КМ1801ВМ3A, КМ1801ВМ3Б, КМ1801ВМ3В

Микросхема КМ1801ВМ3 — 16-разрядный однокристальный микропроцессор, включающий операционный блок, блок микропрограммного управления, блок прерываний, диспетчер памяти и блок управления системной магистрали. Содержит 200000 интегральных элементов. Корпус 2136.64-1.

Отличительной особенностью КМ1801ВМ3 являются большой объем адресуемой памяти, высокое быстродействие и возможность подключения сопроцессора арифметики чисел с плавающей запятой (СППЗ).

Основные параметры КМ1801ВМ3

Объем адресуемой памяти	4М байт
Принцип управления	Микропрограммный

Число команд 72 с фиксированной запятой.

46 с плавающей запятой (при подключении СППЗ)

Число регистров общего назначения

Производительность операций «Регистр-регистр» (для КМ1801ВМ3А)

Сложение в потоке 1,5 млн операций/с; умножение 100 тыс. операций/с; деление 50 тыс. операций/с

Число линий запросов на прерывание	4
Тактовая частота	
KM1801BM3A	6 МГц

KM1801BM3A	6 МП Ц
КМ1801ВМ3Б	5 МГц
KM1801BM3B	4 МГц
Напряжение питания	4,755,25 B
Выходное напряжение низкого уровня	0,5 B
Выходное напряжение высокого уровня	2.4 B

Выходное напряжение высокого уровня Входное напряжение низкого уровня $0,7 \, B$ 2,2 B Входное напряжение высокого уровня Ток утечки на входе 1 мкА Ток утечки на выходе 10 мкА

Выходной ток низкого уровня	3,2 мА
31	
Выходной ток высокого уровня	-1,0 мА
Входная емкость	10 пФ
Выходная емкость	15 пФ
Емкость нагрузки	$< 100 \; \pi \Phi$
Мощность потребления	1,5 Вт
Максимальное входное напряжение	5,25 B
Минимальное входное напряжение	-0,5 B
Температура окружающей среды	-10+70°C
Срок сохраняемости	15 лет
Минимальная наработка	50 000 ч

Микросхема содержит шесть регистров общего назначения (R0—R5), три регистра — указателя стека R6 (SP), используемых в режимах операционной системы (KSP), пользователя (USP) и в пультовом режиме (HSP), и регистр R7, который служит также счетчиком команд (PC). Регистр SP содержит адрес последней заполненной ячейки стека, а РС — адрес команды, следующей за выполняемой.

Программно доступным регистром является также регистр состояния процессора PSW. Информация, содержащаяся в PSW, влияет на режимы выполнения команд и прерываний, определяет режим работы диспетчера памяти. 15 14 13 12 11 8 7 5 4 3 2 1

Текущий

режим

Предыдущий

режим

Приоритет

Признак

режима отладки

Код условий

Регистр PSW доступен также из процессора по физическому адресу 17777776.

Назначение разрядов регистра PSW:

разряды 0 — 3 (N, Z, V, C) — признаки знака, нуля, переполнения и переноса, описывающие результат последней выполненной команды;

разряд 4 (Т) — признак режима отладки;

разряды 5, 6, 7 — код приоритета внешних прерываний IRQ (3—0);

разряды 13, 12 — предыдущий режим работы МП;

разряды 15, 14 — текущий режим работы МП (11 — режим пользователя, 00 — режим операционной системы).

В микросхеме используются три типа команд безадресные, одноадресные и двухадресные. В безадресных командах код команды содержит только код операции. В кодах одноадресных и двухадресных команд содержится информация, определяющая; выполняемую функцию (код операции); регистры общего назначения, используемые при выборке операндов, метод адресации.

Система команд КМ1801ВМ3 включает команды МП КМ1801ВМ2 и дополнительные команды, которые приведены в таблице:

1	
SS Засылка данных в текущей моды по ад	
SS предварительной мод Засылка команды в текущей моды по ад	1ы стек ресу
SS Засылка данных из с	тека
SS предварительной мод Засылка команды нз ка текущей моды по	іы сте- ад-
5.	текущей моды по ад предварнтельной мод Засылка команды в текущей моды по ад предварительной мод Засылка данных из стекущей моды по ад предварительной мод Засылка команды на ка текущей моды по ресу предваритель

да источника.

Диспетчер памяти обеспечивает:

расширение емкости адресуемой памяти с 64К до 266К или до 4М байт;

преобразование виртуальных адресов в физические и защиту памяти в системах с разделением времени;

использование различных областей адресов для режима пользователя и режима операционной системы (ОС). Расширение емкости адресуемой памяти осуществляется преобразованием 16-разрядного виртуального адреса в 18или 22-разрядный физический адрес. Преобразование выполняется с помощью набора 16 регистров — адресов страниц PAR и 16 регистров — описателей страниц PDR.

Вывод	Обозначение	Тип вывода	Функциональное назначение выводов
10—25	AD0—AD15	Вход, выход	Мультнплексирование во времени информации ад
26-30	A 16 A 00	D	ресов и данных
31	A16—A20 A21/NS	Выход Выход	Адресная ниформация Мультиплексирование во времени информации ад
	H21/H0	Выход	реса A21 н ниформации о том, что считываетс нз памяти: команда или данные
3	SYNC	Выход	Фронт сигнала. Указывает на то, что выда адрес. Обмен по магистрали продолжается до тех пор, пока присутствует сигнал
1	DIN	Выход	Сигнал управления вводом данных
2 5	DOUT	Выход	Сигнал управления выводом данных
5	RPLY	Вход	Сигнал ответа. Указывает на то, что данные вы ставлены на магистрали во время чтения или при
63	WTBT	Выход	няты во время записи Во время фронта сигнала SYNC указывает на ти обмена: запись либо чтение. Во время записи ин формации указывает на формат данных: байт ил слово
4	SSYNC	Вход	Сигнал ответа при опознании адреса, вызывае снятие адреса с магистрали
6	DMG	Выход	Сигнал разрешения на захват магистралн по пря мому доступу к памяти
7	SACK	Вход	Сигнал подтверждения запроса прямого доступ к памяти
8 9	DMR GND	Вход	Сигнал запроса прямого доступа к памяти
33	INIT	Вход выход	Общий Сигнал установки периферийной части системы начальное состояние
46	ACLO	Вход	Сигнал включения источника питания переменно го напряжения
47 48—51 43	HLT IRQ 3 —IRQ0 Ucc	Вход Вход	Сигнал останова Сигналы запроса на прерывание МП
62	IAK	Выход	Напряжение питания Сигнал разрешення прерывания
52	DCLO	Вход	Сигнал включения источника питания постоянно го напряження
53 54	FPPTRP FPPRD	Вход/выхол Вход	Сигнал прерывания от СППЗ Во время включения МП высокий уровень ука зывает, что СППЗ подключен, далее низки уровень указывает, что СППЗ готов начать вы полнение следующей команды
55 56	HLTM DREADY	Выход Вход	Снгнал указывает, что МП в пультовом режиме Снгнал указывает, что СППЗ выставил на маги
57	FL	Вход	страль данные во время процедуры записи Сигналы длинного целого
58	FD	Вход	Сигналы двойной точности
59	WO	Bxo.t	Сигнал режима включения МП
60	CLC LIN	Вход	Тактовый сигнал
32	GND1	Выход	Снгнал стробирует в СППЗ загрузку команды Общий
64	U_{cc}	_	Напряжение питания

Диспетчер памяти преобразует все адреса автоматически, поэтому пользователь работает в области виртуальных адресов. Область виртуального адреса делится на восемь отдельных страниц. Каждая виртуальная страница имеет свой код защиты. Есть три вида защиты памяти: разрешены запись и чтение, разрешено только чтение, запрещен любой доступ. Все попытки запрещенного доступа вызывают прерывание МП.

Диспетчер памяти обеспечивает три режима работы: ОС, пользователя и пультовый. Для каждого режима работы существует свой набор регистров PAR/PDR.

Регистры PAR/PDR включают два набора по восемь 27-разрядных регистров PAR/PDR для режимов ОС н пользователя и четыре 16-разрядных регистра адреса страницы PARH для обеспечения пультового режима. Физические адреса регистров PAR/PDR приведены и таблице:

Номер	Режн	иы ОС	Режимы пользователя		
регист- ра	PAR	PDR	PAR	PDR	
0 1 2 3 4 5 6 7	17772340 17772342 17772344 17772346 17772350 17772352 17772354 17772356	17772300 17772302 17772304 17772306 17772310 17772312 17772314 17772316	17777640 17777642 17777644 17777646 17777650 17777652 17777654 17777656	17777600 17777602 17777604 17777606 17777610 17777612 17777614 17777616	

При 18-разрядном физическом адресе базовый адрес страницы в регистре PAR содержится в разрядах 0—11, а при 22-разрядном — в разрядах 0—15.

Формат регистра PDR имеет вид:

15	14		7	6	5	 3			_
		PLF		w		ED	A	CF	

Поле PLF определяет длину страницы в блоках (один блок — 32 слова) и позволяет установить ее от 0 до 177_8 .

Разряд 3 (ED) — направление расширения страницы: при ED = 0 — расширение вверх, при ED = 1 — расширение вниз. При расширении вверх PLF устанавливается на 1 больше необходимой длины. При расширении вниз в PLF заносится дополнительный код длины страницы.

Поле АСF определяет тип доступа к странице памяти: 00 — недоступна, прерывание при любом обращении; 01 — доступна только по чтению, прерывание при попытке записи; 10 — не используется, прерывание при любом обращении; 11 — разрешены чтение и запись.

Разряд 6 (W)—признак записи, указывает, что в страницу произведена запись. Разряд W очищается автоматически при записи в PAR и PDR данной страницы. Установлен этот признак может быть только аппаратно логической схемой управления диспетчера памяти (ДП).

Регистры состояния диспетчера памяти

Диспетчер памяти содержит три регистра состояний: SR0, SR2, SR3. Четвертый регистр состояния SR1 аппаратно не реализован, и при обращении по адресу этого регистра (17777574) всегда считываются нули. В случае нарушения условия защиты памяти процессор немедленно прерывается и переходит к программе обработки прерывания по вектору 250_8 в области памяти ОС. Регистры состояния SR0 и SR2 служат для анализа возникшего прерывания.

Регистр SR0 (адрес 17777572) содержит флаги ошибок, бит разрешения преобразования адреса в ДП и другую информацию, необходимую ОС для обработки ошибки и возврата к прерванной программе.

Формат регистра SR0 имеет вид

Назначение разрядов регистра SR0:

разряд 15 (NR) — ошибка по запрету доступа. Возникает при попытке обращения κ недоступной или неиспользуемой странице;

разряд 14 (PL) — ошибка по нарушению длины страницы;

разряд 13 (RO) — ошибка по записи. Возникает при попытке записи в страницу, доступную только по чтению;

разряд 8 (М) — бит, устанавливающий диагностический режим работы ДП; при установленном М выполняется преобразование адреса только последнего обращения в память приемника;

разряды 5, 6 — режим МП (пользователя или ОС), при обращении к которому произошла ошибка ДП;

разряды 1, 2, 3 — номер страницы, при обращении к которой произошла ошибка ДП;

разряд 0 (EN) — бит включения ДП. При EN = 1 выполняются преобразование адресов и защита памяти в ДП. Регистр SR2 (адрес 17777576) содержит виртуальный адрес первого слова выполняемой команды. Он не изменяется, если в данной команде произошло прерывание по ошибке ДП. Доступен только по чтению.

Регистр SR3 (адрес 1777757) содержит два разряда. Разряд 4 содержит бит AS. При AS = 1 адрес физический, 22-разрядный, при AS = 0 - 18-разрядный. Разряд 5 содержит бит UM. При UM = 1 устанавливается для внешней аппаратуры режим включения схем преобразования адресов.

Формирование физического адреса в ДП изображено на рисунке:

В сумматоре выполняется сложение виртуального адреса VA (разряды 6 — 12) с выбранным PAR (разряды 0 — 11) при 18-разрядном адресе и PAR (разряды 0 — 15) при 22-разрядном адресе. В результате полный физический адрес содержит разряды 0 — 5 виртуального адреса и разряды 6 — 17 (21) — результат суммы.

Система прерываний процессора.

Прерывания делятся на аппаратурные и командные. Часть аппаратных прерываний вызывает немедленный переход к их обработке. Это так называемые фатальные ошибки. Они возникают при ошибках системной магистрали, ДП, СППЗ. Анализ таких аппаратных прерываний, как авария источника питания, внешний сигнал HALT, прерываний IRQ (разряды 0 — 3), переполнения стека в моде операционной системы производится после завершения очередной команды в соответствии с приоритетом, указанным в таблице:

Приоритет	Прерывание
Высший	Команда HALT
	Нечетный адрес
	Ошибка ДП
	Зависание
	Команды прерывания
	Прерывание по Т-биту
	Переполнение стека
	Сбой питания
Самый низкий	Внешний сигнал HALT
	IRQ3
	IRQ0

К командам прерывания относятся ЕМТ, TRAP, BPT, ЮТ, а также (если учитывать алгоритм выполнения) и резервные коды. Вектора прерываний приведены в таблице:

а прерывании при	ведены в таблице.	
Вектор	Прерывание	
004	Зависание, нечетный адрес, переполнение стека	
010	Резервные и запрещенные команды	
014	Прерывание по Т-биту	
020	Прерывание по команде	
024	Сбой питания	
030	Прерывание по команде МТРІ	
034	Команды прерывания	
250	Ошибка диспетчера памяти	
244	Прерывание СППЗ	
Из системной	IRQ3-IRQ0	
магистрали		

При прерывании МП помещает в стек PC и PSW и считывает новые значения PC и PSW из ячеек, определяемых вектором прерывания, причем загрузка PC и PSW ведется из области памяти операционной системы. Особый случай представляет собой возникновение фатальной ошибки в ходе выполнения микропрограммы обработки прерывания, так называемой «двойной ошибки». В этом случае процессор переходит в пультовый режим.

В пультовой режим процессор переходит при: выполнении команды HALT в моде OC; возникновении «двойной ошибки»; возникновении внешнего сигнала HALT = 0 и отсутствии в этот момент других, более приоритетных прерываний.

При входе в пультовый режим процессор загружает в стек HSP константу 100000_8 ; загружает в стек регистры PSW и PC; заносит в регистр PSW значение 340_8 , а в PC — 0; включает ДП на преобразование виртуальных адресов в 22-разрядные физические и переходит к выполнению программы, расположенной по виртуальному адресу 0.

В ДП с целью реализации пультового режима введены четыре регистра адреса страницы РАRH:

		ие	Назначенне регистра
VAI5	VA14	Значен адрес	PARH
0	0	170000	Формирование на- чального адреса про-
0	1	16760 0	граммы пультового режима (ПЗУ) Формирование начального адреса ОЗУ программы пульто-
1	0		вого режима Адресация ко всей
1	1	177600	области памяти Формирование на- чального адреса стра- ницы старшего банка
	иый г VA15	0 1	иый адрес VA15 VA14 Радиний и и и и и и и и и и и и и и и и и и

адресация к которым производится двумя старшими разрядами виртуального адреса. Регистр PARH2 позволяет осуществлять обращение ко всему адресному пространству путем записи в него соответствующего кода. Адрес регистра PARH2 — 177512.

В пультовом режиме существуют некоторые отличия в выполнении команд и прерываний. Например, команды RT1 и RTT выполняются без учета значения T-бита.

При включении питания извне устанавливается сигнал DCLO и МП переходит в режим ожидания сигнала ACLO. При поступлении сигнала ACLO МП начинает выполнение одной из процедур начального пуска в зависимости от сигнала W0:

W0 = 0. МП загружает PSW содержимым 26-й ячейки памяти, PC — содержимым 24-й ячейки и начинает выполнение программы с этого адреса;

W0 = 1. МП загружает в PSW константу 340, а PC — 173000 и начинает выполнение программы с этого адреса.

При выполнении любой команды МП осуществляет хотя бы одно обращение к каналу, называемое циклом обращения к каналу. Перед каждым циклом МП осуществляет процедуру захвата канала.

Цикл «Чтение». Цикл разделен на фазы передачи адреса и приема данных. Адрес из МП сопровождается сигналом SYNC, снимается после приема сигнала SSYNC, и затем выставляется сигнал DIN. Микросхема переключает элементы входа/выхода на выводах AD0 — AD15 на прием и ожидает сигнал RPLY. Фаза приема данных. После приема сигнала RPLY МП принимает данные и снимает сигналы DIN н SYNC.

Цикл «Запись». Передача адреса сопровождается сигналом WTBT, который снимается одновременно со снятием адреса и указывает, что происходит цикл «Запись». После окончания фазы передачи адреса МП выставляет на выводы AD0 — AD15 данные и сигнал DOUT и ожидает сигнал RPLY. После приема сигнала RPLY МП снимает сигнал DOUT, данные и сигнал SYNC. По снятию сигнала DOUT пассивное устройство снимает сигнал RPLY.

Цикл «Чтение — модификация — запись». Цикл разделен на фазы передачи адреса, приема и записи данных. Фаза записи начинается после того, как пассивное устройство сняло сигнал RPLY в ответ на снятие сигнала DIN.

Временные диаграммы циклов «Чтение», «Запись» и «Чтение — модификация — запись»

Временные диаграммы циклов «Запрос — предоставление прямого доступа»

