The Future of Real-Time in Spark

Cheng Lian (lian@databricks.com)
Spark Summit China, Beijing, May 15, 2016

Why Real-time?

Making decisions faster is valuable.

- Preventing credit card fraud
- Monitoring industrial machinery
- Human-facing dashboards

• • • •

Streaming Engine

Noun.

Takes an input stream and produces an output stream.

Spark Unified Stack

Spark Unified Stack

Introduced 3 years ago in Spark 0.7 50% users consider most important part of Spark

Spark Streaming

- First attempt at unifying streaming and batch
- •State management built in
- Exactly-once semantics
- Features required for large clusters
 - Straggler mitigation
 - Dynamic load balancing
 - Fast fault-recovery

Streaming computations don't run in isolation.

Use Case: Fraud Detection

Continuous Application

Noun.

An end-to-end application that acts on real-time data.

Challenges Building Continous Application

Integration with non-streaming systems often an after-thought

•Interactive, batch, relational databases, machine learning…

Streaming programming models are complex

Integration Example

Stream (home. html, 10:08) (product. html, 10:09) (home. html, 10:10) Streaming engine

What can go wrong?

- •Late events
- Partial outputs to MySQL
- •State recovery on failure
- Distributed reads/writes

databricks

Page	Minute	Visits
home	10:09	21
pricing	10:10	30
		•••

Complex Programming Models

Data

Late arrival, varying distribution over time, ...

Processing

Business logic change & new ops

Output

How do we define (windows, sessions) output over time & correctness?

Structured Streaming

databricks

The simplest way to perform streaming analysis is not having to **reason** about streaming.

Spark 2.0 Spark 1.3 Infinite DataFrames Static DataFrames Single API!

Structured Streaming

High-level streaming API built on Spark SQL engine

- Runs the same queries on DataFrames
- Event time, windowing, sessions, sources,& sinks

Unifies streaming, interactive and batch queries

- •Aggregate data in a stream, then serve using JDBC
- Change queries at runtime
- *dataBrick's 1d and apply ML models

Model

Model

Model Details

Input sources

Append-only tables

Queries

New operators for windowing, sessions, etc.

Triggers

Based on time (e.g. every 1 sec)

Output modes

Complete, deltas, update-in-place

Example: ETL

```
Input sources
     Files in S3
Queries
     map (transform each record)
Triggers
      "Every 5 sec"
Output modes
```

"New records" (deltas), into S3

sink

Example: Page View Count

Input sources

Records in Kafka

Queries

SELECT COUNT (*) GROUP BY page, minute (evtime)

Triggers

"Every 5 sec"

Output modes

Update-in-place, into MySQL update "old" records on

Note:

This will automatically late data!

Execution

Logically:

DataFrame operations on static data

(i.e. as easy to understand as batch)

Physically:

Spark automatically runs the query in streaming fashion (i.e. incrementally and continuously)

Example: Batch Aggregation

```
logs = ctx.read.format("json").open("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))
    .write.format("jdbc")
    .save("jdbc:mysql//...")
```


Example: Continuous Aggregation

```
logs = ctx.read.format("json").stream("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))
    .write.format("jdbc")
    .stream("jdbc:mysql//...")
```


Automatic Incremental Execution

•••

Rest of Spark Will Follow

- Interactive queries should just work
- •Spark's data source API will be updated to support seamless streaming integration
 - Exactly once semantics end-to-end
 - Different output modes (complete, delta, update-in-place)
- •ML algorithms will be updated too

What can we do with this that's hard with other engines?

Ad-hoc, interactive queries

Dynamic changing queries

Benefits of Spark: elastic scaling, straggler mitigation, etc

Use Case: Fraud Detection

Timeline

Spark 2.0

- API foundation
- Kafka, file systems, and databases
- Event-time aggregations

Spark 2.1+

- Continous SQL
- BI application integration
- Other streaming sources/sinks
- Machine learning

