

Here you'll get 🔰

- PPT
- NOTES
- VIDEO LECTURE
- E-BOOK
- PYQ
- EXPERIMENT
- ASSIGNMENT
- TUTORIAL

UNIT - 5 SPECTROSCOPIC TECHNIQUES

passing through transparent medium with thickness of medium is proportional to
a. Wavelength of incident light.
b. Intensity of incident light.
c. Wavelength of transmitted light.
d. Intensity of visible light
Ans:b
Alis.b
Q. 2 Beer's law states that the intensity of monochromatic light passing through
transparent medium decreases asof the absorbing substance increases
arithmetically
a. Volume
b. Concentration
c. Cost
d. Standard oxidation potential
Ans:b
Q. 3 Any isolated covalently bonded functional group that shows a characteristic absorption in uv-visible region is known as
Q. 5 The energy required for the transition is highest in case oftransition. a. π - σ^* b. σ - σ^* c. σ -n d. n- σ Ans:b

 Q. 6 Substitution of group if shifts absorption to the longer wavelength the shift is known as a. chromophoric shift b. bathochromic shift
c. blue shift d. yellow shift Ans:b
Q. 7 Absorption shifted to shorter wavelength due to substitution of group is known as
a. chromophoric shift
b. bathochromic shift
c. blue shift
d. yellow shift
Ans:c
Q. 8 A module which provides a beam of light of given single wavelength is known as
a. window
b. monochromator
c. selector
d. spectrometer
Ans:b
Q. 9 Operating range of uv-spectrophotometer is
a. 400nm-800nm
b. 200nm-400nm
c. 200nm-800nm
d. 500nm-1500nm
Ans: b
Q. 10 Operating range of uv- visible spectrophotometer is -
a. 400nm-800nm
b. 200nm-400nm
c. 200nm-800nm
d. 500nm-1500nm
Ans: a
Q. 11 Detector used in uv- visible spectrophotometer is
a. Photomultiplier tube
b. Electric buzzer
c. Null point detector
d. None of the above
Ans: a

Q. 12 Benzene absorbs at 255nm while aniline absorbs at 280nm because
a. Bezene is auxochrome
bNH2 is auxochrome
cNH2 is chromophpre
d. None of the above
Ans:b
Q. 13is known as colour enhancing group.
a. Auxochrome
b. Chromophore
c. Chromatophor
d. None of the above
Ans:a
Q. 14 Source used in uv-visible spectrophotometer is
a. Incandescent lamp
b. Hydrogen lamp
c. Deuterium lamp
d. Any of the above
Ans: d
Q. 15 Cuvettes used in uv-visible spectrophotometer are made up of
a. Glass
b. Quartz
c. Metal
d. None of the above
Ans: b
Q. 16 The parts of spectrophotometer is used to obtain a light rays with single wavelength
is known as
a. Monochromator
b. Source of light
c. Slit
d. Detector
Ans: a
Q. 17 Transition which requires highest energy in uv-visible spectrophotometer is
transition.
a. π-σ*
b. σ-σ*
c. σ-n
d. n-σ
Ans: b

Q. 18 Transition which requires lowest energy in uv-visible spectrophotometer is
transition.
a. π-σ*
b. σ-σ*
c. σ-n
d. n- π *
Ans: d
Q. 19 Transition which requires radiation of shortest wavelength in uv-visible
spectrophotometer is
a. π - σ * transition.
b. σ - σ * transition.
c. σ-n transition.
d. n- π * transition.
Ans:b
Q. 20 Transition which requires radiation of longest wavelength in uv-visible
spectrophotometer is
a. π - σ * transition.
b. σ - σ * transition.
c. σ-n transition.
d. $n-\pi$ * transition.
Ans: d
Q. 21 Electron transition is allowed transition or forbidden depends upon
a. The geometry of the molecular orbital in ground state
b. The geometry of the molecular orbital in excited state
c. The orientation of the electric dipole of the incident light responsible for including the
transition
d. On appropriate symmetry relationship between the above three factors
Ans:d
Alis.u
Q. 22 UV – Visible spectrophotometer has application in
a. Detection of function group
b. Determination of conjugation
c. Identification of unknown compound
d. All above
Ans:d
O 22. The magnitude of moler absorption coefficient in dependent of the ways level of
Q. 23 The magnitude of molar absorption coefficient in dependant of the wavelength of
incident beam of radiation and
a. Physical state of absorbing substance
b. Chemical nature of absorbing substance
c. Thermal energy of substance
d. Electrical conductivity of absorbing substance

Ans:b

Q. 24 The relative energy changes involved in the transition has ordera. n- π * < σ - σ * < π - π *
b. n- π * > σ-σ* > π- π *
c. n- π * < π - π * < σ - σ *
d. n- π * > π - π *> σ - σ *
Ans:c
Q. 25 In Photomultiplier tube sensitivity of cell
a. Is considerably decreased
b. Is kept constant
c. Is considerably increased
d. None of the above
Ans:c
Q. 26 The essential component of monochromator are entrance exit slit and
a. Dispersing element like prism
b. Photovoltaic cell
c. Galvanometer
d. None of the above
Ans:a
O 27 If It is intensity of transmitted light IO is intensity of incident light. K is the constant
Q. 27 If It is intensity of transmitted light I0 is intensity of incident light, K is the constant for wavelength. Lie thickness and c is concentration It = 10. e ^{-kl} is
for wavelength, I is thickness and c is concentration It = $10 \cdot e^{-kl}$ is
for wavelength, I is thickness and c is concentration It = $10 \cdot e^{-kl}$ is a. Beer's law
for wavelength, I is thickness and c is concentration It = $10 \cdot e^{-kl}$ is a. Beer's law b. Lambert's law
for wavelength, I is thickness and c is concentration It = I0 . e ^{-kl} is a. Beer's law b. Lambert's law c. Kohlrausch's law
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above
for wavelength, I is thickness and c is concentration It = I0 . e ^{-kl} is a. Beer's law b. Lambert's law c. Kohlrausch's law
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts a. Electrons into photons
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts a. Electrons into photons b. Electrons into electric current
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts a. Electrons into photons b. Electrons into electric current c. Photons into electric current
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts a. Electrons into photons b. Electrons into electric current c. Photons into electric current d. All above Ans:c
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts a. Electrons into photons b. Electrons into electric current c. Photons into electric current d. All above Ans:c
for wavelength, I is thickness and c is concentration It = I0 . e -kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts a. Electrons into photons b. Electrons into electric current c. Photons into electric current d. All above Ans:c Q. 29 The term log It/ I0 is
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts a. Electrons into photons b. Electrons into electric current c. Photons into electric current d. All above Ans:c Q. 29 The term log It/ IO is a. Transmittance
for wavelength, I is thickness and c is concentration It = I0 . e-kl is a. Beer's law b. Lambert's law c. Kohlrausch's law d. None of the above Ans:b Q. 28 Photomultiplier tube converts a. Electrons into photons b. Electrons into electric current c. Photons into electric current d. All above Ans:c Q. 29 The term log It/ IO is a. Transmittance b. Resistance

b. Molar absorptivity

Q. 30 Unsaturated compounds containing hetroatoms such as O, N and S shows transition. a. π - σ^* b. n- π^* c. σ - σ^* d. σ -n Ans:b
Q. 31 Visible spectrophotometer has operational range
a. 400nm-800nm
b. 200nm-400nm
c. 200nm-800nm
d. 500nm-1500nm
Ans:a
Q. 32 The solution of substance that appears colored to human eyes absorbs in the range
a. 400nm-800nm
b. 200nm-400nm
c. 200nm-800nm
d. 500nm-1500nm
Ans:a
Q. 33 The solution of substance that absorbs in UV region appears to human eyes.
a. Colored
b. Transparent
c. Turbid
d. None of the above
Ans:b
Q. 34 In UV visible spectrophotometer measurement of absorbance is preferred over %
transmittance because
a. UV visible spectrophotometer is equipped to measure absorbance
b. Absorbance is α C while % transmittance is notc. % transmittance can't be measured with 100 % accuracy
d. % transmittance is dependant on the power of incident radiations
Ans:b
Q. 35 According to Beer's Lamberts law A= εcl
Where ε is
a Absorbance

	c. Pa	h length	
		insmittance	
	Ans:		
36.	UV-	risible spectroscopy measures	
	a. I	lolecular Rotation	
	b. I	ectronic Excitation	
	c. 1	uclear excitation	
	d. 1	lolecular vibrations	
	An	- b	
27	111/	egion extends from	
37.			
		100-400 nm	
		200-600 nm	
		00-1000 nm	
	a. 4	00-700 nm	
		Ans-a	
20	\ /! -!	de mariem autom de faran	
		ole region extends from	
		0-400 nm	
		0-600 nm	
		-1000 nm	
C		9-800 nm	
	An	- d	
39.		rding to the statement of Lambert's law, the rate of decrease in intensity of ligh	ηt
		thickness of the medium is proporational to the	
		Concentration of the medium	
	b.	Temperature of the system	
	c.	Intensity of light	
	d.	Pressure of the medium	
		Ans - c	
40.		ording to the statement of Beer's law, the rate of decrease in intensity of light w	ith
	thic	ness of the medium is directly proporational to the	
	a.	Concentration of the medium	
	b.	Temperature of the system	
	c.	Intensity of light	
	d.	Pressure of the medium	
		Ans – a	
41.		unshared electrons present in the compound are known as	
	a.	ח פופטנוטוו	

	 b. δ electrons c. unsaturated electrons d. n electrons Ans- d
	Identify the correct order of energies required for the electronic transitions. a. $6 \rightarrow 6^* > n \rightarrow 6^* > n \rightarrow n^* > n \rightarrow n^*$ b. $n \rightarrow 6^* > 6 \rightarrow 6^* > n \rightarrow n^* > n \rightarrow n^*$ c. $6 \rightarrow 6^* > n \rightarrow n^* > n \rightarrow n^* > n \rightarrow n^*$ d. $6 \rightarrow 6^* > n \rightarrow n^* > n \rightarrow n^* > n \rightarrow 6^*$ Ans – a Which of the following transition required less amount of energy?
73.	a. $6 \rightarrow 6^*$ b. $n \rightarrow 6^*$ c. $n \rightarrow n^*$ d. $n \rightarrow n^*$
44.	Which of the following transition required large amount of energy? a. $6 \rightarrow 6^*$ b. $n \rightarrow 6^*$ c. $n \rightarrow n^*$ d. $n \rightarrow n^*$
45.	Saturated hydrocarbons shows transition. a. $6 \rightarrow 6^*$ b. $n \rightarrow 6^*$ c. $n \rightarrow n^*$ d. $n \rightarrow n^*$ Ans. a
46.	Unsaturated hydrocarbon shows transition. a. $6 \rightarrow 6^*$ b. $n \rightarrow 6^*$ c. $n \rightarrow n^*$ d. $n \rightarrow n^*$
47.	Compound containing nonbonding or unshared electrons present on hetero atoms such as O, N, S shows a. $6 \rightarrow 6^*$

	b.	n→ 6*
	c.	л > л*
	d.	n → л*
		Ans. b
48.	Cor	mpound containing double bonds involving hetero atoms bearing unshared
		ctron pairs of electrons shows
	a.	δ→ 6*
	b.	n→ 6*
	c.	л > л*
		n→ π*
	•	Ans. d
		Allord
49.	Cov	valently unsaturated group responsible for electronic transitions is called as
	a.	Auxochrome
	b.	Active molecule
	c.	Chromophore
	d.	Hyperchrome
		Ans. c
50.	Aux	cochrome is
	a.	Saturated functional group attached to the chromophore
	b.	Unsaturated functional group attached to the Chromophore
	c.	Unsaturated group responsible for electronic transition
	d.	Saturated group responsible for electronic transition
		Ans- a
51.	The	shift of absorption to longer wavelength is
	a.	Hypsochromic shift
	b.	Hyperchromic shift
	c.	Bathochromic shift
	d.	
		Ans – c
52.	Нур	osochromic shift is
	a.	Shift of absorption to the longer wavelength
	b.	Shift of absorption to the shorter wavelength
	c.	Increase in intensity of absorption
	d.	Decrease in intensity of absorption
		Ansb
53.	Inc	rease in the intensity of absorption is called as
	a.	Hypsochromic shift
	b.	Hyperchromic shift
	C.	Bathochromic shift

d. Hypochromic shiftAns – bHypochromic effect is

54. Hypochromic effect is when----------------

- a. Intensity of absorption increases
- b. Intensity of absorption decreases
- c. Shift of absorption to the longer wavelength
- d. Shift of absorption to the shorter wavelengthAns. b

55. In block diagram of UV-Visible spectroscopy, correct sequence will be.....

- a. Source \rightarrow Monochromator \rightarrow Sample holder \rightarrow Photodetector \rightarrow Amplifier \rightarrow Recorder
- b. Source → Sample holder → Monochromator → Photodetector → Amplifier → Recorder
- c. Source \rightarrow Photodetector \rightarrow Sample holder \rightarrow Monochromator \rightarrow Amplifier \rightarrow Recorder
- d. Source → Monochromator → Photodetector → Sample holder → Amplifier → Recorder

Ans. a

(Part B-Infra Red Spectroscopy)

56. IR spectroscopy measures -------

- a. Molecular Rotation
- b. Electronic Excitation
- c. Nuclear excitation
- d. Molecular vibrations

Ans: d

57. IR region is ------

- a. 0.78 to 200 µ
- b. 200 to 300 μ
- c. 1.5 -100 µ

 $d.1-2 \mu$

Ans: a

58. Stretching vibrations in molecules involves --------

- a. Movement of the atoms w.r.t. particular atom in same direction
- b. Movement of the atoms w.r.t. particular atom in opposite direction
- c. Movement of the atoms w.r.t. particular atom in parallel direction
- d. Movement of the atoms w.r.t. particular atom in perpendicular direction

Ans: a

59. Match the foll	owing
i) Scissoring	a) movement of atoms in same direction in same plane
ii) Rocking	b) movement of two atoms in opposite direction in same plane
iii) Wagging	c) movement of one atom up and other atom down the plane
iv) Twisting	d) movement of atoms up the plane or below the plane
a. i=d, ii=c, iii=b, iv	=a
b. i=b, ii=a, iii=d, iv	=C
c. i= c, ii=d, iii= b, i	v=a
d. i=d, ii=a, iii=d, iv	=b
Ans. =b	
60. Bending vibrat	tions are characterised by
_	angle between two covalent bonds
_	length between two covalent bonds
c. Change in geom	
d. Change in interr	•
Ans: a	
61. Fundamental ı	modes of vibrations in benzene are
a. 9	
b. 6	
c. 3	
d. 30	
Ans =d	
62. Fundamental ı	modes of vibrations in CO2 are
a. 9	
b. 6	
c. 4	
d. 30	
Ans = c	
63. Fundamental i	modes of vibrations in water are
a. 3	
b. 9	
c. 4	
d. 18	
Ans = a	
64 Eundamontal i	modes of vibrations in C2H6 are
_	nodes of vibrations in carro are
a. 6	
b. 9	
c. 4	
d. 18	
Ans= d	

65. Molecule absorbs IR radiation only when-----

- a. Frequency of vibration of bond and frequency of IR radiation match
- b. Frequency of rotation of bond and frequency of IR radiation match
- c. Frequency of excitation of bond and frequency of IR radiation match
- $d. \ \mbox{Frequency of transition of bond and frequency of IR radiation match}$

Ans: a

66. Molecule absorb IR radiation in following condition?

- i) Frequency of vibration of bond and frequency of IR radiation match
- ii) When absorption causes change in electric dipole
- a. Only i
- b. Only ii
- c. Both i and ii
- d. None of above

Ans: c

67. Out of following which is not used as an IR source?

- a. Nernst filament
- b. Globar
- c. Mercury arc
- d. Quartz hydrogen lamp

Ans: d

68. Monochromator i.e. prism in IR spectroscopy is made up of

- a. NaCl, KOH
- b. NaCl, KBr
- c. NaOH, KBr
- d. NaOH, KOH

Ans: b

69. Sampling of substances in IR spectroscopy can be done as following; match it

- a. Solid run in solution
- i) amorphous sample deposit on NaCl or KBr cell
- b. Solid film technique
- ii) solid dissolve in aq. Solvent and drop it on

alkali halide, evaporate

- c. Pressed pallet technique iii)sample mixed in Nujol and make paste
- d. Mull technique
- iv) sample grind with KBr and pressed to pallet
- a. a=iii, b=iv, c=i, d=ii
- b. a=ii, b=i, c=iv, d=iii
- c. a=iv, b=iii, c=i, d=ii
- d. a=ii, b=i, c=iii, d=iv

Ans: b

70. Out of following which is not used as detector in IR spectroscopy?

- a. Thermocouple
- b. Bolometer
- c. Golay detector
- d. Globar

Ans; =d

71. IR Spectrum is graph between--------

- a. Wavelength vs absorbance
- b. Wavelength vs transmittance
- c. Wavelength vs % transmittance
- d. Wave number vs absorbance

Ans: c

72. Finger print region is -------

- a. 4000-1500 cm-1
- b. 1500-909 cm-1
- c. 909-667 cm-1
- d. 667-50 cm-1

Ans: b

73. Match the following.

- a. Alkanes
- i) 1725 cm-1
- b. Alcohols
- ii) 2800-3000 cm-1
- c. Ketones
- iii) 3000-3100 cm-1
- d. Aromatic rings
- iv)3200-3600 cm-1
- a. a=ii, b=iv, c=i, d=iii
- b. a=iii, b=i, c= iv, d=ii
- c. a=ii, b=iv, c=iii, d=i
- d. a=iv, b=iii, c=ii, d=i

Ans=a

74. Match the following

- a. Cyclopropanone
- i)1710 cm-1
- b. Cyclobutanone
- ii) 1740 cm-1
- c. Cyclopentanone
- iii) 1775 cm-1
- d. Cyclohexanone
- iv) 1818 cm-1
- a. a=ii, b=iii, c=iv, d=i
- b. a=iii, b=iv, c=i, d=ii
- c. a=iv, b=iii, c=ii, d=i
- d. a=iv, b=i, c=ii, d=i

Ans: = c

75. Out of following is not detector in IR spectroscopy.

- a. Globar
- b. Bolometer
- c. Golay
- d. thermocouple

Ans. = a

76. Aromatic region in IR spectroscopy is in between.....

- A.1500-909 cm-1
- b. 909-667 cm-1

c. 667-50 cm-1
d. 4000-1500 cm-1
Ans= b
77. In block diagram of IR spectroscopy, correct sequence will be
a. Sourcesamplemonochromatordetector—amplifier—recorder
b. Sourcesamplemonochromatoramplifier detectorrecorder
c. SourcemonochromatorSample—detector—amplifierrecorder
d. Sourcesamplemonochromatordetector—amplifier—reference—recorder
Ans= a
A115- a
78. Molecules like H2, Cl2, O2 are IR inactive because
a. They are diatomic
b. They are linear
c. They does not have electrical dipole
d. All of above
Ans=C
79. Vibrational transitions requireenergy than electronic transitions.
a. More
b. less
c. same
d. none of above
Ans= b
Alis- b
80. Calculate possible number of fundamental vibration in CHCl3?
a. 19
b. 15.
c. 36
d. 9
Ans= d
81. Streching frequency of cyclic ketone in IRwith increase in ring size.
a. Increases
b. decreases
c. remain same
d. no effect
Ans= b
82. Which one of following is out of plane vibration?
a. Scissoring
b. Rocking
c. symmetric stretching
d. Wagging
Ans=d
83. Keto form of acetyl acetone show characteristic absorption stretching frequency for

carbonyl group while Enol form of same will give absorption for......

- a. -OH & -C=C stretch
- b. -C=O & -C=C stretch
- c. -C=O & -OH strech
- d. None of above

Ans= a

84. Out of following which is not a bending vibration?

- a. Rocking vibration
- b. wagging vibration
- c. twisting vibration
- d. symmetric stretching

Ans= d

85. Which of following is correct about application of IR spectroscopy?

- i) Identifying atmospheric pollution
- ii) Measuring ethanol in breath
- iii) Determination of molecular weight
- a. Only i
- b. Only ii
- c. Only i & ii
- d. All i, ii, iii

Ans= C

86. In IR exact position of absorption depends upon.....

- a. Force constant
- b. Masses of atoms
- c. Environment of bond
- d. All of above

Ans=d

87. For calculating fundamental modes of vibration in non-linear polyatomic molecule (3N-6) formula is used where N is.....

- a. Number of electron in bond
- b. Number of atoms in molecule
- c. Number of degree of freedom
- d. None of above

Ans= b

88. For calculating fundamental modes of vibration in non-linear polyatomic molecule (3N-6) formula is used where "3" in 3N indicates for......

- a. Sum of rotational, vibrational and translational degree of freedom
- b. Sum of rotational and translational degree of freedom
- c. Sum of vibrational and rotational degree of freedom
- d. Sum of vibrational and translational degree of freedom

Ans= a

89. KBr is used in IR spectroscopy because.....

- a. It has dipole moment
- b. It is diatomic salt
- c. It is transparent to IR
- d. All of above

Ans= c

90. CCl4 does not give prominent bands in IR because....

- a. It has dipole moment zero
- b. It is solvent
- c. It is polyatomic molecule
- d. All of above

Ans= a

91. IR spectroscopy measures

- a. Molecular Rotation
- b. Electronic Excitation
- c. Nuclear excitation
- d. Molecular vibrationsCorrect ans: d

92. IR region is

- a. 0.78 to 200 μ
- b. 200 to 300 μ
- c. 1.5 -100 μ
- $d. 1-2 \mu$

Correct ans: a.

93. Stretching vibrations in molecules involves

- a. Movement of the atoms w.r.t. particular atom in same direction
- b. Movement of the atoms w.r.t. particular atom in opposite direction
- c. Movement of the atoms w.r.t. particular atom in parallel direction
- d. Movement of the atoms w.r.t. particular atom in perpendicular direction Correct ans: a.

94. Match the following

- i) Scissoring
- a) movement of atoms in same direction in same plane
- ii) Rocking plane
- b) movement of two atoms in opposite direction in same
- iii) Wagging

plane

- c) movement of one atom up and other atom down the
- iv) Twisting
- d) movement of atoms up the plane or below the plane
- a. i=d, ii=c, iii=b, iv=a
- b. i=b, ii=a, iii=d, iv=c
- c. i= c, ii=d, iii= b, iv=a
- d. i=d, ii=a, iii=d, iv=b

Correct ans. =b

- 95. Bending vibrations are characterised by
 - a. Change in bond angle between two covalent bonds
 - b. Change in bond length between two covalent bonds
 - c. Change in geometry of molecule
 - d. Change in internuclear distance Correct ans: a
- 96. Fundamental modes of vibrations in benzene are a. 9

b. 6 c. 3 d. 30

Correct and=d

97. Fundamental modes of vibrations in CO2 are a. 9

b. 6 c. 4 d. 30

Correct ans = c

98. Fundamental modes of vibrations in water are a. 3

b. 9 c. 4 d. 18

Correct ans = a

99. Fundamental modes of vibrations in C2H6 are a. 6

b. 9 c. 4 d. 18

Correct ans= d

- 100. Molecule absorbs IR radiation only when
 - a. Frequency of vibration of bond and frequency of IR radiation match
 - b. Frequency of rotation of bond and frequency of IR radiation match
 - c. Frequency of excitation of bond and frequency of IR radiation match
 - d. Frequency of transition of bond and frequency of IR radiation match Correct ans: a
- 101. Molecule absorb IR radiation in following condition?
 - i) Frequency of vibration of bond and frequency of IR radiation match
 - ii) When absorption causes change in electric dipole
 - a. Only i
 - b. Only ii
 - c. Both i and ii
 - d. None of above

Correct ans: c

- 102. Out of following which is not used as an IR source?
 - a. Nernst filament
 - b. Globar
 - c. Mercury arc
 - d. Quartz hydrogen lamp Correct ans:

d

- 103. Monochromator i.e. prism in IR spectroscopy is made up of
 - a. NaCl, KOH
 - b. NaCl, KBr

```
c. NaOH, KBr
```

d. NaOH,

KOH

Correct

ans: b

- 104. Sampling of substances in IR spectroscopy can be done as following; match it
 - a. Solid run in solution
- i) amorphous sample deposit on NaCl or KBr cell
- b. Solid film technique halide,
- ii) solid dissolve in aq. Solvent and drop it on alkali evaporate
- c. Pressed pallet technique iii)sample mixed in Nujol and make paste
- d. Mull technique
- iv) sample grind with KBr and pressed to pallet
- i. a=iii, b=iv, c=i, d=ii
- ii. a=ii, b=i, c=iv, d=iii
- iii. a=iv, b=iii, c=i, d=ii
 - iv. a=ii, b=i, c=iii, d=iv correct ans:
- 105. Out of following which is not used as detector in IR spectroscopy
 - a. Thermocouple
 - b. Bolometer
 - c. Golay detector
 - d. Globar

Correct ans; =d

- 106. IR Spectrum is graph between
 - a. Wavelength vs absorbance
 - b. Wavelength vs transmittance
 - c. Wavelength vs % transmittance
 - d. Wave number vs

absorbance Correct ans: c

107. Finger print region is a.

4000-1500 cm-1

- b. 1500-909 cm-1
- c. 909-667 cm-1
- d. 667-50 cm-1

Correct ans: b

- 108. Match the following
 - a. Alkanes
- i) 1725 cm-1
- b. Alcohols
- ii) 2800-3000 cm-1
- c. Ketones
- iii) 3000-3100 cm-1
- d. Aromatic rings iv)3200-3600 cm-1
 - i. a=ii, b=iv, c=i, d=iii
 - ii. a=iii, b=i, c= iv, d=ii
 - iii. a=ii, b=iv, c=iii, d=i

```
c=ii, d=i
                        correct
                        ans=a
  109. Match the following
            a. Cyclopropanone
                                       i)1710 cm<sup>-1</sup>
            b. Cyclobutanone ii) 1740 cm<sup>-1</sup>
            c. Cyclopentanone
                                       iii) 1775 cm<sup>-1</sup>
            d. Cyclohexanoneiv) 1818 cm<sup>-1</sup>
                        a=ii, b=iii, c=iv, d=i
                  ii.
                        a=iii, b=iv, c=i, d=ii
                  iii.
                        a=iv, b=iii, c=ii, d=i
                    iv. a=iv, b=i,
                        c=ii. d=i
                        Correct
                        ans: = c
  110. Out of following is not detector in IR spectroscopy.
            a. Golbar b. Bolometer c. Golay d.
                thermocouple Correct Ans.= a
  111. Aromatic region in IR spectroscopy is in between....
     a.1500-909 cm<sup>-1</sup> b. 909-667 cm<sup>-1</sup> c. 667-50 cm<sup>-1</sup> d. 4000-1500 cm<sup>-1</sup>
     Correct Ans= b
  112. In block diagram of IR spectroscopy, correct sequence will be.....
            a. Source--sample--monochromator--detector—amplifier—recorder
            b. Source--sample--monochromator--amplifier-- detector --recorder
            c. Source--monochromator----Sample—detector—amplifier--recorder
            d. Source--sample--monochromator--detector—amplifier—reference—recorder
                Correct Ans= a
  113. Molecules like H2, Cl2, O2 are IR inactive because.....
            a. They are diatomic
            b. They are linear
            c. They does not have electrical dipole
            d. All of
                above
                Correct
                Ans=C
  114. ...... Vibrational transitions require
                                                                               energy than
      electronic transitions.
            a. More b. less c. same d. none of
                above Correct Ans= b
  115. Calculate possible number of fundamental vibration in CHCl3? a. 19
     b. 15. c. 36 d. 9
Correct Ans= d
  116. ..... Streching frequency of cyclic ketone in IR
      with increase in ring size.
```

iv. a=iv, b=iii,

- a. Increases b. decreases c. remain same d. no effect Correct Ans= b
- 117. Which one of following is out of plane vibration?
 - Scissoring b. Rocking c. symmetric stretching d. Wagging Correct Ans=d
- 118. **Keto** form of acetyl acetone show characteristic absorption stretching frequency for carbonyl group while **Enol** form of same will give absorption for........
 - a. -OH & -C=C stretch
 - b. -C=O & -C=C stretch
 - c. -C=O & -OH strech
 - d. None of above
 - e. Correct Ans= a
- 119. Out of following which is not a bending vibration?
 - a. Rocking vibration b. wagging vibration c. twisting vibration d. symmetric stretching

Correct ans= d

- 120. Which of following is correct about application of IR spectroscopy
 - i) Identifying atmospheric pollution
 - ii) Measuring ethanol in breath
 - iii) Determination of molecular weight
 - a. Only i
 - b. Only ii
 - c. Only i & ii
 - d. All i, ii, iii Correct

Ans= C

- 121. In IR, exact position of absorption depends upon.....
 - a. Force constant
 - b. Masses of atoms
 - c. Environment of bond
 - d. All of

above

Correct

Ans=d

- 122. For calculating fundamental modes of vibration in non linear polyatomic molecule (3N-6) formula is used where N is......
 - a. Number of electron in bond
 - b. Number of atoms in molecule
 - c. Number of degree of freedom
 - d. None of

above

Correct

Ans= b

123. For calculating fundamental modes of vibration in non linear polyatomic molecule (3N-6)

formula is used where "3" in 3N indicates for......

- a. Sum of rotatonal, vibrational and translational degree of freedom
- b. Sum of rotational and translational degree of freedom
- c. Sum of vibrational and roatational degree of freedom
- d. Sum of vibrational and translational degree of freedom Correct Ans= a
- 124. KBr is used in IR spectroscopy because.....
 - a. It has dipole moment
 - b. It is diatomic salt
 - c. It is transparent to IR
 - d. All of above Correct Ans= c
- 125. CCl4 does not give prominent bands in IR because....
 - a. It has dipole moment zero
 - b. It is solvent
 - c. It is polyatomic molecule
 - d. All of above Correct Ans= a

