Name:	Centre/Index No:
School	Signature

P525/1 CHEMISTRY Paper 1 July/August 2024 2 3/4 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 hours 45 minutes

Instructions to Candidates

- Attempt all questions in section A and any six questions from section B.
- All questions are to be answered in the spaces provided.
- A Periodic Table with relevant atomic masses is supplied at the end of the paper.
- Mathematical tables (3 figures) and non-programmable silent scientific calculators may be used.
- Illustrate your answers with equations where applicable.
- Molar gas volume at s.t.p = 22.4 dm^3

						J	For E	xamiı	ner's	Use C	hly						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

© WAKISSHA Joint Mock Examinations 2024

Turn Over

SECTION A (46 MARKS)

Attempt all questions in this section.

Write the c), H ⁺ (aq), Cr ³⁺ (aq)/Pt cell notation for the cell formed quation for the overall cell react	tion.	(01 n
Write the c	eell notation for the cell formed quation for the overall cell reactions are the free energy change of	when the two half-cells are tion.	(01 n
Write an ed	quation for the overall cell react	tion.	(01 n
	quation for the overall cell react	tion.	
	quation for the overall cell reaction	tion.	
	culate the free energy change of		(1½ m
i) Cald	culate the free energy change of		
i) Calo		f the cell. (1F = 96500C)	•••••
i) Calo		f the cell. $(1F = 96500C)$	
			(02 ma
			•••••
	•••••		
	***************************************	•••••••••••••••••••••••••••••••••••••••	
			•••••
,		asible or not.	(01 ma
c acid to f	form compounds X and Y. Comition of a saturated solution of s	spound Y forms a crystalline sodium hydrogensulphite.	white
			(01 ma
ii) Y:			(01 ma
iii) Whi	te precipitate		(01 ma
Name the r	eagent that can be used to confi	rm compound X.	(01 ma
i	Give lpropane vec acid to forte on additentify;) X: i) Y: ii) Whiteleame the reference of the content o	i) State whether the cell reaction is fe Give a reason for your answer. Ipropane when oxidized in air at 5 atm for acid to form compounds X and Y. Compute on addition of a saturated solution of selentify; i) X: i) Y: ii) White precipitate	i) State whether the cell reaction is feasible or not. Give a reason for your answer. Ipropane when oxidized in air at 5 atm formed liquid Q which reacts we acid to form compounds X and Y. Compound Y forms a crystalline ate on addition of a saturated solution of sodium hydrogensulphite. Identify; X:

© WAKISSHA Joint Mock Examinations 2024

2

3.	(a)	Red I mixtu (i)	Red lead oxide (Pb_3O_4) was shaken with dilute nitric acid and the resultant nixture filtered. Identify the; ($\frac{1}{2}$ mark								
		(1)		,							
		(ii)	residue	(½ mark)							
			······································								
	(b)	Write	e an equation for the reaction that took place.	(1½ mark)							
	(b)	Potas	Potassium iodide solution was added to the filtrate in (a) above;								
		(i)	State what was observed.	(01 mark)							
		(ii)	Write an equation for the reaction that took place.	(1½ marks)							
			*	,							
4.	(a)	Writ	e the;	•••••							
٦.	(a)			(01 monte)							
		(i)	equation for the hydrolysis of ammonium sulphate in water.	(01 mark)							
				•••••							
		(ii)	expression for the hydrolysis constant, K _h for ammonium sulp	ohate.							
				(01 mark)							
				•••••							
	(b)	(i)	The pH of 20 cm ³ of 0.05M ammonium sulphate solution at 2	25 °C was							
			found to be 5.125								
			Calculate the hydrolysis constant of ammonium sulphate.	(03 marks)							
		(11)									
		(ii)	State the assumptions you have made in b(i) above.	(01 mark)							
			······································								
				Turn Over							
			C WAKISSHA Joint Monk Francisco								

	HO - CH ₂ COOH and p Observation:	onospnorous	(v) chioride.		(½ ma
	Equation:				(01 ma
	***************************************			••••••	• • • • • • • • • • • • • • • • • • • •
(b) [NHCH ₃ and an ice hydrochlo		e of sodium niti	rite and concent	rated
	Observation:				(½ ma
	Equation:				(01 ma
(c)	Cobalt (II) sulphate solu	ution and exc	ess concentrate	d hydrochloric	acid.
. ,	Observation:			•	(½ ma
	Equation:				(01 m
	Equation:				
	-				
The		•••••			
	-	•••••			
shov	melting points of some flu vn in table 2.	norides of per	riod 3 elements	of the Periodic	
shov	melting points of some fluoride	norides of per	riod 3 elements	of the Periodic	
shov	melting points of some flu vn in table 2.	norides of per	riod 3 elements	of the Periodic	
shov	melting points of some fluoride	NaF 993	AlF ₃ 1290	of the Periodic SiF4 -90.2	Table are
shov Tak	melting points of some fluoride Formula of fluoride Melting point (°C)	NaF 993 elting points	AlF ₃ 1290	of the Periodic SiF4 -90.2	Table are
shov Tak	melting points of some fluvn in table 2. Sole 2: Formula of fluoride Melting point (°C) State the trend in the meaning point in table 2.	NaF 993 elting points	AlF ₃ 1290 of the fluorides	of the Periodic SiF4 -90.2	Table are
show Tab	melting points of some fluvn in table 2. Sole 2: Formula of fluoride Melting point (°C) State the trend in the meaning point in table 2.	NaF 993 elting points	AlF ₃ 1290 of the fluorides	of the Periodic SiF4 -90.2	Table are
shov Tak	melting points of some fluving in table 2. Formula of fluoride Melting point (°C) State the trend in the meaning point in table 2.	NaF 993 elting points (a).	AlF ₃ 1290 of the fluorides	of the Periodic SiF4 -90.2	Table are (01 m
show Tab	melting points of some fluvn in table 2. Sole 2: Formula of fluoride Melting point (°C) State the trend in the meaning point in table 2.	NaF 993 elting points (a).	AlF ₃ 1290 of the fluorides	of the Periodic SiF4 -90.2	(01 mag)
show Tab	melting points of some fluving in table 2. Formula of fluoride Melting point (°C) State the trend in the meaning point in table 2.	NaF 993 elting points (a).	AlF ₃ 1290 of the fluorides	of the Periodic SiF4 -90.2	Table are (01 mag)
show Tab	melting points of some fluving in table 2. Formula of fluoride Melting point (°C) State the trend in the meaning point in table 2.	NaF 993 elting points (a).	AlF ₃ 1290 of the fluorides	of the Periodic SiF4 -90.2	(01 m
show Tab	melting points of some fluving in table 2. Formula of fluoride Melting point (°C) State the trend in the meaning point in table 2.	NaF 993 elting points (a).	AlF ₃ 1290 of the fluorides	of the Periodic SiF4 -90.2	(01 max)

•		© WAKISS	SHA Joint Mock Examinations 2024	Turn Over				
		Calculate the enthalpy	of formation of carbon disulphide.	(03 marks)				
		Sulphul	-270.0]				
		Sulphur	-393.5 -296.8	-				
		Carbondisulphide Carbon	-1108.8	-				
		Substance	Enthalpy of combustion (KJmol-1)	1				
	(b)	Table 3:	oustion of some substances are shown in tabl	e 3.				
		•••••						
8.	(a)	Define the term standa	ard enthalpy of combustion.	(01 mark)				
				(24				
		•						
			•••••					
				(03 marks)				
	. /	effervescence. Write the structural for	rmulae and IUPAC names of two geometric	isomers of R.				
	(b)	R decolourises bromin	ne water and reacts with sodium carbonate so	olution with				
	(a)	Calculate the molecul	ar formula of R .	(2½ marks)				
	and 80 c		trated potassium hydroxide, there was a cont	traction of				
			sploded. The residual gas was cooled to room					
7.	The		npound R is CHO . 20 cm ³ of R were mixed					

		dy d	of the second section of the second section of the second section of the second section sectio	
	(c)	Comn	nent on the stability of carbondisulphade. Give a reason for your	answer.
				(01 mark)
9.	The n	nolecul	ar structures of two polymers; Kevlar and Neoprene are shown be	elow.
,	Kev	lar		
	Neop	orene	CH_2 $C=C$ CH_2 C	
	(a)	Name (i)	the type of polymer. Kevlar	(½ mark)
		(ii)	Neouprene	(½ mark)
	(b)	Write (i)	the structural formula(e) of the monomer(s) of; Kevlar	(01 mark)
		(ii)	Neouprene	(½ mark)
				•
	(c)	State	one use of each of the polymers above.	(02 marks)
			SECTION B (54 MARKS)	
			Attempt any six questions from this section.	
			and the second s	
			Any additional question(s) answered will not be marked.	
10.	(a)	Zinc i	s extracted from zinc blende.	
		(i)	State one method by which the ore can be concentrated.	(½ mark)
			© WAKISSHA Joint Mock Examinations 2024	6

(b)	Zine (i)	dust was added State what wa	to an alkaline ac			
(b)			to an alkaline a			
(b)						
			as observed.	queous solution c	ontaining nitrate	ions. (01 mark)
				• • • • • • • • • • • • • • • • • • • •		
	(ii)	Write an ionic	e equation for th	e reaction that to	ok place.	(1½ marks)
(c)	resulin the and Calc	Itant solution she aqueous layer 0.0025 moldm ⁻³ culate the percer	aken with trichlo and trichlorome respectively at 2 stage by mass of		concentrations o ailibrium were 0	f ammonia .08 moldm ⁻³
					,	
(a)	The the Giv	H ₂ O ₂ (aq) e rate of reaction reaction is first en the kinetic d	+ 2H ⁺ (aq) + n is independent order with resp	ions according to 31 ⁻ (aq) ————————————————————————————————————	\rightarrow 2H ₂ O(s) + tion of hydroge eroxide.	
		ole 1: $_2O_2$]moldm $^{-3}$	[I ⁻] moldm ⁻³	[H ⁺] moldm ⁻³	Initial rate mol	$dm^{-3}S^{-1}$
	111	0.025	0.02	0.50	5.20 x	
		0.05	0.04	1.00	2.08 x 1	0-2
	(i)	State two m	ethods by which	the rate of reacti	on above can be	determined. (02 marks)
			4KISSHA Joint Mock			Curn Over

		(ii)	Determine	the rat	e equation fo	r the reaction.		(02 marks)
		(iii)					ate its units.	
	(b)	conce	of the experi ntrations of	ments i	n Table 1 wa ctants.	s repeated at 4	0 °C using the san	ne
		(i)	State the e	ffect or	the value of	the rate consta	nt in a(iii) above.	(01 mark)
							•••••••	,
		(ii)	Explain yo	our ansv	ver in b(i)			(2½ marks)
				• • • • • • • • • • • • • • • • • • • •		••••••		
				• • • • • • • • • • • • • • • • • • • •				
12.	Write (a)		nanism to sh H CH ₃				versions can be ef	fected. (03 marks)
	(-)	١	P	••]	3		(03 11111113)
		O	Н		I			
		•••••						
		•••••						
					•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
			•••••		•••••	•••••	•••••	
	(b)	\bigcirc	OH	to	$\widehat{\mathbb{Q}}$	OOCCH ₃		(03 marks)
	(-)	\bigcirc	J		\bigcirc			(00 11111110)
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
								•••••
	(c)		CH CH₂Br Br	to	CH ₃ C ≡ CH			(03 marks)
				• • • • • • • • • • • • • • • • • • • •			•••••	
			© V	VAKISSH		aminations 2024		•••••

		•••••	•••••••••••••••••••••••••••••••••••••••	
		•••••		•••••
13.	Expla (a)		n of the following observations. n anhydrous aluminium chloride is exposed to moist air, misty ed.	fumes are (03 marks)
				• • • • • • • • • • • • • • • • • • • •
	(b)	Aque	ous solutions of Copper (I) salts are colourless while solutions er (II) salts are coloured.	of (03 marks)
				•••••
	(d)	When	n hydrogen sulphide gas is bubbled into acidified ammonium d ion, the orange solution turns green and a yellow precipitate is	ichromate formed. (03 marks)
14.	(a)	Fluor (i)	rine and Iodine belong to group VII of the Periodic Table. Expl Fluorine and Iodine have different physical states at room ten	
				••••••
		(ii)	Fluorine reacts directly with carbon while Iodine does not.	(02 marks)
				Turn Over

9

(b)	Write (i)	e an equation for the reaction between; Fluorine and water.	(1½ marks)
	(ii)	Iodine and hot concentrated sodium hydroxide solution.	
		des aints sendantes au	
	(iii)	hydride of Iodine and excess concentrated sulphuric acid.	
Lead	i (II) Io	dide is sparingly soluble in water.	
(a)	Write	e the;	
	(i)	equation for the solubility of Lead (II) iodide in water.	(01 mark)
	(ii)	expression for the solubility product, Ksp of Lead (II) iodide.	
(b)		solubility product of Lead (II) iodide is $1.39 \times 10^{-8} \text{ mol}^3 \text{dm}^{-3}$ alate the solubility of Lead (II) iodide in gdm ⁻³ .	at 25 °C. (03 marks)
		markatinaan ahaan ah	
	 Explain	how the solubility of lead (II) iodide would be affected if to its	saturate
	(i)	a few drops of potassium iodide are added.	(02 marks)
((ii)	magnesium ribbon is added.	(02 marks)

16.	(a)	The structural formulae of two aromatic organic compounds are OH COOH
		COOH
	(i)	Name the reagent(s) that can be used to distinguish between the compounds. (01 mark)
	(ii)	State what would be observed when each compound is separately treated with the reagent in a(i) above. (02 marks)
	(b)	Using equations only, show how COOH can be synthesized from
		COOH (04 marks)
		QН
	(c)	A mixture of and methanol was heated in the presence of sulphuric acid.
		COOL
		СООН
		(i) State what was observed. (01 mark)
		(ii) Write an equation for the reaction that took place. (01 mark)
17.	(a)	The vapour pressures of acetone and benzene are 30 Kpa and 12.68 kPa at 25 °C respectively. A solution containing 20% acetone and 80% benzene at 25 °C exerted a vapour pressure of 18.00 Kpa.
	(i)	Calculate the vapour pressure above the solution assuming it is ideal. (03 marks)
	/	
		Turn Over
		© WAKISSHA Joint Mock Examinations 2024

(ii)	State the type of deviation from ideal behaviour shown by the solution of acetone and benzene. Give a reason for your answer. (02 marks)
(b)	Sketch a well labelled boiling point composition diagram for the mixture of acetone and benzene. (03 marks)

(d) State **one** method by which an azeotropic mixture of acetone and benzene can be separated. (01 mark)

THE PERIODIC TABLE

	2											3	4	5	6	7	8
1 11 1.0																1 11.0	2 He 4.0
3 Li 6.9	4 Bu 9.0											5 B 10.8	6 C 12.0	7 N 140	8 O 16.0	9 F 19.0	10 Ne 20.2
Na Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 TI 47.9	23 V 50.9	24 Cr 52.0	25 Ma 54.9	26 Pe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Za 65.7	31 Ga 69.7	31 Ge 71.6	33 As 749	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 84.9	40 2r 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 To 128	53 1 127	54 Xo 131
55 C1 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Ra 186	76 O4 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222
87 Fr (223)	88 Rs (226)	89 Ac (227)					,										
			139	11 Ce 149	59 P7 141	60 Nd 144	61 Pm (145)	62 Sm 152	63 Sin 150	64 Eu 152	65 To 159	66 Dy 163	67 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227	90 Th	91 Pa 231	92 U 238	93 Np 237	94 Pu	95 Am (243)	96 Cm	97 Bk	98 Cf 251	99 Es (254)	100 Fm	101 My (256)	102 No (254)	Lv

1. Indicates atomic number.

2. II Indicates relative atomic mass.

END

© WAKISSHA Joint Mock Examinations 2024