3.3 Free Response

Find the free response of the differential equation

$$\frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 4y = u \tag{133}$$

with initial conditions $y(0)=1, (dy/dt)|_{t=0}=0$ and $(d^2y/dt^2)|_{t=0}=-1$

Solution:

Fundamental set for this equation is e^{-3t} , $e^{-t}\cos t$, $e^{-t}\sin t$. Hence the free response can be written as

$$y_a(t) = c_1 e^{-2t} + c_2 e^{-t} \cos t + c_3 e^{-t} \sin t$$
 (134)

The intial conditions provide the following set of algebraic equations for c_1, c_2, c_3 :

$$y_a(0) = c_1 + c_2 = 1$$
 $\frac{dy_a}{dt}|_{t=0} = -2c_1 - c_2 + c_3 = 0$ $\frac{d^2y_a}{dt^2}|_{t=0} = 4c_1 - 2c_3 = -1$ (135)

fro which $c_1 = \frac{1}{2}, c_2 = \frac{1}{2}, c_3 = \frac{3}{2}$. Therefor the free response is

$$y_a(t) = \frac{1}{2}e^{-2t} + \frac{1}{2}e^{-t}\cos t + \frac{3}{2}e^{-t}\sin t$$
 (136)

GPT Answer:

The free response of the differential equation is given by:

$$y_h(t) = \frac{1}{2}e^{-2t} + e^{-t}\left(\frac{1}{2}\cos(t) + \frac{3}{2}\sin(t)\right)$$

Confidence level: 95%

Correct

Claude Answer:

Given:

$$\frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 4y = u {137}$$

Initial conditions: y(0) = 1, $\frac{dy}{dt}\Big|_{t=0} = 0$, and $\frac{d^2y}{dt^2}\Big|_{t=0} = -1$

Step 1: Find the characteristic equation by setting u=0 and assuming a solution of the form $y=e^{rt}$.

$$r^3 + 4r^2 + 6r + 4 = 0 ag{138}$$

Step 2: Solve the characteristic equation.

$$(r+2)(r^2+2r+2) = 0 (139)$$

$$(r+2)(r+1)^2 = 0 (140)$$

The roots are $r_1 = -2$ and $r_2 = r_3 = -1$ (a double root).

Step 3: Write the general solution using the roots.

$$y(t) = c_1 e^{-2t} + c_2 e^{-t} + c_3 t e^{-t}$$
(141)

Step 4: Apply the initial conditions to find the values of c_1 , c_2 , and c_3 .

$$y(0) = c_1 + c_2 = 1 (142)$$

$$\frac{dy}{dt}\Big|_{t=0} = -2c_1 - c_2 + c_3 = 0 \tag{143}$$

$$\frac{d^2y}{dt^2}\bigg|_{t=0} = 4c_1 + c_2 - 2c_3 = -1 \tag{144}$$

Solving the system of equations, we get $c_1 = \frac{1}{2}$, $c_2 = \frac{1}{2}$, and $c_3 = -\frac{1}{2}$.

Therefore, the free response of the differential equation with the given initial conditions is:

$$y(t) = \frac{1}{2}e^{-2t} + \frac{1}{2}e^{-t} - \frac{1}{2}te^{-t}$$
(145)

Confidence level: 99% Calculation Error