Introduction to Machine Learning – Logistic Regression

Dr. Ab Mosca (they/them)

Plan for Today

- The Logistic Model
- Multiple Logistic Regression
- Multinomial Logistic Regression

Warm Up: Linear Regression

Parametric models

- Are easy to fit (there are few coefficients to estimate)
- (For LR) coefficients have simple interpretations and tests of statistical significance are easy to perform

Non-parametric models

• Do not explicitly assume a parametric form for f(X), allowing for more flexibility in regression

When would you use a parametric vs nonparametric regression model?

Motivation

	default <fctr></fctr>	student <fctr></fctr>	balance <dbl></dbl>	income <dbl></dbl>
1	No	No	729.5265	44361.625
2	No	Yes	817.1804	12106.135
3	No	No	1073.5492	31767.139
4	No	No	529.2506	35704.494
5	No	No	785.6559	38463.496
6	No	Yes	919.5885	7491.559

What is one observation in this dataset? What are the variables and variable types?

Motivation

	default <fctr></fctr>	student <fctr></fctr>	balance <dbl></dbl>	income <dbl></dbl>
1	No	No	729.5265	44361.625
2	No	Yes	817.1804	12106.135
3	No	No	1073.5492	31767.139
4	No	No	529.2506	35704.494
5	No	No	785.6559	38463.496
6	No	Yes	919.5885	7491.559

Let's say we want to model default with balance as the predictor

default is either Yes or No

Can we model default (Y) directly? Should we model something else?

Motivation

	default <fctr></fctr>	student <fctr></fctr>	balance <dbl></dbl>	income <dbl></dbl>
1	No	No	729.5265	44361.625
2	No	Yes	817.1804	12106.135
3	No	No	1073.5492	31767.139
4	No	No	529.2506	35704.494
5	No	No	785.6559	38463.496
6	No	Yes	919.5885	7491.559

Let's say we want to model default with balance as the predictor

We will model the *probability* that default is Yes or No using *Logistic Regression*

We will model the probability of default being Yes or No based on balance.

Pr(default = Yes|balance)

Motivation

Motivation

We will model the probability of default being Yes or No based on balance.

$$Pr(default = Yes|balance)$$

- We'll abbreviate to p(balance), which will range between o and 1
- Once we have our model, for any given value of balance we can make a prediction for default
 - Ex. we might predict default = Yes for any observation where p(balance) > 0.5

We want to model the relationship between Pr(Y = 1|X) and X

When we looked at linear regression, we used a linear model to represent these probabilities: $p(X) = \beta_0 + \beta_1 X$

Logistic Model

What problems do you see here?

We want to model the relationship between Pr(Y = 1|X) and X

What we need is a model that gives outputs between o and 1 for all values of X

Logistic Model

We want to model the relationship between Pr(Y = 1|X) and X

What we need is a model that gives outputs between o and 1 for all values of X

The solution: the *logistic function*

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

We want to model the relationship between Pr(Y = 1|X) and X

What we need is a model that gives outputs between o and 1 for all values of X

The solution: the *logistic function*

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

The *logistic function:*
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

This function can be manipulated to give us **odds**:

$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$

[the fraction, $\frac{p(X)}{1-p(X)}$ is called the odds for the response]

What does an odds of o mean? How about an odds of ∞ ?

The *logistic function:*
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

This function can be manipulated to give us **odds**:

$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$

[the fraction, $\frac{p(X)}{1-p(X)}$ is called the odds for the response]

How about an odds of $\frac{1}{4}$? How about an odds of 9?

The *logistic function:*
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

This function can be manipulated to give us **odds**:

$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$

[the fraction, $\frac{p(X)}{1-p(X)}$ is called the odds for the response]

How about an odds of $\frac{1}{4}$? How about an odds of 9?

The *logistic function:*
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

This function can be manipulated to give us **odds**:

$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$

[the fraction, $\frac{p(X)}{1-p(X)}$ is called the odds for the response]

Taking the log of both sides gives:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

The left-hand side is called the *log odds* or *logit*Notice that our logistic regression has a logit that is linear in X

Logistic Model

How does increasing X by one unit affect log odds?

How does increasing X by one unit affect log odds?

odds:
$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$

How does increasing X by one unit affect odds?

Logistic Model

odds:
$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$

Logistic Model

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

 The amount p(X) will change due to a one-unit change in X depends on the current value of X

odds:
$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$

Logistic Model

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

 The amount p(X) will change due to a one-unit change in X depends on the current value of X

How does the sign of β_1 influence the change in p(X) dues to a one-unit increase X?

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Maximum likelihood is used to estimate β_0 and B_1

- The intuition behind maximum likelihood is that we're looking for coefficients such that the predicted probability $\hat{p}(x_i)$ corresponds as close as possible to the observed data.
- For the default example, we want coefficients that give a number close to 1 for all individuals who defaulted and close to o for all individuals who did not.

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Maximum likelihood is used to estimate β_0 and β_1

We start with the likelihood function

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}} (1 - p(x_{i'}))$$

and choose β_0 and β_1 to maximize this function

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

log odds: $\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$

We use R or Python to find $\hat{\beta}_0$ and $\hat{\beta}_1$; the output will be similar to our LR output:

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

 β_2

Is an increase in balance associated with an increase or decrease in the probability of default?

How does a one-unit increase in balance effect the log odds of default?

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

log odds: $\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$

We use R or Python to find $\hat{\beta}_0$ and $\hat{\beta}_1$; the output will be similar to our LR output:

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

 β_{1}

Does this output indicate balance is a significant predictor?

Prediction

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

log odds: $\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$

We use R or Python to find $\hat{\beta}_0$ and $\hat{\beta}_1$; the output will be similar to our LR output:

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

 β_1

What is the default probability for an individual with a balance of \$1000? What is the odds?

What about a balance of \$2000?

Qualitative Predictors

	default <fctr></fctr>	student <fctr></fctr>	balance <dbl></dbl>	income <dbl></dbl>
1	No	No	729.5265	44361.625
2	No	Yes	817.1804	12106.135
3	No	No	1073.5492	31767.139
4	No	No	529.2506	35704.494
5	No	No	785.6559	38463.496
6	No	Yes	919.5885	7491.559

Let's say we want to model default predicted by student status.

We will model the *probability* that default is Yes or No using *Logistic Regression* and a *dummy variable* like we did for LR.

Qualitative Predictors

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

log odds: $\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$

$$dummyVar = \begin{cases} 1 & if student \\ 0 & if not a student \end{cases}$$

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

What is $\widehat{Pr}(default = Yes|student = Yes)$, and $\widehat{Pr}(default = Yes|student = No)$?

Is student a significant predictor?

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X} + \dots + \beta_k X}$$

log odds:
$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}$$

log odds:
$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Which predictors are significant?
What do the coefficients for these tell you? Are they what you expected?

Taking a closer look...

Compare the functions to the averages. What do you notice?

- Solid line = default rate as a function of balance
- Dashed line = average default rate
- Blue = non-students
- Orange = students

Taking a closer look...

- Solid line = default rate as a function of balance
- Dashed line = average default rate
- Blue = non-students
- Orange = students

Is balance related to student status?

Taking a closer look...Confounding is what is happening here

- Solid line = default rate as a function of balance
- Dashed line = average default rate
- Blue = non-students
- Orange = students

logistic function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}$$

log odds:
$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

What is p(default) for a student with a credit card balance of \$1,500 and an income of \$40,000? What about a nonstudent? [income was measured in thousands]

Multinomial Logistic Regression

Multinomial Logistic Regression extends logistic regression to cases where K > 2

• i.e., to predicting outcomes with more than two levels

First, we pick the Kth class as our baseline. Then, we get

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$
for $k = 1, \dots, K - 1$ and
$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\log\left(\frac{\Pr(Y = k | X = X)}{\Pr(Y = K | X = X)}\right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p$$

Multinomial Logistic Regression

Multinomial Logistic Regression extends logistic regression to cases where K > 2

• i.e., to predicting outcomes with more than two levels

$$\log\left(\frac{\Pr(Y = k | X = x)}{\Pr(Y = K | x = X)}\right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p$$