Teoremi Informatica Teorica

Zbirciog Ionut Georgian

May 13, 2024

Indice

1	Teo	remi Dispensa 2																		2
	1.1	Teorema a pag. 5	 					 			•		•						 	2
2	Teo	remi Dispensa 3																		3
	2.1	Teorema a pag. 3	 					 												3
		Teorema a pag. 4																		
		Teorema a pag. 5																		
		Teorema a pag. 5																		
	2.5	Teorema a pag. 7	 					 												4
	2.6	Teorema a pag. 9	 					 				 								4

1 Teoremi Dispensa 2

1.1 Teorema a pag. 5

Per ogni macchina di Turing non deterministica NT esiste una macchina di Turing detreministica T tale che, per ogni possibile input x di NT, l'esito della computazione NT(x) coincide con l'esito della computazione di T(x).

Dimostrazione: Eseguiamo una simulazione della macchina non deterministica NT mediante una macchina deterministica T. La simulazione consiste in una visita in ampiezza¹ dell'albero delle computazioni di NT basata sulla tecnica coda di rondine con ripetizioni. Partiamo dallo stato globale SG(T, x, 0) e simuliamo tutte le computazione di lunghezza 1. Se tutte le computazioni terminano in q_R allora T rigetta, se almeno una computazione termina in q_A allora T accetta, altrimenti ricominciamo da capo eseguendo tutte le computazioni di lunghezza 2 e così via.

¹Perché non in profondità? Non possiamo fare una visità in profondità perché non sappiamo la lunghezza di ciascuna computazione, in quanto potrebbero anche non finire.

2 Teoremi Dispensa 3

2.1 Teorema a pag. 3

Un linguaggio $L \subseteq \Sigma^*$ è decidibile se e soltanto se L e L^c sono accettabili.

Dimostrazione:

 $(\Rightarrow$ Se L è decidibile allora esiste una macchina di Turing T deterministica tale che $\forall x \in \Sigma^*$, $T(x) = q_A \Leftrightarrow x \in L \land T(x) = q_R \Leftrightarrow x \in L^c$. Osserviamo dunque che T accetta L.

Da T, deriviamo ora T' aggiungendo le seguenti quintuple:

$$\langle q_A, x, x, q_R^{'}, stop \rangle \land \langle q_R, x, x, q_A^{'}, stop \rangle \ \forall x \in \Sigma \cup \square$$

L'esecuzione di T' è simile a quella di T, solo che gli stati di accettazione e rigetto sono stati invertiti, in questo modo se T accetta x allora T' rigetta x, mentre se T rigetta x, T' accetta x, dunque T' accetta L^c .

- \Leftarrow) Se L e L^c sono accettabili allora esistono due macchine di Turing T_1 e T_2 tali che, $\forall x \in \Sigma^* T_1(x) = q_A \Leftrightarrow x \in L \land T_2(x) = q_A \Leftrightarrow x \in L^c$. Non esendo specificato l'esito della computazione nel caso in cui $x \notin L$ e $x \notin L^c$ definiamo la macchina T che, simulando T_1 e T_2 decide L nel seguento modo²:
 - 1. Esegui una singola istruzione di T_1 sul nastro 1: se $T_1(x) = q_A$ allora $T(x) = q_A$, altrimenti esegui il passo (2).
 - 2. Esegui una singola istruzione di T_2 sul nastro 2: se $T_2(x) = q_A$ allora $T(x) = q_R$, altrimenti esegui il passo (1).

Se $x \in L$, allora prima o poi, al passo (1), T_1 entrerà nello stato di accettazione, portando T ad accettare. Se $x \in L^c$, allora prima o poi, al passo (1), T_1 entrerà nello stato di accettazione, portando T a rigettare.

2.2 Teorema a pag. 4

Un linguaggio L è decidibile se e soltanto se la funzione χ_L è calcolabile.

Dimostrazione:

- (\Rightarrow Se L è decidibile allora esiste una macchina di Turing T deterministica di tipo **riconoscitore** tale che $\forall x \in \Sigma^*, T(x) = q_A \Leftrightarrow x \in L \land T(x) = q_R \Leftrightarrow x \in L^c$. A partire da T definiamo una macchina di Turing T di tipo trasduttore a 2 natri, con input $x \in \Sigma^*$ che opera nel seguente modo:
 - 1. Sul primo nastro simula T(x).
 - 2. Se T(x) termina nello stato q_A allora T'(x) scrive sul nastro di output il valore 1, altrimenti scrive il valore 0 e poi termina.

Osserviamo che poiché L è decidibile il passo (1) termina sempre per ogni input x. Se $x \in L$ allora $T(x) = q_A$ e T'(x) scrive 1 sul nastro di output. Se $x \notin L$ allora $T(x) = q_R$ e T'(x) scrive 0 sul nastro di output. Questo dimostra che χ_L è calcolabile.

- \Leftarrow) Se χ_L è calcolabile e per costruzione anche totale allora esiste una macchina di Turing T di tipo **trasduttore**, che per ogni $x \in \Sigma^*$, calcola $\chi_L(x)$. A partire da T definiamo T' di tipo riconoscitore a 2 natri, con input $x \in \Sigma^*$ che opera nel seguente modo:
 - 1. Sul primo nastro simula T(x) scrivendo il risultato sul secondo nastro.
 - 2. Se sul secondo nastro c'é scritto 1 allora $T'(x) = q_A$, altrimenti nello stato q_R .

Osserviamo che poiché χ_L è calcolabile il passo (1) termina sempre per ogni input x. Se $\chi_L(x) = 1$ allora (1) termina scrivendo 1 sul secondo nastro e $T'(x) = q_A$. Se $\chi_L(x) = 0$ allora (1) termina scrivendo 0 sul secondo nastro e $T'(x) = q_R$. Questo dimostra che L è decidibile.

2.3 Teorema a pag. 5

Se la funzione $f: \Sigma^* \to \Sigma_1^*$ è totale e calcolabile allora il linguaggio $L_f \subseteq \Sigma^* \times \Sigma_1^*$ è decidibile.

 $^{{}^2}$ Osserviamo che non possiamo simulare T_1 e T_2 "blackbox", in quanto non sappiamo se la loro computazione termina o meno.

Dimostrazione: Poiché f è calcolabile e totale allora esiste una macchina di Turing trasduttore che calcola $f(x) \forall x \in \Sigma^{\star}$. A partire da T definiamo una macchina di Turing T riconoscitore a due nastri con input $\langle x, y \rangle$ dove $x \in \Sigma^{\star}$ e $y \in \Sigma_{1}^{\star}$, che opera nel seguente modo:

- 1. Sul nastro 1 è scritto l'input $\langle x, y \rangle$.
- 2. Sul nastro 2 simula T(x), scrivendovi il risultato z.
- 3. Se z = y allora $T'(x) = q_A$ altrimenti va in q_R .

Osserviamo che, poiché f è totale e calcolabile il passo (2) termina per ogni input $x \in \Sigma \star$. Se f(x) = z = y allora T'(x) termina in q_R . Questo dimostra che L_f è decidibile.

2.4 Teorema a pag. 5

Sia $f: \Sigma^{\star} \to \Sigma_{1}^{\star}$ una funzione. Se il linguaggio $L_{f} \subseteq \Sigma^{\star} \times \Sigma_{1}^{\star}$ è decidibile allora f è calcolabile³.

Dimostrazione: Poiché $L_f \subseteq \Sigma^* \times \Sigma_1^*$ è decidibile, esiste una macchina di Turing riconoscitore T, tale che $\forall x \in \Sigma^*$ e $\forall y \in \Sigma_1^*$, $T(x) = q_A$ se y = f(x) e $T(x) = q_A$ se $y \neq f(x)$. A partire da T definiamo una macchina di Turing trasduttore T con input $x \in \Sigma^*$ che opera nel seguente modo:

- 1. Scrive i = 0 sul nastro 1.
- 2. Enumera tutte le stringhe $y \in \Sigma_1^*$ di lunghezza pari al valore scritto sul primo nastro, simulando per ciascuna stringa T(x,y).
 - (a) Sia y la prima stringa di lunghezza i non ancora enumerata, allora scrive y sul secondo nastro.
 - (b) Sul terzo nastro, esegue la computazione T(x, y).
 - (c) Se $T(x,y) = q_A$ allora scrive y sul nastro di output eventualmente incrementando i se y era l'ultima stringa, torna al passo (2).

Poiché L_f è decidibile il passo (b) termina per ogni input (x, y). Se x appartiene al dominio di f, allora $\exists y \in \Sigma_1^{\star}$ tale che y = f(x), e quindi $(x, y) \in L_f$. Allora prima o poi la strigna y verrà scritta sul secondo nastro e $T(x, y) = q_A$. Questo dimostra che f è calcolabile.

2.5 Teorema a pag. 7

Per ogni programma scritto in accordo con il linguaggio di programmazione **PascalMinimo**, esiste un macchina di Turing T di tipo trasduttore che scrive sul nastro di output lo stesso valore fornito in output dal programma.

Dimostrazione omessa

2.6 Teorema a pag. 9

Per ogni macchina di Turing deterministica T di tipo riconoscitore ad un nastro esiste un programma P scritto in accordo alle regole del linguaggio **PascalMinimo** tale che, per ogni stringa x, se T(x) termina nello stato fiale $q_F \in \{q_A, q_R\}$ allora P con input x restituisce q_F in output.

Dimostrazione omessa

 $^{^3}$ Osserviamo che non possiamo invertire del tutto il teorema precendente, dalla decidibilità di L_f possiamo dedurre solo la calcolabilità di f