Współrzędne biegunowe, walcowe i sferyczne Krzywe stożkowe Powierzchnie drugiego stopnia

Anna Bahyrycz

Współrzędne kartezjańskie na płaszczyźnie

Do tej pory, gdy chcieliśmy określić położenie punktu P na płaszczyźnie z wprowadzonym układem współrzędnych podawaliśmy jego współrzędne kartezjańskie (x,y).

Współrzędne kartezjańskie na płaszczyźnie

Do tej pory, gdy chcieliśmy określić położenie punktu P na płaszczyźnie z wprowadzonym układem współrzędnych podawaliśmy jego współrzędne kartezjańskie (x,y).

Współrzędne biegunowe

Czy można inaczej w jednoznaczny sposób określić położenie punktu P na płaszczyźnie z wprowadzonym układem współrzędnych?

Współrzędne biegunowe

Czy można inaczej w jednoznaczny sposób określić położenie punktu P na płaszczyźnie z wprowadzonym układem współrzędnych?

Współrzędne biegunowe

Czy można inaczej w jednoznaczny sposób określić położenie punktu P na płaszczyźnie z wprowadzonym układem współrzędnych?

Tak, można opisać położenie punktu P parą liczb (φ, ρ) , gdzie:

- φ oznacza miarę kąta miedzy dodatnią częścią osi 0x a promieniem wodzącym punktu $P,~0 \le \varphi < 2\pi$ albo $-\pi \le \varphi < \pi;$
- ρ oznacza odległość punktu P od początku układu współrzędnych, $\rho \geq 0$.

Jaki jest związek miedzy współrzędnymi kartezjańskimi (x,y) punktu P a współrzędnymi biegunowymi (φ,ρ) ?

Jaki jest związek miedzy współrzędnymi kartezjańskimi (x,y) punktu P a współrzędnymi biegunowymi (φ,ρ) ?

Jaki jest związek miedzy współrzędnymi kartezjańskimi (x,y) punktu P a współrzędnymi biegunowymi (φ,ρ) ?

Zauważmy, że $\cos \varphi = \frac{x}{\rho}$ i $\sin \varphi = \frac{y}{\rho}$, a stąd $x = \rho \cos \varphi$ i $y = \rho \sin \varphi$.

Zamiana współrzędnych biegunowych na kartezjańskie

Zatem współrzędne kartezjańskie (x,y) punktu P płaszczyzny danego we współrzędnych biegunowych (φ,ρ) określone są wzorami:

$$B: \left\{ \begin{array}{ll} x & = & \rho \cos \varphi \\ y & = & \rho \sin \varphi \end{array} \right.$$

 $\mathsf{gdzie}\ \rho \geq 0,\ \varphi \in \big[0,2\pi\big)\ \mathsf{albo}\ \varphi \in \big[-\pi,\pi\big).$

Zamiana współrzędnych biegunowych na kartezjańskie

$$\operatorname{tg} \varphi = \frac{y}{x},$$

$$\operatorname{tg} \varphi = \frac{y}{x},$$

ponadto

$$\operatorname{tg}(\varphi - \pi) = \operatorname{tg}(\varphi - 2\pi) = \operatorname{tg}\varphi,$$

$$\operatorname{tg} \varphi = \frac{y}{x},$$

ponadto

$$\operatorname{tg}(\varphi - \pi) = \operatorname{tg}(\varphi - 2\pi) = \operatorname{tg}\varphi,$$

$$\operatorname{tg} \varphi = \frac{y}{x},$$

ponadto

$$tg(\varphi - \pi) = tg(\varphi - 2\pi) = tg\,\varphi,$$

więc współrzędne biegunowe (φ, ρ) punktu P płaszczyzny danego we współrzędnych kartezjańskich (x,y) określone są wzorami:

$$\varphi = \begin{cases} \arctan(\frac{y}{x}) & \text{gdy } x > 0 \text{ oraz } y \geq 0 \\ \arctan(\frac{y}{x}) + 2\pi & \text{gdy } x > 0 \text{ oraz } y < 0 \\ \arctan(\frac{y}{x}) + \pi & \text{gdy } x < 0 \\ \frac{\pi}{2} & \text{gdy } x = 0 \text{ oraz } y > 0 \\ \frac{3\pi}{2} & \text{gdy } x = 0 \text{ oraz } y < 0 \end{cases}$$

oraz

$$\rho = \sqrt{x^2 + y^2}.$$

$$\rho = a, \quad \textit{gdzie} \ a > 0 \ \textit{oraz} \ \varphi \in [0, 2\pi).$$

$$\rho = a$$
, $gdzie a > 0 oraz \varphi \in [0, 2\pi)$.

$$\rho = a\varphi, \quad \text{gdzie } a > 0 \text{ oraz } \varphi \in [0, +\infty).$$

$$\rho = a\varphi, \quad \textit{gdzie } a > 0 \textit{ oraz } \varphi \in [0, +\infty).$$

Obszar przedstawiony na rysunku zapisać we współrzędnych biegunowych.

Krzywą przedstawioną na rysunku zapisać we współrzędnych kartezjańskich oraz biegunowych.

Współrzędne kartezjańskie w przestrzeni

Do tej pory, gdy chcieliśmy określić położenie punktu P w przestrzeni z wprowadzonym układem współrzędnych podawaliśmy jego współrzędne kartezjańskie (x,y,z).

Współrzędne kartezjańskie w przestrzeni

Do tej pory, gdy chcieliśmy określić położenie punktu P w przestrzeni z wprowadzonym układem współrzędnych podawaliśmy jego współrzędne kartezjańskie (x,y,z).

Położenie punktu P w przestrzeni z wprowadzonym układem współrzędnych można określić jednoznacznie również w inny sposób np. podając jego współrzędne walcowe lub sferyczne.

Współrzędne walcowe

Współrzędne walcowe

- φ oznacza miarę kąta miedzy dodatnią częścią osi 0x a rzutem promieniem wodzącego punktu P na płaszczyznę $x0y, \quad 0 \le \varphi < 2\pi$ albo $-\pi \le \varphi < \pi;$
- ρ oznacza odległość rzutu punktu P na płaszczyznę x0y od początku układu współrzędnych, $\rho \geq 0$;
- h oznacza odległość punktu P od płaszczyznę x0y wziętą ze znakiem minus gdy $z<0, \ -\infty < h < \infty.$

Zamiana współrzędnych walcowych na kartezjańskie

Współrzędne kartezjańskie (x,y,z) punktu P w przestrzeni danego we współrzędnych walcowych (φ,ρ,h) określone są wzorami:

$$W: \begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \\ z = h \end{cases}$$

 $\text{gdzie } \rho \geq 0, \ \varphi \in \left[0,2\pi\right) \text{ albo } \varphi \in \left[-\pi,\pi\right), \ -\infty < h < \infty.$

Naszkicować powierzchnię

$$\rho = 2$$
, $gdzie - 1 \le h \le 3 \text{ oraz } \varphi \in [0, 2\pi)$.

Naszkicować powierzchnię

$$\rho = 2, \quad \textit{gdzie} \ -1 \leq h \leq 3 \ \textit{oraz} \ \varphi \in [0, 2\pi).$$

Współrzędne sferyczne

Współrzędne sferyczne

- φ oznacza miarę kąta miedzy dodatnią częścią osi 0x a rzutem promienia wodzącego punktu P na płaszczyznę $x0y, \quad 0 \le \varphi < 2\pi;$
- ψ oznacza miarę kąta miedzy promieniem wodzącym punktu P a płaszczyzną $x0y, \quad -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}$
- ullet r oznacza odległość punktu P od początku układu współrzędnych, $r \ge 0;$

Zamiana współrzędnych sferycznych na kartezjańskie

Współrzędne kartezjańskie (x,y,z) punktu P w przestrzeni danego we współrzędnych sferycznych (φ,ψ,r) określone są wzorami:

$$W: \left\{ \begin{array}{lll} x & = & r\cos\varphi\cos\psi \\ y & = & r\sin\varphi\cos\psi \\ z & = & r\sin\psi \end{array} \right.$$

$$\text{gdzie } r \geq 0, \ \varphi \in \left[0, 2\pi\right), \ -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}.$$

Naszkicować powierzchnię

$$r = 2, \quad \textit{gdzie} \ \varphi \in \big[0, 2\pi\big), \ -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}.$$

Naszkicować powierzchnię

$$r = 2, \quad \textit{gdzie} \ \varphi \in \big[0, 2\pi\big), \ -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}.$$

Krzywe stożkowe

Szczególnym rodzajem powierzchni stożkowej jest powierzchnia stożkowa obrotowa, którą zakreśla prosta przecinająca się z osią obrotu pod kątem α różnym od $\frac{\pi}{2}$.

Krzywe stożkowe

Szczególnym rodzajem powierzchni stożkowej jest powierzchnia stożkowa obrotowa, którą zakreśla prosta przecinająca się z osią obrotu pod kątem α różnym od $\frac{\pi}{2}$.

Przekrojami powierzchni stożkowych obrotowych płaszczyznami nie przechodzącymi przez wierzchołek powierzchni stożkowej są krzywe stożkowe: okręgi, elipsy, parabole albo hiperbole. Jaką krzywą otrzymamy zależy od kąta nachylenia płaszczyzny (tnącej) do osi stożka (kąt $0 < \beta \le \frac{\pi}{2}$).

Przekrojami powierzchni stożkowych obrotowych płaszczyznami nie przechodzącymi przez wierzchołek powierzchni stożkowej są krzywe stożkowe: okręgi, elipsy, parabole albo hiperbole. Jaką krzywą otrzymamy zależy od kąta nachylenia płaszczyzny (tnącej) do osi stożka (kąt $0 < \beta \le \frac{\pi}{2}$).

Przekrojami powierzchni stożkowych obrotowych płaszczyznami nie przechodzącymi przez wierzchołek powierzchni stożkowej są krzywe stożkowe: okręgi, elipsy, parabole albo hiperbole. Jaką krzywą otrzymamy zależy od kąta nachylenia płaszczyzny (tnącej) do osi stożka (kąt $0 < \beta \le \frac{\pi}{2}$).

leśli:

 $\beta = \frac{\pi}{2}$ - okrąg,

 $\beta > \bar{\alpha}$ - elipsa,

 β = α - parabola,

 $\beta < \alpha$ - hiperbola.

Autor: Szwejk

Krzywe stożkowe są krzywymi drugiego stopnia, tzn. można je w kartezjańskim układzie współrzędnych opisać równaniem algebraicznym drugiego stopnia względem obu zmiennych $\,x\,$ i $\,y\,$:

$$Ax^2 + By^2 + Cxy + Dx + Ey + F = 0,$$

gdzie $A,B,C,D,E,F\in\mathbb{R}$ i przynajmniej jeden ze współczynników A,B,C musi być różny od zera.

Okrąg

Niech $O=(x_0,y_0)$ będzie ustalonym punktem, zaś r ustaloną liczbą dodatnią. Okręgiem o środku w punkcie O i promieniu r jest zbiór punktów płaszczyzny spełniających równanie

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$
.

Jest to wzór geometrii analitycznej obowiązujący w kartezjańskim układzie współrzędnych.

Okrąg

Niech $O=(x_0,y_0)$ będzie ustalonym punktem, zaś r ustaloną liczbą dodatnią. Okręgiem o środku w punkcie O i promieniu r jest zbiór punktów płaszczyzny spełniających równanie

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$
.

Jest to wzór geometrii analitycznej obowiązujący w kartezjańskim układzie współrzędnych.

W układzie współrzędnych biegunowych, równanie okręgu o promieniu r i środku O=(0,0), przyjmuje postać $\rho=r$ dla dowolnego kąta $\varphi\in[0,2\pi)$.

Okrąg

Elipsa

Elipsa w postaci kanonicznej o środku symetrii w punkcie $O=(x_0,y_0)$ opisana jest w układzie współrzędnych kartezjańskich równaniem

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1,$$

gdzie a i b są długościami półosi.

W układzie współrzędnych biegunowych (φ, ρ) elipsę o środku symetrii w punkcie O=(0,0) opisuje wzór

$$r^2 = \frac{a^2b^2}{a^2sin^2\varphi + b^2cos^2\varphi}.$$

Elipsa

Hiperbola

Hiperbola w postaci kanonicznej o środku symetrii w punkcie O = (x_0, y_0) opisana jest w układzie współrzędnych kartezjańskich równaniem

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1 \quad \text{albo} \quad -\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

gdzie a i b są długościami półosi (jedna z nich jest urojona), zaś proste $y=\frac{b}{a}(x-x_0)+y_0$ i $y=-\frac{b}{a}(x-x_0)+y_0$ są jej asymptotami.

W układzie współrzędnych biegunowych (φ,ρ) hiperbolę o środku symetrii w punkcie O = (0,0) opisuje wzór

$$r^2 = \frac{a^2b^2}{-a^2sin^2\varphi + b^2cos^2\varphi} \quad \text{albo} \quad r^2 = \frac{a^2b^2}{a^2sin^2\varphi - b^2cos^2\varphi}.$$

Hiperbola

Parabola

W kartezjańskim układzie współrzędnych parabola z osią symetrii równoległą do osi y, wierzchołkiem o współrzędnych $W=(x_0,y_0)$ i parametrze ogniskowym p>0 opisana jest równaniem:

$$(x-x_0)^2 = 4p(y-y_0).$$

Analogicznie, parabola z poziomą osią symetrii:

$$(y-y_0)^2 = 4p(x-x_0).$$

Parabola

Jaką krzywą stożkową przedstawia poniższe równanie?

$$x^2 + y^2 - 2x + 4y = 4$$

Naszkicuj tę krzywą w układzie współrzędnych.

Jaką krzywą stożkową przedstawia poniższe równanie?

$$x^2 + y^2 - 2x + 4y = 4$$

Naszkicuj tę krzywą w układzie współrzędnych.

Przykładowe powierzchnie drugiego stopnia

Powierzchnią drugiego stopnia nazywamy powierzchnię daną równaniem drugiego stopnia ze względu na współrzędne x,y,z:

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{23}yz + 2a_{13}zx + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0, \\$$

gdzie: $a_{11}, a_{22}, a_{33}, a_{12}, a_{23}, a_{13}, a_{14}, a_{24}, a_{34}, a_{44} \in \mathbb{R}$, przy czym przynajmniej jeden ze współczynników $a_{11}, a_{22}, a_{33}, a_{12}, a_{23}, a_{13}$ musi być różny od zera.

Paraboloida obrotowa

Wykresem funkcji

$$z = a(x^2 + y^2), \quad a \neq 0$$

jest paraboloida obrotowa tj. powierzchnia powstała z obrotu paraboli $z=ax^2$ wokół osi 0z.

Paraboloida obrotowa

Wykresem funkcji

$$z = a(x^2 + y^2), \quad a \neq 0$$

jest paraboloida obrotowa tj. powierzchnia powstała z obrotu paraboli $z = ax^2$ wokół osi 0z.

Powierzchnia stożkowa obrotowa

Powierzchnia zadana równaniem

$$z^2 = k^2(x^2 + y^2), \quad k \neq 0$$

jest powierzchnią stożkową obrotową tj. powierzchnią powstałą z obrotu prostej z = kx wokół osi Oz.

Powierzchnia stożkowa obrotowa

Powierzchnia zadana równaniem

$$z^2 = k^2(x^2 + y^2), \quad k \neq 0$$

jest powierzchnią stożkową obrotową tj. powierzchnią powstałą z obrotu prostej z = kx wokół osi 0z.

Sfera

Powierzchnia zadana równaniem

$$x^2 + y^2 + z^2 = R^2$$

jest sferą o środku w punkcie (0,0,0) i promieniu R > 0.

Sfera

Powierzchnia zadana równaniem

$$x^2 + y^2 + z^2 = R^2$$

jest sferą o środku w punkcie (0,0,0) i promieniu R > 0.

Naszkicuj bryłę ograniczoną powierzchniami $z=\sqrt{x^2+y^2}$ i $z=2-x^2-y^2$ w układzie współrzędnych.

Naszkicuj bryłę ograniczoną powierzchniami $z=\sqrt{x^2+y^2}$ i $z=2-x^2-y^2$ w układzie współrzędnych.

Naszkicuj bryłę ograniczoną powierzchniami $z=\sqrt{x^2+y^2}$ i $z=2-x^2-y^2$ w układzie współrzędnych.

Naszkicuj bryłę ograniczoną powierzchniami $z=\sqrt{x^2+y^2}$ i $z=2-x^2-y^2$ w układzie współrzędnych.

Naszkicuj bryłę ograniczoną powierzchniami $z=\sqrt{x^2+y^2}$ i $z=2-x^2-y^2$ w układzie współrzędnych.

$$\rho \le h \le 2 - \rho^2, \quad 0 \le \varphi < 2\pi, \quad 0 \le \rho \le 1$$