Métodos Numéricos - Trabajo Práctico 1

(No) Todo Pasa

Sports Analytics

Utilización de técnicas estadísticas, inteligencia artificial y optimización en el deporte.

2015-16 REGULAR SEASON PLAYER GENERAL RANGE (OVERALL)									
4			Page 1 of						
Player									
DeMarcus Cousins	SAC	25	56	56	100%	9.3	20.7		
Damian Lillard	POR	25	60	60	100%	8.5	19.9		
Stephen Curry	GSW	28	63	63	100%	10.2	19.9		
James Harden	HOU	26	68	68	100%	8.4	19.4		
Kevin Durant	OKC	27	61	61	100%	9.6	19.0		
LeBron James	CLE	31	64	64	100%	9.4	18.7		
Anthony Davis	NOP	23	60	60	100%	9.2	18.6		
Blake Griffin	LAC	27	30	30	100%	9.3	18.4		
Russell Westbrook	OKC	27	68	68	100%	8.4	18.3		
Paul George	IND	25	67	67	100%	7.5	18.1		

Confección de rankings y tablas de posiciones.

ATP WORLD TOUR	SCORES	STATS RAM	IKINGS PLAYERS
Emirates ATI	P. RANKING	Ranking:	s Home Singles S
RANKING ^	MOVE ^	COUNTRY ^	PLAYER ^
1	-	-8	Novak Djokovic
2	-		Andy Murray
3	-	+	Roger Federer
4	-	+	Stan Wawrinka
5	-	<u> </u>	Rafael Nadal
6	-	•	Kei Nishikori

EASTERN CONF	EREN	CE			
Eastern	W	L	PCT	GB	CONF
Cleveland 1	48	19	0.716	0.0	27-12
Toronto ²	45	21	0.682	2.5	30-11
Miami ³	39	28	0.582	9.0	24-18
Atlanta 4	39	29	0.574	9.5	23-18
Boston ⁵	39	29	0.574	9.5	26-18
Charlotte 6	38	29	0.567	10.0	24-15
Indiana 7	36	31	0.537	12.0	23-17
Detroit ⁸	34	34	0.500	14.5	21-20
Chicago	33	33	0.500	14.5	20-21
Washington	32	35	0.478	16.0	23-20
Orlando	29	38	0.433	19.0	16-22
Milwaukee	29	39	0.426	19.5	19-22
New York	28	41	0.406	21.0	17-25
Brooklyn	19	48	0.284	29.0	10-28
Philadelphia ^o	9	58	0.134	39.0	3-39
WESTERN CON	FEREN	CE			
Western	W	L	PCT	GB	CONF
Golden State ^{1p}	61	6	0.910	0.0	36-4
San Antonio 2sw	57	10	0.851	4.0	35-5
Oklahoma City 3	46	22	0.676	15.5	31-11
L.A. Clippers 4	43	24	0.642	18.0	23-16
Memphis ⁵	39	29	0.574	22.5	23-19
Portland ⁶	35	33	0.515	26.5	23-18
Houston ⁷	34	34	0.500	27.5	23-20
Dallas 8	34	34	0.500	27.5	21-19

Confección de rankings y tablas de posiciones.

Por qué es importante el ranking?

- Determina quién es el mejor del torneo.
- Clasifica a copas etapas posteriores (playoffs) y/o competencias internacionales (Libertadores, Masters, etc).

 Drafts
- Justicia deportiva.
- Mucha mucha plata en juego.

Preguntas

- Qué métodos/reglas/procedimientos conocen?
- Cómo son las competencias/torneos?

Confección de rankings y tablas de posiciones.

Algunos ejemplos

- En algunas ligas, no todos los equipos se enfrentan todos contra todos (NFL, MLB, NCAA).
- Aún cuando se enfrentan todos contra todos, no lo hacen la misma cantidad de veces (Ej: NBA, 30 equipos, 82 partidos en temporada regular).
- Caso raro: Torneo de Primera División AFA.

Pregunta

Cómo podemos manejar estos casos?

Descripción general

Algunos objetivos

- Un método simple, que capture la complejidad del problema.
- Solo utiliza victorias y derrotas, dejando de lado los marcardores.
- Reproducible.
- Incorpora la dificultad del schedule de cada equipo.
- Asume que el empate no es un resultado posible (solo victorias/derrotas).

Idea general

Dados los resultados obtenidos por un equipo, obtener la probabilidad de que el equipo gane el próximo partido.

Primer paso: estimador para victoria en el próximo partido

Laplace rule of succession

Consideremos k ensayos con dos resultados posibles: éxito (victoria) y fracaso (derrota). Sean s el número de éxitos obtenidos. En algunas circunstancias, (s+1)/(k+2) es un mejor estimador que s/k de que el próximo ensayo sea exitoso.

Ejemplo

Supongamos que todos los ensayos fueron exitosos. Entonces, s/k = k/k = 1, y no deja lugar a que el ensayo sea fallido. Para valores grandes de k, ambos estimadores se comportan de forma similar.

- $ightharpoonup \Gamma = \{1, 2, \dots, T\}$ el conjunto de equipos.
- ▶ Dado $i \in \Gamma$, llamamos:
 - n_i al total de partidos jugados,
 - w_i la cantidad de partidos ganados, y
 - ► I_i la cantidad de partidos perdidos.
- Dados i, j ∈ Γ, llamamos n_{ij} a la cantidad de partidos jugados entre i y j. Notar que n_{ij} = n_{ji}.

El estimador para la probabilidad de que el equipo *i* gane el próximo partido es

$$r_i = \frac{1+w_i}{2+n_i} = \frac{1+w_i}{2+w_i+l_i}$$

Tercer paso: incorporando el schedule

Sabemos que:

- $ightharpoonup n_i = w_i + l_i$.
- ▶ Si no tenemos información sobre los equipos, podemos pensar que $r_i = 1/2$ para $i \in \Gamma$.
- Notar que n_i puede incluir más de un partido contra un mismo equipo. Llamamos r_i^j al rating del j-ésimo oponente de i.

Reescribimos

$$w_i = (w_i - l_i)/2 + n_i/2$$

 $= (w_i - l_i)/2 + \sum_{j=1}^{n_i} 1/2$
 $\approx (w_i - l_i)/2 + \sum_{j=1}^{n_i} r_j^j$

Último paso: armamos el sistema

El rating de un equipo depende de los ratings contra los que jugó.

$$r_i = \frac{1 + w_i}{2 + n_i}$$
 y $w_i = \frac{w_i - l_i}{2} + \sum_{i=1}^{n_i} r_i^i$

Despejando, tenemos que

$$(2+n_i)r_i - \sum_{j=1}^{n_i} r_j^i = 1 + \frac{w_i - l_i}{2} \quad \text{para } i \in \Gamma$$

Esto nos lleva a un sistema Cr = b, con $C \in \mathbb{R}^{T \times T}$, $b \in \mathbb{R}^{T}$, con

$$C_{ij} = \left\{ egin{array}{ll} -n_{ij} & ext{si } i
eq j, \ 2+n_i & ext{si } i=j. \end{array}
ight.$$

y
$$b_i = 1 + (w_i - l_i)/2, i \in \Gamma.$$

Algunos comentarios generales

- ► *C* es lo que se conoce como *Matriz de Colley*.
- ► La matriz C es Simétrica y Definida Positiva (SDP)
- Dada una secuencia de partidos y sus resultados, podemos formular el sistema, obtener los ratings r_i de cada equipo y ordenarlos en forma decreciente.

Preguntas

- Qué necesitamos para que el método funcione?
- Se les ocurre algún problema que pueda surgir con el método?

Aplicando CMM en la práctica

Ejemplo (Govan et al., 2008)

```
data NFL2007EXAMPLE;
  Input Team_A_Index Score_A Team_B_Index Score_B;
    datalines;
                                       data indexTeam;
1 16 4 13
                                        Input Team $3. Index;
                                         datalines;
2 38 5 17
                                       Car 1
2 28 6 23
                                       Dal 2
                                       Hou 3
3 34 1 21
                                       NO 4
3 23 4 10
                                       Phi 5
                                       Was 6
4 31 1 6
5 33 6 25
                                       run;
5 38 4 23
6 27 2 6
6 20 5 12
run;
```

Objetivos generales

- Trabajar sobre una aplicación real, implementando prototipos de algoritmos relevantes utilizados en la práctica.
- Simular un trabajo de investigación:
 - Relevamiento de literatura (qué hay hecho).
 - Desarrollo de algoritmos para el problema.
 - Decisiones de implementación.
 - Experimentación, en dos contextos distintos de aplicación.
- Utilizar datos reales.

TP1: Implementación

Consideramos dos métodos para resolver el sistema

- ► Eliminación Gaussiana (EG).
- Factorización de Cholesky (CL)

Especificar en el desarrollo alternativas consideradas para la representación de las matrices e implementación de los métodos.

Recordar

La implmentación no es lo único que nos importa.

TP1: Experimentación

Análisis cuantitativo

- Comparar el tiempo de cómputo requerido por EG y CL en función de los tamaños a resolver.
- En qué contexto conviene utilizar CL? Analizar ventajas. Se pueden usar instancias artificiales.
- ► En todos los casos, justificar elecciones y decisiones tomadas.

Análisis cualitativo

- Comparar CMM vs. Winning Percentage (WP) sobre datos reales. Identificar características y situaciones distintivas.
- El método CMM es justo?
- Tenemos resultados y un equipo. Determinar una estrategia que obtener la mayor posición posible buscando minimizar la cantidad de partidos ganados.

TP1 Además

TP1

Material extra (optativo)

Datos reales

- Datos con los resultados de los partidos del circuito ATP de 2015 (tomados de [3])
- Datos con los resultados de la temporada regular NBA 2016 hasta el 15/03 (tomados de [4])

Además

- Dos scripts en python para transformar archivos con los formatos de [3] y [4] al formato del TP.
- Más datos deportivos en [2] (sin scripts), [3], [4].
- Tablas de posiciones de la NBA en fechas determinadas en [1].

IP1

Recomendaciones

Importante

El TP no es solamente código. Hay que experimentar. Discutir. Volver a experimentar. Y escribir un reporte detallado.

Sugerencia

- ▶ Viernes 25/3: EG, lectura de datos, armado sistema.
- ▶ Viernes 1/4: CL, primeros experimentos.
- Jueves 7/4: Entrega TP.

Trabajo Práctico

Fecha de entrega

- Formato Electrónico: Jueves 7 de Abril de 2016, hasta las 23:59 hs, enviando el trabajo (informe + código) a la dirección metnum.lab@gmail.com. El subject del email debe comenzar con el texto [TP3] seguido de la lista de apellidos de los integrantes del grupo.
- Formato físico: Viernes 8 de Abril de 2016, 17:30 hs., en la clase de laboratorio.

Importante

El horario es estricto. Los correos recibidos después de la hora indicada serán considerados re-entrega.

Bibliografía

http://www.basketball-reference.com/friv/ standings.cgi.

Datahub.

http://datahub.io.

Jeff sackmann atp tennis rankings.

http://github.com/JeffSackmann/tennis_atp.

Massey ratings.

http://masseyratings.com/data.php.