

INTRODUCING TESLA P100

New GPU Architecture to Enable the World's Fastest Compute Node

GIANT LEAPS IN EVERYTHING

TESLA P100 PERFORMANCE DELIVERED

NVLink for Max Scalability, More than 45x Faster with 8x P100

PASCAL ARCHITECTURE

TESLA P100 GPU: GP100

56 SMs

3584 CUDA Cores

5.3 TF Double Precision

10.6 TF Single Precision

21.2 TF Half Precision

16 GB HBM2

720 GB/s Bandwidth

GPU PERFORMANCE COMPARISON

	P100	M40	K40
Double Precision TFlop/s	5.3	0.2	1.4
Single Precision TFlop/s	10.6	7.0	4.3
Half Precision Tflop/s	21.2	NA	NA
Memory Bandwidth (GB/s)	720	288	288
Memory Size	16GB	12GB, 24GB	12GB

GP100 SM

	GP100	
CUDA Cores	64	
Register File	256 KB	
Shared Memory	64 KB	
Active Threads	2048	
Active Blocks	32	

More resources per core

2x Registers
1.33x Shared Memory Capacity

2x Shared Memory Bandwidth

2x Warps

Higher Instruction Throughput

IEEE 754 FLOATING POINT ON GP100

3 sizes, 3 speeds, all fast

Feature	Half precision	Single precision	Double precision
Layout	s5.10	s8.23	s11.52
Issue rate	pair every clock	1 every clock	1 every 2 clocks
Subnormal support	Yes	Yes	Yes
Atomic Addition	Yes	Yes	Hew Yes

HALF-PRECISION FLOATING POINT (FP16)

16 bits

- S
- e x p
- f r a c

- 1 sign bit, 5 exponent bits, 10 fraction bits
- 2⁴⁰ Dynamic range
 - Normalized values: 1024 values for each power of 2, from 2⁻¹⁴ to 2¹⁵
 - Subnormals at full speed: 1024 values from 2⁻²⁴ to 2⁻¹⁵
- Special values
 - +- Infinity, Not-a-number

USE CASES

Deep Learning Training

Radio Astronomy

Sensor Data

Image Processing

NVLink

NVLINK

P100 supports 4 NVLinks

Up to 94% bandwidth efficiency

Supports read/writes/atomics to peer GPU

Supports read/write access to NVLink-enabled CPU

Links can be ganged for higher bandwidth

NVLink on Tesla P100

NVLINK - GPU CLUSTER

Two fully connected quads, connected at corners

160GB/s per GPU bidirectional to Peers

Load/store access to Peer Memory

Full atomics to Peer GPUs

High speed copy engines for bulk data copy

PCIe to/from CPU

NVLINK TO CPU

Fully connected quad

120 GB/s per GPU bidirectional for peer traffic

40 GB/s per GPU bidirectional to CPU

Direct Load/store access to CPU Memory

High Speed Copy Engines for bulk data movement

TESLA P100 PHYSICAL CONNECTOR

With NVLink

HBM2 STACKED MEMORY

HBM2: 720GB/SEC BANDWIDTH

And ECC is free

UNIFIED MEMORY

PAGE MIGRATION ENGINE

Support Virtual Memory Demand Paging

49-bit Virtual Addresses

Sufficient to cover 48-bit CPU address + all GPU memory

GPU page faulting capability

Can handle thousands of simultaneous page faults

Up to 2 MB page size

Better TLB coverage of GPU memory

KEPLER/MAXWELL UNIFIED MEMORY

CUDA 6+

Allocate Up To GPU Memory Size

Simpler
Programming &
Memory Model

Single allocation, single pointer, accessible anywhere
Eliminate need for *explicit copy*Greatly simplifies code porting

Performance Through Data Locality Migrate data to accessing processor Guarantee global coherency Still allows explicit hand tuning

PASCAL UNIFIED MEMORY

Large datasets, simple programming, High Performance

Enable Large Data Models

Oversubscribe GPU memory
Allocate up to system memory size

Tune
Unified Memory
Performance

Usage hints via cudaMemAdvise API Explicit prefetching API

Simpler Data Access

CPU/GPU Data coherence
Unified memory atomic operations

INTRODUCING TESLA P100

New GPU Architecture to Enable the World's Fastest Compute Node

More P100 Features: compute preemption, new instructions, larger L2 cache, more...

Find out more at http://devblogs.nvidia.com/parallelforall/inside-pascal