

Lecture 17: Adders

Outline

- ☐ Single-bit Addition
- □ Carry-Ripple Adder
- □ Carry-Skip Adder
- □ Carry-Lookahead Adder
- □ Carry-Select Adder
- □ Carry-Increment Adder
- □ Tree Adder

Single-Bit Addition

Half Adder

Half Adder
$$S = A \oplus B$$
 $C_{out} + C_{out}$

Α	В	C _{out}	S
0	0		
0	1		
1	0		
1	1		

Full Adder

$$S = A \oplus B \oplus C$$

$$C_{\text{out}} = MAJ(A, B, C)$$

Α	В	С	C_{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0	-	-
1	1	1		

PGK

- ☐ For a full adder, define what happens to carries (in terms of A and B)
 - Generate: C_{out} = 1 independent of C
 - G =
 - Propagate: $C_{out} = C$
 - P =
 - Kill: $C_{out} = 0$ independent of C
 - K =

Full Adder Design I

□ Brute force implementation from eqns

$$S = A \oplus B \oplus C$$

$$C_{\text{out}} = MAJ(A, B, C)$$

Full Adder Design II

☐ Factor S in terms of C_{out}

$$S = ABC + (A + B + C)(\sim C_{out})$$

☐ Critical path is usually C to C_{out} in ripple adder

Layout

- ☐ Clever layout circumvents usual line of diffusion
 - Use wide transistors on critical path
 - Eliminate output inverters

Full Adder Design III

- □ Complementary Pass Transistor Logic (CPL)
 - Slightly faster, but more area

Full Adder Design IV

- Dual-rail domino
 - Very fast, but large and power hungry
 - Used in very fast multipliers

A_h

- A I

Carry Propagate Adders

- N-bit adder called CPA
 - Each sum bit depends on all previous carries
 - How do we compute all these carries quickly?

Carry-Ripple Adder

- □ Simplest design: cascade full adders
 - Critical path goes from C_{in} to C_{out}
 - Design full adder to have fast carry delay

Inversions

- ☐ Critical path passes through majority gate
 - Built from minority + inverter
 - Eliminate inverter and use inverting full adder

Generate / Propagate

- Equations often factored into G and P
- Generate and propagate for groups spanning i:j

$$G_{i:j} =$$

$$P_{i:j} =$$

■ Base case

$$G_{i:i} \equiv$$

$$P_{i:i} \equiv$$

$$G_{0:0} \equiv$$

$$P_{0:0} \equiv$$

☐ Sum:

$$S_i =$$

PG Logic

Carry-Ripple Revisited

$$G_{i:0} = G_i + P_i \bullet G_{i-1:0}$$

Carry-Ripple PG Diagram

 $t_{\rm ripple} =$

17: Adders

CMOS VLSI Design 4th Ed.

PG Diagram Notation

Buffer

Carry-Skip Adder

- ☐ Carry-ripple is slow through all N stages
- ☐ Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal

Carry-Skip PG Diagram

For k n-bit groups (N = nk)

$$t_{\rm skip} =$$

Variable Group Size

Delay grows as O(sqrt(N))

Carry-Lookahead Adder

- □ Carry-lookahead adder computes G_{i:0} for many bits in parallel.
- ☐ Uses higher-valency cells with more than two inputs.

CLA PG Diagram

Higher-Valency Cells

Carry-Select Adder

- ☐ Trick for critical paths dependent on late input X
 - Precompute two possible outputs for X = 0, 1
 - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums
 - For both possible carries into n-bit group

Carry-Increment Adder

☐ Factor initial PG and final XOR out of carry-select

$$t_{\text{increment}} =$$

Variable Group Size

Also buffer noncritical signals

Tree Adder

- ☐ If lookahead is good, lookahead across lookahead!
 - Recursive lookahead gives O(log N) delay
- Many variations on tree adders

Brent-Kung

Sklansky

Kogge-Stone

Tree Adder Taxonomy

- ☐ Ideal N-bit tree adder would have
 - $-L = \log N \log ic levels$
 - Fanout never exceeding 2
 - No more than one wiring track between levels
- \square Describe adder with 3-D taxonomy (*I*, *f*, *t*)
 - Logic levels: L + I
 - Fanout: $2^f + 1$
 - Wiring tracks: 2^t
- □ Known tree adders sit on plane defined by

$$I + f + t = L-1$$

Tree Adder Taxonomy

Han-Carlson

Knowles [2, 1, 1, 1]

Ladner-Fischer

Taxonomy Revisited

Summary

Adder architectures offer area / power / delay tradeoffs.

Choose the best one for your application.

Architecture	Classification	Logic Levels	Max Fanout	Tracks	Cells
Carry-Ripple		N-1	1	1	N
Carry-Skip n=4		N/4 + 5	2	1	1.25N
Carry-Inc. n=4		N/4 + 2	4	1	2N
Brent-Kung	(L-1, 0, 0)	2log ₂ N – 1	2	1	2N
Sklansky	(0, L-1, 0)	log ₂ N	N/2 + 1	1	0.5 Nlog ₂ N
Kogge-Stone	(0, 0, L-1)	log ₂ N	2	N/2	Nlog ₂ N