# **QEC 101**

Introduction to quantum error correction

Xiangdong Zeng November 15, 2024

## Invitation: QR code



- Basic idea: using redundant information
- Error correction level: 7–30%
- Reed-Solomon codes
  - Polynomials over finite fields (Galois fields)
- 回形针 PaperClip: Vol.120 二维码的秘密

#### Quantum errors

- ullet Bloch sphere state:  $|\psi
  angle = \cosrac{ heta}{2}\,|0
  angle + e^{i\phi}\sinrac{ heta}{2}\,|1
  angle$
- ullet General coherent error:  $U(\delta heta, \delta \phi) \ket{\psi} = \cos rac{\theta + \delta heta}{2} \ket{0} + e^{i(\phi + \delta \phi)} \sin rac{\theta + \delta heta}{2} \ket{1}$ 
  - Rotation on Bloch sphere
- Write in Pauli matrices:  $U(\delta\theta,\delta\phi)=\alpha_II+\alpha_XX+\alpha_ZZ+\alpha_YY$   $(=\alpha_{XZ}XZ)$
- Two types: X-error ( $\ket{0}\leftrightarrow\ket{1}$ ) and Z-error ( $\ket{0}\to\ket{0},\ket{1}\to-\ket{1}$ )
- Challenges:
  - No-cloning theorem:  $U_{
    m clone}(|\psi
    angle\otimes|0
    angle)
    eq |\psi
    angle\otimes|\psi
    angle$
  - Detect both X and Z errors simultaneously
  - Wavefunction collapse
  - Continuous error in  $\theta$  and  $\phi$
- General procedure:
  - Syndrome extraction: measure  $U\ket{\psi}$  and project to subspace (e.g.  $X\ket{\psi}$ )
  - Apply correspoding operator (e.g.  $X^{-1}$ ) to recover  $|\psi
    angle$

# Bit flip code (1)

- Initial state:  $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1
  angle$
- Bit flip error:  $P(|0\rangle \leftrightarrow |1\rangle) = p$
- No-cloning theorem:
  - $ullet |\psi
    angle 
    eq |\psi\psi\psi
    angle$
  - $ullet |0
    angle 
    ightarrow |0_L
    angle = |000
    angle \, , \, |1
    angle 
    ightarrow |1_L
    angle = |111
    angle$ 
    - Logical qubits:  $|x_L\rangle$ , ancilla qubits:  $|x00\rangle$
- Syndrome diagnosis:
  - $P_0 = \ket{000} \bra{000} + \ket{111} \bra{111}$ : no error
  - $P_1 = \ket{100} ra{100} + \ket{011} ra{011}$ : bit flip on qubit 1
  - $P_2=\ket{010}ra{010}+\ket{101}ra{101}$ : bit flip on qubit 2
  - $P_3=\ket{001}ra{001}+\ket{110}ra{110}$ : bit flip on qubit 3
- lacksquare Correct error: apply  $M=\sum_i X_i P_i$



- Only single bit flip error can be corrected
- Fidelity:
  - $lacksquare F_\psi=1-p$
  - $F_{\psi'} = (1-p)^3 + 3p(1-p)^2 > F_{\psi}$  for  $p < rac{1}{2}$

# Bit flip code (2)

- Another way to do syndrome measurement:
  - $Z_1Z_2=Z\otimes Z\otimes I$ : compare first two qubits
  - $Z_2Z_3=I\otimes Z\otimes Z$ : compare last two qubits
- Syndrome table:
  - 00: no error
  - 01: bit flip on qubit 1
  - 10: bit flip on qubit 2
  - 11: bit flip on qubit 3
- Measurement does not change the state
- Sign flip code:
  - Dual between X and Z





### Quantum code distance

- Classical:
  - Minimum Hamming distance between any two codewords
  - $-d_{\text{classical}}(0000, 1111) = 4$
- Quantum:
  - Shortest path to get from one state to another by using Pauli operators
  - Minimum size error that will go undetected
- [[n,k,d]] notation:
  - *n*: number of **physical** qubits
  - k: number of **logical** qubits
  - d: code distance

# Stabilizer formalism (1): we need some group theory!

- Pauli group:
  - 1 qubit:  $G_1=\{\pm I,\pm iI,\pm X,\pm iX,\pm Y,\pm iY,\pm Z,\pm iZ\}=\langle X,Y,Z\rangle$
  - ullet n qubits:  $G_n=\{g_i\otimes\cdots\otimes g_n|g_i\in G_1\}$
- Stabilizer group: all elements that leave a state invariant
  - ullet  $\mathcal{S}=\{g\in G_n|g\ket{\psi}=\ket{\psi}\}$
  - S is Abelian group
- Example:
  - ullet 3 qubits,  $\mathcal{S}=\{I,Z_1Z_2,Z_2Z_3,Z_3Z_1\}=\langle Z_1Z_2,Z_2Z_3
    angle$
  - $Z_1Z_2$  can stabilize  $\{|000\rangle, |001\rangle, |110\rangle, |111\rangle\}$
  - $Z_2Z_3$  can stabilize  $\{|000\rangle, |100\rangle, |011\rangle, |111\rangle\}$
  - Hence S can stabilize  $\{|000\rangle, |111\rangle\}$

## Stabilizer formalism (2)

- ullet Error  $E\in \mathcal{E}\subset G_n$ , measurement  $M\in \mathcal{S}$ 
  - ullet M and E anti-commute:  $M(E\ket{\psi}) = -EM\ket{\psi} = -E\ket{\psi}$ 
    - Error will corrupt the encoded state
    - Can detect error E
  - ullet M and E commute:  $M(E\ket{\psi})=EM\ket{\psi}=E\ket{\psi}$ 
    - Can't correct error E
- Stabilizer error-correcting condition:
  - ullet Any errors  $E_1, E_2 \in \mathcal{E}$  can be corrected, if
    - $lacksquare E_1^\dagger E_2 
      otin \mathcal{Z}(\mathcal{S})$  or
    - $ullet E_1^\dagger E_2 \in \mathcal{S}$
  - ullet Centralizer:  $\mathcal{Z}(\mathcal{S}) = \{g \in G_n | gM = Mg, orall M \in \mathcal{S}\}$ 
    - Commute with all elements in  $\mathcal{S}$

#### Shor code

- 9 physical qubits for 1 logical qubit
- Combine bit flip and sign flip codes
  - $Z_1Z_2, Z_2Z_3, \ldots, Z_8Z_9$  will detect X errors
  - $X_1X_2X_3X_4X_5X_6, X_4X_5X_6X_7X_8X_9$  will detect Z errors
- Stabilizer language ([[9,1,3]] code):
  - $S = \{Z_1Z_2, \ldots, Z_8Z_9, X_1\cdots X_6, X_4\cdots X_9\}$
  - Example:
    - $E = X_1Y_4 \notin \mathcal{Z}(\mathcal{S})$ : anti-commute with  $Z_1Z_2$ , can be corrected
    - $E=Z_1Z_3\in\mathcal{S}$ : can be corrected



#### And more...

- Surface code: topological QEC
  - 2D lattice of qubits
  - Stabilizer: Pauli chains on the surface
  - Anyons, topological order, string-net condensation, categorical symmetries, etc
  - See arXiv:quant-ph/9707021 etc
- HaPPY code: holographic QEC
  - Encode k "bulk" logical qubits into
     n "boundary" physical qubits
  - Bulk-boundary correspondence, AdS/CFT duality,
     Ryu-Takayanagi formula, tensor networks, p-adic physics, etc
  - See arXiv:1503.06237 and 1802.01040



#### References

- 杂然赋流形、. 可否用通俗的物理语言(少用一点数学...)解释下量子纠错码?
- 杂然赋流形丶. https://www.zhihu.com/question/29447951/answer/3547326663
- 魏朝晖. CCF量子计算 | 07) 量子纠错与量子电路(上)
- 魏朝晖. CCF量子计算 | 08) 量子纠错与量子电路(下)
- Wikipedia. Quantum error correction
- Wikipedia. Stabilizer code
- J. Roffe. Quantum Error Correction: An Introductory Guide (arXiv:1907.11157)