Laserspektroskopie

Fortgeschrittenen praktikums bericht

vorgelegt von Hermann Böttcher & Yannik ???

an der

Universität Konstanz

Mathematisch-Naturwissenschaftlichen Sektion Fachbereich Physik

Tutor: Timo Raab

Konstanz, 2016

Inhaltsverzeichnis

ΑI	obildu	bildungsverzeichnis		
Tabellenverzeichnis				
1	1.1 1.2	ysikalische Grundlagen Zeemann Effekt		1
Bi	blioai	ıraphie		2

Abbildungsverzeichnis

Abbildungsverzeichnis

Tabellenverzeichnis

KAPITEL 1

Physikalische Grundlagen

1.1 Zeemann Effekt

1.2 Spin-Bahn-Kopplung und Feinstruktur

Im semiklassischen Modell bewegen sich die Elektronen auf diskreten Kreisbahnen mit Radius r um den Atomkern. Als Ladungsträger mit Ladung $q_e = -e$ stellt das rotierende Elektron einen Kreisstrom dar. Dieser erzeugt ein magnetisches Dipolmoment

$$\vec{\mu}_I = -\underbrace{\frac{e\hbar}{2m_e}}_{=\mu_{\rm Bohr}} \frac{\vec{I}}{\hbar}$$

mit dem Bohr'schen Magneton, welches sich neben der Elektronenladung aus der Elektronenmasse m_e und dem reduzierten Planck'schen Wirkungsquantum zusammensetzt. Weiter ist \vec{l} der Bahndrehimpuls des Elektrons.

Aus dem quantenmechanischen Modell ergibt sich auSSerdem das magnetische Moment

$$\vec{\mu}_{s} = -2\mu_{\mathsf{Bohr}} \frac{\vec{s}}{\hbar},$$

welchem der Spindrehimpuls \vec{s} zugrunde liegt.

Das magnetische Moment $\vec{\mu}_s$ des rotierenden Elektrons befindet sich nun im durch die Rotation erzeugten Magnetfeld \vec{B} . Je nach Spinstellung führt dies zur einer Erhöhung bzw. einer Verringerung der Energie

$$\Delta E_{l,s} = -\vec{\mu}_s \cdot \vec{B} \approx \frac{\mu_0 Z \cdot e^2}{8\pi m_e^4 r^3} \left(\vec{s} \cdot \vec{l} \right). \tag{1.1}$$

Hierbei ist μ_0 die magnetische Suszeptibilität und Z die Ordnungszahl des Atoms.

Die vektorielle Addition von Bahndrehimpuls und Spindrehimpuls ergibt den Gesamtdrehimpuls

$$\vec{j} = \vec{l} + \vec{s}$$
.

Wie Bahndrehimpuls und Spindrehimpuls ist der Gesamtdrehimpuls gequantelt. Es gilt

$$|\vec{j}| = \sqrt{j(j+1)} \cdot \hbar$$

wobei

$$j = +\frac{1}{2} \quad \text{für} \quad l = 0$$

und

$$j = l \pm \frac{1}{2} \quad \text{für} \quad l > 0,$$

da sich die z-Komponenten der Drehimpulse entweder parallel oder antiparallel einstellen können.

Nun lässt sich (1.1) umschreiben zu

$$\Delta E_{l,j} = \frac{a}{2} \cdot [j(j+1) - l(l+1) - s(s+1)]$$
 (1.2)

mit der Spin-Bahn-Kopplungskonstante

$$a = \frac{\mu_0 Z e^2 \hbar^2}{8\pi m_e^2 r^3}.$$

Die Aufspaltung der Spektrallinien gemäSS

$$E_{n,l,j} = E_n + \Delta E_{l,j} \tag{1.3}$$

ist die sogenannte Feinstrukturaufspaltung.

1.3 Hyperfeinstruktur