Analysis 7 - Getting a closer look at the clusters from the original clusters.

Purpose

To get start to understand the differences in GO categories between the clusters. This is the data from analysis1D.

Part 1

This will look into the number of genes that are the same between the clusters and the genotypes. With some basic visualization.

Required Libraries

```
library(VennDiagram)
library(ggplot2)
library(reshape)
library(kohonen)
library(goseq)
library(GO.db)
```

Visualize by Cluster

Read in data used for GO enrichment analysis

```
geneLength <- read.csv("../../07GO_enrichment/requisiteData/normalized_genes_length.csv")
cate <- read.table("../../07GO_enrichment/requisiteData/melted.GOTable.txt",header=TRUE)</pre>
```

Read in data produced from analysis1D.

```
plot.data <- read.table("../data/analysis1.som.data.small.ALLD.txt",header=TRUE)
names(plot.data)</pre>
```

```
[1] "genotype"
                                                "Ambr"
                            "gene"
    [4] "Aother"
                            "Bmbr"
                                                "Bother"
   [7] "Cmbr"
                            "Cother"
                                                "Ambr.1"
## [10] "Aother.1"
                            "Bmbr.1"
                                                "Bother.1"
## [13] "Cmbr.1"
                                                "PC1"
                            "Cother.1"
## [16] "PC2"
                            "PC3"
                                                "PC4"
                            "PC6"
## [19] "PC5"
                                                "som.unit.classif"
## [22] "som.distances"
```

Cluster Specific analysis

Now I want to take a look at what are is going on exactly in these clusters. The clusters start with the bottom left, which is cluster number 1.

This is a function that makes a boxplot showing the transformed values of expression in the clusters.

```
#clusterVis Function
#displays transformed data in a box plot and
clusterVis <- function(clustNum){

sub_cluster <- subset(plot.data, som.unit.classif==clustNum)
sub_data <- sub_cluster[,9:14] # just the sample types
m.data <- melt(sub_data)
p <- ggplot(m.data, aes(x=variable, y=value))
p + geom_point(alpha=0.5, position="jitter", size=1) + geom_boxplot(alpha=0.75, outlier.size=0)
}</pre>
```

Number of genes function, which gives you some basics about the clusters between

```
clusterNum <- function(clustNum){</pre>
  sub_cluster <- subset(plot.data, som.unit.classif==clustNum)</pre>
  print(paste("total number of genes in sub cluster is ",
              nrow(sub cluster)
        )
  scwt <- subset(sub_cluster, genotype == "wt")</pre>
  print(paste("total number of genes in wt cluster is ",
              nrow(scwt)
        )
  sctf2 <- subset(sub_cluster, genotype == "tf2")</pre>
  print(paste("total number of genes in tf2 cluster is ",
              nrow(sctf2)
        )
  scIntersect <- as.data.frame(intersect(scwt$gene, sctf2$gene))</pre>
   print(paste("There are",
               length(intersect(scwt$gene, sctf2$gene)),
               " that are the same between wt and tf2"
         )
  ##Venn Diagram part
  grid.newpage()
  venn.plot <- draw.pairwise.venn(area1 = nrow(scwt),</pre>
                               area2 = nrow(sctf2),
                               cross.area = length(intersect(scwt$gene, sctf2$gene)),
                                         = F,
                               scaled
                               category = c("Wildtype", "tf2"),
```

```
= c("blue", "red"),
                           fill
                             alpha
                                         = 0.3,
                                        = "blank",
                            lty
                             cex
                                        = 2,
                                       = 2,
                            cat.cex
                            cat.pos = c(315, 25),
                            cat.dist = 0.09,
                            cat.just = list(c(-1, -1), c(1, 1)),
                            ext.pos = 30,
ext.dist = -0.05,
                             ext.length = 0.85)
grid.draw(venn.plot)
```

```
clusterGO <- function(clustNum){</pre>
##GO Enrichment on the catergories
#we need to first get the data in the right format.
#First get the list of ITAG,
#sub cluster
sub_cluster <- subset(plot.data, som.unit.classif==clustNum)</pre>
scwt <- subset(sub cluster, genotype == "wt")</pre>
sctf2 <- subset(sub_cluster, genotype == "tf2")</pre>
scIntersect <- as.data.frame(intersect(scwt$gene, sctf2$gene))</pre>
itag.sc <- as.data.frame(sub_cluster$gene)</pre>
colnames(itag.sc)[1] <- "itag"</pre>
itag.sc$sc <- 1
#scwt
itag.scwt <- as.data.frame(scwt$gene)</pre>
colnames(itag.scwt)[1] <- "itag"</pre>
itag.scwt$wt <- 1</pre>
#sctf2
itag.sctf2 <- as.data.frame(sctf2$gene)</pre>
colnames(itag.sctf2)[1] <- "itag"</pre>
itag.sctf2$tf2 <- 1</pre>
#Intersect
itag.scIntersect <- as.data.frame(scIntersect[1])</pre>
colnames(itag.scIntersect)[1] <- "itag"</pre>
itag.scIntersect$intersect <- 1</pre>
#Merge all by itag
ITAGmerge <- merge(itag.scIntersect, itag.scwt, by = "itag", all= TRUE)</pre>
ITAGmerge <- merge(ITAGmerge, itag.sctf2, by = "itag", all = TRUE)</pre>
matrixGO <- merge(ITAGmerge, geneLength, by = "itag", all = TRUE)</pre>
matrixGO[is.na(matrixGO)] <- 0</pre>
pat <- matrixGO
```

```
#Now that we have the data in the right format we can proceed with GO enrichment.
#First specify vector to loop over for each column
sigType <- c("intersect", "wt", "tf2")</pre>
 for(type in sigType) {
    genes = as.integer(pat[,type])
    names(genes) = pat$itag
    table(genes)
    length(genes)
    pwf = nullp(genes,bias.data=pat$length)
    GO.wall = goseq(pwf,gene2cat = cate)
    head(GO.wall)
  #This is going to correct for multiple testing. You can specify the p-value cut-off of GO categories
    enriched.GO = GO.wall$category[p.adjust(GO.wall$over_represented_pvalue, method = "BH") < 0.05]</pre>
    enriched.GO
    my.GO <- as.character(enriched.GO)</pre>
    my.GO.table <- Term(my.GO)</pre>
    my.GO.table
    t <- as.matrix(my.GO.table)</pre>
    print(type) #this is for the knitr document
    print(t) #this is for the knitr document
 }
}
```

vennDiagram Function:

Cluster 1

Sub cluster 1 is defined by up regulation of genes in Bmbr, which is the early leaflet region of the terminal leaflet.

```
clusterVis(1)
```

Using as id variables

clusterNum(1)

[1] "total number of genes in sub cluster is 1220"
[1] "total number of genes in wt cluster is 837"
[1] "total number of genes in tf2 cluster is 383"
[1] "There are 94 that are the same between wt and tf2"

clusterGO(1)

```
## Warning: initial point very close to some inequality constraints

## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...

## [1] "intersect"
## [,1]
```

Warning: initial point very close to some inequality constraints


```
## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...

## [1] "wt"
## G0:0015074 "DNA integration"
## G0:0003964 "RNA-directed DNA polymerase activity"
## G0:0006278 "RNA-dependent DNA replication"
## G0:0006333 "chromatin assembly or disassembly"
## G0:0003682 "chromatin binding"
## G0:0000785 "chromatin"
```

```
## GO:0016651 "oxidoreductase activity, acting on NAD(P)H"
## GO:0031969 "chloroplast membrane"
## GO:0043229 "intracellular organelle"
## GO:0006310 "DNA recombination"
## GO:0009575 "chromoplast stroma"
## GO:0003899 "DNA-directed RNA polymerase activity"
## GO:0003723 "RNA binding"
## GO:0003677 "DNA binding"
## GO:0004190 "aspartic-type endopeptidase activity"
## GO:0048038 "quinone binding"
## GO:0006351 "transcription, DNA-templated"
## GO:0008270 "zinc ion binding"
## GO:0032549 "ribonucleoside binding"
## GO:0009926 "auxin polar transport"
## GO:0003676 "nucleic acid binding"
## GO:0005030 "neurotrophin receptor activity"
```

Warning: initial point very close to some inequality constraints

Using manually entered categories.

For 2936 genes, we could not find any categories. These genes will be excluded.

To force their use, please run with use_genes_without_cat=TRUE (see documentation).

This was the default behavior for version 1.15.1 and earlier.

Calculating the p-values...

Sub cluster 2 is defined by up regulation of genes in Cmbr, which is the base "marginal blastozone" region, which should be the most pluripotent in WT.

clusterVis(2)

Using as id variables

clusterNum(2)

[1] "total number of genes in sub cluster is 905"
[1] "total number of genes in wt cluster is 618"
[1] "total number of genes in tf2 cluster is 287"
[1] "There are 98 that are the same between wt and tf2"

clusterGO(2)

0.004

0.002

0

0

1000

```
## Warning: initial point very close to some inequality constraints
## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...
## [1] "intersect"
## GO:0003700 "sequence-specific DNA binding transcription factor activity"
## GO:0005667 "transcription factor complex"
## <NA>
## Warning: initial point very close to some inequality constraints
                             0
      0.008
                        0
                                  0
                          00
      900.0
Proportion DE
                  0
                       0
                               00
```

Biased Data in 1000 gene bins.

3000

4000

0

0

5000

```
## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...
## [1] "wt"
##
              [,1]
## GO:0003700 "sequence-specific DNA binding transcription factor activity"
## Warning: initial point very close to some inequality constraints
```

2000

Using manually entered categories.
For 2936 genes, we could not find any categories. These genes will be excluded.
To force their use, please run with use_genes_without_cat=TRUE (see documentation).
This was the default behavior for version 1.15.1 and earlier.

Calculating the p-values...

[1] "tf2"
[,1]
GO:0003700 "sequence-specific DNA binding transcription factor activity"

This cluster is specific to Cother, which is specific to the rachis region at the base.

clusterVis(3)

Using as id variables

clusterNum(3)

- ## [1] "total number of genes in sub cluster is 1235"
- ## [1] "total number of genes in wt cluster is 501"
- ## [1] "total number of genes in tf2 cluster is ~734"
- $\mbox{\tt \#\#}$ [1] "There are 106 $\mbox{\tt that}$ are the same between wt and tf2"

clusterGO(3)

##

[,1]

```
## Warning: initial point very close to some inequality constraints

## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...
## [1] "intersect"
```

Warning: initial point very close to some inequality constraints

Using manually entered categories.

For 2936 genes, we could not find any categories. These genes will be excluded.

To force their use, please run with use_genes_without_cat=TRUE (see documentation).

This was the default behavior for version 1.15.1 and earlier.

Calculating the p-values...

Biased Data in 1600 gene bins.

[1] "wt" ## [,1]

<NA> NA

```
## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...
```


Biased Data in 1900 gene bins.

```
## [1] "tf2"

## G0:0015074 "DNA integration"

## G0:0003964 "RNA-directed DNA polymerase activity"

## G0:0006278 "RNA-dependent DNA replication"

## G0:0006333 "chromatin assembly or disassembly"

## G0:0000785 "chromatin"

## G0:0003682 "chromatin binding"

## G0:0008270 "zinc ion binding"

## G0:0043229 "intracellular organelle"

## G0:0003677 "DNA binding"

## G0:0004190 "aspartic-type endopeptidase activity"

## G0:0003723 "RNA binding"

## G0:00031969 "chloroplast membrane"
```

This cluster has genes that are preferentially up-regulated in Ambr, which is the tip most region that becomes the terminal leaflet. This is the terminal leaflet blade region

```
clusterVis(4)
```

```
## Using as id variables
```


clusterNum(4)

- ## [1] "total number of genes in sub cluster is 1207"
 ## [1] "total number of genes in wt cluster is 348"
 ## [1] "total number of genes in tf2 cluster is 859"
 ## [1] "There are 178 that are the same between wt and tf2"
- tf2 Wildtype

 681 178 170

clusterGO(4)

```
## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...
```


Biased Data in 900 gene bins.

Using manually entered categories.

For 2936 genes, we could not find any categories. These genes will be excluded.

To force their use, please run with use_genes_without_cat=TRUE (see documentation).

This was the default behavior for version 1.15.1 and earlier.

Calculating the p-values...

Biased Data in 1900 gene bins.

The cluster ihas genes that are preferentially up-regulated in Aother, which is the rachis region at the tip; what will eventually become the midvien of the terminal leaflet.

clusterVis(5)

Using as id variables

clusterNum(5)

```
## [1] "total number of genes in sub cluster is 1176"
## [1] "total number of genes in wt cluster is 682"
## [1] "total number of genes in tf2 cluster is 494"
## [1] "There are 53 that are the same between wt and tf2"
```


clusterGO(5)

- ## Using manually entered categories.
- ## For 2936 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
- ## This was the default behavior for version 1.15.1 and earlier.
- ## Calculating the p-values...

Biased Data in 1300 gene bins.

[1] "intersect"

[,1]

```
## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...
## [1] "wt"
## [,1]
```

Warning: initial point very close to some inequality constraints

Biased Data in 1900 gene bins.

- ## Using manually entered categories.
- ## For 2936 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
- ## This was the default behavior for version 1.15.1 and earlier.
- ## Calculating the p-values...

Biased Data in 1900 gene bins.

```
## [1] "tf2"
              [,1]
## GO:0009523 "photosystem II"
## GO:0009765 "photosynthesis, light harvesting"
## GO:0016168 "chlorophyll binding"
## GO:0018298 "protein-chromophore linkage"
## GO:0009772 "photosynthetic electron transport in photosystem II"
## GO:0009522 "photosystem I"
## GO:0045156 "electron transporter, transferring electrons within the cyclic electron transport pathwa
## GO:0030077 "plasma membrane light-harvesting complex"
## GO:0009535 "chloroplast thylakoid membrane"
## GO:0030076 "light-harvesting complex"
## GO:0005985 "sucrose metabolic process"
## GO:0005982 "starch metabolic process"
## GO:0016021 "integral component of membrane"
## GO:0042973 "glucan endo-1,3-beta-D-glucosidase activity"
```

The cluster ihas genes that are preferentially up-regulated in Bother, which is the rachis region at site of leaflet initiation.

```
clusterVis(6)
```

```
## Using as id variables
```


clusterNum(6)

- ## [1] "total number of genes in sub cluster is $\,$ 1417"
- ## [1] "total number of genes in wt cluster is 594"
- ## [1] "total number of genes in tf2 cluster is 823"
- ## [1] "There are 251 that are the same between wt and tf2"

clusterGO(6)

```
## Warning: initial point very close to some inequality constraints
## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use genes without cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...
## [1] "intersect"
              [,1]
## GO:0015250 "water channel activity"
## GO:0009535 "chloroplast thylakoid membrane"
## GO:0010067 "procambium histogenesis"
## GO:0006833 "water transport"
## G0:0009768 "photosynthesis, light harvesting in photosystem I"
## GO:0009523 "photosystem II"
## GO:0030076 "light-harvesting complex"
## GO:0016021 "integral component of membrane"
```


Using manually entered categories.
For 2936 genes, we could not find any categories. These genes will be excluded.
To force their use, please run with use_genes_without_cat=TRUE (see documentation).
This was the default behavior for version 1.15.1 and earlier.
Calculating the p-values...

Biased Data in 800 gene bins.

```
## [1] "wt"
##
              [,1]
## GO:0009523 "photosystem II"
## GO:0009765 "photosynthesis, light harvesting"
## GO:0018298 "protein-chromophore linkage"
## GO:0009522 "photosystem I"
## GO:0009535 "chloroplast thylakoid membrane"
## GO:0016168 "chlorophyll binding"
## GO:0016021 "integral component of membrane"
## GO:0005985 "sucrose metabolic process"
## GO:0030076 "light-harvesting complex"
## GO:0005982 "starch metabolic process"
## GO:0046872 "metal ion binding"
## GO:0006833 "water transport"
## GO:0055085 "transmembrane transport"
## GO:0015250 "water channel activity"
## GO:0016020 "membrane"
## GO:0030077 "plasma membrane light-harvesting complex"
## GO:0042807 "central vacuole"
## GO:0010067 "procambium histogenesis"
## GO:0009768 "photosynthesis, light harvesting in photosystem I"
## GO:0010287 "plastoglobule"
## Using manually entered categories.
## For 2936 genes, we could not find any categories. These genes will be excluded.
## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
## This was the default behavior for version 1.15.1 and earlier.
## Calculating the p-values...
```

