

Analysis for the Adverse Effects of LEO Mobility on Internet Congestion Control

draft-lai-ccwg-lsncc-00

Zeqi Lai, Zonglun Li, Qian Wu, Hewu Li, Qi Zhang

Tsinghua University Zhongguancun Laboratory

[IETF#121 - CCWG meeting, Dublin] [Nov 5, 2024]

Background

Impacts of LEO Mobility on Internet Congestion Control

Potential Mitigations

Background: LEO Satellite Networks (LSN)

- Providing Internet services from space
 - Through a network of low-earth orbit (LEO) satellites
 - Leading players: Starlink, OneWeb, Amazon Kuiper, Qianfan

Network Characteristics of LSNs

- Starlink as an LSN case (the largest operational LSN today)
 - From an average view: low latency and high speed
 - From a fine-granularity view: drastic network variations

Due to the LEO mobility, the network performance of end-to-end connection over an LSN changes drastically over time!

Background

Impacts of LEO Mobility on Internet Congestion Control

Potential Mitigations

A Real Check for CCAs over LEO Links

- Benchmarking various congestion control algorithms (CCAs)
 - Based on a satellite terminal deployed in Madrid

CCA comparison

- Loss-based: TCP-Reno, TCP-Cubic
- Delay-based: TCP-Vegas, Copa
- Model-based: BBRv1, BBRv3
- Learning-based: PCC-VIVACE

For each CCA we run more than 30 tests to obtain the statistic results

RTT against Throughput (1/3)

Loss-based CC

- Low throughput due to non-congestion packet loss
- E.g. packet loss due to satellite handovers

- Delay-based CC
 - Low throughput due to non-congestion delay jitter
 - E.g. LEO mobility changes the path, and thus the delay

RTT against Throughput (2/3)

BBRv1

- Frequently overuse the dynamic link capacity
- The Max_BW filter overestimates link capacity
- High delay and delay tail

BBRv3

- Throughput degradation due to the non-congestion packet loss
- Lower delay than BBRv1

RTT against Throughput (3/3)

Learning-based CC

- Utility function
- Sending rate contribution
- Latency penalty
- Loss penalty
- LSN conditions change rapidly over time
- It is challenging to learn and converge the sending rate to the correct value
- High delay

Background

Impacts of LEO Mobility on Internet Congestion Control

Potential Mitigations

Changes Brought by LEO Mobility

The fundamental assumptions in current CCAs

- Existing Internet congestion control leverages performance changes observed on the sender to estimate network congestion
- Existing assumptions: packet loss indicates congestion, delay increase indicates congestion, maximum throughput indicates link capacity

The unique LEO mobility breaks these assumptions

- Packet loss might be caused by satellite handovers
- Consistent delay increase might be caused by LEO path changes
- Max_BW filter might over-estimate the drastically changing link capacity

Potential Mitigations

 The mixture of congestion and non-congestion signals creates big challenges for Internet congestion control!

- Potential mitigations
 - Explicit notifications for discriminating network variance
 - Cross-layer optimization
 - Multi-path enhancement

Background

Impacts of LEO Mobility on Internet Congestion Control

Potential Mitigations

Conclusion and Future Work

 Internet paths with LEO links are carrying an increasing amount of network traffic

 The unique LEO mobility causes drastic end-to-end variations, involving new challenges on Internet congestion control

 We performed a performance study on various CCAs in a real LSN, and we hope it provides insights for future CCA standards

As our future work, we will explore improvements for CCAs in LSNs

THANKS

Comments & Questions

zeqilai@tsinghua.edu.cn lzl24@mails.tsinghua.edu.cn

Analysis for the Adverse Effects of LEO Mobility on Internet Congestion Control

draft-lai-ccwg-lsncc-00

Zeqi Lai, Zonglun Li, Qian Wu, Hewu Li, Qi Zhang Tsinghua University, China Zhongguancun Laboratory, China

