

Studia Podyplomowe Inżynieria Oprogramowania 2023/2024

Zarządzanie Projektami Informatycznymi

Studium wykonalności Systemu automatycznej ochrony PPOŻ dla Nadleśnictw

Autorzy: Sebastian Brzeziński Oskar Mężyk

Prowadzący: dr hab. inż. Radosław Klimek

Spis treści

1. Pr	oponowana architektura systemu	3
1.	1 Diagram kontekstowy	3
1.	2 Dekompozycja	4
1.	3 Projekt klas systemu	5
2. W	ykonalność techniczna	6
2.	1 Urządzenia i systemy komunikacji	6
2.	2 Stos technologiczny oprogramowania	6
2.	3 Warianty wykonania	7
3. Ra	amy prawne	8
4. An	naliza SWOT	10
5. Sz	acowanie złożoności – wariant II optymalny	.12
5.	1 Wagi złożoności systemu	12
5.	2 Identyfikacja punktów funkcyjnych	12
5.	3 Złożoność techniczna	13
5.	4 Estymacja LOC/FP	13
5.	5 Estymacja LOC/FP – analiza złożoności dla wariantów	.14
5.	6 Estymacja KLOC	15
6. Sz	acowanie pracochłonności – wariant II optymalny	.15
6.	1 Klasa projektu COCOMO	15
6.	2 Estymacja MM i TDEV	17
7. Sz	acowanie ryzyka	17
7.	1 Identyfikacja ryzyk	17
	7.1.1 Ryzyka techniczne	17
	7.1.2 Ryzyka projektowe	18
	7.1.3 Ryzyka Operacyjne	18
	7.1.4 Ryzyka Zewnętrzne	19
7.	2 Macierz ryzyka	19
8. Kc	osztorys	20
8.	1 Stawki wynagrodzeń w zespole	20
8.	2 Koszty zarządzania projektem	21
8.	3 Kosztorys projektu	21
9. Ha	armonogram projektu	22
9.	1 Podział prac	22
9	2 Wytwarzanie oprogramowania	22

System PPOŻ ma na celu wspomaganie służb leśnych w monitorowaniu i automatycznym wykrywaniu zagrożeń pożarowych w obrębie danego nadleśnictwa. Użytkownikami i właścicielami Systemu są służby leśne. System obejmuje sieć czujników i kamer, umieszczonych na wieżach obserwacyjnych i innych obiektach technicznych, wraz z ich lokalizacją GPS, informacją o stanie technicznym i możliwością podglądu obrazu. Obraz z kamer i sygnały z czujników przekazywane są do Centrum Monitoringu, w którym pełniony jest dyżur 24h/7dni w tygodniu. Całość systemu oparta jest na istniejącym systemie GIS z Mapą Nadleśnictwa oraz Bazie Danych, zawierających Punkty Obserwacyjne. System odpowiedzialny jest za wykrycie zagrożenia pożarowego, wskazanie przybliżonej pozycji pożaru, automatyczne powiadomienie Centrum Monitoringu. Dyspozytor Centrum Monitoringu odpowiedzialny jest za zaakceptowanie, przetworzenie oraz odwołanie Zdarzenia. System PPOŻ musi zapisywać wszelkie alarmy, powiadomienia, zgłoszenia itp. Zdarzenia do Dziennika Zdarzeń. Raz wygenerowanego Zdarzenia nie można usunąć, zamknięcie Zdarzenia możliwe jest tylko w odpowiednim statusie Zdarzenia. System musi uwzględniać awarie poszczególnych komponentów i pracę w trybie awaryjnym.

1. Proponowana architektura systemu

1.1 Diagram kontekstowy

1.2 Dekompozycja

1.3 Projekt klas systemu

2. Wykonalność techniczna

Analizowany system może zostać oparty na istniejących technologiach bez konieczności rozwoju specjalistycznych urządzeń ani narzędzi programistycznych. Ponieważ na System składają się zarówno elementy oprogramowania jak i sprzętowe, należy rozważyć je osobno.

2.1 Urządzenia i systemy komunikacji

Tab.2 Realizacja techniczna elementów sprzętowych

Urządzenie	Realizacja techniczna
Czujniki dymu i temperatury	 Standardowe czujniki wielofunkcyjne, z pomiarem temperatury, zapylenia i zadymienia niskomocowe czujniki temperatury i zadymienia zasilane z baterii słonecznych niskomocowe czujniki temperatury zasilane bateryjnie
Kamery	 Kamery HD z pozycjonowaniem pola widzenia Kamery termowizyjne wysokiej rozdzielczości Kamery z detekcją UV do wykrywania płomieni
System komunikacji	 LTE/5G dla urządzeń zasilanych z sieci LoRaWan dla czujników zasilanych bateryjnie
Centrum Monitoringu	Standardowe urządzenia IT
Serwery baz danych	Urządzenia klasy serwer, z funkcją archiwizacji
Urządzenia sieciowe	Infrastruktura 1Gbit, światłowód

2.2 Stos technologiczny oprogramowania

Tab.2 Realizacja techniczna elementów oprogramowania

Moduł	Realizacja techniczna
Backend	 Podstawowe moduły logiczne Java, C# lub C++ Framework: SpringBoot, ASP.NET moduły analizy danych, moduły AI/ML Python Framework: Flask/Django
Bazy danych	 Relacyjne zdarzenia, raporty, dane ewidencyjne lasów PostgresSQL, MySQL Nierelacyjne

	nargania wideo, dokumenty, mapyMongoDB
Frontend	 JavaScript, Typescript Framework: Angular, React PHP, HTML
SystemGIS	 RESTApi do zewnętrznego systemu GIS JavaScritpt OpenLayers – wyświetlanie map
Komunikacja z czujnikami	MQTTWebSockets (stream)
Raportowanie, Utrzymanie systemu	 ELK Stack logi systemowe elasticsearch + logstash + kibana Grafana prezentacja graficzna niektórych parametrów systemu
Zabezpieczenia	 Szyfrowanie TLS/SSL Autoryzacja Dyspozytora: RFID tag, hasło Komunikacja do Serwerów Baz Danych: OAuth2

2.3 Warianty wykonania

System może zostać wykonany wg trzech wariantów, w zależności od stopnia zaawansowania detekcji zagrożeń pożarowych, budżetu i przewidywanego czasu realizacji. Poniżej przedstawiono opcje wykonania.

Dalsza analiza oparta zostanie na wariancie II optymalnym.

Tab.3: Warianty wykonania systemu.

	Wariant I - minimalny								
Opis	W wariancie minimalnym wykorzystane są tylko elementy standardowe oraz oprogramowanie Open Source. System składa się z kilku oddzielnych modułów programowych, odpowiedzialnych za różne podsystemy. Integracja map oraz bazy danych jest na podstawowym poziomie, system raportowania ma ograniczone możliwości.								
Zalety	Najtańsza ścieżka realizacji projektu. Duża modułowość systemu, możliwość szybkiej wymiany poszczególnych elementów. Szybkie początkowe efekty.								
Wady	Brak spójności oprogramowania, brak niektórych funkcjonalności, obsługa z kilku oddzielnych aplikacji, problematyczne i kosztowne utrzymanie, utrudniona analiza błędów systemu. Brak lub ograniczona możliwość rozwoju systemu.								
Wariant II - optymalny									

Opis	W wariancie optymalnym wykorzystane są standardowe komponenty oraz w większości oprogramowanie OpenSource, jednak włożono wysiłek w integrację logiki w ramach jednej aplikacji. Stos technologiczny zwiększa się o dodatkowe języki i frameworki.							
Zalety	Interfejsy do baz danych, map, raportowania czy logowania są zintegrowane i umożliwiają spójne zarządzanie zdarzeniami. System jest dostosowany do specyfiki branży i korzysta w pełni z funkcji dostarczanych przez zamontowane czujniki czy kamery. Wykrywanie i usuwanie błędów jest ułatwione. Dalszy rozwój systemu jest możliwy ze względu na przemyślaną architekturę.							
Wady	Wykonanie systemu wymaga więcej nakładu pracy, ze względu na obsługę przepływu danych między poszczególnymi modułami oprogramowania. Wykorzystanie wszystkich funkcjonalności dostarczonych komponentów zwiększa podatność na awarie oraz wymaga większych zasobów na przetwarzanie i przechowywanie danych.							
	Wariant III - maksymalny							
Opis	W wariancie maksymalnym system wykonany jest z najnowocześniejszych komponentów z obsługą AI/ML. Oprogramowanie integruje płatne podsystemy zarządzania procesami lub gotowe moduły oprogramowania.							
Zalety	Obsługa nowoczesnych metod detekcji pożarów, wsparcie decyzyjne AI, odpowiedzialność za wsparcie niektórych modułów przeniesiona na dostawcę podsystemu, ułatwiona integracja i wdrożenie. Wysiłek projektowy przeniesiony na rozwijanie nowoczesnych technologii, raczej niż standardowych modułów przesyłania i transformacji danych.							
Wady	Zwiększone koszty projektu, rozmyta odpowiedzialność i konieczność konsultowania decyzji projektowych pomiędzy firmami. Uzależnienie od konkretnego dostawcy. Zwiększona ilość zaawansowanych technologii i zwiększone wymagania dotyczące ilości danych, szybkości ich przetwrzania oraz archiwizacji.							

3. Ramy prawne

Analiza przetwarzanych danych oraz beneficjentów (użytkowników) systemu wymaga zaplanowania oddzielnego etapu dla studium prawnego i wdrożenia zasad postępowania zgodnych z obowiązującymi przepisami. Poniżej zidentyfikowane otoczenie prawne systemu:

- Ustawa o Państwowej Straży Pożarnej z dnia 24 sierpnia 1991 r.
 - w szczególności w zakresie Organizacji i prowadzenia akcji ratowniczej (Art.20)
- Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów
 - w szczególności rozdział 9: Zabezpieczenie przeciwpożarowe lasów
- Ustawa o Lasach Państwowych z dnia 28 września 1991 r.
- Ustawa z dnia 17 grudnia 2021 r. o ochotniczych strażach pożarnych
- Ustawa z dnia 11 września 2019 r. Prawo zamówień publicznych
- Ustawa z dnia 10 maja 2018 r. o ochronie danych osobowych

4. Analiza SWOT

Strenghts (Mocne strony)

Innowacyjność i zaawansowanie technologiczne:

- Wykorzystanie nowoczesnych technologii GIS, czujników IoT, oraz systemów monitorowania w czasie rzeczywistym.
- Automatyczne wykrywanie pożarów i powiadamianie o zagrożeniach zwiększa skuteczność reagowania.

Poprawa bezpieczeństwa:

- Szybkie wykrywanie pożarów może znacząco zmniejszyć straty materialne i ekologiczne.
- Zmniejszenie ryzyka dla ludzi dzięki szybszemu reagowaniu na pożary.

Skalowalność:

Możliwość rozbudowy systemu o nowe punkty obserwacyjne, czujniki i funkcje.

Integracja z istniejącymi systemami:

• System integruje się z istniejącym systemem GIS oraz Bazą Danych Nadleśnictwa, co ułatwia jego wdrożenie i obniża koszty.

Wsparcie decyzji:

 Dyspozytorzy mają dostęp do dokładnych danych i narzędzi analitycznych, co ułatwia podejmowanie decyzji.

Weakness (Słabości)

Koszty wdrożenia i utrzymania:

- Wysokie koszty początkowe związane z zakupem sprzętu (czujniki, kamery) oraz implementacja systemu.
- Koszty transmisji danych

Konieczność ciągłej konserwacji i aktualizacji systemu.

Złożoność techniczna:

- Potrzeba specjalistycznej wiedzy technicznej do implementacji i utrzymania systemu.
- Złożoność integracji różnych technologii i systemów.

Zależność od infrastruktury:

 System wymaga niezawodnej infrastruktury sieciowej oraz źródeł zasilania, co może stanowić wyzwanie w odległych obszarach leśnych.

Potencjalne problemy z dokładnością:

 Czujniki mogą dawać fałszywe alarmy lub nie wykrywać wszystkich pożarów, co wymaga kalibracji i optymalizacji systemu.

Opportunities (Szanse)

Wzrost świadomości ekologicznej:

 Rośnie zapotrzebowanie na technologie ochrony środowiska, co może zwiększyć zainteresowanie automatyzowanymi systemami PPOŻ.

Rozwój nowych funkcji:

 Możliwość rozszerzenia systemu o dodatkowe funkcje, takie jak prognozowanie pożarów, analiza danych historycznych, raportowanie.

Współpraca z innymi sektorami:

 Możliwość współpracy z organizacjami zajmującymi się zarządzaniem kryzysowym, ochroną środowiska, ubezpieczeniami.

Dotacje i fundusze:

 Możliwość uzyskania dotacji i funduszy na rozwój technologii ochrony środowiska i zarządzania kryzysowego.

Threats (Zagrożenia)

Konkurencja:

Istniejąca i potencjalna konkurencja może wprowadzać podobne systemy

Zmienność regulacji:

Zmiany w przepisach prawnych mogą wymagać modyfikacji systemu

Zagrożenia cyberbezpieczeństwa:

Systemy monitoringu i dane moga być celem ataków cybernetycznych

Zmiany klimatyczne:

 Zmiany klimatyczne mogą wpływać na częstotliwość i intensywność pożarów, może to powodować wzrost wymagań na czułość i dokładność systemu

5. Szacowanie złożoności – wariant II optymalny

Do oszacowania czasochłonności wykorzystanie zostana metoda punktów funkcyjnych (Function Point Analysis).

5.1 Wagi złożoności systemu

Przyjęto następujące wagi złożoności dla niewyregulowanych punktów funkcyjnych:

		Flomonty przetwarzenia	Poziom złożoności (j)				
(i)		Elementy przetwarzania	prosty	średni	złożony		
1	El	Wejścia	3	4	6		
2	EO	Wyjścia	4	5	7		
3	EQ	Zapytania	3	4	6		
4	ILF	Dane wewnętrzne	7	10	15		
5	EIF	Dane interfejsowe	5	7	10		

5.2 Identyfikacja punktów funkcyjnych

Tab.4: Mapowanie sygnałów DFD oraz encji na niewyregulowane punkty funkcyjne.

		Nazwa sygnału	EI	EO	EQ	ILF	EIF
zewnętrzny							
	D	Dane logowania	3			7	
	С	Akceptacja zdarzenia	3			15	
DYSPOZYTOR	С	Zamknięcie zdarzenia	3			7	
	С	Przekazanie zdarzenia	3	3		7	
	D	Raport zdarzeń		5	4	10	7
	D	Alarm	3		3	15	
	С	Odwołanie alarmu		4	3		
Czujnik	D	Awaria	4		4	7	
	С	Aktywacja/Deaktywacja	4	5		10	
	D	Podgląd kamer	7			15	10
	С	Inicjalizacja			6		7
System GIS	D	Lokalizacja	4		4		10
	D	Мара	4		4	10	10
	С	Inicjalizacja			6		7
Baza danych	D	Lista punktów			4		10
Nadleśnictwa		obserwacyjnych					
	D	Lista PSP/OSP			4		10
		Podsumy:	41	17	42	103	71

Estymowana suma UFP = 274

5.3 Złożoność techniczna

Tab.5: Estymacja czynników korygujących

	Czynniki korygujące			Wa	gi		
	- ,	0	1	2	3	4	5
DI1	Data communication					Х	
DI2	Distributed functionality					Х	
DI3	Performance			Х			
DI4	Heavily used configurations	Х					
DI5	Transaction rates				Х		
DI6	On-line data entry					Х	
DI7	End-user efficiency						Х
DI8	On-line update				Х		
DI9	Complex processing			Х			
DI10	Code resuability	Х					
DI11	Installation ease						Х
DI12	Operational ease			Х			
DI13	Multiple site	Х					
DI14	Facilitate change		Х				

CM = 0,65 + 0,01*
$$\sum_{i=1}^{14} DI_i$$

Estymowana wartość CM = 0,65 * 0,01*35 = 1

Skorygowana wartość FP = UFP * CM = 274

5.4 Estymacja LOC/FP

Ze względu na złożoność systemu i wykorzystanie wielu technologii, należy rozważyć opcje wykorzystania różnych języków jako głównej technologii.

Tab.6: Przyjęte założenia wyceny SLOC/FP

QSM SLOC/FP								
Language Avg Low High								
C++	50	25	80					
C#	54	29	70					

HTML	34	14	48
Python/Perl	24	15	60
Java	53	14	134
JavaScript	47	31	63
SQL	21	13	37

https://www.qsm.com/resources/function-point-languages-table

Tab.7: Estymacja LOC/FP w zależności od wykorzystanej technologii.

Tab. /: Estymacja LOC/FP w zalezności od wykorzystanej technologii.								
Średnia ilość LOC - główna technologia JAVA								
	Waga w projekcie	Avg	Low	High	Avg	Low	High	
Java	0.6	53	14	134	31.8	8.4	80.4	
JavaScript	0.2	47	31	63	9.4	6.2	12.6	
Python	0.1	24	15	60	2.4	1.5	6	
SQL	0.1	21	13	37	2.1	1.3	3.7	
					45.7	17.4	102.7	
	Średr	nia ilość L	OC - główi	na technolog	gia C++			
	Waga w projekcie	Avg	Low	High	Avg	Low	High	
C++	0.6	50	25	80	30	15	48	
JavaScript	0.2	47	31	63	9.4	6.2	12.6	
Python	0.1	24	15	60	2.4	1.5	6	
SQL	0.1	21	13	37	2.1	1.3	3.7	
					43.9	24	70.3	
	Średnia	a ilość LO	C - główna	technologia	a Python			
	Waga w projekcie	Avg	Low	High	Avg	Low	High	
JavaScript	0.2	47	31	63	9.4	6.2	12.6	
Python	0.7	24	15	60	16.8	10.5	42	
SQL	0.1	21	13	37	2.1	1.3	3.7	
					28.3	18	58.3	

5.5 Estymacja LOC/FP – analiza złożoności dla wariantów

Wariant I (minimalny): dla celów szybkiej i łatwiej integracji oraz skrócenia czasu developmentu sugerowane jest wykorzystanie w całości języka Python.

Wariant II (optymalny): ze względu na konieczność zapewnienia integracji modułów, dobrego wsparcia i niezawodności sugerowana technologia to Java lub C++. Ponieważ Java oferuje szansę minimalizacji LOC, jest preferowana w tym wariancie.

Wariant III (maksymalny): w przypadku zastosowania zaawansowanych technik AI/ML estymacja musi uwzględniać większą ilość danych oraz większe wykorzystanie bibliotek AI/ML, oferowanych

głównie w języku Python. Docelowy stos technologiczny zawierałby w takim wypadku C++ oraz Python, jednak z wagami 0.4.

Interakcja z bazami danych wykorzystuje SQL. Interfejs użytkownika JavaScript, HTML itp.

5.6 Estymacja KLOC

Dla wariantu II można oszacować liczbę KLOC na podstawie skorygowanej wartości FP oraz przyjętej estymacji LOC/FP.

W celu wypracowania harmonogramu rozdzielono analizę na poszczególne moduły/obszary developmentu.

		LOC/FP		
Moduł / Obszar	Suma FP	Avg	Low	High
KLOC		45.7	17.4	102.7
Dyspozytor	77	3.5	1.3	7.9
Czujnik	97	4.4	1.7	10.0
System GIS	59	2.7	1.0	6.1
Baza danych Nadleśnictwa	41	1.9	0.7	4.2
SUMA	274	12.5K	4.8K	28.1K

Tab.8: Estymacja LOC dla modułów

6. Szacowanie pracochłonności – wariant II optymalny

Wycena projektu oparta jest na metodzie COCOMO II, w oparciu o wyniki z szacowania KLOC.

6.1 Klasa projektu COCOMO

Przyjęta klasa projektu zalicza się do **modelu częściowo-wydzielonego**, ze względu na kombinację scentralizowanego systemu przetwarzania danych dostarczanych z rozproszonych urządzeń pomiarowych. Mimo, iż korzysta się z gotowych urządzeń, tj. nie jest planowane rozwijanie systemów wbudowanych, to jednak specyfika ich działania i mnogość interfejsów powoduje skomplikowanie infrastruktury i konieczność transformacji otrzymywanych danych.

	М	М	TDEV		
System	Α	В	Α	В	
organiczny	2.4	1.05	2,5	0,38	
częściowo- wydzielony	3.0	1.12	2,5	0,35	
wbudowany	3.6	1.20	2,5	0,32	

Tab.9: Wartości parametrów modelu COCOMO

6.2 Estymacja MM i TDEV

$$MM = A * (KLOC)^B$$

Tab.10: Estymacja MM

			KLOC/FP	
Moduł / Obszar	Suma FP	Avg	Low	High
		45.7	17.4	102.7
Dyspozytor	77	12.3	4.2	30.4
Czujnik	97	15.9	5.4	39.4
System GIS	59	9.1	3.1	22.6
Baza danych Nadleśnictwa	41	6.1	2.1	15.0
SUMA MM:	274	43.4	14.7	107.4

$$TDEV = A * (MM)^B$$

Tab.11: Estymacja TDEV

			KLOC/FP	
Moduł / Obszar	Suma FP	Avg	Low	High
		45.7	17.4	102.7
Dyspozytor	77	6.0	4.1	8.3
Czujnik	97	6.6	4.5	9.0
System GIS	59	5.4	3.7	7.4
Baza danych Nadleśnictwa	41	4.7	3.2	6.5
SUMA TDEV:	274	22.7	15.6	31.2

Estymowany średni (AVG) nakład pracy = 44 MM Estymowany średni (AVG) czas trwania projektu = 23 miesiące

7. Szacowanie ryzyka

7.1 Identyfikacja ryzyk

Na etapie wstępnej analizy projektu, można zidentyfikować następujące grupy ryzyk:

7.1.1 Ryzyka techniczne

- 1. Niewydolność sprzętu
 - Czujniki i kamery mogą ulec awarii lub działać nieprawidłowo, co może prowadzić do błędów w wykrywaniu zagrożeń.
 - **Mitigacja:** Regularne testy i konserwacja sprzętu, oraz posiadanie zapasowych urządzeń.
- 2. Problemy z integracją systemów:
 - Integracja z istniejącym systemem GIS i bazą danych może napotkać problemy kompatybilności.
 - Mitigacja: Dokładne testy integracyjne i zastosowanie sprawdzonych interfejsów API.
- 3. Skalowalność systemu:
 - System może nie być w stanie obsłużyć dużej liczby czujników i kamer, co może być problemem w większych nadleśnictwach.
 - Mitigacja: Projektowanie systemu z myślą o skalowalności od samego początku.
- 4. Wydajność systemu:
 - Opóźnienia w przetwarzaniu danych mogą wpływać na czas reakcji na zagrożenia pożarowe.
 - Mitigacja: Optymalizacja algorytmów przetwarzania danych oraz użycie wydajnych technologii.
- 5. Bezpieczeństwo danych:
 - Zagrożenia związane z cyberatakami mogą prowadzić do utraty lub kradzieży danych.
 - **Mitigacja:** Stosowanie najlepszych praktyk w zakresie bezpieczeństwa IT, takich jak szyfrowanie danych i regularne aktualizacje zabezpieczeń.

7.1.2 Ryzyka projektowe

- 1. Zmiana wymagań:
 - Zmiany w wymaganiach użytkowników w trakcie trwania projektu mogą prowadzić do opóźnień i przekroczenia budżetu.
 - **Mitigacja:** Utrzymywanie bliskiej komunikacji z interesariuszami i formalne zarządzanie zmianami.
- 2. Niedobór zasobów:
 - Brak wystarczającej liczby wykwalifikowanych programistów może opóźnić rozwój projektu.

- **Mitigacja:** Planowanie zasobów z wyprzedzeniem i zapewnienie odpowiedniego szkolenia dla zespołu.
- 3. Przekroczenie budżetu:
 - Nieprzewidziane koszty mogą prowadzić do przekroczenia zaplanowanego budżetu.
 - **Mitigacja:** Regularne monitorowanie budżetu i wczesne identyfikowanie potencjalnych dodatkowych kosztów.

7.1.3 Ryzyka Operacyjne

- 1. Awaria systemu:
 - Całkowita awaria systemu może spowodować brak możliwości wykrywania pożarów.
 - Mitigacja: Implementacja mechanizmów redundancji i planów awaryjnych.
- 2. Błędy użytkowników:
 - Błędy popełnione przez użytkowników mogą prowadzić do nieprawidłowego działania systemu.
 - **Mitigacja:** Szkolenie użytkowników oraz opracowanie intuicyjnego interfejsu użytkownika.
- 3. Zarządzanie zdarzeniami:
 - Nieodpowiednie zarządzanie zdarzeniami pożarowymi przez dyspozytorów może zwiększyć ryzyko rozprzestrzeniania się pożaru.
 - Mitigacja: Szkolenie dyspozytorów oraz regularne ćwiczenia symulacyjne.

7.1.4 Ryzyka Zewnętrzne

- 1. Zmiany w regulacjach prawnych:
 - Zmiany w przepisach dotyczących ochrony przeciwpożarowej mogą wymusić modyfikacje systemu.
 - **Mitigacja:** Monitorowanie zmian w regulacjach prawnych i dostosowywanie systemu zgodnie z nowymi wymaganiami.
- 2. Klimatyczne i środowiskowe:
 - Ekstremalne warunki pogodowe mogą wpływać na funkcjonowanie sprzętu i systemu.
 - **Mitigacja:** Wybór odpornych na warunki atmosferyczne komponentów oraz implementacja dodatkowych środków ochrony.
- 3. Dostępność zasilania:
 - Brak zasilania w miejscach instalacji sprzętu może prowadzić do przerw w działaniu systemu.
 - **Mitigacja**: Zastosowanie zapasowych źródeł zasilania, takich jak generatory lub baterie słoneczne.

7.2 Macierz ryzyka

Koszty ryzyk i ich szanse na wystąpienie rozpisano w macierzy poniżej. Zarówno skala wystąpienia ryzyka jak i kosztu ryzyka wyrożona jest relatywnie. Absolutna wartość poszczególnych ryzyk musi być brana w szerszym kontekście, w zależności od grupy ryzyk, ponieważ koszty wizerunkowe lub prawne, nie są porównywalne z kosztami stricte finansowymi lub czasowymi. Do zadań Project Managera or wyższej kadry zarządzającej należy monitorowanie ryzyk w projekcie i analiza zysków i strat w konteście ryzyk, które się zmaterializowały.

Dla iloczynu Szansy wystąpienia ryzyka i Kosztów jego wystąpienia większych niż 6 zaleca się podjęcie działań mitygacyjnych.

	Koszt ryzyka							
Szansa	Brak	Mały	Średni	Duży	Bardzo d.			
Brak	0	0	0	0	0			
Mała	0	1	2	3	4			
Średnia	0	2	4	6	8			
D	_	2		_	10			

12

16

Tab.11: Iloczyn kosztów i prawdopodobieństwa ryzyk.

Tab.12: Szacowanie poziomu i kosztów grup ryzyk.

Bardzo d.

Szane wyst. ryzyka		szt	y r	yzy	ka		
		1	2	3	4	Iloczyn	Mitygacja?
Ryzyk	Ryzyka techniczne						
Niewydolność sprzętu		2				2	
Problemy z integracją systemów			3			6	opcjonalnie
Skalowalność systemu		1				1	
Wydajność systemu				2		6	opcjonalnie
Bezpieczeństwo danych					3	12	tak
Ryzyka projektowe							
Zmiana wymagań				3		9	tak
Niedobór zasobów			2			4	
Przekroczenie budżetu		2				2	
Ryzyk	a o	per	ac	yjn	е		
Awaria systemu					3	12	tak
Błędy użytkowników				4		12	tak
Zarządzanie zdarzeniami					2	8	tak
Ryzyka zewnętrzne							

Zmiany w regulacjach prawnych		2	6	opcjonalnie
Klimatyczne i środowiskowe		2	6	opcjonalnie
Dostępność zasilania		4	8	tak

8. Kosztorys

Wycena przeprowadzona jest dla kosztów z kolumny AVG z pkt.6.2.

8.1 Stawki wynagrodzeń w zespole

Tab.13: Stawki brutto, wg kosztów pracodawcy.

	, ,
Rola	Koszt za osobo-miesiąc
Menadżer zespołu	30k PLN
Project manager	12k PLN
Architekt	30k PLN
Programista	20k PLN
QA, Serwis	12k PLN

8.2 Koszty zarządzania projektem

Przyjęto, że wycena MM dotyczy stricte programistów, wytwarzających kod. Dodatkowe koszty wynikają z procesu zarządzania oraz kontroli jakości i są proporcjonalne do czasu pracy programistów wg tabeli poniżej (koszt programistyczny wg punktu 6.2: 44 MM)

Tab.14: Narzut projektowy nieuwzględniony w modelu.

Rola	Narzut projektowy	Koszt MM	Kosztorys PLN
Menadżer zespołu	5%	2	50k
Kierownik projektu	15%	7	84k
Architekt	15%	7	210k
QA	20%	9	108k
Wdrożenie i szkolenia	10%	4	48k
	Suma:		500k

8.3 Kosztorys projektu

Tab.15: Koszt w PLN

Koszt	Wartość kPLN
Zarządzanie projektem	500
Wytworzenie oprogramowania	880
Czujniki i kamery	500
Sprzęt IT	150
Instalacja	150
Licencje	20
Suma:	2200

Estymowany koszt projektu (bez narzutów): 2200 tys . PLN

9. Harmonogram projektu

9.1 Podział prac

Zadania dotyczące zadań nie-programistycznych (zakup sprzętu, wytworzenie dokumentacji itp.) wydzielone zostają do harmonogramu osobnych zespołów.

9.2 Wytwarzanie oprogramowania

Projekt prowadzony jest w metodologii Scrum ze sprinatmi 2-tyg. Kamienie milowe zostaną wyznaczone przez Kierownika Projektu i Właściciela Produktu. Dekompozycja zadań i harmnogram zostaną ułożone na bazie projektu architektury i modelu systemu.

Wstępny harmonogram projektu oparto na wykresie gantt, przyjmując następujące zasoby:

- JV programista Java, 2 osoby
- PH programista Python, 1 os
- FE programista frontend, 1 os
- · ARCH architekt

Brak dostepnych zasobów jest jednym z ryzyk opisanych w 7.1.2 Ryzyka projektowe.

