Во всех задачах будет единое обозначение:

- $G_n = (V_n, E_n)$ элемент последовательности графов
- Индекс *п* отвечает за элемент последовательности
- $|V_n| = N_n$ число вершин в графе G_n , $D_n = \frac{|E_n|}{L_{max}}$ характеристика плотности графа G_n .
- $\mathbb{P}_n(d) = \frac{|\{v \in V_n : \deg v = d\}|}{N_n}$ распределение степеней вершин в графе G_n $\left(\sum\limits_{k=0}^{N_n-1} \mathbb{P}_n(k) = 1, \quad \mathbb{P}_n(d) \in [0,1] \ \, \forall d = \overline{0,N_n-1}\right).$
- Степени вершин подчиняются степенному закону (обозначим как $\mathbb{P}_n \in \mathcal{P}$), если $\exists \gamma > 0, \ c \equiv const: \ \mathbb{P}_n(d) \sim \frac{c}{d^{\gamma}}$

Задача 1. Графы без степенного закона

Условие: 1. Приведите пример последовательности плотных (неразреженных) графов, степени вершин которых не подчиняются степенному закону.

2. Приведите пример последовательности разреженных графов, степени вершин которых не подчиняются степенному закону

Примеры:

- 1. Графы для условия 1 должны удовлетворять условиям: $D_n \approx 1, \ \mathbb{P}_n \notin \mathcal{P}$.
 - а) Возьмём последовательность $\{G_n\} = \{K_n\}$, состоящую из *полных неориентирован*ных графов с числом вершин n (тогда $D_n = 1$). Каждый из графов имеет вырожденное распределение степеней вершин в точке $\deg v = N_n - 1$: $\mathbb{P}_n(N_n - 1) = 1$, где N_n – число вершин в полном графе G_n (т.е. $\mathbb{P}_n \notin \mathcal{P}$).
 - b) Аналогично, для ориентированных графов
- 2. Графы для условия 2 должны удовлетворять условиям: $D_n \ll 1, \ \mathbb{P}_n \notin \mathcal{P}$.
 - а) Возьмём последовательность $\{G_n\}$, состоящую из неориентированных графов с числом вершин n без рёбер, $D_n=0$ и $\mathbb{P}_n(0)=1$ (т.е. $\mathbb{P}_n\notin\mathcal{P}$).

Однако это сильно вырожденный случай, можно предложить ещё вариант: Возьмём последовательность $\{G_n\}$, состоящую из неориентированных графов с числом вершин n с выбранным случайно одним ребром (тогда $D_n \xrightarrow[n \to +\infty]{} 0$). Каждый из графов имеет распределение степеней вершин $\mathbb{P}_n(0) = \frac{n-2}{n}$, $\mathbb{P}_n(1) = \frac{2}{n}$ (т.е. $\mathbb{P}_n \notin \mathcal{P}$, нет требуемой константы).

b) Аналогично, для ориентированных графов (только в $\mathbb{P}_n(1) = \frac{1}{n})$

Задача 2. Неор. графы со степенным законом

Условие: Приведите пример последовательности неориентированных графов (кратные рёбра и петли разрешаются), степени вершин которых подчиняются какому-нибудь степенному закону. Обязательно доказательство степенного закона

Допустим, мы хотим распределение, близкое к $\frac{c}{d^2}$. Прологарифмируем: $\log(\mathbb{P}_n(d)) = \log(c) - 2\log(d)$

Задача 3. Неуязвимые к атакам на хабы связные графы

Условие: Приведите пример последовательности связных графов, которые не уязвимы к атакам на хабы.

Пример: Последовательность полных графов на n вершинах не уязвима к атакам на хабы, т.к. при удалении $\lfloor c |V_n| \rfloor$, $c \in (0,1)$ упорядоченных по степеням вершин (одинаковым степеням) останутся вершины, соединённые со всеми.

Задача 4. О локальном кластерном коэффициенте

Условие: Рассмотрим при растущих значениях n, кратных четырём, последовательность графов следующего вида:

Покажите, что при $n \to +\infty$ средний локальный кластерный коэффициент такого графа можно ограничить снизу положительной константой, а глобальный кластерный коэффициент стремится к 0.

Рассуждения:

Для начала, рассмотрим значения локального кластерного коэффициента C_v для вершин в приведённом графе.

Для вершин в левой группе $C_{v_{left}} = \frac{1}{1} = 1$, поскольку они соединены только с центральной вершиной группы. Центральная вершина - $C_{v_{center}} = \frac{0}{n/2 \cdot (n/2-1)/2} = 0$, поскольку имеет n/2 соседей, которые не соединены между собой ни одним ребром.

Для вершин в правой группе: будем нумеровать относительно центральной вершины по часовой стрелке с 1. Тогда для вершин на нечётных позициях $C_{v_{right_odd}} = \frac{1}{2/2} = 1$, т.к. имеют двух соседей, которые соединены возможным ребром.

На чётных позициях $C_{v_{right_even}} = \frac{2}{4\cdot 3/2} = \frac{1}{3}$, т.к. они имеют 4 соседа, среди которых есть только два ребра.

Центральная правая вершина имеет $C_{v_{right_center}} = \frac{2}{5\cdot 4/2} = \frac{1}{5}$, т.к. имеет 5 соседей, но только два ребра среди них.

Посчитаем итоговый $cpe \partial nu$ й локальный к.к. $C(G_n) = \frac{1}{|V_n|} \sum_{v \in V_n} C_v$. В левой группе – n/2-1 вершина с $C_{v_{left}}=1$ и центральная с $C_{v_{center}}=0$. В правой: n/4 на нечётных позициях с $C_{v_{right_odd}}=1$, n/4-1 на чётных позициях с $C_{v_{right_even}}=\frac{1}{3}$ и центральная с $C_{v_{right_center}}=\frac{1}{5}$.

Итого

$$C(G_n) = \frac{1}{n} \left[\left(\frac{n}{2} - 1 \right) \cdot 1 + 0 + \frac{n}{4} \cdot 1 + \left(\frac{n}{4} - 1 \right) \cdot \frac{1}{3} + \frac{1}{5} \right] =$$

$$= \left(\frac{1}{2} - \frac{1}{n} \right) + \frac{1}{4} + \left(\frac{1}{4} - \frac{1}{n} \right) \cdot \frac{1}{3} + \frac{1}{5n} =$$

$$= \frac{1}{2} + \frac{1}{4} + \frac{1}{12} - \frac{1}{n} - \frac{1}{3n} + \frac{1}{5n} = \frac{10}{12} - \frac{1}{n} \cdot \frac{17}{15} = \frac{5}{6} - \frac{17}{15} \cdot \frac{1}{n} \xrightarrow[n \to +\infty]{} \frac{5}{6}$$

$$(1)$$

Аналогично, глобальный к.к. $T(G_n) = \frac{\sum\limits_{v \in V_n} C_{n_v}^2 C_v}{\sum\limits_{v \in V_n} C_{n_v}^2}$

$$T(G_n) = \frac{1 \cdot \left(\frac{n}{2} - 1\right) \cdot 1 + 0 + 1 \cdot \frac{n}{4} \cdot 1 + 6 \cdot \left(\frac{n}{4} - 1\right) \cdot \frac{1}{3} + 10 \cdot \frac{1}{5}}{1 \cdot \left(\frac{n}{2} - 1\right) + 0 + 1 \cdot \frac{n}{4} + 6 \cdot \left(\frac{n}{4} - 1\right) + 10} = \frac{\left(\frac{n}{2} - 1\right) + \frac{n}{4} + 2 \cdot \left(\frac{n}{4} - 1\right) + 2}{\left(\frac{n}{2} - 1\right) + \frac{n}{4} + 6 \cdot \left(\frac{n}{4} - 1\right) + 10} = \frac{(2n - 4) + n + 2 \cdot (n - 4) + 8}{(2n - 4) + n + 6 \cdot (n - 4) + 40} = \frac{2n - 4 + n + 2n - 8 + 8}{2n - 4 + n + 6n - 24 + 40} = \frac{5n - 4}{9n + 12} \xrightarrow[n \to +\infty]{5}$$

$$(2)$$

Что-то не получилось с прямой формулой. Воспользуемся формулой $T(G_n)=\frac{3\#(K_3,G_n)}{\#(P_2,G_n)}$. Количество пар равно (подсчёт слева направо) $\frac{n}{2}-1+1+\frac{n}{2}-1+\frac{n}{4}$ (последние два слагаемых - число рёбер в цепи по кругу и число рёбер через 1 элемент). Количество треугольников

равно числу рёбер, идущих через 1 вершину, $\frac{n}{4}$. Тогда $T(G_n) = \frac{3\frac{n}{4}}{\frac{n}{2}-1+1+\frac{n}{2}-1+\frac{n}{4}} = \frac{3n}{5n-4}$. Снова неудача.

Задача 5. Клика 6 в модели Эрдёша-Реньи

Условие: Докажите, что при вероятности ребра p такой, что $pn^{\frac{2}{5}} \xrightarrow[n \to +\infty]{} 0$ в случайном графе G(n,p) в модели Эрдёша-Реньи асимптотически почти наверное нет клик на 6 вершинах, а при вероятности ребра такой, что $pn^{\frac{2}{5}} \xrightarrow[n \to +\infty]{} +\infty$ в G(n,p) асимптотически почти наверное есть клика на 6 вершинах.

Доказательство: Введём случайную величину $\xi_6 = \{$ число клик на шести вершинах в графе $\}$.

Начнём с доказательства первого факта. Для этого оценим сверху вероятность того, что случайная величина ξ_6 примет значение не меньше 1. Оценку сверху даёт выбор подмножеств на 6 вершинах из n и проведение с вероятностью p рёбер до клики на них. Фактически, по аналогии с треугольниками, мы ограничили сверху мат. ожиданием случайной величины ξ_6 .

$$\mathbb{P}\{\xi_6 \ge 1\} \le \mathbb{E}[\xi_6] \le C_n^6 p^{6\cdot 5/2} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-5)}{720} p^{15} = O(n^6 p^{15}) = O((n^{\frac{2}{5}} p)^{15})$$
(3)

Таким образом, при соблюдении условия $pn^{\frac{2}{5}} \xrightarrow[n \to +\infty]{} 0$ получаем устремление к 0 вероятности появления клики на 6 вершинах.

Для доказательства *второго факта* ограничим данную вероятность с другой стороны, воспользовавшись неравенством Чебышёва.

$$\mathbb{P}\{\xi_6 \ge 1\} = 1 - \mathbb{P}\{\xi_6 \le 0\} = 1 - \mathbb{P}\{-\xi_6 \ge 0\} = 1 - \mathbb{P}\{\mathbb{E}[\xi_6] - \xi_6 \ge \mathbb{E}[\xi_6]\} \ge 1 - \mathbb{P}\{|\mathbb{E}[\xi_6] - \xi_6| \ge \mathbb{E}[\xi_6]\} \ge 1 - \frac{\mathbb{D}[\xi_6]}{\mathbb{E}[\xi_6]^2}$$

Найдём $\mathbb{E}[\xi_6^2]$ для дисперсии $\mathbb{D}[\xi_6] = \mathbb{E}[\xi_6^2] - \mathbb{E}[\xi_6]^2$.

$$\mathbb{E}[\xi_6^2] = \mathbb{E}\left[\left(\sum_{j=1}^{C_n^6} [\pi/\text{м 6-ти вершин с индексом j образует клику}]\right)^2\right] =$$
 $= \mathbb{E}[\xi_6] + \sum_{i=1}^{C_n^6} \sum_{j \neq i} \mathbb{E}[\pi/\text{м i образует } K_6][\pi/\text{м j образует } K_6] =$

{Перебор по пересечениям двух множеств 6 точек, как на лекции, даёт схожее выражение} =

$$= C_n^6 p^{15} + \sum_{j=1}^5 C_n^6 C_{n-6}^j (p^{C_n^6 - C_j^2})^2$$

То есть,

$$\frac{\mathbb{D}[\xi_6]}{\mathbb{E}[\xi_6]^2} = \frac{\mathbb{E}[\xi_6^2]}{\mathbb{E}[\xi_6]^2} - 1 = \frac{C_n^6 p^{15} + \sum_{j=1}^5 C_n^6 C_{n-6}^j (p^{C_n^6 - C_j^2})^2}{(C_n^6 p^{15})^2} - 1$$

Выражение в числителе по асимптотике при $pn^{\frac{2}{5}}\xrightarrow[n\to+\infty]{}+\infty$ схоже по поведению со знаменателем, поэтому

$$\frac{\mathbb{D}[\xi_6]}{\mathbb{E}[\xi_6]^2} \xrightarrow[n \to +\infty]{} 0 \Rightarrow \mathbb{P}\{\xi_6 \ge 1\} \sim 1$$

Задача 6. Цикл в компоненте связности в модели Эрдёша-Реньи

Условие: Докажите, что при $p=\frac{c}{n}$, где c<1, в случайном графе G(n,p) в модели Эрдёша-Реньи асимптотически почти наверное каждая компонента связности содержит не более одного цикла.