

Apakah Sistem Pakar?

- Sistem pakar yang baik dirancang agar dapat menyelesaikan suatu permasalahan tertentu dengan meniru kerja dari para ahli.
- Dengan sistem pakar ini, orang awampun dapat menyelesaikan masalah yang cukup rumit yang sebenarnya hanya dapat diselesaikan dengan bantuan para ahli.

Sejarah Sistem Pakar

- Sistem pakar pertama kali dikembangkan oleh komunitas AI pada pertengahan tahun 1960.
- Sistem pakar yang muncul pertama kali adalah Generalpurpose Problem Solver (GPS) yang dikembangkan oleh Newel dan Simon.
- GPS (dan program-program yang serupa) ini mengalami kegagalan dikarenakan cakupannya terlalu luas sehingga terkadang justru meninggalkan pengetahuanpengetahuan penting yang seharusnya disediakan.

Keuntungan Sistem Pakar

- Memungkinkan orang awam bisa mengerjakan pekerjaan para ahli;
- Bisa melakukan proses secara berulang secara otomatis;
- Menyimpan pengetahuan dan keahlian para pakar;
- Meningkatkan output dan produktivitas.
- Meningkatkan kualitas.
- Mampu mengambil dan melestarikan keahlian para pakar (terutama yang termasuk keahlian langka).
- Mampu beroperasi dalam lingkungan yang berbahaya.

Keuntungan Sistem Pakar

- Memiliki kemampuan untuk mengakses pengetahuan.
- Memiliki reliabilitas.
- Meningkatkan kapabilitas sistem komputer.
- Memiliki kemampuan untuk bekerja dengan informasi yang tidak lengkap dan mengandung ketidakpastian.
- Sebagai media pelengkap dalam pelatihan.
- Meningkatkan kapabilitas dalam penyelesaian masalah.
- Menghemat waktu dalam pengambilan keputusan.

Bentuk Sistem Pakar

Berdiri sendiri.

 Sistem pakar jenis ini merupakan software yang berdiri-sendiri tidak tergabung dengan software yang lainnnya.

▶ Tergabung.

 Sistem pakar jenis ini merupakan bagian program yang terkandung di dalam suatu algoritma (konvensional), atau merupakan program dimana di dalamnya memanggil algoritma subrutin lain (konvensional).

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

Bentuk Sistem Pakar

Menghubungkan ke software lain.

 Bentuk ini biasanya merupakan sistem pakar yang menghubungkan ke suatu paket program tertentu, misalnya dengan DBMS.

▶ Sistem mengabdi.

- Sistem pakar merupakan bagian dari komputer khusus yang dihubungkan dengan suatu fungsi tertentu.
- Misalnya sistem pakar yang digunakan untuk membantu menganalisis data radar.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

Basis Pengetahuan

- Basis pengetahuan berisi pengetahuanpengetahuan dalam penyelesaian masalah, tentu saja di dalam domain tertentu.
- Ada 2 bentuk pendekatan basis pengetahuan yang sangat umum digunakan, yaitu:
 - Penalaran berbasis aturan (*Rule-Based Reasoning*)
 - Penalaran berbasis kasus (Case-Based Reasoning).

Basis Pengetahuan

- Penalaran berbasis aturan.
- pengetahuan direpresentasikan dengan menggunakan aturan berbentuk: IF-THEN.
- Bentuk ini digunakan apabila kita memiliki sejumlah pengetahuan pakar pada suatu permasalahan tertentu, dan si pakar dapat menyelesaikan masalah tersebut secara berurutan.
- Bentuk ini juga digunakan apabila dibutuhkan penjelasan tentang jejak (langkah-langkah) pencapaian solusi.

Inference Engine

- Forward Chaining. Pencocokan fakta atau pernyataan dimulai dari bagian sebelah kiri (IF dulu). Penalaran dimulai dari fakta terlebih dahulu untuk menguji kebenaran hipotesis.
- Backward Chaining. Pencocokan fakta atau pernyataan dimulai dari bagian sebelah kanan (THEN dulu). Penalaran dimulai dari hipotesis terlebih dahulu, dan untuk menguji kebenaran hipotesis tersebut dicari harus dicari fakta-fakta yang ada dalam basis pengetahuan.

Basis Pengetahuan

- Penalaran berbasis kasus,
 - basis pengetahuan akan berisi solusi-solusi yang telah dicapai sebelumnya, kemudian akan diturunkan suatu solusi untuk keadaan yang terjadi sekarang (fakta yang ada).
 - Bentuk ini digunakan apabila user menginginkan untuk tahu lebih banyak lagi pada kasus-kasus yang hampir sama (mirip).
 - Bentuk ini juga digunakan apabila kita telah memiliki sejumlah situasi atau kasus tertentu dalam basis pengetahuan.

Jurusan **Teknik Informatika**Fak Aba Teknik Industri, Universitas Islam Indonesia

Ada 10 aturan yang tersimpan dalam basis pengetahuan. Fakta awal yang diberikan hanya: A & E (artinya: A dan E bernilai benar). Ingin dibuktikan apakah K bernilai benar (hipotesis: K)?

No.	Aturan
R-1	IF A & B THEN C
R-2	IF C THEN D
R-3	IF A & E THEN F
R-4	IF A THEN G
R-5	IF F & G THEN D
R-6	IF G & E THEN H
R-7	IF C & H THEN I
R-8	IF I & A THEN J
R-9	IF G THEN J
R-10	IF J THEN K

Jurusan **Teknik Informatika** Fakultas Teknologi Industri, Universitas Islam Indonesia

Sistem Berbasis Kasus

- Apabila terdapat kasus baru yang muncul, maka sistem harus menguji tingkat kemiripan kasus tersebut dengan kasus-kasus yang telah ada pada basis kasus.
- Sebagai contoh, misalkan ada suatu perusahaan dengan jenis II; total aset 13 milyar; memiliki gejala G5 dan G8, maka harus dihitung terlebih dahulu berapa tingkat kemiripan kondisi perusahaan tersebut pada basis kasus.

Sistem Berbasis Kasus

Untuk menghitung tingkat kemiripan digunakan rumus:

$$T_i = \frac{n_{X1} + n_{X2} + n_{X3}}{N}$$

dengan:

Τi = nilai kesamaan dengan kasus ke-i.

banyaknya kesamaan subobjek X1.

= banyaknya kesamaan subobjek X2. = banyaknya kesamaan subobjek X3.

= banyaknya elemen pada basis kasus.

Sistem Berbasis Kasus

- Dari hasil tersebut tersebut, apabila digunakan nilai threshold (θ) = 0,7 sebagai nilai minimal kemiripan, maka hanya kasus keempat (T4 = 0.75) dan kedelapan (T8 = 0.8) yang dianggap mirip dengan kasus baru.
- Karena nilai T8 lebih baik dibanding dengan T4 (T8 > T4), maka lebih direkomendasi kemiripan dengan kasus kedelapan.
- Sehingga dapat disimpulkan bahwa tipe kerusakan yang dialami adalah C dengan solusi S7.

Sistem Berbasis Kasus

- Apabila digunakan nilai threshold (θ) = 0,7 sebagai nilai minimal kemiripan, maka dari kesepuluh kasus tersebut tidak ada satupun yang memiliki nilai kemiripan di atas 0,7.
- Oleh karena itu, si pengambil keputusan harus memberikan kesimpulan baru terkait dengan jenis permasalahan dan solusi yang diberikan.
- Kasus baru tersebut nantinya akan ditambahkan pada basis kasus yang ada.

Sistem Berbasis Kasus

Formula lain yang dapat digunakan untuk menghitung tingkat kemiripan adalah:

$$T_i = \frac{n_{X1} + n_{X2} + n_{X3}}{N}$$

dengan:

 T_i = nilai kesamaan dengan kasus ke-i. n_{x1} = banyaknya kesamaan subobjek X1.

 n_{X2} = banyaknya kesamaan subobjek X2. n_{X3} = banyaknya kesamaan subobjek X3.

N = maksimum (banyaknya elemen pada basis kasus, banyaknya elemen pada kasus yang dievaluasi).

