

Национальный исследовательский университет «Московский институт электронной техники»

Кафедра высшей математики №1

Амелин Владислав Владимирович

Выпускная квалификационная работа бакалавра по направлению 01.03.04 «Прикладная математика»

Фильтрация шумов на изображениях в базисе дискретных вейвлет-преобразований

Научный руководитель: д.ф.-м.н., профессор кафедры ВМ-1 Умняшкин С.В.

Необходимость фильтрации шумов на изображениях

- 1. Улучшение визуального восприятия изображений
- 2. Повышение эффективности постобработки изображений: кодирование, классификация объектов и т.д.
- 3. Повышение чёткости снимков в медицинских диагностических системах: УЗИ, МРТ, КТ и т.д.

Цель

Разработка и реализация универсального метода пороговой фильтрации белого гауссовского шума в базисе дискретных вейвлет-преобразований

Задачи

- Изучение классических методов пороговой фильтрации, разработка программы для их тестирования и подбора оптимальных порогов
- Изучение способов оценки белого гауссовского шума на изображении и особенностей представления изображений в области вейвлетпреобразований
- Разработка метода и программной реализации локально-адаптивной пороговой фильтрации шумов
- Оценка результатов фильтрации на примере стандартных тестовых изображений

Дискретное вейвлет-преобразование сигналов

Дискретное вейвлет-преобразование изображений

Оценка качества изображений

- **PSNR** (Peak Signal-to-Noise Ratio) отношение пикового уровня сигнала к шуму
- SSIM (Structural Similarity) метрика структурного сходства

У изображений ниже одинаковое PSNR с оригиналом (25 дБ)

Классическая пороговая фильтрация

Виды классической пороговой фильтрации:

- Общий порог *T* для всех уровней
- Различные пороги T_N для каждого уровня
- Различные пороги $T_{N,S}$ для каждого саббэнда

Жёсткая пороговая фильтрация:

$$hard = \begin{cases} W(x,y), & |x| > T, \\ 0, & |x| \le T. \end{cases}$$

Мягкая пороговая фильтрация:

$$soft = \begin{cases} W(x,y) - T, & x > T, \\ W(x,y) + T, & x < -T, \\ 0, & |x| \le T. \end{cases}$$

Локально-адаптивная пороговая фильтрация

- Основная идея: степень подавления каждого вейвлеткоэффициента зависит не только от его величины, но и от влияния соседних коэффициентов
- Реализация: формировать матрицу порогов

$$T(x,y) = C_{local} \cdot \sigma_l + C_{noise} \cdot \sigma_{noise},$$

производя адаптацию по соседним вейвлет-коэффициентам

• Гипотеза: при использовании пакетных вейвлетпреобразований повышается качество фильтрации, т.к. энтропия сигнала относительно базиса минимальна (происходит лучшая «упаковка» изображения)

Локально-адаптивная пороговая фильтрация

Разработка данного метода включала следующие этапы:

- Добавление гауссовского шума на тестовое изображение
- Нахождение оптимальных констант C_{local} и C_{noise} , формирующих матрицу порогов T (PSNR отфильтрованного изображения будет максимально)
- Повторное нахождение оптимальных констант для нескольких уровней шума и их интерполяция

Гауссовский шум не коррелирован с изображением

Можно производить фильтрацию любого изображения, используя найденные константы и оценив СКО гауссовского шума при помощи двумерного Фурьепреобразования

Результаты фильтрации изображения «Lena»

10/16

Результаты фильтрации изображения «Lena»

Зашумленное изображение, PSNR = 22.1193

MAX PSNR = 30.4128 (Вейвлеты Villa)

Результаты фильтрации изображения «Lena»

MAX PSNR = 29.5860 (Классическая пороговая фильтрация, Вейвлеты Villa)

MAX PSNR = 30.4128 (Локально-адаптивная пороговая фильтрация, Вейвлеты Villa)

Результаты фильтрации изображения «Barbara»

MAX PSNR = 26.8747 (Скользящее среднее, $\sigma_{noise}=17$)

MAX PSNR = 28.8347 (Локально-адаптивная пороговая фильтрация, Вейвлеты Villa, $\sigma_{noise}=17$)

13/16

Результаты кодирования

Повышается эффективность алгоритмов сжатия

Для изображения «Lena» с СКО шума $\sigma_{noise}=20$:

• При кодировании JPEG с параметром сжатия 30:

imwrite(I, 'lena.jpeg', 'jpeg', 'Quality', 30)

Зашумленное изображение		Отфильтрованное изображение	
PSNR	Размер, Кб	PSNR	Размер, Кб
24.2884	33.1	29.9096	15.2

Зашумленное изображение		Отфильтрованное изображение	
PSNR	Размер, Кб	PSNR	Размер, Кб
26.9642	12.3	30.4198	12.3

Выводы

- При использовании разработанного метода PSNR отфильтрованного изображения повышается на 0.7-1 дБ по сравнению с классическим методом пороговой фильтрации
- Разработанный метод показывает более высокие результаты по сравнению со стандартными способами подавления белого гауссовского шума
- Установлено, что применение пакетных вейвлет-преобразований не улучшает качество фильтрации предложенного метода
- После фильтрации повышается эффективность алгоритмов сжатия

Спасибо за внимание