第一章

计算机系统概论

讲师:任继梅

QQ:59189174

课程目标

- ✓掌握操作系统的基本原理
 - 计算机组成原理、操作系统原理
- ✓掌握操作系统提供的常用API
 - · 基本IO、内存映射
- ✓多进程编程
 - 进程管理、进程间通信
- ✓多线程编程
 - 线程管理、线程同步

课程安排

✓第一天

上午: 计算机系统概述 下午: 标准I/O操作

✓第二天

上午: I/O操作 下午: Linux进程和信号

✓第三天

上午: 共享文件 下午: 并发和竞争

✓第四天

上午: Linux线程 下午: 线程同步

✓ 第五天

上午: 共享内存、消息队列 下午: 管道

课前提问

- 1. 计算机基本部件有哪些?
- 2. 请简单描述计算机的工作过程
- 3. 请列出你所见过的存储器件

本章内容

- 1.1 计算机工作原理
- 1.2 存储体系结构
- 1.3 操作系统原理
- 1.4 存储布局

本章目标

- ✓ 了解计算机工作原理
- ✓ 熟悉存储体系结构
- ✓ 熟悉操作系统原理
- ✓ 理解存储布局

第一节 计算机组成原理

电脑和手机有哪些设备组成的呢?一台电脑必须有哪些设备才可以正常运行呢?

计算机工作原理

●基本组成:

●处理器(processor)

CPU (中央处理单元、中央处理器)

●主存储器(main memory)

简称: 内存、主存 特点: 掉电易失

●输入输出模块(I/O modules)

外部存储设备、外设

●工作过程:

CPU工作原理

●中央处理器(CPU):

●是解释或执行存储在主存中指令的引擎。

1-CPU工作原理

○CPU三大组件

- ○控制器
- ○寄存器组
- ●算术逻辑单元 (ALU)

●执行指令

- ○取指
- ○译码
- ●执行(ALU)

- ●程序
 - ○指令的集合

- ●二进制指令组成
 - ○操作码
 - ○操作数
 - ○条件码

31 28 Cond	27 26 2	25 I		24 23 22 21 Opcode				20 S	19 16 Rn	15 12 Rd	11 8 7 5 4 3 Operand 2			3 0	Data Processing PSR Transfer
Cond	0 0	0	000			١	S	Rd	Rn	Rs	100	1	Rm	Multiply	
Cond	0 0	1 0			3 00)	Rn	Rd	0000	1001		Rm	Single Data Swap	
Cond	0 1	Ι	Ρ	U	В	٧	V	L	Rn	Rd		offset			Single Data Transfer
Cond	0 1 1	1							Undefined						
Cond	100)	Ρ	U	S	٧	V	L	Rn	Block Data Transfer					
Cond	1 0 1	١	L						Branch						
Cond	1 1 0	110			Ν	V	V	L	Rn	CRd	CP#		offs	et	Coproc Data Transfer
Cond	111) CP O			0C		CRn	CRd	CP#	СР	0	CRm	Coproc Data Operation		
Cond	111	1 ()	CP Opc				L	CRn	Rd	CP#	СР	1	CRm	Coproc Register Transfer
Cond	111	1 1	1 ignored by processor												Software Interrupt

计算机组成原理-再论寄存器

●寄存器概念:

- CPU寄存器组
- 用户可见
- ●存取速度最快的存储器
- ●相当于皇帝身边的太监
- Register关键字

○ 大致分类:

- ○状态寄存器
- 数据寄存器
- 控制寄存器

存储器

- ●存储器,是用来存放程序和数据的设备。
 - ●主存,是一个临时存储设备,在处理器执行程序时,用来存放程序和数据。
 - ●硬盘,是一个永久性存储设备,在计算机关机后,永久性存放程 序和数据。

I/0设备

○I/O设备,输入/输出设备是计算机系统与外部世界的联系通道。

●输入设备主要有: 鼠标, 键盘

●输出设备主要有:显示器,打印机

I/0设备

○I/O设备,输入/输出设备是计算机系统与外部世界的

联系通道。

○显示器

第一节: 思考

●1. 一个编译好的打印helloworld这样的一个程序,从运行的一刻开始,是从哪个设备运行到哪个设备?

第二节 计算机存储体系

计算机存储体系

●基本概念

○位: 二进制位 取值0或1

○字节: 连续的8位二进制序列

○字: CPU一次能处理二进制数的最大位数 (n位机)

○字长:字的字节数

○地址:内存中每个字节单元的编号(一般用16进制表示)

○寻址空间: 地址总线所包含的地址线根数

计算机存储体系

CPU内部有寄存器,外部有主存和硬盘,这些都是存储程序和数据,为什么需要这么多不同的存储设备呢?

计算机存储体系-分析

计算机存储体系分析

计算机存储体系-Cache机制

●Cache高速缓冲存储器

- ●提升计算机系统整体工作效率
- ●对程序不可见
- ●《ARM和驱动》课中详细介绍

计算机存储体系-DMA

●DMA定义:

- ●直接内存存取: Direct Memory Access
- ●CPU专职秘书:负责外设与内存间的数据传输
- ●交互数据量大时采用
- ●依赖于中断
- ●CPU只在数据传输开始和结束时参与
- ●提高CPU工作效率

计算机存储体系-总结

●离CPU越近

- ●容量越小
- ●存取速度越快
- ●单位价格越高
- ●访问频率越高

第三节 计算机操作系统

计算机操作系统-概念

- ●操作系统(英语: Operating System, 简称OS)是 管理和控制计算机硬件与软件资源的计算机程序。
- 操作系统是对硬件的一种抽象, 屏蔽了底层细节
 - Unix和类Unix操作系统, Mac OS X, Linux。
 - 微软公司Windows操作系统, Windows 98, Windows XP, Windows 7, Windows 8.1等。

计算机操作系统-组成

●一个标准个人电脑的OS应该提供以下的功能:

- 进程管理 (Processing management)
- 内存管理 (Memory management)
- 文件系统 (File system)
- 网络通讯 (Networking)
- 用户界面 (User interface)
- 驱动程序 (Device drivers)

计算机操作系统-框图

●计算机系统基本框架

计算机操作系统-框图

第四节 ()程序存储布局

知识点5-0程序的存储空间

代码区

1. 系统分配、系统释放 2. 代码执行过程中分配、释放 3. 普通局部变量、形式参数 4. 先进后出 栈区 5. 生存期: 复合语句或函数开始运行到复合语句或函数运行结束 6. 作用域:复合语句或函数内 7. 未初始化时为野值 8. 空间有限 1. 程序自己分配、释放 2. 代码执行过程中分配、释放 3. 自由存储区,空间很大 4. 小心内存泄漏 堆区 5. 生存期: 分配代码开始到释放代码结束 6. 作用域:视首地址持有者属性而定 7. 无法初始化,开始为野值 1. 系统分配、系统释放 2. 未初始化时被置0 3. 程序加载到内存时分配、程序运行结束后释放 数据区 4. 全局变量、静态局部变量、字符串常量(只读) 5. 牛存期: 整个程序运行期 6. 作用域:视变量属性而定 只读

1. 系统分配、系统释放

2. 程序加载到内存时分配、程序运行结束后释放

3. 只读,可执行 4. 生存期:整个程序运行期

5. 函数名所代表的代码段首地址所在地

课程总结

●本节课程内容

- 计算机工作原理
- 存储体系
- 操作系统
- 存储布局

● 下节课程

- 系统调用
- 文件类型
- 文件系统

联系方式

QQ: 59189174

E-mail: yumeifly@sohu.com