Preuves en logique du premier ordre

David Delahaye

Faculté des Sciences David.Delahaye@lirmm.fr

Master M2 2020-2021

Logique du premier ordre

Définitions préliminaires

- $V \equiv$ ensemble de variables d'individu x, y, etc.;
- $S_F \equiv$ ensemble de symboles de fonctions f, g, etc.;
- $S_P \equiv$ ensemble de symboles de prédicats P, Q, etc.; être père
- $S_{\mathcal{F}} \cap S_{\mathcal{P}} = \emptyset$;
- Arité $m: \mathcal{S}_{\mathcal{F}} \cup \mathcal{S}_{\mathcal{P}} \to \mathbb{N}$.

Termes du premier ordre

- ullet Plus petit ensemble ${\mathcal T}$ t.q. :
 - Si $x \in \mathcal{V}$ alors $x \in \mathcal{T}$:

si n=0 alors constant

2 / 20

Si $f \in \mathcal{S}_{\mathcal{F}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$, alors $f(t_1, \ldots, t_n) \in \mathcal{T}$.

Logique du premier ordre

Définitions préliminaires

- $V \equiv$ ensemble de variables d'individu x, y, etc.;
- $S_{\mathcal{F}} \equiv$ ensemble de symboles de fonctions f, g, etc.;
- $S_P \equiv$ ensemble de symboles de prédicats P, Q, etc.;
- $\mathcal{S}_{\mathcal{F}} \cap \mathcal{S}_{\mathcal{P}} = \emptyset$;
- Arité $m: \mathcal{S}_{\mathcal{F}} \cup \mathcal{S}_{\mathcal{P}} \to \mathbb{N}$.

Formules du premier ordre

- ullet Plus petit ensemble ${\mathcal F}$ t.q. :
 - ▶ Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$, alors $P(t_1, \ldots, t_n) \in \mathcal{F}$;
 - $\bot, \top \in \mathcal{F}$;
 - ▶ Si $\Phi \in \mathcal{F}$ alors $\neg \Phi \in \mathcal{F}$;
 - \triangleright Si $\Phi, \Phi' \in \mathcal{F}$ alors $\Phi \land \Phi', \Phi \lor \Phi', \Phi \Rightarrow \Phi' \in \mathcal{F}$;
 - ▶ Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$, alors $\forall x.\Phi, \exists x.\Phi \in \mathcal{F}$.

Sémantiques

Logique classique

- Une formule est toujours vraie ou fausse;
- Que l'on puisse en démontrer la validité ou non;
- Logique bi-valuée (vrai, faux);
- Logique du « tiers exclu » : $A \lor \neg A$.

Logique intuitionniste ou constructive

- Une formule est vraie, fausse, ou « on ne sait pas »;
- Si on ne sait en démontrer la validité, alors « on ne sait pas »;
- Logique tri-valuée d'une certaine manière;
- Le « tiers exclu » n'est pas admis dans cette logique.

D. Delahaye Preuves à l'ordre 1 Master M2 2020-2021

3 / 20

Systèmes de preuves

Plusieurs systèmes

- Systèmes à la Frege-Hilbert;
- Systèmes à la Gentzen :
 - Déduction naturelle;
 - Calcul des séquents.

Adéquation vis-à-vis de la sémantique

- Correction et complétude par rapport à la sémantique;
- Correction : si je trouve une preuve de *P* alors *P* est vraie;
- Complétude : si P est vraie alors il existe une preuve de P;
- Preuve ≡ moyen syntaxique de vérifier la validité d'une formule.

D. Delahaye Preuves à l'ordre 1 Master M2 2020-2021

Calcul des séquents intuitionniste

$$\frac{\Gamma, A \vdash A}{\Gamma, A \vdash A} \text{ ax} \qquad \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \text{ cont}$$

$$\frac{\Gamma \vdash A \qquad \Gamma, B \vdash C}{\Gamma, A \Rightarrow B \vdash C} \Rightarrow_{\text{left}} \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow_{\text{right}}$$

$$\frac{\Gamma \vdash A \qquad \Gamma, B \vdash C}{\Gamma, A \Leftrightarrow B \vdash C} \Leftrightarrow_{\text{left}}$$

$$\frac{\Gamma \vdash B \qquad \Gamma, A \vdash C}{\Gamma, A \Leftrightarrow B \vdash C} \Leftrightarrow_{\text{left}}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow_{\text{right}}$$

$$\frac{\Gamma, A \vdash B}{\Gamma, A \vdash C} \Leftrightarrow_{\text{left}}$$

$$\frac{\Gamma, A \vdash B}{\Gamma, A \vdash B} \Rightarrow_{\text{right}}$$

Calcul des séquents intuitionniste

$$\frac{\Gamma, A, B \vdash C}{\Gamma, A \land B \vdash C} \land_{\mathsf{left}} \qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \land B} \land_{\mathsf{right}}$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \land B} \lor_{\mathsf{right}1}$$

$$\frac{\Gamma, A \vdash C}{\Gamma, A \lor B \vdash C} \lor_{\mathsf{left}} \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \lor_{\mathsf{right}2}$$

$$\frac{\Gamma \vdash A}{\Gamma, \neg A \vdash B} \lnot_{\mathsf{left}} \qquad \frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \lnot_{\mathsf{right}}$$

$$\frac{\Gamma, A \vdash \bot}{\Gamma, \neg A \vdash B} \lnot_{\mathsf{left}} \qquad \frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \lnot_{\mathsf{right}}$$

Calcul des séquents intuitionniste

Tous les règles permettent de faire la logique intuitionniste

Règles

$$\frac{\Gamma, A(t) \vdash B}{\Gamma, \forall x \ A(x) \vdash B} \forall_{\mathsf{left}}$$

$$\frac{\Gamma, A(x) \vdash B}{\Gamma, \exists x. A(x) \vdash B} \exists_{\mathsf{left}}, \ x \notin \Gamma, B$$

$$\frac{\Gamma \vdash A \qquad \Gamma, A \vdash B}{\Gamma \vdash B} \text{ cut}$$

x n'est pas une var libre dans gamma

$$\frac{\Gamma \vdash A(x)}{\Gamma \vdash \forall x \ A(x)} \, \forall_{\mathsf{right}}, \ x \not\in \Gamma$$

$$\frac{\Gamma \vdash A(t)}{\Gamma \vdash \exists x. A(x)} \exists_{\mathsf{right}}$$

$$\frac{\Gamma, A(t) \vdash B}{\Gamma, \forall x \ A(x) \vdash B} \forall_{\text{left}} \qquad \frac{\Gamma \vdash A(x)}{\Gamma \vdash \forall x \ A(x)} \forall_{\text{right}}, \ x \not\in \Gamma$$

$$\frac{\Gamma, A(x) \vdash B}{\Gamma, \exists x . A(x) \vdash B} \exists_{\text{left}}, \ x \not\in \Gamma, B \qquad \frac{\Gamma \vdash A(t)}{\Gamma \vdash \exists x . A(x)} \exists_{\text{right}}$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash B} \text{ cut} \qquad \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \text{ em}$$

$$\frac{\Gamma \vdash \Delta, A \qquad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{\mathsf{left}} \qquad \frac{\Gamma, A \vdash \Delta, B}{\Gamma \vdash \Delta, A \Rightarrow B} \Rightarrow_{\mathsf{right}}$$

$$\frac{\Gamma \vdash \Delta, A \qquad \Gamma, B \vdash \Delta}{\Gamma, A \Leftrightarrow B \vdash \Delta} \Leftrightarrow_{\mathsf{left1}}$$

$$\frac{\Gamma \vdash \Delta, B \qquad \Gamma, A \vdash \Delta}{\Gamma, A \Leftrightarrow B \vdash \Delta} \Leftrightarrow_{\mathsf{left2}}$$

$$\frac{\Gamma, A \vdash \Delta, B \qquad \Gamma, B \vdash \Delta, A}{\Gamma \vdash \Delta, A \Leftrightarrow B} \Leftrightarrow_{\mathsf{right}}$$

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land_{\mathsf{left}} \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \land B} \land_{\mathsf{right}}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \lor_{\mathsf{left}} \frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \lor B} \lor_{\mathsf{right}}$$

$$\frac{\Gamma \vdash \Delta, A}{\Gamma, \neg A \vdash \Delta} \lnot_{\mathsf{left}} \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \lnot_{\mathsf{right}}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \neg A \vdash \Delta} \vdash_{\mathsf{left}} \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \lnot_{\mathsf{right}}$$

$$\frac{\Gamma, \frac{A(t)}{A(x)} \vdash \Delta}{\Gamma, \forall x. \frac{A(x)}{A(x)} \vdash \Delta} \forall_{\mathsf{left}} \qquad \frac{\Gamma \vdash \Delta, A(x)}{\Gamma \vdash \Delta, \forall x. A(x)} \forall_{\mathsf{right}}, \ x \not\in \Gamma, \Delta$$

$$\frac{\Gamma, A(x) \vdash \Delta}{\Gamma, \exists x. A(x) \vdash \Delta} \exists_{\mathsf{left}}, \ \mathbf{x} \not\in \Gamma, \Delta \qquad \frac{\Gamma \vdash \Delta, \underline{A(t)}}{\Gamma \vdash \Delta, \exists x. \underline{A(x)}} \exists_{\mathsf{right}}$$

Exemple de preuve propositionnelle dans LJ/LK

Une preuve simple

$$\frac{A, B \vdash A \xrightarrow{\text{ax}} A, B \vdash B}{A, B \vdash A \xrightarrow{\text{N}} B} \xrightarrow{\text{Nright}} \land \land \land B} \xrightarrow{\text{Nright}}$$

$$\frac{A \vdash B \xrightarrow{\Rightarrow} A \land B}{\vdash A \xrightarrow{\Rightarrow} (B \Rightarrow A \land B)} \xrightarrow{\text{Nright}}$$

on commence avec => à gauche

=> on associe les parenthèses à droit

7 / 20

D. Delahaye Preuves à l'ordre 1 Master M2 2020-2021

Exemple de preuve au premier ordre dans LJ/LK

Négation et quantificateurs $\frac{\frac{P(x) \vdash P(x)}{P(x) \vdash \exists x. P(x)} \exists_{\text{right}}}{\frac{P(x) \vdash \exists x. P(x)}{P(x) \vdash \exists x. P(x)}} \exists_{\text{right}}$ $\frac{\neg(\exists x. P(x)), P(x) \vdash \bot}{\neg(\exists x. P(x)) \vdash \neg P(x)} \exists_{\text{right}}$ $\frac{\neg(\exists x. P(x)) \vdash \neg P(x)}{\neg(\exists x. P(x)) \vdash \neg P(x)} \forall_{\text{right}}$ $\frac{\neg(\exists x. P(x)) \vdash \forall x. \neg P(x)}{\neg(\exists x. P(x)) \vdash \neg P(x)} \Rightarrow_{\text{right}}$ $\frac{\neg(\exists x. P(x)) \vdash \neg P(x)}{\neg(\exists x. P(x)) \vdash \neg P(x)} \forall_{\text{right}}$

P(x) |- qqsoit P(X) -> x est libre on peut pas utiliser qqsoit

8 / 20

D. Delahaye Preuves à l'ordre 1 Master M2 2020-2021

Logiques classique/intuitionniste

Sémantique du « il existe »

- En logique classique : $\exists x. P(x) \equiv \text{il existe } n \text{ termes } t_1, t_2, \dots, t_n \text{ tels }$ que $P(t_1) \lor P(t_2) \lor \dots \lor P(t_n)$ est vraie (théorème de Herbrand);
- En logique intuitionniste : $\exists x.P(x) \equiv \text{il}$ existe un terme t tel que P(t) est vraie.

On doit construire un témoin t qui vérifie P et en avoir l'intuition. D'où le nom de logique « intuitionniste » ou « constructive ».

Logique classique

- La logique classique est une logique assez « exotique »;
- On peut démontrer une formule $\exists x. P(x)$ sans jamais montrer un seul témoin qui fonctionne (c'est-à-dire qui vérifie P)!
- De ce fait, c'est plus facile de faire des preuves en logique classique qu'en logique intuitionniste.

D. Delahaye Preuves à l'ordre 1 Master M2 2020-2021 9 / 2

Exemple de preuve en logique classique

Petit théorème mathématique

- Il existe a et b irrationnels tels que ab est rationnel;
- Preuve :
 - Utilisation du tiers exclu : $\sqrt{2}^{\sqrt{2}}$ est rationnel ou non ; deux cas :
 - * Si $\sqrt{2}^{\sqrt{2}}$ est rationnel, alors le théorème est vrai;
 - Si $\sqrt{2}^{\sqrt{2}}$ est irrationnel, alors $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$, qui est rationnel.

En logique intuitionniste

- Le théorème est vrai en logique intuitionniste;
- Mais on doit montrer un a et b qui fonctionnent;
- Plusieurs pages de théorie des nombres non triviales!

10 / 20

Un autre exemple de preuve en logique classique

Preuve dans LK

Démontrer : $\exists x. P(x) \Rightarrow P(a) \land P(b)$.

Cette formule est-elle valide?

Un autre exemple de preuve en logique classique

Preuve dans LK

$$\frac{\Gamma \vdash P(a), P(a) \land P(b)}{\Gamma \vdash P(a), P(a) \land P(b)} \xrightarrow{\text{ax}} \frac{\Gamma \vdash P(b), P(a) \land P(b)}{\Gamma \vdash P(a), P(b), P(a) \land P(b)} \xrightarrow{\text{right}} \frac{\Gamma = P(a), P(b) \vdash P(a) \land P(b), P(a) \land P(b)}{P(a) \vdash P(a) \land P(b), \exists x. P(x) \Rightarrow P(a) \land P(b)} \xrightarrow{\exists_{\text{right}}} \frac{\exists_{\text{right}}}{\neg P(a) \Rightarrow P(a) \land P(b), \exists x. P(x) \Rightarrow P(a) \land P(b)} \xrightarrow{\exists_{\text{right}}} \frac{\exists_{\text{right}}}{\neg P(a) \Rightarrow P(a) \land P(b), \exists x. P(x) \Rightarrow P(a) \land P(b)} \xrightarrow{\exists_{\text{right}}} \frac{\exists_{\text{right}}}{\neg P(a) \Rightarrow P(a) \land P(b), \exists x. P(x) \Rightarrow P(a) \land P(b)} \xrightarrow{\exists_{\text{right}}} \frac{\exists_{\text{right}}}{\neg P(a) \Rightarrow P(a) \land P(b)} \xrightarrow{\exists_{\text{right}}} \xrightarrow{\neg P(a) \Rightarrow P(a) \land P(b)} \xrightarrow{\neg P(a) \Rightarrow P(a) \land$$

11 / 20

Encore un autre exemple de preuve en logique classique

Paradoxe (pas si paradoxal) des buveurs

Énoncé : « Il y a quelqu'un dans un bar tel que, s'il boit alors tout le monde dans le bar boit ».

$$\frac{P(x), P(y) \vdash P(y), \forall y. P(y)}{P(x) \vdash P(y), P(y) \Rightarrow \forall y. P(y)} \underset{\text{right}}{\Rightarrow_{\text{right}}}$$

$$\frac{P(x) \vdash P(y), P(y) \Rightarrow \forall y. P(y)}{P(x) \vdash P(y), \exists x. P(x) \Rightarrow \forall y. P(y)} \underset{\text{right}}{\Rightarrow_{\text{right}}}$$

$$\frac{P(x) \vdash \forall y. P(y), \exists x. P(x) \Rightarrow \forall y. P(y)}{\vdash P(x) \Rightarrow \forall y. P(y), \exists x. P(x) \Rightarrow \forall y. P(y)} \underset{\text{right}}{\Rightarrow_{\text{right}}}$$

$$\frac{\vdash \exists x. P(x) \Rightarrow \forall y. P(y), \exists x. P(x) \Rightarrow \forall y. P(y)}{\vdash \exists x. P(x) \Rightarrow \forall y. P(y)} \underset{\text{cont}_{\text{right}}}{\Rightarrow_{\text{right}}}$$

Exercices en logique propositionnelle

Propositions à démontrer

- $A \land B \Rightarrow B$ $B \Rightarrow A \lor B$

- $\bigcirc \bot \Rightarrow A$
- $(A \Leftrightarrow B) \Rightarrow A \Rightarrow B$
- \bigcirc $(A \Leftrightarrow B) \Rightarrow B \Rightarrow A$
- \bigcirc $(A \Rightarrow B) \Rightarrow (B \Rightarrow A) \Rightarrow (A \Leftrightarrow B)$

Exercices en logique du premier ordre

Propositions à démontrer

- $\bigcirc \neg (\forall x.P(x)) \Rightarrow \exists x.\neg P(x)$

Outil d'aide à la preuve Coq

Caractéristiques

- Développement par l'équipe Inria πr^2 ;
- Preuve de programmes fonctionnels;
- Théorie des types (calcul des constructions inductives);
- Isomorphisme de Curry-Howard (objets preuves).

Implantation

- Premières versions milieu des années 80;
- Implantation actuelle en OCaml;
- Preuve interactive (peu d'automatisation);
- En ligne de commande ou avec l'interface graphique CoqIDE.

Pour les séances de TP

• Installer Coq: https://coq.inria.fr/.

Exemples de preuves

• Implication :

```
Coq < Parameter A : Prop.
A is assumed
Coq < Goal A -> A.
1 subgoal

A -> A
```

Exemples de preuves

• Implication :

```
Coq < intro.
1 subgoal
```

```
H : A
```

Α

Exemples de preuves

• Implication :

```
Coq < assumption.
No more subgoals.
Coq < Save my_thm.
intro.
assumption.
my_thm is defined</pre>
```

Exemples de preuves

• Application (modus ponens) :

```
Coq < Parameters A B : Prop.
A is assumed
B is assumed
Coq < Goal (A -> B) -> A -> B.
1 subgoal
```

$$(A \rightarrow B) \rightarrow A \rightarrow B$$

Exemples de preuves

Application (modus ponens) :

```
Coq < intros.

1 subgoal

H : A -> B

HO : A

-----

B

Coq < apply (H HO).

No more subgoals.
```

Exemples de preuves

Connecteurs ∧ et ∨ :

```
Coq < Parameters A B : Prop.
A is assumed
B is assumed
Coq < Goal A /\ B -> A.
1 subgoal
```

 $A / \setminus B \rightarrow A$

Exemples de preuves

Connecteurs ∧ et ∨ :

```
Coq < intro.
1 subgoal</pre>
```

```
H : A /\ B
```

Α

Exemples de preuves

• Connecteurs \wedge et \vee :

```
Coq < elim H.
1 subgoal</pre>
```

 $A \rightarrow B \rightarrow A$

Exemples de preuves

```
Connecteurs ∧ et ∨ :
```

```
Coq < intros.
1 subgoal
  H : A / \setminus B
  HO: A
  H1 : B
   Α
```

Coq < assumption.

No more subgoals.

Exemples de preuves

Connecteurs ∧ et ∨ :

```
Coq < Parameters A B : Prop.
A is assumed
B is assumed
Coq < Goal A -> A \/ B.
1 subgoal
```

 $A \rightarrow A \setminus B$

Exemples de preuves

• Connecteurs \wedge et \vee :

```
Coq < intro.
1 subgoal</pre>
```

```
H : A
```

A \/ B

Exemples de preuves

• Connecteurs \wedge et \vee :

```
Coq < left.
1 subgoal</pre>
```

```
H : A
```

Α

Coq < assumption.</pre>

No more subgoals.

Exemples de preuves

■ Connecteurs ¬:

```
Coq < Parameters A B : Prop.
A is assumed
B is assumed</pre>
```

1 subgoal

$$A \rightarrow A \rightarrow False$$

Logique propositionnelle

Exemples de preuves

```
● Connecteurs ¬:
 Coq < intros.
 1 subgoal
   H : A
   HO : ~ A
    False
 Coq < apply (HO H).
 No more subgoals.
```

Exercices

Propositions à démontrer

- $A \wedge B \rightarrow B$

- $\bigcirc \bot \rightarrow A$

Exemples de preuves

Quantificateur ∀ :

Exemples de preuves

Quantificateur ∀ :

```
Coq < intros.

1 subgoal

x : E

H : P x

P x

Coq < assumption
```

Coq < assumption.
No more subgoals.</pre>

Exemples de preuves

Quantificateur ∀ :

```
Coq < Parameter E : Set.
E is assumed
Coq < Parameter a : E.
a is assumed
Coq < Parameter P : E -> Prop.
P is assumed
Coq < Goal (forall x : E, (P x)) \rightarrow (P a).
1 subgoal
   (forall x : E, P x) \rightarrow P a
```

Exemples de preuves

Quantificateur ∀ :

Exemples de preuves

Quantificateur ∃ :

```
Coq < Parameter E : Set.
E is assumed
Coq < Parameter a : E.
a is assumed
Coq < Parameter P : E -> Prop.
P is assumed
Coq < Goal (P a) \rightarrow exists x : E, (P x).
1 subgoal
   P = - exists x : E, P x
```

Exemples de preuves

• Quantificateur ∃ :

```
Coq < intro.

1 subgoal

H : P a
```

exists x : E, P x

Exemples de preuves

Quantificateur ∃ :

```
Coq < exists a.

1 subgoal

H : P a

-----
P a
```

Coq < assumption.
No more subgoals.</pre>

Exemples de preuves

Quantificateur ∃ :

```
Coq < Parameter E : Set.
E is assumed
Coq < Parameter a : E.
a is assumed
Coq < Parameter P : E -> Prop.
P is assumed
```

Exemples de preuves

• Quantificateur ∃ :

```
(exists x : E, ^P x) \rightarrow ^C (forall x : E, P x)
```

Exemples de preuves

ullet Quantificateur \exists :

```
Coq < intros.
1 subgoal
  H : exists x : E, ^P x
   ~ (forall x : E, P x)
Coq < red.
1 subgoal
  H : exists x : E, ^P x
   (forall x : E, P x) \rightarrow False
```

Exemples de preuves

• Quantificateur ∃ :

```
Coq < intro.

1 subgoal

H : exists x : E, ~ P x

HO : forall x : E, P x
```

False

Exemples de preuves

• Quantificateur ∃ :

```
Coq < elim H.
1 subgoal</pre>
```

```
H : exists x : E, ^P x
H0 : forall x : E, P x
```

forall $x : E, ^P x -> False$

Exemples de preuves

■ Quantificateur ∃ :

Exemples de preuves

Quantificateur ∃ :

```
Coq < apply H1.
1 subgoal
 H : exists x : E, ^P x
 HO: forall x : E, Px
 x : E
 H1 : ^P x
  P x
Coq < apply HO.
No more subgoals.
```

Exercices

Propositions à démontrer

Guide de survie du petit Coq-uin

Correspondance LK/Coq

Logique propositionnelle		Logique du premier ordre	
Règle LK	Tactique Coq	Règle LK	Tactique Coq
ax	assumption	∀right	intro
cut	cut	\forall_{left}	apply
\Rightarrow_{right}	intro	\exists_{right}	exists
\Rightarrow_{left}	apply	\exists_{left}	elim
⇔right	split		
⇔lefti	elim		
^right	split		
∧left	elim		
∨right1	left		
∨right2	right		
Vleft	elim		
¬right	intro		
□left	elimtype False + apply		
$\top_{right}, \bot_{left}$	auto		

20 / 20