

Machine learning (II)

Contents

- Recap
- Clustering
 - K-Means
 - Agglomerative Hierarchical Clutering
 - Evaluation
- Association rules

Contents

- Recap
- Clustering
 - K-Means
 - Agglomerative Hierarchical Clutering
 - Evaluation
- Association rules

Recap

- Main components of machine learning
 - Training instances
 - ▶ A.k.a. corpus or dataset
 - Set of examples used to train (teach) the system
 - Features
 - Attributes that represent each example
 - Algorithm
 - Algorithm that learns from the features extracted for each training instance

Recap

- Two main groups of algorithms
 - Supervised Learning
 - Training instances are labelled
 - ▶ There is a "special" attribute: the *class*
 - Approaches
 - Classification
 - □ Regression
 - Unsupervised Learning
 - Training instances without labels
 - Approaches
 - □ Clustering
 - □ Association rules

Contents

- Recap
- Clustering
 - K-Means
 - Agglomerative Hierarchical Clutering
 - Evaluation
- Association rules

- Clustering is a data segmentation technique
- One of the most widespread descriptive methods of data analysis
- Divides a collection of disorganised objects (instances) into groups (clusters) with respect to a set of properties (features)
- ▶ A cluster is a collection of objects which are similar between them and different to objects of other clusters
- Unsupervised learning: no predefined classes!

Applications

- Marketing
 - Finding customer profiles that make a cluster
 - ▶ Business can develop a specific strategy for each cluster
- Retail
 - Divide all stores of a particular company into groups of establishments
 - Type of customer, turnovers, etc.
- Medical Science
 - Discover a group of patients suitable for particular treatment
 - Age, type of disease, etc.
- Sociology
 - Divide the population into groups of individuals who are homogeneous
 - ▶ Social demographics, lifestyle, expectations, etc.

Distance Measures

- It is necessary a numerical measure that indicates how different two objects are
- The lower its value the more similar the objects are
- Given two data objects X_1 and X_2 , the distance between X_1 and X_2 is a real number denoted by $d(X_1, X_2)$

- Distance Measures
 - Common distance measures between data objects
 - Euclidean distance

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$

Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Minkowski distance

$$d(i,j) = ((x_{i1} - x_{j1})^q + (x_{i2} - x_{j2})^q + \dots + (x_{ip} - x_{jp})^q)^{1/q}$$

What is the natural grouping among these objects?

- What is the natural grouping among these objects?
 - Clustering is a subjective task
 - ▶ Features and distance metrics are important!

Types

- Partitional
 - Objects are partitioned into non-overlapping groups
 - ▶ Each object belongs to a group only
- Hierarchical
 - Objects are partitioned into nested groups that are organised as a hierarchical tree

Types

Algorithms

- As in classification and regression, there are different algorithms
 - K-means
 - Expectation Maximisation (EM)
 - Cobweb
 - **)** ...
- In some of them, it is necessary to set in advance the number of clusters

Contents

- Recap
- Clustering
 - ▶ K-Means
 - Agglomerative Hierarchical Clutering
 - Evaluation
- Association rules

K-means

- Most widely used clustering method
- **Partitions** n units into $k \le n$ distinct clusters
- ▶ The number of clusters k must be specified
- Each cluster is associated with a centroid
 - ▶ The centroid is the mean of the points in the cluster
 - ▶ Each point is assigned to the cluster with the closest centroid
 - ▶ Initial k centroids are chosen randomly
- ▶ Goal: minimizing the within-cluster sum of squares (WCSS)

$$\arg \min_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2}$$

- K-means
 - Two common initialization approaches
 - ▶ Randomly choose k units from the dataset
 - ☐ Use them as the initial cluster means
 - \blacktriangleright Randomly assign one of the k clusters to each unit
 - □ Proceed to the update step
 - □ Compute initial means as the centroids of the clusters' randomly assigned units
 - ☐ This partition method is preferred generally

K-means

- Algorithm
 - ▶ The algorithm is implemented in four steps
 - □ Step I: partition objects into k non-empty subsets
 - □ Step 2: compute seed points as the centroids of the clusters
 - □ Step 3: assign each object to the cluster with the nearest seed point
 - □ Step 4: go back to Step 2 and stop when no more new assignments
 - ▶ There is no guarantee that it converges to the global optimum
 - Final result may depend on how is the starting of the algorithm

- K-means
 - Algorithm

https://youtu.be/513Ei69I40s

Contents

- Recap
- Clustering
 - K-Means
 - Agglomerative Hierarchical Clutering
 - Evaluation
- Association rules

- Agglomerative Hierarchical Clustering
 - Produces a sequence of nested partitions into n clusters
 - These nested partitions are of increasing heterogeneity
 - General form of the algorithm
 - ▶ Step I: objects are the initial clusters
 - Step 2: calculate the distance between the clusters
 - Step 3: merge the two closest clusters together and replace with a single cluster
 - Step 4: repeat Step 2 and the complete process until a single cluster containing all the objects remains

- Agglomerative Hierarchical Clustering
 - The tree generated by AHC is also known as dendogram

- Agglomerative Hierarchical Clustering
 - The tree can be cut to get clusters

Contents

- Recap
- Clustering
 - K-Means
 - Agglomerative Hierarchical Clutering
 - **Evaluation**
- Association rules

Evaluation

- Not trivial: there is no truth
 - No true labels
 - No true response

Evaluation

- Measure of compactness
 - Diameter

$$Dia_i = \max_{x,y \in C_i} d(x,y)$$

x, y: Objects

C: Cluster

d: Distance (objects)

Evaluation

- Measure of separation
 - ▶ Intercluster Distance

Evaluation

Dunn's Index

Let's practice!

https://bit.ly/3wxTdmn

Contents

- Recap
- Clustering
 - K-Means
 - Agglomerative Hierarchical Clutering
 - Evaluation
- Association rules

- Works with unlabelled data (such as clustering)
- Objective: to obtain dependency rules to predict the occurrence of an item based on the occurrence of other items
- Typically used for affinity analysis (market basket analysis)
- If we know the purchases made by all customers during a period, we can find relationships between those products.

```
IF cheese AND milk THEN bread (probability = 0.7)
```

We start from a set of instances, each with a set of elements of a collection

Set of instances	ld	I tems	Rules discovered	
	- 1	bread, soda, milk	$ \Rightarrow \begin{cases} \{\text{milk}\} \rightarrow \{\text{soda}\} \\ \{\text{diaper, milk}\} \rightarrow \{\text{beer}\} \end{cases} $	$\{\text{milk}\} \rightarrow \{\text{soda}\}$ $\{\text{diaper, milk}\} \rightarrow \{\text{beer}\}$
	2	beer, bread		
	3	beer, soda, diapers, milk		
	4	beer, bread, diapers, milk		
	5	soda, diaper, milk		

Application examples

- Management of a supermarket
 - Objective
 - □ Identify the items that are usually purchased together by customers
 - Approach
 - □ Process the point-of-sale data collected at checkouts to find dependencies between the items
 - Classic example
 - ☐ The parable of diapers and beer
 - ☐ If a customer buys diapers and milk, they are very likely to buy beer

Application examples

- Inventory management
 - Objective
 - □ A repair company wants to anticipate the nature of repairs to its products
 - □ Keep service vehicles equipped with the right components to reduce the number of visits to a household
 - Approach
 - □ Process data on tools and components needed in previous repairs at different consumer locations
 - □ Discovering the co-occurrence of patterns

David Tomás Díaz

