Agricultural transitions in the Amazon region: consequences for biogeochemistry and the need for land-use scenarios

Jerry Melillo

LBA-ECO 11th Science Team Meeting

28 September, 2007

Salvador, Brazil

Agricultural Transitions in the Amazon Basin: An LBA Synthesis

Chapter 1. Introduction

(Jerry Melillo, Mercedes Bustamante, Diogenes Alves and Ruth DeFries)

Chapter 2. Contemporary land-use change and the human dimension (Emilio Moran, Steve Walsh)

Biogeochemistry

Chapter 3. Agricultural transitions in the cerrado (Mercedes Bustamante, Richard Zepp)

Chapter 4. Agricultural transitions in the forest

(Chris Neill, Carlos Cerri, Eric Davidson, Flávio Luizão)

Chapter 5. Comparisons of cerrado and forest transitions

(Mercedes Bustamante, Chris Neill, Jerry Melillo, Richard Zepp)

Scaling Process-level Understanding to the Region

Chapter 6. Tracking transitions: remote sensing to document changes in land cover and land use

(Diogenes Alves, Ruth DeFries, Mateus Batistella)

Chapter 7. Regional extrapolations using simulation modeling (Chris Potter, Carlos Eduardo Cerri)

Chapter 8. Agriculture and the climate system - local to regional consequences (Renato Silva, Pedro Dias, Gilvan Sampio, Adilson Ronnie Avissar)

The Future of Agriculture in the Basin

Chapter 9. Looking to a sustainable future (Carlos Cerri, Tatiana Sa)

Biogeochemistry

LBA I (natural vegetation to pasture)
and LBA I+ (transitions to
mechanized agriculture)

Net effects on global warming potentials (GWPs) of forest-to-pasture conversion and 20 years of pasture management*

Net Source (+)/Sink (-)	Range	Estimate	CO ₂ - Equivalents (Mg CO ₂ ha ⁻¹)	References
Forest plant biomass (Mg C ha ⁻¹)	+110 to +250	+160	+600	Houghton et al. 2001
Soil carbon (Mg C ha ⁻¹)	-15 to +12	-10	-40	Neill and Davidson, 2000
Soil N ₂ O (kg N ha ⁻¹)	-5 to -40	-20	-9	Mellilo et al. 2001; Verchot et al. 1999
Soil CH ₄ (kg CH ₄ ha ⁻¹)	-20 to +20	+10	+0.2	Steudler et al. 1996; Verchot et al. 2000
Cattle CH ₄ (kg CH ₄ ha ⁻¹)	+500 to +2000	+1000	+20	Steudler et al. 1996
Total			+570	

^{*} After Neill et al. - Chapter 4, LBA Ag synthesis volume

Nitrous Oxide and Methane Fluxes in Commercial Soybean, Rice, and Maize Crops on the Santarem-Belterra Plateau, Para State

OLIVEIRA, KELLER, CRILL

Rice

Crop	Year	Growing period	Fertilizer input	N ₂ O flux	
		Days	kgN/ha/y	kgN/ha/y	
	2005	107	28.5	44.84	
Rice	2006	123	12.0	11.75	
	2007	107	30.0	3.65	
	2005	68	8.0	5.29	
Soybean	2006	120	No fert.	29.38	
	2007	106	8.0	4.54	
Corn#	2007	139	60.4	14.23	
Soybean#	2007	111	7.4	6.54	

No till

Scenarios and the world of biofuels

LBA I+ and II

"Very often, meaningful action requires memory
-- Scenarios provide us with memory of the future."

Scenarios for Agricultural Transitions in the Amazon

Type I

Evaluating alternative scenarios for deforestation pathways through 2050. Soares-Filho et al.

Type II

Crop expansions in Brazil by 2015

	nge in area hillion ha
Sugar cane Oil crops for biodiesel Forestry (eucaliptys, pinus etc) Cotton Soybean	6.0 (+97%) 6.4 (0 currently) 1.8 (+35%) 0.4(+29%) 3.6 (+16%)
Total	18.2

How do we use the whole Brazilian landscape and what are the implications the Amazon? C. C. Cerri et al.

Amazon deforestation driven by economic "teleconnections"

Type III

MIT Integrated
Global Systems
Model - used in
integrated assessment
studies of climate
Change

What with the global landscape look like in a world heavily dependent on cellulosic biofuels (for 200-250 Ej/yr in 2100) and what are likely to be some of the unintended consequences?

The EPPA Economic Model

- Emissions Predictions and Policy Analysis (EPPA) model
 - A computable general equilibrium model of the world economy (globalchange@mit.edu) Report 145
 - Competition for labor, capital, land and other resources is represented in the model
 - Target in this study stabilize of $[CO_2]$ at 550 ppm using an aggressive biofuels policy

EPPA-Global Land System Interactions

Percent of each 0.5° x 0.5° grid cell in cellulosic biofuels in 2050

(550 PPM CO₂, Climate change)

Percent

100 Area in Biofuels = 14,419,458 km²

Percent of each 0.5° x 0.5° grid cell in cellulosic biofuels in 2100

(550 PPM CO2, Climate change)

Percent of each $0.5^{\circ} \times 0.5^{\circ}$ grid cell in cellulosic biofuels in 2100 (550 PPM CO2, Climate change)

Percent of each 0.5° x 0.5° grid cell in all agricultural activities in 2100 (550 PPM CO2, Climate change)

Projected Land Cover Areas (km²) in the Amazon Basin and Environs by EPPA-TEM (550 PPM CO₂, Climate change)

Year	Biofuels	Food Crops	Pasture	Forest and Cerrado	Grass- land	Other
2000	0	353,711	801,932	5,357,605	460,188	227,141
2030	7,986	774,679	1,034,905	4,730,550	425,316	227,141
2050	1,212,581	1,214,096	1,095,176	3,070,973	380,610	227,141
2100	2,320,262	1,534,696	605,929	2,166,550	345,999	227,141

Cumulative Changes in Carbon in the Amazon Basin From 2000 Due to Expanding Agriculture and Biofuels "Plantations" Projected by EPPA-TEM (550 PPM CO2, Climate change)

Year	Change in Carbon (Pg C)
2010	-6.1
2020	-11.8
2030	-21.8
2040	-44.9
2050	-66.7
2060	-78.0
2070	-83.5
2080	-88.8
2090	-92.2
2100	-94.2

-32 +/- 8 Pg C
Soares-Filho et al. 2006; assumes current trends in land use, no biofuels

Summary

- During LBA I, we have learned a great deal about changes in biogeochemical patterns and processes with agricultural transitions, especially transitions of natural vegetation to pastures
- As we move into LBA II, we are gaining new knowledge about transitions to mechanized agriculture that will help design the next generation of field and modeling experiments
- Scenarios coupled with simulation models hold promise for providing policy-relevant information at large spatial scales over decades to a century