

Inverse Kinematics for Kuka KR30-3: Positioning of the wrist

Softwaredevelopment for Industrial Robotics

Marcel Grotzke, Gabriel Kögler, Henri Hamann

25.11.2013

Table of content

- 1. Overview of the Kuka KR30-3
- 2. Solution statement
- 3. Calculation in detail
 - 3.1 Calculation of P_{WP}
 - 3.2 Calculation of Θ_1
 - 3.3 Calculation of Θ_2
 - 3.4 Calculation of Θ_3
- 4. Conclusion
- 5. Appendix

1.Overview: Structure of Kuka KR30-3

1.Overview: Zero Configuration of KR30-3

Angles Θ_1 , Θ_2 and $\Theta_3 = 0^{\circ}$

1. Overview of the Kuka KR30-3

2. Solution statement

3. Calculation in detail

- 3.1 Calculation of P_{WP}
- 3.2 Calculation of Θ_1
- 3.3 Calculation of Θ_2
- 3.4 Calculation of Θ_3

4. Conclusion

2. Solution statement

Split 3D problem of inverse kinematics in several 2D problems:

2. Solution statement [2]

Task: Reach the target point P_{WP} with the wrist of the robot

First 2D problem in topview: Rotation of the robot arm to the plane of the wrist point (P_{WP}) $[\Theta_1]$.

→ "WP Plane"

2. Solution statement [3]

Second 2D problem in lateral view: Calculation of the other angles $[\Theta_2, \Theta_3]$ in the "WP Plane"

2. Solution statement: Possible Solutions

4 possible solutions:

- Overview of the Kuka KR30-3
- 2. Solution statement

3. Calculation in detail

3.1 Calculation of Pwp

- 3.2 Calculation of Θ_1
- 3.3 Calculation of Θ_2
- 3.4 Calculation of Θ_3

5. Appendix

3.1 P_{WP}: Calculation of Wrist Point

Input: T_0^{TCP} (transformation of KS₀ to KS_{TCP})

 $P_{WPTCP} = (0, 0, -d_6) \dots (depends on how KS_{TCP} looks like)$

$$P_{WP_0} = T_0^{TCP} \cdot (0, 0, -d_6)$$

- Overview of the Kuka KR30-3
- 2. Solution statement

3. Calculation in detail

- 3.1 Calculation of P_{WP}
- 3.2 Calculation of Θ_1
- 3.3 Calculation of Θ_2
- 3.4 Calculation of Θ_3
- 4. Conclusion
- 5. Appendix

3.2 Θ_1 : Transformation of P_{WP_0} to KS_1

For Calculation of Θ_1 in $KS_1 \rightarrow Transformation of <math>P_{WP_0}$ to P_{WP_1}

$$\begin{array}{lll} \textbf{T_0^1} &=& \textbf{Rot}_{z_0}(\Theta_0) \cdot \textbf{Trans}_{z_0}(d_0) \cdot \textbf{Trans}_{x_1}(a_0) \cdot \textbf{Rot}_{x_1}(\alpha_0) & \begin{array}{ll} \Theta_0 = \pi/2 \\ d_0 = 0 \end{array} \\ \textbf{P_{WP_0}} &=& \textbf{T_0^1} \cdot \textbf{P_{WP_1}} & \rightarrow & \textbf{P_{WP_1}} &=& (\textbf{T_0^1})^{-1} \cdot \textbf{P_{WP_0}} \end{array} & \begin{array}{ll} \Theta_0 = \pi/2 \\ a_0 = 0 \end{array} \\ \alpha_0 = \pi/2 \end{array}$$

3.2 Θ_1 : Calculation of Θ_1

Calculation of Θ_1 (top view) in KS₁

3.2 Θ_1 : Calculation of Θ_1

Calculation of Θ_1 (topview) in KS₁

- Overview of the Kuka KR30-3
- 2. Solution statement

3. Calculation in detail

- 3.1 Calculation of P_{WP}
- 3.2 Calculation of Θ_1
- 3.3 Calculation of Θ_2
- 3.4 Calculation of Θ_3
- 4. Conclusion
- 5. Appendix

3.3 Θ_2 : Distinction of cases for Θ_1

For Calculation of Θ_2 in $KS_2 \rightarrow Transformation of <math>P_{WP_1}$ to P_{WP_2}

$$T_1^2 = Rot_{z_1}(\Theta_1) \cdot Trans_{z_1}(d_1) \cdot Trans_{x_2}(a_1) \cdot Rot_{x_2}(\alpha_1)$$

$$P_{WP_1} = T_1^2 \cdot P_{WP_2} \rightarrow P_{WP_2} = (T_1^2)^{-1} \cdot P_{WP_1}$$

Distinction of cases for Θ_{11} and $\Theta_{12} \rightarrow P_{WP_{21}}$ and $P_{WP_{22}}$

3.3 Θ_2 : Simplification of the problem

For simplification: uniquely calculation of w and Θ_{w_0}

$$\mathbf{w} = \sqrt{a_3^2 + d_4^2}$$
 \rightarrow Calculation of Θ_2

$$\Theta_{w_0} = atan2(d_4, a_3)$$
 \rightarrow Calculation of Θ_3

3.3 Θ_2 : Calculation of Θ_2

Calculation of Θ_{21} and Θ_{22} with $P_{WP_{21}}$ in x_2 - y_2 -plane (KS₂)

- Overview of the Kuka KR30-3
- 2. Solution statement

3. Calculation in detail

- 3.1 Calculation of P_{WP}
- 3.2 Calculation of Θ_1
- 3.3 Calculation of Θ_2
- 3.4 Calculation of Θ_3
- 4. Conclusion
- 5. Appendix

3.4 Θ_3 : Distinction of cases for Θ_2

For Calculation of Θ_3 in $KS_3 \rightarrow Transformation of <math>P_{WP_2}$ to P_{WP_3}

$$T_2^3 = Rot_{z_2}(\Theta_2) \cdot Trans_{z_2}(d_2) \cdot Trans_{x_3}(a_2) \cdot Rot_{x_3}(\alpha_2)$$

$$P_{WP_2} = T_2^3 \cdot P_{WP_3} \rightarrow P_{WP_3} = (T_2^3)^{-1} \cdot P_{WP_2}$$

Distinction of cases for Θ_{21} and $\Theta_{22} \rightarrow P_{WP_{31}}$ and $P_{WP_{32}}$

3.4 Θ_3 : Calculation of Θ_3

Calculation of Θ_3 with P_{WP_3} in x_3 - y_3 -plane (KS₃)

- Overview of the Kuka KR30-3
- 2. Solution statement
- 3. Calculation in detail
 - 3.1 Calculation of P_{WP}
 - 3.2 Calculation of Θ_1
 - 3.3 Calculation of Θ_2
 - 3.4 Calculation of Θ_3

4. Conclusion

5. Appendix

4. Conclusion: Overview of Solutions

4. Conclusion: Control of joint constraints

angle	min value	max value
Θ_1	-185°	+185°
Θ_2	-135°	+35°
Θ_3	-120°	+158°

4. Formula summery

$$P_{WP_0} = T_0^{TCP} \cdot (0, 0, -d_6)$$

$$P_{WP_1} = (T_0^{-1})^{-1} \cdot P_{WP_0}$$

$$\Theta_{11}$$
 = atan2(x_{WP_1} , y_{WP_1})
 $\rightarrow \Theta_{12} = \Theta_{11} + /- \pi$

$$P_{WP_2} = (T_1^2)^{-1} \cdot P_{WP_1}$$

$$\Theta_2$$
 = atan2(x_{WP₂₁}, y_{WP₂₁})
+/- acos($\frac{w^2 - d_{WP21}^2 - a_2^2}{-2 \cdot d_{WP21} \cdot a_2}$)

$$P_{WP_3} = (T_2^3)^{-1} \cdot P_{WP_2}$$

$$\Theta_3$$
 = atan2(d₄, a₃)
+ atan2(x_{WP₃}, y_{WP₃})

Calculation of wrist point (KS₀)

Transformation of wrist point to KS₁

Calculation of Θ_1 in KS₁

Transformation of P_{WP_1} with Θ_1 to KS_2

Calculation of Θ_2 in KS_2

Transformation of P_{WP_2} with Θ_2 to KS_3

Calculation of Θ_3 in KS_3

Many thanks for your attention!

www.ovgu.de

- Overview of the Kuka KR30-3
- 2. Solution statement
- 3. Calculation in detail
 - 3.1 Calculation of P_{WP}
 - 3.2 Calculation of Θ_1
 - 3.3 Calculation of Θ_2
 - 3.4 Calculation of Θ_3
- 4. Conclusion

5. Appendix

5. Appendix: DH parameters

$$T_i^{i+1} = Rot_{z_i}(\Theta_i) \cdot Trans_{z_i}(d_i) \cdot Trans_{x_{i+1}}(a_i) \cdot Rot_{x_{i+1}}(\alpha_i)$$

i	Θ	d	a	α
0	π/2	0	0	π
1	Θ_1	-d ₁	a_1	$\pi/2$
2	Θ_2	0	\mathbf{a}_2	0
3	$\pi/2 + \Theta_3$	0	a_3	-π/2
4	Θ_4	-d ₄	0	π/2

Compute Θ_1 , Θ_2 , and Θ_3

Θ₄ is not relevant for positioning problem

5. Appendix: Dimensions of KR30-3

Constants	Value in mm
d_1	815
a_1	350
\mathbf{a}_2	850
a_3	145
d_4	820
d_6	170

Dimension	Value in mm
А	2.498
В	3.003
С	2.033
D	1.218
E	815
F	1.084
G	820

5. Appendix: Why we use atan2(x, y)?

- Two arguments: Information on the signs of inputs
 - → Distinction between opposite directions in KS
- Programming: No need to take care of KS quadrants
 - → less programm logic
- atan2(y, x) is the angle in radians between the positive x-axis of a plane and the point given by the coordinates (x, y)

$$\operatorname{atan2}(x,y) = \begin{cases} \arctan\left(\frac{y}{x}\right) & x > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & y \geq 0, x < 0 \\ \arctan\left(\frac{y}{x}\right) - \pi & y < 0, x < 0 \\ +\frac{\pi}{2} & y > 0, x = 0 \\ -\frac{\pi}{2} & y < 0, x = 0 \\ \text{undefined} & y = 0, x = 0 \end{cases}$$

y > 0: upper half-plane y < 0: lower half-plane

bibliography

- 1) Lee, Ziegler: A geometric approach in solving the inverse kinematics of puma robots. The University of Michigan, 1983.
- 2) Linnemann: Robotortechnik (Vorlesung). Beuth Hochschule für Technik Berlin, 2013.
- 3) Kuka Roboter GmbH: *KUKA KR30-3 Datenblatt*. Gefunden auf http://www.kuka-robotics.com/res/sps/f776ebab-f613-4818-9feb-527612db8dc4_PF0042_KR_30-3_KR_60-3_de.pdf. Abgerufen am 09.11.13.
- 4) Bjerkeng: Coordinated Control with Obstacle Avoidance for Robot Manipulators - Chapter 3. Norwegian University of Science and Technology, 2010.
- 5) Suchý: *Grundlagen der Robotik* (Vorlesung). Technische Universität Chemniz, 2010.