서울 데이터 지도 시각화 수행하기

- url: https://www.data.go.kr/data/15051860/fileData.do (https://www.data.go.kr/data/15051860/fileData.do)
- 서울 toilet 위치 표시하기

In [2]: ▶

import pandas as pd import folium

01. 데이터 준비

In [3]:

```
dat = pd.read_csv("seoul_public_toilet.csv" , engine ='python', encoding='EUCKR')
dat
```

Out[3]:

_		POI ID	대 명 칭	중 명 칭	소명 칭	중앙좌표X1	중앙좌표Y1	WSG84X좌 표	WSG84Y 좌표	등록일자	=
	0	102423	우성 스포츠센터	민간개 방화장실	NaN	192026.077328	443662.903901	126.909832	37.492386	20100712	2(
	1	102424	프 레 곤 빌 딩	민 간 개 방 화 장 실	NaN	191560.448911	442968.699196	126.904575	37.486127	20100712	2(
	2	102425	하 림 빌 디	민 간 개 방 화 장 실	NaN	201472.042745	443869.796509	127.016646	37.494283	20100712	2(
	3	102426	크 레 신 타 워	민 간 개 방 화 장 실	NaN	201633.540441	446523.716576	127.018478	37.518195	20100712	2(
	4	102483	한 주 실 업 삘 디	민 간 개 방 화 장 실	NaN	195045.520979	446004.024095	126.943960	37.513501	20100712	2(

	POI ID	대 명 칭	중 명 칭	소명 칭	중앙좌표X1	중앙좌표Y1	WSG84X좌 표	WSG84Y 좌표	등록일자	2
4933	A10008	전국모범운전자연합양천지회	민 간 개 방 화 장 실	NaN	188119.607000	445886.552000	126.865623	37.512379	20110506	2(
4934	A10009	세 림 밀 딩	민 간 개 방 화 장 실	NaN	187717.295000	446300.534000	126.861066	37.516104	20110506	2(
4935	A10010	신 목 동 주 유 소	민 간 개 방 화 장 실	NaN	188601.435000	446685.734000	126.871060	37.519586	20110506	2(
4936	A10011	등 원 주 유 소	민 간 개 방 화 질	NaN	188913.820000	448906.293000	126.874561	37.539597	20110506	2(
4937	A10012	신 양 천 주 유 소	민 간 개 방 화 질	NaN	187929.411000	446269.665000	126.863465	37.515829	20110506	2(

4938 rows × 10 columns

In [4]:
▶

dat.columns

Out[4]:

```
Index(['P01 ID', '대명칭', '중명칭', '소명칭', '중앙좌표X1', '중앙좌표Y1', 'WSG84X좌표', 'WSG84Y좌표', '등록일자', '수정일자'], dtype='object')
```

In [5]:

```
dat_tmp = dat.loc[ :, ['대명칭', 'WSG84Y좌표', 'WSG84X좌표'] ] dat_tmp
```

Out[5]:

	대명칭	WSG84Y좌표	WSG84X좌표
0	우성스포츠센터	37.492386	126.909832
1	프레곤빌딩	37.486127	126.904575
2	하림빌딩	37.494283	127.016646
3	크레신타워	37.518195	127.018478
4	한주실업빌딩	37.513501	126.943960
4933	전국모범운전자연합양천지회	37.512379	126.865623
4934	세림빌딩	37.516104	126.861066
4935	신목동주유소	37.519586	126.871060
4936	등원주유소	37.539597	126.874561
4937	신양천주유소	37.515829	126.863465

4938 rows × 3 columns

02. 컬럼명 변경 및 위치 확인

In [6]:

```
# 중앙 위치 찾기
dat_tmp.columns = ['name', 'latitude', 'longitude']
print( dat_tmp.latitude.mean(), dat_tmp.longitude.mean() )
dat_tmp.head()
```

37.54478573028457 126.98281813570502

Out[6]:

	name	latitude	longitude
0	우성스포츠센터	37.492386	126.909832
1	프레곤빌딩	37.486127	126.904575
2	하림빌딩	37.494283	127.016646
3	크레신타워	37.518195	127.018478
4	한주실업빌딩	37.513501	126.943960

In [7]: ▶

```
m = folium.Map(location = [37.5447, 126.9828], zoom_start=10)
m
```

Out[7]:

Make this Notebook Trusted to load map: File -> Trust Notebook

03. 일부 데이터 획득하기

In [8]:

```
### 200개 만 얻기
dat_200 = dat_tmp.iloc[0:200, :]
dat_200
```

Out[8]:

	name	latitude	longitude
0	우성스포츠센터	37.492386	126.909832
1	프레곤빌딩	37.486127	126.904575
2	하림빌딩	37.494283	127.016646
3	크레신타워	37.518195	127.018478
4	한주실업빌딩	37.513501	126.943960
195	나들이공중화장실	37.571836	126.844277
196	수궁동주민센터	37.493950	126.831472
197	꽃동네공중화장실	37.570206	126.847085
198	온수근린공원화장실	37.660927	127.064176
199	실로암안과병원	37.546186	126.861944

200 rows × 3 columns

```
In [9]:

size = dat_200.name.count()

print(size) # ∃기
```

```
print(dat_200.columns)
```

200 Index(['name', 'latitude', 'longitude'], dtype='object')

In [10]:

import time

04. 데이터 지도위에 표시하기

In [22]: ▶

0.024593830108642578

Out[22]:

Make this Notebook Trusted to load map: File -> Trust Notebook

05. 데이터 지도위에 표시하기

• html 을 활용하여 표시하기

```
In [19]:

print( dat_200.columns)
des = dat_200['name']
dat_p1 = list( dat_200['latitude'] )
dat_p2 = list( dat_200['longitude'] )
```

```
Index(['name', 'latitude', 'longitude'], dtype='object')
```

In [20]:

```
dat_xy = list(zip(dat_p1, dat_p2))
dat_xy
```

Out [20]:

```
[(37.49238614627172, 126.90983237468619),
 (37.48612718078578, 126.90457509912622),
 (37.49428349959236, 127.01664600669828),
 (37.518195183969375, 127.01847813152573),
 (37.513500887007005, 126.94395989534347),
 (37.48202003578589, 126.94944132673054),
 (37.482241353193785, 126.94605749195469),
 (37.527955229634735, 127.1206261560178),
 (37.53803874941219, 127.12382208485907),
 (37.53505026778164, 127.13856695580252),
 (37.53467648037231, 127.13773224672887),
 (37.53822193303926, 127.12627274769704),
 (37.54619034813657, 127.12645076662243),
 (37.55164308479295, 127.12778197832401),
 (37.55008363501574, 127.12719633394077),
 (37.55026047361081, 127.17271500776569),
 (37.49101959700149, 126.9027716500649),
```

In [21]:

0.014739036560058594

Out[21]:

Make this Notebook Trusted to load map: File -> Trust Notebook

plugins 이용

```
In [25]: ▶
```

```
from folium import plugins
```

In [26]: ▶

```
m = folium.Map(location=[37.492386, 126.909832], zoom_start=10)
plugins.MarkerCluster(dat_xy, popups = des).add_to(m)
m
```

Out[26]:

Make this Notebook Trusted to load map: File -> Trust Notebook

