

Evidence-based medicinal chemistry

...using matched molecular series

Noel O'Boyle and Roger Sayle

NextMove Software

Jonas Boström

AstraZeneca

MATCHED (MOLECULAR) PAIRS

Coined by Kenny and Sadowski in 2005*
Easier to predict **differences** in the values of a property than it is to predict the value itself

^{*} Chemoinformatics in drug discovery, Wiley, 271–285.

MATCHED PAIR USAGE

- Successfully used for:
 - Rationalising and predicting physicochemical property changes
 - Finding bioisosteres
- Not very successful in improving activity
 - Activity changes dependent on binding environment
- Hajduk, Sauer. J. Med. Chem. 2008, 51, 553
 - Data from 30 protein targets at Abbott
 - Most R group transformations led to potency changes normally distributed around 0

MATCHED PAIRS AND ACTIVITY

 $pIC_{50}(CC)-pIC_{50}(CCCC)$

MATCHED PAIRS AND ACTIVITY

MATCHED SERIES OF LENGTH 2 = MATCHED PAIR

[CI, F]

"Matching molecular series" introduced by Wawer and Bajorath, J. Med. Chem. **2011**, 54, 2944

MATCHED SERIES OF LENGTH 3

[CI, F, NH₂]

ORDERED MATCHED SERIES OF LENGTH 3

[Cl > F > NH₂]

PREFERRED ORDERS: HALIDES (N=2)

For an ordered matched series (i.e. A>B>C>...), there are N! ways of arranging the R Groups:

Series	Observations*
F > H	9761
H > F	8685

Would expect 9223 for each assuming the order is random

We can calculate enrichment

^{*}Dataset is ChEMBL19 IC_{50} data for binding assays (transformed to pIC_{50} values)

PREFERRED ORDERS: HALIDES (N=2)

For an ordered matched series (i.e. A>B>C>...), there are N! ways of arranging the R Groups:

Series	Enrichment	Observations
F > H	1.06*	9761
H > F	0.94*	8685

Would expect 9223 for each assuming the order is random

We can calculate enrichment

^{*}Significant at 0.05 level according to binomial test after correcting for multiple testing (Bonferroni with N-1)

PREFERRED ORDERS: HALIDES (N=3)

Series	Enrichment	Observations
Cl > F > H	1.90*	1478
H > F > Cl	1.08	838
F > Cl > H	0.86*	673
F > H > Cl	0.78*	607
Cl > H > F	0.76*	589
H > Cl > F	0.63*	490

PREFERRED ORDERS: HALIDES (N=4)

Series	Enrichment	Observations
Br > Cl > F > H	5.43*	263
Cl > Br > F > H	3.22*	156
H > F > Cl > Br	1.59*	77
Br > Cl > H > F	1.43	69
F > Cl > Br > H	1.40	68
Cl > Br > H > F	0.85	41
H > F > Br > Cl	0.76	37
H > Br > F > Cl	0.50*	24
Cl > H > F > Br	0.48*	23
Cl > F > H > Br	0.45*	22
H > Cl > F > Br	0.43*	21
Br > F > H > Cl	0.41*	20
F > H > Br > Cl	0.41*	20
H > Cl > Br > F	0.41*	20
F > Br > H > Cl	0.35*	17
Br > H > F > Cl	0.23*	11

N=2: Max = 1.06, Min = 0.94 N=3: Max = 1.90, Min = 0.63 N=4: Max = 5.43, Min = 0.232

Longer series exhibit greater preferences

If [H>F>Cl] is observed, will Br increase activity further?

149 observations of [H>F>Cl] but only 11 where [Br>H>F>Cl]

FIND R GROUPS THAT INCREASE ACTIVITY

R Group	Observations	Obs that increase activity	% that increase activity
D	3	3	100
Е	1	1	100
С	4	1	25
	•••		•••

EXAMPLE

EXAMPLE II

* Br	38	21	-0.8
*	37	27	+0.9
*-<	33	111	+0.3
*	33	27	+1.0
*ОН	33	21	-1.6

Topliss, J. G. Utilization of Operational Schemes for Analog Synthesis in Drug Design. *J. Med. Chem.* **1972**, *15*, 1006–1011.

(11th)

(1st if lower cutoff)

MATSY DECISION TREE (ONE OF MANY)

MODIFYING THE PREDICTIONS FOR

4-Cl > H

\$	% > ▼	Counts 🔻
**************************************	67	30
*	47	30
*—(S	46	24
*	44	25
*—————————————————————————————————————	42	77

\$	% > ▼	Counts 🔻	$\Delta LogP \ \Leftrightarrow$
*	63	27	+0.3
*	55	20	-0.4
*	49	63	0.0
*-(_>-	48	46	-0.4
*	48	46	+0.1

Kinases
Target-specific

ΔLiPE > 0
Incorporate metrics

DRAG-AND-DROP INTERFACE TO MATSY

Showing 11 to 20 of 111 entries

48

2277

21

 Δ LogP \Leftrightarrow

+0.6

+2.0

+1.1

+0.1

+0.2

+0.1

0.0

-0.4

+0.3

-2.2

EVIDENCE-BASED MEDICINAL CHEMISTRY

- Take advantage of the wealth of experience contained in 57k med chem papers
- Synthetic decisions backed by experimental data
 - Can drill-down into the data, look at targets, scaffolds
 - Can restrict experimental data used to particular targets, use in-house data rather than ChEMBL
- Does not explain why, only that it happens
 - Lots of interesting scientific questions (hint hint)

Evidence-based medicinal chemistry

...using matched molecular series

noel@nextmovesoftware.com

Using Matched Molecular Series as a Predictive Tool To Optimize Biological Activity

J. Med. Chem. 2014, 57, 2704.

Slides (soon!) at http://slideshare.net/nextmovesoftware

