Realizing hypergroups as finite association schemes.

Jun Taek Lee Grinnell College

Mathematics and Statistics Student Seminar Grinnell, IA November 8 2016

Background

Definition (Groups)

A **group** $\langle G, * \rangle$ is a set G, closed under a binary operation *, such that the following axioms are satisfied:

- For all $a, b, c \in G$, we have (a * b) * c = a * (b * c).
- ② There is an element $e \in G$ such that for all $x \in G$, e * x = x * e = x.
- **3** Corresponding to each $a \in G$, there is an element $a' \in G$ such that a * a' = a' * a = e.

Definition (Permutation)

A **permutation of a set** A is a bijective function $\phi: A \Rightarrow A$.

Background

Theorem (Cayley's Theorem)

Every group is isomorphic to a group of permutations.

Figure: Group of moves on a Rubik's cube

Motivated the modern definition of groups. Can we extend the results?

Background

Can we extend the results?

- Groups \Rightarrow Hypergroups
- Permutations ⇒ Association Schemes

Figure: Permutations

Figure: Association Scheme

Groups \cong Group of Permutations Hypergroups $\stackrel{?}{\cong}$ Association Schemes

Hypergroups

Definition (Hypergroups)

A **hypergroup** is a set H equipped with a hyperproduct operation $*: H \times H \Rightarrow P(H) \setminus \{\emptyset\}$ defined as $p*q = \{h_i \mid \text{ for any } i \in I \subseteq H\},$ $P*Q = \{h_i \mid h_i \in p*q \text{ for any } p \in P, q \in Q\},$ $p*Q = \{h_i \mid \text{ for any } p*q \text{ for any } q \in Q\}, \text{ and } P*q = \{h_i \mid \text{ for any } p*q \text{ for any } p \in P\}, \text{ where } p, q \in H \text{ and } P, Q \in P(H).$ The following axioms must hold:

- ② There exists an element $1 \in H$ such that $p \cdot 1 = \{p\} = 1 \cdot p$ for any $p \in H$.
- **3** For each $p \in H$, there is an element $p^* \in H$ such that if $r \in pq$, then $q \in p^*r$ and $p \in rq^*$ for any $p, q, r \in H$.

Association Schemes

Definition (Association Scheme)

An **association scheme** on a set X is a set S of nonempty relations that partitions $X \times X$. We denote the association scheme by (X, S). The following axioms must hold:

- **1** $1 \in S$ where $1 = \{(x, x) : x \in X\}.$
- ② If $p \in S$, then $p^* = \{(y, x) \in X \times X : (x, y) \in p\} \in S$.
- **③** If p, q ∈ S, then $\sigma_p \sigma_q$ is a linear combination of elements in S, i.e. for all p, q, r ∈ S, there are $a_{pq}^r ∈ \mathbb{N}$ such that

$$\sigma_p \sigma_q = \sum_{r \in S} a_{pq}^r \sigma_r.$$

We refer to the number of elements in X as **order** and the number of elements in S as **rank**.

Example

- $X = \{0, 1, 2, 3, 4\}$
- $S = \{1, p, q\}$
 - $1 = \{(x, y) \in X \times X : |x -_5 y| = 0\},$
 - $p = \{(x, y) \in X \times X : |x -_5 y| = 1 \text{ or } |x -_5 y| = 4\},$
 - $q = \{(x, y) \in X \times X : 1 < |x -_5 y| < 4\}.$

	0	1	2	3	4
0	1	р	q	9 9 p 1	p
1	р	1	p	q	q
2	q	p	1	p	q
3	q	q	p	1	p
4	р	q	q	р	1

Figure: Relation Table

Figure: (X, S) graph

Example

Figure: (X, S) graph

	1	p	q
1	1	р	q
p	p	1, q	p, q
q	q	p, q	1, p

Figure: Hypermultiplication Table

Definition (Symmetric and Nonsymmetric Hypergroups)

A hypergroup H is symmetric if for all $h \in H$, $h^* = h$. If H is not symmetric, we say that H is nonsymmetric.

Structural Constants

Definition (Structural Constants)

Let (X, S) be a scheme with $x, y \in X$ and $p, q, r \in S$. If $(x, y) \in r$, there are a_{pq}^r elements $z \in X$ such that $(x, z) \in p$ and $(z, y) \in q$.

Figure: (X, S) graph

a_{xy}^z	1	p	q
11	1	0	0
1p	0	1	0
1q	0	0	1
p1	0	1	0
pp	2	0	1
pq	0	1	1
q1	0	0	1
qp	0	1	1
qq	2	1	0

Figure: Structural Constants

Structural Constants

Remark (Valency of p)

Let (X, S) be a scheme with $p \in S$. For each $x \in X$, there are exactly $a^1_{pp^*}$ elements $y \in X$ such that $(x, y) \in p$ for any $p \in S$.

Figure: (X, S) graph

a_{xy}^z	1	p	q
11	1	0	0
1p	0	1	0
1q	0	0	1
p1	0	1	0
pp	2	0	1
pq	0	1	1
q1	0	0	1
qp	0	1	1
qq	2	1	0

Figure: Structural Constants

Structural Constants

Definition (Product of Relations)

Let (X, S) be a scheme with $p, q \in S$. The product of relations is defined by

$$pq = \{r \in S : a_{pq}^r > 0\}.$$

	1	p	q
1	1	р	q
p	р	1, q	p, q
q	q	p, q	1, p

Figure: Hypermultiplication Table

a_{xy}^z	1	p	q
11	1	0	0
1p	0	1	0
1q	0	0	1
p1	0	1	0
pp	2	0	1
pq	0	1	1
q1	0	0	1
qp	0	1	1
qq	2	1	0

Association Schemes and Hypergroups

Theorem

For all association schemes (X, S), there exists a hypergroup H such that S realizes the hypermultiplication table of H.

- Axiom 1: Product of relations is associative.
- Axiom 2: Identity relation exists.
- Axiom 3: Every relation has a "star" /"inverse"

Groups of permutations on a set X determine groups Association schemes on a set X determine hypergroups

To what degree does Cayley's theorem hold for hypergroups and association schemes?

Questions

Research Questions:

- Which hypergroups can be realized as finite association schemes?
- Which hypergroups cannot be realized as finite association schemes?
 - Can they be realized as infinite association schemes?
 - If not, can we prove that they cannot be realized as infinite association schemes?

Hypergroups of rank 4:

- 139 symmetric
- 37 nonsymmetric

Questions

Research Questions:

- Which hypergroups can be realized as finite association schemes?
- Which hypergroups cannot be realized as finite association schemes?
 - Can they be realized as infinite association schemes?
 - If not, can we prove that they cannot be realized as infinite association schemes?

Hypergroups of rank 4:

- 139 symmetric
- 37 nonsymmetric

Hypergroups as Finite AS

Classification of association schemes with small vertices

(Izumi Miyamoto and Akihide Hanaki) You can see some partial result here.

rou can see some partial result <u>nere</u> .						
order	association schemes	finite groups	primitive	noncommutative	non Schurian	character tables
1	1	1	1	0	0	
2	1	1	1	0	0	
3	2	1	2	0	0	
4	4	2	1	0	0	
5	3	1	3	0	0	
6	8	2	1	1	0	1-2-10
7	4	1	4	0	0	order 3 to 10
8	21	5	1	2	0	
9	12	2	2	0	0	
10	13	2	2	2	0	j
11	4	1	4	0	0	same as Schuriar
12	<u>59</u>	5	1	12	0	order 12
13	6	1	6	0	0	same as Schuriar
14	16	2	1	2	0	1 11 16
15	25	1	3	1	1	order 14, 15
16	222	14	6	49	16	order 16
17	5	1	5	0	0	same as Schuriar
18	95	5	1	22	2	order 18
19	7	1	7	0	1	same as Schuriar
20	95	5	1	22	0	order 20
21	32	2	3	3	0	order 21
22	16	2	1	2	0	order 22
23	22	1	22	0	18	same as Schuriar
24			1	242	81	order 24

Miyamoto & Hanaki (2003) 11 as finite AS

Hypergroups not realizable as Finite AS

Theorem

Let H be a hypergroup. If $pp = \{p\}$ for any $p \in H$, H cannot be realized as a finite association scheme.

Proof: Let (X,S) be a finite scheme realizing H such that $pp=\{p\}$. Suppose $n_p=a$ where $a\in\mathbb{Z}^+$. Let $x\in X$ be arbitrary. Choose $y_1,y_2,\cdots,y_a,z\in H$ such that $(x,y_i)\in p$ for all $i\in\{1,\cdots a\}$ and $(x,z)\in p^*$. Then $(z,x)\in p$ by definition of p^* . Notice then that $(z,y_i)\in p$ for all $i\in\{1,\cdots,a\}$ since $(z,x)\in p$, $(x,y_i)\in p$ and $pp=\{p\}$. Then since $x\neq y_i$ for any $i\in\{1,\cdots,a\}$, there are a+1 vertices such that $z\in X$ paired with each such vertex is in p. Thus $n_p\geq a+1$. Since we also have that $n_p=a$, there is a contradiction. Thus n_p is not finite. Therefore, H cannot be realized as a finite association scheme.

Hypergroups not realizable as Finite AS

Theorem

Let H be a hypergroup. If $pp = \{p\}$ for any $p \in H$, H cannot be realized as a finite association scheme.

• 7 hypergroups, H, such that there exists an element $h \in H$ with $hh = \{h\}$.

Conclusion

Nonsymmetric Hypergroups of rank 4:

- 11 hypergroups as finite association schemes
- 20 hypergroups not realizable as finite association schemes
- 6 hypergroups unknown

Acknowledgements and References

Acknowledgements: I would like to thank Bingyue He '18, my MAP partner, and Professor Chris French for all the support and encouragement throughout the research project. Also, thank you to the Mathematics department for letting me speak at the Mathematics and Statistics Student Seminar.

References:

Izumi Miyamoto, Akihide Hanaki. Classification of association schemes with small vertices http://math.shinshu-u.ac.jp/ hanaki/as/ (updated July 1, 2014)