Lab Class 0

Math3101/5305

Term 2, 2023

1. Write a function

that computes the first N+1 rows of *Pascal's triangle*, storing the numbers in the lower triangle of an $(N+1) \times (N+1)$ matrix b. For example, if N=5 then

$$b = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 & 0 \\ 1 & 4 & 6 & 4 & 1 & 0 \\ 1 & 5 & 10 & 10 & 5 & 1 \end{bmatrix}.$$

In general,

$$\mathtt{b[n,k]} = \binom{n-1}{k-1} \quad \text{for } 1 \le k \le n \le N+1,$$

with

$$b[n,k] = 0$$
 for $1 \le n < k \le N+1$.

Use the recurrence relation

$$b[n,k] = b[n-1,k-1] + b[n-1,k]$$
 for $2 \le k \le n \le N+1$.

Why is this approach better than using the formula

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}?$$

Note: Python programmers should put

$$b[n,k] = \binom{n}{k} \quad \text{for } 0 \le k \le n \le N,$$

since Python arrays are indexed from zero. (You can do the same in Julia if you make b an OffsetMatrix.)

2. Given a > 0 and b > 0, we define the sequences a_0, a_1, a_2, \ldots and b_0, b_1, b_2, \ldots by first putting $a_0 = a$ and $b_0 = b$, and then computing

$$a_{n+1} = \frac{1}{2}(a_n + b_n)$$
 and $b_{n+1} = \sqrt{a_n b_n}$ for $n \ge 0$.

It can be shown that both sequences converge very rapidly to a common limit, called the arithmetic-geometric mean of a and b, denoted by

$$\operatorname{agm}(a,b) = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n.$$

Gauss discovered a remarkable connection with the elliptic integral

$$I(a,b) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}},$$

namely that $2I(a,b) = \pi \operatorname{agm}(a,b)$. One consequence is that the period of oscillation of a simple pendulum of length ℓ moving under a uniform gravitational acceleration g with initial angular displacement α is

$$T = \frac{T_0}{\operatorname{agm}(1, \cos \alpha/2)}$$
 where $T_0 = 2\pi \sqrt{\frac{\ell}{g}}$.

Here, T_0 is the well-known approximation to the period obtained by linearising the ODE for the angular displacement.

(i) Write a function agm(a,b) that returns the arithmetic–geometric mean of a and b. Use the stopping criterion

$$|a_n - b_n| < (a_n + b_n)\epsilon,$$

where ϵ is the machine epsilon.

(ii) Hence plot T as a function of α , when $\ell = 3$ and g = 9.8.

Note: Python programmers should import finfo and float64 from numpy. The machine epsilon is then given by finfo(float64).eps.

3. The tangent numbers T_n arise in the Taylor expansion of the tangent function,

$$\tan \theta = \sum_{n=0}^{\infty} \frac{T_n \theta^n}{n!} \quad \text{for } |\theta| < \frac{\pi}{2}.$$

Thus,

$$T_n = (d/d\theta)^n \tan \theta|_{\theta=0},$$

and since $(d/d\theta) \tan \theta = 1 + \tan^2 \theta$ a simple induction on $n \ge 0$ shows that there exists a sequence of polynomials P_n satisfying

$$(d/d\theta)^n \tan \theta = P_n(\tan \theta)$$
 and $P_{n+1}(x) = (1+x^2)P'_n(x)$.

From $P_0(x) = x$ we see that P_n has degree n+1. Writing $P_n(x) = \sum_{k=0}^{n+1} a_{n,k} x^k$ and setting $a_{nk} = 0$ if k < 0 or k > n+1, it follows that

$$a_{n+1,k} = (k-1)a_{n,k-1} + (k+1)a_{n,k+1}$$
 with $a_{0,0} = 0$ and $a_{0,1} = 1$.

Using these relations we may compute

$$T_n = P_n(0) = a_{n,0}.$$

In fact, since $\tan \theta$ is an odd function, $t_n = 0$ if n is even, and moreover $a_{n,k} = 0$ whenever n + k is even. Write a function tangent_numbers(N) that returns an array containing the first N + 1 tangent numbers $T_0, T_1, T_2, \ldots, T_N$.

Note: to debug your code, print out the values of $a_{n,k}$ as shown below.

	k = 0	1	2	3	4	5	6
n = 0	0	1					
1	1	0	1				
2	0	2	0	2			
3	2	0	8	0	6		
4	0	16	0	40	0	24	
5	16	0	136	0	240	0	120

Matlab programmers will have to store $a_{n,k}$ as a(n+1,k+1).

Warning: the tangent numbers grow very rapidly. In fact, already $T_{25} > 2^{63} - 1$ and so cannot be represented as a standard 64-bit (signed) integer.

- **4.** The *sieve of Eratosthenes* is a classical algorithm for finding all prime numbers less than or equal to a given number N:
- 1. Create a list of all whole numbers from 1 to N.
- 2. Strike out from the list the number 1.
- 3. The next remaining number j is prime. Strike out all proper multiples of j, that is, strike out 2j, 3j, 4j,
- 4. Repeat step 3 until the next remaining number j is greater than \sqrt{N} (or equivalently, until $j^2 > N$).

For example, if N=20 the steps of the algorithm look as follows.

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20$$

 $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.20$
 $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20$
 $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20$

Here, j is shown in bold.

(i) Write a function

that returns a boolean array of length N such that isprime[j] equals true iff the number j is prime $(1 \le j \le N)$.

(ii) Hence write a second function listprimes(N) that returns an integer array consisting of all prime numbers less than or equal to N.

Note: Python programmers will find it easier to think in terms of a list of numbers from 0 to N. Start by setting isprime = empty(N+1, dtype=bool8), where empty and bool8 need to be imported from numpy.