On rendra seulement une copie par trinôme de colle.

EXERCICE 1 On considère la fonction g définie par $\begin{cases} g\left(x\right) = \frac{x^2}{\sin\left(x/2\right)} & \text{si } x \in \left]0,\pi\right] \\ g\left(0\right) = 0 \end{cases}$

- **1.** Montrer que g est continue sur $[0, \pi]$
- **2.** Montrer que g est dérivable en 0, en précisant g'(0).
- 3. Montrer que $g \in C^1([0,\pi])$. On pourra écrire par exemple $\forall x \in]0,\pi]$, $g'(x) = \frac{2x}{\sin(x/2)} \frac{x^2\cos(x/2)}{2\sin^2(x/2)}$.

EXERCICE 2 On considère la fonction f définie par :

$$f\left(x\right) = \frac{1}{2}\arctan x - \frac{1}{4}\arcsin\left(\frac{2x}{1+x^2}\right)$$

- 1. Montrer que f est bien définie sur \mathbb{R} , et étudier sa dérivabilité.
- **2.** Montrer que $\forall x \in \mathbb{R} \setminus \{-1, 1\}$, $f'(x) = \frac{1}{2} \frac{1}{1+x^2} \left(1 \text{signe}\left(1 x^2\right)\right)$.
- 3. Simplifications
 - a) On suppose que $x \in [-1, 1[$. Déduire de la question précédente une expression simple de f(x)
 - b) On suppose que $x \in]1, +\infty[$. Calculer $f(\sqrt{3})$ et en déduire une expression simple de f(x).
 - c) On suppose que $x \in]-\infty, -1[$. donner une expression simple de f(x) .
- 4. Donner l'allure de la courbe de f dans un repère orthonormé
- **5.** On pose $\theta = \arctan x$
 - a) Montrer que $f(x) = \frac{\theta}{2} \frac{1}{4}\arcsin(\sin 2\theta)$.
 - b) En distinguant trois cas, simplifier $\arcsin(\sin 2\theta)$ et retrouver le résultat de la question 3.

PROBLEME On considère la fonction f définie sur \mathbb{R} par

$$f(0) = 0$$
 et $\forall x \neq 0, \ f(x) = \frac{1}{x^2}e^{-1/x}$

- 1. Etude des variations de f
 - a) Etudier la continuité à gauche et à droite en 0, la dérivabilité à gauche et à droite en 0, de la fonction f.
 - b) Etudier les limites et les variations de f. Construire un tableau de variations. Préciser les branches infinies.
- 2. Dérivées successives de la fonction f et polynômes associés
 - a) Justifier que f est de classe C^{∞} sur $]0, +\infty[$.
 - b) Démontrer que, pour tout $n \in \mathbb{N}$, il existe un polynôme P_n à coefficients réels tel que :

$$\forall x > 0, \ f^{(n)}(x) = \frac{P_n(x)}{x^{2n+2}}e^{-1/x}$$

On montrera au passage la relation $\forall x > 0$, $P_{n+1}(x) = x^2 P'_n(x) + [1 - 2(n+1)x] P_n(x)$ (*)

- c) Calculer P_n pour $n \in \{0, 1, 2, 3\}$.
- d) Déterminer, pour tout $n \in \mathbb{N}$, le terme constant de P_n .
- e) Montrer que le degré de P_n est n et son coefficient dominant est $a_n = (-1)^n (n+1)!$
- f) Pour tout $n \in \mathbb{N}$, étudier la limite à droite en 0 de la fonction $f^{(n)}$.

On admet que cela entraine que f est de classe C^{∞} sur $[0, \infty[$ et que $\forall n \in \mathbb{N}, f^{(n)}(0) = 0.$

PCSI 1 2019/2020

3. Nouvelles relations entre les polynômes P_n

On considère la fonction g définie sur $]0, \infty[$ par $g(x) = x^2 f(x)$.

- a) Vérifier que $\forall n \in \mathbb{N}, \ \forall x > 0, \ g^{(n+1)}(x) = f^{(n)}(x)$
- b) Soit $n \in \mathbb{N}^*$. En utilisant la formule de Leibniz sur la relation précédente, démontrer que :

$$\forall x > 0, \ P_{n+1}(x) = [1 - 2(n+1)x]P_n(x) - n(n+1)x^2P_{n-1}(x)$$

En déduire $\forall x > 0$, $P'_n(x) = -n(n+1)P_{n-1}(x)$

4. Facultatif : Etude des racines du polynôme P_n

On admettra qu'un polynôme de degré n admet au maximum n racines réelles, et que si a est racine d'un polynôme P, alors P s'écrit P(x) = (x - a) Q(x) où Q est un polynôme.

- a) A l'aide de la relation établie à la question 3.b), montrer par récurrence que, pour tout $n \in \mathbb{N}^*$, et tout x > 0, $P_n(x) \neq 0$ ou $P_{n-1}(x) \neq 0$ (c'est-à-dire: $P_n(x)$ et $P_{n-1}(x)$ ne peuvent être simultanément nuls).
- b) En déduire, pour $n \in \mathbb{N}$ et x > 0, si la fonction polynômiale P_n s'annule en x, alors $P'_n(x) \neq 0$. En déduire que la fonction change P_n de signe en x.
- c) On va montrer par récurrence que $\forall n \in \mathbb{N}^*, P_n$ admet n racines réelles distinctes dans $]0, +\infty[$ Initialisation: vérifier que cette proposition est vraie pour n=1.

<u>Hérédité</u>: supposons cette proposition vraie pour un rang $n \ge 1$.

On note $0 < x_1 < x_2 < \ldots < x_n$ les racines de P_n

- i. Déterminer le signe de P_n sur chacun des intervalles $[0, x_1[,]x_1, x_2[, \dots,]x_{n-1}, x_n[$.
- ii. Pour $i \in [1, n]$, montrer que le signe de $P'_n(x_i)$ est $(-1)^i$.
- iii. En déduire le signe de $P_{n+1}\left(x_{i}\right)$ (utiliser la relation trouvée à la question 2.b)) .
- iv. Etudier la limite de P_{n+1} en $+\infty$ (on distinguera les cas : n pair / n impair. Penser à la question 2.e))
- v. En déduire que P_{n+1} admet n+1 racines réelles distinctes dans $]0,+\infty[$ et conclure.