

POLLUTION DRIFT PREDICTOR

Al-Based Forecasting of Airborne Pollution Using Environmental Data

Presented by: Rishit Ghosh

Learning Objectives

- Understand how environmental factors influence pollution drift.
- Apply machine learning models to predict Suspended Particulate Matter (SPM) levels.
- Convert directional data (wind angles) into model-friendly formats.
- Visualize pollutant contributions and sensitivity using charts and graphs.
- Deploy a real-time prediction interface using Streamlit for user interaction.
- Build a modular, reviewer-friendly workflow for environmental forecasting.

Click here to access the Source: GITHUB LINK

Tools and Technology used

• Language: Python 3.11

Used for scripting the entire ML pipeline, from data preprocessing to model deployment.

Chosen for its readability, extensive libraries, and community support.

Libraries:

- Pandas & NumPy: For efficient data manipulation, cleaning, and numerical operations.
- o Scikit-learn: Core ML library used for training regression models and evaluating performance.
- Matplotlib & Seaborn: For generating static visualizations like scatter plots and bar charts to interpret pollution drift patterns.
- Interface: Streamlit

Lightweight web framework used to build an interactive dashboard for real-time pollution prediction. Allows users to input SO₂ and NO₂ values and view categorized risk levels.

• Optional: *Plotly*

Considered for dynamic, interactive visualizations to enhance user experience—especially useful for zoomable drift maps or layered pollution overlays.

Methodology

Data Collection:

Pollution readings were sourced from structured CSV files containing environmental parameters like SO₂, NO₂, wind speed, and humidity.

These datasets form the foundation for training and validating the prediction model.

• Preprocessing:

Wind direction was converted into numeric angles, and missing values were handled using imputation techniques. This step ensures the data is clean, consistent, and suitable for regression analysis.

Model Training:

- Linear Regression was used as a baseline model to understand linear relationships between environmental features and SPM levels.
- o Random Forest Regressor was implemented to capture non-linear patterns and improve prediction accuracy through ensemble learning. Both models were evaluated to benchmark performance and generalization.

Deployment:

A *Streamlit* web app was built to allow users to input pollutant values and receive real-time predictions. The interface offers categorized risk levels and visual outputs for user-friendly interpretation.

Problem Statement:

- Construction and urban zones face challenges in tracking particulate pollution drift.
- Pollution spread is influenced by dynamic environmental factors like wind speed, direction, and humidity.
- Manual monitoring is inefficient and lacks predictive capability.
- Delayed or inaccurate pollution tracking can lead to health risks, regulatory violations, and poor urban planning.
- There is a growing need for data-driven tools that can forecast pollution drift and support proactive decisionmaking.

Solution:

- Developed a predictive model using environmental parameters (SO₂, NO₂, wind speed, humidity, wind direction) to estimate particulate pollution drift.
- Implemented both Linear Regression and Random Forest Regressor to benchmark performance and improve accuracy.
- Converted wind direction into numeric angles to make it machine-readable and enhance model learning.
- Built a Streamlit dashboard for real-time predictions, allowing users to input pollutant levels and receive
 categorized risk outputs.
- Visualized pollution drift using scatter plots and bar charts for intuitive understanding.

Screenshot of Output:

Real-time prediction interface built using Streamlit

OUTPUT: *MODERATE*

Expected Pollutant Contribution (Indicative)

Based on historical modeling and feature importance, the approximate contribution of each pollutant to SPM prediction is:

- SO₂: ~20%
- NO₂: ~35%
- RSPM: ~45%

SPM Sensitivity to NO₂ (SO₂=5, RSPM=50)

Top 10 Most Influential Features

	Importance
rspm	0.6658
year	0.0486
no2	0.037
502	0.0289
state_Uttar Pradesh	0.0255
state_Rajasthan	0.0147
month	0.0139
location_Delhi	0.00
state_Delhi	0.0085
location_Meerut	0.0084

Built by Rishit Ghosh | Internship Project | SkillFuture AIML Track

 $_{\perp}$ SPM levels can spike due to complex interactions beyond SO₂ and NO₂ alone. This model reflects historical correlations observed in urban pollution data.

Screenshot of Output:

Real-time prediction interface built using Streamlit

OUTPUT: HAZARDOUS

Expected Pollutant Contribution (Indicative)

Based on historical modeling and feature importance, the approximate contribution of each pollutant to SPM prediction is:

- SO₂: ~20%
- NO₂: ~35%

Deploy :

RSPM: ~45%

SPM Sensitivity to NO₂ (SO₂=5, RSPM=50)

Top 10 Most Influential Features

	Importance	
rspm		0.6658
year		0.0486
no2		0.037
so2		0.0289
state_Uttar Pradesh		0.0255
state_Rajasthan		0.0147
month		0.0139
location_Delhi		0.009
state_Delhi		0.0085
location_Meerut		0.0084

Built by Rishit Ghosh | Internship Project | SkillFuture AIML Track

 $_{\perp}$ SPM levels can spike due to complex interactions beyond SO₂ and NO₂ alone. This model reflects historical correlations observed in urban pollution data.

Conclusion:

- Successfully built a modular, reviewer-friendly pollution drift predictor.
- Demonstrated the power of AI in environmental forecasting.
- Ready for real-world deployment and further enhancement.
- Achieved consistent prediction accuracy through iterative model tuning and feature engineering.
- Established a scalable framework that can be extended to other pollutants and geographic regions.