Understanding $V_{\pi}(s)$ with Gridworld

$$v_{\pi}(s) \doteq \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

Verify $V_{\pi}(s)$ using Bellman equation for this state with $\gamma = 0.9$, and equiprobable random policy

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Understanding $V_{\pi}(s)$ with Gridworld

$$v_{\pi}(s) \doteq \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]_{s'}$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \sum_{s' \in \{s_1, s_2, s_3, s_4\}} P(s' \mid s, a) [0 + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) = 0.25 \sum_{s' \in \{s_1, s_2, s_3, s_4\}} [0 + 0.9 V^{\pi}(s')]$$

$$V^{\pi}(s) = 0.25 [0.9 (2.3 + 0.4 - 0.4 + 0.7)]$$

= $0.25 \cdot [0.9 \cdot 3.0] = 0.675 \approx 0.7$

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Goal: Verify the value of the circled state (which is shown as 0.7) using the **Bellman expectation equation**, with:

- $\bullet \quad {\rm Discount\ factor\ } \gamma = 0.9$
- Equiprobable random policy: meaning the agent picks any of the 4 actions with equal probability (0.25)
- Each action leads to 1 of 4 neighboring states (assuming deterministic transitions)

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Equation used:

$$v_\pi(s) = \sum_a \pi(a|s) \sum_{s'} p(s'|s,a) \left[r + \gamma v_\pi(s')
ight]$$

But in this case:

- All rewards r=0
- Only value of successor states matters
- $\pi(a|s)=0.25$ (equal for each action)

So the simplified version becomes:

$$v_\pi(s) = 0.25 \cdot \sum_{s'} \left[\gamma \cdot v_\pi(s')
ight]$$

$$egin{split} v_\pi(s) &= 0.25 \cdot \gamma \cdot (v(s_1) + v(s_2) + v(s_3) + v(s_4)) \ &v_\pi(s) &= 0.25 \cdot 0.9 \cdot (2.3 + 0.4 + (-0.4) + 0.7) \end{split}$$

Simplify the inner sum:

$$=0.25\cdot 0.9\cdot 3.0=0.25\cdot 2.7= \boxed{0.675pprox 0.7}$$

- Transitions are deterministic
- So each action deterministically leads to one s^\prime
- Therefore $p(s' \mid s, a) = 1$
- So it becomes:

$$v_\pi(s) = \sum_a \pi(a \mid s) [r + \gamma v_\pi(s')]$$

And with:

- r = 0
- $\pi(a \mid s) = 0.25$ It simplifies to:

$$v_\pi(s) = 0.25 \cdot \sum_{s'} \gamma v_\pi(s') = 0.25 \cdot \gamma \cdot \sum_{s'} v_\pi(s')$$