$k \approx 8$	(0.1)
k = 3.9	(0.2)
γ	(0.3)
α	(0.4)
γ	(0.5)
α	(0.6)
γ	(0.7)
α	(0.8)
$E_{ m A}$	(0.9)
$p_{ m partial}$	(0.10)
au	(0.11)
A_S^D	(0.12)
$t_{ m relax}$	(0.13)
t = 59	(0.14)
t = 65	(0.15)
t = 75	(0.16)
t = 85	(0.17)
t = 95	(0.18)
t = 100	(0.19)
n	(0.20)
1	(0.21)
n	(0.22)
$n \log n$	(0.23)
n	(0.24)
1	(0.25)
n	(0.26)
$\frac{r_c^3}{s^3}n^2$	(0.27)
n	(0.28)

(0.29)

_	
r_s^3	(0.30)
c	(0.31)
n+c	(0.32)
$n \log c$	(0.33)
$\log c$	(0.34)
1	(0.35)
$r_s^3 \log c$	(0.36)
$\log c$	(0.37)
$n + c^{\frac{2}{3}}$	(0.38)
$n \log n$	(0.39)
$\log n$	(0.40)
$r_s^3 \log n$	(0.41)
$\log n$	(0.42)
n	(0.43)
$n \log n$	(0.44)
$k \log k$	(0.45)
$r_s^3 + n^{\frac{1}{3}}$	(0.46)
r_s^3	(0.47)
1	(0.48)
nk	(0.49)
n	(0.50)
1	(0.51)
n	(0.52)
k	(0.53)
b	(0.54)
k_r	(0.55)
$d \le r_c$	(0.56)
r_c	(0.57)
r_s	(0.58)

(0.59)

s

k	(0.60)
k+1	(0.61)
atoms	(0.62)
size[3]	(0.63)
depth	(0.64)
atoms, space size, depth	(0.65)
$cellsize[0] \leftarrow spacesize[0] \cdot 2^{-depth}$	(0.66)
$cellsize[1] \leftarrow spacesize[1] \cdot 2^{-depth}$	(0.67)
$cellsize[2] \leftarrow spacesize[2] \cdot 2^{-depth}$	(0.68)
$root \leftarrow$	(0.69)
depth	(0.70)
atom	(0.71)
atoms	(0.72)
$cellindex[0] \leftarrow \lfloor atom.pos[0]/cellsize[0] \rfloor$	(0.73)
$cellindex[1] \leftarrow \lfloor atom.pos[1]/cellsize[1] \rfloor$	(0.74)
$cellindex[2] \leftarrow \lfloor atom.pos[2]/cellsize[2] \rfloor$	(0.75)
$cell \leftarrow$	(0.76)
root, cell index	(0.77)
root	(0.78)
i[3]	(0.79)
allocate	(0.80)
cell, id, allocate	(0.81)
$d \leftarrow$	(0.82)
d = 0	(0.83)
cell.children	(0.84)
$cell.children \leftarrow$	(0.85)
$childid \leftarrow$	(0.86)
2^{d-1}	(0.87)
$2\cdot$	(0.88)
2^{d-1}	(0.89)

$4\cdot$	(0.90)
2^{d-1}	(0.91)
cell.children [childid], i, allocate	(0.92)
=	(0.93)
N	(0.94)
points	(0.95)
k	(0.96)
$points, dim \leftarrow 0$	(0.97)
$n \leftarrow$	(0.98)
n = 0	(0.99)
points, dim	(0.100)
points	(0.101)
dim	(0.102)
$root \leftarrow points\left[\lfloor \frac{n}{2} \rfloor \right]$	(0.103)
$dim \leftarrow (dim + 1) \mod k$	(0.104)
$root.left \leftarrow$	(0.105)
$points\left[0:\lfloorrac{n}{2} floor-1 ight],dim$	(0.106)
$root.right \leftarrow$	(0.107)
$points\left[\lfloor rac{n}{2} floor + 1: n-1 ight], dim$	(0.108)
root	(0.109)
C	(0.110)
\Leftrightarrow	(0.111)
C	(0.112)
\Rightarrow	(0.113)
k_d	(0.114)
0	(0.115)
$_{0}\in$	(0.116)
$ eq \emptyset$	(0.117)
\in	(0.118)

$$\setminus \tag{0.119}$$

$$\in \tag{0.120}$$

$$\cap \tag{0.121}$$

$$\setminus \tag{0.122}$$

$$\alpha$$
 (0.123)

$$r_d > \alpha^{-1} \tag{0.124}$$

$$\alpha$$
 (0.125)

$$\alpha = 0 \tag{0.126}$$

$$\alpha < 0 \tag{0.127}$$

$$r_d > \alpha \tag{0.128}$$

$$r_d < \alpha \tag{0.129}$$

$$\sim t \tag{0.130}$$

$$\sim n_{\rm cyc.}$$
 (0.131)

$$\vec{F}(X) \tag{0.132}$$

$$V(X) \tag{0.133}$$

$$V(r_i j) \tag{0.134}$$

$$r_{\rm cut}$$
 (0.135)

$$\vec{F}_{ij}(r_{ij}) = \vec{\nabla}V(r_{ij}) \tag{0.136}$$

$$E = \sum_{i} \sum_{j \neq i} V(r_{ij}) \tag{0.137}$$

$$V_{\rm LJ}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$
 (0.138)

$$E = \sum_{i} \sum_{j \neq i} V_2(r_{ij}) + \sum_{i} \sum_{j \neq i} \sum_{i \neq k \neq j} V_3(r_{ij}, r_{ik}, \theta_{ijk}) + \dots$$
 (0.139)

$$V_{\alpha\beta}(r_{ij}) \tag{0.140}$$

$$i (0.141)$$

$$F_{\alpha} \tag{0.142}$$

$$\rho_{\beta}(r_{ij}) \tag{0.143}$$

$$\alpha$$
 (0.144)

$$\beta \tag{0.145}$$

$$E = \sum_{i} \left[F_{\alpha} \left(\sum_{j \neq i} \rho_{\beta} \left(r_{ij} \right) \right) + \frac{1}{2} \sum_{j \neq i} V_{\alpha\beta} \left(r_{ij} \right) \right]$$
 (0.146)

$$E = \sum_{i} \left[F_{\alpha} \left(\bar{\rho}_{i} \right) + \frac{1}{2} \sum_{j \neq i} V_{ij} \left(r_{ij} \right) \right]$$

$$(0.147)$$

$E = \sum_{i} \left F_{\alpha} \left(\bar{\rho}_{i} \right) + \frac{1}{2} \sum_{j \neq i} V_{ij} \left(r_{ij} \right) \right $	(0.147)
σ	(0.148)
π	(0.149)
$E_{ m bond}$	(0.150)
$E_{ m lp}$	(0.151)
$E_{ m over}$	(0.152)
$E_{ m under}$	(0.153)
π	(0.154)
$E_{ m val}$	(0.155)
$E_{ m pen}$	(0.156)
$E_{ m coa}$	(0.157)
2	(0.158)
$E_{ m C2}$	(0.159)
2	(0.160)
$E_{ m tors}$	(0.161)
$E_{ m conj}$	(0.162)
$E_{ m H\text{-}bond}$	(0.163)
$E_{ m vdWaals}$	(0.164)
$E_{ m Coulomb}$	(0.165)
$t_{ m relax}$	(0.166)
au	(0.167)
$t_{ m relax}$	(0.168)

(0.169)

 $t_{
m relax} = 50\,{
m ps}$ (0.170)

 $\tau = 0.02\,\mathrm{fs}$ (0.171)

 \Downarrow (0.172)

 $\sigma_z=1.2\,\text{Å}$ (0.173)

$$\sigma_z = 6.4 \, \mathring{\mathrm{A}} \qquad \qquad (0.174)$$

$$\sigma_z = 8.0 \, \mathring{\mathrm{A}} \qquad \qquad (0.175)$$

$$\stackrel{\triangle}{=} \qquad \qquad (0.176)$$

$$X_0 \qquad \qquad (0.177)$$

$$X \qquad \qquad (0.178)$$

$$t_0 = 0 \qquad \qquad (0.179)$$

$$X_n \in \mathbb{X} \qquad \qquad (0.180)$$

$$E_i \qquad \qquad (0.181)$$

$$X_{n-1} \qquad \qquad (0.182)$$

$$X_n^i \qquad \qquad (0.183)$$

$$E_i : X_{n-1} \to X_n^i \in \mathbb{X} \quad , \quad i \in [1, N] \qquad \qquad (0.184)$$

$$E_i \qquad \qquad (0.185)$$

$$r_i \qquad \qquad (0.185)$$

$$r_i \qquad \qquad (0.186)$$

$$R_i \qquad \qquad (0.187)$$

$$R_N \qquad \qquad (0.188)$$

$$r_i = r(E_i) \qquad \qquad (0.188)$$

$$r_i = r(E_i) \qquad \qquad (0.189)$$

$$R_i = \sum_{j \le i} r_j \qquad \qquad (0.190)$$

$$X_n \qquad \qquad (0.191)$$

$$X_n^i \qquad \qquad (0.193)$$

$$N = 0 \qquad \qquad (0.194)$$

$$R_N = 0 \qquad \qquad (0.194)$$

$$R_N = 0 \qquad \qquad (0.195)$$

$$X_n = X_n^i : R_{i-1} \le uR_N < R_i \quad , \quad u \in [0, 1) \text{ gleichverteilt} \qquad (0.196)$$

$$t_n = t_{n-1} + \frac{-\ln(u')}{R_N} \quad , \quad u' \in [0, 1) \text{ gleichverteilt} \qquad (0.197)$$

$$X_{n+1}$$
 (0.198)

$$N = 0 \tag{0.199}$$

$$R_N = 0 \tag{0.200}$$

$$t_n > t_{\rm fin} \tag{0.201}$$

$$E_i (0.202)$$

$$\begin{array}{c} X_n & (0.203) \\ X_n^i & (0.204) \\ \alpha & (0.205) \\ \hline \tau_p & (0.206) \\ R & (0.207) \\ m & (0.208) \\ \vec{r} & (0.209) \\ \vec{p} & (0.210) \\ \vec{F}(R) & (0.211) \\ N & (0.212) \\ V & (0.213) \\ E & (0.214) \\ N = {\rm const.} & (0.214) \\ N = {\rm const.} & (0.215) \\ \hline V = {\rm const.} & (0.215) \\ \hline i & (0.216) \\ V = {\rm const.} & (0.217) \\ \hline i & (0.220) \\ \dot{\vec{\tau}}_i = \frac{\vec{P}_i}{m_i} & (0.221) \\ \dot{\vec{\tau}}_i = m\vec{a}_i = \vec{F}_i(R) & (0.222) \\ T & (0.223) \\ N = {\rm const.} & (0.224) \\ \hline V = {\rm const.} & (0.225) \\ \hline V = {\rm const.} & (0.222) \\ \hline T & (0.223) \\ \hline V = {\rm const.} & (0.224) \\ \hline V = {\rm const.} & (0.224) \\ \hline V = {\rm const.} & (0.226) \\ \hline V = {\rm const.} & (0.228) \\ \hline T_{Ziel} & (0.229) \\ \hline (0.230) \\ \hline E_{kin} = \frac{1}{2}mv^2 = \frac{d}{2}k_BT & (0.231) \\ \hline \end{array}$$

$$T_{\rm Ziel}$$
 (0.232)

$$\tau \tag{0.233}$$

$$\vec{v}_i' = \vec{v}_i \cdot \sqrt{1 + \frac{\Delta t}{\tau} \left(\frac{T_{\text{Ziel}}}{T} - 1\right)}$$
 (0.234)

$$s (0.235)$$

$$\dot{\vec{p}}_i = \vec{F}_i - s\vec{p}_i \tag{0.236}$$

$$(0.237)$$

$$\tau \tag{0.238}$$

$$M \tag{0.239}$$

$$\tau \tag{0.240}$$

$$\dot{s} = \frac{1}{\tau M} \left(\sum_{i} \frac{p_i^2}{2m_i} - Ndk_B T \right) \tag{0.241}$$

$$N = \text{const.} \tag{0.242}$$

$$p = \text{const.} \tag{0.244}$$

$$T = \text{const.} \tag{0.246}$$

$$PV = Nk_B T + \frac{1}{d} \sum_{i=1}^{N} \vec{r}_i \cdot \vec{F}_i$$
 (0.247)

$$\vec{X}_0 \tag{0.248}$$

$$\nabla E(X) \tag{0.249}$$

$$\alpha$$
 (0.250)

$$\Rightarrow \qquad (0.251)$$

$$\vec{X}_i = \vec{X}_{i-1} - \alpha \nabla E(\vec{X}_{i-1}) \tag{0.252}$$

$$\left| \vec{X}_i - \vec{X}_{i-1} \right| < X_{\text{tol}} \tag{0.253}$$

$$\max_{k} |X_{i,k} - X_{i-1,k}| < X_{\text{tol}}$$
 (0.254)

$$\left| \nabla E(\vec{X}_{i-1}) \right| < E_{\text{tol}} \tag{0.255}$$

$$i > i_{\text{tol}} \tag{0.256}$$

$$\vec{s}_i = \Delta \vec{X}_i + \beta_i \vec{s}_{i-1} \tag{0.257}$$

$$\beta_{i} = \max \left(0, \frac{\Delta \vec{X}_{i} \cdot \left(\Delta \vec{X}_{i} - \Delta \vec{X}_{i-1} \right)}{\Delta \vec{X}_{i-1} \cdot \Delta \vec{X}_{i-1}} \right) \text{ (Polak-Ribire)}$$
 (0.258)

$$Id (0.259)$$

$$_{2}$$
 (0.260)