Example 7.19. Using properties of the Laplace transform and the Laplace transform pair

$$e^{-a|t|} \stackrel{\text{LT}}{\longleftrightarrow} \frac{-2a}{(s+a)(s-a)} \text{ for } -a < \text{Re}(s) < a,$$

find the Laplace transform X of the function

$$x(t) = e^{-5|3t-7|}$$
.

Solution. We begin by re-expressing x in terms of the following equations:

$$v_1(t) = e^{-5|t|}$$

①
$$v_1(t) = e^{-5|t|},$$

② $v_2(t) = v_1(t-7),$ and
③ $x(t) = v_2(3t).$

$$x(t) = v_2(3t).$$

Sanity Check: x(t) = V2(3t) = V1(3t-7)

In what follows, let R_{V_1} , R_{V_2} , and R_X denote the ROCs of V_1 , V_2 , and X, respectively. Taking the Laplace transform of the above three equations, we obtain

Roc we obtain
$$R_X$$
 denote the ROCs of V_1 , V_2 , and X , respectively. Taking the Laplace transform of we obtain R_X , we obtain R_X denote the ROCs of V_1 , V_2 , and X , respectively. Taking the Laplace transform of R_X , we obtain R_X as R_X and R_X as R_X as R_X and R_X as R_X and R_X and R_X are R_X . From LT of R_X using R_X at R_X and R_X are R_X and R_X are R_X are R_X .

(5)
$$V_2(s) = e^{-7s}V_1(s), R_{V_2} = R_{V_1},$$
 from LT of 2 using

$$X(s) = \frac{1}{5}V_2(s/3)$$
, and $R_V = 3R_V$.

Combining the above equations, we have

$$X(s) = \frac{1}{3}V_2(s/3)$$

$$= \frac{1}{3}e^{-7(s/3)}V_1(s/3)$$

$$= \frac{1}{3}e^{-7s/3}V_1(s/3)$$

$$= \frac{1}{3}e^{-7s/3}V_1(s/3)$$

$$= \frac{1}{3}e^{-7s/3}\frac{-10}{(s/3+5)(s/3-5)}$$
substituting (a) for V_1

$$R_X = 3R_{V_2}$$
 substituting § for R_{V_2}
= $3R_{V_1}$ substituting § for R_{V_1}
= $3(-5 < Re(s) < 5)$ multiply
= $-15 < Re(s) < 15$.

Thus, we have shown that

$$X(s) = \frac{1}{3}e^{-7s/3} \frac{-10}{(s/3+5)(s/3-5)} \text{ for } -15 < \text{Re}(s) < 15.$$