Reduceri polinomiale

Echivalenta polinomiala:

Daca $\mathbf{A} \leq_{\mathbf{p}} \mathbf{B} \wedge \mathbf{B} \leq_{\mathbf{p}} \mathbf{A}$, atunci $\mathbf{A} \equiv_{\mathbf{p}} \mathbf{B}$

Reduceri prin simpla echivalenta (Independent Set \equiv_p Vertex Cover)

Independent Set: Dandu-se un graf G = (V, E) si un intreg k, exista un subset S de noduri a.i. $|S| \ge k$, iar fiecare muchie are **cel mult** un capat in S?

Ex: Pt k=6 - da, exista. Pt k=7 - nu, nu exista.

Vertex Cover: Dandu-se un graf G = (V, E) si un intreg k, exista un subset S de noduri a.i. $|S| \le k$, iar fiecare muchie are **cel putin** un capat in S?

Ex: Pt k=4 – da, exista. Pt k=3 – nu, nu exista.

Aratam ca Independent Set \equiv_p Vertex Cover aratand ca, pt un k fixat, S este independent set \Leftrightarrow V-S este vertex cover de dimensiune \leq |V|-k.

<u>Transformarea in timp polinomial a datelor de intrare:</u>

Independent Set	Vertex Cover
(V,E)	(V,E)
k	V -k

=> (S independent set => V-S vertex cover)

- Fie S independent set si (u,v) o muchie arbitrara din G
- S independent set => u∉S sau v∉S => u∈ V-S sau v∈ V-S => V-S vertex cover

<= (V-S vertex cover => S independent set)

• Fie V-S vertex cover si (u,v) o muchie arbitrara din G

• V-S vertex cover $=> u \in V$ -S sau $v \in V$ -S $=> u \notin S$ sau $v \notin S => S$ independent set

Reduceri de la o problema mai "usoara" la una mai "grea" (Vertex Cover ≤_p Set Cover)

Set cover: Dandu-se o multime U, o colectie S_1 , S_2 ... S_m de submultimi ale lui U si un intreg k, exista o colectie de cel mult k astfel de submultimi care reunite sa dea U?

Aratam ca Vertex Cover \leq_p Set Cover construind dintr-o instanta oarecare a problemei Vertex Cover o instanta specifica pt Set Cover, dupa modelul urmator:

<u>Transformarea in timp polinomial a datelor de intrare:</u>

Vertex Cover	Set Cover
(V,E), k	k = k
	U = E
	$S_v = \{ e \in E \mid \exists u \in V \text{ a.i. } e=(u,v) \}$

=> (S vertex cover de dimensiune \le k => C={ S_v | v ∈ S } set cover de dimensiune \le k)

- Fie S vertex cover de dimensiune $\leq k \operatorname{si}(u,v)$ o muchie arbitrara din G
- S vertex cover => $u \in S$ sau $v \in S$ => $S_u \in C$ sau $S_v \in C$
- Din definitia lui S_i : $(u,v) \in S_u$, $(u,v) \in S_v => C$ set cover

 $\leq = (C = \{ S_v \} \text{ set cover de dimensiune } \leq k => S = \{ v \mid S_v \in C \} \text{ vertex cover de dimensiune } \leq k)$

- Fie C set cover de dimensiune ≤k si (u,v) o muchie arbitrara din G
- C set cover => \exists S_i \in C a.i. $(u,v)\in$ S_i => i=u sau i=v => u \in S sau $v\in$ S => S vertex cover