Repaso SQL

El lenguaje SQL. Lenguaje SQL:

- ✓ manipulación de datos (consulta y actualización):
 - SELECT (consulta)
 - INSERT (inserción de tuplas)
 - ◆ DELETE (borrado de tuplas)
 - UPDATE (modificación de tuplas)

√ definición de datos (definición del esquema)

SELECT [ALL | DISTINCT] A_{1i}, A_{2j},... A_{nk} *

FROM R_1 , R_2 , ... R_n

[WHERE condición]

[GROUP BY B_1 , B_2 ,... B_m]

[HAVING condición]

SELECT [ALL | DISTINCT] A_{1i}, A_{2j},..., A_{nk} *

FROM R₁, R₂, ..., R_n [WHERE condición]

datos que se desea consultar

condición que cumplen los datos que se desea consultar

relaciones que intervienen en la consulta

Esquema relacional

```
Departamento (cod_dep: tira(5), nombre: tira(40), director tira(30), teléfono: entero)
```

Asignatura (cod_asg: tira(3), nombre: tira(40), semestre: tira(2), teoría: real, prác: real, cod_dep: tira(5))

Profesor (cod_pro : tira(3), nombre : tira(40), teléfono: entero, cod_dep: tira(5))

Docencia (cod_asg: tira(3), cod_pro: tira(3), gteo: entero, gpra: entero)

Departamento

cod_dep	nombre	director	teléfono
DSIC	Sistemas Informáticos y Computación	V. Botti	3500
DISCA	Ingeniería de Sistemas, Computadores y Automática	A. Crespo	5700
MAT	Matemática Aplicada	P. Pérez	6600
FIS	Física Aplicada	J. Linares	5200
IDM	Idiomas	B. Montero	5300
EIO	Estadística e Investigación Operativa	L. Barceló	4900
OEM	Org. de Empresas, Economía Financ. y Contabilidad	M. Pérez	6800

BD relacional

Profesor

A ai	du	04	IIVO
Asi	уn	au	ura

cod_asg	nombre	semestre	teoría	prac	cod_dep
BDA	Bases de Datos	2B	3	3	DSIC
AD1	Algoritmos y Estructuras de Datos 1	1A	4	2	DSIC
FCO	Fundamentos de computadores	1A	4,5	4,5	DISCA
MAD	Matemática Discreta	1A	3	3	MAT
INT	Inglés Técnico	1B	3	3	IDM
FFI	Fundamentos Físicos de la Informática	1A	3	3	FIS
EC2	Estructuras de Computadores 2	2A	3	3	DISCA

Docencia

cod_asg	cod_pro	gteo	gpra
BDA	JCC	2	4
MAD	RFC	1	2
FCO	DGT	2	2
AD1	MAF	1	1
INT	CPG	1	0
EC2	JBD	2	0
BDA	MCG	1	3
AD1	JCC	1	1
FCO	JBD	2	2
AD1	MCG	1	1

cod_pro	nombre	teléfono	cod_dep
JCC	Juan C. Casamayor Ródenas	7796	DSIC
RFC	Robert Fuster i Capilla	6789	MAT
JBD	José V. Benlloch Dualde	5760	DISCA
MAF	María Alpuente Frasnedo	3560	DSIC
CPG	Cristina Pérez Guillot	7439	IDM
JTM	José M. Torralba Martínez	4590	OEM
IGP	Ignacio Gil Pechuán	3423	OEM
DGT	Daniel Gil Tomás	5679	DISCA
MCG	Matilde Celma Giménez	7756	DSIC

Consultas sobre una relación.

SELECT [ALL | DISTINCT] $A_1, A_2, ... A_k | *$ FROM R
[WHERE condición]

de las tuplas de R para las cuales la *condición* se evalúa a **cierto**, obtener el valor de los atributos A₁, A₂,... A_k

R DONDE condición [A₁, A₂,... A_k]

Álgebra Relacional

Cálculo Relacional de Tuplas

RX.A₁, RX.A₂,... RX.A_k | R(RX) ∧ condición

Obtener el código, el nombre y el departamento de adscripción de todas las asignaturas.

SELECT código, nombre, cod_dep **FROM** Asignatura

Obtener el código y el nombre de todas las asignaturas del DSIC.

SELECT código, nombre FROM Asignatura WHERE cod_dep="DSIC"

Obtener el código, el nombre y el total de créditos de todas las asignaturas del DSIC.

SELECT código, nombre, teoría + prac

FROM Asignatura

WHERE cod_dep='DSIC'

operadores aritméticos

Obtener el código de los departamentos que tienen adscritas asignaturas.

SELECT cod_dep **FROM** Asignatura

DSIC

DSIC

DISCA

MAT

IDM

FIS

DISCA

SELECT DISTINCT cod_dep **FROM** Asignatura

DSIC

DISCA

MAT

IDM

FIS

se eliminan las filas duplicadas en la relación resultante de la consulta

Obtener todos los datos de todos los profesores del DISCA.

SELECT *
FROM Profesor
WHERE cod_dep='DISCA'

Obtener el código y el nombre de las asignaturas del DISCA de primer curso.

```
SELECT código, nombre
FROM Asignatura
WHERE cod_dep='DISCA'
AND
(semestre='1A' OR semestre ='1B')
```

```
SELECT código, nombre
FROM Asignatura
WHERE cod_dep='DISCA'
AND
semestre IN ('1A', '1B')
```

Obtener el código de los profesores que tienen a su cargo entre 3 y 5 grupos de clase en una misma asignatura, indicando cual es ésta.

SELECT cod_pro, cod_asg

FROM Docencia

WHERE (gteo+gpra) BETWEEN 3 AND 5

SELECT cod_pro, cod_asg

FROM Docencia

WHERE (gteo+gpra) >= 3 AND (gteo+gpra) <= 5

Obtener el nombre de las asignaturas que tratan de Programación.

SELECT nombre
FROM Asignatura
WHERE nombre LIKE '%Programación%'

El predicado LIKE sirve para comparar una tira de caracteres con un patrón construido con ayuda de los comodines - y %

-: un carácter

%: una tira de 0 o mas caracteres

Obtener el nombre de los departamentos que no tienen director.

SELECT nombre **FROM** Departamento **WHERE** director IS NULL

El predicado IS NULL sirve para comprobar si un atributo tiene valor NULO.

SELECT nombre
FROM Departamento
WHERE director = NULL

NULL no es una constante

Condiciones

LÓGICA TRIVALUADA

Predicados: $\langle , \rangle, =, \geq, \leq, \neq$, IN, BETWEN, LIKE

Evaluación de condiciones:

Si en un argumento de un predicado un atributo tiene VALOR NULO el predicado se evalúa a INDEFINIDO, en caso contrario se evalúa de acuerdo a la semántica del predicado.

Predicado IS NULL:

IS NULL (A) se evalúa a CIERTO para una tupla si el atributo A tiene VALOR NULO en la tupla, en caso contrario se evalúa a FALSO.

Consulta de valores de grupo (valores agregados):

SELECT [ALL | DISTINCT] funciones agregadas

FROM R

[WHERE condición]

valores globales para el conjunto de tuplas que cumplen la condición.

AVG

MAX

MIN

([ALL | DISTINCT] expresión_escalar)

SUM

COUNT

COUNT (*)

Consulta de valores de grupo (valores agregados):

- Las funciones agregadas no se pueden anidar.
- Para las funciones sum y avg los argumentos deben ser numéricos.
- distinct indica que los valores redundantes sean eliminados antes de que se realice el cálculo correspondiente.
- La función especial count(*), en la que no está permitido incluir distinct ni all, da como resultado el cardinal del conjunto de filas de la selección.
- Los cálculos se realizan después de la selección y aplicar las condiciones.
- Los valores nulos son eliminados antes de realizar los cálculos (incl. count).
- Si el número de filas de la selección es 0, la función count devuelve el valor 0 y las otras funciones el valor nulo.

Obtener el número total de créditos de las asignaturas de primer curso.

SELECT SUM (teoría) + SUM (prac)

FROM Asignatura

WHERE (semestre='1A' OR semestre ='1B')

SELECT SUM (teoría + prac)

FROM Asignatura

WHERE (semestre='1A' OR semestre ='1B')

cod_asg	nombre	semestre	teoría	prac	cod_dep
BDA	Bases de Datos	2B	3	3	DSIC
AD1	Algoritmos y Estructuras de Datos 1	1A	4	2	DSIC
FCO	Fundamentos de computadores	1A	4,5	4,5	DISCA
MAD	Matemática Discreta	1A	3	3	MAT
INT	Inglés Técnico	1B	3	3	IDM
FFI	Fundamentos Físicos de la Informática	1A	3	3	FIS
EC2	Estructuras de Computadores 2	2A	3	3	DISCA

SELECT SUM (teoría) + SUM (prac)

FROM Asignatura

WHERE (semestre="1A" OR semestre ="1B")

Obtener el número de profesores del DSIC.

SELECT COUNT (*)
FROM Profesor
WHERE cod_dep="DSIC"

Obtener el número máximo y mínimo de créditos de las asignaturas.

SELECT MAX (teoría + prac), MIN (teoría + prac) **FROM** Asignatura

Obtener el código y el nombre de profesores del DSIC, así como el total de profesores que tiene adscritos.

SELECT cod_pro, nombre, COUNT(*)
FROM Profesor
WHERE cod_dep='DSIC'

cod_pro	nombre	teléfono	cod_dep
JCC	Juan C. Casamayor Ródenas	7796	DSIC
RFC	Robert Fuster i Capilla	6789	MAT
JBD	José V. Benlloch Dualde	5760	DISCA
MAF	María Alpuente Frasnedo	3560	DSIC
CPG	Cristina Pérez Guillot	7439	IDM
JTM	José M. Torralba Martínez	4590	OEM
IGP	Ignacio Gil Pechuán	3423	OEM
DGT	Daniel Gil Tomás	5679	DISCA
MCG	Matilde Celma Giménez	7756	DSIC

cod_pro	nombre
JCC	Juan C. Casamayor Ródenas
MAF	María Alpuente Frasnedo
MCG	Matilde Celma Giménez

¡No se pueden consultar simultáneamente datos de las tuplas individuales y datos globales del grupo de tuplas.!

En consultas no agrupadas, la selección sólo podrá incluir referencias a <u>funciones agregadas</u> o <u>literales</u> ya que las funciones van a devolver un único valor.

Consultas sobre una relación.

SELECT [ALL | DISTINCT] A₁, A₂,... A_k| *
FROM R
[WHERE condición]

expresiones lógicas

- ✓ atributos
- ✓ expresiones
- √ funciones agregadas

Esquema de CICLISMO

Esquema CICLISMO

Esquema CICLISMO (Oracle)

```
CREATE TABLE equipo (
nomeq VARCHAR2(25) CONSTRAINT PK_equi PRIMARY KEY,
descripción VARCHAR2(100));
```

```
CREATE TABLE ciclista (
dorsal NUMBER(3) CONSTRAINT PK_cicli PRIMARY KEY,
nombre VARCHAR2(30) NOT NULL,
edad NUMBER(2),
nomeq VARCHAR(25) NOT NULL
CONSTRAINT FK_cicli_equi REFERENCES equipo (nomeq));
```

Esquema CICLISMO (Oracle)

```
CREATE TABLE etapa (
netapa NUMBER(2) CONSTRAINT PK eta PRIMARY KEY,
 km NUMBER(3),
salida VARCHAR(35),
 llegada VARCHAR(35),
 dorsal NUMBER(3) CONSTRAINT FK_etapa_cicli REFERENCES ciclista (dorsal));
CREATE TABLE puerto (
 nompuerto VARCHAR2(35) CONSTRAINT PK_puerto PRIMARY KEY,
 altura NUMBER(4),
 categoria CHAR(1),
 pendiente NUMBER(3,2),
netapa NUMBER(2) NOT NULL CONSTRAINT FK_puerto_eta REFERENCES etapa(netapa),
 dorsal NUMBER(3) CONSTRAINT FK_puerto_cicli REFERENCES ciclista (dorsal));
```

Esquema CICLISMO (Oracle)

```
CREATE TABLE maillot (
 codigo CHAR(3) CONSTRAINT PK_mai PRIMARY KEY,
 tipo VARCHAR2(30),
 color VARCHAR2(20),
 premio NUMBER(7));
CREATE TABLE llevar (
 dorsal NUMBER(3) NOT NULL CONSTRAINT FK_llevar_cicli REFERENCES ciclista (dorsal),
 netapa NUMBER(2) CONSTRAINT FK_llevar_etapa REFERENCES etapa (netapa),
 codigo CHAR(3) CONSTRAINT FK_llevar_mai
REFERENCES maillot (codigo),
 CONSTRAINT PK_lle PRIMARY KEY (netapa, codigo));
```

Esquema de MÚSICA

Esquema MUSICA

atributos identificadores

atributos de referencia


```
dni VARCHAR2(10) CONSTRAINT PK_arti
PRIMARY KEY,
nombre VARCHAR2(30) NOT NULL);

CREATE TABLE grupo (
cod CHAR(3) CONSTRAINT PK_gru PRIMARY
KEY,
nombre VARCHAR2(30) NOT NULL,
fecha DATE,
pais VARCHAR(10) );
```

CREATE TABLE artista (

```
CREATE TABLE club (
 cod CHAR(3) CONSTRAINT PK_club PRIMARY KEY,
 nombre VARCHAR2(30) NOT NULL,
 sede VARCHAR2(30),
 num NUMBER(6),
 cod_gru CHAR(3) NOT NULL CONSTRAINT FK_club_grupo
  REFERENCES grupo(cod));
CREATE TABLE companyia (
 cod CHAR(3) CONSTRAINT PK_compa PRIMARY KEY,
 nombre VARCHAR2(30) NOT NULL,
 dir VARCHAR2(30),
fax VARCHAR2(15),
 tfno VARCHAR2(15));
```

```
CREATE TABLE cancion (
cod NUMBER(3) CONSTRAINT PK_can PRIMARY
KEY,
titulo VARCHAR2(30) NOT NULL,
duracion NUMBER(2) );
```

```
CREATE TABLE disco (
cod CHAR(3) CONSTRAINT PK_dis PRIMARY KEY,
nombre VARCHAR2(30),
fecha DATE,
cod_comp CHAR(3) NOT NULL CONSTRAINT
FK_disco_comp REFERENCES companyia (cod),
cod_gru CHAR(3) NOT NULL CONSTRAINT
FK_disco_grupo REFERENCES grupo(cod));
```

CREATE TABLE esta (

can NUMBER(3) CONSTRAINT FK_esta_can REFERENCES cancion (cod),

cod CHAR(3) CONSTRAINT FK_esta_disco REFERENCES disco (cod),

CONSTRAINT PK_esta PRIMARY KEY (can, cod));

CREATE TABLE pertenece (

dni VARCHAR2(10 CONSTRAINT FK_perte_arti REFERENCES artista (dni),

cod CHAR(3) CONSTRAINT FK_perte_grupo REFERENCES grupo (cod),

funcion VARCHAR2(15),

CONSTRAINT PK_perte PRIMARY KEY (dni, cod));

Esquema de BIBLIOTECA

Esquema BIBLIOTECA

atributos de referencia atributos identificadores ESCRIBIR OBRA ESTA_EN **AUTOR** cod_obra cod_ob cod_ob autor_id autor_id título id lib nombre año nacionalidad temática TEMA temática PRESTAMO descripción LIBRO AMIGO num id lib id_lib num título nombre año teléfono num_obras

```
CREATE TABLE autor (
 autor_id CHAR(4),
 nombre VARCHAR2(35) NOT NULL,
 nacionalidad VARCHAR2(20),
 CONSTRAINT cp_autor PRIMARY KEY (autor_id));
CREATE TABLE libro (
 id_lib VARCHAR2(10),
 titulo VARCHAR2(80),
 año NUMBER(5,0),
 num_obras NUMBER(5,0),
CONSTRAINT cp_lib PRIMARY KEY (id_lib));
```

```
CREATE TABLE tema (
 tematica VARCHAR2(20),
 descripcion VARCHAR2(50),
 CONSTRAINT cp_tema PRIMARY KEY (tematica));
CREATE TABLE obra (
 cod_ob NUMBER(10,0),
titulo VARCHAR2(80) NOT NULL,
tematica VARCHAR2(20),
 CONSTRAINT cp_obra PRIMARY KEY (cod_ob),
 CONSTRAINT ca_obra_tema FOREIGN KEY
  (tematica) REFERENCES tema(tematica));
```

```
CREATE TABLE amigo (
 num NUMBER(5),
 nombre VARCHAR2(60) NOT NULL,
 telefono VARCHAR2(10),
 CONSTRAINT cp_amigo PRIMARY KEY (num));
CRÉATE TABLE prestamo (
 num NUMBER(5),
 id_lib VARCHAR2(10),
 CONSTRAINT cp_pres PRIMARY KEY (num, id_lib),
 CONSTRAINT ca_pres_obra FOREIGN KEY (num) REFERENCES amigo(num),
 CONSTRAINT ca_pres_libro FOREIGN KEY (id_lib) REFERENCES libro(id_lib));
```

```
CREATE TABLE esta_en (
 cod_ob NUMBER(10,0),
 id_lib VARCHAR2(10),
 CONSTRAINT cp_esta_en PRIMARY KEY (cod_ob, id_lib),
 CONSTRAINT ca_estaen_obra FOREIGN KEY (COD_OB) REFERENCES obra(cod_ob),
 CONSTRAINT ca_estaen_libro FOREIGN KEY (ID_LIB) REFERENCES libro(id_lib));
CREATE TABLE escribir (
 autor_id CHAR(4),
 cod_ob NUMBER(10,0),
 CONSTRAINT cp_escribir PRIMARY KEY (autor_id, cod_ob),
 CONSTRAINT ca_esc_obra FOREIGN KEY (cod_ob) REFERENCES
   obra(cod_ob),
 CONSTRAINT ca_esc_autor FOREIGN KEY (autor_id) REFERENCES autor(autor_id));
```

Consultas sobre varias relaciones

Consultas sobre varias relaciones.

SELECT [ALL | DISTINCT] A_{1i} , A_{2j} ,... A_{kl} *

FROM R_1 , R_2 , ... R_n

[WHERE condición]

[GROUP BY B_1 , B_2 ,... B_m]

[HAVING condición]

Esquema relacional

```
Departamento (cod_dep: tira(5), nombre: tira(40), director tira(30), teléfono: entero)
```

Asignatura (cod_asg: tira(3), nombre: tira(40), semestre: tira(2), teoría: real, prác: real, cod_dep: tira(5))

Profesor (cod_pro : tira(3), nombre : tira(40), teléfono: entero, cod_dep: tira(5))

Docencia (cod_asg: tira(3), cod_pro: tira(3), gteo: entero, gpra: entero)

Departamento

cod_dep	nombre	director	teléfono
DSIC	Sistemas Informáticos y Computación	V. Botti	3500
DISCA	Ingeniería de Sistemas, Computadores y Automática	A. Crespo	5700
MAT	Matemática Aplicada	P. Pérez	6600
FIS	Física Aplicada	J. Linares	5200
IDM	Idiomas	B. Montero	5300
EIO	Estadística e Investigación Operativa	L. Barceló	4900
OEM	Org. de Empresas, Economía Financ. y Contabilidad	M. Pérez	6800

BD relacional

Profesor

Asig	nat	ura
-------------	-----	-----

cod_asg	nombre	semestre	teoría	prac	cod_dep
BDA	Bases de Datos	2B	3	3	DSIC
AD1	Algoritmos y Estructuras de Datos 1	1A	4	2	DSIC
FCO	Fundamentos de computadores	1A	4,5	4,5	DISCA
MAD	Matemática Discreta	1A	3	3	MAT
INT	Inglés Técnico	1B	3	3	IDM
FFI	Fundamentos Físicos de la Informática	1A	3	3	FIS
EC2	Estructuras de Computadores 2	2A	3	3	DISCA

Docencia

cod_asg	cod_pro	gteo	gpra
BDA	JCC	2	4
MAD	RFC	1	2
FCO	DGT	2	2
AD1	MAF	1	1
INT	CPG	1	0
EC2	JBD	2	0
BDA	MCG	1	3
AD1	JCC	1	1
FCO	JBD	2	2
AD1	MCG	1	1

cod_pro	nombre	teléfono	cod_dep
JCC	Juan C. Casamayor Ródenas	7796	DSIC
RFC	Robert Fuster i Capilla	6789	MAT
JBD	José V. Benlloch Dualde	5760	DISCA
MAF	María Alpuente Frasnedo	3560	DSIC
CPG	Cristina Pérez Guillot	7439	IDM
JTM	José M. Torralba Martínez	4590	OEM
IGP	Ignacio Gil Pechuán	3423	OEM
DGT	Daniel Gil Tomás	5679	DISCA
MCG	Matilde Celma Giménez	7756	DSIC

Consultas sobre varias relaciones.

SELECT [ALL | DISTINCT]
$$A_{1i}$$
, A_{2j} ,... A_{nk} *

FROM R_1 , R_2 , ... R_n

[WHERE condición]

de las tuplas de R_1 , R_2 , ... R_n para las cuales la *condición* se evalúa a **CIERTO**, obtener el valor de los atributos A_{1i} , A_{2j} ,... A_{nk}

A_{1i} denota el iésimo atributo de la relación R₁

Obtener de todos los profesores: su código, su nombre y el nombre de su departamento de adscripción.

SELECT cod_pro, nombre, cod_dep

FROM Profesor

SELECT Profesor.cod_pro, Profesor.nombre, Departamento.nombre

FROM Profesor, Departamento

WHERE Profesor.cod_dep = Departamento.cod_dep

De los pares de tuplas de *Profesor* y *Departamento* para los cuales la condición se evalúa a **CIERTO** obtener el valor de los atributos *cod_pro* y *nombre* de *Profesor* y *nombre* de *Departamento*.

Profesor

cod_pro	nombre	teléfono	cod_dep
JCC	Juan C. Casamayor Ródenas	7796	DSIC
RFC	Robert Fuster 1 Capilla	6789	MAT
JBD	José V. Benlloch Dualde	5760	DISCA
MAF	María Alpuente Frasnedo	3560	DSIC
CPG	Cristina Pérez Guillot	7439	IDM
JTM	José M. Torralba Martínez	4590	OEM
IGP	Ignacio Gil Pechuán	3423	OEM
DGT	Daniel Gil Tomás	5679	DISCA
MCG	Matilde Celma Giménez	7756	DSIC

Departamento

cod_dep	nombre	director	teléfono
DSIC	Sistemas Informáticos y Computación	V. Botti	3500
DISCA	Ingeniería de Sistemas, Computadores y Automática	A. Crespo	5700
MAT	Matemática Aplicada	P. Pérez	6600
FIS	Física Aplicada	J. Linares	5200
IDM	Idiomas	B. Montero	5300
EIO	Estadística e Investigación Operativa	L. Barceló	4900
OEM	Org. de Empresas, Economía Financ. y Contabilidad	M. Pérez	6800

las tuplas marcadas de Profesor y Departamento cumplen la condición

Profesor.cod_pro	Profesor.nombre	Departamento.nombre
JCC	Juan C. Casamayor Ródenas	Sistemas Informáticos y Computación
RFC	Robert Fuster i Capilla	Matemática Aplicada
JBD	José V. Benlloch Dualde	Ingeniería de Sistemas Computadores y Automática
MAF	María Alpuente Frasne	mas Informáticos y Computación
CPG	Cristina Pérez C	Idiomas
JTM	José M. T. Sulla Mar	Organización de Empresas
IGP	Ignaci	Organización de Empresas
DGT	relacio 1 Tomás	Ingeniería de Sistemas Computadores y Automática
MCG	de Celma Giménez	Sistemas Informáticos y Computación

Profesor

cod_pro	nombre	teléfono	cod_dep
JCC	Juan C. Casamayor Ródenas	7796	DSIC
RFC	Robert Fuster i Capilla	6789	MAT
JBD	José V. Benlloch Dualde	5760	DISCA
MAF	María Alpuente Frasnedo	3560	DSIC
CPG	Cristina Pérez Guillot	7439	IDM
JTM	José M. Torralba Martínez	4590	OEM
IGP	Ignacio Gil Pechuán	3423	OEM
DGT	Daniel Gil Tomás	5679	DISCA
MCG	Matilde Celma Giménez	7756	DSIC

Departamento

cod_dep	nombre	director	teléfono
DSIC	Sistemas Informáticos y Computación	V. Botti	3500
DISCA	Ingeniería de Sistemas, Computadores y Automática	A. Crespo	5700
MAT	Matemática Aplicada	P. Pérez	6600
FIS	Física Aplicada	J. Linares	5200
IDM	Idiomas	B. Montero	5300
EIO	Estadística e Investigación Operativa	L. Barceló	4900
OEM	Org. de Empresas, Economía Financ. y Contabilidad	M. Pérez	6800

las tuplas marcadas de Profesor y Departamento no cumplen la condición

Profesor.cod_pro	Profesor.nombre	Departamento.nombre
JCC	Juan C. Casamayor Ródenas	Sistemas Informáticos y Computación
RFC	Robert Fuster i Capilla	Matemática Aplicada
JBD	José V. Benlloch Dualde	Zeniería de Sistemas Computadores y Automática
MAF	María Alpuente Frasp	cemas Informáticos y Computación
CPG	Cristina Pérez	Idiomas
JTM	José M.	Organización de Empresas
IGP	Igna chuán	Organización de Empresas
DGT	cha Sil Tomás	Ingeniería de Sistemas Computadores y Automática
MCG	M. cilde Celma Giménez	Sistemas Informáticos y Computación

Profesor

cod_pro	nombre	teléfono	cod_dep
JCC	Juan C. Casamayor Ródenas	7796	DSIC
RFC	Robert Fuster i Capilla	6789	MAT
JBD	José V. Benlloch Dualde	5760	DISCA
MAF	María Alpuente Frasnedo	3560	DSIC
CPG	Cristina Pérez Guillot	7439	IDM
JTM	José M. Torralba Martínez	4590	OEM
IGP	Ignacio Gil Pechuán	3423	OEM
DGT	Daniel Gil Tomás	5679	DISCA
MCG	Matilde Celma Giménez	7756	DSIC

Departamento

cod_dep	nombre	director	teléfono	
DSIC	Sistemas Informáticos y Computación	V. Botti	3500	
DISCA	SCA Ingeniería de Sistemas, A. Crespo Computadores y Automática		5700	
MAT	Matemática Aplicada	P. Pérez	6600	
FIS	Física Aplicada	J. Linares	5200	
IDM	Idiomas	B. Montero	5300	
EIO	Estadistica e Investigacion Operativa	L. Barcelo	4900	
OEM	Org. de Empresas, Economía Financ. y Contabilidad	M. Pérez	6800	

las tuplas marcadas de Profesor y Departamento cumplen la condición

Profesor.cod_pro	Profesor.nombre	Departamento.nombre	
JCC	Juan C. Casamayor Ródenas	Sistemas Informáticos y Computación	
RFC	Robert Fuster i Capilla	Matemática Aplicada	
JBD	José V. Benlloch Dualde	Ingeniería de Sistemas Computadores y Automática	
MAF	María Alpuente Frasnedo	Sistemas Informáticos y Computación	
CPG	Cristina Pérez Guillot	Idiomas	
JTM	José M. Torralba Martínez	Computación Idiomas Organización de Empresas Organización de Empresas	
IGP	Ignacio Gil Pechuán	Organización de Empresas	
DGT	Daniel Gil Tomás	Ingeniería de Comput	
MCG	Matilde Celma Giménez	Sistema .áticos y	

Consultas sobre varias relaciones.

SELECT [ALL | DISTINCT] A_{1i} , A_{2j} ,... A_{nk} *

FROM R_1 , R_2 , ... R_n [WHERE condición]

Álgebra ∕Relacional

R₁ X R₂ X ...X R_n DONDE condición [A_{1i}, A_{2j},..., A_{nk}]

Consultas sobre varias relaciones.

SELECT [ALL | DISTINCT] A_{1i} , A_{2j} ,... A_{nk} *

FROM R_1 , R_2 , ... R_n [WHERE condición]

Cálculo Relacional de Tuplas

 $\{R_1X.A_{1i},R_2X.A_{2j},...,R_nX.A_{nk}|R_1(R_1X) \land R_2(R_2X) \land ... \land R_n(R_nX) \land condición \}$

Se asume que para cada relación que aparece en el FROM existe una variable-tupla declarada sobre el esquema de la relación.

 $R_1X: R_1, R_2X: R_2, ..., R_nX: R_n$

SELECT cod_pro, Profesor.nombre, Departamento.nombre FROM Profesor, Departamento WHERE Profesor.cod_dep = Departamento.cod_dep

> ¡ la calificación de los atributos sólo es necesaria cuando puede existir ambigüedad!

Para cada relación en el FROM se puede declarar una variable de recorrido específica: PX, DX

SELECT PX.cod_pro, PX.nombre, DX.nombre FROM Profesor PX, Departamento DX WHERE PX.cod_dep = DX.cod_dep

{PX.cod_pro, PX.nombre, DX.nombre |

Profesor(PX) ∧ Departamento(DX) ∧ PX.cod_dep=DX.cod_dep}

Cálculo Relacional de Tuplas

Obtener la docencia de los profesores del DSIC: nombre del profesor, nombre de la asignatura impartida y grupos impartidos.

```
FROM Profesor PX, Docencia DX, Asignatura AX
WHERE PX.cod_pro = DX.cod_pro
AND
AX.cod_asg = DX.cod_asg
AND
PX.cod_dep="DSIC"
```

Asignatura

Profesor

cod_asg	nombre	semestre	teoría	prac	cod_dep
BDA	Bases de Datos	2B	3	3	DSIC
AD1	Algoritmos y Estructuras de Datos 1	1A	4	2	DSIC
FCO	Fundamentos de computadores	1A	4,5	4,5	DISCA
MAD	Matemática Discreta	1A	3	3	MAT
INT	Inglés Técnico	1B	3	3	IDM
FFI	Fundamentos Físicos de la Informática	1A	3	3	FIS
EC2	Estructuras de Computadores 2	2A	3	3	DISCA

	cod_pro	nombre	teléfono	cod_dep
→	JCC	Juan C. Casamayor Ródenas	7796	DSIC
	RFC	Robert Fuster i Capilla	6789	MAT
	JBD	José V. Benlloch Dualde	5760	DISCA
	MAF	María Alpuente Frasnedo	3560	DSIC
	CPG	Cristina Pérez Guillot	7439	IDM
	JTM	José M. Torralba Martínez	4590	OEM
	IGP	Ignacio Gil Pechuán	3423	OEM
	DGT	Daniel Gil Tomás	5679	DISCA
→	MCG	Matilde Celma Giménez	7756	DSIC
-				

las tuplas marcadas de Profesor, Asignatura y Docencia cumplen la condición

	cod_asg	cod_pro	gteo	gpra
	BDA	JCC	2	4
	MAD	RFC	1	2
	FCO	DGT	2	2
	AD1	MAF	1	1
	INT	CPG	1	0
	EC2	JBD	2	0
	BDA	MCG	1	3
	AD1	JCC	1	1
	FCO	JBD	2	2
	AD1	MCG	1	1

Docencia

Obtener el nombre de los profesores que imparten mas de una asignatura.

En este ejemplo el uso de las variables de recorrido (alias de relación) es imprescindible.

Obtener el nombre de los profesores que imparten asignaturas que no son de su departamento.

Consultas sobre varias relaciones.

SELECT [ALL | DISTINCT] A_{1i} , A_{2j} ,... A_{nk} *

FROM R_1 , R_2 , ... R_n [WHERE condición]

condiciones de concatenación de las relaciones R₁, R₂, ...R_n

AND

condiciones de la consulta

la concatenación entre R₁, R₂, ...R_n se realiza usualmente sobre los atributos de referencia de las relaciones.

Subconsultas.

En una consulta (SELECT externa) se utiliza una subconsulta (SELECT interna) para obtener datos que serán utilizados como argumentos de predicados de la consulta.

Obtener el nombre de los profesores adscritos al mismo departamento que 'JCC'.

```
SELECT PX.nombre<br/>
FROM Profesor PX<br/>
WHERE PX.cod_dep
```

(SELECT PY.cod_dep FROM Profesor PY WHERE PY.cod_pro='JCC')

subconsulta: devuelve un valor utilizado como operando del predicado de comparación =

Obtener el nombre de los profesores adscritos al mismo departamento que 'JCC'.

```
FROM Profesor PX, Profesor PY
WHERE PX.cod_dep =
PY.cod_dep
AND
PY.cod_pro='JCC'
```

¡en ocasiones las subconsultas no son imprescindibles aunque sirven para estructurar la consulta!

Obtener el nombre de los profesores que imparten alguna de las asignaturas impartidas por el profesor de código 'JCC'.

SELECT PX.nombre

FROM Profesor PX, Docencia DX

WHERE PX.cod_pro = DX.cod_pro

AND

DX.cod_asg IN

(SELECT DY.cod_asg FROM Docencia DY WHERE DY.cod_pro='JCC')

subconsulta: devuelve una lista de valores utilizada como argumento del predicado IN

Obtener el nombre de los profesores que imparten alguna asignatura de mas de 6 créditos.

FROM Profesor

WHERE

cod_pro IN

(SELECT cod_pro
FROM Docencia
WHERE

cod_asg IN (SELE

(SELECT cod_asg FROM Asignatura WHERE(teoría+prac)>6))

¡las subconsultas se pueden anidar!

Obtener el nombre de las asignaturas que tienen menos créditos.

FROM Asignatura AX
WHERE (AX.teoría + AX.prac)

(SELECT AY.teoría + AY.prac
FROM Asignatura AY)

subconsulta: devuelve una lista de valores (no puede ser utilizada como operando de un predicado de comparación).

Predicados que admiten subconsultas como argumentos:

- ✓ predicados de comparación α : =, <>, >, <, >=, <=.</p>
 - [expresión| subconsulta] α [expresión| subconsulta]
- ✓ predicado IN: expresión IN (subconsulta)
- ✓ predicados de comparación cuantificados:
 - expresión α [ALL| ANY] (subconsulta)
- ✓ predicado EXISTS: EXISTS (subconsulta)
- ✓ predicado MATCH
- ✓ predicado UNIQUE

Si la evaluación de la subconsulta es vacía, se devuelve una tupla de valores nulos.

Predicados de comparación cuantificados:

- Los predicados de comparación cuantificados con **ALL** se evalúan a CIERTO si la comparación se evalúa a CIERTO para todos los valores devueltos por la subconsulta.
- ✓ Los predicados de comparación cuantificados con ANY o SOME se evalúan a CIERTO si la comparación se evalúa a CIERTO para <u>algún</u> valor devuelto por la subconsulta.

Obtener el nombre de las asignaturas que tienen el mayor número de créditos.

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría + AX.prac)

>= ALL

(SELECT DISTINCT (AY.teoría + AY.prac)

FROM Asignatura AY)

subconsulta: devuelve una lista de valores (créditos de todas las asignaturas).

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría + AX.prac)

>= ALL

(SELECT DISTINCT (AY.teoría + AY.prac) FROM Asignatura AY)

6
9

	cod_asg	nombre	semestre	teoría	prac	cod_dep
	BDA	Bases de Datos	2B	3	3	DSIC
	AD1	Algoritmos y Estructuras de Datos 1	1A	4	2	DSIC
	FCO	Fundamentos de computadores	1A	4,5	4,5	DISCA
	MAD	Matemática Discreta	1A	3	3	MAT
	INT	Inglés Técnico	1B	3	3	IDM
	FFI	Fundamentos Físicos de la Informática	1A	3	3	FIS
	EC2	Estructuras de Computadores 2	2A	3	3	DISCA

>= ALL 6

Obtener el nombre de las asignaturas que no son las de menor número de créditos.

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría + AX.prac)

> ANY

(SELECT DISTINCT (AY.teoría + AY.prac)

FROM Asignatura AY)

subconsulta: devuelve una lista de valores (créditos de todas las asignaturas).

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría + AX.prac)

> ANY

(SELECT DISTINCT (AY.teoría + AY.prac) FROM Asignatura AY)

6
9

cod_asg	nombre	semestre	teoría	prac	cod_dep
BDA	Bases de Datos	2B	3	3	DSIC
AD1	Algoritmos y Estructuras de Datos 1	1A	4	2	DSIC
FCO	Fundamentos de computadores	1A	4,5	4,5	DISCA
MAD	Matemática Discreta	1A	3	3	MAT
INT	Inglés Técnico	1B	3	3	IDM
FFI	Fundamentos Físicos de la Informática	1A	3	3	FIS
EC2	Estructuras de Computadores 2	2A	3	3	DISCA

> ANY

6
9

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría+AX.prac)

>= ALL

(SELECT DISTINCT (AY.teoría + AY.prac)

FROM Asignatura AY)

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría+AX.prac)

>=

(SELECT MAX (AY.teoría + AY.prac)

FROM Asignatura AY)

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría+AX.prac)

> ANY

(SELECT DISTINCT (AY.teoría + AY.prac)

FROM Asignatura AY)

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría+AX.prac)

>

(SELECT MIN (AY.teoría + AY.prac)

FROM Asignatura AY)

Evaluación de los predicados de comparación, el predicado IN, y los predicados de comparación cuantificados con subconsultas vacías:

[expresión| subconsulta] α [expresión| subconsulta] INDEFINIDO

expresión IN (subconsulta) FALSO

expresión α ALL (subconsulta) CIERTO

expresión α ANY (subconsulta) FALSO

Subconsultas relacionadas

Departamento

cod_dep	nombre	director	teléfono
DSIC	Sistemas Informáticos y Computación	V. Botti	3500
DISCA	Ingeniería de Sistemas, Computadores y Automática	A. Crespo	5700
MAT	Matemática Aplicada	P. Pérez	6600
FIS	Física Aplicada	J. Linares	5200
IDM	Idiomas	B. Montero	5300
EIO	Estadística e Investigación Operativa	L. Barceló	4900
OEM	Org. de Empresas, Economía Financ. y Contabilidad	M. Pérez	6800

BD relacional

Profesor

A ai	du	04	IIVO
Asi	уn	au	ura

cod_asg	nombre	semestre	teoría	prac	cod_dep
BDA	Bases de Datos	2B	3	3	DSIC
AD1	Algoritmos y Estructuras de Datos 1	1A	4	2	DSIC
FCO	Fundamentos de computadores	1A	4,5	4,5	DISCA
MAD	Matemática Discreta	1A	3	3	MAT
INT	Inglés Técnico	1B	3	3	IDM
FFI	Fundamentos Físicos de la Informática	1A	3	3	FIS
EC2	Estructuras de Computadores 2	2A	3	3	DISCA

Docencia

cod_asg	cod_pro	gteo	gpra
BDA	JCC	2	4
MAD	RFC	1	2
FCO	DGT	2	2
AD1	MAF	1	1
INT	CPG	1	0
EC2	JBD	2	0
BDA	MCG	1	3
AD1	JCC	1	1
FCO	JBD	2	2
AD1	MCG	1	1

cod_pro	nombre	teléfono	cod_dep
JCC	Juan C. Casamayor Ródenas	7796	DSIC
RFC	Robert Fuster i Capilla	6789	MAT
JBD	José V. Benlloch Dualde	5760	DISCA
MAF	María Alpuente Frasnedo	3560	DSIC
CPG	Cristina Pérez Guillot	7439	IDM
JTM	José M. Torralba Martínez	4590	OEM
IGP	Ignacio Gil Pechuán	3423	OEM
DGT	Daniel Gil Tomás	5679	DISCA
MCG	Matilde Celma Giménez	7756	DSIC

Subconsultas relacionadas.

SELECT AX.nombre

FROM Asignatura AX

WHERE (AX.teoría+AX.prac)

>=

(SELECT MAX (AY.teoría + AY.prac) FROM Asignatura AY)

Subconsultas relacionadas.

En la subconsulta se hace referencia a relaciones de la consulta más externa.

Obtener el nombre de las asignaturas que tienen el mayor número de créditos.

```
SELECT AX.nombre diente
FROM Asignet pendiente
WHERF independiente
WHERF independiente
SUbconsult =
SUbconsult =
                                                                la subconsulta se evalúa una
                                                               única vez
            CT MAX (AY.teoría + AY.prac) FROM Asignatura AY)
```

Obtener el nombre de las asignaturas que tienen el mayor número de créditos en su departamento.

```
FROM Asignatur diente
WHERE (* dependiente
who a+AX.prac)
```

la subconsulta se evalúa una vez para cada tupla de Asignatura (AX)

```
MAX (AY.teoría + AY.prac) FROM Asignatura AY
WHERE AY.cod_dep=AX.cod_dep)
```

Predicado EXISTS

EXISTS (subconsulta)

El predicado EXISTS se evalúa a CIERTO si la subconsulta (sentencia SELECT) devuelve al menos una fila, en caso contrario se evalúa a FALSO.

Obtener el nombre de los profesores que imparten más de 4 grupos en alguna asignatura.

```
FROM Profesor PX
WHERE EXISTS (SELECT * FROM Docencia DX
WHERE DX.cod_pro=PX.cod_pro
AND
(DX.gteo+DX.gpra)>4)
```

```
FROM Profesor PX
WHERE EXISTS (SELECT * FROM Docencia DX
WHERE DX.cod_pro=PX.cod_pro
AND
(DX.gteo+DX.gpra)>4)
```



```
FROM Profesor PX
WHERE PX.cod_pro IN (SELECT DX.cod_pro
FROM Docencia DX
WHERE (DX.gteo+DX.gpra)>4)
```

¡El predicado EXISTS es equivalente al cuantificador existencial de la lógica!

¡El predicado EXISTS es equivalente al cuantificador existencial de la lógica!

```
SQL
SELECT PX.nombre
FROM Profesor PX
WHERE EXISTS (SELECT * FROM Docencia DX
             WHERE DX.cod_pro= PX.cod_pro
                      AND
                 (DX.gteo+DX.gpra) > 4
                                                        AR
PX.nombre | PX:Profesor A
        ∃ DX: Docencia
                                                 (DX.cod_pro =
PX.cod_pro \(\Lambda\)
                  (DX.gteo+DX.gpra) > 4)
```

Predicado EXISTS: Cuantificación universal.

¡ El cuantificador universal no existe en SQL!

$$\forall X F(X) \equiv \exists X F(X)$$

$$A \rightarrow B \equiv A \lor B$$

$$\forall X (A(X) \rightarrow B(X))$$

$$\equiv$$

$$\exists X (A(X) \rightarrow B(X))$$

$$\equiv$$

$$\exists X (A(X) \land \exists B(X))$$

Obtener el nombre de los profesores que imparten todas las asignaturas.

```
PX.nombre| PX:Profesor \land
\forall AX: Asignatura \rightarrow \exists DX : Docencia \land
DX.cod\_pro=PX.cod\_pro \land DX.cod\_asg=AX.cod\_asg)
```

$$\forall X (A(X) \rightarrow B(X)) \equiv \exists X (A(X) \land \exists B(X))$$

PX.nombre| PX:Profesor ∧

☐ ∃AX: Asignatura ∧ ☐ ∃DX: Docencia ∧

DX.cod_pro=PX.cod_pro ∧ DX.cod_asg=AX.cod_asg))

Obtener el nombre de los profesores que imparten todas las asignaturas.

```
AR
```

```
PX.nombre| PX:Profesor A
```

```
∃AX: Asignatura ∧ ∃DX: Docencia ∧
```

DX.cod_pro=PX.cod_pro \ DX.cod_asg=AX.cod_asg))}

SQL

SELECT PX.nombre

FROM Profesor PX

WHERE NOT EXISTS (SELECT * FROM Asignatura AX

WHERE

NOT EXISTS (SELECT *

FROM Docencia DX

WHERE DX.cod_pro=PX.cod_pro \times

DX.cod_asg=AX.cod_asg))

Obtener el nombre de los profesores que imparten todas las asignaturas de su departamento.

```
PX.nombre| PX: Profesor

∀AX: Asignatura ∧ AX.cod_dep= PX.cod_dep

→

∃DX: Docencia ∧

DX.cod_pro=PX.cod_pro ∧ DX.cod_asg=AX.cod_asg) )
```

PX.nombre| PX: Profesor ∧

☐ ∃AX: Asignatura ∧ AX.cod_dep= PX.cod_dep

∧

☐ ∃DX: Docencia ∧

DX.cod_pro=PX.cod_pro ∧ DX.cod_asg=AX.cod_asg

```
PX.nombre| PX: Profesor \( \)
\[ \] \Bar{AX: Asignatura \( \lambda \) AX.cod_dep= PX.cod_dep} \\
\[ \lambda \]
\[ \] \Bar{BX: Docencia \( \lambda \)
\[ DX.cod_pro=PX.cod_pro \( \lambda \) DX.cod_asg=AX.cod_asg
```

SELECT PX.nombre

FROM Profesor PX
WHERE NOT EXISTS (SELECT * FROM Asignatura AX

WHERE AX.cod_dep= PX.cod_dep

AND

NOT EXISTS (SELECT * FROM Docencia DX WHERE DX.cod_pro=PX.cod_pro \(\DX.cod_asg=AX.cod_asg() \)

Predicado UNIQUE

UNIQUE (subconsulta)

El predicado UNIQUE se evalúa a CIERTO si en la subconsulta (sentencia SELECT) no hay tuplas duplicadas, en caso contrario se evalúa a FALSO.

Evaluación de los predicados EXISTS, UNIQUE con subconsultas vacías:

EXISTS (subconsulta)

expresión UNIQUE (subconsulta)

FALSO

CIERTO

Consultas agrupadas

Consultas agrupadas.

SELECT [ALL | DISTINCT] A_{1i}, A_{2j},..., A_{nk} *

FROM R₁, R₂, ..., R_n

[WHERE condición]

[GROUP BY B_1 , B_2 ,..., B_m]

[HAVING condición]

Consulta de valores de grupo:

SELECT [ALL | DISTINCT] funciones agregadas

FROM R

[WHERE condición]

valores globales para el conjunto de tuplas que cumplen la condición.

AVG

MAX

MIN

([ALL | DISTINCT] expresión_escalar)

SUM

COUNT

COUNT (*)

Obtener el número total de créditos de las asignaturas de primer curso.

```
SELECT SUM (teoría) + SUM (prac)
FROM Asignatura
WHERE (semestre='1A' OR semestre ='1B')
```

SELECT SUM (teoría + prac)
FROM Asignatura
WHERE (semestre='1A' OR semestre ='1B')

- Los valores nulos son ignorados para realizar los cálculos.
- Si el número de filas de la seleccionadas es 0, la función
 COUNT devuelve el valor 0 y las otras funciones el valor nulo.

cod_asg	nombre	semestre	teoría	prac	cod_dep
BDA	Bases de Datos	2B	3	3	DSIC
AD1	Algoritmos y Estructuras de Datos 1	1A	4	2	DSIC
FCO	Fundamentos de computadores	1A	4,5	4,5	DISCA
MAD	Matemática Discreta	1A	3	3	MAT
INT	Inglés Técnico	1B	3	3	IDM
FFI	Fundamentos Físicos de la Informática	1A	3	3	FIS
EC2	Estructuras de Computadores 2	2A	3	3	DISCA

SELECT SUM (teoría) + SUM (prac)

FROM Asignatura

WHERE (semestre="1A" OR semestre ="1B")

Obtener el número total de profesores de cada departamento.

Profesor

cod_pro	nombre	teléfono	cod_dep			
JCC	Juan C. Casamayor Ródenas	7796	DSIC			
RFC	Robert Fuster i Capilla	6789	MAT		cod_dep	
JBD	José V. Benlloch Dualde	5760	DISCA	 	DSIC	3
MAF	María Alpuente Frasnedo	3560	DSIC		MAT	1
CPG	Cristina Pérez Guillot	7439	IDM		DISCA	2
JTM	José M. Torralba Martínez	4590	OEM		IDM	1
IGP	Ignacio Gil Pechuán	3423	OEM	 	OEM	2
DGT	Daniel Gil Tomás	5679	DISCA			
MCG	Matilde Celma Giménez	7756	DSIC			

Consultas agrupadas.

SELECT [ALL | DISTINCT] A_{1i}, A_{2j},..., A_{nk} *

FROM R₁, R₂, ..., R_n

[WHERE condición]

[GROUP BY B_1 , B_2 ,..., B_m]

[HAVING condición]

GROUP BY: define grupos de tuplas en el conjunto de tuplas seleccionadas por la condición WHERE. Los grupos se definen por la igualdad de valor en los atributos de agrupación (B_1 , B_2 ,..., B_m).

HAVING: de los grupos definidos se seleccionan aquellos que cumplen la condición expresada.

Obtener el número total de profesores de cada departamento.

Profesor

Robert Fuster i Capilla 6789 MAT José V. Benlloch Dualde 5760 DISCA María Alpuente Frasnedo 3560 DSIC Cristina Pérez Guillot 7439 IDM José M. Torralba Martínez 4590 OEM Ignacio Gil Pechuán 3423 OEM Daniel Gil Tomás 5679 DISCA	cod_pro nombre	teléfono	cod_dep
José V. Benlloch Dualde 5760 DISCA María Alpuente Frasnedo 3560 DSIC Cristina Pérez Guillot 7439 IDM José M. Torralba Martínez 4590 OEM Ignacio Gil Pechuán 3423 OEM Daniel Gil Tomás 5679 DISCA	JCC Juan C. Casamayor Ródenas	7796	DSIC
María Alpuente Frasnedo Cristina Pérez Guillot José M. Torralba Martínez Ignacio Gil Pechuán Daniel Gil Tomás 3560 DSIC DISCA MAT DISCA DISCA	RFC Robert Fuster i Capilla	6789	MAT
Cristina Pérez Guillot 7439 IDM José M. Torralba Martínez 4590 OEM Ignacio Gil Pechuán 3423 OEM Daniel Gil Tomás 5679 DISCA	JBD José V. Benlloch Dualde	5760	DISCA
José M. Torralba Martínez 4590 OEM Ignacio Gil Pechuán 3423 OEM Daniel Gil Tomás 5679 DISCA	MAF María Alpuente Frasnedo	3560	DSIC
Ignacio Gil Pechuán 3423 OEM Daniel Gil Tomás 5679 DISCA	CPG Cristina Pérez Guillot	7439	IDM
Daniel Gil Tomás 5679 DISCA	JTM José M. Torralba Martínez	4590	OEM
	IGP Ignacio Gil Pechuán	3423	OEM
No. 11 C. 1 C. 1 C. 1 DOLG	DGT Daniel Gil Tomás	5679	DISCA
Matilde Celma Gimenez //56 DSIC	MCG Matilde Celma Giménez	7756	DSIC

SELECT cod_dep, COUNT (*)
FROM Profesor
GROUP BY cod_dep

Obtener el número total de profesores de los departamentos que tienen mas de 2 profesores.

cod_	_pro	nombre	teléfono	cod_dep
JC	CC	Juan C. Casamayor Ródenas	7796	DSIC
RI	EC	Robert Fuster i Capilla	6789	MAT
JB	BD	José V. Benlloch Dualde	5760	DISCA
M	AF	María Alpuente Frasnedo	3560	DSIC
CF	PG	Cristina Pérez Guillot	7439	IDM
JT	M	José M. Torralba Martínez	4590	OEM
IC	ЗP	Ignacio Gil Pechuán	3423	OEM
DO	GT	Daniel Gil Tomás	5679	DISCA
M	CG	Matilde Celma Giménez	7756	DSIC

SELECT cod_dep, COUNT (*)
FROM Profesor
GROUP BY cod_dep
HAVING COUNT (*) > 2

Consultas agrupadas.

SELECT [ALL | DISTINCT] A_{1i}, A_{2j},..., A_{nk} *

FROM R₁, R₂, ..., R_n

[WHERE condición]

[GROUP BY B_1 , B_2 ,..., B_m]

[HAVING condición]

En una consulta agrupada:

- ✓ los datos seleccionados en la SELECT deben ser datos comunes al grupo: atributos de agrupación o funciones agregadas para obtener valores globales del grupo.
- ✓ en la condición del HAVING sólo se puede hacer referencia a datos comunes al grupo:.

Obtener el número total de profesores y el nombre de los mismos, para aquellos departamentos que tienen mas de 2 profesores.

SELECT cod_dep, nombre, COUNT (*)
FROM Profesor
GROUP BY cod_dep
HAVING COUNT (*) > 2

i el nombre del profesor es un dato a nivel de tupla no es un dato a nivel de grupo de tuplas!

Obtener para cada departamento el número total de asignaturas de mas de seis créditos que tienen adscritas.

```
SELECT cod_dep, COUNT (*)
FROM Asignatura
WHERE (teoría + prac) > 6
GROUP BY cod_dep
```

Obtener los departamento que tienen mas de 3 asignaturas adscritas de primer curso, indicando el número de éstas.

```
SELECT cod_dep, COUNT (*)

FROM Asignatura

WHERE semestre IN ('1A', '1B')

GROUP BY cod_dep

HAVING COUNT (*) > 3
```

Evaluación:

Obtener los departamento que tienen mas de 3 asignaturas adscritas de primer curso, indicando el número de éstas.

```
SELECT cod_dep, COUNT (*)

FROM Asignatura

WHERE semestre IN ('1A', '1B')

GROUP BY cod_dep

HAVING COUNT (*) > 3

(3)
```

Obtener para cada departamento los créditos de docencia impartidos en asignaturas de primer curso adscritas al departamento.

```
SELECT A. cod_dep,

SUM(D.gteo * A.teoría) + SUM(D.gpra*A.prác)

FROM Docencia D, Asignatura A

WHERE A.cod_asg = D.cod_asg

AND

semestre IN ('1A', '1B')

GROUP BY A.cod_dep
```

SELECT [ALL | DISTINCT] A_{1i} , A_{2j} ,..., A_{nk} *

FROM R_1 , R_2 , ..., R_n [WHERE condición]

[GROUP BY B_1 , B_2 ,..., B_m] [HAVING condición]

Evaluación:

- Se seleccionan n tuplas de las relaciones R₁, R₂, ..., R_n que cumplan la condición de la cláusula WHERE.
- ✓ En el conjunto de tuplas seleccionadas se definen grupos basados en el valor de los atributos de agrupación: B₁, B₂,..., B_m.
- ✓ De los grupos definidos se seleccionan los que cumplen la condición de la cláusula HAVING.

Consultas sobre varias relaciones

SELECT [ALL | DISTINCT] A_{1i} , ..., A_{2j} ,..., A_{nk} *

FROM R_1 , R_2 , ..., R_n [WHERE condición]

[GROUP BY B_1 , B_2 ,..., B_m]

[HAVING condición]

Uso de varias relaciones en una SELECT:

- ✓ relaciones de la cláusula FROM: sólo se puede obtener datos de estas relaciones.
- ✓ relaciones en subconsultas de las cláusulas WHERE y HAVING: estas subconsultas sirven para expresar condiciones.

Consultas sobre varias relaciones.

SELECT [ALL | DISTINCT]
$$A_{1i}$$
, ..., A_{2j} ,... A_{nk} *

FROM R_1 , R_2 , ... R_n

[WHERE condición]

condiciones de concatenación de las relaciones R₁, R₂, ...R_n

AND

condiciones de la consulta

la concatenación entre R₁, R₂, ...R_n se realiza usualmente sobre los atributos de referencia (claves ajenas) de las relaciones.

Obtener la docencia de los profesores del DSIC: nombre del profesor, nombre de la asignatura impartida y grupos impartidos.

FROM
Profesor PX, Docencia DX, Asignatura AX

WHERE
PX.cod_pro = DX.cod_pro
AND
AX.cod_asg = DX.cod_asg
AND
PX.cod_dep = "DSIC"

concatenación de Profesor, Asignatura y Docencia

condiciones de la consulta

Concatenación de tablas.

SELECT [ALL | DISTINCT] $A_{1i},...,A_{2j},...,A_{nk}$ * FROM R_1 , concatenación de tablas

[WHERE condición]

[GROUP BY $B_1, B_2, ..., B_m$]

[HAVING condición]

- ✓ Producto cartesiano
- √ concatenación interna
- √ concatenación externa

Producto cartesiano o CROSS JOIN

tabla1 CROSS JOIN tabla2

Equivalente a la inclusión en el componente FROM de las dos referencias de tablas separadas por comas:

FROM tabla1, tabla2

Concatenación interna de tablas.

tabla1 [NATURAL] [INNER] JOIN tabla2
[ON condición | USING (C₁, C₂,..., C_n)]

tabla1 NATURAL INNER JOIN tabla2

tabla1 INNER JOIN tabla2 USING (C₁, C₂,..., C_n)

tabla1 INNER JOIN tabla2 ON condición

Concatenación interna de tablas: NATURAL INNER JOIN.

SELECT [ALL DISTINCT] A ₁ , A ₂ ,, A _n *								
FROM	tabla1 NATURAL INNER JOI	N tabla2 (1)						
[WHERE condición]								
[GROUP BY B ₁ , B ₂ ,, B _m]								
[HAVING	condición]	(4)						

se concatenan las tuplas de tabla1 y tabla2 que tienen el mismo valor en los atributos del mismo nombre

operador Concatenación del Álgebra Relacional

Concatenación interna de tablas: NATURAL INNER JOIN.

SELECT [ALL | DISTINCT] A₁, A₂,..., A_n| *
FROM tabla1 NATURAL INNER JOIN tabla2
[WHERE condición]
[GROUP BY B₁, B₂,..., B_m]
[HAVING condición]

si C₁, C₂,..., C_n son los atributos del mismo nombre de tabla1 y tabla2

```
SELECT [ALL | DISTINCT] A_1, A_2,..., A_n| *

FROM tabla1, tabla2

WHERE (tabla1. C_1 =tabla2. C_1) AND

(tabla1. C_2 =tabla2. C_2) AND

... AND

(tabla1. C_n =tabla2. C_n) [AND condición]

[GROUP BY B_1, B_2,..., B_m]

[HAVING condición]
```

SELECT PX.cod_pro, PX.nombre, COUNT(DX.cod_asg)

FROM Profesor PX, Docencia DX

WHERE PX.cod_pro = DX.cod_pro concatenación de Profesor y Docencia

GROUP BY cod_pro

SELECT cod_pro, nombre, COUNT (cod_asg)
FROM Profesor NATURAL INNER JOIN Docencia
GROUP BY cod_pro

Concatenación interna de tablas: INNER JOIN USING

```
SELECT [ALL | DISTINCT] A_1, A_2, ..., A_n *

(1) FROM tabla1 INNER JOIN tabla2 USING (C_1, C_2, ..., C_n)

(2) [WHERE condición]

(3) [GROUP BY B_1, B_2, ..., B_m]

(4) [HAVING condición]
```

se concatenan las tuplas de tabla1 y tabla2 que tienen el mismo valor en los atributos comunes C₁, C₂,..., C_n

Es útil cuando no interesa que las relaciones se concatenen por todos los atributos del mismo nombre (NATURAL INNER JOIN).

Concatenación interna de tablas: INNER JOIN USING.

```
SELECT [ALL | DISTINCT] A_1, A_2, ..., A_n *

FROM tabla1 INNER JOIN tabla2 USING (C_1, C_2, ..., C_n)

[WHERE condición]

[GROUP BY B_1, B_2, ..., B_m]

[HAVING condición]
```



```
SELECT [ALL | DISTINCT] A_1, A_2,..., A_n| *

FROM tabla1, tabla2

WHERE (tabla1.C_1 =tabla2.C_1) AND

(tabla1.C_2 =tabla2.C_2) AND

... AND

(tabla1.C_n =tabla2.C_n) [AND condición]

[GROUP BY B_1, B_2,..., B_m]

[HAVING condición]
```

SELECT cod_pro, Profesor.nombre, Departamento.nombre
FROM Profesor, Departamento
WHERE Profesor.cod_dep = Departamento.cod_dep

SELECT cod_pro, Profesor.nombre, Departamento.nombre **FROM** Profesor NATURAL INNER JOIN Departamento

SELECT cod_pro, Profesor.nombre, Departamento.nombre FROM Profesor INNER JOIN Docencia USING cod_dep

Concatenación interna de tablas: INNER JOIN ON

```
SELECT [ALL | DISTINCT] A_1, A_2,..., A_n *

FROM tabla1 INNER JOIN tabla2 ON condición1

[WHERE condición2]

[GROUP BY B_1, B_2,..., B_m]

[HAVING condición]

(1)

(2)

(3)

(4)
```

se concatenan las tuplas de tabla1 y tabla2 que cumplen condición1

Es útil cuando:

- √ interesa concatenar tuplas de tabla1 y tabla2 por condiciones distintas de la igualdad.
- √ los atributos por los que se desea concatenar no tienen el mismo nombre en ambas relaciones.

Concatenación interna de tablas: INNER JOIN ON.

SELECT [ALL | DISTINCT] A₁, A₂, ..., A_n| *

FROM tabla1 INNER JOIN tabla2 ON condición1

[WHERE condición2]

[GROUP BY B_1 , B_2 ,..., B_m]

[HAVING condición]

SELECT [ALL | DISTINCT] A₁, A₂,..., A_n| *

FROM tabla1, tabla2

WHERE (condición1) [AND condición2]

[GROUP BY B_1 , B_2 ,..., B_m]

[HAVING condición]

Concatenación externa de tablas.

Obtener de cada departamento el número de profesores adscritos.

```
SELECT DX.cod_dep, COUNT(PX.cod_pro)

FROM Profesor PX, Departamento DX

WHERE PX.cod_dep = DX.cod_dep

GROUP BY DX.cod_dep
```

¡ los departamentos que no tienen profesores adscritos no salen en el resultado de la consulta!

Concatenación externa de tablas.

Obtener de cada departamento el número de profesores adscritos.

SELECT Departamento.cod_dep, COUNT(cod_pro)
FROM (Profesor INNER JOIN Departamento USING (cod_dep))
GROUP BY Departamento.cod_dep

¡ los departamentos que no tienen profesores adscritos no salen en el resultado de la consulta!

Concatenación externa de tablas.

```
tabla1 [NATURAL]  \{ \text{LEFT [OUTER] } | \\ \text{RIGHT [OUTER] } | \\ \text{FULL [OUTER] } \} \text{JOIN tabla2} \\ [ON <math>condici\'on \mid \text{USING } (C_1, C_2, ..., C_n) ]
```

tabla1 [NATURAL] LEFT JOIN tabla2 [ON condición| USING (C_1 , C_2 ,..., C_n)] tabla2 tabla1 [NATURAL] RIGHT JOIN tabla2 [ON condición| USING (C_1 , C_2 ,..., C_n)] tabla2 tabla1 [NATURAL] FULL JOIN tabla2 [ON condición| USING (C_1 , C_2 ,..., C_n)] tabla2

SELECT [ALL | DISTINCT]
$$A_1, A_2, ..., A_n$$
 *

FROM tabla1 [NATURAL] LEFT JOIN tabla2

[ON condición| USING ($C_1, C_2, ..., C_n$)]

[WHERE condición]

[GROUP BY $B_1, B_2, ..., B_m$]

[HAVING condición]

(1)

(2)

(3)

(4)

{concatenación (NATURAL | ON | USING) de las tuplas de tabla1 y tabla2}

UNION

{tuplas de tabla1 que no pueden concatenarse con tuplas de tabla2 extendidas con valores nulos para los atributos de tabla2}

Obtener de cada departamento el número de profesores adscritos.

SELECT Departamento.cod_dep, COUNT(cod_pro)
FROM Departamento LEFT JOIN Profesor ON (cod_dep)
GROUP BY Departamento.cod_dep

cod_dep	Departamento.nombre	director	Departamento .teléfono	cod_pro	Profesor. nombre	Profesor. teléfono	
DSIC	Sistemas Informáticos y Computación	V. Botti	3500	JCC	Juan Casamayor Ródenas	7796	
DSIC	Sistemas Informáticos y Computación	V. Botti	3500	MAF	María Alpuente Frasnedo	3560	DSIC
DSIC	Sistemas Informáticos y Computación	V. Botti	3500	MCG	Matilde Celma Giménez	7756	
DISCA	Ingeniería de Sistemas, Computadores y Automática	A. Crespo	5700	JBD	José Benlloch Dualde	5760	DISC
DISCA	Ingeniería de Sistemas, Computadores y Automática	A. Crespo	5700	DGT	Daniel Gil Tomás	5679	DISC
MAT	Matemática Aplicada	P. Pérez	6600	RFC	Robert Fuster i Capilla	6789	MAT
FIS	Física Aplicada	J. Linares	5200				FIS
IDM	Idiomas	B. Montero	5300	CPG	Cristina Pérez Guillot	7439	IDM
EIO	Estadística e Investigación Operativa	L. Barceló	4900	NULO	NULO	NULO	EIO
OEM	Org. de Empresas, Economía Financ. y Contabilidad	M. Pérez	6800	JTM	José Torralba Martínez	4590	
OEM	Org. de Empresas, Economía Financ. y Contabilidad	M. Pérez	6800	IGP	Ignacio Gil Pechuán	3423	OEM

3

Departamento LEFT JOIN Profesor ON (cod_dep)

SELECT [ALL | DISTINCT]
$$A_i$$
, A_2 ,..., A_n *

FROM tabla1 [NATURAL] RIGHT JOIN tabla2

[ON condición| USING (C_1 , C_2 ,..., C_n)]

[WHERE condición]

[GROUP BY B_1 , B_2 ,..., B_m]

[HAVING condición]

(1)

(2)

(3)

(4)

{concatenación (NATURAL | ON | USING) de las tuplas de tabla1 y tabla2}

UNION

{tuplas de tabla2 que no pueden concatenarse con tuplas de tabla1 extendidas con valores nulos para los atributos de tabla1}

Obtener de cada departamento el número de profesores adscritos.

SELECT Departamento.cod_dep, COUNT(cod_pro)
FROM Departamento LEFT JOIN Profesor ON (cod_dep)
GROUP BY Departamento.cod_dep

SELECT Departamento.cod_dep, COUNT(cod_pro)
FROM Profesor RIGHT JOIN Departamento ON (cod_dep)
GROUP BY Departamento.cod_dep

{concatenación (NATURAL | ON | USING) de las tuplas de tabla1 y tabla2}

UNION

{tuplas de tabla2 que no pueden concatenarse con tuplas de tabla1 extendidas con valores nulos para los atributos de tabla1}

UNION

{tuplas de tabla1 que no pueden concatenarse con tuplas de tabla2 extendidas con valores nulos para los atributos de tabla2}

Concatenación de tablas en ORACLE*.

Sintaxis del operador de SQL LEFT [OUTER] JOIN en ORACLE8:

SELECT [ALL | **DISTINCT**] $A_1, A_2, ..., A_n$ *

FROM tabla1, tabla2

WHERE tabla 1. A_i Op tabla 2. A_i (+)

ORACLE

* En ORACLE sólo existen operadores para la concatenación externa.

Concatenación de tablas en ORACLE.

Sintaxis del operador de SQL RIGHT [OUTER] JOIN en ORACLE8:

SELECT [ALL | DISTINCT] A₁, A₂,..., A_n| *

FROM tabla1, tabla2

WHERE tabla 1. A_i (+) Op tabla 2. A_i

...... ORACLE

Si la condición de combinación del JOIN externo se define sobre varias columnas, el signo (+) deberá aparecer en cada columna que participa en la combinación en el mismo sentido: si es RIGHT en la columna de la tabla t1 y si es LEFT en la columna de la tabla t2.

UNION JOIN

Obtiene una tabla que contiene :

- •todas las columnas de tabla1 y tabla2
- todas las tuplas de tabla1 con nulos en las columnas de la tabla2
- •y viceversa (todas las tuplas de tabla2 con nulos en las columnas de la tabla1)

Operaciones conjuntistas en SQL.

- ✓UNION (unión)
- ✓ INTERSECT (intersección)
- ✓ EXCEPT (diferencia)

Se definen entre relaciones compatibles (del mismo esquema).

UNION

consulta1 UNION [ALL] consulta2

INTERSECT

consulta1 INTERSECT consulta2

EXCEPT

consulta1 EXCEPT consulta2

UNION

Obtener el nombre de todo el personal (profesores y directores de departamento).

SELECT nombre

FROM Director

UNION

SELECT nombre

FROM Profesor

UNION

Obtener de cada departamento el número de profesores adscritos.

SELECT Departamento.cod_dep, COUNT(cod_pro)

FROM Departamento LEFT JOIN Profesor ON (cod_dep)

GROUP BY Departamento.cod dep

SELECT D.cod_dep, COUNT(P.cod_pro)

FROM Departamento D, Profesor P

WHERE D.cod_dep = P.cod_dep

GROUP BY D.cod_dep

UNION

SELECT D.cod_dep, 0

FROM Departamento D

WHERE D.cod_dep NOT IN (SELECT cod_dep FROM Profesor)

INTERSECT

Obtener los departamentos que tienen adscritas asignaturas y profesores.

SELECT DISTINCT cod_dep
FROM Profesor
INTERSECT
SELECT DISTINCT cod_dep
FROM Asignatura

EXCEPT

Obtener los departamentos que no tienen adscritas asignaturas.

FROM Departamento

EXCEPT

SELECT DISTINCT cod_dep

FROM Asignatura

En ORACLE, el operador EXCEPT se denomina MINUS.

COMBINACIONES DE TABLAS RESUMEN

- Existen, en definitiva, varias formas de combinar dos tablas en el lenguaje SQL:
 - Incluir varias tablas en la cláusula from.
 - Uso de subconsultas en las condiciones de las cláusulas where o having.
 - Combinaciones conjuntistas de tablas: utilizan para combinar las tablas operadores de la teoría de conjuntos.
 - Concatenaciones de tablas: combinan dos tablas utilizando diferentes formas variantes del operador concatenación del Álgebra Relacional.

ÁLGEBRA RELACIONAL -- SQL

Lenguaje SQL:

- ✓ manipulación de datos (consulta y actualización):
 - SELECT (consulta)
 - INSERT (inserción de tuplas)
 - DELETE (borrado de tuplas)
 - UPDATE (modificación de tuplas)

√ definición de datos (definición del esquema)

Operación de inserción de tuplas.

Inserción simple

```
INSERT INTO tabla [(columna1, columna2, ...columnak)]
```

{DEFAULT VALUES | VALUES (v1, v2, ..., vk) }

Inserción múltiple

```
INSERT INTO tabla [(columna1, columna2, ...columnak)] consulta
```

- •Si no se incluye la lista de columnas se deberán insertar filas completas de *tabla*.
- •Si se incluye la opción default values se insertará una única fila en la tabla con los valores por defecto apropiados en cada columna (según la definición de *tabla*).

Operación de inserción de tuplas.

Insertar un nuevo profesor:

INSERT INTO Profesor

VALUES ('EVL', 'Enrique Vidal López', 73333, 'DSIC')

{(cod_pro, 'EVL'), (nombre, 'Enrique Vidal López'), (teléfono,73333), (cod_dep, 'DSIC')}

INSERT INTO Profesor (cod_pro, nombre, cod_dep)

VALUES ('EVL', 'Enrique Vidal López', 'DSIC')

{(cod_pro, 'EVL'), (nombre, 'Enrique Vidal López'), (teléfono,?), (cod_dep, 'DSIC')}

Operación de inserción de tuplas.

Insertar en la tabla Profesor los profesores de una tabla del mismo esquema Profesores_Alcoy:

Inserción múltiple

INSERT INTO Profesor

SELECT cod_pro, nombre, teléfono, cod_dep

FROM Profesores_Alcoy

Operación de borrado de tuplas.

DELETE FROM tabla [WHERE condición]

Borrar el profesor de código 'EVL':

Borrado simple

DELETE FROM Profesor WHERE cod_pro = 'EVL'

Borrar los profesores del DSIC:

Borrado múltiple

DELETE FROM Profesor WHERE cod_dep = 'DSIC'

Operación de actualización de tuplas.

UPDATE tabla

```
SET columna<sub>1</sub> = {DEFAULT| NULL | expresión1}, columna<sub>2</sub> = {DEFAULT| NULL | expresión2},
```

.

[WHERE condición]

Operación de actualización de tuplas.

Adscribir el profesor de código MCG al DISCA.

UPDATE Profesor

SET cod_dep = 'DISCA'

WHERE cod_pro='MCG'

Actualización simple

Ádscribir todos los profesores del departamento DSIC al DISCA.

UPDATE Profesor

SET cod_dep = 'DISCA'

WHERE cod_dep='DSIC'

Actualización múltiple

El lenguaje de manipulación de datos de ORACLE:

Las principales diferencias respecto al estándar SQL son:

- √ no incluye operadores de concatenación interna
- ✓ la concatenación externa tiene una notación específica
- ✓ en ORACLE el operador EXCEPT se denomina MINUS.