

TOPICS IN ECONOMETRICS— DISCRETE CHOICE MODELS MAXIMUM LIKELIHOOD ESTIMATION

Yao Thibaut Kpegli

Master II Advanced Economics, ENS Lyon 2022–2023

Context

- **9** $You have a sample <math> y = \{y_1, ..., y_n\}$
- ② You know that the sample comes from a random variable Y with a vector of parameters $\boldsymbol{\theta} \in \mathbb{R}^K$ whose true value is $\boldsymbol{\theta}_0$
- 3 You don't know the true value θ_0

OBJECTIVE

Provide an estimate of θ_0

Intuition

 $\hat{\boldsymbol{\theta}}_{MLE}$ = the value of $\boldsymbol{\theta}$ that is such that the probability of having observed \boldsymbol{y} is the highest possible.

Introduction

Example (a continuous case)

- Assume that lifetime of an electronic equipment is a r.v following an exponential distribution with parameter a > 0.
- ② The density of exponential distribution with parameter a>0 is $f(y;a)=\frac{1}{a}\exp\left(-\frac{y}{a}\right)$
- 3 We have observed randomly the lifetime 3 times, thereby constituting a sample $y_1 = 1, y_2 = 0.5$ and $y_3 = 1.75$.
- **9** You want to estimate a, that is the vector of parameters is simply $\theta = a$
- **5** The joint density of having observed $\{y_1, y_2, y_3\}$ is

$$p(a) = \frac{1}{a} \exp\left(-\frac{1}{a}\right) \times \frac{1}{a} \exp\left(-\frac{0.5}{a}\right) \times \frac{1}{a} \exp\left(-\frac{1.75}{a}\right) = \frac{1}{a^3} \exp\left(-\frac{3.25}{a}\right)$$

Figure: probability density of observing the sample as function of \boldsymbol{a}

EXAMPLE (A DISCRETE CASE)

- Assume that the fact that a resident of a town has a specific disease is a r.v following a Bernoulli distribution with parameter $a \in (0, 1)$, i.e. the probability of having the disease is a
- ② We have randomly 10 people, thereby constituting a sample $\{y_1, y_2, ..., y_{10}\} = \{0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0\}.$
- 3 You want to estimate a, that is the vector of parameters is simply $\theta = a$
- **4** The joint probability of observing $\{y_1, ..., y_{10}\}$ is

Figure: probability of observing the sample as function of a

NOTATIONS

- $lackbox{0}$ Y is a random variable with a distribution depending on a vector of parameters $oldsymbol{ heta}$
- ② An observed sample $\mathbf{y} = \{y_1, ..., y_n\}$ from n independent draws according to the distribution of Y
- **3** The probability $g(y; \theta)$ of observing the sample y of Y is given by:

$$g(y_1,...,y_n;\boldsymbol{\theta}) = \prod_{i=1}^n f(y_i;\boldsymbol{\theta})$$

with:

- $f(y; \boldsymbol{\theta})$ the probability density function (p.d.f) if Y is a continuous r.v
- the probability $P(Y = y_i; \boldsymbol{\theta})$ of the value y_i if Y is a discrete r.v.

DEFINITION (LIKELIHOOD FUNCTION)

The likelihood function \mathcal{L} is:

$$\begin{array}{ccc} \mathbb{R}^K & \longrightarrow & [0,1] \\ \theta & \mapsto & \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}) = g(\boldsymbol{y}; \boldsymbol{\theta}) \end{array}$$

DEFINITION (LOG-LIKELIHOOD FUNCTION)

The log-likelihood function is:

$$log\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}) = \sum_{i=1}^{n} logf(y_i; \boldsymbol{\theta})$$

EXAMPLE

• if $Y_i \rightsquigarrow \mathcal{B}(p)$, then $\theta = p$ and

$$log\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}) = (\sum_{i=1}^{n} y_i)log(p) + (n - \sum_{i=1}^{n} y_i)log(1 - p)$$

② if $Y_i \rightsquigarrow \mathcal{N}(m, \sigma^2)$, then $\boldsymbol{\theta} = [m, \sigma^2]'$ and

$$log\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}) = -\frac{1}{2} \sum_{i=1}^{n} \left(log\sigma^2 + log(2\pi) + \frac{(y_i - m)^2}{\sigma^2} \right)$$

DEFINITION (SCORE FUNCTION)

The score function is:

$$S(y; \boldsymbol{\theta}) = \frac{\partial log \ f(y, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

$\operatorname{Example}$

• For $Y \leadsto \mathcal{B}(p)$

$$S(y, \boldsymbol{\theta}) = \frac{y}{p} - \frac{1-y}{1-p}$$

2 For $Y \rightsquigarrow \mathcal{N}(m, \sigma^2)$

$$S(y, \boldsymbol{\theta}) = \begin{bmatrix} \frac{y - m}{\sigma^2} \\ \frac{1}{2\sigma^2} \left(\left(\frac{y - m}{\sigma} \right)^2 - 1 \right) \end{bmatrix}$$

Proposition 1 (Score expectation)

The expectation of the score is zero

Proof:

$$\mathbb{E}[S(Y,\boldsymbol{\theta})] = \int \frac{\partial \log f(y;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} f(y;\boldsymbol{\theta}) dy = \int \frac{\partial f(y;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{1}{f(y;\boldsymbol{\theta})} f(y;\boldsymbol{\theta}) dy = \frac{\partial \int f(y;\boldsymbol{\theta}) dy}{\partial \boldsymbol{\theta}} = \frac{\partial (1)}{\partial \boldsymbol{\theta}} = \mathbf{0}$$

DEFINITION (INFORMATION MATRIX)

$$\mathcal{I}_{Y}(oldsymbol{ heta}) = -\mathbb{E}\Bigg(rac{\partial^{2}\ log\ f(Y,oldsymbol{ heta})}{\partialoldsymbol{ heta}\partialoldsymbol{ heta}'}\Bigg)$$

Remark (additivity of the information matrix)

The information matrix of two independent experiments is:

$$\mathcal{I}_{X,Y}(\boldsymbol{\theta}) = \mathcal{I}_X(\boldsymbol{\theta}) + \mathcal{I}_Y(\boldsymbol{\theta})$$

Proposition 2 (Variance of the score)

The variance of the score is equal to the information matrix

$$V\Big(S(Y;\boldsymbol{\theta})\Big) \equiv \mathbb{E}\Bigg(\Bigg(\frac{\partial log\ f(Y,\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\Bigg)\Bigg(\frac{\partial log\ f(Y,\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\Bigg)'\Bigg) = \mathcal{I}_Y(\boldsymbol{\theta})$$

Note that
$$\frac{\partial^2 \log f(y, \theta)}{\partial \theta \partial \theta'} = \frac{\partial^2 f(y; \theta)}{\partial \theta \partial \theta'} \frac{1}{f(y; \theta)} - \frac{\partial \log f(y, \theta)}{\partial \theta} \frac{\partial \log f(y; \theta)}{\partial \theta'}$$

Also $\mathbb{E}\left[\frac{\partial^2 f(y; \theta)}{\partial \theta \partial \theta'} \frac{1}{f(y; \theta)}\right] = \frac{\partial^2 (1)}{\partial \theta \partial \theta'} = \mathbf{0}$. This leads to the result.

EXAMPLE

 $\bullet \quad \text{For } Y \leadsto \mathcal{B}(p)$

$$\mathcal{I}_Y(\boldsymbol{\theta}) = \mathbb{E}\left[\frac{Y}{p^2} + \frac{1-Y}{(1-p)^2}\right] = \frac{1}{p(1-p)}$$

$$\mathcal{I}_{Y}(\boldsymbol{\theta}) = \mathbb{E} \begin{bmatrix} \frac{1}{\sigma^{2}} & \frac{y-m}{\sigma^{4}} \\ \frac{y-m}{\sigma^{4}} & \frac{(y-m)^{2}}{\sigma^{6}} - \frac{1}{2\sigma^{4}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma^{2}} & 0 \\ 0 & \frac{1}{2\sigma^{4}} \end{bmatrix}$$

Theorem 1 (Cauchy-Schwarz inequality)

Let X and Y be two random variables. Then:

$$|Cov(X,Y)| \le \sqrt{V(X)V(Y)}$$

$$\begin{split} &Proof\colon \ \, \text{Let}\,\, Z=Y-\frac{Cov(X,Y)}{V(X)}X.\,\, \text{Then,}\\ &Cov(X,Z)=Cov(X,Y)-Cov(X,X)\frac{Cov(X,Y)}{V(X)}=0.\,\, \text{Then,}\\ &V(Y)=V\left(Z+\frac{Cov(X,Y)}{V(X)}X\right)=V(Z)+\left(\frac{Cov(X,Y)}{V(X)}\right)^2V(X)\geq \frac{(Cov(X,Y))^2}{V(X)}.\\ &\text{Hence,}\,\, V(Y)V(X)\geq (Cov(X,Y))^2\,\, \text{which leads to the result.} \end{split}$$

Theorem 2 (Fréchet-Darmois-Cramér-Rao bound)

Consider an unbiased estimator $\hat{\theta}(Y)$ of θ . The variance of the estimator $\hat{\theta}(Y)$ has a lower bound:

$$V(\hat{\boldsymbol{\theta}}(\boldsymbol{Y})) \ge \mathcal{I}_Y(\boldsymbol{\theta})^{-1} \equiv B_F(\boldsymbol{\theta})$$

$$\begin{aligned} & Proof \colon \text{ First, } Cov\left(\hat{\boldsymbol{\theta}}(\boldsymbol{Y}), S(Y; \boldsymbol{\theta})\right) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}}(\boldsymbol{Y}) - \boldsymbol{\theta})S(Y; \boldsymbol{\theta})\right] = \\ & \mathbb{E}\left[\hat{\boldsymbol{\theta}}(\boldsymbol{Y})S(Y; \boldsymbol{\theta})\right] = \int \hat{\boldsymbol{\theta}}(\boldsymbol{y})S(Y; \boldsymbol{\theta})f(y; \boldsymbol{\theta})dy = \int \hat{\boldsymbol{\theta}}(\boldsymbol{y})\frac{\partial f(y; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\frac{1}{f(y; \boldsymbol{\theta})}f(y; \boldsymbol{\theta})dy = \\ & \frac{\partial \int \hat{\boldsymbol{\theta}}(\boldsymbol{y})f(y; \boldsymbol{\theta})dy}{\partial \boldsymbol{\theta}} = \frac{\partial \mathbb{E}\left(\hat{\boldsymbol{\theta}}(\boldsymbol{Y})\right)}{\partial \boldsymbol{\theta}} = \frac{\partial \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = \mathbf{1}. \text{ Hence, by Cauchy-Schwarz inequality} \\ & \text{we have } V\left(\hat{\boldsymbol{\theta}}(\boldsymbol{Y})\right)V\left(S(Y; \boldsymbol{\theta})\right) \geq \mathbf{1}. \text{ The result follows as } V\left(S(Y; \boldsymbol{\theta})\right) = \mathcal{I}_{Y}(\boldsymbol{\theta}). \end{aligned}$$

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

MLE

DEFINITION (IDENTIFICATION)

The vector of parameters $\boldsymbol{\theta}$ is identifiable if, for any other vector θ^* :

$$\boldsymbol{\theta}^* \neq \boldsymbol{\theta} \Longrightarrow log\mathcal{L}(\boldsymbol{\theta}^*; \boldsymbol{y}) \neq log\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y})$$

DEFINITION (LIKELIHOOD EQUATION)

Necessary condition for maximizing the likelihood function:

$$\frac{\partial log \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{n} S(y_i; \boldsymbol{\theta}) = \mathbf{0}$$

Definition (Maximum Likelihood Estimator (MLE))

The maximum likelihood estimator θ_{MLE} is the vector θ that maximizes the likelihood function. Formally:

$$m{ heta}_{MLE} = rg \max_{m{ heta}} log \mathcal{L}(m{ heta}; m{y}) = rg \max_{m{ heta}} \mathcal{L}(m{ heta}; m{y})$$

MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

EXAMPLE

$$\boldsymbol{\theta}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$oldsymbol{ heta}_{MLE} = \left[egin{array}{c} rac{1}{n} \sum_{i=1}^{n} y_i \ rac{1}{n} \sum_{i=1}^{n} (y_i - oldsymbol{ heta}_{MLE})^2 \end{array}
ight]$$

REGULARITY CONDITIONS

REGULARITY CONDITIONS

- The support of Y does not depends on θ
- $\mathbf{\Theta}_0$ is identified
- 3 The log-likelihood function is continuous in θ
- **1** $\mathbb{E}(log f(Y; \boldsymbol{\theta}_0))$ exists
- The log-likelihood function is twice continuously differentiable
- **1** The information matrix at $\boldsymbol{\theta}_0$ $\mathcal{I}_Y(\boldsymbol{\theta}_0) = -\mathbb{E}\left(\frac{\partial^2 \log f(Y, \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right)$ exists and is nonsingular

Proposition 3 (Properties of MLE)

Under regularity conditions, the MLE is (i) consitent, (ii) asymptotically normally distributed and (iii) asymptotically efficient.

CONSISTENCY

Kullback-Liebler divergence

If $f_{\theta_0}(y)$ and $f_{\theta_1}(y)$ are two densities, the Kullback-Leibler divergence of f_{θ_1} w.r.t f_{θ_0} is

$$KL(f_{\boldsymbol{\theta}_1} || f_{\boldsymbol{\theta}_0}) = \mathbb{E}_{\boldsymbol{\theta}_0} \left[log \frac{f(Y, \boldsymbol{\theta}_0)}{f(Y, \boldsymbol{\theta}_1)} \right] = \int f(y, \boldsymbol{\theta}_0) log \frac{f(y, \boldsymbol{\theta}_1)}{f(y, \boldsymbol{\theta}_0)} dy$$

Proposition 3-0

- **1** $KL(f_{\theta_1}||f_{\theta_0}) \ge 0$
- $2 KL(f_{\theta_1} || f_{\theta_0}) = 0 \qquad \text{iff} \qquad f_{\theta_0} = f_{\theta_1}$

Proof: First, -log(x) is a convex function. By Jensen's inequality,

$$KL(f_{\boldsymbol{\theta}_1} || f_{\boldsymbol{\theta}_0}) = \mathbb{E}_{\boldsymbol{\theta}_0} \left[-log \frac{f(Y, \boldsymbol{\theta}_1)}{f(Y, \boldsymbol{\theta}_0)} \right] \ge -log \mathbb{E}_{\boldsymbol{\theta}_0} \left[\frac{f(Y, \boldsymbol{\theta}_1)}{f(Y, \boldsymbol{\theta}_0)} \right] =$$

$$-log \int f(y, \boldsymbol{\theta}_1) dy = 0.$$

Second, because -log(x) is strictly convex, equality holds if and only if

CONSISTENCY

Proposition 3-1 (Consistency of MLE)

Under regularity conditions, θ_{MLE} converge in probability to the true value θ_0 :

$$plim \, \boldsymbol{\theta}_{MLE} = \boldsymbol{\theta}_0$$

Informal argument:

$$\theta_{MLE} = \arg \max_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} log f(Y_i; \boldsymbol{\theta})$$

$$= \arg \min_{\boldsymbol{\theta}} -\frac{1}{n} \sum_{i=1}^{n} log f(Y_i; \boldsymbol{\theta})$$

$$= \arg \min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} log f(Y_i; \boldsymbol{\theta}_0) - \frac{1}{n} \sum_{i=1}^{n} log f(Y_i; \boldsymbol{\theta})$$

$$\simeq_{n \longrightarrow +\infty} \arg \min_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{\theta}_0} log f(Y; \boldsymbol{\theta}_0) - \mathbb{E}_{\boldsymbol{\theta}_0} log f(Y; \boldsymbol{\theta})$$

$$\simeq_{n \longrightarrow +\infty} \arg \min_{\boldsymbol{\theta}} KL(f_{\boldsymbol{\theta}_0} || f_{\boldsymbol{\theta}}) = \boldsymbol{\theta}_0$$

$$\simeq_{n \longrightarrow +\infty} \theta_0$$

with $\simeq_{n \longrightarrow +\infty}$ stands for Law of Large Numbers

Consistency

EXAMPLE

• For $Y \leadsto \mathcal{B}(p)$

$$\theta_{MLE} = \frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{p} E[Y] = p$$

$$oldsymbol{ heta}_{MLE} = \left[egin{array}{c} m_{MLE} \ \sigma_{MLE}^2 \end{array}
ight]$$

$$m_{MLE} = \frac{1}{n} \sum_{i=1}^{n} Y_i \quad \xrightarrow{p} \quad E[Y] = m$$

$$\sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2 - \left(\frac{1}{n} \sum_{i=1}^n Y_i\right)^2 \quad \xrightarrow{p} \quad E[Y^2] - E[Y]^2 = \sigma^2$$

CONSISTENCY

Remark

- Regularity conditions are sufficient but not necessary conditions to have consistency
 - It is therefore possible for the MLE to be consistent even in situations that do not meet regularity conditions
 - e.g. if $Y \leadsto \mathcal{U}[0,\theta]$, we have $\boldsymbol{\theta}_{MLE} = \max\{Y_1,...,Y_n\}$

$$\lim_{n \to +\infty} \mathbb{P}(|\boldsymbol{\theta}_{MLE} - \boldsymbol{\theta}| > \epsilon) = \lim_{n \to +\infty} \left(1 - \frac{\epsilon}{\theta}\right)^n = 0$$

ASYMPTOTIC NORMALITY

Proposition 2 (Asymptotic normality)

The MLE estimator θ_{MLE} is normally distributed asymptotically:

$$\sqrt{n} (\boldsymbol{\theta}_{MLE} - \boldsymbol{\theta}_0) \xrightarrow{dist.} \mathcal{N} (0, \mathcal{I}_Y(\boldsymbol{\theta}_0)^{-1})$$

Proof:

• First order Taylor expansion of the first derivative of $\log \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y})$

$$\frac{\partial log \ \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \boldsymbol{\theta}} \simeq \frac{\partial log \ \mathcal{L}(\boldsymbol{\theta}_0; \boldsymbol{y})}{\partial \boldsymbol{\theta}} + \frac{\partial^2 log \ \mathcal{L}(\boldsymbol{\theta}_0; \boldsymbol{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

• Evaluate at $\boldsymbol{\theta} = \boldsymbol{\theta}_{MLE}$ $0 \simeq \frac{\partial log \ \mathcal{L}(\boldsymbol{\theta}_0; \boldsymbol{y})}{\partial \boldsymbol{\theta}} + \frac{\partial^2 log \ \mathcal{L}(\boldsymbol{\theta}_0; \boldsymbol{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} (\boldsymbol{\theta}_{MLE} - \boldsymbol{\theta}_0)$

ASYMPTOTIC NORMALITY

Rearrange

$$\sqrt{n}(\boldsymbol{\theta}_{MLE} - \boldsymbol{\theta}_0) \simeq \sqrt{n} - \frac{\frac{\partial log \ \mathcal{L}(\boldsymbol{\theta}_0; \boldsymbol{y})}{\partial \boldsymbol{\theta}}}{-\frac{\partial^2 log \ \mathcal{L}(\boldsymbol{\theta}_0; \boldsymbol{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}} = \sqrt{n} - \frac{\frac{1}{n} \sum_{i=1}^n \frac{\partial log \ f(y_i; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}}}{-\frac{1}{n} \sum_{i=1}^n \frac{\partial^2 log \ f(y_i; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}}$$

- Central Limit Theorem $A_n = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial log \ f(y_i; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} \quad \overset{dist.}{\longrightarrow} \quad \mathcal{N}\Big(E[S(Y, \boldsymbol{\theta}_0)], \frac{V(S(Y, \boldsymbol{\theta}_0))}{n}\Big)$
- Law of Large Number $B_n = -\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^2 log \ f(y_i; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta'}} \xrightarrow{p} -E \left[\frac{\partial^2 log \ f(Y; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta'}} \right] = \mathcal{I}_Y(\boldsymbol{\theta}_0)$
- Remembering that $E[S(Y, \theta_0)] = 0$ and $V(S(Y, \theta_0)) = \mathcal{I}_Y(\theta_0)$, Slutsky Theorem leads to

$$\sqrt{n}(\boldsymbol{\theta}_{MLE} - \boldsymbol{\theta}_0) = \sqrt{n} \frac{A_n}{B_n} = \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \mathcal{I}_Y(\boldsymbol{\theta}_0)^{-1})$$

ASYMPTOTICALLY EFFICIENT

Proposition (Asymptotically efficient)

 θ_{MLE} is asymptotically efficient, *i.e.* achieves the FDCR lower bound for consistent estimators.

Proof: We have

$$\sqrt{n}(\boldsymbol{\theta}_{MLE} - \boldsymbol{\theta}_0) \stackrel{dist.}{\longrightarrow} \mathcal{N}\Big(0, \mathcal{I}_Y(\boldsymbol{\theta}_0)^{-1}\Big)$$

This means that

$$V\left(\boldsymbol{\theta}_{MLE}\right) = \mathbb{I}(\boldsymbol{\theta}_0)^{-1}$$

with $\mathbb{I}(\boldsymbol{\theta}_0) = n\mathcal{I}_Y(\boldsymbol{\theta}_0)$ the information matrix associated to $\{Y_1, ..., Y_n\}$.

Remark:

- The asymptotic variance-covariance matrix $\mathbb{I}(\boldsymbol{\theta}_0)$ of the MLE depends on the unknown value of $\boldsymbol{\theta}_0$
- \bullet In practice, the matrix is evaluated at $\pmb{\theta}_{MLE}$

SUM UP

Sum up

- **①** $You have a sample <math> y = (y_1, ..., y_n)$
- ② You know that the sample comes from a random variable Y with a vector of parameters $\boldsymbol{\theta} \in \mathbb{R}^K$ whose true value $\boldsymbol{\theta}_0$ is unknown
- **3** The log-likelihood of one observation y_i is computed analytically (as a function of $\boldsymbol{\theta}$): $l_i(\boldsymbol{\theta}; y_i) = log f(y_i; \boldsymbol{\theta})$
- **1** The log-likelihood of the sample is $log\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}) = \sum_{i} l_i(\boldsymbol{\theta}; y_i)$
- The The MLE estimator results from the optimization problem

$$\boldsymbol{\theta}_{MLE} = \arg \max_{\boldsymbol{\theta}} log \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y})$$

• We have: $\boldsymbol{\theta}_{MLE} \rightsquigarrow \mathcal{N}\left(0, \mathbb{I}(\boldsymbol{\theta}_0)^{-1}\right)$, where $\mathbb{I}(\boldsymbol{\theta}_0)$ is estimated as $\mathbb{I}(\boldsymbol{\theta}_{MLE})$.

- Let L = (h, s; p, 1 p) be a lottery that yields h with proba p and s otherwise, with $h > s \ge 0$
- The certainty equivalent y of a lottery L is the sure amount that provides the same level of utility (satisfaction)
- We observe from the experiment of Gonzalez and Wu (1999) a sample of certainty equivalent $\mathbf{y} = \{y_1, ..., y_n\}$ associated to lotteries $L_i = (h_i, s_i; p_i, 1 p_i), i = 1, ..., n$
- Assume that y_i is a realisation of $Y_i \rightsquigarrow \mathcal{N}(m(h_i, s_i, p_i), \sigma^2)$
- According to Prospect Theory (Tversky et Kahneman, 1992), we assume

$$m(h_i, s_i, p_i) = u^{-1}[w(p_i)u(h_i) + (1 - w(p_i))u(s_i)]$$

with u(.) and w(.) the utility and weighting functions

• According to Gonzalez and Wu (1999), we assume

$$u(z) = z^{\alpha}$$
 and $w(p) = \frac{\delta p^{\gamma}}{\delta p^{\gamma} + (1-p)^{\gamma}}$

so that

$$m(h_i, s_i, p_i) = \left[(h_i^{\alpha} - s_i^{\alpha}) \frac{\delta p_i^{\gamma}}{\delta p_i^{\gamma} + (1 - p_i)^{\gamma}} + s_i^{\alpha} \right]^{\frac{1}{\alpha}}$$

• The log-likelihood $l_i(\boldsymbol{\theta}; \boldsymbol{y})$ associated to y_i is then

$$l_i(\boldsymbol{\theta}; y_i) = -\frac{1}{2} \left(log \sigma^2 + log(2\pi) + \frac{(y_i - m(h_i, s_i, p_i))^2}{\sigma^2} \right)$$

with
$$\boldsymbol{\theta} = [\alpha, \delta, \gamma, \sigma^2]'$$

Programming of the the MLE in STATA (ML routine)

Table: Estimation results: ml

id	Coefficient	(Std. Err.)	id	Coefficient	(Std. Err.)	
	α			γ		
1	0.676	(0.102)	1	0.392	(0.027)	
2	0.227	(0.069)	2	0.651	(0.045)	
3	0.654	(0.130)	3	0.388	(0.027)	
4	0.590	(0.053)	4	0.154	(0.021)	
5	0.401	(0.078)	5	0.273	(0.022)	
6	0.676	(0.059)	6	0.890	(0.025)	
7	0.604	(0.059)	7	0.204	(0.016)	
8	0.390	(0.077)	8	0.373	(0.042)	
9	0.518	(0.074)	9	0.863	(0.039)	
10	0.455	(0.090)	10	0.501	(0.034)	
11	0.493	(0.043)	11	0.435	(0.014)	
	δ			σ^2		
1	0.461	(0.115)	1	421.467	(46.402)	
2	1.508	(0.517)	2	873.034	(96.118)	
3	1.449	(0.379)	3	621.578	(68.433)	
4	0.211	(0.039)	4	138.202	(15.216)	
5	1.191	(0.303)	5	966.502	(106.408)	
6	1.331	(0.155)	6	97.057	(10.686)	
7	0.376	(0.065)	7	226.450	(24.931)	
8	0.381	(0.122)	8	567.347	(62.463)	
9	0.896	(0.178)	9	282.749	(31.130)	
10	0.935	(0.253)	10	715.257	(78.747)	
11	0.766	(0.097)	11	153.888	(16.943)	

FIGURE: Plot for the median subject (id = 11)

- Concave utility function (in gain domain)
- Overweighting (resp. underweighting) of small (resp. intermedaite and high) probability of winning

NEXT: BINARY OUTCOME MODELS!

