#### UNIVERSITE DE BATNA 2

## SERIE DE TD N° 2



#### FACULTE DE MEDECINE

## DE BIOSTATISTIQUE

#### 1ère ANNEE, 21/22

#### STATISTIQUE DOUBLE

### Exercice 01:

Pour étudier les mécanismes hormonaux de la puberté on a mesuré les concentrations de deux hormones : l'æstradiol et l'æstrone pour un groupe de 8 adolescentes. Les résultats sont :

| $x_i$ = concentration œstradiol pg/ml | 7.5 | 16.5 | 22   | 30 | 39   | 54   | 69 | 77 |
|---------------------------------------|-----|------|------|----|------|------|----|----|
| $y_i$ = concentration æstrone pg/ml   | 9   | 18.5 | 21.5 | 27 | 32.5 | 48.5 | 57 | 58 |

On note par H le point moyen des quatre premiers points du nuage et par K le point moyen des quatre autres points.

- 1) Calculer les coordonnées des points H et K et déterminer la droite d'ajustement Y.
- 2) Utiliser la droite des moindres carrés ordinaires pour déterminer Y(X).
- 3) Calculer la covariance et le coefficient de corrélation linéaire.

## Solution de l'exo n° 1:

1) Coordonnées du point H ( $\overline{x}_H = 19$ ;  $\overline{y}_H = 19$ ) et du point K ( $\overline{x}_K = 59.75$ ;  $\overline{y}_K = 49$ ) Le point moyen des points H et K est ( $\overline{x} = 39.375$ ;  $\overline{y} = 34$ ).

La droite d'ajustement demandée est celle qui passe par les deux points H et K et est de la forme y = A + B \* x; le système suivant va être satisfait :

La droite d'ajustement de Mayer sera donc : y = 5.0123 + 0.7362 \* x

2) Détermination de la droite des Moindres Carrés Ordinaires (MCO).

La calculatrice nous donne les paramètres suivants :  $\overline{x} = 39.375$  ;  $\overline{y} = 34$  ;  $\sigma_x^2 = 554.546875$ 

$$\sigma_y^2 = 298.5$$
; A = 5.321074357; B = 0.728353667  $\Rightarrow$  y = 5.3211 + 0.7284 \* x

3) Calcul de la covariance et du coefficient de corrélation.

Cov (x; y) = 
$$\sigma_{xy}$$
 = 403.90625; r = 0.99274858

#### Exercice 02:

Dans le but de doser le cuivre dans une spécialité pharmaceutique, on évalue les critères de qualité d'une méthode d'analyse du cuivre par spectrophotométrie d'absorption atomique.

<u>QUESTION N°1</u>: Lors de l'étude de répétabilité de la méthode, on mesure 12 fois l'absorbance d'une même solution :

**0,524 0,520 0,516 0,532 0,533 0,528 0,514 0,527 0,536 0,512 0,517 0,535** Calculer la moyenne, l'écart-type et le coefficient de variation de l'absorbance.

OUESTION N°2 : Pour vérifier la linéarité de la méthode on prépare 6 solutions éta

<u>QUESTION N°2</u>: Pour vérifier la linéarité de la méthode, on prépare 6 solutions étalons dont les concentrations sont régulièrement espacées entre 0 et 1 mg/mL:

| Concentration | 0     | 0.2   | 0.4   | 0.6   | 0.8   | 1     |
|---------------|-------|-------|-------|-------|-------|-------|
| Absorbance    | 0.036 | 0.254 | 0.422 | 0.627 | 0.785 | 0.980 |

Déterminer l'équation de la droite de régression qui décrit la courbe d'étalonnage.

On admet que la fonction d'étalonnage peut être considérée comme linéaire si le coefficient de corrélation est supérieur à 0,998. La méthode est–elle linéaire ?

Dans le but de doser le cuivre dans une spécialité pharmaceutique, on évalue les critères de qualité d'une méthode d'analyse du cuivre par spectrophotométrie d'absorption atomique.

<u>QUESTION N°1:</u> Lors de l'étude de répétabilité de la méthode, on mesure 12 fois l'absorbance d'une même solution :

#### 0,524 0,520 0,516 0,532 0,533 0,528 0,514 0,527 0,536 0,512 0,517 0,535

Calculer la moyenne, l'écart-type et le coefficient de variation de l'absorbance.

**QUESTION N°2 :** Pour vérifier la linéarité de la méthode, on prépare 6 solutions étalons dont les concentrations sont régulièrement espacées entre 0 et 1 mg/mL :

| Concentration | 0     | 0.2   | 0.4   | 0.6   | 0.8   | 1     |
|---------------|-------|-------|-------|-------|-------|-------|
| Absorbance    | 0.036 | 0.254 | 0.422 | 0.627 | 0.785 | 0.980 |

Déterminer l'équation de la droite de régression qui décrit la courbe d'étalonnage.

On admet que la fonction d'étalonnage peut être considérée comme linéaire si le coefficient de corrélation est supérieur à 0,998. La méthode est–elle linéaire ?

## Solution de l'exo n° 2 :

1) Calcul des paramètres : la moyenne ; l'écart-type et le coefficient de variation.

$$\overline{x} = \frac{\sum x_i}{N} = \frac{6.294}{12} = 0.5245$$
;  $\sigma = 0.008190441584$ ;  $CV = \frac{\sigma}{\overline{x}} = 0.015615713$ 

2) Détermination de la droite de régression linéaire et le coefficient de corrélation.

La calculatrice donne A = 0.051761904; B = 0.931142857 et r = 0.999236013

La droite Y(X) étant la suivante y = 0.0518 + 0.9311 \* x et elle est linéaire car r > 0.998.

## Exercice 03:

On s'intéresse à la variation du VEMS en fonction de l'âge. Pour cela on mesure le VEMS de 10 sujets adultes (VEMS en litres ; le volume expiratoire maximum par seconde).

Les résultats sont indiqués dans le tableau suivant :

| Sujet | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| VEMS  | 3.3 | 3.3 | 2.6 | 3.5 | 3.6 | 2.8 | 3.5 | 3.6 | 3.2 | 4.1 |
| Âge   | 62  | 46  | 74  | 53  | 28  | 67  | 34  | 41  | 48  | 22  |

On envisage une relation linéaire entre le VEMS et l'âge.

- a) Trouver l'équation de la 1ère droite de régression.
- b) Calculer le coefficient de corrélation entre les 2 variables.
- c) Estimer le VEMS pour l'âge de 18 ans.
- d) Tracer le nuage de points

### Solution de l'exo n° 3 :

- a) L'équation Y(X) est  $y = 4.420383647 0.022534392 * x \Rightarrow y = 4.4204 0.0225 * x$
- b) Le coefficient de corrélation r = -0.897989181
- c) L'estimation du VEMS pour x = 18 ans est :  $\hat{y}(18) = 4.014764581$
- d) Le nuage de points est le suivant :



# Exercice 04:

Le tableau suivant concerne les âges auxquels 100 couples se sont mariés :

| Classes  | Femmes Y | [17; 22[     | [22;27[ | [27;32[ | [32; 37] | Σ       |
|----------|----------|--------------|---------|---------|----------|---------|
| Maris X  | Centres  | 19.5         | 24.5    | 29.5    | 34.5     |         |
| [20; 25[ | 22.5     | <b>0</b> .14 | 0.09    | 0.01    | 0.00     | 0.24 24 |
| [25;30[  | 27.5     | <b>0</b> .18 | 0.07    | 0.02    | 0.01     | 0.28 28 |
| [30; 35[ | 32.5     | 0.04         | 0.13    | 0.03    | 0.01     | 0.21 21 |
| [35;40[  | 37.5     | 0.01         | 0.09    | 0.10    | 0.02     | 0.22 22 |
| [40;45]  | 42.5     | 0.00         | 0.01    | 0.02    | 0.02     | 0.05 5  |
| Σ        |          | 0.37 37      | 0.39 39 | 0.18 18 | 0.06 6   | 1 100   |

- 1) Compléter le tableau.
- 2) Calculer le tableau de contingence des fréquences.
- 3) Trouver les distributions marginales de X et de Y. Puis calculer les moyennes et les variances marginales.
  - 4) Calculer la covariance entre X et Y ainsi que le coefficient de corrélation linéaire.

## Solution de l'exo n° 4:

- 1) Voir tableau des données
- 2) Voir tableau des fréquences ci-dessus.
- 3) La distribution marginale, la moyenne et la variance de x (âge des maris) est :

| Ci | 22.5 | 27.5 | 32.5 | 37.5 | 42.5 | Σ   |
|----|------|------|------|------|------|-----|
| ni | 24   | 28   | 21   | 22   | 5    | 100 |

$$\overline{x} = \frac{\sum x_i}{N} = \frac{3030}{100} = 30.3$$
  $\sigma_x^2 = \frac{\sum n_i x_i^2}{N} - \overline{x}^2 = \frac{95475}{100} - 918.09 = 36.66$ 

La distribution marginale, la moyenne et la variance de y (âge des femmes) est :

| Ci             | 19.5 | 24.5 | 29.5 | 34.5 | Σ   |
|----------------|------|------|------|------|-----|
| n <sub>i</sub> | 37   | 39   | 18   | 6    | 100 |

$$\overline{y} = \frac{\sum y_i}{N} = \frac{2415}{100} = 24.15$$
  $\sigma_y^2 = \frac{\sum n_i y_i^2}{N} - \overline{y}^2 = \frac{60285}{100} - 583.2225 = 19.6275$ 

4) Calcul de la covariance et du coefficient de corrélation.

Cov (x; y) = 
$$\frac{\sum \sum n_{ij}x_iy_i}{N} - \overline{x}\overline{y} = \frac{74722.5}{100} - 30.3 * 24.15 = 15.48$$

Le coefficient de corrélation r = 0.577088251

La droite de régression Y(X) est la suivante y = A + B \* x = 11.35556465 + 0.422258592 \* x

### Exercice 05:

Pour juger de l'efficacité d'une drogue D dans la prévention d'une maladie. Au cours de l'étude de l'activité de la drogue D, on obtient les résultats suivants :

| X | 0    | 1    | 2    | 3    |
|---|------|------|------|------|
| Y | 0.29 | 0.52 | 0.61 | 0.79 |

(Dose : unité arbitraire, y : fraction d'un effet maximum)

Déterminer les paramètres p et  $y_0$  de la relation effet—dose  $\mathbf{y} = \mathbf{p}\mathbf{x} + \mathbf{y_0}$ 

Calculer le coefficient de corrélation linéaire.

## Solution de l'exo n° 5:

En choisissant le mode « régression linéaire » la calculatrice donne la droite de régression Y(X) qui est la suivante :  $y = y_0 + p * x = A + B x = 0.314 + 0.159 * x avec r = 0.987311051$ 

En choisissant le mode « régression logarithmique » avec les données suivantes :

| X        | $e^0$ | e <sup>1</sup> | $e^2$ | $e^3$ |
|----------|-------|----------------|-------|-------|
| <u>y</u> | 0.29  | 0.52           | 0.61  | 0.79  |

La calculatrice donne la droite de régression Y(X) qui est :  $y = y_0 + p * x = A + B x$ 

Avec 
$$A = 0.314$$
 et  $B = 0.159$  et  $r = 0.987311051$ 

#### Exercice 06:

Cinétique du premier ordre. Un corps chimique se décompose selon une cinétique du premier ordre caractérisée par l'équation :  $\mathbf{Q} = \mathbf{Q}_0 \, \mathbf{e}^{-\mathbf{k}t}$ 

 $O\grave{u}$ : Q désigne la quantité de corps restant à l'instant t ;  $Q_0$  la quantité initiale ; k la constante de vitesse de la décomposition. On dispose des données expérimentales suivantes :

| t en minutes   | 1   | 2   | 3   | 4   | 5   | 6   | 7  | 8  | 9  | 10 |
|----------------|-----|-----|-----|-----|-----|-----|----|----|----|----|
| Q en nanomoles | 416 | 319 | 244 | 188 | 144 | 113 | 85 | 66 | 50 | 41 |

Evaluer la constante de vitesse k.

### Solution de l'exo n° 6:

On choisit le mode « REGression EXPonentielle » avec la calculatrice KENKO ou bien le mode « e^x » avec la calculatrice CASIO on obtient ce qui suit :

$$\begin{aligned} &A = 534.524494 = Q_0 \quad B = -0.260530669 = -k \quad r = -0.999768735 \Rightarrow \mathbf{Q} = \mathbf{Q_0} \ \mathbf{e^{-kt}} \\ &\Rightarrow \mathbf{Q} = \mathbf{534.52449} \ \mathbf{e^{-0.26053t}} \Rightarrow \mathbf{k} = \mathbf{0.26053} \end{aligned}$$

## Autre méthode avec le mode « REGression LINéaire » :

Les données avec le *logarithme décimal* sont les suivantes :

| t en minutes   | 1      | 2      | 3      | 4      | 5      | 6      | 7     | 8     | 9     | 10    |
|----------------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|
| Q en nanomoles | log416 | log319 | log244 | log188 | log144 | log113 | log85 | log66 | log50 | log41 |

En utilisant le logarithme décimal :  $\log Q = \log Q_0 + \log e^{-kt} = \log Q_0 + (-k \log e) t$ 

$$\Rightarrow$$
 A = logQ<sub>0</sub>; B = -k log e  $\Rightarrow$  k = - $\frac{B}{\log e}$ 

La calculatrice donne :  $A = log Q_0 = 2.727967611 \Rightarrow 10^A = 534.524494$  ; B = -0.113147032 ;

$$r = -0.999768735 \Rightarrow k = -\frac{-0.113147032}{0.434294481} = 0.260530669 \Rightarrow \mathbf{k} = \mathbf{0.26053}$$

Les données avec le *logarithme Népérien* sont les suivantes :

| t en minutes   | 1     | 2     | 3     | 4     | 5     | 6     | 7    | 8    | 9    | 10   |
|----------------|-------|-------|-------|-------|-------|-------|------|------|------|------|
| Q en nanomoles | Ln416 | Ln319 | Ln244 | Ln188 | Ln144 | Ln113 | Ln85 | Ln66 | Ln50 | Ln41 |

En utilisant le logarithme Népérien :  $y = Ln Q = Ln Q_0 + Ln e^{-kt} = Ln Q_0 + (-k t) = A + B x$ 

$$\Rightarrow$$
 A = Ln Q<sub>0</sub> = 6.281377555  $\Rightarrow$  Q<sub>0</sub> = e<sup>A</sup> = **534.524494** et B = -k = -0.260530669  $\Rightarrow$ 

$$k = -B = 0.260530669 \Rightarrow k = 0.26053$$

On peut choisir le  $2^{\delta me}$  mode exponentiel « A.B^X » avec la calculatrice CASIO.

$$y = Q = Q_0 e^{-kt} = Q_0 (e^{-k})^t = A.B^t = A.B^{\Lambda X} \implies A = Q_0 = 534.524494$$
 et

$$B = e^{-k} = 0.7706425209 \Rightarrow Ln(B) = -k = Ln(0.7706425209) = -0.2605306693 \Rightarrow k = 0.2605306693$$

**Conclusion**: La Constante de Vitesse k prend toujours la même valeur de 0.26053