		$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1-\alpha}^{\#2}$	τ#1 α	τ ₁ - α
σ	$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
O	$r_{1}^{\#2} + \alpha^{\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
ι	$\Gamma_1^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
	$\sigma_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
	$\sigma_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
	$\tau_1^{\#1} +^\alpha$	0	0	0	0	0	0	0
	$\tau_1^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

Total #:	$\tau_{2+}^{\#1}\alpha\beta=0$	$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta}$	$t_1^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
			$\alpha\beta == 0$		$2^{\alpha} == 0$	0			aints
2:	5	5	ω	ω	ω	1	1	#	

$\sigma_{0^{-}}^{*1}$ †	$\tau_{0^{+}}^{\#2}$ †	$\tau_{0+}^{#1}$ †	$\sigma_{0^{+}}^{*1}$ †	_	_	$\omega_{0^{-1}}^{\#1}$ †	$f_{0+}^{#2}$ †	$f_{0^{+}}^{#1}$ †	$\omega_{0}^{"\ddagger}$ †
0	0	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{1}{(1+2k^2)^2t_3}$	$\sigma_{0^{+}}^{*1}$		0	0	$i\sqrt{2}\;kt_3$	t_3
0	0	$\frac{2k^2}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$ au_{0}^{\#1}$		0	0	$2 k^2 t_3$	$-i\sqrt{2}kt_3$
0	0	9 0	0	$ au_0^{\#2}$		0	0	0	0
-				0		t_2	0	0	0
$\frac{1}{t_2}$	0	0	0	7 ₀ -1					

$\omega_{2^{-}}^{*1} + \alpha \beta \chi$	$f_{2^{+}}^{#1} + \alpha \beta$	$\omega_{2^{+}}^{*1} + \alpha \beta$	
0	0	$-\frac{3k^2r_3}{2}$	$\omega_{2}^{\#1}{}_{lphaeta}$
0	0	0	$f_{2}^{\#1}{}_{\alpha\beta}$
0	0	0	$\omega_{2^{+}\alpha\beta}^{\#1}f_{2^{+}\alpha\beta}^{\#1}\omega_{2^{-}\alpha\beta\chi}^{\#1}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\#1}\dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

Added source term: $\int f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$	$r_5\partial_lpha\omega_\lambda^{\ lpha}_{\ eta}\partial^\lambda\omega^{eta\kappa}_{\ \ \kappa}+rac{1}{2}r_3\partial_ heta\omega_\lambda^{\ lpha}_{\ lpha}\partial^\lambda\omega^{eta\kappa}_{\ \ \kappa}-r_5\partial_ heta\omega_\lambda^{\ lpha}_{\ lpha}\partial^\lambda\omega^{eta\kappa}_{\ \ \kappa}$	$\frac{2}{3}t_3\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}-4r_3\partial^{\beta}\omega_{}^{\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\beta}-\frac{1}{2}r_3\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}+$	$\frac{1}{6}t_2\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\lambda\alpha}-\frac{1}{6}t_2\partial_\kappa f_{\theta}^{\ \lambda}\partial^\kappa f_{\lambda}^{\ \theta}+\frac{1}{6}t_2\partial_\kappa f^\lambda_{\ \theta}\partial^\kappa f_{\lambda}^{\ \theta}+$	$\frac{2}{3}t_2 \omega_{\theta\kappa'} \partial^{\kappa} f^{\prime\theta} + \frac{2}{3}t_3 \omega_{\prime\alpha}{}^{\alpha} \partial^{\kappa} f^{\prime}_{\kappa} + \frac{2}{3}t_3 \omega_{\prime\lambda}{}^{\lambda} \partial^{\kappa} f^{\prime}_{\kappa} -$	$\frac{1}{3}t_2 \omega_{i\theta\kappa} \partial^{\kappa} f^{i\theta} - \frac{2}{3}t_2 \omega_{i\kappa\theta} \partial^{\kappa} f^{i\theta} - \frac{1}{3}t_2 \omega_{\theta i\kappa} \partial^{\kappa} f^{i\theta} +$	$\frac{2}{3}t_3 \omega_{\kappa\lambda}^{ \lambda} \partial^{\kappa} f'_{,-} \frac{4}{3}t_3 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{,+} + \frac{2}{3}t_3 \partial_{\kappa} f^{\lambda}_{ \lambda} \partial^{\kappa} f'_{,+} +$	$\frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} + \frac{1}{6}t_2\partial^{\alpha}f_{\ \kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda} - \frac{2}{3}t_3\ \omega_{\kappa\alpha}^{\ \alpha}\partial^{\kappa}f'_{\ \prime} -$	$r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + \frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\ \theta} -$	$r_5\partial_ heta\omega_{\lambda}^{lpha}\partial_\kappa\omega^{\lambda}-rac{1}{2}r_3\partial_lpha\omega_{\lambda}^{lpha}\partial_\kappa\omega^{\lambda\theta}-r_5\partial_lpha\omega_{\lambda}^{lpha}\partial_\kappa\omega^{\lambda\theta}+$	$\frac{1}{2} r_3 \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_\theta \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} +$	$\frac{1}{3} t_2 \ \omega_{\kappa\lambda}^{\ \prime} \ \omega^{\kappa\lambda}_{\ \prime} - \frac{1}{2} r_3 \partial_{\prime} \omega^{\kappa\lambda}_{\ \kappa} \partial^{\prime} \omega_{\lambda}^{\ \alpha}_{\ \alpha} - r_5 \partial_{\prime} \omega^{\kappa\lambda}_{\ \kappa} \partial^{\prime} \omega_{\lambda}^{\ \alpha} +$	$\frac{2}{3}t_3 \omega_i^{\alpha i} \omega_{\kappa \alpha}^{\kappa} + \frac{2}{3}t_2 \omega_i^{\kappa \lambda} \omega_{\kappa \lambda}^{i} +$	Lagrangian density
--	--	---	--	--	--	--	--	---	--	---	--	---	--------------------

?		
\cdot $\downarrow \mu$ /	Quadratic pole	<u> </u>
	? Pole residue:	$\left -\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0 \right $
?	Polarisations:	2
?		

Unitarity conditions $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)

$f_{1-}^{#2} + \alpha$	$f_{1-}^{#1} + \alpha$	$\omega_{1^{-}}^{#2} \dagger^{\alpha}$	$\omega_{1^{-}}^{*1}\dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1+}^{#2} + \alpha \beta$	$\omega_{1+}^{#1} + ^{\alpha\beta}$	
0	0	0	0	$-\frac{1}{3}i\sqrt{2}kt_2$	$\frac{\sqrt{2} t_2}{3}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\omega_{1^{+}lphaeta}^{\sharp1}$
0	0	0	0	$-\frac{1}{3} \bar{l} k t_2$	<u>t2</u> 3	$\frac{\sqrt{2}t_2}{3}$	$\omega_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	$\frac{k^2t_2}{3}$	<u>ikt2</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	$f_{1}^{\#1}{}_{lphaeta}$
2 <i>ikt</i> 3 3	0	$-\frac{\sqrt{2}t_3}{3}$	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	0	0	0	$\omega_{1^-~lpha}^{*1}$
$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	1/3 3	$-\frac{\sqrt{2} t_3}{3}$	0	0	0	$\omega_{1^- lpha}^{\# 2}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
2 k ² t ₃	0	$\frac{1}{3} i \sqrt{2} k t_3$	$-\frac{2}{3}\bar{l}kt_3$	0	0	0	$f_{1^-\alpha}^{\#2}$