1 Naive Bayes Classification

Let's say that we work with a dataset of n observations (rows) and m output classes where we want to classify n texts.

1.1 Definitions and Notations

Let $T = \{x_1, x_2, \dots, x_n\}$ be the multiset of texts where every text x_i is defined by a multiset of words $\{w_{i,1}, w_{i,2}, \dots, w_{i,k_i}\}$. Note that the position of the texts in X does not matter.

We note

$$Y = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,m} \\ y_{2,1} & y_{2,2} & \cdots & y_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n,1} & y_{n,2} & \cdots & y_{n,m} \end{bmatrix}$$
 (1)

the matrix of binary output values (explained variables) $y_{i,j} \in \{0,1\}$ for $1 \le i \le n$ and $1 \le j \le m$.

Since the goal is to estimate Y because we are not supposed to know $y_{i,j}$, we note

$$\hat{Y} = \begin{bmatrix}
\hat{y}_{1,1} & \hat{y}_{1,2} & \dots & \hat{y}_{1,m} \\
\hat{y}_{2,1} & \hat{y}_{2,2} & \dots & \hat{y}_{2,m} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{y}_{n,1} & \hat{y}_{n,2} & \dots & \hat{y}_{n,m}
\end{bmatrix}$$
(2)

the estimator matrix of Y where $\widehat{y}_{i,j} \in [0,1]$ because we want to give a probability.

Between the estimated and the true values, there is generally a bias that we note

$$\epsilon = \begin{bmatrix}
\epsilon_{1,1} & \epsilon_{1,2} & \dots & \epsilon_{1,m} \\
\epsilon_{2,1} & \epsilon_{2,2} & \dots & \epsilon_{2,m} \\
\vdots & \vdots & \ddots & \vdots \\
\epsilon_{n,1} & \epsilon_{n,2} & \dots & \epsilon_{n,m}
\end{bmatrix}$$
(3)

where $\epsilon_{i,j} \in [-1,1]$ because the bias may be negative or positive. If $y_{i,j} = 1$ and the model estimated $\hat{y}_{i,j} = 0.971$, then the bias is positive because $\epsilon_{i,j} = 1 - 0.97 = 0.03$. However, if $y_{i,j} = 0$ and $\hat{y}_{i,j} = 0.12$, then the bias is negative because $\epsilon_{i,j} = 0 - 0.12 = -0.12$.

We deduce the vectored equation

$$Y = \hat{Y} + \epsilon \tag{4}$$

where the operator + is the element-wise matrix addition.

Let $f: \mathcal{T} \longrightarrow \mathbb{M}_{n \times m}([0,1])$ be a model defined by $f(x) = \widehat{Y}$ where the notation $\mathbb{M}_{n \times m}([0,1])$ means the set of matrix n by m for which each element is a real number in [0,1].

The goal is to find a model f such that the bias ϵ is minimized when f is applied on x. Obtaining $\epsilon = \mathbf{0}_{n \times m}$ means that the model f predict perfectly how the texts will be classified.

1.2 Theoretical Problem

Let $C = \{c_1, c_2, \dots, c_m\}$ be the set of all output class labels. We define the following random variables:

- $c \in C$ representing an output class label;
- $x \in T$ representing a text.

For a given text x, in virtue of the Bayes theorem, we have

$$\mathbb{P}(c=c_j|x=x_i) = \frac{\mathbb{P}(x=x_i|c=c_j)\mathbb{P}(c=c_j)}{\mathbb{P}(x=x_i)}.$$
 (5)

The goal of the Naive Bayes Classification is to find the output class label c that maximize the probability that a text $x \in T$ maps to the output class label c_i knowing x_i . In other terms, this means that

$$c_{max} = \arg\max_{c \in C} \mathbb{P}(c = c_j | x = x_i) = \arg\max_{c \in C} \frac{\mathbb{P}(x = x_i | c = c_j)\mathbb{P}(c = c_j)}{\mathbb{P}(x = x_i)}.$$
 (6)

We extract 2 assumptions that will simplify the equation (6):

- 1. $\mathbb{P}(x=x_i)$ is the same for all output class labels and does not affect the argmax which is on c.
- 2. Two texts $x_i, x_j \in T$ where $i \neq j$ are independent. This implies that $\mathbb{P}(x = x_i | c)$ is independent of $\mathbb{P}(x = x_j | c)$.

Applying the first property gives

$$c_{max} = \arg\max_{c \in C} \mathbb{P}(x|c)\mathbb{P}(c) \tag{7}$$

which can be written equivalently using the definition of T as

$$c_{max} = \arg\max_{c \in C} \mathbb{P}(x = x_1, x = x_2, \dots, x = x_n | c) \mathbb{P}(c).$$
 (8)

Now, applying the second property in (8) gives

$$c_{max} = \arg\max_{c \in C} \mathbb{P}(c) \prod_{i=1}^{n} \mathbb{P}(x = x_i | c). \tag{9}$$

1.3 Bag of Words Model

Let W be the set of words contained in T. Take $x_i = (w_{i,1}, w_{i,2}, \dots, w_{i,k_i}) \in \mathcal{T}$ a text containing k_i words where a word $w_{i,j} \in W$. We assume that a text cannot be empty meaning that $\mathcal{T} \neq \emptyset$.

We want to use the maximum likelihood estimator \widehat{P} defined as the frequency of a word $w_{i,j}$ among the n texts where $1 \leq j \leq k_i$ knowing the output class label $c_l \in C$. The estimator \widehat{P} estimates the likelihood function $P(x_1, x_2, \dots, x_n; c) = \prod_{i=1}^{n} \mathbb{P}(x = x_i | c = c_l)$. To calculate that frequency, we have to calculate the ratio between the num-

To calculate that frequency, we have to calculate the ratio between the number of occurrences of the word $w_{i,j}$ among the n texts, where the output class label is c_j , and the total number of words in the n texts where the output class label is c_j .

Let $f: W \times C \longrightarrow \mathbb{N}$ be a function defined as $f(w_{i,j}, c_l) = z$ that returns the number of occurrences (z) a word $w_{i,j}$ is found among all texts classified as the output class label c_l .

Therefore, the maximum likelihood estimator of $P(x_1, x_2, \dots, x_n; c)$ is defined as

$$\widehat{P}(w_{i,j} \in x_i | c) = \frac{f(w_{i,j}, c) + 1}{\sum_{w \in W} f(w, c) + 1}.$$
(10)

We also need the maximum likelihood estimator of $P(c = c_l) = \mathbb{P}(c = c_l)$ which is defined as the ratio between the number of texts classified as c_l and the number of texts n. Let $T_c = \{x_i \in T : x_i \mapsto c_l\}$ be the set of all texts x_i classified as c_l .

We note $|T_c|$ the cardinality of T_c . The estimator is defined as

$$\widehat{P}(c=c_l) = \frac{|T_c|}{n}.\tag{11}$$

The reason behind the Laplace smoothing, adding 1 to the numerator and denominator of $\widehat{P}(w_{i,j} \in x_i|c)$, is to handle the case when $f(w_{i,j},c) = 0$. If a word $w_{i,j}$ is not found for a given output class label c_l , then $\widehat{P}(w_{i,j} \in x_i|c) = 0$. Having only one case like this without adding 1 causes

$$\widehat{P}(c) \prod_{i=1}^{n} \widehat{P}(w_{i,j} \in x_i | c) = 0.$$
(12)

1.4 Example

In this example, we want to classify texts as toxic or non toxic. Suppose that we have the train dataset 1 where the texts have already been cleaned.

We have to predict if the text *shit language yourself hell fuck shit* is toxic or not.

Table 1: Train Dataset

Text	Is Toxic
fuck fuck shit shit	1
explanation natural processing language matter	0
hell fuck die mother fuck shit	1
block pollution environment climate natural	0
mother fuck stupid piece shit	1

From the dataset 1 including the text to classify, we set $T = \{x_1, x_2, x_3, x_4, x_5, x_t\}$ as

 $x_1 = \{fuck, fuck, fuck, shit, shit\}$

 $x_2 = \{explanation, natural, processing, language, matter\}$

 $x_3 = \{hell, fuck, die, mother, fuck, shit\}$

 $x_4 = \{block, pollution, environment, climate, natural, mother\}$

 $x_5 = \{mother, fuck, stupid, piece, shit\}$

 $x_t = \{shit, language, yourself, hell, fuck, shit\}.$

where x_t is the text to classify. The output classes are Y = (1, 0, 1, 0, 1).

Let $W = \{fuck, shit, explanation, natural, processing, language, matter, hell, die, mother, block, pollution, environment, climate, stupid, piece, yourself\}$ be the set of words used in T. We have |W| = 17. Let W_t be the multiset of words in texts classified as toxic and W_n the multiset of words in texts classified as non toxic. Thus, we have $|W_t| = 16$ and $|W_n| = 11$.

Let $c \in C = \{"toxic", "non toxic"\}$ be the random variable representing

an output class label and $w \in W$ the random variable representing a word.

$$\widehat{P}(w = \texttt{"fuck"}|c = \texttt{"toxic"}) = \frac{f(w,c)+1}{|W_t|+|W|} = \frac{6+1}{16+17} = \frac{7}{33} = 0.2121$$

$$\widehat{P}(w = \texttt{"shit"}|c = \texttt{"toxic"}) = \frac{f(w,c)+1}{|W_t|+|W|} = \frac{4+1}{16+17} = \frac{5}{33} = 0.1515$$

$$\widehat{P}(w = \texttt{"hell"}|c = \texttt{"toxic"}) = \frac{f(w,c)+1}{|W_t|+|W|} = \frac{1+1}{16+17} = \frac{2}{33} = 0.0606$$

$$\widehat{P}(w = \texttt{"die"}|c = \texttt{"toxic"}) = \frac{f(w,c)+1}{|W_t|+|W|} = \frac{1+1}{16+17} = \frac{2}{33} = 0.0606$$

$$\widehat{P}(w = \texttt{"mother"}|\texttt{"toxic"}) = \frac{f(w,c)+1}{|W_t|+|W|} = \frac{2+1}{16+17} = \frac{3}{33} = 0.0909$$

$$\widehat{P}(w = \texttt{"stupid"}|c = \texttt{"toxic"}) = \frac{f(w,c)+1}{|W_t|+|W|} = \frac{1+1}{16+17} = \frac{2}{33} = 0.0606$$

$$\widehat{P}(w = \texttt{"piece"}|c = \texttt{"toxic"}) = \frac{f(w,c)+1}{|W_t|+|W|} = \frac{1+1}{16+17} = \frac{2}{33} = 0.0606$$

$$\widehat{P}(w = \texttt{"mother"}|c = \texttt{"non toxic"}) = \frac{f(w,c)+1}{|W_n|+|W|} = \frac{1+1}{11+17} = \frac{2}{28} = 0.0714$$

$$\widehat{P}(w = \texttt{"natural"}|c = \texttt{"non toxic"}) = \frac{f(w,c)+1}{|W_n|+|W|} = \frac{2+1}{11+17} = \frac{3}{28} = 0.1071$$

Note that for a word $w \in \{explanation, processing, language, matter, block, pollution, environment, climate\}$, the probability is $\widehat{P}(w|c = "non toxic") = 0.0714$ and $\widehat{P}(w|c = "toxic") = 0.0303$.

Since the dataset contains 2 texts classified as toxic and 3 texts as non toxic, we have

$$\widehat{P}(c = \texttt{"toxic"}) = \frac{3}{5} = 0.6$$

$$\widehat{P}(c = \texttt{"non toxic"}) = \frac{2}{5} = 0.4.$$

Let's predict in which output class label x_t is classified. We use the equation (10).

$$\begin{split} \widehat{P}(c = \texttt{"toxic"}|x = x_t) &= 0.6 \times 0.1515^2 \times 0.0303 \times 0.0303 \times 0.0606 \times 0.2121 \\ &= 0.000000163 \\ \widehat{P}(c = \texttt{"non toxic"}|x = x_t) = 0.4 \times 0.0357^2 \times 0.0714 \times 0.0357 \times 0.0357 \times 0.0357 \\ &= 0.000000002 \end{split}$$

It follows that x_t is classified as a toxic text.