Cryptography 2/28

Reagan Shirk

February 28, 2020

???

- $\Pi(n) = \#\{p \le n \mid p \in prime\}$ $\Pi(n) \approx \frac{n}{\log(n)}$
- Factoring in \mathbb{Z} is hard but factoring in $\mathbb{F}_2[x]$ is easy
- In \mathbb{F}_{p^n} , the number of multiplicative generators is:

$$\frac{\phi(p^n-1)}{p^n-1}$$

Block Cipher

- Random substitution, while very safe, makes your codebook too big
- You can do a permutation cipher to make the codebook smaller but it's not all that safe tbh
 - Your keyspace is n! and your ciphertext space is $|\Sigma|^n$
 - You can create a permutation matrix, where the inverse of the matrix is the decryption of the
 - * I'll try to remember to upload a picture of this at some point
- You also have a linear cipher/hill cipher
 - $-\overrightarrow{c}=A\overrightarrow{m}$
 - This is encryption, A is invertible \iff det(A) is a unit
 - plaintext and chiphertext spaces are Σ^n , the keyspace is...? Σ^{n^2} ?