Problem 1.

We prove the general cases pq, p^2q . And also for p^{α} we know that they have normal subgroup of order m where $m < \alpha$.

- pq: Let p > q. Let n_p and n_q denote the number of p-sylow and q-sylows respectively. By Sylow's theorem we know that $n_p \mid q$ and $n_p \stackrel{p}{\equiv} 1$. Since $n_p \mid q$ then $n_p = 1$ or $n_p = q$. If $n_p = 1$ then there is only one p-sylow group which means it must be normal. If $n_p = q$ then we have $q \stackrel{p}{\equiv} 1$ which implies $p \mid q 1$. Which can not happen since p > q. Thus there is only one p-sylow group and it is normal, thus all groups with order pq are not simple.
- p^2q : If p>q then we have: $n_p \mid q$. If $n_p=1$ then the p-sylow group is normal, thus G is not simple. If $n_p=q$ then since we have $n_p \stackrel{p}{\equiv} 1$ then we have: $p \mid q-1$ which is a contradiction since p>q.

 If q>p, then consider n_q . We know that $n_q \mid p^2$ and $n_q \stackrel{q}{\equiv} 1$. If $n_q=1$ then q-sylow group is normal, thus the group is not simple. If $n_q=p$ then $q \mid p-1$ which is not possible since q>p. If $n_q=p^2$. We know that members of different q-sylow groups are different. Thus we have $p^2(q-1)$ distinct elements of order q. Now There is only p^2 elements left in q. This shows that there can only be one q-sylow group, which has to be normal. Thus q is not simple.
- p^{α} : For $\alpha = 1$, there exists only one group with order p, \mathbb{Z}_p . for $\alpha > 1$ we know that for any $\beta < \alpha$ there exists a normal subgroup of order p^{β} . This shows that the group with order p^{α} for $\alpha > 1$ is not simple.

Now we are left with only few of orders: 24, 36, 40, 48, 54, 56, 60, 72, 80, 84, 88, 90, 96, 100.

- 24, 48, 96: These are all of the form $2^{\alpha} \cdot 3$. For all these ,consider the 2-sylow subgroup, which has index of 3. Then there exists a homomorphism $\pi: G \to S_3$. Since $|S_3| = 6$ and |G| > 6 then $ker(\pi) \neq 1$ which shows that $1 \neq ker(\pi) \triangleleft G$. Thus G is not simple.
 - 36: Let P be a 3-sylow subgroup of G. Index of P is 4. This means that there exists a homomorphism $\pi: G \to S_4$. Since $|G| = 36 > 4! = |S_4|$. Thus $|ker\pi| > 2$, and since $ker\pi \lhd G$, G has a non-trivial normal subgroup, which means G is not simple.
 - 40: Consider the 5-sylow subgroup of G. we know that $n_5 \stackrel{5}{\equiv} 1$ and $n_5 \mid 8$. Thus $n_5 = 1$ which shows that this subgroup is normal, thus G is not simple.
 - 54: Index of a 3-sylow subgroup is 2. This means that there exists a homomorphism $\pi: G \to S_2$. And it is obvious that $ker\pi$ is non-trivial, therefore G is not simple.

- 56: We know that $n_7 \stackrel{7}{\equiv} 1$ and $n_7 \mid 8$. Therefore $n_7 = 1$ or 8. If $n_7 = 1$ then 7-sylow group is normal. If $n_7 = 8$ then there exists $8 \times (7-1) = 48$ distince element with order 7. There are 56 48 = 8 elements left in G. Thus there can only be one 2-sylow subgroup in G which means the 2-sylow subgroup is normal in G, Thus G is not simple.
- 72: We know that $n_3 \stackrel{3}{\equiv} 1$ and $n_3 \mid 8$. This means that $n_3 = 1$ or 4. If $n_3 = 1$ then 3-sylow subgroup is normal. If $n_3 = 4$ then let P be a 3-sylow gruop. We know that the action of G over O_p under conjugation is transitive. And since $|O_p| = 4$, there exists a homomorphism $\pi: G \to S_4$. And since $|G| > |S_4|$, then $ker\pi \neq 1$ is a non-trivial normal subgroup of G, Thus G is not simple.
- 80: Consider the 5-sylow subgroup of G. we know that $n_5 \stackrel{5}{\equiv} 1$ and $n_5 \mid 16$. Thus $n_5 = 1$ or 16. If $n_5 = 1$ then it is a normal subgroup and it is not simple. If $n_5 = 16$ then we have 16(5-1) = 64 distinct element of order 5. Then there are only 16 elements left. which shows that there exists only one 2-sylow group of order 16, which means that 2-sylow group is normal and G is not simple.
- 84: We know that $n_7 \stackrel{7}{\equiv} 1$ and $n_7 \mid 12$. This means that $n_7 = 1$ and 7-sylow subgroup is normal in G, thus G is not simple.
- 88: We know that $n_{11} \stackrel{1}{\equiv} 11$ and $n_{11} \mid 8$. This means that $n_{11} = 1$, thus 11-sylow subgroup is normal in G and G is not simple.
- 90: We know that $n_3 \stackrel{3}{\equiv} 1$ and $n_3 \mid 10$. This shows that $n_3 = 1$, thus 3-sylow subgroup is norma in G and G is not simple.
- 100: We know that $n_5 \stackrel{5}{\equiv} 1$ and $n_5 \mid 4$. This shows that $n_5 = 1$ and therefore 5-sylow subgroup is normal in G and G is not simple.

The only order that we didn't show that is not simple is 60, and since we know that the only simple group of order 60 is A_5 , Thus the only simple group with order less than 100 is A_5

Problem 2.

We have $4563 = 13^2 \cdot 3^3$. Now we know that $n_{13} \stackrel{13}{\equiv} 1$ and $n_{13} \mid 27$. This shows that $n_{13} = 1$ or $n_{13} = 27$. If $n_{13} = 1$ then we are done since the only 13-sylow subgroup is normal in G. Now suppose that $n_{13} = 27$. If all 13-sylow subgroups have different elements, then there are $27 \times 168 = 4563 - 27$ distinct elements of order 13 or 13^2 . And the remaining elements can only create one 3-sylow subgroup, which makes it normal. Now if 13-sylow groups have some common elements, then there exists two 13-sylow groups P_1 and P_2 such that:

$$P_1 \cap P_2 = H > 1 \stackrel{P_1 \neq P_2}{\Longrightarrow} |H| = 13$$

Also H is normal in P_1 and P_2 since $[P_1:H]13$, which is the least prime number possible. Therefore we have $P_1 < N_G(H)$ and $P_2 < N_G(H)$.

$$169 = |P_1| < |P_1 \cup P_2| < |N_G(H)| \mid 4563 \implies N_G(H) \ge 13^2 \cdot 3$$

This shows that $[G:N_G(H)] \leq 9$. Therefore the action of G over left cosets of $N_G(H)$, gives us the homomorphism: $\varphi: G \to S_9$. But since $13 \mid |G|$ and $13 \nmid 9!$, then $ker\varphi \neq 1$, thus $ker\varphi$ is normal in G, and G is not simple.

Problem 3.

Let $(\sigma, \phi) \in Aut(G) \times Aut(H)$. It is easy to see that (σ, ϕ) is also an autmorphism of $G \times H$.

$$(\sigma,\phi)[(a,b).(c,d)] = (\sigma,\phi)[ac,bd] = (\sigma(ac),\phi(bd))$$
$$= (\sigma(a)\sigma(c),\sigma(b)\sigma(d)) = (\sigma(a),\phi(b)).(\sigma(c),\phi(d))$$
$$= (\sigma,\phi)[a,b].(\sigma,\phi)[c,d]$$

This shows that $(\sigma, \phi) \in Aut(G \times H)$. Thus $Aut(G) \times Aut(H) \subset Aut(G \times H)$. Now suppose $\delta \in Aut(G \times H)$. We know that $Ord_{G \times H}(a, b) = lcm(Ord_G(a), Ord_H(b))$. Thus $Ord_{G \times H}(a, 1) = Ord_G(a) \mid |G|$. Since δ maps elements with same order to each other then if we have $\delta(a, 1) = (b, c)$ then:

$$Ord_{G \times H}(b, c) = Ord_{G}(a) \mid |G|$$

 $Ord_{G \times H}(b, c) = lcm(Ord_{G}(b), Ord_{H}(c))$

Now if $Ord_H(c) \neq 1$ then we would have:

$$\exists p \neq 1 : p \mid Ord_H(c) \mid |H|$$

$$\implies p \mid Ord_{G \times H}(b, c) \mid |G|$$

$$\implies p \mid \gcd(|G|, |H|) = 1$$

Which is a contradition. This shows that for any element (a, 1) we have $\delta(a, 1) = (a', 1)$. And similarly we have: $\delta(1, b) = (1, b')$. Therefore if we define $\delta_1 : G \to G$ and $\delta_2 : H \to H$:

$$\forall g \in G : \delta_1(g) = g' \text{ where } \delta(g, 1) = (g', 1)$$

 $\forall h \in H : \delta_2(h) = h' \text{ where } \delta(1, h) = (1, h')$

Then it is trivial that $\delta_1 \in Aut(G)$, $\delta_2 \in Aut(H)$. Thus $\delta = (\delta_1, \delta_2) \in Aut(G) \times Aut(H)$. Which implies $Aut(G \times H) \subset Aut(G) \times Aut(H)$. Thus $Aut(G \times H) = Aut(G) \times Aut(H)$.

Problem 4.

$$\varphi(r) = r^{i}, \varphi(s) = sr^{j}$$

$$\implies \varphi(r)\varphi(s) = r^{i}sr^{j} = sr^{j-i} = sr^{j}r^{-1} = \varphi(s)\varphi(r)^{-1}$$

This shows that $\varphi(D_8) = D_8$. Therefore there are only 8 automorphisms for D_8 . Now consider these automorphisms:

$$\delta: \begin{cases} r \to r^3 \\ s \to s \end{cases} \qquad \sigma: \begin{cases} r \to r \\ s \to sr \end{cases}$$

It is easy to see that $Ord(\delta) = 2$ and $Ord(\sigma) = 4$ in $Aut(D_8)$. Note that we have:

$$\sigma^{-1}: \begin{cases} r \to r \\ s \to sr^3 \end{cases}$$

Now it is easy to see that:

$$\sigma\delta: \begin{cases} r \to r^3 \\ s \to sr \end{cases} \qquad \delta\sigma^{-1}: \begin{cases} r \to r^3 \\ s \to s(r^3)^3 = sr \end{cases}$$

This shows that $\sigma\delta = \delta\sigma^{-1}$. Therefore $Aut(D_8) = \langle \sigma, \delta | \sigma^4 = \delta^2 = 1, \sigma\delta = \delta\sigma^{-1} \rangle = D_8$. Therefore $Aut(D_8) = D_8$.

Problem 5.

Suppose H is a normal subgroup of D_{2n} . If $H \subset \langle r \rangle$, then $H = \langle r^i \rangle$ such that $i \mid n$. And it is easy to see that for any element $\delta \in D_{2n}$ we have $\delta H \delta^{-1} = H$. Thus for any $i \mid n, \langle r^i \rangle$ is a normal subgroup of D_{2n} . Now suppose $H \not\subset \langle r \rangle$. Thus there exists a $sr^i \in H$. Since H is normal we have $r(sr^i)r^{-1} = sr^{i-2} \in H$. This shows that if n is odd, then H contains all elements of form sr^i . Which are half of the elements of the group. With addition of 1, H contains more than half of the D_{2n} , Which means that $H=D_{2n}$. Since if we want to write D_{2n} , as a direct product, then the two subgroups are both normal in D_{2n} , and it is easy that direct product of these normal subgroups for odd n, doesn't create D_{2n} , then for odd n it is not possible to write D_{2n} as a direct product. For even n, if $H \subset \langle r \rangle$ it is similar to the privious part. But if $sr^i \in H$, then with conjugation $sr^{i-2} \in H$. This shows that $\langle s, r^2 \rangle \subset H$. Which has exactly half of the elements of D_{2n} , therefore in order for H to be a proper normal subgroup, we have $H = \langle s, r^2 \rangle$. Note that this subgroup is the only normal subgroup of D_{2n} such that it includes s. Thus if we want to write D_{2n} as a direct product, one normal sbugroup is $\langle s, r^2 \rangle$. And considering the size of group, the other subgroup must be of order 2. Let t be an element with order 2. Thus we would have $D_{2n} = \langle t \rangle \times \langle s, r^2 \rangle$. Therefore $D_{2n} = \langle (t,s), (t,r^2) \rangle$. Which implies Ord((t,s)) = 2 and $Ord((t,r^2)) = n$. We also know that $Ord((t, r^2)) = lcm(Ord(t), Ord(r^2)) = lcm(2, n/2)$. This shows that n/2must be odd, in order for this direct product to create D_{2n} . Therefore if n is of the form 2m where m is odd, then D_{2n} can be written as a direct product, otherwise it cannot.