Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

R312

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE Field Crops Research Branch and AGRICULTURAL MARKETING SERVICE

U. S. DEPT. OF AGRICULTURE
NATIONAL AGRICULTURAL LIBRARY
MAR 6 1969

(NOT FOR PUBLICATION) 1/

CURRENT SERIAL RECORDS

MILLING, BAKING, AND CHEMICAL EXPERIMENTS WITH HARD RED SPRING WHEAT 1953 CROP 2/

by

C. C. Fifield, Senior Baking Technologist, Field Crops Research Branch,
Agricultural Research Service; E. Hoffecker, M. B. Matlack, and T. F. Hartsing,
Associate Grain Technologists, J. F. Hayes, Assistant Grain Technologist, Grain
Division, Agricultural Marketing Service

CONTENTS

	Page
Introduction	2
Source of samples	
Methods used in milling and baking tests	
Experimental results	
Station plot experiments	
Uniform regional nursery composite	11
Supplementary hard red spring regional yield nursery	19
State nursery trials	22
Sawfly resistant trials	25
Special foreign varieties and strains	
Mexican varieties and strains in nursery trials	35
Commercial samples	
Strains and varieties of current interest	40

^{1/} This is a progress report of cooperative investigations containing data the interpretation of which may be modified with additional experimentation. Publication, display, or distribution of any data or any statements herein is prohibited without prior written approval of the Field Crops Research Branch, ARS, USDA, and the cooperating agency or agencies concerned.

²/ Cooperative investigations of the Field Crops Research Branch, Agricultural Research Service, and the Grain Division, Agricultural Marketing Service. The samples were obtained from the cooperative experiments with the State Agricultural Experiment Stations in the spring wheat region.

INTRODUCTION

Samples of the standard varieties and many of the new strains of hard red spring wheats, grown in cooperative experiments in the spring wheat region of the United States 3/, are milled each year by the United States Department of Agriculture and the flowrs baked into bread to determine their quality characteristics.

The baking methods and techniques used on the 1953 crop were essentially the same as those used in similar work for the 1944 to 1952 crops, inclusive, and described in previous reports.

The purpose of this report is to make available to cooperators the quality data on standard varieties, new strains. and commercial hard red spring wheat from the 1953 crop.

SOURCE OF SAMPLES

Tests were made on composite and individual samples of the uniform varieties and of many other varieties and strains grown in plot experiments at cooperating stations. These included samples grown at Madison, Wis.; Morris, Waseca, and Crookston, Minn.; Fargo, Langdon, Minot, and Dickinson, N. Dak.; Newell, S. Dak.; and Havre, Sidney, and Moccasin, Mont. Similar tests were made on Eastern and Western Composites of the 26 strains of wheat grown in the Uniform Regional Nurseries; on the wheats from the Supplementary Yield Nurseries; and on the wheats from the Station nurseries at Havre, Moccasin, and Sidney, Mont. Tests were also made on a number of sawfly resistant and foreign varieties and strains of wheat grown in Montana, and 22 of the better wheats from the Mexican breeding program grown in the United States.

There were also included 14 samples composited from samples of carlot receipts of wheat accumulated during a 90-day period of the 1953 crop movement by the Minneapolis, Duluth, and Great Falls offices of the Crain Branch, Agricultural Marketing Service. These samples represent country-run receipts of the class Hard Red Spring Wheat and included only those lots that were graded No. 3 or better under the official grain standards of the United States. These hereafter are referred to as commercial samples. This is the fifteenth season that such samples have been collected and tested.

^{3/} Ausemus, E. R. Results of spring wheat varieties grown in cooperative plot and nursery experiments in the spring wheat region in 1953. U. S. Dept. Agr., Field Crops Res. Br. 301 CC. 56 pp. March 1954. University Farm, St. Paul 1, Minn. [Processed]

METHODS USED IN MILLING AND BAKING TESTS

After the removal of dockage, the samples were prepared for milling by use of a milling separator and a scourer (both of experimental or laboratory size). The wheat samples were tempered in two stages. The water for the first temper was added 72 hours prior to milling and raised the moisture content of the grain to between 13.0 to 16.0 percent. depending upon the hardness of the variety, or within 1 percent of the total moisture required. The additional 1 percent of water for the second temper was added 1/2 hour before milling and raised the moisture content of the grain to between 14.0 and 17.0 percent. The wheat was milled on a Buhler automatic laboratory flour mill provided with three break and three reduction rolls. Ten percent of the low grade flour was discarded, leaving a 90 percent patent flour which was used for the chemical and bread baking tests. However, the flour yield data in the Tables are reported on the basis of a straight grade flour (100 percent) obtained from each sample.

The test weight per bushel of each sample was determined in the laboratory on the dockage-free wheat. The protein and ash contents are reported on a l4.0-percent-moisture basis and the flour yield on a moisture-free basis.

The hardness of the grain was determined by pearling 20 grams of dockage-free whole wheat for 1 minute in a model No. 38 Strong-Scott pearler. The amount of material pearled off, expressed as a percentage of the wheat, is called the pearling index. This pearling index has been found useful, not only as a guide in tempering the samples for milling, but also as a measure of the hardness of the grain. A low index figure indicates hard grain and a high index figure indicates soft grain.

The bread baking tests on the 1953 samples were made by a rich formula with none or varying amounts of potassium bromate added.

This method with the various ingredients used in 1953 is shown in Table 1.

Table 1. Baking method and ingredients used for samples of the 1953 crop.

Ingredients and treatment	Weight of ingredients, etc.
or eartherro	Tilgi ed. Ciros, e oc.
Flour (grams)	100.0
Yeast (grams)	2.0
Salt (grams)	1.5
Sugar (grams)	5.0
Potassium bromate 1/ (milligrams	optimum
Malted wheat flour (grams)	• 25
Nonfat dry milk solids (grams)	4.0
Shortening (grams)	3.0
Water absorption (percent)	Optimum
Mixing time (minutes)	Optimum
Fermentation time (minutes)	180
Handling of dough	1st punch after 105 minutes
	2nd punch after additional 50 minutes
	Mold after additional 25 minutes
	Proofing time - 55 minutes
	Baked 25 minutes at 450° F.

^{1/} Zero to 3 mgs. of potassium bromate used as necessary to obtain maximum loaf volume.

This baking procedure is based on the method of the American Association of Cereal Chemists with certain modifications deemed necessary for unbleached, experimentally milled flour.

A check or standard flour (12.8 percent protein and 0.49 percent ash on a 14.0-percent-moisture basis) was included in the baking trials with each day's tests. The average loaf volume of the baking tests made with the standard flour was 802 cc and the standard error was 20.2 cc. On this basis the least significant difference between two single bakes is 57 cc.

The undesirable properties of each variety with respect to loaf volume, crumb grain, and color characteristics of the bread is indicated in the Tables by "q" for questionable and "u" for unsatisfactory, adjacent to the numerical data pertaining to the property in question. No letter or other symbol with the numerical score is used to indicate a satisfactory rating. The following scores may be used as an index for judging the crumb grain and color and the quality of the bread:

59 or below	Very poor or unsatisfactory
60 to 69	Poor or questionable
70 to 79	Fair
80 to 89	Good
90 to 99	Very good
100 and above	Excellent

Bread loaf volume must also be adequate for the protein content of the flour if the variety is to be considered satisfactory. The loaf volumes are shown in the Tables on an "as is" protein basis and, in addition, they are shown adjusted to a 12.0 percent protein content.

An unsatisfactory rating on one or more of the properties indicates that the variety or strain is generally undesirable for hard wheat milling or bread making purposes except that a questionable rating on one or more of the quality properties may be balanced by other outstanding properties. The milling properties are discussed in the text and should be considered along with the bread baking properties.

EXPERIMENTAL RESULTS

The quality results for the plot and nursery composites, individual station samples, and others are given in Tables 2 to 8. The results for the commercial samples are shown in Table 9. Summaries of the new strains of current interest compared with Thatcher are shown in Table 10. These Tables largely are self-explanatory. The varieties or strains are arranged in the Tables in order of their maximum loaf volume. Acre yields are included, where comparable, to assist in the interpretation of results.

Station Plot Experiments

The quality data for the uniform varieties and others grown in plots are shown in Table 2.

Wisconsin - Two sets of samples from early and late sown plots, respectively, were received from Madison, Wisconsin. All were relatively high in wheat protein content, a number being higher than 16.0 percent. Many varieties of the early sown plots produced exceptionally high yields of flour, especially considering the test weight per bushel. Seven of them had flour yields of 76.0 percent or better.

Of the early sown varieties, Selkirk was one of the best. It produced a remarkably high yield of flour (77.0 percent) for the low test weight per bushel (56.7 pounds) and made very good bread. It is a strong bread wheat of very good dough properties and high water absorption.

Sample No. H195-45, W.242, was also among the best in milling and baking qualities considering the data as a whole. It appears to be much like the approved varieties in quality.

Strain H194-41. W.246, was satisfactory in milling and made good bread, but the dough mixing time was about 25.0 percent shorter than for Lee or Henry and about 40.0 percent shorter than the comparably grown Thatcher. In previous tests the dough mixing time has been satisfactory and similar (longer) to the generally grown varieties.

Strains H405c-7-1-1-1 and H405c-7-1-1-3 were very similar in quality. Both milled satisfactorily with a high yield of flour and made satisfactory bread. The loaf volumes of the bread were about that expected for the flour protein content of the samples. The dough handling properties of both were good, being elastic and pliable. These have dough mixing times similar to Mida, but were shorter than either Thatcher or Rushmore. The quality characteristics of others of this group were substantially the same as in previous years.

The strains Rushmore² x Surpresa; Frontana x Thatcher, Minn. 2854; and Willet, Minn. 2855, from the late sown plots made bread of good internal characteristics, but were deficient in loaf volume and in dough mixing time, being about 50 percent shorter than Lee. The dough was slightly sticky and weak. All of these samples milled poorly and two produced a low yield of flour. All exceeded Lee in wheat protein content.

Timstein x Henry, C.I. 13026, made bread that was good in water absorption, loaf volume, and crumb grain. It was inferior to Lee in crumb color, short in dough mixing time, and deficient in milling properties. The middlings were difficult to reduce to flour. The flour was granular to the feel and similar in this respect to the comparably grown Lee. The Wisconsin grown strain appears to be deficient in dough mixing time and milling properties.

Minnesota - Samples were received from three Minnesota stations, Crookston (early and late plantings), Morris, and Waseca. Protein contents of the wheat and flour were relatively low at Crookston and only medium at Morris and Waseca.

Selkirk, considering the data from all stations, milled satisfactorily and was one of the better wheats in flour yield. The dough characteristics were strong and the bread good in crumb color and grain. It required a medium amount of bromate for optimum bread results. Loaf volumes were about that expected in relation to the protein content of the samples.

Kentana made fair to good bread from a loaf volume and internal characteristics standpoint but had a short dough mixing time. The dough was weak and sticky. Kentana required a high amount of bromate for optimum bread quality. It milled poor and the flour was very soft and bolted slow. This variety is considerably lower in a number of quality factors than the approved hard red spring varieties.

Frontana x Thatcher, Minn. 2854, and Willet, Minn. 2855, made bread of good loaf volume and crumb grain. but were deficient in dough mixing requirements. Both were much shorter in dough mixing time than many of the hard red spring varieties. The dough was sticky and slightly weak. Both milled well and the flour yield was about that expected in relation to test weight per bushel. The dough mixing time was shorter than that of the approved varieties and the dough handling properties were deficient.

Thatcher x Surpresa, Minn. 2824, appears to be similar to the approved varieties in milling performance and in loaf volume and crumb grain of bread. It had the highest loaf volume on a 12.0 percent protein basis in the averages of five varieties from the Minnesota stations. The crumb color was only medium good for this year's samples from the Minnesota stations and poorer

than last year's results. It had a shorter dough mixing time than most of the approved hard red spring varieties and the dough was sticky and slightly weak for the Morris and Crookston (early plot) samples. This is a questionable strain because of the short mixing time and poor dough handling properties.

The five Lee x Mida selections (grown only at Crookston) are promising from a quality point of view. All milled satisfactorily and produced a high yield of flour. No. 3880.132 was best in flour yield. All made bread generally good in quality. Strain No. 3880.83 considering the data as a whole made the best bread. Actually, the difference in quality is not very great between any of these Lee x Mida selections.

Timstein x Henry. II-44-65, C.I. 13026, (grown at Crookston only) milled satisfactorily but produced a lower yield of flour than either Lee or Selkirk which had about the same test weight per bushel. It made good bread and the dough was elastic and strong. The dough mixing time was equal to the approved hard red spring varieties at this Station. It was about 25 percent shorter in dough mixing time than Thatcher for the last season's crop (1952) samples tested. This seems to be a fairly promising strain according to the few samples tested, providing the dough mixing requirements and flour yield are not too different from that of the accepted varieties.

South Dakota - South Dakota samples were received only from Newell. Triunfo x Thatcher, N.No. 630, milled satisfactorily, but the yield of flour was low in comparison to the test weight of the sample and to that obtained from other varieties of the same or lower test weight. It was one of the highest samples in protein content of wheat and had a low ash content in the flour. The loaf volume of the bread was slightly lower than expected in relation to the flour protein content, but the internal bread properties were very good. The dough mixing time was extremely short and less than half that of the approved varieties grown at the Newell, South Dakota, Station.

Rushmore² x Surpresa, PW36, milled satisfactorily, producing a fairly good yield of flour. The grain was softer than the approved varieties and the flour semisoft to the feel. It made good bread and the absorption was high, but the dough handling properties were inferior, the dough being soft sticky, and weak. It also has a very short dough mixing time. It is not a promising wheat because of its short dough mixing time and other inferior characteristics.

Thatcher. Mida, Lee, Selkirk, and Rushmore made good bread. Lee. Selkirk, and Rushmore were among the best of these in flour yield.

North Dakota - Samples were received from four North Dakota stations: Minot, Dickinson. Langdon, and Fargo.

Lee x Mida sib, Ns. 3880, had good milling properties and produced a medium yield of flour. The ash content of the flour was low and the dough handling properties satisfactory. It made good bread. The water absorption and dough mixing time were similar to that of the approved hard red spring varieties. The crumb grain of the bread was exceptionally good. It was one of the better strains in this respect. It required more potassium bromate than either Thatcher

or Mida for optimum bread results. This is a promising bread wheat from the quality point of view.

Henry x Cadet, 2239, made fairly good bread and is a promising strain considering the data as a whole. The milling characteristics were satisfactory. The grain was found to be similar in hardness and produced a granular type flour like that milled from Thatcher. It made bread that was better in crumb grain than in crumb color. It was satisfactory in dough handling properties, but not considered as strong as Thatcher in this respect.

Thatcher x Surpresa. Minn. 2824, appears to be generally similar to the approved varieties in milling and baking performance. except for dough mixing time which was about 25 percent shorter than that of Lee, Thatcher, or Mida. Thatcher, Selkirk, Mida, and 1764 x Henry made good bread. Averages of the quality data from four North Dakota stations showed Selkirk to be highest of six varieties in yield of flour. It has been one of the best varieties in this respect at most stations.

Montana - Samples were received from three Montana stations: Moccasin, Havre, and Sidney. Strain 1764 x Henry, N.No. 2211, made good bread, but yielded less flour than Lee, Thatcher, or Mida. Quality results for N.No. 2211 grown at other stations in the hard red spring wheat region shows that it yields about 2 to 3 percent less flour than comparably grown samples of Thatcher. Many samples of N.No. 2211 have milled satisfactorily, but a number of others have shown a tendency of the middlings to be difficult to reduce to flour. It is a questionable strain because of its inferior milling properties.

The samples of Lee from Havre and Sidney and Mida from Havre made a loaf much lower in volume than expected considering the protein content of the samples. The past performance of these varieties from both Stations have been satisfactory. The wheat appeared to be sound, but the dough handling properties were poor and unsatisfactory. It is possible that the high temperatures (90° F. or higher) that prevailed some of the days during the fruiting period may account, in part, for the impaired loaf volumes.

Talle 2. Tield, milling, baking, and chemical results for hard red spring wheats grown in replicated "plots" in 1953.

				Fear-1-							Optin	Optimum Baking Method	ng Meth		Lcaf Yolune
The state of the s	E E	Acere	Head Index	Index	Prof	Protein	Flour Yield A	1-8	Absorp- tion	Mixing	Promate	Loaf	Color G	air	Corrected to 12.0 Percent Frotein
An Annual															77.0.77
			0	HOH	FCF	104	Pet	Fot:	LCT	in in	200	8	Score	Score	
					Pa di	Palisem. Wisconsin	1 SCOMS								
E-L-II-COURTE . INDICATE -IL-II-II		311 3	F	32			Ĭ	.4 2	8	1,75	н	663	35	95	710
Sellkinik Ci lab	DOUBLE	HE 1	126.7	A			Ť	47	2	2.00	m	884	82	ይ	731
THE HORSE HACTORIA IN THE PER	1300gm			32		14.6	Ť	946	8	1,75	H	879	8	95	722
Trattered a Sugarens M. Zaza	120041	開	60	2	6.4		75.7	7	5	1.3	- 1 :	877	12	32	768
High property of (1111-1115) and the property of the state of the stat	# A P P P P P P P P P P P P P P P P P P	D E	n R			\$1	9	Đ	20	2.5	1	242	3	S S	121
"Senta"	1277655	333	1 July 1	嵩			_	100	व	2,00	H	835	8	8	777
Less	1274EIB	32 4	0 86	8			ŭ	F.	8	2,00	2	833	8	53	719
Rustimore	12273	M		R			13.5	8	8	2.25	0	828	8	8	774
Traterier z ((1111-1445.38 z Hope), 12649	128649	30°1		問			Ĭ	4	25	1.50	0	812	B	8	169
田田田井山田。田田田田															
Shirt Cean	HOVE I		18 N	A				£	8	3	rd (910	8	20	669
Thatteiner.	ECOTOTAL P			0 1	n e	12-1	13.7	n i	3 8	2°2	- 4 ℃	200	ઈ ફ	ខ ឧ	750
	TO THE PERSON			9					y	T•/3	J	707	3	2	10/
		372 0	月開	開	N O	ET .	75.4	145	29	1.85	1.0	838	83	63	
					- 1		- 1								
					Brad	-	Wiscomsim	Į.							
						(Late s									
Time tein x Henry III 444-655	13036	16.6	情	開	16.5	15.6		19	8	1.2	2	381	75	55	676
William, Minna Zento	0000EIL	A ON	H. SEE	23			2.93		ಠ	1.25	2	868	8	95	6479
Frontann & Thatterien, Winn, 2004				RI I		in in		, 居	8	86	~ (සු දු	8 8	ጽ 8	652q
	1444			t			***		3 8	300	7 (3 5	S A	3 8	8 2
Historian A Shariff was a state of the state	100	1	A A	7		0			3	F-10	7	707	3	3	bet b
W. TORROTT DE COMME		8	4	e e	# W	ff [F	F. 0.4		Ç	0	2-0	848	86	6	
			1	4				3	}	2		}	3	;	

f Volume		.		742	853 702	818	769	177	822	737	130	167	inst	10-				768	874	795	803	770	\$	796	779	808 408	810	813	878			
1.09	rain	Score		88	S #	8 8	8 g		S 52	32	80	23		8 3				8	85	95	85	8	8	05	80 J	82	82	8	8		88	
	Optimum Baking Method Loaf Crumb mate Volume Color G	Score		8 1	ال ال	8 8	8 10 10	ς Σ π	2 g	8	75	8		82				8	75	8	8	8	8	8	ස	82	75	20	2		85	
	Loaf Volume			748	732	595	269	0/0	7/0	657	623	620		681				794	794	762	756	751	751	743	734	717	702	869	637		737	
	Optin Bromate	ोर्डि •-		<u>ب</u>	2 F	-	н с	u c) r	0	0	0		8°0				2	႕	2	7	2	2	2	2	2	e-4	N	~ I		1.8	
	Lixing Tine	Min.		1.25	ر ا ا	2.25	00.1	200	200	2.00	2.00	2,00		1.73				1,25	2,00	2,00	5.00	2°00	1.00	1.75	2.00	2.50	2,00	1.00	2,00		1.79	
	Absorp- tion	Pot.		99	0 0 0 0 0 0	8 ಡ	09 6	ה ה	d 5	l 더	19	9		19				62	63	62	63	63	8	[9	19	63	0	59	19		29	
	Flour Yield Ash	Pct. Pct.	Mir sota		240				4.4					5 .43		me sota	2	4 040			5 .45			Ĭ				Ť	0,0		2 %	
		Pct. Pc					8 75.6							4 76.5		•	te sown				3 76.5			2 75.5							0 76.2	
	Protein Wheat Flour	Pot. Po	Grookston,			0.9 10.2	12.3 10.		10.4 TO 2.7					11,3 10,4		Crookst	(mare	3.1 12.4			11.9 11.3								9.3 8.7		11.8 11.0	
Dearl		Pot.			32 I				4 CE					35 1.																	31 1	
	Test I	Tpp.		60.7	2 C			C.20	70.2	62.5	9°09	62.2		61.7				61,1	62,5	61.8	62,5	61,2	61°6	62°2	0°09	60 e4	60.7	62°2	57,3		61.1	
	Acre	å .		32.3	45.4	35.5	33.7	30.7	33.6	33.5	38.5	28.4		34.8				36.2	39,5	40°8	41.1	36°2	35°1	40.6	39°4	33°6	37 \$5	37.8	22.5		36.7	
	C. H.			13099	12641	13100	13030	נדכני	17708	12488	12265	12008						13099		***			13030		13100	12488	13026	12972	12008			
	Variety or Cross			Willet, M2855	Thatcher x Surpress, M2824	Thatcher Selkirk, CT 186		Kentana, MZ800	Rushmore	Lect	Henry	Midz		Average				Willet, M2855	Lee x Mida sel., 3880,132			Do105		Lee x Lida sel., 3880,127		Lee	Timstein x Henry, II-44-65	Rushmore z Surpresa, FW36	Mida	Q Company	Average	

														-		ł
				Fearl-							Optim	um Baki	Optimum Baking Method		Loaf Volume	a)
				Index	Pro	Protein	Flour		J.	Mixing	+	Loaf	Crumb	1	Corrected to 12.0 Percent	0 #
Variety or Cross	LX • ON	xerd	neignt	value	nuea t	Minea t & Louir	lield Asii		TOTA	- 1	- 4	OT TO	10100	T all	TLO CETT	1
		Br.	Lb.	Pct.	Pct.	Pet.	Pct. Pct.	Pct.	Pot.	Min.	1.g.	000	Score	Score	8	
					IOM	Morris, M	Minnesota	d								
Willet, M2855	13099 2	28.1	57.6	36	14.4	13.5	72.2	.43	61	1.00	r-4	868	80	80	177	
Lee		24.7	56.1	27	13.8	12.9	73.9	.52	63	2.25	r-4	845	85	3	786	
		31.3	58.1	38	14.1	13.0	74.1	848	ত ড	8,1	r-1 r	813	80 G	80	750	
Selkirk, CT 186	13100 3	34. 0. เก	56.7	% 4 % 4	13,3	12.7	74.0	L 4	8 7	1.75	-	191	ස දි	8 K	748	
Rushmore		21.8	56.4	2 2 2	12.3	1,11	74.3	52	000	2.00	100	758	228	. KS 4	777	
Inatoner x Surpress, MZ824	7 14071	7)	7.00	17	11.0/	10.0	13°T	/4.	3	DC.1	5	\$	2	2	0 * *	
Average	2	28.0	57.5	33	13 ,4	12,4	73.3	848	19	1.54	0.7	797	18	85		
					Wase	ecs, Mi	Wasecs, Minnesota									1
Lee		4. n	52.6	27	14.7	13.9	71.4	.51	63	2.00	-1 -	858	8 5	9 g	740	:
Inatoner z Surpresa, M2624 Selkirk, CT 186		3.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	24.0	25	13.2	12,4	75.3	.45 .49	3 2	2,25		78.	82	32.8	768	11-
Rushmore Kentana, M2860	12273 2	20.4 18.9	ເດີ 42 ໝໍານໍ້	¥ ¥	12.8	12,3	73.6	8. 8.	6 61	2.00	οN	157 745	283	රි <mark>තී</mark>	733	
Average	2	24.1	φ. ω.	53	13.5	12.5	72.5	°48	. 29	1.80	0,0	792	22	82		1
Ave	Average Data for	for F	Five Varieties	ieties	and	Strains	from Morris,		Wa seca,		Crookston, Minnesota	nesota				
Lee		27.3	57.1	53	13.4	12.5	73.6	8 4		2,08	7.0	787	88 8	85	754 977	
Seletific Thatcher x Surpresa, MZ824	12641 3	32.5	59.7	7 8	12.1	10.9	77.6	64° 64°	8 8	1.50	0.0	759	22	606	810	
Kentans, M2860		28.0	58.7	47	13°1	11.5	71.03	•45		1.25	1.7	732	95	88	273	
Rushmore	12273 2	24.3	57.6	56	12.1	11.5	75.0	640		2.00	0	121	72	82	761	
																1

	i														
Variety or Goss	C.I.	Acre	Test	rearl- ing Index Value	Protein Wheat Flour	Protein eat Flour	Flour Yield Ash		Absorp- 1	Lixing Time	Optim	Loaf Volume	Optimum Baking Method Loaf Crumb mate Volume Color G	la in	Loaf Volume Corrected to 12.0 Percent Protein
		ā	Lb.	Pot.	Pct.	Pot.	Pct. Pct.	Pot.	Pot.	Min.	Mg.	8	Score	Score	8
					Newel.	l, Sout	Newell, South Lakota	ď							
Selkirk, CT 186 1764 x Henry, 2211 Lee Triunfo x Thatcher, 630 Rushmore x Surpresa, FW 36 Rushmore Mida Thatcher	13100 12733 12488 12625 12972 12273 12008 10003	17.7 18.5 18.7 20.3 20.6 19.8 16.5	3.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	222 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13.9 112.9 12.7 13.5 13.5 11.1 11.1	1.4.8.0.11111111111111111111111111111111	75.5 71.1 76.7 71.9 73.4 75.1 72.1	12 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6488888	1.50 2.25 2.25 3.75 2.00 2.00 2.00	ономоми	804 782 762 760 722 718 681 668	888883	8888888	736 823 707 728 730 711
Average		18.7	58.1	56	12.7	11.8	73.4	-51	9	1,66	1.1	737	82	98	-
					Min	ot, Nor	Minot, North Lakota	1							-12
Lee x Mida sib, Ns. 3880 Henry x Cadet, NN 2239 Lee Selkirk, CT 186 Thatcher x Surpresa, M2824 Thatcher Rushmore Mida	12976 12779 12488 13100 12641 10003 12273 12008	20.22 22.22 22.23 22.33 12.33 12.33 12.33 8.83	4.1.00000000000000000000000000000000000	25 28 28 28 28 28 28 28 28 28 28 28 28 28	13.5 13.5 13.7 12.3 12.7 11.8	12.8 112.7 112.7 112.7 11.6 112.3 111.1	72.5 70.8 772.0 77.5 70.6 67.8 69.2	44 44 45 47 47 45	68688488	2.00 2.00 2.00 2.00 1.75	икининн	807 807 794 775 771 774 676	85 75 75 85 85 85 85 85 85 85 85 85 85 85 85 85	88888888	756 762 727 742 806 736 731
Average		17.0	55.8	25	12.8	12,3	71.6	4	8	1.84	1.5	2772	9/	86	
				A	iokins	n, Nor	Diokinson, North Dakota	d 43							
Selkirk, CT 186 Thatcher x Surpress, M2824 Lee x Mida sib, Ns. 3880 Lee 1764 x Henry, NN 2211 Mida Thatcher	13100 12641 12976 12488 12733 12008	28.2 23.4 22.7 22.5 15.1 16.6	57.3 59.0 58.2 56.1 53.6	223 28 33 223 28 33	4.441 4.00 4.00 4.00 6.00 6.00 7.00 9.00 9.00 9.00 9.00 9.00 9.00 9	0.4411300	76.1 74.5 72.8 71.5 67.3 67.8	14 6 4 4 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6	60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	2.25 2.25 2.25 2.25 2.25 2.25	unu niuo	954 888 864 864 864 77 785 77	8888877 888887	88 8 8 8 8 8	763 756 715 699 730 760
Average		20.4	55.8	27	14.4	13.7	71.1 4	04	09	2,11	(f) 0	837	82	8	

Volume	Percent Tein							E.) 			1		
Leaf Vol	Corrected to 12.0 Percent Protein	Š		900 400 187 187	824 728 693	722 722 737			786 739 749 790 821 762	775		764 735 802 726	749
	nia	Score		80 8	8 8 8	89 22 50	81		8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	85 90 87	,	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	886
ing lieth	Color G	Score		85 75 85	37.57	75 65g 65g	75		00 00 00 00 00 00 00 00 00 00 00 00 00	80 659 75		28 82 97 97	75
Optimum Baking Lethod	Loaf	°°°°		904 839 804	4 2 4 6 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6	716 662 657	762		727 708 705 698 691 678	670 659 692	lons	837 794 790 765	736
Opti	Eroma te			000		0 4 4	1.2		н нннн	6.0	ta Stations	11.2	00.0
	Lixing Time	kin.		25.00	2 2 2 8	22.8	2.06		888888888888888888888888888888888888888	2.50	th Dako	2,12 2,00 1,56	2.00
	Absorp- tion	Pot.	•	61 61	8 <mark>6</mark> 8	59 61 61	61		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 26 26 26	Four North Dakota	0.0 0000000000000000000000000000000000	83
	Ash	Pct.	kota	46 74, 74,	24 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.46 .51 .949	47	ota	444444	24° 4° 54° 64° 64° 64° 64° 64° 64° 64° 64° 64° 6	from	4 4 4 4	A.4.
	Flour Yield Ash	Pct.	Langdon, North Dakota	77.0	72,3	74.5 69.6 70.0	72.1	Fargo, North Dakota	73.3 72.6 74.2 73.2		Strains	76.2 72.7 72.7	69.8
	Protein	Pot.	gdon, N	13.5	11.7	12.2	12.2	rgo, No	1011110101010101010101010101010101010101	10.2	a.nd	13.1	11.1 0.0
		Pot.	Lan	14.1	12.3 12.8 13.3	12.7	12.8	E E	12.01	10.9	Varieties	13.9	12.5
Fearl-	ing Index Value	Pot.		31 25 23	12 S S	25 17 61	23		25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	148 %	Six V	52 52 83	22
	Test	Lb.		60.6 57.4 58.6	56.3 57.8	59.1 52.8 53.7	57.2		60.5 61.3 58.6 59.3 62.5	58.4 57.1 59.3		59 0 59 4 59 8	24.2
	Acre	B.		36.0 32.0	34°0 23°5 32°0	25°0 22°8 21°0	28.7		25.6 28.0 26.1 27.2 27.2	21.5	Average Data for	25.55	18.0
	C.I.			13100 12779 12976	12641 10003 12488	12273 11708 12008			12486 12976 13100 12273 12641	12008	Ave	13100 12976 12641 12488	10003
	Variety or Cross			Selkirk, CT 186 Henry x Cadet, NN 2239 Lee x hida sib, Ns. 3880	Thatcher x Surpresa, M2824 Thatcher Lee	Rushmore Rival Mida	Average		Lee x Hida sib, Ns. 3880 Selkirk, CT 186 Rushmore Thatcher x Surpresa, M2824 Henry x Cadet, Ns. 2239	Mida Thatcher . Average	-	Selkirk, Cr 186 Lee x Mida sib, Ns. 3880 Thatcher x Surpress, M2824 Lee	Thatcher Mida

		Committee of the Commit	-	AND DESCRIPTION OF THE PERSON		-	-		- Contraction of the last of t			-
	C.I. Acre	Test dengh	rearl- ing Index	Protein Nheat Flour	Flour r Yield Ash		Absorp- Mixing tion Time	Optin Bromate	Optimum Baking Method Loaf Crumb mate Volume Color G	Crumb	rain	Loaf Volume Corrected to 12.0 Percent Protein
Variety of Cross			Pot	Pet. Pet.	Pot. Pot.	t. Pot.	Min	Mg	Se.	Score	Score	8
				Moccas	Moccasin, Montana							
Thatcher 1764 x Henry, NN 2211	10003 19.5 12733 23.1	5 59.5 1. 59.1		16.1 15.2 16.6 15.7	73.0	0 61	2.00	н 0 г	903	65g 85 85	888	713 662g 681g
Seikifk, Ci ido Lee Mida			4 2 E				2,50	H0H	810	9 52 52	200	657q 649q
Average	23.2	2 60.0	33	16.0 15.0	73.2 .41	. 19	2.20	1.0	838	. 87	26	
				Havre	Havre, Montana							
1764 x Henry, MV 2211 · Selkirk, CT 186 Thatcher	12733 17.3 13100 18.4 10003 20.8	3 61.2 8 61.1 8 61.6	23 30 30 50	16.2 15.1 14.4 14.1 15.3 14.6	75.7 47	6 67 65 65 65 65 65 65 65 65 65 65 65 65 65	22.00.2	ннн с	910 903 892	75 85 55u	S 8 8 8	723 768 733 -171-
Mada Lee	12488 20.5				73.0		1,25) rd	768	28	500	n089
Average	19.2	2 62,0	30	16.3 15.4	74.4 .48	99 8	1.80	0.8	871	73	82	
				0 m	ou of a character and a charac							
								,				1
Thatcher Lee 1764 x Jenry, NN 2211			8 % %	12.7 11.9 15.1 14.5 12.6 11.9	75.4 .46	7 9 1 8 4 8	1 2 8 8	riri ri	769 766 746	85 7.58 85 85	888	775 634u 752
Selkirk, CT 186 Mida	13100 36.1 12008 25.2	1 59.1 2 60.0			76.4		2.00	러 러	735	80	85 85	741
Average	30°3	3 59,3	31	12.9 12.2	74.8 .45	\$	1.90	1.0	740	18	88	

Table 2. Continued

				Pearl-								The Late	4 1/044		Loaf Folume
				jug	4	**	T 1				Option	Optimum Baking Astund	Domain Bu		Corrected to
Variety or Cross	C.I.	C.I. Acre No. Yield	Test Index Weight Value	Index	Wheat Flour	Tlour	Yield Ash		Absorp- Lixing tion Time		Loaf Eromate Volume	Loaf	Color Grain		12.0 Percent Protein
		E.	Lb.	Pot.	ì	Pct. Pct.	Pct. Pct.		Pct.	Min.	M.E.	00	Score	Score	်ီ လ
	Ave	rage	Average Lata for		Varieti	es and	Strains	from s	Three 1	Montana	Five Varieties and Strains from Three Montana Stations	23			
かななられる。	10003	23,7	59.7	29				46	63	2.08	1.0	855	67	06	740
1764 x Henry NN 2211	12733	22.9	59.8	53				,42	65	2,08	1,3	841	82	8	712
Selkirk. CT 186	13100	28.2	59.5	31				4	63	2.8	1.0	818	88	88	730
Mida	12008	22.0	61.9	30	15.1	14.2	74.3	45	63	1.75	0.7	788	82	8	679d
Lee	12488	24.5	60.3	33				48	2	1.92	0.7	781	80	78	624u

Uniform Regional Nursery Composite

Twenty-six wheats from the Uniform Regional Nursery have been tested for their milling, baking, and chemical properties. A composite of the grain was made from 10 stations as shown in a footnote to Table 3 along with the quality results.

A number of the samples milled unsatisfactorily. The bran was generally tough and hard to clean free from the flour and/or the middlings reduced slowly as mentioned later. In some samples the flour was difficult to bolt or sieve.

The best strains for bread, considering the data as a whole, were Selkirk; Henry x Thatcher-W.38-Ill. 1-Hope, Wis. 250; and Timstein x Henry, II-44-65. All three milled satisfactorily and two of them produced an exceptionally high yield of flour. The dough handling properties were good and the mixing time was like that of the approved hard red spring wheats. The bread was high in loaf volume and had good internal characteristics. Thatcher and Marquis made acceptable bread, but were not satisfactory in milling. Both were low in test weight; no doubt, an attributing factor to their questionable milling performance.

Two selections from Henry x Cadet were included in this study. Of these, N.No. 2239, considering the data as a whole, was the best. It is perhaps not as strong as Thatcher, but has made good bread. Henry x Cadet, N.No. 2300, made satisfactory bread, but milled poorly.

The Rushmore² x Surpresa strains as a group generally had good milling properties and made bread satisfactory in volume, crumb color, and grain, but had short dough mixing times. Most of these strains required large amounts of bromate for optimum bread. The pearling index indicates that the Rushmore² x Surpresa strains generally were similar to Marquis and Thatcher with respect to hardness of the grain.

The doughs from many of these strains were sticky and weak and very poor. Strain PW36 had the shortest dough mixing time which was considerably less than for either Marquis or Thatcher. Short dough mixing times generally are associated with a short mixing tolerance.

The Rushmore² x Surpresa strains. considering the data as a whole with the exception of dough mixing time making the best bread, were Ns. Nos. 4046, 4043, and PWll4. Strain N. No. 4048 milled satisfactorily and made a loaf of very good characteristics, but was deficient in dough handling properties.

Strain Mida x Kenya 117A made good bread, but was deficient in flour yield and milling quality.

The Frontana x Thatcher strains as a group had short dough mixing times and required only small amounts of bromate for optimum bread. The loaf volumes were fairly high except for II-46-52 which was questionable. The internal bread characteristics were medium to good. Strain II-46-52 was the best of these in dough handling properties.

Kenya-Gular-Pilot x Kenya 58-Newthatch is not promising from a quality point of view. It was deficient in loaf volume, flour yield, milling quality, and dough handling properties,

Red Egyptian x Frontana made reasonably good bread and appears from this single test to be satisfactory in quality. The dough mixing time might not be as long as that of the approved varieties, but in consideration of its other quality properties might be acceptable. It was one of the highest in absorption (66.0 percent) among the 26 Uniform Regional Nursery samples.

Table 3. Yield, milling, bdking, and chemical results on 26 wheats grown in the Uniform Regional Nursery, 1953 crop 1/

			-		-	-				-		-				
				Fearl-							Optin	Optimum Baking Method	ng Meth		Loaf Volume	
	1.0	Acre	Test	Index	Protein	ein	Flour	-	Absorp-	Mixing		Loaf	Crumb		Corrected to	
Variety or Cross		Yield Y	دد	Value	Wheat Flour	Flour	Yield Ash			1	Bromate	Volume	Color	Grain	Fretein	
		ā	rb.	Pct.	Pet.	Pet.	Pct. Pct.	Pct.	Pot.	Min.	. • श्रीत	co.	Score	Score	8	
Frontana x Thatcher, II-46-13		31.7	59.1	33	15.6	14.9	71.9	44.	29	•75	2	942	8	92	759	
K58 x Mida-Newthatch, II-44-45		24.1	57.4	31		13.0	68.8	.4 9	61	1.25	2	942	တ္ထ	8	870	
Hope, N.250	13098	24.6	57.9	56		13.6	74.7	.43	63	2.00	~	937	3	80 0	827	
Rushnore2 x Surpress, FW14	12973	28.9	61.2	27		12.4	76.7	.49	29	1.25	2	897	85	85	868	
Frontana x Thatcher, II-46-63	13046	31.5	58.9	33	15.8	14.7	72.2	•45	19	1.8	7	884	92	82	722	
Red Egyptian x Frontana, II-45-7	13048	28.2	9.09	24		15.1	72.7	<u>5</u> 1	99	1.50	2	877	80	82	269	
Frontana x Thatcher, II-46-53	13099	30.7	58.5	35		15.0	72.4	.41	29	1.00	٦	877	85	82	702	
Henry x Cadet, Ns. 2239	12779	23.9	56.2	58		13.2	73.0	*48	63	2,00	2	876	75	8	962	
Rushmore2 x Surpresa, Ns. 4042	13033	27.2	58.9	27		13.7	70.8	•45	8	1.50	2	876	95	S	797	
Do. , Ns. 4048		0°6%	59.8	28		13.7	72.2	•46	8	1,25	ന	371	28	8	763	
Mida x Kenya 117A, II-44-22	12964	27.0	60.1	35	15.2	14.1	65.7	4	61	1,75	ч	868	8	82	739	
Selkirk, CT 186	13100	30.7	57.5	띪		13.5	76.2	•47	63	2,25	7	864	82	8	768	
Timstein x Henry, II-44-65		26.8	57.2	35		13,3	71.4	•45	63	2.00	2	864	S	95		^
Rushmore2 x Surpresa, Ns. 4044		27.3	58.9	28		13,3	68.7	646	63	1,50	2	828	S	8		L8•
Henry x Cadet, Hs. 2300		24.7	%	52		13.1	69.4	•46	2	1.75	۲,	856	8	8		_
Rusimore2 x Surpresa, Ns. 4045		27.0	60.1	53		13.9	70.9	•47	\$	1.50	2	820	82	8	734	
Do. , NS. 4047		27.5	59,3	58		14.2	72.6	•46	63	1,25	. 2	847	82	S	716	
Frontana x Thatcher, II-46-52		28.1	58,1	31		15.6	72.0	•42	62	00.1	~ (\$2	දු	82	6514	
morec x Surpresa, Ns.		2 8 9 3	59,3	27		14.5	72.4	47	8 3	1.25	m (833	8	S (689	
Do. , NS. 4043		29.1	59.5	8 9		13.6	79°T	•46	\$:	000	N 6	83T	3 8	3 8	733	
	3041	7.07	24.8	S G		17°2	0.70	649	7 5	000	V (877	י מ ו מ	ຕິ	900	
Pilote x Regent, NS. 2183	13047	2000	ນ ຊູ້ (0 8		10 21	٠, ٥ ١, ٥ ١, ٥	74.	, ,	36	, ,	ol13	υ ₅	ი გ	800 765	
Thatcher	10002	000		77		1000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4	70	1 0	۱ د	0 0	2 4	3 8	25	
Rushmore x Surpresa, Fil30	7/671	V. V.	500	က္		7007	50	040	70	0/0	7 (78/	0 0	2 1	600	
Kenya-Gular-Filot x Kenya 58- Newthatch, II-46-56	13047	31.4	59.9	24		13.8	6.49	19•	2	1.25	2	773	2	75	67.29	
1520 x 1752, Ns. 2389	13041	18.6	53.7	83	13.0	12.0	71.8	47	2	2,00	2	772	2	8	277	
Average		26.7	58.0	28	14.6	13.6	71.1	.47	63	1.52	1.9	856	\$	88		
		:			•		;	•	-	1-0400						

1/ Dickinson, Moccasin, Havre, Minot, Madison, Langdon, Fargo, Brookings, Morris, and Crookston stations.

Supplementary Hard Red Spring Regional Yield Nursery

Forty-eight strains with Mida and Thatcher from the Supplementary Hard Red Spring Regional Yield Nursery were tested for milling, baking, and chemical properties. A composite of grain from seven stations was made as indicated in a footnote to Table 4.

The best varieties and strains for bread considering the data as a whole were Selkirk; Frontana x II-44-29, II-50-32, and II-50-25; Lee x Frontana, II-47-10; and Lee x Mida, Nos. 3880.15, 3880.95, 3880.138, and 3880.191. These milled satisfactorily producing a good yield of flour. The bread was of good quality. A number of other samples were equally as satisfactory in these respects but had short dough mixing times that are generally indicative of a short mixing tolerance. These samples were Frontana x II-44-29, II-50-19, and II-50-20; Frontana x Thatcher, II-47-37, II-46-13, and II-46-53; and Lee x Mida, 3880.5. The above enumerated samples made bread that scored high in either crumb color or grain or both.

Frontana x Thatcher, II-47-37. made the best bread of the samples tested due largely, it appears, to a very high protein content. It was highest in protein and flour yield, but had a shorter dough mixing time than the approved hard red spring varieties. Many of the Frontana strains had short dough mixing times but seemed otherwise to make reasonably good bread.

The Lee x Mida strains as a group appear to be medium in flour yield, high in water absorption. medium to long in dough mixing properties, and require a large amount of bromate for optimum bread. A number of the samples required 3 milligrams of bromate which is considerably above the average for the spring wheats this season. The pearling index indicates that the Lee x Mida strains were similar to the approved hard red spring wheats with respect to hardness of the grain. They show promise for the production of a satisfactory milling and bread baking wheat.

The Frontana x II-44-29 strains, considering the group as a whole, appear to have produced more wheats that were satisfactory in many of the milling and baking properties than the Frontana x II-44-22 strains.

Many of the strains derived from crosses with Frontana have shown promise as producing high yields of flour for their test weights. In a number of these wheats the ash content of the flour was low. The flour from many of them was soft to the touch and had high pearling index values (40 percent and higher), indicative of a soft type grain.

Milling, balcing, and chemical results on hard red spring wheats grown in the Supplementary Regional Yield Nursery, 1953 crop 1/ Table 4.

to	cent																	****	20)-																		
Loaf Volume Corrected to	12.0 Percent Protein	ဒိ	773	786	828	765	2 E	179	680	705	733	777	788	4//	62/	764	437	t 2	752	748	777	776	751	774	761	766	TO/	0/0	12	157	721	752	759	687	718	11/	739	•
	Grain	Score	95	02 1	82 02 03	3 8	8 8 82 8	8	8	82	92	င္သ	S 8	3 8	ය ද	S 8	ה מ מ	ວ ຜ	3 g	3 8		85	8	95	82	8	3 5	ი მ	3 8	5 6	82	85	75	99	85	2 (S &	}
Faking Method	Color G	Score	B	S !	821	υ 8	88	95	8	2	92	<u>ස</u>	72	_ව ද	3 g	8 8	S 15	3 g	S	. S	2	82	8	85	82	75	<u>გ</u> გ	0 g	0 0 0	3 12	8 8	8	75	75	82	8 8	y 8)
	Volume	ပိ	934	930	918	916 006	00 00 00 00 00	903	905	887	988	874	873	1/9	863	000 853	32	מאל	852	228	847	847	845	845	44	843	5 th	2 6	838 838	833	835	833	829	830	820	ATA	813	•
Optinum	Bromate	Mg.	2	2	~ (V 0	u 0	2	~	Н	Н	C) (~ (V (ν r	۷ ۲	۱ ۸	1 0	1 C	ı	2	2	2	ന	~	~ (N C	ν c	v 0	J (r	m	2	2	m	r-1 (7 (۷ ر-	
	Mixing Time	Min.	1.00	1.50	2°0	3 %	1.75	1.75	1,25	1.50	1,25	1.75	2,00	ה ה ה	0.1	ה ה ה	200	ק ג	ק ק	1,75	1.25	1.50	1.75	1,50	1.25	1.75	. T.	7°20	2 2	3 12	1,50	2,00	1.75	2,00	1.50	1.52 25.75	1.75) -
g.	Absorp- 1 tion	Pct.	8	01	2 2	70	g 2	62	00	19	61	8 :	29	2 0	59	700	3 2	\$ G	d (2	63	62	65	. 69	62	29	63	\$ 3	8 5	0T	3 6	. 6	7	8	61	61	50	\$ @)
	7	Fct.	46	44	47	4 ر ت ت	42	4	43	49	9	47	245	ر د د	54°	5 °C	747	76	4	43	45	46	47	47	43	649	4/	24.0 F	45 0 45	0 0	51	200	44	49	46	τ ν τ	4 4 4 4	
	Flour Yield Ash	Pct.	75.7	2.69	71.2	73.0 73.0	70.8	75.7	76.3	70.2	73.9	70.7	0g.	/1.4		י ל י כ					74.5			71.7	72.9	69.2						72.0		69.5	72.7	58.7	13. 1. 7.)
	Protein Wheat Flour	Pot.	14.5	14.2	H3 5	14.4	13.7	13.9	15.9	12.1	14.5	13.00 13.00	m :	13.0	14°C	13.4	13.4	2 2	7 7 7	13.6	14.3	13,1	13.5	13.1	13,3	13.2	J :	14°C	14.1	13.2	13.9	13.3	Ha.	14.5	13.7	13.8 L	13.2	1
	Pro Wheat	Pct.	15,3	15.1	14.3	ה מדר מר	14.7	14.7	17.1	16.2	15.6	14.6	14.4	14.	12.0	14.0	4 7	140	7 V V	14.6	15.5	14.2	14.3	14.0	14.5	13.9	14.2	0 0	10°C1	74.7	14.8	14,1	14.0	15.9	14.7	14°5	14.1	9
Pearl-	HA	Pct.	36	34	5 6	n 0	37	33	34	4	40	27	¥ {	77	D (4 4 5 0	, c	3 6	၃ ၉	2 %	41	27	27	25	4	52	200	ر بر د	243	່າເ	26	22	56	37	42	ე ს უ	3 5	ì
	Test	.dl	58.0	58.2	22.0	50 20 20 20 20 20 20 20 20 20 20 20 20 20	58.6	52.9	0.09	58.3	58.2	52.5	59.1	ກຸເ	2.60	20 CC	5.47	1000	10 C	5.4	58.5	53.2	55.5	55.2	59.1	49.1	¥ 6	200	ດ ເກີດ ເກີດ	2 4	53.0	49.6	55.1	58.7	58.7	59.0	0 4 0 4) -)
	No. I.		13030					13049			13044															12488						12488						
													,																									
	Cross		11-46-13	II-50-18	()	71-22-17	II-50-19	:	11-47-37	11-50-8	11-46-53		11-50-34	0	11-50-20	11-50-52	201	70.05		2	11-50-24	i -			II-50-29			11-20-10	11-20-03					11-20-1	11-50-7	11-50-13		
	Variety or Cross						- i				•						47	T 07-0	TT 47	11.0			3860,138		П-44-29, І	l		11-44-69, 1	1 .	380.146	3880,128			II-44-22, I	•	•	3880.95	
	Vari			x II-44-29,	a, 3880,14	x 11-44		CT 186			x Thatcher,	a, 3880	м 12-4-13-4-13-4-13-4-13-4-13-4-13-4-13-4-	a, 3880	× 11 4	Tonna	A MEMILY	11 20 V	A 11-66	a 388	× 17	3380	3880				13, 388(3880							
			Frontana x	Frontana x	Lee x lida,	Frontana x 11-44-29,		kirk	Frontana :	Frontana x	Frontana x	Lee x Mida, 3880,44	Frontana x II-44-29,	Lee x Maa, 3880,185	Frontana x 11-44-29,	OC-II (The v 13 de 3880.47	Dec A Litura 9 JOCO 047	Frontand A 11-22-199 11-	Lee w Mida, 3880,15	Frontana x TT-44-29.	Lee x Mida,			Frontana x	9	Lee x Mida, 3880.5	Frontana X	Lo. T. Mida.	TIM & D		• ev	Lee x Mida,	Frontana x	u	0 - 152	Do. Mida,	
4		1	=	नि चि	m i	든 는 는	o d	Se	M	F4	F	3	14 154	3,	in i	3 1	1 1	1 6	4 °	3 5	[s.	: 3	o O	Do.	H	Lee	Ä :	M .	0 0	200	å	Lee	Le	F	å G	Do	9 6	i

Corrected to 12.0 Percent Loaf Volume Protein 733 781 653u 664 675 805 620u 606q 589q ပ္ပ Color Grain Score Score 86 Optimum aking Method Crimis 882282222 83 Bromate Volume ပ္ပ 813 807 800 791 788 765 734 732 692 843 1.9 MG NO HONOHON Absorp- Mixing Time 1 25 2 25 2 25 1 30 1 30 1 25 1.52 Min. tion Pot. 62 Pot. Pct. 244244444 •46 Yield Ash 48 Flour Langdon, Minot, Fargo, Edgeley, Brookings, Morris, and Crookston Stations. 69.6 70.7 73.7 70.1 74.1 69.3 72.7 72.6 70.2 14.8 13.8 71.7 Wheat Flour Pct. 114.0 13.3 Protein Pot. 14.6 13.8 15.5 15.5 15.2 12.2 Index Value Pearl-Pct. ing 4628898 8 Weight Test 46.6 56.6 58.7 60°0 60°2 Ľb. 59°7 53.4 C.I. 12972 12008 Frontana x II-44-22, II-50-15 Frontana x II-44-29, II-50-33 Frontana x II-44-29, II-50-23 11-50-14 Frontana x II-44-29, II-50-21 Rushmore² x Surpresa, FN 36 Frontana x II-44-22, II-50-3 Variety or Cross Lee x Frontana II-47-2 Average

Table 4. Continued

State Nursery Trials

Results for the composite samples grown in nursery trials in Moccasin, Havre, and Sidney, Montana, are shown in Table 5.

The quality comparisons will be based on a consideration of the data as a whole. Some strains have exceeded others with respect to certain properties (flour yield, water absorption, and grain and texture of crumb) and will be briefly discussed.

In milling Lee x 1831, B-52-76, was poor. The flour yield was low and the middlings handled with difficulty, bolting or sieving slowly. This is a questionable strain because of its unsatisfactory milling characteristics. All of the other strains milled satisfactorily. The 1953 x Lee strains Nos. B-52-90, 91, and 92; along with 2236 x Lee, B-52-107; and Lee x 1831, B-52-73, were best of the samples in milling. Two of the Lee x 1831 samples, B-52-120 and 73, were highest of the group in flour yield. The yield of flour was 77.5 and 77.9 percent, respectively. These are promising wheats. The grain of strain 2105 x Lee, B-52-88. was softer than that of the others as shown by the relatively high pearling index, about 11.0 percent higher than Ceres. It may be softer than the milling trade would like.

There was about the same variation in the protein content among the samples as in previous years. The samples highest in wheat protein and best of the group in this respect were 2105 x Lee, B-52-88; 1898 x Lee, B-52-57; 2236 x Lee, B-52-107; 1953 x Lee, B-52-90; and Lee x 1831, B-52-63. All were 15.0 percent or higher in wheat protein content. A number of the strains tested as low as 13.4 to 13.9 percent in wheat protein content. Strain Lee x 1831, B-52-76, was one or these. It also milled poorly.

Most of the strains made relatively good bread. Strain 2236 x Lee, B-52-107, had a short dough mixing time which was less than either Thatcher or Ceres.

All except two produced loaf volumes that were about that expected considering the flour protein content. Lee x 1831, B-52-73, and 1953 x Lee, B-52-90, averaged about 10-percent lower in loaf volume than expected.

The best strains for bread considering the data as a whole were 2105 x Lee, B-52-84, and Lee x 1831, B-52-63. The crumb color of these was especially good. These are equal to, if not better than, the approved varieties. The next best were 1898 x Lee, B-52-57; 1953 x Lee, B-52-92; 2236 x Lee, B-52-107; and Thatcher.

Havre, Montana - Six varieties or strains from Havre Montana, were included in these studies.

Both Thatcher and Rescue, included as standards, made good bread. Rescue made better bread than Thatcher, due probably to an exceptionally high protein content. The dough handling properties of Thatcher were, however, slightly better than those of Rescue.

Lee x Frontana was high in protein content and made good bread. It required higher amounts of oxidizing agent (potassium bromate) for optimum bread and was slightly shorter in dough mixing time than either Thatcher or Rescue. The dough handling properties of Lee x Frontana were slightly weaker than those of the approved varieties. It milled like a soft wheat and the flour was soft and velvety to the touch. The middlings were difficult to reduce to flour. The yield of flour (68.5 percent) was considerably lower than that expected from a wheat of 62.2 pounds in test weight. This is a questionable wheat because of its unsatisfactory milling characteristics.

 ${
m Pilot}^2$ x Merit made good bread. It milled well with a high yield of flour and made bread high in loaf volume (slightly higher than expected for the flour protein content of the sample). The internal bread properties were good.

Strain 1520 x 1752 made the best bread. It milled well and made a loaf of high volume in relation to its protein content and had exceptionally good internal characteristics (crumb grain and color). It had about a 25-minute shorter dough mixing time than the approved varieties. It appears to be a promising strain for bread.

Strain 1750 x 1753 made good bread but was slightly lower in loaf volume than expected, according to the protein content of the flour. It had a shorter dough mixing time than either Thatcher or Rescue. It milled satisfactorily, producing a high yield of flour. The flour was granular to the touch. similar in this respect to the approved hard red spring varieties. Pilot 2 x Merit and 1520 x 1752 gave similar results.

			Fearl-						5	Optimm a	sking Method	Logi Tolune
Variety or Gross	C.I.	Test	Index Value	Protein Wheat Flour	• •	Flour Yield Ash	Absorp-	rp- Mixing	Bro	Vol	Crumb e Color Grain	12.0 Fares
		Lb.	Pot.	10 ct .	Pot.	Fot. P	Pot. Pot.	Min	Mg.	8	Score Score	o CC o
		Moccasins		Havre, Sidney,		Montana	Montana (Composite	(e)				
		9.09	30			75.1 °	46 63	2,25	H	686		793
2105 % Lee, B-52-88 Lee % 1831, B-52-69		3 8 0 0	8			•				915 873		754 754
That cher	10003	59.0	23		12.9		48 6 2			873		812
x Lee,		62.0	1 8 8 1 8 7	13.0			44 61	200	100	3 4 4	110	767
610014		60.2	5 8 3			56.7				243		803 803 1
Do. , B-52-120 Do. , B-52-72		61.4 61.7	32		40.4		46 62 46 62			830 815		743 699
Do. 3-52-119		50.5	32							815	90 90	752
		59.3	S 8		13,3	_				810		731
Ceres 1052 - 190 D RO 02	0069	00 00 00 00	5 8			74.5	43 63			808		
Do. 9 B-52-90		61.0	35			• •				800		2)1
Do. , 1352-54		60°0 10°0	33	13.4	12.9	75.7	43 61	2,25		¥ £ £ £	3 8 8 8	
x 1831,		61.1	35	14.0		Ť	47 64	1.75		770		679
Average		9.09	32	14.2	13.5	75.2	•46 62	2,01	8.0	833	93 91	
				Hav	Havre, Montana	ntana						
Resoue	12435	59.1	9 6	17.0	16.1	74.1 .	47 62	2,00	-40	985	06 06	734
Lee x Frontana Filot2 x Marit, N2164	10671	61.3	21							875	85 95	789
1520 x 1752	13041	63,3	53							863		745
Thatcher	10003	61.2	28			73.7	44 62		0 -	829		5 F
1/50 × 1/53	C/ 62T	1.70	07							2		* 4
Average		61.6	33	15,3	14.3	73.1	44 61	1.79	1.0	874	86 91	

Sawfly Resistant Trials

The results for a number of varieties and strains resistant to wheat stem sawfly grown in nursery and plot trials at Dutton, Sidney, and Havre, Montana, are shown in Table 6.

These trials include many strains of current interest. One of the principal interests in these tests is a comparison of the quality of the strains which include Rescue in their parentage with the quality of Thatcher and Rescue.

The best sample considering the data as a whole was Rescue x Thatcher-S615, B51-27. It made excellent bread and was satisfactory in milling and produced a good yield of flour. The dough handling properties were strong and elastic. This wheat is slightly better than Thatcher and superior to Rescue.

The wheats second in rank include 1764 x Rescue, B49-78; Rescue x Thatcher-S615, B51-39; Rescue x 1831, B51-9; 1750 x Rescue, B49-102; and 1764 x Rescue, B49-90. These wheats had satisfactory milling properties and produced a good yield of flour. The dough handling properties were strong and the grain and texture of the bread very good. Their loaf volumes generally were normal for the protein contents of the flours. These strains were about equal to Thatcher and slightly better than Rescue.

Those strains making fair to good bread but lacking the strength of Thatcher or Rescue were Rescue x Thatcher-S615, B51-37, B51-16, and B51-43; 1750 x Rescue, B50-120; and Chinook. These were satisfactory in milling, medium in water absorption, and their dough handling properties were good. The loaf volumes were lower (about 15 percent) than expected, but the crumb grain of the loaves very good. These samples were degraded principally because of their lower than expected loaf volumes.

Rescue x Thatcher, B50-18, ranking lowest of the wheats made satisfactory bread, but was deficient in milling. The middlings were tough and hard to reduce to flour. The yield of flour was good. This sample would rank higher had the milling properties been satisfactory.

Dutton and Havre, Montana, Nursery Composite - Strain N2157 x Rescue, Dick. 79, appears to be best of the six wheats in quality, although the difference is not very great between any of them. It milled satisfactorily, producing a high yield of flour and made bread of excellent grain. All the others made good bread. The dough mixing time of Rescue x Regent, 4337-24, was shorter than that of any of the other strains. The two Mida x Rescue strains, Dick. 89 and 93, produced exceptionally high flour yields (76.6 and 76.0 percent). The loaf volumes were about that expected according to their protein contents.

Moccasin, Havre, and Sidney, Montana, Advanced Plot Composite - Varieties and strains included in this composite comprise the more promising ones from the Montana spring wheat breeding program. Several are resistant to sawfly. All produced bread that was generally satisfactory in crumb grain and texture. There were more differences in crumb color among the samples than in some of the other bread properties. The loaf volumes of a number of the wheats were about that expected on the basis of their protein contents. The differences in quality between many of the strains were not very great.

The best of the sawfly samples considering the data as a whole were Rescue x Thatcher, B50-18; Rescue x Thatcher-S615, B51-16; 1764 x Rescue, B49-90; and Pilot² x Regent, N. 2183. These strains were slightly better than Thatcher or Rescue in quality.

Other strains that were strong in quality, similar to Thatcher, and better than Rescue were Rescue x Thatcher-S615, E51-27; 1520 x 1752, N. 2389; Rescue x 1831, B51-9; 1750 x Rescue, B50-120, and B49-102; 1764 x Rescue, B49-78; Pilot² x Thatcher, N. 2170; and 1764 x Henry. N. 2211.

The samples that produced a high yield of flour and are very promising in this respect were Rescue x 1831, B51-9; 1520 x 1752, N. 2389; and Rescue x Thatcher, B50-18.

Bozeman, Montana, Winter Wheats - Seventeen Yogo x Rescue sawfly-resistant winter strains grown at Bozeman. Montana, with Yogo, Newturk, and Karmont as checks were milled and bread baked from them. The results are shown in Table 6.

The kernel characteristics of the Yogo x Rescue strains were very similar in appearance to the spring wheats. As a group, they were found to be similar in hardness to the approved hard red spring varieties according to the pearling index. The flour was granular to the feel and the dough handling characteristics generally were strong and elastic.

The Yogo x Rescue strains milled satisfactorily and were similar in this respect to the milling properties of the three winter varieties included as standards. Yogo x Rescue, N. No. 50-7, was lowest of the group in flour yield and N. No. 56-19 was highest. A number of strains produced flour yields of 74.0 percent or higher. These wheat samples were smaller (only 2 pounds) than those usually milled; hence, the milling yields may be subject to greater errors than usual.

In general, all the wheats made satisfactory bread with the exception of crumb color.

Strains N. Nos. 76-24, 66-22, 45-30, and 47-18 were best for bread and equal to Yogo in this respect. The loaf volumes were generally high for the protein content of the flour and the internal bread properties very good.

N. Nos. 66-16, 56-19, 45-23, and 44-5 were the poorest. They were generally low in loaf volume, but were graded down principally because of poor crumb color. The other strains not included in these two groups made good bread, but were not quite as high in loaf volume or internal bread properties as those ranking highest. Karmont was included in this intermediate group.

Newturk was lowest in loaf volume of the samples and made bread of low to medium quality. All the Yogo x Rescue strains appeared to be stronger than Newturk for bread purposes.

Table 6. Milling, baking, and chemical results on sawfly resistant wheats grown in Montana, 1953 crop.

			Pearl-							Optimu		aking Method			٠
Variety or Cross	C. H.	Test	Index Value	Protein Wheat Flo	1 4	Flour Yield Ash		Absorp- Mixing tion Time		Bromate	Vol	Color G	l lie	Corrected to 12.0 Percent Protein	
		Lb.	Pot.	Pot.	Pet.	Pot. F	Pot. F	Pot.	Min.	Mg.	3	Score	Score	9	
							,	-	1						
		duotand	науге	•	Sidney, Montana,	cana	Mursery composite	Compos	0 4						
1750 x Rescue, B49-102		59.6	33	14.2			43	59	2.00	~	748	80	95	753	
1754 x Resous, B49-78	0000	60.7	88	13.5			40	15 67	2,25	0 r	835	85	95	789	
Thatcher 1764 x Resoue, B49-90	10003	58.7	92	14.4		72.0	4.1 7.4 7.0	07	1.75	⊣ ~	631 631	ပ္သ မ္ထ	S 12	577 7.17	
Rescue x 1831, B51-9		60.7	33				43	09	2.50	HI	828	8	60	741	
Resone x Thatcher-Solb, B51-27 Resone	12435	50 50 50 50 50	33 8		13.3		38 40	26 26	1.50	-10	818	22 60	2 10	738	
H		60,3	33				40	9	2.50	-	810	8	8	725	
Resoue x Thatcher-S615, E51-39		80.51	36				35	61	2,00	~	782	00	95	757	
E4258		61.2	32				37	88	2°,	r-1 (762	გ	8 8	667q	
Resoue x Tratoner-Solly, 501-43		000	7 C	14.2	13.0		24.2) (0.00 (0.00)	2,62) r-	745	က င်	S &	6/34 6834	
		60.5	31	14.5			39	62	2,50	14	740	8	93	6539	-
Do., B51-16		9.09	31	14.1			41	19	2,50	0	718	8	85	ó53g	
															-2
Average		0°09	32	14.0	13.2	74.0	40	09	2.13	0.7	785	82	, 26		8-
		A	Dutton a	and Havre, Montana,	e, Mon	tana, l	Nursery Composite	Compos	ite						
2157 x Resoue, Dick. 81 N2157 x Resoue, Dick. 79		60°5	36	15.0	14.1	74.9	14.	61	2.00	rd rd	878		95	747	
Rescue x Regent, 4337-24		59.8	38				66.5	09 0	1.50	10 1	828	8 8	95	741	
Resoue x Regent, 4337-35		59.7	g gg	14.1			30	20 00	2.00	40	810		0 K	731	
Mida x Resone, Dick. 89		61.0	37				37	8	2.00	н	788		06	77	
Average		4.09	37	14.5	9°ET	75.2	939	09	1,92	0.7	832	83	95		
		of the last of the	-				-				and the second second				

														Leaf Jolune
			Pearl-						'	Optir	Optimum saking Method	ng Meth	1	Corrected to
Variety or Cross	No.I.	Test	Index	Wheat Flor	14	Flour Yield Ash	·	Absorp- M tion	Mixing Time	Bromate Volume	Volume	Color Gr	air	12.0 Percent Protein
		Lb.	Pct.	Pot.	Pct.	Pot. P	Pct. Pc	Pct.	Min.	Mg.	°CG •	Score	Score	ပိ
	Moccasi	Moccasin, Havre,		ey, Mor	tana	Advance	Sidney, Montana, Advanced Plot Composite	Compos	tte					
Rescue x Thatcher, B50-18 1/		62.0	34			•			00°	Н	930	85	8	770
Pilot	11945	59.5	27			Ĭ			1,75	0	927	8	8	836
Rescue x Thatcher-S615, B51-27 1/	3641	60.4	3 %	14.8	14.5 7	72.1 .4	40 6		00.00	ч о	913 897	85	ල දි	782
1764 x Henry, N2211	12733	60	53		•			19	2,00	2	897	8	90	758
Rescue 1/	12435	0.09	¥		., -	73.2 .4	.42 5		1.50	Н	887	75	95	177
		8°09	22	15,3	, -				800	2	881	92	95	739
Rescue x 1831, 351-9 17		61.9	31		13,2 7				2,00	Н	880	8	55	800
1750 x Resoue, B49-102 1/		61.5	32		•				r.50	~ 4	870	82	8	746
Supreme 2/	8026	0.09	31	15.0	'			9	2,25	2	198	95	62	615q
Filot' x Regent, N2183	13042	0.09	53		•				2,25	0	999	8	8	782
Ceres 2/	0069	62.0	56						1,75	0	198	8	8	708
Rescue x Thatcher-S615, B51-16 3/		62.6	56		14.7 7	73.5 %	45 6		1.50	0	85 8	S :	95	200
Thatcher	10003	60.1	53		•				2.00	0	855	8	8	738
1764 x Rescue, 1949-78 1/		61,1	27			Ī			1,75	-	853	75	82	770
1750 x Resoue, B50-120 1/		60.7	32			Ť			1.75	-4	849	8	32	728
Lee	12488	59.8	%						2,00	0	25	& :	82	069
Rescue x Thatcher_S615, B51-37 1/		61.6	31						8		833	8	82	689
Filot' x Thatcher, N2170	12947	60,3	*	14.5			36 o		2.00	~	812	82	8	738
Chinook, H4258 1/		61.4	31						8	-	810	0	8	684
Saunders, 3516	2008	59.1	27		12.9 7	Ť			8	0	008	8	.82	44
	13041	62.2	27			Ī			8	0	797	82	8	714
Resoue x Thatcher-S615, B51-39 1/		61.2	32			Ĭ			8	0	ğ	75	75	117
		28.9	28		•	Ť			8	0	787	659	8	089
Rescue x Thatcher-S615, B51-43 1/		61,5	32		13.9 7	73.1 6		63	2,25	0	775	82	æ	699
1947 x 2044, N2413		0.09	53		12.9 7	1,3 6,	41 6		8	0	762	75	8	709
Average		8.09	30	14.7	13.9 7	73.0 .4	.42 6	61	1.93	9.0	820	85	68	

-29-

ार्जाक्ष**्**र

Sawfly wheats.
Composite of Moccasin and Havre only.
Composite of Moccasin and Havre - sawfly wheat.

			Pearl-						Optin	Optirum aking Method	ng Metho		Logf Volume
	Coll		Index	Protein	in	Flour	Absorp	Absorp- Mixing		-	Crumb		Corrected to 12.0 Percent
Variety or Cross	No.	Weight	Value	Wheat Flour		Yield Ash		Time	Bromate Volume	Уолите	Color G	Grain	Protein
		Pp.	Pot.	Pot.	Pot.	Pot. Pct.	. Pct.	Min.	Mg.	° 20	Score S	Score	8
			M	Bozeman, Montana	Monta	en.							
Yogo x Rescue, 66-22		60.4	29					1.75	2	838	2	85	739
Do. , 47-18		58.0	30			Ť		2.00	2	815	75	85	714
Do. , 50-7		59.5	30	14,1 1	13,7 6	68.3 .42	29	1.75	2	807	75	85	707
Do. , 56-28		57.2	32					2.00	2	807	8	82	269
Do. , 56-19		58.0	90			,		2.00	Н	25	659	8	689
Do. , 76–24		59°8	59	•	12.8 7			1,75	2	804	75	8	754
Do. , 58-4		58.1	34			Ť		1.50	2	800	2	82	716
Do. , 45-30		28.5	ත	•		Ť		1.75	2	794	8	82	117
Do. , 63,4		59.4	31					1.75	2	791	8	85	869
Do. , 77-11		58.4	28					1,75	7	791	659	S	208
Do. , 56-9		58.5	32			·		1.75	2	785	75	8	683
Do. , 66-16		58,3	53			Ť		1.50	2	779	659	82	725
		58°8	31	•				1,50	2	769	2	85	732
Lo. , 44-16		58.9	53			Ĭ		2.00	2	759	20	80	685
Yogo	8033	59°5	27			·		1.75	2	750	75	82	750
Yogo x Rescue, 45-23		58.6	9			Ť		1,75	2	744	2	75	269
Do. , 47-10		57.3	30	•		Ť		2.00	н	743	659	75	702
Karmont	6700	58.4	53			Ť		2,00	. 2	737	80	80	089
Yogo z hescue, 44-5		58.9	27			Ī		2,00	2	726	65	တ္ထ	708
Newturk	6935	59.4	28	•				2.00	-	089	2	2	6749
							•						
Average		58.7	30	13.9 1	13.2 7	73.7 .43	9	1.81	2.2	776	72	83	

Special Foreign Varieties and Strains

Choteau, Montana - Results for 19 (Group I) and 26 (Group II) varieties and strains, originally from Portugal but grown at Choteau, Montana, are shown in Table 7. They are of interest because of their possible use as parents in crosses to obtain resistance to wheat stem sawfly. Thatcher and Rescue were included in both groups for comparison. The varieties and strains are discussed largely on a consideration of the quality data as a whole with additional remarks about some of the individual properties of the wheats.

The varieties in Group I generally averaged lower in loaf volume than expected considering the protein contents of the flours. Also a number of them produced bread having poor crumb color. The crumb grain of the bread was particularly satisfactory for many of them. Many were rated as questionable or unsatisfactory with respect to loaf volume. The milling quality was satisfactory for all except five which will be mentioned later.

Amarello de barba preta x Ribeiro, Nos. 56219-12 and 56220-3, and Santa Martha x Fuscense, 56229-2, were best of the group considering all quality characteristics. Their milling properties and internal bread characteristics were satisfactory; the doughs were strong and elastic and the ash contents of the flours were relatively low. These three strains were equal in quality to Rescue and better than Thatcher in some properties.

Those strains that ranked second making good bread and nearly equal to Thatcher in quality were Amarello de barba preta x Ribeiro, Nos. 56219-5, 6, 8, and 10. These strains milled satisfactorily, producing relatively high yields of flour. The doughs generally were of good strength, but slightly sticky and the bread acceptable in crumb color and grain. All were somewhat lower in loaf volume than expected for their flour protein contents. Samples Nos. 56219-6, 8, and 10 were the poorest in this respect.

Amarello de barba preta x Ribeiro, Nos. 56220-2, 8, and 9, made bread that was deficient in loaf volume and crumb color, but excellent in bread grain and texture. The milling properties were very good and the flour was low in ash content and high in protein content. These three samples were rated as fair, principally because of their good milling properties and their satisfactory bread grain and texture characteristics. Amarello de barba branca x Ribeiro, 56218-2, was another strain generally making fair bread. It was deficient in loaf volume, but fair in crumb color and grain. It milled satisfactorily and produced a high yield of relatively low ash flour. These wheats are not as strong as either Thatcher or Rescue but have some favorable properties as mentioned.

Beirao made unsatisfactory bread. It was deficient in milling and produced a low yield of flour. It milled like a soft wheat except that the middlings were tough and difficult to reduce to flour. The four Ribeiro samples, Nos. 56206-1, 4, and 5, which are classed durums, made extremely poor bread that were deficient in loaf volume and internal characteristics. The flour was excessively high in ash content and the dough sticky and weak. The water absorption of the flour was high. The milling properties were poor, middlings being tough and hard to reduce to flour and the yield of flour lower than expected in relation to test weight.

Two of these samples showed a slightly higher protein content in the flour than in the wheat. A number of the wheat samples in this study were smaller in size than normally milled which may account in part, for the abnormal relationship.

A number of the varieties and strains in Group II made very acceptable bread with some much better than others. The bread from some was low in crumb color and deficient in loaf volume. Some would have rated higher had their loaf volumes been better and about that expected for their protein contents. A great many samples produced a high yield of flour which was better than expected considering the test weight of the grain.

Sukehai pissi; P.I. 7315; S-618; and Santa Martha x Fuscense, 56229-1, made excellent bread. These samples milled satisfactorily produced a high yield of flour, and their doughs were strong and elastic. The bread characteristics (loaf volume, crumb color, and grain) were particularly good. These are strong wheats equal to if not slightly better than. That cher and Rescue for bread. Strain S-615 was deficient in loaf volume, but otherwise made bread of excellent characteristics.

Those making very good bread and generally similar to Thatcher and Rescue were Pusa 106, 5449-2, 3. and 5; Amarello de barba branca x Ribeiro, 56218-1; and Amarello de barba preta x Ribeiro, 56219-9. These milled well and produced a high yield of flour. The doughs were elastic and pliable and the water absorption of the flour medium high. The crumb grain of the bread was good and slightly better in most cases than the crumb color. The dough mixing times were relatively long for samples 5449-3 and 5. These are medium-strong bread wheats.

Amarello de barba preta x Ribeiro, 56219-11, made good bread but the loaf volume was lower than expected, based on the flour protein content. Doughs were strong and the flour yield high. The crumb color was low but satisfactory and the crumb grain of the bread very good.

Amarello de barba preta x Ribeiro, 7027, 56219-2, and 56219-4, and Barbella x Santa Martha, 56222-6, made only fair bread. These were deficient in loaf volume and low to medium in internal bread characteristics. The dough handling properties for all of these were relatively strong. These are poorer bread wheats than either Thatcher or Rescue.

Unsatisfactory bread was made from No. 2738; Beirao; Amarello de barba preta x Ribeiro, 56220-6, 7, and ll; Barbella x Santa Martha, 56222-12, Lobeiro x Barbella, 56225-3; No. 56225-3; No. 56225-11-30A; and No. 56225-11-30B. These samples were not all poor in crumb grain of bread, but deficient in loaf volume and poor in crumb color. Some of the loaf volumes were nearly 35 percent lower than expected considering the flour protein contents. The milling properties were satisfactory and the yields of flour relatively high.

Table 7. Milling, baking, and chemical results on special foreign varieties and strains, 1953 crop.

													~	32	}						
Leaf Folume Corrected to 12.0 Percent Protein	ဗိ		728	748	100 V	642g	5970	595n	6289	627g	6219	6249	6549	588u	745u	438¤	390n	370u	385u		
hod ab Grain	Score		8	92	တ္က	8	95	659	8	8	20	8	85	95	92	404	40ta	40g	35u		7.1
Color G	Score		2	8	28	35	65 g	609	.	္ထ	659	82	2	9 0 0	65	40r	354	35n	35u		8
Optimum Baking Method Crumb mate Volume Color Gr	8		868	860	800	4	726	724	718	716	209	692	692	169	672	614	559	230	246		701
Optimum Bak Bromate Volume	Edit.			~	rd r	-1 r-1	Н	-4	r-t	Н	Н	~ -1	~ 1	-1	Ч	0	0	0	0		78
Mixing Time	Min.		2.00	1,50	000	200	9,0	1.00	1.75	1,00	1,00	9,68	1,25	9,1	1,000	1.75	1,50	1.50	1,50		1,31
Absorp- tion	Fct.	T)	62	26	8	50	58	52	26	26	79	28	28	19	8	63	99	99	99	•	19
1 1	4 42 63		.37	•34 •34	848	4 4	939	•43	.40	44.	4.	•36	43	.38	.42	8	68°	88	*85		rg.
Flour Yield Ash	Pote	itana (67.7	73.2	75.4	76.3	73.3	70.6	75.8	75.1	76.3	74.3	73.8	73.7	74.3	68,4	70.2	71.6	71.6		73.2
Protein eat Flour	Pct.	Choteau, Montana (Group	14.3	13.8	14.5	13.9	14.6	14.5	13,7	13.7	13.7	13,3	12.7	14.7	14.8	16.8	17.2	17.2	17.0		14.6
LE LE	Pot	Chote	14.9	14.5	14.6	14.6	15.4	15.6	14.4	14.3	14.2	14.3	13.5	14.9	15.4	17,0	17.0	17.3	16.7		15.2
Test	Lb		58.8	60.4	60.7	60°57	0.09	60.5	6000	61.9	62.4	62.4	61.5	60.7	60,2	60,4	0.09	59.5	0.09		9.09
CL or P.I. No.	. •		10003	12435	56219-5	56219-12	56220-2	56202-9	56229-2	56219-6	56218-2	56219-8	56219-10	56220-8	56220-9	56206-1	56206-4	56206-5	56206-2		
Variety or Cross			Thatoher	Resoue	Amarello de barba preta x Ribeiro	Do	•	Deirao	Santa Martha x Fuscense	Amarello de barba preta x Ribeiro	Amarello de barba branca x Ribeiro	Amarello de barba preta x Ribeiro	50°	Do.	Do.	Kibeiro	Do.	Do.	Do.		Average

									Optimu	Optimum Baking Method	ng Meth	po	Los I seems
Variety or Cross	C.I. or P.I. No.	Test	Protein Wheat Flour		Flour Yield Ash		Absorp- Mit	Mixing Time B	Bromate Volume	olume	Color G	Grain	12.0 Fercent Protein
		rp•	Ret.	Pct.	Pct. Pct		Fot. M	Min.	Mg.	Co.	Score	Score	ક
		Chc	Choteau, Montana	ontana	(Croup II)	H)							
(No name)	7315	62.2	15,3	15.0		43		35	H	166	13. 13.	100	793
Sukenai pissi Pusa 106	5449-5	0.70	14°0	14.9	75.0			2,25		87 87 87 87 87 87 87 87 87 87 87 87 87 8	დ ლ	3 s	730
Po-	5449-2	61.5	14.8	14.5				1.75	Н,	863	8	85	714
10. S618	12159	2.29	14.0	13°,0	74.7	0 4	59 1	2,52	-1 r-1	853 845	S 8	2001	751
S615	12157	0.10	16.2	15,9	•			1,25	~ 1	839	32	18	6339
Amarello de barba branca x Ribeiro	56218-1	61.4	15.2	14.7	-		63 2	2,25	Н,	823	88	8 8	672
Amarello de barba preta x fibeiro Sarta Martha x Fuscense	56229-1	62.1	14.9	13.6	76.9	¥ 4		500.1	-11	739	3 8	ນ ດ ບ ເບ	687 687
Thatoner	10003	60.7	14.0	13.5				2.00	ı ed	773	75	95	687
Resone	12435	61.1	13,5	12,8		36		1,50	-	768	8	92	720
Anarello de barba preta x Ribeiro	56219-11	62,1	14.7	14.0				1,50	- 1	732	23	000	627g
Do.	56220-7	2.10	10°3	12.8	74.0	200	70 29	25.	p	712	00 00 00 00 00 00 00 00 00 00 00 00 00	2 2	0 10 10 10 10 10 10 10 10 10 10 10 10 10
, o	56220-6	61.4	17.7	17.1				8.0	ı ~	703	659	8	493u
2.0. 2738	134871	61.9	15,3	14.2	Ī		-	25	rd	702	55 u	659	263u
Amarello de barba preta x Ribeiro	56220-11	61.6	15.5	15.0		946	,	00	r-4 ;	684	60g	8	547u
Barbella x Santa Lartha	56222-6	50.9	14.4	13.6	7.01			٠ م	-4	080	5,5	සු ද්	600g
	56222-12	59.7	14.8	14.3			11	00.1	4	662	93a	1 2	5554
(No name)	56225-11-304 62.	14 62.2	13.5	12.6				1,25		662	659	2	6304
Amarello de barba preta x Ribeiro	56219-4	9.29	13.8	12.9	•	,56 6	60 1	1,00	~	651	659	75	606a
	56225-11-30B55	B 22°6	16,7	16.0	•			8	٦,	649	502	5511	4872
Amarello de barba preta x Ribeiro	56219-2	63.1	0.41	13,2	75.7	1 2 2	96	25.	! r-	631 635	70	75	574u 463u
מחוד מי	20200	1	0		•		1]	4	3	3		1
Average		61.2	15.1	14.5	74.5	.47	09	1.47	1.00	752	23	83	

Mexican Varieties and Strains in Nursery Trials

Twenty-two of the better varieties and strains from the Mexican breeding program with Lee and Mida as checks were milled and bread baked from them. These were grown at Madison, Wisconsin; St. Paul, Minnesota; Langdon and Fargo, North Dakota; and Brookings, South Dakota. The results for the five-station composite are shown in Table 8.

As a group these varieties and strains were medium to high in protein and generally lower in test weight per bushel than usual for spring wheats. They required medium to high amounts of potassium bromate for optimum bread results. There was considerable variation in the baking properties, some making excellent and others very poor bread. A great many of the wheats milled poorly.

The best strains for bread considering the data as a whole were Kentana-Yaqui, 2589; Yaqui 50; and Yaqui (Timstein-Kenya), 2245. They milled satisfactorily producing a good yield of flour and their dough handling properties were strong, pliable, and elastic.

The wheats that ranked second in quality and nearly as good as the strains enumerated above were Mayo 52; Yaqui-Kentana, 2254-2c; Timstein x Kenya². 775; General Urquiza, 1122; Taboada 5; Lee; and Mida. These strains have relatively low pearling index values (22.0 to 28.0 percent) and generally have produced a granular type flour to the feel. The crumt color and/or crumb grain of the bread from these samples were not quite as good as that in the bread from those rated as highest in quality. The loaf volume was slightly low for Fimstein x Kenya², 775. The wheat of General Urquiza, 1122, and Taboada 5 was softer than Lee, Mida, or Yaqui and the flour semisoft to the feel. Taboada 5 and General Urquiza, 1122, may be softer than desired by the milling trade.

Mayo 52 and Yaqui-Kentana, 2254-2c, were highest of the group in yield of flour; 75.6 and 74.2 percent, respectively.

A number of other strains made fairly good bread but were deficient principally in milling properties. These were Timstein x Kenya (Blanco); Kentana 51B; Kentana x Yaqui, 2587; (Egypt-Timstein) Mayo, 2156; and Maria Escobar2-Newthatch, 1930-17c-3T-1H; and (Kenya-Marroqui) Maria Escobar², 1442. In these the middlings generally were difficult to reduce to flour and the flour was soft and bolted or sieved slowly. In some samples the bran was found difficult to clean free of flour. This, no doubt, reduced the yield of flour obtained from a number of wheats. These were generally lower than the yield of flour from either Lee or Mida. The pearling index values were high, 35 to 44 percent, indicative of a softer grain than the approved hard red spring varieties. The dough handling properties of most of these generally were satisfactory except for Maria Escobar²-Newthatch, 1930-17c-3T-1H, which was slightly sticky and not very elastic. This strain also had a very short dough mixing time which may possibly be an objectional property to the commercial baker. Maria Escobar2-Newthatch, 1930-17c-2T-9H, had a short dough mixing time and made fairly good bread, but was deficient in dough handling properties. The milling quality of this strain was satisfactory. Timstein x Kenya (Cafe) made fairly good bread,

but was slightly low in loaf volume and deficient in milling and dough handling properties. It had the softest grain of any of the wheats and the flour from it was very soft and velvety to the feel.

Yaqui-Kentana, 2254-lc. made good bread. but was deficient in dough handling properties and milling. Kentana-Yaqui (May segregate), 2585, made bread that was only fair in quality. but was satisfactory in milling and dough handling properties.

The four varieties and strains. Lerma 52; Egypt 101 x Timstein; (Newthatch-Marroqui)(Mentana-Kenya), 908; and (Aguilera-Kenya)(Marroqui-Supremo), 1088; were of poor quality. They made bread of poor characteristics and were unsatisfactory in dough handling and milling properties.

This was an interesting group of wheats with respect to the use and response of potassium bromate in the baking formula. The unbromated loaves generally were low in volume and the internal characteristics very poor. They were considerably improved in bread quality with bromate. It appears that this may possibly be a characteristic of most of these foreign strains and varieties. Many of the foreign wheats required much more bromate than either Lee or Mida.

Composite of seed from Madison, Langdon, Fargo, St. Paul, and Brookings Stations.

Table 8. Yield, milling, baking, and chemical results for the Mexican wheats grown in nursery trials, 1953 crop. 1/

Loaf Volume	Corrected to	Protein	ဗိ	802	780	798	783	816	\$	748	773	738	. 6549	685	718	299	069	731	270		37 669		740	6594	6 68	6 469	6429		
7		Grain	Score	8	92	92	8	92	8	8	8	8	82	85	8	8	92	8	82	8	82	25 ¹⁰	. 85	659	2	40g	6 09	85	
10 10 th	Crumb	Color	Score	8	8	8	82	8	75	95	8	8	g	8	8	8	95	75	82	82	8	S S	2	%	75	20g	2	8	
Lorton harried armital	Loaf	Volume	လိ	922	917	884	868	864	863	835	831	- 800	785	177	754	751	748	737	734	723	722	719	715	714	685	68	699	779	
- + mC		Eromate). Sjá	н	2	2	2	2	. 2	2	Н	٦	ო	2	-	0	2	2	٦	2	7	-	~	2	0	0	Н	1.5	
	Mixing		Ngn.	2.25	2.00	2.00	2.25	1,75	1,50	1,50	2.25	2,25	1,25	5° 00	1.55	2,00	1,5	1.75	1,00	1.75	1,8	1.30	2,00	1,25	1,50	1,25	1.25	1.68	
	Abscrb- 1	tion	Pct.	8	2	٦9	62	29	79	19	2	79	26	9	2	79	28	6 1,	28	63	ጸ	29	26	29	09	29	28	8	
	ı	Ash	Pct.	47	.4 9	20	•26	•52	•45	•47	.51	•49	.51	50	49	48	.47	•52	. 45	•45	47	¥	. 49	48	848	.48	•48	64.	
	Flour	Yield	Pct.	73.4	71.1	68.8	75.6	74.2	70.8	73.3	72.7	70.8	68.9	71.4	70.8	71.8	69.7	7.79	70.0	73.4	7.17	77.3	71,3	69.5	73.0	71.6	0°69	71.3	
	, uj	lour	Pct.	13.8	14.1	13,3	13,3	12.7	13.2	13,4	12,9	13.0	4.4	13,5	12.6	13.5	13.0	12,1	12.4	13.7	12,4	14.1	11.6	13.0	12,3	12.7	12,5	13,1	
	Protein	Wheat Flour	Pct.	14.9	13.5	14.7	14.4	13.9	14.8	14.5	14.5	14.7	15,9	15,1	14.3	14.5	14.7	14.2	14.2	14.9	14.0	15.6	12.6	14.7	13.4	14.6	14.1	14.4	
Pearl-	ing Index	Value	Pot.	32	56	43	58	23	*	27	24	36	48	4	36	56	40	32	32	5 8	37	41	23	4	56	36	4	34	
I.	Test	42	Lb.	53.7	54.8	52.5	52°5	χ. υ.	58.8	56.3	53.5	24.55	54.5	56.1	57.6	χ. ω.	26.0	55.8	6.09	¥.	59.1	53,4	52.6	56.1	57.1		56.1	55.5	
	Acre		Pu-	. 25.4	19.6	22.1	28.2	26.1	22.7	26.1	19.8	28.6	27.4		42 28.4		31.0	22.6	21-9H 31.0	28.1	3r-1H 26.9	22.3	16.7		85 27.0	88	31.6	25.8	
		83			2245	21.56							_	(00)	Kenya-Marroqui2)Maria Escobar, 1442				ch, 1930-17c		ch, 1930-176-			Aguilera-Kenya)(Marroqui-Supremo), 1088	gregate), 25	(Newthatch-Marroqui) (Mentana-Kenya), 908			
		Variety or Cross			n-Kenya),	, cokeM(ni		1, 2254-2c	iza, 1122	1ui, 2589		qui, 2587	enya (Cafe)	enya (Blanco)	ui2)Maria			1, 2254-lo	2-Newthat	775, 775	-2-Newthat	Timstein		oya)(Marro	ui (May se	irrcqui)(M			
		Varie		Taboada No. 5	Yaqui(Timstein-Kenya), 2245	(Egypt-Timstein) Mayo, 2156	Mayo 52	Yaqui-Kentana, 2254-2c	General Urquiza, 1122	Kentana x Yaqui,	Yaqui 50	Kentana x Yaqui,	Timstein x Kenya	Timstein x Kenya	(Kenya-Marroq	Lee (Check)	Kentana 51B	Yaqui-Kentana, 2254-lo	Maria Escobar 2-Newthatch, 1930-170-2T-9H	Timstein-Keny	Maria Escobar2-Newthatch, 1930-176-37-1H	Egypt 101 x Timstein	Mida (Check)	(Aguilera-Ker	Kentana x Yaqui (May segregate), 2585	(Newthatch-M	Lerma 52	Average	

Commercial Samples

As in past years, a number of commercially grown wheat samples were obtained through the Grain Division, Agricultural Marketing Service, for comparison with the varieties and strains produced in experimental plots. Fourteen such samples, representing a number of grades and types, were obtained at Great Falls, Montana, and Minneapolis and Duluth, Minnesota. The samples were composited by grade from 4,299 cars of wheat grading No. 3 or better. This is the fifteenth season such samples have been tested. The results are given in Table 9.

These samples generally averaged lower in protein content than the varieties and strains grown in experimental plot and nursery trials. The Great Falls. Montana, samples averaged highest in protein content and Minneapolis, Minnesota, samples lowest. The milling characteristics were much alike for the commercial and experimental samples with the experimental varieties and strains slightly higher in yield of flour. Otherwise, the baking and chemical results do not appear to be greatly different when compared with samples having approximately the same protein content.

Milling, baking, and chemical results on 14 composite commercial samples of hard red spring wheat obtained at Great Falls, Mont., Duluth and Minnea polis, Minn., representing the 1953 crop. Table 9.

				Fearl-							Optim	um Baki	Optimum Baking Metiod		Loaf Volume	100
Location Where Obtained	. u.s.	of Cars	Test	Index Value	Protein Theat Flor	Protein Sheat Flour	Flour Yield Ash		Absorp- tion	Lixing Time	Bromate Volume	Volume	Color Grain		12.0 Percent Protein	+2 1
			.eg	Pet.	Pet.	Bet.	Pot. Pot.	Pct.	Pct.	Min.	Mg.	02	Score S	Score	ર્ક	
Minnea polis, Minnesota		197	61.0	28.7	13.0	12.4	73.6	4 c	62	200	e-1 e-	127	88	20	727	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 DNS 2 DNS 1 ENS	180 228 485	57.8 56.3 60.1	25.7 24.9 7.08	12.7	3.4.11 6.4.11	73.0	444	8 8 8 8	8888	ਰਜ਼ਰ ,	726 702 722	8358	8878	751 739 753	
Average			58.9	27.8	12.5	11.8	72.8	4	63	2.00	1.0	735	80	78	747	
Duluth, Minnesota		410	61.0	29.2	13.4	12.5	73.4	.41	63	2,00	-1	770	8	85	739	ı
Do.	L DNS	308	59.4	27.3	13.4	12.5	73.1	44.	50	2.00	д	750	75	85 85	720 739	
Do. Do.	2 NS S NS	255 90 109	56.8 59.3 58.1	24°3 29°3 28°9	12.7	12.0 6.11 8.11	70.0	6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 4 8	8 8 8	0 H H	737 726 709	8 8 8 8 8	8 8 8 8 8 8	737 732 721	- 39
Average			58.9	27.7	12.8	12.1	72.5	.42	49	1.92	1.2	739	8	2	733) _{***}
		1								! (000		8	000	1
Great Falls, Montana Do.	1 HONS 1 DAS 2 DAS	86 EE	61.7 60.0 61.6	31.1	13.0 13.0	12.7	71.6	444	8 % 8	2 00 00 00 00 00 00 00 00 00 00 00 00 00		827 784	888	8 22 8	730 741	
Average			1.19	30.4	14.0	13.0	72.7	4-1	19	1,83	1.0	783	85	85		
,																1 .

Total Cars 4299

Strains and Varieties of Current Interest

Each year many new wheats are tested along with the leading commercial varieties for chemical composition milling, and bread baking quality. The data on two hybrid strains and two varieties with averages expressed as a percentage of comparable samples of Lee are shown in Table 10.

Willet

Willet is Frontana x Thatcher II-46-53. Minn. 2855. C.I. 13099. and was developed at St. Paul, Minnesota. It has good 15B stem rust resistance.

Comparable milling and baking tests show that Willet has exceeded Lee with respect to protein content of wheat and flour, test weight per bushel and loaf volume, and grain of bread. It averaged lower than Lee in ash content of flour, water absorption, and yield of flour. Willet has a short dough mixing time, averaging about 50 percent less than that of Lee. The dough handling properties of Willet were weak and sticky. It has shown fair to good milling properties. The grain is somewhat softer (according to the pearling index values) than Lee. The flour is semihard to the feel.

Ns. 3880

Ns. 3880 is Lee x Mida sib, C.I. 12976. It was developed at and first included in trials in North Dakota.

The weighted average of four comparable samples shows that Ns. 3880 has exceeded Lee in many of the characteristics for which comparisons have been made. It milled satisfactorily, but produced less flour than Lee on the basis of their test weights. The dough handling properties were strong, being pliable and elastic. This is a promising bread wheat.

Frontana x Thatcher, II-46-13

Frontana x Thatcher, II-46-13, Minn. 2854. C.I. 13030, was developed at St. Paul, Minnesota, and has shown good 15B stem rust resistance.

Comparable milling and baking tests of four samples show that Minn. 2854 exceeds Lee with respect to test weight per bushel, protein content of wheat, and flour and crumb color of bread. It has been one of the better samples in wheat protein content. averaging 1.0 percent higher than Lee. Although high in protein content the loaf volume is lower than expected, indicating that the quality of the gluten is not as strong as some of the approved varieties. The dough mixing time for Minn. 2854 is shorter (about 55 percent) and more critical than for Lee. It produced a dough that was sticky and weak.

This year's samples milled satisfactorily, but the flour was soft to the feel and unlike that from the approved hard red spring varieties. It averaged lower in flour yield than expected for the test weight per bushel of the samples and of the comparably grown samples of Lee.

Kentana

Kentana, a Mexican variety with good 15B stem rust resistance, was grown for the first time in plots at three Minnesota stations.

The weighted average of comparably grown samples shows that Kentana was inferior to Lee in a number of important characteristics. It exceeded Lee, however, in test weight per bushel, crumb color and grain of bread, and was lower than Lee in flour ash. It has a considerably shorter (40 percent) dough mixing time than Lee and weak dough characteristics. The milling characteristics of Kentana were poor. It milled like a soft wheat and the middlings were difficult to reduce. The flour bolted slowly. This wheat is inferior to the approved varieties in dough handling and milling properties.

Selkirk

Selkirk, CT 186, is a Canadian variety developed from a McMurachy-Exchange x Redman cross. It has shown resistance to 15B stem rust at low temperatures. It has been approved for distribution in Canada.

Comparable milling and baking tests of thirteen samples show that Selkirk is very similar to Lee for many of the characteristics for which comparisons have been made. It has produced a slightly higher yield of flour than Lee. It milled satisfactorily and made a granular flour similar to the approved varieties in this respect. The dough properties of Selkirk were good, being elastic and pliable. Selkirk required about the same amount of potassium bromate as Lee for optimum bread results. It made satisfactory bread slightly exceeding Lee in bread loaf volume, crumb color, and grain. This is a good bread wheat and has many of the favorable properties found in the approved varieties.

Comparison of the yield per acre, test weight per bushel, milling, baking, and chemical properties of four varieties of wheat with the variety Lee, 1953 crop. Table 10.

				Pearl-							1 440	Catamin Baland Mathod	4 Math	1
Variaty or Cross	No. of Samples	Aore	Test Weight	ing Index Value	Protein Wheat Flour		Flour Yield Ash		Absorp- tion	Mixing Time	Bromate Volume	3)	Color Grain	rain
Contract		Bu.	rp.	Pet.	Pot.	Pet.	Pct.	Pot.	Pot.	Min.		8	Score Score	score
Willet Lee	44	29.3	58.9	8 8 88	14.5	13.5	73.1	4 64	63	1.19	Ω κ	819 768	8 8	89
Percentage of Lee		110.9	101.6	135.7	111.5 1	7.011	98.2	89°7	8.95	54.0	115,3	106.6	96.5	104.7
Selkirk Lee	13 13	30.4	58.7 58.4	30	13.5	12.9	76.1	46.	62	2.02	1.3	808 775	85 82	88 89
Percentage of Lee		118.2	100.5	103.4	97.1	98.5 1	102.9	97.9	98.4	97.1	₹08 •3	104.3	103.7	102,3
Lee x Mida sib., Ns. 3880 Lee	4 4	25.5	59.4 57.5	26 26	13.9	13.0	72.2	44	61	2.00	1	796 765	4 6 6	8 8
Percentage of Lee		108.9	103,3	100.0	103.7 1	102,3 1	100.0	7.76	101.6	0°26	120.0	104.0	106.3	102.2
Frontana x Thatcher, Minn. 2854 4 Lee	2854 4	30.5	59.2	38	14.0	12.9	73.8	46 49	63	1.00	υ e -	779	88 88 89	88 88
Percentage of Lee		115.5	102.0	135.7	107.6 1	105.7	99,1	93.8	96.8	45.4	115,3	101.4	97.7	103.5
Kentana Lee	ოო	28.0	58.7 57.1	47	13.1	11.5	71.3	45	62 62	1,25	1.7	732	95 88	88 80 80
Percentage of Lee		102.5	102.8	162.0	97.7	92°0	8.96	93°7	296	0°09	242.8	93.0	107.9	103.5
				A CONTRACTOR OF THE PERSON OF										

