פתרון חלקי לתרגיל בית 1

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
מתקיים $n \in N$: לכל (1

<u>:וכחה</u>

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
 : ע"פ נוסחת הבינום

$$a=(1+1)^n=\sum_{k=0}^n\binom{n}{k}1^k1^{n-k}=\sum_{k=0}^n\binom{n}{k}1^k1^{n-k}=1$$
נציב $a=1,b=1$ נציב

מש"ל

. ב"ל : לכל $n,m \in N$ הוא שלם או אי רציונלי: (2

<u>הוכחה</u>:

. $\sqrt[n]{m} \in Q$ יהי בשלילה ש $m \neq a^n \ a \in N$ יהי שלכל יהי

. בר מצומצם
$$\frac{l}{k}$$
 ו- $\sqrt[n]{m}=\frac{l}{k}$ פך ש $l,k\in N$ אז קיימים

$$m \cdot k^n = l^n$$
 כלומר $\sqrt[n]{m} \cdot k = l$ כלומר

l,k,m נפרק את l,k,m לגורמים ראשוניים

$$m = g_1^{\gamma_1} \cdot g_2^{\gamma_2} \cdots g_j^{\gamma_j}$$
, $k = q_1^{\beta_1} \cdot q_2^{\beta_2} \cdots q_s^{\beta_s}$, $l = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_r^{\alpha_r}$

כש- p_i -ים שונים ביניהם , כל ה p_i,g_i,q_i ראשוניים לכל j,s,r כש- j,s,r שלמים , כל ה g_i,g_i,q_i שונים ביניהם וכל ה g_i -ים שונים ביניהם.

נקבל את המשוואה :

$$\left(g_1^{\gamma_1} \cdot g_2^{\gamma_2} \cdots g_j^{\gamma_j}\right) \cdot \left(q_1^{n\beta_1} \cdot q_2^{n\beta_2} \cdots q_s^{n\beta_s}\right) = \left(p_1^{n\alpha_1} \cdot p_2^{n\alpha_2} \cdots p_r^{n\alpha_r}\right)$$

nמכיוון ש- $m
eq a^n$ אינו מתחלק ב $1 \le i \le j$ מכיוון ש-

בגלל השיווין קיים $f \leq r$ ש- $g_i = p_f$ ש- $1 \leq f \leq r$ בגלל השיווין קיים אינו מופיע בצד ימין שלה).

אם קיים $g_i=q_h=p_f$ נקבל ש- $q_h=g_i$ נקבל ש- $1 \leq h \leq s$ ולכן אם קיים בסתירה לבחירתו.

אם לא קיים $a_i=p_f$ כך ש- $a_i=p_f$ נקבל $a_i=p_f$ נקבל $a_i=p_f$ נקבל (כש $a_i=p_f$ כך ש- $a_i=p_f$ ושוב האינו אפשרי, מפני שבחרנו את $a_i=p_f$ כך שלא יתחלק ב

. קיבלנו שלא יתכן כי $\sqrt[n]{m}$ רציונלי

(3

.
$$\sqrt{2} + \sqrt{3} + \sqrt{5} \notin Q$$
 : א.

<u>הוכחה</u>:

.
$$\left(\sqrt{2}+\sqrt{3}\right)^2=\left(q-\sqrt{5}\right)^2$$
 אז $\sqrt{2}+\sqrt{3}+\sqrt{5}=q\in Q$ נניח בשלילה ש

$$2+3+2\sqrt{6}=q^2-2q\sqrt{5}+5$$
 לכן

ולכן (מסגירות הסגירות פוב הריבוע האוב בריבוע ונקבל $\sqrt{6}+2q\sqrt{30}+5q^2=q''$ ולכן (מסגירות הרציונלים תחת חיבור, חיסור, כפל וחילוק) נקבל $\sqrt{30}\in Q$ סתירה.

$$\sqrt[3]{2} + \sqrt[3]{4} \notin Q$$
 : c. $2 \times 7 \times 7 = 2 \times 10^{-3}$

הוכחה:

נניח בשלילה ש-
$$Q=q^2$$
 נניח בשלילה ש- $Q=q^2$ נקבל $\sqrt[3]{2}+\sqrt[3]{4}=q\in Q$ נניח בשלילה ש $\sqrt[3]{4}+2\sqrt[3]{2}=q''$ ולכן $\sqrt[3]{4}+2\sqrt[3]{8}+\sqrt[3]{16}=q'$ ולכן $\sqrt[3]{2}+\sqrt[3]{4}=(\sqrt[3]{2}+\sqrt[3]{4})-(\sqrt[3]{2}+\sqrt[3]{4})\in Q$ ולכן ולכן $\sqrt[3]{2}+\sqrt[3]{4}=q$. סתירה

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n+1} \frac{1}{k} = 1 - \frac{1}{n+1} = \frac{n}{n+1} .$$
 (4)
$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \prod_{k=2}^{n} \left(1 - \frac{1}{k}\right) \left(1 + \frac{1}{k}\right) = \prod_{k=2}^{n} \frac{k-1}{k} \cdot \prod_{k=2}^{n} \frac{k+1}{k} = \frac{1}{n} \cdot \frac{n+1}{2} = \frac{n+1}{2n} .$$
 (4)

$$\left| \frac{x^2 - 6x + 8}{x + 4} \right| < \frac{3}{7}$$
 אז $\left| x - 4 \right| < 1$ ב. הוכח שאם 1

<u>הוכחה</u>:

: ולכן ($3 \le x \le 5$ אז |x-4| < 1 יהי

$$\left| \frac{x^2 - 6x + 8}{x + 4} \right| = \left| \frac{(x - 4)(x - 2)}{x + 4} \right| = \left| x - 4 \right| \cdot \left| \frac{x - 2}{x + 4} \right| \le \left| \frac{x - 2}{x + 4} \right| \le \frac{3}{|x + 4|} \le \frac{3}{7}$$

:תהא $B \subset \Re$ קבוצה חסומה ו- $A \subset B$. הוכח כי $B \subset \Re$

 $\inf B \le \inf A \le \sup A \le \sup B$

<u>הוכחה</u>:

 $S = \sup B, i = \inf B$ חסומה ולכן קיימים

 $i\leq a$ מתקיים $a\in B$, $a\in A$ ולכן כל $A\subseteq B$ מתקיים $a\in B$ מתקיים $a\in B$ ולכן $a\in B$ ולכן $a\in B$ מתקיים $a\in B$ ולכן $a\in B$ מתקיים $a\in B$ ולכן $a\in B$ מתקיים $a\in A$ ולכן ולכן $a\in A$ ולכן $a\in A$ ולכן $a\in A$ יהי $a\in A$ אז $a\in A$ אז $a\in A$

. $\inf B \le \inf A \le \sup A \le \sup B$ -ולסיכום קיבלנו ש

$$A = \{x \in \Re | x < 2\}$$
 .א (8

ב. לא יתכן שגם A חסומה מלעיל וגם A^C חסומה מלעיל וגם חסומה A חסומה מלעיל אז $x\in A^C \iff x \notin A \iff x>\sup A$ כל

ג. לא יתכן ש- $a-\sup A$ חסומה מלעיל ולכל $a\in A$ מתקיים $a\in A$ מכייון שאז

חסם $\sup A - \frac{1}{100}$ כלומר $a < \sup A - \frac{1}{100}$ יקיים יקיים $a \in A$ ואז כל $a - \sup A < \frac{1}{100}$

. סתירה sup A מלעיל הקטן

 $\inf A = \sup A$ מתקיים $\{5\}$ -ד. ב