Slide 1: Apresentação – Nome – Orientador – Tema

Slide 2:

Objetivo: Analisar o consumo de recurso das arquiteturas de microsserviços específicos a jogos MMORPG. Em específico as arquiteturas Rudy, Salz e Willson.

Slide 3: Identificar e definir arquiteturas para jogos MMORPG.

- Identificar e definir os protocolos e o seu funcionamento.
- Identificar e definir os microsserviços que compõem a arquitetura.

Slide 4: Roteiro:

Contexto

Pesquisa Referenciada

Problema

Trabalhos Relacionados

Proposta

Slide 5: Exemplo de Cliente MMORPG.

Personagens

Outros Jogadores

Ambiente

Área de Interesse

Slide 6: Jogos Eletrônicos: Entretenimento a partir de regras elaboradas em algum componente eletrônico.

Jogos multijogadores: Permite jogar com outros jogadores através da rede.

Jogos Massivos: Tem um serviço onde muitos jogadores podem se encontrar em um único ambiente.

Jogos Massivos de Interpretação:

Restringe as características de jogo massivo com regras de negócio a partir de itens, equipamentos, combate e nível do personagem. **Slide 7:** Assim podemos diferenciar as camadas de uma arquitetura de um jogo MMORPG:

Cliente que executa baseado em um motor gráfico. Em geral, este **motor gráfico é baseado em nodos** para facilitar a renderização;

Difere de um jogo offline visto que possui **entrada de dados tanto do cliente quanto do serviço.**

Servidor: Nuvem computacional ou conjunto de computadores físicos que executam diversas aplicações disponíveis na rede.

Serviço: As aplicações que estarão disponíveis na rede a qual permitem a interação dos clientes.

Microsserviço: Uma pequena aplicação que executará em conjunto com outras aplicações para formar o serviço como um todo.

Slide 8: Entrada do usuário e Serviço através do módulo de Network.

Slide 9: Ciclo de conexão de um serviço genérico: Cliente → Serviço → Banco de Dados Pode ser visualizado na do Slide 10.

Slide 10: Explicar a conexão com o cliente, as aplicações e a conexão com o banco de dados.

Público e Privado

Slide 11: Arquitetura Rudy

Público: Balanço de Carga, Gerenciador de Mundo, Autenticação;

Privados: Web estático e dinâmico, Consulta ao banco e Banco de dados;

Slide 12: Imagem Rudy: Explicar o funcionamento de conexão. Foco no Gerenciador de consultas.

Slide 13: Objetivos do Rudy:

Microsserviço único para consultas do banco de dados;

Processar diversos ambientes em paralelo (Porém não aceita ambientes vastos);

Segregar os jogadores em diversos ambientes;

Slide 14: Modelo de processamento:

Ações não processadas, fila de processadores e ações processadas;

Slide 15: Arquitetura Salz:

Público: Web, autenticação, gerenciamento de mundo, comunicação;

Privado: Serviço de pagamento, negociação, global e bancos de dados específicos;

Slide 16: Foco nas 3 conexões simultâneas (Para o serviço de autenticação, jogo e comunicação).

Slide 17: Processar um **único ambiente baseado em pedaços** (Chunks). Utilizar um **protocolo RPC customizado** (permitindo chamadas assíncronas sem esperar a resposta). Utilizar **três conexões** para evitar a troca de mensagens entre os microsserviços.

Slide 18: Arquitetura Willson

público: Balanço de Carga, serviço de jogo

Privado: Serviço de GIT, compilação, atualização, pagamento, global, autenticação e banco de dados;

Slide 19: Focar em **um único banco de dados** e uma conexão.

Focar na **mescla dos serviços** de comunicação e negociação no serviço de jogo e/ ou global;

Mostrar a preocupação com **entregas de atualização** dentro da arquitetura de jogo; **Slide 20:** Agrupar serviços vizinhos:

Tempo de resposta;

Diminuir demanda de sincronização entre microsserviços

Aprimorar o sistema de atualização ao usuário final;

Prover poucos sistemas públicos, diminuindo a quantia de conexões para a arquitetura;

Slide 21: O mesmo sistema da arquitetura Rudy, porém utiliza outras **threads para periféricos** de IO, banco, log e busca de caminho (Diminuindo tempo de processamento das chamadas, executando-as em paralelo).

Slide 22: Não foram identificados trabalhos que auxiliem na análise de consumo de recursos das arquiteturas selecionadas;

- Escolha de arquitetura é um problema recorrente;
- A arquitetura escolhida impacta diretamente no custo de manutenção dos serviços;

Slide 23: Temas recorrentes:

- Previsibilidade de Carga
- Abordagens de processamento de requisições
- Análise do consumo de recursos;
- Comparação de arquiteturas;

Slide 24 e 25: Trabalhos relacionados;

Slide 26: Proposta: **Analisar as arquiteturas Rudy, Salz e Willson** com foco nos critérios:

- Consumo de memória e CPU.
- Vazão de Rede.
- Número de conexões simultâneas.
- Tempo de Resposta;
- Latência entre cliente e serviço.

Slide 27: Cenário;

Slide 28: Modelo do cliente para testes;

Slide 29: Descobrir o valor mínimo de

operação; Descobrir o custo por conexão;

Analisar o crescimento, esperando um crescimento linear do uso de recursos.

Slide 30: Objetivos explícitos das arquiteturas, sem estudos de comprovação ou análise dos objetivos propostos;

Valores de recursos utilizados **no cenário são variáveis**, visto que não sabe-se o **custo de operação inicial** de tais arquiteturas;

Dificuldade para encontrar material científico ou acadêmico correlacionando arquiteturas de microsserviços para jogos MMORPG.

Slide 31: Etapas, Cronograma e Referências;