Statistiques inférentielles

Pierre-Henri WUILLEMIN

Licence d'Informatique – Université Paris 6

Introduction

ullet Soit une population de taille N sur laquelle on observe une propriété, dont on veut calculer moyenne μ et de variance σ^2 .

On n'a accès qu'à un échantillon de la population.

➡ Définition (Échantillon aléatoire)

Un échantillon aléatoire est un prélèvement aléatoire de n individus dans cette population.

 X_1, X_2, \cdots, X_n sont alors n v.a. indépendantes, identiquement distribuées (i.i.d.) de moyenne μ et la variance σ^2 .

Sur cet échantillon, on peut calculer une moyenne m et une variance s^2 . Quel rapport entre m et μ , s^2 et σ^2 ?

▶ Définition (Statistique inférentielle)

La statistique inférentielle a pour but d'induire les caractéristiques inconnues d'une population à partir d'un échantillon issu de cette population. Les caractéristiques de l'échantillon, une fois connues, reflètent avec une certaine marge d'erreur possible celles de la population.

L'inférence statistique est donc un ensemble de méthodes permettant de tirer des conclusions fiables à partir de données d'échantillons statistiques.

Exemples

- Sondages électoraux,
- Tests de fiabilités, de qualité,
- etc.

Exemple 1

Une association de consommateurs veut déterminer si la quantité de vin est bien égale à 75cl dans les bouteilles de Bordeaux. À cette fin, elle examine un échantillon de 100 bouteilles.

Exemple 2

Enquête, sur un échantillon de 400 individus de la population active, pour savoir si le taux de chomage, qui était de 10% le mois dernier, s'est modifié.

Échantillon représentatif

- ▶ Définition (Échantillon représentatif)
- Il est nécessaire de s'assurer que l'échantillon est représentatif de la population.
- L'échantillonnage aléatoire est le meilleur moyen d'y parvenir.
- Un échantillon aléatoire est un échantillon tiré au hasard dans lequel tous les individus ont la même chance de se retrouver.
- Dans le cas contraire, l'échantillon est biaisé.

Échantillon hiaisé

Soit une population de 58 étudiants en informatique de taille moyenne 1m78.

- On choisit un échantillon 'non sexiste' de 5 garçons et 5 filles.
- Moyenne de l'échantillon : 1*m*74.
- Moyenne de l'echantinon : 1m4.
 Le biais : la population comporte 40 garçons pour 18 filles. Donc, chaque garçon avait une probabilité $\frac{5}{40}$
- d'être dans l'échantillon, et pour chaque fille : $\frac{5}{18}$.

Statistique

- \bullet À partir des (X_i) , on peut construire de nouvelle v.a. permettant de synthétiser une information.
- Soit $f(X_1, \dots, X_n)$ une application définie sur l'échantillon. Nécessairement, c'est également une v.a.!

Définition

On appelle statistique toute application définie uniquement sur l'échantillon.

- $\circ \overline{X} = \frac{X_1 + \dots + X_n}{n} : \text{moyenne d'échantillon}$ $\circ S^2 = \sum_{i=1}^n \frac{\left(X_i \overline{X}\right)^2}{n-1} : \text{variance d'échantillon (ou variance corrigée)}$
- $W = \overline{X} \mu$ n'est pas une statistique car μ n'est pas observable sur
- l'échantillon!!

Échantillonnage : analyse de \overline{X}

- Soit un caractère X de moyenne μ et de variance σ^2 .
- Soit un échantillon représentatif (X_1, \dots, X_n) i.i.d.

$$\mathbb{E}(\overline{X}) = \mathbb{E}(\frac{X_1 + \dots + X_n}{n}) = \frac{\mathbb{E}(X_1) + \dots + \mathbb{E}(X_n)}{n} = n \frac{\mathbb{E}(X)}{n} = \mathbb{E}(X)$$

$$\mathbb{E}(\overline{X}) = \mu$$

De même,

$$V(\overline{X}) = \frac{\sigma^2}{n}$$

Finalement:

Pour *n* suffisamment grand, \overline{X} suit une loi normale $\mathcal{N}\left(\mu; \frac{\sigma}{\sqrt{n}}\right)$.

- n suffisamment grand quand n > 30.
- Si $X \sim \mathcal{N}(\mu; \sigma)$ alors ce résultat est vrai même pour n petit.

Théorème Central Limite

Théorème (TCL)

Quelle que soit la distribution d'une variable aléatoire X, la moyenne m d'un échantillon de taille n suit symptotiquement une loi normale $\mathcal{N}\left(\mu,\frac{\sigma}{\sqrt{n}}\right)$.

Théorème (TCL généralisée)

Soit $S_n = \sum_{i=1}^{n} X_i$, avec les X_i v.a. indépendante, à variance finie. Alors

$$S_n \xrightarrow[n \to \infty]{} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Retour sur la loi normale

Rappel

Si
$$X \sim \mathcal{N}\left(\mu; \sigma\right)$$
 alors $\frac{X-\mu}{\sigma} \sim \mathcal{N}\left(0; 1\right)$

$\mathcal{N}\left(\mu;\sigma\right)$

Estimation ponctuelle

Dans l'échantillonnage, on a pu évaluer la distribution de \overline{X} à partir des données de la distribution de la population (μ et σ).

Dans l'estimation, on se pose le problème inverse : étant donnée un échantillon de moyenne m et de variance s^2 , que peut-on dire de μ et σ^2 ?

Estimations ponctuelles

lacktriangle La moyenne m de l'échantillon est la meilleure estimation ponctuelle de μ :

$$\widehat{\mu}=\textit{m}$$

lacktriangle La variance corrigée $rac{n}{n-1}\cdot s^2$ est la meilleure estimation ponctuelle de σ^2 :

$$\widehat{\sigma} = \sqrt{\frac{n}{n-1}} \cdot s$$

Une population peut être décrite par la fréquence $p \ge 1$ d'occurrence de la propriété étudié. On peut alors calculer f la v.a. de cette fréquence dans l'échantillon.

Estimation ponctuelle de p

lacktriangle la fréquence f est la meilleure estimation ponctuelle de p.

Estimation par intervalle de confiance

Soit P la population, de moyenne μ , de variance σ^2 . Soit un échantillon de taille n de moyenne m et de variance s^2 ,

μ pour σ , m et $n \ge 30$ sont connues

On sait que (sous les bonnes conditions)

$$\overline{X} \sim \mathcal{N}\left(\mu; \frac{\sigma}{\sqrt{n}}\right)$$
 et donc $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}\left(0; 1\right)$

On cherche un intervalle I_{α} tel que la $P(\mu \in I_{\alpha}) = 1 - \alpha$ avec $\alpha \in [0,1]$. I_{α} est l'intervalle de confiance avec le rique α .

$$\begin{split} & \text{Soit } t_{\alpha}, \, P(-t_{\alpha} \leq Z \leq t_{\alpha}) = 1 - \alpha. \\ & \iff P(-t_{\alpha} \leq \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \leq t_{\alpha}) = 1 - \alpha \\ & \iff P(-t_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \leq \overline{X} - \mu \leq t_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}) = 1 - \alpha \\ & \iff P(\overline{X} - t_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + t_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}) = 1 - \alpha \end{split}$$

\rightarrow Définition (Intervalle de confiance à risque α)

$$I_{\alpha} = \left[m - t_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}, m + t_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}\right]$$
 avec t_{α} tel que $P(-t_{\alpha} \leq Z \leq t_{\alpha}) = 1 - \alpha$.

PS- cf. page suivante : $t_{lpha}=z_{rac{lpha}{2}}$.

Extrait de la table de la loi normale

zα	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2297	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0859	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0722	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0466	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0352	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233

Intervalle de confiance - suite

μ pour σ inconnu, m et $n \ge 30$ connues

En notant $S^2 = \frac{n}{n-1} \cdot s^2$ la variance corrigée de l'échantillon :

$$\overline{X} \sim \mathcal{N}\left(\mu; \frac{S}{\sqrt{n-1}}\right)$$
 et donc $Z = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n-1}}} \sim \mathcal{N}\left(0; 1\right)$

p pour f et $n \ge 30$ connues

$$f \sim \mathcal{N}\left(p; \sqrt{\frac{p(1-p)}{n}}\right)$$

$$\sigma^2$$
 pour m , s^2 et $n > 30$ connues

En notant $S^2 = \frac{n}{n-1} \cdot s^2$ la variance corrigée de l'échantillon :

$$\bullet \mathbb{E}(S^2) = \sigma^2$$

$$\bullet V(S^2) \to 0$$

Calculs d'intervalles – Exemple 1

Exemple 1

Une entreprise reçoit un stock important de pièces. L'entreprise n'accepte la livraison que si la proportion de pièces défectueuses est inférieur à 5%. On extrait du stock 200 pièces et on en dénombre 15 défectueuses.

L'entreprise doit-elle accepter cette livraison?

Calculs d'intervalles – Exemple 2

Confitures

Les poids en grammes de 1000 pots de confiture sortis successivement d'une machine à conditionner ont été les suivants (les résultats sont donnés par classes de longueur 2, l'origine de la première étant 2000 et l'extrémité de la dernière 2022) :

	classe	1	2	3	4	5	6	7	8	9	10	11
Ì	effectif	9	21	58	131	204	213	185	110	50	16	3

En admettant que le poids des pots suit une loi normale, estimer ponctuellement, puis à l'aide d'un intervalle de confiance à 95%, sa moyenne et son écart-type.

