Exercices de colles

Industrielles de

Sciences

l'Ingénieur

Colle 01

Torseur dynamique

Exercice 1 - Mouvement T - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note \overrightarrow{AB} $\lambda(t) i_0$. On note m_1 la masse du solide et $I_B(1) =$ B_1

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\ en\ B.$

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\ en\ B\ puis\ en\ A.$

Corrigé voir 1.

Exercice 2 - Mouvement RR *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R=20\,\mathrm{mm}$ et $\overrightarrow{BC}=L\overrightarrow{i_2}$ avec $L=15\,\mathrm{mm}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1}$ = $\frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) =$
- G_2 désigne le centre d'inertie de **2** et $\overrightarrow{BG_2}$ = $\frac{1}{2}L\overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) =$

- Principe fondamental de la dynamique

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\ en\ A.$

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\ en\ B.$

Question 3 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 2.

Exercice 3 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \mathrm{mm}$ et $r = 10 \, \mathrm{mm}$. De

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{G_1}$
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2}$ = ℓi_2 , on note m_2 la masse de **2** et $I_{G_2}(2) =$

1

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\ en\ B$.

Question 2 Déterminer $\delta(A, 1+2/0) \cdot \overrightarrow{k_0}$

Corrigé voir 3.

- Principe fondamental de la dynamique

Colle 02

Torseur dynamique

Exercice 4 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}\$ au point B.

Question 2 Déterminer $\Gamma(B, 1/0)$.

Corrigé voir 4.

Exercice 5 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en A.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 5.

Exercice 6 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de **1** tel que $\overrightarrow{AG_1} = H\overrightarrow{j_1}$, on note m_1 la masse de **1** et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{A}}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\$ en B.

Question 2 *Déterminer* $\overrightarrow{\delta(A, 1+2/0)}$ $\overrightarrow{j_0}$

Corrigé voir 9.

Sciences

Colle 03

Torseur dynamique

Exercice 7 - Mouvement R *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $AB = R i_1$ avec R = 20 mm. On note m_1 la masse du solide 1, B son centre

d'inertie et
$$I_G(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & A_1 \end{pmatrix}_{\mathfrak{B}_1}.$$

Méthode 1 - Déplacement du torseur dynamique

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\ en\ B.$

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\ en\ B\ puis\ en\ A.$

Méthode 2 – Calcul en A

Question 3 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\ en\ B\ puis\ en\ A.$

Masse ponctuelle

On fait maintenant l'hypothèse que la masse est ponctuelle et concentrée en B.

Question 4 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\ en\ B.$

Question 5 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\ en\ B\ puis\ en\ A.$

Corrigé voir 7.

Exercice 8 - Mouvement RT *

Xavier Pessoles

C2-08 C2-09

- Principe fondamental de la dynamique

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} =$ \overrightarrow{R}_{12} avec R = 30 mm. De plus :

• $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1)$ =

• $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\ en\ B.$

Question 2 Déterminer $\overrightarrow{R_d}(1+2/0) \cdot \overrightarrow{i_0}$

Indications: $m_2(\ddot{\lambda}(t) - R(\ddot{\theta}\sin\theta(t) + \dot{\theta}^2\cos\theta))$

Corrigé voir 8.

Exercice 9 - Mouvement RT - RSG **

C2-08

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} =$ $\lambda(t)$ i. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$; $G_2 = B$ désigne le centre d'inertie de 2, on note m_2
 - la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}.$

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$

Question 2 Déterminer $\overrightarrow{\delta(I,1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 9.