

Grundlagen der automatischen Spracherkennung

Aufgabe 2 – Spektralanalyse und mel-skalierte Dreiecksfilterbank

15.11.2023

Wentao Yu

Hybride Spracherkennung

ISIS-Kursdatei

Im ISIS-Kurs ist das Übungsblatt Aufgabe2.pdf mit den genauen Aufgabenstellungen.

Außerdem ist dort die Datei uebung2.py.

Spektralanalyse

- 1. compute_absolute_spectrum(frames)
- 2. compute_features(audio_file, window_size=25e-3, hop_size=10e-3, feature_type='STFT', n_filters=24, fbank_fmin=0, fbank_fmax=8000, num_ceps=13):


```
def compute_absolute_spectrum(frames):
...
```

Diese Funktion berechnet das Betragsspektrum der gegebenen Frames.

. . .

Wenn feature_type=STFT ist, liefert diese Funktion die Short-Time Fourier Transform (STFT) für normalisierte Audio-Frames als Features.

Nicht verwendete Eingabeparameter können vorerst ignoriert werden.

Erstellen der Hauptfunktion: uebung2.py

- 1. Verwenden Sie die compute_features() Funktion, um die STFT für die Audiodatei 'TEST-MAN-AH-3O33951A.wav' zu berechnen.
- 2. Stellen Sie das Spektrum in Dezibel (dB) dar, wobei Sie die Formel 20 * log10(.) verwenden.

Ein Beispiel wie ein Ergebnis aussehen könnte, und mehr Hinweise zur Implementierung, finden Sie im Übungsblatt Aufgabe2.pdf im ISIS-Kurs.

Mel-Skalierte Dreiecksfilterbank

- 1. hz_to_mel(x)
- 2. $mel_to_hz(x)$
- 3. get_mel_filters(sampling_rate, window_size_sec, n_filters, f_min=0, f_max=8000)
- 4. apply_mel_filters(abs_spectrum, filterbank)
- 5. computer_features()

Benötigte Funktionen in tools.py

. . .

Diese Funktion berechnet den Wert der Mel-Skala für den entsprechenden Frequenzwert x.

$$Mel (x) = 2595 \log_{10}(1 + x/700)$$

Benötigte Funktionen in tools.py

. . .

Die Umkehrfunktion von hz_to_mel(x) wandelt einen Frequenzwert x von der Mel-Skala in die lineare Frequenzskala in Hz um.

. . .

Die Rückgabe (die Dreiecksfilterbank) sollte in Form einer Matrix erfolgen.

- 1. sampling_rate: die Abtastfrequenz in Hz
- 2. window_size_sec: die Fensterbreite in Sekunden
- 3. n_filters: die Anzahl der Dreiecksfilter
- 4. f_min und f_max: minimale bzw. maximale Frequenz in Hz

. . .

n_filters=6 Filtern von $H_1[k]$ bis $H_6[k]$ n_filters + 2 = 8 Frequenzstützstellen von $f_{Hz}[0]$ bis $f_{Hz}[7]$ (in Hz) entsprechende 8 DFT-Indizes f[0] bis f[7]

M + 2 = 8 Frequenzstützstellen von $f_{Hz}[0]$ bis $f_{Hz}[7]$ sollen:

1. im Mel-Frequenzbereich angenähert äquidistant sein.

M + 2 = 8 Frequenzstützstellen von $f_{Hz}[0]$ bis $f_{Hz}[7]$ sollen:

2. genau mit den Frequenzstützstellen im Fourierbereich übereinstimmen.

Fouriertrafo (Frequenzstützstellen)	DFT Indizes
$f_{Hz} = 0 \text{ Hz}$	f = 0
f_{Hz} = Fs/2 Hz	f = N/2
$f_{Hz} = 0 Fs/2 Hz$	f = 0, 1,, N/2

Tabelle 1: Auf den Folien der Vorlesung 3-4, Seite 26

i-te Frequenzstützstelle
$$f_{Hz}[i] = (f[i] \cdot \frac{Fs}{2} \cdot \frac{2}{N})$$
 Hz

3. mit f[0] = 0 und $f[M + 1] = \frac{N}{2}$, wobei N der FFT-Größe entspricht.

Die Gewichte der Dreiecksfilter sind bestimmt durch:

Für alle m = 1 bis M und k = 0 bis N/2:

$$H_m[k] = \begin{cases} 0 & \text{falls } k < f[m-1] \\ \frac{2(k-f[m-1])}{(f[m+1]-f[m-1])(f[m]-f[m-1])} & \text{falls } f[m-1] \le k < f[m] \\ \frac{2(f[m+1]-k)}{(f[m+1]-f[m-1])(f[m+1]-f[m])} & \text{falls } f[m] \le k \le f[m+1] \end{cases}$$

def apply_mel_filters(abs_spectrum, filterbank):
...

Wenden Sie die berechnete Dreiecksfilterbank $H_m[k]$ auf ein Betragsspektrum $S_{\text{LIN}}[k,\tau]$ an

$$S_{\text{MEL}}[m,\tau] = \sum_{k=0}^{K} H_m[k] S_{\text{LIN}}[k,\tau]$$

- Erweitern Sie die compute_features() Funktion für den Fall, dass FBANK als feature_type angegeben wird.
- n_filters, fbank_fmin und fbank_fmax können Sie für die FBANK feature type benutzen
- Nicht verwendete Eingabeparameter (num_ceps) können weiter ignoriert werden.

Erweitern der Hauptfunktion: uebung2.py

- 1. Plotten Sie die berechnete Dreiecksfilterbank.
- 2. Plotten Sie das Mel-Spektrum der Audiodatei 'TEST-MAN-AH-3O33951A.wav'.

Ein Beispiel wie ein Ergebnis aussehen könnte, und mehr Hinweise zur Implementierung, finden Sie im Übungsblatt Aufgabe2.pdf im ISIS-Kurs.

Melden Sie sich gerne bei Fragen