11. IP adresace a směrování v datových sítích

- Třídní adresování
 - o Rozdělení jednotlivých tříd
 - Vyhrazené IP adresy
- Pojmy
 - o IP a MAC adresa
 - Síťová adresa
 - Výchozí brána
 - o Všesměrová adresa
 - o Prefix
 - o Maska (pod)sítě
 - o VLSM
 - o CIDR
- Zjištění
 - o Počtu (pod)síti a hostů
 - Všesměrové a síťové adresy
 - o Velikosti bloku
 - Wild Card
- Návrh topologie sítě v rámci VLSM
- Sumarizace
- Charakteristika směrovače a směrovací tabulky
- Statické vs. dynamické směrování
- Směrovací protokoly
 - o RIP, IGRP, EIGRP, OSPF
- Ukázka prostředí Cisco Packet Tracer

1. Třídní adresování

• Rozdělení jednotlivých tříd

	8 bitů	8 bitů	8 bitů	8 bitů
Třída A:	Síť	Hostitel	Hostitel	Hostitel
Třída B:	Síť	Síť	Hostitel	Hostitel
Třída C:	Síť	Síť	Síť	Hostitel

Třída D: Vícesměrové vysílání

Třída E:

Výzkum

Třída	Určující bity	1. bajt	Maska	CIDR*	1. IP	Posl. IP	Bitů sítě	Bitů stanic	Počet sítí	Počet hostů
Α	0	0-127	255.0.0.0	/8	0.0.0.1	127.255.255.254	8	24	126	16 777 214
В	10	128-191	255.255.0.0	/16	128.0.0.1	191.255.255.254	16	16	16 384	65 534
С	110	192-223	255.255.255.0	/24	192.0.0.1	223.255.255.254	24	8	2 097 152	254
D	1110	224-239	255.255.255.255	/32	multicast					
E	11110	240-255	rezervováno							

Třída A

- Slouží pro potřeby extrémně rozsáhlých sítí
- První bit prvního oktetu je vždy 0
 - o Oxxx xxxx
- Rozsah třídy je 0–127
- Maska podsítě jako prefix je /8
 - o **255.0.0.0**

Třída B

- Slouží pro potřeby velkých a středních sítí
- První bit prvního oktetu je vždy 1 a druhý 0
 - \circ 10xx xxxx
- Rozsah třídy je 128–191
- Maska podsítě jako prefix je /16
 - o **255.255.0.0**

Třída C

- Slouží pro potřeby malých sítí
 - o Ale je přiřazována i větším sítím z důvodu šetření sítě A a B
 - o První bit prvního oktetu je vždy 1, druhý také 1
 - 110x xxxx
 - o První oktet je 192–223
 - Maska podsítě jako prefix je /24
 - **255.255.255.0**

Třída D

- Využíváno pro multicastové vysílání
- Rozsah třídy je 224–239
- Maska podsítě jako prefix je /32
 - o 255.255.255.255

Třída E

- Využíváno k výzkumným účelům a jako rezerva
- První oktet je 240–255
- Vyhrazené IP adresy
- Nedochází k jejich routování
- Využíváno v interní síti (firmy, domácnosti)
- Za pomocí NATu je možno přistoupit k veřejné IP,
- potažmo do internetu

síť	adresa sítě	broadcast adresa	adresy hostů
10.0.0.0/8	10.0.0.0	10.255.255.255	10.0.0.1 - 10.255.255.254
192.168.0.0/16	192.168.0.0	192.168.255.255	192.168.0.1 - 192.168.255.254
172.16.0.0/12	172.16.0.0	172.31.255.255	172.16.0.1 - 172.31.255.254

2. Pojmy

• IP adresa

- Internet protocol
- Označuje konkrétní umístění daného zařízení v síti
- Jednoznačný identifikátor síťového zařízení v rámci dané počítačové sítě využívající IP protokol (3. vrstva OSI)
- o IPv4 (32b; 192.168.0.1) nebo IPv6 (128b; 2001:db8::1428:57ab)
- Strukturovaná/hierarchická
 - Umožněno směrování
 - Dvou tří úrovňové zanoření (obdoba tel. čísel)
 - Síť-hostitel | Síť-podsíť-hostitel
 - U ne hierarchických není možné
 - Pro každý PC/zařízení by musela být uchována informace ve směrovači
 - Každá IP by tak byl jedinečný identifikátor

MAC adresa

- Media Access Control
- o Jednoznačný identifikátor síťového zařízení využívající různé protokoly (2. vrstva OSI)
- o Přiřazena síťové kartě (NIC) při výrobě (celosvětově jedinečná)
- Též fyzická adresa (dříve uložena v EEPROM)
- 48 bitů (první 2 nebo 3 dvojice označují kód výrobce)
 - Šestice dvojciferných hexadecimálních čísel -> 01:23:45:67:89:ab nebo 01-23-45-67-89-ab
 - Tři skupiny čtyř hexadecimálních čísel -> 0123.4567.89ab
- O Využívána při hledání hostitele v lokální síti

Síťová adresa

- Jednoznačný identifikátor sítě
- o IP sítě

Výchozí brána

- Cesta pro datový paket do jiné počítačové sítě v případě, že IP žádného zařízení neodpovídá cílová IP
- o Nastavuje se na Routeru

Všesměrová adresa

- o Poslední adresa v dané podsíti
- Také broadcast / oběžník
- o ARP nebo DHCP dotaz
- Slouží pro posílání dotazů na všechny zařízení v síti

Prefix

- o Číslo, určujících počet bitů z adresy vyhrazených pro identifikaci sítě
- V kontextu IPv4 se prefix = CIDR

Maska (pod)sítě

 32bit adresa, jež umožňuje příjemci paketů IP rozlišit z IP adresy část "Net ID" a část "Host ID"

VLSM – Variable Length Subnet Mask

- o Adresování s maskou podsítě proměnné délky
- Umožňuje velkou podsíť rozdělit na několik podsítí různé délky pro ekonomické využití adresního prostoru IP
- Možno použít pouze s protokoly:
 - RIPv2
 - EIGRP
 - OSPF

CIDR

- Classless Inter-Domain Routing
- Využíváno spolu s VLSM u classless networkingu
- Označuje počet bitů adresy vyhrazených pro identifikaci sítě

/8 /9 /10 /11 /12
/10 /11 /12
/11
/12
,
/13
,
/14
/15
/16
/17
/18
/19
/20

Maska podsítě	CIDR Hodnota
255.255.248.0	/21
255.255.252.0	/22
255.255.254.0	/23
255.255.255.0	/24
255.255.255.128	/25
255.255.255.192	/26
255.255.255.224	/27
255.255.255.240	/28
255.255.255.248	/29
255.255.255.252	/30
255.255.255.254	/31
255.255.255.255	/32

3. Zjištění

Počtu (pod)síti a hostů

- Počet podsítí = 2^{počet maskovaných bitů} (jedniček)
- O Počet hostů = 2 počet nemaskovaných bitů (nul) 2

Všesměrové a síťové adresy

o Jsou to speciální adresy v síti, které mají specifický význam.

Velikosti bloku

O VB = 256 – první "neúplný oktet" (neobsahuje samé 1) masky

Wild Card

Inverzní maska sítě

4. Návrh topologie sítě v rámci VLSM

- VLSM umožňuje vytvářet sítě s různě velkými podsítěmi, což je užitečné pro efektivní využití
 IP adres.
- Při návrhu topologie sítě využívající VLSM je důležité plánovat adresní prostor tak, aby bylo možné vytvořit podsítě s dostatečným počtem adres pro každou síť, přičemž se minimalizuje zbytečně plýtvání adresami.

5. Sumarizace

- Sumarizace adres umožňuje redukovat velikost směrovací tabulky tím, že se skupují adresní rozsahy do jednoho záznamu.
- To zjednodušuje proces směrování a snižuje zátěž na směrovače a síťovou infrastrukturu.

6. Charakteristika směrovače a směrovací tabulky

- Směrovač je zařízení, které rozhoduje, kam mají být směrovány pakety v síti.
- Směrovací tabulka obsahuje informace o dostupných cestách (síťových prefixech) a odpovídajících výstupních rozhraních pro směrování paketů.

7. Statické vs. dynamické směrování

- U statického směřování musíme znát topologii celé sítě
- U dynamického směřování nám stačí na routeru nastavit routy sítí jíž je součástí

8. Směrovací protokoly

RIP

 (Routing Information Protocol): Je to jednoduchý směrovací protokol, který využívá metriku založenou na počtu přeskoků.

IGRP

 (Interior Gateway Routing Protocol): Je to starší směrovací protokol vyvinutý společností Cisco, který využívá sofistikovanější metriku než RIP.

EIGRP

 (Enhanced Interior Gateway Routing Protocol): Je to vylepšená verze IGRP, která poskytuje rychlejší konvergence a efektivnější využití sítě.

OSPF

 (Open Shortest Path First): Je to směrovací protokol založený na stavu spojení, který využívá informace o topologii sítě k výpočtu nejkratších cest.

9. Ukázka prostředí Cisco Packet Tracer