Written Assignment 7

Lucas Bouck

4/11/16

1 Problem 1a

Prove that if f is Lipschitz continuous on an interval I, then it is uniformly continuous on I.

Proof:

Let f be Lipschitz continuous on an interval I. We want to show it is uniformly continuous on I. Let $\epsilon > 0$. Because f is Lipschitz continuous on I, there exists an M such that for all $x, y \in I$, $|f(x) - f(y)| \le M|x - y|$. Choose M such that M > 0 and such that for all $x, y \in I$, $|f(x) - f(y)| \le M|x - y|$. Choose $\delta > 0$ such that $\delta = \frac{\epsilon}{M}$. Let $x, y \in I$. If $|x - y| < \delta$, then $|f(x) - f(y)| \le M|x - y| < M\delta = M\frac{\epsilon}{M} = \epsilon$. Thus, $|f(x) - f(y)| < \epsilon$, and f is uniformly continuous on I.

2 Problem 1b

Prove that the function $f(x) = \sqrt{x}$ is continuous on [0, 1]. Explain why $f(x) = \sqrt{x}$ is also uniformly continuous on [0, 1].

Proof:

Let $f(x) = \sqrt{x}$ be a function with the domain $[0, \infty)$ and the real numbers as the codomain. We want to show that f is continuous on [0, 1]. Let $\epsilon > 0$ and let $a \in [0, 1]$. Choose $\delta > 0$ such that $\delta < \epsilon$. For all $x \in [0, 1]$ if $|x - a| < \delta$, then $|x - a| < \epsilon$. Then $|\sqrt{x} - \sqrt{a}||\sqrt{x} + \sqrt{a}| < \epsilon$, which means $|\sqrt{x} - \sqrt{a}| = |f(x) - f(a)| < \epsilon$. Therefore, f is continuous on [0, 1].

The reason f is uniformly continuous on [0,1] is that when we choose δ , our δ is only a function of ϵ , which is the intuitive understanding of uniformly continuity.

3 Problem 1c

Prove that $f(x) = \sqrt{x}$ is not Lipschitz continuous on [0,1].

Proof:

Let $f(x) = \sqrt{x}$ be a function with the domain $[0, \infty)$ and the real numbers as the codomain. We want to show that f is not Lipschitz continuous on [0, 1], which means for all M there exist $x, y \in [0, 1]$ such that |f(x) - f(y)| > M|x - y|. There will be two cases. Let $M \leq 0$. Choose x = 1 and y = 0. Then, $|\sqrt{1} - \sqrt{0}| > 0 \geq M|1 - 0|$. For the next case let M > 0. Choose y = 0 and choose $x = \frac{1}{n}$ where $n \in \mathbb{N}$ and $n > M^2$. Then,

$$n^2 > M^2 n$$

$$\frac{1}{n} > \frac{M^2}{n^2}$$

$$x > M^2 x^2 = (Mx)^2$$

$$\sqrt{x} > |Mx| = M|x|$$

$$|\sqrt{x} - 0| > M|x - 0|$$

$$|\sqrt{x} - \sqrt{y}| > M|x - y|$$

Since $n \in \mathbb{N}$ and $x = \frac{1}{n}$, $x \in [0, 1]$. Then there exist $x, y \in [0, 1]$ such that |f(x) - f(y)| > M|x - y|. Therefore, f is not Lipschitz continuous on [0, 1].

4 Problem 2a

Suppose f is not bounded on [a, b] and show that there is a sequence $x_n \in [a, b]$ such that for all $n \in \mathbb{N}, |f(x_n)| > n$.

Proof:

Let f be a function and suppose that f is not bounded on [a,b]. This means for all M>0 there exists a $x\in [a,b]$ such that |f(x)|>M. We want to show that there is a sequence $x_n\in [a,b]$ such that for all $n\in \mathbb{N}, |f(x_n)|>n$. We shall now construct x_n . Choose $x_1\in [a,b]$ such that $|f(x_1)|>1$. We can do this because f is not bounded on [a,b]. If n>1, choose $x_n\in [a,b]$ such that $|f(x_n)|>|f(x_{n-1})|+1$.

We must now show that for all $n \in \mathbb{N}$, $|f(x_n)| > n$. We will do this by induction on n. Let n = 1. Based on how the sequence is defined, $|f(x_1)| > 1$. Now let $n \in \mathbb{N}$ and suppose the result is true for n. Then $|f(x_{n+1})| > |f(x_n)| + 1 > n + 1$, so the result holds for n + 1. By the principle of mathematical induction, $|f(x_n)| > n$ for all $n \in \mathbb{N}$. Therefore, there exists a sequence $x_n \in [a, b]$ such that for all $n \in \mathbb{N}$, $|f(x_n)| > n$.

5 Problem 2b

Use part a and the Bolzano-Weierstrass Theorem to show there exists a $x_0 \in [a, b]$ such that f is not continuous at x_0 .

Proof:

Let f be a function and suppose that f is not bounded on [a,b]. By part a, there is a sequence $x_n \in [a,b]$ such that for all $n \in \mathbb{N}, |f(x_n)| > n$. We will use such sequence and refer to it as x_n . Since $x_n \in [a,b]$, by Bolzano- Weierstrass Theorem, x_n has a convergent subsequence, which will be called x_{n_k} . Since [a,b] is a closed interval, x_{n_k} converges to a real number that is in [a,b]. Let $x_0 \in [a,b]$ be a real number such that $x_{n_k} \to x_0$. We shall now show that $f(x_{n_k})$ does not converge to $f(x_0)$.

Let $\epsilon=1$. We must show for all $K\in\mathbb{N}$ that there exists a $k\geq K$ such that $|f(x_{n_k})-f(x_0)|\geq \epsilon$. Let m be a natural number such that $|f(x_0)|< m$. There will be two cases for K. First let K be a natural number such that $n_K< m+1$. Then since n_k is an increasing sequence of natural numbers, there is a $k\geq K$ such that $n_k>m+1$. Choose such n_k . Then, $|f(x_{n_k})|>n_k>m+1>|f(x_0)|+1$. Then also $|f(x_{n_k})|-|f(x_0)|>1$. By the triangle inequality, $|f(x_{n_k})-f(x_0)|\geq ||f(x_{n_k})|-|f(x_0)||>|f(x_{n_k})|-|f(x_0)|>1$. Thus, there exists a $k\geq K$ such that $|f(x_{n_k})-f(x_0)|\geq \epsilon$. For the second case, let K be a natural number such that $n_K\geq m+1$. Since $n_K\geq m+1$, $|f(x_{n_K})|>n_K>m+1>|f(x_0)|+1$. Then, $|f(x_{n_K})|-|f(x_0)|>1$. By the triangle inequality, $|f(x_{n_K})-f(x_0)|\geq ||f(x_{n_K})|-|f(x_0)|\geq \epsilon$. In both cases, there exists a $k\geq K$ such that $|f(x_{n_k})-f(x_0)|\geq \epsilon$. In both cases, there exists a $k\geq K$ such that $|f(x_{n_k})-f(x_0)|\geq \epsilon$.

We have shown that there exists a sequence $x_{n_k} \in [a, b]$, such that $x_{n_k} \to x_0$ but $f(x_{n_k})$ does not converge to $f(x_0)$. By the sequential characterization of limits, f is not continuous at x_0 . Therefore, there exists a $x_0 \in [a, b]$ such that f is not continuous at x_0 .