## **Tutorial 3**

## Dynamics in Polar coordinates

16 August 2024

## Problem 1.



Before the catch is released,

- (a)  $\vec{\boldsymbol{a}}_i = (-r_i \omega^2) \hat{\boldsymbol{r}}$ .
- (b)  $\overrightarrow{F}_i = -T\hat{r} + N\hat{\theta}$ , where T is the tension in the string and N is the normal force on the side of the channel.

At the instant the catch is released,  $\ddot{r}$  is non zero for each mass.

(a) 
$$-T = m_i \left( \ddot{r}_i - r_i \omega^2 \right)$$

(b) Since the tension is the same for both masses,

$$m_{A} (\ddot{r}_{A} - r_{A}\omega^{2}) = m_{B} (\ddot{r}_{B} - r_{B}\omega^{2})$$

$$r_{A} + r_{B} = l \implies \ddot{r}_{A} = -\ddot{r}_{B}$$

$$(m_{A} + m_{B})\ddot{r}_{A} = m_{A}r_{A}\omega^{2} - m_{B}(l - r_{A})\omega^{2}$$

$$\ddot{r}_{A} = \left(r_{A} - \frac{lm_{B}}{m_{A} + m_{B}}\right)\omega^{2}$$

Problem 2. (a)  $\vec{a} = -v_0\omega^2 t\hat{r} + 2v_0\omega\hat{\theta}$ .

- (b) At the time when the car starts skidding, the frictional force is  $f=\mu Mg$  in magnitude.  $t_{skid}=\frac{\sqrt{\mu^2g^2-4v_0^2\omega^2}}{v_0\omega^2}$ .
- (c) Angle of frictional force to radial direction is  $\tan \theta = \frac{a_{\theta}}{a_{r}}$  and  $\theta = \sin^{-1} \frac{2v_{0}\omega}{\mu Mg}$

Practise: (K.K 2.34)



(a) 
$$\dot{\omega} + 2\frac{\dot{r}}{r}\omega = 0.$$

(b) 
$$\omega(t) = \omega_0 \left( \frac{r_0}{r_0 - V_0 t} \right)^2$$
.

(c) 
$$F = m\omega^2 \frac{r_0^4}{(r_0 - V_0 t)^3}$$
.