2. Μέτρο διανύσματος $|\vec{a}|, |\overrightarrow{AB}|$ 3. Μηδενικό διάνυσμα : $\vec{a} = \vec{0}$

4. Μοναδιαίο διάνυσμα : $|\vec{a}| = 1$

1 Η έννοια του διανύσματος

🛗 Ημερομηνία:

Πίνακας Ύλης Ορισμοί - Βασικές έννοιες 🗏 1. Διάνυσμα 2. Αρχή και πέρας 3. Στοιχεία διανύσματος: Μέτρο - διεύθυνση - φορά 4. Φορέας διανύσματος 5. Μηδενικό - Μοναδιαίο διάνυσμα 6. Παράλληλα διανύσματα 7. Ομόρροπα διανύσματα 8. Αντίρροπα διανύσματα 9. Ίσα διανύσματα 10. Αντίθετα διανύσματα Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕 Εύρεση ίσων και αντίθετων διανυσμάτων Εύρεση παράλληλων διανυσμάτων Εύρεση ομόρροπων και αντίρροπων δια-Υπολογισμός γωνίας διανυσμάτων νυσμάτων Τυπολόγιο - Συμβολισμοί 🖺 1. Διάνυσμα \vec{a} ή \overrightarrow{AB} 5. Ομόρροπα διανύσματα : $\overrightarrow{a} \uparrow \uparrow \overrightarrow{\beta}$

6. Αντίρροπα διανύσματα : $\overrightarrow{a} \uparrow \downarrow \overrightarrow{\beta}$

7. Γωνία διανυσμάτων:

 $\theta = (\vec{a}, \vec{\beta}), \ \theta \in [0, \pi]$

2 Πρόσθεση διανυσμάτων

ដ Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες

- 1. Πρόσθεση διαδοχικών διανυσμάτων
- 2. Κανόνας παραλληλογράμμου
- 3. Αφαίρεση διανυσμάτων
- 4. Διάνυσμα θέσης
- 5. Σημείο αναφοράς

Θεωρήματα - Ιδιότητες 💥

- 1. Ιδιότητες πρόσθεσης
- 2. Διαφορά διανυσματικών ακτίνων
- 3. Μέτρο αθροίσματος Τριγωνική ανισότητα
- 4. Κριτήριο ομόρροπων και αντίρροπων διανυσμάτων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨

- ▲ □ Πρόσθεση και αφαίρεση διαδοχικών διανυσμάτων
- ▲ □ Πρόσθεση και αφαίρεση διανυσμάτων με κανόνα παραλληλογράμμου
- 🛕 🗌 Απόδειξη διανυσματικής ισότητας
 - Απόδειξη ότι δύο σημεία ταυτίζονται
 - Μέσο ευθύγραμμου τμήματος

- ▲ □ Απόδειξη ότι ένα τετράπλευρο είναι παραλληλόγραμμο
 - Προσδιορισμός σημείου
 - □ Τριγωνική ανισότητα
 - □ Κριτήριο ομόρροπων και αντίρροπων διανυσμάτων
 - □ Γεωμετρικοί τόποι

Τυπολόγιο - Συμβολισμοί 🖺

- 1. Πρόσθεση διανυσμάτων $\vec{a} + \vec{\beta}$
- 2. Αφαίρεση διανυσμάτων : $\vec{a} \vec{\beta}$
- 3. Διάνυσμα θέσης σημείου $M: \overrightarrow{OM}$ όπου

Ο σημείο αναφοράς.

4. Τριγωνική ανισότητα: $\left||\vec{a}|-|\vec{\beta}|\right| \leq \left|\vec{a}+\vec{\beta}\right| \leq |\vec{a}|+|\vec{\beta}|$

Πίνακες - Σχήματα

Κανόνας διαδοχικών διανυσμάτων

$$\vec{a} + \vec{\beta} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$

Κανόνας παραλληλογράμμου

$$\vec{a} + \vec{\beta} = \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OM}$$

$$\vec{a} + \vec{A} = \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OM}$$

$$\vec{A} + \overrightarrow{OB} = \overrightarrow{OM}$$

Κανόνας παραλληλογράμμου

Κανόνας διαδοχικών διανυσμάτων

$$\vec{a} - \vec{\beta} = \vec{a} + \left(-\vec{\beta}\right)$$

Ιδιότητες πρόσθεσης διανυσμάτων

Ιδιότητα	Συνθήκη
Αντιμεταθετική	$\vec{a} + \vec{\beta} = \vec{\beta} + \vec{a}$
Προσεταιριστική	$\vec{a} + \left(\vec{\beta} + \vec{\gamma}\right) = \left(\vec{a} + \vec{\beta}\right) + \vec{\gamma}$
Ουδέτερο στοιχείο	$\vec{a} + \vec{0} = \vec{a}$
Αντίθετα διανύσματα	$\vec{a} + (-\vec{a}) = \vec{0}$

Γινόμενο αριθμού με διάνυσμα

🛱 Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 1. Γινόμενο αριθμού με διάνυσμα
- 2. Γραμμικός συνδυασμός διανυσμάτων

Θεωρήματα - Ιδιότητες 💥

- 1. Ιδιότητες γινομένου
- 2. Συνθήκη παραλληλίας
- 3. Διανυσματική ακτίνα μέσου

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

A	
44	

🔲 Απόδειξη - Έλεγχος παραλληλίας διανυσμάτων

Ш	Απόδειξη	διανυσ	ματικής	; ισότη	ιτας

Τυπολόγιο - Συμβολισμοί 🖺

- 1. Γινόμενο αριθμού με διάνυσμα: $\lambda \cdot \vec{a}$
- 2. Συνθήκη παραλληλίας: $\vec{a} \parallel \vec{\beta} \Leftrightarrow \vec{a} = \lambda \cdot \vec{\beta}$
- 3. $\vec{a} \uparrow \uparrow \vec{\beta} \Leftrightarrow \vec{a} = \lambda \vec{\beta} \text{ kat } \lambda > 0$

- 4. $\vec{a} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{a} = \lambda \vec{\beta}$ και $\lambda < 0$
- 5. Διανυσματική ακτίνα μέσου: $\overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}$
- 6. Γραμμικός συνδυασμός: $\vec{\gamma} = \lambda \vec{a} + \mu \vec{\beta}$

Πίνακες - Διαγράμματα

Ιδιότητες γινομένου αριθμού με διάνυσμα

Ιδιότητα	Συνθήκη
Επιμεριστική (ως προς αριθμό)	$\lambda \left(\vec{a} \pm \vec{\beta} \right) = \lambda \cdot \vec{a} \pm \lambda \cdot \vec{\beta}$
Επιμεριστική (ως προς διάνυσμα)	$(\lambda \pm \mu) \cdot \vec{a} = \lambda \cdot \vec{a} \pm \mu \cdot \vec{a}$
Προσεταιριστική	$\lambda \left(\mu \vec{a}\right) = (\lambda \cdot \mu) \cdot \vec{a}$
Μηδενικό γινόμενο	$\lambda \cdot \vec{a} = \vec{0} \Leftrightarrow \lambda = 0 \ \acute{\eta} \ \vec{a} = \vec{0}$
Πρόσημο γινομένου	$(-\lambda \cdot \vec{a}) = (-\lambda) \cdot \vec{a} = -(\lambda \cdot \vec{a})$
Νόμος διαγραφής (ως προς διάνυσμα)	Αν $\lambda \cdot \vec{a} = \mu \cdot \vec{a}$ και $\vec{a} \neq 0$ τότε $\lambda = \mu$
Νόμος διαγραφής (ως προς αριθμό)	Αν $\lambda \cdot \vec{a} = \lambda \cdot \vec{\beta}$ και $\lambda \neq 0$ τότε $\vec{a} = \vec{\beta}$

4 Συντεταγμένες διανύσματος

ដ Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες

- 1. Συντεταγμένες διανύσματος
- 2. Συντελεστής διεύθυνσης διανύσματος
- 3. Ορίζουσα διανυσμάτων

Θεωρήματα - Ιδιότητες 💥

- 1. Ίσα διανύσματα
- 2. Οριζόντια Κατακόρυφα διανύσματα
- 3. Συντεταγμένες γραμμικού συνδυασμού
- 4. Συντεταγμένες μέσου τμήματος
- 5. Συντεταγμένες διανύσματος με γνωστά άκρα
- 6. Συνθήκες παραλληλίας διανυσμάτων
- 7. Μέτρο διανύσματος
- 8. Απόσταση σημείων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨

Τυπολόγιο - Συμβολισμοί 🖺

- 1. Συντεταγμένες διανύσματος: $\vec{a} = (x, y)$
- 2. $\lambda = \frac{y}{r}$
- 3. $\vec{a} = \vec{\beta} \Rightarrow x_1 = x_2 \text{ kat } y_1 = y_2$
- 4. $\det(\vec{a}, \vec{\beta}) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = x_1 y_2 x_2 y_1$
- 5. $x_M = \frac{x_A + x_B}{2}$ και $y_M = \frac{y_A + y_B}{2}$

- 6. $\overrightarrow{AB} = (x_B x_A, y_B y_A)$
- 7. $\vec{a} \parallel \vec{\beta} \Leftrightarrow \lambda_{\vec{a}} = \lambda_{\vec{\beta}}$
- 8. $\vec{a} \parallel \vec{\beta} \Leftrightarrow \det(\vec{a}, \vec{\beta}) = 0$
- 9. $|\vec{a}|\sqrt{x^2+y^2}$
- 10. $AB = |\overrightarrow{AB}| = \sqrt{(x_R x_A)^2 + (y_R y_A)^2}$

Πίνακες - Διαγράμματα

Συντεταγμένες γραμμικού συνδυασμού

Πράξη Συντεταγμένες

Άθροισμα

 $\vec{a} + \vec{\beta} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$

Πολλαπλασιασμός

 $\lambda \cdot \vec{a} = \lambda(x_1, y_1) = (\lambda x_1, \lambda y_1)$

Γραμμικός συνδυασμός $\lambda \vec{a} + \mu \vec{\beta} = \lambda(x_1, y_1) + \mu(x_2, y_2) = (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2)$

Εσωτερικό γινόμενο 5

🛱 Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 1. Εσωτερικό γινόμενο διανυσμάτων
- 2. Εσωτερικό γινόμενο Αναλυτικός τύπος

Θεωρήματα - Ιδιότητες 💥

- 1. Ιδιότητες εσωτερικού γινομένου
- 2. Συνθήκη καθετότητας διανυσμάτων
- 3. Συνημίτονο γωνίας διανυσμάτων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί 🖺

1. Εσωτερικό γινόμενο: $\vec{a} \cdot \vec{\beta} = |\vec{a}||\vec{\beta}| \text{sun}(\vec{a}, \vec{\beta})$ 2. Αναλυτικός τύπος γινομένου:

$$\vec{a} \cdot \vec{\beta} = x_1 x_2 + y_1 y_2$$

Πίνακες - Διαγράμματα

Ιδιότητες εσωτερικού γινομένου

Ιδιότητα	Συνθήκη
Κάθετα διανύσματα	Aν $\vec{a}\perp\vec{\beta}$ \Leftrightarrow $\vec{a}\cdot\vec{\beta}=0$ και $\lambda_{\vec{a}}\cdot\lambda_{\vec{\beta}}=-1$
Ομόρροπα διανύσματα	Av $\vec{a} \uparrow \uparrow \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = \vec{a} \cdot \vec{\beta} $
Αντίρροπα διανύσματα	Av $\vec{a} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = - \vec{a} \cdot \vec{\beta} $
Τετράγωνο διανύσματος	$\vec{a}^2 = \vec{a} ^2$
Αντιμεταθετική	$\vec{a}\cdot\vec{eta}=\vec{eta}\cdot\vec{a}$
Προσεταιριστική	$\mu(\vec{a}\cdot\vec{\beta}) = (\mu\vec{\beta})\cdot\vec{a}$
Επιμεριστική	$\vec{a}\cdot\left(\vec{eta}+\vec{\gamma} ight)=\vec{a}\cdot\vec{eta}+\vec{a}\cdot\vec{\gamma}$