Real valued Functions (Rv)

Study functions f: D - IR

where D = IR

(need not be the briange)

Natural Domain of a function Let y = f(x) be a function

The Natural Domain of f is
the largest subset of IR on which
f is defined. Denote by NDf

Thus, if D is the natural domain of f, then

No & D => f is not defined at xo

Examples.

1) Natural Domain for  $f(x) = x^2 - 3x + 1$  is IR

2) Natural domain of  $f(x) = \frac{x^2 + 1}{x - 1}$ is IR ( \{1\}

3) Natural domain of  $f(x) = \sin x$ is IR
while that of  $g(x) = \frac{1}{\sin x}$  is

IR > { m x : m & Z}

Algebora of oreal valued function

Because we can add, multiply and divide oreal numbers, we can do the same for oreal valued functions using the notion

"point-wise" operation

Let 
$$f: D_1 \rightarrow IR$$
 and  $g: D_2 \rightarrow IR$ 

Define  $h: D_1 \cap D_2 \rightarrow IR$  as

 $X_1 = X_2$ , then  $h(x) = f(x) + g(x)$ 

Then  $h \in IR_v$ , and denoted by

 $h = f + g$  (the sum of  $f \nmid 2g$ )

Similarly,

Define  $p: D_1 \cap D_2 \rightarrow IR$  by

 $p(x) = f(x) \cdot g(x)$ 

Then  $p \in IR_v$ , called the product of  $f \nmid 2g$ 

$$9: (D_1 \cap D_2) \rightarrow \mathbb{R}$$

$$\frac{g(x)}{g(x)} = \frac{f(x)}{g(x)}, g(x) \neq 0$$

omit 
$$x \in D_1 \cap D_2$$
 for which  $g(x) = 0$ .

## Examples

$$f(x) = \sqrt{x}$$

$$f(x) = \sqrt{x}$$
,  $g(x) = \sin x$ 

$$\cdot \left( + 9 \right) (x) = \sqrt{x} + \sin x$$

$$\cdot (f \cdot g)(x) = \sqrt{2} \sin x$$

• 
$$(f/g)(x) = \sqrt{3}/\sin x$$

Gistabh of a function

Let 
$$f: D \to \mathbb{R}$$

The set  $G_1 = \{(x, f(x)) : x \in D\}$ 

is called the graph of  $f(x)$ 



View of Gif in the Cartesian Plane with y = f(x)

How to recognize a function from its graph)

vertical line test



Not a graph of a fn.



A cisicle is not a fr. nevertheless, it has an equn.



## Graphs of injective functions



Not an injective fn.



Both functions are injective

## Monotone Functions

Definition. A function  $f: D \rightarrow \mathbb{R}$  is increasing if for any  $\chi_1, \chi_2$  in D with  $\chi_1 < \chi_2$ , one has  $f(\chi_1) < f(\chi_2)$  and, f is decreasing if for  $\chi_1, \chi_2$  in D with  $\chi_1 < \chi_2$ , one has  $f(\chi_1) > f(\chi_2)$ 

Similarly, a function non-decreasing if for  $\chi_1, \chi_2$  in D with  $\chi_1 < \chi_2$ , one has  $f(\chi_1) \le f(\chi_2)$  and, f is non-increasing if if for  $\chi_1, \chi_2$  in D with  $\chi_1 < \chi_2$ , one has  $f(\chi_1) \ge f(\chi_2)$ 





## Restricted Domains

Let  $f: D \longrightarrow \mathbb{R}$ 

if  $D' \subseteq D$ , then D' is a restricted domain of f.



 $f(x) = \sin x$ Suffices to analyze in  $[-\pi, \pi]$ 

Equality of functions

Subpose,  $f: D_1 \rightarrow IR$ and  $g: D_2 \rightarrow IR$ and  $D \subseteq D_1 \cap D_2$  is such that  $f(x) = g(x) + x \in D$ .

Then, we say that f = g on (the great grid domain) D.

Examples. · Sin x = x on {0}

•  $\sin \pi \chi = (\chi - L\chi)$  on  $\mathbb{Z}$ 

•  $f(x) = 0 + x \in \mathbb{R}$ g(x) = [x]

Then f(x) = g(x) on [0,1)