# SESIÓN 2: Estructuras de control: Selectivas o Condicionales

## **Objetivos**

- Saber construir y utilizar una estructura selectiva simple, doble y múltiple.
- Implementar algoritmos sencillos.

**Nota importante:** Siga el esquema de nombrado de paquetes que se indicó en la sesión 1 es decir: **org.pc.sesion02**. En ese paquete se crearán todos los programas que se proponen en la sesión dándoles un nombre alusivo a lo que realiza el programa y que se indica en cada ejercicio entre paréntesis y en negrita.

## **Ejercicios propuestos**

**1.** En un conocido centro comercial de la ciudad se han detectado unos defectos en aquellos artículo cuyos códigos se encuentran entre los aquí expuestos:

```
Del 14681 al 15681
Del 70001 al 79999
Del 99999 al 110110
```

Haz un programa que a partir del código de un artículo, muestre un mensaje indicado si el artículo es o no defectuoso. (CodigoDefectuoso)

Ejemplo de ejecución



El código 25000 corresponde a un articulo NO DEFECTUOSO

**2.** Haz un programa que a partir de dos números y un símbolo operador (\* ⇒ Multiplicar, / ⇒ Dividir, + ⇒ Sumar, - ⇒Restar), realice la operación con los números anteriores siempre que sea posible. **(OperacionAritmetica)** 

Ejemplo de ejecución



```
Los datos son:

x = 7, y = 2

La operación elegida es: /

El resultado de la operación es: 7 / 2 = 3.5
```

**3.** En numerosos cálculos de geometría solar se hace uso del día juliano. Dicho día se corresponde con 1, el 1 de enero y 365 el 31 de diciembre. Se supone que febrero tiene siempre 28 días, por lo que a lo largo de un período de 4 años la precisión de las fórmulas variará ligeramente. Haz un programa que permita mostrar por pantalla el día juliano a partir de un día y un mes. **(DiaJuliano)** 

Ejemplo de ejecución



El día juliano correspondiente al dia 29 del mes 12 es 363

**4.** Muestra por pantalla las raíces de una ecuación de 2º grado dados los valores de a, b y c.  $ax^2 + bx + c = 0$ . (**Ecuacion2Grado**)

#### Ejemplo de ejecución



SOLUCIÓN DE UNA ECUACIÓN DE 2º GRADO

Valores de los coeficientes

$$a = 1, b = 2, c = 1$$

Una única raiz de valor doble x = -1.0

Prueba con los valores que se indican en la tabla y genera la salida que se muestra

| a b c  | Salida a consola                              |
|--------|-----------------------------------------------|
| 0 1 1  | SOLUCIÓN DE UNA ECUACIÓN DE 2º GRADO          |
|        | Valores de los coeficientes                   |
|        | a = 0, b = 1, c = 1                           |
|        | No es una ecuación de 2º grado                |
|        |                                               |
| 2 1 1  | SOLUCIÓN DE UNA ECUACIÓN DE 2º GRADO          |
|        | Valores de los coeficientes                   |
|        | a = 2, b = 1, c = 1                           |
|        | No tiene solución real                        |
|        |                                               |
| 1 -3 2 | SOLUCIÓN DE UNA ECUACIÓN DE 2º GRADO          |
|        | Valores de los coeficientes                   |
|        | a = 1, b = -3, c = 2                          |
|        | Dos raíces de valores<br>x1 = 2.0<br>x2 = 1.0 |

## Trabajo autónomo

**5.** A partir de un mes (m), día (d), y año (y) muestra el día de la semana según el Calendario Gregoriano, d0. Para los meses utilizar: 1 para enero, 2 para febrero y así sucesivamente. La salida, d0, es 0 para domingo, 1 para lunes y así sucesivamente. Usa las expresiones:

$$y0 = y - (14 - m) / 12$$
  
 $x = y0 + y0/4 - y0/100 + y0/400$   
 $m0 = m + 12 * ((14 - m) / 12) - 2$   
 $d0 = (d + x + (31 * m0) / 12) % 7$ 

## (DiaSemana)

Ejemplo de ejecución



El día de la semana correspondiente al 3/3/2006 es:

VIERNES

- **6.** La tarifa que aplica un taxista es la siguiente:
  - Una cantidad fija de 18 € si no se sobrepasan los 30 Km.
  - Para más de 30 Km., se consideran los siguientes supuestos:
    - ✓ Si no se sobrepasan los 100 Km., 0.85 € por Km. que exceda de los 30, además de los 18 €
    - ✓ Si sobrepasa los 100 Km., 0.65 €por Km. que exceda de los 100, 0.85 €por Km. desde los 30 a los 100 y los 18 €

Haz un programa que a partir de los kilómetros recorridos, calcule y muestre el total a pagar según la tarifa anterior. **(TarifaTaxi)** 

Ejemplo de ejecución



CÁLCULO TARIFA TAXI

```
Kilometros recorridos => 101
El importe total a pagar es 78,15 €
```

7. Haz un programa que a partir de las coordenadas de dos puntos, calcule y muestre la ecuación de la recta que pasa por ellos. y = ax + b. (**EcuacionRecta**)

Ejemplo de ejecución



CÁLCULO DE LA ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

Ecuación de la recta que pasa por (0,1) y (1,4)

$$y = 3.0x + 1.0$$

| (x1, y1) | (x2, y2) | Salida a consola                                                                                                                                |
|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| (1, 2)   | (1, 2)   | CÁLCULO DE LA ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS  Los dos puntos (1,2) y (1,2) COINCIDEN, no se puede obtener la ecuación de la recta |
| (1, 2)   | (1, 1)   | CÁLCULO DE LA ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS<br>Ecuación de la recta que pasa por $(1,2)$ y $(1,1)$<br>x = 1                      |
| (1, 2)   | (2, 2)   | CÁLCULO DE LA ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS  Ecuación de la recta que pasa por (1,2) y (2,2)  y = 2                              |
| (1, 2)   | (2, 4)   | CÁLCULO DE LA ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS  Ecuación de la recta que pasa por (1,2) y (2,4)  y = 2.0x                           |
| (1, 1)   | (2, 4)   | CÁLCULO DE LA ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS<br>Ecuación de la recta que pasa por $(1,1)$ y $(2,4)$<br>y = $3.0x$ - $2.0$         |
| (0, 1)   | (1, 4)   | CÁLCULO DE LA ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS<br>Ecuación de la recta que pasa por $(0,1)$ y $(1,4)$<br>y = $3.0x + 1.0$           |