

STH275N8F7-2AG, STH275N8F7-6AG

Automotive-grade N-channel 80 V, 1.7 mΩ typ., 180 A, STripFET™ F7 Power MOSFETs in H²PAK-2 and H²PAK-6

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STH275N8F7-2AG	80 V	2.1 m0	100 1
STH275N8F7-6AG	80 V	2.1 mΩ	180 A

- AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

These N-channel Power MOSFETs utilize STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STH275N8F7-2AG	07511057	H²PAK-2	Tono and roal
STH275N8F7-6AG	275N8F7	H²PAK-6	Tape and reel

Contents

1	Electric	cal ratings	3
2		cal characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	
	4.1	H ² PAK-2 package information	10
	4.2	H ² PAK-6 package information	12
	4.3	H ² PAK packing information	15
5	Revisio	n history	17

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	80	V
V_{GS}	Gate-source voltage	±20	V
In ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	180	۸
ייטו	Drain current (continuous) at T _C = 100 °C	180	A
I _{DM} ⁽²⁾	Drain current (pulsed)	720	Α
Ртот	Total dissipation at T _C = 25 °C	315	W
Eas ⁽³⁾	Single pulse avalanche energy	0.775	J
T _{stg}	Storage temperature range	55 to 175	°C
Tj	Operating junction temperature range	-55 to 175	J

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.48	900
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	35	°C/W

Notes:

⁽¹⁾ When mounted on FR-4 board of 1 inch2, 2oz Cu.

⁽¹⁾ Limited by package.

 $^{^{\}left(2\right) }$ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ Starting $T_j = 25~^{\circ}C,~I_d = 65~A,~V_{dd} = 50~V,~T_j < T_{j\text{-max}}.$

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	80			٧
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$			1	
IDSS	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V},$ $T_{C} = 125 \text{ °C} (1)$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = +20 \text{ V}$			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 90 A		1.7	2.1	mΩ

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	13600	•	
Coss	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$	-	2050	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	236	-	Pi
Qg	Total gate charge	$V_{DD} = 40 \text{ V}, I_D = 180 \text{ A},$	-	193	-	
Qgs	Gate-source charge	V _{GS} = 10 V	-	96	•	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	46	1	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 40 V, I _D = 90 A	1	56	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 18: "Switching	-	180	-	
t _{d(off)}	Turn-off delay time		-	98	-	ns
t _f	Fall time	time waveform")	-	42	-	

⁽¹⁾ Defined by design, not subject to production test.

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		180	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		720	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 90 A	-		1.2	V
t _{rr}	Reverse recovery time		-	78		ns
Qrr	Reverse recovery charge	$I_{SD} = 180 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$ $V_{DD} = 64 \text{ V}, T_i = 150 ^{\circ}\text{C}$	-	182		nC
I _{RRM}	Reverse recovery current	= 01 v, 1 _j = 100 0	-	4.7		Α

Notes:

 $^{^{\}left(1\right) }$ Pulse width limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle 1.5 %.

2.1 Electrical characteristics (curves)

Figure 4: Gate charge vs gate-source voltage

VGS
(V)
12
VDD=40V
ID=180A

10
8
6
4
2
0
0 50 100 150 200 Qg(nC)

DocID027223 Rev 4

Figure 8: Static drain-source on-resistance

RDS(on)
(mOhm)

1.74

1.72

1.70

1.66

0 20 40 60 80 100 120 140 160 180 ID(A)

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 H²PAK-2 package information

Figure 19: H²PAK-2 package outline

Table 8: H²PAK-2 package mechanical data

Dim	Tuble 6. ITT AR 2 publ	mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.70
A1	0.03		0.20
С	1.17		1.37
е	4.98		5.18
E	0.50		0.90
F	0.78		0.85
Н	10.00		10.40
H1	7.40		7.80
L	15.30	-	15.80
L1	1.27		1.40
L2	4.93		5.23
L3	6.85		7.25
L4	1.5		1.7
М	2.6		2.9
R	0.20		0.60
V	0°		8°

Figure 20: H²PAK-2 recommended footprint

4.2 H²PAK-6 package information

Figure 21: H²PAK-6 package outline

Table 9: H²PAK-6 package mechanical data

	Table 5. TH AIX 6 pack	mm	
Dim.	Min.	Тур.	Max.
A	4.30		4.70
A1	0.03		0.20
С	1.17		1.37
е	2.34	2.54	2.74
e1	4.88		5.28
e2	7.42		7.82
Е	0.45		0.60
F	0.50		0.70
Н	10.00		10.40
H1	7.40		7.80
L	14.75		15.25
L1	1.27		1.40
L2	4.35		4.95
L3	6.85		7.25
L4	1.50		1.75
М	1.90		2.50
R	0.20		0.60
V	0°		8°

Figure 22: H²PAK-6 recommended footprint 12.20 0.80 5.08 7.62

Dimensions are in mm.

footprint_Rev_8

4.3 H²PAK packing information

Figure 23: Tape outline

Figure 24: Reel outline

Table 10: Tape and reel mechanical data

	Таре			Reel		
Dim.	n	nm	Dim.	m	m	
Dim.	Min.	Max.	Dilli.	Min.	Max.	
A0	10.5	10.7	А		330	
B0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
E	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1	Base q	uantity	1000	
P2	1.9	2.1	Bulk qu	uantity	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
27-Nov-2014	1	First release.
05-Mar-2015	2	Document status promoted from preliminary to production data. Updated title and feature in cover page.
10-Mar-2016	3	Updated Table 4. Minor text changes.
10-Jan-2017	4	Updated title and features in cover page. Updated Table 2: "Absolute maximum ratings", Table 4: "On/off states" and Table 6: "Switching times". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

