

中图分类号: TM715 文献标志码: A 文章编号: 2095-641X(2017)05-0008-04 DOI: 10.16543/j.2095-641x.electric.power.ict.2017.05.002

深度学习框架下 LSTM 网络在短期电力负荷预测中的应用

陈亮,王震,王刚

(山东鲁能软件技术有限公司,山东济南 250000)

摘要:准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了 LSTM 神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电力负荷数据进行模拟仿真,结果表明基于长短期记忆人工神经网络(Long-Short Term Memory, LSTM)的深度学习模型在短期电力负荷预测中可以有效地预测负荷变化。

关键词: 短期电力负荷预测; 长短期记忆神经网络; 张量流; 深度学习

0 引言

电力系统的主要任务是向用户提供经济、可靠、 符合电能质量标准的电能,满足社会的各类负荷需 求。由于电能难以大量存储以及电力需求时刻变化 等特点,这就要求系统发电应随时与负荷的变化动 态平衡。准确的电力负荷预测既可以保证电力供应 的稳定,减少用电成本,提高供电质量,也有助于电 力系统的健康发展。以往的负荷预测技术,多采用 诸如前馈人工神经网络、支持向量机等进行短期的 电力负荷预测[1-6],网络中没有记忆单元,缺少对时序 数据时间相关性的考虑。因此,可以在短期负荷预 测方法的基础上,考虑电力负荷的时间相关因素,将 上一时间信息衔接到当前时间的任务上构建长短期 记忆模型。本文介绍了一种基于长短期记忆人工神 经网络的深度学习模型进行短期电力负荷预测的方 法,可使调度人员更好地了解未来负荷的变化波动, 更有针对性地进行电力调度[7-8]。

基金项目: 山东省自主创新及成果转化专项项目"电力行业大数据平台的研制及产业化应用"(2014ZZCX10105-1)。

本文提出的方法首先将原始电力负荷数据进行 清洗转换,然后在张量流深度学习框架下构建基于 长短期记忆人工神经网络的预测回归模型,最后利 用该模型进行回归预测,得到下一时间窗口的负荷 变化。该方法充分发挥了负荷数据时间相关性的特 点,并结合国家电网公司某省公司实际数据,利用该 方法进行短期电力负荷预测,结果表明其具有较高 的预测精度,可以有效预测未来负荷的变化。

1 长短期记忆神经网络

长短期记忆人工神经网络(Long-Short Term Memory, LSTM)是一种改进的时间循环神经网络(Recurrent Neural Network, RNN),由 Hochreiter等提出并由 Alex Graves 进行了改良和推广^[9]。LSTM可以学习时间序列长短期依赖信息,由于神经网络中包含时间记忆单元,因此适用于处理和预测时间序列中的间隔和延迟事件。

1.1 循环神经网络

循环神经网络(RNN)是一种改进的多层感知器 网络(见图1),包括输入层、隐藏层、输出层,在隐藏 层中有输入到下一时间隐藏层的连接。按时间展开

后,可以发现当前时刻隐藏层的输入包括两部分,即 当前时刻的输入层输入和上一时刻的隐藏层输入。

图 1 循环神经网络

Fig.1 Recurrent neural network

在前向传播过程中,当前层按照网络连接及权值 对输入数据进行计算并输出到下一层,计算过程为:

$$s_{j}(t) = f\left(\sum_{i=1}^{l} x_{i}(t)v_{ji} + \sum_{h=1}^{m} s_{h}(t-1)u_{jh} + b_{j}\right)$$
 (1)

式中, $\sum_{i}^{l} x_i(t) v_{ji}$ 是在时刻t的输入层输入,

 $\sum_{h}^{m} s_h(t-1)u_{jh}$ 是在时刻 t-1 时的隐藏层输入, b_j 为偏置, $f(\cdot)$ 为映射函数, $s_i(t)$ 为 t 时刻的隐藏层输出。

循环神经网络计算过程中虽然加入了上一时刻的输入,但是随着时间的推移,后面节点对前面时间 节点的感知能力下降,即存在RNN的梯度消失问题。

1.2 长短期记忆神经网络

鉴于循环神经网络的梯度消失问题,长短期记忆神经网络在保持 RNN 网络结构的基础上重新设计了计算节点[10-12]。LSTM 的计算节点如图 2 所示。

图 2 LSTM 的计算节点

Fig.2 LSTM computational nodes

计算节点由输入门、输出门、遗忘门和 Cell 组成,其中 Cell 是计算节点核心,用以记录当前时刻状

态,其计算公式为:

$$a_c(t) = \sum_{i=1}^{I} x_i(t) w_{ic} + \sum_{k=1}^{H} b_k(t-1) w_{hc}$$
 (2)

式中, $\sum_{i}^{I} x_i(t) w_{ic}$ 是在时刻t的输入门输入,

 $\sum_{h}^{H} b_h(t-1)w_{hc}$ 是在时刻 t-1 的遗忘门输入。

同时有:

$$s_c(t) = b_{\emptyset}(t)s_c(t-1) + b_l(t)g(a_c(t))$$
 (3)

式中, $b_l(t)$ g($a_c(t)$) 是 t 时刻遗忘门 $a_c(t)$ 映射的乘积, $b_{\emptyset}(t)s_c(t-1)$ 是 t 时刻遗忘门与 t-1 时刻 Cell 状态输出的乘积, $g(\cdot)$ 为映射函数, $s_c(t)$ 是 t 时刻 Cell 的状态输出。

2 张量流深度学习框架

2.1 深度学习

深度学习[13-15](Deep Learning)的概念源于人 工神经网络,其动机在于建立模拟人脑进行分析学 习的神经网络,从而达到模仿人脑的机制来解释数 据的目的。深度学习算法突破了传统神经网络对层 数及每层节点数量的限制,其训练方法与传统神经 网络相比有很大区别。传统神经网络随机设定参数 初始值,采用 BP 算法利用梯度下降法训练网络,直 至收敛。但深度结构训练很困难,传统的对浅层有 效的方法对于深度结构并无太大作用,随机初始化 权值极易使目标函数收敛到局部极小值,且由于层 数较多,残差向前传播会丢失严重,导致梯度扩散, 因此深度学习过程中采用贪婪无监督的逐层训练方 法。即在一个深度学习设计中,每层被分开对待并 以一种贪婪方式进行训练,当前一层训练完后,新的 一层将前一层的输出作为输入并编码以用于训练, 最后在每层参数训练完后,在整个网络中利用有监 督学习进行参数微调。

2.2 张量流深度学习框架

TensorFlow 是 Google 在 2015 年 11 月 开源的深度学习人工智能框架系统,使用 TensorFlow 可以构建 Softmax 回归模型、卷积神经网络、循环神经网络、Sequence-to-Sequence 模型等深度学习模型,用以进行语音识别、图像识别、文本语义分析及偏微分方程求解等,并且可根据需要灵活构建新的分析模型,是之前所开发的深度学习基础架构 DistBelief 的改进版本。TensorFlow 使用数据流图技术来进行数

值计算。数据流图中的节点代表数值运算操作,节点节点之间的边代表多维数据张量之间的某种联系。其中,张量(Tensor)使用 N 维数组表示,流(Flow)使用基于数据流图的计算,张量流(TensorFlow)即张量从图的一端流动到另一端进行计算的过程。TensorFlow可以在多种异构设备(含有 CPU或GPU)上通过简单的 API 调用来使用其功能。

TensorFlow 的数据流图是一种对计算的抽象描述。在计算开始时,数据流图在会话中被启动,会话将图中的操作分发到各计算设备上,同时提供操作的执行方法。这些方法按照各边的计算关系计算并产生张量(Tensor)返回。TensorFlow 数据流图如图3所示,其中节点为数值计算操作,边为由 N 维数组表示的张量。

图 3 TensorFlow 数据流图 Fig.3 TensorFlow data flow diagram

对于分类函数,有:

$$f(x) = \text{ReLu}(w \cdot x + b) \tag{4}$$

式中,x为输入特征向量,w为模型权值向量,b为偏置,ReLu(\cdot)为激活函数, $f(\cdot)$ 为分类函数。

3 应用分析

按照上述方法,选取国家电网公司某网省公司 某年全年时隔半小时采样的负荷数据(即每日48个 负荷数据)共17472个样本数据集进行模型构建, 以预测电力负荷范围,并以实际负荷数据进行验证。 部分负荷数据见表1所列,数据已归一化。

表 1 不同时间的负荷数据

Tab.1 Load data at different time

	0:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5:00	5:30	6:00
1月1日	0.77	0.79	0.73	0.69	0.62	0.61	0.59	0.55	0.55	0.52	0.52	0.48
1月2日	0.65	0.64	0.60	0.58	0.54	0.52	0.51	0.51	0.52	0.53	0.54	0.52
1月3日	0.67	0.65	0.61	0.56	0.51	0.49	0.50	0.50	0.47	0.48	0.47	0.46
1月4日	0.64	0.62	0.57	0.52	0.52	0.50	0.46	0.45	0.45	0.45	0.47	0.46
1月5日	0.62	0.57	0.56	0.53	0.51	0.51	0.48	0.46	0.45	0.48	0.54	0.53

具体验证过程如下。

- 1)对负荷数据进行转换。将 17 472 个负荷数据分为 3 组,分别为训练数据集(占 80%)、验证数据集(占 10%)和测试数据集(占 10%)。
- 2)使用 TensorFlow 深度学习框架构建 LSTM 网络,并使用训练集数据对其进行训练。
 - 3)使用训练后的 LSTM 模型进行回归分析。

使用训练后的 LSTM 模型在测试数据集上进行 回归分析,测试数据拟合结果如图 5 所示,其中绿线 为测试数据,蓝线为拟合结果。计算均方误差(MSE) 为 0.004 282。可见,实际负荷变化范围与预测负荷 变化误差较小,预测结果较为准确。

图 4 拟合结果 Fig.4 Fitting results

4 结语

由于电力负荷时间序列具有非线性、时变、易干扰、观察时间有限等特点,采用传统的预测模型预测一般精度不高,实际应用效果较差。本文使用某网省电力负荷实测数据,应用 TensorFlow 深度学习框架构建长短期记忆神经网络回归预测模型,对电力负荷进行回归预测。仿真计算结果表明该方法能够较好地实现短期内的电力负荷预测,可满足实际应用需要。

参考文献:

- [1] KIARTZIS S J, ZOUMAS C E, THEOCHARIS J B, et al. Short-term load forecasting in an autonomous power system using artificial neural networks[J]. IEEE Transactions on Power Systems, 1997, 12(4): 1591-1596.
- [2] 杨奎河. 短期电力负荷的智能化预测方法研究[D]. 西安: 西安电子科技大学, 2004.
- [3] 王晨辉, 张晓亮, 梁晓传. 云计算架构下基于BP神经网络负载 预测策略的研究[J]. 电力信息与通信技术, 2016, 14(11): 46-50. WANG Chen-hui, ZHANG Xiao-liang, LIANG Xiao-chuan.

Research on load forecasting strategy based on BP neural network under cloud computing architectures[J]. Electric Power Information and Communication Technology, 2016, 14(11): 46-50.

- [4] 余向前, 路民辉, 任琳杰, 等. 基于改进型Elman神经网络的短期电力负荷预测[J]. 电力信息与通信技术, 2014, 12(2): 39-43. YU Xiang-qian, LU Min-hui, REN Lin-jie, et al. Short-term load forecast based on improved Elman neural network[J]. Electric Power Information and Communication Technology, 2014, 12(2): 39-43
- [5] 孔平, 陈亮, 马晶. 基于模糊信息粒化支持向量机的短期电力 负荷预测[J]. 电力信息与通信技术, 2016, 14(1): 11-14. KONG Ping, CHEN Liang, MA Jing. Short-term power load forecasting based on the fuzzy information granulation and SVM[J]. Electric Power Information and Communication Technology, 2016, 14(1): 11-14.
- [6] 周林, 吕厚军. 人工神经网络应用于电力系统短期负荷预测的研究[J]. 四川电力技术, 2008, 31(6): 68-72.

 ZHOU Lin, LV Hou-jun. ANN application to short term load forecasting research of power system[J]. Sichuan Electric Power Technology, 2008, 31(6): 68-72.
- [7] 石德琳. 基于神经网络的电力负荷预测研究与实现[D]. 济南: 山东大学, 2016.
- [8] 李宝玉. 基于神经网络的电力负荷预测[D]. 长沙: 湖南大学, 2013
- [9] GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Berlin: Springer, 2012.
- [10] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
- [11] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: continual prediction with lstm[J]. Neural Computation,

- 2000, 12(10): 2451-2471.
- [12] GERS F A, SCHRAUDOLPH N N, SCHMIDHUBER J. Learning precise timing with lstm recurrent networks[J]. The Journal of Machine Learning Research, 2003, 3(1): 115-143.
- [13] 孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8): 2806-2810.
 - SUN Zhi-jun, XUE Lei, XU Yang-ming, et al. Overview of deep learning[J]. Application Research of Computers, 2012, 29(8): 2806-2810.
- [14] 尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015(1): 48-59.
 - YIN Bao-cai, WANG Wen-tong, WANG Li-chun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015(1): 48-59.
- [15] 毛勇华, 桂小林, 李前, 等. 深度学习应用技术研究[J]. 计算机应用研究, 2016, 33(11): 3201-3205.
 - MAO Yong-hua, GUI Xiao-lin, LI Qian, et al. Study on application technology of deep learning[J]. Application Research of Computers, 2016, 33(11): 3201-3205.

编辑 邹海彬

收稿日期: 2017-02-09

陈亮

作者简介:

陈亮(1981-),男,山东济南人,博士,高级 工程师,从事深度学习与电力大数据分析技术 研究工作;

王震(1978-), 男, 山东济南人, 高级工程师, 从事电力大数据分析技术研究工作;

王刚(1977-),男,山东济南人,工程师,从

事电力大数据分析管理及研究工作。

Application of LSTM Networks in Short-Term Power Load Forecasting Under the Deep Learning Framework

CHEN Liang, WANG Zhen, WANG Gang (Shandong Luneng Software Technology Co., Ltd., Jinan 250000, China)

Abstract: Accurate power load forecasting can ensure the stability of power supply, reduce the cost and improve the quality of power supply. For the short-term power load forecasting, considering the time correlation of time-series data, this paper builds a LSTM neural network model based on the TensorFlow deep learning framework and applies this model in the power load time-series data regression prediction. A simulation using power load data from a province power company proves that the deep learning model based on long-short term memory neural network can effectively predicate the load change in the short-term power load forecasting.

Key words: short term power load forecasting; long-short term memory neural network; TensorFlow; deep learning