13-1

13–2

Historical Supernovae

Supernovae (term coined by Baade & Zwicky, 1934) increase in magnitude by 20 mag

The guest star of AD 393, Wang, Yu & Chen (1997, A&A 318, L59)

Supernovae

universität innsbruk

Historical Supernovae

Tycho Brahe's Supernova 1572

Johannes Kepler's Supernova 1604

Supernovae

13-3

13-4

Galactic supernovae

Year of	constellation	magnitude	visibility
appearance			months
185	Centaurus	-8	6?
386	Sagitarius	+1.5	
393	Scorpius	0	
1006	Lupus	-7.5	24
1054	Taurus	-6	24
1181	Cassiopeia	0	6
1572	Cassiopeia	-6	16
1604	Ophiuchus	-3	12
1667	Cassiopeia	obscured	-
∼1850	G1.9+0.3	obscured	_

Ernst Hartwig 20.08.1885: discovery of S And

Type II SN2001cm in NGC5965 (2.56 m NOT, Håkon Dahle; NORDITA)

SN1994d (HST WFPC)

Supernovae 7

13-12

(Filippenko et al., 1997, Fig. 1); t: time after maximum light; τ : time after explosion; P Cyg profiles give $v \sim 10000 \, \mathrm{km \, s^{-1}}$

Rough classification (Minkowski, 1941):

Type I: no hydrogen in spectra: subtypes la, lb, lc

Type II: hydrogen present, subtypes II-L, II-P

Note: pre 1985 subtypes la, Ib had different definition than today \ightharpoonup beware when reading older texts.

Successive stages of

1. H burning, ash: He

2. He burning, ashes:

C, O, Ne, Mg

Ne, Na, Mg

3. C burning, ashes:

nuclear burning in a

massive star:

13-11

Supernova Statistics

Clue on origin from supernova statistics:

- SNe II, Ib, Ic: never seen in elliptical galaxies, which are void of gas and have no new star formation; generally associated with spiral arms and H II regions in spiral galaxies, i.e., with star forming regions
- \implies progenitor of SNe II, lb, lc: massive stars (\gtrsim 8 M_{\odot})
- ⇒ "core collapse supernova"
- SNe la: all types of galaxies, coming from both young and old stellar populations.
- ⇒ stellar progenitors of SNe Ia can not be massive stars, because such stars do no longer exist in old stellar populations.

common model: accreting carbon-oxygen white dwarfs undergoing thermonuclear runaway

Supernovae

Core Collapse Supernovae

Standard core-collapse supernova model:

t=0 s: Collapse of Fe core of star with main sequence mass $>10\,M_{\odot}$, triggered by electron capture and photodisintegration of Fe ($T \sim 10^{10} \, \text{K}, \rho \sim$ $10^{10} \,\mathrm{g}\,\mathrm{cm}^{-3}$).

rebound: outer material rebounds off core, looses velocity because of photodisintegration and neutrino loss

- t=0.1 s: proto-neutron star formed with $R\sim 30$ km, $M=1.4\,M_{\odot}$, standing shock ~150 km above neutron star
- $t=0.1\,\mathrm{s}$ until $t=0.2\,\mathrm{s}$: start to radiate $\sim 10^{53}\,\mathrm{erg}\,\mathrm{s}^{-1}$ as neutrinos, triggers
- t = 0.2 s: SN explosion is triggered

Core Collapse Supernovae

4. Ne burning, ashes: O, Mg ...

5. O burning, ashes: Si, P, S, ...

6. Si burning, ashes: Fe, Ni

Final state: "onion-shell"

10 11 Supernovae Supernovae

F.K. Thielemann

(Cowan & Thielemann, 2004, Physics Today, 46; after P. Möller)

SN1987a

SN1987A in the Large Magellanic Cloud, 1987 February 23

- distance well known = 50 kpc
- visible to the naked eye (V_{max} = 4.5 mag), first after 300 yrs
- for the first time it was possible to identify the progenitor star
- progenitor Sanduleak -69 202 = massive star, i.e., blue supergiant
- supports core collapse model
- light curve has been measured over 25 yrs, presently V = 21 mag
- spectral changes have been monitored over many years

Supernovae: Evolution 3 Supernovae: Evolution

13-19

SN1987a

13-21

 Kamiokande Baksan energy (MeV) 20

Neutrinos detected as predicted by core collapse model

Cern Courier

Supernovae: Evolution

PRC99-04 • Space Telescope Science Institute • Hubble Heritage Team (AURA/STScI/NASA)

Additional features:

The mysterious rings

- central ring, light year across due to impact of a shock wave on circumstellar material, ejected from progenitor star; started to glow after more than 15 years.
- outer rings, possibly due to ionization of material illuminated by SN light. Material possibly from bipolar outflow during blue supergiant phase (fast blue SG wind colliding with slower RG wind); material ejected \sim 20000 years before explosion.

13-24

SN1987a

Late time light curve due to radioactive decay of Cobalt.

- Day 125-1100: dominated by decay of ⁵⁶Co
- ullet After \sim 3 years: radioactive decays of long-lived ⁵⁷Co and later of ⁴⁴Ti start to heat the system
- Today: Light curve almost flat and \sim 10⁻⁷ fainter than at maximum! Ring still brightening!

SN 1987A has made the transition to a young Supernova Remnant!

McCray 2007, Fig. 6

Supernovae: Evolution

G1.9+0.3: Youngest Galactic SN remnant. While known since long time, it was only in 2008 that the fast expansion was noted \Longrightarrow age: 140 \pm 30 years Due to strong extinction by dust in MW, explosion was not observed.

5000-10000 year old IC 1340/Veil Nebula/Cygnus Loop (©Loke Kun Tan)

Older supernova remnants: "wispy structure" due to interaction with interstellar medium, radiation (line emission) mainly caused by heating due to shocks.

(ESO VLT/FORS 2)

Crab nebula: young remnant of SN of 1054, observed light due to synchrotron radiation (radiation emitted by electrons accelerated in magnetic field)

13-28

Galactic circuit of matter

- stars and planets form from gas & dust (interstellar medium ISM)
- stars return material to the ISM mostly during their late phases of evolution
- low mass stars loose mass through winds and envelope ejection
- high mass stars loose mass through winds and explosions
- binary stars loose mass through common envelope ejection and explosions
- end stages extract material from the circuit
- circuit stops when supply of gas & dust used up

The Galactic circuit of matter

13–29

Chemical evolution

- Hydrogen and helium formed in the Big Bang (see later)
- first generation of stars contain hydrogen and helium only
- stars produce heavier chemical elemnts in their interior
- newly produced elements are dredged-up to the surface in the course of stellar evolution
- stellar winds inject heavier elements to the ISM
- stellar explosions inject heavier elements to the ISM
- next generation of stars is enriched in heavier elements

The Galactic circuit of matter