

Measurement of the ZH, $H(ZZ^*)$ Cross Section in the Four Lepton Channel at FCC-ee

(FCC-ee Simulations)

Hind Taibi Supervised by Marco Delmastro and Olivier Arnaez

Plan

- FCC Project and Higgs Production at FCC-ee
- Signal and Background Processes
- Analysis
- Encountered Difficulties
- Conclusion

FCC Project

First stage: FCC-ee

- Electron-positron collider
- Higgs physics at $\sqrt{s} = 240$ GeV then $\sqrt{s} = 365$ GeV
- Production of $\sim 10^6$ Higgs bosons

Precision measurements of the Higgs properties, complementary to HL-LHC

Second stage: FCC-hh

- Hadron collider
- $\sqrt{s} = 100 \text{ TeV}$
- Exploration of high energy physics

Search for physics beyond the Standard Model

Scheme of a Possible Location for the FCC

FCC Project

FCC Timeline

Higgs Production at FCC-ee

VBF and ZH Cross Section as Functions of \sqrt{s}

Vector Boson Fusion

Signal: ZH, $H(ZZ^*)$

Recoil mass method to measure the **ZH** cross section without any assumption on the Higgs branching ratios

$$m_{\rm rec}^2 = (\sqrt{s} - E_{ll})^2 - p_{ll}^2 \longrightarrow \sigma_{ZH}$$

Signal: ZH, $H(ZZ^*)$

Recoil mass method to measure the *ZH* cross section without any assumption on the Higgs branching ratios

$$m_{\rm rec}^2 = (\sqrt{s} - E_{ll})^2 - p_{ll}^2 \longrightarrow \sigma_{ZH}$$

Combine with measurements of the exclusive Higgs decay cross section to extract total width Γ_H

$$\Gamma_{H} = \frac{\sigma_{ZH}}{\sigma_{ZH,H(ZZ^{*})}} \Gamma_{H \to ZZ}$$

Only theoretical input: $\Gamma_{H \to ZZ^*}$

Signal: ZH, $H(ZZ^*)$

ZH, $H(ZZ^*)$ Feynman diagram with possible decays of the Z bosons

Decay	Fraction
$l\bar{l}$ $(e^+e^-,\mu^+\mu^-,\tau^+\tau^-)$	~10 %
$ uar{ u} $ $ (u_ear{ u}_e, u_\muar{ u}_\mu, u_ auar{ u}_ au) $	~20 %
$q \overline{q}$ ($u \overline{u}$, $d \overline{d}$, $c \overline{c}$, $s \overline{s}$, $b \overline{b}$)	~70 %

Main decays of the Z boson

ZH, $H(ZZ^*)$ Four Lepton Final States

The decays we are interested in: ZH, $H(ZZ^*) \rightarrow 4l + xx$

```
 \begin{cases} Z_1(ll)Z_2(ll)Z_3(jj) \\ Z_1(ll)Z_2(ll)Z_3(\nu\nu) \end{cases} \text{ 2 on-shell leptonic } Z 
 \begin{cases} Z_1(ll)Z_2(jj)Z_3(ll) \\ Z_1(jj)Z_2(ll)Z_3(ll) \\ Z_1(ll)Z_2(\nu\nu)Z_3(ll) \\ Z_1(\nu\nu)Z_2(ll)Z_3(ll) \end{cases} \text{ 1 on-shell leptonic } Z \text{ and } 1 \text{ off-shell leptonic } Z
```

Mixed final states (different combinations of ll jj vv) and 4 jets final states (ll jj jj) have already been studied studied by Ines Combes

ZH, $H(ZZ^*)$ Four Lepton Final States

2 On-Shell Leptonic Z Bosons

 $Z_1(ll)Z_2(ll)Z_3(jj)$ Signature

- 2 on-shell leptonic Z
 - 2 pairs of high-momentum leptons of same flavour and opposite sign
 - m_{ll_1} and $m_{ll_2} \sim 91 \text{ GeV}$
- $Z^*(q\overline{q})$ \longrightarrow $m_{ii} \sim 30 \text{ GeV}$
- $m_{ll_1}^{rec}$ and $m_{ll_2+ij} \sim 125 \text{ GeV}$;
- No neutrinos Low missing energy

ZH, $H(ZZ^*)$ Four Lepton Final States

2 On-Shell Leptonic Z Bosons

 $Z_1(ll)Z_2(ll)Z_3(\nu\nu)$ Signature

- 2 on-shell leptonic Z
 - 2 pairs of high-momentum leptons of same flavour and opposite sign
 - m_{ll_1} and $m_{ll_2} \sim 91 \text{ GeV}$
- $m_{ll_1}^{rec} \sim 125 \text{ GeV};$
- 2 neutrinos High missing energy

$\overline{ZH, H(ZZ^*)}$ Four Lepton Final States

1 On-Shell and 1 Off-Shell Leptonic Z Bosons

 $Z_1(ll)Z_2(jj)Z_3(ll)$ and $Z_1(jj)Z_2(ll)Z_3(ll)$ Signature

- 1 on-shell leptonic *Z*
 - 1 pair of high-momentum leptons of same flavour and opposite sign with $m_{ll} \sim 91 \text{ GeV}$
- 1 off-shell leptonic *Z*
 - 1 pair of low-momentum leptons of same flavour and opposite sign with $m_{ll_3} \sim 30 \text{ GeV}$
- $Z(q\overline{q})$ \longrightarrow $m_{jj} \sim 91 \text{ GeV}$
- No neutrinos
 Low missing energy

$\overline{ZH, H(ZZ^*)}$ Four Lepton Final States

1 On-Shell and 1 Off-Shell Leptonic Z Bosons

 $Z_1(ll)Z_2(\nu\nu)Z_3(ll)$ and $Z_1(\nu\nu)Z_2(ll)Z_3(ll)$ Signature

- 1 on-shell leptonic Z
 - 1 pair of high-momentum leptons of same flavour and opposite sign with $m_{ll} \sim 91 \text{ GeV}$
- 1 off-shell leptonic *Z*
 - 1 pair of low-momentum leptons of same flavour and opposite sign with $m_{ll_3} \sim 30 \text{ GeV}$
- 2 neutrinos
 High missing energy

Background Processes

$$ee \rightarrow ZZ$$

•
$$ee \rightarrow WW$$

•
$$ee \rightarrow ZH, Z(ee, \mu\mu)$$
 with other Higgs decays $H \rightarrow qq$ (co

Process	Signal	Background							
	$ZH(ZZ^*)$	ZH(WW)	ZH(au au)	ΖΗ(μμ)	ZH(qq)	ZH(gg)	$ZH(Z\gamma)$	ZZ	WW
Number of Events	~26000	~15000	~4400	~15	~42600	~5700	~100	~68 10 ⁵	~82 10 ⁶

ZH,H(ZZ)

We reconstruct up to three leptonic Z bosons: two on-shell Z from electrons and muons with $p \in [20, 80]$ GeV (Z(ll)) and one off-shell Z from electrons and muons with p > 5 GeV ($Z^*(ll)$).

All the particles, except the leptons that reconstructed the Z bosons, are used to reconstruct **jets**.

$$\Delta = \left| 125 \text{ GeV} - m_{lj}^{\text{re}c} \right| - \left| 125 \text{ GeV} - m_{ll}^{\text{rec}} \right|$$

Results

The rectangular cuts bring out **four clean channels**:

$$\begin{cases} Z_{1}(ll)Z_{2}(ll)Z_{3}(jj) \\ Z_{1}(ll)Z_{2}(jj)Z_{3}(ll) \\ Z_{1}(jj)Z_{2}(ll)Z_{3}(ll) \\ Z_{1}(\nu\nu)Z_{2}(ll)Z_{3}(ll) \end{cases}$$

With the respective discriminating variables:

$$m_{Z_1}^{
m rec},\,m_{jj+Z_3},\,m_{Z_2+Z_3}$$
 and $m_{Z_2+Z_3}$

Results

Channel	S/B	S/\sqrt{B}	Discriminating Variable	$rac{\sigma_{ZH,H(ZZ^*)}}{\sigma_{ZH,H(ZZ^*)}^{ ext{SM}}}$
$Z_1(ll)Z_2(ll)Z_3(jj)$	~1.5	~7.9	$m_{Z_1}^{ m rec}$ (recoil mass of Z_1)	$1^{+0.193}_{-0.176}$
$Z_1(ll)Z_2(jj)Z_3(ll)$	~0.95	~6.2	m_{jj+Z_3} (mass of dijet+ Z_3)	$1^{+0.193}_{-0.174}$
$Z_1(jj)Z_2(ll)Z_3(ll)$	~3.1	~10.9	$m_{Z_2+Z_3}$ (mass of Z_2+Z_3)	$1^{+0.187}_{-0.168}$
$Z_1(\nu\nu)Z_2(ll)Z_3(ll)$	~0.75	~2.9	$m_{Z_2+Z_3}$ (mass of Z_2+Z_3)	$1^{+0.394}_{-0.329}$

S: number of **signal** events

B: number of **background** events

Results

Result of the fit performed on the four channels combined with 10 % systematic uncertainty on most abundant backgrounds:

$$\mu = \mathbf{1}^{+0.104}_{-0.098}$$

- Uncertainty dominated by statistical uncertainties
- Closely comparable to Ines' results

Encountered Difficulties

 $m_{Z_1}^{\rm rec}$ for the $Z_1(ll)Z_2(ll)Z_3(\nu\nu)$ enhanced signature

 $m_{\nu\nu+Z_3}$ for for the $Z_1(ll)Z_2(\nu\nu)Z_3(ll)$ enhanced signature

Conclusion

Results

Four channels used for the statistical treatment: *Illljj*, *Iljjll*, *jjllll* and *vvllll*.

Two unused channels: *llllvv* and *llvvll*.

Statistical uncertainty of
$$\begin{cases} \sim 20 \% \text{ for } \textit{lllijj}, \textit{lljjll} \text{ and } \textit{jjllll} \\ \sim 40 \% \text{ for } \textit{vvllll} \\ \sim 10 \% \text{ for the combination} \end{cases}$$

Lookout

Implement **flavour tagging** to reduce the ZH(qq) background

Determine how much the kinematic reconstruction efficiency impacts the final result

Backup: Measurement of the Inclusive Cross Section σ_{ZH}

Backup: Processes Cross Sections

ee Cross Sections

- 91.2 GeV: *Z* pole
- 160 GeV: WW threshold
- 250 GeV: ZH maximum
- 350 GeV: top threshold, VBF Higgs production
- 500 GeV: *ttH*, *ZHH*
- >1 TeV: VBF double Higgs

Backup: Expected $\delta \Gamma_H$

Higgs Width Expected Precision at ee Colliders

Collider	$\delta\Gamma_H$ [%] from Ref.
ILC_{250}	2.3
ILC_{500}	1.6
ILC_{1000}	1.4
CLIC_{380}	4.7
CLIC_{1500}	2.6
CLIC ₃₀₀₀	2.5
CEPC	2.8
FCC-ee ₂₄₀	2.7
FCC-ee ₃₆₅	1.3

Backup: Recoil Mass

$$\underline{P_{CM}} = \underline{P_Z} + \underline{P_H} \Leftrightarrow \underline{P_H} = \underline{P_{CM}} - \underline{P_Z}$$

$$\begin{cases}
\underline{P_{CM}} = (\sqrt{s}, \vec{0}) \\
\underline{P_H} = (E_H, \vec{p}_H) \\
\underline{P_Z} = (E_Z, \vec{p}_Z)
\end{cases}$$

$$\left|\underline{P_H}\right| = \left|\underline{P_{CM}} - \underline{P_Z}\right| \Leftrightarrow m_H = \sqrt{(\sqrt{s} - E_Z)^2 - p_Z^2}$$

For
$$Z_1(ll)Z_2(jj)Z_3(ll)$$

For $Z_1(\nu\nu)Z_2(ll)Z_3(ll)$

$m_{ll_1}^{\rm rec}$ Through Successive Cuts

$m_{ll_1}^{\rm rec}$ Through Successive Cuts

Backup: Smoothing Effect

Backup: Statistical and Total Uncertainties

Channel	$\delta_{\mu}^{ extsf{stat}}$	$\delta_{\mu}^{ extbf{tot}}$
$Z_1(ll)Z_2(ll)Z_3(jj)$	+0.191	+0.193
	-0.173	-0.176
$Z_1(ll)Z_2(jj)Z_3(ll)$	+0.191	+0.193
	-0.173	-0.174
$Z_1(jj)Z_2(ll)Z_3(ll)$	+0.186	+0.187
	-0.168	-0.168
$Z_1(\nu\nu)Z_2(ll)Z_3(ll)$	+0.393	+0.394
	-0.327	-0.329
Combination	+0.103	+0.104
Comomation	-0.097	-0.098

Backup: Higgs Width at the LHC

The total Higgs width is too small to be accessed experimentally at the LHC from resonance line-shape in analysis

$$\Gamma_H^{\text{SM}} = 4.07 \text{ MeV}$$

Direct measurement severely limited by detector resolution

 Γ_H < 2.4 (3.1) GeV obs. (exp.)

Backup: Higgs Width at the LHC

Assuming on-shell and off-shell couplings are equal:

$$\frac{\mu_{\text{off-shell}}}{\mu_{\text{on-shell}}} = \frac{\Gamma}{\Gamma_{\text{SM}}}$$

$$vv = gg$$
 $vv = WW, ZZ, Z\gamma, \gamma\gamma$
 $\sigma_{vv \to H \to 4\ell}^{ ext{on-shell}} \propto \frac{g_{ ext{gluon}}^2 g_V^2}{\Gamma_H}$
 $\sigma_{vv \to H \to 4\ell}^{ ext{off-shell}} \propto g_{ ext{gluon}}^2 g_V^2$

Backup: Higgs Width at the LHC

Measurements in 4l and $2l2\nu$ final states and for different production modes

(CMS: ttH, VH, VBF, ggH)

 $140 \text{ fb}^{-1} \text{ on-shell } 4l$ 78 fb⁻¹off-shell 4l138 fb⁻¹ off-shell $2l2\nu$

> 3.6 σ evidence for off-shell *H* production $\Gamma_H = 3.2^{+2.5}_{-1.7} \text{ MeV}$

CMS

