REFERENCES:

1. Scobey, Pawan Lingras, "Web Programming and Internet Technologies An E-Commerce Approach", Second Edition, Jones & Bartlett Publishers, 2016.

EVALUATION METHOD TO BE USED:

SI.	Category of Courses	Continuous Assessment	Mid – Semester Assessment	End Semester
1.	Practical Integrated with Theory	40(P)	20(T)	40(P)

CS6104 DATA STRUCTURES AND ALGORITHMS

Prerequisites for the course: NIL

OBJECTIVES:

- To understand the concepts of linear and non-linear data structures
- To get an idea about suitability of data structure for an application
- To learn some fundamental algorithm design strategies
- To understand how the correctness of an algorithm can be proved
- To learn how to analyze an algorithm
- To understand the concept of NP-Completeness

CS6104	DATA STRUCTURES AND		T	Р	EL	CREDITS
	ALGORITHMS	3	1	4	3	7
MODULE I	INTRODUCTION		L	Т	Р	EL
			4	1	0	4

Abstract Data Types – Algorithm Properties – Overview on Proof of Correctness & Algorithm Analysis – Asymptotic Notations & Properties, Linear Search.

SUGGESTED ACTIVITIES:

- Workout on design of algorithms for some small simple problems, provide proof of correctness, and determine the complexity.
- EL Study on average case analysis for some standard algorithms.

SUGGESTED EVALUATION METHODS:

Assignment - Based on design, correctness and efficiency.

MODULE II	LINEAR DATA STRUCTURES	L	T	Р	EL
		4	1	4	3

Stack - Queue - Linked lists - Some applications based on linear data structures.

SUGGESTED ACTIVITIES:

- EL Converting an algorithm from recursive to non-recursive using stack.
- Practical An application based on linear data structure.

SUGGESTED EVALUATION METHODS:

- Programming exercises in the laboratory
- Quizzes

MODULE III	NON-LINEAR DATA STRUCTURES	L	Т	Р	EL
		4	1	4	3

Trees - Graphs - Traversals - Threaded binary trees.

SUGGESTED ACTIVITIES:

- EL Applications of trees and graphs.
- Practical Implementing tree and graph traversals.

SUGGESTED EVALUATION METHODS:

- Assignment related to application
- Programming exercises in the laboratory
- Quizzes

MODULE IV	DIVIDE & CONQUER	L	T	Р	EL
		4	1	4	3

Strassen's Matrix Multiplication - Selection in Linear Time.

SUGGESTED ACTIVITIES:

- EL Merge Sort & Quick Sort
- Practical Implementation of Merge Sort & Quick Sort.

SUGGESTED EVALUATION METHODS:

- Programming exercises in the laboratory
- Assignment problems
- Quizzes

MODULE V	GREEDY METHOD	L	Т	Р	EL
		4	1	4	3

Greedy Strategy - Knapsack Problem - Spanning Trees - Single Source Shortest Path problems

SUGGESTED ACTIVITIES:

- EL Tree Vertex Splitting
- Practical Spanning Tree Implementation

SUGGESTED EVALUATION METHODS:

- Programming exercises in the laboratory
- Quizzes

MODULE VI	DYNAMIC PROGRAMMING	L	T	Р	EL
		4	1	4	3

Principles of Optimality - Matrix chain multiplication - Longest common subsequences

SUGGESTED ACTIVITIES:

- EL All Pair shortest path.
- Practical Implementation of All pair shortest path

SUGGESTED EVALUATION METHODS:

- Programming exercises in the laboratory
- Quizzes

MODULE VII	BACKTRACKING & BRANCH AND BOUND	L	Т	Р	EL
		4	1	4	3

Backtracking:8-Queens & Sum of subsets – Branch & Bound: 0/1 Knapsack

SUGGESTED ACTIVITIES:

- Flipped class rooms
- Practical Implementations of sum of subset problem.
- EL -Travelling Salesperson using Branch & Bound

SUGGESTED EVALUATION METHODS:

- Programming exercises in the laboratory
- Assignment problems
- Quizzes

MODULE VIII	MORE ON SORTING & INDEXING	L	T	Р	EL
		5	1	4	3

Heap Sort - External sorting - Hashing

SUGGESTED ACTIVITIES:

- EL Comparison of internal sorting algorithms
- Practical Implementation of Hash table

SUGGESTED EVALUATION METHODS:

- Programming exercises in the laboratory
- Quizzes

MODULE IX	STRING MATCHING	L	Т	Р	EL
		2	1	2	2

Naïve Algorithm – KMP Algorithm

SUGGESTED ACTIVITIES:

- Tutorial
- Practical Implementation of KMP algorithm

SUGGESTED EVALUATION METHODS:

- Programming exercises in the laboratory
- Quizzes

MODULE X	NP-COMPLETENESS	L	T	Р	EL
		5	1	0	5

Polynomial time verification – Theory of reducibility - NP Completeness proof for Vertex cover & Hamiltonian Cycle.

SUGGESTED ACTIVITIES:

EL – Study of proof for NP completeness on any two problems

SUGGESTED EVALUATION METHODS:

Quizzes

TEXT BOOKS:

- 1. Ellis Horowitz and Sartaj Sahni, "Fundamentals of Data Structures", Galgotia, 1976.
- 2. Ellis Horowitz and Sartaj Sahni, "Fundamental of Computer Algorithms", Galgotia, 1985.
- 3. Thomas H Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, Prentice Hall, 2010.

REFERENCES:

- 1. Jean-Paul Tremblay and Paul G Sorenson, "An Introduction to Data Structures with Applications", Second Edition, Tata McGraw Hill, 1991.
- 2. Kenneth A. Berman and Jerome L Paul, "Algorithms", Cengage Learning India, 2010.

OUTCOMES:

Upon completion of the course, the students will be able to:

- · Point out various representations of data structures
- Write functions to implement linear and non-linear data structure operations
- Suggest and use appropriate linear/non-linear data structure operations for solving a given problem
- Apply various algorithm design techniques and analysis
- Apply appropriate hash functions that result in a collision free scenario for data storage and retrieval
- Show how to prove a problem to be NP-Complete

Evaluation Pattern:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory Integrated with Practical	15(T) + 25 (P)	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	PO11	PO12
CO1	√											
CO2												
CO3	√	V										
CO4	√											
CO5	√	V										V
CO6	√	$\sqrt{}$	√									