Теорема синусов **Теорема синусов Теорема синусов**

1.	В треугольнике ABC $BC = 12$, $\sin A = \frac{4}{5}$, $\sin C = \frac{3}{5}$. Найдите AB .	mi
2.	В треугольнике ABC $BC = 18$, $AC = 30$, $\sin B = \frac{5}{6}$. Найдите $\angle A$. Ответ дайте в градусах.	
3.	В треугольнике ABC $BC = 3\sqrt{6}$, $\angle A = 45^{\circ}$, $\angle C = 60^{\circ}$. Найдите AB .	
4.	В остроугольном треугольнике ABC $BC = 6\sqrt{3}$, $AB = 6\sqrt{2}$, $\angle A = 60^{\circ}$. Найдите $\angle C$. Ответ дайте в градусах.	mi
5.	Найдите радиус окружности описанной вокруг треугольника ABC , если $BC = 4\sqrt{3}$, $\angle A = 60^{\circ}$.	
6.	В треугольнике $ABC \angle A = 30^{\circ}$, а радиус описанной окружности равен 14. Найдите BC .	mi
7.	В треугольнике ABC угол B равен 72°, угол C равен 63°, $BC = 2\sqrt{2}$. Найдите радиус описанной около этого треугольника окружности.	
8.	В треугольнике ABC угол B равен 56°, угол C равен 64°, $BC = 3\sqrt{3}$. Найдите радиус описанной около этого треугольника окружности.	mi
9.	Найдите радиус окружности описанной около треугольника ABC , если $BC = 36$, а синус внешнего угла при вершине A равен $\frac{4}{5}$.	
10.	Радиус окружности описанной около треугольника ABC равен 13. Найдите BC , если косинус внешнего угла при вершине A равен $\frac{5}{13}$.	mi
11.	В треугольнике ABC $AB = 8\sqrt{2}$, $\angle A = 30^{\circ}$, $\angle B = 105^{\circ}$. Найдите BC .	
12.	В равнобедренной трапеции $ABCD$ с основаниями $AD = 6$ и BC боковые стороны равны $2\sqrt{6}$. Найдите $\angle BDC$, если $\angle ADB = 45^{\circ}$.	mi
13.	Углы B и C треугольника ABC равны соответственно 73° и 77°. Найдите BC , если радиус окружности описанной около треугольника ABC , равен 9.	
14.	Углы B и C треугольника ABC равны соответственно 64° и 86° . Найдите BC , если радиус окружности описанной около треугольника ABC , равен 7 .	

Теорема синусов https://math100.ru

	1 еорема синусов <u>питря</u>	s://matn100.ru
15.	Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 2 : 3 : 7. Найдите радиус окружности, если меньшая из сторон равна 16.	mi
16.	Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 1 : 2 : 3. Найдите радиус окружности, если меньшая из сторон равна 17.	
17.	В равнобедренном треугольнике ABC с основанием $AC = \sqrt{2}$ угол при основании равен 30°. Найдите биссектрису AK .	mi
18.	В равнобедренной трапеции $ABCD$ с основаниями $AD = 12$ и BC $\sin \angle BAC = \frac{4}{9}$, $\sin \angle ACD = \frac{2}{3}$. Найдите среднюю линию трапеции.	mi
19.	Две стороны треугольника равны 6 и 12, а высота, проведённая к третьей стороне равна 4. Найдите радиус окружности, описанной около данного треугольника.	
20.	Найдите радиус окружности, описанной около равнобедренного треугольника с основанием 16 и боковой стороной 10.	mi
21.	В прямоугольном треугольнике ABC через вершины A и C и середину M гипотенузы AB проведена окружность радиуса $5\sqrt{3}$. Найдите радиус описанной окружности треугольника CMB , если $\angle A = 30^\circ$.	mř
22.	В четырёхугольнике $ABCD$ известно, что $CD = 10\sqrt{2}$, $\angle CAD = 45^{\circ}$ и $\angle BAC = \angle BDC = 30^{\circ}$. Найдите BC .	
23.	Радиус окружности описанной около треугольника ABC равен 6. Найдите высоту треугольника BH , если $AB = 9$ и $BC = 4$.	mi
24.	Радиус окружности описанной около треугольника ABC равен 8. Найдите AB , если $BC = 14$ и высота треугольника $BH = 5,25$.	
25.	В равнобедренном треугольнике ABC на основании AC выбрана точка D так, что $AD = 5$. Около треугольника DBC описана окружность и прямая AB является касательной к этой окружности. Найдите диаметр этой окружности, если $\angle ABD = 30^\circ$.	mř