Homework #2

Raymond Deneckere

Fall 2016

- 1. Sundaram, #23, p. 68.
- 2. Sundaram, #25, p. 68.
- 3. Let (X,d) be a metric space. Prove the following statement : $A \subset X$ is closed iff for every sequence $\{x_n\} \subset A$, $x_n \to x$ implies $x \in A$.
- 4. Consider the set of all rational numbers \mathbb{Q} , and make it into a metric space by defining d(p,q) = |p-q| for all $p,q \in \mathbb{Q}$. Let E be the set of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that E is closed and bounded in \mathbb{Q} , but that E is not compact. Conclude that \mathbb{Q} is not a compact space. Is E open in \mathbb{Q} ?

HINT: Be very careful here. The notions closed, open and compact are all with reference to the space \mathbb{Q} , not the space \mathbb{R} .

5. Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by :

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

- (a) Show that f is continuous in each variable separately.
- (b) Compute the function g(x) = f(x, x).
- (c) Show that f is not continuous.