```
%Para la publicación del documento se utilizaron los siguientes datos:
eqnstr='667.38/x*(1-exp(-0.146843*x))-40';
xlstr='-1';
xhstr='16';
syms x;
%Para un uso general se descomentan las siquientes líneas
%eqnstr=input('Ingrese su función: ','s');
eqn(x)=str2sym(eqnstr);
%xlstr=input('Ingrese el límite menor para la trisección: ','s');
%xhstr=input('Ingrese el límite superior para la trisección: ','s');
xl=str2double(xlstr);
xh=str2double(xhstr);
found=false;
xr1ol=0;
xr2ol=0;
if eqn(x1)*eqn(xh)<0
    fprintf('aa
                           bb
                                           ppm1
                                                             ppm2
     err1
                     err2\n');
    while found==false
        xr1=xl+(xh-xl)/3;
        xr2=x1+(xh-x1)*2/3;
                                                 %f
                                                            %f
        fprintf('%f
                       %f
                                 %f
                                          %f
n',xl,xh,xr1,xr2,abs(xr1-xr1ol),abs(xr2-xr2ol));
        if eqn(x1)*eqn(xr1)<0
            xh=xr1;
        elseif eqn(xr1)*eqn(xr2)<0</pre>
            xl=xr1;
            xh=xr2;
        elseif eqn(xr2)*eqn(xh)<0</pre>
            x1=xr2;
        end
        xr1ol=xr1;
        xr2ol=xr2;
        if abs(eqn(x1)*eqn(xh))<0.00000001
            found=true;
            if eqn(x1)<0.001
                answer=xl;
            else
                answer=xh;
            end
        end
    end
    figure('units','normalized','outerposition',[0 0 1 1]);
    fplot(eqn);
    grid
    xlabel('x','FontSize',14);
    ylabel('y','FontSize',14);
    title('Ecuación','FontSize',18);
    ax=gca;
    ax.XAxisLocation='origin';
    ax.YAxisLocation='origin';
    ax.Children.Color=[1 0 1];
```

ax.Children.LineWidth=2;
answer

else

disp('Los límites deben ser de signo contrario');
end

aa	bb	ppm1	ppm2	err1
err2				
-1.000000 10.333333	16.000000	4.666667	10.333333	4.666667
10.333333	16.000000	12.22222	14.111111	7.555556
14.111111	16.000000	14.740741	15.370370	2.518519
	15.370370	14.950617	15.160494	0.209877
0.209877				
14.740741 0.279835	14.950617	14.810700	14.880658	0.139918
14.740741	14.810700	14.764060	14.787380	0.046639
0.093278 14.764060 0.007773	14.787380	14.771834	14.779607	0.007773
0.007773 14.779607 0.005182	14.787380	14.782198	14.784789	0.010364
0.003182 14.779607 0.003455	14.782198	14.780470	14.781334	0.001727
14.779607	14.780470	14.779895	14.780183	0.000576
0.001152 14.780183	14.780470	14.780279	14.780374	0.000384
0.000192 14.780183 0.000128	14.780279	14.780215	14.780247	0.000064

answer =

14.7802

Published with MATLAB® R2018a