Differentiation and Integration

Numerical differentiation

Three-Point Endpoint Formula

•
$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3} f^{(3)}(\xi_0),$$
 (4.4)

where ξ_0 lies between x_0 and $x_0 + 2h$.

Three-Point Midpoint Formula

•
$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(\xi_1),$$
 (4.5)

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

Five-Point Endpoint Formula

$$f'(x_0) = \frac{1}{12h} [-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)] + \frac{h^4}{5} f^{(5)}(\xi), \tag{4.7}$$

where ξ lies between x_0 and $x_0 + 4h$.

Five-Point Midpoint Formula

•
$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi),$$
 (4.6)

where ξ lies between $x_0 - 2h$ and $x_0 + 2h$.

Second Derivative Midpoint Formula

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12} f^{(4)}(\xi), \tag{4.9}$$

for some ξ , where $x_0 - h < \xi < x_0 + h$.

Example 3 In Example 2 we used the data shown in Table 4.3 to approximate the first derivative of $f(x) = xe^x$ at x = 2.0. Use the second derivative formula (4.9) to approximate f''(2.0).

Table 4.3

х	f(x)
1.8	10.889365
1.9	12.703199
2.0	14.778112
2.1	17.148957
2.2	19.855030

$$\frac{1}{0.01}[f(1.9) - 2f(2.0) + f(2.1)] = 100[12.703199 - 2(14.778112) + 17.148957]$$
$$= 29.593200,$$

$$\frac{1}{0.04}[f(1.8) - 2f(2.0) + f(2.2)] = 25[10.889365 - 2(14.778112) + 19.855030]$$
$$= 29.704275.$$

Because $f''(x) = (x+2)e^x$, the exact value is f''(2.0) = 29.556224. Hence the actual errors are -3.70×10^{-2} and -1.48×10^{-1} , respectively.

Exercise 4.1

 Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

a.	X	f(x)	f'(x)
	0.5	0.4794	
	0.6	0.5646	
	0.7	0.6442	

b.	х	f(x)	f'(x)
	0.0	0.00000	
	0.2	0.74140	
	0.4	1.3718	

5. Use the most accurate three-point formula to determine each missing entry in the following tables.

a.	X	f(x)	f'(x)
	1.1	9.025013	
	1.2	11.02318	
	1.3	13.46374	
	1.4	16.44465	

b.	х	f(x)	f'(x)
	8.1	16.94410	
	8.3	17.56492	
	8.5	18.19056	
	8.7	18.82091	

Use the most accurate three-point formula to determine each missing entry in the following tables.

			_
a.	x	f(x)	f''(x)
	-0.3	-0.27652	
	-0.2	-0.25074	
	-0.1	-0.16134	
	0	0	

b.	ж	f(x)	f''(x)
	7.4	-68.3193	
	7.6	-71.6982	
	7.8	-75.1576	
	8.0	—78.6974	

C.		f'(x)	f''(x)
	1.1	1.52918	
	1.2	1.64024	
	1.3	1.70470	
	1.4	1.71277	

The data in Exercise 5 were taken from the following functions. Compute the actual errors in Exercise 5, and find error bounds using the error formulas.

a.
$$f(x) = e^{2x}$$

c.
$$f(x) = x \cos x - x^2 \sin x$$

b.
$$f(x) = x \ln x$$

d.
$$f(x) = 2(\ln x)^2 + 3\sin x$$

The data in Exercise 6 were taken from the following functions. Compute the actual errors in Exercise 6, and find error bounds using the error formulas.

a.
$$f(x) = e^{2x} - \cos 2x$$

c.
$$f(x) = x \sin x + x^2 \cos x$$

b.
$$f(x) = \ln(x+2) - (x+1)^2$$

d.
$$f(x) = (\cos 3x)^2 - e^{2x}$$

18. Consider the following table of data:

χ	;	0.2	0.4	0.6	0.8	1.0
j	f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

- a. Use all the appropriate formulas given in this section to approximate f'(0.4) and f''(0.4).
- **b.** Use all the appropriate formulas given in this section to approximate f'(0.6) and f''(0.6).
- 20. Let $f(x) = 3xe^x \cos x$. Use the following data and Eq. (4.9) to approximate f''(1.3) with h = 0.1 and with h = 0.01.

X	1.20	1.29	1.30	1.31	1.40
f(x)	11.59006	13.78176	14.04276	14.30741	16.86187

Compare your results to f''(1.3).

Three approximations to the derivative f'(a) are

2. the one sided (backward) difference
$$\frac{f(a) - f(a-h)}{h}$$

$$\frac{f(a+h) - f(a-h)}{2h}$$

 $\frac{f(a+h)-f(a)}{h}$

A central difference approximation to the second derivative f''(a) is

$$f''(a) \approx \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$$

Example The distance x of a runner from a fixed point is measured (in metres) at intervals of half a second. The data obtained is

Use central differences to approximate the runner's velocity at times t = 0.5s and t = 1.25s.

Solution

Our aim here is to approximate x'(t). The choice of h is dictated by the available data. Using data with t = 0.5s at its centre we obtain

$$x'(0.5) \approx \frac{x(1.0) - x(0.0)}{2 \times 0.5} = 6.80$$
m/s.

Data centred at t = 1.25s gives us the approximation

$$x'(1.25) \approx \frac{x(1.5) - x(1.0)}{2 \times 0.25} = 6.20$$
m/s.

Example The distance x of a runner from a fixed point is measured (in metres) at intervals of half a second. The data obtained is

Use a central difference to approximate the runner's acceleration at time t = 1.5s.

Solution

Our aim here is to approximate x''(t).

Using data with t = 1.5s at its centre we obtain

$$x''(1.5) \approx \frac{x(2.0) - 2x(1.5) + x(1.0)}{0.5^2} = -3.40 \text{m/s}^2,$$

The velocity v (in m/s) of a rocket measured at half second intervals is

Use central differences to approximate the acceleration of the rocket at times t = 1.0s and t = 1.75s.

$$^{\text{c}}$$
s\m236.3\xi = $\frac{(3.1)u - (0.2)u}{3.0} \propto (37.1)^{\text{u}}$

Data centred at t = 1.75s gives us the approximation

$$a^{2} \sin t = \frac{(3.0)u - (3.1)u}{0.1} \approx (0.1)^{1}u$$

Using data with t = 1.0s at its centre we obtain

CLASS_ACTIVITY

The distance x, measured in metres, of a downhill skier from a fixed point is measured at intervals of 0.25 s. The data gathered is

Use a central difference to approximate the skier's velocity and acceleration at the times t = 0.25s, 0.75s and 1.25s. Give your answers to 1 decimal place.

CLASS ACTIVITY

The distance D = D(t) traveled by an object is given in the table following.

t	D(t)
8.0	17.453
9.0	21.460
10.0	25.752
11.0	30.301
12.0	35.084

- (a) Find the velocity V(10) by numerical differentiation.
- (b) Compare your answer with $D(t) = -70 + 7t + 70e^{-t/10}$.
 - c) Find velocity and acceleration at t=10 using midpoint formula

The Trapezoidal Rule (Composite Form)

The Newton-Cotes formula is based on approximating y = f(x) between (x_0, y_0) and (x_1, y_1) by a straight line, thus forming a trapezium, is called trapezoidal rule. In order to evaluate the definite integral

$$I = \int_{a}^{b} f(x) dx$$

we divide the interval [a, b] into n sub-intervals, each of size h = (b - a)/n and denote the sub-intervals by $[x_0, x_1], [x_1, x_2], ..., [x_{n-1}, x_n]$, such that $x_0 = a$ and $x_n = b$ and $x_k = x_0 + k_h$, k = 1, 2, ..., n - 1.

Thus, we can write the above definite integral as a sum. Therefore,

$$I = \int_{x_0}^{x_n} f(x)dx = \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx + \dots + \int_{x_{n-1}}^{x_n} f(x)dx$$
$$\int_{x_0}^{x_n} f(x)dx = \frac{h}{2}(y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n) + E_n$$

Derivation:

The Trapezoidal Rule

To derive the Trapezoidal rule for approximating $\int_a^b f(x) dx$, let $x_0 = a$, $x_1 = b$, h = b - a and use the linear Lagrange polynomial:

$$P_1(x) = \frac{(x - x_1)}{(x_0 - x_1)} f(x_0) + \frac{(x - x_0)}{(x_1 - x_0)} f(x_1).$$

Then

$$\int_{a}^{b} f(x) dx = \int_{x_0}^{x_1} \left[\frac{(x - x_1)}{(x_0 - x_1)} f(x_0) + \frac{(x - x_0)}{(x_1 - x_0)} f(x_1) \right] dx$$

$$\int_{a}^{b} f(x) dx = \left[\frac{(x - x_{1})^{2}}{2(x_{0} - x_{1})} f(x_{0}) + \frac{(x - x_{0})^{2}}{2(x_{1} - x_{0})} f(x_{1}) \right]_{x_{0}}^{x_{1}} = \frac{(x_{1} - x_{0})}{2} [f(x_{0}) + f(x_{1})] = \frac{h}{2} [f(x_{0}) + f(x_{1})]$$

Similarly
$$\int_{x_1}^{x_2} f(x) dx = \frac{h}{2} [f(x_1) + f(x_2)], \text{ and } \int_{x(n-1)}^{x_n} f(x) dx = \frac{h}{2} [f(x_{n-1}) + f(x_n)],$$

$$\int_{x_0}^{x_n} f(x)dx = \frac{h}{2}(y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n) + E_n$$
 Is called trapezoidal rule

Simpson's Rules (Composite Forms)

the definite integral I can be written as

$$I = \int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{4}} f(x)dx + \dots + \int_{x_{2N-2}}^{x_{2N}} f(x)dx$$

$$I = \frac{h}{3} [(y_{0} + 4y_{1} + y_{2}) + (y_{2} + 4y_{3} + y_{4}) + \dots + (y_{2N-2} + 4y_{2N-1} + y_{2N})]$$

$$\int_{x_0}^{x_{2N}} f(x)dx = \frac{h}{3} [y_0 + 4(y_1 + y_3 + \dots + y_{2N-1}) + 2(y_2 + y_4 + \dots + y_{2N-2}) + y_{2N}] + \text{Error term}$$

This formula is called composite Simpson's 1/3 rule.

Derivation-1:

Simpson's Rule

Simpson's rule results from integrating over [a, b] the second Lagrange polynomial with equally-spaced nodes $x_0 = a$, $x_2 = b$, and $x_1 = a + h$, where h = (b - a)/2. (See Figure 4.4.)

Therefore

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{2}} \left[\frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2}) \right] dx$$

$$y = f(x)$$

$$y = P_2(x)$$

$$a = x_0 \qquad x_1 \qquad x_2 = b \qquad x$$

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] \qquad similarly \int_{x_2}^{x_4} f(x) dx = \frac{h}{3} [f(x_2) + 4f(x_3) + f(x_4)] \text{ and}$$

$$\int_{x_0}^{x_{2N}} f(x)dx = \frac{h}{3} [y_0 + 4(y_1 + y_3 + \dots + y_{2N-1}) + 2(y_2 + y_4 + \dots + y_{2N-2}) + y_{2N}] + \text{Error term}$$
Simple

Is called Simpson's rule

Derivation-2:

Similarly in deriving composite Simpson's 3/8 rule, we divide the interval of integration into n sub-intervals, where n is divisible by 3, and applying the integration formula

$$\int_{x_0}^{x_n} f(x)dx = \int_{x_0}^{x_3} f(x)dx + \int_{x_3}^{x_6} f(x)dx + \dots + \int_{x_{n-3}}^{x_n} f(x)dx$$

$$\int_{x_0}^{x_3} f(x)dx = \frac{3}{8}h(y_0 + 3y_1 + 3y_2 + y_3)$$

We obtain the composite form of Simpson's 3/8 rule as

$$\int_{a}^{b} f(x)dx = \frac{3}{8}h[y(a) + 3y_1 + 3y_2 + 2y_3 + 3y_4 + 3y_5 + 2y_6 + \cdots + 2y_{n-3} + 3y_{n-2} + 3y_{n-1} + y(b)]$$

Quadrature formula in term of sigma notation

TRAPEZOIDAL RULE

$$\int_{x_0}^{x_n} f(x)dx = \frac{h}{2}(y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n) + E_n$$

$$T(f, h) = \frac{n}{2}(f(a) + f(b)) + h \sum_{k=1}^{n} f(x_k).$$

SIMPSON'S 1/3 RULE

$$\int_{x_0}^{x_{2N}} f(x)dx = \frac{h}{3} \left[y_0 + 4(y_1 + y_3 + \dots + y_{2N-1}) + 2(y_2 + y_4 + \dots + y_{2N-2}) + y_{2N} \right] + \text{Error term}$$

$$S(f, h) = \frac{h}{3} (f(a) + f(b)) + \frac{2h}{3} \sum_{k=1}^{M-1} f(x_{2k}) + \frac{4h}{3} \sum_{k=1}^{M} f(x_{2k-1}).$$

Simpson's 3/8 rule is

$$\int_{a}^{b} f(x)dx = \frac{3}{8}h[y(a) + 3y_1 + 3y_2 + 2y_3 + 3y_4 + 3y_5 + 2y_6 + \dots + 2y_{n-3} + 3y_{n-2} + 3y_{n-1} + y(b)]$$

Closed-Newton-Cotes (Quadrature formulas)

Theorem 4.2 Suppose that $\sum_{i=0}^{n} a_i f(x_i)$ denotes the (n+1)-point closed Newton-Cotes formula with $x_0 = a, x_n = b$, and h = (b-a)/n. There exists $\xi \in (a,b)$ for which

N=1
$$\int_{x_0}^{x_1} f(x) dx \approx \frac{h}{2} (f_0 + f_1)$$
 (the trapezoidal rule).
N=2
$$\int_{x_0}^{x_2} f(x) dx \approx \frac{h}{3} (f_0 + 4f_1 + f_2)$$
 (Simpson's rule),
N=3
$$\int_{x_0}^{x_3} f(x) dx \approx \frac{3h}{8} (f_0 + 3f_1 + 3f_2 + f_3)$$
 (Simpson's $\frac{3}{8}$ rule),
N=4
$$\int_{x_0}^{x_4} f(x) dx \approx \frac{2h}{45} (7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$$
 (Boole's rule),

Open-Newton-Cotes formulas

Theorem 4.3 Suppose that $\sum_{i=0}^{n} a_i f(x_i)$ denotes the (n+1)-point open Newton-Cotes formula with $x_{-1} = a, x_{n+1} = b$, and h = (b-a)/(n+2). There exists $\xi \in (a,b)$ for which

n = 0: Midpoint rule

$$n = 2$$
:

$$\int_{x_{-1}}^{x_1} f(x) dx = 2hf(x_0).$$

$$\int_{x_{-1}}^{x_3} f(x) dx = \frac{4h}{3} [2f(x_0) - f(x_1) + 2f(x_2)] \cdot$$

n = 1:

$$n = 3$$
:

$$\int_{x_1}^{x_2} f(x) dx = \frac{3h}{2} [f(x_0) + f(x_1)]$$

$$\int_{x_{-1}}^{x_2} f(x) dx = \frac{3h}{2} [f(x_0) + f(x_1)] \qquad \int_{x_{-1}}^{x_4} f(x) dx = \frac{5h}{24} [11f(x_0) + f(x_1) + f(x_2) + 11f(x_3)].$$

Example 2 Compare the results of the closed and open Newton-Cotes formulas listed as (4.25)–(4.28) and (4.29)–(4.32) when approximating

$$\int_0^{\pi/4} \sin x \, dx = 1 - \sqrt{2}/2 \approx 0.29289322.$$

Calculate true error by both methods

Example 2 Compare the results of the closed and open Newton-Cotes formulas listed as (4.25)–(4.28) and (4.29)–(4.32) when approximating

$$\int_0^{\pi/4} \sin x \, dx = 1 - \sqrt{2}/2 \approx 0.29289322.$$

Solution For the closed formulas we have

$$n = 1$$
: $\frac{(\pi/4)}{2} \left[\sin 0 + \sin \frac{\pi}{4} \right] \approx 0.27768018$

$$n=2$$
: $\frac{(\pi/8)}{3} \left[\sin 0 + 4 \sin \frac{\pi}{8} + \sin \frac{\pi}{4} \right] \approx 0.29293264$

$$n=3$$
: $\frac{3(\pi/12)}{8} \left[\sin 0 + 3 \sin \frac{\pi}{12} + 3 \sin \frac{\pi}{6} + \sin \frac{\pi}{4} \right] \approx 0.29291070$

$$n = 4: \quad \frac{2(\pi/16)}{45} \left[7\sin 0 + 32\sin \frac{\pi}{16} + 12\sin \frac{\pi}{8} + 32\sin \frac{3\pi}{16} + 7\sin \frac{\pi}{4} \right] \approx 0.29289318$$

and for the open formulas we have

$$n = 0$$
: $2(\pi/8) \left[\sin \frac{\pi}{8} \right] \approx 0.30055887$

$$n = 1$$
: $\frac{3(\pi/12)}{2} \left[\sin \frac{\pi}{12} + \sin \frac{\pi}{6} \right] \approx 0.29798754$

$$n=2$$
: $\frac{4(\pi/16)}{3} \left[2\sin\frac{\pi}{16} - \sin\frac{\pi}{8} + 2\sin\frac{3\pi}{16} \right] \approx 0.29285866$

$$n=3$$
: $\frac{5(\pi/20)}{24} \left[11 \sin \frac{\pi}{20} + \sin \frac{\pi}{10} + \sin \frac{3\pi}{20} + 11 \sin \frac{\pi}{5} \right] \approx 0.29286923$

Example:

Evaluate the integral
$$I = \int_0^1 \frac{dx}{1+x^2}$$

Example: Compute the integral $I = \sqrt{\frac{2}{\pi}} \int_0^1 e^{-x^2/2} dx$ using Simpson's 1/3 rule, Taking h = 0.125.

Exercises (HW)

4.3

Approximate the following integrals using the Trapezoidal rule.

$$\mathbf{a.} \quad \int_{0.5}^{1} x^4 \, dx$$

b.
$$\int_{0}^{0.5} \frac{2}{x-4} dx$$

c.
$$\int_{1}^{1.5} x^2 \ln x \, dx$$

d.
$$\int_{0}^{1} x^{2}e^{-x} dx$$

e.
$$\int_{1}^{16} \frac{2x}{x^2 - 4} dx$$

f.
$$\int_{0}^{0.35} \frac{2}{x^2 - 4} dx$$

g.
$$\int_0^{\pi/4} x \sin x \, dx$$

$$h. \int_0^{\pi/4} e^{3x} \sin 2x \, dx$$

Approximate the following integrals using the Trapezoidal rule.

a.
$$\int_{0.25}^{0.25} (\cos x)^2 dx$$

$$\mathbf{b.} \quad \int_{-0.5}^{0} x \ln(x+1) \, dx$$

c.
$$\int_{0.77}^{1.3} ((\sin x)^2 - 2x \sin x + 1) dx$$
 d. $\int_{0.77}^{e+1} \frac{1}{x \ln x} dx$

d.
$$\int_{x}^{x+1} \frac{1}{x \ln x} dx$$

Exercises (HW)

4.4

 Use the Composite Trapezoidal rule with the indicated values of n to approximate the following integrals.

a.
$$\int_{1}^{2} x \ln x \, dx$$
, $n = 4$
b. $\int_{-2}^{2} x^{3} e^{x} \, dx$, $n = 4$
c. $\int_{0}^{2} \frac{2}{x^{2} + 4} \, dx$, $n = 6$
d. $\int_{0}^{x} x^{2} \cos x \, dx$, $n = 6$
e. $\int_{0}^{2} e^{2x} \sin 3x \, dx$, $n = 8$
f. $\int_{1}^{3} \frac{x}{x^{2} + 4} \, dx$, $n = 8$
g. $\int_{2}^{5} \frac{1}{\sqrt{x^{2} - 4}} \, dx$, $n = 8$
h. $\int_{0}^{3\pi/8} \tan x \, dx$, $n = 8$

 Use the Composite Trapezoidal rule with the indicated values of n to approximate the following integrals.

a.
$$\int_{-0.5}^{0.5} \cos^2 x \, dx, \quad n = 4$$
b.
$$\int_{-0.5}^{0.5} x \ln(x+1) \, dx, \quad n = 6$$
c.
$$\int_{-75}^{1.75} (\sin^2 x - 2x \sin x + 1) \, dx, \quad n = 8$$
d.
$$\int_{\epsilon}^{0.5} x \ln(x+1) \, dx, \quad n = 8$$

3. Use the Composite Simpson's rule to approximate the integrals in Exercise 1.

2. Length of a curve. The arc length of the curve y = f(x) over the interval $a \le x \le l$ is

length =
$$\int_a^b \sqrt{1 + (f'(x)^2)} \, dx.$$

- (i) Approximate the arc length of each function using the composite trapezoidal rule with M=10.
- (ii) Approximate the arc length of each function using the composite Simpson rule with M = 5.
- (a) $f(x) = x^3$ for $0 \le x \le 1$
- (h) $f(x) = \sin(x)$ for $0 \le x \le \pi/4$
- (c) $f(x) = e^{-x}$ for $0 \le x \le 1$
- 3. Surface area. The solid of revolution obtained by rotating the region under the y = f(x), where $a \le x \le b$, about the x-axis has surface area given by

area =
$$2\pi \int_a^b f(x) \sqrt{1 + (f'(x))^2} dx$$
.