

Sahi Prep Hai Toh Life Set Hai

AP & GP
Theory & Concept

Arithmetic Progression -> (52-54) min
Cuometric Progression -> (52-54) min

ARITHMETIC PROGRESSION

When the difference between two consecutive terms is constant:

e.g.

$$a = 2$$

$$a = 2$$
 $d = T_2 - T_1$

$$d = 3$$

$$=T_3-T_2$$

$$= T_n - T_{n-1}$$

In an AP

$$n^{th}$$
 term = $a + (n - 1)d$

$$a = 2$$
 $d = 3$

If tean = $a + (n-1)d$
 2^{n} tean = $a + 19d$
 $= 2 + 19 \cdot 3$
 $= 59$

Ans. 59

Eg2. 2, 5, 8, 11, 14, 17, is an AP. Which term of the sequence is 323.

a
$$t(n-1)d = 323$$

2 $t(n-1)3 = 323$
 $3n = 324$
 $n = 108$

Ans. 108

Eg3. 5, 11, 17, 23, 359 (AP) Find the 20th term from end.

Time -) Gasec

$$\begin{array}{cccc} a & \rightarrow & \text{First Term} \\ T_n & \rightarrow & n^{\text{th}} \, \text{Term} \\ d & \rightarrow & \text{Common Difference} \\ S_n & \rightarrow & \text{Sum of n Terms} \end{array}$$

S5 -> Sun of First Stein

Eg4. If
$$T_{12} = 79$$

 $T_{20} = 111$
Find T_{16}

I St

$$8d = 32 (d = 9)$$
 $a = 35$

gradeup

TII

Eg5. Which term of the sequence

$$20,19\frac{1}{2},19,18\frac{1}{2},18,...$$

Gosec

is the first negative term?

$$d = 19\frac{1}{2} - 20 = -\frac{1}{2}$$

$$20+(n-1)(-\frac{1}{2})$$
 < 0
 $40+(1-n)$ < 0
 $41-n$ < 0

Eg6. If
$$T_m = n$$

$$T_n = m$$

Find
$$T_{m+n} = ?$$

Shortcut:

If
$$T_m = n$$

$$T_n = m$$
then $T_{m+n} = 0$

eg
$$T(S) = 10$$

$$T(S) = S$$

$$T(S) = S$$

$$T(S) = S$$

3 terms
$$\rightarrow$$
 a - d, a, a + d

5 terms
$$\rightarrow$$
 a-2d, a-d, a, a+d, a+2d

4 terms
$$\rightarrow$$
 a - 3d, a - d, a + d, a + 3d

Eg7. If the sum of first 3 consecutive terms of an increasing AP (d > 0) is 51 & the product of first and third term is 273, then the third term is:

$$\frac{801^{N}}{(a-d), (a) \pm (a+d)}$$

$$\frac{(a-d) + (a) + (a+d) = 51}{3a = 51}$$

$$\frac{(a-d) + (a) + (a+d) = 51}{a = 17}$$

$$\frac{(a-d)(17+d) = 273}{289-d' = 273}$$

$$\frac{(a-d) + (a) \pm (a+d) = 51}{a = 17}$$

Sum of n terms of an Arithmetic Progression

Sum =
$$\frac{n}{2} \left[First + Last \right]$$
or

$$\frac{n}{2}\left[2a+(n-1)d\right]$$

Eg8. Find the sum of first 20 terms of 2, 5, 8, 11,

$$S_{20} = \frac{20}{2} \left[\frac{4 + 19.3}{4 + 19.3} \right]$$

$$= \frac{20}{2} \cdot 61$$

$$S_{20} = \frac{20}{2} \cdot 610$$

Eg9. Find the sum of first 20 terms of 5, 12, 19, 26,698

$$S_{20} = \frac{20}{2} \left[10 + 19.7 \right]$$

S₁ 13,21,27, --- 997
Grad sun of all terms
997 = 5+(n-1) 8

$$\frac{992}{8}+1=n$$

 $n=125$
S₁₂₅ = 125 (5+997)
= 125 × 1002

Eg10. If
$$T_{16} = 85$$

$$T_{23} = 120$$

Sel

$$a + 15d = 85$$
 $a + 22d = 120$

$$S_{25} = \frac{25}{2} \left[20 + 24.5 \right]$$

$$= \frac{25}{2} . 140$$

1250

Ans. 1750

Note In an Anithmetic Progression

Average - Middle Term

eg It 25 teurs au there

25+1

25+1

25+1

25+1

(i)
$$\frac{529}{2}$$
 $\frac{29}{2}$ $\frac{29}{2}$ $\frac{29}{2}$ $\frac{29}{2}$ $\frac{29}{2}$ $\frac{29}{2}$ $\frac{9}{100}$

= 2900

Ans. (i) 2900 (ii) Can't be determined

ARITHMETIC MEAN

If a & b are 2 numbers:

$$A.M = \frac{a+b}{2}$$

If a, b, c, d, (n numbers are there)

$$\mathbf{AM} = \frac{a+b+c+d.....}{n}$$

Eg12. Find AM of 9 & 19.

A·M:
$$\frac{9+19}{2} = 14$$

Q

A·M: $\frac{9+19}{2} = 14$

A·M of a Ab

A'+b' bind $n = 2$ adb

A'TI +b' = a+b

Q'+b' 2

$$\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \frac{a+b}{2}$$

$$2a^{n+1} + 2b^{n+1} = a^{n+1} + a^n + b^n + b^n + a^{n+1}$$

$$a^{n+1} - a^n + b^{n+1} - b^n + a^n + b^n + b^n$$

GEOMETRIC PROGRESSION

GP → It is a sequence of numbers where consecutive terms are in a fixed ratio.

Eg. 2, 6, 18, 54, 162, 486,.....

r = Common ratio

$$\frac{T_n}{T_{n-1}}$$

$$r = \frac{6}{3} = 2$$

In GP, the terms are a, ar, ar², ar³, ar⁴,.....

Eg1. 3, 6, 12, 24, 48,

Find the 10th term.

$$10^{5}$$
 teur — 3.2^{9}
 3.2^{9}
 3.512
 -1536

Eg2. Which term of the GP

243, 81, 27, is
$$\frac{1}{729}$$

$$3^{3} \cdot 3 = 3$$

$$3^{6-n} = 3$$

IL Ad

Eg3. If
$$T_3 = 12$$

 $T_6 = 24$
 $T_{12} = ??$

Eg4. If
$$T_4 = 10$$

 $T_7 = 80$
 $T_n = 2560$
 $n = ??$

$$(2)^{-1} = 2048$$
 $(2)^{-1} = 2^{11}$
 $(2)^{-1} = 2^{11}$

Ans. n = 12

1=12

Eg5. If
$$T_7 + T_9 = 40$$

 $T_8 + T_{10} = 80$
Find $T_{13} = ??$

It
$$ax^{6} + ax^{8} = 40$$
 $ax^{6}(1+x^{2}) = 40$
 $ax^{6}(1+x^{2}) = 80$
 $ax^{7} + ax^{9} = 80$
 $ax^{7}(1+x^{7}) = 80 - (2)$
 $ax^{7}(1+x^{7}) = 80$
 $ax^{7}(1+x^{7}) = 80$

Selection of terms in GP

5 terms
$$\rightarrow \frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2$$

4 terms
$$\rightarrow \frac{a}{r^3}, \frac{a}{r}, ar, ar^3$$

If sum of 3 consecutive terms in GP is 38 & their product is 1728. Eg6.

Find r [if r > 1].

$$\frac{q}{31} + q + q = 38$$
 $\frac{q}{31} + q + q = 38$
 $\frac{q}{31} - q - q = 128$
 $\frac{q}{3} = 128$
 $\frac{12}{31} + 12 = 0$
 $\frac{12}{31} - 26\pi + 12 = 0$
 $\frac{12}{31} - 131 + 6 = 0$

Ans. $\frac{3}{2}$

Sum of 'n' terms of GP

where, $r \neq 1$

Eg7. Find the sum of the series:

2+6+18+54+..... till (7 terms)

$$S_{N} = Q(3^{n}-1)$$

$$= 2(3^{n}-1)$$

$$= 2(3^{n}-1) = 2186$$

$$= 3-1$$

Eg8. If
$$T_1 = 14$$

$$T_n = 896$$

$$S_n = 1778$$
Find $r = ??$

$$a = 19$$
 $19 = 96$
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396

Eg9. Find the value:

2+22+222+2222+ upto n terms.

$$= \frac{2}{9} \left[\frac{1+11+111}{9+111} + \frac{1+11}{9+111} + \frac{1+11}{9+11} + \frac{1+11}{9$$

Sum of infinite terms of GP

$$\rightarrow$$
 a, ar, ar², ar³, (∞ terms)

$$s_{\infty} = \frac{a}{1-r}$$

if
$$0 < r < 1$$

$$\frac{500}{1-\frac{1}{3}} = \frac{200}{1-\frac{1}{3}}$$

Eg10. Find the sum of infinite terms of this GP

80, 40, 20, 10, 5,
$$\frac{5}{2}$$
 ,

Eg11. 5
$$^{8+4+2+1+\dots}$$
 = $(125)^{K}$

Find the value of K.

$$5^{\frac{8}{1-\frac{1}{2}}} = (5^{3})^{k}$$

$$5^{\frac{16}{2}} = 5^{3k}$$

$$\frac{5}{16} = 5^{3k}$$

$$\frac{16}{16} = 5^{3k}$$

WORD PROBLEMS ON INFINITE GP

and

Q1. After striking a floor, a certain ball rebounds to $\left(\frac{3}{4}\right)^{t_n}$ of the height from which it has fallen.

Find the distance it travels before coming to rest, if it is dropped

from a height of 800 m.

Shortcut for ball rebound:

H → Height from which the ball is dropped.

$$\frac{a}{b}$$
 \rightarrow Fraction with which it rebounds (here a < b)

D → Total distance travelled by the ball

$$D = H \frac{b+a}{b-a}$$

GEOMETRIC MEAN

If a and b are two numbers and G is their GM (Geometric Mean) a, G & b are in GP.

$$\frac{G}{a} = \frac{b}{G}$$

$$G^2 = ab$$

$$G = \sqrt{ab}$$