

PUC MINAS - CIÊNCIA DA COMPUTAÇÃO & ENGENHARIAS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS ICEI - Belo Horizonte - Minas Gerais

Disciplina	Curso	Turno	Semestre
OTIMIZAÇÃO	COMP. & ENGENHARIAS	Manhã	$1^{\rm o}/2019$
Professor	Tipo do Documento	Data	Valor
Dorirley Rodrigo Alves	An. de Sensibilidade	00/00/2019	,00
Nome do Aluno			Matrícula

QUESTÃO 01: A partir de cada modelo primal a seguir, faça:

- 1. Resolva-os pelo Método Simplex.
- 2. Faça a análise dos parâmetros da Função Objetivo identificando o intervalo de declividade.
- 3. Identifique as possíveis variações em c_1 que manteriam a solução básica do modelo original juntamente com os demais demais parâmetros.
- 4. Identifique as possíveis variações em c_2 que manteriam a solução básica do modelo original juntamente com os demais demais parâmetros.
- 5. Analise os coeficientes das restrições, identificando os valores das variáveis básicas a partir do acréscimo e decréscimo de uma unidade atribuída em cada uma das variáveis artificiais não básicas.
- 6. Identifique os valores limites (máximos e mínimos) das disponibilidades de cada uma das restrições e seus respectivos valores finais alcançados pela Função Objetivo.

MODELOS:

1.

$$F.O \mapsto \text{MAX } \mathbb{Z} = x_1 + 2x_2$$

 $S.a. \quad 8x_1 + 2x_2 \le 16$
 $2x_1 + 7x_2 \le 28$
 $x_1; x_2 > 0$

2.

$$F.O \mapsto \text{MAX } \mathbb{Z} = 6x_1 + 3x_2$$

 $S.a.$ $3x_1 + 5x_2 \le 30$
 $4x_2 + 2x_2 \le 20$
 $x_1; x_2 \ge 0$

PUC MINAS - CIÊNCIA DA COMPUTAÇÃO & ENGENHARIAS

3.

$$F.O \mapsto \text{MAX } \mathbb{Z} = x_1 + 3x_2$$
 $S.a. 4x_1 + 2x_2 \le 10$ $x_1 + x_2 \ge 2$ $x_1; x_2 \ge 0$

4.

$$F.O \mapsto \text{MAX } \mathbb{Z} = x_1 + 2x_2$$

 $S.a.$ $8x_1 + 2x_2 \le 16$
 $x_1 + x_2 \le 6$
 $2x_1 + 7x_2 \ge 28$
 $x_1; x_2 \ge 0$