TUTORIAL WORKSHEET 6 MAT344 - Spring 2019

Please refer to the list of **Graph Theory Definitions** on Quercus.

Is there a bipartite graph G with vertex set $\{v_1, ..., v_9\}$ and **ordered degree sequence** 6, 6, 6, 5, 3, 3, 3, 3, 3?

(Recall that the **ordered degree sequence** of a graph is just a non-increasing list of the degrees of its vertices.)

Let G be a connected bipartite graph, let \mathbf{v} , \mathbf{w} be vertices in G and let \mathcal{P}_1 and \mathcal{P}_2 be distinct paths from \mathbf{v} to \mathbf{w} .

Prove that the lengths of \mathcal{P}_1 and \mathcal{P}_2 are either both even or both odd.

- Prove, by induction on $n \ge 1$, that if a (simple) graph G has n vertices and (strictly) more than $\binom{n-1}{2}$ edges, then G is connected.
- Prove that in any tree T, any two paths of maximum length in T intersect in at least one vertex.