Alfredo Weitzenfeld

- The Brushfire Algorithm uses a grid, a 2D array of cells or pixels, to compute approximate distances from obstacles, equivalent to a repulsive function.
- The result is a distance map where each cell holds the minimum distance to the nearest obstacle.
- These values can be used to compute a repulsive potential functions, as well as its gradient.
- The gradient of distance at a pixel is determined by finding a neighbor with the lowest pixel value.
- The gradient is then a vector which points to this neighbor. If multiple neighbors have the same value, then pick one to define the gradient.

A grid is a 2D discrete representation of space called "pixels":

"0" value if space is free of obstacles

"1" if space is completely or partially occupied by an obstacle

Neighboring relationships between pixels can be:

"4" point connectivity

"8" point connectivity

n1	n2	n3
n4	n5	n6
n7	n8	n9

n1	n2	n3
n4	n5	n6
n7	n8	n9

- Initially: set "1" to all pixels inside obstacles, and "0" to all pixels outside obstacles (free space)
- While there are still pixels with value of "0" and starting next to pixels of value "1".
- All "0" value pixels adjacent to pixels with value "i" are set to "i+1" value using either 4 or 8 point connectivity.
- Solid lines in following graphs show lines passing through pixels whose front collide surrounding all obstacles.

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	2	0	0	2	2	2	0	2	2	2	2	2	0	0	0	0	0	0	0	0	0	2	1
1	2	0	0	2	1	2	0	2	1	1	1	2	0	0	0	0	0	0	0	0	0	2	1
1	2	0	0	2	1	2	0	2	1	1	1	2	0	0	0	0	0	0	0	0	0	2	1
1	2	0	0	2	1	2	0	2	2	2	2	2	0	0	0	0	0	0	0	0	0	2	1
1	2	0	0	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
1	2	0	0	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
1	2	0	0	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
1	2	0	0	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	2	3	3	2	2	2	3	2	2	2	2	2	თ	3	3	3	3	3	3	3	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	0	0	0	0	0	0	0	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	0	0	0	0	0	0	0	3	2	1
1	2	3	3	2	1	2	3	2	2	2	2	2	3	0	0	0	0	0	0	0	3	2	1
1	2	3	3	2	1	2	3	3	3	3	3	3	3	0	0	0	0	0	0	0	3	2	1
1	2	3	3	2	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	1
1	2	3	3	2	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	1
1	2	3	3	2	2	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	1
1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	2	3	3	2	2	2	3	2	2	2	2	2	3	3	3	3	3	3	3	3	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	4	4	4	4	4	4	4	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	4	0	0	0	0	0	4	3	2	1
1	2	3	3	2	1	2	3	2	2	2	2	2	3	4	0	0	0	0	0	4	3	2	1
1	2	3	3	2	1	2	3	3	3	3	3	3	3	4	0	0	0	0	0	4	3	2	1
1	2	3	3	2	1	2	3	4	4	4	4	4	4	4	0	0	0	0	0	4	3	2	1
1	2	3	3	2	1	2	3	4	0	0	0	0	0	0	0	0	0	0	0	4	3	2	1
1	2	3	3	2	2	2	3	4	4	4	4	4	4	4	4	4	4	4	4	4	3	2	1
1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	2	3	3	2	2	2	3	2	2	2	2	2	3	3	3	3	3	3	3	3	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	4	4	4	4	4	4	4	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	4	5	5	5	5	5	4	3	2	1
1	2	3	3	2	1	2	3	2	2	2	2	2	3	4	5	0	0	0	5	4	3	2	1
1	2	3	3	2	1	2	3	3	3	3	3	3	3	4	5	0	0	0	5	4	3	2	1
1	2	3	3	2	1	2	3	4	4	4	4	4	4	4	5	0	0	0	5	4	3	2	1
1	2	3	3	2	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	4	3	2	1
1	2	3	3	2	2	2	3	4	4	4	4	4	4	4	4	4	4	4	4	4	3	2	1
1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	2	3	3	2	2	2	3	2	2	2	2	2	3	თ	3	3	3	3	3	3	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	4	4	4	4	4	4	4	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	4	5	5	5	5	5	4	3	2	1
1	2	3	3	2	1	2	3	2	2	2	2	2	3	4	5	6	6	6	5	4	3	2	1
1	2	3	3	2	1	2	3	3	3	3	3	3	3	4	5	6	0	6	5	4	3	2	1
1	2	3	3	2	1	2	3	4	4	4	4	4	4	4	5	6	6	6	5	4	3	2	1
1	2	3	3	2	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	4	3	2	1
1	2	3	3	2	2	2	3	4	4	4	4	4	4	4	4	4	4	4	4	4	3	2	1
1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	2	3	3	2	2	2	3	2	2	2	2	2	3	3	3	3	3	3	3	3	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	4	4	4	4	4	4	4	3	2	1
1	2	3	3	2	1	2	3	2	1	1	1	2	3	4	5	5	5	5	5	4	3	2	1
1	2	3	3	2	1	2	3	2	2	2	2	2	3	4	5	6	6	6	5	4	3	2	1
1	2	3	3	2	1	2	3	3	3	3	3	3	3	4	5	6	7	6	5	4	3	2	1
1	2	3	3	2	1	2	3	4	4	4	4	4	4	4	5	6	6	6	5	4	3	2	1
1	2	3	3	2	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	4	3	2	1
1	2	3	3	2	2	2	3	4	4	4	4	4	4	4	4	4	4	4	4	4	3	2	1
1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Brushfire Algorithm Collision Front

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	2	3	Z	2	2	2	3	2	2	2	2	2	M	ო	3	3	3	თ	თ	3	3	2	1
1	2	3	3	2	1	2	8	2	1	1	1	2	ന	A	4	4	4	4	4	4	3	2	1
1	2	3	თ	2	1	2	3	2	1	1		2	3	4	15	5	5	5	5	4	3	2	1
1	2	3	3	2	1	2	77)	2	2	2	2	2	3	4	5	76	6	6	5	4	3	2	1
1	2	3	3	2	1	2	3	3	3	3	3	3	3	4	5	6		6	5	4	3	2	1
1	2	3	3	2	1	2	3	X	4	4	4	4	4	4	5		6	6	5	4	3	2	1
1	2	3	3	2	1	2	3	4) T	5	5	5	5	5	Yn I	5	5	5	5	4	3	2	1
1	2	3	3	2	2	2	3	Æ	4	4	4	4	4	4	4	4	4	4	4	4	3	2	1
1	2	3	\g_	3	փ	3	ነ	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Spring 2017

Fall 2017

Fall 2017

2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	3	3	3	3	3	3	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	2
2	3	4	4	3	3	2										2	3	3	4	4	3	2
2	3	4	3	2	3	3	2	2	2	2	2	2	2	2	2	3	3	2	3	4	3	2
2	3	3	2		2	2										2	2		2	3	3	2
2	3	3	2		2	3	2	2	2	2		2	2	2	2	3	2		2	3	3	2
2	3	3	2		2	3	3	3	3	2		2	3	3-	3	3	2		2	3	3	2
2	3	3	2		2	2	3	4	3	2		2	3	4	3	2	2		2	3	3	2
2	3	3	2				2	3	3	2		2	3	3	2				2	3	3	2
2	3	4	3	2	2	2	3	4	3	2		2	3	4	3	2	2	2	3	4	3	2
2	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

Fall 2017

2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	3	3	3	2										2	3	3	3	3	2
2	3	2	3	3	2	2	2	2		2	2	2	2	3	3	2	3	3	2
2	2		2	2										2	2		2	3	2
2	2		2	3	2	2	2	2		2	2	2	2	3	2		2	3	2
2	2		2	3	3	3	3	2		2	3	3	3	3	2		2	3	2
2	2		2	2	2	2	2	2		2	2	2	2	2	2		2	3	2
2	2																2	3	2
2	3	2	2	2	2	2	2	2		2	2	2	2	2	2	2	3	3	2
2	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

Spring 2018

Apply the Brushfire algorithm to the scene below using <u>8-point</u> connectivity where darker elements correspond to obstacles.

- 1. Number ONLY the cells needed to find the "collision front". You may fill additional cells but it is not necessary to number all the cells in the graph.
- 2. Highlight the "collision front" lines corresponding to the maximum gradient repulsive fields between obstacles.

Spring 2018

Apply the Brushfire algorithm to the scene below using <u>8-point</u> connectivity where darker elements correspond to obstacles.

- 1. Number ONLY the cells needed to find the "collision front". You may fill additional cells but it is not necessary to number all the cells in the graph.
- 2. Highlight the "collision front" lines corresponding to the maximum gradient repulsive fields between obstacles.

1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	2	7		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	2	3		2	1	2		3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	1
1	2	3		2	1	2	3	2	2	2	2	2	2	2	2	2	3	A	4	4	3	2	1
1	2	3		2	1	2	3	2	1	1	1	1	1	1	1	2	3	4	X	4	3	2	1
1	2	3	•	2	1	2	3	2	2	2	2	1	2	2	2	2	3	A	4	¥	3	2	1
1	2	3	•	2	1	2	3	×	3	3	2	1	2	3	3	3	3	3	3	3	3	2	1
1	2	3	•	2	1	2	2	2	8	3	2	1	2	3	3	2	2	2	2	3	3	2	1
1	2	3	•	2	1	1	1	2	3	B	2	2	2	3	3	2	1	1	2	3	3	2	1
1	2	3		2	2	2	2	2	3	3	٦	3	3	3	3	2	1	2	2	3	3	2	1
1	2	3	ľ	α	3	3	3	3	3	3	3	3	3	3	4	2	2	2	3	_{_{3}}	3	2	1
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Summary

- The repulsive potential function can be computed using distance and gradient to the nearest obstacle.
- The attractive potential function can be computed analytically.
- Together, a planner can compute the additive attractive/repulsive function.