Course Overview

CSCI 5250 Database Design

Outline

- Definitions
- History of database processing
- Relational database
- Database life cycle

Definitions

- Database organized collection of logically related data
 - Designed to (hopefully) meet information needs of organization
 - Designed to be shared by many users
- Database management system (DBMS) software which supports storing, retrieving, and updating data in a database
 - □ SQL Server, Oracle, MySQL, PostgreSQL

Definitions

- OLTP Online Transaction Processing Transaction oriented application/database
- OLAP- Online Analytical Processing System used to respond to multi-dimensional analytical queries.
 - Data cube
 - □ BI
 - Data Warehouse

- 1. Data accuracy
- 2. Data security
- 3. Data organization
- 4. Data access

- 1. Data accuracy
 - Ensuring that data is accurate
 - Data inaccuracies may occur while:
 - Capturing the data (e.g., unreliable data source, human error)
 - Manipulating the data (e.g., using buggy software to process the data)
 - What to do:
 - Verify data sources
 - Be careful with data entry and manipulation
 - Use DBMS functionality to help with accuracy

- 2. Data security
 - Keep data safe
 - Ensure only authorized users have access to the specific data needed for their work
 - Protecting data from
 - Theft
 - Destruction (malicious or accidental)
 - Changes (malicious or accidental)

- 2. Data security
 - Physical security protecting data against physical corruption or loss
 - Protect the server (e.g., locked room)
 - Use fault-tolerant drives (e.g., RAID)
 - Duplicate the data
 - Mirror the data
 - Regular backups
 - Access security controlling user and application access to data via authentication and authorization methods
 - Usernames / passwords
 - Privileges (e.g., read/write permissions)

- 3. Data organization
 - How data should be structured for use by different applications and user groups
 - Goal is to minimize data redundancy and ensure quick access to data
 - Problems with redundant data:
 - Extra storage space
 - Data updates more difficult
 - Potential for data integrity issues
 - Data standards help ensure the right data is entered in the same way for every data object

Data Redundancy

Sales file						
Customer	Customer	Customer				
Number	Name	Address				
2746795	John Jones	123 Elm Street				
Accounts Receivable file						
C 4	- C +	- C				
Customer	Customer	Customer				
Customer Number	Customer Name	Customer Address				
Number	Name	Address				
Number	Name	Address				

C 1 C'1					
Sales file					
Customer	Customer	Customer			
Number	Name	Address			
2746795	John Jones	456 Oak Street			
Accounts Receivable file					
Customer	Customer	Customer			
Number	Name	Address			
2746795	John Jones	456 Oak Street			
Credit file					
Customer	Customer	Customer			
Number	Name	Address			
2746795	John Jones	123 Elm Street			

Redundant Data

Name

John Jones

Number

2746795

Address

123 Elm Street

Inconsistent Data

- 4. Data access
 - Controlling who accesses which data and how
 - Access may be direct (via queries) or indirect (via applications)
 - Queries are used to retrieve data, insert new data, or manipulate existing data
 - User roles and logins can be used to restrict access
 - Parallelism

History of Database Models

Relational Database

- One or more tables represent an <u>entity</u>
 - □ Each column represents an <u>attribute</u> (or field)
 - □ Each row (or tuple) represents a data <u>instance</u> (or record)
- Primary key One (or more) attribute(s) that uniquely identifies each instance
- Tables are connected through logical <u>relationships</u>
 - □ Relationships are implemented using <u>foreign keys</u>
- Entity:
 - □ Person, thing, place, event (i.e., noun)
- Attributes of an entity:
 - □ Facts, characteristics, properties of entities

Relational Database

Relational Database

Sales Person

Sales Person ID	First name	Last name	Date of birth
00154	Jane	Doe	1/1/1950
00155	John	Smith	1/15/1961

Order

Order ID	Customer ID	Order Total	Sales Person ID
99384	01232	\$5,145.09	00154
99578	15778	\$9,543.23	00155

Foreign Key

Multidimensional Database

- Data warehousing
- Organizes data using star schema, snowflakes schema, etc.
- Designed for quick access and computations on large data volumes

Types of Databases

How are they used?

- Support business functions
- Online transaction processing
- Usage includes CRUD activities
- Features include concurrency, security, transaction processing, security

Decision-Support Databases

- Used for analysis, querying, and reporting
- · Generally read-only
- Features include query tools and custom applications
- Data warehouse and OLAP systems

- Intended for single user environments
- Workstation versions of database products
- Ease of use important
- Features include report and application generation capabilities

Transactional Databases

Database Life Cycle

- 1. Conceptual design:
 - □ Interview users, or look at problem description to identify:
 - Entities
 - Attributes
 - Relationships
 - Output: Entity-relationship diagram (ERD)

- 2. Logical design:
 - Map ERD to relational tables
 - Normalize tables as needed
 - Output: Relational tables

- 3. Physical design:
 - Specify data types, referential integrity, etc.
 - Output: Implementable tables with complete meta-data

- 4. Database implementation:
 - □ Select storage mechanisms, access methods, data update strategy, database distribution strategy (if needed)
 - Create database tables with fields and primary keys
 - Specify relationships between tables via foreign keys
 - Load/import data into the above tables
 - Create user documentation
 - Output: Fully functional relational database and user documentation

- 5. Database maintenance:
 - Modify data structure as needed (indefinitely)
 - Modify application programs as needed
 - Monitor database performance in real time
 - Perform routine database upgrades

Next Lecture

- Data modeling
- Project