Discussion énergétique dans un guide

Calcul du champ B :
$$\overrightarrow{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$

$$\overrightarrow{rot}(\vec{E}) = \begin{pmatrix} \frac{\partial Ey}{\partial z} \\ 0 \\ \frac{\partial Ey}{\partial x} \end{pmatrix} = \begin{pmatrix} E_{0p} k \sin\left(\frac{p\pi}{a}x\right) \sin(\omega t - kz) \\ 0 \\ -E_{0p} \frac{p\pi}{a} \cos\left(\frac{p\pi}{a}x\right) \cos(\omega t - kz) \end{pmatrix}$$

Discussion énergétique dans un guide

Calcul du champ B :
$$\overrightarrow{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$

$$\overrightarrow{rot}(\vec{E}) = \begin{pmatrix} \frac{\partial Ey}{\partial z} \\ 0 \\ \frac{\partial Ey}{\partial x} \end{pmatrix} = \begin{pmatrix} E_{0p} k \sin\left(\frac{p\pi}{a}x\right) \sin(\omega t - kz) \\ 0 \\ -E_{0p} \frac{p\pi}{a} \cos\left(\frac{p\pi}{a}x\right) \cos(\omega t - kz) \end{pmatrix}$$

$$\vec{B} = \begin{pmatrix} E_{0p} \frac{k}{\omega} \sin\left(\frac{p\pi}{a}x\right) \cos(\omega t - kz) \\ 0 \\ E_{0p} \frac{p\pi}{a\omega} \cos\left(\frac{p\pi}{a}x\right) \sin(\omega t - kz) \end{pmatrix} \rightarrow \text{Non transverse !}$$

Discussion énergétique dans un guide

Calcul du champ B :
$$\overrightarrow{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{B} = \begin{pmatrix} E_{0p} \frac{k}{\omega} \sin\left(\frac{p\pi}{a}x\right) \cos(\omega t - kz) \\ 0 \\ E_{0p} \frac{p\pi}{a\omega} \cos\left(\frac{p\pi}{a}x\right) \sin(\omega t - kz) \end{pmatrix}$$
 Non transverse!

Vecteur de Poynting moyen :

$$\langle \overrightarrow{\Pi} \rangle = \left\langle \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} \right\rangle$$

$$\langle \overrightarrow{\Pi} \rangle = \begin{pmatrix} 0 \\ 0 \\ E_{0p}^{2} \frac{k}{2\mu_{0}\omega} \sin^{2}(\frac{p\pi}{a}x) \end{pmatrix}$$

→ Energie selon z!

Relation de dispersion

Guides d'ondes électromagnétiques

Fréquence ν	kHZ	MHz	GHz	THz	PHz	
$\lambda o = {^{C}/_{V}}$	300 km	300 m	0.3 m	0.3 mm	0.3 μm	

Guides métalliques creux

Guides d'ondes électromagnétiques

Fréquence ν	kHZ	MHz	GHz	THz	PHz	
$\lambda o = {}^{C}/_{\mathcal{V}}$	300 km	300 m	0.3 m	0.3 mm	0.3 μm	

Guides d'ondes électromagnétiques

Fréquence ν	kHZ	MHz	GHz	THz	PHz	
						
$\lambda o = c/v$	300 km	300 m	0.3 m	0.3 mm	0.3 μm	

https://www.francetvinfo.fr/internet/securitesur-internet/internet-des-cables-sous-marinspour-faire-transiter-lesdonnees_1532971.html

https://www.falstad.com/embox/guide.html