REPORT NO. 1331

THE ELECTROMAGNETIC PROPAGATION RANGE FACILITY AT THE BALLISTIC RESEARCH LABORATORIES

by

Channing L. Adams

PROPERTY OF U.S. ARMY STIME O BRANCH BRL, AFG, MD. 21005

July 1966

COUNTED IN

Distribution of this document is unlimited.

U. S. ARMY MATERIEL COMMAND BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1331

JULY 1966

Distribution of this document is unlimited

THE ELECTROMAGNETIC PROPAGATION RANGE FACILITY AT THE BALLISTIC RESEARCH LABORATORIES

PROPERTY OF U.S. ARMY STINFO BRANCH BRL, APG, MD., 21005.

Channing L. Adams

Ballistic Measurements Laboratory

RDT&E Project No. 1P523801A286

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1331

CLAdams/ss Aberdeen Proving Ground, Md. July 1966

THE ELECTROMAGNETIC PROPAGATION RANGE FACILITY AT THE BALLISTIC RESEARCH LABORATORIES

ABSTRACT

This report describes the instrumented range facility designated the Electromagnetic Propagation Range as established by the Ballistic Research Laboratories (BRL) in support of fundamental research in the near-earth meteorological environment. It includes a description of the multi-channel, high-speed, digital data acquisition system, the types of instrumentation used for obtaining meteorological data, methods of instrument and sensor calibration, and typical results of field programs. Tabulated data and photographs of all parts of the system are included.

TABLE OF CONTENTS

	Pa	ge
	ABSTRACT	3
	LIST OF FIGURES	7
	LIST OF TABLES	9
I.	INTRODUCTION	11
II.	GENERAL DESCRIPTION	11
III.	DATA ACQUISITION SYSTEM	18
	A. System Capabilities	20
	B. Circuit Description	21
	C. Digital Tape Recorder	26
	D. Tape Format	27
	E. Modes of Operation	29
	F. Printed Data Presentation	32
IV.	SENSORS	34
	A. Wind Speed and Direction	34
	B. Temperature	38
	C. Humidity	43
٧.	CALIBRATION METHODS	45
	A. Wind Speed Sensor Calibration	45
	1. Wind Tunnel Calibration	45
	2. Field Calibration	50
	B. Wind Direction Calibration	55
		59
	D. Humidity Calibration	61
VI.	RANGE PROGRAMS	67
VII.	SUMMARY	71
	APPENDIX A: RANGE OPERATIONS	73
	APPENDIX B: METEOROLOGICAL DATA SUMMARIES	
	MAY 1965 - JANUARY 1966	79
	DISTRIBUTION LIST	91

LIST OF FIGURES

Figure No.	Page
1.	ELECTROMAGNETIC PROPAGATION RANGE AT LOCUST POINT, SPESUTIE ISLAND
2.	OVERALL VIEW OF RANGE FACILITY
3.	SENSOR TOWER AND INSTRUMENT SHELTER
14.	SENSOR TOWER IN LOWERED POSITION 16
5.	DIGITAL DATA ACQUISITION SYSTEM IN VAN 19
6.	BLOCK DIAGRAM OF DATA ACQUISITION SYSTEM
7.	DIGITAL PATCHBOARD
8.	MAGNETIC TAPE DATA FORMAT
9.	SYSTEM CONTROL PANEL
10.	PRINTED DATA PRESENTATION
11.	THE M.R.I. VECTOR VANE WITH AMPLIFIERS AND CALIBRATION JIGS
12.	THE B & W. SERIES 50 WIND MEASURING SYSTEM 39
13.	THERMAL RADIATION SHIELD AND TEMPERATURE SENSORS 40
14.	THE BENDIX MODEL DHGF-1P DEWPOINT HYGROMETER 44
15.	WIND TUNNEL CALIBRATION OF WIND SPEED SENSORS 48
16.	FREQUENCY VS VOLTAGE FOR AN/GMQ-12 AMPLIFIER 49
17.	ON-SITE CALIBRATION OF WIND DIRECTION SENSOR USING JIG
18.	DIRECTION CALIBRATION OF M.R.I. VECTOR VANE 58
19.	CALIBRATION OF TEMPERATURE MEASURING SYSTEM 60
20.	DEWPOINT HYGROMETER CALIBRATION

LIST OF TABLES

Table No.		Page
I.	DATA SUMMARY-BRL WIND TUNNEL TESTS	47
II.	FIELD CALIBRATION-WIND SPEED SENSORS	51
III.	CALIBRATION DATA-WIND SPEED SENSORS	52
IV.	CALIBRATION DATA-B.&W. SERIES 50 WIND MEASURING SYSTEM	53
٧.	FIELD CALIBRATION OF WIND SPEED SENSORS USING MOTOR DRIVE	54
VI.	FIELD CALIBRATION OF WIND DIRECTION SENSORS	57
VII.	FIELD CALIBRATION DATA RESISTANCE BULB VS THERMOCOUPLE	62
VIII.	FIELD DEWPOINT TEMPERATURE MEASUREMENTS	65
IX.	WET/DRY BULB TEMPERATURE COMPARISON TESTS	66
х.	DATA SUMMARY-FIELD TEST USING AN/GMQ-12 SENSORS	68
XI.	FIELD TEMPERATURE MEASUREMENTS USING BRIDGE SYSTEM	69
XII.	WIND SPEED COMPARISON DATA	70
	APPENDIX A	
AI	M.R.I. VECTOR VANE CHARACTERISTICS	75
AII.	B.&W. SERIES 50 CHARACTERISTICS	76
AIII.	AN/GMQ-12 AND CLIMET Oll-1 CHARACTERISTICS	7 7
	APPENDIX B	
	METEOROLOGICAL DATA SUMMARIES, MAY 1965-JANUARY 1966 .	79

I. INTRODUCTION

In the spring of 1963, the Ballistic Measurements Laboratory of the Ballistic Research Laboratories (BRL) undertook the establishment of an instrumented Electromagnetic Propagation (EMP) range facility in support of fundamental research in the near-earth meteorological environment. The purpose of this facility was the acquisition of meteorological and supporting data necessary for the establishment of design parameters and the performance evaluation of target detection and discrimination, tracking, guidance and homing concepts. It was desired that in addition to obtaining meteorological data the facility should have the capability of supporting research in both optical and electronic measurements already being carried out by laboratory personnel.

The plans for the EMP range facility were formulated by cooperation of all those at BRL interested in this type of research. As work has progressed, other laboratories and agencies have expressed an interest in the facility. It is the purpose of this report to describe what has been accomplished to date in the fulfillment of the original mission and to briefly outline future plans. It is expected that changes will be made in the facility as research data are evaluated, as instrumentation is improved, and as requirements are modified.

II GENERAL DESCRIPTION

The EMP range facility is located, as shown in Figure 1, on Spesutie Island in the vicinity of Locust Point, approximately 2 miles east of the mainland of Aberdeen Proving Ground. This location is bounded on the north and east by the upper section of Chesapeake Bay; there are no natural obstructions to impede air flow. On the west side, the range boundary is a swampy area with a thin row of trees extending about one-half the range length. Directly south, there is an open area approximately 3/4 mile long which is quite flat and also offers very few obstructions.

CHESAPEAKE BAY

FIG. 1 - ELECTROMAGNETIC PROPAGATION RANGE AT LOCUST POINT, SPESUTIE ISLAND

In order to establish similar ground conditions over the entire range, an area 2400 feet long and 400 feet wide was scraped and graded to a nearly flat surface, with the west side just slightly lower than the east side, for drainage purposes. Area is available to allow future extension of the range length to 10,000 feet over land and to approximately twice this distance over water. The longitudinal axis of the range is aligned 8 degrees east of Magnetic North. Since the prevailing winds in this region are westerly and northerly, the air flow is generally across the narrow section of the range area. At both the north and south ends of the range are located roadways leading to areas on which instrument shelters and vehicles may be placed for target detection and discrimination tests. Necessary ac power is available at outlets conveniently placed near these areas. Figure 2 shows a general view of the range when looking toward the southwest.

Five 30-foot steel towers, mounted rigidly on concrete piers, are spaced 500 feet apart on the eastern edge of the range. Attached to the towers at three levels are six-foot sections of 2-inch square aluminum The manner of attachment allows sensors to be mounted at each end of the conduit and away from the tower itself. Figure 3 shows one of these towers with two sensors per level mounted at 6, 12 and 30 feet above the ground. These sensor mounts can be easily moved as program requirements change. In addition, the towers are hinged at a point 15 feet above ground level to allow the upper section to be lowered for easy access to cables and sensors. Figure 4 shows one of these towers in the lowered position. After the initial calibration of the sensors is made, they are installed in the desired configuration on these towers. Signal cables from the sensors are brought down the tower and fed into instrument housings, or shelters, where they are connected to amplifiers, power supplies, or bridge circuits depending upon the type of sensor in use. The outputs of the sensor circuits are connected to terminal strips in a junction box to which are attached the long signal lines leading to a data acquisition system located in an instrument van placed 30 feet away from the east side of the range and about 400 feet from the southern end.

FIG. 2 - OVERALL VIEW OF RANGE FACILITY

FIG. 3 - SENSOR TOWER AND INSTRUMENT SHELTER

FIG. 4 - SENSOR TOWER IN LOWERED POSITION

The signal cables are routed to the van on a pole line paralleling the east side of the range and are fastened to a steel messenger cable which is attached to the supporting wooden poles, spaced 50 feet apart. Power and intercom lines are carried to each tower location on a separate messenger cable on the same pole line. As is shown in Figure 2, the poles supporting the cables are only five feet high. Thus, a man standing on the ground can service the cables.

Each of the two signal cables contains multiple pairs of lines for a total capacity of 24 channels per tower location. The line for each channel consists of a plastic-insulated, twisted-pair, 22-gauge wire with a drain, or shield, wire. Each pair plus drain is individually shielded from other pairs in the same cable by an aluminum foil wrapping. A high dielectric strength coating material is on the outer surface of the foil and provides isolation between shields of adjacent groups. This type of cable greatly reduces cross talk and spurious signal impulses, and provides a reduction of common mode voltages usually found in long cable installations.

The signal lines are terminated in jack panels at the data acquisition system, where it is possible to patch any sensor to any desired data input channel.

Prior to the tower installation, several data runs were made with sensors located on 14 five-foot tripods placed 100 feet apart along the east side of the range. The signal cables at each instrument housing were used to obtain an overall test of the system. The objective in the field layout was to provide a system which was flexible enough to meet the ever-changing user requirements encountered in research programs.

III. DATA ACQUISITION SYSTEM

In the planning stages for the EMP range, it became apparent that severe limitations would be placed on the acquisition of data from a large number of sources if conventional methods of recording data on charts were used. Hence, it was decided that performance specifications would be written for a data acquisition system using up-to-date digital techniques with the output data recorded on magnetic tape. The problem then became one of determining such factors as sampling rates, conversion speed, number of channels, tape format, and input levels. The system obtained was manufactured to BRL specifications by Astrodata, Inc. of Anaheim, California and was delivered in April 1964. The system was installed in a 40-foot van located near the southeast end of the range. Figure 5 shows the present system contained in three equipment racks, each with two bays. Viewed from the front, the first bay on the left contains a Potter Model 906II-2 tape transport with its associated amplifiers, control circuits, and power supplies. Directly below the transport is the patchboard used to provide the desired digital programming. second bay of the first rack contains the system control panel from which all operations are controlled. Below the panel are the card modules for holding the individual solid-state circuit cards required in the system. The system DC power supply is mounted directly under the lower card module.

In Rack No. 2, the first bay houses two analog-to-digital converters, the multiplexer logic cards, and an analog plug-board to allow external monitoring and chart recording of selected data channels. The second bay of this rack contains 72 of the system's signal-conditioning amplifiers with associated power supplies. A modification of the original cabling system has been made by the addition of a patch panel, shown directly above the amplifiers in this bay. Each field line is connected directly to this panel and may be patched to any input desired. If any other circuit is required to be inserted into the system prior to entrance to the data acquisition section, this patch panel provides this capability, thus, increasing the versatility of the system.

FIG. 5 - DIGITAL DATA ACQUISITION SYSTEM IN VAN

The third rack was installed initially without equipment to allow future growth of the system. At the present time portions of both bays have been used. Twenty-eight additional signal-conditioning amplifiers and associated power supplies have been installed in the lower section of Bay No. 1. At the top of this bay are located two DANA digital volt-ohmmeters used for calibration and circuit testing before the field sensors and circuitry are connected to the data acquisition system. The second bay contains a bridge-type temperature measuring system utilizing a separate resistance bridge for each of 18 channels, the bridge power supplies, amplifiers, and test circuits.

A. System Capabilities

The basic function of the data acquisition system is to accept multi-channel analog voltages in the range of 0 to \pm 5 volts DC, to convert these voltages to digital form at high speed, and to record the digital information on magnetic tape in a format compatible with an IBM type 1401 digital computer.

The system capabilities are as follows:

- Input analog data may be digitized at a maximum rate of 20,000 samples per second.
- The digital section of the system has been designed to accept 150 analog channels. At present the system contains 100 input signal-conditioning amplifiers and has space available for future expansion to the maximum of 150.
- The conversion of the analog input signals into their decimal equivalents is accomplished by the use of two analog-to-digital converters, (ADC) each operating at a 10 Kc/s sample rate. The two converters alternately digitize the input signals in a manner to produce a 20Kc/s sample rate. The ADC's are bi-polar four-decimal digit devices. The ADC digital word is zero output and ±4999 counts for a ± 5 volt input to the ADC.
- The signal conditioning amplifiers are of the potentiometricinput differential type arranged on an amplifier-per-channel basis, with selectable gains of 1, 2, 5, 10 and 50.
- Utilizing a built-in, adjustable, precision calibration power supply, pre-run and post-run calibrations of the overall system may be made.

- There are two basic modes of system operation; the first is an on-line mode in which input data obtained from field-located sensors are digitized, put in the proper format, and recorded on magnetic tape; the second allows two types of monitoring for troubleshooting and adjusting parameters of the overall system.
- A built-in time accumulator, functioning from either internal or external signals, is provided to produce time words for recording on the tape with the digitized analog data.
- Provision is made for a visual display of the digital values of selected data channels, a display of channels in error, and an error counter. The system contains circuits that compare the output of the analog section of the system with selectable "error limits" circuits and that indicate out-of-limit channels.
- Circuits for read-after-write parity-error detection are included.
- The insertion of 12 digits of preset title, or identification, data on magnetic tape can be accomplished by simple front-panel switch operation.
- All systems controls are adequately interlocked so that out-of-sequence operations are not possible.
- An independent performance analyzer channel is provided for checking digital operation of the system. This channel is read back from the magnetic tape and an error is indicated by the error counter if there is a difference between the word read and a pre-set voltage.

B. Circuit Description

Figure 6 is a simplified block diagram of the system and serves to indicate the basic sections for illustrative purposes only. The logic involved in the system layout is not a part of this drawing.

Signal cables from the sensor outputs located at the field sites enter the acquisition system through plug connections and are then routed to jack panels in Rack No. 3 by Bay No. 1. This allows patching of input channels in any desired configuration into the system's input transfer switches. These switches transfer the signal, the signal return, and the guard lines for each sensor from the input of each signal-conditioning amplifier to the output of the precision calibration power supply when desired. During data gathering runs the switches are in the proper position to allow direct input to each amplifier, which operates

FIG. 6 - BLOCK DIAGRAM OF DATA ACQUISITION SYSTEM

with an input impedance of 1000 megohms and with an output voltage range of \pm 5 volts. The outputs of the amplifiers are connected to an analog patchboard so that recordings may be made on external analog recorders. Eight Esterline-Angus chart recorders have been installed in racks adjacent to the data system for this purpose,

From the analog patchboard, the signals are routed to a 150-position high-level multiplexer which sequentially switches multiple inputs to a common output bus. Control of the multiplexer is provided by a digital patchboard shown in Figure 7. The positions marked Program Times are the outputs of the 150 position sequencer and this determines the order in which channels will be digitized. On the right side of the digital patchboard are groups of 25 connections, each marked with site numbers. These connections are the inputs to the multiplexer from each field position where the sensors are located. Thus, any sensor at any site may be patched into any program time desired. This allows great flexibility in the order in which the input signals may be selected for digitizing. The patchboard sections indicated as HUBS are 20 connections wired in parallel. By proper patching of up to 19 program times into one HUB section with the remaining HUB connection patched to a specific site position, the sensor at that position will be scanned 19 times. This in effect is super-commutating a single sensor. There are two patchboard parallel connections labelled E-O-R for end of record operation and these allow one to short cycle the sequencer. Use of these positions makes it unnecessary to operate through 150 positions for each scan, if this is desired. The length of the scan is determined by the sequencer position into which one has connected the EOR connection. Referring again to the block diagram, the common output of the multiplexer is connected to the parallel inputs of two analog-to-digital converters (ADC) which serve as the interface between the analog and digital sections of the system. The ADC's convert the scanned analog input voltage to proportional binary-coded decimal (BCD) numbers by sequentially comparing the input current with precise, digitally-weighted currents that are generated within the ADC's. The output and display of each converter is four

FIG. 7 - DIGITAL PATCHBOARD

decimal digits and sign. For present range operations the converters are operated unipolar, although they have the capability of bi-polar operation. They are calibrated such that a \pm 5 volt input produces \pm 4999 counts output.

The outputs of the two ADCs are alternately selected to be stored in a digital data register. The output of this register is connected to write-logic gates, a readout register, and a storage register.

Words are written on magnetic tape in TBM gapped format, a sevenbit character at a time. The system has three output word sources, each parallel in character; these are the digital data register, timing logic, and title data switches. The write logic converts the parallel words to serial characters, adds necessary pad characters required by the format, and processes the characters for writing on the magnetic tape. In addition a parity generator is included to determine the number of bits in each character and, when necessary, to add a bit to make an even count.

To ensure that each character has been written properly on tape, the system reads each character after it has been written and performs both vertical and longitudinal parity checks. When operating in the playback mode, selected channels may be read from the tape and displayed on front-panel nixie-type indicators. Provision is also made for the first word in each data record, known as the performance analyzer (PA) word, to be read and compared with a precise input voltage to check the accuracy of the digital section of the system. If a difference exists between the PA word and the known value, an error is shown by front panel indicators. The amount that the output of the system may vary about the selectable, precise input voltage is determined by settings of front-panel error switches, labelled A, B, C and D. The errors are respectively 0.1 percent or 5 counts, 0.2 percent or 10 counts, 0.3 percent or 15 counts and 0.4 percent or 20 counts. The known precise input voltage is selected by amplitude switches and a scale potentiometer on the front panel. Identification of data words is accomplished to allow the storage register to load the words in the proper sequence and to

control the multiplexer through a counter. The output of the storage register is connected to the readout register and comparison gates. The readout register controls the front panel data display indicators, and a sequence number register controls the front-panel sequence number indicators.

System timing is derived from a 160 Kc/s, crystal-controlled oscillator, the frequency of which is halved to 80 Kc/s to provide the required control pulses. Further division to 10 Kc/s provides the system's time-of day clock for writing on tape at the beginning of each data word. This section may be operated from an external 10 Kc/s precision source if desired. Time is provided from hundredths of milliseconds to tens of seconds. System control advances the logic in a fixed sequence for specific modes of operation, such as writing end-of-file and end-of-tape characters, generating start, stop and reset signals and the playback mode.

C. Digital Tape Recorder

The magnetic tape recorder/reproducer furnished with the data acquisition system consists of a Potter 906II-2 high speed digital tape transport with associated M3323 drive electronics, M3321 manual control unit, and MA 315 record and reproduce amplifiers. The transport is of the standard digital type with a tape drive system generating the motion required to move 1/2-inch wide tape across the record/reproduce heads under control of the system logic. This allows fast start time of no more than 3 milliseconds, a tape speed of 150 inches per second, and a fast stop time of no more than 1.5 milliseconds. Rewind tape speed of 300 inches per second in either direction for 1/2-inch tape. Local operation of control functions such as rewind, forward, stop and the like, is available on a control panel. Automatic control of system functions is routed through the circuit from the system logic. Associated functions such as startof-tape indication, low tape supply, and end-of-tape indication and control are also provided. The purpose of the record/reproduce amplifiers is to record on the magnetic tape the digital information provided in a particular format from the acquistion system, and to reproduce this data on command.

The amplifiers are IBM compatible and are designed to operate with a modified non-return to zero recording system at the maximum tape speed of the transport and with packing densities of 556 bits per inch. Any compensation required is built into the amplifiers.

D. Tape Format

All of the digital information produced by the system must be organized in a special, fixed manner, or format, for recording on magnetic tape.
This format was determined for compatibility with the input requirements
of an IBM 1401 computer available for use in BRL. Figure 8 shows this
tape format, the top section indicating a title record and the bottom
section indicating a data record.

The data in digital form appear either as the presence of a pulse indicating a binary "one" or the absence of a pulse indicating a binary "zero". These binary digits, or bits, are produced simultaneously on the seven-track tape recorder write head stack and are recorded laterally across the 1/2-inch width of tape. One row of such data is indicated as a character. The first four bits in a character contain the numerical information generated in the system representing one decimal digit. Bits in the A and B tracks respectively identify the least significant character in a data word and identify the sign of the word. The C track contains bits required for the "even" parity check of the system.

The title record consists of 12 characters of data inserted into the system by the front panel title switches, at one character per switch position. A three-character gap in the tape (determined by the timing logic in the system) then is generated and this is followed by a single character labelled LRCC which is a longitudinal check character for further parity checking. An inter-record gap 3/4 of an inch in tape length is then generated to complete the title record. When the system is operating in the data modes the tape format consists of a four-character word containing performance analyzer data, followed by six characters of timing data, and then two "pad" characters. Each word in the format must contain four characters, or groups of four characters, (modulo 4) and the pad

CMARMCTER, , , PA M SD

2 PA 35D

3 PA 25D

4 PA 15D

5 TENY SECONDS

6 LWITS SECONDS

7 TENTN SECONDS

9 MILL SECONDS

11 PAD 0

12 PAD 0

FIG. 8 - MAGNETIC TAPE DATA FORMAT

characters are added to fulfill this requirement in the time word. Immediately following the last "pad" character are the characters forming the data words, derived from the input signals. The number of these data words is dependent upon the number of input channels in use and can be from one to 150 four-character words. After the last data word in a record an LRCC character and inter-record gap are written before another successive data record is begun.

When data runs are completed, an end-of-file gap 3 1/2 inches long is made on the tape followed by an end-of-file character, a 3 character gap, an LRCC character, and a 3/4-inch inter-record gap. The end-of-file character in this group is composed of a bit in the first four tracks. The end-of-file sequence is manually initiated by an operator from the system control panel. Two successive manual switch operations are normally used to identify the end-of-tape run.

In the generation of a data word on the tape, the first character represents the most significant digit and the fourth character represents the least significant digit of the recorded data.

E. Modes of Operation

The system is capable of operation in six on-line modes and three off-line modes. The on-line modes are those in which data from field located sensors are recorded on digital tape or read back from tape. In all the off-line modes, except for the calibration mode, the tape transport is not used. The system's input source in the three off-line modes is the output of the calibration power supply. Figure 9 shows the system control panel from which all these operational modes are controlled. The six on-line modes available are playback, write title, periodic scan, single scan, continuous scan, and end-of-file function. The three off-line modes are performance analyzer function in test-single position, performance analyzer function in test-all position, and calibration mode.

FIG. 9 - SYSTEM CONTROL PANEL

In the playback mode, pre-recorded data are read back from the digital tape and a specific data channel can be selected by switch operation for display on the Data Value indicator. The proposed addition of a digital-to-analog converter to the existing system will allow this selected channel to be recorded on an external chart recorder.

In the write title mode, the data selected by the 12 front panel switches are recorded on tape prior to a recording run. This includes such identification data as date, run number, test number and the like.

In the periodic scan mode, the system will completely scan all channels and record the data at intervals set by the front panel switch. These rates are 0.1 second, 1.0 second, 10 seconds and 100 seconds. The rate at which each sensor is sampled remains the same in each case, but the rate at which complete data scans are made varies according to the switch setting. The single scan mode allows for only one scan to be made and recorded; the continuous scan mode allows scanning to continue until manually stopped. The end-of-file mode allows the system operator to record the necessary data required by the tape format to identify the end-of-file.

In the performance analyzer test-single mode, calibration voltages adjusted by front panel controls are used as the system input. Any channel chosen by the sequence number selector switch is continuously displayed on the Data Value indicator and also compared with the input voltage. If the value of the selected channel exceeds limits set by error limit switches, the error counter displays the number of times the limit was exceeded.

In the performance analyzer test-all mode, no data are recorded on tape. System input is the calibration voltage and all channels are compared with the selected error limits. If any channel exceeds these limits, the system stops, the value of the channel is displayed on the Data Value display and the number of the channel in error is displayed on the sequence number indicator. Operation in these off-line modes allows one to quickly check overall functioning of the system, by determining if any channel is in error and by indicating which one it is.

In the calibration mode, the calibration voltage is again used as the system input and the system scans and records on tape all the channels in the system. This occurs only when the mode switch is in test-single position.

F. Printed Data Presentation

In checking the operation of the overall range data-gathering system including both the digital section and the field meteorological section, it is often desirable to have the data available in printed form before a large number of data runs is made. Figure 10 shows three types of printed data which have proven to be useful in such a system checkout.

The top two readouts were made with the IBM 1401 computer tabulating the data directly from the magnetic tape input. The top section shows the recorded voltage outputs for 15 channels when a known calibration voltage, noted in the far left column as PA, was used as the parallel input to all channels. From this type of presentation it can easily be determined if adjustments need to be made to the input amplifiers to meet the desired accuracy specifications.

The second section shows the various output voltages recorded on the 15 channels using input signals derived from field-located wind speed sensors. In this case the time data shows that successive scans of all channels were made at 0.1 second intervals. The voltage recorded under column DW 11 shows the results of a defective sensor and under column DW 15 the result of an open signal line.

The last section shows the final desired results obtained after the data were processed through a computer. The first print-out is the time of a specific scan followed by successive channels of wind speed in miles per hour. Directly below this, with the same time notation are the data for the wind direction in degrees. These data can also be obtained in a form which allows automatic plotting when desired.

```
010941100001
     TIME
              DM 1
                    0402
                           DMO3
                                  DW04
                                        DW05
                                               DW06
                                                     0W07
                                                            DWOB
                                                                  0W09
                                                                        DWIO
                                                                               DWII
                                                                                     DW12
                                                                                            DW13
                                                                                                  DWIA
                                                                                                         DW15
2951 14.2060
              2940
                     2958
                           2950
                                         2950
                                  2952
                                               299R
                                                     2947
                                                            2944
                                                                  294A
                                                                         2947
                                                                               2950
                                                                                     2949
                                                                                            2946
                                                                                                  2948
                                                                                                         2950
2953 15.8060
               2942
                     2958
                            2950
                                  2951
                                         295D
                                               2999
                                                      2948
                                                            2943
                                                                  2949
                                                                         294A
                                                                               2949
                                                                                     2949
                                                                                            2943
                                                                                                  2946
                                                                                                         2949
2949 01.0030
              2947
                     2956
                            2950
                                  2955
                                         2949
                                               2997
                                                            2946
                                                     2947
                                                                  2948
                                                                         2945
                                                                               2948
                                                                                     2950
                                                                                            2944
                                                                                                  2949
                                                                                                         2948
2951 02.0030
               2946
                     2957
                            2949
                                                     2946
                                  2953
                                         2949
                                               2995
                                                            2946
                                                                  2949
                                                                         2943
                                                                               294B
                                                                                     2949
                                                                                            2944
                                                                                                  2947
                                                                                                         2947
2951 03.0030
              2946
                     2956
                            2949
                                  2953
                                         2949
                                                     2946
                                               2998
                                                            2946
                                                                  2948
                                                                        2946
                                                                               2948
                                                                                     2948
                                                                                            2943
                                                                                                         2948
                                                                                                  2948
                                                Calibration Voltages - Individual Channels
701 51.4011
PA
      TIME
               OM 1
                    DW02
                            DH03
                                  DW04
                                        DW05
                                               DWOA
                                                     DW07
                                                            DWOR
                                                                  DW09 DW10 DW11
                                                                                     DW12
                                                                                            DW13
                                                                                                  DW14
                                                                                                         DW15
2950 29.2030
              2073
                     2100
                            1777
                                  2444
                                         2267
                                               2187
                                                     2307
                                                            1580
                                                                  2800
                                                                         2355
                                                                                                  2719
                                                                                880
                                                                                     2612
                                                                                            2770
                                                                                                          172
2950 29.3030
               1791
                     2096
                            1625
                                  2293
                                         2090
                                               2049
                                                     2462
                                                            1517
                                                                  2848
                                                                         2049
                                                                               1077
                                                                                     2493
                                                                                            2525
                                                                                                  2743
                                                                                                          170
2950 29.4030
               1694
                     2216
                            1714
                                  2408
                                         2170
                                               2210
                                                     2199
                                                            1608
                                                                   2743
                                                                                942
                                                                                     2512
                                                                                            2430
                                                                                                  2913
                                                                         2142
                                                                                                          170
2950 29.5030
                            1546
                                                                                P44
               1886
                     2248
                                  2340
                                                      2105
                                                            1719
                                         2088
                                               2213
                                                                  2612
                                                                        2115
                                                                                     2456
                                                                                            2294
                                                                                                   2819
                                                                                                          170
2950 29.6030
                                                                                                          chamel
               2161
                     2247
                            1730
                                  2440
                                         2079
                                               2112
                                                      2190
                                                            1808
                                                                   2423
                                                                         2151
                                                                                     2702
                                                                                            2634
                                                                                                   2917
2950 29.7030
               2007
                     2419
                            1566
                                  2342
                                         2259
                                               2199
                                                      2293
                                                            1740
                                                                  2500
                                                                         2253
                                                                                      2506
                                                                                            2271
                                                                                                   2957
                                                                               11 8,
2949 29.8030
               2094
                     2305
                            1450
                                  2199
                                         2112
                                               2155
                                                      2280
                                                            1707
                                                                  2324
                                                                         2150
                                                                                     2453
                                                                                            2555
                                                                                                   3014
2950 29.9030
               2031
                     2197
                            1507
                                  2298
                                         2090
                                               2209
                                                                               16 9'
                                                      2265
                                                            1619
                                                                  2465
                                                                        2112
                                                                                     2481
                                                                                            2312
                                                                                                   2942
2949 30.0030
                     2101
               2331
                           1344
                                  2118
                                         2035
                                               2140
                                                     2108
                                                            1515
                                                                  2504
                                                                        2110
                                                                                     2457
                                                                                            2209
                                                                                                   3089
2949 30.1030
                                                                               defect.
               2086
                     2114
                            1528
                                  2207
                                         2070
                                               1946
                                                            1609
                                                                                     2459
                                                                                                   3242
                                                      2043
                                                                  2437
                                                                         2080
                                                                                            2421
                                                                                                          18
2950 30.2030
                     2209
                                               2108
               2032
                            1363
                                  2105
                                         1914
                                                      2158
                                                            1758
                                                                         2090
                                                                                      2590
                                                                                                   3248
                                                                  2297
                                                                                            2445
2950 30.3030
                                               2157
                                                                                     2457
                                                                                                   3082
                                                                                                          172
               2103
                     2156
                            1331
                                  1987
                                         222R
                                                      1933
                                                            1801
                                                                  2425
                                                                         2112
                                                                                            2510
                                                                               1179
2950 30-4030
               2151
                     2250
                            1266
                                  2245
                                         2064
                                               2208
                                                      1850
                                                            1684
                                                                  2386
                                                                         2100
                                                                                     2259
                                                                                            2386
                                                                                                  2999
                                                                                                          168
2951 30.5030
               2090
                     2254
                            1339
                                  2096
                                         2034
                                               2102
                                                      1979
                                                            1795
                                                                  2518
                                                                         2108
                                                                               1411
                                                                                     2056
                                                                                            2293
                                                                                                   2941
                                                                                                          172
2950 30.6030
                     2257
                            L379
                                                                                                   2802
               2337
                                  2109
                                         2102
                                               2146
                                                      1831
                                                            1683
                                                                  2314
                                                                        2148
                                                                               1902
                                                                                     2053
                                                                                            2324
                                                                                                          170
2949 30.7030
                     2298
                                         2003
                                               2151, 1989
                                                                  2423 2044
                                                                                                  3054
              2177
                            1316
                                  2114
                                                            1685
                                                                               1735
                                                                                     2212 2485
                                                                                                          172
                                                           Output Voltages - wind Speed Sensor
SCALE 12 MPH 9 SEPT.64 RUN NO.
                                   6
 30.1000 6.945 5.902 4.502 4.713 6.330 5.676 5.723 5.892 5.979 5.437 4.597
                                                                                    M.S
 4.248 4.552 3.056
 30.1000 230.1 213.9 192.7 209.2 237.8 264.1 263.0 249.6 224.9 246.0 258.1
                                                                                    WD
 224.5 222.5 247.3
                                                                                    ₩Đ
 30.2000 6.854 5.611 4.300 4.265 6.271 5.500 5.634 6.140 5.665 5.408 4.386
                                                                                    мS
 3.970 3.896 3.128
                                                                                    --
 30.2000 231.8 216.2 192.1 211.6 236.8 263.8 263.1 254.4 224.7 249.2 258.3
                                                                                   ΗĐ
 225.6 221.6 247.3
                                                                                    ND
 30.3000 6.052 6.101 3.725 4.701 6.968 6.145 5.437 6.302 5.712 5.439 4.241
                                                                                    HS
 4.222 4.101 3.481
                                                                                    MS
 30.3000 231.2 220.9 191.7 217.3 236.2 266.4 266.4 256.3 224.7 253.6 258.7
                                                                                    WD
 228.5 222.0 246.0
                                                                                    MΩ
 30.4000 5.963 5.770 3.954 4.462 6.931 5.667 5.498 6.612 5.660 5.672 4.980
                                                                                    NS
 4.485 3.973 3.128
                                                                                   NS.
 30.4000 228.8 224.0 192.0 224.8 237.3 267.6 272.4 256.7 224.6 256.7 260.2
                                                                                   MD
 230.5 222.0 246.2
                                                                                   MD
 30.5000 5.864 5.651 4.338 4.338 6.556 6.075 5.892 6.337 5.895 5.965 4.528
                                                                                   WS
 4.831 3.680 3.030
30.5000 225.2 227.5 192.5 232.1 241.3 268.9 278.4 253.6 224.8 256.7 261.0
                                                                                    NS.
                                                                                    MĐ
 225.6 222.0 246.6
 30.6000 5.993 5.425 4.163 4.965 6.304 5.866 6.187 5.770 5.575 5.521 4.698
                                                                                    MS
                                                                                    MS.
 4.906 4.022 3.512
 30.6000 221.6 232.4 192.2 241.8 244.9 268.1 282.1 249.8 224.8 253.6 261.1
                                                                                    MD
 224.2 221.5 245.2
                                                                                    WD
 30.7000 5.690 6.126 4.549 4.495 6.759 5.848 5.991 5.735 5.965 5.277 4.542
                                                                                    MS
 4.698 4.070 3.618
 30.7000 218.5 233.1 190.9 250.1 248.8 270.5 284.0 242.9 225.1 250.3 262.3
                                                                                    WD
                                                                                    ND
 220.8 220.5 242.5
 30.8000 5.566 6.239 4.355 4.800 6.306 5.281 5.780 5.730 6.239 5.869 4.906
                                                                                    HS.
                                                                                    - 5
 4.705 3.620 3.222
 30.8000 216.5 232.6 189.7 257.2 253.3 271.1 283.4 235.2 226.1 246.6 263.1
                                                                                    ₩Đ
 217-2 220-7 242-0
                                                                                    ₩D
 30.9000 5.505 5.841 4.296 4.965 6.563 5.526 5.782 5.766 6.290 5.845 4.144
                                                                                    WS
 4.904 4.360 3.507
                                                                                    MD
 30.9000 215.0 228.1 188.1 260.3 254.6 271.2 280.8 234.8 226.2 242.1 263.3
                                                                                    ΝD
 213.7 221.7 241.9
 31.0000 5.688 5.906 4.457 5.065 6.437 5.660 5.180 5.895 5.951 5.770 4.405
                                                                                    21
 4.651 3.744 3.863
 31.0000 214.4 225.3 187.4 260.1 254.4 271.0 278.3 235.0 225.6 239.1 264.2
                                                                                    WD
 211.1 221.4 243.1
                                                                                    M3
```

FIG. 10 - PRINTED DATA PRESENTATION

Computer Print-out

IV. SENSORS

Meteorological measurements made to date utilizing the data acquisition system at the EMP range facility have been wind speed, wind direction (both azimuth and elevation), temperature and humidity. The types of sensors used to obtain these measurements have been as follows:

Wind Speed and Direction: AN/TMQ-12; Meteorology Research, Inc., Vector Vane 1053; and Beckman and Whitley Series 50.

Temperature: Honeywell Model 921A3 and Beckman and Whitley Model 60.1.

Humidity: Bendix Model DHGF-1P.

A. Wind Speed and Direction

1. The AN/GMQ-12 set consists of a wind speed sensor and a wind direction sensor with each feeding its own conversion and amplifying circuit. The speed sensor operates using a light chopper technique where the rotation of a cup anemometer causes the chopper to interrupt a light beam to a phototube. The wind speed determines the rate of interruption of the light beam and the phototube produces a resulting pulse output. This is converted to a varying DC voltage which is amplified and fed to the data acquisition system.

The wind vane of the direction sensor is mechanically coupled to the arm of a variable resistor. The position of this arm, determined by the wind direction, results in a DC voltage applied to an amplifier and thence to the data acquisition system.

The two sensors are attached to a cross-arm which can be mounted on a 6-foot tripod or on any of the tower positions. The associated amplifier and power supply unit for each type of sensor is located in an instrument shelter near each tower site. The output signals are then connected through a junction box to the instrument van for digitizing and recording.

2. The Model 1053 Vector Vane includes in a single unit the provision for measuring the wind speed and two components of wind direction, the elevation and azimuth. Figure 3 shows a unit mounted at the middle level on a sensor tower. It has the advantage over the type AN/CMQ-12 in accuracy, faster response time, and lower threshold characteristics. The fast response is achieved through improved aerodynamic and mechanical designs which minimize the mass of the responsive surfaces and friction in rotating parts. The directional response is carefully matched to the speed response so that, with allowance for the small physical separation of the sensing surfaces, both outputs describe the same wind change, or gust. Because of its light weight, care must be exercised in handling and mounting the unit.

The tail fins are light plastic with a thin aluminum protective covering. The windmill-propeller, used in place of cup anemometers, has four light magnesium blades. Aluminum tubing is used in various other parts. The vane can swing horizontally through a full circle and can pivot on the upright shaft. Vertically it can deflect \pm 60° turning the shaft of a potentiometer located in the housing directly above the upright shaft. This provides a resistance change proportional to elevation angle. A miniaturized photocell and light source unit is also mounted in the housing. A light beam chopper directly attached to the propeller generates the output which is linearly related to wind speed.

The tube extending from the base houses the pivot shaft which operates a potentiometer under the cover at the base to produce a resistance change proportional to the azimuth angle of the vane. All sensor signals pass through a low-drag slip ring and brush assembly to an output connector.

Each Vector Vane requires an associated unit to furnish the necessary power and three separate electronic modules, one for each of the vane outputs. The modules contain the solid-state signal-conditioning circuits for each type of signal and produce an output both on a meter and at receptacles for connecting to the data acquistion

system. Provision is made in each module for obtaining full scale calibration voltages and for range and linearity adjustments. Figure 11 shows the Vector Vane and its associated equipment. Characteristics are listed in Table AI of the Appendix.

3. The Beckman and Whitley Series 50 wind measuring system incorporates several improvements over other systems used on the range. The use of air-gap capacitive transducers to sense the anemometer shaft rotation and vane position without contact or friction greatly reduces mechanical wear inherent in directly-coupled units using potentiometers or servos.

The speed sensor consists of a staggered six-cup anemometer, which rotates on low torque ball bearings and moves a capacitor rotor. This produces an amplitude modulated signal which is demodulated to provide a sinusoidal output voltage, the frequency of which is 40 times that of the shaft rotation. All of the necessary circuitry is mounted in the housing supporting the anemometer and is encapsulated in potting compound to improve reliability.

The direction sensor consists of a wind vane which can rotate freely on low torque bearings. As the wind direction changes the vane moves and the shaft turns causing a capacitor rotor to move. This phase shifts a l kc/s sinusoidal signal relative to a l kc/s reference signal by an amount directly proportional to the wind direction azimuth. Measurement of this phase shift produces the desired output. The circuitry for this is also mounted and encapsulated in a housing supporting the wind vane.

The output signals from the wind speed sensor are converted to constant volt-second pulses whose average dc value is directly proportional to wind speed. This output is coupled to the data acquisition system through suitable RC-filter networks. The signals from the wind direction sensor are converted to pulse widths which are directly proportional to wind direction. This output is also coupled to the data acquisition system through RC-filters. Since the Series 50 system

FIG. 11 - THE M.R.I. VECTOR VANE WITH AMPLIFIERS AND CALIBRATION JIGS

produces outputs which are frequencies instead of dc voltages, these signals can be transmitted up to 10 miles before insertion into the translators and thence to a data recording system. For range applications it is more desirable to have the translators directly at each field, or sensor site.

The direction sensor and speed sensor are each mounted on one end of a cross-arm of aluminum to allow either tripod or tower mounting. A special fixture is available for initial alignment of the direction sensor, and for replacement of sensors without realignent. Figure 12 shows the Series 50 wind measuring set. Characteristics are listed in Table AII of the Appendix.

B. Temperature

The measuring system used to obtain temperature data is the Beckman and Whitley Model 140 which consists of 18 resistance type sensors, an individual resistance bridge for each sensor, bridge power supplies, amplifiers, and a test circuit. Both the Beckman and Whitley Model 60.1 sensor and the Honeywell Model 921A3 sensor, individually mounted in a Model M327 aspirated thermal radiation shield, have been used. The sensor is connected as one side of a resistance bridge in a manner such that variations in sensor resistance due to temperature changes produce a bridge output voltage. This is amplified and fed to the data acquisition system for recording.

The sensor element is supported by a terminal board in the upper neck of the shield assembly. A co-axial internal shield with an absorption spectrum different from the radiation spectrum of the outer shield reduces the exchange of heat by re-radiation to the sensing element. The heat is given up to the air stream and extracted from the assembly by a squirrel-cage blower. Additional reflectors surrounding the upper and lower sensor regions are provided by the radiation shield. This type of shield is shown in Figure 13.

FIG. 12 - THE B. & W. SERIES 50 WIND MEASURING SYSTEM

FIG. 13 - THERMAL RADIATION SHIELD AND TEMPERATURE SENSORS

The shielded sensors are connected to their respective bridge circuits through the long signal lines; two pairs of wires are needed for each sensor. Each bridge is independently powered by its own supply and all its resistors are contained in a single plug~in unit. The bridges are rack mounted in groups of ten per chassis and these are located in relay racks to the right of the data acquisition system in the instrument van. The resistors in each bridge are tailored for use with specific lead wire resistances from the tower sites and are not interchangeable. Each bridge contains two trim potentiometers for span and zero adjustment when in use with the sensors at specific sites.

The bridge uses a Kelvin double bridge modification of the conventional Wheatsone bridge to increase accuracy by suppressing errors due to variations in lead wire resistance. The bridge operates from a well-regulated 10 volt dc source furnishing excitation current of 0.8 milli-amperes to the sensor. The voltage output of the bridge varies from 0 volts at -40°F to 0.05 volts at + 140°F as shown below. This output is amplified by a solid-state operational amplifier, Fairchild Model A00-6, with a fixed gain of 100: this permits a 0 to 5.0 volt output to be fed to the data acquisition system. The test circuit consists of a Zener regulated divider network, a switching arrangement, and front panel meter to allow the checking and metering of each bridge amplifier.

The following table shows the relationship of temperature, sensor resistance, and bridge output voltage obtained with the measuring system.

Temperature (°F)	Bridge Output (Volts)	Sensor Resistance (ohms)
_ 1+O	.000000	417.3
- 30	.002749	429.4
- 20	.005492	441.6
-10	.008229	453.9
0	.010982	466.4
+10	.013728	479.0
20	.016489	491.8
30	.019285	504.9
40	.022071	518.1
50	.024870	531 .5
60	.027659	545.0
70	.030438	558 6
80	.033208	572.3
90	.035987	5 86 . 2
100	.038755	600.2
110	.041551	614.5
120	.044355	629.0
130	.047165	643.7
140	•050000	6 5 8.7 -

The Beckman and Whitley Model 60.1 sensor is a manganin-nickel wire resistance thermometer element constructed to provide maximum performance in the radiation shield. The wire is wound on the outside of a thin metal, hollow cylinder approximately 2 inches long attached to a mounting strip to allow insertion into the radiation shield. type of construction was used to obtain a fast response which produced a time constant of 0.35 seconds in stirred oil. Experience with these sensors in the field indicates that they are extremely fragile and the resistance wire tends to break unless extreme caution in handling is used. Several of the units showed a break in the wire after they had been properly placed in the shields and initially checked. Further design effort must be spent to provide a practical field sensor of this type if fast response is required. The second type of temperature sensor used was the Honeywell Model 921A3 nickel resistance thermometer bulb, with the winding encased in a steinless steel outer shell. It has the same temperature-resistance characteristics as the Model 60.1 and can be directly substituted for it in the bridge system. This sensor was adapted for mounting in the same radiation shield as the Model 60.1

sensor. It has proved to be rugged enough for field use but its time constant is several times greater than that of the Model 60.1 and its use is limited to measurements where this factor is not important.

C. Humidity

Measurements of humidity have been made on the range using the Bendix Corporation's Model DHGF-1P dewpoint hygrometer. In this instrument the dewpoint temperature is determined by passing an electric current of sufficient magnitude through a Peltier junction to form a thin layer of frost on a silver mirror surface. The temperature must be controlled so that the thin layer of frost is maintained at approximately a constant thickness. With the condition of unchanging thickness, the saturated water vapor pressure over the mirror film is equal to the partial pressure of water vapor in the air sample. Then the mirror surface temperature is the dewpoint of the air sample.

Two methods of detection of this layer of frost are used, the first one monitors the thickness by a photocell focussed on the mirror surface, controlling, through a servo amplifier, the current to the Peltier junction, the second method uses a thermistor imbedded in the mirror to monitor the temperature of the mirror required to maintain the frost thickness at equilibrum. A signal conditioning amplifier converts the thermistor output to a useful voltage output.

The instrument includes two units, one the power supply and the other the sensing, or hygrometer section. Both are shown in Figure 14. Attached to the sensing section is a passivated stainless steel inlet tube which allows air samples to be brought to the mirror position without changing the sample's moisture content. The servo amplifier and control circuitry are also included in this unit.

FIG. 14 - THE BENDIX MODEL DHGF-1P DEWPOINT HYGROMETER

V. CALIBRATION METHODS

Since the data acquisition system operates with analog input signals over the range of 0 to ± 5 volts, it is necessary to convert the phenomenon being measured to a voltage. The calibration of the measuring device, or sensor, becomes most important if meaningful measurements are to be obtained. Facilities for producing, controlling, and measuring the environment over the desired operating range for the calibration of all types of sensors used in field measurements are desired but are not always available. In lieu of this direction calibration, the data furnished by the manufacturer must be relied upon.

Experience on the EMP range with a large number of various types of sensors indicates that sensor calibration is a major part of any field measurement program. Once this has been carefully completed, the actual data gathering process is very fast because of the high speed of the data acquisition system.

A. Wind Speed Sensor Calibration

Two methods have been used for the calibration of wind speed sensors, one utilizing the facilities of the BRL wind tunnel and the other a more direct, but less precise field calibration.

1. Wind Tunnel Calibration. Three types of wind speed sensors, or anemometers, were available for calibration in the BRL wind tunnel. These included two units of Type AN/CMQ-12, three units of the M.R.I. Vector Vane 1053, and one unit of Climet Model Oll-1. A single sensor at a time was attached to a suitable mount which was placed in the air stream in the 93-inch section of the supply header piping of Tunnel Number 3. By setting the nozzle throat, controlled air velocities were generated over the range of approximately 1 to 19 miles per hour and were accurate to ± 5 percent. Circuitry associated with the sensor produced an output signal with a frequency proportional to wind speed. This frequency was measured on a counter and printed out with a digital printer every two seconds for the duration of a run. The air stream was allowed to stabilize at each desired speed and then data were obtained for several minutes on each run. A large

number of data points was thus obtained for each sensor at each speed over the entire speed range. Table I shows the data summary of these wind tunnel calibrations. The summary indicates lower standard deviations in the measurements made using the Vector Vane than from the other two types of sensors. The standard deviations are approximately the same for the AN/GMQ-12 and Climet Model Oll-1. This was predictable since both types are quite similar in design and use anemometer cups as the sensing device. The Vector Vane uses a sharply pitched propeller in place of the anemometer cups. This appears to improve the consistency of measurement over the range of calibrated wind speeds. A second run was made on one unit of the AN/GMQ-12 and the data summary shows reasonable agreement with the first run.

From these data the best straight line equation was calculated and plotted for each sensor calibrated. Figure 15 shows the results for a typical sensor of each type calibrated in the wind tunnel.

Before the system can be used in the field, one must know the relation between the frequency of the output signal (produced by the air speed on the sensing device) and the analog output voltage must be available. Usually the manufacturer furnishes data which relates the air speed and the output frequency for a specific type of sensor. As an example, the calibration of an anemometer cup unit used with the AN/GMQ-12 unit was as follows:

$$S (in mph) = 0.637 + Frequency (in cps) 29.547$$

Thus, a known output frequency equivalent to a specific input air speed on the sensing device could be determined. Then a suitable signal of this frequency could be fed into the associated amplifier circuits and the output voltages measured. Figure 16 shows a graph of input frequency versus output voltage for various scale settings of an AN/GMQ-12 amplifier.

Table I

Data Summary, BRL Wind Tunnel Tests

SENSOR: M.R.I. VECTOR VANE (20 SLOTS)

			Serial 160				Serial 162			Serial 163	
	Air Vel Ft./Sec.	Locity Mi/Hr.	Data Points	Frequency Output (Mean)	Std. Dev.	Data Points	Frequency Output (Mean)	Std. Dev.	Data Points	Frequency Output (Mean)	Std. Dev.
	27.0 23.5 16.0 7.0 4.1 2.2 1.5	18.41 16.02 10.91 4.77 2.79 1.50 1.02	115 - 116 121 79 226 126	191 - 118 49 28 16 14	0.77 0.67 0.71 0.77 0.51 1.53	155 74 80 129 121 86 122	196 162 114 50 28 17	0.91 2.47 6.54 0.66 0.73 0.76 0.56	74 - 94 98 116 88	194 - 119 46 26 15	0.73 - 0.62 0.55 0.68 0.80
	SENSOR: AN/GMQ-12 (100 SLOTS)										
朴			<u>s</u>	er. 48 (Run	<u>1</u>)		Ser. 48 (Run	<u>2</u>)		Ser. 49	
	27.0 23.5 16.0 7.0 4.1 2.2 1.5	18.41 16.02 10.91 4.77 2.79 1.50 1.02	77 - 94 131 141 182 96 50	582 - 349 140 76 43 19	4.25 -5.59 2.27 1.76 2.18 3.09 3.18	142 - 119 164 74 106 -	542 329 133 74 37 -	5.19 - 4.24 2.35 1.56 2.42 -	57 56 85 - - -	602 514 365 - - - - -	4.66 5.26 4.25 - - - -
				SENSOR:	CLIME	T-MODEL (011-1 (100 SLO	TS)			
				Ser. 173							
	27.0 23.5 16.0 7.0 4.1 2.2 1.5	18.41 16.02 10.91 4.77 2.79 1.50 1.02	86 119 67 47 102 85 103	605 499 364 149 82 45 18	4.64 6.16 4.17 2.18 1.55 0.98 1.06						

FIG.15 WIND TUNNEL CALIBRATION OF WIND SPEED SENSORS

FIG. 16 FREQUENCY VS VOLTAGE FOR AN/GMQ-12 AMPLIFIER

2. Field Calibration. It soon became evident that it was not practical to calibrate each wind speed sensor in the wind tunnel for every program, especially since some programs required the use of many sensors. To simulate specific air velocities it was necessary to use a method suitable for quick, accurate calibration of sensors installed at their various field positions. A group of synchronous motors, each geared down to a desired shaft speed and covering an equivalent range of wind speed from 3 to 21 mph was obtained. The powered shafts of these units were temporarily attached to the shafts of the sensors through a rubber bushing or coupling. The sensor shaft thus rotating at a known speed produced a voltage at the system output. It should be noted that the same group of motor drive units did not serve to calibrate all of the types of wind speed sensors presently available. This was due to the differences in the number of slots in the light chopper discs of sensors of various manufacturers. However, a total of six units was adequate to calibrate all available sensors. calibrating the Vector Vane 1053 wind speed sensor, it was necessary to account for the propeller pitch in determining the equivalent wind speed for a specific motor drive unit.

The first field calibrations using the simple method were made with the sensors in place at various positions as noted. Operating personnel were elevated to the sensor positions with the use of a "cherry-picker" lift vehicle. The motor drive units were then coupled to the sensor shafts and a complete calibration was made through the whole system, including amplifiers and long interconnecting lines to the data acquisition van. The output voltages were measured on digital voltmeters and recorded. Table II is a summary of this field calibration. From these measurements the best straight line equation was obtained for each field calibrated sensor. These are included in Table III and have served as the sensor calibrations for most field programs. At a later date, two units of a new type of wind speed and direction system designated as the Beckman and Whitley Series 50, were obtained. Similar calibrations were made on this model and the results, including the best straight line equations, are listed in Tables IV and V.

Table II
Field Calibration, Wind Speed Sensors

					DRIVE	MOTOR SHAFT	SPEED IN rps	
SENSOR SERIAL	FIELD SITE	tower Level	SENSOR TYPE	1.2	1.67	3.0	5.0	6.0
NUMBER	PILE	TOACT	TIPE			ENT WIND SPE		
				4.69	6.28	10.78	17.55	20.93
					(2) MEASURE	D OUTPUT VOI	TAGES	
5		bottom	AN/GMQ-12	0.840	1.136	1.914	3.091	3.702
56	1	top	AN/GMQ-12	0.898	1.214	2.124	3.297	3.976
15	2	bottom	AN/GMQ-12	0.834	1.123	1.926	3.110	3.692
47	2	top	AN/GMQ-12	0.887	1.219	2.001	3.278	3.888
63	3	bottom	AN/GMQ-12	0.870	1.160	1.992	3.218	3.795
21	3	top	AN/GMQ-12	0.867	1.150	1.956	3.186	3.783
45	4	bottom	AN/GMQ-12	0.862	1.138	1.970	3.178	3.778
57	4	top	AN/GMQ-12	0.852	1.158	2.014	3.236	3.854
49	5	bottom	AN/GMQ-12	0.871	1.167	2.006	3.199	3.840
59	5	top	AN/GMQ-12	0.879	1.168	1.995	3.217	3.848
(1) N.B.S.	calibration	used for	MEAN	0.886	1.1633	1.9898	3,2010	3.8156
	•		STD DEV.	0.0275	0.0298	0.0551	0.0615	0.0807
	1 1 17 4	L DANA DIES	11			1	1	<u> </u>
	ed at Van wit							
	ed at van wit ier Scale 30							
Amplif:	ier Scale 30	mph 	SENSOR		DRIVE	MOTOR SHAFT	SPEED IN rps	
Amplif:	ner Scale 30 FIELD	mph TOWER	SENSOR	1.67	,	<i>~ - - - -</i>	<i>-</i>	10.0
Amplif: EENSOR SERIAL	ier Scale 30	mph 	SENSOR TYPE	1.67	3.0	MOTOR SHAFT 5.0 ENT WIND SPE	6.0	10.0
Amplif: EENSOR SERIAL	ner Scale 30 FIELD	mph TOWER			3.0 (1) EQUIVAI	5.0 ENT WIND SPE	6.0 ED IN MPH	-,
Amplif: EENSOR SERIAL	ner Scale 30 FIELD	mph TOWER		1.67	3.0 (1) EQUIVAL	5.0 ENT WIND SPE	6.0 ED IN MPH	10.0
Amplif: EENSOR SERIAL	ner Scale 30 FIELD	mph TOWER	TYPE MRI VECTOR VAN	2.95	3.0 (1) EQUIVAI	5.0 ENT WIND SPE 9.89 D OUTPUT VOI	6.0 ED IN MPH	-,
Amplif: SENSOR SERIAL NUMBER	r Scale 30 FIELD SITE	mph TOWER LEVEL	TYPE MRI VECTOR VANI MRI VECTOR VANI	2.95 0.645 0.646	3.0 (1) EQUIVAL 5.93 (2) MEASURE	5.0 ENT WIND SPE 9.89 D OUTPUT VOI 2.347	6.0 ED IN MPH 11.86 TAGES	19.77
Amplifa SENSOR SERIAL NUMBER 165 163 161	FIELD SITE	TOWER LEVEL	MRI VECTOR VANIMRI VECTOR VANIMRIVECTOR VANI	2.95 0.645 0.646 0.728	3.0 (1) EQUIVAL 5.93 (2) MEASURE 1.308	5.0 ENT WIND SPE 9.89 D OUTPUT VOI	6.0 ED IN MPH 11.86 TAGES 2.867	19.77
Amplifa SENSOR SERIAL NUMBER 165 163 161 118	FIELD SITE	TOWER LEVEL center center	MRI VECTOR VANI MRI VECTOR VANI MRIVECTOR VANI MRI VECTOR VANI	2.95 0.645 0.646 0.728 VEO.648	3.0 (1) EQUIVAL 5.93 (2) MEASURE 1.308 1.312	5.0 ENT WIND SPE 9.89 D OUTPUT VOI 2.347 2.354	6.0 ED IN MPH 11.86 TAGES 2.867 2.876	19.77 4.879 4.992
Amplifa GENSOR GERIAL JUMBER 165 163 161	FIELD SITE	TOWER LEVEL center center center	MRI VECTOR VANIMRI VECTOR VANIMRIVECTOR VANI	2.95 0.645 0.646 0.728 VEO.648	3.0 (1) EQUIVAL 5.93 (2) MEASURE 1.308 1.312 1.395	5.0 ENT WIND SPE 9.89 D OUTPUT VOI 2.347 2.354 2.390	6.0 ED IN MPH 11.86 TAGES 2.867 2.876 2.886	19.77 4.879 4.992 4.891
Amplifa SENSOR SERIAL NUMBER 165 163 161 118 166	FIELD SITE	center center center center center center center	MRI VECTOR VANI MRI VECTOR VANI MRIVECTOR VANI MRI VECTOR VANI	2.95 0.645 0.646 0.728 VEO.648	3.0 (1) EQUIVAL 5.93 (2) MEASURE 1.308 1.312 1.395 1.338	5.0 ENT WIND SPE 9.89 D OUTPUT VOI 2.347 2.354 2.390 2.372	6.0 ED IN MPH 11.86 TAGES 2.867 2.876 2.886 2.894	19.77 4.879 4.992 4.891 4.862

and Output frequency is 20 cps/rev (2) Voltages measured at Data Van with DANA DVM

Table III
Calibration Data, Wind Speed Sensors

SENSOR TYPE	SERIAL NO.	TEST	BEST EQUATION OF STRAIGHT LINE
AN/GMQ-12	48 (Run 1)	Wind Tunnel	where X = wind velocity in mph & Y = output freq. in cps Y = 32.28X -9.78
AN/GMQ-12	48 (Run 2)	Wind Tunnel	Y = 30.11X -8.12
Climet, Oll-1	173	Wind Tunnel	Y = 32.65X - 5.36
MRI Vector Vane	160	Wind Tunnel	Y = 10.47X + 0.032
MRI Vector Vane	162	Wind Tunnel	Y = 10.42X + 0.025
MRI Vector Vane	163	Wind Tunnel	Y = 10.78X - 2.64
AN/GMQ-12		Mfr Calibratio	on $Y = 29.25X - 14.6$
SENSOR TYPE	SERIAL NO.	<u>TEST</u>	BEST EQUATION OF STRAIGHT LINE where X = wind velocity in mph &
			Y = output voltage
AN/GMQ-12	49 F	ield Cali b	Y = 0.182X + 0.024
AN/GMQ-12	59 I	Field Calıb	Y = 0.183X + 0.017
AN/GMQ-12	5 I	Field Calib	Y = 0.175X + 0.029
AN/GMQ-12	56 I	Field Calib	Y = 0.188X + 0.037
AN/GMQ-12	15 I	Field Calib	Y = 0.176X + 0.017
AN/GMQ-12	47 1	Field Calib	Y = 0.184X + 0.038
AN/GMQ-12	63 I	Field Calib	Y = 0.181X + 0.026
AN/GMQ-12	21 I	Field Calib	Y = 0.180X + 0.020
AN/GMQ-12	45 I	Field Calib	Y = 0.180X + 0.017
AN/GMQ-12	57 I	Field Calib	Y = 0.184X + 0.006
MRI Vector Vane	161 I	Field Calib	Y = 0.249X - 0.052
MRI Vector Vane	118 1	Field Calib	Y = 0.252X -0.117
MRI Vector Vane	163	Field Calib	Y = 0.256X - 0.158
MRI Vector Vane	165 I	Field Calib	Y = 0.254X - 0.151
MRI Vector Vane	166 1	Field Calib	Y = 0.253X - 0.175

Table IV
Calibration Data, B&W Series 50 Wind Measuring System

			0	UTPUT VOLTAGE - 1	WITH #1 FILTER		
WIN	D SPEED		TRANSLATOR#134			TRANSLATOR#138	
MILES PER HOUR	EQUIVALENT* FREQUENCY	30 M.P.H. SCALE	60 M.P.H. SCALE	90 M.P.H. SCALE	30 M.P.H. SCALE	60 m.p.h. SCALE	90 M.P.H. SCALE
0	0.00	0.02	0.015	0.01	0.02	0.015	0.01
5	51.68	0.17	0.08	0.06	0.17	0.10	0.07
10	110.78	0.34	0.18	0.11	0.35	0.17	0.12
20	228.97	0.69	0.34	0.22	0.70	0.36	0.24
30	347.16	1.04	0.53	0.36	1.05	0.52	0.35
40	465.35	1.38	0.70	0.47	1.39	0.71	0.48
50	583.54		0.88	0.59		0.88	0.59
53 60	701.73		1.04	0.70		1.05	0.71
70	819.92		1.22	0.82		1.22	0.82
80	938.11		1.38	0.93		1.39	0.95
90	1056.30			1.05			1.05
100	1174.49			1.16			1.16
110	1292.68			1.27			1.27
120	1410.87			1.38			1.38

From mfr. where speed = 0.0846 x Frequency (in c.p.s.) + 0.627, for 40 slot sensor.

DIRECTION>	0°	90°	180°	270 ⁰	360°	<u>.</u>		
	OUTPUT VOLTAGES							
Transmitter 158, Translator 152	0.00	0.28	0.54	0.76	0.99			
Transmitter 158, Translator 159	0.00	0 27	0.53	0.77	0.99			
Transmitter 160, Translator 152	0.00	0 24	0.50	0 75	0.98			
Transmitter 160, Translator 159	0.00	0.24	0,50	0.75	0.98			

Table V Field Calibration of Wind Speed Sensors Using Motor Drive

MOTOR GEAR RATIO	R R.P.S. AN/GMQ-12				M.R.I. VECTOR VANE (20 SLOTS)			B&W SERIES 50 (40 SLOTS)				
		FREQ. IN C.P.S.	EQUIV. SPEED IN M.P.H. (1)	VOLTAGE OUTPUT (30 SCALE)	FREQ. IN C.P.S.	EQUIV. SPEED IN M.P.H. (3)	VOLTAGE OUTPUT (20 SCALE)	FREQ. IN C.P.S.	EQUIV. SPEED IN M.P.H.	90 SCALE	AGE OUTF 60 SCALE (6)	30
5:1	12	1200	41.24	-	240	23.73	-	480	41.24	0.481	0.722	1.443
6:1	10	1000	34.47	-	200	19.77	4.94	400	34.47	0.403	0.605	1.209
10:1	6	600	20.93	3.820	120	11.86	2.97	240	20.93	0.247	0.371	0.741
⊊ 12:1	5	500	17.55	3.207	100	9.89	2.47	200	17.55	0.208	0.312	0.624
20:1	3	300	10.78	1.979	60	5.93	1.48	120	10.78	0.129	0.194	0.387
36:1	1.67	167	6.28	1.162	33.3	2.95	0.74	66.7	6.27	0.077	0.116	0.231
50:1	1.2	120	4.69	0.874	24	2.37	0.59	48	4.69	0.059	0.089	0.177
Best straight line 30 scale: y = 0.1814(x) equations, where y is the output voltage and x is the wind velocity in M.P.H.			y = 80 sca	20 scale: y = 0.2501(x)0004 80 scale: y = .06255(x)0016			90 scale: y = .01154(x) + 0.005 60 scale: y = .01731(x) + 0.008 30 scale: y = .03462(x) + 0.015					

NOTES: (1) From N.B.S. Calibration, where $x = 0.627 + \frac{Frequency (in c.p.s.)}{29.547}$

(2) From best straight line equation obtained by motor drive calibration on ten (10) sensors.
(3) Where propellor pitch is 2.90 feet/revolution.
(4) Values obtained from field data using motor drive, where 5.0 volt output = 20 M.P.H.
(5) From manufacturers data where x = 0.627 + 0.0846 x (Frequency).
(6) Values obtained from field data using motor drive calibration.

The calibration data indicate that the best method of wind speed calibration is the wind tunnel method since it yields the most consistent, repetitive results under controlled conditions. For most programs, however, the field calibration method will usually be adequate for the measurement accuracies desired. Calibration can be done by non-technical personnel after the sensors have been mounted in the field positions.

B. Wind Direction Calibration

Since the wind vane of the direction sensor is coupled directly to the center arm of a potentiometer, a dc voltage determined by vane position can be obtained. The important point to note is that the center position of the potentiometer's total range must represent the center of the voltage range. This reference point must also be known with respect to true compass position for the dc output voltages to have any direction significance during a field data run. This requires careful sensor installation at all field sites and the proper orientation of each direction sensor with a known compass position. At the EMP range, Magnetic West was chosen as this reference point, representing mid-scale in voltage and 180° in direction. Calibration was accomplished by shifting the vane position in known horizontal angular increments and recording the resultant voltage. To do this, a round, flat, metal plate, or jig, was obtained with notches cut on the outside circumference every five degrees. The jig was placed over the sensor housing in a manner that would allow the vane arm to be positioned into any notched position. After the center voltage position was obtained for the mechanical center position of the vane on the jig, the complete sensor and jig was oriented to the desired compass position and locked in place. Calibration was carried out in 45° increments. Figure 17 shows the jig in the calibrate position for a direction sensor at the top level of a sensor tower. Table VI is a summary of the field calibrations made in the above manner on ten AN/GMQ-12 direction sensors, and five Vector Vane 1053 sensors. It should be noted that the latter sensors could be calibrated both in azimuth and elevation. For the Vector Vane sensors, the same calibration techique was used but required jigs furnished by the manufacturer. The horizontal positions could be obtained in 15° increments over a 360° range and the vertical position in 15° increments both plus and minus 60° from the level position. Figure 18 shows the direction calibration for a Vector Vane 1053 sensor.

FIG. 17 - ON-SITE CALIBRATION OF WIND DIRECTION SENSOR USING JIG

Field Calibration of Wind Direction Sensors

							AZIMUTH					
				EAST	S.E.	SOUTH	S.W.	WEST	N.W.	NORTH	N.E.	
SENSOR	SENSOR	FIELD	TOWER	00/3600	450	90°	135	180	225	270	315	
TYPE	SERIAL NUMBER	SITE	LEVEL	(1) Measured Output Voltages								
AN/GMQ-12	14	1	BOTTOM	4.973	0.708	1.312	1.915	2.510	3.110	3.724	4.358	
AN/GMQ-12	11	ī	TOP	4.731	0.714	1.342	1.924	2.574	3.192	3.821	4.444	
AN/GMQ-12	ltft.	2	BOTTOM	4.936	0.687	1.295	1.920	2.524	3.144	3.766	4.387	
AN/GMQ-12	36	2	TOP	4.881	0.679	1.299	1.848	2.501	3.104	3.710	4.306	
AN/GMQ-12	36 22	3	BOTTOM	4.911	0.575	1.244	1.880	2.493	3.093	3.699	4.302	
AN/GMQ-12	7	3	TOP	4.936	0.684	1.326	1.931	2.520	3.037	3.680	4.303	
AN/GMQ-12		4	BOTTOM	4.891	0.540	1.171	1.810	2.461	3.102	3.742	4.392	
AN/GMQ-12	30 33 28	4	TOP	4.914	0.777	1.381	1.936	2.513	3.087	3.662	4.283	
AN/GMQ-12	28	5	BOTTOM	4.954	0.639	1.286	1.891	2.474	3.058	3.673	4.315	
AN/GMQ-12	10	5	TOP	4.962	0.642	1.263	1.887	2.528	3.151	3.784	4.466	
			MEAN	4.9089	0.6645	1.2919	1.8992	2.5098	3.1078	3.7261	4.3556	
<u> </u>			STD D	EV 0.0656	0.0654	0.0546	0.0349	0.0296	0.0429	0.0492	0.0611	
MRI VEC. V	VANE 165	1	CENTER	0.092	0.628	1.272	1.877	2.473	3.099	3.723	4.348	
MRI	163	2	CENTER	0.081	0.699	1.321	1.931	2.533	3.154	3.779	4.403	
MRI	161	3	CENTER	0.036	0.607	1.252	1.902	2.575	3,231	3.885	4.515	
MRI	109	14	CENTER	0.023	0.568	1.197	1.811	2.444	3.081	3.711	4.301	
MRI	113	5	CENTER	0.092	0.657	1.259	1.865	2,506	3.130	3.727	4.305	
		•	MEAN	0.0648	0.6318	1.2602	1.8772	2.5062	3.139	3.765	4.3742	
			STD D	EV 0.0294	0.0444	0.0397	0.0401	0.0457	0.0178	0.0604	0.0793	
SENSOR	SENSOR	FIELD	TOWER		ELEVATION						- 	
TYPE	SERIAL	SITE	LEVEL	+60	00	- 60°		Measured a	t Data Van	with Dana	Digital	
	NUMBER			(1) Mea	sured Volt	ages]	Voltmeter				
MRT VEC. V	VANE 165	ר	CENTER	4.799	2.469	0-026	}					

MRI VEC. VANE 165 4.799 4.888 2.469 2.476 0.026 0.038 CENTER 163 161 MRI CENTER 2.380 2.506 2.495 0.023 MRI CENTER 4.880 109 113 4.959 4.952 MRI CENTER MRI CENTER 0.030 MEAN 4.8956 2.4652 0.0272 STD DEW 0.058 0.0446 0.0145

57

FIG 18. DIRECTION CALIBRATION OF M.R.I. VECTOR VANE

C. Temperature Calibration

The relation of the output voltage of the bridge system to the equivalent temperature was determined by the manufacturer and is expressed in the following equation:

Temperature $({}^{\circ}F) = -886.28(e^2) + 3644.38e -40.00$, where e is the bridge output voltage.

Using this equation, calculated values of temperature were obtained for specific bridge output voltages as follows:

Bridge Output in Volts	Temperature in Degrees F
0.000	-40.000
0.003	-29.075
0.005	-21.800
0.008	-10.902
0.011	-0.019
0.014	+10.847
0.017	+21,698
0.019	+28.923
0.022	+39.747
0.025	+50.556
0.028	+61.348
0.030	+68.533
0.033	+79.300
0.036	+90.049
0.039	+100.783
0.042	+111.501
0.044	+118.636
0.047	+129.328
0.050	+140.003

Since there is an amplifier between the bridge output and the data measuring system, the above values of "e" are increased 100 times before conversion to digital outputs. The graph of these data is shown in Figure 19. From this the values of the best straight line equation were determined.

FIG. 19 CALIBRATION OF TEMPERATURE MEASURING SYSTEM

y = mx + b where m is the slope in volts per degree F.

b is the intercept on the voltage axis.

y is the output voltage.

x is the temperature in degrees F. $y = 2.778 \times 10^{-2} \text{ volts/degree (x)} + 1.095$ or $\frac{y - 1.095}{2.778} \times 10^2 = x \text{ (in degrees F)}$

Using either the graph or the above equation, the values of temperature may be easily determined.

To make the field calibrations of the temperature measuring system a type D-100 temperature chamber was obtained and placed at Site 3. With this chamber it was possible to produce a controlled temperature over the range of -20 to +100 degrees Fahrenheit. A type T thermocouple and a Honeywell resistance bulb, Model 921A3, were both placed in an alcohol bath and the container was positioned in the controlled chamber. The thermocouple reference junction was maintained in an ice bath throughout the calibration run. The resistance bulb was connected to the Model 140 bridge system described above and the output voltages were measured on an accurate digital voltmeter in the data van. The output of the thermocouple was measured by the standard potentiometric method at the field site. The chamber temperature was changed in approximately 10 degree steps over the noted range. Table VII shows the results of this calibration. The resistance bulb data were also plotted on the same graph as the manufacturer's calibration data. See Figure 19. There is excellent agreement between the two calibrations. The standard deviation of the temperature differences obtained by the two measuring methods was ±0.39° Fahrenheit.

D. Humidity Calibration

Since no chamber was available to provide and control the humidity conditions required for calibration purposes, the manufacturer's calibration data, shown in Figure 20, were used in the field tests. Dewpoint temperatures measured by other methods were compared with those obtained using the Bendix DHGF-1P hygrometer. To obtain meaningful measurements with the instrument required considerable care in the installation, maintenance, and operation. Although this hygrometer was designed for field operation, it was necessary to handle the instrument as a laboratory-type device.

Table VII
Field Calibration Data, Resistance Bulb vs Thermocouple

BRIDGE SYSTEM OUTPUT (VOLTS)	EQUIVALENT TEMPERATURE (OF)	TYPE T THERMOCOUPLE OUTPUT (mv)	EQUIVALENT TEMPERATURE (°F)	TEMPERATURE DIFFERENCE BETWEEN RESISTANCE BULB AND THERMOCOUPLE (°F)
3.86	99.53	+1.519	100.69	-0.56
3.56	88.73	+1.274	89.48	-0.75
3.3 0	79•37	+1.057	80.00	-0.63
3.03	69.65	+0.830	69.91	-0.26
2.76	59•94	+0.609	60.00	-0.06
2.49	50.22	+0,400	50.50	-0.28
2.20	39.78	+0.169	39•91	-0.13
1.92	29.70	-0.151	29.58	+0.12
1.65	19.98	-0.252	19.90	+0.08
1.37	9.90	-0.471	9.61	+0.29
1,22	4.50	-0.583	4.22	+0.28
1.10	0.34	-0.667	0.38	-0.04
0.833	-9.43	-0.870	-9.91	-0.48
0.556	-19.40	-1.070	-19.89	-0.49

- 1. The Beckman and Whitley Model 140 Bridge System was used with Honeywell Resistance Bulb Model 921A3 as the temperature sensor.
- 2. Resistance Bulb and Thermocouple Measuring Junction were in alcohol bath inside Temperature Chamber. The Thermocouple Reference Junction was maintained in an ice bath.
- 3. The voltages were measured with Digital Voltmeters
- 4. The temperatures were calculated from available sensor data.

FIG. 20 DEWPOINT HYGROMETER CALIBRATION (MANUFACTURER'S DATA)

Field tests were conducted using an ML-24 Psychrometer mounted in a standard instrument shelter to obtain wet bulb and dry bulb temperatures from which the dewpoint temperature could be calculated. Two sensing units of the DHGF-IP hygrometer were placed in the same shelter environment and the output voltages were measured on a digital voltmeter. Using the calibration furnished with each instrument, the dewpoint temperatures were obtained. Table VIII is a summary of this test. The range of dewpoint temperatures measured was 63° to 76° Fahrenheit. The standard deviation of dewpoint temperature between the psychrometer data and that of the first hygrometer was $\pm 3.07^{\circ}$ F and between the psychrometer data and that of the second hygrometer was ± 3.08° F. On the second day's run the standard deviation was $\pm 3.8^{\circ}$ F for the first unit. Comparison between the two hygrometer results was very good. The results indicate the need for a better method of producing a Wider range, controlled, humidity environment so that the hygrometer units can be more precisely calibrated.

A very simple method of obtaining the wet bulb temperature (required for the dewpoint temperature calculation) with the use of a Honeywell 921A3 resistance bulb was tried. A wick was placed over the bulb end and kept saturated with water in the same manner that a wet bulb thermometer is used in the ML-24 psychrometer. The equivalent wet bulb temperature was then measured using the standard bridge system already described. The dry bulb temperature was obtained in the normal fashion on a second channel of the bridge system. Table IX is a summary of this simple test. The temperature range was from approximately 33° to 43° F and the average value of temperature readings of the precision wet bulb thermometer was $34.28 \pm 1^{\circ}$ F and was $34.17 \pm 2.7^{\circ}$ F for the wet bulb resistance sensor. The dry bulb readings were respectively $40.47 \pm 2.3^{\circ}$ F and $39.18 \pm 2.1^{\circ}$ F. This indicates that the calculated dewpoint temperature could be obtained as accurately from the resistance bulb measurements as from the thermometer measurements, at least over this narrow range. More precise measurements will still require field operational hygrometers which have been most carefully calibrated in a controlled environment.

Table VIII Field Dewpoint Temperature Measurements

		4 PSYCHROMETE				BENDIX HYGRO	METER MODEL DI	GF-1P
	TEN	PERATURE IN	F	% "	SERIAL		SERIA	
TIME	DRY BULB	WET BULB	DEW POINT	RELATIVE HUMIDITY	(2)MEASURED OUTPUT V.	(3)DEW PRINT TEMP F	(2)MEASURED OUTPUT V.	(3)DEW POINT TEMP F
25 Aug 65								,
0900	70.6	65.0	62.0	74	5.10	65.3	5.40	64.9
0915	71.5	65.1	61.6	71	5.11	65.5	5.42	65•1
0930	72.0	65.0	61.2	68	5.09	65.1	5.41	64.9
0945	72.0	65.5	62.0	70	5.10	65 . 3 66 . 6	5.42	65.1
1000	72.0	66.0	62.8	72	5.19	66.6	5.52	66.7
1015	71.5	66.9	64.6	78	5.23	66.9	5.56	67.1
1030	72.0	67.2	64.8	78	5.22	66.9	5•53	66.7
1045	72.8	66.6	63.4	72	5.20	66.7	5.54	66.7
1100	73•5	66.9	63.5	70	5,12	65.5	5.44	65.5
1115	73.1	64.9	60.4	64	4.97	63.5	5.27	63.5
1130	73.2	65.1	60.6	65 68	5.00	64.0	5.31	64.0
1145	73.0	65.8	62.0	68	5.03	64.0	5.35	64.6
1200	73.2	65.7	61.7	67	5.02	64.0	5.34	64.6
1500	79.0	66.8	60.3	53	4.94	63.1	5.29	63.9
1515	79.1	67.0	60.5	53 53	5.03	64.0	_	
		L			STD			-3.08
26 Aug 65		I			1	1	F	
0700	69.0	68.5	68.2	97	5.61	72.0	-	-
0715	69.0	68.5	68.2	97	5.60	72.0	-	-
0730	69.4	68.9	68.6	97	5.60	72.0	_	_
0745	7 0. 0	69.0	68.1	94	5.62	72.0	-	_
0800	70.2	69.1	68.6	94	5.65	72.5	-	-
1200	78.3	74.0	72.3	81	5.96	76.3	1	
	1		1	L	STD			

 Borometric Pressure dropped from 30.0 inches to 29.9 inches during run.
 Output voltages measured on Digital Voltmeter.
 Dew Point Temperature obtained from manufacturer's calibration curve. NOTES:

Table IX
Wet/Dry Bulb Temperature Comparison Tests

DATE/TIME	TEMPER PRECI THERMO	SION	CALCULATED DEWPOINT TEMPERATURE F	TEMPERAT HONEYWELL °F	BULB	BAROMETRIC PRESSURE IN MILLIBARS)
7 DEC. 65	WET	DRY	,	WET	DRY	
13:30	33.5	40.8	20.1	33.33	40.39	1023.5
13:45	33.6	41.2	19.5	33.69	40.75	1023.6
14:00	33.3	41.3	18.0	33.59	40.57	1023.6
14:15	34.2	42.5	19.7	34.41	41.18	1023.6
14:30	33.7	41.6	19.0	33.62	40.89	1023.6
8 DEC. 65						
09:15	32.4	35.8	27.3	32.33	34.77	1021.0
09:30	32.5	35.7	27.7	32.40	34.70	1020.8
09:45	33.0	36.5	27.7	32.87	35.82	1020.5
10:00	33.0	38.1	24.9	34.16	36.90	1020.3
10:15	34.1	38.5	27.5	33.77	37.04	1020.2
10:30	34.3	38.5	28.1	34.05	37.33	1019.7
10:45	34.4	38.6	28.2	34.27	37.76	1019.8
11:00	35.4	40.9	27.3	35.06	39.30	1019.7
11:15	35.7	41.9	26.6	35.03	39.52	1019.7
13:30	34.1	40.8	23.5	34.02	39.78	1017.6
13:45	35.1	41.9	24.6	35.13	41.00	1017.6
14:00	35.6	43.4	23.5 ·	35.46	41.58	1017.6
14:15	34.5	41.5	25.4	34.31	40.06	1017.7
14:30	34.9	41.2	25.3	34.63	39.96	1017.7
14:45	35.0	42.0	24.3	34.70	39.99	1017.9
15:00	35.2	42.1	24.7	34.92	40.10	1018.0
15:15	35•7	43.0	24.5	35.13	40. 78	1018.2
15:30	35.2	43.0	22.5	35.03	41.07	1018.2
Average:	34.28	40.47	Average:	34.17	39.18	
Std. Dev:	<u>+</u> 1.0	<u>+</u> 2.3	Std. Dev:	<u>+</u> 2.7	<u>+</u> 2.1	

VL RANGE PROGRAMS

The first field program carried out after the installation of the digital acquisition system, the signal lines, and the instrumentation shelters was run with 14 wind speed sensors and 14 wind direction sensors of type AN/GMQ-12. Since the sensor towers had not yet been installed, one speed sensor and one direction sensor were mounted at the ends of the standard AN/GMQ-12 T-bar supported by a 5-foot high tripod. These tripods were placed in a line 100 feet apart along the east side of the range. After the sensor calibrations were completed a series of data gathering runs was made with the output recorded digitally on magnetic tapes. These were turned over to personnel of the Exterior Ballistics Laboratory (EBL) who supervised the computation and data analysis; the results will be contained in a forthcoming report.

Table X is a summary of the field runs made during this program. The data were acquired over a rather long time period in order to obtain a range of wind speed from 3 to 30 miles per hour and wind direction from several compass points. The first few runs were made with a complete scan of all sensors each second for a total run time of 30 seconds at half-hour intervals. During later runs the scan rate was increased to 10 per second for a 30 second run at hourly intervals. A total of 62 data runs were made producing 8610 total scans of the sensors.

Another program was carried out to measure temperatures at various tower levels at the first four tower sites. Both types of temperature sensors previously described were used and measurements were made at ten minute intervals on three separate days. Table XI is a summary of these data. Variations in the temperature from one tower level to another and from tower to tower are clearly shown. Wind speed data acquired on a field program are included in Table XII to show results obtained with two different types of sensors located on the same T-bar mount, tripod supported. The tabulated values were extracted from printouts of digital data recorded on several runs on the days noted. These typical data show the variations in wind speed that were recorded using two types of previously calibrated sensors located only three feet apart.

Table X Data Summary, Field Test Using AN/GMQ-12 Sensors

		Wind Speed	Wind Direction	Scan	Data Run	Number of	Rate of	Prevailir	g Wind Velocity
	<u>Date</u>	Channels	Channels	Rate	Time	Runs	Runs	Direction	МРН
	(1964)			,					
	21 Aug	13 '	14	1/sec	30 secs.	4	ea 1/2 hr	-	-
•	26 Aug	13 '	14	7 7	30 secs.	5	ea 1/2 hr	-	-
,	3 Sep	13	13	1/sec	30 secs.	6	ea 1/2 hr	WSW	3-7
	4 Sep	14	14	1/sec	30 secs.	8	ea 1/2 hr	NNE	3-5
	6 Oct	14	14	1/sec	30 secs.	7	ea 1/2 hr	NE	20-30
8	9 Oct	14	14	10/sec	30 secs.	7	ea 1/2 hr	-	-
~	ll Dec	14	14	10/sec	30 secs.	5	ea 1/2 hr	-	-
	14 Dec	14	14	10/sec	30 secs.	6	ea 1/2 hr	NW	7-13
	(1965)						•		
	6 Jan	14	14	10/sec	30 secs.	5	ea hr	NNW	15
	7 Jan	14	14	10/sec	30 secs.	4	ea hr	NE-2 S-2	4 10
	8 Jan	14	14	10/sec	30 secs.	5	ea hr	S-SSW	7

TOTAL DATA RUNS: TOTAL SCANS: 62 8610

Table XI Field Temperature Measurements Using Bridge System

DATE	SENS	O R	SENS	OR	SENSO	îR	SENSO	R	SENS	OR
	B&W 60.1		B&W 60		B&W 60		HONEYW		B&W 6	
							921A			
	SITE TOP I		SITE TOP L		SITE TOP I	3	SITE		SITE	
	OUTPUT	TEMP	OUTPUT	TEMP	OUTPUT	TEMP	MDL I	TEMP	TOP I	TEMP
	IN		IN		IN		IN		IN	
	VOL <u>T</u> S	$\overset{ ext{IN}}{\circ_{ ext{F}}}$ _	VOLTS	IN F	VOLTS	${}_{\mathbf{F}}^{\mathbf{IN}}$	VOLTS	IN °F	VOLTS	IN F
J	3.2601	77.94	3.3200	80.09	3.3001	79.38	3.2803	78.66	3.2879	78.93
υ	3.2800	78.65	3.3179		3.2999	79-37	3.2899	79.01	3.2877	78.93
L	3.2899	79.01	3.3200		3.2879	78.93	3.2807	78.68	3.2899	70.01
Y	3.2799	78.65	3.3099		3.2879	78.93	3.2629	78.01	3.2790	78. 62
	3.2720	78.37	3.3007		3.2803	78.66	3.2699	77.93	3.2701	78.30
15	3.2600	77.93	3.2800		3.2801	78.66	3.2519	77.64	3.2640	78.06
6=	3.2600	77.93	3.2803		3.2801	78.66	3.2507	77.60	3.2619	78.00
65	3.2480 3.2479	77.50	3.2999		3.2778	78.57	3.2507	77.60	3.2601	77.94 78.06
	3.2419	77.50	3.2800	10.07	3.2779	78.58	3.2559	77.79	3.2635	10.00
-	- 4						 		 	
	B&W 6	0.1	B&W 60	0.1	HONEY	WELL	HONEY	WELL	B&W 6	0.1
					921	A3	921	A3		
	SITE	1	SITE	3	921 SITE	A 3	921 SITE	A3 3	SITE	4
		1		3	921	A 3	921	A3 3		4
J	SITE	1 EVEL 63.86	SITE TOP LI 2.8800	3 EVEL 64.25	921 SITE	A3 3 EVEL 64.00	921 SITE BTM I 2.8819	A3 3 EVEL 64.32	SITE TOP I 2.8819	4 EVEL 64.32
U	SITE TOP I 2.8690 2.8803	1 EVEL 63.86 64.27	SITE TOP LI 2.8800 2.9170	3 EVEL 64.25 65.59	921 SITE MDL I 2.8729 2.8979	A3 3 EVEL 64.00 64.90	921 SITE BIM I 2.8819 2.9079	A3 3 EVEL 64.32 65.26	SITE TOP I 2.8819 2.8879	4 EVEL 64.32 64.54
U L	SITE TOP I 2.8690 2.8803 2.8999	1 EVEL 63.86 64.27 64.97	SITE TOP LI 2.8800 2.9170 2.9298	3 EVEL 64.25 65.59 66.05	921 SITE MDL I 2.8729 2.8979 2.9201	A3 3 EVEL 64.00 64.90 65.70	921 SITE BIM I 2.8819 2.9079 2.9279	A3 3 EVEL 64.32 65.26 65.98	SITE TOP I 2.8819 2.8879 2.9180	EVEL 64.32 64.54 65.62
U	SITE TOF I 2.8690 2.8803 2.8999 2.9379	1 63.86 64.27 64.97 66.34	SITE TOP LI 2.8800 2.9170 2.9298 2.9278	3 EVEL 64.25 65.59 66.05 65.98	921 SITE MDL I 2.8729 2.8979 2.9201 2.9200	A3 3_ EVEL 64.00 64.90 65.70 65.69	921 SITE BIM I 2.8819 2.9079 2.9279 2.9280	A3 3 EVEL 64.32 65.26 65.98 65.98	SITE TOP I 2.8819 2.8879 2.9180 2.9439	64.32 64.54 65.62 66.56
U L	SITE TOF I 2.8690 2.8803 2.8999 2.9379 2.9201	1 63.86 64.27 64.97 66.34 65.70	SITE TOP II 2.8800 2.9170 2.9298 2.9278 2.9379	3 EVEL 64.25 65.59 66.05 65.98 66.34	921 SITE MDL I 2.8729 2.8979 2.9201 2.9200 2.9179	A3 3 EVEL 64.00 64.90 65.70 65.69 65.62	921 SITE BTM I 2.8819 2.9079 2.9279 2.9280 2.9400	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41	SITE TOP I 2.8819 2.8879 2.9180 2.9439 2.9479	64.32 64.54 65.62 66.56 66.70
и L Y 20	SITE TOF I 2.8690 2.8803 2.8999 2.9379 2.9201 2.9400	1 63.86 64.27 64.97 66.34 65.70 66.41	SITE TOP II 2.8800 2.9170 2.9298 2.9278 2.9379 2.9399	3 EVEL 64.25 65.59 66.05 65.98 66.34 66.41	921 SITE MDL I 2.8729 2.8979 2.9201 2.9200 2.9179 2.9239	A3 3 EVEL 64.00 64.90 65.70 65.69 65.62 65.84	921 SITE BIM I 2.8819 2.9079 2.9279 2.9280 2.9400 2.9427	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41 66.51	SITE TOP I 2.8819 2.8879 2.9180 2.9439 2.9479 2.9399	EVEL 64.32 64.54 65.62 66.56 66.70 66.41
L Y	SITE TOF I 2.8690 2.8803 2.8999 2.9379 2.9201	1 63.86 64.27 64.97 66.34 65.70	SITE TOP II 2.8800 2.9170 2.9298 2.9278 2.9379	3 EVEL 64.25 65.59 66.05 65.98 66.34 66.41	921 SITE MDL I 2.8729 2.8979 2.9201 2.9200 2.9179	A3 3 EVEL 64.00 64.90 65.70 65.69 65.62	921 SITE BTM I 2.8819 2.9079 2.9279 2.9280 2.9400	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41	SITE TOP I 2.8819 2.8879 2.9180 2.9439 2.9479	64.32 64.54 65.62 66.56 66.70
U L Y 20 65	SITE TOF I 2.8690 2.8803 2.8999 2.9379 2.9201 2.9400 2.9400	EVEL 63.86 64.27 64.97 66.34 65.70 66.41 66.41	SITE TOP II 2.8800 2.9170 2.9298 2.9278 2.9379 2.9379 2.9379	3 EVEL 64.25 65.59 66.05 65.98 66.34 66.41 66.34	921 SITE MDL I 2.8729 2.8979 2.9201 2.9200 2.9179 2.9239 2.9400	A3 3 EVEL 64.00 64.90 65.70 65.69 65.62 65.84 66.41	921 SITE BIM I 2.8819 2.9079 2.9279 2.9280 2.9400 2.9427 2.9599	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41 66.51 67.13	SITE TOF I 2.8819 2.8879 2.9180 2.9439 2.9479 2.9399 2.9400	EVEL 64.32 64.54 65.62 66.56 66.70 66.41 66.41
U L Y 20 65 U	SITE TOF I 2.8690 2.8803 2.8999 2.9379 2.9201 2.9400 2.9400	63.86 64.27 64.97 66.34 65.70 66.41 66.41	SITE TOP LI 2.8800 2.9170 2.9298 2.9278 2.9379 2.9379 2.9379 2.9629 2.9798	3 64.25 65.59 66.05 65.98 66.34 66.41 66.34	921 SITE MDL I 2.8729 2.8979 2.9201 2.9200 2.9179 2.9239 2.9400	A3 3 EVEL 64.00 64.90 65.70 65.69 65.84 66.41 66.59 67.53	921 SITE BTM I 2.8819 2.9079 2.9279 2.9280 2.9400 2.9427 2.9599 2.9839 2.9794	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41 66.51 67.13	SITE TOP I 2.8819 2.8879 2.9180 2.9439 2.9479 2.9399 2.9400 2.9620 2.9901	64.32 64.54 65.62 66.56 66.70 66.41 66.41
U L Y 20 65 U L	SITE TOF I 2.8690 2.8803 2.8999 2.9379 2.9201 2.9400 2.9400 2.9400 2.9800 2.9801	1 63.86 64.27 64.97 66.34 65.70 66.41 66.41 66.44 67.85 67.86	SITE TOP II 2.8800 2.9170 2.9298 2.9278 2.9379 2.9379 2.9379 2.9629 2.9798 2.9699	3 64.25 65.59 66.05 65.98 66.34 66.41 66.34 67.85 67.49	921 SITE MDL I 2.8729 2.8979 2.9200 2.9179 2.9239 2.9400 2.9449 2.9711 2.9600	A3 3 EVEL 64.00 64.90 65.70 65.69 65.62 65.84 66.41 66.59 67.53 67.35	921 SITE BTM I 2.8819 2.9079 2.9279 2.9280 2.9400 2.9427 2.9599 2.9839 2.9794 2.9740	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41 66.51 67.13 67.99 67.83 67.64	SITE TOP I 2.8819 2.8879 2.9180 2.9439 2.9479 2.9399 2.9400 2.9620 2.9901 2.9939	64.32 64.54 65.62 66.56 66.70 66.41 66.41 67.21 68.22 68.35
U L Y 20 65 U	SITE TOF I 2.8690 2.8803 2.8999 2.9379 2.9201 2.9400 2.9400 2.9800 2.9801 2.9799	1 63.86 64.27 64.97 66.34 65.70 66.41 66.41 67.85 67.85	SITE TOP II 2.8800 2.9170 2.9298 2.9278 2.9379 2.9379 2.9379 2.9629 2.9798 2.9699 2.9699 2.9878	3 EVEL 64.25 65.59 66.05 65.98 66.34 66.41 66.34 67.24 67.85 67.49 68.14	921 SITE MDL I 2.8729 2.8979 2.9200 2.9179 2.9239 2.9400 2.9449 2.9711 2.9600 2.9681	A3 3 EVEL 64.00 64.90 65.70 65.69 65.62 65.84 66.41 66.59 67.53 67.43	921 SITE BTM I 2.8819 2.9079 2.9279 2.9280 2.9400 2.9427 2.9599 2.9839 2.9794 2.9737	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41 66.51 67.99 67.83 67.64 67.63	SITE TOP I 2.8819 2.8879 2.9180 2.9439 2.9479 2.9399 2.9400 2.9620 2.9901 2.9939 2.9959	64.32 64.54 65.62 66.56 66.70 66.41 66.41 67.21 68.22 68.35 68.43
U L Y 20 65 U L	SITE - TOF I 2.8690 2.8803 2.8999 2.9379 2.9201 2.9400 2.9400 2.9400 2.9801 2.9799 3.0201	1 63.86 64.27 64.97 66.34 65.70 66.41 66.41 67.85 67.86 67.85	SITE TOP II 2.8800 2.9170 2.9298 2.9278 2.9379 2.9379 2.9379 2.9629 2.9798 2.9699 2.9699 2.9878 2.9898	3 EVEL 64.25 65.59 66.05 65.98 66.34 66.41 66.34 67.24 67.85 67.49 68.14 68.21	921 SITE MDL I 2.8729 2.8979 2.9201 2.9200 2.9179 2.9239 2.9400 2.9449 2.9711 2.9600 2.9681 2.9817	A3 3 EVEL 64.00 64.90 65.70 65.69 65.62 65.84 66.59 67.53 67.35 67.92	921 SITE BIM I 2.8819 2.9079 2.9279 2.9280 2.9400 2.9427 2.9599 2.9839 2.9794 2.9737 3.0000	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41 66.51 67.99 67.83 67.64 67.63 68.57	SITE TOP I 2.8819 2.8879 2.9180 2.9439 2.9479 2.9399 2.9400 2.9620 2.9901 2.9939 2.9959 3.0180	64.32 64.54 65.62 66.56 66.70 66.41 66.41 67.21 68.22 68.35 68.43 69.22
U L Y 20 65 U L Y	SITE TOF I 2.8690 2.8803 2.8999 2.9379 2.9201 2.9400 2.9400 2.9800 2.9801 2.9799	1 63.86 64.27 64.97 66.34 65.70 66.41 66.41 67.85 67.85	SITE TOP II 2.8800 2.9170 2.9298 2.9278 2.9379 2.9379 2.9379 2.9629 2.9798 2.9699 2.9699 2.9898 2.9898	3 EVEL 64.25 65.59 66.05 65.98 66.34 66.41 66.34 67.24 67.85 67.49 68.14 68.21	921 SITE MDL I 2.8729 2.8979 2.9200 2.9179 2.9239 2.9400 2.9449 2.9711 2.9600 2.9681 2.9843	A3 3 EVEL 64.00 64.90 65.70 65.69 65.62 65.84 66.41 66.59 67.53 67.43	921 SITE BTM I 2.8819 2.9079 2.9279 2.9280 2.9400 2.9427 2.9599 2.9839 2.9794 2.9737	A3 3 EVEL 64.32 65.26 65.98 65.98 66.41 66.51 67.99 67.83 67.64 67.63	SITE TOP I 2.8819 2.8879 2.9180 2.9439 2.9479 2.9399 2.9400 2.9620 2.9901 2.9939 2.9959 3.0180 3.0109	64.32 64.54 65.62 66.56 66.70 66.41 66.41 67.21 68.22 68.35 68.43

- 1. Measurements were made at 10 minute intervals.
- 2. Sensors were tower mounted in aspirated thermal shields.3. Blower fans were on.

Table XII Wind Speed Comparison Data

		65 SPEED IN P.H. SENSOR B			SPEED IN P.H.			65 SPEED IN P.H. SENSOR B
TIME	SER. 144		TIME	SER. 144				
08:40	10.4	9.8	08:40	24.7	27.9	08:30	6.6	6.3
08:50	19.1	19.7	08:50	-	_	08:40	8.1	10.0
09:00	18.0	19.1	09:00	8.5	9.4	08:50	4.1	5.3
09:10	18.1	18.7	09:10	10.0	12.3	09:00	-	***
09:20	18.3	17.5	09:20	-	-	09:10	8:1	9.3
09:30	18.6	19.5	09:30	-	-	09:20	7.5	8.0
09:40	16.9	15.2	09:40	16.3	18.4	09:30	4.6	5.0
09:50	17.1	14.4	09:50	11.5	9.9	09:40	7.0	8.4
10:00	-	-	10:00	18.5	20.1	09:50	8.3	10.0
10:10	15.7	14.4	10:10	9.6	11.2	10:00	7.6	8.3
10:20	10.4	11.9	10:20	15.6	15.0	10:10	5.2	5.7
10:30	13.2	13.6	10:30	12.7	13.5	10:20	5.7	7.2
						10:30	7.7	7.5
*12:00	5.6	6.3	13:30	18.1	17.7	10:40	-	-
12:10	5.4	5.9	13:40	14.3	16.3	10:50	6.5	8.3
12:20	8.1	8.9	13:50	23.7	25.5	11:00	10.1	12.1
12:30	8.7	9.6	14:00	14.8	13.7		1	
12:40	11.4	12.2	14:10	16.6	19.1	13:00	6.3	7.7
12:50	6.7	8.4	14:20	• -	-	13:10	5.8	7.0
13:00	13.1	12.9	14:30	15.7	19.1	13:20	4.9	5.8
13:10	7.3	9.0	14:40	21.5	25.2	13:30	8.9	9.7
13:20	7.7	8.9	14:50	13.9	14.6	13:40	9.0	10.6
13:30	6.5	7.8	15:00	23.0	22.0	13:50	5.5	7.2
13:40	6.2	8.6	15:10	12.8	14.6	14:00	6.4	8.3
13:50	8.0	9.1	15:20	-	-	14:10	5.4	7.7
14:00	7.5	8.8	15:30	13.5	14.5	14:20	5.6	8.5
_		<i>r</i>	_	3.000		-	. 7.0	

Pressure: 1007.6 mb.to Pressure: 1000.3 mb. to Pressure: 1016.2 mb. to 1015.6 mb. 1002.8 mb. 998.7 mb.

Std. Dev. is <u>+</u> 1.5

Sensor A· AM/GMQ/12 Sensor B: Beckman and Whitley, Series 50

^{*}Rain during 2 hour run.

VII. SUMMARY

The measurements provided by both calibration and range programs indicate that the range facility is capable of furnishing the required support for fundamental research in the near-earth environment.

The multi-channel, high-speed, analog-to-digital conversion system with the output digital data presented on magnetic tape in a compatible computer format allows the use of many more input sensors than was previously practical. The rate of acquiring data has been greatly enhanced to allow more detailed analysis of desired parameters of a system under study. The many advantages of computers can now be brought into use on many more types of field programs. This facet has not yet been fully exploited on data obtained on the range facility. The system is not limited to use with meteorological sensors but is capable of acquiring data from any input device producing an analog voltage output within the system specifications.

At the present time the types of meteorological sensors available for use on the range are much too slow in response to approach the requirements of certain projects and to meet the sampling speed of the digital system. Effort should be spent to acquire improved sensors giving faster response and increased accuracy. Coupled with this are the requirements for improved methods of calibration, both for increased accuracy and ease of the field calibration operations. Coordination with and assistance from both commercial manufacturers and other government agencies will be necessary to obtain the desired instruments.

It is planned that future operations on the range facility will include not only the gathering of meteorological data but data from both optical and electronic devices. Installation of the additional required facilities for these types of measurements has begun.

The field operations of the Army Meteorological Team assigned to this project have been very satisfactory and the team has served an important part in the installation and use of the range facilities.

CHANNING L. ADAMS

APPENDIX A

RANGE OPERATIONS

Installation of the range facilities was made with the purpose of obtaining as much flexibility and versatility as possible where a large number of several different types of sensors and associated circuits would be used in various configurations. Although all possible layouts could not be foreseen, the overall system lends itself to relatively fast changes of sensors and cabling at the various towers and at different tower levels.

The signal cables to the data acquisition van are permanently installed but quick access is available to them through proper terminations at each instrument shelter for fast changeover from program to program. This also allows analog outputs from other systems to be fed into the digital data section.

A meteorological team was assigned to BRL by the U.S. Army Electronics R&D Activity at Fort Hauchuca, Arizona for use in the field operations on the range. This team has worked very well in carrying out such functions as field installations of cabling and sensors with associated circuits, the field calibrations of sensors, the maintenance and repair of various types of meteorological equipment, and the calculation of results from observed data. In addition, since May 1965 daily records of meteorological data have been made at the van site and tabulated by the team. The type of measurements made and the equipment used are as follows:

- 1. Atmospheric Pressure: Surface to 3000 ft., precision Microbarograph, Belfort Instrument Company, Model 5-800.
- 2. Temperature: -50° to +140° F, Hygrothermograph, Instruments Corporation, Model 594.
- 3. Relative Humidity: 5 percent to 100 percent, Hygrothermograph, Instruments Corporation, Model 594.
- 4. Precipitation: O to 12 inches, Universal weighing rain gage,
 Friez Instruments Division, Model 775 B.

- 5. Wind Speed: 1 to 60 mph, Wind measuring set AN/GMQ-12.
- 6. Wind Direction: 354° azimuth, Wind measuring set AN/GMQ-12. Appendix B includes the monthly summary of these data from 1 May 65

Appendix B includes the monthly summary of these data from 1 May 65 through 31 January 66.

The following summary indicates the system type and the number of units presently available for field use:

	Measurement	Number	Data Channels Required
1.	Wind Speed and Direction AN/GMQ-12	30	60
	M.R.I. Vector Vane Model 1053	12	36
	B.&W. Series 50	2	4
2.	Temperature Resistance Bulb, Honeywell 921A3	_ 18	36
3.	Humidity		,
	Bendix Hygrometer, Model DHGF-1P	5	5
	Wet/Dry Resistance Bulb	9	18

Characteristics of the various systems are contained in Tables AI, AII, and AIII.

Table AI
Characteristics of AN/GMQ12 Wind Measuring Set and Climet Speed
Sensor, Model Oll-1

		AN/GMQ-12	CLIMET, Model Oll-1
A.	Wind Speed Sensor:		
	(1) Range	1-60 mph	0-90 mph
	(2) Threshold	1 mph	1 mph
	(3) Accuracy	± 5 percent	+ 5 percent
	(4) Response	~	<pre>5 feet (63 percent recovery)</pre>
в.	Wind Direction Sensor:		
	(1) Range	354 ⁰	-
	(2) Threshold	1 mph	-
	(3) Accuracy	<u>+</u> 3 percent	-
C.	Power Requirement:	(Overall 110 volt AC 60 cycle at 20 Amp)	(Speed Sensor Only) 10.6-12.6 volts DC at 30 milliamps

Table AII

Characteristics of Vector Vane Windspeed and Direction Sensor, Meteorology Research Incorporated 1053

A. RESPONSE CHARACTERISTICS:

1.	Sta	rting Threshold:	Speed Direction	-
2.	Res	ponse Distance:		2-3 feet (63 percent recovery)
-		ay Distance:		2-3 feet (50 percent recovery)
4.		_	Direction	· · · · · · · · · · · · · · · · · · ·
				Less than 10 percent
-		earity:	Speed (
7.	. Matching:		-	The sensor elements are considered matched if the response distance and delay distance are within one foot of each other.
∩ाग	ידיו זכוי	CHARACTERISTICS:		
001	101	0111111012111011		
1.	Dir	ection, azimuth		
		Full scale	-	2000 ohms + 5 percent
	b.	Linearity		± 0.8 percent of full scale (with 4° open space)
	c.	Resolution	~	1 ⁰
	đ.	Maximum Power		1.5 watts
2.	Dir	ection, elevation	Į.	
	a.			$6000 \text{ ohms } \pm 5 \text{ percent}$
		Full Scale (1/3	segment)	2000 ohms
		Linearity		+ 0.8 percent
	đ.	Resolution		1

0.5 watts

2		α_	
3	_	ממ	eed

e. Maximum Power

B.

~ ~		
a.	Pitch	2.90 feet per revolution
ъ.	Signal	20 pulses per revolution
c.	Resolution	0.145 feet

4. Range

a.	Direction,	azimuth	0 - 356° + 60°
b.	Direction,	elevation	<u>+</u> 60°
C.	Speed		0.5 - 100 mph

Table AIII

Characteristics of Windspeed and Direction Sensor, Beckman and Whitley Series 50

- A. Wind Speed Sensor! (with staggered-six cup anemometer)
 - 1. Threshold: 0.5 miles per hour
 - 2. Distance Constant: 3.3 feet of Air
 - 3. Accuracy: ± 1 percent of absolute value or ± 0.15 miles per hour, whichever is greater.
 - 4. Range: From threshold to 90 miles per hour
 - 5. Nominal Output: 2.5 volts p-p into 600 ohm load over the frequency range of 1018 cps (0.5 mph) to 1059 cps (90 mph)
 - 6. Power Requirement: 12 volts DC, nominal at a maximum current drain of 20 milliamperes
 - 7. Operating Temperature: -40 °F to +140°F
- B. Wind Direction Sensor: (with "Quick One" wind vane)
 - 1. Threshold: 0.7 miles per hour at 10°
 - 2. Distance Constant: 5.7 feet of air
 - 3. Damping Ratio: 0.6
 - 4. Accuracy: $\pm 2^{\circ}$
 - 5. Output: Phase modulation at 1 KC over full 360°
 - 6. Power Requirement: 12 volts DC at maximum current drain of 10 milliamperes
 - 7. Operating Temperature: -40°F to +140°F

C. Modular Translator:

- (a) Power Supply
 - 1. Input: 115 volts AC + 10 percent
 - 2. Output Voltage: 12 volts DC, O.1 percent regulation
 - 3. Maximum Current Output: 600 milliamperes

Table AIII (Cont'd)

(b) Translators

		Wind Speed	Wind Direction
1.	Signal Input	0.5 to 3.0 volts P-P	0.35 to 0.5 volts
2.	Input Impedance	600 ohms	600 ohms
3.	Accuracy	DC Output voltage linearly proportional to speed ± 0.3 percent	DC Output voltage linearly proportional to phase angle between two input signals ± 0.15 percent
4.	Power Input	12 volts DC at 40 milliamperes regulated to 0.1 percent	12 volts DC at 60 milliamperes regulated to 0.1 percent

APPENDIX B

METEOROLOGICAL DATA SUMMARIES
MAY 1965 - JANUARY 1966

~		
_		
_		

			MI			GICAL ON S		- • •			ro	NT1N		NED FR Y RUNN DS			-	SITE	ЕМР	ABERDEEN RANGE	ON SP	ESUT	E MD	YEAR		1AY	
													D 6 H					IIME	ZONE	EASTER	N				1	965	
\setminus	. TEM	PERATU	RE ^O F	14		% REL	ATIVE	HUM1D	ТҮ 14	RAR	OM TA			IN HG			اک س≀ا 10	EEJ til 12	11		11	ND D1	RECTI	ON 14		PRECIP INCHES	
1	58	61	60	67		58	52	62	53	30	- 1	I		30 06					-3-					13		0	
2	54	56	64	65		88	80	70	77					30.00								<u> </u>		 		0	*
3	58	-	-	-		91	70	52	45					30 08	11-	-		_	- 1				<u> </u>	1 -			+
4.	58	76	82	85		91	44	33	25					30.02		_		-	-		_	,					_
5	60	62	64	60		85	77	69	70					30 13					-			-				.04	
6	53	5.5	59	62		89	8.3	77	71		$\neg \vdash$			30.16			_	_	-	1	. T	_		_		7.3	1
7	51	51	52	54		74	68	94	82		_			30.25	1									Į.		.29	
8	49	52	53	54		96	96	98	. 96				30.23	[-					-	_		_			_
9	55	57	60	64		97	90	80	.74				30.16]				-				-					1
10	67	70	76.	85		92	86	ZQ_	12		- 1			29 91			7	13	9			SSW	S	NW			\Box
11	7.3	76	80	83		76	-64	_56_	46	29	89 29	90	29_88	29 86		12	12	10	15		ISW	NW	N	WSW		I ac	I
12	60	-65	68	71		64	56	52	52	29	91 25	90	29.87	29.82		_7_	4	7	7		DWF	NNW	S	-5			
13	64	68	73	74		62	57	35	51	29	76 29	76	29 75	29 74		ا ـــــا			14		aner	NW	NNW	NNW			
14	53	58	61	64		53	51_	4-	43	30	09 30	11	30 13	30 10		_10_	8	5.	7		INE.	ENE	ESE	_E			
15	56	50	55	69		ħο	66	51	49	30	19 30	19	30 17	30 15		_Z_(10_	_12	12		SSW	SW	SW	WSW			
16	61	60	06	75		87	9,	79	59	30	07 30	05	30 03	29 99		_1_	1	3	2		SSW	SSW	SSW	∍S₩			\Box
17	65	71	78	81		100	82	59	SO	29	85 29	85	29 82	29 78		_3_	5	7	10		5	ENE	s	s			
18	59	63	68	71		65	59	53	47	29	91 29	91	29 91	29 91		_8_	9	12	16		SW	NNW	NW	NN			$\perp \!\!\! \perp^-$
19	63	70	74	78		88	64	59	49	30	02 30	03	30 03	30 00	 _	4	5	10	14		NE	SE	SSW	SSW			\bot
20	62	67	71	72	<u> </u>	79	61	56	54	30	17/30	18	30 18	30 16	ļ	ا هـ	8	4	4		WE	NE	NE	E			
21	62	65	68	69		68	67	63	63	30	30 30	34	30 33	30 32		12	14	9	10		VE.	ENE	E	ESE			
22	57	62	69	73		96	85	72	68	30	30 30	29	<u>30 27</u>	30 22	!	5_	6	4	5		iE .	SSW	SSW	SSW			
23	8.	73	79_	_86_		88_	76	62	60_	30	11 30	0,16	30_15	30 12			0_	-	_2			اــــــا		_E_			
24	_ 58_	58_	56	58		83	.30	86	. 83	30.	29 30	0.31	30.34	30. 3 2	_		18_	15	В		UE	ENE	FNF	E			
25	00	63	68	71		84	84	77	7.2	30	13 3	0 10	30 06	30 00	!	8	11	15	15		SSN	SSW	SSW	SSW		06	<u>. </u>
26	69	65	81_	81		86	77	63	62	29	87 29	9 86	29 85	29 82		_2	5	6	7		SSK	SSN	NSW	SSW			
27	72	77	85	86		99	67	67	61					29 74	!	_2	4	5	12		SW	ESE	s	S		13	3
28	73	75	78	80		54	67	50	_ 46				<u> 29 87</u>		 	_5	8	13	13	!	WM	WNW	W	W			
29	54	5.8	61	64	L	95	87	71	67	29	21 2	9.94	20 94	29 90	!	4	4	9	8		s	SSW	SSW	S		50	
30	52	56	59	60		59	51	19_	48	30	فإمد	g .1 2	30.10	30.00		_7.	6_	. 8	7		NE.	N	ENE	SE			
31	59	61	67	69		74	54	45	44	30	08 3	0 08	30 08	30 04	-	2	4	10	13		s	s	S	5			$\prod_{i=1}^{n}$
ABI	JLATE) В	APG ME	T TEAM	1			VER	IF IED	9 Y										T _M	ONTH	1 V V	ALUES	;		1 97	. Т

USAEPG FORT HUACHUCA ARIZONA

^{*} Indicates time of day the charts were read, 0800 1000, 1200, § 1400 1 he 69

											-	ĎATA	ORTAIN	ED FRO	M			LOCAT	FLON	ABERDE	EN DDC	VINC (תואו זחם:	MON T	H			
			AA	FTFO	BOLO	GICAL	DA'	TA .						Y RUNN									100	1		Yener		
			***			ON S							RECOR							RANG	E ON S			YEAR		JUNE		
				IND	,	ON J	*****						DD 6 H					IIME	ZONE	EASTE	RN	,	SLAND	ı				
			L o_							1 1.				IN HG		W	IND SP	EED MP	H		h	IND DI	RECTIO	N		1965 PRECI	P IN	
DAY	TEMP	ERATUR 10	E ⁰ F 12	_14		* REU	10	HUMIDI 12	14		ARUMI A	10	12	14		_&	10	12.	14		- 8	10	12	14		1	HES	\angle
1	66	71	74	80		84	70	66	49]]	50 07	30 08	30 06	3 <u>0</u> 06		6	3	8	10		W	S	s	S				_1
2	69	73	76	81		86	68	63	58	1	29 97	29 96	29 92	29 87		7_	4	8	8		SW	SSW	S_	S			.55	2
3	57	59	65	68		96	80	65	52		29 92	29 95	29 99	29 98		_20_	15	10	7	-	N.	NNE	N.	NW				3
4	59	63	65	68		60	.51	46	47		50 19	30 20	30 20	30.19		_9_	7	6	4		NNE	NNE	NE	SE				4
5	60	66	68	.72		69	61	54	47	1	30.21	30.22	30.21	30.20			6		9	-1	WSW	WSW	WSW	WSW		<u> </u>		5
6	65	69	74	77.	L	77	69	61	56	<u> </u>	30.19	30.20	30.19	30.17		12	_10	7	_10_		S	WSW	S	S				6
_ 7	71	74	80_	84		87	75	62	58	;	30.11	30.11	30.09	30.06	<u> </u>		12	13	13	 _	SSW	SSW	SSW	SSW		L	 _	7
8	72	77	82	86		92	82	69	60		30.06	30.10	30.06	30.01		9	13	12	1.3		S	SSW	SSW	S		1	.63	. 8
9	72	72	73	76		95	91	90	83	<u> </u>	30.02	30.02	30.02	30.00		7	. 12	16	17		S	SSW	S	S_				q
10	73	78	79	86		95	88	81	.54		20 <u>9</u> 8	29.98	29.96	29.93	<u> </u>		-6	12	14	 	SW	SSM	SSM	WSW				.10
11	68	71	73	76	L	63_	54	Ş4	54	∤ ∤:	30.07	30.07	30.04	30.00	;	•		5	9		-	-	ESE	SE.			ļl	-11
12	72	72	75	78	 	75	61	55	.48	÷	29 . 80	29_80	29.7	29.72							WNW	NNE	NNE	NE				12
13_	67	68	.70	23		51	_53_	47	41	TT				29.70				-			. W	NW	NNW	NNW				13
14	63	64	68	70		69	60	56	53	-				29 94	 	_3	_4	-8-	R.		S	ENE	SE	S	-		$\vdash \vdash$	14
15	61	65	66	65		90	77	68	64					7 30 18	 	_13	17	18	_21		FNF	E.	ESE	ESE	<u> </u>		_10	_ 15
16	54	56	57	56		98	90	78	86	 				3 0 16		20	_20	20	.22		ENE.	NE.	NE	NF.	 	<u> </u>		16
17	57	61	63	64		66	70	65	62	1 - 1				30 12		8	10	7	4_		NNE	NNE	MNE	ESE	├—		 	17
18	57	60	60	64		92	79	73	_66	1				30 03		-7	9	10	13	-1	MINON	_ NNN	NW	NN.	<u> </u>	—	.04	_18
19	62	67	66_	75		69	63	77	62					29 85		&	_13_	-8	_6	-	_ NNW.	_NW	NW.	-1004	<u> </u>		-07	19
20	_		-					-	<u>-</u> -					29,91		_5_	-5	7-	5		SSW	-5-	NOVIN	ESE		├		- 20
21	_			84		-			58	T -1			T	29 90		- 7	9	12	12	\vdash	SSM	SSW	SSW	SSM			├ ──┤	21
22	70	79	82	85		94	74_	62	60		30.01			30.01	 	0	7	9	13_	 	-	SSW	SSW	1		⊢—	$\vdash \vdash$	22
23	75	79_	84	_88_		94	76	67	54.	1			1	29.98		. 6	10	13	11		SSW	SSW	SSW	SSW	 -		├─┤	23
24	. 74	78	77	74		88	_67_	_67	83	1				29.90		6	_10	8	9		SSW	SW	W	SSW	├──		-04	74
25	60	_67	73	74		63	-51	47	43	1				30 12		12	_ <u>*</u>	-	. 8		NNE.	NNF	N.	NIVIW	\vdash		├─	- 25
26_	64	70_	74	.76	ļ	54	48_	_43	37					30.37	 	10	_6	8	_8	$\vdash \vdash \vdash$	NNE	NE	NE.	N-N-	<u> </u>	\vdash	 -	. 26
. 27	64	.68	73	76		84	_62	4.R	42	Γ			I	30.49	 	<u>3</u>	 -	0	_6		SSN	NNW	-	F	\vdash	 	 	2.7
28	70	73	27_	-84		86	84	74	58_	T			30.2				13	10	12	\vdash	SE	SSW	SSW		 	 		28
	78.	82	88	89		70	7R	55	53.					29.94		9	6	8	8	\vdash	SW	SSW	SSW	SN	 	 		29
30	75	-74	72	76		87	. 68	78	78	┝╼╌╬	20_00	29.92	29.9	20 07		0	<u> 9</u> .	16	9	 		NNW	NNN	NNE	├	-	┝──	- 30
	L	<u> </u>				i	L			<u>_</u> _				<u>. </u>			L—				1107:3					-	47	
TABU	LATED	BY	APG ME	T TEAM	1		_	VER!	FIED	D T					L						MUN	HLY Y	VALUE	<u> </u>	<u> </u>	2	43	

REMARKS . Indicates time of day the charts were read, 0800, 1000, 1200 & 1400

1 Mar 69

USAEPS FORT MUNCHUCA ARIZONA

			-				_				Į°	ATA	OBTAI	NED FR	OM			LOCA.	FION	ABERDEE	N PRO	OVING		MONTH			
			M	ETEOR	OLO	3ICAL	DAT	A			d	CONT I	NUOUSL	Y RUNN	ING			SITE	E M D	RANGE	ON SI	DECITI	MD		<u> Մ</u> ԱՆ	Υ _	
				TABL	ILATI	ON S	HEET				c	CHART	RECOR	DS			_	TIME	ZONE	KANGL	ON 94	15	LAND	YEAR			
			_						_		F	PERIO	DD 6 H	OURS				_		EASTERN					1965	5_	
\Box	TEM	PERATU	RE F			% RE	LATIVE	HUMIO					,	IN HG		W	IND SP	EED MP	H.		WIL	ND DIF	ECTION		PRE	DIP IN	\Box
<u> </u>	_8_	10	12	14		8	10	12	14		${}^{-}$	10	12	14	├ ──┥	8	10	12	.14		8	10	12	-14	 n	NOHES_	u
1	68	74	78	80		60	41	35	30		—-}-			30 12		17	13	8	_5		NNW	N	N	NE			╄
2	71	72	78	80		64	53	46	44	30	16	30 16	30 14	30 10		7	10	11	_7		s	SSW					┺
3	70	72	74	77		70	78	68	60	29	87 :	29 85	29 84	29 82		17	17	14	14			-	-	-			L
4	70	77	82	86		83	60	45	42	29	97	29 98	29 97	29 96	L	7	4	5	7					[.		<u>.i</u>	L
5	70	74	_ 79	83		94	96	78	68	29	93	29 92	29 91	29 86		_6	5	8	10						<u> </u>		
6	70	75	78	79		94	74	62	56	30	01	30 05	30 10	30 08		8	12	12	8		N	N	NNW	NNW			\prod
7	67	72	76	82		92	70	64	49	30	13	30 12	30 10	30 04		_6	10	10	_13		ESE	s	s	S			Γ
8	74	79	81	83		81	72	62	61	29	9 89	29 89	29 90	29 89		5	5	5	6		WSW	NNW	s_	S			
9	76	84	88	90		97	69	53	53	29	9 94	29 94	29 93	29 90		4	8	11	13		s	ş	S	S			T
10	_78	80	76	81		81	87	81	77	29	9 84	29 87	29 88	29 89		_4	8 .	14_	_7	[]	SSW	s	NW.	NNW			Γ
11	72	72	68	68		100	93	100	100	29	9 96	29 96	29 9	29 98		3	6 .	4	12		WNW	NNE	NNE	NNE		2 .80	T
12	68	71	72	76		66	58	56	56	30	0 12	30 16	30 16	30 16		9	8	5	5	7	NE	NNE	NE	s			1
13	69	72	76	77		97	93	79	80	30	0 17	30 16	30 16	30 14		6	7	3	7		NE.	NE	SE	SE			T
14	75	78	80	84		91	83	76	68		$\overline{}$		29 9			13	15	15	13		SSW	SW	SW	SN			╂┈
15	77	82	83	79		81	65	63	70		$\overline{}$			29 86		4	9		- a		NNW	NW.	NIW.	NW.		 	⇈
16	71	76	80	83		62	62	56	54					29 95		10			7		NE.						1
17	76	79	84	86		94	84	68	52				29 94			_					"-			=-			T
18	76	80	82	85		98	80	72	62		\neg			29 79												 	✝
19	70	74	76	80		69	62	57	55		$\overline{}$			29 99										-	\dashv		t
20	62	68	70	74		58	53	47	42		$\overline{}$			30 19										~- +-		 	-
21	66	72	75	78		54	46	48	42					30 2		-			-,		s	s	S	s		† · · · ·	t
	68	74	76	78		76	56	52	55					30 0		9	13 .	16	_17		SW	SW	SW	SW	- 	 	┢
22 23	69	73_	77	81	\vdash	84	69_	68	.68		·		29.9	T T			12	10			<u>. </u>	_ SSW	- 26	-3" 1	\dashv		
	75	80	84	87		100	88	74_	68.		- T		29.80	T		5	11	9	11		SSW	SW	S	SSW	\neg	 	t
24 25	80	78	7	88_	-	98	95	80		1	T		29.7			6	7	10	. 6		5 1	ENE	NW	WNW		10	
			86								$\neg \tau$		29.9	ľ		7	7	8	6		NNW	N	NNE	N -		+*	⇈
26	74	78	82	86		67	62	50_	42	i i	\neg					5	14	10	14		SSE	SSW	S	SSW	 	15	┢
27	<u></u>	75 78	79	81		76	80 63	64 57	. 6.8. 51				29.9 29.9			4	10	9	13		N N	SSW	SSW	S		1-15-	╀
28	74		81	83		69				-			29 9	1			- 14	7	-13		-		221	3		 	\vdash
29		1	75	78	-	69	<u>62</u>	58						T -		8	4.~	-			NE .	N	_5_	<u> </u>	+	+	\vdash
30	Г	T	77	80		84	<u>76</u>	66					\Box	30 0		10			->-		NNE	NE.	NNE	ENE		+	┢
31	68	74	78	80		90	76	53			9 95	29 9	129.89	29 8		7	6	6	6		NE L	NNE	ENE	ENE		+	┝
	RKS		APG M	TEA	4			VERI	FIED	BY					<u> </u>				_	M	ITMON	HLY V	ALUES			05	L

REMARKS Indicates time of day the charts were read, 0800, 1000, 1200 & 1400

1 Mar 65

USAEPS FORT HUACHUCA ARIZONA

Q	۰
÷	•

												DATA	OBTA	INED F	ROM			LOCA	LON	ABERDE	EN PRO	VING (GROUND	MONTH	ı			
			M	ETEOR	OLO	GICAL	DA	r A				CONTI	NUOU	SLY RU	NNING			SITE	E M D	RANG	F ON S	į Pesimi	MD TE	<u> </u>	A	UGUST		
				TABL	JLATI	ON S	HEET					CHART	ræc	ORDS				TIME		i i i i i i i i i i i i i i i i i i i	L (III)		SLAND	YEAR				
1												PERI	OC 6	HOURS						EASTER	N			i	19	965		
	TEMP	RATUR	, o _F			% REL	ATIVE	HUMID	TY	ľ	BAROM	TRIC	PRES	s IN	HG	14	IND SP	EED MF	H		W	ND DII	ECTIO	•		PRECI	, IN	
DAY	* 8	10	12	14		8	10	12	14	1	8	10	12	14	—		10_	12	_14_	 	. 8	10	12	14		TNC	ES	
1	67	68	68	75		96	96	96	90		29 93		∔			13	15	13	8		SE	ESE	ESE	SE			.65	1
2	73	77	78	81		82	74	76	67		29 66		↓	\rightarrow	\rightarrow	 11	-5	8	.11		SSW	SW	_s_	s				2
3	66	72	76	76		71	59	57	57		30 86	30 89	30	90 30	90	<u> </u>	16	15	17		_s_	SW	W	NSW				3
4	66	74	79	82		92	68	66	62		30 08	30 10	30	10 30	07	8	6.	7	8		NNE	FNE	E.	s		2	-60	4
5	68	71	73	78		100	90	81	64		30 11	30 14	30	15 30	14		8	6	6		ENE	NF	ENE	E				5
6	70	75	82	84		100	93	81	71		30 11	30 1	1 30	10 30	08	8	6	9	11		S	S	s	5				6
7	76	80	84	86		100	82	72	70		30 03	30.0	4 30	03 30	01	9	14	11	10		- :	-	-	-				7
8	76	81	84	83		92	82	78	73		29 96	29 9	7 29	95 29	92	11	12	15	12		-	-	-		T		15	8
9	77	78	80	84		96	86	82	75		29 90	29 9	1 29	91 29	88	12	13	1 4	11		S	S	s	S				9
10	—- /.' —	80	82	85		100	74	66	57		29 85	29 8	B 29	90 29	87	9	7	9	8		SW	SW	S	S			95	10
	70	71	74	76		76	72	68	64		30 07	30 1	30	10 30	11	10	_	-	-		N		-	- [02	11
11	66	74	80	82		100	66	60	46		30 15	30 1	5 30	15 30	11	Τ	10	10	12				s	s				12
12	70	76	83	85		92	64	54	51		30 03	30 0	2 30	01 29	99	3	10	8	7	[WNW	SW	WSW	MNM				13
13		77	81	84		96	78	70	64		29 97	29 9	6 29	96 29	95	6	3	5	5		NE	NNE	Е	E		$\neg \neg$	07	14
14	72		84	86		98	82	66	53		29 99	30 0	0 30	00 29	98	5	5	5	5		E	SE	E	E				15
15	74	79				100	83	70	49		29 94	2919	S 29	94 29	92	3	7	7	11		S	S	s	s				16
16	77	80	84	89		94	83	74	65		29 91	29 9	1 29	91 29	89	6	8	5	10		s	S	s	s	$\neg \neg$			17
17	74_	78	83_	88		95	92	80	73					83 29		5	5	7	7		s	S	s	s				18
18	74	79	82	88_			78	68				_	$\overline{}$	73 29		. 4	7	7	13	-	SW	SW	SW	WNW			\neg	19
19	. 74	81	83	85		95	57	47_	43	\vdash		29.9	1			15	14	10	10	$\neg \neg$	NNW	NNW		1	$\neg \uparrow$			20
- 20	70	_ 73	87	89		81		52	42			T	7	17 30	14	7	3	3	3		ENE	Е	SE.	s			55	21
21	66	72	77_	80	 	78	60		100				7	06 30		6	1	5	8		SSE	SSE	ESE					22
22	67	64_	.68	68		100	100	100	_68			т-	1	99 29		12	7	3	_		NE	NE	N		$\neg \uparrow$			23
23	- 68	68	71_	76	 	9.R	100		40	1		T	T	99 29		13	7	6	4		NE	NE	NE.	F			$\neg \neg$	
24	67	72	75	78		62 90	<u>56</u> 79		58			_		01 30		14	<u> </u>	6	5		NNE	s	5	٦				25
25	69	72	74	75		93	93	84	70				_	89 29		5	,	7	12		S	s	S	s			. 20	26
26	70	73	79	81	 		67	61	60				_	93 29		5	5	Ŕ	9		S.	s	5	,	一十		02	27
27	71	81	83	83	<u> </u>	90	_	57	52			29 7	 					18	17		SSW	SSW	SSW	SSW			_0/	
28	77	80	86_	87		94	86	56	50	$\vdash \neg$	30 14		-		\rightarrow	5	7	5	9		S	WSW		WSW		$\neg \neg$	\neg	28 29
29	53	.59	65_	69	<u> </u>	58	56		41	\vdash		30 2	_			6	7	11	8		N₩	NNW	N	N			-	30
. 30	58	60	66	70		64_	57	49_		\vdash				24 30		8	12	13	15	\vdash	S	S	s	S	-		 	31
31	61	68	72	74	L	58	52	52	52		JU 41		1				l				ــــــــــــــــــــــــــــــــــــــ			 				
TABU	LATED	BY	ADG ME	T TEAM				VERI	FIED	BY											MONT	HLY V	VALUE:	s l	ŀ	4	36	L
REMA								ad AR	on 10	00, 12	00 & 1	1400																-

REMARKS*
Indicates time of day charts were read, 0800, 1000, 1200 & 1400
1 Mar 69

USAEPS FORT HUNCHUCK ARTIONA

			MI		GICAL ON S						CONT:	OBTAII INUOUS L RECOI	Ly Run RDS				SITE		ABERDEI RANGI EASTEI	E ON S	Pesuti	A.C.	YEAR		PTEMBE	:R	
AY	, ТЕ 8	MPERA1	URE ^O E 12	14	% RE	ATIVE	HUMID 12	[TY _14	BA 8	ROME		PRESS			N.	IND SP	EED MP	H 14		W1 8	ND DIF	ECTION 12	14		PRECII	IN ES	
1	68	73	76	80	85	79	67	63	29.	99 2	9 97	29 92	29 88		13	20	23	21		s	S	S	S			55	1
2	62	66	72	76	78	62	48	44	30	13 3	0 17	30 18	30 17		9_	9	6	3		NW	<u>N</u> W	NW	NW				2
3	60	68	73	76	 85	68	56	44	30	21 3	0 24	30 24	30 23	ļ	8	3	3	3		NW	ENE	Е	ENE				3
4	64	69	.74	75	 98	72	48	48	30.	30 3	0 30	30 33	30_33	L	8	7	8	7									4
5	60	_66_	70	76	 98	76	58	52	30_	34 J3	0.34	30, 35	30 29	ļ	_5_	_5	4	3									5
6_	61	66_	71	75	 96	73	50	_46	30.	34 3	0.34	30.32	30.29		_3_	_3	2						_				6
7	65	70_	77	82	 93	72	54	40	30.	<u> 20 </u> 3	0.20	30.19	30.16		5_	5_	3				NE	E	NE				7
.8	64	74	78	82	 100	58	58_	48	30.	05 3	0.05	30.04	30.01	↓		3	3	2			SW	<u>s</u>	S				8
9	71	74	78.	82	 83	75	67	67_	30.	08 3	90.09	30_10	30.11		_5_	_5	3_	6		ENE	E	NE	NNW				9
10	72	76	79	87	 75	68	63	48_	30,	05 3	<u> 30 06</u>	30.04	30 01		4	8	6	4			S.	S	s				10
-11	74	82	83	82	100	64	64	70	30.	06	50.09	30.11	30.13	1	0	4	5	4	_		NNE	NNE	N				11
12	68	68	69	68	 90	88	85	84	30.	22	0.24	30.24	30.24	 	7	8	_6_	7		ENE	ENE	E	NE	\longrightarrow		32	12
13	.62	63_	65	66	 100	95	95	95_	30.	12	50.11	30.08	30.08	<u> </u>	8	6	5	3		ENE	E	E	N			68	13
14	64	66	_ 70	71	 99	92	83	.76		\neg		30.01	F		5	4	6	3		NNW	NNE	E	SE			05	14
15	64	68	74	78	 94	88	.86	80	29.	95 2	29.93	29.83	29.82	 		7	8	3			S						15
16	70	75	78	80	 84	60	56	48_				30.08			- 6	8	4	_ 3		NNE	N.	E	N.				16
17	68_	70	74		_80	80	75_	71	30.	29	30.32	30.34	3032		12	8	7	2		E	NNE	NE	NE NE				17
18	70	73	. 76	80	 95	95	90	<u>82</u>				30 29			3	_5	6	6		SSW	SW	S	S				19
19	71	80	88	90	 95	78	66	58	30.	\neg		30,20	7	ļ	0	1	4	4			WSW	ESE	SSE				19
-20-	- 70	70_	74	80	 95	94.	92 64	81 62			30 24	30 23 30 20	30.19		. 6	-4	2	1		E	ESE	_ <u>S</u>	NNN				_20
21	74	79	86	88	 100	84	60	50		+		30 17			7	_0	3	3		S		<u> </u>	S				_21
22	72	74	88	91	 96	74	67	63		\rightarrow		30 08	+		0	10	6	15			S	S	SW				_22
23	74	80	82	85	 94	84	76	80	↓ — — ↓ — —			29 82	—	1	_ 9	12	12	14	- 	_5_		SW	_SW				22
24	73	75	80	75	 88	84 55	47	45		-+		29 95	+	 	10	_ 5 13	18	11 16		NNW	NNW :	S NNW	S NNW		1	-21_	2/
25	55	59	63	64	67	55	47	47	 	- +		30 16			12	8	6	5		NW	N	ESE	S				25
26	49	59	64	67	 73	72	52	47	_ +	 +		30 42	-	,	8	5	10	13	- 	NE NE	NNE	NE NE	N N	—			26
27	56	57	60	62	 81 79	61	64	62	 			30 38		†	12	11	12	5	-+	NE NE	E	ESE	E				27
_28	48	56	62	66	 	83	75	61	- +			30 13			7	5	9	7		NE NE	S	S	S				28
29	54	60	64	68	 100	75	68	73		_		30 19	1		12	15	9	13		E	E	ESE	SE	-			29
30	62	.65_	68	68	 100	/3	0.0		3 0	101	<u> </u>	30 13	30				-			- 		LJE	JE				30
ABUI REMAI	LATED	8)_A	PG MET	TE AM.			VER	FIED	BY			L	I				L I	<u></u>		MONT	HLY V	ALUES				76	 -

REMARKS \star Indicates time of day the charts were read, 0800, 1000, 1200 & 1400

SELIGI Fore 1010 1 Bar 69

USAEPG FORT HUACHUCA ARIZONA

			M		OLOG			ΓA			CONTI	OBTAIN NUOUSL RECOR	y runn				SITE	E M P			SPESUT		MON THE YEAR		TOBER	
				1		,., ,						<u>късок</u> ОЭ 6 Н					1 1ME	ZUNE	EASTE	RN		TOTAND		1	1965	
	Т	MPERA	TIRE O	,		% RF	ATIVE	HUMID	TTY	BAROM	1	RESS	T		W		EED MP					ECT 10			ECI IN	
AY\	_•	10	12	14_		8	10	12	14	8	īč		14	 	8	10	12	14		8	10	12	14		INCHES	
1	_64	67	70	Z0_		100	100	90	98	29 97	29 92	29 88	29 82	 	13	16	20	18		S	S	S	<u>s</u>		35	_
2	54	_61	63	66		. 76	_58	48_	46	30 02	30 05	30 05	30 01] i	-7	13	13	9	<u> </u>	WSW	NNW	NNW	N	-	——	ئىل
3	52	63	68	70		92	.62	46	42	29_88	29 83	29 77	29 74	l	20	20	14	20		WSW	SW	SW	WSW		$-\!\!\!\!+\!\!\!\!\!-$	
4	_45_	49	52	_56		57	49	53	45	30 01	30 02	30 01	29 97	-	11	20	17	16		WNW	NW	NW	NW			4
<u>-</u>	<u> </u>	.45.	48	51		67	51	44	38	30.14	30.17	30.18	30.12	1	8	11	13	8		NNW	NNW	WNN	NNW			4.
6	38	51	57	57		100	49	44	43	30.17	30,19	30.15	30.10		2	8	7	12		SW	s	S	s			4.
7	52	58	53	51	T	100	79	62	88	29_94	29 90	29.96	29.72		7	10	11_	17		SE	SE	SE	SE	$-\!\!\perp$		<u> </u>
8	57	61	65	70		100	72	72	46	29 46	29.46	29 45	29.44		5	10	13	17		SW	WSW	SW	WSW		80	1
9	51	60	60	61		94	59	62	60	29.58	29.61	29.62	29.60	<u> </u>	7	11	15	8		WSW	WSW	SW	WSW		11	<u> </u>
10	51	53	61	61		96	98	64	60	29.70	2974	29.74	29.76		10	- 8	14	9		WSW	WSW	W	NNW			
11	43	52	59	63		100	68	51	50	29 99	30 01	30 02	30 00	1	S	7	8	12		WNW	W.	NNW	SW			Ц.
12	55	55	56	63		100	100	72	43	29 94	30 01	30 00	29 95	L	3	8	8	10		SW	MNW	NI#	W			
13	47	55	59	61		72	52	43_	36	30 14	30 20	30 20	30 15		S	5	6	7		NNW	NNE	E	s			丄
14	48	54	55	59		93	93	90	82	30 23	30 25	30 26	30 21		6	3	_5	5		NE	NE	SE	N			↓_
. 15	59	63	69	.73.		100	98	86	76	30_15	30 16	30 14	30 10	1	5		<u> </u>			SW	SW	SW	SW			上
16	59	63	69	71		100	95	54	46	30 13	30 16	30 18	30 16	1	7	8	10	7		NNE	NNE	NNE	N			
17	47	51	57	59		76	70	62	54	30_38	30 41	30 44	30 42		9	9	6	5		E	E	E	Е		.03	
18	46_	51	57	61		88	78	52	47	30 46	30 49	30 49	30 43		_ 7	8	6	4		ENE	NE	ESE	SE			1
19	46	7.2	64	67		100	77	49	43	30.37	30 40	30 39	30 33	1	5	4	4	5		NNE	NNE	SE	E			Γ
20	52	S Q	68	74		96	82	57	49	30.2	30.26	30.25	30.19	<u> </u>	. 8	6	4	5		NE	NE	ESE	SF			
21	60	. 65	70	71		. 84	74	63	66	30.04	30 02	29 97	29 91		7	8	6	7		ENE	E	NE	ESE			
22	63	64	66	68		100	97	87	BO.	29.74	29.75	29.73	29.6	1	6	7	7	6		ENE	SE	SE	s		03	oxdot
23	- 63 56	59	62	-		100	71	59	46	29 4	29 46	29 43	29 31	<u> </u>	_4_	6	7	8		S	WSW	NW	SW			Γ
24	44	48	52	52		79	62	48	42	29 6	29 72	2 29 75	29 7		9	10	13	14		N.	NNW	NNW	NW			L
25	34	46	50	54		78	60.	46	42	30 19	30 21	30 23	30 1		7	q	7	. 10		WNW	NINIW	N	W			
26	40	50	63	65		90	64	37	45	30 14	30 14	30 12	30 0		6	6	7	8		NW	WSN	W	s			
27	44	58	59	61		79	60	48	44	30 0	30 0	30 0	30 0	<u> </u>	7	8	10	_13_		WNW	W	NNW	NNW			
28	44	54	56	56		76	52	40	36	29.9	7 29 97	7 30 04	30 0	↓	7	. 15	11	9		N.	NUK	N	MININ			$oxed{\Box}$
29	30	38	43	46		69	60	50	41	30.4	30.52	30.54	30 5		g	12	7	_a_		NNW	NNE	NNW	NNE			
30	45	56	51	56		70	49	46	_39		<u> </u>	<u> </u>	<u> </u>		6	.15	17	18		MININ	SW	SW	WSW			L
31	35	54		70		80		38	35			_			4	15	12	14		WSW	SW	WSW	SW			Ι
			PG MET			.00			FIED												THLY V				1 32	\top

REMARKS * Indicates time of day the charts were read, 0800, 1000, 1200 & 1400

26184 Fore 1818 1 Mar 65

JEARPS FORT HUACHUCA APIZONA

a	r
	٠,

SELMU form 1010 1 Mar 65

			MI		LOGICA					CONTI	RECOR	y Runn Os				SITE		ABERDEEN PE RANGE ON EASTERN	SPESUT	MO	YEAR	NOVEMBER	it	_
										PERI	OD 6 H	OURS				<u> </u>						1965		
	. т	MPERA	URE 0	14	\$ REI	ATIVE	HUMI D	tr 14	BAROM	TRIC 10	RESS 12	IN HG	1 1	. "	IND SP 10	EED MP	14	\ . *	10 DI	ECTIO	1,4	PRECI	IN IN	L
	44	53	55	57	64	48	38	35			30.14	Γ –		15	15	18	20	MANDA		T	NIN		+-	۲
	34	41	46	46	56	48	40	41	30.47		30.50	T		12	11	7	7	NNE	NNE	T	S		†	$^{+}$
	50	53	57	65	62	56	50	37			30.33			17	14	15	12	WSW	SW	SW	WSW		+-	†
	59	72	77	77	65	T	35	34		1		30.18	†	8	12	18	12	SW	W W	NW	NW		+	t
	40	46	52	54	64	52	50	48		1	30.61			9	7	Δ.	R	NF.	ESE	T	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		t	t
	44	53.	59	61	84	68	56	50	i i	1		3033		1	8	10	8	- 5	SE	SN	SW		_	t
	49	54	64	69	100		64	50			1	30.14		2	3	8	6	N	SE	E	WSW		_	t
	. 53	54	56	60	94	T	90	87		7		30.00		7	7	3	3	SE	SE	SE	ESE		03	t
	49	52	53	.54	56	54	45	42		T	30.13			10	13	14	12	N	N	N	N		100	t
0	31	36	39	48	71	70	64	54				30 29		_7_	7	5.	5	E	E	NE.	NE NE		†	T
1	41	42	43	45	100	100	100	100	30 28	30 30	30 30	30 28		.8	5	7	5	Е.	ENE	ENE	ENE		.06	t
2	47	48	53	55	90	86	77	72	30 31	30 33	30 30	30 28		. 7	17	_13_	R	F.	ESE	SE	ESE		1	T
3	49	51	54	56	100	100	100	97	30 04	30 04	30 01	29 98	1	-	-	-		-	-	-	-		10	T
4	41	51	53	52	88	47	42	40	30 14	30 19	30 19	30 19			-			[-	-	. - .	-		\Box	T
5	31	37	41	43	64	56	49	47	30 33	30 34	30 60	30 27		8	5	6	4	-	ESE	SE	SSE		1	T
6	52	56	54	52	77	71	100	100	29 77	29 70	29 68	29 62		17	20	8	18	S	SW	SW	SW		20	Γ
7_	41	44	47	46	48	45	42	40	29 50	29 53	29 49	29 50		25	20	30	20	WNW	W	W	WNW			T
8	35	41	44	48	48	45	41	37	29 76	29 84	29 83	29 83		20	-		17	WNW	-		WNW			Γ
9	35	42	46	49	60	48	44	44	29 99	30 05	30 03	30 00		11	8	12	7	W	NW	NW	NW			Γ
20	32	42	50	50	100	74	48	50	30 12	30 1	30 05	29 99		3	5	8	9	ENE	SE	SW	S			Γ
21	41	49	49	47	84	70	62	82	29 83	29 84	29 82	29 78		4	5	7	6	SW	N	SW	ENE		05	Γ
2	44	45	46	48	100	100	100	100	29 62	29 6	29 62	29 <u>61</u>		8	9	7	6	NE	NNE	N	N		28	
3	39	52_	51	53	100	70	66	63	29 83	29 8	29 79	29 74	\vdash	6	8	7	8	W	SW	SW	SW			Ĺ
24	. 33	42	50	50	91	70	53	52	I	F	30 07	1	\vdash	8	7	15	12		W	WNW	WNW			L
5	32	38	48	50	95	84	62	56		1	30 18	1		8	7	9	7.	ESE	SE	SSW	SSW		ļ	L
26	42_	48	54	55	100	71	60	62		1	30 12		 - -	1	7	5	0	NNW	ESE	E	-		03	l
7	64		64	68	80	100	100	33		+	29 56		├	20	9	16	26	SSW	SSW	₩	W		09	L
8	40	48	-	-	60	50	44_	49		!	29 70	T^-		17	8	7	7		└ -	<u> </u>			—	Ļ
9	26	37	38	38	60	45	45	46		1	29 90	$\overline{}$	 -	.7	16	17	_15		<u> ~ </u>	<u> </u>	WNW.		↓	L
50	27	_35	40	39	68	59	47	49	30.12	30_1	30 15	30 13	 -	6	7	_5	13	NW	<u> </u>	NNW	NNik		┼—'	Ł
			DC MET	TEU		<u> </u>	VEB	JL IFIED E		<u>. </u>	1	L	<u> </u>	1		<u> </u>			Tun 9 :		-	- 	-	┝
	RKS +	B) A	PG MET	I CAM		 -	1 AFK	IT IED E										I WOM	THLY	VALUES	<u> </u>		84	L

USAEPG FORT MUACHUCA ARIZONA

									-		DATA	OBTAI	NED FRO	M			LOCA	1 ON	ABERDE	EN PRO	VING C	ROUND	MON T	Н			
			M	ETEO	ROLOG	ICAL	DA	TA .			CONTI	NUOUS	LY RUNN	ING			SITE	# W D	RANG	E AN S	DECIM	_ MD	1	DEC	EMBER		
1				TABL	ULATIC	ON S	HEET				CHART	RECO	RDS					ZONE		L ON S	IS	LAND	YEAR				
!											PERI	0) 6 l	HOURS						EASTE	RN				196	5		
	TEMP	RATUR	E ⁰ F	Ĭ		% REI	ATIVE	HUMI DI	TY	BAROM	TRIC	PRESS	EN HO	1	M	IND SP	EED MP	H		À	IND DI	RECTI	N		PRECI	IN	
DAY	* 8	10	12	14	├ ──┤	- 8	10	12	14	8	10	12	14	ļ	8	_10	12	. 14		8	. 10	12	14		INCH	s	
1	27	38	42	43	↓ ↓	70	50	44	39	30 30	30 33	30 3	1 30 29	<u> </u>	7_	_8	10	10		WNW	NW	_NW_	W			<u> </u>	
2	30	46	50	52	I	79	44	50	40	30 24	30 25	30 2	1 30 15	ļ	6	_11_	ш	_13	_	W	WSW	SSW	SW		L	↓	2
3	41	44	49	48		80	66	54	61	30 14	30 1	7 30 0	8 30 02	2	7	3	5	6		NE	ESE	NNE	N.		<u> </u>	<u> </u>	3
4	39	47	53	50		84	64	45	39	29 73	29 7	29 7	1 29 72	2	9	10	15	23		WSW	WSW	W	NN	 		$ldsymbol{ldsymbol{ldsymbol{eta}}}$	4
_ 5	36	39	43	48		57	62	54	52	29 88	29 8:	29 7	3 29 68	<u> </u>	11	7	10	15		WSW	WSW	SW	SW	<u> </u>			-5
6	40	45	50	47	1	57	44	34	35	29 66	29 68	29 6	8 29 68	♣		10	13	.10		SW	W	NW	NNW	L	<u> </u>		6
7	27	30	35	41	L i	54	48	38	40	30 15	30 2	30 2	5 30 22	<u></u>	21	25	17	14		NN	NNN	NINDY	א			LI	7
8	26	40	45	46		86	64	50	44	30 18	30 1	2 30 0	6 30 0	š	8	12	14	7		s	S	SSW	SSN			\bigsqcup	8
9	30	38	45	46		92	74	44_	46	30 31	30 30	5 30 3	6 30 31	↓		5	4	_ف_		NNW	ENE	NE	NNE				Q
10	27	43	48	54		100	70_	56	42	30 26	30 3	1 30 3	1 30 2	<u> </u>	3	_3	2	2		W.	_F_	NF	ENE				10
11	38	40	41	43		84	81	82	78_	30 16	30 1	4 30 O	6 30 04	<u> </u>	_6_	.6	2	_5		NE.	ENE	NE	NNE	·		.03	11
12	41	41	42	42_		100	100	100	100	30.06	30.0	7 30.0	4 29.9	<u> </u>	9	8	8	9		ENE	ENE	ESE	E			<u> </u>	12
13	47	48	49	52		100	100	100	100	29 71	29,7	1 29.6	6 29.64	4	5	3	5	1		ESE	NNE	W	W			68	13
14_	41	45	50	54		100	100	87	52	29.78	29.8	3 29.8	1 29.7		3	4	6	7		SW	W	MNM	WNW	<u> </u>		$ldsymbol{ldsymbol{ldsymbol{eta}}}$	14
15	36	42	46	48		76	54	46	51	29.94	29.9	29.9	5 29.9	<u> </u>	6	7	10	7		NW	WNW	NW	NNW				15
16	34	42	50	47		100	90	65	66	29.97	30.0	2 30 0	2 29 9		5	7	5	4		NNE	NNE	ESE	S			Ш	16
17	37	_ 50_	51	45_		100	56_	50	51	29.87	29.8	9 29.8	7 29 8		. 3	13	18	17		WNW	NW	NW	WNW			igsqcut	17
18	24	31	36	39		64	60_	44	42	30.07	30.0	6 30 0	1 29.9	 _	10	8	6	6		W	NW	M	WNW				18
19	25	29	35			76	68	51	44	29.91	29.9	2 29.8	6 29.8	<u> </u>	15	9	8	7		WNW	NW	NW	WSW				19
20	20	. 22	26	29		64	56_	49	44			4 29.8		4	11	9	7	8		WNW	NW	W	N₩			igsquare	20
21	24	30	36	35		68	57	54	54		↓	+	6 29 9		7	7	7	8		NNE	NNE	NNE	N				21
22	20	33	44	46		97	80	55	42			+	2 30 2		4	6	6			SW	WSW	WSW	WSN			\square	22
23	30	40	46	50		85	69	63	54	I — I —		+	5 30 30	1	7	7	9	10		_W_	SW	SSW	SSW				23
24	38	45	54	58		100	90	55	49			2 30 1	-	└	5	4	12	13		N	SW	SW	SW				. 24
25	66	66	66	67		78	90	95	90		_	1	0 29 5	1	25	28	26	_25_		S	s	S	S			48	25
26	33	32	35	38		53	45	42	35			+	1 30 1	└	41	31	27	25		N	NNW	NN	NNW			igsqcut	26
27	15	22	25	29		56	56	54	51	30 47	30 5	2 30 4	8 30 4	4	13	8	6	7		Ň	ENE	SE	SSW			└	27
28	32	41	43	42		64	50	46	44	30 49	30 5	S 30 S	6 30 5	1	7	10	11	8		WNW	NW	NW	NNW			igsquare	28
29	25	36	41	<u> </u>		100	100	70	60	30_52	30 5	30 4	6 30 4	— —	_ 5	11	21_	12		W	SSW	SW	SW				29
30	29	31	45	49		100	100	64	60		_	_	6 30 1		2	5	. 8	7		_NE	SW	SW	SW			igsquare	30
31	32	50	61	66		100	87	62	56	30 19	30 1	30 1	<u> 30 0</u>	<u> </u>	8	12	6	7		SN	SW	SN	SSW				31
TAR	LATED	BY .	DC 100		· · · · · · · · ·			VERI	FIED	BY				}						MONT	HLY V	ALUE	5		1	19	
REMA			PL ME	LEAM																							

REMARKS * Indicates time of day the charts were read, 0800, 1000, 1200 & 1400

1 Mar 69

USASPE FORT MURCHUCA ABIZONA

ı,		
١	E	к
٠	ā	r
1	۰	٠

			MI			GICAL ON S		ra .			COIT		ED FROM Y RUINI UDS				SITE	E.M.F	BERDEE ANG EASTE	E ON S	SPESUT:	MD'.	MONTH YEAR	UMAL	ARY	_
											PER	OD 6 1	IOURS											1966	5	
A'A	*8 TE	MPERAT 10	URE OF	14		% RI 8	IATIVI 10	HUMI 12	DITY 14	BARO 8	METRIC 10	PRESS 12	IN JO		8 W	ID SPI	12 ED MPI	14		8 .w	10 10	ECTIO	N 14		CIP. IN	
,	58	54	68	64		92	100	68	70	016	3 018.	6 018,	019.2		5	8	11	7		N	W	NW	NNW		1_	Т
2	46	147	1/4	45		100.	88		100		7 023.	7 022			16	10	14	15		E	E	E	ESE		.23	T
	46	1414	46	43		100	100	100	33	015	9 018.	0 018.3	018.7		3	.7	9	33		NIW	¥	SW	WNW		.02	Τ
	32	40	1414	43		69	56	52	51	033.	3 035.	034.8	032.7		7	7	8	14		W	N	SW	SSW			Τ
i	29	34	37.	140		100	94	88	74	029	7 030,	2 028 5	027.1	a	2	5	5	5		NW	NE	SE	NNE		,12	Ι
;	43	45	46	45		100	100	100	100	006.	4 005.	7 003.9	002.9	1	15	11	1	_ 5		ENE	NE	NW	N		•5l±	Γ
,	34	43	45	46		92	6C	70	63	012.	2 012.	2 010 9	010.2		3	ļ	10	6		SW	NN₩	S	SSW			Γ
,	32	31	29	27		53	50	48	بلبا	011.	5 012.		013.4		29	31	34	_38		NV	NW	NW	NW			Τ
,	20	25	29	31		58	48	43	43	029.	3 030.	8 030.	029.3	1	ii	19	15	ű		W	NM	NW	N			Ι
0	32	39	41	կկ		69	50	47	40	023.	7 022.	7 020.8	017.8		5	18	17	8		S	SW	SW	SSW			Ι
1	27	29	31	33		50	44	43	38	023.	5 024.	7 024.3	023.5	1	1.5	12	17	25		nnw	MVM	NW	NW		\top	Τ
2	19	23	26	28		57	49	41	35	031.	7 032.	0 031.1	029.1	8	В	21	16	12		NW	N	NNW	N			T
3	22	28	31	32		55	46	46	وبا	025	2 024.	6 021.7	019.1	9	9	9	10	17		SSW	SSW	s	S		7	Ī
4	34	37	38	40		70	34	56	56	015.	6 016.	3 016.0	014.2	ε	3	22	14	10		NW	NNW	NNW	N			T
5	23	31	34	36		100	90.	78	60	വദം	018.	016.8	014.9	2	2	2	7	1		N	W	SSW	ESE			T
6	19	23	26	30		58	ե յե	41	39	014.	5 015.	2 013.5	013.d] 1	16	22	20	18		NNW	NW	NW	WI			Τ
7	30	32	33	36		54	53	50	45	017.	018.	0 017.4	016.2	1	ıc	27	24	_15		MXM	W	NW.	NW		\top	T
3	26	30	32	34		65	50	46	42	018.	7 o <u>u</u> 8.	8 017.6	014.9	5	5	13	13	20		MM	NNW	NNW	NW		T	Τ
	27	30	36	36		57	54	48	47	015.	2 016	4 014.5	014.2	1	LO	13	50	18		W	NW	NNW	NM			Ī
 -	31	36	40_	42		69	60	54	50	020	1 023.	0 022.9	021.1	دا	1,2	14	13	10		N	N	N	N		1	Ţ
ı_	32	33	39	41		77	73	55	47	026.	4 027.	4 026.8	025.6]	ц	8	10	8		16	N	N	MNW		Т	Γ
2	30	32	35	36		80	78	70	73	025.	1 025.	3 022.8	020.7	7	7	7	10	10		ENE	E	E	ENE		.15	Γ
3	34	33	33	33		100	100	98	98	992.	2 992.	4 994.3	995.7] 3	30	33	29	2 8		NW	MA	NW	WNW		.65	Γ
<u>1</u>	27	31	32	32		57	51	49	50	017.	018.	3 019.6	019.5	1	15	11	22	22		¥	NA	NW	MM			I
5	22	25_	2 6	27		60	60	58	61	027	2 027.	6 027	026.4	1	LO.	14	13	24		MAM	N	M	N			
6	22	23	21.	21		62	62	61	92	023.	5 022.	020.0	018,5	1	13	18	17	20		ENE	NE	NE	IINE		.15	I
7	20	23	27	30		72	72	58	45	010.	3 OU .	010.8	007.4	2	22	1 9	24	17		ine	NNE	wı	WNN		.02	I
3	10	13	15	17		47	h)	40	3 3	018.	3 020.	020.0	019.5	8	3	15	17	1 6		WIII	MMM	MIM	WITW			ſ
9	8	13	16	17		51	48	47	48	020.	3 രമ.	a 019.1	015.3	c		7	3	. 7		WIJW	27W	IIIW	MILL		25	
0	16	18	18_	18		96	96	94	94	985.	3 986.	0 987.1	989.2	2	28	18	31	37		NW	WNW	¥	W		.60	
	14	1 9_	22	25_		75	72		لـــا	013.	012.	4 013.5	014.2	2	22	23	23	50	T	W	WIW	MNM	W			ſ
.811	LATED	BY A	PG MET	TEAL				VERI	FIED	BY		-								MONT	HLY V	ALUES			2 .73	Γ
E.MA	RKS *	Indica			day th	ne char	ts wer	e read	. 080	0, 1000, 12	200, &	1400								- 7 - 7 - 12 - 1	•			FORT HUAC	1 - 1 - 1 - 1	_

DISTRIBUTION LIST

No o	-	No. o: Copie:	_
20	Commander Defense Documentation Center ATTN: TIPCR Cameron Station Alexandria, Virginia 22314	2	Commanding Officer U.S. Army Electronics Research and Development Activity ATTN: Met Dept Atm Sc Res Div Mr. Erickson
1	Director Weapons Systems Evaluation Group ATTN: Mr. J Sherman Washington, D.C. 20305	2	Fort Huachucha, Arizona 85613 Commanding Officer U.S. Army Electronics Research and Development Activity ATTN: Mr. Webb
1	Headquarters Defense Atomic Support Agency ATTN: STRA-RAEL, LTC J. Brown Washington, D.C. 20301	1	Mr. Diamond White Sands Missile Range New Mexico 88002
1	Commanding General U.S. Army Materiel Command ATTN: AMCRD-ScT-M Washington, D.C. 20315	_	Commanding General U.S. Army Missile Command Redstone Arsenal, Alabama 35809
1	Commanding General U.S. Army Materiel Command ATTN: AMCRD-RV-A, Mr. Copelan Washington, D.C. 20315	1 đ	Commanding Officer U.S. Army Engineer Research & Development Laboratories ATTN: STINFO Div Fort Belvoir, Virginia 22060
4	Commanding General U.S. Army Electronics Command ATTN: AMSEL-BL-D, Mr. Barnett AMSEL-HL-D, Dr. Wiseman AMSEL-HL-CT		Commanding Officer U.S. Army Dugway Proving Ground ATTN: Mr. P. Carlson Dugway, Utah 84022
	Mr. Frederick AMSEL-HL-CT-R Mr. Pearce Fort Monmouth, New Jersey 07703	1	Commanding Officer U.S. Army Map Service ATTN: Mr. Vitek Corps of Engineers 6500 Brooks Lane
3	Commanding General U.S. Army Electronics Command ATTN: Tech Lib AMSEL-CB AMSEL-AV, Mr. M. Post Fort Monmouth, New Jersey 07703	1	Washington, D.C. 20315 Chief of Research & Development Department of the Army Washington, D.C. 20310

DISTRIBUTION LIST

No. o		No. of	
5	Director U.S. Army Research Office ATTN: CRD/M, Mrs. Whedon COL Schroeder 3045 Columbia Pike Arlington, Virginia 22204	3	Director Environmental Science Services Administration ATTN: Div 520.00, Mr. Thompson Div 510.00, Mr. Falcon Div 530, Mr. Lerfald U.S. Department of Commerce
1	Commanding Officer U.S. Army Research Office (Durham) Box CM, Duke Station Durham, North Carolina 27706	1	Boulder, Colorado 80302 Director National Aeronautics & Space Administration Electronics Research Center
1	Assistant Chief of Staff for Force Development Department of the Army Washington, D.C. 20310	<i>,</i>	ATTN: Mr. Trafford 575 Technology Square Cambridge, Massachusetts 02139
1	AFSC (SCW) Andrews AFB, D.C. 20331	1	Director National Center for Atmospheric Research P.O. Box 1558 Boulder, Colorado 80301
1	RADC (EMI) Griffiss AFB New York 13440	1	The University of Michigan Institute of Science and Technology
1	AFCRL L. G. Hanscom Fld Bedford, Massachusetts 01731		ATTN: Tgt Sgnr Lib, Mr. Beard P.O. Box 618 Ann Arbor, Michigan 48107
2	AFAL (AVN; AVR) Wright-Patterson AFB Ohio 45433	Aberd	een Proving Ground Ch, Tech Lib Air Force Ln Ofc
1	SEG (SEQ) Wright-Patterson AFB Ohio 45433		Marine Corps Ln Ofc Navy Ln Ofc CDC Ln Ofc Tech Dir, USAHEL

Security Classification	<u> </u>						
DOCUMENT (Security cleanification of title body of abstract and inc	CONTROL DATA - R		the overall report is classified)				
1 ORIGINATING ACTIVITY (Corporate author)			RT SECURITY CLASSIFICATION				
U.S. Army Ballistic Research Laborate	ories	Unc	Unclassified				
Aberdeen Proving Ground, Maryland		25 GROUP					
3 REPORT TITLE	•	•					
THE ELECTROMAGNETIC PROPAGATION RANG	E FACILITY AT TH	E BALLIS	STIC RESEARCH				
LABORATORIES							
		.					
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)							
5 AUTHOR(S) (Last name first name initial)							
5 AG HOR(5) (Last name that name himsel)							
Adams, Channing L.							
<u>-</u>							
6 REPORT DATE	7s TOTAL NO OF	PAGES	76 NO OFREFS				
July 1966	92						
8a CONTRACT OR GRANT NO	9ª ORIGINATOR'S	REPORT NUM	ABER(S)				
6 PROJECT NO RTD&E 1P523801A286	BRL Report	No. 133	51				
c	9b OTHER REPORT	other numbers that may be assigned					
d 10 AVAILABILITY/LIMITATION NOTICES							
TO A VAIL ABILITY/LIMITATION NOTICES							
Distribution of this document is unl	imited.						
11 SUPPLEMENTARY NOTES	12 SPONSORING MI	LITARY ACT	IVITY				
	U.S. Army Materiel Command						
	Washington, D.C.						
13 ABSTRACT							
This report describes the instrument magnetic Propagation Range as establ (BRL)in support of fundamental resear It includes a description of the mul system, the types of instrumentation of instrument and sensor calibration Tabulated data and photographs of al	ished by the Balker in the near-cation the near-cation that is used for obtain and typical re	Llistic Fearth met n-speed, ning mete esults of	Research Laboratories teorological environment digital data acquisitio eorological data, method field programs.				

Security Classification

14 KEY WORDS	LIN	K A	LIN	KΒ	Lin	кс
	ROLE	wT	ROLE	wt	ROLE	WT
Electromagnetic Propagation Range Near-Earth Meteorological Environment Meteorological Sensors High Speed Digital Data Recorder Meteorological Sensor Calibration						
INSTRUCTION	ONS	.			•	

- 1 ORIGINATING ACTIVITY Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing
- 2a REPORT SECURITY CLASSIFICATION Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b GROUP Automatic downgrading is specified in DoD Directive 5200 10 and Armed Forces Industrial Manual. Enter the group number Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE Enter the complete report title in all capital letters. Titles in all cases should be unclassified If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES If appropriate, enter the type of report, e g, interim, progress, summary, annual, or final Give the inclusive dates when a specific reporting period is covered.
- 5 AUTHOR(S) Enter the name(s) of author(s) as shown on or in the report Enter last name, first name, middle initial. If military, show rank and branch of service The name of the principal author is an absolute minimum requirement.
- 6 REPORT DATE. Enter the date of the report as day, month, year, or month, year If more than one date appears on the report, use date of publication.
- 7a TOTAL NUMBER OF PAGES The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b NUMBER OF REFERENCES. Enter the total number of references cited in the report
- 8a CONTRACT OR GRANT NUMBER If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d PROJECT NUMBER Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a ORIGINATOR'S REPORT NUMBER(S) Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b OTHER REPORT NUMBER(S) If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s)

- 10 AVAILABILITY/LIMITATION NOTICES Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as
 - "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized"
 - (3) "U S Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U S military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

- 11 SUPPLEMENTARY NOTES Use for additional explanatory notes
- 12 SPONSORING MILITARY ACTIVITY Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13 ABSTRACT Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract However, the suggested length is from 150 to 225 words

14 KEY WORDS Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

**	•		_		-
11120	$\alpha \cdot \alpha$		7 4	701	١
OLL	cla	00		エニィ	