『プログラミング言語の形式的意味論』正誤表

末永 幸平 勝股 審也 中澤 巧爾 西村 進 前田 敦司

最終更新: 2023年2月12日

まえがき

●「本書の使い方」の段落において第 13 章と第 14 章に言及がありますが、本翻訳ではこれらの章は割愛されています.

第1章

- P.3, 1.2 節, 第 2 段落: 「X と Y が等しいことを示すの方法の一つである」とあるのは「X と Y が等しいことを示す方法の一つである」の誤りです.
- ₱ P.9, 1.3 節, 第 4 段落: 「X から Y の部分関数」とあるのは「X から Y への部分 関数」の誤りです。

第2章

• P.22, 2.3 節: $b_1 \wedge b_2$ のための操作的意味論の 3 つ目の規則が

$$\frac{\langle b_0, \sigma \rangle \to \mathbf{true} \qquad \langle b_1, \sigma \rangle \to \mathbf{true}}{\langle b_0 \wedge b_1, \sigma \rangle \to \mathbf{false}}$$

とあるのは

$$\frac{\langle b_0, \sigma \rangle \to \mathbf{true} \qquad \langle b_1, \sigma \rangle \to \mathbf{true}}{\langle b_0 \wedge b_1, \sigma \rangle \to \mathbf{true}}$$

- P.24, 問題 2.7: 「 $w \sim \text{if } b \text{ then } (c; w) \text{ else skip}$ 」とあるのは「 $w \equiv \text{while true do skip}$ 」の誤りです.
- ▶ P.25, 2.5 節, 第 3 段落: 「状態を変えずにすぐ停止しするだろう」とあるのは「状態を変えずにすぐ停止するだろう」の誤りです。
- P.29, 2.6 節, 第 2 段落: 「状態 σ において a_0 の 1 ステップの評価によって式 a_0' と状態 σ' が得られるとき, a_0+a_1 の状態 σ の下での 1 ステップの評価によって式 $a_0'+a_1$ と状態 σ' が得られる.」は「状態 σ において a_0 の 1 ステップの評価によって式 a_0' と状態 σ が得られるとき, a_0+a_1 の状態 σ の下での 1 ステップの評価によって式 a_0' と状態 σ が得られるとき, a_0+a_1 の状態 σ の下での 1 ステップの評価によって式 $a_0'+a_1$ と状態 σ が得られる.」の誤りです.

第3章

- P.35, 3.2 節, 第 2 段落: 「すべての位置 X について」は「すべてのプログラム変数 X について」の誤りです.
- P.41, 3.3 節: 「〈Euclid, σ'' 〉 $\to \sigma''$ となる σ'' が存在する」は「〈Euclid, σ'' 〉 $\to \sigma'$ となる σ' が存在する」の誤りです.
- P.46, 3.4 節:「性質が偽となる最小の導出が存在するという仮定」は「性質が偽となる極小の導出が存在するという仮定」の誤りです。また、命題 3.12 の証明において、「最小の導出 d が存在して」は「極小の導出 d が存在して」の誤り、「d の最小性に矛盾する」は「d の極小性に矛盾する」です。
- P.46, 3.4 節, 命題 3.12 の証明: 「 $\exists \sigma, \sigma' \in \Sigma$. $\Vdash \langle w, \sigma \rangle \to \sigma'$ 」は「 $\exists \sigma, \sigma' \in \Sigma$. $d \Vdash \langle w, \sigma \rangle \to \sigma'$ 」の誤りです.
- P.46, 3.4 節, 命題 3.12 の証明:

$$d = \frac{\vdots}{\langle \mathbf{true}, \sigma \rangle \to \mathbf{true}} \quad \frac{\vdots}{\langle c, \sigma \rangle \to \sigma''} \quad \frac{\vdots}{\langle \mathbf{while} \ \mathbf{true} \ \mathbf{do} \ c, \sigma'' \rangle \to \sigma'}}{\langle \mathbf{while} \ \mathbf{true} \ \mathbf{do} \ c, \sigma \rangle \to \sigma'}$$

は

$$d = \frac{ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ \overline{\langle \mathbf{true}, \sigma \rangle \to \mathbf{true}} \quad \overline{\langle \mathbf{skip}, \sigma \rangle \to \sigma} \quad \overline{\langle \mathbf{while} \ \mathbf{true} \ \mathbf{do} \ \mathbf{skip}, \sigma \rangle \to \sigma'} }{\langle \mathbf{while} \ \mathbf{true} \ \mathbf{do} \ \mathbf{skip}, \sigma \rangle \to \sigma'}$$

- P.46, 3.5 節:「コマンド内で、代入の左辺に現れる位置の集合」は「コマンド内で、 代入の左辺に現れるプログラム変数の集合」の誤りです。
- P.47, 3.5 節: 「実際,整礎な集合の任意の空でない部分集合には最小の要素が存在するという命題 3.7 の証明の中では,暗黙のうちに自然数の帰納的な定義を用いて,空でない集合中に最小の要素を持つ列を構成した.」は「実際,整礎な集合の任意の空でない部分集合には極小の要素が存在するという命題 3.7 の証明の中では,暗黙のうちに自然数の帰納的な定義を用いて,空でない集合中に極小の要素を持つ列を構成した.」の誤りです.
- P.47, 問題 3.13:「右辺の中に現れる位置の集合」は「右辺の中に現れるプログラム変数の集合」の誤りです.

第4章

● P.53, 4.2 節: 以下の規則

$$\frac{b:\mathbf{Bexp} \quad c_0:\mathbf{Com} \quad c1:\mathbf{Com}}{\mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1:\mathbf{Com}}$$

は

$$b : \mathbf{Bexp}$$
 $c_0 : \mathbf{Com}$ $c_1 : \mathbf{Com}$ if b then c_0 else $c_1 : \mathbf{Com}$

の誤りです.

- P.55, 4.3.2 節: $p(\mathbf{true}, \sigma, \mathbf{true})$ は $P(\mathbf{true}, \sigma, \mathbf{true})$ の誤りです.
- P.56, 上から 9 行目: $m \not\leq n \Rightarrow P(a_0 \not\leq a_1, \sigma, \mathbf{false})$ は $m \not\leq n \Rightarrow P(a_0 \leq a_1, \sigma, \mathbf{false})$ の誤りです.
- P.56, 上から 14 行目:

$$\forall b_0, b_1 \in \mathbf{Bexp}, \sigma \in \Sigma, t \in \mathbf{T}.$$
 $\langle b_0, \sigma \rangle \to t_0 \& P(b_0, \sigma, t_0) \& \langle b_1, \sigma \rangle \to t_1 \& P(b_1, \sigma, t_1) \& P(b_0 \wedge b_1, \sigma, t_0 \wedge t_1)$
 $\&$
 $\forall b_0, b_1 \in \mathbf{Bexp}, \sigma \in \Sigma, t \in \mathbf{T}.$
 $\langle b_0, \sigma \rangle \to t_0 \& P(b_0, \sigma, t_0) \& \langle b_1, \sigma \rangle \to t_1 \& P(b_1, \sigma, t_1) \& P(b_0 \vee b_1, \sigma, t_0 \vee t_1)]$
 $\&$
 $\&$
 $\forall b_0, b_1 \in \mathbf{Bexp}, \sigma \in \Sigma, t_0, t_1 \in \mathbf{T}.$
 $\langle b_0, \sigma \rangle \to t_0 \& P(b_0, \sigma, t_0) \& \langle b_1, \sigma \rangle \to t_1 \& P(b_1, \sigma, t_1) \implies P(b_0 \wedge b_1, \sigma, t_0 \wedge t_1)$
 $\&$
 $\forall b_0, b_1 \in \mathbf{Bexp}, \sigma \in \Sigma, t_0, t_1 \in \mathbf{T}.$
 $\langle b_0, \sigma \rangle \to t_0 \& P(b_0, \sigma, t_0) \& \langle b_1, \sigma \rangle \to t_1 \& P(b_1, \sigma, t_1) \implies P(b_0 \vee b_1, \sigma, t_0 \vee t_1)]$
 \mathcal{O} 誤りです.

- P.58, 上から 9 行目: 「 $c_0, c_1 \in \mathbf{Com}, \sigma, \sigma' \in \Sigma$ とする.」は「 $c_0, c_1 \in \mathbf{Com}, \sigma, \sigma', \sigma'' \in \Sigma$ とする.」の誤りです.
- P.60, 問題 4.10:

$$\langle c_0; c_1, \sigma \rangle \to_1^* \sigma' \iff_{def} \exists \sigma''. \langle c_0, \sigma \rangle \to_1^* \sigma'' \& \langle c_1, \sigma'' \rangle \to_1^* \sigma'$$

は

$$\langle c_0; c_1, \sigma \rangle \to_1^* \sigma' \iff \exists \sigma''. \langle c_0, \sigma \rangle \to_1^* \sigma'' \& \langle c_1, \sigma'' \rangle \to_1^* \sigma'$$

の誤りです. (左辺に現れる関係 \rightarrow_1^* は \rightarrow_1 の反射推移閉包としてすでに定義されており、ここは左辺の関係を右辺で定義するという趣旨ではありませんでした.)

- P.62, 命題 4.12 の証明の直後の文章において
 - (i) と (i) から A が,R 導出の存在する要素の集合 I_R と等しいことがいえる. そして (i) はまさに I_R が \hat{R} の不動点であることを表している.さらに,(i) から I_R が \hat{R} の最小不動点 (least fixed point) であること,すなわち

$$\widehat{R}(B) = B \Rightarrow I_R \subseteq B$$

が言える.

とあるのは

- (i) と (iii) から A が,R 導出の存在する要素の集合 I_R と等しいことがいえる.そして (ii) はまさに I_R が \hat{R} の不動点であることを表している.さらに,
- (iii) から I_R が \widehat{R} の最小不動点 (least fixed point) であること、すなわち

$$\widehat{R}(B) = B \Rightarrow I_R \subseteq B$$

がいえる.

の誤りです. (証明中のアイテムへの参照が壊れておりました...)

第5章

- P.68, 「 \mathbf{Bexp} の表示」の部分において,「ブール式の意味関数は,連言 \wedge_T ,選言 \vee_T ,否定 \neg_T という真偽値の集合 T 上の論理演算を用いて与えられる.」は「ブール式の意味関数は,連言 \wedge_T ,選言 \vee_T ,否定 \neg_T という真偽値の集合 \mathbf{T} 上の論理演算を用いて与えられる.」の誤りです.
- P.69、「Com の表示」の部分において、

$$\mathcal{C}[\![w]\!] = \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \mathcal{C}[\![c; w]\!] \} \cup$$

$$\{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \}$$

$$= \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \mathcal{C}[\![w]\!] \circ \mathcal{C}[\![c]\!] \} \cup$$

$$\{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \}$$

は

$$\mathcal{C}[\![w]\!] = \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \mathcal{C}[\![c; w]\!] \} \cup \\ \{(\sigma, \sigma) \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \} \\ = \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \mathcal{C}[\![w]\!] \circ \mathcal{C}[\![c]\!] \} \cup \\ \{(\sigma, \sigma) \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \}$$

の誤りです. また, これに続く

$$\varphi = \{ (\sigma, \sigma') \mid \beta(\sigma) = \mathbf{true} \& (\sigma, \sigma') \in \varphi \circ \gamma \} \cup \{ (\sigma, \sigma') \mid \beta(\sigma) = \mathbf{false} \}$$

は

$$\varphi = \{ (\sigma, \sigma') \mid \beta(\sigma) = \mathbf{true} \& (\sigma, \sigma') \in \varphi \circ \gamma \} \cup \{ (\sigma, \sigma) \mid \beta(\sigma) = \mathbf{false} \}$$

の誤りです.

• P.70, 上から3行目:

$$\exists \sigma'' \ \beta(\sigma) = \mathbf{true} \ \& \ (\sigma, \sigma'') \in \gamma \ \& \ (\sigma'', \sigma') \in \varphi$$

は

$$\exists \sigma''.\beta(\sigma) = \mathbf{true} \ \& \ (\sigma,\sigma'') \in \gamma \ \& \ (\sigma'',\sigma') \in \varphi$$

の誤りです. (本書では量化子の後に必ずピリオドをつける構文を使っています. 1.1 節参照.) また、それに続く

$$(\sigma,\sigma)\mid \beta(\varphi)=\mathbf{false}$$

は

$$(\sigma, \sigma) \mid \beta(\sigma) =$$
false

の誤りです.

● P.70, R の定義の右辺:

$$R = \{ (\{(\sigma'', \sigma)\}/(\sigma, \sigma')) \mid \beta(\sigma) = \mathbf{true} \& (\sigma, \sigma'') \in \gamma \} \cup \{ (\emptyset/(\sigma, \sigma)) \mid \beta(\sigma) = \mathbf{false} \}$$

は

$$R = \{ (\{(\sigma'', \sigma')\}/(\sigma, \sigma')) \mid \beta(\sigma) = \mathbf{true} \& (\sigma, \sigma'') \in \gamma \} \cup \{ (\emptyset/(\sigma, \sigma)) \mid \beta(\sigma) = \mathbf{false} \}$$

の誤りです.

• P.72, 補題 5.3 の証明:

$$P(a) \iff \mathcal{A}\llbracket a \rrbracket = \{(\sigma, n) \mid \langle a, \sigma \rangle \to n\}$$

は

$$P(a) \Longleftrightarrow_{\mathit{def}} \mathcal{A}[\![a]\!] = \{(\sigma,n) \mid \langle a,\sigma\rangle \to n\}$$

• P.73, 構造帰納法による証明の $a \equiv X$ のケース:

$$(\sigma, n) \in \mathcal{A}[\![m]\!] \iff (\sigma \in \Sigma \& n \equiv \sigma(X))$$
$$\iff \langle X, \sigma \rangle \to n$$

は

$$(\sigma, n) \in \mathcal{A}[\![X]\!] \iff (\sigma \in \Sigma \& n \equiv \sigma(X))$$
$$\iff \langle X, \sigma \rangle \to n$$

の誤りです.

• P.74, 補題 5.4 の証明:

$$P(b) \Longleftrightarrow \mathcal{B}[\![b]\!] = \{(\sigma,t) \mid \langle b,\sigma\rangle \to t\}$$

は

$$P(b) \iff_{def} \mathcal{B}[\![b]\!] = \{(\sigma, t) \mid \langle b, \sigma \rangle \to t\}$$

の誤りです.

• P.76, 補題 5.6 の証明:

$$P(c, \sigma, \sigma') \Longleftrightarrow (\sigma, \sigma') \in \mathcal{C}[\![c]\!]$$

は

$$P(c, \sigma, \sigma') \iff_{def} (\sigma, \sigma') \in \mathcal{C}[\![c]\!]$$

の誤りです. また、その後ろの

$$\langle b,\sigma\rangle \to \mathbf{true} \ \& \ \langle c,\sigma\rangle \to \sigma'' \ \& \ P(c,\sigma,\sigma'') \ \& \ \langle w,\sigma''\rangle \to \sigma' \ \& \ P(w,\sigma'',\sigma)$$

は

$$\langle b, \sigma \rangle \to \mathbf{true} \, \& \, \langle c, \sigma \rangle \to \sigma'' \, \& \, P(c, \sigma, \sigma'') \, \& \, \langle w, \sigma'' \rangle \to \sigma' \, \& \, P(w, \sigma'', \sigma')$$
 の誤りです.

• P.77, 定理 5.7 の証明:

$$\mathcal{C}[\![c]\!] = \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \mathcal{C}[\![c_0]\!] \} \cup \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \& (\sigma, \sigma') \in \mathcal{C}[\![c_0]\!] \}$$

は

$$\mathcal{C}[\![c]\!] = \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \mathcal{C}[\![c_0]\!] \} \cup \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \& (\sigma, \sigma') \in \mathcal{C}[\![c_1]\!] \}$$

• P.78, 定理 5.7 の証明:

$$\Gamma(\varphi) = \{ (\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \varphi \circ \mathcal{C}[\![c_0]\!] \} \cup \{ (\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \}$$

は

$$\Gamma(\varphi) = \{ (\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \varphi \circ \mathcal{C}[\![c_0]\!] \} \cup \{ (\sigma, \sigma) \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \}$$

誤りです. それに続く

$$\theta_0 = \emptyset,$$

$$\theta_{n+1} = \{ (\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \theta_n \circ \mathcal{C}[\![c_0]\!] \} \cup \{ (\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \}$$

は

$$\theta_0 = \emptyset,$$

$$\theta_{n+1} = \{(\sigma, \sigma') \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{true} \& (\sigma, \sigma') \in \theta_n \circ \mathcal{C}[\![c_0]\!] \} \cup \{(\sigma, \sigma) \mid \mathcal{B}[\![b]\!] \sigma = \mathbf{false} \}$$

の誤りです.

- P.79, 定理 5.7 の証明:「帰納法の仮定 (5.1) から $\langle c, \sigma'' \rangle \to \sigma$ である.」は「帰納法の仮定 (5.1) から $\langle c, \sigma'' \rangle \to \sigma'$ である.」の誤りです.
- P.79, 問題 5.8:

$$\forall i (0 \leq i \leq n). \ \mathcal{B}[\![b]\!] \sigma_i = \mathbf{true} \ \& \ \mathcal{C}[\![c]\!] \sigma_i = \sigma_{i+1}$$

は

$$\forall i (0 \leq i < n). \mathcal{B}[\![b]\!] \sigma_i = \mathbf{true} \& \mathcal{C}[\![c]\!] \sigma_i = \sigma_{i+1}$$

- P.80, 問題 5.9: $\lceil \langle c, \sigma \rangle \to \sigma' \Leftarrow \mathcal{C}[\![c]\!] \sigma = \sigma' \rfloor$ は $\lceil \langle c, \sigma \rangle \to \sigma' \iff \mathcal{C}[\![c]\!] \sigma = \sigma' \rfloor$ の誤りです.
- P.82, 問題 5.10: 「部分関数の集合 $\Sigma \to \Sigma$ 」は「部分関数の集合 $\Sigma \to \Sigma$ 」の誤りです.
- P.83, 下から 7 行目: 「規則のインスタンス R のもとで」は「規則インスタンスの集合 R のもとで」の誤りです.

• P.84, 定理 5.11 の証明:

$$f(fix(f)) = f(\bigsqcup_{n \in \omega} f^n(\bot)) \qquad (f \, \text{の連続性から})$$

$$= \bigsqcup_{n \in \omega} f^{n+1}(\bot) \qquad (\bot \, \mathsf{と} \, \bigsqcup \, \text{の定義から})$$

$$= (\bigsqcup_{n \in \omega} f^{n+1}(\bot)) \sqcup \{\bot\} \qquad (\bot = f^0(\bot) \, \gimel \, \mathsf{b})$$

$$= \bigsqcup_{n \in \omega} f^n(\bot) \qquad (fix(f) \, \text{の定義より})$$

$$= fix(f)$$

の部分において、各行の(...)は、その行の = の右辺と、次の行の = の右辺とがなぜ等しいと言えるかの説明が書いてあります。例えば、「(f の連続性から)」の部分は、 $f(\bigsqcup_{n\in\omega}f^n(\bot))$ と $\bigsqcup_{n\in\omega}f^{n+1}(\bot)$ がなぜ等しいと言えるのかが書いてあります。ただし、

$$f(fix(f)) = f(\bigsqcup_{n \in \omega} f^n(\bot))$$

$$= \bigsqcup_{n \in \omega} f^{n+1}(\bot) \qquad (f \, の連続性から)$$

$$= (\bigsqcup_{n \in \omega} f^{n+1}(\bot)) \sqcup \{\bot\} \qquad (\bot \, \succeq \, \bigsqcup \, の定義から)$$

$$= \bigsqcup_{n \in \omega} f^n(\bot) \qquad (\bot = f^0(\bot) \, \gimel \, b)$$

$$= fix(f) \qquad (fix(f) \, の定義より)$$

のように各説明を一行ずつ下げて,各行の(...)が,その行の=の右辺と,その前の=の右辺とが等しい理由を説明する方が標準的かもしれません.

- P.85, 下から 6 行目: 「この考え方は以前にも,規則のインスタンスの集合が連続な 演算子を定めるのは」は「この考え方は以前にも,規則のインスタンスの集合が連 続な演算を定めるのは」の誤りです. (原著の operator を,本書では「演算」と訳 すことにしています.)
- P.86. 下から 12 行目: 「演算子 Â」は「演算 Â」の誤りです.

謝辞