Devoir facultatif n° 8

Soit E un \mathbb{R} -espace vectoriel et u un endomorphisme de E.

Un sous-espace vectoriel V de E est dit stable par u lorsque pour tout $x \in V$, on a $u(x) \in V$. Lorsque qu'un sous-espace vectoriel V est stable par u, on peut considérer la restriction de u à V notée $u|_{V}: V \to V$. Il est clair que $u|_{V}$ est un endomorphisme de V.

Pour $n \in \mathbb{N}$, u^n désigne l'endomorphisme défini par récurrence par : $u^0 = \text{Id}$ et pour tout $n \in \mathbb{N}$, $u^{n+1} = u \circ u^n$ (où Id désigne l'endomorphisme identité de E).

- 1) Pour $n \in \mathbb{N}$, on note $F_n = \operatorname{Im} u^n$ et $G_n = \operatorname{Ker} u^n$.
 - a) Par quel argument simple peut-on affirmer que F_n et G_n sont des sous-espaces vectoriels de E?
 - b) Montrer que les suites de sous-espaces vectoriels (F_n) et (G_n) sont respectivement décroissante et croissante pour l'inclusion.
- **2)** On pose $F = \bigcap_{n \in \mathbb{N}} F_n$ et $G = \bigcup_{n \in \mathbb{N}} G_n$.
 - a) Établir que F et G sont des sous-espaces vectoriels de E.
 - b) Montrer que F et G sont stables par u.
 - c) Déterminer F et G lorsque u est un automorphisme de E.
- 3) Dans cette question, on suppose qu'il existe $n \in \mathbb{N}$ tel que $F_{n+1} = F_n$.
 - a) Établir que pour tout $p \in \mathbb{N}$, $F_{n+p} = F_n$.
 - b) Justifier de l'existence d'un plus petit entier $m \in \mathbb{N}$ vérifiant $F_{m+1} = F_m$.

Celui-ci sera désormais noté r(u).

- c) À partir de quel terme la suite (F_n) est-elle égale à F?
- d) Soit $x \in E$. Montrer qu'il existe $a \in E$ tel que $u^{r(u)}(x) = u^{2r(u)}(a)$. On pose alors $y = u^{r(u)}(a)$ et z = x y. Montrer que $z \in G_{r(u)}$. En déduire que $E = F + G_{r(u)}$.
- 4) Dans cette question, on suppose qu'il existe $n \in \mathbb{N}$ tel que $G_{n+1} = G_n$.
 - a) Établir que pour tout $p \in \mathbb{N}$, $G_{n+p} = G_n$.
 - **b)** Justifier l'existence d'un plus petit entier $m \in \mathbb{N}$ tel que $G_{m+1} = G_m$.

Celui-ci sera désormais noté s(u).

- c) À partir de quel terme la suite (G_n) est-elle égale à G?
- **d)** Montrer que $F_{s(u)} \cap G = \{0\}$.
- 5) À la lumière des questions précédentes (on supposera que les hypothèses des parties 3) et 4) sont vérifiées) :
 - a) Montrer que $E = F \oplus G$.
 - **b)** Montrer que s(u) = r(u).

— FIN —