





## VISUALIZACIÓN DE DATOS en R con ggplot2











## Hoy hablamos sobre...

#### PARTE 1:

De qué hablamos cuando hablamos de visualización de datos?

¿Qué es la visualización de datos? ¿Para qué visualizamos? Importancia de la visualización dentro del proceso de la ciencia de datos Cualidades de una buena visualización

#### Representando mis datos

Componentes visuales: ¿Cuáles son los ingredientes de una visualización? Visualizando con claridad

#### • Un recorrido por los gráficos más típicamente utilizados

Gráficos para representar: cantidad, distribución, relación y dispersión. Gráficos elementales: Bar chart- Line Plot - Scatter Plot- Density Plot.



### Hoy hablamos sobre...

#### PARTE 2:

#### • El paquete ggplot2

El paquete ggplot2 y la gramática de gráficos en capas Capas de un gráfico Sintaxis - ¿Cómo hacer un gráfico paso a paso?









#### Por dónde empiezo?

Comunidades de aprendizaje: #Rladies #R4DSEs #DatosdemierRcoles ¿Cómo Participo?

#### Hands-on con ggplot2

Practicamos con los datasets de Gapminder y Propina





Parte 1
¿De qué hablamos
cuando hablamos de
visualización de datos?



Podemos entender a la visualización como un medio que puede ser usado como una herramienta y a la vez como una forma de expresar datos.



# El mundo real Datos Interpretación





# **Ejemplos**



#### Pizza Places of the Five Boroughs Shown on this map are the roads and the pizza places of the Five Boroughs of New York City. Pizza places are distinct locations almagamated from the DataFiniti and Barstool datasets, and a represented by purple dots. Manhattan is the most represented borough in the dataset, unsurprising given the relative population, and it being the home of the Teenage Mutant Ninja Turtles. The map style of plotting the colored roads were inspired by Erin Davis (erdavis1 on github), and her series of circular maps of World Cities. Data: DataFiniti, Barstool, US Census Shapefiles Graphic: @jakekaupp Legend Street



#### Working to Two Sigma: Student Teacher Ratios Improving Since the 1970s

Illustrated below is the average student to teacher ratio across each continent (left column) and region (right column). Continent and region assigned from iso3c coding of country name and are consistent with the World Bank Dvelopment Indicators.





WOMEN IN DATA SCIENCE

# ¿Y Para qué visualizamos?

Para expresar y transmitir el significado de los datos de manera precisa, clara, atractiva, imaginativa, bella y confiable con el objetivo de informar al público, a nuestro público.





# La **visualización** dentro del esquema de trabajo en **ciencia de datos**



WOMEN IN DATA SCIENCE

Una imagen vale más que mil palabras pero...

#### Cualidades de una buena visualización

Las cinco cualidades de una visualización memorable:

- Que sea agradable a la vista
- Que sea funcional
- Que muestre hallazgos
- Que está basada en datos confiables, es decir, que

transmita la verdad



#### Expectativa de vida de Argentina y países limítrofes











Representando mis datos





# ¿Cuáles son los **ingredientes** de una **visualización**?

 Cada visualización se construye sobre datos y cuatro componentes:





# ¿Cuáles son los ingredientes de una visualización?

#### 1. Señales visuales +

Involucran la codificación de datos mediante:

- Formas
- Tamaños
- Colores, etc.





## 1. Señales visuales









## 1. Señales visuales











# ¿Cuáles son los ingredientes de una visualización?

1. Señales visuales +

2. Sistemas de coordenadas +



### 2. Sistemas de coordenadas







# ¿Cuáles son los ingredientes de una visualización?

1. Señales visuales +

2. Sistemas de coordenadas +

3. Escalas +



#### 3. Escalas





# ¿Cuáles son los ingredientes de una visualización?

1. Señales visuales +

2. Sistemas de coordenadas +

3. Escalas +

4. Contexto



### ¿Qué sucede si unimos todos los ingredientes?







Visualizando con **claridad** 



"When you use graphics to present results to other people, you must make your graphics readable to those who don't know your data as well as you do."

#### Visualizando con claridad





#### Recursos que favorecen la interpretación de los gráficos

- Jerarquía en la visualización
- Resaltado de la información más importante
- Anotaciones: brindando contexto a los datos
- Medidas estadísticas: media, quartiles, etc.
- Color





Recorrido por los gráficos más típicamente utilizados

# Tipos de gráficos

- Cantidad
- Distribución
- Proporción
- Relación entre 'x' e 'y'
- Dispersión
- Datos geoespaciales









## Cantidad (una variable)



# BARS

#### Gráfico de puntos





## Cantidad (múltiples variables)

Gráfico de barras agrupadas



Gráfico de barras apiladas



Mapa de calor





# Distribución Simple

Histograma



#### Gráfico de Densidad





# Distribución Múltiple









## Distribución Múltiple









## Proporción (una variable)

Gráfico de torta



#### Gráfico de barras





### Proporción (múltiples variables)

Múltiples gráficos de torta



Gráfico de barras



Densidades apiladas





## Proporción (múltiples variables)

Gráfico de Mosaico



Mapa de árboles



Diagrama de sankey





### Relación entre 'x' e 'y' ( una variable)





#### Scatterplot conectado



#### Gráfico dispersión





#### Relación entre más de una variable





#### Gráfico de líneas



#### Gráfico de correlación





## Dispersión

Gráfico de burbujas



Gráfico de dispersión



Gráfico de líneas suavizada





## Datos geoespaciales













## Parte 2







## El paquete ggplot2



ggplot2 es uno de los más populares para visualización de datos dentro de la comunidad R.

Fue desarrollado por Hadley Wickham (2008) y está basado en la gramática de gráficos en capas.

Es parte de un conjunto de paquetes que tiene foco en la ciencia de datos llamado **Tidyverse**.



# Gramática de gráficos en capas o layered grammar of graphics

La Gramática de gráficos en capas (basada en "The Grammar of Graphics" by Wilkinson, Anand, and Grossman) nos permite conocer:

- ¿Qué es un gráfico?
- ¿Cuáles son los componentes de un gráfico?
- Cómo describir y crear un gráfico?





## ¿Qué hay detrás de un gráfico?

#### Crecimiento económico y esperanza de vida

Los puntos se representan por año-país





## ¿Qué hay atrás de cada gráfico?

- ✓ Cada **observación** está representada con un **punto**, cuya posición está dada por **dos variables** (posición horizontal y vertical).
- ✓ Cada punto tiene tamaño y color, estos atributos son denominados elementos estéticos o aes.
- ✓ Los aes son propiedades que pueden ser percibidas en el gráfico.
- Cada **aes** puede ser mapeado a una variable o fijado en un valor constante.











#### Sintaxis de ggplot2

```
P <- ggplot (data= <DATOS>,
mapping = aes( <MAPEOS>)) +
```

```
< FUNCTION_GEOM> (
mapping = aes( <MAPEOS>),
stat = < STAT>,
position = <POSITION>) +
```

```
<ESCALAS> +
<COORDENADAS> +
<ETIQUETAS>
<FACETAS> +
<TEMAS>
```



## Todo objeto de ggplot2 tiene al menos 3 componentes principales:

- Datos (data)
   nuestro set de datos.
- 2. Atributos o elementos estéticos (aes)

un conjunto de mapeos estéticos entre las variables de nuestro set de datos y las propiedades visuales (color, tamaño, forma, etc.)

- 3. Capas (layers):
- al menos una capa que describe cómo representar cada observación, usualmente creada con una función geom. Además cada capa puede tener una transformación estadística (stat), una posición y opcionalmente un conjunto de mapeos estéticos.

### Capas básicas de un gráfico

Gramática de gráficos

Función geom

Atributos estéticos

**Datos** 





### Función geom u objetos geométricos

geom\_bar()



geom\_boxplot()



· geom\_histogram()



geom\_line():



geom\_point():

```
e + geom_point(), x, y, alpha, color, fill, shape, size, stroke
```

geom\_smooth():





## Función geom u objetos geométricos

p1 <- ggplot(iris, mapping=aes(Species, Sepal.Width))

p1 + geom\_point()



p1 + geom\_boxplot()



p1 + geom\_violin()





#### **Otros Componentes**

- Escalas (Scales): mapea valores en el espacio de los datos a valores en el espacio estético (ej. color, tamaño, forma o posición).
- Sistema de coordenadas (coord): por defecto, ggplot2 utiliza coordenadas cartesianas (coord.\_cartesian).
- Facetas (facets): definen cómo se arregla el display cuando son muchos gráficos
- Temas (themes), items para mejorar el gráfico como fuente, tamaño, color, background, entre otros.

#### Sistema de coordenadas

Cartesianas



#### Polares





#### **Facetas**

#### facet\_wrap



#### Crecimiento económico y esperanza de vida



DataSource: Gapminder-Link: https://www.gapminder.org.



Source: R4DS de Hadley Wickham.

#### **Facetas**

#### facet\_grid



#### Crecimiento económico y esperanza de vida



DataSource: Gapminder- Link: https://www.gapminder.org.



#### Temas o themes

theme\_bw()



theme\_dark()



theme\_gray()





#### Veamos un ejemplo

#### Pero antes recordemos la sintaxis



```
P <- ggplot (data= <DATOS>,
            mapping = aes( <MAPEOS>)) +
          < FUNCTION_GEOM> (
          mapping = aes( <MAPEOS>),
          stat= < STAT>,
          position = < POSITION > ) +
          <ESCALAS> +
          <COORDENADAS> +
          <ETIQUETAS>
          <FACETAS> +
          <TEMAS>
```



#### 1 er Paso: datos

#### 1 DATOS ORDENADOS

 $p \leftarrow ggplot (data = paises, ...$ 

| pib_per_capita | esperanza_de_vida | poblacion | continente |
|----------------|-------------------|-----------|------------|
| 340            | 65                | 31        | Europa     |
| 227            | 51                | 200       | América    |
| 909            | 81                | 80        | Europa     |
| 126            | 40                | 20        | Asia       |



#### 2do paso: Mapeos estéticos

#### 3er paso: Función geom





## 4to paso: Coordenadas y escalas

#### 5to paso: Etiquetas y guías





#### Crecimiento económico y esperanza de vida







¿Por dónde empiezo?



## ¿Cómo visualizar y no frustrarse en el intento?

- Sé perseverante: la única manera de aprender es practicando y experimentando.
- Sé paciente contigo y con R.
- Trabaja de manera incremental, comienza por un pequeño gráfico y luego en cada iteración mejóralo.
- No estás sólo, busca una comunidad abierta e inclusiva de la que puedas aprender, ejemplo Rladies.



## ¿Cómo visualizar y no frustrarse en el intento?

 Seguí en twitter a gente de la comunidad de R que se dedica a lo que vos querés aprender.

@CedScherer

@jbkunst

@r0mymendez

@watzoever

@committedtotape







https://www.data-to-viz.com





https://cedricscherer.netlify.com/





http://jkunst.com/highcharter/





https://www.r-graph-gallery.com/





## Comunidades







#### Comunidad de aprendizaje por proyecto



"R for Data Science" en español





#### Comunidad RLadies



@RLadiesGlobal

Organización global que promueve la diversidad de género en la comunidad de R mediante meetups y mentorías en un espacio amigable y seguro.

@RLadies\_rciacte

@RLadiesCba





#### Tu turno



- 1. Sigue el tutorial en: https://www.rpubs.com/dlee8/ggplot2
- 2. En la carpeta Material existen dos archivos rmarkdown de práctica:

- Graficando barcharts
- Graficando scatterplots con Gapminder



#### Referencias:

Libros utilizados para armar el material del curso:

- R4DS de Hadley Wickham
- Data Visualization: A practical introduction de Kieran Healy
- Fundamentals of Data Visualization de Claus Wilke
- Data Points, Visualization that Means Something de Nathan Yau.
- Cookbook for R: Practical Recipes for Visualizing Data de Winston Chang.



# Gracias!

¿Alguna pregunta?

@dianadiazh

dmdh@uic.edu

