

Computational Improvements for the BEM including Viscothermal Effects

Mikkel Paltorp Schmitt, Vicente Cutanda Henríquez, Niels Aage & Peter Risby Andersen

The Boundary Element Method

The basis of the (Acoustical) Boundary Element Method is the integral equation

$$\alpha \zeta(\mathbf{x}) p(\mathbf{x}) - \int_{\Gamma} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}(\mathbf{y})} p(\mathbf{y}) \, dS_{\mathbf{y}} + s(\alpha) k \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) v_{\mathbf{n}}(\mathbf{y}) \, dS_{\mathbf{y}} = 0.$$
 (1)

In order to discrete the integrals we need to approximate the geometry. This can be done using e.g. elements

$$\mathbf{x}^{e}(\mathbf{u}) = \mathbf{X}^{e}\mathbf{N}(\mathbf{u}) \in \Gamma^{e}, \quad \forall \mathbf{u} \in \mathcal{L}, \quad \cup_{e=1}^{N} \Gamma^{e} \approx \Gamma$$
 (2)

Figure 1. The original domain in shown in gray while a two (linear) elements are shown in red. The red points denote the interpolation nodes of the elements (the columns of \mathbf{X}^e).

The pressure (and its normal derivative) on an element can be approximated as

$$p(\mathbf{x}^e(\mathbf{u})) = \mathbf{T}(\mathbf{x}^e(\mathbf{u}))\mathbf{p} = \underbrace{\mathbf{T}(\mathbf{x}(\mathbf{u}))(\mathbf{L}^e)^{\top}}_{\mathbf{T}^e(\mathbf{u})} \underbrace{\mathbf{L}^e \mathbf{p}}_{\mathbf{p}^e} = \mathbf{T}^e(\mathbf{u})\mathbf{p}^e, \quad \mathbf{u} \in \mathcal{L},$$
(3)

where \mathbf{L}^e is a matrix that extracts the relevant rows of \mathbf{p} , i.e. for the element in Figure 1 we have that

$$\mathbf{L}^{e} = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}, \quad \text{so that} \quad \begin{bmatrix} p_1 \\ p_4 \\ p_3 \end{bmatrix} = \mathbf{L}^{e} \mathbf{p}. \tag{4}$$

The final ingredient is to approximate the integral on the eth element by using a quadrature scheme

$$\int_{\Gamma^e} f(\mathbf{y}) \, dS_{\mathbf{y}} = \int_{\mathcal{L}} \text{jacobian}(\mathbf{u}) f(\mathbf{u}) \, d\mathbf{u} \approx \sum_{i=1}^{Q} \text{jacobian}(\mathbf{u}_i) w_i f(\mathbf{u}_i). \tag{5}$$

Using all of the above it is found that the discrete form of (1) is

$$(\operatorname{diag}(\boldsymbol{\zeta}) - \mathbf{F})\mathbf{p} + s(\alpha)k\mathbf{G}\mathbf{v_n} = \mathbf{H}\mathbf{p} + s(\alpha)k\mathbf{G}\mathbf{v_n} = \mathbf{0}, \tag{6}$$

References

- [1] M. Berggren, A. Bernland, and D. Noreland, "Acoustic boundary layers as boundary conditions," *Journal of Computational Physics*, vol. 371, pp. 633–650, 2018.
- [2] M. Brunaeu, P. Herzog, J. Kergomard, and J. Polack, "General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries," *Wave Motion*, vol. 11, no. 5, pp. 441–451, 1989.
- [3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, "Julia: A fresh approach to numerical computing," *SIAM review*, vol. 59, no. 1, pp. 65–98, 2017.
- [4] V. Cutanda Henríquez and P. R. Andersen, "A three-dimensional acoustic boundary element method formulation with viscous and thermal losses based on shape function derivatives," *Journal of Computational Acoustics*, vol. 26, no. 3, 2018.
- [5] T. Askham, Z. Gimbutas, L. Greengard, L. Lu, J. Magland, D. Malhotra, M. O'Neil, M. Rachh, and V. Rohklin, "FMM3D." https://github.com/flatironinstitute/FMM3D, 2023.
- [6] D. Panagiotopoulos, E. Deckers, and W. Desmet, "Krylov subspaces recycling based model order reduction for acoustic bem systems and an error estimator," Computer Methods in Applied Mechanics and Engineering, vol. 359, 2020.

Reduced Order Series Expansion Boundary Element Method (ROSEBEM)

A drawback of the BEM is that the discrete form of (6) depends on the frequency, meaning that for every frequency of interest it needs to be recomputed. A simple Taylor expansion of the Green's function can alleviate this pain as it transforms the discrete form into [6]

$$\left(\operatorname{diag}(\boldsymbol{\zeta}) - \sum_{m=0}^{M-1} \frac{(k-k_0)^m}{m!} \mathbf{F}_m(k_0)\right) \mathbf{p} + s(\alpha)k \left(\sum_{m=0}^{M-1} \frac{(k-k_0)^m}{m!} \mathbf{G}_m(k_0)\right) \mathbf{v}_n \approx \mathbf{0}.$$
 (7)

This approach, however, increase memory usage due to the storing of M-times the matrices. So solve this a reduced basis can be used, i.e. introduce \mathbf{U}_{ℓ} such that

$$\mathbf{p} \approx \mathbf{U}_{\ell} \mathbf{p}_{\ell}, \quad \frac{\partial \mathbf{p}}{\partial \mathbf{n}} \approx \mathbf{U}_{\ell} \frac{\partial \mathbf{p}_{\ell}}{\partial \mathbf{n}}.$$
 (8)

Including the Boundary Layer Impedance condition

The inclusion of viscothermal losses can sometimes be handed by using the Boundary Layer Impedance condition $^{[1]}$

$$\frac{\partial p}{\partial \mathbf{n}}(\mathbf{x}) = \left[(\gamma - 1) \frac{\mathrm{i}k^2}{k_h} - \frac{\mathrm{i}\Delta^{\parallel}}{k_v} \right] p(\mathbf{x}), \tag{9}$$

Using this the ROSEBEM system becomes

$$\sum_{m=0}^{M-1} \frac{(k-k_0)^m}{m!} \left(\left[\mathbf{F}_{\ell m}(k_0) + \frac{(\gamma-1)\mathrm{i}k^2}{k_h} \mathbf{H}_{\ell m}(k_0) + \frac{\mathrm{i}}{k_v} \mathbf{T}_{\ell m}(k_0) \right] \mathbf{p}_{\ell} + \mathbf{G}_{\ell m}(k_0) \frac{\partial \mathbf{p}_{\ell}}{\partial \mathbf{n}} \right) \approx \mathbf{0}. \quad (10)$$

Results

Improvements in the full formulation

The basis of the full formulation is the Kirchhoff decomposition which splits the problem into three $modes^{[2,4]}$

Acoustic Mode:
$$(\Delta + k_a^2)p_a(\mathbf{x}) = 0,$$
 (11)

Thermal Mode:
$$(\Delta + k_h^2)p_h(\mathbf{x}) = 0,$$
 (12)

Viscous Mode:
$$(\Delta + k_v^2)\mathbf{v}_v(\mathbf{x}) = \mathbf{0}$$
, with $\nabla \cdot \mathbf{v}_v(\mathbf{x}) = 0$. (13)

The modes are coupled on the boundary as

Isothermal:
$$p_a(\mathbf{x})\tau_a + p_h(\mathbf{x})\tau_h = 0, \quad \mathbf{x} \in \Gamma,$$
 (14)

No-slip:
$$\nabla p_a(\mathbf{x})\phi_a + \nabla p_h(\mathbf{x})\phi_h + \mathbf{v}_v(\mathbf{x}) = \mathbf{v}_{\text{boundary}}(\mathbf{x}).$$
 (15)

The new formulation utilizes that the gradient can be split in two as

$$\nabla p = \nabla^{\parallel} p + \nabla^{\perp} p. \tag{16}$$

Using this it turns out that the solution to the KD-BEM can be found by solving

$$\left[\mathbf{G}_{a}\left(\mu_{a}\left(\mathbf{R}\mathbf{N}\right)^{-1}\mathbf{R}\mathbf{D}_{c}+\mu_{h}\mathbf{G}_{h}^{-1}\mathbf{H}_{h}\right)-\phi_{a}\mathbf{H}_{a}\right]\mathbf{p}_{a}=\mathbf{G}_{a}\left(\mathbf{R}\mathbf{N}\right)^{-1}\mathbf{R}\mathbf{v}_{s}.$$
(17)

Note that in (17) every matrix except G_a and H_a are *sparse*. However, both matrices can be approximated using an acceleration method such as e.g. the Fast Multipole Method or the H-Matrix approach^[4]. In the case of the G_a -matrix the acceleration is as follows

$$\left(\underbrace{\int_{\Gamma} G_{a}(\mathbf{t}_{k}, \mathbf{y}) \mathbf{T}(\mathbf{y}) \, dS_{\mathbf{y}}}_{k \text{th row of } \mathbf{G}}\right) \mathbf{z} = \left(\sum_{j=1}^{NQ} G_{a}(\mathbf{t}_{k}, \mathbf{y}_{j}) \underbrace{\text{jacobian}(\mathbf{u}_{j}) w_{j} \mathbf{T}^{e(j)}(\mathbf{u}_{j}) \mathbf{L}^{e(j)}}_{j \text{th row of } \mathbf{C}}\right) \mathbf{z}$$

$$= \left[G_{a}(\mathbf{t}_{k}, \mathbf{y}_{1}) \ G_{a}(\mathbf{t}_{k}, \mathbf{y}_{2},) \ \dots \ G_{a}(\mathbf{t}_{k}, \mathbf{y}_{NQ})\right] \mathbf{Cz}$$

$$(18)$$

Results

