EXERCICES — CHAPITRE 11&14

Intégrales et primitives

Exercice 1 – Pour chacune des fonctions suivantes, donner une primitive et indiquer un intervalle sur lequel votre réponse est valide.

1.
$$f_1(x) = x^2 - 3x + 7$$

4.
$$f_5(x) = (7x + 1)$$

$$2. \ f_2(x) = \frac{x^4 + 1}{x^2}$$

5.
$$f_6(x) = \frac{2x+1}{(x^2+x+1)^4}$$

3.
$$f_4(x) = \frac{1}{x^3}$$

6.
$$f_8(x) = \frac{x^2}{\sqrt{x^3 + 1}}$$

Exercice 2 – Dans chacun des cas suivants, déterminer une primitive F de la fonction f définie sur \mathbf{R} .

1.
$$f(x) = 3x^2 + \frac{1}{2}$$

3.
$$f(x) = \frac{x^2}{2} - \frac{x}{3} + 1$$

2.
$$f(x) = x^3 - 4x + \sqrt{2}$$

Exercice 3 – Dans chacun des cas suivants, déterminer une primitive F de la fonction f définie sur $]0; +\infty[$.

1.
$$f(x) = 3x + \frac{3}{x^2}$$

$$3. \ f(x) = \frac{\sqrt{x} - 2}{\sqrt{x}}$$

$$2. \ \ f(x) = \frac{x^3 - 2x^2 + 1}{x^2}$$

Exercice 4 – Dans chacun des cas suivants, calculer la primitive F de la fonction f qui vérifie la condition donnée.

1. f est définie sur \mathbf{R} par $f(x) = x^2 - 5x - 1$ et $F\left(-\frac{1}{2}\right) = \frac{1}{2}$.

2. f est définie sur **R** par $f(x) = 3x^2 - 5x + \frac{1}{2}$ et F(1) = 0.

3. f est définie sur]0; $+\infty$ [par $f(x) = x - \frac{1}{x^2} + 1$ et F(1) = 2.

4. f est définie sur]0; $+\infty$ [par $f(x) = x^3 + \frac{2}{x^2}$ et $F(1) = -\frac{1}{4}$.

5. f est définie sur]0; $+\infty$ [par $f(x) = 2x^3 - 1 - \frac{1}{x^2}$ et F(1) = 1.

Exercice 5 – Soit *F* et *G* les fonctions définies sur] – 1; + ∞ [par $F(x) = \frac{x^2 + x + 1}{x + 1}$ et

 $G(x) = x - 2 + \frac{1}{x+1}$. Montrer que F et G sont deux primitives sur $]-1;+\infty[$ d'une même fonction f que l'on précisera.

Exercise 6 – Soit f la fonction définie sur $\left| \frac{1}{2}; +\infty \right|$ par $f(x) = \frac{2x^2 - 4x}{(2x^2 + x - 1)^2}$.

Montrer que la fonction G définie sur $\left[\frac{1}{2}; +\infty\right[$ par $G(x) = \frac{2x^2}{2x^2 + x - 1}$ est une primitive de la fonction f.

Exercice 7 – Dans chacun des cas suivants, déterminer une primitive F de la fonction f.

1. f est définie sur $\left| \frac{1}{2}; +\infty \right|$ par $f(x) = \frac{3}{(2x-1)^3}$.

2. f est définie sur **R** par $f(x) = (x+1)(x^2+2x-3)^3$.

3. f est définie sur]1; $+\infty$ [par $f(x) = \frac{x}{(x^2 - 1)^2}$.

4. f est définie sur $\left| \frac{1}{2}; +\infty \right|$ par $f(x) = \frac{4}{(1-2x)^2}$.

Exercice 8 – Calculer les intégrales suivantes.

1.
$$A = \int_{1}^{2} (x^2 - 3x + 1) dx$$
,

2.
$$B = \int_{2}^{6} \left(\frac{x^{2}}{2} - \frac{2}{x^{2}} - 1 \right) dx$$
.

Exercice 9 – Calculer les intégrales suivantes.

1.
$$I_1 = \int_{-2}^{3} (x^3 + x - 2) \, \mathrm{d}x$$
,

3.
$$I_3 = \int_0^1 \frac{t^4}{\sqrt{t^5 + 3}} dt$$
.

2.
$$I_2 = \int_3^{11} \sqrt{2x+3} \, \mathrm{d}x$$
,

Exercice 10 – Montrer que la fonction F définie sur]1; $+\infty$ [par $F(x) = \frac{x^2 + 3x - 1}{x - 1}$ est une primitive de la fonction f définie par

$$f(x) = \frac{x^2 - 5x + 1}{(x - 1)^2}.$$

En déduire la valeur de

$$\int_2^3 \frac{x^2 - 5x + 1}{(x - 1)^2} \, \mathrm{d}x.$$

Exercice 11 – Montrer que la fonction F définie sur **R** par $F(x) = 12x^2(x^3 + 1)^3$ est une primitive de la fonction f définie par

$$f(x) = (x^3 + 1)^4$$
.

En déduire la valeur de

$$\int_0^1 (x^3 + 1)^4 \, \mathrm{d}x.$$

Complément d'intégration

Exercice 12 – Calculer les intégrales suivantes

1.
$$I_1 = \int_0^1 e^{3x} \, \mathrm{d}x$$

2.
$$I_2 = \int_1^e \frac{-2}{x} \, \mathrm{d}x$$

3.
$$I_3 = \int_{-2}^2 e^x - e^{-x} dx$$

4. $I_4 = \int_1^2 \frac{1}{4x} dx$

5.
$$I_5 = \int_0^1 e^{2x} + \frac{e^x}{4} dx$$

Exercice 13 - Calculer les intégrales suivantes en utilisant une intégration par parties.

1.
$$I_6 = \int_0^1 t e^{2t} dt$$

2.
$$I_7 = \int_1^2 t \ln(t) dt$$

3.
$$I_8 = \int_0^1 (x^2 + 1)e^{3x} dx$$

3.
$$I_8 = \int_0^e (x^2 + 1)e^{3x} dx$$

4. $I_9 = \int_1^e x^2 \ln(x) dx$

Exercice 14 – L'objectif est de calculer les intégrales $I = \int_0^1 \frac{1}{\sqrt{x^2 + 2}} dx$, $J = \int_0^1 \frac{x^2}{\sqrt{x^2 + 2}} dx$ et

$$K = \int_0^1 \sqrt{x^2 + 2} \, \mathrm{d}x.$$

1. **Calcul de** *I*. Soit *f* la fonction définie sur [0;1] par

$$f(x) = \ln\left(x + \sqrt{x^2 + 2}\right).$$

- (a) Calculer la dérivée de f.
- (b) En déduire la valeur de *I*.
- 2. Calcul de I et K.
 - (a) Sans calculer explicitement les intégrales J et K, vérifier que J + 2I = K.
 - (b) À l'aide d'une intégration par parties portant sur K, montrer que $K = \sqrt{3} I$.
 - (c) En déduire les valeurs de *I* et *K*.

Exercice 15 – Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_1^e (\ln(x))^n dx$.

- 1. Calculer I_0 et I_1 .
- 2. Étudier la monotonie de la suite I_n et montrer qu'elle converge. Soit ℓ sa limite.
- 3. Montrer que $\forall n \in \mathbb{N}$, $I_{n+1} = e (n+1)I_n$.
- 4. En déduire la valeur de ℓ .

Exercice 16 – Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{x^n}{1 + x^n} dx$.

1. Montrer que pour tout $x \in [0,1]$, on a

$$0 \le \frac{x^n}{1 + x^n} \le x^n.$$

- 2. Calculer $\int_0^1 x^n dx$ puis en déduire que $0 \le I_n \le \frac{1}{n+1}$.
- 3. Déterminer la limite de la suite (I_n) .
- 4. En déduire que $\lim_{n \to +\infty} \int_0^1 \frac{1}{1+x^n} dx = 1$.
- 5. Pour tout $n \in \mathbb{N}$, on pose $I_n = nI_n$.
 - (a) Montrer que $J_n = \ln(2) \int_0^1 \ln(1+x^n) dx$. (Indication : Penser à une intégration par parties.)
 - (b) Montrer que

$$\forall t \ge 0$$
, $0 \le \ln(1+t) \le t$.

(c) En déduire la limite de la suite (J_n) .

Exercice 17 – Pour tout $n \in \mathbb{N}^*$, on considère les intégrales

$$I_n = \int_0^1 x^n \ln(1+x^2) dx$$
 et $J_n = \int_0^1 \frac{x^n}{1+x^2} dx$.

- 1. (a) Calculer J_1 .
 - (b) Montrer que

$$\forall n \in \mathbf{N}^*, \quad 0 \le J_n \le \frac{1}{n+1}.$$

- (c) Étudier la convergence de la suite $(J_n)_{n>1}$.
- (a) En intégrant par parties, montrer que

$$\forall n \in \mathbf{N}^*, \quad I_n = \frac{\ln(2)}{n+1} - \frac{2}{n+1} J_{n+2}.$$

(b) Étudier la convergence de la suite $(I_n)_{n\geq 1}$.