

#

PRACTICAL SKETCHING-BASED RANDOMIZED Tensor Ring Decomposition¹

YAJIE YU

CHONGQING UNIVERSITY, CHONGQING, P.R. CHINA

SEPTEMBER 25, 2022

¹A joint work with Hanyu Li E-mail: zqyu@cqu.equ.cn

Presentation Outline

- 1 Introduction
 - Tensor Decompositions
 - Algorithms for TR Decomposition
 - Sketching Techniques
- 2 TR-SRFT-ALS
- 3 TR-TS-ALS
- 4 Numerical Results
- 5 Conclusions

TENSOR

Figure: Graphical representation of multiway array (tensor) data.

TENSOR

Figure: A 3rd-order tensor with entries, slices and fibers.

CP & Tucker Decompositions

- CANDECOMP/PARAFAC (CP) decomposition.
 - The CP tensor decomposition aims to approximate an *N*th-order tensor as a sum of *R* rank-one tensors;
 - $\boldsymbol{\mathcal{X}} \approx \tilde{\boldsymbol{\mathcal{X}}} = \sum_{r=1}^{R} \boldsymbol{a}_r^{(1)} \circ \boldsymbol{a}_r^{(2)} \circ \cdots \circ \boldsymbol{a}_r^{(N)} = [[\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \cdots, \mathbf{A}^{(N)}]];$
 - ullet $\mathcal{O}\left(NIR\right)$ parameters: is linear to the tensor order N.
- Tucker decomposition
 - The Tucker decomposition decomposes a tensor into a core tensor multiplied (or transformed) by a matrix along each mode;
 - $\qquad \boldsymbol{\mathcal{X}} \approx \tilde{\boldsymbol{\mathcal{X}}} = \boldsymbol{\mathcal{G}} \times_1 \mathbf{A}^{(1)} \cdots \times_N \mathbf{A}^{(N)} = [[\boldsymbol{\mathcal{G}}; \mathbf{A}^{(1)}, \cdots, \mathbf{A}^{(N)}]];$
 - $\mathcal{O}\left(NIR + R^N\right)$ parameters: is exponential to the tensor order N.
- Some limitations
 - CP Its optimization problem is difficult; it is difficult to find the optimal solution and CP-rank (NP-hard);

Tucker Its number of parameters is exponential to tensor order. (Curse of Dimensionality)

Tensor Train (TT) Decomposition: Illustration

Figure: TT/MPS decomposition of an Nth-order tensor \mathcal{X} .

Slice representation:

$$oldsymbol{\mathcal{X}}(i_1,\cdots,i_N) = \mathbf{G}_1(i_1)\mathbf{G}_1(i_2)\cdots\mathbf{G}_N(i_N)$$

Yajie Yu CQU RandTR 6 / 60

TENSOR TRAIN (TT) DECOMPOSITION: LIMITATIONS

- Limitations of TT decomposition:
 - The constraint on TT-ranks, i.e., $R_1 = R_{N+1} = 1$, leads to the limited representation ability and flexibility;
 - TT-ranks always have a fixed pattern, i.e., smaller for the border cores and larger for the middle cores, which might not be the optimum for specific data tensor;
 - The multilinear products of cores in TT decomposition must follow a strict order such that the optimized TT cores highly depend on the permutation of tensor dimensions. Hence, finding the optimal permutation remains a challenging problem.

Yajie Yu CQU RandTR 7 / 60

Tensor Ring (TR) Decomposition: Illustration

Figure: TR decomposition of an Nth-order tensor \mathcal{X} .

Tensor Ring (TR) decomposition: Different Representations

Scalar representation:

$$\mathcal{X}(i_1, \dots, i_N) = \sum_{r_1, \dots, r_N=1}^{R_1, \dots, R_N} \prod_{n=1}^N \mathcal{G}_n(r_n, i_n, r_{n+1}); \ R_1 = R_{N+1}$$

Slice representation:

$$\mathcal{X}(i_1,\cdots,i_N) = \operatorname{Trace}\{\mathbf{G}_1(i_1)\mathbf{G}_1(i_2)\cdots\mathbf{G}_N(i_N)\};$$

Tensor representation:

$$\mathcal{X} = \operatorname{Trace} \left(\mathbf{G}_1 \times^1 \mathbf{G}_2 \times^1 \cdots \times^1 \mathbf{G}_N \right);$$

ullet $\mathcal{O}\left(NIR^2\right)$ parameters: is linear to the tensor order N.

TENSOR RING (TR) DECOMPOSITION: ADVANTAGES

- Advantages of TR decomposition:
 - TR model has a more generalized and powerful representation ability than TT model, due to relaxation of the strict condition $R_1 = R_{N+1} = 1$ in TT decomposition. In fact, TT decomposition can be viewed as a special case of TR model; (Overcome the first limitation of TT decomposition.)
 - TR model is more flexible than TT model because TR-ranks can be equally distributed in the cores; (Overcome the second limitation of TT decomposition.)
 - The multilinear products of cores in TR decomposition don't need a strict order, i.e., the circular dimensional permutation invariance. (Overcome the third limitation of TT decomposition.)
 - TR-ranks are usually smaller than TT-ranks because TR model can be represented as a linear combination of TT decompositions whose cores are partially shared.

Yajie Yu CQU RandTR 10 / 60

CLASSICAL ALGORITHMS FOR TR DECOMPOSITION

- SVD-based algorithm (TR-SVD).
- ALS-based algorithm (TR-ALS).

Algorithm 1 TR-ALS²³

```
1: function \{\boldsymbol{\mathcal{G}}_n\}_{n=1}^N = TR-ALS(\boldsymbol{\mathcal{X}}, R_1, \cdots, R_N)
           Initialize cores \mathcal{G}_1, \cdots, \mathcal{G}_N
           repeat
                 for n=1,\cdots,N do
                       Compute G_{[2]}^{\neq n} from cores
5:
                       Update \mathcal{G}_n = \arg\min_{\mathcal{Z}} \|\mathbf{G}_{[2]}^{\neq n} \mathbf{Z}_{(2)}^{\mathsf{T}} - \mathbf{X}_{[n]}^{\mathsf{T}}\|_F
6:
                 end for
           until termination criteria met
9: end function
```


 $\triangleright \mathcal{X}$ is the input tensor $\triangleright R_1, \cdots, R_N$ are the TR-ranks

²Qibin Zhao et al. "Tensor Ring Decomposition". In: arXiv preprint arXiv:1606.05535 (2016).

³More details: (1) ALS with adaptive ranks and (2) block-wise ALS

RANDOMIZED ALGORITHMS FOR TR DECOMPOSITION

Algorithm 2 rTR-ALS⁴⁵

```
1: function \{\boldsymbol{\mathcal{G}}_n\}_{n=1}^N = TR-RALS(\boldsymbol{\mathcal{X}},R_1,\cdots,R_N,K_1,\cdots,K_N)
           for n=1,\cdots,N do
                Create matrix \mathbf{M} \in \mathbb{R}_{i \neq n} I_i \times K_n following the Gaussian distribution.
 3:
                Compute \mathbf{Y} = \mathbf{X}_{(n)}\mathbf{M}
                                                                                                                                              ▷ random projection
                [\mathbf{Q}_n, ] = \mathsf{QR}(\mathbf{Y})
 5:
                                                                                                                                \mathcal{P} \leftarrow \mathcal{X} \times_n \mathbf{Q}_n^\intercal
 6:
           end for
 8:
           Obtain TR factors [\mathbf{Z}_n] of \mathbf{P} by TR-ALS or TR-SVD
 9:
           for n=1,\cdots,N do
                \mathcal{G}_n = \mathcal{Z}_n \times_2 \mathbf{Q}_n
10:
           end for
11:
12: end function
```

⁴Longhao Yuan et al. "Randomized Tensor Ring Decomposition and Its Application to Large-Scale Data Reconstruction". In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton Conference Centre Brighton, U.K.: IEEE, 2019, pp. 2127–2131.

⁵Salman Ahmadi-Asl et al. "Randomized Algorithms for Fast Computation of Low Rank Tensor Ring Model". In: Mach. Learn.: Sci. Technol. 2.1 (2020), p. 011001. DOI: 10.1088/2632-2153/abad87.

RANDOMIZED ALGORITHMS FOR TR DECOMPOSITION

Algorithm 3 TR-ALS-Sampled⁶

```
1: function \{\boldsymbol{\mathcal{G}}_n\}_{n=1}^N = TR-ALS-SAMPLED(\boldsymbol{\mathcal{X}},R_1,\cdots,R_N,m)
                                                                                                                                                                                                 \triangleright m is the sampling size
 2:
             Initialize cores \mathcal{G}_2, \cdots, \mathcal{G}_N
             Using the leverage scores to compute distributions p^{(2)}, \dots, p^{(N)} without explicitly forming the subchain unfold matrix.
             repeat
 5:
                    for n=1,\cdots,N do
 6:
                          Set sample size J
                          Draw sampling matrix \mathbf{S} \sim \mathcal{D}(J, \mathbf{q}^{\neq n})
                          Compute \hat{\boldsymbol{\mathcal{G}}}^{\neq n} = \operatorname{SST}(\operatorname{idxs}, \boldsymbol{\mathcal{G}}_{n+1}, \boldsymbol{\mathcal{G}}_N, \boldsymbol{\mathcal{G}}_1, \boldsymbol{\mathcal{G}}_{n-1}) and \hat{\mathbf{G}}_{[2]}^{\neq n}
                          Compute \hat{\mathbf{X}}_{[n]}^{\intercal} = \mathbf{S}\mathbf{X}_{[n]}^{\intercal}
 9:
                          Update \mathcal{G}_n = \arg\min_{\mathcal{Z}} \|\hat{\mathbf{G}}_{[2]}^{\neq n} \mathbf{Z}_{(2)}^{\intercal} - \hat{\mathbf{X}}_{[n]}^{\intercal}\|_F
10:
                           Update n-th distribution p^{(n)}
11:
12:
                    end for
13:
              until termination criteria met
14: end function
```

⁶ Osman Asif Malik and Stephen Becker. "A Sampling-Based Method for Tensor Ring Decomposition". In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. Virtual Event: PMLR, 2021, pp. 7400–7411.

Efficient Sampling Strategy Summarized From [MB21a]

Algorithm 4 Sampled Subchain Tensor (SST)

```
1: function \mathcal{G}_{S}^{\neq n} = SST(idxs, \mathcal{G}_{n+1}, \cdots, \mathcal{G}_{N}, \mathcal{G}_{1}, \cdots, \mathcal{G}_{n-1})
                                                                                                                                                                         \triangleright \mathbf{G}_n \in \mathbb{R}^{R_n \times I_n \times R_{n+1}}, n \in [N]
                                                   \triangleright idxs \in \mathbb{R}^{m \times (N-1)} is from the set of tuples \{i_{n+1}^{(j)}, \cdots, i_N^{(j)}, i_1^{(j)}, \cdots, i_{n-1}^{(j)}\} for j \in [m]
```

 \triangleright idxs can be retrieved from the sampling matrix $\mathbf{S} \in \mathbb{R}^{m \times \prod_{k \neq n} I_k}$ or the specific sampling with given probabilities

 \triangleright see Definition 3.2 for \mathbb{R}_2

- Let $\mathcal{G}_{\mathfrak{S}}^{\neq n}$ be a tensor of size $R_{n+1} \times m \times R_n$, where every lateral slice is an $R_{n+1} \times R_n$ identity matrix
- for $k = n + 1, \dots, N, 1, \dots, n 1$ do 3:
- 4: $\mathcal{G}_{(k)S} \leftarrow \mathcal{G}_k(:, idxs(:, k), :)$
- $\mathcal{G}_{S}^{\neq n} \leftarrow \mathcal{G}_{S}^{\neq n} \otimes_{2} \mathcal{G}_{(k)S}$ 5:
- end for 6:
- return $\mathcal{G}_{S}^{\neq n}$
- 8: end function

Osman Asif Malik and Stephen Becker. "A Sampling-Based Method for Tensor Ring Decomposition". In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. Virtual Event: PMLR, 2021, pp. 7400-7411. 《 □ ト 《 圖 ト 《 園 ト 《 園 ト ₹ 990

Some Sketching Techniques

 $\begin{cases} Sampling & Uniform \\ Importance & Based on norm \\ Based on leverage scores \end{cases}$ $\begin{cases} Randomized \ Algorithms & Gaussian \\ Kronecker \ Gaussian \\ Khatri-Rao \ Gaussian \\ Kronecker \ FJLT \\ Khatri-Rao \ FJLT \\ CountSketch & Higher-order \ CountSketch \end{cases}$

Sub-sampled Randomized Fourier Transform: SRFT

Definition 1.1 (SRFT)

The **SRFT** is constructed as a matrix of the form

$$\Phi = \mathbf{S}\mathcal{F}\mathbf{D},$$

where

- $\mathbf{S} \in \mathbb{R}^{m \times N}$: m random rows of the $N \times N$ identity matrix;
- $\mathcal{F} \in \mathbb{C}^{N \times N}$: (unitary) discrete Fourier transform of dimension N;
- $\mathbf{D} \in \mathbb{R}^{N \times N}$: diagonal matrix with diagonal entries drawn uniformly from $\{+1, -1\}$.

KRONECKER SRFT: KSRFT

Definition 1.2 (KSRFT [BBK18; JKW21]⁸⁹)

The KSRFT is defined as

$$\mathbf{\Phi} = \sqrt{\frac{\prod_{j=1}^{N} I_j}{m}} \mathbf{S} \left(\bigotimes_{j=1}^{N} (\mathbf{F}_j \mathbf{D}_j) \right),$$

where

- $\mathbf{S} \in \mathbb{R}^{m \times \prod_{j=1}^{N} I_j}$: m rows of the $\prod_{i=j}^{N} I_j \times \prod_{j=1}^{N} I_j$ identity matrix drawn uniformly at random with replacement from the identity matrix;
- $\mathbf{F}_j \in \mathbb{C}^{I_j \times I_j}$: (unitary) discrete Fourier transform of dimension I_j (also called DFT/FFT matrix);
- $\mathbf{D}_j \in \mathbb{R}^{I_j \times I_j}$: a diagonal matrix with independent random diagonal entries drawn uniformly from $\{+1, -1\}$ (also called random sign-flip operator).

⁸Casey Battaglino, Grey Ballard, and Tamara G. Kolda. "A Practical Randomized CP Tensor Decomposition". In: SIAM J. Matrix Anal. Appl. 39.2 (2018), pp. 876–901. DOI: 10.1137/17M1112303.

⁹Ruhui Jin, Tamara G. Kolda, and Rachel Ward. "Faster Johnson-Lindenstrauss Transforms via Kronecker Products". In: Inf. Inference 10.4 (2021), pp. 1533–1562. DOI: 10.1093/imaiai/iaaa028.

COUNTSKETCH

Definition 1.3 (CountSketch¹⁰)

The **CountSketch** is constructed as a matrix of the form

$$\mathbf{\Phi} = \mathbf{\Omega}\mathbf{D},$$

where

- $\Omega \in \mathbb{R}^{m \times N}$: a matrix with $\Omega(j,i) = 1$ if j = h(i), $\forall i \in [N]$ and $\Omega(j,i) = 0$ otherwise, where $h : [N] \to [m]$ is a hash map such that $\forall i \in [N]$ and $\forall j \in [m]$, $\Pr[h(i) = j] = 1/m$;
- $\mathbf{D} \in \mathbb{R}^{N \times N}$: diagonal matrix with diagonal entries drawn uniformly from $\{+1,-1\}$.

¹⁰ Kenneth L. Clarkson and David P. Woodruff. "Low-Rank Approximation and Regression in Input Sparsity Time". In: J. ACM 63.6(2017), 51:1–45. 001 10. 145/3019131. Q.C.

TensorSketch

Definition 1.4 (TensorSketch)

The TensorSketch is defined as $T = \Omega D$, where

- $\bullet \quad \Omega \in \mathbb{R}^{m \times \prod_{j=1}^N I_j} \text{: a matrix with } \Omega(j,i) = 1 \text{ if } j = H(i) \text{ for all } i \in \left[\prod_{j=1}^N I_j\right] \text{ and } \Omega(j,i) = 0 \text{ otherwise;}$
- $\qquad \mathbf{D} \in \mathbb{R}^{\prod_{j=1}^{N} I_j \times \prod_{i=j}^{N} I_j} \colon \text{a diagonal matrix with } \mathbf{D}(i,i) = S(i).$

In the definitions of Ω and D,

$$H : [I_1] \times [I_2] \times \dots \times [I_N] \to [m] : (i_1, \dots, i_N) \mapsto \left(\sum_{n=1}^N (H_n(i_n) - 1) \mod m\right) + 1,$$

$$S : [I_1] \times [I_2] \times \cdots \times [I_N] \to \{-1, 1\} : (i_1, \dots, i_N) \mapsto \prod_{n=1} S_n(i_n),$$

where each H_n for $n \in [N]$ is a 3-wise independent hash map that maps $[I_n] \to [m]$, and each S_n is a 4-wise independent hash map that maps $[I_n] \to \{-1,1\}$. Recall that a hash map is k-wise independent if all the designated k keys are independent random variables.

Above we use the notation $H(i)=H(\overline{i_1i_2\cdots i_N})$ and $S(i)=S(\overline{i_1i_2\cdots i_N})$, where $\overline{i_1i_2\cdots i_N}$ denotes the **big-endian**

Presentation Outline

- 1 Introduction
- 2 TR-SRFT-ALS
 - Motivation
 - New Findings
 - Algorithm and Theoretical Analysis
- 3 TR-TS-ALS
- 4 Numerical Results
- 5 Conclusions

MOTIVATION: CP-ALS

Classical CP: CP-ALS

$$\underset{\mathbf{A}_n}{\operatorname{arg\,min}} \|\mathbf{Z}^{(n)}\mathbf{A}_n^{\mathsf{T}} - \mathbf{X}_{(n)}^{\mathsf{T}}\|_F,$$

where $\mathbf{Z}^{(n)} = \mathbf{A}_N \odot \cdots \odot \mathbf{A}_{n+1} \odot \mathbf{A}_{n+1} \odot \cdots \odot \mathbf{A}_1$.

■ Randomized CP¹¹: CPRAND

$$\underset{\mathbf{A}_n}{\operatorname{arg\,min}} \| \mathbf{S} \left(\bigotimes_{j=N, j \neq n}^{1} \mathcal{F}_j \mathbf{D}_j \right) \mathbf{Z}^{(n)} \mathbf{A}_n^{\mathsf{T}} - \mathbf{S} \left(\bigotimes_{j=N, j \neq n}^{1} \mathcal{F}_j \mathbf{D}_j \right) \mathbf{X}_{(n)}^{\mathsf{T}} \|_F,$$

where
$$\hat{\mathbf{Z}}^{(n)} = \left(\bigotimes_{j=N, j \neq n}^{1} \mathcal{F}_{j} \mathbf{D}_{j}\right) \mathbf{Z}^{(n)} = \bigcirc_{j=N, j \neq n}^{1} (\mathcal{F}_{j} \mathbf{D}_{j} \mathbf{A}_{j}).$$

Yajie Yu CQU RandTR 21 / 60°

¹¹ Casey Battaglino, Grey Ballard, and Tamara G. Kolda. "A Practical Randomized CP Tensor Decomposition". In: SIAM J. Matrix Anal. Appl. 39.2 (2018), pp. 876–901. DOI: 10.1137/17M1112303.

IDEAS

Original problem: TR-ALS

$$\underset{\mathbf{G}_{n(2)}}{\arg\min} \|\mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\intercal} - \mathbf{X}_{[n]}^{\intercal} \|_{F}.$$
 (2.1)

Reduced problem: Sketched TR-ALS

$$\underset{\mathbf{G}_{n(2)}}{\operatorname{arg\,min}} \left\| \mathcal{S} \mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\intercal} - \mathcal{S} \mathbf{X}_{[n]}^{\intercal} \right\|_{F}.$$

- Ideas
 - Avoid forming S explicitly.
 - Avoid forming $G_{[2]}^{\neq n}$ explicitly.
 - Avoid the classical matrix multiplication of $\mathcal S$ and $\mathbf G^{\neq n}_{[2]}$ directly.

TR-SRFT-ALS

New Findings

Introduction

- $\blacksquare \text{ Mixing the rows of } \mathbf{G}_{[2]}^{\neq n} \text{ is equivalent to mixing the lateral slides of } \boldsymbol{\mathcal{G}}^{\neq n}, \text{ i.e., } \mathcal{S} \mathbf{G}_{[2]}^{\neq n} = (\boldsymbol{\mathcal{G}}^{\neq n} \times_2 \mathcal{S})_{[2]}.$
- $\mathbf{G}^{\neq n}$ may be written as a Kronecker-like or KR-like product of TR-cores.

Figure: Illustration of the process for obtaining $SG^{\neq n}$ via $G^{\neq n}$ $\stackrel{\circ}{\vee}_{0}S^{+}$

New Definition: Subchain Product

Definition 2.1

Let $\mathcal{A} \in \mathbb{R}^{I_1 \times J_1 \times K}$ and $\mathcal{B} \in \mathbb{R}^{K \times J_2 \times I_2}$ be two 3rd-order tensors, and $\mathbf{A}(j_1)$ and $\mathbf{B}(j_2)$ be the j_1 -th and j_2 -th lateral slices of \mathcal{A} and \mathcal{B} , respectively. The mode-2 **subchain product** of \mathcal{A} and \mathcal{B} is a tensor of size $I_1 \times J_1 J_2 \times I_2$ denoted by $\mathcal{A} \boxtimes_2 \mathcal{B}$ and defined as

$$(\mathcal{A} \boxtimes_2 \mathcal{B})(\overline{j_1j_2}) = \mathcal{A}(j_1)\mathcal{B}(j_2).$$

That is, with respect to the correspondence on indices, the lateral slices of $\mathcal{A} \boxtimes_2 \mathcal{B}$ are the classical matrix products of the lateral slices of \mathcal{A} and \mathcal{B} . The mode-1 and mode-3 subchain products can be defined similarly.

Therefore, $\mathcal{G}^{\neq n}$ can be rewritten as

$$\boldsymbol{\mathcal{G}}^{\neq n} = \boldsymbol{\mathcal{G}}_{n+1} \boxtimes_2 \cdots \boxtimes_2 \boldsymbol{\mathcal{G}}_N \boxtimes_2 \boldsymbol{\mathcal{G}}_1 \boxtimes_2 \cdots \boxtimes_2 \boldsymbol{\mathcal{G}}_{n-1}. \tag{2.2}$$

বিচাৰ বিচাৰ কৰিছে বিচাৰ বিচাৰ

New Proposition

$$egin{aligned} \mathcal{S}\mathbf{G}_{[2]}^{
eq n} &= (\mathcal{G}^{
eq n} imes_2 \mathcal{S})_{[2]} \ &= ((\mathcal{G}_{n+1} oxtimes_2 \cdots oxtimes_2 \mathcal{G}_N oxtimes_2 \mathcal{G}_1 oxtimes_2 \cdots oxtimes_2 \mathcal{G}_{n-1}) imes_2 \mathcal{S})_{[2]} \end{aligned}$$

Proposition 2.2

Let $\mathcal{A} \in \mathbb{R}^{I_1 \times J_1 \times K}$ and $\mathcal{B} \in \mathbb{R}^{K \times J_2 \times I_2}$ be two 3rd-order tensors, and $\mathbf{A} \in \mathbb{R}^{R_1 \times J_1}$ and $\mathbf{B} \in \mathbb{R}^{R_2 \times J_2}$ be two matrices. Then

$$(\mathcal{A} \times_2 \mathbf{A}) \boxtimes_2 (\mathcal{B} \times_2 \mathbf{B}) = (\mathcal{A} \boxtimes_2 \mathcal{B}) \times_2 (\mathbf{B} \otimes \mathbf{A}).$$

Idea on Algorithm: Select a Suitable " \mathcal{S} "

Let S = SFD, where

$$\mathcal{F} = \left(\bigotimes_{j=n-1,\cdots,1,N,\cdots,n+1} \mathcal{F}_j \right), \ \mathbf{D} = \left(\bigotimes_{j=n-1,\cdots,1,N,\cdots,n+1} \mathbf{D}_j \right).$$

That is,

$$\mathcal{S} = \mathbf{S} \left(\bigotimes_{j=n-1,\cdots,1,N,\cdots,n+1} \mathcal{F}_j \mathbf{D}_j \right).$$

Thus,

$$\underset{\mathbf{G}_{n(2)}}{\operatorname{arg\,min}} \left\| \mathbf{S} \mathcal{F} \mathbf{D} \mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\intercal} - \mathbf{S} \mathcal{F} \mathbf{D} \mathbf{X}_{[n]}^{\intercal} \right\|_{F}, \tag{2.3}$$

10110111211212121212121

The First Term in (2.3): $\mathbf{S}\mathcal{F}\mathbf{DG}^{\neq n}_{[2]}$

■ Mixing step. Using Proposition 2.2 and (2.2)

$$\begin{split} \hat{\boldsymbol{\mathcal{G}}}^{\neq n} &= \boldsymbol{\mathcal{G}}^{\neq n} \times_{2} \mathcal{F} \mathbf{D} \\ &= (\boldsymbol{\mathcal{G}}_{n+1} \times_{2} (\mathcal{F}_{n+1} \mathbf{D}_{n+1})) \boxtimes_{2} \\ &\cdots \boxtimes_{2} (\boldsymbol{\mathcal{G}}_{N} \times_{2} (\mathcal{F}_{N} \mathbf{D}_{N})) \boxtimes_{2} (\boldsymbol{\mathcal{G}}_{1} \times_{2} (\mathcal{F}_{1} \mathbf{D}_{1})) \boxtimes_{2} \\ &\cdots \boxtimes_{2} (\boldsymbol{\mathcal{G}}_{n-1} \times_{2} (\mathcal{F}_{n-1} \mathbf{D}_{n-1})). \end{split}$$

i.e.
$$\mathcal{F}\mathbf{D}\mathbf{G}_{[2]}^{\neq n} = \hat{\mathbf{G}}_{[2]}^{\neq n}$$
.

■ Sampling step. According to the sampling method in Algorithm 4 (SST)¹², we have

$$\hat{\boldsymbol{\mathcal{G}}}^{\neq n} \times_{2} \mathbf{S} = (\boldsymbol{\mathcal{G}}_{n+1} \times_{2} (\mathbf{S}_{n+1} \mathcal{F}_{n+1} \mathbf{D}_{n+1})) \mathbb{E}_{2}$$

$$\cdots \mathbb{E}_{2} (\boldsymbol{\mathcal{G}}_{N} \times_{2} (\mathbf{S}_{N} \mathcal{F}_{N} \mathbf{D}_{N})) \mathbb{E}_{2} (\boldsymbol{\mathcal{G}}_{1} \times_{2} (\mathbf{S}_{1} \mathcal{F}_{1} \mathbf{D}_{1})) \mathbb{E}_{2}$$

$$\cdots \mathbb{E}_{2} (\boldsymbol{\mathcal{G}}_{n-1} \times_{2} (\mathbf{S}_{n-1} \mathcal{F}_{n-1} \mathbf{D}_{n-1})),$$

¹² Osman Asif Malik and Stephen Becker. "A Sampling-Based Method for Tensor Ring Decomposition". In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. Virtual Event: PMLR, 2021, pp. 7400–7411.

The Second Term in (2.3): $\mathbf{S}\mathcal{F}\mathbf{D}\mathbf{X}_{[n]}^{\intercal}$

- Let $\hat{\mathcal{X}} = \mathcal{X} \times_1 \mathcal{F}_1 \mathbf{D}_1 \times_2 \mathcal{F}_2 \mathbf{D}_2 \cdots \times_N \mathcal{F}_N \mathbf{D}_N$.
- The second term is equivalent to

$$\mathbf{S}\hat{\mathbf{X}}_{[n]}^{\intercal}(\mathbf{D}_{n}\mathcal{F}_{n}^{*})^{\intercal}.$$

Rewrite (2.3) as

$$\underset{\mathbf{G}_{n(2)}}{\operatorname{arg\,min}} \| \left(\mathbf{S} \hat{\mathbf{G}}_{[2]}^{\neq n} \right) \mathbf{G}_{n(2)}^{\intercal} - \left(\mathbf{S} \hat{\mathbf{X}}_{[n]}^{\intercal} \right) (\mathbf{D}_{n} \mathcal{F}_{n}^{*})^{\intercal} \|_{F}.$$

Proposed Algorithm: TR-KSRFT-ALS

Algorithm 5 TR-KSRFT-ALS (Proposal)

```
1: function \{\mathcal{G}_n\}_{n=1}^N = TR-KSRFT-ALS(\mathcal{X}, R_1, \cdots, R_N, m)
                                                                                                                                                                                                         \triangleright \mathcal{G}_n \in \mathbb{R}^{R_n \times I_n \times R_{n+1}}, n \in [N]; \mathcal{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}
                                                                                                                                                                                                                                                                  \triangleright R_1, \cdots, R_N are the TR-ranks
                                                                                                                                                                                                                                                                       \triangleright m is the uniform sampling size
                  Initialize cores \boldsymbol{\mathcal{G}}_2, \cdots, \boldsymbol{\mathcal{G}}_N
                  Define random sign-flip operators \mathbf{D}_{j} and FFT matrices \mathbf{F}_{j}, for j \in [N]
  4:
5:
6:
7:
                  Mix cores: \hat{\mathbf{G}}_n \leftarrow \mathbf{G}_n \times_2 (\mathbf{F}_n \mathbf{D}_n), for n = 2, \dots, N
                  Mix tensor: \hat{\mathbf{X}} \leftarrow \mathbf{X} \times_1 (\mathbf{F}_1 \mathbf{D}_1) \times_2 (\mathbf{F}_2 \mathbf{D}_2) \cdots \times_N (\mathbf{F}_N \mathbf{D}_N)
                  repeat
                        for n=1,\cdots,N do
  8:
9:
                                Define sampling operator \mathbf{S} \in \mathbb{R}^{m 	imes \prod j 
eq n} \ ^{I_{j}}
                                Retrieve idxs from S
                                \hat{\mathbf{G}}_{S}^{\neq n} = \text{SST}(\text{idxs}, \hat{\mathbf{G}}_{n+1}, \cdots, \hat{\mathbf{G}}_{N}, \hat{\mathbf{G}}_{1}, \cdots, \hat{\mathbf{G}}_{n-1})
10:
11:
                                \hat{\mathbf{X}}_{S[n]}^{\intercal} \leftarrow \mathbf{S}\hat{\mathbf{X}}_{[n]}^{\intercal} \left(\mathbf{D}_{n}\mathbf{F}_{n}^{*}\right)^{\intercal}
                                Update m{\mathcal{G}}_n = \arg\min_{m{\mathcal{Z}}} \|\hat{\mathbf{G}}_{S[2]}^{
eq n} \mathbf{Z}_{(2)}^{\intercal} - \hat{\mathbf{X}}_{S[n]}^{\intercal} \|_F subject to m{\mathcal{G}}_n being real-valued
12:
13:
                                \hat{\boldsymbol{\mathcal{G}}}_n \leftarrow \boldsymbol{\mathcal{G}}_n \times_2 (\mathbf{F}_n \mathbf{D}_n)
14:
                         end for
15:
                  until termination criteria met
                  return \mathcal{G}_1, \cdots, \mathcal{G}_N
17: end function
```

《四》《圖》《意》《意》

FURTHER IMPROVEMENT: PREMIX

Recall that

$$\underset{\mathbf{G}_{n(2)}}{\arg\min} \| \left(\mathbf{S} \hat{\mathbf{G}}_{[2]}^{\neq n} \right) \mathbf{G}_{n(2)}^{\intercal} - \left(\mathbf{S} \hat{\mathbf{X}}_{[n]}^{\intercal} \right) (\mathbf{D}_{n} \mathcal{F}_{n}^{*})^{\intercal} \|_{F}.$$

Rewrite it as

$$\underset{\mathbf{G}_{n(2)}}{\arg\min} \| \left(\mathbf{S} \hat{\mathbf{G}}_{[2]}^{\neq n} \right) \mathbf{G}_{n(2)}^{\intercal} (\mathcal{F}_{n} \mathbf{D}_{n})^{\intercal} - \mathbf{S} \hat{\mathbf{X}}_{[n]}^{\intercal} \|_{F},$$

Let $\hat{\mathbf{G}}_{n(2)} = \mathcal{F}_n \mathbf{D}_n \mathbf{G}_{n(2)}$

$$\underset{\hat{\mathbf{G}}_{n(2)}}{\arg\min} \| \left(\mathbf{S} \hat{\mathbf{G}}_{[2]}^{\neq n} \right) \hat{\mathbf{G}}_{n(2)}^{\intercal} - \left(\mathbf{S} \hat{\mathbf{X}}_{[n]}^{\intercal} \right) \|_{F}.$$

Solve the problem above to get $\hat{\mathcal{G}}_n$ first and then recover the original cores \mathcal{G}_n .

ALGORITHM: TR-SRFT-ALS-PREMIX

end function

Algorithm 6 TR-KSRFT-ALS-Premix (Proposal)

```
1: function \{G_n\}_{n=1}^N = TR-KSRFT-ALS-PREMIX(X, R_1, \dots, R_N, m)
                   Define random sign-flip operators \mathbf{D}_{j} and FFT matrices \mathbf{F}_{j}, for j \in [N]
  3:
                   Mix tensor: \hat{\mathcal{X}} \leftarrow \mathcal{X} \times_1 (\mathbf{F}_1 \mathbf{D}_1) \times_2 (\mathbf{F}_2 \mathbf{D}_2) \cdots \times_N (\mathbf{F}_N \mathbf{D}_N)
  4:
5:
6:
7:
8:
9:
                   Initialize cores \hat{\boldsymbol{G}}_{2}, \dots, \hat{\boldsymbol{G}}_{N}
                   repeat
                         for n=1,\cdots,N do
                                 Define sampling operator \mathbf{S} \in \mathbb{R}^{m 	imes \prod_{j 
eq n} I_j}
                                Retrieve idxs from \mathbf{S} \hat{\boldsymbol{\mathcal{G}}}_S^{\neq n} = SST(idxs, \hat{\boldsymbol{\mathcal{G}}}_{n+1}, \cdots, \hat{\boldsymbol{\mathcal{G}}}_N, \hat{\boldsymbol{\mathcal{G}}}_1, \cdots, \hat{\boldsymbol{\mathcal{G}}}_{n-1})
10:
                                 \hat{\mathbf{X}}_{S[n]}^\intercal \leftarrow \mathbf{S}\hat{\mathbf{X}}_{[n]}^\intercal
                                 Update \hat{\boldsymbol{\mathcal{G}}}_n = \arg\min_{\boldsymbol{\mathcal{Z}}} \|\hat{\mathbf{G}}_{S[2]}^{\neq n} \mathbf{Z}_{(2)}^\intercal - \hat{\mathbf{X}}_{S[n]}^\intercal \|_F
11:
12:
                          end for
13:
                   until termination criteria met
14:
                   for n=1,\cdots,N do
 15:
                          Unmix cores: \mathbf{\mathcal{G}}_n \leftarrow \hat{\mathbf{\mathcal{G}}}_n \times_2 (\mathbf{D}_n \mathbf{F}_n^*)
 16:
                   end for
                   return \mathcal{G}_1, \dots, \mathcal{G}_N
```

```
\triangleright \mathcal{G}_n \in \mathbb{C}^{R_n \times I_n \times R_{n+1}}, n \in [N]; \mathcal{X} \in \mathbb{C}^{I_1 \times \cdots \times I_N}
                                                    \triangleright R_1, \cdots, R_N are the TR-ranks
                                                         \triangleright m is the uniform sampling size
```

《四》《圖》《意》《意》

Some Remarks

- Like the algorithms for CP decomposition, i.e., CPRAND¹³, but with a new tensor product and property;
- Compared with TR-ALS-Sampled¹⁴, our method may work better for some special data, such as for the data with core tensors may include outliers;
- **F**_j \mathbf{D}_j can be any suitable randomized matrices: CountSketch, rTR-ALS¹⁵, unified form.

¹³Casey Battaglino, Grey Ballard, and Tamara G. Kolda. "A Practical Randomized CP Tensor Decomposition". In: SIAM J. Matrix Anal. Appl. 39.2 (2018), pp. 876–901. DOI: 10.1137/17M1112303.

¹⁴Osman Asif Malik and Stephen Becker. "A Sampling-Based Method for Tensor Ring Decomposition". In: *Proceedings of the 38th International Conference on Machine Learning*. Vol. 139. Virtual Event: PMLR, 2021, pp. 7400–7411.

¹⁵ Longhao Yuan et al. "Randomized Tensor Ring Decomposition and Its Application to Large-Scale Data Reconstruction". In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton Conference Centre Brighton, U.K.: IEEE, 2019, pp. 2127–2131.

ILLUSTRATION

Figure: Illustration of how to efficiently construct $\mathcal{G}^{\neq n} \times_2 \mathcal{S}$ by sketching the core tensors.

Yajie Yu CQU RandTR 33 / 60

THEORETICAL ANALYSIS: TR-KSRFT-ALS & TR-KSRFT-ALS-PREMIX

Theorem 2.3

For the matrices $\mathbf{G}_{[2]}^{\neq n}$ and $\mathbf{X}_{[n]}^{\intercal}$ in (2.1), denote $rank(\mathbf{G}_{[2]}^{\neq n}) = r$ and fix $\varepsilon, \eta \in (0,1)$ such that $\prod_{j \neq n} I_j \lesssim 1/\varepsilon^r$ with $r \geq 2$. Then a sketching matrix $\mathcal{S} \in \mathbb{C}^{m \times \prod_{j \neq n} I_j}$ used in Algorithm 5 or 6 with

$$m = \mathcal{O}\left(\varepsilon^{-1}r^{2(N-1)}\log^{2N-3}(\frac{r}{\varepsilon})\log^4(\frac{r}{\varepsilon}\log(\frac{r}{\varepsilon}))\log\prod_{j\neq n}I_j\right)$$

is sufficient to output

$$\tilde{\mathbf{G}}_{n(2)}^{\intercal} = \operatorname*{arg\,min}_{\mathbf{G}_{n(2)}^{\intercal} \in \mathbb{R}^{R_{n}R_{n+1} \times I_{n}}} \| \mathcal{S}\mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\intercal} - \mathcal{S}\mathbf{X}_{[n]}^{\intercal} \|_{F},$$

such that

$$\mathbf{Pr}\left(\|\mathbf{G}_{[2]}^{\neq n}\tilde{\mathbf{G}}_{n(2)}^{\intercal} - \mathbf{X}_{[n]}^{\intercal}\|_{F} = (1 \pm \mathcal{O}\left(\varepsilon\right)) \min \|\mathbf{G}_{[2]}^{\neq n}\mathbf{G}_{n(2)}^{\intercal} - \mathbf{X}_{[n]}^{\intercal}\|_{F}\right)$$

$$\geq 1 - \eta - 2^{-\Omega(\log \prod_{j \neq n} I_{j})}.$$

Presentation Outline

- 1 Introduction
- 2 TR-SRFT-ALS
- 3 TR-TS-ALS
 - New Findings
 - Algorithm and Theoretical Analysis
- 4 Numerical Results
- 5 Conclusions

TENSORSKETCH FOR SUBCHAIN PRODUCT

Definition 3.1

The TensorSketch is defined as $T = \Omega D$, where

- $\bullet \ \Omega \in \mathbb{R}^{m \times \prod_{j=1}^N I_j} \text{: a matrix with } \Omega(j,i) = 1 \text{ if } j = H(i) \text{ for all } i \in \left[\prod_{j=1}^N I_j\right] \text{ and } \Omega(j,i) = 0 \text{ otherwise; } I_j = I_$
- $\mathbf{D} \in \mathbb{R}^{\prod_{j=1}^{N} I_j \times \prod_{i=j}^{N} I_j} \colon \text{a diagonal matrix with } \mathbf{D}(i,i) = S(i).$

In the definitions of Ω and D,

$$H : [I_1] \times [I_2] \times \dots \times [I_N] \to [m] : (i_1, \dots, i_N) \mapsto \left(\sum_{n=1}^N (H_n(i_n) - 1) \mod m \right) + 1,$$

$$S : [I_1] \times [I_2] \times \dots \times [I_N] \to \{-1, 1\} : (i_1, \dots, i_N) \mapsto \prod_{n=1}^N S_n(i_n),$$

where each H_n for $n \in [N]$ is a 3-wise independent hash map that maps $[I_n] \to [m]$, and each S_n is a 4-wise independent hash map that maps $[I_n] \to \{-1,1\}$. Recall that a hash map is k-wise independent if all the designated k keys are independent random variables.

Above we use the notation $H(i)=H(\overline{i_1i_2\cdots i_N})$ and $S(i)=S(\overline{i_1i_2\cdots i_N})$, where $\overline{i_1i_2\cdots i_N}$ denotes the **little-endian convention**.

RELATED WORKS

- Osman Asif Malik and Stephen Becker. "Fast Randomized Matrix and Tensor Interpolative Decomposition Using CountSketch". In: Adv. Comput. Math. 46 (2020), p. 76. DOI: 10.1007/s10444-020-09816-9
 - $\mathbf{P} = \mathbf{A}^{(1)} \odot \mathbf{A}^{(2)} \odot \cdots \odot \mathbf{A}^{(N)} \text{ for } n \in [N].$
 - $\mathbf{TP} = \mathrm{FFT}^{-1} \left(\otimes_{n=1}^{N} \mathrm{FFT} \left(\mathbf{S}^{(n)} \mathbf{A}^{(n)} \right) \right).$
- Osman Asif Malik and Stephen Becker. "Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch". In: Advances in Neural Information Processing Systems. Vol. 31. Montréal, Canada: Curran Associates, Inc., 2018, pp. 10117–10127
 - $\mathbf{P} = \mathbf{A}^{(1)} \otimes \mathbf{A}^{(2)} \otimes \cdots \otimes \mathbf{A}^{(N)}$ for $n \in [N]$.
 - $\mathbf{TP} = \mathrm{FFT}^{-1} \left(\left(\bigcirc_{n=1}^{N} \left(\mathrm{FFT} \left(\mathbf{S}^{(n)} \mathbf{A}^{(n)} \right) \right)^{\mathsf{T}} \right)^{\mathsf{T}} \right).$
- Rasmus Pagh. "Compressed Matrix Multiplication". In: ACM Trans. Comput. Theory 5.3 (2013), pp. 1–17. DOI: 10.1145/2493252.2493254
- Huaian Diao et al. "Sketching for Kronecker Product Regression and P-splines". In: International Conference on Artificial Intelligence and Statistics. Vol. 84. Playa Blanca, Lanzarote, Canary Islands: PMLR, 2018, pp. 1299–1308
- What about $\mathbf{TG}_{[2]}^{\neq n}$? Recall that

$$\boldsymbol{\mathcal{G}}^{\neq n} = \boldsymbol{\mathcal{G}}_{n+1} \boxtimes_2 \cdots \boxtimes_2 \boldsymbol{\mathcal{G}}_N \boxtimes_2 \boldsymbol{\mathcal{G}}_1 \boxtimes_2 \cdots \boxtimes_2 \boldsymbol{\mathcal{G}}_{n-1}.$$

Yajie Yu CQU RandTR 37 / 60

New Definition: Slices-Hadamard Product

Definition 3.2

Let $\mathcal{A} \in \mathbb{R}^{I_1 \times J \times K}$ and $\mathcal{B} \in \mathbb{R}^{K \times J \times I_2}$ be two 3rd-order tensors, and $\mathbf{A}(j)$ and $\mathbf{B}(j)$ are the j-th lateral slices of \mathcal{A} and \mathcal{B} , respectively. The mode-2 slices-Hadamard product of \mathcal{A} and \mathcal{B} is a tensor of size $I_1 \times J \times I_2$ denoted by $\mathcal{A} \boxtimes_2 \mathcal{B}$ and defined as

$$(\mathcal{A} \boxtimes_2 \mathcal{B})(j) = \mathcal{A}(j)\mathcal{B}(j).$$

That is, the j-th lateral slice of $\mathcal{A} \boxtimes_2 \mathcal{B}$ is the classical matrix product of the j-th lateral slices of \mathcal{A} and \mathcal{B} . The mode-1 and mode-3 slices-Hadamard product can be defined similarly.

New Propositions

Proposition 3.3

Let $A \in \mathbb{R}^{I_1 \times J_1 \times K}$ and $B \in \mathbb{R}^{K \times J_2 \times I_2}$ be two 3rd-order tensors, and $A \in \mathbb{R}^{M \times J_1}$ and $B \in \mathbb{R}^{M \times J_2}$ be two matrices. Then

$$(\mathcal{A} \times_2 \mathbf{A}) \boxtimes_2 (\mathcal{B} \times_2 \mathbf{B}) = (\mathcal{A} \boxtimes_2 \mathcal{B}) \times_2 (\mathbf{B}^{\intercal} \odot \mathbf{A}^{\intercal})^{\intercal}.$$

Proposition 3.4

Let $\mathbf{S}_n = \mathbf{\Omega}_n \mathbf{D}_n \in \mathbb{R}^{m \times I_n}$, where $\mathbf{\Omega}_n \in \mathbb{R}^{m \times I_n}$ and $\mathbf{D}_n \in \mathbb{R}^{I_n \times I_n}$ are defined based on H_n and S_n in Definition 3.1, respectively. Let $\mathbf{T} \in \mathbb{R}^{m \times \prod_{j=1}^N I_N}$ be defined in Definition 3.1 and $\mathbf{P} = \mathbf{A}^{(1)} \boxtimes_2 \mathbf{A}^{(2)} \boxtimes_2 \cdots \boxtimes_2 \mathbf{A}^{(N)}$ with $\mathbf{A}^{(n)} \in \mathbb{R}^{R_n \times I_n \times R_{n+1}}$ for $n \in [N]$. Then

$$\mathcal{P} \times_2 \mathbf{T} = \text{FFT}^{-1} \left(\boxtimes_2 \prod_{n=1}^N \text{FFT} \left(\mathcal{A}^{(n)} \times_2 \mathbf{S}_n, [], 2 \right), [], 2 \right).$$

Yajie Yu CQU RandTR 39 / 60

ALGORITHM: TR-TS-ALS

Algorithm 7 TR-TS-ALS (Proposal)

```
1: function \{\mathcal{G}_n\}_{n=1}^N = TR-TS-ALS(\mathcal{X}, R_1, \cdots, R_N, m)
                                                                                                                                                     \triangleright \mathbf{G}_n \in \mathbb{R}^{R_n \times I_n \times R_{n+1}}, n \in [N]: \mathbf{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}
                                                                                                                                                                                                 \triangleright R_1, \cdots, R_N are the TR-ranks
                                                                                                                                                                                                             \triangleright m is the embedding size
 2:
               Define S_j, i.e., the CountSketch, based on H_n and S_n in Definition 3.1, for j \in [N]
 3:
               for n=1,\cdots,N do
                       Compute the sketch of \mathbf{X}_{[n]}^{\mathsf{T}} : \hat{\mathbf{X}}_{[n]}^{\mathsf{T}} \leftarrow \mathbf{T}_{\neq n} \mathbf{X}_{[n]}^{\mathsf{T}}
 4:
 5:
               end for
               Initialize cores \mathcal{G}_2, \cdots, \mathcal{G}_N
 6:
 7:
               repeat
 8:
                       for n=1,\cdots,N do
                             Compute \hat{\boldsymbol{\mathcal{G}}}^{\neq n} = \operatorname{FFT}^{-1}\left(\mathbb{E}_{2} \underset{j=n+1,\cdots,N}{\overset{1,\cdots,n-1}{\underset{j=n+1,\cdots,N}{\text{FFT}}}} \operatorname{FFT}\left(\boldsymbol{\mathcal{G}}_{j} \times_{2} \mathbf{S}_{j},[\,],2\right),[\,],2\right)
 9:
                              Update \mathbf{\mathcal{G}}_n = \arg\min_{\mathbf{\mathcal{Z}}} \|\hat{\mathbf{G}}_{[2]}^{\neq n} \mathbf{Z}_{(2)}^{\intercal} - \hat{\mathbf{X}}_{[n]}^{\intercal}\|_F
10:
11:
                       end for
12:
               until termination criteria met
13:
               return \mathcal{G}_1, \cdots, \mathcal{G}_N
14: end function
```

THEORETICAL ANALYSIS: TR-TS-ALS

Theorem 3.5

For the matrices $\mathbf{G}_{[2]}^{\neq n}$ and $\mathbf{X}_{[n]}^{\mathsf{T}}$ in (2.1), fix $\varepsilon, \eta \in (0,1)$. Then a TensorSketch $\mathbf{T}_{\neq n}$ used in Algorithm 7 with

$$m = \mathcal{O}\left(((R_n R_{n+1} \cdot 3^{N-1})((R_n R_{n+1} + 1/\varepsilon^2)/\eta)\right),$$

is sufficient to output

$$\tilde{\mathbf{G}}_{n(2)}^{\intercal} = \operatorname*{arg\,min}_{\mathbf{G}_{n(2)}^{\intercal} \in \mathbb{R}^{R_n R_{n+1} \times I_n}} \| \mathbf{T}_{\neq n} \mathbf{G}_{[2]}^{\neq n} \mathbf{G}_{n(2)}^{\intercal} - \mathbf{T}_{\neq n} \mathbf{X}_{[n]}^{\intercal} \|_F,$$

such that

$$\mathbf{Pr}\left(\|\mathbf{G}_{[2]}^{\neq n}\tilde{\mathbf{G}}_{n(2)}^{\intercal} - \mathbf{X}_{[n]}^{\intercal}\|_{F} = (1 \pm \mathcal{O}\left(\varepsilon\right))\min\|\mathbf{G}_{[2]}^{\neq n}\mathbf{G}_{n(2)}^{\intercal} - \mathbf{X}_{[n]}^{\intercal}\|_{F}\right) \geq 1 - \eta.$$

107107127127 2 040

Presentation Outline

- 1 Introduction
- 2 TR-SRFT-ALS
- 3 TR-TS-ALS
- 4 Numerical Results
 - Synthetic Data
 - Real Data
- 5 Conclusions

EXPERIMENTAL OUTLINE

- Baselines
 - TR-ALS
 - TR-ALS-Sampled
- Synthetic data
 - The 1st experiment: low rank tensor
 - The 2nd experiment: sparse tensor
 - The 3rd experiment: sparse tensor with high coherence
 - The 4th experiment: complex tensor
- Real data
 - Indian Pines
 - SalinasA.
 - C1-vertebrae
 - Uber

THE FIRST EXPERIMENT: SETUPS

- generate_low_rank_tensor(sz, ranks, noise, large_elem)¹⁶
 - Create 3 cores of size $R_{true} \times I \times R_{true}$ with entries drawn independently from a standard normal distribution.
 - Set large_elem to increase the coherence;
 - $R_{true} = 10;$
 - sz = [I,I,I] = [500,500,500];
 - ranks = R;
 - $large_elem = 20;$

Yajie Yu CQU RandTR 44 / 60

¹⁶ Osman Asif Malik and Stephen Becker. "A Sampling-Based Method for Tensor Ring Decomposition". In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. Virtual Event: PMLR, 2021, pp. 7400–7411.

THE FIRST EXPERIMENT: RESULTS

Figure: Embedding sizes v.s. relative errors and running time (seconds) of the first synthetic experiment with true and target ranks $R_{true} = R = 10$ and different noises.

THE SECOND EXPERIMENT: SETUPS

- generate_sparse_low_rank_tensor(sz, ranks, density, noise)
 - Create 3 cores of size $R_{true} \times I \times R_{true}$ with non-zero entries drawn from a standard normal distribution;
 - $\blacksquare R_{true} = 10;$
 - sz = [I,I,I] = [500,500,500];
 - ranks = R;
 - \bullet density = 0.05;

THE SECOND EXPERIMENT: RESULTS

Figure: Embedding sizes v.s. relative errors and running time (seconds) of the second synthetic experiment with true and target ranks $R_{true} = R = 10$ and different noises.

THE THIRD EXPERIMENT: SETUPS

- \blacksquare generate_sptr_tensor(sz, ranks, noise, spread, magnitude)¹⁷
 - Create 3 cores of size $R_{true} \times I \times R_{true}$ with entries drawn independently from a standard normal distribution;
 - spread: How many non-zeros elements are added to each of these first three columns;
 - *magnitude*: Those non-zero elements are chosen;
 - $R_{true} = 10;$
 - sz = [I,I,I] = [500,500,500];
 - ightharpoonup ranks = R;

Yajie Yu CQU RandTR 48 / 60

THE THIRD EXPERIMENT: RESULTS

Figure: Embedding sizes v.s. relative errors and running time (seconds) of the third synthetic experiment with true and target ranks $R_{true} = R = 10$ and different noises.

THE FORTH EXPERIMENT: SETUPS

- generate_complex_low_rank_tensor(sz, ranks, noise, large_elem)
 - Create 3 cores of size $R_{true} \times I \times R_{true}$ with entries drawn independently from a standard normal distribution and add imaginary part;
 - Set *large_elem* to increase the coherence;
 - $R_{true} = 10;$
 - sz = [I,I,I] = [500,500,500];
 - ranks = R;
 - \blacksquare $large_elem = 20;$

THE FORTH EXPERIMENT: RESULTS

Figure: Embedding sizes v.s. relative errors and running time (seconds) of the fourth synthetic experiment with true and target ranks $R_{true} = R = 10$ and different noises.

REAL DATA: BRIEF INFORMATION

Table: Size and type of real datasets.

Dataset	Size	Туре
Indian Pines	$145 \times 145 \times 220$	Hyperspectral
SalinasA.	$83 \times 86 \times 224$	Hyperspectral
C1-vertebrae	$512 \times 512 \times 47$	CT Images
Uber.Hour	$183\times1140\times1717$	Sparse
Uber.Date	$24\times1140\times1717$	Sparse

REAL DATA: RESULTS

Method	Indian Pines ($R=20$)		SalinasA. $(R = 15)$			C1-vertebrae ($R=25$)			
	Error	Time	num	Error	Time	num	Error	Time	num
TR-ALS	0.0263	32.9536		0.0066	4.0225		0.0804	409.7951	
TR-ALS-Sampled	0.0289	13.7424	120	0.0069	2.4166	54	0.0882	128.3391	228
TR-SRFT-ALS	0.0289	12.3571	53	0.0073	1.8510	23	0.0883	101.7646	88
TR-SRFT-ALS		11.9446			1.7093			101 4027	
(No pre-time)		11.9446		1.7093			101.4037		
TR-TS-ALS	0.0289	12.0229	73	0.0073	2.2868	30	0.0883	156.5089	217

Method	Uber.Hour ($R=15$)			Uber.Date ($R=18$)		
Method	Error	Time	num	Error	Time	num
TR-ALS	0.7530	869.1631		0.3864	1452.1900	
TR-ALS-Sampled	0.8246	64.7240	230	0.4226	159.1936	320
TR-SRFT-ALS	0.8272	39.0307	40	0.4246	51.3584	46
TR-SRFT-ALS		21.9817			48.9433	
(No pre-time)		21.9817			46.9433	
TR-TS-ALS	0.8274	45.3829	47	0.4239	113.8542	147

Presentation Outline

- 1 Introduction
- 2 TR-SRFT-ALS
- 3 TR-TS-ALS
- 4 Numerical Results
- 5 Conclusions

Yajie Yu CQU RandTR 54 / 60

Conclusions

- We propose two randomized algorithms for TR decomposition, TR-SRFT-ALS and TR-TS-ALS.
- We propose two new tensor products and find their interesting properties.
- Numerical experiments are provided to test the proposed methods.

Thanks!

References I

- [AHM+20] Salman Ahmadi-Asl et al. "Randomized Algorithms for Fast Computation of Low Rank Tensor Ring Model". In: *Mach. Learn.: Sci. Technol.* 2.1 (2020), p. 011001. DOI: 10.1088/2632-2153/abad87.
- [BBK18] Casey Battaglino, Grey Ballard, and Tamara G. Kolda. "A Practical Randomized CP Tensor Decomposition". In: *SIAM J. Matrix Anal. Appl.* 39.2 (2018), pp. 876–901. DOI: 10.1137/17M1112303.
- [CW17] Kenneth L. Clarkson and David P. Woodruff. "Low-Rank Approximation and Regression in Input Sparsity Time". In: *J. ACM* 63.6 (2017), 54:1–45. DOI: 10.1145/3019134.
- [DIA+18] Huaian Diao et al. "Sketching for Kronecker Product Regression and P-splines". In: International Conference on Artificial Intelligence and Statistics. Vol. 84. Playa Blanca, Lanzarote, Canary Islands: PMLR, 2018, pp. 1299–1308.

References II

- [JKW21] Ruhui Jin, Tamara G. Kolda, and Rachel Ward. "Faster Johnson-Lindenstrauss Transforms via Kronecker Products". In: *Inf. Inference* 10.4 (2021), pp. 1533–1562. DOI: 10.1093/imaiai/iaaa028.
- [LK20] Brett W. Larsen and Tamara G. Kolda. "Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition". In: *arXiv preprint arXiv:2006.16438* (2020).
- [MB18] Osman Asif Malik and Stephen Becker. "Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch". In: Advances in Neural Information Processing Systems. Vol. 31. Montréal, Canada: Curran Associates, Inc., 2018, pp. 10117–10127.
- [MB20] Osman Asif Malik and Stephen Becker. "Fast Randomized Matrix and Tensor Interpolative Decomposition Using CountSketch". In: *Adv. Comput. Math.* 46 (2020), p. 76. DOI: 10.1007/s10444-020-09816-9.

References III

- [MB21A] Osman Asif Malik and Stephen Becker. "A Sampling-Based Method for Tensor Ring Decomposition". In: *Proceedings of the 38th International Conference on Machine Learning*. Vol. 139. Virtual Event: PMLR, 2021, pp. 7400–7411.
- [MB218] Osman Asif Malik and Stephen Becker. "A Sampling-Based Method for Tensor Ring Decomposition". In: *Proceedings of the 38th International Conference on Machine Learning*. Vol. 139. Virtual Event: PMLR, 2021, pp. 7400–7411.
- [PAG13] Rasmus Pagh. "Compressed Matrix Multiplication". In: *ACM Trans. Comput. Theory* 5.3 (2013), pp. 1–17. DOI: 10.1145/2493252.2493254.
- [YuA+19] Longhao Yuan et al. "Randomized Tensor Ring Decomposition and Its Application to Large-Scale Data Reconstruction". In: ICASSP 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton Conference Centre Brighton, U.K.: IEEE, 2019, pp. 2127-2131.

References IV

[ZHA+16] Qibin Zhao et al. "Tensor Ring Decomposition". In: *arXiv preprint arXiv:1606.05535* (2016).