

Mass 211 Data Analysis

An Overview

Objectives

- Create tools and high-level models to predict and evaluate the volume of human service demands based on neighborhood characteristics.
- Investigate potential public health issues underlying 2-1-1 calls.
- Identify underserved neighborhoods where 2-1-1 services would add the most value.
- Track acute social problems where specific demands are high (e.g., housing for people with mental health issues.)

Challenges

- No way to personally identify callers
 - Only 5% of all calls have phone number recorded
- Lack of corroborative data
 - Follow ups? Multi-needs? Problem resolved? Does it persist?
 - How representative are the calls to the population?
- Relatively short period of reliable longitudinal data
 - Only about 1 year of data in new format
 - You don't know whether it's seasonal fluctuations or real pressure erupting
- Non-normality and loss of details in geographical aggregation
 - Highly-skewed distribution in both outcome variable and predictors
 - Concentration of population does not strictly align with population density
 - 90% of the population live in "urban" areas

Data (By)products

- Taxonomy of Human Services by 2-1-1 LA County
 - + Hand picked major service topics
 - an alternative: Open Referral (sounds nice at least!)
- 2-1-1 Map / Demands and Resources
- Massachusetts Health Status Indicators Dataset
- (Robustly) map ZIP code to (official) town names
- Configurable and extendable census data scraper
- Preliminary 211 data analysis results

Access to Private Health Insurance is a good proxy for 211 needs

	Dependent variable:			Dependent variable:
-	p_call			p_call
MedHouseValue	-0.003		HI_PrivateInsured	-37.429***
	(0.003)			(5.167)
MedHouseIncome	-0.062***		MedHouseIncome	-0.005
	(0.018)	standard		(0.018)
AtLeastBachelor	-8.191***	error	AtLeastBachelor	-3.951
	(3.147)			(2.531)
Black	54.200***		Black	45.792***
	(4.554)			(4.527)
Hispanic	24.229***		Hispanic	4.920
•	(3.316)			(4.086)
Constant	15.087***		Constant	38.496***
	(1.153)			(3.382)
Observations	487		Observations	490
\mathbb{R}^2	0.546		\mathbb{R}^2	0.577
Adjusted R ²	0.542		Adjusted R ²	0.573
Residual Std. Error	7.217 (df = 481)		Residual Std. Error	7.008 (df = 484)
F Statistic	115.881^{***} (df = 5; 481)		F Statistic	132.135^{***} (df = 5; 484)
Note:	°p<0.1; **p<0.05; ***p<0.01		Note:	*p<0.1; **p<0.05; ***p<0.01

HI_PrivateInsured even made other variables obsolete

As verified by RandomForest

No similar effect was found on HI_PublicInsured

Simple model works well enough

	Dependent variable:	
	p_call	
HI_PrivateInsured	-41.715***	
	(2.960)	
Black	46.130***	
	(4.466)	
MedHouseValue	-0.006***	
	(0.002)	
Constant	42.236***	
	(2.178)	
Observations	495	
\mathbb{R}^2	0.577	
Adjusted R ²	0.575	
Residual Std. Error	7.017 (df = 491)	
F Statistic	223.645^{***} (df = 3; 491)	
Note:	*p<0.1; **p<0.05; ***p<0.01	

A linear model with just 3 variables can already explain 58% of the variance.

^{*} Note: 7 observations have NA's for *MedHouseValue*, which are filled with the median of known values.

"Urbanness" measurements improve the fit.

"Urbanness" measurements improve the fit

Dependent variable:		
p_call		
-41.545***		
(2.898)		
40.672***		
(4.521)		
-0.008***		
(0.002)		
0.041***		
(0.009)		
40.064***		
(2.180)		
495		
0.596		
0.593		
6.869 (df = 490)		
180.653*** (df = 4; 490)		
*p<0.1; ***p<0.05; ****p<0.01		

- p.urbanied_pop = proportion of population living in an Urban Area or Urban Cluster
- More powerful than simple population density by ZIP code land areas.
- Median housing value may also be an differentiator for rural v.s. urban areas.

Poisson regression tells a different story

Poisson regression on number of calls with offset by total population

Gradient Boosting assuming Gaussian distribution

Resource Disparity

Resource Disparity

- Resources have a relatively even distribution comparing to the other two variables—critical resources must be available to all places, even for remote areas with small population.
- Resources tend to agglomerate in big cities, and poor people in big cities are more likely to make 2-1-1 calls—either because there are more resources readily available to them, or because they are more poor.
- Counties surrounding the Suffolk county–Middlesex, Norfolk and Essex, all have a relatively high population and number of resources, but low number of calls.

Outlier Analysis

Neighborhoods with decent amount of inhabitants, but no 211 calls

- **02575** 2,564 people: Town of *West Tisbury* on *Martha's Vineyard*, where rich people build mansions.
- 01731 2,082 people: Hanscom Air Force Base
- 01434 1,658 people: Fort Devens, US Army Reserve Force training area
- 01262 1,239 people: Town of Stockbridge, located at westernmost of MA

Outlier Analysis

Neighborhoods with unusually high amount of calls

- 01009 429 people, 31 calls: Town of Bonsville, part of Palmer, near Springfield, 100% white.
 - Turns out, this is a PO Box! (Removing these ZIP code areas gives an even better model.)
- **01109** Eastern part of Springfield. 37% hispanics, 14% Purto Ricans, 37% black, median house income 34k.
- 01605 Worchester, neighborhoods around Green Hill Park.
- 02121 Roxbury, Boston, predominantly black and hispanic neighborhood, median house income 26k
- 02126 Mattapan, Boston, predominantly black neighborhood, median house income 46k

Future steps // no additional data needed

Temporal Visualization:

Although initial attempts are not enticing...

Resource Database:

- Run reverse geocoding for more accurate markers
- Try <u>Ohana Web Search</u> by <u>Code for America</u>
- Or facilitate Mass211 to fully join the Open211 initiative?

Coverage area analysis:

Use NLP techniques to extract coverage areas from agency description?

Caller segments:

 While incomplete and (possibly) unreliable, caller profile data may still be useful in some unknown ways.

Future steps // needs additional data and resources

- **Experiments!** Premeditated experiments are the only way to verify the real impact of policies.
 - E.g. Promoting Health by Addressing Basic Needs

Track the callers:

- 2-1-1 should at least record the number of the callers.
- ? Privacy concerns?

Referral interactions:

• Is giving more referrals better? Should 2-1-1 maintain a list of "preferred" agencies?