- 1. (10 points) Let P(x) = "x is a person", L(x, y) = "x likes y" and E(x, y) = "x = y". Translate the following statements into formulas:
 - (a) "Every person likes some other person."
 - (b) "There is a person who is liked by every other person."

(a)
$$\forall x (P(x)) \rightarrow \exists y (L(x,y)) \land \neg E(x,y))$$

(b). $(\exists x P(x)) \land (\forall y (L(x,y)) \land \neg E(x,y)))$

2. (10 points) Let A be the formula $\forall x (\forall y ((x \neq y) \rightarrow \forall z ((z = x) \lor (z = y))))$

- (a) Find a domain $D_1 = \emptyset$ such that A is true when x, y, z are taken over D_1 .
- (b) Find a domain D_2 such that A is false when x, y, z are taken over D_2 .

$$(G) \quad \bigcap = \{1, 2\}$$

(b)
$$D_2 = R$$
 (the set of real numbers)

3. (10 points) Determine if the following formulas are logically valid, satisfiable or unsatisfiable.

(a)
$$(\exists x P(x) \leftrightarrow \exists x Q(x)) \rightarrow \exists x (P(x) \leftrightarrow Q(x))$$

(b)
$$\exists x (\mathbf{T} \lor P(x) \rightarrow \mathbf{F})$$

(c)
$$\forall x (P(x) \lor \neg \exists y (Q(y) \land \neg Q(y)))$$

(b)
$$TVP(x) \rightarrow F \equiv T \rightarrow F \equiv F$$

 S_0 (b) is unsatisfiable

- 4. (20 points) Show the following statements with interpretations of the formulas
 - (a) $\forall x(P(x) \lor Q(x))$ and $\forall xP(x) \lor \forall xQ(x)$ are not logically equivalent.
 - (b) $\exists x(P(x) \land Q(x))$ and $\exists xP(x) \land \exists xQ(x)$ are not logically equivalent.

(a) Suppose that
$$\forall x \mid P(x) \lor R(x) \mid r$$
 T in an interpretation T $P(x) \lor R(x) \mid r$ T for every x in T but $P(x) \mid r$ not T for every x in T and $R(x) \mid r$ not T for every x in T and $R(x) \mid r$ R so there is an X_0 such that $P(x_0) \equiv R(x_0) \equiv F$ then $\forall x \mid P(x_0) \lor \forall x \mid R(x_0) \equiv F$ so $\forall x \mid P(x_0) \lor \forall x \mid R(x_0) \mid r$ for T in T So $\forall x \mid P(x_0) \lor R(x_0) \rightarrow \forall x \mid P(x_0) \lor \forall x \mid R(x_0) \mid r$ logically valid.

So $\forall x \mid P(x_0) \lor R(x_0) \rightarrow R(x_0) \lor R(x_0) \lor R(x_0)$

are not logically equivalent.

- 4. (20 points) Show the following statements with interpretations of the formulas
 - (a) $\forall x(P(x) \lor Q(x))$ and $\forall xP(x) \lor \forall xQ(x)$ are not logically equivalent.
 - (b) $\exists x(P(x) \land Q(x))$ and $\exists xP(x) \land \exists xQ(x)$ are not logically equivalent.
- (b) Suppose that $\exists x P(x) \land \exists x R(x)$ is T in an interpretation I so there are X_1, X_L such that $\exists x P(x) \ni \exists x R(x_L) \ni T$ but for X in I, $\exists x P(x)$ and $\exists x R(x)$ may not be both T at the same time.

 So $\exists x P(x) \land \exists x R(x) \rightarrow \exists x (P(x) \land R(x)) \land R(x)$
- not logically valid
- So $\exists x \mid P \mid x \rangle \land Q \mid x \rangle \land \exists x \mid P \mid x \rangle \land \exists x \mid Q \mid x \rangle \Rightarrow are$ Not logically equivalent.

5. (10 points) Show that $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$. (1) Suppose that $\exists x (P(x) \vee Q(x))$ is T in an interpretation Ithere is an Xo such that \(\frac{1}{2} \times (PIXO) \nabla R(XO)) is T in I there is an Xo such that PIXO VQIXO) is T in I there is an Xo such that P(Xo) =Q(Xo)= T or P(Xo)=T, Q(Xo)=F or PIXO) = F , QIXO) = T in I there is an Xo such that $\exists x P(Xo) \lor \exists x Q(Xo) \equiv T$ in] So Jx P(x) V JX Q(x) 13 T in I and ∃x (PIX) V QXX) → ∃x PIX) V ∃x Q(X) Is logically valid (2) Supplie that $\exists x P(x) \lor \exists x Q(x) is T in an interpretation I$ there is an Xo such that $\exists x P(X_0) \equiv \exists X Q(X_0) \equiv T$ or $\exists X P(X_0) \equiv T$ JXRIXEF OR JXPIXO) = F, JXRIXO) = T in [there is an Xo such that P(Xo) = Q(Xo) = T or P(Xo) = T, Q(Xo) = F or PIXO) = F , QIXO) = T in I

there is an Xo such that $P(x) \vee Q(x)$ is T in I there is an Xo such that $\exists x (P(x) \vee Q(x))$ is T in I So $\exists x (P(x) \vee Q(x))$ is T in I and $\exists x P(x) \vee \exists x Q(x) \rightarrow \exists x (P(x) \vee Q(x))$ is legically valid

Conclusion. $\exists X (P(X) V Q(X)) \equiv \exists X P(X) V \exists X Q(X)$

6. (20 points) Show that $\forall x (P(x) \rightarrow Q(x)) \Rightarrow \forall x P(x) \rightarrow \forall x Q(x)$.

(1) $\forall x (f(x) \rightarrow Q(x))$ premise

(2) $P(\alpha) \rightarrow Q(\alpha)$ Universal Instantiation from (1)

(3) $P(\alpha)$ from (2)

(4) HXPIX) Universal Generalization from (3)

(t) Q(a) from (2)

(b) XXQIX) Universal Generalization from (5)

(7) $\forall x P | x$) $\rightarrow \forall x Q | x$) from (4) and (6)

7. (20 points) Show that $\exists x P(x) \land \forall x Q(x) \Rightarrow \exists x (P(x) \land Q(x))$.

(1) = x P(x) premise

(2) P(a) Existential Instantiation from (1)

(3) YXQIX) premize

(4) Q(a) Universal Instantiation from (3)

(5) P(a) 1 R(a) From (2) and (4)

(b) $\exists x (P(x) \land R(x)) Existential Generals zation from (5)$