Approximationsalgorithmen SoSe 2019

April 10, 2019

Contents

	1.Vorlesung			
	1.1	Orga	2	
		Einführung		

1 1.Vorlesung

Foliensatz 1

1.1 Orga

- Sprechstunde Do, 13-14 Uhr
- Vorlesung Di, 12:15-13:45
- Übung Di, 8:15-9:45 Uhr (erster Termin 16.04.)
- **Prüfung** Mündl Prüfung

1.2 Einführung

Motivation

- \bullet wenn P \neq NP, kan man keinen guten oder schnellen Algorithmus schreiben
- Zeigt man, dass ein Problem NP-schwer ist, kann kein schneller Algorithmus geschrieben werden
- ⇒ Heuristische Verfahren (keine mathematische Garantie). Warum funktionieren die Heuristiken so gut? Herangehensweisen
 - Greedy Verfahren
 - Randomisierte Verfahren: finden der Lösung mit hoher Wahrscheinlichkeit
 - Parametrisierte Verfahren: exakte Lösungen und Versuch, den exponentiellen Teil gering zu halten
 - Näherungsverfahren: Heuristiken mit Leistungsgarantie

Klasse von Problemen die zur Betrachtung stehen.

Quatrupel $(I\rho, S\rho, m\rho, opt\rho)$ zur Beschreibung eines Optimierungsproblems

- $I\rho$: geeignete Instanz eines Problems, genauer: "geeignet binär-codierte formale Sprachen".
- $S\rho$: Bildet auf Menge der möglichen Lösungen ab
- $m\rho$: x Instanz und y eine Lösung. Abbildung auf Maßzahl
- $\bullet~opt\rho$: Möglichst kleines Ergebnis oder möglichst großes
- $S * \rho : I\rho \to \text{Menge der bestmöglichen Lösungen}$

- $m * \rho$ Wert oder Grenzwert einer bestmöglichen Lösung
- * bedeutet idR bestmöglich
- \Rightarrow **Ziel**: Leistungsgröße (Folie 15) ist 1, wenn Lösung optimal ist

Beispiel: Knotenüberdeckung

Möglichst wenige Knoten, um alle Kanten abzudecken

- Zuordnung zu den Optimierungsparametern Folie 17
- Verschiedene Beobachtungen zur Optimierung
 - Zwei Knoten im Dreieck gehören dazu
 - Bei Knoten mit Grad 1 wird immer der Nachbar genommen

_

- Auswählen eines Knotens bedeutet, dass diese Teile abgeschnitten werden
- $\bullet \; \Rightarrow$ Vereinfachung des Graphen, zB neue Grad 1 Knoten

Greedyverfahren, GreedyVC (Folie 23)

- Änderung der Grade bei Durchführung
- Problem: Implementierung der Kantenlöschung (Kopieren des Graphen bei jeder Iteration nötig?)
- Folie 24: Lösung insofern (inklusions-) minimal, als dass das Entfernen eines Knotens keine andere Lösung zulässt

Suchbaumverfahren, Entscheidungsproblem (Folie 25) Liefert exakte Lösungen

- Zusätzlicher Parameter k ("Budget")
- Zwei Abbruchskriterien:
 - Alle Kanten abgedeckt
 - Nicht alle Kanten abgedeckt, aber k = 0
- Suchbaum im worst-case ein vollständiger Binärbaum, **aber** höchsten 2^k Schritte im Baum, da die Tiefe durch k begrenzt ist

Näherungsverfahren (Folie 30) Suchbaumverfahren ohne Fallunterscheidung. (Faktor 2-Approximations-Verfahren)

- Bei jeder Kante muss einer der Knoten in die Überdeckung
- Lokaler Fehler höchsten Faktor 2
- Zufall bei der Auswahl der Kanten kann zum Vorteil sein

Näherung gibt Schranke für die minimale Lösung dadurch, dass Heuristik eine Faktor 2 Lösung zeigt. \Rightarrow (Folie 31) Lösung mit 22 Knoten zeigt eine optimale Lösung mit 11 Knoten

Beispiel: MAXSAT (Folie 32)

 $m\rho = \text{Anzahl}$ der Klauseln, die die Formel erfüllen

Einfacher Ansatz

- Alles 0 und alles 1 setzen, dann das bessere Ergebnis zurückliefern
- \Rightarrow liefert 2-Approximation

Beispiel: Unabhängige Knotenmengen (Folie 34)

Sehr schwer approximierbar

Beispiel: Unabhängige Kantenmengen (Folie 35)

Lösung in Polinomialzeit, um eine untere Schranke für die Knotenüberdeckung zu finden