Section 10.2

3. Give an explicit example of a map from one *R*-module to another which is a group homomorphism but not an *R*-module homomorphism.

Example:(Buchholz)

Let $R = \mathbb{Z}[i]$ and view R as a module over itself. Let $\varphi : R \to R$ where $\varphi(a+bi) = a$. For φ to be an R-module homomorphism φ must be operation preserving with respect to addition and have the property that $r\varphi(r) = \varphi(r * r)$ for all $r \in R$.

Now consider the elements $x = a_1 + b_1 i$, and $y = a_2 + b_2 i \in R$. We have

$$\varphi(x+y) = a_1 + a_2 = \varphi(x) + \varphi(y).$$

Hence φ is operation preserving with respect to addition. But,

$$\varphi(i*i) = \varphi(-1) = -1$$

and

$$i\varphi(i) = i(0) = 0.$$

Since $-1 \neq 0$, φ is not an R-module homomorphism. However, φ is a group homomorphism since φ is operation preserving with respect to addition.

5. Exhibit all \mathbb{Z} -module homomorphisms from $\mathbb{Z}/30\mathbb{Z}$ to $\mathbb{Z}/21\mathbb{Z}$.

(Bastille) Note that (30, 21) = 3, so by Exercise 10.2.6,

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/30\mathbb{Z},\mathbb{Z}/21\mathbb{Z}) = \left\{ \sigma_k : \ \mathbb{Z}/30\mathbb{Z} \to \mathbb{Z}/21\mathbb{Z} \mid \sigma_k(\bar{1}) = 7k + 21\mathbb{Z}, 0 \le k < 3 \right\}.$$

Concretely, there are 3 distinct \mathbb{Z} -module homomorphisms, entirely determined by:

$$\sigma_1(\bar{1}) = \bar{7}, \qquad \sigma_2(\bar{1}) = \overline{14}, \qquad \sigma_3(\bar{1}) = \bar{0}.$$

6. Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n,m)\mathbb{Z}$.

Proof. (Bastille) Consider $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ as an Abelian group under addition. Note that $\sigma \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ if and only if the following applies:

- (a) $\sigma: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$;
- (b) $\sigma(\bar{b} + \bar{c}) = \sigma(\bar{b}) + \sigma(\bar{c})$ for all $\bar{b}, \bar{c} \in \mathbb{Z}/n\mathbb{Z}$; since $\langle \bar{1} \rangle = \mathbb{Z}/n\mathbb{Z}$, note that satisfying condition (b) implies that σ is entirely determined by $\sigma(\bar{1})$;
- (c) σ is well-defined, i.e. in this case, we must have $\sigma(\bar{b}) = \sigma(\bar{c})$ whenever $\bar{b} = \bar{c}$.

We claim that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) = S$ where

$$S := \left\{ \sigma_k : \ \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \mid \sigma_k \text{ satisfies (b) and } \sigma_k(\bar{1}) = k \frac{m}{(n,m)} + m\mathbb{Z}, \ k \in \mathbb{Z}, \ 0 \le k < (n,m) \right\}.$$

Denote $\bar{a} = \sigma(\bar{1})$. Since there are only m distinct cosets in $\mathbb{Z}/m\mathbb{Z}$, we can assume WLOG $0 \le a < m$. If $\sigma \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ then σ is well-defined, so in particular, since $\bar{0} = \bar{n}$ in $\mathbb{Z}/n\mathbb{Z}$, we must have in $\mathbb{Z}/m\mathbb{Z}$: $\bar{0} = \sigma(\bar{0}) = \sigma(\bar{n}) = \sigma(\bar{n}) = n\sigma(\bar{1}) = n\bar{\sigma}$. Hence na = qm for some $q \in \mathbb{Z}$. Now we also have $n = (n, m)k_1$ for some $0 < k_1 \le n$, and hence $a = \frac{q}{k_1} \frac{m}{(n, m)}$. Since $\frac{m}{(n, m)} \in \mathbb{Z}$, it must be that $\frac{q}{k_1}$ is also an integer. Furthermore since $0 \le a < m$, it follows that $a = k \frac{m}{(n, m)}$ for k an integer such that 0 < k < (n, m). Hence $\sigma \in S$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \subset S$ (1).

Now if $\sigma_k \in S$, conditions (a) and (b) are met so we need only show that σ_k is well-defined. Assume $\bar{b}, \bar{c} \in \mathbb{Z}/n\mathbb{Z}$ such that $\bar{b} = \bar{c}$. Then b = c + np for some $p \in \mathbb{Z}$ and

$$\sigma_k(\bar{b}) = \sigma_k(b\bar{1}) = b\sigma_k(\bar{1}) = (c+np)\left(k\frac{m}{(n,m)} + m\mathbb{Z}\right) = (c+np)k\frac{m}{(n,m)} + m\mathbb{Z}$$

$$= ck\frac{m}{(n,m)} + npk\frac{m}{(n,m)} + m\mathbb{Z} = ck\frac{m}{(n,m)} + k_1pkm + m\mathbb{Z} = ck\frac{m}{(n,m)} + m\mathbb{Z}$$

$$= c\left(k\frac{m}{(n,m)} + m\mathbb{Z}\right) = c\sigma_k(\bar{1}) = \sigma_k(\bar{c}).$$

Therefore $\sigma_k \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ and $S \subseteq \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ (2). Combining (1) and (2) leads to our claim. Now clearly $\sigma_k \neq \sigma_{k'}$ whenever $k \neq k'$ where $0 \leq k, k' < (n, m)$, so

$$|\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})| = (n, m).$$

Note also that σ_1 generates $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ since for any $0 \leq k < (n, m)$, $\sigma_k = k\sigma_1$. Therefore as an additive group, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ is Abelian and cyclic of order (n, m) so $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n, m)\mathbb{Z}$ and the isomorphism carries over to \mathbb{Z} -modules (since multiplication by an element of \mathbb{Z} can be written as an addition), and so we have the desired result.

COMMENT: There are other ways to do this, though perhaps less concrete. Think about the way we talked about this problem before class last week.

Section 11.1

1. Let $V = \mathbb{R}^n$ and let (a_1, a_2, \dots, a_n) be a fixed vector in V. Prove that the collection D of elements $(x_1, x_2, \dots, x_n) \in V$ where $a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$ is a subspace of V. Find the dimension and a basis of this subspace.

Proof. (Allman) For ease, let $\mathbf{a} = (a_1, \dots, a_n) \in V$. If $\mathbf{a} = \mathbf{0}$, then D = V and $\dim_{\mathbb{R}}(D) = n$. (Every vector in V is orthogonal to the zero vector.)

Now suppose that $\mathbf{a} \neq \mathbf{0}$, and define $W = \operatorname{Span}(\mathbf{a})$. Since $\mathbf{a} \in V$, W is a vector sub-space of V. Note that $\dim(W) = 1$. Define $W^{\perp} = D = \{v = (x_1, \dots, x_n) \in V \mid a_1x_1 + \dots + a_nx_n = 0\} = \{v \in V \mid \mathbf{a} \cdot v = \mathbf{0}\}$. (We say D is W perp meaning the collection of vectors perpendicular to all vectors in W.) CLAIM: $W^{\perp} = D$ is a vector subspace of V of dimension n - 1.

Clearly, the zero vector is an element of W^{\perp} . Suppose $x, y \in W^{\perp}$, then $\mathbf{a} \cdot (x + y) = \mathbf{a} \cdot x + \mathbf{a} \cdot y = \mathbf{0}$ and so the vector sum $x + y \in W^{\perp}$. Let $r \in \mathbb{R}$ be a scalar and $x \in W^{\perp}$, then $\mathbf{a} \cdot rx = r(\mathbf{a} \cdot x) = r\mathbf{0} = \mathbf{0}$. Thus, $rx \in W^{\perp}$ and W is a vector subspace of V.

For the 'Find' part of this problem, probably the most sophisticated way to proceed is to argue that $V = W \oplus W^{\perp}$. Notice if $w \in W \cap W^{\perp}$, then $\mathbf{a} \cdot w = \mathbf{0}$ and $w = r\mathbf{a}$ for some scalar $r \in \mathbb{R}$. Thus,

$$\mathbf{a} \cdot w = \mathbf{a} \cdot r\mathbf{a} = r(\mathbf{a} \cdot \mathbf{a}) = \mathbf{0}.$$

Now if r = 0, then w is the zero vector. If $r \neq 0$, then we must have that $\mathbf{a} \cdot \mathbf{a} = 0$. But this is a contradiction since only the zero vector satisfies $\mathbf{a} \cdot \mathbf{a} = 0$. (Only the zero vector has length zero.) Thus, the only vector in the intersection $W \cap W^{\perp}$ is the zero vector.

To obtain a basis for V^{\perp} , start with a basis $\mathcal{B}' = \{v_1, v_2', \cdots, v_n'\}$ for V with the first basis vector given by $v_1 = \mathbf{a}$ and then extend to a basis for V. You can use Gram-Schmidt or just general ideas on projections to replace the basis elements v_2', \ldots, v_n' with v_2, \ldots, v_n which are orthogonal to $v_1 = \mathbf{a}$. Thus, $\mathcal{B} = \{v_1, v_2, \cdots, v_n\}$ is a basis for $V = W \oplus W^{\perp}$.

More concretely, to show $\dim_{\mathbb{R}}(W^{\perp}) = n-1$ for $\mathbf{a} \neq \mathbf{0}$, we can without loss of generality assume that the last coordinate a_n of \mathbf{a} is non-zero, $a_n \neq 0$. Then for any choice of real numbers, x_1, \dots, x_{n-1} , let $x_n = \frac{-1}{a_n}(a_1x_1 + \dots + a_{n-1}x_{n-1})$ and $x = (x_1, \dots, x_n)$. It is easy to check that $\mathbf{a} \cdot x = 0$ and so $x \in W^{\perp}$. Finally, since there were n-1 free choices (x_1, \dots, x_{n-1}) , this means that $\dim_{\mathbb{R}}(W^{\perp}) = n-1$.

2. Let V be the collection of polynomials with coefficients in \mathbb{Q} in the variable x of degree at most 5. Prove that V is a vector space over \mathbb{Q} of dimension 6, with $1, x.x^2, ..., x^5$ as a basis. Prove that $1, 1 + x, 1 + x + x^2, ..., 1 + x + x^2 + x^3 + x^4 + x^5$ is also a basis for V.

Proof. (Allman/Gillispie) By definition we know that $\{1, x, x^2, \dots x^5\} = A$ is a linearly independent subset of $\mathbb{Q}[x]$, which was shown to span a vector space in e.g. 11.1.1.

Moreover, letting $p(x) \in V$, by definition $p(x) = p_5 x^5 + p_4 x^4 + p_3 x^3 + p_2 x^2 + p_1 x + p_0$ where $p_i \in \mathbb{Q}$, we see that \mathcal{A} spans V. Thus, \mathcal{A} is a basis for V. Since $|\mathcal{A}| = 6$, $\dim_{\mathbb{Q}}(V) = 6$.

Let
$$\mathcal{B} = \{1, 1+x, 1+x+x^2, \dots, 1+x+x^2+x^3+x^4+x^5\}.$$

Note that

$$1 = 1$$

$$x = -1(1) + 1(1+x)$$

$$x^{2} = -1(1+x) + 1(1+x+x^{2})$$

$$\vdots$$

$$x^{5} = -1(1+x+x^{2}+x^{3}+x^{4}) + 1(1+x+x^{2}+x^{3}+x^{4}+x^{5}).$$

That is, each basis element in \mathcal{A} can be expressed as a linear combination of elements in \mathcal{C} and vice versa.

It follows that C is also a basis for V.

3. Let φ be the linear transformation $\varphi: \mathbb{R}^4 \to \mathbb{R}$ such that

$$\varphi((1,0,0,0)) = 1 \qquad \varphi((1,-1,0,0)) = 0
\varphi((1,-1,1,0)) = 1 \qquad \varphi((1,-1,1,-1)) = 0.
\text{Determine } \varphi((a,b,c,d)).$$

(Baggett) We have that

$$-d(1,-1,1,-1) + (c+d)(1,-1,1,0) + (-b-c)(1,-1,0,0) + (a+b)(1,0,0,0)$$

= $(-d+c+d-b-c+a+b,d-c-d+b+c,-d+c+d,d)$
= (a,b,c,d) .

Thus.

$$\varphi((a,b,c,d)) = \varphi(-d(1,-1,1,-1) + (c+d)(1,-1,1,0) + (b-c)(1,-1,0,0) + (a+b)(1,0,0,0))$$

$$= -d\varphi((1,-1,1,-1)) + (c+d)\varphi((1,-1,1,0)) + (-b-c)\varphi((1,-1,0,0)) + (a+b)\varphi((1,0,0,0))$$

$$= -d(0) + (c+d)(1) + (-b-c)(0) + (a+b)(1)$$

$$= a+b+c+d.$$

8. Let V be a vector space over F and let φ be a linear transformation of the vector space V to itself. A nonzero element $v \in V$ satisfying $\varphi(v) = \lambda v$ for some $\lambda \in F$ is called an *eigenvector* of φ with *eigenvalue* λ . Prove that for any fixed $\lambda \in F$ the collection of eigenvectors of φ with eigenvalue λ together with 0 forms a subspace of V.

Proof. (Mobley) Let W be the collection of eigenvectors of φ with eigenvalue λ together with 0. Let $x, y \in W$. Also let $r \in F$. Then for $(rx+y) \in V$, we have that $\varphi(rx+y) = \varphi(rx) + \varphi(y) = r\varphi(x) + \varphi(y)$, since φ is a linear transformation of V.

Moreover, since x and y are eigenvectors, $r\varphi(x) + \varphi(y) = r\lambda x + \lambda y = \lambda(rx + y) = \lambda\varphi(rx + y)$. Hence, $(rx + y) \in W$ and W is a subspace of V.

9. Let V be a vector space over F and let φ be a linear transformation of the vector space V to itself. Suppose for $i=1,2,\ldots,k$ that $v_i \in V$ is an eigenvector for φ with eigenvalue $\lambda_i \in F$ and that all the eigenvalues λ_i are distinct. Prove that v_1,v_2,\ldots,v_k are linearly independent. Conclude that any linear transformation on an n-dimensional vector space has at most n distinct eigenvalues.

Proof. (Schamel) We shall proceed by induction on the number of distinct eigenvalues. Note that when k=1, if $a_1v_1=0$ for some $a_1\in F$ then $a_1=0$ since $v_1\neq 0$ and F is a field. Hence $\{v_1\}$ is linearly independent. Suppose any k eigenvectors of φ with distinct eigenvalues are linearly independent and consider the collection $\{v_i\}_{i=1}^{k+1}$ of eigenvectors of φ with distinct eigenvalues. Suppose $\sum_{i=1}^{k+1} a_i v_i = 0$ for some $a_1, \ldots, a_{k+1} \in F$. But then, applying φ to both sides of the equation yields $\sum_{i=1}^{k+1} a_i \lambda_i v_i = 0$ and we see

$$0 = \sum_{i=1}^{k+1} a_i \lambda_i v_i - \lambda_{k+1} \left(\sum_{i=1}^{k+1} a_i v_i \right) = \sum_{i=1}^k a_i (\lambda_i - \lambda_{k+1}) v_i.$$

However, since $\{v_i\}_{i=1}^k$ is linearly independent by hypothesis, we have $a_i(\lambda_i - \lambda_{k+1}) = 0$ for all $1 \leq i \leq k$. Each eigenvalue is distinct, so $(\lambda_i - \lambda_{k+1}) \neq 0$ for all $1 \leq i \leq k$ and thus $a_i = 0$ for $1 \leq i \leq k$. Going back to our original linear independence condition, we now have $a_{k+1}v_{k+1} = 0$, so $a_{k+1} = 0$ since $v_{k+1} \neq 0$. We conclude $\{v_i\}_{i=1}^{k+1}$ is linearly independent and by induction any set of k eigenvectors of φ with distinct eigenvalues is linearly independent. Hence any linear transformation on an n-dimensional vector space has at most n distinct eigenvalues, for otherwise it would contain a linearly independent set of vectors of order greater than n.

Section 11.2

1. Let V be the collection of polynomials with coefficients in \mathbb{Q} in the variable x of degree at most 5. Determine the transition matrix from the basis $1, x, x^2, \ldots, x^5$ for V to the basis $1, 1 + x, 1 + x + x^2, \ldots, 1 + x + x^2 + x^3 + x^4 + x^5$ for V.

(Hazlett)

Note, $1=(1)1, 1+x=-1(1)+1(1+x), 1+x+x^2=-1(1+x)+1(1+x+x^2), \ldots$, and $1+x+x^2+x^3+x^4+x^5=-1(1+x+x^2+x^3+x^4)+1(1+x+x^2+x^3+x^4+x^5)$. Therefore, the transition matrix from the basis $1, x, x^2, \ldots, x^5$ for V to the basis $1, 1+x, 1+x+x^2, \ldots, 1+x+x^2+x^3+x^4+x^5$ will be:

$$\begin{pmatrix}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

2. (Lawless) Let V be the vector space of the preceding exercise. Let $\varphi = d/dx$ be the linear transformation of V to itself given by usual differentiation of a polynomial with respect to x. Determine the matrix of φ with respect to the two bases for V in the previous exercise.

The differentiation matrix will have as its *i*th column the coordinates of the image if the *i*th basis element under the differentiation map. For example, $x^4 \mapsto 4x^3$, so the 5th column of the matrix with respect to the first basis will have a 4 in the 4th row, and zeros elsewhere. The other columns are defined similarly, as is the matrix with respect to the second basis.

The matrix with respect to the first basis:

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The matrix with respect to the second basis:

$$\begin{bmatrix} 0 & 1 & -1 & -1 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 & -1 \\ 0 & 0 & 0 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

4. Let φ be the linear transformation of \mathbb{R}^2 to itself given by rotation counterclockwise around the origin through an angle θ . Show that the matrix of φ with respect to the standard basis for \mathbb{R}^2 is:

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$

Proof (Granade). Let $e_1, e_2 \in \mathbb{R}^2$ be the elements of the standard basis \mathcal{B} . That is, let e_1, e_2 have coordinates: $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}_{\mathcal{B}}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}_{\mathcal{B}}$. Then, e_1 has unit length and makes an angle of 0 with the \hat{x} -axis, and so $\varphi(e_1) = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}_{\mathcal{B}}$. Similarly, e_2 has unit length and makes an angle of $\pi/2$ with the \hat{x} -axis, and so $\varphi(e_2) = \begin{pmatrix} \cos(\theta + \pi/2) \\ \sin(\theta + \pi/2) \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}_{\mathcal{B}}$ by the sum of angle identities for sine and cosine:

$$\cos\left(\theta + \frac{\pi}{2}\right) = \cos\theta\cos\frac{\pi}{2} - \sin\theta\sin\frac{\pi}{2}$$

$$= 0\cos\theta - 1\sin\theta$$

$$\sin\left(\theta + \frac{\pi}{2}\right) = \sin\theta\cos\frac{\pi}{2} + \cos\theta\sin\frac{\pi}{2}$$

$$= 0\sin\theta + 1\cos\theta$$

Thus, since the action of φ on the basis has been established, we can write the matrix $(M_{\varphi})_{\mathcal{B}}$:

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$