

Inteligência Computacional Aplicada PUC-Rio

Inteligência Computacional Aplicada

Resumo

- O que é "Inteligência" Computacional?
- Áreas de Aplicação
- Sistemas Especialistas
- Lógica Nebulosa
- Redes Neurais
- Algoritmos Genéticos

O que é Inteligência Computacional?

"Técnicas e sistemas computacionais que imitam aspectos humanos, tais como: percepção, raciocínio, aprendizado, evolução e adaptação".

Inspiração na Natureza

• Sistemas Especialistas

Lógica Fuzzy

• Redes Neurais

Algoritmos Genéticos

• Sistemas Híbridos

inferência humana

processamento lingüístico

neurônios biológicos

evolução biológica

aspectos combinados

<u>ICN</u>

Novos Sistemas Computacionais

- Suporte à Decisão
- Classificação de Dados
- Reconhecimento de Padrões
- Previsão
- Otimização
- Controle
- Modelagem
- Planejamento
- Descoberta de Conhecimento

Áreas de Aplicação

Energia

Finanças

Telecomunicações

Medicina

Meio-Ambiente

■ Comércio

Indústria

	Alguns Projetos Desenvolvidos no ICA
Setor	Tema
Ensino	Software Educacional para o Ensino de Sistemas Inteligentes
Energia	Previsão de Carga Elétrica por Redes Neurais: Mensal, Horária, Pico, Intervalos 10min Sistema Híbrido de Detecção e Diagnóstico de Falhas em Sistemas Elétricos Otimização de Despacho por Algoritmos Genéticos Otimização da Alocação de Capacitores em Sistemas Elétricos Controle de Cheias em reservatórios de usinas hidrelétricas Reconhecimento de Descarqas Parciais em Equipamentos Elétricos
Petroquímico	Simulação de Forno de Craqueamento da Refinaria REDUC Utilizando Redes Neurais Sensor Virtual por Redes Neurais para a Medição de Intemperismo na Produção do GLP Otimização da Distribuição Combustíveis por Álgoritmos Genéticos
Industrial	Sistema Inteligente de Reconhecimento de Imagens Bidimensionais Redes Neurais Aplicadas a Ensaios Não-Destrutivos de Materiais Condutores Sistemas Inteligentes Aplicados ao Reconhecimento de Voz Otimização e Planejamento da Produção Controle e Navegação de Robos Compressão de Imagens Digitalizadas por Redes Neurais
Comercial	Otimização do Planejamento de Horários/Alocação de Salas por Algoritmos Genéticos Reconhecimento de Dígitos Manuscritos por Redes Neurais para Leitura de Código Postal Reconhecimento de Caracteres Impressos (OCR) Utilizando Redes Neurais Previsão da Demanda de Lubrificantes Descoberta de Padrões em Bancos de Dados Comerciais Classificação/Segmentação de Clientes a partir de Informações Cadastrais em BD
Econômico/ Financeiro	Planejamento de Fluxo de Caixa Inteligente (FCI) Gerência de Carteira de Investimentos (Risco x Retorno) por Algoritmos Genéticos Previsão de Indicadores Financeiros por Redes Neurais Previsão do Índice Bovespa por Redes Neurais Modelos Hibridos de Previsão de Séries Temporais
Meio Ambiente	Previsão de Precipitação Pluviométrica na Área do Nordeste por Redes Neurais

Automação Inteligente

- Planejamento da Produção
- Monitoração do Controle
- Detecção e Diagnóstico de Falhas
- Manutenção Preventiva
- Simulação e Modelagem de Processos
- Robótica
- Reconhecimento de Imagens, Voz
- Inferência/Predição de Propriedades

Automação Inteligente

- Planejamento e Otimização da Produção
 - Algoritmo Genético busca a ordem das tarefas que otimiza a produção (tempo, recursos, custos, etc) e satisfaz as restrições.
- Detecção e Diagnóstico de Falhas
 - Redes Neurais são treinadas com dados históricos para prever antecipadamente falhas em equipamentos; Sistema Especialista ou Lógica Nebulosa dá o diagnóstico e indica procedimentos.
- Manutenção Preventiva
 - Redes Neurais são treinadas com a leitura dos sensores para apontar a perspectiva de falhas em programas de manutenção preventiva.

Automação Inteligente

• Simulação e Modelagem de Processos

 Rede Neural é treinada para representar a dependência entre o estado e uma medida de qualidade de um processo. Após treinada, a RN atua como um modelo do processo industrial.

• Reconhecimento de Imagens, Voz

 Redes Neurais treinadas com padrões de imagens/voz são usadas para fins de segurança, seleção e identificação.

Inferência/Predição de Propriedades

 Redes Neurais são treinadas para modelar a relação entre as variáveis de entrada de um processo e as propriedades físicas de um produto, permitindo que o operador possa influenciar no processo sem ter que esperar pela análise laboratorial de amostras.

Áreas de Aplicação em Negócios

Varejo e Bancos	Seguro	Marketing
Avaliação de Financiamento	Avaliação de Risco	Mala Direta
Previsão de Demanda de Produtos	Cálculo de Prêmio de Seguro	Perfil do Consumidor
Banco de	Vigilância	Planejamento
Investimentos Gerência de Carteira	Detecção de Transações Fraudulentas em Bolsas	Planejamento da Produção e Distribuição
Previsão de Ativos Financeiros	Detecção de Fraude em Cartões de Crédito	Planejamento de Pontos de Venda

Marketing Dirigido pela Informação

- Modelagem do Comportamento do Consumidor
- Enriquecimento de Banco de Dados
- Classificação de Clientes
- Segmentação de Mercado
- Modelagem do Comércio Varejista
- Análise de Vendas

Negócios "Inteligentes"

■ American Express Sistemas Especialistas

 Autorização de crédito "on line"

■ Fidelity Investments Redes Neurais

- Gerência de carteira de investimentos (\$ 2 bilhões)

■ IOC Algoritmos Genéticos

ICA_

- Planejamento dos Jogos Olímpicos

■ Yamaichi Securities Lógica Nebulosa

- Seleção de Ações

Sistemas "Inteligentes"

■ Souza Cruz

- Fluxo de Caixa Inteligente

■ Eletrobrás

 Previsão do Consumo Mensal de Energia Elétrica

■ Embratel

- Classificação de Clientes

■ PUC-Rio

- Alocação de Salas de Aula

Algoritmos Genéticos

Redes Neurais

Algoritmos Genéticos Redes Neurais

Algoritmos Genéticos

Sistemas Especialistas

Conceitos Básicos

⇒ São programas que armazenam e manipulam o **conhecimento** adquirido de um especialista.

Conceitos Básicos

- ⇒ São programas que armazenam e manipulam o **conhecimento** adquirido de um especialista.
- → Incorpora o conhecimento de um especialista

Conceitos Básicos

⇒ São programas que armazenam e manipulam o **conhecimento** adquirido de um especialista.

- → Incorpora o conhecimento de um especialista
- → Requer entrevistas e observações para extrair o conhecimento.

Conceitos Básicos

⇒ São programas que armazenam e manipulam o **conhecimento** adquirido de um especialista.

- → Requer entrevistas e observações para extrair o conhecimento.
- → Conhecimento é representado em formato manipulável pelo computador.

Representação do Conhecimento

Regras de produção

Regra i

IF <condição_1> AND <condição_2>...
THEN <ação_A> AND <ação_B>

Exemplos:

IF Carro = *BMW* AND cidade = *São Paulo* THEN seguro = 10% valor carro

IF carro = *Fiat* AND cidade = *Icapuí* THEN seguro = 4% valor carro

Avaliação

Adequada para aplicações onde: o conhecimento (o especialista) é acessível, as regras são conhecidas e fáceis de serem formuladas por este especialista, e quando explicações são necessárias.

Avaliação

Vantagens

- utiliza representação explícita do conhecimento
- programas fáceis de ler e de compreender
- capazes de gerar justificativas (explicações)

Desvantagens

- ausência de mecanismo automático de aprendizado
- processo longo e caro de extração do conhecimento
- exigência de declarações precisas dos especialistas

Aplicações Comerciais

■ American Express: Sistema de Auxílio para Autorização de

Crédito (CC)

■ Citibank, National Westminster, Midland Bank: Análise de empréstimos pessoais, Gerência de Carteira de Investimento

<u>ICA</u>

Lógica Nebulosa

Conceitos Básicos

Técnica inteligente que tem como objetivo modelar o modo *aproximado* de raciocínio, imitando a habilidade humana de tomar decisões em um ambiente de *incerteza* e *imprecisão*

Conceitos Básicos

Permite que os sistemas inteligentes de controle e suporte à decisão lidem com informações imprecisas ou nebulosas

Exemplos:

- investimento de alto risco
- pressão média
- fluxo muito intenso
- alta temperatura
- muito jovem

Novos Conceitos

- Conjuntos Nebulosos
- Grau de Pertinência a um Conjunto
- Regras Nebulosas
- Inferência Nebulosa

<u>ICA</u>

Novos Conceitos

- Conjuntos Nebulosos
- Grau de Pertinência a um Conjunto
- Regras Nebulosas
- Inferência Nebulosa

Se idade igual a 40 então sou velho.

Se idade igual a 39 então sou jovem.

Novos Conceitos

- Conjuntos Nebulosos
- Grau de Pertinência a um Conjunto
- Regras Nebulosas
- Inferência Nebulosa

<u>ICA</u>

Conjuntos Nebulosos

Pedro tem 40 anos. Ele é jovem ou velho?

Pedro tem 40 anos. Ele é jovem ou velho?

Conjuntos Nebulosos

Pedro tem 40 anos. Ele é jovem ou velho?

- ⇒ Pedro é jovem E velho, ao mesmo tempo (com graus diferentes)
- → Os graus de pertinência demostram que Pedro não é nem tão jovem, nem tão velho

Novos Conceitos

- Conjuntos Nebulosos
- Grau de Pertinência a um Conjunto
- Regras Nebulosas
- Inferência Nebulosa

<u>ICN</u>

Sistema para Análise de Seguro Saúde

Regras Nebulosas

SE idade é *meia-idade* E pressão é *baixa* ENTÃO seguro é *baixo*

Sistema para Análise de Seguro Saúde

Regras Nebulosas

SE idade é *meia-idade* E pressão é *baixa* ENTÃO seguro é *baixo* SE idade é *jovem* E pressão é *alta* ENTÃO seguro é *alto*

Novos Conceitos

- Conjuntos Nebulosos
- Grau de Pertinência a um Conjunto
- Regras Nebulosas
- Inferência Nebulosa

Idade	20	25	30	35	40	45	50	55	60	65
Meia-Idade	0.3	0.4	0.6	0.8	0.9	1.0	8.0	0.6	0.3	0.1
Jovem	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Pressão Máx.	95	100	110	120	130	140	150	160	170	175
Pressão Mín.	50	55	60	65	70	75	80	85	90	100
Alta	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Baixa	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1.0
Baixo	1.0	0.9	0.6	0.5	0.3	0.1	0.1

Conjuntos Nebulosos

SE idade é *meia-idade* E pressão é *baixa* ENTÃO seguro é *baixo*

Idade	20	25	30	35	40	45	50	55	60	65
Meia-Idade	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Jovem	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Pressão Máx.	95	100	110	120		140	150	160	170	175
Pressão Mín.	50	55	60	65	70	75	80	85	90	100
Alta	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Baixa	1.0		0.8	l .		0.5				

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1.0
Baixo							0.1

SE idade é *meia-idade* E pressão é *baixa* ENTÃO seguro é *baixo*

Idade	20	25	30	35	40	45	50	55	60	65
Meia-Idade	0.3	0.4	0.6	0.8	0.9	10	0.8	0.6	0.3	0 1
Jovem	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Pressão Máx.	95	100	110	120		140	150	160	170	175
Pressão Mín.	50	55	60	65	70	75	80	85	90	100
Alta	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Baixa			0.8			0.5				

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1.0
Baixo	1.0	0.9	0.6	0.5	0.3	0.1	0.1

Conjuntos Nebulosos

SE idade é jovem E pressão é alta ENTÃO seguro é alto

Idade	20	25	30	35	40	45	50	55	60	65
Meia-Idade	0.3	0.4	0.6	0.8	0.9	1.0	0.8	0.6	0.3	0.1
Jovem	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Pressão Máx.	95	100	110	120	130	140	150	160	170	175
Pressão Mín.	50	55	60	65		75	80	85	90	100
Alta	0.1	0.2	0.3	0.4		0.6	0.7	0.8	0.9	1.0
Baixa	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1.0
Baixo	1.0	0.9	0.6	0.5	0.3	0.1	0.1

SE idade é jovem E pressão é alta ENTÃO seguro é alto

Idade	20	25	30	35	40	45	50	55	60	65
Meia-Idade	0.3	0.4	0.6	0.8	0.9	1 0	0.8	0.6	0.3	0 1
Jovem	0.9	0.8	0.7	0.6	0.4	0.3	0.1	0.0	0.0	0.0

Pressão Máx.	95	100	110	120	130	140	150	160	170	175
Pressão Mín.	50	55	60	65		75	80	85	90	100
Alta	0.1	0.2	0.3	0.4		0.6	0.7	0.8	0.9	1.0
Baixa	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Seguro	300	500	700	800	900	1000	1200
Alto	0.1	0.3	0.4	0.5	0.8	0.9	1.0
Baixo	1.0	0.9	0.6	0.5	0.3	0.1	0.1

ICA

Avaliação

Técnica utilizada em aplicações:

- onde o conhecimento envolve conceitos subjetivos e intrinsicamente imprecisos;
- e onde deseja-se obter explicações sobre o resultado do problema.

Avaliação

Vantagens

- facilidade de lidar com dados imprecisos.
- facilita a descrição das regras pelos especialistas.
- menor número de regras.
- explicação do raciocínio

Desvantagens

- especificação das funções de pertinência.
- necessidade de um especialista e/ou dados históricos.

Aplicações Industriais

→ NISSAN: freios antiderrapantes

→ GM: sistema de transmissão nebuloso

→ SANYO: microondas→ SHARP: refrigeração

→ BOSCH: máquinas de lavar

→ HITACHI: aspirador

→ PANASONIC: camcorder

Aplicações Comerciais

■ Yamaichi Securities: Sistema de Gerenciamento de Fundos

de Investimento

■ Fuji Bank: Sistema de Negociação de Bolsa de Valores

■ World Bank: Sistema de Investimento

■ Metus Systems: Sistema fuzzy de detecção de fraude no

sistema de saúde

Aplicações do Curso

- Controle de Coloração e Nível de Tanques
- Sistema de Análise de Seguro Saúde
- Análise de Oportunidade de Investimento
- Previsão da Classificação da Volatilidade
- Controle de Velocidade de Motor Hidráulico
- Previsão de Carga Elétrica Horária e 10 em 10 min.
- Planejamento do Sistema Elétrico
- "Clusterização" de Banco de Dados
- Sistema de Avaliação de Risco Bancário
- Sistema para definição de preço de produto novo
- Controle de Manipulador Robótico com extração automática de regras
- Previsão de produção de cacau
- Consultas Fuzzy a bancos de dados relacionais

Redes Neurais

Redes Neurais

Modelo Computacional inspirado nos neurônios biológicos e na estrutura do cérebro com capacidade de adquirir, armazenar e utilizar conhecimento experimental.

Relação com a Natureza

Cérebro

 $\stackrel{\textstyle \longleftarrow}{\longrightarrow}$

Redes Neurais Artificiais

- Neurônio Biológico
- Rede de Neurônios
- 10 bilhões neurônios
- Aprendizado
- Generalização
- Associação
- Reconhecimento de Padrões

- Neurônio Artificial
- Estrutura em Camadas
- centenas/milhares
- Aprendizado
- Generalização
- Associação
- Reconhecimento de Padrões

Redes Neurais

Estrutura da Rede Neural

Estrutura da Rede Neural

Os pesos guardam a memória (conhecimento) da Rede Neural .

<u> 401</u>

Avaliação

Indicada para o reconhecimento de padrões em aplicações com dados ruidosos ou incompletos, e quando regras claras não podem ser facilmente formuladas.

Avaliação

Vantagens

<u>Desvantagens</u>

- → modelagem de sistemas → ausência de explicações não lineares
- → aprendizado automático
- → tolerante a dados ruidosos e incompletos
- → resposta rápida e precisa
- → modelos compactos

- → sensível a quantidade de dados disponível

Aplicações Industriais

■ Racal: Identificação de placas de veículos

■ Thomson: Sistemas de OCR

■ St. George's Hospital: Sistema de classificação de tumores

■ CRAM: Sistema automático de seleção de laranjas

Aplicações Comerciais

Fidelity Investments: Gerência de Fundos de Investimento

(\$2 bilhões)

Chase Manhattan Bank: Detecção de Fraudes em Cartões

de Créditos

Citibank (USA): Avaliação de Crédito

Nikko Securities: Sistema de Negociação do Índice da Bolsa

Hill Samuel/UCL: Sistema de Previsão de Fundos de

Investimento

Thorn EMI/UCL: Perfil do consumidor

<u>ICA</u>

Aplicações do Curso

- Previsão de Demanda de Energia Elétrica
- Previsão de Consumo de Lubrificantes
- Classificação de Clientes (Data Mining)
- Demos do NeuroShell

Algoritmos Genéticos

Conceitos Básicos

→ Algoritmo de *busca/otimização* inspirado na *seleção natural* e reprodução *genética*.

<u>ICA</u>

Conceitos Básicos

- → Algoritmo de busca/otimização inspirado na seleção natural e reprodução genética.
- → Combina sobrevivência do mais apto e cruzamento aleatório de informação

Analogia com a Natureza

Evolução Natural

Alg. Genéticos

- Indivíduo
- Cromossoma
- Reprodução Sexual
- Mutação
- População
- Gerações
- Meio Ambiente

- Solução
- Representação
- Operador Cruzamento
- Operador Mutação
- Conjunto de Soluções
- Ciclos
- Problema

Qual a finalidade de Algoritmos Genéticos?

Algoritmos Genéticos empregam um processo adaptativo e paralelo de busca de soluções em problemas complexos.

Qual a finalidade de Algoritmos Genéticos?

Adaptativo

- informação corrente influencia a busca futura

Paralelo

várias soluções consideradas a cada momento

Problema Complexo

 de difícil formulação matemática ou com grande espaço de busca (grande número de soluções)

Problema Complexo

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = max

2 L	Número de Pontos	Tempo de Busca
	no Espaço	10 ⁹ inst/seg

ICP

Problema Complexo

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = max

2 ^L	Número de Pontos no Espaço	Tempo de Busca 109 inst/seg
L = 3	8	< 1 seg

Problema Complexo

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = max

2 L	Número de Pontos no Espaço	Tempo de Busca 109 inst/seg
L = 3	8	< 1 seg
L = 1 0	1024	< 1 seg

ICP

Problema Complexo

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = max

2 L	Número de Pontos no Espaço	Tempo de Busca 109 inst/seg
L = 3	8	< 1 seg
L = 10	1024	< 1 seg
L = 3 0	1 bilhão	1 seg

ICN.

Problema Complexo

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = max

2 ^L	Número de Pontos no Espaço	Tempo de Busca 109 inst/seg
L = 3	8	< 1 seg
L = 10	1024	< 1 seg
L = 30	1 bilhão	1 seg
L = 9 0	10 ²⁷	15 bilhões de
		a n o s

ICA

Problema da Cabra Cega

Busca de objetivo escondido em uma área

Operações Básicas

Seleção: privilegia os indivíduos mais aptos

CIA_

Operações Básicas

Seleção: privilegia os indivíduos mais aptos

Reprodução: indivíduos (palavras binárias) são reproduzidos com base na aptidão

<u>ICA</u>

Operações Básicas

Seleção: privilegia os indivíduos mais aptos

Reprodução: indivíduos (palavras binárias) são

reproduzidas com base na aptidão

Crossover: troca de genes (pedaços de palavras)

Operações Básicas

Seleção: privilegia os indivíduos mais aptos

Reprodução: indivíduos (palavras binárias) são

reproduzidas com base na aptidão

Crossover: troca de genes (pedaços de palavras)

Mutação: troca aleatória de um gene (bit da palavra)

Exemplo

Problema:

 \rightarrow Achar o valor máximo para $f(x) = x^2$, x no limite de 0 a 63.

<u>ICA</u>

Exemplo

Problema:

 \rightarrow Achar o valor máximo para $f(x) = x^2$, x no limite de 0 a 63.

Representação da Solução:

→ Palavras binárias representando sucessivas potências de 2.

011100 => Representa 28

110101 => Representa 53 (uma solução mais apta)

Seleção em Algoritmos Genéticos

População

Cromossoma	Palavra	Х	Aptidão (x²)
Α	100100	36	1296
В	010010	18	324
С	010110	22	484
D	000001	1	1

Seleção em Algoritmos Genéticos

População

Cromossoma	Palavra	Х	Aptidão (x²)
Α	100100	36	1296
В	010010	18	324
С	010110	22	484
D	000001	1	1

Seleção

Probabilidade de Seleção » Aptidão do Cromossoma

Operadores de Algoritmos Genéticos

Crossover

ICA

Operadores de Algoritmos Genéticos

Crossover

<u>ICA</u>

Ciclo do Algoritmo Genético

Cromossoma	Palavra	Aptidão	
Α	100100	1296	
В	010010	324	
С	010110	484	
D	000001	1	

Cromossoma	Palavra	Aptidão
Α	100100	1296
В	010010	324
С	010110	484
D	000001	1

Ciclo do Algoritmo Genético

Crossover

Avaliação

Aplicado em problemas complexos de otimização – de difícil modelagem matemática, com variedade de regras e condições, ou com grande número de soluções a considerar.

Avaliação

Vantagens

- → Técnica de busca global
- → Otimização de problemas mal estruturados
- → Dispensa formulação matemática precisa do problema

Desvantagens

- → Dificuldade na representação do cromossoma
- → Evolução demorada em alguns problemas
- → Modelagem depende de especialista em AG

Aplicações Industriais

GENERAL ELECTRIC - Otimização de Projeto de Motores DC

BRITISH GAS - Otimização da Distribuição de Gás

BBN - Roteamento de Telecomunicações

ATTAR - Planejamento da Programação de TV

Aplicações Comerciais

CAP VOLMAC - Avaliação de Crédito e Análise de Risco

SEARCHSPACE - Detecção de Fraude na Bolsa de Londres

IOC - Planejamento dos Jogos Olímpicos

CAP Gemini - Avaliação de Empréstimos e Financiamentos

GWI - Modelagem Econômica

World Bank - Geração de Regras de Negociação na Bolsa

Aplicações do Curso

- Extração de Conhecimento em Bancos de Dados Comerciais (Data Mining)
- Otimização do Fluxo de Caixa de Empresas
- Otimização de Carteira de Ativos
- Demos do Evolver 4.0 e GeneHunter

Softwares Comerciais

Produto	site	Técnica	Propósito
Optimax Systems	www.optimax.com	AG	D
Aspen PIMS 10.0	www.aspentech.com		D
• FT3PAK	www.flextool.com		D
NeuroGenetic Optimizer	www.BioCompSystems.co	m AG	D
 NeuroSolutions 	http://www.nd.com	RN	G
NeuralWorks ※	http://neuralware.com	RN	G
GeneHunter		AG	G
BrainWave			D
 ModelWare/RT 			D
● Evolver 4.0 🔏	www.palisade.com	AG	G
QMC Program	www.EngineersWebSite.co	m AG,F	RN G
 DataEngine ADL 	info@mitgmbh.de	AG,F	RN,LN G
	★ disponível no ICA; D- dedicado; G- propósito geral		

Publicações Comerciais na Área

- PCAI: Where Intelligent Technology Meets the Real World
 www.pcai.com/pcai
- Intelligent Systems Report:

News and Applications on Intelligent Computing http://LIONHRTPUB.COM/ISR/ISR-welcome.html

<u>ICN</u>

Inteligência Computacional Aplicada

PUC-Rio

ICA@ele.puc-rio.br

http://www.ele.puc-rio.br/labs/ica/icahome.html

