UNIVERSITE IBN TOFAIL ECOLE NATIONALE DES SCIENCES APPLIQUEES

Année Universitaire 2013/2014

Physique 3 : Électronique de base

T.D N° 4: Les filtres

(Les exercices supplémentaires ne seront pas traités pendant les séances de TD)

Exercice 4.1. (Exercice supplémentaire)

Soit le filtre *RC* suivant :

- **4.1.1.** Quel est le type de ce filtre et quel est son ordre ?
- **4.1.2.** Exprimer la fonction de transfert $\underline{H}(j\check{S})$ en fonction de *R* et *C*.

4.1.4. Calculer la valeur de la capacité du condensateur ainsi que la valeur de l'amplitude de la tension de sortie du filtre pour f_0 = 627 kHz, R = 6,8 k Ω et V_{em} = 2 V.

Exercice 4.2.

- **4.2.1.** Donner le schéma d'un filtre *RL* passe-haut de 1er ordre.
- **4.2.2.** Exprimer sa fonction de transfert $H(j\tilde{S})$. Montrer qu'il peut s'écrire sous la forme

$$\underline{\underline{H}}(j\breve{S}) = \frac{j\frac{\breve{S}}{\breve{S}_0}}{1+j\frac{\breve{S}}{\breve{S}_0}}, \text{ donner l'expression de } \breve{S}_0 \text{ en fonction de } \mathbf{R} \text{ et } \mathbf{L}.$$

4.2.3. En utilisant l'association en cascade de deux filtres déjà étudier (voir cours), Représenter les diagrammes de Bode du gain $G_{dB}(\check{S})$ et de la phase $\{(\check{S})\}$.

La résistance R est de $10 k\Omega$ et la fréquence de coupure f_0 est de 3.5 kHz.

Une tension d'amplitude 1,6 V est mesurée à la sortie du filtre lorsqu'un signal de x MHz (haute fréquence) est appliqué à l'entrée.

4.2.4. Calculer la valeur de l'inductance de la bobine ainsi que la valeur de l'amplitude de la tension à l'entrée du filtre.

Exercice 4.3.

- **4.3.1.** Donner le schéma d'un filtre *RL* passe-bas 1er ordre.
- **4.3.2.** Exprimer sa fonction de transfert $\underline{H}(j\check{S})$.
- **4.3.3.** Représenter les diagrammes de Bode du gain $G_{dB}(\check{S})$ de la phase $\{(\check{S})\}$.

La résistance R est de 820 Ω et la fréquence de coupure f_0 est de 10 kHz.

Une tension d'amplitude V_{sm} = 1,91 V est mesurée à la sortie du filtre lorsqu'un signal de 1 kHzest appliqué à l'entrée.

4.3.4. Calculer la valeur de la bobine ainsi que la valeur de l'amplitude de la tension à l'entrée du filtre.

Exercice 4.4. (Exercice supplémentaire)

Soit le circuit ci-dessous :

- **4.4.1.** Quelle est la fréquence de coupure fo du circuit ?
- **4.4.2.** Que valent V_{sm} , G_{dB} et le déphasage φ à la fréquence de coupure f_0 ?
- **4.4.3.** Que valent V_{sm} , G_{dB} et φ à $f_0/10$, $f_0/2$, $2f_0$ et $10 f_0$?

4.4.4. Tracez les diagrammes de Bode de ce circuit.

On donne : $V_{em} = 10V$, R = 1kh, C = 20nF.

Exercice 4.5. (Exercice supplémentaire)

La courbe de gain $G_{dB} = 20 \log G$ $(G = V_{sm}/V_{em})$ en fonction de la fréquence est donnée ci-dessous.

- **4.5.1.** Déterminer graphiquement la fréquence de coupure à -3dB du filtre.
- **4.5.2.** Déterminer les valeurs du gain G_{dB} dans le cas où f<10Hz et dans le cas où f=20kHz. En déduire les valeurs du gain G correspondantes.

- **4.5.3.** Calculer l'amplitude de la tension de sortie si la tension d'entrée a pour amplitude 24.8V et pour fréquence f = 20kHz.
- **4.5.4.** Si la tension d'entrée est une tension continue v, quelle est alors la tension de sortie en régime permanant.

Exercice 4.6.

On considère le filtre passe-haut de 2ème ordre suivant :

4.6.1. Exprimer sa fonction de transfert $\underline{H}(j\check{S})$.

4.6.2. On pose:
$$\check{S}_0 = \frac{1}{\sqrt{LC}}$$
 et $m = \frac{R}{2}\sqrt{\frac{C}{L}}$, Exprimer

 $\underline{H}(j\check{S})$ en fonction de m, \check{S} et \check{S}_0 .

La résistance R est de 636,62 Ω , C = 100 nF et la fréquence de coupure f_0 est de 100 kHz.

- **4.6.3.** Calculer la valeur de l'inductance de la bobine ainsi que la valeur du coefficient d'amortissement m.
- **4.6.4.** En utilisant l'association en cascade de filtres déjà étudier (voir cours), Représenter les diagrammes de Bode du gain $G_{dB}(\check{S})$ de la phase $\{(\check{S})\}$.

