Εξέταση στο μεταπτυχιακό μάθημα: Στατιστική Μοντελοποίηση

***** Διάρκεια Εξέτασης: 2.30 ώρες *****

ΖΗΤΗΜΑ Α (Επιλέξτε 1 από 5) (Βαθμ. 2.5)

- (A1) Έστω γενικό γραμμικό μοντέλο $\mathbf{y}=\mathbf{X}\mathbf{\beta}+\mathbf{\epsilon}$, όπου \mathbf{X} ο πίνακας σχεδιασμού, $\mathbf{\epsilon}\sim N_{_{n}}(\mathbf{0},\sigma^{2}\mathbf{I}_{_{n}})$ και εκτιμήτρια ελαχίστων τεταραγώνων $\hat{\mathbf{\beta}}=(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$. Να βρεθεί η κατανομή των υπολοίπων \mathbf{e} , η μέση τιμή $E(\mathbf{e})$ και ο πίνακας διασποράς-συνδιασποράς των, $V(\mathbf{e})$. Στη συνέχεια βρείτε τη διασπορά του υπολοίπου $\mathbf{e}_{_{i}}$ και τη συνδιασπορά μεταξύ των $\mathbf{e}_{_{i}}$ και $\mathbf{e}_{_{i}}$, $\mathbf{i}\neq\mathbf{j}$, όπου $\mathbf{H}=\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.
- (Α2) Έστω γενικό γραμμικό μοντέλο **y=Xβ+ε**.
- $\text{(i) Me básh th s.h.p. this parathered } y_i \text{ , } f(y_i) = \frac{1}{\left(2\pi\sigma^2\right)^{1/2}} \exp\!\left[\frac{-\left(y_i\text{-}\beta\text{'}x_i\right)^2}{2\sigma^2}\right] \text{ , } y_i \in \mathbb{R}, \text{ } i = 1,2,...,n \text{ , } \delta \text{elxte still fine signs of the sign of the s$

η μεγιστοποιημένη λογαριθμοποιημένη συνάρτηση πιθανοφάνειας για το γενικό γραμμικό μοντέλο είναι η $\hat{\ell} = -\frac{n}{2}[\ln(2\pi~SSE/n)+1]$ δεδομένου ότι η ε.μ.π. της σ^2 είναι η $\hat{\sigma}^2 = \sum_{i=1}^n \left(y_i - \hat{\pmb{\beta}}^i \pmb{x}_i\right)^2/n = \frac{SSE}{n}$.

- (ii) Δώστε τον ορισμό του κριτηρίου AIC. Στη συνέχεια δείξτε ότι το κριτήριο AIC είναι $AIC=n\left[\ln\left(2\pi\right)+\ln(SSE/n)+1\right]+2(p+1)$ για το μοντέλο αυτό. Πώς χρησιμοποιείται ;
- (A3) Εστω μοντέλο $E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$. Περιγράψτε τα βήματα που θα ακολουθούσατε όταν εξετάζεται η αφαίρεση μιας επεξηγηματικής μεταβλητής από το μοντέλο αυτό.
- (A4) Δώστε τον ορισμό ενός τυποποιημένου (standardized) υπολοίπου r_i και ενός deleted υπολοίπου r_i '. Πώς μας βοηθούν τα υπόλοιπα r_i και r_i ', τα διαγώνια στοιχεία h_{ii} του πίνακα $\mathbf{H} = \mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'}$, καθώς και η απόσταση Cook $D_i = \frac{r_i^2 h_{ii}}{p(1-h_{ii})}$ στη διάγνωση ενός γενικού γραμμικού μοντέλου;
- (A5) Περιγράψτε πώς μέσω μιας ψευδομεταβλητής Z (=1, αν τα δεδομένα ανήκουν στην κατηγορία I και =0, αν ανήκουν στην II) στο μοντέλο $E(Y) = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z$, μπορούμε να εξετάσουμε αν (A) δύο διαφορετικές ευθείες ή (B) δύο παράλληλες ευθείες ή (Γ) μια ευθεία, ταιριάζουν στα δεδομένα μας.

ΖΗΤΗΜΑ Β (Υποχρεωτικό) (Βαθμ. 4.0)

Για τη διερεύνηση της εξάρτησης μιας μεταβλητής y από 5 επεξηγηματικές μεταβλητές $x_1, x_2, \ldots, x_5,$ προσαρμόστηκε ένα γενικό γραμμικό μοντέλο σε δείγμα μεγέθους n=60. Ακολουθούν τα βασικά σημεία της ανάλυσης (**B1, B2, B3**).

<u>B1 ανάλυση</u>: περιλαμβάνει όλες τις επεξηγηματικές μεταβλητές. Τα παρακάτω περιέχουν μερικά από τα αποτελέσματα της ανάλυσης αυτής. Συμπληρώστε και σχολιάστε τα αποτελέσματα.

Regression Analysis: y versus x1; x2; x3; x4; x5

```
The regression equation is
y = 99.4 - 2.02 \times 1 - 33.8 \times 2 + 0.456 \times 3 - 3.39 \times 4 - 0.0012 \times 5
                        Coef SE Coef
                                                          Т
Predictor
                       99.43 19.68 5.05 0.000
                     -2.0175 0.9007 -2.24 0.029 1.9
-33.831 5.243 -6.45 <0.001 3.6
x1
x2
                    0.45620 0.03926 11.62 <0.001
xЗ
                      -3.390 3.574 -0.95 <mark>0.347</mark> 3.7
\times 4
                   -0.00116 0.03180 -0.04 <mark>0.971</mark> 6.2
R-Sq = 91.0% R-Sq(adj) = 90.1%
Analysis of Variance

        Source
        DF
        SS
        MS
        F
        P

        Regression
        5
        947930
        189586
        108.82
        <0.001</td>

        Residual Error
        54
        94079
        1742

        Total
        59
        1042009
        1042009
```

<u>B2 ανάλυση</u>: δίνονται αποτελέσματα προσαρμογών διαφόρων μοντέλων με επιλεγμένες μεταβλητές. Ο παρακάτω πίνακας παρουσιάζει μερικούς δείκτες για την προσαρμογή των μοντέλων αυτών.

- (i) Δώστε τον ορισμό του διορθωμένου συντελεστή \overline{R}^2 .
- (ii) Να σχολιαστούν τα αποτελέσματα. Επιλέξτε <u>δύο εμφωλευμένα μοντέλα</u> που με βάση τα κριτήρια θεωρείτε ότι είναι τα καλύτερα.
- (iii) Στη συνέχεια αξιοποιώντας τον έλεγχο F για τη σύγκριση δύο <u>εμφωλευμένων</u> μοντέλων, να βρεθεί το βέλτιστο από τα παραπάνω δύο.

[Section
$$S = \left(\frac{SSE}{(n-k-1)}\right)^{1/2}$$
]

Μοντέλο	Μεταβλητές	Υ με	R ² (x100%)	\bar{R}^2 (x100%)	C_p	S	AIC
1	1	X_3	75.5	75.1	90.4	66.316	505.30
2	1	X_5	58.7	58.0	190.9	86.113	536.65
3	2	$X_2 X_3$	90.1	89.7	<u>5.4</u>	42.610	453.17
4	2	$X_3 X_4$	82.3	81.7	51.9	56.892	487.86
5	3	$X_1 X_2 X_3$	90.7	90.2	3.4	41.497	450.93
6	3	$X_2 X_3 X_4$	90.1	89.6	7.0	42.851	454.79
7	4	$X_1 X_2 X_3 X_4$	91.0	90.3	4.0	41.359	451.45
8	4	$X_1 X_2 X_3 X_5$	90.8	90.2	4.9	41.702	452.44
9	5	$X_1 X_2 X_3 X_4 X_5$	91.0	90.1	6.0	41.740	453.45

Τα δύο καλύτερα δείχνουν να είναι το Μ5 και το Μ7, συγκρίνουμε

$$F = \frac{SSE_5 - SSE_7}{SSE_7/(n-p)} = \frac{96431 - 94081}{94081/55} = 1.36 \simeq (-1.17)^2, \text{ p-value=P(F>1.36)=0.246, }$$
επιλέγω το μοντέλο 5

Συγκρίνοντας και το Μ3 με Μ5

$$F = \frac{SSE_3 - SSE_5}{SSE_5/(n-p)} = \frac{103489 - 96431}{96431/56} = 4.09876 \simeq (-2.02)^2, \text{ p-value=P(F>)=} \frac{\textbf{0.048}}{\textbf{0.048}}, \text{ επιλέγω το μοντέλο 5}$$

Β3 ανάλυση: περιλαμβάνει τις επεξηγηματικές μεταβλητές X_1, X_2, X_3 . Τα παρακάτω περιέχουν μερικά από τα αποτελέσματα της ανάλυσης αυτής. Συμπληρώστε τον παρακάτω πίνακα και σχολιάστε τα αποτελέσματα καθώς και τις γραφικές παραστάσεις που ακολουθούν για το μοντέλο αυτό.

(B3) (α) :

Regression Analysis: y versus x1; x2; x3 (Μοντέλο 5)

The regression equation is
$$y = 87.2 - 1.75 \times 1 - 36.5 \times 2 + 0.451 \times 3$$

Predictor Coef SE Coef T P VIF Constant 87.20 16.26 5.36 <0.001 $\times 1$ -1.7528 0.8658 -2.02 0.048 1.8 $\times 2$ -36.494 4.019 -9.08 <0.001 2.1 $\times 3$ 0.45083 0.02027 22.25 <0.001 1.6
R-Sq = 90.7% R-Sq(adj) = 90.2%

(Β3) (β) Γραφικές παραστάσεις:

- (i) Απόσταση Cook και διαγώνια στοιχεία h_{ii} του πίνακα $H = X(X'X)^{-1}X'$, 2p/n=0.1333
- (ii) Γραφικές παραστάσεις των μερικών υπολοίπων για τις μεταβλητές X_1, X_2, X_3 .

x3

Επιλέξτε ΕΝΑ από τα ακόλουθα 3 Ζητήματα (Γ ή Δ) (Βαθμ. 3.5)

<u>ZHTHMA Γ:</u> (Γ1) Έστω το μοντέλο της κατανομής Poisson $f(y) = \frac{e^{-\mu}\mu^y}{y!}$, y=0, 1, 2,

- (i) Δείξτε ότι ανήκει στην εκθετική οικογένεια κατανομών και πώς μέσα από αυτήν αναγνωρίζουμε τη συνάρτηση σύνδεσης.
- (ii) Γράψτε το μοντέλο παλινδρόμησης Poisson για τρεις συμμεταβλητές X_1 , X_2 και X_3 .
- (Γ2) Προσαρμόζοντας μοντέλα της παλινδρόμησης Poisson σε δεδομένα 44 ορυχείων μιας περιοχής, εξετάζεται η σχέση του αριθμού ρωγμών σε οροφή ορυχείου (Υ), με τις συμμεταβλητές X_1 και X_2 (χαρακτηριστικά του ορυχείου) καθώς και με την X_3 (έτη λειτουργίας του ορυχείου).
- (i) Αφού συμπληρωθούν οι παρακάτω πίνακες, να ερμηνευτούν οι εκτιμημένες ποσότητες $\exp(\hat{\beta}_j)$ καθώς και οι γραφικές παραστάσεις των υπολοίπων Pearson και Deviance που ακολουθούν, του <u>τελικού μοντέλου</u>.

<mark>Απ:</mark>

<mark>αν αυξηθεί το Χ1 κατά μία μονάδα θα πολλαπλασιαστεί η αναμενόμενος αριθμός των ρωγμών στην</mark> οροφή ενός ορυχείου με 1.0605, δηλαδή θα αυξηθεί κατά 6,1%.

αν αυξηθεί το Χ3 κατά μία μονάδα θα πολλαπλασιαστεί η αναμενόμενος αριθμός των ρωγμών στην οροφή ενός ορυχείου με 0.965, δηλαδή θα μειωθεί κατά 3.5%.

(ii) Συμφωνούν οι έλεγχοι Wald, Deviance και τα κριτήρια AIC;

ΜΟΝΤΕΛΟ: 1	βį	$se(\hat{\beta}_i)$	z _j	ρ-τιμή	$\exp(\hat{\beta}_i)$		
Μεταβλητές	,	(* 3)			·		
Σταθερά	-3.39	0.9842	-3.445	<0.001	-		
X_1	0.05860	0.0117	<mark>5.008</mark>	<0.001			
X_2	-0.00376	0.0049	<mark>-0.761</mark>	<mark>0.4464</mark>			
X_3	-0.03408	0.0147	<mark>-2.326</mark>	<mark>0.02</mark>			
Ελεγχοσυνάρτηση deviance δίνεται ως D_1 =41.329 και η τιμή του κριτηρίου AIC_1 =145.6							

<u>ΜΟΝΤΕΛΟ: 2</u> Μεταβλητές	$\hat{eta}_{ m j}$	$se(\hat{\beta}_j)$	Z _j	ρ-τιμή	$\exp(\hat{\beta}_j)$		
Σταθερά	-3.599	0.9440	-3.813	<0.001	-		
X_1	0.05874	0.0117	<mark>5.030</mark>	<0.001	1.0605		
X_3	-0.03563	0.0148	<mark>-2.405</mark>	<mark>0.0162</mark>	<mark>0.965</mark>		
Ελεγχοσυνάρτηση deviance δίνεται ως D₂=41.952 και η τιμή του κριτηρίου AIC₂=144.22							

<u>ΜΟΝΤΕΛΟ: 3</u> Μεταβλητές	$\hat{oldsymbol{eta}}_{j}$	$se(\hat{\beta}_j)$	z _j	ρ-τιμή	$\exp(\hat{\beta}_j)$		
Σταθερά	-3.32859	0.90886	-3.662	<0.001	-		
X ₁	0.05234	0.01109	4.721	<0.001			
Ελεγχοσυνάρτηση deviance δίνεται ως D₃=48.620 και η τιμή του κριτηρίου AIC₃=148.89							

Επιλέγουμε το Μοντέλο 2

 D_2 - D_1 =41.952- 41.329= 0.623,

p-value= pchisq(0.623,1,lower.tail=FALSE)= 0.4299

 $D_3 - D_2 = 48.620 - 41.952 = 6.668$,

p-value=pchisq(6.668,1,lower.tail=FALSE)= 0.00982

<u>Γραφικές παραστάσεις του τελικού μοντέλου</u> (η πρώτη είναι για τα υπόλοιπα Pearson)

ΖΗΤΗΜΑ Δ

(Δ1) Εστω Υ τ.μ. της Διωνυμικής κατανομής $f(y) = \binom{n}{y} p^y (1-p)^{n-y}, \ y=0,1,2,...,n, \ \text{με παραμέτρους p και n.}$

(i) Γράψτε το μοντέλο της λογιστικής παλινδρόμησης για τέσσερις συμμεταβλητές X_1 , X_2 , X_3 και X_4 .

$$\text{(ii) Divetal η elements Diversity } \hat{\boldsymbol{\beta}}) = 2\sum_{i=1}^{m} \left\{ y_i ln \left(\frac{y_i}{\hat{\boldsymbol{\mu}}_i} \right) + \left(n_i - y_i \right) ln \left(\frac{n_i - y_i}{n_i - \hat{\boldsymbol{\mu}}_i} \right) \right\}, \; \hat{\boldsymbol{\mu}}_i = n_i \hat{\boldsymbol{p}}_i \; .$$

Δώστε τον ορισμό υπολοίπων Deviance για το μοντέλο της λογιστικής παλινδρόμησης. Αναφέρετε δύο γραφικές παραστάσεις που βοηθούν στην αξιολόγηση ενός τέτοιου μοντέλου.

(Δ2) Σε μελέτη n=200 ασθενών, γιατρός θέλει να εξετάσει την επιβίωση ασθενή Y (ναι=1, όχι=0), σε σχέση με την ηλικία (X₁), την πίεση (X₂), το σφυγμό (X₃) και την κατεπείγουσα εισαγωγή (X₄) (ναι=1, όχι=0).

(i) Να συμπληρωθεί ο παρακάτω πίνακας. Κάνοντας χρήση του ελέγχου Wald και των τιμών των ελεγχοσυναρτήσεων deviance εξετάστε αν οι συμμεταβλητές X_i συμβάλουν στα μοντέλα αυτά.

(ii) Να κατασκευαστεί ένα 95% διάστημα εμπιστοσύνης για την ποσότητα του e^{β_4} του <u>τελικού μοντέλου</u>.

(iii) Με τη βοήθεια της ποσότητας $e^{\hat{\beta}_1}$, εκφράστε κατά πόσο η αύξηση της ηλικίας κατά ένα έτος, επιδρά στη σχετική πιθανότητα επιβίωσης ενός ατόμου $\frac{p_x}{1\text{-}p_x}$ για το τελικό μοντέλο.

<mark>Απ: αν αυξηθεί η ηλικία κατά ένα έτος θα πολλαπλασιαστεί το odds ενός ατόμου με 0.96662, δηλαδή θα</mark> μειωθεί η σχετική πιθανότητα επιβίωσής του κατά 3.3%.

<u>ΜΟΝΤΕΛΟ: 1</u> Μεταβλητές	$\hat{\beta}_{j}$	$se(\hat{\beta}_j)$	z _j	ρ-τιμή	$\exp\left(\hat{\beta}_{_{\mathrm{J}}}\right)$		
Σταθερά	3.16121	1.43286	2.206	0.02737			
X_1	-0.03522	0.01097	<mark>-3.211</mark>	0.00132			
X_2	0.01377	0.00608	<mark>2.266</mark>	0.02342			
X_3	0.00639	0.00734	<mark>0.870</mark>	0.38403			
X_4	-2.41432	0.77599	-3.111	0.00186			
Ελεγχοσυνάρτηση deviance δίνεται ως D_1 = 167.05 και η τιμή του κριτηρίου AIC_1 = 177.05							

<u>ΜΟΝΤΕΛΟ: 2</u> Μεταβλητές	\hat{eta}_{j}	$se(\hat{\beta}_j)$	z _j	ρ-τιμή	$exp(\hat{\beta}_j)$			
Σταθερά	3.67855	1.30652	2.816	0.00487				
X_1	-0.03395	0.01087	-3.124	0.00178	<mark>0.96662</mark>			
X_2	0.01323	0.00599	<mark>2.210</mark>	<mark>0.02709</mark>	1.01332			
X_4	-2.28763	0.75817	-3.017	0.00255	<mark>0.101507</mark>			
Ελεγχοσυνάρτηση deviance δίνεται ως D₂=167.82								
με αντίστοιχη τιμή $\hat{\ell}_2 = -83.91$ και τιμή του κριτηρίου ΑΙC₂= 175.82								
<u>ΜΟΝΤΕΛΟ: 3</u> Μεταβλητές	$\hat{\beta}_{j}$	$se(\hat{\beta}_j)$	z _j	ρ-τιμή	$\exp\left(\hat{\beta}_{j}\right)$			
Σταθερά	5.50876	1.03351	5.330	<0.001				
$\mathbf{X}_{_{1}}$	-0.03402	0.01069	<mark>-3.181</mark>	0.00147				
X_4	-2.45354	0.75257	-3.260	0.00111				
Ελεγχοσυνάρτηση deviance δίνεται ως D₃=173.08 και η τιμή του κριτηρίου AIC₃=179.08								

Επιλέγουμε το Μοντέλο 2

 D_2 - D_1 =167.82 - 167.05 = 0.77,

p-value=P(X^2>0.77)=pchisq(0.77,1,lower.tail=FALSE)= 0.380

D₃ - D₂=173.08 - 167.82=5.26,

p-value=P(X^2>5.26)= pchisq(5.26,1,lower.tail=FALSE)= 0.0218

95% for β_4

-3.773606719 < β₄ <-0.80164269

95% for e^{β_4}

 $0.02296907 < e^{\beta_4} < 0.4485915$