Hafta 08 - Sinir Ağları - 2

BGM 565 - Siber Güvenlik için Makine Öğrenme Yöntemleri Bilgi Güvenliği Mühendisliği Yüksek Lisans Programı

> Dr. Ferhat Özgür Çatak ozgur.catak@tubitak.gov.tr

İstanbul Şehir Üniversitesi 2018 - Bahar

İçindekiler

- Evrişimli Sinir Ağları
 - Giris
 - Convolution
 - Non-linearity
 - Stride ve Padding
 - Pooling
 - Hyperparameters
 - Fully Connected

- Eğitim
- Word Embeddings
 - Giris
 - Metin Veri Kümesi
 - Word Embeddings
- Recurrent Neural Networks
 - Giris
- LSTM ve GRU
 - Long Short-Term Memory

İçindekiler

- Evrişimli Sinir Ağları
 - Giris
 - Convolution
 - Non-linearity
 - Stride ve Padding
 - Pooling
 - Hyperparameters
 - Fully Connected

- Eğitim
- - Giris

 - Word Embeddings
- - Giris
- - Long Short-Term Memory

Genel Mimari

- Sırayla convolution ve pooling işlemleri gerçekleştirilir.
- Fully connected layers

Convolution

- ► Main building block of CNN: convolutional layer
- Convolution: mathematical operation to merge two sets of information
- Convolution is applied on the input data using a convolution filter to produce a feature map.

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Input

Filter / Kernel

Convolution

Convolution I

Convolution

- Convolution 3-boyutlu olarak hesaplanır.
- Resimler 3-boyutlu olarak gösterilmektedir. (height, width, depth) depth: color channels (RGB)
- **Örnek**: $32 \times 32 \times 3$ resim, $5 \times 5 \times 3$ filtre boyutu

Non-linearity

Non-linearity

- ANN ve AutoEncoders ağırlıklı toplam ifadesi aktivasyon fonksiyonları kullanır.
- CNN'de aynı şekilde aktivasyon fonksiyonları kullanacaktır.

Stride ve Padding

Stride

- Stride specifies how much we move the convolution filter at each step.
- By default the value is 1

Padding

Input map ve feature map aynı olması isteniyorsa, 0'lardan oluşan değerler eklenir.

Pooling I

Pooling

- Convolution işleminden sonra boyut azaltmak amacıyla pooling işlemi yapılır.
- Amaç: Eğitim zamanını azaltmak ve aşırı öğrenmeyi (overfitting) engellemek.
- Pooling katmanları her bir feature map üzerinden örnekler almaktadır.
- ► En çok kullanılan pooling: max pooling

1	1	2	4	move need with 2v2		
5	6	7	8	max pool with 2x2 window and stride 2	6	8
3	2	1	0		3	4
1	2	3	4			

Pooling II

Örnek

- ▶ Pooling layer input: $32 \times 32 \times 10$
- ► max pooling: 2 × 2 window

224

Evrişimli Sinir Ağları

Hyperparameters

Hyperparameters

- ▶ Filter size: genellikle 3×3 , 5×5 , 7×7 . Bu filtreler 3-boyutludur. Bütün katmanlarda aynı olması sebebiyle genellikle gösterilmez.
- Filter count: 2'nin katları şeklindedir. [32, 1024]. Filtre sayısı artıkça daha güçlü ama aşırı öğrenmeye daha yatkın model oluşur.
- ► Stride
- Padding

Fully Connected

Fully Connected

- Convolution + Pooling katmanlarından sonra CNN mimarisi için fully-connected katmanlar oluşturulur.
- Convolution ve pooling katmanları 3-boyutludur. Fakat fully-connected katmanı tek boyutludur. Bu sebeple flatten ile 1D vektöre dönüşüm yapılır.

Eğitim

- Gradient Descent
- Backpropagation In Convolutional Neural Networks ¹

http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutionalneural-networks/ 4 □ > 4 □ > 4 □ > 4 □ >

Lab

Evrişimli Sinir Ağları

Lab-1

İçindekiler

- - Giris
 - Convolution
 - Non-linearity
 - Stride ve Padding
 - Pooling
 - Hyperparameters
 - Fully Connected

- Eğitim
- **Word Embeddings**
 - Giris
 - Metin Veri Kümesi
 - Word Embeddings
- Giris
- - Long Short-Term Memory

Word Embeddings

Uygulama Alanları

- Doküman sınıflandırma: Bir kitap veya makalede yer alan topic identification
- Sekans-Sekans öğrenme (Sequence-to-sequence learning): İngilizce'den - Türkçe'ye çeviri.
- Duygu analizi (Sentiment Analysis): Film yorumlarının pozitif veya negatif olduğunun algılanması
- Zaman serisi analizi: Bir bölgede yapılan hava tahmini
- Zararlı yazılım analizi: Sandbox API çağırımları

Veri Dönüsümü

- Bütün makine öğrenmesi algoritmalarında olduğu gibi derin öğrenme algoritmalarıda sayısal değerlerle çalışmaktadır.
- ▶ Vectorizing text: Metinlerin nümerik tensorlere dönüştürülmesi
 - Segment text into words, and transform each word into a vector.
 - Segment text into characters, and transform each character into a vector.
 - Extract n-grams of words or characters, and transform each n-gram into a vector.
 - ► Metinin farklı birimlere ayrıştırılması (kelimeler, karakterler, n-grams)

Word Embeddings I

Word Embeddings

- Kelimelerin yüksek boyutlu bir uzayda gerçek değerler olarak kodlanması
- Kelimeler arasında bulunan anlam benzerlikleri kullanılarak vektörlerin birbirlerine olan yakınlıkları kullanılır.
- Keras üzerinde bulunan Embeddings katmanı kullanılarak kelimelerin tam sayı gösterimleri word embedding'e çevrilmektedir.
- Word embedding eğitimi: ana görevle beraber (döküman sınıflandırma, duygu analizi) eğitilmektedir.
- Farklı bir görev için eğitilmiş olan word embedding kullanılabilir. pretrained word embeddings

Word Embeddings II

Geometrik İlişki

- Word embeddings: map human language into a geometric space
- Örnek: Eş anlamlı kelimeler birbirlerine yakın olması beklenir.
 - ▶ cat \rightarrow tiger ve dog \rightarrow wolf ▶ pet \rightarrow wild animal
- Örnek: Cinsiyet ve çoğul vektörleri
 - ► King → kings gueen → gueens

Lab

Lab-2

İçindekiler

- - Giris
 - Convolution
 - Non-linearity
 - Stride ve Padding
 - Pooling
 - Hyperparameters
 - Fully Connected

- Eğitim
- - Giris
 - Metin Veri Kümesi

Recurrent Neural Networks •0000000

- Word Embeddings
- Recurrent Neural Networks
 - Giris
 - - Long Short-Term Memory

Recurrent Neural Networks I

Mevcut Durum

- Diğer sinir ağlarında herhangi bir hafıza (memory) yoktur.
- no state kept in between inputs.
- Bir cümle okunurken kelime-kelime ilerlenir. Anlam oluşturulurken sıralama önemlidir.
- Biyolojik zeka işleyişi, bir modeli korunurken bilgiyi aşamalı olarak işler.

Recurrent Neural Networks II

Recurrent Neural Networks

- RNN son derece basitleştirilmiş bir versiyonda da olsa, aynı prensibi benimsemektedir.
- Dizi elemanları arasında yineleme yaparak dizileri işler.
- O ana kadar gördüklerine göre bilgi içeren bir durumun sürdürülür.
- internal loop
- RNN'nin durumu, iki farklı bağımsız sekansın işlenmesi arasında sıfırlanır. (İki farklı IMDB yorumu gibi)

Recurrent Neural Networks III

RNN

► RNN bir for loop gibi düşünülebilir.

output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)

Recurrent Neural Networks IV

Keras

from keras.layers import SimpleRNN
SimpleRNN(batch_size, timesteps, input_features)

Recurrent Neural Networks V

```
>>> from keras.models import Sequential
>>> from keras.layers import Embedding, SimpleRNN
>>> model = Sequential()
>>> model.add(Embedding(10000, 32))
>>> model.add(SimpleRNN(32))
>>> model.summarv()
Laver (type) Output Shape Param #
embedding 22 (Embedding) (None, None, 32) 320000
simplernn 10 (SimpleRNN) (None, 32) 2080
Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0
```

Recurrent Neural Networks VI

```
>>> model = Sequential()
>>> model.add(Embedding(10000, 32))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.add(SimpleRNN(32, return sequences=True))
>>> model.add(SimpleRNN(32, return sequences=True))
>>> model.add(SimpleRNN(32)) 1
>>> model.summary()
Layer (type) Output Shape Param #
embedding 24 (Embedding) (None, None, 32) 320000
simplernn 12 (SimpleRNN) (None, None, 32) 2080
simplernn_13 (SimpleRNN) (None, None, 32) 2080
simplernn_14 (SimpleRNN) (None, None, 32) 2080
simplernn 15 (SimpleRNN) (None, 32) 2080
Total params: 328,320
Trainable params: 328,320
Non-trainable params: 0
```

Lab

Lab 3

İçindekiler

- - Giris
 - Convolution
 - Non-linearity
 - Stride ve Padding
 - Pooling
 - Hyperparameters
 - Fully Connected

- Eğitim
- - Giris
 - Metin Veri Kümesi
 - Word Embeddings
- - Giris
- LSTM ve GRU
 - Long Short-Term Memory

Long Short-Term Memory (LSTM) I

LSTM

- ▶ Yoshua Bengio, Patrice Simard, and Paolo Frasconi, "Learning Long-Term Dependencies with Gradient Descent Is Difficult," IEEE Transactions on Neural Networks 5, no. 2 (1994).
- Bilgi bir çok defa taşınmaktadır.

Şekil: SimpleRNN

Long Short-Term Memory (LSTM) II

Şekil: simplernn to an Istm: adding a carry track

Long Short-Term Memory (LSTM) III

Sekil: Anatomy of an Istm

Long Short-Term Memory (LSTM) IV

```
from keras.layers import LSTM
model = Sequential()
model.add(Embedding(max_features, 32))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary crossentropy',
metrics=['acc'])
history = model.fit(input_train, y_train,
epochs=10,
batch size=128,
validation_split=0.2)
```