Title: Preference learning

URL: https://en.wikipedia.org/wiki/Preference_learning

PageID: 34072838

Categories: Category:Information retrieval techniques, Category:Machine learning

Source: Wikipedia (CC BY-SA 4.0).

Preference learning is a subfield of machine learning that focuses on modeling and predicting preferences based on observed preference information. [1] Preference learning typically involves supervised learning using datasets of pairwise preference comparisons, rankings, or other preference information.

Tasks

The main task in preference learning concerns problems in " learning to rank ". According to different types of preference information observed, the tasks are categorized as three main problems in the book Preference Learning: [2]

Label ranking

In label ranking, the model has an instance space $X = \{x \mid \{\text{displaystyle } X=\{x_{i}}\},\]$ and a finite set of labels $Y = \{y \mid i \mid i = 1, 2, \blacksquare, k \}$ {\displaystyle $Y=\{y_{i}\mid i=1,2,\cdot k\},\]$. The preference information is given in the form $y \mid \blacksquare x y \mid \{\text{displaystyle } y_{i}\} \setminus \{y_{i}\},\]$ indicating instance $x \in \{\text{displaystyle } y_{i}\},\]$ shows preference in $y \mid \{\text{displaystyle } y_{i}\},\]$ rather than $y \mid \{\text{displaystyle } y_{i}\},\]$. A set of preference information is used as training data in the model. The task of this model is to find a preference ranking among the labels for any instance.

It was observed that some conventional classification problems can be generalized in the framework of label ranking problem: [3] if a training instance x {\displaystyle x\,\!} is labeled as class y i {\displaystyle y_{i}\,\!}, it implies that \forall j \neq i , y i \blacksquare x y j {\displaystyle \forall j\neq i,y_{i}\succ_{x}y_{j}\,\!} in the multi-label case, x {\displaystyle x\,\!} is associated with a set of labels L \subseteq Y {\displaystyle L\subseteq Y\,\!} and thus the model can extract a set of preference information { y i \blacksquare x y j | y i \in L , y j \in Y \blacksquare L } {\displaystyle \{y_{i}\succ_{x}y_{j}\}|y_{i}\succ_{x}y_{j}\}|y_{i}\succ_{x}y_{j}\ in Y\backslash L\}\,\!}. Training a preference model on this preference information and the classification result of an instance is just the corresponding top ranking label.

Instance ranking

Instance ranking also has the instance space X {\displaystyle X\,\!} and label set Y {\displaystyle Y\,\!} . In this task, labels are defined to have a fixed order y 1 \blacksquare y 2 \blacksquare \blacksquare y k {\displaystyle y_{1}\succ y_{2}\succ \cdots \succ y_{k}\,\!} and each instance x I {\displaystyle x_{I}\,\!} is associated with a label y I {\displaystyle y_{I}\,\!} . Giving a set of instances as training data, the goal of this task is to find the ranking order for a new set of instances.

Object ranking

Object ranking is similar to instance ranking except that no labels are associated with instances. Given a set of pairwise preference information in the form x i \blacksquare x j {\displaystyle x_{i}\succ x_{j}\,\!} and the model should find out a ranking order among instances.

Techniques

There are two practical representations of the preference information $A \blacksquare B \$ Naucc $B \setminus 1$. One is assigning A $\$ Naucc $A \setminus 1$ and B $\$ Naucc $A \setminus 1$. One is assigning A $\$ Naucce $A \setminus 1$ and B $\$ Naucce $A \setminus 1$. With two real numbers a $\$ Naucce $A \setminus 1$ and b $\$ Nauccee $A \setminus 1$ and $A \setminus 1$ and

Utility function

If we can find a mapping from data to real numbers, ranking the data can be solved by ranking the real numbers. This mapping is called utility function . For label ranking the mapping is a function $f: X \times Y \to R$ {\displaystyle f:X\times Y\rightarrow \mathbb {R} \,\!} such that $y i \blacksquare x y j \Rightarrow f(x, y i) > f(x, y j) {\displaystyle y_{i}\succ _{x}y_{j}}\Rightarrow f(x,y_{i})>f(x,y_{j})\,\!} . For instance ranking and object ranking, the mapping is a function <math>f: X \to R$ {\displaystyle f:X\rightarrow \mathbb {R} \,\!} .

Finding the utility function is a regression learning problem [citation needed] which is well developed in machine learning.

Preference relations

The binary representation of preference information is called preference relation. For each pair of alternatives (instances or labels), a binary predicate can be learned by conventional supervised learning approach. Fürnkranz and Hüllermeier proposed this approach in label ranking problem. [4] For object ranking, there is an early approach by Cohen et al. [5]

Using preference relations to predict the ranking will not be so intuitive. Since observed preference relations may not always be transitive due to inconsistencies in the data, finding a ranking that satisfies all the preference relations may not be possible or may result in multiple possible solutions. A more common approach is to find a ranking solution which is maximally consistent with the preference relations. This approach is a natural extension of pairwise classification. [4]

Uses

Preference learning can be used in ranking search results according to feedback of user preference. Given a query and a set of documents, a learning model is used to find the ranking of documents corresponding to the relevance with this query. More discussions on research in this field can be found in Tie-Yan Liu 's survey paper. [6]

Another application of preference learning is recommender systems . [7] Online store may analyze customer's purchase record to learn a preference model and then recommend similar products to customers. Internet content providers can make use of user's ratings to provide more user preferred contents.

References