Higher Order Models

DASC 512

Higher Order Models

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

We may want to model relationships that are more complex than simple linear relationships, such as

- Quadratic relationships: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$
- Interactions: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$
- Logarithmic relationships: $y = \beta_0 + \beta_1 \ln(x_1)$
- Exponential relationships: $y = \beta_0 + \beta_1 e^x$

Quadratic Terms

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \epsilon$$

 β_0 : The *y*-intercept

 β_1 : The shift (moves curve along the x_1 axis)

 β_2 : The rate of curvature.

Example: Shot putters

Let's look at a dataset that uses maximum power clean (i.e., weight-lifting) to predict personal best shot put for 28 collegiate women's shot putters

Interaction Terms

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

We've talked previously about interaction effects with categorical variables

The same interpretation applies to quantitative variables

The level of x_1 changes the slope of the effect of x_2

- The slope for x_1 is now $\beta_1 + \beta_3 x_2$
- The slope for x_2 is now $\beta_2 + \beta_3 x_1$

Example: Frequency Spectrum

Let's look at some published data on message force and power spectrum by transmission frequency

Next time...

Qualitative Variables