DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Session: Spring 2016-17

Exam: Midterm Exam

No. of Students: 700

Subject No.: CY11001

Subject Name: Chemistry Time: 2hrs. Full Marks: 40

PLEASE READ THE INSTRUCTIONS GIVEN BELOW BEFORE ANSWERING THE PAPER (This question paper contains 4 pages, including this page)

- 1. This Question Paper has TWO parts (i.e., PART-A and PART-B). Make sure that each of you have received both, PART-A and PART-B of the Question Paper.
- 2. Answer ALLquestions.
- 3. ALL QUESTIONS OF PART- A and PART-B SHOULD BE ANSWERED SERIALLY.
- 4. ANSWERS OF PART-A MUST BE WRITTEN TOGETHER.
- 5. LEAVE A PAGE BLANK IN THE ANSWER SCRIPT IN BETWEEN THE ANSWERS OF PART-A and THE ANSWERS OF PART-B.
- 6. ANSWER SCRIPTS SUBMITTED WITHOUT FOLLOWING THE INSTRUCTION No.3, No. 4 and No. 5 MAY NOT BE EVALUATED

- All symbols used in the question paper have their usual meaning
- Mention the sign convention used.
- Clearly state whether you are using reduction or, oxidation potential in electrochemistry.
- No credit will be given without workout being shown wherever necessary.

[Supplied Data: $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$; $R = 8.314 \text{ J K}^{-1} \text{mol}^{-1}$; $1 \text{ bar} = 1 \times 10^5 \text{ Pa}$; 1 Faraday = $96,500 \text{ C mol}^{-1}$; 1 atm = 760 Torr]

PART-A

Q1. Write the correct option/ options (A/B/C/D) in the Answer Script

 $....(1 \times 10 = 10)$

- Which of the following statements is correct for an ideal gas (i)
 - $(\mathbf{A}) \left(\frac{\partial H}{\partial V} \right)_T = 0; \ \left(\frac{\partial U}{\partial V} \right)_T \neq 0;$ (B) $\left(\frac{\partial H}{\partial V} \right)_T = 0; \ \left(\frac{\partial U}{\partial V} \right)_T = 0;$
 - (C) $\left(\frac{\partial H}{\partial V}\right)_T \neq 0$; $\left(\frac{\partial U}{\partial V}\right)_T = 0$;
- **(D)** $\left(\frac{\partial H}{\partial V}\right)_T \neq 0$; $\left(\frac{\partial U}{\partial V}\right)_T \neq 0$
- Activity of a 'm' molal solution of FeCl₃ electrolyte is (ii)
 - **(A)** $9(\gamma_{\pm} m)^4$;
- **(B)** $(\gamma_{\pm} m)^4$;
- (C) $(\gamma_{+} m^{4})$:
- **(D)** $27(\gamma_+ m)^4$
- Which of the following expressions is correct for a closed system involved in expansion-compression work? (iii)
 - (A) dH = TdS + VdP;
- **(B)** dH = TdS PdV;
- (C) dH = TdS VdP;
- **(D)** dH = TdS + PdV
- Which of the following relations is true for the mixing of two ideal gases? (iv)
 - (A) $(\partial \Delta_{\text{mix}} G/\partial P)_T = 0;$
- **(B)** $\Delta_{\text{mix}}G = 0$;
- (C) $\Delta_{\text{mix}}A = 0$;
- **(D)** $(\partial \Delta_{\text{mix}} G/\partial T)_P = 0$
- At the triple-point in the phase diagram of a pure substance the vapour pressures are related as (v) (A) $p_{solid} = p_{liq} \neq p_{vap}$; (B) $p_{solid} \neq p_{liq} = p_{vap}$; (C) $p_{solid} \neq p_{liq} \neq p_{vap}$; (D) $p_{solid} = p_{liq} = p_{vap}$

- Which of the following expression does not represent the chemical potential (μ_i) of a component i in a (vi) (A) $\mu_i = \left(\frac{\partial H}{\partial n_i}\right)_{T.P.ni\neq i};$ (B) $\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T.P.ni\neq i};$ (C) $\mu_i = \left(\frac{\partial A}{\partial n_i}\right)_{T.V.ni\neq i};$ (D) $\mu_i = \left(\frac{\partial U}{\partial n_i}\right)_{S.V.ni\neq i};$

- What will be the thermal efficiency of a Carnot heat engine that receives 500 kJ of heat per cycle from a (vii) high temperature heat reservoir at 627 °C and rejects heat to a low temperature heat reservoir at 27 °C? **(A)** 0.333; **(B)** 0.6; **(C)** 0.4; **(D)** 0.6667
- In what proportion of mole fraction (x) should hexane and heptane be mixed to obtain the highest value of (viii) entropy of mixing (ΔS_{mix}) ?
 - (A) $x_{\text{heaxane}} = 0.4$, $x_{\text{heptane}} = 0.6$;
- **(B)** $x_{\text{heaxane}} = 0.6$, $x_{\text{heptane}} = 0.4$;
- (C) $x_{\text{heaxane}} = 0.5$, $x_{\text{heptane}} = 0.5$;
- **(D)** $x_{\text{heaxane}} = 0.25, x_{\text{heptane}} = 0.75$
- To experience cooling under Joule-Thomson expansion, the gas must have the initial temperature set at (ix)
 - (A) Above the upper inversion temperature;
- (B) Between the upper and lower inversion temperatures;
- **(C)** Below the lower inversion temperature;
- (D) Any temperature
- The lowering of the chemical potential of a species in an ideal mixture (vapor or liquid) is a consequence (\mathbf{x}) of
 - Enthalpy of mixing; (A)

(B) Change in volume on mixing;

Entropy of mixing; (C)

(D) Le Châtelier's principle

ANSWERS OF Part B should begin on new Page in the Answer Script

Q2. (a) Two moles of an ideal gas occupying volume of 44.8 litres at 273 K and 1 atm pressure have been expanded reversibly and isothermally. Calculate the final volume of the gas if the heat absorbed during the process is 3 kJ.

[3]

(b) Two moles of an ideal monatomic gas initially at 1 atm and 300 K are put through the following cycle consisting of three steps, all of which are reversible.

Step-I: Isothermal compression to 2 atm.

Step-II: Isobaric temperature change to 400 K

Step-III: Return to the initial state following the path P = a + bT, where a, b are constants.

- (i) Sketch the cycle on a P-T diagram.
- (ii) Calculate the entropy change (ΔS) associated with each of the three steps of the cycle (given: molar heat capacity of the gas, $C_P = 2.5R$).

[2+3=5]

(c) The vapour pressure of solid ammonia in torr is found to obey the equation:

$$\ln P = -\frac{4124.4}{T} - 1.82 \ln T + 34.48$$

Use the Clausius-Clapeyron equation to determine the molar enthalpy of sublimation of ammonia at 170 K.

[2]

Q3. (a) For a real gas with molar volume and molar enthalpy of V_m and H_m , respectively, show: $\left(\frac{\partial H_m}{\partial P}\right)_T = V_m(1 - \alpha T)$, where α is the isobaric expansion coefficient.

[3]

(b) For a van der Waals gas, the compressibility factor Z is given by $Z = 1 + \frac{(b - a/RT)P}{RT}$, where a and b are constants.

If $C_{P,m}$ and μ_T are the molar heat capacity and Joule-Thomson coefficient of the gas, respectively, then show that $C_{P,m} \times \mu_{JT} = {RT^2 \choose P} {\partial Z \over \partial T}_P$.

[3]

(c) Two moles of supercooled water at -10 °C is converted into ice at -10 °C and 1 atm. State whether the process is reversible or irreversible. Calculate the value of ΔS_{sys} , assuming $C_{P,m}$ values of water and ice in the temperature range -10 °C to 0 °C are 75 JK⁻¹mol⁻¹ and 38 JK⁻¹mol⁻¹, respectively. April = 6006 J mol⁻¹.

3

Q4. (a) In a fuel cell, methane gas undergoes the same reaction as the combustion process to produce CO_2 (g) and $H_2O(l)$ and generate electricity. Calculate the maximum electrical work that can be obtained from 1 mole of methane gas at 25 °C, if $\Delta_f G^\circ$ values of $CH_4(g)$, $CO_2(g)$, and $H_2O(l)$ at 25 °C are given to be -50.8, -394.5, and -237.3 kJ mol⁻¹, respectively.

[2]

(b) For the reaction: $U(s) + \frac{3}{2}H_2(g) \leftrightarrow UH_3(s)$; the equilibrium pressure of $H_2(g)$ over solid uranium and uranium hydride (UH₃) at 500 K is 1.04 Torr. Calculate the standard Gibbs energy of formation of UH₃ (s) at 500 K. Assume that the H₂ gas behaves like an ideal gas at this low pressure.

[4]

(c) Determine the standard electrode potential of a cell for which the total reaction is as follows:

$$Co^{3+}(aq.) + 3Cl^{-}(aq.) + 3Ag(s) \rightarrow 3AgCl(s) + Co(s)$$

[Given: $E^{\circ}_{(AgCl/Ag,Cl)} = +0.22 \text{ V}; E^{\circ}_{(Co^{3+}/Co^{2+})} = +1.81 \text{ V}; E^{\circ}_{(Co^{2+}/Co)} = -0.28 \text{ V}$]

212/12

S. Swaggedfyas 2/2/17

Signatures of the Paper Setters