Rutiranje

- Statičko rutiranje
 - Ručno se definišu rute do IP mreža
- Dinamičko rutiranje
 - Ruteri razmenjuju informacije i automatski određuju rute do IP mreža
- Protokoli rutiranja (ruting protokoli)
 - Ne služe za rutiranje poruka
 - Služe da ruteri nauče kako da rutiraju poruke uspostavljaju ruting tabele
- Osnovni principi:
 - Obaveštavaju druge rutere o mrežama za koje oni imaju informacije (oglašavaju rute preko "ruting apdejta" – "routing update")
 - Prikupljaju informacije o drugim mrežama od drugih rutera
 - Ako postoji više ruta do neke mreže, bira se najbolja rutu na bazi određene metrike i ta ruta se upisuje u ruting tabelu
 - Ako dođe do promene topologije, ponovo se bira najbolja ruta na bazi metrike i drugim ruterima se oglašava novo stanje

Podela protokola rutiranja

- Protokoli rutiranja
 - Interni
 - Distance Vector
 - RIP Routing Information Protocol
 - IGRP Interior Gateway Routing Protocol
 - Link State
 - OSPF Open Shortest Path First
 - IS-IS Intermediate System to Intermediate System
 - Hibridni
 - EIGRP Enhanced Interior Gateway Routing Protocol
 - Eksterni
 - BGP Border Gateway Protocol
- Osnovni cilj svih ruting protokola uspostavljanje ruting tabele
 - Potpuno za sve mreže u ruting domenu na svim ruterima
 - Konzistentno ispravno, bez ruting petlji
 - Optimalno prema odgovarajućoj metrici
 - Adaptivno prilagođavanje promeni topologije

Autonomni sistem

- Autonomni sistem AS (Autonomous System)
 - Jedinstveni administrativni domen računarske mreže
 - Jedinstveno upravljanje mrežom
 - NOC (Network Operation Center) centar za upravljanje mrežom
 - Pažljiv dizajn i upravljanje jedinstvenim adresnim prostorom
 - Usaglašeno rutiranje
 - Konfiguracije rutera su usaglašene, promene sinhronizovane itd.

Primeri:

Akademska mreža, korporacijske mreže, provajderske mreže

Interni i Eksterni protokoli rutiranja

Interni protokoli rutiranja

- Unutar jednog autonomnog sistema
- Ruting domen deo mreže sa jednim ruting protokolom
- Jedan AS obično jedan ruting dome, ali može i više

Eksterni protokoli rutiranja

- Između autonomnih sistema, tačnije između "graničnih rutera"
- Internet BGP eksterni protokol rutiranja između autonomnih sistema

Distance Vector vs. Link State

Distance Vector

- Susedni ruteri razmenjuju informacije o mrežama, na osnovu kojih saznaju:
 - Distancu do određene mreže metrika
 - Vektor koji vodi do određene mreže next-hop
- Ruteri poznaju samo susedne rutere, ali ne i celu topologiju
- Rute se periodično razmenjuju

Link State

- Tokom razmene informacija sa susednim ruterima, saznaje se cela topologija mreže, sa svim parametrima (brzine veza, adrese itd.)
- Informacije se ne razmenjuju periodično, već samo pri promeni topologije

Classful ruting protokoli

- Rute koje se razmenjuju ne sadrže maske
- Podržane su maske, ali su iste dužine u svim IP mrežama
 - Svi ruteri implicitno znaju maske na osnovu konfiguracije svojih interfejsa
- Autosumarizacija automatska agregacija svih IP mreža
 - Sprovodi se na vezi sa drugi ruting domenom
 - Classful sprovodi se na nivou mrežnog dela klase A, B i C, nezavisno od maske koja se koristi
 - 172.16.0.0/**16**

Classless ruting protokoli

- Maske su sadržane u rutama koje se razmenjuju između rutera
 - Promenljiva dužina maske (VLSM)
 - Fleksibilno agregiranje IP mreža prenošenje agregirane rute u drugi ruting domen
- Već dosta dugo se koriste isključivo classless ruting protokoli

Metrika

- Metrika
 - Za izbor najbolje rute kada postoji više različitih ruta do određene mreže
 - Posmatra se na nivou cele putanje do određene mreže
- Može se koristiti
 - Hop count broj koraka (rutera) do posmatrane mreže
 - Bandwidth izvedeno iz brzine veza (propusni opseg)
 - Cost proizvoljna cena koja se definiše
 - **Delay** kašnjenje koje veza unosi (npr. satelitske veze imaju veće kašnjenje od zemaljskih veza

nezavisno od kapaciteta)

Load – opterećenje linka

• Reliability - pouzdanost veze

Mreža	Met
172.16.0.0/24	0
172.16.1.0/25	1
172.16.1.128/24	1
172.16.1.160/27	2

Balansiranje saobraćaja

Load Balancing

- Više putanja (ruta) do određene mreže sa istom metrikom
- Slanje paketa preko više odlaznih veza
 - Obično jedan komunikacioni tok (svi paketa iste komunikacije) ipak ide samo preko jedne veze, a drugi tok može preko druge veze
 - Statistički se postiže ravnomernije opterećenje
- Bolje iskorišćenje ukupnog propusnog opsega
- U ruting tabeli za jednu mrežu postoji dve ili više next-hop adresa

Administrativna distanca

- Problem: dve različite rute do iste mreže dobijene preko različitih ruting protokola
 - Neuporedive metrike- npr. hop-count i bandwidth
- Administrativna distanca
 - Fiksne vrednost za različite protokole rutiranja
 - Određuje prioritet rute u slučaju poređenja sa rutom od drugog protokola
 - Manja vrednost veći prioritet

•	Veća	težina	u	odnosu	na	metriku
	v C C C	tozii id	u	Garrosa	IIG	

172.16.1.160/27

RIP : AD=120, met= 2, next-hop=172.16.1.254 OSPF : AD=110, met= 129, next-hop=172.16.1.250

R1: Ruting tabela			
Mreža	AD	Met	Next-hop
172.16.0.0/24	0	0	Connected
172.16.1.0/25	120	1	172.16.1.254
172.16.1.128/24	120	1	172.16.1.250
172.16.1.160/27	110	129	172.16.1.250

Connected	0
Static	1
EIGRP summary	5
BGP external	20
EIGRP internal	90
IGRP	100
OSPF	110
RIP	120
EIGRP external	170
BGP internal	200

- Osnovni cilj uspostavljanje ruting tabele
 - Potpuno, konzistentno, optimalno, adaptivno
- Razmena ruting informacija sa susednim ruterima (razmena ruta, tzv. ruting apdjet – "ruting update")
 - Adresa mreže (sa maskom)
 - Metrika do mreže
- Na osnovu ruta od susednih rutera, posmatrani ruter zna:
 - Distancu (metriku) do određene mreže
 - Vektor (next-hop) koji vodi do te mreže

10.20.30.0/24

- Ruter ne zna:
 - Ostale rutere
 - Topologiju mreže
 - Brzine veza i druge detalje

Pravilo

- Samo se najbolja ruta bira i upisuje u ruting tabelu
- U slučaju više najboljih ruta sve se upisuju (load balansing)

Rezultat

- I dalje se ne zna topologija mreže i ostali detalji
- Znaju se sve IP mreže, "distance" (metrike) i "vektori" (next-hop) do njih
 - Popunjena ruting tabela za svaku IP mrežu u ruting domenu

- Ruteri periodično oglašavaju rute iz ruting tabele
 - Oglašava se "pogled" na ostatak mreže iz ugla rutera
 - Periodično (npr. na 30 sek), čak i kada nema promena
- Oglašavanje rute u jednom smeru utiče na rutiranje ka oglašenoj mreži iz suprotnog smeru

- Konvergencija proces uspostavljanja stabilnog i konzistentnog stanja na svim ruterima u mreži
 - Stabilno stanje ruting tabele se ne menjaju sa novim ruting apdejtima
 - Konzistentno stanje sve rute su ispravne, nema nepravilnosti
- Konvergencija zavisi od:
 - Brzine propagacije ruting apdejta od rutera do rutera (u sekundama)
 - Brzine računanja ruta i uspostavljanja ruting tabela (u milisekundama)
- Cilj što brža konvergencija!

- Tokom konvergencije može nastati nekonzistentno stanje ruting tabela i petlje pri rutiranju, tzv. ruting petlje
- Primer:
 - Ispravno popunjene ruting tabele
 - Prekida se veza mreže 10.20.30.0/24

• Rutera A detektuje prekid i briše mrežu iz ruting tabele

Ruter C: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	0	Connected	
10.10.10.4/30	1	10.10.10.2	
10.20.30.0/24	2	10.10.10.2	
10.20.31.0/24	2	10.10.10.2	
10.20.50.0/24	0	Connected	

Ruter B: Ruting tabela				
Mreža	Met	Next-hop		
10.10.10.0/30	0	Connected		
10.10.10.4/30	0	Connected		
10.20.30.0/24	1	10.10.10.6		
10.20.31.0/24	1	10.10.10.6		
10.20.50.0/24	1	10.10.10.1		

	Ruter A: Ruting tabela				
	Mreža	Met	Next-hop		
	10.10.10.0/30	1	10.10.10.5		
	10.10.10.4/30	0	Connected		
_	10.20.30.0/24	0	Connected		
	10.20.31.0/24	0	Connected		
	10.20.50.0/24	2	10.10.10.5		

- Naredni ruting apdejt od Rutera B prema Ruteru A
 - Ruter B ima u ruting tabeli vezu prema 10.20.30.0/24, sa metrikom 1
 - Ruter A prihvata ovaj apdejt
 - Povećava metriku iz apdejta za 1 i postavlja na 2
 - Upisuje next-hop Rutera B 10.10.10.5

 Smatra se da Ruter B ima vezu do mreže preko nekog trećeg rutera, ali koji ne postoji!

10.10.10.0/30

10.10.10.4/30 10.20.30.0/24

Ruter A

Ruter C Ruter B

Ruter B: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	0	Connected	
10.10.10.4/30	0	Connected	
10.20.30.0/24	1	10.10.10.6	
10.20.31.0/24	1	10.10.10.6	
10.20.50.0/24	1	10.10.10.1	

	Ruter A: Ruting tabela				
	Mreža	Met	Next-hop		
	10.10.10.0/30	1	10.10.10.5		
	10.10.10.4/30	0	Connected		
>	10.20.30.0/24	2	10.10.10.5		
	10.20.31.0/24	0	Connected		
	10.20.50.0/24	2	10.10.10.5		

Ruter C: Ruting tabela				
Mreža	Met	Next-hop		
10.10.10.0/30	0	Connected		
10.10.10.4/30	1	10.10.10.2		
10.20.30.0/24	2	10.10.10.2		
10.20.31.0/24	2	10.10.10.2		
10.20.50.0/24	0	Connected		

- Naredni ruting apdejt od Rutera A prema Ruteru B
 - Ruter A ima u ruting tabeli vezu prema 10.20.30.0/24, sa metrikom 2
 - Ruter B prihvata ovaj apdejt
 - Povećava metriku iz apdejta za 1 i postavlja na 3
 - Upisuje next-hop Rutera A 10.10.10.6

Ruter C: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	0	Connected	
10.10.10.4/30	1	10.10.10.2	
10.20.30.0/24	2	10.10.10.2	
10.20.31.0/24	2	10.10.10.2	
10.20.50.0/24	0	Connected	

Ruter B: Ruting tabela					
Mreža	Met	Next-hop			
10.10.10.0/30	0	Connected			
10.10.10.4/30	0	Connected			
10.20.30.0/24	3	10.10.10.6			
10.20.31.0/24	1	10.10.10.6			
10.20.50.0/24	1	10.10.10.1			

- Naizmenično se nastavlja apdejti između Rutetra A i Rutera B
- Metrika se povećava do "beskonačnosti"
 - Ruter A: 0, 2, 4...
 - Ruter B: 1, 3, 5...
- Problem: "Count-to-Infinity"

- Problem: "Count-to-Infinity"
 - Povećanje metrike do "beskonačnosti"
 - "beskonačnost" = fiksna maksimalna vrednost, npr. 16
 - Nakon toga obe rute postaju nevalidne i brišu se iz ruting tabala Rutra A i Rutera B

Sve vreme postoji ruting petlja za paketa do mreže 10.20.30.0/24

Ruter C: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	0	Connected	
10.10.10.4/30	1	10.10.10.2	
10.20.30.0/24	2	10.10.10.2	
10.20.31.0/24	2	10.10.10.2	
10.20.50.0/24	0	Connected	

Ruter B: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	0	Connected	
10.10.10.4/30	0	Connected	
10.20.30.0/24	1	10.10.10.6	
10.20.31.0/24	1	10.10.10.6	
10.20.50.0/24	1	10.10.10.1	

Ruter A: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	1	10.10.10.5	
10.10.10.4/30	0	Connected	
10.20.30.0/24	2	10.10.10.5	
10.20.31.0/24	0	Connected	
10.20.50.0/24	2	10.10.10.5	

Tehnike zaštite od ruting petlji

- Na nivou IP protokola
 - Time to Live
- Na nivou ruting protokola
 - Route Poisoning
 - Triggered update
 - Split horizon
 - Holddown Timer

Route Poisoning

- Oglašavanje da je mreža postala nedostupna (unreachable)
 - Ruta se briše iz ruting tabele i oglašava se sa "beskonačnom" metrikom
- Kada ostali ruteri dobiju rutu sa "beskonačnom" metrikom
 - Upisuju ovu rutu u ruting tabelu ruta je nevalidna
 - Čuvaju rutu u ruting tabeli određeno vreme

Ruter C: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	0	Connected	
10.10.10.4/30	1	10.10.10.2	
10.20.30.0/24	2	10.10.10.2	
10.20.31.0/24	2	10.10.10.2	
10.20.50.0/24	0	Connected	

Ruter B: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	0	Connected	
10.10.10.4/30	0	Connected	
10.20.30.0/24	16	10.10.10.6	
10.20.31.0/24	1	10.10.10.6	
10.20.50.0/24	1	10.10.10.1	

Triggered update

- Kada ruta postane nedostupna
 - Ne čeka se sledeći periodični ruting apdejt
 - Istog trenutka se oglašava da je nedostupna
- Oglašava se samo jedna ruta, a ne cela ruting tabela
- Konvergencija se značajno ubrzava

Ruter C: Ruting tabela			
Mreža	Met Next-hop		
10.10.10.0/30	0	Connected	
10.10.10.4/30	1	10.10.10.2	
10.20.30.0/24	2	10.10.10.2	
10.20.31.0/24	2	10.10.10.2	
10.20.50.0/24	0	Connected	

Ruter B: Ruting tabela			
Mreža	Met	Next-hop	
10.10.10.0/30	0	Connected	
10.10.10.4/30	0	Connected	
10.20.30.0/24	16	10.10.10.6	
10.20.31.0/24	1	10.10.10.6	
10.20.50.0/24	1	10.10.10.1	

	Ruter A: Ruting tabela				
	Mreža	Met Next-hop			
	10.10.10.0/30	1	10.10.10.5		
	10.10.10.4/30	0	Connected		
_	10.20.30.0/24	0	Connected		
10.20.30.0/24, [16] ected					
	10.20.50.0/24	2	10.10.10.5		

Split Horizon

- Pravilo Split Horizon:
 - Nikada se ne oglašava ruta na interfejs preko koga je ta ruta pristigla

Split Horizon & Poison Reverese

- Poison Reverse
 - Nevalidna ruta se ipak oglašava na interfejse preko kojeg je ta ruta pristigla - suspenduje se pravilo Split Horizont samo za ovaj slučaj
 - Koristi se Triggered Update
- Ruter potvrđuje da nema bolju rutu

10.20.50.0/24, [2]

25

Primer sa redundantnim vezama

- Stacionarno stanje
 - Svi ruteri oglašavaju rute prema pravilu Split Horizon
 - R1 i R2 međusobno ipak razmenjuju rutu do mreže 10.10.30.0/24, jer su tu rutu naučili od R2

Primer sa redundantnim vezama

- Route Poisoning, Triggered update i Split horizon ipak nisu dovoljni:
 - Poslat Route Poisoning i Triggered update za mrežu 10.10.10.0/24 do R2
 - R3 šalje regularni updejt neposredno pre nego što stigne trigerovana ruta
 - U ruting tabelu R2 se upisuje beskonačna metrika 16
 - Pristiže regularni updejt sa zastarelom informacijom metrika 2!

Holddown timer

- Smisao čeka se određene vreme da bi se informacija o promeni propagirala do svih rutera
- Kada ruter dobije Route Poisoning Triggered update
 - Startuje se *Holddown timer*
 - Tokom Holddown vremena ignorišu se sve nove rute za tu mrežu

Routing Information Protocol — RIPv1

- RIP verzija 1 RFC 1058, 1988.
- Administrativna distanca 120
- Classful ne podržava VLSM, automatska autosumarizacija
- Metrika hop-count, max. 16
- RIP radi na aplikativnom nivou
 - RIP poruke se prenose unutar UDP poruka na 4. nivou UDP port 520
- Komunikacija u dva koraka, na svakih 30 sekundi:
 - 1. RIP Request poruka
 - Navodi se mrežna adresa za koju se traže rute tipično 0.0.0.0 za sve rute
 - Slanje na brodkast adresu 255.255.255.255 ("This network")
 - 2. RIP Response poruka
 - Odgovora se na upit obično sve rute (cela ruting tabela)
 - Do 25 ruta u jednoj poruci
 - Slanje na unikast adresu rutera koji je poslao upit

Routing Information Protocol — RIPv2

- **RIP verzija 2** RFC 1723, 1993.
- Kompatibilan sa RIPv1
- Razlike u odnosu na RIPv1
 - "Classless" Classless Inter-Domain Routing (CIDR), od 1998.
 - Podrška za VLSM maska se prenosi u ruting apdejtima
 - Komunikacija
 - RIP Request poruka
 - Slanje na multikast adresu 224.0.0.9 (adresa na kojoj "slušaju" svi RIPv2 ruteri)
 - RIP Response poruka
 - Slanje na unikast adresu rutera koji je poslao upit
 - Međusobna autentifikacija susednih rutera od 1997.
 - Zajednički ključ (lozinka)
 - Niz ključeva (Key Chain) definisan ključ i promenljiv indeks (broj)
 - Razmenjuju se korišćenjem sigurnosne heš funkcije MD5
 - Periodična promena indeksa (novi šifrovani ključ) u toku rada

Format RIP paketa

- Command 1 za Request, 2 za Response
- Version 1 za RIPv1, 2 za RIPv2
- Address Family Identifier 2 za IP adrese (što se i koristi)
- IP Address mrežna adresa za koju se odnose rute
 - 0.0.0.0 sve rute, cela ruting tabela
- Subnet mask samo za RIPv2, ne koristi se za RIPv1
- Next-hop samo za RIPv2, ne koristi se za RIPv1

Metric – broj koraka, od 1 do 16 (+1 u odnosu na vrednost

iz ruting tabelu)

)	1. bajt	2. bajt	3. bajt	4. bajt	
	Command	Version	Unused		
	Address Family Identifier		Route Tag		
Jedna	IP Address				
ruta	Subnet Mask				
	Next-hop				
	Metric				
	do 25 ruta				

- Prednosti Distance Vector ruting protokola
 - Jednostavna implementacija, konfigurisanje i održavanje
 - Nisu zahtevni u pogledu permormansi (CPU i memorije)
 - Malo zauzeće linka za manje mreže
- Nedostaci Distance Vector ruting protokola
 - Neadekvatna metrika
 - Nedovoljna skalabilnost
 - Brži mehanizam propagiranja informacija
 - Spora konvergencija, posebno za veće mreže i pored Triggered Update mehanizma

Literatura

 Wendell Odom " CCNA - Cisco official exam certification guide" Cisco Press

James Kurose, Keith Ross
"Computer Network - A Top-Down Approach"

 James Kurose, Keith Ross "Umrežavanje računara: Od vrha ka dnu" prevod 7. izdanja CET

