Package 'kde1d'

January 8, 2025		
Type Package		
Title Univariate Kernel Density Estimation		
Version 1.1.0		
Description Provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded and discrete data. See Geenens (2014) <doi:10.48550 arxiv.1303.4121="">, Geenens and Wang (2018) <doi:10.48550 arxiv.1602.04862="">, Nagler (2018a) <doi:10.48550 arxiv.1704.07457="">, Nagler (2018b) <doi:10.48550 arxiv.1705.05431="">.</doi:10.48550></doi:10.48550></doi:10.48550></doi:10.48550>		
License MIT + file LICENSE		
Encoding UTF-8		
LinkingTo BH, Rcpp, RcppEigen		
Imports graphics, Rcpp, randtoolbox, stats, utils		
Suggests testthat		
<pre>URL https://tnagler.github.io/kde1d/</pre>		
<pre>BugReports https://github.com/tnagler/kde1d/issues/</pre>		
RoxygenNote 7.3.2		
NeedsCompilation yes		
Author Thomas Nagler [aut, cre], Thibault Vatter [aut]		
Maintainer Thomas Nagler <mail@tnagler.com></mail@tnagler.com>		
Repository CRAN		
Date/Publication 2025-01-08 12:20:05 UTC		
Contents		
kde1d-package dkde1d equi_jitter kde1d		

2 kde1d-package

Index 9

kde1d-package

One-Dimensional Kernel Density Estimation

Description

Provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded, discrete, and zero-inflated data. The implementation utilizes spline interpolation to reduce memory usage and computational demand for large data sets.

Author(s)

Maintainer: Thomas Nagler <mail@tnagler.com>

Authors:

• Thibault Vatter <thibault.vatter@gmail.com>

References

Geenens, G. (2014). *Probit transformation for kernel density estimation on the unit interval*. Journal of the American Statistical Association, 109:505, 346-358, arXiv:1303.4121

Geenens, G., Wang, C. (2018). *Local-likelihood transformation kernel density estimation for positive random variables*. Journal of Computational and Graphical Statistics, 27(4), 822-835. arXiv:1602.04862

Nagler, T. (2018a). A generic approach to nonparametric function estimation with mixed data. Statistics & Probability Letters, 137:326–330, arXiv:1704.07457

Nagler, T. (2018b). *Asymptotic analysis of the jittering kernel density estimator.* Mathematical Methods of Statistics, 27, 32-46. arXiv:1705.05431

See Also

Useful links:

- https://tnagler.github.io/kde1d/
- Report bugs at https://github.com/tnagler/kde1d/issues/

dkde1d 3

dkde1d	Working with a kde1d object	

Description

Density, distribution function, quantile function and random generation for a 'kde1d' kernel density estimate.

Usage

```
dkde1d(x, obj)
pkde1d(q, obj)
qkde1d(p, obj)
rkde1d(n, obj, quasi = FALSE)
```

Arguments

Х	vector of density evaluation points.
obj	a kde1d object.
q	vector of quantiles.
p	vector of probabilities.
n	integer; number of observations.
quasi	logical; the default (FALSE) returns pseudo-random numbers, use TRUE for quasi-random numbers (generalized Halton, see randtoolbox::sobol()).

Details

dkde1d() gives the density, pkde1d() gives the distribution function, qkde1d() gives the quantile function, and rkde1d() generates random deviates.

The length of the result is determined by n for rkde1d(), and is the length of the numerical argument for the other functions.

Value

The density, distribution function or quantile functions estimates evaluated respectively at x, q, or p, or a sample of n random deviates from the estimated kernel density.

See Also

```
kde1d()
```

4 equi_jitter

Examples

```
set.seed(0) # for reproducibility
x <- rnorm(100) # simulate some data
fit <- kde1d(x) # estimate density
dkde1d(0, fit) # evaluate density estimate (close to dnorm(0))
pkde1d(0, fit) # evaluate corresponding cdf (close to pnorm(0))
qkde1d(0.5, fit) # quantile function (close to qnorm(0))
hist(rkde1d(100, fit)) # simulate</pre>
```

equi_jitter

Conditionally equidistant jittering

Description

Converts ordered variables to numeric and Adds deterministic uniform noise. See Details.

Usage

```
equi_jitter(x)
```

Arguments

Х

observations; the function does nothing if x is already numeric.

Details

Jittering makes discrete variables continuous by adding noise. This simple trick allows to consistently estimate densities with tools designed for the continuous case (see, Nagler, 2018a/b). The drawback is that estimates are random and the noise may deteriorate the estimate by chance.

Here, we add a form of deterministic noise that makes estimators well behaved. Tied occurrences of a factor level are spread out uniformly (i.e., equidistantly) on the interval [-0.5, 0.5]. This is similar to adding random noise that is uniformly distributed, conditional on the observed outcome. Integrating over the outcome, one can check that the unconditional noise distribution is also uniform on [-0.5, 0.5].

Asymptotically, the deterministic jittering variant is equivalent to the random one.

References

Nagler, T. (2018a). A generic approach to nonparametric function estimation with mixed data. Statistics & Probability Letters, 137:326–330, arXiv:1704.07457

Nagler, T. (2018b). Asymptotic analysis of the jittering kernel density estimator. Mathematical Methods of Statistics, in press, arXiv:1705.05431

Examples

```
x <- as.factor(rbinom(10, 1, 0.5))
equi_jitter(x)</pre>
```

kde1d 5

kde1d	Univariate local-polynomial likelihood kernel density estimation

Description

The estimators can handle data with bounded, unbounded, and discrete support, see Details.

Usage

```
kde1d(
    x,
    xmin = NaN,
    xmax = NaN,
    type = "continuous",
    mult = 1,
    bw = NA,
    deg = 2,
    weights = numeric(0)
)
```

Arguments

х	vector (or one-column matrix/data frame) of observations; can be numeric or ordered.
xmin	lower bound for the support of the density (only for continuous data); NaN means no boundary.
xmax	upper bound for the support of the density (only for continuous data); NaN means no boundary.
type	variable type; must be one of {c, cont, continuous} for continuous variables, one of {d, disc, discrete} for discrete integer variables, or one of {zi, zinfl, zero-inflated} for zero-inflated variables.
mult	positive bandwidth multiplier; the actual bandwidth used is $bw*mult$.
bw	bandwidth parameter; has to be a positive number or NA; the latter uses the plugin methodology of Sheather and Jones (1991) with appropriate modifications for $deg > 0$.
deg	degree of the polynomial; either \emptyset , 1, or 2 for log-constant, log-linear, and log-quadratic fitting, respectively.
weights	optional vector of weights for individual observations.

Details

A Gaussian kernel is used in all cases. If xmin or xmax are finite, the density estimate will be 0 outside of [xmin, xmax]. A log-transform is used if there is only one boundary (see, Geenens and Wang, 2018); a probit transform is used if there are two (see, Geenens, 2014).

6 kde1d

Discrete variables are handled via jittering (see, Nagler, 2018a, 2018b). A specific form of deterministic jittering is used, see equi_jitter().

Zero-inflated densities are estimated by a hurdle-model with discrete mass at 0 and the remainder estimated as for type = "continuous".

Value

An object of class kde1d.

References

Geenens, G. (2014). *Probit transformation for kernel density estimation on the unit interval*. Journal of the American Statistical Association, 109:505, 346-358, arXiv:1303.4121

Geenens, G., Wang, C. (2018). *Local-likelihood transformation kernel density estimation for positive random variables*. Journal of Computational and Graphical Statistics, to appear, arXiv:1602.04862

Nagler, T. (2018a). A generic approach to nonparametric function estimation with mixed data. Statistics & Probability Letters, 137:326–330, arXiv:1704.07457

Nagler, T. (2018b). *Asymptotic analysis of the jittering kernel density estimator.* Mathematical Methods of Statistics, in press, arXiv:1705.05431

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, 53, 683–690.

See Also

```
dkde1d(), pkde1d(), qkde1d(), rkde1d(), plot.kde1d(), lines.kde1d()
```

Examples

```
## unbounded data
x <- rnorm(500) # simulate data
fit <- kde1d(x) # estimate density
dkde1d(0, fit) # evaluate density estimate
summary(fit) # information about the estimate
plot(fit) # plot the density estimate
curve(dnorm(x),
  add = TRUE, # add true density
  col = "red"
## bounded data, log-linear
x < - rgamma(500, shape = 1) # simulate data
fit <- kde1d(x, xmin = 0, deg = 1) # estimate density
dkde1d(seq(0, 5, by = 1), fit) # evaluate density estimate
summary(fit) # information about the estimate
plot(fit) # plot the density estimate
curve(dgamma(x, shape = 1), # add true density
  add = TRUE, col = "red",
  from = 1e-3
)
```

plot.kde1d 7

```
## discrete data
x <- rbinom(500, size = 5, prob = 0.5) # simulate data
fit <- kde1d(x, xmin = 0, xmax = 5, type = "discrete") # estimate density
fit <- kde1d(ordered(x, levels = 0:5)) # alternative API</pre>
dkde1d(sort(unique(x)), fit) # evaluate density estimate
summary(fit) # information about the estimate
plot(fit) # plot the density estimate
points(ordered(0:5, 0:5), # add true density
 dbinom(0:5, 5, 0.5),
 col = "red"
## zero-inflated data
x \leftarrow rexp(500, 0.5) # simulate data
x[sample(1:500, 200)] \leftarrow 0 \# add zero-inflation
fit <- kde1d(x, xmin = 0, type = "zi") # estimate density
dkde1d(sort(unique(x)), fit) # evaluate density estimate
summary(fit) # information about the estimate
plot(fit) # plot the density estimate
lines( # add true density
 seq(0, 20, 1 = 100),
 0.6 * dexp(seq(0, 20, 1 = 100), 0.5),
 col = "red"
points(0, 0.4, col = "red")
## weighted estimate
x <- rnorm(100) # simulate data
weights <- rexp(100) # weights as in Bayesian bootstrap
fit <- kde1d(x, weights = weights) # weighted fit</pre>
plot(fit) # compare with unweighted fit
lines(kde1d(x), col = 2)
```

plot.kde1d

Plotting kde1d objects

Description

Plotting kde1d objects

Usage

```
## S3 method for class 'kde1d'
plot(x, ...)
## S3 method for class 'kde1d'
lines(x, ...)
## S3 method for class 'kde1d'
points(x, ...)
```

8 plot.kde1d

Arguments

```
x kde1d object.... further arguments passed to plot.default()
```

See Also

kde1d()

Examples

```
## continuous data
x \leftarrow \text{rbeta(100, shape1 = 0.3, shape2 = 0.4)} \# \text{ simulate data}
fit <- kde1d(x) # unbounded estimate</pre>
plot(fit, ylim = c(0, 4)) # plot estimate
curve(dbeta(x, 0.3, 0.4), # add true density
  col = "red", add = TRUE
fit_bounded \leftarrow kde1d(x, xmin = 0, xmax = 1) # bounded estimate
lines(fit_bounded, col = "green")
## discrete data
x <- rpois(100, 3) # simulate data
x \leftarrow \text{ordered}(x, \text{levels} = 0:20) \# \text{declare variable as ordered}
fit <- kde1d(x) # estimate density
plot(fit, ylim = c(0, 0.25)) # plot density estimate
points(ordered(0:20, 0:20), \# add true density values
  dpois(0:20, 3),
  col = "red"
## zero-inflated data
x \leftarrow rexp(500, 0.5) # simulate data
x[sample(1:500, 200)] \leftarrow 0 \# add zero-inflation
fit <- kde1d(x, xmin = 0, type = "zi") # estimate density
plot(fit) # plot the density estimate
lines( # add true density
  seq(0, 20, 1 = 100),
  0.6 * dexp(seq(0, 20, 1 = 100), 0.5),
  col = "red"
points(0, 0.4, col = "red")
```

Index

```
dkde1d, 3
dkde1d(), 3, 6
\verb"equi_jitter", 4
equi_jitter(),6
kde1d, 5
kde1d(), 3, 8
kde1d-package, 2
lines.kde1d(plot.kde1d), 7
lines.kde1d(),6
pkde1d (dkde1d), 3
pkde1d(), 3, 6
pkde1d, (dkde1d), 3
plot.default(), 8
plot.kde1d, 7
plot.kde1d(), 6
points.kde1d(plot.kde1d), 7
qkde1d (dkde1d), 3
qkde1d(), 3, 6
qkde1d, (dkde1d), 3
randtoolbox::sobol(), 3
rkde1d (dkde1d), 3
rkde1d(), 3, 6
```