

Quadratic Equation

15.04.2020

Total Ques: 25 MM:100

Origin

A JEE Prep Hub

- 1. No of the real roots of the equation $|x-2|^{x^2-5x+6} = 1$ is :
 - a. Exactly two
 - b. Exactly four
 - c. Exactly three
 - d. Can't say

Ans:a

- 2. If $|x^2 2x 8| + |x^2 + x 2| = 3|x + 2|$, then the set of all real values of x is
 - a. [1,4]
 - b. $[1,4] \cup \{-2\}$

 - d. $(-\infty, -2] \bigcup [1, 4]$

Ans : c

- 3. Number of values of x satisfying equations $5\{x\} = x + [x]$ and $[x] \{x\} = \frac{1}{2}$ is:
 - a. 0
 - b. 1
 - c. 2
 - d. 3

ANs:b

4. Let us consider a sequence such that :

$$T_n = \left[\frac{1}{3} + \frac{n}{50}\right]$$
, here [a] = Greatest Integer Function of a,

Then calculate value of $\sum_{n=1}^{91} T_n$ is:

- a. 55
- b. 57
- c. 58
- d. 59

Ans:c

5. How many solutions do the given equation have :

$$ln x = x + 1$$

- a. Two distinct solutions
- b. Only one solution
- c. Two same solutions
- d. None of Above

Ans : c

- 6. A parabola of the form $ax^2 + bx + c$ with a > 0 intersects the graph of $f(x) = \frac{1}{x^2 4}$. Number of possible distinct solutions of the graph is
 - a. 0
 - b. 2
 - c. 4
 - d. 3

Ans : d

- 7. Let $D = a^2 + b^2 + c^2$, a, b being consecutive integers and c = ab then \sqrt{D} is:
 - a. Always an even integer
 - b. Always odd integer
 - c. Sometimes an odd integer and sometimes even integer
 - d. Always irrational

Ans:b

- 8. The equation $x^2 + ax + b^2 = 0$ has two roots each of which exceeds a number c,then
 - a. $a^2 < 4b^2$
 - b. $c^2 + ac + b^2 > 0$
 - c. $\frac{-a}{2} < c$
 - d. None

Ans:b

- 9 . If the two equations $ax^2 + 2bx + c = 0$ and $ax^2 + 2cx + b = 0$ have a common root, then a + 4b + 4c =
 - a. -1
 - b. 1
 - c. -2
 - d. 0

Ans: d

4

10 If $F(x) = x^4 + 9x^3 + 35x^2 - x + 4$ then $F(-5 + 2\sqrt{-4})$ is equal to

- a. -160
- b. 160
- c. 0
- d. None

Ans: a

11. No. of solution of the given equation in interval $[0,4\pi]$ satisfying the equation

$$6\sin^2 x - \sin x - 1 = 0$$

- a. 2
- b. 6
- c. 7
- d. 8

Ans : d

12. The equation $a \sin x + b \cos x = c$, where $|c| > \sqrt{a^2 + b^2}$ has

- a. A unique solution
- b. Infinite no of solutions
- c. No solution
- d. None

Ans : c

13. For what values of p ,will the equation

$$(p^2 - 16)x^2 - (p^2 + 5p + 4)x - p^3 - 4p^2 - 4p - 16 = 0$$

Has more than two solutions?

- a. No such value exist
- b. 4,-5
- c. 4
- d. 4,-4,-1

Ans: c

14. Find the minimum value of the argument

$$a^2 + b^2 + c^2 - ab - bc - ca$$
, where $a, b, c \in R$

- a. -∞
- b. 1
- C. ∞
- d. 0

Ans:d

15. The value of the expression is

$$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+....}}}}}$$

- a. 1
- b. 6
- c. 3
- d. 9

Ans: c

16. The minimum value of expression $|x| + |x + \frac{1}{2}| + |x - 3| + |x - \frac{5}{2}|$ is :

- a. 2
- b. 3
- c. 6
- d. 4

Ans : c

17. The set of values of x for which the inequality $[x]^2 - 5[x] + 6 \le 0$ (where [.] denotes the GIF) hold good is :

a.
$$2 \le [x] < 3$$

- b. $2 \le [x] < 4$
- c. $2 \le x < 3$
- d. $2 \le [x] \le 4$

Ans:b

18. The least value of $\frac{x^2-6x+5}{x^2+2x+1}$ is:

- a. -1
- b. $\frac{-1}{2}$
- C. $\frac{-1}{4}$
- d. $\frac{-1}{3}$

ANs: d

19. Suppose $a^2 = 5a - 8$ and $b^2 = 5b - 8$, then equation whose roots are $\frac{a}{b}$ and $\frac{b}{a}$ is

- a. $6x^2 5x + 6 = 0$
- b. $8x^2 9x + 8 = 0$
- c. $9x^2 8x + 9 = 0$
- d. $8x^2 + 9x + 8 = 0$

Ans: b

- If the set containing the roots of the equation $(a-b)x^2 + (b-c)x + (c-a) = 0$ has 20. infinite no of values then what will be the condition :
 - a. $a = b \neq c$
 - b. $a \neq b \neq c$
 - c. a = b = c
 - d. None

Ans:c

- If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$, where $ac \neq 0$, then P(x)Q(x) = 021. has
 - a. No real root
 - b. Exactly two roots
 - c. At least two distinct roots
 - d. None of these

Ans: C

- The sum of all the real roots of the equation $|x-2|^2 + |x-2| 2 = 0$ is : 22.
 - a. 7
 - b. 4
 - c. 1
 - d. None

Ans: b

- If α, β are the roots of $x^2+3x-2=0$,then $\frac{\alpha+1}{\beta}+\frac{\beta+1}{\alpha}=$ 23.

 - a. $\frac{-15}{2}$ b. $\frac{6}{5}$ c. $\frac{-5}{2}$
 - d. -5

Ans:d

- If one root of the equation $ax^2 + bx + c = 0$, $a \in \mathbb{R}^+$, are two consecutive odd positive 24. integers.Then
 - a. $|b| \le 4a$

- b. $|b| \ge 4a$
- c. $|b| \le 2a$
- d. $|b| \le a$

Ans:b

25. If the roots of the equation

$$a(b-c)x^2 + b(c-a)x + c(a-b) = 0$$

Are equal then a,b,c are in:

- a. A.P.
- b. G.P.
- c. H.P.
- d. None

Ans: c

8

e.