Reversibility of Eight Steps of SHA-256

Scott McDair mcdair@protonmail.com

Abstract—This paper demonstrates a method to deterministically reverse the first eight steps (iterations) of the SHA-256 compression function. By tracking the propagation of a single message schedule word through the internal state and expressing its effect algebraically across steps, we isolate and recover its original value from the final state. The results indicate that for eight steps of SHA-256, the function remains fully invertible, with each step preserving enough structural information to reconstruct the original input. Building on this approach, we construct efficient 16-step preimage attacks. The reversibility framework introduced here may also extend to SHA-512.

INDEX TERMS—Compression function, cryptanalysis, hash function, preimage attack, reduced-round, SHA-256, SHA-512, step-reduced.

I. INTRODUCTION

SHA-256, a member of the SHA-2 family of hash functions, is widely deployed in modern cryptographic systems. It relies on a Merkle–Damgård construction with a compression function that performs 64 steps of mixing operations on a fixed-length input block. The perceived strength of SHA-256 as a cryptographic hash function lies in its resistance to preimage, second preimage, and collision attacks—properties derived from its apparent irreversibility and avalanche effect.

This paper investigates the reversibility of SHA-256 when the compression function is reduced to only eight steps. It is shown that despite complex and nonlinear transformations within these steps, the original variable data—the message schedule—persist and remain recoverable. Through algebraic tracing of input propagation across the compression function's internal variables, we explicitly reconstruct each 32-bit message schedule word from the final state.

The implications of this result suggest that SHA-256, truncated to eight steps, does not qualify as a cryptographic hash function in the strictest sense. Instead, it exhibits behavior similar to an encryption mechanism, where outputs can be reversed given sufficient information. Although this finding does not directly compromise full SHA-256, it offers insights into the structural resilience and diffusion properties of its early steps.

II. PRELIMINARIES

A. Key Terms

Word A 32-bit unsigned integer.

Step A single iteration of the compression function.

 $H^{(i)}$ The (intermediate) hash value after processing the *i*-th message block. $H^{(0)}$ denotes the initial hash

value and $H^{(N)}$ represents the final hash value serving as the message digest.

$H_j^{(i)}$	A specific 32-bit word <i>j</i> (zero-indexed) from a total of eight words that make up 256-bit hash value
	$H^{(i)}$.

a, b, ..., h 32-bit working variables used in the compression function to compute the hash values, $H^{(i)}$.

 $a_{t+1}, b_{t+1}, ..., h_{t+1}$ The working variables (values) after processing step t (zero-indexed), collectively referred to as the state. $a_0, b_0, ..., h_0$ represent the initial state of the compression function.

 K^{i} Step-specific 32-bit constant value (zero-indexed) used in the compression process.

M The original input message.

 $M^{(i)}$ The *i*-th fixed-length message block obtained from M.

 $M_j^{(i)}$ A specific 32-bit word j (zero-indexed) from a total of sixteen words that make up 512-bit message block $M^{(i)}$.

 W_t A specific 32-bit word t (zero-indexed) of the message schedule.

 $Ch, \Sigma_1, Maj, \Sigma_0$ Nonlinear bitwise functions used in the SHA-256 compression function.

B. Symbols

Addition (+) and subtraction (-) are defined modulo 2³² over 32-bit words.

C. The Truncated Message Schedule

For our analysis, we consider a single 512-bit (padded) message block $M^{(1)}$, allowing an original message M length up to 447 bits. In the standard SHA-256 specification, this block would be expanded into a 64-word (2048-bit) message schedule. However, to facilitate the reversibility analysis of the compression function truncated to eight steps, we introduce a simplified, or *truncated*, message schedule.

Specifically, for the purpose of this study, we define the message schedule W to consist solely of the first eight 32-bit words of $M^{(1)}$, directly mapped as follows:

$$W_t = M_t^{(1)}$$
, for $t = 0$ to 7

As a result, only the initial 256 bits of the padded input message block (and at most 256 bits of original message M) are utilized and constitute the entire message schedule for the eight steps of the compression function under investigation. This simplification allows us to directly trace and recover these initial input bits from the truncated function's output.

D. Step Representation

We represent the state update process of the SHA-256 compression function at step t (ranging from 0 to 7 in this implementation) slightly differently from the original specification as we omit the explicit use of temporary variables (T_1 , T_2) by substituting their definitions directly into the update equations.

The state variables entering step t are a_t , b_t , ..., h_t . These are updated to produce the state variables for the next step, a_{t+1} , b_{t+1} , ..., h_{t+1} .

$$a_{t+1} = (h_t + \Sigma_1(e_t) + Ch(e_t, f_t, g_t) + K_t + W_t) + (\Sigma_0(a_t) + Maj(a_t, b_t, c_t))$$

$$e_{t+1} = d_t + (h_t + \Sigma_1(e_t) + Ch(e_t, f_t, g_t) + K_t + W_t)$$

$$h_{t+1} = g_t$$

$$g_{t+1} = f_t$$

$$f_{t+1} = e_t$$

$$d_{t+1} = c_t$$

$$c_{t+1} = b_t$$

This unrolled form emphasizes the algebraic structure and dependencies between steps, which is essential for the reversibility analysis presented in later sections. Figure 1 specifically illustrates the direct inheritance of state variables that forms a crucial part of these dependencies.

Fig. 1. SHA-256 state update process illustrating inheritance.

E. Initial and Final State Values

The initial state of the compression function, consisting of eight working variables, is derived from initial hash value $H^{(0)}$, which comprises a predefined set of eight 32-bit constants.

$$a_0 = H_0^{(0)}, b_0 = H_1^{(0)}, ..., h_0 = H_7^{(0)}$$

Since this analysis is restricted to a single message block, the final state of the compression function can be directly deduced from hash value $H^{(1)}$, which serves as the resulting 256-bit message digest.

$$H_0^{(1)} = a_8 + H_0^{(0)}, H_1^{(1)} = b_8 + H_1^{(0)}, ..., H_7^{(1)} = h_8 + H_7^{(0)}$$

Therefore:

$$a_8 = H_0^{(1)} - H_0^{(0)}, b_8 = H_1^{(1)} - H_1^{(0)}, ..., b_8 = H_7^{(1)} - H_7^{(0)}$$
 (1)

We find that the SHA-256 compression function initial as well as final state values are known a priori, for a single-block message.

III. REVERSING SHA-256 REDUCED TO EIGHT STEPS

A. Calculating the First Word of the Message Schedule

We examine how the compression function incorporates the first word of the message schedule, W_0 , and trace its propagation through the internal state across eight steps.

1) First Step

 W_0 is used in the computation of next state variable $a(a_1)$ as follows:

$$a_1 = h_0 + W_0 + K_0 + Ch(e_0, f_0, g_0) + \Sigma_1(e_0) + Maj(a_0, b_0, c_0) + \Sigma_0(a_0)$$

 W_0 also contributes to e_1 :

$$e_1 = d_0 + h_0 + W_0 + K_0 + Ch(e_0, f_0, g_0) + \Sigma_1(e_0)$$

Since W_0 directly influences both a_1 and e_1 , we proceed to examine the evolution of these values.

2) Second Step

Next state variable b (b_2) directly inherits the value of a_1 , and f_2 takes over the value of e_1 :

$$b_2 = a_1$$

$$f_2 = e_1$$

3) Third Step

 c_3 and g_3 inherit b_2 and f_2 respectively:

$$c_3 = b_2$$

$$g_3 = f_2$$

4) Fourth Step

 d_4 and h_4 inherit c_3 and g_3 respectively:

$$d_4 = c_3$$

$$h_4 = g_3$$

5) Fifth Step

 a_5 depends on h_4 , and e_5 depends on h_4 and d_4 (both containing value of interest W_0):

$$a_5 = h_4 + W_4 + K_4 + Ch(e_4, f_4, g_4) + \Sigma_1(e_4) + Maj(a_4, b_4, c_4) + \Sigma_0(a_4)$$

$$e_5 = d_4 + h_4 + W_4 + K_4 + Ch(e_4, f_4, g_4) + \Sigma_1(e_4)$$

6) Sixth Step

 b_6 inherits a_5 , and f_6 inherits e_5 :

$$b_6 = a_5$$

$$f_6 = e_5$$

7) Seventh Step

 c_7 inherits b_6 , and g_7 inherits f_6 :

$$c_7 = b_6$$

$$g_7 = f_6$$

8) Eighth Step

 d_8 inherits c_7 , and h_8 inherits g_7 :

$$d_8 = c_7 = b_6 = a_5 = \mathbf{h_4} + W_4 + K_4 + Ch(e_4, f_4, g_4) + \Sigma_1(e_4) + Maj(a_4, b_4, c_4) + \Sigma_0(a_4)$$

$$h_8 = g_7 = f_6 = e_5 = \mathbf{d_4} + \mathbf{h_4} + W_4 + K_4 + Ch(e_4, f_4, g_4) + \Sigma_1(e_4)$$

After eight steps we conclude that W_0 (contained by both h_4 and d_4) is part of final state variables d_8 and h_8 . We also notice that the fifth word of the message schedule (W_4) has been mixed into these resulting values. Consequently, it may initially appear infeasible to deterministically reconstruct W_0 . However, we can eliminate W_4 whilst preserving W_0 the following way.

$$d_8 = h_4 + W_4 + K_4 + Ch(e_4, f_4, g_4) + \Sigma_1(e_4) + Maj(a_4, b_4, c_4) + \Sigma_0(a_4)$$
$$h_8 = d_4 + h_4 + W_4 + K_4 + Ch(e_4, f_4, g_4) + \Sigma_1(e_4)$$

Subtract d_8 from h_8 :

$$h_8 - d_8 = d_4 - Maj(a_4, b_4, c_4) - \Sigma_0(a_4)$$

From earlier, we recall that:

$$d_4 = c_3 = b_2 = a_1 = h_0 + W_0 + K_0 + Ch(e_0, f_0, g_0) + \Sigma_1(e_0) + Maj(a_0, b_0, c_0) + \Sigma_0(a_0)$$

Substituting:

$$h_8 - d_8 = h_0 + W_0 + K_0 + \text{Ch}(e_0, f_0, g_0) + \Sigma_1(e_0) + Maj(a_0, b_0, c_0) + \Sigma_0(a_0) - Maj(a_4, b_4, c_4) - \Sigma_0(a_4)$$

Rearranging to solve for W_0 :

$$W_0 = h_8 - d_8 - h_0 - K_0 - Ch(e_0, f_0, g_0) - \Sigma_1(e_0) - Maj(a_0, b_0, c_0) - \Sigma_0(a_0) + Maj(a_1, b_1, c_1) + \Sigma_0(a_1)$$

This expression isolates W_0 , with remaining unknowns being a_4 , b_4 and c_4 , which can be further constrained in subsequent analysis.

9) Determining Fifth State Variable a

Our analysis will once again focus on the evolution of variable a_4 as it traverses the compression function:

We observe that the value of a_4 propagates to b_5 , c_6 and d_7 respectively.

$$d_7 = c_6 = b_5 = a_4$$

 d_7 is being used to compose state variable e_8 in the eighth (final) step as follows:

$$e_8 = d_7 + h_7 + W_7 + K_7 + Ch(e_7, f_7, g_7) + \Sigma_1(e_7)$$

Using a similar technique as before, we can eliminate W_7 and isolate d_7 :

$$e_8 = d_7 + h_7 + W_7 + K_7 + Ch(e_7, f_7, g_7) + \Sigma_1(e_7)$$

$$a_8 = h_7 + W_7 + K_7 + Ch(e_7, f_7, g_7) + \Sigma_1(e_7) + Maj(a_7, b_7, c_7) + \Sigma_0(a_7)$$

$$e_8 - a_8 = d_7 - Maj(a_7, b_7, c_7) - \Sigma_0(a_7)$$

$$d_7 = e_8 - a_8 + Maj(a_7, b_7, c_7) + \Sigma_0(a_7)$$

Substituting a_7 for b_8 , b_7 for c_8 and c_7 for d_8 we get:

$$a_4 = d_7 = e_8 - a_8 + Maj(b_8, c_8, d_8) + \Sigma_0(b_8)$$

10) Determining Fifth State Variable b

Similarly, we can calculate b_4 . Note that the calculation of a_4 (equalling d_7), as just presented, is a prerequisite.

$$d_6 = c_5 = b_4$$

$$e_7 = d_6 + h_6 + W_6 + K_6 + Ch(e_6, f_6, g_6) + \Sigma_1(e_6)$$

$$a_7 = h_6 + W_6 + K_6 + Ch(e_6, f_6, g_6) + \Sigma_1(e_6) + Maj(a_6, b_6, c_6) + \Sigma_0(a_6)$$

$$e_7 - a_7 = d_6 - Maj(a_6, b_6, c_6) - \Sigma_0(a_6)$$

$$d_6 = e_7 - a_7 + Maj(a_6, b_6, c_6) + \Sigma_0(a_6)$$

Substituting e_7 for f_8 , a_7 for b_8 , a_6 for c_8 , b_6 for d_8 and c_6 for a_4 we get:

$$\mathbf{b_4} = d_6 = f_8 - b_8 + Maj(c_8, d_8, \mathbf{a_4}) + \Sigma_0(c_8)$$

11) Determining Fifth State Variable c

Finally, c_4 can be determined in an analogous way. Note that the calculation of a_4 and b_4 (equalling d_7 and d_6 respectively), as just presented, is a prerequisite.

$$d_5 = c_4$$

$$e_6 = d_5 + h_5 + W_5 + K_5 + Ch(e_5, f_5, g_5) + \Sigma_1(e_5)$$

$$a_6 = h_5 + W_5 + K_5 + Ch(e_5, f_5, g_5) + \Sigma_1(e_5) + Maj(a_5, b_5, c_5) + \Sigma_0(a_5)$$

$$e_6 - a_6 = d_5 - Maj(a_5, b_5, c_5) - \Sigma_0(a_5)$$

$$d_5 = e_6 - a_6 + Maj(a_5, b_5, c_5) + \Sigma_0(a_5)$$

Substituting e_6 for g_8 , a_6 for g_8 , a_5 for g_8 , g_5 for g_8 , g_5 for g_8 , g_6 for g_8 , g_7 for g_8 , g_8 for g_8 , g_9 for g_9 for g_8 , g_9 for g_9 for g_9 for g_8 , g_9 for g_9

$$c_4 = d_5 = g_8 - c_8 + Maj(d_8, a_4, b_4) + \Sigma_0(d_8)$$

12) Summary

We have solved all unknowns and are now able to calculate W_0 deterministically.

$$a_4 = e_8 - a_8 + Maj(b_8, c_8, d_8) + \Sigma_0(b_8)$$

$$b_4 = f_8 - b_8 + Maj(c_8, d_8, a_4) + \Sigma_0(c_8)$$

$$c_4 = g_8 - c_8 + Maj(d_8, a_4, b_4) + \Sigma_0(d_8)$$

$$\textbf{W}_0 = h_8 - d_8 - h_0 - K_0 - Ch(e_0, f_0, g_0) - \Sigma_1(e_0) - Maj(a_0, b_0, c_0) - \Sigma_0(a_0) + Maj(\textbf{a}_4, \textbf{b}_4, \textbf{c}_4) + \Sigma_0(\textbf{a}_4) +$$

B. Calculating the Subsequent Word(s) of the Message Schedule

Following the same process of determining W_0 , we find following results with regard to W_1 .

Note that W_1 is mixed into the state as of the second step, so we start there.

1) Second Step

$$a_2 = h_1 + W_1 + K_1 + Ch(e_1, f_1, g_1) + \Sigma_1(e_1) + Maj(a_1, b_1, c_1) + \Sigma_0(a_1)$$

$$e_2 = d_1 + h_1 + W_1 + K_1 + Ch(e_1, f_1, g_1) + \Sigma_1(e_1)$$

2) Third Step

$$b_3 = a_2$$

$$f_3 = e_2$$

3) Fourth Step

$$c_4 = b_3$$

$$g_4 = f_3$$

4) Fifth Step

$$d_5 = c_4$$

$$h_5 = g_4$$

5) Sixth Step

$$a_6 = \mathbf{h_5} + W_5 + K_5 + Ch(e_5, f_5, g_5) + \Sigma_1(e_5) + Maj(a_5, b_5, c_5) + \Sigma_0(a_5)$$

$$e_6 = \mathbf{d_5} + \mathbf{h_5} + W_5 + K_5 + Ch(e_5, f_5, g_5) + \Sigma_1(e_5)$$

6) Seventh Step

$$b_7 = a_6$$

$$f_7 = e_6$$

7) Eighth Step

$$c_8 = b_7 = a_6 = h_5 + W_5 + K_5 + Ch(e_5, f_5, g_5) + \Sigma_1(e_5) + Maj(a_5, b_5, c_5) + \Sigma_0(a_5)$$

$$g_8 = f_7 = e_6 = d_5 + h_5 + W_5 + K_5 + Ch(e_5, f_5, g_5) + \Sigma_1(e_5)$$

Eliminate W_5 :

$$g_8 - c_8 = d_5 - Maj(a_5, b_5, c_5) - \Sigma_0(a_5)$$

Substitute $d_5 = c_4 = b_3 = a_2 = h_1 + W_1 + K_1 + Ch(e_1, f_1, g_1) + \Sigma_1(e_1) + Maj(a_1, b_1, c_1) + \Sigma_0(a_1)$:

$$g_8 - c_8 = h_1 + W_1 + K_1 + Ch(e_1, f_1, g_1) + \Sigma_1(e_1) + Maj(a_1, b_1, c_1) + \Sigma_0(a_1) - Maj(a_5, b_5, c_5) - \Sigma_0(a_5)$$

Rearranging to solve for W_1 :

$$W_1 = g_8 - c_8 - h_1 - K_1 - Ch(e_1, f_1, g_1) - \Sigma_1(e_1) - Maj(a_1, b_1, c_1) - \Sigma_0(a_1) + Maj(a_5, b_5, c_5) + \Sigma_0(a_5)$$

Substitute h_1 for g_0 , f_1 for e_0 , g_1 for f_0 , h_1 for g_0 , g_1 for g_0 , g_2 for g_1 for g_2 , g_2 for g_3 for g_4 and g_5 for g_4 and g_5 for g_4 for g_5 for g_4 and g_5 for g_4 for g_5 for g_4 for g_5 for g

$$W_1 = g_8 - c_8 - g_0 - K_1 - Ch(e_1, e_0, f_0) - \Sigma_1(e_1) - Maj(a_1, a_0, b_0) - \Sigma_0(a_1) + Maj(d_8, a_4, b_4) + \Sigma_0(d_8)$$

Substitute $g_8 - c_8 + Maj(d_8, a_4, b_4) + \Sigma_0(d_8)$ for c_4 as previously computed:

$$W_1 = c_4 - g_0 - K_1 - Ch(e_1, e_0, f_0) - \Sigma_1(e_1) - Maj(a_1, a_0, b_0) - \Sigma_0(a_1)$$

At this stage, unknowns a_1 and e_1 remain.

8) Determining Second State Variable a

Since we have previously calculated the value of W_0 , we have all the information needed to determine the value of a_1 using the formula originating from the compression function itself.

$$a_1 = h_0 + W_0 + K_0 + Ch(e_0, f_0, g_0) + \Sigma_1(e_0) + Maj(a_0, b_0, c_0) + \Sigma_0(a_0)$$

Alternatively, a_1 can be determined in the same manner as a_4 , b_4 and c_4 (corresponding to d_7 , d_6 and d_5 respectively).

$$d_4 = c_3 = b_2 = a_1$$

$$e_5 = d_4 + h_4 + W_4 + K_4 + Ch(e_4, f_4, g_4) + \Sigma_1(e_4)$$

$$a_5 = h_4 + W_4 + K_4 + Ch(e_4, f_4, g_4) + \Sigma_1(e_4) + Maj(a_4, b_4, c_4) + \Sigma_0(a_4)$$

$$e_5 - a_5 = d_4 - Maj(a_4, b_4, c_4) - \Sigma_0(a_4)$$

$$d_4 = e_5 - a_5 + Maj(a_4, b_4, c_4) + \Sigma_0(a_4)$$

Substitute e_5 for h_8 and a_5 for d_8 :

$$a_1 = d_4 = h_8 - d_8 + Maj(a_4, b_4, c_4) + \Sigma_0(a_4)$$

9) Determining Second State Variable e

Since we have already calculated the value of W_0 , we have all the information needed to determine the value of e_1 using the formula originating from the compression function itself.

$$e_1 = d_0 + h_0 + W_0 + K_0 + Ch(e_0, f_0, g_0) + \Sigma_1(e_0)$$

Alternatively, e_1 can be computed as follows.

$$a_1 = h_0 + W_0 + K_0 + Ch(e_0, f_0, g_0) + \Sigma_1(e_0) + Maj(a_0, b_0, c_0) + \Sigma_0(a_0)$$

$$e_1 = d_0 + h_0 + W_0 + K_0 + Ch(e_0, f_0, g_0) + \Sigma_1(e_0)$$

$$e_1 - a_1 = d_0 - Maj(a_0, b_0, c_0) - \Sigma_0(a_0)$$

$$e_1 = d_0 + a_1 - Maj(a_0, b_0, c_0) - \Sigma_0(a_0)$$

Now we have all the information needed to calculate W_1 deterministically.

C. Summary

After extending the same logic to the remaining words, we find next normalized formulas.

$$a_4 = e_8 - a_8 + Maj(b_8, c_8, d_8) + \Sigma_0(b_8)$$
(2)

$$\mathbf{b_4} = f_8 - b_8 + Maj(c_8, d_8, \mathbf{a_4}) + \Sigma_0(c_8) \tag{3}$$

$$c_4 = g_8 - c_8 + Maj(d_8, a_4, b_4) + \Sigma_0(d_8)$$
(4)

$$d_4 = h_8 - d_8 + Maj(a_4, b_4, c_4) + \Sigma_0(a_4)$$
(5)

$$h_4 = d_0 + d_4 - Maj(a_0, b_0, c_0) - \Sigma_0(a_0)$$
(6)

$$\mathbf{g_4} = c_0 + \mathbf{c_4} - Maj(\mathbf{d_4}, a_0, b_0) - \Sigma_0(\mathbf{d_4})$$
(7)

$$f_4 = b_0 + b_4 - Maj(c_4, d_4, a_0) - \Sigma_0(c_4)$$
 (8)

$$e_4 = a_0 + a_4 - Maj(b_4, c_4, d_4) - \Sigma_0(b_4)$$
 (9)

$$W_0 = h_4 - d_0 - h_0 - K_0 - Ch(e_0, f_0, g_0) - \Sigma_1(e_0)$$
(10)

$$W_1 = g_4 - c_0 - g_0 - K_1 - Ch(h_4, e_0, f_0) - \Sigma_1(h_4)$$
(11)

$$W_2 = f_4 - b_0 - f_0 - K_2 - Ch(g_4, h_4, e_0) - \Sigma_1(g_4)$$
(12)

$$W_3 = e_4 - a_0 - e_0 - K_3 - Ch(f_4, g_4, h_4) - \Sigma_1(f_4)$$
(13)

$$W_4 = h_8 - d_4 - h_4 - K_4 - Ch(e_4, f_4, g_4) - \Sigma_1(e_4)$$
(14)

$$W_5 = g_8 - c_4 - g_4 - K_5 - Ch(h_8, e_4, f_4) - \Sigma_1(h_8)$$
(15)

$$W_6 = f_8 - b_4 - f_4 - K_6 - Ch(g_8, h_8, e_4) - \Sigma_1(g_8)$$
(16)

$$W_7 = e_8 - a_4 - e_4 - K_7 - Ch(f_8, g_8, h_8) - \Sigma_1(f_8)$$
(17)

IV. COMPUTATIONAL COST OF INVERSION

The computational complexity of reversing the first eight steps of SHA-256 is comparable to that of the corresponding forward computation. The inversion procedure employs the same number of bitwise functions (Ch, Maj, Σ_0 , Σ_1) and approximately the same number of modular arithmetic operations as those used in the original compression function.

This suggests that the inversion process does not introduce significant overhead. However, empirical benchmarks are required to rigorously validate this observation and to quantify performance differences under practical conditions.

V. EFFICIENT 16-STEP PREIMAGE ATTACK LEVERAGING THE PRESENTED APPROACH

Extending the inversion technique, we demonstrate a 16-step preimage attack with time complexity $\sim 2^0$ (equivalent to a single pass of the compression function).

A. Preparation

Calculate the final state $(a_{16}, b_{16}, ..., b_{16})$ of the compression function for a given random message digest, as shown in (1).

B. First Phase

Starting from the final state, compute eight preceding states using arbitrary message schedule words W_{15} to W_8 that satisfy the SHA-256 padding rules (to comply with the full specification).

For t = 15 down to 8:

$$a_t = b_{t+1}$$

$$b_t = c_{t+1}$$

$$c_t = d_{t+1}$$

$$e_t = f_{t+1}$$

$$f_t = g_{t+1}$$

$$g_t = h_{t+1}$$

$$h_t = a_{t+1} - \Sigma_1(e_t) - Ch(e_t, f_t, g_t) - K_t - W_t - \Sigma_0(a_t) - Maj(a_t, b_t, c_t)$$

$$d_t = e_{t+1} - h_t - \Sigma_1(e_t) - Ch(e_t, f_t, g_t) - K_t - W_t$$

C. Second Phase

From the resulting ninth state and predefined initial state, compute the remaining words W_0 to W_7 using equations (2) to (17).

This successfully terminates the attack.

A concrete example is provided in Appendix A.

D. Comparison of Preimage Attacks on Step-Reduced SHA-256

Reference	Steps	Time Complexity	Methodology	
D. Khovratovich, C. Rechberger and A. Savelieva (2012) [2]	45	2 ^{255.5}	Biclique	
K. Aoki et al. (2009) [3]	43	2 ^{254.9}	Meet-in-the-middle	
J. Guo et al. (2010) [4]	42	2 ^{248.4}	Meet-in-the-middle	
T. Isobe and K. Shibutani (2009) [5]	24	2^{240}	Meet-in-the-middle	
Proposed Method	16	~20	Deterministic inversion	

VI. EXTENSIBILITY TO SHA-512

SHA-512, as part of the SHA-2 family, extends the structural design of SHA-256 to operate on 64-bit words rather than 32-bit words. This architectural shift results in a hash output size of 512 bits, doubling that of SHA-256. While the message block size increases from 512 bits in SHA-256 to 1024 bits in SHA-512, the underlying Merkle–Damgård construction and Davies–Meyer compression model remain conceptually unchanged.

The SHA-512 message schedule expands the 1024-bit message block into 80 64-bit words, compared to the 64 32-bit words used in SHA-256. The SHA-512 compression function processes 80 steps accordingly, utilizing step-specific constants tailored to the 64-bit domain.

In addition to the differences noted above, SHA-512 also employs a distinct set of eight initial hash value constants. These are derived from the fractional parts of the square roots of the first eight prime numbers and serve to initialize the internal state of the compression function—much like in SHA-256, but adapted to the 64-bit setting.

Although the specific bitwise operations—such as the Σ (uppercase sigma) and σ (lowercase sigma) functions—are redefined to accommodate 64-bit words, their functional behavior and purpose closely mirror those in SHA-256. As such, the core logic of the compression function remains invariant between the two variants.

Given this close structural correspondence, the deterministic inversion approach presented for the first eight steps of SHA-256 can, in principle, be extended to SHA-512 with appropriate adaptations to account for the expanded word size, updated constants, and modified bitwise functions.

VII. CONCLUSION

We were able to efficiently compute all necessary values from the SHA-256 message digest to deterministically recover the original message schedule for the first eight steps, assuming a single message block.

After eight steps of SHA-256, despite extensive mixing, bitwise and nonlinear operations, the variable information used by its compression function remains uncompressed: the message schedule persists and is fully reversible. Therefore, SHA-

256 reduced to eight steps does not meet the criteria of a one-way hash function and instead exhibits characteristics closer to a reversible transformation.

Given two specific states in the compression process separated by eight steps, a single solution exists. That is, there is only one unique set of message schedule words that could have produced that transition. Extending this logic, we find that efficient 16-step preimage attacks can be constructed.

As SHA-512 functions at its core in the same manner, a similar inversion method can be applied.

APPENDIX A: WORKED EXAMPLE OF THE 16-STEP PREIMAGE ATTACK

A. Preparation

For this example, we take the (full) SHA-256 message digest of the empty string (zero-bit input message).

e3b0c442 98fc1c14 9afbf4c8 996fb924 27ae41e4 649b934c a495991b 7852b855

Subtracting $H^{(0)}$ yields the following final state.

79a6dddb dd946d8f 5e8d0156 f41fc3ea d69fef65 c9962ac0 8511bf70 1c71eb3c

B. First Phase

Considering padding specifications, we choose message schedule words W_8 to W_{15} as follows.

 W_8 : 0x80000000 (additional 'one' bit and zero-padding)

 W_9 to W_{13} : 0x00000000 (zero-padding)

 W_{14} and W_{15} : 0x00000000 and 0x00000100 respectively (256-bit message length)

Note that for a second-preimage attack the additional 'one' bit can be shifted by a single bit and the message length value incremented by one.

Working backwards from the final state using the eight selected message schedule words, we get following resulting states.

t + 1	а	b	c	d	e	f	g	h
16	79a6dddb	dd946d8f	5e8d0156	f41fc3ea	d69fef65	c9962ac0	8511bf70	1c71eb3c
15	dd946d8f	5e8d0156	f41fc3ea	04441c0e	c9962ac0	8511bf70	1c71eb3c	eb23eb5d
14	5e8d0156	f41fc3ea	04441c0e	e923abc6	8511bf70	1c71eb3c	eb23eb5d	3187308e
13	f41fc3ea	04441c0e	e923abc6	e7ec45bc	1c71eb3c	eb23eb5d	3187308e	4396f479
12	04441c0e	e923abc6	e7ec45bc	7ec75212	eb23eb5d	3187308e	4396f479	7b70c265
11	e923abc6	e7ec45bc	7ec75212	4197cb2d	3187308e	4396f479	7b70c265	1df044c8
10	e7ec45bc	7ec75212	4197cb2d	5535a596	4396f479	7b70c265	1df044c8	b7532eab
9	7ec75212	4197cb2d	5535a596	c3acdd18	7b70c265	1df044c8	b7532eab	6ecfafea
8	4197cb2d	5535a596	c3acdd18	948288e2	1df044c8	b7532eab	6ecfafea	d630c42c

C. Second Phase

Applying the presented inversion method on the resulting ninth (t + 1 = 8) state and predefined initial state (IV), we get following values.

W₀ to W₇: 237e228a f920a0e4 20b39875 95952f13 7cb16238 730ff7e2 908d217d 2b51c977

First eight states (for reference):

t + 1	а	b	с	d	e	f	g	h
7	5535a596	c3acdd18	948288e2	2166a0c9	b7532eab	6ecfafea	d630c42c	ed7a9a01
6	c3acdd18	948288e2	2166a0c9	4f1d5b0b	6ecfafea	d630c42c	ed7a9a01	4b1788d9
5	948288e2	2166a0c9	4f1d5b0b	9840e81b	d630c42c	ed7a9a01	4b1788d9	0db621c8
4	2166a0c9	4f1d5b0b	9840e81b	1f86aad7	ed7a9a01	4b1788d9	0db621c8	bc46052c
3	4f1d5b0b	9840e81b	1f86aad7	6a09e667	4b1788d9	0db621c8	bc46052c	510e527f
2	9840e81b	1f86aad7	6a09e667	bb67ae85	0db621c8	bc46052c	510e527f	9b05688c
1	1f86aad7	6a09e667	bb67ae85	3c6ef372	bc46052c	510e527f	9b05688c	1f83d9ab
IV	6a09e667	bb67ae85	3c6ef372	a54ff53a	510e527f	9b05688c	1f83d9ab	5be0cd19

In summary, 256-bit preimage 237e228a f920a0e4 20b39875 95952f13 7cb16238 730ff7e2 908d217d 2b51c977 produces target digest e3b0c442 98fc1c14 9afbf4c8 996fb924 27ae41e4 649b934c a495991b 7852b855 in a 16-step scenario.

REFERENCES

- [1] National Institute of Standards and Technology (NIST), "FIPS PUB 180-4: Secure Hash Standard (SHS)," 2015.
- [2] D. Khovratovich, C. Rechberger, and A. Savelieva, "Bicliques for preimages: Attacks on Skein-512 and the SHA-2 family," in *Fast Software Encryption FSE 2012*, A. Canteaut, Ed., vol. 7549, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 244–262. DOI: https://doi.org/10.1007/978-3-642-34047-5 15
- [3] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang, "Preimages for step-reduced SHA-2," in *Advances in Cryptology ASIACRYPT 2009*, M. Matsui, Ed., vol. 5912, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 578–597. DOI: https://doi.org/10.1007/978-3-642-10366-7_34
- [4] J. Guo, S. Ling, C. Rechberger, and H. Wang, "Advanced meet-in-the-middle preimage attacks: First results on full Tiger, and improved results on MD4 and SHA-2," in *Advances in Cryptology ASIACRYPT 2010*, M. Abe, Ed., vol. 6477, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 56–75. DOI: https://doi.org/10.1007/978-3-642-17373-8 4
- [5] T. Isobe and K. Shibutani, "Preimage attacks on reduced Tiger and SHA-2," in *Fast Software Encryption FSE 2009*, O. Dunkelman, Ed., vol. 5665, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 139–155. DOI: https://doi.org/10.1007/978-3-642-03317-9_9