Generalized Additive Models

David L Miller

Overview

- What is a GAM?
- What is smoothing?
- How do GAMs work? (Roughly)

From GAMs to GLMs and LMs

(Generalized) Linear Models

Models that look like:

```
[y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2 + \beta_0 + \phi_i]
```

(describe the response, $\ (y_i \)$, as linear combination of the covariates, $\ (x_{ji} \)$, with an offset)

We can make $\ (y_i \sin)$ any exponential family distribution (Normal, Poisson, etc).

Error term \(\epsilon_i\) is normally distributed (usually).

Why bother with anything more complicated?!

Is this relationship linear?

A linear model...

```
lm(y \sim x1 + poly(x1, 2), data=dat)
```

Is this relationship linear? Maybe?

What can we do?

```
lm(y \sim x1 + poly(x1, 2), data=dat)
```

Adding a quadratic term?

Is this sustainable?

- Adding in quadratic (and higher terms) can make sense
- This feels a bit ad hoc
- Better if we had a **framework** to deal with these issues?

[drumroll]

Generalized Additive Models

- Generalized: many response distributions
- Additive: terms add together
- Models: well, it's a model...

What does a model look like?

```
[y_i = \beta_0 + \sum_j (x_{ji}) + \epsilon_i ]
```

where \(\epsilon_i\sim N(0, \sigma^2)\), \(y_i\sim \text{Normal}\) (for now)

Remember that we're modelling the **mean** of this distribution!

Call the above equation the linear predictor

Okay, but what about these "s" things?

- Think \(s \)=smooth
- Want to model the covariates flexibly
- Covariates and response not necessarily linearly related!
- Want some "wiggles"

Okay, but what about these "s" things?

- Think \(s \)=smooth
- Want to model the covariates flexibly
- Covariates and response not necessarily linearly related!
- Want some "wiggles"

What is smoothing?

Straight lines vs. interpolation

- Want a line that is "close" to all the data
- Don't want interpolation –
 we know there is "error"
- Balance between interpolation and "fit"

Splines

- Functions made of other, simpler functions
- Basis functions \(b_k(x) \), estimate \(\beta_k \)
- \(s(x) = \sum_{k=1}^K \beta_k b_k(x) \)
- Makes the math(s) much easier

Design matrices

- We often write models as \(X\boldsymbol{\beta} \)
 - \(X \) is our data
 - \(\boldsymbol\\beta\\) are parameters we need to estimate
- For a GAM it's the same
 - \(X\) has columns for each basis, evaluated at each observation (row)
 - again, this is the linear predictor

Measuring wigglyness

- Visually:
 - Lots of wiggles == NOT SMOOTH
 - Straight line == VERY SMOOTH
- How do we do this mathematically?
 - Derivatives!
 - (Calculus was a useful class afterall!)

Wigglyness by derivatives

What was that grey bit?

\[\int_\mathbb{R}\left(\frac{\partial^2 f(x)}{\partial^2 x}\right)^2 \text{d}x\\\]

- Turns out we can always write this as \(
 \boldsymbol{\beta}^\\text{T}S\boldsymbol{\beta} \), so the
 \(\boldsymbol{\beta} \) is separate from the derivatives
- Call \(S \) the penalty matrix
- Different penalties lead to difference \(f \) s \(
 \Rightarrow \) different \(b_k(x) \) s

Making wigglyness matter

- \(\boldsymbol{\beta}^\\text{T}S\boldsymbol{\beta}\\)
 measures wigglyness
- "Likelihood" measures closeness to the data
- Penalise closeness to the data...
- Use a smoothing parameter to decide on that trade-off...
 - \(\lambda \boldsymbol{\beta}^\text{T}S\boldsymbol{\beta}\)
- Estimate the \(\beta_k\\) terms but penalise objective
 - "closeness to data" + penalty

Smoothing parameter

Smoothing parameter selection

- Many methods: AIC, Mallow's \(C_p \), GCV, ML, REML
- Recommendation, based on simulation and practice:
 - Use REML or ML
 - Reiss & Ogden (2009), Wood (2011)

Maximum wiggliness

- We can set basis complexity or "size" (\(k \))
 - Maximum wigglyness
- Smooths have effective degrees of freedom (EDF)
- EDF < \(k \)
- Set \(k \) "large enough"
 - Penalty does the rest

More on this in a bit...

Response distributions

- Exponential family distributions are available
- Normal, Poisson, binomial, gamma, quasi etc (?family)
- Tweedie and negative binomial
- Plus more! (More on that in a bit)

GAM summary

- Straight lines suck we want wiggles
- Use little functions (basis functions) to make big functions (smooths)
- Need to make sure your smooths are wiggly enough
- Use a penalty to trade off wiggliness/generality