Lecture Notes: PRML Chapter 7.1 – Maximum Margin Classifiers

Prerequisites

- Convex optimization and quadratic programming
- Lagrange multipliers and Karush-Kuhn-Tucker (KKT) conditions
- Concepts of margin, hyperplanes, and kernel functions
- Inner product space and feature-space transformations

Key Terminology

- **Support vector**: A training data point with a non-zero Lagrange multiplier; lies on or inside the margin boundary and defines the decision surface.
- Margin: Perpendicular distance from the decision boundary to the closest training point.
- Slack variable (ξ_n) : Permits misclassification in non-separable data by relaxing the margin constraint.
- Hinge loss: Loss function used in SVM, defined as $[1 y_n t_n]_+$.
- Box constraint: Constraint limiting Lagrange multipliers: $0 \le a_n \le C$.
- Hard margin: Assumes perfect separability, no slack.
- Soft margin: Introduces slack variables to allow some violations of separability.
- **Kernel function**: Defines an inner product in high-dimensional space without explicitly mapping the data.

Why It Matters

The support vector machine (SVM) provides a principled and efficient approach to classification with strong theoretical underpinnings from convex optimization. Its margin-maximizing behavior improves generalization and results in sparse solutions dependent only on critical examples—the support vectors. By reformulating in terms of kernels, it extends naturally to non-linear boundaries in high-dimensional spaces.

Key Ideas

Definition: Linear Discriminant in Feature Space

$$y(x) = w^{\top} \phi(x) + b \tag{7.1}$$

- $\phi(x)$: Fixed transformation to feature space. - b: Bias term.

Geometric Margin

Distance of x_n to decision boundary:

$$\frac{t_n y(x_n)}{\|w\|} = \frac{t_n(w^{\top} \phi(x_n) + b)}{\|w\|}$$
 (7.2)

$3\text{-}\mathbf{Column}$ Derivation: Dual Form of Maximum Margin Problem

Step	Equation	Reason
1	$\min_{w,b} \frac{1}{2} w ^2$ subject to $t_n(w^{\top} \phi(x_n) + b) \ge 1$	Formulate
		pri-
		mal
		opti-
		miza-
		tion
		for
		hard-
		margin
		SVM
2	$\mathcal{L}(w, b, a) = \frac{1}{2} \ w\ ^2 - \sum_{n=1}^{N} a_n \left[t_n(w^{\top} \phi(x_n) + b) - 1 \right]$	Lagrangian
		with
		mul-
		tipli-
		ers
		$a_n \geq$
		0
3	$\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} a_n t_n \phi(x_n)$	Stationarity
		wrt
		w
4	$\frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} a_n t_n = 0$	Stationarity
		wrt
		b
5	Substitute into \mathcal{L} to get:	Dual
	$\tilde{\mathcal{L}}(a) = \sum_{n} a_n - \frac{1}{2} \sum_{n,m} a_n a_m t_n t_m k(x_n, x_m)$	form
		(7.10)
		us-
		ing
		ker-
		nel
		trick
		k(x, x') =
		$\phi(x)^{\top}\phi(x')$

Step	Equation	Reason
6	Constraints: $a_n \ge 0, \sum_n a_n t_n = 0$	KKT
	—.··	con-
		di-
		tions,
		fea-
		sible
		set
		for
		dual

3-Column Derivation: Introducing Slack for Soft Margin

Step	Equation	Reason
1	Add slack: $\xi_n \geq 0$, new constraint	Allow margin violations
	$t_n(w^{\top}\phi(x_n) + b) \ge 1 - \xi_n$	
2	Objective: $\zeta^{n}(x,y) = \zeta^{n}(x,y)$	Penalize margin
	$\min \frac{1}{2} w ^2 + C \sum_n \xi_n$	violations (7.21)
3	Lagrangian:	Dual problem with dual
	$\mathcal{L} = \frac{1}{2} \ w\ ^2 + C \sum_n \xi_n - $	variables $\mu_n \geq 0$
	$\sum_{n} a_n [t_n(w^{\top}\phi(x_n) + b) - 1 +$	
	$[\xi_n] - \sum_n \mu_n \xi_n$	
4	Stationarity:	Optimality
	$\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w = \sum_{n} a_n t_n \phi(x_n)$ $\frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n} a_n t_n = 0$ $\frac{\partial \mathcal{L}}{\partial \xi_n} = 0 \Rightarrow a_n = C - \mu_n$	
5	$\frac{\partial \mathcal{L}}{\partial b_n} = 0 \Rightarrow \sum_n a_n t_n = 0$	Optimality
6	$\frac{\partial \mathcal{L}}{\partial \xi_n} = 0 \Rightarrow a_n = C - \mu_n$	Complementary
		slackness
7	Dual becomes same as hard margin but with $0 \le a_n \le C$	Box constraints (7.33)

Prediction Function

$$y(x) = \sum_{n \in S} a_n t_n k(x, x_n) + b$$
 (7.13)

- Only support vectors $(a_n > 0)$ contribute.

Computing the Bias Term

Average over support vectors n with $0 < a_n < C$:

$$b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m k(x_n, x_m) \right)$$
 (7.18)

Relevant Figures from PRML

- Figure 7.1: Shows the geometric margin and the role of support vectors in determining the boundary.
- Figure 7.2: Example of SVM on nonlinearly separable 2D data with Gaussian kernel—shows decision boundary and margin.
- Figure 7.3: Visualizes slack variable regimes: correctly classified, margin violators, and misclassified.
- Figure 7.5: Compares hinge loss, logistic loss, misclassification, and squared loss—motivates sparsity from hinge loss.