Centro Universitário São Miguel

Biofísica

Átomos, Moléculas, Íons e Biomoléculas

Prof. M.Sc. Yuri Albuquerque

ÁTOMO

O átomo, não é a menor e indivisível partícula de matéria, mas, é a menor estrutura neutra da matéria que conserva as propriedades dos elementos químicos, e é capaz de reagir quimicamente. Os átomos dificilmente existem livres: eles possuem grande tendência a se transformarem em moléculas (associação de átomos), ou íons (possuem carga elétrica).

Em 1907, surgi a primeira hipótese sobre a estrutura do átomo, foi a de Thomson, do átomo do "pudim de ameixas", onde a carga positiva seria um fluido pesado e gelatinoso (a massa do pudim) e as cargas negativas, diminutas e leves (as ameixas), estariam uniformemente distribuídas na massa do pudim.

Modelo da estrutura da matéria – átomo de Thomson

ÁTOMO

Essa ideia saborosa (e valida para a época), não resistiu aos célebres experimentos de Rutherford (1911), que enviou partículas alfa (pesadas, de carga positiva), através de finas folhas de ouro. Se a hipótese de Thomson fosse correta, as partículas alfa (α) passariam facilmente, porque os campos elétricos positivos intramatéria estariam muito espalhados, e consequentemente, fracos.

O resultado foi surpreendente: a maioria das partículas α passava como esperado, mas algumas poucas sofreram forte deflexão no trajeto, e ate mesmo **repulsão**!

Para explicar esse resultado inesperado, Rutherford postulou corretamente que as cargas positivas (e a massa), estavam concentradas em regiões muito pequenas do Espaço, formando **fortes** campos eletropositivos, capazes de repelir as partículas α .

Representação ilustrativa do experimento de dispersão de partículas alfa.

ÁTOMO

Os elétrons girariam em torno das cargas positivas, em trajetórias circulares distantes. A parte central positiva foi denominada **núcleo**, e a parte externa, negativa, foi denominada de **corona** (coroa). A soma das cargas (-) e (+) continuava nula. Essa hipótese foi aperfeiçoada per Bohr.

Bohr mostrou que, estavam os elétrons em orbitas de nível energético bem determinado (correto), e de forma circular (incorreta).

ÁTOMO

Em seguida, Sommerfeld, Heisenberg, Schrödinger, Born e outros, postularam o átomo moderno da mecânica ondulatória. Os elétrons ocupariam posições estatísticas, porem, no espaço em tomo do núcleo: e mais correto falar da probabilidade que a carga negativa esteja aqui, ali, em regiões bem delimitadas.

Essas posições devem ser imaginadas em função do **Tempo**: embora as trajetórias sejam superpostas, a presença de cada elétron no mesmo lugar, não é simultânea, os elétrons não se chocam.

Do ponto de vista morfofuncional, (forma e função), o átomo pode ser considerado como tendo duas partes distintas, mas não independentes.

AS DUAS PARTES DISTINTAS, MAS NÃO INDEPENDENTES, SÃO:

Núcleo – Carga positiva, massa, fenômenos radioativos, emissão de energia γ. Possui prótons, nêutrons e varias subpartículas (Radioatividade).

Orbita – Carga negativa, propriedades químicas de valência, ligação, afinidade, emissão de energia, tipo raios X, ultravioleta, luminosa e térmica. Possui apenas elétrons.

Por maior que seja, todo ser vivo e formado de minúsculas unidades fundamentais, que são as moléculas, Algumas dessas moléculas são sintetizadas naturalmente pelos sistemas biológicos, e se denominam biomoléculas.

As **biomoléculas** se associam, e há uma hierarquia de associações, cada associação dando um estágio superior:

Átomos → Moléculas → Estruturas Supramoleculares → Células → Órgãos → Sistemas Fisiológicos → Homem

Átomos → E a menor estrutura neutra da matéria, capaz de tomar parte em reações químicas. O átomo é formado de um **núcleo** onde se concentram a carga positiva e a quase totalidade da massa, e de **órbitas**, onde se localizam os elétrons com a carga negativa e uma fração desprezível da massa. O núcleo é formado de varias partículas e subpartículas, das quais nos interessam o próton (carga +) e a nêutron (carga zero).

Moléculas → Os átomos se unem para formar moléculas. A união se faz pela atracão dos elétrons de um átomo pelo núcleo do outro átomo. O conjunto tem propriedades diferentes dos átomos componentes.

Íons → Átomos e moléculas dificilmente permanecem neutros, especialmente nos sistemas biológicos. Eles apresentam grande tendencia a perder ou ganhar elétrons, a perder ou ganhar prótons. Se dessa transformação resulta carga elétrica, eles passam a se chamar íons. O nome **íon** quer dizer **viajante**, e se refere a mobilidade que eles apresentam no campo elétrico.

- Íons Positivos (+), migram para o polo negativo (catodo), e por esse motivo, são denominados Cátions.
- Íons Negativos (–), migram para o polo positivo (anodo), e por esse motive são denominados Aníons.

Existem desde microíons (restos de átomos) como o $\mathrm{Na^+}$ ou $\mathrm{SO_4}^-$, até macroíons, como as proteínas. A maioria das biomoléculas tem natureza iônica, sendo raras as que possuem carga zero (moléculas neutras).

Estrutura	Elétron	Próton	Carga Resultante	Nome
Cl	Ganha	-	Cl ⁻	Aníon
Na	Perde	-	Na ⁺	Cátion
R-COOH	-	Perde	R-COO-	Aníon
R-NH ₂	-	Ganha	R-NH ₃ ⁺	Cátion

Ligações Interatômicas e Intermoleculares – há três tipos de ligação entre as átomos, formadoras de moléculas. Essas ligações que originam moléculas são também chamadas de primarias.

Ligações Primárias

Ligação Iônica

Um átomo cede, o outro recebe elétrons. A transferência e completa. A cada elétron trocado, corresponde uma valência. O que cede elétrons fica positive, o que recebe, negativo. Esse é o caso do NaCI, onde o Na cede elétron e o CI ganha elétron, ficando o cátion Na⁺ e o aníon CI⁻.

Ligação Covalente

Há uma troca mutua de elétron: cada átomo **cede** e **recebe** o **mesmo** número de elétrons. Para cada valência, dois elétrons são trocados, um de cada átomo. Os átomos continuam com o mesmo numero de elétrons que tinham antes da ligação, e portanto neutros. Não havendo outra alteração, a molécula também é neutra. A ligação covalente é de dois tipos: sigma(σ) e pi (π). As ligações simples são σ , as duplas uma é σ e a outra π , e as triplas uma é σ e duas π .

Ligação Mista

Como o nome indica, essas ligações apresentam caráter intermediário entre as iônicas e as covalentes. São por isso também chamadas de iônica parcial ou covalente parcial. Existe intercambio de elétrons, mas um dos átomos é mais eletrolítico (gosta de elétrons), e cede menos o seu elétron, atrai mais o outro elétron. Consequência: este átomo fica mais eletronegativo, e o outro fica mais eletropositivo.

Qual a importância e a função dessas três ligações nos sistemas biológicos?

- 1. No transporte transmembrana de íons é necessário que esses íons estejam livres, para que a célula selecione a qualidade e quantidade de que necessite. Ligações devem ser lônicas.
- 2. Na formação de estruturas celulares e de moléculas que devem manter sua conformação para terem atividade (polipeptídios, enzimas, nucleotídeos, etc.), as componentes devem ter Ligações Covalentes.
- 3. Na quebra e formação de moléculas, especialmente nos substratos de enzimas e moléculas do metabolismo energético, as ligações devem ser desfeitas com mais facilidade, em sistemas adequados. A ligação mista e a mais indicada

Ligações Secundárias

Pontes de Hidrogênio

Quando um hidrogênio e ligado covalentemente a um átomo eletronegativo (atrai fortemente as elétrons), 0 próton fica mais 'exposto, e pode ser atraído por outro átomo, também eletronegativo. Disso resulta uma "ponte" entre os dois átomos, formada pelo próton.

Ligações Hidrofóbicas (Interações)

Essas ligações não resultam da atracão entre os dois grupamentos ligados, e sim de forcas externas com grupos ligados. Quando as moléculas de um solvente se atraem mutuamente com mais forca do que a outra molécula que esta nesse meio, estas moléculas se juntam por exclusão.

Ligações de Van der Waals

Resultam da atração de elétrons de uma molécula pelos núcleos de outra. Como a distancia entre os grupos participantes é grande, as forcas dessas ligações isso muito pequenas. Entretanto, em macromoléculas como as proteínas, que são polieletrônicas e polinucleares, essas forcas podem desempenhar papel importante em diversos eventos, tais como: sustentam interação de monômeros para formar polímeros, participam da ligação antígeno-anticorpo, da ligação enzima-substrato, e outras interações. Como o raio de ação dessas forcas e muito curto, elas somente são efetivas quando as moléculas estão bastante próximas entre si.

Dipolos Permanentes e Induzidos

A distribuição **assimétrica** de cargas elétricas em uma molécula, produz regiões onde há maior concentração ao de cargas positivas, e regiões onde há maior concentração de cargas negativas. A molécula tem dois polos, positivos e negativo, e chama-se dipolo.

Ressonância

A oscilação de elétrons entre duas partes de uma molécula é conhecida como ressonância. A ressonância, além de conferir maior estabilidade à molécula, gera um dipolo alternante.

Forças Coulômbicas de Atração e Repulsão

São as mais fortes, porque derivam de campos elétricos intensos, embora sejam atenuados pela distancia entre os grupos moleculares, que e maior que nos átomos.

Forcas de London-Heitler

Resultam da movimentação de elétrons dentro de moléculas, como ressonância, dipolos induzidos, deformação estrutural, etc. Como as cargas variam de posição, e o encontro com outras moléculas e por acaso, existem duas oportunidades de repulsão para uma de atração. Por esse motivo, as moléculas se afastam uma das outras, e dai o nome de forcas dispersoras de London-Heitler. Essa forca não deve ser confundida com a forca derivada da energia osmótica, que também separa as moléculas, mas e independente da carga

Ligações Atômicas e Moleculares

Tipo de Ligação	Mecanismo	Propriedades	
	Primárias ou Atômicas		
lônica	Atracão de cargas elétricas entre íons positivos e negativos. Elétron cedido e elétron ganho. Não há troca de elétrons	Cargas não se neutralizam. Parceiros separam-se facilmente em campo elétrico externo. Os íons se intercambiam, são pares iônicos	
Covalente	Dupla atração de cargas por troca de pares eletrônicos. Partilha de elétrons é justa	Cargas se neutralizam. Parceiros não se separam em campo elétrico externo. Formam verdadeiras moléculas	
Mista	Cessão e ganho de elétrons não partilhados igualmente: Átomo que atrai os elétrons, fica negativo, o outro, positivo	Cargas são parcialmente neutralizadas. Parceiros não se separam em campo elétrico externo, mas sofrem, ação modificante desse campo. Formam verdadeiras moléculas.	

Ligações Atômicas e Moleculares

Tipo de Ligação	Mecanismo	Propriedades		
	Secundárias ou Moleculares			
Pontes H	Atracão de prótons entre dois átomos eletronegativos	Ligação fácil de se formar. É fraca, mas pode ser numerosa. Mantém estrutura de macromoléculas		
Hidrofóbicas	Repulsão de solvente aquoso a grupos moleculares	Grupamentos hidrofóbicos não se atraem mutuamente, mas são comprimidos pelo solvente. Mantém estruturas macromoleculares		
Van der Waals	Atracão de elétrons de uma molécula pelos prótons de outra. Cargas fixas.	Tendem a aproximar as moléculas. Participam de vários mecanismos biológicos		
Dipolos	Distribuição assimétrica de carga em molécula, resulta região positiva (+) e região negativa (–)	Permanentes, induzidos ou transientes. Moléculas se orientam em campo elétrico. Associação de moléculas		
Ressonância	Elétron oscila entre dois ou mais átomos, periodicamente	Aumenta a estabilidade das moléculas, modifica as propriedades		
Coulômbicas	Cargas elétricas positivas e negativas, atracão e repulsão como usual	Forças importantes na manutenção de aproximação ou afastamento de grupos moleculares		
London-Heitler	Movimentação de elétrons	Repulsão de moléculas		

Prof.: SILVA, Y. J. de A.

o termo **biomoléculas** foi criado para designar moléculas que eram sintetizadas naturalmente, apenas pelos seres vivos ou biossistemas (partes isoladas dos seres vivos). Hoje, muitas dessas moléculas são sintetizadas em Laboratório (inclusive proteínas), e fragmentos de DNA já são substituídos *in vitro*.

Toda mudança morfológica foi precedida de uma mudança molecular

Existem quatro grandes classes básicas dessas moléculas:

- Glucídios (Carboidratos)
- Lipídios
- Protídios (Proteínas)
- Nucleotídios

Assim as biomoléculas apresentam uma fascinante sofisticação estrutural. Pela associação de unidades simples, formam-se unidades múltiplas. As unidades simples são de dois tipos:

- a) Monômeros, quando são todos iguais, como em alguns carboidratos
- **b) Protômeros** (proteína oligomérica), quando são diferentes, como nos aminoácidos de uma proteína
- c) Polímeros, que resultam da associação de monômeros, ou de protômeros

Esses níveis estruturais ocorrem em todas as classes de moléculas biológicas. A formação desses polímeros visa à obtenção de estruturas capazes de desempenhar função específica. Alguns exemplos esclarecem: nas enzimas, a proteína se conforma de modo a formar o centro ativo; na hemoglobina, o ambiente em volta do ferro hêmico e hidrofóbico; moléculas hidrofóbicas dissolvem as gorduras circulantes, entre outros exemplos.

REFERÊNCIA

■ Heneine, I. F. Biofísica Básica. 2ª Ed. Editora Atheneu: Minas Gerais, 2010

DOWNLOAD DO CONTEÚDO DA AULA

