Mysis modeling brainstorm:

Variables:

Time	=	\overline{t}
Average solar radiation	=	a
Thermocline's distance from surface	=	d
Calories (c)	=	if migrating: $+\omega$
		else: $-\epsilon$

Migrate Desire Model equations:

Mysis engrained desire to migrate:	M(t) =	C_1 (assuming resolution of a single day)
Pressure not to migrate from light levels:	L(a) =	$C_2 \log(a)$
Pressure " " from thermocline depth:	D(d) =	$C_3(d)$
Hunger:	H(c) =	$c_4 e^c$

Total Mysis model:

Migrate or Not	=	MoN(t, a, d, c) = M(t) - L(a) - D(d) + H(c)
If $(MoN(t, a, d, c) > \alpha \text{ for day})$	=	migrate

A large number of Mysis will be initialized with randomly permuted starting conditions and run through an arbitrary amount of time (say a year). Their migration patterns will be visualized, from this visualizations patterns in migration will be come apparent.