3. Числови функции, графики. Обратно изображение

Галина Люцканова

9 октомври 2013 г.

От лекциите показахме, че:

1.
$$\sin(\arcsin(y)) = y \quad \forall y \in [-1; +1]$$

2.
$$\cos(\arccos(y)) = y \quad \forall y \in [-1; +1]$$

3.
$$\operatorname{tg}(\operatorname{arctg}(y)) = y \quad \forall y \in \mathbb{R}$$

4.
$$\cot(\operatorname{arccotg}(y)) = y \quad \forall y \in \mathbb{R}$$

5.
$$\arcsin(\sin(x)) = x \quad \forall x \in \left[-\frac{\pi}{2}; +\frac{\pi}{2}\right]$$

6.
$$\arccos(\cos(x)) = x \quad \forall x \in [0, \pi]$$

7.
$$\operatorname{arctg}(\operatorname{tg}(x)) = x \quad \forall x \in (-\frac{\pi}{2}; +\frac{\pi}{2})$$

8.
$$\operatorname{arccotg}(\operatorname{cotg}(x)) = x \quad \forall x \in (0, \pi)$$

Общи начини да се доказват тъждествата с обратните тригонометрични функции

 $\underline{\textbf{Задача 3.1:}}$ Докажете, че $\sin(2\arctan x) = \frac{2x}{1+x^2}$

Доказателство:

Знаем, че $\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}$. Тогава

$$\sin(2\operatorname{arctg} x) = \frac{2\operatorname{tg}\frac{2\operatorname{arctg} x}{2}}{1 + \operatorname{tg}^2\frac{2\operatorname{arctg} x}{2}} = \frac{2\operatorname{tg}(\operatorname{arctg} x)}{1 + \operatorname{tg}^2(\operatorname{arctg} x)} \stackrel{(3)}{=} \frac{2x}{1 + x^2}$$

Задача 3.2: $\cos(2 \operatorname{arctg} x) = \frac{1-x^2}{1+x^2}$

Доказателство:

Подсказка $\sin \alpha = \frac{1 - \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}.$

Задача 3.3: $\sin(\arccos x) = \sqrt{1 - x^2}$ $-1 \le x \le 1$.

Доказателство:

Понеже $\sin \alpha = \sqrt{1 - \cos^2 \alpha}$, то тогава получаваме:

$$\sin(\arccos x) = \sqrt{1 - \cos^2(\arccos x)} \stackrel{(2)}{=} \sqrt{1 - x^2}$$

Задача 3.4: Докажете, че:

- 1. $\arcsin(-x) = -\arcsin x 1 \le x \le 1$
- 2. $\operatorname{arctg}(-x) = -\operatorname{arctg} x$
- 3. $arccos(-x) = \pi arccos x 1 \le x \le 1$
- 4. $\operatorname{arccotg}(-x) = \pi \operatorname{arccotg} x$

Доказателство:

1. $\arcsin(-x) = -\arcsin x - 1 \le x \le 1$

Полагаме $\arcsin(-x)=t$. Тогава $-x=\sin t$ и $t\in\left[-\frac{\pi}{2};+\frac{\pi}{2}\right]$ т.е. $x=-\sin t$ и $t\in\left[-\frac{\pi}{2};+\frac{\pi}{2}\right]$. Така получаваме за лявата страна:

$$\arcsin(-x) = t \tag{1}$$

За дясната страна имаме:

$$-\arcsin x = -\arcsin(-\sin t) = -\arcsin(\sin(-t))$$

Понеже $t \in \left[-\frac{\pi}{2}; +\frac{\pi}{2}\right]$, то и $-t \in \left[-\frac{\pi}{2}; +\frac{\pi}{2}\right]$ и за дясната страна получаваме:

$$-\arcsin x = -\arcsin(\sin(-t)) = -(-t) = t \tag{2}$$

От (1) и (2) следва, че $\arcsin(-x) = -\arcsin x$ $-1 \le x \le 1$

- 2. arctg(-x) = arctg xАналогично на предишната подточка.
- 3. $\arccos(-x) = \pi \arccos x 1 \le x \le 1$
- 4. $\operatorname{arccotg}(-x) = \pi \operatorname{arccotg} x$