Techno-economic Comparison of Catalysts for Proton-Exchange Membrane Electrolysis

William Guo¹, Zhenxing Feng²

¹ Lincoln High School, Portland, OR, USA

² School of Chemical Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA

Acknowledgements

- I would like to thank Dr. Feng for giving me the opportunity to do this research
- Special thanks to Brian Muhich and Maoyu Wang for the valuable discussions
- This work was made possible by the Oregon State University Feng Research Group

What is Proton Exchange Membrane (PEM) Electrolysis?

Colella et al., NREL, 2014

- Uses electrical power to split water into oxygen & hydrogen gas
- Zero-carbon hydrogen production
- 3 components: electrodes, membrane, and electrolyte (acidic)
- 2 reactions: OER (anode) & HER (cathode)
- Sluggish OER → need high performance, cost effective catalyst to improve efficiency
- Versatile & high performance
- Needs corrosion-resistant catalyst

Current Hydrogen Production Costs

H₂ Cost Per Kilogram

- [1] Yates et al., Cell Reports Physical Science, 2020, Volume 1, Issue 10
- [2] IRENA, 2019
- [3] Muhammet Kayfeci, Ali Keçebaş, Mutlucan Bayat, Science, 2019, 45-83
- [4] Mayyas et al., NREL, 2019
- [5] James Vickers, David Peterson, Katie Randolph, DOE, 2020, 20004

- [6] David Peterson, James Vickers, Dan DeSantis, DOE, 2019, 19009
- [7] https://www.energy.gov/eere/fuelcells/hydrogen-shot
- [8] https://www.energy.gov/eere/fuelcells/hydrogen-production

Purpose of Techno-Economic Analysis

- Accurately model hydrogen production costs
- Assess the progress of state-of-the-art electrolysis
- Analyze the most economically & environmentally feasible catalyst for PEM electrolysis
- Identify key bottlenecks in H₂ production cost with a focus on catalysts
- Determine research & development priorities for cost reductions
- Provide performance targets for renewable electrolysis to reach DOE goals

Decomposition of H₂ Production Cost

- Electricity Costs
 - \$/kWh
 - Electrolyzer efficiency (depends on catalyst)
 - Other systems
- Capital Costs
 - Catalyst Coated Membrane (CCM)
 - Nafion membrane
 - Catalyst loading
 - Porous Transport Layer (PTL)
 - Bipolar Plates
 - Frame
- Replacement Costs
- Operating & Maintenance Costs

Mayyas et al., NREL, 2019

Decomposition of H₂ Production Cost

- Electricity Costs
 - \$/kW
 - Electrolyzer efficiency (depends on catalyst)
 - Other systems
- Capital Costs
 - Catalyst Coated Membrane (CCM)
 - Nafion membrane
 - Catalyst loading
 - Porous Transport Layer (PTL)
 - Bipolar Plates
 - Frame
- Replacement Costs
- Operating & Maintenance Costs

Mayyas et al., NREL, 2019

OER Catalysts for PEM Electrolysis

- High performing catalysts: low overpotentials (Operation voltage 1.23V)
- Tradeoff between voltage and current density electricity vs capital costs

Seitz et. al., Science, 2016, 353, 1011-1014

- As current density increases, so does its voltage; commercial standard is 1A/cm²
- Best catalysts: RuO₂, IrO₂, SrIrO₃ (analyzed with our techno-economic model)

Parameters & Assumptions for Our Model

Parameter	Value Used	
Operating Capacity	97%	
Nafion Membrane Cost (\$/m²)	0.05	
Balance of Plant (% of Capital + BoP Cost)	60%	
CCM Cost (% of non-BoP Capital Cost)	40%	
Maintenance Cost (% of Capital Cost)	2.5%	
BoP Electrical Usage (kWh/kg)	5	
Input Water Cost (\$/kL)	1.44	
Production Rate (kg H ₂ /day)	1500	
Installation Factor	15%	
Cell Active Area (cm²)	450	
Cathode Catalyst (HER)	Pt	

Total BoP/CCM costs are dependent on the cost of the catalyst

Parameter & Assumptions (cont.)

Assumptions:

- SrIrO₃ catalyst lifetime is equal to that of the IrO₂
- SrIrO₃ is 27% less expensive than IrO₂ since it has less iridium
- We use the electrolyzer's average potential over its lifetime

RuO₂ Catalyst Analysis

Poor best-case Scenario Unstable catalyst

Parameter	Base Case	Best Case	Worst Case
Voltage (V)	1.8	1.63	2
Lifetime (hrs)	80000	100000	60000
Catalyst Loading (g/m²)	25	10	30
Catalyst Cost (\$/g)	100		

IrO₂ Catalyst Analysis

Cost of H₂ Production Using IrO₂ Catalysts

Parameter	Base Case	Best Case	Worst Case
Voltage (V)	1.68	1.58	1.80
Lifetime (hrs)	80000	100000	60000
Catalyst Loading (g/m²)	18	3	30
Catalyst Cost (\$/g)	200	Bernt et al., Chemie Ingenieu	ur Technik, 2020, 92, 31-39

IrO₂ vs SrIrO₃ – Same Loading

Cost of H₂ Production Using SrIrO₃ Catalysts

Parameter	Base Case	Best Case	Worst Case	Parameter	Base Case	Best Case	Worst Case
Voltage (V)	1.68	1.58	1.80	Voltage (V)	1.57	1.55	1.60
Lifetime (hrs)	80000	100000	60000	Lifetime (hrs)	80000	100000	60000
Catalyst Loading (g/m²)	18	3	30	Catalyst Loading (g/m²)	18	3	30
Catalyst Cost (\$/g)	200			Catalyst Cost (\$/g)	146		13

IrO₂ vs SrIrO₃ – Best Loading

Cost of H₂ Production Using SrIrO₃ Catalyst – Thin Films

Parameter	Base Case	3g Loading	Parameter	Base Case	100nm Film	10nm Film
Voltage (V)	1.68	1.68	Voltage (V)	1.57	1.57	1.60
Lifetime (hrs)	80000	80000	Lifetime (hrs)	80000	80000	80000
Catalyst Loading (g/m²)	18	3	Catalyst Loading (g/m²)	18	0.85	0.085
Catalyst Cost (\$/g)	200	200	Catalyst Cost (\$/g)	146	146	146 14

IrO₂ vs SrIrO₃ - Best Loading & Cheap Energy

H₂ Production Costs - IrO₂ vs SrIrO₃ \$0.03/kWh

Parameter	IrO ₂	SrIrO ₃
Voltage (V)	1.68	1.57
Catalyst Loading (g/m²)	3	0.85
Catalyst Cost (\$/g)	200	146

Future Improvements

- Overpotential reductions
- Use of thin-film SrIrO₃/decrease in catalyst loading (100nm, 0.85g/m²)
- Decreased electricity cost (<0.03\$/kWh)
- Increase in current density to 1.5A/cm²
- Increase in catalyst lifetime to 100000 hrs
- Capital costs decrease 10% every 10x increase in scale (includes balance of power costs)

Roadmap to DOE Targets Using SrIrO₃

Conclusion

- PEM electrolysis with the SrIrO₃ catalyst can supersede current IrO₂ electrolyzers for cheaper & more sustainable H₂ production
- The main improvement needed for the SrIrO₃ catalyst is its loading density
- Electricity cost will be the largest cost factor, and if decreased, can make PEM electrolysis meet the DOE goal of \$2/kg H₂ by 2025