MATH 450 Seminar in Proof

Prove that the set of integers are countable.

Proof. We know that a set X is countable if there exists a bijection in $f: \mathbb{N} \to X$. We know that $f: \mathbb{N} \to \mathbb{Z}$ is a well defined function from the class lecture. So we will show that it is a bijection. Let

$$f(n) = \begin{cases} -\left(\frac{n-1}{2}\right) & \text{if n is odd} \\ \frac{n}{2} & \text{if n is even} \end{cases}$$

One-to-One:

Let f(a) = f(b) where $a, b \in \mathbb{N}$. Then since, f(a) = f(b) we know that either $f(a) = -\left(\frac{a-1}{2}\right)$ and $f(b) = -\left(\frac{b-1}{2}\right)$ or $f(a) = \frac{a}{2}$ and $f(b) = \frac{b}{2}$. In both the cases we get a = b if f(a) = f(b). thus the function is one-to-one.

Onto:

Let $y \in \mathbb{Z}$. If y > 0 then we have $f(n) = y = \frac{n}{2} = y \to n = 2y$. Since $y > 0 \to 2y > 0 \in \mathbb{N}$. Thus $2y = n \in \mathbb{N}$. If y < 0 then we have $y = -\left(\frac{n-1}{2}\right)$. Solving for n we get n = -2y + 1. Since y < 0, -2y > 0 and thus -2y + 1 > 0. Thus $-2y + 1 = n \in \mathbb{N}$. Hence, the function is onto.

Thus the $f: \mathbb{N} \to \mathbb{Z}$ with

$$f(n) = \begin{cases} -\left(\frac{n-1}{2}\right) & \text{if n is odd} \\ \frac{n}{2} & \text{if n is even} \end{cases}$$

is well defined and is a bijection. Thus the set of integers are countable.