### **Thermal Test Loop Overview**

Optional subhead



Molinaroli College of Engineering and Computing

### **Current Setup**

- C004g @ 300 main
- Closed Loop
- Developed first by Dr. Leo Carrilho in \*2005\*



# **Current Setup**



CAD Model developed by Miriam Morales and Hampton DuBose

## **Component Breakdown**

## **Fluid Pump**

- Drives coolant fluid through fuel rod containment
- Max Flowrate:14-15 m<sup>3</sup>/hr
- 0.75 hp



# **Energy Source- 'Reactor vessel'**

- Single fuel rod secured in channel
- Plexiglass pipe for visibility
- Resistive heating adds energy to water
- Interchangeable system for testing different fuel rods
- Has channels for pressure measurements



# Flow Control Valves

- Vertical valve shuts/opens bypass channel
  - Changes flow rate through heat source
- Containment Control Valve governs flow through heat source
  - Blockage simulation



#### **Pressurizer**

- Air Hose Attachment on top
- Raises boiling point of water by pressurizing entire system w/ Air
- Increases efficiency of real reactors



## Heat Exchanger

- Tap water pulls heat from the loop
- 1 m<sup>2</sup> of heat transfer area
- Water is expelled outside



### **Typical PWR System**



# Plan for expansion to add measurement instruments

 Add lengths of pipe to both horizontal and all three vertical pipes to Improve measurement capability at different locations along the loop



#### Plan to add 'Control Room'

- Develop remote control and monitoring capabilities
- Located in C004 or Nearby



#### **Thank You for Your Time**

Name: Matthew Whetham

Title: Undergrad, DME

Email: mwhetham@email.sc.edu

Lab GitHub: github.com/arts-laboratory

