Experiment	Iron in carbon steel by potentiometry		
Problem definition	Mechanical properties of steel depend on its composition. Hence, it is important to analyze the amount of Iron in steel for industrial applications.		
Methodology	Potentiometric method using KMnO ₄ (oxidizing agent) to oxidize Fe(II) in steel to Fe(III) facilitates the estimation of Iron in steel.		
Solution	Estimation of iron (%) in different steel samples.		
Student learning outcomes	Students will learn to a) perform potentiometric method b) analyze the composition of iron in different grades of steel		

Principle:

Potassium permanganate (KMnO₄) oxidizes ferrous ion to ferric ion in the presence of acid as per the reaction:

$$5Fe^{+2} \rightarrow 5Fe^{+3} + 5e^{-}$$
......(1)
 $MnO_4^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_2O$ (2)
Overall, $5Fe^{+2} + MnO_4^{-} + 8H^{+} \rightarrow 5Fe^{+3} + Mn^{2+} + 4H_2O$

Electrode potential (oxidation potential) in the titration depends upon the concentration of Fe²⁺, Fe³⁺ and H⁺ ions. To avoid the effect of the change in H⁺ ion concentration, the titration is usually carried out in large excess of acid. Oxidation potential of this redox system is given by

$$E = E_0 + \frac{RT}{nF} \ln(\frac{Fe^{3+}}{Fe^{2+}})$$

Connecting the redox electrode (Platinum) with a saturated calomel electrode (SCE) completes the necessary cell as indicated below:

When KMnO₄ is added, Fe²⁺ is oxidized to Fe³⁺ whose concentration increases with progressive addition of KMnO₄. The observed EMF gradually increases. At the end point, there will be a sharp increase due to the sudden removal of all Fe²⁺ ions. Plot-1: EMF measured (E) vs Volume of KMnO₄ added and Plot-2: $\Delta E/\Delta V$ vs Average volume of KMnO₄ was drawn. End point of the titration is measured from the Plot-2 graph.

Requirements:

Reagents and solutions: 100 mL of KMnO₄ (0.05 N) solution, 100 mL of steel solution, 2 N H₂SO₄

Apparatus: Calomel electrode, Platinum electrode, Potentiometer, Volumetric flasks, Burette, Pipette, Beakers.

Procedure:

Calibration of Potentiometer: Switch on the potentiometer and connect the standard cell terminals to either channel A (move channel switch to position A) or channel B (move the channel switch to position B). The meter should read 1.018 V. In case it is not 1.018 V, adjust the std. knob to obtain reference value.

Estimation of Fe(II) in steel: Transfer the given unknown steel [containing Fe(II)] solution into a clean 100 mL standard flask and make the solution up to the mark with distilled water and mix well. Pipette out 20 mL made up steel sample solution into a clean 100 mL beaker and add one test tube of dil. H₂SO₄ (2 N). Place Pt electrode in the beaker and connect to the +ve terminal of the potentiometer. In another beaker, place 50 mL of saturated KCl solution and dip the SCE in the solution and connect to the -ve terminal of the potentiometer. Place a salt bridge to complete the cell. Read the EMF of the cell and note down the value. Add 1 mL of KMnO₄ solution from the burette to the beaker containing steel sample solution. Stir the solution carefully and measure the EMF. Continue the addition of KMnO₄ solution and record the EMF for every 1 mL addition as per procedure till the potential shows a tendency to increase rapidly. After the abrupt change in cell EMF is observed, continue the titration to take 5 more reading by adding 1 mL burette solution every time. Plot EMF (ordinate) vs. volume of KMnO₄ added (abscissa) to get S-shaped curve which indicate the volume range of the end point.

To find out the volume of end point more precisely, carry out the 2^{nd} titration in similar way but by adding 1 mL aliquots of KMnO₄ initially and then 0.1 mL aliquots between the two volumes where the end point is detected. Continue the titration beyond the end point as done above. The exact end point is determined by differential method i.e. by plotting $\Delta E/\Delta V$ vs average volume of KMnO₄ added. Calculate the normality strength of the Fe(II) in the given solution.

OBSERVATION AND CALCULATIONS

Potentiometric Titration-I:

Burette: KMnO4 solution (0.05 N)

Beaker: 20 mL of steel solution containing Fe(II) + 20 mL (one test tube) of dil. H₂SO₄

Electrodes: Indicator electrode (Pt) to red terminal and SCE to black terminal

S. No.	Volume of KMnO ₄ (mL)	EMF (volts)	S. No.	Volume of KMnO ₄ (mL)	EMF (volts)
1	0	0.349	11	10	0.922
2	1	0.405	12	11	0.981
3	2	0.424	13		
4	3	0.439	14		
5	4	0.465	15		
6	5	0-418	16		
7	6	0.515	17		
8	٦.	0.928	18		
9	8.	0.987	19		
10	9	0.984	20		

Fig. 3: Plot of EMF vs Volume of KMnO₄ added (mL)

Potentiometric Titration-II:

Burette: KMnO₄ solution (0.05 N)

Beaker: 20 mL of steel solution containing Fe(II) + 20 mL (one test tube) of dil. H₂SO₄

Electrodes: Indicator electrode (Pt) to red terminal and SCE to black terminal

SI. No.	Vol. of KMnO ₄ (mL)	EMF (Volt)	ΔE (Volt)	ΔV (mL)	ΔΕ/ΔV (Volt/mL)	Average Volume (mL)
1	3.6	0.423			- 20	
2	3.7	0,424				
3	3.8	0.425				
4	3.7	0.436				
5	4.0	0.441				
6	4.1	0.447				
7	4.2	0.450				
8	4.3	0 441				
9	4.5	0:452				
10	A+7	0.531				
11	4.8	0.821				
12	SAIN	0.1502				
13	5.0	0.453				
14	5.1	0.424				
15	512	0:422	ž.			

Fig. 4: Plot of $\Delta E/\Delta V$ vs Average volume of KMnO₄ added.

C	lcul	-	Law	
L.B	ıcu	at	юп	ŀ

 $(N \times V)$ of steel sample solution = $(N \times V)$ of $KMnO_4$

N of steel sam		lume of KMnO ₄ from Plot-2
	20 mL of	steel sample
	=N	
Amount of Fe present in 1L of sample Amount of Fe present in given sample		teel sample x Atomic weight of Fe (55.85) teel sample x 55.85 x 100
	e e	1000
	-	grams in 100 mL
Result: The amount of Iron prese	ent in given steel sample is	found to be = grams.

Evaluation of Result:

Sample number	Experimental value	Actual Value	Percentage of error	Marks awarded