# UNIVERSITETI I PRISHTINËS "HASAN PRISHTINA" FAKULTETI I SHKENCAVE MATEMATIKO-NATYRORE DEPARTAMENTI I MATEMATIKËS PROGRAMI: SHKENCA KOMPJUTERIKE



Lënda: Siguria e të dhënave Algoritmi Affine Cipher

# Punuar nga:

- 1. Rinesë Morina
- 2. Rona Latifaj
- 3. Eljesa Kqiku

Mars 2023

# Hyrje në kriptologji

Kriptografia është studimi i teknikave matematikore për përdorim në të gjitha aspektet e sigurisë së të dhënave. Kriptoanaliza është shkenca e cila merret me studimin e metodave për "thyerjen" apo keqpërdorimin e këtyre metodave. Kriptologjia është studimi i kriptografisë dhe kriptoanalizës. Siguria e të dhënave mbulon këto aspekte:

- konfidencialitetin apo privatësinë
- integritetin e të dhënave
- authentikimin
- validimin e saktë.



Në mesin e algoritmeve kriptografik shifrimi Afin bën pjesë në shifrimet simetrike, që do të thotë se përdor të njëtin çelës për shifrim dhe deshifrim.

### Përshkrimi

Shifra Affine është një lloj shifrimi me zëvendësim ku çdo shkronjë në tekstin e thjeshtë zhvendoset për disa pozicione. Është një shifër monoalfabetike, që do të thotë se çdo shkronjë zëvendësohet me të njëjtën shkronjë gjatë gjithë mesazhit. Megjithatë, ndryshe nga Shifra e Cezarit, Shifra Affine përdor një formulë matematikore pak më komplekse për të kriptuar mesazhin.

Për të enkriptuar një mesazh duke përdorur shifrën Affine, zgjidhen dy numra, a dhe b. Shkronjat e tekstit të thjeshtë përfaqësohen më pas me numra sipas pozicionit të tyre në alfabet

$$A = 0, B = 1, C = 2, \dots$$

dhe më pas transformohen duke përdorur formulën e mëposhtme:

$$C = (a * P + b) mod 26$$

ku C është shkronja e tekstit të shifruar, P është shkronja e tekstit të thjeshtë (e përfaqësuar nga një numër) dhe mod 26 do të thotë që rezultati është marrë moduli 26 (d.m.th., pjesa e mbetur kur ndahet me 26).

Për të deshifruar tekstin e shifruar, përdoret formula e mëposhtme:

$$P = a^{-1} * (C - b) mod 26$$

ku  $a^{-1}$  është inversi multiplikativ modular i a (d.m.th., numri që, kur shumëzohet me a, jep rezultatin 1 modulo 26).

### Historia

Shifra Affine është një nga llojet më të vjetra të metodave të kriptimit, që daton në kohët e lashta, kur grekët dhe romakët e përdornin atë për të mbrojtur sekretet e tyre. Në fakt, vetë Julius Caesar thuhet se ka përdorur një version të thjeshtë të Affine Cipher për t'u dërguar mesazhe gjeneralëve të tij gjatë fushatave. Sidoqoftë, matematika e përdorur në versionin modern të Affine Cipher nuk u zhvillua deri në shekullin e 15-të, kur matematikani italian Leon Battista Alberti krijoi një numër polialfabetik të bazuar në një formulë të ngjashme me Affine Cipher. Ky shifër u përdor për qëllime diplomatike dhe ushtarake dhe u bë i njohur si Shifra Alberti.

Zhvillimi i vërtetë i Affine Cipher erdhi në shekullin e 18-të me punën e matematikanit francez Charles-Jean de la Vallée-Poussin. Ai botoi një punim në 1892 mbi përgjithësimin e Affine Cipher, i cili lejoi një gamë më të gjerë të çelësave të mundshëm dhe e bëri shifrën më të sigurt. Shifra Affine është një lloj shifrimi zëvendësues që kombinon përdorimin e aritmetikës modulare me një funksion të thjeshtë linear. Funksioni linear është i formës ax + b, ku a dhe b janë numra të plotë të zgjedhur nga përdoruesi dhe x është shkronja e tekstit të thjeshtë që kodohet. Aritmetika modulare përdoret për të siguruar që shkronja e tekstit të shifruar që rezulton është një shkronjë e vlefshme në alfabetin e zgjedhur.

Pavarësisht nga rëndësia e tij historike, Shifra Affine konsiderohet të jetë një formë relativisht e dobët e enkriptimit sot, dhe ajo thyhet lehtësisht nga teknikat moderne të kriptanalizës. Megjithatë, ai ende mbetet një shifër e rëndësishme historike dhe shërben si një hyrje e dobishme në studimin e kriptografisë. Affine Cipher ka shërbyer gjithashtu si bazë për zhvillimin e shifrave më të avancuara, të tilla si Hill Shipher dhe RSA Cipher. Përdorimi i tij është dokumentuar në ngjarje të shumta historike, si burgimi i Mary Queen of Scots në shekullin e 16-të, ku ajo përdori shifrën për të komunikuar fshehurazi me mbështetësit e saj. Megjithatë, shifra u thye përfundimisht nga kapësit e saj, duke çuar në ekzekutimin e saj. Pavarësisht nga dobësitë e tij, Affine Cipher ka pasur një histori të gjatë dhe të rëndësishme në zhvillimin e kriptografisë dhe vazhdon të studiohet dhe përdoret sot.

Në matematikë (specifikisht në algjebrën lineare) transformimet affine janë kombinime të transformimeve lineare dhe translacioneve. Pra, një pasqyrim i formës:

$$x \to ax + b$$

ku a dhe b janë konstante të pavarura nga x. Kjo është pikërisht forma se si është i definuar operatori i enkriptimit tek shifrimi affin, dhe pikërisht nga këtu mendohet të jetë derivuar emri i ketij shifrimi. Para analizës së frekuencave të shkronjave në kriptografi, shifrimet me zëvëndësim monoalfabetik ishin të pathyeshëm dhe të pranueshëm për përdorimet e nevojshme. Me zhvillimet e mëvonshme në kripto-analizë mesazhet e enkriptuara me shifrime monoalfabetike u bënë lehtë të thyeshëm. Shifrimi affin i takon kësaj familjeje si rast i vecantë i shifrimit me zëvëndësim monoalfabetik.

### Dobësitë e shifrimit affin

Shifrimi affin i takon klasës së shifrimeve më zëvëndësim mono-alfabetik, dhe si shkak i saj trashëgon edhe dobësitë e kësaj klase në të cilën bejnë pjnesë edhe shifrimi i Cezarit dhe shifrimi Atbash me vlerat e parametrit a=1 dhe a=-1 përkatësisht. Duke konsideruar se ekzistojnë 286 verzione jo-triviale të shifrimit affin, duke mos i numruar 26 shifrimet affine triviale. Ky numër rrjedhë nga fakti se ekzistojnë 12 numra më të vogël se 26 të cilët janë ko-prim me të - pra, këto janë mundësitë e përzgjedhjes së numrit a. Tani, secila vlerë e numrit a mund të ketë 26 vlera për parametrin b. Rrjedhimisht,  $12 \times 26 = 312$  çelësa të mundshëm. E duke e krahasuar në Parimin(Ligjin) e Kerckhoffs-it ky shifrim e kategorizon sistemin Affin si shumë të pasigurtë.

Dobësia primare e këtij shifrimi është kriptoanaliza, e cila ndihmën e metodave si: analiza e frekuencës apo brute force mund të gjejë plaintext-et e dy cyphertext-eve, nga të cilat celësi mund

të gjindet duke zgjedur ekuacione multi-vlerëshe. Fakti se parametrat a dhe m javë relativisht prim mund të përdoret për zvogëlimin e bashkësisë së mundësive të celësit në një sistem të automatizuar.

## Raste të përdorimit

Affine Cipher është një metodë relativisht e thjeshtë enkriptimi që mund të përdoret në një sërë situatash ku kërkohet një nivel bazë sigurie. Disa raste të përdorimit të zakonshëm përfshijnë:

- Enkriptimi i mesazheve ndërmjet dy palëve që kanë rënë dakord për vlerat e a dhe b
- Kriptimi i fjalëkalimeve ose të dhënave të tjera të ndjeshme që nuk kërkojnë siguri të nivelit të lartë
- Demonstrimi i parimeve bazë kriptografike në mjediset arsimore

## Algoritmi formal

### Enkriptimi

**HYRJA:** Numrat a dhe b që formojnë çelësin (a,b), gjatësia e mesazhit n,

vargu i karakterëve të mesazhit origjinal  $P=p_i$ , ku  $1 \le i \le n$ 

**DALJA**: Vargu i karakterëve të enkriptuar  $C=c_i$ , ku  $1 \le i \le n$ 

**HAPI 1**: Për çdo i = 1, 2, ..., n ekzekuto Hapin 2

**HAPI 2:** Nese  $p_i = "$ " atehere:

 $c_i = "";$ 

Përndryshe

 $c_i = (a * p_1 + b) mod 26;$ 

**HAPI 3:** Kthe( $C=c_i \ 1 \leq i \leq n$ );

Ndalo:

### Dekriptimi

**HYRJA:** Numrat a dhe b që formojnë çelësin (a, b), gjatësia e mesazhit n,

vargu i karakterëve të mesazhit të enkriptuar  $C=c_i$ , ku  $1 \leq i \leq n$ 

**DALJA**: Vargu i karakterëve të dekriptuar  $P=p_i$ , ku  $1 \le i \le n$ 

**HAPI 1**: Për çdo i = 1, 2, ..., n ekzekuto Hapin 2

**HAPI 2:** Nese  $c_i = "$ " atehere:

 $p_i = "";$ 

Përndryshe

 $p_i = a^{-1} * (c_i - b) mod 26;$ 

**HAPI 3:** Kthe( $P=p_i \ 1 \leq i \leq n$ );

Ndalo;

#### Shembull

Supozoni se duam të enkriptojmë mesazhin "HELLO" duke përdorur kodin Affine me a=5 dhe b=8. Së pari, ne përfaqësojmë çdo shkronjë si një numër sipas pozicionit të saj në alfabet:

Më pas, aplikojmë formulën e enkriptimit për secilën shkronjë:

$$C(H) = (5*7+8)mod26 = 11 = R$$

$$C(E) = (5*4+8)mod26 = 22 = C$$

$$C(L) = (5*11+8)mod26 = 9 = L$$

$$C(L) = (5*11+8)mod26 = 9 = L$$

$$C(O) = (5*14+8)mod26 = 12 = A$$

Prandaj, mesazhi i koduar është "RCLLA". Për të deshifruar mesazhin, përdorim formulën e deshifrimit me  $a^{-1}=21$  (pasi  $5*21\equiv 1 mod 26$ ):

$$\begin{split} P(R) &= (21*(11-8)) mod 26 = 7 = H \\ P(C) &= (21*(22-8)) mod 26 = 4 = E \\ P(L) &= (21*(9-8)) mod 26 = 11 = L \\ P(L) &= (21*(9-8)) mod 26 = 11 = L \\ P(A) &= (21*(12-8)) mod 26 = 14 = O \end{split}$$

Prandaj, mesazhi i deshifruar është "HELLO"

Në këtë shembull, ne kemi përdorur a=5 dhe b=8 si çelësat e enkriptimit. Sidoqoftë, çdo vlerë e a dhe b mund të përdoret për sa kohë që ekziston inversi multiplikativ i a modulo 26. (pra a dhe 26 janë relativisht të thjeshtë).

Sa më të mëdha të jenë vlerat e a dhe b, aq më i sigurt do të jetë kriptimi, por edhe aq më i vështirë do të jetë deshifrimi pa i ditur çelësat. Në përgjithësi, Affine Cipher është një metodë e thjeshtë por efektive e kriptimit që është përdorur për shekuj. Ndonëse mund të mos jetë aq i sigurt sa algoritmet moderne kriptografike, mund të jetë ende i dobishëm në situata të caktuara ku kërkohet kriptimi bazë.

### Implementimi në Java

```
public class AffineCypher {
    static int a = 17;
    static int b = 20;

static String encryptMessage(char[] msg)
```

```
6
7
           String cipher = "";
8
           for (int i = 0; i < msg.length; i++) {
    if (msg[i] != ' ')</pre>
9
10
                    cipher = cipher
11
                             + (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A');
12
13
                   cipher += msg[i];
14
           }
15
           return cipher;
16
17
18
       static String decryptCipher(String cipher)
19
20
           String msg = "";
21
           int a_inv = 0;
22
           int flag = 0;
23
24
           for (int i = 0; i < 26; i++) {</pre>
25
                flag = (a * i) % 26;
26
27
                if (flag == 1)
                    a_inv = i;
28
29
30
           for (int i = 0; i < cipher.length(); i++) {</pre>
                if (cipher.charAt(i) != ',')
31
                    msg = msg + (char) (((a_inv *
32
                             ((cipher.charAt(i) + 'A' - b)) % 26)) + 'A');
33
34
                else
                   msg += cipher.charAt(i);
35
36
37
           return msg;
       }
38
39 }
```