Теортест-1 (Вариант 31)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения (тела A и B имеют объем):

- 1. $V(A) = V(A \cap B) + V(A \setminus B)$;
- 2. объем $A \cup B$ равен сумме объемов A и B;
- 3. объем A всегда неотрицателен;
- 4. если $A \subset B$, то объем A меньше объема B;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F не убывает на [a, b];
- 2. F непрерывна на [a, b];
- 3. $\int_a^b f(x)dx = F(b) F(a);$
- 4. F имеет разрывы в точках разрыва функции f;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$
- 2. $\int \frac{f'(x)}{x} dx = \frac{f(x)}{x} + \int \frac{f(x)}{x^2} dx;$
- 3. $2 \int f'(x) \sqrt{x} dx = 2 \sqrt{x} f(x) \int \frac{f(x)}{\sqrt{x}} dx;$
- 4. $\int f(x) \ln x dx = \ln x \cdot f'(x) \int \frac{f'(x)}{x} dx;$

Задача 4

Выберите все верные утверждения:

- 1. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 2. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 3. если первообразная дробно-рациональной функции f(x) является дробнорациональной, то все корни знаменателя f(x) кратные;
- 4. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если f > 0 на [a, b], то $\int_a^b f(x) dx > 0$;
- 2. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 3. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a, b];
- 4. Если $f \ge 0$ на [a,b] и $\exists c \in [a,b] : f(c) > 0$, то $\int_a^b f(x) dx > 0$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = v' + C:
- 2. v' = u + C:
- 3. udt = dv;
- 4. u' = v + C:

Задача 7

Выберите все верные утверждения:

- 1. Любая кривая имеет неотрицательную длину;
- 2. Гладкая кривая это кривая, все параметризации которой гладкие;
- 3. Длина любой кривой конечна;
- 4. Кусочно-гладкая кривая спрямляема;
- 5. Длина кривой зависит от параметризации;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f > 0 на [a, b];
- 2. f непрерывна в точке a и f(b) = 1;
- 3. f(a) = f(b) = 1;
- 4. f возрастает (нестрого) на [a, b] и f(b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [-10, 20];
- 2. [-2, 20];
- 3. [-1, 10];
- 4. [-1, 20];

Задача 10

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения нижняя сумма Дарбу уменьшается;
- 2. Нижняя сумма Дарбу является наименьшей из всех интегральных сумм для данного разбиения;
- 3. При измельчении разбиения нижняя сумма Дарбу увеличивается;
- 4. Нижняя сумма Дарбу не больше любой интегральной суммы для данного разбиения;