

6

Sep 06, 2022

Subcloning of genotype-confirmed hPSCs clones

In 1 collection

Hanqin Li¹, Yogendra Verma¹, Dirk Hockemeyer¹, Frank Soldner²

¹University of California, Berkeley; ²Albert Einstein College of Medicine

1 Works for me Share

dx.doi.org/10.17504/protocols.io.b4mkqu4w

ABSTRACT

This protocol describes a standard procedure for subcloning of genotype-confirmed human pluripotent stem cells (hPSCs).

General notes:

1. Throughout this protocol, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.

DOI

dx.doi.org/10.17504/protocols.io.b4mkqu4w

PROTOCOL CITATION

Hanqin Li, Yogendra Verma, Dirk Hockemeyer, Frank Soldner 2022. Subcloning of genotype-confirmed hPSCs clones. **protocols.io** https://dx.doi.org/10.17504/protocols.io.b4mkqu4w

FUNDERS ACKNOWLEDGEMENT

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

COLLECTIONS (i)

Standard operating procedure for the isolation of genetically engineered hPSCs clones in a high-throughput way

KEYWORDS

ASAPCRN

1

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 03, 2022

LAST MODIFIED

Sep 06, 2022

PROTOCOL INTEGER ID

57740

PARENT PROTOCOLS

Part of collection

Standard operating procedure for the isolation of genetically engineered hPSCs clones in a high-throughput way

MATERIALS TEXT

Α	В	С
Item	Vendor	Catalog #
DMEM/F12	Thermo	11320082
	Fisher	
DPBS w/o	Corning	MT21031CV
Calcium and magnesium (DPBS)		
Fetal Bovine	Corning	35-011-CV
Serum (FBS)		
Knockout Serum Replacement	Thermo	10828-028
	Fisher	
L-Glutamine	Sigma	G8540
Penicillin & Streptomycin (100X)	Thermo	15140163
	Fisher	
MEM Non-Essential Amino Acids	Thermo	11140050
(100X)	Fisher	
Heat Stable Recombinant Human	Thermo	PHG0360
FGF2	Fisher	
Y-27632	Chemdea	CD0141
2-Mercaptoethanol	Sigma	M3148
0.25% Trypsin with EDTA	Thermo	25200114
(Trypsin)	Fisher	
Proteinase K	Sigma	P6556
DMSO	Fisher	BP231-100
	Scientific	

1 Change medium to hPSCs medium + Rock inhibitor one day before subcloning

1.1 hPSC medium

Α	В
DMEM/F12	385 ml
Fetal	75 ml
Bovine Serum (FBS)	
Knockout Serum	25 ml
Replacement	
L-Glutamine (100X)	5 ml
Penicillin &	5 ml
Streptomycin (100X)	
MEM Non-Essential Amino	5 ml
Acids (100X)	
2-Mercaptoethanol	50 μΙ
(10,000X)	
Heat Stable Recombinant	80 µl
Human FGF2 (25ug/ml)*	

^{*}While we prefer Heat Stable Recombinant Human FGF2, we also have used regular FGF2. Final volume: 500ml

L-Glutamine (100X)

L-Glutamine,	14.6 g
powder	
MilliQ H2O	500 ml

2-Mercaptoethanol (10,000X)

2-Mercaptoethanol	0.78 ml
MilliQ H2O	9.22 ml

Heat Stable Recombinant Human FGF2 (25µg/ml)

Α	В
Heat Stable Recombinant Human	500 μg
FGF2	
0.1% BSA	20 ml

Final volume: 20ml

Y-27632 (1,000X)

Y-27632	5 mg
DMSO	1.56 ml

hPSC medium + Rock inhibitor

Α	В
hPSCs medium	500 ml
Y-27632	500 μl
(1,000X)	

5m

Final volume: 500ml

- 3 Add 25 µl Trypsin to those wells
- 4 Incubate © 00:05:00 & 37 °C
- 5 Add 75 μl hPSCs medium + Rock inhibitor, mix well by pipetting
- 6 Transfer dissociated cells to a 15 conical tube
- Prepare three MEF wells of a 6-well plate. Seed 1/100, 1/1,1000 and the rest of the cells respectively to those wells
- 8 Change medium daily for the high density well starting from day 3. Change medium every 3 days for the low density wells in the first week, then every other day in the second week
- 9 Once the high density wells grow to 50-70% confluency, freeze.

For a detailed protocol on freezing hPSCs, refer to "Freezing of hPSCs grown on MEFs" in the "Thawing, Passaging and Freezing of hPSCs on MEFs" collection; dx.doi.org/10.17504/protocols.io.b4msqu6e

For a detailed protocol on freezing feeder-free hPSCs, refer to "Freezing of feeder-free hPSCs" in the "Feeder-free culturing of hPSCs" collection; dx.doi.org/10.17504/protocols.io.b4mcqu2w

proto	cols.io 6	
20	Seed all cells into one well of a 12-well MEF plate	
19	Add 70 µl hPSCs medium + Rock inhibitor to each tube, pipet to mix	
18	Incubate the microcentrifuge tubes at 8 37 °C © 00:05:00	5m
17	Repeat step 15-16 to pick another five colonies	
16	Transfer the colony to one microcentrifuge tube from step 12.	
15	Under the dissecting microscope, use mouth pipet or a fine 10 μ l tip to pick one undifferential colony which is fully separated from other colonies.	ated
14	Change medium to DPBS for the well where colonies will be picked	
13	Aspirate medium and add 2 ml DMEM/F12	
12	For each original clone, prepare six microcentrifuge tubes pre-added with 20 µl Trypsin	
11	The day after, proceed with manual colony picking	
10	When big hPSCs colonies form in the low density wells, change medium to hPSCs medium + Rock inhibitor	

- 21 Shake plates to distribute cells evenly
- 22 Culture for 7-10 days with medium change daily from day 3
- When the subclones grow to 50-70% confluence, passage and prepare crude cell lysis for NGS genotyping

23.1 Crude lysis buffer (2x)

Α	В
KCl	100 mM
MgCl2	4 mM
NP-40	0.9%
Tween-20	0.9%
Tris	20 mM
Proteinase K (add before use)	100 μg/ml

pH: 8

- Once genotype confirmed, expand and freeze the one subclone, which shows the best hPSCs morphology and proliferates normally.
- 25 Test for mycroplasma, stain for pluripotent markers, and karyotyping