The Segment Status of the Mandarin Glide: A Language Game Experiment Boer Fu

Massachusetts Institute of Technology

The Question:

What is the Mandarin glide?

- Prenuclear glides: /j, w, y/ between onset and vowel
- Structural position and segment status are debated:

Hypothesis and transcription	Independent target?	
Independent segment	CGV	
lja, eja, kwan, eye (Lin 1989)		
Secondary articulation of onset	CGV	
$l^{i}a$, $\varepsilon^{i}a$, $k^{w}an$, $\varepsilon^{u}e$ (Duanmu 2000)	X	
Dual status of glide	CGGV	
lija, e ⁱ ja, k ^w wan, e ^u ye		
Natural CV transition (for palatals)	CGV, CV	
lja, sa, kwan, se (Ladefoged & Maddieson 1996)	X	

Research question:

For Mandarin speakers, is the glide an articulatory target that is independent of the onset?

Codeword Language Game

- Mandarin speakers are invited to take apart syllables in an artificial codeword language game setting.
- The task: swap the onsets of a disyllabic word.

Original word: 'coffee'

- What speakers choose to do with the prenuclear glide can inform us of its segmentation.
- Example: ta ljaw 'star anise': 3 choices for codeword.

Experiment 1: Online

- 24 test items containing /j/:
- Non-palatal vs. palatal onset
- Stimuli & responses in Chinese character text form.
- Sample size: 10 speakers.

Problem:

- Palatal GV response not available to speakers. $[ta tehjaw] \rightarrow GV: [*teha tjaw]$ 'big bridge'
- Unattested *tcha cannot be written as a Chinese character.

Finding: /j/ is more likely to be treated as an independent segment after non-palatal onsets, compared to palatal onsets.

Vowel Faithfulness Effect?

Prediction: If Ident-V >> DEP, then speakers will produce more GG responses compared to CG responses, for test items that contain an alternating vowel that risk violating Ident-V.

Experiment 2: In-person

GG CG 20 Type of onset

Solution:

- Stimuli presented in audio form.
- Oral responses collected.
- Sample size: 33 speakers.
- Palatal GV response now available to speakers. Choice A: [tcha tjaw] 12 tokens Choice B: [tsha tjaw] 33 tokens

Finding repeated:

onset place matters.

Speaker by Speaker

Vowel Faithfulness Effect?

Vowel raising rule: $/a/\rightarrow [\epsilon]/j_n$ Example: paw ejen 'keep fresh', if segmented as CG: [s] [s] [n] [s] [a] [w] [b] [e] $\left|\begin{array}{c|c} \varepsilon & n & \longrightarrow \left|\begin{array}{c|c} \varepsilon & a & w & p & a & n \end{array}\right|$ Repair with [pan] paw fin — faw pjεn GG Pick GG to avoid • Vowel faithfulness plays a role in how speaker chooses being unfaithful

Test	item: [paw ¢jen]	*¢V	*Cen	ID-V	DEP
a.	GV: [saw pjen]	*!			*
b.	CG: [e ^j aw pen]		*!		
c.	CG': [s ^j aw pan]			*!	
æd.	GG: [s ^j aw pjen]				*

Conclusion

- The palatal glide /j/ is more likely to be treated as an independent glide after non-palatal onsets, compared to palatal ones.
- between types of responses.
- There is much speaker variation, but 3 types of speakers emerge. Type I & II show consistent glide segmentation.

Many thanks to Adam Albright, Edward Flemming, Michael Kenstowicz, and Donca Steriade for discussion and feedback. All remaining mistakes are my own.

Selected References:

Duanmu, San. 2000. The phonology of Standard Chinese. Ladefoged, Peter & Ian Maddieson. 1996. The sounds of the world's languages. Lin, Yin-Hwei. 1989. Autosegmental treatment of segmental processes in Chinese phonology.