6.S085 Statistics for Research Projects

IAP 2014

Lecture 1: January 21

Lecturer: Ramesh Sridharan and George Chen Notes by: William Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Motivating Examples

- polling probability: extreme statistical anomalies with random polling
- URL: http://www.dailykos.com/story/2010/06/29/880179/-Research-2000-Problems-in-plain-sight)
- iris recognition: probability of match of iris (used to find the subject of famous National Geographic cover)

1.2 Introduction: Some Concepts in Statistics for Research

1.2.1 Some Definitions

Probability: have model/"truth", want "what kind of data will this give me?"

Statistics: have data, want to find the underlying model/"truth"

Bayesian: hidden model is random

Frequentist: hidden model is fixed but unknown ("there is some fixed value of the model that exists")

This class focuses on classical frequentist methods.

1.2.2 Types of Data

Categorical: red/blue, yes/no

Ordinal: anything that can be ordered: disagree/neutral/agree, etc.

Continuous: numerical, any values

Discrete: we will "lump these in" with one of the other models (categorical, ordinal, continuous)

1.2.3 Random Variables

Working definition: a quantity that takes on random values

Examples: Height of a randomly chosen student; temperature in January

Probability distributions, i.e. for random variable x, P(x)

Empirical distribution: based on observed data

Example: Suppose we observe (1, 1, 3, 4, 7, 8, 8); then p(1) = 2/8; p(4) = 1/8; p(7) = 2/8

Expectation: the "average value" that a random variable takes, $E[x] = \sum_a a \cdot P(a)$

Expectation is linear, therefore:

$$E[ax+by] = aE[x] + bE[y] \\$$

Example:

x	У	x+y
1	3	4
2	4	6
5	3	8
4	3	7
3	1	7

(all rows are equally likely)

$$E[x] = 15/5 = 3$$

$$E[y] = 17/5 = 3.4$$

$$E[x+y] = 32/5 = 6.4$$

What if we scramble x and y separately?

X	У	х+у
1	3	4
2	3	5
3	3	6
4	4	8
5	4	9

E[x], E[y], E[x+y] are the same

No matter how independent/dependent x and y are, expectation is always linear

1.2.4 Variance

standard deviation: $\sqrt{var[x]}$

$$var[x] = \sum_a p(a) \cdot (a-E[x])^2$$

$$var[ax] = a^2var[x]$$

$$var[x+y] = var[x] + var[y] \text{ IF } x,y \text{ are independent}$$

Lecture 1: January 21

1.2.5 Notation

```
\mu_x: mean of r.v. x
\sigma_x: standard deviation of r.v. x
\sigma_x^2: variance of r.v. x
```

1.3 Exploratory Analysis

1.3.1 Visualization

When you get some data, you often want to see what's going on by visualizing the data.

Histogram: count frequency of data

Boxplots:

Cumulative Distribution Function: for random variable x, $f(a) = P(x \le a)$

• The CDF is a monotonically increasing function

For a discrete distribution, it might look something like this:

```
4/4| o---

3/4| o--.

2/4| o--.

1/4| ._.

0/4 o-----
```

Scatter Plot: visualizing two random variables

```
|
| x x x
```

Recommendation: visualize data before jumping into the analysis (you will catch things that you otherwise wouldn't see)

Examples:

- Is your data multimodal? If so, then using the mean to summarize it is not helpful
- Skew: long tail to the right ("right skew"); long tail to the left("left skew") this will pull the mean further in that direction than the median

The median can be more robust to high values

1.3.2 Quantitative Measures

Sample mean: $\hat{\mu}_x = \frac{1}{n} \sum_i x_i$

Sample Variance: $\sigma_x^2 = \frac{1}{n-1} \sum_i (x_i - \hat{\mu}_x)^2$ (note the n-1 in denominator)

Median: 50% of the data is below this value

Mode: most common value

Range: largest - smallest

Is the sample mean a good approximation of the true mean?

- x_i are random
- They have fixed but unknown mean μ_x
- We compute $\hat{\mu}_x$

Insight: $\hat{\mu}_x$ is also a random variable

$$E[\hat{\mu}_x] = E[\frac{1}{n} \sum x_i] \tag{1.1}$$

$$=\frac{1}{n}\sum_{i}^{n}\mu_{x}\tag{1.2}$$

$$=\mu_x\tag{1.3}$$

Sample variance: why do we have this n-1 term?

Lecture 1: January 21

We underestimate the sample variance because the $(x_i - \hat{\mu}_x)$ term is too small

$$E[\hat{\sigma}_x^2] = \sigma_x^2$$

Bias: how "wrong" a quantity is

1.3.3 Anscombe's Quartet

Consider 4 datasets with (x, y) pairs:

- same mean in x and y
- \bullet same standard deviation in x and y
- \bullet same correlation between x and y

same mean in x, same mean in y, same std dev in x and y, same correlation – but four very different datasets! Question: how many summary statistics do you need to summarize a dataset?

1.3.4 Gaussian/Normal Distribution

$$p(x) = a \cdot e^{(x-\mu)^2}$$

A Gaussian distribution is very concentrated around its mean

We only need the mean and variance to characterize it

Probability of being within one standard deviation of the mean $\approx 68\%$

Two SDs: 95%

Three SDs: 99%

1.3.5 Bernoulli Distribution

binary random variable:

$$Pr(x=0) = 1 - p$$

$$Pr(x=1) = p$$

If x is Bernoulli:

$$E[x] = p$$

$$var[x] = p(1-p)$$

1.3.6 Binomial Distribution

sum of n independent and identically distributed (i.i.d.) Bernoulli random variables

parameters: n (number of Bernoulli r.v.'s) and p (probability of 1 in Bernoulli r.v.)

If b is binomial

 $b\ B$ ("b is distributed as B")

$$E[b] = E[\sum x_i] = np$$

$$var[b] = np(1-p)$$

1.3.7 Chi-squared Distribution

Represented as χ^2

If
$$x_1, ... x_n, x_i N(0, 1)$$

$$y = \sum x_i^2, y \chi^2(n)$$

parameters: n (degrees of freedom)

1.3.8 Standard Normal

$$x N(\mu, \sigma^2)$$

$$y = \frac{x-\mu}{\sigma}$$

$$y = N(0, 1)$$

1.4 Endnote: 2004 Election

Bush won all 15 poorest states but only won 36% of the "poor vote"

Kerry won 9 out of 11 of the richest states but only won 38% of the "rich vote"

There is a confounding factor: rate at which

weak dependence on income in Connecticut, a rich state

strong dependence on income in Mississippi, a poor state

Simpson's paradox