PROJEKT TECHNICZNY CHWYTAKA

Autor: Bartosz Więcek

Wydział: Elektrotechniki, Automatyki, Informatyki i

Inżynierii Biomedycznej

Kierunek: Automatyka i robotyka

Rok:

Grupa: 3A

1. Obliczenie ruchliwości chwytaka na podstawie zadanego schematu kinematycznego.

W tym projekcie będę realizował projekt chwytaka na podstawie schematu kinematycznego nr 5.

Schemat 1 – kinematyczny schemat chwytaka

W celu określenia ruchliwości chwytaka skorzystam z poniższego wzoru:

$$w=3n-2p_5-p_4$$

, gdzie

w – ruchliwość chwytaka

n – liczba członów ruchomych

 p_5 – liczba par kinematycznych klasy piątej

 p_4 – liczba par kinematycznych klasy czwartej

Jak widać na powyższym schemacie kinematycznym: $n=5\;;\;p_5=7\;;\;p_4=0$

Zatem po podstawieniu do wzoru otrzymuję: w = 1

W takim przypadku napęd chwytaka będzie realizowany za pomocą jednego siłownika pneumatycznego o ruchu liniowym.

- 2. Analiza zadania projektowego, ustalenie listy wymagań oraz przyjęcie modelu obliczeniowego chwytaka.
- 2.1 Wyznaczenie skoku siłownika, wymiarów elementów chwytaka, zakresu szczęk chwytaka oraz wymiarów i ciężaru obiektu manipulacji.

Schemat 2 – schemat kinematyczny chwytaka w skali 1:1 narysowany odręcznie

Schemat 3 – schemat kinematyczny chwytaka zamkniętego, wykonany w programie SAM6.1

Schemat 4 – schemat kinematyczny chwytaka otwartego wykonany w programie SAM6.1

Rysunek 1 – Rysunek poglądowy stworzony w celu zaznaczenia wymiarów

l1 = 45 mm

12 = 65 mm

13 = 30 mm

14 = 25 mm

15 = 45 mm

d = 70 mm

y = 40 mm

 $\Delta y = 9.5 \text{ mm}$

d = 70 mm

Maksymalny ciężar obiektu chwytanego wyznaczam ze wzoru:

$$Q_{max} = \frac{\pi * \gamma}{4} * d^2 * l$$

, gdzie

d – średnica transportowanego obiektu, d = 70 [mm]

l – długość transportowanego obiektu, przyjmuję $l = 100 \ [mm]$

 γ – ciężar właściwy transportowanego obiektu, dla miedzi $\gamma = 87900 [N/m3]$

Po przyjęciu za π wartości **3.14** i podstawieniu do wzoru otrzymuję:

$$Q_{max} = 33.8 [N]$$

2.2 Wyznaczanie maksymalnej koniecznej siły chwytu i obliczenie wymiarów szczęki.

W rozwiązywanym zadaniu projektowym przyjmuję siłowy sposób uchwycenia przedmiotu. Polega on na wywarciu odpowiedniego nacisku na transportowany obiekt, gwarantującego przeniesienie obiektu przy pomocy siły tarcia spełniającej warunek $T > Q_{\text{max}}$.

Rysunek 2 i 3 – rozkład sił na szczękach chwytaka i obiekcie manipulacji

Objaśnienia:

F_{ch} – siła chwytu

N – siła normalna działająca pomiędzy szczękami a obiektem chwytanym

T – siła tarcia pomiędzy szczęką a obiektem chwytanym

Z – długość ramienia szczęki

Zmin – minimalna długość ramienia szczęki

 2ϕ – kąt rozwarcia szczęk (przyjmuję 2ϕ = 120°)

Aby przedmiot mógł być transportowany musi zostać spełniony warunek $4T>Q_{max}*n$, gdzie n - współczynnik przeciążenia chwytaka.

Obliczenia:

$$F_{ch} = 2N * \cos(90^{\circ} - \varphi) = 2N * \sin \varphi$$

$$N = \frac{F_{ch}}{2\sin\varphi}$$

$$T = \mu * N = \frac{\mu * F_{ch}}{2 \sin \varphi}$$

$$4T > Q_{max} * n$$

$$F_{ch} > \frac{n * \sin \varphi}{2\mu} * Q_{max}$$

Po przyjęciu za ${\bf n}$ wartości ${\bf 2}$ oraz za ${\bf \mu}$ (współczynnik tarcia obiektu chwytanego o szczęki) wartości ${\bf 0,3}$ i podstawieniu tych wartości do nierówności otrzymuję poniższy warunek:

$$F_{ch} > 97,6 [N]$$

Przyjmuję zatem :
$$F_{ch} = 100 [N]$$

Wyznaczam minimalną długość ramienia szczęki:

$$z_{min} = \frac{1}{2 * \tan \varphi} * d = 20,21 [mm]$$

Przyjmuję zatem: z = 25 [mm]

3. Wyznaczenie charakterystyki przesunięciowej chwytaka f_p(x).

Przyjmuję oznaczenia:

x – przemieszczenie liniowe siłownika napędowego, $x \in [0mm, 5mm]$

y – przesunięcie końcówek chwytnych

Rysunek 4 – mechanizm opisany wielobokiem wektorowym

$$y = l_6 + l_5 \cos \varphi_2$$

Dla mojego chwytaka:

 $l_1 = 45$; $l_2 = 65$; $l_3 = 30$; $l_4 = 25$; $l_5 = 45$; $l_6 = 40$; $l_7 = 75$ - na podstawie *Rysunek 1*

Na podstawie powyższego wieloboku wektorowego zapisuję równanie:

$$\bar{x} + \bar{l_1} + \bar{l_2} + \bar{l_3} + \bar{l_4} + \bar{l_6} + \bar{l_7} = 0$$

Po powyższego równania zrzutowaniu na osie układu współrzędnych otrzymuję poniższy układ równań:

$$x\cos 180^{\circ} + l_1\cos 0^{\circ} + l_2\cos 90^{\circ} + l_3\cos \phi_1 + l_4\cos \phi_2 + l_6\cos 270^{\circ} + l_7\cos 180^{\circ} = 0$$

$$x \sin 180^{\circ} + l_{1} \sin 0^{\circ} + l_{2} \sin 90^{\circ} + l_{3} \sin \varphi_{1} + l_{4} \sin \varphi_{2} + l_{6} \sin 270^{\circ} + l_{7} \sin 180^{\circ}$$

$$= 0$$

Który po podstawieniu pod odpowiednie funkcje trygonometryczne wartości liczbowych przyjmuje następującą postać:

$$-x + l_1 + l_3 \cos \varphi_1 + l_4 \cos \varphi_2 - l_7 = 0$$

$$l_2 + l_3 \sin \varphi_1 + l_4 \sin \varphi_2 - l_6 = 0$$

Przekształcam układ do postaci:

$$l_3 \cos \varphi_1 = x - l_1 - l_4 \cos \varphi_2 + l_7$$

$$l_3 \sin \varphi_1 = -l_2 - l_4 \sin \varphi_2 + l_6$$

Podnoszę do kwadratu i dodaję stronami:

$$l_3^2 = (x - l_1 - l_4 \cos \varphi_2 + l_7)^2 + (-l_2 - l_4 \sin \varphi_2 + l_6)^2$$

Przyjmuję oznaczenia: $\mathbf{A} = \mathbf{x} - \mathbf{I}_1 + \mathbf{I}_7$; $\mathbf{B} = \mathbf{I}_6 - \mathbf{I}_2$ i porządkuję równanie.

$$0 = -2Al_4\cos\varphi_2 - 2Bl_4\sin\varphi_2 + A^2 + B^2 + l_4^2 - l_3^2$$

Dzielę równanie przez $-2Al_4$, które jest różne od 0.

$$\cos \varphi_2 + \frac{B}{A} \sin \varphi_2 + \frac{A^2 + B^2 + l_4^2 - l_3^2}{2Al_4} = 0$$

Przyjmuję oznaczenia: $-\frac{B}{A}=C$; $\frac{A^2+B^2+l_4^2-l_3^2}{2Al_4}=D$; $\cos\phi_2=s \Rightarrow \sin\phi_2=\sqrt{1-(\cos\phi_2)^2}$:

$$s + D = C\sqrt{1 - s^2}$$

Podnoszę równanie do kwadratu i porządkuję:

$$(C^{2} + 1)s^{2} + 2Ds + (D^{2} - C^{2}) = 0$$

$$s_{1} = \frac{-2D - \sqrt{4D^{2} - 4(C^{2} + 1)(D^{2} - C^{2})}}{2(C^{2} + 1)}$$

$$s_{2} = \frac{-2D + \sqrt{4D^{2} - 4(C^{2} + 1)(D^{2} - C^{2})}}{2(C^{2} + 1)}$$

Po przeanalizowaniu obydwu wyników łatwo dojść do wniosku że prawidłowy jest wynik **s**₁, zatem:

$$y(x) = l_6 + l_5 \frac{-2D - \sqrt{4D^2 - 4(C^2 + 1)(D^2 - C^2)}}{2(C^2 + 1)}$$

Po wstawieniu wartości uzyskałem przy pomocy portalu GeoGebra poniższy wykres funkcji $f_p(x)$:

Wykres 1 – charakterystyka przesunięciowa, GeoGebra

Malejące wartości 'y' odzwierciedlają zamykające się szczęki, czyli obrazując to poniższym rysunkiem z osi OY odczytujemy o ile punkt P (Rysunek 5) zbliżył się do środka okręgu O (wartość bezwzględna wartości na osi OY).

Rysunek 5 – poglądowy, objaśniający

Używając możliwości jakie daje mi program SAM6.1 wygenerowałem wykres charakterystyki przesunięciowej chwytaka bazujący na 'śledzeniu' punktu P.

Wykres 2 – charakterystyka przesunięciowa, SAM6.1

Jak widać niezależnie tworzone dwa wykresy są niemalże identyczne. Oznacza to, że charakterystyka przesunięciowa została prawidłowo wyznaczona.

4. Wyznaczenie charakterystyki prędkościowej chwytaka $f_{\nu}(x)$.

$$f_v(x) = \frac{\dot{y}}{\dot{x}}$$

, gdzie:

 \dot{y} – prędkość końcówki chwytnej

 \dot{x} - prędkość tłoczyska siłownika

x – przemieszczenie liniowe siłownika napędowego

W celu wyznaczenia charakterystyki prędkościowej chwytaka policzyłem, pierwszą pochodną wyznaczonej wyżej funkcji $f_p(x)$ po czasie. Wykres wyznaczonej pochodnej przedstawia poniższy wykres stworzony przy użyciu portalu GeoGebra.

Wykres 3 – charakterystyka prędkościowa, GeoGebra

Następnie przy użyciu programu SAM6.1 wygenerowałem wykres prędkości końcówki chwytnej w zależności od przemieszczenia siłownika napędowego.

Wykres 4 – charakterystyka prędkościowa, SAM6.1

Jak widać wykresy te są niemalże identyczne, co potwierdza prawidłowość moich obliczeń.

5. Wyznaczanie charakterystyki siłowej f_F(x).

$$f_F(x) = \frac{F_{ch}}{F_S}$$

, gdzie

 F_{ch} – siła chwytu (równa 100N – obliczenia w punkcie 2.2)

 F_S – siły na tłoczysku siłownika

Rysunek 6 - model siłowy chwytaka narysowany w programie SAM6.1

Powyższy model dzielę na grupy strukturalne i analizuję działające siły. W obliczeniach, niech l_i oznacza długość i-tej belki (numery belek w kółeczkach na rysunku).

 $\it F_{\rm S} = 2 * \it F_{\rm 1}$, ponieważ są dwa identyczne ramiona

b)

$$F_1 = F_2$$

c)

Uzależniam wszystkie niewiadome siły od ${\cal F}_{\it ch}$:

$$F_{2} * l_{8} = F_{ch} * l_{10}$$

$$F_{2} = \frac{l_{10}}{l_{8}} * F_{ch}$$

$$F_{3_y} = F_{ch}$$

$$F_{3_x} * l_{8} = -F_{ch} * l_{10}$$

$$F_{3_x} = -\frac{l_{10}}{l_{8}} * F_{ch}$$

$$F_{3} = \sqrt{F_{3_x}^{2} + F_{3_y}^{2}}$$

Po podstawieniu wartości liczbowych otrzymuję:

$$F_2 = 180[N]$$

$$F_3 = 206[N]$$

Z podpunktów a) i b) wiem, że
$$\ F_s = 2*F_1 \ \ {
m oraz} \ F_1 = F_2$$
 , zatem
$${\pmb F}_s = {\pmb 360} [{\pmb N}]$$

W położeniu równowagi:

$$f_F(x) = \frac{F_{ch}}{F_S}$$
 => $f_F(x) = 0.28$

Aby sprawdzić poprawność obliczeń wykonałem model chwytaka w aplikacji Autodesk ForceEffect.

Rysunek 7 - model chwytaka wykonany w aplikacji Autodesk ForceEffect.

Objaśnienia:

$$F_1$$
, $F_2 == F_{ch}$; R_G , $R_H == F_3$; $R_A == F_s$

Jak widać symulacja doprowadziła do tego samego wyniku co obliczenia.

Wykres stworzony w programie SAM6.1 również potwierdza poprawność obliczeń (patrz siła dla x = 0).

Wykres 5 - charakterystyka siłowa, SAM6.1

6. Sprawdzanie metodą mocy chwilowej charakterystyki siłowej.

Skorzystam ze wzoru $\mathbf{f_F}(\mathbf{x}) = \frac{1}{2\mathbf{f_v}(\mathbf{x})}$ Aby upewnić się czy wyliczona przeze mnie wartość $f_F(x) = 0.28$ jest prawidłowa.

Obliczam przy pomocy arkusza kalkulacyjnego regresję liniową obliczonej w punkcie 3 charakterystyki przesunięciowej i otrzymuję przybliżony wzór:

$$y(x) = 1.8x + 49.45$$

Obliczam $f_v(x)$ jako pochodną y(x) i otrzymuję $f_v(x) = 1.8$

$$f_F(x) = \frac{1}{2f_v(x)} = \frac{1}{3,6} = 0,2(7) = 0,28$$

Jak widać metoda mocy chwilowej charakterystyki siłowej potwierdza prawidłowość obliczeń z punktu 5.

7. Obliczenia wytrzymałościowe chwytaka przy maksymalnych obciążeniach.

7.1 Sprawdzenie warunku wytrzymałościowego na zginanie ramion chwytaka.

Rysunek 8 - moment gnący

Maksymalny moment gnący Mg jest równy:

$$M_{g_{-}max} = l_5 * F_{ch} = 4,5 [Nm]$$

Przyjmuję wymiary przekroju prostokątnego ramienia chwytaka: **b = 6mm** ; **h = 10mm**. Jego wskaźnik wytrzymałości na zginanie dany jest wzorem: $W_g = \frac{b*h^2}{6}$.

Wybieram stal E335 (dawniej St6), której współczynnik kg jest równy 195[MPa].

Warunek wytrzymałościowy na zginanie ma postać:

$$\sigma_{g_{\underline{max}}} \leq k_g$$

, gdzie

$$\sigma_{g_max} = \frac{M_{g_max}}{W_g} = \frac{6 * M_{g_max}}{b * h^2} = 45 \text{ [MPa]}$$

Jak widać warunek jest spełniony.

Aby sprawdzić czy wszystkie wielkości obliczyłem prawidłowo dokonuję analizy działających sił oraz momentu gnącego przy użyciu programu Autodesk ForceEffect. W celu uczynienia poniższych rysunków bardziej czytelnymi wymiary chwytaka zostały dziesięciokrotnie powiększone, zatem i moment gnący wyszedł dziesięć razy większy od rzeczywistego.

Rysunek 9 - moment gnący, Autodesk ForceEffect

Rysunek 10 - analiza działających sił oraz momentu gnącego, Autodesk ForceEffect

7.1 Sprawdzenie warunku wytrzymałościowego na ścinanie dla najbardziej obciążonego sworznia.

Przyjmuję:

d_s = 5 [mm] – średnica sworznia

materiał: stal S185 (dawniej St0S), dla której wytrzymałość na ścinanie k_t = 65 [MPa]

F3 = 206 [N] – na podstawie obliczeń z punktu 5c)

Warunek wytrzymałościowy na ścinanie ma postać:

$$\tau \leq k_t$$

, gdzie

$$\tau = \frac{4F_3}{\pi d_s^2} = 10.5 [MPa]$$

Jak widać dla przyjętej średnicy sworznia warunek jest spełniony.

8. Obliczenie wymaganych parametrów napędu pneumatycznego chwytaka i jego dobór.

Rysunek 11 - model siłownika

W celu dobrania odpowiedniego siłownika muszę obliczyć minimalną średnicę tłoka – 'D', która spełnia warunek:

$$P_t \geq P_w$$

,gdzie

 P_t – teoretyczna siła pchająca (P_{t_p}) / ciągnąca (P_{t_c})

$$P_{t_{-}p} = \frac{\pi}{4} * D^2 * p_n$$

$$P_{t_{-}c} = \frac{\pi}{4} * (D^2 - d^2) * p_n$$

 $p_n = 0.6 \ [MPa]$ – ciśnienie nominalne zasilania

 $P_{w} = k * F_{s_max} -$ siła wymagana na tłoczysku do prawidłowego działania chwytaka

 $k \in [1,2 \, ; \, 1,5]$ — współczynnik przeciążenia, przyjmuję k=1,5

 $F_{s_max}=rac{F_{ch}}{f_F(x)}$ – maksymalna siła na tłoczysku, potrzebna aby uzyskać maksymalną siłę chwytu

Obliczenia:

$$F_{s_max} = \frac{F_{ch}}{f_F(x)} = \frac{100 [N]}{0.28} = 357.14 [N]$$

$$P_w = k * F_{s_max} = 1.5 * 357.14 [N] = 535.71 [N]$$

Zgodnie z zasadą : $P_{t_p} \geq P_{w}$, zatem

$$D \ge \sqrt{\frac{4P_w}{\pi * p_n}} \approx 33,73 \ [mm]$$

Po przeglądnięciu katalogu firmy Festo zdecydowałem się wybrać siłownik kompaktowy AEN-50-5-I-P-A, o następujących parametrach:

Tabela 1 - parametry siłownika AEN-50-5-I-P-A

Średnica tłoka (D)	skok	Siła teoretyczna (P_t)
50 [mm]	5 [mm]	1065 [N]

Jak widać siłownik AEN-50-5-I-P-A spełnia wszelkie wymagania.