COMP 431

Internet Services & Protocols

HW7

Solution Sketch

Jasleen Kaur

April 23, 2020

Qn 4

- (a) Distance values:
 - » z -> y, D(x) = infinity; z -> w, D(x) = 5
 - » w -> y, D(x) = 6; w -> z, D(x) = infinity
 - $y \to y, D(x) = 4; y \to z, D(x) = 4$
- If cost(x,y) increases to 60, there will be count-to-infinity problem
 - $y \rightarrow y \rightarrow w$, $D(x) = infinity; <math>y \rightarrow z$, D(x) = 9 (y relies on w)
 - » $z \rightarrow y$, D(x) = infinity; $z \rightarrow w$, D(x) = 10 (z relies on y)
 - $w \rightarrow z$, D(x) = infinity; $w \rightarrow y$, D(x) = 11 (w relies on z)
 - » $y \rightarrow w$, D(x) = infinity; $y \rightarrow z$, D(x) = 14 (y relies on w)
 - » ... till 29th step
- **◆** Infinity

2

Qn 5

• Forwarding table:

Prefix Match	Link Interface
11111110	0
11111111 00000000	1
11111111	2
otherwise	3
Destination Address	Link Interface
254/8	0
255.0/16	1
255/8	2
otherwise	3

Qn 6

- **223.1.17.0/25**
- **◆** 223.1.17.128/26
- **223.1.17.192/26**

Qn 9

- ◆ Z can advertise routes to Y
- But Y can re-advertise those routes to X.
- ◆ Z can do nothing (using BGP alone) to prevent traffic from X transiting through Z.
 - » Z can, in theory, use filters on its data path, such that packets with source addresses coming from X are dropped at its ingress routers – but this would violate regulatory policies

