

1 Namespace Index
1.1 Packages
2 Namespace Documentation
2.1 Approach_stat Namespace Reference
2.1.1 Detailed Description
2.1.2 Function Documentation
2.1.2.1 Back_to_F2()
2.1.2.2 clustering()
2.1.2.3 Compute_A()
2.1.2.4 Compute_I()
2.1.2.5 Compute_N()
2.1.2.6 d_k()
2.1.2.7 delete_i_in_list()
2.1.2.8 get_cost()
2.1.2.9 get_da()
2.1.2.10 get_epsilon_0()
2.1.2.11 get_neighbors()
2.1.2.12 main_test()
2.1.2.13 main_test_marche_alea()
2.1.2.14 Make_partition()
2.1.2.15 Partition()
2.1.2.16 several_iter()
2.1.2.17 several_iter_marche()
2.1.2.18 simulated_annealing()
2.1.2.19 test_partition()
2.2 center Namespace Reference
2.2.1 Detailed Description
2.2.2 Function Documentation
2.2.2.1 Find_eps_cov_temp()
2.2.2.2 I_0()
2.2.2.3 main_test_mt()
2.2.2.4 several_iter2()
2.3 Partition Namespace Reference
2.3.1 Detailed Description
2.3.2 Function Documentation
2.3.2.1 delete_i_in_matrix()
2.3.2.2 gluttony()
2.3.2.3 main_test_mt()
2.3.2.4 partition2()
2.3.2.5 print_partition()
2.3.2.6 several_iter2()

2.3.2.7 test_gouton()	12
2.3.2.8 test_partition2()	12
2.4 utils Namespace Reference	13
2.4.1 Detailed Description	13
2.4.2 Function Documentation	13
2.4.2.1 Add()	13
2.4.2.2 add_one_template()	14
2.4.2.3 compute_center_in_R()	14
2.4.2.4 compute_cluster()	14
2.4.2.5 compute_HammingDistance_matrix()	14
2.4.2.6 compute_max_distance()	15
2.4.2.7 compute_vecteur_moyen()	15
2.4.2.8 distance_hamming()	15
2.4.2.9 gen_cli()	15
2.4.2.10 gen_DB()	16
2.4.2.11 gen_mask()	16
2.4.2.12 gen_near_templates()	16
2.4.2.13 gen_template()	16
2.4.2.14 get_time()	17
2.4.2.15 list_cmp()	17
2.4.2.16 mod_gen_cli()	17
2.4.2.17 negpart()	17
2.4.2.18 opti_ham_dist_tau()	18
2.4.2.19 pt_in_b()	18
2.4.2.20 sample()	18
2.4.2.21 start_timer()	18
2.4.2.22 stop_timer()	19
2.4.2.23 verification()	19
Index	21

Chapter 1

Namespace Index

1.1 Packages

Here are the packages with brief descriptions (if available):

Approach_stat	3
center	9
Partition	10
utils	19

2 Namespace Index

Chapter 2

Namespace Documentation

2.1 Approach_stat Namespace Reference

Functions

- def d_k (a, b, k)
- def Make_partition (Indice_list)
- def Compute_I (V)
- def Compute_A (I, D, a)
- def get_epsilon_0 (epsilon, lenD)
- def get_da (a, D)
- def Compute_N (p, a, I)
- def simulated_annealing (D, epsilon)
- def Back_to_F2 (solution, D, I)
- def get cost (state, D, epsilon, I)
- def get_neighbors (state, epsilon, D, I)
- def delete_i_in_list (X, i, label)
- def clustering (X, seuil)
- def Partition (X, epsilon)
- def test_partition (n, epsil, nbr_client, sead=123)
- def several_iter (n, epsilon, nbr_cli, sed, repet)
- def main_test (nbr_thread, L, rep=1000)
- def several_iter_marche (n, epsilon, nbr_cli, sed, repet)
- def main_test_marche_alea (nbr_thread, L, rep=1000)

Variables

• thread = multiprocessing.cpu_count()

2.1.1 Detailed Description

2.1.2 Function Documentation

2.1.2.1 Back_to_F2()

2.1.2.2 clustering()

```
def Approach_stat.clustering ( X, seuil )

This function compute the clusters for a given database and a given threshold. @param X The database. @param seuil The threshold. @return The labels of the clusters and the number of clusters.
```

2.1.2.3 Compute_A()

2.1.2.4 Compute_I()

```
def Approach_stat.Compute_I ( V \ ) This function returns I a partition of N = {1,..,n}. @param V The database. @return A partition of N.
```

2.1.2.5 Compute N()

2.1.2.6 d_k()

2.1.2.7 delete_i_in_list()

2.1.2.8 get_cost()

2.1.2.9 get da()

```
def Approach_stat.get_da ( a, \\ D ) This function compute the vector distance between a point and a database. 
 @param a The point. 
 @param D The Database. 
 @return The vector distance between the point a and the database D.
```

2.1.2.10 get_epsilon_0()

2.1.2.11 get_neighbors()

2.1.2.12 main_test()

```
def Approach_stat.main_test ( nbr\_thread, \\ L, \\ rep = 1000 \; ) "Run and test the whole attack with the given parameters. @param nbr\_thread The number of thread to use for the tests. @param L The vector of parameters.
```

2.1.2.13 main_test_marche_alea()

2.1.2.14 Make_partition()

```
\begin{tabular}{ll} $\operatorname{def Approach\_stat.Make\_partition} & ( & & \\ & & & Indice\_list \end{tabular} \ ) \\ \\ $\operatorname{A} \ \text{function for Compute\_I.} \end{tabular}
```

2.1.2.15 Partition()

2.1.2.16 several_iter()

2.1.2.17 several_iter_marche()

2.1.2.18 simulated_annealing()

```
def Approach_stat.simulated_annealing ( D, \\ epsilon \; ) Peforms simulated annealing to find a solution @param D The database. @param epsilon The threshold. @return The epsilon master template of D if it has been found.
```

2.1.2.19 test_partition()

2.2 center Namespace Reference

Functions

- def I_0 (template)
- def Find_eps_cov_temp (template, tau)
- def several_iter2 (n, epsilon, nbr_cli, sed, repet)
- def main_test_mt (L, rep=10000)

Variables

• list Res_thread = []

2.2.1 Detailed Description

```
\ensuremath{\mathfrak{Qpackage}} Center This module provide the algorithm for the IP approach.
```

2.2.2 Function Documentation

2.2.2.1 Find_eps_cov_temp()

2.2.2.2 I_0()

```
def center.I_0 ( template \ ) Return the index where all the vectors have the same value. @param template The database. @return The list of index where all vectors has the same value.
```

2.2.2.3 main_test_mt()

```
def center.main_test_mt (  L, \\ rep = 10000 \; ) \\ Launch tests to find an epsilon master template. @param L The vector of parameters
```

2.2.2.4 several_iter2()

2.3 Partition Namespace Reference

Functions

```
def delete_i_in_matrix (X, i)
def print_partition (L)
def gluttony (L, epsilon)
def test_gouton (n, epsilon, nbr_cli, sezd, repet)
def partition2 (X, epsilon)
def test_partition2 (n, epsil, nbr_client, sead=123)
def several_iter2 (n, epsilon, nbr_cli, sed, repet)
def main_test_mt (L, rep=10000)
```

Variables

```
    thread = multiprocessing.cpu_count()
    list Res_thread = []
    list Res_glout = []
```

2.3.1 Detailed Description

```
@package Partition
This module provide the algorithm tests of the whole attack for the IP approach.
```

2.3.2 Function Documentation

2.3.2.1 delete_i_in_matrix()

```
def Partition.delete_i_in_matrix (  X, \\ i \ )  "Remove the i-th element of the dissimililarity matrix. @param X The dissimilarity matrix. @param i The index to remove. @return The matrix without i.
```

2.3.2.2 gluttony()

```
def Partition.gluttony ( L,\\epsilon\ ) "The gluttony algorithm to do the partitionning. @param L The database. @param epsilon The threshold. @return The partition.
```

2.3.2.3 main_test_mt()

```
def Partition.main_test_mt (  L, \\ rep = 10000 \; )  Run the main experimentation using some parameters. @param L A list of parameters
```

2.3.2.4 partition2()

```
def Partition.partition2 ( X, epsilon )

The whole attack using the IP algorithm @param X The database. @param epsilon The threshold @return The new database.
```

2.3.2.5 print_partition()

```
def Partition.print_partition ( L\ ) "Debug Function print a partition to check if it works. @param L The partition.
```

2.3.2.6 several_iter2()

2.3.2.7 test_gouton()

2.3.2.8 test_partition2()

Set up for the experimentations

2.4 utils Namespace Reference

Functions

```
· def start timer ()
• def stop_timer ()

    def get_time ()

• def gen_template (size_of_template, sed=123)
• def gen_cli (size_of_template, n, sed=123)

    def gen_DB (size_of_template, n, sed=123)

• def add_one_template (size_of_template, template_list, sed=123)
• def pt in b (r, n)

    def compute HammingDistance matrix (X)

• def distance_hamming (A, B)

    def opti_ham_dist_tau (A, B, T)

• def Add (A, B)
• def gen_mask (alpha, n)
• def gen_near_templates (n, nbr_client, tau, sed)
• def compute_cluster (Liste_vecteur, cluster_label, cluster_index)
• def compute_max_distance (L, moyen)

    def compute_center_in_R (template)

• def compute_vecteur_moyen (L)
• def negpart (x)
• def list_cmp (A, B)
· def verification (res, template, tau)
• def sample (Liste, indice)
• def mod_gen_cli (size_of_template, n, sed=123)
```

Variables

int tmps1 = 0int tmps2 = 0

2.4.1 Detailed Description

```
@package utils
  This module provide some global functions.
  The needed packages are math, numpy, time and random.
```

2.4.2 Function Documentation

2.4.2.1 Add()

2.4.2.2 add_one_template()

2.4.2.3 compute center in R()

2.4.2.4 compute_cluster()

2.4.2.5 compute HammingDistance matrix()

Oreturn The matrix of dissimilarity.

```
def utils.compute_HammingDistance_matrix ( _{X} )

This function compute the dissimilarity matrix of a template database using the Hamming distance. @param X The template database. @return The dissimilarity matrix.

This function compute the dissimilarity matrix for the hamming distance of a database. @param X A database.
```

2.4.2.6 compute_max_distance()

```
def utils.compute_max_distance ( L, moyen \;) This function return the maximum pairwise distance between a database and a vector. 
 @param L The database. 
 @param moyen The vector. 
 @return The maximum pairwise distance between L and moyen.
```

2.4.2.7 compute_vecteur_moyen()

```
def utils.compute_vecteur_moyen ( L\ ) This function compute the mean vector of a database and return it. @param L The database. @return The mean vector of a database.
```

2.4.2.8 distance_hamming()

2.4.2.9 gen_cli()

This function allow to generate a whole database: n binary templates of size size_of_template. At the end, eac @param size_of_template The size of the wanted template.
@param n The number of templates wanted in the database.
@param sed This is the seed for reproduce some executions.
@return n vector in {0,1} of lenght size_of_template.

2.4.2.10 gen_DB()

def utils.gen_DB (

```
size_of_template,
n,
sed = 123 )

This function allow to generate a whole database: n binary templates of size size of templat
```

This function allow to generate a whole database: n binary templates of size size_of_template. At the end, eac @param size_of_template The size of the wanted template.

@param n The number of templates wanted in the database.

@param sed This is the seed for reproduce some executions.

@return n vector in {0,1} of length size_of_template.

2.4.2.11 gen_mask()

An helping function for the gen_near_templates method.

2.4.2.12 gen_near_templates()

2.4.2.13 gen_template()

```
def utils.gen_template ( size\_of\_template, \\ sed = 123 \;) This function allow to generate a binary template of size size\_of\_template. 
 @param size_of_template The size of the wanted template. 
 @param sed This is the seed for reproduce some executions. 
 @return A vector in \{0,1\} of length size_of_template.
```

2.4.2.14 get_time()

```
def utils.get_time ( )

Return the elapsed times between start_timer() and stop_timer().
    @return (tmps2 - tmps1).
```

2.4.2.15 list_cmp()

2.4.2.16 mod_gen_cli()

2.4.2.17 negpart()

```
def utils.negpart ( x\ ) This function compute the negative part of x. @param x An integer. @return 0 if x > 0 and -x otherwise.
```

2.4.2.18 opti_ham_dist_tau()

2.4.2.19 pt_in_b()

2.4.2.20 sample()

2.4.2.21 start_timer()

```
def utils.start_timer ( )

"Start the timer: it store the current time in tmps1.
    @return True.
```

2.4.2.22 stop_timer()

```
def utils.stop_timer ( )
"End the timer: it store the current time in tmps2.
    @return False.
```

2.4.2.23 verification()

```
def utils.verification (

res,

template,

tau )

This function said if res is a master-template of template database.

@param res A vector.

@param template The database.

@param tau The threshold.

@return True res is a master-template and false otherwise.
```

Index

Add	utils, 15
utils, 13	
add_one_template	d_k
utils, 13	Approach_stat, 5
Approach_stat, 3	delete_i_in_list
Back_to_F2, 4	Approach_stat, 5
clustering, 4	delete_i_in_matrix
Compute_A, 4	Partition, 11
Compute I, 4	distance_hamming
Compute_N, 5	utils, 15
d_k, 5	
delete_i_in_list, 5	Find_eps_cov_temp
get_cost, 5	center, 9
get_da, 6	gen_cli
get_epsilon_0, 6	utils, 15
get_neighbors, 6	gen_DB
main_test, 6	utils, 15
main_test_marche_alea, 7	gen_mask
Make_partition, 7	utils, 16
Partition, 7	gen_near_templates
several_iter, 7	utils, 16
several_iter_marche, 8	gen_template
simulated annealing, 8	utils, 16
test_partition, 8	· ·
–	get_cost
Back_to_F2	Approach_stat, 5
Approach_stat, 4	get_da
FF,	Approach_stat, 6
center, 9	get_epsilon_0
Find_eps_cov_temp, 9	Approach_stat, 6
I_0, 9	get_neighbors
main_test_mt, 9	Approach_stat, 6
several_iter2, 10	get_time
	utils, 16
clustering	gluttony
Approach_stat, 4	Partition, 11
Compute_A	
Approach_stat, 4	I_0
compute_center_in_R	center, 9
utils, 14	,
compute_cluster	list_cmp
utils, 14	utils, 17
compute_HammingDistance_matrix	,
utils, 14	main_test
Compute_I	Approach_stat, 6
Approach_stat, 4	main_test_marche_alea
compute_max_distance	Approach_stat, 7
utils, 14	main test mt
Compute_N	center, 9
• —	•
Approach_stat, 5	Partition, 11
compute_vecteur_moyen	Make_partition

22 INDEX

Approach_stat, 7 mod_gen_cli utils, 17 negpart utils, 17 opti_ham_dist_tau utils, 17	gen_DB, 15 gen_mask, 16 gen_mask, 16 gen_near_templates, 16 gen_template, 16 get_time, 16 list_cmp, 17 mod_gen_cli, 17 negpart, 17
Partition, 10 Approach_stat, 7 delete_i_in_matrix, 11 gluttony, 11 main_test_mt, 11 partition2, 11 print_partition, 11 several_iter2, 12 test_gouton, 12 test_partition2, 12	opti_ham_dist_tau, 17 pt_in_b, 18 sample, 18 start_timer, 18 stop_timer, 18 verification, 19 verification utils, 19
partition2	
Partition, 11	
print_partition Partition, 11	
pt_in_b	
utils, 18	
sample	
utils, 18	
several_iter	
Approach_stat, 7	
several_iter2	
center, 10	
Partition, 12	
several_iter_marche	
Approach_stat, 8	
simulated_annealing	
Approach_stat, 8	
start_timer	
utils, 18	
stop_timer	
utils, 18	
test_gouton	
Partition, 12	
test_partition	
Approach_stat, 8	
test_partition2 Partition, 12	
Faithon, 12	
utils, 13	
Add, 13	
add_one_template, 13	
compute_center_in_R, 14	
compute_cluster, 14	
compute_HammingDistance_matrix, 14	
compute_max_distance, 14	
compute_vecteur_moyen, 15	
distance_hamming, 15	
gen_cli, 15	