Solving System of Linear Equations Ax = b1

1.1 p-Norm and Condition Number

$$\underline{\text{Vector } p\text{-Norm}} : \quad \boxed{\|\vec{x}\|_p = \sqrt[p]{\sum_i |x_i|^p}}$$

1-Norm: $\|\vec{x}\|_1 = \sum_i |x_i|$

 ∞ -Norm: $\|\vec{x}\|_{\infty} = \max |x_i|$

- $||x||_1 \ge ||x||_2 \ge ||x||_{\infty}$
- $||x||_1 \le \sqrt{n} ||x||_2 \le \sqrt{n} ||x||_{\infty}$

 $\underline{\text{Matrix } p\text{-Norm}}:$

1-Norm: $||A||_1 = \max_j \sum_i |a_{ij}|$

 ∞ -Norm : $||A||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$

• $||AB|| \le ||A|| \cdot ||B||$ • $||Ax|| \le ||A|| \cdot ||x||$ For p-norms (not necessarily in general)

Function/Vector Condition Number:

$$\operatorname{cond}(f(x)) = \left| \frac{[f(\hat{x}) - f(x)]/f(x)}{[\hat{x} - x]/x} \right|$$
$$= \left| \frac{\Delta y/y}{\Delta x/x} \right| = \left| \frac{y' \cdot \Delta x/y}{\Delta x/x} \right|$$
$$= \left| \frac{xf'(x)}{f(x)} \right|$$

Matrix Condition Number:

$$\frac{\operatorname{cond}_{p}(A) = \|A\|_{p} \cdot \|A^{-1}\|_{p}}{\operatorname{max}_{x \neq 0} \|Ax\|_{p} / \|x\|_{p}} = \operatorname{cond}_{p}(\gamma A) \geq 1$$

- Diagonal, $D : \operatorname{cond}(D) = \frac{\max |d_i|}{\min |d_i|}$
- $||z|| = ||A^{-1}y|| \le ||A^{-1}|| \cdot ||y||$ $\rightarrow \frac{\|z\|}{\|u\|} \leq \max \frac{\|z\|}{\|u\|} \stackrel{?}{=} \|A^{-1}\| \quad \text{(optimize)}$

1.2 Error Bounds and Residuals

$$A\hat{x} = b + \Delta b = Ax + A\Delta x$$

$$\bullet \quad \|b\| \quad \leq \quad \|A\| \cdot \|x\|$$

•
$$\|\Delta x\| \le \|A^{-1}\| \cdot \|\Delta b\|$$

$$\to \left[\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|} \right]$$

$$(A + \Delta A)\hat{x} = b$$

•
$$\|\Delta x\| = \|-A^{-1}(\Delta A)\hat{x}\|$$

 $\leq \|A^{-1}\| \cdot \|\Delta A\| \cdot \|\hat{x}\|$

$$\to \left[\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}\right]$$

$$A\hat{x} + r = b$$

•
$$\|\Delta x\| = \|A^{-1}(A\hat{x} - b)\| = \|-A^{-1}r\|$$

 $\leq \|A^{-1}\| \cdot \|r\|$

$$\rightarrow \left| \frac{\|\Delta x\|}{\|\hat{x}\|} \le \operatorname{cond}(A) \frac{\|r\|}{\|A\| \cdot \|\hat{x}\|} \right|$$

$$(A + \Delta A)\hat{x} = b$$

$$\bullet \|r\| = \|b - A\hat{x}\| = \|\Delta A \cdot \hat{x}\|$$

$$\leq \|\Delta A\| \cdot \|\hat{x}\|$$

$$\to \boxed{\frac{\|r\|}{\|A\|\cdot\|\hat{x}\|} \le \frac{\|\Delta A\|}{\|A\|}}, \quad \frac{\|\Delta x\|}{\|x\|} \le \frac{\|A^{-1}\|\cdot\|r\|}{\|\hat{x}\|} \le \operatorname{cond}(A) \quad \frac{\|\Delta A\|}{\|A\|}$$

$$\left[A(t)x(t) = b(t) \right] = \left[\left(A_0 + \Delta A \cdot t \right) x(t) = b_0 + \Delta b \cdot t \right]$$

•
$$x'(t) = \frac{b'(t) - A'(t)x(t)}{A(t)} = A^{-1}(t) \left[\Delta b - \Delta A \cdot x(t) \right]$$

•
$$x(t) = x_0 + x'(0)t + \mathcal{O}(t^2)$$

$$\rightarrow \boxed{\frac{\|x(t) - x_0\|}{\|x_0\|} \le \operatorname{cond}(A) \left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}\right) |t| + \mathcal{O}(t^2)}$$

Gaussian Elimination with LU/PLU/PLDUQ Decomposition 1.3

Elementary Elimination Matrices, L_k

$$\begin{pmatrix}
1 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \dots & 1 & 0 & \dots & 0 \\
0 & \dots & \frac{-a_{k+1}}{a_k} & 1 & \dots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \dots & \frac{-a_n}{a_k} & 0 & \dots & 1
\end{pmatrix}
\begin{pmatrix}
a_1 \\
\vdots \\
a_k \\
a_{k+1} \\
\vdots \\
a_n
\end{pmatrix} =
\begin{pmatrix}
a_1 \\
\vdots \\
a_k \\
0 \\
\vdots \\
0
\end{pmatrix}$$
• a_k is the "pivot"

Ex:

$$\begin{pmatrix}
1 & 0 & \dots \\
-a_1/a_2 & 1 & \dots \\
-a_1/a_2 & 1 & \dots \\
\vdots & \vdots & \ddots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
0
\end{pmatrix}$$
• $\forall i \neq j \quad (L_k^{-1})_{ij} = -(L_k)_{ij}$

$$\begin{pmatrix}
1 & 0 & \dots \\
-a_1/a_2 & 1 & \dots \\
\vdots & \vdots & \ddots
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
\vdots
\end{pmatrix}$$

$$\bullet \ \forall i \neq j \ (L_k^{-1})_{ij} = -(L_k)_{i,j}$$

$$\begin{pmatrix} 1 & 0 & \dots \\ -a_1/a_2 & 1 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} a_1 \\ 0 \\ \vdots \end{pmatrix}$$

LU/PLU Factorization (w/ partial pivoting)

$$A = LU$$
 (*L* is gen. triang.)
(*U* is upp. triang.)
 $L = (\dots L_2 P_2 L_1 P_1)^{-1}$

$$\{\dots\}b = (\dots L_2 P_2 L_1 P_1) A x$$

$$L^{-1}b = (P_1^T L_1^{-1} P_2^T L_2^{-1} \dots)^{-1} A x$$

$$= L^{-1}(LU)x = y$$

$$b = Ly$$
 $y = Ux$ (forw.-sub.)

- Permutation matrix, P_i , rowswaps s.t. $a_k \neq 0$
- P_i rowswaps s.t. a_k is largest s.t. $a_{k+i}/a_k \leq 1$ for numerical stability/ minimize errors
- Pivoting isn't needed if A is diag. dom. $(a_{jj} > \sum_{i,i \neq j} a_{ij})$
- A can be singular

$$A = PLU \qquad \begin{array}{c} (P \text{ is rowswap permu.}) \\ (L \text{ is unit low. triang.}) \\ (U \text{ is upp. triang.}) \end{array}$$

$$P = (\dots P_2 P_1)^{-1}$$

$$\{\dots\}b = (\dots P_2 P_1) A x$$
$$P^T b = (P_1^T P_2^T \dots)^{-1} A x$$
$$= P^T (PLU) x = L y$$

$$P^T b = L y \ , \ \ y = U x$$

$$P^T A = LDU \qquad \text{(D is diag.)}$$

- ullet LDU is unique up to D
- LDU is unique if L/U are unit low./upp. diag., resp.

$$P^TAQ^T = LDU \qquad \begin{tabular}{l} \mbox{(P is permu. for rows)} \\ \mbox{(Q is permu. for cols.)} \end{tabular}$$

- "Complete pivoting" search for largest a_k
- Would be most numerically stable
- Expensive, so not really used

Error Bound:
$$\frac{\|r\|}{\|A\| \|x\|} \le \frac{\|\Delta A\|}{\|A\|} \le \rho n^2 \epsilon_{\text{mach}} \sim n \epsilon_{\text{mach}}$$
 (Wilkinson) (usually)

(growth factor, ρ , is the largest entry at any point during factorization - usually at U divided by the largest entry of A)

1.4 Gaussian-Jordan with MD Decomposition

Elementary Elimination Matrices, M_k

$$\begin{pmatrix} 1 & \dots & \frac{-a_1}{a_k} & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & \frac{-a_{k+1}}{a_k} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \frac{-a_n}{a_k} & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_{k-1} \\ a_k \\ a_{k+1} \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\bullet a_k \text{ is the "pivot"}$$

$$\bullet \forall i \neq j \quad (M_k^{-1})_{ij} = -(M_k)_{ij}$$

MD Factorization (w/ partial pivoting)

$$A = MD$$
 (M is elem. elim.)
 $(D \text{ is diag.})$
 $M = (\dots M_2 P_2 M_1 P_1)^{-1}$

$$\{\dots\}b = (\dots M_2 P_2 M_1 P_1) A x$$

$$M^{-1}b = (P_1^T M_1^{-1} P_2^T M_2^{-1} \dots)^{-1} A x$$

$$= M^{-1} (MD) x = y$$

$$M^{-1}b = y , \quad y = Dx$$
 (division)

- Permutation matrix, P_i , rowswaps s.t. $a_k \neq 0$
- P_i rowswaps cannot ensure numerical stability (≤ 1)
- Division is $\mathcal{O}(n)$, so may be useful for parallel comps.
- Can also find A⁻¹

Finding A^{-1} $D^{-1}M^{-1}(A|I) = (I|A^{-1})$ $=D^{-1}M^{-1}\begin{bmatrix}a_{11}&\cdots&1&0\\\vdots&a_{nn}&0&1\end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & a'_{11} & \dots \\ 0 & 1 & \vdots & a'_{nn} \end{bmatrix}$

Symmetric Matrices 1.5

Positive Definite: $|x^T Ax| > 0$

Cholesky Factorization for Sym., Pos. Def.: $A = LL^T = LDL^T$

$$\begin{pmatrix} a_{11} & a_{21} & a_{31} & \dots \\ a_{21} & a_{22} & a_{32} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & 0 & \dots \\ l_{21} & l_{22} & 0 & \dots \\ l_{31} & l_{32} & l_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} & l_{31} & \dots \\ 0 & l_{22} & l_{32} & \dots \\ 0 & 0 & l_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} l_{11}^2 & \dots & \dots & \dots \\ l_{21}l_{11} & l_{21}^2 + l_{22}^2 & \dots & \dots \\ l_{31}l_{11} & l_{31}l_{21} + l_{32}l_{22} & l_{31}^2 + l_{32}^2 + l_{33}^2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Pivoting not needed

- Only lower triangle needed for storage
- Well defined (always works)
- $A = LDL^T$ is sometimes useful, where D is diag.

Symmetric Indefinite Matrices

- Pivoting Needed: $PAP^T = LDL^T$
- Ideally, D is diag., but if not possible, then D is tridiag. (Assen) or 1x1/2x2 block diag. (Bunch, Parlett, Kaufmann, etc.)

1.6 Banded Matrices

- Similar to normal Gaussian Elim., but less work since more zeroes
- Pivoting means bandwidth will expand no more than double
- Only $\mathcal{O}(\beta n)$ storage needed

1.7 Rank-1 Update with Sherman-Morrison

$$\tilde{A}\tilde{x} = b = (A - uv^{T})\tilde{x}$$

$$\rightarrow \tilde{x} = \tilde{A}^{-1}b$$

$$\tilde{A}^{-1} = (A - uv^{T})^{-1} = A^{-1} + \frac{A^{-1}u}{1 - v^{T}(A^{-1}u)} v^{T}A^{-1}$$

$$\tilde{x} = (A^{-1}b) + \frac{A^{-1}u}{1 - v^{T}(A^{-1}u)} v^{T}(A^{-1}b)$$

$$x + \frac{y}{1 - v^{T}y} v^{T}x$$

General Woodbury Formula:

$$(A - UV^{T})^{-1} = A^{-1} + (A^{-1}U)(I - V^{T}A^{-1}U)^{-1} v^{T}A^{-1}$$

- U and V are general $n \times k$ matrices
- No guarantee of numerical stability, so caution is needed

1.8 Complexity

Explicit Inversion: $D^{-1}M^{-1}I = A^{-1} \rightarrow \mathcal{O}(n^3)$, $A^{-1}b = x \rightarrow \mathcal{O}(n^2)$

Gaussian Elimination: $A = LU \longrightarrow \mathcal{O}(n^3/3)$, $LUx = b \rightarrow \mathcal{O}(n^2)$

Gaussian-Jordan: $A = MD \rightarrow \mathcal{O}(n^3/2)$, $MDx = b \rightarrow \mathcal{O}(n)$

Symmetric: $A = LL^T$ $PAP^T = LDL^T$ $\rightarrow \mathcal{O}(n^3/6)$, $LL^Tx = b \rightarrow \mathcal{O}(n^2)$

Banded: $A_{\beta} = LU \rightarrow \mathcal{O}(\beta^2 n)$, $LUx = b \rightarrow \mathcal{O}(\beta n)$

Sherman-Woodbury: $\tilde{A} = A - uv^T \rightarrow \mathcal{O}(n^2)$, $\tilde{x} = \tilde{A}b \rightarrow \mathcal{O}(n^2)$

1.9 Diagonal Scaling

Ill-conditioned

$$\begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ \epsilon \end{pmatrix}$$

Well-conditioned

$$\begin{pmatrix} 1 & 0 \\ 0 & 1/\epsilon \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1/\epsilon \end{pmatrix} \begin{pmatrix} 1 \\ \epsilon \end{pmatrix}$$

• No general way to correct poor scaling

1.10 Iterative Refinement

$$r_0 = b - Ax_0 = A\Delta x_0$$

$$r_1 = b - A(x_0 + \Delta x_0) = b - Ax_1 = A\Delta x_1$$

$$r_2 = b - A(x_1 + \Delta x_1) = b - Ax_2 = A\Delta x_2$$

$$x = x_0 + \lim_{n=0}^{\infty} \Delta x_n$$
 (terminate when r_n is small enough)

- $\bullet\,$ Double storage needed to hold original matrix
- \bullet r_n usually must be computed with higher precision than x_n
- Useful for badly scaled systmes, or making unstable systems stable
- If x_n is not accurate, r_n might not need better accuracy

2 Matrix Types

 ${\bf Hermitian:}$

$$H=H^\dagger$$

Unitary:

$$UU^\dagger=I$$

$$H=UDU^{-1}$$

• D is real

$$U=e^{iH}$$

•
$$U = e^{iH} = U_H e^{iD} (U_H)^{-1}$$