CAI: Cerca i Anàlisi de la Informació Grau en Ciència i Enginyeria de Dades, UPC

Two Information Retrieval Models

September 21, 2021

Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldà, Department of Computer Science, UPC

Contents

Two Information Retrieval Models

The Boolean Model of Information Retrieval

About Phrase Queries

The Vector Space Model of Information Retrieval

Evaluation

Relevance Feedback

A couple of IR models

- ▶ Boolean model,
 - Boolean queries, exact answers;
 - extension: phrase queries.
- Vector model,
 - weights on terms and documents;
 - similarity queries, approximate answers, ranking.

A couple of IR models

Both are Bag of Words models:

- Order of the words in the document is forgotten
- So document = set of pairs (order, frequency)

Boolean model additionally forgets about frequency

A very simple toy case

Consider 7 documents with a vocabulary of 6 terms:

d1 = one three

d2 = two two three

d3 = one three four five five

d4 = one two two two three six six

d5 = three four four six

d6 = three three six six

d7 = four five

Our documents in the Boolean model

		five	four	one	six	three	two	
d1 =	[0	0	1	0	1	0	1
d2 =	[0	0	0	0	1	2	j
d3 =	[3	1	1	0	1	0]
d4 =	Ī	0	0	1	2	1	4	j
d5 =	[0	3	0	1	1	0]
d6 =	[0	0	0	2	3	0]
d7 =	[1	1	0	0	0	0]

Note that we sort the terms alphabetically. See why later.

... in sparse representation

(Omitting the quotes around strings in your programming language...)

```
d1 = [ (one,1), (three,1) ]

d2 = [ (three,1), (two,2) ]

d3 = [ (five,3), (four,1), (one,1), (three,1) ]

d4 = [ (one,1), (six,2), (three,1), (two,4) ]

d5 = [ (four,3), (six,1), (three,1) ]

d6 = [ (six,2), (three,3) ]

d7 = [ (five,1), (four,1) ]
```

Boolean Model of Information Retrieval

Documents:

A document is completely identified by the set of terms that it contains.

Thus, for a set of terms $\mathcal{T} = \{t_1, \dots, t_T\}$, a document is just a subset of \mathcal{T} .

Each document can be seen as a bit vector of length T, $d = (d_1, \dots, d_T)$, where

- $d_i = 1$ if and only if t_i appears in d, or, equivalently,
- ▶ $d_i = 0$ if and only if t_i does not appear in d.

Queries in the Boolean Model

Boolean queries, exact answers

Atomic query:

a single term.

The answer is the set of documents that contain it.

Combining queries:

- OR, AND: operate as union or intersection of answers;
- ▶ Set difference, t_1 BUTNOT t_2 ($\equiv t_1$ AND NOT t_2);
- motivation: avoid unmanageably large answer sets.

Relevance in the Boolean Model

The set of documents that satisfy a query is defined recursively:

- Single-term queries define the set of docs that contain it.
- View AND, OR, BUTNOT as set operations, proceed recursively.

So: Relevance is binary: A document is either totally relevant or totally irrelevant.

No ranking.

This may be good or bad depending of user intent.

Our documents in a Bag-of-Words model

		five	four	one	six	three	two	
d1 =	[0	0	1	0	1	0]
d2 =	[0	0	0	0	1	1	j
d3 =	[1	1	1	0	1	0]
d4 =	Ī	0	0	1	1	1	1	j
d5 =	[0	1	0	1	1	0]
d6 =	[0	0	0	1	1	0]
d7 =	[1	1	0	0	0	0]

Exercise

Invent some queries and give their answers

Phrase Queries, I

Slightly beyond the Boolean model

Phrase queries: conjunction plus adjacency

Ability to answer with the set of documents that have the terms of the query consecutively.

- A user querying "Keith Richards" may not wish a document that mentions both Keith Emerson and Emil Richards.
- Requires extending the notion of "basic query" to include adjacency.

Phrase Queries, II

Options to "hack them in"

Options:

- Run as conjunctive query, then doublecheck the whole answer set to filter out nonadjacency cases.
 - Slow if many "false positives".
- Keep in the index dedicated information about adjacency of any two terms in a document (e.g. positions).
- Keep in the index dedicated information about a choice of "interesting pairs" of words.

Vector Space Model of Information Retrieval

Basis of all successful approaches

- Order of words still irrelevant.
- Frequency is relevant.
- Not all words are equally important.
- For a set of terms $\mathcal{T} = \{t_1, \dots, t_T\}$, a document is a vector $d = (w_1, \dots, w_T)$ of floats instead of bits.
- w_i is the weight of t_i in d.

Vector Space Model of Information Retrieval

Moving to vector space

- A document is now a vector in \mathbb{R}^T .
- ► The document collection conceptually becomes a matrix terms × documents.

but we never compute the matrix explicitly.

• Queries may also be seen as vectors in \mathbb{R}^T .

The tf-idf scheme

A way to assign weight vectors to documents

Two principles:

- ► The more frequent t is in d, the higher weight it should have.
- ▶ The more frequent *t* is in the whole collection, the less it discriminates among documents, so the lower its weight should be in all documents.

The tf-idf scheme, II

The formula

A document is a vector of weights

$$d = [w_{d,1}, \dots, w_{d,i}, \dots, w_{d,T}].$$

Each weight is a product of two terms

$$w_{d,i} = t f_{d,i} \cdot i df_i.$$

The term frequency term tf is

$$tf_{d,i} = \frac{f_{d,i}}{\max_i f_{d,i}},$$
 where $f_{d,j}$ is the frequency of t_j in d .

And the inverse document frequency idf is

$$idf_i = \log_2 \frac{D}{df_i}$$
, where D = number of documents and df_i = number of documents that contain term t_i .

Example, I

		five	four	one	six	three	two	maxf
d1 =	[0	0	1	0	1	0] 1
d2 =	[0	0	0	0	1	2] 2
d3 =	[3	1	1	0	1	0] 3
d4 =	[0	0	1	2	1	4] 4
d5 =	[0	3	0	1	1	0] 3
d6 =	[0	0	0	2	3	0] 3
d7 =	[1	1	0	0	0	0] 1
$\mathbf{df} =$		2	3	3	3	6	2	

Example, II

$\mathbf{df} =$			2	3		3	6		
d3 =		[3	1	1	0	1	0]
\rightarrow			3, 7	1, 7	1, 7	0, 7	1, 7	0, 7	,
d3 =		Į	$\frac{3}{3}\log_2\frac{7}{2}$	$\frac{1}{3}\log_2\frac{7}{3}$	$\frac{1}{3}\log_2\frac{7}{3}$	$\frac{6}{3}\log_2\frac{7}{3}$	$\frac{1}{3}\log_2\frac{7}{6}$	$\frac{6}{3}\log_2\frac{7}{2}$]
	=	[1.81	0.41	0.41	0	0.07	0]
d4 =		[0	0	1	2	1	4]
d4 =		[$\frac{0}{4}\log_2\frac{7}{2}$	$\frac{0}{4}\log_2\frac{7}{3}$	$\frac{1}{4}\log_2\frac{7}{3}$	$\frac{2}{4}\log_2\frac{7}{3}$	$\frac{1}{4}\log_2\frac{7}{6}$	$\frac{4}{4}\log_2\frac{7}{2}$]
	=	[0	0	0.31	0.61	0.06	1.81]

Tweaking tf-idf

Many variations possible. Just two:

- ▶ Boost the $tf_{d,i}$ term if i appears in the title, or in boldface, or in the metadata of d.
- ▶ Laplace correction: Define $idf_i = \log \frac{D+1}{df_i+1}$. Allows to define it for terms i not in the index.

With a generating mindframe, accounts for terms so infrequent in the document source that did not appear in any of the ${\cal D}$ sampled documents.

Similarity of Documents in the Vector Space Model

The cosine similarity measure

- "Similar vectors" may happen to have very different sizes.
- We better compare only their directions.
- ► Equivalently, we normalize them before comparing them to have the same Euclidean length.

$$sim(d1, d2) = \frac{d1 \cdot d2}{|d1| |d2|} = \frac{d1}{|d1|} \cdot \frac{d2}{|d2|}$$

where

$$v \cdot w = \sum_i v_i \cdot w_i$$
, and $|v| = \sqrt{v \cdot v} = \sqrt{\sum_i v_i^2}$.

- Our weights are all nonnegative.
- Therefore, all cosines / similarities are between 0 and 1.

Cosine similarity, Example

$$d3 = \begin{bmatrix} 1.81 & 0.41 & 0.41 & 0 & 0.07 & 0 \\ d4 = \begin{bmatrix} 0 & 0 & 0.31 & 0.61 & 0.06 & 1.81 \end{bmatrix}$$

Then

$$|d3| = 1.898, \quad |d4| = 1.933, \quad d3 \cdot d4 = 0.13$$

and sim(d3, d4) = 0.035 (i.e., small similarity).

Query Answering

- Queries can be transformed to vectors too.
- Sometimes, tf-idf weights; often, binary weights.
- $ightharpoonup sim(doc, query) \in [0, 1].$
- Answer: List of documents sorted by decreasing similarity.
- Note that sim(d1, d2) make sense too.

Evaluation of Information Retrieval Usage

Start in the Boolean model. Notation:

- D: set of all our documents;
- A: answer set: documents that the system retrieves as answer;
- R: relevant documents: those that the user actually wishes to see as answer.

(But no one knows this set, not even the user!)

The Recall and Precision measures

Let's settle for:

- recall, $\frac{|\mathcal{R} \cap \mathcal{A}|}{|\mathcal{R}|}$: $Pr(d \in \mathcal{A}|d \in \mathcal{R})$
- ▶ precision, $\frac{|\mathcal{R} \cap \mathcal{A}|}{|\mathcal{A}|}$: $Pr(d \in \mathcal{R}|d \in \mathcal{A})$

Difficult to get both high recall and high precision.

Recall and Precision, confusion matrix

Equivalent definition

Confusion matrix

		Answered		
		relevant	not relevant	
Reality	relevant	tp	fn	
	not relevant	fp	tn	

$$|\mathcal{R}| = tp + fn$$

$$\blacktriangleright |\mathcal{A}| = tp + fp$$

$$\triangleright |\mathcal{R} \cap \mathcal{A}| = tp$$

• Recall =
$$\frac{|\mathcal{R} \cap \mathcal{A}|}{|\mathcal{R}|} = \frac{tp}{tp + fn}$$

$$\qquad \textbf{Precision} = \frac{|\mathcal{R} \cap \mathcal{A}|}{|\mathcal{A}|} = \frac{tp}{tp + fp}$$

In information retrieval, usually tn is huge.

Accuracy in the Machine Learning sense is not interesting (99.9%).

How many documents to show?

Now think of the Vector Model. Relevance is a real number.

- Users won't read too large answers.
- Long answers are likely to exhibit low precision.
- Short answers are likely to exhibit low recall.

We analyze precision and recall as functions of the number of documents k provided as answer.

Rank-recall and rank-precision plots

(Source: Prof. J. J. Paijmans, Tilburg)

A single "precision and recall" curve

x-axis for recall, and y-axis for precision. (Similar to, and related to, the ROC curve in predictive models.)

(Source: Stanford NLP group)

Often: Plot 11 points of interpolated precision, at 0%, 10%,

20%, ..., 100% recall

Other measures of effectiveness

AUC: Area under the curve of the plots above, relative to best possible

F-measure:
$$\frac{2}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}}$$

► Harmonic mean. Closer to min(.,.) than arithmetic mean

(F-measure is α -F-measure for $\alpha=0.5$. Check!) (other α 's give different importance to recall and precision)

Other measures of effectiveness, II

Take into account the documents previously known to the user.

Coverage:

|relevant & known & retrieved| / |relevant & known|

► Novelty:

|relevant & retrieved & UNknown| / |relevant & retrieved|

Relevance Feedback

Going beyond what the user asked for

The user relevance cycle:

- 1. Get a query q
- 2. Retrieve relevant documents for q
- 3. Show top k to user
- 4. Ask user to mark them as relevant / irrelevant
- 5. Use answers to refine q
- 6. If desired, go to 2

Rocchio's rule

One way to create the new query

Given a query q, and a set of documents, split into relevant R and nonrelevant NR sets, build a new query q':

$$q' = \alpha \cdot q + \beta \cdot \frac{1}{|R|} \cdot \sum_{d \in R} d - \gamma \cdot \frac{1}{|NR|} \cdot \sum_{d \in NR} d$$

- ▶ All vectors *q* and *d*'s must be normalized (e.g., unit length).
- ▶ Weights α , β , γ , scalars, with $\alpha > \beta > \gamma \ge 0$; often $\gamma = 0$.
 - α : degree of trust on the original user's query,
 - β : weight of positive information (terms that do not appear on the query but do appear in relevant documents),
 - γ : weight of negative information.

Relevance Feedback, III

In practice, often:

- good improvement of the recall for first round,
- marginal for second round,
- almost none beyond.

In web search, precision matters much more than recall, so the extra computation time and user patience may not be productive.

Relevance Feedback, IV

... as Query Expansion

It is a form of Query Expansion:

The new query has non-zero weights on words that were not in the original query

Pseudorelevance feedback

Do not ask anything from the user!

- User patience is precious resource. They'll just walk away.
- Assume you did great in answering the query!
- ► That is, top-k documents in the answer are all relevant
- No interaction with user
- But don't forget that the search will feel slower.
- Stop, at the latest, when you get the same top k documents.

Pseudorelevance feedback, II

Alternative sources of feedback / query refinement:

- Links clicked / not clicked on.
- Think time / time spent looking at item.
- User's previous history.
- Other users' preferences!
- Co-occurring words: Add words that often occur with words in the query - for query expansion.