KHAI PHÁ DỮ LIỆU

Trường Đại học Nha Trang Khoa Công nghệ thông tin Bộ môn Hệ thống thông tin Giáo viên: TS.Nguyễn Khắc Cường

CHỦ ĐỀ 4

PHÂN LỚP
(Neural network
Deep learning
Convolutional Neural Network)

- Neuron
 - Là đơn vị xử lý của bộ não con người
 - Là nguồn gốc của ý tưởng xây dựng giải thuật artificial neural net

Cấu trúc của một "neuron" trong artificial neural net

→ goi là: Perceptron

- Một số activation phổ biến
 - Sigmoid

$$f(z) = \frac{1}{1 + e^{-z}}$$

- Một số activation phổ biến
 - Tanh

$$f(z) = \tanh(z)$$
.

- Một số activation phổ biến
 - ReLU (restricted linear unit) $f(z) = \max(0, z)$,

Kiến trúc của một neural network đơn giản

Forward Propagation

Layer

Layer

$$H_1 = W_1 * X_1 + W_4 * X_2 + b_1$$

 $H_2 = W_2 * X_1 + W_5 * X_2 + b_2$
 $H_3 = W_3 * X_1 + W_6 * X_2 + b_3$

$$Y_p = W_7*H_1 + W_8*H_2 + W_9*H_3$$

Layer

Minh họa cách neural network "học"

- Minh họa cách neural network "học"
 - Học từ các training data khác nhau

- Minh họa cách neural network "học"
 - Điều chỉnh weights (Back propagation)

- Minh họa cách neural network "học"
 - Điều chỉnh weights (Back propagation)
 - Cần Loss function (tự thiết kế), ví dụ:

$$J = 1/m * sum(H(w) - Y)^2 - LossFunction$$

→ Dùng để đánh giá mức độ khác nhau giữa giá trị thật sự (label) của từng training data so với giá trị mà designed ANN dự đoán

- Minh hoa cách neural network "học"
 - Điều chỉnh weights (Backward propagation)
 - Mục tiêu của điều chỉnh weights:
 - Làm cho sự sai khác là dần ít nhất (gradient descent)
 - Idea:
 - Trừ weights cũ cho đạo hàm của nó như sau

$$J = 1/m * sum(H(w) - Y)^2 - LossFunction$$

$$W11 = W11 - \alpha \frac{\mathrm{d}J}{\mathrm{d}W_{11}},$$

$$W21 = W21 - lpha rac{\mathrm{d}J}{\mathrm{d}W_{21}}$$
 ,

$$W31 = W31 - \alpha \frac{\mathrm{d}J}{\mathrm{d}W_{31}}$$

- Minh họa cách neural network "học"
 - Bản chất của quá trình học:
 - Lặp đi lặp lại Forward propagation và Backward propagation
 - Thu được bộ weights giúp cho sai số dần giảm xuống

- Minh họa cách neural network "học"
 - Vấn đề cần lưu ý của gradient descent
 - rất dễ nhầm lẫn giữa local minima và global minima

- Minh họa cách neural network "học"
 - Idea khắc phục vấn đề của gradient descent
 - Thay đổi (thiết kế / dùng) nhiều kiểu function đánh giá sai số → so sánh → tìm ra thiết kế nào tránh được nhiều nhất nhầm lẫn giữa local minima và global minima

Deep learning

- Deep learning
 - Nhiều layer hơn
 - Mỗi layer nhiều node hơn

- CNN = Convolutional Neural Network architectures
- Là một phiên bản của Deep learning
- CNN thường dùng với data là image
- Convolution?

255	255	255	10	10	10	8 X	6		6 X 4			735	735	0
255	255	255	10	10	10	U A	•	UNA			0	735	735	0
255	255	255	10	10	10						U	755	755	-
255	255	255	10	10	10		1	0	-1		0	735	735	0
255	255	255	10	10	10	*	1	0	-1	=	0	735	735	0
255	255	255	10	10	10		-				0	735	735	0
255	255	255	10	10	10		1	0	-1					
255	255	255	10	10	10		3 X 3					735	735	0

- Các tham số của convolution layer?
 - Size output:
 - OM = IM F + 1(Output matrix = input matrix – filter size + 1)

IM=6 F=3 6-3+1=4

- Các tham số của convolution layer?
 - Padding:

- Các tham số của convolution layer?
 - Stride:

- Các tham số của convolution layer?
 - Max pooling:

- Các tham số của convolution layer?
 - Average pooling:

Ví dụ neural network được thiết kế bằng CNN

ANN

 Tóm tắt qui trình thiết kế artificial neural network

Q/A