Transformations

Composite transforms

Generally not commutative!

- Want to rotate about a point
 - translate point to origin
 - rotate
 - translate back

- Want to rotate about a point
 - translate point to origin
 - rotate
 - translate back

- Want to rotate about a point
 - translate point to origin
 - rotate
 - translate back

- Want to rotate about a point
 - translate point to origin
 - rotate
 - translate back

$$M = T^{-1}RT$$

- Scaling along a particular axis
 - translate to origin
 - rotate to align the x-axis
 - scale along x
 - un-rotate to original orientation
 - translate back

- Scaling along a particular axis
 - translate to origin
 - rotate to align the x-axis
 - scale along x
 - un-rotate to original orientation
 - translate back

- Scaling along a particular axis
 - translate to origin
 - rotate to align the x-axis
 - scale along x
 - un-rotate to original orientation
 - translate back

- Scaling along a particular axis
 - translate to origin
 - rotate to align the x-axis
 - scale along x
 - un-rotate to original orientation
 - translate back

- Scaling along a particular axis
 - translate to origin
 - rotate to align the x-axis
 - scale along x
 - un-rotate to original orientation
 - translate back

- Scaling along a particular axis
 - translate to origin
 - rotate to align the x-axis
 - scale along x
 - un-rotate to original orientation
 - translate back

- Scaling along a particular axis
 - translate to origin
 - rotate to align the x-axis
 - scale along x

Change of Basis?

Homogeneous coords

- Homogenize: to convert 3D homog. coord to 2D Cartesian point:
 - Divide by w: (x/w, y/w, 1)
 - When w=0, consider it as a direction: points at infinity
 - (0,0,0) undefined

homogeneous

$$(x, y, w) \xrightarrow{/w} (\frac{x}{w}, \frac{y}{w})$$

Affine change of coordinates

Six degrees of freedom in 2D: Coordinate frame

• Frame:

Frame:
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix} \text{ Or } \begin{bmatrix} \boldsymbol{u} & \boldsymbol{v} & \boldsymbol{p} \\ 0 & 0 & 1 \end{bmatrix}$$

Coordinate frame

- Frame = point + basis
- Frame matrix (frame-to-canonical)

$$m{F} = \left[egin{array}{ccc} m{u} & m{v} & m{p} \\ 0 & 0 & 1 \end{array}
ight]$$

● Move points to and forth by multiplying F

$$p_e = \boldsymbol{F} p_F \text{ and } p_F = \boldsymbol{F}^{-1} p_e$$

Move transformations using similarity trans

$$oldsymbol{T}_e = oldsymbol{F} oldsymbol{T}_F oldsymbol{F}^{-1} \qquad oldsymbol{T}_F = oldsymbol{F}^{-1} oldsymbol{T}_e oldsymbol{F}$$

Affine change of coordinates

- When we move an object to the origin to apply a transformation, we are "changing coordinates": $T_e = FT_FF^{-1}$
 - ullet T_e is the transformation in global frame
 - ullet T_F is the transformation in local frame
 - F is the frame-to-canonical matrix
 - This is similarity transformation