Analyse lexicale

Cyril Rabat cyril.rabat@univ-reims.fr

Licence 3 Informatique - Info0602 - Langages et compilation

2019-2020

Cours n°2

Qu'est-ce qu'un analyseur lexical? Langages, expressions régulières, automates finis

Version 8 janvier 2020

Table des matières

- 2 L'analyse lexicale
 - Un analyseur lexical
 - Les langages
 - Les expressions régulières
 - Les automates finis
 - De l'expression régulière à un AFN
 - Transformation d'un AFN en AFD
 - Partitionnement
 - Construction d'un analyseur lexical
 - Automates à pile

Un analyseur lexical

- Lecture des caractères en entrée
- Production d'unités lexicales
 - → Analysées par l'analyseur syntaxique
- Interaction entre les deux analyseurs

Tâches secondaires

- Élimination...
 - Des commentaires
 - Des caractères "inutiles" (espaces, tabulations, lignes vides...)
- Faciliter la gestion des erreurs :
 - Conservation/calcul du numéro de ligne
 - Associer les messages d'erreur à une ligne
- Principal intérêt de l'analyseur lexical :
 - ⇔ Simplification de l'analyseur syntaxique.

Unité lexicale. modèle, lexème et attribut

- Modèle : règle qui décrit un ensemble de chaînes
- Unité lexicale : produite par l'ensemble de chaînes du modèle chaînes littérales
- Lexème : la suite de caractères du programme source qui correspond au modèle

Exemple

- Unité lexicale : chiffre
- Lexèmes : 0, 1, 2
- Modèle : [0 − 9]
- Attributs : données liées aux unités lexicales

Alphabet et mots

Définition : alphabet

Un **alphabet** est un ensemble fini de symboles appelés caractères. Il est noté A.

- Exemples de symboles : lettres et caractères
- Exemples d'alphabets : {0,1} (l'alphabet binaire), l'ASCII

Définition : mot (ou chaîne)

Un **mot** sur un alphabet est une séquence finie de symboles de cet alphabet. La longueur du mot w (notée |w|) est le nombre de symboles dans ce mot. Le mot vide, noté ϵ , est un mot de longueur 0.

• Exemples de mots sur l'alphabet $\{a, b, c\}$: a, baba

Partie de mots

- Préfixe de w : mot obtenu en supprimant un nombre quelconque de symboles en fin de w (voire aucun)
- Suffixe de w : mot obtenu en supprimant un nombre quelconque de symboles en début de w (voire aucun)
- Sous-mot de w : mot obtenu en supprimant un préfixe et un suffixe de w
- Préfixe propre de w : tout mot non vide x, préfixe de w tel que $x \neq w$
- Idem pour suffixe propre et sous-chaîne propre de w
- Sous-suite de w : tout mot obtenu en supprimant un nombre quelconque de symboles de w, éventuellement aucun, pas nécessairement consécutifs

Opérations sur les mots

- Concaténation de mots : si x et y sont des mots, la concaténation xy est la chaîne formée en joignant x et y
 - \hookrightarrow Exemple : pour $\mathcal{A} = \{a, b\}$, si x = aa et y = bb, alors xy = aabb
- Exponentiation : $s^0 = \epsilon$; $s^i = s^{i-1}s$
 - \hookrightarrow Exemple : pour $\mathcal{A} = \{a, b\}$, si x = ba alors $x^3 = bababa$

Langage

Définition : langage

Un langage est un ensemble de mots définis sur un même alphabet.

- Soit $\mathcal{A} = \{1, 2, 3\}$, l'ensemble $\{1, 11, 12, 21\}$ est un langage sur \mathcal{A}
- Le langage vide est noté ∅
- Le langage $\{\epsilon\}$ ne contient que le mot vide

Attention

$$\emptyset \neq \{\epsilon\}$$

Opérations sur les langages (1/2)

Soit deux langages L_1 et L_2 définis respectivement sur les alphabets A_1 et A_2 .

Définition : union de deux langages

L'union de L_1 et L_2 définie sur $A_1 \cup A_2$ est le langage contenant tous les mots de L_1 et L_2 :

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$$

Définition : intersection de deux langages

L'intersection de L_1 et L_2 définie sur $A_1 \cap A_2$ est le langage contenant tous les mots qui sont à la fois dans L_1 et L_2 :

$$L_1 \cap L_2 = \{ w \mid w \in L_1 \land w \in L_2 \}$$

Opérations sur les langages (2/2)

Définition : complément d'un langage

Le complément de L_1 est le langage défini sur \mathcal{A}_1 contenant tous les mots qui ne sont pas dans L_1 :

$$\mathcal{C}(L_1) = \{ w \mid w \in \mathcal{A}_1 \land w \notin L_1 \}$$

Définition : différence de deux langages

La différence de L_1 et L_2 est le langage défini sur A_1 contenant tous les mots de L_1 qui ne sont pas dans L_2 :

$$L_1 - L_2 = \{ w \mid w \in L_1 \land w \notin L_2 \}$$

Produit et puissances

Définition : produit de deux langages

Le produit ou **concaténation** de L_1 et L_2 est le langage défini sur $A_1 \cup A_2$ contenant tous les mots formés d'un mot de L_1 suivi d'un mot de L_2 :

$$L_1.L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

Définition: puissances d'un langage

Les puissances successives de L_1 définies sur A_1 sont définies récursivement:

- $L_1^0 = \{\epsilon\}$
- $L_1^n = L_1.L_1^{n-1}$ pour $n \ge 1$

Fermeture itérative

Définition : fermeture de Kleene de deux langages

La fermeture de Kleene de L₁, appelée également la **fermeture itérative**, définie sur A_1 , est l'ensemble des mots formés par une concaténation finie des mots de L₁ :

$$L_1^* = \{ w \mid \exists k \geq 0 \land w_1 \dots w_k \in L_1 \text{ tels que } w = w_1 w_2 \dots w_k \}$$

• On définit également L_1^+ : $L_1^+ = \{ w \mid \exists k > 0 \land w_1 \dots w_k \in L \text{ tels que } w = w_1 w_2 \dots w_k \}$

Langage fini et infini

Définition : langage fini

Un langage fini peut être décrit par l'énumération des mots qui le compose. Ce qui n'est pas le cas pour un langage infini.

- Certains langages infinis peuvent être décrits à l'aide d'opérations sur des langages simples
- Certains langages infinis peuvent être décrits à l'aide de règles (grammaires)
- Les langages qui ne peuvent être décrits ni par des opérations, ni par des grammaires sont des langages indécidables.

Expressions régulières

Définition : expression régulière

Les expressions régulières pour un alphabet ${\mathcal A}$ sont les expressions formées par les règles suivantes :

- ullet \emptyset , ϵ et les symboles de ${\mathcal A}$ sont des expressions régulières
- Si α et β sont des expressions régulières sur \mathcal{A} , $(\alpha|\beta)$, $(\alpha.\beta)$ et $(\alpha)^*$ sont des expressions régulières
- On note indifféremment $\alpha.\beta$ et $\alpha\beta$
- On définit une priorité décroissante sur les opérateurs : *, . et |

Langage décrit par une expression régulière

Définition : langage décrit par une expression régulière

Le langage L(E) où E est une expression régulière définie sur A, est défini comme suit :

- $L(E) = \emptyset$ si $E = \emptyset$
- $L(E) = \{\epsilon\}$ si $E = \epsilon$
- $L(E) = \{a\}$ si E = a pour tout $a \in A$
- $L(E) = L(E_1) \cup L(E_2)$ si $E = E_1 | E_2$
- $L(E) = L(E_1).L(E_2)$ si $E = E_1.E_2$
- $L(E) = L(E)^*$ si $E = E_1^*$

Introduction

- Expression régulière : définie un ensemble de mots
- Nécessité de les compiler pour créer un programme qui la reconnait
- But du programme :
 - Entrée : le mot à reconnaître
 - Sortie : oui ou non suivant si le mot est reconnu par l'expression régulière
- Utilisation d'automates

Présentation des automates

Un automate fini se compose :

- D'un ruban d'entrée :
 - Constitué d'un ensemble de cases, chacune contenant un caractère
 - Le mot à traiter est placé dans ces cases
 - Une tête de lecture permet de connaître le caractère suivant
- D'un ensemble d'états :
 - L'automate passe d'un état à l'autre en cours d'exécution
 - L'état initial : état en début d'exécution
 - Les états d'acceptation (ou états finals) : états atteints lorsque le mot est accepté
- D'une fonction de transition :
 - Indique pour chaque état et symbole lu, le prochain état

Automates finis déterministes vs non déterministes

- Dans un état donné et pour un symbole donné
- Deux possibilités lorsqu'un symbole est rencontré :
 - Une seule transition possible :
 - Plusieurs transitions possibles :

Remarque

Des définitions plus formelles sont présentées dans la suite!

Automate fini déterministe

Définition: automate fini déterministe

Un automate fini déterministe (noté AFD) est défini formellement par le quintuplet $M = \{Q, A, \delta, s, F\}$, où :

- Q est un ensemble fini d'états
- A est un alphabet
- δ est la fonction de transition de $Q \times A$ dans Q
- $s \in Q$ est l'état initial
- F ⊂ Q est l'ensemble des états d'acceptation

Représentation d'un automate fini par un graphe

- Chaque état de l'automate est représenté par un nœud du graphe
- Relation de transition représentée par des arcs valués : \hookrightarrow Si $\delta(q, a) = q', (q, q') \in Q^2 \land a \in \mathcal{A}$ alors il existe un arc a entre les sommets q et q'
- L'état initial est signalé par une flèche
- Les états d'acceptation sont signalés par des doubles cercles

Exemple de représentation

Soit l'automate $M = \{Q, A, \delta, s, F\}$ suivant :

$$A=\{a,b\},\;Q=\{q_0,q_1\},\;s=q_0,\;F=\{q_1\}\; ext{et}\;\delta=egin{array}{cccc} q & a & \delta(q,a) \ q_0 & a & q_0 \ q_1 & b & q_1 \ q_1 & a & q_0 \ q_1 & b & q_1 \ \end{array}$$

Exécution d'un automate

Définition : configuration d'un AFD

Une configuration d'un AFD est une paire composée de l'état de l'automate, ainsi que la partie du mot restant à traiter :

$$(q, w) \in Q \times A^*$$

- Exécution d'un automate : déterminer les configurations successives de l'automate en fonction du mot d'entrée
- Dérivation : le passage d'une configuration à une autre

Dérivation (1/2)

Définition : dérivation (en une étape)

La configuration (g', w') est dérivable en une étape de (g, w) par M si :

- w = aw' ($a \in A$, a est le premier caractère de w et w' est égal à w privé de a)
- $q' = \delta(q, a)$ (q' est le prochain état déterminé par la fonction de transition δ pour q et a)

On note $(q, w) \vdash_M (q', w')$

Dérivation (2/2)

Définition : dérivation (en plusieurs étapes)

La configuration (q', w') est dérivable (en plusieurs étapes) de (q, w)s'il existe $k \ge 0$ et des configurations $(q_i, w_i), 0 \le i \le k$ telles que :

- \bullet $(a_0, w_0) = (a, w), (a_k, w_k) = (a', w')$
- $\forall i \in [0, k], (q_i, w_i) \vdash_M (q_{i+1}, w_{i+1})$

On note $(q, w) \vdash_{M}^{*} (q', w')$

- Exécution d'un automate (si le mot est accepté) : $(s, w) \vdash (q_1, w_1) \vdash \ldots \vdash (q_n, \epsilon)$
- s est l'état initial, ϵ le mot vide et n = |w|

Une seule exécution possible pour chaque mot

Acceptation

Définition: acceptation

Un mot est accepté par un automate M si le dernier état est un état d'acceptation :

w est accepté par
$$M$$
 si $(s,w) \vdash_{M}^{*} (q,\epsilon) \land q \in F$

Le langage accepté par M (noté L(M)) est défini par l'ensemble des mots acceptés par M :

$$L(M) = \{ w \in \mathcal{A}^* \mid (s, w) \vdash_M^* (q, \epsilon) \land q \in F \}$$

Simulation du comportement d'un AFD

```
Fonction simulationAFD(Q, A, \delta, s, F, w) : booléen
    etat \leftarrow s
     position \leftarrow 0
    erreur \leftarrow faux
     Tant que!erreur \land position < |w| Faire
        Si w[position] \notin A Alors
          erreur ← vrai
        Sinon
          Si \exists \delta(etat, w[position]) Alors
              etat \leftarrow \delta(etat, w[position])
              position \leftarrow position + 1
          Sinon
              erreur ← vrai
     retourner \leftarrow !erreur \land etat \in F
```

Les automates finis non déterministes

Automates où les constructions suivantes sont autorisées :

- Plusieurs transitions sur le même symbole partant d'un même état
- Transitions sur le mot vide acceptées
- Transitions sur des mots de longueur supérieure à 1 sont possibles

Remarque

Les automates finis non déterministes sont généralement plus faciles à écrire que les AFD mais moins rapides à simuler.

Automate fini non déterministe

Définition: automate fini non déterministe

Un automate fini non déterministe (noté AFN) est défini formellement par le quintuplet $M = \{Q, A, \Delta, s, F\}$, où :

- Q est un ensemble fini d'états
- A est un alphabet
- Δ est la fonction de transition de $Q \times \mathcal{A}^*$ dans Q
- $s \in Q$ est l'état initial
- F ⊂ Q est l'ensemble des états d'acceptation

Exemple d'AFN

 q_4 b

 q_4

Dérivation d'un AFN

Définition : dérivation (en une étape)

La configuration (q', w') est dérivable en une étape de (q, w) par M si :

- $w = uw' \ (u \in \mathcal{A}^*)$
- $(q, u, q') \in \Delta$ (le triplet (q, u, q') est un élément de la relation de transition)
- Acceptation d'un mot par un AFN : il existe une dérivation qui accepte ce mot
 - → Des dérivations possibles peuvent le refuser!
- Construction plus simple que les AFD mais sans forcément reconnaître plus de langages

Problème : plusieurs dérivations possibles pour un même mot!

- Vérifier si l'une d'elles permet d'accepter le mot
- Être en mesure de revenir en arrière (backtrack)
- → Utilisation de la récursivité

Simulation d'un AFN (2/2)

```
Fonction simulationAFN(M, etat, w, position) : booléen
    Si position \geq |w| Alors
       retourner etat \in M(F)
    Sinon
       accepte \leftarrow faux
       couples \leftarrow M(\Delta)(etat, w)
       Tant que couples \neq \emptyset \land !accepte Faire
          choisir (e', I) \in \text{couples}
          couples \leftarrow couples \setminus (e', I)
          accepte \leftarrow simulationAFN(M, e', w, p + I)
       retourner accepte
```

Remarques

M est l'automate et w le mot à reconnaître Fonction exécutée avec etat = s et position = 0

Construction de Thomson

- Objectif : construire de manière automatique un AFN à partir de toute expression régulière
- Idée :
 - Décomposition de l'expression régulière en sous-expressions
 - Construction d'un AFN pour chaque sous-expression
 - Combinaison des AFN

• Règle n°1 : pour l'expression ϵ , nous construisons l'AFN suivant :

• Règle n°2 : pour l'expression $a \in A$, nous construisons l'AFN suivant :

Combinaisons (1/2)

Supposons que $N(E_1)$ et $N(E_2)$ sont des AFN pour les expressions régulières E_1 et E_2 .

• Combinaison n°1 : pour l'expression $E_1|E_2$

• Combinaison n°2 : pour l'expression $E_1.E_2$

Combinaisons (2/2)

• Combinaison n°3 : pour l'expression E*

• Combinaison n°4 : pour l'expression (E), c'est N(E) lui-même

Exemple (1/4)

- Supposons l'expression régulière (a|b)*abb

Exemple (2/4)

• Pour $E_1 = E_6 = a$ et $E_2 = E_8 = E_{10} = b$:

• Pour $E_3 = E_1 | E_2$:

- Pour $E_4 = (E_3)$, c'est E_3 lui-même
- Pour $E_5 = E_3^*$:

Exemple (4/4)

• Pour finir en combinant avec E_7 , E_9 et E_{11}

Équivalence entre un AFN et un AFD

Définition : équivalence entre un AFN et un AFD

Un AFD est équivalent à un AFN s'il accepte le même langage.

• Exemple 1:

• Exemple 2:

Définition d'opérations sur un AFN

Définition : ϵ -fermeture d'un état

Soit l'AFN $M = \{Q, A, \Delta, s, F\}$ et $e \subset Q$, ϵ -fermeture(e) est l'ensemble des états de M accessibles depuis e par des ϵ -transitions uniquement. $e \in \epsilon$ -fermeture(e).

Définition : ϵ -fermeture d'un ensemble d'états

Soit l'AFN $M = \{Q, A, \Delta, s, F\}$ et $T \subset Q$, ϵ -fermeture(T) est l'ensemble des états de M accessibles depuis tout $e \in T$ par des ϵ -transitions uniquement. $T \subseteq \epsilon$ -fermeture(T).

Définition: transiter

Soit l'AFN $M=\{Q,\mathcal{A},\Delta,s,F\}$, $T\subset Q$ et $a\in\mathcal{A}$, transiter(T,a) est l'ensemble des états de M tels qu'il existe une transition sur a à partir d'un $e\in T$. Si transiter(T,a)=T' alors on note $T\stackrel{a}{\to} T'$

Principes de la transformation

- Soit l'AFN $M = \{Q, A, \Delta, s, F\}$
- Construction de l'AFD $M' = \{Q', A, \delta, s', F'\}$
- Chaque état de l'AFD = ensemble d'états de l'AFN
- Construction d'un ensemble V (états à visiter) :
 - \hookrightarrow Au départ, $V = \{ \epsilon \text{-fermeture}(s) \}$
- Pour chaque état q de V:
 - \hookrightarrow Ajout de q à Q' et retrait de q de V
 - \hookrightarrow Pour chaque $a \in \mathcal{A}$, calcul de $q' = \epsilon$ -fermeture(transiter(q,a))
 - \hookrightarrow Ajout de q' dans V si $q' \notin Q'$
- F est formé par tous les états de M' contenant un $q \in F$

Algorithme de transformation AFN en AFD

```
Fonction AFNversAFD(M) : M'
   s' \leftarrow \epsilon-fermeture(s)
   Q' \leftarrow \{s'\}; \delta = \emptyset; V \leftarrow \{s'\}
   Tant que \exists x \in V Faire
       V \leftarrow V \backslash x
       Pour tout a \in A Faire
           v \leftarrow \epsilon-fermeture(transiter(x, a)
           Si v \notin Q' Alors
              Q' \leftarrow Q' \cup v
               V \leftarrow V \cup v
          \delta \leftarrow \delta \cup \{(x, v, a)\}
       Fin Pour
   F' \leftarrow \{x \in Q' \mid \exists f \in x \land f \in F\}
```

Exemple (1/2)

X	transiter	у	δ
$s'=A=\{0,1,2,4,7\}$	$A \stackrel{a}{\rightarrow} \{3,8\}$	${3,8,6,1,7,2,4} = B$	$A \stackrel{a}{\rightarrow} B$
	$A \stackrel{b}{\rightarrow} \{5\}$	$\{5,6,7,1,2,4\} = C$	$A \stackrel{b}{\rightarrow} C$
$B = \{1,2,3,4,6,7,8\}$	$B \stackrel{a}{ o} \{3,8\}$		$B \stackrel{a}{\rightarrow} B$
	$B \stackrel{b}{ o} \{5,9\}$	{5,9,6,7,1,2,4}=D	$B \stackrel{b}{\to} D$
$C = \{1,2,4,5,6,7\}$	$C \stackrel{a}{ o} \{3,8\}$		$C \stackrel{a}{\rightarrow} B$
	$C \stackrel{b}{\rightarrow} \{5\}$		$C \stackrel{b}{\rightarrow} C$
$D=\{1,2,4,5,6,7,9\}$	$D \stackrel{a}{ o} \{3,8\}$		$D \stackrel{a}{ o} B$
	$D \stackrel{b}{ ightarrow} \{5,10\}$	{5,6,1,2,4,7,10}=E	$D \stackrel{b}{\to} E$
$E = \{1,2,4,5,6,7,10\}$	$E \stackrel{a}{\to} \{3,8\}$		$E \overset{\mathit{a}}{\to} B$
	$E \stackrel{b}{ o} \{5\}$		$E \stackrel{b}{\to} C$

Exemple (2/2)

Sachant que seul E contient un état d'acceptation, $E \in Q'$. On obtient :

Partitionnement.

- Objectif : réduire le nombre d'états d'un AFD
- Idée : décomposition de Q en sous-ensembles d'état équivalents → Partitionnement
- Les états sont équivalents si $\forall a \in \mathcal{A}$, les états ont des transitions vers des états des mêmes sous-ensembles
- Algorithme :
 - Au départ, on sépare en deux sous-ensembles : les états d'acceptation et les autres
 - 2 Puis séparation des sous-ensembles en sous-ensembles d'états équivalents
 - On recommence à l'étape 2
 - Dès qu'il n'y a plus de création de nouveaux sous-ensembles, la procédure s'arrête

Définitions

Définition : partitionnement

 $\pi = \{B_1, \dots, B_k\}$ avec B_i un ensemble d'états de Q, est une partition de Q si :

- $\forall i, B_i \subseteq Q$
- $\forall i, B_i \neq \emptyset \land \forall i, j, i \neq j, B_i \cap B_i = \emptyset$
- $\bullet \cup_{i=1}^k B_i = Q$

Définition : états équivalents

Avec $(s,t) \in Q^2$, s et t sont équivalents dans π , si et seulement si :

$$\forall a \in \mathcal{A}, (s', t') \in Q^2, (s, s', a) \in \delta \land (t, t', a) \in \delta$$

$$\Rightarrow \exists B \in \pi, s' \in B \land t' \in B$$

On note $s \Leftrightarrow_{\pi} t$.

Algorithme de minimisation des états

```
Procédure minimisation(M)
   \pi = \{Q \mid F, F\}; change \leftarrow vrai
   Tant que change = vrai Faire
       change \leftarrow faux; \pi' \leftarrow \emptyset
       Pour tout B \in \pi Faire
          Tant que \exists s \in B Faire
              B \leftarrow B \setminus \{s\}; B' \leftarrow \{s\}
              \pi' \leftarrow \pi' \cup B'
              Tant que \exists s' \in B | s' \Leftrightarrow_{\pi} s Faire
                  B \leftarrow B \setminus \{s'\}; B' \leftarrow B' \cup \{s'\}
              Si B \neq \emptyset Alors
                  change ← vrai
       Fin Pour
       \pi \leftarrow \pi'
```

Exemple

- Étape 1 : $\pi = \{\{q_0, q_1, q_2, q_3\}, \{q_4\}\}$
 - $B = \{q_0, q_1, q_2, q_3\}$
 - $q_0 \stackrel{a}{\rightarrow} q_1 \ q_1 \stackrel{a}{\rightarrow} q_1 \ q_2 \stackrel{a}{\rightarrow} q_1 \ q_3 \stackrel{a}{\rightarrow} q_1$ $a_0 \stackrel{b}{\rightarrow} a_3 \ a_1 \stackrel{b}{\rightarrow} a_2 \ a_2 \stackrel{b}{\rightarrow} a_4 \ a_3 \stackrel{b}{\rightarrow} a_3$ $\hookrightarrow \{q_0, q_1, q_3\} \text{ et } \{q_2\}$
 - $B = \{q_4\}$ $\hookrightarrow \pi' = \{\{q_0, q_1, q_3\}, \{q_2\}, \{q_4\}\}\$: changements donc on continue

Exemple

- Étape 2 : $\pi = \{\{q_0, q_1, q_3\}, \{q_2\}, \{q_4\}\}$
 - $B = \{q_0, q_1, q_3\}$
 - $q_0 \stackrel{a}{\rightarrow} q_1 \ q_1 \stackrel{a}{\rightarrow} q_1 \ q_3 \stackrel{a}{\rightarrow} q_1$ $q_0 \stackrel{b}{\rightarrow} q_3 \ q_1 \stackrel{b}{\rightarrow} q_2 \ q_3 \stackrel{b}{\rightarrow} q_3$ $\hookrightarrow \{q_0, q_3\} \ \text{et} \ \{q_1\}$
 - $B = \{q_2\}$ puis $B = \{q_4\}$ $\hookrightarrow \pi' = \{\{q_0, q_3\}, \{q_1\}, \{q_2\}, \{q_4\}\}$: changements donc on continue

- ullet Étape 3 : $\pi = \{\{q_0,q_3\},\{q_1\},\{q_2\},\{q_4\}\}$
 - $B = \{q_0, q_3\}$
 - $q_0 \stackrel{a}{\rightarrow} q_1 \ q_3 \stackrel{a}{\rightarrow} q_1$ $q_0 \stackrel{b}{\rightarrow} q_3 \ q_3 \stackrel{b}{\rightarrow} q_3$
 - $\hookrightarrow \{q_0,q_3\}$
 - $B = \{q_1\}$ puis $B = \{q_2\}$ puis $B = \{q_4\}$ $\hookrightarrow \pi' = \{\{q_0, q_3\}, \{q_1\}, \{q_2\}, \{q_4\}\}$: pas de changement donc on arrête

Exemple (2/2)

- Avec $\pi = \{ \{q_0, q_3\}, \{q_1\}, \{q_2\}, \{q_4\} \}$ et $q_0 \stackrel{a}{\rightarrow} q_1 \ q_1 \stackrel{a}{\rightarrow} q_1 \ q_2 \stackrel{a}{\rightarrow} q_1 \ q_3 \stackrel{a}{\rightarrow} q_1 \ q_4 \stackrel{a}{\rightarrow} q_1 \ q_0 \stackrel{b}{\rightarrow} q_3 \ q_1 \stackrel{b}{\rightarrow} q_2 \ q_2 \stackrel{b}{\rightarrow} q_4 \ q_3 \stackrel{b}{\rightarrow} q_3 \ q_4 \stackrel{b}{\rightarrow} q_3$
- On obtient l'automate suivant :

Construction d'un analyseur lexical

- Soit un analyseur lexical qui accepte n unités lexicales :
 - Représenter chaque unité lexicale par une expression régulière
 - Construire un AFN pour chaque expression
 - Transformation des AFN en AFD
 - Réduction des états
- Algorithme général de l'analyseur :
 - Test sur le premier AFD
 - Si non accepté, alors on teste le second
 - etc.
- En pratique, recherche du plus grand lexème reconnu

Remarque

L'ordre de définition des unités lexicales est important; si un lexème est reconnu par deux lexèmes, le lexème défini en premier est choisi.

Introduction aux automates à pile

- Tout langage ne peut être défini par une expression régulière \hookrightarrow Exemple : $L = \{ w \mid w = a^n b^n, n \leq 0 \}$
- Possible d'utiliser un automate à pile qui est constitué des mêmes éléments qu'un AFN :
 - Un ruban d'entrée et une tête de lecture
 - Un ensemble d'états avec un état initial et un ensemble d'état d'acceptation
 - Une relation de transition
- Ajout d'une pile de capacité infinie, initialement vide
- À chaque étape, le sommet de la pile est consulté et remplacé par une suite de symboles

Automate fini non déterministe à pile

Définition : automate fini non déterministe à pile (AFNP)

Un automate fini non déterministe à pile est défini par :

$$M = \{Q, \mathcal{A}, \mathcal{B}, \Delta, z, s, F\}$$

Où:

- Q est un ensemble fini d'états
- A est l'alphabet
- A' est l'alphabet de la pile
- Δ est la relation de transition :

$$\Delta \subset ((Q \times \mathcal{A}^* \times \mathcal{A}'^*) \times (Q \times \mathcal{A}'^*))$$

- $z \in A'$ est le symbole initial de la pile
- $s \in Q$ est l'état initial
- F ⊂ Q est l'ensemble des états d'acceptation

La fonction de transition

Soit la transition
$$((p, u, v), (q, v') \in \Delta \subset ((Q \times \mathcal{A}^* \times \mathcal{A}'^*) \times (Q \times \mathcal{A}'^*))$$

- L'automate passe de p à q sur le mot u si la chaîne v est au sommet de la pile
- À l'état q, le sommet de la pile v est remplacé par v'

Configuration

Définition : configuration

La configuration d'un AFNP est définie par un triplet : $(q, a, a') \in Q \times \mathcal{A}^* \times \mathcal{A}'^*$

- q est l'état courant
- a est le mot en entrée
- a' est le contenu de la pile

Définition : dérivation (en une étape)

La configuration $(q', b, b') \in Q \times A^* \times A'^*$ est dérivable en une étape de (q, a, a') par $(q, a, a') \vdash_M (q', b, b')$ si :

- $\bullet \ ((q,u,v),(q',v')) \in \Delta$
- a = ub : le mot a commence par le préfixe u
- a' = vw : avant la transition, le sommet de la pile contient $v \in \mathcal{A}'^*$
- b' = v'w: après la transition, v est remplacé par v'

Dérivation en plusieurs étapes

Définition : dérivation (en plusieurs étapes)

La configuration (q', b, b') est dérivable en plusieurs étapes de la configuration (q, a, a') s'il existe des configurations intermédiaires C_0, \ldots, C_k avec $k \ge 0$ telles que :

- $C_0 = (q, a, a')$
- $C_k = (q', b, b')$
- $C_i \vdash_M C_{i+1} pour 0 < i < k$
- Une exécution d'un AFNP sur un mot w est une suite de configurations :

$$(s, w, z) \vdash (q_1, w_1, \alpha_1) \vdash \ldots \vdash (q_n, \epsilon, \alpha_n)$$

Acceptation d'un mot par un automate à pile

Soit un AFNP $M = \{Q, A, B, \Delta, z, s, F\}$

• Acceptation sur état d'acceptation. w est accepté par M si

$$(s, w, z) \vdash_{M}^{*} (q, \epsilon, \alpha)$$
 avec $q \in F$

• Acceptation sur pile vide. w est accepté par M si :

$$(s, w, z) \vdash_{M}^{*} (q, \epsilon, \epsilon)$$

Remarques

- Si l'automate accepte sur pile vide, F est inutile
- Les deux définitions sont équivalentes ; les deux types d'automates reconnaissent les mêmes langages.

Exemple

- Soit le langage $L = \{a^n b^n, n \ge 0\}$. Définition de M qui reconnaît L sur pile vide:
 - $Q = \{q_0, q_1\}$
 - $A = \{a, b\}, A' = \{a\}$
 - $z = \epsilon$, $s = a_0$ $(q_0, a, \epsilon), (q_0, a)$ • Δ : $(q_0, a, a), (q_0, aa)$ $(q_0, b, a), (q_1, \epsilon)$
 - $(q_1, b, a), (q_1, \epsilon)$
- Exécution pour w = aaabbb :
 - $(q_0, aaabbb, \epsilon) \vdash (q_0, aabbb, a) \vdash (q_0, abbb, aa) \vdash (q_0, bbb, aaa) \vdash$ $(q_1, bb, aa) \vdash (q_1, b, a) \vdash (q_1, \epsilon, \epsilon)$
 - \hookrightarrow Le mot w est accepté par M