ANANALYSIS TOOL FOR WATER SUPPLY MANAGEMENT.

Algorithms and Data Structures, PRJ1, G17_4

Afonso Machado (up202207611), Filipa Geraldes (up202208030), Luís Arruda (up202206970)

ÍNDICE.

• • •

01

Sistema de gestão de abastecimento de água e exemplos.

03

Aspetos mais importantes e desafiadores da nossa implementação.

02

Grafo e decisões conceptuais.

O 1 SISTEMA DE GESTÃO DE ABASTECIMENTO DE ÁGUA

PROBLEMA

Quer-se um programa que faça a gestão de uma rede de abastecimento de água em Portugal pode tomar decisões informadas sobre a alocação eficiente de recursos, bem como identificar secções mais sensíveis da rede a falhas para antecipar interrupções no serviço ou mitigar os seus efeitos negativos.

BASIC SERVICE METRICS

slidesmania.cc

BASIC SERVICE METRICS

T2.1. Quantidade máxima de água que pode chegar a cada uma ou a
uma cidade específica.

Para cada cidade:

```
||-----||
                                             ||-----||
 Water Supply Management
                                                  Basic Service Metrics ||
||-----||
                                             ||-----||
Choose an option:
                                             Choose an option:
[1] Basic Service Metrics
                                             [1] Maximum amount of water than can reach to each or a specific city
[2] Reliability and Sensitivity to Failures
                                             [2] Check if existing network configuration meets water needs
[3] Change Data Set
                                             [3] Balance load across the network
[0] Quit.
                                             [0] Go back.
```

Figura 1 e 2 — Basic Service Metrics Opção 1

BASIC SERVICE METRICS

 T2.1. Quantidade máxima de água que pode chegar a cada uma ou a uma cidade específica.

Para cada cidade:

```
Maximum amount of water than can reach to...
[1] Each city
[2] Specific city

[0] Go back.
>1
```

Figura 3, 4 e 5 — Basic Service Metrics Opção 1 Each City

```
MAXIMUM FLOW OF THE NETWORK: 24163

<C_1,52>
<C_2,515>
<C_3,110>
<C_4,1208>
<C_5,125>
<C_6,230>
<C_7,896>
<C_8,100>
<C_9,53>
<C_10,220>
<C_11,407>
<C_12,177>
<C_13,123>
<C_14,406>
```

<C_15,12250>
<C_16,96>
<C_17,5650>
<C_18,200>
<C_19,780>
<C_20,100>
<C_21,135>
<C_22,330>

BASIC SERVICE METRICS

 T2.1. Quantidade máxima de água que pode chegar a cada uma ou a uma cidade específica.

Para uma cidade específica:

```
Maximum amount of water than can reach to... [1] Each city [2] Specific city [0] Go back. >2 Which city?>C_1 <C_1,64>
```

Figura 6 — Basic Service Metrics Opção 1 Specific City

slidesmania.com

BASIC SERVICE METRICS

 T2.2. Verificar se a configuração da rede existente atende às necessidades de água.

```
||------||
|| Basic Service Metrics ||
||------||

Choose an option:
[1] Maximum amount of water than can reach to each or a specific city
[2] Check if existing network configuration meets water needs
[3] Balance load across the network

[0] Go back.
>2
```

Figura 7, 8 e 9 — Basic Service Metrics Opção 2

```
DEFICIT FLOW OF THE NETWORK:
C_3:
- Demand: 160
- Actual Flow: 110
- Deficit: 50
C_5:
- Demand: 152
- Actual Flow: 125
- Deficit: 27
C_8:
- Demand: 122
- Actual Flow: 100
- Deficit: 22
C_10:
- Demand: 313
- Actual Flow: 220
- Deficit: 93
C_13:
- Demand: 158
- Actual Flow: 123
- Deficit: 35
```

```
C_17:
 - Demand: 6324
- Actual Flow: 5650
- Deficit: 674
C_20:
- Demand: 168
- Actual Flow: 100
- Deficit: 68
C_21:
 - Demand: 161
- Actual Flow: 135
- Deficit: 26
C_22:
 - Demand: 397
 - Actual Flow: 330
 - Deficit: 67
```

BASIC SERVICE METRICS

T2.3. Equilibrar a carga na rede.

Técnica utilizada: Capacity Scaling

```
||------||
|| Basic Service Metrics ||
||------||

Choose an option:
[1] Maximum amount of water than can reach to each or a specific city
[2] Check if existing network configuration meets water needs
[3] Balance load across the network

[0] Go back.
>3
```

Figura 10 e 11 — Basic Service Metrics Opção 3

Maximum Flow: 24163
INITIAL METRICS:
INITIAL AVERAGE -> 507.754
INITIAL VARIANCE -> 1.30743e+06
INITIAL MAXIMUM DIFFERENCE -> 8894
Maximum Flow: 24163
FINAL METRICS:
FINAL AVERAGE -> 399.607
FINAL VARIANCE -> 540054
FINAL MAXIMUM DIFFERENCE -> 4000

BASIC SERVICE METRICS

T2.3. Equilibrar a carga na rede.

Técnica utilizada: Capacity Scaling

Figura 12 - Capacity Scaling

*retirado de : https://cseweb.ucsd.edu/classes/sp11/cse202-a/lecture8-final.pdf

 T3.1. Avaliar a resiliência da rede (cidades afetadas pelos reservatórios).

```
||------||
|| Reliability and Sensitivity ||
|| to Failures Menu ||
||-----||

Choose an option:
[1] Evaluate network's resiliency
[2] Temporarily remove pumping stations
[3] Determine pipeline failures in a specific city
[4] Determine Cities affected by a pipeline

[0] Go back.
>1
```

```
Which reservoir?> R_1
The reservoir R_1 affects:
-City: C_17, Old Flow: 5650, New Flow: 4650, Deficit: 1000
```

Figura 13 e 14 — Reliability and Sensitivity to Failures Opção 1

T3.1. Evitar correr tantas vezes o Edmonds-Karp

Solução: Incremental Max-Flow

- 1. Calcular o fluxo máximo na rede usando o algoritmo Max-Flow. Guardar as informações de fluxo obtidas.
- 2. Para cada reservatório da rede: remover o reservatório da rede, atualizar a configuração da rede para refletir a remoção do reservatório, atualizar incrementalmente¹ o fluxo máximo na rede com base nas alterações feitas e armazenar as informações de fluxo atualizadas.

¹Atualizar incrementalmente o fluxo máximo na rede significa ajustar o fluxo máximo calculado anteriormente para refletir as alterações feitas na rede. Em vez de recalcular o fluxo máximo desde o início a cada vez que uma alteração é feita na rede, a abordagem incremental utiliza as informações já calculadas do fluxo máximo anterior e as modifica conforme necessário para levar em conta as alterações na rede.

• • •

T3.1. Evitar correr tantas vezes o Edmonds-Karp

Solução: Incremental Max-Flow

- 3. Depois de remover todos os reservatórios, comparar as informações de fluxo final com a demanda de cada delivery site e determinar quais cidades estão com o abastecimento de água não atendido devido à remoção dos reservatórios.
- 4. Fornecer uma lista de cidades afetadas cujo abastecimento de água não atende a demanda após a remoção de todos os reservatórios.

T3.2. Remover temporariamente pumping stations.

```
||-----||
|| Reliability and Sensitivity ||
      to Failures Menu
||-----||
Choose an option:
[1] Evaluate network's resiliency
[2] Temporarily remove pumping stations
[3] Determine pipeline failures in a specific city
[4] Determine Cities affected by a pipeline
[0] Go back.
>2
```

Figura 15 e 16 - Reliability and Sensitivity to Failures Opção 2

```
The pumping PS_1 affects:
     -City: C_20, Old Flow: 100, New Flow: 0, Deficit: 100
The pumping PS_2 doesn't affect any city if removed
The pumping PS_3 affects:
     -City: C_4, Old Flow: 1208, New Flow: 800, Deficit: 408
     -City: C_5, Old Flow: 125, New Flow: 110, Deficit: 15
The pumping PS_4 affects:
     -City: C_4, Old Flow: 1208, New Flow: 1000, Deficit: 208
The pumping PS_5 affects:
     -City: C_4, Old Flow: 1208, New Flow: 950, Deficit: 258
```

T3.3. Determinar falhas de pipelines numa cidade específica.

```
||------||
|| Reliability and Sensitivity ||
|| to Failures Menu ||
||-----||

Choose an option:
[1] Evaluate network's resiliency
[2] Temporarily remove pumping stations
[3] Determine pipeline failures in a specific city
[4] Determine Cities affected by a pipeline

[0] Go back.
>3
```

```
Which city?> C_1
Critical Pipes to: C_1
PS_71 -> C_1
PS_77 -> C_1
```

Figura 17 e 18 – Reliability and Sensitivity to Failures Opção 3

slidesmania.co

RELIABILITY AND SENSITIVITY TO FAILURES


```
||------||
|| Reliability and Sensitivity ||
|| to Failures Menu ||
||------||

Choose an option:
[1] Evaluate network's resiliency
[2] Temporarily remove pumping stations
[3] Determine pipeline failures in a specific city
[4] Determine Cities affected by a pipeline

[0] Go back.
```

Figura 19 e 20 — Reliability and Sensitivity to Failures Opção 4

```
This pipeline R_1 -> PS_21 affects:
     -City: C_17, Deficit: 1000
This pipeline R_2 -> PS_30 affects:
     -City: C_7, Deficit: 596
     -City: C_14, Deficit: 86
This pipeline R_2 -> PS_31 affects:
     -City: C_7, Deficit: 296
This pipeline R_3 -> PS_14 affects:
     -City: C_5, Deficit: 15
This pipeline R_3 -> PS_15 affects:
     -City: C_21, Deficit: 25
This pipeline R_4 -> PS_12 affects:
     -City: C_5, Deficit: 10
     -City: C_21, Deficit: 15
This pipeline R_4 -> PS_8 affects:
     -City: C_5, Deficit: 100
```

• • •

92 GRAFO E DECISÕES CONCEPTUAIS

GRAFO

Station

int id
string code

Pipe

string servicePointA string servicePointB unsigned int capacity bool direction

City

string city double demand unsigned int population

Reservoir

string name
string municipality
unsigned long maxDelivery

Station

| \

| \

V

Reservoir City

B CONCLUSÃO

Aspetos mais importantes e desafiadores

- Desenvolver um algoritmo para otimizar a distribuição de carga na rede, aprimorando as métricas enquanto mantém o fluxo máximo

- Pensar num algoritmo para reduzir a necessidade de recalcular o Maximum Flow tantas vezes.