Nina	Huacani	Steve Brandom	
A. Paterno	A. Materno	Nombres	
Inteligencia Artificial	PhD. Moises Silva	9990778	IV
Materia	Docente	CI	INICIAL A.P.

5. Del Dataset elegido, migre el mismo a WEKA y utilice cuatro técnicas de preprocesamiento (realice la captura de pantallas de estos por fases). Explique la razón de usar estas técnicas.

Preprocesamiento N°1: Remplazar valores faltantes

Paso 1. Abrimos el dataset y damos click a "Edit" para poder ver el dataset

Observamos campos vacíos

Paso 2. Vamos a la opción de Choose/filters/unsupervised/ReplaceMissingValues

Paso 3. Luego hacemos clic derecho sobre la opción elegida para poder ver las opciones que nos ofrece weka

Paso 4. Finalmente apretamos la opción de Apply para poder ver los cambios

Paso 5. Damos click en la pestaña de "Edit" para poder observar los cambios

Compararemos la técnica aplicada con el resultado obtenido en Python

Antes

16	white	6.3	0.48	0.04	1.1	0.046
17	white	NaN	0.66	0.48	1.2	0.029
18	white	7.4	0.34	0.42	1.1	0.033
19	white	6.5	0.31	0.14	7.5	0.044
20	white	6.2	0.66	0.48	1.2	0.029
21	white	6.4	0.31	0.38	2.9	0.038
22	white	6.8	0.26	0.42	1.7	0.049
23	white	7.6	0.67	0.14	1.5	0.074
24	white	6.6	0.27	0.41	1.3	0.052
25	white	7.0	0.25	0.32	9.0	0.046
26	white	6.9	0.24	0.35	1.0	0.052
27	white	7.0	0.28	0.39	8.7	0.051
28	white	7.4	0.27	0.48	1.1	0.047
29	white	7.2	0.32	0.36	2.0	0.033
30	white	8.5	0.24	0.39	10.4	0.044
31	white	8.3	0.14	0.34	1.1	0.042
32	white	7.4	0.25	0.36	2 05	0.05
33	white	6.2	0.12	0.34	NaN	0.045

Después

						_
17	white	7.2165793124710955	0.66	0.48	1.2	0.029
18	white	1.4	0.34	0.42	1.1	0.033
19	white	6.5	0.31	0.14	7.5	0.044
20	white	6.2	0.66	0.48	1.2	0.029
21	white	6.4	0.31	0.38	2.9	0.038
22	white	6.8	0.26	0.42	1.7	0.049
23	white	7.6	0.67	0.14	1.5	0.074
24	white	6.6	0.27	0.41	1.3	0.052
25	white	7.0	0.25	0.32	9.0	0.046
26	white	6.9	0.24	0.35	1.0	0.052
27	white	7.0	0.28	0.39	8.7	0.051
28	white	7.4	0.27	0.48	1.1	0.047
29	white	7.2	0.32	0.36	2.0	0.033
30	white	8.5	0.24	0.39	10.4	0.044
31	white	8.3	0.14	0.34	1.1	0.042
32	white	7.4	0.25	0.36	2.05	0.05
33	white	6.2	0.12	0.34	5.444326404926867	0.045
34	white	5.8	0.27	0.2	14.90	0.044

Como podemos evidenciar obtenemos los mismos resultados

Missing Values

La imputacion de valores faltantes es una tecnica de preprocesamiento muy importante ya que los algoritmos de aprendiza automatico no pueden manejar valores faltantes.

Habitualmente se asocian tres tipos de problemas con los valores faltantes:

- Perdida de eficiencia
- Complicaciones en el manejo y análisis de los datos
- Sesgo resultante de las diferencias entre los datos faltantes y los que están completos

Existe una amplia variedad de métodos de imputación como, por ejemplo: la sustitución por medias, medianas o modas, el vecindario K más cercano, procedimientos de máxima verosimilitud entre otras. Algunos de los beneficios de utilizar la imputación de valores faltantes son las siguientes.

la preservación de los datos: Ya que si se eliminara una tupla que contiene el valor faltante se pierde la información de las otras características de la fila o columna, la imputación de valores faltantes nos permite mantener la máxima cantidad de información posible.

Consistencia de los datos: Ayuda a mantener la consistencia de un conjunto de datos ya que es importante mantener el mismo número de muestras en todas las categorías para que el análisis sea el más optimo posible.

Preprocesamiento N°2: Estandarización

Paso 1. Vamos a la opción de Choose/filters/unsupervised/Standarize

Paso 2. Luego hacemos clic derecho sobre la opción elegida para poder ver las opciones que nos ofrece weka

Paso 3. Finalmente apretamos la opción de Apply para poder ver los cambios

Paso 4. Damos click en la pestaña de "Edit" para poder observar los cambios

Compararemos la técnica aplicada con el resultado obtenido en Python

Antes

index	types	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.001	3.0	0.45	8.8	6
1	white	6.3	0.3	0.34	1.6	0.049	14.0	132.0	0.994	3.3	0.49	9.5	6
2	white	8.1	0.28	0.4	6.9	0.05	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.4	9.9	6
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.4	9.9	6
5	white	8.1	0.28	0.4	6.9	0.05	30.0	97.0	0.9951	3.26	0.44	10.1	6
6	white	6.2	0.32	0.16	7.0	0.045	30.0	136.0	0.9949	3.18	0.47	9.6	6
7	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.001	3.0	0.45	8.8	6
8	white	6.3	0.3	0.34	1.6	0.049	14.0	132.0	0.994	3.3	0.49	9.5	6
9	white	8.1	0.22	0.43	1.5	0.044	28.0	129.0	0.9938	3.22	0.45	11.0	6
10	white	8.1	0.27	0.41	1.45	0.033	11.0	63.0	0.9908	2.99	0.56	12.0	5
11	white	8.6	0.23	0.4	4.2	0.035	17.0	109.0	0.9947	3.14	0.53	9.7	5
12	white	7.9	0.18	0.37	1.2	0.04	16.0	75.0	0.992	3.18	0.63	10.8	5
13	white	6.6	0.16	0.4	1.5	0.044	48.0	143.0	0.9912	3.54	0.52	12.4	7
14	white	8.3	0.42	0.62	19.25	0.04	41.0	172.0	1.0002	2.98	0.67	9.7	5
15	white	6.6	0.17	0.38	1.5	0.032	28.0	112.0	0.9914	3.25	0.55	11.4	7
16	white	6.3	0.48	0.04	1.1	0.046	30.0	99.0	0.9928	3.24	0.36	9.6	6
17	white	7.2165793124710955	0.66	0.48	1.2	0.029	29.0	75.0	0.9892	3.33	0.39	12.8	8
18	white	7.4	0.34	0 42	11	0 033	17 0	171 0	0 9917	3 12	0.53	11.3	6

Despues

index	types	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
0	white	-0.1671585992942454	-0.42356360223412876	0.2842451536932608	3.2069770773644866	-0.3152218461288419	0.8155653085446922	0.9599756048834102
1	white	-0.7074272804111803	-0.2412315187647987	0.14652314906116093	-0.8081364996226109	-0.2010272764791548	-0.9311070516567161	0.2876175394013979
2	white	0.6818350424609376	-0.3627862410776853	0.5596891629574614	0.3060049641486781	-0.17247863406673303	-0.02959873671405376	-0.33165962617413963
3	white	-0.012796118975121014	-0.6666730468599025	0.008801144429060652	0.6423495569852936	0.05591050523264102	0.928253847912525	1.2430737377179415
4	white	-0.012796118975121014	-0.6666730468599025	0.008801144429060652	0.6423495569852936	0.05591050523264102	0.928253847912525	1.2430737377179415
5	white	0.6818350424609376	-0.3627862410776853	0.5596891629574614	0.3060049641486781	-0.17247863406673303	-0.02959873671405376	-0.33165962617413963
6	white	-0.7846085205707422	-0.11967679645191175	-1.0929748926277405	0.3270265012009665	-0.3152218461288419	-0.02959873671405376	0.3583920726100308
7	white	-0.1671585992942454	-0.42356360223412876	0.2842451536932608	3.2069770773644866	-0.3152218461288419	0.8155653085446922	0.9599756048834102
8	white	-0.7074272804111803	-0.2412315187647987	0.14652314906116093	-0.8081364996226109	-0.2010272764791548	-0.9311070516567161	0.2876175394013979
9	white	0.6818350424609376	-0.727450408016346	0.7662721699056114	-0.8291580366748994	-0.3437704885412637	-0.14228727608188654	0.23453663949492326
10	white	0.6818350424609376	-0.42356360223412876	0.6285501652735112	-0.8396688052010436	-0.657805555077903	-1.1001398607084654	-0.933243158447519
11	white	1.0677412432587483	-0.6666730468599025	0.5596891629574614	-0.26157653626311067	-0.6007082702530594	-0.7620742426049669	-0.11933602654824106
12	white	0.5274725621418139	-0.9705598526421196	0.35310615600931095	-0.8922226478317647	-0.4579650581909506	-0.8184185122888833	-0.7209195588216204
13	white	-0.47588355993249415	-1.0921145749550065	0.5596891629574614	-0.8291580366748994	-0.3437704885412637	0.9845981175964413	0.4822475057251383
14	white	0.8361975227800627	0.4880968151125223	2.0746312139105627	2.902164790106304	-0.4579650581909506	0.5901882298090266	0.9953628714877266
15	white	-0.47588355993249415	-1.031337213798563	0.4219671583253611	-0.8291580366748994	-0.6863541974903247	-0.14228727608188654	-0.06625512664176642
16	white	-0 7074272804111803	0 8527609820511828	-1 9193069204203417	-0 9132441848840532	-0 28667320371642013	-0 02959873671405376	-0 29627235956982323

Como podemos evidenciar obtenemos los mismos resultados

Estandarización

La estandarización es una técnica de preprocesamiento de datos que se utiliza para transformar las características de un conjunto de datos de forma que tengan una media en 0 y una desviación estándar de 1.

Algunas de las desventajas de trabajar con características no estandarizadas son las siguientes:

- Mayor sensibilidad a los valores atípicos, ya que pueden tener mayor impacto si es que la característica no esta estandarizada.
- Problemas de interpretación, puede ser difícil interpretar la importancia de una característica si no están en la misma escala.
- Dificultades en la visualización de los datos, Al graficar datos no estandarizados las diferencias en las escalas pueden dar origen a datos difíciles de interpretar

Algunos de los beneficios de estandarizar los datos son:

 Los algoritmos basados en la distancia como el k-NN reducen la desproporcionalidad que puedan existir en las características Convergencia rápida, algunos algoritmos de optimización convergen mucho más rápido cuando las características están en la misma escala, como en los algoritmos de descenso de gradiente.

Preprocesamiento N°3 Normalización

Paso 1. Primero cargamos nuestro dataset al entorno de WEKA

Paso 2. Después de haber cargado el dataset vamos a la opción de Choose/filters/unsupervised/Normalize

Paso 3. Luego hacemos clic derecho sobre la opción elegida para poder ver las opciones que nos ofrece weka

Paso 4. Finalmente apretamos la opción de Apply para poder ver los cambios

Paso 5. Damos click en la pestaña de "Edit" para poder observar los cambios

Compararemos la técnica aplicada con el resultado obtenido en Python

Antes

index	types	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
0	white	-0.1671585992942454	-0.42356360223412876	0.2842451536932608	3.2069770773644866	-0.3152218461288419	0.8155653085446922	0.9599756048834102
1	white	-0.7074272804111803	-0.2412315187647987	0.14652314906116093	-0.8081364996226109	-0.2010272764791548	-0.9311070516567161	0.2876175394013979
2	white	0.6818350424609376	-0.3627862410776853	0.5596891629574614	0.3060049641486781	-0.17247863406673303	-0.02959873671405376	-0.33165962617413963
3	white	-0.012796118975121014	-0.6666730468599025	0.008801144429060652	0.6423495569852936	0.05591050523264102	0.928253847912525	1.2430737377179415
4	white	-0.012796118975121014	-0.6666730468599025	0.008801144429060652	0.6423495569852936	0.05591050523264102	0.928253847912525	1.2430737377179415
5	white	0.6818350424609376	-0.3627862410776853	0.5596891629574614	0.3060049641486781	-0.17247863406673303	-0.02959873671405376	-0.33165962617413963
6	white	-0.7846085205707422	-0.11967679645191175	-1.0929748926277405	0.3270265012009665	-0.3152218461288419	-0.02959873671405376	0.3583920726100308
7	white	-0.1671585992942454	-0.42356360223412876	0.2842451536932608	3.2069770773644866	-0.3152218461288419	0.8155653085446922	0.9599756048834102
8	white	-0.7074272804111803	-0.2412315187647987	0.14652314906116093	-0.8081364996226109	-0.2010272764791548	-0.9311070516567161	0.2876175394013979
9	white	0.6818350424609376	-0.727450408016346	0.7662721699056114	-0.8291580366748994	-0.3437704885412637	-0.14228727608188654	0.23453663949492326
10	white	0.6818350424609376	-0.42356360223412876	0.6285501652735112	-0.8396688052010436	-0.657805555077903	-1.1001398607084654	-0.933243158447519
11	white	1.0677412432587483	-0.6666730468599025	0.5596891629574614	-0.26157653626311067	-0.6007082702530594	-0.7620742426049669	-0.11933602654824106
12	white	0.5274725621418139	-0.9705598526421196	0.35310615600931095	-0.8922226478317647	-0.4579650581909506	-0.8184185122888833	-0.7209195588216204
13	white	-0.47588355993249415	-1.0921145749550065	0.5596891629574614	-0.8291580366748994	-0.3437704885412637	0.9845981175964413	0.4822475057251383
14	white	0.8361975227800627	0.4880968151125223	2.0746312139105627	2.902164790106304	-0.4579650581909506	0.5901882298090266	0.9953628714877266
15	white	-0.47588355993249415	-1.031337213798563	0.4219671583253611	-0.8291580366748994	-0.6863541974903247	-0.14228727608188654	-0.06625512664176642
16	white	-0 7074272804111803	0 8527609820511828	-1 9193069204203417	-0 9132441848840532	-0 28667320371642013	-0 02959873671405376	-0 29627235956982323

Despues

index	types	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide
0	white	0.2644628099173553	0.126666666666666	0.21686746987951808	0.30828220858895705	0.059800664451827246	0.1527777777777782
1	white	0.20661157024793386	0.1466666666666664	0.20481927710843378	0.015337423312883437	0.0664451827242525	0.045138888888888895
2	white	0.3553719008264462	0.13333333333333333	0.2409638554216868	0.09662576687116566	0.06810631229235882	0.1006944444444446
3	white	0.2809917355371901	0.099999999999999	0.19277108433734944	0.12116564417177915	0.08139534883720931	0.1597222222222227
4	white	0.2809917355371901	0.099999999999999	0.19277108433734944	0.12116564417177915	0.08139534883720931	0.1597222222222227
5	white	0.3553719008264462	0.13333333333333333	0.2409638554216868	0.09662576687116566	0.06810631229235882	0.1006944444444446
6	white	0.19834710743801653	0.1599999999999998	0.09638554216867472	0.09815950920245399	0.059800664451827246	0.1006944444444446
7	white	0.2644628099173553	0.1266666666666665	0.21686746987951808	0.30828220858895705	0.059800664451827246	0.1527777777777782
8	white	0.20661157024793386	0.1466666666666664	0.20481927710843378	0.015337423312883437	0.0664451827242525	0.045138888888888895
9	white	0.3553719008264462	0.09333333333333333	0.25903614457831325	0.013803680981595096	0.058139534883720936	0.09375000000000001
10	white	0.3553719008264462	0.1266666666666665	0.24698795180722893	0.013036809815950928	0.0398671096345515	0.03472222222222224
11	white	0.39669421487603296	0.099999999999999	0.2409638554216868	0.055214723926380375	0.043189368770764125	0.0555555555555566
12	white	0.33884297520661155	0.066666666666666	0.22289156626506026	0.009202453987730064	0.051495016611295685	0.052083333333333334
13	white	0.2314049586776859	0.0533333333333333	0.2409638554216868	0.013803680981595096	0.058139534883720936	0.1631944444444448
14	white	0.371900826446281	0.2266666666666663	0.37349397590361444	0.28604294478527603	0.051495016611295685	0.13888888888888892
15	white	0.2314049586776859	0.0599999999999984	0.22891566265060243	0.013803680981595096	0.03820598006644519	0.093750000000000001
16	white	0.20661157024793386	0.266666666666666	0.02409638554216867	0.007668711656441729	0.06146179401993356	0.1006944444444446
17	white	0.28236192665050375	0.3866666666666666	0.28915662650602414	0.009202453987730064	0.03322259136212625	0.097222222222224
18	white	0.2975206611570248	0.17333333333333333	0.2530120481927711	0.007668711656441729	0.0398671096345515	0.0555555555555566

Como podemos evidenciar obtenemos los mismos resultados

Normalización

La normalización es una técnica de preprocesamiento que ajusta los valores de las características de un conjunto de datos para que se encuentren dentro de un rango especifico, generalmente este es de 0 y 1.

Los problemas que se tienen con características no normalizadas son las siguientes:

- Diferencia de magnitudes y rangos de las características, ya que puede ocasionar que algunos algoritmos sean menos efectivos y eficientes.
- Problemas de interpretación, resulta mas difíciles interpretar características no normalizadas

Algunos de los beneficios de aplicar la normalización son los siguientes:

- Reducción de valores atípicos, ya que estos llegaran a tener menor influencia en el modelo después de haberse realizada la normalización
- Aceleración del tiempo de entrenamiento, algunos algoritmos pueden converger más rápido cuando las características están normalizadas

Preprocesamiento N°4: Discretización

Paso N°1. Vamos a la opción de Choose/filters/unsupervised/Discretize

Paso 2. Luego hacemos click derecho sobre la opción elegida y escogemos el número de rango de precisión a 10.

Paso 3. Finalmente apretamos la opción de Apply para poder ver los cambios

Paso 4. Damos click en la pestaña de "Edit" para poder observar los cambios

Nomir	es 2: fixed acidity Nominal	3: volatile acidity Nominal	4: citric acid Nominal	5: residual sugar Nominal	6: chlorides Nominal	7: free sulfur dioxide Nominal	8: total sulfur dioxide Nominal	9: density Nominal	10: pH Nominal	11: sulphates Nominal	12: alcohol Nominal	13: quality Numeric
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.3]'	'(0.3-0.4]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.3-0.4]'	'(0.2-0.3]'	'(0.2-0	'(0.1-0.2]'	'(0.1-0.2]'	6.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.2-0.3]'	'(0.1-0.2]'	'(0.4-0	'(0.1-0.2]'	'(0.2-0.3]'	6.0
white	'(0.3-0.4]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.2-0.3]'	'(0.1-0.2]'	'(0.4-0	'(0.1-0.2]'	'(0.3-0.4]'	6.0
white	'(0.2-0.3]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.1-0.2]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.4-0.5]'	'(0.1-0.2]'	'(0.3-0	'(0.1-0.2]'	'(0.2-0.3]'	6.0
white	'(0.2-0.3]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.1-0.2]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.4-0.5]'	'(0.1-0.2]'	'(0.3-0	'(0.1-0.2]'	'(0.2-0.3]'	6.0
white	'(0.3-0.4]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.2-0.3]'	'(0.1-0.2]'	'(0.4-0	'(0.1-0.2]'	'(0.3-0.4]'	6.0
white	'(0.1-0.2]'	'(0.1-0.2]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.2-0.3]'	'(0.1-0.2]'	'(0.3-0	'(0.1-0.2]'	'(0.2-0.3]'	6.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.3]'	'(0.3-0.4]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.3-0.4]'	'(0.2-0.3]'	'(0.2-0	'(0.1-0.2]'	'(0.1-0.2]'	6.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.2-0.3]'	'(0.1-0.2]'	'(0.4-0	'(0.1-0.2]'	'(0.2-0.3]'	6.0
white	'(0.3-0.4]'	'(-inf-0.1]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.2-0.3]'	'(0.1-0.2]'	'(0.3-0	'(0.1-0.2]'	'(0.4-0.5]'	6.0
white	'(0.3-0.4]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(-inf-0.1]'	'(0.2-0	'(0.1-0.2]'	'(0.5-0.6]'	5.0
white	'(0.3-0.4]'	'(-inf-0.1]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.2-0.3]'	'(0.1-0.2]'	'(0.3-0	'(0.1-0.2]'	'(0.2-0.3]'	5.0
white	'(0.3-0.4]'	'(-inf-0.1]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(-inf-0.1]'	'(0.3-0	'(0.2-0.3]'	'(0.4-0.5]'	5.0
white	'(0.2-0.3]'	'(-inf-0.1]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.3-0.4]'	'(-inf-0.1]'	'(0.6-0	'(0.1-0.2]'	'(0.6-0.7]'	7.0
white	'(0.3-0.4]'	'(0.2-0.3]'	'(0.3-0.4]'	'(0.2-0.3]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.3-0.4]'	'(0.2-0.3]'	'(0.2-0	'(0.2-0.3]'	'(0.2-0.3]'	5.0
white	'(0.2-0.3]'	'(-inf-0.1]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.2-0.3]'	'(-inf-0.1]'	'(0.4-0	'(0.1-0.2]'	'(0.4-0.5]'	7.0
white	'(0.2-0.3]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.2-0.3]'	'(0.1-0.2]'		'(-inf-0.1]'	'(0.2-0.3]'	6.0
white	'(0.2-0.3]'	'(0.3-0.4]'	'(0.2-0.31'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(-inf-0.1]'	'(0.4-0	'(-inf-0.1]'	'(0.6-0.7)'	8.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.11'	'(-inf-0.1]'	'(0.3-0.4]'	'(-inf-0.1]'	'(0.3-0	'(0.1-0.2]'	'(0.4-0.5]'	6.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(-inf-0.1]'	'(0.1-0.2]'	'(-inf-0.1]'	'(0.1-0.21'	'(0.2-0.3]'	'(0.1-0.2]'		'(0.1-0.2]'	'(0.2-0.3]'	5.0
white	'(0.1-0.2]'	'(0.3-0.4]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.11'	'(0.1-0.2]'	'(-inf-0.1]'		'(-inf-0.1]'	'(0.6-0.7]'	8.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.2-0.3]'	'(-inf-0.1]'		'(-inf-0.1]'	'(0.4-0.5]'	7.0
white	'(0.2-0.31'	'(0.1-0.2]'	'(0.2-0.31'	'(-inf-0.1]'	'(-inf-0.11'	'(0.1-0.21'	'(0.2-0.31'	'(0.1-0.21'		'(0.1-0.2]'	'(0.3-0.41'	8.0
white	'(0.3-0.4]'	'(0.3-0.4]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(-inf-0.11'	'(0.3-0.4]'	'(0.1-0.2]'		'(0.1-0.2]'	'(0.1-0.2]'	5.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.3-0.4]'	'(0.1-0.2]'		'(0.1-0.2]'	'(0.2-0.3]'	6.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.1-0.2]'	'(0.1-0.2]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.5-0.6]'	'(0.1-0.2]'		'(0.1-0.2]'	'(0.3-0.4]'	6.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.3]'	'(-inf-0.1]'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.3-0.4]'	'(0.1-0.2]'		'(0.1-0.2]'	'(0.2-0.3]'	6.0
white	'(0.2-0.3]'	'(0.1-0.2]'	'(0.2-0.31'	'(0.1-0.21'	'(-inf-0.1]'	'(0.1-0.2]'	'(0.3-0.4]'	'(0.1-0.2]'		'(0.1-0.2]'	'(0.3-0.4]'	6.0
luta u	יור ח ר חיי	ייר א א איי	1/0.2 0.211	V 144 N 410	17 (_E 0 41)	17 :=£ 0.111	ינה מ מיזי	17 (LE N 11)		1/0.1_0.31	1/0 E 0 E11	
Selec	ed attribute	=										
	me: volatil							21	: Non			
Mis	ing: 0 (0%)			Dist	tinct: 10		1	Unique	: 1 (0	%)		
N	о.	L	.abel			Cour	t			We	ight	
	1 '(-inf	-0.11'			1799			179	99			
	2 '(0.1-	•			2883			288	33			
	•	0.31'			934			934	_			
	3 (0.2-	0.3]			534			934	•			

Discretizacion

5 '(0.4-0.5]'

6 '(0.5-0.6]'

7 '(0.6-0.7]'

8 '(0.7-0.8]'

9 '(0.8-0.9]'

Su principal objetivo es transformar un conjunto de atributos continuos en discretos, asociando valores categóricos a intervalos y transformando así datos cuantitativos en datos cualitativos. Los problemas más comunes que ocurren cuando no se discretizan los datos son los siguientes

203

69

20 3

2

203

69

20

3

2

- Dificultad en la identificación de patrones: En algunos casos, si las variables son continuas, los patrones pueden ser más difíciles de identificar, especialmente para modelos que funcionan mejor con variables discretas.
- Sensibilidad al ruido: Las variables continuas pueden estar sujetas a ruido en los datos.
 Esto puede hacer que los modelos sean más sensibles a pequeñas variaciones en los valores.

• Interpretación más difícil: Interpretar los resultados de un modelo que trabaja con variables continuas puede ser más complicado que si se utilizan variables discretas.

Algunos de los beneficios de discretizar son:

- Reducción de complejidad: En algunos casos, trabajar con variables discretas puede simplificar el análisis y hacer que los modelos sean más fáciles de entender y de comunicar.
- Requisitos de algunos modelos: Algunos algoritmos de aprendizaje automático, como árboles de decisión o reglas de asociación, requieren que las variables sean discretas.
- Control del ruido y redundancia: La discretización puede ayudar a reducir el ruido en los datos, ya que se agrupan valores similares. También puede eliminar redundancias al agrupar valores cercanos.