| · . · |                                          |
|-------|------------------------------------------|
|       |                                          |
|       | . 5 24                                   |
|       |                                          |
|       |                                          |
|       |                                          |
|       |                                          |
|       | Sigmoidal Functions of the Forms         |
|       |                                          |
| ٠,,,  | $f(x) = \frac{1}{-\infty x}$             |
|       | $f(x) = \frac{1}{1 + e^{-\alpha x}}$     |
|       |                                          |
|       | $g(x) = \frac{2}{1 + e^{-\alpha x}} - 1$ |
|       |                                          |
|       | $h(x) = \tanh(\infty x)$                 |
|       |                                          |
|       |                                          |
|       | where & is a positive parameter          |
|       |                                          |
|       |                                          |
|       |                                          |
|       | ,                                        |
|       |                                          |
|       |                                          |
|       |                                          |
|       |                                          |
| •     |                                          |
|       |                                          |
| •'    |                                          |
|       |                                          |
|       |                                          |
|       |                                          |
|       | Prof. Dr. Mahmoud M. Fahmy               |
|       |                                          |
|       |                                          |
|       |                                          |
|       |                                          |

NEURAL NETWORKS

(1) Consider the binary sigmoidal function

$$f(x) = \frac{1}{1 + e^{-\alpha x}}$$

Verify that

$$x = \frac{1}{\alpha} \ln \left[ \frac{f(x)}{1 - f(x)} \right]$$

(2) A neuron receives inputs 0.5, 1.5, and -1.1 with weights 0.7, 0.9, and 1.2, respectively. If the neuron produces an output signal s of the sigmoidal form

$$S = \frac{1}{1 + e^{-0.6y}}$$

where y is the activation, find the values of y and s. Take the bias weight as 1.3.

(3) A neuron receives inputs 0.6, 1.7, and -1.5 with weights 0.6, 1.1, and 1.3, respectively. It employs a sigmoidal function of the form

$$f(y) = \frac{1}{1 + e^{-\alpha y}}$$

where y is the activation and  $\infty$  is a positive parameter. Find the value of  $\infty$  such that the output signal is 0.66. Take the bias weight as 1.1.

(4) A neuron produces a sigmoidal signal of the form  $s = \frac{1}{1 + e^{-\alpha y}}$ 

where y is the activation and  $\infty$  is a positive parameter. The inputs to the neuron are  $x_1 = -0.9$ ,  $x_2 = 0.9$ , and  $x_3 = 1.2$  with respective weights  $w_1 = 0.8$ ,  $w_2 = -0.8$ , and  $w_3 = 0.4$ . Under certain operating conditions, the output signal s is found to be 0.5. Find the value of the bias weight  $w_1 = 0.5$ . Comment on the (corresponding) value of  $\infty$ .

(5) For the binary sigmoidal function

$$f(x) = \frac{1}{1 + e^{-\alpha x}}$$

verify that

$$\frac{df(x)}{dx} = \frac{\propto e^{-\alpha x}}{(1 + e^{-\alpha x})^2}$$

or, alternatively,

$$\frac{df(x)}{dx} = \infty f(x) [1 - f(x)]$$

- (6) Sketch the graph of  $\frac{df(x)}{dx}$  vs. f(x) for x = 0.5, 1, and 1.5. Show that the maximum value of  $\frac{df(x)}{dx}$  is  $0.25 \times$  and occurs at f(x) = 0.5.
- (7) A neuron receives two inputs  $x_1 = 1.5$  and  $x_2 = 1.25$ with weights  $w_1 = -1$  and  $w_2 = 2$ , respectively. The output signal s obeys a sigmoidal function of the form

$$S = \frac{1}{1 + e^{-2y}}$$

where y is the activation. Find the bias weight wo

when the derivative of s with respect to y is 0.33. What is the corresponding value of s?

(8) Consider the neural network illustrated in Fig. 1.

The inputs are  $x_1 = 2$  and  $x_2 = -1.5$ . The weights (including bias) are

 $w_{13} = -1$   $w_{23} = 1.1$   $w_{35} = 1.1$   $w_{14} = -0.5$   $w_{24} = 1.2$   $w_{45} = -1.1$ 

The two hidden neurons and the output neuron all employ sigmoidal functions of the form

 $f(x) = \frac{1}{1 + e^{-\alpha x}}$ 

with  $\infty = 0.8$  for each hidden neuron and  $\infty = 0.6$  for the output neuron. Find the value of the output signal 5.



Fig. 1 Neural network for Prob. 8

Charles on Millson, Charles on Physics on the Control of the Contr

| g) Consider the bipolar sigmoidal function                                               |
|------------------------------------------------------------------------------------------|
|                                                                                          |
| $\alpha/\gamma = 1 - e^{-\alpha/x}$                                                      |
| $g(x) = \frac{1 - e^{-\alpha x}}{1 + e^{-\alpha x}}$                                     |
|                                                                                          |
| a) Draw, on the same coordinate axes, the graphs                                         |
| of $g(x)$ for $\alpha = 0.5$ , 1; and 2. Comment on these                                |
| aranhs.                                                                                  |
| b) Verify that                                                                           |
| $x = \frac{1}{2} \ln \left  \frac{1 + g(x)}{2} \right $                                  |
| b) Verify that $x = \frac{1}{\alpha} \ln \frac{1 + g(x)}{1 - g(x)}$                      |
| c) Verify that                                                                           |
| $dg(x) = 0.5 \propto \left[1 - a^2(x)\right]$                                            |
| c) Verify that $\frac{dg(x)}{dx} = 0.5 \propto [1 - g^{2}(x)]$                           |
| (10) The neuron illustrated in Fig. 2 receives inputs                                    |
| $x_1 = 0.5$ , $x_2 = 0.4$ , $x_3 = 0.6$ with weights $w_1 = 1.1$ ,                       |
| $w_2 = -2.1$ , $w_3 = 0.5$ and the bias weight $w_r = 1.7$ .                             |
| The simple is produced according to a                                                    |
| The output signal s is produced according to a                                           |
| sigmoidal function of the form                                                           |
| 2 1                                                                                      |
| $\frac{s-2}{1+e^{-\alpha y}}-1$                                                          |
| 1 + 5 - 1 . 1 . 1 . 1 . 1 . 1                                                            |
| where y is the activation. Find the value of the parameter $\infty$ such that $s=0.75$ . |
| parameter of such that s = 0.75.                                                         |
| at 4                                                                                     |
| $x_1 + 1$                                                                                |
| E. w.                                                                                    |
| $\sim$ $\omega_2$                                                                        |
| $\sim_2$                                                                                 |
| W3/                                                                                      |
| Fig.2 Neuron for Prob. 10                                                                |
| $\sim_3$                                                                                 |

- (11) In Prob. 10, with the value of a arrived at, let the bias weight we he halved in value while all other weights and the inputs are kept unaltered. What is the new value of the output
- (12) In Prob. 11, find the value of the derivative of the output signal s with respect to the activation
- (13) Show that the bipolar sigmoidal function

$$g(x) = \frac{2}{1 + e^{-2x}} - 1$$

is the same as the hyperbolic tangent function tanh x and that this is a special case of the relationship

$$\frac{2}{1+e^{-\alpha x}} - 1 = \tanh\left(\frac{\alpha x}{2}\right)$$

- (14) A neuron receives two inputs  $x_1 = 0.7$  and  $x_2 = 0.9$ with weights w, = 1.5 and w2 = -1.5, respectively. The bias weight is w = 0.8. If the neuron employs a hyperbolic tangent function, find the value of the output signal.
- (15) In Prob. 14, the inputs  $x_1, x_2$  and the weights  $w_1, w_2$  are all kept unchanged while the bias weight  $w_0$  is allowed to change. Find the value of  $w_0$  if the



0.6

Fig.3 Neural network

for Prob. 18