Wireless Power Transfer by Resonant Inductive Coupling

Isawan Millican

School of Physics and Astronomy University of Nottingham

December 5, 2017

Contents

Types of wireless power transfer

Review

Electromagnetic Induction Resonant circuit

Power transfer by induction

Wireless Induction Resonant inductive coupling Efficiency

Applications

Batteryless electronics Smartcard

Conclusion

Types of wireless power transfer

Wireless power transfer can be broadly grouped depending on the effective range.

Near-field	Far-Field
Capacitive coupling	Microwaves
Inductive coupling	Lasers

Table: Types of wireless power transfer scheme

Review: Electromagnetic Induction

Figure: Diagram of Faraday's apparatus. Changes in the magnetic field of the left coil induces a current in the right coil. Nave, (*Hyperphysics: Selectivity and Q of a Circuit*)

Magnetic fields generated by a primary coil can induce a current in the secondary coil.

This was shown by Faraday in 1831.1

¹Newcomb, Memoir of Joseph Henry.

Review: Resonant circuit

- ightharpoonup A resonant circuit has a strong response to an oscillating voltage with frequency ω_0
- In the induction system, the voltage is induced by a magnetic field.

Figure: Diagram of an RLC circuit. The response to a driving oscillating voltage is shown. Nave, (*Hyperphysics: Selectivity and Q of a Circuit*)

Wireless Induction

Figure: A simple induction apparatus to transmit power wirelessly.

- Remove the iron core.
- ▶ Main energy losses due to EM waves and electrical resistance.
- Efficient only if coils are adjacent.

Resonant inductive coupling

- The secondary resonant circuit strongly, producing a magnetic field.
- ▶ This responsive field couples the circuit together.
- Efficient transfer of energy is achieved.

Figure: Diagram of an resonant inductive system. The blue line represents the magnetic field.

Efficiency

- \blacktriangleright Successfully transmitted 60 W over 2 meters with $\sim 40\%$ efficiency. 2
- Efficiency can be affected by external objects placed within a few cm of coil.

Figure: Efficiency data from experiments. A copper coil of radius 25cm was used in this experiment. Kurs et al., ("Wireless Power Transfer via Strongly Coupled Magnetic Resonances")

 $^{^2}$ Kurs et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances".

Applications: Batteryless electronics

- ▶ The receiver circuit is cheaper than batteries.
- Batteries cause pollution during disposal.
- Low maintenance.³
- Usable in wet environments.

³Tan, Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation.

Applications: Smartcard

Uses coil for power and communication.

Figure: Diagram of the coil inside a smartcard. Wikipedia, (Resonant Inductive Coupling)

Conclusion

- Reviewed the principles of induction and resonance.
- Described how induction can be used to transmit energy wirelessly.
- Showed how efficiency and range can be improved with resonant coupling.
- Discussed applications of electromagnetic induction.

