Hoja de problemas 10

15/11/2023

Curvas algebraicas

1. Sea $f(X,Y) = Y^2 - X^2 - X^3 \in k[X,Y]$, y $C = V(f) \subset \mathbb{A}^2$. Demostrar que la curva C tiene dos parametrizaciones formales en (0,0) de la forma

$$(X, p_{+}(X)), \qquad (X, p_{-}(X))$$

donde $p_{+}(X), p_{-}(X) \in k[[X]]$ tienen orden 1, y

$$p_{+}(X) = X + \cdots, \qquad p_{-}(X) = -X + \cdots.$$

2. Suponemos que $C \subset \mathbb{A}^2$ es una curva, cuya ecuación minimal es $f(X,Y) \in k[X,Y]$, y que $(0,0) \in C$. Sea (p,q) una parametrización formal en $(0,0) \in C$, y $s = \min\{O(p), O(q)\}$. Entonces, podemos escribir

$$p(T) = \sum_{i=s}^{\infty} a_i T^i, \qquad q(T) = \sum_{i=s}^{\infty} b_i T^i, \qquad (a_s, b_s) \neq (0, 0).$$

Demostrar que la recta $V(a_sX + b_sY)$ es tangente a C en (0,0).

- 3. Se
a $C=V(Y^2-X^3+X^4),$ y $p(T)\in k[[T]]$ una raíz cuadrada de
 $1-T^2,$ es decir $p(T)^2=1-T.$
 - (a) Demostrar que $(T^4, T^6p(T^2))$ es una parametrización formal de C en (0,0). ¿Es reducida?
 - (b) Describir dos parametrizaciónes formales reducidas distintas de C en (0,0). ¿Son equivalentes?
- 4. Sea $C = V(Y^5 X^7 + X^{10})$. Suponemos que C tiene parametricazión formal en (0,0) de la forma (T,p(T)). ¿Cuál es el orden de p(T)?