

Artificial Neural Networks

Industrial AI Lab.
Prof. Seungchul Lee
Yunseob Hwang, Illjeok Kim

Artificial Neural Networks from MLP

Artificial Neural Networks: Perceptron

- Perceptron for $h(\theta)$ or $h(\omega)$
 - Neurons compute the weighted sum of their inputs
 - A neuron is activated or fired when the sum a is positive

- A step function is not differentiable
- One neuron is often not enough
 - One hyperplane

$$a=\omega_0+\omega_1x_1+\omega_2x_2$$

$$\hat{y} = g(a) = egin{cases} 1 & a > 0 \ 0 & ext{otherwise} \end{cases}$$

XOR Problem

- Minsky-Papert Controversy on XOR
 - Not linearly separable
 - Limitation of perceptron

x_1	x_2	x_1 XOR x_2
0	0	0
0	1	1
1	0	1
1	1	0

• Single neuron = one linear classification boundary

Artificial Neural Networks: MLP

- Multi-layer Perceptron (MLP) = Artificial Neural Networks (ANN)
 - Multi neurons = multiple linear classification boundaries

Artificial Neural Networks: Activation Function

• Differentiable nonlinear activation function

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Discuss later

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Artificial Neural Networks

• In a compact representation

Artificial Neural Networks

- A single layer is not enough to be able to represent complex relationship between input and output
 - ⇒ perceptron with many layers and units

- Multi-layer perceptron
 - Features of features
 - Mapping of mappings

ANN as Kernel Learning

Nonlinear Classification

SVM with a polynomial Kernel visualization

> Created by: Udi Aharoni

Neuron

• We can represent this "neuron" as follows:

$$f(x) = \sigma(w \cdot x + b)$$

XOR Problem

- The main weakness of linear predictors is their lack of capacity.
- For classification, the populations have to be linearly separable.

"xor"

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Kernel

- Often we want to capture nonlinear patterns in the data
 - nonlinear regression: input and output relationship may not be linear
 - nonlinear classification: classes may not be separable by a linear boundary
- Linear models (e.g. linear regression, linear SVM) are not just rich enough
 - by mapping data to higher dimensions where it exhibits linear patterns
 - apply the linear model in the new input feature space
 - mapping = changing the feature representation
- Kernels: make linear model work in nonlinear settings

Kernel + Neuron

• Nonlinear mapping + neuron

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Neuron + Neuron

Nonlinear mapping can be represented by another neurons

- Nonlinear Kernel
 - Nonlinear activation functions

Summary

- Universal function approximator
- Universal function classifier

Parameterized

$$\hat{y} = f_{\omega_1, \cdots, \omega_k}(x) \hspace{1cm} \longrightarrow \hspace{1cm} \mathcal{y}$$

Looking at Hidden Layers

Example: Linear Classifier

• Perceptron tries to separate the two classes of data by dividing them with a line

Example: Neural Networks

• The hidden layer learns a representation so that the data gets linearly separable

Logistic Regression in a Form of Neural Network

$$y=\sigma\left(\omega_{0}+\omega_{1}x_{1}+\omega_{2}x_{2}
ight)$$

Logistic Regression in a Form of Neural Network

Neural network convention

$$y = \sigma \left(\omega_0 + \omega_1 x_1 + \omega_2 x_2\right)$$

$$\begin{array}{cccc} & \omega_0 & & & \\ & \omega_1 & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$y=\sigma\left(b+\omega_{1}x_{1}+\omega_{2}x_{2}
ight)$$

n_input = 2 n_output = 1

Logistic Regression in a Form of Neural Network

- One-hot encoding
 - One-hot encoding is a conventional practice for a multi-class classification

$$y^{(i)} \in \{1,0\} \quad \implies \quad y^{(i)} \in \{[0,1],[1,0]\}$$

n_input = 2 n_output = 2

Multi Layers

• z space

Do not include bias units

n_input = 2
n_hidden = 2
n_output = 2

Nonlinearly Distributed Data

- Example to understand network's behavior
 - Include a hidden layer

Do not include bias units

n_input = 2
n_hidden = 2
n_output = 2

Multi Layers

• x space

Do not include bias units

n_input = 2
n_hidden = 2
n_output = 2

Nonlinearly Distributed Data

• More neurons in hidden layer

Do not include bias units

Multi Layers

• Multiple linear classification boundaries

Do not include bias units

