华中农业大学本科课程考试试卷

考试课程与试卷类型: 概率论与数理统计 A 姓名:

学年学期: 07-08-1 学号: 考试时间: 班级:

 $u_{0.975}=1.96$, $u_{0.95}=1.645$

 $t_{0.995}(18)=2.88$, $t_{0.975}(5)=2.57$, $t_{0.975}(4)=2.776$, $t_{0.975}(12)=2.1788$

 $F_{0.95}(2,37)=3.28$, $F_{0.995}(9,9)=6.54$, $F_{0.95}(1,4)=7.71$, $F_{0.95}(2,12)=3.89$, $F_{0.99}(2,12)=6.93$

- 一、选择题(从下列各题四个备选答案中选出正确答案,并将其代号写在答题纸相应位置处。答案错选或未选者,该题不得分。每小题 3 分,共 15 分。)
- 1.设 â 是未知参数 a 的无偏估计量,且 D(â)>0,则[
- (A) \hat{a}^2 不是 \hat{a}^2 的无偏估计量; (B) \hat{a}^2 是 \hat{a}^2 的无偏估计量;
- (B) \hat{a}^2 不一定是 \hat{a}^2 的无偏估计量; (D) \hat{a}^2 不是 \hat{a}^2 的估计量.
- 2. 设 $X \sim N(\mu, \sigma^2)$, μ, σ^2 为未知参数, $X_{1, 1}, X_{2, ..., 1}, X_{n}$ 是来自 X 的样本,则作 μ 的估计时,下列统计量中()是最有效的.
- (A)3 \overline{X} -2 X_1 ; (B) \overline{X} ; (C) X_1 ; (D) $(1/2)X_1 + (2/3)X_2 (1/6)X_n$
- 3. 设 $X\sim N(\mu,\sigma^2)$, X_1 , X_2 ,..., X_n 是来自 X 的样本,则 σ^2 的极大似然估计量是(

$$(A)\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}; \quad (B)\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2};$$

$$(C)\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\mu)^{2}; \quad (D)\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{k}$$

4... 设 $X\sim N(\mu,\sigma^2)$, X_1 , X_2 ,..., X_n 是来自 X 的样本, \overline{X} 为样本均值,记

$$S_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2; \quad S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2; \quad S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2; \quad S_4^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2;$$

则下列统计量中()服从 t(n-1)分布.

$$(A)\frac{\overline{X}-\mu}{S_1/\sqrt{\mathsf{n}-1}};\quad (B)\frac{\overline{X}-\mu}{S_2/\sqrt{\mathsf{n}-1}};(C)\frac{\overline{X}-\mu}{S_3/\sqrt{\mathsf{n}}};(D)\frac{\overline{X}-\mu}{S_4/\sqrt{\mathsf{n}}};$$

- 5.假设检验中,显著性水平α表示()
- (A)P(接受 H₀|H₀ 为假); (B) P(拒绝 H₀|H₀ 为真);
- (C)P(拒绝 H₀|H₀为假); (D) 无具体含义.
- **二、填空题**(将下列各题的一个或多个正确答案写在答题纸相应位置处。答案写错的,该题不得分。每小题 3 分,共 15 分。)
- 1. 设 $X \sim N(\mu, \sigma^2)$, μ, σ^2 为未知参数, $X_1, X_{2,...}, X_n$ 是来自 X 的样本,则 P(X > 2)的极大似然估计量为()
- 2. 假设总体 X 服从正态分布 N(μ,9), X₁, X₂,..., X_n是 X 的一个样本,要使样本均值 \overline{X} 满足概率不等式 $P(\overline{X}-1<\mu<\overline{X}+1)\geq 0.90$,则样本容量 n 最小应取().

 $P(|X+Y| \ge 6) \le ($).

- 4. 设 $X\sim N(\mu,\sigma^2)$, σ^2 已知,则总体均值 μ 的置信区间长度 L 与置信度 1-α的关系是: 当 1-α缩小时,L 变();
- 5. 设 $X \sim N(\mu, \sigma^2)$, σ^2 为未知参数, $X_1, X_2,..., X_n$ 是来自 X 的样本,则对于假设 H_0 : $\mu = \mu_0$; H_1 : $\mu > \mu_0$ 的拒绝域是()(显著性水平为α).
- **三、解答题**(每小题 10 分, 共 20 分)
- 1. 设总体 X 的密度函数为:

$$p_X(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}}, & x \ge \mu \\ 0, & 其他. \end{cases}$$

其中 $\theta > 0$, θ, μ 是未知参数, $X_1, X_2, ..., X_n$ 是总体X的样本,求 θ, μ 的矩估计量。

2. 设总体 X 的密度函数为:

四、(20分)某种作物有甲、乙两个品种,为了比较他们的优劣,两个品种各种 10 亩,假设亩产量服从正态分布。收获后测得:甲品种的亩产量(公斤)的均值为 30.97,修正标准差为其中 $\theta>-1$ 是未知参数, $X_1,X_2,...,X_n$ 是总体X的样本,求 θ 的极大似然估计量。

26.7; 乙品种的亩产量(公斤)的均值为21.79,修正标准差为12.1。现取检验水平为0.01,

问能否认为这两个品种的产量没有

五、(15 分)今有某种型号的电池三批,他们分别是 A,B,C 三个工厂所生产的,为评比质量,个随机抽取 5 只电池为样品,经试验测得其寿命见下表。试在显著性水平 0.05 下检验电池的平均寿命有无显著差异(设各个总体服从正态分布,且方差相等)。若差异是显著的,试求均值差 μ_{A} - μ_{B} , μ_{B} - μ_{C} , μ_{A} - μ_{C} 的置信度为 95%的置信区间。

生产	产厂家	电池寿命				
	A	40	48	38	42	45
_	В	26	34	30	28	32
	<u>C</u>	39	40	43	50	50

六、(15 分)下表数据是退火温度 \mathbf{x} (0 C) 对黄铜延性 \mathbf{y} 效应的试验结果, \mathbf{y} 是以延性长度计算的,且设对于给定的 \mathbf{x} , \mathbf{y} 是服从正态分布的随机变量.

x (⁰ C)	300	400	500	600	700	800	
y (*10 ⁻²)	40	50	55	60	67	70	

求(1)y 对于 x 的线性回归方程;

(2)检验假设 H₀:b=0; H₁:b≠0 (α=0.05).

