Exercise sheet for Algebraic Topology II Week6

Lennart Meier

March 15, 2019

Exercise 1. Go through the proof of Theorem 1.11 to show that for two reduced cohomology theories \tilde{h} and \tilde{k} a natural transformation φ between them (i.e. a collection of natural transformations $\varphi_n \colon \tilde{h}^n \to \tilde{k}^n$ that are compatible with the suspension isomorphisms) is a natural isomorphism if and only if $\varphi_n(S^0)$ is an isomorphism for all n.

Exercise 2 (Homework). Show that for a pointed map $f: A \to X$, the inclusion $i: X \hookrightarrow Cf$ is a based cofibration in the following sense: Let $h: X \times I \to Y$ be a *pointed* homotopy (i.e. $h(\{x_0\} \times I) = \{y_0\}$ if $x_0 \in X$ and $y_0 \in Y$ are the basepoints) and $f: Cf \times \{0\} \to Y$ be another pointed map agreeing with h on the overlap. Then there exists a pointed map $H: Cf \times I \to Y$ extending h and f.

Exercise 3. Show that if *X* is compact and *Y* a metric space, then the compact-open topology on Map(X, Y) coincides with that induces by the metric $d(f,g) = \sup_{x \in X} d(f(x),g(x))$.

Exercise 4. Let X and Y be locally compact and Z be arbitrary. Then there is a homeomorphism between Map(X, Map(Y, Z)) and $Map(X \times Y, Z)$.

- **Exercise 5** (Homework). (a) Let $f: X \to Y$ be a continuous map and Z be a space. Show that the induced map $f^*: \operatorname{Map}(Y, Z) \to \operatorname{Map}(X, Z)$ is continuous. Repeat this with the pointed mapping spaces for pointed spaces and maps.
 - (b) Conclude that the multiplication map $\Omega Z \times \Omega Z \to \Omega Z$ is continuous. Similarly show that the "inverse of loop" map $\Omega Z \to \Omega Z$ is continuous as well.
 - (c) If X is an H-space, the usual product on $\pi_n(X)$ (for $n \ge 1$) agrees with that induced by X and this is abelian, even for n = 1.