$$A_n^k = \frac{n!}{(n-k)!}$$

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

1.
$$C_{n+1}^{k+1} = C_n^{k+1} + C_n^k$$
.

2.
$$(x+y)^n = \sum_{j=0}^n C_n^j x^j y^{n-j}$$
.

3.
$$C_n^k = C_n^{n-k}$$
.

4.
$$2^n = \sum_{j=0}^n C_n^j$$
.

Indépendance : $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

 $\text{Probabilit\'e conditionnelle}: \ \ \mathbb{P}(A|B) = \mathbb{P}(A\cap B) \\ = \mathbb{P}(A\cap B). \qquad \ \ \mathbb{P}(A|B) = \frac{\mathbb{P}(A)}{\mathbb{P}(B)} \mathbb{P}(B|A).$

$$X \sim Ber(p) : X(\Omega) = \{0,1\}; P(X = 1) = p \text{ et } P(X = 0) = 1 - p$$

$$X \sim Bin(n; p) : X(\Omega) = \{0, 1, ..., n\}; P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

$$X \sim G(p) : X(\Omega) = N^* ; P(X = k) = (1 - p)^{k-1}p$$

 $X \sim Poisson(\lambda) : X(\Omega) = N ; P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$

Esperance:

$$X \sim Ber(p) : E(X)=p$$

$$X \sim Bin(n; p) : E(X)=np$$

$$X \sim G(p)$$
: E(X)= 1/p

$$X \sim Poisson(\lambda) : E(X) = \lambda$$

 $\mathbb{E}(X) = \sum_{k \in X(\Omega)} k \mathbb{P}(X = k).$

Variance:

$$Var(X) = E(X^2) - E(X)^2$$

$$\mathbb{E}(X^2) = \sum_{n \in X(\Omega)} n^2 \mathbb{P}(X = n)$$

$$X \sim Ber(p) : Var(X) = p(1-p)$$

$$X \sim Bin(n; p) : Var(X) = np(1-p)$$

$$X \sim G(p) : Var(X) = (1-p)/p^2$$

$$X \sim Poisson(\lambda) : Var(X) = \lambda$$

Lois marginales:

$$\mathbb{P}(X=n) = \sum_{m \in Y(\Omega)} \mathbb{P}(X=n,Y=m) \qquad \text{pour tout } n \in X(\Omega),$$

$$\mathbb{P}(Y=m) = \sum_{n \in Y(\Omega)} \mathbb{P}(X=n,Y=m) \qquad \text{pour tout } m \in Y(\Omega).$$

Lois conditionnelles :
$$\mathbb{P}(X=n\,|\,Y=m)=rac{\mathbb{P}(X=n,Y=m)}{\mathbb{P}(Y=m)}.$$

Indépendance :
$$\mathbb{P}(X=n,Y=m)=\mathbb{P}(X=n)\mathbb{P}(Y=m).$$

Fonctions génératrices :
$$G_X(u) = \mathbb{E}(u^X) = \sum_{k=0}^\infty u^k \mathbb{P}(X=k)$$

$$\mathbb{E}(X) = G_X'(1) \qquad \text{Var}(X) = G_X''(1) + G_X'(1) - (G_X'(1))^2$$

DENSITE:

Variables aleatoires a densité

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(x')dx'.$$

$$f_X(x)=\left\{egin{array}{l} rac{1}{b-a} & ext{si } x\in[a,b], \ &f_X(x)=rac{1}{b-a} & ext{si } x\in[a,b], \ &0 & ext{sinon}. \end{array}
ight.$$

 $X \sim Exp(\alpha)$:

$$f_X(x) = \begin{cases} \alpha \exp(-\alpha x) & \text{si } x \ge 0, \\ 0 & \text{sinon.} \end{cases}$$

$$f_X(x) = \begin{cases} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \exp(-x) & \text{si } x \geq 0, \\ 0 & \text{sinon.} \end{cases}$$

Cauchy:

$$f_X(x) = \frac{1}{\pi(1+x^2)}.$$

Esperance:

Variance : Var(X) =

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f_X(x) dx. \qquad \int_{-\infty}^{+\infty} x^2 f_X(x) dx - \left(\int_{-\infty}^{+\infty} x f_X(x) dx\right)^2.$$

Variables aléatoires gaussiennes : $X \sim N(m; \sigma^2)$ (ou $X \sim N(m; \sigma)$) :

1. Il existe
$$Y \sim N(0; 1)$$
 telle que $X = \sigma Y + m$.

2.
$$E(X) = m$$
.

3.
$$Var(X) = \sigma^2$$

$$f_{m,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$$

Lois marginales:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{(X,Y)}(x,y)dy$$
 pour tout $x \in \mathbb{R}$,

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{(X,Y)}(x,y)dx$$
 pour tout $y \in \mathbb{R}$.

Indépendance:

$$P(X \le x; Y \le y) = P(X \le x) \times P(Y \le y)$$

Fonction caractéristique :

$$\phi_X(t) := \int_{\mathbb{R}} f_X(x)e^{itx}dx.$$

FX(t) = FY(t)

$$E(X) = -i\phi'_X(0)$$
; $E(X^2) = -\phi''_X(0)$

$$Var(X) = -\phi''_X(0) + (\phi'_X(0))^2$$

Primitives de sur I (C	constante réelle)	ax + C	λ11 + C		av + C	n + C) - >	$(u \circ v) + C$	n^{n+1}	$\frac{1}{n+1} + C$	$\frac{1}{1+C}$	n n	$2\sqrt{\mathrm{u}} + \mathrm{C}$	$\ \mathbf{n}\ _{1} + C \cot \ \mathbf{n}\ + C$	$\ln \ \mathbf{u}\ + C = 0$	$e^{u} + C$	$\frac{1}{a}U(ax+b)+C$
Fonction définie sur I		u' + v'	λ11/		n'v + uv'	u'v - uv'	$\frac{\mathrm{u'v}-\mathrm{uv'}}{\mathrm{v}^2}$		$u'u^n$ ($n \in \mathbb{Z}$	$-\{-1\}$)	$\frac{u'}{u^2}$		<u>'u</u>		n n	u'e ^u	$x \to u(ax+b)$
Dérivée	+1 8	e ^x	$\alpha x^{\alpha-1}$	1 5 7 6	2V.x		$\cos(x)$	$1+\tan^2(x)=\frac{1}{\cos^2(x)}$	$\frac{-1}{\sqrt{1-x^2}}$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$	$\sinh(x)$	$\cosh(x)$	$1 - \tanh^2(x) = \frac{1}{\cosh^2(x)}$	$\frac{1}{\sqrt{r^2-1}}$	$\frac{1}{\sqrt{x^2+1}}$	$\frac{1}{1-x^2}$
Fonction	$\ln(x)$	e^x	$x^\alpha,\alpha\in\mathbb{R}$	\sqrt{x}		$\cos(x)$	$\sin(x)$	tan(x)	arccos(x)	arcsin(x)	$\arctan(x)$	$\cosh(x)$	sinh(x)	tanh(x)	arcosh(x)	$\operatorname{arsinh}(x)$	$\operatorname{artanh}(x)$
	Dérivée		f + g	$f' \cdot g + f \cdot g'$	$\frac{f' \cdot g - f \cdot g'}{o^2}$	f' × d' o f	$\frac{n}{n}$ $\frac{n}{n}$	$\sum_{k=0}^{\infty} {k \choose k} f^{(\kappa)} g^{(n-\kappa)}$	$\frac{1}{f'\circ f^{-1}}$	$-\frac{u'}{u^2}$	$\alpha u' u^{\alpha-1}$	$\frac{u'}{2\sqrt{u}}$	$\frac{u'}{u}$	$u'\exp(u)$	$-u'\sin(u)$	$u'\cos(u)$	
	Onération		J+9	f · g	- -	a o f		$(f \cdot g)^{(n)}$	$(f^{-1})'$	1 - u	$u^\alpha,\alpha\in\mathbb{R}^*$	\sqrt{u}	$\ln(u)$	$\exp(u)$	$\cos(n)$	$\sin(u)$	