University of California, Los Angeles

School of Engineering and Applied Science

Department of Electrical and Computer Engineering

Name: <>

UID: <>

ECE11L Lab

Instructor: Sudhakar Pamarti

Lab

1. Ohm's Law and Measuring Voltage and Current

<Insert One Sample Image of Test-Setup>

From Impedance Measurement:

Theoretical Resistance (Ω)	Measured Resistance (Ω)
680 Ω	
1 kΩ	
2.2 kΩ	

From Voltage and Current Measurement:

Resistance (Ω)	Voltage (V)	Current (mA)
680 Ω		
1 kΩ		
2.2 kΩ		

Discussion

•	How did the values of resistance vary from their given values based on color code?
	Were they within the given variance?

<Answer in 1-2 lines.>

• How does Ohm's Law hold for your experimental results?

<Answer in 1-2 lines.>

• AD2 cannot measure the current directly. Based on your observation, how does AD2 impedance analyzer produce the values for the current and resistors?

2. Equivalent Resistance

<Insert One Sample Image of Test-Setup>

Theoretical Resistance (Ω)	Measured Resistance (Ω)
680 Ω	
1.2 kΩ	
5.6 kΩ	

• What is the equivalent resistance from nodes A and B?

From Theoretical Calculation:

From Impedance Analyzer:

o Do they agree? Why not?

•	Calculate the skin resistance and mark the answer clearly			
Die	scussion			
•				
	<answer 1-2="" in="" lines.=""></answer>			

3. Voltage and Current Dividers

• Voltage Divider Readings.

<Insert One Sample Image of Test-Setup>

	Theoretical Voltage (V)	Measured Voltage (V)
Across R1 = 100Ω		
Across R2 = 470Ω		

• Current Divider Readings.

<Insert One Sample Image of Test-Setup>

	Measured Voltage Across Resistor (V)	Branch Current (mA)
$R1 = 100 \Omega$		
$R2 = 470 \Omega$		
$R3 = 1.2 \text{ k}\Omega$		

α .	~ •	• 4
Sensor-	Tirci	111
DCIISUI -		

<Insert One Sample Image of Test-Setup>

• What is the value of R_1 chosen for implementing the sensor circuit?

$$R_1 =$$

Voltage output in Normal Lighting (V)	Voltage output in Darkness (V)

Discussion

• How did the voltage and current divider compare with theoretical expectations?

• How does the resistance of the photoresistor change as you alter the level of light?

4. Kirchhoff's Laws Analysis of Circuits

<Insert One Sample Image of Test-Setup>

	Theoretical		Measured	
	Voltage Across Resistor (V)	Branch Current (mA)	Voltage Across Resistor (V)	Branch Current (mA)
$R1 = 1 \text{ k}\Omega$				
$R2 = 680 \Omega$				
$R3 = 3.3 \text{ k}\Omega$				
$R4 = 2.2 \text{ k}\Omega$				
$R5 = 470 \Omega$				

Discussion

• Does your experimental results obey Kirchhoff's Laws?