Tut 3: Logistic Regression

May/June 2022

LR with numeric inputs $\mathbf{x} = (x_1, \dots, x_p)$ only:

$$\mathbb{P}(Y=1|\boldsymbol{x}) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p))}$$

LR with a K-level $(K \geq 2)$ categorical input / qualitative predictor X_i :

$$\mathbb{P}(Y=1|\mathbf{X}) = \frac{1}{1 + \exp(-(\beta_0 + \dots + \beta_i^{(2)} x_i. \text{level} 2 + \dots + \beta_i^{(K)} x_i. \text{level} K + \dots))}$$

where x_i .level $k = \begin{cases} 1, & x_i = \text{level } k, \\ 0, & \text{otherwise} \end{cases}$, $k = 2, \dots, K$.

$$Odds = \frac{\mathbb{P}(Y=1)}{\mathbb{P}(Y=0)} = \frac{\mathbb{P}(Y=1)}{1 - \mathbb{P}(Y=1)} = \frac{\frac{\exp(\dots)}{\exp(\dots) + 1}}{1 - \frac{\exp(\dots)}{\exp(\dots) + 1}}$$
$$= \frac{\exp(\dots)}{\exp(\dots) + 1 - \exp(\dots)} = \exp(\dots) = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p).$$

Let k = 2, ..., K. Odds Ratio for numeric value:

$$OR = \frac{Odds(Y = 1|X_i = b)}{Odds(Y = 1|X_i = a)} = \frac{\exp(\cdots + \beta_i \cdot b + \dots)}{\exp(\cdots + \beta_i \cdot a + \dots)} = \exp(\beta_i(b - a)).$$

Odds Ratio for "one-hot-encoded" categorical value:

$$OR = \frac{Odds(Y = 1|x_i.\text{level}k = 1)}{Odds(Y = 1|x.\text{level}k = 0)} = \frac{\exp(\dots + \beta_i^{(k)} \cdot 1 + \dots)}{\exp(\dots + \beta_i^{(k)} \cdot 0 + \dots)} = \exp(\beta_i^{(k)}).$$

- 1. (a) On average, what fraction of people with an odds of 0.37 of defaulting on their credit card payment will default? [Answer: 27%]
 - (b) Suppose that an individual has a 16% chance of defaulting on her credit card payment. What are the odds that she will default? [Answer: 19%]

2. The following table shows the results from logistic regression for ISLR **Weekly** dataset, which contains weekly returns of stock market (1 for up; 0 for down), based on predictors Lag1 until Lag5 and Volume.

	Coefficient	Std. error	Z-statistic	P-value
Intercept	0.2669	0.0859	3.11	0.0019
Lag1	-0.0413	0.0264	-1.56	0.1181
Lag2	0.0584	0.0269	2.18	0.0296
Lag3	-0.0161	0.0267	-0.60	0.5469
Lag4	-0.0278	0.0265	-1.05	0.2937
Lag5	-0.0145	0.0264	-0.55	0.5833
Volume	-0.0227	0.0369	-0.62	0.5377

(a	ι	Discuss	how	each	predictor	${\it affects}$	the	weekly	${\rm returns}$	of	stock	market
----	---------	---------	-----	------	-----------	-----------------	-----	--------	-----------------	----	-------	--------

(b) With significance level of 5%, write a reduced model for predicting the returns.

3. Suppose that the **Default** dataset is depending on four predictors, Balance, Income, Student and City. The results from logistic regression is shown below.

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
Balance	0.0057	0.0002	24.74	< 0.0001
Income	0.0030	0.0082	0.37	0.7115
Student [Yes]	-0.6468	0.2362	-2.74	0.0062
$City_B$	0.1274	0.0136	10.52	0.0003
$City_C$	0.0331	0.0087	5.64	0.0011

(a)	Compare the odds and probability of default between a customer with balance 10,000 and 5,000.						
(b)	Compare the odds and probability of default between a student and a non-student.						
(c)	Compare the odds and probability of default among different cities. [Hint: To "compare" two odds, the best way is to find the odds ratio.]						

4. Suppose we collect data for a group of students in a class with variables $X_1 =$ hours studied, $X_2 =$ previous GPA, Y = receive an A (1 for yes). We fit a logistic regression and produce estimated coefficient, $\hat{\beta}_0 = -6$, $\hat{\beta}_1 = 0.05$ and $\hat{\beta}_2 = 1$.

(a)	Estimate the probability that a student who studied for 40 hours with previous GPA of 3.5 gets an A in the class. [Answer: 0.3775]
(= \	
(b)	How many hours would the student in (a) need to study to have 50% chance of getting an A in the class? [Answer: 50]