Greenbergian Universals and Bayesian inference

Jenny Culbertson

Simulating Language, 7 March, 2019

Greenberg's Universal 1

1. SOV, SVO, VSO (not VOS, OSV, OVS)

Greenberg's Universal 26

26. Suffixes (not prefixes)

Greenberg's Universal 18

18. If Adjective-Noun \rightarrow Numeral-Noun

- Lots of variation across languages
- ▶ Lots of confounding factors (e.g.,...?)

- Lots of variation across languages
- Lots of confounding factors (e.g.,...?)
- But could indicate cognitive biases

- Lots of variation across languages
- ▶ Lots of confounding factors (e.g.,...?)
- But could indicate cognitive biases
 - Cognitive bias = prior bias
 - Non-uniform preference among patterns
 - (Could be innate or learned)
 - (Could be general or specialized for language)

- Lots of variation across languages
- ▶ Lots of confounding factors (e.g.,...?)
- But could indicate cognitive biases
 - Cognitive bias = prior bias
 - Non-uniform preference among patterns
 - (Could be innate or learned)
 - (Could be general or specialized for language)
- ▶ How to investigate? Preferences in a single generation??

Universal 18

18. If Adjective-Noun \rightarrow Numeral-Noun

Universal 18

► Actually, there is more than one asymmetry here...

	N-Adj	Adj-N
Num-N	17%	27%
N-Num	52%	4%

Universal 18

► Actually, there is more than one asymmetry here...

	N-Adj	Adj-N
Num-N	17%	27%
N-Num	52%	4%

▶ Related to another bias you've read about??

Setting up the experiment

▶ The conditions

► Easy or hard to learn...?

Setting up the experiment

The conditions

- ► Easy or hard to learn...?
- Adding in regularization...

Setting up the experiment

The conditions

- Easy or hard to learn...?
- Adding in regularization...
 - 70% dominant pattern, 30% minority pattern
 - What would regularization look like in this case?

- ► Training = listening to Adj-N, N-Adj, Num-N, N-Num phrases
- ► Testing = producing phrases

- ► Training = listening to Adj-N, N-Adj, Num-N, N-Num phrases
- ► Testing = producing phrases
- ► Three reasonable hypotheses...

- ► Training = listening to Adj-N, N-Adj, Num-N, N-Num phrases
- ► Testing = producing phrases
- ► Three reasonable hypotheses...

H1. Learning involves tracking input statistics

- ► Training = listening to Adj-N, N-Adj, Num-N, N-Num phrases
- ► Testing = producing phrases
- ▶ Three reasonable hypotheses...
 - H1. Learning involves tracking input statistics
 - H2. Learners regularization variation

- ► Training = listening to Adj-N, N-Adj, Num-N, N-Num phrases
- ► Testing = producing phrases
- ► Three reasonable hypotheses...
 - H1. Learning involves tracking input statistics
 - H2. Learners regularization variation
 - H3. Learners regularize but only orders that are easy to learn

▶ In terms of Bayesian inference...

▶ In terms of Bayesian inference...

H1. Input likelihood \times flat/uninformative prior

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior
 - H3. Input likelihood \times regularization prior \times order prior

▶ Three predicted outcomes...

- ► Three predicted outcomes...
- 1. Probability matching

- ► Three reasonable outcomes...
- 1. Probability matching
- 2. Across the board regularization

- Three reasonable outcomes...
- 1. Probability matching
- 2. Across the board regularization
- 3. Regularization modulated by order

Individual learner outcomes

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior
 - H3. Input likelihood \times regularization prior \times order prior

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior
 - H3. Input likelihood \times regularization prior \times order prior
- Likelihood
- Regularization prior
- Ordering prior

Likelihood

- Coin toss example
 - ▶ How many heads out of total tosses?
 - ► Fair coin?
 - ▶ Biased coin?

- ► Coin toss example
 - How many heads out of total tosses?
 - ► Fair coin?
 - Biased coin?
- Likelihood

binomial(5 heads
$$|p = 0.5, 10 \text{ tosses}) = 0.2$$

binomial(5 heads |p = 0.9, 10 tosses) = 0.001

- Adj, N ordering
 - How many Adj-N out of total Adj utterances?
 - Does the grammar tend to use Adj-N?

- Adj, N ordering
 - How many Adj-N out of total Adj utterances?
 - ▶ Does the grammar tend to use Adj-N?
- Likelihood

binomial(28 Adj-N |p = 0.5, 40 Adj) = 0.005

- Adj, N ordering
 - How many Adj-N out of total Adj utterances?
 - ▶ Does the grammar tend to use Adj-N?
- Likelihood

binomial(28 Adj-N
$$|p = 0.5, 40 \text{ Adj}) = 0.005$$

binomial(28 Adj-N
$$|p = 0.7, 40 \text{ Adj}) = 0.14$$

- Adj, N ordering
 - How many Adj-N out of total Adj utterances?
 - ▶ Does the grammar tend to use Adj-N?
- Likelihood

binomial(28 Adj-N
$$|p = 0.5, 40 \text{ Adj}) = 0.005$$

binomial(28 Adj-N
$$|p = 0.7, 40 \text{ Adj}) = 0.14$$

binomial(28 Adj-N |p| =0.3, 40 Adj) = 0.0000018

- Adj and Num ordering
 - Grid of possible probability combos
 - Each assigns likelihood to a set of counts
 - (Total likelihood just multiplies Adj and Num likelihoods)

Formulating hypotheses

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior \times flat order prior
 - H3. Input likelihood \times regularization prior \times biased order prior
- Likelihood
- Regularization prior
- Ordering prior

Regularization prior

▶ Which points in the grid are more likely a priori?

Regularization prior

Which points in the grid are more likely a priori?

ightharpoonup Asymmetrical beta distributions: skewed parameters ightarrow one-way regularization

Effect of prior on posterior

▶ Likelihood alone vs. likelihood × regularization prior

Effect of prior on posterior

▶ Likelihood alone vs. likelihood × regularization prior

Regularization prior

- Which points in the grid are more likely a priori?
- ▶ Parameters of the beta: α, β
- ► Same as the regularization prior from Reali & Griffiths, but asymmetrical

Regularization prior

- Which points in the grid are more likely a priori?
- ▶ Parameters of the beta: α, β
- ► Same as the regularization prior from Reali & Griffiths, but asymmetrical
- Conceptually: prior counts, e.g. of Adj-N utterances

Formulating hypotheses

- ▶ In terms of Bayesian inference...
 - H1. Input likelihood \times flat/uninformative prior
 - H2. Input likelihood \times regularization prior \times flat order prior
 - H3. Input likelihood \times regularization prior \times biased order prior
- Likelihood
- Regularization prior
- Ordering prior

- Which patterns are more likely a priori?
- Combination of two beta distributions gives pattern type

- Which patterns are more likely a priori?
- ▶ Combination of two beta distributions gives pattern type

- Which pattern is more likely a priori?
- Combination of two beta distributions gives pattern type
- Ordering prior is probability of each type, e.g.[0.25, 0.25, 0.25, 0.25]

- Which pattern is more likely a priori?
- Combination of two beta distributions gives pattern type
- Ordering prior is probability of each type, e.g.

[0.25, 0.25, 0.25, 0.25]

[what would a biased one look like??]

Complete prior

- ► Complete prior probability of a grammar p(Adj-N), p(Num-N) is a sum over four beta combinations of:
 - prior probability of p(Adj-N) given regularization bias ×
 - prior probability of p(Num-N) given regularization bias ×
 - prior probability of particular combination of betas
- e.g., prior for p(Adj-N)=0.8, p(Num-N)=0.2

$$\begin{array}{l} \textit{beta}(0.8|\alpha=10,\beta=2) \times \textit{beta}(0.2|\alpha=10,\beta=2) \times 0.25 + \\ \textit{beta}(0.8|\alpha=2,\beta=10) \times \textit{beta}(0.2|\alpha=2,\beta=10) \times 0.25 + \\ \textit{beta}(0.8|\alpha=2,\beta=10) \times \textit{beta}(0.2|\alpha=10,\beta=2) \times 0.25 + \\ \textit{beta}(0.8|\alpha=10,\beta=2) \times \textit{beta}(0.2|\alpha=2,\beta=10) \times 0.25 + \\ \end{aligned}$$

Complete prior

- ► Complete prior probability of a grammar p(Adj-N), p(Num-N) is a sum over four beta combinations of:
 - ▶ prior probability of p(Adj-N) given regularization bias ×
 - prior probability of p(Num-N) given regularization bias ×
 - prior probability of particular combination of betas
- e.g., prior for p(Adj-N)=0.8, p(Num-N)=0.2

$$beta(0.8|\alpha=10,\beta=2)\times beta(0.2|\alpha=10,\beta=2)\times 0.25+\\beta(0.8|\alpha=2,\beta=10)\times beta(0.2|\alpha=2,\beta=10)\times 0.25+\\beta(0.8|\alpha=2,\beta=10)\times beta(0.2|\alpha=10,\beta=2)\times 0.25+\\beta(0.8|\alpha=10,\beta=2)\times beta(0.2|\alpha=2,\beta=10)\times 0.25+\\beta(0.8|\alpha=10,\beta=2)\times beta(0.2|\alpha=2,\beta=10)\times 0.25+\\beta(0.8|\alpha=10,\beta=2)\times beta(0.8|\alpha=10,\beta=2)\times beta(0.8|\alpha=10,\beta=2)\times beta(0.8|\alpha=10,\beta=2)\times beta(0.8|\alpha=10,\beta=2)\times beta(0.8|\alpha=1$$

 \blacktriangleright ...Low component prior \rightarrow posterior will move away from that area of grammar space

Looking for prior biases

▶ What parameters make the testing data most likely?

Looking for prior biases

- What parameters make the testing data most likely?
- ▶ Regularization parameters (α, β) very skewed (16.5, 0.001)

Looking for prior biases

- ▶ What parameters make the testing data most likely?
- ▶ Regularization parameters (α, β) very skewed (16.5, 0.001)
- Prior probability of pattern types:

Posterior (finally!)

► What kinds of p(Adj-N), p(Num-N) pairs are learners likely to acquire given set of prior parameters?

Posterior (finally!)

- ► What kinds of p(Adj-N), p(Num-N) pairs are learners likely to acquire given set of prior parameters?
- ► Prior probability of p(Adj-N)=high, p(Num-N)=high is high
- ▶ Prior probability of p(Adj-N)=low, p(Num-N)=low is high
- ▶ Prior probability of p(Adj-N)=low, p(Num-N)=high is pretty low
- ▶ Prior probability of p(Adj-N)=high, p(Num-N)=low is zero!

	N-Adj	Adj-N
Num-N	17%	27%
N-Num	52%	4%

For the lab...

- Calculate posterior distributions
- Recreate model predictions
- ► Investigate the effect of the prior parameters on predicted grammars
- Extra-credit: iterate it

Readings

- ▶ [Culbertson et al., 2012] link to paper>
- ► [Culbertson and Smolensky, 2012] link to paper>

Culbertson, J. and Smolensky, P. (2012). A Bayesian model of biases in artificial language learning: The case of a word-order universal. *Cognitive Science*, 36(8):1468–1498.

Culbertson, J., Smolensky, P., and Legendre, G. (2012). Learning biases predict a word order universal. *Cognition*, 122:306–329.