Machine Learning Techniques Applied to the Classification of Breast Cancer Recurrence

Diego P. Ardila¹

¹Departamento de ELE – Pontificia Universidade Católica do Río de Janeiro (PUC-Rio) Caixa Postal 38097 – Río de Janeiro – RJ – Brazil

diego.paez@aluno.puc-rio.br

Abstract. Breast cancer affected 2.3 million women in 2020, resulting in 685,000 deaths worldwide. Death from breast cancer is mainly associated with metastasis and relapse. This work aims to analyze data corresponding to patients diagnosed with breast cancer, apply data mining to predict disease recurrence, and compare the performance of machine learning techniques in breast cancer relapse classification.

Resumo. O câncer de mama afetou 2,3 milhões de mulheres em 2020, resultando em 685.000 mortes em todo o mundo. A morte por câncer de mama está principalmente associada a metástases e recaídas. Este trabalho visa analisar dados correspondentes a pacientes diagnosticadas com câncer de mama, aplicar mineração de dados para prever a recorrência de doenças e comparar o desempenho de técnicas de aprendizagem de máquinas na classificação de recidivas de câncer de mama.

1. Introduction

Breast cancer affected 2.3 million women in 2020 and caused 685,000 deaths worldwide. Consequently, according to information provided by the World Health Organization, it is the most frequent malignant pathology among women. Several researchers consider early detection and prediction the best alternative to fight against this highly invasive malignant pathology [1]. Death from breast cancer is mainly associated with metastasis and relapse. Metastatic relapse can occur months to years after the initial diagnosis and treatment of breast cancer.

Therefore, for researchers using data mining approaches, predicting breast cancer recurrence is a significant challenge. An essential aspect of evaluating breast cancer behavior is its recurrence, which is adequately related to mortality. Despite its relevance, it is rarely recorded in large part of breast cancer datasets, which hampers research in its prediction.

Several data mining techniques have been used in the literature investigated for breast cancer classification. Kumar et al. [2] performed technical comparisons to predict malignant and benign breast cancer. Temesgen Abera Asfaw [3] demonstrated that logical regression (LR) has the best classification accuracy, 96.93%, for detecting breast cancer using the UCI Wisconsin breast cancer dataset. Another research [4] studied LR in breast cancer detection. They concluded that using a β-weighting factor to the existing logistic function significantly improves accuracy, sensitivity, and specificity.

2. Methodology

This project proposes four configurations using different data preprocessing techniques to analyze and compare the performance of Machine Learning (ML) models applied to recurrence classification in breast cancer.

Figure 1 describes the methodological process employed for the development of the project. First, there is a General Pre-Processing block (GPP) of the data applied to the dataset. Then, configurations MC-1, MC-2, MC-3, and MC-4 defined for the evaluation of the models follow a line in which different operations are performed on the data before the training models.

The MC-1 configuration uses the raw data to perform the training, testing, and validation of the Logistic Regression (LR) [5], Naive Bayes (NB) [6], Support Vector Machine (SVM) [7], [8] and K-Nearest Neighbors (KNN) [9] models. The MC-2 configuration applies the GPP on the dataset before executing the training, testing, and validation block. On the other hand, the MC-3 and MC-4 configurations use the data resulting from the GPP, to which the Principal Component Analysis (PCA) [10] feature extraction technique is applied to select the most relevant attributes within the dataset. The result of this processing is involved in two ways; MC-3 implements the same training, testing, and validation block used by the previous configurations. MC-4 applies the SMOTE oversample technique [11]-[13] on the training data to balance the target class and execute the training, testing, and validation blocks.

Finally, the training, testing, and validation process is performed in two iterations. In the first iteration, the default parameters (Penalty, C, Solver, Var Smoothing, Gamma, Kernel, Leaf Size, n_neighbors, distances) of the LR, NB, SVM, and KNN models of the SkLearn library [14] are applied. In the second iteration, the parameters of the different models are optimized, thus evaluating the performance of the models in two instantiations.

Figure 1. Description of the Methodological Process.

2.1. Dataset Description

In this study, two versions of the same dataset were used; the difference is the number of target classes (2 and 4) each had. This dataset contains 344 instances with 19 attributes, distributed in four categorical with integer coding, eight categorical with binary coding, and seven continuous. The target variable is a recurrence, and for versions 1 and 2 of the dataset, it is divided into (no recurrence, with recurrence) and (no recurrence, early recurrence, medium recurrence, late recurrence). Figure 2 shows the name of each attribute and its distribution.

Figure 2. Attribute Distribution Datasets

2.2. Preprocessing and Exploratory Data Analysis

General data preprocessing was applied to prepare the dataset for the four defined configurations (MC-1 to MC-4). No missing data (NaN) was found in the data exploration process, and all attributes were already numerically or binary categorized. The scatter diagram presented in Figure 3 shows that the sex attribute has a reduced number (4) of instances associated with the male sex compared to the female sex (340); for this reason, these instances are eliminated. Additionally, it is possible to observe that in both datasets, there is an imbalance in the target classes. Dataset 2 has four classes which are reduced to three by applying the K-Means method [15], [16], thus achieving a better data distribution.

As part of the performance evaluation process of ML models with different configurations, a new dataset was created in which binary-coded attributes were not altered. One-Hot coding [17] was applied to integer-coded categorical features, and continuous characteristics were standardized.

Figure 3. Attribute Scatter Diagrams

2.3. Model Evaluation

The evaluation of the models was performed in two phases. In the first phase, the default parameters defined in SkLearn were used to train the models: LR (penalty='12', C=1.0, solver='lbfgs'), NB (var_smoothing=1e-09), SVM (C=1.0, kernel='rbf', gamma='scale'), KNN (n_neighbors=5, leaf_size=30, p=2). Data were separated into training and testing using a ratio of 80%-20%. The K-Fold Cross-Validation technique [18] was used to compare the models' performance with each other, and the performance metrics described in Table 1 were used to evaluate the classification ability of each model.

Table 1. Performance Metrics

Performance Metrics	Description			
Confusion matrix	True Positives, true negatives, false positives, false negatives.			
Accuracy	Overall model performance			
Precision	What proportion of predicted Positives is actually Positive?			
Recall	What proportion of real positives are correctly classified?			
F1-Score	Combine precision and recall into a single number. Uses the harmonic mean.			
AUC Roc Score	Area under the ROC curve, provides a single score and can be used to compare models.			

Once the first phase of evaluation was completed, in the second phase, the model parameters were optimized using the Grid Search Cross-Validation technique [19], [20] with the search ranges defined in Table 2. This way, the model training process was repeated, and the performance metrics were calculated with the optimized parameters.

Table 2. Parameters Optimization Grid

Parameters Grid - Logistic Regresion

Penalty	['l1','l2', "elasticnet"]						
С	[0.001, 0.01, 0.1, 1, 10, 100, 1000]						
Solver	['newton-cg', 'lbfgs', 'liblinear', "saga"]						
Parameters Grid - Naive Bayes							
var smoothing np.logspace(0,-9, num=1000) [1,,1e-9]							
Parameters Grid - SVM							
С	[0.1, 1, 10, 100, 1000]						
Gamma	[1, 0.1, 0.01, 0.001, 0.0001]						
Kernel	['rbf']						
	Parameters Grid - KNN						
Leaf Size	range(1,50)						
n_neighbors	range(1,30)						
distance	manhattan, euclidean						

3. Results

Tables 3-4 present the results of the first phase of model evaluation; the tables are divided into the results of the four configurations defined in the methodology (MC-1 to MC-4) and show the performance metrics of each of the models evaluated. The best result of each of the experiments performed is highlighted in red. Consequently, Tables 5-6 show the results of the second phase of model evaluation.

Table 3. Performances Metrics Dataset 1 - Two Classes

Resultados MC-1 Dataset 1 – Duas Classes.

MC-1

Precision: 0.986

LR

| nonRec | 23 | | Rec | ^ |

Predicted

	Predi	cted	Г	MC 1			Predicted		
	nonRec	Rec			Actual Rec	L	nonRec	Rec	
	23	1	Г		A -41	nonRec	23	1	
	0	45			Actual	Rec	1	44	
	Accuracy	y: 0.986	ı	NB Precision:		n: 0.971	Accuracy: 0.971		
AUC ROC: 0.979			Recall: 0.971		AUC ROC: 0.968				
				F1-Score	o∙ ∩ 971				

	MC-1	Predi	cted	1	MC-1		Predicted			
	IVIC-1		nonRec	Rec	Ī	IVIC-1			nonRec	Rec
	Actual	nonRec	0	24			Actual	nonRec	9	15
		Rec	0	45				Rec	14	31
SVM	Precision: 0.425		Accuracy: 0.652			KNN	Precision: 0.576		Accuracy:	0.580
	Recall: 0.515		AUC ROC: 0.500				Recall: 0.578		AUC ROC:	0.532
	F1-Score: 0.652						F1-Score	e: 0.580		

LN	Recall: 0	.985	AUC ROC:		
	MC-	,	Predicted		
	IVIC-	4	nonRec	Rec	
	Actual	NonRecur	22	2	

MC-2

Actual NonRecur Recur

	MC-2	,	Predicted			
	IVIC-2	nonRec	Rec			
	Actual	nonRec	23	1		
	Actual	Rec	2	43		
NB	Precisio	n: 0.957	Accuracy: 0.957			
	Recall: 0).957	AUC ROC: 0.957			
	F1-Score	e: 0.957				
	F1-Score	e: 0.957				

	MC-	,	Predic	ted			
	IVIC-	2	nonRec	Rec			
	Actual	NonRecur	22	2			Γ
	Actual	Recur	0	45			L
SVM	Precision	n: 0.972	Accuracy: 0.971			KNN	F
	Recall: 0	.971	AUC ROC: 0.958				F
	F1-Score	: 0.971					F

Resultados MC-2 Dataset 1 – Duas Classes.

Predicted

nonRec Rec

44

	MC-2	,	Predicted			
	IVIC-2	4	nonRec	Rec		
	Actual	nonRec	13	11		
	Actual	Rec	8	45		
KNN	Precisio	n: 0.718	Accuracy: 0.725			
	Recall: 0	0.720	AUC ROC: 0.682			
	F1-Score	e: 0.725				

Resultados MC-3 Dataset 1 – Duas Classes.

	MC-3		Predicted		MC-3			Predicted					
	IVIC-3		nonRec	Rec		IVIC-	,	nonRec	Rec				
	A -41	nonRec	24	0		Actual	nonRec	18	6				
	Actual	Rec	1	44		Actual	Rec	2	43				
LR	Precision: 0.986		Accuracy: 0.986		NB	Precisio	Precision: 0.885		Accuracy: 0.884				
	Recall: 0.986		Recall: 0.986 AUC ROC:		Recall: 0.986		6 AUC ROC: 0.989			Recall: 0	0.881	AUC ROC:	0.853
	F1-Score: 0.986					F1-Scor	e: 0.884						

	Resultados MC-4 Dataset 1 – Duas Classes.										
MC-4		Predic	Predicted			MC-4					
	IVIC-	•	nonRec	Rec							
	Actual	nonRec	24	0			Actual	nonRe			
	Actual	Rec	1	44			Actual	Rec			
LR	Precision: 0.986		Accuracy: 0	N	В	Precision: 0.899					
	Recall: 0.986		AUC ROC:			Recall: 0	.887				
	F1-Score: 0.986					F1-Score	e: 0.899				

	Duus C	iusses.			
	MC-4		Predic	ted	
	IVIC-4	•	nonRec	Rec	
	Actual	nonRec	19	5	
	Actual	Rec	2	43	
NB	Precisio	n: 0.899	Accuracy: 0.899		
	Recall: 0	0.887	AUC ROC: 0.874		
	F1-Score	e: 0.899			

	MC-3		Predicted			MC-	,	Predicted		
	IVIC-3	'	nonRec	Rec		WIC-3		nonRec	Rec	
	Actual	nonRec	22	2		Actual	nonRec	16	8	
	Actual	Rec	0	45		Actual	Rec	7	38	
svm	Precision: 0.972		Accuracy: 0.971		KNN	Precision: 0.783		Accuracy: 0	0.783	
	Recall: 0.971		AUC ROC: 0.958			Recall: 0	0.781	AUC ROC: 0.756		
	F1-Score	: 0.971				F1-Score	e: 0.783			

	MC-	4	Predic	ted
	IVIC-	•	nonRec	Rec
	Actual	nonRec	24	0
	Actual	Rec	0	45
SVM	Precision	n: 1	Accuracy:	1
	Recall: 1		AUC ROC:	1
	F1-Score	: 1		

	MC-4	,	Predic	ted
	IVIC-4	nonRec	Rec	
	Actual	nonRec	18	6
	Actual	Rec	10	35
KNN	Precisio	n: 0.780	Accuracy: (0.768
	Recall: 0).772	AUC ROC:	0.764
	F1-Score	e: 0.768		

Table 4. Performances Metrics Dataset 2 - Three Classes

Resultados MC-1 Dataset 2 – Tres Classes.

	MC-1		Predicted				MC-1			Predicted		
	IVIC-1		nonRec	earlyRec	lateRec		IVIC-1		nonRec	earlyRec	lateRec	
		nonRec	5	5	1			nonRec	4	7	0	
	Actual	earlyRec	1	11	1		Actual	earlyRec	0	12	1	
		lateRec	0	0	45	ND	NB lateRec		1	0	44	
LK	Precision: 0.887 Accuracy: 0.884					NB	Precisio	n: 0.884	Accurac	y: 0.870		
	Recall: 0.875 AUC ROC: 0.883						Recall: 0	.859	AUC RO	C: 0.960		
	F1-Score: 0.884						F1-Score	e: 0.870				

	Resultado	s MC-2 I	Dat	taset 2	- Tres Clas	ses
	Predicted				MC-2	
nonRec	earlyRec	lateRec			IVIC-2	

Resultados MC-4 Dataset 2 – Tres Classe

ı			nonRec	5	6	0			
		Actual	earlyRec	1	10	2			
	LR		lateRec	0	2	43			
	LK	Precision	n: 0.861	Accuracy: 0.841					
ı		Recall: 0	.839	AUC ROO	: 0.943				
		F1-Score	: 0.841						
ı					Predicted		1		
ı		MC-	2				ł		
ı				nonRec	earlyRec	lateRec			

	MC-2			Predicted			
	IVIC-2		nonRec	earlyRec	lateRec		
		nonRec	5	6	0		
	Actual	earlyRec	2	10	1		
NB		lateRec	2	1	42		
NB	Precision:	0.836	Accuracy: 0.826				
	Recall: 0.8	28	AUC ROO	C: 0.838			
	F1-Score:	0.826					

				Predicted	1					Predicted	
			Res	ultados	MC-3 Da	taset 2	– Tres	Classes.			
	F1-Score	: 0.652					F1-Scor	e: 0.536			
	Recall: 0	.515	AUC RO	C: 0.553			Recall: 0	0.535	AUC RO	C: 0.543	
SVIVI	Precision	n: 0.425	Accurac	y: 0.652		KININ	Precisio	n: 0.534	Accurac	: 0.536	
SVM		lateRec	0	0	45	KNN		lateRec	4	10	31
	Actual	earlyRec	0	0	13		Actual	earlyRec	1	1	11
		HOHITCE					l .	HOTHICC		-	

	MC-	,		Predicted				
	IVIC-	-	nonRec	earlyRec	lateRec			
		nonRec	4	6	1			
	Actual	earlyRec	1 11 1					
CVAA		lateRec	0	0	45			
	Precision Recall: 0 F1-Score	.856	Accuracy AUC ROO					

	MC-2		Predicted					
INIC-2			nonRec	earlyRec	lateRec			
		nonRec	3	3	5			
	Actual earlyRec		1	6	6			
KNN		lateRec	2	6	37			
KININ	Precision:	0.658	Accuracy	r: 0.667				
	Recall: 0.6	56	AUC ROO	C: 0.727				
	F1-Score:	0.667						

			Res	ultados	MC-3 Da	itas	set 2	- Tres	Classes.			
	MC-3			Predicted				MC-3	,		Predicted	l
	IVIC-3		nonRec	earlyRec	lateRec		INIC-3		nonRec	earlyRec	lateRec	
		nonRec	4	7	0				nonRec	1	7	3
	Actual earlyRed		2	9	2			Actual	earlyRec	0	10	3
LR		lateRec	0	1	44	Ш.	NB -		lateRec	2	0	43
LK	Precision	n: 0.830	Accurac	y: 0.826		Ш.	NB	Precisio	n: 0.736	Accurac	: 0.783	
	Precision: 0.830 Accuracy: 0 Recall: 0.819 AUC ROC: 0							Recall: 0	.745	AUC RO	C: 0.911	
	F1-Score	: 0.826						F1-Score	2: 0.783			

	MC-3		Predicted				MC-3	,		Predicted	
IVIC-3		nonRec	earlyRec	lateRec		IVIC-3		nonRec	earlyRec	lateRe	
		nonRec	4	6	1			nonRec	2	4	5
	Actual	earlyRec	1	11	1		Actual earlyRec		2	8	3
svm		lateRec	0	0	45	KNN		lateRec	2	5	38
SVIVI	Precision	n: 0.874	Accuracy: 0.696		KININ	Precisio	n: 0.681	Accurac	y: 0.696		
	Recall: 0	.856	AUC RO	C: 0.949			Recall: 0.683		AUC RO	C: 0.740	
	F1-Score	: 0.870					F1-Score	e: 0.696			

	MC-	,		Predicted			
			nonRec	earlyRec	lateRec		
		nonRec	5	6	0		
Actual earlyRec			3	10	0		
LR		lateRec	0	1	44		
LK	Precision	n: 0.863	Accuracy: 0.855				
	Recall: 0	.854	AUC RO	C: 0.946			
	F1-Score	: 0.855					
	MC			Predicted			

	MC-	,	Predicted						
	IVIC-	•	nonRec	earlyRec	lateRec				
		nonRec	6	4	1				
	Actual	earlyRec	4	9	0				
C)/84		lateRec	1	0	44				
SVIVI	Precision	: 0.855	Accuracy: 0.855						
	Recall: 0	.855	AUC ROC: 0.919						
	F1-Score	: 0.855							

			nonRec	lateRec					
		nonRec	3	8	0				
	Actual	earlyRec	3	9	1				
NB		lateRec	2	1	42				
NB	Precision:	0.791	Accuracy	r: 0.783					
	Recall: 0.7	82	AUC ROO	C: 0.904					
	F1-Score:	0.783							
•									
	MC 4			Predicted					
	MC-4		nonRec	Predicted earlyRec	lateRec				
	MC-4	nonRec	nonRec 5		lateRec				
	MC-4	nonRec earlyRec		earlyRec					
VAIN			5	earlyRec 5	1				
KNN		earlyRec lateRec	5	earlyRec 5 9	1				

Table 5. Performances Metrics Dataset 1 - Two Classes - Tuned

Resultados MC-1 Dataset 1 – Duas Classes. Resultados MC-2 Dataset 1 – Duas Classes. Predicted Predicted Predicted Predicted MC-1 MC-1 MC-2 MC-2 nonRec Rec nonRec Rec nonRec Rec nonRec Rec 23 NonRecur 0 nonRed nonRec 23 24 23 nonRed Actual Actual Actual Actual 0 45 Rec 44 43 43 LR NB Precision: 0.957 Precision: 0.986 Precision: 0.971 Accuracy: 0.971 LR Precision: 0.973 Accuracy: 0.971 Accuracy: 0.957 ecall: 0.985 AUC ROC: 0.979 Recall: 0.971 AUC ROC: 0.968 Recall: 0.971 AUC ROC: 0.978 Recall: 0.957 AUC ROC: 0.957 F1-Score: 0.971 F1-Score: 0.957 Predicted Predicted Predicted Predicted MC-1 MC-1 MC-2 MC-2 nonRec Rec nonRec Rec nonRec Rec nonRec Rec nonRed 18 NonRecu 0 16 8 Actual Rec 42 Red 38 Recur 42 38 Precision: 0.913 Accuracy: 0.913 Precision: 0.603 Accuracy: 0.638 Precision: 0.961 Accuracy: 0.957 Precision: 0.781 Accuracy: 0.783 Recall: 0.913 Recall: 0.604 AUC ROC: 0.547 Recall: 0.957 AUC ROC: 0.967 Recall: 0.781 AUC ROC: 0.756 F1-Score: 0.913 1-Score: 0.638 F1-Score: 0.957 1-Score: 0.783 Resultados MC-3 Dataset 1 – Duas Classes. Resultados MC-4 Dataset 1 – Duas Classes. Predicted Predicted Predicted Predicted MC-3 MC-3 MC-4 nonRec Rec nonRec Rec nonRec Rec nonRec 24 0 nonRec 17 nonRec 24 0 nonRec 20 Actual Actual Actual Actual 1 44 44 43 42 Rec Rec Rec Rec LR NR Precision: 0.872 Accuracy: 0.870 ΙR Precision: 0.929 Accuracy: 0.928 ecall: 0.986 AUC ROC: 0.989 Recall: 0.865 AUC ROC: 0.832 Recall: 0.957 AUC ROC: 0.967 Recall: 0.926 AUC ROC: 0.906 1-Score: 0.986 F1-Score: 0.870 F1-Score: 0.928 Predicted Predicted Predicted Predicted MC-3 MC-4 MC-4 nonRec Rec nonRec Rec nonRec Rec nonRec Rec 6 39 nonRec nonRec 16 8 nonRec Actual Actual Actual Actual 45 42 41 Precision: 0.972 Accuracy: 0.971 Precision: 0.826 Accuracy: 0.826 Precision: 0.945 Accuracy: 0.942 Precision: 0.824 Accuracy: 0.826 Recall: 0.971 AUC ROC: 0.958 Recall: 0.826 AUC ROC: 0.808 Recall: 0.943 AUC ROC: 0.946 Recall: 0.822 AUC ROC: 0.789 F1-Score: 0.971 F1-Score: 0.826 F1-Score: 0.826 F1-Score: 0.826

Table 6. Performances Metrics Dataset 2 - Three Classes - Tuned

				Res	ultados	MC-1 Da	taset 2	2 – Tres	Classes.							ı	Resultado	s MC-2 Da	ataset 2	- Tres Clas	ises.			
	MC-1 Predicted MC-1 Predicted						Predicted						MC-2		Predicted									
		MC-1		nonRec	earlyRec	lateRec		IVIC-	1	nonRec	earlyRec	lateRec		MC-2		nonRec	earlyRec	lateRec		MC-2		nonRec	earlyRec	lateRec
			nonRec	5	5	1			nonRec	3	8	0			nonRec	5	6	0			nonRec	5	5	1
	Act	tual	earlyRec	1	11	1		Actual	earlyRec	0	12	1		Actual	earlyRec	0	12	1		Actual	earlyRec	1	11	1
LF	, L		lateRec	0	0	45	NB		lateRec	1	0	44	LR		lateRec	0	0	45	NB		lateRec	1	1	43
-	Pre	cision	: 0.923	Accurac	y: 0.899		140	Precisio	n: 0.870	Accuracy	y: 0.855		Lix	Precision:	0.923	Accuracy	: 0.899		140	Precision:	0.859	Accuracy	: 0.855	
	Rec	all: 0.	891	AUC RO	C: 0.935			Recall: 0		AUC RO	C: 0.938			Recall: 0.8	91	AUC RO	: 0.959			Recall: 0.8		AUC RO	: 0.920	
L	F1-	Score:	0.899					F1-Scor	e: 0.855					F1-Score:	0.899					F1-Score:	0.855			
\vdash			1		Predicted					T	Predicted						Predicted						Predicted	
		MC-1	ŀ		earlyRec			MC-	1		earlyRec	lateRec		MC-2	!	nonRec	earlyRec	lateRec		MC-2		nonRec	earlyRec	
-	Т		nonRec	6	3	2			nonRec	1	1	9			nonRec	4	6	1			nonRec	0	6	5
	Ac	tual	earlvRec	3	9	1		Actual	earlyRec	1	0	12		Actual	earlyRec	1	11	1		Actual	earlyRec	1	4	8
		Ī	lateRec	2	0	43			lateRec	0	1	44			lateRec	0	0	45			lateRec	0	3	42
SVI	Pre	cision:	0.838	Accuracy	/: 0.841		KNN	Precision: 0.521		Accuracy	/: 0.652		SVN	Precision:	0.874	Accuracy	y: 0.870		KNN	Precision: 0.556		Accuracy	: 0.667	
	Recall: 0.839 AUC ROC: 0.884				Recall: 0.546 AUC ROC: 0.627				Recall: 0.856 AUC ROC: 0.951				Recall: 0.606 AUC ROC: 0.791											
	F1-	Score:	0.841					F1-Score: 0.652			F1-Score: 0.870				F1-Score: 0.667									
_						MC-3 Da	taset 2	2 – Tres	Classes.				_					s MC-4 Da	taset 2	- Tres Clas	ses.			
		MC-3	ļ		Predicted			MC-3 Predicted			MC-4			Predicted		MC-4			Predicted		_			
\vdash		-			earlyRec				_		,					nonRec	earlyRec	lateRec				nonRec	earlyRec	
			nonRec	3	8	0			nonRec	1	7	3			nonRec	5	6	0			nonRec	3	7	1
	Ac		earlyRec	1	10	2		Actual		0	9	4		Actual	earlyRec	3	10	0		Actual	earlyRec	2	10	1
LF		-	lateRec	. 0	1	44	NB		lateRec	1	0	44	LR		lateRec	0	1	44	NB		lateRec	2	1	42
				Accuracy					n: 0.748	Accuracy					recision: 0.863 Accuracy: 0.855				Precision:					
		all: 0.		AUC RO	C: 0.944			Recall: 0		AUC RO	C: 0.925			Recall:	0.854	AUC ROC: 0.931				Recall:	0.790	AUC RO	: 0.909	
L	F1-	Score:	0.826					F1-Scor	e: 0.783				_	F1-Score:	0.855					F1-Score:	0.797			
					Predicted	i					Predicted						Predicted						Predicted	
	MC-3				MC-	3	nonRec	earlyRec	lateRec		MC-4		nonRec	earlyRec	lateRec		MC-4		nonRec	earlyRec	lateRec			
			nonRec	6	5	0			nonRec	4	2	5			nonRec	3	7	1			nonRec	5	3	3
	Ac	tual	earlyRec	3	9	1		Actual	earlyRec	2	8	3		Actual	earlyRec	3	9	1		Actual	earlyRec	4	5	4
svi			lateRec	0	0	45	KNN		lateRec	3	2	40	SVN		lateRec	1	2	42	KNN		lateRec	4	7	35
	VI	cision	: 0.865	Accurac	v: 0.870		KNN	Precisio	n: 0.740	Accuracy	/: 0.754		SVIV	Precision:	0.785	Accuracy	: 0.783		KNN	Precision:	0.673	Accuracy	: 0.652	
SV	Pre																							
SV.		all: 0.	866	AUC RO	C: 0.959			Recall: 0	0.745	AUC RO	C: 0.802				0.778	AUC ROC				Recall:	0.661	AUC RO		

Table 7 shows the performance of the models during training; in green color, the models that presented a better result are highlighted.

Table 7. Models Accuracy Cross-Validation

2 Classes										
Models	MC-1 CV	MC-2 CV	MC-3 CV	MC-4 CV						
LR	0,936	0,945	0,924	0,924						
NB	0,913	0,898	0,833	0,833						
SVM	0,578	0,933	0,917	0,917						
KNN	0,052	0,753	0,771	0,771						

	3 Classes									
Models	MC-1 CV	MC-2 CV	MC-3 CV	MC-4 CV						
LR	0,808	0,822	0,811	0,811						
NB	0,788	0,621	0,749	0,749						
SVM	0,578	0,808	0,775	0,775						
KNN	0,467	0,680	0,670	0,670						

2 Classes Otimizado														
Models	Models MC-1 CV MC-2 CV MC-3 CV MC-4 CV													
LR	0,942	0,936	0,924	0,928										
NB	0,924	0,930	0,844	0,084										
SVM	0,881	0,942	0,913	0,917										
KNN	0,619	0,832	0,826	0,778										

3 Classes Otimizado												
Models MC-1 CV MC-2 CV MC-3 CV MC-4 CV												
LR	0,837	0,825	0,811	0,815								
NB	0,793	0,808	0,767	0,764								
SVM	0,753	0,811	0,785	0,727								
KNN	0,575	0,703	0,691	0,654								

4. Conclusion

From the analysis of the results, it is possible to conclude that logistic regression presented the best number of results across all the experiments performed, given that on 13 out of 16 occasions, the performance metrics showed the best performance.

When comparing the results of dataset 1 vs. dataset 2, it is possible to observe that the models present a more incredible difficulty in performing the classification in dataset 2 (3 classes) since, in general, the best results of Precision and Recall vary between 0.854 and 0.923. Compared with dataset 1, Precision and Recall vary between 0.957 and 1.

No significant differences were observed in the performance metrics of dataset 1 as a function of the preprocessing techniques, i.e., the MC-1 configuration that used the raw data presents similar results to MC-2 to MC-4 in the LR.

The optimization applied to the parameters of the ML models in the second evaluation phase showed a significant improvement in the performance metrics of the SVM and KNN models. As a point to analyze, the best result obtained in dataset 1 was achieved with the SVM model of the MC-4 configuration. However, at the time of applying the parameter optimization, this result was not maintained. The metric used to compare the performance of the models with each other was observed, and no changes were observed in the experiment's performance when using the optimized parameters.

Finally, different methods of data analysis and processing oriented to breast cancer recurrence classification were evaluated in this work. It is considered a promising field that can contribute to the planning of preventive treatments that can improve patients' quality of life.

References

- [1] V. P. C. Magboo and M. S. Magboo, "Machine Learning Classifiers on Breast Cancer Recurrences," *Procedia Computer Science*, vol. 192, pp. 2742–2752, Jan. 2021, doi: 10.1016/J.PROCS.2021.09.044.
- [2] V. Kumar, B. K. Mishra, M. Mazzara, D. N. H. Thanh, and A. Verma, "Prediction of Malignant & Benign Breast Cancer: A Data Mining Approach in Healthcare Applications," *Lecture Notes on Data Engineering and Communications Technologies*, vol. 37, pp. 435–442, Feb. 2019, doi: 10.48550/arxiv.1902.03825.

- [3] T. A. Asfaw, "Comparative Analysis of Classification Approaches for Breast Cancer," *International Journal of Computer Engineering and Technology*, vol. 10, no. 4, pp. 10–16, 2019, Accessed: Jul. 04, 2022. [Online]. Available: www.jifactor.com
- [4] L. Khairunnahar, M. A. Hasib, R. H. bin Rezanur, M. R. Islam, and M. K. Hosain, "Classification of malignant and benign tissue with logistic regression," *Informatics in Medicine Unlocked*, vol. 16, p. 100189, Jan. 2019, doi: 10.1016/J.IMU.2019.100189.
- [5] SkLearn, "Logistic Regression." https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html (accessed Jul. 04, 2022).
- [6] SkLearn, "Naive Bayes." https://scikit-learn.org/stable/modules/naive bayes.html (accessed Jul. 04, 2022).
- [7] SkLearn, "Support Vector Machines." https://scikit-learn.org/stable/modules/svm.html (accessed Jul. 04, 2022).
- [8] G. Rohith, "Support Vector Machine." https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47 (accessed Jul. 04, 2022).
- [9] SkLearn, "Nearest Neighbors." https://scikit-learn.org/stable/modules/neighbors.html (accessed Jul. 04, 2022).
- [10] Z. Kai, "Feature Extraction using Principal Component Analysis." https://towardsdatascience.com/feature-extraction-using-principal-component-analysis-a-simplified-visual-demo-e5592ced100a (accessed Jul. 04, 2022).
- [11] J. Korstanje, "SMOTE." https://towardsdatascience.com/smote-fdce2f605729 (accessed Jul. 04, 2022).
- [12] J. Brownlee, "SMOTE for Imbalanced Classification with Python." https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/ (accessed Jul. 04, 2022).
- [13] H. Han, W. Y. Wang, and B. H. Mao, "Borderline-SMOTE: A new oversampling method in imbalanced data sets learning," *Lecture Notes in Computer Science*, vol. 3644, no. PART I, pp. 878–887, 2005, doi: 10.1007/11538059 91.
- [14] SkLearn, "Supervised learning." https://scikit-learn.org/stable/supervised_learning.html#supervised-learning (accessed Jul. 04, 2022).
- [15] SkLearn, "KMeans." https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html (accessed Jul. 04, 2022).
- [16] M. Garbade, "Understanding K-means Clustering in Machine Learning | by Dr. Michael J. Garbade | Towards Data Science." https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1 (accessed Jul. 04, 2022).

- [17] SkLearn, "One Hot Encoder." https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html (accessed Jul. 04, 2022).
- [18] J. Brownlee, "A Gentle Introduction to k-fold Cross-Validation." https://machinelearningmastery.com/k-fold-cross-validation/ (accessed Jul. 04, 2022).
- [19] SkLearn, "GridSearchCV." https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html (accessed Jul. 04, 2022).
- [20] N. Beheshti, "Cross-Validation and Grid Search." https://towardsdatascience.com/cross-validation-and-grid-search-efa64b127c1b (accessed Jul. 04, 2022).