Math 3220-1: Homework 2, due 01/24/2024

Show all work

Name (PRINT): ID:

Unless stated otherwise, \mathbb{R}^d is the Euclidean space with the "usual" inner product, norm and metric.

Problem 1. Let $\{x_n\}$ be a bounded sequence in \mathbb{R}^d and let $\{a_n\}$ be a sequence of scalars converging to 0. Prove that the sequence $\{a_nx_n\}$ converges to $\mathbf{0}$ in \mathbb{R}^d .

Using properties of norms, we have:

$$||a_n x_n|| = |a_n| \cdot ||x_n|| \le |a_n| \cdot M$$

Since $\{a_n\}$ converges to 0, for any given $\epsilon > 0$, we can choose $\epsilon' = \frac{\epsilon}{m}$. Then $\exists N \in \mathbb{N}$ such that $\forall n \geq N, |a_n| < \frac{\epsilon}{m}$.

Thus, for any $n \ge N$:

$$||a_n x_n|| \le |a_n| \cdot M < \frac{\epsilon}{M} \cdot M = \epsilon$$

Thus $\{a_n x_n\}$ converges to 0.

Problem 2. Let $\mathcal{C}([0,1])$ be the space of all real valued continuous functions regarded as a metric space with the distance

$$d(f,g) = \|f - g\|_{\infty}$$

Find d(f,g) where

- (a) f(x) = x and $g(x) = x^2$ (b) f(x) = x and g(x) = 2x

$$||h||_{\infty} = \sup_{x \in [0,1]} |h(x)|$$

- a) $|x-x^2|$ attains its maximum at $x=\frac{1}{2}$ on the interval [0,1]. Plugging it in gives a value of $|\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$. Thus, $d(x,x^2)=\frac{1}{4}$.

 b) |x-2x|=|x|, which obviously attains its maximum at x=1 on the interval
- [0,1] with a value of 1. Thus, d(x,2x)=1.

Problem 3. Let $D = \{(x_1, x_2) \in \mathbb{R}^2 : 0 < x_1 < 4, \ 0 < x_2 < 4\}$. Find the largest radius r such that the open ball $B_r(\mathbf{c})$ is contained in D, where

- (1) c = (1, 2)
- (2) c = (2,2)
- (3) c = (2, 7/2)
- (4) $\mathbf{c} = (c_1, c_2)$ be an arbitrary point in D.

Use (4) to prove that D is an open set in \mathbb{R}^2 .

- 1) For the x_1 -axis, it's min(1,3) = 1. For the x_2 -axis, its min(2,2) = 2. So the answer is $r = \min(x_1, x_2) = 1$.
 - 2) $r = \min(2, 2) = 2$.
 - 3) Similar to in part a, we get that
 - $x_1 = \min(2, 2) = 2$
 - $x_2 = \min(\frac{7}{2}, \frac{1}{2}) = \frac{1}{2}$ $r = \min(x_1, x_2) = \frac{1}{2}$

 - 4) $x_1 = \min(c_1, 4 c_1)$.
 - $x_2 = \min(c_2, 4 c_2)$
 - $r = \min(x_1, x_2) = \min(\min(c_1, 4 c_1), \min(c_2, 4 c_2)).$

To show that D is an open set, we need to show that for every point $c \in D$, \exists a radius r>0 such that $B_r(c)\subset D$. Since c is an arbitrary point in D and the above calculation for part 4) shows we can always find a radius r, then D is indeed an open set in \mathbb{R}^2 .

Problem 4. Let X be a metric space. Prove that every finite subset of X is closed (in X).

Let F be a finite subset of X where $F = \{x_1, x_2, ..., x_n\}$ where n is a finite number and $x_1 \in X$ for i = 1, 2, ..., n.

We need to show that $X \setminus F$ is open.

For any point in $y \in X \setminus F$, since y is not in F, the distance $d(y, x_i)$ is positive/non-zero for i = 1, 2, ..., n.

Now, let $r = \min(d(y, x_1), d(y, x_2), \dots, d(y, x_n))$. Since all these distances are positive, then r is also positive.

Consider $B_r(y)$. From our choice of r, none of the points in F are in this open ball. Thus, $B_r(y) \subset X \setminus F$.

Since y is an arbitrary point in $X \setminus F$, then $X \setminus F$ is open.

Therefore, X is closed.

Problem 5. Let

$$D = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \in \mathbb{Q}\}\$$

Find

- (a) The interior D° of D
- (b) The closure \overline{D} of D
- (c) The boundary $\partial(D)$ od D

Justify your answers.

a) Because of the density of the rational numbers in the reals, any open set in \mathbb{R}^2 will contain irrational numbers for x_2 .

Thus, there are no open balls in D that are entirely contained in D.

Therefore, $D^{\circ} = \emptyset$.

b) In \mathbb{R}^2 , for any point (a, b) where b is irrational, we can find a sequence of points in D with x_2 as rational numbers that converges to (a, b) because the rationals are dense in the reals.

Since for any point in \mathbb{R}^2 we can find a sequence in D that converges to it, the closure of D is \mathbb{R}^2 .

$$\overline{D} = \mathbb{R}^2$$
.

c)
$$\partial(D) = \overline{(D)} \setminus D^{\circ} = \mathbb{R}^2 \setminus \emptyset = \mathbb{R}^2$$
.

Problem 6. Let D be a subset of X and c an element of $\overline{D} - D$. Prove that every neighborhood of c contains infinitely many points of D.

Let's consider a neighborhood N of c in X. Since c is a limit point of D, N intersects D. Goal: Show that this intersection contains infinitely many points of D.

Let's use proof by contradiction. Suppose that N only contains finitely many points of D. Let those points be $\{d_1, d_2, \ldots, d_n\}$. Since c is not in D, c is different from each d_i . Therefore, $d(c, d_i) > 0$.

Let $\epsilon = \min(d(c,d_1),d(c,d_2),\ldots,d(c,d_n))$. Now, consider the neighborhood $B_{\frac{\epsilon}{2}}(c)$. This neighborhood is a subset of N. However, by our choice of ϵ , $B_{\frac{\epsilon}{2}}$ doesn't contain any points of D. This contradicts the fact that c is a limit point of c (defined as every open ball of a limit point contains at least on point of D).

Thus, our assumption that N contains only finitely many points of D cannot be true. Therefore, we have shown that every neighborhood of c contains infinitely many points of D.