What is claimed is:

1	1. A method for forming a power generator,
2	comprising the steps of:
3	providing a first insulation element;
4	forming a first metal layer on a lower surface of
5 .	the first insulation element;
6	creating a recess substantially aligned with the
7	first metal layer on the first insulation
8	element;
9	filling the recess with a second insulation element;
10	constructing a magnetic film on the recess of the
11	first insulation element;
12	forming a third insulation element on the magnetic
13	film, wherein the third insulation element
14	substantially aligns with the second insulation
15	element;
16	forming a fourth insulation element on the first
17	insulation element and magnetic film wherein

18	the fourth insulation element receives the
19	third insulation element;
20	forming a fifth insulation element on the third and
21	fourth insulation elements;
22	forming at least one first through-groove on the
23	fifth insulation element, wherein the first
24	through-groove is located on the third
25	insulation element;
26	forming a sixth insulation element on the fifth
27	insulation element and in the first through-
28	groove;
29	forming a plurality of second through-grooves on the
30	sixth insulation element, wherein the second
31	through-grooves are located on the fifth
32	insulation element;
33	forming a seventh insulation element on the sixth
34	insulation element and in the second through-
35	grooves;

removing the second, third and sixth insulation 36 elements to form a vibration chamber, wherein 37 the magnetic film is in the vibration chamber; 38 evacuating the vibration chamber to create a vacuum; 39 sputtering a second metal layer on the fifth and 40 seventh insulation elements; 41 forming a first coil circuit and a second coil 42 circuit on the first metal layer and second 43 metal layer, respectively; and 44 connecting the first and second coil circuits to an 45 electricity storage device. 46

- 2. The method as claimed in claim 1, wherein the first, fourth, fifth and seventh insulation elements are SiN.
- 3. The method as claimed in claim 1, wherein the second, third and sixth insulation elements are composed of the same materials.

- 4. The method as claimed in claim 1, wherein the second, third and sixth insulation elements are fluorinated silicate glass (FSG) or spin on glass (SOG).
- 5. The method as claimed in claim 1, wherein the first through-groove is formed by etching.
- 1 6. The method as claimed in claim 1, wherein the
 2 plurality of second through-grooves are formed by
 3 etching.
- 7. The method as claimed in claim 1, wherein the second, third and sixth insulation elements are removed by wet etching.
- 1 8. The method as claimed in claim 7, wherein the
 2 wet etching uses HF solution to remove the second, third
 3 and sixth insulation elements.
- 9. The method as claimed in claim 1, wherein the created vacuum provides pressure of approximately 10⁻⁶ torr.

- 10. The method as claimed in claim 1, wherein the
 2 first coil circuit and second coil circuit are
 3 respectively formed on the first metal layer and second
 4 metal layer by photolithography and etching.
- 1 11. The method as claimed in claim 1, wherein the
 2 first coil circuit and second coil circuit are
 3 respectively formed on the first metal layer and second
 4 metal layer by printing.
- 1 12. The method as claimed in claim 1, wherein the electricity storage device is a capacitor.
- 1 13. The method as claimed in claim 1, wherein the electricity storage device is a battery.
- 1 14. A power generator, comprising:
- a first substrate;
- a second substrate disposed on the first substrate,

 wherein a vibration chamber is formed between
- the first substrate and second substrate;

10

11

12

13

14

15

- a magnetic film disposed between the first substrate

 and second substrate and located in the

 vibration chamber, wherein the magnetic film

 has a predetermined magnetic field;
 - a first metal layer disposed under the first substrate and substantially aligned with the vibration chamber;
 - a second metal layer disposed on the second substrate and substantially aligned with the vibration chamber; and
- an electricity storage device electrically coupled
 to the first metal layer and second metal
 layer.
- 15. The power generator as claimed in claim 14,

 further comprising a first circuit and a second circuit,

 the electricity storage device connected to the first

 metal layer through the first circuit and connected to

 the second metal layer through the second circuit.

- 1 16. The power generator as claimed in claim 15,
 2 further comprising a first insulation control switch and
 3 a second insulation control switch, the first insulation
 4 control switch disposed on the first circuit, and the
 5 second insulation control switch disposed on the second
 6 circuit.
- 1 17. The power generator as claimed in claim 16,
 2 wherein the first insulation control switch and second
 3 insulation control switch are N-type transistors (NMOS).
- 1 18. The power generator as claimed in claim 14,
 2 wherein the first substrate and second substrate are
 3 composed of insulating materials.
- 19. The power generator as claimed in claim 14,
 wherein the first metal layer further comprises a first
 coil circuit, and the second metal layer further
 comprises a second coil circuit.
- 20. The power generator as claimed in claim 19, wherein the first coil circuit and second coil circuit

- are respectively formed on the first metal layer and second metal layer by photolithography and etching.
- 21. The power generator as claimed in claim 19,
 wherein the first coil circuit and second coil circuit
 are respectively formed on the first metal layer and
 second metal layer by printing.
- 22. The power generator as claimed in claim 14, wherein the vibration chamber is a vacuum.
- 23. The power generator as claimed in claim 22, wherein the vacuum provides pressure of approximately 10⁻⁶ torr.
- 24. The power generator as claimed in claim 14, wherein the electricity storage device is a capacitor.
- 25. The power generator as claimed in claim 14, wherein the electricity storage device is a battery.
- 26. The power generator as claimed in claim 14,
 wherein the first and second substrates are SiN.

- 27. A power generator, comprising:
- a magnetic film suspended within a vibration chamber;
- first and second coils disposed on opposing sides of
 the magnetic film, the first and second coils
 configured to generate induced currents
 resulting from a changing magnetic field of the
 magnetic film, resulting from vibrations
 thereof; and
- an electricity storage device electrically coupled
 to the first and second coils, the electricity
 storage device configured to store electrical
 energy delivered from induced currents in the
 first and second coils.
- 28. A semiconductor device, comprising:
- a semiconductor chip;
- a power generator embedded in the semiconductor chip

 for obtaining electric power by converting

5	vibration energy into electric energy, the
6	power generator comprising:
7	a first substrate;
8	a second substrate disposed on the first substrate,
9	wherein a vibration chamber is formed between
10	the first substrate and second substrate;
11	a magnetic film disposed between the first substrate
12	and second substrate and located in the
13	vibration chamber, wherein the magnetic film
14	has a predetermined magnetic field;
15	a first metal layer disposed under the first
16	substrate;

- a second metal layer disposed on the second substrate; and
- an electricity storage device electrically coupled
 to the first metal layer and second metal
 layer.
- 29. A method for forming a power generator, comprising the steps of:

3	providing a first insulation substrate;
4	forming a first metal layer on a lower surface of
5	the first insulation substrate;
6	forming a second insulation substrate on the first
7	insulation substrate;
8	defining a vibration chamber between the first
9	insulation substrate and second insulation
10	substrate;
11	dividing the vibration chamber by forming a magnetic
12	film between the first insulation substrate and
13	second insulation substrate; and
14	forming a second metal layer on the second
15	insulation substrate.