under Graduate Homework In Mathematics

SetTheory 5

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2023年12月21日

ROBEM I Prove: $F \subset \mathcal{N}$ is closed set $\iff F = [T]$ for some $T \subset^{<\omega} \omega$.

- SOUTHOW. \bullet \Longrightarrow : Let $T := T_F$, by the definition of T_F and [T], we get $F \subset [T]$. For $f \in [T]$, $f \upharpoonright n \in T$, so $\forall n \in \mathbb{N}, f \upharpoonright n = g \upharpoonright n, \exists g \in F$. So $d(f, F) \leq d(f, g) = \frac{1}{2^n} \to 0, n \to \infty$. Since F is closed, then $f \in F$.
 - \Leftarrow : For any $[T] \in {}^{<\omega} \omega$, only need to prove [T] is closed. Assume $f \in [T]$, then $\forall n \in \mathbb{N}, \exists g \in [T], f \upharpoonright n = g \upharpoonright n$. Since $g \in [T]$, then $g \upharpoonright n \in T$. So $f \in [T]$. So [T] is closed.

ROBEM II Assume f is isolated point in closed set $F \subset \mathcal{N}$, then $\exists n \in \mathbb{N}, \forall g \in F, g \neq f \rightarrow g \upharpoonright n \neq f \upharpoonright n$.

SOUTION. Since f is isolated, we get $\exists n \in \mathbb{N}, \forall g \in F \setminus \{f\}, d(f,g) > \frac{1}{2^n}$. Then $f \upharpoonright n \neq g \upharpoonright n$. \square ROBIEM III A closed set $F \subset \mathcal{N}$ is perfect $\iff T_F$ is a perfect tree.

- SOLTON. \Longrightarrow : For $t \in T_F$, $\exists f \in F, n \in \mathbb{N}, t = f \upharpoonright n$. Since F is perfect, then F is not isolated, by ROBEM II $\forall n, \exists g \in F, g \neq f$ such that $d(f,g) < \frac{1}{2^{n+1}}$. Then $t = f \upharpoonright n \sqsubset g$. Since $f \neq g$, Then, $\exists m \in \mathbb{N}, m > n$ such that $f \upharpoonright m \neq g \upharpoonright m$. So $t \sqsubset f \upharpoonright m, t \sqsubset g \upharpoonright m$, and $f \upharpoonright m, g \upharpoonright m$ are incomparable. So T_F is perfect.
 - \Leftarrow : For $f \in F$, only need to prove f is not isolated. Since T_F is perfect, then $\forall t := f \upharpoonright n \in T_F$, where $f \in F, n \in \mathbb{N}$. $\exists s_1, s_2 \in T_F$ such that $t \sqsubset s_1, s_2$ and s_1, s_2 are incomparable. Then $s_1, s_2 \sqsubset f$ is impossible. Without loss of generality assume $s_1 \not\sqsubset f$. so $s_1 = g \upharpoonright m$ for some $g \in F, m \in \mathbb{N}$. So $d(f, g) \leq \frac{1}{2^{n+1}}$. So f is not isolated.

ROBEM IV For $\alpha < \omega_1$, we let $\Sigma_0 = \{O \subset \mathbb{R} : O \text{ is open }\}$, and $\Pi_0 = \{F \subset \mathbb{R} : F \text{ is closed }\}$. And $\Sigma_{\alpha+1} = \{\bigcup_{n \in \mathbb{N}} A(n) : A \in^{\mathbb{N}} \Pi_{\alpha}\}$. $\Pi_{\alpha+1} = \{\mathbb{R} \setminus A : A \in \Sigma_{\alpha}\}$. $\Sigma_{\alpha} = \bigcup_{\beta < \alpha} \Sigma_{\beta}$, $\Pi_{\alpha} = \bigcup_{\beta < \alpha} \Pi_{\beta}$ for limit ordinal α . Prove that $\mathcal{B}(\mathbb{R}) = \bigcup_{\alpha < \omega_1} \Sigma_{\alpha}$.

- SOUTION. 1. $\bigcup_{\alpha<\omega_1}\Sigma_{\alpha}\subset\mathcal{B}(\mathbb{R})$: Since $\cup\Sigma_0\subset\mathcal{B}(\mathbb{R})$, if $\alpha<\omega_1$, such that $\bigcup_{\beta<\alpha}\Sigma_{\alpha}\subset\mathcal{B}(\mathbb{R})$. Next to prove $\bigcup_{\beta<\alpha+1}\Sigma_{\alpha}\subset\mathcal{B}(\mathbb{R})$, that is to prove $\bigcup\Sigma_{\alpha}\subset\mathcal{B}(\mathbb{R})$. Since α can be a successor ordinal or limit ordinal, by induction assumption, in the first case, $\Pi_{\alpha}=\{\mathbb{R}\setminus A:A\in\Sigma_{\alpha-1}\}$, $\Sigma_{\alpha-1}\subset\mathcal{B}(\mathbb{R})$, so $\Pi_{\alpha}\subset\mathcal{B}(\mathbb{R})$. Therefore, $\cup\Sigma_{\alpha+1}=\bigcup_{n\in\mathbb{N}}A(n)\subset\mathbb{R}$, where $A\in\{^{\mathbb{N}}\Pi_{\alpha}\}$. In the second case, $\Pi_{\alpha}=\bigcup_{\beta<\alpha}\Pi_{\beta}$, $\Pi_{\beta}\subset\mathcal{B}(\mathbb{R})$. so $\Pi_{\alpha}\subset\mathcal{B}(\mathbb{R})$. Therefore, $\cup\Sigma_{\alpha+1}=\bigcup_{n\in\mathbb{N}}A(n)\subset\mathbb{R}$,
- 2. $\mathcal{B}(\mathbb{R}) \subset \bigcup_{\alpha < \omega_1} \Sigma_{\alpha} =: \mathcal{A}$: Since $\mathcal{B}(\mathbb{R})$ is σ algebra and $\Sigma_0 \subset \mathcal{A}$, then only need to prove \mathcal{A} is a σ algebra. $\forall A \in \Sigma_{\alpha}$, then $\mathbb{R} \setminus A \in \Pi_{\alpha+1}$, then $\mathbb{R} \setminus A \in \Sigma_{\alpha+1}$, then $A \in \Pi_{\alpha+1}$, therefore, $A \in \Sigma_{\alpha+2}$. Obviously $\mathbb{R} \in \mathcal{A}$. For $A \in \mathcal{A}$, assume $A \in \Sigma_{\alpha}$. Then $\mathbb{R} \setminus A \in \Pi_{\alpha+1} \subset \Sigma_{\alpha+2} \subset \mathcal{A}$. Assume $A \in \mathbb{N}$ \mathcal{A} , let $f \in \mathbb{N}$ $\omega_1, f(n) = \min\{\alpha \in \omega_1 : A(n) \in \Sigma_{\alpha}\}$. Consider sup ran $f =: \gamma$. Since $\forall \alpha \in \text{ran } f, \alpha$ is countable. And ran f is countable, so sup ran f is countable, thus sup ran $f < \omega_1$. Then ran $\mathcal{A} \subset \Pi_{\gamma+2}$. So we get $\bigcup_{n \in \mathbb{N}} A(n) \subset \Sigma_{\gamma+2} \subset \mathcal{A}$. So we get \mathcal{A} is σ -field. So $\mathcal{B}(\mathbb{R}) \subset \mathcal{A}$, thus $\mathcal{A} = \mathcal{B}(\mathbb{R})$.

\mathbb{R}^{O} BEM V Show that $\mathcal{M} := \{A \subset \mathbb{R} : A \text{ is measurable}\}$ is a σ -field.

Lemma 1. For $A \subset \mathcal{P}(\mathbb{R})$, $|A| = alpha_0$, then $\mu^*(\bigcup_{A \in A} A) \leq \sum_{A \in A} \mu^*(A)$.

证明. Since $|\mathcal{A}| = \alpha_0$, let $\mathcal{A} = \{A_1, A_2, \cdots, A_n, \cdots\}$. $\forall n \in \mathbb{N}, \ \varepsilon > 0, \exists O_n \in \mathcal{O}, A_n \subset O_n$ and $\mu^*(A_n) \leq |O_n| + \frac{\varepsilon}{2^{n+1}}$. Let $U := \bigcup_{n \in \mathbb{N}} O_n$, then $\bigcup_{n \in \mathbb{N}} A_n \subset U$. So $\mu^*(\bigcup_{n \in \mathbb{N}} A_n \leq |U| \leq \sum_{n \in \mathbb{N}} |O_n| \leq \sum_{n \in \mathbb{N}} \mu^*(A_n) + \varepsilon$. Since ε is arbitry, then $\mu^*(\bigcup_{n \in \mathbb{N}} A_n = \sum_{n \in \mathbb{N}} \mu^*(A_n)$.

Lemma 2. If $G \in G_{\delta}$, then $\forall \varepsilon > 0, \exists O \in \mathcal{O}, G \subset O \land \mu^*(O \setminus G) \leq \varepsilon$.

- 近明. 1. G is bonded: Assume $G \subset [-M, M], M > 0$, and $G = \bigcap_{n \in \mathbb{N}} O_n$, where $O_n \in \mathcal{O}$. Since $G = \bigcap_{n \in \mathbb{N}} \bigcap_{k=0}^m O_m$, then without loss of generality, we can assume $O_n \supset O_{n+1}, n \in \mathbb{N}$. Besides, since $G = \bigcap_{n \in \mathbb{N}} (O_n \cap (-M-1, M+1))$. So, we can assume $O_n \subset (-M-1, M+1)$. So $|O_n|$ is declining and bounded. Thus, $\lim_{n \to \infty} |O_n| = a$. Therefore, if $m_k, 0 \le k < n$ have define, let we define m_n , $\forall \varepsilon > 0, \exists N, \forall l, m \ge N, |O_l| |O_m| < \frac{\varepsilon}{2^{n-1}}$. Let $m_n = N$, then $\{O_{m_n}\}_{n=0}^{\infty} \subset \{O_n\}_{n=0}^{\infty}$ is a sub sequence, and $\lim_{n \to \infty} |O_{m_n}| = a$, $G = \bigcap_{n \in \mathbb{N}} O_{m_n}, |O_{m_n}| |O_{m_{n+1}}| < \frac{\varepsilon}{2^{n-1}}$. Thus, we can assume $\{O_n\}_{n=0}^{\infty}$ such that $\forall n, |O_n| |O_{n+1}| < \frac{\varepsilon}{2^n}$ By Lemma 1, so
 - 2. G is not bounded: Let $G_n = G \cap B(0, n)$, then $G = \bigcup_{n \in \mathbb{N}} G_n$. So $\forall \varepsilon > 0$, $\exists O_n \supset G_n$ such that $\mu^*(O_n \setminus G_n) \leq \frac{\varepsilon}{2^n}$. Then $O = \bigcup_{n \in \mathbb{N}} O_n \in \mathcal{O}$, $O \setminus G \subset \bigcup_{n \in \mathbb{N}} O_n \setminus G_n$, so by Lemma 1, $\mu^*(O \setminus G) \leq \sum_{n \in \mathbb{N}} \frac{\varepsilon}{2^n} < \varepsilon$.

SOUTHON. 1. Easily, \mathbb{R} is open and closed, then \mathbb{R} is F_{σ} and G_{δ} , then $\mathbb{R} \in \mathcal{A}$.

- 2. If $A \in \mathcal{M}$, let $B := \mathbb{R} \setminus A$. Then $\exists F \in F_{\sigma}, G \in G_{\delta}$ such that $F \subset A \subset G$ and $\mu^*(G \setminus F) = 0$. Then $G^c \subset B \subset F^c$. Obviously, $G^c \in F_{\sigma}$, $F^c \in G_{\delta}$. And $\mu^*(F^c \setminus G^c) = \mu^*(G \setminus F) = 0$. So $B \in \mathcal{M}$.
- 3. Let $A(n) \in \mathcal{M}$, we need to prove $\bigcup_{n \in \mathbb{N}} A_n =: A \in \mathcal{M}$. By AC, $\exists F \in \mathbb{N} F_{\sigma}, G \in \mathbb{N} G_{\delta}$ such that $F(n) \subset A_n \subset G(n), \mu^*(G(n) F(n)) = 0$. Let $T = \bigcup_{n \in \mathbb{N}} F(n)$. Since F(n) is F_{σ} , we get $T \in F_{\sigma}$. And easily $T = \bigcup_{n \in \mathbb{N}} F(n) \subset \bigcup_{n \in \mathbb{N}} A(n) = A$. By AC and Lemma 2, $\forall n \in \mathbb{N}, \exists \mathcal{O} \ni O(n, m) \supset G(n), \mu(O(n, m) \setminus G(n)) \leq \frac{1}{m2^n}, m \in \mathbb{N}_+$. So $\bigcap_{m \in \mathbb{N}_+} \bigcup_{n \in \mathbb{N}} O(n, m) := G \in G_{\delta}, G(n) \subset G, \mu(G \setminus A) \leq \mu(G \setminus \bigcup_{n \in \mathbb{N}} G(n)) \leq \mu(\bigcup_{n \in \mathbb{N}} O(n, m) \setminus \bigcup_{n \in \mathbb{N}} G(n)) \leq \mu(\bigcup_{n \in \mathbb{N}} O(n, m) \setminus G(n)) = \frac{1}{m} \to 0, m \to \infty$. So $\mu(G \setminus F) \leq \mu(G \setminus A) + \mu(A \setminus F) = 0$. Therefore, A is measurable.

POBLEM VI Show that $\mathcal{A} := \{A \subset \mathbb{R} : A \text{ has property of Baire}\}$ is σ -field.

SOLTON. 1. Since $\mathbb{R}\Delta\mathbb{R}=\emptyset$ is meager, so $\mathbb{R}\in\mathcal{A}$.

2. If $A \in \mathcal{A}$, let $B := \mathbb{R} \setminus A \in \mathcal{A}$. So $\exists G \in \mathcal{O}$ such that $A \Delta G$ is meager, Let $U = \mathbb{R} \setminus \overline{G} \in \mathcal{O}$. And $B \setminus U = A \setminus \overline{G}$, so $(\overline{B \setminus U})^o = (\overline{A \setminus \overline{G}})^o \subset (\overline{A \setminus G})^o = \emptyset$, then $B \setminus U$ is meager. Since $U \setminus B = \overline{G} \setminus A = (\overline{G} \setminus G) \cup (G \setminus A)$, we only need to prove $\overline{G} \setminus G$ is meager. In fact, we can prove $\overline{G} \setminus G$ is nowhere dense. Since $\overline{G} \setminus G = \overline{G} \cap G^c$ is closed, $\forall ain \overline{G} \setminus G = \partial G \setminus G$, then

 $\forall \varepsilon > 0, \ B(a,\varepsilon) \cap G \neq \emptyset$, so $\exists b \neq a, b \in B(a,\varepsilon) \cap G$. Since $(\overline{G} \setminus G)^c = G \cup \overline{G}^c$, so $b \notin \overline{G} \setminus G$. Thus, $a \notin (\overline{G} \setminus G)^o$. So $\overline{G} \setminus G$ is nowhere dense. Therfore, $B\Delta U$ is meager.

3. Let $A(n) \in \mathcal{A}, n \in \mathbb{N}$, we need to prove $\bigcup_{n \in \mathbb{N}} A(n) =: A \in \mathcal{A}$. Let $G(n) \in \mathcal{O}$ and $A(n) \Delta G(n)$ is meager. Consider $G := \bigcup_{n \in \mathbb{N}} G(n)$. Since $G \setminus A \subset \bigcup_{n \in \mathbb{N}} G(n) \setminus A(n)$ and $G(n) \setminus A(n)$ is meager, we get $G \setminus A$ is meager. For the same reason, we get $A \setminus G \subset \bigcup_{n \in \mathbb{N}} A(n) \setminus G(n)$ is meager.

So \mathcal{A} is σ -field.

ROBEM VII Assume $A \subset^{\omega} \omega$ has the property of Baire, prove A is nonmerger $\iff \exists O \in \mathcal{O}({}^{\omega}\omega), O \neq \emptyset \wedge O \setminus A$ is meager.

SOLITION. \Longrightarrow : Since A has the property of Baire, then $\exists O \in \mathcal{O}, O\Delta A$ is meager. So $O \setminus A, A \setminus O$ are meager. Since A is nonmeager, $A \setminus O$ is meager, then $O \neq \emptyset$.

 \Leftarrow : Assume $O \in \mathcal{O}, O \neq \emptyset, O \setminus A$ is meager. If A is meager, then $O \setminus A \cup A = \bigcup_{k \in \mathbb{N}} A_k$, where $\overline{A_k}^o = \emptyset$. And $\overline{O} \cap A_k \subset A_k$, so $\overline{O} \cap A_k$ is nowhere dense. Since $\overline{O} = \bigcup_{k \in \mathbb{N}} \overline{O} \cap A_k$ is nonmeager and meager at the same time. Contradiction! Therefore, A is nonmeager.

ROBEM VIII Let $C_A := \bigcup \{O_s : s \in^{\omega} \omega, O_s \setminus A \text{ is meager}\}$. Prove that $C_A \setminus A$ is meager.

SOLITON. Since \mathbb{R} satisfies the second countable axiom, i.e., $\exists \mathcal{B} \subset \mathcal{O}(^{\omega}\omega)$ such that $\forall O \in \mathcal{O}, \forall x \in O, \exists B \in \mathcal{B}, x \in B \subset O$. And \mathcal{B} is countable. i.e. \mathcal{B} is countable topology basis of $\mathcal{O}(^{\omega}\omega)$. Consider $\mathcal{X} := \{X \in \mathcal{B} : \exists O_s, X \subset O_s \land O_s \setminus A \text{ is meager } \}$. Let $Y = \bigcup \mathcal{X}$, we will prove $C_A = Y$.

- 1. $x \in Y$, then $\exists X \in \mathcal{X}$ such that $x \in X$. So $\exists O_s$ such that $x \in X \subset O_s \land O_s \setminus A$ is meager. So $x \in C_A$.
- 2. $x \in C_A$, then $\exists O_s, x \in O_s, O_s \setminus A$ is meager. Since O_s is open, then $\exists B \in \mathcal{B}, x \in B \subset O_s$. So $B \in \mathcal{X}$. Thus $x \in Y$.

So we get $Y = C_A$. So $C_A \setminus A = Y \setminus A = \bigcup_{X \in \mathcal{X}} X \setminus A$. Since $\forall X \in \mathcal{X}$, then $X \setminus A$ is meager. Besides, $\mathcal{X} \subset \mathcal{B}$, so \mathcal{X} is countable. Therfore, $C_A \setminus A = \bigcup_{X \in \mathcal{X}} X \setminus A$ is meager. \square

ROBEM IX Let $\pi : \omega \to 0$ 2, $\pi(x) = s_{x(0)} \cap s_{x(1)} \cap \cdots$. Where $s_{x(k)} = 11 \cdots 10$ for even k, there is k "1" in total, and $s_{x(k)} = 00 \cdots 01$ for odd k, there is k "0" in total. Prove that $\omega 2 \setminus \operatorname{ran} \pi$ is countable.

SOLTION. Consider $g \in {}^{\omega} 2$ and $\forall Nin \mathbb{N}, \exists n, m \in \mathbb{N}, n, m \geq N$ such that g(n) = 1, g(n) = 0. Next, prove $\exists h \in {}^{\omega} \omega, \pi(h) = g$. Let $h(0) := \min\{n \in \omega : g(n) = 0\}$. If $h \upharpoonright n$ is defined. Let $M(n) = \sum_{k=0}^{n-1} (h(k)+1)$. Let $h(n) = \min\{k-1 : g(M(n)+k) = a_n\}$, where $a_n = 0$ for even n and $a_n = 1$ for odd n. By the definition of g, h is well-defined. Now we prove $\pi(h) = g$. For k < h(0), by the definition of h(0), $g(k) = 1 = \pi(h)(k)$. For k = h(0), then $g(k) = 0 = \pi(h)(k)$. $\forall k : \sum_{i=0}^{n} (h(i)+1) < k \leq \sum_{i=0}^{n+1} (h(i)+1)$. $\pi(h)(k) = s_{h(n)}(k-M(n))$. By the definition of h, if n is even, $s_{h(n)}(k-M(n)) = 1 = g(n), k \leq M(n) + h(n), s_{h(n)}(h(n)+1) = 0 = g(k)$, Thus, $\pi(h)(k) = g(k)$. So $\pi(h) = g$. Since $\mathcal{A} = \{g \in {}^{\omega} 2 : \exists N, n > N, g(n) = g(N)\}$ is countable, ${}^{\omega}2 \setminus \operatorname{ran} f \subset \mathcal{A}$, then ${}^{\omega}2$ is countable.

\mathbb{R}^{OBEM} X Assume AD, then $AC_{\omega}(^{\omega}\omega)$. Consequently, ω_1 is regular.

- SOUTION. 1. Assume $X: \omega \to \mathcal{P}({}^{\omega}\omega)$ and $\forall n \in \omega, X(n) \neq \varnothing$. Let $\theta: {}^{\omega}\omega \to {}^{\omega}\omega, \theta(f)(n) := f(2n+1)$. Consider G(A), where $A^c := \{x \in {}^{\omega}\omega: \theta(x) \in X(x(0))\}$. So I have no w.s since $\forall n \in \omega, X(n) \neq \varnothing$. By AD we get II has a w.s., write τ . Now consider $\gamma: \omega \to {}^{\omega}\omega, \gamma(n) := \theta((n,0,0,\cdots)*\tau)$. Since $\theta((n,0,\cdots)*\tau) \in X(n)$. So γ is the choose function.
 - 2. Now we prove ω_1 is regular. Only need to prove union countable many countable ordinal is countable. Assume $f: \omega \to \omega_1$, now we only need to prove $\bigcup \operatorname{ran} f \in \omega_1$. Consider $F: \operatorname{ran} f \to \mathcal{P}(\omega \times \omega)$, $F(\alpha) := \{R \subset \omega \times \omega : (\omega, R) \cong \alpha\}$. Since ${}^{\omega}\omega \approx \mathcal{P}(\omega \times \omega)$, we get $\operatorname{AC}_{\omega}(\mathcal{P}(\omega \times \omega))$. So $\exists \theta : \operatorname{ran} f \to \omega \times \omega$, $\theta(\alpha) \in F(\alpha)$, $\forall \alpha \in \operatorname{ran} f$. Consider $G: \omega \to^{\omega} \omega_1$, G(n) is the isomorphic from $(\omega, \theta(\omega))$ to f(n). Let $h: \omega \times \omega \to \bigcup \operatorname{ran} f$, h(n, m) := G(n)(m). Easily h is surjective. And since we have $\operatorname{AC}_{\omega}(\mathcal{P}(\omega \times \omega))$, we get $\bigcup \operatorname{ran} f \approx A$ for some $A \subset \omega \times \omega$. So we get $\bigcup \operatorname{ran} f$ is countable. So ω_1 is regular.