MATH 211

Online Asynchronous Survey in Calculus and Analytical Geometry

Dr. Ahmed Kaffel

Department of Mathematical Sciences University of Wisconsin Milwaukee

Spring 2023

The definite integral can be interpreted as the **net area**, that is:

$$\int_{a}^{b} f(x) dx$$

What if we want the area between the curve and the *x*-axis?

$$\int_{a}^{b} |f(x)| dx$$

What if we want the area between the curve and the *x*-axis?

Let f be continuous on [a, b].

Then the area between the curve f and the x-axis from a to b is

$$A = \int_{a}^{b} |f(x)| dx$$

To evaluate the integral, we split the it into A_1 , A_2 and A_3 . Thus we must find the x-intercepts in [a, b]!

What if we want the area between the curve and the *x*-axis?

For example, let us consider the diagram above.

The area between the curve and the x-axis from a to b is

$$A = \int_{a}^{b} |f(x)| dx = \left| \int_{a}^{x_{1}} f(x) dx \right| + \left| \int_{x_{1}}^{x_{2}} f(x) dx \right| + \left| \int_{x_{2}}^{b} f(x) dx \right|$$

Note that we split the integral from a to the first x-intercept, from the first to the second x-intercept,...

What if we want the area between the curve and the *x*-axis?

Let f be continuous on [a, b], and let

- $\rightarrow x_1 < x_2 < \ldots < x_n$ be all x-intercepts in [a, b],
- define $x_0 = a$ and $x_{n+1} = b$

Then the area between the curve f and the x-axis from a to b is

$$A = \int_{a}^{b} |f(x)| dx = \sum_{i=0}^{n} \left| \int_{x_{i}}^{x_{i+1}} f(x) dx \right|$$

Find the area between $f(x) = x^2 - 6x + 8$ from 1 to 6.

An antiderivative of f is $F(x) = \frac{1}{3}x^3 - 3x^2 + 8x$.

We need to find the x-intercepts in [1, 6]:

$$f(x) = (x-2)(x-4) = 0 \iff x = 2 \text{ or } x = 4$$

Then the area between the curve and the x-axis from 1 to 6 is

$$A = \left| \int_1^2 f(x) dx \right| + \left| \int_2^4 f(x) dx \right| + \left| \int_4^6 f(x) dx \right|$$

Find the area between $f(x) = x^2 - 6x + 8$ from 1 to 6.

An antiderivative of f is $F(x) = \frac{1}{3}x^3 - 3x^2 + 8x$.

We need to find the *x*-intercepts in [1,6]:

$$f(x) = (x-2)(x-4) = 0 \iff x = 2 \text{ or } x = 4$$

Then the area between the curve and the x-axis from 1 to 6 is

$$A = \left| \int_{1}^{2} f(x) dx \right| + \left| \int_{2}^{4} f(x) dx \right| + \left| \int_{4}^{6} f(x) dx \right|$$

$$= |F(2) - F(1)| + |F(4) - F(2)| + |F(6) - F(4)|$$

$$= \left| \frac{20}{3} - \frac{16}{3} \right| + \left| \frac{16}{3} - \frac{20}{3} \right| + \left| \frac{36}{3} - \frac{16}{3} \right|$$

$$= \left| \frac{4}{3} \right| + \left| -\frac{4}{3} \right| + \left| \frac{20}{3} \right|$$
28

The area between two curves f(x) and g(x) from a to b is:

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

The area between f and g = area between f - g and the x-axis.

Find the area of the region bounded by the curves

$$y = \sin x$$
 $y = \cos x$ $x = 0$ $x = \pi/2$

Area is equal to the area between $\sin x - \cos x$ and the *x*-axis:

$$A = \int_0^{\pi/2} |\sin x - \cos x| dx$$

We have to find the *x*-intercepts in the interval $[0, \pi/2]$:

$$\sin x - \cos = 0 \iff \sin x = \cos x \iff x = \pi/4$$

Antiderivative of $f(x) = \sin x - \cos x$ is $F(x) = -\cos x - \sin x$:

$$A = \left| \int_0^{\pi/4} f(x) dx \right| + \left| \int_{\pi/4}^{\pi/2} f(x) dx \right| = |F(x)|_0^{\pi/4} | + |F(x)|_{\pi/4}^{\pi/2} |$$

$$= |(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}) - (-1 - 0)| + |(-0 - 1) - (-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}})|$$

$$= |-\frac{2}{\sqrt{2}} + 1| + |-1 + \frac{2}{\sqrt{2}}| = \sqrt{2} - 1 + -1 + \sqrt{2} = 2\sqrt{2} - 2$$

Find the area of the region bounded by the curves

$$y = \sin x$$
 $y = \cos x$ $x = 0$ $x = \pi/2$

Area is equal to the area between $\sin x - \cos x$ and the *x*-axis:

$$A = \int_0^{\pi/2} |\sin x - \cos x| dx$$

We have to find the *x*-intercepts in the interval $[0, \pi/2]$:

$$\sin x - \cos = 0 \iff \sin x = \cos x \iff x = \pi/4$$

Antiderivative of $f(x) = \sin x - \cos x$ is $F(x) = -\cos x - \sin x$:

