

Agenda

- Continuous Random Variables & Probability Distributions
 - Uniform Distribution
 - Exponential Distribuion
 - Normal Distribution
 - Other Distributions (Gamma, Beta etc)

SJSU SAN JOSÉ STATE UNIVERSITY

Variance of PMF's

• Order the following PMF's by size of standard deviation from biggest to smallest.

SISDA SISDA

What is a Random Variable?

A random variable is a numeric quantity whose value depends on the outcome of a random event.

- We normally use a capital letter, like X, to denote a random variable
- The values of a random variable are denoted with a lowercase letter, in this case x
 - e.g. P(X = x) denotes the probability of the (random variable) X having the value x.

Types of Random Variables

There are two types of random variables:

- Discrete random variables often take only integer values
- Continuous random variables take real (decimal) values

Feature	Continuous Random Variable	Discrete Random Variable
Possible Values	Infinite (uncountable)	Countable (finite or infinite)
Probability at a Single Value	0	Can be nonzero
Described by	Probability Density Function (PDF)	Probability Mass Function (PMF)
Example	Height, time, weight	Dice rolls, # of students in a class

7

Continuous Random Variables

- A continuous random variable can have any value within a given range.
- The <u>value</u> (not the probability) of a continuous random variable is given by its probability density function (PDF).

Probability Distributions of Continuous Random Variables

A probability distribution of a continuous random variable can have any value within a given range and describes the likelihood of a continuous random variable taking on a specific value.

- It's also known as the probability density function (PDF).
- Unlike PMF, the probability of a single point is always zero:

С

Probability Distributions of Continuous Random Variables

• This must satisfy two conditions:

$$f(x) \ge 0$$
 for all x (non-negative)

$$\int_{-\infty}^{\infty} f(x)dx = 1 \qquad \text{(total probability summed up to 1)}$$

Probability as the Area under the Curve

- If you graph a probability density function, the <u>probability</u> that the continuous random variable x has a value $a \le x \le b$ is the <u>area under the curve</u> in the interval of a to b.
- Example: a = 0.5 & b = 0.7

11

Example: Uniform Distribution

• The PDF of the Uniform Distribution $X \sim U(a, b)$ is given by:

$$f(x) = \frac{1}{b-a}, \qquad a \le x \le b$$

• This PDF shows that each value in [a, b] is equally likely.

Cumulative Distribution Function

The cumulative density function (CDF), denoted as F(x), gives the probability that a random variable X is less than or equal to a given value

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

- It's a continuous function with values between 0 and 1
- It accumulates the probability from $-\infty$ to x.
- The limits of F(x): $\lim_{x \to -\infty} F(x) = 0, \qquad \lim_{x \to \infty} F(x) = 1$
- The PDF can also be computed from F(x): $f(x) = \frac{d}{dx}F(x)$

13

Example: Uniform Distribution (cont)

• The PDF of the Uniform Distribution is given by:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

• It's a piecewise linear function increasing from 0 to 1.

Example

Which of the following are graphs of valid cumulative distribution functions?

ISON SISON S

15

Expected Value of a Continuous Random Variable

• If X is a continuous random variable with density curve f(x), the expected value the mean of X is defined as the integral:

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

• This is also known as a weighted average.

SISUN SISUN

Variance of a Continuous Random Variable

• The variance of a continuous random variable *X* is defined as the integral:

$$\sigma_X^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx = E(X^2) - (E(X))^2$$

- This measures the spread of the values of *X*.
- The standard deviation of continuous random variable X is the square root of the variance:

ISUNS ISUNS

17

The Uniform Distribution

- The Uniform distribution $X \sim U(a, b)$ is a continuous probability distribution where all values within a given interval are equally likely.
- Mean (Expected Value):

$$E(X) = \frac{a+b}{2}$$

• Variance:

$$Var(X) = \frac{(b-a)^2}{12}$$

PDF and CDF of the Uniform Distribution

• The PDF of the Uniform Distribution $X \sim U(a, b)$ is given by:

$$f(x) = \frac{1}{b-a}, \qquad a \le x \le b$$

- This PDF shows that each value in [a, b] is equally likely.
- The CDF of the Uniform Distribution $X \sim U(a, b)$ is given by:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

21

Applications of the Uniform Distribution

- Random Number Generation: Used in computer simulations and Monte Carlo methods to generate random samples.
- Fair Lottery or Raffles: Assigning equal probabilities to participants in a drawing.
- Waiting Time in Randomized Algorithms: Used in randomized backoff protocols in networking.
- Sensor Noise Modeling: Used in engineering applications where measurement noise is assumed to be uniformly distributed.

The Exponential Distribution

The Exponential distribution $X \sim \exp(\lambda)$ models the time until an event occurs (e.g., failure time, waiting times).

- Range: [0, ∞)
- It's defined by one parameter:
 - Rate parameter λ
- It's a "memoryless" model past events don't affect future probabilities:

$$P(X > s+t \mid X > s) = P(X > t)$$

23

SJSU SAN JOSÉ STATE UNIVERSITY

PDF and CDF of the Exponential Distribution

The probability density function (PDF) of an Exponential random variable *X* is:

$$f(x) = \begin{cases} 0 & x < 0 \\ \lambda e^{-\lambda x} & x \ge 0 \end{cases}$$

 $2\ \ \, 4\ \ \, 6\ \ \, 8\ \, 10\,12\,14\,16$

The cumulative density function (CDF) of an Exponential random variable X is:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} \lambda e^{-\lambda t} dt = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

Mean and Variance of the Exponential Distribution

• Mean (Expected Value):

$$E(X) = \frac{1}{\lambda}$$
 expected value or mean of X

Variance

$$Var(X) = \frac{1}{\lambda^2}$$
 the spread of X

25

Applications of the Exponential Distribution

- Reliability Engineering: Models the failure time of electronic components and machinery.
- Queuing Theory: Models inter-arrival times of customers in a queue (e.g., call centers, banks).
- Radioactive Decay: Describes the time between decay events of radioactive particles.
- Poisson Processes: Used in modeling the time between rare events like earthquakes or accidents.

Example: Phone Booth Wait Times

Suppose that the length of a phone call in minutes is an <u>exponential random variable</u> with parameter $\lambda = 1/10$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait:

- (a) more than 10 minutes;
- (b) between 10 and 20 minutes.

SISON SI

27

SJSU SAN JOSÉ STATE UNIVERSITY

The Gamma Distribution

The Gamma distribution $X \sim \Gamma(k, \lambda)$ is a generalization of the exponential distribution for multiple independent exponential random variables.

- Range: $[0, \infty)$
- It's defined by two parameter:
 - Rate parameter λ
 - # of independent exponential random variables k
- It reduces to exponential distribution if k = 1

PDF and CDF of the Gamma Distribution

The probability density function (PDF) of a Gamma random variable X is:

 $f(x) = \frac{\lambda^k x^k e^{-\lambda x}}{\Gamma(k)}, \qquad x > 0$

The cumulative density function (CDF) of a Gamma random variable X is:

 $F(x) = P(X \le x) = \frac{1}{\Gamma(k)} \int_0^x \lambda^k t^k e^{-\lambda t} dt$

29

Mean and Variance of the Gamma Distribution

• Mean (Expected Value):

$$E(X) = \frac{k}{\lambda}$$
 expected value or mean of X

Variance

$$Var(X) = \frac{k}{\lambda^2}$$
 the spread of X

Applications of the Gamma Distribution

- Insurance Risk Modeling: Used to model claim sizes in actuarial science.
- Queue Waiting Times: Models the waiting time for multiple events to occur (e.g., service systems).
- Biological Processes: Models the distribution of blood clotting times or rainfall accumulation over time.
- Bayesian Statistics: Often used as a conjugate prior for the Poisson distribution in Bayesian inference.

31

Example: Call Center

A call center receives an average of 2 calls per minute. Assuming the waiting time until 5 calls have arrived follows a Gamma distribution:

- (a) What are the parameters of the Gamma distribution?
- (b) What is the probability that the waiting time until 5 calls is more than 3 minutes?

The Normal Distribution

The Normal or Gaussian distribution $N(\mu, \sigma^2)$ models many things. It's one of the most fundamental probability distributions in statistics and is widely used due to the Central Limit Theorem (CLT) \rightarrow sum of a large # of independent random variables tends to follow a normal distribution.

- It's defined by two parameter:
 - Expected (mean) μ
 - Standard Deviation σ or Variance σ^2

• The 68-95-99.7 Rule (Empirical Rule for standard deviations).

• The 68-95-99.7 Rule (Empirical Rule for Standard deviations).

33

SJSU SAN JOSÉ STATE UNIVERSITY

PDF and CDF of the Normal Distribution

The probability density function (PDF) of a Normal random variable *X* is:

The cumulative density function (CDF) of a Normal random variable *X* is:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

Mean and Variance of the Normal Distribution

• Mean (Expected Value):

$$E(X) = \mu$$

expected value or mean of X

Variance

$$Var(X) = \sigma^2$$

the spread of X

35

Applications of the Normal Distribution

- Human Traits Measurement: Heights, weights, IQ scores, and other biological characteristics follow a normal distribution.
- Stock Market Returns: Many financial models assume returns on assets are normally distributed.
- Measurement Errors: Used in quality control and experimental science to model errors.
- Central Limit Theorem Applications: In inferential statistics, sample means of independent variables tend to be normally distributed.

Example: Exam Scores

The scores on a university entrance exam follow a normal distribution with a mean of 70 and a standard deviation of 10.

- a) What proportion of students score above 85?
- b) What proportion of students score between 60 and 80?
- b) What is the 90th percentile score?

JSUS SISUS S

37

Summary Table of the 4 Continuous Distributions

Distribution	Definition	Range	Parameters	Memoryless
Uniform	Models all values within a given interval are equally likely	[a, b]	a, <i>b</i>	× No
Exponential	Models the time until an event occurs	[0,∞)	λ	✓ Yes
Gamma	Models multiple independent exponential random variables	[0,∞)	λ, k	× No
Normal	Models phenomena that depend on multiple independent factors	$(-\infty,\infty)$	μ,σ^2	× No

รารบราราธาราธาราธาราธา

39

Summary Table of the 4 Continuous Distributions

Distributio	n Parameters	PDF	CDF	Mean	Variance
Uniform	a, <i>b</i>	$f(x) = \frac{1}{b-a}$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a'}, & a \le x \le b \\ 1, & x > b \end{cases}$	$E(X) = \frac{a+b}{2}$	$Var(X) = \frac{(b-a)^2}{12}$
Exponentia	al λ	$f(x) = \lambda e^{-\lambda x}$	$F(x) = 1 - e^{-\lambda x}$	$E(X) = \frac{1}{\lambda}$	$Var(X) = \frac{1}{\lambda^2}$
Gamma	λ, k	$f(x) = \frac{\lambda^k x^k e^{-\lambda x}}{\Gamma(k)}$	$F(x) = \frac{1}{\Gamma(k)} \int_0^x \lambda^k t^k e^{-\lambda t} dt$	$E(X) = \frac{k}{\lambda}$	$Var(X) = \frac{k}{\lambda^2}$
Normal	μ,σ^2	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	F(x)	$E(X) = \mu$	$Var(X) = \sigma^2$

The Standard Normal Distribution

- Normally, you do **NOT** need to use integral calculus to compute those probabilities.
- First, convert your normal distribution of x values with mean μ and standard deviation σ to the standard normal distribution of z values.

$$z = \frac{x - \mu}{\sigma}$$

The standard normal distribution curve

• The standard normal distribution has mean 0 and standard deviation 1

The Standard Normal Distribution

- The z values of a standard normal distribution are called z scores.
- For a standard normal distribution table, see

https://www.math.arizona.edu/~rsims/ma464/standardnormaltable.pdf

ISOM SISOM S

43

