Universidad de Granada. Ecuaciones Diferenciales I 10 de Julio de 2019. Examen Extraordinario.

1. Se considera la ecuación lineal completa

$$t^2x'' + 3tx' + x = \frac{1}{t}, \qquad t > 0.$$

- (a) Encuentra un sistema fundamental de la ecuación homogénea asociada del tipo $\{\varphi_1(t) = t^{\alpha}, \ \varphi_2(t) = t^{\beta} \ln t\}.$
- (b) Usando la fórmula de variación de constantes encuentra todas las soluciones de la ecuación completa.
- (c) Encuentra la solución x(t) de la ecuación completa que cumple x(1) = 1, x'(1) = -1.
- 2. Decide de forma razonada la validez de cada una de las siguientes afirmaciones:
 - (a) Las funciones $\varphi_1(t) = e^t$, $\varphi_2(t) = e^{-t}$, $\varphi_3(t) = \cosh t$, $\varphi_4(t) = \sinh t$ forman un sistema fundamental para la ecuación x'''' x = 0.
 - (b) La solución del problema de valores iniciales $x'=e^{2t+x},\ x(0)=0$ está definida en $]-\infty,+\infty[.$
 - (c) Se considera la familia de curvas $y = \frac{x^2}{2} + c$ donde $c \in \mathbb{R}$ es un parámetro. Entonces las curvas de la familia de trayectorias ortogonales son elipses.
 - (d) Existe una función $V=V(x,y,z),\,V\in C^1(\mathbb{R}^3)$ que cumple

$$\frac{\partial V}{\partial x}(x,y,z) = 2x, \ \frac{\partial V}{\partial y}(x,y,z) = 2y, \ \frac{\partial V}{\partial z}(x,y,z) = xz.$$

1. Se considera la ecuación lineal completa

$$t^2 x'' + 3t x' + x = \frac{1}{t}, \qquad t > 0.$$

(a) Encuentra un sistema fundamental de la ecuación homogénea asociada del tipo $\{\varphi_1(t)=t^\alpha,\ \varphi_2(t)=t^\beta\ln t\}.$