Dynamic Stochastic General Equilibrium Models

Projection Method Very Short

Willi Mutschler

simple 1-sector model

I ifetime utility:

$$E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\tau}}{1-\tau}$$

udget restriction:

$$c_t + k_t - (1 - \delta)k_{t-1} = z_t k_{t-1}^{\alpha}$$

productivity:

$$\ln(z_t) = \rho \ln(z_{t-1}) + \varepsilon_t$$

uler-equation:

$$c_t^{-\tau} = \beta E_t \left[c_{t+1}^{-\tau} (1 - \delta + \alpha z_{t+1} k_t^{\alpha - 1}) \right]$$

solution concept

Point of departure: initial states k_0, z_0

Goal: Find (recursive) decision rules, so-called *policy functions*, for the optimal paths of next periods decisions given shocks:

special case: $\tau = \delta = 1$: $c_{t+1} = (1 - \alpha \beta) z_t^{\rho} k_t^{\alpha}$ $k_{t+1} = \alpha \beta z_t^{\rho} k_t^{\alpha}$

What is a good approximation?

• Define Euler-residual: $R = -c_t^{-\tau} + E_t[\beta c_{t+1}^{-\tau}(1 - \delta + \alpha z_{t+1}k_t^{\alpha - 1})]$

- Exact solution: R = 0
- Approximate solution \hat{C} : $R \leq 0$
- Construct $\hat{C}(k_t, z_t; \theta)$ by choosing θ , such that we minimize sum-of-squared-residuals

1. Choose grid $\{k_m, z_m\}_{m=1,...,M}$ to construct \hat{C}

Traditional

2. Choose J nodes and weights for conditional expectation (Gauss-Hermite-Quadrature)

3. Choose functional form for \hat{C} with coefficients θ , for example:

- polynomials:
$$\hat{C}(k,z) = \theta_0 + \theta_k(k-\bar{k}) + \theta_z(z-\bar{z}) + \frac{1}{2} \left(\theta_{kk}(k-\bar{k})^2 + 2\theta_{kz}(k-\bar{k})(z-\bar{z}) + \theta_{zz}(z-\bar{z})^2 \right) + \frac{1}{6} \dots$$

- B-Spline functions:

4. optimization problem: find coefficients θ that minimize sum of squared residuals

Curse of Dimensionality

- Number of grid points increases exponentially with number of state variables
- Number of integration nodes and weights increases exponentially with number of shocks
- Spline interpolation does not work with more than two variables
- Costs (runtime, memory, reliability) in the optimization algorithm explode

Perturbation Sparse Polynomial Interpolation

Smolyak Sparse Grids

Derivative Free Fixed Point Iteration

Non Product Monomial Integration Low Discrepancy Sequences