Stat 400. Problem Set 10. Due 11/19/24

Point Estimation

Problem 1. Consider the negative binomial distribution with parameters r and p. Show that $\hat{p} = \frac{r-1}{X+r-1}$ is an unbiased estimator for p.

Hint: Write an infinite sum for $E(\hat{p})$, and cancel out x+r-1 inside the sum.

Problem 2. Suppose we get a random sample $\{X_1, ..., X_m\}$ from a population with mean μ and variance σ^2 , and a random sample $\{Y_1, ..., Y_n\}$ from a population with mean μ and variance $9\sigma^2$.

(a) Show that for any fixed number $\delta \in (0,1)$, the estimator

$$\hat{\mu} = \delta \overline{X} + (1 - \delta) \overline{Y}$$

is an unbiased estimator for μ .

- (b) Compute the variance of $\hat{\mu}$ (your answer will involve m, n, σ, δ).
- (c) Find the value of δ that minimizes $V(\hat{\mu})$. (Hint: calculate the derivative with respect to δ)

Problem 3. Let $\{X_1,...,X_n\}$ be a random sample from a population with the normal distribution with mean μ and standard deviation σ . Consider the statistic

$$S_{xx} = \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

- (a) Calculate the expected value $E(S_{xx})$.
- (b) Find an unbiased estimator for σ^2 . This estimator is called the sample variance, and is denoted S^2 .

Problem 4. Using a rod of (unknown) length ℓ , you lay out a square plot of side length ℓ . So the area is ℓ^2 . Suppose you take n independent measurements X_i , each with mean ℓ and variance σ^2 .

- (a) Is \overline{X} an unbiased estimator for ℓ ? Justify your answer.
- (b) Calculate the bias of \overline{X}^2 . Is \overline{X}^2 an unbiased estimator of ℓ^2 ? If not, is \overline{X}^2 an overestimate or an underestimate?
- (c) For what value of K is $\overline{X}^2 KS^2$ an unbiased estimator of ℓ^2 ?