Hawking Radiation from Black holes

Sources:

https://pxhere.com/ Actualidades.org Go51johnmitchell.weebly.com Biography.com Scihi.org Aasnova.org https://www.cosmos.esa.int/web/cesar/the-hertzsprung-russell-diagram https://www.kindpng.com/ Greatlakesledger.com https://www.secretsofuniverse.in/wp-content/uploads/2020/04/Hawking-Radiation-Virtual-Particles.jpg Cloudinary.com Theatlantic.com Etherplan.com https://www.livescience.com/36470-human-population-weight.html en.wikipedia.org

PBS-Space Time-https://www.youtube.com/watch?v=qPKj0YnKANw

- I) Blackholes
 - a) History
 - b) Formation
 - c) The oversimplified common explanation
- II) The science
 - a) Quantum Field Theory
 - b) Event horizon perturbation
 - c) Different perspectives
 - d) Unruh effect

 - e) Black hole evaporation
- III) Ongoing Problems
 - a) Entropy
 - b) Information
- IV) A depressing potential end of everything: Heat death

I) Blackholes History

1784

1915

1974-1975

11 February 2016 10 April 2019

John Michell

A.Einstein K.Schwarzschild

Sir S.Hawking

LIGO Scientific Collaboration (LSC) Event Horizon Telescope (EHT)

Formation

Common blackholes

$$3 - 4M_{\odot} = (6 - 8) * 10^{30} kg$$

$$\approx 2.5 * 10^{19} Human population = 10^{11} Moons$$

$$\approx 1.2 * 10^{29} (Ethan - weight Units)$$

$$\approx (5 - 8)km \approx (2.5 - 4) Europe$$

 $\approx (2.8 - 4.5) * 1000 (Ethan - heightUnits)$

High energy collisions

Primordial Blackholes

Formed <1s before Big Bang

Oversimplified Solution

II) The Science

Quantum Field Theory

DEAD & ALIVE

Particles as field excitations

Matter and Antimatter

Vacuum

Event horizon perturbation

Different perspectives

Different observers can disagree about which state is the vacuum state(lowest energy)

Observer 1
Falling into blackhole
E1±=E0*sin(±w*t)
E2±=E0*sin(±w*t)

Observer 2
Far from blackhole
E1=E0*sin(w*t)
E2=E0*sin(-w*t)*

Unruh effect

Hawking temperature

$$T_{\rm H} = \frac{\hbar g}{2\pi c k_{\rm B}}$$

g: the surface gravity of a black hole

German Accent Gravity and Acceleration are equivalent!

Unruh temperature

$$T=rac{\hbar a}{2\pi c k_{
m B}}$$

a: the local acceleration

Black Hole Evaporation

$$T = \frac{\hbar g}{2\pi c k_B}$$
, Planck units: $(\hbar, c, k_B) = 1 \rightarrow \frac{g}{2\pi} = \frac{1}{8\pi M}$

$$T = \frac{1}{8\pi M}$$

$$T = \frac{1}{8\pi M} \qquad M \searrow \longrightarrow T \nearrow \longrightarrow E \nearrow$$

$$T_{\odot} \approx 10^{-8} K$$
 $T_{CMB} = 2.7 K$

$$T_{Earth} \approx 0.02 K$$
 $T_{4\odot} \approx 10^{-8} K$

 $T_{plancklength} \sim Gamma \ rays!$

Ongoing Problems? Entropy

$$T = \frac{1}{8\pi M}$$

$$dS = \frac{dQ}{T} = dQ * 8\pi M = 8\pi M dM = d(4\pi M^2)$$

$$R = 2M$$

$$S = 4\pi M^2 = \pi R^2 = \frac{A}{4}$$

Solved?

(hint:Nope!)

Information

Black hole information paradox

Heat death

Heat death