

Lesson Menu

ANGLES OF POLYGONS

Theorem 6.1 Polygon Interior Angles Sum

The sum of the interior angle measures of an n-sided convex polygon is $(n-2) \cdot 180$.

Example
$$m \angle A + m \angle B + m \angle C + m \angle D + m \angle E = (5 - 2) \cdot 180$$

= 540

Theorem 6.2 Polygon Exterior Angles Sum

The sum of the exterior angle measures of a convex polygon, one angle at each vertex, is 360.

Example

$$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 + m \angle 5 + m \angle 6 = 360$$

Lesson Menu

PARALLELOGRAMS

Theorems Properties of Parallelograms

6.3 If a quadrilateral is a parallelogram, then its opposite sides are congruent.

Abbreviation Opp. sides of a \square are \cong .

Example If JKLM is a parallelogram, then $\overline{JK} \cong \overline{ML}$ and $\overline{JM} \cong \overline{KL}$.

6.4 If a quadrilateral is a parallelogram, then its opposite angles are congruent.

Abbreviation Opp. & of a \square are \cong .

Example If *JKLM* is a parallelogram, then $\angle J \cong \angle L$ and $\angle K \cong \angle M$.

6.5 If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

Abbreviation Cons. *և* in a □ are supplementary.

Example If *JKLM* is a parallelogram, then x + y = 180.

6.6 If a parallelogram has one right angle, then it has four right angles.

Abbreviation If $a \square$ has 1 rt. \angle , it has 4 rt. \angle s.

Example In $\square JKLM$, if $\angle J$ is a right angle, then $\angle K$, $\angle L$, and $\angle M$

are also right angles.

Proof Theorem 6.4

Write a two-column proof of Theorem 6.4.

Given: □ FGHJ

Prove: $\angle F \cong \angle H$, $\angle J \cong \angle G$

Proof:

Statements

- **1**. □ *FGHJ*
- **2.** *FG* || *JH*; *FJ* || *GH*
- ∠F and ∠J are supplementary.
 ∠J and ∠H are supplementary.
 ∠H and ∠G are supplementary.
- **4.** $\angle F \cong \angle H, \angle J \cong \angle G$

Reasons

- 1. Given
- 2. Definition of parallelogram
- If parallel lines are cut by a transversal, consecutive interior angles are supplementary.
- **4.** Supplements of the same angles are congruent.

Concept Summary

Prove that a Quadrilateral Is a Parallelogram

- Show that both pairs of opposite sides are parallel. (Definition)
- Show that both pairs of opposite sides are congruent. (Theorem 6.9)
- Show that both pairs of opposite angles are congruent. (Theorem 6.10)
- Show that the diagonals bisect each other. (Theorem 6.11)
- Show that a pair of opposite sides is both parallel and congruent. (Theorem 6.12)

Lesson Menu

RECTANGLES

Theorem 6.13 Diagonals of a Rectangle

If a parallelogram is a rectangle, then its diagonals are congruent.

Abbreviation If $a \square$ is a rectangle, diag. are \cong .

Example If $\square JKLM$ is a rectangle, then $\overline{JL} \cong \overline{MK}$.

Theorem 6.14 Diagonals of a Rectangle

If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.

Abbreviation If diag. of a \square are \cong , then \square is a rectangle.

Example If $\overline{WY} \cong \overline{XZ}$ in $\square WXYZ$, then $\square WXYZ$ is a rectangle.

RHOMBI AND SQUARES

Theorems Diagonals of a Rhombus

6.15 If a parallelogram is a rhombus, then its diagonals are perpendicular.

Example If $\square ABCD$ is a rhombus, then $\overline{AC} \perp \overline{BD}$.

6.16 If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.

Example If $\square NPQR$ is a rhombus, then $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$, $\angle 5 \cong \angle 6$, and $\angle 7 \cong \angle 8$.

Proof Theorem 6.15

Given: ABCD is a rhombus.

Prove: $\overline{AC} \perp \overline{BD}$

Paragraph Proof:

Since ABCD is a rhombus, by definition $\overline{AB} \cong \overline{BC}$. A rhombus is a parallelogram and the diagonals of a parallelogram bisect each other, so \overline{BD} bisects \overline{AC} at P. Thus, $\overline{AP} \cong \overline{PC}$. $\overline{BP} \cong \overline{BP}$ by the Reflexive Property. So, $\triangle APB \cong \triangle CPB$ by SSS. $\angle APB \cong \angle CPB$ by CPCTC. $\angle APB$ and $\angle CPB$ also form a linear pair. Two congruent angles that form a linear pair are right angles. $\angle APB$ is a right angle, so $\overline{AC} \perp \overline{BD}$ by the definition of perpendicular lines.

Theorems Conditions for Rhombi and Squares

6.17 If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. (Converse of Theorem. 6.15)

Example If $\overline{JL} \perp \overline{KM}$, then $\square JKLM$ is a rhombus.

6.18 If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a rhombus. (Converse of Theorem, 6.16)

Example If $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$, or $\angle 5 \cong \angle 6$ and $\angle 7 \cong \angle 8$, then $\square WXYZ$ is a rhombus.

6.19 If one pair of consecutive sides of a parallelogram are congruent, the parallelogram is a rhombus.

Example If $\overline{AB} \cong \overline{BC}$, then $\square ABCD$ is a rhombus.

6.20 If a quadrilateral is both a rectangle and a rhombus, then it is a square.

TRAPEZOIDS AND KITES

Theorems Isosceles Trapezoids

6.21 If a trapezoid is isosceles, then each pair of base angles is congruent.

Example If trapezoid *FGHJ* is isosceles, then $\angle G \cong \angle H$ and $\angle F \cong \angle J$.

6.22 If a trapezoid has one pair of congruent base angles, then it is an isosceles trapezoid.

Example If $\angle L \cong \angle M$, then trapezoid *KLMP* is isosceles.

6.23 A trapezoid is isosceles if and only if its diagonals are congruent.

Example If trapezoid *QRST* is isosceles, then $\overline{QS} \cong \overline{RT}$. Likewise, if $\overline{QS} \cong \overline{RT}$, then trapezoid *QRST* is isosceles.

AREAS OF PARALLELOGRAMS AND TRIANGLES

Postulate 10.1 Area Addition Postulate

The area of a region is the sum of the areas of its nonoverlapping parts.

Solution KeyConcept Area of a Parallelogram

Words The area A of a parallelogram is the product

of a base *b* and its corresponding height *h*.

Symbols A = bh

Postulate 10.2 Area Congruence Postulate

If two figures are congruent, then they have the same area.

KeyConcept Area of a Triangle

Words The area *A* of a triangle is one half the product

of a base *b* and its corresponding height *h*.

Symbols
$$A = \frac{1}{2}bh$$
 or $A = \frac{bh}{2}$

AREAS OF TRAPEZOIDS AND KITES

Key Concept Area of a Trapezoid

Words The area A of a trapezoid is one half the

product of the height h and the sum of its

bases, b_1 and b_2 .

Symbols $A = \frac{1}{2}h(b_1 + b_2)$

Service Key Concept Area of a Rhombus or Kite

Words The area A of a rhombus or kite is one half the product of

the lengths of its diagonals, d_1 and d_2 .

Symbols $A = \frac{1}{2}d_1d_2$

AREAS OF REGULAR POLYGONS AND COMPOSITE FIGURES

Key Concept Area of a Regular Polygon

The area A of a regular n-gon with side Words

length s is one half the product of the

apothem a and perimeter P.

 $A = \frac{1}{2} a(ns)$ or $A = \frac{1}{2} aP$. Symbols

SUMMARY

Concept Summary Areas of Polygons			
Parallelogram	Triangles	Trapezoids	Rhombi and Kites
h	h b	b_1 b_2	$\begin{array}{c c} \hline \\ \hline $
h	h	b_1 b_2	d_1
A = bh	$A = \frac{1}{2}bh$	$A = \frac{1}{2}h(b_1 + b_2)$	$A = \frac{1}{2}d_1d_2$