

Indice

1 Int		troduzione alla probabilità			
	1.1	Calcolo co	mbinatorio	S	
	1.2	Definizion	e assiomatica di probabilità	S	
		1.2.1 No	zioni fondamentali	10	
		1.2.2 As	siomi	10	
		1.2.3 Ev	enti equiprobabili	10	

Elenco delle figure

Elenco delle tabelle

Capitolo 1

Introduzione alla probabilità

Lo studio della probabilità ha molteplici utilizzi:

- analisi e design degli algoritmi;
- data science, intelligenza artificiale.

1.1 Calcolo combinatorio

Definiamo un $\it esperimento$ come un operazione che produce dei risultati.

Tipi di esperimenti sono:

- permutazione;
- disposizione;
- combinazione.

Sia N il numero di elementi di un insieme.

Permutazioni La permutazione rappresenta i possibili ordinamenti di N.

$$P(N) = N!$$

Disposizioni La disposizione rappresenta i possibili ordinamenti di i oggetti tra N.

$$D(i,N) = \frac{N!}{(N-i)!}$$

Combinazioni La combinazione rappresenta la scelta di i oggetti da N.

$$C(i,N) = \frac{N!}{i!(N-i)!}$$

1.2 Definizione assiomatica di probabilità

Definiamo la probabilità in modo assiomatico discutento alcune proprietà nel caso semplice, ma importante in cui sia possibile individuare eventi equiprobabili.

1.2.1 Nozioni fondamentali

- \bullet Spazio campionario: è l'insieme S dei possibili risultati di un esperimento;
- evento: è un qualunque sottoinsieme E di S che si realizza se il risultato dell'esperimento appartiene ad E.

Indichiamo gli eventi di:

• unione: come $E \cup F$;

• intersezione: EF;

• mutualmente esclusivi: $EF = \emptyset$;

• complementare: E^C tale che $E \cup E^C = S$.

1.2.2 Assiomi

Una probabilità P(.) risulta ben definita sugli eventi di uno spazio campionario S se:

$$A1: 0 \le P(E) \le 1 \qquad \forall E \subseteq S$$

$$A2: P(S) = 1$$

$$A3: \text{se } E_i, i = 1, 2, \dots \text{mutualmente esclusivi} \rightarrow P(\cup E_i) = \sum_i P(E_i)$$

$$(1.1)$$

Sono conseguenze di A1, A2, A3:

$$(i): \forall E, P(E^C) = 1 - P(E)$$

$$(ii): E \subseteq F \to P(E) \le P(F) \qquad \forall E, F$$

$$(iii): P(E \cup F) = P(E) + P(F) - P(EF) \qquad \forall E, F$$

$$(1.2)$$

1.2.3 Eventi equiprobabili

Sia S lo spazio campionario costituito da un insieme finito di N risultati che indichiamo con i primi \mathbb{N} numeri naturali (cardinalità), ovvero $S = \{1, 2, \dots, N\}$, sia #S la cardinalità dell'insieme. Se le probabilità P(i) sono tutte uguali allora $P(\{i\}) = \frac{1}{N}$.

La probabilità di un insieme $E \subseteq S$ in questo caso sarà:

$$P(E) = \frac{\#E}{\#S}$$

Esercizio 1 (Ottenere 7 lanciando due dadi)

Casi possibili: 6×6 . Casi favorevoli: $\{6,1\},\{1,6\},\{5,2\},\{2,5\},\{4,3\},\{3,4\}$.

$$P(E) = \frac{\#E}{\#S} = \frac{6}{36} = \frac{1}{6}$$

Esercizio 2 (Due persone nate nello stesso giorno)

Casi possibili: #E = 365!. Casi favorevoli: $\#S = 365^{n-1}$.

$$P(E) = \frac{\#E}{\#S} = \frac{365!}{365^{n-1}}$$