$\Sigma(1660) \ 1/2^{+}$

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters $\bf 111B$ 1 (1982).

Σ (1660) POLE POSITION

REAL PAR	т	DOCUMENT ID		TECN	COMMENT	
	not use the follow	ving data for average			tc. • • •	
$1547 {+111 \atop -59}$		¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the	preferred solution	A in KAMANO 15.	Soluti	on B rep	orts M $=$ 1457 $^+$	5 MeV.
	INARY PART					
VALUE (MeV)		DOCUMENT ID				
	not use the follow	ving data for average		limits, e	tc. • • •	
183^{+86}_{-78}		$^{ m 1}$ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the	preferred solution	A in KAMANO 15.	Soluti	on B rep	orts $\Gamma=78^{\displaystyle +2\atop \displaystyle -8}$ I	MeV.
	Σ	(1660) POLE RE	ESIDU	IES		
The	normalized residue	e is the residue divid	led by	$\Gamma_{molo}/2$.		
				poie,		
Normalized	residue in $N\overline{K}$	$\rightarrow \Sigma(1660) \rightarrow$	ΝK			
MODULUS	PHASE (°)	DOCUMENT II)	TECN	COMMENT	
• • • We do	not use the follow	ing data for average	s, fits,	limits, e	tc. • • •	
0.0247	168	¹ KAMANO		DPWA	Multichannel	
¹ From the	preferred solution	A in KAMANO 15.				
Normalized	residue in $N\overline{K}$	$\rightarrow \Sigma(1660) \rightarrow$	Σπ			
		DOCUMENT II		TECN	COMMENT	
• • • We do	not use the follow	ing data for average	es, fits,	limits, e	tc. • • •	
0.16	78	$^{ m 1}$ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the	preferred solution	A in KAMANO 15.				
Normalized	residue in $N\overline{K}$	$\rightarrow \Sigma(1660) \rightarrow$	$\Lambda\pi$			
MODULUS	PHASE (°)	DOCUMENT II	<u> </u>	TECN	COMMENT	
• • • We do	not use the follow	ring data for average	s, fits,	limits, e	tc. • • •	
0.0614	-84	$^{ m 1}$ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the	preferred solution	A in KAMANO 15.				

Created: 5/30/2017 17:20

Normalized residue in $N\overline{K} \rightarrow \Sigma(1660) \rightarrow \Sigma(1385)\pi$

DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • •

¹ KAMANO 15 DPWA Multichannel

Σ(1660) MASS

VALUE (MeV)	DOCUMENT ID		TECN COM	MENT
1630 to 1690 (≈ 1660) OUR ES	STIMATE			
1633 ± 3	GAO	12	DPWA $\overline{K}N$	\rightarrow $\Lambda\pi$
1665.1 ± 11.2	$^{ m 1}$ KOISO	85	DPWA K^-	$ ho ightarrow ho \pi$
1670 ± 10	GOPAL	80	DPWA $\overline{K}N$	$\rightarrow \overline{K}N$
1679 ± 10	ALSTON	78	DPWA $\overline{K}N$	$\rightarrow \overline{K}N$
1676 ± 15	GOPAL			multichannel
1668 ± 25	VANHORN	75	DPWA K^-	$ ho ightarrow \Lambda \pi^0$
1670 ± 20	KANE	74	DPWA K^-	$ ho ightarrow ho \pi$
• • • We do not use the following	g data for average	s, fits,	limits, etc. •	• •
1565 or 1597 1660 ±30 1671 ± 2	_	75	DPWA $\overline{K}N$ IPWA $\overline{K}N$ DPWA K^-	

Σ(1660) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
40 to 200 (≈ 100) OUR I	ESTIMATE			
$121 \begin{array}{cc} + & 4 \\ - & 7 \end{array}$	GAO	12	DPWA	$\overline{K}N \rightarrow \Lambda\pi$
81.5± 22.2	¹ KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$
152 ± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
38 ± 10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
120 ± 20	GOPAL	77	DPWA	$\overline{K}N$ multichannel
$230 \begin{array}{c} +165 \\ -60 \end{array}$	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
250 ±110	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
ullet $ullet$ We do not use the fol	lowing data for average	s, fits,	limits, et	tc. • • •
202 or 217	² MARTIN	77	DPWA	$\overline{K}N$ multichannel
80 ± 40				$\overline{K}N \rightarrow \Lambda\pi$
81 ± 10	⁴ PONTE			
1-1 11 (1/0/60)	05: 1			

Created: 5/30/2017 17:20

 $^{^{}m 1}$ From the preferred solution A in KAMANO 15.

 $^{^1}$ The evidence of KOISO 85 is weak. 2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

³ From solution 1 of BAILLON 75; not present in solution 2.

⁴ From solution 2 of PONTE 75; not present in solution 1.

 $^{^1}$ The evidence of KOISO 85 is weak. 2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

³ From solution 1 of BAILLON 75; not present in solution 2.

⁴ From solution 2 of PONTE 75; not present in solution 1.

Σ (1660) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\overline{K}$	10–30 %
Γ_2	$\Lambda\pi$	seen
Γ ₃	$\Sigma \pi$	seen
Γ_4	$\Sigma(1385)\pi$	

Σ (1660) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.1 to 0.3 OUR ESTIMATE					
0.12 ± 0.03	GOPAL	80		$\overline{K}N \rightarrow \overline{K}N$	
0.10 ± 0.05	ALSTON			$\overline{K}N \to \overline{K}N$	
• • • We do not use the following of	lata for averages	s, fits,	limits, e	etc. • • •	
0.005	^L KAMANO	15	DPWA	Multichannel	
< 0.04	GOPAL			See GOPAL 80	
0.27 or 0.29	² MARTIN	77	DPWA	$\overline{K}N$ multichannel	
1 From the preferred solution A in	KAMANO 15				
² The two MARTIN 77 values are		k pole	and fro	m a Breit-Wigner f	it.
$\Gamma(\Lambda\pi)/\Gamma_{total}$					Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	-/
0.128	^L KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A in	KAMANO 15.				
$\Gamma(\Sigma\pi)/\Gamma_{ ext{total}}$					Г ₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	3,
	·			·	
0.865	^L KAMANO	15	DPWA	Multichannel	
$^{\mathrm{1}}$ From the preferred solution A in	KAMANO 15.				
$\Gamma(\Sigma(1385)\pi)/\Gamma_{ m total}$					Γ ₄ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	- 4/ -
• • We do not use the following of	<u> </u>	. fits			
	L KAMANO	15		Multichannel	
			2		
$^{ m 1}$ From the preferred solution A in	NAMANU 15.				

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Sigma(1660) \rightarrow \Lambda\pi$		$(\Gamma_1\Gamma_2)^{\frac{1}{2}}$
\/A	DOCUMENT ID	TECN	COMMENT

VALUE	DOCUMENT ID		<u>TECN COMMENT</u>	
$-0.064 {+0.005 \atop -0.003}$	GAO	12	DPWA $\overline{K} {\it N} ightarrow {\it \Lambda} \pi$	
< 0.04	GOPAL	77	DPWA $\overline{K}N$ multichannel	
$0.12 \begin{array}{l} +0.12 \\ -0.04 \end{array}$	VANHORN	75	DPWA $K^- p \rightarrow \Lambda \pi^0$	
\\\/ -	.l. + C	- C	Burtan and a con-	

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

-0.10 or -0.11	$^{ m 1}$ MARTIN	77	DPWA $\overline{K}N$ multichannel
-0.04 ± 0.02	² BAILLON	75	IPWA $\overline{K}N \rightarrow \Lambda\pi$
$+0.16 \pm 0.01$	³ PONTE	75	DPWA $K^- p \rightarrow \Lambda \pi^0$

 $^{^{}m 1}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma (1660) \to \Sigma \pi$

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma$		$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$		
VALUE	DOCUMENT ID)	TECN	COMMENT
-0.13 ± 0.04	$^{ m 1}$ KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$
-0.16 ± 0.03	GOPAL	77	DPWA	$\overline{K}N$ multichannel
$-0.11 \!\pm\! 0.01$	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	ing data for averag	es, fits,	limits, e	etc. • • •
-0.34 or -0.37	² MARTIN	77	DPWA	$\overline{K}N$ multichannel
not seen	HEPP	76 B	DPWA	$K^- N \rightarrow \Sigma \pi$
4				

Σ (1660) REFERENCES

KAMANO GAO Also	15 12	PR C92 025205 PR C86 025201 NP A867 41	H. Kamano <i>et al.</i> P. Gao, J. Shi, B.S. Zou	(ANL, OSAK) (BHEP, BEIJT)
KOISO	85	NP A607 41 NP A433 619	P. Gao, B.S. Zou, A. Sibirtsev H. Koiso <i>et al.</i>	(BHEP, BEIJT+) (TOKY, MASA)
PDG	82	PL 111B 1	M. Roos <i>et al.</i>	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
ALSTON	78	PR D18 182	M. Alston-Garnjost <i>et al.</i>	(LBL, MTHO+) IJP
Also	. 0	PRL 38 1007	M. Alston-Garnjost <i>et al.</i>	
GOPAL	77	NP B119 362	G.P. Gopal <i>et al.</i>	
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G	. Moorhouse (LOUC+) IJP
Also		NP B126 266	B.R. Martin, M.K. Pidcock	` (LOUC)
Also		NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
HEPP	76B	PL 65B 487	V. Hepp <i>et al.</i>	(CERN, HEIDH, MPIM) IJP
BAILLON	75	NP B94 39	P.H. Baillon, P.J. Litchfield	(CERN, RHEL) IJP
PONTE	75	PR D12 2597	R.A. Ponte et al.	(MASA, TENN, UCR) IJP
VANHORN	75	NP B87 145	A.J. van Horn	` (LBL) IJP
Also		NP B87 157	A.J. van Horn	(LBL) IJP
KANE	74	LBL-2452	D.F. Kane	(LBL) IJP

Created: 5/30/2017 17:20

² From solution 1 of BAILLON 75; not present in solution 2.

³ From solution 2 of PONTE 75; not present in solution 1.

 $^{^{1}\,\}mathrm{The}$ evidence of KOISO 85 is weak. $^{2}\,\mathrm{The}$ two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.