Least-Squares Batch Identification Algorithm - Example

Table of Contents

lc	entifying an ARX(2, 2) Stochastic Process	1
	ARX Process Simulation	
	Generation of the Data	2
	The Dataset	
	Plot the Process Data	6
	Persistency of Excitation and the Identifiability Condition	7
	The Identifiability Condition	
	Identification - the LS Algorithm	9
	The Estimate Uncertainty	
	The Witheness Test	11

Identifying an ARX(2, 2) Stochastic Process

Consider the stationary stochastic process \mathcal{S}

$$\mathcal{S}: \qquad y(t) = +\frac{6}{5} \ y(t-1) - \frac{8}{25} y(t-2) + u(t-1) + \frac{1}{2} u(t-2) + \xi(t)$$

$$\xi(\cdot) \sim WN(0,1)$$
, $u(\cdot) \sim WN(0,4)$ $e(\cdot), u(\cdot)$ uncorrelated

and collect $N_1 = 1500$ samples of both y(t) and u(t)

$$Y = \{y(1), y(2), \dots y(N_1)\}$$
 $U = \{u(1), u(2), \dots u(N_1)\}$

Consider the model M

$$\mathcal{M}(\vartheta): y(t) = a_1 y(t-1) + a_2 y(t-2) + b_1 u(t-1) + b_2 u(t-2) + \eta(t)$$
 $var[\eta(\cdot)] = \lambda^2$

and let us identify the model. Let us resort to the Least-Squares technique. Then

$$\vartheta = \begin{bmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{bmatrix} \quad \varphi(t) = \begin{bmatrix} y(t-1) \\ y(t-2) \\ u(t-1) \\ u(t-2) \end{bmatrix}$$

and hence

$$\mathcal{M}(\vartheta): \quad y(t) = \varphi(t)^{\top} \vartheta + \eta(t)$$

$$\widehat{\mathcal{M}}(\vartheta)$$
: $\widehat{y}(t|t-1) = \varphi(t)^{\top} \vartheta$

The predictor has a linear structure with respect to the vector ϑ of unknown parameters.

The prediction error $\epsilon(t)$ is given by

$$\varepsilon(t) = y(t) - \hat{y}(t|t-1) = y(t) - \varphi(t)^{\mathsf{T}} \vartheta$$

Consider the quadratic cost function

$$J(\vartheta) = \frac{1}{N_1} \sum_{t=1}^{N_1} [\varepsilon(t)]^2 = \frac{1}{N_1} \sum_{t=1}^{N_1} [y(t) - \varphi(t)^{\mathsf{T}} \vartheta]^2$$

and the minimizing vector

$$\vartheta^{\circ} = \arg \min_{\vartheta} J(\vartheta)$$

If $\sum_{t=1}^{N} \varphi(t) \, \varphi(t)^{\top}$ is **non-singular**, one gets:

$$\widehat{\vartheta}_{N_1} = \left[\sum_{t=1}^{N_1} \varphi(t) \, \varphi(t)^{\top} \right]^{-1} \sum_{t=1}^{N_1} \varphi(t) \, y(t)$$

and the estimate uncertainty is

$$\operatorname{var}\left[\widehat{\vartheta}_{N_1}\right] = \widehat{\lambda}_{N_1}^2 \left[\sum_{t=1}^{N_1} \varphi(t) \, \varphi(t)^{\mathsf{T}} \right]^{-1}$$

where $\widehat{\lambda}_{N_1}^2$ is an empirical estimate of λ^2

$$\widehat{\lambda}_{N_1}^2 = \frac{1}{N_1} \sum_{t=1}^{N_1} \left[y(t) - \varphi(t)^{\mathsf{T}} \widehat{\vartheta}_{N_1} \right]^2$$

The condition

$$\det \left[\sum_{t=1}^{N} \varphi(t) \, \varphi(t)^{\top} \right] \neq 0$$

is called Identifiability Condition.

ARX Process Simulation

Generation of the Data

```
clear
close all
clc
N1 = 500; % the number of sample data to simulate and collect
var xi = 1; % the white noise variance
mean xi = 0; % the white noise mean value
var u = 4; % the input variable variance
mean_u = 0; % the input variable mean value
Az1 = [1, -6/5, +8/25];
% the coefficients of the polynomial A(z) <-> 1 - a_1 * z^{-1} - a_2 * z^{-2}
%
                                           z^2 - a_1 * z^1 - a_2 * z^0
Bz1 = [0, 1, 1/2];
% the coefficients of the polynomial B(z) <-> b_1 * z^{-1} + b_2 * z^{-2}
                                             b_1 * z^1 + b_2 * z^0
Ts = 1; % sampling time
Gz1 = tf(Bz1, Az1, Ts, 'Variable', 'z^-1')
```

 $G_{7}1 =$

Sample time: 1 seconds
Discrete-time transfer function.

```
Gz = tf(Bz1, Az1, Ts, 'Variable', 'z')
```

Gz =

Sample time: 1 seconds

Discrete-time transfer function.

Let's estimate how long is the initial transient output of the filter Gz) = $\frac{B(z)}{A(z)}$:

```
p_vector = pole(Gz); % the poles of W(z)
z_vector = zero(Gz); % the zeros of W(z)

slowest_pole = max(abs(p_vector));

zero_threshold = 1e-8;
% let's assume that the value is practically zero if less than or equal to zero_thresh
```

Ntransient = 50*(ceil(log10(zero_threshold)/log10(slowest_pole))+10); % a very raw est
N_TOT_data = N1 + Ntransient

 $N_TOT_data = 5150$

```
rng('shuffle');
%    seeds the random number generator based on the current
%    time so that RAND, RANDI, and RANDN produce a different sequence of
%    numbers after each time you call rng.
WN_samples = mean_xi + sqrt(var_xi)*randn(1, N_TOT_data); % the white noise sequence
rng('shuffle');
U_samples = mean_u + sqrt(var_u)*randn(1, N_TOT_data); % the input u sequence
```

Remember: the stochastic process S is an ARX process

$$\mathcal{S}: \qquad y(t) = +\frac{6}{5} \ y(t-1) - \frac{8}{25} y(t-2) + u(t-1) + \frac{1}{2} u(t-2) + \xi(t) \tag{+}$$

Let us rewrite the model \mathcal{S} , pointing in evidence the filters G(z) and W(z):

$$\left[1 - \frac{6}{5}z^{-1} + \frac{8}{25}z^{-2}\right]y(t) = \left[z^{-1} + \frac{1}{2}z^{-2}\right]u(t) + \xi(t)$$

$$A(z) y(t) = B(z) u(t) + \xi(t) \qquad A(z) = \left[1 - \frac{6}{5}z^{-1} + \frac{8}{25}z^{-2}\right] \quad B(z) = \left[z^{-1} + \frac{1}{2}z^{-2}\right]$$

$$y(t) = \frac{B(z)}{A(z)}u(t) + \frac{1}{A(z)}\xi(t) \qquad G(z) = \frac{B(z)}{A(z)} \quad W(z) = \frac{1}{A(z)}$$

Finally

$$y(t) = G(z) u(t) + W(z) \xi(t) \qquad (\star)$$

Now we may generate a set of data of the process \mathcal{S} , using the Eq. (\star) or the explicit difference equation in Eq. (+).

Let us implement Eq. (+) to generate the samples.

```
v_y = zeros(1, N_TOT_data); % the array recipient for the r.v. y(t) in Eq.(+)
% --- solving Eq. (+) in a "for" loop ---
for k=1:N_TOT_data
    % ---- checking if the values
           at the time instant (t-2) are available ----
    if ((k-2)>0)
                               % if available, then use them
        vy_k2 = v_y(k-2);
        u_k2 = U_samples(k-2);
                               % if not available then set them to zero
    else
        vy_k2 = 0;
        u k2 = 0;
    end % if ((k-2)>0)
    % ---- checking if the values
           at the time instant (t-1) are available ----
    if ((k-1)>0)
                               % if available, then use them
        vy_k1 = v_y(k-1);
        u k1 = U samples(k-1);
    else
                               % if not available then set them to zero
        vy_k1 = 0;
        u k1 = 0;
    end % if ((k-1)>0)
    % ---- evaluate y(t) according to Eq. (+) ----
    v_y(k) = -Az1(2)*v_k1 -Az1(3)*v_k2 +...
               +Bz1(1)*U_samples(k) +Bz1(2)*u_k1+Bz1(3)*u_k2 +...
                   WN samples(k);
end
```

Let us compare the resulting sequences:

*** Max abs value of the difference between the two sequences: 1.421085e-14 ***

Both approaches lead to the same sequence.

The Dataset

```
V_ARX = V_ARX_tot(Ntransient+1:end);
% the N1 samples, collected when the initial transient
% (due to the initial simulation conditions) has practically disappeared
```

Plot the Process Data

Let us define a set of colors

```
% ---- possible colors ----

FrenchBlue = [0 0.4470 0.7410]; % French Blue

FlameRed = [0.8500 0.3250 0.0980]; % Flame Red

Xanthous = [0.9290 0.6940 0.1250]; % Xanthous

VividViolet = [0.4940 0.1840 0.5560]; % Vivid Violet

AppleGreen = [0.4660 0.6740 0.1880]; % Apple Green

BlizzardBlue = [0.3010 0.7450 0.9330]; % Blizzard Blue

VividBurgundy = [0.6350 0.0780 0.1840]; % Vivid Burgundy

% ---- possible colors ----
```

and plot the collected data:

```
figure('Units','normalized', 'Position', [0.1, 0.1, 0.9, 0.75]);
hp1 = subplot(2, 1, 1);
plot(V_ARX_tot, 'Color', FrenchBlue , 'LineWidth', 1.5, 'LineStyle','-', 'Marker', 'squ
      'MarkerSize', 6, 'MarkerEdgeColor', 'auto', 'MarkerFaceColor', 'auto');
grid on; hold on;
xlabel('time instants [samples]', 'Interpreter', 'latex');
ylabel('ARX r.v. $y(t)$', 'Interpreter','latex');
xlim([0, numel(V_ARX_tot)]); % adjusting the x-axis limits
% the gray part corresponds to the transient part of the whitening filter response
YL = ylim;
fill([1 ,Ntransient(end), Ntransient(end), 1], [YL(1), YL(1), YL(2), YL(2)],...
       'k', 'FaceAlpha', 0.10, 'EdgeColor', 'k', 'EdgeAlpha', 0.10);
hp2 = subplot(2, 1, 2);
plot(U_samples, 'Color', Xanthous , 'LineWidth', 1.5, 'LineStyle','-', 'Marker','diamo
      'MarkerSize', 6, 'MarkerEdgeColor', 'auto', 'MarkerFaceColor', 'auto');
grid on; hold on;
xlabel('time instants [samples]', 'Interpreter', 'latex');
ylabel('input $u(t)$', 'Interpreter','latex');
xlim([0, numel(V_ARX_tot)]); % adjusting the x-axis limits
% the gray part corresponds to the transient part of the whitening filter response
YL = ylim;
fill([1 ,Ntransient(end), Ntransient(end), 1], [YL(1), YL(1), YL(2), YL(2)],...
       'k', 'FaceAlpha', 0.10, 'EdgeColor', 'k', 'EdgeAlpha', 0.10);
linkaxes([hp1, hp2], 'x');
```


Persistency of Excitation and the Identifiability Condition

The regressor $\varphi(t)$ is given by

$$\varphi(t) = \begin{bmatrix} y(t-1) \\ y(t-2) \\ u(t-1) \\ u(t-2) \end{bmatrix}$$

and consequently, the matrices S and R take on the expressions

$$S(N_1) = \begin{bmatrix} \sum_{t=3}^{N_1} [y(t-1)]^2 & \sum_{t=3}^{N_1} y(t-1)y(t-2) & \sum_{t=3}^{N_1} y(t-1)u(t-1) & \sum_{t=3}^{N_1} y(t-1)u(t-2) \\ \sum_{t=3}^{N_1} y(t-2)y(t-1) & \sum_{t=3}^{N_1} [y(t-2)]^2 & \sum_{t=3}^{N_1} y(t-2)u(t-1) & \sum_{t=3}^{N_1} y(t-2)u(t-2) \\ \sum_{t=3}^{N_1} u(t-1)y(t-1) & \sum_{t=3}^{N_1} u(t-1)y(t-2) & \sum_{t=3}^{N_1} [u(t-1)]^2 & \sum_{t=3}^{N_1} u(t-1)u(t-2) \\ \sum_{t=3}^{N_1} u(t-2)y(t-1) & \sum_{t=3}^{N_1} u(t-2)y(t-2) & \sum_{t=3}^{N_1} u(t-2)u(t-1) & \sum_{t=3}^{N_1} [u(t-2)]^2 \end{bmatrix}$$

Remark: there is a more efficient way to evaluate the matrix S. In fact, given N_1 observations, we build the following matrices and vectors

$$\Phi_{N_1} = \begin{bmatrix} \varphi(1)^{\mathsf{T}} \\ \vdots \\ \varphi(N_1)^{\mathsf{T}} \end{bmatrix} \quad \varphi(t) = \begin{bmatrix} y(t-1) \\ y(t-2) \\ u(t-1) \\ u(t-2) \end{bmatrix} \qquad \vartheta = \begin{bmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{bmatrix} \qquad Y_N = \begin{bmatrix} y(1) \\ \vdots \\ y(N_1) \end{bmatrix}$$

Now rewrite the LS problem in a compact form as

$$\Phi_{N_1} \cdot \vartheta = Y_{N_1}$$

To obtain the *LS normal equations* in compact form, simply multiply both terms of this expression to the left using the transposed matrix $\Phi_{N_1}^{\mathsf{T}}$:

$$\boldsymbol{\Phi}_{N_1}^{\top} \, \boldsymbol{\Phi}_{N_1} \, \boldsymbol{\vartheta} = \boldsymbol{\Phi}_{N_1}^{\top} \, Y_{N_1}$$

Finally

$$S = \Phi_{N_1}^{\top} \, \Phi_{N_1}$$

Now we may

- ullet check if $\Phi_{N_1}^{ op}\Phi_{N_1}$ is a full rank matrix (i.e. if the identifiability condition is fulfilled);
- check if the sub-matrix S_{uu} is full-rank (i.e. if we have persistency of excitation a necessary condition for the identifiability condition to hold true)

$$S_{uu}(N_1) = \begin{bmatrix} \sum_{t=3}^{N_1} [u(t-1)]^2 & \sum_{t=3}^{N_1} u(t-1)u(t-2) \\ \sum_{t=3}^{N_1} u(t-2)u(t-1) & \sum_{t=3}^{N_1} [u(t-2)]^2 \end{bmatrix}$$

The Identifiability Condition

```
U = U_samples(Ntransient+1:end);
Y = V_ARX;
matPHI = zeros(N1-1, 4); % preallocation of the PHI regressors matrix

for k=3:N1
    matPHI(k,:) = [Y(k-1), Y(k-2), U(k-1), U(k-2)];
end % for k
matPHI(1:2,:) = []; % we can not evaluate the model for t=1 and t=2
```

```
Y_N1 = Y(3:end)'; % we can not evaluate the model for t=1 and t=2

S_N1 = matPHI'*matPHI;
if (rank(S_N1)<4)
    error('Matrix S not invertible! Identifiability condition not fulfilled!')
else
    disp('Matrix S invertible! Identifiability condition fulfilled!')
end</pre>
```

Matrix S invertible! Identifiability condition fulfilled!

Identification - the LS Algorithm

$$\widehat{\vartheta}_{N_1} = \left[\sum_{t=1}^{N_1} \varphi(t) \, \varphi(t)^{\mathsf{T}} \right]^{-1} \sum_{t=1}^{N_1} \varphi(t) \, y(t)$$

or in compact form (refer to the previous section of the live script where we recall it)

$$\Phi_{N_1} \cdot \vartheta = Y_{N_1}$$

$$\Phi_{N_1}^\top \Phi_{N_1} \vartheta = \Phi_{N_1}^\top Y_{N_1}$$

Thus we may solve the LS equation using the MATLAB operator "\" using the compact formulation $\Phi_{N_1}\cdot \vartheta=Y_{N_1}$

```
hat_theta_N1 = matPHI \ Y_N1
```

```
hat_theta_N1 = 4×1
1.1776
-0.2972
0.9878
0.4731
```

Alternatively, we may solve the LS normal equations $\Phi_{N_1}^{\top}\Phi_{N_1}\vartheta=\Phi_{N_1}^{\top}Y_{N_1}$, exploiting one more time the operator "\"

```
hat_theta_N1_ALT = S_N1 \ (matPHI'*Y_N1)
```

```
hat_theta_N1_ALT = 4×1
1.1776
-0.2972
0.9878
0.4731
```

As can be seen, both approaches lead to the same solution.

The Estimate Uncertainty

What about the estimate uncertainty?

According to the theoretical result, described in the class material (refer to L12 - p. 24), for N sufficiently large the variance of the estimator is $\frac{1}{N} \operatorname{var}[\epsilon(\vartheta^o)] \left[\overline{R}(\vartheta^o) \right]^{-1}$

Computing the empirical estimate, one gets

$$\operatorname{var}\left[\widehat{\vartheta}_{N}\right] = \frac{\widehat{\lambda}^{2}}{N} \left[\frac{1}{N} \sum_{t=1}^{N} \varphi(t) \, \varphi(t)^{\top} \right]^{-1} = \widehat{\lambda}^{2} \, S(N)^{-1}$$

where

$$\widehat{\lambda}^2 = \frac{1}{N} \sum_{t=1}^{N} \left[y(t) - \varphi(t)^{\mathsf{T}} \widehat{\vartheta}_N \right]^2$$

In this example one gets

```
% the estimate of the prediction error variance pred_residuals = Y_N1 - matPHI*hat_theta_N1; hat_lambda2_N1 = mean((pred_residuals).^2)
```

hat lambda2 N1 = 0.9470

```
cond(S_N1)
```

ans = 106.3693

```
var_theta_N1 = hat_lambda2_N1 .* inv(S_N1)
```

```
var\_theta\_N1 = 4 \times 4
              -0.0005
                                     -0.0006
    0.0005
                           0.0000
   -0.0005
               0.0005
                           0.0000
                                      0.0005
    0.0000
               0.0000
                           0.0005
                                     -0.0000
   -0.0006
               0.0005
                         -0.0000
                                      0.0011
```

Alternatively

```
R_N1 = S_N1 . / N1;

cond(R_N1)
```

ans = 106.3693

```
var_theta_N1_ALT = (hat_lambda2_N1/N1) .* inv(R_N1)
```

```
var_theta_N1_ALT = 4x4
   0.0005
             -0.0005
                         0.0000
                                  -0.0006
   -0.0005
              0.0005
                         0.0000
                                   0.0005
   0.0000
              0.0000
                         0.0005
                                  -0.0000
   -0.0006
              0.0005
                        -0.0000
                                   0.0011
```

Remark

The covariance matrix is not a diagonal matrix: there is a weak link between some of the parameters.

The Witheness Test

What about the prediction residuals? Are they samples of a stationary stochastic white noise process or?

Actually we have the prediction residuals, so let us apply the **Anderson's whiteness test**

```
WTest_result = AndersonWhitenessTest(pred_residuals, 0.01, true)
```

AndersonWhitenessTest: confidence level 0.010000 AndersonWhitenessTest: max lag value M 24 AndersonWhitenessTest: critical value 0 AndersonWhitenessTest: accept the hypothesis --> the prediction error IS a stationary white noise stochastic process WTest_result = 0