

Mechanical Design 444 System Simulation Notes

Yogurt Incubator

Danie Els

Dept of Mech & Mechatron Eng University of Stellenbosch

2018

List of symbols

1/2	ria	n	\sim	
va	וומ	LJ	-	

\boldsymbol{A}	area	$[m^2]$
c_p	specific heat capacity	$[J/(kg \cdot K)]$
D	cannister diameter	[m]
f	friction coefficient	[-]
F	Prandtl number correction factor	[-]
Н	total cannister height	[m]
k	thermal conductivity	$[W/(m \cdot K)]$
ṁ	air mass flow rate	[kg/s]
N	number of cannisters	
Nu	Nusselt number	[-]
P	pressure	[Pa]
Pr	Prandtl number	[-]
q	heat transfer	[W/s]
Q	air volume flow rate	$[m^3/s]$
Re	Reynolds number	[-]
S	pitch between cannisters	[m]
t	time	[s]
T	temperature	[K]
и	velocity	[m/s]
ρ	density	$[kg/m^3]$
μ	dynamic viscosity	$[kg/(m \cdot s)]$
ν	kinematic viscosity	$[m^2/s]$
η	loss factor	[-]
χ	friction correction factor	[-]

Subscripts

- L longitudinal direction
- *T* transverse direction
- s air properties through incubator stack
- y yogurt containers

Figure 1: Yogurt incubator stack

1. Flow through yogurt cannister stacks

1.1. Air properties

The yogurt cannisters are arranged as shown in figure 1 in an inline configuration in the flow direction. Define the *longitudinal pitch* S_T and *transverse pitch* S_L . For a total yogurt stack height H_v the projected incubator stack flow area is

$$A_{\rm s} = N_T S_T H_{\rm v} \tag{1}$$

For a volume flow rate Q_s through the stack, define the superficial air velocity u_s' in the stack as the flow velocity without any obstacles in its path

$$u_{s}' = \frac{Q_{s}}{A_{s}} \tag{2}$$

Define the average temperature in stack j as

$$\bar{T}_i = (T_{s(i)} + T_{s(i+1)})/2 \tag{3}$$

Calculate all the air properties except the exit Prandtl number $Pr_{s,e}$ using the average stack temperature

$$\rho_{\rm s} = \rho_{\rm air}(\bar{T}_i) \tag{4}$$

$$\mu_{\rm s} = \mu_{\rm air}(\bar{T}_i) \tag{5}$$

$$c_{p_{\rm S}} = c_{p_{\rm air}}(\bar{T}_i) \tag{6}$$

$$k_{\rm s} = k_{\rm air}(\bar{T}_i) \tag{7}$$

$$Pr_{\rm s} = Pr_{\rm air}(\bar{T}_i) \tag{8}$$

and

$$Pr_{s,e} = Pr_{air}(T_{s(i+1)}) \tag{9}$$

Define the following dimensionless groups based on the cannister diameter $D_{\rm v}$

$$Re_{\rm D} = \frac{u_{\rm s}' D_{\rm y}}{v_{\rm s}}$$
 Reynolds number (10)

$$Nu_{\rm D} = \frac{h_{\rm s}D_{\rm y}}{k_{\rm s}}$$
 Nusselt number (11)

The Nusselt number for the flow through stack i is (Žukauskas, 1987)

$$Nu_{\rm D} = \begin{cases} 0.27 \, F_{\rm s} \, Re_{\rm D}^{0.63} P r_{\rm s}^{0.36} (P r_{\rm s} / P r_{\rm s,e})^{0.25} & (10^3 < Re_{\rm D} < 2 \times 10^5) \\ 0.033 \, F_{\rm s} \, Re_{\rm D}^{0.8} \, P r_{\rm s}^{0.4} \, (P r_{\rm s} / P r_{\rm s,e})^{0.25} & (2 \times 10^5 < Re_{\rm D} < 2 \times 10^6) \end{cases}$$
(12)

with F_s a correction factor for $N_L < 16$, which are given in table 1.

Table 1: Correction factor F_s for $N_L < 16$

$\overline{N_L}$	1	2	3	4	5	7	10	13
$F_{\rm s}$	0.7	8.0	0.86	0.90	0.93	0.96	0.98	0.99

1.2. Change in air temperature

Assume that all the canisters in stack i are at the same temperature, $T_{y(i)}$. The heat transfer from the air to the canisters is

$$q_{s(i)} = \dot{m}_{s} c_{p_{s}} \left(T_{s(i+1)} - T_{s(i)} \right) = h_{s} A_{v} \Delta T_{lm}$$
(13)

with heat transfer coefficient from equations (11) and (12)

$$h_{\rm s} = \frac{Nu_{\rm D}k_{\rm s}}{D_{\rm v}} \tag{14}$$

mass flow rate

$$\dot{m}_{\rm S} = \rho_{\rm S} Q_{\rm S} \tag{15}$$

total yogurt canister outside area

$$A_{\rm v} = \pi D_{\rm v} H_{\rm v} N_L N_T \tag{16}$$

and the *log mean temperature difference* between the air and the canisters

$$\Delta T_{\rm lm} = \frac{T_{\rm s(i)} - T_{\rm s(i+1)}}{\ln\left(\frac{T_{\rm s(i)} - T_{\rm y(i)}}{T_{\rm s(i+1)} - T_{\rm y(i)}}\right)} \tag{17}$$

The exit temperature of the air through stack i can then be determined from equations (13) and (17)

$$T_{s(i+1)} = T_{y(i)} - \left(T_{y(i)} - T_{s(i)}\right) \exp\left(-\frac{A_y h_s}{\dot{m}_s c_{p_s}}\right)$$
(18)

1.3. Heat transfer to yogurt

The total mass of yogurt in stack i is

$$m_{y} = \frac{\pi}{4} \rho_{y} D_{y}^{2} H_{y} N_{L} N_{T}$$
 (19)

Assume that there is no temperature gradient inside the yogurt cannisters and that all the cannisters are at the same temperature $T_{y(i)}$ inside stack i. The temperature change rate of the yogurt is then

$$m_{y}c_{p_{y}}\frac{dT_{y(i)}}{dt} = -q_{s(i)} = -\dot{m}_{s}c_{p_{s}}(T_{s(i+1)} - T_{s(i)})$$
(20)

or

$$\frac{dT_{y(i)}}{dt} = \frac{\dot{m}_{s}c_{p}}{m_{y}c_{p_{y}}} \left(T_{s(i)} - T_{s(i+1)} \right)$$
 (21)

Assume the following properties for the yogurt (Kim and Bhowmik, 1997)

$$c_{p_y} = 3520 \text{ J/(kg·K)}$$

 $\rho_y = 1050 \text{ kg/m}^3$

Figure 2: Friction factor *f* for tube banks (Çengel and Ghajar, 2011)

1.4. Pressure change through stack

The pressure change though stack i is given by

$$\Delta P_{\mathrm{s}(i)} = -N_L f \chi \, \frac{\rho_{\mathrm{s}} u_{\mathrm{s}}^{\prime 2}}{2} \tag{22}$$

The friction factor f and correction factor χ are given in figure 2. Note for a square layout $(S_T = S_L)$ is $\chi = 1$. Further more if $Re_D > 10^3$ then $f \approx \text{const.}$

Summate the pressure loss through all the yogurt stacks and add an additional loss factor η_s for the total yogurt system. The total pressure loss is then

$$\Delta P_{\rm s} = \eta_{\rm s} \sum_{i=1}^{n_{\rm s}} \Delta P_{{\rm s}(i)} \tag{23}$$

References

Çengel, Y.A. and Ghajar, A.J. (2011). *Heat and mass transfer: Fundamentals and applications.* 4th edn. McGraw-Hill, New York.

Kim, S.S. and Bhowmik, S.R. (1997). Thermophysical properties of plain yogurt as functions of moisture content. *Journal of Food Engineering*, vol. 32, no. 1, pp. 109–124.

Žukauskas, A.A. (1987). Convective heat transfer in cross flow. In: Kakaç, S., Shah, R.K. and Aung, W. (eds.), Handbook of Single-Phase Convective Heat Transfer, chap. 6. Wiley, New York.