Deep Learning II

redes neuronales convolucionales profundas

MIGUEL ÁNGEL MARTÍNEZ DEL AMOR

DEPARTAMENTO CIENCIAS DE LA COMPUTACIÓN E INTELIGENCIA ARTIFICIAL UNIVERSIDAD DE SEVILIA

About me

- Miguel Ángel Martínez del Amor
- •Profesor Ayudante Doctor del Departamento de Ciencias de la Computación e Inteligencia Artificial

Research Group on Natural Computing

DeepKnowledge

NVIDIA Deep Learning Institute

Warning!

- Si quieres reproducir el código que veremos al final, te aconsejo que:
 - O bien tengas abierta una sesión con tu cuenta de Gmail (si no tienes, hazte una).
 - O bien tengas instalado **Python 3** en local junto con *Jupyter, Keras 2.2.5, Tensorflow 1.15, sklearn, matplotlib, numpy...*

Índice

- 1. Introducción a la regularización.
- 2. Redes neuronales convolucionales.
- 3. Ejercicio 1: nuestra primera red neuronal convolucional con Keras.
- 4. Hardware para Deep Learning.
- 5. Algunas redes neuronales profundas y transferencia de aprendizaje.
- 6. Ejercicio 2: transfer learning con Keras.

Índice

- 1. Introducción a la regularización.
- 2. Redes neuronales convolucionales.
- 3. Ejercicio 1: nuestra primera red neuronal convolucional con Keras.
- 4. Hardware para Deep Learning.
- 5. Algunas redes neuronales profundas y transferencia de aprendizaje.
- 6. Ejercicio 2: transfer learning con Keras.

Problemas de rendimiento

Problemas de rendimiento

WEBINAR DEEP LEARNING II

Necesidad de regularización

Técnicas para atacar el overfitting son:

- Simplificar los datos, reduciendo el número de características
 - Manualmente
 - Técnicas de reducción de dimensionalidad (PCA, t-SNE, ...)
- Regularización
 - Mantenemos todas las características
 - Reducimos los valores de los parámetros del modelo
 - Funciona bien cuando tenemos muchas características y todas aportan un poco a predecir

Early stopping

Partir el conjunto en 3 subconjuntos:

Early stopping

Idea: detener el entrenamiento cuando el error cometido sobre el conjunto de validación crece.

Dropout

Idea: aleatoriamente **poner a cero** algunas neuronas en la propagación hacia adelante **Hiperparámetro**: **p**

Probabilidad de poner a cero

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al 2014]

Dropout

Fuerza a la red tener una representación más redundante

• La red encuentra otros "caminos" dentro de la red para llegar a la misma conclusión

Aumentado de datos

Transformaciones típicas: mirroring, cropping

WEBINAR DEEP LEARNING II 13

Data augmentation

100 - Intial Image

Augmented Images

Índice

- 1. Introducción a la regularización.
- 2. Redes neuronales convolucionales.
- 3. Ejercicio 1: nuestra primera red neuronal convolucional con Keras.
- 4. Hardware para Deep Learning.
- 5. Algunas redes neuronales profundas y transferencia de aprendizaje.
- 6. Ejercicio 2: transfer learning con Keras.

El origen

El experimento Hubel & Wiesel 1959, 1962, 1968

El origen

El experimento Hubel & Wiesel 1959, 1962, 1968

Primera red convolucional

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

- Reconocimiento de caracteres escritos a mano.
- Ya primeros experimentos en <u>1993</u>.
- Entrenado con backpropagation.

El gran salto

ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton 2012]. **Diferencias**:

- Entrenado sobre ImageNet (10⁶ imágenes, 1000 categorías)
- Usa ReLU (LeNet 5 usa tanh) y dropout
- Más profundo
- Uso de GPUs (6 días)

AlexNet

Desde entonces...

Tendencia

Rank	Method	Top 1 Accuracy	Top 5 Accuracy	Number of params	Extra Training Data	Paper Title	Year	agemi
1	FixResNeXt- 101 32x48d	86.4%	98.0%	829M	~	Fixing the train-test resolution discrepancy	2019	
2	ResNeXt-101 32x48d	85.4%	97.6%	829M	~	Exploring the Limits of Weakly Supervised Pretraining	2018	
3	ResNeXt-101 32x32d	85.1%	97.5%	466M	✓	Exploring the Limits of Weakly Supervised Pretraining	2018	

LeNet-5

Convolution networks

AlexNet

This is getting complicated

Deep learning

Convolución

Operación básica:

- Multiplicación elemento a elemento
- Suma de las multiplicaciones

Convolución

Proceso sobre la matriz completa:

- Para cada posible encaje del kernel en la matriz de entrada
 - Aplicar operación de convolución
 - Anotar el valor de salida en la matriz resultado
- Nota: esta operación es derivable

1 _{×1}	1,0	1 _{×1}	0	0
0,×0	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Convolución

Ejemplos de convolución sobre imágenes

Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

Detección bordes

Difuminado (Blur)

Pooling (subsampling/downsampling)

Capa que redimensiona espacialmente la representación

Es común insertarla periódicamente entre capas convolutivas

Operaciones típicas: MAX, AVG, SUM, L2, ...

Es **derivable** para propagación de gradientes.

max pool with 2x2 filters and stride 2

6	8		
3	4		

Interpretando redes convolucionales

WEBINAR DEEP LEARNING II

Interpretando redes convolucionales

Visualización de los filtros aprendidos por una red (ver aquí).

WEBINAR DEEP LEARNING II

Índice

- 1. Introducción a la regularización.
- 2. Redes neuronales convolucionales.
- 3. Ejercicio 1: nuestra primera red neuronal convolucional con Keras.
- 4. Hardware para Deep Learning.
- 5. Algunas redes neuronales profundas y transferencia de aprendizaje.
- 6. Ejercicio 2: transfer learning con Keras.

Índice

- 1. Introducción a la regularización.
- 2. Redes neuronales convolucionales.
- 3. Ejercicio 1: nuestra primera red neuronal convolucional con Keras.
- 4. Hardware para Deep Learning.
- 5. Algunas redes neuronales profundas y transferencia de aprendizaje.
- 6. Ejercicio 2: transfer learning con Keras.

La trinidad del Deep Learning

Big Data Availability

New ML Techniques

GPU Acceleration

350 millions images uploaded per day

 2.5 Petabytes of customer data hourly

300 hours of video uploaded every minute

Hardware paralelo: GPUs

Hardware paralelo: GPUs

•GPU = Graphics Processing Unit (núcleo tarjeta gráfica).

•Con el tiempo este procesador ha evolucionado y hoy en día se puede usar para cómputo paralelo, incluyendo del orden de cientos a miles de núcleos.

•CUDA cores (Streaming Processors): Los núcleos son más básicos que los de

una CPU, pero son muchos más!

•Muy buenos con cálculo matricial.

•Ahora incluyen núcleos especiales para Deep Learning: **Tensor cores**

Hardware paralelo: GPUs

- Librerías para programar GPUs:
 - CUDA (de NVIDIA)
 - OpenCL (Chronos → NVIDIA, AMD, Intel...)
 - ROCm (de AMD), para soportar CUDA-like code
- •NVIDIA invirtió en Deep Learning desde el principio, y ahora ofrece un mayor soporte (todos los frameworks soportan de forma nativa GPUs mediante CUDA): CuDNN, CuBLAS, ...
- OpenCL y ROCm (AMD) es soportado de manera experimental por algunos frameworks.

OpenCL

Hardware paralelo: TPUs

TPU = Tensor Processing Unit

Chip introducido por Google en 2016 para Deep Learning.

Especializados para acelerar cálculo tensorial (algebra lineal).

Uso desde TensorFlow y PyTorch

En fase **beta**:

- De Gigas a Tera Bytes de memoria.
- De cientos a miles de núcleos.

Disponible en Cloud: 8\$/hora

Índice

- 1. Introducción a la regularización.
- 2. Redes neuronales convolucionales.
- 3. Ejercicio 1: nuestra primera red neuronal convolucional con Keras.
- 4. Hardware para Deep Learning.
- 5. Algunas redes neuronales profundas y transferencia de aprendizaje.
- 6. Ejercicio 2: transfer learning con Keras.

Clasificación de objetos

Tareas en visión por computador

Clasificación

Clasificación y localización

Detección de objetos

Segmentación de instancias

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single objects Multiple objects

VGG

- Versión VGG16 y VGG19 (con 16 y 19 capas)
- Convolución 3x3 (con efectividad de 5x5)
- Pooling 2x2

ResNet

- Desarrollado en Microsoft Research en 2015
- Variantes: ResNet20, ResNet32, ResNet56...

Inception

- Desarrollado en Google
- Versiones: GoogLeNet (Inception v1), v2, v3, v4...

Comparativa

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Detección de objetos

Tareas en visión por computador

Clasificación

Clasificación y localización

Detección de objetos

Segmentación de instancias

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single objects Multiple objects

R-CNN

- •R-CNN (2014): familia de modelos creados en Microsoft Research
- •Fast R-CNN (2015)
- Faster R-CNN (2016)
- •MASK R-CNN (segmentación de regiones)

R-CNN: Regions with CNN features

warped region

1. Input image

2. Extract region proposals (~2k)

4. Classify regions

→ person? yes.

aeroplane? no.

YOLO (You Only Look Once, 2015)

•Más rápido que los R-CNN (hasta tiempo real), pero menos preciso

WEBINAR DEEP LEARNING II 42

Transfer Learning en Deep Learning Convolutional Neural Network

Ejemplo: Tag extraction

(extracción de etiquetas)

Extracción (automática) de etiquetas de películas:

- Metadatos imprecisos generado por humanos
- Extracción de información saliente usando machine learning
- Semántica de "alto nivel"

Idea: selección de etiquetas clave, representando el tema general

Diferente a la mayoría de tareas de reconocimiento de objetos o escenas:

- No nos interesa si en un vídeo aparece una escopeta
- · Nos interesa saber si el video es de violencia, acción, etc.

Object detection: 2 cars vs

Movie tag: car chase

Diseño conceptual

Problemática:

- No existe un dataset para etiquetas
- Confección de uno desde cero y de forma manual
- No disponíamos de recursos computacionales ni de mucho tiempo (beca posdoctoral).

Solución: Transfer Learning para Fixed Feature Extractor

- Necesitamos un dataset "mediano"
- Inception-v3: Eliminada última capa, y añadida una de Dropout, ReLu y Softmax.

Conjunto de datos

- Vocabulario 50 etiquetas (con solapamiento)
- 700 imágenes/etiqueta

Bomb explosion	Car chase
Sword fight	Vehicle crash
Abduction	Heist
Animal	Beach/Sea
Desert	Hiking
Valleys/Hills	Children
Club/Bar	Dance
Wedding	College/Univ.
Drinking	Food
Exercise	Sports
Glamor/Fashion	Nudity
Sex	Horror
Murder	Lab Experiment
Super hero	Technology
Military	Police
War	Weapon
Drama	•
	Sword fight Abduction Animal Desert Valleys/Hills Club/Bar Wedding Drinking Exercise Glamor/Fashion Sex Murder Super hero Military War

Resultados en fotogramas individuales

Military, action, weapon, war

Violence, destruction, bomb explosion, action, car crash

Sex, nudity, romance, modeling

Hiking, adventure, nature, forest, valleys, hills, climbing

Sci-fi, super hero, robot, action

Violence, sci-fi, action, horror

Experimentación

Problemática:

No hay un ground truth, o marco de referencia

Realización de 3 experimentos subjetivos:

- Llevados a cabo en el cine del Fraunhofer IIS
- Muestra de 10 tráilers de películas
- 10 voluntarios distintos en cada uno

Experiments:

- Tags rating: Mean Opinion Score of 84.3%
- Tags rating w.r.t. relevancy and strength: Mean Opinion Score of 77.8%
- Tags matching (used as ground truth): F1 Score = 0.75%

Experimentación (tráiler vs película completa)

- Trailer duration: 2 min, 26 sec, Processing time: 17sec
- Full length movie duration: 1 hr, 24 min, Processing time: 10 min

Índice

- 1. Introducción a la regularización.
- 2. Redes neuronales convolucionales.
- 3. Ejercicio 1: nuestra primera red neuronal convolucional con Keras.
- 4. Hardware para Deep Learning.
- 5. Algunas redes neuronales profundas y transferencia de aprendizaje.
- 6. Ejercicio 2: transfer learning con Keras.

Fin... por ahora...

WEBINAR DEEP LEARNING II 5

Stay tuned

- Ponerte en contacto con IEEESBUS: <u>ieeesbus@gmail.com</u>
- Listas de distribución interesantes:
 - GPU computing en la US: https://listasvol.us.es/mailman/listinfo/gpucomputing
 - IA+ML en la US: https://listas.us.es/mailman/listinfo/iaml
- Mismos recursos que en la sesión 1