Analysis einer Variablen Musterlösung der Nachholklausur

Aufgabe 1

Gegeben sei die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_0 = 3$$
, $a_{n+1} = \sqrt{2 + a_n}$, $n \ge 0$

Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ konvergent ist, und bestimmen Sie den Grenzwert

Lösung

Wir zeigen per Induktion, dass für alle n gilt: $a_n \ge a_{n+1} \ge 2$.

Induktionsanfang: $a_0 = 3 = \sqrt{9} \ge \sqrt{2+3} = a_1$ und $a_1 = \sqrt{2+3} \ge \sqrt{2+2} = 2$. Induktionsschritt: Da $a_n \ge 2$, gilt $a_{n+1} = \sqrt{2+a_n} \ge \sqrt{2+2} = 2$. Außerdem ist $a_{n+1} = \sqrt{2+a_n} \ge \sqrt{2+a_{n-1}} = a_n$, da nach Induktionsvoraussetzung $a_n \ge a_{n-1}$.

Insgesamt haben wir also gezeigt, dass $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende, nach unten durch 2 beschränkte Folge ist, also konvergiert und einen Grenzwer $a \geq 2$ hat. Nun gilt für a:

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{2 + a_n} = \sqrt{2 + a},$$

also ist a eine Lösung der Gleichung $a^2 = 2 + a$. Mit quadratischer Ergänzung oder der Lösungsformel für quadratische Gleichungen erhalten wir $0 = a^2 - a - 2 = (a - 2)(a + 1)$, das heißt, a ist entweder -1 oder 2. Da $a \ge 2$ sein muss, folgt a = 2.

Aufgabe 2

Prüfen Sie die Konvergenz der Reihe

$$\sum_{n=1}^{\infty} \frac{2n+3}{n(n^2+3n)}.$$

Lösung

Da $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert, konvergiert die Reihe nach dem Majorantenkriterium, denn:

$$\frac{2n+3}{n(n^2+3n)} = \frac{1}{n^2} \cdot \frac{2n+3}{n+3} \le \frac{1}{n^2} \cdot \frac{2n+6}{n+3} = \frac{1}{n^2} \cdot 2 \le \frac{1}{n^2}$$

Aufgabe 3

Zeigen Sie, dass die Funktion

$$f(x) = e^{|x|} - 2$$

in \mathbb{R} genau 2 Nullstellen besitzt.

Lösung

Da f(x) = f(-x) für alle $x \in \mathbb{R}$, ist x genau dann eine Nullstelle, wenn -x eine ist. Außerdem ist $f(0) = e^0 - 2 = -1 \neq 0$, also ist 0 keine Nullstelle. Damit genügt es zu zeigen, dass f in \mathbb{R}_+ genau eine Nullstelle besitzt.

Nun ist aber für x > 0 $f(x) = e^x - 2$. Da e^x streng monoton wächst, wächst also auch f in \mathbb{R}_+ streng monoton und hat damit höchstens eine Nullstelle. Andererseits ist $f(\ln 2) = 0$.

Aufgabe 4

Gegeben sei die Funktion

$$f(x) = \frac{3}{1 - 3x^3}$$

Stellen Sie f durch eine Potenzreihe dar und bestimmen Sie den Konvergenzradius dieser Reihe.

Lösung

f ist durch eine geometrische Reihe darstellbar:

$$\frac{3}{1 - 3x^3} = 3 \cdot \frac{1}{1 - 3x^3} = 3 \cdot \sum_{n=0}^{\infty} (3x^3)^n = \sum_{n=0}^{\infty} 3 \cdot 3^n \cdot x^{3n}$$

Diese konvergiert genau dann, wenn $|3x^3| < 1$ ist, wenn also $x < \sqrt[3]{\frac{1}{3}}$ ist. Der Konvergenzradius ist daher $\sqrt[3]{\frac{1}{3}}$.

Aufgabe 5

Berechnen Sie die Ableitung von $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = (\ln(1+|x|))^2$$

Lösung

Für x > 0 ist $f'(x) = ((\ln(1+x))^2)' = 2\ln(1+x) \cdot \frac{1}{1+x} = \frac{2\ln(1+x)}{1+x}$. Für x < 0 gilt analog $f'(x) = ((\ln(1-x))^2)' = 2\ln(1-x) \cdot \frac{-1}{1-x} = \frac{-2\ln(1-x)}{1-x}$. In 0 bestimmen wir den rechts- und

linksseitigen Differentialquotienten:

$$\lim_{h \searrow 0} \frac{f(h) - f(0)}{h} = \lim_{h \searrow 0} \frac{1}{h} (\ln(1+h))^2$$

$$= \lim_{h \searrow 0} h \cdot \left(\lim_{h \searrow 0} h \frac{\ln(1+h)}{h}\right)^2 = 0 \cdot (\ln'(1))^2 = 0 \cdot 1^2 = 0$$

$$\lim_{h \nearrow 0} \frac{f(h) - f(0)}{h} = \lim_{h \nearrow 0} \frac{1}{h} (\ln(1-h))^2$$

$$= \lim_{h \nearrow 0} h \cdot \left(\lim_{h \nearrow 0} h \frac{\ln(1-h)}{h}\right)^2 = 0 \cdot (-\ln'(1))^2 = 0 \cdot (-1)^2 = 0$$

Da diese übereinstimmen, ist also f in 0 differenzierbar und f'(0) = 0.

Aufgabe 6

Gegeben sei die Funktion

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0\\ 2, & x = 0 \end{cases}$$

Für welche $x \in \mathbb{R}$ ist f differenzierbar? Geben Sie, wo existent, die Ableitung an.

Lösung

In $x \neq 0$ ist nach der Quotientenregel f differenzierbar mit:

$$f'(x) = \frac{\cos x \cdot x - \sin x}{x^2}$$

Betrachte nun die Funktion $g(x)=x-\sin x$. Es gilt g(0)=0 und $g'(x)=1-\cos x\geq 0$, also ist g monoton wachsend und in \mathbb{R}_+ nicht negativ, das heißt, für $x\geq 0$ gilt $x\geq \sin x$ und damit $\frac{\sin x}{x}\leq 1$. Damit kann nicht

$$\lim_{x \searrow 0} \frac{\sin x}{x} = 2 = f(0)$$

gelten. Folglich ist f in 0 nicht stetig und damit insbesondere nicht differenzierbar.