COMPUTAÇÃO GRÁFICA E REALIDADE VIRTUAL

Equalização

Prof. Dr. Fernando Kakugawa

fernando.kakugawa@animaeducacao.com.br

Histogramas Delibidididididididididi

 O histograma de uma imagem em tons de cinza é uma função H(k) que produz o número de ocorrências de cada nível de cinza na imagem.

$$0 \le k \le L - 1$$

L é o número de níveis de cinza da imagem.

Equalização do histograma:

- a) Gráfico de um arquivo pdf qualquer;
- b) Resultado de uma transformação para todos os níveis de r intensidade de cinza
 - As intensidades resultantes s, geram um pdf uniforme, independente da forma do pdf

Equalização do histograma

- Aumentar o contraste geral na Imagem espalhando a distribuição de níveis de cinza.
- Exemplo:
 - Dada uma imagem de n x m pixels e g níveis de cinza.
 - Quantidade ideal de pixels em cada nível $\rightarrow I = (n \times m)/g$

Exemplo

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

(b)

a) Imagem Original

b) Histograma original

c) Imagem Equalizada

d) Histograma Equalizado

Equalização de Histograma

Equalização de Histograma

Equalização de Histograma

A equalização pode ser obtida fazendo:

$$q = \max\left\{0, ARRED\left(\frac{\sum_{j=0}^{k} n_j}{I}\right) - 1\right\}, 0 < k < g$$

- Onde:
 - g = níveis de cinza da imagem original
 - q = níveis de cinza da imagem equalizada
 - I = nível ideal (m * n)/g
 - k = nível do pixel atual

n x m = 30 pixels \rightarrow g = 10 níveis de cinza

Exemplo

$$I = 30/10 = 3$$

g	n	Σn	q
0	0	0	0
1	3	3	0
1 2 3	9	12	3
	8	20	6
4 5	3	23	7
5	3 2 2 2	23 25 27 29 30	7
6	2	27	8
7	2	29	9
8	1	30	9
9	0	30	9

$$q = \max\left\{0, ARRED\left(\frac{\sum_{j=0}^{k} n_j}{I}\right) - 1\right\}, 0 < k < g$$

Material elaborado por:

Prof. Dr. Bruno R. N. Matheus

bruno.matheus@gmail.com

Prof. Dr. Fernando Kakugawa

fernando.kakugawa@animaeducacao.com.br

