Deep Learning for Pneumothorax Segmentation

Théo Viel, Mathieu Orhan

29 March 2020

Summary

- Introduction
- 2 Methodology
 - Data
 - Baseline
 - Training
- Proposed modifications
 - Lovász Loss
 - Spatial and channel Squeeze & Excitation (scSE)
 - Atrous Spatial Pyramid Pooling (ASPP)
 - Hypercolumns
- Discussion
 - Ablation Study
 - Conclusion

Summary

- Introduction
- 2 Methodology
 - Data
 - Baseline
 - Training
- Proposed modifications
 - Lovász Loss
 - Spatial and channel Squeeze & Excitation (scSE)
 - Atrous Spatial Pyramid Pooling (ASPP)
 - Hypercolumns
- Discussion
 - Ablation Study
 - Conclusion

Pneumothorax

Figure – Example of a positive sample. The pneumothorax area is highlighted.

Summary

- Introduction
- 2 Methodology
 - Data
 - Baseline
 - Training
- Proposed modifications
 - Lovász Loss
 - Spatial and channel Squeeze & Excitation (scSE)
 - Atrous Spatial Pyramid Pooling (ASPP)
 - Hypercolumns
- 4 Discussion
 - Ablation Study
 - Conclusion

SIIM-ACR Pneumothorax Segmentation dataset

- ullet 12000 chest radiographic images of size 1024 imes 1024
- y = 1 if the patient has pneumothorax and y = 0 otherwise
- On regions where the pneumothorax is located, the pixels i have a label $y_i = 1$, else $y_i = 0$
- Down-sampled to 2669 images of each class
- Images resized 256×256

U-Net Baseline Architecture

Figure – The baseline U-Net architecture.

Training Setup

	Parameter	Value
	Batch size	32
Global	Classification loss	BCE
Glor	Segmentation loss	BCE
	$\lambda_{\it cls}$	0.1
>	Epochs	3
Stage >	Learning rate	5e-4
S	Minimal learning rate	1e-4
っ	Epochs	40
Stage	Learning rate	5e-4
ري ا	Minimal learning rate	5e-5

Table – Main baseline hyperparameters

Summary

- Introduction
- 2 Methodology
 - Data
 - Baseline
 - Training
- Proposed modifications
 - Lovász Loss
 - Spatial and channel Squeeze & Excitation (scSE)
 - Atrous Spatial Pyramid Pooling (ASPP)
 - Hypercolumns
- 4 Discussion
 - Ablation Study
 - Conclusion

Lovász Loss - Description

Key idea

The Lovász loss [2] is a tractable surrogate for the optimisation of the Jaccard distance $d_J(A, B)$ in neural networks. It smoothly extends it to continuous values of \mathbb{R}^+ .

• Uses results from submodular analysis. A set function $\Delta: \{0,1\}^N \to \mathbb{R}$ is submodular if for all $\mathbf{A}, \mathbf{B} \in \{0,1\}^N$:

$$\Delta(A) + \Delta(B) \ge \Delta(A \cup B) + \Delta(A \cap B)$$

• $A \in \mathcal{P}(\{0,1\}^N) \mapsto d_J(A,B)$ is a submodular function

Lovász Loss - Description

- A natural way to extend d_J to continuous values is to consider its convex closure. In general, NP-Hard...
- The Lovász extension [1] makes it polynomial time
- Composed of differentiable operations efficiently implemented on a GPU

Lovász Loss - Results

Table – Influence of using Lovász and BCE losses with the baseline architecture.

Setup	$\lambda_{\it cls}$	Dice	Accuracy
Baseline (BCE)	0.1	0.583	0.828
Lovász	0.01	0.588	0.832

scSE -Description

Key idea

Spatial and channel Squeeze & Excitation (scSE) [4] is a general module that combines a **spacial** and **channel recalibration** of any feature map

scSE - Description

Figure – Architecture of the sSE and cSE blocks.

scSE - Description

Figure – Architecture of the scSE module.

scSE - Results

Table – Influence of using scSE in the U-Net decoder.

Setup	Dice	Accuracy
Baseline	0.583	0.828
scSE	0.578	0.836

ASPP - Description

Key idea

Atrous Spatial Pyramid Pooling (ASPP) is computationally efficient alternative to Pyramid Pooling that uses multiple dilated convolutions to deal with multi-scale object segmentation.

ASPP - Description

Figure – Architecture of the ASPP module and its components.

ASPP - Results

Table – Influence of using ASPP as the center U-Net block.

Setup	Dice	Accuracy
Baseline	0.583	0.828
ASPP	0.592	0.838

Hypercolumns - Description

Key idea

Hypercolumns [3] combine information from all stages of the decoder. The early stages, of **higher spacial resolution**, are helpful for **fine-grained** tasks.

Hypercolumns - Description

Figure - Adding hypercolumns to the decoder.

Hypercolumns - Results

Table – Influence of using hypercolumns in the U-Net architecture.

Setup	Dice	Accuracy
Baseline	0.583	0.828
Hypercolumns	0.585	0.842

Summary

- Introduction
- 2 Methodology
 - Data
 - Baseline
 - Training
- 3 Proposed modifications
 - Lovász Loss
 - Spatial and channel Squeeze & Excitation (scSE)
 - Atrous Spatial Pyramid Pooling (ASPP)
 - Hypercolumns
- Discussion
 - Ablation Study
 - Conclusion

Ablation Study

Lovász	ASPP	Hypercolumns	scSE	Dice	Accuracy
				0.583	0.828
✓				0.588	0.832
	\checkmark			0.592	0.838
		\checkmark		0.585	0.842
			\checkmark	0.578	0.836
✓	\checkmark			0.574	0.829
✓		\checkmark		0.586	0.829
✓			\checkmark	0.582	0.835
	\checkmark	\checkmark		0.593	0.837
	\checkmark		\checkmark	0.588	0.827
		\checkmark	\checkmark	0.579	0.836
✓	\checkmark	\checkmark		0.579	0.832
✓	\checkmark		\checkmark	0.585	0.836
✓		\checkmark	\checkmark	0.578	0.834
	\checkmark	\checkmark	\checkmark	0.574	0.840
✓	\checkmark	\checkmark	\checkmark	0.574	0.837

Conclusion

We review 4 methods applied alone and combined.

- ASPP and Hypercolumns works well alone and together
- Lovász works only alone
- scSE consistently deteriorates the dice

Insights:

- The improvements are lower than expected from papers
- Using multiple methods is often worse than using a single one

Thank you for your attention!

[1] Francis Bach et al.

Learning with submodular functions : A convex optimization perspective.

Foundations and Trends® in Machine Learning, 6(2-3):145–373, 2013.

[2] Maxim Berman and Matthew B. Blaschko.

Optimization of the jaccard index for image segmentation with the lovász hinge.

CoRR, abs/1705.08790, 2017.

[3] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik.

Hypercolumns for object segmentation and fine-grained localization, 2014.

[4] Abhijit Guha Roy, Nassir Navab, and Christian Wachinger.

Recalibrating fully convolutional networks with spatial and channel 'squeeze & excitation' blocks.

CoRR, abs/1808.08127, 2018.