Year 11/12

1. (3 points) There are twelve lockers, numbered from 110 to 121. The keys to these twelve lockers are numbered 1 to 12. Each locker number is divisible by the number on its key.

Determine the key number for each locker.

Total for Question 1: 3

- 2. (a) (1 point) Two lines can divide the plane into at most how many regions?
 - (b) (1 point) Three lines can divide the plane into at most how many regions?
 - (c) (1 point) If we add a fourth line, what is the maximum number of intersection points that line can make with the existing lines?
 - (d) (1 point) Four lines can divide the plane into at most how many regions?
 - (e) (3 points) What is the maximum number of regions that n lines can divide the plane into?

Total for Question 2: 7

- 3. (a) (1 point) How many ways are there to create a two-element subset from the set $\{1, 2, 3, 4\}$?
 - (b) (2 points) How many ways are there to split the set $\{1, 2, 3, 4\}$ into two disjoint nonempty sets? (Disjoint means the two sets share no elements.) For example, if we had the set $\{1, 2, 3\}$ a valid splitting would be $\{1, 2\}$ and $\{3\}$.
 - (c) (2 points) How many ways are there to split the set $\{1, 2, 3, 4, 5\}$ into two disjoint nonempty sets?
 - (d) (2 points) Denote by S(n,k) the number of ways to split a set of n elements into k disjoint nonempty sets. Suppose we know what S(n-1,2) is. What happens when we add another element to the set? What happens to each of the S(n-1,2) ways to do the partitioning?
 - (e) (2 points) What is S(n, 2)?
 - (f) (3 points (bonus)) If there are S(n-1,k-1) ways to partition a set of n-1 elements into k-1 nonempty disjoint sets, what is S(n,k) in terms of S(n-1,k) and S(n-1,k-1)?

Total for Question 3: 9

- 4. (a) (2 points) Is the sum or difference of two rational numbers always rational? Why or why not?
 - (b) (2 points) Is the product or quotient of two rational numbers always rational? Why or why not?
 - (c) (2 points) When one rational number is raised to another is the result guaranteed to be rational?
 - (d) (3 points) It is known that $\sqrt{2}$ is irrational, but it is not known whether $\sqrt{2}^{\sqrt{2}}$ is rational or irrational. Do there exist two irrational numbers such that when one is raised to the other the result is rational? Prove your conjecture.

- 5. (a) (1 point) If two normal six-sided dice are rolled, what is the probability that the sum of the two numbers is 2?
 - (b) (1 point) If two normal six-sided dice are rolled, what is the probability that the sum of the two numbers is 7?
 - (c) (2 points) Consider a biased six-sided die in which the probability of rolling n is p_n . This die is rigged so that when two of them are rolled, every possible sum of the two numbers is equally likely. What is p_2 in terms of p_1 ?
 - (d) (1 point) What is p_3 in terms of p_1 ?
 - (e) (2 points) What is p_4 in terms of p_1 ? Do you notice a pattern?
 - (f) (2 points) Let $p_i = a_{i-1}p_1$. So $a_0 = 1$, $p_2 = a_1p_1$, $p_3 = a_2p_1$, $p_4 = a_3p_1$ and so on. What are $a_0a_1 + a_1a_0$, $a_0a_2 + a_1a_1 + a_2a_0$, $a_0a_3 + a_1a_2 + a_2a_1 + a_3a_0$, etc. all equal to?
 - (g) (1 point) Since we have a six-sided die,

$$p_1 + p_2 + \cdots + p_6 = 1.$$

What is p_1 in terms of $a_0, a_1, a_2, \ldots, a_5$?

- (h) (2 points) Let $s_i = a_0 + a_1 + \cdots + a_i$. What are s_0, s_1, s_2 ? What is s_5 ?
- (i) (3 points) Is such a six-sided die possible?

Total for Question 5: 15

- 6. (a) (1 point) What is $1 + 2 + 3 + \cdots + 200$?
 - (b) (2 points) Find a formula for $1 + 2 + \cdots + n$ and prove it.
 - (c) (1 point) Define

$$F_k(n) = 1^k + 2^k + \dots + n^k.$$

(So in the previous part you found a formula for $F_1(n)$.) More compactly it may be written as

$$F_k(n) = \sum_{i=1}^n i^k.$$

What is

$$1^3 + (2^3 - 1^3) + (3^3 - 2^3) + \dots + (100^3 - 99^3)$$
?

(d) (2 points) By considering

$$1^{3} + \sum_{i=1}^{n} ((i+1)^{3} - i^{3})$$

find a formula for $F_2(n)$.

- (e) (2 points) Find a formula for $F_3(n)$.
- (f) (1 point) The Binomial Theorem states that

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

If

$$(i+1)^k - i^k = \sum_{j=0}^x \binom{k}{j} i^j$$

what is x in terms of k?

(g) (3 points) By considering the general telescoping sum

$$1^k + \sum_{i=1}^n ((i+1)^k - i^k) = (n+1)^k$$

show that

$$F_{k-1}(n) = \frac{(n+1)^k - 1}{k} + \frac{1}{k} \sum_{i=0}^{k-2} {k \choose i} F_i(n).$$

Total for Question 6: 12

Total: 55