

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (IMAD)

Lezione 4: Stima a massima verosimiglianza (maximum likelihood estimation)

Corso di Laurea Magistrale in INGEGNERIA INFORMATICA

SPEAKER

Prof. Mirko Mazzoleni

PLACE

Università degli Studi di Bergamo

Syllabus

Parte I: sistemi statici

- 1. Richiami di statistica
- 2. Teoria della stima
 - 2.1 Proprietà degli stimatori
- 3. Stima a minimi quadrati
 - 3.1 Stima di modelli lineari
 - 3.2 Algoritmo del gradient descent
- 4. Stima a massima verosimiglianza
 - 4.1 Proprietà della stima
 - 4.2 Stima di modelli lineari

- 5. Regressione logistica
 - 5.1 Stima di un modello di regressione logistica
- 6. Fondamenti di machine learning
 - 6.1 Bias-Variance tradeoff
 - 6.2 Overfitting
 - 6.3 Regolarizzazione
 - 6.4 Validazione
- 7. Cenni di stima Bayesiana
 - 7.1 Probabilità congiunte, marginali e condizionate
 - 7.2 Connessione con Filtro di Kalman

Parte I: sistemi statici

Stima parametrica $\hat{\theta}$

- <u>θ deterministico</u>
 - NO assunzioni su ddp dei dati
 - ✓ Stima parametri popolazione
 - ✓ Stima modello lineare: minimi quadrati
 - SI assunzioni su ddp dei dati
 - ✓ Stima massima verosimiglianza parametri popolazione
 - ✓ Stima modello lineare: massima verosimiglianza
 - ✓ Regressione logistica
- <u>θ variabile casuale</u>
 - SI assunzioni su ddp dei dati
 - ✓ Stima Bayesiana

Machine learning

Parte II: sistemi dinamici

Stima parametrica $\hat{\theta}$

- <u>θ deterministico</u>
 - NO assunzioni su ddp dei dati
 - ✓ Modelli lineari di pss
 - ✓ Predizione
 - Identificazione
 - Persistente eccitazione
 - ✓ Analisi asintotica metodi PEM
 - ✓ Analisi incertezza stima (numero dati finito)
 - ✓ Valutazione del modello

Outline

- 1. Stima a massima verosimiglianza
- 2. Stima a massima verosimiglianza di parametri della popolazione
- 3. Stima a massima verosimiglianza di modelli lineari

Outline

1. Stima a massima verosimiglianza

- 2. Stima a massima verosimiglianza di parametri della popolazione
- 3. Stima a massima verosimiglianza di modelli lineari

Abbiamo presentato finora diversi tipi di stimatori:

• Media campionaria:
$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} y(i)$$
 $\widehat{\theta} = \mu \in \mathbb{R}$

• Varianza campionaria:
$$S_{N-1}^2 = \frac{1}{N-1} \cdot \sum_{i=1}^N (y(i) - \hat{\mu})^2 \quad \Box \qquad \hat{\theta} = \sigma^2 \in \mathbb{R}$$

un modello lineare:

Stimatore a minimi quadrati di
$$y(i) = \theta_0 + \theta_1 \varphi_1(i) + \cdots + \theta_{d-1} \varphi_{d-1}(i) + \epsilon(i)$$
 un modello lineare:
$$\epsilon(i) \text{ indipendenti media nulla e varianza } \lambda^2$$

Gli stimatori presentati sono parametrici, nel senso che stimano dei parametri del sistema che ha generato i dati

• Nel fare ciò, non abbiamo mai fatto assunzioni sulla distribuzione di probabilità dei dati $\mathcal{D} = \{y(1), y(2), ..., y(N)\}$

Il metodo della **massima verosimiglianza** (MLE – Maximum Likelihood Estimation) è una procedura di stima che, **dato un modello probabilistico**, stima i suoi **parametri** in modo tale che siano **più coerenti con i dati** osservati

Supponiamo di avere a disposizione N osservazioni $Y = [y(1), y(2), ..., y(N)]^T$, dove

Probability density function

La pdf congiunta dei dati è $f_Y(y(1), y(2), ..., y(N)|\mu, \sigma^2) = f_Y(Y|\mu, \sigma^2) = \prod_{i=1}^N \mathcal{N}(y(i)|\mu, \sigma^2)$

La pdf congiunta $f_Y(Y|\mu,\sigma^2)$ indica la probabilità che si realizzi il vettore di dati osservato

• Siccome le y(i) sono i.i.d., la probabilità di osservare y(1) AND y(2) AND ... AND y(N) è il **prodotto delle pdf** delle singole variabili

Esempio: calcolo pdf congiunta, parametri noti

Supponiamo di avere N=6 dati $\mathcal{D}=\{y(1),y(2),...,y(6)\},\ y(i)\sim\mathcal{N}(\mu,\sigma^2)$ i. i. d.

Il valore assunto dalla pdf congiunta $f_Y(Y|\mu,\sigma^2)$, con μ e σ^2 **noti**, valutata nei dai osservati \mathcal{D} , è il prodotto dei **pallini blu**

$$f_{Y}(Y|\mu,\sigma^{2}) = f_{y}(y(1)|\mu,\sigma^{2}) \cdot f_{y}(y(2)|\mu,\sigma^{2}) \cdot f_{y}(y(6)|\mu,\sigma^{2})$$

$$\vdots$$

Se funzione dei dati *Y*, la pdf congiunta è una **distribuzione multivariabile**. lo però **conosco il valore di** *Y*, dato che ho osservato i dati

Se conoscessi anche μ e σ , potrei calcolare la probabilità di avere osservato Y. Però **non conosco** μ e σ ! E' proprio quello che voglio stimare!

Quando $f_Y(Y|\mu,\sigma^2)$ (la **pdf congiunta**) è vista in funzione dei parametri μ and σ , è chiamata funzione di **likelihood** $\mathcal{L}(\mu,\sigma^2|Y)$

Cambia solo l'interpretazione, ma $f_Y(Y|\mu,\sigma^2)$ e $\mathcal{L}(\mu,\sigma^2|Y)$ sono lo stesso oggetto matematico!

Riassunto:

Variabili non Parametri NOTI note

• Se $f_Y(Y|\mu,\sigma^2)$ è funzione dei dati Y: pdf multivariabile

Dati NOTI Variabili non note

• Se $f_Y(Y|\mu, \sigma^2)$ è funzione dei parametri μ e σ^2 : likelihood $\mathcal{L}(\mu, \sigma^2|Y)$

Di solito si cambia la notazione di $f_Y(Y|\mu,\sigma^2)$ in $\mathcal{L}(\mu,\sigma^2|Y)$ per rendere più chiaro chi è supposto noto («a destra della barra |») e chi non è noto («a sinistra della barra |»)

La stima a massima verosimiglianza è quel valore del parametro θ che massimizza la verosimiglianza $\mathcal{L}(\theta|Y)$

Esempio: supponiamo di avere un solo dato $y(1) \sim \mathcal{N}(\mu, \sigma^2 = 1)$, e che il suo valore sia $y(1) = \bar{y}$. Il parametro da stimare è $\theta = \mu$

Notiamo che:

$$\mathcal{L}(\mu = 2|y(1) = \overline{y}) > \mathcal{L}(\mu = 1|y(1) = \overline{y})$$

Per cui $\mu=2$ è **più verosimile** di $\mu=1$, in base a questo modello e questi dati

QUIZ!

In questo esempio, la **stima a massima verosimiglianza** è:

$$\Box \hat{\mu} = 2\bar{y}$$

$$\Box \hat{\mu} = \bar{y}$$

$$\Box \hat{\mu} = 2$$

L'esempio precedente considerava il caso in cui avevamo un solo dato osservato. Nel caso di più osservazioni i.i.d. di $y \sim \mathcal{N}(\mu, \sigma^2)$, ovvero $Y = [y(1), y(2), ..., y(N)]^T$, devo comunque massimizzare la varosimiglianza, cioè

Massimizzare la verosimiglianza significa «cambiare» i valori dei parametri μ e σ^2 tale che il prodotto dei puntini blu massimizzat

La stima a massima verosimiglianza dell'esempio precedente può essere espressa come:

$$\widehat{\boldsymbol{\theta}}_{\mathrm{ML}} = \begin{bmatrix} \widehat{\mu} \\ \widehat{\sigma}^2 \end{bmatrix} = \arg\max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}|Y) = \arg\max_{\boldsymbol{\theta}} \prod_{i=1}^{N} \mathcal{N}(y(i)|\mu, \sigma^2)$$

In generale posso attribuire ai dati qualsiasi distribuzione di probabilità $d(\)$, sia continua che discreta

$$\widehat{\boldsymbol{\theta}}_{\mathrm{ML}} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}|Y)$$

Spesso, anziché massimizzare $\mathcal{L}(\boldsymbol{\theta}|Y)$, si massimizza il suo logaritmo naturale

- Dato che il logaritmo è una funzione monotona crescente, $\ln \mathcal{L}(\boldsymbol{\theta}|Y)$ ha lo stesso argomento del massimo di $\mathcal{L}(\boldsymbol{\theta}|Y)$
- Usare il logaritmo è efficiente da un punto di vista implementativo, perchè evita possibili underflow dati dal prodotto di piccole probabilità (sostituendolo con la somma delle logprobabilità)

$$\widehat{\boldsymbol{\theta}}_{\mathrm{ML}} = \arg \max_{\boldsymbol{\theta}} \ln \mathcal{L}(\boldsymbol{\theta}|Y)$$

A meno di casi particolari fortunati, l'ottimizzazione è effettuata con metodi iterativi

Stima a massima verosimiglianza: proprietà

Lo stimatore a massima verosimiglianza gode di buone proprietà. Infatti, esso è:

1. As intoticamente corretto:
$$\lim_{N\to+\infty} \mathbb{E}[\widehat{\boldsymbol{\theta}}_{\mathrm{ML}}] = \boldsymbol{\theta}^0$$

Lo stimatore può essere distorto. Per esempio lo stimatore a massima verosimiglianza della varianza di una popolazione Guassiana è distorto

- 2. Consistente: più N è grande, più la stima è precisa
- 3. Asintoticamente efficiente: $\lim_{N\to+\infty} \mathrm{Var}\big[\widehat{\boldsymbol{\theta}}_{\mathrm{ML}}\big] = M^{-1}$ M: Matrice di informazione di Fisher
- 4. As intoticamente normale: $\widehat{\boldsymbol{\theta}}_{\text{ML}} \sim \mathcal{N}(\boldsymbol{\theta}^0, M^{-1})$ per $N \to +\infty$

Outline

1. Stima a massima verosimiglianza

2. Stima a massima verosimiglianza di parametri della popolazione

3. Stima a massima verosimiglianza di modelli lineari

Consideriamo il caso in cui vogliamo stimare la media μ di una popolazione di variabili casuali Gaussiane, supponendo di conoscere la varianza della distribuzione

Assumiamo di avere osservato **2 dati** $y(i) \sim \mathcal{N}(\mu, \sigma^2 = 1), i = 1,2$, i.i.d., tali che i valori osservati sono y(1) = 4, y(2) = 6

La forma della **pdf delle singole variabili** y(i) è:

$$f_{y}(y(i)|\mu,\sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{1}{2}\left(\frac{y(i)-\mu}{\sigma}\right)^{2}\right] = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(y(i)-\mu)^{2}\right]$$

Il valore assunto dalla pdf in corrispondenza delle due osservazioni è:

$$y(1) = 4$$

$$f_y(y(1) = 4|\mu, \sigma^2 = 1) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(4-\mu)^2\right]$$

$$y(2) = 6$$

$$f_{y}(y(1) = 4|\mu, \sigma^{2} = 1) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(4-\mu)^{2}\right] \qquad f_{y}(y(2) = 6|\mu, \sigma^{2} = 1) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(6-\mu)^{2}\right]$$

La **pdf congiunta** è il prodotto delle due pdf singole (essendo i dati i.i.d.)

$$f_Y(y(1), y(2) | \mu, \sigma^2 = 1) = \left(\frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(4 - \mu)^2\right]\right) \cdot \left(\frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(6 - \mu)^2\right]\right)$$

La pdf congiunta è funzione solo di μ , poichè il valore dei dati è noto. Con questa interpretazione, la pdf congiunta è la funzione di verosimiglianza (likelihood function)

$$\mathcal{L}(\mu|y(1) = 4, y(2) = 6) = \left(\frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(4-\mu)^2\right]\right) \cdot \left(\frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(6-\mu)^2\right]\right)$$

La stima $\hat{\mu}_{\mathrm{ML}}$ è valore di μ che **massimizza** la verosimiglianza

$$\hat{\mu}_{\text{ML}} = \arg \max_{\mu} \ln \mathcal{L}(\mu | y(1) = 4, y(2) = 6)$$

È più conveniente massimizzare il logaritmo della verosimiglianza. Questa nuova funzione (la

log-verosimiglianza) ha lo stesso massimo della verosimiglianza

$$\ln(\mathcal{L}) = \ln\left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(4-\mu)^2\right) \cdot \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(6-\mu)^2\right)\right]$$

$$= \ln\left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(4-\mu)^2\right)\right] + \ln\left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(6-\mu)^2\right)\right]$$

$$= \ln\frac{1}{\sqrt{2\pi}} + \ln\left[\exp\left(-\frac{1}{2}(4-\mu)^2\right)\right] + \ln\frac{1}{\sqrt{2\pi}} + \ln\left[\exp\left(-\frac{1}{2}(6-\mu)^2\right)\right]$$

$$= 2 \cdot \ln\frac{1}{\sqrt{2\pi}} - \frac{1}{2}(4-\mu)^2 - \frac{1}{2}(6-\mu)^2$$

Massimizzando l'espressione ottenuta rispetto a μ otteniamo:

$$\frac{\partial \ln \mathcal{L}}{\partial \mu} = 0 \Rightarrow (4 - \mu) + (6 - \mu) = 0 \Rightarrow \qquad \hat{\mu}_{ML} = \frac{4 + 6}{2} = \boxed{5}$$

La **stima a massima verosimiglianza** del parametro μ per il modello Gaussiano è uguale allo stima ottenuta tramite lo **stimatore media campionaria!**

Questo risultato, seppur non generalizzabile, rende molto interpretabile ed intuitivo lo stimatore a massima verosimiglianza

Osservazione: massimizzare la «log-verosimiglianza» equivale a minimizzare la «meno log-verosimiglianza»

$$\widehat{\boldsymbol{\theta}}_{\mathrm{ML}} = \arg \max_{\boldsymbol{\theta}} \ln[\mathcal{L}(\boldsymbol{\theta}|Y)] = \arg \min_{\boldsymbol{\theta}} \left[\mathcal{L}(\boldsymbol{\theta}|Y) \right]$$

Formulando il problema di stima a massima verosimiglianza in questo modo, abbiamo un problema di minimizzazione proprio come con lo stimatore a minimi quadrati!

$$\widehat{\boldsymbol{\theta}}_{LS} = \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \qquad J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta})^{2}$$

$$d \times 1$$

Outline

- 1. Stima a massima verosimiglianza
- 2. Stima a massima verosimiglianza di parametri della popolazione
- 3. Stima a massima verosimiglianza di modelli lineari

Il metodo della massima verosimiglianza (ML) può essere usato anche per stimare modelli lineari. Quello che bisogna fare è imporre un modello probabilistico alle osservazioni y(i)

$$y(i) = \theta_0 + \theta_1 \varphi_1(i) + \dots + \theta_{d-1} \varphi_{d-1}(i) + \epsilon(i) = \boldsymbol{\varphi}^{\mathsf{T}}(i) \boldsymbol{\theta} + \epsilon(i)$$

$$1 \times d \quad d \times 1 \quad 1 \times 1$$

In particulare, se **assumiamo** che $\epsilon(i) \sim \mathcal{N}(0, \lambda^2)$ i. i. d.

$$y(i) \sim \mathcal{N}(\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}, \lambda^2)$$
 i. i. d.

$$oldsymbol{arphi} = egin{bmatrix} 1 \ arphi_1 \ draphi_{d imes 1} \end{bmatrix} \quad oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ draphi \ heta_{d-1} \end{bmatrix}$$

La media $\mu(i)$ di y(i) è espressa come combinazione lineare dei regressori, $\mu(i) = \boldsymbol{\varphi}(i)^{\mathsf{T}} \boldsymbol{\theta}!$

La distribuzione congiunta dei dati è:

$$f_Y(y(1), y(2), ..., y(N)|X, \boldsymbol{\theta}, \lambda^2) \stackrel{\text{i.i.d.}}{=} \prod_{i=1}^N f_Y(y(i)|\boldsymbol{\varphi}(i), \boldsymbol{\theta}, \lambda^2)$$

$$= \prod_{i=1}^{N} \mathcal{N}(y(i)|\boldsymbol{\varphi}(i),\boldsymbol{\theta},\lambda^{2})$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\lambda^2}} \exp \left[-\frac{1}{2} \left(\frac{y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}}{\lambda} \right)^2 \right]$$

=
$$\mathcal{L}(\boldsymbol{\theta}|Y,X,\lambda^2)$$
 Supponiamo λ^2 noto

Calcoliamo la log-verosimiglianza

$$\ln[\mathcal{L}(\boldsymbol{\theta}|Y,X,\lambda^2)] = \ln\left[\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\lambda^2}} \exp\left[-\frac{1}{2} \left(\frac{y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}}{\lambda}\right)^2\right]\right]$$

$$= \sum_{i=1}^{N} \ln \left[\frac{1}{\sqrt{2\pi\lambda^2}} \exp \left[-\frac{1}{2} \left(\frac{y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}}{\lambda} \right)^2 \right] \right]$$

$$= \sum_{i=1}^{N} \ln \frac{1}{\sqrt{2\pi\lambda^2}} + \sum_{i=1}^{N} \ln \left[\exp \left[-\frac{1}{2} \left(\frac{y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}}{\lambda} \right)^2 \right] \right]$$

$$\ln[\mathcal{L}(\boldsymbol{\theta}|Y,X,\lambda^2)] = N \cdot \ln \frac{1}{\sqrt{2\pi\lambda^2}} + \sum_{i=1}^{N} -\frac{1}{2} \left(\frac{y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}}{\lambda} \right)^2$$

$$= N \cdot \ln(2\pi\lambda^{2})^{-\frac{1}{2}} - \frac{1}{2\lambda^{2}} \sum_{i=1}^{N} (y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta})^{2}$$

$$= -\frac{1}{2}N \cdot \ln 2\pi \lambda^2 - \frac{1}{2\lambda^2} \sum_{i=1}^{N} (y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta})^2$$

Calcolare il massimo di $ln[\mathcal{L}(\boldsymbol{\theta}|Y,X,\lambda^2)]$ è equivalente a calcolare il minimo di

 $-\ln[\mathcal{L}(\boldsymbol{\theta}|Y,X,\lambda^2)]$, per cui:

Siccome non dipende da θ , questo termine non contribuisce al calcolo del minimo

$$-\ln[\mathcal{L}(\boldsymbol{\theta}|Y,X,\lambda^2)] = +\frac{1}{2}N\cdot\ln 2\pi\lambda^2 + \frac{1}{2\lambda^2}\sum_{i=1}^{N}(y(i)-\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta})^2$$

$$\widehat{\boldsymbol{\theta}}_{\text{ML}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{2\lambda^2} \sum_{i=1}^{N} (y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta})^2$$

La stima ML del modello lineare $y(i) = \varphi^{T}(i)\theta + \epsilon(i)$, con $\epsilon(i) \sim \mathcal{N}(0, \lambda^2)$ i. i. d., è **equivalente** alla stima a minimi quadrati (che non aveva assunzioni sulla pdf dei dati)

Osservazione: cambiando ipotesi sulla distribuzione del rumore (e quindi dei dati), si ottengono altre funzioni di costo e altri modelli, che modellano i dati in modo diverso rispetto alla regressione lineare

Uno di questi altri modelli (che vedremo nella prossima lezione) è il modello di regressione logistica

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione