

Ch—04 Moving Charges and Magnetism Daily Practice Problem 06

Q1. A straight wire of mass 200 g and length 1.5 in carries a current of 2 A. It is suspended in mid-air by a uniform horizontal magnetic field \vec{B} . What is the magnitude of the magnetic field?

Q2. What is the force on a wire of length $4.0 \ cm$ placed inside a solenoid near its centre, making an angle of 60° with its axis? The wire carries a current of $12 \ A$ and the magnetic field due to the solenoid has a magnitude of $0.25 \ T$.

Q3. Two conducting rails in the drawing are tilted upward so they each make an angle of 37° with respect to the ground. The vertical magnetic field has a magnitude of $0.050\,T$. The 0.20-kg aluminium rod ($length=2.0\,m$) slides without friction down the rails at a constant velocity. How much current flows through the rod?

Q4. A wire carrying a current i is placed in a uniform magnetic field in the form of the curve $y = a \sin\left(\frac{\pi x}{L}\right)$ $0 \le x \le 2L$. The force acting on the wire is

- **a.** $\frac{iBL}{\pi}$
- **b.** $iBL\pi$
- c. 2iBL
- d. Zero

Q5. A uniform conducting wire ABC has a mass of 10g. A current of 2A flows through it. The wire is kept in a uniform magnetic field B = 2T. The acceleration of the wire will be

- a. Zero
- **b.** $12 ms^{-2}$ along y-axis
- **c.** $1.2 \times 10^{-3} ms^{-2}$ along y-axis
- **d.** $0.6 \times 10^{-3} ms^{-2}$ along y-axis

Q6. Calculate the force on a current carrying wire in a uniform magnetic field as shown in figure.

Q7. Find the magnitude of the magnetic force on the segment PQ placed in a magnetic field of $0.25\,T$, if a current of $5\,A$ flows through it, as shown in

Q8. A conducting rod of length l and mass m is moving down a smooth inclined plane of inclination θ with constant velocity v. A current i is flowing in the conductor in a direction perpendicular to paper inwards. A vertically upward magnetic field \vec{B} exists in space. Then, magnitude of magnetic field \vec{B} is

- **a.** $\frac{mg}{il} \sin \theta$
- **b.** $\frac{mg}{il} tan\theta$
- **c.** $\frac{mgcos\theta}{il}$
- **d.** $\frac{mg}{ilsin\theta}$

a. 24 N

frame is

- **b.** zero
- **c.** 16 N
- **d.** 8 N

Q10. The figure below shows two long metal rails placed horizontally and parallel to each other at a separation l. A uniform magnetic field B exists in the vertically downward direction. A wire of mass m can slide on the rails. The rails are connected to a constant current source which drives a current i in the circuit. The friction coefficient between the rails and the wire is μ .

- a. What should be the minimum value of μ which can prevent the wire from sliding on the rails?
- **b.** Describe the motion of the wire if the value of μ is half the value found in the previous part.

ANSWERS

1. 0.65 T

3. 14 A

5. b

2. 0.10 N

4. c

6. $IB(a + \sqrt{c^2 - b^2} + 2r + d)$

9. 1

7. 0.32 N

10. (a) $\frac{ilb}{mg}$

8. b

(b)The wire will slide towards right with acceleration

