ویروس کرونا یا کووید- ۱۹یک نوع سندرم تنفسی حاد با عامل ویروسی از خانواده کرونا ویروسها میباشد که همهی کشورهای جهان را در مدت زمان کوتاهی درگیر کرده است. با توجه به شیوع و میزان مرگ و میر بالای این بیماری و از سوی دیگر، احتمال اوج مجدد کووید- ۱۹خصوصاً به دلیل نبود درمان اختصاصی، آشنایی و بررسی اطلاعات مربوط به ویروس کووید-۱۹اهمیت زیادی دارد

۱ پیش پردازش

پیش پردازش، یکی از مهمترین گامها در پروژههای داده کاوی است. رویکردهای مختلفی در زمینه ی مدیریت داده های گم شده و تبدیل داده ها به فرمتهای دیگر مورد استفاده قرار میگیرد و انتخاب دقیق این رویکردها تأثیر مستقیمی در کیفیت نتایج نهایی دارد؛ لذا همواره میبایست بهترین رویکرد را شناسایی و اعمال نمود.

۱-۱ تعداد داده های گم شده در هر ویژگی را مشخص کنید. سپس، با ذکر دلیل، رویکرد مورد استفاده خود را برای پر کردن داده های گم شده در هر ستون مشخص کرده و اقدام به تکمیل داده های گم شده کنید.

Import Libraries

In [76]:

```
import numpy as np
import pandas as pd
import requests

#for visualization
import matplotlib.pyplot as plt
from matplotlib import dates as mdates
import missingno as msno

from persiantools.jdatetime import JalaliDate
import datetime
import jalali_pandas
from tqdm import tqdm

pd.options.mode.chained_assignment = None # default='warn'
```

Load CSV File

In [77]:

```
file = "CA1_Dataset.csv"
df = pd.read_csv(file)
df
```

Out[77]:

	iso_code	continent	location	date	total_cases	new_cases
0	AFG	Asia	Afghanistan	2020- 02-24	5.0	5.C
1	AFG	Asia	Afghanistan	2020- 02-25	5.0	0.0
2	AFG	Asia	Afghanistan	2020- 02-26	5.0	0.0
3	AFG	Asia	Afghanistan	2020- 02-27	5.0	0.0
4	AFG	Asia	Afghanistan	2020- 02-28	5.0	0.0
165631	ZWE	Africa	Zimbabwe	2022- 02-26	235803.0	336.0
165632	ZWE	Africa	Zimbabwe	2022- 02-27	235803.0	0.0
165633	ZWE	Africa	Zimbabwe	2022- 02-28	236380.0	577.C
165634	ZWE	Africa	Zimbabwe	2022- 03-01	236871.0	491.0
165635	ZWE	Africa	Zimbabwe	2022- 03-02	237503.0	632.C

165636 rows × 67 columns

→

In [78]:

```
with pd.option_context("display.max_rows", df.shape[0]+1):
print(df.isna().sum())
```

iso_code	0	
continent	9917	
location	0	
date	0	
total_cases	3030	
new_cases	3172	
new_cases_smoothed	5156	
total_deaths	20843	
new_deaths	20803	
new_deaths_smoothed	22902	
total_cases_per_million	3785	
new_cases_per_million	3927	
new_cases_smoothed_per_million	5905	
total_deaths_per_million	21585	
new_deaths_per_million	21545	
new_deaths_smoothed_per_million	23638	
reproduction_rate	40569	
icu_patients	142246	
icu patients per million	142246	
hosp patients	141072	
hosp_patients_per_million	141072	
weekly_icu_admissions	160232	
weekly_icu_admissions_per_million	160232	
weekly_hosp_admissions	154759	
weekly_hosp_admissions_per_million	154759	
new tests	98630	
total_tests	96692	
total_tests_per_thousand	96692	
new_tests_per_thousand	98630	
new_tests_smoothed	81978	
new_tests_smoothed_per_thousand	81978	
positive_rate	87046	
tests_per_case	87609	
tests units	79655	
total_vaccinations	120658	
people_vaccinated	122844	
people_fully_vaccinated	125608	
total_boosters	148296	
new vaccinations	128384	
new_vaccinations_smoothed	81524	
total_vaccinations_per_hundred	120658	
people vaccinated per hundred	122844	
people_fully_vaccinated_per_hundred	125608	
total_boosters_per_hundred	148296	
<pre>new_vaccinations_smoothed_per_million</pre>	81524	

new_people_vaccinated_smoothed	82815
<pre>new_people_vaccinated_smoothed_per_hundred</pre>	82815
stringency_index	35774
population	1072
population_density	18323
median_age	28378
aged_65_older	29866
aged_70_older	29114
<pre>gdp_per_capita</pre>	27708
extreme_poverty	74799
cardiovasc_death_rate	29428
diabetes_prevalence	22287
female_smokers	60027
male_smokers	61476
handwashing_facilities	97352
hospital_beds_per_thousand	42485
life_expectancy	11016
human_development_index	29953
excess_mortality_cumulative_absolute	159940
excess_mortality_cumulative	159940
excess_mortality	159940
excess_mortality_cumulative_per_million	159940
dtype: int64	

In [79]:

1 msno.matrix(df, labels=True)

Out[79]:

<AxesSubplot:>

ویژگیهایی که بیش از ۸۵٪ داده خالی دارند را حذف میکنیم. زیرا پر کردن آنها به ما داده پرت میدهد.

In [80]:

```
iso_code
                                                     0
continent
                                                 9917
location
                                                     0
date
                                                     0
total_cases
                                                 3030
new_cases
                                                 3172
new_cases_smoothed
                                                 5156
total_deaths
                                                20843
new deaths
                                                20803
new_deaths_smoothed
                                                22902
total_cases_per_million
                                                 3785
new_cases_per_million
                                                 3927
new_cases_smoothed_per_million
                                                 5905
total_deaths_per_million
                                                21585
new_deaths_per_million
                                                21545
new_deaths_smoothed_per_million
                                                23638
reproduction_rate
                                                40569
new_tests
                                                98630
total_tests
                                                96692
total_tests_per_thousand
                                                96692
new_tests_per_thousand
                                                98630
new_tests_smoothed
                                                81978
new_tests_smoothed_per_thousand
                                                81978
                                                87046
positive_rate
tests_per_case
                                                87609
tests_units
                                                79655
total_vaccinations
                                               120658
people_vaccinated
                                               122844
people_fully_vaccinated
                                               125608
new_vaccinations
                                               128384
new vaccinations smoothed
                                                81524
total_vaccinations_per_hundred
                                               120658
people_vaccinated_per_hundred
                                               122844
people_fully_vaccinated_per_hundred
                                               125608
new_vaccinations_smoothed_per_million
                                                81524
new_people_vaccinated_smoothed
                                                82815
new_people_vaccinated_smoothed_per_hundred
                                                82815
```

stringency_index	35774
population	1072
population_density	18323
median_age	28378
aged_65_older	29866
aged_70_older	29114
<pre>gdp_per_capita</pre>	27708
extreme_poverty	74799
cardiovasc_death_rate	29428
diabetes_prevalence	22287
female_smokers	60027
male_smokers	61476
handwashing_facilities	97352
hospital_beds_per_thousand	42485
life_expectancy	11016
human_development_index	29953
dtype: int64	

Out[80]:

<AxesSubplot:>

In [81]:

1 mod_df.interpolate(method="linear", limit_direction="forward")

Out[81]:

	iso_code	continent	location	date	total_cases	new_cases
0	AFG	Asia	Afghanistan	2020- 02-24	5.0	5.0
1	AFG	Asia	Afghanistan	2020- 02-25	5.0	0.0
2	AFG	Asia	Afghanistan	2020- 02-26	5.0	0.0
3	AFG	Asia	Afghanistan	2020- 02-27	5.0	0.0
4	AFG	Asia	Afghanistan	2020- 02-28	5.0	0.0
165631	ZWE	Africa	Zimbabwe	2022- 02-26	235803.0	336.0
165632	ZWE	Africa	Zimbabwe	2022- 02-27	235803.0	0.0
165633	ZWE	Africa	Zimbabwe	2022- 02-28	236380.0	577.C
165634	ZWE	Africa	Zimbabwe	2022- 03-01	236871.0	491.0
165635	ZWE	Africa	Zimbabwe	2022- 03-02	237503.0	632.0

165636 rows × 53 columns

ویژگیهای مرتبط با واکسن را با روش backfill پر میکنیم زیرا این مقادیر در ابتدا تا کشف و توزیع واکسن صفر است.

In [82]:

```
mod_df["new_vaccinations"] = mod_df["new_vaccinations"].fillna(method="bfi
    mod_df["total_vaccinations"]= mod_df["total_vaccinations"].fillna(method="
 3 | mod_df["people_vaccinated"] = mod_df["people_vaccinated"].fillna(method="t
    mod_df["people_fully_vaccinated"]= mod_df["people_fully_vaccinated"].fillr
    mod_df["new_vaccinations_smoothed"]= mod_df["new_vaccinations_smoothed"].1
    mod_df["total_vaccinations_per_hundred"]= mod_df["total_vaccinations_per_hundred"]=
    mod_df["people_vaccinated_per_hundred"]= mod_df["people_vaccinated_per_hundred"]=
 7
    mod_df["people_fully_vaccinated_per_hundred"] = mod_df["people_fully_vacci
    mod_df["new_people_vaccinated_smoothed"] = mod_df["new_people_vaccinated_s
10
    mod_df["new_people_vaccinated_smoothed_per_hundred"]= mod_df["new_people_vaccinated_smoothed_per_hundred"]= mod_df["new_people_vaccinated_smoothed_per_hundred"]=
11
12
13
14 msno.matrix(mod_df, labels=True)
```

Out[82]:

<AxesSubplot:>

ستونهای باقیمانده چون مقادیر آماری هستند مقادیر خالی آنها را به کمک میانگین گیری پر میکنیم. برای این کار ابتدا بر روی کشور میانگیریم و به جای مقادیر خالی باقیمانده میگذاریم. میگذاریم.

In [83]:

```
# mod_df = mod_df.interpolate()
   # mod_df.fillna(method ='bfill', inplace = True)
   # mod_df.fillna(method ='ffill', inplace = True)
4
5
   list_cols = list(mod_df.columns.values)
7
   list_cols.remove('iso_code')
8 list_cols.remove('location')
9 list_cols.remove('date')
10 list_cols.remove('continent')
   list_cols.remove('tests_units')
11
12
13 mean1 = mod_df.groupby('location').mean()
14
   mean2 = mod_df.groupby('continent').mean()
15
   mean3 = mod_df.groupby('iso_code').mean()
16
17
18
   for col in tqdm(list_cols):
19
           mod_df[col] = mod_df.apply(
               lambda row: mean1[col][row["location"]] if pd.isna(row[col]) e
20
21
               axis=1
22
           )
23
24
   for col in tqdm(list_cols):
25
           mod_df[col] = mod_df.apply(
               lambda row: mean2[col][row["continent"]] if pd.isna(row[col])
26
27
               axis=1
28
           )
29
30
   for col in tqdm(list cols):
31
           mod_df[col] = mod_df.apply(
32
               lambda row: mean3[col][row["iso_code"]] if pd.isna(row[col]) e
33
               axis=1
34
           )
```


In [84]:

```
with pd.option_context("display.max_rows", mod_df.shape[0]+1):
    print(mod_df.isna().sum())
msno.matrix(mod_df, labels=True)
```

iso_code	0
continent	9917
location	0
date	0
total_cases	0
new_cases	0
new_cases_smoothed	0
total_deaths	0
new_deaths	0
new_deaths_smoothed	0
total_cases_per_million	755
new_cases_per_million	755
new_cases_smoothed_per_million	755
total_deaths_per_million	755
new_deaths_per_million	755
<pre>new_deaths_smoothed_per_million</pre>	755
reproduction_rate	9146
new_tests	9917
total_tests	9917
total_tests_per_thousand	9917
new_tests_per_thousand	9917
new_tests_smoothed	9917
new_tests_smoothed_per_thousand	9917
positive_rate	9917
tests_per_case	9917
tests_units	79655
total_vaccinations	0
<pre>people_vaccinated</pre>	0
<pre>people_fully_vaccinated</pre>	0
new_vaccinations	0
new_vaccinations_smoothed	0
total_vaccinations_per_hundred	0
<pre>people_vaccinated_per_hundred</pre>	0
<pre>people_fully_vaccinated_per_hundred</pre>	0
<pre>new_vaccinations_smoothed_per_million</pre>	755
<pre>new_people_vaccinated_smoothed</pre>	0
<pre>new_people_vaccinated_smoothed_per_hundred</pre>	0
stringency_index	9917
population	755
population_density	9146
median_age	9146
aged_65_older	9146
aged_70_older	9146
gdp_per_capita	9146

extreme_poverty	9146
cardiovasc_death_rate	9146
diabetes_prevalence	9146
female_smokers	9146
male_smokers	9146
handwashing_facilities	9146
hospital_beds_per_thousand	9146
life_expectancy	9146
human_development_index	9146
dtype: int64	

Out[84]:

<AxesSubplot:>

مقادیر ستون test_unit پس از این مراحل همچنان داده خالی زادی دارد و تصمیم بر حذف آن میگیریم.

In [85]:

```
mod_df = mod_df.drop('tests_units', 1)
msno.matrix(mod_df, labels=True)
```

C:\Users\mamat\AppData\Local\Temp/ipykernel_15300/2207112408.py:
1: FutureWarning: In a future version of pandas all arguments of
DataFrame.drop except for the argument 'labels' will be keywordonly

mod_df = mod_df.drop('tests_units', 1)

Out[85]:

<AxesSubplot:>

۱-۲ دیتافریم دیگری درست نمایید که در آن، تعداد کیسهای جدید، تعداد واکسینههای جدید، تعداد فوتیها و جمعیت برای هر کشور به صورت تجمیع شده محاسبه شده باشد. (محاسبهی جمع دادهها از ابتدا تا آخرین تاریخ موجود در مجموعه دادهها برای هر کشور)

In [87]:

```
df1 = mod_df[["location", "new_cases", "new_vaccinations", "new_deaths", '
df1
3
```

Out[87]:

	new_cases	new_vaccinations	new_deaths	population
location				
Afghanistan	1.745540e+05	2.974970e+06	7.917389e+03	2.939855e+10
Africa	1.123052e+07	5.818190e+08	2.486680e+05	1.028741e+12
Albania	2.767058e+05	3.002796e+06	3.546175e+03	2.117352e+09
Algeria	2.650790e+05	8.412034e+06	6.994856e+03	3.288245e+10
Andorra	3.824900e+04	1.605815e+06	1.552475e+02	5.654577e+07
Wallis and Futuna	4.540000e+02	0.000000e+00	1.008646e+01	5.547000e+06
World	4.390117e+08	1.122516e+10	5.946817e+06	6.071599e+12
Yemen	1.178904e+04	7.335200e+04	2.198542e+03	2.109952e+10
Zambia	3.132030e+05	3.583561e+06	4.039750e+03	1.352827e+10
Zimbabwe	2.378426e+05	8.920041e+06	5.418800e+03	1.076072e+10

238 rows × 4 columns

۱-۳ ستون جدیدی با اسم تاریخ شمسی ایجاد کنید و برای ایجاد آن، تاریخ میلادی را به شمسی تبدیل نمایید

In [88]:

```
from persiantools.jdatetime import JalaliDate
import datetime
import jalali_pandas

#for our local dataset
mod_df.date = pd.to_datetime(mod_df.date)
mod_df["shamsi_date"] = mod_df.date.jalali.to_jalali()
mod_df
```

Out[88]:

	iso_code	continent	location	date	total_cases	new_cases
0	AFG	Asia	Afghanistan	2020- 02-24	5.0	5.0
1	AFG	Asia	Afghanistan	2020- 02-25	5.0	0.0
2	AFG	Asia	Afghanistan	2020- 02-26	5.0	0.0
3	AFG	Asia	Afghanistan	2020- 02-27	5.0	0.0
4	AFG	Asia	Afghanistan	2020- 02-28	5.0	0.0
165631	ZWE	Africa	Zimbabwe	2022- 02-26	235803.0	336.0
165632	ZWE	Africa	Zimbabwe	2022- 02-27	235803.0	0.0
165633	ZWE	Africa	Zimbabwe	2022- 02-28	236380.0	577.C
165634	ZWE	Africa	Zimbabwe	2022- 03-01	236871.0	491.0
165635	ZWE	Africa	Zimbabwe	2022- 03-02	237503.0	632.0

165636 rows × 53 columns

In [119]:

```
1 mod_df.plot.scatter(x='new_cases', y='new_deaths')
```

Out[119]:

<AxesSubplot:xlabel='new_cases', ylabel='new_deaths'>

In [117]:

```
1 mod_df.plot.scatter(x='total_cases', y='total_deaths')
```

Out[117]:

<AxesSubplot:xlabel='total_cases', ylabel='total_deaths'>

بله با توجه به نمودارهای scatter-plot بین ستون ها(فیچرها) میتوان در آنها همبستگی ها را شناسایی و آنهایی که با یکدیگر همبستگی دارند را بدست آورد و حذف نمود. باید توجه داشت که این همبستگی معنادار باشد و متغیر confounding بین دو ویژگی نباشد که باعث این همبستگی شده باشد.

شکلهای بدست آمده به دلیل تخمین بودن دادهها بعضا ظاهر مناسبی ندارند ولی همبستگی میان آنها قابل تشخیص است.

۱-۵ دیتافریم جدیدی درست نمایید که در آن صرفاً اطلاعات مربوط به کشور ایران قرار داده شده باشد

In [91]:

```
iran_df = mod_df.loc[mod_df['location'] == "Iran"]
iran_df
```

Out[91]:

	iso_code	continent	location	date	total_cases	new_cases
71639	IRN	Asia	Iran	2020- 02-19	2.0	2.0
71640	IRN	Asia	Iran	2020- 02-20	5.0	3.0
71641	IRN	Asia	Iran	2020- 02-21	18.0	13.0
71642	IRN	Asia	Iran	2020- 02-22	28.0	10.0
71643	IRN	Asia	Iran	2020- 02-23	43.0	15.0
72377	IRN	Asia	Iran	2022- 02-26	7030943.0	7039.0
72378	IRN	Asia	Iran	2022- 02-27	7040467.0	9524.0
72379	IRN	Asia	Iran	2022- 02-28	7051429.0	10962.0
72380	IRN	Asia	Iran	2022- 03-01	7060741.0	9312.0
72381	IRN	Asia	Iran	2022- 03-02	7066975.0	6234.0

743 rows × 53 columns

۱-۶ در دیتافریم ایران، ستونی ایجاد نمایید که در آن، ماه به عنوان یک ویژگی مستقل در نظر گرفته شده است

In [92]:

```
iran_df['gregorian_month'] = pd.to_datetime(iran_df['date']).dt.month
iran_df["shamsi_month"] = iran_df.shamsi_date.jalali.month
iran_df
```

Out[92]:

nd	life_expectancy	human_development_index	shamsi_date	gregorian_mo
1.5	76.68	0.783	1398-11-30	
			00:00:00	
1.5	76.68	0.783	1398-12-01	
			00:00:00	
1.5	76.68	0.783	1398-12-02	
			00:00:00	
1.5	76.68	0.783	1398-12-03	
			00:00:00	
1.5	76.68	0.783	1398-12-04	
			00:00:00	
1.5	76.68	0.783	1400-12-07	
			00:00:00	
1.5	76.68	0.783	1400-12-08	
			00:00:00	
1.5	76.68	0.783	1400-12-09	
			00:00:00	
1.5	76.68	0.783	1400-12-10	
			00:00:00	
1.5	76.68	0.783	1400-12-11	
			00:00:00	

→

In [93]:

```
iran2021_df = iran_df.loc[(iran_df['location'] == "Iran") & (iran_df['date
iran2021_df.groupby("gregorian_month").first()
```

Out[93]:

I_beds_per_thousand	life_expectancy	human_development_index	shamsi_da
1.5	76.68	0.783	1399-1 00:(
1.5	76.68	0.783	1399- ⁻ 00:(
1.5	76.68	0.783	1399-′ 00:(
1.5	76.68	0.783	1400-(00:(
1.5	76.68	0.783	1400-(00:(
1.5	76.68	0.783	1400-(00:(
1.5	76.68	0.783	1400-(00:(
1.5	76.68	0.783	1400-(00:(
1.5	76.68	0.783	1400-(00:(
1.5	76.68	0.783	1400-(00:(
1.5	76.68	0.783	1400-(00:(
1.5	76.68	0.783	1400-(00:(

یکی از مواردی که در داده کاوی بسیار مورد استفاده قرار میگیرد، مصورسازی دادهها میباشد که به کمک آن میتوان در کی از مجموعه داده ی مورد نظر به دست آورد و همچنین، تحلیلهای کاملی بر اساس نمودارهای به دست آمده، ارائه نمود.

۱-۲ کدام کشورها بهترین و کدام کشورها بدترین عملکرد در مهار ویروس کرونا را داشته اند؟ با یک نمودار مناسب این مساله را بررسی نمایید و برداشت خود را از نتایج ذکر نمایید. (منظور از عملکرد، تعداد فوتی نسبت به کل جمعیت است.)

بهترین ابدترین کشورها با توجه به مرگ و میر نسبت به جمعیت آنها سنجیده میشوند برای اینکار مرگ و میر در میلیون نفر جمعیت را برای هر کشور جمع میزنیم و مقایسه میکنیم که نتایج در زیر مشاهده میشود

In [94]:

1 mod_df.groupby('location')["new_deaths_per_million"].sum().plot()

Out[94]:

<AxesSubplot:xlabel='location'>

In [95]:

1 mod_df.groupby('location').sum().nsmallest(10, 'new_deaths_per_million')

Out[95]:

	total_cases	new_cases	new_cases_smoothed	total_deaths
location				
International	537473.0	721.000000	635.912610	1.094343e+0
Burundi	5707819.0	38127.000000	38414.181336	9.674151e+0
China	67919335.0	109850.433594	109912.280708	3.374058e+0
Vanuatu	1962.0	19.000000	18.232864	4.780000e+0
New Zealand	3806317.0	167013.153425	106841.942820	2.053636e+0
Chad	2409357.0	7257.000000	7311.881381	9.611775e+0
Niger	2881815.0	8775.307584	8896.783443	1.079621e+0
South Sudan	5320426.0	16989.000000	17110.430081	6.346731e+0
Tajikistan	8652869.0	17786.000000	17834.917654	6.277812e+0
Tanzania	4909841.0	33620.000000	33900.405401	1.293000e+0

10 rows × 48 columns

 \blacksquare

In [96]:

1 mod_df.groupby('location').sum().nlargest(10, 'new_deaths_per_million')

Out[96]:

	total_cases	new_cases	new_cases_smoothed	total_deaths
location				
Peru	1.011461e+09	3.518721e+06	3.543039e+06	9.056462e+07
Bulgaria	2.272544e+08	1.096194e+06	1.098723e+06	8.975619e+06
Bosnia and Herzegovina	1.024036e+08	3.715530e+05	3.739922e+05	4.493398e+06
Hungary	3.857990e+08	1.795580e+06	1.800467e+06	1.283320e+07
Gibraltar	2.723664e+06	1.569660e+04	1.598372e+04	5.997362e+04
North Macedonia	7.956426e+07	2.981950e+05	2.994287e+05	2.742471e+06
Montenegro	5.521087e+07	2.305120e+05	2.320334e+05	7.889604e+05
Georgia	2.544243e+08	1.616159e+06	1.614808e+06	3.544215e+06
New Caledonia	2.803950e+06	5.558084e+04	5.468645e+04	1.721684e+05
Saint Pierre and Miquelon	5.880800e+04	1.090565e+03	1.096466e+03	6.970000e+02

10 rows × 48 columns

←

۲-۲ میخواهیم تاثیر واکسیناسیون بر تعداد فوتیها را بررسی کنیم. برای این کار فرض کنید الزام است که اطلاعات ۵کشور را بررسی کنیم. شما کدام کشورها را برای مقایسه انتخاب میکنید؟ با یک نمودار مناسب این مساله را بررسی نمایید و برداشت خود را از نتایج ذکر نمایید.

۵ کشور انتخابی را کشورهایی با تعداد واکسینه بالا در نظر میگیریم زیرا هرچه آمارههای بیشتری داشته باشیم، نتایج را بهتر میتوانیم مورد تحلیل و بررسی قرار دهیم.

In [97]:

1 mod_df.groupby('location').sum().nlargest(20, 'new_vaccinations')

Out[97]:

	total_cases	new_cases	new_cases_smoothed	total_deaths
location				
World	9.749264e+10	4.390117e+08	4.380398e+08	1.988572e+0
Asia	2.795110e+10	1.178114e+08	1.168446e+08	4.073148e+0
Upper middle income	2.951138e+10	1.182120e+08	1.182281e+08	8.046135e+0
China	6.791934e+07	1.098504e+05	1.099123e+05	3.374058e+0
Lower middle income	2.216595e+10	8.258872e+07	8.266932e+07	3.931400e+0
High income	4.534286e+10	2.363931e+08	2.353120e+08	7.971662e+0
India	1.274592e+10	4.294516e+07	4.326238e+07	1.785145e+0
Europe	2.808516e+10	1.588156e+08	1.581429e+08	5.747552e+0
North America	2.282960e+10	9.319513e+07	9.369690e+07	5.053764e+0
European Union	1.850176e+10	1.100334e+08	1.095869e+08	3.678955e+0
South America	1.529715e+10	5.422262e+07	5.446028e+07	4.715735e+0
Africa	3.175293e+09	1.123052e+07	1.130212e+07	8.123984e+0
United States	1.936437e+10	7.924650e+07	7.970140e+07	3.426091e+0
Brazil	8.654431e+09	2.881973e+07	2.906807e+07	2.417534e+0
Pakistan	5.009209e+08	1.511754e+06	1.521661e+06	1.127242e+0
3angladesh	5.684844e+08	1.958523e+06	1.972327e+06	9.391999e+0
Indonesia	1.330201e+09	5.630096e+06	5.573406e+06	4.213669e+0
Japan	5.698234e+08	5.150496e+06	4.993874e+06	6.569827e+0
Russia	3.274351e+09	1.635387e+07	1.616838e+07	8.635976e+0

		total_cases	new_cases	new_cases_smoothed	total_deaths	
I	ocation					
	Turkey	2.842550e+09	1.340146e+07	1.325831e+07	2.581149e+0	
<u>?</u> 0	rows × 48	columns				•
4	(•	

In [98]:

```
isChina = mod_df['location']=='China'
df_china = mod_df[isChina]
df_china
```

Out[98]:

	iso_code	continent	location	date	total_cases	new_cases
31401	CHN	Asia	China	2020- 01-22	547.0	142.477865
31402	CHN	Asia	China	2020- 01-23	639.0	92.000000
31403	CHN	Asia	China	2020- 01-24	916.0	277.000000
31404	CHN	Asia	China	2020- 01-25	1399.0	483.000000
31405	CHN	Asia	China	2020- 01-26	2062.0	663.000000
32167	CHN	Asia	China	2022- 02-26	109092.0	239.000000
32168	CHN	Asia	China	2022- 02-27	109326.0	234.000000
32169	CHN	Asia	China	2022- 02-28	109526.0	200.000000
32170	CHN	Asia	China	2022- 03-01	109750.0	224.000000
32171	CHN	Asia	China	2022- 03-02	109964.0	214.000000

771 rows × 53 columns

→

In [122]:

```
df_china.plot.scatter(x="total_vaccinations", y="new_deaths")
```

Out[122]:

<AxesSubplot:xlabel='total_vaccinations', ylabel='new_deaths'>

In [125]:

```
isUS = mod_df['location']=='United States'
df_us = mod_df[isUS]
df_us.plot.scatter(x="total_vaccinations", y="new_deaths")
```

Out[125]:

<AxesSubplot:xlabel='total_vaccinations', ylabel='new_deaths'>

In [124]:

```
isJpn = mod_df['location']=='Japan'
df_Jpn = mod_df[isJpn]
df_Jpn.plot.scatter(x="total_vaccinations", y="new_deaths")
```

Out[124]:

<AxesSubplot:xlabel='total_vaccinations', ylabel='new_deaths'>

با توجه به تصاویر در کشور چین تاثیر واکسن بسیار زیاد بوده البته این تاثیر بعلت سخت گیریهای شدید این کشور نیز هست. در مقایسه نمودار کشورهای آمریکا و ژاپن را میبینیم که تاثیر واکسن بر آنها بصورت متناوب بوده و در بازههایی همبستگی منفی(کاهش آمار کرونا) بین آنها وجود دارد و در بازههایی همبستگی مثبت(افزایش آمار کرونا)

۳-۲ قصد داریم سرعت واکسیناسیون در کشورهای مختلف را بررسی کنیم. برای این کار فرض کنید الزام ست که اطلاعات ۵کشور را ارزیابی کنیم. شما کدام کشورها را برای مقایسه انتخاب میکنید؟ با یک نمودار مناسب این مساله را بررسی نمایید و برداشت خود را از نتایج ذکر نمایید

برای انتخاب کشورهای برتر برای سرعت واکسیناسیون، کشورهایی با آمار بالای تعداد افراد واکسینه شده در ۱۰۰ نفر را مورد بررسی قرار میدهیم.

In [100]:

1 mod_df.groupby('location').sum().nlargest(5, 'people_vaccinated_per_hundre

Out[100]:

	total_cases	new_cases	new_cases_smoothed	total_deaths
location				
Gibraltar	2723664.0	15696.595041	15983.719615	5.997362e+04
China	67919335.0	109850.433594	109912.280708	3.374058e+06
Saudi Arabia	278340103.0	746066.000000	750521.229974	4.359211e+06
United Arab Emirates	286274793.0	880970.000000	886244.333029	9.212383e+05
British Virgin Islands	839359.0	6085.000000	6128.742511	9.957738e+03

5 rows × 48 columns

4

In [101]:

```
1 df_china["total_vaccinations"].plot()
```

Out[101]:

<AxesSubplot:>

In [128]:

```
isUA = mod_df['location']=='United Arab Emirates'
df_UA = mod_df[isUA]
df_UA["total_vaccinations"].plot()
```

Out[128]:

<AxesSubplot:>

In [129]:

```
isSA = mod_df['location']=='Saudi Arabia'
df_SA = mod_df[isSA]
df_SA["total_vaccinations"].plot()
```

Out[129]:

<AxesSubplot:>

۴-۲ روند سختگیری در حوزهی کرونا در ایران را در طول زمان بررسی کنید، توجه نمایید برای پاسخگویی به این سوال براساس تحلیل خود را بیان نمایید.

به صورت کلی سخت گیریها در ابتدا کم و به مرور زیاد شده و در ادامه پس از مدتی کمتر شده است (ولی از حالت ابتدایی همچنان بالاتر) همچنین بازههایی وجود دارند که بسیار پایین آمده که احتمالا مربوط به زمانهایی است که در کرونا سهل انگاری انجام میشد

In [102]:

1 iran_df["stringency_index"].plot()

Out[102]:

<AxesSubplot:>

۲-۵ با استفاده از دیتافریم تجمیع شده ای که ایجاد کردید، برای ویژگی تعداد فوتیهای هر کشور نمودار BoxPlotرسم کنید و کشورهای پرت را شناسایی کنید و رویکرد مناسبی برای آنها اتخاذ نمایید. با توجه به مقدار میانه و میانگین، چولگی نمودار به کدام سمت میباشد؟

In [103]:

```
boxplot = mod_df.boxplot(column=['total_deaths_per_million'])
plt.title('Number of deaths in countries', fontsize=16)
boxplot
```

Out[103]:

<AxesSubplot:title={'center':'Number of deaths in countries'}>

۲-۶ تاثیر ویژگیهای تراکم جمعیت، میانگین سنی، وجود امکانات بهداشتی، تعداد تخت بیمارستانها و شاخص پیشرفت انسانی را بر تعداد فوتیها و تعداد کیسهای جدید با رسم نمودار مناسب بررسی کنید

In [104]:

Out[104]:

<AxesSubplot:xlabel='median_age', ylabel='total_cases_per_millio
n'>

با توجه به نمودار هرچه میانگین سنی بالا میرود تعداد مبتلایان نیز افزایش پیدا میکند.

In [105]:

Out[105]:

<AxesSubplot:xlabel='handwashing_facilities', ylabel='total_case
s_per_million'>

آمار در این ویژگی دقت بالایی ندارد ولی میتوان کفت به صورت میانگین کشورهایی که آمار بالاتری داشته اند امکانات بهداشتی بیشتری فراهم کردهاند

In [106]:

```
mod_df.plot.scatter(x='human_development_index',
y='total_cases_per_million')
```

Out[106]:

<AxesSubplot:xlabel='human_development_index', ylabel='total_cas
es_per_million'>

با توجه به نمودار تعداد مبتلایان در کشورهای توسعه یافته بیشتر از کشورهای توسعه نیافته است.

In [107]:

Out[107]:

<AxesSubplot:xlabel='hospital_beds_per_thousand', ylabel='total_
cases_per_million'>

۲-۲ رابطه بین وضعیت اقتصادی کشورها و تعداد افراد واکسینه شده را بررسی کنید و تحلیل خود را بیان نمایید

In [108]:

```
mod_df.plot.scatter(x='gdp_per_capita',
y='people_vaccinated_per_hundred')
```

Out[108]:

<AxesSubplot:xlabel='gdp_per_capita', ylabel='people_vaccinated_
per_hundred'>

تولید ناخالص داخلی معیار پولی ارزش بازار همه کالاها و خدمات نهایی تولید شده در یک دوره زمانی خاص توسط کشورها است. با توجه به نمودار میتوان به صورت میانگین گفت که این معیار تاثیر به سزایی در تعداد افراد واکسینه شده در کشور ندارد.

In [109]:

Out[109]:

<AxesSubplot:xlabel='extreme_poverty', ylabel='people_vaccinated
_per_hundred'>

با توجه به نمودار میتوان کفت هرچه فقر مطلق در کشوری بیشتر باشد تعداد افراد واکسینه شده در آن نیز کمتر است.

span style='font-family:B Nazanin;font-size:16px> < در سال 2021توزیع تعداد مبتلایان به تفکیک ماه را بررسی نمایید و تحلیل خود را ذکر نمایید

In [116]:

```
mod_df['gregorian_month'] = pd.to_datetime(mod_df['date']).dt.month
mod2021_df = mod_df.loc[mod_df["date"] > datetime.datetime(2021, 1,1)]
tmp = mod2021_df.groupby("gregorian_month").sum()
tmp["new_cases"].plot()
```

Out[116]:

<AxesSubplot:xlabel='gregorian_month'>

آمار کیسهای جدید کرونا در ابتدای شیوع بسیار بالا بوده و سپس کاهش یافته و پس از آن بصورت متناوب دچار پیک ها و کاهشهایی شده است.

In []:

1