数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. $1-3141\sim13$ %-5, $1-32415\sim27$ %-515015
- 4. 足りないページがあったら手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。

III 解答用紙に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中の A, B, C, … には、それぞれ-(マイナスの符号)、または、 0 から 9 までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。

解答方法に関する注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{12}$ のときは、 $2\sqrt{3}$ と答えます。)
- (2) 符号は分子につけ、分母・分子は既約分数(reduced fraction)にして答えてください。

(例:
$$\frac{2}{6}$$
 は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{\mathbf{A}}\sqrt{\mathbf{B}}$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、以下のようにマークしてください。
- (4) DExに-xと答える場合は,De-,Ee1とし,以下のようにマークしてください。

【解答用紙】

Α		0	1	2	3	4	(5)	6	7	8	9	
В	Θ	0	1	2		4	5	6	7	8	9	7
С	Θ	0	1	2	3	•	5	6	7	8	9	
D	•	0	1	2	3	4	5	6	7	8	9	
E	Θ	0	•	2	3	4	5	6	7	8	9	

- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番	1		*			*			
名	前								

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の左上にある「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。選択したコースを正しくマークしないと、採点されません。

T

問 1 $6-\sqrt{5}$ の整数部分を a, 小数部分を b とする。このとき

$$a = \boxed{A}$$
, $b + \frac{4}{b} = \boxed{B}$

である。

また

$$b^3 + \left(\frac{4}{b}\right)^3 = \left(b + \frac{4}{b}\right)^{\Box} - \Box \Box \left(b + \frac{4}{b}\right)$$

であるから

$$4a^3-\left\{b^3+\left(rac{4}{b}
ight)^3
ight\}=$$
 FGH

を得る。

問 2 a > 0 とし、x の 2 次関数

$$y = 3ax^2$$
 ①

を考える。

(1) ① のグラフを x 軸方向に 2a, y 軸方向に 12a だけ平行移動すると、そのグラフを表す 2 次関数は

$$y = 3a(x - \Box a)^2 + \Box K a$$

である。さらに、このグラフと直線 y=12a に関して対称なグラフを表す 2 次関数は

$$y =$$
 LM $a(x^2 -$ N $ax +$ O $a^2 -$ P $)$ ②

となる。①と②のグラフが異なる2点で交わるとき、aのとりうる値の範囲は

$$0 < a < \sqrt{\mathbf{Q}}$$

である。

(2) (1) において、a が整数の場合を考える。このとき、① と ② のグラフの交点の x 座標は R と S である。ただし、R < S とする。さらに、直線 x=k (R < S) と ①、② のグラフの交点をそれぞれ P、Q とする。線分 PQ の 長さを k の式で表すと

$$PQ = - \boxed{T} k^2 + \boxed{UV} k$$

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{X}$ \sim $oxed{Z}$ は空欄のままにしてください。

II

等差数列 $\{a_n\}$ と等比数列 $\{b_n\}$ は、どちらも初項が c、すなわち、 $a_1=c$ 、 $b_1=c$ であって、 $\{a_n\}$ の公差と $\{b_n\}$ の公比は同じ正の数 d であるとする。

(1) $a_5 = b_3$ かつ $a_7 = b_5$ が成り立つとき, $c \ge d$ の値を求めよう。

上の条件式を順に c, d を用いて表すと

$$c + \Box A d = cd^{\Box}$$
, $c + \Box C d = cd^{\Box}$

となる。この 2 式から c を消去すると, $d=\frac{\sqrt{\ \textbf{E}\ }}{\ \textbf{F}\ }$ が得られ,これより

$$c = \boxed{\textbf{GH}} \sqrt{\boxed{\textbf{I}}}$$

も得られる。

(2) c と d が (1) で求めた値のとき、 $\{b_n\}$ の初項から第 2m 項までのうち、有理数となる項の和は

である。

公差: common difference, 公比: common ratio

注) 等差数列:arithmetic progression ,等比数列:geometric progression ,

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{N}$ \sim $oxed{Z}$ は空欄のままにしてください。

III

c は実数とする。不等式

$$x^2 + y^2 + 4x - 8y + c < 0$$

と連立不等式

$$\begin{cases} x - y + 8 > 0 \\ 4x + 3y - 24 < 0 \\ y > 0 \end{cases}$$
 ②

を考える。不等式 ① が解をもつとき、①、② が表す領域を参考にして、次の各間に答えなさい。

- (1) 不等式 ① が表す領域の境界は中心が($oldsymbol{AB}$, $oldsymbol{C}$) であり、半径が $\sqrt{oldsymbol{DE}-c}$ の円である。
- (2) 次の 2 つの条件 p, q を考える。

p:x と y は不等式 ① を満たす

q:x と y は連立不等式 ② を満たす

このとき, p が q の十分条件となるような c の値の範囲は

FG
$$\leq c < HI$$

である。

また, p が q の必要条件となるような c の値の範囲は

$$c \subseteq \boxed{\mathsf{JKL}}$$

である。

注) 領域: region, 境界: boundary

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{M}$ \sim $oxed{Z}$ は空欄のままにしてください。

問 1 関数 f(x) は

$$x \le 3$$
 のとき $f(x) = x + 1$
 $x > 3$ のとき $f(x) = -2x + 10$

で与えられている。このとき、 $x \ge 0$ に対して、関数 g(x) が

$$g(x) = \int_0^x f(t) \, dt$$

で定められている。

(1) $0 \le x \le 3 \text{ obs}$

$$g(x) = \frac{\boxed{\mathbf{A}}}{\boxed{\mathbf{B}}} x^{\boxed{\mathbf{C}}} + x$$

であり、x>3 のとき

$$g(x) = -x^2 + \boxed{ extstyle DE} x - \boxed{ extstyle FG}$$

である。

(2) 曲線 y=g(x) を C とする。C 上の点 $\mathrm{P}ig(a,g(a)ig)$ (ただし,a>3)における C の接線が点 $\left(0,\frac{5}{2}
ight)$ を通るとき,その傾きは igcap I である。

問 2 関係式

$$f(x) = 3x + 3 \int_0^x f(t) dt + 4 \int_0^1 f(t) dt$$

を満たす微分可能な関数 f(x) を求めよう。

まず

である。

次に、① の両辺をx で微分すると

を得る。これより

ここで、3 の両辺をx で積分して変形すると

$$f(x) = Ce^{\mathbf{M}x} - \mathbf{N} \qquad \dots \qquad \mathbf{4}$$

となる。ただし、С は定数である。

よって,②より,④のCの値を求めると

$$C = \frac{\mathbf{O}}{\mathbf{P} e^{\mathbf{Q}} - \mathbf{R}}$$

となり、f(x) が求まる。

注) 微分可能な: differentiable

$\overline{ ext{IV}}$ の問題はこれで終わりです。 $\overline{ ext{IV}}$ の解答欄 $\overline{ extbf{S}}\sim\overline{ extbf{Z}}$ は空欄のままにしてください。
コース2の問題はこれですべて終わりです。
観 ダ田紙の ▼ けた爛のままにしてください

この問題冊子を持ち帰ることはできません。

〈数 学〉

コース1							
	問	解答欄	正解				
		Α	3				
	問 1	В	6				
		CDE	312				
		FGH	-36				
		IJK	212				
I		LMNOP	-3444				
	88.0	Q	2				
	問 2	RS	02				
		TUV	612				
		w					
		AB	16				
		CDE	512				
	問 1	FGH	512				
_		IJK	136				
I		LMN	516				
		OPQR	9278				
	問 2	STUVW	36327				
		XYZ	718				
		А	2				
		В	1				
		С	1				
Ш		D	2				
		EF	02				
		GH	03				
		IJ	04				
		AB	35				
		CD	45				
		EFG	485				
IV		HI	45				
		JKL	154				
		MN	25				
		OPQR	1207				

コース 2						
	問	解答欄	正解			
		Α	3			
	問1	В	6			
		CDE	312			
		FGH	-36			
I		IJK	212			
1		LMNOP	-3444			
	問2	Q	2			
	IPJ Z	RS	02			
		TUV	612			
		W	1			
		AB	42			
		CD	64			
I		EF	22			
		GHI	-42			
		JKLM	8121			
		ABC	-24			
		DE	20			
Ш		FG	18			
		HI	20			
		JKL	-60			
		ABC	122			
	問1	DEFGH	10272			
		ı	2			
N		J	4			
	問 2	KL	31			
	IPQ 4	MN	31			
		OPQR	9437			