Transfer Learning

conceptos, casos de estudio, tutorial

Miguel Ángel Martínez del Amor

Dpto. Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla

Agenda

- Conceptos básicos
- Casos de estudio:
 - Tag extraction
 - Glaucoma
- Tutorial con Keras:
 - Sesión 1
 - Sesión 2
 - Ejercicios

Agenda

- Conceptos básicos
- Casos de estudio:
 - Tag extraction
 - Glaucoma
- Tutorial con Keras:
 - Sesión 1
 - Sesión 2
 - Ejercicios

Transfer Learning

- Supongamos **nuestra tarea (T1)** es identificar objetos en imágenes de un restaurante (**dominio 1**). Entrenamos un modelo para ello.
- Supongamos **nueva tarea (T2)** es identificar objetos en imágenes de un parque o un café (**dominio 2**). Si aplicamos el modelo entrenado para T1, veremos una degradación de rendimiento para el dominio 2.
- Transferencia de aprendizaje debería permitirnos reutilizar el conocimiento de tareas previamente aprendidas y aplicarlas a nuevas.

ML tradicional vs Transfer Learning

Traditional ML vs Transfer Learning

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Transfer Learning

- Transfer Learning: habilidad de reutilizar conocimiento existente sobre una tarea origen en otras tareas objetivo.
 - ¿Qué transferir?
 - Identificar qué porción de conocimiento es específico de nuestro origen, y qué tiene en común el origen con el objetivo.
 - ¿Cuándo transferir?
 - Hay algunos escenarios donde transferir conocimiento es contraproducente.
 - ¿Cómo transferir?
 - Buscar los cambios en los algoritmos y las diferentes técnicas existentes para ello.

Estrategias de Transfer Learning

Estrategias de Transfer Learning Categorías

Transfer Learning Inductivo:

- El dominio destino tiene datos etiquetados, el origen puede que sí o no.
- Cuando dominios origen y destino son el mismo, pero las tareas origen y destino son diferentes.

Transfer Learning No Supervisado:

- No hay datos etiquetados en ambos dominios.
- Igual que inductivo, pero con foco en tareas no supervisadas en el dominio objetivo.

• Transfer Learning Transductivo:

- El dominio origen tiene muchos datos etiquetados, pero domino destino no.
- Cuando similitudes entre tareas origen y destino, pero dominios diferentes.

Estrategias de Transfer Learning ¿Qué transferir?

- Transferencia de instancias: Reusar ciertas instancias del dominio origen con los datos objetivo.
- Transferencia de representación de características: minimizar la divergencia de dominios identificando buenas representaciones de características que se puedan usar del dominio origen en el objetivo.
- Transferencia de parámetros: Cuando los modelos para tareas relacionadas comparten algunos parámetros o distribución de hiperparámetros.
- Transferencia de conocimiento relacional: Para manejar datos relacionados entre sí (como redes sociales).

- Para entrenar una red convolucional (CNN) desde cero se necesita:
 - Much(ísim)os datos (p.ej. ImageNet: 1,2 millones de imágenes, 1000 categorías)
 - Gran capacidad computacional (p.ej. <u>DGX v2</u> con 16 Tesla V100).
 - Tiempo (semanas a meses para entrenamiento)
- En la realidad, pocos investigadores entrenan una CNN desde cero
 - Partir de una ConvNet pre-entrenada en un conjunto de datos muy grande
- Yosinski et al. <u>How transferable are features in deep neural networks?</u>

Convolutional Neural Network

- Tres escenarios:
 - Fixed feature extractor: eliminar las últimas capas FC (Fully Connected) y el clasificador, y fijar el resto.
 - Re-entrenar el clasificador con el nuevo conjunto de datos.
 - Fine-tuning: fijar solo las primeras capas, aplicar backpropagation al resto.
 - Últimas capas suelen contener características más específicas a las categorías por las que fueron entrenadas.
 - Pretrained models: descargar un modelo (p.ej. <u>Model Zoo de Caffe</u>) para aplicar lo anterior.

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Aplicaciones:

- Para visión por computador: Quizás donde más se esté aplicando esta técnica hoy en día.
 - Modelos pre-entrenados: <u>VGG-16</u>, <u>VGG-19</u>, <u>Inception V3</u>, <u>Xception</u>, <u>ResNet-50</u>
- Para procesamiento de lenguaje natural: Aquí se hace difícil pero se puede se puede reutilizar modelos de word embedding.
 - Modelos pre-entrenados: <u>Word2Vec</u>, <u>GloVe</u>, <u>FastText</u>
- Para audio/habla: modelos de reconocimiento automático del habla (ASR) desarrollados para el inglés se han usado con éxito para otros lenguajes como el alemán.

Agenda

- Conceptos básicos
- Casos de estudio:
 - Tag extraction
 - Glaucoma
- Tutorial con Keras:
 - Knifey-spoony
 - Sesión 1
 - Sesión 2
 - Ejercicios

Introducción

- Trabajo publicado en:
 - U.A. Kahn, N. Ejaz, M.A. Martínez-del-Amor, H. Sparenberg. <u>Movies Tags</u>
 <u>Extraction Using Deep Learning</u>. 14th IEEE International Conference on Advanced Video and Signal Surveillance (AVSS 2017), Lecce, Italy, 29 August 1 September 2017. Proceedings (October 2017), IEEE Xplore, pp. 1-6.
- Enlace al proyecto:
 - http://umair-khan.quest.edu.pk/announcements

(extracción de etiquetas)

- Extracción (automática) de etiquetas de películas:
 - *Metadatos imprecisos* generado por humanos
 - Extracción de información saliente usando machine learning
 - Semántica de "alto nivel"
- Idea: selección de etiquetas clave, representando el tema general
- **Diferente** a la mayoría de tareas de reconocimiento de objetos o escenas:
 - No nos interesa si en un vídeo aparece una pistola
 - Nos interesa saber si el video es de violencia, acción, etc.

Object detection: 2 cars
vs

Movie tag: car chase

Tag extraction Introducción

- Etiquetas ≈ keywords de IMDb
- Haremos solo una selección de ellas

Introducción

- Aplicaciones potenciales:
 - Búsqueda por consulta
 - Almacenamiento y clasificación eficiente
 - Censura de contenido (violencia, desnudez, etc)
 - Sistemas de recomendación
 - Recuperación guiada por la escena
 - Asistencia en traducción de películas a lenguaje natural
 - Reconocimiento de acciones y comportamiento

Tag extraction Diseño conceptual

Problemática:

- No existe un dataset para etiquetas
- Confección de uno desde cero y de forma manual
- No disponíamos de recursos computacionales ni de mucho tiempo (beca posdoctoral).
- Solución: Transfer Learning para Fixed Feature Extractor
 - Necesitamos un dataset "mediano"
 - Inception-v3: Suficiente para nuestros PCs

Elección modelo pre-entrenado

• Inception-v3:

- Entrenado sobre ImageNet 2012 y 1000 clases
- 3.46% tasa error
- 48 capas

MaxPool

Fully connected

• Disponible en tensorflow y <u>tutoriales</u>

Transfer learning sobre Inception-v3

- Eliminada última capa
- Añadida una capa **Dropout**:
 - Desecha 50% activaciones aleatoriamente
 - Evita overfitting
- Después, activación **ReLU**:
 - No linearidad
 - $y_i = ReLU[\sum_j W_{i,j}x_j + b_i]$
- Clasificación con Softmax:
 - Convertir a probabilidad

$$p_i = \frac{e^{y_i}}{\sum_{j=0}^{50} e^{y_j}}$$

Tag extraction Conjunto de datos

- Vocabulario 50 etiquetas (con solapamiento)
- 700 imágenes/etiqueta

Action	Bomb explosion	Car chase
Destruction	Sword fight	Vehicle crash
Violence	Abduction	Heist
Adventure	Animal	Beach/Sea
Climbing	Desert	Hiking
Forest	Valleys/Hills	Children
Family	Club/Bar	Dance
Music	Wedding	College/Univ.
Hospital	Drinking	Food
Smoking	Exercise	Sports
Swimming	Glamor/Fashion	Nudity
Romance	Sex	Horror
Monster	Murder	Lab Experiment
Sci-fi	Super hero	Technology
Robot	Military	Police
Prison	War	Weapon
Animation	Drama	•

Resultados en fotogramas individuales

- Distribución: 80% entrenamiento, 10% validación y 10% test
- Cross entropy, función de perdida para estimar error: $E(p,q) = -\sum_x q(x) \log p(x)$
- 500 epochs

Resultados en fotogramas individuales

Military, action, weapon, war

Violence, destruction, bomb explosion, action, car crash

Sex, nudity, romance, modeling

Hiking, adventure, nature, forest, valleys, hills, climbing

Sci-fi, super hero, robot, action

Violence, sci-fi, action, horror

Tag extraction Extrapolación a vídeo

Experimentación

• Configuración Hardware/Software:

Hardware/Software	Specifications
CPU	Intel Xeon(R) E5430, 2.66GHz x 8
RAM	8GB
GPU	GeForce GTX 1050 Ti, 768 cores,
	4GB GDDR5
Deep learning framework	Tensorflow 1.0, compiled with
	GPU support
Operating System	Ubuntu 16.04 (64-bit)
Programming languages	Python 2.7, OpenCV 3.0, C++

Experimentación

- Problemática:
 - No hay un ground truth, o marco de referencia
- Realización de 3 experimentos subjetivos:
 - Llevados a cabo en el cine del Fraunhofer IIS
 - Muestra de 10 tráilers de películas
 - 10 voluntarios distintos en cada uno

Medidas:

- Mean Opinion Score: de una encuesta, cuantos resultados corresponden
- Precisión: cuántos de los resultados positivos son correctos
- Recall: cuántos resultados positivos correctos respecto a todos los positivos
- F-score: media ponderada de precisión y recall

Experimentación

Experimento 1: tags rating

- Reparto de las etiquetas extraídas por nuestro algoritmo para cada vídeo
- Voluntarios valora cada uno por separado.
- Mean Opinion Score: 84.3%
- Ejemplo: RAW (2017) tráiler
 - Romance, violence, action, car crash, horror, sex, child, nudity, outdoor/nature/forest, hospital, food, Club/bar, college/university, music, crowd

Experimentación

- Experimento 2: tags rating w.r.t. relevancy and strength
 - Igual que experimento 1, pero teniendo en cuenta la relevancia de cada etiqueta.
 - Mean Opinion Score: 77.8%
 - Ejemplo: <u>Alien</u>
 Covenant teaser trailer

Experimentación

Experimento 3: tags matching

- Repartir todo el vocabulario de etiquetas, repetido para cada vídeo
- Voluntarios eligen las etiquetas que crean más relevantes
- Usando este experimento como ground truth:
 - MAP = 76%, MAR = 74.22%
 - F1 Score = 0.75%

Experimentación (tráiler vs película completa)

- Trailer duration: 2 min, 26 sec, Processing time: 17sec
- Full length movie duration: 1 hr, 24 min, Processing time: 10 min

Experimentación (tráiler vs película completa)

- Trailer duration: 1 min, 53 sec, Processing time: 13 sec
- Full length movie duration: 1 hr, 39 min, Processing time: 7 min

Agenda

- Conceptos básicos
- Casos de estudio:
 - Tag extraction
 - Glaucoma
- Tutorial con Keras:
 - Sesión 1
 - Sesión 2
 - Ejercicios

Glaucoma

Clasificación del fondo de ojo

- Trabajo publicado en:
 - Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi J M, Navea A. <u>CNNs for Automatic Glaucoma Assessment using Fundus Images: An Extensive Validation</u>. BioMedical Engineering OnLine 2019 18:29, doi:10.1186/s12938-019-0649-y. 2019
 - Diapositivas completas: <u>seminario (I+A)A</u>

Clasificación del fondo de ojo

Anatomía de la retina.

Tres estructuras principales:

- El disco óptico
- Vasos sanguíneos retinales
- La macula

Glaucoma Clasificación del fondo de ojo

Tipos

- El glaucoma se refiere a la profundización o excavación de la cabeza del nervio óptico.
- Y hay tres formas principales de glaucoma:
 - Glaucoma de ángulo abierto
 - Glaucoma de cierre de ángulo y
 - Glaucoma congénito

- Arquitecturas CNN entrenadas por ImageNet aplicadas para la clasificación de imágenes retinianas:
 - VGG16 y VGG19: Estas CNNs se basan en el mismo modelo y se caracterizan por su simplicidad. Presentado por Simonyan en 2014 para el reto ImageNet

- Arquitecturas CNN entrenadas por ImageNet aplicadas para la clasificación de imágenes retinianas:
 - **GoogLeNet**: Fue introducido por primera vez por Szegedy et al. en 2015. Se basa en el módulo Inception.

- Arquitecturas CNN entrenadas por ImageNet aplicadas para la clasificación de imágenes retinianas:
 - Microsoft **ResNet**: Esta arquitectura fue propuesta por el equipo de Microsoft Research Asia (MSRA) en 2015. Es considerada una "arquitectura exótica" que se basa en bloques residuales.

- Arquitecturas CNN entrenadas por ImageNet aplicadas para la clasificación de imágenes retinianas:
 - **Xception**: o Extreme Inception, fue propuesto por F. Chollet en 2016. Es una extensión de la arquitectura de Inception.

- Técnica de ajuste fino:
 - a) Inicialización del peso de las capas convolucionales utilizando los pesos de ImageNet y
 - b) Sustitución de la función de clasificación o del número de nodos en la última capa completamente conectada.

ImageNet-trained CNN architectures

Ajuste profundo (Deep) o superficial (shallow):

ImageNet-trained CNN architectures

• Bases de datos:

Name	Glaucoma	Normal	Total
HRF	27	18	45
Drishti-GS1	70	31	101
RIM-ONE	194	261	455
sjchoi86-HRF	101	300	401
ACRIMA	396	309	705
Total	788	919	1707

ImageNet-trained CNN architectures

 Todas estas imágenes se recortaron automáticamente alrededor del disco óptico utilizando un método de aprendizaje profundo¹:

1) Xu P, Wan C, Cheng J, Niu D, Liu J. Optic disc detection via deep learning in fundus images. Fetal, infant and ophthalmic medical image analysis.

- Las imágenes fueron reescaladas:
 - 224x224 px → VGG16, VGG19 y ResNet50
 - 299x299 px → InceptionV3 y Xception
- También se utilizó aumento de datos:
 - rotaciones de imágenes,
 - reflejo de imágenes,
 - deformación,
 - volteos verticales y horizontales.
- Validación cruzada de 10-fold
- Configuración de pruebas cruzadas

ImageNet-trained CNN architectures

• Resultados validación cruzada de 10-fold

Model Name	AUC	Accuracy	F-score	# parameters (in millions)
VGG16	0.9632	0.8948	0.9005	138
VGG19	0.9686	0.9069	0.9125	144
InceptionV3	0.9653	0.9000	0.9056	23
ResNet50	0.9614	0.9029	0.9076	25
Xception	0.9605	0.8977	0.9051	22

Glaucoma ImageNet-trained CNN architectures

Predicciones correctas

Glaucoma ImageNet-trained CNN architectures

Predicciones incorrectas

ImageNet-trained CNN architectures

Resultados cross-testing:

Database	AUC	Accuracy	# images
HRF	0.8354	0.8000	45
Drishti-GS1	0.8041	0.7525	101
RIM-ONE	0.8575	0.7121	455
sjchoi86-HRF	0.7739	0.7082	401
ACRIMA	0.7678	0.7021	705
Chen method	0.8310	NA	650
Alghamdi	NA	0.9214	2858

Agenda

- Conceptos básicos
- Casos de estudio:
 - Tag extraction
 - Beat Event Detection

• Tutorial con Keras:

- Sesión 1
- Sesión 2
- Ejercicio 1
- Ejercicio 2

Tutorial con Keras

- Emplearemos Keras para aplicar transfer learning de distintos modelos a distintos conjuntos de datos.
- Pero comencemos primero jugando con el modelo InceptionV3 con TensorFlow...
- Pasos:
 - Descargar el notebook y abrirlo desde jupyter
 - Si se quiere usar GPU, subirlo a un servidor con GPU (e.g. Google Colab)

