$10_5 \ (K10a_{56})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{15} - 3u^{13} - u^{12} + 6u^{11} + 2u^{10} - 6u^9 - 4u^8 + 5u^7 + 3u^6 - 3u^5 - 3u^4 + 3u^3 + u^2 - u - 1 \rangle$$

$$I_2^u = \langle u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 16 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \ I_1^u = \\ \langle u^{15} - 3u^{13} - u^{12} + 6u^{11} + 2u^{10} - 6u^9 - 4u^8 + 5u^7 + 3u^6 - 3u^5 - 3u^4 + 3u^3 + u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{8} - u^{6} + u^{4} + 1 \\ -u^{10} + 2u^{8} - 3u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{13} - 2u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - 2u^{3} + u \\ -u^{12} + 2u^{10} + u^{9} - 4u^{8} - u^{7} + 3u^{6} + u^{5} - 3u^{4} + u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{8} - u^{6} + u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{13} + 2u^{11} - 3u^{9} + 2u^{7} - 2u^{5} + 2u^{3} - u \\ u^{13} - 3u^{11} + 5u^{9} - 4u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes $= -4u^{14} + 12u^{12} + 4u^{11} 20u^{10} 8u^9 + 16u^8 + 12u^7 8u^6 8u^5 + 8u^4 + 4u^3 8u^2 4u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_9, c_{10}$	$u^{15} + 2u^{14} + \dots + u + 1$
c_2	$u^{15} - 3u^{14} + \dots + 21u - 5$
c_3, c_8	$u^{15} - 3u^{13} + \dots - u + 1$
c_4	$u^{15} + 6u^{14} + \dots + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_9, c_{10}$	$y^{15} - 22y^{14} + \dots + 3y - 1$
c_2	$y^{15} - 3y^{14} + \dots + 241y - 25$
c_3, c_8	$y^{15} - 6y^{14} + \dots + 3y - 1$
c_4	$y^{15} + 6y^{14} + \dots - 17y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.938536 + 0.379610I	-1.44795 - 1.44538I	0.924314 + 0.710077I
u = 0.938536 - 0.379610I	-1.44795 + 1.44538I	0.924314 - 0.710077I
u = -0.496009 + 0.834142I	17.7129 - 1.8405I	12.03822 + 0.10978I
u = -0.496009 - 0.834142I	17.7129 + 1.8405I	12.03822 - 0.10978I
u = -1.004360 + 0.506467I	-0.48193 + 4.24481I	5.44692 - 7.82705I
u = -1.004360 - 0.506467I	-0.48193 - 4.24481I	5.44692 + 7.82705I
u = 0.483842 + 0.722916I	6.64012 + 1.24233I	12.05713 - 0.59928I
u = 0.483842 - 0.722916I	6.64012 - 1.24233I	12.05713 + 0.59928I
u = 1.16849	11.7390	6.35620
u = 1.053770 + 0.600336I	4.96865 - 6.29824I	9.18075 + 5.76248I
u = 1.053770 - 0.600336I	4.96865 + 6.29824I	9.18075 - 5.76248I
u = -1.090290 + 0.650224I	15.9255 + 7.3739I	9.68126 - 4.56542I
u = -1.090290 - 0.650224I	15.9255 - 7.3739I	9.68126 + 4.56542I
u = -0.469738 + 0.412319I	0.983732 - 0.215278I	10.49328 + 1.71815I
u = -0.469738 - 0.412319I	0.983732 + 0.215278I	10.49328 - 1.71815I

II.
$$I_2^u = \langle u+1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_6, c_7, c_8 c_9, c_{10}	u-1
c_2	u
c_4	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_8, c_9, c_{10}	y-1
c_2	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000	1.64493	6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_9, c_{10}	$(u-1)(u^{15}+2u^{14}+\cdots+u+1)$
c_2	$u(u^{15} - 3u^{14} + \dots + 21u - 5)$
c_3,c_8	$(u-1)(u^{15}-3u^{13}+\cdots-u+1)$
C ₄	$(u+1)(u^{15}+6u^{14}+\cdots+3u+1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_9, c_{10}$	$(y-1)(y^{15}-22y^{14}+\cdots+3y-1)$
c_2	$y(y^{15} - 3y^{14} + \dots + 241y - 25)$
c_3,c_8	$(y-1)(y^{15}-6y^{14}+\cdots+3y-1)$
C ₄	$(y-1)(y^{15}+6y^{14}+\cdots-17y-1)$