Factorisation LDM et factorisation de Cholesky

AnaNum – Chapitre 3

I. Factorisation LDM

$$A = LV = L(DD^{-1})V = LD\underbrace{(D^{-1}V)}_{M} = L\underbrace{DM}_{V}$$

L: tri inf unit M: tri sup unit

D: diagonale

D

0

0

0

0

1. Maths

$$L(1:j,1:j)v = A(1:j,j)$$
 $v = V(1:j,j)$

$$D(j,j) = v(j)$$

$$M(i,j) = \frac{v(i)}{D(i,i)}$$

$$L(j + 1: n, 1: j)v = A(j + 1: n, j)$$

$$L(j+1:n,j) = (A(j+1:n,j) - L(j+1:n,j)v(1:j-1))/v(j)$$

$(1 + 1 \cdot n_i) = (A(i + 1 \cdot n_i)) = L(i + 1 \cdot n_i) + (1 \cdot i) = (A(i + 1 \cdot n_i)) = L(i + 1 \cdot n_i) + (1 \cdot i) = (A(i + 1 \cdot n_i)) = (A(i + 1 \cdot n_i))$

2. Codage

3. Matrices symétriques : $A = LDL^T$

Si A est symétrique, $M=L^T$, donc on connait v sans résoudre de système.

$$v(i) = D(i,i)L(j,i)$$

$$v(j) = A(j,j) - L(j,1:j-1)v(1:j-1)$$

M

Α

 M_{ij}

Factorisation LDM et factorisation de Cholesky

AnaNum – Chapitre 3

II. **Matrices définies positives**

A définie positive
$$\Leftrightarrow$$
 $\begin{cases} A \text{ symétrique} \\ \forall x \neq 0, x^T A x > 0 \end{cases}$

III. Factorisation de Cholesky : $A = GG^T$

A définie positive et
$$A = LDL^T$$
 \Rightarrow $D_{ii} > 0 \ \forall i \Rightarrow A = GG^T$

G:tri.inf. unique

1. Calcul

$$\underbrace{L(j,j)L(j:n,j)}_{v} = A(j:n,j) - \underbrace{L(j,1:j-1)}_{=L^{T}(1:j-1,j)} L(j:n,1:j-1)$$

$$\Rightarrow L(j,j)^2 = v(1) \Rightarrow L(j:n,j) = v/\sqrt{v(1)}$$

2. Codage

% version non optimisée fonction L = Cholesky(A)

pour j = 1 à n faire

$$v = A(j:n,j) - L(j,1:j-1)L(j:n,1:j-1)$$

 $L(j:n,j) = v/sqrt(v(1))$

% version optimisée 1 boucle

fonction A = Cholesky(A)
pour j = 1 à n faire

$$A(j:n,j) = A(j:n,j) - A(j,1:j-1)A(j:n,1:j-1)$$

$$A(j:n,j) = A(j:n,j)/sqrt(A(j,j))$$

% version optimisée 2 boucles

```
fonction A = Cholesky(A)
pour j = 1 à n faire
       si j > 1 alors
               pour k = 1 à j - 1 faire A(j:n,j) = A(j:n,j) - A(j,k)A(j:n,k)
       A(j:n,j) = A(j:n,j)/sqrt(A(j,j))
```

Page 2