ML for Cybesec – Homework Lab 02 – Backdoor Defenses Net Id: vg2097

The following lab explains how easy it is to do a backdoor attack on a regular model and how a model with very high classification accuracy can also be model which is highly vulnerable and can get the attack success rate very high model.

We need to take certain measures to make the model robust to these attacks to a certain attack.

Here we iteratively prune the model layers to remove the possible backdoor activations in the model resulting in reducing the backdoor activation neurons and in-turn increasing the model robustness against such attacks. However with the following pruning process as we increasingly remove/turn off certain neurons the model accuracy in classifying the test data also decreases.

We then decide based on our requirement to select the trade-off between the model accuracy Vs Attack success rate on the model.

Below is the table for the model's accuracy and the attack success rate and the amount of pruning.

	prune index	clean test accuracy	Attack success Rate	
0	0.016666666666666700	98.64899974019230	100.0	
1	0.0333333333333333	98.64899974019230	100.0	
2	0.05	98.64899974019230	100.0	
3	0.0666666666666670	98.64899974019230	100.0	
4	0.0833333333333333	98.64899974019230	100.0	
5	0.1	98.64899974019230	100.0	
6	0.11666666666666700	98.64899974019230	100.0	
7	0.1333333333333333	98.64899974019230	100.0	
8	0.15	98.64899974019230	100.0	
9	0.1666666666666700	98.64899974019230	100.0	
10	0.1833333333333333	98.64899974019230	100.0	
11	0.2	98.64899974019230	100.0	
12	0.21666666666666700	98.64899974019230	100.0	
13	0.2333333333333333	98.64899974019230	100.0	
14	0.25	98.64899974019230	100.0	
15	0.2666666666666700	98.64899974019230	100.0	
16	0.283333333333333	98.64899974019230	100.0	
17	0.3	98.64899974019230	100.0	
18	0.31666666666666700	98.64899974019230	100.0	
19	0.333333333333333	98.64899974019230	100.0	

20	0.35	98.64899974019230	100.0	
21	0.3666666666666700	98.64899974019230	100.0	
22	0.38333333333333300	98.64899974019230	100.0	
23	0.4	98.64899974019230	100.0	
24	0.4166666666666670	98.64899974019230	100.0	
25	0.43333333333333300	98.64899974019230	100.0	
26	0.45	98.64899974019230	100.0	
27	0.466666666666670	98.64899974019230	100.0	
28	0.48333333333333300	98.64899974019230	100.0	
29	0.5	98.64899974019230	100.0	
30	0.5166666666666670	98.64899974019230	100.0	
31	0.533333333333333	98.64899974019230	100.0	
32	0.55	98.64899974019230	100.0	
33	0.566666666666670	98.64899974019230	100.0	
34	0.583333333333333	98.64033948211660	100.0	
35	0.6	98.63167922404090	100.0	
36	0.616666666666670	98.65765999826800	100.0	
37	0.633333333333333	98.64899974019230	100.0	
38	0.65	98.6056984498138	100.0	
39	0.666666666666670	98.57105741751100	100.0	
40	0.683333333333333	98.53641638520830	100.0	
41	0.7	98.19000606218070	100.0	
42	0.7166666666666670	97.65307006148780	100.0	
43	0.733333333333333	97.50584567420110	100.0	
44	0.75	95.75647354291160	100.0	
45	0.7666666666666670	95.20221702606740	99.97661730319560	
46	0.783333333333333	94.7172425738287	99.98441153546380	
47	0.8	92.09318437689440	99.98441153546380	
48	0.8166666666666670	91.49562656967180	99.98441153546380	
49	0.833333333333333	91.01931237550880	99.97661730319560	
50	0.85	89.17467740538670	80.6469212782541	
51	0.866666666666670	84.43751623798390	77.20966484801250	
52	0.883333333333333	76.48739932449990	36.26656274356980	
53	0.9	54.8627349095003	6.96024941543258	
54	0.9166666666666670	27.08928726076040	0.4208885424785660	
55	0.933333333333333	13.87373343725640	0.0	
56	0.95	7.101411622066340	0.0	
57	0.966666666666670	1.5501861955486300	0.0	
58	0.983333333333333	0.7188014202823240	0.0	
59	1.0	0.0779423226812159	0.0	