MAT20306 - Advanced Statistics

Lecture 5: Correlation & Simple linear regression

Biometris

Pearson correlation coefficient

- when people talk about a correlation or correlation coefficient they usually mean Pearson's correlation coefficient
 - named after Karl Pearson (1857-1936), British statistician

- Pearson's correlation coefficient ρ_{xy} measures the strength of the linear association between two quantitative variables x and y, see figure (O&L 11.20)
- ρ_{xy} is always between -1 and +1.
- values close to 1 or $-1 \Rightarrow$ strong (linear) association, values close to $0 \Rightarrow$ little or no (linear) association
- when correlation ρ_{xy} =1 or ρ_{xy} -1,

Pearson correlation coefficient, continued

- There is no distinction between dependent and independent variables: $\rho_{xy} = \rho_{yx}$.
- The absolute value of ρ_{xy} is not affected by linear transformations of x or y, e.g. correlation between x and y is the same as between 2x + 1 and 10 + 5y. So, it does not matter whether measurements are in e.g. grams or kilograms.
- When x and y are independent, $\rho_{xy} = \rho_{yx} = 0$, but the reverse is not necessarily true.
- The correlation ho_{xy} is a population parameter that is estimated by the sample correlation r_{xy} :

$$r_{xy} = r_{yx} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}, \quad -1 \le r_{xy} \le 1$$

Correlation & inference

- Test on ρ_{xy}
- 1. H_0 : $\rho_{xy} = 0$.
- 2. Test statistic is:

$$t = r_{xy} \frac{\sqrt{n-2}}{\sqrt{1-r_{xy}^2}}$$

3. When H_0 is true, $t \sim t_{n-2}$

Grasshoppers (Example 11.13 in O&L)

Study of the reproductive success of grasshoppers. An entomologist collected a sample of 30 female grasshoppers. She recorded the number of mature eggs produced and the body weight of each of the females (grams).

		1/	
	E A	10	

	Number	weight
1	27.00	2.10
2	32.00	2.30
3	39.00	2.40
4	48.00	2.50
5	59.00	2.90
6	67.00	3.10
7	71.00	3.20
8	65.00	3.30
9	73.00	3.40
10	67.00	3.40
11	78.00	3.50
12	72.00	3.50
13	81.00	3.50
14	74.00	3.60
15	83.00	3.60

Grasshoppers (Example 11.13 in O&L)

Correlations							
		Number of eggs	Weight of female				
Number of eggs	Pearson Correlation	1	.606 **	\			
	Sig. (2-tailed)		.000				
	N	30	30				
Weight of female	Pearson Correlation	.606 **	1				
	Sig. (2-tailed)	.000					
	N	30	30				

** Correlation is significant at the 0.01 level (2-tailed).

$$H_0$$
: $\rho_{xy} = 0$ vs H_A : $\rho_{xy} > 0$

$$t = r_{xy} \frac{\sqrt{n-2}}{\sqrt{1 - r_{xy}^2}} = 0.606 \cdot \frac{\sqrt{30-2}}{\sqrt{1 - 0.606^2}} = 4.0311$$

Under H_0 : $t_{n-2} = t_{28}$ distribution RSP=0.000 <0.05, so reject H_0 We have shown there is a positive correlation between weight and number of eggs

Spearman rank correlation

- r_{xy} is highly sensitive to outlying observations (outliers)
- an alternative is Spearman's rank correlation $r_{\rm S}$ (not mentioned in O&L), named after Charles Spearman (1863 1945), English psychologist

- observations are replaced by rank numbers
 ranking x and y separately, with mid ranks in case of ties
- Spearman's $r_{\rm S}$ is the ordinary correlation, but derived from these rank numbers
- r_s measures the strength of a monotonic relationship between two quantitative variables x and y.
 The relationship need not be linear, see figure from Wikipedia.
- when data are approximately normally distributed (without outliers), $r_{\rm S}$ and $r_{\rm xv}$ tend to be similar.
- but r_s is not estimating a population parameter, in contrast to r_{xy} ,

An example of Spearman's rank correlation

Spearman' correlation of 0.821 can be Obtained by calculating Pearson's correlation on rank numbers

Correlations

		Rank of x	Rank of y
Rank of x	Pearson Correlation	1	.821**
	Sig. (2-tailed)		.000
	N	19	19
Rank of y	Pearson Correlation	.821**	1
	Sig. (2-tailed)	.000	
	N	19	19

^{*} Correlation is significant at the 0.01 level (2-tailed).

Х	у /	Rx V	Ry
91	1.53	6	7
04	2.18	15	15
28	1.88	13	8
-26	2.02	9	12
-1.86	1.14	1	5
1.77	.96	3	3
32	2.25	11	16
1.63	2.85	19	17
19	1.94	14	9
32	2.00	12	11
34	1.23	10	6
-1.16	.22	5	1
1.43	3.11	18	18
87	2.10	7	14
45	1.98	8	10
-1.79	.62	2	2
-1.52	1.01	4	4
1.01	3.68	17	19
.74	2.03	16	13

Correlations

		Х	Y
х	Pearson Correlation) 1	.852**
	Sig. (2-tailed)		4 .000
	N	19	/ 19
У	Pearson Correlation	.852**	/ 1
	Sig. (2-tailed)	.000	/
	N	19	19

**. Correlation is significant at the 0.01 evel

Note that here Pearson correlation and Spearman rank correlation are similar.

Correlations

			х	У
Spearman's rho	Х	Correlation Coefficient	1.000	(.821*)
		Sig. (2-tailed)		.000
		N	19	19
	У	Correlation Coefficient	.821**	1.000
		Sig. (2-tailed)	.000	
		N	19	19

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Another example of Spearman's rank correlation

Unrelated *x* and *y*, with one added outlying observation with both high *x* and *y* value.

^{*} Correlation is significant at the 0.05 level (2-tailed).

Pearson correlation is sensitive to the outlier: relatively high correlation (and significantly different from 0)

Spearman correlation is not really sensitive to the outlier and consequently lower

		Correlations		
			Х	У
Spearman's rho	X	Correlation Coefficient	1.000	.185
		Sig. (2-tailed)		.319
		N	31	31
	у	Correlation Coefficient	.185	1.000
		Sig. (2-tailed)	.319	-
		N	31	31

Simple Linear Regression

Overview:

- 1) Define the model
- 2) Estimate the model
- 3) Inference on model parameters (by means of t-test and C.I.)
- 4) Test the model: ANOVA table
- 5) Checking model assumptions
- 6) Prediction by using the model

O&L Chapter 11 (11.1-11.6)

Example fish storage in ice

Storage of raw fish in ice is delayed by x hours, x = 0,3,6,9,12, each with 2 replicates. After a 7-day storage in ice the quality (y) of each fish is measured on a 10 point scale.

Question: How does y depend upon delay x?

There are many types of relationship.

To create a framework for an answer:

we **assume** a linear relationship between **mean of** *y* and *x*:

$$\mu_y = \beta_0 + \beta_1 x$$

- Individual values of y may deviate from the mean value on the line.
- 2. The problem simplifies to finding only two parameters: β_1 and β_0 .

Delay (x)	0	3	6	9	12
Quality(y)	8.5	7.9	7.8	7.3	6.8
	8.4	8.1	7.6	7	6.7

Linearity is an assumption, which needs checking. Does it seem reasonable here?

11

1. Simple linear regression model

• Model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

 ε_i 's are often called "errors".

$$i = 1, 2, ..., n$$
 $\varepsilon_i \sim N(0, \sigma)$ ε_i 's independent

We can also write:

$$y_i \sim N(\mu_i, \sigma)$$
, y_i 's are independent

- *y* is called response or dependent variable. It is numerical/quantitative.
- *x* is called regressor, independent variable or explanatory variable. It is usually *numerical*. It can be fixed (in experiment) or observed (random).
- The regression coefficients β_0 and β_1 , and standard deviation σ are the (unknown) **parameters** of the regression model. What do they mean?

```
\beta_0 = intercept = mean response when x = 0
```

 β_0 has a practical interpretation only if x = 0 is in experimental region.

 $\beta_1 = \text{slope} = \text{change in mean response when } x \text{ increases by 1 unit.}$

 $\sigma = \sigma_{\varepsilon}$ = standard deviation of ε

- = standard deviation of y corrected for x
- = standard deviation of *y* "around the regression line".

Constant standard deviation σ_{ϵ}

Errors ϵ are normally distributed with expected value 0, and constant standard deviation σ_{ϵ}

assumed to be the same for all values of x.

2. Least Squares Estimation of β_0 and β_1

- Question: What is the best line through the points?
 - = What are the best estimates for β_0 and β_1 ?
 - To answer this, a criterion to be minimized is needed that combines the distances of the points to the line into one number
 - The criterion generally chosen is:
 the 1) sum of 2) squared 3) vertical distances
 from the points to the line.
 - This is called the *Least Squares Method*.
 - Deviation = $e_i = y_i \hat{y}_i = y_i (b_0 + b_1 x_i)$ SSE = $\sum_i e_i^2$. The $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize SSE:

$$\hat{\beta}_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

In the scatterplot this "best" line is shown.
Guess the equation.

Predicted values and residuals

- Predicted or fitted value (model value) \hat{y}_i (pronounce y-i- hat), predicted value \hat{y}_i is the expected value of y according to the fitted regression line at the given x-value x_i .
- Residual e_i the difference between the observed y_i and the predicted value $\hat{\mathcal{Y}}_i$, the distance between the point and the line in the y-direction, and an "estimate" for error ε_i .

3. Inference for slope β_1 (and intercept β_0)

 $\widehat{\beta_1}$ has a standard error $se(\widehat{\beta_1}) = SE_{b_1} \left(= s_{\varepsilon} \sqrt{1/S_{xx}} \right)$ We read it from SPSS.

Confidence interval for
$$\beta_1$$
: $\left(\hat{\beta}_1 \pm t_{\alpha/2, n-2} se(\hat{\beta}_1)\right)$ d.f. = $(n-2)$, because 2 parameters (β_0, β_1) are estimated

(SPSS gives all output)

T-test for
$$H_0$$
: $\beta_1 = 0$: $TS: t = \frac{\hat{\beta}_1 - 0}{\text{se}(\hat{\beta}_1)}$, when H_0 is true $t \sim t_{n-2}$

For e.g. H_0 : $\beta_1 = 1.3$, use (SPSS gives no t- or P-value)

$$t = \frac{\hat{\beta}_1 - 1.3}{se(\hat{\beta}_1)}$$
, when H_0 is true $t \sim t_{n-2}$

Inference for β_0 , also based on t_{n-2} -distribution, proceeds likewise.

 H_0 : β_1 = 0 can also be tested using an F-test, but only for H_a : $\beta_1 \neq 0$:

Fish storage, SPSS output

Coeffi ci entsa

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	B (a	t	Sig.
1	(Constant)	8.460	.066		127.995	.000
	Delay (h)	142	.009	984	-15.750	.000

a. Dependent Variable: Quality
$$\hat{eta}_0$$
 \hat{eta}_1

you should be able to interpret all output (except the standardized coefficients) and know by what principle it is obtained

Notation: we may use b_1 for $\widehat{\beta_1}$

Example of a test. Does more Delay reduce fish quality?

- 1) H_0 : $\beta_1 = 0$ vs H_a : $\beta_1 < 0$.
- 2) TS: $t = b_1/se(b_1)$. 3) Under H_0 $t \sim t_8$ (n=10)
- 4/5) Under H_a t tends to smaller values, so we use LPV.
- 6) Outcome TS: t= -15.75
- 7) LPV = 0.000/2
- 8) H_0 is rejected, H_a is proven. It is shown ($\alpha=0.05$) that more delay leads to lower **mean** fish quality

Fish storage, two-sided confidence interval

two-sided 0.95-confidence interval for b_1 :

$$(b_1 \pm t_8(0.025) * SE_{b1}) \rightarrow (-0.142 \pm 2.31 * 0.009)$$

so, 0.95-confidence interval is: (-0.163, -0.121)

SPSS summary output for regression: r_{yx} , R^2 , s_{ε}

Model Summar

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate			
1	.984 ^a	.969	.965	.12068			
a. Pı	a. Predictors: (Constant), Delay (h)						
b. D	b. Dependent Variable: Quality						
$R = / r_{yx} $							
Coefficient of determination $R^2 = r_{yx}^2$							

- When the values for x are chosen over a wider range (if this is possible in the design stage), R^2 will increase, but the intercept, slope and residual variance will remain about the same (apart from estimation error).
- So, although R^2 is quite popular, it's size depends on the choice of values of x, therefore, R^2 should be handled with care.
- Note that for a correlation we need a random sample of pairs (x, y), but for regression we are allowed to choose values for x, and observe the associated values for random variable y.

19

```
call:
lm(formula = y \sim x)
Coefficients:
(Intercept)
    8.4600 -0.1417
Call:
lm(formula = y \sim x)
Residuals:
    Min 10 Median
                               3Q
                                       Max
-0.18500 -0.06000 0.01500 0.05875 0.19000
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.460000 0.066097 128.00 1.55e-14 ***
           -0.141667 0.008995 -15.75 2.64e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1207 on 8 degrees of freedom
Multiple R-squared: 0.9688, Adjusted R-squared: 0.9649
F-statistic: 248.1 on 1 and 8 DF, p-value: 2.638e-07
```

So ... Who feels the same way?

4. ANOVA table for regression

- Up to now: What is the (best) line? Answer comes from LSestimation.
- How good is the fit? Answer comes from ANOVA-table.
 It splits observed total variation in y in two components:
 - 1) variation attributed to variation in x
 - 2) "error" variation attributed to chance (parameter σ)

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3.613	1	3.613	248.069	.000 ^a
	Residual	.117	8	.015		
	Total	3.729	9			

a. Predictors: (Constant), Delay (h)

b. Dependent Variable: Quality

$$\hat{\sigma}_{\varepsilon}^2 = s_{\varepsilon}^2 = MSE$$

R² = **SSRegression** / **SSTotal** = proportion 'explained' variatioุก

4. ANOVA table for regression

- Up to now: What is the (best) line? Answer comes from LSestimation.
- How good is the fit? Answer comes from ANOVA-table.
 It splits observed total variation in y in two components:
 - 1) systematic variation attributed to variation in x
 - 2) "error" variation attributed to chance (parameter σ)

R² = **SSRegression** / **SSTotal** = proportion 'explained' variatioุก

Model without regression: $\hat{y}_i = \hat{\beta}_0 = \bar{y}$ (constant only)

Error for constant only: $y_i - \bar{y}$

Error for regression model: $y_i - \hat{y}_i \,$ \Rightarrow improvement given by $\hat{y}_i - \bar{y}$

 $\sum_{i=1}^{n} (y_i - \bar{y})^2$: variation of all observations \rightarrow TSS

 $\sum (y_i - \hat{y}_i)^2$: variation attributed to error \rightarrow SSE

 $\sum (\hat{y}_i - \bar{y})^2$: variation explained by the regression model \rightarrow SSR

ANOVA table for regression

The total variation in y (around the mean) is split into two sources: the systematic part (attributed to variation in x) and the random part (ε):

Source of	Sum of	Degrees of	Mean	
Variation	Squares	Freedom	Square	F
Regression	SSR	1	MSR = SSR/1	F = MSR/MSE
Error	SSE	n-2	$(MSE \neq SSE/(n-2)$	
Total	TSS	<i>n</i> –1		

$$\hat{\sigma}_{\varepsilon}^2 = S_{\varepsilon}^2 = MSE$$

$$\sum (y - \overline{y})^2 = \sum (y - \hat{y})^2 + \sum (\hat{y} - \overline{y})^2 \Leftrightarrow TSS = SSE + SSR$$

$$df_{Total} = df_{residual} + df_{regression} \Leftrightarrow n - 1 = n - 2 + 1$$

$$R^{2} = r_{yx}^{2} = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}$$

ANOVA table for regression

$$\sum (y - \overline{y})^2 = \sum (y - \hat{y})^2 + \sum (\hat{y} - \overline{y})^2 \Leftrightarrow TSS = SSE + SSR$$

$$df_{Total} = df_{residual} + df_{regression} \Leftrightarrow n - 1 = n - 2 + 1$$

$$R^{2} = r_{yx}^{2} = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}$$

F-test for regression

Source of	Sum of	Degrees of	Mean	T.
Variation	Squares	Freedom	Square	F
Regression	SSR	1	MSR = SSR/1	F = MSR/MSE
Error	SSE	n-2	MSE = SSE/(n-2)	
Total	TSS	<u>n-1</u>		

- F compares regression mean square with residual mean square, to see if predictive value of the model (x) may be caused by chance alone.
- H_0 : $\beta_1 = 0$, or: **model** (here: variable x) **has no predictive value** for y, H_a : $\beta_1 \neq 0$, or: **model** (here: variable x) **does have** predictive value
- TS: F= MSRegression / MSError
- Under H₀: F ~ F(1, n-2)
 df1 = dfRegression = 1 (one parameter β₁ is involved) and
 df2 = dfError = (n 2)
 - Under H_a F tends to large values, so we use RPV or right-sided RR.
- Critical values to determine RR are found in table 8. SPSS gives RPV.

F-test for regression, continued

- For the Fish storage example: n = 10, so df1 = 1, df2 = 10 2 = 8.
- So, RR for F: F> 5.32

- Outcome F statistic for the fish storage: 248
- NB. The F-test is only used for a **two-sided alternative** hypothesis H_a : $\beta_1 \neq 0$. For a **one-sided alternative** hypothesis, a t-test can be used.

5. Assumptions of simple linear regression model

Model :

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Random part of the model

Systematic part μ_i of the model

Assumptions

Random part of the model: errors ε_i are assumed:

- 1) independent,
- 2) normally distributed (with expected value 0), and
- 3) constant variance σ^2 .

Systematic part of the model: expected value μ_i is assumed:

4) to be linearly related to x_i

5. Checking model assumptions

To check assumptions look at

$$e_i = y_i - \hat{y}_i = y_i - (b_0 + b_1 x_i)$$

- Graphical checks are made, by plotting residuals in different ways:
 - Plot residuals versus expected quantiles of normal distribution to check normality assumption (check of 2): QQ – plot (Quantile – Quantile plot);
 - Plot residuals versus predicted values to check constant variance assumption (check of 3);
 - Plot residuals versus x to check linearity assumption (check of 4).
- Independence assumption cannot be checked by using the data.
 It should follow from a proper experimental set-up or study design.

Example fish storage, checking model assumptions

• In SPSS, store residuals and predicted values..

Normal QQ-plot: points approximately on straight line, so the assumption of normality is reasonable

Scatterplot of residuals on y-axis v.s. predicted values on x-axis: variation of residuals is approximately constant at different levels of the predicted value, so assumption of constant variance is reasonable.

	Delay	Quality	PRE_1	RES_1
1	0	8.5	8.460	.040
2	0	8.4	8.460	060
3	3	7.9	8.035	135
4	3	8.1	8.035	.065
5	6	7.8	7.610	.190
6	6	7.6	7.610	010
7	9	7.3	7.185	.115
8	9	7.0	7.185	185
9	12	6.8	6.760	.040
10	12	6.7	6.760	060
4.4				

Scatterplot of residuals (y-axis) v.s. regressor x (x-axis): residuals are approximately evenly spread around 0; they show no curve, so the assumption of a linear relationship is reasonable.

The last two plots are essentially identical, because $\hat{y} = (b_0 + b_1 x)$ and x differ only by a shift and multiplicative factor. This will change in multiple regression, later on.

6. Prediction for mean response μ_y when $x=x^*$

- simple linear regression model: $y = \mu_y + \varepsilon = \beta_0 + \beta_1 x + \varepsilon$
- Mean response at a specific level x^* is

$$\mu_y = \beta_0 + \beta_1 x^*$$

• Estimated mean response and standard error (replacing unknown β_0 and β_1 with estimates):

$$\hat{\mu}_{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x^{*}, \quad se(\hat{\mu}_{y}) = s_{\varepsilon}\sqrt{\frac{1}{n} + \frac{(x^{*} - \overline{x})^{2}}{S_{xx}}}$$

Confidence interval for mean response at x*:

$$\left(\hat{\mu}_{y} \pm t_{\alpha/2, n-2} se(\hat{\mu}_{y})\right)$$

6. Prediction for future individual response when $x=x^*$

(Unknown) response at a specific level x* is

$$y_{x^*} = \mu_y + \varepsilon = \beta_0 + \beta_1 x^* + \varepsilon$$

• Predicted individual response (replacing β_0 and β_1 by estimates, and replacing ε by its expected value 0):

$$\hat{y}_{x^*} = \hat{\beta}_0 + \hat{\beta}_1 x^*$$

the same as the estimated mean response on the previous slide

Prediction interval for future individual response

$$\left(\hat{y}_{x^*} \pm t_{\alpha/2, n-2} \ se(\hat{y}_{x^*}) \right) = \left(\hat{y}_{x^*} \pm t_{\alpha/2, n-2} s_{\varepsilon} \sqrt{1 + \frac{1}{n} + \frac{\left(x^* - \overline{x} \right)^2}{S_{xx}}} \right)$$

the extra term 1, compared to se of estimated mean response, is due to the extra ε in observation γ

The two intervals in one plot

The two intervals in one plot

Fish storage, continued SPSS output

x = delay (h) of fish storage in ice,

y = quality after subsequent 7-day storage in ice.

- estimate μ_{y} for delay x =7 (h) with associated se
- predict y if delay x = 7 (h)
- give 0.95-confidence interval for μ_{v} .
- give 0.95 prediction interval for y

Model: $y = \beta_0 + \beta_1 x + \varepsilon$,

$$\mu_{y} = \beta_{0} + \beta_{1} x$$

which interval will be narrower?

Two ways to proceed:

Hard way: fill in x = 7 in regression equation, calculate standard error and interval.

Easy way: let SPSS do the work:

- (1) add an extra line x = 7 to the data
- (2)in menu Regression ask for needed quantities and use Save(3)interpret output in datafile

	Delay	Quality	PRE_1	SEP 1	LMCI_1	UMCI_1	LICI_1	UICI_1
1	.0	8.5	8.46	.066	8.31	8.61	8.14	8.78
2	.0	8.4	8.46	.066	8.31	8.61	8.14	8.78
3	3.0	7.9	8.04	.047	7.93	8.14	7.74	8.33
4	3.0	8.1	8.04	.047	7.93	8.14	7.74	8.33
5	6.0	7.8	7.61	.038	7.52	7.70	7.32	7.90
6	6.0	7.6	7.61	.038	7.52	7.70	7.32	7.90
7	9.0	7.3	7.19	.047	7.08	7.29	6.89	7.48
8	9.0	7.0	7.19	.047	7.08	7.29	6.89	7.48
9	12.0	6.8	6.76	.066	6.61	6.91	6.44	7.08
10	12.0	6.7	6.76	.066	6.61	6.91	6.44	7.08
\sim 11	7.0		7.47	.039	7.38	7.56	7.18	7.76
40								

37

Example fish storage in ice, continued

	Delay	Quality	PRE_1	SEP 1	LMCI_1	UMCI_1	LICI_1	UICI_1
1	.0	8.5	8.46	.066	8.31	8.61	8.14	8.78
2	.0	8.4	8.46	.066	8.31	8.61	8.14	8.78
3	3.0	7.9	8.04	.047	7.93	8.14	7.74	8.33
4	3.0	8.1	8.04	.047	7.93	8.14	7.74	8.33
5	6.0	7.8	7.61	.038	7.52	7.70	7.32	7.90
6	6.0	7.6	7.61	.038	7.52	7.70	7.32	7.90
7	9.0	7.3	7.19	.047	7.08	7.29	6.89	7.48
8	9.0	7.0	7.19	.047	7.08	7.29	6.89	7.48
9	12.0	6.8	6.76	.066	6.61	6.91	6.44	7.08
10	12.0	6.7	6.76	.066	6.61	6.91	6.44	7.08
11	7.0		7.47	.039	7.38	7.56	7.18	7.76
40								

5. 0.95-pred. int. of quality of an individual fish at delay of 7 h:

(LICI_1,UICI_1) =
=
$$\hat{y}_{x=7} \pm t_8 (0.975) S \hat{E}(\hat{y}_{x=7}) =$$

= (7.18, 7.76)

1. Estimated mean quality of a fish at a delay of 7 h:

PRE_1=
$$\hat{\mu}_{y|x=7} = b_0 + b_1 \times 7 = 7.47$$

2. Also predicted quality of individual fish at delay of 7 h:

PRE_1=
$$\hat{y}_{x=7} = b_0 + b_1 \times 7 + \hat{e} = 7.47 + 0 = 7.47$$

Same as estimated mean response!

4. 0.95-conf. int. of mean quality at delay of 7 h:

(LMCI_1,UMCI_1) =
$$\hat{\mu}_{y|x=7} \pm t_8 (0.975) S \hat{E} (\hat{\mu}_{y|x=7}) =$$

= 7.47 ± 2.31×0.039 = (7.38, 7.56)

3. Standard error of estimator of mean quality at delay of 7 h:

SEP_1=
$$\hat{SE}(\hat{\mu}_{y|x=7})=s_{\varepsilon}\sqrt{\frac{1}{10}+\frac{(7-\bar{x})^2}{S_{xx}}}=0.039$$

Outlier, leverage and influence

Outlier: observation with extreme y-value (compared to other observations with similar x-values)

Checking assumptions 39

Outlier, leverage and influence

High leverage point: observation with extreme x-value(s).

May influence estimated coefficient(s).

Checking assumptions 40

Outlier, leverage and influence

Influential point: observation that strongly influences estimated regression coefficients(s).

Perform an analysis with and without the suspect observation(s) and see how much it matters for the conclusions.

Checking assumptions 41