

腾讯会议视频编码技术优化实践

腾讯多媒体实验室视频技术专家 王诗涛

视频编码对于提升视频会议质量意义重大

屏幕内容编码技术

屏幕内容图像是电子设备生成的图像,直接从各类设备(计算机,移动终端等)的图像显示单元捕获的。

屏幕内容图像与摄像头采集视频特征差异巨大。

摄像头采集视频	屏幕图像
有噪声 色调连续 纹理复杂	没有噪声 色调离散 线条细腻 边缘锐利 均匀平坦区域较多 重复图案,相同块较多

- 传统的混合编码结构对于屏幕内容而言效果欠佳;
- 屏幕内容编码需要新的编码工具以进一步提升压缩效率;
- 针对屏幕内容, HEVC推出了HEVC-5CC(5creen
 Content Coding)编码技术,极大提升了屏幕内容压缩效率;

HEVC-5CC关键技术介绍

	HEVC v1	HEVC-RExt	HEVC-SCC
目标输入	相机采集内容	相机采集内容	屏幕混合内容
颜色空间	YUV	YUV, RGB	YUV, RGB
采样格式	4:2:0	4:2:0, 4:0:0, 4:2:2, 4:4:4	4:2:0, 4:4:4
位宽	8 – 10	>10 (最多16)	8 – 10
SCC工具	1.变换跳过 [仅对4x4 TU]	1.变换跳过 2.残差旋转 3.残差DPCM 4.交叉分量预测	1. 变换跳过 2. 残差旋转 3. 残差DPCM 4. 交叉分量预测 5. 帧内块拷贝 6. 调色板模式 7. 自适应色彩转换 8. 自适应运动矢量精度

HEVC-5CC关键技术介绍

帧内块拷贝技术(IBC):采用当前帧已重建 块作为预测块,IBC可认为是在当前编码图像 内的运动补偿;

the HEVCSCC extension as follows. Section general IBC technologisms of IBC in the

调色板编码技术 (Palette Mode) : 枚举颜色值生成颜色表, 然后为每个样本传递一个索引以指示它属于颜色表中的哪种颜色;

- 1、IBC和Palette编码对屏幕内容编码效果显著,压缩效率相比HEVC可提升50%以上;
- 2、基于HEVC-SCC技术,我们推出了针对屏幕内容编码的屏幕内容编码器(TSE);

T5E编码器架构图

T5E编码器性能优化

- 1、基于hash表搜索的运动估计代替传统运动估计
- 扩展hash搜索表
- 快速hash搜索算法
- 2、调色板生成算法优化
- 快速高效的颜色表生成算法
- 高效的查找表算法
- 3、模式选择快速算法优化
- 4、SIMD优化

- → Valid Hash search path
- ----→ Invalid Hash search path
- → Useful Hash table
- ---- Useless Hash table

T5E编码与x265对比

关注「腾讯产业互联网」公众号 回复「加群」进入技术交流群

摄像头采集序列(LDP模式)

屏幕内容序列(LDP模式)

= 3564.215125

x265编码效果

り名称、数组或引用

number2,... 是用于计算平均值的

= 3564.215125

TSE编码效果

]名称、数组或引用

number2,... 是用于计算平均值的

■■腾讯多媒体实验室

演讲主题ppt

这里是一段副标题或者英文标题

演讲者或出品团队署名

优化前

腾讯多媒体实验室

演讲主题ppt

这里是一段副标题或者英文标题

演讲者或出品团队署名

优化后

YUV444编码支持

UV色度下采样,导致编码颜色失真!

关注「腾讯产业互联网」公众号 回复「加群」进入技术交流群[[7]

优化方案:采用YUV444编码,解决UV色度降采样导致的颜色失真、文字模糊等问题;

COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT ACT (BD-RATE COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT ACT (BD-RATE COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT AMVR (BD-RATE COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT ACT (BD-RATE COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT AMVR (BD-RATE COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT AMVR (BD-RATE COMPARISON OF SCM-3.0 WITH VERSUS WITHOUT ACT (BD-RATE COMPARISON OF SCM-3.0 WITH VERSUS WITH VERSUS WITHOUT ACT (BD-RATE COMPARISON OF SCM-3.0 WITH VERSUS WITH CHANGE). CHANGE).

		AI	RA	LB
RGB	TGM	-31.3%	-19.1%	-10.6%
	M	-28.9%	-19.2%	-8.9%
	A	-1.1%	-0.5%	-0.1%
	CC	-0.1%	0.0%	0.0%
YUV	TGM	-32.5%	-19.1%	-9.8%
	M	-29.5%	-19.9%	-8.9%
	A	-1.6%	-0.5%	0.1%
	CC	-0.2%	0.0%	0.1%

		AI	RA	LB
RGB	TGM	-15.5%	-10.5%	-6.8%
	M	-3.7%	-2.6%	-1.5%
	A	0.0%	-0.1%	0.0%
	CC	0.0%	0.0%	0.0%
YUV	TGM	-16.2%	-11.1%	-6.8%
	M	-5.9%	-4.4%	-2.7%
	A	0.1%	0.2%	0.1%
	CC	0.0%	0.1%	0.1%

		AI	RA	LB
RGB	TGM	-9.6%	-11.6%	-11.1%
	M	-16.6%	-23.1%	-23.7%
	A	-24.5%	-24.9%	-24.0%
	CC	-24.5%	-27.5%	-26.1%
YUV	TGM	-0.4%	-0.7%	-1.0%
	M	0.1%	0.4%	0.4%
	A	0.1%	-0.1%	0.0%
	CC	0.1%	0.5%	0.3%

		RA	LB
	TGM	-1.4%	-2.2%
RGB	M	0.0%	0.0%
KUD	A	0.0%	0.0%
	CC	0.0%	0.0%
	TGM	-1.5%	-2.4%
YUV	M	0.0%	-0.1%
100	A	0.0%	0.0%
	CC	0.0%	0.0%

CHANGE).

这种方法造成的几个问题:

- 1, 声像集中, 多声道同时响时声音难以
- 2,没有前后的区分,使得影片中原本 后方的声音变成了来自正右方

- 1, 声像集中, 多声道同时响时声音难
- 2,没有前后的区分,使得影片中原本 后方的声音变成了来自正右方

原图

YUV420编码效果

YUV444编码效果

5VC编码

会议多个下行的情况下,一端网络状况差会导致所有接收端画面质量下降;

SVC采用灵活分层机制,根据用户网络状态调整下发编码层数,避免某路下行网络质量差影响到其他用户体验;

5VC编码

SVC编码效果

ROI编码

关注「腾讯产业互联网」公众号 回复「加群」进入技术交流群

功能: 实现基于感兴趣区域的实时编码

主要工作:

- 1) 实现一套快速高效的ROI区域检测算法,1080p图像检测一帧耗时控制在0.5ms以内;
- 2) 基于ROI区域优化码率控制算法,低码率下提升主观质量,高码率下降低编码码率;

ROI Area Detection Example

Low Bitrate (100kbps@15fps)

Low Bitrate (100kbps@15fps)

High Bitrate (300kbps@15fps)

High Bitrate (210kbps@15fps)

灵活多变的编解码策略

关注「腾讯产业互联网」公众号 回复「加群」进入技术交流群 [²]

视频编解码优化不单是编解码内核的优化,而是一个系统级优化

- 1. 软硬件编解码切换策略;
 - 软硬件编码各有优劣,不同场景,不同平台选用不同的软硬件方案;
- 2. 动态帧率、分辨率、码率策略;
 - 根据不同码率, 动态调整帧率、分辨率;
 - 根据运动场景复杂度,动态调整帧率、分辨率;
- 3. 动态编码档位策略;
 - 根据机器性能配置,选择最佳的编码preset档位;
- 4. SVC灵活切换策略;
 - 根据用户下行带宽, 动态开关SVC;
 - · 动态调整SVC下发层数;

关注「腾讯产业互联网」公众号 回复「加群」进入技术交流群

Thanks!