Dynamic Epidemic Propagation in Community-Structured Networks

Arjun K. Nandan

Department of Humanities and Social Sciences Indian Institute of Technology, Roorkee

November 8, 2024

Introduction

- **Epidemic modeling** has become a crucial tool for understanding and managing disease outbreaks.
- In modern societies, community structures play a significant role in shaping disease transmission dynamics.
- Network theory provides a powerful framework to capture these dynamics by modeling the underlying social interactions.
- This study focuses on the use of Stochastic Block Models (SBM) to simulate networks with distinct community configurations:
 - Sparse (minimal inter-community connections)
 - Balanced (moderate inter-community connections)
 - Dense (high inter-community connections)

Introduction

- Epidemics spread faster in highly interconnected networks, potentially overwhelming healthcare systems.
- Understanding how network topology influences epidemic progression can help design better containment strategies.
- The dynamic SIR model used in this study:
 - Captures real-world behavioral adaptations (e.g., social distancing).
 - Incorporates an adaptive transmission rate based on the current epidemic state.
- The goal is to provide quantitative insights into the relationship between network structures and epidemic dynamics, aiding policymakers in designing effective interventions.

Methodology: Network Structures

Stochastic Block Model (SBM):

- Models networks with community structures by adjusting connection probabilities.
- Captures real-world network diversity:
 - Sparse Networks: Low inter-community interaction.
 - **Balanced Networks**: Moderate inter-community interaction.
 - Dense Networks: High inter-community interaction.
- Adjacency Matrix Representation:

$$\mathbf{P} = \begin{array}{ccc} 0.1 & p \\ p & 0.1 \end{array}, \quad p \in \{0.001, 0.01, 0.05\}$$

where p represents inter-community connection probabilities.

Methodology: Network Structures

Figure 1: Stochastic Block Model Configurations

Methodology: Epidemic Model

Dynamic SIR Model Equations:

$$\frac{dS}{dt} = -\tau(t)SI$$

$$\frac{dI}{dt} = \tau(t)SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Dynamic Transmission Rate:

$$\tau(t) = \max(0.1 \cdot \tau_0, \tau_0(1 - I_f)(1 - 0.5R_f))$$

- τ₀: Base transmission rate.
- $I_f(t) = \frac{I(t)}{N}$: Fraction of infected individuals.
- $R_f(t) = \frac{R(t)}{N}$: Fraction of recovered individuals.
- Captures behavioral responses (social distancing) and herd immunity.

Results: Network Characteristics

Average Degree:

- Measures the average number of connections per node.
- Dense networks exhibit higher values, leading to faster epidemic spread.

Average Path Length:

- Represents the average shortest path between nodes.
- Dense networks have shorter paths, accelerating transmission.

Network Diameter:

- Maximum shortest path between any two nodes.
- Sparse networks show higher diameters, indicating isolated clusters.

Assortativity:

- Indicates whether nodes prefer connecting with others of similar degree.
- Minimal impact on epidemic spread but reveals structural nuances.

Results: Network Characteristics

Table 1: Network Topology Metrics

Metric	Sparse Inter	Balanced	Dense Inter
Average Degree	5.32	5.88	7.76
Average Path Length	3.73	2.98	2.45
Network Diameter	9	6	4
Assortativity (Degree Correlation)	0.012	-0.009	0.008
Number of Communities (Approx.)	2	2	2

Results: Epidemic Dynamics

Peak Infection Rate:

- Dense networks exhibit the highest peak due to increased connectivity.
- Sparse networks limit the spread, delaying and lowering the peak.

Time to Peak:

- Dense networks reach the peak faster, reducing time for interventions.
- Sparse networks provide longer windows for containment measures.

Outbreak Size:

 Final outbreak size remains stable across network types, suggesting similar long-term impacts.

Results: Epidemic Dynamics

Table 2: Peak Infection Metrics Across Network Types

Metric	Sparse Inter	Balanced	Dense Inter		
Peak Infection Metrics					
Mean Peak (%)	58.523	62.341	69.967		
Std. Dev Peak	18.318	19.335	16.764		
Median Peak (%)	64.0	68.0	74.0		
Tir	ne to Peak (Ti	me Steps)			
Mean Time	3.8995	3.1190	2.4945		
Std. Dev Time	1.5549	1.2520	0.8983		
Median Time	4.0	3.0	2.5		
Outbreak Siz	e Metrics (% I	Population 1	Infected)		
Mean Outbreak	38.664	39.073	38.870		
Std. Dev Outbreak	12.552	12.472	9.886		
Median Outbreak	42.0	42.5	41.0		

Epidemic Dynamics

Conclusion

- Network structure significantly influences the dynamics of epidemic spread.
- Dense networks lead to faster, more intense outbreaks.
- Sparse networks delay the spread, offering critical containment opportunities.
- These insights can guide public health strategies, optimizing intervention timing and targeting.

References

- Keeling, M. J., & Eames, K. T. (2005). Networks and epidemic models. *Journal of the Royal Society Interface, 2*(4), 295–307.
- Ma, J., & Wang, P. (2024). Impact of community networks with higher-order interaction on epidemic dynamics. *Chaos, Solitons Fractals, 180*, 114471.
- Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. *Reviews of Modern Physics, 87*(3), 925–979.
- K Rizi, A. (2024). Spreading and epidemic interventions-effects of network structure and dynamics.
- Barth elemy, M., Barrat, A., Pastor-Satorras, R., & Vespignani, A. (2005). Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. *Journal of Theoretical Biology, 235*(2), 275–288.

References

- Par'e, P. E., Beck, C. L., & Ba_sar, T. (2020). Modeling, estimation, and analysis of epidemics over networks: An overview. *Annual Reviews in Control, 50*, 345–360.
- Sottile, S., Kahramano gullan, O., & Sensi, M. (2024). How network properties and epidemic parameters influence stochastic SIR dynamics on scale-free random networks. *Journal of Simulation, 18*(2), 206– 219.

Thank You