Tensor Networks: Session 2

Hanse Kim

September 30, 2024

Recap

- Tensor networks are tensors (state vectors) that are made up of smaller tensors by tensor products and contraction
 - Many ways to write a tensor of a given rank N
 - Represents subspaces of Hilbert space
 - Degree of freedom polynomial in N

Examples: General TNs

Trace

$$\operatorname{Tr}(AB) = A B$$

- Reduced density matrix (partial trace of bipartite state vector)
- SVD decomposition

 Bond dimension determined by number of nonzero singular values of SVD

Recap

- Some comments
 - Some notation differentiates upper and lower indices by placement of 'legs'
 - Rank (p, q) tensor has (p + q + 1)! reshapes generated by swapping and lowering/uppering indices
 - Do not confuse rank of tensor ex. (p, q) and rank of linear operator (dimensionality of image)
- Notation conventions
 - ▶ Tensors : either vector notation $|\psi\rangle$ or tensors A
 - ightharpoonup Operators (MPOs) : boldface σ, H

Recap

- ► Claimed that the TN state subspace is physically relevant; we will see today :
 - Examples of highly entangled states/ground states as TNs
 - Bond dimension parametrises entanglement entropy; contraction characterises entanglement
 - TN states satisfy the area entropy law

Matrix Product States

- ► MPS : 1D array of tensors
 - Two examples; open BC, periodic BC
 - One tensor per site in many-body system; open indices represents physical degrees of freedom
 - ightharpoonup DoF : pD^2N

Examples: MPS

- ► GHZ State : $|\Psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes N} + |1\rangle^{\otimes N})$
 - Maximally entangled state : reduced density matrix is diagonal for any bipartition of system
 - ▶ MPS representation with bond dimension 2

$$\frac{1}{0} = \frac{2}{1} = 2^{-1/(2N)}$$

Examples: MPS

► 1D PEPS (Projected Entangled Pair State)

- ► Ground state of **1D AKLT** model : spin 1 chain with $H = \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j + \frac{1}{3} (\vec{S}_i \cdot \vec{S}_j)^2$
 - Exact ground state is given in terms of projection of a spin $\frac{1}{2}$ chain

$$= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$= |+\rangle\langle\uparrow\uparrow| + |0\rangle \frac{\langle\uparrow\downarrow| + \langle\downarrow\uparrow|}{\sqrt{2}} + |-\rangle\langle\downarrow\downarrow|$$

▶ MPS representation with bond dimension 2

Examples: MPS

► 1D Cluster State : simultaneous eigenket of

$$K^{i}=\sigma_{i-1}^{x}\sigma_{i}^{z}\sigma_{i+1}^{x};\,|\Psi
angle=\prod_{i}rac{1+K^{i}}{2}\left|0
ight
angle^{\otimes N}$$

- ► Highly entangled state
- ► Represent operators $\frac{1+K^i}{2}$ as TN
- MPS representation with bond dimension 4

Examples: PEPS

- ► Toric code eigenstates : given space of spins on edges on lattice, states where flipped spins form closed loops
 - Corresponds to trivial space of stabilisers;

$$A_{\mathbf{v}} = \prod_{i \in \mathbf{v}} \sigma_i, B_{\mathbf{p}} = \prod_{i \in \mathbf{p}} \sigma_i$$

Used in quantum error correction

Examples: PEPS

► Toric code eigenstate : express lattice in form below

Examples: PEPS

► Toric code ground state : superposition of all closed loops; admits PEPS form

- ► Assign odd numbered plaquettes to PEPS site
- ▶ $i, j, k, l \in \mathbb{Z}_2$; straight legs indicate bond indices; wavy legs qubits on each edge of plaquette

SVD and Schmidt Decomposition

Split wavefunction into parts; SVD gives Schmidt decomposition $|\psi\rangle = \sum_i \lambda_i |L_i\rangle \otimes |R_i\rangle$

Recursive application decomposes state into MPS

SVD and Schmidt Decomposition

- Rank: distinct from rank of tensor, dimensionality of image
 - Ex. $m \times n$ matrix of rank one : outer product of m vector and n vector
 - ightharpoonup m imes n matrix of rank k: total k(m+n) DoF
- Number of nonzero $\lambda_i = \text{rank of diagonal matrix } \lambda = \text{bond dimension of MPS}$

Area Law: MPS

- Area law: constant (wrt. N) entanglement entropy
- **Decomposition**; $|\psi\rangle = \sum_i \lambda_i |L_i\rangle \otimes |R_i\rangle$
 - ightharpoonup i represents the bond indices; only require one as matrix λ is diagonal
- ▶ Reduced density matrix : $\rho = \sum_{i} \lambda_{i}^{2} |L_{i}\rangle \langle L_{i}|$
- Entanglement entropy : $S = -\mathrm{tr}(\rho \log \rho) = -\sum_i \lambda_i^2 \log \lambda_i^2$
- ▶ Bound : given normalisation $\sum_i \lambda_i^2 = 1$, maximum entropy at all $\lambda_i^2 = \frac{1}{D}$, $S \leq \log D$

Area Law: PEPS

Area Law: PEPS

- ightharpoonup Area law : entropy $\sim L$
- \blacktriangleright Decomposition : $|\psi\rangle=\sum_{\overline{\alpha}}|{\rm in}_{\overline{\alpha}}\rangle\otimes|{\rm out}_{\overline{\alpha}}\rangle$
 - $\overline{\alpha}$ represents joint bond indices; total of $D^{\partial A} = D^{4L}$ values
- ▶ Reduced density matrix : $\rho = \sum_{\overline{\alpha}, \overline{\alpha}'} \langle \mathsf{out}_{\overline{\alpha}'} | \mathsf{out}_{\overline{\alpha}} \rangle | \mathsf{in}_{\overline{\alpha}} \rangle \langle \mathsf{in}_{\overline{\alpha}'} |$
- ▶ Similarly, maximum entropy for $S = -\text{tr}\rho \log \rho \le 4L \log D$

► Correlation function : $C(r) = \langle O_i O'_{i+r} \rangle - \langle O_i \rangle \langle O'_{i+r} \rangle$ Consider infinite MPS of single tensor; 1D translational invariance with thermodynamic limit

- ► Consider E_i as $D^2 \times D^2$ matrix; diagonalise $E_I = \sum_{i=1}^{D^2} \lambda_i |L_i\rangle \langle R_i|$; $E_I^r = \lambda_1^r \sum_{i=1}^{D^2} (\lambda_i/\lambda_1)^r |L_i\rangle \langle R_i|$
- Consider dominant EVs; $E_I^r \approx \lambda_1^r \left(|L_1\rangle \langle R_1| + (\lambda_2/\lambda_1)^r \sum |L_\mu\rangle \langle R_\mu| \right)$

- ▶ In therm. limit, $\langle O_i \rangle \approx \langle R_1 | E_O | L_1 \rangle / \lambda_1$
- $\qquad \langle O_i \rangle \left\langle O'_{i+r} \right\rangle \approx \left\langle R_1 | E_O | L_1 \right\rangle \left\langle R_1 | E_{O'} | L_1 \right\rangle / \lambda_1^2$

- $\langle O_i O'_{i+r} \rangle = \operatorname{tr}(E_I^{n-1} E_O E_I^{r-1} E_{O'} E_I^{N-n-r}) / \operatorname{tr}(E_I^N)$
- ▶ In therm. limit, $\langle O_i O'_{i+r} \rangle \approx \langle R_1 | E_O E_I^{r-1} E_{O'} | L_1 \rangle / \langle R_1 | E_I^{r+1} | L_1 \rangle$ $\approx \langle R_1 | E_O | L_1 \rangle \langle L_1 | E_O | R_1 \rangle / \lambda_1^2 + (\lambda_2 / \lambda_1)^r A$
- $C(r) \sim \exp{-r/\xi}$ with $\xi = -1/\log|\lambda_1/\lambda_2|$

- Exponential decay of two-point correlation function
- Results known where such exponential decay implies the area law
- Correlation function mimics quantum system in lower spatial dimension

MPS Algorithms

The term MPS algorithm can refer to any of the following;

- Approximation of general tensors into MPS
 - Low rank approx.
 - MPS compression
- ► (Efficient) computations involving MPS
 - Inner products, expectation values etc.
- Calculating ground states
 - Variational method over TN space; DMRG
 - Imaginary time evolution

MPS Algorithms

- Can we decompose an arbitrary rank N tensor into an MPS state? Yes! By recursively applying SVD
 - For *N* particle system, bond dimension is bounded above by $2^{\lfloor N/2 \rfloor}$; MPS are dense
 - Expensive in terms of calculations

MPS Algorithms

- Low rank approximation
 - Eckart-Young theorem : optimal low rank approximation appears via SVD
 - ► Truncate to *k* singular values
- Use low rank approximation to apply cutoff to bond dimension of MPS; approximation of general state

TN Algorithms : MPS EV

TN Algorithms : PEPS EV

- Contraction of a 2D lattice is computationally complex
- Approximation required; reduce the original problem to a series of 1D problems equivalent to the ground state calculations problems above!

References and Resources

- Hand-waving and Interpretive Dance: An Introductory Course on Tensor Networks; Jacob C. Bridgeman, Christopher T. Chubb
- ➤ A Practical Introduction to Tensor Networks : Matrix Product States and Projected Entangled Pair States; Román Orús
- ► The density-matrix renormalization group in the age of matrix product states; Ulrich Schollwöck