Mécanique Générale ISET Nabeul

PLAN DE LECON

TORSEUR

❖ Objectifs spécifiques :

A la fin de la séance l'étudiant doit être capable de :

Comprendre la notion de torseur et ses applications en Mécanique

Pré requis :

L'étudiant est supposé connaître :

- Les outils mathématiques.
- Programme de Bac Technique.
- Notion de vecteur et ses propriétés

Auditeurs:

Etudiants des I.S.E.T.

Profil : Génie Mécanique.

Option: Tronc commun.

Niveau: L1S1.

❖ Durée : Une séance de 1^h : 30

❖ Evaluation : - Formative au cours de la séance et TD N°2

- Sommative : Test d'évaluation.

Matériels didactiques et méthodologie :

- Tableau
- Méthode interrogative

Chap.1 Torseurs

I. Définition:

Un torseur est un outil mathématique privilégié de la mécanique .Il sert à caractériser une action mécanique, à représenter le mouvement d'un solide

- Notation : $\{\tau\}_P$
- Le torseur est l'ensemble de deux vecteurs appelés éléments de réduction :
- Résultante du torseur.
- Moment du torseur.

•

$$\{\tau\}_{P} = \left\{ \sum_{i=1}^{n} \vec{v}_{i} \\ \sum_{i=1}^{n} \overrightarrow{PA} \wedge \vec{v}_{i} \right\}_{P} = \left\{ \vec{R} \\ \vec{M}_{P}(\vec{R}) \right\}_{P}$$

• Le torseur est généralement présenté, dans un repère orthonormé direct, sous la forme.

$$\left\{\tau\right\}_{\!P} = \left\{\begin{matrix} X & L \\ Y & M \\ Z & N \end{matrix}\right\}_{\!P} \ \, \text{tel que} \quad \left\{\begin{matrix} \vec{R} = X\vec{x} + Y\vec{y} + Z\vec{z} \\ \vec{M}_{\!P}(\vec{R}) = L\vec{x} + M\vec{y} + N\vec{y} \end{matrix}\right.$$

- Le moment du torseur doit vérifier la relation du transport.
- Le torseur peut être associé à tout (ou un ensemble de) vecteur(s).

II. Propriétés:

1. Equivalence des torseurs :

$$\{\tau_1\}_P = \{\tau_2\}_P \quad \Leftrightarrow \quad \begin{cases} \vec{R}_1 = \vec{R}_2 \\ \vec{M}_P(\vec{R}_1) = \vec{M}_P(\vec{R}_2) \end{cases}$$

Si deux torseurs équivalents en un point alors sont équivalents en tout points de l'espace

2. Addition de deux torseurs :

$$\left\{\tau_{1}\right\}_{P}+\left\{\tau_{2}\right\}_{P}=\left\{\tau\right\}_{P}\qquad \Rightarrow \qquad \begin{cases} \vec{R}=\vec{R}_{1}+\vec{R}_{2}\\ \vec{M}_{P}(\vec{R})=\vec{M}_{P}(\vec{R}_{1})+\vec{M}_{P}(\vec{R}_{2}) \end{cases}$$

3. Somme des torseurs :

4. Multiplication par un scalaire :

$$a\left\{\tau\right\}_{P} = \left\{\begin{matrix} a\vec{R} \\ a\vec{M}_{P}(\vec{R}) \end{matrix}\right\}_{P}$$

5. Comoment de deux torseurs :

$$\{\tau_1\}_P \cdot \{\tau_2\}_P = \vec{R}_1 \vec{M}_P (\vec{R}_2) + \vec{R}_2 \vec{M}_P (\vec{R}_1)$$
: un scalaire

Remarque:

Par définition, on peut calculer un torseur en deux points A et B; on obtient:

$$\{\tau\}_{A} = \left\{ \overrightarrow{R} \atop \overrightarrow{M}_{A} \right\}_{A} \text{ et } \{\tau\}_{B} = \left\{ \overrightarrow{R} \atop \overrightarrow{M}_{A} \right\}_{B}$$
 (Seule le moment est différent)

$$\overrightarrow{M}_{(B)} = \overrightarrow{M}_{(A)} + \overrightarrow{R} \wedge \overrightarrow{AB}$$

La résultante du torseur est indépendante du point où est défini un torseur

III. Cas particulier de torseurs :

• *Torseur nul* : Résultante et moment nuls.

$$\{0\}_{P} = \{\vec{0}\}_{P} = \{\vec{0} \\ \vec{0}\}_{P} = \{\vec{0} \\ 0 \\ 0 \\ 0\}_{P}$$
 Ce type de torseur est *nul en tout point*.

• *Torseur couple* : Résultante nulle et moment non nul.

$$\left\{\tau_{c}\right\}_{P} = \left\{\vec{0} \atop \vec{M}_{P}\right\}_{P} = \left\{\begin{matrix} 0 & L \\ 0 & M \\ 0 & N \end{matrix}\right\}_{P} \qquad \vec{M}_{P} = constante \ \forall \ p \in l'espace(\xi)$$

• Torseur glisseur:

Est un torseur admettant une résultante générale non nul et ∃ au moins un point ou le moment s'annule

$$\left\{ \boldsymbol{\tau}_{g} \right\}_{P} = \left\{ \boldsymbol{\vec{R}} \right\} = \left\{ \boldsymbol{\vec{R}} \right\} = \left\{ \boldsymbol{\vec{X}} \quad \boldsymbol{0} \\ \boldsymbol{Y} \quad \boldsymbol{0} \\ \boldsymbol{Z} \quad \boldsymbol{0} \right\}_{P} \text{ avec } \forall \ P \ \text{au support de } \vec{R} \ (\Delta).$$

IV. Décomposition de torseur :

$$\begin{cases} \{\tau\}_{P} = \begin{cases} \vec{R} \\ \vec{M}_{P}(\vec{R}) \end{cases} \\ Soit \\ \{\tau\}_{P} = \left\| \vec{R} + \vec{0} \\ \vec{0} + \vec{M}_{P}(\vec{R}) \right\| = \left\{ \vec{R} \\ \vec{0} \right\}_{P} + \left\{ \vec{0} \\ \vec{M}_{P}(\vec{R}) \right\}_{P} : \text{ Torseur glisseur} + \text{Torseur couple}$$

Tout torseur est décomposable en un torseur glisseur et un torseur couple.

V. Invariants d'un torseur :

6. Invariant vectorielle:

 $\forall \ P \in \xi$ la résultante d'un torseur invariant

7. Invariant scalaire:

$$I = \vec{R} \cdot \vec{M}_{p}(\vec{R}) \ \forall \ P \in \xi$$

Mécanique Générale ISET Nabeul

PLAN DE LECON

STATIQUES DES SOLIDES

❖ Objectifs spécifiques :

A la fin de la séance l'étudiant doit être capable de :

Modéliser les mécanismes et les actions mécaniques

Appliquer le Principe Fondamentale de la Statique

Pré requis :

L'étudiant est supposé connaître :

- Les outils mathématiques.
- Programme de Bac Technique.
- Notion de torseur et ses propriétés

Auditeurs:

Etudiants des I.S.E.T.

Profil : Génie Mécanique.

Option: Tronc commun.

Niveau: 1.

- **❖ Durée :** Trois séances de 1^h : 30
- **❖ Evaluation :** Formative au cours de la séance et TD N°2
 - Sommative : Test d'évaluation.

***** Matériels didactiques et méthodologie :

- Tableau
- Méthode inductive
- Polycopiés
- Transparents

Chap.2 Statiques des solides rigides

I. Définition:

La statique à pour objet la résolution des problèmes relatifs à l'équilibre des systèmes matériels indéformables (solides rigides). Solide en équilibre : au repos ou en mouvement uniforme ($\gamma = 0$).

II . Action mécanique :

On appelle action mécanique toute cause capable de :

- □ Mettre en mouvement un solide (mettre un solide au repos)
- □ Arrêter le mouvement d'un solide (créer ou modifier un mouvement)
- □ Déformer un solide.

On distingue deux types d'actions mécaniques :

- □ La force.
- □ Le moment d'une force.

Exemples:

1. La force:

La force est une action mécanique qui est responsable d'un mouvement de translation d'un solide.

Mécanique Générale ISET Nabeul

Caractéristiques:

- Point d'application
- Direction ou support
- Sens
- Intensité ou module (N).

2. Nature d'une force :

Il existe deux types de force :

- > Force de contact : corps en contact : ponctuel, linéaire, plan, Charge repartie (linéaire ou surfacique)
- Force à distance : attraction terrestre, force électrostatique, magnétique ...

3. Forces extérieures et forces intérieures :

Elles dépendent de l'ensemble considéré, c'est à dire du système isolé.

Exemple:

On isole l'ensemble (2-3)

- * forces extérieures $F_{1/3}$; $F_{0/3}$; P_2 ; P_3
- * forces intérieures $F_{2/3}$; $F_{3/2}$

4. Forces directement opposées :

Deux forces sont directement Opposées si elles ont :

- Même support
- Même module
- Sens contraire.

5. Actions mutuelles ou réciproques :

Lorsqu'un solide (A) exerce une action sur un solide (B), le solide (B) exerce une action sur le solide (A).

Les actions sont appelées des actions mutuelles, elles sont directement opposées.

6. Le moment d'une force par rapport à un point :

Le moment d'une force F est la cause d'un éventuel mouvement de rotation.

Le moment d'une force est exprimé en mN.

7. Efforts sur les dents d'engrenages

Voir caractéristiques géométriques G.D. chapitre 47.

Photographies: Lechner-Patissier.

III. TORSEURS DES ACTIONS MECANIQUES :

On peut modéliser toute action mécanique par un torseur.

Soit : 0, A deux point de l'espace.

Il existe 2 types de torseurs particuliers

1. Torseur glisseur :

Le torseur glisseur est un torseur dont le moment est nul, Il garde sa forme sur la droite d'action de la force \vec{R} : $\{\tau\}_0 = \left\{ \bar{R} \right\}_0$

2. Torseur couple:

Le torseur couple est un torseur dont la résultante est nulle, Il garde sa forme en tout point de

l'espace :
$$\{\tau\}_0 = \left\{ \vec{0} \atop \vec{M}_0 \right\}_0$$

IV. Torseurs des actions mécaniques des liaisons usuelles (sans frottement):

L'ensemble des actions mécaniques qui s'exercent à l'intérieur d'une liaison peut être représenté par un torseur résultant exprimé au centre de la liaison. (*Voir tableau des liaisons usuelles*)

TYPE DE LIAISON	SYMBOLE	EXEMPLE
Liaison ponctuelle (-1)	$\rightarrow \bowtie$	1 X
Liaison appui linéaire rectiligne (-2) $ \left\{ \tau_{1/2} \right\}_0 = \left\{ \begin{matrix} 0 & 0 \\ Y & 0 \\ 0 & N \end{matrix} \right\}_0 $ Le torseur garde cette forme dans le plan (X, Z)	/ 	↑Y 0 → X ✓ Z
Liaison linaire annulaire (-2) $ \left\{\tau_{1/2}\right\}_0 = \left\{\begin{matrix} X & 0 \\ Y & 0 \\ 0 & 0 \end{matrix}\right\}_0 $ Le torseur possède cette forme uniquement au point 0.	4	z Y
Liaison appui plan (-3) $ \left\{ \tau_{1/2} \right\}_0 = \left\{ \begin{matrix} 0 & L \\ Y & 0 \\ 0 & N \end{matrix} \right\}_0 $ Le torseur garde cette forme dans le plan (X, Z)	/ +	Y O X
Liaison rotule (-3)	Ø	Z Y X

Liaison pivot glissant (-4)

$$\left\{\tau_{1/2}\right\}_0 = \left\{\begin{matrix} 0 & 0 \\ Y & M \\ Z & N \end{matrix}\right\}_0$$

Le torseur garde cette forme sur l'axe X

Liaison pivot (-5)

$$\left\{\tau_{1/2}\right\}_{0} = \left\{\begin{matrix} X & 0 \\ Y & M \\ Z & N \end{matrix}\right\}_{0}$$

Le torseur garde cette forme sur l'axe X

Liaison hélicoïdale (-5)

$$\left\{\tau_{1/2}\right\}_0 = \left\{\begin{matrix} X & L \\ Y & M \\ Z & N \end{matrix}\right\}_0 \text{ avec } X = K \ . \ L$$

Le torseur garde cette forme sur l'axe X

Liaison glissière (-5)

$$\left\{ \tau_{1/2} \right\}_0 = \left\{ \begin{matrix} \mathsf{X} & \mathsf{L} \\ \mathsf{Y} & \mathsf{M} \\ \mathsf{0} & \mathsf{N} \end{matrix} \right\}_0$$

Le torseur garde cette forme en tout point de l'espace.

Liaison encastrement (-6)

$$\left\{\tau_{1/2}\right\}_0 = \left\{\begin{matrix} X & L \\ Y & M \\ Z & N \end{matrix}\right\}_0$$

Le torseur garde cette forme en tout point de l'espace.

V. PRINCIPE FONDAMENTAL DE LA STATIQUE (P.F.S):

Un solide en équilibre sous l'action de n forces extérieures \vec{F}_1 , \vec{F}_2 , \vec{F}_3 ... reste en équilibre si :

- La somme vectorielle des n forces est nulle $\sum_{i=1}^{n} \vec{F}_i = \vec{0}$
- 2 Le moment résultant des n forces en un point quelconque de l'espace est nul.

$$\sum_{i=1}^{n} \vec{M}_{0} (\vec{F}_{i}) = \vec{0}$$

C'est aussi la somme des torseurs associés aux n forces en un point 0 quelconque de l'espace est nulle.

VI. METHODE DE RESOLUTION:

Objectif du problème: Déterminer les actions mécaniques agissant sur un solide

