Statistics One

Lecture 10 Mediation

Two segments

- Regression method
- Path analysis method

Lecture 10 Segment 1

Mediation: Regression method

- Mediation and moderation may sounds alike but they are quite different
 - Mediation (Lecture 10)
 - Moderation (Lecture 11)
 - Both demonstrated in R (Lecture 12)

Moderation

Mediation & Moderation

- KISS! Keep It Simple Stupid!
- Only 4 variables!
 - X: Predictor variable (could be an IV)
 - Y: Outcome variable (could be a DV)
 - M: Mediator variable
 - Z: Moderator variable

An example

- X: Psychological trait
 - Extraversion
- Y: Behavioral outcome
 - Happiness
- M: Mechanism
 - Diversity of life experience
- Z: Moderator (ZAP! or ZING!)
 - Socio-Economic-Status (SES)

- A mediation analysis is typically conducted to better understand an observed correlation between X and Y
 - Why is extraversion correlated with happiness?

• If X and Y are correlated then we can use regression to predict Y from X

•
$$Y = B_0 + B_1X + e$$

• If X and Y are correlated BECAUSE of the mediator M, then $(X \rightarrow M \rightarrow Y)$:

•
$$Y = B_0 + B_1 M + e$$

•
$$M = B_0 + B_1 X + e$$

- If X and Y are correlated BECAUSE of the mediator M, and:
 - $Y = B_0 + B_1M + B_2X + e$
 - What will happen to the predictive value of X
 - In other words, will B₂ be significant?

- A mediator variable (M) accounts for some or all of the relationship between X and Y
 - Some: Partial mediation
 - *All*: Full mediation

CAUTION!

- Correlation does not imply causation!
- In other words, there is a BIG difference between statistical mediation and true causal mediation.

How to test for mediation

- Run three regression models
 - lm(Y~X)
 - $lm(M\sim X)$
 - $lm(Y \sim X + M)$

How to test for mediation

- Run three regression models
 - $lm(Y \sim X)$
 - Regression coefficient for X should be significant
 - $lm(M\sim X)$
 - Regression coefficient for X should be significant

How to test for mediation

- Run three regression models
 - $lm(Y \sim X + M)$
 - Regression coefficient for M should be significant
 - Regression coefficient for X?

Back to the example

- X: Psychological trait
 - Extraversion
- Y: Behavioral outcome
 - Happiness
- M: Mechanism
 - Diversity of life experience
- Z: Moderator (ZAP! or ZING!)
 - Socio-Economic-Status (SES)

Simulated data

- Assume N = 188
- Participants surveyed and asked to report:
 - Happiness (happy)
 - Extraversion (extra)
 - Diversity of life experiences (diverse)
 - Assume all are scored on a scale from 1 5

Results

- First two models:
 - happy = 2.19 + .28(extra)
 - diverse = 1.63 + .28(extra)
 - For both, regression coefficient for X (extra) is statistically significant, p < .05

Results

- All three models:
 - happy = 2.19 + .28(extra)
 - diverse = 1.63 + .28(extra)
 - happy = 1.89 + .22(extra) + .19(diverse)
 - ALL regression coefficients statistically significant

Interpretation

- Partial, not full, mediation
- Partial mediation because the direct effect (extra) is still significant after adding the mediator (diverse) into the regression equation

Image in slide 5 was retrieved from http://www.valdosta.edu/crc/images/mediation.jpg

Image in slide 6 was retrieved from http://www.perroquet-island.com/journal/wp-content/uploads/equipe.jpg

© 2012 Andrew Conway