Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně

FYZIKÁLNÍ PRAKTIKUM

Zpracoval: Jakub Jedlička Naměřeno: 14. 10. 2022

Obor: Učitelství Bi F Ročník: 2. Semestr: 3. Testováno:

Úloha č. 7: Odraz a lom světla, Fresnelovy vztahy, Snellův zákon

T = 22,7 °C p = 995,7 hPa φ = 67 %

1. Úvod

V první části úkolu budeme měřit odrazivost s a p polarizovaného světla od dielektrika. Dále najdeme Brewstedův úhel a z něj určíme index lomu a porovnáme naměřené závislosti na úhlu dopadu paprsku s vypočítanými hodnotami.

V druhé části úkolu budeme měřit posun paprsku při průchodu planparalelní deskou a z průběhu závislosti posunu na úhlu dopadu určíme index lomu desky.

2. Teorie

Odraz a lom světla

V této úloze se budeme zabývat závislostí s a p složky polarizovaného světla na úhlu dopadu. Při měření bude úzký svazek paprsků procházet polarizátorem. Otáčením polarizátoru jsme schopni měnit záření na p a s složku. P složka je taková, že kmitová rovina je rovnoměrná s rovinou dopadu. Pokud je kmitová rovina kolmá na rovinu dopadu, tak hovoříme o s polarizaci. Dále soustava, ve které měříme obsahuje stoleček, který se otáčí okolo svislé osy a díky tomu jsme schopni měřit úhel dopadu paprsku polarizovaného světla na dielektrikum. Po odraze polarizované světlo dopadá do detektoru, který se také otáčí okolo svislé osy. Tento detektor měří foto-napětí, tzn., že intenzitu dopadeného světla převede na napětí. Čím více světla, tím větší napětí jdoucí z detektoru.

Potřebujeme zjistit fotonapětí U_{s0} a U_{p0} , to provedeme tak, že necháme polarizované světlo přímo zářit do detektoru a zaznamenáme dané hodnoty napětí. Tyto hodnoty napětí jsou přímo úměrné intenzitám I_0^s a I_0^p .

Odrazivosti pro s a p složky amplitudy polarizovaného světla spočítáme pomocí vztahů

$$R_{S} = \frac{I_{S}^{R}}{I_{0}^{S}}$$

$$R_{p} = \frac{I_{R}^{p}}{I_{0}^{p}}$$

$$(2)$$

Kde R_p a R_s jsou odrazivosti v rovině p a s, I_R^s a I_R^p jsou intenzity odrazivosti světla v rovině s a p a I_0^s a I_0^p jsou již zmíněné veličiny.

Intenzita nepolarizovaného světla vztahem

$$I = \frac{I_R^s + I_R^p}{2} \tag{3}$$

A odrazivost nepolarizovaného světla vztahem

$$R = \frac{R_s + R_p}{2} \tag{4}$$

Existuje tzv. Brewstedův úhel ϕ_B , což je polarizační úhel dopadu. Při tomto úhlu dochází pouze k odrazu s složky polarizovaného světla. Pro rostoucí úhel dopadu ϕ klesá I^p_R k nule a v bodě

 ϕ_B se rovná nule úplně. Poté co je úhel $\phi > \phi_B$, tak I_R^p začíná růst. I_R^s monotónně roste s přibývajícím úhlem ϕ .

Pomocí Brewsterova úhlu se dá vypočítat index lomu dielektrika pomocí tohoto vztahu $\tan \varphi_R = n$

5)

toto platí, pokud je intenzita okolního světla $n_0 = 1$. Index lomu dielektrika lze i spočítat pomocí úhlu v okolí Brewsterova úhlu.

Pro úhel dopadu menší než Brewsterův úhel $\phi < \phi_B$ platí vztah

$$n = \sqrt{\frac{\left(1 + \sqrt{R_s}\right)\left(1 + \sqrt{R_p}\right)}{\left(1 - \sqrt{R_s}\right)\left(1 - \sqrt{R_p}\right)}}$$

Pro úhel dopadu větší než Brewsterův úhel $\phi < \phi_B$ platí vztah

$$n = \sqrt{\frac{\left(1 + \sqrt{R_s}\right)\left(1 - \sqrt{R_p}\right)}{\left(1 - \sqrt{R_s}\right)\left(1 + \sqrt{R_p}\right)}}$$

7)

6)

Po výpočtu indexu lomu použitého dielektrika můžeme hodnoty odrazivosti stanovit i výpočtem pomocí vztahů pro Fresnerovy amplitudy

$$R_{s} = \left(-\frac{\sin(\varphi_{0} - \varphi_{1})}{\sin(\varphi_{0} + \varphi_{1})}\right)$$
8)

$$R_p = \left(\frac{\tan(\varphi_0 - \varphi_1)}{\tan(\varphi_0 + \varphi_1)}\right)$$

9)

Kde ϕ_0 je úhel dopadu a ϕ_1 je úhel odrazu, který se zjistí ze Snellova vztahu

$$\sin \varphi_1 = \frac{n_0 \sin \varphi_0}{n_1}$$

10)

Průchod světla plexisklem a sklem

Při průchodu světla sklem nebo plexisklem, dochází k vychýlení vystupujícího paprsku vůči paprsku dopadajícímu. Budeme pozorovat úhlovou odchylku vstupujícího paprsku a paprsku vystupujícího paprsku a podle toho lze určit index lomu skla nebo plexiskla v prostředí, které má index lomu n_0 .

Obrázek 1. průchod paprsku plantparalelní vrstvou Po vstupu paprsku do planparalelní vrstvy platí zákon lomu, který je pro pravé rozhraní $n_0 \sin \alpha = n \sin \beta$

11)

12)

A pro levé rozhraní

$$n \sin \beta = n_0 \sin \alpha$$

Kde n je index lomu desky, n_0 je index lomu prostředí, $\alpha = \alpha_1 = \alpha_2$ a jsou úhly dopadu a $\beta = \beta_1 = \beta_2$ jdou úhly lomu.

Délka dráhy paprsku mezi body AB je

$$|AB| = \frac{d}{\cos\beta}$$
13)

Odchylka vstupujícího a vystupujícího paprsku je

$$x = |BC| = |AB| \sin -\beta)$$
14)

Po použití goniometrických vztahů poté dostaneme vztahy pro odchylku vstupujícího a vystupujícího paprsku x a z něj dostanu vztah pro index lomu n

$$x = \left(1 - \frac{n_0 \cos \alpha}{\sqrt{n^2 - n_0^2 \sin^2 \alpha}}\right) d \sin \alpha$$

$$n = n_0 \sqrt{\sin^2 \alpha + \left(1 - \frac{x}{d \sin \alpha}\right)^{-2} \cos^2 \alpha}$$
15)

3. Postup

Odraz a lom světla

Na začátku musíme zjistit fotonapětí U_{s0} a U_{p0} a to tak, že do detektoru musí přesně dopadat světlo z laseru. Poté si zapíšeme hodnoty pro s a p polarizaci. Poté do goniometru vložíme dielektrikum s jednou lesklou stranou namířenou k laseru. Dielektrikum upravíme tak, aby bylo vzhledem k laseru kolmo. Jakmile dielektrikum přesně nastavíme, tak ho vychýlíme do nejkrajnější polohy a detektor nastavíme tak, aby do něj směřovalo odražené světlo z laseru, poté si zapíšeme hodnoty napětí pro s a p polarizaci. Tento postup opakujeme po pěti stupních, dokud nedojdeme k úhlu 88°. V zapsaných výsledcích si můžeme všimnout, že se p polarizace blíží v určitém intervalu k 0. K tomuto intervalu se vrátíme a nastavíme citlivost detektoru na maximum a v tomto intervalu zapisujeme hodnoty napětí na detektoru po jednom stupni, tím pak určíme Brewsterův úhel φ_B.

Průchod světla plexisklem a sklem

Do goniometru vložíme námi zkoumanou destičku a nastavíme ji tak aby byla k laseru, jako v předchozím případě, kolmo. Poté planparalelní destičku vychýlíme o úhel φ a detektor nastavíme tak, aby do něj dopadalo světlo z destičky. Zapíšeme si úhel vychýlení φ a vychýlení detektoru x. Tento postup opakuje po 5°.

Zpracování měření

Odraz a lom světla

Intenzita přímého svazku pro s a p polarizaci

$$I_0^s = 2,569 V$$

 $I_0^p = 3,602 V$

 $I_0^s=2,569~V$ $I_0^p=3,602~V$ Tabulka s naměřenými hodnotami I_R^s a I_R^p , vypočítanou hodnotou I,R_s,R_p a R, podle vzorců 1), 2), 3) a 4)

<i>)</i> a 4).						
φ [°]	$I_s^R[V]$	$I_p^R[V]$	ı [V]	R_s	R_p	R
25,5	0,1035	0,0795	0,0915	0,0403	0,0221	0,0312
30,5	0,1168	0,0642	0,0905	0,0454	0,0178	0,0316
35,5	0,1335	0,0501	0,0918	0,0519	0,0139	0,0329
40,5	0,1592	0,0330	0,0961	0,0619	0,0092	0,0356
45,5	0,1968	0,0123	0,1046	0,0766	0,0034	0,0400
50,5	0,2394	0,0008	0,1201	0,0932	0,0002	0,0467
55,5	0,2817	0,0008	0,1412	0,1096	0,0002	0,0549
60,5	0,3682	0,0008	0,1845	0,1433	0,0002	0,0717
65,5	0,5167	0,0399	0,2783	0,2011	0,0111	0,1061
70,5	0,6957	0,1126	0,4042	0,2707	0,0313	0,1510

75,5	0,9252	0,4689	0,6971	0,3600	0,1303	0,2451
80,5	1,3578	1,0133	1,1856	0,5283	0,2815	0,4049
85,5	1,8217	1,8164	1,8191	0,7088	0,5046	0,6067

Tabulka 1. naměřené hodnoty a odrazivosti

Graf závislosti odrazu na úhlu dopadu

Graf 1. závislost odrazivosti na úhlu dopadu

Pro zjištění Brewsterova úhlu jsem provedl měření intenzity I_p okolo ϕ_0 , ve kterém byla naměřena minimální R_p .

φ ₀ [°]	I _p [V]
51	0,043
52	0,029
53	0,013
54	0,001
55	0,009
56	0,027

Tabulka 2. Intenzita p polarizace okolo Brewsterova úhlu

$$\varphi_B = 54,0(3)^{\circ}$$

Po dosazení ϕ_B do rovnice 5) dostaneme index lomu vzorku

$$n = 1,38(3)$$

Index lomu lze také zjistit z rovnic 6) a 7) pro dva úhly, které jsou nad a pod Brewsterovým úhlem

φ [°]	R_s	R _p	n
45,5	0,07658	0,00342	1,41
50,5	0,09315	0,00023	1,39
60,5	0,14327	0,00023	1,47
65,5	0,20105	0,01108	1,46

Tabulka 3. indexy lomu pro úhly pohybující se okolo Brewsterova úhlu

Pokud budeme uvažovat index lomu určený pomocí vzorce 5) (n=1,38), můžeme pomocí rovnic 8) a 9) stanovit hodnoty odrazivosti pomocí výpočtu. Tyto hodnoty následně srovnáme

s naměřenými hodnotami. Nejprve zjistíme hodnotu φ1 pomocí rovnice 10)

$arphi_0[^\circ]$	$arphi_1[^\circ]$	R_s	R_p	R
25,5	17,5	0,04164	0,02271	0,032175
30,5	20,1	0,04343	0,02272	0,033075
35,5	24	0,05354	0,01436	0,03395
40,5	27	0,06384	0,00989	0,036865
45,5	29,9	0,07722	0,00529	0,041255
50,5	32,7	0,09478	0,00147	0,048125
55,5	35,2	0,12038	0,00002	0,0602
60,5	37,5	0,15569	0,00356	0,079625
65,5	39,5	0,21041	0,01708	0,113745
70,5	41,25	0,27675	0,04992	0,163335
75,5	42,6	0,37915	0,11932	0,249235
80,5	43,6	0,52576	0,25841	0,392085
85,5	44,2	0,73584	0,53197	0,633905

Tabulka 4. Hodnoty odrazivosti zjištěné z rovnic 8) a 9)

Vypočítané hodnoty z Tabulky 1. srovnáme s hodnotami z Tabulky 4. v Grafu 2.

Graf 2. Srovnání odrazivosti

Průchod světla plexisklem a sklem

Změřil jsem hloubku planpararlerních desek a tabulky 5. a 6. zobrazují naměřené hodnoty vychýlení α planpalarelní desky vůči dopadajícímu laseru a hodnoty výchylky x detektoru, aby do něj dopadl laser procházející skrz planparalerní desku.

Planparalelní deska 1.: d = 20,15 mm

α [°]	x mm	n
50	7,91	1,5251
45	6,81	1,5284
40	5,84	1,5365
35	4,91	1,5358
30	4,06	1,5347
25	3,30	1,5393
20	2,60	1,5477
15	1,96	1,5694

Tabulka 5. naměřené hodnoty α a x pro planparalelní desku 1

n = 1,540(0,0138)

Planparalelní deska 2.: d = 9,225 mm

α [°]	x mm	n
10	0,72	1,7977
15	1,01	1,6944
20	1,44	1,7626
25	1,71	1,6692
30	2,23	1,7500
35	2,67	1,7507
40	3,10	1,7296
45	3,64	1,7496
50	4,08	1,7033

Tabulka 6. naměřené hodnoty hodnoty α a x pro planparalelní desku 2

n = 1,734(0,0393)

5. Závěr

V první části úlohy jsme stanovili úhlovou závislost odrazivosti R_s a R_p , naměřené a teoreticky vypočítané. Hodnoty teoretické a naměřené se lehce lehce liší, hlavně s čím dál větším úhlem. Poté jsme určili hodnotu Brewsterova úhlu pomocí měření blízko poklesu p polarizace a poté pomocí nepřímé metody. Z ní jsme pak určili index lomu dielektrika, která činní 1,38(3) vypočítanou pomocí vztahu 5) a 1,43(4) vypočítanou pomocí vztahů 6) a 7). Jelikož je výsledek s nejistotou vypočítaný pomocí vztahu 5) v rámci nejistoty výsledku druhého si myslím, že měření bylo relativně přesné.

V druhé části úlohy jsme určili index lomu dvou planparalelních desek. První planparalelní deska má index lomu n = 1,540(0,0138), což velice blízko indexu lomu pro plexisklo, která činní 1,48. Soudím, že se jedná o plexisklo, protože druhá planparalelní deska byla pocitově mnohem hustší, taky její index lomu vyšel n = 1,734(0,0393), což je hodnota, která se nachází v rámci intervalu pro hodnotu indexu lomu skla, který činní 1,5 – 1,9.