Government of Karnataka DEPARTMENT OF TECHNICAL EDUCATION

Programme	Mechanical Engineering Semester		III	
Course Code	20ME31P	Type of Course	Programme Core	
Course Name	Mechanics of Materials	Contact Hours	8 hours/week 104 hours/semester	
Teaching Scheme	L:T:P :: 3:1:4	Credits	6	
CIE Marks	60	SEE Marks	40	

1. Rationale

In this course, Diploma engineers are required to analyse the reasons for failure of components and select the suitable materials for a given applications. For this purpose, it is essential to study the concepts, principles, applications and practices covering stress, strain, stress concentration, weak points, deformations, bending moment and shearing force. The students will also study the basic principles of Finite Elements Analysis and perform stress strain analysis using Ansys software to understand and quantify the effects of real-world conditions on a part. These simulations, will allow Diploma engineers to locate potential problems in a design, including areas of tension and weak spots. FEA becomes a tremendous productivity tool, helping engineers in reducing product development time and cost. Hence, FEA is introduced in this course. It is expected that efforts will be made to provide appropriate learning experiences in the use of basic principles to the solution of applied problems and to develop the required skill and competencies

2. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	Analyse Simple Stresses and Strains on given Structural member that is subjected to Tensile,
	Compressive and Shear loads by using Destructive Test.
CO-02	Draw Shear force Diagram (SFD) and Bending moment Diagram (BMD) and Also, Analyse
CO-02	Bending Stresses in a Beam using Finite element methods(FEM) software
CO-03	Demonstrate the application of finite element formulations to solve both One dimensional and
CO-03	Two dimensional Problems.
CO-04	Demonstrate the application of FEM software for Validation of both One dimensional and Two
	dimensional Problems

3. Course Content

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)	
Week	СО	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)	
		01	1. Introduction to Force- Types of Forces-Resolution of forces		Resolution of forces by Graphical Method	
1	01		2. Problems on Resolution of forces- Analytical Method3. Problems on Resolution of forces- Analytical Method	Refer Table 1	Verification of Forces by Lami's Theorem	
2	01	01	1. Types of Loads-Tensile, Compression, Shear, Impact, Stress- Types- Strain- Types- - Hooks Law- Young's Modulus		Conduct Tensile test for the given Specimen and Determine Stress- Strain- Young's Modulus, Yield Stress- Maximum Stress-	

			2. Stress - Strain Diagram - Elastic constants- Linear strain, Lateral Strain, Poison's Ratio, Volumetric Strain, Bulk Modulus, Rigidity Modulus, Fatigue - Endurance Limit 3. Stress concentration, Factor of Safety(FOS), Concept of Temperature stresses	Refer Table 1	Breaking Stress- % Elongation in Length and % Reduction in Area Also, Draw Stress- Strain Diagram for the above Parameters
3	01	01	Simple Problems on Stress, Strain and Elastic constants Simple Problems on Stress, Strain and Elastic constants Simple Problems on Stress, Strain and Elastic constants	Refer Table 1	Conduct Compression test for the given Specimen and Determine Stress- Strain- Young's Modulus, Yield Stress- Maximum Stress- % Reduction in Length and % Increase in Area Also, Draw Stress- Strain Diagram for the above Parameters
4	01	01	1. Problems on Members subjected to combined Stresses 2. Problems on Members subjected to combined Stresses 3. Problems on Members subjected to combined Stresses	Refer Table 1	Conduct Shear test for the given specimen
5	02	02	1. Types of Beams-Types of Loads acting on Beams-Concept of Shear force -Bending moment 2 Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for Cantilever subjected to Point Load and Uniformly Distributed loads (UDL) 3. Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for Cantilever subjected to Point Load and Uniformly Distributed loads (UDL)	Refer Table 1	Conduct Bending test for the given specimen

6	02	02	1. Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL) 2. Draw SFD and BMD for Simply supported and Cantilever beam subjected to Point Load and UDL Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL) 3 Draw SFD and BMD for Simply supported and Cantilever beam subjected to Point Load and UDL Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL)	Refer Table 1	Present You tube videos in Stress, Strain and Bending Stresses on Different mechanical members Prepare a report on the observations made Eg: https://www.youtube.com/watch?v=C-FEVzI8oe8
7	02	02	 Pure Bending-Assumptions- Neutral Axis-Bending Equation Problems on Bending Equation Problems on Bending Equation 	Refer Table 1	Present You tube videos in Stress, Strain and Bending Stresses on Different mechanical members Prepare a report on the observations made
8	03,04	01	1.Introduction to Finite Element Methods (FEM), Need-Back Ground 2. Methods employed in FEM- Steps in FEM 3. Advantages and Disadvantages, Limitations, Applications of FEM-Concept of Discontinuity	Refer Table 1	Practice on FEM software (Eg: Ansys)
9	02,03,04	01,02,04	 Phases of FEA(Finite Element Analysis) Discretization Process Meshing –Element type 	Refer Table 1	Validate Bending Equation Problems solved in Week 7 using FEM software (Eg: Ansys)
10	02,03,04	01,02,04	1.Stiffness Matrix of a Bar Element 2.Global Stiffness Matrix- Properties of stiffness matrix	Refer Table 1	Validate Bending Equation Problems solved in Week 7 using FEM software (Eg: Ansys)

			3. Boundary Conditions- Methods – Types		
11	03,04	02,04,07	Problems on 1-D elements	Study the latest	Validate using FEM software (Eg: Ansys)
12	03,04	02,04,07	Problems on 1-D elements	technological changes in	Validate using FEM software (Eg: Ansys)
13	03,04	02,04,07	Problems on 2-D elements	this course and present the impact of these changes on industry	Validate using FEM software (Eg: Ansys)
Total in hours			39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Coordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

TABLE 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution).

Sl. No.	Suggestive Activities for Tutorials
01	Understand Static Equilibrium using common examples, try to apply the principles and demonstrate in class the importance of static equilibrium in daily life, at home or at work.
02	Study the behavior of Aluminum under the action of Tensile/Compression Load. Plot Stress Strain Diagram and Demonstrate in the class the behavior of Aluminum different from that of a Cast Iron.
03	A seesaw is occupied by two children of equal weight "W" N. The center of gravity of each child is x meters from the fulcrum. The length of the board is 3x meters, y mm wide and z mm thick. Determine the maximum bending stress and shear stress in the board.
04	Tapered elastic bar subjected to an applied tensile load P at one end and attached to a fixed support at the other end. The cross-sectional area varies linearly from A $_0$ at the fixed support at $x = 0$ to $A_0/2$ at $x = L$. Calculate the displacement of the end of the bar (a) by modelling the bar as a single element having cross-sectional area equal to the area of the actual bar at its midpoint along the length, (b) using two bar elements of equal length and similarly evaluating the area at the midpoint of each, and compare to the exact solution By FEM.
05	Identify the type Beam in Traffic Light Post. Determine the displacement field for this beam subjected to UDL throughout its length.
06	Discuss procedure using the commercial package available today for solving problems of FEM. Take a Structural Problem to Demonstrate the same.
07	In 1989, Jason, a research-type submersible with remote TV monitoring capabilities and weighing 35 200 N, was lowered to a depth of 646 m in an effort to send back to the attending surface vessel photographs of a sunken Roman ship offshore from Italy. The submersible was lowered at the end of a hollow steel cable having an area of 452×10 –6 m² and E = 200 GPa. Determine the extension of the steel cable. Due to the small volume of the entire system, buoyancy may be neglected.
08	Laboratory tests on human teeth indicate that the area effective during chewing is approximately $0.25~\rm cm^2$ and that the tooth length is about $1.1~\rm cm$. If the applied load in the vertical direction is $880~\rm N$ and the measured shortening is $0.004~\rm cm$, determine Young's modulus.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
Total	CIE Marks		60		
Seme	ester End Examination (Practice)	40			
Tota	l Marks	100			

5. Format for CIE written Test

Course Name		Mechanics of Materials	Test	1/11/111	Sem	III
Course Co	ode	20ME31P	Duration	80 Min	Marks	30
Note: Ar	Note: Answer any one full question from each section. Each full question carries 10 marks.					
Section	Ass			Cognitive Levels(R/U/A)	Course Outcome	Marks
1						
	2					
II	3					
	4					
III	5					
	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL.	CO	Particulars/Dimension	Marks
No.			
1	01	 Verification of Forces by Lami's Theorem Finding the resultant of forces - Analytical Method -15 Marks Verification of Forces by Lami's Theorem - Practically-15Marks 	30
		Verification of Forces by Bann's Theorem - Fractically-TSWarks	
2	02	Determine the deformation of a given specimen subjected to Tensile/Compressive/Shear loads/Bending using UTM • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations 10 Marks • Conduction of Experiment 20 Marks • Calculation and Result with Graph if any 20 Marks	60
3	01,02	Portfolio evaluation based on the average of all Practice Sessions (1-6 weeks)	10
Tota	ıl Marks		100

Duration: 240Min

Duration: 240Min

5.(b)For CIE Skill Test -5

SL.	СО	Particulars/Dimension	Marks		
No.					
1	02	Calculate and Plot SFD and BMD for the Given Data	40		
		 Finding Shear force and Bending Moment – (10+15)=25 Marks 			
		Plot SFD and BMD – 15 Marks			
2		Apply finite element formulations to solve the given One dimensional cases and	50		
	03,04	Validate using Ansys			
		 Solve by FEM Method —25 Marks 			
		 Validate Using FEM software (Eg: Ansys)25 Marks 			
3	02,03,	Portfolio evaluation based on the average of all Practice Sessions (7-12	10		
	04	weeks)			
Total	Marks		100		

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl. No.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description				
1	Schaum Outlines, "Strength of Materials", 5 Edition				
2	RAMAMURTHAM. S., "Strength of Materials", 14th Edition, Dhanpat Rai Publications, 2011				
3	KHURMI R S, "Applied Mechanics and Strength of Materials", 5 Edition, S.Chandand company				
4	NASH W.A, "Theory and problems in Strength of Materials", Schaum Outline Series, McGraw-Hill Book Co., New York, 1995.				
5	RYDER G.H, "Strength of Materials", 3rd Edition, Macmillan India Limited, 2002.				
6	BANSAL R. K, "Strength of Materials", Laxmi Publications, New Delhi, 2012.				
7	Schaum series, Strength of Materials				
8	TIMOSHENKO S.P, "Elements of Strength of Materials", Tata McGraw-Hill, Delhi,				
9	Introduction to Finite Elements in engineering by TRIRUPATHI R, CHANDRUPATLA, ASHOK D BELEGUNDA, Pearson Publications.				
10	Practical Finite Element Analysis by NITIN S GOKHALE, SANJAY S DESHPANDE, Finite to Infinite Publications				
50 E2	ANSYS free software tutorial((Student version)				
11	https://www.google.co.in/search?biw=1024&bih= 667&q=ansys+software+tutorial&sa=X&ved=0ah UKEwjm5o MndHNAh UBsI8KHbRWDhUQ1QIIXygE				

8. LIST OF SOFTWARE/LEARNING WEBSITES

- 1. www.nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024htm
- 2. www.wikipedia.org/wiki/Shear and moment diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 4. www.engineerstudent.co.uk/stress and strain.html
- 5. www.ansys.com/Student
- 6. http://www.mece.ualberta.ca/tutorials/ansys

9. SEE Scheme of Evaluation

SL.		Particulars/Dimension	Marks
No.	CO		
1	01,02	Determine the deformation of a given specimen subjected to Tensile/Compressive/Shear loads using UTM • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations 10 Marks • Conduction of Experiment 05 Marks • Calculation and Result with Graph if any 15 Marks	40
		OR	
		Calculate and Plot SFD and BMD for the Given Data	
		Finding Shear force and Bending Moment – 10 Marks	
		• Plot SFD and BMD – 15 Marks	
		Validate Using FEM software (Eg: Ansys)15 Marks	

Duration: 180 Min

2	03,04	Apply finite element formulations to solve the given One dimensional /Two dimensional cases and Validate using Ansys • Solve by FEM Method —20Marks • Validate FEM software (Eg: Ansys)20 Marks	40
3	01,02,03	Viva voce	20
	,04		
Total Ma	Total Marks		100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Universal testing machine	Computerized 100 Ton Capacity With all attachments to conduct shear, bending, compression and tensile test	01
02	Ansys software		20 user
03	Desktop Computer	Latest configuration	10 nos