How to solve linear equations

Problems

 Suppose we have a set of linear equations and we want to solve for X1, X2, . . . , XM

$$B_1 = A_{11}X_1 + A_{12}X_2 + \dots + A_{1M}X_M$$

$$B_2 = A_{21}X_1 + A_{22}X_2 + \dots + A_{2M}X_M$$

$$\vdots$$

$$B_N = A_{N1}X_1 + A_{N2}X_2 + \cdots + A_{NM}X_M.$$

Problems

 We can actually collapse this into matrix notation in the following way:

$\lceil B_1 \rceil$	$\lceil A_{11} \rceil$	A_{12}		A_{1M}	$\lceil X_1 \rceil$
$\mid B_2 \mid$	A_{21}	A_{22}		A_{1M} A_{2M}	X_2
	= :	•	٠.		
$ \dot{B_N} $	A_{N1}	A_{N2}		$A_{NM} floor$	$ \dot{X_M} $

Problems

 We can simplify the notation equation, but still keep its semantic meaning

$$B = AX$$

$$B = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_N \end{bmatrix}, A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1M} \\ A_{21} & A_{22} & \dots & A_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N1} & A_{N2} & \dots & A_{NM} \end{bmatrix}, X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_M \end{bmatrix}$$

Solution

Matrix VS Real number

If
$$B = AX$$
, then $X = \frac{B}{A} = (\frac{1}{A})B$.

Solution

• The idea here, is that even though we cannot invert A, we know that ATA is invertible.

•

 Since we know that B = AX, we know that ATB = (ATA)X so we can isolate X by applying the inverse.

Solution

 We want to find some way of using a matrix inverse to isolate X

$$B = AX,$$

$$A^{T}B = A^{T}AX,$$

$$(A^{T}A)^{-1}A^{T}B = (A^{T}A)^{-1}(A^{T}A)X,$$

$$X = (A^{T}A)^{-1}A^{T}B.$$