SINGAPORE POLYTECHNIC 2017/2018 S2 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

No	SOLUTIO	N							
	SECTION	N – A							
	A1	(b)							
	A2	(c)							
	A3	(d)							
	A4	(d)							
	A5	(b)							
	A6	(a)							
	A7	(c)							
	A8	(b)							
	A9	(a)							
	A10	(c)							
		` '							
		A	В	С	D				
	A1		✓						
	A2			✓					
	A3				✓				
	A4 A5		✓		•				
	A6	√	<u> </u>						
	A7			√					
	A8		√						
	A9	✓							
	10			✓					

SINGAPORE POLYTECHNIC

2017/2018 S2 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

	SOLUTION								
	CECTEVON								
	<u>SECTION – B</u>								
B1 a)	Add +54 ₁₀ to +61 ₁₀								
	sign 64 32 16 8 4 2 1								
	+54 = 0 0 1 1 0 1 1 0								
	+61 = 0 0 1 1 1 1 0 1								
	$+115 = 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ +ve sum result								
	Subtract $+36_{10}$ from $+53_{10} = Add -36$ to $+53$								
	sign 64 32 16 8 4 2 1								
	$+36 = 0 0 1 0 0 1 0 0$ \leftarrow start with +ve equivalent								
	$-36 = 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \leftarrow 2$'s complement of +36								
	+53 = 0 0 1 1 0 1 0 1								
	+17 = 100010001 $$ discard 9 th bit for 8 bit system								
b)									
	ADD +137 ₁₀ to +25 ₁₀ in BCD format								
	+ 137 = 0 0 0 1 0 0 1 1 0 1 1 1 4 BCD for 137								
	+ 25 = 0010014 BCD for 25								
	$ = 0 0 0 1 0 1 0 1^1 1 1 0 0 $								
	+ 1 1 0 ← Adjust by adding 6								
	+ 162 = <u>0 0 0 1 0 1 1 0 0 0 1 0</u>								

SINGAPORE POLYTECHNIC 2017/2018 S2 MID-SEMESTER TEST

SAS code:

MODULE: <u>DIGITAL ELECTRONICS</u>

No	SOLUTION						
B2		Α.	D	C:	C	C	
(a)		A 0	B 0	Cin 0	Cout 0	Sum 0	
		0	0	1	0	1	
		0	1	0	0	1	
		0	1	1	1	0	
		1	0	0	0	1	
		1	0	1	1	0	
		1	1	0	1	0	
		1	1	1	1	1	
(c)	$Cout = \overline{A} B Cin + A \overline{B} C$ $Sum = \overline{A} \overline{B} Cin + \overline{A} B \overline{Cin}$ $= \overline{A} (\overline{B} Cin + B \overline{Cin})$ $= \overline{A} (B \oplus Cin) + \overline{A}$ $= A \oplus (B \oplus Cin)$ $= A \oplus B \oplus Cin$ A B Cin	n +) +	A B G		A B Cin B Cin)	1	

SINGAPORE POLYTECHNIC

2017/2018 S2 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

MOD. CODE: <u>ET1004</u>

No	SOLUTION
В3	
(a)	(i) Period = 20 + 60 = 80uS
	(ii) Frequency = 1/80uS = 12500 Hz or 12.5 kHz
	(iii) Duty cycle = 20/80 * 100% = 25%
(b)	Mod-Number of counter = 5.
	Given that the Clock frequency applied is 1000Hz,
	Signal Freq at MSB output = 1000/5 = 200 Hz
	To determine duty cycle of mod-5, examine the bit sequence at the MSB
	output for I cycle of counter, which is:
	00001 0 0 0 0 1
	Hence duty cycle at MSB = 1/5 * 100 = 20%
(c)	Given initial state = 010_2 and 62_{10} clock cycles are continuously
	applied,
	62 Clk cycles is = 12 complete cycles (12* 5 =60) plus remainder of 2 Clock cycles
	Thus final output state = $010 + 10 = 100_2$

SINGAPORE POLYTECHNIC 2017/2018 S2 MID-SEMESTER TEST

SAS code:

MODULE: <u>DIGITAL ELECTRONICS</u>

No	SOLUTION
C1 (a)	4 possible configurations for cascaded divide-by-18 counter:
(a)	CLK
	CLK \longrightarrow Mod 6 MSB \longrightarrow Mod 3 MSB \longrightarrow $\stackrel{\bullet}{\bullet}$ 18
	CLK \longrightarrow Mod 2 MSB \longrightarrow $\stackrel{\bullet}{\longrightarrow}$ 18
	CLK Mod 9 MSB Mod 2 MSB + 18
(b)	Configuration that provides 50% duty cycle at divide-by-18 output is Mod-9, followed by Mod-2
(c)	CLK → CP1 Mod-9 CP0 MR1 MR2 CP0 MR1 MR2
	Important points to note Use of 4 FF for mod 9 & Q0 connected to CP1 Feedback to MR1 MR2 Correct connection between mod-9 & Mod-2 Correct connection for mod-2
(d)	0111 Mod-9 State diagram 0011 0100 0001
	State diagram for 1 st counter in cascade: