# **Blockstore**

A data storage solution built with Blockchain

Fatih Mehmet Bakır Kyle Carson CS 293S, UCSB Winter 2018

#### **Motivation**

- Consensus, replication, and sharding are exceedingly difficult in the context of data storage
- Blockchain takes an interesting approach to distributed communication/consensus
- A permissioned environment such as owning all of the mining/storage nodes provides some room for experimentation
  - A semi-permissioned environment has the potential to cut costs
- Blockchain is all the hype

# What does Blockstore aim to achieve?

Provide a simple key-value storage solution using a modified Blockchain implementation for managing operation logs and distributed communication

#### Overview

- Modified Blockchain-variant using Generics
- > C++ for intensive operations such as mining, validating
- NodeJS + TypeScript
  - > HTTP for client communication
  - Socket.io for internal communication
- Simple in-memory KV store using a dictionary
- Request and API Handlers
- Client module as an application-programmer's interface





## **Typical Flow**

- Request is made by some client to Blockstore
- Reads get sent directly to the KV-store, while any sort of Write is created in the blockchain as a unit of Operation
- Operation added to a block and mined
- Once mined, it is appended to the blockchain, distributed to all other known replicas, and a response is sent to the client
- Mining is synchronous, rest is asynchronous

#### **Blockchain Modifications**

- No merckle-tree, need to maintain full history of operations
- Significantly lower bounds on honest node count and mining difficulty requirements since there are no attackers
- Full view/control of nodes in the network
- Flexibility in the data size of Operations, Blocks, Async vs. Sync communication, etc via a cluster-wide configuration file

# **Experimental Setup**

- > Remotely test MongoDB vs Blockstore with YCSB
  - Latency
  - > Throughput
- Multi-server cluster
- Simple Demo Application

## **Cluster Deployment**

- > Docker images running on DigitalOcean
- > Servers located in multiple regions
- VM Capacity:
  - > 1 CPU
  - > 1GB RAM
  - > Ubuntu 16.04















#### **Lessons Learned**

- > Bitcoin is a very simplistic approach to Blockchain
- > Coupling of transaction commital to mining is *slow*
- Strong consistency guarantees are difficult in a reasonable timeframe
  - > Decays into 2PC
- Redundancy between contents of Blockchain and KV comes with overhead

## **Additional Ideas to Explore**

- Read-only replica functionality
- Garbage collecting the blockchain
  - Checkpointing
- Leveraging permissioned environment to do leader-based transaction committal (ByzCoin)
- Build schema definition API for ease of development
- Expand request query types to support more advanced queries on multiple items

#### http://bs.fatihbakir.net



WE'LL DO IT LIVE!

# THANKS!

**Questions?** 

@FatihBAKIR

@carsonkk

https://github.com/FatihBAKIR/blockstore