ANALOG: 12.10.19

1

EE23BTECH11019 - Faisal Imtiyaz*

I. PROBLEM STATEMENT

A parallel beam of light with a wavelength of 500 nm falls on a narrow slit, and the resulting diffraction pattern is observed on a screen 1 m away. The distance to the first minimum from the center of the screen is 2.5 mm.

Find the width of the slit given that y = 0.0025 m, L = 1 m, and $\lambda = 5 \times 10^{-7}$ m.

II. SOLUTION

The first minimum is given by:

$$\sin \theta = \lambda/a$$

Where a is the width of the slit.

Now for small angle θ , $\sin \theta$ can be assumed to be equal to θ as well as $\tan \theta$.

So we can say $\sin \theta$ approximately equals $\tan \theta$. Therefore:

$$\lambda/a = y/L$$

Solving the expression we get

$$a = L \cdot \frac{\lambda}{y}$$

Plugging in the values,

$$a = 1 \times \frac{5 \times 10^{-7}}{0.0025} = 0.2mm$$