CHIMICA

Corso di Laurea in Informatica

Prof.ssa Valentina Borghesani

Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale

Plesso di Chimica

0521 902056

email: valentina.borghesani@unipr.it

Stechiometria

- ☐ Configurazione elettronica e legami chimici
 - ☐ Configurazione elettronica
 - ☐ Strutture di Lewis e VSEPR
- Nomenclatura chimica
- ☐ Le reazioni chimiche
 - ☐ Reazioni di salificazione
 - ☐ Reazioni di ossidoriduzione
- ☐ Bilanciamento delle reazioni chimiche e relativi calcoli ponderali (mole, peso equivalente, reagente in difetto/eccesso, resa)
- ☐ Esercizi riguardanti le soluzioni

Descrivere graficamente i livelli energetici elettronici dell'atomo di idrogeno e degli atomi polielettronici

Illustrare la configurazione elettronica di un atomo del 2° periodo, un atomo del 3° periodo e un atomo del 4° periodo

Li	1s ² 2s ¹	[He] 2s¹	1s ² 2s ¹
Na	[Ne] 3s ¹	[He] 2s ² 2p ⁶ 3s ¹	1s ² 2s ² 2p ⁶ 3s ¹
K	[Ar] 4s¹	[Ne] 3s ² 3p ⁶ 4s ¹	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹

n	ı	m	orbitali	Tipo
1	0	0	1s	S
2	0 1	0 +1, 0, -1	2s 2p	p_x, p_y, p_z
3	0 1 2	0 +1, 0, -1 +2, +1, 0, -1, -2	3s 3p 3d	s p_x, p_y, p_z $d_{x^2-y^2}, d_{z^2}, d_{xy}, d_{xz}, d_{yz}$
4	0 1 2 3	0 +1, 0, -1 +2, +1, 0, -1, -2 +3, +2, +1, 0, -1, -2, -3	4s 4p 4d 4f	s p_x, p_y, p_z $d_{x^2-y^2}, d_{z^2}, d_{xy}, d_{xz}, d_{yz}$ $f_{x^3}, f_{y^3-3x^2y}, \dots$
etc				·

n {	0	1	2	3
1	1 s 4			
2	2 s 🗸	2 p		
3	3 s 4	30	3 d	
4	4 s	4 p	40	41
5	5 s 🗸	50	5 d	5
6	6 s	6 p	60	
7	7 s	7 p		

Definizioni di Termini Comuni

VALENZA.

Numero di elettroni che un atomo usa in un legame chimico

NUMERO DI OSSIDAZIONE.

La carica che rimane su un atomo quando tutti I leganti sono rimossi in modo eterolitico, con gli elettroni che vengono trasferiti al partner più elettronegativo. I legami omonucleari (es. O-O, H-H, C-C ...) non contribuiscono al numero d'ossidazione.

CARICA FORMALE.

La carica rimanente su un atomo quando tutti I leganti sono rimossi omoliticamente.

NUMERO DI COORDINAZIONE

Il numero di atomi legati all'atomo d'interesse.

Numero di ossidazione

Carica residua su atomo dopo aver trasferito gli elettroni su atomi più elettronegativi in seguito a rottura eterolitica di legami.

È una carica

NON necessariamente il corrispondente ione esiste:

Mn ha n.ox. +7, ma lo ione Mn^{+7} NON esiste;

Cr ha n.ox. +6, ma lo ione Cr^{+6} NON esiste.

Non metalli: C +4 oppure N +5 NON sono ioni

Na ha n.ox. +1 ed effettivamente esiste lo ione Na^+

(1) Il n.o. delle sostanze allo stato elementare è 0;

- (2) L'idrogeno quando è combinato vale +1 (Eccezione: gli idruri metallici KH, LiH... dove vale -1)
- (3) L'ossigeno quando è combinato vale -2

Eccezione: H₂O₂ acqua ossigenata O **-1** perossido di idrogeno

(4) Il n.o. dei metalli alcalini è sempre +1, per quelli alcalino-terrosi è +2

Elettronegatività

2,1 H																
1,0 Li	1,5 Be											2,0 B	2,6 C	3,0 N	3,4 O	4,0 F
0,9 Na	1,2 Mg											1,6 Al	1,9 Si	2,2 P	2,6 S	3,2 Cl
0,8 K	1,0 Ca	1,3 Sc	1,5 Ti	1,6 V	1,6 Cr	1,6 Mn	1,8 Fe	1,9 Co	1,9 Ni	1,9 Cu	1,6 Zn	1,8 Ga	2,0 Ge	2,2 As	2,6 Se	3,0 Br
0,8 Rb	1,0 Sr	1,2 Y	1,3 Zr	1,6 Nb	2,16 Mo	1,9 Tc	2,2 Ru	2,3 Rh	2,2 Pd	1,9 Ag	1,7 Cd	1,8 In	2,0 Sn	2,1 Sb	2,1 Te	2,7 I
0,7 Cs	0,9 Ba	1,1 La	1,3 Hf	1,5 Ta	2,36 W	1,9 Re	2,2 Os	2,2 Ir	2,3 Pt	2,5 Au	1,9 Hg	2,0 Tl	2,3 Pb	2,0 Bi	2,0 Po	2,2 At
0,7 Fr	0,9 Ra	1,1 Ac														

La somma dei numeri di ossidazione in un composto:

- deve dare **ZERO** se il composto è **neutro**

$$\rightarrow$$

CaO

- deve essere pari alla carica se si tratta di uno ione

$$S + 6$$

$$\rightarrow$$

 $S +6 O -2 \rightarrow SO_4^{2-}$

$$H^{O}$$

ammoniaca

acido solforico

anidride carbonica O=C=O

acido carbonico

$$\begin{array}{c} O \\ \parallel \\ C \\ OH \end{array}$$

monossido di carbonio

$$c \equiv 0$$

$$\chi$$
 H = 2.2 χ O = 3.5

$$\chi$$
 H = 2.2 χ O = 3.5 χ C = 2.5 χ N = 3.0 χ S = 2.6

Idrogeno,	Metall	i a	lcal	in	i
iai ogerio,	.v.c.ca		CG	•••	•

Metalli alcalino-terrosi

B, Al

C

Si

Sn, Pb

Ν

Р

0

S

С

Cl, Br, I

Cr

Mn

Fe

Ni, Pd, Pt

Cu

Ag

Zn, Cd

Hg

+1

+2

+3

+4

+4

+2, +4

+3, +5

+3, +5

-2

-2, +4, +6

-1

-1, +1, +3, +5, +7

+3, +6

+2, +4, +7

+2, +3

+2

+1, +2

+1

+2

+1, +2

CO

NO, NO₂, NH₃

 PH_3

 H_2O_2

Lantanidi

Attinidi

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.907	144.24	(145)	150.4	151.96	157.25	158,925	162.50	164,930	167.26	168.934	173.04	174.96
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr .
232.038	231.035	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)

■ Metalli alcalini
■ Metalli alcalino-terrosi

■ Terre rare
■ Non metalli

■ Metalli

Alogeni

Metalli di transizione

☐ Gas nobili

I COMPOSTI CHIMICI

OSSIDO BASICO M_xO_y

IDROSSIDO M(OH)_n

M = metallo

X = non metallo

OSSIDO ACIDO X_mO_n (ANIDRIDE)

ACIDO

HXOOSSOACIDO IDRACIDO

In presenza di elementi METALLI (metalli alcalini, alcalini-terrosi etc.)

OSSIDO BASICO M_xO_n

Es. Na₂O, MgO, Al₂O₃

OSSIDO BASICO M_xO_n H₂O IDROSSIDO M(OH)_n

IDROSSIDO M(OH)_n

Es. NaOH, Mg(OH)₂, Al(OH)₃

OH⁻ ione ossidrile

OSSIDO BASICO M_xO_n

0 -2

K₂O ossido di potassio

+3

FeO
$$Fe_2O_3$$
 ossido ferrico

ossido di ferro(II)

ossido ferrico ossido di ferro(III)

Notazione di Stock

Lantanidi

Attinidi

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.907	144.24	(145)	150.4	151.96	157.25	158,925	162.50	164,930	167.26	168.934	173.04	174.96
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr .
232.038	231.035	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)

■ Metalli alcalini
■ Metalli alcalino-terrosi

■ Terre rare
■ Non metalli

■ Metalli

Alogeni

Metalli di transizione

☐ Gas nobili

Reazione di formazione di un IDROSSIDO

OSSIDO BASICO +
$$H_2O \rightarrow M(OH)_n$$

$$Cu_2O + H_2O \rightarrow CuOH$$

1) trovare il prodotto

$$Cu_2O + H_2O \rightarrow 2 CuOH$$

2) bilanciare

OSSIDO ACIDO X_mO_n H₂O ACIDO (ANIDRIDE)

HXO HX

In presenza di elementi NON METALLI (B, C, O, Cl, etc.)

OSSIDO ACIDO (ANIDRIDE) X_mO_n

HXO ACIDO - OSSOACIDO

> - IDRACIDO HX

> > X è un non metallo

 N_2O_3

Anidride nitrosa

+5

 N_2O_5

Anidride nitrica

Cl

+1

+3

+5

+7

Anidride

 Cl_2O

 Cl_2O_3

 Cl_2O_5

 Cl_2O_7

ipoclor**osa**

clorosa

clorica

perclorica

OSSOACIDI

OSSIDO ACIDO +
$$H_2O \rightarrow H_xM_yO_z$$

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

H₂CO₃ acido carbonico

HNO₂ acido nitroso

HNO₃ acido nitrico

H₂SO₄ acido solforico

H₂SO₃ acido solforoso

HCIO₄

perclorico

HCIO HCIO₂ HCIO₃ acido ipocloroso cloroso clorico

ACIDI CHE DIFFERISCONO PER IL GRADO DI IDRATAZIONE

$$P_2O_5 + H_2O \rightarrow H_2P_2O_6 \rightarrow 2 HPO_3$$

Acido **meta**fosforico

$$P_2O_5 + 2 H_2O \rightarrow H_4P_2O_7$$

Acido **piro**fosforico

$$P_2O_5 + 3 H_2O \rightarrow H_6P_2O_8 \rightarrow 2 H_3PO_4$$

Acido **orto**fosforico

... allo stesso modo vi sono tre acidi FOSFOROSI

IDRACIDI

HF HCl HBr HI acido fluor<u>idrico</u> clor<u>idrico</u> brom<u>idrico</u> iod<u>idrico</u>

H₂S acido solf**idrico**

II MANGANESE.....

$$MnO$$
 MnO_2 Mn_2O_7

$$MnO + H_2O \rightarrow Mn(OH)_2$$

$$Mn_2O_7 + H_2O \rightarrow 2 HMnO_4$$

... e l'analogo CROMO

$$Cr_2O_3$$
 CrO_3

$$Cr_2O_3 + 3H_2O \rightarrow 2Cr(OH)_3$$

$$CrO_3 + H_2O \rightarrow H_2CrO_4$$
 acido cromico

$$2 H_2CrO_4 \rightarrow H_2O + H_2Cr_2O_7$$
 acido bicromico

$\begin{array}{ccc} & M^{n+} \\ \text{ACIDO} \rightarrow & \text{ANIONE} & \rightarrow & \text{SALE} \end{array}$

Ossidi, Anidridi, Idrossidi, Ossoacidi

Sali

ipo- -oso

ipo- -ito

-oso

-ito

-ico

-ato

per- -ico

per- -ato

Idracidi, HX (X = S, alogeno)

Sali

- idrico

-uro

Reazioni che portano alla formazione di SALI

■ Idrossido + acido

$$Ca(OH)_2 + 2HC1 \rightarrow CaCl_2 + 2H_2O$$

■ Idrossido + anidride

$$Co(OH)_2 + N_2O_3 \rightarrow Co(NO_2)_2 + H_2O$$

Ossido basico + anidride

$$BaO + N_2O_5 \rightarrow Ba(NO_3)_2$$

Ossido basico + acido

$$3 \text{ MgO} + 2 \text{ H}_3 \text{PO}_4 \rightarrow \text{Na}_3 \text{PO}_4 + 3 \text{ H}_2 \text{O}$$

Reazioni di scambio

$$H_2O$$

$$Pb(NO_3)_2 + K_2CrO_4 \rightarrow$$

$$Pb^{2+} + 2NO_3^- + 2K^+ + CrO_4^{2-} \rightarrow PbCrO_4 \downarrow + 2K^+ + 2NO_3^-$$

insolubilità

$$FeS + 2 HCl \rightarrow FeCl_2 + H_2S$$

volatilità

$$FeF_2 + 2HNO_3 \rightarrow Fe(NO_3)_2 + 2HF$$
acido forte acido debole

$$\begin{aligned} NH_4NO_3 + KOH &\rightarrow KNO_3 + NH_3 + H_2O \\ & \textbf{base forte} & \textbf{base} \\ & \textbf{debole} \end{aligned}$$

SALI ACIDI

H_2CO_3	HCO ₃ - CO ₃ ² -	BICARBONATI o CARBONATI ACIDI		
H_3PO_4	$H_2PO_4^{-1}$	FOSFATI DIACIDI		
	HPO_4^{-2}	FOSFATI MONOACIDI		
	PO ₄ -3			
H_2SO_4	HSO ₄ -	SOLFATI ACIDI		H_2S
2** 4	SO ₄ ²⁻		HS-	BISOLFURI o SOLFURI ACIDI
H_2SO_3	HSO ₃ ⁻ SO ₃ ²⁻	SOLFITI ACIDI	S ²⁻	

Metalli (M)

$$+ O_2$$

Ossidi Basici

$$M_2O_n$$

$$+ H_2O$$

Idrossidi

$$M(OH)_n$$

Non Metalli (X)

$$+ O_2$$

Ossidi Acidi (Anidridi)

$$X_2O_n$$

$$+ H_2C$$

Ossoacidi

$$H_pX_qO_r$$

Le equazioni chimiche

Le reazioni chimiche rappresentano dei fatti sperimentali che vengono descritti in modo abbreviato e simbolico mediante equazioni chimiche

$$A + B \rightarrow C + D$$

Reagenti Prodotti

Reazioni non di ossidoriduzione (acido-base, sintesi, decomposizione)

Reazioni di ossidoriduzione:

Reazioni in cui almeno un elemento si OSSIDA (perde elettroni: riducente) e almeno uno si RIDUCE (acquista elettroni: ossidante)

- ➤ Bilanciamento elettronico
 - ➤ Bilanciamento di massa
 - > Bilanciamento di carica