Trends in Alternative Daily Cover in California

https://github.com/sarahko7/ADC_AnalysisSarah~Ko

Abstract

Experimental overview. This section should be no longer than 250 words.

Contents

1	Research Question and Rationale	5
2	Dataset Information	6
3	Exploratory Data Analysis and Wrangling 3.1 Import & Explore	7 7 9
4	Analysis 4.1 Test 1: Statistical Modeling & Data Visualization	13 13 19 24
5	Summary and Conclusions	31

List of Tables

List of Figures

<Note: set up autoreferencing for figures and tables in your document>

1 Research Question and Rationale

2 Dataset Information

Column Name	Data Description
Report Year	Year that the ADC was used
Report Quarter	Quarter that the ADC was used
Ash	Ash and cement kiln dust materials
Auto Shredder Waste	Treated auto shredder waste
Construction and Demolition Waste	Processed construction and demolition wastes and materials
Compost	Compost materials
Contaminated Sediment	Contaminated sediment, dredge spoils, foundry sands
Green Material	Processed green material
Mixed	Mixtures of the other categories
Other	Before 1998, most ADC was classified in this category
Tires	Shredded tires
Sludge	Sludge and sludge-derived materials
Total	Sum of the columns Ash:Sludge

SKOTESTThis is the caption for the table 1: Summary of Data Structure

SKOTEST reference the table in text: Table 1 $\,$

3 Exploratory Data Analysis and Wrangling

3.1 Import & Explore

```
# import dataset
ADC_raw <- read.csv(".../Raw_Data/CalRecycle_ADC_raw.csv")</pre>
# explore dataset
view(ADC raw)
class(ADC_raw)
## [1] "data.frame"
colnames(ADC raw)
    [1] "Report.Year"
##
    [2] "Report.Quarter"
   [3] "Ash"
## [4] "Auto.Shredder.Waste"
    [5] "Construction.and.Demolition.Waste"
   [6] "Compost"
##
    [7] "Contaminated.Sediment"
##
    [8] "Green.Material"
##
## [9] "Mixed"
## [10] "Other"
## [11] "Tires"
## [12] "Sludge"
## [13] "Total"
dim(ADC raw)
## [1] 92 13
# per the CalRecycle website, segregation into ADC types started in 1998
# therefore, for the analysis, remove data from before 1998
class(ADC raw$Report.Year)
## [1] "integer"
ADC_data <- filter(ADC_raw, Report.Year >= 1998)
dim(ADC data)
## [1] 80 13
# explore new dataset
head(ADC data)
     Report. Year Report. Quarter
                                      Ash Auto.Shredder.Waste
## 1
            2017
                               1 32511.83
                                                     153270.6
```

```
2 37294.78
## 2
            2017
                                                      159759.7
## 3
                               3 33349.25
                                                      153342.6
            2017
## 4
            2017
                               4 22248.85
                                                      123203.5
## 5
            2016
                               1 31423.40
                                                      123193.3
## 6
            2016
                               2 45504.45
                                                      126040.9
     Construction.and.Demolition.Waste Compost Contaminated.Sediment
##
## 1
                               173548.6 6128.89
                                                                3396.36
## 2
                               199486.8 2746.22
                                                                7585.58
## 3
                               164028.4 1796.97
                                                                4280.92
## 4
                               198901.7 15993.13
                                                                2979.12
## 5
                               160446.5 15681.63
                                                               20203.18
## 6
                               144982.9 42215.62
                                                               18089.73
##
     Green.Material
                       Mixed
                                 Other
                                         Tires
                                                  Sludge
                                                             Total
## 1
           380686.2
                        0.00 71983.68 3771.40 68063.34 893360.9
## 2
           401034.3 1516.12 71066.46 5066.35 65585.25 951141.6
## 3
           362474.4 10891.73 78980.55 5323.75
                                                79967.05 894435.6
## 4
           347204.0 7964.83 56849.63 4575.75 141423.92 921344.5
## 5
           334512.7 12756.90 82081.97 3402.03 83424.85 867126.5
## 6
           310959.5 17946.71 75803.52 3616.26
                                               72882.61 858042.2
tail(ADC data)
##
      Report.Year Report.Quarter
                                      Ash Auto.Shredder.Waste
## 75
             1999
                                3 1578.70
                                                      69300.25
## 76
             1999
                                4 2718.22
                                                      63910.19
## 77
                                1 2631.85
             1998
                                                      39181.17
## 78
             1998
                                2 878.63
                                                      49391.25
## 79
                                3 2457.00
             1998
                                                      35573.00
## 80
             1998
                                4 2418.00
                                                      38495.89
##
      Construction.and.Demolition.Waste Compost Contaminated.Sediment
## 75
                                48321.13
                                               0
                                                                   0.00
## 76
                                62057.02
                                             381
                                                                  16.50
## 77
                                 2693.48
                                               0
                                                                   0.00
## 78
                                 6666.70
                                               0
                                                                   2.74
## 79
                                28278.30
                                               0
                                                                  92.17
                                               0
                                                                   0.00
## 80
                                29591.80
##
      Green.Material
                                Other
                       Mixed
                                         Tires
                                                 Sludge
                                                            Total
## 75
            349276.6
                        0.00 4695.69
                                      1265.82 66864.38 541302.6
## 76
                        0.00 6316.72 3307.48 69058.27 567918.6
            360153.2
## 77
            191066.3 3907.20 1008.27 14802.71 43391.12 298682.1
## 78
            279191.3 3602.22 3305.93 15394.54 92416.47 450849.8
## 79
            299986.8
                        0.00 2706.53 2943.31 99312.34 471349.4
            313452.3 4130.00 3767.93
                                        733.71 57511.25 450100.9
## 80
# tidy the data by gathering the type columns
ADC_gathered <- gather(ADC_data, "Type", "Quantity", Ash:Sludge) %>%
```

```
select(-Total) # remove Total column
# save the tidy dataset
write.csv(ADC_data, row.names = FALSE, file = "../Processed_Data/CalRecycle_ADC_tidy_pro
# generate summary data
ADC_summary_by_type <- ADC_gathered %>%
 group_by(Type) %>% # group the data by lakename
 filter(!is.na(Quantity)) %>% #remove the records when there are nas Quantity
 summarise(MeanQuarterlyQuantity = mean(Quantity),
            MinQuarterlyQuantity = min(Quantity),
            MaxQuarterlyQuantity = max(Quantity),
            sdQuarterlyQuantity = sd(Quantity),
            medianQuarterlyQuantity = median(Quantity))
ADC summary by year <- ADC gathered %>%
 group_by(Report.Year) %>% # group the data by year
 filter(!is.na(Quantity)) %>% #remove the records when there are nas Quantity
  summarise(MeanQuarterlyQuantity = mean(Quantity),
            MinQuarterlyQuantity = min(Quantity),
            MaxQuarterlyQuantity = max(Quantity),
            sdQuarterlyQuantity = sd(Quantity),
            medianQuarterlyQuantity = median(Quantity))
```

3.2 Create Graphs

```
# Graph 1: for 2017 data, display total by type
total_bytype_2017 <- ADC_gathered %>%
    filter(Report.Year == 2017) %>%
    group_by(Type) %>%
    summarize(Quantity = sum(Quantity))

# save 2017 dataset
write.csv(total_bytype_2017, row.names = FALSE, file = ".../Processed_Data/CalRecycle_ADC
# convert column Type into factor
class(total_bytype_2017$Type)

## [1] "character"
total_bytype_2017$Type <- as.factor(total_bytype_2017$Type)

# plot as a bar chart
total_bytype_2017_plot <-</pre>
```

```
ggplot(data=total_bytype_2017, aes(x=Type, y=Quantity)) +
geom_bar(stat="identity") +
xlab('') +
ylab("Quantity (U.S. Tons)") +
ggtitle("2017 Quantities of ADC by Type") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_x_discrete(labels = c('Ash','Auto Shredder Waste','Compost', 'Construction & I
print(total_bytype_2017_plot)
```

2017 Quantities of ADC by Type


```
# save figure
ggsave("2017ADCbytype_alltypes.jpg", total_bytype_2017_plot, path = "../Output", height
# Graph 2: faceted by Type, display spread of quarterly values by year
quarterlyvalues_byyear_plot <- ggplot(ADC_gathered) +
    geom_boxplot(aes(x = Report.Year, y = Quantity, group = Report.Year)) +
    facet_wrap(vars(Type), nrow = 5) +
    xlab("") +
    ylab("Quarterly Quantity (U.S. Tons)") +
    ggtitle("Quarterly Quantities of ADC, Grouped by Year")
print(quarterlyvalues_byyear_plot)</pre>
```

Quarterly Quantities of ADC, Grouped by Year

ggsave("QuarterlyADC_alltypes.jpg", quarterlyvalues_alltypes_plot, path = "../Output", h

4 Analysis

4.1 Test 1: Statistical Modeling & Data Visualization

Is there a significant difference in total ADC between report quarters? (i.e. 1, 2, 3, 4)

```
# create dataset with only total values, from 1995-2017
ADC_total_only <- ADC_raw %>%
  select(Report.Year, Report.Quarter, Total) # keep all columns except ADC Types
# convert column Report. Quarter into factor
class(ADC_total_only$Report.Quarter)
## [1] "integer"
ADC total only$Report.Quarter <- as.factor(ADC total only$Report.Quarter)
# save the dataset
write.csv(ADC total only, row.names = FALSE, file = "../Processed Data/CalRecycle ADC to
# perform one-way ANOVA
# assumption #0: observations are independent (cannot be tested, but assumed to be ind
# test assumption #1: normality
# null hypothesis is that the dataset is normally distributed
shapiro.test(ADC_total_only$Total[ADC_total_only$Report.Quarter == 1]) # p-value = 0.03
##
##
   Shapiro-Wilk normality test
##
## data: ADC_total_only$Total[ADC_total_only$Report.Quarter == 1]
## W = 0.90566, p-value = 0.03312
shapiro.test(ADC_total_only$Total[ADC_total_only$Report.Quarter == 2]) # p-value = 0.02
##
##
   Shapiro-Wilk normality test
##
## data: ADC_total_only$Total[ADC_total_only$Report.Quarter == 2]
## W = 0.89774, p-value = 0.02271
shapiro.test(ADC_total_only$Total[ADC_total_only$Report.Quarter == 3]) # p-value = 0.00
##
##
   Shapiro-Wilk normality test
## data: ADC_total_only$Total[ADC_total_only$Report.Quarter == 3]
## W = 0.87982, p-value = 0.00993
```

```
shapiro.test(ADC_total_only$Total[ADC_total_only$Report.Quarter == 4]) # p-value = 0.00

##

## Shapiro-Wilk normality test

##

## data: ADC_total_only$Total[ADC_total_only$Report.Quarter == 4]

## W = 0.83198, p-value = 0.001305

ADC_freq_poly <- ggplot(ADC_total_only) +
    geom_freqpoly(aes(x = Total, color = Report.Quarter)) +
    xlab("Quarterly Quantity (U.S. Tons)") +
    ylab("# of Records") +
    ggtitle("Frequency of Quarterly Quantities")

print(ADC_freq_poly) # appears to be left skewed</pre>
```

Frequency of Quarterly Quantities

qqnorm(ADC_total_only\$Total); qqline(ADC_total_only\$Total) # does not match 1:1 ratio

Try to fix departure from normality with ln of Total. Result is not improved, so kee
ADC_LogTotal <- mutate(ADC_total_only, LogTotal = log(Total))
qqnorm(ADC_LogTotal\$LogTotal); qqline(ADC_LogTotal\$LogTotal)</pre>


```
bartlett.test(ADC_LogTotal$LogTotal ~ ADC_LogTotal$Report.Quarter)

##

## Bartlett test of homogeneity of variances

##

## data: ADC_LogTotal$LogTotal by ADC_LogTotal$Report.Quarter

## Bartlett's K-squared = 1.1435, df = 3, p-value = 0.7666

# Try to fix departure from normality with 1/Total. Result is not improved, so keep no ADC_InvTotal <- mutate(ADC_total_only, InvTotal = 1/Total)

qqnorm(ADC_InvTotal$InvTotal); qqline(ADC_InvTotal$InvTotal)</pre>
```



```
bartlett.test(ADC_InvTotal$InvTotal ~ ADC_InvTotal$Report.Quarter)
##
   Bartlett test of homogeneity of variances
##
##
## data: ADC_InvTotal$InvTotal by ADC_InvTotal$Report.Quarter
## Bartlett's K-squared = 6.519, df = 3, p-value = 0.08892
# test assumption #2: equal variances among groups
# null hypothesis is that the variance is the same for the treatment groups
bartlett.test(ADC_total_only$Total ~ ADC_total_only$Report.Quarter) #p-value = 0.9308 #
##
##
   Bartlett test of homogeneity of variances
##
## data: ADC_total_only$Total by ADC_total_only$Report.Quarter
## Bartlett's K-squared = 0.44478, df = 3, p-value = 0.9308
# dataset is not normal, but does fulfill requirement for same variances. proceed with
# try non-parametric w/ post hoc, bc sample size is on the smaller end for parametric
```

ADC_quarter_kw <- kruskal.test(ADC_total_only\$Total ~ ADC_total_only\$Report.Quarter)

```
ADC_quarter_kw
##
##
   Kruskal-Wallis rank sum test
##
## data: ADC total only$Total by ADC total only$Report.Quarter
## Kruskal-Wallis chi-squared = 3.4581, df = 3, p-value = 0.3262
dunnTest(ADC_total_only$Total, ADC_total_only$Report.Quarter)
##
     Comparison
                               P.unadj
                                           P.adj
## 1
          1 - 2 -1.08778370 0.27669061 1.0000000
## 2
          1 - 3 -1.84978446 0.06434462 0.3860677
## 3
          2 - 3 -0.76200076 0.44605955 0.8921191
## 4
          1 - 4 -1.00495753 0.31491730 1.0000000
## 5
          2 - 4 0.08282617 0.93398976 0.9339898
          3 - 4 0.84482693 0.39820748 1.0000000
## 6
# plot the results
ADC_quarter_plot <- ggplot(ADC_total_only, aes(x = Report.Quarter, y = Total)) +
  geom_violin(draw quantiles = 0.5) +
  xlab('Report Quarter') +
  ylab('Quantity (U.S. Tons)') +
  ggtitle('ADC Quantities by Quarter')
print(ADC quarter plot)
```

ADC Quantities by Quarter


```
# save figure
ggsave("QuarterlyADC_violinplot.jpg", ADC_quarter_plot, path = "../Output", height = 4,
```

4.2 Test 2: Statistical Modeling & Data Visualization

Can total annual ADC be represented with a linear model?

```
# assumptions for lm (independent observation, normal distribution, equal variances am
# create dates corresponding to year & quarter combination
# Q1: Mar 31
# Q2: Jun 30
# Q3: Sep 30
# Q4: Dec 31

# create dataframe of month-date
quarters_to_dates <- data.frame("Quarter" = as.factor(1:4), "Month.Date" = c('3-31', '6-4))
# create new dataframe with dates
ADC_fulldate <- ADC_total_only %>%
    inner_join(quarters_to_dates, by = c("Report.Quarter" = "Quarter")) %>%
    unite('Quarter.End.Date', c(Report.Year, Month.Date), sep = "-", remove = FALSE)
```

```
ADC_fulldate$Quarter.End.Date <- as.Date(ADC_fulldate$Quarter.End.Date, "%Y-%m-%d")
class(ADC_fulldate$Quarter.End.Date)

## [1] "Date"

# create initial plot to visualize the data
ggplot(ADC_fulldate, aes(x = Quarter.End.Date, y = Total)) +
    geom_point() +
    xlab("") +
    ylab("ADC Quantity (U.S. Tons)") +
    ggtitle("Quarterly Quantities of ADC")</pre>
```

Quarterly Quantities of ADC


```
# create lm
ADC_date_lm <- lm(data = ADC_fulldate, Total ~ Quarter.End.Date)
ADC_date_lm # Total = 73.14*Quarter.End.Date - 190264.58

##
## Call:
## lm(formula = Total ~ Quarter.End.Date, data = ADC_fulldate)
##
## Coefficients:
## (Intercept) Quarter.End.Date</pre>
```

```
73.14
##
        -190264.58
summary(ADC_date_lm) # Adjusted R-squared: 0.4433 (date explains 44.33% of variation
##
## Call:
## lm(formula = Total ~ Quarter.End.Date, data = ADC fulldate)
##
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -366483 -153515 -45160 167108 502499
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -1.903e+05 1.160e+05 -1.64
## Quarter.End.Date 7.314e+01 8.534e+00
                                            8.57 2.69e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 198500 on 90 degrees of freedom
## Multiple R-squared: 0.4494, Adjusted R-squared: 0.4433
## F-statistic: 73.45 on 1 and 90 DF, p-value: 2.694e-13
# check normality of residuals
par(mfrow=c(2,2))
plot(ADC_date_lm) # QQ of residuals looks relatively normal
```



```
# plot data w/ model
ADC_fulldate_plot <- ggplot(ADC_fulldate, aes(x = Quarter.End.Date, y = Total)) +
    geom_abline(intercept = -190264.58, slope = 73.14) +
    geom_point() +
    xlab('') +
    ylab('Quarterly Quantity (U.S. Tons)') +
    ggtitle('Quarterly Quantities of ADC')
print(ADC_fulldate_plot)</pre>
```

Quarterly Quantities of ADC


```
# visually, model does not appear to be a great fit

# save figure
ggsave("TotalADC_plot_calculatedmodel.jpg", ADC_fulldate_plot, path = "../Output", height

# plot with loess smoother

ADC_fulldate_plot_loess <- ggplot(ADC_fulldate, aes(x = Quarter.End.Date, y = Total)) +
    geom_point() +
    geom_smooth(method = loess) +
    xlab('') +
    ylab('Quarterly Quantity (U.S. Tons)') +
    ggtitle('Quarterly Quantities of ADC')
print(ADC_fulldate_plot_loess)</pre>
```

Quarterly Quantities of ADC


```
# visually, model appears to be a great fit

# save figure
ggsave("TotalADC_plot_loess.jpg", ADC_fulldate_plot_loess, path = "../Output", height =
```

4.3 Test 3: Statistical Modeling & Data Visualization

Is there a changepoint in the Construction & Demolition quantities over time?

```
# create dataframe with dates
quarters_to_dates$Quarter <- as.integer(quarters_to_dates$Quarter)

CD_only <- ADC_data %>%
    select(Report.Year, Report.Quarter, Construction.and.Demolition.Waste) %>%
    inner_join(quarters_to_dates, by = c("Report.Quarter" = "Quarter")) %>%
    unite('Quarter.End.Date', c(Report.Year, Month.Date), sep = "-") %>%
    select(-Report.Quarter)

CD_only$Quarter.End.Date <- as.Date(CD_only$Quarter.End.Date, '%Y-%m-%d') # format column
# arrange data from oldest to newest
CD_only <- CD_only %>%
```

```
# create initial plot to visualize the data
ggplot(CD_only, aes(x = Quarter.End.Date, y = Construction.and.Demolition.Waste)) +
   geom_point() +
   xlab("") +
   ylab("C&D Quantity (U.S. Tons)") +
   ggtitle("Construction & Demolition Quarterly Quantities")
```

Construction & Demolition Quarterly Quantities


```
# check normality for C&D waste specifically
shapiro.test(CD_only$Construction.and.Demolition.Waste) # p-value = 0.4028,
inferring t

##
## Shapiro-Wilk normality test
##
## data: CD_only$Construction.and.Demolition.Waste
## W = 0.9837, p-value = 0.4028

ggplot(CD_only) +
   geom_histogram(aes(x = Construction.and.Demolition.Waste)) +
   xlab("Quarterly C&D (U.S. Tons)") +
   ylab("Count") +
```

Count of Quarterly C&D Quantities

qqnorm(CD_only\$Construction.and.Demolition.Waste); qqline(CD_only\$Construction.and.Demol

use Pettitt's test (nonparametric) to determine whether there is a shift in the cent
pettitt.test(CD_only\$Construction.and.Demolition.Waste) # change point at time 40

```
##
   Pettitt's test for single change-point detection
##
## data: CD_only$Construction.and.Demolition.Waste
## U* = 1396, p-value = 3.2e-10
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
                                40
# Run separate Mann-Kendall for each section
mk.test(CD_only$Construction.and.Demolition.Waste[1:40])
##
   Mann-Kendall trend test
##
##
## data: CD_only$Construction.and.Demolition.Waste[1:40]
## z = 1.736, n = 40, p-value = 0.08256
## alternative hypothesis: true S is not equal to O
```

```
## sample estimates:
##
                        varS
                                      tau
   150.0000000 7366.6666667
                                0.1923077
##
mk.test(CD_only$Construction.and.Demolition.Waste[41:80])
##
   Mann-Kendall trend test
##
##
## data: CD only$Construction.and.Demolition.Waste[41:80]
## z = 2.4817, n = 40, p-value = 0.01308
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
             S
                      varS
                                   tau
   214.000000 7366.666667
# Is there a second change point?
pettitt.test(CD_only$Construction.and.Demolition.Waste[41:80])
##
## Pettitt's test for single change-point detection
##
## data: CD_only$Construction.and.Demolition.Waste[41:80]
## U* = 203, p-value = 0.04614
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
                                27
##
# position 27, so 41+27 = change point at time 68
# Run separate Mann-Kendall for new section
mk.test(CD_only$Construction.and.Demolition.Waste[69:80]) # p-value = 0.9453, not likel
##
   Mann-Kendall trend test
##
##
## data: CD_only$Construction.and.Demolition.Waste[69:80]
## z = 0.068573, n = 12, p-value = 0.9453
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
              S
                        varS
                                      tau
     2.00000000 212.66666667
                               0.03030303
# Is there a third change point?
pettitt.test(CD_only$Construction.and.Demolition.Waste[69:80]) # p-value = p-value = 1.
```

##

```
## Pettitt's test for single change-point detection
##
## data: CD_only$Construction.and.Demolition.Waste[69:80]
## U* = 12, p-value = 1.261
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
# years corresponding to changepoints
changepoint1 <- CD only$Quarter.End.Date[40] # between Q4 2007 & Q1 2008 = ~ 2008-02-14
changepoint2 <- CD only$Quarter.End.Date[68] # between Q4 2014 & Q1 2015 = ~ 2015-02-14
# Add vertical lines to the original graph to represent change points
CD_plot_changepoints <- ggplot(CD_only, aes(x=Quarter.End.Date, y=Construction.and.Demo]</pre>
 geom point() +
 geom_vline(aes(xintercept=as.Date('2008-02-14')), linetype=2, colour="purple", size=1)
 geom_vline(aes(xintercept=as.Date('2015-02-14')), linetype=4, colour="blue", size=1)
 geom_text(x=as.Date('2010-1-1'), y=260000, label=stringr::str_wrap('changepoint1: Q4,)
 geom_text(x=as.Date('2017-1-1'), y=260000, label=stringr::str_wrap('changepoint2: Q4,)
 xlab('') +
 ylab('Quarterly C&D Cover (U.S. Tons)') +
 scale_y_continuous(labels = scales::comma) +
 ggtitle('Construction & Demolition Landfill Cover in CA')
print(CD_plot_changepoints)
```

Construction & Demolition Landfill Cover in CA


```
# save figure
ggsave("CD_plot_changepoints.jpg", CD_plot_changepoints, path = "../Output", height = 4,
```

5 Summary and Conclusions