Total Marks: 80

Time Duration: 3Hr

N.B.:1) Question no.1 is compulsory.

2) Attempt any three questions from Q.2to Q.6.

3) Figures to the right indicate full marks.

Maximum

Marks

[5]

[5]

Q1. a) Find the Laplace transform of $\frac{1}{t}e^{-t}\sin t$.

b) Find the inverse Laplace transform of $\frac{1}{\sqrt{2s+1}}$.

c) Show that the function $f(z) = \sinh z$ is analytic and find f'(z) in terms of z.

[5]

d) Find the Fourier series for f(x) = x in $(0, 2\pi)$.

[5]

Q2. a) Use Laplace transform to prove $\int_0^\infty e^{-t} \frac{\sin^2 t}{t} dt = \frac{1}{4} \log 5$

[6]

If $\{f(k)\}=\begin{cases} 4^k, k<0\\ 3^k, k\geq 0 \end{cases}$, find $Z\{f(k)\}$.

[6]

c) Show that the function $u = \cos x \cosh y$ is a harmonic function. Find its harmonic conjugate and corresponding analytic function,

[8]

O3. a) Find the equation of the line of regression of Y on X for the following data.

[6]

X	5	6 7 7 3	4.8.0	9	10	11
Y	11	14 014 8	15	12	17	16

b) Find the bilinear transformation which maps the points 1, -i, 2 on z-plane onto 0, 2, -i respectively of w-plane.

 $\leq \frac{\pi}{2}$ [8]

Find half range sine series for $f(x) = \begin{cases} x & 0 < x < \frac{\pi}{2} \\ \pi - x & \frac{\pi}{2} < x < \pi \end{cases}$, Hence find the sum of

[0]

[6]

$$\sum_{(2n-1)}^{\infty} \frac{1}{n^4}$$

Q4. a) Find the inverse Laplace transform by using convolution theorem $\frac{1}{(s-a)(s+a)^2}$.

[6]

b) Calculate the coefficient of correlation between X and Y from the following data

[6]

D)	Calculate in	coemici	ent of confeati	on between A	and I nom	the followin	ig uata.
70	X - X	8	85	8373	5	6	2
5.3	Y	3	450	10	13	22	8

[8]

c) Find the inverse Z-transform of

i)
$$\frac{1}{(z-a)^2} |z| < a$$

ii)
$$\frac{1}{(z-3)(z-2)} |z| > 3$$

Q5.a) Using Laplace transform evaluate $\int_0^\infty e^{-t} (1 + 2t - t^2 + t^3) H(t-1) dt$. [6]

b) Show that set of functions $\cos x$, $\cos 2x$, $\cos 3x$ Is a set of orthogonal functions over $[-\pi, \pi]$. Hence construct a set of orthonormal functions.

c) Solve using Laplace transform $(D^3 - 2D^2 + 5D)y = 0$, with y(0) = 0, y'(0) = 0, y''(0) = 1.

Q6.a) Find the complex form of Fourier series for f(x) = 2x in $(0, 2\pi)$.

b) If f(z) and $\overline{f(z)}$ are both analytic, prove that f(z) is constant.

c) Fit a curve of the form $y = ab^x$ to the following data:

X	1	2	3 4 5 5 6
Y	151	100	61 \ \ 50 \ 20 \ 8
