The incompleteness of relativistic Spekkens' contextuality

Ruben Campos Delgado^{1,*}

¹Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany

We show that the operational definition of contextuality introduced by Spekkens is, in general, not Lorentz invariant. Specifically, we consider particle states with both spin and momentum, apply a Lorentz transformation to obtain the states in a new inertial frame, and then trace out the momentum degrees of freedom in both frames. We find that spin states that are contextual in one frame can become non-contextual in the other. Hence, the Spekkens' notion of contextuality, when restricted to spin states only, is a frame-dependent concept. We apply our results to predict a novel relativistic effect concerning the task of discriminating between two quantum states. We show that the probability of success for a moving observer exceeds that of an observer at rest.

Introduction.— A fundamental property of quantum mechanics, which distinguishes it from classical physics, is that it is contextual: any assignment of a value to the outcome of the measurement of a physical property must depend on the measurement context, namely on what other properties are simultaneously measured with it. In other words, measurements in quantum theory cannot be considered as revealing pre-existing values of a classical hidden variable. This is the content of the Kochen-Specker theorem [1, 2]. The importance of contextuality goes far beyond quantum foundations, as it is also widely considered a resource for quantum computation [3–5], state discrimination [6] and security of quantum key distribution protocols [7, 8].

The original notion of Kochen-Specker contextuality was extended in 2005 by Spekkens [9] to include unsharp measurements and arbitrary operational theories. Let $\{P\}$ be the convex set of preparations and $\{M\}$ the convex set of measurements, with outcomes labelled by k. In the Spekkens' formulation, the probabilities are reproduced according to the following ontological model:

$$p(k|P,M) = \sum_{\lambda} \mu_P(\lambda) \zeta_{M,k}(\lambda). \tag{1}$$

Here, $\mu_P(\lambda)$ are probabilities with $\sum_{\lambda} \mu_P(\lambda) = 1$ for all P and $\zeta_{M,k}(\lambda)$ are so-called indicator functions with $\sum_{k} \zeta_{M,k}(\lambda) = 1$ for all M and λ . If both μ_P and $\zeta_{M,k}$ depend only on the operational equivalence classes, i.e. classes of preparations (respectively measurements) that are not distinguishable by any measurements (respectively states), then the operational theory is said to be non-contextual. In quantum theory, preparation equivalence classes are quantum states $\{\rho_i\}_i$, namely positive semi-definite unit-trace linear operator acting on a finite-dimensional Hilbert space. Equivalence classes of measurements are described by positive operator valued measures (POVM), namely collections of positive semi-definite linear operators $M = \{M_k\}_k$ which sum to the identity $\sum_{k} M_{k} = I$. Furthermore, in quantum theory the probabilities are obtained via the Born rule,

 $p(k|\rho_i, M) = \text{Tr}(\rho_i M_k)$. Thus, Eq. (1) translates to [10]

$$\operatorname{Tr}(\rho_i M_k) = \sum_{\lambda} \operatorname{Tr}(\rho_i G_{\lambda}) \operatorname{Tr}(\sigma_{\lambda} M_k) \quad \forall i, \, \forall M_k, \quad (2)$$

where $\operatorname{Tr}(\rho_i G_{\lambda}) \geq 0$, $\operatorname{Tr}(\sigma_{\lambda} M_k) \geq 0$, and $\operatorname{Tr}(\sigma_{\lambda}) = 1$ for all λ and $\sum_{\lambda} \operatorname{Tr}(\rho_i G_{\lambda}) = 1$ for all i. Here, $\{\sigma_{\lambda}\}_{\lambda}$ are quantum states and $\{G_{\lambda}\}_{\lambda}$ is a pseudo-POVM, i.e. a POVM that is not necessarily positive semi-definite. If a set of states $\{\rho_i\}_i$ satisfies Eq. (2) for all measurements M_k , then we say that the states are non-contextual. Otherwise, they are contextual.

The first main result of this paper is that the Spekkens' definition is in general not Lorentz invariant when restricted to spin degrees of freedom only. To prove this, we fix an inertial frame and consider particle states with both spin and momentum. We then apply a Lorentz transformation, in particular a Lorentz boost, and trace out the momentum degrees of freedom in both inertial frames. We find that spin states that are contextual in one frame can be non-contextual in the other. This is not just a relativistic effect. In fact, the result holds even at low speeds. This shows that, in order to have a frame-independent notion of Spekkens' contextuality, one should not separate the spin of a particle from its momentum. Nevertheless, if one makes the additional assumption that the wavefunctions in momentum space are spherically symmetric, then Lorentz invariance is preserved for one-qubit states. However, this does not hold for states with two or more qubits.

The observed breaking of Lorentz invariance of the Spekkens' definition should not be completely unexpected. In fact, when special relativity is taken into account, it is already known that different observers may disagree on certain physical properties, which are well defined for quantum mechanics alone. For example, thermal radiation that is perfectly black-body in an inertial frame is not thermal if viewed from a moving frame [11, 12]; product states in one frame may appear entangled in another frame [13, 14] with the consequence that the entanglement entropy is not Lorentz invariant [14].

Our result also has consequences for the problem of discriminating between quantum states. First of all, we argue that, in general, contextuality is not necessarily a requirement for the security of quantum key distribution protocols. Specifically, we study an idealized version of the BB84 protocol [15]. Alice has four pure states involving both spin and momentum. She ignores the momentum degrees of freedom and sends to Bob linearly dependent and contextual spin states. In this first scenario, the protocol is known to be robust against the attacks of an eavesdropper Eve trying to guess the state sent by Alice. In the second scenario, Eve performs a Lorentz boost and observes the transformed states, which are now linearly independent and non-contextual. Eve hopes to use noncontextuality to have more success in guessing the state. However, we explicitly show that her situation now gets worse: the states become so mixed that her probability of success decreases as her speed increases. One can then turn to a different task, namely discriminating between only two states, for example two different ensembles of the states sent by Alice. This time, performing a boost yields an advantage as the probability of success increases.

The paper is structured as follows: we first review the proper formalism used to describe the transformation of qubits under a Lorentz transformation. Then we construct an explicit example with one-qubit states where an initial contextual set of states is transformed to a non-contextual set and prove a theorem regarding the preservation of Lorentz invariance for one-qubit spherically symmetric wavefunctions in momentum space. In the final part, we use the states constructed in the example to analyze a simple version of the BB84 protocol and the general problem of discriminating between two quantum states.

Relativistic qubits.— We consider a particle of mass m and four-momentum $p^{\mu}=(E,\mathbf{p})$, where $E=\sqrt{m^2+|\mathbf{p}|^2}$. We denote the generic quantum state of the particle as $|\sigma,p\rangle$, where σ is the projection of the spin along the z-axis. Under a Lorentz transformation Λ , the momentum changes in the standard way $p^{\mu}\to\Lambda^{\mu}_{\ \nu}p^{\nu}$, whereas the spin undergoes a Wigner rotation [16, 17]. The transformation of the quantum state, implemented by a unitary operator $U(\Lambda)$, is then

$$U(\Lambda) |\sigma, p\rangle = \sum_{\sigma'} D_{\sigma'\sigma}^{(s)} [W(\Lambda, p)] |\sigma', \Lambda p\rangle, \qquad (3)$$

where $D_{\sigma'\sigma}^{(s)}$ furnishes a representation of the little group for spin s and

$$W(\Lambda, p) := L^{-1}(\Lambda p)\Lambda L(p), \tag{4}$$

known as Wigner rotation, contains a "standard boost" L(p) which maps the four-momentum of a particle at rest (m,0) to a generic (E,\mathbf{p}) . From now on, we focus on qubits and set s=1/2. The Lorentz transformations we are interested in are boosts and, without loss of generality, we restrict ourselves to a boost with rapidity ζ in the

z direction. After expressing the momentum in spherical coordinates as $p^{\mu}=(E,p\sin\theta\cos\varphi,p\sin\theta\sin\varphi,p\cos\theta),$ the matrix form of $D_{\sigma'\sigma}^{(\frac{1}{2})}$ is [13, 18]

$$D_{\sigma'\sigma}^{(\frac{1}{2})} = \begin{pmatrix} D_{\uparrow\uparrow} & D_{\uparrow\downarrow} \\ D_{\downarrow\uparrow} & D_{\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} \alpha & \beta e^{-i\varphi} \\ -\beta e^{i\varphi} & \alpha \end{pmatrix}, \quad (5)$$

where

$$\alpha = \sqrt{\frac{E+m}{E'+m}} \left[\cosh\left(\frac{\zeta}{2}\right) + \frac{p\cos\theta}{E+m} \sinh\left(\frac{\zeta}{2}\right) \right], \quad (6)$$

$$\beta = \frac{p \sin \theta}{\sqrt{(E+m)(E'+m)}} \sinh \left(\frac{\zeta}{2}\right) \tag{7}$$

and $E' = E \cosh(\zeta) + p \cos\theta \sinh(\zeta)$. One can verify that $\alpha^2 + \beta^2 = 1$, which ensures that $D_{\sigma'\sigma}^{(\frac{1}{2})}$ is unitary. Spekkens contextuality for one-qubit states.— Before

Spekkens contextuality for one-qubit states.— Before looking at a specific example, we state two useful results [19, 20]. The first connects linear independence of states with non-contextuality.

Theorem 1. Let \mathcal{H} be a Hilbert space and let $\mathcal{D}(\mathcal{H})$ be the space of states in \mathcal{H} . If the states $\{\rho_i\}_i \subseteq \mathcal{D}(\mathcal{H})$ are linearly independent, then they are Spekkens noncontextual.

The second result is a necessary and sufficient condition for a set of pure states to be (non-)contextual.

Theorem 2. Let \mathcal{H} be a Hilbert space, let $\mathcal{D}(\mathcal{H})$ be the space of states in \mathcal{H} , and let $\{\rho_i\}_i \subseteq \mathcal{D}(\mathcal{H})$ be a set of pure states. The set $\{\rho_i\}_i$ is Spekkens non-contextual if and only if the density matrices of the states ρ_i are linearly independent.

Notice that the transformation (3) is linear and invertible. Therefore, it preserves the linear (in)dependence of states. From the previous theorems, we conclude that Spekkens contextuality is Lorentz invariant when both spin and momentum are taken into account. This is no longer true when one considers spin states only. To illustrate this, we construct an explicit example for one-qubit states. We denote the elements of the computational basis as $|\uparrow\rangle$, $|\downarrow\rangle$. Let us consider in an inertial frame the state

$$|\psi_1\rangle = \int d\mu(p) \,\psi_{\uparrow}(p) \,|\uparrow,p\rangle$$
 (8)

with the Lorentz invariant measure [21]

$$d\mu(p) = \frac{d^3 \mathbf{p}}{(2\pi)^3 2E} \tag{9}$$

and normalization

$$\langle p|p'\rangle = (2\pi)^3 2E\delta(\mathbf{p} - \mathbf{p}'). \tag{10}$$

After tracing out the momentum degrees of freedom, we get the reduced density matrix

$$\rho_{1} = \operatorname{Tr}_{p} |\psi_{1}\rangle \langle \psi_{1}| = \int d\mu(p) |\psi_{\uparrow}(p)|^{2} |\uparrow\rangle \langle \uparrow| = |\uparrow\rangle \langle \uparrow|.$$
(11)

Let us perform a Lorentz boost along the z axis and compute the state in the new inertial frame by applying Eq. (3):

$$|\psi_{1}'\rangle = \int d\mu(p) \,\psi_{\uparrow}(p) U(\Lambda) \,|\uparrow, p\rangle$$

$$= \sum_{\sigma'} \int d\mu(p) \,\psi_{\uparrow}(p) D_{\sigma'\uparrow} \left[W(\Lambda, p) \right] |\sigma', \Lambda p\rangle$$

$$= \sum_{\sigma'} \int d\mu(p) \,\psi_{\uparrow} \left(\Lambda^{-1} p \right) D_{\sigma'\uparrow} \left[W\left(\Lambda, \Lambda^{-1} p \right) \right] |\sigma', p\rangle \,. \tag{12}$$

The corresponding reduced density matrix is

$$\tau_{1} = \operatorname{Tr}_{p} |\psi_{1}'\rangle \langle \psi_{1}'| = \int d\mu |\psi_{\uparrow}|^{2} \Big[D_{\uparrow\uparrow} D_{\uparrow\uparrow}^{*} |\uparrow\rangle \langle \uparrow|$$

$$+ D_{\uparrow\uparrow} D_{\downarrow\uparrow}^{*} |\uparrow\rangle \langle \downarrow| + D_{\downarrow\uparrow} D_{\uparrow\uparrow}^{*} |\downarrow\rangle \langle \uparrow| + D_{\downarrow\uparrow} D_{\downarrow\uparrow}^{*} |\downarrow\rangle \langle \downarrow| \Big].$$
(13)

We can replicate the same calculation starting with the states

$$|\psi_{2}\rangle = \int d\mu(p) \,\psi_{\downarrow}(p) \,|\downarrow, p\rangle ,$$

$$|\psi_{3}\rangle = \int d\mu(p) \,\psi_{+}(p) \,|+, p\rangle ,$$

$$|\psi_{4}\rangle = \int d\mu(p) \,\psi_{-}(p) \,|-, p\rangle ,$$
(14)

where $|\pm,p\rangle=\frac{|\uparrow,p\rangle\pm|\downarrow,p\rangle}{\sqrt{2}}$. After tracing out the momenta, the reduced density matrices are $\rho_1=|\uparrow\rangle\langle\uparrow|$, $\rho_2=|\downarrow\rangle\langle\downarrow|$, $\rho_3=|+\rangle\langle+|$, $\rho_4=|-\rangle\langle-|$, which are pure and linearly dependent, hence contextual by Theorem 2. It is convenient to define the following integrals:

$$I_{\uparrow\downarrow,1} = \int d\mu \, |\psi_{\uparrow\downarrow}|^2 D_{\uparrow\uparrow}^2, \quad I_{\uparrow\downarrow,2} = \int d\mu \, |\psi_{\uparrow\downarrow}|^2 |D_{\downarrow\uparrow}|^2$$

$$I_{\uparrow\downarrow,3} = \int d\mu \, |\psi_{\uparrow\downarrow}|^2 D_{\downarrow\uparrow} D_{\uparrow\uparrow},$$

$$I_{\pm,1} = \int d\mu \, |\psi_{\pm}|^2 D_{\uparrow\uparrow}^2, \quad I_{\pm,2} = \int d\mu \, |\psi_{\pm}|^2 |D_{\downarrow\uparrow}|^2,$$

$$I_{\pm,3} = \int d\mu \, |\psi_{\pm}|^2 D_{\downarrow\uparrow}^2, \quad I_{\pm,4} = \int d\mu \, |\psi_{\pm}|^2 D_{\downarrow\uparrow} D_{\uparrow\uparrow}.$$
(15)

The transformed spin states after the Lorentz boost can be simplified by noticing that $D_{\uparrow\uparrow} = D_{\downarrow\downarrow} = D_{\uparrow\uparrow}^*$, $D_{\uparrow\downarrow} = -D_{\downarrow\uparrow}^*$ (see Eq. (5)), and in matrix form they are given

by

$$\tau_{1} = \begin{pmatrix} I_{\uparrow,1} & I_{\uparrow,3}^{*} \\ I_{\uparrow,3} & I_{\uparrow,2} \end{pmatrix}, \quad \tau_{2} = \begin{pmatrix} I_{\downarrow,2} & -I_{\downarrow,3}^{*} \\ -I_{\downarrow,3} & I_{\downarrow,1} \end{pmatrix},
\tau_{3} = \frac{1}{2} \begin{pmatrix} -I_{+,4}^{*} - I_{+,4} + 1 & -I_{+,3}^{*} + I_{+,1} \\ -I_{+,3} + I_{+,1} & I_{+,4}^{*} + I_{+,4} + 1 \end{pmatrix}, \quad (16)
\tau_{4} = \frac{1}{2} \begin{pmatrix} I_{-,4}^{*} + I_{-,4} + 1 & I_{-,3}^{*} - I_{-,1} \\ I_{-,3} - I_{-,1} & -I_{-,4}^{*} - I_{-,4} + 1 \end{pmatrix}.$$

Notice that $\text{Tr}(\tau_i)=1$, as $I_{\uparrow,1}+I_{\uparrow 2}=1$, $I_{\downarrow,1}+I_{\downarrow,2}=1$, $I_{\pm,1}+I_{\pm,2}=1$. In summary, the contextual set of pure, linearly dependent states $\{\rho_1,\rho_2,\rho_3,\rho_4\}$ is mapped to the set of mixed, linearly independent states $\{\tau_1,\tau_2,\tau_3,\tau_4\}$. Also note that the initial set has lost information about the form of the original wavefunctions. This information is present in the transformed set. Moreover, we stress the fact that the representation (5) holds for massive particle states only. For massless particles like photons the Wigner matrix is diagonal [17] with the consequence that some of the integrals in Eq. (15) vanish. In other words, Spekkens' contextuality is a Lorentz invariant notion for photonic one-qubit states. We now show that there exists a pseudo-POVM $F=\{F_j\}_j$ such that $\text{Tr}(\tau_i F_j)=\delta_{ij}$. The general form of a one-qubit linear operator is

$$F = A |\uparrow\rangle \langle\uparrow| + B |\uparrow\rangle \langle\downarrow| + C |\downarrow\rangle \langle\uparrow| + D |\downarrow\rangle \langle\downarrow| \qquad (17)$$

The condition $F = F^{\dagger}$ fixes $A, D \in \mathbb{R}$ and $B = C^*$. Thus, $F(a,b,c,d) = a \mid \uparrow \rangle \langle \uparrow \mid + (b+ic) \mid \uparrow \rangle \langle \downarrow \mid + (b-ic) \mid \downarrow \rangle \langle \uparrow \mid + d \mid \downarrow \rangle \langle \downarrow \mid$. The pseudo-POVM is then constituted by $F_1 = F(a,b,c,d)$, $F_2 = F(a',b',c',d')$, $F_3 = F(a'',b'',c'',d'')$ and $F_4 = I - F_1 - F_2 - F_3$, for a total of 12 free real parameters. The number of independent equations is also 12, suggesting that a solution may exist. We verified this by explicitly solving the equations in Mathematica and indeed obtained a solution. The resulting coefficients for the POVM elements are quite lengthy expressions. For the interested reader, we make our Mathematica notebook available upon request. We can conclude that the final set of spin states is non-contextual with the choice $G_{\lambda} = F_{\lambda}$ and $\sigma_{\lambda} = \tau_{\lambda}$, $\lambda = 1, \cdots, 4$.

One can check that, for example, $\lim_{\zeta\to 0} a = \infty$. On the one hand, the divergence of the coefficient recovers the trivial case with no boost, where the states are contextual. On the other hand, it is always possible to have a solution for an arbitrary small ζ , i.e. the final states are non-contextual even in the non-relativistic regime.

Nevertheless, adding the additional constraint of spherical symmetry of the wavefunctions does make Spekkens' contextuality Lorentz invariant for one-qubit states, as shown by the following theorem.

Theorem 3. If the one-particle wavefunctions in momentum space are spherically symmetric, then Spekkens' contextuality is Lorentz invariant for one-qubit states.

Proof. A generic one-particle mixed state can be written as $\rho = \sum_{i} p_{i} |\psi\rangle_{i} \langle\psi|_{i}$, where

$$|\psi\rangle_{i} = \alpha_{i} \int d\mu(p) \, \psi_{\uparrow,i}(p) \, |\uparrow,p\rangle + \beta_{i} \int d\mu(p) \, \psi_{\downarrow,i}(p) \, |\downarrow,p\rangle$$
(18)

and $\sum_i p_i = 1$, $|\alpha_i|^2 + |\beta_i|^2 = 1$ for all i and $\psi_{\uparrow}(p) = \psi_{\uparrow}(|\mathbf{p}|)$, $\psi_{\downarrow}(p) = \psi_{\downarrow}(|\mathbf{p}|)$. After tracing out the momentum, the resulting spin state, in matrix form, is

$$\rho = \sum_{i} p_{i} \begin{pmatrix} |\alpha_{i}|^{2} \int d\mu \, |\psi_{\uparrow,i}^{2}| & \alpha_{i}\beta_{i}^{*} \int d\mu \, \psi_{\uparrow,i}\psi_{\downarrow,i}^{*} \\ \alpha_{i}^{*}\beta_{i} \int d\mu \, \psi_{\uparrow_{i}}^{*}\psi_{\downarrow_{i}} & |\beta_{i}|^{2} \int d\mu \, |\psi_{\downarrow_{i}}|^{2} \end{pmatrix}. \tag{19}$$

Let us perform a Lorentz boost. Since the wavefunctions are spherically symmetric, they are independent of the angle φ so integrals involving $D_{\downarrow\uparrow}$ or $D_{\downarrow\uparrow}^2$ vanish in virtue of $\int_0^{2\pi} d\varphi \, e^{i\varphi} = 0$. Hence, using again the notation in (15), the resulting final spin state is $\tau = \sum_i p_i \tilde{\tau}_i$, with

$$\tilde{\tau}_{i} = \begin{pmatrix} |\alpha_{i}|^{2} I_{\uparrow,1_{i}} + |\beta|^{2} I_{\downarrow,2_{i}} & \alpha_{i}\beta_{i} \int d\mu \psi_{\uparrow,i} \psi_{\downarrow,i}^{*} D_{\uparrow\uparrow}^{2} \\ \alpha_{i}\beta_{i}^{*} \int d\mu \psi_{\uparrow,i}^{*} \psi_{\downarrow,i} D_{\uparrow\uparrow}^{2} & |\alpha_{i}|^{2} I_{\uparrow,2_{i}} + |\beta_{i}|^{2} I_{\downarrow,1_{i}} \end{pmatrix}. \quad (20)$$

Let us now consider linearly independent states $\{\rho_j\}_j$. Linear independence means that $\sum_j \lambda_j \rho_j = 0 \to \lambda_j = 0 \quad \forall j$. In particular, the off-diagonal elements of (19) give the condition

$$\sum_{i} \sum_{j} \lambda_{ij} \alpha_{ij} \beta_{ij}^{*} = 0 \to \lambda_{ij} = 0 \quad \forall j,$$
 (21)

where $\lambda_{ij} = \lambda_j \int d\mu \psi_{\uparrow,ij} \psi_{\downarrow,ij}^*$. Let us now turn to $\{\tau_j\}_j$. While checking the linear independence or dependence, the resulting equation from the diagonal elements of (20) is $\sum_i \sum_j \omega_j \alpha_{ij} \beta_{ij} \int d\mu \psi_{\uparrow,ij} \psi_{\downarrow,ij}^* D_{\uparrow\uparrow} = 0$ or $\sum_i \sum_j \omega_{ij} \alpha_{ij} \beta_{ij}^* = 0$ where $\omega_{ij} = \omega_j \int d\mu \psi_{\uparrow,ij} \psi_{\downarrow,ij}^* D_{\uparrow\uparrow}$. The form of the last condition is the same as the one in Eq. (21). Thus, spin states in one frame are linearly independent if and only if the transformed spin states are linearly independent. By Theorem 1, this means that spin states in one frame are non-contextual if and only if they are non-contextual in the other frame. In turn, this implies that spin states in one frame are contextual if and only if they are contextual in the other frame.

The proof of Theorem 3 suggests that the Lorentz invariance of Spekkens' contextuality for one-qubit states is achieved thanks to the cancellation of unwanted terms. However, as the dimension of the Hilbert space grows, the matrices representing states with two or more qubits also acquire additional terms and linear independence in one frame does not guarantee linear independence in the other, even for spherically symmetric wavefunctions.

A relativistic effect in state discrimination.— We consider an idealized version of the BB84 protocol. Alice prepares the four massive states given in Eqs. (8), (14) (with non-spherically symmetric wavefunctions), she ignores the momenta degrees of freedom and, with a probability

Figure 1. Eve's probability of success in discriminating between four states, as a function of the rapidity of the Lorentz boost. Data is shown for $\epsilon=0.1,\ m=1,\ \sigma_{\uparrow}=2,\ \sigma_{\downarrow}=4,\ \sigma_{+}=3,\ \sigma_{-}=6.$

distribution $(p_i)_i$, sends the pure states $\{\rho_1, \rho_2, \rho_3, \rho_4\} = \{|\uparrow\rangle \langle\uparrow|, |\downarrow\rangle \langle\downarrow|, |+\rangle \langle+|, |-\rangle \langle-|\}$ to Bob. This situation is robust against the attacks of an eavesdropper Eve. However, Eve knows that contextual spin states can be mapped to non-contextual ones and wonders if non-contextuality somehow allows her to break the protocol. She performs a Lorentz boost and in her frame she now observes the mixed states $\{\tau_1, \tau_2, \tau_3, \tau_4\}$ as in Eq. (16). The average probability of success for a given generalised measurement $M = \{M_k\}_k$ to distinguish which state was sent is

$$P_{\text{success}} = \sum_{i} p_i \operatorname{Tr}(\tau_i M_i). \tag{22}$$

The optimal measurement is then the solution of the semidefinite program

$$\max \sum_{i} p_{i} \operatorname{Tr}(\tau_{i} M_{i})$$
s.t. $M_{i} \succeq 0, \sum_{i} M_{i} = I.$ (23)

The result depends on the explicit form of the wavefunctions $\psi_{\uparrow\downarrow}$, ψ_{\pm} . Let us consider the example of a deformed Gaussian:

$$\psi_{\uparrow\downarrow,\pm} = N_{\uparrow\downarrow,\pm} \exp\left(-\frac{p^2}{2\sigma_{\uparrow\downarrow,\pm}^2}\right) \sqrt{1 + \epsilon \cos \phi}.$$
 (24)

The solution of the semidefinite program for the uniform distribution $p_i=1/4$ and the specific choice $\epsilon=0.1$, $m=1,\,\sigma_{\uparrow}=2,\,\sigma_{\downarrow}=4,\,\sigma_{+}=3,\,\sigma_{-}=6$, is shown in Fig. 1. We conclude that performing a boost actually worsens the probability of success. The reason behind this can be traced back to the fact that the initial states are pure, while the transformed states are mixed. Thus, the loss of contextuality does not automatically imply an advantage in discriminating between states. However, there is a task in which a moving observer can outperform one at rest. If we define $\tilde{\rho}_1=\frac{1}{2}(\rho_1+\rho_2)$ and $\tilde{\rho}_2=\frac{1}{2}(\rho_3+\rho_4)$,

Figure 2. Eve's probability of success in discriminating between two ensembles, as a function of the rapidity of the Lorentz boost. Data is shown for $\epsilon = 0.1$, m = 1, $\sigma_{\uparrow} = 2$, $\sigma_{\perp} = 4$, $\sigma_{+} = 3$, $\sigma_{-} = 6$.

the probability of successfully discriminating between the two ensembles (i.e. corresponding to the least probability of error) is given by the Helstrom formula [22]:

$$P_{\text{Helstrom}} = \frac{1}{2} + \frac{1}{4} ||\tilde{\rho}_1 - \tilde{\rho}_2||_1,$$
 (25)

where $||A||_1 = \operatorname{Tr}\left(\sqrt{A^{\dagger}A}\right)$. Since $\tilde{\rho}_1 = \tilde{\rho}_2$, the probability of success for an eavesdropper at rest is 1/2. However, the transformed states are different, $\tilde{\tau}_1 = \frac{1}{2}(\tau_1 + \tau_2) \neq \tilde{\tau}_2 = \frac{1}{2}(\tau_3 + \tau_4)$ with the consequence that a moving eavesdropper experiences a slightly higher probability, as shown in Fig. 2. In summary, even though performing a Lorentz boost does not guarantee a breaking of quantum key distribution protocols, it does provide an (albeit slight) advantage in the general task of discriminating between two quantum states by means of a Helstrom measurement.

Conclusions.— We have shown that, in general, Spekkens' contextuality restricted to spin states is framedependent. By constructing an explicit example for onequbit states, we demonstrated that an initially contextual set of spin states can become non-contextual after a Lorentz boost. Importantly, this effect is not limited to relativistic regimes, as the change in contextuality persists even at low speeds. This indicates that, for a truly frame-independent notion of Spekkens' contextuality, quantum states must include both spin and momentum degrees of freedom. Nevertheless, experiments restricted to spin degrees of freedom remain meaningful: for instance, observing changes in contextuality can still be done without concern for the inertial frame, as discussed in [20]. Moreover, we showed that imposing spherical symmetry on the momentum-space wavefunction restores Lorentz invariance for one-qubit states, though this does not generalise to multi-qubit systems. An interesting open question is whether the Spekkens' framework itself can be generalised to be fully Lorentz invariant. Addressing this question may require techniques from quantum field theory or a careful reconsideration of operational equivalence in relativistic settings. We also investigated a simple BB84-type scenario in which an eavesdropper performs a Lorentz boost. While boosting generally reduces the success probability in distinguishing four states, we identified a task—discriminating between two ensembles—where a moving observer actually gains an advantage. It would be interesting to identify which quantum information tasks can benefit from relative motion, and to explore how these effects manifest in multi-qubit systems or continuous-variable settings. In conclusion, our work highlights the need to carefully reconsider operational notions, like contextuality, in relativistic settings, potentially opening new avenues for both theory and experiment at the intersection of quantum information and relativity.

Acknowledgments.— The author thanks Martin Plávala, Robert Raussendorf, René Schwonnek and Henrik Wilming for useful discussions.

- * ruben.camposdelgado@itp.uni-hannover.de
- E. Specker, Die Logik nicht gleichzeitig entscheidbarer Aussagen, Dialectica 14, 239 (1960).
- [2] S. Kochen and E. Specker, The Problem of Hidden Variables in Quantum Mechanics, Indiana Univ. Math. J. 17, 59 (1967).
- [3] R. Raussendorf, Contextuality in measurement-based quantum computation, Physical Review A 88, 022322 (2013).
- [4] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Contextuality supplies the 'magic' for quantum computation, Nature 510, 351 (2014).
- [5] J. Bermejo-Vega, N. Delfosse, D. E. Browne, C. Okay, and R. Raussendorf, Contextuality as a resource for models of quantum computation with qubits, Physical Review Letters 119, 120505 (2017).
- [6] D. Schmid and R. W. Spekkens, Contextual advantage for state discrimination, Phys. Rev. X 8, 011015 (2018).
- [7] K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, M. Pawlowski, and M. Bourennane, Contextuality offers device-independent security (2010), arXiv:1006.0468 [quant-ph].
- [8] J. Singh, K. Bharti, and Arvind, Quantum key distribution protocol based on contextuality monogamy, Phys. Rev. A 95, 062333 (2017).
- [9] R. W. Spekkens, Contextuality for preparations, transformations, and unsharp measurements, Phys. Rev. A 71, 052108 (2005).
- [10] P. Jokinen, M. Weilenmann, M. Plávala, J.-P. Pellonpää, J. Kiukas, and R. Uola, No-Broadcasting Characterizes Operational Contextuality, Phys. Rev. Lett. 133, 240201 (2024).
- [11] P. J. E. Peebles and D. T. Wilkinson, Comment on the Anisotropy of the Primeval Fireball, Phys. Rev. 174, 2168 (1968).
- [12] P. T. Landsberg and G. E. A. Matsas, Laying the ghost of the relativistic temperature transformation, Phys. Lett. A 223, 401 (1996).
- [13] R. M. Gingrich and C. Adami, Quantum Entanglement

- of Moving Bodies, Phys. Rev. Lett. 89, 270402 (2002).
- [14] A. Peres, P. F. Scudo, and D. R. Terno, Quantum entropy and special relativity, Phys. Rev. Lett. 88, 230402 (2002).
- [15] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science 560, 7 (2014).
- [16] E. P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math. 40, 149 (1939).
- [17] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, 2005).
- [18] F. R. Halpern, Special Relativity and Quantum Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey, 1968).
- [19] Y. Zhang, D. Schmid, Y. Yīng, and R. W. Spekkens, Reassessing the boundary between classical and nonclassical for individual quantum processes (2025), arXiv:2503.05884 [quant-ph].
- [20] R. Campos Delgado and M. Plávala, Ruling out nonlinear modifications of quantum theory with contextuality (2025), arXiv:2506.04298 [quant-ph].
- [21] A. Peres and D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. **76**, 93 (2004).
- [22] C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).