Francisco Edson Birimba Brito
Gisele Ribeiro Gomes
Gabriel Marques de Silva Abreu
Matheus Paolo dos Anjos Mourão
Paulo Chaves dos Santos Júnior

Relatório VII

Rio Branco, Acre

Francisco Edson Birimba Brito
Gisele Ribeiro Gomes
Gabriel Marques de Silva Abreu
Matheus Paolo dos Anjos Mourão
Paulo Chaves dos Santos Júnior

Relatório VII

Relatório de Laboratório de Eletrônica I, entregue para a composição parcial da nota da N1. Orientador : Elmer Osman Hancco

Universidade Federal do Acre - UFAC Bacharelado em Engenharia Elétrica Laboratório de Eletrônica I

Rio Branco, Acre 2017

Resumo

Nesse relatório, foi estudada a implementação de um transistor como fonte de corrente elétrica para alimentação de um diodo emissor de luz. Foi realizada a análise teórica e a análise prática dos pontos de operação do circuito. Depois, foi realizada a comparação entre os obtidos teoricamente e os valores obtidos experimentalmente.

Palavras-chaves: transistor bipolar, fonte de corrente, npn

Abstract

In this report, the implementation of a transistor was studied as a source of electric power for UMM led. Theoretical analysis was conducted and the practical analysis of the circuit's operational points. Then a comparison was conducted between theoretically obtained and the experimentally obtained values.

Keyword: bipolar transistor, current source, NPN

Sumário

	Introdução	5
1	PROCEDIMENTOS E RESULTADOS	6
2	CONCLUSÃO	8
	DEEEDÊNCIAS	Ω

Introdução

Os componentes utilizados na montagem deste experimento não fugiram dos padrões estudados em sala, foram utilizados:

- 2N2222 (Transistor NPN)
- LED¹ (comum)

O objetivo do experimento é identificar a resistência necessária na junção emissora do diodo para que houvesse uma correte de 20mA correndo através do LED.

O LED é um componente eletrônico semicondutor, ou seja, um diodo emissor de luz (L.E.D = Light emitter diode), mesma tecnologia utilizada nos chips dos computadores, que tem a propriedade de transformar energia elétrica em luz. Tal transformação é diferente da encontrada nas lâmpadas convencionais que utilizam filamentos metálicos, radiação ultravioleta e descarga de gases, dentre outras. Nos LEDs, a transformação de energia elétrica em luz é feita na matéria, sendo, por isso, chamada de Estado sólido (Solid State). O LED é um componente do tipo bipolar, ou seja, tem um terminal chamado anodo e outro, chamado catodo. Dependendo de como for polarizado, permite ou não a passagem de corrente elétrica e, consequentemente, a geração ou não de luz.

1 Procedimentos e resultados

Figura 1 – Transistor bipolar atuando como fonte de corrente

Fonte: Produzido pelos autores

1. Monte o circuito da Figura 1, meça as variáveis mostradas na Tabela 1 e calcule os erros percentuais:

$$\% \ de \ erro = \frac{valor \ pr\'atico - valor \ te\'orico}{valor \ te\'orico} \times 100$$

Considerando uma queda de tensão no led em condução de 1,5V e de acordo com o datasheet do transistor 2N2222, temos $\beta=150$, completando assim a Tabela 1:

Tabela 1 – Valores teóricos e práticos do circuito da Figura 1

Variável	Valor teórico	Valor prático	Erro (%)
I_{LED}	20mA	19,7mA	1,5%
$\overline{I_B}$	$133,33\mu A$	1,066mA	699%
I_C	20mA	19,69mA	1,55%
V_{CE}	4,1V	2,449V	40,26%
β	150	18,47	87,68%

Fonte: Produzido pelos autores

Com a Tabela 1, percebemos uma grande diferença entre o valor teórico e o valor prático, que de acordo com que analisamos, essa grande diferença vem da questão da queda de tensão do LED no teórico foi de 1,5V, sendo que na prática, o LED que usamos tinha a queda de tensão de 3,12V. E outro motivo para diferenciarem tanto os valores, foi a questão da obtenção do β , tendo um valor bem diferente do prático,

para efeitos de comparação, refizemos os cálculos teóricos, tendo a queda de tensão do LED com 3,12V e o β sendo 18,47, de acordo com que achamos na prática:

Análise de Malha Coletor-Emissor

$$-10V + 3$$
, $12V + V_{CE} + 220\Omega \times I_C = 0 \Rightarrow V_{CE} = +10V - 3$, $12V - 220\Omega(20mA)$
 $\therefore V_{CE} = 2$, $48V$

Com $\beta = 18,47$, temos que:

$$I_B = \frac{I_C}{(\beta+1)} = \frac{20mA}{(18,47+1)} = 1,027mA$$

Completando novamente a tabela com os novos dados, lembrando que $I_C = I_{LED}$, temos:

Tabela 2 – Valores teóricos e práticos do circuito com as alterações

Variável	Valor teórico	Valor prático	Erro (%)
I_{LED}	20mA	19,7mA	1,5%
$\overline{I_B}$	1,027mA	1,066mA	3,8%
I_C	20mA	19,69mA	1,55%
V_{CE}	2,48V	2,449V	1,25%
β	18,47	18, 47	0%

Fonte: Produzido pelos autores

De acordo com Tabela 2, temos uma diferença muito menor da prática para o teórico, apresentando os dois valores aproximados.

2 Conclusão

Todo o processo de montagem e experimentação foi relativamente simples, os parâmetros entre teoria e prática também ocorreram dentro do esperado – a discrepância entre a corrente de base teórica e prática se deu, segundo nosso orientador, pela necessidade de forçar a corrente à uma faixa de operação viável para esta utilização.

Referências