Sequential circuit design

- In sequential circuit design, we turn some description into a working circuit
 - We first make a state table or diagram to express the computation
 - Then we can turn that table or diagram into a sequential circuit

Sequence recognizers

- A sequence recognizer is a special kind of sequential circuit that looks for a special bit pattern in some input
- The recognizer circuit has only one input, X
 - One bit of input is supplied on every clock cycle
 - This is an easy way to permit arbitrarily long input sequences
- There is one output, Z, which is 1 when the desired pattern is found
- Our example will detect the bit pattern "1001":

Inputs: 11100110100100110...
Outputs: 00000100001001...

 A sequential circuit is required because the circuit has to "remember" the inputs from previous clock cycles, in order to determine whether or not a match was found

Step 1: Making a state table

- The first thing you have to figure out is precisely how the use of state will help you solve the given problem
 - Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs
 - Sometimes it is easier to first find a state diagram and then convert that to a table
- This is usually the most difficult step. Once you have the state table,
 the rest of the design procedure is the same for all sequential circuits

A basic state diagram

- What state do we need for the sequence recognizer?
 - We have to "remember" inputs from previous clock cycles
 - For example, if the previous three inputs were 100 and the current input is 1, then the output should be 1
 - In general, we will have to remember occurrences of parts of the desired pattern—in this case, 1, 10, and 100
- We'll start with a basic state diagram:

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Overlapping occurrences of the pattern

- What happens if we're in state D (the last three inputs were 100), and the current input is 1?
 - The output should be a 1, because we've found the desired pattern
 - But this last 1 could also be the start of another occurrence of the pattern! For example, 1001001 contains *two* occurrences of 1001
 - To detect overlapping occurrences of the pattern, the next state should be B.

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Filling in the other arrows

- Two outgoing arrows for each node, to account for the possibilities of X=0 and X=1
- The remaining arrows we need are shown in blue. They also allow for the correct detection of overlapping occurrences of 1001.

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first bit (1) of the desired pattern. We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Finally, making the state table

Remember how the state diagram arrows correspond to rows of the state table:

Present		Next	
State	Input	State	Output
Α	0	Α	0
A	1	В	0
В	0	C	0
В	1	В	0
C	0	D	0
С	1	В	0
D	0	Α	0
D	1	В	1

Sequential circuit design procedure

Step 1:

Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs. (It may be easier to find a state diagram first, and then convert that to a table)

<u>Step 2:</u>

Assign binary codes to the states in the state table, if you haven't already. If you have n states, your binary codes will have at least $\lceil \log_2 n \rceil$ digits, and your circuit will have at least $\lceil \log_2 n \rceil$ flip-flops

Step 3:

For each flip-flop and each row of your state table, find the flip-flop input values that are needed to generate the next state from the present state. You can use flip-flop excitation tables here.

Step 4:

Find simplified equations for the flip-flop inputs and the outputs.

<u>Step 5:</u>

Build the circuit!

Step 2: Assigning binary codes to states

- We have four states ABCD, so we need at least two flip-flops Q_1Q_0
- The easiest thing to do is represent state A with Q_1Q_0 = 00, B with 01, C with 10, and D with 11
- The state assignment can have a big impact on circuit complexity, but we won't worry about that too much in this class

Present		Next	
State	Input	State	Output
Α	0	A	0
A	1	В	0
В	0	C	0
В	1	В	0
C	0	D	0
C	1	В	0
D	0	Α	0
D	1	В	1

Pres	sent		Next		
Sto	ate	Input	Sto	ate	Output
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Step 3: Finding flip-flop input values

- Next we have to figure out how to actually make the flip-flops change from their present state into the desired next state
- This depends on what kind of flip-flops you use!
- We'll use two JKs. For each flip-flip Q_i , look at its present and next states, and determine what the inputs J_i and K_i should be in order to make that state change.

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	F	lip flop	o input	·s	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	Jo	Ko	Z
0	0	0	0	0					0
0	0	1	0	1					0
0	1	0	1	0					0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

Finding JK flip-flop input values

For JK flip-flops, this is a little tricky. Recall the characteristic table:

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

- If the present state of a JK flip-flop is 0 and we want the next state to be 1, then we have two choices for the JK inputs:
 - We can use JK= 10, to explicitly set the flip-flop's next state to 1
 - We can also use JK=11, to complement the current state 0
- So to change from 0 to 1, we must set J=1, but K could be either 0 or 1
- Similarly, the other possible state transitions can all be done in two different ways as well

JK excitation table

 An excitation table shows what flip-flop inputs are required in order to make a desired state change

Q(†)	Q(†+1)	J	K	Operation
0	0	0	X	No change/reset
0	1	1	×	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

 This is the same information that's given in the characteristic table, but presented "backwards"

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Excitation tables for all flip-flops

Q(†)	Q(†+1)	۵	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Q(†)	Q(†+1)	J	K	Operation
0	0	0	X	No change/reset
0	1	1	X	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

Q(†)	Q(†+1)	T	Operation
0	0	0	No change
0	1	1	Complement
1	0	1	Complement
1	1	0	No change

Back to the example

 Use the JK excitation table on the right to find the correct values for each flip-flop's inputs, based on its present and next states

Q(†)	Q(†+1)	J	K
0	0	0	X
0	1	1	X
1	0	×	1
1	1	×	0

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	FI	ip flop	o input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K ₁	J_0	K ₀	Z
0	0	0	0	0	0	×	0	X	0
0	0	1	0	1	0	X	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	1	X	0	1	×	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	X	1	X	1	0
1	1	1	0	1	X	1	X	0	1

Step 4: Find equations for the FF inputs and output

- Now you can make K-maps and find equations for each of the four flipflop inputs, as well as for the output Z
- These equations are in terms of the present state and the inputs
- The advantage of using JK flip-flops is that there are many don't care conditions, which can result in simpler MSP equations

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	Fl	ip flop	o input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K ₁	J_0	K ₀	Z
0	0	0	0	0	0	×	0	X	0
0	0	1	0	1	0	X	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	×	X	0	0
1	0	0	1	1	X	0	1	×	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	X	1	X	1	0
1	1	1	0	1	×	1	×	0	1

$$J_1 = X' Q_0$$

$$K_1 = X + Q_0$$

$$J_0 = X + Q_1$$

$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Step 5: Build the circuit

Lastly, we use these simplified equations to build the completed circuit

$$J_1 = X' Q_0$$
 $K_1 = X + Q_0$
 $J_0 = X + Q_1$
 $K_0 = X'$
 $Z = Q_1 Q_0 X$

Timing diagram

- Here is one example timing diagram for our sequence detector
 - The flip-flops Q_1Q_0 start in the initial state, 00
 - On the first three positive clock edges, X is 1, 0, and 0. These inputs cause Q_1Q_0 to change, so after the third edge Q_1Q_0 = 11
 - Then when X=1, Z becomes 1 also, meaning that 1001 was found
- The output Z does not have to change at positive clock edges. Instead, it may change whenever X changes, since $Z = Q_1Q_0X$

Building the same circuit with D flip-flops

- What if you want to build the circuit using D flip-flops instead?
- We already have the state table and state assignments, so we can just start from Step 3, finding the flip-flop input values
- D flip-flops have only one input, so our table only needs two columns for D_1 and D_0

Pres	sent		Next		Next Flip-flop		
Sto	ate	Input	St	ate	inputs		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0			0
0	0	1	0	1			0
0	1	0	1	0			0
0	1	1	0	1			0
1	0	0	1	1			0
1	0	1	0	1			0
1	1	0	0	0			0
1	1	1	0	1			1

D flip-flop input values (Step 3)

- The D excitation table is pretty boring; set the D input to whatever the next state should be
- You don't even need to show separate columns for D_1 and D_0 ; you can just use the Next State columns

Q(†)	Q(†+1)	D	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Pres	sent		Ne	ext	Flip flop		
Sto	ate	Input	Sto	ate	inp	uts	Output
Q_1	Q_0	X	Q_1	Q_0	D_1	D_0	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Finding equations (Step 4)

You can do K-maps again, to find:

$$D_1 = Q_1 Q_0' X' + Q_1' Q_0 X'$$

 $D_0 = X + Q_1 Q_0'$
 $Z = Q_1 Q_0 X$

Pres	sent		Next		Next Flip flop		
Sto	ate	Input	Sto	State inputs		Output	
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Building the circuit (Step 5)

Flip-flop comparison

JK flip-flops are good because there are many don't care values in the flip-flop inputs, which can lead to a simpler circuit

D flip-flops have the advantage that you don't have to set up flip-flop inputs at all, since Q(t+1) = D. However, the D input equations are usually more complex than JK input equations

In practice, D flip-flops are used more often

- There is only one input for each flip-flop, not two
- There are no excitation tables to worry about
- D flip-flops can be implemented with slightly less hardware than JK flip-flops

Summary

- The basic sequential circuit design procedure:
 - Make a state table and, if desired, a state diagram. This step is usually the hardest
 - Assign binary codes to the states if you didn't already
 - Use the present states, next states, and flip-flop excitation tables to find the flip-flop input values
 - Write simplified equations for the flip-flop inputs and outputs and build the circuit