· Paginación a dos niveles.

Callos Perez, David Sánchus Pérez, Albeito Llamas Contáls.

Direcciones de 8 bits con la siguiente

estructura

P1 = 2 bits	p2 = 2 bits	d= 4 bits
T.P 1er nivel	T.P 2º nivel	Desplanamuntu

Por lo que podemos saber que la tabla de paginan de 1e nivel tiene Yentradas $(2^{p^{1}-2})$ y cada entrada direcciona en la tabla de paginan de 2º nivel $(2^{p^{2}-2})$ Y entradas

· Espacio virtual

	0	
Texto	-16 B	
Datos	46B	
V////19/11		
1/81/1/509/7	1	
17/3/1/1/1	224B	
Pila	256B	
_	-	

Del dibujo de la estructura del espacio de direccionamiento virtual de un proceso vemos que cada pagina ocupa 16 B luigo si el total de Bytes del espacio virtual en 256 B tenemos:

Escaneado con CamScanner

• Traducción dirección virtual 230 4^{er} nivel: $\frac{236}{4.16} = 3$ • entrada en 1^{er} nivel 2° nivel: $\frac{230 \mod (4.16)}{16} = 2$ • entrada en 2° nivel 2° nivel: $\frac{230 \mod (4.16)}{16} = 2$ • entrada en 2° nivel 2° nivel: $\frac{230 \mod (4.16)}{16} = 6$ • desplanamiento

Dirección real = 3.16+6= 54