CAR PRICE PREDICTION(LINEAR REGRESSION)

```
In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
import warnings
warnings.filterwarnings("ignore")
```

LOAD DATASET

In [2]: df=pd.read_csv("cars.csv") In [3]: df.head()

Out[3]:

:[symboling	normalized- losses	make	fuel- type	body-style	drive- wheels	engine- location	width	height
	0	3	?	alfa- romer	gas	convertible	rwd	front	64.1	48.8
	1	3	?	alfa- romer	gas	convertible	rwd	front	64.1	48.8
	2		?	alfa- romer	gas	hatchback	rwd	front	65.5	52.4
	3	2	164	audi	gas	sedan	fwd	front	66.2	54.3
Į,	4	2	164	audi	gas	sedan	4wd	front	66.4	54.3

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 205 entries, 0 to 204 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	normalized-losses	205 non-null	object
2	make	205 non-null	object
3	fuel-type	205 non-null	object
4	body-style	205 non-null	object
5	drive-wheels	205 non-null	object
6	engine-location	205 non-null	object
7	width	205 non-null	float64
8	height	205 non-null	float64
9	engine-type	205 non-null	object
10	engine-size	205 non-null	int64
11	horsepower	205 non-null	object
12	city-mpg	205 non-null	int64
13	highway-mpg	205 non-null	int64
14	price	205 non-null	int64
dtyp	es: float64(2), int	64(5), object(8)	

memory usage: 24.1+ KB

In [5]: df.describe()

Out[5]:		symboling	width	height	engine- size		highway- mpg	
	count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.0
	mean	0.834146	65.907805	53.724878	126.907317	25.219512	30.751220	1322
	std	1.245307	2.145204	2.443522	41.642693	6.542142	6.886443	7902
	min	-2.000000	60.300000	47.800000	61.000000	13.000000	16.000000	5118
	25%	0.000000	64.100000	52.000000	97.000000	19.000000	25.000000	7788
	50%	1.000000	65.500000	54.100000	120.000000	24.000000	30.000000	1034
	75%	2.000000	66.900000	55.500000	141.000000	30.000000	34.000000	1650
	max	3.000000	72.300000	59.800000	326.000000	49.000000	54.000000	4540

HANDALING THE MISSING VALUE

```
In [6]:
df.isna().sum()
Out[6]:
        symboling
                              0
        normalized-losses
                              0
        make
                              0
        fuel-type
                              0
                              0
        body-style
        drive-wheels
                              0
        engine-location
                              0
        width
                              0
                              0
        height
        engine-type
                              0
                              0
        engine-size
                              0
        horsepower
        city-mpg
                              0
                              0
        highway-mpg
        price
                              0
        dtype: int64
In [7]:
```

df["normalized-losses"].value_counts()

```
Out[7]:
                41
                11
         161
         91
                 8
         150
                 7
         134
                 6
         128
                 6
         104
                 6
         85
                 5
                 5
         94
                 5
         65
                 5
         102
                 5
         74
                 5
         168
                 5
         103
                 5
         95
         106
                 4
         93
                 4
         118
                 4
         148
                 4
         122
                 4
         83
                 3
         125
                 3
                 3
         154
                 3
         115
                 3
         137
                 3
         101
         119
                 2
         87
                 2
                 2
         89
         192
                 2
         197
                 2
         158
                 2
                 2
         81
         188
                 2
                 2
         194
         153
                 2
         129
                 2
                 2
         108
                 2
         110
                 2
         164
                 2
         145
         113
                 2
                 1
         256
         107
                 1
         90
                 1
         231
                 1
         142
                 1
         121
                 1
         78
                 1
         98
                 1
         186
                 1
         77
         Name: normalized-losses, dtype: int64
In [8]:
df["normalized-losses"].replace("?",np.nan,inplace=True)
In [9]:
df["horsepower"].replace("?",np.nan,inplace=True)
df["horsepower"]=df["horsepower"].astype("float64")
In [10]:
si=SimpleImputer(missing_values=np.nan,strategy="mean")
In [11]:
```

df[["normalized-losses"]]=si.fit_transform(df[["normalized-losses"]])

	symboling	losses	make	type	body-style	wheels	location	width	height
0	3	122.0	alfa- romer	gas	convertible	rwd	front	64.1	48.8
1	3	122.0	alfa- romer	gas	convertible	rwd	front	64.1	48.8
2	1	122.0	alfa- romer	gas	hatchback	rwd	front	65.5	52.4
3	2	164.0	audi	gas	sedan	fwd	front	66.2	54.3
4	2	164.0	audi	gas	sedan	4wd	front	66.4	54.3

sperate columns on features and target

In [14]:

features=df.iloc[:,:-1]

In [15]:

features

Out[15]

_										
		symboling	normalized- losses	make	fuel- type	body-style	drive- wheels	engine- location	width	hei
	0	3	122.0	alfa- romer	gas	convertible	rwd	front	64.1	48.
	1	3		alfa- romer		convertible	rwd	front	64.1	48.
	2	1		alfa- romer		hatchback	rwd	front	65.5	52.
	3	2		$\overline{}$		sedan	fwd	front	66.2	54.
	4	2	164.0	audi	gas	sedan	4wd	front	66.4	54.
	200	-1	95.0	volvo	gas	sedan	rwd	front	68.9	55.
	201	-1	95.0	volvo	gas	sedan	rwd	front	68.8	55.
	202	-1	95.0	volvo	gas	sedan	rwd	front	68.9	55.
	203	-1	95.0	volvo	diesel	sedan	rwd	front	68.9	55.
	204	-1	95.0	volvo	gas	sedan	rwd	front	68.9	55.

205 rows \times 14 columns

In [16]:

target=df.iloc[:,-1]

In [17]:

target

```
Out[17]:
                13495
         1
                16500
         2
                16500
         3
                13950
         4
                17450
         200
                16845
         201
                19045
         202
                21485
         203
                22470
         204
                22625
         Name: price, Length: 205, dtype: int64
```

OUTLIERS DETECTION

```
In [18]:
  plt.figure(figsize=(15,10))
  sns.boxplot(data=features,x=target,y="make");
  plt.grid()
```


OUTLIERS HANDALING

In [19]:

features[(features.make=="plymouth")&(target>10000)]

Out[19]: normalizedfuelbody-driveenginestyle wheels location width hei symboling make losses type **124**||3 122.0 plymouth|gas |hatchback||rwd front 66.3

In [20]:

features.drop(124,axis=0,inplace=True)

In [21]:

features[(features.make=="toyota")&(target>15000)]

Out[21]:		symboling	normalized- losses	make	fuel- type	body-style	drive- wheels	engine- location	width	he
	172	2	134.0	toyota	gas	convertible	rwd	front	65.6	53.
	178	3	197.0	toyota	gas	hatchback	rwd	front	67.7	52.
	179	3	197.0	toyota	gas	hatchback	rwd	front	67.7	52.
	180	-1	90.0	toyota	gas	sedan	rwd	front	66.5	54.
	181	-1	122.0	toyota	gas	wagon	rwd	front	66.5	54.

In [22]:

features.drop([172,178,179,180,181],axis=0,inplace=**True**)

In [23]:

features[(features.make=="mitsubishi")&(target>12000)]

Out[23]

]:		symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	he
	82	3	122.0	mitsubishi	gas	hatchback	fwd	front	66.3	50
	83	3	122.0	mitsubishi	gas	hatchback	fwd	front	66.3	50
	84	3	122.0	mitsubishi	gas	hatchback	fwd	front	66.3	50

In [24]:

features.drop([83,84],axis=0,inplace=True)

In [25]:

features[(features.make=="honda")&(target>11000)]

Out[25]

J :		symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- locatio	width	height	engi t
	41	0	85.0	honda	gas	sedan	fwd	front	65.2	54.1	ohc

In [26]:

features.drop(41,axis=0,inplace=True)

In [27]:

features[(features.make=="dodge")&(target>11000)]

Out[27]

] :		symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height
	29	3	145.0	dodge	gas	hatchback	fwd	front	66.3	50.2

In [28]:

features.drop(29,axis=0,inplace=True)

In [29]:

features[(features.make=="isuzu")&(target>20000)]

]:[symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engi t
	45	0	122.0	isuzu	gas	sedan	fwd	front	63.6	52.0	ohc

In [30]:

target.drop([29,41,83,84,124,172,178,179,180,181,82],axis=0,inplace=**True**)

In [31]:

features.drop(45,axis=0,inplace=True)

In [32]:

```
plt.figure(figsize=(12,10))
```

sns.boxplot(data=features,x=target,y="make");

plt.grid()

SKEW DETECTION

```
from scipy.stats import skew
skew(features["height"])
Out[35]:
0.013839962443639326
In [36]:
for i in features[colname]:
     print(i)
    print(skew(features[i]))
     plt.figure()
     sns.distplot(features[i]);
symboling
0.21386866184357742
normalized-losses
0.848205953606264
width
0.9140400320504322
height
0.013839962443639326
engine-size
2.0541257626466156
horsepower
1.5556576549504106
city-mpg
```

0.5999073033714895

highway-mpg

CHECKING CORELATION OF TARGET

```
In [37]:
pd.concat([features,target],axis=1).corr().style.background_gradient()
                     symboling normalized-
Out[37]:
                                                                  engine-
                                              width
                                                        height
                                                                           horsepower of
                                   losses
                                                                   size
                     1.000000
                                             -0.272388 -0.521495 -0.153671 0.027074
          symboling
                               0.447922
         normalized-
                     0.447922
                                1.000000
                                             0.066622
                                                       -0.368540 0.090258
                                                                           0.183385
           losses
                                                                           0.643906
            width
                     -0.272388 0.066622
                                            1.000000 0.296011
                                                                0.735112
           height
                                                      1.000000
                     -0.521495 -0.368540
                                            0.296011
                                                                 0.096041
                                                                           -0.078245
```

engine-size-0.1536710.0902580.7351120.0960411.0000000.803956horsepower0.0270740.1833850.643906-0.0782450.8039561.000000city-mpg0.007189-0.212276-0.641401-0.078815-0.642711-0.797166highway-mpg0.084238-0.168904-0.677911-0.142926-0.667078-0.761009

0.730630 0.147417 0.871044

In [38]:

price

pd.concat([features,target],axis=1).corr()["price"]

-0.096215 0.129980

Out[38]:

symboling -0.096215 normalized-losses 0.129980 width 0.730630 0.147417 height 0.871044 engine-size horsepower 0.771608 -0.682415 city-mpg highway-mpg -0.7070511.000000 price Name: price, dtype: float64

In [39]:

features["height"].value_counts()

```
Out[39]:
          50.8
                  14
                  12
          55.7
          54.5
                  10
          55.5
                   9
          52.0
                   9
          54.3
                   8
          56.7
                   8
          52.6
                   7
          56.1
                   7
                   7
          54.1
          51.6
                   7
          54.9
                   6
          52.8
                   6
          53.0
                   5
                   5
          50.6
          53.7
                   5
                   5
          55.1
          49.6
                   4
          53.3
          58.7
                   4
          52.5
          59.1
                   3
          56.2
                   3
          49.7
                   3
          57.5
                    3
          53.5
                   3
          54.4
                   2
          53.9
                   2
                   2
          56.3
          50.5
                   2
          59.8
                   2
          56.5
                   2
                   2
          54.7
          48.8
                   2
                   2
          50.2
          49.4
                   2
          51.4
                   2
          51.0
                   1
          54.8
                   1
          55.4
                   1
          56.0
                   1
          55.2
                   1
          53.2
                   1
          47.8
          55.9
                   1
          52.4
          55.6
                   1
          53.1
                   1
          58.3
                   1
          Name: height, dtype: int64
In [40]:
features["height"]=np.log(features["height"])
In [41]:
skew(features["height"])
Out[41]:
          -0.09062993710381134
```

ENCODING

ONE HOT ENCODING

```
In [42]:
    from sklearn.preprocessing import OneHotEncoder
In [43]:
    one=OneHotEncoder()
    one.fit_transform(features[["fuel-type"]]).toarray()
```

```
Out[43]:
          array([[0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [1., 0.],
                  [0., 1.],
                  [0., 1.],
```

```
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
```

[0., 1.], [0., 1.], [0., 1.], [0., 1.],

```
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
```

[0., 1.], [0., 1.], [0., 1.], [0., 1.],

```
[1., 0.],
                 [0., 1.]]
In [44]:
features.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 194 entries, 0 to 204
Data columns (total 14 columns):
 #
     Column
                         Non-Null Count
                                         Dtype
 0
     symboling
                         194 non-null
                                          int64
 1
     normalized-losses
                         194 non-null
                                          float64
 2
     make
                         194 non-null
                                         object
 3
     fuel-type
                         194 non-null
                                         object
 4
                         194 non-null
     body-style
                                         object
 5
     drive-wheels
                         194 non-null
                                         object
 6
     engine-location
                         194 non-null
                                         object
 7
     width
                                          float64
                         194 non-null
 8
     height
                         194 non-null
                                          float64
                                         object
 9
     engine-type
                         194 non-null
 10
     engine-size
                         194 non-null
                                          int64
                         194 non-null
                                          float64
 11
     horsepower
 12
     city-mpg
                         194 non-null
                                         int64
     highway-mpg
                         194 non-null
                                          int64
dtypes: float64(4), int64(4), object(6)
memory usage: 26.8+ KB
```

[0., 1.],

ORDINAL ENCODING

```
In [45]:
  from sklearn.preprocessing import OrdinalEncoder
In [46]:
  oe=OrdinalEncoder()
  oe.fit_transform(features[["make"]])
```

```
Out[46]:
            array([[ 0.],
                     [ 0.],
                     [ 0.],
                       1.],
                     [ 1.],
[ 1.],
                     [ 1.],
                     [ 1.],
[ 1.],
                     [
[
                       1.],
                     [ 2.],
[ 2.],
                     [ 2.],
[ 2.],
                     [ 2.],
                     [ 2.],
[ 2.],
                     [ 2.],
                     [ 3.],
[ 3.],
[ 3.],
                     4.],
                     [ 4.],
                     [ 4.],
                       4.],
                     [ 4.],
                     [ 4.],
                     [
[
                       4.],
                       4.],
                     [ 5.],
[ 5.],
                     [ 5.],
                     [ 5.],
                     ]
[
                       5.],
                       5.],
                     [ 5.],
                       5.],
5.],
                     [
[
                     [ 5.],
                       5.],
                     Г
                     [ 5.],
                     [ 6.],
                       6.],
6.],
                     Ē
                     [ 7.],
                     [ 7.],
                     7.],
                     [ 8.],
                     [ 8.],
                       8.],
                     [ 8.],
                     8.],
                     [
[
                       8.],
                       8.],
                     8.],
                     8.],
                     Г
                       8.],
                     [ 8.],
                     [
[
                       8.],
                       8.],
                     [ 8.],
                     [ 8.],
                     [8.],
```

```
[ 8.],
[ 9.],
[ 9.],
[ 9.],
[ 9.],
[ 9.],
[ 9.],
[ 9.],
[ 9.],
[10.],
[11.],
[11.],
[11.],
[11.],
[11.],
[11.],
[11.],
[11.],
[11.],
[11.],
[11.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[12.],
[13.],
[13.],
[13.],
[13.],
[13.],
[13.],
[13.],
[13.],
[13.],
[13.],
[13.],
[14.],
[14.],
[14.],
[14.],
[14.],
[14.],
[15.],
[15.],
[15.],
[15.],
```

[15.], [16.], [16.], [17.],

```
[17.],
[17.],
[17.],
[17.],
[17.],
[18.],
[18.],
[18.],
[18.],
[18.],
[18.],
[18.],
[18.],
[18.],
[18.],
[18.],
[18.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[19.],
[20.],
[20.],
[20.],
[20.],
[20.],
[20.],
[20.],
[20.],
[20.],
[20.],
[20.],
[20.],
[21.],
[21.],
[21.],
[21.],
[21.],
[21.],
[21.],
```

[21.],

```
[21.],

[21.],

[21.]])

In [47]:
oe.fit_transform(features[["body-style"]])
```

```
Out[47]:
           array([[0.],
                    [0.],
                    [2.],
                    [3.],
                    [3.],
                    [3.],
                    [3.],
                    [4.],
                    [3.],
                    [2.],
[3.],
                    [3.],
                    [3.],
                    [3.],
                    [3.],
                    [3.],
[3.],
                    [3.],
                    [2.],
                    [2.],
                    [3.],
                    [2.],
[2.],
                    [2.],
                    [2.],
[3.],
                    [3.],
                    [3.],
                    [4.],
                    [2.],
                    [2.],
                    [2.],
                    [2.],
                    [2.],
                    [3.],
                    [4.],
                    [2.],
                    [2.],
                    [3.],
                    [3.],
                    [3.],
                    [3.],
                    [3.],
                    [2.],
                    [3.],
                    [3.],
                    [3.],
                    [2.],
[2.],
                    [2.],
                    [3.],
                    [3.],
                    [2.],
                    [2.],
                    [2.],
                    [2.],
                    [2.],
                    [3.],
                    [2.],
[3.],
                    [3.],
                    [2.],
                    [3.],
```

[3.], [3.],

[4.], [1.],

[3.],

[3.],

[0.],

[3.],

[1.],

[2.],

[2.],

[2.],

[2.], [2.],

[2.],

[2.], [2.],

[3.],

[3.],

[3.], [3.],

[3.], [3.], [3.],

[3.],

[4.],

[3.],

[2.], [3.],

[4.],

[1.],

[2.], [3.],

[3.], [4.],

[3.],

[2.], [2.],

[2.],

[3.], [3.],

[4.],

[4.], [3.],

[3.],

[4.], [4.],

[3.],

[3.], [3.],

[2.],

[2.],

[2.],

[3.], [3.],

[4.],

[2.],

[1.],

[1.],

[0.], [2.],

[4.],

[2.], [2.],

- [3.],

 - [2.], [3.], [2.],
 - [3.],

 - [2.], [2.],

 - [2.],
 - [3.], [3.],

 - [3.],

 - [3.],

 - [3.], [4.],

 - [4.], [4.],
 - [4.], [2.],

 - [2.], [2.],

 - [4.],
 - [4.],

 - [4.], [3.],
 - [2.],
 - [3.], [2.],

 - [3.], [2.], [3.],

 - [3.],

 - [2.], [3.],
 - [2.], [1.],

 - [1.],
 - [2.], [1.],
 - [2.],
 - [3.], [3.],

 - [2.],

 - [3.], [2.],
 - [3.],

 - [3.], [3.],
 - [3.],

 - [3.], [3.], [3.],

 - [0.],

 - [2.],
 - [3.], [3.],

 - [4.],
 - [3.],
 - [4.],
 - [3.], [4.], [3.],

 - [4.],
 - [3.], [3.],

SCALING

#MINMAX SCALING

```
In [51]:
    from sklearn.preprocessing import MinMaxScaler
In [52]:
    sc=MinMaxScaler()
    features=sc.fit_transform(features)
In [53]:
    features=pd.DataFrame(features)
In [54]:
    features
```

Out[54]:

	=											
: [0	1	2	3	4	5	6	7	8	9	1
	0	1.0	0.298429	0.000000	1.0	0.00	1.0	0.0	0.316667	0.092440	0.000000	0.26037
	1	1.0	0.298429	0.000000	1.0	0.00	1.0	0.0	0.316667	0.092440	0.000000	0.26037
	2	0.6	0.298429	0.000000	1.0	0.50	1.0	0.0	0.433333	0.410219	0.833333	0.34339
	3	0.8	0.518325	0.047619	1.0	0.75	0.5	0.0	0.491667	0.569241	0.500000	0.18113
	4	0.8	0.518325	0.047619	1.0	0.75	0.0	0.0	0.508333	0.569241	0.500000	0.28301
[[]										
	189	0.2	0.157068	1.000000	1.0	0.75	1.0	0.0	0.716667	0.666833	0.500000	0.30188
	190	0.2	0.157068	1.000000	1.0	0.75	1.0	0.0	0.708333	0.666833	0.500000	0.30188
	191	0.2	0.157068	1.000000	1.0	0.75	1.0	0.0	0.716667	0.666833	0.833333	0.42264
	192	0.2	0.157068	1.000000	0.0	0.75	1.0	0.0	0.716667	0.666833	0.500000	0.31698
	193	0.2	0.157068	1.000000	1.0	0.75	1.0	0.0	0.716667	0.666833	0.500000	0.30188
_												

194 rows \times 14 columns

STANDARD SCALING

```
In [55]:
    from sklearn.preprocessing import StandardScaler
    sd=StandardScaler()
    features=sd.fit_transform(features)
```

```
features=pd.DataFrame(features)
In [57]:
features
Out[57]:
                                                                          5
                                1
                                                     3
                                           2
                                                                                    6
            1.846173 0.019088
                                  -1.934007 0.339032 -3.111634 1.234608
                                                                            -0.125327 -0
                                  -1.934007 0.339032
                                                      -3.111634 1.234608
                                                                            -0.125327 -0
            1.846173
                       0.019088
            0.176441
                       0.019088
                                  -1.934007 0.339032
                                                      -0.748984 1.234608
                                                                            -0.125327 -0
                       1.359859
                                  -1.774620 0.339032
                                                      0.432341 |-0.566249
            ||1.011307|
                                                                            -0.125327||0.
            1.011307
                       1.359859
                                  -1.774620 0.339032
                                                      0.432341
                                                                 -2.367105
                                                                            -0.125327 0.
```

0.339032

0.339032

0.339032

0.339032

1.234608

1.234608

-0.125327 1.

-0.125327 1.

-0.125327 1.

-0.125327 1.

-0.125327 1.

0.432341

0.432341

-2.949576 0.432341 1.234608

0.432341 1.234608

0.432341 1.234608

194 rows \times 14 columns

189 -1.493292 -0.842836 1.413123

|190||-1.493292||-0.842836||1.413123

191 -1.493292 -0.842836 1.413123

192 -1.493292 -0.842836 1.413123

193 -1.493292 -0.842836 1.413123

LINEAR REGRESSION

split train and test

In [56]:

In [58]:

```
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest=train_test_split(features, target, test_size=0.2)
from sklearn.linear_model import LinearRegression
1r=LinearRegression()
lr.fit(xtrain,ytrain)
Out[59]:
         LinearRegression()
In [60]:
ypredict=lr.predict(xtest)
In [61]:
ypredict
Out[61]:
         array([ 2645.08787283, 17133.73669145, 23586.65510901, 13273.90517756,
                13961.05716199, 18529.89394501, 11721.88426459,
                                                                  5097.11613548,
                 7785.20847432,
                                 7013.90119517,
                                                  5009.91985575, 17360.41943718,
                 9077.32796142,
                                 5986.58434894,
                                                  4127.65151971,
                                                                  2953.92104219,
                 7808.90944729, 11185.07724303, 15393.4464199 , 20671.22430328,
                10240.72447238, 13467.98804116, 15054.74498827,
                                                                  7568.03165973,
                                 1175.8107059 , 20373.16063022, 14542.72778456,
                 8578.32244881,
                                 9944.99979285, 22700.70078227, 18601.00238428,
                 9478.39620038,
                12994.65226522, 9045.92906686, 17234.53482065, 32424.95568543,
                 7016.34183808, 19199.64331701, 23647.31481222])
In [ ]:
In [ ]:
```