Corrigé du contrôle TD blanc

Question de cours

Énoncer avec soin la condition nécessaire de convergence des séries, la condition de convergence des séries de Riemann, les règles de comparaison des séries à termes positifs, les critères de d'Alembert et de Cauchy.

Je vous fais confiance:)

Exercice 1

En utilisant le critère de Cauchy, déterminer la nature de la série $\sum \frac{n^{\alpha}}{\alpha^n}$ en fonction de $\alpha \in \mathbb{R}_+^*$ Notons $u_n = \frac{n^{\alpha}}{2^n}$

$$(u_n)^{\frac{1}{n}} = \frac{n^{\frac{\alpha}{n}}}{\alpha} = \frac{e^{\alpha \frac{\ln(n)}{n}}}{\alpha}$$

Par croissance comparée, $\frac{\ln(n)}{n} \underset{n \to +\infty}{\longrightarrow} 0$ donc $e^{\alpha \frac{\ln(n)}{n}} \underset{n \to +\infty}{\longrightarrow} 1$. Ainsi, $(u_n)^{\frac{1}{n}} \underset{n \to +\infty}{\longrightarrow} \frac{1}{\alpha}$. On distingue alors trois cas:

- si $\alpha > 1$, $\frac{1}{\alpha} < 1$ donc d'après le critère de Cauchy $\sum u_n$ est convergente; si $\alpha < 1$, $\frac{1}{\alpha} > 1$ donc d'après le critère de Cauchy $\sum u_n$ est divergente; si $\alpha = 1$ le critère de Cauchy ne permet pas de conclure.

Dans ce dernier cas, on remarque que pour $\alpha = 1$ alors on a $u_n = n$ qui est le terme d'une série divergente; ainsi:

la série
$$\sum u_n$$
 converge ssi $\alpha > 1$

Déterminer la nature de la série $\sum \frac{\sin(\beta n)}{n^2}$ en fonction de $\beta \in \mathbb{R}$

$$\forall \beta \in \mathbb{R}, \forall n \in \mathbb{N}, \quad \left| \sin(\beta n) \right| \leqslant 1$$

On en déduit :

$$\forall \beta \in \mathbb{R}, \forall n \in \mathbb{N}, \quad \left| \frac{\sin(\beta n)}{n^2} \right| \leq \frac{1}{n^2}$$

La série de Riemann $\sum \frac{1}{n^2}$ étant convergente, par comparaison de séries à termes positifs, la série $\sum \left| \frac{\sin(\beta n)}{n^2} \right|$ est convergente.

D'où:

la série
$$\sum \frac{\sin(\beta n)}{n^2}$$
 est absolument convergente, donc convergente pour tout $\beta \in \mathbb{R}$

Exercice 2

Déterminer $\lim_{n \to +\infty} \frac{\cos\left(\frac{1}{n}\right) - \frac{n^2}{n^2 + 1}}{\ln(n^2 + 1) - \ln(n^2)}$

$$\ln(n^2+1) - \ln(n^2) = \ln\left(\frac{n^2+1}{n^2}\right) = \ln\left(1 + \frac{1}{n^2}\right) \underset{+\infty}{\sim} \frac{1}{n^2}$$

$$\cos\left(\frac{1}{n}\right) - \frac{n^2}{n^2 + 1} = \cos\left(\frac{1}{n}\right) - \frac{1}{1 + \frac{1}{n^2}}$$

$$= 1 - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) - \left(1 - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right)$$

$$= \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \underset{+\infty}{\sim} \frac{1}{2n^2}$$

Donc:

$$\frac{\cos\left(\frac{1}{n}\right) - \frac{n^2}{n^2 + 1}}{\ln(n^2 + 1) - \ln(n^2)} \underset{+\infty}{\sim} \frac{\frac{1}{2n^2}}{\frac{1}{n^2}} \underset{+\infty}{\sim} \frac{1}{2}$$

En conclusion:

$$\lim_{n \to +\infty} \frac{\cos\left(\frac{1}{n}\right) - \frac{n^2}{n^2 + 1}}{\ln(n^2 + 1) - \ln(n^2)} = \frac{1}{2}$$

Exercice 3

À l'aide d'un développement limité, déterminer la nature de $\sum n \sin\left(\frac{1}{n}\right) - \cos\left(\frac{1}{n}\right)$.

$$n \sin\left(\frac{1}{n}\right) - \cos\left(\frac{1}{n}\right) = n\left(\frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)\right) - \left(1 - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)$$
$$= 1 - \frac{1}{6n^2} - 1 + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$
$$= \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right) \underset{+\infty}{\sim} \frac{1}{3n^2}$$

La série $\sum \frac{1}{3n^2}$ est une série de Riemann convergente, par comparaison de séries à termes positifs, $\sum n \sin\left(\frac{1}{n}\right) - \cos\left(\frac{1}{n}\right)$ converge.

$$\sum n \sin\left(\frac{1}{n}\right) - \cos\left(\frac{1}{n}\right) \quad \text{converge.}$$