

HMC213MS8 / 213MS8E

GaAs MMIC SMT DOUBLE-**BALANCED MIXER, 1.5 - 4.5 GHz**

Typical Applications

The HMC213MS8 / HMC213MS8E is ideal for:

- Base Stations
- PCMCIA Transceivers
- Wireless Local Loop

Features

Ultra Small Package: MSOP8

Conversion Loss: 8.5 dB LO / RF Isolation: 40 dB

Functional Diagram

General Description

The HMC213MS8 & HMC213MS8E are ultra miniature double-balanced mixers in 8 lead plastic surface mount packages (MSOP). This passive MMIC mixer is constructed of GaAs Schottky diodes and novel planar transformer baluns on the chip. The device can be used as an upconverter, downconverter, biphase (de)modulator, or phase comparator. The consistent MMIC performance will improve system operation and assure regulatory compliance.

Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of LO Drive

Parameter	LO = +13 dBm IF = 100 MHz		LO = +10 dBm IF = 100 MHz			Units	
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range, RF & LO	1.5 - 4.5		1.7 - 3.6			GHz	
Frequency Range, IF		DC - 1.5			DC - 1.5		GHz
Conversion Loss		8.5	10		9	10.5	dB
Noise Figure (SSB)		8.5	10		9	10.5	dB
LO to RF Isolation	29	40		32	40		dB
LO to IF Isolation	27	35		26	35		dB
IP3 (Input)	16	19		14	18		dBm
1 dB Gain Compression (Input)	7	10		5	8	·	dBm

BALANCED MIXER, 1.5 - 4.5 GHz

GaAs MMIC SMT DOUBLE-

Conversion Gain vs. Temperature @ LO = +13 dBm

Isolation @ LO = +13 dBm

Conversion Gain vs. LO Drive

Return Loss @ LO = +13 dBm

IF Bandwidth @ LO = +13 dBm

P1dB vs. Temperature @ LO = +13 dBm

Input IP3 vs. LO Drive

Input IP2 vs. LO Drive

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	14.4	19.5	16.8	41.5
1	15.6	0	51.7	47.9	68.3
2	72.8	84.3	71.1	85.6	68.1
3	>105	>105	>105	77.2	>105
4	>105	>105	>105	>105	>105

RF = 3.5 GHz @ -10 dBmLO = 3.6 GHz @ +13 dBm

All values in dBc below IF power level (-1RF + 1LO)

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz

Input IP3 vs. Temperature @ LO = +13 dBm

Input IP2 vs. Temperature @ LO = +13 dBm

Harmonics of LO

LO Freq.	nLO Spur at RF Port				
(GHz)	1	2	3	4	
1.5	42	35	53	52	
2.0	38	28	57	60	
2.5	43	28	34	60	
3.0	49	33	34	62	
3.5	40	41	46	64	
4.0	36	45	54	62	
4.5	32	54	55	75	
5.0	29	53	55	70	

LO = +13 dBm

Values in dBc below input LO level measured at RF Port.

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz

Absolute Maximum Ratings

RF / IF Input	+13 dBm
LO Drive	+27 dBm
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RE GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC213MS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H213 XXXX
HMC213MS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H213 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB 103350 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
U1	HMC213MS8 / HMC213MS8E Mixer
PCB [2]	101650 Evaluation Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

HMC213MS8 / 213MS8E

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz

Notes: