Bezier Blossoms

CS 418
Interactive Computer Graphics
John C. Hart

- de Casteljau algorithm evaluates a point on a Bezier curve by scaffolding lerps
- Blossoming renames the control and intermediate points, like \mathbf{p}_{12} , using a polar form, like $\mathbf{p}(0,t,1)$

- de Casteljau algorithm evaluates a point on a Bezier curve by scaffolding lerps
- Blossoming renames the control and intermediate points, like \mathbf{p}_{12} , using a polar form, like $\mathbf{p}(0,t,1)$

- de Casteljau algorithm evaluates a point on a Bezier curve by scaffolding lerps
- Blossoming renames the control and intermediate points, like \mathbf{p}_{12} , using a polar form, like $\mathbf{p}(0,t,1)$

- de Casteljau algorithm evaluates a point on a Bezier curve by scaffolding lerps
- Blossoming renames the control and intermediate points, like \mathbf{p}_{12} , using a polar form, like $\mathbf{p}(0,t,1)$

- de Casteljau algorithm evaluates a point on a Bezier curve by scaffolding lerps
- Blossoming renames the control and intermediate points, like \mathbf{p}_{12} , using a polar form, like $\mathbf{p}(0,t,1)$

1. # of parameters = degree

Cubic: **p**(_,_,_)

1. # of parameters = degree

Cubic: **p**(_,_,_)

2. Order doesn't matter

$$\mathbf{p}(a,b,c) = \mathbf{p}(b,a,c)$$

- 1. # of parameters = degree
 - Cubic: **p**(_,_,_)
- 2. Order doesn't matter

$$\mathbf{p}(a,b,c) = \mathbf{p}(b,a,c)$$

3. Setting up the board

$$\mathbf{p}(0,0,0), \, \mathbf{p}(0,0,1), \\ \mathbf{p}(0,1,1), \, \mathbf{p}(1,1,1)$$

1. # of parameters = degree

2. Order doesn't matter

$$\mathbf{p}(a,b,c) = \mathbf{p}(b,a,c)$$

3. Setting up the board

$$\mathbf{p}(0,0,0), \, \mathbf{p}(0,0,1), \\ \mathbf{p}(0,1,1), \, \mathbf{p}(1,1,1)$$

4. Winning the game

$$\mathbf{p}(t,t,t)$$

Placing Blossoms

Find two blossoms whose values match except for one

2 4 5

124

$$\mathbf{p}(t) = \mathbf{p}(t,t,t)$$

$$\mathbf{p}(t) = \mathbf{p}(t,t,t)$$
$$= (1-t) \mathbf{p}(t,t,0) + t \mathbf{p}(t,t,1)$$

$$\mathbf{p}(t) = \mathbf{p}(t,t,t)$$
= (1-t) $\mathbf{p}(t,t,0) + t \mathbf{p}(t,t,1)$
= (1-t)[(1-t) $\mathbf{p}(t,0,0) + t \mathbf{p}(t,0,1)$]
+ t [(1-t) $\mathbf{p}(t,0,1) + t \mathbf{p}(t,1,1)$]

$$\mathbf{p}(t) = \mathbf{p}(t,t,t)$$
= (1-t) $\mathbf{p}(t,t,0) + t \mathbf{p}(t,t,1)$
= (1-t)[(1-t) $\mathbf{p}(t,0,0) + t \mathbf{p}(t,0,1)$]
+ $t [(1-t) \mathbf{p}(t,0,1) + t \mathbf{p}(t,1,1)]$
= (1-t)² $\mathbf{p}(t,0,0) + 2 (1-t) t \mathbf{p}(t,0,1) + t^2 \mathbf{p}(t,1,1)$

$$\mathbf{p}(t) = \mathbf{p}(t,t,t)$$
= (1-t) $\mathbf{p}(t,t,0) + t \mathbf{p}(t,t,1)$
= (1-t)[(1-t) $\mathbf{p}(t,0,0) + t \mathbf{p}(t,0,1)$]
+ t [(1-t) $\mathbf{p}(t,0,1) + t \mathbf{p}(t,1,1)$]

=
$$(1-t)^2[(1-t)\mathbf{p}(0,0,0)+t\mathbf{p}(1,0,0)]+2(1-t)t[(1-t)\mathbf{p}(0,0,1)+t\mathbf{p}(1,0,1)]+t^2[(1-t)\mathbf{p}(0,1,1)+t\mathbf{p}(1,1,1)]$$

$$\mathbf{p}(t) = \mathbf{p}(t,t,t)$$
= (1-t) $\mathbf{p}(t,t,0) + t \mathbf{p}(t,t,1)$
= (1-t) $[(1-t) \mathbf{p}(t,0,0) + t \mathbf{p}(t,0,1)]$
+ $t [(1-t) \mathbf{p}(t,0,1) + t \mathbf{p}(t,1,1)]$

=
$$(1-t)^2[(1-t)\mathbf{p}(0,0,0)+t\mathbf{p}(1,0,0)]+2(1-t)t[(1-t)\mathbf{p}(0,0,1)+t\mathbf{p}(1,0,1)]+t^2[(1-t)\mathbf{p}(0,1,1)+t\mathbf{p}(1,1,1)]$$

=
$$(1-t)^3 \mathbf{p}(0,0,0) + 3(1-t)^2 t \mathbf{p}(0,0,1) + 3(1-t) t^2 \mathbf{p}(0,1,1) + t^3 \mathbf{p}(1,1,1)$$