

Introduction

Recommendation Systems with TensorFlow on Google Cloud Platform

Advanced ML with TensorFlow on GCP

End-to-End Lab on Structured Data ML

Production ML Systems

Image Classification Models

Sequence Models

Recommendation Systems

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

Recommendation engines identify things that a user may like based on what they've watched in the past

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

Recommendation systems are not always about what you would think of as "products"

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

Content-based filtering uses item features to recommend new items that are similar to what the user has liked in the past

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

This matrix ties an interaction between a user and a video

The factorization splits this matrix into row factors and column factors that are essentially user and item embeddings

To recommend movies to users, we recommend the movies that we predict they will rate the highest

	0.1	
	0	
2	-1	
1	1	

0.9	-1	1	1	-0.9
-0.2	-0.8	-1	0.9	1

$$0.2*1 + (-1)*0.9 = -0.7$$

The WALS Estimator in TensorFlow does not need any labels; it just needs the ratings matrix organized into rows and columns


```
def training_input_fn():
features = {
    INPUT_ROWS: tf.SparseTensor(...)
    INPUT_COLS: tf.SparseTensor(...)
}
return features, None
```

Shouldn't feeding the rows be enough? Why also columns?

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

Real-world recommendation systems are a hybrid of three broad theoretical approaches

YouTube video recommendations

Introduction

Recommendation Systems

Content-Based Recommendation Systems

Collaborative Filtering

Neural Networks for Recommendation Systems

ML models account for a small percentage

Machine Data Data Resource Collection Verification Management Serving Feature **Analysis Tools** ML Code Infrastructure Extraction Process Configuration Management Monitoring Tools

Architecture of an end-to-end system for recommendations

Completed recommendation model

kurier.at

cloud.google.com

