$$\mathbb{R}^3$$
 $\beta = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\}$

ref $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 1 \end{pmatrix} = I$, therefore β is linearly

independent set.

$$\text{ref} \left(\frac{1}{1} \frac{3}{3} \frac{x}{3} \right) = \frac{2}{5} x + \frac{6}{5} y + \frac{7}{5}$$

$$\frac{1}{5} x - \frac{3}{5} y + \frac{2}{5} z$$

$$\frac{2 \cdot x - y - z}{5}$$

 β spans \mathbb{R}^3 : \Rightarrow \mathbb{R}^3 : span (β)

Linear independency means there is only 1 combination for which you can express a vector in IR3

$$\begin{bmatrix} 4 & \begin{vmatrix} 1 \\ 1 \end{vmatrix} & -1 \begin{vmatrix} 1 \\ 2 \end{vmatrix} & 5 \begin{vmatrix} 3 \\ 1 \\ 0 \end{vmatrix} = \begin{bmatrix} 18 \\ 4 \end{vmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 18 \\ 4 \end{vmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 18 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Thentical statements

$$|\vec{v}|_{s} = |\vec{v}|_{s} = |\vec{v}|_{s} |\vec{v}|_{s} = |\vec{v}|_{s} |\vec{$$

$$M_{2\times 2}(R)$$
 S= $\{|0|, |0|, |0|, |0|\}$

$$\frac{1}{100} = \frac{3}{5} + \frac{3}{100} = \frac{3}{100} + \frac{3}{100} + \frac{3}{100} + \frac{3}{100} + \frac{3}{100} + \frac{3}{100} = \frac{3}{100} + \frac{3}{100} = \frac{3}{100} + \frac{3}{100} = \frac{3}{1$$

$$\left| \vec{\omega} \right|_{S} = \left| \frac{3}{4} \right|_{S}$$

$$P_{2}(R)$$
 $S = \{t_{1}, t_{1}, 13\}$ The same $\hat{v} = 3t^{2} + St - 4$ $|\hat{v}|_{S} = \frac{13}{4}$

$$\sqrt[3]{3} = 3t^2 + St - 4$$

Ex:
$$\beta = \{ t^2 + t, t^2 - 1, t^2 + t + 13 \text{ basis of } \{ t \} \}$$

$$s = \{t^2, t, 1\}$$

$$\begin{bmatrix} \beta_1 \end{bmatrix}_{S} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} \hat{\beta}_2 \end{bmatrix}_{S} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} \hat{\beta}_3 \end{bmatrix}_{S} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\vec{\omega}$$
 = 7t² + 9t +8 How would we write $\frac{7}{9} = |\vec{\omega}|_{s}$ thus $\frac{1}{8} = |\vec{\omega}|_{s}$ by 5is?

How about basis
$$B$$
?

Met $\left(\begin{array}{c|cccc} B_1 & B_2 & B_3 & q \\ \hline \end{array} \right) & = & \left(\begin{array}{c|cccc} 3 & 3 & 2 \\ \hline \end{array} \right) & = & \left(\begin{array}{c|cccc} 3 & 2 & 3 \\ \hline \end{array} \right)$

Then $\left(\begin{array}{c|cccc} B_1 & B_2 & B_3 & q \\ \hline \end{array} \right) & = & \left(\begin{array}{c|cccc} 3 & 2 & 3 \\ \hline \end{array} \right)$

The rest of the lecture (so fai) is covering examples

Properties of Inear