ПРОЕКТНАЯ ХИМИЧЕСКАЯ ОЛИМПИАДА

9 класс

Задача №1

Восточные алхимики получали из оазиса Аммона в пустыне Сахара бесцветное кристаллическое вещество \mathbf{X} , которое они называли «нушадир». Известно, что в составе \mathbf{X} есть тот же ион, что и в составе поваренной соли. При растирании вещества \mathbf{X} с гашеной известью (реакция I) выделялся хорошо растворимый в воде газ с резким запахом \mathbf{Y} . Древние мудрецы заметили, если склянка с раствором газа \mathbf{Y} находится рядом со склянкой с раствором соляной кислоты, то обе склянки покрываются белым налетом (реакция I). Другим интересным свойством раствора газа I0 в воде является взаимодействие с раствором сульфата меди с образованием васильково-синего раствора вещества I1 (реакция I3).

Вопросы:

- 1) Что такое «поваренная соль» и «гашеная известь»? Приведите формулы веществ.
- 2) Установите формулы веществ **X**, **Y**, **Z**. Ответ представьте в формате «буква формула».
- 3) Напишите уравнения реакций.
- 4) Как сейчас называют «нушадир»? Приведите название по номенклатуре.

Задача №2 «В чем сила, брат?»

Хорошо известно, что взаимодействие соли слабой кислоты с более сильной кислотой должно проходить тем быстрее, чем сильнее кислота. Однако экспериментально установлено, что взаимодействие мела с уксусной кислотой происходит быстрее, чем взаимодействие с купоросным маслом.

Вопросы:

- 1) Приведите любой пример взаимодействия соли слабой кислоты с сильной кислотой. В ответе запишите молекулярное, полное и сокращённое ионное уравнения реакции.
- 2) Запишите формулы веществ из условия. Ответ представьте в формате «тривиальное название формула».
- 3) Объясните, почему мел реагирует с уксусной кислотой быстрее, чем с купоросным маслом? Ответ подтвердите уравнениями реакций.

Задача №3 «Я сам!»

Простая истина – все в мире взаимосвязано, в том числе и вещества вокруг нас. Перед вами представлена схема взаимосвязи основных классов неорганических веществ. Ваша задача – дополнить эту схему.

Вопросы:

- 1) Предложите вещества (любые), превращения которых можно описать представленной схемой. Ответ представьте в формате заполненной схемы.
- 2) Напишите уравнения реакций (5 реакций).

Задача №4 «Очень странные дела»

Вещество X (w(O) = 9,33%) оранжевого цвета известно с древних времен и с тех самых пор с этим веществом при нагревании происходит нечто странное... При нагревании на воздухе

вещество **X** вдруг становится желтым веществом **A** (*реакция 1*), а при обработке гипохлоритом кальция становится темно-коричневым веществом **B** (*реакция 2*). Вещество **B** при прокаливании способно давать целую гамму оттенков: из коричневого (вещество **B**) становится (*реакция 3*) черным (вещество **C** (w(O) = 10,38%)), потом (*реакция 4*) оранжевым (вещество **X**), затем снова желтым (вещество **A**).

Известно, что вещества \mathbf{A} и \mathbf{B} способны по-разному взаимодействовать с соляной кислотой – в первом случае наблюдается образование малорастворимого в воде вещества \mathbf{D} (реакция 5), а во втором случае – выделение желто-зеленого газа \mathbf{E} (реакция 6).

Вопросы:

- 1) Установите формулы веществ **X**, **A-E**. Воспользуйтесь изображениями элементарных ячеек. Ответ подтвердите расчетом и представьте в формате «буква формула».
- 2) Напишите уравнения описанных реакций (1-6).

Задача №5 «E239»

Поход — один из самых доступных и распространенных видов активного отдыха. Разумеется, во время похода неплохо бы подкрепиться горячей пищей. Часто в качестве топлива для приготовления еды используют два органических вещества — уротропин (w(H) = 8.63%,

w(N) = 39,97%) или парафин (примем его формулой $C_{20}H_{42}$). Вам предлагается выяснить, какой из видов топлива экономически более выгодно использовать для нагрева 250 мл воды от 20° С до кипения? Чтобы это выяснить, ответьте на ряд вопросов и воспользуйтесь справочными данными.

Теплоты образования веществ, кДж/моль										
Вещество	Уротропин	Парафин	O_2	H ₂ O	С	CO	CO_2	N_2	NO	NO_2
ΔQ^{o}_{f} , кДж/моль	99,2	456,07	0	241,81	0	110,53	393,51	0	-91,26	-34,19
Стоимость веществ, руб/кг	174	1908								
Теплоемкость воды 4200 Дж/(кг·°С)										

Вопросы:

- 1) Установите формулу уротропина, если известно, что молекулярная масса вещества находится в интервале между 100 и 150 г/моль. Ответ подтвердите расчетом.
- 2) Напишите уравнения реакций горения уротропина и парафина. Дополнительно известно, что смесь продуктов сгорания уротропина имеет такой же качественный состав, что и воздух.
- 3) Вычислите тепловой эффект реакций.
- 4) Определите, какой из видов топлива экономически более выгодно использовать для нагрева 250 мл воды от 20°C до кипения?
- 5) Что означает название задачи?

Задача №6 «Антиокислители»

Антиокислители — большая группа веществ, широко используемых в пищевой промышленности для увеличения сроков годности продуктов и напитков. Большинство веществ этой группы часто встречаются в природе, в том числе синтезируются живыми организмами. Одним из таких распространенных антиокислителей является вещество \mathbf{X} с активным антимикробным действием, которое часто поставляется в смеси с веществом \mathbf{Y} . В лабораторию отдела контроля качества поступил образец такой смеси. Чтобы убедиться в качестве продукции, смесь проанализировали:

- 1) Образец полностью растворился в воде с образованием бесцветного прозрачного раствора. Измерения рН показали, что он равен 9,5.
- 2) При внесении сухого образца в пламя горелки наблюдалось желтое окрашивание пламени.
- 3) Добавили раствор AgNO₃ наблюдалось выпадение белого творожистого осадка.
- 4) При действии соляной кислоты на раствор смеси выделяется бесцветный газ с резким запахом, способный обесцвечивать нейтральный раствор КМпО₄.

Массовое содержание основного компонента смеси (вещество X) определили с помощью иодометрии:

- 1) Образец смеси массой 5,0 г растворили в 1 литре воды. Взяли аликвоту объемом 10,0 мл.
- 2) К аликвоте добавили 5,0 мл раствора иода с концентрацией 0,10 М.
- 3) Смесь оставили в темном месте на 5 минут, после чего оттитровали раствором тиосульфата натрия концентрацией 0,10 М. На титрование аликвоты ушло 3,00 мл раствора тиосульфата.

Вопросы:

- 1) Установите вещества **X** и **Y**. Ответ объясните и представьте в формате «буква-формула».
- 2) Объясните, почему раствор имеет такой рН?
- 3) Напишите уравнения реакций качественного анализа.
- 4) Обработайте результаты количественного анализа вычислите массовую долю вещества \mathbf{X} в смеси.
- 5) В чем заключается антиокислительное действие вещества \mathbf{X} ? Ответ подтвердите уравнением реакции с комментариями.