СО	РО						PSO		
	1	2	3	4	5	6	1	2	3
1.	√		√	√			√	√	
2.	V		V				V	V	
3.	$\sqrt{}$		$\sqrt{}$				√	√	
4.	V		V	V		V	V	V	V
5.	V		$\sqrt{}$	V			V	V	V

BD5151

BIG DATA MINING AND ANALYTICS

L T PC 3 0 0 3

OBJECTIVES:

- To understand the computational approaches to Modeling, Feature Extraction.
- To understand the need and application of Map Reduce.
- To understand the various search algorithms applicable to Big Data.
- To analyze and interpret streaming data.
- To learn how to handle large data sets in main memory.
- To learn the various clustering techniques applicable to Big Data.

UNIT I DATA MINING AND LARGE SCALE FILES

9

Introduction to Statistical modeling – Machine Learning – Computational approaches to modeling – Summarization – Feature Extraction – Statistical Limits on Data Mining – Distributed File Systems– Map-reduce – Algorithms using Map Reduce – Efficiency of Cluster Computing Techniques.

UNIT II SIMILAR ITEMS

9

Nearest Neighbor Search – Shingling of Documents – Similarity preserving summaries – Locality sensitive hashing for documents – Distance Measures – Theory of Locality Sensitive Functions – LSH Families – Methods for High Degree of Similarities.

UNIT III MINING DATA STREAMS

9

Stream Data Model – Sampling Data in the Stream – Filtering Streams – Counting Distance Elements in a Stream – Estimating Moments – Counting Ones in Window – Decaying Windows

UNIT IV LINK ANALYSIS AND FREQUENT ITEMSETS

g

Page Rank – Efficient Computation – Topic Sensitive Page Rank – Link Spam – Market Basket Model – Apriori algorithm – Handling Larger Datasets in Main Memory – Limited Pass Algorithm – Counting Frequent Item sets.

UNIT V CLUSTERING

9

Introduction to Clustering Techniques – Hierarchical Clustering –Algorithms – K-Means – CURE – Clustering in Non – Euclidean Spaces – Streams and Parallelism – **Case Study:** Advertising on the Web – Recommendation Systems

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student will be able to

- Design algorithms by employing Map Reduce technique for solving Big Data problems.
- Identify similarities using appropriate measures.
- Point out problems associated with streaming data and handle them.
- Discuss algorithms for link analysis and frequent itemset mining.
- Design solutions for problems in Big Data by suggesting appropriate clustering techniques.

REFERENCES:

- 1. Jure Leskovec, AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, Second Edition, 2014.
- 2. Jiawei Han, MichelineKamber, Jian Pei, "Data Mining Concepts and Techniques", Morgan Kaufman Publications. Third Edition. 2011.
- 3. Ian H.Witten, Eibe Frank "Data Mining Practical Machine Learning Tools and Techniques", Morgan Kaufman Publications, Third Edition, 2011.
- 4. David Hand, HeikkiMannila and Padhraic Smyth, "Principles of Data Mining", MIT Press,2001.

СО	РО						PSO		
	1	2	3	4	5	6	1	2	3
1.	V		V	√			V	V	V
2.			√	√		√	V		
3.	V		√	√			V	V	V
4.	V		√	√			V	V	V
5.	V		√	√			V	$\sqrt{}$	V

CP5084

PARALLEL ALGORITHMS

LT P C 3 0 0 3

OBJECTIVES:

- To learn parallel algorithms development techniques for shared memory and DCM models.
- To study the main classes of fundamental parallel algorithms.
- Learn to design efficient parallel algorithms.
- To study the complexity and correctness models for parallel algorithms.
- To understand parallel solutions for bitwise computation.

UNIT I INTRODUCTION

9

Introduction to Parallel Algorithms – Models of computation – Selection – Merging on EREW and CREW – Median of two sorted sequence – Fast Merging on EREW – Analyzing Parallel Algorithms

UNIT II SORTING & SEARCHING

9

Sorting Networks – Sorting on a Linear Array – Sorting on CRCW, CREW, EREW – Searching a sorted sequence – Searching a random sequence – Bitonic Sort