Algebra II Winter 2021 Frank Sottile

8 February Fourth Homework

Write your answers neatly, in complete sentences, and prove all assertions. Start each problem on a new page (this makes it easier in Gradescope). Revise your work before handing it in, and submit a .pdf created from a LaTeX source to Gradescope. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Due Monday 15 February.

- 1. An $idempotent\ e$ in a ring R is an element $e\in R$ such that $e^2=e$. Show that if e is an idempotent, then Re is a projective left R-module, and that eR is a projective right R-module. (Hint: show that 1-e is also an idempotent.)
- 2. Suppose that R is a principal ideal domain and F is free R-module of finite rank. Show that any R-submodule $P \subset F$ is free.

Deduce that finitely generated projective R-modules are free.

- 3. Prove that the following conditions on a ring R are equivalent.
 - (a) Every R-module is projective.
 - (b) Every short exact sequence of R-modules splits.
 - (c) Every R-module is injective.
- 4. Prove that a direct product $\prod \{J_i \mid i \in I\}$ of R-modules $\{J_i \mid i \in I\}$ is an injective R-module if and only if each factor J_i is an injective R-module.
- 5. A left R-module J is injective if for every left ideal I of R and R-module homomorphism $f: I \to J$, there is an element $a \in J$ with f(r) = ra for $r \in I$.
- 6. Injective (divisible) abelian groups. Prove the following.
 - (a) For each prime $p \in \mathbb{Z}$, the group $\mathbb{Z}(p^{\infty})$ (see exercise I.1.10 in Hungerford) is divisible and torsion.
 - (b) No nonzero finite abelian group is divisible.
- 7. More injective abelian groups. Prove the following.
 - (a) No nonzero free abelian group is divisible.
 - (b) The group Q of rational numbers is a divisible abelian group.
- 8. Let D be a torsion-free divisible abelian group (\mathbb{Z} -module). Show that D is naturally a \mathbb{Q} -module (vector space over \mathbb{Q}).
- 9. Suppose that M is an R-module and that for i=1,2, we have short exact sequences $0 \to N_i \to P_i \to M \to 0$ with P_1 and P_2 projective. Show that $P_1 \oplus N_2 \simeq P_2 \oplus N_1$ as R-modules.