PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization

Thijs Vogels, Sai Praneeth Karimireddy, Martin Jaggi

Why distributed SGD?

Why Distributed?

Data Privacy

Resource Distribution

Data Distribution

Why dSGD?

Gradients are Linear

Gradients are Optimal

Are gradients the smallest statistic?

$$\sum_{s=1}^{S} \nabla_{\mathbf{W}} \mathcal{L}^{(s)} = \nabla_{\mathbf{W}} \mathcal{L}^{(s)}$$

Reducing Bandwidth

Figure 1: Compression schemes compared in this paper. Left: Interpretation of a layer's gradient as a matrix. Coordinate values are color coded (**positive**, **negative**). Right: The output of various compression schemeson the same input. Implementation details arein Appendix G.

Low-Rank Decompositions

➤ Figure 18.2 Illustration of low rank approximation using the singular-value decomposition. The dashed boxes indicate the matrix entries affected by "zeroing out" the smallest singular values.

Power Iterations

Algorithm

- ullet initial approximation random unit vector x_0
- $\bullet x_1 = Ax_0$
- $\bullet \ x_2 = AAx_0 = A^2x_0$
- $x_3 = AAAx_0 = A^3x_0$
- ...
- until converges

For large powers of k, we will obrain a good approximation of the dominant eigenvector

Power Iterations (contd.)

We can just remove the dominant direction from the matrix and repeat So:

- ullet $A=Q\Lambda Q^T$, so $A=\sum_{i=1}^n \lambda_i \mathbf{q}_i \mathbf{q}_i^T$
- ullet use power iteration to find ${f q}_1$ and λ_1
- ullet then let $A_2 \leftarrow A \lambda_1 \mathbf{q}_1 \mathbf{q}_1^T$
- ullet repeat power iteration on A_2 to find ${f q}_2$ and λ_2
- ullet continue like this for $\lambda_3, \ \ldots, \lambda_n$

QR Decomposition

QR Decomposition Algorithm:

- ullet choose Q_0 such that $Q_0^TQ_0=I$
- ullet for $k=1,2,\ldots$:
 - $\circ Z_k = AQ_{k-1}$
 - $\circ \ Q_k R_k = Z_k$ (QR decomposition)

PowerSGD

function COMPRESS+AGGREGATE(update matrix $M \in \mathbb{R}^{n \times m}$, previous $Q \in \mathbb{R}^{m \times r}$)

$$P \leftarrow MQ$$

$$P \leftarrow \text{ALL REDUCE MEAN}(P)$$

$$\hat{P} \leftarrow \text{ORTHOGONALIZE}(P)$$

$$Q \leftarrow M^{\top} \hat{P}$$

$$Q \leftarrow \text{ALL REDUCE MEAN}(Q)$$

return the compressed representation (\hat{P}, Q) .

$$\triangleright$$
 Now, $P = \frac{1}{W}(M_1 + \ldots + M_W)Q$

$$\triangleright$$
 Now, $Q = \frac{1}{W}(M_1 + \ldots + M_W)^{\top} \hat{P}$

PowerSGD + Error Feedback

Algorithm 2 Distributed Error-feedback SGD with Momentum

```
1: hyperparameters: learning rate \gamma, momentum parameter \lambda
 2: initialize model parameters \mathbf{x} \in \mathbb{R}^d, momentum \mathbf{m} \leftarrow \mathbf{0} \in \mathbb{R}^d, replicated across workers
 3: at each worker w = 1, \dots, W do
           initialize memory \mathbf{e}_w \leftarrow \mathbf{0} \in \mathbb{R}^d
           for each iterate t = 0, \dots do
 5:
                 Compute a stochastic gradient \mathbf{g}_w \in \mathbb{R}^d.
 6:
                                                                                          ▶ Incorporate error-feedback into update
                 \Delta_w \leftarrow \mathbf{g}_w + \mathbf{e}_w
                 \mathcal{C}(\Delta_w) \leftarrow \text{COMPRESS}(\Delta_w)
                 \mathbf{e}_w \leftarrow \Delta_w - \text{DECOMPRESS}(\mathcal{C}(\Delta_w))
                                                                                                                    ▶ Memorize local errors
                 \mathcal{C}(\Delta) \leftarrow \text{AGGREGATE}(\mathcal{C}(\Delta_1), \dots, \mathcal{C}(\Delta_W))
                                                                                                                       \triangleright Reconstruct an update \in \mathbb{R}^d
                 \Delta' \leftarrow \mathsf{DECOMPRESS}(\mathcal{C}(\Delta))
                 \mathbf{m} \leftarrow \lambda \mathbf{m} + \Delta'
                 \mathbf{x} \leftarrow \mathbf{x} - \gamma \left( \Delta' + \mathbf{m} \right)
13:
           end for
15: end at
```


Our Approach

- Use AD statistics instead of gradients for automatic bandwidth reduction
- Further use structured power iterations

