Sample Solution for Problem Set 5

Data Structures and Algorithms, Fall 2021

October 28, 2021

Contents

1		2
	1.1 Algorithm	2
	1.2 Correctness	2
	1.3 Time Complexity	2
	1.4 Lower Bound	2
2	Problem 2	3
3	Problem 3	4
4	Problem 4	5
	4.1 (a)	5
	4.2 (b)	5
5	Problem 5	6
6	Problem 6	7
	6.1 Algorithm	7
	6.2 Algorithm	

1.1 Algorithm

Algorithm 1 K-SORT

```
\begin{aligned} & \textbf{function} \text{ K-SORT}(A, l, r, k) \\ & \textbf{if } k = 1 \textbf{ then} \\ & \textbf{return} \\ & \textbf{end if} \\ & blockSize = (r-l+1)/k \\ & pos = \lfloor k/2 \rfloor \times blockSize \\ & \text{RANDOMIZED-SELECT}(A, l, r, pos) \\ & \text{K-SORT}(A, l, l + pos - 1, \lfloor k/2 \rfloor) \\ & \text{K-SORT}(A, l + pos, r, \lceil k/2 \rceil) \\ & \textbf{end function} \end{aligned}
```

1.2 Correctness

Proof.

Basis When k = 1, trivial

I.H. Assume when $k < k_0$, K-SORT works correctly.

Ind. Step When $k=k_0$, after RANDOMIZED-SELECT(A,l,r,pos), any number in A[l,l+pos-1] is smaller than any number in A[l+pos,r]. And the length of left/right part is a multiple of blockSize. According to the induction hypothesis, two subproblems for A[l,l+pos-1] and A[l+pos,r] can be solved correctly. So $A[l,\cdots,r]$ can be k-sort correctly.

1.3 Time Complexity

$$T(n,k) = 2T(n/2, k/2) + O(n)$$

and T(*,1) = O(1). The depth of the recursion tree is $\Theta(\lg k)$, each level costs O(n). So $T(n,k) = O(n \lg k)$

1.4 Lower Bound

The number of all possible answers is equal to multinomial coefficient

$$\binom{n}{\frac{n}{k}, \frac{n}{k}, \cdots, \frac{n}{k}} = \frac{n!}{\left(\frac{n}{k}!\right)^k}$$

So the height of decision tree satisfies

$$2^h \ge \frac{n!}{\left(\frac{n}{k}!\right)^k}$$

Then

$$h \ge \lg \frac{n!}{\left(\frac{n}{k}!\right)^k}$$

$$= \lg n! - k \lg \frac{n}{k}!$$

$$= \Omega(n \lg n - k \frac{n}{k} \lg \frac{n}{k})$$

$$= \Omega(n \lg k)$$

(a)

$$Pr(\text{two counterfeit coins on the same side}) = \frac{\binom{n-2}{n/2-2} + \binom{n-2}{n/2}}{\binom{n}{n/2}} = \frac{n-2}{2n-2}.$$

(b)

Note that if two counterfeit coins are put on the different side, we can apply standard binary search technique to find both counterfeit coins in $\log n/2$ times of comparison. Hence, our strategy simple works as follows:

• Randomly split n coins into two even parts, and repeat this procedure until two counterfeit coins are not on the same side (which meas the balance tilts towards one side).

Let X be the random variable indicating the number of attempts to put two counterfeit coins into different side. Note that X follows geometry distribution with parameter $p = \frac{n}{2n-2}$, which means

$$\mathbb{E}[X] = \frac{2n-2}{n}.$$

Therefore, the expected number of comparisons is $2\log n/2 + \frac{2n-2}{n}$.

Remark

In binary search part, the number of comparisons can be further optimized to $2\lceil \log_3 n/2 \rceil$. Furthermore, there exist some deterministic algorithms which can **guarantee** that two coins can be put in different sides in $\log n$ rounds¹. Suppose $n=2^k$ and balls are numbered from 0 to n-1, the algorithm goes as follows:

• In *i*-th round, put *j*-th ball to the left side of balance if the i-1-th bit of j is 0, and right side otherwise.

¹Note that our randomized approach will **not** guarantee this property in any finite rounds!

(a)

Algorithm

Use Quicksort to sort array S and W based on the value of S. Iterate through array W to calculate the sum of array W. Iterate through array S and check if S[i] is the magical-mean.

Algorithm 2 Finding Magical Mean

```
function FINDINGMAGICALMEAN(S,W)
   Sort array S and W based on the value of S;
   tot = 0;
   for i = 1 to n do
       tot = tot + W[i];
   end for
   cur = 0:
   for i = 1 to n do
       if cur \le tot/2 and tot - cur - W[i] \ge tot/2 then
          ans = S[i];
          break:
       end if
       cur = cur + W[i];
   end for
   return ans;
end function
```

Analysis

```
We have T(n) = O(n \log n) + O(n) = O(n \log n).
```

(b)

Algorithm

Here is a recursive algorithm for finding magical mean. To calculate the magical mean of a set of items represented by array S and W, call FindingMagicalMean(S,W,1,n,0,0) initially.

What does FindingMagicalMean function do? First, use the O(n) time select algorithm to select the median m of current range [l,r] of S. Partition array S together with W using m as a pivot. Check if m is the magical mean. If m is the magical mean, return m. Otherwise, recursively apply finding function to the heavier sub-range.

Analysis

```
We have T(n) = T\left(\frac{n}{2}\right) + O(n) = O(n).
```

Algorithm 3 Finding Magical mean

```
function FINDINGMAGICALMEAN(S, W, l, r, lsum, rsum)
   m = FindMedian(S, l, r);
   q = Partition(S, W, l, r, m);
   wl = 0;
   for i = l to q - 1 do
      wl = wl + W[i];
   end for
   wr = 0;
   for i = q + 1 to r do
      wr = wr + W[i];
   end for
   tot = wl + wr + lsum + rsum + W[q];
   if wl + lsum \le tot/2 and wr + rsum \le tot/2 then
      ans = m;
   else if wl + lsum > tot/2 then
      ans = FindingMagicalMean(S, W, l, q - 1, lsum, rsum + wr + W[q]);
      ans = FindingMagicalMean(S, W, q + 1, r, lsum + wl + W[q], rsum);
   end if
   return ans;
```

4 Problem 4

4.1 (a)

- 1 Create three lists l_1, l_2, l_3 .
- 2 Compare $a[i] (i \in \{2, 3, \dots, n\})$ with a[1].
 - If a[i] < a[1], append a[i] to l_1 .
 - If a[i] = a[1], append a[i] to l_2 .
 - If a[i] > a[1], append a[i] to l_3 .
- 3 Finally append a[1] to l_2 .
- 4 Let $l = \text{concatenate}(l_1, l_2, l_3)$, l is what we want.

4.2 (b)

Algorithm 4 STRING-SORT

```
\begin{array}{l} \textbf{function STRING-SORT}(\text{strList, i}) \\ \text{Create 27 buckets } B_{\emptyset}, B_a, B_b, \cdots, B_z \\ \textbf{for } s \textbf{ in } strList \textbf{ do} \\ \text{Assign } s \textbf{ to } B_{s[i]} \\ \textbf{end for} \\ \textbf{for } i = \text{`a' to 'z' do} \\ \text{STRING-SORT}(B_i, i+1) \\ \textbf{end for} \\ \textbf{return } \text{concat}(B_{\emptyset}, B_a, B_b, \cdots, B_z) \end{array}
```

(a)

Indeed, we can prove the property for arbitrary tree.

• There exists a centroid in any tree T.

Suppose our claim fails to hold on tree T=(V,E). Let s_u be the size of the largest (connected) component which does not contain $u \in V$. Choose $u^* \in V$ that achieves minimum value of s_u over all vertices. By our assumption, $s_{u^*} > \frac{n}{2}$. Therefore, there exists a component C with size s_{u^*} that does not contain u^* . Let $v \in C$ such that $(u^*,v) \in E$. Obviously, $s_v < s_{u^*}$, which leads to the desired contradiction,

(b)

A standard approach is to pre-compute the size of subtree rooted at $u \in V$ for all vertices, and then check the validity of each vertices. These implementations are standard, and we will omit here.

(a)

We can solve this problem by Divide and Conquer.

6.1 Algorithm

Algorithm 5 Find K_{th} Smallest Element (FKSE)

```
Require: A[1...n], B[1...m], k.
Ensure: The k_{th} smallest elements in A \cup B
 1: if A is empty. then
        return B[k]
 3: end if
 4: if B is empty. then
        \mathbf{return}\; A[k]
 6: end if
 7: if k = 1 then
        return min(A[1], B[1])
 9: end if
10: if n > m then
        return FKSE(B[1...m], A[1...n], k)
12: end if
13: k_0 \leftarrow min(k/2, n)
14: k_1 \leftarrow k - k_0
15: if A[k_0] = B[k_1] then
        return A[k]
17: end if
18: if A[k_0] < B[k_1] then
19:
        return FKSE(A[k_0 + 1...n], B[1...m], k - k_0)
20: else
        return FKSE(A[1...n], B[k_1 + 1...m], k - k_1)
21:
22: end if=0
```

(b)

This is a classic problem, and has classic algorithm: Morris Traverse.

6.2 Algorithm

Algorithm 6 Morris Traverse

```
Require: root.
 1: cur \leftarrow root
 2: while cur \neq null do
          if cur.left \neq null then
 3:
               pre \leftarrow cur.left
 4:
               while pre.right \neq null and pre.right \neq cur do
 5:
                   pre \leftarrow pre.right
 6:
               end while
 7:
               \label{eq:continuous_preserved} \textbf{if} \ pre.right = null \ \textbf{then}
 8:
 9:
                   pre.right \leftarrow cur
                   cur \leftarrow cur.left
10:
               else
11:
                    Visit(cur)
12:
                   pre.right \leftarrow null
13:
                   cur \leftarrow cur.right
14:
               end if
15:
          else
16:
17:
               Visit(cur)
               cur \leftarrow cur.right
18:
          end if
19:
20: end while
```