Proceso de Fabricación CMOS

Dr.-Ing. Juan José Montero-Rodríguez

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Elementos Activos

Semestre I-2019

Objetivos

Principios de fabricación de circuitos integrados (2.5 semanas)

- El proceso de fabricación CMOS: materiales, técnicas y flujo de fabricación, prevención de efecto de enganche
- Integración de elementos pasivos, capacitores conmutados para integración de resistencias.
- Principios de layout e introducción al flujo de back-end

Fabricación de Circuitos Integrados

Técnicas de Fabricación

Las principales técnicas para fabricación de circuitos integrados son:

- Obtención de silicio cristalino
- Oxidación térmica
- Litografía
- Dopado
- Deposición
- Decapado

Obtención de Silicio Ultrapuro

Obtención de Lingotes de Si Cristalino

Dos métodos:

- Método de Czochralski
- Método de Zona Flotante

Método de Czochralski:

- Derretir silicio policristalino y mantenerlo a T < 1417 °C
- Introducir un cristal semilla
- Controlar el crecimiento del lingote por medio de la velocidad de extracción, temperatura de fusión y velocidad de rotación

Obtención de Lingotes de Si Cristalino

Obtención de Lingotes de Si Cristalino

Método de Zona Flotante

- Lingote de Si policristalino de alta pureza
- Inductor calienta una zona del lingote y lo derrite
- Impurezas se difunden del sólido al líquido, dejando el sólido purificado

Obtención de Obleas

- Corte de flat grind
- Corte de obleas
- Identificación de oblea
- Decapado químico
- Pulido
- Limpieza de la superficie

- Preparación de superficie con pulido químicomecánico
- (CMP, chemical mechanical polishing)

Oxidación Térmica

Creación de capas de óxido

Hornear las obleas en un horno de alta temperatura (900 $^{\circ}$ C < T < 1200 $^{\circ}$ C) en presencia de oxígeno o agua

$$Si + O_2 \rightarrow SiO_2$$
 (oxidación seca)

O bien

$$Si + 2H_2O \rightarrow SiO_2 + H_2$$
 (oxidación húmeda)

El tiempo de oxidación y la temperatura determinan el espesor de la capa de óxido

Oxidación seca produce óxido de mejor calidad

Litografía

Litografía:

Creación de patrones para alterar o moldear la forma existente de una capa de material depositado.

Se realiza con ayuda de una máscara o retícula que transmite el patrón a la capa por moldear. La máscara sirve de "negativo" del patrón a transferir.

Fotoresistencia:

Material que cambia su solubilidad al contacto con la luz

(d) After development and etching of resist, chemical or plasma etch of SiO₂

(e) After etching

(f) Final result after removal of resist

Decapado

Alterar o moldear la forma existente de una capa de material depositado

Consiste en remover selectivamente el material depositado según el patrón establecido con ayuda de la litografía

Decapado por bombardeo de iones Decapado químico = decapado húmedo

Dopado por Difusión

Fuente de dopantes: son óxidos en forma sólida, líquida o gaseosa

- El contacto del silicio con el dopante a altas temperaturas (900 °C < T < 1200 °C) provoca una reacción en la superficie del silicio, creando una capa de material altamente dopado.
- Los dopantes se difunden a partir de esta capa hacia la oblea

Horno de difusión

Substrato

Dopado por Implantación

Implantación iónica: gas dopante se ioniza y se acelera contra la superficie de la oblea, implantando los átomos dopantes.

- La profundidad de penetración depende de la energía de implantación.
- Después de la implantación, la oblea se calienta para activar la difusión de los dopantes.

Difusión vs. Implantación

Difusión	Implantación
Proceso de alta temperatura	Temperatura ambiente
Fuente de dopantes: sólido, líquido o gaseoso	Fuente de dopantes: iones
Temperatura repara defectos en silicio durante el proceso	Causa daños al silicio, requiere tratamiento posterior de alta temperatura para reparar los daños
Permite dopados de alta concentración, materiales resultantes de baja resistividad	Dopados con concentraciones menores, 10 veces mayor resistividad
Menos precisión (concentración y profundidad)	Proceso de alta precisión (concentración y profundidad)

Deposición

Deposición de capas de material por métodos químicos o físicos

Pruebas

Pueden hacerse a nivel de oblea o a nivel de circuitos encapsulados

Se descartan dados defectuosos y se diagnostican fallas de fabricación

Sección Transversal de Proceso CMOS de Dos Tinas

- 1. Tinas
- 2 Aislamiento
- 3. Compuerta
- 4. Regiones de difusión
- 5. Espaciador laterial
- 6. Contacto
- 7. Interconexión local (poli-Si)
- 8. Aislamiento de capas/contacto Poli-Metal1
- Metal1
- 10. Aislamiento Metal1-Metal2
- Metal2, Via2, Aislamiento Metal2-Metal3
- 12. Metal 3
- 13. Pad metálico para contacto con encapsulado

Sección Transversal de un Procesador AMD

Definición de zonas activas, separadas por zonas de aislamiento (Shallow trench isolation)

Óxido de campo: óxido de aislamiento entre transistores

Implantación iónica de tina P para transistor NMOS

Implantación iónica de tina N para transistor PMOS

Difusión de dopantes se activa con temperatura para alcanzar profundidad de tina requerida

Implantación iónica para ajuste de V_{TH} de transistor NMOS

Implantación iónica para ajuste de V_{TH} de transistor PMOS

Creación de óxido de compuerta (oxidación térmica)

Deposición del silicio policristalino de compuerta

Decapado para moldeado de compuerta

Implante de regiones de difusión N para drenador y surtidor de transistor NMOS

Decapado de contactos

Deposición de vías

Deposición de metal y moldeado de metal

Deposición y moldeado de los siguientes niveles de aislamiento y metalización