	420
tggagggcac	ctacctaccc	ccctgctgt	tggtagctg	cacccccca	tcctgctgcc	480
aactgcacca	tgcccaggcc	tcctgctgcc	gccccgtccta	ctgtggacag	tcctgctgcc	540
gcccagtctg	ctgctgttag	cccacttgct	gaaagccagt	ttgcttattt	tcaattgcct	600
aggtcacagt	gtctctgaac	tgttcatccc	ttgaccacct	ctggaccact	aacaagttct	660
cagacttgc	attgctgtg	atggagacta	ctaagtatat	gagctcacaa	ttctatctga	720
ttccattcta	caatgaatac	cttgaccctt	cactggggac	acagaaaatgc	tacaaagcca	780
cctgctgatc	atcaatttgc	ttggatata	ctatttctga	tatttctgca	ggattaaaaaa	840
ttactgacat	gttgtggaat	ttatccatga	gaactatcca	caagtctaatt	gtttccatgc	900
tttataatct	attttatctt	gtttaccaa	aatttttgc	aacatcaaag	acaccaaatt	960
atagccaaatg	gacattcctc	aagtccacag	agagaatgga	agctcatcac	ccaacatca	1020
gcttctaaaga	atgtggctgg	actttccaca	tttaacatc	tgatccatcc	cttggtttt	1080
ggatcataat	gatcttgcct	gctggatatt	tcaagttat	ctgtgataca	atgtcttctg	1140
tcatttctta	ataaatattta	tatactaggc	aaagaaaaaa	aaaaaaaaaa	aaa	1193

<210> 326

<211> 986

<212> DNA

<213> Homo sapiens

<400> 326

aagcaaccca	gacttcatac	cagctccaa	caccatgacc	tgctgccaga	ccagcttctg	60
tggatatccc	agctgctcca	ccagtgggac	atgcggctcc	agctgctgcc	agccaagctg	120
ctgtgagacc	agctgctgcc	agccaagctg	ctgcccagacc	agcttctgcg	gatttcctag	180
cttctcaact	atgtggaccc	gcagctccag	tgctgcccag	ccaagctgt	gtgagaccag	240
ctgctgcccag	cuaagctgt	gccagaccag	ctccctgcgga	actggctgtg	gcattgggtg	300
tggcatttgc	tatggccagg	agggcagcag	tggagctgtg	agcacccgt	tcaggtggtg	360
ccgcccagac	tgcccgtgtg	agggtaacctg	cctgcccccc	tgctgtgtgg	tgagctgcac	420
acccccaacc	tgctgccagc	tgcaccacgc	cgaggccccc	tgctgcccgc	catcctactg	480
tggacagtcc	tgctgcccgc	cagtctgt	ctgctactcc	tgtgagccca	cctgctaaaa	540
gccagttgc	tgattttcaa	tttggaaattt	ccactttcag	ttccattcat	gaacgaatta	600
tttcttcaag	cacttatgg	caacgaacaa	attcttcaac	ctttctttgt	ctttctttag	660
ggggttacca	aatattttgg	cctcagaatt	atctgattcc	tttcaattcc	agaaagacct	720
tactcttctc	tctgaggacg	caaaaataca	aatttgaccc	aagaaatgaa	aaagccgatt	780
taccttggaa	ctgagccctt	gcaaggattt	aagcccacgc	tctgagtctc	agcggccgacg	840
agaccatgg	agagccatct	gtcctctca	ggacactcac	ttcctgtatc	ccaccgtcct	900
gcaaattgca	ccccctatga	aagagaaata	atataccaag	gtctaataaaa	tttaactat	960
tggtgcaca	aaaaaaaaaa	aaaaaaaaaa	aaaaaa			986

<210> 327

<211> 903

<212> DNA

<213> Homo sapiens

<400> 327

Siemens 0022 Seq Listing.txt

aataggcagc	cataattcag	aaactccctcc	aagcaaccca	accttcagat	caactccctga	60
caccatggcc	tgttgtcaga	ccagcttctg	tggatttccc	agctgctcca	ccagtggac	120
ctgcggctcc	agctgctgcc	agccaagctg	ctgtgagacc	agctccctgccc	agccacgctg	180
ctgtgagacc	agctgctgcc	agccaagctg	ctgcccagacc	agcttctgtg	gatttccctag	240
cttctcaacc	ggtgggactt	gtgactctag	ctgctgcccag	ccaagctgct	gtgaaaactag	300
ctgctgccag	ccaagctgct	accagaccag	ctccctgcgga	actggctgtg	gcattggtag	360
tggcattggc	tatggccagg	agggcagcag	tggagctgtg	agcacccgta	tcaggtggtg	420
ccgcccagac	tgccgtgtgg	agggtacctg	cctgcccccc	tgctgcgtgg	tgagctgcac	480
accccccattcc	tgcgtccagc	tgcaccacgc	cgaggccctcc	tgctgcccgc	catcctactg	540
tggacagtcc	tgttggcgcc	cagtctgctg	ctgctactgc	tctgagccca	cttggtaaaa	600
acctccttct	gctggggatc	ctgataagat	ggcaccttaa	aactagccaa	attagaatcc	660
taacaatctt	ctgaactcca	gtacctataa	ctgggcttg	aacctctcat	cacacagcca	720
cataaattcc	cttaggaagta	aattcattta	caatggaa	ccaaaaattt	ttccctagacc	780
tggttgtcag	ccaaagtcc	acaatgtgaa	aagagttga	tactatttt	ctataaatat	840
cacctgaaat	atttcaacag	ttattggac	ttaaatttta	taaaagttt	catctcttca	900
atg						903

<210> 328

<211> 615

<212> DNA

<213> Homo sapiens

<400> 328

cgtgacctgc	gtgccccgct	gcacgcgccc	catctgcgag	ccctgcccgc	gccccgggtgt	60
ctgcacccccc	tgtccctgc	aggaaggctg	ctgcccgc	atcacctgct	gccccctcg	120
gtgcacggct	gtgggtgtca	ggccctgctg	ctggggccacc	acctgctgccc	agccctgtgt	180
tgtgcagtcc	ccctgctgccc	ggccccccctg	cgcccaagccg	accccttgc	gcaccaccc	240
caggacctcc	tcctgctgag	ccaccaccc	ctgcccagcc	gtgtctgtgc	agtccccctg	300
cggccagccg	accccttgc	gcaccaccc	caggaccc	tcctgctgag	cagccccgtt	360
tcacgaaggg	cccttcagaa	gatggccagg	tccatcccgc	tgcccttcag	ggcttcaccc	420
cagagcaata	cacgtttcc	tgagaagccc	atttctcatc	tcttcatact	agctcacact	480
atgcattgaa	gacaccc	cagaccaacc	acagatgaga	aataactttc	ctaggactcc	540
agtctaactc	ctatatcatg	ttgtctgctt	tctaataaac	tcaataactcc	taccataaaa	600
aaaaaaaaaa	aaaaaa					615

<210> 329

<211> 812

<212> DNA

<213> Homo sapiens

<400> 329

aatagcccaa	cccacaccag	cctcagacac	caccatgacc	ggctccgt	gcggctccac	60
cttgcctcc	ctgagctacg	ggggaggctg	ctgcccgc	tgctgctgccc	gcgacccctg	120
ctgctgccgc	cccggtgaccc	gccagaccac	cgtgtgccc	cccgtgaccc	gcgtgcccc	180
ctgcacgcgc	cccatctgc	agccctgccc	ccgccccgtg	tgctgctgacc	cctgctccct	240
gcaggaaggc	tgtgtccgc	ccatcaccc	ctgccccctg	tcgtgcacgg	ctgtgggtgt	300
caggccctgc	tgtgtggcc	ccaccctg	ccagccctgt	tctgtgcagt	ccccctgtgt	360
ccggccctccc	tgccggccagc	cgacccttgc	cagcaccacc	tgccggaccc	cctccctgtgt	420
agaccccaat	gccccccacag	agcaatacac	tgaaggctaa	acatctatct	gggtttttt	480
aaaagttaaa	agaaaaatag	atttttttc	acaagggtgac	aatagtattt	tttaccatct	540
ggatacagcc	tggtgtaagc	agacgtccat	taccaccc	acccacattt	tcaggtgtct	600

Siemens 0022 Seq Listing.txt

acatcagcct	tagtcattat	ggatagtaaa	tcgacctta	agaattcctg	gggtggactt	660
tgc当地aca	ttctacaacc	tatgtttt	tactgctcaa	actgtcacca	tcatcttttg	720
caatgtttg	ctcactgttg	tcaataaaact	aattttcct	gcaaaaaaaaa	aaaaaaaaaa	780
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	812

<210> 330

<211> 601

<212> DNA

<213> Homo sapiens

<400> 330

tgcttggta	gtgtggctac	ttcctgaac	cacatggaga	cacattgtac	aggaagaagt	60
gcctccctct	gctcgcatc	tgcgattctc	atctgacacc	atggtcagct	tctgtttag	120
ctctgtctgc	tctgaataga	gctgtggcca	aggcctctgc	cagacctgct	gctgctgcag	180
ttgctgccag	accacctact	gcagaaccat	ctgctaccat	cccagctgct	ctgtgtccag	240
ctgttgcagg	cccccggtct	gccagtcct	gtgctgcccc	agctgctgca	tttctagccg	300
ctgccactca	agctgcagtg	tgtccacctg	ctccaggccc	agctgttata	atccccagta	360
ctaccagccc	tcctgtctgc	acccttctgc	tgcacttcta	gctgctgcca	ccctggctgc	420
tgtgtgtcca	gctgctgctg	tccagtctgc	taccagacca	cctgctgtgg	tccagtctcc	480
tatgaatcct	ctgctgttg	aacttcattc	ctgaccacca	gccctggttc	aaccaccttg	540
ttgtcagtgt	accagtctt	ctcattcccc	ttctccactg	gacctggcct	tgccctgatc	600
c						601

<210> 331

<211> 1202

<212> DNA

<213> Homo sapiens

<400> 331

cttcactctc	ttgaaaaccc	acccagatcc	tccccgttct	gacaccatgg	tcagctcctg	60
tttgtggctcc	gtgtgctctg	accagggctg	cgcccaagtc	ctctgtcagg	agacctgctg	120
ccgcccccagc	tgctgtcaga	ccacctgtt	caggaccacc	tgctaccgccc	ccagctgttg	180
tgtgtccaggc	tgctgcaggc	cccagtgtg	ccagtcgtg	tgctgccaac	ccacctgctg	240
tcgcccccagc	tgctgtgaga	cgacctgtg	ccaccctagg	tgctgcatct	ccagctgctg	300
ccgcccccagc	tgctgttatgt	ccagctgtg	caagccccag	tgctgccagt	ctgtgtgctg	360
ccagccccacc	tgctgcccgc	ccagctgtg	catctccagc	tgctgtcgcc	ccagctgctg	420
tgtgtccagg	tgctgcaggc	cccagtgtg	ccagtcgtg	tgctgcccagc	caacctgctg	480
ccgtccccagc	tgctgcacat	ccagctgtg	ccgccccctc	tgctgtgaat	ccagctgctg	540
ccgccccatgc	tgctgcccgc	ctgtgtgt	cctgcgtcca	gtctgtggcc	gagtctctg	600
ccacacact	tgcttatgc	caacctgtgt	catctccacc	tgtccccgccc	cttgcgtgt	660
tgccctcctc	tgctgtgag	cccactgccc	tggctcacgt	cccccttcac	cactggccca	720
cagatgtaga	cccttctact	gtgctgacca	ttaggataca	tgaagtgggg	ttgatgtcat	780
tcaataggat	ggacctttagt	cttccaaaga	gccaccaccc	atttcaactga	ctctgtgaga	840
acattctgg	tcattttaaa	ctccctccct	tgctttctt	ttcttctgg	ggtggcacca	900
aatgtgaatt	aatttgaat	acactagcta	agaaaattatt	ccaaatctct	gatttcctta	960
ttttctttat	cactttaagg	tacagattct	ccttctcagt	gaggtagata	ttatctgcag	1020
gaccagttt	gtcactgatg	ttgcaccctc	agatccaggcc	acccaattgt	attctgtgtt	1080
tctcctaggg	tgaatttctt	atgcttgtt	gcatctctgc	tttctaataa	actttctgc	1140
acttaagaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1200
						1202

Siemens 0022 Seq Listing.txt

<210> 332
<211> 1219
<212> DNA
<213> *Homo sapiens*

<210> 333
<211> 1077
<212> DNA
<213> Homo

<400>	333	ctcactctcc	tggaaaccca	ccgagaacct	ccaccctctg	acaccatgg	caactccgt	60
tgtggctctg	tgtgctctga	ccagggctgt	ggcctggaga	actgctccg	ccccagctgc			120
tgccagacca	cctgctgcag	gaccacctgc	tgccgccccca	gctgctgtgt	gtccagctgc			180
tgcagggccc	agtgctgcca	gtctgtgtgc	tgtcagccca	cctgctcccg	ccccagctgc			240
tgtcagacca	cctgctgttag	gaccacctgc	tgccgccccca	gctgctgtgt	gtccagctgc			300
tgcagacccc	agtgctgcca	gtctgtgtgc	tgccagccca	cctgctcccg	ccccagctgc			360
tgtcagacca	cctgctgcag	gaccacctgc	tgccgccccca	gctgctgtgt	gtccagctgc			420
tgcagacccc	agtgctgcca	gtctgtgtgc	tgccagccca	cctgctcccg	ccccagctgc			480
tgcatctcca	gcagctctgt	ccccttgc	tgtgaatcca	gctgctcccg	ccccctgtgc			540
tgcctgcgtc	cagtctgtgg	ccgagtctcc	tgcccacacca	cttgcatacg	cccaacctgt			600
gtcatctcca	cctgcccccc	ccccttgc	tgtgcctct	cttgcgtcta	aatctctgtct			660
gtgaacacac	cacttcctta	ttacgtcc	ttctacagat	gaaggtctc	attgcaaca			720
tgccgactgt	tcaagagaat	tgtatgggt	ccatataagca	aacccatcc	ttagaaattc			780
tgtatttgc	tttacaccaa	tgtccaaact	cccttccttc	caaaggaaatt	cattgacaat			840
ctccctaataa	attgacaaat	tgtcctccaa	catccctccca	cctcttgc	ttcaggacat			900
ttatttcatca	tgccctaaggaa	atttgaagat	tgcctccatc	atttgttaggg	ccacagatct			960
taaaqcctcc	aacccatggaaq	tccagtqaag	tctctctt	aaaqtctttt	qcaaacat			1020

Siemens 0022 Seq Listing.txt

ttgtacccctg ttatccat gtacaaaaat aaaccttat tctattggca ctgaaaa 1077

<210> 334

<211> 942

<212> DNA

<213> Homo sapiens

<400> 334

tagaaatcca	cccagaaccc	ccaccctctg	acaccatggt	cagctcctgt	tgtggctctg	60
tcagctctga	gcagagctgt	ggcctggaga	actgctgccc	ccccagctgc	tgccagacca	120
cctgctcgag	gaccacccctgc	tgccggccca	gctgctgcaa	gccccagctgc	tgccagctctg	180
tgtgctcatca	gcccacccctgc	tgccaccccta	gctgctgcat	ctccagctgc	tgccacccct	240
attgctgtga	atccagctgc	tgccggccct	gctgctgccc	ccccagctgc	tgccagacca	300
cctgctcgag	gaccacccctgc	tgccggccca	cctgctgctg	ccccagctgc	tgtgtgtcca	360
gctgctcgag	acccccagtgc	tgccaggatc	tgtgctgcca	gcccaacttgc	tgccgtccca	420
gctgctcgat	ctccagctgc	tgccacccct	cttgctgtga	atccagctgc	tgccacccct	480
gctgctcggt	gcgtccagtc	tgtggccgag	tctcctgcca	caccacttgc	tatcgcccaa	540
cctgtgtcat	ctccacccctgc	ccccggccct	tgtgctgtgc	ctccctttgc	tgctaattgtc	600
tccttgtat	atttgtcata	ctatgaatgt	tttcatttagt	catttaaaat	gcactgttagc	660
cagccagtca	ctggaaaaat	gaacacttcc	ctgcccagg	gtctcatgtg	gcattcagag	720
tggacattca	gctcttctag	gaaatgacag	acaatcacat	tcataaaaat	atgttatgcc	780
aggcccaat	gcagttattt	ttagatgagc	agtgtcttca	ttcgaagggg	acactaactg	840
tgtatgtctc	atataatatt	gttttcatgt	attaataaac	agccacttcc	ctaaaaaaaaa	900
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aa		942

<210> 335

<211> 924

<212> DNA

<213> Homo sapiens

<400> 335

ctccttcctg	gaaacccacc	cagaacccctcc	accctctgac	accatggtca	actcctgttg	60
tggctctgtg	tgctctgacc	agggctgtgg	cctagagaac	tgctgcccgc	ccagctactg	120
ccagaccacc	tgctgcagga	ccacccctgc	ccggcccccagc	tgctgcccgc	ccagctgctg	180
caggccccag	tgctgcccagt	ctgtgtgctg	ccagccccacc	tgctgctgccc	ccagctactg	240
tgtgtccagc	tgctgcagac	cccagtgc	ccagaccacc	cgctgcagaa	ccacccctgt	300
ccgccccccgc	tgctgtgtgt	ccaggtgcta	caggccccat	tgtggccagt	ctctatgtcg	360
ctagcccatc	tgctggccaaa	ccacccctgc	caggaccacc	tgctgcccacc	ccagctattg	420
cattttccagc	tgctgcccgc	ttccctgcag	tatctcttagc	agcagtagct	cctccctgtcg	480
tggcttcagc	tgctgcaggg	tccctgc	catctccagt	tgctgcccgc	ccaaactgtcg	540
ccagaccatg	tgctgcccgc	caacccctgc	tagtgcctt	tgctgctgag	gctgtcatct	600
ggacttcacca	gattctcatc	aaccaggatt	tttgatgttag	ctcatctatg	agctgagat	660
tggaaagcta	gttggaaaac	ttcaggatcca	accaattttt	agattgaatc	tggcctccaa	720
atatatgtctc	ccccccacatt	ttacccctct	accaaatggaa	cataagttga	atggctctg	780
aaatctgtca	actatcttaa	ttgaaatatt	tgctctgtc	cataattttt	catatggagc	840
tattccattt	taaacaataa	tttatctaa	taaatcttaa	ataaattttc	aggcatagaa	900
ataaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaa		924

<210> 336

<211> 1099

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Homo sapiens

<400> 336	
cttcctggaa acccaccagg aaccccccac ctctgacacc atggtaact cctgttgtgg	60
ctctgtgtgc tctgaccagg gctgtggcct agagaactgc tgccgtccca gctactgcca	120
gaccacctgc tgcaggacca cctgctgccg ccccaagctgc tgtgtgtcca gctgctgcag	180
accccagtgc tgccagacca cctgctgcag gaccacctgc tgccacccca gctgctgtgt	240
gtccagctgc tgcatggccca agtgcgtccca gtctgtgtgc tgccagcccc cctgctgcag	300
accccaatgc tgccagacta cctgctgttag gaccacctgc tgccacccca gctgctgcag	360
gccccagtgcc tggcagtctg tggcgtgtccca gcccacctgc tgctgtccca gctactgtgt	420
gtccagctgc tgccagacccca agtgcgtccca gaccacctgc tgccagaacca cctgctgcag	480
ccccagctgc tggcgtgtccca ggtgcatacg gccccattgt ggccagtctc tatgctgcta	540
gccccatgtgc tggcaaaacca cctgctacag gaccacctgc tgccacccca gctattgcat	600
ttccagctgc tggcagccctt cctgcgttat ctctagcagc agtagctctt cctgctgtgg	660
cttcagctgc tgccaggctctt cctgctgtccca ctccagttgc tgccacccca actgctgcca	720
gaccatgtgc tgccgccccaa cctgctctag tgcttcttgc tgctgaggct gtcatctgga	780
ctcaccagat tctcatcaac cagcattctt gatgttagctc atctatgagc tgagttatgg	840
gaagctagtt ggaaaacttc agttccaacc aattcttaga ttgaatctgg cctccaaata	900
tatgctcccc ccacatttta cctcttacc aatgaacat aagttgtaat ttgctctgaa	960
atctgtcaac tatcttaatt gaaatatttgc ctctgtccca taatttctca tatggagcta	1020
ttccatattta aacaaatattt tatctaaata aatcttaat aaattttcag gcatagaaaa	1080
aaaaaaaaaaaa aaaaaaaaaaa	1099

<210> 337

<211> 782

<212> DNA

<213> Homo sapiens

<400> 337	
ccacccctccct gaaaatccac ccagaacctc caccctctga caccatggtc aactccctgtt	60
gtggctctgt gtgtctgtac cagggtgtg gcctagagaa ctgctgtccgt cccagctgtct	120
gccagaccac ctgctgcagg accacctgtc gccgccccag ctgctgtgtg tccagctgtct	180
gcagaccgca gtgtgtccag tctgtgtgtc gccagccccac ctgctgcagc cccagctgtct	240
gccagaccac ttgtgtcagg accacctgtc gccgtccccag ctgctgtgtg tccagctgtct	300
tcagaccacca gtgtgtccag tctgtgtgtc gccagccccac ctgctgtccgc cccagctgtg	360
gccagaccac ctgctgcagg accacctgtc accgccccag ctgctgtgtg tccacctgtct	420
gccgccccaa ctgctctagt ggctttgtc gctgtatccc tcacctatac tcacccgtct	480
ttattaacca gcatcttgc tatgtatccac ctgtgaactg aatcatgcaa ggccaaatgg	540
acaacccatcg ttccaaaccaa ttcttggatt gagtttggcc tccaaatatg ctcacccaaac	600
actatgttgc taccctctac caaatgaata caagtttggaa ttttctgtga aatatgtcaa	660
ccccatgttc cctgaatttgc aatatttgc ctcttaccata atttatcaca tggagctatt	720
cctctatctt aaataaaattt taatttttgc ggcattgc aaaaaaaaaaaaaaaaaaaaaaa	780
aa	782

<210> 338

<211> 754

<212> DNA

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 338
 ctgtcttgg aacacctacta gaacctccac cctctgacac catggtaac tcttgttg 60
 gctctgtctg ctctgaccag ggctgtgatc aaggcctctg ccaagagacc tgctccgcc 120
 ccagctgctg ccagaccacc tgttgctgcc ccagctgtgt tgtatccagc tgctccgcc 180
 catcctgctc tcagactacc tgctgccaga ccacttgctg tcgccttccagc tgctccgcc 240
 cagtctgttgc tcagaccacc tgccgccccca gctgtgggtgt gtccagctgc tgccgtccac 300
 tctgttgtca gaccacctgc cgccccagct gtgggtgtgtc cagctgctgc cgtccactct 360
 gctgtcagac cacctgctgc cgtaacaactt gctgcccgcc cagctgctgt ggatcctt 420
 gttgaacctc atattggact atcaaccatg agccagtcac catcccatga tatgaaagt 480
 tcatttatata caatttgtcc atgtgttaaa tggccatcag ctttattatc ctgttattcc 540
 actaagtaac tggtgaaagg gcatccatct acattnaata ccactcattt ttcccatgga 600
 tctcttcca gcattcagac ctcagatgca tgatgcagtt agactaagcc tctaagtctc 660
 tgactgttat gcttattttt accttcaaaa ttacatattt actgttcttc aataaatatt 720
 atcttaatat cagtaaaaaaa aaaaaaaaaa aaaa 754

<210> 339

<211> 1042

<212> DNA

<213> Homo sapiens

<400> 339
 tgacaccatg acccactgtt gctcccttg ctgtcagcct acctgctgca ggaccacctg 60
 ctgcaggacc acctgcgttgg a gccaccac t g t g a c c a c c a c t g c a c a c c t g c t g 120
 ccagcccgcc tgctgtgtgt ccagctgctg ccagccttgc tgccgccccaa cttgctgtca 180
 aaacacctgc tgtaggacca cctgctgcca gcccacccgt gtgaccagct gctgccagcc 240
 ttccctgctgc agcacaccct gctgccagcc cacctgctgt gggccagct gctgtggcca 300
 aaccagctgt gggtccaggt gtggccagag cagctcctgt gcacccgtgt actgcagaag 360
 aacctgctac tacccccacga ctgtctgcct gcctgggtgc ctaaaccaga gctgtggctc 420
 caactgctgc cagccctgtc gcccacccgt ctgtgtgag accacccgt gcaggaccac 480
 ttgcttccag cccacctgtg tgtccagctg ctgcccagcct tcttgcgtc gatcacgttc 540
 caagagaacc accatcctca cacaacaaat ttctgctcaa ctgactcatc tttggggga 600
 ctaatttaat ttctgtctga cagccaccat gctctcaccc aaatttttat gaattctcta 660
 catgtttaaa atcttgaaa tctgttgcgtt ggagggcaga atacttcatc ctgattctct 720
 tttcccttac accttgcgtt tcatgtgcca gcttcatctg ttctcaagtt tgagtcatgg 780
 tctcagcttt gactctaaag tcaagagctt cattccctgc ttctaaaggaa tttaggtttc 840
 tgcaactgat cgatgatctt tgcaatcttt tttttgtttt caatatcctc ctcatcggtc 900
 ttgtatccctt ctttcttctt ttcatgataa atttgcgtt tgccctgtt agcagaaatc 960
 cttacccata tttttctgaa taaattctga accatcctca tctcaaaaaaa aaaaaaaaaaa 1020
 aaaaaaaaaa aaaaaaaaaa aa 1042

<210> 340

<211> 1020

<212> DNA

<213> Homo sapiens

<400> 340
 tcacccctta acagaagccc accctccatc cctgacacca tgacccactg ttgctccctt 60
 Page 181

Siemens 0022 Seq Listing.txt

tgctgtcagc	ctacctgctg	caggaccacc	tgctggcagc	ccaccactgt	gaccacctgc	120
agcagcacac	cctgctgtca	gcccttctgc	tgtgtttcca	gctgctgcca	gccttgcgtc	180
cacccaactt	gctgtcaaaa	cacctgctgt	aggaccacct	gctgccagcc	catctgtgtg	240
accagctgct	gccagccttc	ctgctgttagc	acaccctgct	gccagccccac	atgctgtggg	300
tccagctgtg	gtcagagcag	ctccctgtca	cctgtgtact	gcagaagaac	ctgctaccac	360
cccacaagtg	tttgtctgccc	ttgttgccta	aaccagagct	gtggctccaa	ctgctgccag	420
ccctgctgcc	gcccagcctg	ctgtgagacc	acctgctgca	ggaccacttg	tttccagccc	480
acctgtgtgt	acagctgctg	ccagccttct	tgctgctaat	caactcccaa	gagaactacc	540
atcctcacac	aacaaccttc	agctcaactg	acttgtctt	tgagggacta	atttactttg	600
ctgctgacag	ccaccatgct	ctcacccaaa	tttttatgaa	ttctctacat	gtttaaaatc	660
ttgggaatct	gcttgaggga	gggcagaata	cttcatccctc	attccctctt	tccttacacc	720
ttgtggatca	tgtgcccagct	tcgtctgttc	ttaatttggaa	gtcatgatct	cagctttgtc	780
tcaaaaatca	agagcttcat	tcttgcttc	taaggaattt	aggttctgc	aactgatcaa	840
tcatcttgc	aattatattt	tcattttaaa	tatccttctc	atggttcttg	tatccttctt	900
tcttctttc	acgataactt	tgggttatgt	ctctggtagc	agagattctt	acctatatgt	960
ttctgaataa	actctgaacc	atcttcatct	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1020

<210> 341

<211> 1007

<212> DNA

<213> Homo sapiens

<400> 341

tctgaacaga	actccaccct	ctaccctga	caccatgacc	cactgttgtt	ccccttgctg	60
tcagccctacg	tgtcgagga	ccaccctgctg	gaaggcccacc	actgtgacca	ctgcagcag	120
cacaccctgc	tgccagccct	cctgctgtgt	gtccagctgc	tgccagccct	gtgccgccc	180
aacttgcgt	caaaacacct	gctgcagcc	catctgtgtg	accagctgct	gccagccctc	240
ctgctgcagc	acaccctgc	gtcagccac	ctgctgtggc	caaaccagct	gtgggtccag	300
ctggtgtcag	agcagctcc	gtgcacctgt	gtactgcaga	agaacactgt	accacccac	360
gactgtctgc	ctgcctgggt	gccttaaacca	gagctgtggc	tccagctgt	gccagccctg	420
ctgcccggca	gcctgctgt	agaccacctg	ctgcaggaca	acttgcttc	agcccacctg	480
tgtgtacagc	tgtgcccagc	cttctgtgt	ctgatcaagt	cccaagagaa	ccaccatact	540
cacacaacaa	atttctgctc	aactgactca	tcttttgggg	gactaattt	atttgcgtct	600
gacagccacc	atgcttcac	ccaaattttt	atgaattctc	tgcattttt	aatcttgg	660
aatcagctg	agggagggca	gaataacttca	tcttgattct	cttttccctt	acaccttgg	720
gatcatgtgc	cagcttcgtc	tgttctcaat	ttggaatcat	gatctcaact	ttgactcaaa	780
agtcaagagg	ttcattctct	gcttctaagg	aatataggtt	tctgcaaccg	accaataatt	840
tttgcattca	catttttgtt	ttcaatatcc	tcctcatggt	tcttgtattc	ttctttattc	900
ttttcatgtat	aactttgagt	tatgtcttgc	gtaacagaga	ttcttaccta	tatatttctg	960
aataaaactct	taaccatcct	catctcaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1007

<210> 342

<211> 953

<212> DNA

<213> Homo sapiens

<400> 342

ccatgaccca	ctgttgctcc	ccttgctgtc	agcctacctg	ctgcaggacc	acctgctgca	60
ggaccaccc	ctggaagccc	accactgtga	ccaccctgca	cagcacaccc	tgctgccagc	120
cctcctgtg	tgtgtctagc	tgctgccagc	cttgctgccc	cccagcttgc	tgtcaaaaaca	180
cctgctgcag	gaccacctgc	tgccagccca	cctgtctgtc	cagctgctgt	ggccaaacca	240

Siemens 0022 Seq Listing.txt

gctgtgggtc	cagctgtggc	cagagcagct	cctgtgcacc	tgttactgc	agaagaacct	300
gctactaccc	gacgactgtc	tgcctgcctg	gttgcctcaa	ccagagctgt	ggatccagct	360
gctgccagcc	ctgctgccgc	cccgcctgct	gtgagaccac	ctgctgcagg	accacttgct	420
tccagcccc	ctgtgtgtcc	agctgctgcc	agccttctt	ctgctgatca	agtcccaaga	480
gaacaaccat	cttcacacaa	caacccctcg	ctcaactgac	ttatctttt	gaggactaat	540
ttaccttact	gctgacagca	accatgttct	cacccaaatt	tttatgaatt	ctctgcata	600
ttaaaatctt	gtgaatcagc	ttgagggagg	gcagaatact	tcatcctgat	tctcttttc	660
ttataccctt	tgaatcatgt	gccagttca	tctgttctca	atttgagtc	atggtctcag	720
ctttgactca	aaagtcaaga	gcttcattct	cttcacttaa	gaaacttaag	ttgctgcaa	780
tgattaagaa	tcttcacaac	tatgtttct	tttcaatata	ctcatgattc	ttgtatcctg	840
cttcctctt	ttaatgatca	ctttgggtt	tctccctata	accaggatc	ttacctatat	900
atttcttaat	aaataaattt	ttcataaaaaa	aaaaaaaaaa	aaa		953

<210> 343

<211> 990

<212> DNA

<213> Homo sapiens

<400> 343

tctgaacaga	agcccaccc	ctacccctga	caccatgacc	cactgttgct	ccccttgctg	60
tcagcctaca	tgctgcagga	ccacccctcg	caggaccacc	tgctgaaagc	ccaccactgt	120
gaccacctgc	agcagcacac	cctgctgcca	gccctccctgc	tgtgtttcca	gctgctgcca	180
gccttgcctgc	cggcccaactt	gctgtcaaaa	cacccctgc	cagcccacct	gtgtgaccag	240
ctgctgccag	ccttcctgct	gcagcacacc	ctgctgcca	cccacccctg	gtgggtccag	300
ctgtgaccag	agcagctcc	gtgcacccct	gtactgcaga	agaacccctg	actacccac	360
aactgtctgc	ctgcctgggt	gcctaaacca	gagctgtggc	tccaaactgct	gccagccctg	420
ctgcccggca	gcctgctgt	agaccactt	cttccagccc	acccctgtgt	ccagctgctg	480
tcagcccttt	tgctgctgt	caagccccaa	gagaaccacc	atccctcac	aacaactttc	540
tgctcaactg	acttaccc	tggggacta	atttaaattt	ctgctgacag	ccaccatgct	600
ctcaccctaa	tttttatgaa	ttctctac	gtttaaaatc	ttgggaatct	acttgaggga	660
ggcagaata	cttcatccct	attctttt	tccttacact	ttgtggatca	tgtgcccac	720
tcgtgtttc	tcaattttg	gtcatggct	cagccctgac	tcaaaagtca	agagcttcat	780
tctctgttc	taaggaattt	aggttctgc	aactgatcaa	taatcttgc	aatcatattt	840
ttgtttcaa	tatcctcc	atggttctt	tatccttctt	tcttctttc	ataacttgg	900
gttatgttcc	tgttaccac	agagattctt	ägctatatgt	ttctgaataa	actctgaacc	960
atcctcaaaa	aaaaaaaaaa	aaaaaaaaaa				990

<210> 344

<211> 725

<212> DNA

<213> Homo sapiens

<400> 344

actttggagg	ccaggtgtat	aaaaggtcca	gattgcaagg	ggtcatcaga	ttctgggaaa	60
ctcacccctg	aacagaaacc	cacccctcc	ccctgacacc	atgacccact	gctgtcccc	120
ttgctgtcag	cctacatgt	gcaggaccac	ctgctgcagg	acaacccgt	ggaagccac	180
caactgtgacc	acccctgc	gcacatcc	ctgcccggcc	tcctgctgt	tgtccagctg	240
ctgcccggcc	tgttccacc	caactgtgt	tcaaaacacc	tgctgacca	ccacccctg	300
ccagccccc	tgtgtgacca	gctgctgcca	gccttccctgc	tgcagcacac	cctgctaaca	360
gcccaccc	tgtgggttca	gctgctgtgg	ccaaatcatc	tgtgggttca	gctgctgcca	420
gcccagctcc	tgtgcaccca	tctactgcag	gagaacccct	taccacccca	cgagtgtctg	480

Siemens_0022 Seq Listing.txt

cctgccttgtt	tgcctaaatc	agagctgtgg	ctccagctgc	tgccagccct	gctgccccc	540
agcctgtgt	gagaccacct	gctcaggac	cacttgctc	cagcccactt	ctgtgatcg	600
ctgctgtcag	ccttcttgct	gctgaccaac	tctccagagg	accaccatcc	tcacacagca	660
accttctggc	aaccttctgt	cctccttttg	gaggacaat	ttactttcaa	actttgtga	720
caacc						725

<210> 345

<211> 1230

<212> DNA

<213> Homo sapiens

<400> 345

atgtctggca	gttgctttc	tagaaatgc	ttctccgtgc	cagccaccc	tctctgtcc	60
actgaggta	gctgtggagg	ccccatctgc	ctgcccagt	cctgccagag	ccagacatgg	120
cagctgtga	cttgtcaaga	cagctgtgg	tcatccagct	gtggccaca	gtgccgtcag	180
ccctccgtc	ctgtgagtag	ctgtccccaa	cccctgtgt	gtgatcctgt	catttggag	240
ccttcttgct	ccgtgagcag	cggctgcca	cccgtgtgt	gtgaggccac	cacctgtgg	300
ccttcttgct	ctgtgagcaa	ctgctaccaa	cctgtgtgt	tcgaggccac	catctgtgg	360
ccttcttgct	cagtgagcaa	ctgctgcca	cctgtgtgt	ttgaggccac	cgtttggag	420
ccttcttggt	ccgtgagcag	ctgtgctcaa	cctgtgtgt	gtgagcctgc	tatttggag	480
ccttcttgct	ccgtgagcag	ctgctgcca	cctgtgtgt	ctgaagccac	ttccctgcca	540
ccagtcctct	gtgtgcccac	ttccctgcca	cctgtgtgt	gcaaattccag	ctgctgcca	600
ccagttgtct	gtgagccccag	ctgctttca	gctgtctgca	ccctgcctag	ttccctgcca	660
cctgtgtct	gtgagccttc	ctgctgtcag	cgggtgtgt	cgacacccat	ctgctctgt	720
accagtagct	gccaggctgt	ctgctgtgac	cccagccctt	ggtttctgc	atctgcatc	780
tgccgaccaa	cttgtcctag	gactttctac	atacccaagg	ccagaaacg	gccttgca	840
gctacgattt	cctaccgcccc	ggttcccgt	ccgatctgca	gccaatctg	ctctggactc	900
ctcacccata	ggcagccata	catgacatcc	atctccatcc	gtccctgcctg	ctatgccca	960
tgctactcca	tcctgcgccc	cccagctgt	gtcacttct	actttggcc	cccagtctac	1020
ttccgccccat	cttgcactga	gtctgactt	tgcaaacggg	attgaaaaaa	atccacttcc	1080
agccaaactgg	attgtgttga	cacaaccccc	tgcaagggtgg	atgtctcaga	agaggctccc	1140
tgccagccca	ctgaagccaa	accatcagc	ccaaccaccc	gtgaggccgc	agcagctcag	1200
cctgctgcca	gcaaggctgc	caactgctaa				1230

<210> 346

<211> 815

<212> DNA

<213> Homo sapiens

<400> 346

gaactccggc	tgcgttaccg	acctgcgagc	tgacggccccc	ggaccatggg	gtgctgccc	60
ggggactgt	tcacctgtct	cacccaggag	aaaaactgtct	gtgaagagt	ctgctgtcag	120
ccgggctgt	gtggctgtct	cggctccctgc	tgtggctgt	ggggctctgg	ctgcgggggc	180
tctggctgcg	ggggcagctg	ctgcggatcg	tcttgctgt	gatctggctg	cggaggctgt	240
ggaggctgcg	gaggctgcgg	gggtggctgc	tgtggatcca	gttgcgtgt	gtccagttgc	300
tgcggctccg	ggtgctgtgg	gcctgtgtgc	tgccagccca	cacccatgt	cgacacaaaa	360
tgaagacctt	tccctccacc	actgatgcag	tcccaccgaa	agcctccatc	tgctccaggg	420
ggacagccccc	tcgtgtccag	aacctccat	acccccaaga	cagtgtctt	tctttctgt	480
attttagag	gagggtttgt	tctccaaacac	cttctctgt	atttcaaggc	accgagaaca	540
agagccatac	tctgatgaaa	cattaaaact	cggtcacaac	taagtgtatcc	caagctcaag	600
ggtgaatccc	caataacttta	tttattcaca	tgaagttcaa	tgtttgtac	tataagacat	660

Siemens 0022 Seq Listing.txt

ccttttttc aagggtgtctt tgggactgat cctccgcctt ggctttctgc agctttgaga	720
tgcaaaaaaag gtccatcttc ttgtgagcc tcttaataaa tttgagcatg ctggcataaaa	780
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaa aaaaaaaa	815

<210> 347

<211> 1252

<212> DNA

<213> Homo sapiens

<400> 347

ggactctgtc tttagtggaa cactccctcc ctgcaccatg tcttacagtt gtggcctgcc	60
cagcctgagc tgccgcacca gctgcctc cccggccctgt gtgcctccca gctgccacgg	120
ctgcaccctg cccggggcctt gcaacatccc cgccaatgtg agcaactgca actggttctg	180
tgagggtcc ttaatggca gtgagaagga gaccatgcag ttccctgaacg accgcctggc	240
cagctacctg gagaagggtgc gtcagtgga gcgggacaac gcggagctgg agaacacctat	300
ccgggagcgg tcacagcgc aggagccctt ggtgtgtgcc agctaccagt cctacttcaa	360
gaccattgag gagctccagc agaagatcct gtgcagcaag tctgagaatg ccaggcttgt	420
ggtgcagatc gacaatgcca agctggcctc agatgacttc aggaccaa atgagaccca	480
gctgtccctg cgccagctgg tggagtcgga catcaatggc ctgcgcagga tcctggatga	540
gctgaccctg tgcaaggctcg acctggaggc ccagggtggag tccctgaagg aggagctgt	600
gtgcctcaag cagaaccatg agcaggaggt taacaccctg cgctgcgcagc ttggagacccg	660
cctcaacgtg gaggtggacg ctgcctccac tgtggacctg aaccaggatcc tgaatgagac	720
caggagttag tatgaggccc tggtgaaac caaccgcagg gaagtggagc aatggttcgc	780
cacgcagacc gaggagctga acaaggcagg ggtatccagc tcggagcgc tgcaagtcc	840
ccaggcggag atcatcgac tgagacgcac ggtcaatgcc ctggagatcg agctgcaggc	900
ccagcacaac ctgcgagact ctctggaaaa cacgctgaca gagagcggagg cccgctacag	960
ctcccagctg tcccaggtgc agagactgat caccaacgtg gagtcccagc tggcggagat	1020
ccgcgtgac ctggagcggc agaaccaggc gtatcaggtg ctgcgtggacg tgcggggcgcg	1080
gctggagtgt gagatcaaca cgtaccggag cctgctggag agcggaggact gcaagctccc	1140
ctcccaacccc tgccgcacaa ccaatgcatg tgacaagtcc actggccctt gtatctctaa	1200
tccctgtgc ctacgtgctc ggtgtgggcc ttgcaacaca tttgggtact ag	1252

<210> 348

<211> 1621

<212> DNA

<213> Homo sapiens

<400> 348

cagggtttga aactgacttc cagagctcca ctgcctccct gcaccatgcc ctacaacttc	60
tgcctgcca gcctgagctg ccgcaccagc tgctcctccc gcccctgtgt gccccccagc	120
tgcacccgtt acaccctgccc cggggcctgc aacatccctg ccaatgtgag caactgcaac	180
tggttctgcg agggtccctt caatggcgc gagaaggaga ctatgcagg tctgaacgac	240
cgcctggcca gtcacctggaa gaagggtgcgt cagctggagc gggacaacgc ggagctggag	300
aacctcatcc gggagcgggtc tcagcagcag gagcccttgc tggccccag ctaccatcc	360
tacttcaaga ccatggagga gctccagcag agatccctgt gcagcaagtc tgagaatgcc	420
aggctgggtgg tgcaagatcgaa caatgccaag ctggctgcag atgacttcag aaccaagtac	480
cagacggagc agtccctgcg gcagctgggtg gagtccgacca tcaacagccct gcgcaggatt	540
ctggatgagc tgaccctgtt caggtctgac ctggaggccc agatggagtc cctgaaggag	600
gagctgtgtt ccctcaagca gaaccatgag caggaagtc acaccctgcg ctgcctgc	660
ggagaccggcc tcaacagtggaa ggtggacgct gtcggcgtt tggacctgaa ccaggctctg	720
aacgagacca ggaatcgttgc tgaggccctg gtggaaacca accgcaggaa agtggagcaa	780

Siemens 0022 Seq Listing.txt

tggttcgcca	cgcagaccga	ggagctgaac	aagcagggtgg	tatccagctc	ggagcagctg	840
cagtccatt	aggcggagat	catcgagctg	agacgcacag	tcaatgccct	ggagatcgag	900
ctgcaggccc	agcacaaacct	gcatactct	ctggaaaaca	cgctgacaga	gagcgaggcc	960
cgctacagct	cccagctgtc	ccaggtgcag	agcctgatca	ccaacgtgga	gtcccgactg	1020
gcggagatcc	gcagtgacct	ggagcggcag	aaccaggagt	atcaggtgct	gctggacgtg	1080
cgggcgcggc	tggagtgtga	gatcaacaca	taccggagcc	tgctggagag	cgaggactgc	1140
aagctccct	ccaacccctg	cgccaccacc	aatgcatttg	aaaagcccat	tggatccctgt	1200
gtcaccaatc	cttgcgttcc	tcgttccgc	tgtggccctt	gcaacacctt	tgggtactag	1260
ataccctggg	gccagcagaa	gtatacgatg	aagacagaac	taccatcggt	gggcccaggc	1320
tgcctctctg	acaaccatca	gccaccggac	cccaccccgaa	ggcatcacca	caaatacatgg	1380
tctggaaagga	gaacaaatgc	ccagcgtttg	ggtctgactc	tgaggcttagg	gctacttgat	1440
cctcctcacc	ccaggtccct	ctcctgttagt	cagtctgagt	tctgatggtc	agaggttgga	1500
gctgtgacag	tggcatacga	ggtgtttgt	tctctctgt	gcttctacct	ttattgcagt	1560
tccccaaatc	gcctaataaa	ctttctctt	gcaaagcaga	caaaaaaaaaa	aaaaaaaaaa	1620
a						1621

<210> 349

<211> 1713

<212> DNA

<213> Homo sapiens

<400> 349

ggaaaaggaaa	ctatgctgta	tgccaagccc	ccacccacaa	ttaatggtat	aaaaggactg	60
cagaggaagg	agagactcaa	acctgcccac	atccacacccc	agcagcttac	ctgttttcc	120
attacctgtt	ccagcaccat	gtcttacagt	tggtgcctgc	ccagcctggg	ctgcccacc	180
agctgctcct	cccgccctcg	cgtccccccc	agctgcccacg	gctacacccct	gcctggggcc	240
tgcaacatcc	ccgccaatgt	gagcaactgc	aactggttct	gtgagggctc	tttcaatggc	300
agcgagaagg	agactatgca	gttccctgaa	gaccgcctgg	ccagctacct	ggagaagggt	360
cgtcagctgg	agcgggacaa	cgcggagctg	gagaaactca	tccaggagcg	gtcccagcag	420
caggagccct	tgctgtgccc	cagctaccag	tcctacttcc	agaccattga	ggagctccag	480
cagaagattc	tgtgtgccaa	ggctgagaat	gccaggctgg	tggtaacat	tgacaatgcc	540
aagctggcct	ctgacgactt	cagaagcaag	taccagacgg	agcagttccct	gaggctttg	600
gtggagtcgg	acatcaacag	catacggagg	atcctggatg	agctgaccct	ctgcaagtct	660
gacctggagt	cccgagggtg	gtccctgagg	gaggagctg	tctgcttgaa	gaagaaccat	720
gaggaggagg	ttaacaccct	gcgcctccag	cttggagacc	gcctcaacgt	ggaggtggac	780
actgccccca	ctgtggacct	gaaccaggtc	ctgaacacgaa	ccagaggatca	gtatgaggct	840
ctggtgaaaa	ttaaccgcag	ggaagtggag	caatggttcg	ccacgcagac	cgaggagctg	900
aacaaggcagg	tgttatccag	ctcagagcag	ctgcagtcct	gccaggcggaa	gatcatcgag	960
ctgagacgca	cagtcaacgc	cctggagatc	gagctgcagg	cccagcacaa	cctgcgagac	1020
tctctggaaa	acacgctgac	ggagagcggag	gcccactaca	gctcccagct	gtcccagggt	1080
cagagcctga	tcaccaacgt	ggagttctcg	ctggcagaga	tccgctgtga	cctggagccg	1140
cagaaccagg	agtaccagg	gctgctggac	gtgcgtgccc	ggctggagtg	tgagatcaac	1200
acgtaccgga	gcctcctgg	gagtgaggac	tgcaagctcc	cctgcacacc	atgcgccacc	1260
accaatgcta	gtggcaactc	ctgtggaccc	tgtggcacct	ctaaaaagggg	ttgtctgtat	1320
tgaaaagctt	gtatcctctt	tgaagacatc	tacaaagcca	tttagatcaa	ccacaggaag	1380
gatcctcaag	tctctgactt	tctggagctc	agctgacatc	aagaaacctc	atcttgctc	1440
tatgttattt	ctagaatgct	gaaaagctt	cctgacccaa	gcaaagacac	acatcatcaa	1500
cttccaaatgt	ctggacaact	ccttcctgtt	gagggtcgg	cctgtttgtt	tctaaagatg	1560
ttcagctccc	tgtatctga	gctccagtt	ctacttaagg	tgtttcctga	acgtactact	1620
gcatttctg	ttttctttt	ttcttggca	ttctctggaa	tgcaaggagg	agacttcatt	1680
tactcccaa	taaacttcat	ttctctggca	taa			1713

<210> 350

<211> 1616

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 350
 gagaatttag actctgtctt cagccaggca ctcccctccct ccctcccgactatgcctc 60
 acaacttctg cctgcccagc ctgagctgccgcaccaggactgctccctccggccctgc 120
 cccccagctg ccacagctgc accctgcccgggcctgcaacatccccccaaatgtgagca 180
 actgcaactg gttctgcgag ggctccttca atggtagcgaaaggagactatgcagtcc 240
 tgaacgaccg cctggccagc tacctggaga aagtgcgtca gctggagcgggacaacgcgg 300
 agctggagaa cctcatccgg gagcggtctc agcagcagga gcccttgctgtgccc 360
 accagtctta tttaagacc attgaggagc tccagcagaa gatctgtgttccaagtc 420
 agaatgccag gcttgtgggt cagatcgaca acgccaagctggctcgatgttca 480
 ccaagttacca gaccgagctg tccctgcggc agctgggtgaa gtcggacatc aacggctc 540
 gcaggatcct ggatgagctg accctgtgca agtccgacttggggcccgatggagttccc 600
 tgaaggagga gctgctctgc ctcaagagca accatgagca ggaggtcaataccctgc 660
 gccagcttgg agaccgcctc aatgtggagg tggatgctgtccactgtgac 720
 gggtgtgaa cgagaccagg agtcgtatg aggccctgttggaaacacgcggaaatc 780
 tggagcaatg ttccaccacg cagaccgagg agtgcataacaa gcaaggatggatcc 840
 agcagctgca gtccattaccatgcggagatctcgagctgacgcacatggccctgg 900
 agatcgagct gcaggcccacg cacaacctgc gagactcttggaaaacacgc 960
 gtgaggcccg ctacagctcc cagctgtccc aggtgcagag cctgatcaccacgtggag 1020
 cccagctggc ggagatccgc agtgcacctgg agcggcagaa ccaggagatc cagggtctc 1080
 tggatgtgcg tgcccggtctg gagtgtgaga tcaacacata ccggagctgtgctggagac 1140
 aggactgcaa tctgcccacg aatccctgtg ccacgaccaa cgcgtgcagcaagccatcg 1200
 gaccctgtct ctccaaatccc tgtaccttctt gtgtccctcc tggccctgtc acaccctgt 1260
 ccccacgccc ccgctgtggg ccctgcaatt cttcgtgcgc ctggaaaccta gggaaatgcca 1320
 gaggagcaag gatgcaggccg ccaggactcc agagctgtga cctggctgtggttcaacaaa 1380
 agggggctga aaacatcatt tgcattggctg gagttgcccgcgtaaaggcgc 1440
 cacccaaagc ctgtagccctcccaactact ccagactgtc ctgctcaccc tttccttct 1500
 gggggctgt tccttccttat gtcacccag agaactcttgcgtgtgccatgggcctccc 1560
 tttaacctc ctaataaata tcatttcctt ggcaaaaaaaaaaaaaaaa 1616

<210> 351

<211> 6673

<212> DNA

<213> Homo sapiens

<400> 351
 aagaccatgg tcctggatt taagactttt cacaacctgg actcaatgcactttccgg 60
 gcttggggat aatgtctcca ttataaaatc caacacaact agactatttt ccattttcca 120
 aatgtttgtat tggtttattt ttgttctcta tgagagaagtcattcccaacccttata 180
 aaaaatatca ttcaaaaacat atttggaaaaa tcccctactc catgaagtctttccgtc 240
 tctcagttagt ctcttttcca cctcggaaatc ttgcagctgtctttttaaaaaaaatata 300
 ctccctttta ctgtcttcat aatatcaaga tcatttactt ttttatctttttataaaa 360
 tctaaaatct ccttcttaca agacagcata gatgtgcgtt tggccgcactggcactct 420
 acaaataatct atcaaaaacaa acaaatactg atttttcccttctcaatgtgcatttgc 480
 actaatattt taggttttgc tgcattggaa acattcagag gttagaaaaag aatgtgggag 540
 tgagagagac ttgcaggaca ttttaggagc ctttagttct tgatttttc atagacataa 600
 gctgacagaa gggggaaatgat ttcacagccca cagaaagtgg gctgcttgaa gaagaccttg 660
 ttttctctgt ttccaggac cctgcagtga tggaaagaaaa gaggttaggg cctctttcat 720
 gagctcatta acttttata gaaaaacaaaa accactgact aatagagtgtatgtataaca 780
 attgacataa atattaatga gaaaaatgcc agtttcttg caccacacaccactaaggct 840
 tatataaggt ctacaggaga aggaagattt tgggtgtcaag cagatccaaatgtggccaa 900
 gcaggatctt gccttttagc accatgactt ctgaccatgtg cagttccctc ctcagcggc 960

Siemens 0022 Seq Listing.txt

aggtttcaga	ggccaacgct	gcctctctgt	gcctcttggc	taatgtggca	catgccaatc	1020
gagtccgtgt	ggggtcgact	cccctgggcc	gcctcagcct	ctgtctgccc	ccaacctgcc	1080
acaccacttg	tcccttgcca	gggacctgccc	acattcctgg	caacatcgga	atctgtgggg	1140
cctaccgcga	aaacaccctgt	aacggccacg	agaaggagac	catgcagttc	ctaaacgacc	1200
gcctggccaa	ctacctggag	aagggtcgcc	agctggagtg	ggacaatgca	gaactggaga	1260
ccaaactcca	tgagaggagc	aagtgccacg	agtccagcgt	gtgcccggaa	taccagtcc	1320
acttctgcac	catccaggag	ctccagcaga	aggtgagggt	tgcgggtcac	cagatcgagg	1380
gtcaggaatc	tgcttactgc	ctgtcggcca	aatccggccc	accacctgt	tttgc当地ata	1440
aagttttt	ggttcatggc	catgctcatg	catttgtatg	ttgtctgcag	ctgctttgt	1500
actacagtgg	cagagttcag	tcattttaat	ggagactgta	gggtctgca	agcctaagt	1560
atttactatc	tgacccttta	caaaaaaaaaga	ttactgaccc	tgggtcagca	gtggattttt	1620
tttttctttt	aatgtgggaa	gagaatctct	tgagtgaagg	tgaatgggaa	tttgc当地aa	1680
atgagatgt	gaatttatca	ctctaggatt	ctgagttcat	gcttacttaa	cttcagcaca	1740
taaaattcct	aaatcgtagt	cacaaaaatc	atgctatttt	catgaaaacc	atgcaaaaac	1800
cgtctgagt	ttatgaaagt	tgcagtatac	tgaaactttc	tgggtcagta	aacaggccaa	1860
aaggaattt	tcctaacatc	cttgc当地aa	cagtgtctat	ccacacaaca	gcatcaac	1920
tcttatgcat	attcttattgt	cacccgtat	tatccagtt	aagctttga	agagcctaca	1980
ttcttagttt	tgagagacaag	aagacaagg	atgtccaaaat	aggggttaca	gaaaccttgc	2040
tagattcaga	gaagacctgt	ggggaggtt	gacaaccaga	ggaaagattt	tttctttaga	2100
acagatccat	ctttatctaa	aacatttata	gccagtcctc	tgttctgtgg	cctagtttt	2160
ttttttttt	tttgagaca	aagtctcgct	ctgtcacc	ggctggagtg	cagtgggtca	2220
atctcagctc	actgcaaact	ctgcctccca	ggttcaagt	attctcatgt	ctcagcttcc	2280
tgtagtagct	ggatttacaag	tgtgc当地ac	cactcctagc	taacttttat	attttttagt	2340
gagatgggt	ttcaccatgt	tgccc当地gt	ggttcttgc	tcctgac	aggtgatcca	2400
tctgc当地gg	tctcccaaag	tgccccggatt	acaggcatg	gccactgcgt	ccggccagat	2460
cttcttattt	atattgggct	aagcatcata	tctggcaaaa	tgaagcaag	tctttgttat	2520
atgttcagtt	tgctactgtc	ttccatctcc	tggttccctt	gactctatgt	tttcatcctt	2580
ttccaagaag	tctcttgcac	atcttcttc	ccacaccaca	aaagcatctc	ttgcacgttt	2640
gggagttt	gttgtccagg	cggatgtgt	aggttcaact	tcagccaata	aaacttcctc	2700
tcacctgagg	ctataagggt	ctctggatc	agtaagt	ttactgagcc	tacttctta	2760
ccccagattc	tgtgc当地aa	atcgaggaaac	aataggctgg	ttgtcaaat	agacaatgcc	2820
aaattggctg	cagatgactt	caggaccaag	tgagtgggg	ttggacagg	atgggaagga	2880
gccaagtgg	agttgggggtt	ggatggggat	gggacaatgc	caagg	tgtctgtct	2940
catgtggcat	cggatgtcat	tgacc	cccaacc	tagtata	agaagagaac	3000
aaaggccatt	aagctcaaga	tctgtaaaaa	ctatccgctc	tccagtggtt	tagcattaa	3060
agtttacaac	atgtgttgc	atgcattc	cacccgtt	gcaactgt	aagcaggccg	3120
gcaggatgt	aatcttctcc	acagggtggg	accctggagg	ttgggtgt	gtgtgactt	3180
gccagaagcc	atgtgggtac	cgagttccag	agctgggact	tggcctttaa	tttgc当地ca	3240
aattttctt	tcttgaagca	atttctgt	aaacttgc	cttaataagg	atatgtttt	3300
gtgctgc当地	ttgattaatt	tgtgatgt	gataattt	agcagaaatc	atgctccata	3360
gcctaagatg	aaaacatgt	aaagtccaa	gttgc当地	acctggagg	gttctacc	3420
gggtgcttga	agggcattgt	gttttatcat	ctttcttcc	ggcactgt	aagtctact	3480
cttctagagc	taaagaaaagc	catttcttc	ctctcatgt	ggcaatgt	cttttactct	3540
aatagggaaat	ccagggtccc	tttgggtat	gggcttgc	agaggggc	gcagtgtt	3600
cactgtgtt	caaatgcctg	tttacttgc	cacccctt	ttggccatt	gtgtgtt	3660
gcagggtctg	gtgtgtgtc	catcacat	tttcttgc	cagctgtcc	ccttgggttca	3720
tctcagggtc	tttagtattga	ctgagttggg	aaatccctgt	tgcttcttgc	gttttgc当地	3780
cactacacag	gataagccaa	ctcacaattt	gatggcaaa	ggcaggccag	tggacttaca	3840
gctgc当地	ggggatgtat	tcctgggt	ccttcc	ctctactgt	cactcctgca	3900
ctttccctgt	tacagggtac	agagagagcg	ctcgctgca	cagctgggt	aggctgacat	3960
ctgtggccctg	cgcagggtgc	tagacaacc	caccctcgcc	aagtgtgacc	tggaggccca	4020
gctggagttcc	ctgaaggagg	agctgtttt	cctcaaga	aaccatgac	aggtgtgt	4080
cccttgggt	gtgttgc当地	gacttcttgc	aggtgtat	aggctcat	ggggggaaaa	4140
aacggaggct	tccttctgt	ttggatttgc	gttgc当地	tgagctctt	tttttgggtt	4200
gagattgtt	ctcatccaca	gttttgc当地	gtgtgttgc	tgggtcagg	agcgggtt	4260
cttcagggaa	gtcaggaggaa	attactgggg	aggatggaaa	gtgggagg	agagtttggg	4320
tgaaggccat	ttggggccccc	tgcaggccgg	tccatact	ctgatgcct	caggaagccc	4380
acactctaag	gggtcagctg	ggagacaagg	tccggataga	gctggacatt	gagccca	4440
ttgacctgag	taggttctg	ggggagacgt	gaggccatg	cgaggccat	gtggagacca	4500
atgc当地gg	tgtggagcag	ttgttccaa	cccagggt	ggggactgt	aagcagtttgg	4560
gattggccctc	catctgggca	gttgc当地	catgtttctc	tatgtcc	tctgaaaggca	4620
tcagccctgca	ggccatgtcc	tgctctgagg	agctgc当地	ctgc当地	gagatcc	4680
agttgagacg	ctcgggt	gccc当地	tggagtttca	ggctc当地	acactgggt	4740

Siemens 0022 Seq Listing.txt

gtcccctctgc	acgcataaaaaa	gaccggatgtt	ggctcccaact	accatgagt	agctctctgg	4800
ggtcagtagaca	ggccctcgaaat	accaaccacg	gactcagctt	aaaccttgg	ttcaactctt	4860
ttggaaagcac	ttccctgttag	atgtggatgc	ttagtgaatc	aacattaact	taggtcagag	4920
ggctctgatc	ttaaaggctt	accatgaagt	gtgttagta	ttctggctga	agacagctaa	4980
aggggaggtag	attgctctct	ggacctggca	atgtcttggg	gtgtcacaat	cttaagaggt	5040
tggagatcca	tgatTTTAA	cttgcttcct	cctttcttgg	atattataga	aggactgtct	5100
acagaactcc	ctgtgtgaag	ccgaggaccg	ctaccgcaca	gagctggccc	agatgcagag	5160
cctcatcaac	aatgtggagg	aacagctgtc	ttagatccgg	gctgacctgg	agcggcagaa	5220
ccaggaggta	cagggtctgc	tggatgtgaa	ggccccggctg	cagaatgaga	ttgccacata	5280
ccggAACCTT	ctggagagtg	aggactgcaa	gtacgtaccc	tgttgtctat	gtcaacaccg	5340
tgtgcaaaaa	cagataactt	ctcttggaa	tgacctaataa	ggagctctgg	aggccaggtg	5400
gggggtggcat	tgcagatccc	atcttggag	acaaacttgc	taccactagg	cctggtgagc	5460
taatgcctgc	ctaggcgtag	gtgagggtgt	acaggagttt	tcaggtcatg	gcattttttt	5520
tgctgaccac	gttgtgtc	cagttgtgg	ctactccat	agagggctaa	aatactgaat	5580
gcccagcaca	ttcagggttt	gctaattct	ctccaggaga	agtattccaa	taacgagtat	5640
tctttgtgct	catagcattt	aaagtattgc	taagggcgtg	tgcactgact	ctttcatttt	5700
agttccacaa	tagccctgt	aaaagcatca	gagggtctgt	atacccttt	aagcactaag	5760
gaacactatg	aggggctgt	ttaaatgg	atcagtggct	gacatctgg	ccatttctgt	5820
tcctctggcc	ttctcgctt	tctctctgt	gtgttccttc	catatggac	gtgaccctgg	5880
cctggcacac	aggtacactg	agttctggcc	ccagctccac	tgtggactgt	gggcacgtca	5940
ttgccccctt	caggcttaga	gggacctcta	aggtctaagg	tcctttttt	cactttaatt	6000
ctaaagtgtc	tataatatac	ttttgtctt	cacatacttc	tcatgccaat	gtttcaaaaca	6060
ccttttttct	ctatgcagat	ttccctgcaa	cccggtgtca	accccagcct	tcagcaactcc	6120
tagtccagcc	cctgcagcc	gcgcggcc	ctccggggcc	acccatggc	cctgctcatc	6180
aactggatac	tgacacactc	ctcagcccg	ggtgtctgg	aaggggaggt	gtcttcagct	6240
cgttaggctt	tgctctgcag	gcctgcta	ctggggcctt	cctccctggc	cagccaggca	6300
ggagactgaa	gagagacagt	gccactctgt	ggatagggt	ttgaatccag	cagctcagcc	6360
cctatggctg	gattttttt	ttccctcaa	ggtgtccaa	gtgctccatt	ttctcttttc	6420
tgttgccctc	tgatctctct	gagatggggc	aggcactttt	gttttattt	tgctattaaa	6480
cttcgcctct	gcagcagaat	gagccagtg	cagtccagcc	tcagcatctc	cgtcccatgc	6540
tgagggccctt	gctggggact	ccttgagcca	cattgttctg	tagacggggg	ttgtggctgg	6600
ctcgccagag	tgttcttggg	agatggcaaa	gccagtgaag	gctagagttt	aaaatgggac	6660
tgccggccaaa	gtg					6673

<210> 352

<211> 1986

<212> DNA

<213> Homo sapiens

<400> 352

tggggcctga	atcaactgct	ggtgtttgtt	gagcagaaac	agttagtctc	tgacttccca	60
ccaaacgcta	acctgatatg	gaagagccaa	gaggcatctc	agatttgtca	acattgcttt	120
aatgagctga	ggaacttctc	atggtaaact	cagcagctga	gtaacaggat	gatggcacca	180
caacaggtag	ataatcaagg	caggaggatca	aagcaactgga	gccaaacaccc	gcccaggatg	240
gggtataaaa	gggttgggg	gagaggaggc	ttcagtc	gtggctcagc	cttcccaact	300
gatctgaagc	tccctgtgcag	cctcagccct	acaccatgac	ctcccttctac	agcaccttct	360
catgccc	gggttgcacc	atggcttctg	gagcaagaaa	tgtctttgtc	tctccatatcg	420
atgttgggt	ccagcctgt	gcagaggcca	atgtgcctc	catgtgcctc	ttggccaaacg	480
tggcacacgc	caacagagtc	cgtgtgggg	cgactccct	ggggccccc	agcctctgtc	540
tggcccaac	cagtccacact	gcttgcctt	tgccaggggac	ctgtcacatt	ccggcaaca	600
tcggaaatcg	tggggctac	ggcaaaaaaca	cgtgtatgg	ccatgagaag	gagaccatga	660
agttccgtaa	tgaccgcct	gcacaatacc	tggagaaatgt	gcgcaggctg	gagcaggaga	720
atgcagagct	ggagaccaca	ctcctcgaga	ggagcaagt	ccacgatcc	accgtgtgcc	780
ccgactacca	gtcctacttc	cgtacaatcg	aggagctcca	gcagaagatc	ctgtgcagca	840
aggctgagaa	tgccaggctg	attgtacaaa	ttgacaacgc	gaagctggct	gctgtatgact	900
ttaggatcaa	gctggagagt	gagcgtccc	ttcaccagct	ggtggaggcg	gacaagtgcg	960
ggacgcagaa	gctccctggat	gacgcgaccc	tggccaaggc	cgacctggag	gcccagcagg	1020

Siemens 0022 Seq Listing.txt

agtccctgaa	ggaggagcag	ctctccctca	agagcaacca	cgagcaggaa	gtaaagattc	1080
tgaggagtca	gctgggggag	aagttccgga	tcgagctgga	catttagcccc	accattgacc	1140
tgaacagggt	gttgggggag	atgcgggctc	agtacgaggc	catgtggag	accaaccacc	1200
aggatgtgga	acagtggttc	caagcccagt	ctgaaggcat	cagcctgcag	gccatgtcct	1260
gctccgagga	gctgcagtgc	tgccagtcgg	agatcctgga	gctgagatgc	acggtaatg	1320
ccctggaggt	ggagcgccaa	gcccagcaca	ccttgaagga	ctgtctgcag	aactccctgt	1380
gtgaagcgg	ggaccgctac	ggcacagagc	tggcccagat	gcagagcctc	attagcaact	1440
tggaagagca	gttgtcttag	atccgggccc	acctggagcg	gcagaaccag	gagtaccagg	1500
tgctgctgga	cgtgaaggcc	cgttggaga	acgagattgc	cacataccgg	aacttactc	1560
ccctgcaatc	cctgttccac	gcctgcctcc	tgtacttctt	gtccaagctg	tggccctgtc	1620
accgggtgg	ctccctctgg	ccatggagcc	agcatgggga	gatgattctg	aaggcccggag	1680
tttaggagatt	gaggctgggt	gcactgggtt	caggagtgcc	ctcaccttgc	ccagtcttcc	1740
ttcaagacta	gactcactga	gycattttcc	ctaaatcaac	cggtagcaga	tacttccaag	1800
gagtggtctc	ctgcctatgc	ctctaagctg	tatTTTTTGT	tgttgctaaa	atgttgtaat	1860
tatcttccat	gaaagcaatt	atTTTCTG	gtgtctcttc	ttggtaactt	tagttctatt	1920
ccagtgtttc	agaatctcca	aaaatgtaac	tgggtccct	gcattaaatg	gtcaataaaac	1980
ctccctt						1986

<210> 353

<211> 2837

<212> DNA

<213> Homo sapiens

<400> 353

tagtcctcct	gctacaccac	tgaccaacag	gaaagtttgt	gtctccagag	tggacacatc	60
cataaaagg	ccaaacccag	tcaaggtcta	agcatctgtat	ggctataact	ttgtttcttt	120
gaaagataat	aaaaagcttc	tgacctccca	tcaacagccca	acctgtattt	aaagagccaa	180
gaggcctcag	attcgtcaac	attccctttaa	cgagctgaga	aacttttcat	gtttaactca	240
gcagctgagt	aaacaggatga	tggcaccaca	acaggttagat	aatcaaggca	ggaggtcaaa	300
gcattggagc	caacacccgc	ccaggatggg	gtataaaaagg	gctgggagga	gaggaggctt	360
cagtctcagt	ggttcagctt	tcccagctg	tctgaagctc	ctgtgcagcc	tcagcccaac	420
accatgacct	cttcctacag	cagctctca	tgcctctgg	tttgacccat	ggctccttgg	480
gcaagaatag	tctctgtctc	tcccatcgac	attgggtgcc	agcctggggc	agaggccaa	540
attgccccca	tgtgcctttt	ggccaacgtg	gcacatgcca	accgagtccg	tgtgggtcc	600
actcccttgg	gcccggccag	cctctgtctg	ccgcctactt	gccacactgc	ttgtcccttg	660
ccagggacct	gccccatcc	tggcaacatt	ggaatctgtg	gggcctatgg	tgaaaacacc	720
ctgaatggcc	atgagaagga	gaccatgcag	ttcctgaatg	accgccttgc	caactacctg	780
gagaagggtgc	gcccggctgg	gcaggagaat	gccccggctgg	aggccacact	cctcgagagg	840
agcaagtgcc	acggatccac	cgtgtcccc	gacttccatgt	tttacttcca	caccatcgag	900
gagctccaac	agaagatccct	gtgcagcaag	gccgagaatg	ccaggctgtat	tgtacaaatt	960
gacaatgcca	agctggctgc	cgatgacttt	aggatcaagc	tggagagtga	gcgcctccctg	1020
cgccagctgg	tggaggcaga	caagtgtggg	acacagaagc	tcctggatga	tgcgaccctg	1080
gccaaggccg	acctggggc	ccagcaggag	tccctgaagg	aggaggcagct	ctccctcaag	1140
agcaaccacg	acggatccat	aaagattctg	aggaggcagc	tggggggagaa	gtctccggatt	1200
gagctggaca	tttaggcccac	cattgacctg	acacagggtgc	tggggggagat	gcgggctcag	1260
tatgaggcca	tgttggagac	caacccggcag	gtatgtggac	agtgtttcca	agcccagtct	1320
gaaggcatca	gcctgcagga	catgtctctg	tccggaggagc	tgcagtgtcg	ccagtcggag	1380
atccctggagc	tgagatgcac	ggtaatggcc	ctgggggtgg	agcggccaagc	ccagcacacc	1440
ttgaaggact	gtctgtcgaaa	ctccctgtgt	gaagccgggg	accgcttcgg	cacggagctg	1500
gcccggatgc	agggcctcat	cagcaacgtg	gaggaggcagc	tgtctggat	ccggggccgac	1560
ctggagcggc	aaaaccagg	gtaccagggt	ctgctggacg	tgaagaccgg	gctggagaat	1620
gagattgcca	cgtaccggaa	ccttctggaa	agcgaggact	gcaaaactccc	ctgcaatccg	1680
tgctccacgt	ctccctccctg	cgtgactg	ccctgtgtc	ctcgcccaag	ctgtggccccc	1740
tgcaccaccc	gtggggccac	ctgtggagcc	agcaccaccc	gaagccgatt	ctgaattcct	1800
gtggaccac	aggggctggc	taaggcgagg	gatacccaa	gagagatgt	tgttataacct	1860
ttagaaaatc	tggcttctaa	ctttctgtat	gtataggct	gtccaaaggc	tatgagatac	1920
cagggacagt	ggaatcttga	tggaaatcc	tcctttctg	ctcttgggtt	tcccaggtga	1980

Siemens 0022 Seq Listing.txt

gctctatgcc	ctcagtggct	ggattgcagc	cacccatgtt	ggctcagaat	atctggattt	2040
gagaggcata	agttgaaaaa	gcattttgga	gtaggaacac	ggcatgattt	aaaattgcac	2100
ttgcacttca	agaacaccaa	ctttaacttg	aaattttat	agtttatgac	aaaggaagtg	2160
aagaacagac	ttcactgtct	gagattccc	acatttctt	ggttgttct	aacattgca	2220
gcctggatta	tggcccttagg	gagaggaaa	tagaatcaga	attgtacctt	accctgtctt	2280
ttctaattcc	cttctcctat	cctccgtct	ccctatctt	gaaactgatt	aagtggaaac	2340
tttccttgta	tcaaattcctg	agtttctct	acttcaggg	ttctagctt	gacaaggac	2400
caggctgccc	tttctgtgg	caacacagcc	tcttacatat	ggcttccata	gcttcttgct	2460
atgtgaaagg	aacttcaga	ttaagaaatt	tctctctttt	ttctctataa	attctgactc	2520
tccagacttg	tctggctata	accctgtcc	ctgtctaatt	ctcccaagtct	aaaatctaaa	2580
caatgacttc	attttttct	agtactttct	cctgaagtat	tgaaacctat	tgattcaatg	2640
ggttagagatt	tgctaagttat	gatgtgcttc	caccttctt	cttcataactc	tctaccttcc	2700
ttaccatgat	tcagccacac	tggcccttct	gttccttga	catgcctgga	gacctgtccc	2760
tgctcttcct	tctctctggg	gtgctttcc	ccctccttat	aaatgttcag	gtcagcggaa	2820
atgttccttc	ctctgag					2837

<210> 354

<211> 1708

<212> DNA

<213> Homo sapiens

<400> 354

ggcgccatgg	ggtctgtaga	catccaggtt	gctgtggctt	aggagaaaagg	gcctctccaa	60
catgacatcc	tccctgtgtt	tcaccaacaa	cttgcagacc	tctctcaaga	gctgcccccg	120
gcctgcctcg	gtctgttcca	gcggcgtaa	ctgcccggctt	gagctgtgcc	tggctatgt	180
ctgcccagccc	atggcatgccc	tgccttcgg	ctgcctgccc	accaccttcc	ggccagccag	240
ctgcctctcc	aaaacctatc	tatccagttt	ctgcccaggca	gccagtggca	tctccggctc	300
catggggccc	ggcagctgg	acagcgaagg	gcccttcaat	ggcaatgaga	agggaaaccat	360
gcagtttctt	aacgaccgccc	tggccagcta	cctgacgggg	gtgcggcagc	tggagcagga	420
gaatgcggag	ctggagagca	ggatccaaga	ggcctctcac	tcccaggtgc	tcaccatgac	480
tcctgactac	cagtcttatt	tcaggaccat	tgaggagctc	cagcagaaga	ttctgtgtac	540
caaggcagag	aatgcaggaa	tggttgtt	cattgataat	gccaacttgg	ctgcccgttga	600
cttcaggggc	aagtacgggg	cagacttggc	ctgcggcag	ctgggtggagg	ccgacatcaa	660
tggcctgcgc	aggatcctgg	atgatctcac	tctgtgcaag	gctgacctgg	aggcccagg	720
tgagtccctg	aaggaggaggc	tgtatgtgcct	caaaaagaac	catgaggagg	aagtccgttc	780
ctttcgtatgc	cagcttgggg	accgccttaa	catcgagggt	gacgctgcac	ccccgggttga	840
cctgaccagg	gtgctgggg	agatgcgg	tcagttacgg	gccatgggtt	aggccaaccg	900
cagggacgtt	gaggaatgg	tcaatatgca	gatggaggag	cttaaccaac	agggtggcac	960
aagctctgag	cagcttca	actaccatc	agacatcatt	gacctgagac	gcacggtaa	1020
cacgctggag	atcgagctgc	aggcccagca	cagcctgagg	gactccctgg	aaaacacgct	1080
gacggagagt	gaggcccgct	acagcttcca	gctggcccg	atgcagtgc	tgatcaccaa	1140
cgttggggcc	cagctggctg	agatccggc	tgacctggag	cgccagaacc	aggagtacca	1200
ggtgctgtg	gacgtccggg	cccggttgg	gggcgagatc	aacacgtacc	ggagcctgt	1260
ggagagcgag	gactgcaagc	tgcctgtt	cccatgttcc	actccttct	gcaccacctg	1320
tgtgccctcc	ccatgcgtt	ccgcacccgt	ctgtgttgc	cgcaactgtt	gcatgcctt	1380
ctcaccctgc	ccccaggggcc	gctactgaag	tccctttgt	ccagtggatc	ctggaggggcc	1440
tggggctggg	cagcctggta	ttcagtggcc	accagaagag	caggccagc	cccggttgc	1500
aaggaagacc	ctgagcagga	ccgtggatca	cctgcaccaa	gctctgatac	tccaggggat	1560
acttaagccc	tcatcactt	aaaactgcct	tttttttca	tgggtgaact	gttcttttg	1620
gtgatgtttc	tgttgtgtt	tgctgcctca	aagagcgtgt	gttcttagtt	aactggcaaa	1680
tagagctgtt	ctcagtggcc	ttgcaaac				1708

<210> 355

<211> 2051

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 355
 tgggctcaaa tgacaggtcc ctttgaagaa ctgacaggga cttggcttc ccagtatgt 60
 ggggttgtgg agatgagtct tgacatagta atggggctcc tattttatga gactgtaaa 120
 tttcacagg aaactaaata acaggttaat gaggggttt aatagaaagt ggtgttaact 180
 ttaatgagga gaaaacactt tgtaaaggcc aaccaatgcc cactgggca gagatataaa 240
 tctgggtaa ggagctgctt ctctgcttg gggtgtctgg cctcagagac ctatcaattg 300
 catctgagtt gcaggggcca tggctccaa atgcctcaag gccgcttct cttctgggtc 360
 tctcaagagc ccaggagggg ccagtggggg ctccactcggt gtgtccgcaa tgcgtccag 420
 cagctttgc aagcttccaa gtctctcccc tggccaga agttctctg cctgctcagt 480
 gggcttggc agaagcagct acagggccac cagctccctc cctgctctc gcctccctgc 540
 tggaggcttc gctaccagct acagtggggg tggggctgg tttggggagg gcatcctcac 600
 tggcaatggag aaggagacca tgcaatccc gAACGACCGC ctggggggct acctggagaa 660
 ggtgcgtcag ctggcaggag agaacccag cctggagagc cgcatccgtg agtgggtgtga 720
 gcagcaggc cccatcatgt gcccacta ccagtccctac ttccggacca tcgaggagct 780
 ccagaagaag actctatgca gcaaggctga gaatgccagg ctgggtggag agattgacaa 840
 tgccaaattt gctgcagatg acttcaggac caagtatgag acggagggtgt ccctgcggca 900
 gctgggttag tcagacatca acggctcg caggatccctg gatgaccta ccctgtcaaa 960
 gtctgacctg gaggccagg tggagtccct gaaggaggag ctgctctgcc tgaagaagaa 1020
 ccatgaggag gaagtgaact cactgcgtg ccaacttggt gaccgcctca atgttgaggt 1080
 ggacgctgccc ccacctgtt acctgaaccg agttctggag gagatgaggt gccagtatga 1140
 aaccctgggt gagaataaacc gcccggatgc tgaagactgg ttggacaccc agagtggagga 1200
 gctgaaccag caggtgggtgt ccagctcaga gcagttgcag tcctgcagg cagagatcat 1260
 cgagctgaga cgacccgtca acgcccgtga gattgagctg caggctcagc acagcatgag 1320
 agatgcttgc gaatccaccc tggcagagac ggaggcccgc tatagctccc agctggccca 1380
 gatgcagtgc atgatcacca acgtggaggc ccagctggcc gagatccggg ctgacctgga 1440
 gcggcagaac caggagtacc aggtgtctg ggacgtccgg gcccggctgg agtggagat 1500
 caacacgtac cggggcctgc tggagagtga ggacagcaag ctccctgtta acccatgtgc 1560
 acctgactac tcaccctcca agtcatgcct tccctgtctt cctgcggcct cctgcggtcc 1620
 tagtgcagcc cgacaaaaact gcagcccccg ccccatattgt gtgcctgtcc caggggggtcg 1680
 gttctgagag cgggtgaccc agatggccat ggctattgtc tccagggttt gaacttggcc 1740
 tctaccctaa cttAACCCCTT gtagccaat cccctcttt cgcgcagagc ccaggcccag 1800
 ggtctggctg aaaaggctt ctgcaatac atgcccataa gtttctcaga gcctgtcaca 1860
 aaggccggct gcccccaaaag gtctcaactc ctcatcattt caatgggtgc cagggtctct 1920
 gttctcaggc tgcctcctgg gtcagtttt ctttcttagt gctgtccgg tggattctga 1980
 aatgcagtag agggctttt ttggcagaac aataaagtgc atttgctcag gcccctgatg 2040
 cctaacttgc a 2051

<210> 356

<211> 1404

<212> DNA

<213> Homo sapiens

<400> 356
 atggccaccc agacctgcac ccctacccctc tccactgggt ctatcaaggc cctctgtggc 60
 acagcaggcg gcatctctcg ggtgtccctc atccgttctg tgggctccctg cagggtcccc 120
 agtctcgccg gtgtcgagg gtacatctct tctgcttagt cggggcctctc tggccttgg 180
 agtctcgccg ctggctccctc cctgtttctt gagtgcacca cctctggctt tggggggagc 240
 gggggctgggt tctgcgaggc ctccctcaac ggcagcgaga aggagactat gcagttccctg 300
 aacgaccgc tggcaacta cctggagaag gtgcgtcagc tggagcggga gaacgcggag 360
 ctggagagcc gcatcccgaa gtggtacgag tttcagatcc catacatctg cccagactac 420
 cagtcctact tcaagaccat cgaagatttc cagcagaaga tcctgtctgac taagtcttag 480

Siemens 0022 Seq Listing.txt

aatgccaggc	tggtcctgca	gattgataat	gccaagctgg	ctgtgcacga	cttccggacc	540
aagtatgaga	cagagctgtc	tctgcggcag	ctagtggagg	ccgacatcaa	cggcctgcgt	600
aggatcctgg	atagactgac	cctgtcaag	gctgacctgg	aggctcaggt	ggagtcctcg	660
aaggaggagc	tgatgtgcct	caagaagaat	cacgaggagg	aagtcaactgt	actccgttgc	720
caacttgggg	accgactgaa	tgtggaggtg	gacgctgctc	ccccagttga	tctcaacaag	780
atcctggagg	atatgagatg	ccagtagcag	gccctgggtt	agaataaccg	cagagatgtg	840
gaggcctgg	tcaacaccca	gactgaggag	ctgaaccagc	aggtgggtgc	cagctcggag	900
cagctcagt	gctgccagac	ggagatcatc	gagctgagac	gtacggtaa	cgcgctagag	960
attgagctgc	agctcagca	cagcatgcgg	aattccttgg	aatccaccct	ggccgaaacc	1020
gaggcccgt	acagctccca	gctggcccag	atgcagtgcc	tgatcagcaa	cgtggaggcc	1080
cagctgtctg	agatccgctg	cgacctggag	ccgcagaacc	aggagttacca	ggtgttactg	1140
gacgtcaagg	cccgctgg	gggcgagatc	gctacctacc	gccacctgct	ggagggagag	1200
gactgcaagc	ttccctcccc	actttgtgcc	acggcatgca	agccgttat	tagagttcct	1260
tctgtccccc	cgtgtccctg	tgtccctct	gtgccctgca	ccccggctcc	ccaggttggc	1320
actcagatcc	gcaccatcac	cgaggagatc	agagatggga	aagtcatctc	ctccaggag	1380
cacgtcagt	cccgcccgct	gtga				1404

<210> 357

<211> 1693

<212> DNA

<213> Homo sapiens

<400> 357

cacagtcc	ggcccaggcc	aagcaagctt	ctatctgcac	ctgctctcaa	tcctgctctc	60
accatgagcc	tccgcctgca	gagctcctct	gccagctatg	gaggtggttt	cggggggtggc	120
tcttgcc	tggtggagg	ccgtgtgtc	tctaccttt	caactcgggtt	tgtgtctggg	180
ggatcagctg	ggggctatgg	aggcggcgtg	agctgtgggtt	ttgggtggagg	ggctggtagt	240
ggctttggag	gtggctatgg	aggtgccctt	ggaggtggct	atggaggtgg	ccttggaggt	300
ggctttgg	ggggttttgc	tggtgcttt	gttgactttg	gtgttggta	tggcggctc	360
ctca	atgagaagat	caccatgcag	aacctaaccg	accgcctggc	ttcctacactg	420
gagaagg	gcccctgg	ggaggccaa	gtgtacctgg	aggtgaagat	ccgtgactgg	480
cac	agagccc	tagccctgag	cgggactaca	gccctacta	caagaccatt	540
gaagag	gggacaagat	cctgaccg	accattgaaa	acaaccgggt	catcctggag	600
attgacaat	ccaggctggc	tgtggacgac	ttcaggctca	agttatgagaa	tgagctggcc	660
ctgc	gcgtggagg	cgacatca	ggcctgc	gggtgtgg	tgagctact	720
ctgtctaa	ctgacctgg	gatcagatc	gagagcctga	atgaagagct	agcctacatg	780
aagaaga	atgaagagga	gatgaaggaa	tttagcaacc	aggtggtcgg	ccaggtcaac	840
gtggagat	atgcacccc	aggcattgac	ctgaccgg	tgctggcaga	gatgagggag	900
cagtac	ccatggcaga	gaggaaccgc	cgggatgtcg	aggaatggtt	ccacgccaag	960
agtgc	tgaacaagga	ggtgtctacc	aacactgc	tgattcagac	cagcaagaca	1020
gagatc	agtcagg	cacgc	ggcctggaga	tttagctca	gtcccagctg	1080
agcatg	ggggctgg	gaacacgg	gcagagacgg	agtggcgct	tgcctgcag	1140
ctgc	tccagg	catcagc	atcgaggccc	agctgagcga	gtcccgca	1200
gagatgg	gccaga	agagtaca	atgtgtctgg	acatcaagac	acgtctggag	1260
caggagat	ccac	cagc	gagg	acgccaagaa	gcgtcaggccc	1320
ccgt	tcgtt	cgact	tgc	accaccac	cta	1380
tgg	ccgc	actt	c	tt	cc	1440
cttc	c	at	cc	at	cc	1500
ggac	ctc	at	cc	cc	ct	1560
ggccc	tc	tt	cc	cc	tc	1620
tgg	ttt	tc	cc	cc	tt	1680
gcaaa	cata	aa	aa	aa	tt	1693

<210> 358

<211> 1709

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Homo sapiens

<400> 358

ggtaacccct	gccagcatct	cttgggtttg	ctgagaactc	acgggctcca	gctacctggc	60
catgaccacc	acatttctgc	aaacttcttc	ctccaccttt	gggggtggct	caacccgagg	120
gggttcctc	ctggctgggg	gagggtggctt	tgggtgggggg	agtctctctg	ggggaggtgg	180
aagccgaagt	atctcagctt	cttctgctag	gtttgtctct	tcagggtag	gaggaggata	240
tgggggtggc	atgagggtct	gtggcttgg	tggaggggct	ggttagtgtt	tcgggtggagg	300
cttggaggg	ggcggttggt	gggggtttgg	tgggtggctt	ggtgtggcg	atgggtggct	360
cctctctggc	aatgagaaaa	ttaccatgca	gaacctcaat	gaccgcctgg	cctcctacct	420
ggacaaggt	cgtgcccctgg	aggaggccaa	tgctgaccctg	gaggtaaga	tccatgactg	480
gtaccagaag	cagaccctcaa	ccagccccaga	atgcgactac	agccaataact	tcaagaccat	540
tgaagagctc	cgggacaaga	tcatggccac	caccatgcac	aactcccggg	tcatccttgg	600
gatcgacaat	gccaggctgg	ctgcggacga	cttcaggctc	aagtatgaga	atgagctggc	660
cctgcggcag	ggcggttgagg	ctgacatcaa	cggcttgcgc	cgagtcctgg	atgagctgac	720
cctggccagg	actgacactgg	agatgcagat	cgaggggctg	aatgaggagc	tagcctacct	780
gaagaagaac	cacgaagagg	agatgaaggaa	gttcagcagc	cagctggccg	gccaggtaaa	840
tgtggagatg	gacgcagcac	cgggtgtgg	cctgaccctg	gtgctggcag	agatgagggaa	900
gcagttacgag	gcacatggcg	agaagaaccg	ccgggatgtc	gaggcctgg	tcttcagcaa	960
gactgaggag	ctgaacaaag	aggtggcctc	caacacagaa	atgatccaga	ccagcaagac	1020
ggagatcaca	gacctgagac	gcacgatgca	ggagctggag	atcgagctgc	agtcccagct	1080
cagcataaaa	gctgggctgg	agaactcaact	ggccgagaca	gagtccgc	atgcccacga	1140
gctgcagcag	atccagggggc	tcattgtgg	cctggaggcc	cagctgagtg	agctccgatg	1200
cgagatggag	gctcagaacc	aggatcacaa	gatgctgctt	gacataaaga	cacggcttgg	1260
gcaggagatc	gctacttacc	gcagccctgct	cgaggggccag	gatgccaaga	tggctggcat	1320
tggcatcagg	gaaggcctt	caggaggtgg	tggtagcagc	agcaatttcc	acatcaatgt	1380
agaagagtca	gtggatggac	aggtgtttc	ttcccacaag	agagaaaatct	aagtgtcttat	1440
tgcaggagaa	acgtcccttg	ccactccccca	ctctcatcag	gccaagtgg	ggactggcca	1500
gagggcctgc	acatgcaaac	tccagtcctt	gccttcagag	agctaaaaag	ggtccctcgg	1560
tcttttattt	cagggctttt	catgcgtct	attccccctc	tgcctctccc	cacccctttt	1620
ggagcaagga	gatgcagctg	tattgtgtaa	caagctcatt	tgtacagtgt	ctgttcatgt	1680
aataaagaat	tactttcct	tttgc当地				1709

<210> 359

<211> 1407

<212> DNA

<213> Homo sapiens

<400> 359

cgcgaatcgc	agcttctgag	accagggttg	ctccgtccgt	gctccgcctc	gccatgactt	60
cctacagcta	tcgcccagt	tcggcacgt	cgtccttgg	aggcctggc	ggcggtcccg	120
tgcgtttgg	gcccggggtc	gccttcgcg	cggccat	tcacggggc	tccggcggcc	180
gccccgtatc	cgtgtccctcc	gcccccttgc	tgcctcgct	ctccctcggg	gcctacggcg	240
gcccgtacgg	cggcgctcctg	accgcgtccg	acgggctgt	ggcggggcaac	gagaagctaa	300
ccatgcagaa	cctcaacgac	cgcctggccct	cctacctgga	caagggtgcgc	gccctggagg	360
cggccaaacgg	cgagctagag	gtgaagatcc	cgactggta	ccagaagcag	gggcctgggc	420
cctcccgcg	ctacagccac	tactacacga	ccatccaggaa	cctgcgggac	aagattcttg	480
gtgccaccat	tgagaactcc	aggattgtcc	tgcagatcga	caatgcccgt	ctggctgcag	540
atgacttccg	aaccaagttt	gagacggAAC	aggctctgcg	catgagcgt	gaggccgaca	600
tcaacggcct	gcmcagggtt	ctggatgagc	tgaccctggc	caggaccgac	ctggagatgc	660
agatcgaagg	cctgaaggaa	gagctggcct	acctgaagaa	gaaccatgag	gaggaaatca	720
gtacgctgag	ggcccaagt	ggaggccagg	tttgttgaa	ggtggattcc	gctccggca	780

Siemens 0022 Seq Listing.txt

ccgatctcg	caagatcctg	agtgcacatgc	gaaggccaata	tgaggtcatg	gccgagcaga	840
accggaaagga	tgtcgaagcc	tggttcacca	gccggactga	agaattgaac	cgggaggctcg	900
ctggccacac	ggagcagctc	cagatgagca	ggtccgaggt	tactgacctg	cggcgcaccc	960
ttcagggtct	tgagattgag	ctgcagtcac	agctgagcat	gaaagctgcc	ttggaaagaca	1020
cactggcaga	aacggaggcg	cgccttggag	cccagctggc	gcatatccag	gcgctgatca	1080
gcggatttga	agcccgactg	ggcgatgtgc	gagctgatag	tgagcggcag	aatcaggagt	1140
accagccgct	catggacatc	aagtgcggc	tggagcagga	gattgccacc	taccgcagcc	1200
tgctcgaggg	acaggaagat	cactacaaca	atttgtctgc	ctccaaggtc	ctctgaggca	1260
gcaggctctg	gggcttctgc	tgtccttgg	agggtgtctt	ctggtagag	ggatggaaag	1320
gaagggaccc	ttacccccgg	ctcttcctt	gacctgccaa	taaaaattta	tggtccaagg	1380
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1407

<210> 360

<211> 2352

<212> DNA

<213> Homo sapiens

<400> 360

ccctgcactt	gggagccgg	agcactccta	tcactgcttc	tcaaccgtg	agctaccagc	60
tgtgtcatga	gctgcagaca	gttctctcg	tcctacttga	ccagcggcgg	gggtggccgg	120
ggcggcctgg	gcagcggggg	cagcataagg	tcttcctaca	gccgcttcag	ctcctcagg	180
ggccgtggag	gagggggccg	attcaagctc	tctagtggct	atgggtgggg	aagctctcg	240
gtctgtggga	ggggaggcgg	tggcaagttt	ggctacagct	acggcggagg	atctgggggt	300
gtttttatgt	ccagtagttt	aggcggtggc	tttgggggtg	gttccagagg	ttttgggtgt	360
gcttctggag	gaggctataag	tagttctggg	gtttttggag	gtggcttgg	tgggtgttct	420
ggaggtggct	tttgggtgtgg	ctatggag	gggtttgggg	gtttaggggg	cttggaggt	480
gggtctggag	gaggtgtatgg	tggatttctg	actgctaattg	agaagagcac	catgcaggaa	540
ctcaattctc	ggctggccctc	ttacttggat	aagggtgcagg	ctctagagga	ggccaacaac	600
gacctggaga	ataagatcca	ggatttgcac	gacaagaagg	gaccgtctgc	tatccagaag	660
aactactccc	cttattataa	cactattgtat	gtatctcaagg	accagattgt	ggacctgaca	720
gtgggcacaa	acaaaaactct	cctggacatt	gacaacactc	gcatgacact	ggatgacttc	780
aggataaaatgt	tttagatgg	gaaaaacctg	cggcaaggag	tggatgtca	catcaatggc	840
ctggcggcagg	tgtcggacaa	tctgaccat	gagaagtctg	acctggagat	gcagtatgg	900
actctgcagg	aggagctgtat	ggccctcaag	agaatcata	aggaggagat	gagtcagctg	960
actgggcaga	acagtggaga	tgtcaatgt	gagataaaacg	ttgctcctgg	caaagatctc	1020
accaagaccc	tcaatgacat	gcgtcaggag	tatgagcagc	tcattgctaa	gaacagaaag	1080
gacatcgaga	atcaatatga	gactcagata	acccagatcg	agcatgaggt	atccagtagt	1140
ggtcaggagg	tgcagtccag	tgccaaggag	gtgaccacgc	tccggcacgg	tgtccaggag	1200
ttggagattt	agctgcagtc	tcagctcagc	aagaaaggcag	ctctggagaa	gagcttggaa	1260
gacacgaaga	accgctactg	tggccagctg	cagatgtatcc	aggaggagat	cagtaacttg	1320
gaggcccaaga	tcactgacgt	ccggcaagag	atcgagtgcc	agaatcagga	atacagcctt	1380
ctgctcagca	ttaagatgcg	gctggagaag	gaaatcgaga	cctaccacaa	cctccttgag	1440
ggaggccagg	aagactttga	atcctccgg	gttggaaaaaa	ttggcttgg	aggtcgagga	1500
ggaagtggag	gcagttatgg	aagaggatcc	agggggaggaa	gtggaggcag	ctatgggtgg	1560
ggaggaagtg	gaggtggcta	tggtgagga	agtgggttca	ggggaggaaag	tggaggcagc	1620
tacgggtggag	gaagtgggtt	tggaggaggt	agtggaggtg	gtatggtg	aggaagtgg	1680
ggtggccata	gcccggaggaag	tggagggtgg	catagtggag	gaagtgggggg	caactatgg	1740
ggaggaagtg	gctctggagg	aggaagtggg	ggtggctatg	gtggaggaaag	tgggtccagg	1800
ggaggaagtg	gaggcagcca	tggtgagga	agtgggtttt	gagggtgaaag	tggaggcagc	1860
tacggaggcg	gtgaagaagc	gagtggaaat	ggtggcggt	acggaggagg	aagcggaaaa	1920
tcatccatt	cctagtccttc	ttcctcaaaa	tctggtgacc	aagatgagac	aaaaggcttc	1980
ctttcgcgat	actagagcc	ctgttaaactt	tcctcgccca	gcccccagct	gagcatcccc	2040
agatggcag	actcccgtat	aaggctgtt	attggatctt	gacatcagga	atagctggca	2100
acaagcccct	gtgcccgtt	gggactgaac	tgacttggca	tatgtct	ggcttccat	2160
tggcttccaa	ccctgttgg	ctttggatgc	cttcagggtt	cccggagacag	accttttcc	2220
tctctctggc	ctggagctc	tcacaccctg	cacgatctg	actataataa	agcttcccta	2280
ctgcaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2340

aaaaaaaaaa aa

<210> 361

<211> 1634

<212> DNA

<213> Homo sapiens

<400> 361						
acccgagcac	cttctttca	ctcagccaac	tgctcgctcg	ctcacccccc	tcctctgcac	60
catgactacc	tgcagccgcc	agttcacctc	ctccagctcc	atgaagggt	cctgcggcat	120
cggggccggc	atccggggcg	gctccagccg	catctccctcc	gtcctggccg	gagggtcctg	180
ccgcgc(ccc)	agcacccatcg	ggggccggct	gtctgtctca	tcctcccgct	tctcctctgg	240
gggagccatc	gggctggggg	gcggctatgg	cggtggcttc	agcagcagca	gcagcagctt	300
tggtagtgtc	tttggggggag	gatatggtgg	tggccttgggt	gctggcttgg	gtggtggttt	360
tggtggtggc	tttgcgtgggt	gtgatgggct	tctggtgggc	agtgagaagg	tgaccatgca	420
gaacctaat	gaccgcgtgg	cctccatccct	ggacaagggtg	cgtgtctctgg	aggaggccaa	480
cggcgcaccc	gaagtgaaga	tccgtactg	gtaccagagg	cagccgcctg	ctgagatcaa	540
agactacagt	ccctacttca	agaccattga	ggacctgagg	aacaagattc	tcacagccac	600
agtggacaat	gcataatgtcc	ttctgcagat	tgacaatgcc	cgtctggccg	cggatgactt	660
ccgcaccaag	tatgagacag	agttgacacct	gcgcatgagt	gtgaaagccg	acatcaatgg	720
cctgcgcagg	gtgctggacg	aactgaccct	ggccagagct	gacctggaga	tgcagattga	780
gagcctgaag	gaggagctgg	cctacctgaa	gaagaaccac	gaggaggaga	tgaatgcct	840
gagaggccag	gtgggtggag	atgtcaatgt	ggagatggac	gctgcaccc	gcgtggaccc	900
gagccgcatt	ctgaacgaga	tgcgtgacca	gtatgagaag	atggcagaga	agaaccgaa	960
ggatgcccag	gaatggttct	tcaccaagac	agaggagctg	aaccgcgagg	tggccaccaa	1020
cagcgacgtg	gtcagagcgc	gcaagagcga	gatctcggag	ctccggcga	ccatgcagaa	1080
cctggagatt	gagctgcagt	cccagctcg	catgaaagca	tccctggaga	acagccttga	1140
ggagaccaa	ggtcgtctact	gcatgcagct	ggcccgatc	caggagatga	ttggcagcgt	1200
ggaggaggcag	ctggcccgac	tccgtgca	gatggagcag	cagaaccagg	agtacaagat	1260
cctgctggac	gtgaagacgc	ggctggagca	ggagatcgcc	acctaccgccc	gcctgcttga	1320
gggcgaggac	gcccacccct	cctccccc	gttctccct	ggatcgact	catccagaga	1380
tgtgaccc	tccagccgccc	aaatccgcac	caaggtcatg	gatgtgcacg	atggcaaggt	1440
ggtgtcacc	cacgagcagg	tccttcgcac	caagaactga	ggctgcccag	ccccgctcag	1500
gccttaggagg	ccccccgtgt	ggacacagat	cccactggaa	gatccctct	cctgcccag	1560
cactcacag	ctggaccctg	tttcacccctc	accccccct	ggcaatcaat	acagcttcat	1620
tatctgagtt	gcat					1634

<210> 362

<211> 1688

<212> DNA

<213> Homo sapiens

<400> 362						
acagcacgct	ctcagccccc	ctgagcacct	ttccttcttt	cagccaaactg	ctcactcgct	60
cacccccc	cttggcacca	tgaccacctg	cagccgcac	ttcacccct	ccagctccat	120
gaagggtctcc	tgcggcatcg	gaggccgcac	cgggggccggc	tccagccca	tctcctccgt	180
cctggccggc	gggtccctgccc	gtccccccag	catctacggg	ggcggccctgt	ctgtctccct	240
tcgcttctcc	tctggggggag	cctggggct	ggggggccggc	tatggcggtg	gcttcagcag	300
cagcagcagc	tttggtagtg	gcttcgggggg	aggatatgt	ggtggccctg	gtgctggctt	360
cggtgggtggc	tttgggtgtgt	gctttgggtgg	tggttttgt	ggtgtgtatg	ggcttctgg	420
gggcagtgag	aagggtgacca	tgcagaacct	caatgaccgc	ctggccctc	acctggacaa	480

Siemens 0022 Seq Listing.txt

ggtcgtgct	ctggaggagg	ccaaGCCga	cctggaaagt	aagatCCGTg	actggtagcca	540
gaggcagcgg	cccagtgaga	tcaaagacta	cagtCCtac	ttcaagacca	tcgaggacct	600
gaggaacaag	atcattgcgg	ccaccattga	gaatgcgcag	cccatttgc	agattgacaa	660
tgccaggctg	gcagCCGATg	acttcaggac	caagtatgag	cacgaactgg	ccCTGCggca	720
gactgtggag	gccgacgtca	atggCCTgcg	ccgggtgtt	gatgagctga	ccCTGGCCAG	780
gactgacctg	gagatgcaga	tcgaaggcct	gaaggaggag	ctggcctacc	tgaggaagaa	840
ccacgaggag	gagatgctt	ctctgagagg	tcagaccggc	ggagatgtga	acgtggagat	900
ggatgctgca	cctggcgtgg	acctgagccg	catcctgaat	gagatgcgtg	accagtacga	960
gcagatggca	gaaaaaaacc	gcagagacgc	tgagacctgg	ttcctgagca	agaccgagga	1020
gctgaacaaa	gaagtggcct	ccaaacAGCGA	actggtagacag	agcagCCGCA	gtgagggtgac	1080
ggagctccgg	agggtgctcc	agggccttgg	gattgagctg	cagtcccagc	tcagcatgaa	1140
agcatccctg	gagaacagcc	tggaggagac	caaaggCCGc	tactgcatgc	agctgtccca	1200
gatccagggta	ctgattggca	gtgtggagga	gcagctggcc	cagctacgct	tgagatggta	1260
gcagcagagc	caggagtacc	agatcttgc	gatgtgaag	acgcggctgg	agcaggagat	1320
tgccacccat	cgccgcctgc	tggagggcga	gatgtcccac	ctttccctccc	agcaagcata	1380
tggccaatcc	tattcttccc	gcgaggtctt	caccccttcc	tcgtcccttt	cgagccgtca	1440
gaccggcccc	atccctcaagg	agcagagctc	atccagcttc	agccaggggcc	agagctccca	1500
gaaggctgact	gcctctacc	cagcccttgc	cccaccagct	ggccctcacct	cctgaaggcc	1560
cgggtcagga	ccctgctctc	ctggcgcagt	tcccagctat	ctccctgtct	cctctgctgg	1620
tggtggctaa	ataaagctga	ctttctggtt	gatgcaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1680
						1688

<210> 363

<211> 1512

<212> DNA

<213> Homo sapiens

<400> 363

ctcctctcca	gcccttctcc	tgtgtgcctg	cctccTgcg	ccggccaccat	gaccacctcc	60
atccgcagg	tcaccccttc	cagctccatc	aagggcctt	ccggccctgg	gggcggctcg	120
tccgcaccc	cctggcggct	gtctggcggc	ctgggtgcgg	gctccTgcag	gtggggatct	180
gctggcggcc	tgggcagcac	cctcgggggt	agcagctact	ccagctgcta	cagctttggc	240
tctgggtgt	gctatggca	cagcttgggg	ggtgttgcgt	ggctgcgtgc	tggaggtgag	300
aaggccacca	tgcaGAACT	caatgaccgc	ctggccttcc	acctggacaa	gtgtcggtcc	360
ctggaggagg	ccaaacactga	gctggaggtg	agatccgtg	actggtagca	gaggcaggcc	420
ccggggcccg	cccggtacta	cagccagttac	tacaggacaa	ttgaggagct	gcagaacaag	480
atccctacag	ccaccgtgg	caatgcaac	atccctgcac	agattgacaa	tgcccgctcg	540
gctgctgatg	acttccgcac	caagtttgc	acagagcagg	ccctgcgcct	gagtgtggag	600
gccgacatca	atggcctgcg	cagggtgctg	gatgagctg	ccctggccag	agccgacactg	660
gagatgcaga	ttgagaaccc	caaggaggag	ctggcctacc	tgaagaagaa	ccacgaggag	720
gagatgaacg	ccctgcgagg	ccaggtgggt	ggtgagatca	atgtggagat	ggacgctgccc	780
ccaggcgtgg	acctgagccg	catcccaac	gagatgcgtg	accagtatga	gaagatggca	840
gagaagaacc	gcaaggatgc	cgaggattgg	ttcttcagca	agacagagga	actgaaccgc	900
gaggtggcca	ccaaacagtga	gctggtgcag	agtggcaaga	gtgagatctc	ggagctccgg	960
cgcacccatgc	aggccttgg	gatagagctg	cagtccca	tcagcatgaa	agcatccctg	1020
gagggcaacc	tggcggagac	agagaaccgc	tactgcgtc	agctgtccca	gatccagggg	1080
ctgattggca	gcgtggagga	gcagctggcc	cagttcgt	gcgagatgg	gcagcagaac	1140
caggaataca	aaatccctgc	ggatgtgaag	acgcggctgg	agcaggagat	tgccacccat	1200
cgccgcctgc	tggagggaga	ggatgcccac	ctgactca	acaagaaaga	accggtgacc	1260
accggcgtagg	tgcgtaccat	tgtggaaag	gtccaggatg	gcaaggtcat	ctccctccgc	1320
gaggcaggatcc	accagaccac	ccgctgagga	ctcagctacc	ccggccggcc	acccaggagg	1380
caggcaggag	ccggccccatc	tgccccacag	tctccggcct	ctccagccctc	agccccctgc	1440
ttcagtcct	tccccatgct	tccttgccct	atgacaataa	agcttgttga	ctcagctaaa	1500
						1512

<210> 364

Siemens 0022 Seq Listing.txt

<211> 1753

<212> DNA

<213> Homo sapiens

<400> 364

cagccccgcc	cctacctgtg	gaagcccagc	cgcccgtcc	cgcgataaaa	aggtgcgag	60
tgtcccccag	gtcagcgagt	gcgcgtcctt	cctcgcccg	cgcttaggtcc	atcccgcccc	120
agccaccatg	tccatccact	tcagctcccc	gttattcacc	tcgcgtcag	ccgccttctc	180
ggccgcggc	gcccagggtgc	gcctgagctc	cgctcgcccc	ggcgccctt	gcagcagcag	240
cctctacggc	ctcggcgccct	cgccggcg	ctgtggccgt	cgctctgcct	atggggggcc	300
ggtgggcgc	ggcatccgcg	aggtcaccat	taaccagagc	ctgtgtggcc	cgctgcggct	360
ggacgcgcac	ccctccctcc	agcgggtgcg	ccaggaggag	agcgagcaga	tcaagacct	420
caacaacaag	tttgccctt	tcatgacaa	gttgcgggtt	ctggagcagc	agaacaagct	480
gctggagacc	aagtggacgc	tgctgcagga	gcagaagtcg	gccaagagc	gcccctccc	540
agacatttt	gaggcccaga	ttgctggct	tcgggggtcag	cttggaggcac	tgcagggtgga	600
tggggggcgc	ctggaggcg	agtcgcggag	catgcaggat	gtgtggagg	acttcaagaa	660
taatgacaa	gatgaaatta	accgcgcac	agctgtcgag	aatgagttt	tggtgctgaa	720
gaaggatgt	gatgctgcct	acatgagcaa	gttggagctg	gaggccaagg	tggatgcct	780
gaatgatgag	atcaacttcc	tcaggaccct	caatgagacg	gagttgacag	agctgcagtc	840
ccagatctcc	gacacatctg	tgggtctgtc	catggacaac	agtgcctcc	tggaccttgg	900
cggcacatc	gctgagggtca	aggcacagta	tgaggagatg	gccaatgca	gcccggctga	960
ggctgaagcc	tggtaccaga	ccaagttga	gaccctccag	gcccaggctg	ggaagcatgg	1020
ggacgacctc	cgaatacc	ggaatgagat	tgcagagatg	aaccggcca	tccagaggct	1080
gcaggctgag	atcgacaaca	tcaagaacca	gcgtgccaag	ttggaggccg	ccattgcccga	1140
ggctgaggag	cgtggggagc	tggcgctcaa	ggatgctcg	gccaagcagg	aggagcttgg	1200
agccgcctg	cagcgggcca	agcaggat	ggcacggcag	ctgcgtgagt	accaggaact	1260
catgagcgt	aagctggccc	tggacatcga	gatgcacc	taccgcaagc	tgcggaggg	1320
cgaggagagc	cgttggctg	gagatggagt	gggagccgt	aatatctcg	tgcgtggatc	1380
cactgggtgc	atgtagcagt	gcgggtggcat	tgggtcgacc	ctcgggggaa	ccatgggcag	1440
caatgcctg	agcttctcca	gcagtgcggg	tcctgggctc	ctgaaggctt	attccatccg	1500
gaccgcattcc	gccagtcgca	ggagtgcgg	cgactgagcc	gcctcccacc	actccactcc	1560
tccagccacc	accacacaatc	acaagaagat	tcccacccct	gcctcccattg	cctggtccca	1620
agacagttag	acagtctgg	aagtgtatgtc	agaatagctt	ccaataaagc	agcctcattc	1680
tgaggcctga	gtgatccacg	tgaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1740
aaaaaaaaaa	aaa					1753

<210> 365

<211> 9721

<212> DNA

<213> Homo sapiens

<400> 365

aaactccctt	ccccctcgccc	aagcagagt	gagaggggta	caggaaggag	ggacgcttac	60
gagaagagga	ggtatgagct	gagtccctgag	atagaagaga	agagaaaagtt	tttgccttcaa	120
gggacacagg	atgaatgata	aattaacaat	agaataaaata	gaacaaataa	tgaataaata	180
aacatttaca	cagttcttat	taagtatag	gtagggccct	aaatgtttc	tggtcattat	240
ctcatttagat	cctggcaacg	gctctcagt	tttactattt	ttatcgctat	tttgcctgt	300
agaaaaactga	ggctcagaaa	ggttattcag	ctgccccagg	tcatgacatg	aacctgcggg	360
actgacttca	gaggccccac	actctcgaca	cacgcacaca	ctcgccccac	acacggtgcc	420
cgctgcgggg	gaccggggct	atgggactgg	gaccgaagt	gaggccggat	ccaacaaggc	480
aaagctcgg	gtcccgccgg	agggcgac	aggtggaggg	tttcaactcgc	actgaccgca	540
gcccacgggc	agcggggctg	accaggcgct	tcccgcccc	ataaaaactcg	ggcgggaggc	600

Siemens 0022 Seq Listing.txt

gaacgcgtt	ttatgcaggc	ggccggcg	cctggctcg	tttcatccc	ggctccgcga	660
ggcgcgaggg	ccgagccctc	caagctcgta	aacgccttg	ccgcgagctc	cctccccggg	720
cccgcggcc	gtcatataag	gcmcagcgcc	gccttgggt	ccagccgccc	gccccctgccg	780
ccaccgcacc	atgtcctgccc	tctactccc	cctcagcgcc	ccctgcgggg	tccgcgcctt	840
cagctgcata	tcggcctgccc	ggcccggcc	cggccgctgc	tgcatacacc	ccgcccccta	900
ccgcggcg	tcctgcgtacc	gcggcctcac	cggaggcttc	ggcagccaca	gcgtgtgcgg	960
gggcttccgc	gccggctcct	gcggacgcag	cttcggctac	cgctccgggg	gcgtgtgcgg	1020
acccagcccc	ccatgcatcg	ccaccgtgtc	gtcaaccgag	agcctcctca	cgcccctcaa	1080
cctggagatc	gaccccaacg	cacagtgcgt	gaagcaggag	gagaaggagc	agatcaagtc	1140
cctcaacagc	aggttcgcgg	ccttcatgga	caaggtgggt	gtcctggatc	acaccttcc	1200
tgaaccttgg	agtccctggaa	ggagatggaa	atttccagtg	gtctctctag	aatggggaa	1260
tgaggatggc	tgtatatttta	tataatgtta	ggcgggtgcgg	gcccataata	ttaataaca	1320
ttgaaacacg	tgttaagaaa	atacatcttc	ttaatgtct	gttcaatcc	ttaagattag	1380
gtggggaaaaa	aatatcactg	gatgctaatg	tttttagcat	ctctctaata	cttgcttcc	1440
tcctgcttct	aataaaagaga	gcaagccccg	gcttcagaac	tgtctaggac	aactgtttct	1500
actagaattt	aatgttctgt	aattttccctt	tatgtatgcc	tagtaatgtat	ggttttgcatt	1560
ctctgggtggc	catatgaagt	tactcttttta	accccatac	tgttaatgtt	aattgaatcc	1620
acttatagat	aaatttagggag	taaaataga	tatgggatgg	caaaatctg	aagtcaagct	1680
tgggtgtaca	cagaagagaaa	aggaggcaga	gagagggtga	ggggctggcc	caagggccca	1740
cagagagtgg	gtgccagaac	agggttccaa	gcccaggccc	tctccaactc	tccagccct	1800
gggctagaag	gtccacagct	tggatccca	gtgccccac	tccctctaga	aggggctgg	1860
tcacctcaac	aggcaactgca	cgctggagag	gtgacccagg	agcggctcg	ggaatggaca	1920
ctggcccaagg	agcaggccac	ctggcctcca	tgctcagta	agttcctcta	ctgacgcatt	1980
gtgtggcact	gggcagaggc	ttcccttctc	caccccagtg	gcttctcac	cagggtctgt	2040
tgtggtgca	tgtgtgagct	ggccatgact	ctgaaaggga	aaatggggcc	caaggcagcc	2100
atgagacccc	atagccaaga	ccacctgaaa	ttatgcccata	taatatcagc	agtccccact	2160
ccccatgtct	gcaagttcca	acctggaaat	tcccagctgc	actcatggag	ttggatgaaa	2220
aggaccccaag	ggcttaaagg	gaaggagaca	tctcagctcc	agctcaaatg	tacgagaagt	2280
ggaaaactgg	aagccaaggg	ccctagttt	tttgcgtaca	tccttctgg	ccagcacaat	2340
gtattgtgc	catgtgttcc	tccagttca	gtgaaatcca	ggaaaagcgt	acaagcctca	2400
cttcccttagg	gtcttcaccc	tctctgttt	ccaaaacctc	ccccattca	cattacatat	2460
gtctggccccc	cagagacata	tgacacagtg	tccaaacataa	gaatttaggc	cacctaggac	2520
catgccccac	actccccaaat	gcctttcag	gccccaggcg	tcctgcttgg	taagagccta	2580
gcctctatga	cctccccagc	taggaagccc	ttcccaccc	gaccatctgt	tcaatcaaat	2640
gttacccaag	ccaagggtctg	gctatgagga	catcaataaa	taaggccatag	gccctgcct	2700
gagggagctt	atagtgagag	gcattctccc	tactctatcc	ctcccaacac	tgctctacat	2760
tcctttctc	caggaagtct	tccctaaattt	tcactacccc	ctaccccat	ctgtccgcg	2820
ctagcctgac	agtaacccag	cacagcccc	äggcctctca	gtctgtcg	catccatcc	2880
aggccccac	ggacagaccc	tcaacttagcc	ctgaataa	aattatgaaa	caaggatct	2940
ccagctgc	cctcaggcc	ggagagacca	gaggggccca	tgttgtctac	cccttgcctc	3000
tgcacatctt	actggccat	ctgttttgac	tctggcttgg	ccccaaaggag	ggctggggat	3060
attggcttct	ccaaaccaaca	tttctccac	ttccacacca	ggtgcacttc	ctggagcagc	3120
agaacaagct	gttggagaca	aagctcag	tcttccagaa	ccgtgagtg	tgcgagagca	3180
acctggagcc	tctgtttgag	ggctacaact	ctgcgacggg	aggccgagtg	catggaaagcc	3240
gacagtgg	ggctggcctc	agagctcaac	cacgtgcagg	aggtgtctgg	gggttacaag	3300
aagaagtaag	tgcagtggg	ggagggttt	gagaaattaa	atgggattaa	gtcaaagtat	3360
gatagattt	gttgcacca	taagaggaac	ttcccaacag	gaagaaaata	gtacaataat	3420
cctgtgggt	ggggggaaatt	tctttctag	actgggagtt	taaacatttg	agattctgaa	3480
ctgctccagc	tacttcatca	ttatgtttat	ttcattaatt	catcaaacat	tttatttgagc	3540
atctactcaa	tgttgttagt	gctatgttgg	gctctgagtg	ggaaggagt	aaggaagtaa	3600
gaaggaggag	aaaggagagg	taccagaact	gggcagggtt	cctccccaa	aggagtata	3660
gcccagaaac	agagaggagg	tctcgaaaa	tgtgcagg	ccccaccc	acccacatca	3720
ggaatgaaag	tccctgaaat	agaaagagct	ttgagtaaca	tgggttgggt	tgaatgccc	3780
gaagaaaggg	atggacaagt	tcccttcag	ccaacactt	tttgattctt	gtgaccac	3840
ccaaaagatc	cagttccccgg	aatgttttgg	cctgtcc	cattccctt	tttttctc	3900
cccagatct	aggcttgcgt	gttttgc	caggtat	gaagagggtt	cactaaggc	3960
cactgtcg	aatgtat	tggccctgaa	gaaggtgat	gaccaggaa	tccctgtccc	4020
ctaactcaga	atggaggcc	gagacagaag	ggccttagac	ccaaagg	gagctgggag	4080
accttgacta	acatcaggct	ctctgtat	cgaggaggtt	gagggactcc	tttagaaatca	4140
cacggccag	cttcttct	ttcccttccc	cagtgc	ttgc	gggcctctg	4200
gcagcagaat	acactgcct	ttcaggcag	ggcaatattc	tccccc	catgataga	4260
ccatatagcc	accagattt	caccccttc	agccctgcgc	ctggcataga	gtaggcacc	4320
tgttaatatt	tgcgagtgaa	agagcagggt	attatagac	aatggctgca	tcctcaggcc	4380

Siemens 0022 Seq Listing.txt

agcaacagct	cagaaccaca	ggcaggggca	gtgaccgtca	ttcccttgcct	cttagacttg	4440
actctgtaca	agtgcctgga	ctctcattag	gcccttccag	ccacccat	atgaggaaag	4500
caggggttat	tgtgagaaaa	tgaggtgcag	aggtaaggg	ggctgctcg	agtgacactg	4560
acttggaaagg	gacagagttt	agccctgagc	cctcttctga	ccacagatct	agattatctt	4620
ccatgagatt	ccagagcgga	gaggggtggg	gcatcattag	aatttaccca	ctgtacacca	4680
gatcttaagt	tttggtgata	gtgcatgaca	tggtttctag	agaatcatc	ccagtgggtg	4740
ccagagaag	tacctgcaa	cctcaatgtc	ccccctccctt	acccaaacct	gctcttgacg	4800
ccactactaa	ctgtataagg	ggcttcacca	cgccatgata	ccaggcactg	ggatgagcac	4860
gtacagaggg	tttccaggga	agctgctcg	cctgtatgggg	tgccctccc	tggtagggaaa	4920
aaaacaaggg	ttctgaattt	tctcccaatgt	caattccctgt	gccaccccttct	ccccctttagg	4980
atgtggactg	tgccctacctg	cgcaaatcg	acccatgggc	caacgtggag	gcccgtaccc	5040
aggagatcga	cttcctgagg	cggctatatg	aggaggtgcg	gggtcacaaa	gcagcggggc	5100
agcaaggagg	atatgagttt	gacattggaa	aatacttgc	accattcagc	ttctgaccct	5160
atggtgggac	aaggggagaaa	accccaaggca	gttccatcat	gaggcaggta	agaagtgtgg	5220
cttgacccccc	cactgcccatt	cccccaaggaa	cctgggtttc	ctgggttacta	aagtgacaat	5280
tgccacaagg	tgttaaactt	tggtcctaga	ccccaaagggt	caagctggaa	ggtcctgtatt	5340
aaaatcaggc	actggggcctc	agacatggac	tctctacctc	caagtcctct	aggctcagga	5400
ctctgggctt	gaggagtcct	gaggggttcc	cagggtttag	gtggaaagact	gtaactggga	5460
gggtggggct	tcagacatcg	aagaagcagg	gaaaggggac	aagggtatgt	gatgagggtg	5520
ggctaccaag	agtagggctc	tggtaaaga	agctcttgc	actcccccatt	tcctgcagga	5580
gatccgcgtt	ctccagtcgc	acatctcaga	cacctcagtg	gtcgtcaaga	tggacaacag	5640
tcgggacctg	aacatgcact	gtgtcatcac	ttagatcaaa	gctcagtagc	atgacattgc	5700
cacccgcagc	cggggccgagg	ccgagtcctg	gtaccgcagc	aagggtagtg	gcacaggaca	5760
cctgcctgct	agacatggca	gttggagggaa	tgcaaggtag	ctattaaata	ggcttccctt	5820
tctggggatt	ctggccctta	cggatggaa	gataagggtc	gcctctctga	ggttggggta	5880
gcagggcagg	actgcccatt	gtggttgcac	aggctgagca	ctgcacaacc	tgcacaatca	5940
tccgttgtt	cctgaatggaa	tgggaggtcc	caccctgagc	ctcataagca	actctacttc	6000
cccagtgtga	ggagatgaag	gccacccgt	tcaggcacgg	ggagacccctg	cggccgcacca	6060
aggaggagat	caacgagctg	aaccgcatt	tccagaggt	gacagccgag	gtggagaacg	6120
ccaagtgc	ggtatgggg	cccagccac	ccctcagtg	aggaagagag	tggggtttagc	6180
cctcagcaga	gggattttggg	ttagaccct	tgccagtg	tggggacaag	ggcaaacacc	6240
cagcatgagg	acagacagcc	tcctccatgg	aaaacgttct	ccattctcgc	tgaatggagg	6300
cattggggca	atatggaggg	aatgaggtgc	ttcaagggca	gagtggggca	gaggaaatag	6360
caccagtcta	aggggcagga	aacctgggt	ctcaaaacaag	ctctgcact	agtttgcacat	6420
gagacttgg	aaaggcatca	aacctctctg	gccttgggt	ctagatcgt	gatcacacat	6480
tcagacatca	atggggtttag	taaatgagcg	aagcaagcaa	gctttccca	aggcacttgg	6540
gtatgtatgg	gactatgtt	aactgaaag	cagaaaaaggc	agggttaggc	agatccaaat	6600
gaggcaggcc	atgcagaaat	gcaggccat	tgtggccaga	tcctctgtat	tttggaaaga	6660
agccaagaat	ttaaatttatt	gtgttaaattt	tccaaaatgt	aagacactgt	gcaaaacatgc	6720
ctgggagcac	taatttgcaa	cccctggcct	aacaaataga	caaggccct	ttttcttctg	6780
ctagtca	gtcagttgggt	acctggccct	tgaccctgaa	gccagaacag	agatccttaa	6840
taaccctccc	ttgcctccca	gaacttcaag	ctggaggccg	cggggccca	gtctgagcag	6900
cagggtgagg	cggccctcag	tgtgcccgc	tgcaagctgg	ccgagctgga	gggtggccctg	6960
cagaaggcca	agcaggacat	ggcctgctt	atcagggagt	accaggaggt	gatgaactcc	7020
aagctggcct	ggacttttgg	atcgccac	acaggcgcct	gctggagggc	gaggagcaga	7080
ggtgaggacc	acagctgtgg	ggaggggtgc	ccctcagttt	cccccaggca	gtgctgcagt	7140
gcttcaacac	ccaggagcat	gtctcata	tatctactt	aatgtgcat	caacgctaatt	7200
tggaggagag	aatttgccagg	ttaaacagat	ttcaccagct	ttgctccca	caactaattt	7260
ctgtctctt	gtttccctta	taaggttgc	tgagggcgtt	ggtgtctgtaa	atgtctgtaa	7320
gtaatccatt	ttgtgggtcc	tgtttataaca	gcttgggggtt	ctgggcaggc	aaacttttcc	7380
tttagacttc	agatagtaaa	aactttaggc	tcgtggggca	tgttagtct	gcctcaactg	7440
ctccactccg	tttgcatgtt	aagcagccac	agccaaaggc	aatacttga	gaagcggtat	7500
gactgggttc	caagaaaact	tgattgacaa	acaggaaggc	tgcattgtgc	cgtagtttgc	7560
agactctaaa	agggaaagatg	gagtggggc	gtgagtgc	atagtaactt	aattagctac	7620
agtcatgtac	cacataaggaa	cttttaggtc	aaggatggat	ggaatatagg	acagtagtcc	7680
cattagatta	taccatattt	ttactctact	ttctctagggt	tagctatgtt	cagatacaca	7740
aatacctacc	atgggtttac	agttgcctt	agtcttcagt	acagtcacat	gctgtacaga	7800
ttttagctt	agaagcaaca	ggctatgcta	taggttaaac	ttgtcaaaacc	cctgaccaga	7860
aggctgcata	cagccccaggaa	cggcttgc	tgtggccca	cacaaatttg	taaacattct	7920
taaaaacttac	gagattttgc	tgtgtgtat	tttttaaagc	tcatcagcta	ccgttagtat	7980
tagtgat	tatgtgtggc	ccaagacaat	tcttctt	ccagttgtgc	ccagggaaagc	8040
caaaagattt	gacaccctt	gggcctgggt	gtgggtggc	acacctgtaa	tcccagcact	8100
ttgggaggcc	aaggcagggt	gatcacttga	ggtcaggagt	ttgagatcag	cctggccaa	8160

Siemens 0022 Seq Listing.txt

atggtaaaac	cccgctctca	ctaaaaataa	aaaaattagc	cgggcaaggt	gatggacacc	8220
tgtatcccc	gctactaggg	aggctgaggc	aggagaatca	cttaaaccca	ggagggcagag	8280
gttgcagtga	gccgagatcg	cgccactgca	ctccagtcgt	ggcgatagag	agagactccg	8340
tctcaaaaat	aaaataaaaa	aataaaaaag	gttggccacc	cttgcacag	agcccaggtg	8400
tgttagtagc	tacaacatgt	aggttgcgt	atgtgcactc	catgatgttc	gcacaatgac	8460
aaaatcattt	aatgctgtat	ttctcagaac	atgtctctgt	tgtgaggcga	agcatggcta	8520
tgtctgccta	tagagaggac	ctgggtaaac	agtgtatcaa	ggacgcctga	ggctaagact	8580
gcaggaagga	gtgcccattgt	gagggttga	ggggcgcgc	tagaaacaga	ggggagaagc	8640
tctgagcaga	aggggctctc	ggccgccagg	agactggggc	ctgtccctcc	cctctggcag	8700
gtgtcagcag	ctccccgcggc	ggggcttat	gcggggac	gtgcgtgtcg	ggctccggc	8760
cggtaacggg	cagcgtctgc	agtgc	ccccct	gcagcgggaa	cgtggcgtg	8820
tgtgtgcgc	ctgcggccag	agcagcggca	gcggccgc	cgtgcgttc	gcctgagcgc	8880
cccacttgt	accgacgccc	cctcaccagc	agcagcctc	gcctccagag	gcagccgg	8940
gctcccacgg	tccccagacg	tggggaaagga	gggcttcggg	gcccagcctc	cccatcgGCC	9000
cccacgcgc	gccttcctgt	ctcgcatccc	cgcccgctag	tcccttact	gttccgaga	9060
gcacaggcgt	cctagccgc	agctctccca	accccccga	ctaaaggact	gtcctcgag	9120
cccttagtaa	agaccccggt	ccggaggcct	ggatgcgt	ggcttctgag	ggacagatgg	9180
gcctggagcc	ccttgggtgt	gacttgctgt	gccttctaat	ccaatgtt	ctaatacacg	9240
tgcaggacag	gccacctctc	ctgcctggct	gcctggctcc	tccctctcc	cctgtgtt	9300
tctcagcatt	tccagtaaaag	ctcctgatca	tatgcattgt	gccctgagag	tctctcttc	9360
ctcttgcaca	cttggctttc	ttagtcggga	gggagagggc	ctggatctcc	tgacaccc	9420
ggtggaaacc	ccatcaactgt	ggctgctgtt	ccacttttc	cactctccac	cccagcccc	9480
acctcagcat	ttgaaagttc	cctgaccata	gggtcaaata	tacagacttc	ctcccagaag	9540
ccaacacatc	ccacatagct	ccccatcca	caccaccacc	atcacccctg	gggtcccaga	9600
cacagagacc	tccctgtggc	tccacagtac	ccatcatatg	tgctgctgcc	cacatggca	9660
catttcccc	tgcataaggcc	ctgcccacaga	acacctgcca	cactcacata	gcacacagac	9720
c						9721

<210> 366

<211> 4721

<212> DNA

<213> Homo sapiens

<400> 366

tgcttagcgt	gagggaaagg	tcagagtcct	cttcttcctc	tggcttcatg	tcctccagca	60
gagagtgcgc	atgacttgta	gattgtcttgc	cctaggctcc	cgagcggagt	ctgcaatcc	120
aggtcctgtg	cagccactca	gagatatggt	tatgacccca	ccctcagctg	catcttgc	180
tccggccct	ggtctgggt	ctgctgcattc	acggcaagcc	cctgctacca	tggcctcact	240
gggggcttgc	gcactgggtc	ctgtggacac	agattcagct	accactctgg	cagcacatgc	300
gggcccagca	ctgcctgtaa	caccattgtg	tgtatcaatg	agaggcctc	catgccc	360
aacctggaga	ttgcacagtgt	cataaagcag	gaggaggaga	agatcaagt	cctcaacagc	420
aggtttactg	ccttcctcc	caagggtgggt	gtcctggatc	acacccttc	tgaacccca	480
ccatgtgcac	aaccaggact	gggcactgt	gaaagaatca	gaggcaggca	agaccctgc	540
tgcctgaggt	cccaagtctgt	tgggagagggc	acacagacag	acagacagac	agacagacag	600
acagacagac	agaggcacc	aaggcccaga	aatactctgt	cagtccat	acggagagct	660
tgtggaggaa	agatgc	tttcaaaatt	tcaatgtt	tagttt	atcttagtt	720
gattttat	gcaattttat	aattgggcag	ccctttagaa	tgatcagagg	aactctggct	780
gcactgcgt	cccacaatac	ttatggacag	aaaacagaaa	gtgacat	aaaaacagaa	840
gtaacagctg	gattgtttgc	agctgtgtt	tgtgaacatt	tggctgc	tgattgact	900
aagctca	actgtgat	gctgagactc	agctattttgt	tacaaaggaa	aattctgt	960
ttagtttgc	aagggataat	tggaaaggaca	gccgagaaag	gaataaggcc	aatagacca	1020
agttcaggca	agctgttta	ctgtcagtcc	tgccgggct	cctctgtaca	aaagcagg	1080
aggcaggcc	gtttataggc	tattgtcaagg	ttttatagg	catgtattcc	taattccac	1140
taggaatgtt	ggaatttagca	gtttctggcc	aaggatctgt	ggtacagtt	ttataggtt	1200
aaagagtgt	ggccaggcgc	ggtggctcac	gcctgtatc	tcagcactt	gggaggctg	1260
gcgggggt	atcacgaggt	caggagtttgc	agaccagc	gaccaacatg	gtgatcccc	1320
gtctctacta	aaaataaaaa	aattagcttgc	gcgtgggtgc	acgcac	aatccagct	1380

Siemens 0022 Seq Listing.txt					
actccagagg	ctgaggcagg	agaattgctt	gaaatctgggaa	ggcagagggtt	gcagttagct
gaggttgcgc	cactgtactic	cagcctgggt	gaacaaagcaa	gattctgtct	caggaaaaaa
aaagtcttat	agtaccctgg	cacataagtc	aatttgcag	aaaatctgtt	tgggattttg
gtgcaaactt	gccttgcaat	atactcatta	gtcttggttc	ttgaatcaca	tgactgggtt
aaagtaaaac	aggtcatgag	aacaatgag	tctggaaagtc	taattccgta	atagggacca
ctgctataat	acatcataga	ttgatccc	ttgaaaatagc	tactggagg	cctatgccct
aataatagaa	ctcatttatt	ttctactccc	ctaaactctg	acataactaa	atgctgcaag
gtttaatgc	attatgccaa	agtatattt	caccaggtaa	aggaagcttt	tcaagatcta
tcaactgagg	acaatcaaac	ccttcacaat	ctagaatgca	gagatcaggt	catctggaga
cgatatctga	gaaagactgc	cattgagccc	cattggagg	ggccatata	agttcttctc
atcaccact	cttcagcaaa	acttcagggc	cttggac	cgttctacat	ctcgcaactc
aaaagggtcc	attcagactc	ttagaactgc	acatccatg	gagaccttaa	gataaagcca
agcagagaag	tttcttccca	gaaacagaca	gtattctaga	tgtggacagc	tttcccaga
ccatggatca	agacttctct	gccgtcatgc	aactcttacc	tctcttaatt	tttcccttg
ttacgccttc	ctcattcact	tggcaggata	atgctgtat	tcgaatttca	taatcagtag
cttctgagag	taatttttt	ttcttttga	gacggagtt	ctattgccc	ggttgggtt
cagtgggtg	acttggctc	actgcaaacc	tctgtctt	gggttcaagc	aattctcatg
cctcagggctc	ccaagtagct	gggattactg	gcatgcacca	acacactggc	taatttttgt
atttttttt	ttttttttt	ttggtagaga	ttggattttc	ccatgttggc	catgctgtc
acaaactcct	cactgcagg	gatctgcctg	cctcagccct	ccaaagtgc	aagattacag
gagtagggc	ccatgccccaa	ccttctgaga	gtaacttgc	ggagtgtt	atctgtcatg
tcaaactcaa	atcttacat	tacctaaaa	gttccac	tggccaactt	cagcaacatc
cctaattgca	ctatttggc	aaattatagc	tatgttctc	acttaagtca	ctgccccac
ctcttgcagg	agatccatgt	tctccatcc	cacatctcg	acacctctgt	ggttgtcaag
ctggacaaca	gccaggac	gaacatggac	tgcatcatg	ccgagatcaa	ggcacagtt
gacgacattg	tccacctgc	ctgggcaag	gctggatctt	ggtaccatgg	ctgcctgcca
gatgtggcac	ctgcctgcta	gatgtggcag	ttgggagg	aggatgtgag	atacctatta
gatagactta	ttttgcctgg	ggattctgg	taatggc	atagctctc	ggttgggtt
gcagggcagg	actgccatgt	gtgggtgcac	aggctgagca	ctgcacaacc	tgcacaatca
tccctaaagg	aagggatattc	ccacactgag	cctcaggagc	atctctgtt	cccccat
ggggagatga	aggccacgg	gatctggc	ggggagactg	tgggctgcac	caaggaggag
atcaaggagc	tgacccacat	gatccagagg	ctgatggcc	aggtggagaa	tgccaagtgc
caggtatggg	gcatctgtc	ccaaggccag	agagacttat	ggcctaacc	ttgtcacaca
gcctatgtgt	gccctacgt	gatctcagca	ttcatttctc	agtccctt	tccatgtaga
gtccctgg	gtggtcagtc	agggagtgc	aggatgatg	aggcaagagg	cctgtttctg
aggtgtcc	agctgaatgg	cagactggc	atattcagt	aatggacaga	gagaccgtaa
cctatctt	tctcttctgg	tccccagaa	ctccaagct	gaggtggagg	tgaccagg
tgagcagcag	ggtgagggtg	cccttagc	tgaccgc	aagtggtc	agctggagg
caccatgcag	aaggccaggc	agtaccagg	gttgc	tccaa	gcctcaatgt
gaaggcgtc	tcttgc	aacttctg	ttgtgagg	cagagg	tgcagcctg
agagctggc	ccagagctc	tctgcata	cctgccc	tttttagc	catca
ccagccctca	ctactacttc	tgtttcatc	tttgg	tttaggac	ctactgtt
tgagcacagt	ccaaaggagc	gagtcttagt	tgat	ttttttttt	caatagg
cttgcatgat	ctattagg	caatgtt	tctc	ttttttttt	ttttttttt
atgccctaat	ttataacact	taccgattt	agat	ttttttttt	ttttttttt
ttcaggctgt	tgctgtgact	tcatgt	ttgg	ttttttttt	ttttttttt
tgagctgg	ggagctgg	caagaaca	attgg	ttttttttt	ttttttttt
cacactgaaa	gacaaatagg	aagatattt	tct	ttttttttt	ttttttttt
tagggagact	gtgggggtt	gggag	ttt	ttttttttt	ttttttttt
gttctttgt	gtctgtct	attttca	gtt	ttttttttt	ttttttttt
ctggca	ttttttttt	ggacagg	ttt	ttttttttt	ttttttttt
acccaggtct	tccctcct	cacttctg	ggg	ttttttttt	ttttttttt
agttcagagc	tgtgtacc	atgg	ttt	ttttttttt	ttttttttt
taaagctgac	ctttctc	ctgcac	gtt	ttttttttt	ttttttttt
tgtgagta	tctggcc	aagg	ttt	ttttttttt	ttttttttt
gctctgagg	ttgaaatacc	aagg	ttt	ttttttttt	ttttttttt
		ttt	ttt	ttttttttt	ttttttttt

<210> 367

<211> 1925

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 367

actccaggta	ccctatcctg	tcctctgcaa	ccaaaacgtc	caggaggatc	atgacactgcg	60
gatcaggatt	tgtgggcgc	gccttcagct	gcatctcg	ctggggccg	cgcggccgc	120
gctgctgat	caccgcgc	ccctaccgt	gatctcct	ctaccgcgc	ctcaccggg	180
gcttcggcag	ccacagcgt	tgcggaggct	tccggcccg	ctcctgcga	cgcagctcg	240
gctaccgctc	cggggcggt	tgcggccca	gtccccatg	catcaccacc	gtgtcggtca	300
acgagagcct	cctcacccc	ctcaacctgg	agatcgaccc	caacgcgcag	tgcgtgaagc	360
aggaggagaa	ggagcagatc	aagtccctca	acagcagggtt	cgcggccttc	atcgacaagg	420
tgcgcttcct	ggagcagcag	aacaactgc	tggagacaaa	gctcgagttc	taccagaacc	480
gcgagtgttg	ccagagcaac	ctggagcccc	tgttgaggg	ctacatcgag	actctgcggc	540
gggaggccga	gtgcgtggag	gccgacagcg	ggaggctgc	ctcagagctt	aaccacgtgc	600
aggaggtgt	ggagggtctac	aagaagaagt	atgaggagga	gtttctctg	agagcaacag	660
ctgagaacga	gttttgtggct	ctgaagaagg	atgtggactc	cgcctaccc	cgcaagtca	720
acctggaggc	caactggag	gccctgatcc	aggagatcga	cttccctgagg	cggctgtatg	780
aggaggagat	ccgcattctc	cagtccaca	tctcagacac	ctccgtgggt	gtcaagctgg	840
acaacagccg	ggacctgaac	atggactgca	tcattgccga	gattaaggca	cagtatgacg	900
acattgtcac	ccgcagccg	gccgaggccg	agtccctggta	ccgcagcaag	tgtgaggaga	960
tgaaggccac	ggtgatcagg	cacggggaga	ccctgcgcgg	caccaaggag	gagatcaatg	1020
agctgaaccg	catgatccaa	aggctgacgg	ccgaggtgga	aatggccaag	tgccagaact	1080
ccaagctgga	ggccgcgggt	gctcagtctg	agcagcagg	tgaggcagcc	ctcagtgtatg	1140
cccgctgaa	gctggccgag	ctggagggcg	ccctgcagaa	ggccaagcag	gacatggcct	1200
gcctgatcag	ggagtaccag	gaggtgatga	actccaagct	gggcctggac	atcgagatcg	1260
ccacctacag	gcgcctgctg	gagggcgagg	agcagaggct	atgtgaaggc	attggggctg	1320
tgaatgtctg	tgtcagcagc	tcccggggcg	gggtcgtgtg	cggggaccc	tgcgtgtcag	1380
gctccggcc	agtgactggc	agtgtctgca	gcgctccgt	caacgggaa	gtggcggtga	1440
gcaccggcct	gtgtgcgc	tgccccaat	tgaacaccac	ctgcggaggg	ggttcctgcg	1500
gcgtgggctc	ctgtgttac	agctccctgg	gtgtggggtc	ttgcggcagc	agctgcccga	1560
aatgttaggc	accccaactc	aagtcccagg	ccccaggcat	cttgcctgc	cctgccttgc	1620
ttggccca	gtgtcaggcg	cctggagaag	tgctcagcta	cttgcctgc	actttgaaag	1680
acccctccca	ctccctggcc	cacatttctc	tgtgtgatcc	cccactctg	ggctctgcca	1740
ccccacagt	ggaaaggcca	ccctagaaag	aagtccgcgt	gcacccatag	gaagggggct	1800
caggagcagg	aaggggccagg	accagaacct	tgcccacggc	aactgccttc	ctgcctctcc	1860
ccttcctcct	ctgtcttgc	tctgtgttgc	aataaattaa	tgtagccaaa	aaaaaaa	1920
aaaaaa						1925

<210> 368

<211> 2108

<212> DNA

<213> Homo sapiens

<400> 368

tccattcgg	cgtctccatc	ctcagaacct	cctctttcc	ccaaaaagca	ccatgacttg	60
tggatcttac	tgtggtgcc	gcgccttcag	ctgcattctc	gcctgcgggc	cgcggccgg	120
ccgctgctgc	atcaccgc	cccccttacc	tggcatctc	tgctaccgc	gcctcaccgg	180
gggcttcggc	agccacagcg	tgtgggagg	ctttcgcccc	ggctccctgc	gacgcagtt	240
cggctaccgc	tccggggcg	tgtggggcc	cagtccccca	tgcatcacca	ccgtgtcggt	300
caacgagac	ctccctcacgc	ccctcaacct	ggagatcga	cccaacgcgc	agtgcgtgaa	360
gcaggaggag	aaggagcaga	tcaagtccct	caacagcagg	ttcgcggcct	tcatcgacaa	420
ggtgcgttc	ctggagcagc	agaacaaact	gctggagaca	aagctgcagt	tctaccagaa	480
ccgcgagtgt	tgccagagca	acctggagcc	cctgtttgag	ggctacatcg	agactctgcg	540
gcggggaggcc	gagtgcgtgg	aggccgacag	cgggaggctg	gcctcagac	ttaaccacgt	600
gcaggagggt	ctggaggggct	acaagaagaa	gtatgaggag	gaggtttctc	tgagagcaac	660

Siemens 0022 Seq Listing.txt

agctgagaac	gagtttgtgg	ctctgaagaa	ggatgtggac	tgcgcctacc	tccgcaaatc	720
agacctggag	gccaatgtgg	aggccctgat	ccaggagatc	gacttcctga	ggcggctgta	780
tgaggaggag	atccgcgttc	tccagtccca	catctcagac	acctccgtgg	ttgtcaagct	840
ggacaacagc	cgggacactga	acatggactg	catcattgcc	gagatcaagg	cacagtacga	900
tgacattgtc	accctgtagcc	gggctgaggc	cgagtcctgg	taccgcagca	agtgtgagga	960
gatgaaggcc	acggtgatca	ggcacgggga	gaccctgcgc	cgcaccaagg	aggagatcaa	1020
cgagctgaac	cgcattgatcc	agaggctgac	ggctgagggt	gagaatgcca	agtgccagaa	1080
ttccaagctg	gaggctgcgg	tggctcagtc	tgagcagcag	ggtgaggcgg	ccctcagcga	1140
tgcccgtgc	aagttggccg	agctggaggg	tgccctgcag	aaggccaagc	aggacatggc	1200
ctgcctgatc	aggaggatacc	aggaggtat	gaactccaag	ctggccctgg	acatcgagat	1260
cgcacccatc	aggcgcctgc	tggaggcga	ggagcagagg	ctgtgcgaag	gcgtcggctc	1320
ggtgaatgtc	tgcgtcagca	gctcccgccg	tggcgttgc	tgtggcgtatc	tctgcgcctc	1380
cactactgcc	cctgttgtct	ccaccagagt	cagtagcgtc	cccagcaaca	gcaacgtgg	1440
ggtgggact	actaacgcct	gcccgcctc	cgccccgggtt	ggcgtctgcg	gcggcagctg	1500
taagagggtc	taaggaggct	ggcgctccg	ccagcgcctg	tcgcgcgtac	tctccaccca	1560
gccagtagct	cgcgcaggaa	gaacgcgcg	cccgcgcgg	cctcccaata	gcccgcgccc	1620
gctccctgca	ctctaagcgc	tctcccaacg	tccgctccgg	gagccatccc	cggtcgcagg	1680
agtccgggaa	gggcccgggaa	gcccgcgtgt	ctctctctgt	agcccttcct	gttagtcaat	1740
ttgttgtccc	gaggattcat	cttttcttc	ctccttacctt	ctgttttttt	tttcatgtat	1800
gcattggct	tgcctgagct	cttcctcaaa	gcttggagga	acgggggagg	gcccggaaat	1860
gtccctgtct	gcacgacctg	ggactctgcc	catgtgcttt	tgcctgtgga	atggagacgc	1920
ggacccttgg	tagtggttct	atgactctgc	gagggacagg	cccacgcgtg	tggggagaac	1980
atcccttcc	ggggctgccc	tcaagagctt	ctgaaaaact	aatgactctg	ctgccttctc	2040
ctttgtctt	gtttcactct	gtgttccaa	taaactcatt	gtagcgaatc	aaaaaaaaaa	2100
aaaaaaaaa						2108

<210> 369

<211> 1883

<212> DNA

<213> Homo sapiens

<400> 369

gttccatcct	ctgccatcta	ctccactgtt	cagacaccc	ctaacctccg	tcatgacctg	60
tggcttcaac	tccataggct	gtgggttccg	ccctggaaac	ttcagctgt	tctctgcgt	120
cgggccccgg	ccaagccgc	gctgcataac	cgcccgc	taccgcggca	tctctgtcta	180
ccgcggcctc	accgggggc	ttggcagcca	cagcgtgtc	ggggcttcc	gcgcggctc	240
ctgcggacgc	agcttcggct	accgcctccg	gggcgtgtc	ggacccagcc	ccccatgcat	300
caccacgt	tcggtaacg	agagcctcct	cacgcctcc	aacctggaga	tagacccaa	360
cgcgcagtgc	gtgaagcagg	aggagaagga	gcagatcaag	tccctcaaca	gcagattcgc	420
ggccttcatc	gacaagggtc	gcttcctgg	gcagcagaac	aagctgtgg	agacaaagct	480
gcagttctac	aaaactgcg	agtgcgtcca	gagtaacctg	gagcccctgt	ttgctggcta	540
catcgagact	ctgcggcgg	aggccgagt	ctgtggaggct	gacagtggga	ggctggcctc	600
agagctcaac	cacgtgcagg	aggtgtctgg	gggctacaag	aagaagtatg	aagaagaagt	660
agcaacttcga	gccacagcag	agaacgagtt	tgtggctcta	aagaaggatg	tggactgtgc	720
ctacctccgc	aagtcaagacc	tggaggccaa	cgtggaggcc	ctgatccagg	agattgactt	780
cctgaggcgg	ctgtacgagg	aggagatccg	cattctccaa	tcccacatct	cagacaccc	840
ctgttgttgc	aaagctggaca	acagccggg	cctgaacatg	gactgcatacg	ttgcccagat	900
caaggcacag	tatgtatgaca	ttgcccaccc	tagccgggt	gaggcccgagt	cctggatatcg	960
cagcaagtgt	gaggagatgt	aggccacagt	gatcaggcac	ggggagaccc	tgcggcccac	1020
caaggaggag	atcaacgcgc	tgaacccat	gatccagagg	ctgacagccg	aggtggagaa	1080
tgccaagtgc	cagaactcca	agcttggaa	tgccgtggcc	cagtcgtgc	agcagggtga	1140
ggcggccctc	atgtatgccc	gctgcagatc	ggccgagctg	gagggcgc	tgcagaaggc	1200
caagcaagac	atggcctgcc	tgatcaggga	gtaccaggag	gtgtatgact	ccaagctagg	1260
cctggatatac	gagatcgcca	cctacaggcg	cctgctggag	ggcaggagac	agaggctgtg	1320
tgaagggtt	gaagctgtga	atgtctgtgt	cagcagctcc	cggggtgggg	ttgtgtgcgg	1380
ggacctctgc	gtgtcgccgg	cccggccgg	gacgggcagc	gtctgcgtg	ccccctgcaa	1440
cggAACCTG	gtgggtgagca	ctgggttgtg	caagccctgt	ggccagctga	acaccac	1500

Siemens 0022 Seq Listing.txt

tggagggggc	tcctgcggcc	aggggaggta	ttaagtggcc	caaaagagag	ccaggggagc	1560
cccttctgcc	tgccagacgt	gccactgccc	caccaccagc	tgaaaacacgc	agcacatcg	1620
tggctttcc	ccttgttgc	tgagaataca	ccatcggtc	attcccacca	gtggctcctc	1680
cccacccccc	atccccactgg	aaaggggtct	gtggctgggg	aatagaccca	ttccctcccc	1740
tgtctcagcc	ttcagccccct	cccggggaga	agggccttg	ttccctggaa	gaagcactgt	1800
gagactgttc	cccctgcctc	tctggctct	tgtctccct	tttccaataa	acttgggacc	1860
tgcaaaaaaa	aaaaaaaaaa	aaa				1883

<210> 370

<211> 13464

<212> DNA

<213> Homo sapiens

<400> 370

gcaggttgca	gttcccttg	cgttctgcct	agcgggagat	tcctatgctc	ataaatggca	60
ttaataatgt	tctctgcctt	tatgtgtca	ggaggccctgt	ccccctgccc	ataaaaaggca	120
ggagcagtaa	caggccctcc	atgtgagacc	gtgtcatctt	tcaatccctca	gtccagggg	180
ctgtcccgca	gaacagaggc	atggcgagcc	aatccctgca	catcagctct	ggctgcgggg	240
tcaagaactt	cagctcccg	tctgcactg	tgcccaagcc	tgggtatcac	agctgtgtca	300
gtgccatggc	ccatcatggg	gtcagccctg	gggggcttagg	ctccaggcgc	ctcggaggct	360
ttggcagtca	gaggctgtgt	acgggtgggt	ctcccccggat	cgcggtgagt	tgtagatggc	420
ccctacacag	caggggcagg	tttggctact	gggcaggggg	ccttgcagg	cccagccac	480
cccgcatcac	atctgttacc	atcaacgaga	gcctcctcat	gcccctcaac	ctagagatcg	540
accccaatgc	ccagtgtgt	aagcatgagg	agaaggagca	catcaggtgt	ctcaacaagt	600
ttgctgcctt	cattgacaag	gtgggtctgt	gagctgtttc	ctggactgt	ggcttagaa	660
ggggaaaggg	acttggAAC	cgatgatagg	gtgggtctaa	ttctctgtt	actgactagc	720
acgtggctgt	gagaacgtgg	ctgaatcagg	gtcttggtt	tcaaattgtt	ccatgtcagt	780
caaattgcaaa	atgaatctga	aaccaccaga	cagaagaggg	gtgtttgtc	ctgctgtca	840
caggcaagca	gcaagcatga	tgtgtgtca	ccgtccatct	tcccgatctc	accggcacgc	900
agttaggacag	tgtggcagag	cgggcaactc	tgccttagggc	tgtctgacct	cccgcttaga	960
ggagatgcta	ccgtccctag	catggagcag	gagcaggatg	cagagggtc	agaggctcct	1020
tgcctgtccc	tccgtgggtgg	ggacatcata	ggaaggctgt	gaacccttag	gacttctgccc	1080
cgaggcactt	tataccctgc	agcacatgc	tagattaaag	gcagttaggt	gagaaactta	1140
aagcatggtc	cagggagagg	ctgttgaatt	gactttctg	atgctgcagt	ttcagagtc	1200
tcctgggtga	gtgtatagct	ctgggttcc	ttaaccta	gatgccctcc	ctaggagctc	1260
acagtctttg	ggggaggaca	gccaccaaag	ttaaaggag	gagaagctcg	tcttccaggg	1320
ctgaatggtg	tgtatatcta	caccctggg	ctgcataaga	aggcacaaac	cagggcgtat	1380
gtgggtggaa	gttctgtct	cagatcaacg	ctacatcaga	agtggcata	tctgcacaca	1440
gaggtgtctgg	gtgtccattt	ttaacatacc	gctggctgtc	cagattactc	ttcccttcca	1500
tcagcacaaa	gaagctact	gtagagttag	gcaggttatt	cattgcacaa	ggacacctag	1560
caagagcagg	ggaggttga	atccagccca	ggcttgc	gcagagccat	gtgccctggc	1620
agggggctgg	aggcatctt	tcctaattt	ctcaaaagca	cagtggaaac	cctgagagtg	1680
catgctcaaa	ggggctctcg	catgtggcct	tttgggc	acccatgaat	gctgctct	1740
ccgttgagag	gaaccagttc	tgggtctgg	gagaggaact	tataccactg	caccaggctg	1800
gtctttccct	cccttgggg	tgctgtatggc	caccctctc	cctccagct	tcttccgtca	1860
ggctccaaac	tgcattgagc	tccagactac	aaagtgcatt	gataatggtg	gtttaatcc	1920
gccagagggc	tgtcccattga	cctgggtctg	catgttggaa	tccaaggcag	atgcctttt	1980
gataatcaga	gtttttgttc	cttgcctc	aagcacggac	aattggacag	ttgagggttt	2040
gtaccaggct	tgtactccca	agaggtagg	gttggagaag	aaatcacctg	cttttagggct	2100
ggtaaatgca	aacttcaacg	ggggcttgg	gggtcacat	aatgaagcca	aacttggagag	2160
gcatgcccac	ctagagggac	agtagctgt	gctcactcca	gccacaggcc	tacctagct	2220
tgccagaact	tctggtatgt	caagagggtc	agagagatcc	agattctac	ttgaaaccac	2280
tcagttatta	agtgttggca	actaatcaga	tctctataaa	acagtgtca	aggcaagtaa	2340
gacatgcctg	tgggcctgat	agggcctgga	gctgccagtg	taccactgt	aatgtatttc	2400
tcctgtcttg	tttacaatgt	caattcagtg	agaatgaggc	aaagtggct	ggttggggc	2460
agagtttagag	tgagaggtct	cctaattcct	ggtctggat	actctgtcct	ggcctttagt	2520
cccccagcac	cagaggtaag	gaagagtcat	ggtatgtaca	tttaaaaatt	gctgttgtac	2580

Siemens 0022 Seq Listing.txt

aaatgcccac	aaacttagca	actaaaaaca	acacaaaattt	actacctaaa	aggctgatgt	2640
taagggtcg	gcagggctgc	atttctttt	ggaggccccca	ggggagcatc	tgtttccagg	2700
gacatttagg	ctttggcg	aattgaggtc	cttgtgggt	caggactgag	gtccctgttc	2760
tcttgctgc	tggtcgccag	agggtgttct	cagcttccag	aggctatcca	cattccttgg	2820
cttggcccc	cctcttcctc	catctcaaa	gccataatag	cgggttgagt	ccttctcatg	2880
tttcaaattc	ctctagtgc	ggcaccttt	gggggatcat	tattgccta	gtatgcatag	2940
tatgaaatat	ttctgcagga	tgttaatttc	attctgtgt	gaataaacga	acgtttataa	3000
atagtgtct	cttctggga	aggggggtgg	gtggagagaa	gttacttggg	gactactgt	3060
gacctgcact	ttcagacttt	gccaataatt	ggccctcctg	gggaagggtca	caggctgctg	3120
cagggcgccc	gccccctca	atggcagaaa	gagctctggg	ggaccaggca	aaacctgctc	3180
tcaggcttc	ccctcagtct	ctttccct	tcctgaatgg	caggtgcgt	tcctggagca	3240
gcagaacaaa	ctgctggaga	ccaagctgca	gttctaccag	aaccgcgagt	gctgcgagag	3300
caacctggag	ccccctgttgc	agggctacat	ggcgaactctg	cggccggagg	ctgagtgcgt	3360
ggaggccgac	agtggcaggc	tggccctaga	gctcaactgc	acgcaggagg	cgtggaggg	3420
ctacaagaag	aagtggcat	gacagggctg	ggatgggttct	aggcagtgg	gtcagtctta	3480
gctgagatca	cacaactcc	ccagaagctg	agactgtga	aggccagggt	tgcctgaca	3540
agctatcaga	cacttctgc	ttaccgtctg	ctttatctcg	tgtcagctcc	tagttcttac	3600
accctgtgc	tgggggctgg	gaaaagattt	agagaagagt	ttccctgt	ggagggatgg	3660
gacacacatt	cagggtacag	actgtgcag	agatgaagag	atagaaacaa	atgaaacagg	3720
aggagcaagg	acagcagggc	tggagaggag	gagcccggag	cagtcagagc	taggacgggg	3780
ggaaaaggaa	aggcccgttgc	gaggtatctg	aaaatgaattt	ggctgaagcc	attccaagta	3840
tctgatgaac	ttggattctt	ccttatttt	ttctgtcagat	aaaccatcag	tttatcggtc	3900
tgcagggctc	cacaattcaa	ataccaatgt	aaatttgggt	tttcctgt	tathtagctt	3960
gttcattacc	tagtctaaac	tcaccgggtc	actgtactta	cctttagat	cagacagagt	4020
gaaggggtat	tttgacctca	atcaatcctg	gtatttccaa	ccctgttgg	gattcttgg	4080
agttcagggtt	ttaccatctg	gctggacc	gcagtgggtc	ctcatgtccc	ttgggggtgaa	4140
gcaaatgtag	acacaatcc	cagtgtgcag	gcgtcaaggt	ctgtctccca	ctctgggggt	4200
gtgcggctg	gtatttataag	agctgagtgc	ttactgttag	cccaatgtac	catggaattc	4260
aaaagttatg	aaaacaggcc	gggcgcagtg	gctcatgcct	gtatcccag	cactctggga	4320
ggccgaggtg	gggtgatcac	ctgaggtcag	gagttcaagg	ccagccgtgc	caacatggtg	4380
aaaccgcgtc	tctactaata	ataaaaaaaa	aatttagctg	ggtgtgggtgg	ttggcgcctg	4440
taatcccg	tactcaggag	gctgaggcag	gagaatcgt	tgaacccggg	aggtggaggt	4500
tgcagtggc	cgagatcag	ccactgcact	ccagcctgg	caacaagagc	gaaactccgt	4560
ttcaaaaaac	aaaataataa	taaaggat	aaaaccatgc	tctgggtct	gggaactctg	4620
gtcttcttgc	tgggggcagg	gctgtcc	gcttacaatc	tcacaggcag	gaggaagagg	4680
gctgggctgc	ttgggggggg	tgggggaat	gcttgaagaa	gggggtgtt	ctaggaattc	4740
aaggccctgg	atattttgggc	agggggata	aaacctcat	gggggtgg	catagagctt	4800
tgtgtttgt	acagtgtaga	atttaaaggc	tctgtggaa	atctgtctgt	ttttaatag	4860
ttccacaaat	atttatttgg	tgactcact	cacttcaggt	gatttagacc	aagacacaaa	4920
gagattaaat	gttttgc	aggttttgc	gcaacttcag	ttaagctggg	accagatacc	4980
agggacctgg	acttcaagtc	cagtgtc	ccaatgggtt	ttttgtgg	gggaaataga	5040
agtccagaga	ggcaaaaccc	cttctccaa	ggcacagaga	aaggagaaaa	ccagggagtt	5100
tggcacac	gggctgttgc	ctggcagg	cctcagtccc	agggcc	ccacctgggt	5160
tgtttctc	caggatgaa	gaagagctgg	ccctcagg	cacagctgag	aatgagttca	5220
tgtatgtgaa	gaaggtgagt	aactgttctc	acatgggaa	aattaaatcc	tggacaccgg	5280
acgctctgtat	gctgtggg	ctgtcagg	cccattagcc	caattgttgg	tggtaaggt	5340
ctggagcccc	tggcacaaga	aggtgggtt	ttttgggt	agaagccatc	atagagccca	5400
tgcaggaatc	cagacagtgc	cgatagagcc	ttcataaaaa	gaaaacctca	ccatgctcc	5460
gcttgacttt	ttttaaacta	ctggatttgc	tgaaaatgtt	aattttaaatt	ccgtcttgg	5520
tttttgcggg	cattgcctcc	ccctgtt	caagactagg	ggttgggtt	cagcttggta	5580
atgatttcaa	agtgtgacca	tcattcag	caattggta	tgatggaaaa	ccctgggaa	5640
ataaaaactgt	gaatggttt	cctttgtt	catgttgc	agtggaaagt	catgtgaatg	5700
ttttttaaca	agtaatgtgc	ttgttgc	gccttctt	tttgtagat	cacaggggtgg	5760
agtgaagggt	ggtgacagat	ctgcaatag	aggctgg	ttggtct	gcaggagagt	5820
cagttat	ttgtgtgg	ttttcctgg	ctgggtct	aggacaac	acagagaggc	5880
tctgtgtact	tcgtatgtt	gtactctgt	ggtcagt	gtggggaggc	agcagccgt	5940
cgttctggc	cgtgttat	ggcttctt	tttggca	tcctcgg	tccacttcat	6000
ttcccaagt	ggtctcattt	atgcaatgg	aggtaacgt	actggcagac	aacaaggct	6060
ctgtcccttc	taggggg	ctgaagg	agatcaga	tctaggtt	acttgaagt	6120
gaagggtggc	tggcagggt	caggccag	gcagagag	ggccaggag	gtggcctcag	6180
ggccgcgt	ggagagccg	ggctcagg	cacagcgg	gggacaaagg	tcactccaca	6240
tcctctgt	tctatctcc	ccaggatgt	ggctacac	atctgcac	gacggac	6300
gaggccaa	tgagccgt	aaggagg	cagtctt	gcagtc	tacggggagg	6360

Siemens 0022 Seq Listing.txt

taaatctctc	cccatctctg	gaagagcaag	tgagagagga	gacagggggag	ggtttcccttg	6420
gagtgtggcc	tgtcctgggt	cctgggttct	aggaaagctg	tacattcttg	actctccatg	6480
gcctggatat	tttccttat	gtgaccagag	gggatttttc	tcttgcgg	gtggaaactgg	6540
gtgatgccct	tcccttaaga	tgattgaaa	aaaagtgggt	aattccatg	tcatgaagt	6600
gagatctgac	aattaattta	ttaatttagg	ta>gtaaaaa	acccaagcag	ataatccagg	6660
cctctccctc	tggccacaat	ctgggtgatt	agatttgc	atagagctat	agctgatctg	6720
gattattcag	gccccaaggg	ggggtgagcc	ggggtgacgg	catacacata	aatccagctc	6780
tgttgatccc	tgtattagta	gaattccacg	ttactcatg	ctttagggcc	acagtccaa	6840
ttccagccct	ttcctcttag	aactacagtt	tttaaatttt	cctgacttgc	ttgttagttt	6900
ctaatttcag	agttgggata	ttttttttt	tttttaattt	cctgagaaga	taggatcaga	6960
aggggatttg	gagttgaggg	cactggttgc	tgtcttctac	aggaaatctg	cctccttcaa	7020
tcacaatct	ctgacacccctc	catgggggtg	aagatggaca	acagctggga	gctcaacatg	7080
gacttggttg	tggcttagat	caaggctcag	tatgtatgata	ttgcgcagctg	cagccgggtg	7140
gaggctgaga	cctgataccca	aaccaaggta	gtctggaggg	cagggcagcc	ccactgagac	7200
aggaggatag	ctgtgagccct	cgagtttccc	ttggaaacgc	actcctgcac	tctagagggg	7260
ctgcccgtga	ggtcctgggt	agagcagggc	cagaaggccg	gagagctgtg	gaacagtagg	7320
ctggctgatt	gggtcggggg	cagcgcctc	tagccattgt	ttctgcgtgt	ttgctctcaa	7380
cctgcagtc	gaggaggtg	aggccacagt	gacccaaacag	gttggagaacc	tccgcagaac	7440
caaggatgag	ctcaacgagc	tgaactgcat	gatccagagg	ctgcgcggcag	agggtggagaa	7500
cgacaagcag	caggttgggg	ggcgcggaga	ccccgcctca	tacacctgcc	acttcttgc	7560
tggttcctgc	ttccctcccta	tcttcaggga	ctgctaccat	ttggagagggc	gtgtatttga	7620
actgtgccag	agtagactac	tataatcagc	atgcaaggc	tcctgttcca	acacccacta	7680
ttatcaaact	tccaaattct	tgtggatctg	atagggttaa	actggcacct	aattgttatt	7740
ttaattttca	tttcttttgt	taagtagtga	tatcaaattct	ttcctcatac	acttactagt	7800
tatttgtatt	cccccctctaa	gacctgtcta	ctcatatatac	tgcccatttt	tctattgtgg	7860
ttccttcctt	ttttcttagt	gatttgcagt	attcctttgt	ccattctatc	tggattgtaa	7920
gccttgcata	gtacacatata	tgcaattaac	tttctctcag	tctatcactt	gtctgtttgt	7980
cctttattga	gcccaaattct	ttaagctgga	tgtgcccää	tccatcttaa	gttcttcctt	8040
taatgggta	gacttagaag	gtattgaggt	aatagaggtt	gccttctaaa	tttctcccc	8100
cgttagttt	atagttttac	ctcttcatt	taggtctgt	atccatctga	actttattt	8160
tttttttgt	atacacagtg	agtagggtc	taaatttaatt	tttctacata	tcataagaaa	8220
atagattatg	taatccatcc	tttcgcctagt	gätttgtat	actacctcca	gcacaacaca	8280
gtgctccac	acatgcctgg	cttaatctct	gtcttctgcc	ttctgagttt	ctgttctca	8340
tcactgcaca	ggatgtatca	tttagtaattt	gttgggggtt	agacctgtgt	aatgaaatat	8400
gcgaggtgtt	tactttttag	atgtgaaatt	agagaagatt	cgaagttgtc	ccgtgataac	8460
agtgcctttg	ttcattttgc	tctgatatgc	tttcttaagc	gggggtgaagg	gagggggctgt	8520
agtttagtgc	tccggagttt	ttgcacatgg	gagcttctt	cagcaagatg	atctcagcag	8580
gccaaagagt	gagaccctgc	acagttgcct	ttgaataacct	gagcttggtg	ctaattaact	8640
gcatacgctt	gggcaagtca	cagtttttgc	gagtcttaat	ttcttcattt	gcataatggg	8700
aacaataatg	cctgtgtga	caagcttgc	gaataacttt	gaagttcaaa	taagataaaca	8760
tctatgaaag	taccttgtaa	acgaacaacg	gtatatacaa	gtataaggta	atatcactaa	8820
taatgatcat	tccattttca	gtgctaacat	ttcctccctc	taatggctca	cctgccaaac	8880
tcaagtctgt	tttatgataa	agtgtacaaa	aatgaaggaa	aaaaatccaa	atgggcatg	8940
tccctgccta	gttaattttc	catttatatg	tatttctttt	aaatagtatt	aagtttaaaa	9000
attAACCGTT	ttgaatggag	ataaaatagg	atgaccaagg	ccactggaga	cccaccagag	9060
tccccacaac	ctgcaccctt	tttaaactcc	ttcccttctg	tccatcccc	cagcgcgtca	9120
agctggaggc	tgcgggtggcc	cagtctgagc	agcagggtgt	ggcagccctc	agcaatgccc	9180
actgcaagct	ggctgagctg	gaggacgccc	tgcagaaggc	caagcaggac	atggcctgca	9240
tgctcaagca	gtaccaggag	gtgatgaaact	ccaagctggg	cttggacgtg	gagatcgcca	9300
cttatcgca	actgctggag	ggtgaggaga	tccggtgagg	acaggggctc	cagggtccct	9360
tcaggttcct	actcagagct	ggactgaaat	attccaggca	gagaatgtt	aaactggaa	9420
agactctaga	aatcatggac	tccaaaccatg	tcccattt	gcagataggg	aaactgacat	9480
cagaggggg	aaggggcttg	ccaaagagca	cagccaggta	atggctcacc	taaaatgtac	9540
cagtctctgg	gtggggccacc	aatgctcttc	tccctcctgc	acggccccc	aggctggaaat	9600
ctggatctca	ttccaaggcc	actactttac	cctcttgcact	gaaaggatgt	ttctgcaatc	9660
agtttcagtg	gggtcttaaa	gctggaaatca	ttcagaaaaat	tagttaaagg	ccatattgtt	9720
tgggatgtgc	aaagaatccct	atcaacctag	atagccttgt	gttcaggacc	agggaaataga	9780
aatgagccgc	acaagttctg	tccttgcaaa	ggaagacaag	acagacatac	atcagtccctc	9840
cagagcttgg	ggttagtggc	ccagggaaagc	tgtcacagaa	ggagggctgc	ttctcaacag	9900
ctgaggagaa	gctatgctga	caatttgagc	caagaattta	gggcagggtga	agccagtg	9960
gggcagagtg	atgcgttattt	acacctggga	ttgttgcatt	gtcctcttgg	cttgggacgg	10020
ccacatcgat	agagtttcta	gctgggtccc	ttcagggccg	ggaggctaga	ctgggttagta	10080
gagtatacag	gtgaagagca	caggccatga	gccactctg	ggttcaaatac	ccagctctgc	10140

Siemens 0022 Seq Listing.txt

cacttattag	catgtgacct	ctttgtaccc	cagcatctc	agctgtaaaa	cagagataat	10200
cacaaaatcc	accttgtaa	gctgtgcag	gattaagtga	gttttaatgg	aacatagtaa	10260
ccccccagtag	gaggaggtga	ttgtcatgag	atgatggcca	ggctgggctg	ccccccatgaa	10320
gagggactc	aaaggcctgg	ttggcttgg	aaaccccttca	tgaagcgtca	ctgtggcag	10380
cccggccacg	ctgtggact	tgctccatgc	ttggctcaag	cacacacact	tttctgcccag	10440
cttccttggg	gctttgggtg	aagccactgg	agttctgtct	gcattcgat	acttaagccc	10500
ccaaccact	cactagcatt	cagtgagcag	ctggcacttg	cactgat	cattatgata	10560
ctaataatta	atggattaat	aactcaatca	gaattattag	tacacatccc	ctatccatgt	10620
gattttaaag	tcaatttagc	atatttgtct	atgtgtactg	tggccattga	ccttttaaga	10680
gactgcctcc	tcttggcatt	taaaatattt	aatttaatta	cataagtaat	gctcgctgct	10740
gccaatacag	aaaataaagaa	aacaaaagca	ttcagagcca	ctcaactcag	agatagctgt	10800
cggcagcatt	gtggtttgac	aggcaccacc	acggggcactg	tgggttccct	gaaagggcac	10860
agtcgttaagg	ctgtggcaat	gccagactga	gtggcaggaa	accgagccag	atgtgtacat	10920
cctcactcaa	aagatgagtg	aagaagtgtt	ttgagctggg	cagaatgagg	cagggttagag	10980
ctttccttggg	gaaaaaggtt	tgaagtggga	agctacaaaa	ggggagacag	aacagaaagt	11040
gcagagaggt	gtgaggggagg	agggagtgtt	tataaaaagc	ccactgttagt	gttatatatg	11100
tctcatcata	aataatatcc	acatattttt	tgagacagag	tctcaacttg	ttgcccaggc	11160
tggagtgcag	tggtgcata	ttggctcatt	gaaaactcc	tttccggat	tcgagtgatt	11220
ctccctgcctc	agccctccca	gtagctggga	ctacaagtgc	ctgcacccat	gcctggctaa	11280
tttttgtatt	tttagtataa	aaagggtttc	gccacgttgg	ccagcctagt	ctcgaattcc	11340
taggctcaag	tgttccaccc	ccctcagttc	cccaagggtc	tgggattaca	aaaatgaatt	11400
gtttataatg	tttgttagcaa	acatatttgg	tttcttact	atgtgccagt	ctccatttta	11460
ggcactttcc	atgtagaact	caatcgaact	ttacaataat	ccttcaggc	aggtattatc	11520
accccccattt	tatgtctggag	aaatttgggc	acagaaaaggt	taagcgacct	gccccaaatc	11580
acccagctag	taagccgcac	agccagattt	aagtccaggc	agccctggctt	gagagtccag	11640
gctcttaacc	acaccatact	tttcagcctc	cctctgcatt	gaatgaaatc	agatagatgt	11700
ctggggtacc	atttaaaatc	atggtataaa	aatgaatctg	ttttagtaat	aggcaagctt	11760
tttcctgctc	agagacgtct	agcttaggtag	cagcagcttc	catcaccact	ttggctttgc	11820
tggcatttcc	agccaaggga	ccaggaggat	ccccccctca	tctctacttc	ccagttcacc	11880
aaattttccat	ggctgaaagc	caaacatggc	ataaaagtggc	attttggatc	ctgttaagcta	11940
acataactcct	gtccttttgg	gatcccgca	aggcaggacca	acactgtatc	tgtctgcagc	12000
aggtgggtag	cttccccctg	cctcttaggg	cccttcttct	ccttcagcat	ggaggagaat	12060
aggtttttgt	caaagcaga	ggaactcagc	actaaccgta	cactctctcc	tctccctgca	12120
ggctgtgtga	aggcgtgggc	tcaatcata	tctgttaagg	gggtgtgtgt	gggcatggct	12180
ttctgggtt	tcaatcata	tagtatttga	ttgcataatc	ctgtatgacca	aggcctctgtc	12240
tatggagtgg	tagacaagggg	actccctgagc	tgatgtctc	gggatccaga	caaactgtatg	12300
acctcaata	tttgaccata	catggatcca	tctggaaacac	ccatgaatgc	taagttatg	12360
aatggtgcaa	attctgtaaacc	cctattttgt	tctgtcaaaaa	tagcttaagc	cttttagtta	12420
cacacagaat	actactcaag	tggtagcatg	ttcttagtaa	aaaaaaagct	aggtttatat	12480
tctgatcatg	tgggtctctg	caggcaactt	gttaatctt	atctaataat	ccaatgtaca	12540
cacagccccct	gggcccagggt	tctgattccc	atcccctccat	tcccctcacc	tctctagcaa	12600
ccatatttct	agatgactcc	tctagtgtga	tctatcagg	tttgcctaaa	gattgtatga	12660
acatgtctca	acatcagccct	ggtccaaagta	gagtttgggt	tgcaatttgc	taaccacact	12720
cctgaagaag	cagatggcag	tgggttcagg	tttgcctgt	gtttaaaaag	actcatgttg	12780
ctggccctc	agagaaggaa	gataattaat	cattgggtct	aaaggattct	gggtcataaac	12840
atgtctgaga	tggaaagagaa	ttctgacctg	tgtctctgtc	cacatgtgtg	agccattccc	12900
agggtgggt	ggtctgcggg	gacctggact	ccactgcctc	ctgtggctca	gggggtgtgg	12960
ccatcagcag	tggtgcactg	tgttggccct	ctgcagtggg	ggcctgctcc	agtgc当地	13020
ctgtgcgggt	tgcataagagg	gggtggggact	ctggacggac	ctgttctgt	gggggcagtg	13080
tgggttgggg	atggaaatc	ttttcttctt	catgaccaaa	tgtcagttt	gtatatttccc	13140
cttacagaga	acccagaact	aactctctg	tttccttctt	attggagttt	acaatttact	13200
ttctctgtgt	aaaccctggg	tttgacatta	ttttcacttc	cattgcctt	cccccttccct	13260
gtggttcagg	aatgaaatag	aaaggctttt	ttttgaatga	atttctcggt	cattgtcttc	13320
cccaattaac	ttcaggccag	cagatgttaa	attaagtct	gactgtgtgc	cagatccct	13380
tggAACGGG	ccagctagag	ggtgtggagt	atgtggaaac	atctctgcgc	tttgcctcg	13440
gatgacaggg	gctccagatg	ctgc				13464

<210> 371

<211> 2508

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 371

agctctcccc	accaataaaaa	ggaccaggga	ggatcagaga	gagcagaagg	atccctgagcc	60
tcgcactctg	ccgcccgcac	cacccctccgc	tgcctctca	actctgctca	gcctcacacg	120
atgtcggtcc	gctcctacag	gatcagctca	gatgcgggg	tcaccaggaa	ttcagctcc	180
tgctcagctg	tggcccccua	aactggcaac	cgctgctgca	tcagcgccgc	ccccctaccga	240
ggggtgtcct	gctaccgagg	gctgacgggc	ttcggcagcc	gcagcctctg	caacctggc	300
tcctgcgggc	cccgatagc	tgttagtggc	ttccgagccg	gctcctgcgg	acgcagctc	360
ggctaccgct	ccggggggcgt	gtgcgaccc	agccccccat	gcatcaactac	cgtgtcggtc	420
aacgagagcc	tcctcacgccc	cctcaacctg	gagatcgacc	ccaacgcaca	gtgcgtgaag	480
caggaggaga	aggagcagat	caagtccctc	aacagcagg	tcgcggcctt	catgcacaag	540
gtgcgttcc	tggagcagca	gaacaagctg	ctggagacca	agtggcagtt	ctaccagaac	600
cagcgctgct	gcgagagcaa	cctggagcca	ctgttcagtg	gctacatcg	gactctgcgg	660
cggggaggccg	agtgcgttgg	ggccgacagg	ggggaggctgg	cctcagagct	caaccatgtg	720
caggagggtgc	tggagggctta	caagaagaag	tatgaagagg	aggtggccct	gagagccaca	780
gcagagaatg	agttgtcg	tctaaagaag	gacgtggact	gtgcctacct	gcggaaatca	840
gacctggagg	ccaatgtgg	ggccctggtg	gaggagtcta	gcttcctgag	gcgcctctat	900
gaagaggaga	tccgcgttct	ccaaggccac	atctcagaca	cctcggtcat	agtcaagatg	960
gacaacagcc	gagacctgaa	catggactgc	atcatcgctg	agatcaaggc	tcagtatgac	1020
gatgttgc	gccgcagccg	ggccgaggct	gagtcctgt	accgtagcaa	gtgtgaggag	1080
atgaaggcca	cgtgtatcg	gcatggggag	accctgcgcc	gcaccaagga	ggagatcaac	1140
gagctgaacc	gcatgtatcca	gaggctgacg	gccgagattg	agaatgccaa	gtgccagcgt	1200
gccaagctgg	aggctgctgt	ggctgaggca	gagcagcagg	tgaggcggc	cctcagcgt	1260
gcccgtcgca	agctggctga	gctggagggc	gccctgcaga	aggccaagca	ggacatggcc	1320
tgcctgctca	aggagtagca	ggaggtgatg	aactccaagc	tggcctgga	catcgagatc	1380
gccacccata	ggcgcctgct	ggagggcggag	gaacacaggc	tgtgtgaagg	tgtggcgtct	1440
gtgaatgtct	gtgtcagcag	ctcccgttgt	ggagtctct	tgggggcct	tccttacagc	1500
accacccca	ggcgccagat	cacttctggc	ccctcagcc	taggcggcag	catcacgt	1560
gtggccctg	actcctgtgc	cccctgccc	cctcgttct	ccagcttcag	ctgcccggagt	1620
agccggcgtgg	tccgcgttgc	ctagtagagt	catggagcca	gggcttcctg	ccaagcacct	1680
gcctgcctgc	atcaactgcac	tgaatggcat	gtgaatggaa	aatgtgtct	tgcttccaga	1740
atcttctgga	tgttcctaca	gagggaaaaga	cctacagagg	gaaagaccct	cggggccgctc	1800
ccctgcgcct	tttcatgctca	gggagatgca	tcttagttgt	cctcctggca	gctgtttca	1860
gaggcattcc	cagcccttca	cttaactcct	atgttagctcc	aaaataacctg	tatccaattt	1920
gtattattcc	cccaagctctc	agggacaaga	ccagcccccc	agcgtggtgg	tcagcacgg	1980
agctccaccc	tctggggtgg	ggcgccatcc	taaccatcca	gccaggccac	ccacaacccg	2040
agaatcaggg	agaaaagtccc	tccccagcag	ccccctcc	ctggctggga	agaatggtcc	2100
cccaagcaagc	acttgcctgt	tcattccct	tcatgtttt	tttctctc	agactgcctt	2160
cctgcttctg	ggcttaaccc	ttccagccag	gctcctcatg	tgacctcgca	tttgagaagc	2220
ccattatcgt	ggggcatcc	tttgctaca	gccccctgg	aggcacttt	ggacaggtct	2280
tgctattcag	tgaacaccc	tacattcaa	agaagactcc	atggctgctc	catatgcccc	2340
cttgcgggt	gcaggtgggg	actgtccaa	gcagagctgg	cgggacagag	agttaaagcca	2400
cttcctgggt	ctcccttctta	tgactgtcta	tggtgtcatt	gccttctgg	ttgtctcgat	2460
ctgtgtttca	ataaaatgccc	ctgcaatgca	aaaaaaaaaa	aaaaaaaaaa		2508

<210> 372

<211> 2404

<212> DNA

<213> Homo sapiens

<400> 372

gctcacccat	tctacacttg	ctctttgtct	cccaaccagg	aagccatcat	gtcttgcgc	60
tcctaccgag	tcagctctgg	tcaccgggtg	ggcaacttca	gctttgttc	agcaatgaca	120

Siemens 0022 Seq Listing.txt

ccacagaacc	tgaatcgctt	ccgggccaac	tctgtctcct	gttgagatgg	gcctggattc	180
cggggccttg	gcagctttgg	tagtcggagt	gtcatcacct	ttggatcgta	ctcaccccg	240
atagcagctg	taggctctcg	gcccacccac	tgtggagttc	gctttgggtgc	tggctgtggg	300
atgggttttg	gtgatggggag	aggtgttggt	ctggggcccta	gggctgacag	ctgtgttgg	360
ctgggctttg	gagctggca	tggcattggc	tatggctttg	gtggccctgg	ctttggttac	420
agagttggag	gggttggagt	cccagcagcc	ccatctatca	cagctgtac	tgtgaacaag	480
agcctactga	ccccccctcaa	cctggagatt	gaccccaatg	cccagagggt	gaagaaggat	540
gagaaggagc	aatcaagac	cctcaacaac	aagtttgcc	ccttcattga	caaggttcgg	600
ttccttagagc	aggcagaataa	gctccttagag	accaagtgga	gcttcctcca	agagcagaaa	660
tgtatcagga	gcaatctgga	gccactcttc	gagagctaca	tcaccaacct	gcggaggcag	720
ttggaggtgc	tgttcagtga	tcagggccgg	ctccaggctg	agaggaacca	cctgcaggat	780
gtccttagagg	gcttcaagaa	gaagtatgaa	gaggaagtgg	tatgtcggc	caatgctgag	840
aatgagtttgc	tggctctgaa	gaaggatgtg	gatgcagctt	tcatgaacaa	gtctgatctc	900
gaggccaaacg	tgatataccct	aactcaggaa	attgactttc	taaaaacgct	ttacatggag	960
gaaatccagt	tgctgcagtc	gcacatctca	gagacgtcg	tcattgtgaa	gatggacaac	1020
agccgtgacc	tgaaccccttg	tggatcatt	gctgagggtca	aggcccagta	tgaggaggtg	1080
gccaggcgca	gccgggctga	tgctgaggcc	tggtagccaga	ccaagtatga	agagatgcag	1140
gtgacagctg	gccaacactg	tgacaacctg	cgcaacatca	ggaacgagat	caacgaactg	1200
acccgcctga	tccagaggct	taaggcagag	attgagcacg	ccaaggctca	gcgtgccaag	1260
ttggaggtgc	cagtggccga	ggccgagcag	cgaggcgagg	cgaccctcg	tgatgccaaa	1320
tgcagctgg	cagatctgga	gtgtccctg	cagcaggcca	agcaggacat	ggcgcggcag	1380
ctgtgcgagt	accaggagct	gatgaatgcc	aagctggcc	tggacatcg	gatgcgccacc	1440
tacaggcgcc	tgctggaggg	cgaggagagc	cggctctgtg	aagggttgg	accagtaaac	1500
atatccgtca	gcagctccc	gggcggcctg	gtgtgcgggc	ctgagcctt	ggttgcggc	1560
tccaccctct	cccgccggcgg	ggtcacccctc	tcaaggtagca	gcagcgtcg	tgccaccagt	1620
ggggctctgg	cttcctgtgg	ccccagcctg	ggtggagccc	gggtcgcccc	ggccacttgg	1680
gacctgctga	gcaactggc	aaggagtggc	tccatgctca	tcagcgaggc	ctgtgtcccc	1740
agcgtccccc	gccccctgccc	cacccagggg	ggcttcagca	gctgcagcgg	cggccgcagc	1800
tccagcgtcc	gctttgtgtc	caccaccacc	tcctgcccga	ccaagtactg	agagcccagc	1860
cccagacagc	tgcgtccca	agaagaacca	gctccacggc	tcctgcttct	gcccccaagg	1920
ttcgtggct	ctgggcttga	cggtctccag	ctcccccttc	tgccaggaag	ccacccctta	1980
gcactcccc	gattattctg	cctggcccca	tgtccctctg	gaggattttt	ctgccatgt	2040
gatgtcccat	tagcagttcc	agctaagctg	gcttctccct	gcctcccaat	ttctgtcctt	2100
tggatactc	ctctccctaa	accccgagat	ggttttctc	ccagtggtt	ctctccggct	2160
gtttcttc	ctgggttgg	ggtgtaaactc	cagcatgcaa	gtccacgagg	tgggtgtcag	2220
gcggacaggc	gggctttgca	atgatccccg	tactcctgcc	cctgctcg	gtgtgaggcc	2280
cagccctgtc	cactgcaggg	ttgtctgc	aagctccaag	gaggcctggg	ggttgggtgg	2340
ggtggctgc	ctgtgtgcac	tactcttgc	tttcataaaa	tttgccaa	tttgccaa	2400
tcac						2404

<210> 373

<211> 2681

<212> DNA

<213> Homo sapiens

<400> 373

acatctcagt	cctccatccc	cctaccagat	aaaaggggggg	aagctgagcc	tgacttgatc	60
atcctgcccc	ggttctttcc	tccagggccg	catttctctg	cctctctctc	ctgccatgtc	120
gtaccactt	ttccagccag	gctccaggtg	tggcagtctg	agtttcagct	cataactcggc	180
tgtcatgccc	cggatggtc	cccactatgc	agtgagcaag	gggccatgcc	ggcccgggggg	240
tggtagggc	ctccgagctc	tgggctgcct	tggctcacgg	agcctgtgc	acgtgggttt	300
tgggaggccc	cgggtggcct	ccaggtgtgg	aggttaccctg	cctggcttcg	ggtaccgact	360
gggagccacc	tgtggggcct	ctgcctgtc	cacccctgtc	accatcaatg	agagcctgct	420
ggtcccactg	gcaactggaga	tagaccgcac	tgtgcagagg	gtaaagagg	atgagaagga	480
gcagatcaag	tgcctcaaca	accgtttcgc	atctttcatc	aacaagg	tttcctgg	540
gcagaagaac	aagctgctgg	agaccaagt	gaacttcatg	cagcagcaga	ggtgctgcca	600
gaccaacatc	gagccatct	tcgaggggcta	tatcagcgcc	cttcggcggc	agctggactg	660

Siemens 0022 Seq Listing.txt

tgtgtccggg	gaccgcgtga	ggcttagagtc	agagctctgc	agcctccagg	ctgcactgga	720
gggctacaag	aaaaaatacg	aagaggagct	ctccctgcgt	ccctgtttt	agaatgagtt	780
tgtgccttg	aagaaggagc	tggacacagc	cttcctgtat	aaggctgacc	tggagacca	840
cgcagaggca	ctcgctcagg	agatcgactt	cctgaaaagc	ctgtatgagg	aggagatctg	900
cctgctccag	tctcagatct	ctgagacctc	ggtcattgt	aagatggaca	acagccggga	960
gctggacgtg	gacggcatca	tcgctgagat	caaggcgcag	tatgacgaca	tcgcgcggcg	1020
cagcaaagcc	gaagcagagg	cctggatcca	gtgccggtat	gaggagctga	gagtcacagc	1080
tgggaaccac	tgtgacaacc	tccgcaaccg	taagaacgag	atccctggaa	tgaataaact	1140
gatccagcgg	ctgcagcaag	aaaccgagaa	tgtcaaagcc	cagcgtcga	aacttgaggg	1200
tgccatagct	gagggcagagc	agcaggcgca	ggcggctctc	aatgatgcca	agtgcagact	1260
ggcagggctg	gaggaggctc	tgcagaaggc	caagcaggac	atggcctgcc	tgctcaagga	1320
atatcaggag	gtgatgaact	ccaagctggg	cctggacatc	gagatcgcca	cctacaggcg	1380
cctgctggag	ggtgaagagc	acaggctgt	cgaaggcatc	gggcccgtga	atatctcagt	1440
gagcagctcc	aaaggcgcct	tcctgtacga	gccatgtggg	gtcagcacgc	ctgtcctcag	1500
caactggcgtc	ctcaggagca	atggggctg	cagcatcgt	ggcactgggt	aactctatgt	1560
cccctgcgag	ccccaggggc	tactgagct	ttggagcggg	cggaaatcca	gcatgacgct	1620
aggagctggg	ggcagctccc	ccagccacaa	gcattagcat	gatccgagac	atccaggaga	1680
cagagccct	gccccatggc	cctggatgtc	acactccac	caggctgaa	gacaaggatg	1740
ttccaaaacc	ccacccccc	ttattgactc	cacattcccc	tccatgtttc	cctccttgag	1800
agctgagctg	ccccttagac	ccctcccttg	cctcatgaat	caccccttcc	tcacctgtgt	1860
gcagaccctc	agctaggcccc	agatggtggg	gacagacggc	agagaaagag	catgcattgc	1920
tcttaaccgc	agaatggcaa	taaccccaa	aaggtaaat	gggcacacca	cagttctgt	1980
ctgtggatca	tcccattggaa	gtttccctac	aaagtcaat	cctctccac	cacaggctca	2040
caactgcctt	acttttagct	ctcatcccc	taagaaaat	gaatttccctt	taacaccgccc	2100
tgaaacatgc	acactgcaaa	tatcaaagg	agacacccccc	aaatccact	ctaaatttcca	2160
aagccaatgc	ccacgatttc	aggatcagtc	aggacctgcc	aatgtcctct	cagcacagag	2220
aatcaagagg	tggcctttgg	gcagtagatt	tactttctca	ggtatgttga	acccaaactg	2280
tgagaataaa	tctttctcct	gagctcacat	ttggcagggt	tgtcaggcca	atgccttagaa	2340
caaagggcaa	aggatatgg	aatgttact	ggacagttgg	aaaaccaaaa	acagatacca	2400
ttttctcaat	ggaatcagtt	ccccctccac	ccatccccctt	ctgtacatag	ccgcccccttc	2460
ctgttccccca	acccttttagc	tcctttgtt	tttgtctga	tatgacagt	atgtgggct	2520
gccccagctg	acttggaggc	cctggctcag	gaatctcatag	atggaggagg	tgtgggctga	2580
ctaccccca	gaagccccctc	atgccaagcc	tgtcccactg	gggctccagg	gcctctgccc	2640
tgaacatctg	ggcttctgtt	caaaataaac	ctactctgtt	c		2681

<210> 374

<211> 11529

<212> DNA

<213> Homo sapiens

<400> 374

cagagtatat	ggacaactga	gtccagattc	taggtctaga	gagatcatgt	cagaaagaaa	60
atggacatat	taaactttct	gccaaggacc	tcctgcccatt	ttaatggaaat	tcaaaaacctc	120
acccagtaat	atgatggtgg	cgtgttcttt	tcttgaattt	tcacacatgc	acctgggttgg	180
tgccagcccc	tctgactctt	cctgcttctc	ccctctccaa	acaaaaccat	ctgtccccca	240
accccattgc	accaacatct	gcttggctct	ctatgttcca	ggttcccttcc	aggctgagga	300
agaggaggaa	gagcctgcca	cctggactct	gagatccagg	tttgtcagag	cctccctgca	360
ctgttaggaa	tcccatatcc	cagggccctc	ttgggaggctc	ctgcatggaa	gctctctcag	420
tcttttacct	ctgactgggg	caggtgtggt	ttcttggaaaca	ggagaacaaa	gtcctggaga	480
ctaaatggag	cttcctgcaa	ggccaaaaaa	ccaccagggc	caatttttag	cccatgtttg	540
atgtccacat	cgacaacatcg	aagcagcagc	tggactgcct	gggtggaggg	tatgtgaagt	600
tggatgtgga	gttaaagaac	atccaggacg	tggtagggga	cttcaagaac	aagtgagcag	660
acgctcagcc	agtgcctggg	ccagggtcct	gcccctggggc	tccaggggag	gtcagagggg	720
gcaggagaaa	cagcctctgc	tctccagaaa	tgtccagtt	agtggggaaa	cggAACACAC	780
ttagggcaca	gaggtgaaat	cagaagtaaa	cataaaatgt	tcaagagaac	tgggaccac	840
cctgtgtca	agaatgtctg	ggctttagtg	aagggtctggg	attgttagatg	atgatactca	900
acataggat	aaaaagcatg	atacacacag	cattcttcaa	actctgcaga	taaggaaatgt	960

Siemens 0022 Seq Listing.txt

aaggctctga	gatagcatac	caaagatgac	acaaagtggc	aactcaggag	ttaagaatga	1020
atccccataga	atctcactct	cacatgaatg	caactaaatc	tcactgctaa	tttgcacagt	1080
gttcacatat	tcactctaatt	ccagggaaag	aggctggaga	acaaaaaaga	aaggacacat	1140
ttgctgcctt	ctccccaggac	cacacacaca	cacacacaca	cacacacaca	cacacacaca	1200
ccactaaaca	taatgagatg	ctcaaatgct	catgcctgt	gatacaaatt	tcttgatttt	1260
attgtttta	cttattttta	tttcttattt	ttctgggtt	aattattttt	aattctttag	1320
gtctaaccaa	aatttagtaac	tggatcatga	gtttgggtt	acactgtttg	tatactcttag	1380
cacaaggttca	ggttttagag	ttgtgctgtc	caacatagta	gccaggagcc	agtggccaca	1440
gatgactatt	taagtttaaa	ttaattaaaa	ttaaataaaa	tttaaaattc	agttccctcag	1500
tcacacttgc	cacatttcag	gtttaaatg	gccacacatg	gctaatggat	cctgtatga	1560
acacagatac	agagcaattc	tgttatcg	gaaagttctc	ctggatagca	ctatagactt	1620
cagagtca	ggattttagga	tcttgctca	accacttaat	ggctgaatga	ccttaagaaa	1680
actatttaat	ctctcaaagc	cccagttct	ttatctgtt	aaagagacat	caatagtgcc	1740
cacccaccaa	gagcattgag	attattaaat	caaaacttgc	atgttaagggt	cttggtaggg	1800
ttcacagtgc	ctggcacata	gtaagggtt	aataagtgtt	agctatgtt	attgtatttt	1860
tgatttagta	cgtgtatgt	tacagacgc	gacaagagaa	gcaagtgcag	atgggttaatt	1920
tataacatgt	atgcaagcgt	ggactaacag	tgtttcaata	caagaagact	tccctggagga	1980
gaaggctaaa	gcttagatt	gaaaaggaag	aaaggc	ggagggtat	gttagggcat	2040
ctgttgaaga	gtgtgttcct	agtcaatgc	caggcagtgt	tcctgtggca	tcaaagtggc	2100
ctgtgcagg	ccaggcgat	cttgccttc	agcagaggga	ctgtgagct	ggccacatgg	2160
aagacgagga	cagtgtatg	gagtttaggt	agaagagac	attcagagtt	cattaaaagg	2220
caactcaaag	aaacgatgag	gaaaaccaa	ttgctcttcc	cagagaacac	tgagagaaag	2280
cacaatactg	aaatttcaat	ggcaagcaag	agattttctc	agatcctata	gagcagcaga	2340
ggaaaatataa	aagccaggaa	gatccgttt	catgtaaatc	atgtgtgtat	ggactctgt	2400
gttttaaaag	aatgacaact	ttccattaca	tagtagagaa	agatcctctg	agaggtcata	2460
tggctgatgg	gcagagcgc	tgagatcaaa	accacagct	tctagcacca	cgagggtgg	2520
gtgtgctgat	gcacccaagt	aggtgggt	gagaatgggt	cacctggaa	agaagcaaaa	2580
cttcctccc	agagatcgt	gagcaggagg	cacccatcaca	tgccctggg	ggacagacag	2640
ggtgggggtt	ctgcctacag	gtaaattgaa	gaatgagaaa	ccttgggggg	agagggttcc	2700
tatggctctg	aagtctctgc	tccttagg	acagttca	gtgcctgaac	agagtggaggg	2760
aaatgcgagt	gttgtacagt	gagggcgtc	cgccctctg	ccttctccc	tgftcctctc	2820
ctccctgccc	tgggtgggg	caagaccata	aaaaaaaaaa	aaaaaaaaaa	agggaaatgt	2880
atatgcctt	ttatgggacc	caaatactcc	aaggagctg	gctgtgagaa	aagaaacctc	2940
aagttagactg	agaggggatc	tgtttgtt	cttgggtt	gggttgtt	tgggtggttt	3000
tttgatttgg	gatttggggc	catgtgtgc	ataggagagc	caggtacag	tggagcattt	3060
gctaaggctg	ctctcgagac	ccaccattgc	ctgtccac	ccacccact	gctctgac	3120
cactaccgc	gccccatcca	accccaaacc	acttctgt	ccttcccaga	ggtatgaaga	3180
agaactcaac	aggtgtactg	aggcagagaa	ttagttgt	gtgctcaaga	ttagtggaca	3240
gagttcctcc	tggccagc	ccagttggc	catacaaggc	cttatttaat	ttgcacagca	3300
agcctagaag	taggtcttac	ttaacagt	gaaaaactg	aattcagaga	ggtaaagaca	3360
cttgcctcagg	gctacctagg	taatcaggag	ttagtcaga	cccaggactc	caaagtctg	3420
gctgcaatc	ccaaacaccag	cccccccg	gtggagtcca	gtgtggagac	aggggaagca	3480
aaacgggcct	tgtcctgggc	tgggtctcta	ggcacccagt	caggttcagg	aggacagggc	3540
agcccagaag	cagctccacg	gagtctggg	catttcctg	tggggccag	ggccagaaca	3600
gggttgcct	cacaatgtg	ggtgtatgc	gagacccctt	aatgtggcac	cagagctgat	3660
gggcagggtgg	gcacccctg	aggccctgg	cttcacagag	tttggaaagtt	ctactccctc	3720
cctcctctcc	aatgtcttaag	ttctactcca	tggcctggag	tagacagatg	ctctgtcctt	3780
gggagctgaa	gctctccac	ctaattcaca	gacagagggg	gctggttac	cctggaaagg	3840
taaggcccag	agtgtatgca	tgttctgtt	gacatggat	ctgtctacat	gaacaaatgt	3900
gggctggagg	ccaaagtgg	tgcctgtat	gaggagacca	acttctgt	cactttctat	3960
aaggcgtga	gagtgtccgg	tgcctgtcc	aacagggggg	ctggggctg	ggtcttagag	4020
cctcagctgg	gcacagagcc	tgtggctcc	ttccctgt	ttctctctg	tccttattcc	4080
acctgcgtat	tgcaggcag	atgcctact	ccctaccaca	ggagaaaaatg	aggttccata	4140
gagcggctgg	caggtcagga	gagatgaaaa	attcagctt	aaccatctgg	atcaagcatg	4200
ttctgttggg	caggcagaaa	aatggaccac	ctgtcattaa	aatatggat	tccatagaac	4260
tttctgtgac	acttggctca	tcctggct	caaaaattt	cctgtc	tcccttagagc	4320
aactgcaggg	tgatgtcaatt	acacaaatca	agtggcaatt	agtgagccct	cagggtc	4380
tgggagcaaa	cagcacaatt	gcctgggtt	ccgtttgtt	cctccacaga	gctgcaggca	4440
cagtgcgtag	caaatacaac	ggggccgt	agttctgaa	gcttacagta	tagtgcagga	4500
gaaaggcaca	acagagataa	tcaaatact	gtactattt	aggccctaca	gaggcaatga	4560
agagaaatga	cagttagaaag	caatcatagg	cagtgggtt	gtgacactgg	acaagaaact	4620
tgaaggaatt	gagcatgtca	gccaggaagg	catgggtgg	ggggcagtg	ctccagcaag	4680
aaggaatggg	aagtataat	gccccgggt	gtgatccagg	aatgccagga	ggaggacagt	4740

Siemens_0022 Seq Listing.txt

atggctgggg	cagaggggag	agtggtaag	åtäggggccag	cagtgtcaag	gtgggggtga	4800
gggtgagtgg	agtgcctcca	ggtaggcctg	gtäaggacag	gtgatatgcc	catagggtca	4860
cacacacgtg	atccccaaaca	gaagctggtc	acattgttcc	aggacctggg	gcttcagctc	4920
tgattgtttg	ggtgggctcc	aattccacct	tacaacccac	agggggataa	ccagccccct	4980
ctctacttgt	tctcttcaat	gctgacaaca	gggtgatatt	gcctccgaat	tctgaactag	5040
cccacagcca	gcaagcctgt	gggacaagac	ctttaacta	gatctgctgc	caggaaaaac	5100
tatTTggaa	aaacaagccg	cagcacaata	agaaaataat	aatttgttga	aacggggaaat	5160
gtatgaatca	gtcatcaata	aagagagaaa	aggaatattt	ttacttagac	ttctgctttg	5220
gcctactgtat	tctcaaattt	taaagagcat	cagaatcttc	tagaagtgtt	gctaaacacc	5280
aattctgtatt	tagtaagtct	gggctggcc	cacagtgtt	cattcaatc	aagtttccag	5340
tgatgctgat	gctgatgctg	gtttgaggtc	acatttttag	aaccactgag	ttagatgatc	5400
ctgaaaatgg	accattaaca	aattaattgt	gggttcactg	tttccagacc	atcttatctg	5460
gatgtcattt	aatctccaca	aattcattt	aggccagtt	tatgtatcgc	tttgctgaga	5520
tctggatgc	tatTTaaatg	tgattggcag	atacaagact	caaatttgc	agttgggtgc	5580
cctttctgct	atttccagct	gatttccatt	tcccatttc	tccccgagga	gcagggagga	5640
gccaatttgg	gaaacgcaac	tggaaagttag	ccaagtttc	tggcttcttc	tgactcaatt	5700
ttctttcaca	agatattttc	tttatttgg	gtgaagggt	gtatTTtctc	agaacatgag	5760
acatctgtga	tactgacagg	tcacacatg	gtgtgcttc	gtgacaacag	agtggcttct	5820
ggagaatgct	ggctggagg	atcatgtctg	ctgtccccc	cacgcagat	agctgatgac	5880
aaagaacagc	tataaactca	atgacccccc	taatgttctc	cccagccctt	tcagcctaca	5940
cagccactc	catccctacc	gtgcaagacc	cttaatgc	gggtctgttc	cagggggcag	6000
atcacagcct	ccccaaacat	gccccccacac	acacatgc	acacatgctc	acacatgcac	6060
atgcatgcac	acacatacat	gcacatgcac	actctgcctc	agctctctca	tttggaccca	6120
acacacacac	ggacacacat	gcacatgcac	actctgcctc	agctctctca	tttggaccca	6180
accacaaaag	ctggctcagc	ttcaggccc	gatctctgaa	acctccatgg	tccttctgtt	6240
gatggaaaac	aactgcaacc	tggacctgga	tagcatcatc	attgaagtca	aggcccagca	6300
tgaagacatc	gccaacaaca	gcagggctga	ggctgagttc	tggtaactaa	ccaaagtggag	6360
acatcaaggt	caagttcatt	aaacaagcac	aaaaaaaccga	gatttcaaag	gcaaacaaga	6420
taaaagccat	gtcctctca	atgtcccagt	ctgatägggt	caagggatct	gagttcaact	6480
tggggctcac	cctatgttac	ctgggggaag	catgtcagga	cctggggaaac	agccagataa	6540
aggcaggagg	tgtctgatcc	ctctgccaag	aggaagatgg	acacaccc	aatgcccgt	6600
atcagagaga	aaaggggacag	ctggacagtt	ccagccatca	gtgccaacag	gaggaacaga	6660
gagggagggt	ggggacaaga	ggaaagttt	accccattgt	gaggaggctg	gaggatccag	6720
agaagaaagg	cggaaactggc	tggggccag	gggctggagg	gcaaaatctt	aatctaagtc	6780
acagactggg	atTTccaga	tgagagcaaa	cattctgccc	tgggagtcgt	tgggatgata	6840
atTTcaatg	ccgaggaaaa	cacgaacaaa	ggaaaatgt	ttggcacca	cctgtatgct	6900
aatttgggag	gttgcagatgc	atgggtgtca	ggggaaaggga	agaaaagacca	gtttaggaa	6960
gaagggaaag	agcacagcc	cagctgtca	gctgttaggt	gaagccagtg	ggcatagaaa	7020
gtgaggggaca	gagtcaagaa	aaaatgcaga	tgaattttag	tggggcagag	gcggccccagc	7080
agggaggctc	tcagacgcac	atgaaaagcc	atggggctgt	gggaagccac	agccttctct	7140
tccctggcct	ggctgtccct	gcccactgca	cgcattcccc	atccaggatc	tgtttctct	7200
ccctccctag	acaaggagct	acagactct	gctagcctgc	acgggatgac	ctccacacca	7260
ccaagatgga	gatctctgaa	ataaacttgg	atgcagagg	ctgcactctg	agattgataa	7320
cttgtagaag	caggtaggcc	tgagctccc	ggtgtcctc	catccatgct	cctgcctcca	7380
ggtgacttg	tgccctggcc	tcactcagcc	cctacagaga	gaaggctccc	agatgatgtt	7440
ccttcagga	atataaaat	gcattcacct	agtgcattgg	ttaatattgt	caacttgatt	7500
ggattgaaga	atgcgagaaa	ggcactttct	tctggaaagag	taatggcaa	aactttggct	7560
tgctttactt	actcgcaatc	cagaaaagtt	cagcattgaa	aaggacctca	gagggctggg	7620
tgtgggtact	cacgcctgt	atcccagcac	tttgggaggc	tgaagaggc	ggatcacctg	7680
aggtcaggag	ttcgagacca	gcctgacgaa	catggtggaa	tcccgtctcc	actaaaaata	7740
caaaaattag	ccaggcatgg	tggtgccg	ctataatccc	agctactcag	gaggctgagg	7800
cagggaaatc	gcttgaaccc	gggagatgga	ggttgccatg	agcagaaatc	gtgccatg	7860
actccaaacct	gggcgacaga	gtgaaactcc	atctcaaaaa	aaaaaaaaaa	agaaagaaag	7920
aaaaggacat	cagaacatca	ttttctccat	tctggctaa	tctcaaaacta	cccaagggtgg	7980
acagaaatca	atcttagttt	taaagatgt	gtggctccaa	cctcccttgc	attaaatcca	8040
cttcaggggaa	tttttccat	tttcaactt	aaagtttata	gaggatctt	ctgcattctc	8100
catgaacaat	gtcacaatc	tttctcatc	cacccatggc	tgtgccc	cccaggccac	8160
catgcctgc	tgatgcca	cagcatggg	agctggccat	agaacaacag	tggtggagct	8220
ggagatagcc	ctgcagaagg	ccaagcagg	catggccg	cagctgtgc	ggttaccagg	8280
gccaaatgtat	gtcaagctag	ccccggacat	tgagatgc	acctacagga	agctgcttgg	8340
gggcttgaag	agcagggtgg	ccacccctcc	cctcccacta	ccacccaaac	agatgcacca	8400
gaccacgaca	gcaatgcccac	agagggccca	tgagcgcac	agtgtcagcc	ctccagatga	8460
agctcccagg	tcagaaacag	ggtaaaatg	caattgtcc	cttaaaggcg	tcctgcagtt	8520

Siemens 0022 Seq Listing.txt

gcagccccctc	ccacagctgt	tggaccagg	gcaggggtga	gggtcaaaagg	ggtcaaggaa	8580
gggacgctaa	gcaagacccct	ttcttccaa	gtcctgttag	aatatgcata	atgcttgga	8640
caaggctcg	gggctctgg	attgccctgc	aagctgacgg	tctcgacta	cctctctacc	8700
acagctgcct	cttctcattt	ctctctgtat	ttgtgactcg	ttctctctcc	tggattttcc	8760
tcacagatgc	actttagctt	cccaaggcta	gcaagctgag	gggagagctt	gccaaggcaca	8820
gtgcctgata	catgttaagca	ctctgtctg	ataactttaa	atacaaagaa	cccaggccc	8880
cttaacctct	cagcaaaca	aatgactctt	tctctcccta	gcggtcacag	actcactgaa	8940
ggtgtcagag	ccgtcagtag	ctgtgagtca	atgtcttgg	atggtagaaa	agtgggggc	9000
acaatgaaag	ctgggagcat	cactcttgg	ggtctgggg	gtcaaagatg	agcaggcagg	9060
ggcaggatg	tcacaaagac	cctctggag	gctctatgg	gactcttctt	gtgccttct	9120
tccccatgag	gtcaagagaa	ctcaaaagg	gcacattca	tgtactaag	gagctcaaca	9180
actttctcct	caactctggct	taatctccac	aaaaactgtg	gcgattaatc	tgcaggtgac	9240
ccctcacccc	cagggtctgg	cccagaagat	cccgatgaca	ggacaagact	attcaaacaa	9300
tcgtgggtcc	ccagtctgaa	tgcctgattt	ctcagtagt	gctgtcagga	actcaaacta	9360
acacaaataa	gaggcttata	aacagattaa	atgttaaaggc	ctatatttag	aattgaagca	9420
tatgaatca	acaatagaa	cagtactga	tctggcgtgg	cctcaactca	caggaggag	9480
agcagcagtg	acccatcaga	gtgaccacc	agggtctgg	ggctgtgtt	aaaagctcag	9540
catcataggc	ggcattaaatg	ggagcattga	gtcctggta	tggagtaga	atcccctga	9600
gaccatgtg	ggtcagatca	cattagagag	gctggcctgc	caggattgg	gagacctgg	9660
aaccaaccca	tcagaggggc	aggaatgcct	caccaggaaa	aacgacgccc	aagagggaa	9720
atcaatgaga	cgtttccaaa	tgttacctg	gcttgc当地	atgcataccaa	gtagggagtt	9780
cccggtcgt	aaaatattga	agcagaagct	gaacaatttg	atcttggca	tgtcattttag	9840
gggttctggt	actgggggag	gctcgccag	gtggccttca	ggcctcttc	aaaaaggaag	9900
tctatggctc	ccttccagaa	tacaaggct	cctcttccat	ccaatgtgac	agccgcctac	9960
aagacagggg	aatgaacccca	gcacaggagc	taaaagccctt	ggcttctgtt	gggcgtggac	10020
ttgggtatgc	cactttagt	ctttgcaccc	cattttttcc	tctacaaaat	gggggttatt	10080
gttagtaatgg	tgtcctctca	gccccattga	gatccacatg	gtcacagctg	tgaatgtgcc	10140
ttgagtatgg	cgtgcccctg	tgcagagg	catgagaagg	tagctgtga	cgggggtgt	10200
agtccacgccc	caccctctct	cacactggct	caggcgttcc	ccgaggctct	cagggaaggg	10260
agggttgcct	ggaaacaaggc	attgcgggag	gggagcaggc	atggggatca	caccaggaa	10320
gggcgtcgt	ggaaatggg	agaacctgccc	aacatatcc	gagccctctc	tccacagctg	10380
aggctcttc	ccctggggcc	acaggctcca	gtgggggcag	cgtccctctgt	gtgggtgggg	10440
gtggccacag	cagtggcctc	tgccacaaca	acaggagcag	tggcatcagc	tgtccagctg	10500
tgaccagcag	tcaacagcag	tccaaacatat	tcattgtctc	caagagatgg	cccaccaagg	10560
agagtcacag	cagccatgca	cctgcctcca	ctgccactcc	cctcaagccc	tcaagcttcc	10620
cagctccaag	gtttgatatt	tactgacgtc	atcacacaaa	aatcaacagc	aggaggtaca	10680
aggagcagga	atggcttat	gaggtcatcc	tgtccatccc	tctgcctcca	gaaggtcccc	10740
acagaggat	cccacctgt	cccgatctct	gcagggtctc	gcagggtccca	caggcatcca	10800
ttccaaacaa	tgtttagtca	actgctctgt	gccaggaccc	gggcttagcac	tttgcctta	10860
agaagcttcc	agagtagggg	gtgcagtagg	gtctttcccc	tcctgtctaa	gtcagaccca	10920
cagcaaccac	aagacaaggc	ctcttatgca	gtccttccca	ggacccctaga	actgaccacg	10980
gtgccccaaa	gagactaagt	gcagtgtgg	cccaagttt	cacacaccc	tctcatttgc	11040
gatggAACAG	ttttccact	caggccagg	catatcttc	acaccctgccc	acacatgcca	11100
cctcctcacc	tcctttcttc	cccctgccc	ggcccccagcc	aagtccctg	acaactccca	11160
ccagcaggat	atttgatgt	gaaatcaaca	cccttcaaaa	tatgtcaac	tcttgcttat	11220
tcataatata	atggatgt	tttaccaaga	actcaaaagc	cctccatggc	ccagggctgc	11280
aatgaatgag	agttcatggc	caaatttctg	tcaagtctgc	tttattttaa	tcaatattag	11340
acctgctgtt	cctaaacaga	aatgcctga	tgacagagga	gtgggggg	agcaggctca	11400
tgtgagggtg	tggaaaggcc	acttggccca	aatgtttgc	aagaataca	ccaggaaaag	11460
cctattttaa	ttctcctgca	ttaggaactg	ccctgtgaga	ttcctgcaaa	ataatccccc	11520
aggctcaga						11529

<210> 375

<211> 2218

<212> DNA

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 375

catggccagc	acatccacca	ccatcaggag	ccacagcagc	agccgccggg	gttcagtgc	60
cagctcagcc	aggctccctg	gggtcagccg	ctctggcttc	agcagcatct	ccgtgtcccg	120
ctccaggggc	agtggtggcc	tgggtggcgc	atgtggagga	gctggcttg	gcagccgcag	180
tctgtatggc	ctggggggct	ccaagaggat	ctccattgga	gggggcagct	gtgccatcg	240
tggcgctat	ggcagcagag	ccggagggcag	ctatggctt	ggtggcgcgg	ggagtggatt	300
tggttcgg	ggtggagccg	gcattggctt	ttgtctgggt	ggtgagccg	gccttgctgg	360
tggcttggg	ggccctggct	tccctgtgt	ccccctgtga	ggcatccaag	aggtcactgt	420
caaccagagt	ctccctgactc	ccctcaaccc	gaaaattgac	cccgcacatcc	agcggtgcg	480
ggccgaggag	cgtgagcaga	tcaagaccct	caacaacaag	tttgccctct	tcatcgacaa	540
gggtcggttc	ctagagcagc	agaacaaggt	tctggacacc	aagtggaccc	tgctgcagga	600
gcagggcacc	aagactgtga	ggcagaaccc	ggagccgttg	ttcagcagt	acatcaacaa	660
cctcaggggg	cagctggaca	gcatcgtggg	gaaacggggt	cgtctggact	cgagactgag	720
aaacatcgag	gacctggtg	aggacctaa	gaacaaatat	gaggatgaaa	tcaacaagcg	780
cacagcagca	gagaatgaat	ttgtgactct	gaagaaggat	gtggatgctg	cctacatgaa	840
caaggttcaa	ctgcaagcca	aggcagacac	tcttacagat	gagatcaact	tcctgagagc	900
cttgtatgtat	gcagagctgt	cccagatgca	gaccacatc	tcagacacat	ccgtgggtgct	960
atccatggac	aacaaccgca	acctggaccc	ggacagcattc	atcgtcgagg	tcaaggccca	1020
atatgaggag	attgctcaga	ggagcagggc	tgaggctgag	tcctggattc	agacaaagta	1080
cgaggagctg	caggtcacag	caggcagaca	ttggggacgac	ctgcgcaaca	ccaaggcagga	1140
gattgcttag	atcaaccgca	tgatccagag	gctgagatct	gagatcgacc	acgtcaagaa	1200
gcagtgtgcc	aacctacagg	ctgccattgc	tgatgctgag	cagcgtgggg	agatggccct	1260
caaggatgct	aagaacaagc	ttgaagggct	ggaggatgcc	ctgcagaagg	ccaaggcagga	1320
cctggcccg	ctgctgaagg	agtaccagga	gctgatgaac	gtcaagctgg	ccctggacgt	1380
ggagatcgcc	acctaccgca	agctgctgga	ggcgagggag	tgcaaggctga	atggcgaagg	1440
cgttggacaa	gtcaacatct	ctgttagtgc	gtccaccgtc	tccagtggct	atggcgggtc	1500
cagcgggtc	ggcagtggct	taggcctggg	ttggaggaagc	agctactcct	atggcagtgg	1560
tcttggcg	ggaggccggct	ttagttccag	cagcggcaga	gccactgggg	gtggcctcag	1620
ctctgttgg	ggccggcagtt	ccaccatcaa	gtacaccacc	acctccctct	ccagcagga	1680
gagctacaag	cactgaagtc	gtgcccggag	ctctcagttcc	cacagctctc	aggccctct	1740
ctggcagcag	agccctctcc	tcaggttgc	tgtccctcccc	tggcctccag	tctccctgc	1800
cctccgggt	agagctggga	tgcctcact	tttcttctca	tcaatacctg	ttccactgag	1860
ctccctgtgc	ttaccatcaa	gtcaacagtt	atcagcactc	agacatgcga	atgtcctttt	1920
tagttccctgt	attattacag	gtatctgagt	ctgcccataat	tctgagaaga	aaaatgaccc	1980
atatccccat	aagaactgaa	actcagtcta	gttccagctg	cagatgagga	gtccctcttt	2040
taattgctaa	ccatcctgccc	cattatagct	acactcagga	gttctcatct	gacaagtcag	2100
ttgtccctgtat	cttctcttgc	agtgtccctg	aatggcaagt	gatgtacctt	ctgatgcagt	2160
ctgcattccct	gcactgcttt	ctctgctctc	tttgccttct	tttgttctgt	tgaataaaa	2218

<210> 376

<211> 1986

<212> DNA

<213> Homo sapiens

<400> 376

cgcgccaacg	ctcgccacag	ccctctcattc	tgggtggaaacc	atggccagca	catccaccac	60
catcaggagc	cacagcagca	gccgcggggg	tttcagtggcc	aactcagcca	ggctccctgg	120
ggtcggccgc	tctggcttca	gcagcatctc	cgtgtcccg	tccaggggca	gtgggtggcct	180
gggtgggtgc	tgtggaggag	ctggcttgg	cagccgcagc	tttatatggcc	tggggggatc	240
caagaggatc	tccattggga	ggggcagctg	tgcccatca	ggcggctatg	gcagcagagc	300
cagaggcagc	tatggcttgc	gtggcggccgg	gagtggattt	ggtttcgggt	gtggagccgg	360
cattggcttgc	gatctgggttgc	gtggagccgg	ccttgctgtt	ggctttgggg	gccctggctt	420
cctctgtgtgc	ccccctggag	gcatccaaga	ggtcaactgtc	aaccagagtc	tcctgactcc	480
cctcaacccgt	caaattgacc	ccgccatcca	gccccgtgg	gccgaggagc	gtgagcagat	540
caagaccctc	aacaacaagt	ttgcctccct	catcgacaag	gtgcgggtcc	tagagcagca	600
gaacaagggtt	ctggacacca	agtggaccct	gctgcaggag	cagggcacca	agactgtgag	660
gcagaacccgt	gagccgttgt	tgcagcagta	catcaacaac	ctcaggaggc	agctggacaa	720

Siemens 0022 Seq Listing.txt

catcgcccc	gaacggggcc	gcctggactc	ggagctgaga	aacatgcagg	acctgggtga	780
ggacctaag	aacaatatg	aggataaaat	caacaagcgc	acagcagcag	agaatgaatt	840
tgtgactctg	aagaaggatg	tggatgctgc	ctacatgaac	aagggtgaac	tgcaagccaa	900
ggcagacact	ctcacagatg	agatcaactt	cctgagagcc	ttgtatgatg	cagagctgtc	960
ccagatgcag	acccacatct	cagacacatc	cgtggtcata	tccatggaca	acaaccgcaa	1020
cctggacctg	gacagcatca	tcgctgagg	caaggccc	tacgaggaga	ttgctcagag	1080
gagccggctg	gaggctgagt	cctggatcca	gaccaagtac	gaggagctgc	aggtcacagc	1140
aggcagacat	ggggacgacc	tgcgcaacac	caagcaggag	attgctgaga	tcaaccgcat	1200
gatccagagg	ctgagatctg	agatcgacca	tgtcaagaag	cagtgtgcca	gcctgcaggc	1260
tgccattgct	gatgctgagc	agcgtggg	gatggccctc	aaggatgcta	agaacaagct	1320
ggaagggctg	gaggatgccc	tgcagaaggc	caagcaggac	ctggcccggc	tgctgaagga	1380
gtaccaggag	ctgatgaatg	tcaagctggc	cctggacgtg	gagatcgcca	cctaccgcaa	1440
gctgctggag	ggcgaggagt	gcaggctgaa	ttgcgaaggc	attggacaag	tcaacgtctc	1500
tgttagtacag	tccaccatct	ccagtggtca	ttgcgggtgc	agtgggtgc	gcagtggctt	1560
aggcctgggt	ggaggaagca	gctactccta	ttgcgtgtgt	cttgcattt	gaggtggctt	1620
cagttccagc	agtggcagag	ccattgggg	ttgcctcagc	tctgtggag	gcggcagttc	1680
caccatcaag	tacaccacca	cctccctc	cagcaggaaag	agctacaagc	actaaagtgc	1740
tgcctccagc	tctcggtccc	acagtccta	ggcccttctc	tggctcaga	gccgtctct	1800
caggttgctt	gtcgctcct	ggcctctagt	tttccctgt	ctccgaggt	gagctggta	1860
tggatgctta	gtgcctcac	ttctctctgt	ctatacctgc	cccatctgag	caccatgc	1920
tcaccatca	atcaacctt	gatttacat	cataatgtat	tcaccactgg	agtttcactt	1980
tgttac						1986

<210> 377

<211> 2222

<212> DNA

<213> Homo sapiens

<400> 377

catggccagc	acatccacca	ccatcaggag	ccacacagc	agccgcggg	gtttcagtgc	60
caactcagcc	aggctccctg	gggtcagccg	ctctggcttc	agcagcatct	ccgtgtcccg	120
ctccaggggc	agtgggtggcc	tgggtggtgc	atgtggagga	gctggcttg	gcagccgag	180
cttatatggc	ctggggggat	ccaagaggat	ctccattgga	gggggcagct	gtgccatcg	240
tggcgctat	ggcagcagag	ccagagcgg	ctatggctt	ggtggcggc	ggagtggatt	300
tggtttcgg	ggtgtggccg	gcattggctt	tgatctgggt	ggtgagccg	gccttgcgtg	360
tggctttgg	ggccctggct	tccctgtgt	ccccccctgaa	ggcatccaag	aggtcactgt	420
caaccagagt	ctcctgactc	ccctcaacct	gcaaattgac	ccgcacatcc	agcgggtgc	480
ggccgaggag	cgtgagcaga	tcaagaccct	caacaacaag	tttgcctcct	tcatcgacaa	540
ggtgcgggtc	ctggagcagc	agaacaagg	tctggaaaca	aagtggaccc	tgctgcagga	600
gcagggcacc	aagactgtga	ggcagaacct	ggagccgtg	ttcagcagt	acatcaacaa	660
cctcaggagg	cagctggaca	gcattgtcg	ggaacggggc	cgcctggact	cagagctcg	720
aggcatcgag	gacctggtg	aggactcaa	gaacaaat	gaggatgaaa	tcaacaagcg	780
cacagcagca	gagaatgaat	ttgtgactct	gaagaaggat	gtggatgctg	cctacatgaa	840
caagggtgaa	ctgcaagcca	aggcagacac	tctcacagac	gagatcaact	tcctgagagc	900
cttgtatgt	gcagagctgt	cccagatgca	gaccacatc	tcagacacat	ctgtgggtct	960
gtccatggac	aacaaccgca	acctgaccc	ggacagcatc	atcgttgagg	tcaaggccca	1020
atatgaggag	attgctcaga	gaagccggc	tgaggctgag	tcctggtacc	agaccaagta	1080
cgaggagctg	caggtcacag	caggcagaca	tggggacac	ctgcgaaca	ccaagcagga	1140
gattgtcgag	atcaaccgca	tgatccagag	gctgagatct	gagatcgacc	acgtcaagaa	1200
gcagtgcgccc	aacctgcagg	ccgcatttgc	tgatgtcgag	cagcgtgggg	agatggccct	1260
caaggatgccc	aagaacaagc	tggaaaggct	ggaggatgcc	ctgcagaagg	ccaagcagga	1320
cctggcccg	ctgctgaagg	agtaccagga	gctgatgaa	gtcaagctgg	ccctggacgt	1380
ggagatcgcc	acctaccgca	agctgctgg	gggtgaggag	tgcaggctga	atggcgaagg	1440
cgttggacaa	gtcaacatct	ctgtgtgca	gtccaccgtc	tccagtggct	atggcggtgc	1500
cagtgggtgc	ggcagtggtc	taggcctgg	tggaggaagc	agctactcct	atggcagtgg	1560
tcttggcggtt	ggaggtggct	tcaagtccag	cagtggcaga	gccattgggg	gtggcctcag	1620
ctctgttgg	ggcggcagtt	ccaccatcaa	gtacaccacc	acctccctc	ccagcaggaa	1680

Siemens 0022 Seq Listing.txt

gagctataag	cactaagtgc	gtctgtagc	tctcggtccc	acagtcctca	ggcccccttc	1740
tggctcaga	gccctctcc	cagggtgcct	gtcctctcc	ggcctccagt	ctccccctgct	1800
gtcccaggta	gagctgggaa	tgaatgctta	gtgccctcac	ttcttctctc	tctctctata	1860
ccatctgagc	accatttgct	caccatcaga	tcaacctctg	attttacatc	atgatgtaat	1920
caccactgga	gtttcactgt	tactaaatta	ttaatttctt	gcctccagtg	ttcttatctct	1980
gaggctgagc	attataagaa	aatgacctct	gtccttttc	attgcagaaa	attgccaggg	2040
gcttatttca	gaacaacttc	cacttacttt	caactggctc	tcaaactctc	taacttataa	2100
gtgttgaa	ccccccaccca	ggcagtatcc	atgaaagcac	aagtactag	tccttatgtg	2160
tacaaagcct	gtatctctgt	gatgatttct	gtgctttca	ctctttgca	ttgctaataa	2220
aa						2222

<210> 378

<211> 2270

<212> DNA

<213> Homo sapiens

<400> 378

ctcctccagc	ctctcacact	ctcctcagct	ctctcatctc	ctggAACCAT	ggccAGCACA	60
tccaccacca	tcaggagcca	cagcagcagc	cgccgggggtt	tcagtgcCAA	ctcAGCCAGG	120
ctcccgggg	tcagccgctc	tggcttcagc	agcgtctccg	tgtcccgctc	caggggcagt	180
ggtgtgcctgg	gtgggtgcattg	tggaggagct	ggctttggca	gccgcagtct	gtatggcctg	240
gggggctcca	agaggatctc	cattggaggg	ggcagctgtg	ccatcagtgg	cggctatggc	300
agcagagccg	gaggcagcta	tggctttgtt	ggcgcgggga	gtggatttgg	tttcgggttgt	360
ggagccggca	ttggctttgg	tctgggttgtt	ggagccggcc	ttgctgggtgg	ctttgggggc	420
cctggcttcc	ctgtgtgccc	ccctggaggc	atccaagagg	tcaccgtcaa	ccagagtctc	480
ctgactcccc	tcaacctgca	aatcgatccc	accatccagc	gggtgcgggc	tgaggagcgt	540
gaacagatca	agaccctcaa	caacaagttt	gcctccttca	tcgacaaggt	gcggttctg	600
gagcagcaga	acaagggttct	ggaaacaaag	tggaccctgc	tgcaggagca	gggcaccaag	660
actgtgaggc	agaacactgga	gccgtgttc	gagcagttaca	tcaacaacct	caggaggcag	720
ctggacagca	ttgtcggggg	acggggccgc	ctggactctag	agctcagagg	catgcaggac	780
ctgggtggagg	acttcaagaa	caaatatgag	gtgaaatgc	acaagcgcac	agcagcagag	840
aatgaatttgc	tgactctgaa	gaaggatgtg	gtatgtgcct	acatgaacaa	ggttgaactg	900
caagccaaagg	cagacactct	cacagacgag	atcaactttc	tgagagcctt	gtatgtatgc	960
gagctgtccc	agatgcagac	ccacatctca	gacacatctg	tggtgtgtc	catggacaac	1020
aaccgcAAC	tggacctgga	cagcatcatc	gctgagggtca	aggcccaata	tgaggagatt	1080
gctcagagaa	gccgggctga	ggctgagtcc	tggttaccaga	ccaagtacga	ggagctgcag	1140
gtcacagcag	gcagacatgg	ggacgacctg	cgcaacacca	agcaggagat	tgctgagatc	1200
aaccgcatga	tccagaggct	gagatctgag	atcgaccacg	tcaagaagca	gtgcgcAAC	1260
ctgcaggccg	ccattgctga	tgctgagcag	ctgtggggaga	tggccctcaa	ggatgccaa	1320
aacaagctgg	aagggtctgg	ggatgccctg	cagaaggcca	agcaggacct	ggcccggtcg	1380
ctgaaggagt	accaggagct	gatgaatgtc	aagctggccc	tggacgtgga	gatgcacc	1440
taccgcAAC	tgctggaggg	tgaggagtgc	aggctgaatg	gcgaaggcgt	tggacaagtc	1500
aacatctctg	tgtgtcagtc	caccgtctcc	agtggctatg	gcgggtccag	tgggtcggc	1560
agtggcttag	gcctgggtgg	aggaaggcagc	tactcctatg	gcagtggct	tggcgttgg	1620
ggtggcttca	gttccagca	tggcagagcc	attgggggtg	gcctcagctc	tgttggaggc	1680
ggcagttcca	ccatcaagta	caccaccacc	ttctcctcca	gcaggaagag	ctataagcac	1740
taaagtgcgt	ctgcttagctc	tcgggtccac	agtccctcagg	cccctctctg	gctgcagac	1800
cctctcttca	ggttgcctgt	cctctcttgg	cctccaggtct	ccccctgtgt	cccaggtaga	1860
gctggggatg	aatgcttagt	gccctcaatt	tttctctctc	tctctataacc	atctgagcac	1920
ccattgtctca	ccatcagatc	aacctctgtat	tttacatcat	gatgtaatca	ccactggagc	1980
ttcactgtta	ctaaatttatt	aatttttgc	ctccagttgtt	ctatctctga	ggctgagcat	2040
tataagaaaa	tgacctctgc	tccttttcat	tgcagaaaaat	tgccaggggc	ttatttcaga	2100
acaacttcca	cttactttcc	actggctctc	aaactctcta	acttataagt	gttgtgaacc	2160
cccacccagg	cagtatccat	gaaagcacaa	gtgactagtc	ctatgtatgt	caaaggctgt	2220
atctctgtga	tgatttctgt	gctcttcact	gtttgcaatt	gctaaataaa		2270

<210> 379

Siemens 0022 Seq Listing.txt

<211> 2301

<212> DNA

<213> Homo sapiens

<400> 379

tcgacagctc	tctcgcccaag	cccagttctg	gaagggataa	aaagggggca	tcaccgttcc	60
tggtaacag	agccacatcc	tgcgtccctgc	tgagctctgt	tctctccagc	acctcccaac	120
ccactagtgc	ctggttctct	tgctccacca	gaaacaagcc	accatgtctc	gccagtcag	180
tgtgtccctc	cggagcgggg	gcagtcgtag	cttcagcacc	gcctctgc	tcaccccg	240
tgtctccgc	accagcttca	cctccgtgc	ccgggtccggg	ggtggcggtg	gtggtggtt	300
cggcagggtc	agcctgcgg	gtgctgtgg	agtgggtggc	tatggcagcc	ggagcctta	360
caacctgggg	ggctccaaga	ggatccat	cagcactaga	ggaggcagct	tcaggaaccg	420
gtttgggtct	ggtgctggag	gcggctatgg	ctttggaggt	ggtggcggta	gtggatttgg	480
tttcggcgg	ggagctgggt	gtggcttgg	gctcgggtgc	ggagctggct	ttggaggtgg	540
cttcggtggc	cctggcttcc	ctgtctgc	tcctggaggt	atccaagagg	tcactgtcaa	600
ccagagtctc	ctgactcccc	tcaacctgca	aatcgacccc	agcatccaga	gggtgaggac	660
cgaggagcgc	gagcagatca	agaccctcaa	caataagtt	gcctcttca	tcgacaaggt	720
gcggttctcg	gagcagcaga	acaaggtct	ggacacccaag	tggaccctgc	tgcaaggagca	780
gggcaccaag	actgtgaggg	agaacctgga	gccgttggc	gagcagtaca	tcaacaacct	840
caggaggcag	ctggacagca	tcgtggggga	acggggccgc	ctggactcag	agctgagaaa	900
catgcaggac	ctggtggaaag	acttcaagaa	caagtatgag	gatgaaatca	acaagcgtac	960
cactgctgag	aatgagttt	tgatgctgaa	gaaggatgta	gatgctgcct	acatgaacaa	1020
ggtggagctg	gaggccaagg	ttgatgcact	gatggatgag	attaacttca	tgaagatgtt	1080
ctttatgtcg	gagctgtccc	agatcagac	gcatgtctc	gacacctcag	tggccctctc	1140
catggacaac	aaccgcaacc	tggacctgga	tagcatcatc	gctgaggtca	aggcccagta	1200
tgaggagatt	gc当地accgc	gccggacaga	agccgagttc	tggttatcaga	ccaagtatga	1260
ggagctgcag	cagacagctg	gccggcatgg	cgatgaccctc	cgcaacacca	agcatgagat	1320
cacagagatg	aaccggatgt	tccagaggct	gagagccgag	attgacaatg	tcaagaaaca	1380
gtgcgc当地	ctgc当地aac	ccatttgc当地	tgccgagcag	cgtggggagc	tggccctcaa	1440
ggatgc当地	aacaagctgg	ccgagctgga	ggaggccctg	cagaaggcca	agcaggacat	1500
ggcccgctg	ctgc当地gag	accaggagct	catgacacc	aagctggccc	tggacgttgg	1560
gatgc当地	taccgc当地	tgctggagg	cgaggaatgc	agactcagtg	gagaaggagt	1620
tggaccagtc	aacatctctg	ttgtcacaag	cagttttcc	tctggatatg	gcagtggcag	1680
tggctatggc	ggtggcctcg	gtggaggtct	tggccggcgc	ctcgtggag	gtcttgc当地	1740
aggttagcag	ggaagctact	actccagcag	cagtgggggt	gtcggcctag	gtggtggtt	1800
cagtgtgggg	ggctctggct	tca	gatggccga	gggctggggg	tggc当地tgg	1860
cagtggccgg	ggtagcagct	ccagcgtcaa	atttgtctc	accacctcct	cctccggaa	1920
gagcttcaag	agctaagaac	ctgctcaag	tcactgcctt	ccaagtgcag	caacccagcc	1980
catggagatt	gc当地tctct	ggcagttct	caagccatgt	tttacccctt	tctggagagt	2040
agtctagacc	aaggcaattt	cagaaccaca	ttctttgtt	cccaggagag	ccccattccc	2100
agccctgg	ctccctgtcc	gcagttctat	attctgc	aaatcagcct	tcaggttcc	2160
cacagcatgg	ccctgtctg	cacgagaacc	caaagtttc	ccaaatctaa	atcatcaaaa	2220
cagaatcccc	accccaatcc	caaattttgt	tttggttctt	actacctcca	aatgtgttcc	2280
aataaaatgc	tttataata	t				2301

<210> 380

<211> 2255

<212> DNA

<213> Homo sapiens

<400> 380

Siemens 0022 Seq Listing.txt

ccttcctccc	tcctgcacatc	gagttgtc	tccaccagca	acatgagccg	ccaattcacc	60
tgcaagtccgg	gagctgccgc	caaggggggc	ttcagtggct	gctcagctgt	gctctcaggg	120
ggcagctcat	cctccttccg	ggcagggagc	aaagggctca	gtggggctt	tggcagccgg	180
agcctctaca	gcctgggggg	tgtccggagc	ctcaatgtgg	ccagtggcag	cgggaaagagt	240
ggaggctatg	gatttggccg	gggccccggc	agtggcttt	ctggaagcat	gtttggcagt	300
gtggccctgg	ggcctgtgt	cccaactgta	tgcccacctg	gaggcatcca	ccaggttacc	360
gtcaatgaga	gcctcctggc	ccccctcaac	gtggagctgg	accccgagat	ccagaaaagt	420
cgtccccagg	agcgagagca	gatcaaggct	ctgaacaaca	agttcgcctc	cttcatcgac	480
aaggtgcgg	tcctggagca	gcagaaccag	gtactggaga	ccaagtggga	gctgctgcag	540
cagctggacc	tgaacaactg	caagaacaac	ctggagccca	tcctcgaggg	ctacatcagc	600
aacctgcgga	agcagctgg	gacgctgtct	ggggacaggg	tgaggctgga	ctcgagctg	660
aggaatgtgc	gggacgtagt	ggaggactac	aagaagaggt	atgaggagga	aatcaacaag	720
cggacagcag	cagagaacga	gtttgtgctg	ctcaagaagg	atgtggatgc	tgcttacgcc	780
aataagggtgg	aactgcaggc	caaggtggaa	tccatggacc	aggagatcaa	gttcttcagg	840
tgtcttttg	aagccgagat	cactcagatc	cagtcccaca	tcagtgacat	gtctgtcatc	900
ctgtccatgg	acaacaaccg	gaaccttagac	ctggacagca	tcattgacga	agtccgcacc	960
cagtatgagg	agattgcctt	gaagagtaag	gccgaggctg	aggccctgt	ccagaccaag	1020
ttccaagagc	ttcagctggc	agtcggcagg	ctatggggacg	acctaaaaaa	caccaagaat	1080
gaatctcg	agtcactcg	gctcatccag	agaatcccg	cagagatcga	gaacgtgaag	1140
aaggcagctt	ccaaacctgg	gacaggccat	gctgatgctg	agcagcgggg	agacaacgcc	1200
ctgaaggatg	ccccggccaa	gctggacgag	ctggaggggc	ccctgcacca	ggccaaggag	1260
gagctggcgc	ggatgctgc	cgagtaccag	gagctcatga	gcctgaagct	ggccctgac	1320
atggagatcg	ccacctatcg	caagctactg	gagagcggag	agtgcaggat	gtcaggagaa	1380
tttccctccc	ctgtcagcat	ctccatcatc	agcagcacca	gtggcggcag	tgtctatggc	1440
ttccggccca	gcatggtag	cggtgctat	gtggccaaca	gcagcaactg	catctcttgg	1500
gtgtcagcg	tgagaggcgg	ggagggcagg	agccggggca	gtgccaacga	ttacaaagac	1560
accctaggga	agggttccag	cctgagtgca	ccctccaaga	aaaccagtgc	gtagagaaga	1620
ctgccccggg	ccccgcctca	ttccatgacc	cggtctctgg	tcccacactg	tacttccac	1680
agcccactct	cagctccatc	tccaccctgc	tggctctgt	cccatacacc	tggcactggc	1740
cttggccacc	cacccctccc	agcctgtgc	ttccctgatcc	tggaaaggcc	tggatgacca	1800
agcttggta	aattccctccc	tgtacacacc	ctattaactc	cttgctgtg	gtccccccagc	1860
tacaccacca	gcccaggtcc	tggctgccc	ctttcctctt	ctgcccggcc	tctagcgcag	1920
tcgctaacta	ctctgctggg	ctccctgggt	ctctgccccaa	ggcccccgcac	acactggac	1980
ctagcatagt	tcctgcctat	gccaggagct	ggctctgtgt	ttaagaaaag	gaggactgaa	2040
ggacaaacaa	ccaaagagtgg	cccagtc	accccccacat	ctagctcagt	ctcaaatctg	2100
agtgggacca	agtgcattc	agggcctttt	tctccactca	cctgcacccca	gaagcagaga	2160
aaagcaggca	ctgttcactt	ttcccttatt	cttaatggcc	ttccctctgtt	gcaacctcaa	2220
taaacagcac	aatctcaaaa	aaaaaaaaaa	aaaaaa			2255

<210> 381

<211> 2856

<212> DNA

<213> Homo sapiens

<400> 381

ccttggagac	tgcttttctc	cagctctgtc	aactcaacct	ttcccacat	gagtccggcaa	60
ctgaacatca	agtccagtg	tgacaaggggc	aacttcagt	tgcattcggc	agtggtgcca	120
aggaaggctg	tgggtagct	ggcttcttac	tgtcagctg	gcagaggggc	tggcgttgc	180
tttggcagtc	ggagcctcta	tagcccttgg	ggaaatccgc	gtatccctt	caatgtggct	240
ggggccggcg	ttcgggctgg	aggttacggc	ttcaggcc	gtctctggta	tggagggggc	300
cggccactg	gttttgc	cagtatgtt	ggcagtgtgg	ccctggggcc	tgcatttttg	360
tctgtgtgcc	cacccctgggg	catccaccag	gtcactgtca	acaagagcct	cttggccccc	420
ctcaacgtgg	agctggaccc	tgagatccag	aagggtgcgc	cccaggagcg	ggaacagatc	480
aaggtgtga	acgacaaagt	cgcctcc	attgacaagg	tacgcttct	agagcagcag	540
aaccaggatc	tagaaacca	gtgggagctg	ctgcagcagc	tggacctgaa	caactgcac	600
aagaacctgg	agcccatct	tgagggctac	atcagcaacc	tgcggaaagca	gctggagaca	660
ctgtctgggg	acagggtgag	gctggactcg	gagctgagaa	gcatgaggga	tctgggtggag	720

Siemens 0022 Seq Listing.txt

gactataaga	agagatatga	ggtgtgaggatt	aaccgggcga	caacagcaga	gaatgagttt	780
gtgggtctta	agaaggatgc	agatgcagcc	tacgcagtc	aggtggagct	tcaggccaaa	840
gtggactcac	tggacaaaga	catcaagttc	étcagaatgtc	tgtatgtatgc	agagatcgct	900
cagatccaga	ctcacgcccag	tgagacctct	gtcatccctgt	ccatggacaa	caaccgggac	960
ctggaccttgc	acagcatcat	cgttgaggc	cgcgcatt	atgaggagat	cggccctgaag	1020
agcaaggccg	aggccgaggc	cctgtaccag	accaagatcc	aggagctgca	gctggcagcc	1080
atccagagga	tccgggtgtga	gatcgggaat	gtgaagaagc	agcgtgccag	cctggagacg	1140
gccatcgctg	acgctgagca	gcggggagac	aatgccctga	aggatgccc	ggccaagctg	1200
gatgagctgg	aggcgccct	gcaccaggcc	aggaggagc	tggcgcggat	gctgcgcgag	1260
taccaggagc	tcatgagcct	gaaactggcc	ctggacatgg	agattgccc	ctaccgcaag	1320
ctgctggagg	gcgaggagtg	caggatgtct	ggtgagaatc	catccctgt	gagcatctct	1380
gtcatcagca	gttagcagcta	cagctaccac	caccccaagt	ctgcgggtgt	tgaccttggg	1440
gccagcctg	tggcaggcag	ctctggcagc	acccagagcg	ggcagaccaa	gaccacagag	1500
gcmcgggggg	gagacctcaa	ggacacccag	ggcaagagca	ccccagccag	catcccagca	1560
aggaaagcca	cccgctagac	ccatggcctc	acccacccctca	gcacttggaa	gaagaggtga	1620
ctttgcacc	cccaaagggtg	tctgccacac	ccaagttccc	aggccctgag	ttttaaaact	1680
gtctgttagta	cactcaactg	tctgcacatgt	gttttagctt	ttatcttcaa	gctctgattt	1740
acacagtcac	cttccctgtt	tccttaggtc	ccatgtggac	taacgacttc	tcattttct	1800
cgctgcctt	ggctggcagg	aggcttgg	ggcacaaggc	attataacct	tcttggccct	1860
aaggaagctg	tgtatcatccc	tagaaagagg	gaaggagcag	gagacgacag	gggaggggct	1920
ggtttttct	gtgcttaggc	caagttgt	actgtctgag	aggttttaca	tcccctgcca	1980
gcatgggggg	gtgacacagag	acctgttaagc	aggtgggtgag	aagttagaca	gcctttactt	2040
gctccatcag	aaacaacttt	gcaggatgac	gccaatattt	aggacaccac	gtgtacatct	2100
gtagaccacc	agctgcaccc	atctccacaa	agccaagtg	aggtgtattt	gggattctct	2160
gccagcctgt	gtcaccacc	caccccttcc	attatcagca	atagctacca	tcattttgtca	2220
agcacctact	agatgccaga	cacccctacac	atattgcctc	ctattctcat	ccattccgtc	2280
aaagaagatg	caatgagcat	ccttggaaaca	gactggggagc	ctgatcccaa	gaggctgctg	2340
aactggccccc	agtccacccac	ctatgtgcca	gagtcaggcc	tggccgacac	aaggatctat	2400
gcttttctg	tgtgtgtca	ctgccttttt	ääcaaagg	ctgtcaaagt	caccatttt	2460
tttgtatgagg	gcagcgtaat	tacattgcct	tttgcaggaa	ctgtgggtat	gtgatttgc	2520
ttccacagtc	tctctggggc	tgtgtctac	atagcttctg	actctcaatt	tttgggtgcca	2580
tgagctgagc	tcagtgagtg	gagctggctt	ttctgtcgt	gagttgtact	gccttagtcca	2640
gatgtcggt	ctcagggtgt	aaatattcct	aagaatggca	gcatctattt	cctcttttgt	2700
ttgaattaaa	gactctgaat	ttctgtgaa	aaaaaaaaaaa	aaaaaaaaaaa	aaaaaaaaaaa	2760
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2820
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaa	aaaaaaaaaa	aaaaaaaaaa	2856

<210> 382

<211> 1985

<212> DNA

<213> Homo sapiens

<400> 382						
gcggctgttt	gcgccttcc	tgcctccgc	gcggccagca	ccggtaacttg	cgagccatga	60
gccgcctaact	gacccatttc	ccccgcgggg	agcgcctgg	cttcagcggt	tgctccgcgg	120
tcctctctgg	cgggatcgcc	agcagctccg	cctcattccg	ggcccggtc	aagggctcgg	180
cctccttgg	cagcaagagc	ctctcctgcc	ttggggggcag	ccgaagctg	gcgctcaagcg	240
ctgctgcacg	gcggggcggc	ggccgcctgg	gcggcttctgt	gggcacccgc	ttcggcagcg	300
ccgggctggg	gcccaagtgt	ccctccgtgt	gcccaccccg	gggcattccct	caggtcaccg	360
tcaacaagag	cctcctggcc	ccgctcaacg	tggagatgga	ccccgagatc	cagagggtgc	420
gcgcccagga	gcggggagcag	atcaaggcgc	tääacaacaa	tttcgcctcc	ttcatcgaca	480
aggtgcgggtt	cctggagcag	cagaatcagg	tgttagagac	caagtggAAC	tccttacagc	540
agctggactt	gaacaactgc	aggaagaacc	tggagcccat	ttatgagggc	tacatcagca	600
acctgcagaa	gcagctggag	atgctgtctg	ggggacggggt	gaggctggat	tcggagctga	660
ggaacatgca	ggatttgggt	gaggactaca	agaagaggtt	tgagttggag	attaacagac	720
gcacagctgc	tgagaatgag	tttgggtgc	tcaagaagga	cgtggatgt	gcttacatga	780
ataagggttga	gctccaggcc	aagggtggact	ccttgacaga	tgagattaaa	ttcttcaagt	840

Siemens 0022 Seq Listing.txt

gccttatga	agggagatc	actcagatcc	agtcccacat	cagcgacacg	tccatcgcc	900
tgtcaatgga	caacaaccgg	gatctggacc	tggacagcat	cattgccgag	gtccgtgccc	960
agtacgagga	gattgcccta	aagagaagg	ccgaggctga	gaccctgtac	cagacccaaga	1020
tccaggagct	gcaggtcaca	gcagggcagc	atggggatga	cctcaagctc	accaaggctg	1080
aatctctga	gctcaaccgc	ctgatccaga	gatccgctc	agagataggg	aatgtgaaga	1140
agcagtgtc	cgatctggag	acggccatcg	ccgacgctga	acagcggggg	gactgcgccc	1200
tgaaaagatgc	ccgggccaag	ctggatgagc	tggagggcgc	cctgcaccag	gccaaggagg	1260
agctggcacg	gatgctgcgt	gagtaccagg	agctcgttag	cctgaagctg	gccctggata	1320
tggagatcgc	cacctaccgc	aagctgctgg	agagcgagga	gtcaggatg	tctggcgaat	1380
atccaaattc	tgtgagcatc	tccgtcatca	gcagcaccaa	tgctgggca	ggaggggctg	1440
gcttcagcat	gggctttggc	gcctcaagca	gttatacgta	caaaactgca	gctgcagacg	1500
tcaagaccaa	aggcagctgt	ggcagtgagc	tcaaggatcc	ccttgc当地	acctcgggga	1560
gcagctgtgc	cacccaaaaag	gcctccagat	gatggacaaag	tggatggc	tgtgacaga	1620
aggcttccca	actcacccgt	ctcccccctc	tccttccctg	ggctccctt	ccaagtcaag	1680
aatgccttgc	tctgtacta	cagtccaaac	ccatccctc	ctccctgttg	tcctcaaggt	1740
gtgatgcgttgc	gatgcaaggaa	gtccagtcag	gagctctctc	agtggctcc	ttcttggtcc	1800
cgtttcgttg	ggtcatttgcc	tgaatgcaa	agacaacact	tacccaggat	ttttccccaa	1860
ggccagctac	aagccccctc	gccccatgc	ctttcttggg	ccttcaactac	caagggactc	1920
tcttcatctt	ctgattggaa	tttgtccag	tcctctgctt	ttctgcaat	aatgattaa	1980
atctg						1985

<210> 383

<211> 2323

<212> DNA

<213> Homo sapiens

<400> 383

tcagcatctt	atccccactt	tctggctcc	ccaccatgag	ccgccaattc	acctacaagt	60
cgggagtcgc	tgccaagggg	ggcttcagcg	gctgctccgc	tgtgctctca	gggggcagct	120
catcctctta	ccgagcaggg	ggcaaagggc	tcaatgtggc	catttcggcgt	cgaggccccc	180
acagcctggg	gggtgcccgg	agcatcttt	tcaatgtggc	catttcggcgt	gggtggcag	240
gaggctatgg	atttggccgg	ggccgggcca	gtggcttgc	tggcagcatg	tttggcagtg	300
tggccttggg	gtccgtgtgt	ccgtcggtgt	gccccccccc	gggtatccat	caggcacca	360
tcaacaagag	cctcctggca	cccctgaacg	ttggagctgaa	ccctgaaatc	cagaaagtgc	420
gtccccagga	gccccggacg	atcaagggtgc	tgaacaacaa	gttgcctcc	ttcattgaca	480
agggtcggtt	cctggagcag	cagaaccagg	tgctggagac	caagtggag	ctgctacagc	540
agctggacact	gaacaactgc	aagaataacc	ttggagccat	ccttggggc	tacatcagca	600
acctgcggaa	gcagctggag	acgctgtctg	gggacaggg	gaggctggac	tcggagctga	660
ggagcgtgcg	cgaagtgggt	gaggactaca	agaagaggtt	tgaagaagaa	ataaaacaagc	720
gcacaactgc	tgagaatgaa	tttgggtgtc	ttaagaagga	cgtggacgc	gtttacacga	780
gcaaagtgg	gctgcaggcc	aagggtggatg	ccctggatgg	agaaatcaag	ttcttcaagt	840
gtctgtacga	gggggagact	gctcagatcc	agtcccacat	cagcgcacag	tccatcatcc	900
tgtccatgg	caacaaccgg	aacctggacc	ttggacagcat	cattgtcgat	gtccgtgccc	960
agtatgagga	gatcggccgg	aagagaagg	ccgaggccga	ggccctgtac	cagaccaagt	1020
tccaggagct	gcagctagca	gcccggccgg	atggggatga	cctgaaacac	acccaaaatg	1080
agatctcaga	gtgaccgg	ctcattccaa	gactgcgtc	ggagattgag	agtgtgaaga	1140
agcagtgtgc	caacctggag	acggccatcg	ctgacggcga	gcagcggggg	gactgtgccc	1200
tcaaggatgc	caggggccaag	ctggatgagc	tggagggcgc	cctgcagcag	gccaaggagg	1260
agctggcacg	gatgctgcgc	gagttaccaag	agcttttgag	cgtgaagctg	tccctggata	1320
ttgagatcgc	cacccatccgc	aagctgctgg	ggggcgagga	gtcaggatg	tccggagaat	1380
ataccaaatc	cgtgaggcatt	tcgggtcatca	acagctccat	ggccggatg	gcaggcacag	1440
gggctggctt	tggttgcgtc	aatgctggca	cctacggcta	ctggcccgac	tctgtcagcg	1500
ggggctacag	catgctgcct	ggggctgtg	tcactggcag	tggaaactgt	agccccctg	1560
gggaagccag	gaccaggctg	gggagtgcaa	gtgaattcag	ggactcccg	ggaaagacct	1620
tagctctaag	ctcaccacc	aaaaaaaa	ttagataaaa	gtgcaacaca	gccccattcc	1680
cagtagtctg	ccttgcctct	gcagactgct	ccggactt	cttagaaatt	cctctgtctc	1740
atttgtccctc	atctcccttct	tgctttgtgt	tgctgtggac	ctctcccttct	tctccttgac	1800

Siemens 0022 Seq Listing.txt

ctctctgcct	cagtctttgt	taatgttcaa	tcaggatttg	agagctggag	cccatcttc	1860
tgcctccatc	caaagaggcc	tttaactca	gcctccccctt	ctggaagaag	acttggcctt	1920
ttctctgcct	gcatgtccct	gtgcagagga	aggctgtctc	tcaagggtaa	ccccaacttg	1980
cctgtgtgc	tcttcatac	cctgtctcag	taactatttg	gccatgtgct	ccctgggtac	2040
acaagtttc	agatctactg	atagacctgc	aggaactctc	tcatgttaga	gcaatactgg	2100
ctcaggccaa	acacctggtg	ggaaggttgt	tcttgtatag	ccactgcata	ttacatagcc	2160
aggagtagcc	cttgaggct	attctacca	ccaagggatt	tgtgctttc	atctgtgggt	2220
acttgtcctt	gtttaggcct	cacccctcg	ctcctgtgtc	ttaccaataa	acttataaaag	2280
cccaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaa		2323

<210> 384

<211> 2427

<212> DNA

<213> Homo sapiens

<400> 384

agcctgtgac	tttcctccct	ggacaaaggc	atcatgagtt	gtcagatctc	ttgcaaatct	60
cgaggaagag	gaggaggtgg	aggaggattc	cggggcttca	gcagcggctc	agctgtggtg	120
tctggggaa	gccggagatc	aacttccagc	ttctcctgct	tgagccgcca	tgggtgggt	180
ggcgggggct	tcgggtggagg	cggcttggc	agtcggagtc	ttgttggcct	tggagggacc	240
aagagcatct	ccattagtgt	ggctggagga	ggttggtggt	ttggcgccgc	tgggtggattt	300
ggtggcagag	gaggtggttt	tggaggcggc	agcggctttg	gaggcggcag	cggctttgga	360
ggtggcagcg	gcttcagtgg	tgggtggttt	ggtggaggcg	gcttgggtgg	aggccgcctt	420
ggaggtttt	ggggccctgg	tgggtttgg	ggttttagggg	gtcctggtgg	cttgggcct	480
ggaggatacc	ctgggtggcat	ccacgaagtc	tctgtcaacc	agagcctcct	gcagcctctc	540
aacgtgaaag	ttgacccaga	gatccagaat	gtgaaggccc	aagagcgtga	gcagatcaa	600
actctcaaca	acaaatttgc	ctccttcatt	gacaagggtgc	ggttcttgg	gcagcagaac	660
caggtgttac	agaccaaata	ggagctgcta	caacaaatga	atgttggcac	ccgccccatc	720
aacctggagc	ccatcttcca	gggttatata	gacagcctca	agagatatct	ggatgggctc	780
actgcagaaa	gaacatcaca	gaattcagag	ctgaataaca	tgcaggatct	tgtggaggat	840
tataagaaga	agtatgagga	tgaatcaat	aagcgcacag	ctgctgagaa	tgatttgtg	900
acgcttaaaa	aggacgtgg	caatgcctac	atgataaaagg	tggagttgc	gtccaagggt	960
gacctgtga	acaggaaat	tgagttctg	aaagttctt	atgatgcgg	gatatccag	1020
atacatcaga	gtgtcactga	caccaacgtc	atcctctcca	tggacaacag	ccgcaacctg	1080
gacttgata	gcatcatcgc	cgaggtcaag	gccctcaagg	aggagatcgc	ccagaggagc	1140
aaggaagaag	cgaggccct	gtaccacagc	aagtatgagg	agctccaggt	gactgtcggg	1200
agacatggag	acagcctgaa	agagatcaag	atagagatca	gcgagctgaa	ccgcgtgatc	1260
cagaggctgc	agggggagat	cgcacatgtg	agaagca	gtaagaatgt	gcaagatgcc	1320
atcgcagatg	ccgagcagcg	tggggagcat	gccctcaagg	atgccaggaa	caagttgaat	1380
gacctggagg	aggccctgca	gcagggccaag	gaggacttg	cgccgctgct	gcgtgactac	1440
caggagctga	tgaacgtgaa	gctggcccta	gatgtggaga	tcgcccacca	ccgcaaactg	1500
ctggagggcg	aggagtgcag	gatgtctgg	gacctcagca	gcaatgtgac	tgtgtctgt	1560
acaagcagca	ccatttcattc	aaatgtggca	tccaaggctg	ccttggagg	ttctggaggt	1620
agagggtcca	gttccggagg	aggatacagc	tctggaaagca	gcagttatgg	ctctggaggc	1680
cgacagtctg	gctccagagg	cggttagtgg	ggaggaggtt	ctatctctgg	aggaggat	1740
ggctctggcg	gttggttctgg	aggaagatac	gatctggtg	gtggctctaa	gggagggtcc	1800
atctctggag	gaggatatgg	ctctggaggt	gaaaaacaca	gctctggagg	tggctctaga	1860
ggaggctcca	gctctggagg	aggatatggc	tctggaggt	gggggttctag	ctctgtaaag	1920
ggtagctcag	gtgaagcttt	tggttccagc	gtgaccttct	cttttagata	aagatgagcc	1980
cccaccacca	ccgactctcc	caacccagac	tctccacac	cagaatgtag	aagcctgtct	2040
ctgtacccct	aactggcagc	aagttaatt	tttgtcattt	atctctgtat	gcacttttag	2100
ggaaaagaat	gtccacatac	agttttgaa	agatcttctc	tccaaaccag	ttagtttag	2160
ccagtgtacgc	ctctgtgttc	tgggccggaa	tctgtgtgt	ctagtttgt	gcttctagcc	2220
atccccattc	ccgccccccac	catgccttt	tgcattgccc	atttccaga	tgtgtattct	2280
gttgaggacc	caggcccatc	caggatttc	atctctaagc	ctggcagtgc	tggggggaaa	2340
tgtgtttctg	tgtatatagc	tcctttgtc	cactctgctt	tcggaaagtgc	tgtggcttg	2400
gggtcttcat	aataaacccctc	atttgca				2427

Siemens 0022 Seq Listing.txt

<210> 385

<211> 2507

<212> DNA

<213> Homo sapiens

<400> 385						
agctccccc	cttactctac	cttgctccta	cttttctcta	agtcaacatg	agtcgacagt	60
ttagttccag	gtctgggtac	cgaagtggag	ggggcttcag	ctctggctct	gctgggatca	120
tcaactacca	gcgcaggacc	accagcagct	ccacacgcgg	cagtggagga	ggtgtgggaa	180
gattttcaag	ctgtgggtgg	ggtgggtggta	gctttgggtgc	ttgtgggtgg	tttggaaagtc	240
ggaggttgtt	taaccttgg	ggcagtaaaa	gcataccat	aagtgggtgg	agaggaggtg	300
gacgtgttag	tggctttgg	gggtggatag	tggtgggtgg	ctttgggtgg	gttgtggcttg	360
gtgggtgtgg	cttgggtgg	ggggcattt	gggggtgggtgg	ctttgggtgg	tttggcagtg	420
gtgggtgtgg	tttgggtgg	ggggcattt	gggggtgggtgg	atatgggggt	gttatgttc	480
ctgtctgccc	tccctgggtgg	ataacaagaag	tcactatcaa	ccagagcctt	tttcagcccc	540
tcaatgtgga	gattgaccct	gagatccaaa	aggtgaagtc	tcgagaaaagg	gagcaaatca	600
agtcaactaa	caaccaattt	gcctcctca	ttgacaaggt	gaggttcctg	gagcagcaga	660
accaggtaact	gcaaacaaaaa	tgggagctgc	tgcagcaggt	agataacctc	actagaaccc	720
ataatttaga	gccctacttt	gagtcatca	tcaacaatct	ccgaaggaga	gtggaccaac	780
tgaagagtga	tcaatctcg	ttggattcgg	aactgaagaa	catcaggagc	atggtggagg	840
attaccggaa	caagtatgag	gatgaaatca	acaagcggac	aaatgcagag	aatgaatttg	900
tgaccatcaa	gaaggatgtg	gatgggtctt	atatgaccaa	ggtgacaccc	caggccaaac	960
ttgacaactt	gcagcaggaa	attgatttcc	ttacagcaact	ctaccaagca	gagttgtctc	1020
agatgcagac	tcaaataatg	gaaactaatg	tcatcctctc	tatgacaac	aaccgcagtc	1080
tcgacctgga	cagcatcatt	gctgaggtca	aggcccaagta	cgaggatata	gcccagaaga	1140
gcaaagctga	ggccgagtc	ttgtaccaga	gcaagtatga	agactgtcag	atcaactgt	1200
gcagacatgg	ggatagtgtg	agaaattcaa	agatagaataat	ttctgagctg	aatcgtgtga	1260
tccagagact	tagatctgaa	atcgacaatg	tcaagaagca	gatcccaac	ttgcagcagt	1320
ccatcaagtga	tgcagagcag	cgtggcgaga	atgcccctaa	ggatgccaag	aacaagctga	1380
atgacctgga	ggatgccc	cagcaggcc	aggaagacat	ggccgcctg	ctgcgcgact	1440
accaggagct	gtatgaacacc	aagctggccc	ttgatctgga	gattgcccacc	tacaggaccc	1500
tcctggaggg	agaagaaaagc	aggatgtctg	gägaatgtgc	cccgaaacgt	agtgtgtctg	1560
tgagcacaag	ccacaccacc	atcagtggag	gtggcagccg	aggaggtggc	ggcggtggt	1620
acggctctgg	agtagcagc	tatggctcc	gaggtggtag	ctatgttct	ggaggtggcg	1680
gcggcggcgg	ccgtggcagc	tatggctcc	gaggtagcag	ctacggctcc	ggaggtggca	1740
gctatggctc	tggagggtgg	ggcggcggcc	atggcagcta	cggctccgg	agcagcagt	1800
ggggctacag	aggtggctct	ggaggcggcg	gcggcggcag	ctctggcggc	cggggctctg	1860
gcggcgggag	ctctggaggc	tccataggag	gccggggatc	cagctctgg	ggtgtcaagt	1920
cctctgtgg	cagttccagc	gtgaggtttg	tttctaccac	ttattccgg	gtaaccagat	1980
aaagagatgc	cctctgtttc	attagctcta	gttctcccc	agcatacta	acaaatatgc	2040
ttggcaagac	cgaggtcgat	ttgtcccagc	cttaccggag	aaaagagcta	tggtagtta	2100
caactagctca	tcctattcc	ccagctttt	cttttctgt	gtttccaaat	gaagtttca	2160
gatcagtggc	aatctcagtc	ccctggctat	gaccctgtt	ttttcttcc	ctgagaaaca	2220
gttcagcagt	gaccaccacc	cacatgacat	ttcaaagcac	ctcccttaagc	cagccagagt	2280
aggaccagtt	agacccaggg	tgtggacagc	tcctttagcat	cttacatctcg	tgctgtttg	2340
gttttgtaca	taaggtgtaa	gcaaggttgtt	tttcttttgt	ggagagggtct	taaactcccc	2400
atttccttgt	tttgctgcaa	taaactgcat	ttgaaattct	ccatgtctcg	atcgcccttg	2460
tttacggctc	tgtctaacct	ggatgggtgt	tttgtgaggt	aaaagaa		2507

<210> 386

<211> 2224

<212> DNA

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 386

atgagcagac	aagccagcaa	gacatctgg	ggcgggagcc	agggttctc	cgggcgcct	60
gctgtggct	ccggcagca	caggatgagc	tgtgtggccc	actctgggg	agctggcga	120
ggggcctat	gcttcggag	cggagcagg	gccttggca	gtcgcagcct	ctacaacct	180
ggcggcaaca	agagcatctc	catcagcgt	gcagctggcg	gctcccggc	tggaggctt	240
gggggagggc	ggagcagctg	tgccttgca	gttggctatg	gaggtggctt	tggagcggc	300
tatggaggt	gctttgggt	tggcttggt	gttggcagag	aatggggagg	tggctttgt	360
ggagctgg	gctttggagg	ggctgtggc	tttggagggg	ctggggctt	tgggtggcct	420
gttggctt	gttgggtctgg	tggcttggt	ggcctggca	gctttggcag	tcctggggc	480
tttgcgcct	ggggcttcc	tggggaaatt	caggaagtga	ctactaacc	gagtctctg	540
cagcccccta	aagtggagac	tgacccccag	attgggcaag	taaaggccca	ggagcgggaa	600
cagatcaaga	ccctcaacaa	caagtttgc	tccttcattt	acaaggtgc	gttcctggag	660
caacagaaca	aagtcttgg	gaccaagtgg	aacctgctcc	agcagcagg	cacaagtcc	720
atctcaggca	caaacaaccc	tgagccttc	tttgagaatc	acataacta	cctgcggagc	780
tacctggaca	acatccctcg	ggagagagg	cgcctggact	ctgagctgaa	gaacatggag	840
gacctggtgg	aagacttcaa	gaagaaatat	gaggatgaaa	tcaataaaacg	tacagctgt	900
gagaatgaaat	tttgactct	gaagaaggat	gttggacagt	cctatatgaa	caaggtggag	960
cttcaggcca	aagtggatgc	tttgatagat	gagatcgact	tcttaaggac	cctctacac	1020
gctgagctat	cttagatgca	gagccacatc	agtgcacat	ctgttgtgt	gtccatggac	1080
aataatcg	ccctggaccc	ggacagcatc	attgtctgaag	ttgggtgcaca	gtatgaggat	1140
atcgctcaga	gaagcaaggc	cgaagcttag	gccctgtacc	agaccaagtt	gggggagctg	1200
cagaccacgg	ctggcaggca	tggggatgac	ctaagaaata	ccaagagcga	gatcatagag	1260
ctcaacagaa	tgatccagag	gctgcggca	gagatcgagg	gtgtcaagaa	gcagaatgcc	1320
aacctgcaga	cggccattgc	gcagggccag	cagcatggag	agatggccct	caaggatgcc	1380
aatgccaagc	tccaagagct	gcaggctgt	ctacagcagg	cgaaggatga	cctggcgcgg	1440
ctgctacgt	actaccagg	gctgtatgaa	gtcaagctgg	ccctggacgt	ggagatcgcc	1500
acctaccgca	agctgctgg	gggcgaggag	tacagcagga	tgtctggaga	gtgtccgagt	1560
gctgtcagca	tctccgtgg	cagcagcagc	acgacttccg	cctccgcagg	tggctatgg	1620
ggaggttacg	gcccgggcat	gggcgttgt	ttaggaggt	gttgcgtgc	gggcggccgg	1680
tcaggcattt	gttggggcc	gggaggcggc	gttggaaatcg	gcgggtggatt	tggcggccgg	1740
acgagcggtt	tcaagcggt	cagcgctt	gttgcctatc	ctggcgcgg	ctatggagt	1800
agtggccggg	gttgcgtgc	ggccagcaac	cggggcggca	gcatcaagtt	ctcccgatcc	1860
tcccagtc	cccaagcgta	ctccagataa	agagcacgc	tcagcatcgc	agccactcca	1920
gcgcctcccc	tccgcctccc	acgccccat	attggcaaca	cccccagcgc	cacccatgc	1980
tccccaaagaa	cgcggctct	cgctgaaagg	ctgtggcc	ttgtccctcc	ttccagatcc	2040
ccggccaagc	ccagtcacga	gaatttcagg	ctttctctc	cggctccagc	ctgtgatgt	2100
ccaggtgtgg	cctaggcgcc	accttctgt	gccccggagt	ccccccctg	gtggggatgc	2160
tcactacagc	tctgtatgtat	atagcacaca	gccccctcc	ccccctccgg	ctgtcgccaa	2220
taaa						2224

<210> 387

<211> 2617

<212> DNA

<213> Homo sapiens

<400> 387

gacttgc	ttttgcaga	gttggaggt	ggcaggctgt	gctcaaac	tcaggctgtc	60
taactccaca	ttctgtgggg	tgagaggat	gttgcgtgg	tgtctttct	ggaggaggga	120
ggtgctgt	gcctagcgag	atggaggtac	agtgggtgt	ggcctggagc	gctggggccca	180
ggcaggggct	tctgatttag	aagccctgg	gcaccagttc	aggctctcc	agagagtagt	240
gtgatggat	ccagtaaccc	gtgcctcca	gatgacttct	gttaggtgt	tttagtgacat	300
gctcaacggg	tgcgggaagg	atgggctgt	gccaaggggcc	aagcccagag	atgtttcaga	360
ttttccctt	tatgcctct	caaccaagcc	ctgctgc	aggacatata	agagacgaag	420

Siemens 0022 Seq Listing.txt

gctgagggct	ccagcactca	ccggcctggg	ccctgtca	tctctgatag	ctcccagtc	480
gctctctgca	gccatgattt	ccagacagca	gtgtgtccga	ggcggcccc	ggggcttcag	540
ctgtggctcg	gccattgttag	gcgggtggcaa	gagaggtgcc	ttcagctca	tctccatgtc	600
tggaggtgct	ggccgatgct	cttctgggg	atttggcagc	agaagcctct	acaacccatcg	660
ggggaaacaaa	agcatctcca	tgagtgtggc	tggttcacga	caagggtgcct	gctttgggg	720
tgctggaggc	tttggcactg	gtggcttgg	tgccggcggc	ttcggagctg	gtttcggcac	780
tggtggctt	ggtgggtggat	ttgggggctc	ttcagtggt	aagggtggcc	ctggcttccc	840
cgtctgccc	gctgggggaa	ttcaggaggt	caccatcaac	cagagcttgc	tcacccccc	900
ccacgtggag	attgaccctg	agatccagaa	agtccggacg	gaagagcgcg	aacagatcaa	960
gctcctcaac	aacaagtttt	cctccttcat	cgacaagggt	cagttcttag	agcaacagaa	1020
taagggtctg	gagaccaaata	ggaacctgt	ccagcagcag	acgaccacca	cctccagcaa	1080
aaacacctgag	cccccttttgc	agacctacct	cagtgtcctg	aggaagcagc	tagatacctt	1140
gggcaatgac	aaaggggcgcc	tgcagtctga	gctgaagacc	atgcaggaca	gcgtggagga	1200
cttcaagact	aagtatgaag	aggagatcaa	caaacgcaca	gcagccgaga	atgactttgt	1260
ggtcttaaag	aaggacgtgg	atgctgccta	cctgaacaag	gtggagttgg	aggccaaggt	1320
ggacagtctt	aatgacgaga	tcaacttcc	gaaggtccct	tatgatgcgg	agctgtccca	1380
gatgcagacc	catgtcagcg	acacgtccgt	ggtcccttcc	atggacaaca	accgcaacct	1440
ggaccttgac	agcattattt	ccggagttcg	tgcccagtagc	gaggagatgg	cccgagggag	1500
caaggctgag	gctgaagccc	tgtaccagac	caagggtccag	cagctccaga	tctcggttga	1560
ccaaacatgtt	gacaacactga	agaacaccaa	gagtggaaatt	gcagagctca	acaggatgat	1620
ccagagctg	cgggcagaga	tgcgaaacat	caagaagcag	tgccagactc	ttcaggatatc	1680
cgtggctgat	gcaagagcagc	gaggtggagaa	tgccctttaaa	gatgccacaa	gcaagcgcgt	1740
agagctggag	gctgcccctgc	agcaggccaa	ggaggagctg	gcacaatgc	tgcgtgagta	1800
ccagggagctc	atgagtgtga	agctggcctt	ggacatcgg	atcggcacct	accgcaaaact	1860
gctggagggc	gaggagtgaca	aatgtctgg	agaatgccag	agtggcgtga	gcatctctgt	1920
ggtcagcggt	agcaccagca	ctggagggcat	cagcggagga	ttaggaagtg	gctccgggtt	1980
tggcctgagt	agtggcttgc	gctccggctc	tggaagtggc	tttgggtttg	gtggcagtgt	2040
ctctggcagt	tccagcagca	agatcatctc	taccaccacc	ctgaacaaga	gacgataagag	2100
gagacgaggt	ccctgcagct	cactgtgtcc	agctggggcc	agcactggtg	tctctgtgt	2160
tccttcaactt	cacccatccatc	ctctgtctct	ggggctcatac	ttactagtat	ccccctccact	2220
atccccatggg	ctctctctgc	cccaggatga	tcttctgtc	tgggacaggg	actctgcctc	2280
ttggagtttgc	gtagctactt	cttgattttg	gcctgggtgac	ccacctggaa	tgggaaggat	2340
gtcagctgac	ctctcaccc	ccatgggcag	agaagaaaaat	gaccaggagt	gtcatctccca	2400
gaattattgg	ggtcacatat	gtcccttccc	agtccaaatgc	catctccac	tagatccctgt	2460
attatccatc	tacatcagaa	ccaaactact	tctccaaacac	ccggcagcac	ttggccctgc	2520
aagcttagga	tgagaaccac	ttagtgccc	attctactcc	tctcattccc	tcttattccat	2580
ctgcaggtga	atcttcaata	aatgtttt	gtcattc			2617

<210> 388

<211> 1752

<212> DNA

<213> Homo sapiens

<400> 388

ctgctccctc	taggatctcc	gcctggttcg	gcccgcctgc	ctccactcct	gcctccacca	60
tgtccatcag	ggtagccca	aagtctaca	aggtgtccac	ctctggcccc	cgggccttca	120
gcagccgctc	ctacacgat	gggcccgggt	ccgcgcata	ctccctcgagc	ttctcccgag	180
tgggcacgag	caactttcgc	ggtggcctgg	gcccggcgt	tgggtggggcc	agcggcatgg	240
gaggcatac	cgcagttac	gtcaaccaga	gcctgtcgag	cccccttgc	ctggaggtgg	300
accccaacat	ccaggccgt	cgcaccagg	agaaggagca	gatcaagacc	ctcaacaaca	360
agtttgcctc	cttcata	aaggta	ttctggagca	gcagaacaag	atgctggaga	420
ccaagtggag	cctcctgcag	cagcagaaga	cggctcga	caacatggac	aacatgttc	480
agagctacat	caacaacctt	aggcggcagc	tggagactct	ggccaggag	aagctgaagc	540
tggaggcgg	gcttggcaac	atgcaggggc	tggtggagga	cttcaagaac	aagtatgagg	600
atgagatcaa	taagcgta	gagatggaga	accaatttgt	cctcatcaag	aaggatgtgg	660
atgaagctt	catgaaca	gtagagctgg	agtctcgct	ggaagggtcg	accgacgaga	720
tcaacttcct	caggcagct	tatgaagagg	agatccggga	gctgcagtc	cagatctcg	780

Siemens 0022 Seq Listing.txt

acacatctgt	ggtgctgtcc	atggacaaca	ggcgctccct	ggacatggac	agcatcattg	840
ctgaggtaa	ggcacagtac	gaggatattg	ccaaccgcag	ccgggctgag	gctgagagca	900
tgtaccagat	caagtatgag	gagctgcaga	gcctggctgg	gaagcacggg	gatgacctgc	960
ggcgcacaaa	gactgagatc	tctgagatga	accggaacat	cagccggctc	caggctgaga	1020
ttgagggcct	caaaggccag	agggcttccc	ttgaggccgc	cattgcagat	gccgagcagc	1080
gtggagagct	ggccattaag	gatgccaacg	ccaagttgtc	cgagctggag	gccgcccgtc	1140
agcgggcca	gcaggacatg	gcmcggcagc	tgcgtgagta	ccaggagctg	atgaacgtca	1200
agctggccct	ggacatcgag	atcgccacct	acaggaagct	gctggagggc	gaggagagcc	1260
ggctggagtc	tggatgcag	aacatgagta	ttcatacga	gaccaccagc	ggctatgcag	1320
gtggctgtag	ctcgccctat	ggggccctca	caagccccgg	cctcagctac	agcctgggct	1380
ccagcttgg	ctctggcgcg	ggctccagct	cttcagccg	caccagctcc	tccagggccg	1440
tgttgtgaa	gaagatcgag	acacgtgatg	gaaagctgtt	gtctgagttc	tctgacgtcc	1500
tgcccaagtg	aacagctgcg	gcagccctc	ccagcctacc	cctcctgcgc	tgccccagag	1560
cctggaaagg	aggccgttat	gcagggtagc	actggaaaca	ggagaccac	ctgaggctca	1620
gccctagccc	tcagccacc	tgggagttt	actacctgg	gacccccctt	gcccatgcct	1680
ccagctacaa	aacaattcaa	ttgtttttt	tttttggttc	aaaataaaac	ctcagcttagc	1740
tctgccaaac	cc					1752

<210> 389

<211> 1412

<212> DNA

<213> Homo sapiens

<400> 389

cggggtcg	cgcaaaggct	gagtccgtc	ttttctctct	ccccggacag	catgagcttc	60
accactcg	ccacccctc	ccaactac	cggtccctgg	gctctgtcca	ggcccccagc	120
tacggccccc	ggccggtcag	cagcgcggcc	agcgtctatg	caggcgctgg	gggctctgg	180
tcccgatct	ccgtgtcccg	ctccaccagc	ttcagggcgc	gcatggggtc	cgggggcctg	240
gccaccgg	tagccgggg	tctggcagga	atggggagca	tccagaacga	gaaggagacc	300
atgcaaagcc	tgaacgaccg	cctggctct	tacctggaca	gagtggaggag	cctggagacc	360
gagaaccgg	ggctggagag	aaaaatccgg	gagcaactgg	agaagaaggg	accccaggtc	420
agagactgg	gcattactt	caagatcata	gaggacctga	gggctcagat	tttcgcaaat	480
actgtggaca	atgcccgc	cggttgcag	attgacaat	cccgcttgc	tgctgatgac	540
tttagagtc	agatggagac	agagctggc	atgcgcagt	ctgtggagaa	cgacatccat	600
gggctccgca	agtcattgt	tgacaccaat	atcacacgac	tgcagctgg	gacagagatc	660
gaggctctca	aggaggagct	gctcttcatg	agaagaacc	acgaagagga	agtaaaaggc	720
ctacaagccc	agattggcc	ctctgggtt	accgtggagg	tagatgcccc	caaatactcag	780
gacctcgca	agatcatggc	agacatccgg	gcccaatatg	acgagctggc	tcggaagaac	840
cgagaggagc	tagacaagta	ctggtctcag	cagattgg	agagcaccac	agtggtcacc	900
acacagtctg	ctgagggttg	agctgtgag	acgacgccta	cagagctgag	acgtacagtc	960
cagtccctgg	agatcgac	ggactccat	agaaatctga	aggccagtt	ggagaacagc	1020
ctgagggagg	ttggggcccg	ctacgccc	cagatggagc	agctcaacgg	gatcctgt	1080
caccttgagt	cagactggc	acagaccgg	gcagaggagc	agcgcacggc	ccaggagat	1140
gaggccctgc	tgaacatcaa	ggtaagctg	gaggctgaga	tcgcaccta	ccgcccctg	1200
ctggaaatgt	gcgaggactt	taatcttgg	gatgccttgg	acagcagcaa	ctccatgaa	1260
accatccaaa	agaccaccac	ccgcccggata	gtggatggca	aagtgggtgc	tgagaccaat	1320
gacaccaaaag	ttctgaggca	ttaagccagc	agaagcaggg	taccctttgg	ggagcaggag	1380
gccaataaaa	agttcagagt	tcattggat	tc			1412

<210> 390

<211> 2516

<212> DNA

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 390		
cggggccggc ggaccgcgg gcagggactg cccgggctgg acgacgtctg gccggctccc	60	
ggcgaaggc agcggaggag cggccagag cgccgagcta gggcaactggc gaaaccccg	120	
gacagtccct ctccgtgcgg gggcggcgca gagcagtccc atccccgggg tcccggcg	180	
ggctgactgc cgctggttc cctgcgcgc gtagctccc gagccggct gcaccggagg	240	
cggcgagatg gtcgcgcgc tcggccctc gctgcgcgc ctgcagctgc tactgtggg	300	
ccacctggac gccagcccg cggagcgcgg aggccaggag ctgcgaagg aggccggaggc	360	
attcctagag aagtacggat acctcaatga acaggtcccc aaagctcca cctccactcg	420	
attcagcgat gccatcagag cgttcaatgc ggtgtcccg ctacctgtca gcggcggtt	480	
ggaccgcgcc accctgcgc accatgcactg tcccgcgtc ggggttacag ataccaacag	540	
ttatgcggcc tggctgaga ggatcaatgtc cttgtttgt agacaccggc cccaaatgag	600	
gcgttaaaaa cgctttgcaa agcaaggtaa caaatggta aagcagcacc tctccatccg	660	
cctggtaac tggcctgagc atctggcggc gccggcagg ctggggcgcc tgccgcgc	720	
cttccagttt tggagcaacg tctcagcgct ggagttctgg gagggcccg ccacaggccc	780	
cgctgacatc cgctcaccc ttttcaagg gacccacaatc gatgggctgg gcaatgcctt	840	
tgtatggcca gggggccccc tggcgacgc ctttctgcgg cggccggcg aagcgcactt	900	
cgaccaagat ggcgcgtggt ccctgagccg cggccggcg ggcaacctgt tcgtgggtgt	960	
ggcgcacgg atccgtcaca cgcttgcctt caccactcg cccgcgcgc ggcgcgtcat	1020	
ggcccccata tacaagaggc tggccgcga cgcgcgtc agctgggacg acgtgcgtggc	1080	
cgtgcagagc ctgtatggta agccccatgg gggctcagg gccgtccagc tcccaggaaa	1140	
gctgttact gactttgaga cctggactc ctacagcccc caagaaggc gcccgtaaac	1200	
gcagggccct aataactgccc actttccctt cgatgcccatt actgttagaca ggcaacagca	1260	
actgtacatt tttaaaggga gccatttctg ggaggtggca gctgtatggca acgtctcaga	1320	
gccccgtcca ctgcaggaaa gatgggtcg gctgcccccc aacattgagg ctgcggcagt	1380	
gtcattgaat gatggagatt tctacttctt caaagtgcac tccgtttgtat tgatatgaat	1440	
accaaccatc gtggcgtcca gcttaaaggc gaggcaggaggg ggtcgtatgc ggagggtccg	1500	
ggggcccaag ccagtgtggg gtctccaca gctgtgcggc gcaggggggcc tgcccccgc	1560	
tcctgacgcc gccctttctt tccctcttc gcgcgcgcctc atcctttca aggggtcccg	1620	
ctactacgtg ctggcccgag gggactgca agtggagccc tactaccccc gaagtctgc	1680	
ggactgggaa ggcattccctg aggaggtcag cggcccccctg ccgaggccc atggctccat	1740	
catttcttc cgagatgacc gctactggcg cctcgaccag gccaaactgc aggcaaccac	1800	
ctcggggcgc tggccaccgc agtgcctcg gatgggtctgc tggcatgc gactcggggag	1860	
cgccctgttc tgaaggcacc tcctcacctc agaaactgtt ggtgtctca gggcaaaatc	1920	
atgttccca cccccggggc agaacccttc tttagaagct ctgatcccct ctgcagaaga	1980	
ccgggcagca aagcctccat ctggaaatct gtctgcctt gttccttgaa gaatgcagca	2040	
ttgtcttgt ctgtccccac cacatggagg tgggggtggg atcaatctt gaaaaagcaa	2100	
aaaagggtcc cagatccctt gccccttcc tccgaggact tctatccctt ccaggccccc	2160	
gtttcttcgg ctaaaggatc agttccctt aagaggtaac agcactggga tccaaggcagg	2220	
gggataaaaa actcagcaga gaaattcgg accattttc aagactgtgc ctttctcc	2280	
aggacccctt ggctcgtttc ttgaaaaacg gtgtcatatt tagtcagagg ccccccaccc	2340	
aggaagcatg gatggggatg aaggcacagg cgtctccaaac ctcagaggcc ctttgggg	2400	
tcaggacaca gagtggggagg gagactgtatc caggcctacc agtccctggc ttttgc	2460	
gggctgaaat aaagaggtgc cttcagctgg tggccgaga ggcaggaagc agcatt	2516	

<210> 391

<211> 3291

<212> DNA

<213> Homo sapiens

<400> 391		
aagtgcgcac cagagccatt ggagggcgcg gggactgcaaa ccctaattcag agcccaaatg	60	
gcgcgtggg aatgtgcac gaatcttgc acggcccttc aggatcagct gcaccagctt	120	
tactcgcaca gcctcctgc tggacatt cgcacgtact tggctgtctg gattgaagac	180	
cagaactggc aggaagctgc acttgggagt gatgattcca aggatccat gctattctc	240	

Siemens 0022 Seq Listing.txt

cacttcttgg	atcagctgaa	ctatgagtgt	ggccgttgc	gccaggaccc	agagtccctg	300
ttgctgcagc	acaatttgc	gaaattctgc	cgggacattc	agccctttc	ccaggatcct	360
accagggtgg	ctgagatgat	cttaaacctc	cttctggaaag	aaaaaaaagaat	tttgatccag	420
gctcagaggg	cccaatttgg	acaaggagag	ccagttctg	aaacacctgt	ggagagccag	480
caacatgaga	ttgaatcccg	gatcctggat	ttaagggcta	tgatggagaa	gctggtaaaa	540
tccatcagcc	aactgaaaga	ccagcaggat	gtcttctgct	tccgatataa	gatccaggcc	600
aaaggaaaga	caccctctct	ggacccccc	cagaccaaag	agcagaagat	tctgcagggaa	660
actctcaatg	aactggacaa	aaggagaaag	gagggtctgg	atgcctccaa	agcactgcta	720
ggccgattaa	ctaccctaatt	cgagctactg	ctgccaaagt	tggaggagt	gaaggcccag	780
cagcaaaaag	cctgcatca	agctcccatt	gaccacgggt	tggaacagct	ggagacatgg	840
ttcacagctg	gagcaaagct	gttgttcac	ctgaggcagc	tgctgaagga	gctgaaggga	900
ctgagttgcc	tgttagcta	tcaggatgac	cctctgacca	aagggtgga	cctacgcaac	960
gcccagtc	cagagttgt	acagcgtctg	ctccacagag	ccttgtggt	agaaaccagg	1020
ccctgcatgc	ccccaaactcc	ccatcgaccc	ctcatcctca	agactggcag	caagttcacc	1080
gtccgaacaa	ggctgctgg	gagactccag	gaaggcaatg	agtcaactgac	tgtggaaagtc	1140
tccattgaca	ggaatcctcc	tcaattacaa	gccttccg	agttcaacat	tctgacttca	1200
aaccagaaaa	ctttgacccc	cgagaagggg	cagagtca	gtttgat	ggactttgg	1260
tacctgactc	tgttgagca	acgttcagg	gttgcaggaa	agggcagcaa	taaggggcca	1320
ctaggtgtga	cagaggaact	gcacatcatc	agcttcacgg	tcaaatatac	ctaccagggt	1380
ctgaaggcagg	agctgaaaac	ggacaccctc	cctgtgg	ttatttccaa	catgaaccag	1440
ctctcaattt	cctgggcttc	agttctgtt	tcaatttgc	tcagccaaa	ccttcagaac	1500
caggattct	tctccaaccc	ccccaaaggcc	ccctggag	tgctgggccc	tgctctcagt	1560
tggcaggatct	cctcttatgt	tggccgaggc	ctcaactcag	accagctgag	catgctgaga	1620
aacaagctgt	tcgggcagaa	ctgttagact	gaggatccat	tatttctg	ggctgacttc	1680
actaagcgag	agagccctcc	tggcaagtt	ccattctg	catgctgga	caaaattctg	1740
gagttgtac	atgaccac	gaaggatctc	ttgaatgat	gacgcacat	gggctttgt	1800
agtcggagcc	aggagcgc	gctgtgaag	aagaccatgt	ctggcacctt	tctactgcgc	1860
ttcagtgaaat	cgtcagaagg	gggcattacc	tgctcctgg	tggagcacca	ggatgatgac	1920
aaggtgctca	tctactctgt	gcaaccgtac	acgaaggagg	tgctgcagtc	actcccgt	1980
actgaatca	tccgccatta	ccagttgctc	actgaggaga	atataacctg	aaacccactg	2040
cgcttcctct	atccccgaat	ccccccggat	gaagctttg	ggtgtacta	ccaggagaaa	2100
gttaatctcc	aggaacggag	gaaatacctg	aaacacaggc	tcatgtgg	ctctaata	2160
caggtggatg	aactgcaaca	accgctggag	cttaagccag	agccagagct	ggagtcat	2220
gagctgaaac	tagggctgg	gccagagcc	gagctcagcc	tggactt	gccactgt	2280
aaggcagg	tgatctgg	gccagagct	gagtctgtc	tggagtccac	tctggagcct	2340
gtgatagagc	ccacactatg	catggat	caaacagtgc	cagagccaga	ccaaggac	2400
gtatcacagc	cagtgc	gccagattt	ccctgtgt	tgagacattt	gaacactgag	2460
ccaatggaaa	tcttcagaaa	ctgtgtaa	attgaagaaa	tcatg	tgtgaccca	2520
ctgttgctg	gcca	cgtggat	gtttacgtt	ccccc	ccacttctac	2580
actgtatggac	ccttgatg	ttctgactt	taggaaccac	atttctct	ttcttttcat	2640
atctcttgc	ccttcttact	cctcatagca	tgtatatttt	ctccaaaggat	ggaaatcagg	2700
catgtgtccc	ttccaagctg	tgttaactgt	tcaaactcag	gcctgtgt	ctccatttgg	2760
gtgagaggtg	aaagcataac	atgggtac	aggggacaa	aatgaat	aacagatgt	2820
gagccatagg	tctaaatagg	atcctggagg	ctgcctgc	tgctgggagg	tataggggtc	2880
ctggggcag	gccaggcag	ttgacaggt	cttggagggc	tcagggcagt	ggcttcttc	2940
cagtatggaa	ggat	tttaatag	ttggtaggc	taaactgt	cataactgg	3000
ttggccttgg	tggggagc	agacacagga	taggactca	tttcttctt	ccattcctc	3060
atgtctagga	taacttg	tcttcttcc	tttactcctg	gctcaagcc	tgaatttctt	3120
ctttcctgc	aggggtt	agcttctg	cttagcctac	catgt	tctaccctg	3180
agaaaggat	ggataggaag	tagac	tttcttacca	gtctccccc	ctactctg	3240
ccctaagctg	gctgtac	ttcctcccc	ataaaatgt	cctgcca	t	3291

<210> 392

<211> 1283

<212> DNA

<213> Homo sapiens

#0022 Seq Listing.txt

<400> 392

ctctctgctc	ctcctgttcg	acagtcagcc	gcacatcttctt	ttgcgtcgcc	agccgagcca	60
catcgctcag	acaccatggg	gaaggtaag	gtcggagtca	acggatttg	tcgtattgg	120
cgcctgtca	ccagggtctgc	tttaactct	gttaaagtgg	atattgtgc	catcaatgac	180
cccttcattg	acctcaacta	catggttac	atgttccaat	atgattccac	ccatggcaaa	240
ttccatggca	ccgtcaaggc	tgagaacggg	aagcttgtca	tcaatggaaa	tcccattcacc	300
atcttccagg	agcgagatcc	ctccaaaatc	aagtggggcg	atgctggcgc	tgagtagtc	360
gtggagtc	ctggcgtctt	caccaccatg	gagaaggctg	gggctcattt	gcagggggga	420
gccaaaaggg	tcatcatctc	tgccccctct	gctgatgccc	ccatgttcgt	catgggtgt	480
aaccatgaga	agtatgacaa	cagcctcaag	atcatcagca	atgcctctg	caccaccaac	540
tgcttagcac	ccctggccaa	ggtcatccat	gacaactttg	gtatcgtgga	aggactcatg	600
accacagtcc	atgccatcac	tgccacccag	aagactgtgg	atggcccctc	cgggaaactg	660
tggcgtgatg	gccgcggggc	tctccagaac	atcatccctg	cctctactgg	cgctgccaag	720
gctgtgggca	aggcatccc	tgagctgaac	ggaaagctca	ctggcatggc	tttccgtgtc	780
cccactgcca	acgtgtcagt	ggtggacctg	acctgcccgt	tagaaaaacc	tgccaaatat	840
gatgacatca	agaagggtgg	gaagcaggcg	tcggaggggc	ccctcaaggg	catcctggc	900
tacactgagc	accaggtgg	ctcctctgac	tcaaacagcg	acaccacac	ctccacctt	960
gacgctgggg	ctggcattgc	cctcaacgac	cactttgtca	agctcatttc	ctggatgac	1020
aacgaattt	gctacagcaa	cagggtggtg	gacctcatgg	cccacatggc	ctccaaggag	1080
taagaccctt	ggaccaccag	ccccagcaag	agcacaagag	gaagagagag	accctcactg	1140
ctggggagtc	cctgcccacac	tcagttcccc	accacactga	atctccctc	ctcacagtt	1200
ccatgttagac	cccttgaaga	ggggaggggc	ctagggagcc	gcaccttgtc	atgtaccatc	1260
aataaagtac	cctgtgtca	acc				1283

<210> 393

<211> 331

<212> PRT

<213> Homo sapiens

<400> 393

Met	Gly	Gly	Ser	Ala	Gly	Arg	Glu	Leu	Asp	Ala	Gly	Arg	Lys	Pro	Lys
1				5				10						15	
Leu	Thr	Arg	Thr	Gln	Ser	Ala	Phe	Ser	Pro	Val	Ser	Phe	Ser	Pro	Leu
				20				25						30	
Phe	Thr	Gly	Glu	Thr	Val	Ser	Leu	Val	Asp	Val	Asp	Ile	Ser	Gln	Arg
				35				40						45	
Gly	Leu	Thr	Ser	Pro	His	Pro	Pro	Thr	Pro	Pro	Pro	Pro	Pro	Arg	Arg
				50				55						60	
Ser	Leu	Ser	Leu	Leu	Asp	Asp	Ile	Ser	Gly	Thr	Leu	Pro	Thr	Ser	Val
				65				70			75			80	
Leu	Val	Ala	Pro	Met	Gly	Ser	Ser	Leu	Gln	Ser	Phe	Pro	Leu	Pro	Pro
				85				90						95	
Pro	Pro	Pro	Pro	His	Ala	Pro	Asp	Ala	Phe	Pro	Arg	Ile	Ala	Pro	Ile
				100				105						110	
Arg	Ala	Ala	Glu	Ser	Leu	His	Ser	Gln	Pro	Pro	Gln	His	Leu	Gln	Cys
				115				120						125	
Pro	Leu	Tyr	Arg	Pro	Asp	Ser	Ser	Phe	Ala	Ala	Ser	Leu	Arg	Glu	
				130				135						140	
Leu	Glu	Lys	Cys	Gly	Trp	Tyr	Trp	Gly	Pro	Met	Asn	Trp	Glu	Asp	Ala
				145				150			155			160	
Glu	Met	Lys	Leu	Lys	Gly	Lys	Pro	Asp	Gly	Ser	Phe	Leu	Val	Arg	Asp
				165				170						175	
Ser	Ser	Asp	Pro	Arg	Tyr	Ile	Leu	Ser	Leu	Ser	Phe	Arg	Ser	Gln	Gly
				180				185						190	
Ile	Thr	His	His	Thr	Arg	Met	Glu	His	Tyr	Arg	Gly	Thr	Phe	Ser	Leu
				195				200						205	
Trp	Cys	His	Pro	Lys	Phe	Glu	Asp	Arg	Cys	Gln	Ser	Val	Val	Glu	Phe

Siemens 0022 Seq Listing.txt

210 Ile Lys Arg Ala Ile Met His Ser Lys Asn Gly Lys Phe Leu Tyr Phe 225 Leu Arg Ser Arg Val Pro Gly Leu Pro Pro Thr Pro Val Gln Leu Leu 245 Tyr Pro Val Ser Arg Phe Ser Asn Val Lys Ser Leu Gln His Leu Cys 260 Arg Phe Arg Ile Arg Gln Leu Val Arg Ile Asp His Ile Pro Asp Leu 275 Pro Leu Pro Lys Pro Leu Ile Ser Tyr Ile Arg Lys Phe Tyr Tyr Tyr 290 Asp Pro Gln Glu Glu Val Tyr Leu Ser Leu Lys Glu Ala Gln Leu Ile 305 Ser Lys Gln Lys Gln Glu Val Glu Pro Ser Thr 325	215 230 240 235 250 255 265 270 280 285 295 300 310 315 320 330	
---	--	--

<210> 394

<211> 306

<212> PRT

<213> Homo sapiens

<400> 394

Met Ala Ala Pro Ile Pro Gln Gly Phe Ser Cys Leu Ser Arg Val Leu 1 Gly Trp Trp Ser Arg Gln Pro Val Leu Val Thr Gln Ser Ala Ala Ile 20 Val Pro Val Arg Thr Lys Lys Arg Phe Thr Pro Pro Ile Tyr Gln Pro 35 Lys Phe Lys Thr Glu Lys Glu Phe Met Gln His Ala Arg Lys Ala Gly 50 Leu Val Ile Pro Pro Glu Lys Ser Asp Arg Ser Ile His Leu Ala Cys 65 Thr Ala Gly Ile Phe Asp Ala Tyr Val Pro Pro Glu Gly Asp Ala Arg 85 Ile Ser Ser Leu Ser Lys Glu Gly Leu Ile Glu Arg Thr Glu Arg Met 100 Lys Lys Thr Met Ala Ser Gln Val Ser Ile Arg Arg Ile Lys Asp Tyr 115 Asp Ala Asn Phe Lys Ile Lys Asp Phe Pro Glu Lys Ala Lys Asp Ile 130 Phe Ile Glu Ala His Leu Cys Leu Asn Asn Ser Asp His Asp Arg Leu 145 His Thr Leu Val Thr Glu His Cys Phe Pro Asp Met Thr Trp Asp Ile 165 Lys Tyr Lys Thr Val Arg Trp Ser Phe Val Glu Ser Leu Glu Pro Ser 180 His Val Val Gln Val Arg Cys Ser Ser Met Met Asn Gln Gly Asn Val 195 Tyr Gly Gln Ile Thr Val Arg Met His Thr Arg Gln Thr Leu Ala Ile 210 Tyr Asp Arg Phe Gly Arg Leu Met Tyr Gly Gln Glu Asp Val Pro Lys 225 Asp Val Leu Glu Tyr Val Val Phe Glu Lys Gln Leu Thr Asn Pro Tyr 245 Gly Ser Trp Arg Met His Thr Lys Ile Val Pro Pro Trp Ala Pro Pro 260 Lys Gln Pro Ile Leu Lys Thr Val Met Ile Pro Gly Pro Gln Leu Lys	5 10 15 25 30 40 45 55 60 70 75 80 90 95 105 110 120 125 135 140 150 155 165 170 175 185 190 200 205 215 220 230 235 250 255 265 270	
--	--	--

Siemens 0022 Seq Listing.txt

275 Glu Glu Tyr Glu Glu Ala Gln Gly Glu Ala Gln Lys Pro Gln
 280 285 300

Leu Ala
305

<210> 395

<211> 557

<212> PRT

<213> Homo sapiens

<400> 395

Met Val Ser Lys Leu Thr Ser Leu Gln Gln Glu Leu Leu Ser Ala Leu
 1 5 10 15
 Leu Ser Ser Gly Val Thr Lys Glu Val Leu Val Gln Ala Leu Glu Glu
 20 25 30
 Leu Leu Pro Ser Pro Asn Phe Gly Val Lys Leu Glu Thr Leu Pro Leu
 35 40 45
 Ser Pro Gly Ser Gly Ala Glu Pro Asp Thr Lys Pro Val Phe His Thr
 50 55 60
 Leu Thr Asn Gly His Ala Lys Gly Arg Leu Ser Gly Asp Glu Gly Ser
 65 70 75 80
 Glu Asp Gly Asp Asp Tyr Asp Thr Pro Pro Ile Leu Lys Glu Leu Gln
 85 90 95
 Ala Leu Asn Thr Glu Glu Ala Ala Glu Gln Arg Ala Glu Val Asp Arg
 100 105 110
 Met Leu Ser Glu Asp Pro Trp Arg Ala Ala Lys Met Ile Lys Gly Tyr
 115 120 125
 Met Gln Gln His Asn Ile Pro Gln Arg Glu Val Val Asp Val Thr Gly
 130 135 140
 Leu Asn Gln Ser His Leu Ser Gln His Leu Asn Lys Gly Thr Pro Met
 145 150 155 160
 Lys Thr Gln Lys Arg Ala Ala Leu Tyr Thr Trp Tyr Val Arg Lys Gln
 165 170 175
 Arg Glu Ile Leu Arg Gln Phe Asn Gln Thr Val Gln Ser Ser Gly Asn
 180 185 190
 Met Thr Asp Lys Ser Ser Gln Asp Gln Leu Leu Phe Leu Phe Pro Glu
 195 200 205
 Phe Ser Gln Gln Ser His Gly Pro Gly Gln Ser Asp Asp Ala Cys Ser
 210 215 220
 Glu Pro Thr Asn Lys Lys Met Arg Arg Asn Arg Phe Lys Trp Gly Pro
 225 230 235 240
 Ala Ser Gln Gln Ile Leu Tyr Gln Ala Tyr Asp Arg Gln Lys Asn Pro
 245 250 255
 Ser Lys Glu Glu Arg Glu Ala Leu Val Glu Glu Cys Asn Arg Ala Glu
 260 265 270
 Cys Leu Gln Arg Gly Val Ser Pro Ser Lys Ala His Gly Leu Gly Ser
 275 280 285
 Asn Leu Val Thr Glu Val Arg Val Tyr Asn Trp Phe Ala Asn Arg Arg
 290 295 300
 Lys Glu Glu Ala Phe Arg Gln Lys Leu Ala Met Asp Ala Tyr Ser Ser
 305 310 315 320
 Asn Gln Thr His Ser Leu Asn Pro Leu Leu Ser His Gly Ser Pro His
 325 330 335
 His Gln Pro Ser Ser Ser Pro Pro Asn Lys Leu Ser Gly Val Arg Tyr
 340 345 350
 Ser Gln Gln Gly Asn Asn Glu Ile Thr Ser Ser Ser Thr Ile Ser His

Siemens 0022 Seq Listing.txt

	355														
His	Gly	Asn	Ser	Ala	Met	Val	Thr	Ser	Gln	Ser	Val	Leu	Gln	Gln	Val
370							375					380			
Ser	Pro	Ala	Ser	Leu	Asp	Pro	Gly	His	Asn	Leu	Leu	Ser	Pro	Asp	Gly
385							390				395				400
Lys	Met	Ile	Ser	Val	Ser	Gly	Gly	Leu	Pro	Pro	Val	Ser	Thr	Leu	
							405				410				415
Thr	Asn	Ile	His	Ser	Leu	Ser	His	Asn	Pro	Gln	Gln	Ser	Gln	Asn	
							420				425				430
Leu	Ile	Met	Thr	Pro	Leu	Ser	Gly	Val	Met	Ala	Ile	Ala	Gln	Ser	Leu
							435				440				445
Asn	Thr	Ser	Gln	Ala	Gln	Ser	Val	Pro	Val	Ile	Asn	Ser	Val	Ala	Gly
							450				455				460
Ser	Leu	Ala	Ala	Leu	Gln	Pro	Val	Gln	Phe	Ser	Gln	Gln	Leu	His	Ser
465							470				475				480
Pro	His	Gln	Gln	Pro	Leu	Met	Gln	Gln	Ser	Pro	Gly	Ser	His	Met	Ala
							485				490				495
Gln	Gln	Pro	Phe	Met	Ala	Ala	Val	Thr	Gln	Leu	Gln	Asn	Ser	His	Met
							500				505				510
Tyr	Ala	His	Lys	Gln	Glu	Pro	Pro	Gln	Tyr	Ser	His	Thr	Ser	Arg	Phe
							515				520				525
Pro	Ser	Ala	Met	Val	Val	Thr	Asp	Thr	Ser	Ser	Ile	Ser	Thr	Leu	Thr
							530				535				540
Asn	Met	Ser	Ser	Ser	Lys	Gln	Cys	Pro	Leu	Gln	Ala	Trp			
					545					550					555

<210> 396

<211> 491

<212> PRT

<213> Homo sapiens

<400>	396														
Met	Ser	Ser	Val	Glu	Ala	Lys	Ile	Glu	Asp	Lys	Val	Gln	Arg	Glu	
1				5				10				15			
Ser	Lys	Leu	Thr	Ser	Gly	Lys	Leu	Glu	Asn	Leu	Arg	Lys	Glu	Lys	Ile
							20				25				30
Asn	Phe	Leu	Arg	Asn	Lys	His	Lys	Ile	His	Val	Gln	Gly	Thr	Asp	Leu
							35				40				45
Pro	Asp	Pro	Ile	Ala	Thr	Phe	Gln	Gln	Leu	Asp	Gln	Glu	Tyr	Lys	Ile
							50				55				60
Asn	Ser	Arg	Leu	Leu	Gln	Asn	Ile	Leu	Asp	Ala	Gly	Phe	Gln	Met	Pro
							65				70				80
Thr	Pro	Ile	Gln	Met	Gln	Ala	Ile	Pro	Val	Met	Leu	His	Gly	Arg	Glu
							85				90				95
Leu	Leu	Ala	Ser	Ala	Pro	Thr	Gly	Ser	Gly	Lys	Thr	Leu	Ala	Phe	Ser
							100				105				110
Ile	Pro	Ile	Leu	Met	Gln	Leu	Lys	Gln	Pro	Ala	Asn	Lys	Gly	Phe	Arg
							115				120				125
Ala	Leu	Ile	Ile	Ser	Pro	Thr	Arg	Glu	Leu	Ala	Ser	Gln	Ile	His	Arg
							130				135				140
Glu	Leu	Ile	Lys	Ile	Ser	Glu	Gly	Thr	Gly	Phe	Arg	Ile	His	Met	Ile
							145				150				160
His	Lys	Ala	Ala	Val	Ala	Ala	Lys	Lys	Phe	Gly	Pro	Lys	Ser	Ser	Lys
							165				170				175
Lys	Phe	Asp	Ile	Leu	Val	Thr	Thr	Pro	Asn	Arg	Leu	Ile	Tyr	Leu	Leu
							180				185				190
Lys	Gln	Asp	Pro	Pro	Gly	Ile	Asp	Leu	Ala	Ser	Val	Glu	Trp	Leu	Val

Siemens 0022 Seq Listing.txt

195															
Val	Asp	Glu	Ser	Asp	Lys	Leu	Phe	Glu	Asp	Gly	Lys	Thr	Gly	Phe	Arg
210					215						220				
Asp	Gln	Leu	Ala	Ser	Ile	Phe	Leu	Ala	Cys	Thr	Ser	His	Lys	Val	Arg
225					230					235				240	
Arg	Ala	Met	Phe	Ser	Ala	Thr	Phe	Ala	Tyr	Asp	Val	Glu	Gln	Trp	Cys
					245				250				255		
Lys	Leu	Asn	Leu	Asp	Asn	Val	Ile	Ser	Val	Ser	Ile	Gly	Ala	Arg	Asn
					260			265			270				
Ser	Ala	Val	Glu	Thr	Val	Glu	Gln	Glu	Leu	Leu	Phe	Val	Gly	Ser	Glu
					275			280			285				
Thr	Gly	Lys	Leu	Leu	Ala	Val	Arg	Glu	Leu	Val	Lys	Lys	Gly	Phe	Asn
					290			295			300				
Pro	Pro	Val	Leu	Val	Phe	Val	Gln	Ser	Ile	Glu	Arg	Ala	Lys	Glu	Leu
305					310				315				320		
Phe	His	Glu	Leu	Ile	Tyr	Glu	Gly	Ile	Asn	Val	Asp	Val	Ile	His	Ala
					325			330				335			
Glu	Arg	Thr	Gln	Gln	Gln	Arg	Asp	Asn	Thr	Val	His	Ser	Phe	Arg	Ala
			340			345					350				
Gly	Lys	Ile	Trp	Val	Leu	Ile	Cys	Thr	Ala	Leu	Leu	Ala	Arg	Gly	Ile
			355			360				365					
Asp	Phe	Lys	Gly	Val	Asn	Leu	Val	Ile	Asn	Tyr	Asp	Phe	Pro	Thr	Ser
			370			375				380					
Ser	Val	Glu	Tyr	Ile	His	Arg	Ile	Gly	Arg	Thr	Gly	Arg	Ala	Gly	Asn
385					390				395				400		
Lys	Gly	Lys	Ala	Ile	Thr	Phe	Phe	Thr	Glu	Asp	Asp	Lys	Pro	Leu	Leu
					405				410				415		
Arg	Ser	Val	Ala	Asn	Val	Ile	Gln	Gln	Ala	Gly	Cys	Pro	Val	Pro	Glu
					420			425				430			
Tyr	Ile	Lys	Gly	Phe	Gln	Lys	Leu	Leu	Ser	Lys	Gln	Lys	Lys	Lys	Met
					435			440			445				
Ile	Lys	Lys	Pro	Leu	Glu	Arg	Glu	Ser	Ile	Ser	Thr	Thr	Pro	Lys	Cys
					450			455			460				
Phe	Leu	Glu	Lys	Ala	Lys	Asp	Lys	Gln	Arg	Lys	Val	Thr	Gly	Gln	Asn
465					470				475				480		
Ser	Lys	Lys	Lys	Val	Ala	Leu	Glu	Asp	Lys	Ser					
					485				490						

<210> 397

<211> 424

<212> PRT

<213> Homo sapiens

<400> 397

1															
Met	Asp	Phe	Ser	Arg	Arg	Ser	Phe	His	Arg	Ser	Leu	Ser	Ser	Leu	
				5				10			15				
Gln	Ala	Pro	Val	Val	Ser	Thr	Val	Gly	Met	Gln	Arg	Leu	Gly	Thr	Thr
					20			25			30				
Pro	Ser	Val	Tyr	Gly	Gly	Ala	Gly	Gly	Arg	Gly	Ile	Arg	Ile	Ser	Asn
					35			40			45				
Ser	Arg	His	Thr	Val	Asn	Tyr	Gly	Ser	Asp	Leu	Thr	Gly	Gly	Asp	
					50			55			60				
Leu	Phe	Val	Gly	Asn	Glu	Lys	Met	Ala	Met	Gln	Asn	Leu	Asn	Asp	Arg
65					70				75				80		
Leu	Ala	Ser	Tyr	Leu	Glu	Lys	Val	Arg	Thr	Leu	Glu	Gln	Ser	Asn	Ser
					85			90			95				
Lys	Leu	Glu	Val	Gln	Ile	Lys	Gln	Trp	Tyr	Glu	Thr	Asn	Ala	Pro	Arg

Siemens 0022 Seq Listing.txt

100	105	110													
Ala	Gly	Arg	Asp	Tyr	Ser	Ala	Tyr	Tyr	Arg	Gln	Ile	Glu	Glu	Leu	Arg
115				120						125					
Ser	Gln	Ile	Lys	Asp	Ala	Gln	Leu	Gln	Asn	Ala	Arg	Cys	Val	Leu	Gln
130				135						140					
Ile	Asp	Asn	Ala	Lys	Leu	Ala	Ala	Glu	Asp	Phe	Arg	Leu	Lys	Tyr	Glu
145				150						155				160	
Thr	Glu	Arg	Gly	Ile	Arg	Leu	Thr	Val	Glu	Ala	Asp	Leu	Gln	Gly	Leu
	165				170					175					
Asn	Lys	Val	Phe	Asp	Asp	Leu	Thr	Leu	His	Lys	Thr	Asp	Leu	Glu	Ile
	180				185					190					
Gln	Ile	Glu	Glu	Leu	Asn	Lys	Asp	Leu	Ala	Leu	Leu	Lys	Lys	Glu	His
	195				200					205					
Gln	Glu	Glu	Val	Asp	Gly	Leu	His	Lys	Leu	Gly	Asn	Thr	Val	Asn	
	210				215					220					
Val	Glu	Val	Asp	Ala	Ala	Pro	Gly	Leu	Asn	Leu	Gly	Val	Ile	Met	Asn
	225				230					235				240	
Glu	Met	Arg	Gln	Lys	Tyr	Glu	Val	Met	Ala	Gln	Lys	Asn	Leu	Gln	Glu
	245				250					255					
Ala	Lys	Glu	Gln	Phe	Glu	Arg	Gln	Thr	Ala	Val	Leu	Gln	Gln	Gln	Val
	260				265					270					
Thr	Val	Asn	Thr	Glu	Glu	Leu	Lys	Gly	Thr	Glu	Val	Gln	Leu	Thr	Glu
	275				280					285					
Leu	Arg	Arg	Thr	Ser	Gln	Ser	Leu	Glu	Ile	Glu	Leu	Gln	Ser	His	Leu
	290				295					300					
Ser	Met	Lys	Glu	Ser	Leu	Glu	His	Thr	Leu	Glu	Glu	Thr	Lys	Ala	Arg
	305				310					315				320	
Tyr	Ser	Ser	Gln	Leu	Ala	Asn	Leu	Gln	Ser	Leu	Leu	Ser	Ser	Leu	Glu
	325				330					335					
Ala	Gln	Leu	Met	Gln	Ile	Arg	Ser	Asn	Met	Glu	Arg	Gln	Asn	Asn	Glu
	340				345					350					
Tyr	His	Ile	Leu	Leu	Asp	Ile	Lys	Thr	Arg	Leu	Glu	Gln	Glu	Ile	Ala
	355				360					365					
Thr	Tyr	Arg	Arg	Leu	Leu	Glu	Gly	Glu	Asp	Val	Lys	Thr	Thr	Glu	Tyr
	370				375					380					
Gln	Leu	Ser	Thr	Leu	Glu	Glu	Arg	Asp	Ile	Lys	Lys	Thr	Arg	Ile	
	385				390					395				400	
Lys	Thr	Val	Val	Gln	Glu	Val	Val	Asp	Gly	Lys	Val	Val	Ser	Ser	Glu
	405				410					415					
Val	Lys	Glu	Val	Glu	Glu	Asn	Ile								
	420														

<210> 398

<211> 209

<212> PRT

<213> Homo sapiens

<400> 398

Met	Glu	Lys	His	His	His	Val	Pro	Ser	Asp	Phe	Asn	Val	Asn	Val	Lys	Val
1						5			10			15				
Asp	Thr	Gly	Pro	Arg	Glu	Asp	Leu	Ile	Lys	Val	Leu	Glu	Asp	Met	Arg	
							20		25			30				
Gln	Glu	Tyr	Glu	Leu	Ile	Ile	Lys	Lys	Lys	His	Arg	Asp	Leu	Asp	Thr	
							35		40			45				
Trp	Tyr	Lys	Glu	Gln	Ser	Ala	Ala	Met	Ser	Gln	Glu	Ala	Ala	Ser	Pro	
						50		55			60					
Ala	Thr	Val	Gln	Ser	Arg	Gln	Gly	Asp	Ile	His	Glu	Leu	Lys	Arg	Thr	

Siemens 0022 Seq Listing.txt

65 70 75 80
Phe Gln Ala Leu Glu Ile Asp Leu Gln Thr Gln Tyr Ser Thr Lys Ser
85 90 95
Ala Leu Glu Asn Met Leu Ser Glu Thr Gln Ser Arg Tyr Ser Cys Lys
100 105 110
Leu Gln Asp Met Gln Glu Ile Ile Ser His Tyr Glu Glu Glu Leu Thr
115 120 125
Gln Leu Arg His Glu Leu Glu Arg Gln Asn Asn Glu Tyr Gln Val Leu
130 135 140
Leu Gly Ile Lys Thr His Leu Glu Lys Glu Ile Thr Thr Tyr Arg Arg
145 150 155 160
Leu Leu Glu Gly Glu Ser Glu Gly Thr Arg Glu Glu Ser Lys Ser Ser
165 170 175
Met Lys Val Ser Ala Thr Pro Lys Ile Lys Ala Ile Thr Gln Glu Thr
180 185 190
Ile Asn Gly Arg Leu Val Leu Cys Gln Val Asn Glu Ile Gln Lys His
195 200 205
Ala

<210> 399

<211> 98

<212> PRT

<213> Homo sapiens

<400> 399

Met Asp Cys Cys Ala Ser Arg Gly Cys Ser Val Pro Thr Gly Pro Ala
1 5 10 15
Thr Thr Ile Cys Ser Ser Asp Lys Ser Cys Arg Cys Gly Val Cys Leu
20 25 30
Pro Ser Thr Cys Pro His Thr Val Trp Leu Leu Glu Pro Thr Cys Cys
35 40 45
Asp Asn Cys Pro Pro Pro Cys His Ile Pro Gln Pro Cys Val Pro Thr
50 55 60
Cys Phe Leu Leu Asn Ser Cys Gln Pro Thr Pro Gly Leu Glu Thr Leu
65 70 75 80
Asn Leu Thr Thr Phe Thr Gln Pro Cys Cys Glu Pro Cys Leu Pro Arg
85 90 95
Gly Cys

<210> 400

<211> 98

<212> PRT

<213> Homo sapiens

<400> 400

Met Asp Cys Cys Ala Ser Arg Ser Cys Ser Val Pro Thr Gly Pro Ala
1 5 10 15
Thr Thr Ile Cys Ser Ser Asp Lys Ser Cys Arg Cys Gly Val Cys Leu
20 25 30

Siemens 0022 Seq Listing.txt

Pro Ser Thr Cys Pro His Thr Val Trp Leu Leu Glu Pro Ile Cys Cys
35 40 45
Asp Asn Cys Pro Pro Pro Cys His Ile Pro Gln Pro Cys Val Pro Thr
50 55 60
Cys Phe Leu Leu Asn Ser Cys Gln Pro Thr Pro Gly Leu Glu Thr Leu
65 70 75 80
Asn Leu Thr Thr Phe Thr Gln Pro Cys Cys Glu Pro Cys Leu Pro Arg
85 90 95
Gly Cys

<210> 401

<211> 79

<212> PRT

<213> Homo sapiens

<400> 401

Met Ser Cys Cys Asp Ser Tyr Leu Gln Gly Cys Cys Ser Val Pro Thr
1 5 10 15
Gly Leu Ala Thr Thr Ile Cys Pro Ser Asp Ile Ser Cys Gln Cys Glu
20 25 30
Val Cys Leu Pro Ser Thr Cys Pro His Glu Ile Ser Leu Leu Gln Pro
35 40 45
Thr Cys Cys Glu Pro Gly Pro Cys Leu Ala Ala Cys Leu Thr Pro Met
50 55 60
Cys His Pro Val Asp Cys Ser Thr Asn Ala Thr Gln Leu Gln Pro
65 70 75

<210> 402

<211> 98

<212> PRT

<213> Homo sapiens

<400> 402

Met Tyr Cys Cys Ala Leu Arg Ser Cys Ser Val Pro Thr Gly Pro Ala
1 5 10 15
Thr Thr Phe Cys Ser Phe Asp Lys Ser Cys Arg Cys Gly Val Cys Leu
20 25 30
Pro Ser Thr Cys Pro His Glu Ile Ser Leu Leu Gln Pro Ile Cys Cys
35 40 45
Asp Thr Cys Pro Pro Pro Cys Cys Lys Pro Asp Thr Tyr Val Pro Thr
50 55 60
Cys Trp Leu Leu Asn Asn Cys His Pro Thr Pro Gly Leu Ser Gly Ile
65 70 75 80
Asn Leu Thr Thr Tyr Val Gln Pro Gly Cys Glu Ser Pro Cys Glu Pro
85 90 95
Arg Cys

<210> 403

Siemens 0022 Seq Listing.txt

<211> 174

<212> PRT

<213> Homo sapiens

<400> 403
Met Thr Cys Cys Gln Thr Ser Phe Cys Gly Tyr Pro Ser Phe Ser Ile
1 5 10 15
Ser Gly Thr Cys Gly Ser Ser Cys Cys Gln Pro Ser Cys Cys Glu Thr
20 25 30
Ser Cys Cys Gln Pro Arg Ser Cys Gln Thr Ser Phe Cys Gly Phe Pro
35 40 45
Ser Phe Ser Thr Ser Gly Thr Cys Ser Ser Ser Cys Cys Gln Pro Ser
50 55 60
Cys Cys Glu Thr Ser Cys Cys Gln Pro Ser Cys Cys Glu Thr Ser Cys
65 70 75 80
Cys Gln Pro Ser Cys Cys Gln Ile Ser Ser Cys Gly Thr Gly Cys Gly
85 90 95
Ile Gly Gly Ile Ser Tyr Gly Gln Glu Gly Ser Ser Gly Ala Val
100 105 110
Ser Thr Arg Ile Arg Trp Cys Arg Pro Asp Ser Arg Val Glu Gly Thr
115 120 125
Tyr Leu Pro Pro Cys Cys Val Val Ser Cys Thr Pro Pro Ser Cys Cys
130 135 140
Gln Leu His His Ala Gln Ala Ser Cys Cys Arg Pro Ser Tyr Cys Gly
145 150 155 160
Gln Ser Cys Cys Arg Pro Val Cys Cys Cys Glu Pro Thr Cys
165 170

<210> 404

<211> 167

<212> PRT

<213> Homo sapiens

<400> 404
Met Thr Cys Cys Gln Thr Ser Phe Cys Gly Tyr Pro Ser Cys Ser Thr
1 5 10 15
Ser Gly Thr Cys Gly Ser Ser Cys Cys Gln Pro Ser Cys Cys Glu Thr
20 25 30
Ser Cys Cys Gln Pro Ser Cys Cys Gln Thr Ser Phe Cys Gly Phe Pro
35 40 45
Ser Phe Ser Thr Ser Gly Thr Cys Ser Ser Ser Cys Cys Gln Pro Ser
50 55 60
Cys Cys Glu Thr Ser Cys Cys Gln Pro Ser Cys Cys Gln Thr Ser Ser
65 70 75 80
Cys Gly Thr Gly Cys Gly Ile Gly Gly Ile Gly Tyr Gly Gln Glu
85 90 95
Gly Ser Ser Gly Ala Val Ser Thr Arg Ile Arg Trp Cys Arg Pro Asp
100 105 110
Cys Arg Val Glu Gly Thr Cys Leu Pro Pro Cys Cys Val Val Ser Cys
115 120 125
Thr Pro Pro Thr Cys Cys Gln Leu His His Ala Glu Ala Ser Cys Cys
130 135 140

Siemens 0022 Seq Listing.txt

Arg Pro Ser Tyr Cys Gly Gln Ser Cys Cys Arg Pro Val Cys Cys Cys
145 150 155 160
Tyr Ser Cys Glu Pro Thr Cys
165

<210> 405

<211> 177

<212> PRT

<213> Homo sapiens

<400> 405
Met Ala Cys Cys Gln Thr Ser Phe Cys Gly Phe Pro Ser Cys Ser Thr
1 5 10 15
Ser Gly Thr Cys Gly Ser Ser Cys Cys Gln Pro Ser Cys Cys Glu Thr
20 25 30
Ser Ser Cys Gln Pro Arg Cys Cys Glu Thr Ser Cys Cys Gln Pro Ser
35 40 45
Cys Cys Gln Thr Ser Phe Cys Gly Phe Pro Ser Phe Ser Thr Gly Gly
50 55 60
Thr Cys Asp Ser Ser Cys Cys Gln Pro Ser Cys Cys Glu Thr Ser Cys
65 70 75 80
Cys Gln Pro Ser Cys Tyr Gln Thr Ser Ser Cys Gly Thr Gly Cys Gly
85 90 95
Ile Gly Gly Ile Gly Tyr Gly Gln Glu Gly Ser Ser Gly Ala Val
100 105 110
Ser Thr Arg Ile Arg Trp Cys Arg Pro Asp Cys Arg Val Glu Gly Thr
115 120 125
Cys Leu Pro Pro Cys Cys Val Val Ser Cys Thr Pro Pro Ser Cys Cys
130 135 140
Gln Leu His His Ala Glu Ala Ser Cys Cys Arg Pro Ser Tyr Cys Gly
145 150 155 160
Gln Ser Cys Cys Arg Pro Val Cys Cys Cys Tyr Cys Ser Glu Pro Thr
165 170 175
Cys

<210> 406

<211> 85

<212> PRT

<213> Homo sapiens

<400> 406
Val Thr Cys Val Pro Arg Cys Thr Arg Pro Ile Cys Glu Pro Cys Arg
1 5 10 15
Arg Pro Val Cys Cys Asp Pro Cys Ser Leu Gln Glu Gly Cys Cys Arg
20 25 30
Pro Ile Thr Cys Cys Pro Ser Ser Cys Thr Ala Val Val Cys Arg Pro
35 40 45
Cys Cys Trp Ala Thr Thr Cys Cys Gln Pro Val Ser Val Gln Ser Pro
50 55 60
Cys Cys Arg Pro Pro Cys Gly Gln Pro Thr Pro Cys Ser Thr Thr Cys

Siemens 0022 Seq Listing.txt

65 Arg Thr Ser Ser Cys
85

70

75

80

<210> 407

<211> 128

<212> PRT

<213> Homo sapiens

<400> 407
 Met Thr Gly Ser Cys Cys Gly Ser Thr Leu Ser Ser Leu Ser Tyr Gly
 1 5 10 15
 Gly Gly Cys Cys Gln Pro Cys Cys Cys Arg Asp Pro Cys Cys Cys Arg
 20 25 30
 Pro Val Thr Cys Gln Thr Thr Val Cys Arg Pro Val Thr Cys Val Pro
 35 40 45
 Arg Cys Thr Arg Pro Ile Cys Glu Pro Cys Arg Arg Pro Val Cys Cys
 50 55 60
 Asp Pro Cys Ser Leu Gln Glu Gly Cys Cys Arg Pro Ile Thr Cys Cys
 65 70 75 80
 Pro Ser Ser Cys Thr Ala Val Val Cys Arg Pro Cys Cys Trp Ala Thr
 85 90 95
 Thr Cys Cys Gln Pro Val Ser Val Gln Ser Pro Cys Cys Arg Pro Pro
 100 105 110
 Cys Gly Gln Pro Thr Pro Cys Ser Thr Thr Cys Arg Thr Ser Ser Cys
 115 120 125

<210> 408

<211> 20

<212> PRT

<213> Homo sapiens

<400> 408
 Met Glu Thr His Cys Thr Gly Arg Ser Ala Ser Phe Cys Ser Ser Ser
 1 5 10 15
 Ala Ile Leu Ile
 20

<210> 409

<211> 210

<212> PRT

<213> Homo sapiens

<400> 409
 Met Val Ser Ser Cys Cys Gly Ser Val Cys Ser Asp Gln Gly Cys Gly
 Page 239

Siemens 0022 Seq Listing.txt

1 Gln Val Leu Cys Gln Glu Thr Cys Cys Arg Pro Ser Cys Cys Gln Thr
5 10 15
20 25 30
Thr Cys Cys Arg Thr Thr Cys Tyr Arg Pro Ser Cys Cys Val Ser Ser
35 40 45
Cys Cys Arg Pro Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys
50 55 60
Cys Arg Pro Ser Cys Cys Glu Thr Thr Cys Cys His Pro Arg Cys Cys
65 70 75 80
Ile Ser Ser Cys Cys Arg Pro Ser Cys Cys Met Ser Ser Cys Cys Lys
85 90 95
Pro Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys Cys Arg Pro
100 105 110
Ser Cys Cys Ile Ser Ser Cys Cys Arg Pro Ser Cys Cys Val Ser Arg
115 120 125
Cys Cys Arg Pro Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys
130 135 140
Cys Arg Pro Ser Cys Cys Ile Ser Ser Cys Cys Arg Pro Ser Cys Cys
145 150 155 160
Glu Ser Ser Cys Cys Arg Pro Cys Cys Cys Arg Pro Cys Cys Cys Leu
165 170 175
Arg Pro Val Cys Gly Arg Val Ser Cys His Thr Thr Cys Tyr Arg Pro
180 185 190
Thr Cys val Ile Ser Thr Cys Pro Arg Pro Leu Cys Cys Ala Ser Ser
195 200 205
Cys Cys
210

<210> 410

<211> 195

<212> PRT

<213> Homo sapiens

<400> 410
Met Val Asn Ser Cys Cys Gly Ser Val Cys Ser His Gln Gly Cys Gly
1 5 10 15
Gln Asp Leu Cys Gln Glu Thr Cys Cys Arg Pro Ser Cys Cys Glu Thr
20 25 30
Thr Cys Cys Arg Thr Thr Tyr Cys Arg Pro Ser Cys Cys Val Ser Ser
35 40 45
Cys Cys Arg Pro Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys
50 55 60
Cys Arg Pro Arg Cys Cys Ile Ser Ser Cys Cys Arg Pro Ser Cys Cys
65 70 75 80
Val Ser Ser Cys Cys Lys Pro Gln Cys Cys Gln Ser Met Cys Cys Gln
85 90 95
Pro Thr Cys Cys Arg Pro Arg Cys Cys Ile Ser Ser Cys Cys Arg Pro
100 105 110
Ser Cys Cys Val Ser Ser Cys Cys Arg Pro Gln Cys Cys Gln Ser Val
115 120 125
Cys Cys Gln Pro Thr Cys Cys His Pro Ser Cys Ser Ile Ser Ser Cys
130 135 140
Cys Arg Pro Ser Cys Cys Glu Ser Ser Cys Cys Arg Pro Cys Cys Cys
145 150 155 160
Leu Arg Pro Val Cys Gly Gly Val Ser Cys His Thr Thr Cys Tyr Arg
165 170 175
Pro Thr Cys Val Ile Ser Ser Cys Pro Arg Pro Leu Cys Cys Ala Ser

Siemens 0022 Seq Listing.txt
180 185 190

Ser Cys Cys
180 185 190
195

<210> 411
<211> 201
<212> PRT
<213> Homo sapiens

<400> 411
Met Val Asn Ser Cys Cys Gly Ser Val Cys Ser Asp Gln Gly Cys Gly
1 5 10 15
Leu Glu Asn Cys Cys Arg Pro Ser Cys Cys Gln Thr Thr Cys Cys Arg
20 25 30
Thr Thr Cys Cys Arg Pro Ser Cys Cys Val Ser Ser Cys Cys Arg Pro
35 40 45
Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys Cys Arg Pro Ser
50 55 60
Cys Cys Gln Thr Thr Cys Cys Arg Thr Thr Cys Cys Arg Pro Ser Cys
65 70 75 80
Cys Val Ser Ser Cys Cys Arg Pro Gln Cys Cys Gln Ser Val Cys Cys
85 90 95
Gln Pro Thr Cys Cys Arg Pro Ser Cys Cys Gln Thr Thr Cys Cys Arg
100 105 110
Thr Thr Cys Cys Arg Pro Ser Cys Cys Val Ser Ser Cys Cys Arg Pro
115 120 125
Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys Cys Arg Pro Ser
130 135 140
Cys Cys Ile Ser Ser Cys Cys Pro Ser Cys Cys Glu Ser Ser Cys
145 150 155 160
Cys Arg Pro Cys Cys Cys Leu Arg Pro Val Cys Gly Arg Val Ser Cys
165 170 175
His Thr Thr Cys Tyr Arg Pro Thr Cys Val Ile Ser Thr Cys Pro Arg
180 185 190
Pro Leu Cys Cys Ala Ser Ser Cys Cys
195 200

<210> 412
<211> 186
<212> PRT
<213> Homo sapiens

<400> 412
Met Val Ser Ser Cys Cys Gly Ser Val Ser Ser Glu Gln Ser Cys Gly
1 5 10 15
Leu Glu Asn Cys Cys Arg Pro Ser Cys Cys Gln Thr Thr Cys Cys Arg
20 25 30
Thr Thr Cys Cys Arg Pro Ser Cys Cys Lys Pro Gln Cys Cys Gln Ser
35 40 45
Val Cys Tyr Gln Pro Thr Cys Cys His Pro Ser Cys Cys Ile Ser Ser
50 55 60

Siemens 0022 Seq Listing.txt

Cys Cys His Pro Tyr Cys Cys Glu Ser Ser Cys Cys Arg Pro Cys Cys
65 70 75 80
Cys Arg Pro Ser Cys Cys Gln Thr Thr Cys Cys Arg Thr Thr Cys Cys
85 90 95
Arg Thr Thr Cys Cys Pro Ser Cys Cys Val Ser Ser Cys Cys Arg
100 105 110
Pro Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys Cys Arg Pro
115 120 125
Ser Cys Cys Ile Ser Ser Cys Cys His Pro Ser Cys Cys Glu Ser Ser
130 135 140
Cys Cys Arg Pro Cys Cys Val Arg Pro Val Cys Gly Arg Val Ser
145 150 155 160
Cys His Thr Thr Cys Tyr Arg Pro Thr Cys Val Ile Ser Thr Cys Pro
165 170 175
Arg Pro Leu Cys Cys Ala Ser Ser Cys Cys
180 185

<210> 413

<211> 106

<212> PRT

<213> Homo sapiens

<400> 413

Met Val Asn Ser Cys Cys Gly Ser Val Cys Ser Asp Gln Gly Cys Gly
1 5 10 15
Leu Glu Asn Cys Cys Arg Pro Ser Tyr Cys Gln Thr Thr Cys Cys Arg
20 25 30
Thr Thr Cys Cys Arg Pro Ser Cys Cys Arg Pro Ser Cys Cys Arg Pro
35 40 45
Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys Cys Pro Ser
50 55 60
Tyr Cys Val Ser Ser Cys Cys Arg Pro Gln Cys Cys Gln Thr Thr Arg
65 70 75 80
Cys Arg Thr Thr Cys Cys Arg Pro Ser Cys Cys Val Ser Arg Cys Tyr
85 90 95
Arg Pro His Cys Gly Gln Ser Leu Cys Cys
100 105

<210> 414

<211> 166

<212> PRT

<213> Homo sapiens

<400> 414

Met Val Asn Ser Cys Cys Gly Ser Val Cys Ser Asp Gln Gly Cys Gly
1 5 10 15
Leu Glu Asn Cys Cys Arg Pro Ser Tyr Cys Gln Thr Thr Cys Cys Arg
20 25 30
Thr Thr Cys Cys Arg Pro Ser Cys Cys Val Ser Ser Cys Cys Arg Pro
35 40 45
Gln Cys Cys Gln Thr Thr Cys Cys Arg Thr Thr Cys Cys His Pro Ser

Siemens 0022 Seq Listing.txt

50 55 60
Cys Cys Val Ser Ser Cys Cys Arg Pro Gln Cys Cys Gln Ser Val Cys
65 70 75 80
Cys Gln Pro Thr Cys Cys Arg Pro Gln Cys Cys Gln Thr Thr Cys Cys
85 90 95
Arg Thr Thr Cys Cys Arg Pro Ser Cys Cys Arg Pro Gln Cys Cys Gln
100 105 110
Ser Val Cys Cys Gln Pro Thr Cys Cys Cys Pro Ser Tyr Cys Val Ser
115 120 125
Ser Cys Cys Arg Pro Gln Cys Cys Gln Thr Thr Cys Cys Arg Thr Thr
130 135 140
Cys Cys Arg Pro Ser Cys Cys Val Ser Arg Cys Tyr Arg Pro His Cys
145 150 155 160
Gly Gln Ser Leu Cys Cys
165

<210> 415

<211> 136

<212> PRT

<213> Homo sapiens

<400> 415
Met Val Asn Ser Cys Cys Gly Ser Val Cys Ser Asp Gln Gly Cys Gly
1 5 10 15
Leu Glu Asn Cys Cys Arg Pro Ser Cys Cys Gln Thr Thr Cys Cys Arg
20 25 30
Thr Thr Cys Cys Arg Pro Ser Cys Cys Val Ser Ser Cys Cys Arg Pro
35 40 45
Gln Cys Cys Gln Ser Val Cys Cys Gln Pro Thr Cys Cys Ser Pro Ser
50 55 60
Cys Cys Gln Thr Thr Cys Cys Arg Thr Thr Cys Cys Arg Pro Ser Cys
65 70 75 80
Cys Val Ser Ser Cys Phe Arg Pro Gln Cys Cys Gln Ser Val Cys Cys
85 90 95
Gln Pro Thr Cys Cys Arg Pro Ser Cys Gly Gln Thr Thr Cys Cys Arg
100 105 110
Thr Thr Cys Tyr Arg Pro Ser Cys Cys Val Ser Thr Cys Cys Arg Pro
115 120 125
Thr Cys Ser Ser Gly Ser Cys Cys
130 135

<210> 416

<211> 127

<212> PRT

<213> Homo sapiens

<400> 416
Met Val Asn Ser Cys Cys Gly Ser Val Cys Ser Asp Gln Gly Cys Asp
1 5 10 15
Gln Gly Leu Cys Gln Glu Thr Cys Cys Arg Pro Ser Cys Cys Gln Thr
20 25 30

Siemens 0022 Seq Listing.txt

Thr Cys Cys Cys Pro Ser Cys Val Val Ser Ser Cys Cys Arg Pro Ser
35 40 45
Cys Ser Gln Thr Thr Cys Cys Gln Thr Thr Cys Cys Arg Pro Ser Cys
50 55 60
Cys Arg Pro Val Cys Cys Gln Thr Thr Cys Arg Pro Ser Cys Gly Val
65 70 75 80
Ser Ser Cys Cys Arg Pro Leu Cys Cys Gln Thr Thr Cys Arg Pro Ser
85 90 95
Cys Gly Val Ser Ser Cys Cys Arg Pro Leu Cys Cys Gln Thr Thr Cys
100 105 110
Cys Arg Thr Thr Cys Cys Arg Pro Ser Cys Cys Gly Ser Ser Cys
115 120 125

<210> 417

<211> 174

<212> PRT

<213> Homo sapiens

<400> 417

Met Thr His Cys Cys Ser Pro Cys Cys Gln Pro Thr Cys Cys Arg Thr
1 5 10 15
Thr Cys Cys Arg Thr Thr Cys Trp Lys Pro Thr Thr Val Thr Thr Cys
20 25 30
Ser Ser Thr Pro Cys Cys Gln Pro Ala Cys Cys Val Ser Ser Cys Cys
35 40 45
Gln Pro Cys Cys Arg Pro Thr Cys Cys Gln Asn Thr Cys Cys Arg Thr
50 55 60
Thr Cys Cys Gln Pro Thr Cys Val Thr Ser Cys Cys Gln Pro Ser Cys
65 70 75 80
Cys Ser Thr Pro Cys Cys Gln Pro Thr Cys Cys Gly Ser Ser Cys Cys
85 90 95
Gly Gln Thr Ser Cys Gly Ser Ser Cys Gly Gln Ser Ser Ser Cys Ala
100 105 110
Pro Val Tyr Cys Arg Arg Thr Cys Tyr Tyr Pro Thr Thr Val Cys Leu
115 120 125
Pro Gly Cys Leu Asn Gln Ser Cys Gly Ser Asn Cys Cys Gln Pro Cys
130 135 140
Cys Arg Pro Ala Cys Cys Glu Thr Thr Cys Cys Arg Thr Thr Cys Phe
145 150 155 160
Gln Pro Thr Cys Val Ser Ser Cys Cys Gln Pro Ser Cys Cys
165 170

<210> 418

<211> 159

<212> PRT

<213> Homo sapiens

<400> 418

Met Thr His Cys Cys Ser Pro Cys Cys Gln Pro Thr Cys Cys Arg Thr
1 5 10 15
Thr Cys Trp Gln Pro Thr Thr Val Thr Thr Cys Ser Ser Thr Pro Cys

Siemens 0022 Seq Listing.txt

20 25 30
Cys Gln Pro Ser Cys Cys Val Ser Ser Cys Cys Gln Pro Cys Cys His
35 40 45
Pro Thr Cys Cys Gln Asn Thr Cys Cys Arg Thr Thr Cys Cys Gln Pro
50 55 60
Ile Cys Val Thr Ser Cys Cys Gln Pro Ser Cys Cys Ser Thr Pro Cys
65 70 75 80
Cys Gln Pro Thr Cys Cys Gly Ser Ser Cys Gly Gln Ser Ser Ser Cys
85 90 95
Ala Pro Val Tyr Cys Arg Arg Thr Cys Tyr His Pro Thr Ser Val Cys
100 105 110
Leu Pro Gly Cys Leu Asn Gln Ser Cys Gly Ser Asn Cys Cys Gln Pro
115 120 125
Cys Cys Arg Pro Ala Cys Cys Glu Thr Thr Cys Cys Arg Thr Thr Cys
130 135 140
Phe Gln Pro Thr Cys Val Tyr Ser Cys Cys Gln Pro Ser Cys Cys
145 150 155

<210> 419

<211> 159

<212> PRT

<213> Homo sapiens

<400> 419
Met Thr His Cys Cys Ser Pro Cys Cys Gln Pro Thr Cys Cys Arg Thr
1 5 10 15
Thr Cys Trp Lys Pro Thr Thr Val Thr Cys Ser Ser Thr Pro Cys
20 25 30
Cys Gln Pro Ser Cys Cys Val Ser Ser Cys Cys Gln Pro Cys Cys Arg
35 40 45
Pro Thr Cys Cys Gln Asn Thr Cys Cys Gln Pro Ile Cys Val Thr Ser
50 55 60
Cys Cys Gln Pro Ser Cys Cys Ser Thr Pro Cys Cys Gln Pro Thr Cys
65 70 75 80
Cys Gly Gln Thr Ser Cys Gly Ser Ser Cys Gly Gln Ser Ser Ser Cys
85 90 95
Ala Pro Val Tyr Cys Arg Arg Thr Cys Tyr His Pro Thr Thr Val Cys
100 105 110
Leu Pro Gly Cys Leu Asn Gln Ser Cys Gly Ser Ser Cys Cys Gln Pro
115 120 125
Cys Cys Arg Pro Ala Cys Cys Glu Thr Thr Cys Cys Arg Thr Thr Cys
130 135 140
Phe Gln Pro Thr Cys Val Tyr Ser Cys Cys Gln Pro Ser Cys Cys
145 150 155

<210> 420

<211> 154

<212> PRT

<213> Homo sapiens

<400> 420

Siemens 0022 Seq Listing.txt

Met Thr His Cys Cys Ser Pro Cys Cys Gln Pro Thr Cys Cys Arg Thr
1 5 10 15
Thr Cys Cys Arg Thr Thr Cys Trp Lys Pro Thr Thr Val Thr Thr Cys
20 25 30
Ser Ser Thr Pro Cys Cys Gln Pro Ser Cys Cys Val Ser Ser Cys Cys
35 40 45
Gln Pro Cys Cys Arg Pro Ala Cys Cys Gln Asn Thr Cys Cys Arg Thr
50 55 60
Thr Cys Cys Gln Pro Thr Cys Leu Ser Ser Cys Cys Gly Gln Thr Ser
65 70 75 80
Cys Gly Ser Ser Cys Gly Gln Ser Ser Ser Cys Ala Pro Val Tyr Cys
85 90 95
Arg Arg Thr Cys Tyr Tyr Pro Thr Thr Val Cys Leu Pro Gly Cys Leu
100 105 110
Asn Gln Ser Cys Gly Ser Ser Cys Cys Gln Pro Cys Cys Arg Pro Ala
115 120 125
Cys Cys Glu Thr Thr Cys Cys Arg Thr Thr Cys Phe Gln Pro Thr Cys
130 135 140
Val Ser Ser Cys Cys Gln Pro Ser Cys Cys
145 150

<210> 421

<211> 154

<212> PRT

<213> Homo sapiens

<400> 421

Met Thr His Cys Cys Ser Pro Cys Cys Gln Pro Thr Cys Cys Arg Thr
1 5 10 15
Thr Cys Cys Arg Thr Thr Cys Trp Lys Pro Thr Thr Val Thr Thr Cys
20 25 30
Ser Ser Thr Pro Cys Cys Gln Pro Ser Cys Cys Val Ser Ser Cys Cys
35 40 45
Gln Pro Cys Cys Arg Pro Thr Cys Cys Gln Asn Thr Cys Cys Gln Pro
50 55 60
Thr Cys Val Thr Ser Cys Cys Gln Pro Ser Cys Cys Ser Thr Pro Cys
65 70 75 80
Cys Gln Pro Thr Cys Cys Gly Ser Ser Cys Asp Gln Ser Ser Ser Cys
85 90 95
Ala Pro Val Tyr Cys Arg Arg Thr Cys Tyr Tyr Pro Thr Thr Val Cys
100 105 110
Leu Pro Gly Cys Leu Asn Gln Ser Cys Gly Ser Asn Cys Cys Gln Pro
115 120 125
Cys Cys Arg Pro Ala Cys Cys Glu Thr Thr Cys Phe Gln Pro Thr Cys
130 135 140
Val Ser Ser Cys Cys Gln Pro Phe Cys Cys
145 150

<210> 422

<211> 138

<212> PRT

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 422
Met Leu Gln Asp His Leu Leu Gln Asp Asn Leu Leu Glu Ala His His
1 5 10 15
Cys Asp His Leu Gln Gln His Ile Leu Pro Ala Leu Leu Leu Cys
20 25 30
Val Gln Leu Leu Pro Ala Leu Leu Pro Pro Asn Leu Leu Ser Lys His
35 40 45
Leu Leu Gln Asp His Leu Leu Pro Ala His Leu Cys Asp Gln Leu Leu
50 55 60
Pro Ala Phe Leu Leu Gln His Thr Leu Leu Thr Ala His Leu Leu Trp
65 70 75 80
Val Gln Leu Leu Trp Pro Asn His Leu Trp Val Gln Leu Leu Pro Ala
85 90 95
Gln Leu Leu Cys Thr His Leu Leu Gln Glu Asn Leu Leu Pro Pro His
100 105 110
Glu Cys Leu Pro Ala Trp Leu Pro Lys Ser Glu Leu Trp Leu Gln Leu
115 120 125
Leu Pro Ala Leu Leu Pro Pro Ser Leu Leu
130 135

<210> 423

<211> 409

<212> PRT

<213> Homo sapiens

<400> 423
Met Ser Gly Ser Cys Ser Ser Arg Lys Cys Phe Ser Val Pro Ala Thr
1 5 10 15
Ser Leu Cys Ser Thr Glu Val Ser Cys Gly Gly Pro Ile Cys Leu Pro
20 25 30
Ser Ser Cys Gln Ser Gln Thr Trp Gln Leu Val Thr Cys Gln Asp Ser
35 40 45
Cys Gly Ser Ser Ser Cys Gly Pro Gln Cys Arg Gln Pro Ser Cys Pro
50 55 60
Val Ser Ser Cys Ala Gln Pro Leu Cys Cys Asp Pro Val Ile Cys Glu
65 70 75 80
Pro Ser Cys Ser Val Ser Ser Gly Cys Gln Pro Val Cys Cys Glu Ala
85 90 95
Thr Thr Cys Glu Pro Ser Cys Ser Val Ser Asn Cys Tyr Gln Pro Val
100 105 110
Cys Phe Glu Ala Thr Ile Cys Glu Pro Ser Cys Ser Val Ser Asn Cys
115 120 125
Cys Gln Pro Val Cys Phe Glu Ala Thr Val Cys Glu Pro Ser Cys Ser
130 135 140
Val Ser Ser Cys Ala Gln Pro Val Cys Cys Glu Pro Ala Ile Cys Glu
145 150 155 160
Pro Ser Cys Ser Val Ser Ser Cys Cys Gln Pro Val Gly Ser Glu Ala
165 170 175
Thr Ser Cys Gln Pro Val Leu Cys Val Pro Thr Ser Cys Gln Pro Val
180 185 190
Leu Cys Lys Ser Ser Cys Cys Gln Pro Val Val Cys Glu Pro Ser Cys
195 200 205
Cys Ser Ala Val Cys Thr Leu Pro Ser Ser Cys Gln Pro Val Val Cys
210 215 220
Glu Pro Ser Cys Cys Gln Pro Val Cys Pro Thr Pro Thr Cys Ser Val

Siemens 0022 Seq Listing.txt

<210> 424

<211> 105

<212> PRT

<213> Homo sapiens

<400> 424

Met	Gly	Cys	Cys	Pro	Gly	Asp	Cys	Phe	Thr	Cys	Cys	Thr	Gln	Glu	Gln
1				5				10					15		
Asn	Cys	Cys	Glu	Glu	Cys	Cys	Cys	Gln	Pro	Gly	Cys	Cys	Gly	Cys	Cys
			20					25					30		
Gly	Ser	Cys	Cys	Gly	Cys	Gly	Gly	Ser	Gly	Cys	Gly	Gly	Ser	Gly	Cys
			35				40					45			
Gly	Gly	Ser	Cys	Cys	Gly	Ser	Ser	Cys	Cys	Gly	Ser	Gly	Cys	Gly	Gly
			50			55					60				
Cys	Gly	Gly	Cys	Gly	Gly	Cys	Gly	Gly	Gly	Cys	Cys	Gly	Ser	Ser	Cys
65				70						75					80
Cys	Gly	Ser	Ser	Cys	Cys	Gly	Ser	Gly	Cys	Cys	Gly	Pro	Val	Cys	Cys
				85				90							95
Gln	Pro	Thr	Pro	Ile	Cys	Asp	Thr	Lys							
				100				105							

<210> 425

<211> 404

<212> PRT

<213> Homo sapiens

<400> 425

Siemens 0022 Seq Listing.txt

Met Ser Tyr Ser Cys Gly Leu Pro Ser Leu Ser Cys Arg Thr Ser Cys
 1 5 10 15
 Ser Ser Arg Pro Cys Val Pro Pro Ser Cys His Gly Cys Thr Leu Pro
 20 25 30
 Gly Ala Cys Asn Ile Pro Ala Asn Val Ser Asn Cys Asn Trp Phe Cys
 35 40 45
 Glu Gly Ser Phe Asn Gly Ser Glu Lys Glu Thr Met Gln Phe Leu Asn
 50 55 60
 Asp Arg Leu Ala Ser Tyr Leu Glu Lys Val Arg Gln Leu Glu Arg Asp
 65 70 75 80
 Asn Ala Glu Leu Glu Asn Leu Ile Arg Glu Arg Ser Gln Gln Gln Glu
 85 90 95
 Pro Leu Val Cys Ala Ser Tyr Gln Ser Tyr Phe Lys Thr Ile Glu Glu
 100 105 110
 Leu Gln Gln Lys Ile Leu Cys Ser Lys Ser Glu Asn Ala Arg Leu Val
 115 120 125
 Val Gln Ile Asp Asn Ala Lys Leu Ala Ser Asp Asp Phe Arg Thr Lys
 130 135 140
 Tyr Glu Thr Glu Leu Ser Leu Arg Gln Leu Val Glu Ser Asp Ile Asn
 145 150 155 160
 Gly Leu Arg Arg Ile Leu Asp Glu Leu Thr Leu Cys Arg Ser Asp Leu
 165 170 175
 Glu Ala Gln Val Glu Ser Leu Lys Glu Glu Leu Leu Cys Leu Lys Gln
 180 185 190
 Asn His Glu Gln Glu Val Asn Thr Leu Arg Cys Gln Leu Gly Asp Arg
 195 200 205
 Leu Asn Val Glu Val Asp Ala Ala Pro Thr Val Asp Leu Asn Gln Val
 210 215 220
 Leu Asn Glu Thr Arg Ser Gln Tyr Glu Ala Leu Val Glu Thr Asn Arg
 225 230 235 240
 Arg Glu Val Glu Gln Trp Phe Ala Thr Gln Thr Glu Glu Leu Asn Lys
 245 250 255
 Gln Val Val Ser Ser Ser Glu Gln Leu Gln Ser Tyr Gln Ala Glu Ile
 260 265 270
 Ile Glu Leu Arg Arg Thr Val Asn Ala Leu Glu Ile Glu Leu Gln Ala
 275 280 285
 Gln His Asn Leu Arg Asp Ser Leu Glu Asn Thr Leu Thr Glu Ser Glu
 290 295 300
 Ala Arg Tyr Ser Ser Gln Leu Ser Gln Val Gln Arg Leu Ile Thr Asn
 305 310 315 320
 Val Glu Ser Gln Leu Ala Glu Ile Arg Ser Asp Leu Glu Arg Gln Asn
 325 330 335
 Gln Glu Tyr Gln Val Leu Leu Asp Val Arg Ala Arg Leu Glu Cys Glu
 340 345 350
 Ile Asn Thr Tyr Arg Ser Leu Leu Glu Ser Glu Asp Cys Lys Leu Pro
 355 360 365
 Ser Asn Pro Cys Ala Thr Thr Asn Ala Cys Asp Lys Ser Thr Gly Pro
 370 375 380
 Cys Ile Ser Asn Pro Cys Gly Leu Arg Ala Arg Cys Gly Pro Cys Asn
 385 390 395 400
 Thr Phe Gly Tyr

<210> 426

<211> 404

<212> PRT

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 426
Met Pro Tyr Asn Phe Cys Leu Pro Ser Leu Ser Cys Arg Thr Ser Cys
1 5 10 15
Ser Ser Arg Pro Cys Val Pro Pro Ser Cys His Gly Tyr Thr Leu Pro
20 25 30
Gly Ala Cys Asn Ile Pro Ala Asn Val Ser Asn Cys Asn Trp Phe Cys
35 40 45
Glu Gly Ser Phe Asn Gly Ser Glu Lys Glu Thr Met Gln Phe Leu Asn
50 55 60
Asp Arg Leu Ala Ser Tyr Leu Glu Lys Val Arg Gln Leu Glu Arg Asp
65 70 75 80
Asn Ala Glu Leu Glu Asn Leu Ile Arg Glu Arg Ser Gln Gln Gln Glu
85 90 95
Pro Leu Leu Cys Pro Ser Tyr Gln Ser Tyr Phe Lys Thr Ile Glu Glu
100 105 110
Leu Gln Gln Lys Ile Leu Cys Ser Lys Ser Glu Asn Ala Arg Leu Val
115 120 125
Val Gln Ile Asp Asn Ala Lys Leu Ala Ala Asp Asp Phe Arg Thr Lys
130 135 140
Tyr Gln Thr Glu Gln Ser Leu Arg Gln Leu Val Glu Ser Asp Ile Asn
145 150 155 160
Ser Leu Arg Arg Ile Leu Asp Glu Leu Thr Leu Cys Arg Ser Asp Leu
165 170 175
Glu Ala Gln Met Glu Ser Leu Lys Glu Glu Leu Leu Ser Leu Lys Gln
180 185 190
Asn His Glu Gln Glu Val Asn Thr Leu Arg Cys Gln Leu Gly Asp Arg
195 200 205
Leu Asn Val Glu Val Asp Ala Ala Pro Ala Val Asp Leu Asn Gln Val
210 215 220
Leu Asn Glu Thr Arg Asn Gln Tyr Glu Ala Leu Val Glu Thr Asn Arg
225 230 235 240
Arg Glu Val Glu Gln Trp Phe Ala Thr Gln Thr Glu Glu Leu Asn Lys
245 250 255
Gln Val Val Ser Ser Ser Glu Gln Leu Gln Ser Tyr Gln Ala Glu Ile
260 265 270
Ile Glu Leu Arg Arg Thr Val Asn Ala Leu Glu Ile Glu Leu Gln Ala
275 280 285
Gln His Asn Leu Arg Tyr Ser Leu Glu Asn Thr Leu Thr Glu Ser Glu
290 295 300
Ala Arg Tyr Ser Ser Gln Leu Ser Gln Val Gln Ser Leu Ile Thr Asn
305 310 315 320
Val Glu Ser Gln Leu Ala Glu Ile Arg Ser Asp Leu Glu Arg Gln Asn
325 330 335
Gln Glu Tyr Gln Val Leu Leu Asp Val Arg Ala Arg Leu Glu Cys Glu
340 345 350
Ile Asn Thr Tyr Arg Ser Leu Leu Glu Ser Glu Asp Cys Lys Leu Pro
355 360 365
Ser Asn Pro Cys Ala Thr Thr Asn Ala Cys Glu Lys Pro Ile Gly Ser
370 375 380
Cys Val Thr Asn Pro Cys Gly Pro Arg Ser Arg Cys Gly Pro Cys Asn
385 390 395 400
Thr Phe Gly Tyr

<210> 427

<211> 436

<212> PRT

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 427
Met Leu Tyr Ala Lys Pro Pro Pro Pro Thr Ile Asn Gly Ile Lys Gly Leu
1 5 10 15
Gln Arg Lys Glu Arg Leu Lys Pro Ala His Ile His Leu Gln Gln Leu
20 25 30
Thr Cys Phe Ser Ile Thr Cys Ser Ser Thr Met Ser Tyr Ser Cys Cys
35 40 45
Leu Pro Ser Leu Gly Cys Arg Thr Ser Cys Ser Ser Arg Pro Cys Val
50 55 60
Pro Pro Ser Cys His Gly Tyr Thr Leu Pro Gly Ala Cys Asn Ile Pro
65 70 75 80
Ala Asn Val Ser Asn Cys Asn Trp Phe Cys Glu Gly Ser Phe Asn Gly
85 90 95
Ser Glu Lys Glu Thr Met Gln Phe Leu Asn Asp Arg Leu Ala Ser Tyr
100 105 110
Leu Glu Lys Val Arg Gln Leu Glu Arg Asp Asn Ala Glu Leu Glu Lys
115 120 125
Leu Ile Gln Glu Arg Ser Gln Gln Glu Pro Leu Leu Cys Pro Ser
130 135 140
Tyr Gln Ser Tyr Phe Lys Thr Ile Glu Glu Leu Gln Gln Lys Ile Leu
145 150 155 160
Cys Ala Lys Ala Glu Asn Ala Arg Leu Val Val Asn Ile Asp Asn Ala
165 170 175
Lys Leu Ala Ser Asp Asp Phe Arg Ser Lys Tyr Gln Thr Glu Gln Ser
180 185 190
Leu Arg Leu Leu Val Glu Ser Asp Ile Asn Ser Ile Arg Arg Ile Leu
195 200 205
Asp Glu Leu Thr Leu Cys Lys Ser Asp Leu Glu Ser Gln Val Glu Ser
210 215 220
Leu Arg Glu Glu Leu Ile Cys Leu Lys Lys Asn His Glu Glu Glu Val
225 230 235 240
Asn Thr Leu Arg Ser Gln Leu Gly Asp Arg Leu Asn Val Glu Val Asp
245 250 255
Thr Ala Pro Thr Val Asp Leu Asn Gln Val Leu Asn Glu Thr Arg Ser
260 265 270
Gln Tyr Glu Ala Leu Val Glu Ile Asn Arg Arg Glu Val Glu Gln Trp
275 280 285
Phe Ala Thr Gln Thr Glu Glu Leu Asn Lys Gln Val Val Ser Ser Ser
290 295 300
Glu Gln Leu Gln Ser Cys Gln Ala Glu Ile Ile Glu Leu Arg Arg Thr
305 310 315 320
Val Asn Ala Leu Glu Ile Glu Leu Gln Ala Gln His Asn Leu Arg Asp
325 330 335
Ser Leu Glu Asn Thr Leu Thr Glu Ser Glu Ala His Tyr Ser Ser Gln
340 345 350
Leu Ser Gln Val Gln Ser Leu Ile Thr Asn Val Glu Ser Gln Leu Ala
355 360 365
Glu Ile Arg Cys Asp Leu Glu Arg Gln Asn Gln Glu Tyr Gln Val Leu
370 375 380
Leu Asp Val Arg Ala Arg Leu Glu Cys Glu Ile Asn Thr Tyr Arg Ser
385 390 395 400
Leu Leu Glu Ser Glu Asp Cys Lys Leu Pro Cys Asn Pro Cys Ala Thr
405 410 415
Thr Asn Ala Ser Gly Asn Ser Cys Gly Pro Cys Gly Thr Ser Gln Lys
420 425 430
Gly Cys Cys Asn
435

<210> 428

Siemens 0022 Seq Listing.txt

<211> 416

<212> PRT

<213> Homo sapiens

<400> 428
 Met Pro Tyr Asn Phe Cys Leu Pro Ser Leu Ser Cys Arg Thr Ser Cys
 1 5 10 15
 Ser Ser Arg Pro Cys Val Pro Pro Ser Cys His Ser Cys Thr Leu Pro
 20 25 30
 Gly Ala Cys Asn Ile Pro Ala Asn Val Ser Asn Cys Asn Trp Phe Cys
 35 40 45
 Glu Gly Ser Phe Asn Gly Ser Glu Lys Glu Thr Met Gln Phe Leu Asn
 50 55 60
 Asp Arg Leu Ala Ser Tyr Leu Glu Lys Val Arg Gln Leu Glu Arg Asp
 65 70 75 80
 Asn Ala Glu Leu Glu Asn Leu Ile Arg Glu Arg Ser Gln Gln Gln Glu
 85 90 95
 Pro Leu Leu Cys Pro Ser Tyr Gln Ser Tyr Phe Lys Thr Ile Glu Glu
 100 105 110
 Leu Gln Gln Lys Ile Leu Cys Thr Lys Ser Glu Asn Ala Arg Leu Val
 115 120 125
 Val Gln Ile Asp Asn Ala Lys Leu Ala Ala Asp Asp Phe Arg Thr Lys
 130 135 140
 Tyr Gln Thr Glu Leu Ser Leu Arg Gln Leu Val Glu Ser Asp Ile Asn
 145 150 155 160
 Gly Leu Arg Arg Ile Leu Asp Glu Leu Thr Leu Cys Lys Ser Asp Leu
 165 170 175
 Glu Ala Gln Val Glu Ser Leu Lys Glu Glu Leu Leu Cys Leu Lys Ser
 180 185 190
 Asn His Glu Gln Glu Val Asn Thr Leu Arg Cys Gln Leu Gly Asp Arg
 195 200 205
 Leu Asn Val Glu Val Asp Ala Ala Pro Thr Val Asp Leu Asn Arg Val
 210 215 220
 Leu Asn Glu Thr Arg Ser Gln Tyr Glu Ala Leu Val Glu Thr Asn Arg
 225 230 235 240
 Arg Glu Val Glu Gln Trp Phe Thr Thr Gln Thr Glu Glu Leu Asn Lys
 245 250 255
 Gln Val Val Ser Ser Ser Glu Gln Leu Gln Ser Tyr Gln Ala Glu Ile
 260 265 270
 Ile Glu Leu Arg Arg Thr Val Asn Ala Leu Glu Ile Glu Leu Gln Ala
 275 280 285
 Gln His Asn Leu Arg Asp Ser Leu Glu Asn Thr Leu Thr Glu Ser Glu
 290 295 300
 Ala Arg Tyr Ser Ser Gln Leu Ser Gln Val Gln Ser Leu Ile Thr Asn
 305 310 315 320
 Val Glu Ser Gln Leu Ala Glu Ile Arg Ser Asp Leu Glu Arg Gln Asn
 325 330 335
 Gln Glu Tyr Gln Val Leu Leu Asp Val Arg Ala Arg Leu Glu Cys Glu
 340 345 350
 Ile Asn Thr Tyr Arg Ser Leu Leu Glu Ser Glu Asp Cys Asn Leu Pro
 355 360 365
 Ser Asn Pro Cys Ala Thr Thr Asn Ala Cys Ser Lys Pro Ile Gly Pro
 370 375 380
 Cys Leu Ser Asn Pro Cys Thr Ser Cys Val Pro Pro Ala Pro Cys Thr
 385 390 395 400
 Pro Cys Ala Pro Arg Pro Arg Cys Gly Pro Cys Asn Ser Phe Val Arg
 405 410 415

Siemens 0022 Seq Listing.txt

<210> 429

<211> 201

<212> PRT

<213> Homo sapiens

<400> 429

Met Thr Ser Asp His Cys Ser Ser Leu Leu Ser Gly Gln Val Ser Glu
1 5 10 15
Ala Asn Ala Ala Ser Leu Cys Leu Leu Ala Asn Val Ala His Ala Asn
20 25 30
Arg Val Arg Val Gly Ser Thr Pro Leu Gly Arg Leu Ser Leu Cys Leu
35 40 45
Pro Pro Thr Cys His Thr Thr Cys Pro Leu Pro Gly Thr Cys His Ile
50 55 60
Pro Gly Asn Ile Gly Ile Cys Gly Ala Tyr Arg Glu Asn Thr Leu Asn
65 70 75 80
Gly His Glu Lys Glu Thr Met Gln Phe Leu Asn Asp Arg Leu Ala Asn
85 90 95
Tyr Leu Glu Lys Val Arg Gln Leu Glu Trp Asp Asn Ala Glu Leu Glu
100 105 110
Thr Lys Leu His Glu Arg Ser Lys Cys His Glu Ser Ser Val Cys Arg
115 120 125
Asn Tyr Gln Ser Tyr Phe Cys Thr Ile Gln Glu Leu Gln Gln Lys Val
130 135 140
Arg Phe Ala Val His Gln Ile Arg Gly Gln Glu Ser Ala Tyr Cys Leu
145 150 155 160
Ser Ala Lys Ser Gly Pro Pro Pro Ala Phe Ala Asn Lys Val Leu Leu
165 170 175
Val His Gly His Ala His Ala Phe Val Cys Cys Leu Gln Leu Leu Leu
180 185 190
Tyr Tyr Ser Gly Arg Val Gln Ser Leu
195 200

<210> 430

<211> 471

<212> PRT

<213> Homo sapiens

<400> 430

Met Thr Ser Phe Tyr Ser Thr Ser Ser Cys Pro Leu Gly Cys Thr Met
1 5 10 15
Ala Pro Gly Ala Arg Asn Val Phe Val Ser Pro Ile Asp Val Gly Cys
20 25 30
Gln Pro Val Ala Glu Ala Asn Ala Ala Ser Met Cys Leu Leu Ala Asn
35 40 45
Val Ala His Ala Asn Arg Val Arg Val Gly Ser Thr Pro Leu Gly Arg
50 55 60
Pro Ser Leu Cys Leu Pro Pro Thr Ser His Thr Ala Cys Pro Leu Pro
65 70 75 80
Gly Thr Cys His Ile Pro Gly Asn Ile Gly Ile Cys Gly Ala Tyr Gly
85 90 95

Siemens 0022 Seq Listing.txt

Lys Asn Thr Leu Asn Gly His Glu Lys Glu Thr Met Lys Phe Leu Asn
100 105 110
Asp Arg Leu Ala Asn Tyr Leu Glu Lys Val Arg Gln Leu Glu Gln Glu
115 120 125
Asn Ala Glu Leu Glu Thr Thr Leu Leu Glu Arg Ser Lys Cys His Glu
130 135 140
Ser Thr Val Cys Pro Asp Tyr Gln Ser Tyr Phe Arg Thr Ile Glu Glu
145 150 155 160
Leu Gln Gln Lys Ile Leu Cys Ser Lys Ala Glu Asn Ala Arg Leu Ile
165 170 175
Val Gln Ile Asp Asn Ala Lys Leu Ala Ala Asp Asp Phe Arg Ile Lys
180 185 190
Leu Glu Ser Glu Arg Ser Leu His Gln Leu Val Glu Ala Asp Lys Cys
195 200 205
Gly Thr Gln Lys Leu Leu Asp Asp Ala Thr Leu Ala Lys Ala Asp Leu
210 215 220
Glu Ala Gln Gln Glu Ser Leu Lys Glu Glu Gln Leu Ser Leu Lys Ser
225 230 235 240
Asn His Glu Gln Glu Val Lys Ile Leu Arg Ser Gln Leu Gly Glu Lys
245 250 255
Phe Arg Ile Glu Leu Asp Ile Glu Pro Thr Ile Asp Leu Asn Arg Val
260 265 270
Leu Gly Glu Met Arg Ala Gln Tyr Glu Ala Met Val Glu Thr Asn His
275 280 285
Gln Asp Val Glu Gln Trp Phe Gln Ala Gln Ser Glu Gly Ile Ser Leu
290 295 300
Gln Ala Met Ser Cys Ser Glu Glu Leu Gln Cys Cys Gln Ser Glu Ile
305 310 315 320
Leu Glu Leu Arg Cys Thr Val Asn Ala Leu Glu Val Glu Arg Gln Ala
325 330 335
Gln His Thr Leu Lys Asp Cys Leu Gln Asn Ser Leu Cys Glu Ala Glu
340 345 350
Asp Arg Tyr Gly Thr Glu Leu Ala Gln Met Gln Ser Leu Ile Ser Asn
355 360 365
Leu Glu Glu Gln Leu Ser Glu Ile Arg Ala Asp Leu Glu Arg Gln Asn
370 375 380
Gln Glu Tyr Gln Val Leu Leu Asp Val Lys Ala Arg Leu Glu Asn Glu
385 390 395 400
Ile Ala Thr Tyr Arg Asn Leu Thr Pro Leu Gln Ser Leu Phe His Ala
405 410 415
Cys Leu Leu Tyr Phe Leu Ser Lys Leu Trp Pro Cys His Arg Trp Val
420 425 430
Ser Leu Trp Pro Trp Ser Gln His Gly Glu Met Ile Leu Lys Ala Arg
435 440 445
Val Arg Arg Leu Arg Leu Val Ala Leu Gly Ser Gly Val Pro Ser Pro
450 455 460
Cys Pro Val Phe Leu Gln Asp
465 470

<210> 431

<211> 456

<212> PRT

<213> Homo sapiens

<400> 431

Met Thr Ser Ser Tyr Ser Ser Ser Cys Pro Leu Gly Cys Thr Met
1 5 10 15

Siemens 0022 Seq Listing.txt

Ala Pro Gly Ala Arg Asn Val Ser Val Ser Pro Ile Asp Ile Gly Cys
 20 25 30
 Gln Pro Gly Ala Glu Ala Asn Ile Ala Pro Met Cys Leu Leu Ala Asn
 35 40 45
 Val Ala His Ala Asn Arg Val Arg Val Gly Ser Thr Pro Leu Gly Arg
 50 55 60
 Pro Ser Leu Cys Leu Pro Pro Thr Cys His Thr Ala Cys Pro Leu Pro
 65 70 75 80
 Gly Thr Cys His Ile Pro Gly Asn Ile Gly Ile Cys Gly Ala Tyr Gly
 85 90 95
 Glu Asn Thr Leu Asn Gly His Glu Lys Glu Thr Met Gln Phe Leu Asn
 100 105 110
 Asp Arg Leu Ala Asn Tyr Leu Glu Lys Val Arg Gln Leu Glu Gln Glu
 115 120 125
 Asn Ala Glu Leu Glu Ala Thr Leu Leu Glu Arg Ser Lys Cys His Glu
 130 135 140
 Ser Thr Val Cys Pro Asp Tyr Gln Ser Tyr Phe His Thr Ile Glu Glu
 145 150 155 160
 Leu Gln Gln Lys Ile Leu Cys Ser Lys Ala Glu Asn Ala Arg Leu Ile
 165 170 175
 Val Gln Ile Asp Asn Ala Lys Leu Ala Ala Asp Asp Phe Arg Ile Lys
 180 185 190
 Leu Glu Ser Glu Arg Ser Leu Arg Gln Leu Val Glu Ala Asp Lys Cys
 195 200 205
 Gly Thr Gln Lys Leu Leu Asp Asp Ala Thr Leu Ala Lys Ala Asp Leu
 210 215 220
 Glu Ala Gln Gln Glu Ser Leu Lys Glu Glu Gln Leu Ser Leu Lys Ser
 225 230 235 240
 Asn His Glu Gln Glu Val Lys Ile Leu Arg Ser Gln Leu Gly Glu Lys
 245 250 255
 Leu Arg Ile Glu Leu Asp Ile Glu Pro Thr Ile Asp Leu Asn Arg Val
 260 265 270
 Leu Gly Glu Met Arg Ala Gln Tyr Glu Ala Met Leu Glu Thr Asn Arg
 275 280 285
 Gln Asp Val Glu Gln Trp Phe Gln Ala Gln Ser Glu Gly Ile Ser Leu
 290 295 300
 Gln Asp Met Ser Cys Ser Glu Glu Leu Gln Cys Cys Gln Ser Glu Ile
 305 310 315 320
 Leu Glu Leu Arg Cys Thr Val Asn Ala Leu Glu Val Glu Arg Gln Ala
 325 330 335
 Gln His Thr Leu Lys Asp Cys Leu Gln Asn Ser Leu Cys Glu Ala Glu
 340 345 350
 Asp Arg Phe Gly Thr Glu Leu Ala Gln Met Gln Ser Leu Ile Ser Asn
 355 360 365
 Val Glu Glu Gln Leu Ser Glu Ile Arg Ala Asp Leu Glu Arg Gln Asn
 370 375 380
 Gln Glu Tyr Gln Val Leu Leu Asp Val Lys Thr Arg Leu Glu Asn Glu
 385 390 395 400
 Ile Ala Thr Tyr Arg Asn Leu Leu Glu Ser Glu Asp Cys Lys Leu Pro
 405 410 415
 Cys Asn Pro Cys Ser Thr Ser Pro Ser Cys Val Thr Ala Pro Cys Ala
 420 425 430
 Pro Arg Pro Ser Cys Gly Pro Cys Thr Thr Cys Gly Pro Thr Cys Gly
 435 440 445
 Ala Ser Thr Thr Gly Ser Arg Phe
 450 455

<210> 432

<211> 448

<212> PRT

Siemens 0022 Seq Listing.txt

<213> Homo sapiens

<400> 432
 Met Thr Ser Ser Cys Cys Val Thr Asn Asn Leu Gln Ala Ser Leu Lys
 1 5 10 15
 Ser Cys Pro Arg Pro Ala Ser Val Cys Ser Ser Gly Val Asn Cys Arg
 20 25 30
 Pro Glu Leu Cys Leu Gly Tyr Val Cys Gln Pro Met Ala Cys Leu Pro
 35 40 45
 Ser Val Cys Leu Pro Thr Thr Phe Arg Pro Ala Ser Cys Leu Ser Lys
 50 55 60
 Thr Tyr Leu Ser Ser Ser Cys Gln Ala Ala Ser Gly Ile Ser Gly Ser
 65 70 75 80
 Met Gly Pro Gly Ser Trp Tyr Ser Glu Gly Ala Phe Asn Gly Asn Glu
 85 90 95
 Lys Glu Thr Met Gln Phe Leu Asn Asp Arg Leu Ala Ser Tyr Leu Thr
 100 105 110
 Arg Val Arg Gln Leu Glu Gln Glu Asn Ala Glu Leu Glu Ser Arg Ile
 115 120 125
 Gln Glu Ala Ser His Ser Gln Val Leu Thr Met Thr Pro Asp Tyr Gln
 130 135 140
 Ser His Phe Arg Thr Ile Glu Glu Leu Gln Gln Lys Ile Leu Cys Thr
 145 150 155 160
 Lys Ala Glu Asn Ala Arg Met Val Val Asn Ile Asp Asn Ala Lys Leu
 165 170 175
 Ala Ala Asp Asp Phe Arg Ala Lys Tyr Glu Ala Glu Leu Ala Met Arg
 180 185 190
 Gln Leu Val Glu Ala Asp Ile Asn Gly Leu Arg Arg Ile Leu Asp Asp
 195 200 205
 Leu Thr Leu Cys Lys Ala Asp Leu Glu Ala Gln Val Glu Ser Leu Lys
 210 215 220
 Glu Glu Leu Met Cys Leu Lys Lys Asn His Glu Glu Glu Val Gly Ser
 225 230 235 240
 Leu Arg Cys Gln Leu Gly Asp Arg Leu Asn Ile Glu Val Asp Ala Ala
 245 250 255
 Pro Pro Val Asp Leu Thr Arg Val Leu Glu Glu Met Arg Cys Gln Tyr
 260 265 270
 Glu Ala Met Val Glu Ala Asn Arg Arg Asp Val Glu Glu Trp Phe Asn
 275 280 285
 Met Gln Met Glu Glu Leu Asn Gln Gln Val Ala Thr Ser Ser Glu Gln
 290 295 300
 Leu Gln Asn Tyr Gln Ser Asp Ile Ile Asp Leu Arg Arg Thr Val Asn
 305 310 315 320
 Thr Leu Glu Ile Glu Leu Gln Ala Gln His Ser Leu Arg Asp Ser Leu
 325 330 335
 Glu Asn Thr Leu Thr Glu Ser Glu Ala Arg Tyr Ser Ser Gln Leu Ala
 340 345 350
 Gln Met Gln Cys Met Ile Thr Asn Val Glu Ala Gln Leu Ala Glu Ile
 355 360 365
 Arg Ala Asp Leu Glu Arg Gln Asn Gln Glu Tyr Gln Val Leu Leu Asp
 370 375 380
 Val Arg Ala Arg Leu Glu Gly Glu Ile Asn Thr Tyr Arg Ser Leu Leu
 385 390 395 400
 Glu Ser Glu Asp Cys Lys Leu Pro Cys Asn Pro Cys Ser Thr Pro Ser
 405 410 415
 Cys Thr Thr Cys Val Pro Ser Pro Cys Val Thr Arg Thr Val Cys Val
 420 425 430
 Pro Arg Thr Val Gly Met Pro Cys Ser Pro Cys Pro Gln Gly Arg Tyr
 435 440 445

Siemens 0022 Seq Listing.txt

<210> 433

<211> 425

<212> PRT

<213> Homo sapiens

<400> 433
Met Tyr Ser Ser Ser Ser Cys Lys Leu Pro Ser Leu Ser Pro Val Ala
1 5 10 15
Arg Ser Phe Ser Ala Cys Ser Val Gly Leu Gly Arg Ser Ser Tyr Arg
20 25 30
Ala Thr Ser Cys Leu Pro Ala Leu Cys Leu Pro Ala Gly Gly Phe Ala
35 40 45
Thr Ser Tyr Ser Gly Gly Gly Trp Phe Gly Glu Gly Ile Leu Thr
50 55 60
Gly Asn Glu Lys Glu Thr Met Gln Ser Leu Asn Asp Arg Leu Ala Gly
65 70 75 80
Tyr Leu Glu Lys Val Arg Gln Leu Glu Gln Glu Asn Ala Ser Leu Glu
85 90 95
Ser Arg Ile Arg Glu Trp Cys Glu Gln Gln Val Pro Tyr Met Cys Pro
100 105 110
Asp Tyr Gln Ser Tyr Phe Arg Thr Ile Glu Glu Leu Gln Lys Lys Thr
115 120 125
Leu Cys Ser Lys Ala Glu Asn Ala Arg Leu Val Val Glu Ile Asp Asn
130 135 140
Ala Lys Leu Ala Ala Asp Asp Phe Arg Thr Lys Tyr Glu Thr Glu Val
145 150 155 160
Ser Leu Arg Gln Leu Val Glu Ser Asp Ile Asn Gly Leu Arg Arg Ile
165 170 175
Leu Asp Asp Leu Thr Leu Cys Lys Ser Asp Leu Glu Ala Gln Val Glu
180 185 190
Ser Leu Lys Glu Glu Leu Leu Cys Leu Lys Lys Asn His Glu Glu Glu
195 200 205
Val Asn Ser Leu Arg Cys Gln Leu Gly Asp Arg Leu Asn Val Glu Val
210 215 220
Asp Ala Ala Pro Pro Val Asp Leu Asn Arg Val Leu Glu Glu Met Arg
225 230 235 240
Cys Gln Tyr Glu Thr Leu Val Glu Asn Asn Arg Arg Asp Ala Glu Asp
245 250 255
Trp Leu Asp Thr Gln Ser Glu Glu Leu Asn Gln Gln Val Val Ser Ser
260 265 270
Ser Glu Gln Leu Gln Ser Cys Gln Ala Glu Ile Ile Glu Leu Arg Arg
275 280 285
Thr Val Asn Ala Leu Glu Ile Glu Leu Gln Ala Gln His Ser Met Arg
290 295 300
Asp Ala Leu Glu Ser Thr Leu Ala Glu Thr Glu Ala Arg Tyr Ser Ser
305 310 315 320
Gln Leu Ala Gln Met Gln Cys Met Ile Thr Asn Val Glu Ala Gln Leu
325 330 335
Ala Glu Ile Arg Ala Asp Leu Glu Arg Gln Asn Gln Glu Tyr Gln Val
340 345 350
Leu Leu Asp Val Arg Ala Arg Leu Glu Cys Glu Ile Asn Thr Tyr Arg
355 360 365
Gly Leu Leu Glu Ser Glu Asp Ser Lys Leu Pro Cys Asn Pro Cys Ala
370 375 380
Pro Asp Tyr Ser Pro Ser Lys Ser Cys Leu Pro Cys Leu Pro Ala Ala
385 390 395 400
Ser Cys Gly Pro Ser Ala Ala Arg Thr Asn Cys Ser Pro Arg Pro Ile

Siemens 0022 Seq Listing.txt
405 410 415

Cys Val Pro Cys Pro Gly Gly Arg Phe
420 425

<210> 434

<211> 467

<212> PRT

<213> Homo sapiens

<400> 434
Met Ala Thr Gln Thr Cys Thr Pro Thr Phe Ser Thr Gly Ser Ile Lys
1 5 10 15
Gly Leu Cys Gly Thr Ala Gly Gly Ile Ser Arg Val Ser Ser Ile Arg
20 25 30
Ser Val Gly Ser Cys Arg Val Pro Ser Leu Ala Gly Ala Ala Gly Tyr
35 40 45
Ile Ser Ser Ala Arg Ser Gly Leu Ser Gly Leu Gly Ser Cys Leu Pro
50 55 60
Gly Ser Tyr Leu Ser Ser Glu Cys His Thr Ser Gly Phe Val Gly Ser
65 70 75 80
Gly Gly Trp Phe Cys Glu Gly Ser Phe Asn Gly Ser Glu Lys Glu Thr
85 90 95
Met Gln Phe Leu Asn Asp Arg Leu Ala Asn Tyr Leu Glu Lys Val Arg
100 105 110
Gln Leu Glu Arg Glu Asn Ala Glu Leu Glu Ser Arg Ile Gln Glu Trp
115 120 125
Tyr Glu Phe Gln Ile Pro Tyr Ile Cys Pro Asp Tyr Gln Ser Tyr Phe
130 135 140
Lys Thr Ile Glu Asp Phe Gln Gln Lys Ile Leu Leu Thr Lys Ser Glu
145 150 155 160
Asn Ala Arg Leu Val Leu Gln Ile Asp Asn Ala Lys Leu Ala Ala Asp
165 170 175
Asp Phe Arg Thr Lys Tyr Glu Thr Glu Leu Ser Leu Arg Gln Leu Val
180 185 190
Glu Ala Asp Ile Asn Gly Leu Arg Arg Ile Leu Asp Glu Leu Thr Leu
195 200 205
Cys Lys Ala Asp Leu Glu Ala Gln Val Glu Ser Leu Lys Glu Glu Leu
210 215 220
Met Cys Leu Lys Lys Asn His Glu Glu Glu Val Ser Val Leu Arg Cys
225 230 235 240
Gln Leu Gly Asp Arg Leu Asn Val Glu Val Asp Ala Ala Pro Pro Val
245 250 255
Asp Leu Asn Lys Ile Leu Glu Asp Met Arg Cys Gln Tyr Glu Ala Leu
260 265 270
Val Glu Asn Asn Arg Arg Asp Val Glu Ala Trp Phe Asn Thr Gln Thr
275 280 285
Glu Glu Leu Asn Gln Gln Val Val Ser Ser Ser Glu Gln Leu Gln Cys
290 295 300
Cys Gln Thr Glu Ile Ile Glu Leu Arg Arg Thr Val Asn Ala Leu Glu
305 310 315 320
Ile Glu Leu Gln Ala Gln His Ser Met Arg Asn Ser Leu Glu Ser Thr
325 330 335
Leu Ala Glu Thr Glu Ala Arg Tyr Ser Ser Gln Leu Ala Gln Met Gln
340 345 350
Cys Leu Ile Ser Asn Val Glu Ala Gln Leu Ser Glu Ile Arg Cys Asp
355 360 365
Leu Glu Arg Gln Asn Gln Glu Tyr Gln Val Leu Leu Asp Val Lys Ala

Siemens 0022 Seq Listing.txt

370	375	380
Arg Leu Glu Gly Glu Ile Ala Thr Tyr Arg His		Leu Leu Glu Gly Glu
385	390	395
Asp Cys Lys Leu Pro Pro Gln Pro Cys Ala Thr Ala Cys Lys Pro Val		400
405	410	415
Ile Arg Val Pro Ser Val Pro Pro Val Pro Cys Val Pro Ser Val Pro		
420	425	430
Cys Thr Pro Ala Pro Gln Val Gly Thr Gln Ile Arg Thr Ile Thr Glu		
435	440	445
Glu Ile Arg Asp Gly Lys Val Ile Ser Ser Arg Glu His Val Gln Ser		
450	455	460
Arg Pro Leu		
465		

<210> 435

<211> 420

<212> PRT

<213> Homo sapiens

<400> 435
 Met Ser Leu Arg Leu Gln Ser Ser Ser Ala Ser Tyr Gly Gly Phe
 1 5 10 15
 Gly Gly Gly Ser Cys Gln Leu Gly Gly Arg Gly Val Ser Thr Cys
 20 25 30
 Ser Thr Arg Phe Val Ser Gly Gly Ser Ala Gly Gly Tyr Gly Gly
 35 40 45
 Val Ser Cys Gly Phe Gly Gly Ala Gly Ser Gly Phe Gly Gly Gly
 50 55 60
 Tyr Gly Gly Leu Gly Gly Tyr Gly Gly Leu Gly Gly Gly
 65 70 75 80
 Phe Gly Gly Phe Ala Gly Gly Phe Val Asp Phe Gly Ala Cys Asp
 85 90 95
 Gly Gly Leu Leu Thr Gly Asn Glu Lys Ile Thr Met Gln Asn Leu Asn
 100 105 110
 Asp Arg Leu Ala Ser Tyr Leu Glu Lys Val Arg Ala Leu Glu Glu Ala
 115 120 125
 Asn Ala Asp Leu Glu Val Lys Ile Arg Asp Trp His Leu Lys Gln Ser
 130 135 140
 Pro Ala Ser Pro Glu Arg Asp Tyr Ser Pro Tyr Tyr Lys Thr Ile Glu
 145 150 155 160
 Glu Leu Arg Asp Lys Ile Leu Thr Ala Thr Ile Glu Asn Asn Arg Val
 165 170 175
 Ile Leu Glu Ile Asp Asn Ala Arg Leu Ala Val Asp Asp Phe Arg Leu
 180 185 190
 Lys Tyr Glu Asn Glu Leu Ala Leu Arg Gln Ser Val Glu Ala Asp Ile
 195 200 205
 Asn Gly Leu Arg Arg Val Leu Asp Glu Leu Thr Leu Ser Lys Thr Asp
 210 215 220
 Leu Glu Met Gln Ile Glu Ser Leu Asn Glu Glu Leu Ala Tyr Met Lys
 225 230 235 240
 Lys Asn His Glu Glu Glu Met Lys Glu Phe Ser Asn Gln Val Val Gly
 245 250 255
 Gln Val Asn Val Glu Met Asp Ala Thr Pro Gly Ile Asp Leu Thr Arg
 260 265 270
 Val Leu Ala Glu Met Arg Glu Gln Tyr Glu Ala Met Ala Glu Arg Asn
 275 280 285
 Arg Arg Asp Ala Glu Glu Trp Phe His Ala Lys Ser Ala Glu Leu Asn

Siemens 0022 Seq Listing.txt

290	295	300		
Lys Glu Val Ser Thr Asn Thr Ala Met Ile Gln Thr Ser Lys Thr Glu				
305	310	315	320	
Ile Thr Glu Leu Arg Arg Thr Leu Gln Gly Leu Glu Ile Glu Leu Gln				
	325	330	335	
Ser Gln Leu Ser Met Lys Ala Gly Leu Glu Asn Thr Val Ala Glu Thr				
	340	345	350	
Glu Cys Arg Tyr Ala Leu Gln Leu Gln Ile Gln Gly Leu Ile Ser				
	355	360	365	
Ser Ile Glu Ala Gln Leu Ser Glu Leu Arg Ser Glu Met Glu Cys Gln				
	370	375	380	
Asn Gln Glu Tyr Lys Met Leu Leu Asp Ile Lys Thr Arg Leu Glu Gln				
	385	390	395	400
Glu Ile Ala Thr Tyr Arg Ser Leu Leu Glu Gly Gln Asp Ala Lys Lys				
	405	410	415	
Arg Gln Pro Pro				
	420			

<210> 436

<211> 456

<212> PRT

<213> Homo sapiens

<400> 436	1	15		
Met Thr Thr Thr Phe Leu Gln Thr Ser Ser Ser Thr Phe Gly Gly Gly				
	5	10	15	
Ser Thr Arg Gly Gly Ser Leu Leu Ala Gly Gly Gly Phe Gly Gly				
	20	25	30	
Gly Ser Leu Ser Gly Gly Gly Ser Arg Ser Ile Ser Ala Ser Ser				
	35	40	45	
Ala Arg Phe Val Ser Ser Gly Ser Gly Gly Tyr Gly Gly Gly Met				
	50	55	60	
Arg Val Cys Gly Phe Gly Gly Ala Gly Ser Val Phe Gly Gly				
	65	70	75	80
Phe Gly Gly Val Gly Gly Phe Gly Gly Gly Phe Gly Gly				
	85	90	95	
Asp Gly Gly Leu Leu Ser Gly Asn Glu Lys Ile Thr Met Gln Asn Leu				
	100	105	110	
Asn Asp Arg Leu Ala Ser Tyr Leu Asp Lys Val Arg Ala Leu Glu Glu				
	115	120	125	
Ala Asn Ala Asp Leu Glu Val Lys Ile His Asp Trp Tyr Gln Lys Gln				
	130	135	140	
Thr Pro Thr Ser Pro Glu Cys Asp Tyr Ser Gln Tyr Phe Lys Thr Ile				
	145	150	155	160
Glu Glu Leu Arg Asp Lys Ile Met Ala Thr Thr Ile Asp Asn Ser Arg				
	165	170	175	
Val Ile Leu Glu Ile Asp Asn Ala Arg Leu Ala Ala Asp Asp Phe Arg				
	180	185	190	
Leu Lys Tyr Glu Asn Glu Leu Ala Leu Arg Gln Gly Val Glu Ala Asp				
	195	200	205	
Ile Asn Gly Leu Arg Arg Val Leu Asp Glu Leu Thr Leu Ala Arg Thr				
	210	215	220	
Asp Leu Glu Met Gln Ile Glu Gly Leu Asn Glu Glu Leu Ala Tyr Leu				
	225	230	235	240
Lys Lys Asn His Glu Glu Glu Met Lys Glu Phe Ser Ser Gln Leu Ala				
	245	250	255	
Gly Gln Val Asn Val Glu Met Asp Ala Ala Pro Gly Val Asp Leu Thr				

Siemens 0022 Seq Listing.txt

260	265	270
Arg Val Leu Ala Glu Met Arg Glu Gln Tyr Glu Ala Met Ala Glu Lys		
275	280	285
Asn Arg Arg Asp Val Glu Ala Trp Phe Phe Ser Lys Thr Glu Glu Leu		
290	295	300
Asn Lys Glu Val Ala Ser Asn Thr Glu Met Ile Gln Thr Ser Lys Thr		
305	310	315
Glu Ile Thr Asp Leu Arg Arg Thr Met Gln Glu Leu Glu Ile Glu Leu		
325	330	335
Gln Ser Gln Leu Ser Met Lys Ala Gly Leu Glu Asn Ser Leu Ala Glu		
340	345	350
Thr Glu Cys Arg Tyr Ala Thr Gln Leu Gln Gln Ile Gln Gly Leu Ile		
355	360	365
Gly Gly Leu Glu Ala Gln Leu Ser Glu Leu Arg Cys Glu Met Glu Ala		
370	375	380
Gln Asn Gln Glu Tyr Lys Met Leu Leu Asp Ile Lys Thr Arg Leu Glu		
385	390	395
Gln Glu Ile Ala Thr Tyr Arg Ser Leu Leu Glu Gly Gln Asp Ala Lys		
405	410	415
Met Ala Gly Ile Gly Ile Arg Glu Ala Ser Ser Gly Gly Gly Ser		
420	425	430
Ser Ser Asn Phe His Ile Asn Val Glu Glu Ser Val Asp Gly Gln Val		
435	440	445
Val Ser Ser His Lys Arg Glu Ile		
450	455	

<210> 437

<211> 400

<212> PRT

<213> Homo sapiens

<400> 437

1	5	10	15
Gly Leu Gly Gly Ser Val Arg Phe Gly Pro Gly Val Ala Phe Arg			
20	25	30	
Ala Pro Ser Ile His Gly Gly Ser Gly Gly Arg Gly Val Ser Val Ser			
35	40	45	
Ser Ala Arg Phe Val Ser Ser Ser Ser Gly Ala Tyr Gly Gly Gly			
50	55	60	
Tyr Gly Gly Val Leu Thr Ala Ser Asp Gly Leu Leu Ala Gly Asn Glu			
65	70	75	80
Lys Leu Thr Met Gln Asn Leu Asn Asp Arg Leu Ala Ser Tyr Leu Asp			
85	90	95	
Lys Val Arg Ala Leu Glu Ala Ala Asn Gly Glu Leu Glu Val Lys Ile			
100	105	110	
Arg Asp Trp Tyr Gln Lys Gln Gly Pro Gly Pro Ser Arg Asp Tyr Ser			
115	120	125	
His Tyr Tyr Thr Thr Ile Gln Asp Leu Arg Asp Lys Ile Leu Gly Ala			
130	135	140	
Thr Ile Glu Asn Ser Arg Ile Val Leu Gln Ile Asp Asn Ala Arg Leu			
145	150	155	160
Ala Ala Asp Asp Phe Arg Thr Lys Phe Glu Thr Glu Gln Ala Leu Arg			
165	170	175	
Met Ser Val Glu Ala Asp Ile Asn Gly Leu Arg Arg Val Leu Asp Glu			
180	185	190	
Leu Thr Leu Ala Arg Thr Asp Leu Glu Met Gln Ile Glu Gly Leu Lys			

Siemens 0022 Seq Listing.txt

195	200	205														
Glu	Glu	Leu	Ala	Tyr	Leu	Lys	Lys	Asn	His	Glu	Glu	Glu	Ile	Ser	Thr	
210		215				215				220						
Leu	Arg	Gly	Gln	Val	Gly	Gly	Gln	Val	Ser	Val	Glu	Val	Asp	Ser	Ala	
225				230					235				240			
Pro	Gly	Thr	Asp	Leu	Ala	Lys	Ile	Leu	Ser	Asp	Met	Arg	Ser	Gln	Tyr	
						245			250			255				
Glu	Val	Met	Ala	Glu	Gln	Asn	Arg	Lys	Asp	Ala	Glu	Ala	Trp	Phe	Thr	
				260			265			270						
Ser	Arg	Thr	Glu	Glu	Leu	Asn	Arg	Glu	Val	Ala	Gly	His	Thr	Glu	Gln	
					275		280			285						
Leu	Gln	Met	Ser	Arg	Ser	Glu	Val	Thr	Asp	Leu	Arg	Arg	Thr	Leu	Gln	
					290		295			300						
Gly	Leu	Glu	Ile	Glu	Leu	Gln	Ser	Gln	Leu	Ser	Met	Lys	Ala	Ala	Leu	
305					310				315			320				
Glu	Asp	Thr	Leu	Ala	Glu	Thr	Glu	Ala	Arg	Phe	Gly	Ala	Gln	Leu	Ala	
					325			330			335					
His	Ile	Gln	Ala	Leu	Ile	Ser	Gly	Ile	Glu	Ala	Gln	Leu	Gly	Asp	Val	
					340		345			350						
Arg	Ala	Asp	Ser	Glu	Arg	Gln	Asn	Gln	Glu	Tyr	Gln	Arg	Leu	Met	Asp	
					355		360			365						
Ile	Lys	Ser	Arg	Leu	Glu	Gln	Glu	Ile	Ala	Thr	Tyr	Arg	Ser	Leu	Leu	
					370		375			380						
Glu	Gly	Gln	Glu	Asp	His	Tyr	Asn	Asn	Leu	Ser	Ala	Ser	Lys	Val	Leu	
					385		390			395			400			

<210> 438

<211> 622

<212> PRT

<213> Homo sapiens

<400> 438

1	5	10	15													
Gly	Gly	Gly	Leu	Gly	Ser	Gly	Gly	Ser	Ile	Arg	Ser	Ser	Tyr	Ser		
			20		25			30								
Arg	Phe	Ser	Ser	Ser	Gly	Gly	Arg	Gly	Gly	Gly	Arg	Phe	Ser	Ser		
			35		40			45								
Ser	Ser	Gly	Tyr	Gly	Gly	Ser	Ser	Arg	Val	Cys	Gly	Arg	Gly	Gly		
			50		55			60								
Gly	Gly	Ser	Phe	Gly	Tyr	Ser	Tyr	Gly	Gly	Ser	Gly	Gly	Gly	Phe		
65			70		75			80								
Ser	Ala	Ser	Ser	Leu	Gly	Gly	Phe	Gly	Gly	Gly	Ser	Arg	Gly	Phe		
				85			90			95						
Gly	Gly	Ala	Ser	Gly	Gly	Tyr	Ser	Ser	Gly	Gly	Phe	Gly	Gly	Gly		
			100		105			110								
Gly	Phe	Gly	Gly	Ser	Gly	Gly	Gly	Phe	Gly	Gly	Gly	Tyr	Gly	Ser		
			115		120			125								
Gly	Phe	Gly	Gly	Leu	Gly	Phe	Gly	Gly	Gly	Ala	Gly	Gly	Gly	Asp		
			130		135			140								
Gly	Gly	Ile	Leu	Thr	Ala	Asn	Glu	Lys	Ser	Thr	Met	Gln	Glu	Leu	Asn	
145				150			155			160						
Ser	Arg	Leu	Ala	Ser	Tyr	Leu	Asp	Lys	Val	Gln	Ala	Leu	Glu	Glu	Ala	
				165			170			175						
Asn	Asn	Asp	Leu	Glu	Asn	Lys	Ile	Gln	Asp	Trp	Tyr	Asp	Lys	Lys	Gly	
			180		185			190								
Pro	Ala	Ala	Ile	Gln	Lys	Asn	Tyr	Ser	Pro	Tyr	Tyr	Asn	Thr	Ile	Asp	

Siemens 0022 Seq Listing.txt

	195														
Asp	Leu	Lys	Asp	Gln	Ile	Val	Asp	Leu	Thr	Val	Gly	Asn	Asn	Lys	Thr
210				215					220						
Leu	Leu	Asp	Ile	Asp	Asn	Thr	Arg	Met	Thr	Leu	Asp	Asp	Phe	Arg	Ile
225				230				235							240
Lys	Phe	Glu	Met	Glu	Gln	Asn	Leu	Arg	Gln	Gly	Val	Asp	Ala	Asp	Ile
	245				250				255						
Asn	Gly	Leu	Arg	Gln	val	Leu	Asp	Asn	Leu	Thr	Met	Glu	Lys	Ser	Asp
	260				265					270					
Leu	Glu	Met	Gln	Tyr	Glu	Thr	Leu	Gln	Glu	Glu	Leu	Met	Ala	Leu	Lys
	275				280				285						
Lys	Asn	His	Lys	Glu	Glu	Met	Ser	Gln	Leu	Thr	Gly	Gln	Asn	Ser	Gly
	290				295				300						
Asp	Val	Asn	Val	Glu	Ile	Asn	Val	Ala	Pro	Gly	Lys	Asp	Leu	Thr	Lys
305					310				315						320
Thr	Leu	Asn	Asp	Met	Arg	Gln	Glu	Tyr	Glu	Gln	Leu	Ile	Ala	Lys	Asn
	325					330				335					
Arg	Lys	Asp	Ile	Glu	Asn	Gln	Tyr	Glu	Thr	Gln	Ile	Thr	Gln	Ile	Glu
	340					345				350					
His	Glu	Val	Ser	Ser	Ser	Gly	Gln	Glu	Val	Gln	Ser	Ser	Ala	Lys	Glu
	355					360				365					
Val	Thr	Gln	Leu	Arg	His	Gly	Val	Gln	Glu	Leu	Glu	Ile	Glu	Leu	Gln
	370					375				380					
Ser	Gln	Leu	Ser	Lys	Lys	Ala	Ala	Leu	Glu	Lys	Ser	Leu	Glu	Asp	Thr
385						390				395					400
Lys	Asn	Arg	Tyr	Cys	Gly	Gln	Leu	Gln	Met	Ile	Gln	Glu	Gln	Ile	Ser
	405						410				415				
Asn	Leu	Glu	Ala	Gln	Ile	Thr	Asp	Val	Arg	Gln	Glu	Ile	Glu	Cys	Gln
	420					425					430				
Asn	Gln	Glu	Tyr	Ser	Leu	Leu	Ser	Ile	Lys	Met	Arg	Leu	Glu	Lys	
	435					440				445					
Glu	Ile	Glu	Thr	Tyr	His	Asn	Leu	Leu	Glu	Gly	Gly	Gln	Glu	Asp	Phe
	450					455				460					
Glu	Ser	Ser	Gly	Ala	Gly	Lys	Ile	Gly	Leu	Gly	Gly	Arg	Gly	Gly	Ser
465					470				475						480
Gly	Gly	Ser	Tyr	Gly	Arg	Gly	Ser	Arg	Gly	Gly	Ser	Gly	Gly	Ser	Tyr
	485					490				495					
Gly	Gly	Gly	Gly	Ser	Gly	Gly	Tyr	Gly	Gly	Gly	Ser	Gly	Ser	Arg	
	500					505				510					
Gly	Gly	Ser	Gly	Gly	Ser	Tyr	Gly	Gly	Ser	Gly	Ser	Gly	Gly	Gly	
	515					520				525					
Ser	Gly	Gly	Tyr	Gly	Gly	Ser	Gly	Gly	Gly	His	Ser	Gly	Gly		
	530					535				540					
Ser	Gly	Gly	Gly	His	Ser	Gly	Gly	Ser	Gly	Asn	Tyr	Gly	Gly		
	545					550				555					560
Ser	Gly	Ser	Gly	Gly	Ser	Gly	Gly	Tyr	Gly	Gly	Ser	Gly			
	565					570				575					
Ser	Arg	Gly	Gly	Ser	Gly	Gly	Ser	His	Gly	Gly	Ser	Gly	Phe	Gly	
	580					585				590					
Gly	Glu	Ser	Gly	Gly	Ser	Tyr	Gly	Gly	Glu	Glu	Ala	Ser	Gly	Ser	
	595					600				605					
Gly	Gly	Gly	Tyr	Gly	Gly	Ser	Gly	Lys	Ser	Ser	His	Ser			
	610				615					620					

<210> 439

<211> 472

<212> PRT

<213> Homo sapiens

Siemens 0022 Seq Listing.txt

<400> 439
 Met Thr Thr Cys Ser Arg Gln Phe Thr Ser Ser Ser Met Lys Gly
 1 5 10 15
 Ser Cys Gly Ile Gly Gly Ile Gly Gly Ser Ser Arg Ile Ser
 20 25 30
 Ser Val Leu Ala Gly Gly Ser Cys Arg Ala Pro Ser Thr Tyr Gly Gly
 35 40 45
 Gly Leu Ser Val Ser Ser Arg Phe Ser Ser Gly Gly Ala Tyr Gly
 50 55 60
 Leu Gly Gly Tyr Gly Gly Phe Ser Ser Ser Ser Ser Phe
 65 70 75 80
 Gly Ser Gly Phe Gly Gly Tyr Gly Gly Leu Gly Ala Gly Leu
 85 90 95
 Gly Gly Gly Phe Gly Gly Phe Ala Gly Gly Asp Gly Leu Leu Val
 100 105 110
 Gly Ser Glu Lys Val Thr Met Gln Asn Leu Asn Asp Arg Leu Ala Ser
 115 120 125
 Tyr Leu Asp Lys Val Arg Ala Leu Glu Glu Ala Asn Ala Asp Leu Glu
 130 135 140
 Val Lys Ile Arg Asp Trp Tyr Gln Arg Gln Arg Pro Ala Glu Ile Lys
 145 150 155 160
 Asp Tyr Ser Pro Tyr Phe Lys Thr Ile Glu Asp Leu Arg Asn Lys Ile
 165 170 175
 Leu Thr Ala Thr Val Asp Asn Ala Asn Val Leu Leu Gln Ile Asp Asn
 180 185 190
 Ala Arg Leu Ala Ala Asp Asp Phe Arg Thr Lys Tyr Glu Thr Glu Leu
 195 200 205
 Asn Leu Arg Met Ser Val Glu Ala Asp Ile Asn Gly Leu Arg Arg Val
 210 215 220
 Leu Asp Glu Leu Thr Leu Ala Arg Ala Asp Leu Glu Met Gln Ile Glu
 225 230 235 240
 Ser Leu Lys Glu Glu Leu Ala Tyr Leu Lys Lys Asn His Glu Glu Glu
 245 250 255
 Met Asn Ala Leu Arg Gly Gln Val Gly Gly Asp Val Asn Val Glu Met
 260 265 270
 Asp Ala Ala Pro Gly Val Asp Leu Ser Arg Ile Leu Asn Glu Met Arg
 275 280 285
 Asp Gln Tyr Glu Lys Met Ala Glu Lys Asn Arg Lys Asp Ala Glu Glu
 290 295 300
 Trp Phe Phe Thr Lys Thr Glu Glu Leu Asn Arg Glu Val Ala Thr Asn
 305 310 315 320
 Ser Glu Leu Val Gln Ser Gly Lys Ser Glu Ile Ser Glu Leu Arg Arg
 325 330 335
 Thr Met Gln Asn Leu Glu Ile Glu Leu Gln Ser Gln Leu Ser Met Lys
 340 345 350
 Ala Ser Leu Glu Asn Ser Leu Glu Glu Thr Lys Gly Arg Tyr Cys Met
 355 360 365
 Gln Leu Ala Gln Ile Gln Glu Met Ile Gly Ser Val Glu Glu Gln Leu
 370 375 380
 Ala Gln Leu Arg Cys Glu Met Glu Gln Gln Asn Gln Glu Tyr Lys Ile
 385 390 395 400
 Leu Leu Asp Val Lys Thr Arg Leu Glu Gln Glu Ile Ala Thr Tyr Arg
 405 410 415
 Arg Leu Leu Glu Gly Glu Asp Ala His Leu Ser Ser Ser Gln Phe Ser
 420 425 430
 Ser Gly Ser Gln Ser Ser Arg Asp Val Thr Ser Ser Ser Arg Gln Ile
 435 440 445
 Arg Thr Lys Val Met Asp Val His Asp Gly Lys Val Val Ser Thr His
 450 455 460
 Glu Gln Val Leu Arg Thr Lys Asn
 465 470

Siemens 0022 Seq Listing.txt

<210> 440
<211> 473
<212> PRT
<213> Homo sapiens

<400> 440
Met Thr Thr Cys Ser Arg Gln Phe Thr Ser Ser Ser Met Lys Gly
1 5 10 15
Ser Cys Gly Ile Gly Gly Ile Gly Gly Ser Ser Arg Ile Ser
20 25 30
Ser Val Leu Ala Gly Gly Ser Cys Arg Ala Pro Ser Thr Tyr Gly Gly
35 40 45
Gly Leu Ser Val Ser Ser Arg Phe Ser Ser Gly Gly Ala Cys Gly Leu
50 55 60
Gly Gly Gly Tyr Gly Gly Phe Ser Ser Ser Ser Phe Gly Ser
65 70 75 80
Gly Phe Gly Gly Tyr Gly Gly Leu Gly Ala Gly Phe Gly Gly
85 90 95
Gly Leu Gly Ala Gly Phe Gly Gly Phe Ala Gly Gly Asp Gly Leu
100 105 110
Leu Val Gly Ser Glu Lys Val Thr Met Gln Asn Leu Asn Asp Arg Leu
115 120 125
Ala Ser Tyr Leu Asp Lys Val Arg Ala Leu Glu Ala Asn Ala Asp
130 135 140
Leu Glu Val Lys Ile Arg Asp Trp Tyr Gln Arg Gln Arg Pro Ser Glu
145 150 155 160
Ile Lys Asp Tyr Ser Pro Tyr Phe Lys Thr Ile Glu Asp Leu Arg Asn
165 170 175
Lys Ile Ile Ala Ala Thr Ile Glu Asn Ala Gln Pro Ile Leu Gln Ile
180 185 190
Asp Asn Ala Arg Leu Ala Ala Asp Asp Phe Arg Thr Lys Tyr Glu His
195 200 205
Glu Leu Ala Leu Arg Gln Thr Val Glu Ala Asp Val Asn Gly Leu Arg
210 215 220
Arg Val Leu Asp Glu Leu Thr Leu Ala Arg Thr Asp Leu Glu Met Gln
225 230 235 240
Ile Glu Gly Leu Lys Glu Glu Leu Ala Tyr Leu Arg Lys Asn His Glu
245 250 255
Glu Glu Met Leu Ala Leu Arg Gly Gln Thr Gly Gly Asp Val Asn Val
260 265 270
Glu Met Asp Ala Ala Pro Gly Val Asp Leu Ser Arg Ile Leu Asn Glu
275 280 285
Met Arg Asp Gln Tyr Glu Gln Met Ala Glu Lys Asn Arg Arg Asp Ala
290 295 300
Glu Thr Trp Phe Leu Ser Lys Thr Glu Glu Leu Asn Lys Glu Val Ala
305 310 315 320
Ser Asn Ser Glu Leu Val Gln Ser Ser Arg Ser Glu Val Thr Glu Leu
325 330 335
Arg Arg Val Leu Gln Gly Leu Glu Ile Glu Leu Gln Ser Gln Leu Ser
340 345 350
Met Lys Ala Ser Leu Glu Asn Ser Leu Glu Glu Thr Lys Gly Arg Tyr
355 360 365
Cys Met Gln Leu Ser Gln Ile Gln Gly Leu Ile Gly Ser Val Glu Glu
370 375 380
Gln Leu Ala Gln Leu Arg Cys Glu Met Glu Gln Gln Ser Gln Glu Tyr
385 390 395 400

Siemens 0022 Seq Listing.txt

Gln Ile Leu Leu Asp Val Lys Thr Arg Leu Glu Gln Glu Ile Ala Thr
405 410 415
Tyr Arg Arg Leu Leu Glu Gly Glu Asp Ala His Leu Ser Ser Gln Gln
420 425 430
Ala Ser Gly Gln Ser Tyr Ser Ser Arg Glu Val Phe Thr Ser Ser Ser
435 440 445
Ser Ser Ser Arg Gln Thr Arg Pro Ile Leu Lys Glu Gln Ser Ser
450 455 460
Ser Ser Phe Ser Gln Gly Gln Ser Ser
465 470

<210> 441

<211> 432

<212> PRT

<213> Homo sapiens

<400> 441
Met Thr Thr Ser Ile Arg Gln Phe Thr Ser Ser Ser Ile Lys Gly
1 5 10 15
Ser Ser Gly Leu Gly Gly Ser Ser Arg Thr Ser Cys Arg Leu Ser
20 25 30
Gly Gly Leu Gly Ala Gly Ser Cys Arg Leu Gly Ser Ala Gly Gly Leu
35 40 45
Gly Ser Thr Leu Gly Gly Ser Ser Tyr Ser Ser Cys Tyr Ser Phe Gly
50 55 60
Ser Gly Gly Gly Tyr Gly Ser Ser Phe Gly Gly Val Asp Gly Leu Leu
65 70 75 80
Ala Gly Gly Glu Lys Ala Thr Met Gln Asn Leu Asn Asp Arg Leu Ala
85 90 95
Ser Tyr Leu Asp Lys Val Arg Ala Leu Glu Glu Ala Asn Thr Glu Leu
100 105 110
Glu Val Lys Ile Arg Asp Trp Tyr Gln Arg Gln Ala Pro Gly Pro Ala
115 120 125
Arg Asp Tyr Ser Gln Tyr Tyr Arg Thr Ile Glu Glu Leu Gln Asn Lys
130 135 140
Ile Leu Thr Ala Thr Val Asp Asn Ala Asn Ile Leu Leu Gln Ile Asp
145 150 155 160
Asn Ala Arg Leu Ala Ala Asp Asp Phe Arg Thr Lys Phe Glu Thr Glu
165 170 175
Gln Ala Leu Arg Leu Ser Val Glu Ala Asp Ile Asn Gly Leu Arg Arg
180 185 190
Val Leu Asp Glu Leu Thr Leu Ala Arg Ala Asp Leu Glu Met Gln Ile
195 200 205
Glu Asn Leu Lys Glu Glu Leu Ala Tyr Leu Lys Lys Asn His Glu Glu
210 215 220
Glu Met Asn Ala Leu Arg Gly Gln Val Gly Gly Glu Ile Asn Val Glu
225 230 235 240
Met Asp Ala Ala Pro Gly Val Asp Leu Ser Arg Ile Leu Asn Glu Met
245 250 255
Arg Asp Gln Tyr Glu Lys Met Ala Glu Lys Asn Arg Lys Asp Ala Glu
260 265 270
Asp Trp Phe Phe Ser Lys Thr Glu Glu Leu Asn Arg Glu Val Ala Thr
275 280 285
Asn Ser Glu Leu Val Gln Ser Gly Lys Ser Glu Ile Ser Glu Leu Arg
290 295 300
Arg Thr Met Gln Ala Leu Glu Ile Glu Leu Gln Ser Gln Leu Ser Met
305 310 315 320

Siemens 0022 Seq Listing.txt

Lys Ala Ser Leu Glu Gly Asn Leu Ala Glu Thr Glu Asn Arg Tyr Cys
 325 330 335
 Val Gln Leu Ser Gln Ile Gln Gly Leu Ile Gly Ser Val Glu Glu Gln
 340 345 350
 Leu Ala Gln Leu Arg Cys Glu Met Glu Gln Gln Asn Gln Glu Tyr Lys
 355 360 365
 Ile Leu Leu Asp Val Lys Thr Arg Leu Glu Gln Glu Ile Ala Thr Tyr
 370 375 380
 Arg Arg Leu Leu Glu Gly Glu Asp Ala His Leu Thr Gln Tyr Lys Lys
 385 390 395 400
 Glu Pro Val Thr Thr Arg Gln Val Arg Thr Ile Val Glu Glu Val Gln
 405 410 415
 Asp Gly Lys Val Ile Ser Ser Arg Glu Gln Val His Gln Thr Thr Arg
 420 425 430

<210> 442

<211> 469

<212> PRT

<213> Homo sapiens

<400> 442
 Met Ser Ile His Phe Ser Ser Pro Val Phe Thr Ser Arg Ser Ala Ala
 1 5 10 15
 Phe Ser Gly Arg Gly Ala Gln Val Arg Leu Ser Ser Ala Arg Pro Gly
 20 25 30
 Gly Leu Gly Ser Ser Ser Leu Tyr Gly Leu Gly Ala Ser Arg Pro Arg
 35 40 45
 Val Ala Val Arg Ser Ala Tyr Gly Gly Pro Val Gly Ala Gly Ile Arg
 50 55 60
 Glu Val Thr Ile Asn Gln Ser Leu Leu Ala Pro Leu Arg Leu Asp Ala
 65 70 75 80
 Asp Pro Ser Leu Gln Arg Val Arg Gln Glu Glu Ser Glu Gln Ile Lys
 85 90 95
 Thr Leu Asn Asn Lys Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu
 100 105 110
 Glu Gln Gln Asn Lys Leu Leu Glu Thr Lys Trp Thr Leu Leu Gln Glu
 115 120 125
 Gln Lys Ser Ala Lys Ser Ser Arg Leu Pro Asp Ile Phe Glu Ala Gln
 130 135 140
 Ile Ala Gly Leu Arg Gly Gln Leu Glu Ala Leu Gln Val Asp Gly Gly
 145 150 155 160
 Arg Leu Glu Ala Glu Leu Arg Ser Met Gln Asp Val Val Glu Asp Phe
 165 170 175
 Lys Asn Lys Tyr Glu Asp Glu Ile Asn Arg Arg Thr Ala Ala Glu Asn
 180 185 190
 Glu Phe Val Val Leu Lys Lys Asp Val Asp Ala Ala Tyr Met Ser Lys
 195 200 205
 Val Glu Leu Glu Ala Lys Val Asp Ala Leu Asn Asp Glu Ile Asn Phe
 210 215 220
 Leu Arg Thr Leu Asn Glu Thr Glu Leu Thr Glu Leu Gln Ser Gln Ile
 225 230 235 240
 Ser Asp Thr Ser Val Val Leu Ser Met Asp Asn Ser Arg Ser Leu Asp
 245 250 255
 Leu Asp Gly Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Glu Met Ala
 260 265 270
 Lys Cys Ser Arg Ala Glu Ala Glu Ala Trp Tyr Gln Thr Lys Phe Glu
 275 280 285

Siemens 0022 Seq Listing.txt

Thr Leu Gln Ala Gln Ala Gly Lys His Gly Asp Asp Leu Arg Asn Thr
 290 295 300
 Arg Asn Glu Ile Ser Glu Met Asn Arg Ala Ile Gln Arg Leu Gln Ala
 305 310 315 320
 Glu Ile Asp Asn Ile Lys Asn Gln Arg Ala Lys Leu Glu Ala Ala Ile
 325 330 335
 Ala Glu Ala Glu Glu Arg Gly Glu Leu Ala Leu Lys Asp Ala Arg Ala
 340 345 350
 Lys Gln Glu Glu Leu Glu Ala Ala Leu Gln Arg Ala Lys Gln Asp Met
 355 360 365
 Ala Arg Gln Leu Arg Glu Tyr Gln Glu Leu Met Ser Val Lys Leu Ala
 370 375 380
 Leu Asp Ile Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu
 385 390 395 400
 Ser Arg Leu Ala Gly Asp Gly Val Gly Ala Val Asn Ile Ser Val Met
 405 410 415
 Asn Ser Thr Gly Gly Ser Ser Gly Gly Ile Gly Leu Thr Leu
 420 425 430
 Gly Gly Thr Met Gly Ser Asn Ala Leu Ser Phe Ser Ser Ala Gly
 435 440 445
 Pro Gly Leu Leu Lys Ala Tyr Ser Ile Arg Thr Ala Ser Ala Ser Arg
 450 455 460
 Arg Ser Ala Arg Asp
 465

<210> 443

<211> 486

<212> PRT

<213> Homo sapiens

<400> 443
 Met Thr Cys Gly Ser Tyr Cys Gly Gly Arg Ala Phe Ser Cys Ile Ser
 1 5 10 15
 Ala Cys Gly Pro Arg Pro Gly Arg Cys Cys Ile Thr Ala Ala Pro Tyr
 20 25 30
 Arg Gly Ile Ser Cys Tyr Arg Gly Leu Thr Gly Gly Phe Gly Ser His
 35 40 45
 Ser Val Cys Gly Gly Phe Arg Ala Gly Ser Cys Gly Arg Ser Phe Gly
 50 55 60
 Tyr Arg Ser Gly Gly Val Cys Gly Pro Ser Pro Pro Cys Ile Thr Thr
 65 70 75 80
 Val Ser Val Asn Glu Ser Leu Leu Thr Pro Leu Asn Leu Glu Ile Asp
 85 90 95
 Pro Asn Ala Gln Cys Val Lys Gln Glu Glu Lys Glu Gln Ile Lys Ser
 100 105 110
 Leu Asn Ser Arg Phe Ala Ala Phe Ile Asp Lys Val Arg Phe Leu Glu
 115 120 125
 Gln Gln Asn Lys Leu Leu Glu Thr Lys Leu Gln Phe Tyr Gln Asn Arg
 130 135 140
 Glu Cys Cys Gln Ser Asn Leu Glu Pro Leu Phe Glu Gly Tyr Ile Glu
 145 150 155 160
 Thr Leu Arg Arg Glu Ala Glu Cys Val Glu Ala Asp Ser Gly Arg Leu
 165 170 175
 Ala Ser Glu Leu Asn His Val Gln Glu Val Leu Glu Gly Tyr Lys Lys
 180 185 190
 Lys Tyr Glu Glu Glu Val Ser Leu Arg Ala Thr Ala Glu Asn Glu Phe
 195 200 205

Siemens 0022 Seq Listing.txt

Val	Ala	Leu	Lys	Lys	Asp	Val	Asp	Cys	Ala	Tyr	Leu	Arg	Lys	Ser	Asp
210						215					220				
Leu	Glu	Ala	Asn	Val	Glu	Ala	Leu	Ile	Gln	Glu	Ile	Asp	Phe	Leu	Arg
225					230				235					240	
Arg	Leu	Tyr	Glu	Glu	Glu	Ile	Arg	Val	Leu	Gln	Ser	His	Ile	Ser	Asp
						245			250				255		
Thr	Ser	Val	Val	Val	Lys	Leu	Asp	Asn	Ser	Arg	Asp	Leu	Asn	Met	Asp
						260		265				270			
Cys	Ile	Ile	Ala	Glu	Ile	Lys	Ala	Gln	Tyr	Asp	Asp	Ile	Val	Thr	Arg
						275		280			285				
Ser	Arg	Ala	Glu	Ala	Glu	Ser	Trp	Tyr	Arg	Ser	Lys	Cys	Glu	Glu	Met
						290		295			300				
Lys	Ala	Thr	Val	Ile	Arg	His	Gly	Glu	Thr	Leu	Arg	Arg	Thr	Lys	Glu
305						310				315				320	
Glu	Ile	Asn	Glu	Leu	Asn	Arg	Met	Ile	Gln	Arg	Leu	Thr	Ala	Glu	Val
						325			330			335			
Glu	Asn	Ala	Lys	Cys	Gln	Asn	Ser	Lys	Leu	Glu	Ala	Ala	Val	Ala	Gln
						340		345			350				
Ser	Glu	Gln	Gly	Glu	Ala	Ala	Leu	Ser	Asp	Ala	Arg	Cys	Lys	Leu	
						355		360			365				
Ala	Glu	Leu	Glu	Gly	Ala	Leu	Gln	Lys	Ala	Lys	Gln	Asp	Met	Ala	Cys
						370		375			380				
Leu	Ile	Arg	Glu	Tyr	Gln	Glu	Val	Met	Asn	Ser	Lys	Leu	Gly	Leu	Asp
385						390				395				400	
Ile	Glu	Ile	Ala	Thr	Tyr	Arg	Arg	Leu	Leu	Glu	Gly	Glu	Glu	Gln	Arg
						405			410				415		
Leu	Cys	Glu	Gly	Val	Gly	Ser	Val	Asn	Val	Cys	Val	Ser	Ser	Ser	Arg
						420		425			430				
Gly	Gly	Val	Val	Cys	Gly	Asp	Leu	Cys	Ala	Ser	Thr	Thr	Ala	Pro	Val
						435		440			445				
Val	Ser	Thr	Arg	Val	Ser	Ser	Val	Pro	Ser	Asn	Ser	Asn	Val	Val	Val
						450		455			460				
Gly	Thr	Thr	Asn	Ala	Cys	Ala	Pro	Ser	Ala	Arg	Val	Gly	Val	Cys	Gly
465					470				475					480	
Gly	Ser	Cys	Lys	Arg	Cys										
					485										

<210> 444

<211> 111

<212> PRT

<213> Homo sapiens

<400> 444

Met	Lys	Ala	Thr	Val	Ile	Trp	His	Gly	Glu	Thr	Val	Gly	Cys	Thr	Lys
1					5		10		15						
Glu	Glu	Ile	Lys	Glu	Leu	Thr	His	Met	Ile	Gln	Arg	Leu	Met	Ala	Lys
					20		25			30					
val	Glu	Asn	Ala	Lys	Cys	Gln	Val	Trp	Gly	Ile	Cys	Ala	Gln	Gly	Gln
					35		40			45					
Arg	Asp	Leu	Trp	Pro	Asn	Leu	Cys	His	Thr	Ala	Tyr	Val	Cys	Pro	Thr
					50		55			60					
Trp	Ile	Ser	Ala	Phe	Ile	Leu	Gln	Ser	Leu	Cys	Pro	Cys	Arg	Val	Pro
					65		70		75				80		
Gly	Cys	Gly	Gln	Ser	Gly	Ser	Ala	Arg	Met	Met	Lys	Ala	Arg	Gly	Leu
					85		90			95					
Phe	Leu	Arg	Cys	Ser	Gln	Leu	Asn	Gly	Arg	Leu	Asp	Ile	Phe	Arg	
					100		105			110					

Siemens 0022 Seq Listing.txt

<210> 445
<211> 505
<212> PRT
<213> Homo sapiens

<400> 445
Met Thr Cys Gly Ser Gly Phe Gly Gly Arg Ala Phe Ser Cys Ile Ser
1 5 10 15
Ala Cys Gly Pro Arg Pro Gly Arg Cys Cys Ile Thr Ala Ala Pro Tyr
20 25 30
Arg Gly Ile Ser Cys Tyr Arg Gly Leu Thr Gly Gly Phe Gly Ser His
35 40 45
Ser Val Cys Gly Gly Phe Arg Ala Gly Ser Cys Gly Arg Ser Phe Gly
50 55 60
Tyr Arg Ser Gly Gly Val Cys Gly Pro Ser Pro Pro Cys Ile Thr Thr
65 70 75 80
Val Ser Val Asn Glu Ser Leu Leu Thr Pro Leu Asn Leu Glu Ile Asp
85 90 95
Pro Asn Ala Gln Cys Val Lys Gln Glu Glu Lys Glu Gln Ile Lys Ser
100 105 110
Leu Asn Ser Arg Phe Ala Ala Phe Ile Asp Lys Val Arg Phe Leu Glu
115 120 125
Gln Gln Asn Lys Leu Leu Glu Thr Lys Leu Gln Phe Tyr Gln Asn Arg
130 135 140
Glu Cys Cys Gln Ser Asn Leu Glu Pro Leu Phe Glu Gly Tyr Ile Glu
145 150 155 160
Thr Leu Arg Arg Glu Ala Glu Cys Val Glu Ala Asp Ser Gly Arg Leu
165 170 175
Ala Ser Glu Leu Asn His Val Gln Glu Val Leu Glu Gly Tyr Lys Lys
180 185 190
Lys Tyr Glu Glu Val Ser Leu Arg Ala Thr Ala Glu Asn Glu Phe
195 200 205
Val Ala Leu Lys Lys Asp Val Asp Cys Ala Tyr Leu Arg Lys Ser Asp
210 215 220
Leu Glu Ala Asn Val Glu Ala Leu Ile Gln Glu Ile Asp Phe Leu Arg
225 230 235 240
Arg Leu Tyr Glu Glu Ile Arg Ile Leu Gln Ser His Ile Ser Asp
245 250 255
Thr Ser Val Val Val Lys Leu Asp Asn Ser Arg Asp Leu Asn Met Asp
260 265 270
Cys Ile Ile Ala Glu Ile Lys Ala Gln Tyr Asp Asp Ile Val Thr Arg
275 280 285
Ser Arg Ala Glu Ala Glu Ser Trp Tyr Arg Ser Lys Cys Glu Glu Met
290 295 300
Lys Ala Thr Val Ile Arg His Gly Glu Thr Leu Arg Arg Thr Lys Glu
305 310 315 320
Glu Ile Asn Glu Leu Asn Arg Met Ile Gln Arg Leu Thr Ala Glu Val
325 330 335
Glu Asn Ala Lys Cys Gln Asn Ser Lys Leu Glu Ala Ala Val Ala Gln
340 345 350
Ser Glu Gln Gln Gly Glu Ala Ala Leu Ser Asp Ala Arg Cys Lys Leu
355 360 365
Ala Glu Leu Glu Gly Ala Leu Gln Lys Ala Lys Gln Asp Met Ala Cys
370 375 380
Leu Ile Arg Glu Tyr Gln Glu Val Met Asn Ser Lys Leu Gly Leu Asp
385 390 395 400

Siemens 0022 Seq Listing.txt

Ile	Glu	Ile	Ala	Thr	Tyr	Arg	Arg	Leu	Leu	Glu	Gly	Glu	Glu	Gln	Arg
				405					410					415	
Leu	Cys	Glu	Gly	Ile	Gly	Ala	Val	Asn	Val	Cys	Val	Ser	Ser	Ser	Arg
		420						425				430			
Gly	Gly	Val	Val	Cys	Gly	Asp	Leu	Cys	Val	Ser	Gly	Ser	Arg	Pro	Val
		435				440					445				
Thr	Gly	Ser	Val	Cys	Ser	Ala	Pro	Cys	Asn	Gly	Asn	Val	Ala	Val	Ser
		450				455				460					
Thr	Gly	Leu	Cys	Ala	Pro	Cys	Gly	Gln	Leu	Asn	Thr	Thr	Cys	Gly	Gly
		465			470				475					480	
Gly	Ser	Cys	Gly	Val	Gly	Ser	Cys	Gly	Ile	Ser	Ser	Leu	Gly	Val	Gly
				485				490					495		
Ser	Cys	Gly	Ser	Ser	Cys	Arg	Lys	Cys							
				500				505							

<210> 446

<211> 486

<212> PRT

<213> Homo sapiens

<400> 446

Met	Thr	Cys	Gly	Ser	Tyr	Cys	Gly	Gly	Arg	Ala	Phe	Ser	Cys	Ile	Ser
1				5				10						15	
Ala	Cys	Gly	Pro	Arg	Pro	Gly	Arg	Cys	Cys	Ile	Thr	Ala	Ala	Pro	Tyr
			20					25						30	
Arg	Gly	Ile	Ser	Cys	Tyr	Arg	Gly	Leu	Thr	Gly	Gly	Phe	Gly	Ser	His
			35			40						45			
Ser	Val	Cys	Gly	Gly	Phe	Arg	Ala	Gly	Ser	Cys	Gly	Arg	Ser	Phe	Gly
			50			55					60				
Tyr	Arg	Ser	Gly	Gly	Val	Cys	Gly	Pro	Ser	Pro	Pro	Cys	Ile	Thr	Thr
65					70					75				80	
Val	Ser	Val	Asn	Glu	Ser	Leu	Leu	Thr	Pro	Leu	Asn	Leu	Glu	Ile	Asp
				85					90				95		
Pro	Asn	Ala	Gln	Cys	Val	Lys	Gln	Glu	Glu	Lys	Glu	Gln	Ile	Lys	Ser
			100					105					110		
Leu	Asn	Ser	Arg	Phe	Ala	Ala	Phe	Ile	Asp	Lys	Val	Arg	Phe	Leu	Glu
			115					120				125			
Gln	Gln	Asn	Lys	Leu	Leu	Glu	Thr	Lys	Leu	Gln	Phe	Tyr	Gln	Asn	Arg
			130			135				140					
Glu	Cys	Cys	Gln	Ser	Asn	Leu	Glu	Pro	Leu	Phe	Glu	Gly	Tyr	Ile	Glu
145					150					155				160	
Thr	Leu	Arg	Arg	Glu	Ala	Glu	Cys	Val	Glu	Ala	Asp	Ser	Gly	Arg	Leu
				165					170				175		
Ala	Ser	Glu	Leu	Asn	His	Val	Gln	Glu	Val	Leu	Glu	Gly	Tyr	Lys	Lys
			180					185				190			
Lys	Tyr	Glu	Glu	Glu	Val	Ser	Leu	Arg	Ala	Thr	Ala	Glu	Asn	Glu	Phe
			195					200				205			
Val	Ala	Leu	Lys	Lys	Asp	Val	Asp	Cys	Ala	Tyr	Leu	Arg	Lys	Ser	Asp
			210			215					220				
Leu	Glu	Ala	Asn	Val	Glu	Ala	Leu	Ile	Gln	Glu	Ile	Asp	Phe	Leu	Arg
225					230					235				240	
Arg	Leu	Tyr	Glu	Glu	Ile	Arg	Val	Leu	Gln	Ser	His	Ile	Ser	Asp	
				245					250				255		
Thr	Ser	Val	Val	Val	Lys	Leu	Asp	Asn	Ser	Arg	Asp	Leu	Asn	Met	Asp
				260				265				270			
Cys	Ile	Ile	Ala	Glu	Ile	Lys	Ala	Gln	Tyr	Asp	Asp	Ile	Val	Thr	Arg
			275					280				285			

Siemens 0022 Seq Listing.txt

Ser Arg Ala Glu Ala Glu Ser Trp Tyr Arg Ser Lys Cys Glu Glu Met
 290 295 300
 Lys Ala Thr Val Ile Arg His Gly Glu Thr Leu Arg Arg Thr Lys Glu
 305 310 315 320
 Glu Ile Asn Glu Leu Asn Arg Met Ile Gln Arg Leu Thr Ala Glu Val
 325 330 335
 Glu Asn Ala Lys Cys Gln Asn Ser Lys Leu Glu Ala Ala Val Ala Gln
 340 345 350
 Ser Glu Gln Gln Gly Glu Ala Ala Leu Ser Asp Ala Arg Cys Lys Leu
 355 360 365
 Ala Glu Leu Glu Gly Ala Leu Gln Lys Ala Lys Gln Asp Met Ala Cys
 370 375 380
 Leu Ile Arg Glu Tyr Gln Glu Val Met Asn Ser Lys Leu Gly Leu Asp
 385 390 395 400
 Ile Glu Ile Ala Thr Tyr Arg Arg Leu Leu Glu Gly Glu Gln Arg
 405 410 415
 Leu Cys Glu Gly Val Gly Ser Val Asn Val Cys Val Ser Ser Arg
 420 425 430
 Gly Gly Val Val Cys Gly Asp Leu Cys Ala Ser Thr Thr Ala Pro Val
 435 440 445
 Val Ser Thr Arg Val Ser Ser Val Pro Ser Asn Ser Asn Val Val Val
 450 455 460
 Gly Thr Thr Asn Ala Cys Ala Pro Ser Ala Arg Val Gly Val Cys Gly
 465 470 475 480
 Gly Ser Cys Lys Arg Cys
 485

<210> 447

<211> 493

<212> PRT

<213> Homo sapiens

<400> 447

Met Thr Cys Gly Phe Asn Ser Ile Gly Cys Gly Phe Arg Pro Gly Asn
 1 5 10 15
 Phe Ser Cys Val Ser Ala Cys Gly Pro Arg Pro Ser Arg Cys Cys Ile
 20 25 30
 Thr Ala Ala Pro Tyr Arg Gly Ile Ser Cys Tyr Arg Gly Leu Thr Gly
 35 40 45
 Gly Phe Gly Ser His Ser Val Cys Gly Gly Phe Arg Ala Gly Ser Cys
 50 55 60
 Gly Arg Ser Phe Gly Tyr Arg Ser Gly Gly Val Cys Gly Pro Ser Pro
 65 70 75 80
 Pro Cys Ile Thr Thr Val Ser Val Asn Glu Ser Leu Leu Thr Pro Leu
 85 90 95
 Asn Leu Glu Ile Asp Pro Asn Ala Gln Cys Val Lys Gln Glu Lys
 100 105 110
 Glu Gln Ile Lys Ser Leu Asn Ser Arg Phe Ala Ala Phe Ile Asp Lys
 115 120 125
 Val Arg Phe Leu Glu Gln Gln Asn Lys Leu Leu Glu Thr Lys Leu Gln
 130 135 140
 Phe Tyr Gln Asn Cys Glu Cys Cys Gln Ser Asn Leu Glu Pro Leu Phe
 145 150 155 160
 Ala Gly Tyr Ile Glu Thr Leu Arg Arg Glu Ala Glu Cys Val Glu Ala
 165 170 175
 Asp Ser Gly Arg Leu Ala Ser Glu Leu Asn His Val Gln Glu Val Leu
 180 185 190

Siemens 0022 Seq Listing.txt

Glu Gly Tyr Lys Lys Lys Tyr Glu Glu Glu Val Ala Leu Arg Ala Thr
 195 200 205
 Ala Glu Asn Glu Phe Val Ala Leu Lys Lys Asp Val Asp Cys Ala Tyr
 210 215 220
 Leu Arg Lys Ser Asp Leu Glu Ala Asn Val Glu Ala Leu Ile Gln Glu
 225 230 235 240
 Ile Asp Phe Leu Arg Arg Leu Tyr Glu Glu Ile Arg Ile Leu Gln
 245 250 255
 Ser His Ile Ser Asp Thr Ser Val Val Val Lys Leu Asp Asn Ser Arg
 260 265 270
 Asp Leu Asn Met Asp Cys Ile Val Ala Glu Ile Lys Ala Gln Tyr Asp
 275 280 285
 Asp Ile Ala Thr Arg Ser Arg Ala Glu Ala Glu Ser Trp Tyr Arg Ser
 290 295 300
 Lys Cys Glu Glu Met Lys Ala Thr Val Ile Arg His Gly Glu Thr Leu
 305 310 315 320
 Arg Arg Thr Lys Glu Ile Asn Glu Leu Asn Arg Met Ile Gln Arg
 325 330 335
 Leu Thr Ala Glu Val Glu Asn Ala Lys Cys Gln Asn Ser Lys Leu Glu
 340 345 350
 Ala Ala Val Ala Gln Ser Glu Gln Gln Gly Glu Ala Ala Leu Ser Asp
 355 360 365
 Ala Arg Cys Lys Leu Ala Glu Leu Glu Gly Ala Leu Gln Lys Ala Lys
 370 375 380
 Gln Asp Met Ala Cys Leu Ile Arg Glu Tyr Gln Glu Val Met Asn Ser
 385 390 395 400
 Lys Leu Gly Leu Asp Ile Glu Ile Ala Thr Tyr Arg Arg Leu Leu Glu
 405 410 415
 Gly Glu Glu Gln Arg Leu Cys Glu Gly Val Glu Ala Val Asn Val Cys
 420 425 430
 Val Ser Ser Arg Gly Gly Val Val Cys Gly Asp Leu Cys Val Ser
 435 440 445
 Gly Ser Arg Pro Val Thr Gly Ser Val Cys Ser Ala Pro Cys Asn Gly
 450 455 460
 Asn Leu Val Val Ser Thr Gly Leu Cys Lys Pro Cys Gly Gln Leu Asn
 465 470 475 480
 Thr Thr Cys Gly Gly Ser Cys Gly Gln Gly Arg Tyr
 485 490

<210> 448

<211> 143

<212> PRT

<213> Homo sapiens

<400> 448

Met Ala Ser Gln Ser Cys His Ile Ser Ser Gly Cys Gly Val Lys Asn
 1 5 10 15
 Phe Ser Ser Arg Ser Ala Thr Val Pro Lys Pro Gly Tyr His Ser Cys
 20 25 30
 Val Ser Ala Met Ala His His Gly Val Ser Pro Gly Gly Leu Gly Ser
 35 40 45
 Arg Arg Leu Gly Gly Phe Gly Ser Gln Ser Leu Cys Thr Val Gly Ser
 50 55 60
 Pro Arg Ile Ala Val Ser Cys Arg Trp Pro Leu His Ser Arg Gly Arg
 65 70 75 80
 Phe Gly Tyr Trp Ala Gly Gly Leu Cys Arg Pro Ser Pro Pro Arg Ile
 85 90 95

Siemens 0022 Seq Listing.txt

Thr Ser Val Thr Ile Asn Glu Ser Leu Leu Met Pro Leu Asn Leu Glu
100 105 110
Ile Asp Pro Asn Ala Gln Cys Val Lys His Glu Glu Lys Glu His Ile
115 120 125
Arg Cys Leu Asn Lys Phe Ala Ala Phe Ile Asp Lys Val Gly Leu
130 135 140

<210> 449

<211> 507

<212> PRT

<213> Homo sapiens

<400> 449

Met Ser Cys Arg Ser Tyr Arg Ile Ser Ser Gly Cys Gly Val Thr Arg
1 5 10 15
Asn Phe Ser Ser Cys Ser Ala Val Ala Pro Lys Thr Gly Asn Arg Cys
20 25 30
Cys Ile Ser Ala Ala Pro Tyr Arg Gly Val Ser Cys Tyr Arg Gly Leu
35 40 45
Thr Gly Phe Gly Ser Arg Ser Leu Cys Asn Leu Gly Ser Cys Gly Pro
50 55 60
Arg Ile Ala Val Gly Gly Phe Arg Ala Gly Ser Cys Gly Arg Ser Phe
65 70 75 80
Gly Tyr Arg Ser Gly Gly Val Cys Gly Pro Ser Pro Pro Cys Ile Thr
85 90 95
Thr Val Ser Val Asn Glu Ser Leu Leu Thr Pro Leu Asn Leu Glu Ile
100 105 110
Asp Pro Asn Ala Gln Cys Val Lys Gln Glu Glu Lys Glu Gln Ile Lys
115 120 125
Ser Leu Asn Ser Arg Phe Ala Ala Phe Ile Asp Lys Val Arg Phe Leu
130 135 140
Glu Gln Gln Asn Lys Leu Leu Glu Thr Lys Trp Gln Phe Tyr Gln Asn
145 150 155 160
Gln Arg Cys Cys Glu Ser Asn Leu Glu Pro Leu Phe Ser Gly Tyr Ile
165 170 175
Glu Thr Leu Arg Arg Glu Ala Glu Cys Val Glu Ala Asp Ser Gly Arg
180 185 190
Leu Ala Ser Glu Leu Asn His Val Gln Glu Val Leu Glu Gly Tyr Lys
195 200 205
Lys Lys Tyr Glu Glu Glu Val Ala Leu Arg Ala Thr Ala Glu Asn Glu
210 215 220
Phe Val Val Leu Lys Lys Asp Val Asp Cys Ala Tyr Leu Arg Lys Ser
225 230 235 240
Asp Leu Glu Ala Asn Val Glu Ala Leu Val Glu Glu Ser Ser Phe Leu
245 250 255
Arg Arg Leu Tyr Glu Glu Glu Ile Arg Val Leu Gln Ala His Ile Ser
260 265 270
Asp Thr Ser Val Ile Val Lys Met Asp Asn Ser Arg Asp Leu Asn Met
275 280 285
Asp Cys Ile Ile Ala Glu Ile Lys Ala Gln Tyr Asp Asp Val Ala Ser
290 295 300
Arg Ser Arg Ala Glu Ala Glu Ser Trp Tyr Arg Ser Lys Cys Glu Glu
305 310 315 320
Met Lys Ala Thr Val Ile Arg His Gly Glu Thr Leu Arg Arg Thr Lys
325 330 335
Glu Glu Ile Asn Glu Leu Asn Arg Met Ile Gln Arg Leu Thr Ala Glu
340 345 350

Siemens 0022 Seq Listing.txt

Ile Glu Asn Ala Lys Cys Gln Arg Ala Lys Leu Glu Ala Ala Val Ala
355 360 365
Glu Ala Glu Gln Gln Gly Glu Ala Ala Leu Ser Asp Ala Arg Cys Lys
370 375 380
Leu Ala Glu Leu Glu Gly Ala Leu Gln Lys Ala Lys Gln Asp Met Ala
385 390 395 400
Cys Leu Leu Lys Glu Tyr Gln Glu Val Met Asn Ser Lys Leu Gly Leu
405 410 415
Asp Ile Glu Ile Ala Thr Tyr Arg Arg Leu Leu Glu Gly Glu Glu His
420 425 430
Arg Leu Cys Glu Gly Val Gly Ser Val Asn Val Cys Val Ser Ser Ser
435 440 445
Arg Gly Gly Val Ser Cys Gly Gly Leu Ser Tyr Ser Thr Thr Pro Gly
450 455 460
Arg Gln Ile Thr Ser Gly Pro Ser Ala Ile Gly Gly Ser Ile Thr Val
465 470 475 480
Val Ala Pro Asp Ser Cys Ala Pro Cys Gln Pro Arg Ser Ser Ser Phe
485 490 495
Ser Cys Gly Ser Ser Arg Ser Val Arg Phe Ala
500 505

<210> 450

<211> 600

<212> PRT

<213> Homo sapiens

<400> 450
Met Ser Cys Arg Ser Tyr Arg Val Ser Ser Gly His Arg Val Gly Asn
1 5 10 15
Phe Ser Ser Cys Ser Ala Met Thr Pro Gln Asn Leu Asn Arg Phe Arg
20 25 30
Ala Asn Ser Val Ser Cys Trp Ser Gly Pro Gly Phe Arg Gly Leu Gly
35 40 45
Ser Phe Gly Ser Arg Ser Val Ile Thr Phe Gly Ser Tyr Ser Pro Arg
50 55 60
Ile Ala Ala Val Gly Ser Arg Pro Ile His Cys Gly Val Arg Phe Gly
65 70 75 80
Ala Gly Cys Gly Met Gly Phe Gly Asp Gly Arg Gly Val Gly Leu Gly
85 90 95
Pro Arg Ala Asp Ser Cys Val Gly Leu Gly Phe Gly Ala Gly Ser Gly
100 105 110
Ile Gly Tyr Gly Phe Gly Gly Pro Gly Phe Gly Tyr Arg Val Gly Gly
115 120 125
Val Gly Val Pro Ala Ala Pro Ser Ile Thr Ala Val Thr Val Asn Lys
130 135 140
Ser Leu Leu Thr Pro Leu Asn Leu Glu Ile Asp Pro Asn Ala Gln Arg
145 150 155 160
Val Lys Lys Asp Glu Lys Glu Gln Ile Lys Thr Leu Asn Asn Lys Phe
165 170 175
Ala Ser Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn Lys Leu
180 185 190
Leu Glu Thr Lys Trp Ser Phe Leu Gln Glu Gln Lys Cys Ile Arg Ser
195 200 205
Asn Leu Glu Pro Leu Phe Glu Ser Tyr Ile Thr Asn Leu Arg Arg Gln
210 215 220
Leu Glu Val Leu Val Ser Asp Gln Ala Arg Leu Gln Ala Glu Arg Asn
225 230 235 240

Siemens 0022 Seq Listing.txt

His	Leu	Gln	Asp	Val	Leu	Glu	Gly	Phe	Lys	Lys	Lys	Tyr	Glu	Glu	Glu
				245				250				255			
Val	Val	Cys	Arg	Ala	Asn	Ala	Glu	Asn	Glu	Phe	Val	Ala	Leu	Lys	Lys
		260			265			270							
Asp	Val	Asp	Ala	Ala	Phe	Met	Asn	Lys	Ser	Asp	Leu	Glu	Ala	Asn	Val
		275			280			285							
Asp	Thr	Leu	Thr	Gln	Glu	Ile	Asp	Phe	Leu	Lys	Thr	Leu	Tyr	Met	Glu
	290			295				300							
Glu	Ile	Gln	Leu	Leu	Gln	Ser	His	Ile	Ser	Glu	Thr	Ser	Val	Ile	Val
305				310				315					320		
Lys	Met	Asp	Asn	Ser	Arg	Asp	Leu	Asn	Leu	Asp	Gly	Ile	Ile	Ala	Glu
		325			330			335							
Val	Lys	Ala	Gln	Tyr	Glu	Glu	Val	Ala	Arg	Arg	Ser	Arg	Ala	Asp	Ala
		340			345			350							
Glu	Ala	Trp	Tyr	Gln	Thr	Lys	Tyr	Glu	Glu	Met	Gln	Val	Thr	Ala	Gly
		355			360			365							
Gln	His	Cys	Asp	Asn	Leu	Arg	Asn	Ile	Arg	Asn	Glu	Ile	Asn	Glu	Leu
	370			375				380							
Thr	Arg	Leu	Ile	Gln	Arg	Leu	Lys	Ala	Glu	Ile	Glu	His	Ala	Lys	Ala
385				390				395				400			
Gln	Arg	Ala	Lys	Leu	Glu	Ala	Ala	Val	Ala	Glu	Ala	Glu	Gln	Gln	Gly
		405			410			415							
Glu	Ala	Thr	Leu	Ser	Asp	Ala	Lys	Cys	Lys	Leu	Ala	Asp	Leu	Glu	Cys
		420			425			430							
Ala	Leu	Gln	Gln	Ala	Lys	Gln	Asp	Met	Ala	Arg	Gln	Leu	Cys	Glu	Tyr
		435			440			445							
Gln	Glu	Leu	Met	Asn	Ala	Lys	Leu	Gly	Leu	Asp	Ile	Glu	Ile	Ala	Thr
		450			455			460							
Tyr	Arg	Arg	Leu	Leu	Glu	Gly	Glu	Ser	Arg	Leu	Cys	Glu	Gly	Val	
465				470				475				480			
Gly	Pro	Val	Asn	Ile	Ser	Val	Ser	Ser	Ser	Arg	Gly	Gly	Leu	Val	Cys
		485			490			495							
Gly	Pro	Glu	Pro	Leu	Val	Ala	Gly	Ser	Thr	Leu	Ser	Arg	Gly	Gly	Val
		500			505			510							
Thr	Phe	Ser	Gly	Ser	Ser	Ser	Val	Cys	Ala	Thr	Ser	Gly	Val	Leu	Ala
	515			520				525							
Ser	Cys	Gly	Pro	Ser	Leu	Gly	Gly	Ala	Arg	Val	Ala	Pro	Ala	Thr	Gly
	530			535				540							
Asp	Leu	Leu	Ser	Thr	Gly	Thr	Arg	Ser	Gly	Ser	Met	Leu	Ile	Ser	Glu
545				550				555				560			
Ala	Cys	Val	Pro	Ser	Val	Pro	Cys	Pro	Leu	Pro	Thr	Gln	Gly	Gly	Phe
		565			570			575							
Ser	Ser	Cys	Ser	Gly	Gly	Arg	Ser	Ser	Ser	Val	Arg	Phe	Val	Ser	Thr
		580		585				590							
Thr	Thr	Ser	Cys	Arg	Thr	Lys	Tyr								
	595		600												

<210> 451

<211> 513

<212> PRT

<213> Homo sapiens

<400> 451

Met	Ser	Tyr	His	Ser	Phe	Gln	Pro	Gly	Ser	Arg	Cys	Gly	Ser	Gln	Ser
1					5			10			15				
Phe	Ser	Ser	Tyr	Ser	Ala	Val	Met	Pro	Arg	Met	Val	Thr	His	Tyr	Ala
					20			25			30				

Siemens 0022 Seq Listing.txt

Val	Ser	Lys	Gly	Pro	Cys	Arg	Pro	Gly	Gly	Gly	Arg	Gly	Leu	Arg	Ala
35							40				45				
Leu	Gly	Cys	Leu	Gly	Ser	Arg	Ser	Leu	Cys	Asn	Val	Gly	Phe	Gly	Arg
50					55					60					
Pro	Arg	Val	Ala	Ser	Arg	Cys	Gly	Gly	Thr	Leu	Pro	Gly	Phe	Gly	Tyr
65					70				75				80		
Arg	Leu	Gly	Ala	Thr	Cys	Gly	Pro	Ser	Ala	Cys	Ile	Thr	Pro	Val	Thr
					85				90				95		
Ile	Asn	Glu	Ser	Leu	Leu	Val	Pro	Leu	Ala	Leu	Glu	Ile	Asp	Pro	Thr
					100				105				110		
Val	Gln	Arg	Val	Lys	Arg	Asp	Glu	Lys	Glu	Gln	Ile	Lys	Cys	Leu	Asn
					115			120				125			
Asn	Arg	Phe	Ala	Ser	Phe	Ile	Asn	Lys	Val	Arg	Phe	Leu	Glu	Gln	Lys
						130		135			140				
Asn	Lys	Leu	Leu	Glu	Thr	Lys	Trp	Asn	Phe	Met	Gln	Gln	Gln	Arg	Cys
145						150			155				160		
Cys	Gln	Thr	Asn	Ile	Glu	Pro	Ile	Phe	Glu	Gly	Tyr	Ile	Ser	Ala	Leu
					165			170				175			
Arg	Arg	Gln	Leu	Asp	Cys	Val	Ser	Gly	Asp	Arg	Val	Arg	Leu	Glu	Ser
						180		185			190				
Glu	Leu	Cys	Ser	Leu	Gln	Ala	Ala	Leu	Glu	Gly	Tyr	Lys	Lys	Tyr	
						195		200			205				
Glu	Glu	Glu	Leu	Ser	Leu	Arg	Pro	Cys	Val	Glu	Asn	Glu	Phe	Val	Ala
						210		215			220				
Leu	Lys	Lys	Asp	Val	Asp	Thr	Ala	Phe	Leu	Met	Lys	Ala	Asp	Leu	Glu
225						230				235				240	
Thr	Asn	Ala	Glu	Ala	Leu	Val	Gln	Glu	Ile	Asp	Phe	Leu	Lys	Ser	Leu
						245		250			255				
Tyr	Glu	Glu	Glu	Ile	Cys	Leu	Leu	Gln	Ser	Gln	Ile	Ser	Glu	Thr	Ser
						260		265			270				
Val	Ile	Val	Lys	Met	Asp	Asn	Ser	Arg	Glu	Leu	Asp	Val	Asp	Gly	Ile
						275		280			285				
Ile	Ala	Glu	Ile	Lys	Ala	Gln	Tyr	Asp	Asp	Ile	Ala	Ser	Arg	Ser	Lys
						290		295			300				
Ala	Glu	Ala	Glu	Ala	Trp	Tyr	Gln	Cys	Arg	Tyr	Glu	Glu	Leu	Arg	Val
305						310			315				320		
Thr	Ala	Gly	Asn	His	Cys	Asp	Asn	Leu	Arg	Asn	Arg	Lys	Asn	Glu	Ile
						325		330			335				
Leu	Glu	Met	Asn	Lys	Leu	Ile	Gln	Arg	Leu	Gln	Gln	Glu	Thr	Glu	Asn
						340		345			350				
Val	Lys	Ala	Gln	Arg	Cys	Lys	Leu	Glu	Gly	Ala	Ile	Ala	Glu	Ala	Glu
						355		360			365				
Gln	Gln	Gly	Glu	Ala	Ala	Leu	Asn	Asp	Ala	Lys	Cys	Lys	Leu	Ala	Gly
						370		375			380				
Leu	Glu	Glu	Ala	Leu	Gln	Lys	Ala	Lys	Gln	Asp	Met	Ala	Cys	Leu	Leu
385						390			395				400		
Lys	Glu	Tyr	Gln	Glu	Val	Met	Asn	Ser	Lys	Leu	Gly	Leu	Asp	Ile	Glu
						405		410			415				
Ile	Ala	Thr	Tyr	Arg	Arg	Leu	Leu	Glu	Gly	Glu	Glu	His	Arg	Leu	Cys
						420		425			430				
Glu	Gly	Ile	Gly	Pro	Val	Asn	Ile	Ser	Val	Ser	Ser	Ser	Lys	Gly	Ala
						435		440			445				
Phe	Leu	Tyr	Glu	Pro	Cys	Gly	Val	Ser	Thr	Pro	Val	Leu	Ser	Thr	Gly
						450		455			460				
Val	Leu	Arg	Ser	Asn	Gly	Gly	Cys	Ser	Ile	val	Gly	Thr	Gly	Glu	Leu
465						470				475				480	
Tyr	Val	Pro	Cys	Glu	Pro	Gln	Gly	Leu	Leu	Ser	Cys	Gly	Ser	Gly	Arg
						485		490			495				
Lys	Ser	Ser	Met	Thr	Leu	Gly	Ala	Gly	Gly	Ser	Ser	Pro	Ser	His	Lys
					500			505				510			
His															

Siemens 0022 Seq Listing.txt

<210> 452

<211> 85

<212> PRT

<213> Homo sapiens

<400> 452

Met Asp Ala Val Tyr Met Asn Lys Val Gly Leu Glu Ala Lys Val Asp
1 5 10 15
Ala Leu Met Glu Glu Thr Asn Phe Leu Ser Thr Phe Tyr Lys Ala Val
20 25 30
Arg Val Pro Gly Ala Pro Ser Asn Arg Gly Ala Gly Trp Val Leu
35 40 45
Glu Pro Gln Leu Gly Thr Glu Pro Val Gly Ser Phe Pro Gly Leu Leu
50 55 60
Ser Ala Pro Tyr Pro Thr Cys Val Leu Gln Gly Arg Cys His Phe Pro
65 70 75 80
Tyr His Arg Arg Lys
85

<210> 453

<211> 564

<212> PRT

<213> Homo sapiens

<400> 453

Met Ala Ser Thr Ser Thr Ile Arg Ser His Ser Ser Ser Arg Arg
1 5 10 15
Gly Phe Ser Ala Ser Ser Ala Arg Leu Pro Gly Val Ser Arg Ser Gly
20 25 30
Phe Ser Ser Ile Ser Val Ser Arg Ser Arg Gly Ser Gly Gly Leu Gly
35 40 45
Gly Ala Cys Gly Gly Ala Gly Phe Gly Ser Arg Ser Leu Tyr Gly Leu
50 55 60
Gly Gly Ser Lys Arg Ile Ser Ile Gly Gly Ser Cys Ala Ile Ser
65 70 75 80
Gly Gly Tyr Gly Ser Arg Ala Gly Gly Ser Tyr Gly Phe Gly Gly Ala
85 90 95
Gly Ser Gly Phe Gly Gly Gly Ala Gly Ile Gly Phe Gly Leu
100 105 110
Gly Gly Gly Ala Gly Leu Ala Gly Gly Phe Gly Gly Pro Gly Phe Pro
115 120 125
Val Cys Pro Pro Gly Gly Ile Gln Glu Val Thr Val Asn Gln Ser Leu
130 135 140
Leu Thr Pro Leu Asn Leu Gln Ile Asp Pro Ala Ile Gln Arg Val Arg
145 150 155 160
Ala Glu Glu Arg Glu Gln Ile Lys Thr Leu Asn Asn Lys Phe Ala Ser
165 170 175
Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn Lys Val Leu Asp
180 185 190
Thr Lys Trp Thr Leu Leu Gln Glu Gln Gly Thr Lys Thr Val Arg Gln
195 200 205

Siemens_0022.Seq Listing.txt

Asn Leu Glu Pro Leu Phe Glu Gln Tyr Ile Asn Asn Leu Arg Arg Gln
 210 215 220
 Leu Asp Ser Ile Val Gly Glu Arg Gly Arg Leu Asp Ser Glu Leu Arg
 225 230 235 240
 Asn Met Gln Asp Leu Val Glu Asp Leu Lys Asn Lys Tyr Glu Asp Glu
 245 250 255
 Ile Asn Lys Arg Thr Ala Ala Glu Asn Glu Phe Val Thr Leu Lys Lys
 260 265 270
 Asp Val Asp Ala Ala Tyr Met Asn Lys Val Glu Leu Gln Ala Lys Ala
 275 280 285
 Asp Thr Leu Thr Asp Glu Ile Asn Phe Leu Arg Ala Leu Tyr Asp Ala
 290 295 300
 Glu Leu Ser Gln Met Gln Thr His Ile Ser Asp Thr Ser Val Val Leu
 305 310 315 320
 Ser Met Asp Asn Asn Arg Asn Leu Asp Leu Asp Ser Ile Ile Ala Glu
 325 330 335
 Val Lys Ala Gln Tyr Glu Glu Ile Ala Gln Arg Ser Arg Ala Glu Ala
 340 345 350
 Glu Ser Trp Tyr Gln Thr Lys Tyr Glu Glu Leu Gln Val Thr Ala Gly
 355 360 365
 Arg His Gly Asp Asp Leu Arg Asn Thr Lys Gln Glu Ile Ala Glu Ile
 370 375 380
 Asn Arg Met Ile Gln Arg Leu Arg Ser Glu Ile Asp His Val Lys Lys
 385 390 395 400
 Gln Cys Ala Asn Leu Gln Ala Ala Ile Ala Asp Ala Glu Gln Arg Gly
 405 410 415
 Glu Met Ala Leu Lys Asp Ala Lys Asn Lys Leu Glu Gly Leu Glu Asp
 420 425 430
 Ala Leu Gln Lys Ala Lys Gln Asp Leu Ala Arg Leu Leu Lys Glu Tyr
 435 440 445
 Gln Glu Leu Met Asn Val Lys Leu Ala Leu Asp Val Glu Ile Ala Thr
 450 455 460
 Tyr Arg Lys Leu Leu Glu Gly Glu Glu Cys Arg Leu Asn Gly Glu Gly
 465 470 475 480
 Val Gly Gln Val Asn Ile Ser Val Val Gln Ser Thr Val Ser Ser Gly
 485 490 495
 Tyr Gly Gly Ala Ser Gly Val Gly Ser Gly Leu Gly Leu Gly Gly Gly
 500 505 510
 Ser Ser Tyr Ser Tyr Gly Ser Gly Leu Gly Val Gly Gly Gly Phe Ser
 515 520 525
 Ser Ser Ser Gly Arg Ala Thr Gly Gly Leu Ser Ser Val Gly Gly
 530 535 540
 Gly Ser Ser Thr Ile Lys Tyr Thr Thr Ser Ser Ser Ser Arg Lys
 545 550 555 560
 Ser Tyr Lys His

<210> 454

<211> 564

<212> PRT

<213> Homo sapiens

<400> 454

Met Ala Ser Thr Ser Thr Thr Ile Arg Ser His Ser Ser Ser Arg Arg
 1 5 10 15
 Gly Phe Ser Ala Asn Ser Ala Arg Leu Pro Gly Val Ser Arg Ser Gly
 20 25 30

Siemens 0022 Seq Listing.txt

Phe Ser Ser Ile Ser Val Ser Arg Ser Arg Gly Ser Gly Gly Leu Gly
 35 40 45
 Gly Ala Cys Gly Gly Ala Gly Phe Gly Ser Arg Ser Leu Tyr Gly Leu
 50 55 60
 Gly Gly Ser Lys Arg Ile Ser Ile Gly Gly Ser Cys Ala Ile Ser
 65 70 75 80
 Gly Gly Tyr Gly Ser Arg Ala Arg Gly Ser Tyr Gly Phe Gly Gly Ala
 85 90 95
 Gly Ser Gly Phe Gly Phe Gly Gly Ala Gly Ile Gly Phe Asp Leu
 100 105 110
 Gly Gly Ala Gly Leu Ala Gly Gly Phe Gly Gly Pro Gly Phe Pro
 115 120 125
 Val Cys Pro Pro Gly Gly Ile Gln Glu Val Thr Val Asn Gln Ser Leu
 130 135 140
 Leu Thr Pro Leu Asn Leu Gln Ile Asp Pro Ala Ile Gln Arg Val Arg
 145 150 155 160
 Ala Glu Glu Arg Glu Gln Ile Lys Thr Leu Asn Asn Lys Phe Ala Ser
 165 170 175
 Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn Lys Val Leu Asp
 180 185 190
 Thr Lys Trp Thr Leu Leu Gln Glu Gln Gly Thr Lys Thr Val Arg Gln
 195 200 205
 Asn Leu Glu Pro Leu Phe Glu Gln Tyr Ile Asn Asn Leu Arg Arg Gln
 210 215 220
 Leu Asp Asn Ile Val Gly Glu Arg Gly Arg Leu Asp Ser Glu Leu Arg
 225 230 235 240
 Asn Met Gln Asp Leu Val Glu Asp Leu Lys Asn Lys Tyr Glu Asp Glu
 245 250 255
 Ile Asn Lys Arg Thr Ala Ala Glu Asn Glu Phe Val Thr Leu Lys Lys
 260 265 270
 Asp Val Asp Ala Ala Tyr Met Asn Lys Val Glu Leu Gln Ala Lys Ala
 275 280 285
 Asp Thr Leu Thr Asp Glu Ile Asn Phe Leu Arg Ala Leu Tyr Asp Ala
 290 295 300
 Glu Leu Ser Gln Met Gln Thr His Ile Ser Asp Thr Ser Val Val Leu
 305 310 315 320
 Ser Met Asp Asn Asn Arg Asn Leu Asp Leu Asp Ser Ile Ile Ala Glu
 325 330 335
 Val Lys Ala Gln Tyr Glu Glu Ile Ala Gln Arg Ser Arg Ala Glu Ala
 340 345 350
 Glu Ser Trp Tyr Gln Thr Lys Tyr Glu Glu Leu Gln Val Thr Ala Gly
 355 360 365
 Arg His Gly Asp Asp Leu Arg Asn Thr Lys Gln Glu Ile Ala Glu Ile
 370 375 380
 Asn Arg Met Ile Gln Arg Leu Arg Ser Glu Ile Asp His Val Lys Lys
 385 390 395 400
 Gln Cys Ala Ser Leu Gln Ala Ala Ile Ala Asp Ala Glu Gln Arg Gly
 405 410 415
 Glu Met Ala Leu Lys Asp Ala Lys Asn Lys Leu Glu Gly Leu Glu Asp
 420 425 430
 Ala Leu Gln Lys Ala Lys Gln Asp Leu Ala Arg Leu Leu Lys Glu Tyr
 435 440 445
 Gln Glu Leu Met Asn Val Lys Leu Ala Leu Asp Val Glu Ile Ala Thr
 450 455 460
 Tyr Arg Lys Leu Leu Glu Gly Glu Glu Cys Arg Leu Asn Gly Glu Gly
 465 470 475 480
 Ile Gly Gln Val Asn Val Ser Val Val Gln Ser Thr Ile Ser Ser Gly
 485 490 495
 Tyr Gly Gly Ala Ser Gly Val Gly Ser Gly Leu Gly Leu Gly Gly Gly
 500 505 510
 Ser Ser Tyr Ser Tyr Gly Ser Gly Leu Gly Ile Gly Gly Gly Phe Ser
 515 520 525
 Ser Ser Ser Gly Arg Ala Ile Gly Gly Leu Ser Ser Val Gly Gly

Siemens 0022 Seq Listing.txt

530	535	540
Gly Ser Ser Thr Ile Lys	Tyr Thr Thr Thr	Ser Ser Ser Ser Arg Lys
545	550	555
Ser Tyr Lys His		560

<210> 455

<211> 564

<212> PRT

<213> Homo sapiens

<400> 455

Met Ala Ser Thr Ser Thr Thr Ile Arg Ser His Ser Ser Ser Arg Arg			
1	5	10	15
Gly Phe Ser Ala Asn Ser Ala Arg Leu Pro Gly Val Ser Arg Ser Gly			
20	25	30	
Phe Ser Ser Ile Ser Val Ser Arg Ser Arg Gly Ser Gly Gly Leu Gly			
35	40	45	
Gly Ala Cys Gly Gly Ala Gly Phe Gly Ser Arg Ser Leu Tyr Gly Leu			
50	55	60	
Gly Gly Ser Lys Arg Ile Ser Ile Gly Gly Ser Cys Ala Ile Ser			
65	70	75	80
Gly Gly Tyr Gly Ser Arg Ala Arg Ala Ser Tyr Gly Phe Gly Gly Ala			
85	90	95	
Gly Ser Gly Phe Gly Phe Gly Gly Ala Gly Ile Gly Phe Asp Leu			
100	105	110	
Gly Gly Ala Gly Leu Ala Gly Gly Phe Gly Gly Pro Gly Phe Pro			
115	120	125	
Val Cys Pro Pro Gly Gly Ile Gln Glu Val Thr Val Asn Gln Ser Leu			
130	135	140	
Leu Thr Pro Leu Asn Leu Gln Ile Asp Pro Ala Ile Gln Arg Val Arg			
145	150	155	160
Ala Glu Glu Arg Glu Gln Ile Lys Thr Leu Asn Asn Lys Phe Ala Ser			
165	170	175	
Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn Lys Val Leu Glu			
180	185	190	
Thr Lys Trp Thr Leu Leu Gln Glu Gln Gly Thr Lys Thr Val Arg Gln			
195	200	205	
Asn Leu Glu Pro Leu Phe Glu Gln Tyr Ile Asn Asn Leu Arg Arg Gln			
210	215	220	
Leu Asp Ser Ile Val Gly Glu Arg Gly Arg Leu Asp Ser Glu Leu Arg			
225	230	235	240
Gly Met Gln Asp Leu Val Glu Asp Phe Lys Asn Lys Tyr Glu Asp Glu			
245	250	255	
Ile Asn Lys Arg Thr Ala Ala Glu Asn Glu Phe Val Thr Leu Lys Lys			
260	265	270	
Asp Val Asp Ala Ala Tyr Met Asn Lys Val Glu Leu Gln Ala Lys Ala			
275	280	285	
Asp Thr Leu Thr Asp Glu Ile Asn Phe Leu Arg Ala Leu Tyr Asp Ala			
290	295	300	
Glu Leu Ser Gln Met Gln Thr His Ile Ser Asp Thr Ser Val Val Leu			
305	310	315	320
Ser Met Asp Asn Asn Arg Asn Leu Asp Leu Asp Ser Ile Ile Ala Glu			
325	330	335	
Val Lys Ala Gln Tyr Glu Glu Ile Ala Gln Arg Ser Arg Ala Glu Ala			
340	345	350	
Glu Ser Trp Tyr Gln Thr Lys Tyr Glu Glu Leu Gln Val Thr Ala Gly			

Siemens 0022 Seq Listing.txt

355															
Arg	His	Gly	Asp	Asp	Leu	Arg	Asn	Thr	Lys	Gln	Glu	Ile	Ala	Glu	Ile
370															
360															365
Asn	Arg	Met	Ile	Gln	Arg	Leu	Arg	Ser	Glu	Ile	Asp	His	Val	Lys	Lys
385															400
Gln	Cys	Ala	Asn	Leu	Gln	Ala	Ala	Ile	Ala	Asp	Ala	Glu	Gln	Arg	Gly
															415
405															
Glu	Met	Ala	Leu	Lys	Asp	Ala	Lys	Asn	Lys	Leu	Glu	Gly	Leu	Glu	Asp
															430
420															
Ala	Leu	Gln	Lys	Ala	Lys	Gln	Asp	Leu	Ala	Arg	Leu	Leu	Lys	Glu	Tyr
															445
435															
Gln	Glu	Leu	Met	Asn	Val	Lys	Leu	Ala	Leu	Asp	Val	Glu	Ile	Ala	Thr
															460
450															
Tyr	Arg	Lys	Leu	Leu	Glu	Gly	Glu	Glu	Cys	Arg	Leu	Asn	Gly	Glu	Gly
															480
465															
Val	Gly	Gln	Val	Asn	Ile	Ser	Val	Val	Gln	Ser	Thr	Val	Ser	Ser	Gly
															495
485															
Tyr	Gly	Gly	Ala	Ser	Gly	Val	Gly	Ser	Gly	Leu	Gly	Leu	Gly	Gly	Gly
															510
500															
Ser	Ser	Tyr	Ser	Tyr	Gly	Ser	Gly	Leu	Gly	Val	Gly	Gly	Gly	Phe	Ser
															525
515															
Ser	Ser	Ser	Gly	Arg	Ala	Ile	Gly	Gly	Gly	Leu	Ser	Ser	Val	Gly	Gly
															540
530															
Gly	Ser	Ser	Thr	Ile	Lys	Tyr	Thr	Thr	Thr	Ser	Ser	Ser	Ser	Arg	Lys
															560
545															
Ser	Tyr	Lys	His												

<210> 456

<211> 564

<212> PRT

<213> Homo sapiens

<400> 456

1															
Met	Ala	Ser	Thr	Ser	Thr	Thr	Ile	Arg	Ser	His	Ser	Ser	Ser	Arg	Arg
5															15
Gly	Phe	Ser	Ala	Asn	Ser	Ala	Arg	Leu	Pro	Gly	Val	Ser	Arg	Ser	Gly
20															30
Phe	Ser	Ser	Val	Ser	Val	Ser	Arg	Ser	Arg	Gly	Ser	Gly	Gly	Leu	Gly
35															45
Gly	Ala	Cys	Gly	Gly	Ala	Gly	Phe	Gly	Ser	Arg	Ser	Leu	Tyr	Gly	Leu
50															60
Gly	Gly	Ser	Lys	Arg	Ile	Ser	Ile	Gly	Gly	Gly	Ser	Cys	Ala	Ile	Ser
															80
65															
Gly	Gly	Tyr	Gly	Ser	Arg	Ala	Gly	Gly	Ser	Tyr	Gly	Phe	Gly	Gly	Ala
															95
85															
Gly	Ser	Gly	Phe	Gly	Gly	Gly	Ala	Gly	Ile	Gly	Phe	Gly	Leu		
100															110
Gly	Gly	Gly	Ala	Gly	Leu	Ala	Gly	Gly	Phe	Gly	Gly	Pro	Gly	Phe	Pro
115															125
Val	Cys	Pro	Pro	Gly	Gly	Ile	Gln	Glu	Val	Thr	Val	Asn	Gln	Ser	Leu
130															
Leu	Thr	Pro	Leu	Asn	Leu	Gln	Ile	Asp	Pro	Thr	Ile	Gln	Arg	Val	Arg
															160
145															
Ala	Glu	Glu	Arg	Glu	Gln	Ile	Lys	Thr	Leu	Asn	Asn	Lys	Phe	Ala	Ser
165															175
Phe	Ile	Asp	Lys	Val	Arg	Phe	Leu	Glu	Gln	Gln	Asn	Lys	Val	Leu	Glu

Siemens 0022 Seq Listing.txt

180	185	190
Thr Lys Trp Thr Leu Leu Gln Glu Gln Gly Thr Lys Thr Val Arg Gln		
195	200	205
Asn Leu Glu Pro Leu Phe Glu Gln Tyr Ile Asn Asn Leu Arg Arg Gln		
210	215	220
Leu Asp Ser Ile Val Gly Glu Arg Gly Arg Leu Asp Ser Glu Leu Arg		
225	230	235
Gly Met Gln Asp Leu Val Glu Asp Phe Lys Asn Lys Tyr Glu Asp Glu		
245	250	255
Ile Asn Lys Arg Thr Ala Ala Glu Asn Glu Phe Val Thr Leu Lys Lys		
260	265	270
Asp Val Asp Ala Ala Tyr Met Asn Lys Val Glu Leu Gln Ala Lys Ala		
275	280	285
Asp Thr Leu Thr Asp Glu Ile Asn Phe Leu Arg Ala Leu Tyr Asp Ala		
290	295	300
Glu Leu Ser Gln Met Gln Thr His Ile Ser Asp Thr Ser Val Val Leu		
305	310	315
Ser Met Asp Asn Asn Arg Asn Leu Asp Leu Asp Ser Ile Ile Ala Glu		
325	330	335
Val Lys Ala Gln Tyr Glu Glu Ile Ala Gln Arg Ser Arg Ala Glu Ala		
340	345	350
Glu Ser Trp Tyr Gln Thr Lys Tyr Glu Glu Leu Gln Val Thr Ala Gly		
355	360	365
Arg His Gly Asp Asp Leu Arg Asn Thr Lys Gln Glu Ile Ala Glu Ile		
370	375	380
Asn Arg Met Ile Gln Arg Leu Arg Ser Glu Ile Asp His Val Lys Lys		
385	390	395
Gln Cys Ala Asn Leu Gln Ala Ala Ile Ala Asp Ala Glu Gln Arg Gly		
405	410	415
Glu Met Ala Leu Lys Asp Ala Lys Asn Lys Leu Glu Gly Leu Glu Asp		
420	425	430
Ala Leu Gln Lys Ala Lys Gln Asp Leu Ala Arg Leu Leu Lys Glu Tyr		
435	440	445
Gln Glu Leu Met Asn Val Lys Leu Ala Leu Asp Val Glu Ile Ala Thr		
450	455	460
Tyr Arg Lys Leu Leu Glu Gly Glu Glu Cys Arg Leu Asn Gly Glu Gly		
465	470	475
Val Gly Gln Val Asn Ile Ser Val Val Gln Ser Thr Val Ser Ser Gly		
485	490	495
Tyr Gly Gly Ala Ser Gly Val Gly Ser Gly Leu Gly Leu Gly Gly Gly		
500	505	510
Ser Ser Tyr Ser Tyr Gly Ser Gly Leu Gly Val Gly Gly Phe Ser		
515	520	525
Ser Ser Ser Gly Arg Ala Ile Gly Gly Leu Ser Ser Val Gly Gly		
530	535	540
Gly Ser Ser Thr Ile Lys Tyr Thr Thr Ser Ser Ser Ser Arg Lys		
545	550	555
Ser Tyr Lys His		

<210> 457

<211> 590

<212> PRT

<213> Homo sapiens

<400> 457

Met Ser Arg Gln Ser Ser Val Ser Phe Arg Ser Gly Gly Ser Arg Ser

Siemens 0022 Seq Listing.txt

1 5 10 15
 Phe Ser Thr Ala Ser Ala Ile Thr Pro Ser Val Ser Arg Thr Ser Phe
 20 25 30
 Thr Ser Val Ser Arg Ser Gly Gly Gly Gly Gly Gly Phe Gly Arg
 35 40 45
 Val Ser Leu Ala Gly Ala Cys Gly Val Gly Gly Tyr Gly Ser Arg Ser
 50 55 60
 Leu Tyr Asn Leu Gly Gly Ser Lys Arg Ile Ser Ile Ser Thr Arg Gly
 65 70 75 80
 Gly Ser Phe Arg Asn Arg Phe Gly Ala Gly Ala Gly Gly Tyr Gly
 85 90 95
 Phe Gly Gly Ala Gly Ser Gly Phe Gly Phe Gly Gly Ala Gly
 100 105 110
 Gly Gly Phe Gly Leu Gly Gly Ala Gly Phe Gly Gly Gly Phe Gly
 115 120 125
 Gly Pro Gly Phe Pro Val Cys Pro Pro Gly Gly Ile Gln Glu Val Thr
 130 135 140
 Val Asn Gln Ser Leu Leu Thr Pro Leu Asn Leu Gln Ile Asp Pro Ser
 145 150 155 160
 Ile Gln Arg Val Arg Thr Glu Glu Arg Glu Gln Ile Lys Thr Leu Asn
 165 170 175
 Asn Lys Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln
 180 185 190
 Asn Lys Val Leu Asp Thr Lys Trp Thr Leu Leu Gln Glu Gln Gly Thr
 195 200 205
 Lys Thr Val Arg Gln Asn Leu Glu Pro Leu Phe Glu Gln Tyr Ile Asn
 210 215 220
 Asn Leu Arg Arg Gln Leu Asp Ser Ile Val Gly Glu Arg Gly Arg Leu
 225 230 235 240
 Asp Ser Glu Leu Arg Asn Met Gln Asp Leu Val Glu Asp Phe Lys Asn
 245 250 255
 Lys Tyr Glu Asp Glu Ile Asn Lys Arg Thr Thr Ala Glu Asn Glu Phe
 260 265 270
 Val Met Leu Lys Lys Asp Val Asp Ala Ala Tyr Met Asn Lys Val Glu
 275 280 285
 Leu Glu Ala Lys Val Asp Ala Leu Met Asp Glu Ile Asn Phe Met Lys
 290 295 300
 Met Phe Phe Asp Ala Glu Leu Ser Gln Met Gln Thr His Val Ser Asp
 305 310 315 320
 Thr Ser Val Val Leu Ser Met Asp Asn Asn Arg Asn Leu Asp Leu Asp
 325 330 335
 Ser Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Glu Ile Ala Asn Arg
 340 345 350
 Ser Arg Thr Glu Ala Glu Ser Trp Tyr Gln Thr Lys Tyr Glu Glu Leu
 355 360 365
 Gln Gln Thr Ala Gly Arg His Gly Asp Asp Leu Arg Asn Thr Lys His
 370 375 380
 Glu Ile Thr Glu Met Asn Arg Met Ile Gln Arg Leu Arg Ala Glu Ile
 385 390 395 400
 Asp Asn Val Lys Lys Gln Cys Ala Asn Leu Gln Asn Ala Ile Ala Asp
 405 410 415
 Ala Glu Gln Arg Gly Glu Leu Ala Leu Lys Asp Ala Arg Asn Lys Leu
 420 425 430
 Ala Glu Leu Glu Glu Ala Leu Gln Lys Ala Lys Gln Asp Met Ala Arg
 435 440 445
 Leu Leu Arg Glu Tyr Gln Glu Leu Met Asn Thr Lys Leu Ala Leu Asp
 450 455 460
 Val Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Cys Arg
 465 470 475 480
 Leu Ser Gly Glu Gly Val Gly Pro Val Asn Ile Ser Val Val Thr Ser
 485 490 495
 Ser Val Ser Ser Gly Tyr Gly Ser Gly Ser Gly Tyr Gly Gly Leu
 500 505 510

Siemens 0022 Seq Listing.txt

Gly	Gly	Gly	Leu	Gly	Gly	Gly	Leu	Ala	Gly	Gly	Ser				
515				520					525						
Ser	Gly	Ser	Tyr	Tyr	Ser	Ser	Ser	Gly	Gly	Val	Gly	Leu	Gly	Gly	
530				535					540						
Gly	Leu	Ser	Val	Gly	Gly	Ser	Gly	Phe	Ser	Ala	Ser	Ser	Gly	Arg	Gly
545				550					555				560		
Leu	Gly	Val	Gly	Phe	Gly	Ser	Gly	Gly	Ser	Ser	Ser	Ser	Val	Lys	
	565				570				575						
Phe	Val	Ser	Thr	Thr	Ser	Ser	Ser	Arg	Lys	Ser	Phe	Lys	Ser		
	580				585				590						

<210> 458

<211> 523

<212> PRT

<213> Homo sapiens

<400> 458

Met	Ser	Arg	Gln	Phe	Thr	Cys	Lys	Ser	Gly	Ala	Ala	Ala	Lys	Gly	Gly
1			5				10						15		
Phe	Ser	Gly	Cys	Ser	Ala	Val	Leu	Ser	Gly	Gly	Ser	Ser	Ser	Phe	
				20			25						30		
Arg	Ala	Gly	Ser	Lys	Gly	Leu	Ser	Gly	Gly	Phe	Gly	Ser	Arg	Ser	Leu
				35			40					45			
Tyr	Ser	Leu	Gly	Gly	Val	Arg	Ser	Leu	Asn	Val	Ala	Ser	Gly	Ser	Gly
				50			55				60				
Lys	Ser	Gly	Gly	Tyr	Gly	Phe	Gly	Arg	Gly	Arg	Ala	Ser	Gly	Phe	Ala
				65			70			75			80		
Gly	Ser	Met	Phe	Gly	Ser	Val	Ala	Leu	Gly	Pro	Val	Cys	Pro	Thr	Val
				85			90					95			
Cys	Pro	Pro	Gly	Gly	Ile	His	Gln	Val	Thr	Val	Asn	Glu	Ser	Leu	Leu
				100			105					110			
Ala	Pro	Leu	Asn	Val	Glu	Leu	Asp	Pro	Glu	Ile	Gln	Lys	Val	Arg	Ala
				115			120					125			
Gln	Glu	Arg	Glu	Gln	Ile	Lys	Ala	Leu	Asn	Asn	Lys	Phe	Ala	Ser	Phe
				130			135				140				
Ile	Asp	Lys	Val	Arg	Phe	Leu	Glu	Gln	Gln	Asn	Gln	Val	Leu	Glu	Thr
				145			150				155			160	
Lys	Trp	Glu	Leu	Leu	Gln	Gln	Leu	Asp	Leu	Asn	Asn	Cys	Lys	Asn	Asn
					165			170				175			
Leu	Glu	Pro	Ile	Leu	Glu	Gly	Tyr	Ile	Ser	Asn	Leu	Arg	Lys	Gln	Leu
				180			185					190			
Glu	Thr	Leu	Ser	Gly	Asp	Arg	Val	Arg	Leu	Asp	Ser	Glu	Leu	Arg	Asn
				195			200					205			
Val	Arg	Asp	Val	Val	Glu	Asp	Tyr	Lys	Lys	Arg	Tyr	Glu	Glu	Ile	
				210			215				220				
Asn	Lys	Arg	Thr	Ala	Ala	Glu	Asn	Glu	Phe	Val	Leu	Leu	Lys	Asp	
				225			230				235			240	
Val	Asp	Ala	Ala	Tyr	Ala	Asn	Lys	Val	Glu	Leu	Gln	Ala	Lys	Val	Glu
					245			250				255			
Ser	Met	Asp	Gln	Glu	Ile	Lys	Phe	Phe	Arg	Cys	Leu	Phe	Glu	Ala	Glu
				260			265				270				
Ile	Thr	Gln	Ile	Gln	Ser	His	Ile	Ser	Asp	Met	Ser	Val	Ile	Leu	Ser
				275			280				285				
Met	Asp	Asn	Asn	Arg	Asn	Leu	Asp	Leu	Asp	Ser	Ile	Ile	Asp	Glu	Val
				290			295				300				
Arg	Thr	Gln	Tyr	Glu	Glu	Ile	Ala	Leu	Lys	Ser	Lys	Ala	Glu	Ala	Glu
				305			310				315			320	

Siemens 0022 Seq Listing.txt

Ala Leu Tyr Gln Thr Lys Phe Gln Glu Leu Gln Leu Ala Ala Gly Arg
325 330 335
His Gly Asp Asp Leu Lys Asn Thr Lys Asn Glu Ile Ser Glu Leu Thr
340 345 350
Arg Leu Ile Gln Arg Ile Arg Ser Glu Ile Glu Asn Val Lys Lys Gln
355 360 365
Ala Ser Asn Leu Glu Thr Ala Ile Ala Asp Ala Glu Gln Arg Gly Asp
370 375 380
Asn Ala Leu Lys Asp Ala Arg Ala Lys Leu Asp Glu Leu Glu Gly Ala
385 390 395 400
Leu His Gln Ala Lys Glu Glu Leu Ala Arg Met Leu Arg Glu Tyr Gln
405 410 415
Glu Leu Met Ser Leu Lys Leu Ala Leu Asp Met Glu Ile Ala Thr Tyr
420 425 430
Arg Lys Leu Leu Glu Ser Glu Glu Cys Arg Met Ser Gly Glu Phe Pro
435 440 445
Ser Pro Val Ser Ile Ser Ile Ile Ser Ser Thr Ser Gly Gly Ser Val
450 455 460
Tyr Gly Phe Arg Pro Ser Met Val Ser Gly Gly Tyr Val Ala Asn Ser
465 470 475 480
Ser Asn Cys Ile Ser Gly Val Cys Ser Val Arg Gly Gly Glu Gly Arg
485 490 495
Ser Arg Gly Ser Ala Asn Asp Tyr Lys Asp Thr Leu Gly Lys Gly Ser
500 505 510
Ser Leu Ser Ala Pro Ser Lys Lys Thr Ser Arg
515 520

<210> 459

<211> 529

<212> PRT

<213> Homo sapiens

<400> 459
Met Ser Arg Gln Leu Asn Ile Lys Ser Ser Gly Asp Lys Gly Asn Phe
1 5 10 15
Ser Val His Ser Ala Val Val Pro Arg Lys Ala Val Gly Ser Leu Ala
20 25 30
Ser Tyr Cys Ala Ala Gly Arg Gly Ala Gly Ala Gly Phe Gly Ser Arg
35 40 45
Ser Leu Tyr Ser Leu Gly Gly Asn Arg Arg Ile Ser Phe Asn Val Ala
50 55 60
Gly Gly Gly Val Arg Ala Gly Gly Tyr Gly Phe Arg Pro Gly Ser Gly
65 70 75 80
Tyr Gly Gly Arg Ala Ser Gly Phe Ala Gly Ser Met Phe Gly Ser
85 90 95
Val Ala Leu Gly Pro Ala Cys Leu Ser Val Cys Pro Pro Gly Ile
100 105 110
His Gln Val Thr Val Asn Lys Ser Leu Leu Ala Pro Leu Asn Val Glu
115 120 125
Leu Asp Pro Glu Ile Gln Lys Val Arg Ala Gln Glu Arg Glu Gln Ile
130 135 140
Lys Val Leu Asn Asp Lys Phe Ala Ser Phe Ile Asp Lys Val Arg Phe
145 150 155 160
Leu Glu Gln Gln Asn Gln Val Leu Glu Thr Lys Trp Glu Leu Leu Gln
165 170 175
Gln Leu Asp Leu Asn Asn Cys Lys Lys Asn Leu Glu Pro Ile Leu Glu
180 185 190

Siemens 0022 Seq Listing.txt

Gly Tyr Ile Ser Asn Leu Arg Lys Gln Leu Glu Thr Leu Ser Gly Asp
195 200 205
Arg Val Arg Leu Asp Ser Glu Leu Arg Ser Met Arg Asp Leu Val Glu
210 215 220
Asp Tyr Lys Lys Arg Tyr Glu Val Glu Ile Asn Arg Arg Thr Thr Ala
225 230 235 240
Glu Asn Glu Phe Val Val Leu Lys Lys Asp Ala Asp Ala Ala Tyr Ala
245 250 255
Val Lys Val Glu Leu Gln Ala Lys Val Asp Ser Leu Asp Lys Asp Ile
260 265 270
Lys Phe Leu Lys Cys Leu Tyr Asp Ala Glu Ile Ala Gln Ile Gln Thr
275 280 285
His Ala Ser Glu Thr Ser Val Ile Leu Ser Met Asp Asn Asn Arg Asp
290 295 300
Leu Asp Leu Asp Ser Ile Ile Ala Glu Val Arg Met His Tyr Glu Glu
305 310 315 320
Ile Ala Leu Lys Ser Lys Ala Glu Ala Glu Ala Leu Tyr Gln Thr Lys
325 330 335
Ile Gln Glu Leu Gln Leu Ala Ala Ser Arg His Gly Asp Asp Leu Lys
340 345 350
His Thr Arg Ser Glu Met Val Glu Leu Asn Arg Leu Ile Gln Arg Ile
355 360 365
Arg Cys Glu Ile Gly Asn Val Lys Lys Gln Arg Ala Ser Leu Glu Thr
370 375 380
Ala Ile Ala Asp Ala Glu Gln Arg Gly Asp Asn Ala Leu Lys Asp Ala
385 390 395 400
Gln Ala Lys Leu Asp Glu Leu Glu Gly Ala Leu His Gln Ala Lys Glu
405 410 415
Glu Leu Ala Arg Met Leu Arg Glu Tyr Gln Glu Leu Met Ser Leu Lys
420 425 430
Leu Ala Leu Asp Met Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly
435 440 445
Glu Glu Cys Arg Met Ser Gly Glu Asn Pro Ser Ser Val Ser Ile Ser
450 455 460
Val Ile Ser Ser Ser Tyr Ser Tyr His His Pro Ser Ser Ala Gly
465 470 475 480
Val Asp Leu Gly Ala Ser Ala Val Ala Gly Ser Ser Gly Ser Thr Gln
485 490 495
Ser Gly Gln Thr Lys Thr Thr Glu Ala Arg Gly Gly Asp Leu Lys Asp
500 505 510
Thr Gln Gly Lys Ser Thr Pro Ala Ser Ile Pro Ala Arg Lys Ala Thr
515 520 525
Arg

<210> 460

<211> 511

<212> PRT

<213> Homo sapiens

<400> 460

Met Ser Arg Gln Leu Thr His Phe Pro Arg Gly Glu Arg Leu Gly Phe
1 5 10 15
Ser Gly Cys Ser Ala Val Leu Ser Gly Gly Ile Gly Ser Ser Ser Ala
20 25 30
Ser Phe Arg Ala Arg Val Lys Gly Ser Ala Ser Phe Gly Ser Lys Ser
35 40 45

Siemens 0022 Seq Listing.txt

Leu Ser Cys Leu Gly Gly Ser Arg Ser Leu Ala Leu Ser Ala Ala Ala
 50 55 60
 Arg Arg Gly Gly Gly Arg Leu Gly Gly Phe Val Gly Thr Ala Phe Gly
 65 70 75 80
 Ser Ala Gly Leu Gly Pro Lys Cys Pro Ser Val Cys Pro Pro Gly Gly
 85 90 95
 Ile Pro Gln Val Thr Val Asn Lys Ser Leu Leu Ala Pro Leu Asn Val
 100 105 110
 Glu Met Asp Pro Glu Ile Gln Arg Val Arg Ala Gln Glu Arg Glu Gln
 115 120 125
 Ile Lys Ala Leu Asn Asn Lys Phe Ala Ser Phe Ile Asp Lys Val Arg
 130 135 140
 Phe Leu Glu Gln Gln Asn Gln Val Leu Glu Thr Lys Trp Asn Leu Leu
 145 150 155 160
 Gln Gln Leu Asp Leu Asn Asn Cys Arg Lys Asn Leu Glu Pro Ile Tyr
 165 170 175
 Glu Gly Tyr Ile Ser Asn Leu Gln Lys Gln Leu Glu Met Leu Ser Gly
 180 185 190
 Asp Gly Val Arg Leu Asp Ser Glu Leu Arg Asn Met Gln Asp Leu Val
 195 200 205
 Glu Asp Tyr Lys Lys Arg Tyr Glu Val Glu Ile Asn Arg Arg Thr Ala
 210 215 220
 Ala Glu Asn Glu Phe Val Val Leu Lys Lys Asp Val Asp Ala Ala Tyr
 225 230 235 240
 Met Asn Lys Val Glu Leu Gln Ala Lys Val Asp Ser Leu Thr Asp Glu
 245 250 255
 Ile Lys Phe Phe Lys Cys Leu Tyr Glu Gly Glu Ile Thr Gln Ile Gln
 260 265 270
 Ser His Ile Ser Asp Thr Ser Ile Val Leu Ser Met Asp Asn Asn Arg
 275 280 285
 Asp Leu Asp Leu Asp Ser Ile Ile Ala Glu Val Arg Ala Gln Tyr Glu
 290 295 300
 Glu Ile Ala Leu Lys Ser Lys Ala Glu Ala Glu Thr Leu Tyr Gln Thr
 305 310 315 320
 Lys Ile Gln Glu Leu Gln Val Thr Ala Gly Gln His Gly Asp Asp Leu
 325 330 335
 Lys Leu Thr Lys Ala Glu Ile Ser Glu Leu Asn Arg Leu Ile Gln Arg
 340 345 350
 Ile Arg Ser Glu Ile Gly Asn Val Lys Lys Gln Cys Ala Asp Leu Glu
 355 360 365
 Thr Ala Ile Ala Asp Ala Glu Gln Arg Gly Asp Cys Ala Leu Lys Asp
 370 375 380
 Ala Arg Ala Lys Leu Asp Glu Leu Glu Gly Ala Leu His Gln Ala Lys
 385 390 395 400
 Glu Glu Leu Ala Arg Met Leu Arg Glu Tyr Gln Glu Leu Val Ser Leu
 405 410 415
 Lys Leu Ala Leu Asp Met Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu
 420 425 430
 Ser Glu Glu Cys Arg Met Ser Gly Glu Tyr Pro Asn Ser Val Ser Ile
 435 440 445
 Ser Val Ile Ser Ser Thr Asn Ala Gly Ala Gly Ala Gly Phe Ser
 450 455 460
 Met Gly Phe Gly Ala Ser Ser Ser Tyr Ser Tyr Lys Thr Ala Ala Ala
 465 470 475 480
 Asp Val Lys Thr Lys Gly Ser Cys Gly Ser Glu Leu Lys Asp Pro Leu
 485 490 495
 Ala Lys Thr Ser Gly Ser Ser Cys Ala Thr Lys Lys Ala Ser Arg
 500 505 510

<210> 461

<211> 540

Siemens 0022 Seq Listing.txt

<212> PRT

<213> Homo sapiens

<400> 461
 Met Ser Arg Gln Phe Thr Tyr Lys Ser Gly Ala Ala Ala Lys Gly Gly
 1 5 10 15
 Phe Ser Gly Cys Ser Ala Val Leu Ser Gly Gly Ser Ser Ser Tyr
 20 25 30
 Arg Ala Gly Gly Lys Gly Leu Ser Gly Gly Phe Ser Ser Arg Ser Leu
 35 40 45
 Tyr Ser Leu Gly Gly Ala Arg Ser Ile Ser Phe Asn Val Ala Ser Gly
 50 55 60
 Ser Gly Trp Ala Gly Gly Tyr Gly Phe Gly Arg Gly Arg Ala Ser Gly
 65 70 75 80
 Phe Ala Gly Ser Met Phe Gly Ser Val Ala Leu Gly Ser Val Cys Pro
 85 90 95
 Ser Leu Cys Pro Pro Gly Gly Ile His Gln Val Thr Ile Asn Lys Ser
 100 105 110
 Leu Leu Ala Pro Leu Asn Val Glu Leu Asp Pro Glu Ile Gln Lys Val
 115 120 125
 Arg Ala Gln Glu Arg Glu Gln Ile Lys Val Leu Asn Asn Lys Phe Ala
 130 135 140
 Ser Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn Gln Val Leu
 145 150 155 160
 Glu Thr Lys Trp Glu Leu Leu Gln Gln Leu Asp Leu Asn Asn Cys Lys
 165 170 175
 Asn Asn Leu Glu Pro Ile Leu Glu Gly Tyr Ile Ser Asn Leu Arg Lys
 180 185 190
 Gln Leu Glu Thr Leu Ser Gly Asp Arg Val Arg Leu Asp Ser Glu Leu
 195 200 205
 Arg Ser Val Arg Glu Val Val Glu Asp Tyr Lys Lys Arg Tyr Glu Glu
 210 215 220
 Glu Ile Asn Lys Arg Thr Thr Ala Glu Asn Glu Phe Val Val Leu Lys
 225 230 235 240
 Lys Asp Val Asp Ala Ala Tyr Thr Ser Lys Val Glu Leu Gln Ala Lys
 245 250 255
 Val Asp Ala Leu Asp Gly Glu Ile Lys Phe Phe Lys Cys Leu Tyr Glu
 260 265 270
 Gly Glu Thr Ala Gln Ile Gln Ser His Ile Ser Asp Thr Ser Ile Ile
 275 280 285
 Leu Ser Met Asp Asn Asn Arg Asn Leu Asp Leu Asp Ser Ile Ile Ala
 290 295 300
 Glu Val Arg Ala Gln Tyr Glu Glu Ile Ala Arg Lys Ser Lys Ala Glu
 305 310 315 320
 Ala Glu Ala Leu Tyr Gln Thr Lys Phe Gln Glu Leu Gln Leu Ala Ala
 325 330 335
 Gly Arg His Gly Asp Asp Leu Lys His Thr Lys Asn Glu Ile Ser Glu
 340 345 350
 Leu Thr Arg Leu Ile Gln Arg Leu Arg Ser Glu Ile Glu Ser Val Lys
 355 360 365
 Lys Gln Cys Ala Asn Leu Glu Thr Ala Ile Ala Asp Ala Glu Gln Arg
 370 375 380
 Gly Asp Cys Ala Leu Lys Asp Ala Arg Ala Lys Leu Asp Glu Leu Glu
 385 390 395 400
 Gly Ala Leu Gln Gln Ala Lys Glu Glu Leu Ala Arg Met Leu Arg Glu
 405 410 415
 Tyr Gln Glu Leu Leu Ser Val Lys Leu Ser Leu Asp Ile Glu Ile Ala
 420 425 430
 Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Cys Arg Met Ser Gly Glu

Siemens 0022 Seq Listing.txt
440 445

435		440		445											
Tyr	Thr	Asn	Ser	Val	Ser	Ile	Ser	Val	Ile	Asn	Ser	Ser	Met	Ala	Gly
450						455					460				
Met	Ala	Gly	Thr	Gly	Ala	Gly	Phe	Gly	Phe	Ser	Asn	Ala	Gly	Thr	Tyr
465					470					475					480
Gly	Tyr	Trp	Pro	Ser	Ser	Val	Ser	Gly	Gly	Tyr	Ser	Met	Leu	Pro	Gly
				485					490					495	
Gly	Cys	Val	Thr	Gly	Ser	Gly	Asn	Cys	Ser	Pro	Arg	Gly	Glu	Ala	Arg
				500				505					510		
Thr	Arg	Leu	Gly	Ser	Ala	Ser	Glu	Phe	Arg	Asp	Ser	Gln	Gly	Lys	Thr
					515			520				525			
Leu	Ala	Leu	Ser	Ser	Pro	Thr	Lys	Lys	Thr	Met	Arg				
					530			535			540				

<210> 462

<211> 645

<212> PRT

<213> Homo sapiens

<400> 462
 Met Ser Cys Gln Ile Ser Cys Lys Ser Arg Gly Arg Gly Gly Gly
 1 5 10 15
 Gly Gly Phe Arg Gly Phe Ser Ser Gly Ser Ala Val Val Ser Gly Gly
 20 25 30
 Ser Arg Arg Ser Thr Ser Ser Phe Ser Cys Leu Ser Arg His Gly Gly
 35 40 45
 Gly Gly Gly Phe Gly Gly Gly Phe Gly Ser Arg Ser Leu Val
 50 55 60
 Gly Leu Gly Gly Thr Lys Ser Ile Ser Ile Ser Val Ala Gly Gly Gly
 65 70 75 80
 Gly Gly Phe Gly Ala Ala Gly Gly Phe Gly Gly Arg Gly Gly Phe
 85 90 95
 Gly Gly Gly Ser Gly Phe Gly Gly Ser Gly Phe Gly Gly Ser
 100 105 110
 Gly Phe Ser Gly Gly Phe Gly Gly Gly Phe Gly Gly Arg Gly Arg
 115 120 125
 Phe Gly Phe Gly Gly Pro Gly Gly Val Gly Leu Gly Gly Pro
 130 135 140
 Gly Gly Phe Gly Pro Gly Gly Tyr Pro Gly Gly Ile His Glu Val Ser
 145 150 155 160
 Val Asn Gln Ser Leu Leu Gln Pro Leu Asn Val Lys Val Asp Pro Glu
 165 170 175
 Ile Gln Asn Val Lys Ala Gln Glu Arg Glu Gln Ile Lys Thr Leu Asn
 180 185 190
 Asn Lys Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln
 195 200 205
 Asn Gln Val Leu Gln Thr Lys Trp Glu Leu Leu Gln Gln Met Asn Val
 210 215 220
 Gly Thr Arg Pro Ile Asn Leu Glu Pro Ile Phe Gln Gly Tyr Ile Asp
 225 230 235 240
 Ser Leu Lys Arg Tyr Leu Asp Gly Leu Thr Ala Glu Arg Thr Ser Gln
 245 250 255
 Asn Ser Glu Leu Asn Asn Met Gln Asp Leu Val Glu Asp Tyr Lys Lys
 260 265 270
 Lys Tyr Glu Asp Glu Ile Asn Lys Arg Thr Ala Ala Glu Asn Asp Phe
 275 280 285
 Val Thr Leu Lys Lys Asp Val Asp Asn Ala Tyr Met Ile Lys Val Glu

Siemens 0022 Seq Listing.txt

290	295	300
Leu Gln Ser Lys Val Asp	Leu Leu Asn Gln Glu Ile Glu Phe Leu Lys	
305	310	315
Val Leu Tyr Asp Ala Glu Ile Ser Gln Ile His Gln Ser Val Thr Asp		320
325	330	335
Thr Asn Val Ile Leu Ser Met Asp Asn Ser Arg Asn Leu Asp Leu Asp		
340	345	350
Ser Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Glu Ile Ala Gln Arg		
355	360	365
Ser Lys Glu Glu Ala Glu Ala Leu Tyr His Ser Lys Tyr Glu Glu Leu		
370	375	380
Gln Val Thr Val Gly Arg His Gly Asp Ser Leu Lys Glu Ile Lys Ile		
385	390	395
Glu Ile Ser Glu Leu Asn Arg Val Ile Gln Arg Leu Gln Gly Glu Ile		400
405	410	415
Ala His Val Lys Lys Gln Cys Lys Asn Val Gln Asp Ala Ile Ala Asp		
420	425	430
Ala Glu Gln Arg Gly Glu His Ala Leu Lys Asp Ala Arg Asn Lys Leu		
435	440	445
Asn Asp Leu Glu Glu Ala Leu Gln Gln Ala Lys Glu Asp Leu Ala Arg		
450	455	460
Leu Leu Arg Asp Tyr Gln Glu Leu Met Asn Val Lys Leu Ala Leu Asp		
465	470	475
Val Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Cys Arg		
485	490	495
Met Ser Gly Asp Leu Ser Ser Asn Val Thr Val Ser Val Thr Ser Ser		
500	505	510
Thr Ile Ser Ser Asn Val Ala Ser Lys Ala Ala Phe Gly Gly Ser Gly		
515	520	525
Gly Arg Gly Ser Ser Ser Gly Gly Gly Tyr Ser Ser Gly Ser Ser Ser		
530	535	540
Tyr Gly Ser Gly Gly Arg Gln Ser Gly Ser Arg Gly Gly Ser Gly Gly		
545	550	555
Gly Gly Ser Ile Ser Gly Gly Gly Tyr Gly Ser Gly Gly Ser Gly		
565	570	575
Gly Arg Tyr Gly Ser Gly Gly Ser Lys Gly Gly Ser Ile Ser Gly		
580	585	590
Gly Gly Tyr Gly Ser Gly Gly Lys His Ser Ser Gly Gly Ser Gly		
595	600	605
Arg Gly Gly Ser Ser Ser Gly Gly Gly Tyr Gly Ser Gly Gly Gly		
610	615	620
Ser Ser Ser Val Lys Gly Ser Ser Gly Glu Ala Phe Gly Ser Ser Val		
625	630	635
Thr Phe Ser Phe Arg		640
	645	

<210> 463

<211> 644

<212> PRT

<213> Homo sapiens

<400> 463

Met Ser Arg Gln Phe Ser Ser Arg Ser Gly Tyr Arg Ser Gly Gly Gly		
1	5	10
Phe Ser Ser Gly Ser Ala Gly Ile Ile Asn Tyr Gln Arg Arg Thr Thr		
20	25	30
Ser Ser Ser Thr Arg Arg Ser Gly Gly Gly Arg Phe Ser Ser		

Siemens 0022 Seq Listing.txt

Cys	Gly	Gly	Gly	Gly	Gly	Ser	Phe	Gly	Ala	Gly	Gly	Gly	Phe	Gly	Ser
35						40									45
50						55									60
Arg	Ser	Leu	Val	Asn	Leu	Gly	Gly	Ser	Lys	Ser	Ile	Ser	Ile	Ser	Val
65						70					75				80
Ala	Arg	Gly	Gly	Gly	Arg	Gly	Ser	Gly	Phe	Gly	Gly	Tyr	Gly	Gly	
						85				90				95	
Gly	Gly	Phe	Gly	Gly	Gly	Gly	Phe	Gly	Gly	Gly	Phe	Gly	Gly	Gly	
						100				105				110	
Gly	Ile	Gly	Gly	Gly	Gly	Phe	Gly	Gly	Phe	Gly	Ser	Gly	Gly	Gly	
						115				120				125	
Phe	Gly	Gly	Gly	Phe	Gly	Gly	Gly	Phe	Gly	Gly	Tyr	Gly	Gly	Tyr	Gly
						130				135				140	
Pro	Val	Cys	Pro	Pro	Gly	Gly	Ile	Gln	Glu	Val	Thr	Ile	Asn	Gln	Ser
145						150				155					160
Leu	Leu	Gln	Pro	Leu	Asn	Val	Glu	Ile	Asp	Pro	Glu	Ile	Gln	Lys	Val
						165				170					175
Lys	Ser	Arg	Glu	Arg	Glu	Gln	Ile	Lys	Ser	Leu	Asn	Asn	Gln	Phe	Ala
						180				185					190
Ser	Phe	Ile	Asp	Lys	Val	Arg	Phe	Leu	Glu	Gln	Gln	Asn	Gln	Val	Leu
						195				200					205
Gln	Thr	Lys	Trp	Glu	Leu	Leu	Gln	Gln	Val	Asp	Thr	Ser	Thr	Arg	Thr
						210				215					220
His	Asn	Leu	Glu	Pro	Tyr	Phe	Glu	Ser	Phe	Ile	Asn	Asn	Leu	Arg	Arg
225						230				235					240
Arg	Val	Asp	Gln	Leu	Lys	Ser	Asp	Gln	Ser	Arg	Leu	Asp	Ser	Glu	Leu
						245				250					255
Lys	Asn	Met	Gln	Asp	Met	Val	Glu	Asp	Tyr	Arg	Asn	Lys	Tyr	Glu	Asp
						260				265					270
Glu	Ile	Asn	Lys	Arg	Thr	Asn	Ala	Glu	Asn	Glu	Phe	Val	Thr	Ile	Lys
						275				280					285
Lys	Asp	Val	Asp	Gly	Ala	Tyr	Met	Thr	Lys	Val	Asp	Leu	Gln	Ala	Lys
						290				295					300
Leu	Asp	Asn	Leu	Gln	Gln	Glu	Ile	Asp	Phe	Leu	Thr	Ala	Leu	Tyr	Gln
305						310				315					320
Ala	Glu	Leu	Ser	Gln	Met	Gln	Thr	Gln	Ile	Ser	Glu	Thr	Asn	Val	Ile
						325				330					335
Leu	Ser	Met	Asp	Asn	Asn	Arg	Ser	Leu	Asp	Leu	Asp	Ser	Ile	Ile	Ala
						340				345					350
Glu	Val	Lys	Ala	Gln	Tyr	Glu	Asp	Ile	Ala	Gln	Lys	Ser	Lys	Ala	Glu
						355				360					365
Ala	Glu	Ser	Leu	Tyr	Gln	Ser	Lys	Tyr	Glu	Glu	Leu	Gln	Ile	Thr	Ala
						370				375					380
Gly	Arg	His	Gly	Asp	Ser	Val	Arg	Asn	Ser	Lys	Ile	Glu	Ile	Ser	Glu
385						390				395					400
Leu	Asn	Arg	Val	Ile	Gln	Arg	Leu	Arg	Ser	Glu	Ile	Asp	Asn	Val	Lys
						405				410					415
Lys	Gln	Ile	Ser	Asn	Leu	Gln	Gln	Ser	Ile	Ser	Asp	Ala	Glu	Gln	Arg
						420				425					430
Gly	Glu	Asn	Ala	Leu	Lys	Asp	Ala	Lys	Asn	Lys	Leu	Asn	Asp	Leu	Glu
						435				440					445
Asp	Ala	Leu	Gln	Gln	Ala	Lys	Glu	Asp	Leu	Ala	Arg	Leu	Leu	Arg	Asp
						450				455					460
Tyr	Gln	Glu	Leu	Met	Asn	Thr	Lys	Leu	Ala	Leu	Asp	Leu	Glu	Ile	Ala
465						470				475					480
Thr	Tyr	Arg	Thr	Leu	Leu	Glu	Gly	Glu	Glu	Ser	Arg	Met	Ser	Gly	Glu
						485				490					495
Cys	Ala	Pro	Asn	Val	Ser	Val	Ser	Val	Ser	Thr	Ser	His	Thr	Thr	Ile
						500				505					510
Ser	Gly	Gly	Ser	Arg	Gly	Gly	Gly	Gly	Gly	Tyr	Gly	Ser	Gly		
						515				520					525
Gly	Ser	Ser	Tyr	Gly	Ser	Gly	Gly	Ser	Tyr	Gly	Ser	Gly	Gly	Gly	
						530				535					540

Siemens 0022 Seq Listing.txt

Gly Gly Gly Arg Gly Ser Tyr Gly Ser Gly Gly Ser Ser Tyr Gly
 545 550 555 560
 Ser Gly Gly Ser Tyr Gly Ser Gly Gly Gly Gly His Gly
 565 570 575
 Ser Tyr Gly Ser Gly Ser Ser Gly Gly Tyr Arg Gly Gly Ser Gly
 580 585 590
 Gly Gly Gly Gly Ser Ser Gly Gly Arg Gly Ser Gly Gly Ser
 595 600 605
 Ser Gly Gly Ser Ile Gly Gly Arg Gly Ser Ser Ser Gly Gly Val Lys
 610 615 620
 Ser Ser Gly Gly Ser Ser Val Arg Phe Val Ser Thr Thr Tyr Ser
 625 630 635 640
 Gly Val Thr Arg

<210> 464

<211> 629

<212> PRT

<213> Homo sapiens

<400> 464
 Met Ser Arg Gln Ala Ser Lys Thr Ser Gly Gly Gly Ser Gln Gly Phe
 1 5 10 15
 Ser Gly Arg Ser Ala Val Val Ser Gly Ser Ser Arg Met Ser Cys Val
 20 25 30
 Ala His Ser Gly Gly Ala Gly Gly Ala Tyr Gly Phe Arg Ser Gly
 35 40 45
 Ala Gly Gly Phe Gly Ser Arg Ser Leu Tyr Asn Leu Gly Gly Asn Lys
 50 55 60
 Ser Ile Ser Ile Ser Val Ala Ala Gly Gly Ser Arg Ala Gly Gly Phe
 65 70 75 80
 Gly Gly Gly Arg Ser Ser Cys Ala Phe Ala Gly Gly Tyr Gly Gly
 85 90 95
 Phe Gly Ser Gly Tyr Gly Gly Phe Gly Gly Gly Phe Gly Gly
 100 105 110
 Arg Gly Met Gly Gly Gly Phe Gly Gly Ala Gly Gly Phe Gly Gly Ala
 115 120 125
 Gly Gly Phe Gly Gly Ala Gly Gly Phe Gly Gly Pro Gly Gly Phe Gly
 130 135 140
 Gly Ser Gly Gly Phe Gly Gly Pro Gly Ser Leu Gly Ser Pro Gly Gly
 145 150 155 160
 Phe Ala Pro Gly Gly Phe Pro Gly Gly Ile Gln Glu Val Thr Thr Asn
 165 170 175
 Gln Ser Leu Leu Gln Pro Leu Lys Val Glu Thr Asp Pro Gln Ile Gly
 180 185 190
 Gln Val Lys Ala Gln Glu Arg Glu Gln Ile Lys Thr Leu Asn Asn Lys
 195 200 205
 Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn Lys
 210 215 220
 Val Leu Glu Thr Lys Trp Asn Leu Leu Gln Gln Gly Thr Ser Ser
 225 230 235 240
 Ile Ser Gly Thr Asn Asn Leu Glu Pro Leu Phe Glu Asn His Ile Asn
 245 250 255
 Tyr Leu Arg Ser Tyr Leu Asp Asn Ile Leu Gly Glu Arg Gly Arg Leu
 260 265 270
 Asp Ser Glu Leu Lys Asn Met Glu Asp Leu Val Glu Asp Phe Lys Lys
 275 280 285

Siemens 0022 Seq Listing.txt

Lys Tyr Glu Asp Glu Ile Asn Lys Arg Thr Ala Ala Glu Asn Glu Phe
 290 295 300
 Val Thr Leu Lys Lys Asp Val Asp Ser Ala Tyr Met Asn Lys Val Glu
 305 310 315 320
 Leu Gln Ala Lys Val Asp Ala Leu Ile Asp Glu Ile Asp Phe Leu Arg
 325 330 335
 Thr Leu Tyr Asp Ala Glu Leu Ser Gln Met Gln Ser His Ile Ser Asp
 340 345 350
 Thr Ser Val Val Leu Ser Met Asp Asn Asn Arg Ser Leu Asp Leu Asp
 355 360 365
 Ser Ile Ile Ala Glu Val Gly Ala Gln Tyr Glu Asp Ile Ala Gln Arg
 370 375 380
 Ser Lys Ala Glu Ala Glu Ala Leu Tyr Gln Thr Lys Leu Gly Glu Leu
 385 390 395 400
 Gln Thr Thr Ala Gly Arg His Gly Asp Asp Leu Arg Asn Thr Lys Ser
 405 410 415
 Glu Ile Ile Glu Leu Asn Arg Met Ile Gln Arg Leu Arg Ala Glu Ile
 420 425 430
 Glu Gly Val Lys Lys Gln Asn Ala Asn Leu Gln Thr Ala Ile Ala Gln
 435 440 445
 Ala Glu Gln His Gly Glu Met Ala Leu Lys Asp Ala Asn Ala Lys Leu
 450 455 460
 Gln Glu Leu Gln Ala Ala Leu Gln Gln Ala Lys Asp Asp Leu Ala Arg
 465 470 475 480
 Leu Leu Arg Asp Tyr Gln Glu Leu Met Asn Val Lys Leu Ala Leu Asp
 485 490 495
 Val Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Tyr Ser
 500 505 510
 Arg Met Ser Gly Glu Cys Pro Ser Ala Val Ser Ile Ser Val Val Ser
 515 520 525
 Ser Ser Thr Thr Ser Ala Ser Ala Gly Gly Tyr Gly Gly Gly Tyr Gly
 530 535 540
 Gly Gly Met Gly Gly Gly Leu Gly Gly Gly Phe Ser Ala Gly Gly Gly
 545 550 555 560
 Ser Gly Ile Gly Phe Gly Arg Gly Gly Gly Gly Ile Gly Gly Gly
 565 570 575
 Phe Gly Gly Thr Ser Gly Phe Ser Gly Gly Ser Gly Phe Gly Ser
 580 585 590
 Ile Ser Gly Ala Arg Tyr Gly Val Ser Gly Gly Gly Phe Ser Ser Ala
 595 600 605
 Ser Asn Arg Gly Gly Ser Ile Lys Phe Ser Gln Ser Ser Gln Ser Ser
 610 615 620
 Gln Arg Tyr Ser Arg
 625

<210> 465

<211> 534

<212> PRT

<213> Homo sapiens

<400> 465
 Met Ile Ala Arg Gln Gln Cys Val Arg Gly Gly Pro Arg Gly Phe Ser
 1 5 10 15
 Cys Gly Ser Ala Ile Val Gly Gly Lys Arg Gly Ala Phe Ser Ser
 20 25 30
 Val Ser Met Ser Gly Gly Ala Gly Arg Cys Ser Ser Gly Gly Phe Gly
 35 40 45

Siemens 0022 Seq Listing.txt

Ser Arg Ser Leu Tyr Asn Leu Arg Gly Asn Lys Ser Ile Ser Met Ser
 50 55 60
 val Ala Gly Ser Arg Gln Gly Ala Cys Phe Gly Gly Ala Gly Gly Phe
 65 70 75 80
 Gly Thr Gly Gly Phe Gly Ala Gly Gly Phe Gly Ala Gly Phe Gly Thr
 85 90 95
 Gly Gly Phe Gly Gly Phe Gly Gly Ser Phe Ser Gly Lys Gly Gly
 100 105 110
 Pro Gly Phe Pro Val Cys Pro Ala Gly Gly Ile Gln Glu Val Thr Ile
 115 120 125
 Asn Gln Ser Leu Leu Thr Pro Leu His Val Glu Ile Asp Pro Glu Ile
 130 135 140
 Gln Lys Val Arg Thr Glu Glu Arg Glu Gln Ile Lys Leu Leu Asn Asn
 145 150 155 160
 Lys Phe Ala Ser Phe Ile Asp Lys Val Gln Phe Leu Glu Gln Gln Asn
 165 170 175
 Lys Val Leu Glu Thr Lys Trp Asn Leu Leu Gln Gln Gln Thr Thr Thr
 180 185 190
 Thr Ser Ser Lys Asn Leu Glu Pro Leu Phe Glu Thr Tyr Leu Ser Val
 195 200 205
 Leu Arg Lys Gln Leu Asp Thr Leu Gly Asn Asp Lys Gly Arg Leu Gln
 210 215 220
 Ser Glu Leu Lys Thr Met Gln Asp Ser Val Glu Asp Phe Lys Thr Lys
 225 230 235 240
 Tyr Glu Glu Glu Ile Asn Lys Arg Thr Ala Ala Glu Asn Asp Phe Val
 245 250 255
 Val Leu Lys Lys Asp Val Asp Ala Ala Tyr Leu Asn Lys Val Glu Leu
 260 265 270
 Glu Ala Lys Val Asp Ser Leu Asn Asp Glu Ile Asn Phe Leu Lys Val
 275 280 285
 Leu Tyr Asp Ala Glu Leu Ser Gln Met Gln Thr His Val Ser Asp Thr
 290 295 300
 Ser Val Val Leu Ser Met Asp Asn Asn Arg Asn Leu Asp Leu Asp Ser
 305 310 315 320
 Ile Ile Ala Glu Val Arg Ala Gln Tyr Glu Glu Ile Ala Gln Arg Ser
 325 330 335
 Lys Ala Glu Ala Glu Ala Leu Tyr Gln Thr Lys Val Gln Gln Leu Gln
 340 345 350
 Ile Ser Val Asp Gln His Gly Asp Asn Leu Lys Asn Thr Lys Ser Glu
 355 360 365
 Ile Ala Glu Leu Asn Arg Met Ile Gln Arg Leu Arg Ala Glu Ile Glu
 370 375 380
 Asn Ile Lys Lys Gln Cys Gln Thr Leu Gln Val Ser Val Ala Asp Ala
 385 390 395 400
 Glu Gln Arg Gly Glu Asn Ala Leu Lys Asp Ala His Ser Lys Arg Val
 405 410 415
 Glu Leu Glu Ala Ala Leu Gln Gln Ala Lys Glu Glu Leu Ala Arg Met
 420 425 430
 Leu Arg Glu Tyr Gln Glu Leu Met Ser Val Lys Leu Ala Leu Asp Ile
 435 440 445
 Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Tyr Arg Met
 450 455 460
 Ser Gly Glu Cys Gln Ser Ala Val Ser Ile Ser Val Val Ser Gly Ser
 465 470 475 480
 Thr Ser Thr Gly Gly Ile Ser Gly Gly Leu Gly Ser Gly Ser Gly Phe
 485 490 495
 Gly Leu Ser Ser Gly Phe Gly Ser Gly Ser Gly Ser Gly Phe Gly Phe
 500 505 510
 Gly Gly Ser Val Ser Gly Ser Ser Ser Lys Ile Ile Ser Thr Thr
 515 520 525
 Thr Leu Asn Lys Arg Arg
 530

Siemens 0022 Seq Listing.txt

<210> 466

<211> 483

<212> PRT

<213> Homo sapiens

<400> 466

Met Ser Ile Arg Val Thr Gln Lys Ser Tyr Lys Val Ser Thr Ser Gly
1 5 10 15
Pro Arg Ala Phe Ser Ser Arg Ser Tyr Thr Ser Gly Pro Gly Ser Arg
20 25 30
Ile Ser Ser Ser Phe Ser Arg Val Gly Ser Ser Asn Phe Arg Gly
35 40 45
Gly Leu Gly Gly Tyr Gly Ala Ser Gly Met Gly Gly Ile Thr
50 55 60
Ala Val Thr Val Asn Gln Ser Leu Leu Ser Pro Leu Val Leu Glu Val
65 70 75 80
Asp Pro Asn Ile Gln Ala Val Arg Thr Gln Glu Lys Glu Gln Ile Lys
85 90 95
Thr Leu Asn Asn Lys Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu
100 105 110
Glu Gln Gln Asn Lys Met Leu Glu Thr Lys Trp Ser Leu Leu Gln Gln
115 120 125
Gln Lys Thr Ala Arg Ser Asn Met Asp Asn Met Phe Glu Ser Tyr Ile
130 135 140
Asn Asn Leu Arg Arg Gln Leu Glu Thr Leu Gly Gln Glu Lys Leu Lys
145 150 155 160
Leu Glu Ala Glu Leu Gly Asn Met Gln Gly Leu Val Glu Asp Phe Lys
165 170 175
Asn Lys Tyr Glu Asp Glu Ile Asn Lys Arg Thr Glu Met Glu Asn Glu
180 185 190
Phe Val Leu Ile Lys Lys Asp Val Asp Glu Ala Tyr Met Asn Lys Val
195 200 205
Glu Leu Glu Ser Arg Leu Glu Gly Leu Thr Asp Glu Ile Asn Phe Leu
210 215 220
Arg Gln Leu Tyr Glu Glu Glu Ile Arg Glu Leu Gln Ser Gln Ile Ser
225 230 235 240
Asp Thr Ser Val Val Leu Ser Met Asp Asn Ser Arg Ser Leu Asp Met
245 250 255
Asp Ser Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Asp Ile Ala Asn
260 265 270
Arg Ser Arg Ala Glu Ala Glu Ser Met Tyr Gln Ile Lys Tyr Glu Glu
275 280 285
Leu Gln Ser Leu Ala Gly Lys His Gly Asp Asp Leu Arg Arg Thr Lys
290 295 300
Thr Glu Ile Ser Glu Met Asn Arg Asn Ile Ser Arg Leu Gln Ala Glu
305 310 315 320
Ile Glu Gly Leu Lys Gly Gln Arg Ala Ser Leu Glu Ala Ala Ile Ala
325 330 335
Asp Ala Glu Gln Arg Gly Glu Leu Ala Ile Lys Asp Ala Asn Ala Lys
340 345 350
Leu Ser Glu Leu Glu Ala Ala Leu Gln Arg Ala Lys Gln Asp Met Ala
355 360 365
Arg Gln Leu Arg Glu Tyr Gln Glu Leu Met Asn Val Lys Leu Ala Leu
370 375 380
Asp Ile Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Ser
385 390 395 400
Arg Leu Glu Ser Gly Met Gln Asn Met Ser Ile His Thr Lys Thr Thr

Siemens 0022 Seq Listing.txt

	405	410	415												
Ser	Gly	Tyr	Ala	Gly	Gly	Leu	Ser	Ser	Ala	Tyr	Gly	Gly	Leu	Thr	Ser
			420		425									430	
Pro	Gly	Leu	Ser	Tyr	Ser	Leu	Gly	Ser	Ser	Phe	Gly	Ser	Gly	Ala	Gly
			435		440									445	
Ser	Ser	Ser	Phe	Ser	Arg	Thr	Ser	Ser	Ser	Arg	Ala	Val	Val	Val	Lys
			450		455							460			
Lys	Ile	Glu	Thr	Arg	Asp	Gly	Lys	Leu	Val	Ser	Glu	Ser	Ser	Asp	Val
			465		470						475				480
Leu	Pro	Lys													

<210> 467

<211> 430

<212> PRT

<213> Homo sapiens

<400> 467

Met	Ser	Phe	Thr	Thr	Arg	Ser	Thr	Phe	Ser	Thr	Asn	Tyr	Arg	Ser	Leu
1					5				10				15		
Gly	Ser	Val	Gln	Ala	Pro	Ser	Tyr	Gly	Ala	Arg	Pro	Val	Ser	Ser	Ala
								20	25				30		
Ala	Ser	Val	Tyr	Ala	Gly	Ala	Gly	Gly	Ser	Gly	Ser	Arg	Ile	Ser	Val
								35	40			45			
Ser	Arg	Ser	Thr	Ser	Phe	Arg	Gly	Gly	Met	Gly	Ser	Gly	Gly	Leu	Ala
								50	55			60			
Thr	Gly	Ile	Ala	Gly	Gly	Leu	Ala	Gly	Met	Gly	Gly	Ile	Gln	Asn	Glu
								65	70			75		80	
Lys	Glu	Thr	Met	Gln	Ser	Leu	Asn	Asp	Arg	Leu	Ala	Ser	Tyr	Leu	Asp
								85	90				95		
Arg	Val	Arg	Ser	Leu	Glu	Thr	Glu	Asn	Arg	Arg	Leu	Glu	Ser	Lys	Ile
								100	105			110			
Arg	Glu	His	Leu	Glu	Lys	Lys	Gly	Pro	Gln	Val	Arg	Asp	Trp	Ser	His
								115	120			125			
Tyr	Phe	Lys	Ile	Ile	Glu	Asp	Leu	Arg	Ala	Gln	Ile	Phe	Ala	Asn	Thr
								130	135			140			
Val	Asp	Asn	Ala	Arg	Ile	Val	Leu	Gln	Ile	Asp	Asn	Ala	Arg	Leu	Ala
								145	150			155		160	
Ala	Asp	Asp	Phe	Arg	Val	Lys	Tyr	Glu	Thr	Glu	Leu	Ala	Met	Arg	Gln
								165	170			175			
Ser	Val	Glu	Asn	Asp	Ile	His	Gly	Leu	Arg	Lys	Val	Ile	Asp	Asp	Thr
								180	185			190			
Asn	Ile	Thr	Arg	Leu	Gln	Leu	Glu	Thr	Glu	Ile	Glu	Ala	Leu	Lys	Glu
								195	200			205			
Glu	Leu	Leu	Phe	Met	Lys	Lys	Asn	His	Glu	Glu	Glu	Val	Lys	Gly	Leu
								210	215			220			
Gln	Ala	Gln	Ile	Ala	Ser	Ser	Gly	Leu	Thr	Val	Glu	Val	Asp	Ala	Pro
								225	230			235		240	
Lys	Ser	Gln	Asp	Leu	Ala	Lys	Ile	Met	Ala	Asp	Ile	Arg	Ala	Gln	Tyr
								245	250			255			
Asp	Glu	Leu	Ala	Arg	Lys	Asn	Arg	Glu	Glu	Leu	Asp	Lys	Tyr	Trp	Ser
								260	265			270			
Gln	Gln	Ile	Glu	Glu	Ser	Thr	Thr	Val	Val	Thr	Thr	Gln	Ser	Ala	Glu
								275	280			285			
Val	Gly	Ala	Ala	Glu	Thr	Thr	Leu	Thr	Glu	Leu	Arg	Arg	Thr	Val	Gln
								290	295			300			
Ser	Leu	Glu	Ile	Asp	Leu	Asp	Ser	Met	Arg	Asn	Leu	Lys	Ala	Ser	Leu

Siemens 0022 Seq Listing.txt

305	310	315	320												
Glu	Asn	Ser	Leu	Arg	Glu	Val	Glu	Ala	Arg	Tyr	Ala	Leu	Gln	Met	Glu
325					330									335	
Gln	Leu	Asn	Gly	Ile	Leu	Leu	His	Leu	Glu	Ser	Glu	Leu	Ala	Gln	Thr
340					345									350	
Arg	Ala	Glu	Gly	Gln	Arg	Gln	Ala	Gln	Glu	Tyr	Glu	Ala	Leu	Leu	Asn
355					360									365	
Ile	Lys	Val	Lys	Leu	Glu	Ala	Glu	Ile	Ala	Thr	Tyr	Arg	Arg	Leu	Leu
370					375									380	
Glu	Asp	Gly	Glu	Asp	Phe	Asn	Leu	Gly	Asp	Ala	Leu	Asp	Ser	Ser	Asn
385					390									395	
Ser	Met	Gln	Thr	Ile	Gln	Lys	Thr	Thr	Arg	Arg	Ile	Val	Asp	Gly	
														400	
														405	
Lys	Val	Val	Ser	Glu	Thr	Asn	Asp	Thr	Lys	Val	Leu	Arg	His		
														415	
														420	
														425	
														430	

<210> 468

<211> 392

<212> PRT

<213> Homo sapiens

<400> 468

1	5	10	15												
Trp	Gly	His	Leu	Asp	Ala	Gln	Pro	Ala	Glu	Arg	Gly	Gly	Gln	Glu	Leu
20							25							30	
Arg	Lys	Glu	Ala	Glu	Ala	Phe	Leu	Glu	Lys	Tyr	Gly	Tyr	Leu	Asn	Glu
35							40							45	
Gln	Val	Pro	Lys	Ala	Pro	Thr	Ser	Thr	Arg	Phe	Ser	Asp	Ala	Ile	Arg
50							55							60	
Ala	Phe	Gln	Trp	Val	Ser	Gln	Leu	Pro	Val	Ser	Gly	Val	Leu	Asp	Arg
65							70							80	
Ala	Thr	Leu	Arg	Gln	Met	Thr	Arg	Pro	Arg	Cys	Gly	Val	Thr	Asp	Thr
85							90							95	
Asn	Ser	Tyr	Ala	Ala	Trp	Ala	Glu	Arg	Ile	Ser	Asp	Leu	Phe	Ala	Arg
100							105							110	
His	Arg	Thr	Lys	Met	Arg	Arg	Lys	Lys	Arg	Phe	Ala	Lys	Gln	Gly	Asn
115							120							125	
Lys	Trp	Tyr	Lys	Gln	His	Leu	Ser	Tyr	Arg	Leu	Val	Asn	Trp	Pro	Glu
130							135							140	
His	Leu	Pro	Glu	Pro	Ala	Val	Arg	Gly	Ala	Val	Arg	Ala	Ala	Phe	Gln
145							150							160	
Leu	Trp	Ser	Asn	Val	Ser	Ala	Leu	Glu	Phe	Trp	Glu	Ala	Pro	Ala	Thr
165							170							175	
Gly	Pro	Ala	Asp	Ile	Arg	Leu	Thr	Phe	Phe	Gln	Gly	Asp	His	Asn	Asp
180							185							190	
Gly	Leu	Gly	Asn	Ala	Phe	Asp	Gly	Pro	Gly	Gly	Ala	Leu	Ala	His	Ala
195							200							205	
Phe	Leu	Pro	Arg	Arg	Gly	Glu	Ala	His	Phe	Asp	Gln	Asp	Glu	Arg	Trp
210							215							220	
Ser	Leu	Ser	Arg	Arg	Gly	Arg	Asn	Leu	Phe	Val	Val	Leu	Ala	His	
225							230							235	
Glu	Ile	Gly	His	Thr	Leu	Gly	Leu	Thr	His	Ser	Pro	Ala	Pro	Arg	Ala
245							250							255	
Leu	Met	Ala	Pro	Tyr	Tyr	Lys	Arg	Leu	Gly	Arg	Asp	Ala	Leu	Leu	Ser
260							265							270	
Trp	Asp	Asp	Val	Leu	Ala	Val	Gln	Ser	Leu	Tyr	Gly	Lys	Pro	Leu	Gly

Siemens 0022 Seq Listing.txt

275																
Gly	Ser	Val	Ala	Val	Gln	Leu	Pro	Gly	Lys	Leu	Phe	Thr	Asp	Phe	Glu	
290			295			300										
Thr	Trp	Asp	Ser	Tyr	Ser	Pro	Gln	Gly	Arg	Arg	Pro	Glu	Thr	Gln	Gly	
305			310			315			320							
Pro	Lys	Tyr	Cys	His	Ser	Ser	Phe	Asp	Ala	Ile	Thr	Val	Asp	Arg	Gln	
															335	
Gln	Gln	Leu	Tyr	Ile	Phe	Lys	Gly	Ser	His	Phe	Trp	Glu	Val	Ala	Ala	
															350	
340			345													
Asp	Gly	Asn	Val	Ser	Glu	Pro	Arg	Pro	Leu	Gln	Glu	Arg	Trp	Val	Gly	
															365	
355			360													
Leu	Pro	Pro	Asn	Ile	Glu	Ala	Ala	Ala	Ala	val	Ser	Leu	Asn	Asp	Gly	Asp
															380	
370			375													
Phe	Tyr	Phe	Phe	Lys	Val	Gln	Ser									
385			390													

<210> 469

<211> 851

<212> PRT

<213> Homo sapiens

<400> 469

Met	Ala	Gln	Trp	Glu	Met	Leu	Gln	Asn	Leu	Asp	Ser	Pro	Phe	Gln	Asp
1					5				10					15	
Gln	Leu	His	Gln	Leu	Tyr	Ser	His	Ser	Leu	Leu	Pro	Val	Asp	Ile	Arg
					20				25					30	
Gln	Tyr	Leu	Ala	Val	Trp	Ile	Glu	Asp	Gln	Asn	Trp	Gln	Glu	Ala	Ala
					35				40					45	
Leu	Gly	Ser	Asp	Asp	Ser	Lys	Ala	Thr	Met	Leu	Phe	Phe	His	Phe	Leu
					50				55					60	
Asp	Gln	Leu	Asn	Tyr	Glu	Cys	Gly	Arg	Cys	Ser	Gln	Asp	Pro	Glu	Ser
					65				70					75	80
Leu	Leu	Leu	Gln	His	Asn	Leu	Arg	Lys	Phe	Cys	Arg	Asp	Ile	Gln	Pro
					85				90					95	
Phe	Ser	Gln	Asp	Pro	Thr	Gln	Leu	Ala	Glu	Met	Ile	Phe	Asn	Leu	Leu
					100				105					110	
Leu	Glu	Glu	Lys	Arg	Ile	Leu	Ile	Gln	Ala	Gln	Arg	Ala	Gln	Leu	Glu
					115				120					125	
Gln	Gly	Glu	Pro	Val	Leu	Glu	Thr	Pro	Val	Glu	Ser	Gln	Gln	His	Glu
					130				135					140	
Ile	Glu	Ser	Arg	Ile	Leu	Asp	Leu	Arg	Ala	Met	Met	Glu	Lys	Leu	Val
					145				150					155	160
Lys	Ser	Ile	Ser	Gln	Leu	Lys	Asp	Gln	Gln	Asp	Val	Phe	Cys	Phe	Arg
					165				170					175	
Tyr	Lys	Ile	Gln	Ala	Lys	Gly	Lys	Thr	Pro	Ser	Leu	Asp	Pro	His	Gln
					180				185					190	
Thr	Lys	Glu	Gln	Lys	Ile	Leu	Gln	Glu	Thr	Leu	Asn	Glu	Leu	Asp	Lys
					195				200					205	
Arg	Arg	Lys	Glu	Val	Leu	Asp	Ala	Ser	Lys	Ala	Leu	Leu	Gly	Arg	Leu
					210				215					220	
Thr	Thr	Leu	Ile	Glu	Leu	Leu	Leu	Pro	Lys	Leu	Glu	Glu	Trp	Lys	Ala
					225				230					235	240
Gln	Gln	Gln	Lys	Ala	Cys	Ile	Arg	Ala	Pro	Ile	Asp	His	Gly	Leu	Glu
					245				250					255	
Gln	Leu	Glu	Thr	Trp	Phe	Thr	Ala	Gly	Ala	Lys	Leu	Leu	Phe	His	Leu
					260				265					270	
Arg	Gln	Leu	Leu	Lys	Glu	Leu	Lys	Gly	Leu	Ser	Cys	Leu	Val	Ser	Tyr

Siemens 0022 Seq Listing.txt

275
 Gln Asp Asp Pro Leu Thr Lys Gly Val Asp Leu Arg Asn Ala Gln Val
 290 295 300
 Thr Glu Leu Leu Gln Arg Leu Leu His Arg Ala Phe Val Val Glu Thr
 305 310 315 320
 Gln Pro Cys Met Pro Gln Thr Pro His Arg Pro Leu Ile Leu Lys Thr
 325 330 335
 Gly Ser Lys Phe Thr Val Arg Thr Arg Leu Leu Val Arg Leu Gln Glu
 340 345 350
 Gly Asn Glu Ser Leu Thr Val Glu Val Ser Ile Asp Arg Asn Pro Pro
 355 360 365
 Gln Leu Gln Gly Phe Arg Lys Phe Asn Ile Leu Thr Ser Asn Gln Lys
 370 375 380
 Thr Leu Thr Pro Glu Lys Gly Gln Ser Gln Gly Leu Ile Trp Asp Phe
 385 390 395 400
 Gly Tyr Leu Thr Leu Val Glu Gln Arg Ser Gly Gly Ser Gly Lys Gly
 405 410 415
 Ser Asn Lys Gly Pro Leu Gly Val Thr Glu Glu Leu His Ile Ile Ser
 420 425 430
 Phe Thr Val Lys Tyr Thr Tyr Gln Gly Leu Lys Gln Glu Leu Lys Thr
 435 440 445
 Asp Thr Leu Pro Val Val Ile Ile Ser Asn Met Asn Gln Leu Ser Ile
 450 455 460
 Ala Trp Ala Ser Val Leu Trp Phe Asn Leu Leu Ser Pro Asn Leu Gln
 465 470 475 480
 Asn Gln Gln Phe Phe Ser Asn Pro Pro Lys Ala Pro Trp Ser Leu Leu
 485 490 495
 Gly Pro Ala Leu Ser Trp Gln Phe Ser Ser Tyr Val Gly Arg Gly Leu
 500 505 510
 Asn Ser Asp Gln Leu Ser Met Leu Arg Asn Lys Leu Phe Gly Gln Asn
 515 520 525
 Cys Arg Thr Glu Asp Pro Leu Leu Ser Trp Ala Asp Phe Thr Lys Arg
 530 535 540
 Glu Ser Pro Pro Gly Lys Leu Pro Phe Trp Thr Trp Leu Asp Lys Ile
 545 550 555 560
 Leu Glu Leu Val His Asp His Leu Lys Asp Leu Trp Asn Asp Gly Arg
 565 570 575
 Ile Met Gly Phe Val Ser Arg Ser Gln Glu Arg Arg Leu Leu Lys Lys
 580 585 590
 Thr Met Ser Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser Ser Glu Gly
 595 600 605
 Gly Ile Thr Cys Ser Trp Val Glu His Gln Asp Asp Asp Lys Val Leu
 610 615 620
 Ile Tyr Ser Val Gln Pro Tyr Thr Lys Glu Val Leu Gln Ser Leu Pro
 625 630 635 640
 Leu Thr Glu Ile Ile Arg His Tyr Gln Leu Leu Thr Glu Glu Asn Ile
 645 650 655
 Pro Glu Asn Pro Leu Arg Phe Leu Tyr Pro Arg Ile Pro Arg Asp Glu
 660 665 670
 Ala Phe Gly Cys Tyr Tyr Gln Glu Lys Val Asn Leu Gln Glu Arg Arg
 675 680 685
 Lys Tyr Leu Lys His Arg Leu Ile Val Val Ser Asn Arg Gln Val Asp
 690 695 700
 Glu Leu Gln Gln Pro Leu Glu Leu Lys Pro Glu Pro Glu Leu Glu Ser
 705 710 715 720
 Leu Glu Leu Glu Leu Gly Leu Val Pro Glu Pro Glu Leu Ser Leu Asp
 725 730 735
 Leu Glu Pro Leu Leu Lys Ala Gly Leu Asp Leu Gly Pro Glu Leu Glu
 740 745 750
 Ser Val Leu Glu Ser Thr Leu Glu Pro Val Ile Glu Pro Thr Leu Cys
 755 760 765
 Met Val Ser Gln Thr Val Pro Glu Pro Asp Gln Gly Pro Val Ser Gln
 770 775 780

Siemens 0022 Seq Listing.txt

Pro Val Pro Glu Pro Asp Leu Pro Cys Asp Leu Arg His Leu Asn Thr
785 790 795 800
Glu Pro Met Glu Ile Phe Arg Asn Cys Val Lys Ile Glu Glu Ile Met
805 810 815
Pro Asn Gly Asp Pro Leu Leu Ala Gly Gln Asn Thr Val Asp Glu Val
820 825 830
Tyr Val Ser Arg Pro Ser His Phe Tyr Thr Asp Gly Pro Leu Met Pro
835 840 845
Ser Asp Phe
850

<210> 470

<211> 335

<212> PRT

<213> Homo sapiens

<400> 470
Met Gly Lys Val Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg
1 5 10 15
Leu Val Thr Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala
20 25 30
Ile Asn Asp Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met Phe Gln
35 40 45
Tyr Asp Ser Thr His Gly Lys Phe His Gly Thr Val Lys Ala Glu Asn
50 55 60
Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg
65 70 75 80
Asp Pro Ser Lys Ile Lys Trp Gly Asp Ala Gly Ala Glu Tyr Val Val
85 90 95
Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly Ala His Leu
100 105 110
Gln Gly Ala Lys Arg Val Ile Ile Ser Ala Pro Ser Ala Asp Ala
115 120 125
Pro Met Phe Val Met Gly Val Asn His Glu Lys Tyr Asp Asn Ser Leu
130 135 140
Lys Ile Ile Ser Asn Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Leu
145 150 155 160
Ala Lys Val Ile His Asp Asn Phe Gly Ile Val Glu Gly Leu Met Thr
165 170 175
Thr Val His Ala Ile Thr Ala Thr Gln Lys Thr Val Asp Gly Pro Ser
180 185 190
Gly Lys Leu Trp Arg Asp Gly Arg Gly Ala Leu Gln Asn Ile Ile Pro
195 200 205
Ala Ser Thr Gly Ala Ala Lys Ala Val Gly Lys Val Ile Pro Glu Leu
210 215 220
Asn Gly Lys Leu Thr Gly Met Ala Phe Arg Val Pro Thr Ala Asn Val
225 230 235 240
Ser Val Val Asp Leu Thr Cys Arg Leu Glu Lys Pro Ala Lys Tyr Asp
245 250 255
Asp Ile Lys Lys Val Val Lys Gln Ala Ser Glu Gly Pro Leu Lys Gly
260 265 270
Ile Leu Gly Tyr Thr Glu His Gln Val Val Ser Ser Asp Phe Asn Ser
275 280 285
Asp Thr His Ser Ser Thr Phe Asp Ala Gly Ala Gly Ile Ala Leu Asn
290 295 300
Asp His Phe Val Lys Leu Ile Ser Trp Tyr Asp Asn Glu Phe Gly Tyr
305 310 315 320

Siemens 0022 Seq Listing.txt
Ser Asn Arg Val Val Asp Leu Met Ala His Met Ala Ser Lys Glu
325 330 335

<210> 471
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> NAP4 Probe
<400> 471
tccgcctcag tcgcctcttt cg 22
<210> 472
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> NAP4 FOR PRIMER
<400> 472
tcggaagggc tccttcaaa 19
<210> 473
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> NAP4 REV PRIMER
<400> 473
caccggttgca gctcttggt 19
<210> 474
<211> 34
<212> DNA
<213> Artificial Sequence

Siemens 0022 Seq Listing.txt

<220>

<223> MRLP45 Probe

<400> 474

ctccccattcc cctcatgcta taaaaagaac tacc

34

<210> 475

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> MRLP45 FOR PRIMER

<400> 475

ggctgctgga agctttgaag

20

<210> 476

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> MRLP45 REV PRIMER

<400> 476

tgagcaggat gggagagaac a

21

<210> 477

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> TCF2 Probe

<400> 477

caaaaagctgg ccatggacgc ct

22

<210> 478

<211> 20

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Artificial Sequence

<220>

<223> TCF2 FOR PRIMER

<400> 478

gcaggaagga ggaggcattc

20

<210> 479

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> TCF2 REV PRIMER

<400> 479

caggctgtga gtctggttgg a

21

<210> 480

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> ROK1 Probe

<400> 480

cagctggctt ccattttcct ggcct

25

<210> 481

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> ROK1 FOR PRIMER

<400> 481

tggcaaaact gggttcagag a

21

Siemens 0022 Seq Listing.txt

<210> 482

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> ROK1 REV PRIMER

<400> 482

tcggaccttg tggatgtg

19

<210> 483

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT1 Probe

<400> 483

ccgccccta atatgcaaca ttaggg

26

<210> 484

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT1 FOR PRIMER

<400> 484

cgagtattcc aaagctggta tcg

23

<210> 485

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

Siemens 0022 Seq Listing.txt

<223> KRT1 REV PRIMER

<400> 485

atcacagaga gatggccctt atct

24

<210> 486

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT5 Probe

<400> 486

ccgccccta atatgcaaca ttaggg

26

<210> 487

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT5 FOR PRIMER

<400> 487

cgagtattcc aaagctggta tcg

23

<210> 488

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT5 REV PRIMER

<400> 488

atcacagaga gatggccctt atct

24

<210> 489

<211> 26

<212> DNA

Siemens 0022 Seq Listing.txt

<213> Artificial Sequence

<220>

<223> KRT8 Probe

<400> 489

ccggccgctta atatgcaaca ttaggg

26

<210> 490

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT8 FOR PRIMER

<400> 490

cgagtattcc aaagctggta tcg

23

<210> 491

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT8 REV PRIMER

<400> 491

atcacagaga gatggccctt atct

24

<210> 492

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT9 Probe

<400> 492

ccggccgctta atatgcaaca ttaggg

26

<210> 493

Siemens 0022 Seq Listing.txt

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT9 FOR PRIMER

<400> 493

cgagtattcc aaagctggta tcg

23

<210> 494

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT9 REV PRIMER

<400> 494

atcacagaga gatggccctt atct

24

<210> 495

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT10-2 Probe

<400> 495

ccgcccccta atatgcaaca ttaggg

26

<210> 496

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT10-2 FOR PRIMER

Siemens 0022 Seq Listing.txt

<400> 496		
cgagtattcc aaagctggta tcg		23
<210> 497		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> KRT10-2 REV PRIMER		
<400> 497		
atcacagaga gatggccctt atct		24
<210> 498		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> KRT14 Probe		
<400> 498		
ccgcccgccta atatgcaaca ttaggg		26
<210> 499		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> KRT14 FOR PRIMER		
<400> 499		
cgagtattcc aaagctggta tcg		23
<210> 500		
<211> 24		
<212> DNA		
<213> Artificial Sequence		

Siemens 0022 Seq Listing.txt

<220>

<223> KRT14 REV PRIMER

<400> 500
atcacagaga gatggccctt atct 24

<210> 501

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT18 Probe

<400> 501
ccgccccta atatgcaaca ttaggg 26

<210> 502

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT18 FOR PRIMER

<400> 502
cgagtattcc aaagctggta tcg 23

<210> 503

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT18 REV PRIMER

<400> 503
atcacagaga gatggccctt atct 24

<210> 504

<211> 26

Siemens 0022 Seq Listing.txt

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT19 Probe

<400> 504

ccggccgcata atatgcaaca ttaggg

26

<210> 505

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT19 FOR PRIMER

<400> 505

cgagtttccaaagctggta tcg

23

<210> 506

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT19 REV PRIMER

<400> 506

atcacagaga gatggccctt atct

24

<210> 507

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT6a/b Probe

<400> 507

ccggccgcata atatgcaaca ttaggg

<210> 508

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT6a/b FOR PRIMER

<400> 508

cgagtttcc aaagctggta tcg

23

<210> 509

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT6a/b REV PRIMER

<400> 509

atcacagaga gatggccctt atct

24

<210> 510

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT20 Probe

<400> 510

tggcggaaat cctatttatac agactctgtta attga

35

<210> 511

<211> 24

<212> DNA

<213> Artificial Sequence

Siemens 0022 Seq Listing.txt

<220>

<223> KRT20 FOR PRIMER

<400> 511
gcaagaaatc agccataaga aagc 24

<210> 512

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> KRT20 REV PRIMER

<400> 512
ttgcagctcc tctgagtaaa acat 24