Preliminary: partially ordered set, relation, the concept of formulas positive in a predicate ${\cal R}$

1 Foundation

1.1 Fixed points in complete lattice

Notation.

- $\cup S$: the join of a subset S of a poset.
- $\cap S$: the meet of a subset S of a poset.

Definition. (endofunction)

An endofunction on a set L is a function from L to L.

Definition. Let F be an endofunction on a poset L,

- F is **monotone** if $x \leq y$ implies $F(x) \leq F(y)$, for all x, y.
- $x \in L$ is a **pre-fixed point** of F if $F(x) \le x$; $x \in L$ is a **post-fixed point** of F if $x \le F(x)$.
- A fixed point of F is an element x that is both a pre-fixed and post-fixed point, i.e. F(x) = x. In the set of fixed points of F, the least element and the greatest element are called the least fixed point of F (denoted as f(F)) and greatest fixed point of F (denoted as f(F)).

Definition. (Complete Lattice)

A complete lattice is a poset s.t. all its subsets have a join.

Example. The power set of any set is a complete lattice with the partial relation as \subseteq .

Proposition. All subsets of a complete lattice have a meet.

Proof. Denote the complete lattice as L and consider a subset S of L. Suppose Y is the set of all lower bounds of S, i.e. $Y = \{l \in L : l \leq s, \forall s \in S\}$. we prove that the join of Y is the meet of S. Since S is a set of upper bounds of $Y, \cup Y \subseteq S, \forall s \in S$. Thus $\cup Y$ is a lower bound of S. Since Y is the set of all lower bounds of S and $\cup Y$ is the greatest one, $\cup Y = \cap S$.

Proposition. A complete lattice always has a greatest and least element.

Denote them as \top and \bot resp.

Proposition. For a complete lattice L and a monotone endofunction F on L,

• if S is an arbitrary subset of post-fixed points, $\cup S$ is also a post-fixed point.

• if S is an arbitrary subset of pre-fixed points, $\cap S$ is also a pre-fixed point.

Proof. Only prove for one side. Consider the set $Y = \{x \in S : F(x)\}$. Since L is a complete lattice, Y must have a join f s.t. $\forall x \in S, x \leq F(x) \leq f$, i.e. f is a upper bound of S, and thus $\cup S \leq f$. Because $F(\cup S)$ is a upper bound of Y, we have $f \leq F(\cup S)$. Thus $\cup S \leq f \leq F(\cup S)$.

Note that under the same setting, $\cap S$ may not be a post-fixed point.

Example. $L = \{a, b, c, d, e\}, a \le b, b \le c, b \le d, c \le e, d \le e.$ Let F(b) = a and F(x) = x for $x \ne b$. Consider the subset $\{c, d\}$, where $\cup \{c, d\} = b$.

Theorem. (Knaster-Tarski Theorem, or Fixed-point Theorem)

On a complete lattice L, a monotone endofunction $F:L\mapsto L$ has a complete lattice of fixed points. In particular the least fixed point of the function is the meet of all its pre-fixed points, and the greatest fixed point is the join of all the post-fixed points.

Proof. First part: Denote S the set of fixed points of L. Consider a subset $X \subseteq S$, and take the set Y of pre-fixed points that are also upper bounds of X:

$$Y \triangleq \{ y \in L | F(y) \le y, \, \forall x \in X, \, x \le y \}$$

Since X is a set of lower bounds for Y in L, $x \leq \cap Y$, $\forall x \in X$. Now we need to show that $\cap Y \in S$. According to the above proposition, since Y is a set of pre-fixed points, so is $\cap Y$, i.e. $F(\cap Y) \leq \cap Y$. And for all x, $x \leq \cap Y \implies x = F(x) \leq F(\cap Y) \implies F(\cap Y) \in Y$, which indicates that $\cap Y \leq F(\cap Y)$. Thus $\cap Y \in S$. Since the set of upper bounds of X in S is a subset of Y, $\cap Y$ is the least upper bound of X in S.

Second part: note that $\{l \in L | F(l) \subseteq l\}$ is the set of all pre-fixed points, and according to the proposition above,

$$F\left(\cap\{l\in L|\,F(l)\leq l\}\right)\subseteq\cap\{l\in L|\,F(l)\leq l\}$$

since F is monotone,

$$F(F(\cap \{l \in L | F(l) \leq l\})) \subseteq F(\cap \{l \in L | F(l) \leq l\})$$

which means

$$F\left(\bigcap\{l \in L | F(l) \le l\}\right) \in \{l \in L | F(l) \le l\}$$

$$\implies \bigcap\{l \in L | F(l) \le l\} \subseteq F\left(\bigcap\{l \in L | F(l) \le l\}\right)$$

and thus

$$F(\cap \{l \in L | F(l) \le l\}) = \cap \{l \in L | F(l) \le l\}$$

likewise, we can prove that

$$F(\cup \{l \in L | l \le F(l)\}) = \cup \{l \in L | l \le F(l)\}$$

and it's easy to prove that $\cap \{l \in L | F(l) \leq l\}$ is the least among all fixed points and $\cup \{l \in L | S \subseteq F(S)\}$ is the greatest.

A typical example in model checking is that $L=2^S$ and $F:2^S\mapsto 2^S,$ where S is the set of states.

1.2 Constructive Solution

First see section 2.8 of [1]. Please pay attention to the recommended exercise.

Example. An example of cocontinuous but not continuous function:

$$F(x) = \begin{cases} 0 & x \in [0, 1) \\ 1 & x \in [1, 2] \end{cases}$$

note that $F\left(\bigcup_{n\in\mathbb{N}}\left\{1-\frac{1}{n+1}\right\}\right)=F(1)=1\neq\bigcup_{n\in\mathbb{N}}F\left(1-\frac{1}{n+1}\right)=0$. The case for continuous but not cocontinuous is similar.

Continuity/Cocontinuity Theorem is the key to the approximate semantics of the least and greatest fixed point operator μ and ν in modal mu-calculus.

Proof. Prove F is continuous $\implies \mathbf{lfq}(F) = \bigcup_{n>0} F^n(\bot)$: note that

$$\perp \leq F(\perp) \leq F^2(\perp) \leq \dots$$

is a sequence of increasing points, and since F is continuous, we know that

$$F\left(\bigcup_{n\geq 0}F^n(\bot)\right) = \bigcup_{n\geq 1}F^n(\bot) = \bigcup_{n\geq 0}F^n(\bot)$$

i.e. $\bigcup_{n\geq 0} F^n(\bot)$ is a fixed point. Because

$$\bot \leq \mathtt{lfq}(F) \implies F^n(\bot) \leq \mathtt{lfq}(F), \, \forall n \in \mathbb{N} \implies \bigcup_{n \geq 0} F^n(\bot) \leq \mathtt{lfq}(F)$$

there must be $1fq(F) = \bigcup_{n>0} F^n(\bot)$. The other proof is similar.

2 Modal μ -calculus

Please refer to [2]. The following is just a note.

2.1 syntax

Syntactically there are 3 sets: the set of action symbols $\mathsf{Act} = \{a, b, \dots\}$, the set of propositions $\mathsf{Prop} = \{p_i | i \in \mathbb{N}\}$ and the set of variables $\mathsf{Var} = \{X, Y, Z, \dots\}$ whose intended meanings are sets of states.

2.2 Denotational Semantics

The denotational semantics of a formula in a transition system is a set of states satisfying the formula(note that a variable is also a formula). Formally, given a transition system $\mathcal{M} = \langle S, \{R_a\}_{a \in Act}, \{P_i\}_{i \in \mathbb{N}} \rangle$ (S is a set of states, $R_a \subseteq S \times S$ defining transitions for action a and P_i is the set of states where p_i holds) and a valuation $\mathcal{V} : \text{Var} \to 2^S$, the semantics is as follow(α, β, ϕ are formulas):

$$\begin{split} & [\![X]\!]_{\mathcal{V}}^{\mathcal{M}} = \mathcal{V}(X), \, \forall X \in \mathtt{Var} \\ & [\![p_i]\!]_{\mathcal{V}}^{\mathcal{M}} = P_i, \, [\![\neg p_i]\!]_{\mathcal{V}}^{\mathcal{M}} = S - P_i, \, \forall p_i \in \mathtt{Prop} \\ & [\![\alpha \vee \beta]\!]_{\mathcal{V}}^{\mathcal{M}} = [\![\alpha]\!]_{\mathcal{V}}^{\mathcal{M}} \cup [\![\beta]\!]_{\mathcal{V}}^{\mathcal{M}} \end{split}$$

For a valuation \mathcal{V} , denote $\mathcal{V}[X \mapsto T]$ the valuation that maps X to $T \subseteq S$ while preserving the mappings of \mathcal{V} elsewhere. If ϕ is a formula containing variable X,

$$\llbracket \mu X.\phi \rrbracket_{\mathcal{V}}^{\mathcal{M}} = \bigcap \{ T \subseteq S : \llbracket \phi \rrbracket_{\mathcal{V}[X \mapsto T]}^{\mathcal{M}} \subseteq T \}$$
$$\llbracket \nu X.\phi \rrbracket_{\mathcal{V}}^{\mathcal{M}} = \bigcup \{ T \subseteq S : T \subseteq \llbracket \phi \rrbracket_{\mathcal{V}[X \mapsto T]}^{\mathcal{M}} \}$$

Note that for any formula ϕ where the variable X occurs positively, $\llbracket \phi \rrbracket_{\mathcal{V}[X \mapsto T]}^{\mathcal{M}} = F(T) : \mathcal{P}(S) \mapsto \mathcal{P}(S)$ is a monotone endofunction on the complete lattice $\mathcal{P}(S)$. So actually,

$$\begin{split} & [\![\mu X.\phi]\!]_{\mathcal{V}}^{\mathcal{M}} = \mathtt{lfq}([\![\phi]\!]_{\mathcal{V}[X \mapsto T]}^{\mathcal{M}}) \\ & [\![\nu X.\phi]\!]_{\mathcal{V}}^{\mathcal{M}} = \mathtt{gfq}([\![\phi]\!]_{\mathcal{V}[X \mapsto T]}^{\mathcal{M}}) \end{split}$$

For convenience, we use $\mathcal{M}, \mathcal{V}, s \vDash \phi$ instead of $s \in \llbracket \phi \rrbracket_{\mathcal{V}}^{\mathcal{M}}$. When $S = \llbracket \phi \rrbracket_{\mathcal{V}}^{\mathcal{M}}$, we simply omit s and write $\mathcal{M}, \mathcal{V} \vDash \phi$.

Example. $\mathcal{M}, \mathcal{V}, s_0 \vDash \mu X.[a]X$ means that all sequences of a-transitions starting at s_0 are finite. To see this, first note that

$$\llbracket \mu X.[a]X \rrbracket_{\mathcal{V}}^{\mathcal{M}} = \bigcap \{T \subseteq S : \{s \in S : \forall s'.(s,s') \in R_a \implies s' \in T\} \subseteq T\}$$

Proof by contradiction. Suppose there are one or more infinite sequences of a-transitions starting with s_0 , and consider a set Y obtained by removing all states in these infinite sequences from S. Then it can be showed that

$$Y \in \{T \subseteq S : \{s \in S : \forall s'.(s,s') \in R_a \implies s' \in T\} \subseteq T\}$$

This means $s_0 \in Y$, which contradicts with the construction of Y.

And $\mathcal{M}, \mathcal{V}, s_0 \vDash \nu X.[a]X$ means that there is an infinite sequence of a-transitions starting at s_0 .

$$\llbracket \nu X.[a]X \rrbracket_{\mathcal{V}}^{\mathcal{M}} = \bigcup \{ T \subseteq S : T \subseteq \{ s \in S : \exists s'.(s,s') \in R_a \land s' \in T \} \}$$

Then there exists a set $Y \in \{T \subseteq S : T \subseteq \{s \in S : \exists s'.(s,s') \in R_a \land s' \in T\}\}$ s.t. $s_0 \in Y \subset \{s \in S : \exists s'.(s,s') \in R_a \land s' \in Y\}$. Thus there is an infinite sequence of a-transitions starting from s_0 .

2.3 approximate

By using the fact that

$$\bigcup_{i\in\mathbb{N}}(A_i\cap B_i)=\bigcup_{i\in\mathbb{N}}A_i\cap\bigcup_{i\in\mathbb{N}}B_i$$

for any increasing sequence A_i and B_i , we can show that $F(T) = \llbracket \phi \rrbracket_{\mathcal{V}[X \mapsto T]}^{\mathcal{M}}$ is a continuous and cocontinuous function for any formula ϕ where X occurs positively, so

$$\begin{split} &\bigcup_{i\in\mathbb{N}}F^i(\bot) = \mathtt{lfq}(F(T)) = [\![\mu X.\phi]\!]_{\mathcal{V}}^{\mathcal{M}} \\ &\bigcap_{i\in\mathbb{N}}F^i(\top) = \mathtt{gfq}(F(T)) = [\![\nu X.\phi]\!]_{\mathcal{V}}^{\mathcal{M}} \end{split}$$

So for a natural number k, we can let $\mu^k X.\phi$ be formulas, with the semantics

$$\begin{split} & \llbracket \mu^0 X. \phi \rrbracket_{\mathcal{V}}^{\mathcal{M}} = F^0(\bot) = \varnothing \\ & \llbracket \mu^k X. \phi \rrbracket_{\mathcal{V}}^{\mathcal{M}} = F^k(\bot) = \llbracket \phi \rrbracket_{\mathcal{V}[X \mapsto \llbracket \mu^{k-1} X. \phi \rrbracket_{\mathcal{V}}^{\mathcal{M}}]}^{\mathcal{M}} \end{split}$$

In a similar way, we can let $\nu^k X.\phi$ $(k \in \mathbb{N})$ be formulas:

$$\begin{split} &\llbracket \nu^0 X. \phi \rrbracket_{\mathcal{V}}^{\mathcal{M}} = F^0(\top) = S \\ &\llbracket \nu^k X. \phi \rrbracket_{\mathcal{V}}^{\mathcal{M}} = F^k(\top) = \llbracket \phi \rrbracket_{\mathcal{V}[X \mapsto \llbracket \nu^{k-1} X. \phi \rrbracket_{\mathcal{V}}^{\mathcal{M}}]}^{\mathcal{M}} \end{split}$$

and have

$$\mathcal{M}, \mathcal{V}, s \vDash \mu X. \phi \iff \mathcal{M}, \mathcal{V}, s \vDash \mu^k X. \phi \text{ for some } k \in \mathbb{N}$$

 $\mathcal{M}, \mathcal{V}, s \vDash \nu X. \phi \iff \mathcal{M}, \mathcal{V}, s \vDash \nu^k X. \phi \text{ for any } k \in \mathbb{N}$

Besides, we can prove the substitution theorem; i.e. for a formula $\phi(X)$ with a variable X and a formula Y,

$$\llbracket \phi(Y/X) \rrbracket_{\mathcal{V}}^{\mathcal{M}} = \llbracket \phi \rrbracket_{\mathcal{V}[X \mapsto \llbracket Y \rrbracket^{\mathcal{M}}]}^{\mathcal{M}}$$

Also, note that

$$\begin{split} & [\![\texttt{True}]\!]_{\mathcal{V}}^{\mathcal{M}} = [\![p_i \vee \neg p_i]\!]_{\mathcal{V}}^{\mathcal{M}} = S \\ & [\![\texttt{False}]\!]_{\mathcal{V}}^{\mathcal{M}} = [\![p_i \wedge \neg p_i]\!]_{\mathcal{V}}^{\mathcal{M}} = \varnothing \end{split}$$

thus we can prove that, syntactically speaking.

$$\mu^0 X.\phi \equiv {\tt False}$$
 $\mu^k X.\phi \equiv \phi(\mu^{k-1} X.\phi/X)$

and

$$u^0 X. \phi \equiv \text{True}$$

$$\nu^k X. \phi \equiv \phi(\nu^{k-1} X. \phi/X)$$

3 Fixed Point Logics

This section is a more friendly overview of the preliminary part in [3]. Fixed point logics are extensions of first-order logic with fixed point operators.

Let $\phi(R, \mathbf{x})$ be a FOL formula containing a relation symbol R of arity m and a tuple of free variables \mathbf{x} whose length is m. Note that \mathbf{x} is unnecessarily the argument tuple of R and there can be free variables other than \mathbf{x} . Suppose $M = (\Delta, \sigma, \mathcal{I})$ is a model and v a variable assignment interpreting all symbols in ϕ other than R and \mathbf{x} . Consider an endofunction

$$F(P) = \{ \mathbf{a} \in \Delta^m | M, R^{\mathcal{I}} = P, v[\mathbf{x} \mapsto \mathbf{a}] \models \phi \}$$

where $P \in \Delta^m$ is an interpretation of R. Under the partial order of \subseteq , Δ^m is a complete lattice. And it can be proved that, if R occurs in ϕ positively, F is a monotone (or see Lyndon's Theorem), continuous and cocontinuous function.

Now we can add a new kind of formulas; if R is a m-ary relation variable, \mathbf{x} is a m-tuple of first order variables, \mathbf{t} is a m-tuple of terms and ϕ is a formula in which R occurs only positively, then

$$[\mu_{R,\mathbf{x}}.\phi](\mathbf{t})$$
$$[\nu_{R,\mathbf{x}}.\phi](\mathbf{t})$$

are formulas, where we say R and \mathbf{x} are bound. The semantics are:

$$\begin{split} M,v &\vDash [\mu_{R,\mathbf{x}}.\phi](\mathbf{t}) \iff \mathbf{t}^{\mathcal{I}}[v] \in \mathtt{lfq}(F) = \bigcup_{i \in \mathbb{N}} F^i(\bot) \\ M,v &\vDash [\nu_{R,\mathbf{x}}.\phi](\mathbf{t}) \iff \mathbf{t}^{\mathcal{I}}[v] \in \mathtt{gfq}(F) = \bigcap_{i \in \mathbb{N}} F^i(\top) \end{split}$$

where $\perp \doteq \varnothing$, $\top \doteq \Delta^m$ and F is defined as above. Using similar ideas of approximation in modal μ -calculus, $[\mu_{R,\mathbf{x}}^k.\phi](\mathbf{t})$ and $[\nu_{R,\mathbf{x}}^k.\phi](\mathbf{t})$ ($k \in \mathbb{N}$) are formulas with the semantics

$$M, v \vDash [\mu_{R, \mathbf{x}}^k.\phi](\mathbf{t}) \iff \mathbf{t}^{\mathcal{I}}[v] \in F^k(\bot)$$
$$M, v \vDash [\nu_{R, \mathbf{x}}^k.\phi](\mathbf{t}) \iff \mathbf{t}^{\mathcal{I}}[v] \in F^k(\top)$$

We can regard $[\mu_{R,\mathbf{x}}^k.\phi]$ and $[\nu_{R,\mathbf{x}}^k.\phi]$ as relation symbols with arity m interpreted as $F^k(\bot)$ and $F^k(\top)$, respectively. Since

$$M, v, R^{\mathcal{I}} = T^{\mathcal{I}} \models \phi \iff M, v \models \phi[T/R]$$

where T is a relation symbol interpreted in M. Thus, we have(similarly for ν)

$$\begin{split} M, v &\vDash \phi([\mu_{R, \mathbf{x}}^k.\phi]/R, \mathbf{t}) \iff M, v, R^{\mathcal{I}} = F^k(\bot) \vDash \phi(R, \mathbf{t}) \\ \iff \mathbf{t} &\in F(F^k(\bot)) \iff M, v \vDash [\mu_{R, \mathbf{x}}^{k+1}.\phi](\mathbf{t}) \end{split}$$

Finally, syntactically we have

$$\begin{split} [\mu^0_{R,\mathbf{x}}.\phi](\mathbf{t}) &\equiv \mathtt{False} \\ [\mu^{k+1}_{R,\mathbf{x}}.\phi](\mathbf{t}) &\equiv \phi([\mu^k_{R,\mathbf{x}}.\phi]/R,\mathbf{t}) \end{split}$$

and

$$[
u_{R,\mathbf{x}}^0.\phi](\mathbf{t}) \equiv \mathsf{True}$$

 $[
u_{R,\mathbf{x}}^{k+1}.\phi](\mathbf{t}) \equiv \phi([
u_{R,\mathbf{x}}^k.\phi]/R,\mathbf{t})$

References

- [1] D. Sangiorgi, *Introduction to bismulation and coinduction*. Cambridge University Press, 2011.
- [2] J. Bradfield and I. Walukiewicz, "The mu-calculus and model-checking." https://www.labri.fr/perso/igw/Papers/igw-mu.pdf. (Accessed on 11/22/2018).
- [3] A. Dawar and Y. Gurevich, "Fixed point logics," *Bulletin of Symbolic Logic*, vol. 8, pp. 65–88, 2002.