EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_{CC}}$

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect. 1. Știind că simbolurile unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. a capacității calorice a unui corp este:

- a. $\frac{J}{K}$

- d. J (2p)

2. O masă m = 50 g de gaz conține un număr $N = 10^{24}$ de molecule. Masa molară a gazului este aproximativ egală cu:

- a. 30 g/mol
- **b.** 28 g/mol
- **c.** 18 g/mol
- **d.** 16 g/mol

(3p)

(5p)

3. Dintre graficele reprezentate în figura de mai jos, graficul care redă corect procesul admisiei în cazul ciclului motorul Otto idealizat este:

4. Două butelii identice conțin mase egale de heliu ($\mu_1 = 4$ g/mol) respectiv metan ($\mu_2 = 16$ g/mol) la aceeași temperatură. Căldurile molare izocore ale celor două gaze au valorile $C_{V1} = 3 \cdot R/2$, respectiv

 $C_{V2} = 3 \cdot R$. Raportul energiilor interne $\frac{U_1}{U_2}$ ale celor două gaze este egal cu:

5. Un gaz ideal având exponentul adiabatic γ se destinde adiabatic. Parametrii de stare ai gazului în starea inițială sunt p_1, V_1, T_1 , iar în starea finală p_2, V_2, T_2 . Lucrul mecanic efectuat de gaz în această transformare se poate exprima sub forma:

a. $\frac{p_1 \cdot V_1 - p_2 \cdot V_2}{\gamma - 1}$ **b.** $R \cdot \gamma \cdot (T_1 - T_2)$ **c.** $\gamma \cdot (p_2 \cdot V_2 - p_1 \cdot V_1)$ **d.** $\frac{R \cdot (T_2 - T_1)}{\gamma - 1}$ (2p)