Отчет о выполненой лабораторной работе 2.1.1

Антон Хмельницкий, Б01-306

2024/02/20

Измерение удельнои теплоемкости воздуха при постоянном давлении

1 Аннотация

Цель работы: измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

2 Теоретичсекие сведения

Рисунок 1

Теплоемкость тела:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Удельная теплоемкость при постояном давлении:

$$c_p = \frac{N - N_{\text{пот}}}{a\Delta T} \tag{2}$$

*Не зависит от перепада давлений. Главное условие - идеальность газа Мощность нагрева:

$$N = UI \tag{3}$$

Для медно-константановой термопары ЭДС:

$$\varepsilon = \beta \Delta T \tag{4}$$

,
$$\beta = 40,7\frac{\text{mkB}}{^{\circ}C}$$

Массовый расход:

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

, где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева—Клапейрона: $\rho_0 = \frac{\mu P_0}{RT_0}$, где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu=29,0$ г/моль — средняя молярная масса (сухого) воздуха.

Мощность потерь тепла:

$$N_{\text{пот}} = \alpha \Delta T \tag{6}$$

Итоговая зависимость:

$$N = (c_p q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q = const) подводимая мощность и разность температур связаны прямой пропорциональностью ($\Delta T(N)$ — линейная функция).

3 Экспериментальная установка

В настоящем эксперименте предлагается провести измерение зависимости $\Delta T(N)$ разности температур ΔT концов термопары от мощности нагрева N=UI при нескольких фиксированных значениях расхода q воздуха. По результатам измерений проверить справедливость зависимости и определить удельную теплоёмкость воздуха при постоянном давлении c_p а также оценить величину тепловых потерь.

Рисунок 2: Схема экспериментальной установки

4 Результаты эксперимента

$$c_p = 1006 \, \text{Дж/(кг * K)}$$
 (8)

$$q_1 = \frac{5}{36} \approx 0,14 \text{ m/c} = 1,6 \cdot 10^{-4} \text{kg/c}$$
(9)

$$q_2 = \frac{5}{72} \approx 0,07 \text{ m/c} = 0,8 \cdot 10^{-4} \text{kg/c}$$
 (10)

$$R = 29 \text{ Om} \tag{11}$$

$$N_{min} = 0,14 \text{ Br}$$
 (12)

$$I_{min} = 0.07 \text{ A}$$
 (13)

$$U_{min} = 2,03 \text{ B}$$
 (14)

(15)

На 1 градус		На 2 градуса		На 4 градуса		На 6 градуса		На 8 градуса	
N	0,139722	N	0,279444	N	0,558889	N	0,838333	N	1,117778
U	2,012944	U	2,846733	U	4,025888	U	4,930686	U	5,693466
I	0,069412	I	0,098163	I	0,138824	I	0,170024	I	0,196326
Начало	Конец	Начало	Конец	Начало	Конец	Начало	Конец	Начало	Конец
10	40	40	71	71	116	70	169	169	220

Таблица 1: Данные полученные для расхода q_1

На 1 градус		На 2 градуса		На 4 градуса		На 6 градуса		На 8 градуса	
N	0,069861	N	0,139722	N	0,279444	N	0,419167	N	0,558889
U	1,423367	U	2,012944	U	2,846733	U	3,486522	U	4,025888
I	0,049082	I	0,069412	I	0,098163	I	0,120225	I	0,138824
Начало	Конец	Начало	Конец	Начало	Конец	Начало	Конец	Начало	Конец
10	28	28	51	51	91	91	140	140	179

Таблица 2: Данные полученные для расхода q_2

5 Обработка результатов

$$\varepsilon = \beta \Delta T \tag{16}$$

, $\beta=40,7\frac{\text{mkB}}{\circ C}$

Расчет погрешность при аппроксимации по МНК:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$

$$b = \langle y \rangle - k \langle x \rangle$$

$$\sigma_k = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle}$$

Получаем:

Для q_1 :

$$k = 4.465$$

$$\sigma_k = 0.064(\varepsilon = 1, 43\%)$$

$$b = 0.407$$

$$\sigma_b = 0.044$$

Для q_2 :

$$k = 7.636$$
 $\sigma_k = 0.118(\varepsilon = 1, 5\%)$
 $b = 0.162$
 $\sigma_b = 0.041$

Найдем α и c_P , решив систему уравнений:

$$\begin{cases} c_P q_1 + \alpha = \frac{1}{k_1} \\ c_P q_2 + \alpha = \frac{1}{k_2} \end{cases}$$

Путем математических преобразований получаем:

$$c_{P} = \frac{k_{2} - k_{1}}{(q_{1} - q_{2}) k_{1} k_{2}}; \qquad \alpha = \frac{k_{2} - k_{1} - c_{P}(q_{1} + q_{2})}{2 k_{1} k_{2}}.$$

$$c_{P} = 1162 \frac{\mathcal{J}_{K}}{\kappa_{\Gamma} K}; \qquad \alpha = 0.045 \frac{\mathcal{J}_{K}}{K}$$

$$N_{\text{not}} = \alpha \Delta T N = (c_{p} q + \alpha) \Delta T$$

$$\frac{N_{\text{not}}}{N} = \frac{\alpha}{c_{p} q + \alpha} = 0, 1 = 10\%$$
(17)

Оценим погрешности:

$$\sigma_{c_P} \approx c_P \sqrt{(\varepsilon_{k_1})^2 + (\varepsilon_{k_1})^2} = 24 \frac{\text{Дж}}{\text{кг K}}$$

$$c_P = 1162 \pm 24 \frac{\text{Дж}}{\text{кг K}}$$

$$\alpha = 0.045 \pm 0.001 \frac{\text{Дж}}{K}$$

$$\frac{N_{\text{nor}}}{N} = 10\%$$

6 Вывод

В данной работе был исследован газ и его теплоемкость при постоянном давлении. В процессе была экспериментально найдена теплоемкость воздуха $c_p = 1162 \pm 24$, что с точностью в 14%.

Рисунок 3: Зависимость изменения температуры от мощности для q_1

Рисунок 4: Зависимость изменения температуры от мощности для q_2