

planetmath.org

Math for the people, by the people.

regular conditional probability

Canonical name RegularConditionalProbability

Date of creation 2013-03-22 16:25:24 Last modified on 2013-03-22 16:25:24

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition Classification msc 60A99

Introduction

Suppose (Ω, \mathcal{F}, P) is a probability space and $B \in \mathcal{F}$ be an event with P(B) > 0. It is easy to see that $P_B : \mathcal{F} \to [0, 1]$ defined by

$$P_B(A) := P(A|B),$$

the conditional probability of event A given B, is a probability measure defined on \mathcal{F} , since:

1. P_B is clearly non-negative;

2.
$$P_B(\Omega) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1;$$

3. P_B is countably additive: for if $\{A_1, A_2, \ldots\}$ is a countable collection of pairwise disjoint events in \mathcal{F} , then

$$P_B(\bigcup_{i=1}^{\infty} A_i) = \frac{P(B \cap (\bigcup A_i))}{P(B)} = \frac{P(\bigcup (B \cap A_i))}{P(B)} = \frac{\sum P(B \cap A_i)}{P(B)} = \sum_{i=1}^{\infty} P_B(A_i),$$

as $\{B \cap A_1, B \cap A_2, \ldots\}$ is a collection of pairwise disjoint events also.

Regular Conditional Probability

Can we extend the definition above to $P_{\mathcal{G}}$, where \mathcal{G} is a sub sigma algebra of \mathcal{F} instead of an event? First, we need to be careful what we mean by $P_{\mathcal{G}}$, since, given any event $A \in \mathcal{F}$, $P(A|\mathcal{G})$ is not a real number. And strictly speaking, it is not even a random variable, but an equivalence class of random variables (each pair differing by a null event in \mathcal{G}).

With this in mind, we start with a probability measure P defined on \mathcal{F} and a sub sigma algebra \mathcal{G} of \mathcal{F} . A function $P_{\mathcal{G}}: \mathcal{G} \times \Omega \to [0, 1]$ is a called a regular conditional probability if it has the following properties:

- 1. for each event $A \in \mathcal{G}$, $P_{\mathcal{G}}(A, \cdot) : \Omega \to [0, 1]$ is a http://planetmath.org/ProbabilityCondit probability (as a random variable) of A given \mathcal{G} ; that is,
 - (a) $P_{\mathcal{G}}(A,\cdot)$ is http://planetmath.org/MathcalFMeasurableFunction \mathcal{G} -measurable and
 - (b) for every $B \in \mathcal{G}$, we have $\int_B P_{\mathcal{G}}(A, \cdot) dP = P(A \cap B)$.

2. for every outcome $\omega \in \Omega$, $P_{\mathcal{G}}(\cdot, \omega) : \mathcal{G} \to [0, 1]$ is a probability measure.

There are probability spaces where no regular conditional probabilities can be defined. However, when a regular conditional probability function does exist on a space Ω , then by condition 2 of the definition, we can define a "conditional" probability measure on Ω for each outcome in the sense of the first two paragraphs.