Probabilistic tools

Central Limit Theorem

Let $(X_n)_{n\geq 1}$ be a real and independent sequence with same law such that $\mu=\mathbb{E}[X_1]$ and $\mathbb{V}[X_1]=\sigma^2$ are defined $(\mathbb{V}[X_1]\leq +\infty)$. Noting $\bar{X}_n=\frac{1}{n}(X_1+\ldots+X_n)$, we have:

$$\sqrt{n} \frac{(\bar{X}_n - \mu)}{\sigma} \sim_{n \to \infty} \mathcal{N}(0, 1)$$

Spectral Theorem

Let M be a symmetric matrix with real coefficients. Then it exists U orthogonal and D diagonal with real coefficients such that $M = UDU^T$.

Inferential statistics

Likelihood method

This method consists on finding the parameter that maximizes the likelihood: $L(x_1,...,x_n;\theta) = f(X|\theta) = \prod_{i=1}^n f_{\theta}(x_i;\theta)$ which is the product of densities across all samples.

Intuitively, we want to find the θ that maximizes a certain event, that is, obtaining some data X (which is why we have $X|\theta$).

We often use the log in order to get rid of power coefficients appearing with the product. likelihood equation: $\frac{d}{d\theta}ln(L(x_1,...,x_n;\theta))=0$

Exploratory statistics