

Sumário

1	Conceitos Básicos	. 7
1.1	Princípio da não contradição e do terceiro excluído	7
2	Noções de Teoria de Conjuntos	. 9
2.1	Conceitos básicos	9
2.2	Descrição de um conjunto	9
2.3	Alguns conjuntos importantes	10
2.4	Propriedades dos conjuntos	10
2.5	Relações entre conjuntos	11
	Bibliografia	15

Prefácio

Essas notas de Aula são referentes à matéria Álgebra 1, ministrada na UnB - Universidade de
Brasília - durante o 2º Semestre de 2010 pelo professor José Antônio O. de Freitas, Departamento
de Matemática. Tais notas foram transcritas e editadas pelo graduando em Ciências Econômicas
Luiz Eduardo Sol R. da Silva ¹ .

Revisão e ampliação das notas feita por José Antônio O. de Freitas.

É livre a reprodução, distribuição e edição deste material, desde que citadas as suas fontes e autores. Críticas e sugestões são bem vindas.

¹luizeduardosol@hotmail.com

1. Conceitos Básicos

- **Definição 1.0.1** Uma **proposição** é todo conjunto de palavras ou símbolos ao qual podemos atribuir um **valor lógico**.
- **Definição 1.0.2** Diz-se que o **valor lógico** de uma proposição é "verdade" (V) se a proposição é verdadeira ou "falsidade" (F) se a proposição é falsa.
- Exemplos 1.1 Julgue se as seguintes sentenças são ou não proposições:
 - 1. Todo número primo é ímpar. Essa setença é uma proposição de valor lógico "Falsidade."
 - 2. $x^2 + y^2 \ge 0$ para todos $x, y \in \mathbb{R}$. Esse setença é uma proposição de valor lógico "Verdade".
 - 3. Amanhã irá chover. Essa sentença não é uma proposição. Não é possível atribuir um valor lógico a ela.

1.1 Princípio da não contradição e do terceiro excluído

- 1. Uma proposição não pode ser verdadeira e falsa ao mesmo tempo.
- 2. Toda proposição ou é verdadeira ou é falsa, isto é, verifica-se sempre um destes casos e nunca um terceiro.

Assim esses princípios afirmam que:

"Toda proposição tem um, e um só, dos valores lógicos verdade ou falsidade."

De modo geral vamos trabalhar com proposições da forma:

- 1. Se \mathcal{H} , então \mathcal{T} .
 - Aqui \mathscr{H} é chamado de hipótese e \mathscr{T} de tese. Neste tipo de proposição iremos admitir que \mathscr{H} é uma verdade e precisaremos provar que \mathscr{T} é verdade. Ou seja precisamos construir um argumento que justifique \mathscr{T} ser verdadeira à partir do fato de \mathscr{H} ser verdadeira.
- 2. \mathcal{H} se, e somente se, \mathcal{T} ou \mathcal{H} se, e só se, \mathcal{T} .

Esse tipo de proposição será decomposta em duas proposições no formato anterior. Isto é:

- (a) Se \mathcal{H} , então \mathcal{T} .
- (b) Se \mathcal{T} , então \mathcal{H} .

No primeiro caso admitimos $\mathscr H$ verdadeira e provamos que $\mathscr T$ também é verdadeira e no segundo caso admitimos que $\mathscr T$ é verdadeira e provamos que $\mathscr H$ é verdadeira.

2. Noções de Teoria de Conjuntos

2.1 Conceitos básicos

Um conjunto é uma "coleçã o" ou "família" de elementos.

Usaremos letras maiúsculas do alfabeto para denotar os conjuntos e denotaremos elementos de um dado conjunto por letras minúsculas do alfabeto.

Dado um conjunto A, para indicar o fato de que x é um elemento de A, escrevemos:

$$x \in A$$
.

Para dizer que um elemento *x* não pertence ao conjunto *A*, escrevemos:

$$x \notin A$$
.

Um conjunto sem elementos é chamado de **conjunto vazio**. Tal conjunto é denotado por \emptyset . Dado um conjunto A e x um elemento, ocorre sempre o uma das seguintes situações:

$$x \in A$$
 ou $x \notin A$.

Além disso, para dois elementos $x, y \in A$, ocorre exatamente uma das seguinte situações:

$$x = y$$
 ou $x \neq y$.

2.2 Descrição de um conjunto

Um conjunto A pode ser dado pela simples listagem dos seus elementos, como por exemplo:

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{verdade, falso\}.$$

Um conjunto também pode ser dado pela descrição das propriedades dos seus elementos, como por exemplo:

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

2.3 Alguns conjuntos importantes

- 1. $\mathbb{N} = \{0, 1, 2, 3, ...\}$ o conjunto do números naturais.
- 2. $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ o conjunto dos números inteiros.
- 3. $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ o conjunto dos números inteiros não negativos.
- 4. \mathbb{R} o conjunto dos números reais.
- 5. \mathbb{R}^* o conjunto dos números reais não nulos.
- 6. $\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$ o conjunto dos números racionais.

2.4 Propriedades dos conjuntos

Definição 2.4.1 Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ temos que $x \in B$ e para todo $y \in B$ temos $y \in A$.

Se A e B são iguais, escrevemos A = B

$$\{1,2,3,4\} = \{3,2,1,4\}$$

$$\{1,2,3\} \neq \{2,3\}$$

Definição 2.4.2 Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A se todo elemento de A for elemento de B. Ou seja, se para todo elemento $x \in A$, temos $x \in B$. Nesse caso, escrevemos $A \subseteq B$ ou $B \supseteq A$.

Caso A seja um subconjunto de B mas não é igual a B, escrevemos:

$$A \subseteq B$$
.

Nesse caso, dizemos que A é um **subconjunto próprio** de B.

Para dizer que A não está contido em B, escrevemos $A \nsubseteq B$

Usando a definição de continência de conjuntos podemos definir igualdade de conjuntos da seguinte forma:

dois conjuntos A e B são iguais se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Ou seja,

se
$$A = B$$
 então $A \subseteq B$ e $B \subseteq A$.

Além disso,

se
$$A \subseteq B$$
 e $B \subseteq A$, então $A = B$.

Quando A e B não são iguais, escrevemos $A \neq B$. Para que $A \neq B$ devemos ter $A \nsubseteq B$ ou $B \nsubseteq A$. Isto é, precisamos encontrar algum elemento $x \in A$ tal que $x \notin B$ ou então encontrar $y \in B$ tal que $y \notin A$.

Proposição 2.4.1 Dados três conjuntos A, B e C temos:

- 1. $A \subseteq A$ (Reflexividade)
- 2. Se $A \subseteq B$ e $B \subseteq A$, então A = B. (Antissimetria)
- 3. Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. (Transitividade)

Considere os seguintes conjuntos:

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$

 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$

Neste caso, $2 \in A$ e $2 \notin B$, logo $A \nsubseteq B$. Por outro lado, $3 \in B$ e $3 \notin A$ e com isso $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição 2.4.2 Seja A um conjunto. Então $\emptyset \subseteq A$.

Prova: Suponha que $\emptyset \nsubseteq A$. Logo existe $x \in \emptyset$ tal que $x \notin A$. Mas por definição, o conjunto vazio não contém elementos. Logo a existência de $x \in \emptyset$ é uma contradição. Tal contradição surgiu por termos suposto que $\emptyset \nsubseteq A$. Portanto, $\emptyset \subseteq A$, como queríamos demonstrar.

2.5 Relações entre conjuntos

Definição 2.5.1 — Intersecção. Sejam A e B dois conjuntos. Definimos a **intersecção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem ao conjunto A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \text{ e } x \in B\}.$$

■ **Exemplo 2.1** Sejam $A = \{1, 2, 3\}, B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cap B = \{2,3\}$$
$$A \cap C = \emptyset.$$

Definição 2.5.2 — União. Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

■ **Exemplo 2.2** Sejam $A = \{1, 2, 3\}, B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cup B = \{1, 2, 3, 4\}$$

 $A \cup C = \{1, 2, 3, r, s, t\}.$

Proposição 2.5.1 Sejam *A* e *B* dois conjuntos. Então:

- 1. $(A \cap B) \subseteq A$;
- 2. $(A \cap B) \subseteq B$;
- 3. $A \subseteq A \cup B$;
- 4. $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos, Definição 2.5.1, temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemente de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre interseção.

Para a terceira afirmação, seja $x \in A$. Da definição de união de conjuntos, Definição 2.5.2, segue que $x \in A \cup B$. Logo todo elemento de A também está em $A \cup B$, ou seja, $A \subseteq (A \cup B)$. De modo análogo prova-se a quarta afirmação.

O conceito de união (∪) e intersecção (∩) pode ser estendido para mais de dois conjuntos.

Definição 2.5.3 — União e Intersecção finita de conjuntos. Sejam A_1, \ldots, A_n conjuntos. Então

$$A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{k=1}^n A_k$$

é o conjunto dos elementos x tais que x pertence a pelo menos um dos conjuntos A_1, \ldots, A_n . Agora,

$$A_1 \cap \cdots \cap A_n = \bigcap_{k=1}^n A_k$$

é o conjunto dos elementos x que pertencem a todos os conjuntos A_1, \ldots, A_n simultaneamente.

Definição 2.5.4 Sejam A e B conjuntos. Se $A \cap B = \emptyset$, dizemos que A e B são **conjuntos disjuntos**.

Sejam A e B conjuntos tais que $C = A \cup B$ e $A \cap B = \emptyset$. Neste caso dizemos que C é uma **união disjunta** de A e B. Denotamos tal fato por

$$C = A \sqcup B$$
.

Proposição 2.5.2 Sejam A, B e C três conjuntos, então:

- 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova:

- 1. Precisamos mostrar que
 - i) $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$;
 - ii) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Para provar i) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Por outro lado, se $x \in C$, como $x \in A$, então $x \in A \cap C$ e daí $x \in (A \cap B) \cup (A \cap C)$, logo $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Portanto,

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C).$$

Agora para provar ii), seja $x \in (A \cap B) \cup (A \cap C)$. Daí, $x \in A \cap B$ ou $x \in A \cap C$. Suponha que $x \in A \cap B$. Assim, $x \in A$ e $x \in B$. Como $x \in B$, segue que $x \in B \cup C$ e então $x \in A \cap (B \cup C)$, ou seja, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Agora, suponha que $x \in A \cap C$. Com isso $x \in A$ e $x \in C$. Desse modo, $x \in B \cup C$ e então $x \in A \cap (B \cup C)$ e daí

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$$

Portanto

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

como queríamos.

Análoga ao caso anterior.

Definição 2.5.5 — Diferença de Conjuntos. Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A - B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{ x \mid x \in A \text{ e } x \notin B \}.$$

Exemplos 2.1 1) Se $A = \{1, 2, 3, 5, 4\}, B = \{2, 3, 6, 8\}, \text{ então}$

$$A - B = \{1, 4, 5\}$$

 $B - A = \{6, 8\}.$

2) Se
$$A = \{2,4,6,8,10,...\}, B = \{3,6,9,12,15,...\},$$
 então

$$A - B = \{2,4,8,10,14,16,...\}$$

 $B - A = \{3,9,15,21,...\}$

Proposição 2.5.3 Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Segue da definição de diferença de conjuntos. ■

Definição 2.5.6 — Complementar. Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{ x \in E \mid x \notin A \}.$$

- **Observações 2.1** 1. Se A = E, então $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$. 2. $(A^C)^C = \{x \in E \mid x \notin A^C\} = \{x \in E \mid x \in A\} = A$
- **Exemplo 2.3** Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição 2.5.4 Sejam $A, B \in E$ conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in C_E(B)$. Assim $x \notin B$ e como $A \subseteq B$, então $x \notin A$. Daí por definição $x \in C_E(A)$, ou seja, $C_E(B) \subseteq C_E(A)$.

Proposição 2.5.5 Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

- 1. $(A \cup B)^C = A^C \cap B^C$
- 2. $(A \cap B)^C = A^C \cup B^C$

Prova:

1. Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^C \subseteq A^C \cap B^C. \tag{2.1}$$

Por outro lado, se $x \in A^C \cap B^C$, então $x \in A^C$ e $x \in B^C$. Com isso, $x \notin A$ e $x \notin B$, ou seja, $x \notin A \cup B$, logo $x \in (A \cup B)^C$. Desse modo

$$A^C \cap B^C \subset (A \cup B)^C. \tag{2.2}$$

Portanto, de (2.1) e (2.2) temos

$$(A \cup B)^C = A^C \cap B^C$$
.

2. Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$, isto é, $x \in A^C \cup B^C$. Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{2.3}$$

Por outro lado, se $x \in A^C \cup B^C$, então $x \in A^C$ ou $x \in B^C$. Daí, $x \notin A$ ou $x \notin B$, ou seja, $x \notin A \cap B$, logo $x \in (A \cap B)^C$. Desse modo

$$A^C \cup B^C \subseteq (A \cap B)^C. \tag{2.4}$$

Portanto, de (2.3) e (2.4) temos

$$(A \cap B)^C = A^C \cup B^C$$
.

Definição 2.5.7 — Produto Cartesiano. Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados $(x, y), (z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Exemplo 2.4 Sejam $A = \{1, 2\}$ e $B = \{3, 4\}$. Então

$$A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$$
$$B \times A = \{(3,1), (3,2), (4,1), (4,2)\}$$

■ Observação 2.1 Do Exemplo (2.4) vemos que em geral $A \times B \neq B \times A$.

Definição 2.5.8 — Conjunto Partes. Para qualquer conjunto A, indicamos por $\mathscr{P}(A)$ o conjunto

$$\mathscr{P}(A) = \{ X \mid X \subseteq A \}$$

que é chamado de **conjunto das partes** de A.

Os elementos desse conjunto são todos os subconjuntos de A. Dizer que $Y \in \mathscr{P}(A)$ significa que $Y \subseteq A$. Particularmente, temos $\emptyset \in \mathscr{P}(A)$ e $A \in \mathscr{P}(A)$.

- **Exemplos 2.2** 1. $A = \emptyset$, $\mathscr{P}(A) = {\emptyset}$;
 - 2. $B = \{x\}, \mathscr{P}(B) = \{\emptyset, \{x\}\};$
 - 3. $C = \{a,b,c\}, \mathcal{P}(C) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, C\};$
 - 4. $D = \mathbb{R}$, $\mathscr{P}(D) = \{X \mid X \subseteq \mathbb{R}\}$, por exemplo $\mathbb{Q} \in \mathscr{P}(D)$.

Bibliografia

- [1] H.H. Domingues, G.Iezzi: Álgebra Moderna, 2ł Ed., Atual, 1982
- [2] S. Shokranian: Álgebra 1, Ciência Moderna, 2010
- [3] Adilson Gonçalves: Introdução à Álgebra, 5ł Ed., IMPA, 2003
- [4] G. Birkhoff, S. MacLane: Álgebra Moderna Básica, 4ł Ed., Guanabara Dois, 1980
- [5] E. A. Filho: *Iniciação à Lógica Matemática*, Nobel, 2002