Lógica, teoría de grafos y complejidad computacional

UniversidadInternacional de Valencia

Máster Universitario en Inteligencia Artificial

02MIAR | Matemáticas:

Matemáticas para la Inteligencia Artificial

Profesor:

David Zorío Ventura

De

Funciones booleanas

- ightharpoonup Recordemos que $p \to q \equiv \overline{p} + q$.
- $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$, luego $p \leftrightarrow q \equiv (\overline{p} + q) \cdot (p + \overline{q})$, por lo que simplificando $p \leftrightarrow q \equiv p \cdot q + \overline{p} \cdot \overline{q}$.
- Cualquier fórmula lógica puede expresarse empleando como únicos conectores la conjunción (producto), la disyunción (suma) y la negación (álgebras de Boole).

Definición

Una función booleana es una aplicación $f: \mathbb{B}^n \to \mathbb{B}$, donde $\mathbb{B} = \{0,1\}$ es el conjunto binario. Se denota \mathcal{F}_n al conjunto formado por todas las funciones booleanas de n variables, es decir:

$$\mathcal{F}_n = \{ f : \mathbb{B}^n \to \mathbb{B} \mid f \text{ aplicación} \}.$$

Funciones booleanas

- 1. $f: \mathbb{B} \to \mathbb{B}$, f(x) = x.
- 2. $f: \mathbb{B} \to \mathbb{B}$, $f(x) = \overline{x}$.
- 3. $f: \mathbb{B}^2 \to \mathbb{B}$, f(x, y) = x + y.
- 4. $f: \mathbb{B}^2 \to \mathbb{B}$, $f(x, y) = x \cdot y$.
- 5. $f: \mathbb{B}^2 \to \mathbb{B}$, $f(x, y) = \overline{x} + y$.
- 6. $f: \mathbb{B}^2 \to \mathbb{B}, \ f(x,y) = x \cdot y + \overline{x} \cdot \overline{y}.$
- 7. $f: \mathbb{B}^3 \to \mathbb{B}$, $f(x, y, z) = \overline{x} \cdot z + y$.

Definición

Una **puerta lógica** es un operador que transforma uno o dos valores de entrada binarios, x, y, en un valor binario de salida, en función de x, y. Por tanto, una puerta lógica puede verse como elemento de \mathcal{F}_n .

Existen un total de siete puertas lógicas:

- ► OR
- AND
- XOR
- ► NOT
- ► NOR
- ► NAND
- ► XNOR

Puerta OR: se trata de la puerta lógica que combina un par de valores $x, y \in \mathbb{B}$ según la tabla de operaciones siguiente:

OR	y = 0	y = 1
x = 0	0	1
x = 1	1	1

Esta puerta lógica puede interpretarse como la siguiente función booleana de \mathcal{F}_2 :

$$f: \mathbb{B}^2 \to \mathbb{B}, \quad f(x,y) = x + y.$$

Puerta AND: se trata de la puerta lógica que combina un par de valores $x, y \in \mathbb{B}$ según la tabla de operaciones siguiente:

AND	y = 0	y = 1
x = 0	0	0
x = 1	0	1

Esta puerta lógica puede interpretarse como la siguiente función booleana de \mathcal{F}_2 :

$$f: \mathbb{B}^2 \to \mathbb{B}, \quad f(x,y) = x \cdot y.$$

Puerta XOR: se trata de la puerta lógica que combina un par de valores $x, y \in \mathbb{B}$ según la tabla de operaciones siguiente:

XOR	y = 0	y = 1
x = 0	0	1
x = 1	1	0

Esta puerta lógica puede interpretarse como la siguiente función booleana de \mathcal{F}_2 :

$$f: \mathbb{B}^2 \to \mathbb{B}, \quad f(x,y) = (\overline{x} + \overline{y}) \cdot (x+y).$$

Puerta NOT: se trata de la puerta lógica que invierte el estado de un valor binario $x \in \mathbb{B}$:

NOT			
x = 0	1		
x = 1	0		

Esta puerta lógica puede interpretarse como la siguiente función booleana de \mathcal{F}_1 :

$$f: \mathbb{B} \to \mathbb{B}, \quad f(x) = \overline{x}.$$

Puerta NOR: se trata de la puerta lógica que combina un par de valores $x, y \in \mathbb{B}$ según la tabla de operaciones siguiente:

NOR	y = 0	y = 1
x = 0	1	0
x = 1	0	0

Esta puerta lógica puede interpretarse como la siguiente función booleana de \mathcal{F}_2 :

$$f: \mathbb{B}^2 \to \mathbb{B}, \quad f(x,y) = \overline{x} \cdot \overline{y}.$$

Puerta NAND: se trata de la puerta lógica que combina un par de valores $x, y \in \mathbb{B}$ según la tabla de operaciones siguiente:

NAND	y = 0	y = 1
x = 0	1	1
x = 1	1	0

Esta puerta lógica puede interpretarse como la siguiente función booleana de \mathcal{F}_2 :

$$f: \mathbb{B}^2 \to \mathbb{B}, \quad f(x,y) = \overline{x} + \overline{y}.$$

Puerta XNOR: se trata de la puerta lógica que combina un par de valores $x, y \in \mathbb{B}$ según la tabla de operaciones siguiente:

XNOR	y = 0	y = 1
x = 0	1	0
x = 1	0	1

Esta puerta lógica puede interpretarse como la siguiente función booleana de \mathcal{F}_2 :

$$f: \mathbb{B}^2 \to \mathbb{B}, \quad f(x,y) = x \cdot y + \overline{x} \cdot \overline{y}.$$

Circuitos lógicos

Las puertas lógicas pueden combinarse entre sí para formar **circuitos lógicos**, los cuales pueden interpretarse como elementos de \mathcal{F}_n .

Ejemplo

Consideremos el circuito lógico siguiente:

La función booleana asociada a este circuito es $f \in \mathcal{F}_3$ dada por

$$f(x, y, z) = (x + y) \cdot \overline{z}$$
.

Definición

Un grafo G es una terna (V, E, γ) , donde V y E son conjuntos y γ es una aplicación

$$\gamma: E \to \mathcal{E},$$

- donde $\mathcal{E} = \{\{v, v'\} \mid v, v' \in V\}$
 - Los elementos del conjunto V reciben el nombre de vértices.
 - Los elementos del conjunto E reciben el nombre de lados o aristas.
 - \blacktriangleright La aplicación γ se conoce como aplicación de incidencia.
 - Dicha aplicación identifica las aristas con el par correspondiente de vértices que unen.

Todo grafo tiene su correspondiente representación gráfica, como veremos en los siguientes ejemplos.

Ejemplos

1. Consideremos el grafo $G = (V, E, \gamma)$, con $V = \{v_1, v_2, v_3\}$, $E = \{e_1, e_2\}$, siendo $\gamma : E \to \mathcal{E}$ dada por:

$$\gamma(e_1) = \{v_1, v_2\}$$

 $\gamma(e_2) = \{v_2, v_3\}$

Ejemplos

2. Consideremos el grafo $G = (V, E, \gamma)$, con $V = \{v_1, v_2, v_3, v_4\}$, $E = \{e_1, e_2, e_3, e_4\}$, siendo $\gamma : E \to \mathcal{E}$ dada por:

$$\gamma(e_1) = \{v_2, v_2\}
\gamma(e_2) = \{v_2, v_3\}
\gamma(e_3) = \{v_3, v_4\}
\gamma(e_4) = \{v_4, v_2\}$$

Ejemplos

3. Consideremos el grafo $G = (V, E, \gamma)$, con $V = \{v_1, v_2, v_3, v_4\}$, $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$, siendo $\gamma : E \to \mathcal{E}$ dada por:

$$\gamma(e_1) = \{v_1, v_2\}
\gamma(e_2) = \{v_1, v_2\}
\gamma(e_3) = \{v_2, v_3\}
\gamma(e_4) = \{v_2, v_3\}
\gamma(e_5) = \{v_1, v_4\}
\gamma(e_6) = \{v_2, v_4\}
\gamma(e_7) = \{v_3, v_4\}$$

Definición

Un grafo dirigido G es una terna (V, E, γ) , donde V y E son conjuntos (de vértices y de aristas o lados, respectivamente) y γ es una aplicación de la forma

$$\gamma: E \to V \times V$$
.

Los grafos dirigidos habitualmente se representan gráficamente dibujando las aristas con una flecha en la dirección válida para recorrerla, siendo la primera componente del par ordenado el punto de partida y la segunda componente el punto de llegada.

Grafos dirigidos

Ejemplo

Sea $G = (V, E, \gamma)$ el grafo dirigido dado por el conjunto de vértices $V = \{v_1, v_2, v_3, v_4\}$, el conjunto de aristas $E = \{e_1, e_2, e_3, e_4\}$ y $\gamma : E \rightarrow V \times V$ dada por:

$$\gamma(e_1) = (v_1, v_2),$$

 $\gamma(e_2) = (v_1, v_3),$
 $\gamma(e_3) = (v_2, v_3),$
 $\gamma(e_4) = (v_3, v_4).$

Grafos simples

Definición

Un grafo simple $G = (V, E, \gamma)$ es un grafo que cumple dos restricciones adicionales:

- 1. No hay aristas diferentes que unan el mismo par de vértices, es decir, si $e \neq e'$, entonces $\gamma(e) \neq \gamma(e')$ (γ es inyectiva).
- 2. No contiene **bucles** o **loops**, es decir, no tiene aristas que unen un vértices consigo mismo; equivalentemente, $\gamma(e) = \{v_e, v_e'\}$, con $v_e \neq v_e'$, $\forall e \in E$.

Nota

En adelante, y por comodidad, en caso de trabajar con grafos simples, omitiremos la existencia de la aplicación γ y denotaremos las aristas directamente por el correspondiente conjunto o par ordenado de vértices.

Grafos conexos

Definición

Un grafo G es **conexo** si para cada par de vértices diferentes existe algún **camino** (sucesión de aristas adyacentes) que los une.

Ejemplos

1. Sea G un grafo de 5 vértices dado por las aristas {1,2}, {1,3}, {2,3}, {3,4}, {3,5}, {4,5}. Gráficamente:

G es conexo.

Grafos conexos

Ejemplos

2. Sea G un grafo de S vértices cuyas aristas son $\{1,2\},\{1,3\},\{2,3\},\{4,5\}$. Gráficamente:

Entonces G no es conexo.

Definición

Una **red neuronal** es un grafo dirigido (V, E), con $V = \{1, 2, ..., n\}$ y $E \subseteq V \times V$ con los elementos adicionales siguientes:

- ▶ $\forall i \in V$ tiene asociada una variable de estado $a_i \in [0, 1]$.
- ▶ $\forall (i,j) \in E$ tiene asociado un peso $\omega_{i,j} \in \mathbb{R}$ (grafo ponderado).
- $ightharpoonup \forall i \in V \text{ tiene asociado un sesgo } b_i.$
- $ightharpoonup \forall i \in V$ le corresponde una función de activación $f_i : \mathbb{R} \to [0,1]$ de la forma

$$f_i\left(\sum_{i=1}^n \omega_{j,i} a_j + b_i\right).$$

Capa de entrada Capas ocultas Capa de salida

Ejemplo 1: neurona AND

$$y = f(a_1 + a_2 - 1.5), \quad f(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

Ejemplo 2: neurona OR

$$y = f(a_1 + a_2 - 0.5), \quad f(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

La teoría de **complejidad computacional** estudia y clasifica los algoritmos y problemas computacionales en función de su coste y dificultad de resolver.

Algorithm Compute $p = u \cdot v$ for $u, v \in \mathbb{R}^n$

Require: length(u) = length(v)

```
p \leftarrow u_1 v_1

for k \leftarrow 2 to n do

p \leftarrow p + u_k v_k

end for
```

Ensure: $p = u \cdot v$

return p

- **Operaciones:** n-1 sumas, n productos.
- ▶ **Total operaciones:** 2n 1 operaciones (coste **lineal**).

Algorithm Compute C = A + B for $A, B \in \mathbb{R}^{n \times n}$

Require: size(A) = size(B)

Ensure:
$$C = A + B$$

$$C \leftarrow 0_{n \times n}$$

for $i \leftarrow 1$ to n do

for
$$j \leftarrow 1$$
 to n do

 $C_{i,i} \leftarrow A_{i,i} + B_{i,i}$

end for end for

return C

- ► Operaciones: n² sumas.
- **Total operaciones:** n^2 operaciones (coste **cuadrático**).

Algorithm Compute $C = A \cdot B$ for $A, B \in \mathbb{R}^{n \times n}$

Require: size(A) = size(B)Ensure: $C = A \cdot B$

$$C \leftarrow 0_{n \times n}$$

for $i \leftarrow 1$ to n do

for $i \leftarrow 1$ to n do

for $k \leftarrow 1$ to n do

 $C_{i,i} \leftarrow C_{i,i} + A_{i,k}B_{k,i}$

end for

end for end for

return C

Operaciones: n^3 sumas, n^3 productos.

► Total operaciones: $2n^3$ operaciones (coste cúbico).

Resolución de un sistema de ecuaciones lineal $n \times n$ con matriz de coeficientes triangular inferior:

$$\left\{ egin{array}{lll} a_{1,1}x_1 & = & b_1 \ a_{2,1}x_1 + & a_{2,2}x_2 & = & b_2 \ & \ddots & & & & & \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + \cdots + a_{n-1,n-1}x_{n-1} & = & b_{n-1} \ a_{n,1}x_1 + & a_{n,2}x_2 + \cdots + & a_{n,n-1}x_{n-1} + a_{n,n}x_n & = & b_n \ \end{array}
ight\} \ enter: AX = B, \ ext{donde} \ A \in \mathbb{R}^{n imes n}, \ X \in \mathbb{R}^{n imes 1} \ ext{y} \ B \in \mathbb{R}^{n imes 1} .$$

Matricialmente: AX = B, donde $A \in \mathbb{R}^{n \times n}$, $X \in \mathbb{R}^{n \times 1}$ y $B \in \mathbb{R}^{n \times 1}$:

$$A = \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 & 0 \\ a_{2,1} & a_{2,2} & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n-1} & 0 \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n-1} & a_{n,n} \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}, B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{pmatrix}.$$

Algorithm Solve AX = B for $A \in \mathbb{R}^{n \times n}$, $X, B \in \mathbb{R}^{n \times 1}$

Require: $det(A) \neq 0$

Ensure:
$$AX = B$$

for $i \leftarrow 1$ to n do

$$X_i \leftarrow 0$$
 for $i \leftarrow 1$ to $i - 1$ do

$$X_i \leftarrow X_i - A_{i,j}X_j$$

end for

end for return X

- **Operaciones:** (n-1)n sumas, (n-1)n productos, n divisiones.
- **Total operaciones:** $2n^2 n$ operaciones (coste **cuadrático**).

Definición

Diremos que el coste computacional de un algoritmo es **polinomial** si el coste en función del tamaño de la entrada, n, es un polinomio.

Definición

Diremos que el coste computacional de un algoritmo con c(n) operaciones es $\mathcal{O}(n^k)$, $k \in \mathbb{N}$, si

$$\exists \lim_{n \to +\infty} \frac{c(n)}{n^k} = C, \quad C \in]0, +\infty[.$$

Ejemplos

1. El coste computacional del producto escalar, con 2n-1 operaciones, es $\mathcal{O}(n)$:

$$\lim_{n\to+\infty}\frac{2n-1}{n}=2.$$

Ejemplos

2. El coste computacional de la suma de matrices cuadradas, con n^2 operaciones, es $\mathcal{O}(n^2)$:

$$\lim_{n \to +\infty} \frac{n^2}{n^2} = 1.$$

3. El coste computacional del producto de matrices cuadradas, con $2n^3$ operaciones, es $\mathcal{O}(n^3)$:

$$\lim_{n \to +\infty} \frac{2n^3}{n^3} = 2.$$

4. El coste computacional de la resolución de un sistema triangular, con $2n^2 - n$ operaciones, es $\mathcal{O}(n^2)$: $\lim_{n \to \infty} \frac{2n^2 - n}{n^2} = 2.$

Algorithm Compute det(A) for $A \in \mathbb{R}^{n \times n}$

Require: A is a square matrix

Ensure:
$$d = det(A)$$

 $n \leftarrow dim(A)$

if
$$n=1$$
 then

$$d \leftarrow A_{1,1}$$

else
$$d \leftarrow 0$$

for
$$j \leftarrow 1$$
 to n do

$$d \leftarrow d + (-1)^{1+j} A_{1,j} \det(A_{\overline{\{1\}},\overline{\{j\}}})$$
 end for

return d

$2 \cdot n!$ operaciones.

▶ Se tiene que $\forall k \in \mathbb{N}$

$$\lim_{n\to+\infty}\frac{2\cdot n!}{n^k}=+\infty.$$

ightharpoonup Necesitamos ampliar la noción de \mathcal{O} .

Definición

Sea $f : \mathbb{N} \to \mathbb{R}$ y c(n) el número de operaciones requeridas por un algoritmo. Diremos que el coste computacional del algoritmo es $\mathcal{O}(f(n))$ si

$$\lim_{n\to+\infty}\frac{c(n)}{f(n)}=C,\quad C\in]0,+\infty[.$$

Ejemplos

1. El coste computacional del algoritmo que calcula el determinante es $\mathcal{O}(n!)$:

$$\lim_{n \to +\infty} \frac{2 \cdot n!}{n!} = 2.$$

2. El coste computacional de un algoritmo con $2^n + n^6 - 2n^4 + 3n + 7$ operaciones es $\mathcal{O}(2^n)$:

$$\lim_{n \to +\infty} \frac{2^n + n^6 - 2n^4 + 3n + 7}{2^n} = 1.$$

3. Algoritmos de ordenación eficientes: $\mathcal{O}(n \log(n))$.

Definición

Un **problema de decisión** consiste en un problema cuya respuesta se puede plantear como un "sí" o un "no" en función de sus entradas.

- 1. Algoritmo que determina si un número dado es par o impar.
- 2. Algoritmo que determina si un número dado es primo o no.
- 3. Algoritmo para determinar si un grafo es o no es conexo.
- 4. Algoritmo que determina si un Sudoku tiene solución o no.
- 5. Algoritmo para determinar si existe un subconjunto de un determinado subconjunto numérico cuyos elementos suman 0.

Definición

Definimos como **P** (polynomial time) el conjunto formado por todos los problemas de decisión que pueden resolverse de forma determinista con un coste computacional polinomial.

- 1. Algoritmo que determina si un número dado es par o impar. Coste computacional: $\mathcal{O}(1)$.
- 2. Algoritmo que determina si una matriz es o no es simétrica. Coste computacional: $\mathcal{O}(n^2)$.
- 3. Algoritmo que determina si se puede encontrar un camino en un grafo simple que recorre todos sus vértices pasando por todas sus aristas una única vez (caminos/ciclos eulerianos). Coste computacional: $\mathcal{O}(n^2)$.

Definición

Definimos como **NP** (non-deterministic polynomial time) el conjunto formado por todos los problemas de decisión que pueden resolverse de forma no determinista con un coste computacional polinomial.

Equivalentemente, **NP** es el conjunto formado por todos los problemas de decisión cuyas instancias pueden verificarse con un coste computacional polinomial.

- 1. Sudoku.
 - 2. Hallar el subconjunto de un determinado subconjunto numérico cuyos elementos suman 0.
 - 3. Cualquier problema en $P (P \subseteq NP)$.

5	3	4	٥	/	Ø	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	ന	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Sea A el conjunto dado por

$$A = \{-11, 8, 7, 1, -2, 52, -14, 0, -10, 23\}.$$

▶ Entonces el subconjunto $B \subseteq A$ dado por

$$B = \{1, -14, -10, 23\}$$

verifica que la suma de sus elementos es 0.

- \triangleright Coste computacional de la verificación: $\mathcal{O}(n)$.
- En el caso general, un conjunto A verificando |A| = n, posee $|\mathcal{P}(A)| = 2^n$ subconjuntos, luego si se procede por fuerza bruta, en el peor de los casos habría que realizar

$$\sum_{k=1}^{n} (k-1) \binom{n}{k} \text{ sumas } \sim \mathcal{O}(n \cdot 2^{n}) \text{ operaciones.}$$

PROBLEMA DEL MILLÓN:

$$\mathbf{P} = \mathbf{NP}$$
?

¡Muchas gracias!

Contacto:

david.zorio@campusviu.es