Навчальна дисципліна: **Дискретна математика**

Лектор:

професор Кучук Георгій Анатолійович

E-mail: <u>kuchuk56@ukr.net</u>

3 семестр навчання на бакалавраті Наприкінці семестру - іспит

Тема 4. Алгебраїчні структури Лекція 4.2. Скінчені групи. Підгрупи

Питання лекції

- 1. Скінчені групи та таблиці Келі.
- 2. Циклічні групи та підгрупи.
- 3. Приклади розв'язання задач.

Рекомендована література

- 1. Конспект лекцій.URL: https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386Frl SDuyPwQ?usp=sharing

1. Скінчені групи та таблиці Келі

Скінчені групи – це групи, що базуються на скінчених множинах.

Таблиця Келі — таблиця, яка описує структуру скінченних алгебраїчних систем шляхом розміщення результатів операції в таблиці.

Приклад таблиці Келі для скінченої групи {1, −1} з звичайним множенням:

×	1	-1
1	1	-1
-1	-1	1

Приклад 1. Побудова таблиці Келі для класу лишків за модулем 4 (складання та множення за модулем 4):

\oplus_{Λ}	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\otimes_{Λ}	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Приклад 2. Побудова таблиці Келі для класу лишків за модулем 3 (складання та множення за модулем 3):

4	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

⊗	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

⊗	1	2
1	1	2
2	2	1

Приклад 3:

$$Z_6 = \langle A, \oplus_6 \rangle$$
, $\partial e A = \{0, 1, 2, 3, 4, 5\}$.

Ф	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

На елементах множини Z_6 мультиплікативну групу, замінивши операцію додавання операцією множення за модулем 6, побудувати неможливо.

Теорема. Елемент а из множини Z_n має обернений за множенням елемент a^{-1} тоді і тільки тоді, якщо НЗД(a, n) = 1, тобто. a и n є взаємно простими.

Умови абелевої групи для мультиплікативної групи системи лишків виконуються, якщо з неї виключити 0, а операцію множення робити за модулем простого числа *р*. Оскільки всі лишки взаємно прості з числом *р*, кожен із них має обернений за множенням елемент.

2. Циклічні групи та підгрупи

Група називається *циклічною*, якщо в ній є такий елемент а, всі степені якого пробігають усі елементи групи (у термінах мультиплікативної групи).

Такий елемент називають *утворюючим* (*примітивним*) елементом групи чи генератором.

Для адитивної групи замість k-го степеню говорять про k-ту кратність.

Приклади: $Z_6 = (A, \oplus_6)$, де $A = \{0, 1, 2, 3, 4, 5\}$. Примітивні елементи: 1, 5.

$$Y_3 = (A, \otimes_3), \ \partial e \ A = \{1, 2\}.$$
 Примітивний елемент: 2.

Підгрупа — це підмножина групи, яка відповідає всім вимогам групи.

Приклад 4:
$$G = (Z, +)$$
, $\partial e Z - \mu i \pi i \ vuc \pi a$.

 $G_2 = (ZP, +)$, $\partial e ZP - \pi a p \pi i \ vuc \pi a$,

 $G_5 = (Z5, +)$, $\partial e Z5 - \mu i \pi i \ vuc \pi a$,

що кратні 5

 $G_{1000} = (Z1000, +)$, $\partial e Z1000 - \mu i \pi i \ vuc \pi a$,

що кратні 1000

Приклад 5. У групі лишків за модулем $Z_6 = \langle A, \oplus_6 \rangle$, де $A = \{0, 1, 2, 3, 4, 5\}$, виділимо підмножину $D = \{0, 3\}$. $Z^* = \langle D, \oplus_6 \rangle - \text{підгрупа}.$

Порядок підгрупи (або групи) є потужність множини підгрупи (або групи).

Порядок елемента групи є порядок циклічної підгрупи, яку виділено за допомогою цього елемента.

Теорема Лагранжа. Порядок елемента групи (порядок підгрупи) є дільником порядки групи.

Це означає, що, коли, наприклад, у групі 12 елементів, то можливі підгрупи з 1, 2, 3, 4, 6, 12 елементів. А якщо у групі 7 елементів, то можуть бути лише тривіальні підгрупи (вони є завжди) з одного та з семи елементів.

Приклад 6. Розглянемо групу лишків за модулем $Z_6 = \langle A, ⊕_6 \rangle$, де A = {0, 1, 2, 3, 4, 5}.

$$Z^* = \langle D, \oplus_6 \rangle$$
 - підгрупа.

Порядок групи – 6.

Можливі порядки підгруп: 1, 2, 3, 6.

 $\{0, 1, 2, 3, 4, 5\}$

Порядки елементів відповідно: {1, 6, 3, 2, 3, 6}

Суміжні класи — це специфічні підмножини групи, які не мають взаємних перетинів і мають однакові потужності з підгрупою, використаною для розбиття.

За кожною підгрупою існує єдине розбиття на суміжні класи.

3. Приклади розв'язання задач

Приклад 7.

Знайти циклічну підгрупу у групі $Z_{12} = \langle A, \oplus_{12} \rangle$, $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$, беручи q = 4.

Розв'язання:

$$q = 4$$
,
 $q \oplus_{12} q = 8$,
 $q \oplus_{12} q \oplus_{12} q = 12 \mod 12 = 0$.

Звідси G = $\langle H, \oplus_{12} \rangle$, де H = $\{4, 8, 0\}$, є підгрупа порядку 3 у множині Z_{12} .

Приклад 8.

Розбиття групи $Z_{12} = \langle A, \oplus_{12} \rangle$ на суміжні класи за підгрупою $H = \langle H, \oplus_{12} \rangle$, де $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}, <math>H = \{4, 8, 0\}$.

Розв'язання:

Викреслимо з множини А елементи підмножини Н:

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$

Беремо найменший серед невикреслених (1) та додаємо до Н:

 $1 \oplus H = 1 \oplus \{4, 8, 0\} = \{5, 9, 1\} = H_1$

Далі викреслюємо з множини А елементи підмножини Н

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$

Беремо найменший серед невикреслених (2) та додаємо до Н:

 $2 \oplus H = 2 \oplus \{4, 8, 0\} = \{6, 10, 2\} = H_2$

Далі викреслюємо з множини А елементи підмножини Н₂

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$

Беремо найменший серед невикреслених (3) та додаємо до Н:

 $3 \oplus H = 3 \oplus \{4, 8, 0\} = \{7, 11, 3\} = H_3$

Далі викреслюємо з множини A елементи підмножини H₃

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$

Все, множина А – порожня, тобто розбиття є таким:

$$A = H \cup H_1 \cup H_2 \cup H_3$$
, fo

$$H \cap H_1 = \emptyset$$
, $H \cap H_3 = \emptyset$, $H_1 \cap H_2 = \emptyset$, $H_1 \cap H_3 = \emptyset$, $H_2 \cap H_3 = \emptyset$.