

My Progress

MonoHiggs to $b\bar{b}$

Prayag Yadav

Last updated: 2023-10-19 22:24:04Z

University of Hyderabad

Table of contents

1. Thu, 5th October 2023

Basic kinematic plots (Without any scale factors or corrections)

2. Thu, 26th October 2023 MET Triggers

Basic kinematic plots

BTag Scores: MC

- Btagger used : btagDeepFlavB
- Sample used:MonoHTobb_ZpBaryonic
- Lots of bjets in Signal MC

Figure 1: BTag score for signal MC sample

BTag Scores: Data

- Btagger used : btagDeepFlavB
- Sample used: Run2018A/MET
- Less number of bjets in Data

Figure 2: BTag score for Data samples

Jet p_t : MC

- Basic selections : $p_t > 25 GeV$ and $|\eta| < 2.5$
- Btagger used : btagDeepFlavB
- Sample used: MonoHTobb_ZpBaryonic
- Medium Weight Parameter used for ak4bjets: 0.3040

Figure 3: Jet p_t of signal MC samples

Jet p_t : Data

Figure 4: Jet p_t of Data samples

- Basic selections : $p_t > 25 GeV$ and $|\eta| < 2.5$
- Btagger used : btagDeepFlavB
- Sample used: Run2018A/MET
- Medium Weight Parameter used for ak4bjets: 0.3040
- Not as predictable as signal MC

DiJet mass: MC

Figure 5: DiJet mass of signal MC samples

- Basic selections : $p_t > 25 GeV$ and $|\eta| < 2.5$ for each jet
- Btagger used : btagDeepFlavB
- Sample used:MonoHTobb_ZpBaryonic
- Medium Weight
 Parameter used for ak4bjets selection:
 0.3040
- Peaks around SM Higgs mass

DiJet mass: Data

Figure 6: DiJet mass of Data samples

- Basic selections : $p_t > 25 GeV$ and $|\eta| < 2.5$ for each jet
- Btagger used:btagDeepFlavB
- Sample used: Run2018A/MET
- Medium Weight Parameter used for ak4bjets selection: 0.3040
- Lot of noise, no clear structure

$MET p_t : MC$

No filters or Trigger applied

Figure 7: MET p_t for signal MC samples

MET p_t : Data

- No filters or Trigger applied
- Looks similar to the Jet data

Figure 8: MET p_t for Data samples

MET Triggers

MET p_t : MET2018A

 Compared how the MET pt looks with and without MET triggers on Data

• .

Figure 9: MET p_t for MET2018A

MET ϕ : MET2018A

- Compared how the MET ϕ looks with and without MET triggers
- .jf

Figure 10: MET ϕ for MET2018A

MET p_t : MonoHtobb_ZpBaryonic

- Compared how the MET p_t looks with and without MET triggers on Signal MC
- · .jf

Figure 11: MET p_t for MonoHtobb_ZpBaryonic

MET ϕ : MonoHTobb_ZpBaryonic

• Compared how the MET ϕ looks with and without MET triggers on Signal MC

_

Figure 12: MET ϕ for MC

References i