PHY-112

Principles of Physics-II
Akiful Islam (AZW)

Spring-24 | Class-14

CHARGES

ELECTRIC CURRENT: A

CONTROLLED MOTION OF

ELECTRIC CURRENT: A CONTROLLED MOTION OF CHARGES

Define **current** as flow of charge carriers within a conductor.

$$I = \frac{\Delta Q}{\Delta t}$$

- measured in [A] ampere
- is a scalar
- does not change its motion path yet
- heats up the conductor

FREE ELECTRON MODEL

The metal as a whole is electrically neutral.

Ions (metal atoms minus valence electrons) occupy fixed positions.

The conduction electrons are bound to the solid as a whole, not to any particular atom. They are free to move around.

ESTABLISHING AN ELECTRIC FIELD IN A WIRE

THEORY OF METALLIC (MICROSCOPIC) CONDUCTION

The steady electric force causes the electrons to move along *parabolic trajectories* between collisions.

DRIFT VELOCITY

The number N_e of electrons that pass through the cross section during the time interval Δt is

$$\Delta Q = i_e \Delta t$$

$$n_e V = n_e A \Delta x = i_e \Delta t$$

$$n_e A v_d \Delta t = i_e \Delta t$$

$$i_e = n_e A v_d$$

Long Story Short

Electrons don't just magically move through a wire as a *current*. They move because an electric field inside the wire—a field created by a nonuniform surface charge density on the wire—pushes on the sea of electrons to create the *electron current*. It is measured in A C^{-1} unit or simply electrons s^{-1} unit.

Testing Concepts (1)

Q: What is the electron current in a $2.0\,\rm mm$ -diameter copper wire if the electron drift speed is $10^{-4}\,\rm mm\,s^{-1}?$ The electron density for copper as $8.5\times10^{28}\,\rm m^{-3}.$

5

TESTING CONCEPTS (2)

Q: These four wires are made of the same metal. Rank in order, from largest to smallest, the electron currents i_A to i_D .

