$|x-x_0| < \delta$, то выполнено неравенство $|f(x)-f(x_0)| < \epsilon$. Следует ли отсюда, что функция f(x) непрерывна при $x = x_0$? Какое свойство функции f(x) описывается данными неравенствами?

672. Пусть для каждого числа $\varepsilon > 0$ существует число $\delta = \delta$ (ε , x_0) > 0 такое, что если $|f(x) - f(x_0)| < \varepsilon$, то $|x - x_0| < \delta$. Следует ли отсюда, что функция f(x) непрерывна при значении $x = x_0$? Какое свойство функции описывается этими неравенствами?

673. Пусть для каждого числа $\delta > 0$ существует число $\varepsilon = \varepsilon$ (δ , x_0) > 0 такое, что если | $f(x) - f(x_0)$ | $< \varepsilon$, то | $x - x_0$ | $< \delta$.

Следует ли отсюда, что функция f(x) непрерывна при $x = x_0$? Какое свойство функции f(x) описывается данными неравенствами?

Рассмотреть пример:

$$f(x) = \begin{cases} & \text{arctg } x, \text{ если } x \text{ рационально,} \\ & \pi - \text{arctg } x, \text{ если } x \text{ иррационально.} \end{cases}$$

674. С помощью «е—б»-рассуждений доказать непрерывность следующих функций: a) ax + b; б) x^2 ; в) x^3 ; г) \sqrt{x} ; д) $\sqrt[3]{x}$; e) $\sin x$; ж) $\cos x$; з) arctg x.

Исследовать на непрерывность и изобразить графически следующие функции:

675.
$$f(x) = |x|$$
.

676.
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{если } x \neq 2; \\ A, & \text{если } x = 2. \end{cases}$$

677. $f(x) = \frac{1}{(1+x)^2}$. если $x \neq -1$ и f(-1)—про-извольно.

678. a)
$$f_1(x) = \left| \frac{\sin x}{|x|} \right|$$
, если $x \neq 0$ и $f_1(0) = 1$;

б)
$$f_2(x) = \frac{\sin x}{|x|}$$
, если $x \neq 0$ и $f_2(0) = 1$.

679.
$$f(x) = \sin \frac{1}{x}$$
, если $x \neq 0$ и $f(0)$ — произвольно.

680.
$$f(x) = x \sin \frac{1}{x}$$
, если $x \neq 0$ и $f(0) = 0$.