Problem Set 9

Due Wednesday, April 30, 2025

Problem 1 (10 points). Suppose $a \le x_0 \le b$ and

$$f(x) = \begin{cases} 1, & x = x_0, \\ 0, & x \neq x_0. \end{cases}$$

Prove that f is integrable on [a, b] and that $\int_a^b f(x) dx = 0$.

Proof. By Theorem 6.13 of Rudin, a bounded function with only finitely many points of discontinuity on a closed interval is Riemann integrable. Here f is discontinuous only at the single point x_0 , so f is integrable on [a, b].

Next, given any $\varepsilon > 0$, choose a partition P of [a, b] which includes x_0 as an endpoint of one subinterval of length $< \varepsilon$. On that small subinterval $\Delta x < \varepsilon$, the supremum $M_i = 1$ and on every other subinterval $M_i = 0$. Hence

$$U(f, P) = 1 \cdot \Delta x + 0 \le \varepsilon, \qquad L(f, P) = 0.$$

Since $\overline{\int_a^b} f \le U(f,P) < \varepsilon$ and $\underline{\int_a^b} f = 0$, letting $\varepsilon \to 0$ shows

$$\int_a^b f(x) \, dx = 0.$$

Problem 2 (10 points). Suppose f is continuous on [a, b], $f \ge 0$, and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.

Proof. By the Extreme Value Theorem (Rudin Thm 4.18), f attains a minimum and maximum on [a, b]. If there were some $c \in [a, b]$ with $f(c) = \delta > 0$, then by continuity there exists $\eta > 0$ such that $f(x) > \delta/2$ for all $x \in (c - \eta, c + \eta) \cap [a, b]$. Hence

$$\int_{a}^{b} f(x) \, dx \ge \int_{c-\eta}^{c+\eta} f(x) \, dx \ge \int_{c-\eta}^{c+\eta} \frac{\delta}{2} \, dx = \delta \eta > 0,$$

contradicting the hypothesis. Therefore no such c exists and $f \equiv 0$.

Problem 3 (10 points). Let

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

Prove that f is not integrable on [a, b] for any a < b.

Proof. On every nonempty subinterval $[x_{i-1}, x_i] \subset [a, b]$, both rationals and irrationals are dense. Thus for each i, the supremum $M_i = 1$ and the infimum $m_i = 0$. For any partition P,

$$U(f, P) = \sum_{i} 1 \cdot \Delta x_i = b - a, \qquad L(f, P) = \sum_{i} 0 \cdot \Delta x_i = 0.$$

Hence the upper integral is b-a and the lower integral is 0, so they do not agree. Therefore f is not Riemann integrable.

Problem 4 (10 points). Suppose f is bounded on [a, b] and f^2 is integrable on [a, b].

- 1. Does it follow that f is integrable on [a, b]?
- 2. Does the answer change if instead we assume f^3 is integrable?

Justify your answers.

Answer.

1. Not in general. Consider the function

$$g(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ -1, & x \notin \mathbb{Q}, \end{cases}$$

on [a, b]. Then $g^2(x) \equiv 1$, so g^2 is integrable, but g is discontinuous everywhere, hence not integrable.

2. Yes, if f^3 is integrable then f must be integrable. The mapping $\varphi(u) = u^3$ has derivative $\varphi'(u) = 3u^2$, which is bounded on the range of f since f is bounded. Thus φ is Lipschitz on that range, and by the Lipschitz composition theorem (Rudin Thm 6.15), $f^3 = \varphi \circ f$ integrable implies f integrable.

Problem 5 (Extra Credit; 10 points). For any integrable f on [a, b] define

$$||f||_2 := \left(\int_a^b |f(x)|^2 dx\right)^{1/2}.$$

For integrable f, g, h, prove the triangle inequality

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2.$$

Proof. Let

$$u = f - g, \quad v = g - h,$$

so f - h = u + v. Then

$$||u+v||_2^2 = \int_a^b (u+v)^2 = \int_a^b u^2 + 2uv + v^2 = ||u||_2^2 + 2\langle u, v \rangle + ||v||_2^2.$$

By the Cauchy–Schwarz inequality (Rudin Thm 3.14),

$$|\langle u, v \rangle| \le ||u||_2 ||v||_2,$$

so

$$||u+v||_2^2 \le ||u||_2^2 + 2||u||_2||v||_2 + ||v||_2^2 = (||u||_2 + ||v||_2)^2.$$

Taking square roots yields

$$||f - h||_2 = ||u + v||_2 \le ||u||_2 + ||v||_2 = ||f - g||_2 + ||g - h||_2.$$