Дискретная математика. HSE-SE-DM-HW7.

Ахундов Алексей Назимович

Март-апрель 2021

Содержание

Задача 1	2
Пункт а	2
Пункт b	2
Задача 2	2
Задача 3	3
Задача 4	4
Задача 5	4
Задача 6	5
Задача 7	5
Задача 8	5
Задача 9	5
Задача 10	6
Задача 11	6
Задача 12	6
Задача 13	6
Задача 14	7

Ахундов А.Н. БПИ201

Задача 1

Пункт а

Если удалить вершину степени 1 и ребро, исходящее из нее, получим граф на 7 вершинах с 22 ребрами, чего не может быть так как в K_7 ребер $\frac{7\cdot 6}{2}=21.$

Пункт b

Существует, пример такого графа:

Задача 2

Начнем построение с единственного ребра (a,b) и рассмотрим два случая.

Ребра с обоих концов исходного

В таком случае эти ребра обязательно должны вести в одну вершину, иначе нарушится условие, то есть все такие графы будут изоморфны K_3

НИУ ВШЭ, 2021

Ахундов А.Н.

Ребра только с одного конца исходного

В таком случае, чтобы не возвращаться к первому случаю, остается только добавлять ребра либо к a (левая картинка), либо к b. В итоге получится "звезда":

Задача 3

Рассмотрим какую-нибудь вершину a в этом графе, она связана еще с 201 вершиной, возьмем из них произвольную вершину b. Введем множество A всех вершин инцидентных a, кроме b, аналогично множество B для вершины b, тогда видим следующую ситуацию:

Докажем, что эти множества пересекаются хотя бы по одной вершине:

$$|A \cup B| = |A| + |B| - |A \cap B| \implies |A \cup B| = 200 + 200 - |A \cap B| \le 400 - 2$$
$$200 + 200 - |A \cap B| \le 400 - 2 \implies |A \cap B| \ge 2$$

Тогда есть вершина инциндентная обоим вершинам a, b.

НИУ ВШЭ, 2021 3

Ахундов А.Н.

Тогда a,b,c образуют подграф изоморфный K_3 . Ч.Т.Д.

Задача 4

Из теории известно, что самодополнительный граф может состоять из 4k или 4k+1 вершины, учитывая ограничения задачи, построим такой на 5 вершинах.

Дополнение графа, \overline{G}

Задача 5

Пусть она существует, тогда в дополнении она будет иметь степень 49 (всего не связных с этой вершиной 99), тогда в нашем графе найдется вершина (ровно одна) степени 49 поскольку существует изоморфизм, но тогда, будучи смежными в G они не будут смежны в \overline{G} , что противоречит существованию изоморфизма.

HИУ BШ \ni , 2021

Ахундов А.Н. БПИ201

Задача 6

Построим граф на 7 вершинах и будем соединять ребрами братьев. Рассмотрим 2 произвольные вершины и пусть между ними нет пути (иначе они братья). Тогда обе этих вершины соединены хотя бы с 3 из 5 оставшихся верщин, тогда по принципу Дирихле (ребер 6, а вершин 5), у них есть общая инцендентная вершина - противоречие.

Задача 7

Применим метод математической индукции по количеству вершин графа, удовлетворяющего условиям задачи:

База. n=2 разобъем на две группы по одной верине в каждой, между ними будет ребро, граф связен.

Предположение. Пусть существует граф на k вершинах, связный, и он обладает свойством из условия.

Переход. Возьмем новую вершину, нам не важно как именно она войдет в наш граф (т.е. список ребер для нее), но важно заметить, что если у нее не будет ни одного ребра, нового графа с соблюдением условий задачи никаким образом не получится. Пусть наша новая вершина v связана с вершиной v (если таких несколько - возьмем любую), тогда поделим на произвольные две группы, если u и v лежат в одной группе, воспользуемся свойством для u, иначе возьмем ребро между u и v. Связность доказывается продлением путей из u до всех вершин одним ребром из u в v. Переход доказан

Задача 8

Рассмотрим некоторое двоичное слово - вершину данного графа, заметим, что при переходе по ребру, мы меняем четное число бит (r=400), поэтому значение битового исключающего или для смежных слов не меняется, следовательно, невозможно перейти из слова с значением этой функции 1 в слово со значением 0, следовательно, данный граф несвязен.

Задача 9

Покажем, что для любого дерева существует 2-раскраска. Пусть произвольная вершина белая, рассмотрим все простые пути от этой вершины. Если длина пути четная - раскрасим в белый цвет, иначе в черный - таким образом покрасили все вершины, поскольку между двумя различными вершинами один простой путь (свойство дерева). Пусть случилось так, что мы покрасили смежные вершины v_1, v_2 в один цвет, тогда если v_2 входит в путь v_1 , то путь до v_2 - продолжение пути для v_1 одной вершиной (длина пути меньше на один - разная четность), иначе путь до v_1 - продолжение пути для v_2 одной вершиной. В обоих случаях четности разные. Отсюда следует что в дереве четной длины вершин каждого цвета поровну.

Дано дерево четной длины, предположим, что по нашей раскраске вершин одного цвета меньше n, тогда получаем, что в дереве меньше 2n вершин, что противоречит условиям.

НИУ ВШЭ, 2021 5

Ахундов А.Н. БПИ201

Задача 10

Расскрасим все слова с четным количеством единиц в один цвет, с нечетным - в другой цвет. Невозможно перейти напрямую из нечетного количества единиц опять в нечетное, поскольку количество единиц меняется на один при переходе, значит, это можно сделать только через четные.

Задача 11

Рассмотрим двудольный граф, в одной доле - точки, в другой - прямые. Тогда суммарная степень вершин доли прямых $26 \cdot 7$ (из каждой прямой ребро к 7 точкам). Тогда сумма степеней вершин доли точек: $4 \cdot 43$, поскольку на каждую точку приходится по 4 ребра в прямые. Из свойств двудольного графа, суммы степеней вершин двух доль равны, но $26 \cdot 7 \neq 4 \cdot 43$. Такое расположение прямых и точек невозможно.

Задача 12

Пусть у нас есть две доли, в одной имеется m учеников, в другой n учеников, тогда максимальное количество ребер в двудольном графе это $m \cdot n$, при этом $169 = 13 \cdot 13$, то есть возможен случай m = 13, n = 13 (в сумме должно быть 26), в остальных случаях так сделать невозможно, поскольку тогда либо произведение размеров компонент меньше (произведение двух чисел с фиксированной суммой максимально, когда они равны), чем нужно, либо количество ребер не максимально.

Задача 13

Приведем пример, что данное в задаче утверждение не обязательно верно:

Простой путь из a в $b \implies a, b$, из a в $c \implies a, c$, из b в $c \implies b, a, c$

НИУ ВШЭ, 2021 6

Ахундов А.Н.

Задача 14

Применим метод математической индукции:

База. Утверждение для $n \le 3$ тривиально верно.

Предположение. Пусть верно для турнира на n вершинах: есть путь $v_1, v_2, ..., v_n$.

Переход. Рассмотрим новую вершину u, тогда возможно следующее:

Есть ребро из новой в начало пути

Соединим начало пути и новую вершину, возьмем все ребра из имеющегося пути и получим требуемый обход

На пути есть вершина в которую есть ребро от новой

Не умаляя общности скажем, что это вершина v_i , тогда из предыдущей v_{i-1} есть ребро в новую. Построим путь, беря $v_1,...,v_i-1,u,v_i,...,v_n$

Есть ребро из конца пути в новую

Это последний случай, если никакой из предыдущих не подходит, то остается только этот, в таком случае возьмем путь: $v_1,...,v_n,u$

НИУ ВШЭ, 2021