Отчет о выполнении лабораторной работы 17 "Демодуляция в шумах"

Калашников Михаил, Б03-202

1. Канал с двоичной фазовой модуляцией

Повернем созвездие на угол $\frac{\pi}{4}$. При snr = 6 dB, получим, что $P_e'\approx 0.023$. Как видно из графика, при snr = 3 dB вероятность ошибки изначального созвездия так же составляет $P_e\approx 0.023$.

2. Канал с двоичной ортогональной модуляцией

Повернем созвездие на угол $\frac{\pi}{8}$. При snr = 6 dB, получим, что $P_e'\approx 0.071$. Это примерно соответствует значению snr ≈ 3.5 dB.

3. Канал с двоичной амплитудной модуляцией

4. Канал с квадратурной модуляцией QPSK

Оценим выигрыш в отношении сигнал/шум, который нумерация Грея дает при $P_b \approx 10^{-3}$. Для этого установим snr = 10 dB. При этом вероятность ошибки на бит при Віпагу-нумерации составит $P_b' \approx 0.0012$. Затем перейдем на нумерацию Грея и будем постепенно снижать отношение сигнал/шум. При snr = 9.6 dB получим ту же самую вероятность ошибки.

5. Каналы с М-ичной модуляцией

- 6. Линейная модуляция с прямоугольным импульсом
- 7. Корень из приподнятого косинуса
- 8. Двоичная частотная модуляция

9. Модуляция с минимальным частотным сдвигом