Анализ временных рядов

Что это такое?

Временной ряд — это последовательность значений признака, измеренных через постоянные временные интервалы.

$$Y = Y_1, Y_2, ..., Y_t, ...$$

где $orall i \; Y_i \in \mathbb{R}$ — значение признака в момент времени i.

Пример

Опубликованные хосты на Хабрахабре

(Данные взяты с соревнования на Kaggle "Прогноз популярности статьи на Хабре")

Зачем это нужно?

Прогнозирование временного ряда — это предсказание следующего значения признака или нескольких следующих значений признака в зависимости от уже имеющегося временного ряда.

<u>Имеем:</u>

$$Y_1, Y_2, ..., Y_t, ...$$

<u>Хотим найти</u>:

Функцию f_t , такую что:

$$\hat{Y}_{t+d}(w) = f_t(Y_1, ..., Y_t; w)$$

где w - вектор параметров модели, $d \in \{1,2,...,D\}$

 ${\it D}$ - горизонт прогнозирования

Отличия прогнозирования временных рядов от других задач машинного обучения

- Данные находятся не в произвольном порядке, а упорядочены по времени.
- Данные должны быть зависимы. Таким образом по значениям ряда в прошлом можно будет предугадать его поведение в будущем. Чем сильнее будущее зависит от прошлого, тем точнее можно сделать прогноз.

Где применяется?

- Прогнозирование объёмов продаж
- Анализ фондовых рынков
- Прогнозирование объемов потребления электроэнергии
- Прогнозирование объемов перевозок
- Прогнозирование пробок
- и т.д.

Основные свойства временных рядов

- **Сезонность** циклическое изменение параметров ряда с постоянным периодом, связанное с сезонами и ритмами активности человека.
- **Тренд** плавное изменение параметров временного ряда, проходящее в некотором определенном направлении, которое сохраняется в течение значительного промежутка времени.

• **Стационарность** — свойство, при котором не изменяется распределение вероятности — среднее значение, дисперсия и ковариация ряда не изменяются со временем.

$$\mathbb{E}(Y_1) = \mathbb{E}(Y_2) = ... = \mathbb{E}(Y_t) = ... = const$$

 $\mathbb{D}(Y_1) = \mathbb{D}(Y_2) = ... = \mathbb{D}(Y_t) = ... = const$
 $cov(Y_1, Y_2) = ... = cov(Y_{t-1}, Y_t) = ... = const$

То есть:

$$cov(Y_{t-k}, Y_t) = \gamma_k$$

Что значит, что ковариация между двумя показателями не зависит от их значений, а зависит только от разницы по времени между этими показателями. Функцию γ_k называют *автоковариационной функцией*.

Тренд

Тренд + сезонность

Stationary series

Non-Stationary series

Non-Stationary series

Non-Stationary series

тут растет матожидание

Non-Stationary series

Non-Stationary series

Non-Stationary series

Критерии проверки стационарности ряда

• Критерий KPSS

(Квятковского - Филлипса - Шмидта - Шина)

• Критерий Дики - Фуллера (DF-тест)

Сведение нестационарного ряда к стационарному

• **Дифференцирование** ряда — это переход к попарным разностям его соседних значений. То есть:

$$Y_1, Y_2, ..., Y_t \to Z_2, Z_3, ..., Z_t, Z_i = Y_i - Y_{i-1}$$

При помощи дифференцирования ряда можно избавиться от тренда и сезонности, а также стабилизировать математическое ожидание.

• **Логарифмирование** ряда — применение логарифмирования к каждому члену ряда:

$$Y_1, Y_2, ..., Y_t \to \ln(Y_1), \ln(Y_2), ..., \ln(Y_t), Y_i > 0$$

Данная техника полезна для рядов с не постоянной дисперсией.

Преобразование Бокса-Кокса

$$\forall i \ Y_i' = \begin{cases} \ln(Y_i), \ \lambda = 0\\ \frac{Y_i^{\lambda} - 1}{\lambda}, \ \lambda \neq 0 \end{cases}$$

Параметр λ можно выбирать, максимизируя логарифм правдоподобия.

<u>Обратное преобразование:</u>

$$\forall i \ \hat{Y}_i = \begin{cases} \exp(\hat{Y}_i'), \ \lambda = 0\\ (\lambda \hat{Y}' + 1)^{1/\lambda}, \ \lambda \neq 0 \end{cases}$$

Как это работает?

Данные по отгрузке товаров одного из складских комплексов Подмосковья.

Тот же ряд после дифференцирования

Как работает логарифмирование

Исходный ряд

Ряд после логарифмирования

Ряд после логарифмирования и дифференцирования

Antidiabetic drug sales

Работа преобразования Бокса-Кокса

Белый шум

Белый шум - процесс, имеющий постоянное математическое ожидание, постоянную дисперсию и нулевую автоковариационную функцию. Белый шум является одним из самых простых примеров стационарного ряда.

Модели прогнозирования временных рядов

- Регрессия
- Авторегрессия
- Экспоненциальное сглаживание
- и др..

Структурные

- Нейронные сети
- Цепи Маркова
- Классификацион ные деревья
- идр.

AR (Autoregression)

Авторегрессия - регрессия ряда на собственные значения в прошлом.

$$AR(p): Y_t = \alpha + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \varepsilon_t$$

lpha - какая-то константа, ϕ_i - параметры модели, Y- стационарный ряд, $arepsilon_t$ - гауссов белый шум с нулевым средним.

MA(Moving average)

Скользящее среднее - авторегрессия, примененная к шуму.

$$MA(q): Y_t = \alpha + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

lpha - какая-то константа, $heta_i$ - параметры модели, Y - стационарный ряд, $arepsilon_i$ - гауссов белый шум с нулевым средним.

ARMA

(Autoregressive moving average)

$$ARMA(p,q): Y_t = \alpha + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} +$$

$$+ \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

lpha - какая-то константа, ϕ_i , θ_i - параметры модели, Y - стационарный ряд, ε_i - гауссов белый шум с нулевым средним. p - количество авторегрессионных компонент, а q - количество компонент скользящего среднего. p + q минимально возможна.

Теорема Вольда:

Любой стационарный ряд может быть описан моделью ARMA(p,q)с любой наперёд заданной точностью.

ARIMA

(Autoregressive integrated moving average)

$$ARIMA(p,d,q): \nabla^{d}Y_{t} = \alpha + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q}$$

 α - какая-то константа, ϕ_i , θ_i - параметры модели, Y - стационарный ряд, ε_i - гауссов белый шум. p - количество авторегрессионных компонент, а q - количество компонент скользящего среднего.

Автокорреляция (ACF)

$$r_{i} = r_{Y_{t}, Y_{t-i}} = \frac{\sum_{t=i+1}^{T} (Y_{t} - \overline{Y})(Y_{t-i} - \overline{Y})}{\sum_{t=1}^{T} (Y_{t} - \overline{Y})^{2}}$$

Автокорреляция измеряет совокупный эффект воздействия.

і - лаг, сдвиг по времени, Т - длина ряда

Коррелограмма

Коррелограмма — это график автокорреляций. Он помогает понять как значения ряда связаны со своими же значениями в прошлом. Лаг отражает степень временной задержки.

Частная автокорреляция (PACF)

$$\phi_i = \begin{cases} r_{Y_{t-1}, Y_t} & i = 1 \\ r_{\varepsilon_{t-i}, \varepsilon_t} & i > 1 \end{cases}$$

Частная автокорреляция измеряет прямой эффект воздействия

Подбор параметров

- Если p , d , q фиксированы, то α , ϕ_i , θ_i подбираются методом наименьших квадратов.
- Чтобы подобрать ε_i делают авторегрессию на ряд и считают остатки, затем подставляют вместо шума и применяют МНК.
- ullet подбирается так, чтобы ряд стал стационарным.
- p, q не можем выбрать по ММП, так чем больше p и q, тем больше параметров и тем больше ОМП тем лучше модель обучается.
- $p,\ q$ подбираем по кореллограмме. p номер последнего лага при котором PACF значима, q номер последнего лага при котором ACF значима.

Аддитивная модель временного ряда

$$Y = T + S + E$$

- Т трендовая составляющая
- S сезонная составляющая
- Е случайная составляющая

Аддитивную модель строят если амплитуда сезонных колебаний относительно трендовой компоненты приблизительно постоянна.

Как работает?

- 1. Выравнивание исходного ряда скользящей средней
- Оценка сезонной компоненты с учетом того, что для аддитивной модели сумма сезонных компонент за весь период равна нулю (Y центрированная скользящая средняя)
- 3. Удаление сезонных компонент из исходных уровней ряда Y S и получение T + E
- 4. Оценка параметров тренда по полученных по модели значений Т + Е (прогнозируем любой моделью)
- 5. Добавление к прогнозам сезонность последнего периода времени
- 6. Оценка качества полученной модели

Разложение ряда на компоненты

Fbprophet

(Facebook Prophet)

$$Y(t) = g(t) + s(t) + h(t) + \varepsilon_t$$

- ullet s(t) сезонная составляющая
- h(t)-тренд
- ullet g(t) аномальные дни
- ullet $arepsilon_t$ случайная составляющая

Метрики качества прогнозирования

Имеем:

 Y_t — фактическое значение временного ряда в момент времени t

 Y_t^\prime — прогнозируемое значение в момент времени t

 η — количество анализируемых значений

Хотим:

Оценить качество прогнозирования, то есть понять, какая именно модель прогнозирования наиболее подходит к анализируемому ряду и дает значение, максимально близкое к реальному результату.

Основные метрики

• **Средняя абсолютная ошибка** (Mean Absolute Error, MAE)

$$MAE = \frac{1}{n} \sum_{t=1}^{n} |Y_t - Y_t'|$$

• **Средняя абсолютная процентная ошибка** (Mean Absolute Percentage Error, MAPE)

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \frac{|Y_t - Y_t'|}{|Y_t|} \cdot 100\%$$

• **Средний квадрат ошибок** (Mean Squared Error, MSE)

$$MSE = \frac{1}{n} \sum_{t=1}^{n} (Y_t - Y_t')^2$$

• Среднеквадратичная ошибка (Root Mean Square Error, RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (Y_t - Y_t')^2}$$

Кросс-валидация

(Cross-validation on a rolling basis)

Сравнение моделей ARIMA и fbprophet (метрика MAPE)

Сравнение моделей ARIMA и fbprophet

Опубликованные посты на Хабрахабре

ARIMA(3, 1, 4): MAPE = 16.54%, MAE = 7.28

Fbprophet: MAPE = 26.79%, MAE = 8.49

Что нового мы узнали?

- Что такое временные ряды?
- Главная задача анализа временных рядов
- Применение
- Основные свойства
- Методы сведения нестационарного ряда к стационарному
- Аддитивные регрессионные модели
- Простейшие авторегрессионные модели
- Подбор параметров моделей
- Метрики качества прогнозирования
- Кросс-валидация по ряду

Список источников

- «Анализ временных рядов и прогнозирование», Сажин Ю.В., Катынь А.В., Сарайкин Ю.В, 2013
- «Прогнозирование и временные ряды», Кизбикенов К.О., Барнаул, ФГБОУ ВО, «АлтГПУ» 2017
- https://habr.com/ru/company/ods/blog/323730/
- Introduction to Time Series Analysis
 https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
- https://ranalytics.github.io/tsa-with-r/ch-intro-to-prophet.html
- https://www.youtube.com/watch?v=u433nrxdf5k
- https://habr.com/ru/company/ods/blog/327242/
- http://ainsnt.ru/file/out/863967
- https://facebook.github.io/prophet/static/prophet_paper_20170113.pdf
- http://www.agpu.net/fakult/ipimif/metodmater/ddv007_additivmodelvr3.pdf
- https://otexts.com/fpp2/
- https://www.youtube.com/playlist?list=PLu5flfwrnSD6wzkzgs4TocGL5GOXmEjZE

Вопросы

- 1. Какое преобразование стоит применить при сведении нестационарного ряда с не постоянной дисперсией к стационарному?
- 2. Запишите формулы моделей AR(p), MA(q). Как подбирать параметры данных моделей?
- 3. В чем преимущество модели ARIMA по сравнению с ARMA?
- 4. Из каких компонент состоит аддитивная модель fbprophet?