Adding a Level-1 Predictor

PSYC 575

August 25, 2020 (updated: 29 August 2020)

Week Learning Objectives

- Explain what the ecological fallacy is
- Use cluster-mean/group-mean centering to decompose the effect of a lv-1 predictor
- Define contextual effects
- Explain the concept of random slopes
- Analyze and interpret cross-level interaction effects

Adding Level-1 Predictors

- E.g., student's SES
- Both predictor (ses) and outcome (mathach) are at level 1
- OLS still has Type I error inflation problem
 - Unless ICC = 0 for the predictor
- MLM can answer additional research questions
 - Within-Between effects and contextual effects
 - Random (varying) slopes
 - Cross-level interactions

Research Questions

- Does math achievement vary across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?
- Do students with higher SES have higher math achievement? Is the relation similar at the individual and cluster levels? Is this relation similar across schools?
- Is the relation between SES and math achievement moderated by some types of schools (e.g., Catholic vs. Public, high mean SES vs low mean SES)?

The Same Predictor?

- Is it different to use MEANSES vs. SES as predictor?
 - MEANSES → MATHACH is positive
 - $\gamma_{01} = 5.72$ (*SE* = 0.18)
- Should the coefficient be the same with SES?

Ecological Fallacy

Ecological Fallacy

- Robinson's paradox (% immigrant and % illiterate)
- Errors in assuming that relationships at one level are the same moving to another level
- Failure to account for the clustering structure
 - → <u>Misleading results</u>

"Same" Predictor, Different Effects

• Example: Exercise and blood pressure

"Same" Predictor, Different Effects

• Example: Big-Fish-Little-Pond Effect (Marsh & Parker, 1984)

Overall Effect

Within & Between Effects

Within & Contextual Effects

Never simply include a level-1 predictor

Unless it has the same values for every cluster

Two Approaches

- Both involves computing the cluster means
 - E.g., ses → meanses
- 1. Cluster-mean centered (cmc) variable + cluster mean
 - Between-within method
 - Decompose into between-within effects
- 2. Raw/uncentered predictor + cluster mean
 - Study contextual effects (i.e., between minus within)

mathach vs. ses

Decomposing Into Lv-2 and Lv-1 Components

Group-mean centering

Between-Within Decomposition

- Lv 1: $\operatorname{mathach}_{ij} = \beta_{0j} + \beta_{1j} \operatorname{ses_cmc}_{ij} + e_{ij}$
- Lv 2: $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + u_{0j}$ $\beta_{1j} = \gamma_{10}$
- Combined: mathach_{ij} = $\gamma_{00} + \gamma_{01}$ meanses_j + γ_{10} ses_cmc_{ij} + $u_{0j} + e_{ii}$

Student-level Effect School-level Effect


```
># Linear mixed model fit by REML ['lmerMod']
># Formula: mathach ~ meanses + ses_cmc + (1 | id)
     Data: hsball
>#
># Fixed effects:
               Estimate Std. Error t value
>#
># (Intercept)
                12.6481
                            0.1494
                                     84.68
                 5.8662
                            0.3617
                                      16.22
># meanses
># ses_cmc
                 2.1912
                            0.1087
                                      20.16
```

The student-level effect is 2.19
The school-level effect is 5.87

Visualizing the Difference

Interpret the Coefficients

- Student A
 - From a school of average SES
 - SES level at the school mean
 - → ses = ____, meanses = ___, ses_cmc = ___
- Predicted mathach = ___ + __ (___) + ___ (___)
 = ___

Interpret the Coefficients

- Student B
 - From a school of average SES
 - SES level 1 unit higher than the school mean
 - → meanses = ___, ses_cmc = ___
- Predicted mathach = ___ + __ (___) + ___ (___)
 = ___

Interpret the Coefficients (Cont'd)

- Student C
 - From a high SES school (one unit higher than average)
 - SES level 1 unit below the school mean
 - → meanses = ___, ses_cmc = ___
- Predicted mathach = ___ + __ (__) + __ (__) = ___

Contextual Effects

Contextual Effect¹

- γ_{01} γ_{10} = 5.87 2.19 = 3.68
- Effect of School SES (context) on individuals:
 - Expected difference in achievement between two students with same SES, but from schools with a 1 unit difference in meanses

```
># Linear mixed model fit by REML ['lmerMod']
># Formula: mathach ~ meanses + ses + (1 | id)
     Data: hsball
>#
># Fixed effects:
              Estimate Std. Error t value
>#
># (Intercept)
                12.6613
                           0.1494 84.763
                 3.6750
                           0.3777 9.731
># meanses
># ses
                2.1912
                           0.1087 20.164
```

The student-level effect is 2.19; the contextual effect

$$= 3.68 = 5.87 - 2.19$$

Random Slopes/Random Coefficients

Research Questions

- Does math achievement varies across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?
- Do students with higher SES have higher math achievement? Is the relation similar at the individual and cluster levels? Is this relation similar across schools?
- Is the relation between SES and math achievement moderated by some types of schools (e.g., Catholic vs. Public, high mean SES vs low mean SES)?

Varying Regression Lines

- Decomposing effect model
 - Assumes constant slope across schools for ses → mathach
- Instead, one can investigate whether that relation changes across schools

Let's Focus on One School

Multi-Level Model (MLM)

• School 1: mathach_{i1} = $\beta_{01} + \beta_{11} ses_{i1} + e_{i1}$

Consider a Second School

Consider a Third School

• School 3: mathach₁₃ = $\beta_{03} + \beta_{13} ses_{13} + e_{13}$

Combining All Schools

Combining All Schools

• mathach_{ij} = $\beta_{0j} + \beta_{1j} ses_{ij} + e_{ij} (j = 1, 2, ..., 160)$

Combining All Schools

Random-Coefficient Model

- Lv 1:
 - mathach_{ij} = $\beta_{0j} + \beta_{1j} \operatorname{ses_cmc}_{ij} + e_{ij}$
- Lv 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + u_{0j}$
 - $\beta_{1j} = \gamma_{10} + u_{1j}$
- Combined:
 - mathach_{ij} = $\gamma_{00} + \gamma_{01}$ meanses_j + γ_{10} ses_cmc_{ij} + u_{0j} + u_{1j} ses_cmc_{ij} + e_{ij}

Deviation of school j's slope from the average

Average slope of SES

Centering

- Raudenbush & Bryk (2002) noted that <u>slope variance</u> were <u>better estimated with cluster mean centering</u>
 - However, Snijders & Bosker (5.3.1) suggested it should be based on theory
- Remember to add the cluster means
- See also consult Enders & Tofighi (2007)¹

Path Diagram

Variance Components

No random intercepts $Var(u_{0j}) = \tau_0^2 = 0$

$$Var(u_{0i}) = \tau_0^2 = 0$$

No random slopes
$$Var(u_{1,j}) = \tau_1^2 = 0$$

Full Equations

$$\begin{aligned} \text{mathach}_{ij} &= \gamma_{00} + \gamma_{01} \text{meanses}_j + \gamma_{10} \text{ses_cmc}_{ij} \\ &+ u_{0j} + u_{1j} \text{ses_cmc}_{ij} + e_{ij} \end{aligned}$$

$$\begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_0^2 & \tau_{01} \\ \tau_{01} & \tau_1^2 \end{bmatrix} \right)$$

$$e_{ij} \sim N(0, \sigma)$$

Look at the SEs of Fixed Effects

SE = 0.109 when random slopes not included

→ underestimated

Random Effect Estimates

```
Random effects:
Groups
                     Variance Std.Dev. Corr
         Name
         (Intercept)
id
                     2.6931
                              1.6411
                     0.6858
         ses_cmc
                              0.8282
                                      -0.19
Residual
                     36.7132
                              6.0591
Number of obs: 7185, groups: id, 160
```

τ₀² = 2.69 = variance of intercepts
 τ₁² = 0.69 = slope

Interpreting Random Slopes

- Average slope = γ_{10} = 2.19
- *SD* of slopes = τ_1 = 0.83
- 68% Plausible range

•
$$\gamma_{10}$$
 +/- τ_1 = [γ_{10} - τ_1 , γ_{10} + τ_1] = [_____, ___]

For majority of schools, SES and achievement are positively associated, with regression coefficients between and

Visualize the Varying Slopes

Cross-Level Interaction

Research Questions

- Does math achievement vary across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?
- Do students with higher SES have higher math achievement? Is the relation similar at the individual and cluster levels? Is this relation similar across schools?
- Is the relation between SES and math achievement moderated by some types of schools (e.g., <u>Catholic vs. Public</u>, high mean SES vs low mean SES)?

Cross-Level Interaction

- Whether school-level variables <u>moderate</u> student-level relationships between variables
- Also called an <u>intercepts and slopes-as-outcomes model</u>
- Let's add another school-level variable: sector
 - 1 = Catholic (n = 70), 0 = Public (n = 90)

Model Equations

- Lv 1:
 - mathach_{ij} = $\beta_{0j} + \beta_{1j} \operatorname{ses_cmc}_{ij} + e_{ij}$
- Lv 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + \gamma_{02} \text{ sector}_j + u_{0j}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} \operatorname{sector}_j + u_{1j}$
- Combined:
 - mathach_{ij} = $\gamma_{00} + \gamma_{01}$ meanses_j + γ_{10} ses_cmc_{ij} + γ_{02} sector_j + γ_{11} sector_j × ses_cmc_{ij} + $u_{0j} + u_{1j}$ ses_cmc_{ij} + e_{ij}

Main Effect of SECTOR

Cross-level product (interaction) term

Model Equations (cont'd)

- Lv 1:
 - mathach_{ij} = $\beta_{0j} + \beta_{1j} \operatorname{ses_cmc}_{ij} + e_{ij}$
- Lv 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + \gamma_{02} \text{ sector}_j + \underline{u}_{0j}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} \operatorname{sector}_{j} + u_{1j}$
- Combined:
 - mathach_{ij} = $\gamma_{00} + \gamma_{01}$ meanses_j + γ_{10} ses_cmc_{ij} + γ_{02} sector_j + γ_{11} sector_j × ses_cmc_{ij} + $\nu_{0j} + \nu_{1j}$ ses_cmc_{ij} + e_{ij}

Deviation of intercept for School *j*

Deviation of slope for School *j*

Path Diagram

$$\begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_0^2 & \tau_{01} \\ \tau_{01} & \tau_1^2 \end{bmatrix} \end{pmatrix}$$

$$e_{ij} \sim N(0, \sigma)$$

Fixed Effect Estimates

Fixed effects:

```
(Intercept)
meanses
sectorCatholic
ses_cmc
sectorCatholic:ses_cmc
```

```
Estimate Std. Error t value
 12.0846
             0.1987
                       60.81
  5.2450
             0.3682
                       14,24
  1.2523
             0.3062
                        4.09
  2.7877
             0.1559
                       17.89
 -1.3478
             0.2348
                       -5.74
```

Average slope for SES is estimated as 2.79 for Public schools (i.e., sector = 0)

Average slope for SES is estimated as 2.79 – 1.35 = 1.44 for Catholic schools (i.e., sector = 1)

Plot the Interaction

Things to Remember

- A level-1 predictor can have <u>differential relationships</u> with the outcome, depending on the level of analysis
 - Ecological fallacy: assume constant relationship across levels
- Cluster/group-mean centering: decompose a level-1 predictor into its <u>cluster means</u> and <u>deviations from the</u> cluster means
- MLM provides a way to efficiently model variability of regression lines (i.e., <u>intercepts</u> and <u>slopes</u>) across clusters
 - Through the use of random slopes/coefficients
- Cross-level interaction
 - = Including a lv-2 predictor in the slope equation