Linear Algebra

Vector Spaces, Linear Transformations and Innver Product Spaces.

Definitions, theorems and exercises from the fourth edition of the book *Linear Algebra Done Right* by Sheldon Axler.

§1 Subespacios invariantes

Definition 1.1 (Subespacio invariante)

Suponiendo $T \in \mathcal{L}(V)$. Un subespacio U de V es llamado **invariante** bajo T si $u \in U$ implica $Tu \in U$.

En la búsqueda del subespacio no trivial más simple posible (1-dimensional) nos encontramos con un U definido como

$$U = \{\lambda v : \lambda \in \mathbb{F}\} = \operatorname{span}(v)$$

Vemos que si U es invariante bajo un operador $T \in \mathcal{L}(V)$ entonces $Tv \in U$ y por tanto hay un escalar $\lambda \in \mathbb{F}$ que cumple

$$Tv = \lambda v$$

Esta ecuación es tan importante que el vector v y el valor λ reciben su propio nombre.

§2 Vectores y valores propios

Definition 2.1 (Valor Propio o Eigenvalue)

Suponiendo $T \in \mathcal{L}(V)$. Un número $\lambda \in \mathbb{F}$ es llamado valor propio de T si existe $v \in V$ tal que $v \neq 0$ y $Tv = \lambda v$.

Es condición indispensable que $v \neq 0$ porque cualquier escalar $\lambda \in \mathbb{F}$ cumple $T0 = \lambda 0$.

Definition 2.2 (Vector Propio o Eigenvector)

Suponiendo $T \in \mathcal{L}(V)$ y $\lambda \in \mathbb{F}$ es un valor propio de T. Un vector $v \in V$ es llamado vector propio de T correspondiente a λ si $v \neq 0$ y $Tv = \lambda v$.

Teorema 2.3 (Una lista de vectores propios es linealmente independiente)

Sea $T \in \mathcal{L}(V)$. Supón $\lambda_1, \ldots, \lambda_m$ son distintos valores propios de T y v_1, \ldots, v_m son los correspondientes vectores propios. Entonces v_1, \ldots, v_m es linealmente independiente.

Proof. Suponeos que v_1, \ldots, v_m es linealmente dependiente. Siendo k el entero positivo más pequeño tal que

$$v_k \in span(v_1, \dots, v_{k-1}); \tag{5.11}$$

la existencia de k con esta propiedad se sigue del Lema de Dependencia Lineal (2.21). Por tanto existe $a_1, \ldots, a_{k-1} \in \mathbb{F}$ tal que

$$v_k = a_1 v_1 + \dots + a_{k-1} v_{k-1}. \tag{5.12}$$

Applicando T a ambos lados de la ecuación obtenemos

$$\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$$

Multiplicando ambos lados de 5.12 por λ_k y luego restando la ecuación de arriba obtenemos

$$0 = a_1(\lambda_k - \lambda_1)v_1 + \dots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$$

Dado que definimos k como el menor entero positivo que satisface $5.11, v_1, \ldots, v_{k-1}$ es linealmente independiente. Por tanto la ecuación de arriba implica que todas las a's son 0. Sin embargo, esto significa que v_k es igual a 0, contradiciendo nuestra hipotesis de que v_k es un vector propio. Por tanto nuestra asunción de que v_1, \ldots, v_m es linealmente dependiente es falsa.

Teorema 2.4 (máximo de valores propios)

Suponiendo V finito-dimensional. Cada operador en V tiene como mucho $\dim V$ valores propios distintos.

§2.1 Definiciones clave para el calculo de valores propios

Definition 2.5

Las siguientes afirmaciones para un operador $T \in \mathcal{L}(V)$, con V de dimensión finita, y un escalar $\lambda \in \mathbb{F}$ son equivalentes:

- (a) λ es un valor propio de T;
- (b) $T \lambda I$ no es inyectivo;
- (c) $T \lambda I$ no es sobreyectivo;
- (d) $T \lambda I$ no es invertible.

Teorema 2.6 (Teorema multiplos de 3)

Para todo $n \in \mathbb{Z}$ se cumple que al menos uno de los factores de la expresión n(n+1)(n+2) es divisible por 3.

Proof. Vamos a completar la prueba por inducción, es fácil ver que el teorema se cumple para el caso $n=1,\,1\cdot 2\cdot 3=3\cdot (2)$. Ahora suponiendo que se cumple para n demostraremos que lo hace también para n+1. Con la expresión

$$(n+1)(n+2)(n+3) = 3k$$

Para cierto $k \in \mathbb{Z}$, desarrollando la expresión obtenemos

$$(n+1)(n+2)(n+3) = \frac{3k}{n}(n+3)$$
$$= 3 \cdot \frac{k}{n}(n+3)$$

Donde la primera igualdad se sostiene de la supocisión inductiva. Vemos que si $\frac{k(n+3)}{n}$ es un entero entonces hemos terminado la prueba y sabemos que es un entero ya que de la suposición inductiva sabemos que

$$\frac{k(n+3)}{n} = \frac{kn+3k}{n}$$

$$= \frac{kn+n(n+1)(n+2)}{n}$$

$$= k+(n+1)(n+2)$$

Por tanto $\frac{k(n+3)}{n}$ es un entero completando la prueba

§3 Singular Value Decomposition (SVD)

Definition 3.1 (SVD)

Suppose $T \in \mathcal{L}(V, W)$ and the positive singular values of T are s_1, \ldots, s_m . Then there exist orthonormal lists e_1, \ldots, e_m in V and f_1, \ldots, f_m in W such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$$
(3.11)

for every $v \in V$.

Proof. Let s_1, \ldots, s_m denote the singular values of T (thus n = dimV). Because T^*T is a positive operator, the spectral theorem implies that there exists an orthonormal basis e_1, \ldots, e_n of V with

$$T^*Te_k = s_k^2 e_k \tag{3.12}$$

for each $k = 1, \ldots, n$.

For each $k = 1, \ldots, m$, let

$$f_k = \frac{Te_k}{s_k}. (3.13)$$

If $j, k \in 1, \ldots, m$, then

$$\langle f_j, f_k \rangle = \frac{1}{s_j s_k} \langle Te_j, Te_k \rangle = \frac{1}{s_j s_k} \langle e_j, T^*Te_k \rangle = \frac{s_k}{s_j} \langle e_j, e_k \rangle = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k. \end{cases}$$

Thus f_1, \ldots, f_m is an orthonormal list in W.

If $k \in 1, ..., n$ and k > m, then $s_k = 0$ and hence $T^*Te_k = 0$ (by 3.12), which implies that $Te_k = 0$.

Suppose $v \in V$. Then

$$Tv = T (\langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n)$$

= $\langle v, e_1 \rangle T e_1 + \dots + \langle v, e_m \rangle T e_m$
= $s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$,

where the last index in the first line switched from n ot m in the second line because $Te_k = 0$ if k > m (as noted in the paragraph above) and the third line follows from 3.13. The equation above is our desired result.

With the tool presented above we can arrive to a very useful concept in copression theory and computation, wich is the appoximation by linear maps with lower-dimensional range.

Definition 3.2 (best approximation by linear map whose range has dimension $\leq k$)

Suppose $T \in \mathcal{L}(V, W)$ and $s_1 \geq \cdots \geq s_m$ are the positive singular values of T.

Suppose $1 \le k < m$. Then

$$min\{||T - S|| : S \in \mathcal{L}(V, W) \text{ and dim range } S \leq k\} = s_{k+1}.$$

Furthermore, if

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$$

is a singular value decomposition of T and $T_k \in \mathcal{L}(V, W)$ is defined by

$$T_k v = s_1 \langle v, e_1 \rangle f_1 + \dots + s_k \langle v, e_k \rangle f_k$$

for each $v \in V$, then dim range $T_k = k$ and $||T - T_k|| = s_{k+1}$.

Proof. If $v \in V$ then

$$||(T - T_k)v||^2 = ||s_{k+1}\langle v, e_{k+1}\rangle f_{k+1} + \dots + s_m \langle v, e_m\rangle f_m||^2$$

$$= s_{k+1}^2 |\langle v, e_{k+1}\rangle|^2 + \dots + s_m^2 |\langle v, e_m\rangle|^2$$

$$\leq s_{k+1}^2 \left(|\langle v, e_{k+1}\rangle|^2 + \dots + |\langle v, e_m\rangle|^2 \right)$$

$$\leq s_{k+1}^2 ||v||^2.$$

Thus $||T - T_k|| \le s_{k+1}$. The equation $(T - T_k)e_{k+1} = s_{k+1}f_{k+1}$ now shows that $||T - T_k|| \le s_{k+1}$.

Suppose $S \in \mathcal{L}(V, W)$ and dim range $S \leq k$. Thus Se_1, \ldots, Se_{k+1} , which is a list of length k+1, is linearly dependent. Hence there exist $a_1, \ldots, a_{k+1} \in \mathbb{F}$, not all 0, shut that

$$a_1 S e_1 + \dots + a_{k+1} S e_{k+1} = 0.$$

Now $a_1Se_1 + \cdots + a_{k+1}Se_{k+1} \neq 0$ because a_1, \ldots, a_{k+1} are not 0. We have

$$||(T-S)(a_1e_1+\cdots+a_{k+1}e_{k+1})||^2 = ||T(a_1e_1+\cdots+a_{k+1}e_{k+1})||^2$$

$$= ||s_1a_1f_1+\cdots+s_{k+1}a_{k+1}f_{k+1}||^2$$

$$= s_1^2|a_1|^2+\cdots+s_{k+1}^2|a_{k+1}|^2$$

$$\geq s_{k+1}^2(|a_1|^2+\cdots+|a_{k+1}|^2)$$

$$= s_{k+1}^2||a_1e_1+\cdots+a_{k+1}e_{k+1}||^2.$$

Because $a_1e_1 + \cdots + a_{k+1}e_{k+1} \neq 0$, the inequality above implies that

$$||T - S|| \ge s_{k+1}.$$

Thus $S = T_k$ minimizes ||T - S|| among $S \in \mathcal{L}(V, W)$ with dim range $S \leq k$.

Problem 3.3. Fix $u, x \in V$ with $u \neq 0$. Define $T \in \mathcal{L}(V)$ by $Tv = \langle v, u \rangle x$ for every $v \in V$.

Prove that

$$\sqrt{T^*T}v = \frac{\|x\|}{\|u\|} \langle v, u \rangle u$$

for every $v \in V$.

§4 QR Decomposition using Householder reflections

Definition 4.1 (Householder operator)

The Householder operator H in a inner product space V represents a reflection of a given vector x over a plane perpendicular to a unitary vector u, which means ||u|| = 1. so H applied to x has deform:

$$H(x) = x - 2\operatorname{proj}_{u}(x)$$

Knowing the norm of u is 1 and that u^* represents the complex conjugate which in the real field \mathbb{R} equals the transpose u^T we end up with

$$H(x) = x - 2u^*xu = (I - 2u^*u)x$$

With this we see that the Householder matrix H representing a reflection over a normal vectoro u has the form

$$H = I - 2uu^*$$

Definition 4.2 (QR Decomposition)

Given a matrix A with m rows and n columns. Then there exists a unique way of decomposing A in a combination of a unitary matrix named Q and an upper triangular matrix R, so A can be expressed in the form

$$A = QR$$

Proof. Suppose A is formed with the list v_1, \ldots, v_n by the Gram-Schmidt product we can write any vector v of the vector space V in the form

$$v = \langle v_1, e_1 \rangle e_1 + \dots + \langle v_n, e_n \rangle e_n$$

where e_1, \ldots, e_n is an orthonormal list that spans V.

Constructing Q with the column vectors of this orthonormal basis say

$$Q = \begin{pmatrix} e_1 & e_2 & \cdots & e_n \end{pmatrix}$$

This Q square matrix is unitary by construction with dimensions $n \times n$.

Then, multiplying Q by R upper triangular with dimensions $n \times m$ formed by the inner products of each component of v with its coresponding orthonormal vector the multiplication QR gives us the Gram-Schmidt procedure.

Now we can see that the unitary matrix Q can be formed multiplying a series of Householder operators say H_k with the objetive of transforming a matrix A into a triangular matrix by a series of this Householder reflections in the form

$$H_k \cdots H_1 A = R$$

and therefore $Q = (H_k \cdots H_1)^{-1} = H_k^* \cdots H_1^*$.

The second equality holds because heach H_j is itelf unitary and the composition of unitary matrices gives a unitary matrix in this case Q.