Colle MP 12: Séries entières

11 janvier 2020

Colle 1

Jawed (14): Assez bien.

Laura (15) : Bien. Se souvient de la démo de $sin(n) \not\longrightarrow 0$.

Exercice 1. Lemme d'Abel.

Exercice 2. Rayon de CV de $\sum \sin(n)z^n$?

Exercice 3. Soit $\sum a_n z^n$ série entière de rayon R. Quel est le rayon de CV de $\sum a_n^2 z^n$?

Exercice 4. Mq si une série entière est nulle sur un voisinage de 0, elle est identiquement nulle.

Colle 2

Achille (12): confusions et erreurs multiples dans la formule du produit de Cauchy

Exercice 1. Règle de D'Alembert.

Exercice 2. DSE et rayon de CV de $\ln(1 + x - 2x^2)$?

Exercice 3. Rayon et calcul de $\sum \frac{x^n}{n(n+1)(n+2)}$.

Exercice 4. Soit $a_0 = 1$ et $a_{n+1} = \sum_{k=0}^n a_k a_{n-k}$.

— Calculer $S(x) = \sum_{k=0}^{\infty} a_k x^k$, en mq $xS(x)^2 = S(x) - 1$.

— En déduire a_n , $\forall n$.

Exercice 5. Montrer que si $\alpha \in \mathbb{R}$, $f(t) = \cos(\alpha \arcsin(t))$ est développable en série entière sur un voisinage de 0 et trouver son rayon de convergence. Aide : montrer que f vérifie l'ED $(1 - t^2)y'' - ty' + \alpha^2 y = 0$.

1

Colle 3

Julien (15): Petite erreur de calcul. Bien sinon.

Exercice 1. Règle de D'Alembert.

Exercice 2. DSE et rayon de CV de $\ln(1 + x - 2x^2)$?

Exercice 3. Rayon et calcul de $\sum \frac{x^n}{n(n+1)(n+2)}$.

Exercice 4. Soit $a_0 = 1$ et $a_{n+1} = \sum_{k=0}^n a_k a_{n-k}$.

— Calculer $S(x) = \sum_{k=0}^{\infty} a_k x^k$, en mq $xS(x)^2 = S(x) - 1$.

— En déduire a_n , $\forall n$.

Exercice 5. Montrer que si $\alpha \in \mathbb{R}$, $f(t) = \cos(\alpha \arcsin(t))$ est développable en série entière sur un voisinage de 0 et trouver son rayon de convergence.

Aide : montrer que f vérifie l'ED $(1-t^2)y'' - ty' + \alpha^2 y = 0$.

Colle 4

Alex (10): ne connaît pas bien la démo. Manque de pratique.

Pauline (14): ne pense pas à utiliser la propriété fondamental de ln. Un peu lent dans les calculs mais bien sinon.

Exercice 1. Règle de d'Alembert.

Exercice 2. DSE de $\ln(1+x-2x^2)$?.

Exercice 3. Quels sont les z pour lesquels $\sum \frac{z^n}{n}$ converge?

Exercice 4. Soit B_n le nombre de partitions de $\{1, 2, ..., n\}$.

- 1. Calculer B_1 , B_2 , B_3 .
- 2. Mq

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

- 3. Soit $S_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$. Mq $B_n = S_n$.
- 4. Montrer que $\sum \frac{B_n}{n!} x^n$ a un rayon de CV infini, et calculer sa somme.