Les vecteurs M05

Exercice 1

Définition: Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs non-nul du plan. Deux vecteurs sont dits **colinéaire** s'il existe un nombre réel k tels que: $\overrightarrow{u} = k \cdot \overrightarrow{v}$

Le nombre réel k s'appelle le **coefficient de colinéarité** de \overrightarrow{u} par rapport à \overrightarrow{v}

1. Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs réalisant l'égalité:

Justifier que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires et que leur coefficient de colinéarité est $\frac{3}{2}$.

2. Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs réalisant l'égalité:

Justifier que ces deux vecteurs sont colinéaires.

3. Pour chacune des questions ci-dessous, les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires. Déterminer la valeur du coefficient de colinéarité $\overrightarrow{de} \overrightarrow{u}$ par rapport à \overrightarrow{v} :

(a.)
$$\frac{1}{2} \cdot \overrightarrow{u} = \frac{3}{4} \cdot \overrightarrow{v}$$

$$(b.) \ 3 \cdot \overrightarrow{u} - 2 \cdot \overrightarrow{v} = \overrightarrow{0}$$

$$(\overrightarrow{u} - 2 \cdot \overrightarrow{v}) = \overrightarrow{0}$$

(a.
$$\frac{1}{2} \cdot \overrightarrow{u} = \frac{3}{4} \cdot \overrightarrow{v}$$
 (b. $3 \cdot \overrightarrow{u} - 2 \cdot \overrightarrow{v} = \overrightarrow{0}$ (c. $3 \cdot (\overrightarrow{u} - 2 \cdot \overrightarrow{v}) = \overrightarrow{0}$ (d. $-2 \cdot (\overrightarrow{u} + \overrightarrow{v}) = 2 \cdot \overrightarrow{u} + 3 \cdot \overrightarrow{v}$

Exercice 2

Pour chaque question, déterminer si les deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires. S'ils le sont, donner le coefficient associé de colinéarité de \overrightarrow{u} par rapport à \overrightarrow{v} :

a.
$$\overrightarrow{u}(-1;2)$$
; $\overrightarrow{v}(4;-8)$ b. $\overrightarrow{u}(3;2)$; $\overrightarrow{v}(9;4)$

b.
$$\overrightarrow{u}(3;2)$$
; $\overrightarrow{v}(9;4)$

c.
$$\overrightarrow{u}(2;3)$$
; $\overrightarrow{v}(4,2;6,3)$

c.
$$\overrightarrow{u}(2;3)$$
; $\overrightarrow{v}(4,2;6,3)$ d. $\overrightarrow{u}(0,7;4,1)$; $\overrightarrow{v}(-2,8;16,4)$

Exercice 3

On munit le plan d'un repère (O; I; J) et on considère les points A, B et C ci-dessous:

- 1. (a.) Donner les coordonnées des points A, B et C.
 - (b.) Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{BC} .
 - c. En déduire les coordonnées du vecteur \overrightarrow{v} défini par : $\overrightarrow{v} = \overrightarrow{AB} + 2 \cdot \overrightarrow{BC}$
- 2. Justifier que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires.

Exercice 4

Dans le plan muni d'un repère (O; ;I;J), on considère les cinq points:

$$A(2;-2)$$
 ; $B(11;-14)$

$$B(11:-14)$$

$$C(-3;1)$$

$$D(5;3)$$
 ;

$$E(12;-19)$$

Parmi les quatre vecteurs ci-dessous, un seul est colinéaire au vecteur \overrightarrow{AB} :

$$\overrightarrow{BC}$$
 ; \overrightarrow{CD} ; \overrightarrow{DE} ; \overrightarrow{CE}

Lequel? Justifier votre réponse.

Exercice 5

Proposition: Dans le plan muni d'un repère, on considère les deux vecteurs \overrightarrow{u} et \overrightarrow{v} .

Les deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires entre eux si, et seulement si, leur déterminant est nul.

On considère le plan muni d'un repere $(O; \overrightarrow{i}; \overrightarrow{j})$ et les quatre points:

$$A(3;-5)$$
 ; $B(1;-1)$; $C(13;2)$; $D(18;-8)$

Etablir que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Exercice 6

On munit le plan d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$:

Montrer que les points suivants sont alignés:

$$A(-3;-1)$$
 ; $B(1;5)$; $C(-1;2)$

Exercice 7

On considère le plan muni d'un repère (O; I; J).

Soit A, B, C et D quatre points du plan de coordonnées:

$$A(-5;1)$$
 ; $B(2;4)$; $C(-1;-2)$; $D(3;y_D)$

Déterminer les coordonnées du point D tel que les droites (AB) et (CD) soient parallèles et que le point D ait 3 pour abscisse.

Exercice 8

On considère le plan muni d'un repère (O; I; J).

Soit A, B et C trois points du plan de coordonnées respectives: (4;-1); (1;3); (1;-2)

Déterminer les coordonnées du point D tel que les droites (AB) et (CD) soient parallèles et que le point D ait 3 pour abscisse.

Exercice 9

On considère le triangle ci-contre où I et G sont les milieux respectifs des segments [AB] et [CI], le point J est défini par la relation:

$$\overrightarrow{CJ} = \frac{1}{3} \cdot \overrightarrow{CA}$$

On considère la base vectorielle $(\overrightarrow{AB}; \overrightarrow{AC})$.

- 1. Exprimer les vecteurs \overrightarrow{AI} et \overrightarrow{AJ} dans la base vectorielle $(\overrightarrow{AB}; \overrightarrow{AC})$.
- Etablir que la décomposition vectorielle du vecteur \overrightarrow{AG} : $\overrightarrow{AG} = \frac{1}{4} \cdot \overrightarrow{AB} + \frac{1}{2} \cdot \overrightarrow{AC}$
- 3. En déduire l'alignement des points B, G, J.