Matemática IV- 2020 TP3 - Integrales Dobles

- 1. Evaluar las siguientes integrales iteradas:
 - a) $\int_{-1}^{1} \int_{0}^{1} (x^{4}y + y^{2}) dy dx$
 - b) $\int_0^{\frac{\pi}{2}} \int_0^1 (y\cos(x) + 2) dy dx$
 - $c) \int_0^1 \int_0^1 (xye^{x+y}) dy dx$
 - d) $\int_{1}^{1} \int_{0}^{1} (e^{x^3+y}) dy dx$
- 2. Calcular las siguientes integrales dobles sobre los rectángulos correspondientes
 - a) $\iint_R (x^2y^2 + x)dA$ para $R = [0, 2] \times [-1, -2]$
 - b) $\int \int_R (y\cos(\frac{\pi}{4}x)dA \text{ para } R = [1,2] \times [0,4]$
- 3. Evaluar las siguientes integrales
 - a) $\int_1^2 \int_y^2 (xy) dx dy$
 - b) $\int_0^{\frac{\pi}{2}} \int_0^{\cos(\theta)} (e^{\sin(\theta)}) dr d\theta$
- 4. Calcular las siguientes integrales dobles en las regiones correspondientes
 - a) $\int \int_D x^3 y^2 dA$ para $D = \{(x,y): 0 \leq x \leq 2; -x \leq y \leq x\}$
 - b) $\int \int_D (x+y) dA$ para D es la región limitada por las curvas $y=\sqrt{x};$ $y=x^2$
 - $c) \ \int \int_D y^3 dA$ para Des la región triangular con vértices $(0,2),\,(1,1)$ y (3,2)
- 5. Hallar el volumen del sólido dado en los siguientes casos:
 - a) Sólido bajo $z=1-x^2-y^2$ y por debajo por la región del plano xy encerrada por la parábola $y=2-x^2$ y la recta y=x en el primer octante.
 - b) Sólido acotado por arriba por el cilindro parabólico $z=x^2$ y por debajo por la región del plano xy encerrada por las parábolas $y=1-x^2$ y $y=x^2-1$
 - c) El sólido bajo el parabolo
ide sobre la región limitada por $y=x^3$ y
 x=y

6. * La definición de integral doble de una función de dos variables sobre el rectángulo nos dice que es igual al límite (de $n,m\to\infty$) de la doble suma de Riemann.

Muestre con un ejemplo para n,m cada vez más grandes que esto se cumple (es decir, elija una función y calcule la integral doble sobre un rectángulo también a su elección de la forma que prefiera (puede usar software o hacer el cálculo manualmente) y luego muestre como los valores de la doble suma se van aproximando a medida que n,m son cada vez más grandes).