Number Systems-Basics, Base-R Representations

Comprehensive Course on Digital Circuits

- 1 Class Duration 2hrs 5:41pm to 7:45pm
- 2 Language English + Hindi
- 3). Notes I will provide Hand written
- (g) DC+-20 to bec-15
- (3) Course = EclEFlinles
- (3) Every week sunday 1 Exam
- (7) hate/Est

Syll-bus

- 5 (1) Number 5yskms
- Boolean Algebra, Louis hate kmap.
- Comb CkH
 - (b) Seq (b+ 8
 - BATA linn
 - (d) Louic Familier & remi (ond memories.

Soure if bichit

Text Books -

1. DINITAL Design by Merris Mano.

2- Digital (KH by Tocc)

3. M.D.CK4 Ly F.P. TAIN

4. NPTEL-) "ITM.

BHIMA SANKAR SIR

GATE | ESE (ECE)

M.Tech - IIT (Kharagpur) PHD-IIIT (HYD)

GATE/ESE: 9+ Years Teaching Experience

Subjects Taken:
Digital Electronics,
Microprocessor,
Computer Organization,
and Network Analysis

Use My Referral

Code: "SHANKAR10" to Get 10% Off
on Unacademy PLUS Subscription

GATE

E(-) 8-12 Marks

E(s) 4-8 Marks

Base-R Reprns Base or Radix of the number system is no of different symbols in a number system.

In any number system with base(r), we have 'r' different symbols and each digit can be in the range of '0' to 'r-1'.

Any number can be represented with these 'r' symbols by multiplying with it's positional value.

Base	Symbols
2+Binary	0,1
3 - Terinary	0,1,2
4	0,1,2,3
8 7 oct	0,1,2,3,47
10 -> Decimal	0.1, 9
: 16-7 49xa	0,1,1,a, A, B, c, F //

Conversions

Decimal to any:

To convert a decimal number to any other base divide the integer part repeatedly with required base and multiply the fractional part repeatedly with required base.

Any to Decimal:

To convert Any base to Decimal multiply each digit with the required base. It's positional value.

$$34.3125 = (1)$$

$$= 2^{5} \times 1 + 2^{4} \times 0 + 2^{3} \times 0 + 2^{3} \times 1 + 2^$$

When Base Decreates Integer Part Incr & Fractional Park Decr. & Vice Versa

$$4 \times 8 + 5 \times 10 + 5 \times 10 + 4 \times 10 + 4$$

Decind Binary 0 - 0000 1 - 0001. 1 - 0010 3 - 0011 4-0100 T - 0 '0' 6- 0110 7- 0111 8- 1000 7- 1001 19-1010 11-1011 15-1:11

127/100

Any to Any:

To covert to Binary to Octal replace every 3 bits with its Octal equivalent.

To covert to Binary to Hexa replace every 4 bits with its Hexa equivalent.

To covert to Octal to Binary replace every digit with its 3 bit Binary equivalent.

To covert to Hexa to Binary replace every digit with its 4 bit Binary equivalent.

$$\frac{1|00101.1011}{001|000101.101100} = (7)_{8}$$

$$\frac{001|00101.101100}{5.54}$$

$$\frac{252 \cdot 138}{1} = (?)_{2}$$

$$010 \cdot 101010.001011_{2}$$

 $6.01 = \frac{1}{4} = \frac{1}{2^2} = 2^{-2}$ 0.05 + 2 = 0.0 0.01

The decimal value 0.25

- (a) is equivalent to binary value 0.1
- (b) is equivalent to binary value 0.01
- (c) is equivalent to binary value 0.00111....
- (d) can not be represented precisely in binary

BASE 4 0, 1,2,3, 10, 11, 12, 13, 20, 21 ----

Digital Circuit

1. If $(2.3)_{base4} + (1.2)_{base4} = (y)_{base4}$; what is the

value of y?

A.10.1

B.0.01

2.3

C.10.2

D. 1.02

2.3

いし

3.5

510 = 114 410 = 104

Digital Circuit

132 144

4. Given $(135)_{baseX} + (144)_{baseX} = (323)_{baseX}$

What is the value of base X?

$$\prec$$
 B. 3

x + 1 + x + 3 + x + 5 + x + 1 + x + 4 + x + 4 = x + 3 + x + 1 + x + 3

$$\chi^{2} + 3x + 5 + \chi^{2} + 4x + 4 = 3\chi^{2} + 2x + 3$$

$$x' - 5x - 6 = 6$$

Given
$$(125)_R = (203)_5$$
. The value of radix R will be

(a) 16 (b) 10 (c) 8 (d) 6

$$R^{2} + 2R + 5 = 5^{2} * 2 + 0 + 3$$
 $R^{2} + 2S + 5 - 53 = 0 = 1$
 $R^{2} + 2R - 4R = 0$

6. What are the values respectively of R₁ and R₂

in the expression $(235)_{R1} = (565)_{10} = (1065)R_2$

Consider the equation $(123)_5 = (x8)_y$ with x and y as unknown. The number of possible solutions

$$5^{2} + 2*5 + 3 = \lambda y + 9$$

 $38 = \lambda y + 9$
 $\lambda y = 30$

$$5^{2} + 2*5 + 3 = \lambda y + 9$$

$$38 = \lambda y + 9$$

$$\lambda = 1 \quad y = 30$$

$$\lambda = 3 \quad y = 10$$

$$\lambda = 30$$

$$3 = 30$$

$$\lambda = 30$$

The base (or radix) of the number system such that the following equation holds
$$\frac{312}{20} = 13.1$$

$$\frac{312}{20} = 13.1$$

$$\frac{3^{12} \times 1}{3^{12} \times 1} = 13.1$$

$$\frac{3}{2}x + \frac{1}{2} = x + 3$$

D. 2, 4, 6, 10, 16,....

2. Which one of the following is the correct sequence of the numbers represented in the

series given below? $(2)_3$, $(10)_4$, $(11)_5$, $(14)_6$, $(22)_7$,..... $(2)_3$, $(4)_6$,

$$\frac{5b+4}{4} = b+3$$

What is the base of the numbers for the following operation to be correct?

$$\frac{(54)_b}{(4)_b} = (13)_b$$

If
$$(11X1Y)_8 = (12C9)_{16}$$
 then the values X and Y

