Separation theorem

How to show that two convex sets are disjoint?

Theorem 1. Let $C, D \subseteq \mathbb{R}^d$ are convex sets and $C \cap D = \emptyset$ then there exists a hyperplane separating C and D. That is, exists $\mathbf{a} \in \mathbb{R}^d$, $b \in \mathbb{R}$ such that

$$\forall \mathbf{x} \in C, \mathbf{a}^T \mathbf{x} \le b$$
$$\forall \mathbf{x} \in D, \mathbf{a}^T \mathbf{x} \ge b$$

Separation can be strict if C and D closed and one bounded.

1: Why is the theorem true if C and D are compact?

Solution: If both C and D compact, consider $\mathbf{c} \in C$ and $\mathbf{d} \in D$ such that $\|\mathbf{c} - \mathbf{d}\|$ is minimized. That is, \mathbf{c} and \mathbf{d} are the closest points. They exist since C and D are compact and the distance is a continuous function. Let $z = \frac{\mathbf{c} + \mathbf{d}}{2}$, that is, z is in the middle between \mathbf{c} and \mathbf{d} . Consider a hyperplane H perpendicular to segment \mathbf{cd} and containing \mathbf{z} . Claim is that it is the desired hyperplane H. If H is not separating, then we find a contradiction with \mathbf{c} and \mathbf{d} being the closest.

2: Why is the theorem true if C compact and D closed?

Solution: Assume D_M being D intersected with a huge, but still bounded set M. Then we can still argue that there are two closest points and eventually it will be the closest points even if M grows.

3: Why is the theorem true in general?

Solution: Suppose C and D are general convex sets. We create a sequence of compact sets, that approximate C_i and D_i that are in limit going to C and D. We can separate C_i and D_i by the first case by a hyperplane H_i . It it possible to show that H_i is converging and it is converging to a separating hyperplane for C and D.

Recall that $B(\mathbf{s}, r) = {\mathbf{x} : ||\mathbf{x} - \mathbf{s}|| \le r}$ is a ball centered at \mathbf{s} of radius r. Suppose $\mathbf{0} \in C$. We define $C_1 \subseteq C_2 \subseteq C_3 \subseteq \cdots$ by letting $C_i = (1 - \frac{1}{i}) C \cap B(\mathbf{0}, i)$. Notice that C_i 's are compact and $C = \bigcup_i C_i$. We create similar sets for D_i and then H_i is a hyperplane separating C_i from D_i .

Solution: Note that compactness of at least one of the sets is needed for for strict separation.