Notas de aula

Ryuji

September 29, 2020

Contents

1	Radiovisibilidade				
	1.1	Perda basica de propagação (L_b)			
		1.1.1	FSL: Free Space Loss	1	
		1.1.2	A_a : Perda de gases e vapores	1	
		1.1.3	D_L : Perda por obstaculo (sempre simples)	1	
	1.2	Atenua	ação devido a chuva $(A_{(R,p)})$	1	
			$\gamma_{(R,p)}$: γ da chuva		
	1.3	Qualid	lade e Disponibilidade	2	
		1.3.1	U_e	2	
		1.3.2	U_p	2	
		1.3.3	U_v	2	

1 Radiovisibilidade

$$RSL = P_{T_X} - L_{F_A} + G_A - L_b + G_B - L_{F_B}$$
 (1)

$$RSL - th = FFM \tag{2}$$

1.1 Perda basica de propagação (L_b)

$$L_b = FSL + A_a + D_L \tag{3}$$

1.1.1 FSL: Free Space Loss

$$FSL = 92,44 + 20log(f \cdot d) \tag{4}$$

Onde:

FSL - Perda em [dB]

f - frequencia do sinal em [GHz]

d - distancia entre as antenas em [Km]

1.1.2 A_a : Perda de gases e vapores

$$A_a = \gamma_a \cdot d \tag{5}$$

Onde:

 γ_a - Da tabela

d - Distancia entre as antenas em [Km]

1.1.3 D_L : Perda por obstaculo (sempre simples)

$$D_L = 0 (6)$$

1.2 Atenuação devido a chuva $(A_{(R,p)})$

$$A_{(R,p)} = \gamma_{(R,p)} \cdot L_{ef} \tag{7}$$

1.2.1 $\gamma_{(R,p)}$: γ da chuva

$$\gamma_{(R,p)} = K \cdot R^{\alpha} \tag{8}$$

Onde:

 ${\cal K}$ - Da tabela

R - Região hidrometereologica (Obtido atraves do mapa) [mm/h]

 α - Da tabela

1.3 Qualidade e Disponibilidade

$$U_{sistema} = U_v \tag{9}$$

$$U_{sistema} = U_e + U_p \tag{10}$$

1.3.1 U_e

$$U_{e_{(1+0)}} = \frac{MTTR}{MTBF} \tag{11a}$$

$$U_{e_{(1+1)}} = \left(\frac{MTTR}{MTBF}\right)^2 \tag{11b}$$

$$U_{e_{(N+M)}} = \left(\frac{N! + M!}{N! \cdot (M+1)!}\right) \cdot \left(\frac{MTTR}{MTBF}\right)^{(M+1)}$$
(11c)

Onde:

MTTR - Tempo de reparo

MTBF - Tempo entre falhas - Datasheet

1.3.2 U_p

$$U_p = 0,001\% (12)$$

1.3.3 U_v

$$U_v = 100\% - A_v \tag{13}$$

Onde:

 A_v - Da tabela