IN THE CLAIMS

1. (Original): A compound of the formula

$$\begin{array}{c|c}
R_3 & R_2 & R_2 \\
R_5 & PR_4
\end{array}$$

$$\begin{array}{c|c}
R_2 & R_2 & R_1 \\
\hline
O & O & O \\
\hline$$

wherein the bond of atoms C22 and C21 is a single or double bond;

m is 0 or 1;

n is 0, 1 or 2;

p is 0 or 1;

R₁ is C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl or C₂-C₁₂-alkenyl;

R₂ is H, C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, C₁-C₁₂-hydroxyalkyl, OH, halogen, -N₅, SCN, NO₂, CN, C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloalkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂alkynyl-oxy, C₃-C₁₂haloalkynyloxy, -P(=O)(OC₁-C₆alkyl)₂, -Si(C₁-C₆alkyl)₃, -(CH₂)-Si(C₁-C₆alkyl)₃, Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -(CH₂)-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(-X)-R₇, -(CH₂)-O-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -S(=O)R₁₁, -S(=O)₂R₁₁, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO₁, SCN, -N₃, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy and phenoxy;

or, when p is 1, R2 together with R3 is a bond;

or R_2 together with R_4 is =0 or =S;

or R₂ together with R₄ form with the carbon to which they are bound a three- to seven-membered ring, which may be monocyclic or bicyclic, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which is either unsubstituted or independently of one another mono- to pentasubstituted with substituents selected from OH, =O, SH, =S, halogen, CN, -N₃, SCN, NO₂, aryl, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyloxy, C₃-C₁₂haloalkynyloxy, phenoxy, phenyl-C₁-C₆alkyl, -N(R₉)₂ wherein the two R₉ are independent of each other, C₁-C₆alkylsulfinyl, C₃-C₈cycloalkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₃-C₈halocycloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₃-C₈cycloalkylsulfonyl, C₁-C₆haloalkylsulfonyl and C₃-C₈halocycloalkylsulfonyl; or

 R_2 together with R_4 is =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other; or, when p is 0, R_2 together with R_4 and R_6 is \equiv N;

or when p is 0, R_2 together with R_6 is $-NOR_{12}$ or $=NN(R_{12})_2$, wherein the two substituents R_9 are independent of each other;

is H, C₁-C₁₂-alkyl, halogen, halo-C₁-C₂alkyl, CN, -N₃, SCN, NO₂, C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆ lkoxy-C₁-C₆alkyl, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₃-C₈cycloalkylthio, C₁-C₁₂haloalkylthio, C₁-C₁₂alkylsulfinyl, C₃-C₈cycloalkylsulfinyl, C₁-C₁₂haloalkylsulfinyl, C₁-C₁₂alkylsulfinyl, C₃-C₈cycloalkylsulfinyl, C₁-C₁₂haloalkylsulfinyl, C₁-C₁₂haloalkylsulfinyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl C₂-C₁₂haloalkynyl, C₃-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkynyl, C₂-C₁₂haloalkynyl, C₂

or when p is 1, R₃ together with R₂ is a bond;

R₄ is H, C₁-C₁₂-alkyl, C₁-C₁₂-haloatkyl, C₁-C₁₂-hydroxyalkyl, OH, halogen, NO₂, CN, C₃-C₈cyclo-alkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloatkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂alkenyl,

C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkyryloxy, -P(=O)(OC₁-C₆alkyl)₂, -Si(C₁-C₆alkyl)₃, -(CH₂)-Si(C₁-C₆alkyl)₃, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -(CH₂)-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, -(CH₂)-O-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -NR₉-OR₁₀, -(CH₂)-NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, monoto penta-substituted by substituents selected from the group consisting of OH, balogen, CN, NO C₁-C₁₂alkyl, C₂-C₈alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyloxy and phenoxy;

or R_4 together with R_2 forms =0 or -S;

or when p is 1, R4 together with R5 is a bond;

or, when p is 0, together with R_2 and R_6 is $\equiv N$;

R, and R6 independently of each other are H, C1-C12-alkyl, -N3, CN, NO2, OH, SH, halfgen, halo-C1-C2alkyl, hydroxy-C1-C2alkyl, C3-C8cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, C₃-C₆halocycloaikyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy, C1-C6alkoxy-C1-C6alkoxy-C1-C6alkyl, C1-C8cycloalkoxy, C1-C12haloalkoxy, C1-C12haloalkylthio, C2-C8alkenyl, C2-C8alkynyl, C2-C12haloalkenyl, C2-C12haloalkenyloxy, C2-C12haloalkynyl, C3-C12haloalkynyloxy, $-P(=O)(OC_1-C_6alkyl)_2$, $-CH_2-P(=O)(OC_1-C_6alkyl)_2$, $-Si(OC_1-C_6alkyl)_3$, $-N(R_9)_2$, $-O-N(R_9)_2$, wherein the two substituents Ro are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁- C_{6} alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)₂ R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, henzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy, -NH₉-heterocyclyl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₀-aryl, -CH₂-NR₉-C₁-C₂alkyl, -CH₂-heterocyclyl, -CH₂-O-heterocycl yl and -CH2-NR9-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR9-aryl, heterocyclyl heterocyclyloxy and -NRo-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, = \$\Psi\$, SH, = \$\S\$, halogen, CN, NO2, C1-C12alkyl, C3-C8cycloalkyl, C1-C12haloalkyl, C1-C12alkoxy, C1-C12haloalkoxy, C1-C12alkylthio, C1-C12haloalkylthio, C1-C6alkoxy-C1-C6alkyl, C2-C8alkynyl, C2-C8alkynyl, C2-C12haloalkenyl, C2-C12haloalkenyloxy, C2-C12haloalkynyl, C3-C12haloalkynyloxy, phenoxy, methylenedioxy, NH₂, NH(C₁-C₁₂alkyl), N(C₁-C₁₂alkyl)₂ and C₁-C₆alkylsulfinyl; or

R₅ and R₆ are, together with the carbon atom to which they are bound, a five- to seven-membered ring, which may be saturated or unsaturated, and which may contain one or two members selected from the group consisting of O, NR₈ and S; and which is optionally substituted with one to three substituents selected from

- 5 -

C₁-C₁₂-alkyl, CN, NO₂, OH, halogen, halo-C₁-C₂alkyl, C₃-C₈cycloalkyl C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkylthio, C₂-C₁₂haloalkylthio, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalk

or when p is 1, R5 together with R4 is a bond;

or, when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

R₇ is H, OH, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₆alkoxy-C₁ C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₈alkenyloxy, C₁-C₈alkinyloxy, -N(R₈)₂ wherein the two R₈ are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or heterocyclylmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₁haloalkenyloxy, C₂-C₈alkynyl, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

R₈ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, hydroxy and cyano, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy and C₁-C₁₂haloalkylthio;

R₉ is H, C₁-C₆alkyl, C₁-C₆cycloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, benzyl, aryl or heteroaryl;

R₁₀ H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, NO₂, hydroxy and cyano, C₁-C₁₂haloalkyl, C₂-C₁₂alkeny, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂alkynyl, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₃-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

R₁₁ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, hydroxy and cyano, -N(R₉)₂ wherein the two substituents R₉ are independent of each other, C₃-C₈cycloalkyl, C₁-C₈halocycloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possib lities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkythio, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

 $R_{12} \quad \text{is H, C}_1\text{-C}_6\text{alkyl, S}_1\text{-C}_1\text{-C}_6\text{alkyl, S}_1\text{-C}_1\text{-C}_6\text{alkyl,$

X is O or S;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form;

with the proviso, that the group R_6 - $[C(R_1)(R_5)]_p$ - $C(R_2)(R_4)$ - $[CH_2]_n$ -, which is attached to the \square -position of the compound of the formula (I), is not NC-CH₂- or HOOC-CH₂- when m is 1 and the bond between atoms 22 and 23 is a single bond.

- 2. (Previously Presented): A pesticide composition which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- 3. (Previously Presented): A method for controlling pests comprising applying a composition as described in claim 2 to the pests or their habitat.
- 4. (Previously Presented): A process for preparing a composition as described in claim 2 comprising intimately mixing and/or grinding the active compound with at least one auxiliary.
 - 5. (Cancelled).
 - 6. (Cancelled).
- 7. (Previously Presented): A method for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated, comprising applying a composition as described in claim 2.
- 8. (Currently Amended): Plant propagation material treated in accordance with the method composition described in claim 7.2.