Special	Symmetric matrix A is +ve/(-ve) definite if for any vector x, $x^TAx > (<)0$. \geq (non -ve); \leq (non +ve) definite							
Matrix	If A is a sq matrix and $A^TA = I$, then A is orthogonal matrix -> rows/cols of A form orthonormal basis for R^n -> all rows/cols are pairwise							
	orthogonal ($u \cdot v = 0$) & all rows/cols are unit vector							
	If AB and BA are both compatible -> tr(AB) = tr(BA) & AB and BA have the same non-zero eigenvalues							
	If A is non-negative definite, $\max_{x} \frac{x^{TAx}}{x^{Tx}} = \lambda_{max}(A)$, where λ_{max} denotes largest eigenvalue							
	If A is non-negative definite and B is non-singular (i.e. has inverse, det(B) = 0), $\max_{x} \frac{x^{T}Ax}{x^{T}Bx} = \lambda_{max}(AB^{-1})$							
Descriptive	Var of X is $\sigma^2 = E(X - E(X))^2 = \int (x - E(X))^2 dF(x)$. Sample var is $\frac{1}{n} \sum_{i=1}^n (x_i - \bar{X})^2$							
quantities	Let Y be another r.v. w observed sample $y_1,, y_n$. Covariance btw X and Y is $Cov(X, Y) = E[(X - E(X))(Y - E(Y))]$							
	If Cov(X, Y) = 0, then X and Y are un-correlated. Sample covariance is $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{X})(y_i-\bar{Y})$							
	Suppose X has a cts dist. The $(1 - \alpha)$ -quantile (upper α -quantile), q_{α} is defined s.t. $F(q_{\alpha}) = 1 - \alpha$ or $1 - F(q_{\alpha}) = \alpha$							
	Mean: $E(\sum_{j=1}^{m} c_j X_j) = \sum_{j=1}^{m} c_j E(X_j)$. Var: $Var(X) = E(X^2) - [E(X)]^2$							
	$\operatorname{Var}\left(\sum_{j=1}^{m}a_{j}X_{j}\right)=\sum_{i=1}^{m}\sum_{j=1}^{m}a_{i}a_{j}\operatorname{Cov}\left(X_{i},X_{j}\right) \text{ in general; } \operatorname{Var}\left(\sum_{j=1}^{m}a_{j}X_{j}\right)=\sum_{j=1}^{m}a_{j}^{2}\operatorname{Var}\left(X_{j}\right) \text{ if } X_{j}\text{'s are un-correlated}$							
	Covariance: Cov(X, Y) = E(XY) - E(X)E(Y). Cov $\left(\sum_{i=1}^{m} a_i X_i, \sum_{j=1}^{n} b_j Y_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j Cov\left(X_i, Y_j\right)$							
	Sample var: $\frac{1}{n}\sum_{i=1}^{n}(x_i)^2 - (\bar{X})^2$. Sample cov: $\frac{1}{n}\sum_{i=1}^{n}(x_i - \bar{X})(y_i - \bar{Y}) = \frac{1}{n}\sum_{i=1}^{n}(x_iy_i) - \bar{X}\bar{Y}$							
	Let A, B be constant matrics and b, c be vectors. Let X, Y be random vectors.							
	$E(AX + b) = AE(X) + b$ where $E(X) = (E(X_1),, E(X_p))^T$							
	$Var(AX + \mathbf{b}) = AVar(X)A^{T}$ where $Var(X) = Cov(X_i, X_j) = E(X - E(X))(X - E(X))^{T}$. Note $Cov(X_i, X_i) = Var(X_i)$							
	$Cov(AX + \mathbf{b}, BX + \mathbf{c}) = AVar(X)B^{T}$. $Cov(AX + \mathbf{b}, BY + \mathbf{c}) = ACov(X, Y)B^{T}$ where $Cov(X, Y) = Cov(X_i, Y_j) = E(X - E(X))(Y - E(Y))^{T}$							
Matrix op	r.v. X has uni-variate normal dist if pdf is $f(y \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$ where μ is the mean and σ^2 is the var of the dist							
on Exp and								
Var	Normal dist is denoted by N(μ , σ^2). If μ = 0, σ^2 = 1, it is the standard normal dist. Normal dist is symmetric about its mean							
	If $X \sim N(\mu, \sigma^2)$, then $Z = (X - \mu)/\sigma \sim N(0,1) := standardisation$							
Uni- · ·	Let $\mathbf{Y} = (Y_1,, Y_m)^T$ be random vector whose components are iid standard normal variables. Let A be q x m constant matrix and $\boldsymbol{\mu}$ a constant							
variate	vector. Dist of $\mathbf{X} = \mathbf{AY} + \boldsymbol{\mu}$ is a q-dimensional multivariable normal dist w mean $\mathbf{E}(\mathbf{X}) = \boldsymbol{\mu}$ and var matrix $\boldsymbol{\Sigma} = \mathbf{AA}^T$, and denoted by $\mathbf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$							
Normal	$\begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & \cdots & Cov(X_1, X_q) \\ Cov(X_1, X_2) & \cdots & Cov(X_1, X_q) \end{pmatrix}$							
dist	$\sum = \begin{bmatrix} Cov(X_2, X_1) & Var(X_2) & \cdots & Cov(X_2, X_q) \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix}$. Normal dist is uniquely determined by its mean and var matrix $\sum Cov(X_1, X_1) = Cov(X_1, X_1)$.							
	$\Sigma = \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & \cdots & Cov(X_1, X_q) \\ Cov(X_2, X_1) & Var(X_2) & \cdots & Cov(X_2, X_q) \\ \cdots & \cdots & \cdots & \cdots \\ Cov(X_q, X_1) & Cov(X_q, X_2) & \cdots & Var(X_q) \end{pmatrix}.$ Normal dist is uniquely determined by its mean and var matrix Σ							
	pdf of N(μ , Σ) is f(x μ , Σ) = $\frac{1}{(2\pi \Sigma)^{q/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$							
	(=(Δ))							
	If X is a multivariate normal vector, then for any constant matrix B, BX has a multivariate normal dist $N(B\mu, B\Sigma B^T)$							
	\forall constant vector c , the LC c ^T X has a univariate normal dist N(c ^T μ , c ^T \sum c) and any component of X is an univariate normal var							
	If $X^{\sim}N(\mu, \Sigma)$, then $Z = \sum_{i=1}^{n-1} (X - \mu)^{\sim}N(0, I)$, i.e. components of Z are iid $N(0, 1)$ variables							
Multi-	Let $\mathbf{Z} = (Z_1,, Z_m)^T$. Suppose Z_j 's are iid N(0,1) variables. Dist of $\mathbf{Z}^T\mathbf{Z} = \sum_{j=1}^m Z_j^2$ is called the χ^2 -dist w d.f. m and denoted by χ_m^2							
variate	Suppose Z^N(0,1), U^ χ_m^2 , Z and U are indep. The dist of Z/($\sqrt{\text{U/m}}$) is called the t-dist w d.f. m and denoted by t_m							
normal	Suppose $U^{\sim}\chi_{m}^{2}$, $V^{\sim}\chi_{n}^{2}$, U and V are indep. Dist of $\frac{U/m}{V/n}$ is called the F-dist w d.f. m and n and denoted by $F_{m,n}$							
dist	If $\mathbf{X}^{\sim} N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{W} = (\mathbf{X} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})^{\sim} \chi_m^2$							
χ^2 , t and	If $Z^{\sim}N(0,I)$, A is symmetric and idempotent, then $Z^{T}AZ^{\sim}\chi_{r}^{2}$, where $r = rk(A) = tr(A)$ Let θ be param of interest. Suppose $\theta = g(m_1, m_2,)$ (1st moment, 2nd moment,). Then MME of θ is obtained by replacing the theoretical							
χ-, t and F - dist								
r - aist	moments in the fn w the corresponding sample moments, i.e. $\hat{\theta}_{MME} = g(\hat{m}_1, \hat{m}_2,)$							
	For any dist, the var $\sigma^2 = m_2 - m_1^2$ (E(X ²) - [E(X)] ²), its MME is given by $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{X}^2$. MME is not unique.							
Mtd of	If X has pdf f(x, θ), given the observation x ₁ ,,x _n of a random sample, the log likelihood fn of θ is defined as $\ell(\theta) = \sum_{i=1}^{n} \ln f(x_i, \theta)$. The							
Moment	MLE of $ heta$ is value of $ heta$ that maximizes the log-likehood fn.							
estimation	E.g. let $(x_1,,x_n)$ be observation of random sample from $N(\mu,\sigma^2)$.							
(MME)	Likelihood fn: $\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2}$ (μ is prediction here, i.e. $x_i-\mu=y_i-\hat{y}_i$)							
	The log likelihood fn of (μ, σ^2) is then $\ell(\mu, \sigma^2) = \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2} = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$							
	MLE of μ and σ^2 are obtained by maximizing $\ell(\mu, \sigma^2)$ and are given by $\hat{\mu} = \bar{X}$, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{X})^2$							
Maximum	Null hypothesis H_0 and alternative hypothesis H_1 . The 2 hypotheses are mutually exclusive							
likelihood	A test statistic, $T(x)$ is used. If $T(x) \ge c$ for a predetermined constant $c \rightarrow r$ reject H_0 . If not \rightarrow don't reject H_0							
estimation	To control the type I error rate (reject H_0 when H_0 true) at a given level α , i.e. choose c s.t. $P(T(X) \ge c \mid H_0) \le \alpha \rightarrow reject H_0$							
(MLE)	H ₀ should be s.t. type I error is more serious. If still not clear, H ₀ should be a well-established theory OR opp of new guess							
Simple	Correlation \neq causation. Correlation coefficient can only be btw -1 and 1, i.e1 $\leq \rho_{xy} \leq 1$							
Linear	Pearson's correlation, the theoretical correlation is $\rho_{XX} = \frac{Cov(X,Y)}{T}$ the sample correlation is $\hat{\rho}_{XX} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{T} = corr(X,Y)$							
Regres-	Pearson's correlation, the theoretical correlation is $\rho_{xy} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$, the sample correlation is $\hat{\rho}_{xy} = \frac{\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2\sum_{i=1}^{n}(y_i-\bar{y})^2}} = corr(X,Y)$							
	If ρ_{xy} > 0: move in same dir. If ρ_{xy} < 0: move in opp dir. Both DO NOT imply a causal r/s							
	If $\rho_{xy} = 0$, X and Y have no LINEAR r/s. X and Y could have other kinds of r/s (e.g. quadratic)							
	· · · · · · · · · · · · · · · · · · ·							

```
If \rho_{xy} > 0: move in same dif. If \rho_{xy} < 0: move in opp dif. Both DO NOT Imply a causal r/s

If \rho_{xy} = 0, X and Y have no LINEAR r/s. X and Y could have other kinds of r/s (e.g. quadratic)

Y is the response variable. X = covariate/predictor

A simple regression model (SRM) is Y = \beta_0 + \beta_1 X + \epsilon,

E(Y) = \beta_0 + \beta_1 X is called the regression function (E(Y|X) more technically correct way to write it)

W observations (x<sub>i</sub>, y<sub>i</sub>), observed simple LRM is y<sub>i</sub> = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1,...,n. Error term is diff for ea observation

Assumptions of simple linear regression model (LRM):

1. x<sub>i</sub> and \epsilon_i are indep. Note indep \rightarrow un-correlated, \leftarrow not necessary. (Unless normal var, then indep <-> un-correlated)

2. \epsilon_i have mean 0

3. \epsilon_i are pairwise un-correlated, i.e. Cov(\epsilon_i, \epsilon_j) = 0

4. \epsilon_i have common variance \sigma^2 (Homogeneity)

5. \epsilon_i have a Normal dist (Normality)

LRM is then called a Normal LRM. Assumptions can be simply stated, \epsilon_i, iid \simN(0, \sigma^2) in addition to (1)

From Y = \beta_0 + \beta_1 X + \epsilon,

1) E(Y) = \beta_0 + \beta_1 E(X)

2) Cov(X, Y) = \beta_1 Var(X)
```

	So $\beta_1 = \frac{Cov(X,Y)}{Var(X)}$	o $\beta_1 = \frac{Cov(X,Y)}{Var(X)} = \rho_{xy} \frac{\sigma_y}{\sigma_x}$ and $\beta_0 = \mu_y - \beta_1 \mu_x$ (exact values of β_0 , β_1)						
	(eta_0,eta_1) will the	R_0, β_1) will then be the soln to $\min_{b_0,b_1} E(Y-b_0-b_1X)^2$ (i.e. error term minimised)						
	So regression f	$\ln \beta_0 + \beta_1 X$ is	best linear approximation of	of X to Y				
Estima- tion of	LSE of Property	$\gamma(\beta_0, \beta_1)$ min	imizes $E(Y - b_0 - b_1 X)^2$ g = $_1(y_i - eta_0 - eta_1 x_i)^2$ = SSE	gives rise to the least s	square es	timation (LSE), wh	ich estima	te the params by minimizing
LRM			$2\sum_{i=1}^{n}(y_i-eta_0-eta_1x_i)^{-1}-33E$	$\frac{\partial Q}{\partial x} = 2\sum_{i=1}^{n} x_i(y_i) =$. R R. 1	v.) and equate ho	th to O	
						i) and equate bo	111100	
			$= \frac{\sum_{i=1}^{n} (x_i - \bar{X})(y_i - \bar{Y})}{\sum_{i=1}^{n} (x_i - \bar{X})^2}, \text{ where } \bar{X}$	$= -\frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } Y = -\frac{1}{n}$	$\sum_{i=1}^{n} y_i$			
	LSE of $\sigma^2 = E(\epsilon)$			2 and σ^2 actimated by	w ê2 − c2	- CCE//n 2)		
	Estimator of σ	is $\hat{\sigma}$ is called	$1) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i$ the residual standard error	and o estimated b	Dy 0 - 5-	- 33E/(II-2)		
			fn: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$	Residuals: $e_i = y_i - \hat{y}_i$	•			
	Fitted values: ý			Value $\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 X$	* is called	I the predicted val	ue of a res	sponse at X*
			by total sum of squares: SST y X; regression sum of squa					
			andom errors; residual sum		$\hat{y}_i + \epsilon_i$			
	ANOVA table for	or SRM	T			T		
	source Regression		df (deg of freedom) 1	SS (sum of sq) $SSR = \sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)$	v)2	MS (mean of sq) MSR = SSR/1		F (f ratio) MSR/MSE
	Error		n-2	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)$		MSE = SSE/(n-2)		IVISIT/ IVISL
	Total		n-1	$SST = \sum_{i=1}^{n} (y_i - \bar{Y}_i)$	$(\vec{Y})^2$			
			n, R^2 = proportion of variation					
			imate is given by $R_a^2 = \frac{n-1}{n-p-1}$			predictors and eq	uals 1 for s	simple LRM
			increases. But R_a^2 does not			02 72	02 72	CCD
	$\beta_0 = \overline{Y} - \beta_1 \overline{X},$	$\beta_1 = \frac{\sum_{i=1}^n (x_i - x_i)}{\sum_{i=1}^n (x_i)}$	$\frac{(\bar{Y})(y_i - \bar{Y})}{(-\bar{X})^2}$, SSR = $\beta_1^2 \sum_{i=1}^n (x_i - \bar{Y})^2$	$(X)^2$, $(X)^2 = (X)^2$	= corr(Y,	$(X)^2 = \rho_{xy}^2 = \frac{\rho_1 \sigma_{\bar{x}}}{\sigma_y^2} =$	$\frac{\beta_1 \sigma_x}{\beta_1^2 \sigma_x^2 + \sigma^2} =$	SST
	Summary resul				T		L B (1.11)	
	(Intercept)	Estimate $\hat{\beta}_0$	Std. Error $s(\hat{\beta}_0)$		t value $\widehat{\beta}_0$	-	Pr(> t)	for 2-sided test on \hat{eta}_1
	, , ,				$\frac{\beta_0}{S(\widehat{\beta}_0)} = 7$			_
	X	\hat{eta}_1	$s(\hat{eta}_1)$		$\frac{\beta_1}{S(\widehat{\beta}_1)} = T_{\beta_1}$		p-value 1	for 2-sided test on \hat{eta}_1
	Residual stan	dard error:	T		$\hat{\sigma} = \sqrt{MSE}$			
	Multiple R-sq	uared:	$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = \frac{MSR}{SST}$		Adjusted R-squared:		R_a^2	
	F-statistic:		$MSR/MSE = (T_{\beta_1})^2$		p-value		p-value	of the significant F test
		^	explain how much of variati		h			
			d amt of change in expecta * w new observation X* usi		by an uni	t amt		
	Fitted regression	on function: 1	\widehat{Y} = \widehat{eta}_0 + \widehat{eta}_1 X. We can say Y i		hen X incr	by 1 unit, Y incr/	decr by \hat{eta}_1	<u> </u>
Theoretic			$\frac{\%}{6}$ of the variation in Y as an estimator of σ^2 : Thu	- F-2 -2				
Theoretic Propertie			/fitted regression fn:	S ES ² = 0 -				
of LSE			on fn $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ is an unb	iased estimator of EY	$= \beta_0 + \beta_1$	X , i.e. $E(\widehat{Y}) = E(Y)$		
	$var(\hat{Y}) = \begin{bmatrix} \frac{1}{n} \end{bmatrix}$	$+\frac{(X-\bar{X})^2}{\sum_{n=1}^{n}(x_n-\bar{x})}$	$\frac{1}{2} \sigma^2$. OR using $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1$	$(X, \operatorname{var}(\widehat{Y}) = \operatorname{var}(\widehat{\beta}_0) + 2X$	XCov(\hat{eta}_0 ,	$\hat{eta}_1)$ + X 2 var(\hat{eta}_1)		
	L.	$-\iota=1$	ា a new value X, the predictic				_ [1 _ 1	$\left[\frac{(X-\bar{X})^2}{\sigma^2} \right] \sigma^2$
			ormality condition is assum			- vai(E) + Vai(I)	$ \lfloor 1 + \frac{\pi}{n} \rfloor$	$\sum_{i=1}^{n} (x_i - \bar{X})^{\frac{1}{2}} \int_{0}^{\infty} dx$
			ormality condition is assum list, \hat{eta}_0 , \hat{eta}_1 are normally dist			2]_2\ â($\rho \int \sigma^2$	1)
	_			\ L		. , , , ,	$\sum_{i=1}^n (x_i)$	$-\bar{X})^2$
			$^{\sim}\chi^2$ -dist w df n-2 & is indep					
	_		ether or not there is a linea such r/s. Alternative hypoth	-	he respor	ise var & the cova	riate	
			c, where $F = \frac{MSR}{MSE}$ (intuitively		oy covaria	te > variation caus	sed by erro	or ⇒ r/s exist)
			df 1 and n-2, since SSR and				,	, - <i></i> ,
	If F > upper	r $lpha$ quantile f	$f_{1, n-2}(\alpha)$, H_0 is rejected at lev				α = P(type	e 1 error)
		or the infere	nce on eta_1 ed directly for inference, sin	ice its var involves σ^2	which is	unknown		
			Define $T_{eta_1} = rac{\widehat{eta}_1 - eta_1}{s(\widehat{eta}_1)} = ext{t-dist} \sim$		WITHCH IS	ulikiiUWII		
Ctatistic		<i>□l</i> =1(** <i>l</i> **)	Define $I_{\beta_1} = \frac{1}{s(\hat{\beta}_1)} = t$ -dist I_0 : $\beta_1 = 0$ and I_1 : $\beta_1 \neq 0$	vn-2•				
Statistical Inference		^	• = • • =					
for simple	i est-statist	- (P	$\frac{t_{-1}}{t_{1}} \sim t_{n-2}$ under H ₀	If T \ + \ / \ / 2\ +	hon rois -	+ U. O+harudaa ∃	on't rois-	• Ш.
LRM			ually taken as 0.05 or 0.01). $_2 > T_{0\beta_1} $) (T is observed v					
			p-sided test for β_1 = p-value					
	One-sided	test for eta_1						
			(Equal sign w H ₀). If $T_{0\beta_1}$ > If $T_{0\beta_1}$ < t _{n-2} (α), OR p = P(t _n				don't	
			, -				ct ctatiotic	$S = \widehat{\beta}_1 - c$
	רטו טטנוו 2-	-siucu, allu 1-	-sided test, value 0 in hypot	ineses can be replace	u by ally (Jonistanit C, then te	or oralistic	$s - \frac{1}{s(\hat{\beta}_1)}$

	From dist of T 100/1 a	$\frac{1}{100}$ Cl for θ is $1\hat{\theta} + \frac{1}{100}$	10 0 + 10	v/2)s/ê \1 Cl are used fe	or 2 sidad tast	<u> </u>	
		% CI for β_1 is $[\hat{\beta}_1 - t_{n-2}(\alpha/2)]$					
	100(1- α)% lower confidence bound: $\beta_1 \ge \hat{\beta}_1$ - $t_{n-2}(\alpha)s(\hat{\beta}_1)$. This corresponds to 1-sided test (H ₀ : $\beta_1 \le 0$, H ₁ : $\beta_1 > 0$) 100(1- α)% upper confidence bound: $\beta_1 \le \hat{\beta}_1 + t_{n-2}(\alpha)s(\hat{\beta}_1)$. This corresponds to 1-sided test (H ₀ : $\beta_1 \ge 0$, H ₁ : $\beta_1 < 0$)						
	The inference on eta_0					. = .	
	$T_{\beta_0} = \frac{\beta_0 - \beta_0}{s(\hat{\beta}_0)}$, where $s^2(\hat{\beta}_0) = \left[\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (x_i - \bar{X})^2}\right] \sigma^2$						
	Dist of T_{β_0} also t_{n-2} . Inference is similar to β_1 . E.g. 95% CI for β_0 is $\hat{\beta}_0 \pm t_{n-2}(\alpha/2)s(\hat{\beta}_0)$ Prediction						
						\hat{y} is the predicted value for x_h	
	Prediction interval of Y_{new} var $(Y_{\text{new}}) = \text{var}(\hat{y}_h) + \hat{\sigma}^2$, where $\hat{\sigma}$	when predictor value is x _h : ý	$\hat{y}_h \pm t_{n-2} (\alpha/2)$	$\sqrt{var(Y_{new})}$, where va	$r(Y_{\text{new}}) = \hat{\sigma}^2 \left[1 \right]$	$1 + \frac{1}{n} + \frac{(X-X)^2}{\sum_{i=1}^n (x_i - \bar{X})^2}$	
		here $y_h = \beta_0 + \beta_1 x_h$ $(\hat{y}_h) = \text{var}(\hat{\beta}_0) + x_h^2 \text{var}(\hat{\beta}_1) + 2$	$2x_h cov(\hat{\beta}_0, \hat{\beta}_1), v$	values and $\hat{\sigma}^2$ can be fo	und from sum	mary results	
	LSE as Method of moments	estimation (MME): just repla	ace theoretical	moments w sample mo	ments		
	From $\beta_1 = \rho_{xy} \frac{\sigma_y}{\sigma_x}$, $\beta_0 = \mu_y - \beta$	$_1\mu_x\Rightarrow$ LSE is then \hat{eta}_1 = $\hat{ ho}_{xy}rac{\hat{\sigma}_y}{\hat{\sigma}_y}$	$\hat{\beta}_{y}$ and $\hat{\beta}_{0}$ = $\hat{\mu}_{y}$ -	$\hat{eta}_1\hat{\mu}_x$, where a qty w a	hat = sample v	version of that qty	
	LSE as Maximum Likelihood		•			_	
	$-\frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \beta_0)$					$\hat{\beta}_1 x_i)^2 = \frac{n-2}{n} S^2$	
	Maximizing the log-likelihood	d to obtain the MLE of the re	egression coeff	icients is equivalent to I	minimizing Q		
Multiple		$\sum_{i=1}^{n} a_i x_i = a_1 x_1 + + a_n x_n =$			Г		
Linear Regression	Matrix form of quadratic form	ns: $\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = \mathbf{x}^T A \mathbf{x}$	α , where A = $\begin{pmatrix} \alpha \\ \alpha \end{pmatrix}$	$ \begin{array}{ccc} \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array} $			
	Matrix form of differentiat	ion: Let $f(\mathbf{x})$ be a multivariat	te fn. Define $\frac{\partial f}{\partial x}$	$\frac{(x)}{dx} = \left(\frac{\partial f(x)}{\partial x}, \dots, \frac{\partial f(x)}{\partial x}\right)^{T},$			
		2A x if A is symmetric, (A + A		$x (\partial x_1 $			
	In multiple LRM, find r/s by	tw response var Y and p pre	dictor variables	$s/covariates X = (X_1,, X_n)$	(_p)		
	Then multiple LRM is Y = β	$_0$ + eta_1 X ₁ + + eta_p X _p + ϵ , whe	ere ϵ is random	error w mean 0			
		$eta_p X_p$ is the multiple linear re + $eta_1 x_{i1}$ + + $eta_p x_{ip}$ + ϵ_i , i =		r more strictly speaking	EY is E(Y X)		
				$\begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \end{bmatrix} \begin{bmatrix} A & A & A \end{bmatrix}$	β_0] $[\epsilon_0$]		
	$\text{Let X} = \begin{bmatrix} 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix}$	$\begin{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \boldsymbol{\gamma} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon \\ \vdots \\ \epsilon \end{bmatrix}$	Then $\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ =	$= \begin{bmatrix} 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \mu \\ \mu \end{bmatrix}$	$\begin{bmatrix} S_1 \\ \vdots \\ S_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}$ OR	y = Xβ + ε. X aka design matrix	
		LRM (similar to simple LRM		1. $X_1,,X_p$ and ϵ are in			
	2. ϵ_i have mean 0	2 (11		3. ϵ_i are pairwise un-			
	4. ϵ_i have common variant Let μ_V denote mean of Y. μ_V		$= (X_1, \dots, X_n), \Sigma_V$	5. ϵ_i have a Normal d ν : covariance vector bt		$rac{1}{N_{\chi}}$: covariance matrix of X and $oldsymbol{eta}_{1}$	
	$= (\beta_1,, \beta_n)$. By assumptio	n1, $\beta_1 = \sum_{v,v}^{-1} \sum_{v,v}, \beta_0 = \mu_v - I$	$\mathcal{B}_1^T \boldsymbol{\mu}_Y$,	
Least sq	Estimate β_0 , β_1 ,, β_p b	y minimizing Q = $\sum_{i=1}^{n} (y_i -$	$\beta_0 - \beta_1 x_{i1} - \dots$	$\beta_{p}x_{ip}\big)^{2}=\left\ \boldsymbol{y}-\boldsymbol{X}\widehat{\boldsymbol{\beta}}\right\ $	\parallel^2 (norm)		
estimate for multiple LRM	LSE of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}} = (X^TX)^{-1}X^T\mathbf{y}$						
·	$\hat{\sigma}^2 = \frac{SSE}{df} = \frac{\ \mathbf{y} - \mathbf{x}\hat{\boldsymbol{\beta}}\ ^2}{n - p - 1} = \frac{\ \mathbf{y} - \mathbf{x}\hat{\boldsymbol{\beta}}\ ^2}{n - p - 1}$	$\frac{-X(X^{T}X)^{-1}X^{T}y\ }{n-p-1}$					
Hat matrix		atrix of X. It is the projection	matrix of the l	inear space spanned by	the cols of X		
& properties	$H = H^T$, $HX = X$, $H^2 = H$, $(I-H)^T$ Residual vector: $\mathbf{e} = \mathbf{v} - \widehat{\mathbf{v}} = \mathbf{v}$	'= I-H, X'H = X' (I-H) y . Vector of fitted value	es: $\widehat{m{v}}$ = H $m{v}$				
	Hence $e^T 1 = 0$ (by assumpt	ion 2), $\mathbf{e}^{T}\mathbf{x}_{j} = 0$ (by assumption	on 1), mean of				
Decomposition Sum of Squar		d H _E are all symmetric and in					
-	Tierice 331 - y Tify	= $\mathbf{y}^{T}(I - \frac{11^T}{n})\mathbf{y}$. SSR = $\mathbf{y}^{T}H_{R}\mathbf{y}$ =				. SST = SSR + SSE	
Dist of Sum o Squares	Under assumptions of m	ultiple regression models, (= β_p = 0, SSR and SSE are in	(NOTE Var(AY) = den ^{SSE} ~ v ²	Avar(Y)A', cov also sim $\frac{SSR}{2} \sim v^2$	ııar)		
ANOVA	Source of variation	$\frac{-\rho_p - 0,3311\text{and}332\text{are inf}}{ SS }$	$\frac{dep._{\sigma^2} \chi_{n-p}}{df}$	$\frac{1}{\sigma^2} \frac{\lambda p}{\sigma^2}$ MS		F-statistic	
Table	Regression	SSR	р	MSR=SS	SR/p	$MSR/MSE = F_{p, n-p-1}$	
	Error	SSE	n-p-1	MSE=SS	E/(n-p-1)		
Coefficient of	Total	SST	$\frac{\mid n-1 \mid}{\mid n-1 \mid}$	$ \begin{array}{c c} & & \\ & \\ i=1 \\ \end{array} (\hat{y}_i - \bar{y})^2 SSR \qquad , $	⇔ 12		
multiple	coefficient of multip	le determination for multipl	E LKIVI IS $K^2 = \frac{1}{\Sigma}$	$\frac{n}{i=1}(y_i-\bar{y})^2 = \frac{1}{SST} = \text{corr}(\mathbf{y},$	<i>y</i>) ⁻		
determinatio			= العالم سييم	aanaanla seesst +	efficient.		
Multiple correlation		r Y w scalar covariate is mea pefficient btw response var \				$= \max CORR(Y, \boldsymbol{a}^T \boldsymbol{z})$ where \boldsymbol{a}	
coefficient	is a vector of constants, (i.e.			, ,,	. , ,	a	
	$[MCORR(Y, \mathbf{z})]^2 = \frac{\sum_{yz} \sum_{zz}^{-1} \sum_{zz}^{-1$	$\frac{zy}{x}$, where \sum_{yz} = (Cov(Y, X ₁),.	,Cov(Y, X_p)), \sum	z_z = variance matrix of z_z	and $\sum_{zy} = \sum_{y}^{7}$	σ_{yz}^{7} , σ_{y}^{2} = var(Y)	
	- y						
1	Let y be vector of n observations of y, Z be the matrix of observed z w ith row given by \mathbf{z}_i . $\mathbf{v}^T \left(1 - \frac{11^T}{2}\right) \mathbf{z} \left[\mathbf{z}^T \left(1 - \frac{11^T}{2}\right) \mathbf{z}\right]^{-1} \mathbf{z}^T \left(1 - \frac{11^T}{2}\right) \mathbf{v} = \mathbf{v} \mathbf{z}^T \mathbf{v} \mathbf{z} \mathbf{z} \mathbf{z}^T \mathbf{z} \mathbf{z}^T \mathbf{z} \mathbf{z}^T z$						
	$y^{l}\left(1-\frac{1}{n}\right)$	$[MCORR(\mathbf{y}, Z)]^{2} = \frac{y^{T} \left(1 - \frac{11^{T}}{n}\right) Z \left[Z^{T} \left(1 - \frac{11^{T}}{n}\right)Z\right]^{-1} Z^{T} \left(1 - \frac{11^{T}}{n}\right) \mathbf{y}}{y^{T} \left(1 - \frac{11^{T}}{n}\right) \mathbf{y}} = \frac{cov(Z, y)^{T} [var(Z)]^{-1} cov(Z, y)}{var(y)}$					
	$[MCORR(\mathbf{y}, Z)]^2 = \frac{\mathbf{y}^T \left(1 - \frac{z}{n}\right)}{n}$	$\frac{y^T \left(1 - \frac{11^T}{n}\right)y}{y^T \left(1 - \frac{11^T}{n}\right)y} = \frac{1}{2} \left(1 - \frac{1}{n}\right) = \frac{1}{2}$	$\frac{cov(Z,y)^{T}[var(Z)]}{var(y)}$	-1cov(Z,y)			

Partial	Let X(-j) denote the sub-matrix of the design matrix X obtained by deleting col x _i of X						
	Let \widetilde{y} be the residual of \mathbf{y} regressed on $X(-j)$, \widetilde{x}_i is residual of \mathbf{x}_i regressed on $X(-j)$						
correlation							
coefficient	Correlation btw \widetilde{y} and \widetilde{x}_j is called partial correlation btw \mathbf{y} and \mathbf{x}_j adjusting for effects of X(-j), given by						
	$CORR(\widetilde{\boldsymbol{v}},\widetilde{\boldsymbol{x}}_i) = \frac{\sum_{i=1}^{n} (\bar{y}_i - \bar{y})(\bar{x}_{ij} - \bar{x}_j)}{\sum_{i=1}^{n} (\bar{y}_i - \bar{y})(\bar{x}_{ij} - \bar{x}_j)} = \frac{y^T(1 - H_{-j})y}{y^T(1 - H_{-j})y}$ where H _i is the hat matrix of X(-j)						
	$\operatorname{CORR}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_j) = \frac{\sum_{l=1}^n (\widetilde{\boldsymbol{y}}_l - \overline{\boldsymbol{y}}_l) (\widetilde{\boldsymbol{x}}_{lj} - \overline{\widetilde{\boldsymbol{x}}_j})}{\sqrt{\sum_{l=1}^n (\widetilde{\boldsymbol{y}}_l - \overline{\boldsymbol{y}}_l)^2 \sum_{l=1}^n (\widetilde{\boldsymbol{x}}_{lj} - \overline{\widetilde{\boldsymbol{x}}_j})^2}} = \frac{\boldsymbol{y}^T (\mathbf{I} - \boldsymbol{H}_{-j}) \mathbf{y}}{\sqrt{\boldsymbol{y}^T (\mathbf{I} - \boldsymbol{H}_{-j}) \boldsymbol{y} \boldsymbol{x}_j^T (\mathbf{I} - \boldsymbol{H}_{-j}) \boldsymbol{x}_j}} \text{ where } \mathbf{H}_{-j} \text{ is the hat matrix of X(-j)}$						
	Since residual of y regressed on X(-j) is part of y unexplained by X(-j), the squared partial correlation btw y and x _i adjusting for effects of						
	$X(-j)$ is the proportion of unexplained variation of y which is explained by x_j						
Explicit	Explicit expression of $\hat{\beta}_i$ can be obtained by considering the minimization of $\ y - X\beta\ ^2$: 1st) minimize wrt β_{-i} with β_i fixed, then						
expression							
of $\hat{\beta}_i$	minimize wrt β_j , where $m{eta}_{-j}$ is the sub-vector of $m{eta}$ eliminating β_j						
or p_j	Minimizing w fixed β_j : $\min_{\beta_{-j}} \ \mathbf{y} - X\boldsymbol{\beta}\ ^2 = \min_{\beta_{-j}} \ (I - H_{-j})\mathbf{y} - \beta_j(I - H_{-j})\mathbf{x}_j\ ^2$ Minimizing wrt β_j : $\hat{\beta}_j = \frac{x_j^T(I - H_{-j})\mathbf{y}}{x_j^T(I - H_{-j})\mathbf{x}_j}$ $\frac{\hat{\beta}_j}{sd(\hat{\beta}_j)} \text{ (Standardization)} = \frac{x_j^T(I - H_{-j})\mathbf{y}}{\sigma\sqrt{x_j^T(I - H_{-j})\mathbf{x}_j}}, \text{ (which tells us which covariate contribute more to variation in y)}$						
	$ \begin{array}{cccc} & P_{-1} & P_{-1} \\ & x^{T}(I-H;)y & & & \sigma^{2} \end{array} $						
	Minimizing wrt β_j : $\beta_j = \frac{x_j \cdot (1-H_{-i})x_j}{x_i^T \cdot (1-H_{-i})x_j}$ $\text{var}(\beta_j) = \frac{x_j \cdot (1-H_{-i})x_j}{x_j^T \cdot (1-H_{-i})x_j}$						
	$\widehat{\beta}_i$ $x_i^T(l-H_{-i})y$						
	$\frac{1}{sd(\hat{\beta}_i)}$ (Standardization) = $\frac{1}{sd(\hat{\beta}_i)}$, (which tells us which covariate contribute more to variation in y)						
	$ \int_{-\infty}^{\infty} \frac{1}{j} \frac{(-n-j)\lambda_j}{n} $						
	Note $R_j^2 = \text{CORR}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_j) = \frac{\boldsymbol{y}^T (\mathbf{I} - \boldsymbol{H}_{-j}) \boldsymbol{y}}{\sqrt{\boldsymbol{y}^T (\mathbf{I} - \boldsymbol{H}_{-j}) \boldsymbol{y}} \sqrt{\boldsymbol{x}_j^T (\mathbf{I} - \boldsymbol{H}_{-j}) \boldsymbol{x}_j}} = \text{some constant } * \frac{\widehat{\beta}_j}{sd(\widehat{\beta}_j)}$						
	$\sqrt{\mathbf{y}^{T}(\mathbf{I}-H_{-j})\mathbf{y}\sqrt{\mathbf{x}_{j}^{T}(\mathbf{I}-H_{-j})\mathbf{x}_{j}}}$						
Example	In ANOVA table, the sum of squares (SS) generated are sequential SS, ie. the SS associated w each covariate is the one after adjusting for						
	the effects of the covariate preceding it. SSR of y~x1+x2 is sum of all sequential SS						
Properties	Dist of $\hat{\beta}$ is normal w mean = β , var = $\sigma^2(X^TX)^{-1}$						
of LSE	27						
	$(n-p-1)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-p-1}$ $\hat{\sigma}^2 \text{ and } \hat{\beta} \text{ are indep}$ $\text{Let } \hat{\Sigma} = \hat{\sigma}^2 (X^T X)^{-1}. \text{ Let } \hat{\sigma}^2_j \text{ denote the jth diagonal elems of } \hat{\Sigma} \text{ (estimated var of } \hat{\beta}_j)$						
	Let $\Sigma = \hat{\sigma}^2(X^TX)^{-1}$. Let $\hat{\sigma}_j^2$ denote the jth diagonal elems of Σ (estimated var of β_j)						
	Note $\hat{\sigma}_j^2 = c_{jj}\hat{\sigma}^2$, where c_{jj} is the jth diagonal elem of $(X^TX)^{-1}$						
	Then $\frac{\hat{\beta}_j - \beta_j}{\hat{\beta}_j} \sim t_{\text{and}} \cdot \mathcal{R}$. For any constant vector $\mathbf{c} = \frac{c^T(\hat{\beta} - \beta)}{\hat{\beta}_j} \sim t_{\text{and}}$						
	Then $\frac{\hat{\beta}_{j} - \beta_{j}}{\hat{\sigma}_{j}^{2}} \sim t_{n-p-1}$; & For any constant vector \mathbf{c} , $\frac{c^{T}(\hat{\beta} - \beta)}{\int_{c^{T}} \widehat{\Sigma} c} \sim t_{n-p-1}$.						
	MSR and MSE are indep, since SSR and SSE are indep						
Signifi-	Hypothesis: H_0 : $\beta_1 = = \beta_p = 0$ vs H_1 : $\beta_j \neq 0$ for at least one of $j = 1,,p$.						
cance F-test	Test statistic: $F = MSR/MSE$. Under H_0 , $F \sim F_{p, n-p-1}$						
	For a significance level α , reject H_0 if $F \ge f_{p,n-p-1}(\alpha)$ or the p-value $P(F_{p,n-p-1} \ge F) < \alpha$; otherwise, do not reject H_0						
Wald test	Let θ be a vector of parameters, $\hat{\theta}$ be its estimator, and $\hat{\Sigma}_{\theta}$ the estimated var matrix of $\hat{\theta}$						
statistic	Wald statistic for testing H_0 : $\theta = 0$ is given by $\hat{\theta}^T \hat{\Sigma}_{\theta}^{-1} \hat{\theta}$						
	wally statistic for confidence test $H : R = 0$ where $R = R = R$. The Wald test statistic for confidence test $H : R = 0$ where $R = R$.						
	Thus Wald test statistic for significance test H ₀ : $\beta_1 = 0$, where $\beta_1 = (\beta_1,, \beta_p)^{T}$ is given by $W = \widehat{\boldsymbol{\beta}}_1^T \widehat{\boldsymbol{\Sigma}}_{\beta}^{-1} \widehat{\boldsymbol{\beta}}_1$, where $\widehat{\boldsymbol{\beta}}_1$ is estimator of β_1 and						
	$\widehat{\Sigma}_{\overline{\beta}}^{-1}$ is estimated variance matrix of $\widehat{\beta}_1$						
	In context of multiple LRM, F = W/p, where p is dimension of β_1						
Individual t-	Answers qn: given other vars in model, does a particular predictor have a significant effect?						
test	Hypotheses: $H_0: \widehat{\beta}_j = 0 \text{ vs } H_1: \beta_j \neq 0.$						
	Test statistic: $T = \frac{\beta_j}{\widehat{\sigma}_i}$, where $\widehat{\sigma}_j$ is the estimated SD of $\widehat{\beta}_j$. Under H ₀ , $T \sim t_{\text{n-p-1}}$						
	For a significance level α , reject H ₀ if $ T \ge t_{n-p-1}(\alpha/2)$ or p-value $2P(t_{n-p-1} \ge T) < \alpha$; otherwise do not reject H ₀						
	- p-value better than test statistic as not only can reject H ₀ , if p-value very small -> evidence supporting H ₁ is strong						
	- 1-sided test also same way as in simple LRM						
Testing	General linear hypothesis : H_0 : $\sum_{j=0}^{p} c_j \beta_j = 0$						
general							
linear	For testing linear hypothesis, test statistic is $T = \frac{c^T \hat{\beta}}{\sqrt{c^T \hat{\Sigma} c}}$. Under H_0 , $t \sim t_{n-p-1}$						
hypothesis	T T T T T T T T T T T T T T T T T T T						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	If only a few components of c are non-zero, T can be simplified.						
	E.g. $\mathbf{c} = (c_1, c_2, 0,, 0)^{T}$, the var $\mathbf{c}^T \widehat{\Sigma} \mathbf{c}$ becomes $c_1^2 \text{var}(\hat{\beta}_1) + c_2^2 \text{var}(\hat{\beta}_2) + 2c_1c_2 \text{cov}(\hat{\beta}_1, \hat{\beta}_2)$ and $\mathbf{c}^T \widehat{\boldsymbol{\beta}}$ becomes $c_1 \hat{\beta}_1 + c_2 \hat{\beta}_2$						
	For a significance level α , reject H ₀ if $ T \ge t_{n-p-1}(\alpha/2)$ or p-value $2P(t_{n-p-1} \ge T) < \alpha$; otherwise do not reject H ₀						
CI and	A 100(1 - α)% CI for β_j is $[\hat{\beta}_j - \hat{\sigma}_j t_{\text{n-p-1}}(\alpha/2), \hat{\beta}_j + \hat{\sigma}_j t_{\text{n-p-1}}(\alpha/2)]$						
confidence	$A 100/1 \text{ eV} \text{ of for a } \overrightarrow{T} \overrightarrow{Q} \text{ is } \left[a \overrightarrow{T} \overrightarrow{Q} \right] + \left[a $						
bound	A 100(1 - α)% CI for $c^T \hat{\beta}$ is $\left[c^T \hat{\beta} - \sqrt{c^T \hat{\Sigma} c} * t_{n-p-1}(\alpha/2), c^T \hat{\beta} + \sqrt{c^T \hat{\Sigma} c} * t_{n-p-1}(\alpha/2) \right]$						
	(Upper bound: $\beta_i \leq \hat{\beta}_i + \hat{\sigma}_i t_{n-p-1}(\alpha)$						
	The 100(1 - α)% confidence bounds for β_j are $\begin{cases} \text{Upper bound: } \beta_j \leq \hat{\beta}_j + \hat{\sigma}_j t_{n-p-1}(\alpha) \\ \text{Lower bound: } \beta_j \geq \hat{\beta}_j - \hat{\sigma}_j t_{n-p-1}(\alpha) \end{cases}$						
Prediction	Given a new observation $\mathbf{x}_0 = (1, x_{01},, x_{0p})^T$, predicted value for both Ey ₀ and y ₀ is $\hat{\mathbf{y}}_0 = \mathbf{x}_0^T \hat{\mathbf{\beta}}$						
calculon	Estimated variance of fitted value is $\hat{\sigma}_F^2(\hat{y}_0) = x_0^*\hat{\sigma}^2(X^TX)^{-1}x_0$						
	Estimated prediction error variance is $\hat{\sigma}_F^2(\hat{y}_0) = \hat{\sigma}^2 + \hat{\sigma}_F^2(\hat{y}_0)$						
	Note $y_0 = x_0^T \beta + \epsilon$. But Ey ₀ = $x_0^T \beta$. Thats why prediction have extra error term						
	Note $y_0 = x_0 p + \epsilon$. But $Ey_0 = x_0 p$. Thats why prediction have extra error term CI for Ey_0 is $\hat{y}_0 \pm \hat{\sigma}_F^2(\hat{y}_0)t_{n-p-1}(\alpha/2)$						
	Prediction interval for y_0 is $\hat{y}_0 \pm \hat{\sigma}_P^2(\hat{y}_0)t_{n-p-1}(\alpha/2)$						

One-Way	One-Way ANOVA model deals w only one factor, A having a levels.
ANOVA	$y_{ij} = \mu + \alpha_i + \epsilon_{ij}$, i = 1,,a, j=1,,n _i , where y_{ij} is the value of Y for the j th member of the i th grp,
	μ and α_i are unknown params, ϵ_{ij} are iid random errors, and n_i is num of observations in i th grp
	Let μ_i be mean response to i th grp. $\mu_i = \mu + \alpha_i$. For identifiability, we restrict $\sum_{i=1}^a \alpha_i = 0$.
	Then μ represents the overall mean and $lpha_i$ represents effect of i th treatment
	Answers qn whether factor A has any effect (i.e. any diff btw its levels) by analyzing the components of the variation in Y
	SST = SSA + SSE. Total sum of squares = sum of squares attributable to factor A and sum of squares attributable to errors
	$SST = \sum_{i=1}^{a} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{})^2, SSA = \sum_{i=1}^{a} n_i (\bar{y}_{i.} - \bar{y}_{})^2, SSE = \sum_{i=1}^{a} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i})^2$

	$\bar{y}_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}, \ \bar{y}_{} = \frac{1}{n} \sum_{i=1}^{a}$ One-way ANOVA table is:							1					
	Source	df		SS MS		F-test							
	A	a-1		SSA		MSA		MSA/MSE					
	Error Total	n-a n-1		SSE SST		MSE							
	Effect of the factor is tested		:. F = MSA/			1							
	Under hypothesis $\alpha_1 = =$	•			atistic, a-1,	n-a, lower.tail=FAI	SE)						
wo-way	Allows analysis of 2 factors Analyse effect of 2 factors	at the same time	& analysis	of interaction of 2	factors								
	$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} +$	•					where						
	$\sum_{i=1}^{a} \alpha_i = 0, \sum_{j=1}^{b} \beta_j = 0, \sum_{i=1}^{a} \beta_j = 0$	$\sum_{i=1}^{a} \gamma_{ij} = \sum_{j=1}^{b} \gamma_{ij} =$: 0										
	Two-way ANOVA investigat	tes whether there	is interact	ion btw the 2 facto	ors, wheth	er the main effect	(ave effe	cts of 1 factor over all the					
	levels of the other factor) is												
	SST = SSA + SSB + SSE + SSA	AB (sum of squares	due to int	eraction of factor	A and B)								
	$SST = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk})$	$-\bar{y}_{}$) ²	$SSA = \sum_{i}^{a}$	$n_{i.}(\bar{y}_{i}-\bar{y}_{})^2$	$SSB = \sum_{i=1}^{n} SSB_{i}$	$\sum_{j=1}^{b} n_{.j} (\bar{y}_{.j.} - \bar{y}_{})^2$	SSE = ∑	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij})$					
	$\begin{aligned} & \text{SST} = \text{SSA} + \text{SSB} + \text{SSE} + \text{SSA} \\ & \text{SST} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (y_{ijk}) \\ & \text{SSAB} = \sum_{i=1}^{a} \sum_{j=1}^{b} n_{ij} (\bar{y}_{ij}) \\ & \bar{y}_{.j.} = \frac{1}{n_{.j}} \sum_{i=1}^{a} \sum_{k=1}^{n_{ij}} y_{ijk} \end{aligned}$	$-\bar{y}_{i}-\bar{y}_{.j.}+\bar{y}_{})^2$	$\overline{y}_{i} = \frac{1}{n_i}$	$\sum_{j=1}^b \sum_{k=1}^{n_{ij}} y_{ijk}$	$n_{i.} = \sum_{j=1}^{b}$	$_{=1}$ n_{ij}	$\bar{y}_{.j.} = \frac{1}{n}$	$\sum_{i=1}^{a} \sum_{k=1}^{n_{ij}} y_{ijk}$					
	$\overline{y}_i = \frac{1}{1} \sum_{i=1}^a \sum_{j=1}^{n_{ij}} y_{ijk}$	$n_{.j} = \sum_{i=1}^{a} n_{ij}$	$\bar{v} = \frac{1}{2} \sum_{i}$	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{i=1}^{n_{ij}} v_{iji}$	ι	$n = \sum_{i=1}^{a} n_{i.}$	1	$\bar{y}_{ij} = \frac{1}{N} \sum_{i=1}^{n_{ij}} y_{ijk}$					
			7 n 2		к,								
	Source	df		SS		MS - SSA //2 1)		F-test					
	В	a-1 b-1		SSA SSB		MSA = SSA/(a-1) MSB = SSB/(b-1)		MSA/MSE MSB/MSE					
	AB	(a-1)(b-1)		SSAB		MSAB = SSAB/(b-1) MSAB = SSAB/(a-1)	1)(h ₋ 1)	MSAB/MSE					
	Error	n-ab		SSE		MSE = SSE/(n-ab)		IVIDAD/IVIDL					
	Total	n-ab n-1		SST		1913E - 33E/ (II-dD)	1						
	Test for interaction: F = MS	l .	vnothesis (~F/2 11/h 11)-ah		<u> </u>					
	Test for main effect: $F_1 = M$						F2~Fh 1 ~	.ah					
	Factor w zero main effect 7						- ∠ • υ-1, n-	au					
-	p-value for $F_1 = pf(F_1, a-1, r)$					lower.tail=FALSE)							
	p-value for $F = pf(F, (a-1)(b-1))$			p. (. 2)	_,,	,							
	A and B have a significant in			ain effect of A is s	ignificant,	but main effect of	B is not						
Main effect	If change in 1 var elicits a	change in anothe	r var, then	the var has an effo	ect on the	other var							
& Contrasts	Effect of a factor is the di	fferences of the ex	xpected re	sponse it causes a	mong its l	evels							
	Effect can be measure by												
	Contrast is defined as $\sum_{k=1}^{a}$	$= 1 c_k \mu_k$, w $\sum_{k=1}^a c_k$	_k = 0, i.e. c	$^{T}1 = 0$, where $\mathbf{c} = (0)$	c ₁ ,,c _k) is	called a contrast ve	ctor						
	If factor has no effect, the	en all contrasts are	e 0, i.e. μ_1	$=\mu_2=\ldots=\mu_a \Leftrightarrow$	$\sum_{k=1}^{a} c_k \mu$	$u_k = 0$, for all c							
nteraction	If effect of factor A is diff	when factor B is fi	ixed at diff	levels, or equivale	ently, effe	ct of B is diff when A	A is fixed	at diff levels, then it is sai					
ffect	that the 2 factors have an												
	E.g. If A and B only have 2			e 2 levels of B are:	$\mu_{21} - \mu_1$	$_{1}$, $\mu_{22}-\mu_{12}$.							
	If both not same -> there			,									
	Interaction effect is meas	Interaction effect is measured by $(\mu_{22} - \mu_{12}) - (\mu_{21} - \mu_{11}) = \mu_{22} - \mu_{12} - \mu_{21} + \mu_{11}$											
	In general, effect of factor A at a fixed level, i, of B is measured by any contrasts $\sum_{k=1}^{a} c_k \mu_{ki}$. If there is at least one pair (i,j) and at least												
	one contrast c , s.t. $\sum_{k=1}^{a} c_k \mu_{ki} \neq \sum_{k=1}^{a} c_k \mu_{kj}$, then A and B have interaction effect												
	Interaction effect is measured by interaction contrasts: (i.e. contrast of the contrast) $\sum_{i=1}^{b} d_i \left[\sum_{i=1}^{a} c_i c_i u_{i+1} \right] = \sum_{i=1}^{b} \sum_{i=1}^{a} c_i c_i d_i u_{i+1} \text{ where } \sum_{i=1}^{a} c_i c_i = 0$												
	$\sum_{j=1}^{b} d_j \left[\sum_{k=1}^{a} c_k \mu_{kj} \right] = \sum_{j=1}^{b} \sum_{k=1}^{a} c_k d_j \mu_{kj}, \text{ where } \sum_{k=1}^{a} c_k = 0, \sum_{j=1}^{b} d_j = 0$ Interaction contrast vector is of the form (c.d., c.d.,												
	Interaction contrast vector is of the form $(c_1d_1,,c_1d_b,,c_ad_1,,c_ad_b)$												
	Components of the vector have restrictions: $\sum_{k=1}^{a} c_k d_j = 0$, j=1,,b; $\sum_{j=1}^{b} c_k d_j = 0$, k=1,,b; $\sum_{k=1}^{a} \sum_{j=1}^{b} c_k d_j = 0$ Among the 1st b restrictions, only b-1 are indep, among 2nd a restrictions, only a-1 are indep, and altogether there are a+b-1 indep												
	_			-		·1 are indep, and al	togetner	there are a+b-1 indep					
llustration	restrictions. Thus num of if lines parallel -> no i	•	CONTRASTS I	2 an-a-n+1 = (g-1)	<u> </u>	act illustrated by dif	f http://ho	mean btw 2 lines at endp					
of main and	\$ -	y22	-		main eff	oot mustrated by dif	DIW the	mean blw z imes at endp					
nteraction	8 98	4 -	and the same of th			¥ -	(Z) 0						
effects	20 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	y21 (12) e -				20 3.0	cbind(y41, y42)						
	9 -					8 4	8 7						
	y 101 1.5 2.0 2.5	3.0 1.0 1.5	2.0 2.5 3.0 ×			1.0 1.5 2.0 2.5	3.0 S	nce diff 0 here -> no					
	main effect illustrated by di	iff btw the mean bt	tw 2 lines a	t endpts		*	n	nain effect of factor a					
imitation of		,											
ANOVA	In two-way ANOVA mode	•					action eff	ect, i.e.					
	in SSAB, the term $\bar{y}_{ij.} - \bar{y}_{i} - \bar{y}_{.j.} + \bar{y}_{}$ is not the estimate of an interaction contrast												
NOVA by	Factor predictor can be re			f factor has a leve	ls, it can b	e represented by a	-1 dumm	y vars					
RM	Dummy vars: $u_k = \begin{cases} 1, & if \\ 2, & if \end{cases}$	Dummy vars: $u_k = \begin{cases} 1, & \text{if level } k \\ 0, & \text{otherwise} \end{cases}, k = 2,, a$											
	LRM for one-way ANOVA		mmyyaria	hles us as $= \rho$	LR 11 1	± R 21 ± C							
								/1 0 •					
	Model: $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$, expressed in dummy variables u_k : $y_{ij} = \beta_0 + \beta_2 u_2 + \ldots + \beta_a u_a + \epsilon_{ij}$												
	In matrix form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\mathbf{y} = (y_{11}, \dots, y_{1n_1}, \dots, y_{a1}, \dots, y_{an_a})^T$, $\boldsymbol{\epsilon} = (\epsilon_{11}, \dots, \epsilon_{1n_1}, \dots, \epsilon_{a1}, \dots, \epsilon_{an_a})^T$, $\mathbf{X} = \begin{pmatrix} 1_{n_1} & 0 & \dots & 0 \\ 1_{n_2} & 1_{n_2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \dots & 1 \end{pmatrix}$												
	In matrix form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$	\mathbf{y} , where $\mathbf{y} = (y_{11},)$	\dots, y_{1n_1}, \dots	y_{a1}, \dots, y_{an_a}	In matrix form: $\mathbf{y} = \lambda p + \mathbf{e}$, where $\mathbf{y} = (y_{11}, \dots, y_{1n_1}, \dots, y_{a1}, \dots, y_{an_a})$, $\mathbf{e} = (e_{11}, \dots, e_{1n_1}, \dots, e_{a1}, \dots, e_{an_a})$, $\mathbf{X} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \ddots & \ddots & \vdots \end{bmatrix}$								
	In matrix form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$	\mathbf{y} , where $\mathbf{y} = (y_{11},)$	\dots, y_{1n_1}, \dots	y_{a1}, \dots, y_{an_a} ,	$\epsilon = (\epsilon_{11},$	$\ldots, \epsilon_{1n_1}, \ldots, \epsilon_{a1}, \ldots,$	ϵ_{an_a}),	$X = \begin{pmatrix} -n_2 & -n_2 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \cdots & 1 \end{pmatrix}$					
							ϵ_{an_a}),	$\mathbf{X} = \begin{bmatrix} -n_2 & -n_2 \\ \vdots & \vdots & \vdots \\ 1_{n_a} & 0 & \cdots & 1_{n_c} \end{bmatrix}$					
	In matrix form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ Alternatively, model can l						ϵ_{an_a}),	$\mathbf{X} = \begin{bmatrix} -n_2 & -n_2 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1_{n_a} & 0 & \cdots & 1_{n_a} \end{bmatrix}$					

	Honce param $\theta_{ij} = \mu_{ij} - \mu_{ij}$ (which is a contract) is the diff by avpacted values at level k annul level 1
	Hence param $\beta_k = \mu_k - \mu_1$ (which is a contrast) is the diff btw expected values at level k annd level1
	LRM for two-way ANOVA
	2 cases: (i) no repeated observations at ea level combination, i.e. $n_{ij} = 1$; (ii) $n_{ij} > 1$
	(i): only main effects can be analyzed; (ii) both main effects and interaction effects can be analyzed
	Main effect models:
	Dummy var for 2 factors: $u_i = \begin{cases} 1, & \text{if level } i \\ 0, & \text{otherwise} \end{cases}$, $i = 2,, a$, $v_j = \begin{cases} 1, & \text{if level } j \\ 0, & \text{otherwise} \end{cases}$, $j = 2,, b$
	(0, otherwise) (0, otherwise)
	Main effect model: $y_{ijk} = \beta_0 + \sum_{i=2}^a \alpha_i u_i + \sum_{j=2}^b \beta_j v_j + \epsilon_{ijk}$
	$\mu_{11} = \beta_0$, both A and B at level 1
	$\mu_{i1} = \beta_0 + \alpha_i, A \text{ at level } i, B \text{ at level } 1$
	Expectation of the main effect model at diff levels: $Ey_{ijk} = \begin{cases} \mu_{11} = \beta_0, & both A \ and B \ at \ level \ 1 \\ \mu_{i1} = \beta_0 + \alpha_i, & A \ at \ level \ i, B \ at \ level \ 1 \\ \mu_{1j} = \beta_0 + \beta_j, & A \ at \ level \ i, B \ at \ level \ j \end{cases}$
	$\mu_{ij} = \beta_0 + \alpha_i + \beta_j$, A at level i, B at level j
	$\alpha_i = u_{i1} - u_{11}$: diff of effect of A at level i and 1 when B is fixed at level 1, which is the same as $u_{ij} - u_{1j}$, the diff of effects of A at level k
	and 1 when B is fixed at level j. i.e. diff does not depend on j
	$\beta_j = u_{1j} - u_{11}$, diff of effects of B at level j and 1 when A is fixed at level 1, which is the same as $u_{ij} - u_{i1}$, the diff of effects of B at level j
	and 1 when A is fixed at level i. i.e. diff does not depend on i
	$\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{i$
	Interaction model: $y_{ijk} = \beta_0 + \sum_{i=2}^a \alpha_i u_i + \sum_{j=2}^b \beta_j v_j + \sum_{i=2}^a \sum_{j=2}^b \gamma_{ij} u_i v_j + \epsilon_{ijk}$ Expectation of the main effect model at diff levels: $Ey_{ijk} = \begin{cases} \mu_{11} = \beta_0, & both \ A \ and \ B \ at \ level \ 1 \\ \mu_{i1} = \beta_0 + \alpha_i, & A \ at \ level \ i, B \ at \ level \ 1 \end{cases}$ $\mu_{1j} = \beta_0 + \beta_j, & A \ at \ level \ i, B \ at \ level \ j$ $\mu_{ij} = \beta_0 + \alpha_i + \beta_i + \xi_{ij}, A \ at \ level \ i, B \ at \ level \ j$
	$\mu_{11} = \beta_0$, both A and B at level 1
	Expectation of the main effect model at diff levels: $Fv_{i,i} = \int_0^1 \mu_{i,1} = \beta_0 + \alpha_i$, A at level 1, B at level 1
	$\mu_{1j} = \beta_0 + \beta_j, \qquad A \text{ at level } 1, B \text{ at level } j$
	$\mu_{ij} = \beta_0 + \alpha_i + \beta_j + \xi_{ij}, A at level i, B at level j$
	$\alpha_i = \mu_{i1} - \mu_{11}$: diff of effect of A at level i and 1 when B is fixed at level 1,
	$\beta_i = \mu_{1i} - \mu_{1i}$, diff of effects of B at level j and 1 when A is fixed at level 1,
	$\alpha_i + \xi_{ij} = \mu_{ij} - \mu_{1j}$: diff of effect of A at level i and 1 when B is fixed at level j,
	$\beta_j + \xi_{ij} = \mu_{ij} - \mu_{i1}$, diff of effects of B at level j and 1 when A is fixed at level i,
	$\xi_{ij} = (\mu_{ij} - \mu_{i1}) - (\mu_{1j} - \mu_{11}) = \gamma_{ij}$, interaction contrast (diff of effect of A at level i and 1 when B is at level j and 1)
	So main effect caused by level i and level 1 of A is the average over all the levels of B, i.e. $\alpha_i + \frac{1}{b} \sum_{j=2}^b \xi_{ij}$
Inference on	For testing whether there is a significant overall interaction effect, under the regression model,
interaction	H_0 : $\xi_{ij} = 0$, $i=2,,a$; $j=2,,b$; vs H_1 : at least one of $\xi_{ij} \neq 0$, where ξ_{ij} are the basis interaction contrasts
effect	Use F-test statistic to test hypothesis
	1) F-test statistic from table produced by anova
	2) F-test statistic from computation of Wald statistic: $W = \hat{\xi}^T \widehat{\Sigma}_{\xi}^{-1} \hat{\xi}$, where $\hat{\xi}$ is vector of estimated ξ_{ij} 's and $\widehat{\Sigma}_{\xi}$ is the estimated
	covariance matrix of $\hat{\xi}$. F-statistic is $F = \frac{W}{(a-1)(b-1)}$
	(** -)(* -)
	Under H ₀ F [*] F _{(a-1)(b-1), n-ab} . Reject H ₀ at level α , if F > F _{(a-1)(b-1), n-ab} (α) or p-value pf(F, (a-1)(b-1), n-ab, lower.tail=FALSE) < α
	For testing of particular interaction effect: perform individual test on ξ_{ij} 's and on linear combination of ξ_{ij} 's
	E.g. 1) Test whether diff btw level j and 1 of Factor B is same at level i and level 1 of Factor A, i.e. H_0 : $(u_{ij} - u_{i1}) - (u_{1j} - u_{11}) = \xi_{ij} = 0$
	2) Test whether diff btw level j and l of Factor B is same at level i and level 1 of Factor A, i.e. $H_0: (u_{ij}-u_{il})-(u_{1j}-u_{1l})=\xi_{ij}-\xi_{il}=0$
	3) Test whether diff btw level j and k of B is same at level i and I of Factor A, i.e. H_0 : $(u_{ij} - u_{ik}) - (u_{lj} - u_{lk}) = \xi_{ij} - \xi_{ik} - \xi_{lj} + \xi_{lk} = 0$
	General rule of thumb: if subscript of u contains 1: ignore; else convert to ξ
	Since any particular interaction contrast is a LC of ξ_{ij} 's, i.e. $\mathbf{c}^{T}\boldsymbol{\xi}$ where $\boldsymbol{\xi}$ is the vector of ξ_{ij} . Let $\hat{\boldsymbol{\xi}}$ be the vector of estimated ξ_{ij} 's and $\widehat{\Sigma}_{\boldsymbol{\xi}}$ is
	the estimated covariance matrix of $\hat{m{\xi}}$
	Test statistic for $\mathbf{c}^{T}\boldsymbol{\xi} = 0$ is $T_c = \frac{c^T \hat{\boldsymbol{\xi}}}{\sqrt{c^T \hat{\Sigma}_{\boldsymbol{\xi}} c}}$. Under H_0 : $\mathbf{c}^{T}\boldsymbol{\xi} = 0$, $T_c \sim t_{n-ab}$
	T
	E.g. for a particular interaction contrast, above formula can be simplified. H ₀ : $\xi_{ij} - \xi_{ik} - \xi_{lj} + \xi_{lk} = 0$. Only vector $\hat{\boldsymbol{\theta}} = (\hat{\xi}_{ij}, \hat{\xi}_{ik}, \hat{\xi}_{lj}, \hat{\xi}_{lk})^T$
	and its covariance matrix $\widehat{\Sigma}_{\theta}$ are needed. And corresponding c reduces to b = (1, -1, -1, 1) ^T
Example	Main effect contrasts cannot be conveniently calculated using iteraction model
main effect	Main effect model has correct estimates for main-effect contrasts. But estimate $\hat{\sigma}_M^2$ from main-effect model not correct estimate of error
contrast	variance. $SSE_M = SSE_I + SSAB$ (error caused by iteraction + interaction effect). Instead, $\hat{\sigma}_I^2$ from iteraction model has correct variance
	Let X_m denote design matrix of main-effect model. The estimated var matrix from main-effect model is $V.m = \hat{\sigma}_M^2 (X_m^T X_m)^{-1}$
	It shid be adjusted to $V = \hat{\sigma}_I^2 (X_m^T X_m)^{-1} = (\hat{\sigma}_I^2 / \hat{\sigma}_M^2) V.m$
	Test statistic for main-effect contrast can be computed using coefficient from main-effect model and the adjusted estimated var matrix
Remarks	Insignificance of the main effect does not imply it has no effect if its iteraction w another factor is significant
	When interaction is significant, levels of a factor shid be compared at ea level of the other factor
	In general, inference on main effect when iteraction is significant is not very relevant
	in general, intercince on main circut when recrustion is significant is not very recevant
Family-wise	In multiple comparison problem, we investigate many contrasts which form a family.
type I error	If a contrast is "actually" 0 but turn out to be "significant", these apparently significant contrasts are called artifacts
rate	To avoid claiming artifacts as significant contrasts, the family-wise type I error rate must be controlled
· acc	Denote family of contrasts by C . For any $j \in C$, let T_i be test statistic & decision rule to reject H_0 be $T_i \ge c_i$ for a critical value c_i
	Family-wise type I error rate is $P(\bigcup_{j \in C} \{T_j \ge c_j\})$
Conoral	
General	Find if there is any contrasts of grp means which are statistically significant.
exploration	For main effects: grp means are those at the level of a factor
	For interaction effect: grp means are those at the level combination of 2 factor So let 1 be the vector of the grp means. Let 6 denot a contract vector of 11 and 6 denote set of all possible contracts.

So let v be the vector of the grp means. Let c denot a contrast vector of v and c denote set of all possible contrasts.

 $\frac{a^T\widehat{m{ heta}}}{\sqrt{a^T\widehat{\Sigma}_{m{ heta}}a}}$, where $\widehat{m{ heta}}$ is estimate of $m{ heta}$, $\widehat{\Sigma}_{m{ heta}}$ is estimated var matrix of $\widehat{m{ heta}}$

Then H_0 : $\mathbf{c}^{\mathsf{T}} \mathbf{v} = 0$ for all $\mathbf{c} \in \mathcal{C}$. H_0 can be expressed in terms of the basis contrasts: Let $\boldsymbol{\theta}$ be the vector of basis contrasts. H_0 is then equivalent to $\mathbf{a}^{\mathsf{T}} \boldsymbol{\theta} = 0$ for any \mathbf{a} . In main effects: $\boldsymbol{\theta} = (\alpha_2, ..., \alpha_a)$ or $(\beta_2, ..., \beta_b)$. In interaction effects: $\boldsymbol{\theta} = (\xi_{ij})_{i=2,...,a; j=2}$

Scheffe's soln

For an individual contrast $\mathbf{a}^{\mathsf{T}}\boldsymbol{\theta}$, test statistic T_{a} =

	Need to find critical value a , $a + D/U$, $(T > a) U < a$						
	Need to find critical value c_{α} s.t. $P(\bigcup_{all\ a} \{ T_a \ge c_{\alpha}\} H_0) \le \alpha$ To control family-wise type I error rate at level α , Scheffe's soln is to take for all j, $c_j = c_{\alpha} = \sqrt{m_1 F_{m_1, m_2}(\alpha)}$, where m_1 is num of						
One-way	components of θ and m_2 is df of $\hat{\sigma}^2$, $F_{m_1,m_2}(\alpha)$ is the upper α quantile of the F_{m_1,m_2} dist. (c_{α} aka Scheffe's criterion) If multiple comparison is done directly w contrasts of level means (and not in terms of indep contrasts, i.e. Scheffe's), the test statistic for						
ANOVA	contrast $\sum_{j=1}^{a} c_j \mu_j$ is $T_c = \frac{\sum_{k=1}^{a} c_k \overline{Y}_k}{\int_{\widehat{\sigma}^2 \sum_{k=1}^{a} c_k}^{2} \sum_{k=1}^{a} c_k}$ and $\max_{c \in \mathcal{R}^a} T_c^2 = \frac{1}{\widehat{\sigma}^2} \max_{c \in \mathcal{R}^a} \frac{ \sum_{k=1}^{a} c_k \overline{Y}_k ^2}{\sum_{k=1}^{a} c_k}$. Note $\sum_{k=1}^{a} c_k \overline{Y}_k = \sum_{k=1}^{a} c_k (\overline{Y}_k - \overline{Y})$						
	Let $\mathbf{b} = (\overline{Y}_1 - \overline{Y},, \overline{Y}_a - \overline{Y})^T$, $\mathbf{c} = (\mathbf{c}_1,, \mathbf{c}_a)^T$, $\mathbf{D} = \operatorname{diag}(n_1^{-1},, n_a^{-1})$. Then $\max_{\mathbf{c} \in \mathcal{R}^a} \frac{ \sum_{k=1}^a c_k \overline{Y}_k ^2}{\sum_{k=1}^a \frac{c_k^2}{n_k}} = \max_{\mathbf{c} \in \mathcal{R}^a} \frac{c^T \mathbf{b} \mathbf{b}^T \mathbf{c}}{c^T D \mathbf{c}} = \mathbf{b}^T \mathbf{D}^{-1} \mathbf{b} = \operatorname{SSA} = \sum_{i=1}^a n_i (\overline{y}_i - \overline{y})^2$						
	And $\max_{c \in \mathcal{R}^a} T_c^2 = (a-1) \text{MSA/MSE} = \text{SSA/MSE}$ (since SSA = (a-1)MSA, $\hat{\sigma}^2 = \text{MSE}$) (where MSA/MSE is $F_{a-1,n_{ERR}}$)						
-	p-value = P($F_{a-1,n-a} \ge F$ -ratio) Then the simultaneous p-value of 2-sided test is P($\bigcup_{all\ a} \{ T_a \ge c_\alpha\}$) = P($\max_{c \in \mathcal{D}a} T_c^2 \ge c_\alpha$) = P($F_{a-1,n-a} \ge T_c^2/(a-1)$)						
	$\iota \subset \mathcal{N}$						
Individual &	For 1-sided test: p-value is $(1/2)P(F_{a-1,n-a} \ge T_c^2/(a-1))$ and critical value is $c_{2\alpha} = \sqrt{(a-1)F_{a-1,n-a}(2\alpha)}$, Simultaneous CI: CI which covers all params						
Simultaneous C	Simultaneous CI w confidence coefficient 1- α for all j require that $P(\bigcap_{j=1}^{m} \{L_j \leq \theta_j \leq U_j\}) \geq 1-\alpha$						
	Simulateous CI for the contrasts $\sum_{k=1}^a c_k \mu_k$ is $\sum_{k=1}^a c_k \bar{Y}_k \pm \sqrt{\hat{\sigma}^2 \sum_{k=1}^a \frac{c_k^2}{n_k}} \sqrt{(a-1) F_{a-1,n_{ERR}}(\alpha)}$						
Approach for general exploring	1) Conduct overall significance test to see if there is any effect on Y (if no -> stop) 2) If significance test is significant, find particular significant effects (impossible to investigate all possible contrasts, so just look at rather diff \bar{Y}_k in summary data or look at estimated regression coefficients)						
Multiple	LRM for one-way ANOVA is $y_i = \beta_0 + \beta_2 u_{i2} + \ldots + \beta_a u_{ia} + \epsilon_i$, i = 1,,n where $\beta_k = \mu_k - \mu_1$, k \geq 2						
comparison	For any contrast, we have $\sum_{k=1}^{a} c_k \mu_k = \sum_{k=2}^{a} c_k \mu_k - \sum_{k=2}^{a} c_k \mu_1 = \sum_{k=2}^{a} c_k (\mu_k - \mu_1) = \sum_{k=2}^{a} c_k \beta_k$						
through LRM	Test statistic: $T_C = \frac{\sum_{k=1}^a c_k \hat{\beta}_k}{\sqrt{\bar{c}^T \hat{\Sigma}_{\beta} \bar{c}}}$, where $\tilde{c} = (c_2,,c_a)^T$, $\hat{\Sigma}_{\beta}$ is estimated covariance matrix of $(\hat{\beta}_2,,\hat{\beta}_a)$						
	T _C is same as T _C when using level means						
Pairwise	Only interested in certain pairwise contrasts, $\mu_k - \mu_j$, $1 \le k < j \le a$. Overall significance F-test not necessary						
contrasts	Only need to find c_{α} s.t P $\left(\max_{k,j} \frac{ \bar{Y}_k - \bar{Y}_j }{\sqrt{\hat{\sigma}^2(\frac{1}{n_b} + \frac{1}{n_b})}} \ge c_{\alpha}\right) = \alpha$						
Studentized	Let \overline{Y}_i , i=1,,a be sample means of a samples w equal sizes (n _i = n)						
range dist	Studentized range statistic is $q_{a,n_{ERR}} = \sqrt{n} (max \overline{Y}_i - min \overline{Y}_i)/\sigma^2$						
	Let $q_{a,n_{ERR}}$ denote upper a -quantile of the Studentized range dist, aka Tukey's criterion for pairwise comparison at level a						
Pairwise comparison procedure	For studentized range dist, Q-statistic for $\mu_i - \mu_j$ is $Q_{ij} = \begin{cases} \frac{\sqrt{\bar{n}} \bar{Y}_i - \bar{Y}_j }{\widehat{\sigma}}, & \text{if } n_1 = \dots = n_a = n \\ \frac{\sqrt{\bar{n}_{ij}} \bar{Y}_i - \bar{Y}_j }{n}, & \text{otherwise} \end{cases}$, where $\tilde{n}_{ij} = \frac{2n_i n_j}{n_i + n_j}$,						
	Contrast $\mu_i - \mu_j$ is significant at level α if $Q_{ij} > q_{a,n_{ERR},\alpha}$						
Diff btw Q-	So $ T_{ij} = Q_{ij}/\sqrt{2}$						
statistic & t-	t-statistics can be used for pairwise comparison using Tukey's criterion, but $ T_{ij} $ must be compared w $q_{a,n_{ERR},\alpha}/\sqrt{2}$						
statistic	i.e. contrast $\mu_i - \mu_j$ is significant at level α if $Q_{ij} > q_{a,n_{ERR},\alpha}$ OR $ T_{ij} > q_{a,n_{ERR},\alpha}/\sqrt{2}$						
Equivalent form							
in terms of							
regression	$\frac{1}{s.d(\hat{\beta}_i)}, \qquad ij \ j=1$						
coefficient	t-statistics: $I_{ij} = \left\{ \frac{\hat{\beta}_i - \hat{\beta}_j}{\sqrt{1 - \frac{\hat{\beta}_i - \hat{\beta}_j}{n}}}, otherwise \right\}$						
	$\text{t-statistics: T}_{ij} = \begin{cases} \frac{\widehat{\beta}_i}{s.d(\widehat{\beta}_i)}, & \text{if } j = 1\\ \\ \frac{\widehat{\beta}_i - \widehat{\beta}_j}{\sqrt{var(\widehat{\beta}_i) + var(\widehat{\beta}_j) - 2cov(\widehat{\beta}_i,\widehat{\beta}_j)}}, & \text{otherwise} \end{cases}$						
Tukey's	For $\beta_i = \mu_i - \mu_1$: $\hat{\beta}_i \pm \operatorname{sd}(\hat{\beta}_i) q_{\alpha, n_{ERR}, \alpha} / \sqrt{2}$						
simultaneous C	For $\beta_i - \beta_j = \mu_i - \mu_j$, i,j > 1: $(\hat{\beta}_i - \hat{\beta}_j) \pm \sqrt{var(\hat{\beta}_i) + var(\hat{\beta}_j) - 2cov(\hat{\beta}_i, \hat{\beta}_j)} q_{a,n_{ERR},\alpha} / \sqrt{2}$						
Bonferroni's	If there are only k contrasts we are interest in, the overall type I error rate α for the k contrasts can be controlled by Bonferroni's Mtd:						
Mtd	$\sum_{j=1}^k \alpha_j = \alpha$, where α_j is type I error rate for contrast j Each α_j can be specified, but in general just use $\alpha_j = \alpha/k$. Critical value $c_\alpha = T_{n-a}(\alpha/k^*2)$. Check $ T_j > c_\alpha$ for 2-sided test						
	Rationale: $P(\bigcup_{j=1}^{k}\{ T_{a} \geq c_{\alpha}\})\leq \alpha$, where $P(\bigcup_{j=1}^{k}\{ T_{a} \geq c_{\alpha}\})\leq \sum_{j=1}^{k}P(T_{a}\geq c_{\alpha_{j}})\leq \sum_{j=1}^{k}\alpha_{j}$. Thus Bonferroni mtd is a conservative mtd						
	p-values: p-value for j th test is $p_j = kP(T_j \ge T_i^0)$ where T_i^0 is observed value of T_j and prob computed under dist of T_j						
	If critical value for all individual test is set at T_i^0 , then $\alpha_j = P(T_j \ge T_i^0)$ for $j = 1,,k$ and overall type I error rate is $\alpha = k\alpha_j$						
	i.e. p-value is the overall type I error rate when critical value is observed value of the statistic						
Summary	General exploration: Scheffe's criterion						
Summary	General exploration: Scheffe's criterion Pairwise comparison: all 3 mtds can be used, but Tukey's Mtd more efficient than Scheffe's and Bonferroni's						
Summary	General exploration: Scheffe's criterion						

LRM w both factor & quant-	ANOCOV (analysis of covariance) model is a LRM w both factor & quantitative predictors, $y_i = \beta_0 + \sum_{j=2}^k \alpha_j u_{ij} + \gamma x_i + \epsilon_i$ where u_j , $j = 2,,l$ are dummy variables representing a factor predictor and x is a quantitative predictor, α_j is diff of Y btw type j and type 1 when X is same for both types, γ is effect of X on Y (i.e. when X change by a unit, Y has an expected change of γ) In general ANOCOV model could have more than 1 factor and quantitative predictor. There could be both main and interaction effects
itative predictor	Traditionally, 1) ANOCOV = comparison of treatment effects of factor predictors, adjusting for effect of certain concomitant variables 2) Comparison of regression fns: r/s btw response var and quantitative predictors is studied in diff categories.
	ANOCOV is based on adjusted SS's (which adjust for effect of concomitant vars). But adjusted SS's have complicated formulae and have similar limitations as traditional ANOVA W regression approach, when estimating factor, effect of concomitant vars is auto adjusted, & avoids drawbacks of traditional ANOVA

Comparison	Find whether regression lines have same intercept and whether have same slope -> Use ANOCOV model w interaction btw factor and					
of regression	quantitative predictor: Y = $\beta_0 + \sum_{i=2}^a \alpha_i u_i + \beta X + \sum_{i=2}^a \xi_i u_i X + \epsilon$, i.e.					
lines	Category 1: Y = $\beta_0 + \beta X + \epsilon$. Category i \geq 2: $(\beta_0 + \alpha_i) + (\beta + \xi_i)X + \epsilon$. So just making inference on α_i , and ξ_i					
LRM w non-lin	ear In LRM: $Y = \beta_0 + \beta_1 X_1 + + \beta_p X_p + \epsilon$, X need not be diff predictor variables, could be non-linear fns of predictor variables					
predictor term	E.g. $Y = \beta_0 + \beta_1 Z + \beta_2 Z^2 + + \beta_p Z^p + \epsilon \mid Y = \beta_0 + \beta_1 (1/X) + \epsilon$ (inverse model) $\mid \log(Y) = \beta_0 + \beta_1 \log(X) + \beta_2 \log(X) + \epsilon$ (log model)					
Polynomial	$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i}^2 + \beta_p x_{2i}^2 + \epsilon_i$, i = 1,,n (model can have more than 1 predictor variables)					
regression mo	dels $y_i = \beta_0 + \beta_1(x_{1i} - \bar{x}_1) + \beta_2(x_{2i} - \bar{x}_2) + \beta_3(x_{1i} - \bar{x}_1)^2 + \beta_p(x_{2i} - \bar{x}_2)^2 + \epsilon_i$ (centralization to \downarrow multicollinearity of model)					
Piece-wise	R/s btw Y and X might be diff over diff ranges of X					
linear models	Hence use Auxiliary X truncated at point X = c: $\tilde{X} = (X - c)^+ = \begin{cases} X - c, & \text{if } X - c \ge 0 \\ 0, & \text{otherwise} \end{cases}$					
	Model from $y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ becomes $y_i = \beta_0 + \beta_1 X_i + \alpha_1 \tilde{X}_i + \epsilon_i$ (piece-wise linear in X)					
	lope of model changes from β_1 to $\beta_1 + \alpha_1$ at point X = c. Can continue adding more auxiliary terms if r/s diff at diff points					

				$\mathbf{x} = \mathbf{c}$. Can continue adding		iary terms if r/s diff at	diff points		
Predictors	Polovant r	aradistari san ayalain a	proportion of the w	ariation of V which canno	t othorwico	he explained by other	prodictors		
Predictors	Relevant predictor: can explain a proportion of the variation of Y which cannot otherwise be explained by other predictors								
Relevant predictor is either a causal variable OR a surrogate of certain causal variables not observed Irrelevant predictor is neither a causal variable nor a surrogate of causal variable, BUT might still have correlation with						n w Y			
	This "fake" correlation aka spurious correlation. Might be that causal variable causes variation in Y and in the irrelevant pre								
				o data structure (small-n-					
	In most ca	ises, model selection is	equivalent to variab	ole selection					
				ors (causal or surrogate o					
		•		selection, but model selec	ction empha	sizes of accuracy of pre	ediction		
Under / Over-		itting model: model whi			rolovant nro	distors			
Fitting Effect of				edictiors in addition to all nd includes all relevant pr		edictors			
under/over		$f = X_1 \boldsymbol{\beta}_1 + X_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$ (fu		•	culctors.				
fitting on				$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta}$, $Var(\widehat{\boldsymbol{\beta}}) = \sigma^2(X^TX)^T$	$^{-1}$ Var(\widehat{R}_{i}) :	$= \sigma^2 [X^T Y_* - X^T Y_*] (X^T)$	$(Y_{0})^{-1}Y_{1}^{T}Y_{1}^{-1}$		
LSE				$= \sigma^2(X_1^T X_1)^{-1}, E\widetilde{\boldsymbol{\beta}}_1 = \boldsymbol{\beta}_1$			N_2) N_2 N_1		
				bias of $(X_1^T X_1)^{-1} X_1^T X_2 \beta_2$		11 11 2 P 2			
				$x \in X_1^T X_1 > X_1^T X_1 - X_1^T X_2$		X_1 (then inverse it to g	get <)		
		her hand, over-fitting in							
Effect of				$x X_M$. The estimator of E y					
under/over	$\widehat{\mathbf{y}}_M = X_M$	$\boldsymbol{\beta}_{M} = X_{M} (X_{M}^{I} X_{M})^{-1} X_{M}^{I}$	\mathbf{y} and $\mathbf{E}\widehat{\mathbf{y}}_M = X_M(X_M)$	$(\widehat{y}_M^T X_M)^{-1} X_M^T \mu$ and $Var(\widehat{y}_M)$	$M(X) = \sigma^2 X_M(X)$	$(X_M^T X_M)^{-1} X_M^T$			
fitting on prediction				where M is num of cols of same X _M , the sum of pre-					
prediction		$\sum_{n+i} - \hat{y}_{iM})^2 = n\sigma^2 + M$			uiction squa	1eu error (3P3E) is 3P30	<u> </u>		
				ce. Over fitting incr varian	ce of predic	tion, decr bias			
Principle of				nsists of a variance and b					
variable	Accuracy of	of estimate \hat{eta} is measure	ed by MSE which als	so consists of a variance a	and bias com	nponent. MSE = $E(\hat{\beta} - $	β) ² = var($\hat{\beta}$) + bias ² ($\hat{\beta}$)		
selection				palance variance and bias			.,		
	SPSE or M	SE cannot be practically	computed, so mod	lel selection criterion use	s a surrogate	e of SPSE or MSE in sor	ne sense		
Selection		R^2 and R_a^2	Mallow's C _p	AIC	BIC	EBIC	CV		
Criteria	Suitable	models w same	Good estimate	Minimize Kullback-		models in small-n-	based on estimated		
	for Better	num of predictors Higher	of σ^2	Leibler dist Lower	Lower	large-p problems Lower	prediction error Lower		
R^2 and R_a^2									
l and ra	$R^2 - \frac{1}{SST}$, I	$R_a - R^2 - \frac{1}{n-p-1}(1-R^2)$	our estimate propo	ortion of pop variation of	response i	explained by predictors	s iii regressioii iiiouei		
		•	•	. Does not strike a balanc			n to explained variation is		
		the model.	as num or predicto	is ilici, it still lilci when p	Teulcioi ilav	ing a sinali continutio	ii to explained variation is		
Mallow's C _p			estimate SPSE. But	don't have y _{n+i} available.	So use $\sum_{i=1}^{n}$	$(y_i - \hat{y}_{iM})^2$ to estimate	te SPSE and find that		
(Complexity		$-\hat{y}_{iM})^2$ = SPSE - 2 M α		,					
parameter)	Adjusting	for bias, $\widehat{SPSE} = \sum_{i=1}^{n} ($	$y_i - \hat{y}_{iM})^2 + 2 M ^2$	$\hat{\sigma}^2$ (unbiased estimate of	SPSE)				
	Mallow's ($C_p = \frac{1}{\hat{\sigma}^2} \sum_{i=1}^n (y_i - \hat{y}_{iM})^2$	-n+2 M . Minim	nizing C_p is equivalent to r	ninimizing $ar{\mathcal{S}}$	PSE			
	If model N	/I is correct model, then	$EC_p \approx M $						
Akaike's				$(g_M(y))$ and the true mod					
information	$I(f,g_M) = \int$	$f(y)log\left(\frac{f(y)}{g_M(y)}\right)dy = 0$	$\int f(y)logf(y) dy$	$-\int f(y)logg_M(y)dy\approx$	$\int f(y) log f$	$f(y) dy - \frac{1}{n} \sum_{i=1}^{n} \log g_{N}$	$_{I}(y_{i})$		
criterion (AIC)	AIC approx	ximates the 2nd compo	nent above (since c	an ignore constant = 1st t	term)				
(AIC)	AIC = -2lc	$ogL(\widehat{m{eta}}_{M},\widehat{\sigma}_{M}^{2})+2j_{M}$, w	here $\widehat{oldsymbol{eta}}_{M}$, $\widehat{\sigma}_{M}^{2}$ are Ml	E under model M, L is like	elihood fn ai	nd j_M is num of predictor	ors in M		
	For multip	ole LRM w normality ass	umption, AIC = $nlog$	$g(\hat{\sigma}_M^2) + 2j_M + C$, where	$\hat{\sigma}_M^2 = \frac{1}{n} \sum_{i=1}^n \sum_{i=1}^n \sigma_M^2$	$\mathbf{x}_{i1}(y_i-\hat{y}_{iM})^2$ and C = n	ı(ln(2π) + 1)		
Bayesian	Let ${\mathcal M}$ be	the set of all possible m	odels, Pr a prior pro	obability measure on $\mathcal{M}.$	Let Pr(M) be	e the prior on a model	$M \in \mathcal{M}$ and $\pi(\pmb{\beta}_{M})$ the		
information		arameters of model M							
criterion				$ M\rangle = \int L(\mathbf{y}, \boldsymbol{\beta}_M) \pi(\boldsymbol{\beta}_M) c$	$ioldsymbol{eta}_M$				
(BIC)	The poste	rior probability of mode	el M is p(M \mathbf{y}) = $\frac{n}{\sum_{M \in \mathcal{M}}}$	M(y M)FI(M) $MPr(M)m(y M)$					
	If Pr(M) is	taken as constant, BIC =	$=-2logL(\widehat{\boldsymbol{\beta}}_{M},\widehat{\sigma}_{M}^{2})$	$+ j_M ln n$					
Extended	Let model	space be partitioned ac	ccording to num of p	predictors contained in th	ne models as	$\mathcal{M}_0 \cup \overline{\mathcal{M}_1 \cup \mathcal{M}_2 \cup}$	where $\overline{\mathcal{M}_j}$ is set of all		
Bayesian				rior, then $\Pr(\mathcal{M}_j) \propto {p \choose j}$, v					
information				ore predictors will be larg			BIC will select models w		
criterion (EBIC)		dictors. EBIC accounts fo							
I (LDIC)					or on mode	15			
, ,	EBIC = −2	$logL(\widehat{\boldsymbol{\beta}}_{M},\widehat{\sigma}_{M}^{2})+j_{M}ln\eta$			or on mode	.5			

Canada	Nacial NA Citta de Cita de La Very VIII de Caracter de La Very VIII de Caracter de Caracte	1 11 -						
Cross Validation	, , , , , , , , , , , , , , , , , , ,							
(CV)	$\ \widetilde{\mathbf{y}} - \widetilde{X}\widehat{\boldsymbol{\beta}}\ ^2$. Practically, same dataset is split into training and testing data. So wastes information and is against principle of sufficiency							
()	Leave-out-one CV: Training data is n-1 observations, test data is 1 observation k-fold CV: Whole data divided into k parts, each time, one part is test data, remaining k-1 parts for training data							
	Leave-out-one CV score: CV = $\frac{1}{n}\sum_{i=1}^{n}(y_i - x_i^T\hat{\boldsymbol{\beta}}^{(-i)})^2$, where $\hat{\boldsymbol{\beta}}^{(-i)}$ is the estimate of $\boldsymbol{\beta}$ by leaving out the i th data point (y _i , x _i)							
	1							
	A.		f data (testing data) & $\widehat{m{eta}}^{(-i)}$ = estimate obtained by training data					
Model selection	Naive method: all subset selection. Not practical as for p predict	ors, th	ere are 2 ^p possible models					
strategy	Remove redundant predictors (when p is not very large) Fit full model, remove all predictors w p-value bigger than a ce	rtain	evel a					
strategy			re-fit model w remaining predictors, repeat this until no predictor					
	has p-value > α	,	OF CONTRACTOR OF CONTRACTOR					
	If covariates are not highly correlated, the 2 options produce the	same	e selected model.					
	If high correlation among covariates exists, ii. preferred							
	2) Forward selection (sequential procedure) Starts w null model M_0 w no predictors, then add predictors 1 at	a tim	e choosing predictor having largest contribution to reduce the					
	residual sum of squares	u	e, choosing predictor having largest contribution to reduce the					
	Compare new model w old model by certain criterion. If new mo	del b	etter than old model -> continue; otherwise stop.					
	Criterion can be any except R^2 and R^2_a							
	3) Backward Selection (inverted sequential method) Start w full model M _F w all predictors, then reduce model by ren	ovina	a prodictors one at a time, shoosing prodictor wismallest					
	contribution to reduce residual sum of squares to be removed.	IUVIII	predictors one at a time, choosing predictor w smallest					
	Compare reduced model w previous model by AIC. If AIC of new	< AIC	of old -> continue; otherwise stop					
	4) Stepwise selection (mixture of forward & backward selection.	Can b	e done upwards OR downwards)					
		mode	el, perform backward procedure until no predictor can be removed.					
	Proceed to next forward step. Repeat Downward stanwise selection: Start w full model. Remove predictions	ctor f	om model, perform forward procedure until no predictors can be					
	added. Proceed to next backward step. Repeat	ctoi ii	on model, periorii forward procedure diffii no predictors can be					
Penalized	For LRM $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$, the penalized likelihood approach select var	iables	by minimizing $\frac{1}{2} \mathbf{y} - \mathbf{X}\boldsymbol{\beta} _2^2 + p_{\lambda}(\boldsymbol{\beta})$, where p_{λ} is the penalty					
likelihood	function, λ is the penalty parameter whose value is to be chosen							
approach	Procedure: specify sequence of λ values, at each value, carry out	the p	enalized minimization, which yields a model w certain selected					
	variables. Selection criteria is used to select the model							
Common	If purpose to obtain model for prediction -> CV. If purpose to ide	ntify	mportant variables -> EBIC					
penalty	1) LASSO penalty: $p_{\lambda}(\boldsymbol{\beta}) = \lambda \sum_{j=1}^{p} \beta_{j} $	a ı−1						
functions	2) Adaptive LASSO penalty: $\lambda \sum_{j=1}^p w_j \beta_j $, where w_j is taken as							
	multiple LRM. If p is close to or > n, $\hat{\beta}_j$ is the OLS estimate is the marginal LRM SCAD penalty: $p_{\lambda}(\beta) = \beta $ for $ \beta $ near 0, and equals a constant C for large $ \beta $, the two parts are connected by a smooth function							
	MCP penalty: for large $ \beta $, it is a constant. Smoothly decreases t							
Rationale of	E.g. LASSO (least absolute shrinkage and selection operator) esti							
penalized	If $\lambda = 0$, LASSO estimator is same as LSE. If $\lambda = \infty$, all components							
likelihood			nonzero, and others 0. The nonzero ones are shrunk version of LSE					
approach	Variables w nonzero estimated coefficients are the selected variables	ables						
Model	Assumptions made for model might not be true, leading to discre	nancie	s. There are 2 types of discrepancies – systematic and local					
diagnostics	Assumptions made for model might not be true, leading to discrepancies. There are 2 types of discrepancies – systematic and local Fitted values are $\hat{y}_i = x_i^T \hat{\beta}$, $i = 1,,n$. Hat matrix is $H = X(X^TX)^{-1}X^T$							
-	Hat values (ith diagonal elem of H), $h_{ii} = x_i^T (X^T X)^{-1} x_i = \text{hat value of ith observation, where } x_i^T \text{ is the ith row of X}$							
	Hat values (i th diagonal elem of H), $h_{ii} = \boldsymbol{x}_i^T (X^T X)^{-1} \boldsymbol{x}_i$ = hat value of i th observation, where \boldsymbol{x}_i^T is the i th row of X Partitioning X as X = (1 Z), (X ^T X) ⁻¹ = $\begin{pmatrix} n & 1^T Z \\ Z^T 1 & Z^T Z \end{pmatrix}^{-1} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$							
	$A_{22} = \left[Z^T \left(I - \frac{1 1^T}{n} \right) Z \right]^{-1} = \text{sample covariance matrix, } A_{11} = \frac{1}{n} + \frac{1^T Z}{n} A_{22} \frac{Z^T 1}{n}, A_{12} = -\frac{1}{n} 1^T Z A_{22}, A_{21} = A_{12}^T$							
	Let i th row vector \mathbf{x}_i of X be $(1, z_i)^T$ and $\overline{\mathbf{z}} = \frac{z^T 1}{n}$. Then $A_{11} = \frac{1}{n} + \overline{\mathbf{z}}^T A_{22} \overline{\mathbf{z}}$							
	Then $h_{ii} = x_i^T (X^T X)^{-1} x_i = \frac{1}{n} + (z_i - \overline{z})^T A_{22} (z_i - \overline{z}) \overline{z} = \frac{1}{n} + Mahalanobis dist of ith observation in x-space to centroid of sample$							
	Pearson's residuals are $\mathbf{e}_i = \mathbf{y}_i - \hat{\mathbf{y}}_i$, $i = 1,, n$. Let $\mathbf{e} = (\mathbf{e}_1,, \mathbf{e}_n)^T$. Then $\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y}$. $\mathbf{E} \mathbf{e} = 0$, $\text{var}(\mathbf{e}) = \sigma^2(\mathbf{I} - \mathbf{H})$. $\text{var}(\mathbf{e}_i) = \sigma^2(\mathbf{I} - \mathbf{h}_{ii})$							
	Under normality assumption, $e \sim N(0, \sigma^2(I-H))$							
	Studentized residuals, $r_i' = \frac{e_i}{sd(e_i)} = \frac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}$							
	Studentized deleted residuals, $r_i^* = \frac{y_i - \hat{y}_{i(i)}}{sd(y_i - \hat{y}_{i(i)})} = \frac{y_i - \hat{y}_i}{\hat{\sigma}_{(i)}\sqrt{1 - h_{ii}}}$, where $\hat{y}_{i(i)}$ is the predicted value by fitted model w i th observation deleted, $\hat{\sigma}_{(i)}$							
	is the counter part of $\hat{\sigma}$ when i th observation is deleted							
	Cook's distance, $d_i = (\widehat{\boldsymbol{\beta}}_{(i)} - \widehat{\boldsymbol{\beta}})^T (X^T X) (\widehat{\boldsymbol{\beta}}_{(i)} - \widehat{\boldsymbol{\beta}}) / (p\widehat{\sigma}^2)$, where $\widehat{\boldsymbol{\beta}}_{(i)}$ is estimate of $\boldsymbol{\beta}$ when i^{th} observation is removed from data							
	Variance Inflation Factor (VIF). Let R_k^2 be the coefficient of determination of model $X_k = \beta_0 + \sum_{j \neq k} \beta_j X_j + \epsilon$. VIF of X_k is VIF $k = \frac{1}{1-R_k^2}$							
Systematic			variance, error terms not indep, error terms don't have normal dist,					
discrepancies								
		ors w	mean 0. In any residual plot, points are scattered evenly within a					
Charl:	horizontal band around 0	ır	washing what about a rest Proposition of the Control of the Contro					
Check non-	Plot Pearson's residual against fitted values Plot Pearson's residual against predictor variables		y of the plots show a non-linear trend -> regression fn is not linear residual vs predictors: no trend -> no obvious discrepancy in					
	Scatter plot of response against predictor variables		ession fn					
Check	Plot Pearson's residual against fitted values		If vertical range of residuals have obvious change along x-axis ->					
homogeneity	Plot Pearson's residual against predictor variables		variances are not constant / not homogeneous					

Check indep	endence Plot recidual against time/snace	dep -> should be c	anctant hari-	ontal trand					
Check	endence Plot residual against time/space If inc Plot of studentized residuals through dist plot (box plot, histogram) OR	gep -> snould be co	right	Symetric but hear	vy tailed				
normality	normal probability plot of residuals OR QQ plot	1	°° -		0				
					00				
	If normality holds, points in QQ plot shld fall on straight line y = x	ر ا		S. C.					
	, , , , , , , , , , , , , , , , , , , ,			90					
Heavy	If dist of r.v. Y is skewed to the right (positive skew) relative to normal dist,	skewed left	skew	ed right					
tailed	then $P(Y \le c) \le P(Z \le c)$ for all c	1	1 2						
pattern	Let y_q and z_q denote q-quantile of Y and Z, then $P(Y \le y_q) = P(Z \le z_q) \ge P(Y \le z_q)$								
pattern	Then $P(Y \le y_q) \ge P(Y \le z_q)$								
	Hence $y_q \ge z_q$ for all q. In Q-Q plot where y_q is plotted against z_q , the point (z_q ,								
	y_q) is above the point (z_q, z_q)	+	× 1/2						
	ng predictors Plot residual against other predictors not included in the mode	el If 1 of the plo	t show a tre	nd -> that pred	ictor is missing				
	Leverage: whether point is far away from major cluster in x-space] y •	1")"	/				
	Since $\sum_i h_{ii}$ = Tr(H) = p. Point is high leverage if h_{ii} > $\frac{2p}{n}$		1./						
(Consistency: whether point is consistent in terms of fitting in the (x,y)-space	(a) x (b) x							
	Studentized deletion residuals are the standardized prediction errors,		a	b	С				
	Find points w highest $ r_i^* $ values -> possible outliers	Leverage	low	high	high				
	nfluence: whether point highly affects fitting of model	Consistency	No	Yes	No				
	Find points w highest Cook's distance -> possible outliers	Influence	low	low	high				
Assessment			and Cook's d	istance d _i					
of outliers	Formal test: To assess (y_i, x_i) , introduce the dummy variable $u = \begin{cases} 1, & \text{for } i^{th} \\ 0, & \text{otherw} \end{cases}$	unit							
	Significance of coefficient of u in the linear predictor indicates i th point is an outlier.								
	1 organization of coefficient of a in the linear predictor indicates in point is all	outher.							
1. LRM w	When ϵ_i 's don't have common variance, an unequal variance model is consider	ered: $\mathbf{v} = X\mathbf{B} + \boldsymbol{\epsilon}$.							
unequal	$/w_1^{-1} 0 \cdots 0$	y (
variances	where ϵ has the variance matrix $\Sigma = \sigma^2 \begin{bmatrix} 1 & 1 & 0 \\ 0 & W_2^{-1} & \cdots & 0 \end{bmatrix}$ where W_2^{-1}	s are unequal wais	thts lif comm	on variance: a	² I)				
	where ϵ has the variance matrix $z = 0$ \cdots z	s are unequal weig	giits (ii coiiiii	ion variance. 0	1)				
	where ϵ has the variance matrix $\Sigma = \sigma^2 \begin{pmatrix} w_1^{-1} & 0 & \cdots & 0 \\ 0 & w_2^{-1} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & w_n^{-1} \end{pmatrix}$, where w_i 's are unequal weights (if common variance: $\sigma^2 I$) If w_i 's are known, the unequal variance model can be transformed into an equal variance model. Let								
	If \mathbf{w}_i 's are known, the unequal variance model can be transformed into an equal variance model. Let $\mathbf{W} = \begin{pmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$. Multiply $\mathbf{y} = X\mathbf{\beta} + \boldsymbol{\epsilon}$ by $\mathbf{W}^{1/2}$, then $\mathbf{W}^{1/2}\mathbf{y} = \mathbf{W}^{1/2}X\mathbf{\beta} + \mathbf{W}^{1/2}\boldsymbol{\epsilon}$. Let $\widetilde{\mathbf{y}} = \mathbf{W}^{1/2}\mathbf{y}$, $\widetilde{\mathbf{x}} = \mathbf{W}^{1/2}X$, $\widetilde{\boldsymbol{\epsilon}} = \mathbf{W}^{1/2}\boldsymbol{\epsilon}$.								
	$\begin{pmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \end{pmatrix}$	1/21/2	~1/2	~1/2	~1/2				
	$W = \begin{pmatrix} 0 & w^2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$. Multiply $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$ by $W^{1/2}$, then $W^{1/2}\mathbf{y} = W^{1/2}$	$^{1/2}X\boldsymbol{\beta} + W^{1/2}\boldsymbol{\epsilon}$. Lo	et $\widetilde{y} = W^{1/2}$	$\mathbf{y}, X = W^{1/2}X,$	$\tilde{\boldsymbol{\epsilon}} = W^{1/2} \boldsymbol{\epsilon}$				
	$(0 0 \cdots w_n)$								
	Then $\operatorname{var}(\widetilde{\boldsymbol{\epsilon}}) = W^{1/2} \Sigma W^{1/2} = \sigma^2 I$. And model $\widetilde{\boldsymbol{y}} = \widetilde{X} \boldsymbol{\beta} + \widetilde{\boldsymbol{\epsilon}}$ is a constant varial	nce model							
	Minimizing $\ \widetilde{\boldsymbol{y}} - \widetilde{\boldsymbol{X}}\boldsymbol{\beta}\ _2^2$, we obtain the estimate of $\boldsymbol{\beta}$ as $\widehat{\boldsymbol{\beta}}_W = (\widetilde{X}^T\widetilde{X})^{-1}\widetilde{X}^T\widetilde{\boldsymbol{y}} = (X^TWX)^{-1}X^TW\widetilde{\boldsymbol{y}}$ = weighted LSE (WLSE)								
	$\ \widetilde{\boldsymbol{y}} - \widetilde{X}\boldsymbol{\beta}\ _2^2$ can be expressed explicitly as $\sum_{i=1}^n w_i (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2$. The weight w_i reflect the relative importance of $(y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2$ in the								
	estimation. The larger the variance of ith term, the smaller the corresponding weight, since weight is inversly proportional to the variance								
	For WLSE $\hat{\beta}_W$, $E\hat{\beta}_W = \beta$, $Var(\hat{\beta}_W) = \sigma^2(X^TWX)^{-1}$. And $\hat{\beta}_W \sim N(\beta, \sigma^2(X^TWX)^{-1})$								
	$\sigma^2 \text{ is estimated as } \hat{\sigma}^2 = \frac{1}{n-p-1} \ \widetilde{\boldsymbol{y}} - \widetilde{\boldsymbol{X}} \widehat{\boldsymbol{\beta}}_W\ _2^2 = \frac{1}{n-p-1} \sum_{i=1}^n w_i (y_i - \boldsymbol{x}_i^T \widehat{\boldsymbol{\beta}}_W)^2. \text{ Inference on } \boldsymbol{\beta} \text{ is made in same way as in normal LRM}$								
Fating attack			ilade ili sailie	. way as iii iioii	TIGI LIVIVI				
Estimation	, , , , , , , , , , , , , , , , , , , ,								
	, , , , , , , , , , , , , , , , , , , ,	d fittad values 🕏	1. Fit regression model by unweighted least squares and obtain residuals \hat{y}						
of unknown	1. Fit regression model by unweighted least squares and obtain residuals r and								
unknown	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_0$	$_1 ln \hat{y}_i + e_i.$							
unknown	1. Fit regression model by unweighted least squares and obtain residuals \mathbf{r} and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_0$. If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - \min \hat{y}_i + c$, for some positive constant	$\int_{1} \ln \hat{y}_{i} + e_{i}.$							
_	1. Fit regression model by unweighted least squares and obtain residuals ${\bf r}$ and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln {\bf r}_i = \alpha_0 + \alpha_1$. If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don'	$\int_{1}^{1} \ln \hat{y}_{i} + e_{i}.$ It c It really matter							
unknown	1. Fit regression model by unweighted least squares and obtain residuals \mathbf{r} and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_0$. If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - \min \hat{y}_i + c$, for some positive constant	$\int_{1}^{1} \ln \hat{y}_{i} + e_{i}.$ It c It really matter							
unknown	1. Fit regression model by unweighted least squares and obtain residuals ${\bf r}$ and 2. Regress log of absolute residual on log of fitted values, e.g. $ {\bf r}_i =\alpha_0+\alpha_0$ of smallest $\hat{y}_i<0$, replace \hat{y}_i by $\hat{y}_i-min\ \hat{y}_i+c$, for some positive constant 3. Weights are estimated as $w_i=\hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don'l f there are replicates of predictor values, sample variance can be used in estimated.	$\frac{1}{1}\ln \hat{y}_i + e_i.$ It c $\frac{1}{1}$ treally matter mation of weights	$ar{y}_i +e_i$, who	ere s _i is sample	sd, and $ar{y}_i$ is				
unknown	1. Fit regression model by unweighted least squares and obtain residuals ${\bf r}$ and 2. Regress log of absolute residual on log of fitted values, e.g. $ {\bf r}_i =\alpha_0+\alpha_1$ If smallest $\hat{y}_i<0$, replace \hat{y}_i by $\hat{y}_i-\min\hat{y}_i+c$, for some positive constant 3. Weights are estimated as $w_i=\hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in esti 0. Naive method: weight = $1/s^2$, $s=sample$ SD 1. Estimate variance as a function of the mean by using the regression model: sample mean	$\frac{1}{1}\ln \hat{y}_i + e_i.$ It c $\frac{1}{1}$ treally matter mation of weights	$ar{y}_i +e_i$, who	ere s _i is sample	sd, and $ar{y}_i$ is				
unknown weights	1. Fit regression model by unweighted least squares and obtain residuals ${\bf r}$ and 2. Regress log of absolute residual on log of fitted values, e.g. $ {\bf r}_i =\alpha_0+\alpha_0$. If smallest $\hat{y}_i<0$, replace \hat{y}_i by $\hat{y}_i-\min\hat{y}_i+c$, for some positive constant 3. Weights are estimated as $w_i=\hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estion. Naive method: weight = $1/s^2$, $s=sample$ SD 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i= \bar{y}_i ^{-2\hat{\alpha}_1}$	$a_1 \ln \hat{y}_i + e_i$. It contains the containing t							
unknown weights	1. Fit regression model by unweighted least squares and obtain residuals ${\bf r}$ and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln {\bf r}_i = \alpha_0 + \alpha_1$. If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimation 0. Naive method: weight = $1/s^2$, $s = sample$ SD 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear definition of the sample mean 2.	In $\hat{y}_i + e_i$. It contains the contain	predictor on	another predic					
unknown weights 2. Multi- collinearity	1. Fit regression model by unweighted least squares and obtain residuals ${\bf r}$ and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln {\bf r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimation 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear definition of the predictor is perfectly linearly dependent on the other predictors, ${\bf X}^{\rm T}{\bf X}$ weight	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on e. non-invert	another predic	tor,				
unknown weights 2. Multi- collinearity	1. Fit regression model by unweighted least squares and obtain residuals ${\bf r}$ and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln {\bf r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimation 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i^{th} predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear definition of the inverse perfectly linearly dependent on the other predictors, ${\bf X}^{T}{\bf X}$ we Practically, although perfect linear dependence will not occur, high multicol	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on e. non-invert	another predic	tor,				
unknown weights	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don'l If there are replicates of predictor values, sample variance can be used in estimation 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear deals of 11 predictor is perfectly linearly dependent on the other predictors, $\mathbf{X}^T\mathbf{X}$ we Practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$, which renders the LSE extremely unstable	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on	another predic	tor,				
unknown weights 2. Multi- collinearity & its effects	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don'l If there are replicates of predictor values, sample variance can be used in estimation 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear deals of 11 predictor is perfectly linearly dependent on the other predictors, $\mathbf{X}^T\mathbf{X}$ was Practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$, which renders the LSE extremely unstable Serious multicollinearity greatly increases variance of LSE and make LSE inactions.	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on a. non-invert X ^T X to be ne	another predicible early singular (i.	tor, e. having large				
2. Multi-collinearity & its effects	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don'l If there are replicates of predictor values, sample variance can be used in estimated 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear description of the inverse predictors, $\mathbf{X}^T\mathbf{X}$ was practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$, which renders the LSE extremely unstable Serious multicollinearity greatly increases variance of LSE and make LSE inactions.	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on e. non-invert X ^T X to be no s bservation is	another predictible early singular (i.	tor, e. having large				
2. Multi-collinearity & its effects Informal Diagnostics	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don'l If there are replicates of predictor values, sample variance can be used in estimation 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear deals of 11 predictor is perfectly linearly dependent on the other predictors, $\mathbf{X}^T\mathbf{X}$ was Practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$, which renders the LSE extremely unstable Serious multicollinearity greatly increases variance of LSE and make LSE inactions.	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on e. non-invert X ^T X to be no s bservation is	another predictible early singular (i. altered or dele	tor, e. having large ted				
2. Multi-collinearity & its effects Informal Diagnostics	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimate 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear description of the predictor is perfectly linearly dependent on the other predictors, $\mathbf{X}^T\mathbf{X}$ was practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$, which renders the LSE extremely unstable Serious multicollinearity greatly increases variance of LSE and make LSE inaction of the regression coefficients when a predictor is addeding Nonsignificant results in individual test on the regression coefficients for known and the same productor of the predictor of t	In $\hat{y}_i + e_i$. It is to the content of the con	predictor on e. non-invert X ^T X to be no s bservation is edictor varial tical conside	another predictible early singular (i. altered or deletes ration or prior e	tor, e. having large ted				
unknown weights 2. Multi- collinearity & its effects Informal Diagnostics for multi- collinearity	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimate 0. Naive method: weight = $1/\text{s}^2$, $s = \text{sample SD}$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear describing of the inverse perfectly linearly dependent on the other predictors, $\mathbf{X}^T\mathbf{X}$ was practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$), which renders the LSE extremely unstable Serious multicollinearity greatly increases variance of LSE and make LSE inactions and the regression coefficients of the Estimated regression coefficients when a predictor is added Nonsignificant results in individual test on the regression coefficients for known and the production of the produ	In $\hat{y}_i + e_i$. It is to the content of the con	predictor on e. non-invert X ^T X to be no s bservation is edictor varial tical consider r trend, corr	another predictible early singular (i. altered or deletoles ration or prior elation > 0.6)	tor, e. having large ted				
2. Multi-collinearity & its effects Informal Diagnostics for multi-collinearity 1) Formal	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimate 0. Naive method: weight = $1/s^{\Delta}2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear destriction of the predictor is perfectly linearly dependent on the other predictors, $\mathbf{X}^{T}\mathbf{X}$ was Practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$, which renders the LSE extremely unstable Serious multicollinearity greatly increases variance of LSE and make LSE inactions and serious multicollinearity greatly increases variance of LSE and make LSE inactions multiplicant results in individual test on the regression coefficients for known and regression coefficients of sample correlation btw pairs of predictors in the correlation by being the submatrix of X w/o its j th column and R_j^2 is the coefficient of multiplicant of X w/o its j th column and R_j^2 is the coefficient of multiplicant in the correlation of X w/o its j th column and R_j^2 is the coefficient of multiplicant in the correlation of X w/o its j th column and R_j^2 is the coefficient of multiplicant in the correlation of X w/o its j th column and R_j^2 is the coefficient of multiplicant in the correlation of X w/o its j th column and R_j^2 is the coefficient of multiplicant in the correlation of X w/o its j th column and R_j^2 is the coefficient of multiplicant in the correlation of X w/o its j th c	In $\hat{y}_i + e_i$. It is to the content of the con	predictor on e. non-invert X ^T X to be no s bservation is edictor varial tical consider r trend, corr	another predictible early singular (i. altered or deletoles ration or prior elation > 0.6)	tor, e. having large ted				
2. Multi-collinearity & its effects Informal Diagnostics for multi-collinearity	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{u}_1}$ OR $e^{-2\hat{u}_0} \hat{y}_i^{-2\hat{u}_1}$. Constant $e^{-2\hat{u}_0}$ don'd If there are replicates of predictor values, sample variance can be used in estimate 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{u}_1}$ Correlation among predictor variables such as pariwise correlation, linear description of the inverse predictor, s_i we practically, although perfect linear dependent on the other predictors, s_i we practically, although perfect linear dependence will not occur, high multicol condition number s_i and s_i which renders the LSE extremely unstable serious multicollinearity greatly increases variance of LSE and make LSE inactions and s_i and s_i when a predictor is added Nonsignificant results in individual test on the regression coefficients for known and s_i being the submatrix of s_i who its s_i being the submatrix of s_i who its s_i being the submatrix of s_i who its s_i being the variance of s_i is the coefficient of multiplication of s_i is uncorrelated when s_i is uncorrelated of s_i is the coefficient of multiplication of s_i is uncorrelated of s_i and the variance of s_i is the coefficient of multiplication of s_i is uncorrelated of s_i is the coefficient of multiplication of s_i is uncorrelated of s_i is the coefficient of s_i is uncorrelated of s_i is the coefficient of s_i is the coefficient of s_i is uncorrelated of s_i is the coefficient of s_i is the coefficient of s_i is uncorrelated when s_i is the coefficient of s_i is the coefficient of s_i is unco	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on e. non-invert X ^T X to be no es bservation is edictor varial tical consider trend, corron of x _j is reg	another predictible early singular (i. altered or deletoles ration or prior elation > 0.6)	tor, e. having large ted				
2. Multi-collinearity & its effects Informal Diagnostics for multi-collinearity 1) Formal diagnostic – VIF	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_$	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on e. non-invert X ^T X to be no section is edictor varial tical consider trend, corron of x _j is reg	another predictible early singular (i.e. altered or deleples ration or prior elation > 0.6) ressed on X_{-j}	tor, e. having large ted experience				
2. Multi-collinearity & its effects Informal Diagnostics for multi-collinearity 1) Formal diagnostic – VIF 2) Ridge	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimate 0. Naive method: weight = $1/\text{s}^2$, $s = \text{sample SD}$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear double of the iteration of the dependent on the other predictors, $\mathbf{x}^T\mathbf{x}$ was practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$, which renders the LSE extremely unstable serious multicollinearity greatly increases variance of LSE and make LSE inactions and \mathbf{x}_i is uncorrelated regression coefficients when a predictor is added Nonsignificant results in individual test on the regression coefficients for known and \mathbf{x}_i being the submatrix of \mathbf{x}_i who its \mathbf{y}^{th} column and \mathbf{x}_i^2 is the coefficient of multiplication of \mathbf{x}_i is uncorrelated with \mathbf{x}_i is uncorrelated with \mathbf{x}_i is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by \mathbf{x}_i and the variance of \mathbf{x}_i is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i).	In $\hat{y}_i + e_i$. It is to the content of the con	predictor on e. non-invert X ^T X to be no es bservation is edictor varial tical consider trend, corron of x _j is regun factor)	another predictible early singular (i.e. altered or deleples ration or prior elation > 0.6) ressed on X_{-j}	tor, e. having large ted experience				
2. Multi-collinearity & its effects Informal Diagnostics for multi-collinearity 1) Formal diagnostic – VIF	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_0$. If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0} \hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimate 0. Naive method: weight = $1/s^2$, $s = sample SD$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear double of the predictor is perfectly linearly dependent on the other predictors, $\mathbf{X}^T\mathbf{X}$ was practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$), which renders the LSE extremely unstable serious multicollinearity greatly increases variance of LSE and make LSE inactions multicollinearity greatly increases variance of LSE and make LSE inactions are stimated regression coefficients when a predictor is added Nonsignificant results in individual test on the regression coefficients for known and \mathbf{x}_i being the submatrix of \mathbf{x}_i who its \mathbf{y}_i to clumn and \mathbf{x}_i is the coefficient of multiplication of \mathbf{x}_i is uncorrelated with \mathbf{x}_i is correlated by a factor VIF \mathbf{y}_i of \mathbf{x}_i is correlated with \mathbf{x}_i is correlated by a factor VIF \mathbf{y}_i (\mathbf{x}_i is correlated or multicollinearity is \mathbf{x}_i nearly singular, to remedy: add on Ridge regression estimator $\hat{\boldsymbol{\beta}}_{RIG} = (\mathbf{x}_i^T\mathbf{X}_i + \lambda I)^{-1}\mathbf{X}_i^T\mathbf{y}_i$, where $\lambda > 0$ is a parameter singular regression estimator $\hat{\boldsymbol{\beta}}_{RIG} = (\mathbf{x}_i^T\mathbf{X}_i + \lambda I)^{-1}\mathbf{X}_i^T\mathbf{y}_i$, where $\lambda > 0$ is a parameter \mathbf{x}_i by the sum and \mathbf{x}_i is the coefficient.	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on e. non-invert X ^T X to be no section is edictor variable tical consider trend, corron of x _j is regular factor)	another predictible early singular (i.e. altered or deleptes ration or prior elation > 0.6) ressed on X_{-j} $+ \lambda I$ (which is integral of the singular content of the si	tor, e. having large ted experience				
2. Multi-collinearity & its effects Informal Diagnostics for multi-collinearity 1) Formal diagnostic – VIF 2) Ridge	1. Fit regression model by unweighted least squares and obtain residuals r and 2. Regress log of absolute residual on log of fitted values, e.g. $\ln \mathbf{r}_i = \alpha_0 + \alpha_1$ If smallest $\hat{y}_i < 0$, replace \hat{y}_i by $\hat{y}_i - min \hat{y}_i + c$, for some positive constant 3. Weights are estimated as $w_i = \hat{y}_i^{-2\hat{\alpha}_1}$ OR $e^{-2\hat{\alpha}_0}\hat{y}_i^{-2\hat{\alpha}_1}$. Constant $e^{-2\hat{\alpha}_0}$ don' If there are replicates of predictor values, sample variance can be used in estimate 0. Naive method: weight = $1/\text{s}^2$, $s = \text{sample SD}$ 1. Estimate variance as a function of the mean by using the regression model: sample mean 2. The weight for the i th predictor value is $w_i = \bar{y}_i ^{-2\hat{\alpha}_1}$ Correlation among predictor variables such as pariwise correlation, linear double of the iteration of the dependent on the other predictors, $\mathbf{x}^T\mathbf{x}$ was practically, although perfect linear dependence will not occur, high multicol condition number $\lambda_{max}/\lambda_{min}$, which renders the LSE extremely unstable serious multicollinearity greatly increases variance of LSE and make LSE inactions and \mathbf{x}_i is uncorrelated regression coefficients when a predictor is added Nonsignificant results in individual test on the regression coefficients for known and \mathbf{x}_i being the submatrix of \mathbf{x}_i who its \mathbf{y}^{th} column and \mathbf{x}_i^2 is the coefficient of multiplication of \mathbf{x}_i is uncorrelated with \mathbf{x}_i is uncorrelated with \mathbf{x}_i is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by \mathbf{x}_i and the variance of \mathbf{x}_i is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i) is correlated by a factor VIF, \mathbf{x}_i (\mathbf{x}_i).	In $\hat{y}_i + e_i$. It is to the control of the con	predictor on e. non-invert X ^T X to be no section is edictor variable tical consider trend, corron of x _j is regular factor)	another predictible early singular (i.e. altered or deleptes ration or prior elation > 0.6) ressed on X_{-j} $+ \lambda I$ (which is integral of the singular content of the si	tor, e. having large ted experience				

	Let Q be the orthogonal matrix s.t. $X^TX = Q\Delta Q^T$, where $\Delta = Diag(\tau_0, \tau_1,, \tau_p)$. Thus $\beta - E\widehat{\boldsymbol{\beta}}_{RIG} = Q \begin{pmatrix} \frac{\lambda}{\tau_0 + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{\lambda}{\tau_1 + \lambda} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \frac{\lambda}{\tau_p + \lambda} \end{pmatrix} Q^T \boldsymbol{\beta}$								
	Let $\tilde{\beta}_j$ denote the j th component of Q ^T $\boldsymbol{\beta}$. We have $\ \boldsymbol{\beta} - \mathrm{E}\widehat{\boldsymbol{\beta}}_{RIG}\ ^2 = \sum_{j=0}^p \left(\frac{\lambda}{\tau_j + \lambda}\right)^2 \tilde{\beta}_j$. Thus bias increase as λ increase Thus $\mathrm{tr}(\mathrm{var}(\widehat{\boldsymbol{\beta}}_{RIG})) = \sigma^2 \sum_{j=0}^p \frac{\tau_j}{(\tau_j + \lambda)^2}$. The variance decrease as λ increase. All other cov = 0								
	Sum of mean squares errors of $\boldsymbol{\beta}$ is given by MSE = $\sum_{j=0}^{p} MSE(\widehat{\boldsymbol{\beta}}_{j}) = \ \boldsymbol{\beta} - \mathrm{E}\widehat{\boldsymbol{\beta}}_{RIG}\ ^{2} + TR(\mathrm{Var}(\widehat{\boldsymbol{\beta}}_{RIG}))$. Need to get balance btw bias and variance by minimizing MSE MSE cannot be readily used as a criterion as it involves unknowns $\boldsymbol{\beta}$ and σ^{2} . Can select λ by Cross validation (CV) Let $\widehat{\boldsymbol{\beta}}_{-i}(\lambda)$ be the ridge regression estimate of $\boldsymbol{\beta}$ w parameter λ by deleting the i th observations. The CV score is given $\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\boldsymbol{x}_{(i)}^{T}\boldsymbol{\beta}_{-i}(\lambda))^{2}$, where $\boldsymbol{x}_{(i)}^{T}$ is the i th row vector of the design matrix X								
	Best λ is the mining		idtiix X						
	Note ridge regression mainly used for building model for prediction. Cannot be used to assess importance or effects of predictor. The estimates from model cannot be used to construct CI or conduct hypo testing. If need to make inference on effects of predictors -> use strategy of removing predictors w large VIF.								
3. Non-	If normal dist -> v	ariance don't depend on mean (i.e. constant variance i	n regression mo						
normality (remedy		ormality usually goes tgt w violation of constancy of va ation transformation can help to rectify both discrepa		and constancy of varian	000				
w variable		e and mean is known -> the desired variance stabilization		•	ice				
transfor-		ormation -> use Box-Cox transformation							
mation)		pend on mean μ , i.e. $\sigma^2 = V(\mu)$, a transformation can be sformation. Use taylor series to expand h(Y) at μ , as h(V							
		rean of h(Y), var(h(Y)) = $E[h(Y) - h(\mu)]^2 \approx [h'(\mu)]^2 E(Y - \mu)^2$		$(Y-\mu)$, where $\Pi(\mu)$ is a cor	IStant				
		$(\mu)]^2 V(\mu) = 1$, $h'(\mu) = \frac{1}{\sqrt{V(\mu)}} - h(\mu) = \int \frac{1}{\sqrt{V(\mu)}} d\mu$, aka Var		ion transformation					
Box-Cox		$\sqrt{V(\mu)}$ vrmation don't work?							
transfor-		ormal cts r.v., transformation cannot be determined so	lely by data typ	e					
mation	Box-Cox transformation: $h(Y) = \frac{Y^{\lambda}-1}{\lambda}$. λ can be determined by data								
	When λ = 0, the Box-Cox transformation is given by h(Y) = ln(Y), since $\lim_{\lambda \to 0} \frac{Y^{\lambda} - 1}{\lambda} = \ln(Y)$ Let $\sigma_i \propto \mu_i^{\alpha}$, where σ_i and μ_i are the SD and mean of i th treatment effect. The λ in Box-Cox transformation is determined by variance								
	Let $\sigma_i \propto \mu_i^{\alpha}$, when	re σ_i and μ_i are the SD and mean of i th treatment effect	$_0$ $_\lambda$. The λ in Box-(Cox transformation is det	 termined by variance				
	stabilization transformation								
	$\sigma_i \propto \mu_i^{\alpha}$	α (just use closest half int, e.g. α = 0.04 -> use 0.05)	λ = 1 - α	Transformation	_				
	$\sigma_i \propto \mu_i^3$	3	-2	reciprocal squared	_				
	$\sigma_i \propto \mu_i^2$	3/2	-1 -1/2	reciprocal reciprocal sqrt	-				
	$\sigma_i \propto \mu_i^{3/2}$ $\sigma_i \propto \mu_i$	1	0	log	_				
	$\sigma_i \propto \mu_i^{1/2}$	1/2	1/2	sgrt	-				
	$\sigma_i \propto \mu_i$ $\sigma_i \propto \text{constant}$	0	1	no transformation	-				
	$\sigma_i \propto \mu_i^{-1/2}$	-1/2	3/2	3/2 power	-				
	$\sigma_i \propto \mu_i^{-1}$	-1	2	square	-				
	Determination of α								
	Method 1: If observations are grouped, for each group, compute s_i and \bar{y}_i . Fit regression model ln $s_i = \beta_0 + \beta_1 \ln \bar{y}_i + e_i$								
	If observations not group, fit $\ln \mathbf{r}_i = \beta_0 + \beta_1 \ln \hat{y}_i + \mathbf{e}_i$								
	For both, α = estimate of β_1 Method 2: Only for grouped observations. Select a few α values, say α_k , k = 1,,K. For each k, compute $R_k = \max_i \frac{s_i}{v_i^{\alpha_k}} / \min_i \frac{s_i}{v_i^{\alpha_k}}$								
	Select $lpha_k$ with smallest R_k Direct determination of λ								
	For grouped observations: select a few λ values, say λ_k , k = 1,,K								
	For each k, make the transformation $y_{ij} \to y_{ij}^{\lambda_k}$. With the transformed data, compute $s_{\lambda_k}^2 i$, $i = 1,,g$								
	Select λ_k s.t $\max_i s_{\lambda_k i}^2 / \min_i s_{\lambda_k i}^2$ is closest to 1								
	For non-grouped observations: select a few λ values, say λ_k , k = 1,,K								
	For each k, make the transformation $y_{ij} \to y_{ij}^{\lambda_k}$. Analyze the regression models w $y_i^{\lambda_k}$ as response variable.								
	Select λ_k s.t MSE(λ_k) is smallest								