

Arquitetura de Computadores

Prof. Marcos Grillo marcos.grillo@anhanguera.com

Marcos Donizete Grillo, pesquisador na área de tecnologia da Informação, participante da comunidade e Software Livre Discípulos do Pinguim, exerce atualmente a função de gestor de operações Datacenter, desenvolveu diversos Sobre: projetos de redes por todo Brasil, e nas horas vagas contribui com comunidades de Software Livre.

Apresentação da Disciplina

PLANO DE ENSINO E APRENDIZAGEM						
CURSO: Ciência da Computação						
Disciplina:	Período Letivo:	Série:	Periodo:	Semestre de	Ano de Ingresso:	
Arquitetura de Computadores	2° sem/2013	6ª Série	Não definido	Ingresso:	2011	
				1°		
C.H. Teórica:	C.H. Outras: C.H. Total:		tal:			
40		20 60				

Ementa

Arquiteturas RISC e CISC. Pipeline. Paralelismo de Baixa Granularidade. Processadores Superescalares e Superpipeline. Multiprocessadores. Multicomputadores. Arquiteturas Paralelas e não Convencionais. Microprocessadores e Computadores Pessoais. Organização de Memória. Sistemas de Entrada e Saída, Sistemas de vídeo, Som e Outros.

Objetivos

Compreender e assimilar os componentes de dispositivos que compõem o computador. Formas de organização e de comunicação entre os subsistemas computacionais (processador, memória, disco e etc.)

Conhecer a estrutura de funcionamento de uma CPU. conhecer as arquiteturas de computadores do tipo CISC e RISC. Conhecer arquiteturas de computadores pessoalis, multicomputadores e multiprocessadores.

Apresentação da Disciplina

	Cronograma de Aulas				
Semana nº.	Tema				
1	Estrutura básica de um computador pessoal				
2	Estrutura e Funcionamento da CPU: conjunto de instruções				
3	Estrutura e Funcionamento da CPU: ciclo de instruções				
4	Arquitetura RISC e CISC				
5	Registradores: tipos de registradores				
6	Registradores mais utilizados em computadores pessoais				
7	Arquitetura Pipeline				
8	Atividades de Avaliação.				
9	Memorias: principal				
10	Memorias: Secundária, cache				
11	Dispositivos de entradas e saída				
12	Barramento: Tipos, arquitetura, adaptadores				
13	Sistema de video: GPU, Memórias, VGA, HDMI, 3D				
14	Sistema multimídia				
15	Análise de desempenho de computadores (Benchmark)				
16	Arquitetura de computadores com paralelismo: Cluster, Cloud.				
17	Computadores dedicados e embarcados				
18	Prova Escrita Oficial				
19	Exercícios de Revisão.				
20	Prova Substitutiva				

HENNESSY, J. L.. **Arquitetura de Computadores** : Uma Abordagem Quantitativa. 4ª ed. São Paulo: Campus - Elsevier, 2009.

Sistema de Avaliação				
1° Avaliação - PESO 4,0	2° Avaliação - PESO 6,0			
Atividades Avaliativas a Critério do Professor	Prova Escrita Oficial			
Práticas: 3	Práticas: 3			
Teóricas: 7	Teóricas: 7			
Total: 10	Total: 10			

Cronograma de Aulas - 1ª etapa.

- Estrutura básica de um computador pessoal
- Estrutura e Funcionamento da CPU: conjunto de instruções
- Estrutura e Funcionamento da CPU: ciclo de instruções
- Arquitetura RISC e CISC
- Registradores: tipos de registradores
- Registradores mais utilizados em computadores pessoais
- Arquitetura Pipeline
- Atividades de Avaliação.

Cronograma de Aulas - 2ª etapa.

- Memorias: principal;
- Memorias: Secundária, cache;
- Dispositivos de entradas e saída;
- Barramento: Tipos, arquitetura, adaptadores;
- Sistema de vídeo;
- Sistema multimídia;
- Análise de desempenho de computadores (Benchmark);
- Arquitetura de computadores com paralelismo;
- Computadores dedicados e embarcados;
- Prova Escrita Oficial;
- Exercícios de Revisão;
- Prova Substitutiva;

Arquitetura de Computadores.

- Compreender e assimilar os componentes de dispositivos que compõem o computador. Formas de organização e de comunicação entre os subsistemas computacionais (processador, memória, disco e etc.);
- Conhecer a estrutura de funcionamento de uma CPU. conhecer as arquiteturas de computadores do tipo CISC e RISC. Conhecer arquiteturas de computadores pessoais, multicomputadores e multiprocessadores.

Arquitetura de Computadores – Breve História 1977 - Proc VAX-11/780

Arquitetura de Computadores.

- Onde é utilizada?
 - Laptops;
 - Desktops;
 - ▶ Celulares;
 - ▶ Cloud (Nuvem);
 - ▶ Lojas Virtuais;
 - ▶ Banco de dados;
 - Datacenters;
 - Serviços;
 - ▶ Redes locais.

Estrutura básica de um computador pessoal. **von Neumann**

Estrutura básica de um computador pessoal.

von Neumann

Estrutura básica de um computador pessoal. **von Neumann**

- ▶ CPU Unidade Central de Processamento;
- ▶ ROM / CACHE/ RAM Unidade de memória;
- **ULA** Unidade Lógica Aritmética;
- UC Unidade de controle de todas operações de processamento;
- Unidade de entrada Teclado, Rede, Mouse, etc.;
- Unidade de saída Impressoras, monitores, rede;
- Dispositivos de armazenamento auxiliar HD, pendrives, unidades óticas, etc.

Hardware

- Circuitos eletrônicos formados por;
 - Processadores;
 - ▶ Registradores;
 - Barramentos;
 - Memórias;
 - Monitores;
 - Discos;
 - ▶ Mouse, teclado, E/S;

Processadores

- O processador contêm::
 - Unidade lógica e Aritmética;
 - ▶ Unidade de controle (UC);
 - Registradores, armazena dados temporariamente;
 - Sinal de clock, sincroniza as funções do processador;

Registradores

Armazenam dados temporariamente, alta velocidade;

Registradores específicos:

- ▶ Contador de instruções (CI);
- Apontador de pilhas (AP);
- Status (PSW);

Memórias

- Memória principal (0/1);
 - Compostas de unidades/células;
 - Atualmente a maioria do computadores utilizam 8 bits;
- Registrador de endereço de memória (MAR);
 - ▶ Endereço do dado.
- Registrador de dados da memória (MBR);
 - Propriamente o dado em uma ou mais células.

Operação de Leitura

Operação de Gravação

Memórias

- Memória cache;
 - ▶ Pequena;
 - ▶ Rápida;
 - Custo elevado;
 - ▶ L1, L2 L3...
- Memória Secundária;
 - ▶ Lento;
 - Não volátil;
 - Custo baixo;

Hierarquia de Memória - Elementos

Entrada e saída (E/S)

- Discos;
- ▶ Fitas;
- ▶ Teclado;
- Mouse;
- Monitor;
- ▶ USB...

Barramento (BUS)

- Duas linhas de dados:
 - ▶ Sinalização;
 - Dados;
- Barramento processador-memória;
- ▶ Barramento de E/S;
- ▶ Barramento de Backplane.

Barramento de processador-memória.

Barramento de backplane.

Arquitetura de Computadores

Próximo assunto:

Estrutura e Funcionamento da CPU: conjunto de instruções