MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Team Round - continued

- B) Multiply out and re-arrange terms: $G^4 + T^4 8G^2 8T^2 + 16 4G^3T 4GT^3 + 6G^2T^2 + 16GT$ $\Rightarrow (G^4 - 4G^3T + 6G^2T^2 - 4GT^3 + T^4) - 8(G^2 - 2GT + T^2) + 16$ $= (G - T)^4 - 8(G - T)^2 + 16$ $= ((G - T)^2 - 4)^2 = (G - T - 2)^2(G - T + 2)^2$
- C) Squaring both sides, $1 + a \sin x = \cos^2 x \implies a \sin x = \cos^2 x 1 = -\sin^2 x \implies \sin x (\sin x + a) = 0$ $\implies \sin x = 0 \implies x = 0^\circ$, 180° (180° checks, but 0° is extraneous) or $\sin x = -a$ and $x = 150^\circ \implies a = -1/2$ Check: $\sin x = 1/2 \implies x = 30^\circ$, 150° 30: $\sqrt{1 + \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)} = \frac{\sqrt{3}}{2} \ne -\frac{\sqrt{3}}{2}$ 150: $\sqrt{1 + \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)} = \frac{\sqrt{3}}{2} = -\left(-\frac{\sqrt{3}}{2}\right)$

Thus, a must be $-\frac{1}{2}$ and the only additional solution is <u>180°</u>.

D) If you tried finding the actual coordinates of points *A* and *B*, the computation quickly became painful. How can this be avoided?

Suppose $x^2 = mx + b$ and that r and s are the roots of $x^2 - mx - b = 0$. Then:

The coordinates of A, B and the midpoint M would be (r, r^2) , (s, s^2) and $\left(\frac{r+s}{2}, \frac{r^2+s^2}{2}\right)$.

From the root coefficient relationship, r + s = m and rs = -b.

Squaring and substituting, $m^2 = r^2 + 2rs + s^2 = r^2 - 2b + s^2 \rightarrow r^2 + s^2 = m^2 + 2b$

Thus, the midpoint M has coordinates $\left(\frac{m}{2}, \frac{m^2 + 2b}{2}\right)$ and m = 7, $b = 13 \Rightarrow \left(\frac{7}{2}, \frac{75}{2}\right)$