Oppgaver for kapittel 0

0.1.1

a) Deriver funksjonen $f(x) = 4x^5$.

b) Finn det bestemte integralet $\int_{0}^{2} 20x^4 dx$.

0.1.2

Relasjonen mellom en funksjon F(x) og f(x) er at F'(x) = f(x). Videre er F(1) = 1 og F(4) = 9.

Finn det bestemte integralet $\int_{1}^{4} f(x) dx$.

0.1.3

a) Deriver funksjonen $f(x) = e^{\cos^2 x}$.

b) Finn det ubestemte integralet

$$\int -\sin(2x) \, e^{\cos^2 x} \, dx$$

0.1.4

Vis at

a)
$$\int x(x+2)e^x dx = x^2 e^x + C$$

b)
$$\int -e^{x^2 + \cos x} (-2x + \sin x) \, dx = e^{\cos x + x^2} + C$$

0.2.1

Finn integalene:

$$\mathbf{a)} \int \frac{3}{4x} \, dx$$

b)
$$\int -\frac{7}{\cos^2 t} dt$$
 c) $-4x^5$

1

c)
$$-4x^5$$

$$\mathbf{d)} \int \cos(\pi x) \, dx$$

e)
$$\int 4e^{-4t} dt$$

d)
$$\int \cos(\pi x) dx$$
 e) $\int 4e^{-4t} dt$ f) $\int \left(2x^4 dx - \frac{3}{x^{\frac{3}{2}}}\right) dx$

$$\mathbf{g)} \int \sqrt{x^5} \, dx$$

0.2.2

Regn ut de bestemte integralene.

a)
$$\int_{-1}^{1} (4x^3 - x) dx$$
 b) $\int_{0}^{\ln 2} e^{2x} dx$

b)
$$\int_0^{\ln 2} e^{2x} dx$$

0.2.3

Gjennomsnittet av en funksjon f(x) over et intervall [a, b] kan vi skrive som

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Gitt et vilkårlig tall c, vis at gjennomsnittet av $f(x) = \cos x + d$ over intervallet $[c, c + 2\pi]$ er lik d.

0.2.4

Bevis (??)-(??) ved å bruke integrasjon ved substutisjon.

0.2.5

Finn integralene:

$$\mathbf{a)} \int x e^{x^2} \, dx \qquad \mathbf{b}$$

a)
$$\int xe^{x^2} dx$$
 b) $\int_{1}^{2} 8xe^{2x^2-3} dx$ **c)** $\int \tan x dx$

d)
$$\int_{0}^{3} \frac{\sin x}{\cos^{3} x} dx$$
 e) $\int \frac{4x+5}{2x^{2}+5x} dx$ f) $\int \frac{3x+2}{3x^{2}+4x+3} dx$

$$\mathbf{f)} \int \frac{3x+2}{3x^2+4x+3} \, dx$$

0.2.6

Anvend to av de trigonometriske identitetene og bytte av variabel to ganger for å finne integralet

$$\int \sin(2x)e^{1-\cos^2 x} \, dx$$

2

0.2.7

Finn det bestemte/ubestemte integralet:

a)
$$\int (x-1)\cos x \, dx$$
 b) $\int \sqrt{x} \ln x \, dx$ c) $\int_{1}^{e} \frac{\ln x}{x^2}$

0.2.8

Vis at

$$\int \sin^2 x \, dx = \frac{1}{2}(x - \sin x \cos x) + C$$

0.2.9

Finn det bestemte/ubestemte integralet:

a)
$$\int_{4}^{5} \frac{13-4x}{x^2-5x+6} dx$$
 b) $\int \frac{41-4x}{(x-5)(x+2)} dx$

c)
$$\int \frac{x^2 + 9x - 16}{(x - 2)(x^2 - 1)} dx$$
 d) $\int \frac{3x^2 - 14x + 10}{x^3 - 3x^2 + 2x}$

0.2.10

Finn det ubestemte integralet:

$$\int \frac{3x^3 - 2x^2 - 20x + 2}{x^2 - x - 6} \, dx$$

Hint: Bruk polynomdivisjon.

0.3.1

Relasjonen mellom to funksjoner f(x) og g(x) og en konstant d er at

$$g = f + d$$

a) Ta det for gitt at f og g er som vist på figuren under.

Forklar ut ifra en arealbetraktning hvorfor

$$\int_{a}^{b} f \, dx = \int_{a}^{b} g \, dx - (b - a)d$$

b) Bekreft likheten i oppgave a) ved integrasjon.

0.3.2

Under vises grafen til F(x) og f(x). F er en antiderivert av f.

Forklar hvorfor arealet av det oransje området er like stort som arealet av det grønne området.

4

0.4.1

La en kule med radius r være plassert i et koordinatsystem med variabelen x langs horisontalaksen. Kula er plassert slik at sentrum ligger i origo.

- a) Lag en tegning og bestem kulas tverrsnitt A langs horisontalaksen, uttrykt ved r og x.
- **b)** Finn volumet V av kula.

0.4.2

Finn volumet av omdreiningslegemene til funksjonene på intervallet [0,1]:

a)
$$f(x) = e^x$$
 b) $f(x) = \frac{1}{\sqrt{2}} \sqrt{1 - \cos(2\pi x)}$

Gruble 1

(R2V23D1)

- a) Vis at hvis $f(x) = \tan x$, så er $f'(x) = 1 + \tan^2 x$.
- b) Regn ut

$$\int \frac{1 + \tan^2 x}{\tan x} \, dx$$

Gruble 2

(R2H23D1)

Regn ut integralet

$$\int_{-1}^{1} x^3 + 2x \, dx$$

Hva forteller svaret deg?

Gruble 3

(R2H23D1)

Figuren viser grafene til funksjonene $f(x) = \cos x$ og $g(x) = \sin x$.

Bestem arealet til det fargede området.

Gruble 4

Bruk definisjonen fra (??) til å vise at

$$\int_{a}^{b} x^2 \, dx = \frac{1}{3} (b^3 - a^3)$$

6

Gruble 5

Gitt en funksjon f(x) integrerbar på intervallet [a,b]. Vis at lengden l til grafen til f er

$$l = \int_a^b \sqrt{1 + g^2} \, dx$$

hvor g(x) = f'(x).

