Uji Non Parametrik 2 Populasi

Apakah ada perbedaan rasa????

New

Survey

- Ingin mengetahui apakah resep baru lebih enak dari resep sebelumnya??
- > Tertarik pada tingkat perbaikan rasa/kenikmatan

Hasil Survey

	Old	New
Pelanggan 1	10	7
Pelanggan 2	7	5
Pelanggan 3	8	7
Pelanggan 4	5	2
Pelanggan5	7	6
Pelanggan 6	9	6

Bagaimana cara mengujinya????

1. Uji mann-whitney

Asumsi-asumsi:

- ➤ Masing-masing sampel adalah sampel acak
- Masing-masing sampel independen satu sama lain X_1 , X_2 , ..., X_{n1} dengan median M_X dan Y_1 , Y_2 , ..., Y_{n2} dengan median M_Y
- ► Variabel yang diamati kontinu
- >Skala pengukuran minimal ordinal
- Fungsi sebaran dari kedua populasi hanya dipisahkan oleh lokasi parameter

Hipotesis:

a. Dua arah

 $H_0: M_X = M_Y$

 $H_1: M_X \neq M_Y$

b. Satu arah

 $H_0: M_X \ge M_Y$

 $H_1: M_X < M_Y$

c. Satu arah

 $H_0: M_X \leq M_Y$

 $H_1: M_X > M_Y$

Statistik Uji

- 1. Gabungkan kedua data contoh
- 2. Peringkatkan setiap pengamatan dari yang terkecil hingga terbesar. Jika terdapat ties(nilai yang sama), beri peringkat tengah.
- 3. Jumlahkan peringkat yang berasal dari populasi 1. Nyatakan hasilnya sebagai 5.
- 4. Statistik uji Mann-Whitney dapat diperoleh melalui rumus:

$$T = S - \frac{n_1(n_1 + 1)}{2}$$

Kaidah Pengambilan Keputusan

- a. (Hipotesis a): Tolak H_0 jika $T < w_{\alpha/2}$ atau $T > w_{1-\alpha/2}$ dimana $w_{1-\alpha/2} = n_1 n_2 w_{\alpha/2}$
- b. (Hipotesis b): Tolak H₀ jika T<w_a
- c. (Hipotesis c): Tolak H_0 jika $T>w_{1-a}$ dimana $w_{1-a}=n_1n_2-w_a$ w adalah nilai kritis bagi $T\longrightarrow Tabel A.7: Mann-Whitney$

Catatan

Untuk contoh berukuran besar (yaitu $n_1,n_2>20$) dapat didekati dengan sebaran normal sebagai berikut:

❖Jika ada ties

$$Z = \frac{T - \frac{(n_1 n_2)}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12} - \frac{n_1 n_2 (\sum t^3 - \sum t)}{12(n_1 + n_2)(n_1 + n_2 - 1)}}}$$

❖ Jika tidak ada ties

$$Z = \frac{T - \frac{(n_1 n_2)}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}}$$

0

Keputusan : Tolak H_0 jika $Z_{hit} > Z_a$

Teladan: Kasus 1

- Menteri Pertanian mengambil 5 sampel padi di dataran rendah & 5 padi di dataran tinggi.
- Menteri tersebut mengatakan bahwa produktivitas padi di dataran rendah lebih besar dibandingkan dengan dataran tinggi.
- Ujilah dengan uji *mann-whitney* pernyataan menteri tersebut pada taraf nyata 5%!

Rendah (X)	1200	1350	1115	1400	1000
Tinggi (Y)	1100	980	995	1200	900

Jawab:

Rendah (X)	1200	1350	1150	1400	1000	36,5
	7,5	9	6	10	4	
Tinggi (Y)	1100	980	995	1200	900	
	5	2	3	7,5	1	

Hipotesis:

 $H0: Mx \leq My$

H1 ; Mx > My

$$S = 36,5$$

Stat Uji :
$$T = S - \frac{n_1(n_1 + 1)}{2}$$

 $T = 36.5 - [5(5+1)/2]$
 $= 21.5$

Kriteria Penolakan H0 : Tolak Ho jika $T>W1-\alpha$

$$W1-\alpha = n1.n2 - W\alpha$$

= (5 * 5) - 5
= 20

Tabel A7. Mann Whitney

7	ABLE	A.7	0	uant	lles c	d the	Mar	nn-V	Vhitn	ey te	st sta	tisti	c							
a,	p	n ₂ = 2	3		5	6	7			10	11	12	13	14	15	16	17	16	19	
-	001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D	0	0	
	005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
2	.01	ū	0	0	0	0	0	0	.0	0	0	0	1	41	3.4	- 1	100		2	
	025	0	0	0	0	0	0	1	1	1	- 1	2	2	2	2	2	3	3	3	
	.05	O	0	0	1	1	24	2	2	2	2	3	3	4	4	4	4	5	5	
	.10	0		. 1	2	2	2	3	3	4	4	5	5	5	6	6	7	7	8	
	001	0	0	0	0	0	0	0	0	0	0	0	0	0	.0	.0	- 33		(3)	
	.005	0	0	0	0	0	0	0	. 1	1	1	2	2	2	3	3	. 3	3	4	
3	.01	0	0	0	0	0	1	1	2	2	2	3	3	3	4	4	5	5	5	
	.025	0	0	0	1	2	2	3	-3	4	4	5	5	- 6	6	7	7	8	8	
	.05	0	3	- 1	2	3	3	4	.5	. 5	6	6	7	0	. 0	- 9	10	10	11	- 1
	.10	1	2	2	3	4	6	6	6	7	8	9	10	11	11	12	13	14	15	
	.001	0	0	0	0	0	0	0	0	7	1	31	2	2	2	3	3	4	4	
	/005	. 0	0	0	0	3	1	2	2	3	3	. 4	4	5	6	- 6	7	7	8	
4	.01	0	0	0	1	2	2	3	4	4	- 5	- 6	6	7.	9	- 8	9	10	10	
	,025	0	0	- 1	2	3	4	5	5	6	7	8	. 9	10	33	12	12	13	14	- 1
	.05	0	12	2	3	4	5	6	7	8	9	10	11	12	13	15	16	17	18	3.5
	10	70	2	4	- 5	-6	7	8	10	31	12	13	14	16	17	18	19	21	22	2
	.001	8	0	0	.0	0	0	- 1	2	2	3	3	4	4	5	6	6	7	8	
	.005	0	0	0	1	2	2	3	4	5	6	7	8	8	9	10	11	12	23	- 13
5	01	0	0	1	- 2	3.	4	5	0	7	. 8		10	31	12	13	14	15	16	- 3
	025	- 6	4	9	- 1	4	6	7	-8	9	10	12	13	14	15	16	18	19	20	2
	.05	1	2	3	5	5	7	9	10	12	13	14	16	17	19	20	21	23	24	2
	,10	2	3	- 5	6	8	9	-11	13	14	16	18	19	21	23	24	26	28	29	3
	.001	0	0	0	0	0	0	2	3	4	5	5	6	7	8	9	10	12	12	33
	005	0	0	1	2	3	4	5	- 6	7	. 8	10	11	12	13	14	16	17	18	11
6	.01	0	0	2	3	4.	5	7	- 8	9	10	12	13	14	16	17	19	20	21	20
	and the Control of the Control	4,000,000,000	1000	200 mm 200		200	and the second of				The second second			1000		100000000000000000000000000000000000000	and the second second			

$T(21.5) > W1-\alpha$ (20) maka tolak H0

Kesimpulan:

Cukup bukti untuk mengatakan bahwa produktivitas padi di dataran rendah lebih besar dibandingkan di dataran tinggi pada taraf nyata 5%.

Minitab

Output Minitab

Mann-Whitney Test and CI: Rendah (X), Tinggi (Y)

```
N Median Rendah (X) 5 1200.0 Tinggi (Y) 5 995.0 Point estimate for \eta 1 - \eta 2 is 200.0 96.3 Percent CI for \eta 1 - \eta 2 is (-85.1,419.9) W = 36.5 Test of \eta 1 = \eta 2 vs \eta 1 > \eta 2 is significant at 0.0379 The test is significant at 0.0375 (adjusted for ties)
```

Uji Tanda (Sign Test)

Kapan digunakan???

- Untuk menentukan apakah median dari populasi besarnya sama, lebih kecil, atau lebih besar dari nilai tertentu
- 2. Untuk menentukan apakah benar ada perbedaan antara data berpasangan, misalkan siukur sebelum dan sesudah.

Uji Tanda

- 1. Menguji Median dari satu populasi, M
- 2. Serupa dengan uji-t untuk 1 nilai tengah
- 3. Asumsi populasinya kontinu
- 4. Uji statistik untuk jumlah sampel yang kecil
- Dapat menggunakan aproksimasi normal jika n ≥
 10

Asumsi Pada Uji Tanda

- Sampel saling bebas
 (independen) dari suatu
 populasi dengan nilai median
 yang tidak diketahui
- 2. Peubah yang diukur minimal berskala ordinal
- 3. Peubah yang diukur kontinu.

Hipotesis

A. H_0 : $M=M_0$

VS

 $H_1: M \neq M_0$

B. H_0 : $M \le M_0$

VS

 $H_1: M > M_0$

C. $H_0: M \ge M_0$

VS

 $H_1: M < M_0$

Statistik Uji

$$x_i$$
- M_0

A. Statistik Uji → S

B. Statistik Uji → S₂

C. Statistik Uji → S₊

Note:

$$X_i - M_0 = (+)$$

$$X_i - M_0 = (-)$$

 $X_i - M_0 = 0 \rightarrow dibuang$

S₊: banyak (selisih) observasi yang bertanda +

S_{_}: banyak (selisih) observasi yang bertanda –

 $S : min(S_+,S_-)$

Kaidah Keputusan

A. Jika P (K \leq S |n, 0.5) \leq $\alpha/2$, maka tolak H_o

B. Jika P ($K \le S_{-}|n, 0.5$) $\le \alpha$, maka tolak H_{o}

C. Jika P (K \leq S₊|n, 0.5) \leq α , maka tolak Ho

Aproksimasi Sampel Besar

$$z = \frac{(K+0.5)-0.5n}{0.5\sqrt{n}}$$

Kaidah Keputusan:

A. Jika $z_{\alpha/2} \le z_{hit}$ maka tolak H_o

B. Jika - $z_{\alpha} \le z_{hit}$, maka tolak H_0

C. Jika z $_{\alpha} \le z_{hit}$, maka tolak Ho

Teladan 2.1

Subjek	Transit Time	Sign
1	1.80	-
2	3.30	-
3	5.65	+
4	2.25	-
5	2.50	-
6	3.50	0
7	2.75	-
8	3.25	-
9	3.10	-
10	2.70	-
11	3.00	-

$$H_0$$
: M=3.5 vs H_1 : M \neq 3.5 $S_+=1$ $S_-=9$ $S_{min(1,9)}=1$ $P(K\leq 1|n=10, p=0.5)$ =0.001+0.0098 =0.0108 (lihat Tabel A1) $P(K\leq 1|n=10, p=0.5) \leq 0.025$

Keputusan: Tolak H₀

Teladan 2.2

	Old	New
Pelanggan 1	10	7
Pelanggan 2	7	5
Pelanggan 3	7	8
Pelanggan 4	2	5
Pelanggan5	7	6
Pelanggan 6	6	9

Apakah resep baru lebih disukai??

→ Jika ya, maka skor M new akan lebih besar dari Mold

$$M = M_{new} - M_{old}$$

Jika resep baru lebih disukai, Maka asumsinya M>0

Hipotesis:

$$H_0:M \le 0$$
 vs $H_1: M > 0$

Hitung Selisih

	Old	New	Selisih (Xi)	Xi-M ₀	Tanda
Pelanggan 1	10	7	-3	-3-0	-
Pelanggan 2	7	5	-2	-2-0	-
Pelanggan 3	7	8	1	1-0	+
Pelanggan 4	2	5	3	3-0	+
Pelanggan5	7	6	-1	-1-0	-
Pelanggan 6	6	9	3	3-0	+

 $H_0:M \le 0$ vs $H_1: M > 0$

 $S_{+}=3$ $S_{-}=3$

S=S=3

Sign Test for Median: Xi

Sign test of median = 0.00000 versus > 0.00000

N Below Equal Above P Mediln Xi 6 3 0 3 0.6563 0.00000 TERIMA HO

Uji Peringkat
Bertanda
Wilcoxon
(Wilcoxon
Signed-Rank
Test)

Wilcoxon Signed-Rank Test

- Merupakan alternatif untuk uji pada data berpasangan
- Metodologi dari uji data berpasangan membutuhkan:
 - Data minimal berskala interval
 - Asumsi bahwa populasi beda antara pasangan observasi menyebar normal
- Jika asumsi menyebar secara normal tidak terpenuhi, maka uji peringkat bertanda wilcoxon dapat digunakan.

Asumsi Uji Peringkat Bertanda Wilcoxon

- Sampel acak
- Skala pengukuran minimal interval
- Peubah yang diukur kontinu
- Populasi sampel setangkup (simetrik)
- Pengamatan Bebas

Statistik Uji

$$d_i = x_i - M_0$$

$$|d_i|$$

3.

4. Peringkat |d_i| (tanpa menggunakan tanda +/-)

Kembalikan tanda

Statistik Uji (lanjutan)

A. Statistik Uji → T

B. Statistik Uji -> T_

C. Statistik Uji → T₊

Note:

$$X_{i}-M_{0}=(+)$$

$$X_{i}-M_{0}=(-)$$

 $X_i - M_0 = 0 \rightarrow dibuang$

T₊: jumlah peringkat yang bertanda +

T_: jumlah peringkat yang bertanda –

 $T: \min (T_+, T_-)$

Kaidah Keputusan

A. Jika $T \le T_{\alpha/2(n)}$, maka tolak H_0

B. Jika $T_{+} \leq T_{\alpha(n)}$, maka tolak H_{o}

C. Jika $T_{-} \le T_{\alpha(n)}$, maka tolak Ho

Note: Lihat tabel A3

Aproksimasi Sampel Besar

$$T^* = \frac{T - n(n+1)/4}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$

Kaidah Keputusan:

A. Jika P $(z \le T^*) \le \alpha/2$, maka tolak H_o

B. Jika $P(z \le T^*) \le \alpha$, maka tolak H_o

C. Jika P $(z \le T^*) \le \alpha$, maka tolak Ho

Teladan: Kasus 4

- Mahasiswa Kedokteran sedang melakukan sebuah penelitian tentang perubahan hemodinamik pada pasien yang menderita "pulmonary thromboembolism" akurt dengan menggunakan terapi urokinase.
- Pada tabel dibawah ini menunjukkan rata-rata tekanan pembuluh arteri paru-paru pada sembilan pasien sebelum dan 24 jam sesudah terapi urokinase.
- Dengan menggunakan uji peringkat bertanda wilcoxon berpasangan, buktikan bahwa terapi urokinase menurunkan tekanan pembuluh arteri paru-paru dengan α =5%?

Pasien	1	2	3	4	5	6	7	8	9
0 jam (mm)	33	17	30	25	36	25	31	20	18
24 jam (mm)	21	17	22	13	33	20	19	13	9

Jawab:

Note:

 $M_D = M2 - M1$

Sebelum terapi	24 jam setelah terapi	$D_i = Y_i - X_i$	Rank of D _i
(X)	(Y)		
33	21	-12	-7
17	17	0	Dihilangkan
30	22	-8	-4
25	13	-12	-7
36	33	-3	-1
25	20	-5	-2
31	19	-12	-7
20	13	-7	-3
18	9	-9	-5

$$T_{\perp} = 0$$

$$T = 36$$

$$T_{+}=0$$
 $T_{-}=36$ $T=T_{+}=0$

T	P	7	P	7	P	7	P	7	P	7	P
n = 5		n = 8		n = 1		n = 1	1	n =	12	n =	
•0	.0313	0	.0039	0	.00						
1	.0625	1	.0078	1	.00						
2	.0938	2	.0117	2	.00			- 6	386		
3	.1563	3	.0195	3	.00	- 34	a =				
4	.2188	4 *5	.0273	4	.00	- 3					
5	.4063	6	.0391	5 6	.00					32.72	1200
7	.5000	7	.0742	7	.01		- 1)		00	120
	.0000	8	.0977	8	.02		- 3				
n = 6		9	.1250	9	.03		- 4	11		00	39
0	.0156	10	.1563	*10	.04		- 3	b .		بالبار	NO.
1	.0313	11	.1914	11	.05		- 4	27		2010	
*2	.0469	12	.2305	12 13	.06		- 4	2		- 00	150
4	.1094		.3203				- 4	E.		- WW	NO.
5	.1563	14 15	.3711	14 15	.09		1	20		100	100
6	.2188	16	.4219	16	.13		- 2	2		- 00	98
7	.2813	17	4727	17	.16		100	(f)		1000	ALC: N
8	.3438	18	5972	18	.18						
9	.4219	n = 9		19	.21		- 2			654	37
10	.5000	0	.0020	20	.24			•		01	31
		1	.0039	21 22	.27			10		1000	
n = 7 0	.0078	2	.0059	23	.31			C		- 01	O.F.
1	.0156	4	.0137	24	.38		100	<i>a</i>		1400	95
2	.0234	5	.0195	24 25 26	.42			81		1000	ELSO THE
•3	.0391	6	.0273	26	.46		- 6	3		-02	73
4	.0547	7	.0371	27	.50			•		1000	an.
5	.0781	*8	.0488								-
6	.1094	9	.0645				- 7			- 103	27.1
7	.1484	10	.0820			_	- 1	10		100.00	0.0
8	.1875	11	.1916				4.7			266.74	men.
10	.2891	13	.1504				*8	8			88
11	2400		4707	22		L					
	L									ne.	42
								*		· UO	40
							36.0	V		0.0	no.
							- 43)		·WO	20
							364			4.0	4.00
							383			10	116
							110				350
							112)		12	50
							11.6	60		4.16	and the
							14.4				40
							-13	5		3.15	04
							14			A 77	97
								B1 (2)		- 18 Table 18	10 TO 10

Kaidah Pengambilan Keputusan:

- Dari tabel Wilcoxon (A.3), diperoleh $T_{9(0.05)} = 8$
- (p-value=0.0488).
- Karena $T_+ < T_{9(0.05)}$, maka tolak H_0 .
- Dapat disimpulkan bahwa cukup bukti untuk mengatakan bahwa terapi urokinase menurunkan tekanan pembuluh arteri paru-paru pada paseien penderita "pulmonary thromboembolism" akurt.

Wilcoxon Signed Rank Test: Di = Yi - Xi

Test of median = 0.000000 versus median < 0.000000

TOLAK HO

N for Wilcoxon resimated N Test Statistic I Median Di = Yi - Xi 9 8 0.0 0.007
$$-7.500$$

Latihan

• Suatu percobaan dilakukan untuk mengetahui kualitas tingkah laku pupil yang berbeda dengan membandingkan antara mahasiswa Statistika 45 yang sering membaca dengan orang yang jarang membaca. Dengan menggunakan data yang tersedia pada tabel di bawah ini, apakah benar bahwa skor dari mahasiswa Statistika 45 yang sering membaca lebih rendah dari pada yang jarang membaca. Gunakan uji Mann-Whitney dengan α sebesar 5%

Tabel kualitas pupil

Mahasiswa yang sering membaca	67	55	51	40	25	18	34	44	52	59	54	53			
Mahasiswa yang jarang membaca	95	87	77	73	44	64	68	70	55	59	67	88	89	90	52

• Seorang dokter sedang melakukan penelitian tentang efek dari Phenobarbital terhadap fungsi jantung pada pasien penderita sindrom Dubin-Johnson. Tabel dibawah ini menunjukkan total bilirubin pasien sebelum dan sesudah perlakuan dengan Phenobarbital. Dengan menggunakan uji tanda berpasangan dan uji peringkat bertanda Wilcoxon berpasangan, dapatkah kita menyimpulkan bahwa Phenobarbital menurunkan jumlah bilirubin (α =5%)?

Pasien	1	2	3	4	5	6	7	8	9	10	11	12	13
Sebelum	4.0	3.2	3.8	1.8	3.0	5.3	5.7	3.0	2.7	2.9	2.8	1.8	2.6
(mg/100													
ml)													
Sesudah	3.1	3.0	3.5	1.0	1.8	3.9	2.2	2.1	1.4	2.9	2.6	1.4	2.5
(mg/100													
ml)													

• Pada tabel di bawah ini menunjukkan skor pada sebuah tes "verbal comprehension" dengan sampel 25 anak bersekolah di kota dan 20 sampel anak bersekolah di desa. Dengan menggunakan Uji mann whitnwy, buktikan apakah data ini memadai untuk menunjukkan bahwa median-median kedua populasi yang diwakili oleh data kedua sampel memiliki perbedaan pada taraf nyata $\alpha = 0.05$!

kota	77 78 70 72 74 68 71 70 72 71 75 78 79 87 88 70 72 74 88 71
	80 82 72 73
desa	60 62 65 71 62 70 68 65 76 72 68 72 78 71 70 76 79 68 66 70

Terma Kasih