Homework 7 for Math 2370

Zhen Yao

Problem 1. Suppose $1 \le k \le n$ and $x_1, x_2, \dots x_k$ are k vectors in \mathbb{R}^n satisfying for any $1 \le i, j \le k$,

$$(x_i, x_j) = \delta_{ij}.$$

For each $1 \leq j \leq k$, let a_j be the first component of x_j . Show that

$$\sum_{j=1}^{k} a_j^2 \le 1.$$

Proof. Since $(x_i, x_j) = \delta_{ij}, 1 \leq i, j \leq n$, then we can arrange x_1, x_2, \dots, x_n into a matrix and denote it by $A = (x_1, x_2, \dots, x_n)$, then we have A is an orthogonal matrix with determinant 1. Then det $A^* = 1$.

Now we pick a vector $z = (1, 0, \dots, 0)^T \in \mathbb{R}^n$. Then we have $A^*z = (a_1, a_2, \dots, a_n)^T$, and therefore the first component of the vector AA^*z is $\sum_{j=1}^k a_j^2$, which means $AA^*z = \left(\sum_{j=1}^k a_j^2, \dots\right)^T$. Also, we have $||AA^*z|| \leq ||Iz|| = 1$. We denote other components of AA^*z as w_2, w_3, \dots, w_n , then we have

$$\sum_{j=1}^{k} a_j^2 \le \|AA^*z\|^{1/2} = \sqrt{\sum_{j=1}^{k} a_j^2 + w_2^2 + \dots + w_n^2} = 1$$

$$\Rightarrow \sum_{j=1}^{k} a_j^2 \le 1$$

The proof is complete.

Problem 2. Let A be an $m \times n$ matrix, c_j $1 \le j \le n$ be column vectors of A and r_i , $1 \le i \le m$ be row vectors of A, show that

$$||A|| \ge \max_{1 \le j \le n} ||c_j||$$
 and $||A|| \ge \max_{1 \le i \le m} ||r_i||$.

Here we view A as a linear map from \mathbb{R}^n to \mathbb{R}^m .

Proof. For jth column c_j of A, we pick a unit vector $e_j = (0, \dots, 0, 1, 0, \dots, 0)^T \in \mathbb{R}^n$, where jth entry is 1, others are all zero. Then we can have $Ae_j = c_j$. Thus, we have

$$||c_j|| \le ||A|| \, ||e_j|| = ||A||$$

since this is true for all $1 \le j \le n$, then we have $\max_{1 \le j \le n} \|c_j\| \le \|A\|$.

For ith row r_i of A, we can consider $A^* = (r_1, r_2, \dots, r_m)$. And still, we pick a vector $e'_i = (0, \dots, 0, 1, 0, \dots, 0)^T \in \mathbb{R}^m$, where ith entry is 1, others are all zero. And then we take $A^*e'_i = r_i$, which gives us

$$||r_i|| \le ||A^*|| \, ||e_i'|| = ||A^*|| = ||A||$$

in the last step we used the fact that $||A^*|| = ||A||$. This is true for all $1 \le i \le m$, then we have $\max_{1 \le i \le m} ||r_i|| \le ||A||$. The proof is complete.

Problem 3. Let

$$A = \left(\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array}\right).$$

Find the spectral radius, operator norm and Hilbert-Schmidt norm of $A: \mathbb{R}^n \to \mathbb{R}^n$.

Proof. The eigenvalues of A are 1 and 3, and then we can know that the spectral radius is $r(a) = \max |\lambda| = 3$. The operator norm of A is the largest eigenvalues of AA^T , which is

$$AA^T = \left(\begin{array}{cc} 5 & 6 \\ 6 & 9 \end{array}\right)$$

And the charasteristic polynomial is $\lambda^2 - 14\lambda + 9 = 0$, which gives us norm of A is $\max_{j=1,2} \lambda_j = 7 + 2\sqrt{10}$. The Hilbert-Schmidt norm of A is $||A|| = \left(\sum_{i,j} |a_{ij}^2|\right)^{1/2} = \sqrt{14}$.