Science-I, Assignment-2, Monsoon 2014

- 1. What is the behavior variable x(t) satisfying the linear 1st order differential equation $\frac{d}{dt}x(t) = c x(t)$, where c is a constant parameter, for varing values of parameter c? (x(t) is a scalar variable)
- 2. What is the behavior variable x(t) satisfying the second order differential equation $\frac{d^2}{dt^2}x(t) = c \ x(t)$, where c is a constant parameter, for varing values of parameter c? (x(t) is a scalar variable)
- 3. Compare the solutions to the above two questions regarding the one dimensional variable x(t), i.e. generally speaking what are the differences between solutions for the above two questions?
- 4. A vector $\vec{r} = (x_1, x_2, \dots x_N)^T$ (hence the vector \vec{r} is a column vector) satisfies the linear, coupled, 1st order differential set of equations $\frac{d}{dt}\vec{r}(t) = \vec{M} \cdot \vec{r}$, where \vec{M} is a $N \times N$ matrix (of constants). Show that a linear combination of the eigen vectors of the matrix M is a solution for $\vec{r}(t)$.
- 5. A vector $\vec{r} = (x_1, x_2, \dots x_N)^T$ (hence the vector \vec{r} is a column vector) satisfies the linear, coupled, 2nd order differential set of equations $\frac{d^2}{dt^2}\vec{r}(t) = \bar{M} \cdot \vec{r}$, where \bar{M} is a $N \times N$ matrix (of constants). Show that a linear combination of the eigen vectors of the matrix M is a solution for $\vec{r}(t)$.
- 6. Compare the solutions to the above two questions regarding the N-dimensional variable $r(\vec{t})$, generally speaking what are the dierences between solutions for the above two questions?
- 7. Logistic map: $x_{n+1} = r \ x_n(1-x_n)$, where $0 \le r \le 4$, and $0 \le x_0 \le 1$. (a) Show that $x_n \in [0,1]$, and (b) write a program that will take $r \ x_0$ and n as inputs, and calculate (and plot (a) x_n vs. n and (b) x_i vs x_{i+1} for $i \in [0,n]$) x_0, \dots, x_n . (c) Plot for various values of r, and for various x_0 . Comment.