【实验目的】

掌握分布滞后模型的估计方法

【实验内容】

建立库存函数

【实验步骤】

【例 1】 表 1 列出了某地区制造行业历年库存 Y 与销售额 X 的统计资料。请利用分布滞后模型建立库存函数。

表 1 某地区制造行业统计资料 单位:位	亿元
----------------------	----

年份	库存 Y	销售额 X	年份	库存 Y	销售额 X
1981	50070	27280	1990	84655	46449
1982	52707	30219	1991	90875	50282
1983	53814	30796	1992	97074	53555
1984	54939	30896	1993	101645	52859
1985	58213	33113	1994	102445	55917
1986	60043	35032	1995	107719	62017
1987	63383	37335	1996	120870	71398
1988	68221	41003	1997	147135	82078
1989	77965	44869			

一、Almon 估计

分析滞后期长度

在 Eviews 命令窗口中键入: CROSS Y X ,输出结果见图 1。

图 1 互相关分析图

图中第一栏是 Y 与 X 各滞后期相关系数的直方图。可以看出,库存额与当年及 前三年的销售额相关。因此可以设:

$$y = a + b_0 x_t + b_1 x_{t-1} + b_2 x_{t-2} + b_3 x_{t-3} + \varepsilon_t$$

假定 b_i 可以由一个二次多项式逼近。

利用 Almon 方法估计模型

在 Eviews 命令窗口中键入:

LS Y C
$$PDL(X,3,2)$$

输出结果见图 2, Eviews 分别给出了 Almon 方法估计的模型和还原后的估计模型及相

应参数。

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PDL01 PDL02 PDL03	-9152.012 1.260943 0.133777 -0.544646	2240.155 0.189682 0.168532 0.174874	-4.085438 6.647677 0.793782 -3.114502	0.0022 0.0001 0.4457 0.0110
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.996897 0.995967 1700.676 28923003 -121.6528 2.172088	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		88227.29 26778.20 17.95040 18.13298 1071.006 0.000000
Lag Distribution of	(i	Coefficient	Std. Error	T-Statistic
	0 1 2 3	0.58252 1.26094 0.85007 -0.65009	0.16919 0.18968 0.17271 0.23967	3.44306 6.64768 4.92209 -2.71244

图 2 Almon 估计输出结果

经过 Almon 变化之后的估计结果为: (Z_i 即图 2 中的 PDL 项):

$$\hat{y}_t = -9152.012 + 1.261Z_{0t} + 0.1338Z_{1t} - 0.5445Z_{2t}$$

$$(6.6477) \quad (0.7938) \quad (-3.1145)$$

$$R^2 = 0.9969 \quad \overline{R}^2 = 0.996 \quad DW = 2.17$$

还原后的分布滞后模型为:

$$\hat{y}_{t} = -9152.012 + 0.5825x_{t} + 1.2609x_{t} + 0.85x_{t} - 0.65x_{t}$$
(3.4431) (6.6477) (4.922) (-2.7124)

二、滞后期长度的调整

将 PDL 项的参数依次设定为: PDL(X,3,2) 、 PDL(X,4,2) 、 PDL(X,5,2) , 其调整的判定系数、 SC、 AIC 值如表 2 所示。

表 2	表 2 Almon 估计法滞后期确定				
参数类型		$\overline{R}^{\scriptscriptstyle 2}$	AIC	SC	
PDL(X,3,2)		0.996	17.9504	18.133	
PDL(X,4,2)		0.997	17.597	17.772	
PDL(X,5,2)		0.9957	17.9162	18.0778	

从表 2 中可以看出 , 当滞后期由 3 增加至 4 时 , 调整的判定系数增大而 AIC 和 SC 值均减小。当滞后期由 4 增大到 5 时 , 调整的判定系数减小 , AIC 值、 SC 值增大。所以 , 将滞后期确定 为 4 时合理的。

二、 Almon 估计的模拟

Almon 变换

估计变化后的模型

LS Y C Z0 Z1 Z2

📆 EViews — [Equatio	m: UNTITLED	Workfile:	KUCUHHAHS	SHU]
File Edit Objects	View Proce	Quick Opti	ons Window	<u>H</u> elp
View Procs Objects Pr	int Name Free	ze Estimate	Forecast St	ats Resids
Dependent Variable: Y Method: Least Squares Date: 01/20/05 Time: 10:11 Sample(adjusted): 1984 1997 Included observations: 14 after adjusting endpoints				
∨ariable	Coefficient	Std. Error	t-Statistic	Prob.
С	-9152.012	2240.155	-4.085438	0.0022
Z0	0.582520	0.169186	3.443063	0.0063
Z1	1.223069	0.507241	2.411221	0.0366
	-0.544646	0.174874	-3.114502	0.0110
R-squared	0.996897	Mean depen	dent var	88227.29
Adjusted R-squared	0.995967	S.D. dependent var		26778.20
S.E. of regression	1700.676	Akaike info criterion		17.95040
Sum squared resid	28923003			18.13298
Log likelihood	-121.6528			1071.006
Durbin-Watson stat	2.172088	Prob(F-statistic) 0.00000		0.000000

图 3

回归结果见图 3,即:

$$\hat{y}_t = -9152.012 + 0.5825 * z0 + 1.2231 * z1 - 0.5446 * z2$$

$$(3.4431) (2.4112) (-3.1145)$$

$$R^2 = 0.9969 \quad \overline{R}^2 = 0.996 \quad DW = 2.17$$

计算原模型中的系数估计值

根据 Almon 变换原理有:

$$\beta_{0} = A_{0}$$

$$\beta_{1} = A_{0} + A_{1} + A_{2}$$

$$\beta_{2} = A_{0} + 2A_{1} + 4A_{2}$$

$$\beta_{3} = A_{0} + 3A_{1} + 9A_{2}$$

所以有:
$$\beta_0 = 0.5825$$

$$\beta = 0.5825 + 1.2231 - 0.5446 = 1.261$$

$$\beta_2 = 0.5825 + 2*1.2231 - 4*0.5446 = 0.8503$$

$$\beta_3 = 0.5825 + 3 * 1.2231 - 9 * 0.5446 = -0.6496$$

所以还原成原分布滞后模型为:

$$\hat{y}_{t} = -9152.012 + 0.5825 \times x_{t} + 1.261 \times x_{t-1} + 0.8503 \times x_{t-2} - 0.6496 \times x_{t-3}$$