Optimization Problems 1

Solution 1: Regression

(a) Let
$$f: \mathbb{R}^d \to \mathbb{R}, \boldsymbol{\theta} \mapsto 0.5 \|\mathbf{X}\boldsymbol{\theta} - \mathbf{y}\|_2^2 + 0.5 \cdot \lambda \|\boldsymbol{\theta}\|_2^2, \lambda > 0$$

$$\frac{\partial}{\partial \boldsymbol{\theta}} f = \boldsymbol{\theta}^\top \mathbf{X}^\top \mathbf{X} - \mathbf{y}^\top \mathbf{X} + \lambda \boldsymbol{\theta}^\top \stackrel{!}{=} \mathbf{0} \iff \boldsymbol{\theta}^\top (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}) = \mathbf{y}^\top \mathbf{X}$$

$$\Rightarrow \boldsymbol{\theta} = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}.$$

$$\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} f = \underbrace{\mathbf{X}^\top \mathbf{X}}_{\text{p.s.d.}} + \underbrace{\lambda \mathbf{I}}_{\text{p.d. if } \lambda > 0} \text{ is p.d. if } \lambda > 0 \Rightarrow f \text{ is (strictly) convex}$$

- (b) Since the observations and parameters are assumed to be i.i.d. it follows that $p_{\boldsymbol{\theta}\mid\mathbf{X},\mathbf{y}}(\boldsymbol{\theta}) \propto p_{\mathbf{y}\mid\mathbf{X},\boldsymbol{\theta}}(\boldsymbol{\theta})p_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \propto \exp\left(-\frac{(\mathbf{X}\boldsymbol{\theta}-\mathbf{y})^{\top}\mathbf{I}^{-1}(\mathbf{X}\boldsymbol{\theta}-\mathbf{y})}{2}\right) \exp\left(-\frac{\boldsymbol{\theta}^{\top}\boldsymbol{\theta}}{2\sigma_{w}^{2}}\right).$ The minimizer of the negative log posterior density is maximizer of posterior density and hence $\boldsymbol{\theta}^{*} = \arg\min_{\boldsymbol{\theta}} -\log\left(\exp\left(-\frac{(\mathbf{X}\boldsymbol{\theta}-\mathbf{y})^{\top}(\mathbf{X}\boldsymbol{\theta}-\mathbf{y})}{2} \frac{\boldsymbol{\theta}^{\top}\boldsymbol{\theta}}{2\sigma_{w}^{2}}\right)\right) = \arg\min_{\boldsymbol{\theta}} \frac{1}{2}\|\mathbf{X}\boldsymbol{\theta}-\mathbf{y}\|_{2}^{2} + \frac{1}{2\cdot\sigma_{w}^{2}}\|\boldsymbol{\theta}\|_{2}^{2}.$ This is ridge regression and the solution follows from a) with $\lambda = 1/\sigma_{w}^{2}$.
- (c) From b) we see that for the density of interest it must hold that $-\log p(\theta) = 0.5 \cdot \lambda |\theta| + c$ with $c \in \mathbb{R} \iff p(\theta) \propto \exp(-0.5 \cdot \lambda |\theta|)$. $\Rightarrow \theta \stackrel{\text{i.i.d.}}{\sim} \text{Laplace}(0, 2/\lambda)$.

Solution 2: Classification

(a) First observe that
$$1 - \mathbb{P}(y = 1 | \mathbf{x}^{(i)}) = \frac{\exp(-\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})}{1 + \exp(-\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})} = \frac{1}{1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})} = \mathbb{P}(y = 1 | -\mathbf{x}^{(i)}).$$

Define $\sigma(\mathbf{x}) := \mathbb{P}(y = 1 | \mathbf{x}^{(i)}).$

With this we get that $\log \left(\mathbb{P}(y = y^{(i)} | \mathbf{x}^{(i)}) \right) = \log \left(\mathbb{P}(y = 1 | \mathbf{x}^{(i)})^{y^{(i)}} (1 - \mathbb{P}(y = 1 | \mathbf{x}^{(i)})^{1 - y^{(i)}}) \right)$

$$= y^{(i)} \log(\sigma(\mathbf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - \sigma(\mathbf{x}^{(i)}))$$

$$= y^{(i)} (\log(\sigma(\mathbf{x}^{(i)}) - \log(\sigma(-\mathbf{x}^{(i)}))) + \log(\sigma(-\mathbf{x}^{(i)}))$$

$$= y^{(i)} \left(\log \left(\frac{\sigma(\mathbf{x}^{(i)})}{\sigma(-\mathbf{x}^{(i)})} \right) \right) + \log(\sigma(-\mathbf{x}^{(i)}))$$

$$= y^{(i)} \left(\log \left(\frac{1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})}{1 + \exp(-\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})} \right) \right) - \log(1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}))$$

$$= y^{(i)} \left(\log \left(\exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}) \right) \frac{1 + \exp(-\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})}{1 + \exp(-\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})} \right) \right) - \log(1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}))$$

$$= y^{(i)} \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} - \log(1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}))$$
With this we find that $\mathcal{R}_{\text{emp}} = -\log \prod_{i=1}^{n} \mathbb{P}(y = y^{(i)} | \mathbf{x}^{(i)}) = \sum_{i=1}^{n} \log(1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})) - y^{(i)} \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}$

(b)
$$\frac{\partial}{\partial \boldsymbol{\theta}} \mathcal{R}_{\text{emp}} = \sum_{i=1}^{n} \frac{\exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})}{1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})} \mathbf{x}^{(i)^{\top}} - y^{(i)} \mathbf{x}^{(i)^{\top}}$$
$$\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}} \mathcal{R}_{\text{emp}} = \sum_{i=1}^{n} \frac{\exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})(1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}) - \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})^{2}}{(1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})^{2}} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}} = \sum_{i=1}^{n} \underbrace{\frac{\exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})}{(1 + \exp(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})^{2}}}_{\text{p.s.d.}} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}}$$

is p.s.d. $\Rightarrow \mathcal{R}_{emp}$ is convex.

(c) We can transform the inequalities such that

$$\zeta^{(i)} \ge 1 - y^{(i)} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \boldsymbol{\theta}_0 \right) \quad \text{and} \quad \zeta^{(i)} \ge 0$$

for all $i \in \{1, ..., n\}$. However, for a minimizer of the first primal form, it has to hold that

$$\zeta^{(i)} = \begin{cases} 1 - y^{(i)} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \boldsymbol{\theta}_{0} \right) & \text{if } 1 - y^{(i)} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \boldsymbol{\theta}_{0} \right) \geq 0 \\ 0 & \text{if } 1 - y^{(i)} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \boldsymbol{\theta}_{0} \right) < 0 \end{cases} = \max(1 - y^{(i)} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \boldsymbol{\theta}_{0} \right), 0),$$

since, otherwise, it would not be a minimizer.

Now, we can insert $\zeta^{(i)}$ into the objective function and get

$$f(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{\theta}\|_2^2 + C \sum_{i=1}^n \max(1 - y^{(i)} \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \boldsymbol{\theta}_0, 0).$$

Minimizing f is equivalent to minimizing f/C, i.e.,

$$\sum_{i=1}^{n} \max(1 - y^{(i)}(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \boldsymbol{\theta}_0), 0) + \lambda \|\boldsymbol{\theta}\|_2^2$$

for $\lambda = 1/(2C)$.

(d) First we show that $g: \mathbb{R} \to \mathbb{R}, x \mapsto \max(x,0)$ is convex: $g(x) = 0.5|x| + 0.5x \Rightarrow \max(x,0)$ is convex since it is the sum of two convex functions. Also g is increasing $\Rightarrow \max(1 - y^{(i)}\boldsymbol{\theta}^{\top}\mathbf{x}^{(i)} + \boldsymbol{\theta}_0, 0)$ is convex since $1 - y^{(i)}\boldsymbol{\theta}^{\top}\mathbf{x}^{(i)} + \boldsymbol{\theta}_0$ is convex (linear). With this we can conclude that $\sum_{i=1}^{n} \max(1 - y^{(i)}(\boldsymbol{\theta}^{\top}\mathbf{x}^{(i)} + \boldsymbol{\theta}_0), 0) + \lambda \|\boldsymbol{\theta}\|_2^2$ is convex since it is the sum of convex functions.