

HW-SW Interface for RAS in RISC-V Architectures

Daniele Rossi*, Nicasio Canino, Stefano Di Matteo, Sergio Saponara

Department of information Engineering, University of Pisa, Italy

*Contact author - daniele.rossi1@unipi.it

Background

Overview of the Designed Architecture

Verification and Synthesis Results

Test Environment on FPGA

Conclusions

Reliability

Probability that the system produces correct outputs

Availability

Ability of the system to be available at any time

Serviceability

Ability of the system to provide information about the system failure occurred

How can the System RAS be improved?

European Processor Initiative

HW-SW Interface for Error Logging and Reporting

the RISC-V architecture

Error Taxonomy

- Error Mux receives the error check signals generated by the ECC of the monitored HW units
- It handles the specific case and generates an error message
 - Error message: Source ID,
 Error Type (CE, UUE, UDE)

- Error synchronizationInterface synchronizes
 - error message coming from the Mux
 - address of the erroneous location coming from the Address Buffer
 - → information is stored in a circular FIFO buffer

- Main Controller
 selects where to locate the
 new error record fully
 associative cache-like
 - approach
- DE Controller

receives addresses and r/w signal and verify whether a UDE location is being accessed

Synthesis Results on Standard-Cell and FPGA

Configuration of the ELRA module:

- Two Error Record Banks
- Both **CE Counters** implemented (**7-bit** wide)
- Timestamp 32-bit wide
- Address bus 32-bit wide
- 4 FIFO Buffer entries
- AXI4 Memory-Mapped Interface included

FPGA results:

Xilinx Zynq Ultrascale+ MPSoC

Maximum $f_{\it clk}$	LUT	FF	CARRY 8	Block RAM	DSP
320MHz	459	433	8	0	0

Standard-Cell results:

Technology	Complexity $[kGE]$	Area [μ m^2]	Maximum $f_{\it clk}$	$P_{din}/f_{clk} \ [mW/GHz]$	P _{leak} /area [nW/μm²]
45nm (Nangate Open-Cell)	7,47	5.962,39	1,2 <i>GHz</i>	5,06	18,11
7nm (Artisan)	7,41	569,22	5,5 <i>GHz</i>	1,92	39,71

Test Environment Implemented on FPGA

Test SoC modules:

- RISC-V CV32E40P core + Main Block RAM (BRAM)
- Central DMA (CDMA) + ECC-protected Block RAMs emulate L1 and L2 caches
- JTAG to load C code for testing
- UART to give feedbacks on user terminal

ELRA-to-system interconnections:

- Error Logging
- Error Reporting
- Error Monitoring
- Error Injection

Summary of the ELRA module results:

- Design of an HW-SW interface for RISC-V architecture
- Verification and validation on FPGA
- High configurability of Error Logging and Reporting at synthesis level
- Flexible area occupation
- Non-limiting frequency on Standard-Cell technologies

