

Introduction to Algorithms

Date: 3/10 (Tuesday)

Instructor: 유준수

Assignment

- Read 2.2, 2.3.1
- Problems:
 - 2.2절 **-** 1, 2, 3

Summary

Insertion Sort

Pseudocode

for
$$n=2$$
 to $n=2$ to $n=2$ to $n=2$ to $n=2$ to $n=2$ to $n=3$ they are $n=3$ they $n=3$ they are $n=3$ they $n=3$ they are $n=3$ they $n=3$ th

 \Rightarrow ACi7 finds position 5-t.

ACi7 \neq ACi7 \neq ACi+17 \Rightarrow ACi7 \Rightarrow ACi717 \Rightarrow ACi7 \Rightarrow ACi717 \Rightarrow ACi717

Territation

A U: 77 is sorted

array

2.1-4

Consider the searching problem:

Input: A sequence of n numbers $(a_1, a_2, ..., a_n)$ stored in array A[1:n] and a value x.

Output: An index i such that x equals A[i] or the special value NIL if x does not appear in A.

Write pseudocode for *linear search*, which scans through the array from beginning to end, looking for x. Using a loop invariant, prove that your algorithm is correct. Make sure that your loop invariant fulfills the three necessary properties.

Searching Problem J: < a, ..., a, 7, d O: return index i s.t. $\chi = A c c J$ or U J Lif t # Aci7 for $\tilde{n} \in [1, n]$ 1) Prendocod 2) correctness

Pseudocode ITM_Search (A, n, x) loop invariant: A [1: i-1]
doesn't contain of cot

oof of Correctness ACI: 7-17 doeset Contain of => check ACiJ= 1 => Tf match, returns Tidex 1 =) If match X, A[1:i]
doeset contain A Termination: (1) match occurs,

Problem 2.1-4

Chapter 2. The Role of Algorithms in Computing

- 2.1 Insertion sort
- 2.2 (Analyzing algorithms
- 2.3 Designing algorithms

Model Assumption: RAM

time

Calculate Time Complexity (hard way): Insertion Sort

INSERTION-SORT
$$(A, n)$$

1 for $i = 2$ to n

2 key = $A[i]$

3 // Insert $A[i]$ into the sorted subarray $A[1:i-1]$.

4 $j = i - 1$

5 while $j > 0$ and $A[j] > key$

6 $A[j+1] = A[j]$

7 $j = j - 1$

8 $A[j+1] = key$

Cost

N-1

Co

$$T(u) = C_1(u-1) + C_2(u-2) + \cdots$$

(near

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_8(n-1) .$$

$$t = 1$$
 $T(n) = (c_1 + c_2 + c_3 + c_4 + c_n) n$
 $- c_2 - c_3 - c_4 - c_n$
 $= an + b$

Worst-case analysis
$$T(n) = c_{1}n + c_{2}(n-1) + c_{4}(n-1) + c_{5} \sum_{i=2}^{n} t_{i} + c_{6} \sum_{i=2}^{n} (t_{i}-1) + c_{7} \sum_{i=2}^{n} (t_{i}-1) + c_{8}(n-1) \cdot \cdots$$

$$+ c_{7} \sum_{i=2}^{n} (t_{i}-1) + c_{8}(n-1) \cdot \cdots$$

$$= \sum_{i=2}^{n} (t_{i}-1) + c_{6} \sum_{i=2}^{n} (t_{i}-1) + c_$$

Summary of time complexity table (insertion sort)

Case	t_i	Time Complexity
Best-case	1	O(n)
Worst-case	1	(L2)
Avg-case	3/2	(u ²)

Order of Growth (Rate of growth)

$$T(u) = C_1 N^{k} + C_2 N^{k-1}$$

$$= (N^{k} + C_2 N^{k-1})$$

$$= (N^{k}$$

Why do we ignore the constant term?

$$T(u) = \frac{1}{100}(v^2 + 100) + \frac{1}{100}(v^2$$

Chapter 2. The Role of Algorithms in Computing

- 2.1 Insertion sort
- 2.2 Analyzing algorithms
- 2.3 Designing algorithms

2.3.1 Divide & Conquer Method

Incremental Approach: Insertion Sort

General problem solving strategy of Divide and Conquer Method

Divide the problem into one or more subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively.

Combine the subproblem solutions to form a solution to the original problem.

Question?