

AMENDMENTS TO THE CLAIMS

Claim 1 (Currently Amended): An electrophotographic photoconductor, comprising:
a conductive support; and
a photosensitive layer disposed above the conductive support,
herein the electrophotographic photoconductor, in an outermost surface layer of the
electrophotographic photoconductor, comprises:
a filler,
an organic compound having an acid value of 10mgKOH/g to 400mgKOH/g, and
at least one selected from the group consisting of compounds represented by the
following general formulas 1 and 2:

General Formula 1

General Formula 2

where R¹, R² are substituted or unsubstituted alkyl groups or aromatic hydrocarbon rings, and
may be identical or different, different; and R¹, R² may also be bonded together to form a
substituted or unsubstituted heterocycle containing a nitrogen atom; R³, R⁴, R⁵ are substituted
or unsubstituted alkyl or alkoxy groups, or halogen atoms; Ar is a substituted or unsubstituted
aromatic hydrocarbon ring or aromatic heterocycle; n is an integer in the range 2 to 4; k, l, m

are respectively integers in the range 0 to 3; and X is, in the general formula 1, an oxygen atom, or a sulfur atom.

Claim 2 (Original): An electrophotographic photoconductor according to Claim 1, wherein the organic compound having an acid value of 10mgKOH/g to 400mgKOH/g, is a polycarboxylic acid.

Claim 3 (Currently Amended): An electrophotographic photoconductor according to Claim 1, wherein the organic compound having an acid value of 10mgKOH/g to 400mgKOH/g, is at least one selected from the group consisting of a polyester resin, an acrylic resin, resin and a copolymer comprising these structures, ~~and a mixture thereof.~~

Claim 4 (Original): An electrophotographic photoconductor according to Claim 1, wherein at least one of organic fatty acids is mixed with the organic compound having an acid value of 10mgKOH/g to 400mgKOH/g.

Claim 5 (Original): An electrophotographic photoconductor according to Claim 1, wherein the filler is at least one of inorganic materials.

Claim 6 (Original): An electrophotographic photoconductor according to Claim 5, wherein the inorganic material is a metal oxide.

Claim 7 (Original): An electrophotographic photoconductor according to Claim 5, wherein the pH of the inorganic material is 5 or more.

Claim 8 (Original): An electrophotographic photoconductor according to Claim 5,
wherein the dielectric constant of the inorganic material is 5 or more.

Claim 9 (Original): An electrophotographic photoconductor according to Claim 1,
wherein the average first -order particle diameter of the filler is 0.01 μm to 0.5 μm .

Claim 10 (Original): An electrophotographic photoconductor according to Claim 1,
wherein the outermost surface layer is a photosensitive layer.

Claim 11 (Original): An electrophotographic photoconductor according to Claim 10,
wherein the photosensitive layer comprises a charge generating layer containing a charge
generating material and a charge transport layer containing a charge transport material, the
outermost surface layer being the charge transport layer.

Claim 12 (Original): An electrophotographic photoconductor according to Claim 11,
wherein the charge transport material is a polymer charge transport material.

Claim 13 (Original): An electrophotographic photoconductor according to Claim 1,
wherein the electrophotographic photoconductor comprises a protective layer, the protective
layer being the outermost surface layer.

Claim 14 (Original): An electrophotographic photoconductor according to Claim 13,
wherein the protective layer contains at least one of charge transport materials.

Claim 15 (Original): An electrophotographic photoconductor according to Claim 14, wherein the charge transport material is a polymer charge transport material.

Claim 16 (Currently Amended): An electrophotographic photoconductor according to Claim 1, wherein the outermost surface layer of the photoconductor contains as a binder resin at least one selected from the group consisting of a polycarbonate resin and a polyarylate resin ~~as a binder resin~~.

Claim 17 (Currently Amended): An electrophotographic photoconductor according to Claim 1, wherein the outermost surface layer is formed by coating an outermost surface layer coating solution containing:

a filler;
an organic compound having an acid value of 10 mgKOH/g to 400mgKOH/g;
at least one selected from the group consisting of compounds represented by the above general formulas 1 and 2; and
an antioxidant.

Claim 18 (Currently Amended): The electrophotographic photoconductor according to Claim 17, wherein the antioxidant is one selected from the group consisting of a hydroquinone compound and a hindered amine compound.

Claim 19 (Currently Amended): An electrophotographic photoconductor outermost surface layer coating solution, comprising:

a filler;

an organic compound having an acid value of 10mgKOH/g to 400mgKOH/g;

at least one selected from the group consisting of compounds represented by the following general formulas 1 and 2:

General Formula 1

General Formula 2

where R¹, R² are substituted or unsubstituted alkyl groups or aromatic hydrocarbon rings, and may be identical or different, different; and R¹, R² may also be bonded together to form a substituted or unsubstituted heterocycle containing a nitrogen atom; R³, R⁴, R⁵ are substituted or unsubstituted alkyl or alkoxy groups, or halogen atoms; Ar is a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocycle; n is an integer in the range 2 to 4; k, l, m are respectively integers in the range 0 to 3; and X is, in the general formula 1, an oxygen atom, or a sulfur atom; and

an antioxidant.

Claim 20 (Currently Amended): An electrophotographic photoconductor outermost surface layer coating solution according to Claim 19, wherein the antioxidant is one selected from the group consisting of a hydroquinone compound and a hindered amine compound.

Claim 21 (Currently Amended): An electrophotographic method, comprising the steps of:

charging an electrophotographic photoconductor;
exposing the charged photoconductor with an imagewise light so as to form an latent electrostatic image thereon;
supplying a developer to the formed latent electrostatic image so that a toner image is formed, thereby visualizing the latent electrostatic image; and
transferring the toner image formed by the developing step to a transfer material,
wherein the electrophotographic photoconductor, in an outermost surface layer of the electrophotographic photoconductor, comprises:
a filler,
an organic compound having an acid value of 10mgKOH/g to 400mgKOH/g, and
at least one selected from the group consisting of compounds represented by the following general formulas 1 and 2:

where R^1 , R^2 are substituted or unsubstituted alkyl groups or aromatic hydrocarbon rings, and may be identical or different, different; and R^1 , R^2 may also be bonded together to form a substituted or unsubstituted heterocycle containing a nitrogen atom; R^3 , R^4 , R^5 are substituted or unsubstituted alkyl or alkoxy groups, or halogen atoms; Ar is a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocycle; n is an integer in the range 2 to 4; k , l , m are respectively integers in the range 0 to 3; and X is, in the general formula 1, an oxygen atom, or a sulfur atom.

Claim 22 (Currently Amended): An electrophotographic method according to Claim 21, wherein in the exposure step ~~employs a "digital method"~~ where the latent electrostatic image is written on the electrophotographic photoconductor by a LD or LED.

Claim 23 (Currently Amended): An electrophotographic apparatus, comprising:
an electrophotographic photoconductor;
a charger configured to uniformly charge a surface of the electrophotographic photoconductor;
an exposure unit configured to expose the charged photoconductor by the charger with an imagewise light so as to form an latent electrostatic image on the photoconductor;
a developing unit configured to supply a developer to the latent electrostatic image so that a toner image is formed, thereby visualizing the latent electrostatic image; and

a transfer unit configured to transfer the formed toner image by the developing unit to a transfer material,

wherein the electrophotographic photoconductor, in an outermost surface layer of the electrophotographic photoconductor, comprises:

a filler,

an organic compound having an acid value of 10mgKOH/g to 400mgKOH/g, and

at least one selected from the group consisting of compounds represented by the following general formulas 1 and 2:

General Formula 1

General Formula 2

where, in the general formulas 1 and 2, R¹, R² are substituted or unsubstituted alkyl groups or aromatic hydrocarbon rings, and may be identical or different, different; and R¹, R² may also be bonded together to form a substituted or unsubstituted heterocycle containing a nitrogen atom; R³, R⁴, R⁵ are substituted or unsubstituted alkyl or alkoxy groups, or halogen atoms; Ar is a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocycle; n is an integer in the range 2 to 4, and k, l, m are respectively integers in the range 0 to 3; and X is, in the general formula 1, an oxygen atom, or a sulfur atom.

Claim 24 (Currently Amended): An electrophotographic apparatus according to Claim 23, wherein the exposure unit employs a "digital method" where is configured so that the latent electrostatic image is written on the electrophotographic photoconductor by a LD or LED.

Claim 25 (Currently Amended): An electrophotographic process cartridge, comprising:

an electrophotographic photoconductor; and
at least one selected from the group consisting of
a charger configured to uniformly charge a surface of the electrophotographic photoconductor,
a cleaning unit configured to clean the surface of the electrophotographic photoconductor, and
a developing unit configured to supply a developer to a latent electrostatic image formed on the electrophotographic photoconductor so that a toner image is formed, thereby visualizing the latent electrostatic image,
wherein the electrophotographic process cartridge is formed in a one-piece construction such that the electrophotographic process cartridge is freely replaceable from an electrophotographic apparatus, and wherein the electrophotographic photoconductor, in an outermost surface layer of the electrophotographic photoconductor, contains:

a filler,
an organic compound having an acid value of 10mgKOH/g to 400mgKOH/g, and
at least one selected from the group consisting of compounds represented by the following general formulas 1 and 2:

General Formula 1

General Formula 2

where R¹, R² are substituted or unsubstituted alkyl groups or aromatic hydrocarbon rings, and may be identical or different, different; and R¹, R² may also be bonded together to form a substituted or unsubstituted heterocycle containing a nitrogen atom; R³, R⁴, R⁵ are substituted or unsubstituted alkyl or alkoxy groups, or halogen atoms; Ar is a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocycle; n is an integer in the range 2 to 4; k, l, m are respectively integers in the range 0 to 3; and X is, in the general formula 1, an oxygen atom, or a sulfur atom.