

### Verwundbarkeitsanalyse des Industrial-Ethernet Protokolls PROFINET

**Andreas Paul** 

Brandenburgische Technische Universität Cottbus Lehrstuhl Rechnernetze und Kommunikationssysteme

SPRING 7
GI SIDAR Graduierten-Workshop über Reaktive Sicherheit
Berlin 05-06.07 2012



## **BTU Cottbus und Lehrstuhl RNKS**







## **Inhaltliche Gliederung**

### Einleitung

- SCADA-Architektur
- Einordnung in aktuelle Arbeiten

#### PROFINET

- Prinzip
- Protokollabläufe
- Angriffsszenarien
- Zusammenfassung



## **SCADA-Architektur (Beispiel)**



#### Automation network

#### Prozessleitebene

- Planung, Visualisierung + Beobachtung von Prozessen
- Archivierung von Messwerten

### Steuerungs- und Feldebene

- Steuerung + Regelung von Prozessen
- Schnittstelle zum Prozess über I/O Signale
- Anforderungen eingesetzter Kommunikationstechnologien
  - hohe Ausfallsicherheit
     → Verfügbarkeit!
  - Echtzeitfähigkeit









# Nerteiltes IDS zum Schutz von SCADA-Systemen

Analysekomponente: Vortrag Franka Schuster!



分布式

### Simulationsumgebung



- Modellierung von SCADA-Infrastrükturen (Komponenten + Verhalten)
- Generierung Protokoll-konformer Nachrichten
- Simulation von Angriffsszenarien

### Deep Packet Inspection

- Datenanalyse basiert auf dekodierte Informationen der Protokollfelder
- → "DPI-Komponente"



## **DPI-Komponente 1/2**



## **DPI-Komponente 2/2**

- spp\_profinet: Snort-Präprozessor
  - Dekodierung von Profinet-Frames
  - Generierung von Snort-Alarmen
- spo\_alert\_unixsock: Snort-Ausgabe-Modul
  - schreibt Alarme in Unix Domain Socket
- snort.conf: Snort-Konfigurationsdatei
  - Aktivierung und Konfiguration von Präprozessoren: preprocessor profinet: alert { dcp rt unicast alarm high }
  - Aktivierung des Ausgabe-Moduls: output alert unixsock
- event generator
  - Generierung von DPI-Events
  - Weiterleitung der Events an event channel (publish)







低循环周期 低抖动

## **PROFINET: Einleitung**

介绍



#### Industrial Ethernet

- Echtzeitfähiges Ethernet: geringe Zykluszeiten + geringer Jitter
- weitere Ansätze: SERCOS III, ETHERNET/IP, Modbus/TCP, ETHERCAT, ...

### Realisierung der Echtzeitfähigkeit

- RT-Over-UDP:
  - geplante Kommunikation
  - VLAN-Priorisierung (IEEE 802.1Q)

#### RT-Klasse 1:

 Kommunikation innerhalb eines Subnetzes

#### RT-Klasse 2,3:

- Zeitsynchronisation
- Eingriff in MAC-Layer









## **PROFINET: Prinzip**

#### Geräterollen

- IO-Supervisor
- IO-Controller
- IO-Device

#### Schritte

- 1. Projektierung
- 2. Übertragung der Projektierdaten
- 3. Initialisierung
  - Vergabe des Gerätenamens
  - Vergabe der IP-Adresse
- 4. Systemhochlauf
- 5. Betriebsphase
  - zyklisch: Prozessdaten
  - · azyklisch: Diagnose, Alarm









## **PROFINET: Protokollabläufe 1/2**



### Initialisierung:

Vergabe des Gerätenamens



#### Vergabe der IP-Adresse



评估







## **PROFINET: Protokollabläufe 2/2**

### **Betriebsphase:**



zyklische Datenübertragung



#### azyklische Datenübertragung









## **PROFINET: Angriffsszenarien 1/2**



#### **Denial-Of-Service:**

Initialisierung: Vergabe der IP-Adresse









## **PROFINET: Angriffsszenarien 2/2**

#### Man-In-The-Middle:



Betriebsphase: zyklische Datenübertragung

Initialisierung: Vergabe der IP-Adresse









## Zusammenfassung



### Automatisierungsnetz (spez. Feldbus-Systeme)

- Anforderungen stehen mit denen zur Gewährleistung klassischer IT-Schutzziele in Konkurrenz
- fehlende Mechanismen zur Sicherung einer authentifizierten Kommunikation + Wahrung der Datenintegrität
- → abgeleitete Angriffe können auf andere Technologien übertragen werden!

### Ausblick: Schutz des Automatisierungsnetzes

- Ziel: Erweiterung der Sicherheit von SCADA-Systemen unter Berücksichtigung gegebener Anforderungen
- → Franka Schuster: "Intrusion-Detection für Automatisierungstechnik"



### Vielen Dank für Ihre Aufmerksamkeit!

Fragen? Anmerkungen?