(NATURAL SCIENCE)

Vol. 62 No. 4 JUCHE105 (2016).

# 규리탄산나트리움흡착제의 합성

김현아, 김성호

방사성폐액처리에서 중요한것은 폐액속에 들어있는 반감기가 길고 독성이 센 방사성핵분렬생성물들을 선택적으로 분리제거할수 있는 효능높은 이온교환체를 개발하는것이다.[1] 최근 초우라니움원소들의 분리와 방사성폐기물을 처리하기 위하여 다공성구조를 가지며 높은 열과 방사선, 화학적작용에도 안정하고 <sup>137</sup>Cs, <sup>90</sup>Sr, 악티노이드들에 대한 높은 선택성을 가지는 티탄화합물무기흡착제들이 개발[2, 3]되여 널리 리용되고있지만 구체적인 합성조건과 방법은 발표된것이 없다.

우리는 규터탄산나트리움무기흡착제를 합성하고 흡착제의 조성과 립도분포를 밝혔다.

#### 실 험 방 법

온도계, 랭각기, 분액깔때기, 교반기가 설치된 반응플라스크에 류산산성 류산티타닐용 액을 넣고 120~130r/min의 속도로 교반하면서 메타규산나트리움용액을 적하한 다음 가성소다용액을 적하하였다.[4] 반응용액의 총 체적을 150mL로 하였다. 이때 반응용액은 졸상태로부터 겔상태로 넘어간다.

100℃에서 반응용액을 교반하면서 일정한 시간동안 반응시켰다. 반응이 끝난 후 흡인 려과하여 생성물을 분리하고 증류수로 충분히 세척한다. 다음 생성물을 건조시키고 200℃ 에서 8h동안 소성하였다. 생성물의 거둠률은 94.41%였다.

규티탄산나트리움흡착제의 합성반응조건은 표 1과 같다.

No. [TiOSO<sub>4</sub>]/(mol·L  $[Na_2SiO_3]/(mol\cdot L^{-1})$   $[H_2SO_4]/(mol\cdot L^{-1})$   $[NaOH]/(mol\cdot L^{-1})$ 반응시간/h 온도/℃ 0.32 1 0.36 1.13 2.26 4 100 2 0.32 0.36 1.13 2.26 8 100 3 0.32 0.36 1.13 2.26 12 100 4 0.32 0.18 1.13 2.26 8 100 5 0.32 0.36 1.13 2.26 8 100 6 0.32 0.54 1.13 2.26 8 100 7 1.13 8 0.32 0.36 1.76 100 8 0.32 0.36 1.13 2.57 8 100 9 0.32 0.36 1.13 2.73 8 100 10 0.32 0.36 1.13 2.86 8 100

표 1. 합성반응조건

#### 실험결과 및 해석

합성반응조건에 따라 규티탄산나트리움을 제조하고 주사전자현미경(《JSM-6610A》)으로 분석한 결과는 표 2와 같다.

| 표 2. 답극세의 구시간시원미승문극글피 |      |       |      |       |      |       |      |       |      |  |  |
|-----------------------|------|-------|------|-------|------|-------|------|-------|------|--|--|
|                       | ᄱᆚᆛ  | Na    |      | Ti    |      | Si    |      | 0     |      |  |  |
| No.                   | 생성량  | 원소조성  | 화학량론 | 원소조성  | 화학량론 | 원소조성  | 화학량론 | 원소조성  | 화학량론 |  |  |
|                       | /g   | /%    | 곁수   | /%    | 곁수   | /%    | 곁수   | /%    | 곁수   |  |  |
| 1                     | 5.89 | 14.82 | 1.82 | 28.32 | 1.74 | 6.46  | 0.65 | 40.91 | 7.21 |  |  |
| 2                     | 6.33 | 12.14 | 1.49 | 36.72 | 2.16 | 10.54 | 1.06 | 40.46 | 7.13 |  |  |
| 3                     | 5.58 | 14.19 | 1.74 | 30.28 | 2.29 | 11.53 | 1.16 | 41.07 | 7.24 |  |  |
| 4                     | 5.45 | 19.95 | 2.45 | 20.75 | 1.27 | 3.27  | 0.33 | 38.03 | 6.70 |  |  |
| 5                     | 6.33 | 12.14 | 1.49 | 36.72 | 2.16 | 10.54 | 1.06 | 40.46 | 7.13 |  |  |
| 6                     | 6.42 | 12.14 | 1.49 | 32.34 | 1.93 | 10.22 | 1.03 | 40.43 | 7.13 |  |  |
| 7                     | 5.58 | 16.5  | 2.02 | 25.88 | 1.59 | 5.21  | 0.52 | 38.45 | 6.78 |  |  |
| 8                     | 5.94 | 13.95 | 1.71 | 32.05 | 1.96 | 7.25  | 0.73 | 40.48 | 7.38 |  |  |
| 9                     | 6.37 | 13.81 | 1.69 | 30.92 | 1.89 | 10.32 | 1.04 | 40.99 | 7.22 |  |  |
| 10                    | 6.27 | 12.43 | 1.52 | 35.38 | 2.17 | 9.03  | 0.91 | 40.57 | 7.15 |  |  |

표 2 흑착제이 주사전자현미경부석결과

표 2에서 보는바와 같이 반응조건 1과 4로 제조한 흡착제에 들어있는 Ti와 Si의 비가 매우 크다는것을 알수 있다. 또한 반응조건 6으로 제조한 흡착제의 Ti:Si가 약 2:1로서 목적하는 비와 근사하다는것을 알수 있다.

반응조건 6으로 제조한 흡착제의 주사전자현미경사진은 그림과 같다.



그림. 흡착제의 주사전자현미경사진 ㄱ)-ㄹ)는 확대배수가 각각 100, 500, 1 000, 2 500인 경우

그림에서 보는바와 같이 합성한 흡착제는 립도가  $0.5\sim300\mu$ m인 결정성알갱이이다. 반응조건 6으로 제조한 흡착제의 임의의 4점에서 주사전자현미경으로 분석한 결과는 표 3과 같다.

표 3. 흡착제의 주사전자현미경분석결과

|     | Na               |                 | Ti               |                 | Si               |                 | 0                |                 |
|-----|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|
| No. | 원소조성             | 화학량론            | 원소조성             | 화학량론            | 원소조성             | 화학량론            | 원소조성             | 화학량론            |
|     | /%               | 곁수              | /%               | 곁수              | /%               | 곁수              | /%               | 곁수              |
| 1   | 13.81            | 1.69            | 30.92            | 1.89            | 10.32            | 1.04            | 40.99            | 7.22            |
| 2   | 14.19            | 1.74            | 29.68            | 1.82            | 13.53            | 1.36            | 41.28            | 7.28            |
| 3   | 14.20            | 1.74            | 29.28            | 1.80            | 12.31            | 1.24            | 41.26            | 7.27            |
| 4   | 13.95            | 1.71            | 28.83            | 1.77            | 13.41            | 1.35            | 41.50            | 7.31            |
| 평균  | $14.04 \pm 0.16$ | $1.72 \pm 0.02$ | $29.68 \pm 0.62$ | $1.82 \pm 0.04$ | $12.39 \pm 1.08$ | $1.25 \pm 0.11$ | $41.26 \pm 0.13$ | $7.27 \pm 0.03$ |

표 3에서 보는바와 같이 합성한 흡착제의 원소조성은 Na 14.04%, Ti 29.68%, Si 12.39%, O 41.26%이며 따라서 흡착제의 화학식은 Na<sub>2</sub>Ti<sub>2</sub>SiO<sub>7</sub>으로 표시할수 있다.

$$2\text{TiOSO}_4 + \text{Na}_2\text{SiO}_3 + 4\text{NaOH} \xrightarrow{\text{H}_2\text{SO}_4} \text{Na}_2\text{Ti}_2\text{SiO}_7 \cdot 2\text{H}_2\text{O} \downarrow + 2\text{Na}_2\text{SO}_4$$

$$\text{Na}_2\text{Ti}_2\text{SiO}_7 \cdot 2\text{H}_2\text{O} \xrightarrow{200\%} \text{Na}_2\text{Ti}_2\text{SiO}_7 + 2\text{H}_2\text{O}$$

반응방정식은 다음과 같다.

### 맺 는 말

졸-겔법으로 규티탄산나트리움을 정확히 합성하였다. 흡착제는 립도가 0.5~300μm인 결정성알갱이이며 거둠률은 94.41%이다.

## 참고문 헌

- [1] A. Clearfield et al.; Reactive & Functional Polymers, 43, 85, 2000.
- [2] Yasutoshi Ban et al.; JAEA Research, 2011-037, 1~10.
- [3] D. T. Hobbs; WSRC-TR-2000-00229, 1~15.
- [4] S. Meleshevych et al.; Lithuanian Journal of Physics, 48, 1, 107, 2008.

주체104(2015)년 12월 5일 원고접수

# Synthesis of Sodium Titano-Silicate Sorbent

Kim Hyon A, Kim Song Ho

제4호

The synthesis condition of sodium titano-silicate, inorganic sorbent, by sol-gel method are as follows: the concentration of TiOSO<sub>4</sub> is 0.32mol/L, the concentration of Na<sub>2</sub>SiO<sub>3</sub> is 0.54mol/L, the concentration of NaOH is 2.26mol/L, the reaction temperature is  $100^{\circ}$ C and the reaction time is 8h. As the analysis result of the composition of sodium titano-silicate using scanning electron microscopy "JSM-6610A", the formula of sorbent is Na<sub>2</sub>Ti<sub>2</sub>SiO<sub>7</sub> and they are crystal particles with  $0.5\sim300\mu m$  of size.

Key words: titano-silicate, inorganic sorbent