TENTAMEN

Operativsystem DVA315, 140326 kl. 08:10-11:30

Ansvarig lärare: Dag Nyström

Max poäng: 30

Betygsgränser: 3: 15p, 4: 21p, 5: 25p

Hjälpmedel: -

Påbörja varje uppgift på ett nytt papper!

Lycka till!

Begreppsdel

Uppgift 1 (4p) Allmänt

- a) Ett operativsystem kan sägas vara en *utökad virtuell maskin* samt en *resursadministratör*, vad innebär dessa begrepp i detta sammanhang? Förklara och exemplifiera <u>både</u> *utökad* och *virtuell* maskin. (2p)
- b) En processor har oftast två exekveringslägen, *supervisor mode* och *user mode*. Förklara hur ett systemanrop byter mellan dessa lägen, samt förklara syftet med detta. (2p)

Uppgift 2 (4p) Allmänt

Förklara kortfattat följande operativsystemsrelaterade begrepp:

a)	Pseudoparallellism (till skillnad från sann parallellism)	(0.5p)
b)	Relokerbarhet (Ability of relocation) för processer	(0.5p)
c)	Binär semafor	(0.5p)
d)	Extern fragmentering	(0.5p)
e)	Osäkert tillstånd (I låsningssammanhang)	(0.5p)
f)	DMA (Direct Memory Access)	(0.5p)
g)	Master boot record	(0.5p)
h)	Synkront meddelandesystem	(0.5p)

Uppgift 3 (3p) Baklås

Man brukar säga att det krävs fyra villkor för att ett system skall kunna vara i baklås.

- a) Ange, samt förklara kort innebörden av, dessa 4 villkor. (2p)
- b) Ge två konkreta exempel på hur man kan omöjliggöra baklås i ett system genom att eliminera något av de fyra villkoren. (1p)

Uppgift 4 (4p) Filsystem

- a) Ange och förklara två metoder att administrera *lediga block* på en disk. (dvs. hålla reda på vilka block som inte används) (2p)
- b) Förklara och exemplifiera hur man håller reda på vilka block som hör till vilken fil med hjälp av dels en *File Allocation Table (FAT)* och dels *i-noder*. (2p)

Problemdel

Uppgift 5 (5p) Virtuellt minne

Anta att man har ett sidindelat virtuellt minne med en sidstorlek på 4 bytes. Vidare har varje process (A och B i vårt exempelsystem nedan) tillgång till 64 bytes virtuellt minne medan det fysiska minnet har en storlek av 32 bytes.

c) Visa hur sidtabellen för process A respektive B samt det fysiska minnet ser ut (med binära minnesadresser) om vi antar att process A har sidorna 2, 4, 6 och 7 på ramarna 2, 5, 3 respektive 0 i det fysiska minnet. Process B har sidorna 4 och 5 på ramarna 1 respektive 4 i det fysiska minnet.

(3p)

(3p)

d) Till vilken fysisk adress översätts den logiska adressen 010001 för process B. Visa hur du kommer fram till detta. (2p)

Eventuella antaganden MÅSTE motiveras!

Uppgift 6 (5p) Baklås (Deadlock)

I ett operativsystem har man implementerat baklåsdetektering med hjälp av en algoritm som använder E, A, C och R matriser för att periodiskt kontrollera om några processer är i baklås eftersom systemet stödjer multipla resurser av samma typ.

Vid ett givet tillfälle befinner sig systemet i följande tillstånd:

Existerande resurser: w: 5st

x: 7sty: 3stz: 2st

Aktiva Processer: p1, p2, p3 och p4

Nuvarande ägandeskap: w: p1 äger 1st, p2 äger 2st, p4 äger 2st (Claimed Resources) x: p1 äger 2st, p2 äger 1st, p3 äger 2st

y: p2 äger 1st, p4 äger 1st z: p1 äger 1st, p3 äger 1st

Begärda resurser: w: p1 begär 2st, p2 begär 2st

(Requested Resources) x: p1 begär 1st, p3 begär 1st, p4 begär 2st

y: p1 begär 2st, p2 begär 1st, p3 begär 2st, p4 begär 1st

z: p2 begär 2st

- a) Konstruera matriserna E, A, C och R för ovanstående tillstånd.
- b) Är systemet i baklås? Visa hur du kom fram till detta m.h.a matriserna. (2p)

Eventuella antaganden MÅSTE motiveras!

Uppgift 7 (5p) Schemaläggning

Ett system har 6 processer A-F som med följande aktiverings- och exekveringstider:

Process	Aktiveringstid	Exekveringstid
A	0	3
В	0	1
C	2	3
D	5	5
Е	8	3
F	11	1

- a) Schemalägg processerna enligt *shortest job first* (SJF). Algoritmen är preemptiv och schemaläggs enligt kvarvarande exekveringstid vid varje givet tillfälle. (2p)
- b) Beräkna medelomloppstiden för processerna schemalagda med SJF. (0.5p)
- c) Schemalägg processerna enligt *multipla köer* (MK) med processerna ordnade A,B,C,D,E. Schemaläggaren har tre köer: HÖG med kvanta 1, MELLAN med kvanta 2 samt LÅG med kvanta 4. (2p)
- d) Beräkna medelomloppstiden för processerna schemalagda med MK. (0.5p)

Eventuella antaganden MÅSTE motiveras!