Intro mod. num. L3 2021

Premier contrôle de connaissances

Exercice 1. Questions de cours.

- 1. Soit n un entier non nul et $x_0, x_1, ..., x_n, n+1$ réels distincts. Pour tout $(y_0, y_1, ..., y_n) \in \mathbb{R}^{n+1}$, montrez qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que $P(x_i) = y_i$ pour i = 0, ..., n.
- 2. Soit f une fonction infiniment dérivable sur \mathbb{R} . Proposez deux approximations par différences finies distinctes du nombre dérivé f'(x) pour un $x \in \mathbb{R}$ et un pas h > 0 fixés. On établira soigneusement l'ordre de convergence de chacune de ces deux approximations.
- 1. Voir le cours sur les polynômes d'interpolation de Lagrange.
- 2. On a par deux développements de Taylor à l'ordre 1 et 2 respectivement que $\frac{f(x+h)-f(x)}{h}$ est une approximation de f'(x) à un $\mathcal{O}(h)$ près et $\frac{f(x+h)-f(x-h)}{2h}$ une approximation en $\mathcal{O}(h^2)$.

Exercice 2. Matrices de Householder et décomposition QR. Pour $v \in \mathbb{R}^n$ un vecteur ligne de norme 1, on définit la matrice de Householder

$$H^{(v)} = I_n - 2v^T v.$$

- 1. a) Montrez que $H^{(v)}$ est une matrice symétrique et orthogonale.
 - b) Montrez que si $a \in \mathbb{R}^n$ alors $||H^{(v)}(a)|| = ||a||$.
- 2. Pour tout $a \in \mathbb{R}^n$, il existe $\lambda \in \mathbb{R}$ et y orthognal à v uniques tels que $a = \lambda v + y$. Explicitez $H^{(v)}(a)$ en fonction de λ et y.
- 3. Déduire de ce qui précède la transformation géométrique représentée par $H^{(v)}$ (faites un dessin au besoin!).

- 4. Soit $a \in \mathbb{R}^n$ fixé, on souhaite montrer dans cette question qu'il existe v de norme 1 tel que $H^{(v)}(a)$ soit colinéaire au premier vecteur de la base canonique e = (1, 0, ..., 0).
 - a) Montrez que si un tel v existe alors $H^{(v)}(a) = \pm ||a||e$.
 - b) En déduire que v est nécessairement colinéaire à $a \pm ||a||e$.
 - c) Démontrez l'existence d'un vecteur v de norme 1 tel que $H^{(v)}(a) = ||a||e$.
- 5. (plus difficile) Déduire par récurence de ce qui précède que pour toute matrice $A \in M_n(\mathbb{R})$, il existe n-1 matrices de Householder telles que

$$H^{(v_{n-1})}H^{(v_{n-2})} \qquad H^{(v_1)}A$$

soit triangulaire supérieure à diagonale positive.

- 6. Pour $A \in M_n(\mathbb{R})$, en déduire l'existence d'une décomposition QR.
- 1. a) La symétrie est claire. De plus $H^{(v)}H^{(v)}=I_n-4v^Tv+4v^Tvv^Tv=I_n$ car $v^Tv=||v||^2=1$.
 - b) Une application orthogonale est une isométrie puisque $||H^{(v)}(a)||^2 = (H^{(v)}(a))^T H^{(v)}(a) = ||a||^2$.
- 2. $H^{(v)}(y) = y$ et $H^{(v)}(\lambda v) = -\lambda v$. Donc par linéarité $H^{(v)}(a) = -\lambda v + y$.
- 3. $H^{(v)}$ est la symétrie orthogonale par rapport à l'hyperplan vectoriel v^{\perp} .
- 4. Soit $a \in \mathbb{R}^n$ fixé, on souhaite montrer dans cette question qu'il existe v de norme 1 tel que $H^{(v)}(a)$ soit colinéaire au premier vecteur de la base canonique e = (1, 0, ..., 0).
 - a) Ceci vient du fait que $H^{(v)}$ est une isométrie.
 - b) On veut $H^{(v)}(a) = \pm ||a||e = -\lambda v + y = a 2\lambda v$ d'où le résultat.

c) D'après ce qui précède, on pose

$$v = \frac{a + ||a||e}{||a + ||a||e||}.$$

On a a = (v.a)v + y avec y orthogonal à v d'où avec l'expression de v:

$$y = a - \frac{1}{||a + ||a||e||}(||a||^2 + e.a)(a + ||a||e) = \frac{a - ||a||e}{2}.$$

De plus $(v.a)v = a - y = \frac{a+||a||e}{2}$ d'où $H^{(v)}(a) = ||a||e$.

5. Preuve par récurence sur n. Soit $A \in M_n(\mathbb{R})$, d'après la question 4) appliquée à la première colonne de A, on sait qu'il existe $H_1 \in M_n(\mathbb{R})$ telle que

$$H_1 A = \begin{pmatrix} d_1 & V \\ O & B \end{pmatrix}$$

où $d_1 > 0$. Par hypothèse de récurence il existe n-2 matrices de $M_{n-1}(\mathbb{R})$ telles que

$$H'_{n-1}\dots H'_2B=R$$

où R est une matrice triangulaire à éléments diagonaux positifs de $M_{n-1}(\mathbb{R})$. De plus, nous pouvons associer à chaque matrice $H^{(w)} \in M_{n-1}(\mathbb{R})$ définie par un vecteur $w \in \mathbb{R}^{n-1}$, une matrice de Householder H de $M_n(\mathbb{R})$ en considérant le vecteur v = (0, w). Pour une telle extension on aura alors

$$\begin{pmatrix} * & V \\ O & H^{(w)}B \end{pmatrix} = H^{(v)} \begin{pmatrix} * & V \\ O & B \end{pmatrix}.$$

En considérant ces extensions $H_{n-1} ldots H_2$ associées à $H'_{n-1} ldots H'_2$, ce qui précéde établit l'hypothèse de récurence au rang n puisque

$$H_{n-1}\dots H_1A = \begin{pmatrix} d_1 & V \\ O & R \end{pmatrix}$$

est triangulaire supérieure à diagonale positive.

6. On conclut en utilisant l'orthogonalité du produit

$$Q = H^{(v_1)}H^{(v_2)}\dots H^{(v_{n-1})}.$$

Exercice 3. Splines cubiques.

1. Pour $n \geq 2$, on définit la matrice $A_n \in M_n(\mathbb{R})$ par :

$$A_n = \begin{pmatrix} 2 & 1 & 0 & \dots & 0 & 0 \\ 1 & 4 & 1 & 0 & \dots & 0 \\ 0 & 1 & 4 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & 4 & 1 \\ 0 & 0 & \dots & 0 & 1 & 2 \end{pmatrix}.$$

- a) Donner la décomposition LU de la matrice $A_3 = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.
- b) Soit $n \geq 2$, en supposant que A_n admet une décomposition LU, c'est-à-dire que les pivots lors de l'algorithme de Gauss ne s'annulent jamais, montrer que les coefficients diagonaux d_1, \ldots, d_n de la matrice U dans la décompostion LU de A_n vérifient :

$$\begin{cases} d_1 = 2 \\ d_{k+1} = 4 - \frac{1}{d_k} \\ d_n = 2 - \frac{1}{d_{n-1}} \end{cases} \quad \forall k \in \{1, \dots, n-2\}$$

c) Étudier la suite $(u_n)_{n\geq 1}$ définie par :

$$\begin{cases} u_1 = 2 \\ u_{n+1} = 4 - \frac{1}{u_n} & \forall n \ge 1 \end{cases}$$

(on pourra représenter graphiquement les termes de la suite u_n à l'aide du graphe de la fonction $x \mapsto 4 - \frac{1}{x}$).

- d) En déduire que pour tout $k \in \{0, ..., n-1\}, 2 \le d_k \le 2 + \sqrt{3}$, et que A_n est inversible pour tout $n \ge 2$.
- 2. Soit f une fonction de classe C^1 sur [0,1]. Pour $n \in \mathbb{N}$, on subdivise l'intervalle [0,1] en n intervalles $[x_i,x_{i+1}]$ de longueur égale à $h=\frac{1}{n}$, en notant $x_i=\frac{i}{n}$.
 - a) Soit $(m_0, \ldots, m_n) \in \mathbb{R}^{n+1}$, montrer qu'il existe une unique fonction g de [0, 1] dans \mathbb{R} telle que :
 - (i) pour tout $i \in \{1, ..., n\}$, la restriction de g à $[x_{i-1}, x_i]$ est polynomiale de degré ≤ 3
 - (ii) pour tout $i \in \{0, ..., n\}, g(x_i) = f(x_i),$
 - (iii) pour tout $i \in \{1, \dots, n-1\}$, $\lim_{\substack{x \to x_i \\ \le}} g''(x) = \lim_{\substack{x \to x_i \\ \ge}} g''(x) = m_i$ et $g''(0) = m_0$, $g''(1) = m_n$.
 - b) Montrer que pour tout $i \in \{1, ..., n\}$ et $x \in [x_{i-1}, x_i]$, on a:

$$g(x) = m_{i-1} \frac{(x_i - x)^3}{6h} + m_i \frac{(x - x_{i-1})^3}{6h} + u_i (x - x_{i-1}) + v_i,$$

- où u_i et v_i sont des réels que l'on déterminera en fonction de m_{i-1} , m_i , h, $f(x_{i-1})$ et $f(x_i)$.
- c) On définit une spline cubique sur [0,1] comme une fonction dont la restriction à tout intervalle $[x_i, x_{i+1}]$ est polynomiale de degré ≤ 3 et qui est de classe C^2 (c'est-à-dire qu'en chaque x_i les valeurs et les dérivées premières et secondes à gauche et à droite concordent).

Montrer que

$$\begin{cases} g \text{ est une spline cubique} \\ g'(0) = f'(0) \\ g'(1) = f'(1) \end{cases} \iff A_{n+1}M = B,$$

où
$$M = \begin{pmatrix} m_0 \\ \vdots \\ m_n \end{pmatrix}$$
 et B est une matrice colonne dépendant des $f(x_i), f'(0), f'(1)$ et h .

- d) En déduire qu'il existe une unique spline cubique g telle que pour tout $i \in \{0, ..., n\}$, $g(x_i) = f(x_i)$, g'(0) = f'(0) et g'(1) = f'(1).
- 1. a) On trouve $A_3 = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{7} & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{7}{2} & 1 \\ 0 & 0 & \frac{12}{7} \end{pmatrix}$.
 - b) À la k-ième étape de l'algorithme du pivot de Gauss, on n'a qu'une seule opération à effectuer pour éliminer le coefficient 1 en dessous de la diagonale : $L_{k+1} \leftarrow L_{k+1} \frac{L_k}{d_k}$. On peut aussi remarquer que la sur-diagonale de 1 reste inchangée pendant l'algorithme, et donc le coefficient diagonal devient égal à $4 \frac{1}{d_k}$ (où 4 est remplacé par 2 pour le dernier coefficient).
 - c) Posons $f: x \mapsto 4 \frac{1}{x}$, f laisse stable l'intervalle $[2, 2 + \sqrt{3}]$ et f(x) x est positif sur cet intervalle, ce qui permet de conclure que u_n est croissante et converge vers le point fixe $2 + \sqrt{3}$.
 - d) Le premier point est conséquence directe de la question précédente. Supposons que A_n soit inversible, alors cela implique que les termes diagonaux d'_1, \ldots, d'_n de la matrice A_{n+1} (égaux aux d_k sauf pour le dernier terme) sont dans l'intervalle $[2, 2 + \sqrt{3}]$, et donc d'_{n+1} est aussi non nul. Cela montre que A_n est toujours inversible.
- 2. a) Sur chaque intervalle $[x_i, x_{i+1}]$, on peut trouver de manière unique un polynôme de degré inférieur à 3 dont les valeurs et les dérivées secondes aux extrémités de l'intervalle sont déterminés par l'avance (on peut montrer pour justifier cela que l'application $P \mapsto (P(x_i), P''(x_i), P(x_{i+1}), P''(x_{i+1}))$ de $\mathbb{R}_3[X]$ dans \mathbb{R}^4 est un isomorphisme d'espaces vectoriels). L'application g est le recollement de tous ces polynomes déterminés de manière unique.

- b) La fonction ainsi définie vérifie les conditions (i) et (iii) de la question précédente. Pour qu'elle vérifie la condition (ii), il faut et il suffit que l'on ait $v_i = f(x_{i-1}) m_{i-1} \frac{h^2}{6}$ et $u_i = f(x_i) \frac{f(x_{i-1})}{h} + (m_{i-1} m_i) \frac{h}{6}$.
- c) Pour satisfaire la définition d'une spline cubique, il reste à vérifier pour g que les dérivées premières à gauche et à droite concordent. Sur $[x_{i-1}, x_i]$, les dérivées extrêmales sont égales à :

$$\begin{cases} g'_d(x_{i-1}) = u_i - m_{i-1} \frac{h}{2} \\ g'_g(x_i) = u_i + m_i \frac{h}{2}. \end{cases}$$

Ainsi, pour $i \in \{1, ..., n-1\}$ la condition $g'_g(x_i) = g'_d(x_i)$ est équivalente à

$$u_i + m_i \frac{h}{2} = u_{i+1} - m_i \frac{h}{2},$$

ce qui, en remplaçant u_i par son expression, donne

$$\frac{h}{6}(m_{i+1} + 4m_i + m_{i-1}) = f(x_{i+1}) - \frac{f(x_i)}{h} - f(x_i) + \frac{f(x_{i-1})}{h}.$$

La condition f'(0) = g'(0) est elle équivalente à

$$f'(0) = u_1 - m_0 \frac{h}{2} \iff \frac{h}{6} (2m_0 + m_1) = f(x_1) - \frac{f(0)}{h} - f'(0).$$

Enfin, la condition f'(1) = g'(1) est équivalente à

$$\frac{h}{6}(2m_n + m_{n-1}) = f'(1) - f(1) + \frac{f(x_{n-1})}{h}.$$

Toutes ces équations nous donnent bien un système linéaire de la forme $A_{n+1}M = B$.

d) L'inversibilité de A_{n+1} et le résultat de la question précédente nous donnent bien l'existence et l'unicité de cette spline cubique.