Optimization

Hessian Matrix & Taylor Series

Learning goals

- Taylor series (Univariate)
- Hessian Matrix
- Taylor series (Multivariate)

TAYLOR SERIES (UNIVARIATE)

Definition (Taylor's Theorem): Let $I \subseteq \mathbb{R}$ an open interval and $a, x \in I$. Further, let $f \in \mathcal{C}^{m+1}(I, \mathbb{R})$ for $m \in \mathbb{N}$. Then

$$f(x) = T_m(x, a) + R_m(x, a).$$

We call

$$T_m(x,a) = \sum_{k=1}^m \frac{f^k(a)}{k!} (x-a)^k =$$

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(m)}(a)}{m!}(x-a)^m$$

the *m*-th Taylor polynomial.

$$R_m(x,a)$$

is called remainder term. We will cover this term later.

TAYLOR SERIES (UNIVARIATE)

DIFFERENTIATION (MULTIVARIATE)

The second derivative of a multivariate function is defined by its Hessian (if it exists).

Definition (Hessian): Let $f \in C^2(\mathcal{S}, \mathbb{R})$, $\mathcal{S} \subseteq \mathbb{R}^d$. The **Hessian matrix** is defined as

$$H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}\right)_{i,j=1...d}$$

Example: Let $f(x_1, x_2) = sin(x_1) \cdot cos(x_2)$. Then:

$$H(\mathbf{x}) = \begin{pmatrix} -\cos(x_2) \cdot \sin(x_1) & -\cos(x_1) \cdot \cos(x_2) \\ -\cos(x_1) \cdot \sin(x_2) & -\cos(x_2) \cdot \sin(x_1) \end{pmatrix}$$

HESSIAN DESCRIBES LOCAL CURVATURE

Local curvature can be analyzed via Eigenspecturm of $H(\mathbf{x})$:

- The Eigenvector \mathbf{v}_{max} belonging to the largest Eigenvalue λ_{max} (in absolute terms) points into the direction of largest curvature.
- Respectively: v_{min} points into direction of smallest curvature.
- Eigenvalues tell us about the definiteness and therefore the curvature of the matrix at a given point.

positive-definite: all eigenvalues positive -> concave up **positive-definite:** all eigenvalues positive -> concave down **saddle point:** if eigenvalues are positive & negative. **no statement possible:** if either eigenvalue is = 0.

Bernd Bischl [©] Optimization − 4 / 12

HESSIAN DESCRIBES LOCAL CURVATURE

Example (continued): $f(x_1, x_2) = sin(x_1) \cdot cos(x_2)$ and

$$H(\mathbf{x}) = \begin{pmatrix} -\cos(x_2) \cdot \sin(x_1) & -\cos(x_1) \cdot \cos(x_2) \\ -\cos(x_1) \cdot \sin(x_2) & -\cos(x_2) \cdot \sin(x_1) \end{pmatrix}$$

The Eigenvalues at $a = (\frac{-\pi}{2}, 0)$, $b = (0, \frac{-\pi}{2})$ and $c = (\frac{-\pi}{2}, 0)$ are -1 & -1, 1 & -1 and 1 & 1, respectively. The signs can each be retraced in the following plots:

Therefore, the hessian at a is negative-definite, has a saddle point at b and is positive-definite at c.

Taylor's theorem (1st order):

$$f(\mathbf{x}) = \underbrace{f(\mathbf{a}) + \nabla f(\mathbf{a})^{\top} (\mathbf{x} - \mathbf{a})}_{T_1(\mathbf{x}, \mathbf{a})} + R_1(\mathbf{x}, \mathbf{a})$$

Example:
$$f(\mathbf{x}) = \sin(2x_1) + \cos(x_2), \ \mathbf{a} = (1, 1)^{\top}. \text{ Since } \nabla f(\mathbf{x}) = \begin{pmatrix} 2 \cdot \cos(2x_1) \\ -\sin(x_2) \end{pmatrix}$$

$$f(\mathbf{x}) = T_1(\mathbf{x}) + R_1(\mathbf{x}, \mathbf{a}) = f(\mathbf{a}) + \nabla f(\mathbf{a})^{\top} (\mathbf{x} - \mathbf{a}) + R_1(\mathbf{x}, \mathbf{a})$$
$$= \sin(2) + \cos(2) + (2 \cdot \cos(2), -\sin(1)) \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} + R_1(\mathbf{x}, \mathbf{a})$$

Bernd Bischl [©] Optimization − 6 / 12

Taylor's theorem (2nd order):

$$f(\mathbf{x}) = \underbrace{f(\mathbf{a}) + \nabla f(\mathbf{a})^{\top} (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^{\top} H(\mathbf{a}) (\mathbf{x} - \mathbf{a})}_{T_2(\mathbf{x}, \mathbf{a})} + R_2(\mathbf{x}, \mathbf{a})$$

Example (continued): $f(\mathbf{x}) = \sin(2x_1) + \cos(x_2)$, $\mathbf{a} = (1, 1)^{\top}$. Since

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 2 \cdot \cos(2x_1) \\ -\sin(x_2) \end{pmatrix} \text{ and } H(\mathbf{x}) = \begin{pmatrix} -4\sin(2x_1) & 0 \\ 0 & -\cos(x_2) \end{pmatrix}$$

we get

$$f(\mathbf{x}) = T_1(\mathbf{x}, \mathbf{a}) + \frac{1}{2} \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix}^{\top} \begin{pmatrix} -4\sin(2) & 0 \\ 0 & -\cos(1) \end{pmatrix} \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} + R_2(\mathbf{x}, \mathbf{a})$$

Bernd Bischl [©] Optimization − 7 / 12

@Julia: Update notation

Formally, Taylor's theorem states:

Definition (Taylor's Theorem): Let $G \subseteq \mathbb{R}^n$ open, $f \in \mathcal{C}^{m+1}(G, \mathbb{R})$ for $m \in \mathbb{N}_0$. If $a \in G$, $h \in \mathbb{R}^n$ so that the line segment $S_{a,a+h}$ between a and $a+h \in G$, then

$$f(\mathbf{a} + \mathbf{h}) = \sum_{k=0}^{m} \frac{(\mathbf{h} \nabla^{k}(f)(\mathbf{a}))}{k!} + R_{m}(\mathbf{a}) =$$

$$f(\mathbf{a}) + \frac{(\mathbf{h}\nabla)(f)(\mathbf{a})}{1!} + \frac{(\mathbf{h}\nabla)^2(f)(\mathbf{a})}{2!} + \dots + \frac{(\mathbf{h}\nabla)^m(f)(\mathbf{a})}{m!} + R_m(\mathbf{a})$$

Bernd Bischl [©] Optimization − 8 / 12

@Julia: Update notation

Definition (Mutlivariate Directional derivative): $\mathbf{h} = (h_1, ..., h_n)$

 $f \in \mathbb{R}^n$, $G \subseteq \mathbb{R}^n$ open, $f : G \to \mathbb{R}^n$ differentiable, $a \in G$.

$$(\boldsymbol{h}\nabla(f)(\boldsymbol{a}):=\frac{\partial f}{\partial h}(\boldsymbol{a})=\sum_{j=1}^n h_j\partial_j f((\boldsymbol{a}))=h_1\partial_j f((\boldsymbol{a}))+...+h_n\partial_n f((\boldsymbol{a}))$$

with $(h\nabla)$ called **Differential operator**.

If $f \in C^2(G, \mathbb{R})$, we can apply $(h\nabla)$ again:

$$(\mathbf{h}\nabla)(t)^2(\mathbf{a}) := (\mathbf{h}\nabla)(\mathbf{h}\nabla)(t)(\mathbf{a}) =$$

$$=\sum_{i=1}^{n}(\boldsymbol{h}\nabla)(\boldsymbol{h}_{j}\partial_{j}(f)(\boldsymbol{a})=\sum_{k=1}^{n}h_{k}h_{j}\partial_{k}\partial_{j}f(\boldsymbol{a})$$

TAYLOR APPROXIMATION

@Julia: Update notation

The remainder term $R_m(\mathbf{a})$ can be written down quantitatively

$$R_m(\boldsymbol{a}) := \int_0^1 \frac{(1-t)^m}{m!} (\boldsymbol{h} \nabla^{m+1})(t) (\boldsymbol{a} + t \boldsymbol{h}) dt$$

(this is called the integral form; alternative formulas for the remainder term exist as well, but are not covered here.)

or qualitatively

$$R_m(\mathbf{a}) \in \mathcal{O}(\|\mathbf{x} - \mathbf{a}\|^m)$$
 for $\mathbf{x} \to \mathbf{a}$

If we don't care too much about the approximation error, we just write:

$$f(\mathbf{x}) \approx T_m(\mathbf{x}, \mathbf{a}).$$

TAYLOR APPROXIMATION

Note:

- Higher *m* gives a better approximation
- The m^{th} order taylor series is the best m^{th} order approximation to $f(\mathbf{x})$ near \mathbf{a}

Consider $T_2(\mathbf{x}, \mathbf{a}) = f(\mathbf{a}) + \nabla f(\mathbf{a})^{\top} (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^{\top} H(\mathbf{a}) (\mathbf{x} - \mathbf{a})$. The first term ensures the **value** of T_2 and f match at \mathbf{a} . The second term ensures the **slopes** of T_2 and f match at \mathbf{a} . The third term ensures the **curvature** of T_2 and f match at \mathbf{a} .

Bernd Bischl © Optimization - 11 / 12