

CURSO DE ENGENHARIA DE SOFTWARE

Disciplina: Arquitetura e Organização de Computadores

SISTEMAS DE NUMERAÇÃO

Prof. Alexandre Tannus

Introdução

Sistemas de Numeração

Objetivos

- ► Apresentar os conceitos de sistemas de numeração
- ► Conhecer os sistemas decimal, binário, octal e hexadecimal
- ► Calcular as conversões entre os sistemas estudados

Introdução

- ▶ Design digital é a manipulação ordenada de sinais digitais por componentes de hardware
- ► Unidade fundamental: dígito binário bit

Notações

- ► Representação de números em diferentes bases
 - ► (numero)_{base}
- Exemplos
 - \triangleright (94)₁₀
 - \triangleright (75)₈
 - ightharpoonup (C8)₁₆
 - ► (100111)₂

► Símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

328

Sistema Binário

► Símbolos: 0, 1

- ▶ Conversão Binário → Decimal
 - ➤ O valor de cada símbolo é multiplicado pelo expoente relativo à sua posição (como fizemos no sistema decimal)

- ▶ Conversão Decimal → Binário
 - Divisões sucessivas
 - Soma

Sistema Binário

1001

Sistema Binário

Sistema Hexadecimal

- ► Símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- ▶ Conversão Hexadecimal → Binário
 - Cada símbolo hexadecimal equivale a quatro dígitos binários

- ▶ Conversão Hexadecimal → Decimal
 - O valor de cada símbolo é multiplicado pelo expoente relativo à sua posição (como fizemos no sistema decimal)

Tabela de Conversão

Decimal	Binário	Hexadecimal
0	0000 0000	00
1	0000 0001	01
2	0000 0010	02
3	0000 0011	03
4	0000 0100	04
5	0000 0101	05
6	0000 0110	06
7	0000 0111	07
8	0000 1000	08
9	0000 1001	09

Decimal	Binário	Hexadecimal
10	0000 1010	0A
11	0000 1011	0B
12	0000 1100	0C
13	0000 1101	0D
14	0000 1110	0E
15	0000 1111	0F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
19	0001 0011	13

Sistema Octal

► Símbolos: 0, 1, 2, 3, 4, 5, 6, 7

- ▶ Conversão Octal → Binário
 - Cada símbolo octal equivale a três dígitos binários

- ▶ Conversão Octal → Decimal
 - ➤ O valor de cada símbolo é multiplicado pelo expoente relativo à sua posição (como fizemos no sistema decimal)

Regras gerais de conversão

- ▶ Decimal → Binário / Hexadecimal / Octal
 - Divisões sucessivas pela base
- ▶ Binário / Hexadecimal / Octal → Decimal
 - ▶ Multiplicação do valor do símbolo pelo expoente relativo à sua posição
- ▶ Hexadecimal ↔ Binário
 - Símbolo hexadecimal equivale a quatros bits
- ▶ Octal ↔ Binário
 - Símbolo octal equivale a três bits
- ▶ Octal ↔ Hexadecimal
 - NÃO FAZER

Bibliografia

William Stallings.

Arquitetura e Organização de Computadores.

Pearson, São Paulo, 8 edition, 2010.

