Full Name:	Gannon Identification Number:
------------	-------------------------------

ECE 217: Data Structure and Algorithm Fall 2022, Final Examination Gannon University (GU) December 14, 2022

Please do not turn the page until you are informed.

Rules:

- The exam is closed-book, closed-note, closed shared calculator, and closed electronics.
- Please stop promptly at **6:00 PM**.
- There are **100 points** total, distributed **evenly** among **10** questions.

Question	Maximum	Earned
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	

Advice:

- Read questions carefully. Understand a question before you start writing your answer.
- Write down thoughts and intermediate steps so you can get partial credit. Clearly circle your final answer.
- The questions are not necessarily in order of difficulty. **Skip around.** Make sure you get to all the problems.

Wishing you the best of luck,

Dr. Shayan (Sean) Taheri

Full Name:	Gannon Identification Number:

Question 1. (10 points) Provide and explain the output of the following program. <u>Assuming all the desired header files are already included</u>, which are required to run the code.

```
struct Pixel
{
             int C, R;
};
void Display(Pixel P)
{
             cout << "Column: "<< P.C << ", Row: " << P.R << endl;</pre>
}
int main()
             Pixel X = \{40,50\};
            Pixel Y, Z;
             Z = X;
             X.C += 10;
             Y = Z;
             Y.C += 10;
             Y.R += 20;
            Z.C -= 15;
            Display(X);
             Display(Y);
            Display(Z);
             return 0;
}
```

Full Name:	Gannon Identification Number:
------------	-------------------------------

Question 2. (10 points) Define a Class student in the C++ programming language with the following specification. There is **No Need** to write the **int main()** function.,

Private members of class student:

- **sname:** string
- eng, math, science: float
- total: float
- totalFunction(): Function to calculate eng + math + science with return type of float.

Public member functions of class student:

- takeData(): Function to accept values for sname, eng, math, and science.
 Call totalFunction() inside it to calculate total.
- showData(): Function to display all the data members on the screen.

Full Name:	Gannon Identification Number:
Question 3. (10 points) Run the Bubble Sort computations.	Algorithm on the following list and show figures for
Note: It is Not Required to write any code for	this question.
list[5] = {12, 8, 20, 4, 17}	

Full Name:	Gannon Identification Number:
· •	in Forward configuration based on the following numbers and ifference(s) of the built linked list when it is Ordered and
Note: It is Not Required to write any code for	or this question.
Numbers = {3, 12, 5, 21, 33}	

Full Name:	Gannon Identification Number:

Question 5. (10 points) Execute the following computations in order and show figures for computations:

- a. Create a **Binary Search Tree** and insert the following items into it: {15, 4, 11, 1, 20}.
- b. Find the Pre-Order Traversal, the In-Order Traversal, and the Post-Order Traversal for the tree.
- c. Delete the following item from it: {4}.

Note: It is Not Required to write any code for this question.

Full Name:	Gannon Identification Number:
- · · · · · · · · · · · · · · · · · · ·	ng computations <u>in order</u> and show figures for computations: following items into it: {2, 24, 8, 30, 17, 10}.

Note: It is Not Required to write any code for this question.

Full Name:	Gannon Identification Number:
Question 7. (10 points) Encrypt the plainte	ext message of "I Love Gannon University" using an
	<u>using left-shifted English alphabet</u>). Explain the strength of this
encryption.	
Note: It is Not Required to write any code f	or this question.

Full Name:	Gannon Identification Number:
Question 8. (10 points) Write a simple p	program in C++ programming language to perform Exclusive-OR
Encryption and Decryption between an	n input text data and a "char"-type key with multiple elements. Show
the output of your program for Encryption	on mode in binary format (without using computer) when the input
data is "GU" (abbreviation of Gannon U	University) and the key is "PA" (abbreviation of Pennsylvania).
	•
" GU " in Binary Format = "01000111 01	010101".

Full Name:	Gannon Identification Number:
Question 9. (10 points) Create a Hierarchical Finite-State Machine and show <u>its state transitions</u> based on an <u>Acceptable input sequence</u> .	
Note: It is Not Required to write any code for	or this question.

Full Name:	Gannon Identification Number:
Question 10. (10 points) Show and explain <u>r</u>	napping of a program/code onto Memory Layout.