Project Design Phase-II Technology Stack (Architecture & Stack)

Date	13 October 2022	
Team ID	PNT2022TMID52976	
Project Name	Estimate The Crop Yield Using Data Analytics	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	HTML, CSS, JavaScript, Bootstrap, IBM Cognos and IBM Cloud Storage
2.	Remote sensing data	The data prepared to estimate the crop yield	Python and IBM Cognos
3.	Crop yield data	Data set used to estimate the sample crop production	Kaggle API
4.	IBM Cognos	Data analytics platform and to create a database	IBM Cognos Analytics
5.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloud etc.
6.	IBM Cloud	Storage of data	IBM Block Storage, Local Filesystem, IBM DB2
7.	External API-1 Crop data detected and clustered	Purpose of External API used in the application	Object Recognition Model, Kaggle API
8.	Machine Learning Models	To estimate the Crop Production using ML models	Python, Google Colab
9.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Local, IBM Cloud.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	It empowers the farmers and to increase the	Cognos Analytics
		productivity there is need to provide the best	
		dissemination tool for their farming activities	
2.	Security Implementations	List all the security / access controls implemented, use	SHA-256, Encryptions
		of firewalls etc.	7
3.	Scalable Architecture	The estimate of crop yield is based on soil,	Python - Machine learning
		meteorological, environmental, and crop parameters	
4.	Availability	Both website and mobile application interface and	Python- Anaconda, Google Colab
		developed in local language and the content is available	
		in localized language	
5.	Performance	Multiple technologies and services that will improve	Python and other languages like HTML,
		the usability in agricultural activities	CSS, JavaScript, BootStrap.