Step-1

We know that Singular Value Decomposition for any m by n matrix A is given by

$$A = U \sum V^{T}$$

$$= \begin{pmatrix} \text{orthogonal} \\ U \text{ is } m \times m \end{pmatrix} \begin{pmatrix} m \times n \text{ matrix } \sum \\ \sigma_{1} \cdots \sigma_{r} \text{ on diagonal} \end{pmatrix} \begin{pmatrix} \text{orthogonal} \\ V \text{ is } n \times n \end{pmatrix}$$

Here eigenvectors of AA^T are in U, eigenvectors of A^TA are in V and

$$\sigma_i = \sqrt{\lambda_i \left(A^T A \right)}$$
$$= \sqrt{\lambda_i \left(A A^T \right)}$$

We also know that $Av_j = \sigma_j u_j$.

Here σ_j is the length of eigenvector vector Av_j and u_j is unit eigenvector.

Step-2

Since $u = \frac{1}{3}(2,2,1,)$ and $v = \frac{1}{2}(1,1,1,1)$, then matrix A must be 3 by 4.

If the A has rank-1 then A^TA has also rank-1.

So, only one eigenvalue of $A^T A$ is nonzero.

The matrix Σ is given by

Since there is only one nonzero entry in Σ , we get the following equation

$$Av_1 = \sigma_1 u_1$$

So, u be the first column of U and v be the first column of V.

Step-3

If we find out $A = U \sum V^T$, the only nonzero will come from first column of U and first column of V.

This gives the equation Av = 12u.

Therefore, the matrix $A = 12uv^T$ with rank 1 that has Av = 12u.

Step-4

The length of eigenvector vector Av_j is σ_j and u_j is unit eigenvector.

So, from the equation $A = 12uv^T$, the only one singular value is $\sigma_1 = 12$.