HOW (NOT) TO USE FAIRNESS METRICS IN MACHINE LEARNING

Michele Wieland ETH Zürich 21/9/2023

AGENDA

Why should we care about fairness?

How can we measure fairness?

How can we improve fairness?

What could go wrong?

0

*WHY SHOULD WE CARE ** ABOUT FAIRNESS?

C

WHY SHOULD WE CARE?

Images generated by: Stable Diffusion Web

Woman applying for a tech role

African-American men in court

Image of a CEO

IMAGE OF A CEO

* HOW CAN WE MEASURE FAIRNESS?

INDIVIDUAL VS GROUP FAIRNESS

Group fairness

C

HOW TO MEASURE GROUP FAIRNESS?

- Demographic parity
- Disparate impact
- Equal opportunity
- Equalized odds
- Predictive parity
- Conditional demographic disparity
- Counterfactual fairness

• ..

COMMON GROUP FAIRNESS METRICS

Demographic parity

Equalized odds

Equal opportunity

+

TOY EXAMPLE

- Applying for a loan at a bank
 - Y = 0: request denied
 - Y = 1: request accepted
- Sensitive attribute
 - Z = 0: Swiss
 - Z = 1: Non-Swiss

Demographic parity

$$P(\widehat{Y} = 1 | Z = 0) = P(\widehat{Y} = 1 | Z = 1)$$

DEMOGRAPHIC PARITY IN PYTHON

from fairlearn.metrics import demographic_parity_difference

dp_diff = demographic_parity_difference(y_true,y_pred,sensitive_features)

Equalized odds

$$P(\widehat{Y} = 1 \mid Y = 0, Z = 0) = P(\widehat{Y} = 1 \mid Y = 0, Z = 1)$$

$$P(\widehat{Y} = 1 | Y = 1, Z = 0) = P(\widehat{Y} = 1 | Y = 1, Z = 1)$$

Non-Swiss

EQUALIZED ODDS IN PYTHON

from fairlearn.metrics import equalized_odds_difference

eo_diff = equalized_odds_difference(y_true,y_pred,sensitive_features)

Equal opportunity

$$P(\widehat{Y} = 1 \mid Y = 1, Z = 0) = P(\widehat{Y} = 1 \mid Y = 1, Z = 1)$$

C

EQUAL OPPORTUNITY IN PYTHON

```
from fairlearn.metrics import true_positive_rate

tpr_z0 = true_positive_rate(y_true_z0,y_pred_z0)

tpr_z1 = true_positive_rate(y_true_z1,y_pred_z1)

eq_opp_diff = abs(tpr_z0 - tpr_z1)
```

* HOW CAN WE * IMPROVE FAIRNESS?

Deleting sensitive attributes

name	ZIP code	occupation	gender	age
Emilia*	8002	nurse	female	29
Roberto*	8155	firefighter	male	45
Dan*	8011	data scientist	diverse	22
Sarah*	8049	teacher	female	59

*data is fictional

Deleting sensitive attributes

name	ZIP code	occupation	gender	age	
Emilia*	8002	nurse		29	
Roberto*	8155	firefighter		45	
Dan*	8011	data scientist		22	
Sarah*	8049	teacher		59	

*data is fictional

+

FAIRNESS-PROMOTING ALGORITHMS

Pre-processing

In-processing

Post-processing

+

FAIRNESS-PROMOTING ALGORITHMS

Pre-processing: correlation remover

CORRELATION REMOVER IN PYTHON

from fairlearn.preprocessing import CorrelationRemover

cr = CorrelationRemover(sensitive_feature_ids=['race_AfricanAmerican'])
X_transform = cr.fit_transform(X)

WHAT COULD GO WRONG?

SOLUTIONISM TRAP

*FAIRNESS AND ABSTRACTION IN SOCIOTECHNICAL SYSTEMS, SELBST ET AL.

"Failure to recognize the possibility that the best solution to a problem may not involve technology"

21/9/2023 25

+

CAN WE RELY ON POINT ESTIMATES?

- AUC: 0.71
- Demographic parity gap: 0.03
- Equalized odds gap: 0.04

21/9/2023 26

0

UNCERTAINTY IN ESTIMATES

GITHUB - WIELANDMICHELE/UNCERTAINTY FAIRNESS ESTIMATES

PROTECTING ONE ATTRIBUTE

- Protecting a single attribute can increase unfairness for others
- Often recommended to protect multiple attributes simultaneously
- Not trivial to decide which attributes need protection

-O

FAIRNESS-ACCURACY TRADEOFF

- Accuracy can drop with increased fairness
- Fairest model is random guessing
- Carefully decide which attributes to protect

THANK YOU

Michėle Wieland wielandmichele@sunrise.ch

SOURCES

- 1. Common fairness metrics Fairlearn 0.10.0.dev0 documentation
- 2. Preprocessing Fairlearn 0.10.0.dev0 documentation
- 3. <u>Credit Loan Decisions Fairlearn 0.10.0.dev0</u> <u>documentation</u>
- 4. LECTURE12 GROUP FAIRNESS (ethz.ch)
- 5. Fairness and Abstraction in Sociotechnical Systems (friedler.net)