# Hisse Senedi Fiyatlarının Günlük Mum Yönü Tahmini:

YAP 470 Dönem Projesi Sunumu

### Proje Tanımı ve Amacı

- The primary objective of this project is to predict the direction (bullish/bearish) of the next daily candlestick in the stock market. The problem is framed as a binary classification task.
- The project aims to quantify the performance difference between these two approaches, evaluating the effectiveness of a dedicated time-series architecture (LSTM) against sophisticated feature engineering with traditional models.

Traditional-ML Approach RNN

• LSTM

- Xgboost
- RFtree
- MLP

# Veri Seti ve Özellik Mühendisliği

- Veri Kaynağı: Kaggle Stock Market Dataset (S&P 500 hisselerinin OHLCV verileri)
- Ham Özellikler: Open, High, Low, Close, Volume
- Türetilmiş Özellikler (Feature Engineering):
  - a. Temel Göstergeler: EMA (10, 20, 50), RSI, ATR
  - b. Gelişmiş Göstergeler (LSTM için eklendi): MACD, Bollinger Bantları, ROC.

## Akış Şeması:

Veri Yükleme ve Temizleme -> Özellik Mühendisliği -> Veriyi Kronolojik Ayırma (%80 Eğitim, %20 Test) -> Model Özellik Seçimi / Ölçekleme -> Model Eğitimi -> Test Verisi ile Değerlendirme.

### Testing Methods and Metrics:

Accuracy: Overall correctness

Precision & Recall: Especially important if one class is more prevalent

F1-score: Balances precision and recall

Confusion Matrix: Provides TP, FP, FN, TN breakdown

### XGBOOST

```
k_values = [5, 10, 15]
window_sizes = [3, 7]
split_ratio = 0.8
```

AAPL\_k5\_w3



## RForest

```
k_values = [5, 10, 15]
window_sizes = [3, 7]
max_depth_values = [10, 20, None]
split_ratio = 0.8
```

AAPL\_k5\_w3

| MODEL DEĞE                            | RLENDİRME S          | ONUÇLARI     |                      |                      |                                  |  |
|---------------------------------------|----------------------|--------------|----------------------|----------------------|----------------------------------|--|
| Modelin Test Ve                       | erisi Üzeri          | ndeki Doğ    | ruluğu: 0.4          | 4720                 |                                  |  |
| Sınıflandırma I                       | Raporu:<br>precision | recall       | f1-score             | support              |                                  |  |
| Düşüş (0)<br>Yükseliş (1)             | 0.47<br>0.46         | 0.86<br>0.11 | 0.61<br>0.18         | 952<br>1027          |                                  |  |
| accuracy<br>macro avg<br>weighted avg | 0.47<br>0.47         | 0.49<br>0.47 | 0.47<br>0.40<br>0.39 | 1979<br>1979<br>1979 |                                  |  |
| Karmaşıklık Ma                        | trisi:               | Karma        | şıklık Mat           | risi                 |                                  |  |
| Gerçek Değerler<br>Gerçek Düşüş       | 817                  |              |                      | 135                  | - 900<br>- 800<br>- 700<br>- 600 |  |
| Gerçek D<br>Gerçek Yükseliş<br>'      | 910                  |              |                      | 117                  | - 500<br>- 400<br>- 300<br>- 200 |  |

Tahmin Yükseliş

Tahmin Düşüş

Tahmin Edilen Değerler

# MLP

```
k_values = [5, 10, 15]
window_sizes = [3, 7]
hidden_layer_configs = [(50,), (100,), (50, 25), (100, 50)]
split_ratio = 0.8
```

### AAPL\_k5\_w7\_lyr100

Modelin Test Verisi Üzerindeki Doğruluğu: 0.4813

Sınıflandırma Raporu:

| p           | recision | recall | f1-score | support |
|-------------|----------|--------|----------|---------|
| Düşüş (0)   | 0.48     | 1.00   | 0.65     | 952     |
| İkseliş (1) | 0.00     | 0.00   | 0.00     | 1026    |
| accuracy    | 0.24     | 0 50   | 0.48     | 1978    |
| macro avg   | 0.24     | 0.50   | 0.32     | 1978    |
| eighted avg | 0.23     | 0.48   | 0.31     | 1978    |

Karmaşıklık Matrisi:



### LSTM

```
sequence_lengths_to_try = [3,10,20, 40,100]
lstm_units_to_try = [32, 50]
k_features_to_try = [5,8, 12]
```

AAPL\_s100\_lunit50\_k5





## Modellerin Karşılaştırılması ve Genel Değerlendirme

Tartışmak istediklerinizi kısaca detaylandırın.

#### Sonuç ve Değerlendirme

Bu çalışma kapsamında,Random Forest, MLP, XGBoost) ve derin öğrenme tabanlı LSTM modeli sistematik olarak karşılaştırılmıştır.

Geleneksel modeller arasında en tutarlı ve marjinal olarak en iyi performansı XGBoost sergilemiştir.

Nihayetinde, hem XGBoost hem de en iyi LSTM denemeleri, rastgele tahmin seviyesinin (%50) yalnızca bir miktar üzerine çıkabilmiş, ancak aralarında pratik anlamda kayda değer bir fark yaratamamıştır.

#### Özet Bulgular (Maddesel Tasarım)

- Model Karşılaştırması: Geleneksel modeller arasında en stabil ve başarılı yaklaşım XGBoost olmuştur. MLP ise en kötü performansı sergilemiştir.
- Performans Sınırı: En iyi modeller dahi (XGBoost & LSTM), %51-55 bandını aşmakta zorlanmış ve yazı-tura atmaktan farksız sonuçlar üretmiştir.

### Neler farklı yapılabilirdi?

- Veri Zenginleştirme: Modele dış veri kaynakları eklemek:
  - Piyasa duygu analizi (Haber başlıkları, sosyal medya).
  - Makroekonomik veriler (VIX, faiz oranları, enflasyon).

Ya da proje konusu daha farklı kurgulanabilirdi belirli bir dönemde fiyatlar artım eğilimi mi gösterecek düşüş eğilimimi gibi