МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по практической работе №4

по дисциплине «Качество и метрология программного обеспечения» Тема: Построение операционной графовой модели программы (ОГМП) и расчет

ХАРАКТЕРИСТИК ЭФФЕКТИВНОСТИ ЕЕ ВЫПОЛНЕНИЯ

МЕТОДОМ ЭКВИВАЛЕНТНЫХ ПРЕОБРАЗОВАНИЙ

Студент гр. 8304	 Ястребов И.М.
Преподаватель	 Ефремов М.А.

Санкт-Петербург

Цель работы.

Построение операционной графовой модели программы и расчет характеристик эффективности ее выполнения методом эквивалентных преобразований.

Ход работы

1) Выделили функциональную часть (отбросив ввод-вывод данных), отвечающую за сортировку Шелла и построили УГП.. Таблица 1 содержит результаты профилирования.

Рис 1 – Управляющий граф программы

Таблица 1 – Результаты профилирования

исх	прием	общее время	кол-во проходов	среднее время
20	22	450.000	4	112.500
22	26	300.000	12	25.000
26	28	200.000	12	16.667
28	29	-200.000	12	-16.667
29	31	-6850.000	120	-57.084
29	42	-600.000	12	-50.000
31	33	-6750.000	120	-56.250
33	36	-8650.000	58	-149.138
33	41	-9200.000	52	-176.923
36	39	38200.000	58	658.620
39	41	1150.000	58	19.827
41	29	-9050.000	120	-75.416
42	43	-350.000	12	-29.167
43	22	-50.000	8	-6.250

2) На основе результатов профилирования рассчитали вероятности выбора маршрутов выполнения. Данные приведены в Таблице 2. На рисунке 2 представлена ОГМП.

Таблица 2 – Оценка вероятностей

Маршрут	Количество	Вероятность	Время
	проходов		выполнения
			перехода
20-22	4	1	112.500
20-45	0	0	0
22-26	12	1	25.000
26-28	12	1	16.667
28-29	12	1	-16.667
29-31	120	0.91	-57.084
29-42	12	0.09	-50.000
31-33	120	1	-56.250
33-36	58	0.53	-149.138
33-41	52	0.47	-176.923
36-39	58	1	19.827
39-41	58	1	658.620
41-29	120	1	-75.416
42-26	0	0	0
42-43	12	1	-29.167
43-22	8	0.67	-6.250
43-45	4	0.33	12.500

Рис 2 - ОГМП

3) Выполнили описание ОГМП в CSA III.

Рис 3 – граф в CSA 3

t0>t7: Objects::AMC::Link				
Name	Value			
name	t0>t7			
probability	1.0			
intensity	212.587831649835			
deviation	3836529.49740808			

Рис 4 – Результаты работы CSA 3

Отличие от результатов профилирования Sample (Таблица 1) составляет ~7,35=-%.

Заключение

В ходе лабораторной работы построили операционную графовую модель программы и выполнили расчет характеристик эффективности ее выполнения методом эквивалентных преобразований.