多元线性回归

张伟平

zwp@ustc.edu.cn

Office: 东区管理科研楼 1006

Phone: 63600565

课件 http://staff.ustc.edu.cn/~zwp/

论坛 http://fisher.stat.ustc.edu.cn

简介

1.1	多重线	《性回归模型	1
1.2	多元线	性回归模型	9
	1.2.1	最小二乘估计的性质	16
	1.2.2	最小二乘估计的几何解释	22
	1.2.3	有线性约束的线性模型	23
	1.2.4	预测	26

1.1 多重线性回归模型

- 回归分析是一类基于预测变量 (predictor variables)(a.k.a 解释变量, 自变量 (independent variables), 回归量 (regressors)) 来预测一个或多个响应变量 (response variable)(a.k.a 因变量 (dependent variable), 被解释变量 (explained variable), 回归应变量 (regressand)) 的统计方法
- 回归分析也可以用来评价解释变量对响应变量的作用,常为解释变量的线性函数对响应变量的作用
- 解释变量可以为连续的或者离散的,或者两者混合的
- 首先我们回顾一下用于一元响应变量的多重回归方法,然后推 广到响应变量是多维的.

Multiple Regression Analysis

- 假设解释变量为 x_1, x_2, \dots, x_{p-1} , 这些变量认为是和响应变量 y 有关联
- 多重线性总体回归模型假设

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + e$$

- $-\beta = (\beta_0, \beta_1, \dots, \beta_{p-1})'$ 为 (固定的) 未知的参数向量
- $-x_1,...,x_{p-1}$ 称为解释变量, 其可以为固定的 (设计的), 或者随机的.
- -e 称为随机误差项,一般假设 $e \sim (0, \sigma^2)$,且 $E(ex_i) = 0, i = 1, ..., p 1$.
- 当我们对总体进行随机抽样时候, 假设有 *n* 个个体, 每个个体 有模型

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{p-1} x_{i(p-1)} + e_i$$

表示成矩阵形式后有

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1(p-1)} \\ 1 & x_{21} & \cdots & x_{2(p-1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{n(p-1)} \end{pmatrix} \beta + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

$$\iff Y_{n \times 1} = X_{n \times p} \beta + \epsilon$$

其中 $y_i, x_{i1}, \ldots, x_{i(p-1)}$ 表示对总体变量 y, x_1, \ldots, x_{p-1} 的独立重复观测. 按照总体模型假设和抽样方式,一般假设误差有下述性质:

$$- Ee_i = 0$$

$$- Var(e_i) = \sigma^2$$
(常数)

$$-Cov(e_i, e_j) = 0, i \neq j$$

多重线性回归模型(Multiple linear regression)

$$Y_{n\times 1} = X_{n\times p}\beta + \epsilon$$

以及假设 $E\epsilon = 0, Var(\epsilon) = \sigma^2 I_n$.

例将下述单因素方差分析模型表示成回归模型的形式:

$$y_{ij} = \mu + \tau_i + e_{ij}, j = 1, \dots, n_i, i = 1, 2, 3$$

此时有三个总体,因此引入哑变量 (dummy variable) 来处理,令 $x_{ij}=1$,如果 i=j;否则为 0. 从而一元方差分析模型可以表示成回 归分析的形式

$$y_{ij} = \mu + \tau_1 x_{i1} + \tau_2 x_{i2} + \tau_3 x_{i3} + e_{ij}$$

回归模型的推断

对多重回归模型,一般关心的任务有:

- 参数及其函数的估计问题 (可估性, 最小二乘估计)
- 参数估计量的性质
- 模型诊断方面
 - 参数的检验问题 (正态性假设, 似然比检验)
 - 变量选择问题
 - 残差分析 (模型假设的检查, 数据清洁)
- 模型的预测功能

最小二乘估计

• 对 β 的估计方法之一是选择使得残差平方和达到最小:

$$\hat{\beta} = \arg\min_{\beta \in R^p} ||Y - X\beta||^2 = \arg\min_{\beta \in R^p} \sum_{i=1}^n \left(y_i - \sum_{k=0}^{p-1} \beta_k x_{ik} \right)^2$$

其中 $x_{i0} \equiv 1$.

• 当 X 为满秩时候 (p < n), 上述最小化残差平方和的 β 可以得 出

$$\hat{\beta} = (X'X)^{-1}X'Y$$

- 此时称 $\hat{\beta}$ 为 β 的最小二乘估计.
- 此时响应变量的拟合值为 $\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'Y = HY$, H 称为帽子 (Hat) 矩阵.
- 残差为 $\hat{\epsilon} = Y \hat{Y} = (I H)Y$

$$-$$
 残差满足 $\hat{\epsilon}'X = 0, \hat{\epsilon}'\hat{Y} = 0.$

平方和分解

由于 $\hat{\epsilon}'\hat{Y}=0$, 因此总的响应变量平方和 Y'Y 可以分解为

$$Y'Y = (\hat{Y} + Y - \hat{Y})'(\hat{Y} + Y - \hat{Y}) = \hat{Y}'\hat{Y} + \hat{\epsilon}'\hat{\epsilon}$$

由于 X 的第一列为 1, 因此 $X'\hat{\epsilon}=0$ 表明 $\mathbf{1}'\hat{\epsilon}=0 \Longrightarrow \mathbf{1}'Y=\mathbf{1}'\hat{Y}.$ 从而两边同时减去 $\mathbf{1}'Y$ 和 $\mathbf{1}'\hat{Y}$ 得到

$$Y'Y - \mathbf{1}'Y = \hat{Y}'\hat{Y} - \mathbf{1}'\hat{Y} + \hat{\epsilon}'\hat{\epsilon}$$

$$\iff \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_j - \bar{y})^2 + \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

$$SST = SS_{reg} + SS_e$$
总平方和 = 回归平方和 + 残差平方和

总波动性 = 回归能解释的波动性 + 误差的波动性

由此分解,模型拟合程度的一个度量标准为

$$R^2 = 1 - \frac{SS_e}{SST} = \frac{SS_{reg}}{SST}$$

称为判定系数 (coefficient of determination). R 即为总体多重相关系数的估计 (参看第四讲条件分布部分).

最小二乘估计的性质

- $E\hat{\beta} = \beta, cov(\hat{\beta}) = \sigma^2(X'X)^{-1}$
- $cov(\hat{\beta}, \hat{\epsilon}) = 0$
- $c'\beta$ 的最佳线性估计估计为 $c'\hat{\beta}$.(Gauss-Markov 定理)

1.2 多元线性回归模型

当响应变量为多元时候,不妨设 m 个响应变量, Y_1, \ldots, Y_m ,解释变量为 x_1, \ldots, x_{p-1} ,考虑解释变量与响应变量之间的关系,假设有如下总体回归模型:

$$Y_1 = \beta_{01} + \beta_{11}x_1 + \dots + \beta_{(p-1)1}x_{p-1} + e_1$$

$$Y_2 = \beta_{02} + \beta_{12}x_1 + \dots + \beta_{(p-1)2}x_{p-1} + e_2$$

$$\vdots$$

$$Y_m = \beta_{0m} + \beta_{1m}x_1 + \dots + \beta_{(p-1)m}x_{p-1} + e_m$$

也就是假设每个指标 Y_i 和解释变量之间存在线性关系. 误差项 $\mathbf{e} = [e_1, e_2, \ldots, e_m]'$ 满足假设

$$E\mathbf{e} = 0, \quad Cov(\mathbf{e}) = \Sigma = (\sigma_{ij})$$

当对总体中 n 个个体观测时候, 记第 j 次观测样本的解释变量为 $x_{j1},x_{j2},\ldots,x_{j(p-1)}$, 而响应变量记为 $\mathbf{y}_j=[y_{j1},y_{j2},\ldots,y_{jm}]',$ $j=1,\ldots,n$. 使用矩阵表达, 则

$$\mathbf{Y}_{n \times m} = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1m} \\ y_{21} & y_{22} & \cdots & y_{2m} \\ \vdots & & & & \\ y_{n1} & y_{n2} & \cdots & y_{nm} \end{bmatrix} = [\mathbf{y}_{(1)}, \mathbf{y}_{(2)}, \cdots, \mathbf{y}_{(m)}]$$

$$X_{n \times p} = \begin{bmatrix} x_{10} & x_{11} & \cdots & x_{1(p-1)} \\ x_{20} & x_{21} & \cdots & x_{2(p-1)} \\ \vdots & & & & \\ x_{n0} & x_{n1} & \cdots & x_{n(p-1)} \end{bmatrix}$$

其中 $x_{i0} \equiv 1, i = 1, \ldots, n$.

参数矩阵和随机测量误差记为

$$B_{p\times m} = \begin{bmatrix} \beta_{01} & \beta_{02} & \cdots & \beta_{0m} \\ \beta_{11} & \beta_{12} & \cdots & \beta_{1m} \\ \vdots & & & & \\ \beta_{(p-1)1} & \beta_{(p-1)2} & \cdots & \beta_{(p-1)m} \end{bmatrix} = [\beta_{(1)}, \beta_{(2)}, \cdots, \beta_{(m)}]$$

$$\boldsymbol{\epsilon}_{n\times m} = \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & \cdots & \epsilon_{1m} \\ \epsilon_{21} & \epsilon_{22} & \cdots & \epsilon_{2m} \\ \vdots & & & \\ \epsilon_{n1} & \epsilon_{n2} & \cdots & \epsilon_{nm} \end{bmatrix} = [\epsilon_{(1)}, \epsilon_{(2)}, \cdots, \epsilon_{(m)}] = \begin{pmatrix} \epsilon'_1 \\ \epsilon'_2 \\ \vdots \\ \epsilon'_n \end{pmatrix}$$

从而, 多元线性回归模型(Multivariate linear model) 的矩阵表达:

$$\mathbf{Y}_{n \times m} = X_{n \times p} B_{p \times m} + \boldsymbol{\epsilon}_{n \times m}$$
$$= [X\beta_{(1)}, \cdots, X\beta_{(m)}] + [\epsilon_{(1)}, \epsilon_{(2)}, \cdots, \epsilon_{(m)}]$$

其中 $E\epsilon_{(i)}=0, Cov(\epsilon_{(i)}, \epsilon_{(j)})=\sigma_{ij}I_n, i, j=1,2,\ldots,m$. 虽然对第 k个观测的测量误差 ϵ_k 有协方差矩阵 Σ ,但对不同个体的观测值不相关.

从上面的模型中可以看出对第 i 个响应 $\mathbf{y}_{(i)}$, 其服从线性回归模型

$$\mathbf{y}_{(i)} = X\beta_{(i)} + \epsilon_{(i)}$$

其中 $E\epsilon_{(i)} = 0, Cov(\epsilon_{(i)}) = \sigma_{ii}I_n, i = 1, \dots, m.$

- 对第 i 个响应变量来说, n 次观测之间不相关
- 不同响应变量的观测之间存在相关

基于第 i 个响应变量 $\mathbf{y}_{(i)}$ 的回归模型可得 $\beta_{(i)}$ 的最小二乘估计

$$\hat{\beta}_{(i)} = (X'X)^{-1}X'\mathbf{y}_{(i)}$$

将这些估计量放在一起组成矩阵, 我们有

$$\hat{B} = [\hat{\beta}_{(1)}, \hat{\beta}_{(2)}, \dots, \hat{\beta}_{(m)}] = (X'X)^{-1}X'[\mathbf{y}_{(1)}, \mathbf{y}_{(2)}, \dots, \mathbf{y}_{(m)}]$$
$$= (X'X)^{-1}X'\mathbf{Y}$$

最小二乘估计

定理 1. 设 X 为满秩的, 则 \hat{B} 为 B 的最小二乘估计.

证明. 利用拉直运算表达, 多元回归模型可以表示为

$$vec(\mathbf{Y}') = (X \otimes I_m)vec(B') + vec(\epsilon')$$

其中 $Cov(\epsilon') = I_n \otimes \Sigma$.

由上述拉直向量化模型表示, 根据最小二乘方法, 若记

$$Q(vec(B')) = ||vec(Y') - (X \otimes I_m)vec(B')||^2$$

则 vec(B') 的最小二乘估计为

$$\widehat{vec(B')} = [((X \otimes I_m))'(X \otimes I_m)]^{-1}(X \otimes I_m)'vec(\mathbf{Y}')$$
$$= [(X'X)^{-1}X' \otimes I_m]vec(\mathbf{Y}')$$

于是,将估计重新表示成矩阵形式即证.

定理 2. 设 \hat{B} 为 B 的最小二乘估计, 则

- 1. Â 为 B 的无偏估计.
- 2. $Cov(\hat{\beta}_{(i)}, \hat{\beta}_{(k)}) = \sigma_{ik}(X'X)^{-1}, i, k = 1, \dots, p.$
- 3. ∑的无偏估计为

$$\hat{\Sigma} = \frac{1}{n-p} \mathbf{Y}' P \mathbf{Y}.$$

其中
$$P = I_n - X(X'X)^{-1}X' = I_n - H$$
.

证明. (1) 显然. 对 (2),

$$Cov(\hat{\beta}_{(i)}, \hat{\beta}_{(k)}) = (X'X)^{-1}X'Cov(\epsilon_{(i)}, \epsilon_{(k)})X(X'X)^{-1}$$
$$= \sigma_{ik}^{2}(X'X)^{-1}.$$

下证 (3). 注意到 PX = X'P = 0, 从而

$$\mathbf{Y}'P\mathbf{Y} = (\mathbf{Y} - XB)'P(\mathbf{Y} - XB)$$

因此

$$(E\mathbf{Y}'P\mathbf{Y})_{ij} = (E[(\mathbf{Y} - XB)'P(\mathbf{Y} - XB)])_{ij}$$

$$= E[(\mathbf{y}_{(i)} - X\beta_{(i)})'P(\mathbf{y}_{(j)} - X\beta_{(j)})]$$

$$= tr\{PE[\epsilon_{(j)}\epsilon'_{(i)}]\}$$

$$= tr\{P(\sigma_{ji}I_n)\} = (n-p)\sigma_{ij}.$$

从而得证.

1.2.1 最小二乘估计的性质

• 使用 B 的最小二乘估计, 我们可以得到

$$\hat{\mathbf{Y}} = X\hat{B} = X(X'X)^{-1}X'\mathbf{Y}$$

$$\hat{\boldsymbol{\epsilon}} = \mathbf{Y} - \hat{\mathbf{Y}} = [I - X(X'X)^{-1}X']\mathbf{Y} = P\mathbf{Y}$$

• 使用平方和与交叉积分解有

$$\mathbf{Y}'\mathbf{Y}_{totalSSCP} = \mathbf{\hat{Y}}'\mathbf{\hat{Y}}_{RegSSCP} + \mathbf{\hat{\epsilon}}'\hat{\epsilon}_{ErrorSSCP}$$

• 估计的残差 $\hat{\epsilon}_{(i)}$ 满足

$$E\hat{\epsilon}_{(i)} = 0, \qquad E\hat{\epsilon}'_{(i)}\hat{\epsilon}_{(j)} = (n-p)\sigma_{ij}$$

从而

$$E\hat{\boldsymbol{\epsilon}} = 0, \quad E\hat{\boldsymbol{\epsilon}}'\hat{\boldsymbol{\epsilon}} = (n-p)\Sigma$$

• \hat{B} 和 $\hat{\epsilon}$ 不相关

若假定

$$\epsilon \sim N_{n \times m}(0, I_n \otimes \Sigma), \Sigma_{m \times m} > 0$$

则

$$\mathbf{Y} \sim N_{n \times m}(XB, I_n \otimes \Sigma)$$

从而导出 B 和 Σ 的最大似然估计.

定理 3. 设 $\mathbf{Y} \sim N_{n \times m}(XB, I_n \otimes \Sigma)$, 其中 X 满秩, $B \in \mathbb{R}^{p \times m}$ 和 $\Sigma > 0$, 则 B 和 Σ 的最大似然估计为

$$\hat{B}^* = (X'X)^{-1}X'\mathbf{Y}$$
$$\hat{\Sigma}^* = \frac{1}{m}\mathbf{Y}'P\mathbf{Y}$$

证明. 由矩阵多元正态分布的定义, 知对数似然函数

$$l(B,\Sigma) = -\frac{1}{2}nln|2\pi\Sigma| - \frac{1}{2}tr[(\mathbf{Y} - XB)\Sigma^{-1}(\mathbf{Y} - XB)']$$

从而

$$tr[(\mathbf{Y} - XB)\Sigma^{-1}(\mathbf{Y} - XB)']$$

$$= tr[\Sigma^{-1}(\mathbf{Y} - X\hat{B})'(\mathbf{Y} - X\hat{B})] + tr[\Sigma^{-1}(\hat{B} - B)'X'X(\hat{B} - B)]$$

$$\geq tr[\Sigma^{-1}(\mathbf{Y} - X\hat{B})'(\mathbf{Y} - X\hat{B})]$$

$$= tr[\Sigma^{-1}\mathbf{Y}'P\mathbf{Y}] = tr[\Sigma^{-1}\hat{\Sigma}^*]$$

等号成立当且仅当 $B = \hat{B}$, 于是

$$\max_{\Sigma>0,B}l(B,\Sigma) = \max_{\Sigma>0}l(\hat{B},\Sigma) = \max_{\Sigma>0}\{-\frac{1}{2}nlog|\Sigma| - \frac{1}{2}ntr[\Sigma^{-1}\hat{\Sigma}^*]\}$$

最后一步容易得到最大值在 $\Sigma = \hat{\Sigma}^*$ 处达到. 从而得证.

注 B 的最大似然估计与最小二乘估计相同, 即 $\hat{B}^* = \hat{B}; \Sigma$ 的最大似然估计不是无偏估计.

定理 4. 对多元线性回归模型, 若 $\epsilon \sim N_{n \times m}(0, I_n \otimes \Sigma)$, 最小二乘估计 \hat{B} 和无偏估计 $\hat{\Sigma}$ 由前给出, 则

- (1) $\hat{B} \sim N_{p \times m}(B, (X'X)^{-1} \otimes \Sigma);$
- (2) \hat{B} 和 $\hat{\Sigma}$ 相互独立;
- (3) $(n-p)\hat{\Sigma} \sim W_m(n-p,\Sigma)$.

证明. (1) 由假设知 $\mathbf{Y} \sim N_{n \times m}(XB, I_n \otimes \Sigma)$,从而由矩阵正态分布的性质知 $\hat{B} = (X'X)^{-1}X'\mathbf{Y} \sim N_{p \times m}(B, (X'X)^{-1} \otimes \Sigma)$.

(2) 由多元正态的性质 (第四讲定理 9), 注意到

$$vec(\hat{B}) = [I \otimes (X'X)^{-1}X']vec(\mathbf{Y})$$

 $vec(P\mathbf{Y}) = [I \otimes P]vec(\mathbf{Y})$

从而 \hat{B} 和 $P\mathbf{Y}$ 相互独立 $\Leftrightarrow vec(\hat{B})$ 和 $vec(P\mathbf{Y})$ 相互独立 $\Leftrightarrow [I \otimes (X'X)^{-1}X'][I \otimes P]' = I \otimes (X'X)^{-1}X'P' = 0.$

(3) 因为 $\mathbf{Y} \sim N_{n \times m}(X\hat{B}, I \otimes \Sigma)$, 以及 Rank(P) = n - p, 所以由 Wishart 分布的性质 (第五讲 Cochran 定理) 知 $(n-1)\hat{\Sigma} = \mathbf{Y}'P\mathbf{Y} \sim W_m(n-p,\Sigma)$.

定理 5 (Gauss-Markov 定理). 记 $\Theta = XB = [\theta_{(1)}, \dots, \theta_{(m)}], \ \phi = \sum_{j=1}^{m} c_j' \theta_{(j)}, \ \text{这里 } c_1, \dots, c_m \ \text{是任意 } m \ \land \ n \ \text{维常数向量,} \ \text{记}$ $\hat{\mathbf{Y}} = X\hat{B} = [\hat{\mathbf{y}}_{(1)}, \dots, \hat{\mathbf{y}}_{(m)}], \ \hat{\phi} = \sum_{j=1}^{m} c_j' \hat{\mathbf{y}}_{(j)}, \ \text{则} \ \hat{\phi} \ \beta \ \phi \ \text{的最佳线}$ 性无偏估计.

证明. 首先我们来证明 $\hat{\phi}$ 的线性无偏性. 无偏性显然, 另外注意到 $\hat{\mathbf{Y}} = H\mathbf{Y} = [H\mathbf{y}_{(1)}, \dots, H\mathbf{y}_{(m)}]$, 其中 $H = X(X'X)^-X'$. 因此

$$\hat{\phi} = \sum_{j=1}^{m} c_j' H \mathbf{y}_{(j)}$$

即 $\hat{\phi}$ 为 Y 的列向量的线性函数.

下面我们讨论 $\hat{\phi}$ 在所有线性无偏估计里方差最小. 假设 $\phi^* = \sum_{j=1}^m d_j' \mathbf{y}_{(j)}$ 为 ϕ 的任意线性无偏估计, 则

$$E\phi^* = \sum_{j=1}^m d'_j \theta_{(j)} = \phi = \sum_{j=1}^m c'_j \theta_{(j)}$$

因此

$$\sum_{j=1}^{m} (d_j - c_j)' \theta_{(j)} = 0, \quad$$
对任意 $\theta_{(j)} \in \mathcal{L}(X)$

从而

$$(d_j - c_j)'\theta_{(j)} = 0$$
,对任意 $\theta_{(j)} \in \mathcal{L}(X)$

这等价于

$$H(d_j - c_j) = 0 \Leftrightarrow Hd_j = Hc_j, j = 1, \dots, m$$

于是由 $cov(\mathbf{y}_{(i)}, \mathbf{y}_{(k)}) = \sigma_{jk}I_n$ 有

$$Var(\phi^*) - Var(\hat{\phi}) = \sum_{j=1}^{m} \sum_{k=1}^{m} d'_j (I_n - H) d_k \sigma_{jk}$$
$$= tr[D'(I_n - H)D\Sigma] \ge 0$$

其中
$$D = [d_1, \ldots, d_m]$$
, 等号成立当且仅当 $D(I_n - H) = 0$, 即 $d_j = Hd_j = Hc_j, j = 1, \ldots, m$. 这时, $\hat{\phi}^* = \hat{\phi}$.

1.2.2 最小二乘估计的几何解释

• 对一元多重线性回归模型

$$y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + e_{n\times 1}$$

我们知道, y 向 X 的列向量所张成的线性子空间 $\mathcal{L}(X)$ 的投影 为 $\hat{y} = X\hat{\beta} = Hy$. 而 $y - Hy = (I - H)y = \hat{e}$ 为残差, 其中 $H = X(X'X)^{-1}X$. 如下图所示

• 由前面最小二乘估计的构造知, 将 Y 的每一列 $y_{(i)}$ 向空间 $\mathcal{L}(X)$ 上投影, 得到

$$\hat{\mathbf{Y}} = X\hat{B}, \qquad \mathbf{Y} - \hat{\mathbf{Y}} = (I_n - P)\mathbf{Y} = \hat{\boldsymbol{\epsilon}}$$

1.2.3 有线性约束的线性模型

考虑带有线性约束条件的多元回归模型:

$$\mathbf{Y} = XB + \epsilon, Rank(X) = p$$

$$AB = C, A_{s \times p}, C_{s \times m}, Rank(A) = s < m$$

$$\epsilon_{n \times m} \sim (0, I_n \otimes \Sigma)$$

为在此约束条件下求 B 的最小二乘估计,

- 记 \hat{B}_H 为此线性约束条件下 B 的最小二乘估计.
- $\hat{B} = (X'X)^{-1}X'Y$ 为没有线性约束时候 B 的最小二乘估计.

 可以使用 Lagrange 乘子法和最小二乘方法进行直接求解。但 习惯上常常将约束条件解出来,代入原线性模型中,这样将带约 束的回归模型转换为不带约束的回归模型。

显然约束条件方程 AB = C 的通解可以表示为

$$B = A^{-}C + (I - A^{-}A)\mathbf{z}$$
, **z**为任意向量

其中 A^- 为任意固定的广义逆, 特别, 取 $A^- = (X'X)^{-1}A'(A(X'X)^{-1}A')^{-1}$. 代入到回归模型中有

$$\mathbf{Y} - XA^{-}C = X(I - A^{-}A)\mathbf{z} + \boldsymbol{\epsilon}$$

因此 z 的最小二乘估计为

$$\hat{\mathbf{z}} = [(I - A^{-}A)'X'X(I - A^{-}A)]^{-1}(I - A^{-}A)'X'(\mathbf{Y} - XA^{-}C)$$

从而 B 的最小二乘估计为

$$\hat{B}_H = A^- C + (I - A^- A)[(I - A^- A)'X'X(I - A^- A)]^{-1}$$

$$\cdot (I - A^- A)'X'(\mathbf{Y} - XA^- C)$$

$$= \hat{B} - (X'X)^{-1}A'(A(X'X)^{-1}A')^{-1}(A\hat{B} - C)$$

此时, Σ 的无偏估计为

$$\hat{\Sigma}_H = \frac{1}{n-p+s} (\mathbf{Y} - X\hat{B}_H)' (\mathbf{Y} - X\hat{B}_H)$$

证明. 证明作为补充作业.

1.2.4 预测

- 给定一组协变量值 $\mathbf{x}'_0 = [1, x_{01}, \dots, x_{0(p-1)}], \, \mathbf{y} \, \mathbf{x}'_0 B$ 的预测值 为 $\hat{Y}'_0 = \mathbf{x}'_0 \hat{B}$, 其中 \hat{B} 为 B 的最小二乘估计.
- \hat{Y}_0' 为 $\mathbf{x}_0'B$ 的无偏估计, 即 $E\hat{Y}_0' = \mathbf{x}_0'E\hat{B} = \mathbf{x}_0'B$.
- 估计误差 $\mathbf{x}_0' \hat{B} \mathbf{x}_0' B$ 第 i 个和第 k 个分量的协方差为 $E[\mathbf{x}_0' (\hat{\beta}_{(i)} \beta_{(i)}) (\hat{\beta}_{(i)} \beta_{(i)})' \mathbf{x}_0] = \sigma_{ik} \mathbf{x}_0' (X'X)^{-1} \mathbf{x}_0.$
- 预报误差 $Y_0' \hat{Y}_0'$ 的第 i 个和第 k 个分量的协方差为

$$E(Y_{0i} - \mathbf{x}'_{0}\hat{\beta}_{(i)})(\hat{Y}_{0k} - \mathbf{x}'_{0}\hat{\beta}_{(k)})$$

$$= E(\epsilon_{0i} - \mathbf{x}'_{0}(\hat{\beta}_{(i)} - \beta_{(i)}))(\epsilon_{0k} - \mathbf{x}'_{0}(\hat{\beta}_{(k)} - \beta_{(k)}))$$

$$= E(\epsilon_{0i}\epsilon_{0k} + \mathbf{x}'_{0}E(\hat{\beta}_{(i)} - \beta_{(i)})(\hat{\beta}_{(k)} - \beta_{(k)})'\mathbf{x}_{0}$$

$$= \sigma_{ik}(1 + \mathbf{x}'_{0}(X'X)^{-1}\mathbf{x}_{0})$$