import matplotlib.pyplot as plt
from sklearn.datasets import load\_iris
from sklearn.datasets import load\_breast\_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model\_selection import train\_test\_split
import pandas as pd
import numpy as np
from sklearn import tree

import pandas as pd
from sklearn.datasets import load\_iris
data = load\_iris()
df = pd.DataFrame(data.data, columns=data.feature\_names)
df['target'] = data.target

df.describe()

|       | sepal length<br>(cm) | sepal width<br>(cm) | petal length<br>(cm) | petal width<br>(cm) | target     |
|-------|----------------------|---------------------|----------------------|---------------------|------------|
| count | 150.000000           | 150.000000          | 150.000000           | 150.000000          | 150.000000 |
| mean  | 5.843333             | 3.057333            | 3.758000             | 1.199333            | 1.000000   |
| std   | 0.828066             | 0.435866            | 1.765298             | 0.762238            | 0.819232   |
| min   | 4.300000             | 2.000000            | 1.000000             | 0.100000            | 0.000000   |
| 25%   | 5.100000             | 2.800000            | 1.600000             | 0.300000            | 0.000000   |
| 50%   | 5.800000             | 3.000000            | 4.350000             | 1.300000            | 1.000000   |
| 75%   | 6.400000             | 3.300000            | 5.100000             | 1.800000            | 2.000000   |
| max   | 7.900000             | 4.400000            | 6.900000             | 2.500000            | 2.000000   |

df.head()

|   | sepal length<br>(cm) | sepal width<br>(cm) | petal length<br>(cm) | petal width<br>(cm) | target |
|---|----------------------|---------------------|----------------------|---------------------|--------|
| 0 | 5.1                  | 3.5                 | 1.4                  | 0.2                 | 0      |
| 1 | 4.9                  | 3.0                 | 1.4                  | 0.2                 | 0      |
| 2 | 4.7                  | 3.2                 | 1.3                  | 0.2                 | 0      |
| 3 | 4.6                  | 3.1                 | 1.5                  | 0.2                 | 0      |
| 4 | 5.0                  | 3.6                 | 1.4                  | 0.2                 | 0      |

df.describe(include="all")

|       | sepal length<br>(cm) | sepal width<br>(cm) | petal length<br>(cm) | petal width<br>(cm) | target     |
|-------|----------------------|---------------------|----------------------|---------------------|------------|
| count | 150.000000           | 150.000000          | 150.000000           | 150.000000          | 150.000000 |
| mean  | 5.843333             | 3.057333            | 3.758000             | 1.199333            | 1.000000   |
| std   | 0.828066             | 0.435866            | 1.765298             | 0.762238            | 0.819232   |
| min   | 4.300000             | 2.000000            | 1.000000             | 0.100000            | 0.000000   |
| 25%   | 5.100000             | 2.800000            | 1.600000             | 0.300000            | 0.000000   |
| 50%   | 5.800000             | 3.000000            | 4.350000             | 1.300000            | 1.000000   |
| 75%   | 6.400000             | 3.300000            | 5.100000             | 1.800000            | 2.000000   |
| max   | 7.900000             | 4.400000            | 6.900000             | 2.500000            | 2.000000   |

df.columns

df.shape

(150, 5)

X\_train, X\_test, Y\_train, Y\_test = train\_test\_split(df[data.feature\_names], df['target'], ran

clf.fit(X\_train, Y\_train)

DecisionTreeClassifier(max\_depth=2, random\_state=0)

```
tree.plot_tree(clf);
```

```
\Box
                     X[3] \le 0.8
                     gini = 0.665
                    samples = 112
                 value = [37, 34, 41]
                               X[2] \le 4.95
            gini = 0.0
                                gini = 0.496
         samples = 37
                               samples = 75
        value = [37, 0, 0]
                             value = [0, 34, 41]
                     gini = 0.153
                                           gini = 0.05
                    samples = 36
                                          samples = 39
                   value = [0, 33, 3]
                                        value = [0, 1, 38]
```



✓ 0s completed at 2:28 PM

×