Code2Text Challenge: Text Generation in Source Code Libraries

Kyle Richardson[†] Sina Zarrieß[‡] Jonas Kuhn[†]

† Institute for Natural Language Processing, University of Stuttgart, Germany {kyle,jonas}@ims.uni-stuttgart.de

† Dialogue Systems Group // CITEC, Bielefeld University, Germany

September 6, 2017

The challenge: Can we generate text from code?

```
# Returns the greater of two long values

* @param a an argument

* @param b another argument

* @return the larger of a and b

* @see java.lang.Long#MAX_VALUE

*/

public static Long max(long a, long b)
```

► A natural parallel corpus: High-level descriptions (red) of internal software functionality inside software projects (blue/black).

The challenge: Can we generate text from code?

```
Java Standard Library

* Returns the greater of two long values

* @param a an argument

* @param b another argument

* @return the larger of a and b

* @see java.lang.Long#MAX_VALUE

*/
public static Long max(long a, long b)
```

- ► A natural parallel corpus: High-level descriptions (red) of internal software functionality inside software projects (blue/black).
- The task: code → text

The challenge: Can we generate text from code?

```
Java Standard Library

* Returns the greater of two long values

* @param a an argument

* @param b another argument

* @return the larger of a and b

* @see java.lang.Long#MAX_VALUE

*/
public static Long max(long a, long b)
```

- ► A natural parallel corpus: High-level descriptions (red) of internal software functionality inside software projects (blue/black).
- The task: code → text
- Why? New challenges (next slide), interesting applications, explosion of interest in NLP (centrally featured in Mirella Lapata's ACL 2017 keynote Translating from Multiple Modalities to Text and Back).

Code2Text: Challenges for Data-to-Text Generation

Text	MR	
Compares this Calendar to the specified Object	boolean util.Calendar.equals(Object obj)	
Extract the second component of a pair.	Data.Tuple.snd :: (a, b) -> b	
Computes the arc tangent given y and \boldsymbol{x} .	$\texttt{Math.atan2(y,x)} \ \to \ \texttt{Float}$	
Purple7 kicks to purple9 (Chen and Mooney (2008))	kick(purple7,purple9)	
Bibimbap serves French food in the price range cheap	name[Bibibap] food[French] priceRange[cheap]	
(Novikova and Rieser (2016))		

- End-to-End Generation: Existing tasks involve simpler lexicalization problem, narrower domains, lexical overlap in text and MR language, MR designed for generation, realization
- ► **General Question:** Are code representations rich enough to serve as a KR, can we just rely on input-output, do we need intermediate KR?

Parallel Source Code Data: Some Observations

▶ **Observation 1:** Tight coupling between high-level text and code, cheap and easy to extract.

```
* Returns the greater of two long values

* % Oparam a an argument

* % Oparam b another argument

* % return the larger of a and b

* % Osee java.lang.Long#MAX_VALUE

*/

public static Long max(long a, long b)
```

```
(ns ... clojure.core)

(defn random-sample

"Returns items from coll with random
probability of prob (0.0 - 1.0)"

([prob] ...)

([prob coll] ...))
```

Parallel Source Code Data: Some Observations

▶ **Observation 1:** Tight coupling between high-level text and code, cheap and easy to extract.

```
* Returns the greater of two long values

* % param a an argument

* % preturn the larger of a and b

* @ see java.lang.Long#MAX_VALUE

*/
public static Long max(long a, long b)
```

```
(ns ... clojure.core)

(defn random-sample
   "Returns items from coll with random
   probability of prob (0.0 - 1.0)"
   ([prob] ...)
   ([prob coll] ...))
```

Function signatures: Provide operationalization of text meaning.

Parallel Source Code Data: Some Observations

▶ **Observation 1:** Tight coupling between high-level text and code, cheap and easy to extract.

```
* Returns the greater of two long values

* * ©param a an argument

* ©param b another argument

* ©return the larger of a and b

* @see java.lang.Long#MAX_VALUE

*/
public static Long max(long a, long b)
```

```
(ns ... clojure.core)

(defn random-sample
   "Returns items from coll with random
   probability of prob (0.0 - 1.0)"
   ([prob] ...)
   ([prob coll] ...))
```

▶ Function signatures: Provide operationalization of text meaning.

Returns the greater of two long values Long max(long a, long b)

Returns items from coll with random... (random-sample prob coll)

NLG Input: Many Formal Languages

▶ **Observation 2:** There are many languages, hence many datasets.

```
* Returns the greater of two long values

* ©param a an argument

* ©param b another argument

* ©return the larger of a and b

* ©see java.lang.Long#MAX_VALUE

*/
public static Long max(long a, long b)
```

```
(ns ... clojure.core)

(defn random-sample
   "Returns items from coll with random
   probability of prob (0.0 - 1.0)"
   ([prob] ...)
   ([prob coll] ...))
```

```
# zipfile.py
"""Read and write ZIP files"""
class ZipFile(object):

"""Class to open ... zip files."""

def write(filename,arcname,...):
    """Put the bytes from filename
    into the archive under the name.."""
```

```
--| Mostly functions for reading and showing RealFloat like values module Numeric
-- | Show non-negative Integral numbers in base 10.
showInt :: Integral a => a -> ShowS
```

NLG Output: Multilingual

▶ **Observation 3:** Many NLs, hence many multilingual datasets.

```
namespace ArrayIterator;

/*
    * Appends values as the last element
    * Operame value The value to append
    * Osee ArrayIterator::next()
    */
public void append(mixed $value)
```

```
namespace ArrayIterator;

/*

* Ajoute une valeur comme dernier élément

* ®param value La valeur á ajouter

* @see ArrayIterator::next()

*/
public void append(mixed $value)
```

```
namespace ArrayIterator;

/*
/* Anade el valor cómo el último elemento.
/*
* ©param value El valor a anadir.
* @see ArrayIterator::next()
*/
public void append(mixed $value)
```

Example resources: Standard Library Documentation

Dataset	#Pairs	#Desc	rSymbo	ls#WordsVocab.	Example Pairs $(x = \text{text}, z = \text{code})$
Java	7,183	4,804	4,072	82,696 3,721	 x: Compares this Calendar to the specified Object. z: boolean util.Calendar.equals(Object obj)
Ruby	6,885	1,849	3,803	67,274 5,131	x : Computes the arc tangent given y and x. z : Math.atan2(y,x) \rightarrow Float
PHP _{en}	6,611	13,943	8,308	68,921 4,874	x: Delete an entry in the archive using its name.z: bool ZipArchive::deleteName(string \$name)
Python	3,085	429	3,991	27,012 2,768	x: Remove the specific filter from this handler. z: logging.Filterer.removeFilter(filter)
Elisp	2,089	1,365	1,883	30,248 2,644	 x: Returns the total height of the window. z: (window-total-height window round)
Haskell	1,633	255	1,604	19,242 2,192	<pre>x: Extract the second component of a pair. z: Data.Tuple.snd :: (a, b) -> b</pre>
Clojure	1,739	-	2,569	17,568 2,233	x: Returns a lazy seq of every nth item in coll. z: (core.take-nth n coll)
С	1,436	1,478	1,452	12,811 1,835	<pre>x: Returns current file position of the stream. z: long int ftell(FILE *stream)</pre>
Scheme	1,301	376	1,343	15,574 1,756	x: Returns a new port and the given state.z: (make-port port-type state)

▶ Standard library documentation for 9+ programming languages, 7 natural languages, from Richardson and Kuhn (2017b) for text \rightarrow code study.

Example resources: Multilingual Standard Library Docs.

Dataset	# Pairs	#Descr.	Symbols	Words	Vocab.
PHP_{fr}	6,155	14,058	7,922	70,800	5,904
PHP_{es}	5,823	13,285	7,571	69,882	5,790
PHP_{ia}	4,903	11,251	6,399	65,565	3,743
$ PHP_{ru}^{r} $	2,549	6,030	3,340	23,105	4,599
PHP_{tr}	1,822	4,414	2,725	16,033	3,553
PHP_{de}	1,538	3,733	2,417	17,460	3,209

Non-English: PHP documentation collection, French (fr), Spanish (es),
 Japanese (ja), Russian (ru), Turkish (tr), German (de)

Py27: Open Source Python projects

Project	# Pairs	# Symbols	# Words	Vocab.
scapy	757	1,029	7,839	1,576
zipline	753	1,122	8,184	1,517
biopython	2,496	2,224	20,532	2,586
renpy	912	889	10,183	1,540
pyglet	1,400	1,354	12,218	2,181
kivy	820	861	7,621	1,456
pip	1,292	1,359	13,011	2,201
twisted	5,137	3,129	49,457	4,830
vispy	1,094	1,026	9,744	1,740
orange	1,392	1,125	11,596	1,761
tensorflow	5,724	4,321	45,006	4,672
pandas	1,969	1,517	17,816	2,371
sqlalchemy	1,737	1,374	15,606	2,039
pyspark	1,851	1,276	18,775	2,200
nupic	1,663	1,533	16,750	2,135
astropy	2,325	2,054	24,567	3,007
sympy	5,523	3,201	52,236	4,777
ipython	1,034	1,115	9,114	1,771
orator	817	499	6,511	670
obspy	1,577	1,861	14,847	2,169
rdkit	1,006	1,380	9,758	1,739
django	2,790	2,026	31,531	3,484
ansible	2,124	1,884	20,677	2,593
statsmodels	2,357	2,352	21,716	2,733
theano	1,223	1,364	12,018	2,152
nltk	2,383	2,324	25,823	3,151
sklearn	1,532	1,519	13,897	2,115

▶ 27 Python projects from Github (Richardson and Kuhn (2017a)), tool for extracting datasets from APIs, FunctionAssistant and code search.

Code2Text: Planning and Schedule

- Data is already available for immediate experimentation (around 42 API datasets), task will use publicly available test sets: https://github.com/yakazimir/Code-Datasets, SMT baselines coming.
- ▶ New Test Sets: build using Function Assistant, by language: Java, Python, and a surprise programming language, 1 Month
- Evaluation: Automatic metrics, human evaluation at IMS, University of Stuttgart for German, English (annotation funding available, extra slides).
 summer 2018
- Organization: IMS, University of Stuttgart (central), other possible co-organizers involving people in code to text generation (not yet official).

Evaluation

- ▶ Automatic metrics: METEOR and BLEU, following common practices for code-to-text (lyer et al. (2016))
- Human (on new testing sets): Comparison between text generated from code and reference text (from actual API), using tools such as Kow and Belz (2012), measure along a number of dimensions: meaning similarity, adequacy, fluency/clarity.
 - Funding: Through IMS, special resources and funding for annotation projects.
 - Participants: Students from international Masters program (taught in English).
 - New Testing Sets: Will consist of around 1,000 data pairs, will be selected for quality.

References I

- Belz, A. and Kow, E. (2009). System Building Cost vs. Output Quality in Data-to-Text Generation. In *Proceedings of ENLG*.
- Chen, D. L. and Mooney, R. J. (2008). Learning to sportscast: A test of grounded language acquisition. In *Proceedings of ICML-2008*, pages 128–135.
- Iyer, S., Kostas, I., Cheung, A., and Zettlemoyer, L. (2016). Summarizing Source Code using a Neural Attention Model. *Proceedings of ACL-2016*.
- Kow, E. and Belz, A. (2012). Lg-eval: A toolkit for creating online language evaluation experiments. In LREC, pages 4033–4037.
- Miceli Barone, A. V. and Sennrich, R. (2017). A parallel corpus of Python functions and documentation strings for automated code documentation and code generation. arXiv preprint arXiv:1707.02275.
- Novikova, J. and Rieser, V. (2016). The aNALoGuE Challenge: Non Aligned Language GEneration. In *Proceedings of INLG*.
- Richardson, K. and Kuhn, J. (2017a). Function Assistant: A Tool for NL Querying of APIs. In *Proceedings of EMNLP-17 (demo)*.
- Richardson, K. and Kuhn, J. (2017b). Learning Semantic Correspondences in Technical Documentation. In *Proceedings of ACL-17*.
- Wong, Y. W. and Mooney, R. J. (2007). Generation by Inverting a Semantic Parser that Uses Statistical Machine Translation. In *Proceedings of HLT-NAACL*.

Extra: More about the Data

- Noisy: Trade off between collecting large amounts of data (for immediate experimentation), and having clean data/good documentation.
- Preprocessing: Function Assistant does tokenization involving conversion out of camel case, underscore elimination, ...
 - ▶ myBigFunction(long a, long b) \rightarrow my big function long a long b
 - ▶ $(my-big-function x y) \rightarrow my big function x y$
- Underlying idea: Not to deal with idealized documentation, but rather documentation as it exists, in its raw form, quick experimentation.
- Data Combinations: Participants are free to train models on multiple datasets if it helps.

Extra: Baselines

- ➤ SMT baselines: Phrase-based SMT, and newer Seq2Seq baselines, have previously served as reliable baselines (Wong and Mooney (2007); Belz and Kow (2009); Miceli Barone and Sennrich (2017)).
- ▶ Baseline results will be provided for all datasets (dev and test sets) by training individual models on each dataset.