

1/19

Fig 1

POSEST PRAFAZOS

210 / 200 TMS/02 2000MT 250 W 0°C PLATEN PRE AND POST ANNEAL

Fig. 3(a)

Fig. 3(b)

9	
Fig. ()

								-				5	/]	19	•														
×											•													2.55	2.5-2.7		3.2		2.87
CH/SiO															0.1062	0.0069			0.1102		0.1715	0.2756	0.303	:		0.2353		0.237	
SiH/SiO															0	0			0.0063		0.021	0.0365	0.0376			0.039		0.027	
Sic/Sio															0.0343	0.0191			0.0183		0.0316	0.0299	0.0322			0.03		0.0396	
R.j Range SiC/SiO	0.0007	0.0074	0.01	0.015	0.0125	0.0023	0.0075		0.005	0.005	0.005		0.0106	0.025				0.0163		0.0156								0.015	
52	1.482	3702	.3321	3676	.3498	.4736	.3587	.5007	.3749	.4871	1.374		.4831	1.4064				1.4618	1.458	1.4569	1.45					1.4938		1.4913	
Iniformity	6.6	5.1	6.5	6.1	8.5	8.1	_	_	22.5	_				25.6				_		_		4				23.4		14.4	
Dep rate Uniformity (Å/min)	1166	681	2542	1853	1450	3916	2008	3968	2097	1392	716		1176	738	2000			1731	9938	2166	-10000	-6000		5200	7200	5338	4200	3641	029
S/head (°C)	100		100	100	100	9		100		100		100	100		100			0	100	100	001	100	100	100	100	901	100	100	100
Platen (°C)	7.0		70	70	20	70		20		0		0	S		0			70	20	20	20	2	2	2	20	9	6	70	.20
F Power Pressure (W) (mT)	1500		906	006	906	006		006	-	900		906	900	-	006	-		006	006	006	900	900	006	906	900	006	006	006	900
RF Poweri (W)	20		20	100	100	100		100		100		100	200		200		,	100	200	250	200	250	250	250	250	250	250	250	250
22	0		0	0	0	0		0		0	-	0	0		0			0	0	0	0	0	0	0	•	0	0	0	0
°C	0		0	0	0	0		0		0		0	0		0	,	,	0	0	0	0	0	0	0	0	0	0	0	0
H ₂ O ₂	0.75		0.75	0.7	0.7	0.7		0.7		0.7		0.7	0.7		0.7			0.5	0.4	9.4	0	0	0	0	0	0	0	0	0
CHMMS	1000		1300	1300	1300	1300		1300		1300		1300	1300		1300	•		800	800	800	800	800	800	800	800	800	800	800	800
Run No	· -		7	_د	4	9		7		∞		6	2		-			12	13	4	15	16	17	18	19	20	21	22	23
Date	10/05/99																Pot Refilled	24/05/99				•					25/05/99		

DOYNUNT DEPOSE

DOZET THYESTED

Flowfill chamber depositions using Cyclohexyldimethoxymethylsilane

P727 - Flowfill chamber (Flow_1), 40mm electrode gap - Syringe delivery system

Process Parameter

Bulk Film Properties

																		(5,	/]	1	9																			
Comment		Act. 1000mT , slight s/h	Peeled off in F1S	Purple Plasma	Siller Siller			RI wafer						D) wafer	Riwafer	O woton	K=2 4 nost oven anneal	* I off everyight hefers most usement	K=2 55 post oven paneal		Grainy film Smin FTS	5min ETS	5min FTS	10min FTS	30min FTS	5min FTS	5min FTS	5min FTS	5min FTS	30min FTS	5min FTS	Smin FTS	Depped with 30min FTS + Cap	Depped with 30min FTS	5min FTS	5min FTS	5min FTS	Smin FTS	5min FTS	5min FTS	Feint powder showerhead pattern
	CH/SIO	0.1347	0.4545	0.3499	0.131	0 1238	0 1886	0.3518	2000																				0.1366	0.0785	0.1418	0.3437			0.1562	0.1498	0.1338	0,1283	0.258	0.2006	0.0839
Dietectric	OSIHISIO	٠.	087000	•				-	+																				_			12 0.0338		_	_	-				35 0.0162	03 0.009
0/010		0.035/	0.030	0.0354	0.0384	0.0379	0.0364	0.0349		L			L		_	L			L		L		L		L				0.0317	0.0336	0.0284	0.0342	\downarrow	- 18	0.0309	0.031	0.0311	0.0353	0.03	0.0285	0.0203
Dietectric							L					L	L	L	L	L	÷	2.78	2.82*	301				L								١	200	9 7.9	\downarrow						
Refractive	38.	2	1 4875	1.4652	1.51	1.5089	1.4475	1.4775	1.489	1.538	1.5228	1.5444	1.4895	1.4468	1.4634	1.4558					1.5144	1.5387	1.4737	1.4737	1.4582	1.4332	1.4327	1.4263	1.4856	1.4575	.203	1.499		1,667	1.4552	8	1.5316	1.5109	1.5296	1.4575	1.4209
Uniformity (%)		2	6.5	22.8	13.1	4.42	2.32	9.5	3.4	1.77	1.5	-	3.7	6.2	5.6	9.9					7.8	5.7	3.5	6'0	1.6	4.5	7.2	6.3	3.5	2.5	3.8	11.5		7 6	3.7	3	77	-	0.87	80.6	3.8
Dep rate (A/min)			8190	5810	8289	9068	8717	2789	12748	14222	14192	14282	9790	11382	19116	10242					7869	15697	14751	14345	14079	18864	17841	11511	15565	1000	10090	80		1710E	47404	24700	24/00	282	7128	9652	18446
Platen (°C)	k	S.	જ	20	20	20	သ	95	S S	જ	20	20	8	20	8	88	જ	35 26	20	20	52	20	20	20	22	S	S	8	3 8	8 5	8 6	3 2	8 8	3 27	3 2	3 5	3 5	3 8	3	3 8	3
Showerhead (°C)		90	100	100	100	100	100	100	100	100	9 6	100	100	100	100	100	100	100	100	100	100	100	100	9	8	8	9	26	200	3 5	3 5	3 5	3 5	3 5	3 5	3 5	3 6	202	8	3 5	201
Power (W)	250	250	250	250	250	250	250	100	200	200	200	200	200	200	200	550	250	200	200	200	200	တ္ထ	င္တ	င္တ	8	200	150	250		345	250	202	200	200	3 5	3 5		3	002	700	360
Pressure (mT)	008	006	006	8	8	8	006	900	006	8	006	006	200	200	900	006	900	900	200	006	900	8	8	006	900	006	800	200	000	200	300		006	900	36	1200	200	200	000	200	300
N ₂ Flow (Sccm)	-	0	100(1+8)	50(1+8)	50(1+8)	50(1+8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	200(1)	200(8)	100(1+8)	100(1+8)	200(8)	100(1+8)	100(1+8)	200(8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	(8+1)001	200(8)	(0)007	200(0)	200(0)	2000	2000	2000	200/8)	200/8	2008	200(8)	20018	2000	150(8)	150/03	lolor!
O ₂ Flow (Sccm)	-	0	0	0		0	0	0	0	0	0	0	٥			0	0	0	٥	0	0		0	-	-	3	3	>	> 0	,	-	,	, c	, 0	0	, c	, c	,	> Ş	3 5	3
CHMMS (g/min)	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.85	0.85	0.85	0.85	0.85	0.85	0.65	0.65	0.85	0.85	0.65	0.85	0.85	0.85	0.85	0.83	0.83	6.83	000	0.00	200	200	200	0.85	0.85	0.00	986	0.00	0.00	20.0	0.65	6.05
Run Number	F	~	~	4	9	ဖ	_	80	6	10	Ξ	7	=	4	5	16	=	18	9	ຂ	77	22	2	2	S F	8	77	9 5	S	3	5		3 2		3 5	7	5 6	3 6	8	3	

Fig 7(Part 1 of 3)

ιĎ
, 4
m
W
(,71
Ę
i÷
51
IJ
IU
۱Į

																							•	7		L	7	,																				
	Comment	Entire film cloudy	Powder stripes	Hazy powder	Ri Wafer	RI Wafer	RI Wafer	No FTS	5min FTS, no cap	Wafer thin, 1st of day, 5min FTS, Cap	No FTS	30min FTS, Cap	No FTS	No FTS	5min FTS	30min FTS	80min FTS	Smin FTS no can	30min FTS no can	60min FTS no can	No ETS	NO ETC	Emin CTC @E009C	Julia FTS (#300°C	3011111 FTS @ 300 C	Sumin F1S @300°C	Emir FTS (#300-C no cap	Smin FIS, cap @300°C	60min FIS, cap @500°C	30min FTS	SOMIN FIS	somin F1S, cap	Emin FTE (south propie)	30min FTS no cracks	30min FTS can	RI Wafer	5min FTS	No FTS	30min FTS	No FTS	30min FTS (peeled off)	60min FTS (peeled off)						
	CHSIO	0.0572	0.0356	0.0588	0.2189			0.3823					0.3933	0.3885	0.151	0.0785	0.0583				0.30	0 3011	0.35	0.4077	0.1047	601.0				0.094	0.0823		2000	0.0033	200										0.3071	0.079	0.0749	
FTIR P.A.R	SIHISIO	0.0058	0.003	Π	Т	Π		0,0516					0.0532	0.0599	0.0135	0.0101	0.0082				0.0554	0.0573	2000	0.02	0.0160	2010.0				0.0111	0.0103		0.0073	0.0064											0.3071	0.079	0.0749	
	Sic/Sio	0.0209	0.0161	0.0145	0.0378			0.0387					0.0371	0.0367	0.0368	0.0376	0.0363				0.0374	0.0367	0.030	0.0345	0.0343	0.0373				0.033	0.0323		0.0308	0.0299								= 8.839E8T	-6.869E8C	1.027E9T	0.0343	0.036	0.0349	
Dielectric	Constant			ļ.—				П	2.56	2.72	3.16	2.33						T	2.55	2.52	+					201	200	2.37	†		╅	253	\top		2.26							Stress = {	**	Stress =	-		П	2.43
Refractive	Muex		1.3978	1.5031	1.4669	1.4649	1.4635	fix					fix	μ	Ι×	TIX	¥				1.5351	1.5658	1.4763	1.4466	1.5553				4 456.9	1 4146			1.4218	1.3767		1.4022	1.4308	1.4115	1.3942	1.4493	1.4307	1.4354	1.5128	1.4463	1.5393			i
Uniformity	(o _x)		2.2	6.4	3.4	8.2	29.2	3.3					5.7	5.7		4.9	3.4				8	7.7	6.5	4.2	137					7 8			4.3	4.2		8	8.3	6.1	6.9	7.4	6.5	3.4	2.7	2.4	6.8			
Dep rate	(Julius)	~1.8µm	17888	17896	8213	9912	1792	10233					13034	13929	11131	6086	9853				13020	12601	12450	11885	10679				17288	17484			6986	9564		13971	12355	11928	11070	25340	22157	17612	17736	14636	21774			
Platen	- 1	જ	22	23	20	50	50	32	23	30	23	20	20	20	20	8	8	83	25	83	83	88	83	8	R	25	25	9	3 5	3 5	5	S	20	20	93	20	22	જ	99	50	SS.	20	50	05	20	20	20	2
Power Showerhead		100	100	881	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	198	8	90	99	100	99	199	B	100	100	900	00,	90	90	100	100	100	8	100	100	100	100	100	100	100	100	100	100	201
	_	200	200	1000	250	250	<u>2</u>	520	520	250	250	220	520	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	Ş	200	200	200	250	250	250	250	520	220	250	200	200	500	200	200	200	200	200	300
Pressure (mT)		900	800	006	909	909	130 130	9	99	8	900	000	8	8	8	900	800	006	006	006	006	906	98	900	906	906	906	006	S	86	906	8	906	900	006	8	8	06 8	06 6	8	006	006	90	006	006	006	000	AUU
N ₂ Flow (Sccm)		250(8)	0	150(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200/8)	200/81	200(8)	200(8)	200(8)	200(8)	150(8)	150(8)	200(8)	200(8)	150(8)	150(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	(0)007
O ₂ Flow ₁ (Sccm)		જ	00 20	જ	9	0	0	0		9		0		0	0	٥	9	9	0	0	0]	0	0	0	0		0	-	,			0	8	8	જ	٥	0	જ	S	0	•	٥	٩	0	0	9	9]
CHMMS (9/min)		0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	98.5	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.83
Run	1	42	2	4	45	9	44	2	\$	S :	55	25	23	24	22	8	22	88	29	90	61	62	63	64	65	99	67	88	e	200	7	72	73	74	75	92	F	78	20	8	9	82	8	84	32	98	28	8

Fig 7(Part 2 of 3)

Fig. 7(Part 3 of 3)

													•																																	
Comment		Feint bowder s/h		Small amount of centre cracking	Massive centre cracking		30min FTS, cap	30min FTS, can	5min FTS	5min FTS	5min FTS, cap	60min FTS, cap	30min FTS, cap	5min FTS Showerhead dots	5min FTS Showerhead dots	30mln FTS cap	5min FTS	30min FTS	30min FTS CAP		30min FTS	30min FTS. RI Wafer	30min FTS	30min FTS, RI Wafer	30min FTS. RI Wafer	30min FTS	30min FTS	30min FTS. RI Wafer			30min FTS, Cap	30min FTS, Cap	30min FTS, Stress=8,78E8T	30-in FTS, Stress=7.313E81	30min FTS Strees=0.32559T	30min FTS Stress=9.041ERT	30min FTS Stress=8 544FRT	30min FTS Stress=8 778F8T	30min FTS Stress=8 025F8T		30min FTS					
CHISIO	0 1051	0.0776	0.0725	0.0456	0.0532	0.0725			0.1091	0.1441				0.096	0.0116		0.0912	0.0771											0.0724	0.0865			0.0751	2000	0 0500	0.0556	0 0344	0.0336	0.0466	2						
FTIR P.A.R SIH/SIO	7	0.0075	0.0079	0.0065	0.0079	0.0076			0.0093	0.0117				0.0093	0.0119		0.0149	0.0143											0.0143	9600'0		- 1	- 1	2000	200	0.0051	0 00 42	1				Ì				
SIC/SIO	0 0344	0.027	0.0327	0.0308	0.0344	0.0273			0.0342	0.0334				0.0239	0.025		0.0282	0.0278											0.0255	0.0343			0.0363	0.000	0.0313	0 034	0.0295	0.0293	0.0331							
Dielectric Constant							2.49	2.48			2.437	2,286	2.426			53		1	2.72	20											2,556	2.76								2.414	2.4	2.48	2.41	2.48	2.43	2.45
Refractive Index	1 4129	1.4398	1.3875	1,3646		1.4199			1.4521	1.4592				1.5107	1.5081		1.4983	1.496		NGED TO	1.3437	1,3654	1.3713	1.3888	1.447	1.3756	1.4745	1.4549	1.4524	1.4384		, 667	1.4334	1 3054	1381	1.3807	1.3597	1.3481	1.3718							
Uniformity (%)	2.4	1.9	2.4	5.9		4.6			8.8	11.7				7.6	5.1		3.5	2.4		CHAMBER SPACING CHANGED TO		84	17.6	13.6	111	3.4	28	8.6	3.5	2.3																
Dep rate (A/min)	17344	17840	9279	9663	~10000	21408			9917	9848				12080	12502	20470	14074	13930		BER SPA	17826	21765	11436	12828	14280	12185	9049	10620	9073	14852			11633	200	10515	10640	11727	12598	9206							
Platen (°C)	ş	જ	ន	ន្ទ	ŝ	S	S	92	S	Ş	S	8	ន	я	S	S	S	S	9	CHAM	ş	g	S	55	ş	ş	ន្ទ	ş	я	SS	ន	S	23 5	ş	Ş	55	S	50	5.0	50	20	95	550	50	95	8
Showerhead (°C)	9	100	100	99	99	90	100	100	100	90	5	9	5	9	2	100	100	8	100		ğ	8	100	9	100	90	8	a	5	9	2	9	3 5	100	100	100	100	100	100	100	100	100	100	100	100	<u>5</u>
Power (M)	200	200	250	250	200	200	250	250	250	250	250	220	220	8	8	8	20	720	220		ŝ	Š	220	250	200	8	ğ	ğ	င္တ	င္တ	S.	8	250	250	250	250	250	250	250	250	250	250	250	250	250	250
Pressure (mT)	006	900	900	900	900	8	8	8	006	06	8	8	8	8	g 8		g :	8	8		8	8	8	800	900	8	8	ş	ş	8	3	9	\perp	L	Ц		L	Ц		900		006	Ц	Ц	Ц	8
N, Flow (Sccm)	200(8)	175(8)	175(8)	150(8)	•	0	150(8)	150(8)	175(8)	175(8)	175(8)	1/38	175(8)	100(8)	100(8)	19000	400(8)	400(8)	4008		200(8)	200(8)	175(8)	175(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	9007	200(8)	200/8	175(8)	150(8)	185(8)	125(8)	100(8)	175(8)	185(8)	125(8)	100(8)	175(8)	165(8)	185(8)	1708
O ₁ Flow (Sccm)	0	25	2	S	ŝ	ន	S	S	25	4	72	4	+	٩	9	4	٥	9	9		4	٩	25	52	4	4	4	4	4	\downarrow	4	4	\downarrow	L	Н	4	_	H	Ц	.15	-	100	H	4	15	4
CHMMS (g/min)	0.85	0.85	985	0 82	0.85	0.85	0.85	0.85	0.85	0.85	0.85	282	0.85	4	9.6	800		0.85	000		0 85	Sa d	0.85	085	0 85	98	0 85	9	0.85	0.85	20.0	282	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Run Number	8	8	B	a	a	8	ä	g	ä	ä	8	3	9							1	ë P	9	9	4	7	113	¥ F		9			3 5	35	122	123	124	125	126	127	128	129	130	13	132	133	12

DOVERDAT DREGET

哪一点"小

9/19

1.) 800CHMMS,0.4g/min H202, 900mT, 250W as deposited

15.15

2.) 800Sccm CHMMS, 0.4g/min H202, 900mT, 500W

10/19

Fig. 10

11/19

SiC/SiO: 0.026 SiH/SiO: 0.019 0.0220 CH/SiO:

Fig 11

12/19

DOYSUBLE BROOK

13/19

FTM Treatment - FTIR - oxidising strip resistance TMS / O₂ Process

Fig 13

TMS / O₂ Process FTM Treatment – FTIR – oxidising strip resistance

Fig 14

FTM Treatment - FTIR - oxidising strip resistance TMS / O₂ Process

Fig. 15

FTM v Treatment stress - oxidising strip resistance TMS / O₂ Process

TMS/O₂ LowK Film With FTM and H₂ Plasma Treatment Film Stress Values For Pre And Post Oxidising Strip

(Dynes/cm²)

16/19

POZESKY INSPOS

TMS / O₂ Process Plasma Treatment – Dielectric constant

Dielectric Constant Values For TMS/O₂ Films FTM and H₂ Plasma Treatments

17/19

Dielectric constant

Dielectric Constant For TMS/O₂ Films FTM and H₂ Plasma Treatments

Fig 18

