UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2020

Linear Systems Fundamentals

MIDTERM EXAM

Instructions

- Open Canvas website, no electronics for problem solving.
- Tables 3.1 and 3.2 from the textbook are attached to the exam.
- No collaboration or external help of any kind, either in person or via web, phone, or any other device, is allowed. You may be asked to explain your answers over a Zoom call when the exam is graded.
- Time allowed: 2.5 consecutive hours (from 5pm PST Thursday to 11:59pm PST Friday)
- Write your solutions in the applicable space in the exam. **Justify your** answers. If extra pages are needed to show all of your work, use the scratch pages at the end of the exam and submit them.
- Upload your solutions via Gradescope

PRINT YOUR NAME		
Student ID Number		
Signature		
N1511414110		

Your signature confirms that you have completed this exam on your own and in accordance with the Academic Integrity Agreement.

Problem	Weight	Score
1	16 pts	
2	24 pts	
3	30 pts	
4	30 pts	
Total	100 pts	

Good luck!

(d > 0 means shift right by d < 0 means shift left by |d|)

Then shift x(t) by d =

Problem 1 (cont.)

(b) (8 pts) Let x(t) = t (u(t) - u(t-1)). Define y(t) = x((-3t) - 2). Sketch precisely y(t).

Problem 2 (24 points: 3 parts, 8 points each)

Let
$$x[n] = e^{j\frac{\pi}{3}(n-1)} + \sum_{k=-\infty}^{\infty} \delta[n-6k].$$

(a) (8 pts)

Determine the fundamental period of x[n].

Problem 2 (cont.)

Let
$$x[n] = e^{j\frac{\pi}{3}(n-1)} + \sum_{k=-\infty}^{\infty} \delta[n-6k].$$

(b) (8 pts)

Determine if x[n] is even, odd, or neither.

Problem 2 (cont.

Let
$$x[n] = e^{j\frac{\pi}{3}(n-1)} + \sum_{k=-\infty}^{\infty} \delta[n-6k].$$

Determine the discrete-time Fourier series (DTFS) coefficients of x[n].

Problem 3 (30 points: 3 parts, 10 points each)

Consider the discrete-time linear time-invariant (LTI) system S with impulse response

$$h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1].$$

(a) (10 pts)

Determine the step response s[n] of the system S, and sketch s[n] precisely in the interval $-3 \le n \le 3$.

Name/Student ID: _____ Problem 3 (cont.) Consider the discrete-time linear time-invariant (LTI) system S with impulse response $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1].$ (b) (10 pts) Indicate whether the system S satisfies each listed property. Justify your answers with *specific* reference to the system S. True False Memoryless Causal

Stable

Problem 3 (cont.)

Consider the discrete-time linear time-invariant (LTI) system S with impulse response

$$h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1].$$

(c) (10 pts)

The system S is invertible. Determine the impulse response g[n] of the inverse system.

Name/Student ID: _____

Problem 4 (30 points: 3 parts, 10 points each)

The signal $x[n] = 1 + \cos(\frac{\pi}{2}n)\sin(\frac{\pi}{3}n)$ is passed through the discrete-time filter whose frequency response is given by:

$$H(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \frac{2\pi}{3} \\ 0, & \text{otherwise.} \end{cases}$$

(a) (10 pts)

Determine the discrete-time Fourier series (DTFS) of the signal x[n].

Problem 4 (cont.)

The signal $x[n] = 1 + \cos(\frac{\pi}{2}n)\sin(\frac{\pi}{3}n)$ is passed through the discrete-time filter whose frequency response is given by:

$$H(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \frac{2\pi}{3} \\ 0, & \text{otherwise.} \end{cases}$$

(b) (10 pts)

Determine the output signal y[n] produced by the input signal x[n]. Write it in a form that does not involve complex exponential signals.

Problem 4 (cont.)

The signal $x[n] = 1 + \cos(\frac{\pi}{2}n)\sin(\frac{\pi}{3}n)$ is passed through the discrete-time filter whose frequency response is given by:

$$H(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \frac{2\pi}{3} \\ 0, & \text{otherwise.} \end{cases}$$

(c) (10 pts)

Let b_k denote the DTFS of the output signal y[n]. Determine the value of b_{11} , b_{18} , and b_{52} (not the rock band). Express your answers numerically, as well as in terms of b_0, b_1, \ldots, b_N where N is the fundamental period of y[n].

Scratch page Name/Student ID:	Scratch page	Name/Student ID:	
-------------------------------	--------------	------------------	--

Scratch page Name/Student ID:	Scratch page	Name/Student ID:	
-------------------------------	--------------	------------------	--

Scratch page Name/Student ID:	Scratch page	Name/Student ID:	
-------------------------------	--------------	------------------	--

Scratch page Name/Student ID:	Scratch page	Name/Student ID:	
-------------------------------	--------------	------------------	--

TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
Linearity Time Shifting Frequency Shifting	3.5.1 3.5.2	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M}
Conjugation Time Reversal Time Scaling	3.5.6 3.5.3 3.5.4	$x^*(t)$ x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_{-k}^{\star} a_{-k}
Periodic Convolution	3,3,1	$\int_{T} x(\tau)y(t-\tau)d\tau$	a_k Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Integration		$\int_{-\infty}^{t} x(t) dt $ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\begin{cases} a_k = a_{-k}^* \\ \Re \{a_k\} = \Re \{a_{-k}\} \\ \Im \{a_k\} = -\Im \{a_{-k}\} \\ a_k = a_{-k} \\ \exists a_k = - \exists a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	x(t) real and even x(t) real and odd $\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\Re\{a_k\}$ $j\Im\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\left. egin{aligned} a_k \\ b_k \end{aligned} \right\}$ Periodic with $\left. b_k \right\}$ period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$ $x[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk(2\pi/N)n_{0}}$ a_{k-M} a_{-k}^{*} a_{-k} $\frac{1}{m}a_{k}$ (viewed as periodic) (with period mN)
Periodic Convolution Multiplication	$\sum_{\substack{r=\langle N \rangle \\ x[n]y[n]}} x[r]y[n-r]$	Na_kb_k
First Difference	x[n] - x[n-1]	$\sum_{l=\langle N\rangle} a_l b_{k-l}$ $(1-e^{-jk(2\pi/N)})a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \not \leq a_k = - \not \leq a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	Re $\{a_k\}$ $j \mathcal{I}m\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{N} \sum_{n = \langle N \rangle} |x[n]|^2 = \sum_{k = \langle N \rangle} |a_k|^2$$