

Plano de Apresentação

- ♦ Histórico da Internet
- Arquitetura da Internet (arquitetura TCP/IP)
- ◆ Nível Aplicação
 - ◆ DNS
 - **♦** HTTP
 - ♦ FTP
 - ♦ <u>SMTP</u>
 - ♦ <u>SNMP</u>

◆ A Internet

- ◆ Internet é a rede mundial de computadores, à qual estão conectados milhões de computadores do mundo todo;
- ◆ A idéia de concepção de uma rede mundial surgiu nos Estados Unidos ainda nos anos 50, tornando-se, 50 anos depois, uma importante e abrangente forma de comunicação da sociedade e uma excelente oportunidade de negócios

Rede Internet

Origem

 ◆ ARPA (U.S Defense Department's Advanced Research Projects Agency) nos anos 60

- Projeto de interconexão dos computadores das principais instituições de pesquisa, ensino e governamentais
- Objetivo: em caso de ataque nuclear, encontrar um sistema de rede de informação que seja capaz de se auto-configurar caso uma das malhas venha a não funcionar
- ◆ Sistema foi chamado de ARPAnet (isto é rede da ARPA).
 - fornecia apenas serviços básicos de correio eletrônico e transferência de arquivos

Base da Arquitetura

- um serviço de transporte orientado à conexão, fornecido pelo Transmission Control Protocol (TCP)
- um serviço de rede não-orientado à conexão (datagrama não confiável), fornecido pelo Internet Protocol (IP)

Histórico da Internet

Origem dos protocolos TCP/IP

- ◆ Criação da ARPA (Advanced Research Project Agency)
 - Definição de uma rede para garantir a comunicação na eventualidade de um ataque nuclear
 - ◆ 1964/1967 Projeto de uma rede baseada em comutação de pacotes e na existência de "caminhos redundantes"

◆ Implementação da ARPANET

- ◆ 1968 Interconexão de 4 universidades americanas (Stanford, Berkeley, UCLA, Utah)
 - Interconexão através de um equipamento especial denominado IMP (Interface Message Processor)
 - Definição de um protocolo NCP (Network Control Protocol)
- ◆ 1969 Início das operações da ARPANET
- ◆ 1972 15 nós e 23 hosts
- ◆ Demonstração pública
 - Conferência Internacional sobre Comunicações Computacionais — Washington, 1972

◆ Evolução da ARPANET

- ◆ 1972 Correio Eletrônico, inventado pela BBN (empresa que inventou o modem e havia construído o IMP da ARPA)
- ◆ 1972 Especificação dos protocolos Telnet e FTP
- ◆ 1973 ARPANET torna-se uma rede intercontinental (Inglaterra e Noruega)
- ◆ 1974 62 servidores na rede... esquema de endereçamento do NCP apresentava limitações

◆ Aparecimento do TCP/IP

- ◆ Esquema de endereçamento capaz de suportar até 4 bilhões de máquinas (adeus ao NCP)
- ◆ Adoção de uma arquitetura multicamadas
- ◆ Função do TCP (Transmission Control Protocol) entrega "confiável" das mensagens trocadas entre dois hosts
- ◆ Função do IP (Internet Protocol) definir o caminho a ser seguido pelas mensagens trocadas entre dois hosts

- ◆ Explosão da INTERNET
 - ◆ 1990 Divisão da ARPANET
 - MILNET aplicações militares
 - ◆ ARPANET pesquisa
 - ◆ Dias atuais: INTERNET vira um grande negócio!!!!!

Histórico da Internet

◆ Evolução da INTERNET

Internet no Brasil 1991 a 1997

- ◆ Arquitetura Internet TCP/IP dá uma ênfase à interligação de diferentes tecnologias de redes
 - ◆ Idéia baseia-se na seguinte constatação: não existe nenhuma tecnologia de rede que atenda aos anseios de toda a comunidade de usuários
 - Alguns precisam de redes de alta velocidade que cobrem uma área geográfica restrita
 - Outros se contentam com redes de baixa velocidade que conectam equipamentos distantes milhares de quilômetros uns dos outros

◆ Inter-rede

- ◆ Única forma de permitir que um grande volume de usuários possa trocar informações é interligar as redes às quais eles estão conectados
 - Formando uma inter-rede
- ◆ Para interligar duas redes distintas
 - É necessário conectar uma máquina a ambas as redes
 - Máquina fica responsável pela tarefa de transferir mensagens de uma rede para a outra
 - Máquina que conecta duas ou mais redes é denominada Internet gateway ou Internet router (roteadores)

- Para realizar o roteamento
 - ◆ Gateways precisam conhecer a topologia da inter-rede
 - precisam saber como as diversas redes estão interconectadas
- Usuários vêem a inter-rede como uma rede virtual única
 - à qual todas as máquinas estão conectadas
 - não importando a forma física de interconexão

Para transmissão

- mensagens são divididas em pequenas parcelas
 - Segmentos de dados da aplicação acondicionados em protocolos da aplicação (HTTP, FTP, SMTP, etc.)
- cada parcela é repetidamente acondicionada (empacotada) a medida que seguem o seu caminho
 - Dado da aplicação é colocado em um pacote TCP ou UDP
 - Pacote TCP ou UDP é colocado em um pacote IP
 - Pacote IP é colocado em um quadro de enlace
- invólucros são bits adicionais colocados à frente e atrás da parcela

Nível de Aplicação(Telnet, FTP, etc.)

Nível de Transporte (TCP, UDP)

Nível de Rede (IP)

◆ Na recepção

- pacotes que chegam à máquina destinatária
 - são pacotes acondicionados dentro de outros pacotes
- pacotes aninhados são desempacotados por cada nível
- até que as parcelas sejam remontadas e enviadas ao módulo de software adequado

Nível de Aplicação(Telnet, FTP, etc.)

Nível de Transporte (TCP, UDP)

Nível de Rede (IP)

◆ Nível de Aplicação

- oferece aos softwares do usuário o acesso à Internet
- ◆ são softwares utilitários
 - rotinas que são usadas como ferramentas pelas aplicações tradicionais
- protocolos e serviços padronizados de comunicação para as tarefas mais comuns na rede
 - o correio eletrônico (SMTP), a conexão remota (TELNET) e a transferência de arquivo (FTP), entre outros

Nível de Aplicação (Telnet, FTP, etc.)

> Nível de Transporte (TCP, UDP)

Nível de Rede (IP)

◆ Nível de Aplicação

- Para usar serviços da rede ela necessita especificar o endereço do destinatário
 - usa o serviço de nome para traduzir os endereços mnemônicos para os endereços numéricos da rede

Nível de Aplicação (Telnet, FTP, etc.)

Nível de Transporte (TCP, UDP)

Nível de Rede (IP)

◆ Nível de Transporte

- ♦ Na recepção da mensagem e endereço
 - divide a mensagem em segmentos de tamanho compatível com as especificações da camada de transporte
 - acrescenta números de seqüência aos segmentos
 - anexa o endereço destinatário
 - despacha o pacote para o nível de rede
- ◆ Ofereces serviços de transferência de dados fim-a-fim entre aplicações
- Principais protocolos:
 - TCP (Transport Control Protocol)
 - UDP (User Datagram Protocol)

Nível de Aplicação(Telnet, FTP, etc.)

Nível de Transporte (TCP, UDP)

Nível de Rede (IP)

Nível de Transporte

- **◆** TCP (Transmission Control Protocol)
 - Forma, juntamente com IP o par TCP/IP
 - Realiza funções de transporte:
 - Decomposição das mensagens em pacotes
 - Numeração dos pacotes
 - ◆ Controle de erros de transmissão
- ◆ UDP (User Datagram Protocol)
 - modo sem conexão e possui funcionalidades bem mais simplificadas que o TCP
 - para o uso em redes de alta qualidade

Nível de Aplicação(Telnet, FTP, etc.)

Nível de Transporte (TCP, UDP)

Nível de Rede (IP)

Aplicações Internet: seus protocolos e protocolos de transporte

Aplicação	Protocolo de aplicação	Protocolo de transporte
e-mail	smtp	TCP
Acesso a terminal remoto	telnet	TCP
Web	http	TCP
Transferência de arquivo	ftp	TCP
multimídia streaming	rtp	TCP ou UDP
Servidor de arquivo remoto	nfs	TCP ou UDP
Voz a pacotes	rtp	Normal. UDP

◆ Nível de Rede

- ◆ Serviços e protocolos asseguram o poder de conectividade da Internet
 - Função: interconexão de diversas redes
- Adotado o protocolo IP
 - implementa um serviço de comunicação sem conexão, baseado em comutação de mensagens
 - implementa um mecanismo de roteamento das mensagens
 - permite que programas de aplicação troquem informações mesmo que estejam executando em estações conectadas a redes completamente diferentes

Nível de Aplicação (Telnet, FTP, etc.)

Nível de Transporte (TCP, UDP)

Nível de Rede (IP)

Protocolo IP

♦ Protocolo IP

- Projetado para permitir a interconexão de redes de computadores
 - Utilizando a tecnologia de comutação de pacotes

Internet

- Milhões de sistemas computacionais conectados: hospedeiros ou sistemas finais
 - ◆ Rodando aplicações
- ◆ Enlaces de comunicação
 - ◆ Fibra, cobre, rádio, satélite
- **♦** Roteadores:
 - Encaminham os pacotes de dados pela rede

Operadora

Funções da Camada de Rede

 Transportar pacotes do host origem ao destino

Presente em todo host e roteador

Três funções importantes:

 Determinação do caminho: rota tomada pelo pacote da origem ao destino (algoritmos de roteamento)

 Comutação: move pacotes da entrada do roteador para a saída apropriada do roteador

 Configuração de chamada: algumas redes requerem configuração de chamada para caminho

Protocolo IP (IPv4)

- ◆ Notação Decimal Pontuada
 - ◆ Exemplo:

◆ Endereçamento hierárquico

32 bits

Classes de Endereçamento

◆ Como determinar a classe das redes conhecendo o endereço em Notação Decimal Pontuada?

◆ Classe A

- ◆ Usada em redes de grande porte
 - Endereços de rede variam de 1 a 126
 - Cada rede pode ter 16 milhões de hosts
- ◆ Exemplo: rede Arpanet

◆ Classe B

- ◆ Endereços de rede variando de 128.1 até 191.255
 - Cada rede pode ter 65 mil hosts

Endereçamento IP

◆ Classe C

- ◆ Endereços de rede variando de 192.1.1 até 223.254.254
- ◆ Cada rede pode ter 254 hosts

Endereçamento IP

Sub-redes

- ◆ Com o crescimento de uma empresa o números de hosts possíveis de uma classe pode ser insuficiente
 - P.e. se uma empresa tiver mais de 254 hosts e tiver um endereço classe C?
- ♦ Solução: Sub-redes
 - Permitir que uma rede seja dividida em diversas partes para uso interno
 - ◆ Mas externamente é vista como uma única rede

Endereçamento IP: CIDR

◆ CIDR: Classless InterDomain Routing

- ◆ Parte rede do endereço com tamanho arbritário
- ◆ Formato do endereço: a.b.c.d/x, onde x é o número de bits da porção rede do endereço

11001000 00010111 00010000 00000000

200.23.16.0/23

Endereçamento IP

- Sub-redes
 - ◆ Considerando Classe B
 - Máscara abaixo permite criar até 62 LANs (2⁶-2) com 1022 (2¹⁰-2) hosts cada
 - Ex.: 128.10.2.30/22

Atribuindo endereços

- ◆ Como um host obtém seu endereço IP?
 - ◆ Endereço de rede é fixo para uma rede
 - Existem duas formas para atribuir um endereço de host
- Configuração Manual
 - O endereço IP é configurado no computador pelo administrador do sistema
- ◆ Uso do DHCP
 - Dynamic Host Configuration Protocol (DHCP)
 - Um servidor DHCP na rede recebe pedidos DHCP de um cliente e aloca um endereço IP para o cliente

Atribuindo endereços

◆ Configuração Manual

Endereçamento IP

DHCP: Dynamic Host Configuration Protocol: obtém dinamicamente um endereço IP: "plug-and-play"

- ♦ Host broadcasts uma msg "DHCP discover"
- ◆ Servidor DHCP responde com "DHCP offer"
- ♦ Host solicita endereço IP: "DHCP request"
- ◆ Servidor DHCP envia endereço: "DHCP ack"

Arquitetura Internet

♦ Nível Físico

- Não define um padrão próprio de protocolo
- objetivo é acomodar os diversos tipos de rede existentes
- é possível utilizar padrões de redes locais ou protocolos proprietários

Nível de Aplicação(Telnet, FTP, etc.)

Nível de Transporte (TCP, UDP)

Nível de Rede (IP)

Nível Físico (802.2, 802.3, FDDI, etc.)

Nível Aplicação na Internet

Paradigma Cliente Servidor

- Aplicações típicas de rede tem duas partes: cliente e servidor
- Cliente:
 - ◆ Inicia contato com servidor
 - Normalmente pede um serviço para o servidor
 - Exemplos: browser, leitor de emails
- Servidor:
 - Fornece o serviço solicitado pelo cliente
 - Exemplos: servidor web, servidor de emails.

Porta

- Interface entre a camada de aplicação e a camada de transporte
- ◆ Uma interface entre a aplicação e a rede
- Desenvolvedor:
 - Cria o programa (processo)
 - Escolhe o protocolo de transporte
 - Fixa alguns parâmetros da camada de transporte (tamanho máximo do buffer e tamanho máximo de segmentos)

◆ Endereçamento de processos

- ◆ Para um processo se comunicar com outro
 - Processo originador tem de identificar o processo destinatário
- ◆ Para identificar o processo destinatário deve-se especificar:
 - Nome ou endereço da máquina hospedeira
 - Identificador que especifique a identidade do processo destinatário no hospedeiro de destino

- ◆ Endereçamento da máquina hospedeira
 - ◆ Através do endereço IP
 - Valor de 32 bits (IPv4)
 - Ex.: 150.162.60.23
 - ◆ Identifica unicamente uma máquina na Internet
 - Mais correto: identifica exclusivamente a interface que liga o hospedeiro à rede
 - ◆ Deve ser gerenciado com cuidado

- ◆ Identificação do processo na máquina hospedeira
 - ◆ Através do número da porta

♦ Alguns números de portas foram reservados para

aplicações mais populares

Serviço	Porta	Descrição
FTP	21	Transferência de Arquivos
Telnet	23	Acesso Remoto
SMTP	25	Envio de Email
DOMAIN	53	Nomes do Domínio
Gopher	70	Browser em modo texto
HTTP	80	WWW
POP3	110	Receber Email
NNTP	119	Newsgroup
IRC	6667	Internet Relay Chat
ICQ	4144	Bate papo
AOL	5190	America On Line
MSN	569	Microsoft Network

DNS: Domain Name System

- Pessoas usam vários identificadores
 - ◆ Nome, CPF, etc.
- Roteadores e hosts na Internet:
 - ◆ Endereço IP (32 bit) usado para endereçamento de datagramas
 - "nome", p.e., www.inf.ufsc.br usados pelos humanos
- ◆ Q: como mapear nomes em endereços IP?
- Domain Name System:
 - Esquema de gerenciamento de nomes, hierárquico e distribuído
 - Protocolo do nível de aplicação de hosts, roteadores, servidores de nome para se comunicarem afim de resolver nomes (tradução endereço/nome)
 - uma sintaxe dos nomes usados na Internet,
 - regras de delegação de autoridades na definição de nomes,
 - um banco de dados distribuídos que associa nomes a atributos (p.e. endereço IP)
 - um algoritmo distribuído para mapear nomes em endereços

DNS (Domain Name System)

◆ Nome DNS é hierárquico

- similar ao sistema de números de telefone
 - código do país, código da área, código do bairro e código da linha
- na Internet:
 - um nome do computador que é parte de uma organização, que faz parte de grupo de organizações relacionadas, que está em um país

DNS (Domain Name System)

- Controle de nome é distribuído
 - baseado em uma árvore de nomes
 - Cada nível no sistema de nomes é um Domínio
- outros países
- uma organização controla uma sessão da árvore
 - é livre para alterar a árvore em sua sessão
- Nomes de computadores
 - ◆ Domínios são separados por ponto:
 - www.ufsc.br, ux.cso.uiuc.edu, www.tre.gov.br
- Controle de nomes é local
 - cada organização cria o nome sem pedir a ninguém
 - adiciona o novo nome para sua participação na base de dados mundial

DNS: Consulta ao nome de Domínio

- A tradução do nome
 - ◆ é automática
 - quando um nome é referenciado, o sistema faz a busca e tradução do nome para endereço
- Lista de nomes de uma organização
 - mantida disponível à Internet em servidores de nome DNS
 - cada computador deve conhecer o endereço IP do servidor DNS local (ponto de partida para pedidos de tradução)

Servidor de Nome com Autoridade

- ◆ Todo hospedeiro está registrado em um servidor de nomes com autoridade
 - ◆ Um servidor de nomes do ISP local do hospedeiro
 - No mínimo dois servidores de nome com autoridade para o caso de falha
 - Um servidor de nomes possui autoridade para um hospedeiro se ele tem sempre um registro DNS que traduz o nome do hospedeiro para o endereço IP do hospedeiro
 - Muitos servidores de nomes agem como servidores de nomes locais e também como servidores de nomes com autoridade

DNS: Servidores de nome raiz

- Contactada pelo servidor de nomes local que não consegue resolver o nome
- Servidor de nomes raiz:
 - Contacta servidor de nome com autoridade se não conhece o mapeamento de nome
 - Obtém mapeamento
 - Retorna o mapeamento para o servidor de nomes local
- Existem dezenas de servidores raiz

Atribuindo endereços

- ◆ Como uma ISP obtém seu bloco de endereços?
 - Endereços IP são gerenciados pela Internet Corporation for Assigned Names and Numbers (ICANN)
 - Aloca não apenas endereços IP, mas também gerenciam servidores raiz DNS
 - Atualmente endereços são gerenciados por registradores Internet regionais
 - American Registry for Internet Number (ARIN, América do norte e do sul e parte da África)
 - Reseaux IP Europeans (RIPE, Europa e visinhanças)
 - Asia Pacific Network Information Center (APNIC).

WWW — World Wide Web

- ◆ Sistema de Informações distribuídas na Internet
 - Criado dentro de um projeto cooperativo do CERN Suíça
 - ◆ Baseado em hipermídia

 Permite acesso a informações de texto, imagens, sons, vídeo, etc...

Idéias básicas do WWW

- ◆ Decentralização da informação
 - ♦ informações são espalhadas por servidores WWW pelo mundo
 - não existe autoridade central para registrar documentos
 - qualquer pessoa pode criar e inserir uma página na Web

Idéias básicas do WWW

- ◆ Método uniforme para endereçar documentos:
 - **◆ URL Uniform Resource Locator**
 - indica como e onde encontrar um documento
 - **♦** Exemplos:
 - http://www.ctc.ufsc.br
 - http://www.inf.ufsc.br/~willrich/Ensino/INE5602.html
 - ftp://ftp.inf.ufsc.br

Idéias básicas do WWW

- ◆ Um formato de documento único
 - ◆ Links são definidos via o URL
 - ◆ Páginas são escritas utilizando HTML (HyperText Markup Language)
 - define a estrutura do documento e os links
 - Programas clientes (navegadores) interpreta a linguagem HTML e gera a apresentação do documento

Web: Jargões

- Agente usuário para a Web é chamado de browser
 - ◆ MS Internet Explorer
 - Netscape Communicator
- ◆ Servidor para a Web é chamado servidor Web
 - ◆ Apache (domínio público)
 - ◆ MS Internet Information Server

Web: Protocolo http

HTTP: Hypertext Transfer Protocol

- Protocolo da camada de aplicação da Web
- ◆ Modelo cliente/servidor
 - Cliente: browser que pede, recebe e apresenta objetos Web
 - Servidor: servidor Web envia objetos em resposta a pedidos

Web: Protocolo http

- HTTP usa o serviço de transporte TCP
 - cliente inicia a conexão TCP (cria socket) com o servidor via porta 80
 - ◆ Servidor aceita conexão TCP do cliente
 - Mensagens http s\(\tilde{a}\)o trocadas entre browser (cliente http) e servidor web (servidor http)
 - ◆ Conexão TCP é fechada
- ◆ HTTP não mantém o estado
 - Servidor não mantém informações acerca de pedidos passados dos clientes
 - Manutenção do estado é complexa
 - História passada (estado) deve ser mantido
 - Se o cliente/servidor falhar, suas visões do estado podem ser inconsistente e devem ser reconciliadas

ftp: file transfer protocol

♦ FTP Permite

- transferir, renomear ou remover arquivos remotos
- ◆ Criar, remover e modificar diretórios remotos

Modelo cliente/servidor

- Cliente inicia tranferência passando o nome (login name) e sua senha
- ◆ Servidor: host remoto
 - porta 21

ftp: Conexões separadas de controle e de dados

- Cliente ftp contacta o servidor pela porta 21
 - ◆ Especificando o TCP como protocolo de transporte
- Duas conexões TCP são abertas:
 - ◆ controle: troca comandos e respostas entre cliente e servidor
 - "out of band control"
 - ♦ dado: arquivo de dados de/para o servidor
 - Cada arquivo é transferida em uma conexão TCP separada
- Servidor ftp mantém o "estado": diretório corrente, autenticação

- ◆ Duas formas de se conectar a um servidor FTP
 - ◆ forma autenticada (nome do usuário e password)
 - direitos de acesso do usuário
 - ◆ forma anônima
- ♦ Na forma anônima
 - ♦ Nome de login: anonymous
 - ◆ Password: E-mail
 - ◆ Têm-se acesso a repositórios públicos de arquivos
 - qualquer pessoa pode acessar
 - não é preciso cadastrar-se
 - Direitos autorais:
 - repositórios públicos contém apenas arquivos em domínio público

◆ Conhecendo o conteúdo das máquinas via ftp

```
ftp> dir [nome-do-diretório] [nome-do-arquivo]
ftp> ls [nome-do-diretório] [nome-do-arquivo]
ftp> !dir (LOCAL)
```

Trabalhando com diretórios

```
ftp> lcd [nome-do-diretório] (Local)
ftp> cd [nome-do diretório] (Remoto)
ftp> pwd (Diretório remoto atual)
/home/venus/willrich
```

 Transferência de arquivos de texto (ASCII) e binários

```
ftp> binary
200 Type set to I.
ftp> ascii
200 Type set to A.
```

- ◆ Exemplos de arquivos e modos de transferência
 - ◆ Binários
 - bases de dados, processadores de texto, compactados, imagens e gráficos, etc...
 - ◆ ASCII
 - texto, mensagens de correio eletrônico, PostScript, etc...

◆ Transferindo arquivos: comandos get e put

```
ftp> get arquivo-fonte [arquivo-destino]
ftp> put arquivo-fonte [arquivo-destino]
```

◆ Exemplo de transferência de arquivo:

```
ftp> get comentario
200 PORT command successful.
150 ASCII data connection for comentario
(150.162.60.1,3516) (1588 bytes)
226 ASCII Transfer complete.
1634 bytes received in 0.052 seconds (30 Kbytes/s)
ftp> quit
221 Goodbye.
```

◆ Fazendo FTP no Explorer

FTP

- ◆ FTP não anônimo é um serviço inseguro
 - ◆ sua senha estará circulando sem criptografia na rede!!!

SFTP — File Transfer Protocol

◆ Com o SSH Securite Shell

- ◆ Permite a um usuário em um computador conectar-se (logar-se) a outros computadores na Internet
 - mesmo laboratório;
 - mesmo campus;
 - outra cidade;
 - outro país.
- Conectado, a sua máquina emula um terminal da máquina remota
- ◆ Comando: telnet nome-da-máquina-remota
- Exemplo: telnet venus.inf.ufsc.br

Funcionamento do Telnet

- ◆ Duas aplicações envolvidas: cliente e servidor
- ◆ Papel do cliente:
 - cria conexão TCP com o servidor
 - recebe dados de entrada do usuário
 - adapta os dados de entrada num formato padrão para transmissão
 - recebe dados de saída do servidor num formato padrão
 - formata dados de saída para exibição no terminal

Funcionamento do Telnet

- ◆ Papel do servidor:
 - informa os softwares da rede a disponibilidade para aceitar conexões
 - aguarda ocorrência de uma solicitação de serviço
 - se possível, atende a solicitação
 - envia resultado para o cliente num formato padrão
 - entra em processo de espera

◆ Exemplo: Telnet do Windows 9x

```
🚚 Telnet - lucy.inf.ufsc.br
Conectar Editar Terminal Ajuda
UNIX(r) System V Release 4.0 (lucy)
login: willrich
Password:
Last login: Thu Aug 13 08:39:08 from irene
Sun Microsystems Inc.
                        SunOS 5.5.1
                                        Generic May 1996
Disk quotas for user willrich (uid 10798):
                                                                           grac
    Filesystem blocks quota
                                 limit
                                                  files
                                                                   limit
                                         grace
                                                           quota
/var/spool/mail
                           5000
                                   6000
                                                       0
                                                              16
                                                                      32
lucy[~] ls
Java
                                                     public_html
             dead.letter diversos
                                       mbox
core
             dead_letter mail
                                                     tango
                                       news
lucy[~]
```

TELNET

- **◆** TELNET é um serviço inseguro
 - ◆ sua senha estará circulando sem criptografia na rede!!!

E-mail (correio eletrônico)

- ◆ Serviço utilizado pela maior parte dos usuários da Internet (iniciação de usuários)
- ◆ Utilidade do correio eletrônico:
 - meio de comunicação intermediário ao telefone e correio tradicional
 - velocidade moderada
 - assíncrono
 - formalidade moderada (informal)
 - segurança baixa

E-mail (correio eletrônico)

- ◆ Sintaxe dos endereços
 - From: papainoel@polonorte.com (Santa Klaus)
 - From: Santa Klaus <papainoel@polonorte.com>
 - From: papainoel@polonorte.com

- ◆ Endereço local
 - From: willrich

 Protocolo smtp atua entre servidores de emais para enviar mensagens

- Protocolo usado no sistema de correio eletrônico na arquitetura TCP/IP
- Componentes Essenciais

Cliente recebendo a confirmação da chegada retira a msg do spool.
Se msg não for transmitida, cliente anota horário e suspende transmissão

mensagens

Email: Servidores de Email

Servidores de Email

- Mailbox contem mensagem que chegaram (ainda não lidas) para cada usuário
- Fila de mensagens de saída (a ser enviada)
- Protocolo smtp entre servidores de email para enviar mensagens
 - cliente: servidor emissor
 - "servidor": servidor receptor

Mensagem SMTP

Formato de Msg: Extensões Multimídia

- ♦ MIME: multimedia mail extension, RFC 2045, 2056
- Linhas adicionais no cabeçalho declaram o tipo de conteúdo MIME

Versão MIME

método usado Para codificar

Tipo de dado multimídia, Subtipo, declaração de parâmetros

Dado codificado

```
From: willrich@inf.ufsc.br
To: rw@ig.com.br
Subject: Foto
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data ....
.....base64 encoded data
```

Tipos MIME

- Texto
 - ◆ Exemplos de Subtipos : plain, html
- ◆ Imagem
 - ◆ Exemplos de Subtipos: jpeg, gif
- ♦ Áudio
 - Exemplos de Subtipos : basic (8-bit mu-law encoded), 32kadpcm (32 kbps coding)
- Vídeo
 - ◆ Exemplos de Subtipos : mpeg, quicktime
- ◆ Aplicação
 - Outros dados que devem ser processados pelo leitor antes de serem visíveis
 - Exemplos de Subtipos: msword, octet-stream

Multipart Type

```
From: willrich@inf.ufsc.br
To: rw@ig.com.br
Subject: Foto da Casa
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789
--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain
Caro Roberto,
Veja abaixo a foto da casa.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data .....
.....base64 encoded data
--98766789--
```


POP3 ou IMAP

Servidor de email Emissor

Servidor de email Receptor

- SMTP: envia/armazena msg para servidores
- Protocolo de acesso a Mail: obtém msg de servidores
 - ◆ POP: Post Office Protocol [RFC 1939]
 - autorização (agente <-->servidor) e download
 - ◆ IMAP: Internet Mail Access Protocol [RFC 1730]
 - Mais características (mais complexo)
 - Manipulação de msgs armazenadas no servidor
 - ◆ HTTP: Hotmail, Yahoo! Mail, etc.

POP3

- Um dos protocolos utilizados por leitores de email para buscar mensagens no servidor de email
- ◆ Começa quando o agente usuário (cliente) abre uma conexão TCP com o servidor de Email (servidor) na porta 110
- Quando a conexão é estabelecida, POP3 prossegue em 3 fases
 - ♦ Autenticação, transação, atualização

POP3

- ◆ Agente usuário obtém cada mensagem e a apaga
 - Após o comando quit o servidor entra na fase de atualização e remove mensagens apagadas do mailbox
- Um problema do modo download-e-apaga é que o usuário pode ser nômade e deseja acessar seu email de diversos computadores
 - ◆ Não vai ter acesso aos emails já transferidos para o cliente
- No modo download-e-manter o agente usuário deixa as mensagens no servidor
 - Usuário pode reler seus emails de outros documentos
- Durante a seção POP3 o servidor mantém algumas informações de estado
 - Mantém que mensagens que foram marcadas como apagadas
- Servidor POP3 não transfere estados para outras seções POP3
 - ◆ Simplifica a implementação

POP3

- Mensagens são transferidas do servidor para o computador local quando o usuário se conecta ao servidor
- Após buscar as mensagens a conexão pode ser desfeita, procedendo-se à leitura das mensagens sem precisar estar conectado ao servidor
- ◆ Indicado no caso de se utilizar conexões de acesso discado (via linha telefônica convencional onde se paga impulsos em função do tempo de conexão).

IMAP

- Útil para usuários nômades
 - Permite ao usuário manipular mailbox remoto como se ele fosse local
 - Permite ao usuário criar e manter vários folders no servidor de email
 - Usuário pode transferir mensagens de um folder para outro
 - ◆ Fornece funcionalidades de busca de mensagens
- Informações de estado persistem para as conexões que sucedem
- ◆ Mais complexo que o POP3
 - ◆ Implementações de cliente e servidores mais complexas

IMAP

◆ Útil para usuários nômades

- ◆ conexão entre o computador local e o servidor de email deve estar sempre ativa pois há uma constante interação entre eles
 - mensagens são mantidas do servidor de email, mas acessadas como se estivessem localmente.
 - util para pessoas que lêem seus emails de diferentes computadores

HTML

- Muitos usuários utilizam serviços de email baseado em browser
 - Usuário agente é um browser
 - P.e. Hotmail Yahoo!
 - Usuário se comunica com seu mailbox no seu servidor de email via HTTP
 - Não com SMTP, POP ou IMAP
 - ◆ Como no IMAP
 - Usuários podem organizar suas mensagens em hierarquias de folder no servidor remoto
 - ◆ Poderá substituir o POP e o IMAP
 - Principal desvantagem é que ele pode ser lento
 - Como o servidor é normalmente longe do cliente e a interação com o servidor é feita atraves de scripts CGI

E-mail (correio eletrônico)

◆ Listas de discussão:

- mensagem pode ser enviada para uma lista
- pode-se entrar em uma lista conhecendo o servidor da lista e enviando um comando para se inscrever na lista
- para enviar uma mensagem a lista é necessário apenas enviar a um endereço
- ◆ listas no INE: http://www.inf.ufsc.br/mailman/listinfo/

News

◆ Características

- ◆ Serviço de difusão e intercâmbio de informações (sem redistribuição)
 - Centenas de grupos de discussão sobre assuntos dos mais diversos
- Necessário criar hierarquias
 - comp, comp.os.unix, comp.lang.c, comp.os.os2.bugs,...
 - alt.activism, alt.cobol, alt.sex.x-rated, soc.culture.brazil, ...

- Sistema de gerenciamento de redes da arquitetura Internet
 - Opera na camada de aplicação e baseia-se no protocolo SNMP
 - Padrão de facto para gerenciamento de redes
 - Extensível, permitindo aos fabricantes adicionar funções de gerenciamento aos seus produtos
 - Independente do hardware

SNMP

Agentes

 Coletam junto aos objetos gerenciados as informações relevantes para o gerenciamento da rede

Gerente

- Processa as informações recolhidas pelos agentes
- Com o objetivo de detectar presença de falhas no funcionamento dos componentes de rede (hosts, gateways, etc.)
- ◆ Serve como uma interface p/ o gerente humano. Possui:
 - Conjunto de aplicativos para análise de dados, recuperação de falhas
 - Interface de monitoramento e controle, etc.

Objeto gerenciado

- Representa um recurso, que pode ser um sistema hospedeiro (host, servidor, etc.), um gateway ou equipamento de transmissão (modems, pontes, concentradores, etc.)
- ◆ Cada objeto gerenciado é visto como uma coleção de variáveis cujo valor pode ser lido ou alterado

- ◆ MIB (*Management Information Base*)
 - Mantém informações sobre os objetos gerenciados
 - Informações sobre o funcionamento dos hosts, dos gateways, e dos processos que executam os protocolos de comunicação (IP, TCP, ARP, etc.)

- ◆ Gerente envia comandos aos agentes
 - ◆ De leitura no valor das variáveis dos objetos gerenciados (get e response)
 - De escrita no valor das variáveis dos objetos gerenciados (put)
 - Modificação de valor pode ser usada para disparar indiretamente a execução de operações nos recursos associados os objetos gerenciados (p.e. reinicialização)

- ◆ Gerente envia comandos aos agentes
 - Existem mecanismos de autenticação para evitar que usuários não autorizados interfiram no funcionamento da rede
 - Troca de mensagens entre o gerente e o agente é definida pelo protocolo SNMP
 - Define o formato e a ordem que deve ser seguida no intercâmbio de informações de gerenciamento

Papel do SNMP

