Machine-Level Programming I

Lecture 4

Yeongpil Cho

Hanyang University

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Intel x86 Evolution: Milestones

Name	Date	Transistors	MHz
8086	1978	29K	5-10
First 16-bit I	ntel processor	r. Basis for IBM PC & DO	OS
1MB addres	s space		
386	1985	275K	16-33
First 32 bit I	ntel processor	, referred to as IA32	
Added "flat	addressing", c	apable of running Unix	
■ Pentium 4E	2004	125M	2800-3800
First 64-bit I	ntel x86 proce	essor, referred to as x86	5-64
■ Core 2	2006	291M	1060-3500
First multi-c	ore Intel proce	essor	
■ Core i7	2008	731M	1700-3900
■ Four cores			

Intel x86 Processors, cont.

■ Machine Evolution

386	1985	0.3M
Pentium	1993	3.1M
Pentium/MMX	1997	4.5M
PentiumPro	1995	6.5M
Pentium III	1999	8.2M
Pentium 4	2001	42M
Core 2 Duo	2006	291M
Core i7	2008	731M

Added Features

- Instructions to support multimedia operations
- Instructions to enable more efficient conditional operations
- Instructions to strengthen security
- Transition from 32 bits to 64 bits
- More cores

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

ISA (Instruction Set Architecture)

- Also called Architecture or Computer Architecture
- An abstract model of a computer
- ISA defines
 - data type, registers, memory model, I/O model, instructions, and so on
- Example ISAs:
 - Intel: x86, IA32, Itanium, x86-64
 - ARM: Used in almost all mobile phones
- A set of Instructions forms code
 - Machine Code: The byte-level programs that a processor executes
 - Assembly Code: A text representation of machine code

Assembly/Machine Code View

Programmer-Visible State

- PC: Program counter
 - Address of next instruction
 - Called "IP (Instruction Pointer)" (x86)
- Register file
 - Heavily used program data
- Condition codes
 - Store status information about most recent arithmetic or logical operation
 - Used for conditional branching

Memory

- Byte addressable array
- Code and user data
- Stack to support procedures

Turning C into Object Code

- Code in files p1.c p2.c
- Compile with command: gcc -Og p1.c p2.c -o p
 - Use basic optimizations (-Og)
 - Added since GCC 4.8 to compile while preserving the form of the source code (for debugging)

Compiling Into Assembly

C Code (sum.c)

Generated x86-64 Assembly

```
sumstore:
   pushq %rbx
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx
   ret
```

 Different assembly code will be produced by the compiler's version and configuration

Assembly Characteristics: Data Types

- "Integer" data of 1, 2, 4, or 8 bytes
 - Data values
 - Addresses (untyped pointers)
- **■** Floating point data of 4, 8, or 10 bytes
- Code: Byte sequences encoding series of instructions
- No aggregate types such as arrays or structures
 - These abstract data types are just represented as contiguously allocated bytes in memory

Assembly Characteristics: Operations

Perform arithmetic function on register or memory data

- Transfer data between memory and register
 - Load data from memory into register
 - Store register data into memory

Transfer control

- Unconditional jumps to/from procedures
- Conditional branches

Object Code

Code for sumstore

0x0400595: 0x53 0x48 0x89 0xd3 0xe8 0xf2 0xff 0xff

0x48

0x5b

0xc3

- Total of 14 bytes
- 0x89 Each instruction 0x03 1, 3, or 5 bytes
 - Starts at address 0x0400595

Assembler

- Translates .s into .o
- Binary encoding of each instruction
- Nearly-complete image of executable code
- Missing linkages between code in different files

Linker

- Resolves references between files
- Combines with static run-time libraries (.a or .lib)
 - E.g., code for malloc, printf
- Some libraries (.so or .dll) are dynamically linked
 - Linking occurs when program begins execution

Overview of from source code to process

Static Linking

Dynamic Linking

Machine Instruction Example

0x40059e: 48 89 03

C Code

Store value t where designated by dest

Assembly

- Move 8-byte value to memory
 - Quad words in x86-64 parlance
- Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

Object Code

- 3-byte instruction
- Stored at address 0x40059e

Assembly Code Basic

- x86-64 has instructions in 1~15 bytes length
 - Complex Instruction Set Computer (CISC)
- ARM64 has instructions in 4 bytes length
 - Reduced Instruction Set Computer (RISC)
- CISC vs RISC
 - Better performance of CISC ?
 - Better power efficiency of RISC ?
 - Due to the feasibility in pipelining, RISC is predominant than CISC
 - x86-64 internally translates CISC instructions into microcode based on RISC

Disassembling Object Code

Disassembled

```
0000000000400595 <sumstore>:
 400595:
          53
                          push
                                 %rbx
 400596: 48 89 d3
                                 %rdx,%rbx
                          mov
 400599: e8 f2 ff ff ff callq 400590 <plus>
 40059e: 48 89 03
                                 %rax, (%rbx)
                          mov
 4005a1: 5b
                                 %rbx
                          pop
  4005a2: c3
                           retq
```

Disassembler

```
objdump -d sum
```

- Useful tool for examining object code
- Analyzes bit pattern of series of instructions
- Produces approximate rendition of assembly code
- Can be run on either a . out (complete executable) or . o file

Alternate Disassembly

Object

Disassembled

```
0 \times 0400595:
    0x53
    0 \times 48
    0x89
    0xd3
    0xe8
    0xf2
    0xff
    0xff
    0xff
    0x48
    0x89
    0x03
    0x5b
    0xc3
```

Within gdb Debugger

gdb sum
disassemble sumstore

Disassemble procedure

x/14xb sumstore

Examine the 14 bytes starting at sumstore

What Can be Disassembled?

```
% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386
No symbols in "WINWORD.EXE".
Disassembly of section .text:
30001000 <.text>:
30001000: 55
                        push
                               %ebp
30001001: 8b ec
                               %esp,%ebp
                        mov
30001003: 6a ff
                      push
                               $0xffffffff
30001005: 68 90 10 00 30 push
                               $0x30001090
3000100a: 68 91 dc 4c 30 push
                               $0x304cdc91
```

- Anything that can be interpreted as executable code
 - Disassembler examines bytes and reconstructs assembly source
- Disassembling on a stripped binary is unsolved problem
 - it is hard to distinguish code and data section exactly.

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

x86-64 Integer Registers

%rax	%eax	% r8	%r8d
%rbx	%ebx	8 r9	%r9d
%rcx	%ecx	%r10	%r10d
%rdx	%edx	%r11	%r11d
%rsi	%esi	%r12	%r12d
%rdi	%edi	%r13	%r13d
%rsp	%esp	%r14	%r14d
%rbp	%ebp	%r15	%r15d

Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

Some History: IA32 Registers

Origin (mostly obsolete)

accumulate

counter

data

base

source index

destination index

stack pointer base pointer

AT&T & Intel Assembly Syntax

Prefix & Suffix

- AT&T adds prefix '%' to registers, prefix '\$' to immediate values, and suffix b/w/l/q to instructions.
 - b: 1B, w: 2B, l: 4B, q: 8B
- Intel does not add prefixes and suffixes
- ex)

```
movq $1, %rax int $0x80 mov rax, 1 int 80h
```

Operands

- AT&T
 - source first, destination later
 - memory access is represented as ()
- Intel
 - destination first, source later
 - memory access is represented as []
- ex)

```
mov (%rbx), %rax mov 3(%rbx), %rax mov rax, [rbx] mov rax, [rbx+3]
```

Moving Data

- Moving Data
 movq Source, Dest:
- Operand Types
 - Immediate: Constant integer data
 - Example: \$0x400, \$-533
 - Like C constant, but prefixed with `\$'
 - Encoded with 1, 2, or 4 bytes
 - **Register:** One of 16 integer registers
 - Example: %rax, %r13
 - But %rsp reserved for special use
 - Others have special uses for particular instructions
 - Memory: 8 consecutive bytes of memory at address given by register
 - Simplest example: (%rax)
 - Various other "address modes"

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%rN

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address
 - Pointer dereferencing in C

```
movq (%rcx),%rax
```

- Displacement D(R) Mem[Reg[R]+D]
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

```
movq 8(%rbp),%rdx
```

void swap (long *xp, long *yp) { long t0 = *xp; long t1 = *yp; *xp = t1; *yp = t0;

Memory

Register	Value
%rdi	хр
%rsi	ур
%rax	t0
%rdx	t1

Registers

%rdi	0x120
%rsi	0x100
%rax	
%rdx	

Memory

swap:

```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```


swap:

```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```



```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
```

movq %rax, (%rsi) # *yp = t0

ret

swap:

Complete Memory Addressing Modes

Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

- D: Constant "displacement" 1, 2, or 4 bytes
- Rb: Base register: Any of 16 integer registers
- Ri: Index register: Any, except for %rsp
- S: Scale: 1, 2, 4, or 8 (why these numbers?)

Special Cases		C example
(Rb,Ri)	Mem[Reg[Rb]+Reg[Ri]]	a[i]
D(Rb,Ri)	Mem[Reg[Rb]+Reg[Ri]+D]	a[i+1]
(Rb,Ri,S)	Mem[Reg[Rb]+S*Reg[Ri]]	a[2*i]

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

Expression	Address Computation	Address
0x8 (%rdx)	0xf000 + 0x8	0xf008
(%rdx,%rcx)	0xf000 + 0x100	0xf100
(%rdx,%rcx,4)	0xf000 + 4*0x100	0xf400
0x80(,%rdx,2)	2*0xf000 + 0x80	0x1e080

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Address Computation Instruction

■ leaq Src, Dst

- Src is address mode expression
- Set Dst to address denoted by expression

Uses

- Computing addresses without a memory reference
 - E.g., translation of p = &x[i];
- Computing arithmetic expressions of the form x + k*y
 - k = 1, 2, 4, or 8

Example

```
long m12(long x)
{
   return x*12;
}
```

Converted to ASM by compiler:

```
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
salq $2, %rax # return t<<2</pre>
```

Some Arithmetic Operations

■ Two Operand Instructions:

Format	Computation		
addq	Src,Dest	Dest = Dest + Src	
subq	Src,Dest	Dest = Dest – Src	
imulq	Src,Dest	Dest = Dest * Src	
salq	Src,Dest	Dest = Dest << Src	Also called shiq
sarq	Src,Dest	Dest = Dest >> Src	Arithmetic
shrq	Src,Dest	Dest = Dest >> Src	Logical
xorq	Src,Dest	Dest = Dest ^ Src	
andq	Src,Dest	Dest = Dest & Src	
orq	Src,Dest	Dest = Dest Src	

Some Arithmetic Operations

One Operand Instructions

```
incq Dest Dest = Dest + 1

decq Dest Dest = Dest - 1

negq Dest Dest = -Dest

notq Dest Dest = \sim Dest
```

See the reference manual for more instructions

Intel® 64 and IA-32 Architectures Software Developer Manuals

Arithmetic Expression Example

```
long arith
(long x, long y, long z)
{
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}
```

```
arith:
  leaq (%rdi,%rsi), %rax
  addq %rdx, %rax
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx
  leaq 4(%rdi,%rdx), %rcx
  imulq %rcx, %rax
  ret
```

Interesting Instructions

- **leaq**: address computation
- **salq**: shift
- imulq: multiplication
 - But, only used once

Understanding Arithmetic Expression Example

```
long arith
(long x, long y, long z)
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
```

```
arith:
  leaq (%rdi,%rsi), %rax # t1
  addq %rdx, %rax # t2
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx # t4
  leaq 4(%rdi,%rdx), %rcx # t5
  imulq %rcx, %rax # rval
  ret
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z
%rax	t1, t2, rval
%rdx	t4
%rcx	t5

Processor State (x86-64, Partial)

- Information about currently executing program
 - Temporary data (%rax, ...)
 - Location of runtime stack (%rsp)
 - Location of current code control point (%rip, ...)
 - Status of recent tests(CF, ZF, SF, OF)

Current stack top

%rip

CF

ZF

SF

Registers 8r8 %rax %r9 %rbx %r10 %rcx %r11 %rdx %rsi %r12 %r13 %rdi 8r14 %rsp %r15 %rbp

Instruction pointer

Condition codes

Machine Programming I: Summary

History of Intel processors and architectures

Evolutionary design leads to many quirks and artifacts

C, assembly, machine code

- New forms of visible state: program counter, registers, ...
- Compiler must transform statements, expressions, procedures into low-level instruction sequences

Assembly Basics: Registers, operands, move

 The x86-64 move instructions cover wide range of data movement forms

Arithmetic

 C compiler will figure out different instruction combinations to carry out computation