Optimal Pre-Analysis Plans: Statistical Decisions Subject to Implementability

Maximilian Kasy Jann Spiess

May 2023

Introduction

- Trial registration and pre-analysis plans (PAPs) have become a standard requirement for experimental research.
 - For clinical studies in medicine starting in the 1990s.
 - For experimental research in economics more recently.
- Standard justification: Guarantee validity of inference.
 - P-hacking, specification searching, and selective publication distort inference.
 - Tying researchers' hands prevents selective reporting.
- Counter-argument:
 - Interesting findings are unexpected and flexibility is necessary.

Open questions

- Why do we need a commitment device?
 Standard decision theory has no time inconsistency!
- 2. Under what conditions are PAPs more or less useful? How do we trade off the benefits and costs of PAPs?
- 3. How should the structure of PAPs look like?

Key insight:

- Single-agent decision-theory cannot make sense of these debates.
- We need to consider multiple agents, conflicts of interest, and asymmetric information.

Our approach

- Import insights from contract theory / mechanism design to statistics.
 - PAPs can be rationalized with multiple parties, conflicts of interest, and asymmetric information.
 - We consider (optimal) statistical decision rules subject to the constraint of implementability.
- Our model:
 - 1. A decision-maker commits to a decision rule,
 - 2. then an analyst communicates a PAP,
 - 3. then observes the data, reports selected (!) statistics to the decision-maker,
 - 4. who then applies the decision rule.

Note: The model presented in this talk is different from that discussed in an earlier workingpaper on the same topic.

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Setup: Notation

- Two parties, decision-maker and analyst.
- Message M ("pre-analysis plan") sent from analyst to decision-maker.
- Data $X = (X_1, \dots, X_n) \sim \mathsf{P}_{\theta}$.
 - Unknown parameter $\theta \in \Theta$.
- Index sets:
 - $K = \{1, ..., n\}$ fixed, finite, commonly known.
 - $J \subset K$ subset of data available to the analyst, privately known.
 - $I \subset J$ subset of available data reported to the decision-maker.
- Decision $A \in A \subseteq \mathbb{R}$.

Setup: Timeline

- 1. The decision-maker commits to a decision function $\mathbf{a}(\cdot)$.
- 2. The analyst:
 - a) Observes a private signal π .
 - b) Sends a message M to the decision-maker.
 - c) Observes (X_J, J) .
 - d) Reports (X_I, I) with $I \subseteq J$.
- 3. The decision-maker implements the decision $A = \mathbf{a}(M, X_I, I)$.

Discussion

- The analyst can withhold information, but they cannot lie.
- The components of *X* might represent different
 - hypothesis tests,
 - estimates,
 - subgroups,
 - outcome variables, etc.
- Possible model interpretations:
 - 1. Drug approval (pharma company vs. FDA).
 - 2. Hypothesis testing (researcher vs. reader).
 - 3. Publication decision (researcher vs. journal).

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Motivating example: Normal testing

- $K = \{1, 2\}.$
- $X_1, X_2 \sim N(\theta, 1)$.
- Prior of the decision-maker: $(J_1, J_2) \sim Ber(\eta_1) \times Ber(\eta_2)$.
- The analyst knows J.
- Null hypothesis $H_0: \theta \leq 0$.
- The analyst selectively reports, to get a rejection of the null.

Compare 5 testing rules

- 0. The optimal full data test (only available if $I = J = \{1, 2\}$).
- 1. The naive test (ignores selective reporting).
- 2. The conservative test (worst-case assumptions about unreported X_{ι}).
- 3. The optimal implementable test without a PAP.
- 4. The optimal implementable test with a PAP.

The optimal full data test

- Suppose availability and selective reporting were no concern.
- Then $X_1 + X_2$ is a sufficient statistic.
- By Neyman-Pearson, the uniformly most powerful test is given by

$$\mathbf{1}\left(X_1+X_2>\sqrt{2}\cdot z\right).$$

Critical value:

$$z = \Phi^{-1}(1 - \alpha).$$

Optimal full data test

The naive test

• Treat the reported data *I* as if there were no selective reporting.

$$\mathbf{a}_1(X_I,I) = \mathbf{1}\left(\sum_{\iota \in I} X_\iota > z \cdot \sqrt{|I|}\right).$$

 The analyst chooses *I* ⊂ *J* to maximize rejection,

$$ar{\mathbf{a}}_1(X_J,J) = \max_{I\subset J} \mathbf{a}(X_I,I).$$

Such p-hacking violates size control!

The conservative test

Possible remedy:
 Worst-case assumptions about unreported components.

$$\mathbf{a}_2(X_I,I) = \mathbf{1}\left(X_1 + X_2 > \sqrt{2} \cdot \mathbf{z} \text{ and } I = K\right).$$

- This test controls size.
- But it has low power.

The optimal implementable test without PAP

- Requirements:
 - 1. Size control.
 - 2. Incentive compatibility.
 - 3. Maximizes expected power.
- Solution without a PAP:
 - 1. Pick a full-data test.
 - 2. make worst-case assumptions about unreported components.
- Choose the full-data test to maximize expected power.
- Here:

$$\mathbf{a}_3(X_I,I) = \mathbf{1}(X_1 > z \text{ and } 1 \in I).$$

Optimal test without PAP

The optimal implementable test with PAP

- Allow an analyst message before seeing data.
- Solution with a PAP :
 - 1. Let the analyst pick a full-data test,
 - 2. make worst-case assumptions about unreported components.
- The analyst knows J when choosing the full-data test.

Rejection probabilities for different testing rules

l

Degrees of freedom n = 2

Power curves for different testing rules

Degrees of freedom n = 5

Power curves for different testing rules

Degrees of freedom n = 10

Power curves for different testing rules

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Implementable decision functions

A reduced form decision function maps the full data into a decision a:

$$\bar{\mathbf{a}}(\pi, X_J, J)$$

- A reduced form decision function \bar{a} is **implementable**
 - if there exist a decision function a
 - with best responses m*, i*
 - such that

$$\bar{\mathbf{a}}(\pi, X_J, J) = \mathbf{a}(M^*, X_{I^*}, I^*).$$

Assumption:

The analyst is an expected utility maximizer with utility

for a (strictly) monotonically increasing function v.

Analyst best responses

• The optimal report $I^* = \mathbf{i}^*(M, X_J, J)$ of the analyst satisfies

$$I^* \in \underset{I \subseteq J}{\operatorname{argmax}} \mathbf{a}(M, X_I, I).$$

• The optimal message $M^* = \mathbf{m}^*(\pi)$ satisfies

$$M^* \in \underset{m}{\operatorname{argmax}} \ \mathsf{E}[v(\mathbf{a}(m, I^*, X_{I^*}))|\pi].$$

Preview of implementability results

- Without PAPs, implementability is equivalent to **monotonicity** in *J*: Reporting more can only increase the decision.
- With PAPs, implementability only requires monotonicity in J conditional on the analyst signal.
- Implementation can use different approaches:
 - 1. Truthful **revelation** of the analyst signal.
 - 2. **Delegation** to the analyst, letting them choose a decision function from a constrained set.
- Truthful revelation is closely related to proper scoring.
- For binary actions, the set of implementable decision functions is a convex polytope.

Implementability without PAPs

Lemma

If no pre-analysis messages M are allowed, a reduced-form decision function $\bar{\mathbf{a}}(\pi, X_J, J)$ is implementable iff

- 1. $\bar{\mathbf{a}}$ does not depend on π , and
- 2. ā is monotonic in J,

$$\bar{\mathbf{a}}(X_{\mathbf{I}},\mathbf{I}) \leq \bar{\mathbf{a}}(X_{\mathbf{J}},\mathbf{J})$$

for almost all X, J and all $I \subseteq J$.

Proof

- 1. Suppose that both conditions hold.
 - Set $\mathbf{a}(X_I, I) = \bar{\mathbf{a}}(X_I, I)$.
 - Incentive compatibility of $i^*(X_J, J) = J$ follows.
- 2. Consider a decision function **ā** that is implementable by **a**.
 - Since i* is an analyst best-response to this decision function a,

$$\bar{\mathbf{a}}(\pi, X_J, J) = \max_{I \subseteq J} \mathbf{a}(X_I, I).$$

• The maximum over subsets of J (weakly) increases in J.

Note: The revelation principle does not directly apply here, due to partial verifiability!

Implementability with PAPs

Theorem

A reduced-form decision function **ā** is implementable iff both of the following conditions hold:

1. Truthful PAP

For almost all π and all π' ,

$$\mathsf{E}[v(\bar{\mathbf{a}}(\pi',X_J,J))|\pi] \leq \mathsf{E}[v(\bar{\mathbf{a}}(\pi,X_J,J))|\pi].$$

2. Monotonicity

For almost all π , X, J, and all $I \subseteq J$

$$\bar{\mathbf{a}}(\pi, X_{\mathbf{I}}, \mathbf{I}) \leq \bar{\mathbf{a}}(\pi, X_{\mathbf{J}}, \mathbf{J})$$

Sketch of proof

- 1. This is the revelation principle.
- 2. This follows by the same argument as before.

Revelation and delegation

Lemma

A reduced-form decision rule **ā** can be implemented iff:

1. **Implementation by truthful revelation**It can be implemented with a decision rule **a** for which

$$\mathbf{a}(\pi, X_J, J) = \bar{\mathbf{a}}(\pi, X_J, J).$$

2. **Implementation by delegation**It can be implemented with a decision rule **a** for which

$$\mathbf{a}(b,X_J,J)=b(X_J,J),$$

where **b** is restricted to lie in some set \mathcal{B} .

Sketch of proof

- 1. Immediate from previous result / revelation principle.
- 2. Suppose that $\bar{\mathbf{a}}$ is implemented by $\mathbf{a}(M, X_I, I)$, $\mathbf{m}^*, \mathbf{i}^*$.
 - Define $\tilde{\mathbf{a}}(b,X_J,J)=b(X_J,J)$ for $b\in\mathscr{B}$, where

$$\mathscr{B} = \{b(\cdot): b(X_I, I) = \mathbf{a}(M, X_I, I), \text{ for some } M\}.$$

- It follows that $b(\cdot) = \mathbf{a}(\mathbf{m}^*(\pi), X_l, I)$ is a best response to $\tilde{\mathbf{a}}$.
- Therfore ã implements ā.

Proper scoring

Define

$$S(\pi',\pi) = E[v(\bar{\mathbf{a}}(\pi',X_J,J))|\pi].$$

• The condition for truthful revelation of π can be written as

$$S(\pi',\pi) \leq S(\pi,\pi).$$

for almost all π and all π' .

Lemma

The condition for truthful revelation of π holds iff there exists a convex function $G(P_{\pi}) = S(\pi, \pi)$ with sub-gradient $\nabla G(P_{\pi})$ such that

$$S(\pi',\pi) = G(P_{\pi'}) + \langle \nabla G(P_{\pi'}), P_{\pi} - P_{\pi'} \rangle.$$

The convex polytope of implementable rules

- Assume that
 - 1. The action space $\mathscr{A} \subset \mathbb{R}$ is convex, and
 - 2. analyst utility is linear, v(A) = A.
- Leading example: Binary decision $A \in \{0,1\}$, randomized rule $\bar{\mathbf{a}} \in \mathscr{A} = [0,1]$.
- Then the set of implementable rules is given by a convex polytope:

$$\begin{split} \bar{\mathbf{a}}(\pi, X_J, J) \in \mathscr{A}, & \text{(Support)} \\ \bar{\mathbf{a}}(\pi, X_I, I) - \bar{\mathbf{a}}(\pi, X_J, J) \leq 0 & \forall \ \pi, X_J, J, I \subset J, & \text{(Monotonicity)} \\ \sum_{X_J, J} \left(\bar{\mathbf{a}}(\pi', X_J, J) - \bar{\mathbf{a}}(\pi, X_J, J) \right) \cdot P_{\pi}(X_J, J) \leq 0 & \forall \ \pi', \pi. & \text{(Truthful PAP)} \end{split}$$

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Hypothesis testing

- Null hypothesis $\theta \in \Theta_0$.
- Rejection probability a ∈ [0,1].
- \Rightarrow w.l.o.g. $v(\mathbf{a}) = \mathbf{a}$.
 - Size control at level $\alpha \in (0,1)$:

$$\sup_{\theta \in \Theta_0} \sup_{\pi} \mathsf{E}[\bar{\mathbf{a}}(\pi, X_J, J) | \theta, \pi] \leq \alpha.$$

Expected power:

$$\mathsf{E}[\bar{\mathbf{a}}(\pi, X_J, J)].$$

Size control for implementable tests

Lemma

- 1. If $\bar{\mathbf{a}}$ satisfies the monotonicity restriction, and
- 2. the support of π includes a value such that $P_{\pi}(J=K)=1$, then size control holds iff

$$\mathsf{E}[\bar{\mathbf{a}}(\pi, \mathbf{X}, \mathbf{K})|\theta] \leq \alpha.$$

for all $\theta \in \Theta_0$.

Preview of optimal implementable tests

- Implementable tests are montonic, so that size control only binds for the full data.
- The optimal test
 - maximizes expected power,
 - subject to size control
 - and implementability.
- This test can be implemented as follows:
 - Ask the analyst to choose a full-data test that controls size.
 - For any report, assume the worst about the unreported components.
- The analyst problem of choosing the optimal full data test is a (simple) linear program.

The optimal test as solution to a linear program

$$\max_{\mathbf{a},t} \sum_{\pi,X,J} \mathbf{a}(\pi,X_J,J) \cdot P(\pi,X_J,J) \qquad \text{(Expected power)}$$
 s.t.
$$\sum_{X} t(\pi,X) \cdot \mathsf{P}_{\theta}(X) \leq \alpha \qquad \forall \ \pi,\theta \in \Theta_0, \qquad \text{(Size control)}$$

$$a(\pi,X_J,J), t(\pi,X) \in [0,1] \qquad \forall \ \pi,J,X, \qquad \text{(Support)}$$

$$a(\pi,X_J,J) \leq t(\pi,X) \qquad \forall \ \pi,J,X, \qquad \text{(Monotonicity)}$$

$$\sum_{X_J,J} \left(\bar{\mathbf{a}}(\pi',X_J,J) - \bar{\mathbf{a}}(\pi,X_J,J)\right) \cdot P_{\pi}(X_J,J) \leq 0 \qquad \forall \ \pi',\pi. \qquad \text{(Truthful PAP)}$$

Implementing the optimal test by delegation

Theorem

- The test with maximal expected power
- subject to implementability and size control
- can be implemented by requiring the analyst to communicate a full-data test \mathbf{t} which satisfies, for all $\theta \in \Theta_0$,

$$\mathsf{E}[t(\mathsf{X})|\theta] \leq \alpha$$

and then implementing

$$\mathbf{a}(t,X_J,J)=\min_{X';\,X'_J=X_J}t(X').$$

Sketch of proof

- Anything that can be implemented can be implemented by delegation.
- Implementable rules are monotonic.
- Monotonic rules satisfy size control iff they satisfy full-data size control.
- Subject to this constraint, analyst and decision-maker are aligned.
- Expected power given full-data size control and monotonicity is maximized by

$$\mathbf{a}(t,X_J,J)=\min_{X';\;X'_J=X_J}t(X').$$

The analyst's problem as a (simpler) linear program

$$\max_{\mathbf{a},t} \sum_{X_J,J} \mathbf{a}(X_J,J) \cdot P_{\pi}(X_J,J) \qquad \qquad \text{(Expected power)}$$
 s.t.
$$\sum_{X} t(X) \cdot P_{\theta}(X) \leq \alpha \qquad \forall \ \theta \in \Theta_0, \qquad \text{(Size control)}$$

$$\mathbf{a}(X_J,J), t(X) \in [0,1] \qquad \forall \ J,X, \qquad \text{(Support)}$$

$$\mathbf{a}(X_J,J) \leq t(X) \qquad \forall \ J,X. \qquad \text{(Monotonicity)}$$

Example revisited

Optimal test without PAP

Optimal test with PAP

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Discussion

- Conflicts of interest, private information.
 - ⇒ Not all decision rules are implementable.
- Mechanism design: Optimal implementable rules.
- Statistical reporting: Partial verifiability.
 - 1. No lying about reported statistics.
 - 2. Private information about which statistics were available.
- Pre-analysis plans:
 - No role in single-agent decision-theory.
 - But increase the set of implementable rules in multi-agent settings.
- We characterize
 - 1. implementable rules,
 - 2. optimal implementable hypothesis tests,
 - 3. optimal implementable unbiased estimators (not in these slides).

Next steps

- 1. Optimal implementable rules for Bayesian decision problems.
- 2. Explicit solutions for specific estimation and testing problems.
- 3. Intuitive characterizations of solutions to linear programming problems.

Thank you!