2024 年普通高等学校招生全国统一考试 (新课标 I 卷)

数学参考答案与解析

本参考答案与解析共 7 页, 19 小题, 满分 150 分.

注意事项:

- 1. 答题前, 先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上, 并将准 考证号条形码粘贴在答题卡上的指定位置。考试结束后,请将本试卷和答题卡一并上交。
- 2. 选择颗的作答:每小颗选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。 写在试卷、草稿纸和答题卡上的非答题区域均无效。
- 3. 填空颢和解答颢的作答: 用黑色签字笔直接答在答颢卡上对应的答题区域内。写在试卷、 草稿纸和答题卡上的非答题区域均无效。
- 一、选择题: 本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
- 1. 已知集合 $A = \{x | -5 < x^3 < 5\}, B = \{-3, -1, 0, 2, 3\}, 则 A \cap B = \{-3, -1, 0, 2, 3\},$

A. $\{-1,0\}$

B. $\{2,3\}$

C. $\{-3, -1, 0\}$ D. $\{-1, 0, 2\}$

【解析】 $-5 < x^3 < 5 \Rightarrow -5^{\frac{1}{3}} < x < 5^{\frac{1}{3}}$,而 $1 < 5^{\frac{1}{3}} < 2$,因此 $A \cap B = \{-1, 0\}$. 故答案为 A.

2. 若
$$\frac{z}{z-1} = 1 + i$$
,则 $z =$

A. -1 - i

B. -1 + i

C. 1-i D. 1+i

【解析】两边同时减 1 得: $\frac{1}{z-1} = i$, 进而 $z = 1 + \frac{1}{i} = 1 - i$.

故答案为 C.

3. 已知向量 a = (0,1), b = (2,x). 若 $b \perp (b-4a), 则 x =$

A. -2

B. -1

C. 1

D. 2

【答案】D.

【解析】即 $b \cdot (b-4a) = 0$. 代入得 4 + x(x-4) = 0, 即 x = 2. 故答案为 D.

4. 已知 $\cos(\alpha + \beta) = m$, $\tan \alpha \tan \beta = 2$, 则 $\cos(\alpha - \beta) =$

A. -3m

B.
$$-\frac{m}{3}$$

C.
$$\frac{m}{3}$$

D. 3m

【答案】A.

【解析】通分 $\sin \alpha \sin \beta = 2\cos \alpha \cos \beta$. 积化和差 $\frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta)) = 2\cdot\frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$ $(\beta) + \cos(\alpha + \beta)$). $\mathbb{R} \cos(\alpha - \beta) = -3\cos(\alpha + \beta) = -3m$. 故选 A.

5. 已知圆柱和圆锥的底面半径相等,侧面积相等,且他们的高均为 $\sqrt{3}$,则圆锥的体积为

A. $2\sqrt{3}\pi$

B. $3\sqrt{3}\pi$

C. $6\sqrt{3}\pi$

D. $9\sqrt{3}\pi$

【答案】B.

【解析】设二者底面半径为 r, 由侧面积相等有 $\pi r \sqrt{r^2 + 3} = 2\pi r \cdot \sqrt{3}$, 解得 r = 3. 故 $V = \frac{1}{3} \cdot \pi r^2 \cdot \sqrt{3} = \frac{\sqrt{3}}{3} \pi \times 9 = 3\sqrt{3}\pi.$

故答案为 B.

6. 已知函数为
$$f(x) = \begin{cases} -x^2 - 2ax - a, & x < 0 \\ e^x + \ln(x+1), & x \ge 0 \end{cases}$$
 在 **R** 上单调递增,则 a 的取值范围是

A. $(-\infty,0]$

B. [-1,0]

C. [-1, 1]

D. $[0, +\infty)$

【答案】B.

【解析】 $x \ge 0$ 时, $f'(x) = e^x + \frac{1}{1+x} > 0$, 故 f(x) 在 $[0,+\infty)$ 上单调递增. 而 y = $-x^2-2zx-a$ 的对称轴为直线 x=-a, 故由 f(x) 在 $(-\infty,0)$ 上单调递增可知 $-a\geqslant 0\Rightarrow a\leqslant 0$. 在 x=0 时应有 $-x^2-2ax-a \leq e^x + \ln(x+1)$,解得 $a \geq -1$,故 $-1 \leq a \leq 0$. 故答案为 B.

7. 当 $x \in [0, 2\pi]$ 时,曲线 $y = \sin x$ 与 $y = 2\sin\left(3x - \frac{\pi}{6}\right)$ 的交点个数为

A. 3

B. 4

C. 6

D. 8

【答案】C.

【解析】五点作图法画图易得应有 6 个交点. 故答案为 C.

8. 已知函数 f(x) 的定义域为 \mathbf{R} , f(x) > f(x-1) + f(x-2), 且当 x < 3 时 f(x) = x, 则下 列结论中一定正确的是

A. f(10) > 100

B. f(20) > 1000 C. f(10) < 1000

D. f(20) < 10000

【答案】B.

【解析】 $f(1) = 1, f(2) = 2 \Rightarrow f(3) > 3 \Rightarrow f(4) > 5 \Rightarrow f(5) > 8 \Rightarrow f(6) > 13 \Rightarrow \cdots \Rightarrow$ $f(11) > 143 \Rightarrow f(12) > 232 \Rightarrow f(13) > 300 \Rightarrow f(14) > 500 \Rightarrow f(15) > 800 \Rightarrow f(16) > 1000 \Rightarrow f(16) > 1$ $\cdots \Rightarrow f(20) > 1000$

故答案为 B.

- 二、选择题: 本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题 目要求. 全部选对的得 6 分, 部分选对的得部分分, 有选错的得 0 分.
- 9. 为了解推动出口后的亩收入(单位:万元)情况,从种植区抽取样本,得到推动出口后亩 收入的样本均值为 $\bar{x}=2.1$,样本方差 $s^2=0.01$. 已知该种植区以往的亩收入 x 服从正态分布 $M(1.8,0.1^2)$,假设推动出口后的亩收入 Y 服从正态分布 $N(\bar{x},s^2)$,则(若随机变量 Z 服从正 态分布 $N(\mu, \sigma^2)$,则 $P(Z < \mu + \sigma) \approx 0.8413$)

A.
$$P(X > 2) > 0.2$$

B.
$$P(X > 2) < 0.5$$

B.
$$P(X > 2) < 0.5$$
 C. $P(Y > 2) > 0.5$ D. $P(Y > 2) < 0.8$

D.
$$P(Y > 2) < 0.8$$

【答案】BC.

【解析】由所给材料知两正态分布均有 $\sigma = 0.1$ 及正态分布的对称性得:

P(X > 2) < P(X > 1.9) = 1 - P(X < 1.9) = 1 - 0.8413 < 0.2, A 错误; P(X > 2) < P(X > 2)1.8) = 0.5, B 正确;

P(Y > 2) > P(Y > 2.1) = 0.5, C 正确;

P(Y > 2) = P(Y < 2.2) = 0.8413 > 0.8, D 错误.

故答案为 BC.

10. 设函数 $f(x) = (x-1)^2(x-4)$, 则

A. x = 3 是 f(x) 的极小值点

C. $\pm 1 < x < 2$ 时, -4 < f(2x-1) < 0 D. $\pm -1 < x < 0$ 时, f(2-x) > f(x)

D.
$$\leq -1 < x < 0$$
 \forall , $f(2-x) > f(x)$

【答案】ACD.

【解析】计算知 f'(x) = 3(x-1)(x-3). 故 $x \in (1,3)$ 时 f(x) 单调减, 其余部分单调增. 由 此知 x = 3 为 f(x) 极小值点, A 正确;

由上知 $x \in (0,1)$ 时 f(x) 单调增, 又此时 $x > x^2$, 故 $f(x) > f(x^2)$, B 错误;

此时 $2x-1 \in (1,3)$, 故 $f(2x-1) \in (f(3),f(1)) = (-4,0)$, C 正确;

由
$$f(2-x) = (x-1)^2(-x-2)$$
, 故 $f(2-x) - f(x) = 2(1-x)^3 > 0$, D 正确. 故答案为 ACD.

11. 造型 \propto 可以看作图中的曲线 C 的一部分. 已知 C 过坐标原点 O, 且 C 上的点满足横坐标 大于 -2; 到点 F(2,0) 的距离与到定直线 x = a(a < 0) 的距离之积为 4, 则

A. a = -2

- B. 点 $(2\sqrt{2},0)$ 在 C 上
- C. C 在第一象限的点的纵坐标的最大值为 1
- D. 当点 (x_0, y_0) 在 C 上时, $y_0 \leqslant \frac{4}{x_0 + 2}$

【答案】ABD.

【解析】由原点 O 在曲线 C 上且 |OF|=2 知 O 到直线 x=a 距离为 2, 由 a<0 知 a=-2, A 正确;

由 x > -2 知 C 上点满足 $(x+2)\sqrt{(x-2)^2+y^2} = 4$, 代 $(2\sqrt{2},0)$ 知 B 正确;

解出
$$y^2 = \frac{16}{(x+2)^2} - (x-2)^2$$
, 将左边设为 $f(x)$, 则 $f'(2) = -0.5 < 0$. 又有 $f(2) = 1$, 故存

 $x_0 \in (0,1)$ 使 $f(x_0) > 1$. 此时 y > 1 且在第一象限, C 错误; 又 $y^2 = \frac{16}{(x+2)^2} - (x-2)^2 < \frac{16}{(x+2)^2}$, 故 $y_0 < \frac{4}{(x_0+2)}$, D 正确. 故答案为 ABD.

三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分.

12. 设双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的左右焦点分别为 F_1, F_2 ,过 F_2 做平行于 y 轴的直线交 C 于 A, B 两点,若 $|F_1A| = 13, |AB| = 10$,则 C 的离心率为_______.

【答案】 $\frac{3}{2}$.

【解析】根据对称性 $|F_2A|=\frac{|AB|}{2}=5$,则 $2a=|F_1A|-|F_2A|=8$,得到 a=4. 另外根据 勾股定理 $2c=|F_1F_2|=12$,得到 c=6,所以离心率 $e=\frac{c}{a}=\frac{3}{2}$.

13. 若曲线 $y = e^x + x$ 在点 (0,1) 处的切线也是曲线 $y = \ln(x+1) + a$ 的切线,则 $a = \underline{\hspace{1cm}}$... 【答案】 $\ln 2$.

【解析】设曲线分别为 y_1, y_2 ,那么 $y_1' = e^x + 1$,得到切线方程 y - 1 = 2x,根据 $y_2' = \frac{1}{x+1}$ 得到切点横坐标为 $-\frac{1}{2}$,代入 y_2 得到 $a = \ln 2$.

【答案】 $\frac{1}{2}$.

【解析】. 由对称性,不妨固定乙出卡片顺序依次为 (2,4,6,8),为了简便,设甲依次出 (a,b,c,d), $\{a,b,c,d\} \in \{1,3,5,7\}$. 首先注意到 8 是最大的,故甲不可能得四分. 若甲得三分,则从 c 到 a 均要求得分,比较得必有 c=7,b=5,a=3,d=1 共一种情况;若甲得两分,则讨论 在何处得分:若在 b,c 处,则同样 c=7,b=5,进而 a=1,d=3,共一种;若在 a,c 处,则必有 $c=7,a\neq1,b\neq5$,在 b=1 时有全部两种,在 d=1 时仅一种,共三种;若在 a,b 处,则 $b\in\{5,7\},a\neq1,c\neq7$. 当 a=5 时,由上述限制,c=1 时有两种,d=1 时仅一种;当 a=7 时,a,c,d 全排列六种中仅 a=1 的两种不行,故有四种,此情形共八种. 故共有 1+3+8=12 种,又总数为 4!=24,故所求为 $1-\frac{12}{24}=\frac{1}{2}$.

四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.

15. (13 分)

记 $\triangle ABC$ 的内角 A,B,C 的对边分别为 a,b,c, 已知 $\sin C = \sqrt{2}\cos B$, $a^2+b^2-c^2 = \sqrt{2}ab$.

- (1) 求 B;
- (2) 若 $\triangle ABC$ 的面积为 $3+\sqrt{3}$,求 c.

【解析】

- (1) 根据余弦定理 $a^2+b^2-c^2=2ab\cos C=\sqrt{2}ab$,那么 $\cos C=\frac{\sqrt{2}}{2}$,又因为 $C\in(0,\pi)$,得到 $C=\frac{\pi}{4}$,此时 $\cos B=\frac{1}{2}$,得到 $B=\frac{\pi}{3}$.
- (2) 根据正弦定理 $b = \frac{c \sin B}{\sin C} = \frac{\sqrt{6}}{2}c$,并且 $\sin A = \sin(B+C) = \sin B \cos C + \cos B \sin C = \frac{\sqrt{6} + \sqrt{2}}{4}$,那么 $S = \frac{1}{2}bc \sin A = 3 + \sqrt{3}$,解得 $c = 2\sqrt{2}$.
- 16. (15分)

已知 A(0,3) 和 $P\left(3,\frac{3}{2}\right)$ 为椭圆 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$ 上两点.

- (1) 求 C 的离心率;
- (2) 若过 P 的直线 l 交 C 于另一点 B,且 $\triangle ABP$ 的面积为 9,求 l 的方程.

【解析】

- (1) 直接代入后解方程,得到 $a^2=12, b^2=9, c^2=3$,所以 $e^2=\frac{1}{4}$,离心率 $e=\frac{1}{2}$
- (2) 设 $B(x_0,y_0)$,则 $\overrightarrow{AB} = \left(x_0 3, y_0 \frac{3}{2}\right)$, $\overrightarrow{AP} = \left(3, -\frac{3}{2}\right)$. 得到 9 = S $= \frac{1}{2} \left| -\frac{3}{2}(x_0 3) 3\left(y_0 \frac{3}{2}\right) \right|$,或者 $x_0 + 2y_0 = -6$,与椭圆方程联立,得到 $B_1(-3, -15)$, $B_2(0, -3)$,对应的直线方程 $y = \frac{1}{2}x$ 或者 $y = \frac{3}{2}x 3$.

17. (15分)

如图, 四棱锥 P-ANCD 中, $PA\perp$ 底面 ABCD, PA=AC=2, BC=1, $AB=\sqrt{3}$.

- (1) 若 $AD \perp AB$, 证明: AD / / 平面 PBC;
- (2) 若 $AD \perp DC$,且二面角 A CP D 的正弦值为 $\frac{\sqrt{42}}{7}$,求 AD.

【解析】

- (1) 由 $PA\perp$ 面 ABCD 知 $PA\perp AD$, 又 $AD\perp PB$, 故 $AD\perp$ 面 PAB. 故 $AD\perp AB$, 又 由勾股定理知 $AB\perp BC$, 故 AD//BC, 进而 AD// 面 PBC.
- (2) 由 $PA\bot$ 面 ABCD. $PA\bot$ AC, $PC=2\sqrt{2}$, 设 AD=t, 则 $PD=\sqrt{4+t^2}$, $CD=\sqrt{4-t^2}$, 由勾股定理知 $PD\bot$ CD. 则 $S_{\triangle PCD}=\frac{1}{2}\sqrt{16-t^4}$, $S_{\triangle ACD}=\frac{1}{2}t\sqrt{4-t^2}$,

设 A 到 PCD 距离为 h. 由等体积, $S_{\triangle PCD} \cdot h = S_{\triangle ACD} \cdot PA$. 代入解出 $h = \frac{2t}{\sqrt{4+t^2}}$. 考虑 A 向 CP 作垂线 AM, 二面角设为 θ 则 $h = AM \sin \theta = \frac{2\sqrt{21}}{7}$. 由此解出 $t = \sqrt{3}$.

18. (17分)

已知函数 $f(x) = \ln \frac{x}{2-x} + ax + b(x-1)^3$.

- (1) 若 b = 0, 且 $f'(x) \ge 0$, 求 a 的最小值;
- (2) 证明: 曲线 y = f(x) 是中心对称图形;
- (3) 若 f(x) > -2 当且仅当 1 < x < 2, 求 b 的取值范围.

【解析】

函数定义域 (0,2).

(1) 当
$$b = 0$$
 时, $f'(x) = \frac{1}{x} + \frac{1}{2-x} + a = \frac{2}{x(2-x)} + a \ge 0$ 恒成立. 令 $x = 1$ 得 $a \ge -2$. 当 $a = -2$ 时, $f'(x) = \frac{2(x-1)^2}{x(2-x)} \ge 0$, 从而 a 的最小值为 -2 .

$$(2) f(x) + f(2-x) = \ln \frac{x}{2-x} + ax + b(x-1)^3 + \ln \frac{2-x}{x} + a(2-x) + b(1-x)^3 = 2a = 2f(1),$$
且定义域也关于 1 对称, 因此 $y = f(x)$ 是关于 $(1,a)$ 的中心对称图形.

(3) 先证明
$$a=-2$$
. 由题意, $a=f(1)\leqslant -2$. 假设 $a<-2$, 由 $f\left(\frac{2e^{|b|+1}}{1+e^{|b|+1}}\right)>$ $|b|+1-|b|=1$,应用零点存在定理知存在 $x_1\in\left(1,\frac{2e^{|b|+1}}{1+e^{|b|+1}}\right)$, $f(x_1)=0$,矛盾. 故 $a=-2$. 此时, $f'(x)=\frac{(x-1)^2}{x(2-x)}[3bx(2-x)+2]$. 当 $b\geqslant -\frac{2}{3}$, $f'(x)\geqslant \frac{(x-1)^2}{x(2-x)}(2-4x+2x^2)\geqslant 0$,且不恒为 0,故 $f(x)$ 在 $(0,2)$ 递增. $f(x)>-2=f(1)$ 当且仅当 $1< x<2$,此时结论成立. 当 $b<-\frac{2}{3}$,令 $x_0=\frac{3b-\sqrt{9b^2-6b}}{3b}\in(0,1)$, $f'(x_0)=0$,且 $f'(x)<0$,当 $x\in(x_0,1)$,因此 $f(x)$ 在 $(x_0,1)$ 递减,从而 $f(x_0)>f(1)=-2$,而 $x_0\notin(1,2)$ 此时结论不成立. 综上, b 的取值范围是 $\left[-\frac{2}{3},+\infty\right)$.

19. (17分)

设 m 为正整数,数列 $a_1,a_2,\cdots a_{4m+2}$ 是公差不为 0 的等差数列,若从中删去两项 a_i 和 $a_j(i< j)$ 后剩余的 4m 项可被平均分为 m 组,且每组的 4 个数都能构成等差数列,则称数列 $a_1,a_2,\cdots a_{4m+2}$ 是 (i,j)—可分数列.

- (1) 写出所有的 (i, j), $1 \le i \le j \le 6$, 使数列 $a_1, a_2, \dots a_6$ 是 (i, j)—可分数列;
- (2) 当 $m \ge 3$ 时,证明:数列 $a_1, a_2, \cdots a_{4m+2}$ 是 (2, 13)—可分数列;
- (3) 从 $1,2,\cdots 4m+2$ 中一次任取两个数 i 和 j(i < j),记数列 $a_1,a_2,\cdots a_{4m+2}$ 是 (i,j)—可分数列的概率为 P_m ,证明 $P_m > \frac{1}{8}$.

【解析】

记 $\{a_n\}$ 的公差为 d.

- (1) 从 a_1, a_2, \dots, a_6 中去掉两项后剩下 4 项, 恰构成等差数列, 公差必为 d, 否则原数列至少有 7 项. 因此剩下的数列只可能为 $a_1, a_2, a_3, a_4, a_2, a_3, a_4, a_5, a_6, a_6$ 三种可能, 对应的 (i, j) 分别为 (5, 6), (1, 6), (1, 2).
- (2) 考虑分组 (a_1, a_4, a_7, a_{10}) , (a_3, a_6, a_9, a_{12}) , $(a_5, a_8, a_{11}, a_{14})$, $(a_{4k-1}, a_{4k}, a_{4k+1}, a_{4k+2})$ (4 $\leq k \leq m$), (当 m=3 时只需考虑前三组即可) 即知结论成立.
- (3) 一方面, 任取两个 i,j(i < j) 共有 C^2_{4m+2} 种可能. 另一方面, 再考虑一种较为平凡的情况: i-1,j-i-1 均可被 4 整除, 此时, 只要依次将剩下的 4m 项按原顺序从头到尾排一列, 每四个截取一段, 得到 m 组公差为 d 的数列, 则满足题意, 故此时确实是 (i,j)— 可分的. 接着计算此时的方法数. 设 $i=4k+1(0 \le k \le m)$, 对于每个 k,j 有 $\frac{(4m+2)-(4k+1)-1}{4}+1=m-k+1(种)$, 因此方法数为

$$\sum_{k=1}^{m} (m-k+1) = \frac{(m+1)(m+2)}{2}.$$

当 m=1,2, 已经有 $\frac{(m+1)(m+2)}{2}/C_{4m+2}^2>\frac{1}{8}$. 下面考虑 $m\geqslant 3$. 我们证明: 当 i-2,j-i+1 被 4 整除,且 j-i+1>4 时,数列是 (i,j)— 可分的. 首先我们将 a_1,a_2,\cdots,a_{i-2} ,及 $a_{j+2},a_{j+3},\cdots,a_{4m+2}$ 顺序排成一列,每 4 个排成一段,得到一些公差为 d 的四元数组,因此我们只需考虑 $a_{i-1},a_{i+1},a_{i+2},\cdots,a_{j-1},a_{j+1}$ 这 j-i+1 个数即可. 为书写方便,我们记 j-i=4t-1(t>1),并记 $b_n=a_{n+i-2}$,即证 $b_1,b_3,b_4,\cdots,b_{4t},b_{4t+2}$ 可被划分成若干组.

引理: 设 j-1 能被 4 整除. 若 b_1,b_2,\cdots,b_{j+1} 是 (2,j)- 可分的,则 b_1,b_2,\cdots,b_{j+9} 是 (2,j+8)- 可分的.

引理证明: 将 b_1, b_2, \dots, b_{j+1} 去掉 b_2, b_j 后的 $\frac{j-1}{4}$ 组四元组再并上 $(b_j, b_{j+2}, b_{j+4, b_{j+6}})$, $(b_{j+3}, b_{j+5}, b_{j+7}, b_{j+9})$ 即证.

回原题. 由 (2), b_1, \dots, b_{14} 是 (2,13)— 可分数列,且 (b_1, b_3, b_5, b_7) 和 (b_4, b_6, b_8, b_{10}) 知 b_1, \dots, b_{10} 是 (2,9)— 可分数列,因而结合引理知 $b_1, b_3, b_4, \dots, b_{4t}, b_{4t+2}$ 可被划分成若干组,由此结论成立. 计算此时的方法数. 设 $i=4k+2(0\leqslant k\leqslant m-1)$,则此时 j 有 $\frac{(4m+2)-(4k+2)}{4}-1=m-k-1$ 种,因此方法数为

$$\sum_{k=0}^{m-1}(m-k-1)=\frac{m(m-1)}{2}.$$

因此我们有

$$p_m \geqslant \frac{m(m-1) + (m+1)(m+2)}{2C_{m+1}^2} > \frac{1}{8}.$$