HW4

Yunting Chiu

10/18/2020

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.2
                      v purrr
                                0.3.4
## v tibble 3.0.3
                      v dplyr
                                1.0.2
## v tidyr
           1.1.2
                      v stringr 1.4.0
## v readr
            1.3.1
                      v forcats 0.5.0
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
##
    method
##
    fortify.SpatialPolygonsDataFrame ggplot2
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
##
      mean
## The following objects are masked from 'package:dplyr':
##
      count, do, tally
##
## The following object is masked from 'package:purrr':
##
##
      cross
## The following object is masked from 'package:ggplot2':
##
##
      stat
## The following objects are masked from 'package:stats':
##
##
      binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##
      quantile, sd, t.test, var
```

The following objects are masked from 'package:base':

```
##
##
      max, mean, min, prod, range, sample, sum
vaild <- read_csv("https://s3.amazonaws.com/blackboard.learn.xythos.prod/5a306634d5d25/4188093?response</pre>
## Parsed with column specification:
## cols(
##
    `'Id'` = col_double(),
##
    `'sfat_dr'` = col_double(),
    `'sfat_ffq'` = col_double(),
    `'tfat_dr'` = col_double(),
##
##
    `'tfat_ffq'` = col_double(),
##
    `'alco_dr'` = col_double(),
    `'alco_ffq'` = col_double(),
##
     `'cal_dr'` = col_double(),
    `'cal_ffq'` = col_double()
##
## )
print(vaild)
## # A tibble: 173 x 9
##
      `'Id'` `'sfat_dr'` `'sfat_ffq'` `'tfat_dr'` `'tfat_ffq'` `'alco_dr'`
##
                  <dbl>
                               <dbl>
                                           <dbl>
                                                        <dbl>
                                                                   <dbl>
                                                                    8.26
## 1 100396
                   33.2
                                21.2
                                            81.2
                                                        53.8
##
   2 100566
                   17.7
                                10.6
                                            53.3
                                                         36.6
                                                                    0.83
## 3 107633
                                23.8
                                            83.5
                                                         47.2
                                                                   20.1
                   38.7
## 4 107737
                   21.6
                                22.7
                                            49.6
                                                        55.3
                                                                   11.2
## 5 107744
                   21.4
                                30.4
                                            55.2
                                                        71
                                                                    7.18
## 6 107813
                   28.0
                                            73.8
                                                        41.1
                                                                    1.76
                                15.1
                   23.2
## 7 107825
                                17.8
                                            68.3
                                                         49.1
                                                                   22.7
## 8 107879
                                                         48.9
                   19.7
                                19.1
                                            58.3
                                                                    0
                                                                    0
## 9 108618
                   36.3
                                23.4
                                            92.6
                                                         55.4
## 10 109000
                   20.9
                                16
                                            68.4
                                                         44.2
## # ... with 163 more rows, and 3 more variables: `'alco_ffq'` <dbl>,
## # ''cal_dr'' <dbl>, ''cal_ffq'' <dbl>
summary(vaild)
##
        'Id'
                      'sfat_dr'
                                      'sfat_ffq'
                                                      'tfat_dr'
## Min.
          :100396
                    Min. :11.82
                                    Min. : 5.60
                                                    Min. : 35.90
  1st Qu.:113882
                    1st Qu.:20.20
                                    1st Qu.:15.60
                                                    1st Qu.: 56.16
## Median :132382
                    Median :24.16
                                    Median :19.90
                                                    Median: 68.28
## Mean :125997
                    Mean :24.93
                                    Mean :21.92
                                                    Mean : 68.62
## 3rd Qu.:134611
                    3rd Qu.:28.26
                                    3rd Qu.:25.80
                                                    3rd Qu.: 77.98
                                         :57.40
## Max.
          :184093
                    Max.
                          :46.36
                                    Max.
                                                    Max. :119.83
                                                         'cal_dr'
##
     'tfat ffq'
                    'alco_dr'
                                     'alco_ffq'
## Min. : 14.80
                    Min. : 0.000
                                   Min. : 0.000
                                                     Min. : 910
## 1st Qu.: 40.80
                    1st Qu.: 1.760
                                    1st Qu.: 0.760
                                                      1st Qu.:1418
## Median : 51.70
                    Median : 5.840
                                    Median : 4.550
                                                     Median:1606
                    Mean : 8.963
## Mean : 56.08
                                    Mean : 8.951
                                                      Mean :1620
##
   3rd Qu.: 68.00
                    3rd Qu.:12.970
                                     3rd Qu.:11.860
                                                      3rd Qu.:1781
## Max. :133.50
                    Max. :49.150
                                    Max. :64.750
                                                     Max. :2518
##
    'cal_ffq'
## Min. : 463.2
## 1st Qu.:1035.5
```

Median :1297.6

```
## Mean
           :1371.7
## 3rd Qu.:1589.6
## Max.
           :3077.3
dim(vaild)
## [1] 173
  • rename
vaild %>%
  rename("Id" = "'Id'", "alco_dr" = "'alco_dr", "alco_ffq" = "'alco_ffq'") -> vaild
## # A tibble: 173 x 9
          Id `'sfat_dr'` `'sfat_ffq'` `'tfat_dr'` `'tfat_ffq'` alco_dr alco_ffq
##
##
       <dbl>
                   <dbl>
                                <dbl>
                                            <dbl>
                                                         <dbl>
                                                                 <dbl>
## 1 100396
                    33.2
                                                          53.8
                                                                  8.26
                                                                           1.68
                                 21.2
                                             81.2
## 2 100566
                                                          36.6
                                                                  0.83
                                                                           0
                    17.7
                                 10.6
                                             53.3
                                                                 20.1
## 3 107633
                    38.7
                                 23.8
                                             83.5
                                                          47.2
                                                                          15.1
## 4 107737
                                             49.6
                                                                 11.2
                    21.6
                                 22.7
                                                          55.3
                                                                           7.49
## 5 107744
                    21.4
                                 30.4
                                             55.2
                                                          71
                                                                 7.18
                                                                          12.8
## 6 107813
                    28.0
                                 15.1
                                             73.8
                                                          41.1
                                                                 1.76
                                                                          0
                                                                 22.7
                                                                          25.1
## 7 107825
                    23.2
                                                          49.1
                                 17.8
                                             68.3
## 8 107879
                    19.7
                                 19.1
                                             58.3
                                                          48.9
                                                                  0
                                                                           0
## 9 108618
                    36.3
                                 23.4
                                             92.6
                                                          55.4
                                                                  0
                                                                           0
## 10 109000
                    20.9
                                 16
                                             68.4
                                                          44.2
                                                                  0
                                                                           0
## # ... with 163 more rows, and 2 more variables: `'cal_dr'` <dbl>,
## # `'cal_ffq'` <dbl>
  • EDA (exploratory data analysis) is always a good idea
  • create a DIFF variable
vaild = transform(vaild, DIFF = alco dr - alco ffg)
vaild %>%
  select(alco_dr, alco_ffq, DIFF) -> vaild02
favstats(~DIFF, data = vaild)
           Q1 median Q3 max
       min
                                      mean
                                                 sd n missing
## -34.94 -0.7 0.51 2.59 21.4 0.0116185 6.501457 173
head(vaild)
##
         Id X.sfat_dr. X.sfat_ffq. X.tfat_dr. X.tfat_ffq. alco_dr alco_ffq
## 1 100396
                 33.20
                              21.2
                                        81.15
                                                     53.8
                                                             8.26
                                                                      1.68
## 2 100566
                 17.73
                              10.6
                                        53.28
                                                     36.6
                                                             0.83
                                                                      0.00
## 3 107633
                 38.73
                              23.8
                                        83.48
                                                     47.2 20.13
                                                                     15.10
## 4 107737
                 21.57
                              22.7
                                        49.65
                                                     55.3 11.16
                                                                      7.49
## 5 107744
                 21.35
                                        55.18
                                                     71.0
                                                             7.18
                                                                     12.84
                              30.4
## 6 107813
                 28.04
                              15.1
                                        73.83
                                                     41.1
                                                             1.76
                                                                      0.00
##
    X.cal_dr. X.cal_ffq. DIFF
## 1
         1807
                  1242.2 6.58
## 2
         1418
                   907.0 0.83
## 3
         1889
                   786.0 5.03
## 4
         1426
                  1392.5 3.67
## 5
        1253
                  1259.8 -5.66
                  987.1 1.76
## 6
         1699
```

• Check the assumptions (y = Diff)

```
consDiff <- vaild$alco_dr - vaild$alco_ffq # consumption different
favstats(consDiff)</pre>
```

```
## \min Q1 median Q3 max mean sd n missing ## -34.94 -0.7 0.51 2.59 21.4 0.0116185 6.501457 173 0
```

boxplot(consDiff, col = "steelblue")

hist(consDiff,col="steelblue")

Histogram of consDiff

qplot(sample = consDiff, geom = "qq") + geom_qq_line()

• Consider a square root transformation of the alcohol data

```
##
           Id X.sfat_dr. X.sfat_ffq. X.tfat_dr. X.tfat_ffq. alco_dr alco_ffq
## 1
       100396
                    33.20
                                 21.2
                                            81.15
                                                          53.8
                                                                  8.26
                                                                            1.68
## 2
       100566
                    17.73
                                 10.6
                                            53.28
                                                          36.6
                                                                  0.83
                                                                            0.00
## 3
       107633
                    38.73
                                 23.8
                                            83.48
                                                          47.2
                                                                 20.13
                                                                           15.10
## 4
       107737
                    21.57
                                 22.7
                                            49.65
                                                          55.3
                                                                 11.16
                                                                            7.49
                    21.35
                                 30.4
                                            55.18
                                                          71.0
                                                                  7.18
                                                                           12.84
## 5
       107744
## 6
       107813
                    28.04
                                 15.1
                                            73.83
                                                          41.1
                                                                  1.76
                                                                           0.00
## 7
       107825
                    23.17
                                 17.8
                                                          49.1
                                                                 22.66
                                                                           25.06
                                            68.29
## 8
       107879
                    19.73
                                 19.1
                                            58.30
                                                          48.9
                                                                  0.00
                                                                            0.00
## 9
       108618
                    36.31
                                 23.4
                                            92.58
                                                          55.4
                                                                  0.00
                                                                            0.00
                    20.87
                                                                  0.00
## 10 109000
                                 16.0
                                            68.44
                                                          44.2
                                                                            0.00
                                                          46.6
## 11 109259
                    26.40
                                 19.4
                                            69.16
                                                                  4.75
                                                                            1.06
## 12 109565
                    28.26
                                 27.4
                                            79.42
                                                          59.7
                                                                  4.57
                                                                            1.81
## 13
       109856
                    19.81
                                 15.8
                                            69.59
                                                          50.5
                                                                 15.12
                                                                           11.14
## 14 109885
                    23.48
                                 19.9
                                            65.86
                                                          55.6
                                                                  5.37
                                                                            2.57
```

	15	109908	25.62	17.4	74.22	51.7	0.00	0.00
##	16	110108	23.59	9.5	63.44	23.4	1.89	0.76
##	17	110360	14.60	20.9	38.14	46.9	0.78	5.70
##	18	110406	20.71	27.7	49.77	70.1	8.09	10.56
##	19	110419	28.63	15.3	80.73	35.3	37.90	35.34
##	20	110483	18.12	20.7	53.56	55.7	2.22	0.76
##	21	110579	16.93	17.6	52.75	51.5	20.69	18.22
	22	110714	25.10	18.9	80.15	57.5	0.00	0.00
	23	111040	14.04	14.9	39.40	37.0	2.62	1.68
	24	111220	21.98	32.6	54.91	73.2	9.49	6.49
	25	111536	24.83	24.0	67.73	63.1	9.69	16.72
		111538	20.72				0.95	
	26			15.6	55.24	47.6		1.51
	27	111799	24.61	24.2	68.11	54.4	3.00	2.74
	28	111970	32.03	38.2	71.02	98.8	37.28	45.08
	29	112071	23.49	18.8	63.72	55.8	21.78	33.49
	30	112087	25.69	23.5	67.99	68.0	15.41	12.91
##	31	112163	23.65	21.3	64.61	46.8	7.85	0.76
##	32	112226	23.45	13.9	60.13	31.8	0.39	0.00
##	33	112650	46.36	33.3	104.91	88.1	29.81	64.75
##	34	112738	16.04	17.6	44.23	40.6	0.00	0.00
##	35	112812	38.68	17.8	98.14	55.8	6.77	2.57
##	36	112862	24.10	15.9	64.21	41.5	5.97	2.74
##	37	112896	27.92	16.7	91.37	53.5	0.85	0.00
##	38	112982	26.26	24.1	70.44	61.9	5.23	5.70
##	39	113429	26.46	21.0	76.06	57.7	2.26	2.11
	40	113436	22.02	19.5	61.13	63.8	7.79	1.06
	41	113441	24.51	25.9	62.60	60.7	7.75	11.14
	42	113525	20.06	16.1	55.50	49.9	10.86	10.75
	43	113613	34.14	38.5	93.04	93.5	22.44	11.38
	44							
		113882	24.38	18.2	67.02	48.7	4.49	12.06
	45	114053	14.38	5.6	41.09	14.8	5.20	4.55
	46	114129	17.74	15.2	54.07	48.4	0.38	0.76
	47	114353	27.83	16.5	78.26	36.7	5.17	3.79
	48	114865	29.17	24.8	84.52	71.1	0.00	0.00
	49	115013	15.94	12.8	45.89	38.0	22.89	8.64
		115223	28.33	27.2	75.96	88.4	2.93	0.76
	51	115399	15.18	11.6	49.44	30.7	0.05	0.00
##	52	115512	22.51	31.2	68.28	78.7	4.75	5.70
##	53	115601	46.01	17.4	119.83	49.5	10.12	5.57
##	54	115724	27.15	16.9	80.54	37.7	17.90	8.93
##	55	115764	25.47	15.8	75.54	41.6	0.00	1.81
##	56	115806	27.99	17.5	69.13	40.7	3.35	0.76
##	57	115822	25.28	17.0	68.36	48.6	10.04	2.87
##	58	115875	26.58	14.8	77.83	40.1	17.27	15.86
	59	115879	28.72	35.8	74.26	76.0	0.00	0.00
	60	116007	24.62	34.6	66.12	66.0	8.15	13.76
	61	116164	26.46	18.0	78.20	48.8	27.55	34.42
	62	116263	29.57	14.4	69.80	33.5	0.60	0.00
	63	116413	20.39	23.7	48.85	56.5	22.31	12.06
	64	116461	14.68	13.6	52.24	40.3	4.40	2.11
	65 66	116528	23.43	25.6	71.16	62.4	1.99	0.76
	66 67	129518	20.74	23.7	61.82	68.8	0.00	0.00
	67	129729	21.76	19.3	63.73	56.3	0.38	0.00
##	68	129732	21.58	13.8	64.25	40.9	0.80	1.81

##		129743	39.30	32.7	109.83	78.5	0.14	0.76
##	70	129765	21.95	21.0	59.74	52.9	12.03	10.75
##	71	129813	21.90	11.9	67.87	38.3	10.35	3.63
##	72	130757	28.65	13.6	78.99	41.0	5.84	0.76
##	73	130786	30.01	33.4	79.13	82.8	17.22	12.99
##	74	130793	29.35	23.9	98.96	75.6	5.97	4.64
##		130847	21.56	8.8	72.02	34.6	2.79	0.00
##		130863	18.83	40.6	54.78	100.0	20.50	37.75
							8.65	
##		131023	36.16	18.5	100.56	52.6		4.55
##		131100	31.20	29.3	92.12	70.5	10.41	16.72
	79	131126	29.06	23.5	80.52	67.9	7.12	6.76
##	80	131129	21.79	14.6	68.42	45.2	12.97	16.06
##	81	132293	29.60	30.3	70.98	78.9	8.75	4.64
##	82	132303	12.71	12.1	35.90	32.3	3.45	1.51
##	83	132316	22.16	14.8	70.33	45.6	3.11	0.76
##	84	132327	22.61	13.8	65.19	34.6	2.69	0.76
##	85	132328	27.08	18.8	70.95	43.7	49.15	27.75
##	86	132361	17.92	15.2	49.72	41.9	0.57	0.00
##	87	132382	31.41	30.4	90.21	74.1	31.26	11.14
##	88	132390	33.25	25.8	87.69	73.9	11.13	11.38
##		132426	32.19	54.9	86.35	133.5	4.67	2.87
##		132621	25.17	7.5	70.20	18.4	15.69	11.14
##		132622	34.34	19.0	86.68	44.7	23.44	43.75
##		132624	25.11	24.2	69.86	63.1	4.60	16.72
##						93.8		0.00
		132638	45.31	47.1	106.40		0.03	
##		132662	18.59	12.5	45.37	29.5	19.38	29.92
##		133002	28.34	35.5	71.45	80.0	0.77	0.00
	96	133079	18.75	11.8	60.54	36.4	8.49	7.25
##		133094	24.37	39.0	67.73	109.3	0.79	0.00
##	98	133317	18.33	19.1	64.53	56.1	11.15	6.63
##	99	133372	17.26	20.0	42.53	41.4	13.11	12.84
##	100	133443	16.73	57.4	54.07	119.0	0.00	0.00
##	101	133497	24.78	11.8	73.18	28.0	0.00	0.00
##	102	133507	16.74	5.7	54.84	16.5	4.17	2.57
##	103	133533	15.30	17.1	51.96	41.4	6.68	3.63
##		133606	27.74	26.6	82.71	70.9	0.40	0.76
##		133615	26.40	14.8	80.64	40.8	1.58	0.76
		133637	26.76	20.4	70.67	47.0	3.44	0.00
		133676	17.73	19.4	52.62	55.1	3.70	3.79
		133692	25.97	24.3	65.65	52.0	4.88	1.98
		133833	18.57	14.0	53.18	37.4	7.31	4.64
		133925	26.48	17.3	72.45	37.9	25.74	28.06
		133925						
			26.98	23.2	64.35	60.9	32.64	28.85
		134013	33.26	27.6	80.79	62.3	1.14	2.57
		134021	19.03	11.2	47.56	29.0	0.90	0.00
		134047	16.00	13.6	49.35	37.7	2.25	0.00
		134103	27.59	17.0	72.49	34.8	16.61	10.80
		134119	22.32	13.2	64.53	31.0	1.27	1.85
		134129	26.83	19.9	77.98	49.5	2.20	1.06
		134144	36.44	36.8	94.53	89.3	16.51	11.86
		134223	26.25	43.4	73.74	89.8	6.92	10.32
##	120	134350	30.92	20.2	82.98	51.8	17.76	15.86
##	121	134385	27.50	9.8	74.55	25.5	1.84	0.76
##	122	134431	34.25	18.8	77.12	41.9	40.11	46.39

шш	100	124406	00.70	00.7	CO 40	67.0	20.70	FC 20
		134486	23.79	28.7	62.49	67.8	32.72	56.39
		134495	23.56	36.9	72.11	105.0	1.89	2.57
		134519	20.46	7.5	58.42	21.1	27.86	43.32
		134550	24.16	21.8	69.11	60.4	13.62	19.74
		134553	23.42	31.5	72.08	90.4	9.92	7.55
		134566	26.40	14.5	72.99	36.1	5.04	4.64
##	129	134598	24.09	14.9	61.17	35.2	12.95	9.30
##	130	134611	25.25	20.5	56.16	42.6	9.43	12.08
##	131	134622	23.34	41.1	66.51	113.2	0.00	0.00
##	132	134835	16.61	21.6	49.65	56.8	27.26	27.00
##	133	134838	39.36	22.7	99.10	45.8	18.69	39.26
##	134	134839	23.66	18.3	55.86	41.0	28.28	25.90
##	135	134845	40.59	48.4	108.72	107.5	6.99	6.63
##	136	135002	34.04	37.4	82.11	91.1	0.00	0.00
##	137	135009	18.94	37.0	56.34	90.7	12.48	12.91
##	138	135026	21.41	23.4	52.20	60.2	4.21	4.42
##	139	135126	18.00	24.1	46.44	61.2	12.18	11.86
##	140	135130	21.04	24.8	58.92	67.0	0.00	0.00
		135146	11.82	11.5	38.59	28.9	2.18	0.76
		135172	27.39	20.8	79.63	58.1	1.76	0.00
		135182	34.61	34.3	98.94	104.6	2.17	2.87
		135201	19.79	22.6	57.70	62.1	1.43	4.64
		135258	21.34	16.7		33.9	14.23	6.76
		135262	18.79	25.7	57.33	76.6	1.39	2.87
		135313	18.63	6.6	61.11	20.7	2.98	5.70
		135324	20.39	16.9	62.54	48.0	3.77	1.06
		135330	18.64	14.9	53.56	44.2	8.10	11.14
		135351	15.39	12.1	50.40	33.7	13.79	5.57
		135372	31.35	24.9	91.65	72.8	28.29	39.26
		135391	23.62	23.3	62.62	59.3	15.60	10.75
		135465	27.51	42.8	81.29	112.3	6.97	6.63
		135472	41.01	18.3	114.85	41.7	0.00	0.00
		135488	15.99	20.6	48.25	50.2	8.18	6.63
		135530	17.48	18.8	50.43	46.5	0.51	0.00
		135547	31.35	35.3	76.92	75.1	7.82	12.08
		135559	17.64	17.8	45.39	38.5	6.60	11.14
		135588	39.43	26.4	98.34	77.9	28.79	52.07
		135596	30.98	28.8	73.80	70.3	3.82	1.81
		135619	32.86	41.2	84.85	92.5	0.00	0.00
		135769	26.24	26.4		60.7	8.31	2.91
		135829	20.24	25.9		87.6	8.22	13.76
		135834	14.42	11.3		29.6	0.96	0.76
		135848	29.59	29.9		67.6	0.63	0.70
		135869	28.02	15.5		40.5		
							23.97	
		136104	25.85	23.7		75.0 52.0		12.43
		136377	20.20	20.3			7.28	6.63
		136378	36.19	18.1		47.1	4.60	7.25
		136407	22.42	10.9		32.0	2.56	1.81
		136421	16.98	20.4		47.5		8.64
		137461	23.98	18.5	67.43	45.9	5.39	7.19
	1/3	184093	21.39	19.0	56.70	40.4	0.60	3.49
##		_	X.cal_ffq.		lco_drSqrt al			-
##		1807		6.58	2.8740216	1.2961481		
##	2	1418	907.0	0.83	0.9110434	0.0000000	0.911043	336

##	3	1889	786.0	5.03	4.4866469	3.8858718	0.60077501
	4	1426	1392.5	3.67	3.3406586	2.7367864	0.60387218
	5	1253	1259.8	-5.66	2.6795522		-0.90374237
	6	1699	987.1	1.76	1.3266499	0.0000000	1.32664992
##	7	1700	1189.9	-2.40	4.7602521	5.0059964	-0.24574431
##	8	1369	1364.1	0.00	0.0000000	0.0000000	0.00000000
##	9	2163	1311.4	0.00	0.0000000	0.0000000	0.00000000
##	10	1609	1200.6	0.00	0.0000000	0.0000000	0.00000000
##	11	1704	1227.4	3.69	2.1794495	1.0295630	1.14988646
##	12	1884	1448.1	2.76	2.1377558	1.3453624	0.79239343
##	13	1518	1367.7	3.98	3.8884444	3.3376639	0.55078057
	14	1450	1154.4	2.80	2.3173260	1.6031220	0.71420409
	15	1702	1217.7	0.00	0.0000000	0.0000000	0.0000000
	16	1400	483.4	1.13	1.3747727	0.8717798	0.50299292
	17	910	1056.5	-4.92	0.8831761		-1.50429119
	18	1332	1265.3	-2.47	2.8442925		-0.40532283
	19	1947	890.1	2.56	6.1562976	5.9447456	0.21155201
	20 21	1428 1557	1378.5 1317.5	1.46 2.47	1.4899664 4.5486262	0.8717798 4.2684892	0.61818665 0.28013697
	22	1557 1788	1257.5	0.00	0.0000000	0.0000000	0.28013697
	23	1098	1087.8	0.00	1.6186414	1.2961481	0.32249327
	24	1362	1589.6	3.00	3.0805844	2.5475478	0.52249327
	25	1562	1422.7	-7.03	3.1128765		-0.97613318
	26	1286	1569.6	-0.56	0.9746794		-0.25414114
	27	1529	1386.0	0.26	1.7320508	1.6552945	0.07675627
	28	1810	2220.0	-7.80	6.1057350		-0.60842912
##	29	1606	1291.4		4.6669048	5.7870545	-1.12014976
##	30	1363	1102.0	2.50	3.9255573	3.5930488	0.33250844
##	31	1457	943.2	7.09	2.8017851	0.8717798	1.93000536
##	32	1233	731.4	0.39	0.6244998	0.0000000	0.62449980
##	33	2285	1878.9	-34.94	5.4598535	8.0467385	-2.58688499
##	34	1183	1326.6	0.00	0.0000000	0.0000000	0.00000000
	35	2176	1635.4	4.20	2.6019224	1.6031220	0.99880041
	36	1587	1035.5	3.23	2.4433583	1.6552945	0.78806381
	37	2029	1548.3	0.85	0.9219544	0.0000000	0.92195445
	38	1484	1376.3	-0.47	2.2869193	2.3874673	-0.10054795
##		1685	1460.5	0.15	1.5033296	1.4525839	0.05074573
##		1440 1293	1970.2	6.73	2.7910571 2.7838822	1.0295630	1.76149413 -0.55378167
## ##		1433	1350.3 1326.3	-3.39 0.11	3.2954514	3.2787193	0.01673215
##		2333	2253.5	11.06	4.7370877	3.3734256	1.36366215
##		1402	1139.9	-7.57	2.1189620		-1.35378906
##		923	463.2	0.65	2.2803509	2.1330729	0.14727795
##		1330	1498.4	-0.38	0.6164414		-0.25533839
##		1731	946.7	1.38	2.2737634	1.9467922	0.32697117
##	48	1636	1396.7	0.00	0.0000000	0.0000000	0.00000000
##	49	1311	1078.4	14.25	4.7843495	2.9393877	1.84496179
##	50	1769	1996.8	2.17	1.7117243	0.8717798	0.83994449
##	51	1481	1051.9	0.05	0.2236068	0.0000000	0.22360680
##	52	1649	2100.3	-0.95	2.1794495	2.3874673	-0.20801781
##		2334	988.7	4.55	3.1811947	2.3600847	0.82111000
##		1823	1025.7	8.97	4.2308392	2.9883106	1.24252860
##		1548	1259.6	-1.81	0.000000		-1.34536240
##	56	1456	825.1	2.59	1.8303005	0.8717798	0.95852073

##	57	1535	1047.0	7.17	3.1685959	1.6941074	1.47448847
##	58	1718	726.9	1.41	4.1557190	3.9824616	0.17325740
##	59	1641	1961.6	0.00	0.0000000	0.0000000	0.00000000
##	60	1402	1434.4	-5.61	2.8548205	3.7094474	-0.85462691
##	61	2143	1464.4	-6.87	5.2488094	5.8668561	-0.61804667
##	62	1490	768.7	0.60	0.7745967	0.0000000	0.77459667
##	63	1221	1698.5	10.25	4.7233463	3.4727511	1.25059520
##	64	1255	758.3	2.29	2.0976177	1.4525839	0.64503379
##	65	1555	1462.0	1.23	1.4106736	0.8717798	0.53889381
##	66	1374	1592.4	0.00	0.0000000	0.0000000	0.00000000
##	67	1593	1661.5	0.38	0.6164414	0.0000000	0.61644140
##	68	1491	1249.3	-1.01	0.8944272	1.3453624	
##	69	2505	2282.1	-0.62	0.3741657	0.8717798	-0.49761405
##	70	1560	1152.1	1.28	3.4684290	3.2787193	0.18970978
##	71	1661	979.9	6.72	3.2171416	1.9052559	1.31188570
##	72	1742	1253.0	5.08	2.4166092	0.8717798	1.54482941
##	73	1680	1799.2	4.23	4.1496988	3.6041643	0.54553453
##	74	2096	1873.2	1.33	2.4433583	2.1540659	0.28929242
##	75	1438	811.8	2.79	1.6703293	0.0000000	1.67032931
##	76	1325	1940.4		4.5276926	6.1441029	
##	77	2051	1219.8	4.10	2.9410882	2.1330729	0.80801533
##	78	2050	1644.5	-6.31	3.2264532		-0.86255650
##	79	1707	1933.5	0.36	2.6683328	2.6000000	0.06833281
	80	1502	1120.8	-3.09	3.6013886	4.0074930	-0.40610436
##		1691	1470.5	4.11	2.9580399	2.1540659	0.80397397
	82 83	940	842.3	1.94	1.8574176	1.2288206	0.62859699
##	84	1591	1156.4	2.35	1.7635192	0.8717798	0.89173942
##	85	1769	1539.8	1.93	1.6401219	0.8717798	0.76834216
## ##	86	2054 1514	1330.9 1509.9	21.40 0.57	7.0107061 0.7549834	5.2678269 0.0000000	1.74287922 0.75498344
##	87	1989	1509.9	20.12	5.5910643	3.3376639	2.25340045
##	88	1968	1795.5	-0.25	3.3361655	3.3734256	-0.03726010
##	89	1781	2263.5	1.80	2.1610183	1.6941074	0.46691084
##	90	1761	513.6	4.55	3.9610605	3.3376639	0.62339661
##	91	1639	1124.7		4.8414874	6.6143783	
##	92	1445	1340.3		2.1447611		-1.94424860
##		2260	2047.8	0.03	0.1732051	0.0000000	0.17320508
##		1107		-10.54	4.4022721		-1.06764559
##		1878	2136.0	0.77	0.8774964	0.0000000	0.87749644
	96	1612	1251.2	1.24	2.9137605	2.6925824	0.22117805
	97	1669	3077.3	0.79	0.8888194	0.0000000	0.88881944
##	98	1533	1415.3	4.52	3.3391616	2.5748786	0.76428293
##	99	1149	1055.8	0.27	3.6207734	3.5832946	0.03747882
##	100	1555	2691.0	0.00	0.0000000	0.0000000	0.00000000
##	101	1470	662.4	0.00	0.0000000	0.0000000	0.00000000
##	102	1620	932.5	1.60	2.0420578	1.6031220	0.43893583
##	103	1122	1100.2	3.05	2.5845696	1.9052559	0.67931371
##	104	1994	1530.5	-0.36	0.6324555	0.8717798	-0.23932426
##	105	1940	902.4	0.82	1.2569805	0.8717798	0.38520072
##	106	1472	954.2	3.44	1.8547237	0.0000000	1.85472370
##	107	1388	1504.7	-0.09	1.9235384	1.9467922	-0.02325383
	108	1683	1333.6	2.90	2.2090722	1.4071247	0.80194748
	109	1226	798.2	2.67	2.7037012	2.1540659	0.54963524
##	110	1679	912.3	-2.32	5.0734604	5.2971691	-0.22370870

## 111	0 -0.53541413 0.94868330 1.50000000 0.78920143 -0.23320428 0.45367668
## 113	0.94868330 1.50000000 0.78920143 -0.23320428 0.45367668
## 114	1.50000000 3 0.78920143 -0.23320428 0.45367668
## 115	0.78920143 -0.23320428 0.45367668
## 116	-0.23320428 0.45367668
## 117	0.45367668
## 118 2010 1870.1 4.65 4.0632499 3.4438351 ## 119 1815 2425.4 -3.40 2.6305893 3.2124757 ## 120 1779 1187.8 1.90 4.2142615 3.9824616	
## 119	0.61941466
## 120 1779 1187.8 1.90 4.2142615 3.9824616	0 50100630
	-0.47777487
	5 -1.78918767
	-0.22834925
	-1.30353578
	-0.75244356
## 127	
## 128	
## 129	
	-0.40479893
## 131 1371 2921.6 0.00 0.0000000 0.00000000	
## 132	
## 133	
## 134	
## 135	
## 136	
## 137	
	-0.05055115
## 139 963 1307.6 0.32 3.4899857 3.4438351	
## 140	
## 141	
## 142	
	-0.22101545
	-0.95823985
## 145	
	-0.51512482
	-0.66119963
## 148 1634 1140.4 2.71 1.9416488 1.0295630	
	-0.49161396
## 150	
## 151 2013 1394.8 -10.97 5.3188345 6.2657801	
## 152 1626 1706.9 4.85 3.9496835 3.2787193	
## 153	
## 1E/	
## 154	
## 155 1561 1399.8 1.55 2.8600699 2.5748786	0.71414284
## 155	
## 155	-0.67920315
## 155	-0.67920315 -0.76861734
## 155	-0.67920315 -0.76861734 -1.85032318
## 155	-0.67920315 -0.76861734 -1.85032318 -0.60911962
## 155	-0.67920315 -0.76861734 -1.85032318 -0.60911962 0.00000000
## 155	-0.67920315 -0.76861734 -1.85032318 0.60911962 0.00000000 1.17683485
## 155	-0.67920315 -0.76861734 -1.85032318 0.60911962 0.00000000 1.17683485 -0.84239316

```
## 165
            1612
                     1327.6
                            0.63
                                    0.7937254
                                                  0.0000000 0.79372539
## 166
                     1026.9 -1.09
                                                  4.1000000 -0.13515448
            1827
                                    3.9648455
## 167
            1721
                     1584.6 11.54
                                    4.8959167
                                                  3.5256205 1.37029615
## 168
            1467
                     1342.4
                             0.65
                                     2.6981475
                                                  2.5748786 0.12326887
## 169
            1976
                     1204.3 -2.65
                                     2.1447611
                                                  2.6925824 -0.54782134
## 170
            1731
                     981.6
                            0.75
                                    1.6000000
                                                  1.3453624 0.25463760
## 171
            1033
                     1128.3
                             5.27
                                    3.7296112
                                                  2.9393877 0.79022355
## 172
                     1247.5 -1.80
            1585
                                     2.3216374
                                                  2.6814175 -0.35978018
## 173
            1320
                     994.0 -2.89
                                     0.7745967
                                                  1.8681542 -1.09355750
favstats(diffSqrt)
```

```
## min Q1 median Q3 max mean sd n
## -2.586885 -0.2393243 0.1897098 0.7642829 2.2534 0.1856477 0.8451669 173
## missing
```

boxplot(diffSqrt, col = "yellow")

qplot(sample = diffSqrt, geom = "qq") + geom_qq_line()

Histogram of diffSqrt

 $\bullet\,$ Conduct the appropriate test on the square root transformed data

```
# Ha: DR > FFQ, but check CI with two sided
toutCI <- t.test(vaildSqrt$alco_drSqrt, vaildSqrt$alco_ffqSqrt,</pre>
                  con.level = 0.95, alternative = "two.sided")
print(toutCI)
##
##
   Welch Two Sample t-test
##
## data: vaildSqrt$alco_drSqrt and vaildSqrt$alco_ffqSqrt
## t = 0.97571, df = 337.18, p-value = 0.3299
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1886159 0.5599113
## sample estimates:
## mean of x mean of y
## 2.508425 2.322777
# Ha: DR > FFQ for research question
toutRQ <- t.test(vaildSqrt$alco drSqrt, vaildSqrt$alco ffqSqrt,</pre>
                  con.level = 0.95, alternative = "greater")
print(toutRQ)
##
   Welch Two Sample t-test
##
## data: vaildSqrt$alco_drSqrt and vaildSqrt$alco_ffqSqrt
## t = 0.97571, df = 337.18, p-value = 0.165
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## -0.1281791
                      Tnf
## sample estimates:
## mean of x mean of y
## 2.508425 2.322777
favstats(vaildSqrt$alco_drSqrt)
## min
                  median
                               QЗ
                                        max
                                                mean
                                                                n missing
      0 1.32665 2.416609 3.601389 7.010706 2.508425 1.638988 173
favstats(vaildSqrt$alco_ffqSqrt)
                                 QЗ
                                          max
                                                  mean
                                                             sd
                                                                  n missing
      0 0.8717798 2.133073 3.443835 8.046738 2.322777 1.891219 173
  • standard error
toutRQ$stderr
## [1] 0.1902689
  • the original data: check CI
WoutCI <- wilcox.test(vaild$alco_dr, vaild$alco_ffq,
                  paired = T, exact = F, conf.int = T, alternative = "two.sided")
print(WoutCI)
   Wilcoxon signed rank test with continuity correction
##
```

```
## data: vaild$alco_dr and vaild$alco_ffq
## V = 7472.5, p-value = 0.02597
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## 0.100001 1.324965
## sample estimates:
## (pseudo)median
        0.7349569
##
WoutCIQ <- wilcox.test(vaildSqrt$alco_drSqrt, vaildSqrt$alco_ffqSqrt,
                  paired = T,exact = F,conf.int = T, alternative = "two.sided")
print(WoutCIQ)
##
## Wilcoxon signed rank test with continuity correction
##
## data: vaildSqrt$alco_drSqrt and vaildSqrt$alco_ffqSqrt
## V = 8072, p-value = 0.001048
\#\# alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## 0.1034030 0.3865579
## sample estimates:
## (pseudo)median
        0.2466939
##
  • the original data: check research question
WoutRQ <- wilcox.test(vaild$alco_dr, vaild$alco_ffq,</pre>
                  paired = T,exact = F,conf.int = T, alternative = "greater")
print(WoutRQ)
##
## Wilcoxon signed rank test with continuity correction
##
## data: vaild$alco_dr and vaild$alco_ffq
## V = 7472.5, p-value = 0.01299
## alternative hypothesis: true location shift is greater than 0
## 95 percent confidence interval:
## 0.2150307
## sample estimates:
## (pseudo)median
       0.7349569
##
```