

Report No.: EED32L00018301 Page 1 of 64

TEST REPORT

Product R500 Data Collector

Sino GNSS Trade mark

Model/Type reference R500 **Serial Number** N/A

Report Number EED32L00018301

FCC ID : 2ACHBR500 Date of Issue Aug. 05, 2019

Test Standards 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

ComNav Technology Ltd. Building 2, No. 618 Chengliu Middle Rd.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Reviewed by:

Date:

More XM

Jay Zheng

Ware Xin

Aug. 05, 2019

Kevin yang

Check No.: 3319509675

Page 2 of 64

2 Version

Version No.	Date	6	Description)
00	2019-08-05		Original	
	*	12	793	75
((7)	(%)	(6:42)	(6.5)

Report No.: EED32L00018301 Page 3 of 64

3 Test Summary

o rest Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.
The tested sample(s) and the sample information are provided by the client.

Report No.: EED32L00018301 Page 4 of 64

4 Content

•	Contone			
1 (COVER PAGE			1
2 \	VERSION		•••••	2
3 7	TEST SUMMARY		•••••	3
4 (CONTENT		•••••	4
5 1	TEST REQUIREMENT		•••••	5
	5.1 TEST SETUP			5
	5.1.1 For Conducted test setup			
	5.1.2 For Radiated Emissions test setup			
	5.1.3 For Conducted Emissions test setup			
	5.2 TEST ENVIRONMENT			
	5.3 TEST CONDITION			6
6 (GENERAL INFORMATION	•••••	•••••	7
	6.1 CLIENT INFORMATION			7
	6.2 GENERAL DESCRIPTION OF EUT			
	6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD			
	6.4 DESCRIPTION OF SUPPORT UNITS			
	6.5 TEST LOCATION			_
	6.6 DEVIATION FROM STANDARDS			
	6.7 ABNORMALITIES FROM STANDARD CONDITIONS			
	6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER			
	EQUIPMENT LIST			
3 F	RADIO TECHNICAL REQUIREMENTS SPECIFICATION			
	Appendix A): 6dB Occupied Bandwidth			15
	Appendix B): Conducted Peak Output Power			17
	Appendix C): Band-edge for RF Conducted Emissions			
	Appendix D): RF Conducted Spurious Emissions			
	Appendix E): Power Spectral Density			
	Appendix F): Antenna RequirementAppendix G): AC Power Line Conducted Emission			
	Appendix 6): Ac Fower Line Conducted Emission			
	Appendix I) Radiated Spurious Emissions			
Dμ	HOTOGRAPHS OF TEST SETUP			
	HOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS			
	1010GRAPHS OF EUT CONSTRUCTIONAL DETAILS	••••••	,	40

Report No. : EED32L00018301 Page 5 of 64

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			100
Temperature:	25 °C		
Humidity:	56 % RH	160	
Atmospheric Pressure:	101kPa		\

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	Low(L) Midd Channel 1 Channel 3	RF Channel	nnel		
١	rest Mode	TA/NX	Low(L)	Middle(M)	High(H)		
1	05014	04000411- 0400 0411-	Channel 1	Channel 20	Channel 40		
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	ıll kind of data		

6 General Information

6.1 Client Information

Applicant:	ComNav Technology Ltd.		
Address of Applicant:	Building 2, No. 618 Chengliu Middle Rd.		
Manufacturer:	ComNav Technology Ltd.	- 1°	/15
Address of Manufacturer:	Building 2, No. 618 Chengliu Middle Rd.	(243)	(2)
Factory:	ComNav Technology Ltd.		100
Address of Factory:	Building 2, No. 618 Chengliu Middle Rd.		

6.2 General Description of EUT

Product Name:	R500 Data Collecte	or			
Model No.(EUT):	R500				
Trade mark:	Sino GNSS [®] By ComNav Technology Ltd.				
	BT4.0, 3.1+EDR	BT4.0, 3.1+EDR 2402MHz to 2480MHz			
EUT Supports Radios application:	NFC 13.56MHz		(4)		
	GSM	850/1900 GSM, GPRS, EGPRS	100		
	AC adapter	MODEL No.: HKA01105021-XE INPUT: 100-240V~50/60Hz 0.5A OUTPUT: 5V2.1A			
Power Supply:	Li-ion Battery	MODEL No.: BL-R500 Capacity: 6500mAh, 24.0Wh Nominal Voltage: 3.7V Limited Charing Voltage: 4.2V			
Sample Received Date:	Jan. 25, 2019				
Sample tested Date:	Jan. 25, 2019 to Ju	ıl. 28, 2019	10,		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~	2402MHz~2480MHz				
Bluetooth Version:	BT 4.0					
Modulation Technique:	GFSK					
	2G	GMSK (GSM/GPRS) , GMSK/8PSK (EGPRS)	128			
Modulation Type:	BT	GFSK, 8DPSK, π/4DQPSK				
	NFC	FSK				
Number of Channel:	40					
Test Power Grade:	N/A					
Test Software of EUT:	N/A	(8,0)				
Antenna Type and Gain:	GSM 850	PIFA antenna, -2.16 dBi				
	PCS 1900	PIFA antenna, -0.12 dBi				
	BT	PIFA antenna, 3.01 dBi				
	NFC	FPC antenna, 0 dBi				
Test Voltage:	AC 120V, 6	60Hz, DC 3.7V	100			

Operation F	requency eac	h of channe	l			,	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
(B)	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Report No. : EED32L00018301 Page 9 of 64

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

2	Radio Frequency	7.9 x 10 ⁻⁸
2		V . A
2	DE nower conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
94	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32L00018301 Page 10 of 64

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY56376072	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		03-01-2019	02-29-2020

	3M S	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(3)	01-09-2019	01-08-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-16-2019	01-15-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Page	13	of	64	

Equipment	Manufacturer	onducted dist	Serial	Cal. date	Cal. Due date
			Number	(mm-dd-yyyy)	(mm-dd-yyyy)
Receiver emperature/ Humidity Indicator	R&S Defu	TH128	100435	05-20-2019 06-14-2019	05-19-2020 06-13-2020
LISN Barometer	R&S changchun	ENV216 DYM3	100098	05-08-2019 06-20-2019	05-07-2020 06-19-2020

Report No. : EED32L00018301 Page 14 of 64

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test method	Test item	Verdict	Note
ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
ANSI C63.10	Power Spectral Density	PASS	Appendix E)
ANSI C63.10	Antenna Requirement	PASS	Appendix F)
ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
	ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10	ANSI C63.10 Conducted Peak Output Power ANSI C63.10 Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission Restricted bands around fundamental frequency (Radiated Emission)	ANSI C63.10 Conducted Peak Output Power ANSI C63.10 Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6964	1.0515	PASS
BLE	MCH	0.6985	1.0516	PASS
BLE	НСН	0.7031	1.0553	PASS

Report No.: EED32L00018301 Page 16 of 64

Test Graphs

Report No.: EED32L00018301 Page 17 of 64

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-10.373	PASS
BLE	MCH	-10.199	PASS
BLE	HCH	-14.559	PASS

Report No. : EED32L00018301 Page 19 of 64

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
١	BLE	LCH	-11.189	-60.059	-31.19	PASS
	BLE	НСН	-15.512	-59.933	-35.51	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-11.397	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-11.294	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-15.696	<limit< td=""><td>PASS</td></limit<>	PASS

Page 25 of 64

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-25.875	PASS
BLE	MCH	-25.694	PASS
BLE	НСН	-30.134	PASS

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 3.01dBi.

Report No.: EED32L00018301 Page 28 of 64

Test Procedure:	Test frequency range :150KHz	z-30MHz		
	1)The mains terminal disturbation	•		
	2) The EUT was connected to Stabilization Network) which	•	•	•
	power cables of all other u	units of the EUT were c	onnected to a seco	ond LISN 2,
	which was bonded to the g for the unit being measure multiple power cables to a exceeded.	ed. A multiple socket ou	ıtlet strip was used	to connect
	3)The tabletop EUT was plac reference plane. And for flo horizontal ground reference	oor-standing arrangeme		•
	4) The test was performed we EUT shall be 0.4 m from the reference plane was bonder.	ne vertical ground refere	nce plane. The ver	tical ground
	1 was placed 0.8 m from	the boundary of the un	it under test and b	onded to a
	ground reference plane f plane. This distance was b All other units of the EUT a LISN 2.	etween the closest poir	nts of the LISN 1 ar	nd the EUT.
	 In order to find the maximum of the interface cables conducted measurement. 			
Limit:				1
	Frequency range (MHz)	z) Limit (dBµV)		
	_0	Quasi-peak	Average	-0-

Eroguanov rango (MHz)	Limit (dBμV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

Report No. : EED32L00018301 Page 29 of 64

Product : R500 Data Collector Model/Type reference : R500

Temperature : 22° Humidity : 53%

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4980	20.18	17.25	6.79	9.89	30.07	27.14	16.68	56.03	46.03	-28.89	-29.35	Р	
2	1.3619	22.13	18.63	10.87	9.78	31.91	28.41	20.65	56.00	46.00	-27.59	-25.35	Р	
3	3.1660	30.23	27.14	15.37	9.72	39.95	36.86	25.09	56.00	46.00	-19.14	-20.91	Р	
4	4.4340	26.29	23.20	9.59	9.73	36.02	32.93	19.32	56.00	46.00	-23.07	-26.68	Р	
5	8.2220	24.98	21.33	13.87	9.78	34.76	31.11	23.65	60.00	50.00	-28.89	-26.35	Р	
6	16.1660	25.77	21.96	21.66	9.96	35.73	31.92	31.62	60.00	50.00	-28.08	-18.38	Р	

Neutral line: 80.0 dBuV

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lir (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.5100	33.18	29.04	23.52	9.91	43.09	38.95	33.43	56.00	46.00	-17.05	-12.57	Р	
2	0.6340	29.50	26.30	16.41	9.97	39.47	36.27	26.38	56.00	46.00	-19.73	-19.62	Р	
3	0.7300	26.31	23.21	16.97	9.81	36.12	33.02	26.78	56.00	46.00	-22.98	-19.22	Р	
4	1.1340	27.81	24.20	15.94	9.80	37.61	34.00	25.74	56.00	46.00	-22.00	-20.26	Р	
5	3.1660	32.05	28.63	14.86	9.72	41.77	38.35	24.58	56.00	46.00	-17.65	-21.42	Р	
6	15.5380	23.03	20.03	12.94	9.97	33.00	30.00	22.91	60.00	50.00	-30.00	-27.09	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 2002 401 le	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meters was mounted on the total control of the antenna height is a determine the maximum polarizations of the antenna was turned from 0 deg. c. The test-receiver systems and width with Maxim. f. Place a marker at the expected of the antenna was turned.	on the top of a rotal choic camber. The of the highest race of the sway from the pof a variable-he waried from one man value of the field enna are set to manission, the EUT of the heights from 1 trees to 360 degreem was set to Peaum Hold Mode.	ating table table wa liation. he interfere hight anter heter to fo d strength hake the m was arran meter to hes to find hk Detect I	e 0.8 meters rotated 3 ence-receinna tower. ur meters a. Both horneasurement ged to its a 4 meters a the maxin Function a	rs above the gas of the growing antennal above the growing antennal and vient. Worst case and the rotate and the rotate and Specified	to , which ound t ertical nd the
	frequency to show combands. Save the spection for lowest and highest	npliance. Also me rum analyzer plot		emissions	s in the restric	
	bands. Save the spect for lowest and highest Above 1GHz test procedute. g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure Transmitting mode, and	rpliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions for each por form Semi- meter to 1 fer). forhannel Y, Z axis p ng which i	s in the restrict ower and mode Anechoic Ch. .5 meter(About positioning for t is worse cas	ambe ove
imit:	bands. Save the spectron for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h Test the EUT in the low i. The radiation measure	rpliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis	change fr table 0.8 is 1.5 met e Highest med in X, s positioni	emissions or each por com Semi- meter to 1 der). channel Y, Z axis p ng which i	s in the restrict ower and mode Anechoic Ch. .5 meter(About positioning for t is worse cas	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test procedute. g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure that Transmitting mode, and j. Repeat above procedute.	rpliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis res until all frequents.	change fr table 0.8 is 1.5 met e Highest med in X, s positioni	emissions for each portion Semi-meter to 1 ter). I channel Y, Z axis programming which it easured ware Rei	Anechoic Ch. 5 meter(Abo	ambe ove
imit:	bands. Save the spectron for lowest and highest Above 1GHz test procedured good Different between above to fully Anechoic Chammat 18GHz the distance is horizontal to the first the EUT in the lower than the radiation measure than Transmitting mode, and good procedured the second se	rpliance. Also me rum analyzer plot channel re as below: re is the test site, aber change form 1 meter and table owest channel, the ments are perform d found the X axis res until all frequents (dBµV/n)	change fr table 0.8 is 1.5 met e Highest med in X, s positioni	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis programmeter was red was Rei Quasi-per for each portion of the control of	Anechoic Ch.5 meter(Abo	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test procedute. g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the letter. The radiation measure Transmitting mode, and j. Repeat above procedute. Frequency 30MHz-88MHz	rpliance. Also me rum analyzer plot channel re as below: re is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis res until all frequences. Limit (dBµV/n 40.0	change fr table 0.8 is 1.5 met e Highest med in X, s positioni	emissions or each por com Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Ch. S meter (About the substitution of the substitution	ambe ove
_imit:	bands. Save the spectron for lowest and highest Above 1GHz test procedured growth and highest statements and highest statements and to fully Anechoic Chammat 18GHz the distance is horizontal the foliation of t	rpliance. Also me rum analyzer plot channel re as below: re is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis res until all frequences. Limit (dBµV/n 40.0 43.5	change fr table 0.8 is 1.5 met e Highest med in X, s positioni	remissions for each por each p	Anechoic Ch. 5 meter(Abordistioning for tis worse cases complete. mark eak Value eak Value	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chammat 18GHz the distance is horizontal in the left. The radiation measure Transmitting mode, and in the left. Repeat above procedured Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	rum analyzer plot channel Ire as below: Ire is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis res until all frequents and table below the X axis axis axis axis axis axis axis axis	change fr table 0.8 is 1.5 met e Highest med in X, s positioni	remissions for each por each por each por each por each por each por each each each each each each each each	Anechoic Ch. 5 meter (Abcoositioning for t is worse cases complete. mark eak Value eak Value eak Value	ambe ove

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.77	52.95	74.00	21.05	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	86.56	89.70	74.00	-15.70	Pass	Horizontal

200	18.5	25.75	16.7
Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak	·	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.70	52.88	74.00	21.12	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	89.56	92.70	74.00	-18.70	Pass	Vertical

7.7	125.75	1257.75	127.7
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.40	41.58	54.00	12.42	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	65.50	68.64	54.00	-14.64	Pass	Horizontal

6.7	16.7	279	1631
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.38	41.56	54.00	12.44	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	67.35	70.49	54.00	-16.49	Pass	Vertical

2.7	16.7	1.70	12000
Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	87.99	91.36	74.00	-17.36	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.54	52.90	74.00	21.10	Pass	Horizontal

6.74		1.00	
Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	87.48	90.85	74.00	-16.85	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.86	52.22	74.00	21.78	Pass	Vertical

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	67.33	70.70	54.00	-16.70	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.80	40.16	54.00	13.84	Pass	Horizontal

Report No. : EED32L00018301 Page 39 of 64

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	67.42	70.79	54.00	-16.79	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.79	40.15	54.00	13.85	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Above 1CUz	Peak	1MHz	3MHz	Peak	
Above IGHZ	Peak	1MHz	10Hz	Average	
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHz Peak 0.009MHz-0.090MHz Average 0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz	0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz	0.009MHz-0.090MHz Peak 10kHz 30kHz 0.009MHz-0.090MHz Average 10kHz 30kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz 0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz	0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzAverage0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

J. Repeat above p	oroccaares aritir air irequer	iolos moasarca wa	3 complete	•	18.6
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	20-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
/	1.705MHz-30MHz	30	-	0	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32L00018301 Page 41 of 64

Radiated Spurious Emissions test Data:

Product: R500 Data CollectorModel/Type reference: R500Temperature: 23° CHumidity: 54%

Radiated Emission below 1GHz

				200-700-1						
Mode) :	GFSK T	ransmitt	ing		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	37.7608	11.58	0.69	-32.11	34.05	14.21	40.00	25.79	Pass	Н
2	64.5355	10.42	0.92	-32.05	36.36	15.65	40.00	24.35	Pass	Н
3	82.3852	7.65	1.05	-32.08	41.47	18.09	40.00	21.91	Pass	Н
4	180.4620	9.04	1.58	-31.98	47.12	25.76	43.50	17.74	Pass	Н
5	452.7683	16.24	2.52	-31.87	34.07	20.96	46.00	25.04	Pass	Н
6	687.5318	19.70	3.14	-32.06	34.99	25.77	46.00	20.23	Pass	Н
7	30.2910	10.51	0.63	-32.12	40.54	19.56	40.00	20.44	Pass	V
8	54.6405	12.46	0.84	-32.09	39.23	20.44	40.00	19.56	Pass	V
9	65.4085	10.19	0.92	-32.04	41.28	20.35	40.00	19.65	Pass	V
10	184.2454	9.40	1.59	-31.98	39.63	18.64	43.50	24.86	Pass	V
11	208.8859	11.13	1.71	-31.94	45.53	26.43	43.50	17.07	Pass	V
12	625.0575	19.20	2.97	-31.98	36.08	26.27	46.00	19.73	Pass	V

Mode) :	GFSK T	ransmitt	ing		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	37.6638	11.55	0.69	-32.11	34.02	14.15	40.00	25.85	Pass	Н
2	64.9235	10.32	0.92	-32.05	36.45	15.64	40.00	24.36	Pass	Н
3	80.1540	7.14	1.04	-32.07	42.45	18.56	40.00	21.44	Pass	Н
4	182.4993	9.24	1.59	-31.99	47.39	26.23	43.50	17.27	Pass	Н
5	457.2307	16.32	2.55	-31.85	33.86	20.88	46.00	25.12	Pass	Н
6	687.5318	19.70	3.14	-32.06	35.40	26.18	46.00	19.82	Pass	Н
7	30.1940	10.51	0.63	-32.12	42.13	21.15	40.00	18.85	Pass	V
8	55.2225	12.36	0.84	-32.07	39.58	20.71	40.00	19.29	Pass	V
9	65.5056	10.17	0.92	-32.04	40.84	19.89	40.00	20.11	Pass	V
10	184.3424	9.41	1.59	-31.98	40.02	19.04	43.50	24.46	Pass	V
11	208.8859	11.13	1.71	-31.94	45.48	26.38	43.50	17.12	Pass	V
12	625.0575	19.20	2.97	-31.98	36.07	26.26	46.00	19.74	Pass	V

Page 42 of 64

						/ "		7.2		
Mode) :	GFSK T	ransmitt	ing		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	30.1940	10.51	0.63	-32.12	42.13	21.15	40.00	18.85	Pass	Н
2	55.2225	12.36	0.84	-32.07	39.58	20.71	40.00	19.29	Pass	Н
3	65.5056	10.17	0.92	-32.04	40.84	19.89	40.00	20.11	Pass	Н
4	184.3424	9.41	1.59	-31.98	40.02	19.04	43.50	24.46	Pass	Н
5	208.8859	11.13	1.71	-31.94	45.48	26.38	43.50	17.12	Pass	Н
6	625.0575	19.20	2.97	-31.98	36.07	26.26	46.00	19.74	Pass	Н
7	30.2910	10.51	0.63	-32.12	41.33	20.35	40.00	19.65	Pass	V
8	55.3195	12.35	0.84	-32.07	40.03	21.15	40.00	18.85	Pass	V
9	65.2145	10.24	0.92	-32.04	40.65	19.77	40.00	20.23	Pass	V
10	184.3424	9.41	1.59	-31.98	39.14	18.16	43.50	25.34	Pass	V
11	208.8859	11.13	1.71	-31.94	45.93	26.83	43.50	16.67	Pass	V
12	625.0575	19.20	2.97	-31.98	37.30	27.49	46.00	18.51	Pass	V
	NO 1 2 3 4 5 6 7 8 9 10 11	1 30.1940 2 55.2225 3 65.5056 4 184.3424 5 208.8859 6 625.0575 7 30.2910 8 55.3195 9 65.2145 10 184.3424 11 208.8859	NO Freq. [MHz] Ant Factor [dB] 1 30.1940 10.51 2 55.2225 12.36 3 65.5056 10.17 4 184.3424 9.41 5 208.8859 11.13 6 625.0575 19.20 7 30.2910 10.51 8 55.3195 12.35 9 65.2145 10.24 10 184.3424 9.41 11 208.8859 11.13	NO Freq. [MHz] Ant Factor [dB] Cable loss [dB] 1 30.1940 10.51 0.63 2 55.2225 12.36 0.84 3 65.5056 10.17 0.92 4 184.3424 9.41 1.59 5 208.8859 11.13 1.71 6 625.0575 19.20 2.97 7 30.2910 10.51 0.63 8 55.3195 12.35 0.84 9 65.2145 10.24 0.92 10 184.3424 9.41 1.59 11 208.8859 11.13 1.71	NO Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] 1 30.1940 10.51 0.63 -32.12 2 55.2225 12.36 0.84 -32.07 3 65.5056 10.17 0.92 -32.04 4 184.3424 9.41 1.59 -31.98 5 208.8859 11.13 1.71 -31.94 6 625.0575 19.20 2.97 -31.98 7 30.2910 10.51 0.63 -32.12 8 55.3195 12.35 0.84 -32.07 9 65.2145 10.24 0.92 -32.04 10 184.3424 9.41 1.59 -31.98 11 208.8859 11.13 1.71 -31.94	NO Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dBμV] Reading [dBμV] 1 30.1940 10.51 0.63 -32.12 42.13 2 55.2225 12.36 0.84 -32.07 39.58 3 65.5056 10.17 0.92 -32.04 40.84 4 184.3424 9.41 1.59 -31.98 40.02 5 208.8859 11.13 1.71 -31.94 45.48 6 625.0575 19.20 2.97 -31.98 36.07 7 30.2910 10.51 0.63 -32.12 41.33 8 55.3195 12.35 0.84 -32.07 40.03 9 65.2145 10.24 0.92 -32.04 40.65 10 184.3424 9.41 1.59 -31.98 39.14 11 208.8859 11.13 1.71 -31.94 45.93	NO Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] 1 30.1940 10.51 0.63 -32.12 42.13 21.15 2 55.2225 12.36 0.84 -32.07 39.58 20.71 3 65.5056 10.17 0.92 -32.04 40.84 19.89 4 184.3424 9.41 1.59 -31.98 40.02 19.04 5 208.8859 11.13 1.71 -31.94 45.48 26.38 6 625.0575 19.20 2.97 -31.98 36.07 26.26 7 30.2910 10.51 0.63 -32.12 41.33 20.35 8 55.3195 12.35 0.84 -32.07 40.03 21.15 9 65.2145 10.24 0.92 -32.04 40.65 19.77 10 184.3424 9.41 1.59 -31.98 39.14 18.16 11	NO Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] 1 30.1940 10.51 0.63 -32.12 42.13 21.15 40.00 2 55.2225 12.36 0.84 -32.07 39.58 20.71 40.00 3 65.5056 10.17 0.92 -32.04 40.84 19.89 40.00 4 184.3424 9.41 1.59 -31.98 40.02 19.04 43.50 5 208.8859 11.13 1.71 -31.94 45.48 26.38 43.50 6 625.0575 19.20 2.97 -31.98 36.07 26.26 46.00 7 30.2910 10.51 0.63 -32.12 41.33 20.35 40.00 8 55.3195 12.35 0.84 -32.07 40.03 21.15 40.00 9 65.2145 10.24 0.92 -32.04 40.65 19.77	NO Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 1 30.1940 10.51 0.63 -32.12 42.13 21.15 40.00 18.85 2 55.2225 12.36 0.84 -32.07 39.58 20.71 40.00 19.29 3 65.5056 10.17 0.92 -32.04 40.84 19.89 40.00 20.11 4 184.3424 9.41 1.59 -31.98 40.02 19.04 43.50 24.46 5 208.8859 11.13 1.71 -31.94 45.48 26.38 43.50 17.12 6 625.0575 19.20 2.97 -31.98 36.07 26.26 46.00 19.74 7 30.2910 10.51 0.63 -32.12 41.33 20.35 40.00 18.85 9 65.2145 10.24 0.92 -32.04 40.65 19.77 4	NO Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBµV/m] Level [dBµV/m] Limit [dBµV/m] Margin [dB] Result 1 30.1940 10.51 0.63 -32.12 42.13 21.15 40.00 18.85 Pass 2 55.2225 12.36 0.84 -32.07 39.58 20.71 40.00 19.29 Pass 3 65.5056 10.17 0.92 -32.04 40.84 19.89 40.00 20.11 Pass 4 184.3424 9.41 1.59 -31.98 40.02 19.04 43.50 24.46 Pass 5 208.8859 11.13 1.71 -31.94 45.48 26.38 43.50 17.12 Pass 6 625.0575 19.20 2.97 -31.98 36.07 26.26 46.00 19.74 Pass 7 30.2910 10.51 0.63 -32.12 41.33 20.35 40.00 18.85 Pass

Report No. : EED32L00018301 Page 43 of 64

Transmitter Emission above 1GHz

Mode:		GFSK Transmitting				Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	4804.0000	34.50	4.55	-40.66	44.87	43.26	74.00	30.74	Pass	Н
2	7206.0000	36.31	5.81	-41.02	45.47	46.57	74.00	27.43	Pass	Н
3	9608.0000	37.64	6.63	-40.76	44.22	47.73	74.00	26.27	Pass	Н
4	12010.0000	39.31	7.60	-41.21	43.46	49.16	74.00	24.84	Pass	Н
5	4804.0000	34.50	4.55	-40.66	45.58	43.97	74.00	30.03	Pass	V
6	7206.0000	36.31	5.81	-41.02	44.27	45.37	74.00	28.63	Pass	V
7	9608.0000	37.64	6.63	-40.76	45.02	48.53	74.00	25.47	Pass	V
8	12010.0000	39.31	7.60	-41.21	43.16	48.86	74.00	25.14	Pass	V

Mode:		GFSK Transmitting				Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	4882.0000	34.50	4.81	-40.60	45.12	43.83	74.00	30.17	Pass	Η
2	7323.0000	36.42	5.85	-40.91	42.92	44.28	74.00	29.72	Pass	Н
3	9764.0000	37.71	6.71	-40.62	43.69	47.49	74.00	26.51	Pass	I
4	12205.0000	39.42	7.67	-41.16	44.69	50.62	74.00	23.38	Pass	Н
5	4882.0000	34.50	4.81	-40.60	44.68	43.39	74.00	30.61	Pass	V
6	7323.0000	36.42	5.85	-40.91	43.82	45.18	74.00	28.82	Pass	٧
7	9764.0000	37.71	6.71	-40.62	42.18	45.98	74.00	28.02	Pass	V
8	12205.0000	39.42	7.67	-41.16	43.57	49.50	74.00	24.50	Pass	V

Page 44 of 64

Mode:		GFSK Transmitting				Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	4960.0000	34.50	4.82	-40.53	45.17	43.96	74.00	30.04	Pass	Н
2	7440.0000	36.54	5.85	-40.82	44.11	45.68	74.00	28.32	Pass	Н
3	9920.0000	37.77	6.79	-40.48	42.63	46.71	74.00	27.29	Pass	Н
4	12400.0000	39.54	7.86	-41.12	45.05	51.33	74.00	22.67	Pass	Н
5	4960.0000	34.50	4.82	-40.53	45.52	44.31	74.00	29.69	Pass	V
6	7440.0000	36.54	5.85	-40.82	44.23	45.80	74.00	28.20	Pass	V
7	9920.0000	37.77	6.79	-40.48	42.59	46.67	74.00	27.33	Pass	V
8	12400.0000	39.54	7.86	-41.12	43.71	49.99	74.00	24.01	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

