

Sigurnost računalnih sustava

Kontrola pristupa

doc. dr. sc. Ante Đerek

izv. prof. dr. sc. Stjepan Groš

izv. prof. dr. sc. Miljenko Mikuc

izv. prof. dr. sc. Marin Vuković

Kontrola pristupa (engl. access control)

- Kontrola pristupa sastoji se od dva koraka
 - Autentifikacija (alternativno autentikacija, engl. autentification)
 - Autorizacija (engl. authorization)
- Autentifikacija je proces provjere identiteta SUBJEKTA (korisnika, procesa ili uređaja)
 - Međusobna autentifikacija (engl. mutual autentification) je slučaj kada se jedna strana drugoj autentificiraju. Dosta često samo jedna strana se autentificira.
- Autorizacija je proces odlučivanja može li SUBJEKT obaviti točno određenu OPERACIJU nad OBJETKOM.

Metode autentifikacije

- Temelje se na jednom ili kombinaciji više faktora
 - Nečemu što znamo
 - Ono što jesmo
 - Ono što imamo
- Jedno-faktorska autentifikacija (1FA)
 - Najčešće korištena, u dosta slučajeva nedovoljna, trend prelaska na 2FA
- Dvo-faktorska autentifikacija (2FA)
 - Sve više korištena i dovoljno visoke razine zaštite (pod određenim uvijetima)
- Višefaktorska autentifikacija (MFA)
 - Rijetko korištena

Primjeri autentifikacijskih mehanizama

- Lozinke (engl. Passwords)
- Dijeljene tajne (engl. shared secrets)
- Fraze (engl. pass-phrases)
- Jednokratne lozinke (engl. One-Time Passwords, OTP)
- Pametne kartice (engl. smart cards)
- Biometrijske metode (engl. biometric methods)

Lozinke

Temeljene na onome što znamo

Laboratorij za informacijsku sigurnost i privatnost

- Niz znakova
- Jednostavne za implementaciju i korištenje
- Najstariji mehanizam autentifikacije
 - Prva upotreba na računalima u operacijskom sustavu CTSS za prijavu
- Lozinke se upotrebljavaju i u procesima
 - Primjerice, Web aplikacija koja se spaja na bazu

Provjera ispravnosti lozinke

- Protokol u načelu ima sljedeći oblik
 - 1. Korisnik upiše korisničko ime i lozinku

Laboratorij za informacijsku sigurnost i privatnost

- 2. Oba se dostave poslužitelju (ili poslužiteljskom procesu)
- 3. Poslužitelj uspoređuje dostavljenu verziju i pohranjenu verziju Ako su verzije iste, tada je korisnik (osoba) dokazala da je vlasnik korisničkog imena Napomena: Ne raditi to na ovaj način

Ranjivosti i prijetnje na sigurnost lozinki

- Niska razina slučajnosti i kompleksnosti (ranjivost)
 - omogućava napade pogađanjem grubom silom (engl. brute-force) ili napadi na temelju rječnika (engl. dictionary based-attacks)
- Upotreba iste lozinke na više raznih mjesta (ranjivost)
- Krađa lozinki (prijetnja)
 - Korisnici zapisuju lozinke na mjesta koja nisu zaštićena (ranjivost)
 - Snimanje što korisnik upisuje (engl. shoulder surfing) (prijetnja)
 - Krađa pohranjenih lozinki s poslužitelja (prijetnja)
- Presretanje/krađa lozinki tijekom prijenosa (prijetnja)
- Sustav obnavljanja lozinki (engl. password reset)

Primjeri incidenata s lozinkama

- LinkedIn: 2012 godine provaljeno te ukradeno 6.5 milijuna e-mail adresa
 - 2016 godine otkriveno još 100 milijuna
- Yahoo!: sveukupno u 2013. i 2014. oštećeno 3 milijarde korisničkih računa
 - Otkriveno tek 2016 godine

Smanjenje ranjivosti lozinki

- Ispravno ih pohranjivati
- Trebaju biti odgovarajuće kompleksnosti i često se mijenjati
- Spriječiti pogađanje
- Korisnik ih ne smije dijeliti s nikim te koristiti jedinstvene lozinke za svaku uslugu
- Tijekom unosa paziti da ih netko ne otkrije
- Zaštititi tijekom prijenosa

Sigurna pohrana lozinki (1)

- Problem je ako napadač dohvati datoteku s lozinkama, onda je kompromitirao sve lozinke
 - Cilj je spriječiti da se to desi
 - To je itekako realna prijetnja s kojom obavezno treba računati!
- Ispravna pohrana znači
 - Svakoj lozinki se dodaje slučajna vrijednost (salt, seed)
 - Slučajna vrijednost i lozinka se propuštaju kroz kriptografsku funkciju sažetka
 - Na disk se pohranjuju slučajna vrijednost i rezultat kriptografske funkcije sažetka
 - Poznavanje slučajne vrijednosti ne olakšava pogađanje lozinke

Sigurna pohrana lozinki (2)

- Ako sada napadač dođe do datoteke s lozinkama ne može vidjeti lozinke
 - Preostaje mu samo pogađanje!
- Pogađanje znači da treba pretpostaviti koja je lozinka te obaviti izračunavanje sažetka
 - Ne mora se nužno koristiti samo grubom silom, može imati određene pretpostavke o izgledu lozinki
- Slučajna vrijednost onemogućava dvije stvari
 - Ista lozinka ima isti zapis u bazi
 - Napad korištenjem tzv. Rainbow tables

Sigurna pohrana lozinki (3)

- Moramo modificirati protokol autentifikacije zbog uvedene zaštite
 - 1. Korisnik upiše korisničko ime i lozinku
 - 2. Oba se dostavljaju poslužitelju (ili poslužiteljskom procesu)
 - 3. Poslužitelj za korisnika dohvaća sald/seed te izračunava sažetak lozinke i salta/seeda
 - 4. Uspoređuje izračunatu vrijednost i pohranjenu vrijednost
 - 5. Ako su verzije iste, tada je korisnik (osoba) dokazala da je vlasnik korisničkog imena

Sprečavanje pogađanja lozinki (1)

- Pogađanje može biti on-line ili off-line
 - On-line
 - Napadač se pokušava prijaviti
 - Off-line
 - Imamo kopiju lozinki zaštićenih metodom koju smo opisali
- Obje vrste napada otežavamo ako su lozinke minimalne određena kompleksnost
 - Odnosi se na broj znakova, skup znakova iz kojeg se kreira lozinka, minimalan broj različitih vrsta znakova
 - Također, lozinke ne smiju biti kombinacija riječi iz rječnika
 - Niti bi trebale biti već kompromitirane lozinke!

Sprečavanje pogađanja lozinki (2)

- Točni parametri ovise o okruženju i resursu koje lozinka štiti
 - Ispod 8 znakova nikako ne bi trebalo ići!
- Forsiranje lozinki određene minimalne kompleksnosti je dobra praksa i zbog toga podložna debatama
 - U osnovi ne smije se ići u ekstreme

Sprečavanje on-line pogađanja

- Kako bi se spriječili pokušaji pogađanja lozinke često se uvode dva dodatna ograničenja:
 - Nakon svakog neuspjelog pokušaja upisivanja lozinke povećava se vrijeme čekanja
 - Nakon određenog broja neuspjelih pokušaja korisnik se blokira, korisnički račun se zaključava, generira se upozorenje vlasniku sustava
 - Ovo može omogućiti DoS napad na korisnika!
- Rezultat dodatnih ograničenja je da je jako smanjen broj pokušaja u jedinici vremena
 - Uz dodatne promjene lozinki smanjujemo vjerojatnost njihova pogađanja, i korist od otkrivene lozinke

Alati za pogađanje lozinki

- THC Hydra
 - https://securitytutorials.co.uk/brute-forcing-passwords-with-thc-hydra/
- John The Ripper
 - https://www.openwall.com/john/
- Hashcat
 - https://hashcat.net/hashcat/

Periodička promjena lozinki

Laboratorij za informacijsku sigurnost i privatnost

- Periodički se traži promjena lozinke
 - Period promjene ovisi o okruženju i resursu koji se štiti
 - U dosta slučajeva ne dozvoljava se korištenje starih lozinki
- Ideja promjene lozinki
 - Ako vam je lozinka kompromitirana, smanjuje se prozor u kojemu napadač nešto može učiniti
 - Ako je napadač došao do kopije zaštićene lozinke kada otkrije lozinku, ona više ne vrijedi
- U slučaju sumnje da je lozinka kompromitirana obavezno mijenjati lozinku
 - U tvrtkama administrator može forsirati zamjenu lozinke

Zaboravljene lozinke

- Za očekivati je da će ljudi zaboravljati lozinke
- U ograničenim sredinama (tvrtka) moguće je to riješiti tako da se djelatnik javi na helpdesk/administratoru
 - Na Internetu takav način ne funkcionira
- Često se u raznim aplikacijama na Internetu ugrađuje mogućnost resetiranja lozinke
 - Treba biti jako oprezan s tim mehanizmom kako se ne bi omogućilo napadaču da resetira korisničku lozinku
 - Zanimljivost: Ako se desi da kada aktivirate reset lozinke na mail dobijete lozinku koju ste imali onda znači da zaštita lozinki nije implementirana ispravno!

Prijenos lozinke preko mreže

- U načinu provjere lozinke postoji potencijalna ranjivost
 - Ako mjesto gdje korisnik upisuje lozinku i mjesto gdje se provjerava lozinka nisu na istom računalu
 - Napadač može snimiti lozinku i na taj način narušiti njenu sigurnost
 - Općenito, treba voditi računa može li napadač "upasti" u komunikacijski kanal
- Rješenje tog problema je izazov-odgovor način provjere (challenge, response)
 - Međutim, za korištenje ovog načina provjere na poslužitelju lozinke moraju biti pohranjene u čistom tekstu, ili se mora koristiti reverzibilna zaštita

Izazov odgovor način provjere

Protokol provjere ispravnosti lozinke:

- 1. Poslužitelj šalje slučajan broj (nonce) na klijent
- 2. Korisnik upisuje korisničko ime i lozinku

Laboratorij za informacijsku sigurnost i privatnost

- 3. Klijent slučajan broj i lozinku propušta kroz funkciju sažetka
- 4. Korisničko ime i rezultat funkcije sažetka se šalju na poslužitelj
- 5. Poslužitelj na temelju korisničkog imena dohvaća pohranjenu lozinku te izračunava funkciju sažetka na temelju lozinke i slučajnog broja kojeg je poslao klijentu
- Ako je izračunata vrijednost ista kao i primljena verzija autentifikacija je uspješna

Napomena: Ovo je koncept i nemojte to koristiti u ovom obliku u praksi!

Upravljanje lozinkama

Laboratorij za informacijsku sigurnost i privatnost

- Lozinke se danas upotrebljavaju na mnogim mjestima
 - Jako je teško stalno generirati kvalitetne lozinke te ih pamtiti
- Rješenje je u vidu aplikacija pod nazivom "password managers"
 - Omogućavaju pohranu lozinki
 - Nude generiranje kvalitetnih lozinki
 - Mogućost automatskog upisivanja lozinki u razne aplikacije (primjerice, Web preglednici)

Dijeljene tajne i fraze

- Varijacije na temu lozinki s kojima dijele i određene ranjivosti
- Dijeljene tajne (engl. Shared secrets)
 - Služe za međusobnu autentifikaciju i jedna i druga strana dokazuju poznavanje dijeljene tajne
- Fraze (engl. Passphrases)
 - Dvije razlike u odnosu na lozinke
 - Značajno su dulje (rečenice i slično); uz njih nije vezano korisničko ime

Jednokratne lozinke

- One-Time Passwords (OTP)
- Najčešće broj od 4 i više znamenki koji se generira po nekom poznatom algoritmu
 - Algoritam se inicijalizira početnim slijednim brojem koji mora biti tajna
- Postoje standardizirani algoritmi ne bi trebalo izmišljati svoje!
 - TOTP RFC6238, HOTP RFC4226

Implementacije jednokratnih lozinki

- Sklopovski tokeni primjerice, za internet bankarstva raznih domaćih banaka
- Mobilna aplikacija
- Program na računalu/poslužitelju

Laboratorij za informacijsku sigurnost i privatnost

Lozinke i dvo-faktorska autentifikacija

- Kako bi se poboljšala sigurnost lozinki sve češće omogućava ili forsira dodavanje drugog faktora autentifikacije
 - Najčešće je u pitanju PIN
- Ponekad se PIN šalje nekim drugim kanalom (mail, SMS)
 - Za sigurnost jako je bitno da je taj drugi kanal nezavisan od kanala kojim se šalje lozinka!
- Preporuka je za bilo što kritičnije da si omogućite 2FA bez obzira što vas se ne forsira na to

Pametne kartice

- Kategorija ono što imamo (kartica) i ono što znamo (PIN)
 - Dvofaktorska autentifikacija
 - Karticu je potrebno "otključati" korištenjem PIN-a
- Temelj za autentifikaciju su privatni i javni ključevi
 - Privatni ključ se nalazi na kartici i nikada ne izlazi van, javni ključ je svima poznat
 - Kartica potpisuje nekakve podatke te na taj način imamo jamstvo da korisnik ima karticu i zna PIN
- Primjeri
 - Nove osobne iskaznice, kartice za poslovna internet bankarstva

Biometrijske metode

- Kategorija "Ono što jesi" autentifikacije
- Koristi se jedinstvenim biološkim karakteristikama
 - Otisak prsta, slika lica, slika rožnice, stil tipkanja, otisak dlana, ...
- Sve popularnije zbog jednostavnosti za korisnika
- Problematični u slučaju krađe autentifikacijskih podataka
 - Primjerice, ako je ukraden otisak prsta nemoguće ga je zamijeniti
 - Problemi sa privatnošću

Autorizacija (1)

- Nakon što je korisnik identificiran utvrđuje se pravo korisnika da provede nekakvu operaciju nad nekim resursom
- Procesom autorizacije se određuje da li SUBJEKT može obaviti OPERACIJU nad OBJEKTOM.
 - Primjeri
 - Datoteka je objekt, operacija je čitanje
 - Tablica u bazi je objekt, operacija je pretraživanje

Autorizacija (2)

- Subjekti su korisnici, odnosno, procesi koji djeluju u ime korisnika
 - Subjekti mogu biti grupirani u grupe
- Koji objekti i dozvole postoje ovise o aplikaciji i onima koji su je razvijali
 - Tijekom planiranja razvoja aplikacije potrebno je definirati objekte i dozvole
 - Detaljni objekti i dozvole velika fleksibilnost, ali i kompleksnost
 - "Grubi" objekti i dozvole mala fleksibilnost, ali i mala kompleksnost

Autorizacija bazirana na dozvolama

- Objekt za svaki subjekt ima definirano može li obaviti pojedinu operaciju
 - Ako subjekt koji želi obaviti operaciju nije za nju naveden u popisu onda se donosi podrazumijevana (default) odluka – dobra praksa je da je to odbijenje provođenja operacije
 - Često se to korisniku predstavlja kao lista pa govorimo o **pristupnim listama** (engl. access control lists)
- Dodavanje/uklanjanje dozvola svodi se na modifikaciju odgovarajućih struktura podataka

Autorizacija bazirana na ulogama

- U praksi je puno veću fleksibilnost i upravljivost pokazala metoda autorizacije bazirana na ulogama (engl. role based access control, RBAC)
- Dozvole se grupiraju u uloge, a uloge se dodjeljuju subjektima
 - Jedan subjekt može imati više uloga
 - Pojedina dozvola može se nalaziti u više uloga
 - Pojedina uloga može se dodijeliti jednom ili više subjekata
- Ideja je da uloge reflektiraju nečiju funkciju

Sigurnost računalnih sustava

Hvala!