

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Parallel Computation Problems

References

- Michael J. Quinn. **Parallel Computing. Theory and Practice**. McGraw-Hill
- Albert Y. Zomaya. Parallel and Distributed Computing Handbook. McGraw-Hill
- Ian Foster. **Designing and Building Parallel Programs**. Addison-Wesley.
- Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar. Introduction to Parallel Computing, Second Edition. Addison Wesley.
- Joseph Jaja. An Introduction to Parallel Algorithm. Addison Wesley.
- Nguyễn Đức Nghĩa. **Tính toán song song.** Hà Nội 2003.

9.1 Numerical approach for dense matrix

Review

Summary of communication times of various operations discussed in Sections 4.1–4.7 on a hypercube interconnection network. The message size for each operation is m and the number of nodes is p.

Operation	Hypercube Time	B/W Requirement		
One-to-all broadcast, All-to-one reduction	$\min((t_S + t_w m) \log p, 2(t_S \log p + t_w m))$	$\Theta(1)$		
All-to-all broadcast, All-to-all reduction	$t_{S}\log p+t_{w}m(p-1)$	$\Theta(1)$		
All-reduce	$\min((t_s + t_w m) \log p, 2(t_s \log p + t_w m))$	$\Theta(1)$		
Scatter, Gather	$t_{s}\log p+t_{w}m(p-1)$	$\Theta(1)$		
All-to-all personalized	$(t_s + t_w m)(p-1)$	$\Theta(p)$		
Circular shift	$t_S + t_W m$	$\Theta(p)$		

Matrix-Vector Multiplication

- Compute: y = Ax
 - \square *y, x* are *n*x1 vectors
 - ☐ A is an nxn dense matrix
- Serial complexity: $W = O(n^2)$.
- We will consider:
 - □ 1D & 2D partitioning.

```
    procedure MAT_VECT (A, x, y)
    begin
    for i := 0 to n - 1 do
    begin
    y[i] := 0;
    for j := 0 to n - 1 do
    y[i] := y[i] + A[i, j] × x[j];
    endfor;
    end MAT_VECT
```


Row-wise 1D Partitioning

How do we perform the operation?

Row-wise 1D Partitioning

Each processor needs to have the entire x vector.

All-to-all broadcast

(b) Distribution of the full vector among all the processes by all-to-all broadcast

Local computations

(c) Entire vector distributed to each process after the broadcast

Analysis?

$$T_P = \frac{n^2}{p} + t_s \log p + t_w n.$$

$$T_o = t_s p \log p + t_w n p.$$

$$W = \Theta(p^2)$$

Block 2D Partitioning

How do we perform the operation?

Block 2D Partitioning

Each processor needs to have the portion of the *x* vector that corresponds to the set of columns that it stores.

Analysis?

$$T_{P} = \overbrace{n^{2}/p}^{\text{computation aligning the vector}}^{\text{aligning the vector}} + \underbrace{t_{s} + t_{w}n/\sqrt{p}}_{\text{columnwise one-to-all broadcast}}^{\text{all-to-one reduction}} + \underbrace{(t_{s} + t_{w}n/\sqrt{p})\log(\sqrt{p})}_{\text{columnwise one-to-all broadcast}}^{\text{all-to-one reduction}} + \underbrace{(t_{s} + t_{w}n/\sqrt{p})\log(\sqrt{p})}_{\text{columnwise one-to-all broadcast}}^{\text{all-to-one reduction}} + \underbrace{(t_{s} + t_{w}n/\sqrt{p})\log(\sqrt{p})}_{\text{columnwise one-to-all broadcast}}^{\text{all-to-one reduction}}$$

$$\approx \frac{n^{2}}{p} + t_{s} \log p + t_{w} \frac{n}{\sqrt{p}} \log p$$

$$W = \Theta(p \log^2 p).$$

1D vs 2D Formulation

■ Which one is better?

Matrix-Matrix Multiplication

- Compute: C = AB
 - □ A, B, & C are nxn dense matrices.
- Serial complexity: $W = O(n^3)$.
- We will consider:
 - □ 2D & 3D partitioning.

```
1. procedure MAT_MULT (A, B, C)

2. begin

3. for i := 0 to n - 1 do

4. for j := 0 to n - 1 do

5. begin

6. C[i, j] := 0;

7. for k := 0 to n - 1 do

8. C[i, j] := C[i, j] + A[i, k] \times B[k, j];

9. endfor;

10. end MAT_MULT
```


Simple 2D Algorithm

- Processors are arranged in a logical sqrt(p)*sqrt(p) 2D topology.
- Each processor gets a block of (n/sqrt(p))*(n/sqrt(p)) block of A, B, & C.
- It is responsible for computing the entries of C that it has been assigned to.
- Analysis?

$$T_P = \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}.$$
 $W = \Theta(p^{3/2}).$

How about the memory complexity?

Cannon's Algorithm

- Memory efficient variant of the simple algorithm.
- Key idea:
 - □ Replace traditional loop:

$$C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} * B_{k,j}$$

□ With the following loop:

$$C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k)\%\sqrt{p}} * B_{(i+j+k)\%\sqrt{p},j}$$

 During each step, processors operate on different blocks of A and B.

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
A _{2,0}	A _{2,1_}	A _{2,2}	A _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}

B _{0,0}	B _{0,1}	B _{0,2,1}	B _{0,3}
B _{1,0}	В _{1,1}	В _{1,2}	В _{1,3}
B _{2,0}	В _{2,1 л}	В _{2.2}	B _{2,3}
B _{3,0}	B _{3,1}	B _{3,2}	В _{3,3}

(a) Initial alignment of A

(b) Initial alignment of I

				1
*	A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3} ~
×	A _{1,1} ~	A _{1,2} = B _{2,1}	A _{1,3} ~ B _{3,2}	A _{1,0} ~ B _{0,3}
*	A _{2,2} ** B _{2,0}	A _{2,3} = B _{3,1}	A _{2,0} ~ B _{0,2}	A _{2,1} < B _{1,3}
-	A _{3,3} ** B _{3,0}	A _{3,0} = B _{0,1}	A _{3,1} = B _{1,2}	A _{3,2} ** B _{2,3}

	4	4	4	4
=0	A _{0,1} ~	A _{0,2} = B _{2,1}	A _{0,3} = B _{3,2}	A _{0,0} -
4	A _{1,2} ** B _{2,0}	A _{1,3} < B _{λ,1}	A _{1,0} = B _{0,2}	A _{1,1} ~
40	A _{2,3} ~ B _{3,0}	A _{2,0} ~ B _{0,1}	A _{2,1} ~ B _{1,2}	A _{2,2} ~ B _{2,3}
=	A _{3,0} ~	$A_{3,1} = B_{1,1}$	A _{3,2} ** B _{2,2}	A _{3,3} ** B _{3,3}

(c) A and B after initial alignment

(d) Submatrix locations after first shift

	4	4	4	4
~	A _{0,2} ~	A _{0,3} <	A _{0,0} <	A _{0,1} <
	B _{2.0}	$_{2}^{2}B_{3,1}$	B _{0,2}	B _{1,3}
~	A ₁₃ =	A _{1,0} <	A _{1,1} <	A _{1,2} <
	B _{3,0}	$B_{0,1}$	B _{1,2}	B _{2,3}
~	A2.0	A _{2,1} <	A2,2	A23"
	$B_{0,0}$	$_{J}^{\prime}B_{J,1}$	B _{2.2}	B _{3,3}
<	A _{3,1} <	A _{3,2} <	A33 *	A _{3,0} <
	B _{1,0}	B _{2,1}	B _{3,2}	$B_{0,3}$

A _{0,3}	A _{0,0}	A _{0,1}	A _{0,2}
B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}
A _{1,0} B _{0,0}	$\begin{matrix} A_{1,1} \\ B_{1,1} \end{matrix}$	A _{1,2} B _{2,2}	A _{1,3} B _{3,3}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,0}
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
A _{3,2}	Α _{3,3}	A _{3,0}	A _{3,1}
B _{2,9}	Β _{3,1}	B _{0,2}	B _{1,3}

(e) Submatrix locations after second shift (f) Submatrix locations after third shift.
The communication steps in Cannon's algorithm on 16 processes.

$$T_P = \frac{n^3}{p} + 2\sqrt{p}t_s + 2t_w \frac{n^2}{\sqrt{p}}.$$

Can we do better?

- Can we use more than O(n²) processors?
- So far the task corresponded to the dotproduct of two vectors

□ i.e.,
$$C_{i,j} = A_{i,*} \cdot B_{*,j}$$

- How about performing this dot-product in parallel?
- What is the maximum concurrency that we can extract?

3D Algorithm—DNS Algorithm

Partitioning the intermediate data

3D Algorithm—DNS Algorithm

$$q = p^{1/3}$$

$$T_P \approx \left(\frac{n}{q}\right)^3 + 3t_s \log q + 3t_w \left(\frac{n}{q}\right)^2 \log q$$

$$T_P = \frac{n^3}{p} + t_s \log p + t_w \frac{n^2}{p^{2/3}} \log p.$$

$$W = \Theta(p(\log p)^3)$$

Gaussian Elimination

- \blacksquare Solve Ax=b
 - \square A is an nxn dense matrix.
 - □ x and b are dense vectors
- Serial complexity: $W = O(n^3)$.
- There are two key steps in each iteration:
 - Division step
 - □ Rank-1 update
- We will consider:
 - □ 1D & 2D partitioning, and introduce the notion of pipelining.

```
procedure GAUSSIAN_ELIMINATION (A, b, v)
     begin
         for k := 0 to n - 1 do
                                          /* Outer loop */
         begin
            for j := k + 1 to n - 1 do
                A[k, j] := A[k, j]/A[k, k]; /* Division step */
            y[k] := b[k]/A[k, k];
             A[k, k] := 1;
            for i := k + 1 to n - 1 do
11.
                for j := k + 1 to n - 1 do
                    A[i, j] := A[i, j] - A[i, k] \times A[k, j]; * Elimination step */
                b[i] := b[i] - A[i, k] \times y[k];
14.
                A[i, k] := 0:
15.
            endfor:
                              /* Line 9 */
         endfor:
                              /* Line 3 */
     end GAUSSIAN_ELIMINATION
```

A serial Gaussian elimination algorithm that converts the system of linear equations Ax=b to a unit upper-triangular system Ux=y. The matrix U occupies the upper-triangular locations of A. This algorithm assumes that $A[k,k]\neq 0$ when it is used as a divisor on lines 6 and

1D Partitioning

- Assign n/p rows of A to each processor.
- During the *i*th iteration:
 - □ Divide operation is performed by the processor who stores row i.
 - Result is broadcasted to the rest of the processors.
 - □ Each processor performs the rank-1 update for its local rows.
- Analysis?

$T_P =$	$\frac{3}{2}n(n-1)$	-1)+	$t_s n \log n +$	$-\frac{1}{2}t_w n(n-1)\log n.$	
	,				

(one element per processor)

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₁	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P_6	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

P_0	1	(0,1)	(0,2)	(0,3) (0,4) (0,5) (0,6) (0,7)
P_1	0	1	(1,2)	(1.3) (1.4) (1.5) (1.6) (1.7)
P ₂	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P_3	0	0	0	1 (3.4) (3.5) (3.6) (3.7)
P_4	0	0	0	(4,3)\(4,4)\(4,5)\(4,6)\(4,7)
P ₅	0	0	0	(5.3)\((5.4)\((5.5)\((5.6)\((5.7)
P_6	0	0	0	(6,3) \((6,4) \((6,5) \((6,6) \((6,7)
P ₇	0	0	0	(7,3) (7,4) (7,5) (7,6) (7,7)

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P_6	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

- (a) Computation:
 - (i) A[k,j] := A[k,j]/A[k,k] for k < j <
 - (ii) A[k,k] := 1

(b) Communication:

One-to-all broadcast of row A[k,*]

- (c) Computation:
 - (i) A[i,j] := A[i,j] A[i,k] × A[k,j] for k < i < n and k < j < n
 - (ii) A[i,k] := 0 for k < i < n

Gaussian elimination steps during the iteration corresponding to k = 3 for an 8 \times 8 matrix partitioned rowwise among eight processes.

1D Pipelined Formulation

- Existing Algorithm: Next iteration starts only when the previous iteration has finished.
- Key Idea: The next iteration can start as soon as the rank-1 update involving the next row has finished.
 - □ Essentially multiple iterations are perform simultaneously!

Cost-optimal with *n* processors

1D Partitioning

Is the block mapping a good idea?

_	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,
P_0	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,
	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,
P_1	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,
_	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,
P ₂	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,
_	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,
P_3	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,

(a) Block 1-D mapping

ъ	(0,7)	(0,6)	(0,5)	(0,4)	(0,3)	(0,2)	(0,1)	1
P_0	(4,7)	(4,6)	(4,5)	(4,4)	(4,3)	0	0	0
D	(1,7)	(1,6)	(1,5)	(1,4)	(1,3)	(1,2)	1	0
P_1	(5,7)	(5,6)	(5,5)	(5,4)	(5,3)	0	0	0
D	(2,7)	(2,6)	(2,5)	(2,4)	(2,3)	1	0	0
12	(6,7)	(6,6)	(6,5)	(6,4)	(6,3)	0	0	0
р	(3,7)	(3,6)	(3,5)	(3,4)	(3,3)	0	0	0
P_3	(7,7)	(7,6)	(7,5)	(7,4)	(7,3)	0	0	0

(b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic 1-D partitioning of an 8 \times 8 matrix on four processes during the Gaussian elimination iteration corresponding to k = 3.

2D Mapping

- Each processor gets a 2D block of the matrix.
- Steps:
 - □ Broadcast of the "active" column along the rows.
 - □ Divide step in parallel by the processors who own portions of the row.
 - □ Broadcast along the columns.
 - □ Rank-1 update.
- Analysis?

a)	Rowwise	broadcast	of A[i,k]
	for (k - 1)	< i < n	

1	(0,1)	(0.2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1.7)
0	0	1	(2.3)	(2.4)	(2.5)	(2.6)	(2.7
0	0	0	1	(3,4)	(3.5)	(3,6)	(3.7
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5.5)	(5,6) V	(5.7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6) Y	(6.7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7.7)

⁽c) Columnwise broadcast of A[k,j] for k < j < n</p>

1	(0,1)	(0,2)	(0,3)	(0,4)	(0.5)	(0,6)	(0,7)
0	1	(1.2)	(1.3)	(1,4)	(1.5)	(1,6)	(1.7)
0	0	1	(2,3)	(2,4)	(2.5)	(2,6)	(2.7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4.3)	(4,4)	(4.5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7.3)	(7.4)	(7.5)	(7.6)	(7.7)

(b) A[k,j] := A[k,j]/A[k,k]for k < j < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0.5)	(0,6)	(0
0	1	(1,2)	(1,3)	(1,4)	(1.5)	(1,6)	(1
0	0	1	(2.3)	(2.4)	(2.5)	(2.6)	(2
0	0	0	1	(3.4)	(3.5)	(3,6)	0
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4
0	0	0	(5,3)	(5,4)	(5.5)	(5,6)	(5
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6
0	0	0	(7.3)	(7.4)	(7.5)	(7.6)	0

(d) $A[i,j] := A[i,j] \cdot A[i,k] \times A[k,j]$ for $k \le i \le n$ and $k \le j \le n$

Various steps in the Gaussian elimination iteration corresponding to k = 3 for an 8 \times 8 matrix on 64 processes arranged in a logical two-dimensional mesh.

2D Pipelined

Cost-optimal with n^2 processors

9.2 Numerical approach for PDE problem

PARALLEL SOLUTION TO PDEs CASE STUDY: HEAT EQUATIONS

Mathematic model and algorithm

• Heat equations (PDE):

$$\frac{\partial C}{\partial t} = D\nabla^2 C$$

$$\frac{\partial C}{\partial t} = D\nabla^2 C$$

$$\nabla^2 C = \frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2}$$

• Initial input value:

$$C_{i,j}^0$$

• At step n+1:
$$\nabla^{2}C_{i,j}^{tn} = FP_{i,j}^{tn} = \frac{C_{i+1,j}^{tn} + C_{i-1,j}^{tn} + C_{i,j+1}^{tn} + C_{i,j-1}^{tn} - 4C_{i,j}^{tn}}{dx^{2}}$$

$$C_{i,j}^{tn+1} = C_{i,j}^{tn} + dt * D * FP_{i,j}^{tn}$$

Data dependncy?

Data dependency

- Calculation at point (i,j) needs data from neighboring points: (i-1,j), (i+1,j), (i,j-1), (i,j+1)
- This is data dependency
- Solution
 - Shared memory system: Synchronization
 - Distributed memory system: Communication and Synchronization (Difficult, Optimization)
- Exercise:
 - Write a OpenMP program to implement Heat Equations problem
 - Write a MPI program to implement Heat Equations problem

Mathematic model and algorithm

• Notation:

 $egin{array}{ll} c: & C_{i,j}, \ u: & C_{i-1,j}, \end{array}$

 $d: \quad C_{i+1,j}, \ l: \quad C_{i,j-1}, \ r: \quad C_{i,j+1}.$

Implementation: Spatial Discretization (FD)

$$\nabla^{2} C_{i,j}^{tn} = FD_{i,j}^{tn} = \frac{\left(C_{i+1,j}^{tn} + C_{i-1,j}^{tn} + C_{i,j+1}^{tn} + C_{i,j-1}^{tn} - 4C_{i,j}^{tn}\right)}{dx^{2}}$$

```
void FD(float *C, float *dC) {
int i, j;
float c,u,d,l,r;
for (i = 0; i < m; i++)
 for (i = 0; i < n; i++)
   c = *(C+i*n+j);
   u = (i==0) ? *(C+i*n+j): [*(C+(i-1)*n+j);
   d = (i==m-1) ? *(C+i*n+j) : *(C+(i+1)*n+j);
                                                              dx
   I = (j==0) ? *(C+i*n+j) : *(C+i*n+j-1);
                                                                      (i,j)
   r = (j==n-1) ? *(C+i*n+j) : *(C+i*n+j+1);
   *(dC+i*n+j) = (1/(dx*dx))*(u+d+l+r-4*c);
                                                       Boundary condition
```

Implementation: Time Integration

$$C_{i,j}^{tn+1} = C_{i,j}^{tn} + dt * D * FD_{i,j}^{tn}$$

```
while (t<=T)
{
    FD(C, dC);
    for ( i = 0; i < m; i++)
        for ( j = 0; j < n; j++)
        *(C+i*n+j) = *(C+i*n+j) + dt*(*(dC+i*n+j));
        t=t+dt;
}</pre>
```


SPMD Parallel Algorithm (1)

• SPMD: Single Program Multiple Data

Domain Decomposition

SPMD Parallel Algorithm SPMD (2)

- B1: Input data
 - Usually, initial input data at CPU 0 (Root)
- B2: Domain decomposition
- B3: Distribute Input data from Root to all other CPUs
- B4: Computation (Each CPU calculate on its subdomain)
- B5: Gather Output from all other CPUs to Root

B3 and B5: Communication (Input và Output)

SPMD Parallel Algorithm SPMD (3)

- B1: Input data
 - Depending on requirement of each problem
 - Different input results in different output

SPMD Parallel Algorithm SPMD (4)

- B2: Domain decomposition
 - Many approaches
 - Different approach has different efficiency
 - Following is row-wise domain decomposition
 - Given that the size of domain is: mxn
 - Subdomain for each CPU: mcxn, where: mc=m/NP with NP is the number of CPUs

CPU0		
CPU1		
CPU2		

SPMD Parallel Algorithm SPMD (5)

• B3: Distribute Input data from Root to all other CPUs

MPI_Scatter (C, mc*n, MPI_FLOAT, Cs, mc*n, MPI_FLOAT, 0,

MPI_COMM_WORLD);

SPMD Parallel Algorithm SPMD (6)

• B5: Gather Output from all other CPU to Root

MPI_Gather (Cs, mc*n, MPI_FLOAT, C, mc*n, MPI_FLOAT, 0, MPI_COMM_WORLD);

SPMD Parallel Algorithm SPMD (7)

• B4: Computation

- B4.1: Communication

- B4.2: Calculation

SPMD Parallel Algorithm SPMD (8)

• B4.1: Communication

- B4.1a): Communicate array *Cu*

- B4.1b): Communicate array *Cd*

SPMD Parallel Algorithm SPMD (9)

• B4.1a): Communicate array *Cu*

```
if (rank==0){
    for (j=0; j<n; j++) *(Cu+j) = *(Cs+0*n+j);
    MPI_Send (Cs+(mc-)*n, n, MPI_FLOAT, rank+1, rank, ...);
} else if (rank==NP-1) {
    MPI_Recv (Cu, n, MPI_FLOAT, rank-1, rank-1, ...);
} else {
    MPI_Send (Cs+(mc-1)*n, n, MPI_FLOAT, rank+1, rank,...);
    MPI_Recv(Cu, n, MPI_FLOAT, rank-1, rank-1, ...);
}</pre>
```


SPMD Parallel Algorithm SPMD (10)

• B4.1b): Communicate array *Cd*

```
if (rank==NP-1){
    for (j=0; j<n; j++) *(Cd+j) = *(Cs+(mc-1)*n+j);
    MPI_Send (Cs, n, MPI_FLOAT, rank-1, rank, ...);
} else if (rank==0) {
    MPI_Recv (Cd, n, MPI_FLOAT, rank+1, rank+1, ...);
} else {
    MPI_Send (Cs, n, MPI_FLOAT, rank-1, rank, ...);
    MPI_Recv (Cd, n, MPI_FLOAT, rank+1, rank+1, ...);
}</pre>
```


SPMD Parallel Algorithm SPMD (11)

• B4.2: Calculation

```
void FD(float *Cs, float *Cu, float *Cd, float *dCs ,int ms) {
int i, j;
float c,u,d,l,r;
for (i = 0; i < ms; i++)
 for (i = 0; i < n; i++)
   c = *(Cs+i*n+j);
   u = (i==0) ? *(Cu+j) : *(Cs+(i-1)*n+j);
   d = (i = ms-1) ? *(Cd+j) : *(Cs+(i+1)*n+j);
   I = (j==0) ? *(Cs+i*n+j) : *(Cs+i*n+j-1);
   r = (i==n-1) ? *(Cs+i*n+j): *(Cs+i*n+j+1);
   *(dCs+i*n+i) = (D/(dx*dx))*(u+d+l+r-4*c);
```


VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

