(over =: U = R v.f., find potantial.

Proposition: the following are equivalent:

Proof: (1)
$$\Rightarrow$$
 (2) if C closed and points $=$ \hat{A} , $\hat{F} \cdot d\hat{x} = \hat{F} \cdot d\hat{x} = 0$

(2)
$$\Rightarrow$$
 (1) suppose C_1 , C_2 both start at \vec{a} and \vec{m} at \vec{b} then C_1 $V(-C_2)$ is a closed wive at \vec{a} .

So $O = \int_{C_1} \vec{F} \cdot d\vec{x} - \int_{C_2} \vec{F} \cdot d\vec{x}$

$$|3\rangle \Rightarrow (1)$$
 If $\vec{F} = \nabla f$ + hen $\int_{C} \vec{F} \cdot d\vec{x} = f(\vec{o}) - f(\vec{o}) = Constant (f(t))$

$$(N \Rightarrow (3))$$
 Pick $\vec{a} \in U$, define $f: U \Rightarrow R$ by $f(\vec{x}) = \int_{C_{\vec{a}}, \vec{x}} \vec{f} \cdot d\vec{x}$

Where $C_{\vec{a}, \vec{x}}$ is any wise blue \vec{a}, \vec{x} .

Want to show DF = F

let ≠∈U, Ca, x cone from à to x:

Pick v small enough so that B(r, x) EU

let | h | < r. Let h = (h,o,...,o). let Cx, xth be the

Straight like path from
$$\vec{x}$$
 to $\vec{x} + \vec{h}$ $\vec{g}(t) = (x_i + t, x_2, ..., x_n)$ where $0 \le t \le h$.

by (11,
$$f(\vec{y}+\vec{h}) = \int \vec{F} \cdot d\vec{x}$$

by (1),
$$f(\vec{y}+\vec{h}) = \int_{\vec{r}} \vec{r} \cdot \vec{j} \cdot \vec{x}$$

$$= \int_{\vec{k}} \vec{r} \cdot \vec{j} \cdot \vec{x} \cdot \vec{x}$$

if $\vec{F} = Df$ then $j_i F_j = j_i F_i$ by eq. of mixed partials. (2:3;f-3;2;f) so 7, Fj = 7, Fi Vij is a necessary condition for F= DF.

Suppose UER" is convex and F: U-R" is a V.f. satisfying DiF; = Dy Fi Vi, j nun F= Df

Proof: Take a EU and define $f(\vec{x}) = \int_{-\vec{x}} \vec{F} \cdot d\vec{x}$ where $L_{\vec{a},\vec{x}}$ is straight like path on \vec{x} to \vec{x} .

Want to show hat $\nabla f(\vec{x}) = \hat{f}(\vec{x})$ for all $\vec{x} \in U$.

Choose r>0 s.t. $B(r,\vec{x}) \in U$. let 0 < h < r, $\vec{h} = (h_p,...,0)$. If we show that $f(\vec{x}+\vec{h}) - f(\vec{x}) = \int_{\vec{x},\vec{x}+h}^{h} F_{i}(x_{i}+t_{i},...,x_{n}) dt$ (*)

thun 7, f(x)= F(x) follows as earlier.

(*) is equivalent to $\int_{L_{7}, \frac{1}{7} \cup L_{7}, \frac{1}{7} + h \cup (-L_{6}, \frac{1}{7} + \frac{1}{6})} \vec{F} \cdot d\vec{x} = 0.$

This follows from green's theorem for n=2, stoke's theorem for n=3,

and "generalited Stokers theorem" for other n.

by (**)

Generalized Version of Theorem: "Convex" can be replaced by "simply connected".
i.e. any simple closed curve in u ande
filled in wim a disk.

If U not simply connected then I; F = J, F; is not sufficient for F = Vf.