1. **FIGURE 1** shows chromosomal behaviour during two stages of cell division in an organism.

FIGURE 1

(a) Identify the types of cell division for Cell **A** and Cell **B**.

[2 marks]

Answer	Marks
A: mitosis	1
B: meiosis/meiosis I	1

(b) Give **ONE** difference between stages shown in Cell **A** and Cell **B**.

[1 mark]

Answer	Marks
In Cell A, sister chromatids/chromosomes align at metaphase plate while in Cell	
B, homologous chromosomes align at metaphase plate	1

(c) How many chromosomes in each daughter cell of cell $\bf A$ and cell $\bf B$ after its complete cell division?

[2 marks]

Answer	N	Marks
Cell A: 4		1
Cell B: 2		1

(d) Explain what happens if cell A fail to divide its cytoplasm?

Answer	Marks
Cell A will have more than one nucleus with connected cytoplasm	1
Tetraploid/4n cell is produced	1

- 2. (a) The phenotypes of watermelon are controlled by two genes, *R* (fruit shape) and *L* (skin type). Round fruit is dominant to long fruit and smooth skin is dominant to wrinkled skin. The genes are located on the different chromosome.
- (i) Identify the genotype of heterozygous round fruit with homozygous smooth skin watermelon.

[1 mark]

Answer	Marks
RrLL	1

(ii) Genotype of watermelon answered in (a)(i) were crossed with homozygous recessive watermelon.

Use a punnett square to show the cross and the ratio of offspring phenotypes.

[4 marks]

Answer				Marks
P/ Parental genotype :	F	RrLL X	rrll	1
G/ Gamete :		RL rL	rl	1
$\mathbf{F_1}$ genotype (Punnett square) :			,	
		RL	rL	1
	rl	RrLl	rrLl	
F ₁ Phenotypic ratio :	1 r	ound, smooth: 1	round wrinkled	1

- (b) Haemophilia is an X-linked recessive disorder that prevents blood clotting.
- (i) Define X-linked recessive inheritance.

[1 marks]

Answer	Marks
Genes located on X chromosome// Mutated gene/recessive allele on X	1
chromosomes	

(ii)Peter, a haemophiliac male, marries Diana, whose normal but carry recessive allele on her X chromosome. Using suitable symbols, draw a genetic diagram and a Punnett square to show the possible genotypes and phenotypes of offspring including the ratio of their phenotypes.

[6 marks]

Answer				Marks
	Diana	Peter		
Parental genot	$ype/P: X^{H}X^{h} X$	X^hY		1+1
Punnett square	2			
	$\mathbf{X}^{\mathbf{H}}$	$\mathbf{X}^{\mathbf{h}}$		
X ^h	$\mathbf{X}^{\mathbf{H}}\mathbf{X}^{\mathbf{h}}$	XhXh		
Y	X ^H Y	X ^h Y		
Correct 4 game	etes written in Punnett so	uare		1
Correct offspri	ing genotype/ gamete con	bination		1
Correct offspri	ing phenotypes			
$X^{H}X^{h}$: carrier	female			
XhXh : haemo	philiac female			1
X ^H Y : normal	male			
XhY: haemo	philiac male			
Ratio of pheno	type offspring			
2 haemophilic	: 2 normal //			1
2 haemophilic	: 1 normal : 1 carrier			
			Total	6

- 3. In a population of hamster, allele for grey fur (**G**) is dominant over allele for black fur (**g**). It was found that 36% of the hamster have black fur. It is assumed that the population is at genetic equilibrium.
- (a) Calculate the frequency of grey and black fur alleles.

[4 marks]

Answer	Marks
Frequency of black hamster /homozygous recessive genotype,	1
$\mathbf{q}^2 = 0.36$	
Frequency of black allele/recessive allele, $q = /0.36 = \underline{0.6}$	1
p + q = 1	1
Frequency of grey allele/dominant allele, $p = 1-0.6 = 0.4$	1

(b) Calculate the number of grey fur hamster in a population of 800 hamster.

[2 marks]

Answer	Marks
Frequency of grey fur hamster, $p^2 + 2pq = (0.4)^2 + 2(0.4)(0.6)$	
= 0.64	
@	1
$1 - q^2 = 1 - 0.36 = \underline{0.64}$	
Number of grey fur hamster = $0.64 \times 800 = \underline{512}$	1

4. (a) **FIGURE 2** shows protein synthesis that occurs in eukaryotic cell.

FIGURE 2

(i) Name strand Y.

[1 mark]

Answer	Marks
mRNA / messenger RNA	1

(ii) What is the function of strand Y in process B?

[1 mark]

Answer	Marks
Act as a template/carry genetic material for synthesis of protein	1

(iii) Explain THREE differences between processes \boldsymbol{A} and \boldsymbol{B} .

[3 marks]

Answer	Marks
Process A uses a DNA strand as a template while process B uses an mRNA strand as a template	1
Process A produces an mRNA strand while process B produces a polypeptide chain/protein	1
Process A involve RNA polymerase while process B involve aminoacyl-tRNA synthetase <u>and</u> peptidyl transferase	1
	Max 3

(b) Explain a gene expression regulation by the <u>lac</u> operon in the presence of lactose in *E.coli*.

[9 marks]

Answer	Marks
i. Regulatory genes/ <u>lacI</u> codes for repressor protein	1
ii. Lactose is converted into allolactose	1
iii. Allolactose binds to <u>lac</u> repressor protein	1
iv. Causes <u>lac</u> repressor protein change its conformation/shape	1
v. <u>lac r</u> epressor protein unable to bind to <u>lac</u> operator/detached from <u>lac</u>	1
operator	
vi. Allow RNA polymerase to bind to <u>lac</u> promoter	1
vii. Transcription of structural genes/ <u>lacZ,lacY</u> and <u>lacA</u> can occur	1
viii. Enzymes β -galactosidase, permease \underline{and} transacetylase can be synthesised	1
ix. Lactose is broken down into glucose and galactose	1
	Max 9

5. (a) **FIGURE 3** shows the types of chromosomal aberration.

FIGURE 3

(i) Identify chromosomal aberration \boldsymbol{S} and \boldsymbol{T} .

[2 marks]

Answer	Marks
S: Inversion	1
T: (reciprocal) translocation	1

(ii) State ONE difference between chromosomal aberration S and T.

[1 mark]

Answer		Marks
S	Т	
A segment of a chromosome breaks off and reattaches in reverse order	Involves a region of a chromosome breaking off and rejoining to a non- homologous chromosome	1
Involve 1 chromosome	Involve 2 chromosomes	1
		Any 1

(b) **FIGURE 4** shows the karyotype of two individuals suffering from genetic disorders.

FIGURE 4

(i) State the ploidy level of individual \boldsymbol{A} and \boldsymbol{B} .

Answer	Marks
A: 2n + 1	1
B: 2n - 1	1

(ii) Give TWO characteristics of individual B.

[2 marks]

Answer	Marks
Sterile female	1
Webbeb neck	1
Short stature	1
Lack of menstruation	1
Underdeveloped secondary female sexual characteristics/breast/ovary	1
Triangular face	1
	Any 2

(iii) How does the genetic disorder in individual A occur?

[4 marks]

Answer	Marks
i. Nondisjunction of sex chromosomes XX // XX chromosomes fail to separate	1
ii. during oogenesis // during meiosis I / anaphase I in female	1
iii. Produce abnormal ovum/egg/female gamete with genotype 22+XX	1
iv. The abnormal gamete fertilise with normal sperm/male gamete with Y chromosomes/22+Y $$	1
v. Produce abnormal zygote with genotype 44+XXY	1
	Any 4
OR	·
i. Nondisjunction of sex chromosomes XY // sex chromosomes XY fail to separate	1
ii. during spermatogenesis// during meiosis I/ anaphase I in male	1
iii. Produce abnormal sperm/male gamete with genotype 22+XY	1
iv. The abnormal sperm/male gamete fertilise with normal ovum/egg/ female gamete, 22+X	1
v. Produce abnormal zygote with genotype 44+XXY	1
	Any 4

6. (a) **FIGURE 5** shows two DNA strands, **P** and **Q**.

FIGURE 5

(i) Identify the restriction enzymes which cut **P** and **Q**.

[2 marks]

Answer	Marks
P: <u>Eco</u> RI	1
Q : <u>Sma</u> I	1

(i) What would happen if the restriction enzyme in bacterial cell fails to function?

[1 mark]

Answer	Marks
Unable to cut / cleave / degraded the viral /foreign DNA // cannot defend against virus // cannot prevent replication of viral DNA	1

(b) **TABLE 1** shows the result of screening process in recombinant DNA technology by using antibiotics and X-gal.

Number of bacterial colonies			
Original	Ampicillin		Tetracyclin
Original	White	Blue	rendoyemi
50	10	30	0

TABLE 1

(i) Identify the screening technique used.

[1 mark]

Answer	Marks
Blue-white screening screening	1

(ii) Why does the growth of bacterial colony is inhibited by tetracyclin antibiotics?

[1 mark]

Answer	Marks
Because plasmid/bacteria do not have gene resistant to antibiotic tetracyclin /	1
tetracyclin resistance gene	

(iii) What is indicated by the white colonies?

[1 mark]

Answer	Marks
Bacteria/host cells contain recombinant plasmid/DNA	1

(iv) Explain your answer in 6(b)(iii).

[3 marks]

Answer	Marks
Plasmid with non-functional/disrupted <u>lacZ</u> gene (since gene of interest is inserted	1
within it)	
β-galactosidase cannot be synthesized	1
X-gal cannot be hydrolyzed	1

(c) FIGURE 6 shows part of the stages in the synthesis of human insulin using recombinant DNA

FIGURE 6

(i) Identify molecule \boldsymbol{X} and \boldsymbol{Y} .

[2 marks]

Answer	Marks
X : cDNA / complementary DNA	1
Y : recombinant DNA/recombinant plasmid	1

(ii) What would be the consequences if enzyme DNA polymerase is not functional?

[1 mark]

Answer	Marks
Second / Double strand of cDNA cannot be formed	1

(iii) Explain briefly how sticky ends are linked when \mathbf{X} and opened plasmid molecule are mixed.

[2 marks]

Answer	Marks
Formation of hydrogen bonds between <u>complementary bases</u>	1
Phosphodiester bond formed between plasmid and X / cDNA	1

7. (a) Explain briefly the consequences if megaspore mother cells fails to undergo meiosis.

[3 marks]

Answer	Marks
Megaspore do not form	1
$\underline{1}$ egg cell, $\underline{2}$ synergid cells, $\underline{3}$ antipodal cells \underline{and} $\underline{1}$ central cell/ $\underline{2}$ polar nuclei are	1
not formed	
Double fertilisation does not occur	1

(b) **FIGURE 7** shows the concentration of hormones during pregnancy.

FIGURE 7

(i) Name hormone P, Q and R.

[3 marks]

Answer	Marks
P: hCG / human chorionic gonadotropin	1
Q : estrogen	1
R : progesterone	1

(ii) Describe the role of hormone **P** during the first trimester of pregnancy.

[2 marks]

Answer	Marks
To ensure corpus luteum maintained and continue	1
to secrete progesterone and estrogen	1

(iii) State why hormone P decline after the first trimester of pregnancy.

Answer	Marks
Corpus luteum disintegrate / degenerate	1
Placenta is fully developed	1
Placenta continue to secrete estrogen and progesterone	1
	Any 2

(iv) During second trimester of pregnancy, 20% of woman may experience bleeding. Relate bleeding with the level of hormone **R** during pregnancy.

[2 marks]

Answer	Marks
Low level of hormone R /progesterone	1
Causes shedding of endometrium wall	1

(v) Explain the significance of the increasing levels of hormone \mathbf{Q} during last weeks of prenancy?

[2 marks]

Answer	Marks
Hormone Q/estrogen stimulates formation of oxytocin receptor on the uterine wall	1
And stimulate posterior pituitary gland to secrete oxytocin	1

(c) FIGURE 8 shows two types of plant growth pattern. Give TWO differences between ${\bf P}$ and ${\bf Q}$.

FIGURE 8

Answer	Marks
P consists of one sigmoid curve while Q consists of series of sigmoid curves	1
P is limited growth while Q is unlimited growth	1
P could be found in annual plant while Q can be found in perennial plant	1
	Any 2