Solution

Section 3.1 – Proving Identities

Exercise

Prove the identity $\cos \theta \cot \theta + \sin \theta = \csc \theta$

Solution

$$\cos\theta \cot\theta + \sin\theta = \cos\theta \frac{\cos\theta}{\sin\theta} + \sin\theta$$

$$= \frac{\cos^2\theta}{\sin\theta} + \sin\theta$$

$$= \frac{\cos^2\theta}{\sin\theta} + \sin\theta \frac{\sin\theta}{\sin\theta}$$

$$= \frac{\cos^2\theta}{\sin\theta} + \frac{\sin^2\theta}{\sin\theta}$$

$$= \frac{\cos^2\theta + \sin^2\theta}{\sin\theta}$$

$$= \frac{1}{\sin\theta}$$

$$= \csc\theta$$

Exercise

Prove the identity $\sec \theta \cot \theta - \sin \theta = \frac{\cos^2 \theta}{\sin \theta}$

$$\sec \theta \cot \theta - \sin \theta = \frac{1}{\cos \theta} \frac{\cos \theta}{\sin \theta} - \sin \theta$$
$$= \frac{1}{\sin \theta} - \sin \theta$$
$$= \frac{1 - \sin^2 \theta}{\sin \theta}$$
$$= \frac{\cos^2 \theta}{\sin \theta}$$

Prove the identity $\frac{\csc\theta\tan\theta}{\sec\theta} = 1$

Solution

$$\frac{\csc\theta\tan\theta}{\sec\theta} = \csc\theta\tan\theta\frac{1}{\sec\theta}$$
$$= \frac{1}{\sin\theta}\frac{\sin\theta}{\cos\theta}\cos\theta$$
$$= 1$$

Exercise

Prove the identity $(\sin \theta + \cos \theta)^2 = 1 + 2\sin \theta \cos \theta$

Solution

$$(\sin\theta + \cos\theta)^2 = \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$$
$$= 1 + 2\sin\theta\cos\theta$$

Exercise

Prove the identity $\sin \theta (\sec \theta + \cot \theta) = \tan \theta + \cos \theta$

Solution

$$\sin \theta (\sec \theta + \cot \theta) = \sin \theta \left(\frac{1}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \right)$$

$$= \sin \theta \frac{1}{\cos \theta} + \sin \theta \frac{\cos \theta}{\sin \theta}$$

$$= \frac{\sin \theta}{\cos \theta} + \cos \theta$$

$$= \tan \theta + \cos \theta$$

Exercise

Prove the identity $\cos \theta (\csc \theta + \tan \theta) = \cot \theta + \sin \theta$

$$\cos \theta (\csc \theta + \tan \theta) = \cos \theta \frac{1}{\sin \theta} + \cos \theta \frac{\sin \theta}{\cos \theta}$$
$$= \cot \theta + \sin \theta$$

Prove the identity $\cos \theta (\sec \theta - \cos \theta) = \sin^2 \theta$

Solution

$$\cos \theta (\sec \theta - \cos \theta) = \cos \theta \frac{1}{\cos \theta} - \cos^2 \theta$$
$$= 1 - \cos^2 \theta$$
$$= \sin^2 \theta$$

Exercise

Prove the identity $\cot \theta + \tan \theta = \csc \theta \sec \theta$

Solution

$$\cot \theta + \tan \theta = \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$$
$$= \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta}$$
$$= \frac{1}{\sin \theta \cos \theta}$$
$$= \frac{1}{\sin \theta} \frac{1}{\cos \theta}$$
$$= \csc \theta \sec \theta$$

Exercise

Prove $\tan x(\cos x + \cot x) = \sin x + 1$

$$\tan x(\cos x + \cot x) = \frac{\sin x}{\cos x} \left(\cos x + \frac{\cos x}{\sin x}\right)$$
$$= \cos x \frac{\sin x}{\cos x} + \frac{\sin x}{\cos x} \frac{\cos x}{\sin x}$$
$$= \sin x + 1$$

Prove
$$\frac{1-\cos^4\theta}{1+\cos^2\theta} = \sin^2\theta$$

Solution

$$\frac{1-\cos^4 \theta}{1+\cos^2 \theta} = \frac{(1+\cos^2 \theta)(1-\cos^2 \theta)}{1+\cos^2 \theta}$$
$$= 1-\cos^2 \theta$$
$$= \sin^2 \theta$$

Exercise

Prove
$$\frac{1-\sec x}{1+\sec x} = \frac{\cos x - 1}{\cos x + 1}$$

Solution

$$\frac{1-\sec x}{1+\sec x} = \frac{1-\frac{1}{\cos x}}{1+\frac{1}{\cos x}}$$
$$= \frac{\frac{\cos x - 1}{\cos x}}{\frac{\cos x + 1}{\cos x}}$$
$$= \frac{\cos x - 1}{\cos x + 1}$$

Exercise

Prove
$$\frac{\cos x}{1 - \sin x} - \frac{1 - \sin x}{\cos x} = 0$$

$$\frac{\cos x}{1 + \sin x} - \frac{1 - \sin x}{\cos x} = \frac{\cos x}{\cos x} \frac{\cos x}{1 - \sin x} - \frac{1 + \sin x}{1 + \sin x} \frac{1 - \sin x}{\cos x}$$

$$= \frac{\cos^2 x - (1 - \sin^2 x)}{\cos x (1 + \sin x)}$$

$$= \frac{\cos^2 x - 1 + \sin^2 x}{\cos x (1 + \sin x)}$$

$$= \frac{1 - 1}{\cos x (1 + \sin x)}$$

$$= \frac{0}{\cos x (1 + \sin x)}$$

$$= 0$$

Prove
$$\frac{1+\cot^3 t}{1+\cot t} = \csc^2 t - \cot t$$

Solution

$$\frac{1+\cot^3 t}{1+\cot t} = \frac{1+\frac{\cos^3 t}{\sin^3 t}}{1+\frac{\cos t}{\sin t}}$$

$$= \frac{\sin^3 t + \cos^3 t}{\frac{\sin t + \cos t}{\sin t}}$$

$$= \frac{\sin^3 t + \cos^3 t}{\sin^3 t} \cdot \frac{\sin t}{\sin t + \cos t}$$

$$= \frac{(\sin t + \cos t)(\sin^2 t - \sin t \cos t + \cos^2 t)}{\sin^2 t} \cdot \frac{1}{\sin t + \cos t}$$

$$= \frac{1-\sin t \cos t}{\sin^2 t}$$

$$= \frac{1}{\sin^2 t} - \frac{\sin t \cos t}{\sin^2 t}$$

$$= \csc^2 t - \frac{\cos t}{\sin t}$$

$$= \csc^2 t - \cot t$$

Exercise

Prove: $\tan x + \cot x = \sec x \csc x$

$$\tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}$$

$$= \frac{\sin^2 x + \cos^2 x}{\cos x \sin x}$$

$$= \frac{1}{\cos x \sin x}$$

$$= \frac{1}{\cos x} \frac{1}{\sin x}$$

$$= \sec x \csc x$$

Prove:
$$\frac{\tan x - \cot x}{\sin x \cos x} = \sec^2 x - \csc^2 x$$

Solution

$$\frac{\tan x - \cot x}{\sin x \cos x} = \frac{\tan x}{\sin x \cos x} - \frac{\cot x}{\sin x \cos x}$$

$$= \tan x \frac{1}{\sin x \cos x} - \cot x \frac{1}{\sin x \cos x}$$

$$= \frac{\sin x}{\cos x} \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x} \frac{1}{\sin x \cos x}$$

$$= \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}$$

$$= \sec^2 x - \csc^2 x$$

Exercise

Prove:
$$\frac{\sec x + \tan x}{\sec x - \tan x} = \frac{1 + 2\sin x + \sin^2 x}{\cos^2 x}$$

$$\frac{\sec x + \tan x}{\sec x - \tan x} = \frac{\frac{1}{\cos x} + \frac{\sin x}{\cos x}}{\frac{1}{\cos x} - \frac{\sin x}{\cos x}} \frac{\cos x}{\cos x}$$

$$= \frac{\frac{1}{\cos x} \cos x + \frac{\sin x}{\cos x} \cos x}{\frac{1}{\cos x} \cos x - \frac{\sin x}{\cos x} \cos x}$$

$$= \frac{1 + \sin x}{1 - \sin x}$$

$$= \frac{1 + \sin x}{1 - \sin x} \frac{1 + \sin x}{1 + \sin x}$$

$$= \frac{(1 + \sin x)^2}{1 - \sin^2 x}$$

$$= \frac{1 + 2\sin x + \sin^2 x}{\cos^2 x}$$

Prove the identity: $\sin^2 x - \cos^2 x = 2\sin^2 x - 1$

Solution

$$\sin^2 x - \cos^2 x = \sin^2 x - \left(1 - \sin^2 x\right)$$
$$= \sin^2 x - 1 + \sin^2 x$$
$$= 2\sin^2 x - 1$$

Exercise

Prove the identity: $\sin^4 x - \cos^4 x = \sin^2 x - \cos^2 x$

Solution

$$\sin^4 x - \cos^4 x = \left(\sin^2 x + \cos^2 x\right) \left(\sin^2 x - \cos^2 x\right)$$
$$= (1) \left(\sin^2 x - \cos^2 x\right)$$
$$= \sin^2 x - \cos^2 x$$

Exercise

Prove the identity: $\frac{\cos \alpha}{1 + \sin \alpha} = \sec \alpha - \tan \alpha$

$$\frac{\cos \alpha}{1 + \sin \alpha} = \frac{\cos \alpha}{1 + \sin \alpha} \frac{1 - \sin \alpha}{1 - \sin \alpha}$$

$$= \frac{\cos \alpha - \cos \alpha \sin \alpha}{1 - \sin^2 \alpha}$$

$$= \frac{\cos \alpha - \cos \alpha \sin \alpha}{\cos^2 \alpha}$$

$$= \frac{\cos \alpha}{\cos^2 \alpha} - \frac{\cos \alpha \sin \alpha}{\cos^2 \alpha}$$

$$= \frac{1}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha}$$

$$= \sec \alpha - \tan \alpha$$

Prove the identity:
$$\frac{\sin \alpha}{1 - \sin \alpha} - \frac{\cos \alpha}{1 - \sin \alpha} = \frac{1 - \cot \alpha}{\csc \alpha - 1}$$

Solution

$$\frac{\sin \alpha}{1 - \sin \alpha} - \frac{\cos \alpha}{1 - \sin \alpha} = \frac{\sin \alpha - \cos \alpha}{1 - \sin \alpha}$$

$$= \frac{\frac{\sin \alpha - \cos \alpha}{\sin \alpha}}{\frac{1 - \sin \alpha}{\sin \alpha}}$$

$$= \frac{\frac{\sin \alpha}{\sin \alpha} - \frac{\cos \alpha}{\sin \alpha}}{\frac{1}{\sin \alpha} - \frac{\sin \alpha}{\sin \alpha}}$$

$$= \frac{\frac{\sin \alpha}{\sin \alpha} - \frac{\cos \alpha}{\sin \alpha}}{\frac{1}{\sin \alpha} - \frac{\sin \alpha}{\sin \alpha}}$$

$$= \frac{1 - \cot \alpha}{\csc \alpha - 1}$$

Exercise

Prove the identity:
$$\frac{\frac{1}{\tan x} + \cot x}{\frac{1}{\tan x} + \tan x} = \frac{2}{\sec^2 x}$$

Solution

$$\frac{\frac{1}{\tan x} + \cot x}{\frac{1}{\tan x} + \tan x} = \frac{\frac{1}{\tan x} + \frac{1}{\tan x}}{\frac{1 + \tan^2 x}{\tan x}}$$
$$= \frac{\frac{2}{\tan x}}{\frac{\sec^2 x}{\tan x}}$$
$$= \frac{2}{\sec^2 x}$$

Exercise

Prove the following equation is an identity: $\frac{\cot^2 \theta + 3\cot \theta - 4}{\cot \theta + 4} = \cot \theta - 1$

$$\frac{\cot^2 \theta + 3\cot \theta - 4}{\cot \theta + 4} = \frac{(\cot \theta + 4)(\cot \theta - 1)}{\cot \theta + 4}$$
$$= \cot \theta - 1$$

Prove the following equation is an identity: $\frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}$

Solution

$$\frac{\sin \theta}{1 + \cos \theta} = \frac{\sin \theta}{1 + \cos \theta} \frac{1 - \cos \theta}{1 - \cos \theta}$$

$$= \frac{\sin \theta (1 - \cos \theta)}{1 - \cos^2 \theta}$$

$$= \frac{\sin \theta (1 - \cos \theta)}{\sin^2 \theta}$$

$$= \frac{1 - \cos \theta}{\sin \theta}$$

Exercise

Prove the following equation is an identity: $\tan x(\csc x - \sin x) = \cos x$

Solution

$$\tan x \left(\csc x - \sin x\right) = \frac{\sin x}{\cos x} \left(\frac{1}{\sin x} - \sin x\right)$$
$$= \frac{\sin x}{\cos x} \left(\frac{1 - \sin^2 x}{\sin x}\right)$$
$$= \frac{1}{\cos x} \left(\frac{\cos^2 x}{1}\right)$$
$$= \cos x$$

Exercise

Prove the following equation is an identity: $\sin x (\tan x \cos x - \cot x \cos x) = 1 - 2\cos^2 x$

$$\sin x \left(\tan x \cos x - \cot x \cos x\right) = \sin x \cos x \left(\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}\right)$$

$$= \sin x \cos x \left(\frac{\sin^2 x - \cos^2 x}{\cos x \sin x}\right)$$

$$= 1 - \cos^2 x - \cos^2 x$$

$$= 1 - 2\cos^2 x$$

Prove the following equation is an identity: $(1 + \tan x)^2 + (\tan x - 1)^2 = 2\sec^2 x$

Solution

$$(1+\tan x)^{2} + (\tan x - 1)^{2} = 1 + 2\tan x + \tan^{2} x + 1 - 2\tan x + \tan^{2} x$$
$$= 2 + 2\tan^{2} x$$
$$= 2\left(1 + \tan^{2} x\right)$$
$$= 2\sec^{2} x$$

Exercise

Prove the following equation is an identity: $\sec x + \tan x = \frac{\cos x}{1 - \sin x}$

Solution

$$\sec x + \tan x = \frac{1}{\cos x} + \frac{\sin x}{\cos x}$$

$$= \frac{1 + \sin x}{\cos x} \frac{1 - \sin x}{1 - \sin x}$$

$$= \frac{1 - \sin^2 x}{\cos x (1 - \sin x)}$$

$$= \frac{\cos^2 x}{\cos x (1 - \sin x)}$$

$$= \frac{\cos x}{1 - \sin x}$$

Exercise

Prove the following equation is an identity: $\frac{\tan x - 1}{\tan x + 1} = \frac{1 - \cot x}{1 + \cot x}$

$$\frac{\tan x - 1}{\tan x + 1} = \frac{\frac{1}{\cot x} - 1}{\frac{1}{\cot x} + 1}$$

$$= \frac{\frac{1 - \cot x}{\cot x}}{\frac{1 + \cot x}{\cot x}}$$

$$= \frac{1 - \cot x}{1 + \cot x}$$

Prove the following equation is an identity: $7\csc^2 x - 5\cot^2 x = 2\csc^2 x + 5$

Solution

$$7\csc^{2} x - 5\cot^{2} x = 7\csc^{2} x - 5\left(\csc^{2} x - 1\right)$$
$$= 7\csc^{2} x - 5\csc^{2} x + 5$$
$$= 2\csc^{2} x + 5$$

Exercise

Prove the following equation is an identity: $1 - \frac{\cos^2 x}{1 - \sin x} = -\sin x$

Solution

$$1 - \frac{\cos^2 x}{1 - \sin x} = 1 - \frac{1 - \sin^2 x}{1 - \sin x}$$
$$= 1 - \frac{(1 - \sin x)(1 + \sin x)}{1 - \sin x}$$
$$= 1 - (1 + \sin x)$$
$$= 1 - 1 - \sin x$$
$$= -\sin x$$

Exercise

Prove the following equation is an identity: $\frac{1-\cos x}{1+\cos x} = \frac{\sec x - 1}{\sec x + 1}$

Solution

$$\frac{1-\cos x}{1+\cos x} = \frac{\frac{1}{\cos x} - \frac{\cos x}{\cos x}}{\frac{1}{\cos x} + \frac{\cos x}{\cos x}}$$
$$= \frac{\sec x - 1}{\sec x + 1}$$

Exercise

Prove the following equation is an identity: $\frac{\sec x - 1}{\tan x} = \frac{\tan x}{\sec x + 1}$

$$\frac{\sec x - 1}{\tan x} = \frac{\sec x - 1}{\tan x} \frac{\sec x + 1}{\sec x + 1}$$

$$= \frac{\sec^2 x - 1}{\tan x (\sec x + 1)}$$

$$= \frac{\tan^2 x}{\tan x (\sec x + 1)}$$

$$= \frac{\tan x}{\sec x + 1}$$

Prove the following equation is an identity: $\frac{\cos x}{\cos x - \sin x} = \frac{1}{1 - \tan x}$

Solution

$$\frac{\cos x}{\cos x - \sin x} = \frac{\frac{\cos x}{\cos x}}{\frac{\cos x}{\cos x} - \frac{\sin x}{\cos x}}$$
$$= \frac{1}{1 - \tan x}$$

Exercise

Prove the following equation is an identity: $(\sec x + \tan x)^2 = \frac{1 + \sin x}{1 - \sin x}$

$$(\sec x + \tan x)^2 = \left(\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right)^2$$

$$= \left(\frac{1 + \sin x}{\cos x}\right)^2$$

$$= \frac{(1 + \sin x)^2}{\cos^2 x}$$

$$= \frac{(1 + \sin x)^2}{1 - \sin^2 x}$$

$$= \frac{(1 + \sin x)^2}{(1 - \sin x)(1 + \sin x)}$$

$$= \frac{1 + \sin x}{1 - \sin x}$$

Prove the following equation is an identity: $\frac{\cos x}{1 + \tan x} - \frac{\sin x}{1 + \cot x} = \cos x - \sin x$

Solution

$$\frac{\cos x}{1 + \tan x} - \frac{\sin x}{1 + \cot x} = \frac{\cos x}{1 + \frac{\sin x}{\cos x}} - \frac{\sin x}{1 + \frac{\cos x}{\sin x}}$$

$$= \frac{\cos x}{\frac{\cos x + \sin x}{\cos x}} - \frac{\sin x}{\frac{\sin x + \cos x}{\sin x}}$$

$$= \frac{\cos^2 x}{\cos x + \sin x} - \frac{\sin^2 x}{\sin x + \cos x}$$

$$= \frac{\cos^2 x - \sin^2 x}{\cos x + \sin x}$$

$$= \frac{(\cos x + \sin x)(\cos x - \sin x)}{\cos x + \sin x}$$

$$= \cos x - \sin x$$

Exercise

Prove the following equation is an identity: $\frac{\cot x + \csc x - 1}{\cot x - \csc x + 1} = \csc x + \cot x$

$$\frac{\cot x + \csc x - 1}{\cot x - \csc x + 1} = \frac{\cot x + \csc x - \left(\csc^2 x - \cot^2 x\right)}{\cot x - \csc x + 1}$$

$$= \frac{\cot x + \csc x - \left(\csc x - \cot x\right)\left(\csc x + \cot x\right)}{\cot x - \csc x + 1}$$

$$= \frac{\left(\csc x + \cot x\right)\left(1 - \left(\csc x - \cot x\right)\right)}{\cot x - \csc x + 1}$$

$$= \frac{\left(\csc x + \cot x\right)\left(1 - \csc x + \cot x\right)}{\cot x - \csc x + 1}$$

$$= \frac{\cot x + \csc x - \cot x}{\cot x - \cot x}$$

$$= \frac{\left(\csc x + \cot x\right)\left(1 - \csc x + \cot x\right)}{\cot x - \csc x + 1}$$

$$= \csc x + \cot x$$

Prove the following equation is an identity: $\frac{\tan x + \cot x}{\tan x - \cot x} = \frac{1}{\sin^2 x - \cos^2 x}$

Solution

$$\frac{\tan x + \cot x}{\tan x - \cot x} = \frac{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}}{\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}}$$
$$= \frac{\frac{\sin^2 x + \cos^2 x}{\cos x \sin x}}{\frac{\sin^2 x - \cos^2 x}{\cos x \sin x}}$$
$$= \frac{1}{\sin^2 x - \cos^2 x}$$

Exercise

Prove the following equation is an identity: $\frac{1-\cot^2 x}{1+\cot^2 x} + 1 = 2\sin^2 x$

Solution

$$\frac{1 - \cot^2 x}{1 + \cot^2 x} + 1 = \frac{1 - \cot^2 x + 1 + \cot^2 x}{1 + \cot^2 x}$$
$$= \frac{2}{\csc^2 x}$$
$$= 2\sin^2 x$$

Exercise

Prove the following equation is an identity: $\frac{1+\cos x}{1-\cos x} - \frac{1-\cos x}{1+\cos x} = 4\cot x \csc x$

$$\frac{1+\cos x}{1-\cos x} - \frac{1-\cos x}{1+\cos x} = \frac{(1+\cos x)^2 - (1-\cos x)^2}{1-\cos^2 x}$$

$$= \frac{(1+\cos x + 1 - \cos x)(1+\cos x - 1 + \cos x)}{\sin^2 x}$$

$$= \frac{(2)(2\cos x)}{\sin^2 x}$$

$$= 4\frac{\cos x}{\sin x} \frac{1}{\sin x}$$

$$= 4\cot x \csc x$$

Prove the following equation is an identity: $\frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 1 + \sin x \cos x$

Solution

$$\frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = \frac{(\sin x - \cos x)(\sin^2 x + \sin x \cos x + \cos^2 x)}{\sin x - \cos x}$$

$$= 1 + \sin x \cos x$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Exercise

Prove the following equation is an identity: $1 + \sec^2 x \sin^2 x = \sec^2 x$

Solution

$$1 + \sec^2 x \sin^2 x = 1 + \frac{1}{\cos^2 x} \sin^2 x$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1}{\cos^2 x}$$
$$= \sec^2 x$$

Exercise

Prove the following equation is an identity: $\frac{1 + \csc x}{\sec x} = \cos x + \cot x$

$$\frac{1 + \csc x}{\sec x} = \frac{1}{\sec x} + \frac{\csc x}{\sec x}$$
$$= \cos x + \frac{\frac{1}{\sin x}}{\frac{1}{\cos x}}$$
$$= \cos x + \frac{\cos x}{\sin x}$$
$$= \cos x + \cot x$$

Prove the following equation is an identity: $\tan^2 x = \sec^2 x - \sin^2 x - \cos^2 x$

Solution

$$\sec^2 x - \sin^2 x - \cos^2 x = \frac{1}{\cos^2 x} - \left(\sin^2 x + \cos^2 x\right)$$
$$= \frac{1}{\cos^2 x} - 1$$
$$= \frac{1 - \cos^2 x}{\cos^2 x}$$
$$= \frac{\sin^2 x}{\cos^2 x}$$
$$= \tan^2 x$$

Exercise

Prove the following equation is an identity: $\frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x} = 2 \csc x$

Solution

$$\frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x} = \sin x \left(\frac{1}{1 - \cos x} + \frac{1}{1 + \cos x} \right)$$

$$= \sin x \left(\frac{1 + \cos x + 1 - \cos x}{1 - \cos^2 x} \right)$$

$$= \sin x \left(\frac{2}{\sin^2 x} \right)$$

$$= \frac{2}{\sin x}$$

$$= 2 \csc x$$

Exercise

Prove the following equation is an identity: $\cos^2(\alpha - \beta) - \cos^2(\alpha + \beta) = \sin^2(\alpha + \beta) - \sin^2(\alpha - \beta)$

$$\cos^{2}(\alpha - \beta) - \cos^{2}(\alpha + \beta) = 1 - \sin^{2}(\alpha - \beta) - \left[1 - \sin^{2}(\alpha + \beta)\right]$$
$$= 1 - \sin^{2}(\alpha - \beta) - 1 + \sin^{2}(\alpha + \beta)$$
$$= \sin^{2}(\alpha + \beta) - \sin^{2}(\alpha - \beta)$$

Prove the following equation is an identity: $\tan x \csc x - \sec^2 x \cos x = 0$

Solution

$$\tan x \csc x - \sec^2 x \cos x = \frac{\sin x}{\cos x} \frac{1}{\sin x} - \frac{1}{\cos^2 x} \cos x$$
$$= \frac{1}{\cos x} - \frac{1}{\cos x}$$
$$= 0$$

Exercise

Prove the following equation is an identity: $(1 + \tan x)^2 - 2\tan x = \frac{1}{(1 - \sin x)(1 + \sin x)}$

Solution

$$(1 + \tan x)^{2} - 2\tan x = 1 + 2\tan x + \tan^{2} x - 2\tan x$$

$$= 1 + \tan^{2} x$$

$$= \sec^{2} x$$

$$= \frac{1}{\cos^{2} x}$$

$$= \frac{1}{1 - \sin^{2} x}$$

$$= \frac{1}{(1 - \sin x)(1 + \sin x)}$$

Exercise

Prove the following equation is an identity: $\frac{3\csc^2 x - 5\csc x - 28}{\csc x - 4} = \frac{3}{\sin x} + 7$

$$\frac{3\csc^{2}x - 5\csc x - 28}{\csc x - 4} = \frac{(3\csc x + 7)(\csc x - 4)}{\csc x - 4}$$
$$= 3\csc x + 7$$
$$= \frac{3}{\sin x} + 7$$

Prove the following equation is an identity: $(\sec^2 x - 1)(\sec^2 x + 1) = \tan^4 x + 2\tan^2 x$

Solution

$$(\sec^2 x - 1)(\sec^2 x + 1) = \sec^4 x - 1 \qquad (a - b)(a + b) = a^2 - b^2 \quad a = \sec^2 x$$

$$= (\sec^2 x)^2 - 1$$

$$= (1 + \tan^2 x)^2 - 1$$

$$= 1 + 2\tan^2 x + \tan^4 x - 1$$

$$= \tan^4 x + 2\tan^2 x$$

Exercise

Prove the following equation is an identity: $\frac{\csc x}{\cot x} - \frac{\cot x}{\csc x} = \frac{\sin x}{\cot x}$

Solution

$$\frac{\csc x}{\cot x} - \frac{\cot x}{\csc x} = \frac{\csc^2 x - \cot^2 x}{\cot x \csc x}$$

$$= \frac{\csc^2 x - \left(\csc^2 x - 1\right)}{\cot x \csc x}$$

$$= \frac{\csc^2 x - \csc^2 x + 1}{\cot x \csc x}$$

$$= \frac{1}{\cot x \frac{1}{\sin x}}$$

$$= \frac{\sin x}{\cot x}$$

Exercise

Prove the following equation is an identity: $\frac{1-\cos^2 x}{1+\cos x} = \frac{\sec x - 1}{\sec x}$

$$\frac{1-\cos^2 x}{1+\cos x} = \frac{(1-\cos x)(1+\cos x)}{1+\cos x}$$
$$= 1-\cos x$$

$$=1 - \frac{1}{\sec x}$$
$$= \frac{\sec x - 1}{\sec x}$$

Prove the following equation is an identity: $\frac{\cos x}{1 + \cos x} = \frac{\sec x - 1}{\tan^2 x}$

Solution

$$\frac{\cos x}{1 + \cos x} = \frac{\cos x}{1 + \cos x} \frac{1 - \cos x}{1 - \cos x}$$

$$= \frac{\cos x - \cos^2 x}{\cos^2 x - 1}$$

$$= \frac{\cos x - \cos^2 x}{\sin^2 x} \frac{\frac{1}{\cos^2 x}}{\frac{1}{\cos^2 x}}$$

$$= \frac{\frac{1}{\cos x} - 1}{\frac{\sin^2 x}{\cos^2 x}}$$

$$= \frac{\sec x - 1}{\tan^2 x}$$

Exercise

Prove the following equation is an identity: $\frac{1 - 2\sin^2 x}{1 + 2\sin x \cos x} = \frac{\cos x - \sin x}{\cos x + \sin x}$

$$\frac{1-2\sin^2 x}{1+2\sin x \cos x} = \frac{\cos^2 x + \sin^2 x - 2\sin^2 x}{\cos^2 x + \sin^2 x + 2\sin x \cos x}$$
$$= \frac{\cos^2 x - \sin^2 x}{\left(\cos x + \sin x\right)^2}$$
$$= \frac{\left(\cos x - \sin x\right)\left(\cos x + \sin x\right)}{\left(\cos x + \sin x\right)^2}$$
$$= \frac{\cos x - \sin x}{\cos x + \sin x}$$

Prove the following equation is an identity: $(\cos x - \sin x)^2 + (\cos x + \sin x)^2 = 2$

Solution

$$(\cos x - \sin x)^{2} + (\cos x + \sin x)^{2} = \cos^{2} x - 2\sin x \cos x + \sin^{2} x + \cos^{2} x + 2\sin x \cos x + \sin^{2} x$$

$$= \cos^{2} x + \sin^{2} x + \cos^{2} x + \sin^{2} x$$

$$= 1 + 1$$

$$= 2$$

Exercise

Prove the following equation is an identity: $\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2\csc x$

Solution

$$\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x} = \frac{\sin x \sin x + (1+\cos x)(1+\cos x)}{(1+\cos x)\sin x}$$

$$= \frac{\sin^2 x + 1 + 2\cos x + \cos^2 x}{(1+\cos x)\sin x}$$

$$= \frac{1+1+2\cos x}{(1+\cos x)\sin x}$$

$$= \frac{2+2\cos x}{(1+\cos x)\sin x}$$

$$= \frac{2(1+\cos x)}{(1+\cos x)\sin x}$$

$$= \frac{2}{\sin x}$$

$$= 2\csc x$$

Exercise

Prove the following equation is an identity: $\frac{\sin x + \tan x}{\cot x + \csc x} = \sin x \tan x$

$$\frac{\sin x + \tan x}{\cot x + \csc x} = \frac{\sin x + \tan x}{\frac{1}{\tan x} + \frac{1}{\sin x}}$$

$$= \frac{\sin x + \tan x}{\frac{\sin x + \tan x}{\tan x \sin x}}$$

$$= (\sin x + \tan x) \frac{\tan x \sin x}{\sin x + \tan x}$$

$$= \tan x \sin x$$

Prove the following equation is an identity: $\csc^2 x \sec^2 x = \sec^2 x + \csc^2 x$

Solution

$$\csc^2 x \sec^2 x = \frac{1}{\sin^2 x} \frac{1}{\cos^2 x}$$

$$= \frac{1}{\sin^2 x \cos^2 x}$$

$$= \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}$$

$$= \frac{\sin^2 x}{\sin^2 x \cos^2 x} + \frac{\cos^2 x}{\sin^2 x \cos^2 x}$$

$$= \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}$$

$$= \sec^2 x + \csc^2 x$$

Exercise

Prove the following equation is an identity: $\cos^2 x + 1 = 2\cos^2 x + \sin^2 x$

Solution

$$\cos^{2} x + 1 = \cos^{2} x + \cos^{2} x + \sin^{2} x$$
$$= 2\cos^{2} x + \sin^{2} x$$

Exercise

Prove the following equation is an identity: $1 - \frac{\cos^2 x}{1 + \sin x} = \sin x$

$$1 - \frac{\cos^2 x}{1 + \sin x} = 1 - \frac{1 - \sin^2 x}{1 + \sin x}$$
$$= 1 - \frac{(1 - \sin x)(1 + \sin x)}{1 + \sin x}$$
$$= 1 - (1 - \sin x)$$
$$= 1 - 1 + \sin x$$
$$= \sin x$$

Prove the following equation is an identity: $\cot^2 x = (\csc x - 1)(\csc x + 1)$

Solution

$$\cot^2 x = \csc^2 x - 1$$
$$= (\csc x - 1)(\csc x + 1)$$

Exercise

Prove the following equation is an identity: $\frac{\sec x - 1}{\tan x} = \frac{\tan x}{\sec x + 1}$

Solution

$$\frac{\sec x - 1}{\tan x} = \frac{\sec x - 1}{\tan x} \frac{\sec x + 1}{\sec x + 1}$$

$$= \frac{\sec^2 x - 1}{\tan x (\sec x + 1)}$$

$$= \frac{\tan^2 x}{\tan x (\sec x + 1)}$$

$$= \frac{\tan x}{\sec x + 1}$$

Exercise

Prove the following equation is an identity: $10\csc^2 x - 6\cot^2 x = 4\csc^2 x + 6$

Solution

$$10\csc^{2} x - 6\cot^{2} x = 10\csc^{2} x - 6\left(\csc^{2} x - 1\right)$$
$$= 10\csc^{2} x - 6\csc^{2} x + 6$$
$$= 4\csc^{2} x + 6$$

Exercise

Prove the following equation is an identity: $\frac{\csc x + \cot x}{\tan x + \sin x} = \csc x \cot x$

$$\frac{\csc x + \cot x}{\tan x + \sin x} = \frac{\csc x + \cot x}{\frac{1}{\cot x} + \frac{1}{\csc x}}$$

$$= \frac{\csc x + \cot x}{\csc x + \cot x}$$

$$= \csc x + \cot x \frac{\cot x \csc x}{\csc x + \cot x}$$

$$= \cot x \csc x$$

Prove the following equation is an identity: $\frac{1-\sec x}{\tan x} + \frac{\tan x}{1-\sec x} = -2\csc x$

$$\frac{1-\sec x}{\tan x} + \frac{\tan x}{1-\sec x} = \frac{(1-\sec x)(1-\sec x) + \tan^2 x}{\tan x(1-\sec x)}$$

$$= \frac{(1-\sec x)^2 + \sec^2 x - 1}{\tan x(1-\sec x)}$$

$$= \frac{(1-\sec x)^2 + (\sec x + 1)(\sec x - 1)}{\tan x(1-\sec x)}$$

$$= \frac{(1-\sec x)^2 - (\sec x + 1)(1-\sec x)}{\tan x(1-\sec x)}$$

$$= \frac{(1-\sec x)\left[(1-\sec x) - (\sec x + 1)\right]}{\tan x(1-\sec x)}$$

$$= \frac{1-\sec x - \sec x - 1}{\tan x}$$

$$= \frac{-2\sec x}{\tan x}$$

$$= -2\frac{1}{\sin x}$$

$$= -2\csc x$$

Prove the following equation is an identity: $\csc x - \sin x = \cos x \cot x$

Solution

$$\csc x - \sin x = \frac{1}{\sin x} - \sin x$$

$$= \frac{1 - \sin^2 x}{\sin x}$$

$$= \frac{\cos^2 x}{\sin x}$$

$$= \cos x \frac{\cos x}{\sin x}$$

$$= \cos x \cot x$$

Exercise

Prove the following equation is an identity: $\frac{\tan x + \sec x}{\sec x} - \frac{\tan x + \sec x}{\tan x} = -\cos x \cot x$

Solution

$$\frac{\tan x + \sec x}{\sec x} - \frac{\tan x + \sec x}{\tan x} = \frac{(\tan x + \sec x)\tan x - \sec x(\tan x + \sec x)}{\sec x \tan x}$$

$$= \frac{\tan^2 x + \sec x \tan x - \sec x \tan x - \sec^2 x}{\sec x \tan x}$$

$$= \frac{\tan^2 x - \sec^2 x}{\sec x \tan x}$$

$$= \frac{-1}{\sec x \tan x}$$

$$= -\frac{1}{\sec x} \frac{1}{\tan x}$$

$$= -\cos x \cot x$$

Exercise

Prove the following equation is an identity: $\cot^3 x = \cot x \left(\csc^2 x - 1\right)$

$$\cot^3 x = \cot x \cot^2 x$$
$$= \cot x \left(\csc^2 x - 1\right)$$

Prove the following equation is an identity: $\frac{\cot^2 x}{\csc x - 1} = \frac{1 + \sin x}{\sin x}$

Solution

$$\frac{\cot^2 x}{\csc x - 1} = \frac{\csc^2 x - 1}{\csc x - 1}$$

$$= \frac{(\csc x - 1)(\csc x + 1)}{\csc x - 1}$$

$$= \csc x + 1$$

$$= \frac{1}{\sin x} + 1$$

$$= \frac{1 + \sin x}{\sin x}$$

Exercise

Prove the following equation is an identity: $\cot^2 x + \csc^2 x = 2\csc^2 x - 1$

Solution

$$\cot^2 x + \csc^2 x = \csc^2 x - 1 + \csc^2 x$$
$$= 2\csc^2 x - 1$$

Exercise

Prove the following equation is an identity: $\frac{\cot^2 x}{1 + \csc x} = \csc x - 1$

Solution

$$\frac{\cot^2 x}{1 + \csc x} = \frac{\csc^2 x - 1}{1 + \csc x}$$
$$= \frac{(\csc x - 1)(\csc x + 1)}{1 + \csc x}$$
$$= \csc x - 1$$

Exercise

Prove the following equation is an identity: $\sec^4 x - \tan^4 x = \sec^2 x + \tan^2 x$

$$\sec^{4} x - \tan^{4} x = \left(\sec^{2} x + \tan^{2} x\right) \left(\sec^{2} x - \tan^{2} x\right)$$

$$= \left(\sec^{2} x + \tan^{2} x\right) (1)$$

$$= \sec^{2} x + \tan^{2} x$$

Prove the following equation is an identity: $\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2\sec x$

Solution

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = \frac{\cos^2 x + (1+\sin x)^2}{(1+\sin x)\cos x}$$

$$= \frac{\cos^2 x + 1 + 2\sin x + \sin^2 x}{(1+\sin x)\cos x}$$

$$= \frac{2+2\sin x}{(1+\sin x)\cos x}$$

$$= \frac{2(1+\sin x)}{(1+\sin x)\cos x}$$

$$= \frac{2}{\cos x}$$

$$= 2\sec x$$

Exercise

Prove the following equation is an identity: $\frac{\sin x + \cos x}{\sin x - \cos x} = \frac{1 + 2\sin x \cos x}{2\sin^2 x - 1}$

$$\frac{\sin x + \cos x}{\sin x - \cos x} = \frac{\sin x + \cos x}{\sin x - \cos x} \frac{\sin x + \cos x}{\sin x - \cos x}$$

$$= \frac{\sin^2 x + 2\sin x \cos x + \cos^2 x}{\sin^2 x - \cos^2 x}$$

$$= \frac{1 + 2\sin x \cos x}{\sin^2 x - \left(1 - \sin^2 x\right)}$$

$$= \frac{1 + 2\sin x \cos x}{\sin^2 x - 1 + \sin^2 x}$$

$$= \frac{1 + 2\sin x \cos x}{2\sin^2 x - 1}$$

Prove the following equation is an identity: $\frac{\csc x - 1}{\csc x + 1} = \frac{\cot^2 x}{\csc^2 x + 2\csc x + 1}$

Solution

$$\frac{\csc x - 1}{\csc x + 1} = \frac{\csc x - 1}{\csc x + 1} \frac{\csc x + 1}{\csc x + 1}$$
$$= \frac{\csc^2 x - 1}{\csc^2 x + 2\csc x + 1}$$
$$= \frac{\cot^2 x}{\csc^2 x + 2\csc x + 1}$$

Exercise

Prove the following equation is an identity: $\csc^4 x - \cot^4 x = \csc^2 x + \cot^2 x$

Solution

$$\csc^4 x - \cot^4 x = \left(\csc^2 x + \cot^2 x\right) \left(\csc^2 x - \cot^2 x\right)$$
$$= \left(\csc^2 x + \cot^2 x\right) (1)$$
$$= \csc^2 x + \cot^2 x$$

Exercise

Prove the following equation is an identity: $\tan\left(\frac{\pi}{4} + x\right) = \cot\left(\frac{\pi}{4} - x\right)$

$$\tan\left(\frac{\pi}{4} + x\right) = \cot\left[\frac{\pi}{2} - \left(\frac{\pi}{4} + x\right)\right]$$
$$= \cot\left[\frac{\pi}{2} - \frac{\pi}{4} - x\right]$$
$$= \cot\left(\frac{\pi}{4} - x\right)$$

Prove the following equation is an identity: $\frac{\sin \theta}{1 + \sin \theta} - \frac{\sin \theta}{1 - \sin \theta} = -2 \tan^2 \theta$

Solution

$$\frac{\sin \theta}{1 + \sin \theta} - \frac{\sin \theta}{1 - \sin \theta} = \sin \theta \left[\frac{1 - \sin \theta - (1 + \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)} \right]$$

$$= \sin \theta \left[\frac{1 - \sin \theta - 1 - \sin \theta}{1 - \sin^2 \theta} \right]$$

$$= \sin \theta \left(\frac{-2\sin \theta}{\cos^2 \theta} \right)$$

$$= -2 \frac{\sin^2 \theta}{\cos^2 \theta}$$

$$= -2 \tan^2 \theta$$

Exercise

Prove the following equation is an identity: $\csc^2 x - \cos^2 x \csc^2 x = 1$

Solution

$$\csc^2 x - \cos^2 x \csc^2 x = \csc^2 x \left(1 - \cos^2 x\right)$$
$$= \frac{1}{\sin^2 x} \left(\sin^2 x\right)$$
$$= 1$$

Exercise

Prove the following equation is an identity: $1 - 2\sin^2 x = 2\cos^2 x - 1$

$$1 - 2\sin^2 x = 1 - 2\left(1 - \cos^2 x\right)$$
$$= 1 - 2 + 2\cos^2 x$$
$$= 2\cos^2 x - 1$$

Prove the following equation is an identity: $\csc^2 x - \cos x \sec x = \cot^2 x$

Solution

$$\csc^2 x - \cos x \sec x = \frac{1}{\sin^2 x} - \cos x \frac{1}{\cos x}$$

$$= \frac{1}{\sin^2 x} - 1$$

$$= \frac{1 - \sin^2 x}{\sin^2 x}$$

$$= \frac{\cos^2 x}{\sin^2 x}$$

$$= \cot^2 x$$

Exercise

Prove the following equation is an identity: $(\sec x - \tan x)(\sec x + \tan x) = 1$

Solution

$$(\sec x - \tan x)(\sec x + \tan x) = \sec^2 x - \tan^2 x$$
$$= 1 + \tan^2 x - \tan^2 x$$
$$= 1$$

Exercise

Prove the following equation is an identity: $(1 + \tan^2 x)(1 - \sin^2 x) = 1$

$$(1 + \tan^2 x)(1 - \sin^2 x) = \sec^2 x \cos^2 x$$
$$= \frac{1}{\cos^2 x} \cos^2 x$$
$$= 1$$