Procesamiento de imágenes

Técnicas de realce de imágenes

Técnicas de realce de imágenes

 Las imágenes digitalizadas no presentan siempre una calidad adecuada para su utilización, ello puede ser debido a una pobre calidad de la imagen original o a que el procedimiento de digitalización no ha sido el adecuado.

Semitonos

- Una fotografía en blanco y negro es una imagen que contiene una gran cantidad de tonos de grises que forman una gama continua.
- Una fotografía en color está formada por una gran cantidad de tonos de color.
- En ambos casos el número de niveles de gama es casi infinita formando un tono continuo.

Semitonos

- En la industria editorial se utiliza la técnica de los semitonos para evitar el manejo de casi-infinitas escalas de color o grises.
- El procedimiento consiste en la utilización de patrones de puntos en la construcción de imágenes en las que se crea la ilusión de continuidad de los tonos.

Semitonos

 En el proceso de semitonos, los puntos varían en tamaño de acuerdo a su valor de gris o de color. A gris mas oscuro mayor tamaño del punto.

Semitonos

- Niveles de precisión:
 - Los periódicos presentan 65 líneas por pulgada.
 - Las revistas 120-135 líneas por pulgada.
 - Los libros de arte 200 o más.
- El número de líneas condiciona el tamaño del punto y por tanto un grado de granularidad mas fino.

Semitonos (ejemplo)

pedigreed animals are any better

Fig. 57.—A cow of great producing apacity. The profits from such a low are much larger than from those low production.

300 dpi 1-bit, utilizando semitonos

pedigreed animals are any better

Fig. 57.—A cow of great producing capacity. The profits from such a cow are much larger than from those of low production.

600 dpi 1-bit, utilizando semitonos

pedigreed animals are any better

Fig. 57.—A cow of great producing capacity. The profits from such a cow are much larger than from those of low production.

600 dpi 1-bit, sin utilizar semitonos

Dithering

- Aunque las impresoras láser pueden imprimir hasta 1.200 puntos por pulgada, sin embargo el tamaño del punto es fijo, esto es un problema para representar imágenes en Semitono.
- Los escáner utilizan grupos de píxeles en diferentes patrones para aproximar patrones de semitono. Este proceso se llama Dithering.

Dithering

 El Dithering se utiliza para aproximar escalas de grises mediante la variación del número de puntos impresos o mostrados en un monitor.
 Así las áreas mas oscuras se representan por mas puntos negros y las mas claras por menos puntos negros.

Dithering (ejemplo)

Dithering (ejemplo)

Lena Sjööblom Play Girl 1972

Otros mecanismos de realce de imágenes

- **Brillo**: Su control permite cambiar el nivel de brillo general de la imagen.
- **Deskew**: Permite corregir los fallos de alineamiento de página entre 2 y 5 grados.
- **Contraste**: Permite que partes que no son muy visibles o muy oscuras puedan visualizarse correctamente.
- Afilamiento: Permite realzar mediante el cambio de píxeles de negro a blanco: líneas, bordes, etc.
- Énfasis: Permite destacar o reducir los tonos medios.

Operaciones sobre un punto

 Operaciones donde el nivel de gris dado u[0,L] se mapea en un nivel de gris v[0,L] de acuerdo con una transformación:

$$v = f(u)$$

Operaciones sobre un punto

- Mejora del contraste
 - $-\alpha u \rightarrow 0 = < u < a$
 - $\begin{array}{ll}
 & \beta (u a) + v_a \rightarrow \\
 a = < u < b
 \end{array}$
 - $-\gamma (u-b) + v_b \rightarrow b = < u < L$
- · Definiciones:
 - Zona oscura
 - $\alpha = 1$, a = L/3
 - Zona mediaβ>1 b=2L/3
 - Zona brillante
 - γ = 1

Operaciones sobre un punto

- Umbralización
 - Cuando $\alpha = \gamma = 0$

Operaciones espaciales

- Se efectúan teniendo en cuenta a los puntos vecinos.
- Ejemplos:
 - Promediado espacial: Cada píxel se sustituye por un promedio de sus píxeles vecinos.
 - Suavizado direccional: Para proteger a los bordes de la difuminación.
 - Filtrado por la mediana.
 - Filtros paso-bajo, paso-alto y paso-banda.

Promediado espacial

 Relación entre píxeles y máscara de convolución

P1	P2	P3	
P4	P5	P6	
P7	P8	P9	

A11	A12	A13	
A21	A22	23	
A31	A32	A33	

P5' = P1A11+P2A12+P3A13+.....+P9A33

Suavizado direccional

media

 Procedimiento para el suavizado de imágenes reduciendo la variación de intensidad entre un píxel y el siguiente. Se utiliza para reducir el ruido en las imágenes

<u>1</u>	<u>1</u>	<u>1</u>
9	9	9
<u>1</u>	<u>1</u>	<u>1</u>
9	9	9
19	19	<u>1</u> 9

Filtrado por la mediana

Píxeles originales {2, 3, 8, 4, 2}

Ventana {-1, 0, 1}

Mediana de $\{2, 3, 8\} = 3$

Mediana de $\{3, 8, 4\} = 4$

Mediana de $\{8, 4, 2\} = 4$

Píxeles transformados {2, 3, 4, 4, 2}

MEDIANA

 Se utiliza para reducir ruido en una imagen, igual que en el caso del filtrado por la media. Sin embargo suele funcionar mejor ya que conserva detalles significativos de la imagen.

 123	125	126	130	140	
 122	124	126	127	135	
 118	120	150	125	134	
 119	115	119	123	133	
 111	116	110	120	130	

Neighbourhood values:

115, 119, 120, 123, 124, 125, 126, 127, 150

Median value: 124

Laplaciano

- El filtro Laplaciano es una medida 2-D isotrópica de la 2nd derivada espacial de una imagen. El Laplaciano de una imagen destaca las regiones donde hay cambios bruscos de intensidad y por tanto se suele utilizar para detección de bordes.
- El Laplaciano se aplica frecuentemente a una imagen que previamente ha sido suavizada mediante un filtro Gaussiano de suavizado, con el fin de reducir su sensibilidad al ruido.

Máscaras Laplacianas

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

-1	2	-1
2	-4	2
-1	2	-1

Detección de líneas

HORIZONTAL

VERTICAL

+450

-45°

Traslación imágenes

 Transformación geométrica que mapea la posición de cada píxel de la imagen de entrada a una nueva posición en la imagen de salida.

Traslación de imágenes

- Píxel de entrada (x, y)
- Píxel de salida (x', y') = (x +T_x, y +T_y)
- En forma matricial:

Traslación de imágenes

- Ejemplo:
 - Trasladar el punto de coordenada (5, 2) → (x=5, y=2), 8 unidades en dirección x y 0 unidades en dirección y → (Tx=8, Ty=0)

Escalado de imágenes

- Transformación geométrica utilizada para comprimir o agrandar el tamaño de una imagen (o parte de una imagen).
 - La reducción de la imagen, se conoce comúnmente como submuestreo, se lleva a cabo reemplazando un grupo de valores de píxeles por un píxel escogido de forma arbitraria de entre los que forman parte de ese grupo o por interpolación entre valores de píxeles vecinos.
 - El agrandamiento de la imagen (zooming) se alcanza por replicación de píxeles o por interpolación.

Ejemplos de filtros

 http://members.optusnet.com.au/wardead/ filters/

Traslación imágenes

 Transformación geométrica que mapea la posición de cada píxel de la imagen de entrada a una nueva posición en la imagen de salida.

Traslación de imágenes

- Píxel de entrada (x, y)
- Píxel de salida (x', y') = (x +T_x, y +T_y)
- En forma matricial:

Traslación de imágenes

- Ejemplo:
 - Trasladar el punto de coordenada (5, 2) → (x=5, y=2), 8 unidades en dirección x y 0 unidades en dirección y → (Tx=8, Ty=0)

Escalado de imágenes

- Transformación geométrica utilizada para comprimir o agrandar el tamaño de una imagen (o parte de una imagen).
 - La reducción de la imagen, se conoce comúnmente como submuestreo, se lleva a cabo reemplazando un grupo de valores de píxeles por un píxel escogido de forma arbitraria de entre los que forman parte de ese grupo o por interpolación entre valores de píxeles vecinos.
 - El agrandamiento de la imagen (zooming) se alcanza por replicación de píxeles o por interpolación.

Escalado sobre puntos

- Píxel de entrada (x, y)
- Píxel de salida $(x', y') = (S_x x, S_y y)$
- En forma matricial:

Escalado sobre puntos

- Ejemplo:
 - Escalar el rectángulo de coordenadas (0,0)
 (2,0) (2,2) (0,2) utilizando como factores de escala (Sx = 2, Sy = 3).
 - En el caso de la coordenada (2, 2)

Rotación

 Transformación geométrica la cual mapea la posición de un píxel de una imagen de entrada en una posición a una imagen de salida por rotación de la misma a través de un ángulo especificado por el usuario y un origen.

Rotación

• En representación matricial:

Rotación

- Ejemplo:
 - Rotar el rectángulo de coordenadas (0,0) (2,0) (2,0) (2,2) (0,2) mediante un ángulo de 60°

$$\begin{vmatrix} 0.5 & 0.867 & 0 \\ -0.867 & 0.5 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (-0.734, 2.374, 1)$$

Concatenación de transformaciones

```
        Cos R
        Sen R
        0

        - Sen R
        Cos R
        0

        Tx . Cos R - Ty . Sen R
        Tx . sen R + Ty . Cos R
        1
```