תורת ההסתבאות

עפיף חלומה

2009 באוקטובר 19

תוכן עניינים

5	פרטים טכניים	1
5	1.1 מרצה:	
5	1.2 ספרים:	
7	תרגול מס.1	2
9	1,00 הרצאה מס	3
9	\mathcal{F} תכונות \mathcal{F} תכונות 3,1	
11	2.ס מס	4
12	4.1 אלגברה ואינפי של מרחב הסתברות	
12		
12		
13	4.2 שתה הגדרות חילופיות לinf ו sup ו inf שתה הגדרות חילופיות	
13	4.3 נחזור להסתברות	

4 מיניינע ןכות

פרטים טכניים

שם מתרגל: ronprtz@math.huji.ac.il (www.math.huji.ac.il/~ronprtz מ ניתן להוריד את הזרגילים מ www.math.huji.ac.il/ שעת קבלה: בתאום (עדיף יום א')
ניתן להוריד ההרצאות של רז קופרמן

1.1 מרצה:

נעם ברגר

משרד: 310 רמייל: berger@math.huji.ac.il שעת קבלה: יום א 16:30 - 17:30 ציון: 90% בחינה, 10% תרגיל חובה להגיש 80% מהתרגילים.

1.2 ספרים:

- 1. A first course in probability S.Ross
- 2. An introduction to probability theory and applications W.Feller
- 3. Weighing the odds D.williams
- 4. Lecture notes in probability R. Kupferman -נגיש באתר של רז קופרמן נגיש באתר באוני

תרגול מס.1

לא נלמד כלומ היום כי עדיין לא היתה הרצאה אזי נשחק משחקים ובעתיד נלמד איך לפתור אותם.

בעיה ממתמטיקה דיסקרטית.

hyper-graph יש מוסג של

 $E\subseteq P\left(V\right)$) $H=\left(V,E\right)$

כלומר בגרף הצלעות לא רק מחברות שתי קודקודי, אלה הוא קבוצה(לא ממוינת) של קודקודים.

 $\forall a \in E: f\left(E\right) = \{1,2\}$ כך ש $\exists f: V \to \{1,2\}$ היפר-גרף צביע ביע אם בכל צלע אם בכל צלע יש r קודקודים.

איור 2.1: היפר גרף 3 יוניפורמי

 $2^{r-1} \leq 2^{r-1}$ משפט: מספר הצלעות בהיפר-גרף r יוניפורמי מספר מספר מספר

1.סמ לוגרת .2 קרפ

שאלה: סדרה באוך n בנויה מ0ו 1, האם ניתן לכתוב אותה באופן שכל תת סדרה באורך kתופיע לא יותר מפעם אחתי באורך k

פתרון: $2^k=n$ קיימת סדרה(קל), $2^k<\sqrt{n}$ קיימת סדרה(דרוש הוכחה)

הרצאה מס.1

הגדרה: מרחב הסתברות הוא שלשה $(\Omega, \mathcal{F}, \mathcal{P})$ כאשר:

- ו. Ω הוא קבוצה מאתב המדגם
- . שמקיימת מספר תכונות שיפרטו להלן. \mathcal{F} אוסף של תת קבוצות של \mathcal{F} . אוסף המאורעות"
- -שמקיימת מספר תכונות שיפרטו מספר תכונות מספר מספר $\mathcal{P}:\mathcal{F} \to [0,1]$.3 ות"

\mathcal{F} תכונות 3.1

- $\Omega \in \mathcal{F}$, $\emptyset \in \mathcal{F}$.1
- $A^c = \Omega \setminus A \in \mathcal{F}$ אא $A \in \mathcal{F}$ ב.
- $\cup_{n=1}^{\infty}A_n\in\mathcal{F}$ איז $A_1,A_2,A_3\dots\in\mathcal{F}$.3

אוסף שמקיים דרישות אלה נקרא σ -אלגברה

\mathcal{P} תכונות 3.2

- $\mathcal{P}\left(\Omega\right)=1$, $\mathcal{P}\left(\emptyset\right)=0$.1
- $\mathcal{P}\left(\cup_{n=1}^\infty A_n
 ight)=\sum_{n=1}^\infty \mathcal{P}\left(A_n
 ight)$ אוסף בן מניה) $A_1,A_2,A_3\dots$.2
 - $|\mathcal{F}|=2^{|\Omega|}$ ו $|\Omega|<\infty$ הערה: ברוב המקרים שנדון בהם
 - σ אוא מקיים את התכונות 1 ו 3. הראו כי $\mathcal{F}=2^\Omega$ הוא הוא $\mathcal{F}=2^\Omega$ הראו כי
 - $\mathcal{F}=2^{\Omega}$. $\Omega=\{1,2,3,4,5,6\}$ דוגמה: הטלת קוביה. אזי

דוגמה למאורעות:

- $\{3\}$ נצא 3. בשפה הפורמאלית:
- $\{2,4,6\}$: יצא מספר זוגי. בשפה פורמאלית:
 - \emptyset . לא יצא כלום.

1.סמ האצרה .3 קרפ 10

 $\{1,2,3,4,5,6\}$. יצא מספר כלשהוא.

 $\mathcal{P}\left(A
ight)=rac{\left|A
ight|}{6}$ לכל מאורע A ההסתברות לכל

דוגמה יותר מסובכת: מטילים שתי קוביות. מחרב מחרב מחרב מטילים או מרחב המדגם: $\Omega=\{(i,j):1\leq i\leq 6,1\leq j\leq 6\}$ אוסף המאורעות: $\mathcal{F}=2^\Omega$

 $\mathcal{P}\left(A
ight)=rac{|A|}{36}$ $\mathcal{P}\left(A
ight)=rac{|A|}{36}$ מה הוא המאורע שיצא דאבלי $\mathcal{P}\left(A
ight)=rac{|A|}{36}$ מה הטיכוי לקבל דאבלי $\mathcal{P}\left(D
ight)=rac{|D|}{36}=rac{6}{36}=rac{1}{6}$ מה הטיכוי לקבל דאבלי

הגדרה: התפלגות אחידה: יהי Ω מרחב מדגם סופי, ההתפלגות האחידה של Ω היא הגדרה: התפלגות אחידה: יהי $\mathcal{P}\left(A\right)=\frac{|A|}{\Omega}$ מתקיים $A\in\mathcal{F}$ ולכל $\mathcal{F}=2^{\Omega}$ כאשר $\Omega,\mathcal{F},\mathcal{P}$ מתקיים

2.סה הרצאה מס.2

[0,1] אם רוצים לבחור נקודה אקראית בקטע ו[0,1]. מה ההסתברות לבחור נקודה a,bا[a,b]

פת רון:

 $\Omega = [0,1]$ מרחב ההסתבאות:

את כל המכילה המינימאלית ה σ ה $\mathcal{F}=\sigma$ את המכילה את כל המאורעוץ: הקטעים

$$\mathcal{P}\left([a,b]\right)=b-a$$
 פונקצית ההסתברות:

 $\mathcal{P}:\mathcal{F}
ightarrow$ יחידה פונקציה קיימת פונקציה יחידה של \mathcal{P} ח של ח \mathcal{F} היימת הרחבה יחידה של מתקיים [a,b] שגם מקיים שלכל הדרישות מהשיעור הקודם וגם מקיים את הדרישות מהשיעור [0,1] $\mathcal{P}\left([a,b]\right) = b - a$

 $\mathcal{P}\left(\left\{ x_{0}
ight\}
ight)$ מה $x_{0}\in\left[0,1
ight]$ תהי

לכן $\mathcal{P}\left(A\right) \, \leq \, \mathcal{P}\left(B\right) \, \Leftarrow \, A \, \subseteq \, B$ נוכיח כי $\{x_0\} \, \subseteq \, [x_0-arepsilon,x_0+arepsilon] \, arepsilon$ לכל $\mathcal{P}\left(\{x_0\}\right)=\mathcal{P}\left(\{x_0\}\right)<2arepsilon$ כלומר $\mathcal{P}\left(\{x_0\}\right)<\mathcal{P}\left(\{x_0\}\right)\leq\mathcal{P}\left([x_0-arepsilon,x_0+arepsilon]
ight)=2arepsilon$

דוגמה: נטיל מטבע הוגן. אם יצא עץ נבחר נקודה אחידה בקטע [0,2/3]. אם יצא אחד [2/3,1] נבתר נקודה אחידה בקטע

 \mathcal{P} אבל מה היא $\Omega = [0,1]\,, \mathcal{F} = \sigma$ (הקטעים)

$$0 \leq a < b \leq b < 1$$
 יהי $[a,b]$ קטע ק קטע איהי אים איר $\mathcal{P}\left([a,b]\right) = \frac{1}{2}\cdot\frac{b-a}{\frac{2}{3}}$ אז $b \leq \frac{2}{3}$

$$\mathcal{P}\left([a,b]
ight)=1/2\cdotrac{b-a}{2/3}$$
 אם $b\leq 2/3$ אם $b\leq 2/3$

$$\mathcal{P}\left([a,b]
ight)=rac{2/3}{1/2}$$
 אם $a\geq 2/3$ אם $a\geq 2/3$

$$\mathcal{P}\left([a,b]\right) = \mathcal{P}\left([a,2/3]\right) + P\left([2/3,b]\right) \ \text{th} \ a < 2/3 < b \ \text{dn}$$

 $\mathcal{P}_1\left(\{x_0\}\right)=$, $x_0\in\Omega$ לכל לכל השניה השניה לדוגמה נקרא לדוגמה הראשונה \mathcal{P}_1 נקרא לדוגמה הראשונה א $\mathcal{P}_1
eq \mathcal{P}_2$ עם זאת $\mathcal{P}_2\left(\{x_0\}\right) = 0$

דוגמה: הערך בכל נקודה לא קובע את פונקצית ההסתברות

 $\mathcal{P}\left(\{x_0\}\right)$ סימון: $\mathcal{P}\left(x_0
ight)$ במקום לנקודה $x_0\in\Omega$ נסמן (נובע מעצלנות) סימון:

 \mathcal{P} את סופי או קובעים ($\mathcal{P}\left(x
ight):x\in\Omega$) הערכים או או הערכים מרחב מרחב מרחב מרחב

12 פ.סמ האצרה .4 קרפ 4.

4.1 אלגברה ואינפי של מרחב הסתברות

arphiמקיימת את התכונות הבאיות:

- $\Omega \in \mathcal{F}$, $\emptyset \in \mathcal{F}$.1
- $A^c \in \mathcal{F} \Leftarrow A \in \mathcal{F}$.2
- $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F}$ אא $A_1,A_2\dots\in\mathcal{F}$ גו

4.1.1 עובדות

- ומפעילים $A_n=\emptyset:3\leq n\leq\infty$ נבחר $A_1\cup A_2\in\mathcal{F}$ אז $A_2\in\mathcal{F}$ ו $A_1\in\mathcal{F}$.1 תכונה (3)
- $B_n\in\mathcal{F}$ אם $A_n\in\mathcal{F}$ לכל $B_n=A_n^c$ נגדיר גודיר $A_1,A_2\cdots\in\mathcal{F}$.2 $(\cup_{n=1}B_n)^c=(\cup_{n=1}B_n)^c=(\cup_{n=1}B_n)^c$ מחוקי דה-מורגן: $(\cup_{n=1}B_n)^c\in\mathcal{F}$ ומכאן $(\cup_{n=1}A_n^c)=(\cup_{n=1}A_n^c)=(\cup_{n=1}A_n^c)$
- $\mathcal{P}\left(A
 ight) \leq$ אז $A \subseteq B$ אם $\mathcal{P}\left(A_1 \cup A_2
 ight) = \mathcal{P}\left(A_1
 ight) + \mathcal{P}\left(A_2
 ight)$ אז $A_1 \cap A_2 = \emptyset$.3 אם $B = A \cup (B \setminus A)$ אז $\mathcal{P}\left(B
 ight) = \mathcal{P}\left(A
 ight) + \mathcal{P}\left(B \setminus A
 ight)$ הזר. ולכן $B \in \mathcal{P}\left(A
 ight) = \mathcal{P}\left(A
 ight)$ כזכור $\mathcal{P}\left(B
 ight) \geq \mathcal{P}\left(A
 ight)$ אז שליליים לכן $\mathcal{P}\left(B
 ight) \geq \mathcal{P}\left(A
 ight)$

אינפי של מרחב הסתברות 4.1.2

תהי קבוצות. $\{A_n\}_{n=1}^\infty$ תהי

$$\lim_{n\to\infty}\sup A_n=\cap_{k=1}^\infty\cup_{n=k}^\infty A_n$$
 הגדרה:
$$\lim_{n\to\infty}\inf A_n=\cup_{k=1}^\infty\cap_{n=k}^\infty A_n$$

משפט:

- $\limsup A_n \in \mathcal{F}$ אז $A_n \in \mathcal{F}$ ונ. אם
- $\lim_{n \to \infty} \inf A_n \in \mathcal{F}$ אם $A_n \in \mathcal{F}$ לכל $A_n \in \mathcal{F}$ אם .2
 - $\lim_{n\to\infty}\inf A_n\leq \lim_{n\to\infty}A_n$.3

הוכחה:

- $\lim_{n o\infty}\sup A_n=\cap_{k=1}^\infty c_k\in\mathcal F$ ואז $\mathcal F$ מתכומות מיניה $c_k=\cup_{n=k}^\infty A_n\in\mathcal F$ לכל .1
 - 2. אותו דבר
- $x\in .x\in \lim_{n\to\infty}\sup A_n$ אנו רוצים להראות כי $x\in \lim_{n\to\infty}\inf A_n$ אנו רוצים להראות כי $x\in \lim_{n\to\infty}\inf A_n$ אנו רוצים לחמכאן קיים $x\in B_k$ ומכאן קיים $x\in B_k$ ומכאן קיים $x\in B_k$ ומכאן קיים $x\in B_k$ ע ראשר $x\in A_n$ כלומר ריים $x\in A_n$ ע כלומר ריים $x\in A_n$ לכן לכל $x\in A_n$ לכן לכל לכל $x\in A_n$ כלומר $x\in A_n$

אז $\lim_{n\to\infty}\inf A_n=\lim_{n\to\infty}\sup A_n$ אם $\lim_{n\to\infty}\{A_n\}_{n=1}^\infty$ אז הגדרה: תהי $\lim_{n\to\infty}A_n=\lim_{n\to\infty}\inf A_n$ מאמר שהסדרה $\{A_n\}$ מתכנסת ונסמן $\{A_n\}$

שתה הגדרות חילופיות לinf

$$.\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases} .\{0,1\}$$

 $x\in\Omega$ אז לכל $\underline{A}=\liminf A$ ו ו $ar{A}=\limsup A_n$ נסמן

 $\chi_{\bar{A}}(x) = \limsup \chi_{a_n}(x)$

 $\chi_{\underline{\mathbf{A}}} = \lim\inf \chi_{A_n}(x)$

הוכתה תרגיל.

 $\{a_n\}$ הוא קבוצה כל הxים שמופיעים באינסוף מעברי בגדרת $\limsup A_n$ פרט (אולי) למספר $\{A_n\}$ היא קב' כל הxים שמופיעים בכל אברי הסדרה $\liminf A_n$ סופי.

נחזור להסתברות 4.3

 $A_n \in \mathcal{F}$ ו $A_n \subseteq A_{n+1}$, תהי לכל לכל מאורעות של מאורעוה של סדרה עולה ל $\{A_n\}$ $\mathcal{P}\left(\cup_{n=1}^{\infty}A_{n}
ight)=\lim_{n
ightarrow\infty}\mathcal{P}\left(A_{n}
ight)$ אז n לכל ה

> n>1 עבור $B_n=A_n\setminus A_{n-1}$ ו $B_1=A_1$ עבור סדרה (גדיר סדרה נגדיר אוכחה: $B_1=A_1\in\mathcal{F}$ מדוע n לכל $B_n\in\mathcal{F}$

 $B_n=A_n\cap\left(A_{n-1}^c\right)\in\mathcal{F}\ n=1\ \text{עבור}$ $\cup_{n=1}^\infty A_n=\cup_{n=1}^\infty B_n\ \mathbf{1}\ A_k=\cup_{n=1}^k B$

 $\mathcal{P}\left(\cap_{n=1}^{\infty}A_{n}
ight)=\lim_{n o\infty}\mathcal{P}\left(A_{n}
ight)$ אז משפט: אם $\left\{A_{n}
ight\}_{n=1}^{\infty}$ סדרה יורדת של מאורעות אז (ההוכתה תרגיל לסטודנט)