

SSP Course Project Mid Submission

End Of Phrase Detection

MENTOR: PROF. ANIL KUMAR VUPPALA

TEAM

Srihari Bandarupalli : 2021112006

Jalluri Ram Gopal: 2021102013

Agenda

i)	INTRODUCTION	3	v)	RESULTS ON HINDI EXAMPLE	7
ii)	KEY CHALLANGES	4	vi)	TELUGU EXAMPLE	8
iii)	METHODS AND APPROACHES	5	vii)	FURTHER PLAN	9
iv)	HINDI EXAMPLE	6	viii)	REFERENCES	10

Monsoon 2023 October 31st, 2023

Introduction

- While humans naturally recognize pauses, punctuation, and intonation in a natural spoken language, computers need assistance
- In Speech to text Translation we loose all the punctuation and context which can be preserved by detecting the phrase endings

Speech-to-speech translation

Speech-to-text translation

Text-to-text translation

Speech recognition

Key Challanges

- Identifying silences in speech as potential phrase endings is a fundamental approach of End of Phrase Detection.
- But it is important to note that not all silences indicate the end of a phrase. They could be pauses for commas or full stops.
- For this differentiation, a deeper analysis of pitch contour trends is necessary.

Methods and Approaches

- Extracting information from pitch in speech is a complex process due to its noise.
- To simplify pitch contours, we employ the prosogram, which identifies nuclei of salient pitch areas and categorizes them into Low, Mid or High labels
- We try to develop rules to predict clause and sentence boundaries based on the changing trend of these pitch labels.

5

Hindi Example (20 s)

Pitch Contour

Prosogram

We have quantized the Pitch Contour into H,M and L to create a Prosogram

Observed Trends

- L -> M -> _L : Comma
- L -> H -> _M/L : Comma
- M -> H -> _M/L : Comma
- M -> L -> _M/H : Sentence Boundary
- H -> M -> _H : Sentence Boundary
- H -> L -> _M/H : Sentence Boundary

Time	Label	Trend	Prediction
2.747	M	- 1	Comma/Phrase Boundary
4.292	Н	1	Sentence Boundary
4.767	M	- 1	Comma/Phrase Boundary
5.112	Н	1	Sentence Boundary
6.147	M	- 1	Comma/Phrase Boundary
6.557	Н	1	Sentence Boundary
6.952	M	- 1	Comma/Phrase Boundary
9.092	M	1	Sentence Boundary
14.502	M	- 1	Comma/Phrase Boundary
16.892	Н	1	Sentence Boundary
19.427	М	- 1	Comma/Phrase Boundary

Observed Trend

• A rising tone for commas and a falling tone for sentence boundaries.

Telugu Example

4.784 4.929 5.034 5.034 5.034 6.6234 6.6294 7.1854 7.1

Pitch Contour

Prosogram

• We have quantized the Pitch Contour into H,M and L to create a Prosogram

Further Plan

Refining Prosogram Analysis:

 We propose a focused approach: consider trends near silence regions for punctuation identification as all rises and falls in the prosogram are not associated with punctuations.

Extending Analysis to Emotional Speech:

 We aim to apply a similar analysis to emotional speech and explore how emotional cues affect phrase boundaries and punctuation patterns.

References

Tanmai Khanna, **Ganesh Mirishkar**, **Dipti M. Sharma**, **Anil K. Vuppala**. Exploring the role of pitch in predicting clause and sentence boundaries. *R & D Showcase 2020*.

THANK YOU

TEAM

Srihari Bandarupalli : 2021112006

Jalluri Ram Gopal: 2021102013