1 Conditional Distributions

Definition 1.1. Given measurable spaces (S_1, S_1) and (S_2, S_2) , define the *product measurable space*

$$(S_1 \times S_2, S_1 \otimes S_2) = \sigma(A \times B : A \in S_1, B \in S_2)$$

$$(1.1)$$

Random variables

$$X = (\Omega, \mathcal{F}, P \mapsto (S_1, S_1)) \tag{1.2}$$

$$Y = (\Omega, \mathcal{F}, P \mapsto (S_2, S_2)) \tag{1.3}$$

(X, Y) is a RV with values in $S_1 \times S_2$, has a distribution μ : a PM on $S_1 \times S_2$.

X has a distribution μ_1 : a PM on S_1 .

What is conditional distribution of Y given G?

Old write-up on web page: If $S_1 = S_2 = S$ countable, then $P(Y = y \mid X = x) = f(y \mid x)$ has properties:

- $f(y \mid x) \ge 0$
- $\sum_{y} f(y \mid x) = x$ for all x
- $P(X = x, Y = y) = P(X = x)P(Y = y \mid X = x)$

Definition 1.2. A *kernel Q* from S_1 to S_2 is a map $Q:(S_1\times S_2)\to [0,1]$ such that

- (a) For fixed s_1 , $B \mapsto Q(s_1, B)$ is a PM on S_2
- (b) For fixed $B \in S_2$, $s_1 \mapsto Q(s_1, B)$ is a measurable function $S_1 \to \mathbb{R}$

Warning: for $h: S_1 \times S_2 \to \mathbb{R}$

- (a) *h* is measurable
- (b)

$$\forall s_1: s_2 \to h(s_1, s_2) \text{ is measurable } S_2 \to \mathbb{R}$$
 (1.4)

$$\forall s_2: s_1 \to h(s_1, s_2) \text{ is measurable } S_1 \to \mathbb{R}$$
 (1.5)

(a) \implies (b) but not vice versa.

Example 1.3. $S_1 = S_2 = [0,1], h(x,x) = 1_{x \in A}, h(x,y) = 0.$ Non-measurable on $A \subset [0,1]$

We interpret $P(Y \in B|X = s_1) = Q(s_1, B)$.

Proposition 1.4. Given PM μ on $S_1 \times S_2$, a PM μ_1 on S_1 , and a kernel Q from S_1 to S_2 , TFAE:

BR1
$$\mu(A \times B) = \int_A Q(s_1, B) \mu_1(ds_1) \ \forall A \in \mathcal{S}_1, \forall B \in \mathcal{S}_2$$

BR2
$$\mu(D) = \int_{S_1} Q(s_1, D_{s_1}) \mu_1(ds_1) \ \forall D \in S_1 \otimes S_2$$

BR3 $\int_{S_1 \times S_2} h(s_1, s_2) \mu(d\underbrace{\tilde{s}}_{\tilde{s}=(s_1, s_2)}) = \int_{S_1} \left(\int_{S_2} h(s_1, s_2) Q(s_1, ds_2) \right) \mu_1(ds_1) \text{ provided } h \geq 0 \text{ or } h$ is μ -integrable

Here, $D_{s_1} := \{s_2 : (s_1, s_2) \in D\} \subset S_2$.

Lemma 1.5. *For each* $D \in \mathcal{S}_1 \otimes \mathcal{S}_2$,

- (a) $D_{s_1} \in S_2$ for all $s_1 \in S_1$
- (b) map $s_1 \mapsto Q(s_1, D_{s_1})$ is measurable

Proof. Let \mathcal{D} be collection of all D satisfying (i,ii).

 \mathcal{D} is a λ -class. For $D \in \mathcal{D}$ have $(D^c)_{s_1} = \{s_2 : (s_1, s_2) \notin D\} = (D_{s_1})^c \in \mathcal{S}_2$ so $D^c \in \mathcal{D}$. Can also show \mathcal{D} closed under increasing limits using closure of \mathcal{S}_2 and PM $Q(s, \cdot)$ under increasing limits:

$$D^n \uparrow D \implies D_{s_1}^n \uparrow D_{s_1} \implies Q(s_1, D_{s_1}^n) \uparrow Q(s_1, D_{s_1})$$

$$\tag{1.6}$$

Let $\mathcal{I} = \{A \times B : A \in S_1, B \in S_2\}$ be generated by rectangles. As $D = A \times B$ implies that $\forall s_1 \in S_1 : D_{s_1} = B \in S_2$, we have $\mathcal{I} \subset \mathcal{D}$.

By definition 1.1,
$$S_1 \otimes S_2 = \sigma(\mathcal{I})$$
. By Dynkin's $\pi - \lambda$ theorem, $\sigma(\mathcal{I}) \subset \mathcal{D}$.

Theorem 1.6 (Easy theorem). *Given a PM* μ_1 *on* S_1 , *given a kernel Q from* S_1 *to* S_2 , *the definition*

$$\mu(D) = \int_{S_1} Q(s_1, D_{s_1}) \mu_1(ds_1) \quad D \in \mathcal{S}_1 \otimes \mathcal{S}_2$$
 (1.7)

defines a PM μ on $S_1 \times S_2$.

Proof.

$$\mu(S_1 \times S_2) = \int_{S_1} \underbrace{Q(s_1, S_2)}_{PM} \mu_1(ds_1) = \mu_1(S_1) = 1$$
 (1.8)

 $\mu(E) \geq 0$ and $\mu(\emptyset = 0)$ follow from $Q(s_1, \cdot)$ and μ_1 being measures, as does countable additivity: if $\{E_i\}$ are pairwise disjoint

$$\mu\left(\bigcup_{i} E_{i}\right) = \int_{S_{1}} Q(s_{1}, (\cup_{i} E_{i})_{s_{1}}) \mu_{1}(ds_{1}) = \int_{S_{1}} \sum_{i} Q(s_{1}, (E_{i})_{s_{1}}) \mu_{1}(ds_{1}) = \sum_{i} \mu(E_{i}) \quad (1.9)$$

Theorem 1.7 (Hard theorem). Given PM μ on $S_1 \times S_2$, define marginal PM μ_1 on S_1 by $\mu_1(A) = \mu(A \times S_2).$

If S_2 *is a* Borel space, then \exists *kernel* Q *from* S_1 *to* S_2 *such that proposition* 1.4 *hold.*

Proof. Fix $B \in \mathcal{S}_2$. Consider $\nu(A) := \mu(A \times B)$, $A \in \mathcal{S}_1$. ν is a (sub-probability) measure on S_1 .

$$\nu(A) = \mu(A \times B) \le \mu(A \times S_2) = \mu_1(A) \implies \nu \ll \mu_1 \tag{1.10}$$

Consider the Radon-Nikodyn density

$$\frac{d\nu}{d\mu_1}(s_1) = Q(s_1, B) \quad (\text{def of } Q(s_1, B))$$
 (1.11)

which satisfies the properties

$$s_1 \mapsto Q(s_1, B)$$
 is measurable (1.12)

$$\nu(A) = \int_{A} \frac{d\nu}{d\mu_{1}}(s_{1})\mu_{1}(ds_{1}) \iff \mu(A \times B) = \int_{S_{1}} Q(s_{1}, B)\mu_{1}(ds_{1}) \quad \forall A \in \mathcal{S}_{1}$$
 (1.13)

These hold for any $B \in \mathcal{S}_2$, so $Q(s_1, B)$ satisfies the first property of a kernel $Q : S_1 \times \mathcal{S}_2 \to \mathcal{S}_2$ \mathbb{R} and BR1.

It remains to show that Q satisfies the second property of a kernel, namely $B \mapsto Q(s_1, B)$

is a PM on $S_2 \,\forall s_1 \in S_1$. **Issue**: If $h_1 \stackrel{\text{a.e.}}{=} h_2$ (wrt μ_1), then $\int_A h_1 d\mu_1 = \int_A h_2 d\mu_1$. As S_2 is a Borel space, wlog assume $S_2 = \mathbb{R}$. For each rational $r \in \mathbb{Q}$ do construction for $B = (-\infty, r]$.

Write $F(s,r) = Q(s_1,(-\infty,r])$. Note

$$s_1 \mapsto F(s_1, r)$$
 is measurable (1.14)

$$\mu(A \times (-\infty, r_1]) = \int_A F(s_1, r) \mu_1(ds_1) \quad \forall A \in \mathcal{S}_1$$
(1.15)

Consider $r_1 < r_2 \in \mathbb{Q}$. For any $A \in \mathcal{S}_1$

$$\mu(A \times (r_1, r_2]) = \int_A (F(s_1, r_2) - F(s_1, r_1)) \mu(ds_1) \ge 0$$
(1.16)

so

$$F(s_1, r_2) \ge F(s_1, r_1)$$
 a.e.in S_1 (1.17)

Modify $F(s_1, r)$ **on null-set to make monotone on rationals**: Redefine $F(s_1, r)$ over the null set $\{s_1 : F(s_1, r_2) < F(s_1, r_1)\}$ such that $F(s_1, r) = \Phi(r)$ is monotone for $r \in \mathbb{Q}$. Repeat for all rational pairs (r_1, r_2) to get a version of $F(s_1, r)$ such that for any $s_1 \in A$, $r \mapsto F(s_1, r)$ is monotone on rationals. (A)

Since *F* is monotone on rationals and $F(s_1, r) = Q(s_1, (-\infty, r])$ where $B \mapsto Q(s, B)$ is a probability measure

$$\lim_{r \uparrow \infty} F(s_1, r) = 1 \,\forall s_1$$

$$\lim_{r \downarrow \infty} F(s_1, r) = 0 \,\forall s_1$$

$$(1.18)$$

Consider $r_n \downarrow r \in \mathbb{Q}$.

$$\frac{\mu(A \times (r_1, r_n]) \to 0 \,\forall A}{F(s_1, r_n) \downarrow F(s_1, r) \text{ a.e.}} \left. \right\} (C)$$
(1.19)

Modify on another null-set $r_n \downarrow r \in \mathbb{Q} \implies F(s_1, r_n) \downarrow F(s_1, r) \ \forall s_1$.

Remark 1.8 (Deterministic Fact). If $r \mapsto F(r)$ rational has properties (A), (B), (C), then

$$\hat{F}(x) = \lim_{\substack{r \downarrow x \\ r > x \\ r \in \mathbb{Q}}} F(r) \tag{1.20}$$

is a distribution function

$$\hat{F}(r) = F(r) \tag{1.21}$$

Use fact to define

$$\hat{F}(s_1 x, x) = \lim_{r \downarrow x} f(s_1, r) \ \forall x \in \mathbb{R}$$
(1.22)

where

$$s_1 \to \hat{F}(s_1, x)$$
 is measurable (1.23)

$$x \to \hat{F}(s_1, x)$$
 is a dist function (1.24)

Define Q by $Q(s_1, \cdot)$ is the PM with distribution function $F(s_1, x)$.