

Universidade Federal do Sul e Sudeste do Pará Instituto de Geociências e Engenharias Faculdade de Computação e Engenharia Elétrica

Revisão

Aula R

Prof.^a Cindy Stella Fernandes

cindy.fernandes@unifesspa.edu.br – cindy.fernandes@gmail.com

✓ Revisando...

VANTAGENS DAS FIBRAS ÓPTICAS

- Maior alcance de transmissão;
- Maior capacidade de transmissão;
- Imunidade a interferências e ruídos;
- Isolação elétrica;
- Pequeno tamanho e peso;
- Segurança da informação e do sistema;
- Alta resistência a agentes químicos, gases e variações de temperatura

✓ Revisando...

DESVANTAGENS DAS FIBRAS ÓPTICAS

- Dificuldade de conexão (devido ao tamanho, precisão);
- Adaptadores e conectores com perdas significativas;
- Custos elevados de equipamentos e componentes.

✓ Revisando...

✓ Comprimento de onda e frequência da luz:

$$\lambda = \frac{c}{f}$$

✓ Princípios da Óptica Geométrica (luz = raio):

Vácuo:
$$c = 3 \times 10^8 \,\text{m/s}$$

Qualquer outro meio material

$$v < c; v = \frac{c}{n}$$

✓ Revisando...

Tabela 1 – Índices de refração de vários materiais.

Material	Índice de refração
Acetona	1,356
Ar	1,000
Diamante	2,419
Álcool etílico	1,361
Quartzo fundido (SiO): varia com comprimento de onda	1,453 @ 850 nm
Arseneto de gálio (GaAs)	3,299 (região infravermelha)
Vidro, coroa	1,52-1,62
Glicerina	1,473
Polimetilmetacrilato (PMMA)	1,489
Silício (varia com comprimento de onda)	3,650 @ 850 nm
Água	1,333

2. Lei de Snell

✓ Revisando...

- A reflexão ou refração do raio de luz na interface é um resultado da diferença na velocidade da luz nos dois materiais que têm índices de refração diferentes.
- A relação na interface é conhecida como a lei de Snell dada por:

$$n_1 sen \Phi_1 = n_2 sen \Phi_2$$

$$n_1 cos\theta_1 = n_2 cos\theta_2$$

2. Lei de Snell e ângulo crítico

✓ Revisando...

Para que haja refração, há necessidade que o ângulo θ_1 seja tal que leve θ_2 ser menor do que 90°, ou seja, que sen θ_2 <1.

Nesse caso, existe uma situação limite para a refração onde um raio incidente com um determinado ângulo menor que 90°, **conhecido como ângulo crítico** θ_c , implicando num raio refratado que se propaga paralelamente à superfície entre os dois meios dielétricos.

Então de acordo com a lei de Snell:

$$sen \theta_c = \frac{\eta_2}{\eta_1} \rightarrow \theta_c = sen^{-1} \left(\frac{\eta_2}{\eta_1} \right)$$

3. Estrutura da Fibra óptica

- ✓ Revisando...
- ✓ É composta de duas partes:

Núcleo: Parte central da fibra por onde a luz é guiada.

Casca: Parte externa da fibra que envolve o núcleo.

Figura 2 – Estrutura fibra óptica.

Fonte: KEISER, G. Comunicações por fibras ópticas. 4. ed. Porto Alegre: AMGH, Bookman, 2014.

4. Ângulo de aceitação

- ✓ Revisando...
- ✓ Apenas os raios com ângulos maiores que θc na interface núcleo-casca são transmitidos por reflexão interna total, entretanto nem todos os raios que entram no núcleo da fibra continuarão a ser propagados no seu comprimento.

Figura 3 – Ângulo de aceitação ou captação θ_0 quando uma luz é lançada dentro de uma fibra óptica.

Fonte: KEISER, G. Comunicações por fibras ópticas. 4. ed. Porto Alegre: AMGH, Bookman, 2014.

4. Ângulo de aceitação

- ✓ Revisando...
- ✓ É possível obter uma relação entre o ângulo de aceitação e os índices de refração dos três meios envolvidos: núcleo, casca e ar;
- ✓ Portanto, θ_a é o ângulo máximo com relação ao eixo no qual a luz pode entrar na fibra para ser propagada, e é muitas vezes referido como **ângulo de aceitação ou de captação** da fibra.

4. Ângulo de aceitação e Abertura Numérica

- ✓ Revisando...
- ✓ abertura numérica é o seno do ângulo máximo de aceitação da fibra óptica.

$$\theta_a = sen^{-1} \frac{\sqrt{n_1^2 - n_2^2}}{n_0}$$

$$AN = n \cdot sen\theta = \sqrt{n_1^2 - n_2^2}$$

5. Estrutura da Fibra óptica

- ✓ Revisando...
- ✓ Como a abertura numérica é frequentemente usada considerando a fibra no ar, tem-se que n=1
- ✓ A abertura numérica também pode ser dada em termos da diferença relativa dos índices de refração entre o núcleo e a casca, definida por:

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2}$$

$$\simeq \frac{n_1-n_2}{n_1}$$
 , $para \ \Delta \ll 1$

$$NA = n_1 (2\Delta)^{\frac{1}{2}}$$

✓ Revisando...

- O comportamento da propagação da luz na fibra está relacionado com a variação do índice de refração ao longo do raio da fibra;
- Perfil Degrau: o núcleo possui índice de refração constante maior que o da casca. Isto cria uma variação abrupta entre o núcleo e a casca;
- Perfil Gradual: a variação do índice de refração do centro da fibra em direção à casca diminui gradativamente.

- ✓ Revisando...
- ✓ A fibra IG possui um núcleo onde o índice de refração é máximo no centro da fibra e decai até atingir o valor de n2 na sua junção com a casca; A variação do índice mais utilizada é a parabólica;

Figura 4 - Tipos de perfis de índice de refração para fibras ópticas: (a) degrau e (b) gradual.

- a raio do núcleo
- r qualquer distância radial
- n índice de refração

Fonte: Apostila Comunicação Óptica

- Tanto as fibras de índice-degrau como as de índice-gradual podem ser ainda divididas nas classes **monomodo** (ou modo único) e **multimodo**.
- Como o nome indica, uma fibra monomodo sustenta apenas um modo de propagação, enquanto as fibras multimodo podem conter centenas de modos.
- Os raios maiores do núcleo das <u>fibras multimodo</u> tornam mais fácil enviar potência óptica e facilitam a conexão com conjuntos de fibras semelhantes.
- Outra vantagem é que a luz pode ser introduzida pela fibra multimodo, usando como fonte um diodo emissor de luz (LED), enquanto, nas fibras monomodo, ela deve ser, geralmente, excitada com laser.
- Uma desvantagem das fibras multimodo é que elas sofrem de dispersão intermodal.

A fibra multimodo pode ser classificada de acordo com o perfil de índice de refração, podendo ser:

- Fibra multimodo de índice degrau
- Fibra multimodo de índice gradual

A fibra monomodo classificada de acordo com o perfil de índice de refração, pode ser Fibra monomodo de índice degrau

✓ Revisando...

Figura 5 - Tipos de Fibras.

Fonte: Tania Regina Tronco e Luis Fernando de Avila, 2007.

✓ Revisando...

Figura 6 - Fibras multimodo ID e IG e seus respectivos perfis de índice de refração.

Fonte: Hui, 2009.

✓ Revisando...

✓ No estudo das características dos modos de propagação em fibra óptica, é utilizado um parâmetro V que representa a frequência de operação normalizada; $V = \frac{\pi d}{\lambda} \sqrt{n_1^2 - n_2^2}$

$$V = \frac{2\pi a}{\lambda} (n_1^2 - n_2^2)^{1/2} = \frac{2\pi a}{\lambda} NA$$

✓ Esse parâmetro é um número adimensional que determina quantos modos uma fibra pode suportar;

- ✓ Revisando...
- O número de modos na fibra está diretamente relacionado ao diâmetro do núcleo, quando o diâmetro é grande, a luz se propaga em diferentes modos, quando o diâmetro é muito estreito, apenas um modo de propagação é permitido.
- O número V também pode ser usado para expressar o número de modos M <u>em uma fibra multimodo</u> <u>de índice-degrau</u> quando V é grande.
- ✓ Nesse caso, uma estimativa do número total de modos suportados em tal fibra é:

$$M = \frac{V^2}{2}$$

• Fibra multimodo de índice degrau (ID)

As fibras ópticas do tipo multimodo índice degrau, conceitualmente as mais simples, foram as pioneiras em termos de aplicações práticas;

Tabela 2 – Características da fibra multimodo de índice degrau (ID).

Características	Diâmetro do	Abertura	Aplicações
Tipos	Núcleo	Numérica	
Multimodo ID	50 ou 62,5 μm	0,2 - 0,4	Curtas distâncias

• Fibra multimodo de índice gradual (IG)

As fibras multimodo índice gradual (IG), de fabricação um pouco mais complexa, caracterizam-se pela sua maior capacidade de transmissão em relação às fibras multimodo ID;

Tabela 3 – Características da fibra multimodo de índice gradual (IG).

Características	Diâmetro do	Abertura	Aplicações
Tipos	Núcleo	Numérica	
Multimodo IG	50 μm	0,2 - 0,3	Curtas distâncias (maior capacidade)

• Fibra monomodo

- As fibras ópticas do tipo monomodo distinguem-se das fibras multimodo, basicamente, pela capacidade de transmissão superior e pelas dimensões menores;
- Enquanto nas fibras multimodo a potência luminosa se propaga quase que inteiramente no núcleo da fibra, no caso das fibras monomodo uma quantidade considerável do sinal se propaga na casca da fibra;

Fibra monomodo

Tabela 4 – Características da fibra monomodo.

Características	Diâmetro do	Abertura	Aplicações
Tipos	Núcleo	Numérica	
Monomodo	4 – 10 μm	0,1 - 0,2	Longas distâncias

8. Exemplos

Exemplo

Um engenheiro tem uma fibra óptica de núcleo com raio de 3,0 µm e abertura numérica de 0,1. Essa fibra exibirá operação monomodo em 800 nm?

$$V = \frac{2\pi a}{\lambda_0} \sqrt{n_1^2 - n_2^2}$$

V < 2,4 (fibra monomodo)

Contato

Contato Aluno/professor

- SIGAA (Oficial)
- Dias de aulas
- E-mails para contato: cindy.fernandes@unifesspa.edu.br (Oficial Unifesspa) cindy.fernandes@gmail.com (Não Oficial pessoal)
- WhatsApp: (91) 98256 9649 (Não Oficial)