Suites numériques

I. Rappels

Activité 1

On considère la suite numérique (u_n) définie par :

$$\begin{cases} u_1 = 0 \\ u_{n+1} = \frac{25}{10 - u_n} \end{cases}, \quad n \in \mathbb{N}^*$$

- 1. Calculer u_1, u_2 .
- 2. Vérifier que $5-u_{n+1}=\frac{5(5-u_n)}{5+(5-u_n)}$ pour tout $n\in\mathbb{N}^*$ et montrer par récurrence que $5-u_n>0$.
- 3. On considère la suite (v_n) définie par $v_n = \frac{5}{5-u_n}$.
 - (a) Montrer que (v_n) est une suite arithmétique et déterminer sa raison.
 - (b) Donner l'expression de v_n en fonction de n.
 - (c) En déduire l'expression de u_n en fonction de n.
 - (d) Calculer la somme $S_n = v_0 + v_1 + \cdots + v_n$.

Activité 2

On considère la suite numérique (u_n) définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{2u_n + 3}{u_n + 4} \end{cases}, \quad n \in \mathbb{N}$$

- 1. Calculer u_1, u_2 .
- 2. Montrer par récurrence que $(\forall n \in \mathbb{N}^*)$: $0 < u_n < 1$.
- 3. Montrer que (u_n) est croissante.
- 4. On considère la suite (v_n) définie par $v_n = \frac{u_n 1}{u_n + 3}$.
 - (a) Montrer que (v_n) est une suite géométrique et déterminer sa raison.
 - (b) Déterminer v_n en fonction de n et en déduire l'expression de u_n .
 - (c) Calculer la somme $S_n = v_0 + v_1 + \cdots + v_n$.

Tableaux Récapitulatifs

Suites Arithmétiques vs. Géométriques

	Suite géométrique	Suite arithmétique
Définition	$u_{n+1} = qu_n$	$u_{n+1} = u_n + r$
Terme général	$u_n = u_p \times q^{n-p}$	$u_n = u_p + (n-p)r$
Somme		$S_n = \frac{n-p+1}{2}(u_p + u_n)$
Moyenne	$b^2 = ac$	2b = a + c

Propriétés des suites

Majorée par M	$(\forall n \in I)$	$u_n \leq M$
Minorée par m	$(\forall n \in I)$	$u_n \ge m$
Bornée	$(\forall n \in I)$	$m \le u_n \le M$
Croissante	$(\forall n \in I)$	$u_{n+1} \ge u_n$
Décroissante	$(\forall n \in I)$	$u_{n+1} \le u_n$
Constante	$(\forall n \in I)$	$u_{n+1} = u_n$

II. Limite d'une suite

Définition de la Limite

Soient (u_n) une suite numérique et l un nombre réel. On dit que l est la **limite** de (u_n) , et on écrit :

 $\lim_{n \to +\infty} u_n = l \quad \text{ou simplement} \quad \lim u_n = l$

2. Limite de suites de références

Propriétés

Soit p un élément de $\mathbb N$ tel que $p\geq 1,$ on a :

- $\lim_{n\to+\infty} n = +\infty$
- $\lim_{n\to+\infty} n^2 = +\infty$
- $\lim_{n\to+\infty} n^p = +\infty$
- $\lim_{n\to+\infty} \sqrt{n} = +\infty$
- $\lim_{n\to+\infty}\frac{1}{n}=0$
- $\lim_{n \to +\infty} \frac{1}{n^2} = 0$
- $\lim_{n\to+\infty}\frac{1}{n^p}=0$
- $\lim_{n\to+\infty}\frac{1}{\sqrt{n}}=0$

Exemples

- On a $\lim_{n\to+\infty} \frac{n+1}{\sqrt{n}} = \lim_{n\to+\infty} \frac{n}{\sqrt{n}} + \frac{1}{\sqrt{n}} = \lim_{n\to+\infty} \sqrt{n} + \frac{1}{\sqrt{n}}$. Puisque $\lim_{n\to+\infty} \sqrt{n} = +\infty$ et $\lim_{n\to+\infty} \frac{1}{\sqrt{n}} = 0$, alors $\lim_{n\to+\infty} \frac{n+1}{\sqrt{n}} = +\infty$.
- On a $\lim_{n \to +\infty} -2n^4 + 3n^2 + 1 = \lim_{n \to +\infty} n^4 \left(-2 + \frac{3}{n^2} + \frac{1}{n^4}\right)$. Puisque $\lim_{n \to +\infty} \frac{3}{n^2} = 0$ et $\lim_{n \to +\infty} \frac{1}{n^4} = 0$, alors $\lim_{n \to +\infty} -2 + \frac{3}{n^2} + \frac{1}{n^4} = -2$. Or $\lim_{n \to +\infty} n^4 = +\infty$, donc $\lim_{n \to +\infty} -2n^4 + 3n^2 + 1 = -\infty$.

Application

Calculer la limite de la suite (u_n) dans les cas suivants :

a.
$$u_n = \frac{n^2 + n + 1}{3n^2 + n - 6}$$

b.
$$u_n = \frac{(n+2)\sqrt{n}}{(n+2)\sqrt{n}}$$

c.
$$u_n = \frac{n+4}{\sqrt{n+2}}$$

c.
$$u_n = \frac{n+4}{\sqrt{n+1}}$$

d. $u_n = \frac{\sqrt{n+3}}{\sqrt{n+1} - \sqrt{n}}$

e.
$$u_n = 2n - \sqrt{n}$$

Définition : (Convergence d'une suite)

Soit (u_n) une suite numérique.

- On dit que (u_n) est **convergente** si elle admet une limite finie (C-à-d s'il existe un réel ltel que $\lim_{n\to+\infty} u_n = l$).
- On dit que (u_n) est divergente s'elle n'est pas convergente (C-à-d si $\lim_{n\to+\infty}u_n=\pm\infty$ ou s'elle n'a pas de limite).

Exemples

- La suite (u_n) telle que $(\forall n \in \mathbb{N})$ $u_n = \frac{n}{\sqrt{n+1}}$ est divergente car $\lim_{n \to +\infty} u_n = +\infty$.
- La suite (v_n) telle que $(\forall n \in \mathbb{N}) : v_n = \sqrt{n+1} \sqrt{n}$ est convergente car $\lim_{n \to +\infty} v_n = 0$.
- La suite (w_n) telle que $(\forall n \in \mathbb{N}) : w_n = (-1)^n$ est divergente car n'a pas de limite.

3. Limite de la suite géométrique (q^n) où $q \in \mathbb{R}$

Propriété

Soit q un réel, on a :

- Si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$.
- Si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$.
- Si $q \le -1$ alors la suite (q^n) n'a pas de limite.
- Si a = 1 alors $\lim_{n \to +\infty} a^n = 1$.

Exemples

- $\lim_{n\to+\infty} 5^n = +\infty$ parce que 5 > 1.
- $\lim_{n\to+\infty} (-0,5)^n = 0$ parce que -1 < -0, 5 < 1.
- $\lim_{n\to+\infty} \left(\frac{7}{8}\right)^n = 0$ parce que $-1 < \frac{7}{8} < 1$.
- La suite $(-3)^n$ n'a pas de limite.

Application

Calculer la limite de la suite (u_n) dans les cas suivants :

a.
$$u_n = (\frac{3}{4})^n + (\frac{5}{4})^n$$

b.
$$u_n = \frac{5^n}{(-4)^n}$$

c.
$$u_n = 2^n - 3^n$$

d.
$$u_n = \frac{4^n - 3^n}{4^{n+3}}$$

Exercice: Rattrapage 2011

On considère la suite (u_n) définie par $u_0 = 1$ et $(\forall n \in \mathbb{N})$ $u_{n+1} = \frac{6u_n}{1+15u_n}$.

- 1. a. Vérifier que $(\forall n \in \mathbb{N}) : u_{n+1} \frac{1}{3} = \frac{u_n \frac{1}{3}}{15u_n + 1}$.
 - b. Montrer par récurrence que $(\forall n \in \mathbb{N}) : u_n > \frac{1}{3}$.
- 2. On considère la suite numérique (v_n) définie par $(\forall n \in \mathbb{N}): v_n = 1 \frac{1}{3u_n}$.
 - a. Montrer que (v_n) est une suite géométrique de raison $\frac{1}{6}$.
 - b. Exprimer v_n en fonction de n.
- 3. Montrer que $(\forall n \in \mathbb{N})$: $u_n = \frac{1}{3-2(\frac{1}{6})^n}$ puis déduire $\lim_{n \to +\infty} u_n$.

4. Limite de la suite (n^{α}) où $\alpha \in \mathbb{Q}^*$

Propriété

Soit $\alpha \in \mathbb{Q}^*$, on a:

- Si $\alpha > 0$ alors $\lim_{n \to +\infty} n^{\alpha} = +\infty$.
- Si $\alpha < 0$ alors $\lim_{n \to +\infty} n^{\alpha} = 0$.

Exemples

- $\lim_{n\to+\infty} n^{\frac{5}{3}} = +\infty$ parce que $\frac{5}{3} > 0$.
- $\lim_{n\to+\infty} n^{-\frac{4}{3}} = 0$ parce que $-\frac{4}{3} < 0$.

Application

Calculer la limite de la suite (u_n) dans les cas suivants :

1.
$$u_n = n^{\frac{5}{2}} - n^{\frac{4}{3}}$$

2.
$$u_n = \sqrt{n} - \sqrt[4]{n}$$

5. Limite et ordre

Propriété

Soient (u_n) et (v_n) deux suites numériques. Si $\begin{cases} u_n \ge v_n \\ \lim_{n \to +\infty} u_n = l \text{ et } \lim_{n \to +\infty} v_n = l' \end{cases}$, alors $l \ge l'$.

Exemple

Soient (u_n) et (v_n) deux suites numériques définies par $u_n=2+\frac{1}{n}$ et $v_n=2-\frac{1}{n}$. On a pour tout $n\in\mathbb{N}^*:u_n>v_n$ et $\lim_{n\to+\infty}u_n=2$ et $\lim_{n\to+\infty}v_n=2$.

III. Critères de convergence

Propriétés

- Toute suite croissante, majorée est convergente.
- Toute suite décroissante, minorée est convergente.

Application 1

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = -1, \\ u_{n+1} = \frac{1}{2 - u_n} \end{cases}$$

- 1. Montrer que $u_n < 1$ pour tout $n \in \mathbb{N}$.
- 2. Étudier la monotonie de la suite (u_n) puis en déduire qu'elle est convergente.

Propriété (Théorème des Gendarmes)

Soient (u_n) , (v_n) et (w_n) trois suites numériques et l un nombre réel. Si

$$\begin{cases} v_n \le u_n \le w_n \\ \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l \end{cases}$$

alors

$$\lim_{n \to +\infty} u_n = l$$

Application 2

On considère la suite (u_n) définie par :

$$u_n = \frac{\cos(n)}{n^2 + 1} + 2$$

- 1. Montrer que $(\forall n \in \mathbb{N}) : -\frac{1}{n^2+1} + 2 \le u_n \le \frac{1}{n^2+1} + 2$.
- 2. En déduire la limite de (u_n) .

Propriété (Comparaison)

Soient (u_n) et (v_n) deux suites numériques et $\alpha \in \mathbb{R}_+^*$.

- Si $\begin{cases} \alpha u_n \le v_n \\ \lim_{n \to +\infty} u_n = +\infty \end{cases}$, alors $\lim_{n \to +\infty} v_n = +\infty$.
- Si $\begin{cases} v_n \le \alpha u_n \\ \lim_{n \to +\infty} u_n = -\infty \end{cases}$, alors $\lim_{n \to +\infty} v_n = -\infty$.

Application 3

Soient (u_n) et (v_n) deux suites numériques définies par $u_n = \sin(n) + 3n$ et $v_n = \cos(n^2 + 3) - 5n + 1$.

- 1. Montrer, pour tout $n \in \mathbb{N}$, que $u_n \ge -1 + 3n$ et que $v_n \le 2 5n$.
- 2. En déduire la limite de (u_n) et (v_n) .

Propriété

Soient (u_n) , (v_n) deux suites numériques et l un nombre réel et $\alpha \in \mathbb{R}_+^*$. Si $\begin{cases} |u_n - l| \le \alpha v_n \\ \lim_{n \to +\infty} v_n = 0 \end{cases}$, alors $\lim_{n \to +\infty} u_n = l$.

Application 4

On considère la suite (u_n) définie par : $u_n = \frac{(-1)^n}{n} + 1$. Montrer que $\lim_{n \to +\infty} u_n = 1$.

Exercice

Soit (u_n) la suite numérique définie par $u_0 = \frac{1}{3}$ et $(\forall n \in \mathbb{N})$ $u_{n+1} = \frac{2u_n}{u_n+1}$.

- 1. Montrer que $(\forall n \in \mathbb{N}) : 0 < u_n < 1$.
- 2. a. Vérifier, pour tout $n \in \mathbb{N}$, que $u_{n+1} u_n = -\frac{u_n(u_n-1)}{u_n+1}$.
 - b. Étudier la monotonie de (u_n) .
 - c. En déduire, pour tout $n \in \mathbb{N}$, que $u_n \geq \frac{1}{3}$ et que la suite (u_n) est convergente.
- 3. a. Montrer que $(\forall n \in \mathbb{N}) : 1 u_{n+1} \le \frac{1}{4}(1 u_n)$.
 - b. En déduire que $(\forall n \in \mathbb{N}) : 1 u_n \le (\frac{1}{4})^n \times \frac{2}{3}$.
 - c. Déterminer $\lim_{n\to+\infty} u_n$.
- 4. Pour tout $n \in \mathbb{N}$, on pose : $v_n = \frac{u_n 4}{u_n 2}$.
 - a. Montrer que la suite (v_n) est géométrique dont on déterminera la raison et le premier terme.
 - b. Exprimer v_n et u_n en fonction de n.
 - c. Déterminer à nouveau $\lim_{n\to+\infty} u_n$.

IV. Limite de suites particulières

1. La suite $v_n = f(u_n)$

Propriété

Soit f une fonction numérique continue en l et (u_n) une suite convergente et sa limite est l. La suite (v_n) tel que $v_n = f(u_n)$ est une suite convergente et sa limite est f(l).

Exemple

Déterminons la limite de la suite (v_n) définie par : $(\forall n \in \mathbb{N}) : v_n = \cos\left(\frac{\pi n + 2}{3n - 1}\right)$.

Application

Calculer les limites des suites (u_n) et (v_n) suivantes $u_n = \sin\left(\frac{1-n^2}{n+6n^2}\right)$ et $v_n = \frac{16n^2-3n+1}{2n^2+1}$.

2. La suite $u_{n+1} = f(u_n)$

Propriété

Soit f une fonction numérique et I un intervalle de D_f et soit $(u_n)_n$ une suite telle que $\begin{cases} u_0 \in I \\ u_{n+1} = f(u_n); n \in \mathbb{N}^* \end{cases}$ Si les conditions suivantes sont vérifiées :

- f est continue sur I.
- $f(I) \subset I$.
- la suite $(u_n)_n$ converge vers l.

Alors f(l) = l.

Application

Soit f la fonction définie sur $[0; +\infty[$ par : $f(x) = x - 2\sqrt{x} + 2.$

- 1. Montrer que f est décroissante sur [0;1] et croissante sur $[1;+\infty[.$
- 2. Montrer, pour tout $x \in [1; +\infty[$, que : $f(x) \le x$.
- 3. On considère la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.
 - (a) Montrer par récurrence que : $(\forall n \in \mathbb{N}) 1 \leq u_n \leq 2$.
 - (b) Montrer que la suite (u_n) est décroissante.
 - (c) En déduire que la suite (u_n) est convergente puis déterminer sa limite.