Craig interpolation

From Wikipedia, the free encyclopedia

In mathematical logic, **Craig's interpolation theorem** is a result about the relationship between different logical theories. Roughly stated, the theorem says that if a formula φ implies a formula ψ then there is a third formula ρ , called an interpolant, such that every nonlogical symbol in ρ occurs both in φ and ψ , φ implies ρ , and ρ implies ψ . The theorem was first proved for first-order logic by William Craig in 1957. Variants of the theorem hold for other logics, such as propositional logic. A stronger form of Craig's theorem for first-order logic was proved by Roger Lyndon in 1959; the overall result is sometimes called the **Craig-Lyndon theorem**.

Contents

- 1 Example
- 2 Lyndon's interpolation theorem
- 3 Proof of Craig's interpolation theorem
- 4 Applications
- 5 References

Example

In propositional logic, let

$$\begin{split} \phi &= {\sim}(P \, \wedge \, Q) \rightarrow ({\sim}R \, \wedge \, Q) \\ \psi &= (T \rightarrow P) \, \vee \, (T \rightarrow {\sim}R). \end{split}$$

Then φ tautologically implies ψ . This can be verified by writing φ in conjunctive normal form:

$$\phi \equiv (P \vee \sim R) \wedge Q$$

Thus, if φ holds, then (P \vee ~R) holds. In turn, (P \vee ~R) tautologically implies ψ . Because the two propositional variables occurring in (P \vee ~R) occur in both φ and ψ , this means that (P \vee ~R) is an interpolant for the implication $\varphi \to \psi$.

Lyndon's interpolation theorem

Suppose that S and T are two first-order theories. As notation, let $S \cup T$ denote the smallest theory including both S and T; the signature of $S \cup T$ is the smallest one containing the signatures of S and T. Also let $S \cap T$ be the intersection of the two theories; the signature of $S \cap T$ is the intersection of the signatures of the two theories.

Lyndon's theorem says that if $S \cup T$ is unsatisfiable, then there is an interpolating sentence ρ in the language of $S \cap T$ that is true in all models of S and false in all models of S. Moreover, ρ has the stronger property that every relation symbol that has a positive occurrence in ρ has a positive occurrence in some formula of S and a negative occurrence in some formula of S and a positive occurrence in some formula of S and a positive occurrence in some formula of S and a positive occurrence in some formula of S.

Proof of Craig's interpolation theorem

We present here a constructive proof of the Craig interpolation theorem for propositional logic. [1] Formally, the theorem states:

If $\models \varphi \rightarrow \psi$ then there is a ρ (the interpolant) such that $\models \varphi \rightarrow \rho$ and $\models \rho \rightarrow \psi$, where atoms(ρ) \subseteq atoms(φ) \cap atoms(ψ). Here atoms(φ) is the set of propositional variables occurring in φ , and \models is the semantic entailment relation for propositional logic.

Proof. Assume $\models \phi \rightarrow \psi$. The proof proceeds by induction on the number of propositional variables occurring in ϕ that do not occur in ψ , denoted $|atoms(\phi) - atoms(\psi)|$.

Base case $|atoms(\phi) - atoms(\psi)| = 0$: In this case, ϕ is suitable. This is because since $|atoms(\phi) - atoms(\psi)| = 0$, we know that $atoms(\phi) \subseteq atoms(\phi) \cap atoms(\psi)$. Moreover we have that $\models \phi \to \phi$ and $\models \phi \to \psi$. This suffices to show that ϕ is a suitable interpolant in this case.

Next assume for the inductive step that the result has been shown for all χ where $|atoms(\chi) - atoms(\psi)| = n$. Now assume that $|atoms(\phi) - atoms(\psi)| = n+1$. Pick a $p \in atoms(\phi)$ but $p \notin atoms(\psi)$. Now define:

$$\varphi' := \varphi[\top/p] \vee \varphi[\bot/p]$$

Here $\varphi[\top/p]$ is the same as φ with every occurrence of p replaced by \top and $\varphi[\bot/p]$ similarly replaces p with \bot . We may observe three things from this definition:

$$\models \phi' \rightarrow \psi$$
 (1)

$$|atoms(\phi') - atoms(\psi)| = n$$
 (2)

$$\models \phi \rightarrow \phi'$$
 (3)

From (1), (2) and the inductive step we have that there is an interpolant ρ such that:

$$\models \varphi' \rightarrow \rho$$
 (4)

$$\models \rho \rightarrow \psi$$
 (5)

But from (3) and (4) we know that

$$\models \phi \rightarrow \rho$$
 (6)

Hence, ρ is a suitable interpolant for ϕ and ψ .

QED

Since the above proof is constructive, one may extract an algorithm for computing interpolants. Using this algorithm, if $n = |atoms(\phi') - atoms(\psi)|$, then the interpolant ρ has O(EXP(n)) more logical connectives than ϕ (see Big O Notation for details regarding this assertion). Similar constructive proofs may be provided for the basic modal logic K, intuitionistic logic and μ -calculus, with similar complexity measures.

Craig interpolation can be proved by other methods as well. However, these proofs are generally non-constructive:

- model-theoretically, via Robinson's joint consistency theorem: in presence of compactness, negation and conjunction, Robinson's joint consistency theorem and Craig interpolation are equivalent.
- proof-theoretically, via a Sequent calculus. If cut elimination is possible and as a result the subformula property holds, then Craig interpolation is provable via induction over the derivations.
- algebraically, using amalgamation theorems for the variety of algebras representing the logic.
- via translation to other logics enjoying Craig interpolation.

Applications

Craig interpolation has many applications, among them consistency proofs, model checking, proofs in modular specifications, modular ontologies.

References

- 1. A Harrison pgs. 426-427
- John Harrison (2009). Handbook of Practical Logic and Automated Reasoning. Cambridge University Press.
 ISBN 0-521-89957-5.
- Hinman, P. (2005). Fundamentals of Mathematical Logic. A K Peters. ISBN 1-56881-262-0.
- Dov M. Gabbay and Larisa Maksimova (2006). Interpolation and Definability: Modal and Intuitionistic Logics

(Oxford Logic Guides). Oxford science publications, Clarendon Press. ISBN 978-0-19-851174-8.

- Eva Hoogland, Definability and Interpolation. Model-theoretic investigations. PhD thesis, Amsterdam 2001.
- W. Craig, *Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory*, The Journal of Symbolic Logic 22 (1957), no. 3, 269–285.

Retrieved from "http://en.wikipedia.org/w/index.php?title=Craig_interpolation&oldid=571885851" Categories: Mathematical logic | Lemmas

This page was last modified on 7 September 2013 at 07:34.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.