Prévision de consommation électrique à plusieurs niveaux

Introduction

Prédiction de consommation électrique

• x1 x10 10

· X11 X20 100

• x21 x30 1000

Sommaire

Analyse descriptive des données

Représentations graphiques de x2, x12 et x22

Représentation graphique des moyennes par mois

Moyenne par mois de X2

Moyenne par mois de X12

Moyenne par mois de X22

Moyenne par mois de la température

Estimation de l'erreur

Création de la base de test :

```
smp_size <- floor(0.75*nrow(consom.csv))
train_ind <- sample(seq_len(nrow(consom.csv)), size = smp_size)

Train <- consom.csv[train_ind, ]
Test <- consom.csv[-train_ind, ]

Train 75% data0 13140

Test 25% data0 4380</pre>
```

Création de la fonction de test :

$$RMSE(Y, \widehat{Y}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}$$

```
rmse <- function (actual, predicted) {
  sqrt(mean((actual - predicted)^2))
}</pre>
```

Prédiction par régression linéaire

Première fonction de prédiction

```
reglin <- function(k) {
    # modèle
    Xk <- data0[, k + 1]
    model <- lm(Xk ~ mois + heure + Temperature, data = consom.csv)

# prédiction
    Xk.pred <- data.frame(mois.pred, heure.pred, temp.Xk)
    pred <- unname(predict(model, newdata = Xk.pred))
}</pre>
```

Deuxième fonction de prédiction

Troisième fonction de prédiction

```
reglin <- function(k) {</pre>
  # modèle
 Xk \leftarrow data0[, k + 1]
 model <- lm(Xk ~ mois + heure + weekend + Temperature
               + I(Temperature^2) + Temperature.lag
               + temp.heure + temp.weekend + temp.mois
               + mois.heure + weekend.heure, data = consom.csv)
  # prédiction
  Xk.pred <- data.frame(mois.pred, heure.pred, weekend.pred,</pre>
                          temp.Xk, temp.Xk<sup>2</sup>, temp.Xk.lag,
                          temp.heure.pred, temp.mois.pred,
                          temp.weekend.pred, mois.heure.pred,
                         weekend.heure.pred)
 pred <- unname(predict(model, newdata = Xk.pred))</pre>
```

Résultats pour x2

première prédiction par Im pour X2

deuxième prédiction par Im pour X2

troisième prédiction par lm pour X2

Résultats pour x12

première prédiction par Im pour X12

deuxième prédiction par lm pour X12

troisième prédiction par lm pour X12

Résultats pour x22

première prédiction par lm pour X22

deuxième prédiction par lm pour X22

troisième prédiction par lm pour X22

Prédiction par modèle additif généralisé

Choix des paramètres

•

· rmse

Temperature: k = 54 heure: k = 48 mois: k = 12 Temperature.lag: k = 10 weekend.heure: k = 10 temp.weekend: k = 40 temp.mois: k = 20 temp.heure: k = 18 mois.heure: k = 191

Fonction de prédiction

```
gam.pred <- function (k) {</pre>
  # modèle
 Xk \leftarrow data0[, k + 1]
 model \leftarrow gam(Xk \sim s(Temperature, k = 54) + s(heure.num, k = 48)
               + s(as.numeric(mois), k = 12) + s(mois.heure, k = 191)
               + s(weekend.heure, k = 10) + s(temp.weekend, k = 40)
               + s(temp.mois, k = 20) + s(Temperature.lag, k = 10)
               + s(temp.heure, k = 18), data = consom.csv)
  # prédiction
  Xk.pred <- data.frame(temp.Xk, heure.num.pred, mois.pred,
                         mois.heure.pred, weekend.heure.pred,
                         temp.Xk*weekend.pred,
                         temp.Xk*as.numeric(mois.pred),
                         temp.Xk.lag, temp.Xk*heure.num.pred)
 pred <- predict(model, newdata = Xk.pred)</pre>
```

Résultats pour x2, x12 et x22

prédiction par gam pour X2

prédiction par gam pour X12

prédiction par gam pour X22

Prédiction par les plus proches voisins

Explications

```
 \{x_i \text{ pour } i \in 1, \dots, N\} 
 x_i \qquad c(x_i) 
 k \qquad x_i
```

Exemple

3

Exemple

7

Fonction de prédiction

Résultats pour x2, x12 et x22

prédiction par knn pour X2

prédiction par knn pour X12

prédiction par knn pour X22

Conclusion

Conclusion

· lm

• knn

ARIMA

Merci pour votre attention!