GAUGE AND HIGGS BOSONS

 γ

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 1 \times 10^{-18} \ {\rm eV}$ Charge $q < 1 \times 10^{-35} \ e$ Mean life $\tau = {\rm Stable}$

g or gluon

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

graviton

J = 2

Mass $m < 6 \times 10^{-32} \text{ eV}$

W

$$J = 1$$

Charge
$$= \pm 1~e$$
 Mass $m = 80.385 \pm 0.015~{\rm GeV}$ $m_Z - m_W = 10.4 \pm 1.6~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.2 \pm 0.6~{\rm GeV}$ Full width $\Gamma = 2.085 \pm 0.042~{\rm GeV}$ $\left< N_{\pi^\pm} \right> = 15.70 \pm 0.35$ $\left< N_{K^\pm} \right> = 2.20 \pm 0.19$ $\left< N_p \right> = 0.92 \pm 0.14$ $\left< N_{\rm charged} \right> = 19.39 \pm 0.08$

 W^- modes are charge conjugates of the modes below.

W ⁺ DECAY MODES	I	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[b]	(10.86± 0.09) %		_
$e^+ \nu$		$(10.71 \pm \ 0.16) \%$		40192
$\mu^+ \nu$		$(10.63 \pm \ 0.15) \%$		40192
$\tau^+ u$		$(11.38 \pm \ 0.21) \%$		40173
hadrons		(67.41± 0.27) %		_

Z

$$J=1$$

Charge = 0 Mass
$$m = 91.1876 \pm 0.0021$$
 GeV $^{[d]}$ Full width $\Gamma = 2.4952 \pm 0.0023$ GeV $\Gamma(\ell^+\ell^-) = 83.984 \pm 0.086$ MeV $^{[b]}$ $\Gamma(\text{invisible}) = 499.0 \pm 1.5$ MeV $^{[e]}$ $\Gamma(\text{hadrons}) = 1744.4 \pm 2.0$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 1.0009 \pm 0.0028$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0019 \pm 0.0032$ $^{[f]}$

Average charged multiplicity

$$\langle N_{charged} \rangle = 20.76 \pm 0.16 \quad (S = 2.1)$$

Couplings to quarks and leptons

$$g_V^{\ell} = -0.03783 \pm 0.00041$$
 $g_V^{u} = 0.25^{+0.07}_{-0.06}$
 $g_V^{d} = -0.33^{+0.05}_{-0.06}$
 $g_A^{\ell} = -0.50123 \pm 0.00026$
 $g_A^{u} = 0.50^{+0.04}_{-0.06}$
 $g_A^{d} = -0.523^{+0.050}_{-0.029}$
 $g_A^{\nu_{\ell}} = 0.5008 \pm 0.0008$
 $g_{\nu_{e}}^{\nu_{e}} = 0.53 \pm 0.09$
 $g_{\mu}^{\nu_{\mu}} = 0.502 \pm 0.017$

Asymmetry parameters [g]

$$A_e = 0.1515 \pm 0.0019$$
 $A_\mu = 0.142 \pm 0.015$
 $A_\tau = 0.143 \pm 0.004$
 $A_s = 0.90 \pm 0.09$
 $A_c = 0.670 \pm 0.027$
 $A_b = 0.923 \pm 0.020$

Charge asymmetry (%) at \boldsymbol{Z} pole

$$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$$
 $A_{FB}^{(0u)} = 4 \pm 7$
 $A_{FB}^{(0s)} = 9.8 \pm 1.1$
 $A_{FB}^{(0c)} = 7.07 \pm 0.35$
 $A_{FB}^{(0b)} = 9.92 \pm 0.16$

Z DECAY MODES	Fraction (Γ_i/Γ)				Sca Confid	<i>p</i> (MeV/ <i>c</i>)		
e^+e^-		(3.363	±0.004) %			45594	
$\mu^+\mu^-$		(3.366	± 0.007) %			45594	
$ au^+ au^-$		(3.370	± 0.008	3)%			45559	
$\ell^+\ell^-$	[b] (3.3658 ± 0.0023) %							
$\ell^+\ell^-\ell^+\ell^-$	[<i>h</i>]	(4.2	$^{+0.9}_{-0.8}$) × 1	.0-6		45594	
invisible		(20.00	±0.06) %			_	
hadrons		(69.91	±0.06) %			_	
$(u\overline{u}+c\overline{c})/2$ _		(11.6	± 0.6) %			_	
$(d\overline{d} + s\overline{s} + b\overline{b})/3$		(15.6	± 0.4) %			_	
<u>c c</u>		(12.03	± 0.21) %			_	
$b\overline{b}$ _		(15.12	±0.05) %			_	
$b\overline{b}b\overline{b}$		(3.6	±1.3	$) \times 1$	0^{-4}		_	
ggg		< 1.1		%	_	CL=95%	_	
$\pi^{0}\gamma$		< 5.2				CL=95%	45594	
$\eta\gamma$		< 5.1				CL=95%	45592	
$\omega\gamma$		< 6.5				CL=95%	45590	
$\eta'(958)\gamma$		< 4.2			0-5		45589	
$\gamma \gamma$		< 5.2			0-5		45594	
$\gamma \gamma \gamma$		< 1.0				CL=95%	45594	
$\pi^{\pm}W^{\mp}$ $ ho^{\pm}W^{\mp}$		< 7				CL=95%	10162	
1	[/]	< 8.3			_	CL=95%	10136	
$J/\psi(1S)X$		(3.51	$+0.23 \\ -0.25$	$) \times 1$		S=1.1	_	
$\psi(2S)X$		(1.60	± 0.29	$) \times 1$			_	
$\chi_{c1}(1P)X$		(2.9	± 0.7) × 1			_	
$\chi_{c2}(1P)X$		< 3.2				CL=90%	_	
$\varUpsilon(1S) \ X + \varUpsilon(2S) \ X \ + \varUpsilon(3S) \ X$		(1.0	± 0.5) × 1	0 ⁻⁴		_	
$\Upsilon(1\hat{S})\hat{X}$		< 4.4		\times 1	0-5	CL=95%	_	
$\Upsilon(2S)X$		< 1.39		\times 1	0^{-4}	CL=95%	_	
$\Upsilon(3S)X$		< 9.4		\times 1	.0-5	CL=95%	_	
$(D^0 / \overline{D}{}^0) X$		(20.7	± 2.0) %			_	

HTTP://PDG.LBL.GOV

Page 3

$D^{\pm}X$			(12.2	± 1.7) %		_
$D^*(2010)^{\pm} X$		[<i>i</i>]	(11.4) %		_
$D_{s1}(2536)^{\pm}X$			(3.6	± 0.8	$) \times 10^{-3}$		_
$D_{s,I}(2573)^{\pm}X$			(5.8	± 2.2	$) \times 10^{-3}$		_
$D^{*'}(2629)^{\pm}X$		S	earched f	or	,		_
B^+X		[<i>j</i>]	(6.08	± 0.13) %		_
$B_s^0 X$		[<i>j</i>]	(1.59	± 0.13) %		_
$B_c^+ X$		S	earched f	or			_
Λ ⁺ X			(1.54	± 0.33) %		_
$B_{c}^{+} X$ $\Lambda_{c}^{+} X$ $\Xi_{c}^{0} X$			seen				_
Ξ_b^{X} X			seen				_
b-baryon X		[<i>j</i>]	(1.38	±0.22) %		_
anomalous $\gamma+$ hadrons		[k] <	< 3.2		$\times 10^{-3}$	CL=95%	_
$e^+e^-\gamma$		[k]	< 5.2		$\times 10^{-4}$	CL=95%	45594
$\mu^+\mu^-\gamma$		[k] <	< 5.6		\times 10 ⁻⁴	CL=95%	45594
$\tau^+\tau^-\gamma$		[k] <	< 7.3		\times 10 ⁻⁴	CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[/] <	< 6.8		$\times 10^{-6}$	CL=95%	_
$q \overline{q} \gamma \gamma$		[/] -	< 5.5			CL=95%	_
$ u \overline{\nu} \gamma \gamma$		[/] <	< 3.1			CL=95%	45594
$e^{\pm}\mu^{\mp}$	LF	[i]	< 1.7			CL=95%	45594
$e^{\pm} au^{\mp}$	LF	[i] <	< 9.8		\times 10 ⁻⁶	CL=95%	45576
$\mu^{\pm} au^{\mp}$	LF	[i]	< 1.2			CL=95%	45576
pe	L,B	•	< 1.8			CL=95%	45589
ρμ	L,B	•	< 1.8		× 10 ⁻⁶	CL=95%	45589

*H*⁰

$$J = 0$$

Mass $m=125.7\pm0.4~{
m GeV}$

${\it H}^{0}$ Signal Strengths in Different Channels

Combined Final States =
$$1.17 \pm 0.17$$
 (S = 1.2) $WW^* = 0.87^{+0.24}_{-0.22}$ $ZZ^* = 1.11^{+0.34}_{-0.28}$ (S = 1.3) $\gamma \gamma = 1.58^{+0.27}_{-0.23}$ $b\overline{b} = 1.1 \pm 0.5$ $\tau^+ \tau^- = 0.4 \pm 0.6$ $Z\gamma < 9.5$, CL = 95%

Neutral Higgs Bosons, Searches for

Searches for a Higgs Boson with Standard Model Couplings

Mass m > 122 and none 128–710 GeV, CL = 95%

The limits for H_1^0 and A^0 in supersymmetric models refer to the m_h^{max} benchmark scenario for the supersymmetric parameters.

H_1^0 in Supersymmetric Models $(m_{H_1^0} < m_{H_2^0})$

Mass m > 92.8 GeV, CL = 95%

A⁰ Pseudoscalar Higgs Boson in Supersymmetric Models [n]

Mass m > 93.4 GeV, CL = 95% $\tan \beta > 0.4$

Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$), Searches for

 H^{\pm} Mass m > 80 GeV, CL = 95%

New Heavy Bosons (W', Z', leptoquarks, etc.), Searches for

Additional W Bosons

W' with standard couplings

Mass $m > 2.900 \times 10^3$ GeV, CL = 95% (pp direct search)

 W_R (Right-handed W Boson)

Mass m > 715 GeV, CL = 90% (electroweak fit)

Additional Z Bosons

 Z'_{SM} with standard couplings

Mass $m > 2.590 \times 10^3$ GeV, CL = 95% (pp direct search)

Mass $m>1.500\times 10^3$ GeV, CL=95% (electroweak fit)

 Z_{LR} of $SU(2)_L \times SU(2)_R \times U(1)$ (with $g_L = g_R$)

Mass m > 630 GeV, $CL = 95\% \quad (p\overline{p} \text{ direct search})$

Mass m > 1162 GeV, CL = 95% (electroweak fit)

 Z_{χ} of SO(10) ightarrow SU(5)imesU(1) $_{\chi}$ (with $g_{\chi}{=}e/{\cos} heta_W$)

Mass $m > 1.970 \times 10^3$ GeV, CL = 95% (pp direct search)

Mass $m > 1.141 \times 10^3$ GeV, CL = 95% (electroweak fit)

 Z_{ψ} of $E_6 \rightarrow {\sf SO}(10){ imes}{\sf U}(1)_{\psi}$ (with $g_{\psi}{=}e/{\sf cos}{ heta}_W$)

Mass $m > 2.260 \times 10^3$ GeV, CL = 95% (pp direct search)

Mass
$$m>476$$
 GeV, CL = 95% (electroweak fit) Z_{η} of $E_{6} \rightarrow SU(3)\times SU(2)\times U(1)\times U(1)_{\eta}$ (with $g_{\eta}=e/\cos\theta_{W}$) Mass $m>1.870\times 10^{3}$ GeV, CL = 95% (pp direct search) Mass $m>619$ GeV, CL = 95% (electroweak fit)

Scalar Leptoquarks

Mass m>830 GeV, CL = 95% (1st generation, pair prod.) Mass m>304 GeV, CL = 95% (1st gener., single prod.) Mass m>840 GeV, CL = 95% (2nd gener., pair prod.) Mass m>73 GeV, CL = 95% (2nd gener., single prod.) Mass m>525 GeV, CL = 95% (3rd gener., pair prod.) (See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)

Diquarks

Mass
$$m > 3.750 \times 10^3$$
 GeV, CL = 95%

Axigluon

Mass
$$m > 3.360 \times 10^3 \text{ GeV}$$
, $CL = 95\%$

Axions (A^0) and Other Very Light Bosons, Searches for

The standard Peccei-Quinn axion is ruled out. Variants with reduced couplings or much smaller masses are constrained by various data. The Particle Listings in the full *Review* contain a Note discussing axion searches.

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.
- [d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [e] This partial width takes into account Z decays into $\nu \overline{\nu}$ and any other possible undetected modes.
- [f] This ratio has not been corrected for the τ mass.
- [g] Here $A \equiv 2g_V g_A / (g_V^2 + g_A^2)$.
- [h] Here ℓ indicates e or μ .
- [i] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [j] This value is updated using the product of (i) the $Z \to b \, \overline{b}$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Z-decays provided by the Heavy Flavor Averaging Group (HFAG, http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2009/#FRACZ).
- [k] See the Z Particle Listings for the γ energy range used in this measurement.
- [/] For $m_{\gamma\gamma}=(60\pm5)~{
 m GeV}.$
- [n] The limits assume no invisible decays.