Homework 5 Machine Learning Qianyong Tang: N11366182

Yes, should change. 1.

> By not desired. Wholever the right door The state of the s THE TABLE X

Denote H,I,T & } 1,2,3 }, where H means the door host chaose, T means the door which has the car, and I means the initial door I picked. Suppose I initially picked door 1, and host picked door 1.

So $P[T=1] = P[7=2] = P[7=3] = \frac{1}{3}$

P(H=2|7=1,]=1) P(7=1|1=1)If I don't switch: $P(7=1|1=1, H=3) = \frac{P(H=2|7=1,]=1) P(7=1|1=1)}{\sum_{i=1}^{3} P(H=2|7=i,]=1) P(7=i|1=1)}$

 $= \frac{\frac{1}{2} \times 1}{\frac{1}{2} + 0 + 1} = \frac{1}{3}$

If I switch: $P[T=2|J=1, H=2] = [-\frac{1}{3} = \frac{2}{3}]$

So I switch

2. P (x1, ..., x5) = P(x1) P(x2/X1) P(x3) P(X4/X1, X2) P(x5/ x2, x4)

1. F 2. F 3. T 4. F 5. T 6. F 7. T 8. T 9. F 10 F

4.

Constructed Junction Tree:

$$(X_1 \times L)$$
 $(X_2 \times X_3)$ $(X_3 \times V)$ $(X_4 \times X_5)$

Result:
$$X_2=0$$
 $X_2=1$
 $X_1=0$ 0.0405 0.4451 0.4856
 $X_1=1$ 0.3237 0.1908 0.5145
0.3642 0.6559

$$X_{2}=0$$
 $X_{2}=1$
 $X_{1}=0$ 0.2601 0.1040 0.3641

 $X_{1}=1$ 0.0578 0.5780 0.6358

0.3179 0.6820

$$X_{1}=0$$
 $X_{2}=1$
 $X_{1}=0$ 0.1192 0.1987 0.2179
 $X_{1}=1$ 0.6395 0.0426 0.6821
 0.7587 0.24103
 $X_{2}=0$ $X_{2}=1$
 $X_{1}=0$ 0.5690 0.1897 0.7587
 $X_{1}=1$ 0.0603 0.1810 0.24013
 0.693 0.370

5. Using Manhab, Applying AngMax Junction Tree Algorithm, we get:

Happy -> Angny -> Angny -> Angny -> Angny

Coole is Attached.

D means Happy, 1 means Angny in my code.