

Planning du cours

- 1. Rappels sur les écoulements turbulents et les équations de Navier-Stokes moyennées (RANS).
- 2. Modèles de turbulence algébriques
- 3. Modèles à équations de transport
- 4. TP1: Canal plan et couche limite turbulente (10/1/2022)
- 5. Modèles non Boussinesq.
- Modélisation d'écoulements instationnaires
- 7. TP2: Simulation d'écoulements décollés (24/1/2022)
- 8. Modélisation de la turbulence dans les écoulements compressibles
- 9. Apprentissage automatique de modèles et quantification des incertitudes
- **10. Examen**: 21/2/2021

Note = 0,4*MOY(Rendus TP+Commentaire d'article) + 0,6*(Examen)

Supports de cours

- Planches
- Pour aller plus loin :
 - Stephen B. POPE (2000), TURBULENT FLOWS, Cornell University
 - David C. WILCOX (2006), TURBULENCE MODELING FOR CFD, DCW Industries
 - Cours Méthodes Numériques Avancées: focus sur les approaches LES, DNS
- Contact : mail <u>paola.cinnella@sorbonne-universite.fr</u>

Rappels sur les écoulements turbulents

Comment définir la turbulence?

Pas de définition rigoureuse. Description phénoménologique (Pope, 2000).

1. Irrégularité et imprévisibilité:

- Etat de mouvement irrégulier en temps et en espace
- Des petites perturbations sur les conditions initiales et aux limites sont amplifiées jusqu'à rendre une description déterministe de l'écoulement impossible
- Comportement (en apparence) aléatoire → mouvement chaotique

2. Diffusivité accrue

• Intensification des échanges de masse, quantité de mouvement et énergie

3. Fluctuations 3D de la vorticité $\omega = \nabla \times \mathbf{v}$

- Un écoulement turbulent est toujours rotationnel
- Tourbillons cohérents (eddies), mais localisés de façon "aléatoire"
- L'énergie est transférée des grandes aux petites échelles de l'écoulements par effet des interactions entre structures tourbillonnaires (mécanisme de cascade)

Two-dimensional image of an axisymmetric water jet, obtained by the laser-induced fluorescence technique.
(From R. R. Prasad and K. R. Sreenivasan,

Phys. Fluids A, 2:792–807, 1990)

Smoke flow visualization of dynamic stall on an airfoil pitching in a wind tunnel (From S. Schreck and M. Robinson, FEDSM2007-37651, pp. 1129-1140)

Equations de Navier-Stokes

- Même en régime turbulent, l'écoulement reste régi par les équations de Navier-Stokes
- Pour un écoulement incompressible à propriété constantes, elles s'écrivent :

$$\begin{cases} \nabla \cdot \mathbf{v} = 0 \text{ (continuité)} \\ \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v} \text{ (q. mvt)} \end{cases} \begin{cases} \frac{\partial u_i}{\partial x_i} = 0 \\ \frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_i \partial x_i} \end{cases}$$

Notation vectorielle

Notation en composantes cartésiennes

+ conditions initiales et aux limites

Paradoxe : équations déterministes—Solutions aléatoires??

Ecoulements régis par les équations de NS

- Perturbations expérimentales
 - Impuretés
 - Petites fluctuations de la pression, vitesse, température, etc.
 - Petites variations de la géométrie
- Perturbations numériques
 - Erreurs d'arrondi et de troncature, erreurs sur les conditions initiales et aux limites
- → Cependant : la turbulence n'est pas un phénomène complètement stochastique
 - Les approches statistiques peuvent s'avérer inadéquates

Cascade de l'énergie (Kolmogorov, 1941)

- Energie injectée par l'écoulement moyen dans les "grandes échelles"
- Energie transférée des grandes aux "petites échelles" (fluctuations)
- Energie dissipée à l'échelle "moléculaire"

Instabilités successives des tourbillons

Cascade de l'énergie (Kolmogorov, 1941)

Echelles spatiales de la turbulence

- Grandes échelles : échelle macroscopique ou échelle intégrale $L \rightarrow$ même ordre de grandeur que la taille caractéristique de l'écoulement
- Zone inertielle : l'énergie cinétique turbulente k est transférée des grandes aux petites échelles
 - Temps caractéristique du transfert (analyse dimensionnelle) : $T = \frac{L}{k^{1/2}}$
 - Taux de transfert : $\frac{k}{T} = \frac{k^{3/2}}{L}$
- Zone dissipative : l'énergie cinétique est dissipée en chaleur
 - Taux de dissipation ε lié à la taille des petites échelles et à la viscosité ν du fluide :

$$\varepsilon = v^3/\eta^4$$
 (ε = échelle de Kolmogorov)

• En conditions d'équilibre, elle doit égaler l'énergie transférée des grandes échelles :

$$\frac{k^{3/2}}{L} = \frac{v^3}{\eta^4} \Longrightarrow \frac{L}{\eta} = \left(\frac{L k^{\frac{1}{2}}}{v}\right)^{3/4} = Re_L^{3/4} \approx Re^{3/4}$$

- Simulation numérique directe (Direct Numerical Simulation, DNS):
 - les équations de NS sont résolues pour toutes les échelles
 - Applications limités à des écoulements bas Re
- Simulation aux grandes échelles (Large Eddy Simulation, LES):
 - on résout les grandes échelles et on modélise les petites, qui ne sont pas capturées par le maillage
 - Ecoulements à Re moyennement élevé
- Simulation de champ moyen (Reynolds-Averaged Navier-Stokes, RANS)
 - On résout des équations pour le champ moyen et on modélise les fluctuations turbulentes
 - La plus utilisée jusqu'à présent, notamment pour les applications en ingénierie
 - Approche statistique

- DNS impossible pour des écoulements à grand Reynolds
 - Nombre de mailles nécessaires pour résoudre les plus petites échelles $\approx \left(\frac{L}{n}\right)^3 = Re^{9/4}$
 - Coût de calcul $\approx Re^{11/4}$ (nombre de mailles x nombre d'itérations en temps)
- LES de plus en plus appliquée, y compris à des écoulements complexes
 - Résolution nécessaire pour un écoulement cisaillé libre : $\approx Re^{0.4}$; coût $\approx Re^{0.5}$
 - Résolution nécessaire pour un écoulement avec parois (Wall-Resolved LES, WRLES) : $\approx Re^{1,8}$; coût $\approx Re^{2,4}$
 - → résolution quasi-DNS
 - Le coût de calcul peut être réduit en modélisant l'écoulement de proche paroi (Wall-Modeled LES, WMLES) mais établir des modèles de paroi précis et généraux n'est pas une tâche simple
- RANS approche statistique, ne résout que le champ moyen, complétées par un modèle de turbulence
 - Réduction drastique du coût de calcul
 - Modèles moins universels et entachés d'incertitudes

Résolu

Modélisé

- Simulation numérique directe (DNS)
 - Le calcul doit résoudre **toutes les échelles spatiales et temporelles** de l'écoulement. Les simulations les plus avancées atteignent une résolution spatiale de quelques dizaines de milliards de points

$$N^3 \ge Re^{\frac{9}{4}}$$

Re_H	$Re_{ au}$	N^3	Time steps
12.300	360	6.7×10^{6}	32.000
30.800	800	4.0×10^{7}	47.000
61.600	1.450	1.5×10^8	63.000
230.000	4.650	2.1×10^{9}	114.000

Exemples de résolution pour des écoulements de canal plan de hauteur H

Champ de vitesse instantané pour un écoulement de canal plan à Re_{τ} =4096 (environ 35x10⁹ mailles) (From M. Bernardini, S. Pirozzoli, P. Orlandi, J Fluid Mech, 2014, vol. 742, 171-191)

Exemples de DNS "extrêmes"

Exemples de DNS "extrêmes"

Direct numerical simulation of flow over a full NACA4412 wing at $Re_c = 500.000$ (preliminary cal.)

Exemples de DNS "extrêmes"

Numerical wind tunnel: simulations of typical university wind tunnel experiments

Laminar Flow Control Experiment: $Re = 1*15/1.5*10^{-5} = 1x10^{6}$

Turbulent boundary layer: Re = $5*30/1.5*10^{-5} = 10x10^{6}$

- DNS of wind tunnel experiment with Re = 1x10⁶
 - ~ 20 billion (2x10¹⁰) grid points
 - ~ 0.1 billion (108) core hours
 - 10 months on 10⁴ cores (0.1 peta)

Exa-scale possibilities

- 10¹¹ grid point scale to 10⁸ cores (1 exa)
- Re few million in one day

- Large Eddy Simulation (LES)
 - La simulation ne doit résoudre que les plus grandes échelles
 - Dans les couches limites toutefois, ces échelles ont une taille très petite (hairpins, stries)

$$N^3 \ge \text{Re}^{1.8}$$

Re_H	$Re_{ au}$	N_{DNS}^3	N_{LES}^3
12.300	360	6.7×10^{6}	6.1×10^{5}
30.800	800	4.0×10^{7}	3.0×10^{6}
61.600	1.450	1.5×10^8	1.0×10^{7}
230.000	4.650	2.1×10^9	1.0×10^{8}

Exemples de résolution pour des écoulements de canal plan de hauteur H

Visualization des structures tourbillonnaires dans un étage de compresseur à Re=300000, calcul avec 160x10⁶ mailles.

(From W.A. McMullan, G.J. Page, Progress Aerosp Sci, 2012)

- Reynolds Averaged Navier-Stokes (RANS)
 - Les équations ne décrivent que le champ moyen, elles ignorent les structures cohérentes

Re_H	$Re_{ au}$	N_{DNS}^3	N_{LES}^3	RANS
230.000	4.650	2.1×10^9	1.0×10^{8}	1.0×10^4

- Robustes et peu couteuses, mais elles échouent pour des écoulements dans lesquels l'effet des structures cohérentes joue un rôle crucial pour la physique
 - o Décrochage, tremblement...
- Méthodes hybrides LES/ RANS → cherchent à réunir les meilleures propriétés des deux approches
 - Plusieurs « nuances » possibles en fonction de la part d'écoulement traitée en LES ou en RANS
 - WMLES
 - Hybride RANS/LES « zonal »
 - Hybride RANS/LES « global »

Récapitulatif

Hyérarchie des méthodes de simulation des écoulements turbulents

Récapitulatif

- Les équations de Navier-Stokes equations contiennent toute l'information necessaire pour décrire un écoulement turbulent
- Lorsque certains paramètres (nombre de Reynolds) dépassent un seuil critique, elles donnent lieu à des solutions chaotiques, extremêment sensibles au conditions initiales et aux limites
- Plus le Reynolds est élevé, plus l'écoulement présente une large gamme d'échelles spatiales et temporélles, contribuant aux transfert de masse, quantité de movement et énergie
- DNS : option "force brute" consistant à résoudre toutes les échelles de l'écoulement
 - Limitée à des nombres de Reynolds faibles ou modérés et à des géométries simples
- LES : on ne résout que les échelles turbulentes les plus énergétiques et on modélise les autres
 - Application à des nombres de Reynolds modérés et à des géométries de complexité moyenne
 - Modélisation proche paroi necessaire pour des écoulements à grand nombre de Reynolds
- RANS : seule approche viable pour un usage courant dans les applications industrielle
 - Entâchée par des fortes incertitudes
 - Mal adaptée à des écoulements où la dynamique des structures turbulentes joue un role important

