4.16 Компьютерные сети. Модели OSI. Устройства коммутации и маршрутизации. Протоколы Ethernet, IP, TCP, UDP

Основные программные и аппаратные компоненты сети

Компьютерная сеть (вычислительная сеть, сеть передачи данных) — система связи между двумя или более компьютерами.

Вычислительная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Элементы сети:

- компьютеры;
- коммуникационное оборудование;
- операционные системы;
- сетевые приложения.

Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью.

- В основе любой сети лежит **аппаратный слой** стандартизованных компьютерных платформ. В настоящее время в сетях широко и успешно применяются компьютеры различных классов от персональных компьютеров до мэйнфреймов и суперЭВМ. Набор компьютеров в сети должен соответствовать набору разнообразных задач, решаемых сетью.
- Второй слой это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства. Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который ОНЖУН конфигурировать, оптимизировать администрировать. Изучение принципов работы коммуникационного оборудования требует знакомства большим количеством c протоколов, используемых как в локальных, так и глобальных сетях.
- Третий слой, образующий программную платформу сети **операционные системы** (**OC**). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой **OC**, зависит эффективность работы всей сети. При проектировании сети важно учитывать, насколько просто данная операционная система может взаимодействовать с другими **OC** сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другие соображения.
- Самым верхним слоем сетевых средств являются различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др. Важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми

приложениями и операционными системами.

Классификация сетей по топологии:

- Шина представляет собой общий кабель, к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.
- Звезда все компьютеры сети присоединены к центральному узлу, образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило "дерево").
- Кольцо рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть.
- Решетка узлы образуют регулярную многомерную решетку.
- Смешанная отдельные сегменты используют разные топологии.
- Полносвязная все со всеми.

Классификация сетей посреде передачи: коаксиальные сети, на витой паре, оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне...

Классификация сетей по охватываемой площади:

- Персональная сеть (PAN, Personal Area Network) данные сети призваны объединять все персональные электронные устройства пользователя (Bluetooth).
- Локальная сеть (LAN, Local Area Network).
- Городская сеть (MAN, Metropolitan Area Network) несколько домов, целый город основная причина выделения этой категории сетей для них был создан специальный стандарт IEEE 802.6.
- Глобальная вычислительная сеть (WAN, Wide Area Network) охватывает большие территории и включающую в себя десятки и сотни тысяч компьютеров (internet, fidonet).

Модель OSI

Модель OSI - абстрактная модель для сетевых коммуникаций и разработки сетевых протоколов. Представляет уровневый подход к сети. Каждый уровень обслуживает свою часть процесса взаимодействия. Благодаря такой структуре совместная работа сетевого оборудования и программного обеспечения становится гораздо проще и понятнее.

Уровни модели OSI:

- 1. Прикладной уровень (Application layer)
- 2. Уровень представления (Presentation layer)
- 3. Сеансовый уровень (Session layer)
- 4. Транспортный уровень (Transport layer)

- 5. Сетевой уровень (Network layer)
- 6. Канальный уровень (Data Link layer)
- 7. Физический уровень (Physical layer)

Прикладной уровень (Application layer) - верхний (7-й) уровень модели, обеспечивает взаимодействие сети и пользователя. Уровень разрешает приложениям пользователя доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты.

Уровень представления (Presentation layer) - этот уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных.

Сеансовый уровень (Session layer) - отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

Транспортный уровень (Transport layer) - 4-й уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает.

Сетевой уровень (Network layer) - 3-й уровень сетевой модели OSI, предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.

Канальный уровень (Data Link layer) - этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает в кадры данных, проверяет на целостность, если нужно исправляет ошибки и отправляет на сетевой уровень. На этом уровне работают коммутаторы, мосты.

Физический уровень (Physical layer) - самый нижний уровень модели, предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель и соответственно их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

Устройства коммутации и маршрутизации

Коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать. Сетевая коммуникационная система — это кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов.

Маршрутизатор (router) – система, отвечающая за принятие решений о выборе одного из нескольких путей передачи сетевого трафика. Для выполнения этой задачи используются маршрутизируемые протоколы, содержащие информацию о сети и алгоритмы выбора наилучшего пути на основе нескольких критериев, называемых метрикой маршрутизации

("routing metrics"). В терминах OSI маршрутизатор является промежуточной системой Сетевого уровня. Каждому маршрутизатору, использующему протокол OSPF, приписывается 32-разрядный номер (routing ID). Идентификатор маршрутизатора является уникальным в масштабе автономной системы (автономная система – группа маршрутизаторов (шлюзов) из одной административной области, взаимодействующих с использованием общего протокола Interior Gateway Protocol (IGP)).

Шлюз (gateway) - Оригинальный термин Internet сейчас для обозначения таких устройств используется термин маршрутизатор (router) или более точно маршрутизатор IP. В современном варианте термины "gateway" и "application gateway" используются для обозначения систем, выполняющих преобразование из одного естественного формата в другой. Примером шлюза может служить преобразователь X.400 - RFC 822 electronic mail.

Moct (bridge) — устройство, соединяющее две или несколько физических сетей и передающее пакеты из одной сети в другую. Мосты могут фильтровать пакеты, т.е. передавать в другие сегменты или сети только часть трафика, на основе информации канального уровня (MAC-адрес). Если адрес получателя присутствует в таблице адресов моста, кадр передается только в тот сегмент или сеть, где находится получатель. Похожими устройствами являются повторители (repeater), которые просто передают электрические сигналы из одного кабеля в другой и маршрутизаторы (router), которые принимают решение о передаче пакетов на основе различных критериев, основанных на информации сетевого уровня. В терминологии OSI мост является промежуточной системой на уровне канала передачи данных (Data Link Layer).

Повторитель (repeater) – устройство, которое передает электрические сигналы из одного кабеля в другой без маршрутизации или фильтрации пакетов. В терминах OSI репитер представляет собой промежуточное устройство Физического уровня.

Концентратор – это многопортовый повторитель сети с автосегментацией. Все порты концентратора равноправны. Получив сигнал от одной из подключенных к нему станций, концентратор транслирует его на все свои активные порты. При этом, если на каком-либо из портов обнаружена неисправность, то этот порт автоматически отключается (сегментируется), а после ее устранения снова делается активным. Автосегментация необходима для повышения надежности сети. Обработка коллизий и текущий контроль состояния каналов связи обычно осуществляется самим концентратором. Концентраторы можно использовать как автономные устройства или соединять друг с другом, увеличивая тем самым размер сети и создавая более сложные топологии. Кроме того, возможно их соединение магистральным кабелем в шинную топологию. Так как логика доступа к разделяемой среде существенно зависит от технологии, то для каждого типа технологии выпускаются свои модели — концентраторы Ethernet, концентраторы Token Ring, концентраторы FDDI, концентраторы VG-AnyLAN.

Трансивер — приемник-передатчик. Физическое устройство, которое соединяет интерфейс хоста с локальной сетью, такой как Ethernet. Трансиверы Ethernet содержат электронные устройства, передающие сигнал в кабель и определяющие коллизии.

Мультиплексор — Устройство, позволяющее передавать по одной линии несколько сигналов одновременно.

Модем — устройство, используемое для преобразования последовательности цифровых данных из передающего DTE в сигнал, подходящий для передачи на значительное расстояние. В случае приема выполняется обратное преобразование и данные воспринимаются приемным DTE. (DTE — Data Terminal Equipment - терминальное оборудование)

Компенсатор – устройство, компенсирующее искажения, связанные с частотной

зависимостью поглощения и задержки сигнала в линии. Эквалайзеры компенсируют амплитудные, частотные и фазовые искажения.

Сетевой адаптер — функцией сетевого адаптера является передача и прием сетевых сигналов из кабеля. Адаптер воспринимает команды и данные от сетевой операционной системы (ОС), преобразует эту информацию в один из стандартных форматов и передает ее в сеть через подключенный к адаптеру кабель.

Протоколы Ethernet, IP, TCP, UDP

Ethernet (от <u>лат.aether</u> — <u>эфир</u>) — пакетная технология <u>компьютерных</u> <u>сетей</u>, преимущественно локальных. Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат пакетов и протоколы управления доступом к среде — на <u>канальном уровне модели OSI</u>. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией <u>ЛВС</u> в середине <u>90-х</u> годов прошлого века, вытеснив такие устаревшие технологии, как <u>Arcnet</u>, FDDI и Token ring.

Технология Ethernet. В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать кабель витая пара и кабель оптический.

Метод управления доступом — множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов.

В <u>1995</u> году принят стандарт <u>IEEE</u> 802.3u Fast Ethernet со скоростью 100 Мбит/с, а позже был принят стандарт <u>IEEE</u> 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с. Появилась возможность работы в режиме <u>полный дуплекс</u>.

Формат кадра

Существует несколько форматов Ethernet-кадра.

- Первоначальный Variant I (больше не применяется).
- Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX (аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox) наиболее распространена и используется по сей день. Часто используется непосредственно протоколом интернет.
- Novell внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).
- Кадр IEEE 802.2 LLC.
- Кадр IEEE 802.2 LLC/SNAP.

Разновидности Ethernet

В зависимости от скорости передачи данных и передающей среды существует несколько

вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех нижеперечисленных вариантах.

В этом разделе дано краткое описание всех официально существующих разновидностей. По некоторым причинам, в дополнение к основному стандарту многие производители рекомендуют пользоваться другими запатентованными носителями — например, для увеличения расстояния между точками сети используется оптоволоконный кабель.

Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных, используя автоопределение скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 — поддерживает стандарты 10BASE-T, 100BASE-TX, и 1000BASE-T.

Стек протоколов ТСР/ІР -

Собирательное название для сетевых протоколов разных уровней, используемых в сетях.

В модели OSI данный стек занимает (реализует) все уровни и делится сам на 4 уровня: прикладной, транспортный, межсетевой, уровень доступа к сети (в OSI это уровни физический, канальный и частично сетевой). На стеке протоколов TCP/IP построено все взаимодействие пользователей в сети от программной оболочки до канального уровня модели OSI. По сути база, на которой завязано все взаимодействие. При этом стек независим от физической среды передачи данных.

Обычно в стеке TCP/IP верхние 3 уровня (прикладной, представительный и сеансовый) модели OSI объединяют в один — прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению. Упрощенно интерпретацию стека TCP/IP можно представить так:

	Прикладной «7 уровень»	напр. <u>HTTP, FTP, DNS</u> (<u>RIP, работающий поверх UDP, и BGP, работающий поверх TCP, являются частью сетевого уровня)</u>
4	<u>Транспортный</u>	напр. TCP, UDP, RTP, SCTP, DCCP (протоколы маршрутизации, подобные OSPF, что работают поверх являются частью сетевого уровня)
3	<u>Межсетевой</u>	Для TCP/IP это IP (IP) (вспомогательные протоколы, вроде ICMP и IGMP работают поверх но являются частью сетевого уровня; ARP не работает поверх IP)
2	<u>Канальный</u>	напр. Ethernet, Token ring, и подобные.
1	<u>Физический</u>	напр. физическая среда и принципы кодирования информации, Т1, Е1

Протокол TCP (Transmission Control Protocol)

ТСР – протокол, основанный на соединении, вы должны соединиться с сервером, прежде чем сможете передавать данные. ТСР гарантирует доставку и точность передачи данных.

ТСР гарантирует, что данные будут приняты в том же порядке, как и переданы.

ТСР передает данные сегментами. Сохраняется порядок сегментов (это достигается их нумерацией на стороне отправителя), устраняется дублирование сегментов, поврежденные сегменты откидываются (контрольная сумма), если подтверждение о доставке не приходит в течении контрольного времени — данные посылаются снова. Т.о. ТСР гарантирует, что приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь.

ТСР: установление и разрыв соединения

- **Сегмент 1:** Запрашивающая сторона (клиент) отправляет SYN сегмент, указывая номер порта сервера, к которому клиент хочет подсоединиться, и исходный номер последовательности клиента (ISN 32-битный идентификатор).
- **Сегмент 2:** Сервер отвечает своим сегментом SYN, содержащим ISN сервера. Сервер также подтверждает приход SYN клиента с использованием ACK (ISN клиента плюс один).
- **Сегмент 3:** Клиент должен подтвердить приход SYN от сервера с использованием ACK (ISN сервера плюс один).
- Разрыв соединения с помощью сегмента FIN (приход FIN'а означает, что в этом направлении прекращается движение потока данных), получившая сторона посылает подтверждение АСК, после чего посылает свой FIN и получает АСК в ответ. Всего 4 сегмента.

Протокол UDP (User Datagram Protocol)

UDP (User Datagram Protocol) — это сетевой протокол для передачи данных в сетях IP. Он является одним из самых простых протоколов транспортного уровня модели OSI.

В отличие от TCP, UDP не гарантирует доставку пакета. Это позволяет ему гораздо быстрее и эффективнее доставлять данные для приложений, которым требуется большая пропускная способность линий связи, либо требуется малое время доставки данных.

Для взаимодействия сетевых приложений протокол UDP использует 16-ти битные порты (значения от 0 до 65535). Порт 0 — зарезервированный, с 1 по 1023 - системные (фиксированы), с 1024 по 49151 — зарегистрированные, с 49152 по 65535 — свободно используемые клиентскими приложениями, временные.

- Заголовок UDP содержит 4 поля (все по 16 бит).
- Поле «порт отправителя» (16 бит) определяет процесс на хосте отправителя, пославший пакет
- Поле «порт получателя» (16 бит) определяет процесс на хосте получателя, которому предназначен данный пакет.
- Поле «Длина пакета» (16 бит) содержит суммарный размер UDP-пакета.
- Поле «контрольная сумма»

Недостаточная надёжность протокола может выражаться как в потере отдельных пакетов, так и в их дублировании. UDP используется при передаче потокового видео, игр реального времени и других, где надежность протокола не столь существенна.

IP адрес

IP-адрес представляет собой 32-битовое (по версии IPv4) или 128-битовое (по версии IPv6) двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде

четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. (или 128.10.2.30 — традиционная десятичная форма представления адреса, а 10000000 00001010 00000010 00011110 — двоичная форма представления этого же адреса). Каждый хост в TCP/IP сети имеет свой уникальный адрес. Некоторые хосты могут иметь более одного адреса. Каждая секция представляет собой один байт 32-битного адреса. Машины, которые имеют более одного IP адреса, называются multi-homed.

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (192.168.0.0/16, 172.16.0.0/12 или 10.0.0.0/8). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR – для Европы http://www.ripe.net/).

Вот как традиционно протоколы TCP/IP вписываются в модель OSI:

Прикладной	напр. HTTP, SMTP, SNMP, FTP, Telnet, scp, NFS, RTSP
Представительный	напр. XML, XDR, ASN.1, SMB, AFP
Сеансовый	напр. TLS, SSH, ISO 8327 / CCITT X.225, RPC, NetBIOS, ASP
Транспортный	напр. TCP, UDP, RTP, SCTP, SPX, ATP, DCCP, BGP, GRE
Сетевой	напр. IP, ICMP, IGMP, CLNP, ARP, RARP, OSPF, RIP, IPX, DDP
Канальный	напр. Ethernet, Token ring, PPP, HDLC, X.25, Frame relay, ISDN, ATM, MPLS
Физический	напр. электричество, радио, лазер