

Ecrit de 2ème session : mardi 12 juin 2019

Durée: 2 h 00 - Sans document ni téléphone, avec calculatrice autorisée

Le sujet comporte 4 exercices indépendants

Exercice 1:

Une installation électrique est alimentée par un réseau électrique triphasé 230 V / 400V 50Hz. Elle comporte les charges suivantes :

- un moteur triphasé de puissance mécanique nominale $P_{m\acute{e}ca}=6~kW$, facteur de puissance $\cos\varphi=0.6$ et rendement $\eta=75$ %, alimenté sous 400~V
- 1 charge composée de 3 impédances Z montées en triangle, avec $Z = 80 + j.60 \Omega$.
- 3 lampes de chauffage de 230 V et 1000 W chacune.
- a. Représenter le principe de raccordement de tous les récepteurs pour obtenir une installation triphasée équilibrée.
- b. Calculer la puissance active, la puissance réactive et la puissance apparente des différentes charges de l'installation.
- c. Calculer la puissance active, la puissance réactive et la puissance apparente de l'installation complète (vue depuis le réseau).
- d. Calculer les intensités des courants de ligne I_1 , I_2 et I_3 .
- e. Calculer le facteur de puissance de l'installation. Commentaire?
- f. On veut relever le facteur de puissance à une valeur de 0,95 avec une batterie de condensateurs couplés en triangle. Calculer la valeur des capacités. Calculer la nouvelle valeur des intensités des courants de ligne.

Exercice 2:

Figure 1 : Ligne de transport en continu

La Figure 1 schématise une ligne de transport en courant continu. La ligne, caractérisée par sa résistance R_l , est alimentée par une source de tension V_s et alimente une charge de résistance R. On note P, la puissance reçue par la charge et V la tension aux bornes de la charge.

- a. Exprimer I en fonction de V_S , V et R_I .
- b. Exprimer P en fonction de V_s , V et R_l .
- c. Déterminer les valeurs de P et de R correspondant à $V=V_S$, $V=\frac{3}{4}V_S$, $V=\frac{1}{2}V_S$ et $V=\frac{1}{4}V_S$.
- d. Tracer la courbe tension-puissance P(V), avec P en abscisse et V en ordonnée.
- e. On suppose que l'on souhaite fournir à la charge une puissance égale à $\frac{V_s^2}{2R_l}$. Est-ce possible ?
- f. On suppose maintenant que la charge est un ensemble de panneaux photovoltaïques qui *fournissent* de la puissance au réseau. La tension aux bornes de la charge reste positive, mais le courant s'inverse. Quel sont les signes de I, de la différence $V_s V$ et de P?
- g. Compléter la courbe tension-puissance P(V) pour prendre en compte cette situation.

Exercice 3:

Le schéma de la Figure 3 représente un hacheur utilisé pour assurer le transfert de puissance entre une source de tension continue parfaite U>0 et un moteur à courant continu modélisé par une inductance pure L en série avec une source de f.e.m E>0. On précise que U>E.

Figure 2 : Convertisseur DC/DC

Les interrupteurs K et D sont parfaits et à commutations instantannées. L'interrupteur K est commandé par un signal périodique de fréquence $f=\frac{1}{T}$. Il est fermé pendant l'intervalle $[0,\alpha T]$ et ouvert pendant l'intervalle $[\alpha T,T]$ $(0 \le \alpha \le 1)$.

- a. La charge suit-elle un comportement de type source de tension ou source de courant ? Justifier.
- b. Déterminer l'expression analytique des tensions et courants v, v_K , i, i_K et i_D sur l'intervalle $[0, \alpha T[$. On précise que i(0) = 0.
- c. On suppose que le hacheur est en limite de conduction continue, c'est-à-dire que le courant s'annule à l'instant t=T. Déterminer l'expression analytique des tensions et courants v, v_K , i, i_K et i_D sur l'intervalle [αT , T[. Dans cette situation, calculer α en fonction de U et E.

Dans la suite de l'exercice, on suppose que le hacheur est en conduction discontinue, c'est-à-dire que le courant s'annule avant la fin de la période, à l'instant $t=\beta T$, avec $\alpha<\beta<1$.

- d. Déterminer l'expression analytique des tensions et courants v, v_K , i, i_K et i_D sur les intervalles $[\alpha T, \beta T[$ et $[\beta T, T[$.
- e. Tracer les chronogrammes des tensions et courants v, v_K , i, i_K et i_D sur une période de fonctionnement.
- f. Déterminer la valeur moyenne de v. En déduire une relation entre α , β U et E.

Exercice 4:

Le schéma de la Figure 3 représente un redresseur utilisé pour alimenter un moteur à courant continu à partir d'une source de tension alternative.

Le pont redresseur est constitué de 2 thyristors et de 2 diodes. Les interrupteurs sont supposés parfaits et à commutation instantanée. Les thyristors sont commandés avec un angle de retard à l'amorçage α .

Le moteur est modélisé par la source de courant constant I_s . Le pont fonctionne en conduction continue.

Figure 3 : Schéma de principe d'un convertisseur AC/DC à thyristors

La tension d'alimentation du pont a pour expression : $v_e(\theta) = V_e\sqrt{2}\sin\theta$ avec $\theta = \omega t$.

- a. Sur quel intervalle d'angle θ peut-on amorcer le thyristor Th1 ? Th 2 ? Justifier.
- b. Représenter la tension de sortie $v_s(\theta)$ sur une période de fonctionnement du convertisseur.
- c. Préciser, pour chaque valeur de θ , quels sont les interrupteurs qui conduisent.
- d. Déterminer la valeur moyenne de la tension de sortie en fonction de α .
- e. Représenter les courants $i_e(\theta)$ et $i_{Th1}(\theta)$ sur une période de fonctionnement du convertisseur.
- f. Déterminer I_e la valeur efficace du courant i_e .