DISPERSION CORRECTIONS IN DENSITY FUNCTIONAL THEORY

Samuel Frost

University of Nottingham

Wednesday 15th December, 2021

WHAT IS DFT?

- ▶ A computational chemistry method which uses the principles of quantum mechanics to model the electronic structure of a chemical system, thus pulling out many important properties
- ▶ Uses functionals of the local electron density, more accurate 'GGA' methods which use a gradient of the electron density exist e.g. PBE & BLYP

DFT'S SUCCESSES AND FAILURES

▶ DFT works very well for crystals that are purely ionic or covalent

DFT'S SUCCESSES AND FAILURES

- ▶ DFT works very well for crystals that are purely ionic or covalent
- ▶ DFT cannot accurately model dispersion interactions
- ➤ This causes DNA to unravel and graphene sheets to repel each other

STEFAN GRIMME TO THE RESCUE

- ▶ In 2006 Stefan Grimme introduced DFT-D2, a method of correcting a functional to include dispersion interactions¹
- ▶ A more extensive and accurate based off of his previous DFT-D method
- ► This method was so cheap and accurate that it's still used to this day

 $^{^1{\}rm Semiempirical~GGA}\text{-type density functional constructed with a long-range dispersion correction, https://doi.org/10.1002/jcc.20495$

How does DFT-D2 work?

▶ Pairwise attraction between distinct atoms i and j for all N atoms, where $R_{i,j}$ is their separation

$$E_{\text{disp}} = -s_6 \sum_{i}^{N-1} \sum_{j=i+1}^{N} \frac{C_6^{i,j}}{R_{i,j}^6} f_{\text{damp}}(R_{i,j})$$

- $ightharpoonup C_6^{i,j} = \sqrt{C_6^i C_6^j}$ is the dispersion coefficient
- ▶ $C_6^i = 0.05NI_i\alpha_i$, where N is a scaling factor depending on its row, I is the first ionisation energy and α is the polarisability

FERMI DAMPING FUNCTION

$$f_{\text{damp}}(R_{i,j}) = \frac{1}{1 + \exp(-d(R_{i,j}/R_r) - 1))}$$

EFFECTIVENESS

Black Phosphorus

With the correct functional, DFT-D2 can help predict the exact equilibrium distance between sheets!²

	LDA	LDA-D2	PBE	PBE-D2	optB86b-vdW
d_0 / Å	2.93	2.89	3.42	3.09	3.09

 $^{^2{\}rm Effect}$ of van der Waals interaction on the structural and cohesive properties of black phosphorus

Ineffectiveness

Metals Gasses

DFT-D2 overestimates vdW interactions on metal surfaces

 $^{^3}$ The Role of van der Waals Interactions in the Adsorption of Noble Gases on Metal Surfaces, 10.1088/0953-8984/24/42/424211

INEFFECTIVENESS

Extreme Conditions

▶ Under extreme conditions DFT-D2 can begin to break down, and actually give worse results than no dispersion correction at all⁴

FIGURE: Shown here is the lattice constant and cohesive energy for Paladium Hydride under extreme stress

⁴Breaking Badly: DFT-D2 Gives Sizeable Errors for Tensile Strengths in Palladium-Hydride Solids

OTHER CRITICISMS

- \triangleright The aforementioned s_6 scaling factor and d in the fermi damping function are both fit to emperical data
- ightharpoonup The C_6 constant does not account for the environment of the atom, C_6 for carbon in methane is the same as C_6 for carbon in benzene

DFT-D3

- ▶ DFT-D3 uses the coordination number of the atom to help account for the chemical environment⁵
- ▶ Uses higher order terms e.g. C_8

⁵Density functional theory with London dispersion corrections, 10.1002/wcms.30

NON-LOCAL DENSITY DEPENDENT CORRECTIONS

- Only depend on the electron density at two coordinates, DFT functionals normally depend on a single location in space⁶
- ▶ Derived entirely from first principles, in contrast to DFT-D2/3 which depend on many experimental values and even requires fitting parameters
- ► Incredibly expensive to run, can take months to run even on expensive hardware, in contrast to DFT-D2 which can easily run on your laptop

⁶Dispersion-Corrected Mean-Field Electronic Structure Methods

CONCLUSION

- ➤ For fast results under normal conditions, DFT-D2/3 or any other semi-emperical method is ideal, especially for those on a budget
- ► For accurate results and edge cases, non-local density dependent corrections may be favourable

The End

Fin.