1 Residuals

- 1. Consider a linear model $Y = X\beta + \delta\Delta + \epsilon$ where δ is a vector with a 1 at position i_0 and 0 elsewhere. Argue the following.
 - A. The i_0 residual is 0 for this model.
 - B. The fitted value for β using all of the data and this model is equivalent to that using only the data with the i_0 observation deleted.
 - C. Argue that the standardized Press residuals are a test statistic for $\Delta = 0$.
- 2. Consider the residuals for the ordinary linear model. Derive their mean and variance.
- 3. Carefully write up the proof that relates the Press residuals to the ordinary residuals. Derive the mean and variance/covariance of the Press residuals.
- 4. Prove the Sherman/Morrison/Woodburry theorem.
- 5. Prove that the hat matrix diagonals are between 0 and 1.
- 6. Why are the studentized residuals not exactly distributed as t statistics?

2 Inference under incorrectly specified models

For all of this section, let Model 1 be $Y=X_1\beta_1+\epsilon$ and Model 2 be $Y=X_1\beta_1+X_2\beta_2+\tilde{\epsilon}$.

- 1. Suppose that Model 1 is fit while Model 2 represents the actual truth. Give the bias and variance of β_1 . Give the expected value of S^2 .
- 2. Suppose that Model 2 is fit while Model 1 is true. Give the bias and variance of the estimted β . Give the expected value of S^2 .

3 Confidence ellipsoids

- 1. Derive a confidence ellipsoid for a linear contrast of coefficients $K\beta$.
- 2. Derive a confidence ellipsoid for a set predictions at X values X_{new}
- 3. Derive a prediction ellipsoid for a set of predictions at X values X_{new} .

4 Asymptotics

- 1. Rigorously prove the consistency of the linear regression estimates (slope and intercept).
- 2. Rigorously prove an asymptotic confidence interval for the slope of a regression estimate.

5 Coding and data analysis exercises

- 1. Consider the sleep data from the previous homework.
 - A. Consider the model fit from the previous homework. Write a program to grab the hat diagnals as well as use R's Im to obtain them directly. Look at the influence of various data points.
 - B. Consider the model fit from the previous homework. Write a program to grab the residuals and Press residuals. Investigate these residuals in the context of this model.
- 2. Consider the baseball data from the previous exercise.
 - A. Consider the model fit from the previous homework. Write a program to grab the hat diagnals as well as use R's Im to obtain them directly. Look at the influence of various data points.
 - B. Consider the model fit from the previous homework. Write a program to grab the residuals and Press residuals. Investigate these residuals in the context of this model.
- 3. Write a function that takes a Y $(n \times 1)$ and X_1 $(n \times 1)$ and an X_2 $(n \times (p-1))$ and produces the partial regression plot of $e_{Y|X_2}$ by $e_{Y|X_2}$.
- 4. Write an R function that takes in an arbitrary 2 dimensional K matrix and creates and plots the relevant confidence ellipse.
- 5. Take the diamond dataset and create a function that creates and plots confidence ellipsoids for pairs of predictions.
- 6. Create a Lasso and Ridge regression penalty plot for the sleep data from the last homework where all parameters except the intercept are penalized.
- 7. Create a Lasso and Ridge regression penalty plot for the baseball data from the last homework where all parameters except the intercept are penalized.