Vještačka inteligencija

Ispitati efikasnost TabPFN na

tipicnim tabelarnim dataset-ovim

(klasifikacija)
Juni, 2025

Camović Melida Rokša Amina Ahmatović Hadija

Faza 1:

Opis problema, osnovni pojmovi, korist rješavanja problema, kratak pregled postojećih dataset-ova

Faza 2:

Analiza trenutnog stanja problema, korištene metode vještačke inteligencije, postignuti rezultati

Osnovni pregled izabranog dataset-a,metode pretprocesiranja podataka, potencijalni rizici

Faza 4:

Izbor tehnologija, treniranje i evaluacija modela, poređenje rezultata

Faza 5:

Osvrt na postignute rezultate, poređenje sa radovima iz prethodne faze

Opis problema

Faza 1

Cilj ovog rada je evaluacija efikasnosti **TabPFN modela** na tipičnim **tabelarnim dataset-ovima** za **klasifikacijske zadatke**. Fokus je na važnosti tabelarnih podataka kao osnovnog oblika podataka u realnim sistemima, te na njihovoj ulozi u treniranju modela vještačke inteligencije.

Rad obuhvata pregled najčešće korištenih metoda za klasifikaciju tabelarnih podataka, treniranje modela koristeći TabPFN i analizu rezultata.

Posebna pažnja posvećena je specifičnostima i izazovima kvaliteta tabelarnih podataka, koji su često heterogeni i podložni greškama, što direktno utiče na pouzdanost modela.

Faza 1

Breast Cancer Wisconsin dataset

- Koristi se za predikciju da li je tumor dojke maligni ili benigni. To se određuje na osnovu različitih mjernih karakteristika dobijenih analizom ćelija biopsije.
- Kreiran je na osnovu digitalizovanih slika uzoraka tkiva dojke dovijenih finom iglenom aspiracijom.
- Sadrži ukupno 569 uzoraka gdje svaki uzorak
 predstavlja jednu pacijentkinju i njen nalaz biopsije.

Faza 1

PRIMA Indian Diabetes Dataset

- Popularan skup podataka za klasifikaciju, često upotrebljavan za mašinsko učenje za dijagnozu dijabetesa.
- Skup podataka sadrži dijagnostičke informacije prikupljene od ženskih pacijentica starijih od 21 godinu, Prima Indian porijekla.
- Dataset obuhvata 768 pojedinačnih uzoraka, tako da svaki red predstavlja po jednu pacijenticu.

Faza 1

Wine Quality Dataset

- Javno dostupan skup podataka i koristi se za višeklasnu klasifikaciju. Upotrebljava se za predikciju kvaliteta vina na osnovu njegovih hemijskih karakteristika.
- Sastoji od dvije podvrste vina- crno i bijelo vino.

 Dobijen je spajanjem Red Wine Quality i White

 Wine Quality datasetov-a.
- Cilj je klasifikacija vina po kvalitetu sa ocjenama od 3 do 9.
- Broj instanci ovog dataset-a je 6497 uzoraka od čega 4898 bijelih i 1599 za crnih vina.

Faza 1

Student performance dataset

- Koristi se za analizu faktora koji utiču na školski uspjeh.
- Radi se o skupini podataka iz dvije
 portugalske srednje škole koji je objavljen s
 ciljem modeliranja performanski konkretno
 za matematiku i portugalski jezik.
- U sklopu dataseta su uključeni razni faktori čiji uticaj na uspjeh učenika želimo ispitati.

Pregled stanja u oblasti

Faza 2

"TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second"

- Transformer model treniran na milionima sintetičkih zadataka za brzu klasifikaciju malih tabularnih datasetova.
- Bez dodatnog treniranja, precizno generalizuje na neviđene podatke.
- Efikasan i brz, koristi GPT-2 stil arhitekture.

"Scaling TabPFN: Sketching and Feature Selection for Tabular Prior-Data Fitted Networks"

- Rješava problem skalabilnosti
 TabPFN-a na veće datasetove
 (10k+ instanci).
- Uvodi Sketching (sažetak
 podataka) i automatsku selekciju
 najvažnijih karakteristika.
- Smanjuje memorijske zahtjeve uz zadržavanje performansi.

"TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems"

- Unaprijeđena verzija fokusirana na robustnost i skalabilnost.
- Koristi bagging i dinamički
 enkoder za adaptaciju na šum i
 neuravnotežene klase.
- Dokazana superiornost na preko
 200 realnih datasetova.

Izbor i analiza dataset-a

Faza 3

Adult Incomne dataset, poznat i pod nazivom Census Incomne dataset

- Realni kontekst i izazovnost
- Mješoviti tipovi podataka
- Raspoloživost i obim podataka
- Distribucija klasa i
 balansiranje

 Jasna interepretacija

Jedan od najpoznatijih i često korištenih skupova podataka naročito kada je riječ o klasifikacionim problemima u oblasti društveno-ekonomskog predviđanja.

Klasifikacija koja se tiče ovog dataset-a omogućava primjenu različitih modela mašinskog učenja, pri čemu se na ovom projektu poseban akcenat stavlja na ispitivanje efikasnosti modela TabPFN-transformacijskog Bayesovog prediktora dizajniranog za rad sa tabelarnim podacima.

rezultata

Izbor i analiza dataset-a

Faza 3

Dataset ukupno ima 32 561 reda tj.instance. Svaka instanca predstavlja demografske i ekonomske karakteristike jedne osobe.

U dataset-u se nalazi 14 ulaznih atributa i jedna ciljna varijabla - income.

Riječ o binarnoj klasifikaciji, tačnije cilj je predvidjeti da li osoba zarađuje:

- <=50K (manje ili jednako 50 000 USD godišnje)
- >50K (više od 50 000 USD godišnje)

Pregled atributa

Atribut age workclass fnlwgt eduction education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income

Faza 3

- Starost osobe
- Tip poslodavca
- Statistički težinski faktor
- Nivo obrazobanja
- Brojčana reprezentacija nivoa obrazovanja
- Bračni status
- Vrsta zanimanja
- Povezanost sa domaćinstom
- Rasa
- Pol
- Kapitalna dobit u prethodnoj godini
- Kapitalni gubitak u prethodnoj godini
- Broj radnih sati nedeljno
- Zemlja porijekla
- Klasa prihoda

Analiza dataset-a

Faza 3

Klasa <=50:

- Sadrži 24 720 instanci
- Čini 75.9% svih uzoraka
- Klasa je tri puta brojnija od klase >50K

Klasa >50K:

- Sadrži 7 841 instancu
- Čini 24.1% svih uzoraka
- Zauzima jednu trećinu ukupnih uzoraka

Osnovne metode pretprocesiranja

Faza 3

1. Rukovanje nedostajućim vrijednostima

```
import pandas as pd
# Učitavanje CSV fajl-a
df = pd.read_csv('adult.csv')
# Prikaz vrijednosti '?' u atributima u kojima ih ima
print("Broj '?' po kolonama:")
print((df == '?').sum())
# Kolone koje sadrže '?' kao nedostajuće vrijednosti
missing value_cols = ['workclass', 'occupation', 'native.country']
# Zamjena '?' sa 'Unknown'
for col in missing value_cols:
   df[col] = df[col].replace('?', 'Unknown')
# Provjera da li su sve '?' uspješno zamijenjene
print("\nPreostale '?' vrijednosti:")
print((df == '?').sum())
```

Zamjena nedostajućih vrijednosti vrijednošću 'Unknown'

Osnovne metode pretprocesiranja

Faza 3

2. Enkodiranje kategorijskih atributa

One-Hot Encoding

Ordinal Encoding

```
# Kategorijske kolone (bez ciljne varijable)
categorical_cols - [
    workclass,
    marital status
    'occupation',
    'relationship',
    'race',
    sex
    'native.country'
# Label encoding za kategorijske kolone
label_encoders = ()
for col in categorical cols:
    le - LabelEncoder()
    df[col] = le.fit_transform(df[col])
    label_encoders[col] = le # čuvamo enkoder ako bude trebalo za dekodiranje
# Provjera
df[categorical_cols].head()
```

	workclass	marital.status	occupation	relationship	race	sex	native.country
0	7	6	14	1	4	0	38
1	3	6	3	1	4	0	38
2	7	6	14	4	2	0	38
3	3	0	6	4	4	0	38
4	3	5	9	3	4	0	38

3. Uklanjanje atributa

Atribut fnlwgt (final weight) ima statički značaj i kao takav nije dobar prediktor ciljne varijable.

Atribut eduction se uklanja iz razloga što bi ga trebalo enkodirati sa Ordinal Endocing i u tom slučaju bi imali dva praktično ista atributa.

4. Enkodiranje ciljne varijable income

Ciljna varijabla je tekstualnog formata (<=50K, >50K). Za potrebe binarna klasifikacije potrebno ju je enkodirati.

```
from sklearn.preprocessing import LabelEncoder
# Enkodiranje ciljne varijable
le_target = LabelEncoder()
df['income'] = le_target.fit_transform(df['income'])
# Prikaz mapiranja vrijednosti
print("Mapiranje klasnih oznaka:")
for original, encoded in zip(le_target.classes_, le_target.transform(le_target.classes_)):
    print(f"{original} → {encoded}")
Mapiranje klasnih oznaka:
<=50K → 0
>50K → 1
```

Napredna pretprocesiranja

Faza 3

- Grupisanje rijetkih
- kategorija

 Standardizacija numeričkih klasa
- (v) Log-transformacija visoko asimetričnih atributa
- (V) Obrada
- Outliera Klasni disbalans

- Disbalans klasa
- Gubitak informacija kod zamjene '?' sa 'Unknown'
- Pitanje semantičke tačnosti Label Encoding-a
- Nelinearnost distribucije pojedinih atributa
- Utjecaj veličine uzorka

Priprema podataka

Faza 4

Pripremljeni su podaci u tri različite veličine podskupova: 10 000, 5 000 i 500 instanci.

```
# Stratifikovano uzorkovanje iz cijelog df
df_10000, _ = train_test_split(
    df,
    train size=10000.
    stratify=df['income'],
    random_state=10000
X_10000 = df_10000.drop(columns=['income'])
y 10000 = df 10000['income']
X_10000_np = X_10000.to_numpy().astype('float32')
y 10000 np = y 10000.to numpy().astype('int64')
X_train_10000, X_test_10000, y_train_10000, y_test_10000 = train_test_split(
    X 10000 np,
    y_10000_np,
    test_size=0.2,
    stratify=y_10000_np,
    random_state=42
```

Treniranje i evaluacija modela

Faza 4

Ovaj model koristi **transformersku** arhitekturu što znači da se temelji na dubokoj neuronskoj mreži.

```
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Koristi se uređaj: {device}")

# 1. Učitavanje unaprijed treniranog TabPFN modela
model = TabPFNClassifier(device=device)
model.fit(X_train_10000, y_train_10000)

# 2. Predikcija nad test skupom
y_pred_10000 = model.predict(X_test_10000)

# 3. Evaluacija modela
accuracy = accuracy_score(y_test_10000, y_pred_10000)
print(f"\n Tačnost (accuracy) modela na test skupu (10k uzorak): {accuracy:.4f}\n")

# Detaljan izvještaj
print("Klasifikacioni izvještaj:\n")
print(classification_report(y_test_10000, y_pred_10000, target_names=['<=50K', '>50K']))
```

Kod za treniranje i evaluaciju modela

Koristene metrike

Faza 4

Precision

(Recall

F1-scor e

Support

Tačnost (acc	uracy) model	a na test	skupu (10k	uzorak):	0.8625
Klasifikacion	i izvještaj:				
	precision	recall	f1-score	support	
<=50K	0.88	0.94	0.91	1518	
>50K	0.77	0.61	0.68	482	
accuracy			0.86	2000	
macro avg	0.83	0.78	0.80	2000	
weighted avg	0.86	0.86	0.86	2000	

Rezultati klasifikacije TabPFN modela na 10 000 instanci

Tačnost (accuracy) modela na test skupu (5k uzorak): 0.8530

Klasifikacioni izvještaj:

	precision	recall	f1-score	support
<=50K	0.88	0.93	0.91	759
>50K	0.74	0.61	0.67	241
accuracy			0.85	1000
macro avg	0.81	0.77	0.79	1000
weighted avg	0.85	0.85	0.85	1000

Rezultati klasifikacije TabPFN modela na 5 000 instanci

Tačnost (accuracy) Random Forest modela na test skupu (5.000 uzorak): 0.8330

Klasifikacioni izvještaj za Random Forest:

	precision	recall	f1-score	support
<=50K	0.86	0.93	0.89	759
>50K	0.70	0.53	0.61	241
accuracy			0.83	1000
macro avg	0.78	0.73	0.75	1000
weighted avg	0.82	0.83	0.82	1000

Faza 4

Poređenje rezultata

Različiti

podskupovi
Random Forest

model

Rezultati klasifikacije RandomForest modela na 5 000 instanci

Tačnost (accuracy) modela na test skupu (500 uzorak): 0.8800

Klasifikacioni izvještaj:

		precision	recall	f1-score	support
<=	50K	0.89	0.96	0.92	76
0	50K	0.83	0.62	0.71	24
accur	acy			0.88	100
macro	avg	0.86	0.79	0.82	100
weighted	avg	0.88	0.88	0.87	100

Rezultati klasifikacije TabPFN modela na 500 instanci

Tačnost (accuracy) Random Forest modela na test skupu (500 uzorak): 0.9000

Klasifikacion	ni izvještaj	za Random	Forest:	
	precision	recall	f1-score	support
<=50K	0.90	0.97	0.94	76
>50K	0.89	0.67	0.76	24
accuracy			0.90	100
macro avg	0.90	0.82	0.85	100
weighted avg	0.90	0.90	0.89	100

Rezultati klasifikacije RandomForest modela na 500 instanci

Faza 4

Poređenje rezultata

Različiti

podskupovi Random Forest

model

Analiza rezultata

Faza 4

TabPFN model je dostigao tačnost od 83.33% na testnom skupu

```
Koristi se uređaj: cuda
Tačnost modela (1500 uzoraka): 0.8333
Klasifikacioni izvještaj:
              precision
                          recall f1-score
                                              support
                                       0.07
Premium User
                   0.67
                             0.04
                                                   51
   Free User
                                       0.91
                  0.84
                             1.00
                                                  249
                                       0.83
                                                  300
    accuracy
                   0.75
                             0.52
                                       0.49
   macro avg
                                                  300
weighted avg
                   0.81
                                       0.77
                             0.83
                                                  300
```

Rezultat klasifikacije dodatno potvrđuje da TabPFN nije prilagođen radu sa neuravnoteženim podacima

Cjelokupni osvrt

Model ima dobre performanse u rješavanju problema klasifikacije tabelarnih podataka

Ima izazove sa nebalansiranim dataset-ovima i prioritetizira dominantnije klase

Kao unaprjeđenje ovog rada bi mogli dodati

Faza 5

- Testiranje na većem skupu podataka
- Poređenje TabPFN v1 i
 TabPFN v2 modela
- Korištenje datasetova kojim nedostaju mnogi podaci
- Klasifikacija balansiranih
 klasa

Zaključak

Faza 5

TabPFN je napredan alat za klasifikaciju tabelarnih podataka. U određenim scenarijima je pokazao bolje performanse od tradicionalnih modela klasifikacije poput Random Forest-a.

Najistaknutija karakteristika TabPFN-a je upravno in-context učenje koje elimini<u>še potrebu za dodatnim treniranj</u>em modela.

Hvala na paznji!