

School of Computing and Information Systems

A Learned Generalized Geodesic Distance Function-Based Approach for Node Feature Augmentation on Graphs

Amitoz Azad Yuan Fang

- 1. Problem
- 2. Motivation
- 3. Method
- 4. Results

Graph Augmentation¹

¹Tong Zhao et al. "Graph data augmentation for graph machine learning: a survey". In: arXiv (2022).

- 1. Problem
- 2. Motivation
- 3. Method
- 4. Results

Geodesic on Graphs

Geodesic Distance Function on Graphs²

²Moshe Sniedovich. "Dijkstra's algorithm revisited...". In: Control and cybernetics (2006).

Generalized Geodesic Distance Function³

Geodesic Distance Function

$$f(x) = \min_{y \in N(x)} \{ f(y) + 1 \} \quad x \in V \setminus V_0$$

$$f(x) = 0 \quad x \in V_0$$

Generalized Geodesic Distance Function

$$\rho(x) \|\nabla_w^- f(x)\|_p = 1 \quad x \in V \setminus V_0$$
$$f(x) = 0 \quad x \in V_0$$

³ Jeff Calder and Mahmood Ettehad. "Hamilton-Jacobi equations on graphs ...". In: JMLR (2022)

Connection Between The Two

Proposition 1: For an uweighted graph with a constant potential function $\rho(x) = 1$, any valid solution of the generalized geodesic distance function equation with supremum norm (i.e. $p = \infty$) yields geodesic distance function.

Robustness⁴

⁴Leonard Kaufman and Peter J. Rousseeuw. "Graph k-medoids". In: Wiley Probability and Statistics (1990).

Robustness

Bottom-row: Robustness of Generalized Geodesic Distances for p = 1 to random edge corruptions.

The n represents the number of random corrupted edges added to a given graph. The graph construction: 20,000 points (nodes) were randomly sampled from a unit ball in R 2 . An ϵ -neighborhood unweighted graph was constructed using these sampled points with ϵ = 0.05. All points within ϵ distance of the boundary of the unit ball are considered boundary nodes. Colors represent the distance from the boundary, with red indicating the boundary where the distance function is zero, and yellow indicating the maximum distance.

- 1. Problem
- 2. Motivation
- 3. Method
- 4. Results

Model

$$\rho(x)\|\nabla^{-}f(x)\| = 1 \quad x \in V \setminus V_{0}$$

$$f(x) = 0 \quad x \in V_{0}$$

$$f(x,0) = \phi_{0} \quad x \in V$$

$$\rho(x)\|\nabla^{-}f(x)\| = 1 \quad x \in V \setminus V_{0}$$

$$f(x) = 0 \quad x \in V_{0}$$

$$\frac{\partial f(x,t)}{\partial t} = -\rho(x)\|\nabla^{-}f(x,t)\| + 1 \quad x \in V \setminus V_{0}$$

$$f(x,0) = \phi_{0} \quad x \in V$$

$$f(x,t) = 0 \quad x \in V_{0}$$

Model⁵

⁵Ricky T. Q. Chen. *Torchdiffeq.* 2018. URL: https://github.com/rtqichen/torchdiffeq.

Model⁶

⁶Maziar Raissi et al. "PINNS: Physics informed neural networks ...". In: Journal of Computational physics (2019).

- 1. Problem
- 2. Motivation
- 3. Method
- 4. Results

Results

Model	Cora	Citeseer	Pubmed	Computers	Photo
01 GCN	74.13 ± 2.08	66.08 ± 2.16	79.73 ± 0.71	81.72 ± 1.78	87.57 ± 1.18
02 MixUp	72.72 ± 1.78	64.14 ± 1.75	80.02 ± 0.52	80.76 ± 1.40	88.67 ± 0.80
03 DropEdge	72.28 ± 1.39	65.73 ± 1.83	81.89 ± 0.84	81.45 ± 1.02	88.29 ± 1.27
04 GAug-M	72.14 ± 1.37	66.38 ± 1.29	82.18 ± 1.36	84.82 ± 0.78	91.05 ± 1.21
05 GAug-O	71.30 ± 1.54	67.22 ± 1.06	OOM^*	83.03 ± 0.50	90.62 ± 0.30
06 GDC (heat)	77.52 ± 1.74	65.38 ± 1.36	82.16 ± 0.93	80.18 ± 1.31	88.12 ± 2.21
07 GDC (ppr)	78.13 ± 2.13	66.33 ± 1.84	80.86 ± 0.78	82.88 ± 1.14	89.07 ± 2.19
08 GGD	69.95 ± 2.51	43.21 ± 2.44	76.49 ± 0.87	78.89 ± 1.61	85.69 ± 0.92
09 LGGD	80.18 ± 1.53	67.23 ± 1.79	83.24 ± 1.79	85.23 ± 2.18	92.02 ± 2.33
10 LGGD w. $\rho(x)$	81.56 ± 2.29	68.63 ± 1.70	83.36 ± 1.88	85.49 ± 1.09	92.39 ± 2.11
11 GPR-GNN	79.45 ± 1.66	67.18 ± 1.84	84.11 ± 0.38	82.80 ± 2.01	91.48 ± 1.59
12 GOAL	76.07 ± 1.56	66.57 ± 1.26	81.83 ± 1.28	83.43 ± 1.04	91.65 ± 0.69

Results

Results

Thank You:)