

MEASUREMENT SENSITIVE

DOE-HDBK-1140-2001 FEBRUARY 2001

DOE HANDBOOK

HUMAN FACTORS/ERGONOMICS HANDBOOK FOR THE DESIGN FOR EASE OF MAINTENANCE

U.S. Department of Energy Washington, D.C. 20585

AREA HFAC

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

This document has been reproduced from the best available copy.

Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823.

Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

FOREWORD

The purpose of this handbook is to provide Department of Energy (DOE) contractors with information that can be used to design equipment and maintenance programs in order to reduce human errors and subsequently accidents and injuries due to human errors with maintenance activities. This handbook provides human factors good practices for design of equipment, systems, subsystems, and facilities, including support facilities and equipment, as well as, guidance for maintenance support equipment and procedures, maintenance aids, and maintenance programs. This handbook is part of a series of guides designed to enhance the guidelines set forth in DOE Orders 4330.4B, 420.1, and 5480.30 and DOE Guides 200.1, 420.1-1, 421, and 452.2A.

KEYWORDS

Facility
Maintenance design
Maintenance programs
Workshops

TABLE OF CONTENTS

		ents	
rigu	res		V111
1.0	Gener	al	1
1.0	1.1	Introduction	
	1.2	Source documents	
	1.2		
2.0	Design	n for maintainability	7
	2.1	Unitization, modularization, and standardization	
	2.2	Unit layout, mounting, and configuring	
	2.3	Labeling, marking, and coding	
	2.4	Equipment accessibility	
	2.5	Controls, displays, and protective devices	
	2.6	Line and cable design	
	2.7	Connector design	57
	2.8	Test and service point design	
	2.9	Test equipment design	
	2.10	Cover, case, and shield design	
	2.11	Fastener design and application	
	2.12	Drawer and rack design.	
	2.13	Handle and grasp area design	106
	2.14	Maintenance Safety	
3.0	Works	space, storage, and workshop design	113
	3.1	Workspace and operations in non-workshop areas	
	3.2	Facility design for work in radiological areas	
	3.3	Workshops	
	3.4	Radiological workshops	132
	3.5	Other shop and office areas	
	3.6	Storage areas	135
4.0	Maint	enance support equipment	139
	4.1	General guidelines	
	4.2	Vehicles	
	4.3	Design principles for jacks	140
	4.4	Cradles, cranes, hoists, padeyes	
	4.5	Elevators	
	4.6	Remote handling equipment	
	4.7	Hand tools	
	4.8	Hand tool use in hot environments	
	4.9	Stairs, ladders, and ramps	
	4.10	Platforms, catwalks, and shelters	

	4.11	Hatches	168
	4.12	Communication equipment and procedures	
5.0	Maint	tenance aids	175
	5.1	General guidelines	
	5.2	Maintenance procedures	
6.0	Devel	oping maintenance programs	195
	6.1	Preventive maintenance programs	
	6.2	Monitoring programs to detect functional failure	
	6.3	Servicing and adjustment	
	6.4	Maintenance information management systems	
	6.5	Software and program maintenance	
	6.6	Maintainability design as a part of system development	
Glos	sarv		215

Tables

Table 2.1.1	Advantages and disadvantages of using disposable modules	9
Table 2.4.1	Equipment access selection criteria, provides guidance for selecting	
	equipment accesses	36
Table 2.5.1	Examples of valve color-coding schemes	41
Table 2.9.1	Advantages and disadvantages of types of test equipment	80
Table 2.13.1	Lifting criteria for handles.	109
Table 3.1.	Specific task illumination requirements	131
Table 4.12.1	Intelligibility criteria for voice communication systems	173
Table 6.2.1	Sample portion of component failure modes effects analysis	200
Table 6.2.2	Example of classification of functional failures for selection	
	of monitoring approaches	200
Table 6.3.1	Advantages and disadvantages of using servicing and adjusting approache	s 202

Figures

Figure 2.1.1	A hypothetical equipment design maximizing unit independence	8
Figure 2.1.2	Unitization of a module for easy replacement of low reliability componer	nts 9
Figure 2.2.1	Example of slides with tilt action feature	12
Figure 2.2.2	Proper placement of components	13
Figure 2.2.3	Labeling and coding for panels or equipment	14
Figure 2.2.4	Design of hinged units	16
Figure 2.2.5	Error-free mounting designs.	17
Figure 2.2.6	Example of fold-out construction	17
Figure 2.2.7	Bracing of hinged assemblies	18
Figure 2.2.8	Use of stands for component maintenance	18
Figure 2.2.9	Twist-to-lock type mounting bracket	19
Figure 2.2.10	Use of spring clamp mounts	20
Figure 2.3.1	Label composition	26
Figure 2.3.2	Label containing usable sequence of steps	26
Figure 2.3.3	Use of horizontal rather than vertical labeling	26
Figure 2.3.4	Use of arrows with narrow width-to-length ratios	27
Figure 2.3.5	Label positioning	28
Figure 2.3.6	Component labeling to preclude operating error.	28
Figure 2.3.7	Label indicating control positions	29
Figure 2.3.8	Relating labels to controls and displays	29
Figure 2.3.9	Examples of warning labels	31
Figure 2.4.1	Poor working positions to be avoided	34
Figure 2.5.1	Locating internal controls	36
Figure 2.5.2	Remote controls	37
Figure 2.5.3	Controls with built in locking provisions	38
Figure 2.5.4	Tool actuated control	38
Figure 2.5.5	Covers for individual controls	39
Figure 2.5.6	Examples of recessed controls and panels and use of raised barriers	39
Figure 2.5.7	Valve control labels	40

Figure 2.5.8	Minimizing visual parallax	44
Figure 2.5.9	Oil level sight plug	44
Figure 2.6.1	Proper routing of cable to avoid sharp bends	47
Figure 2.6.2	Proper routing of cable to avoid walking on	48
Figure 2.6.3	Quick release, hinged and spring type clamps	49
Figure 2.6.4	Line and cable rack, winder, and hook	50
Figure 2.6.5	Line and cable reel cart	50
Figure 2.6.6	Line and cable mobile support	50
Figure 2.6.7	Preformed cables	51
Figure 2.6.8	Proper soldering of electrical wire	51
Figure 2.6.9	U-type lugs	52
Figure 2.6.10	Proper spacing of wire loads	52
Figure 2.6.11	Proper length of terminals and connections	52
Figure 2.6.12	Cable "fanning" for ease of maintenance	54
Figure 2.7.1	Example of plug-in connector	58
Figure 2.7.2	Example of proper attachment of crimp-on devices	59
Figure 2.7.3	Example of quick-disconnect connector	59
Figure 2.7.4	Example of crimp-on lug	59
Figure 2.7.5	Example of bolt assembly	60
Figure 2.7.6	Example of threaded connector	60
Figure 2.7.7	Plug and receptacle design and identification methods	63
Figure 2.7.8	Examples of quick-disconnect plugs	64
Figure 2.7.9	Example of extended alignment guides	64
Figure 2.7.10	Example of asymmetrical aligning pin arrangement	65
Figure 2.7.11	Proper arrangement of electrical connectors	65
Figure 2.7.12	Plug vs. pig-tailing connections	66
Figure 2.7.13	Examples of plugs with integral test point or test point adapter	66
Figure 2.7.14	Example of proper use of plugs with many pins	67
Figure 2.7.15	Example of externally visible gasket	68
Figure 2.8.1	Internal needle probe and self-sealing elastomer	71
Figure 2.8.2	Test probe guides	71

Figure 2.8.3	Proper test point grouping	73
Figure 2.8.4	Fan out cables for test points	73
Figure 2.8.5	Example of typical lubrication fittings	74
Figure 2.8.6	Example of well-designed oil filler cap	75
Figure 2.11.1	Example of proper and improper design of bolt fastener	90
Figure 2.11.2	Examples of external and internal grip heads	92
Figure 2.11.3	Examples of quick-release type fasteners	93
Figure 2.11.4	Example of effective latch catch fastener	94
Figure 2.11.5	Example of effective positioning of latches	94
Figure 2.11.6	Example of quick release clamp.	95
Figure 2.11.7	Example of clamp requiring one hand operation	95
Figure 2.11.8	Example of captive fasteners	96
Figure 2.11.9	Examples of combination head bolts and screws and slotted	
	hexagon screws	96
Figure 2.11.10	Example of deep-slotted screw heads	97
Figure 2.11.11	Example of appropriate bolt length	98
Figure 2.11.12	Example of self-sealing nut	99
Figure 2.11.13	Example of lock nut	99
Figure 2.11.14	Example of a clinch nut	99
Figure 2.11.15	Example of a floating nut	99
Figure 2.11.16	Example of an internal wrenching bolt and nut	100
Figure 2.11.17	Example of a chemical charge rivet	101
Figure 2.11.18	Example of gang-channeled nuts	101
Figure 2.11.19	Example of adequate size cotter key head	102
Figure 2.11.20	Example of retainer ring	102
Figure 2.11.21	Example of retainer chain	103
Figure 2.12.1	Examples of drawer and rack design.	104
Figure 2.13.1	Minimum dimensions for different handle designs	107
Figure 2.13.2	Handle location for easy carrying	108
Figure 2.13.3	Handle location for covers and carrying units	108
Figure 2.13.4	Handle equipped with quick-release pins	109

Figure 2.13.5	Examples of handles for withdrawing printed circuit boards	. 110
Figure 2.13.6	Examples of miscellaneous uses for handles	
Figure 3.1.1	Depth of work area	
Figure 3.1.2	Mobile workspace dimensions	. 117
Figure 3.1.3	Fall protection devices	. 120
Figure 3.3.1	Standard design for stand-up benches	
Figure 3.3.2	Podium type workbench design	. 127
Figure 3.3.3	Stand-sit stool	. 128
Figure 3.3.4	Sit-only workbench	. 129
Figure 3.3.5	Double-sided workbench design and workbench accessories	. 129
Figure 3.6.1	Drawer design features	. 137
Figure 3.6.2	Open shelf design feature	. 138
Figure 4.4.1	Hand-held hoist control box	. 144
Figure 4.4.2	Example of hoist lug and lock pin	. 145
Figure 4.6.1	Degrees of freedom of movement for manipulator arm and wrist assembly	. 148
Figure 4.6.2	Examples of manipulator hand configurations	. 150
Figure 4.7.1	Screwdriver for small-sized adjustments	. 154
Figure 4.7.2	Example of clip screwdriver	. 154
Figure 4.7.3	Example of push-type tool	. 155
Figure 4.7.4	Uses of straight and off-set screwdrivers	. 156
Figure 4.7.5	Example of clamping device	. 157
Figure 4.9.1	Preferred and critical angles for ladders, stair ladders, stairs, and ramps	. 159
Figure 4.9.2	Examples of use of safety screens behind open stairs and landings	1160
Figure 4.9.3	Example of hazard marking on ladder	. 161
Figure 4.9.4	Portable rung ladder dimensions	. 162
Figure 4.9.5	Step-ladder dimensions	. 163
Figure 4.10.1	Example of a catwalk	. 167
Figure 4.10.2	Critical dimensions for guardrails	. 168
Figure 4.11.1	Whole body access opening	. 169
Figure 4.11.2	Floor-mounted hatch	. 170
Figure 5.2.1	Example of purpose and scope section	. 178

Figure 5.2.2	Example of tools and supplies section	178
Figure 5.2.3	Example of precautions and limitations section	179
Figure 5.2.4	Example of a list of prerequisites	179
Figure 5.2.5	Example of highlighting	179
Figure 5.2.6	Example of subtask command technique	180
Figure 5.2.7	Numbered callouts	181
Figure 5.2.8	Direct callouts	181
Figure 5.2.9	Example of a caution statement made to stand out	181
Figure 5.2.10	Example of a double check list for an independent observer	183
Figure 5.2.11	Example of conditional statement in a step as a note	184
Figure 5.2.12	Example of a data table	185
Figure 5.2.13	Direct cue/response format	186
Figure 5.2.14	Running text with integrated art	187
Figure 5.2.15	Facing page format	188
Figure 5.2.16	Running text with foldout art format	189
Figure 5.2.17	Presenting actions as task steps	190
Figure 5.2.18	Exploded view drawing	191
Figure 5.2.19	Cutaway view drawings	192
Figure 6.1.1	Decision logic tree	198
Figure 6.5.1	Use of prone position overlay to evaluate required clearance	210

1.0 GENERAL

1.1 Introduction

Maintainability is that characteristic of design and installation that affects the amount of time and cost necessary to repair, test, calibrate, or adjust an item to a specified condition when using defined procedures and resources.

Design for maintainability has as a prime objective the design of systems, subsystems, equipment and facilities capable of being maintained in the least amount of time, at the lowest cost, and with a minimum expenditure of support resources. Attempts to achieve this objective have evolved into the engineering discipline of maintainability.

To realize the overall goal of maintainability, that is, to prevent failure or to restore a failed system or device to operational effectiveness easily and cost effectively, requires that maintainability and the associated human factors contributions be considered as part of the total design process. Maintainability must be designed into the system and equipment during the beginning stage of development to ensure that costly maintenance and/or redesign are avoided. Maintainability should complement operational requirements of a system. Design for maintainability is an evolutionary process that starts in the equipment concept stage and ends after the equipment has been built and tested.

This handbook provides design criteria for promoting system maintainability. These criteria are specifically compiled to assist in incorporating maintainability into new systems or for modification of existing facilities to increase their maintainability. They are not in themselves grounds for establishing the requirement to modify a facility. However they may be used to identify discrepancies with existing design criteria that may result in decreased system and facility maintainability.

This volume is an update and extension of an earlier DOE document, UCRL-15673, *Human Factors Design Guidelines for Maintainability of Department of Energy Nuclear Facilities*.

1.1.1 Scope

This standard establishes system maintainability design criteria for DOE systems, subsystems, equipment and facilities.

1.1.2 Purpose

This document is intended to ensure that DOE systems, subsystems, equipment, and facilities are designed to promote their maintainability. These guidelines are concerned with design features of DOE facilities that can potentially affect preventive and corrective maintenance of systems within DOE facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. This handbook also addresses other factors that influence maintainability, such as repair and maintenance support facilities including hotshops, maintenance information, and various aspects of the environment and worker health and safety. This standard is to be applied to the system design of DOE systems, subsystems, equipment and facilities to:

- Reduce the need for and frequency of design-dictated maintenance.
- Reduce system/equipment down-time.

- Reduce design-dictated maintenance support costs.
- Limit maintenance personnel requirements.
- Reduce the potential for maintenance error.
- Assure use of standard procedures, equipment, and tools, when possible.

This standard serves as a reference and may be cited contractually in system specification and requirements to form a basis for evaluation of the human-machine interface.

1.1.3 Application

These standards should be applied to the design and retrofitting of all facilities, systems, subsystems and equipment by elements of the DOE. Unless otherwise stated in specific provisions, this standard is applicable for use by both men and women. Design should accommodate the range from the 5th percentile female to the 95th percentile male within the user population unless alternate upper and lower limits are specified by the DOE.

- **1.2 Source documents** (for original DOE document, UCRL-15673, *Human Factors Design Guidelines for Maintainability of Department of Energy Nuclear Facilities*, of which this document represents an update and extension).
- 1. Altman, J.W., Marchese, A.C., & Marchiando, B.W., *Guide to design of mechanical equipment for maintainability*, Wright-Patterson Air Force Base, Ohio, ASD Technical Report 61-381(NTIS AD-269332), 1961.
- 2. Blanchard, B.S., & Lowery, E.E., *Maintainability: Principles and practices*, McGraw-Hill, New York, 1969.
- 3. Brynda, W.J., Lobner, P. R., Powell, R.W., & Straker, E.A. *Design guide for category I reactors light and heavy water cooled reactors,* Brookhaven National Laboratory, Upton, New York, NTIS BNL-50831-11, UC-80, 1978.
- 4. Choate, L.M., & Schmidt, T.R. *Sandia Laboratories radiation facilities*. Sandia Laboratories, Albuquerque, 1979.
- 5. Crawford, B.M., & Altman, J.W. Designing for maintainability, in H.P. Van Cott and R.G. Kinkade, *Human engineering guide to equipment design*, U.S. Government Printing Office, Washington, D.C., 1972.
- 6. Cunningham, C.E., & Cox, W. Applied maintainability engineering, John Wiley & Sons, New York, 1972
- 7. Designing for man's advances in control room operations, EPRI Journal, July/August 1982, pp. 6-13.
- 8. Engineering design handbook-maintainability guide for design. U.S. Army Materiel Command, Washington, D.C., AMC Pamphlet 706-134 (AD-754 202), 1972.
- 9. Folley, J.D., & Altman, J.W. *Guide to design of electronic equipment for maintainability*, Wright-Patterson Air Force Base, Ohio, WADC-TR-56-218 (AD-101-729), 1956.

- 10. Nuclear Regulatory Commission, *Guidelines for Control Room Design Reviews*, Washington, D.C., NUREG-0700, 1981.
- 11. Department of Defense, *Human engineering design criteria for military systems*, equipment and facilities, MIL-STD-1472F, 1998.
- 12. U.S. Army, Human factors engineering design for Army materiel, MIL-HBK-759C, 1995.
- 13. Department of Defense, *Maintainability program requirements (for systems and equipment)*, MIL-STD-470, 1966.
- 14. McCormick, E.J., & Sanders, M.S., *Human factors engineering and design* (5th ed.), McGraw-Hill, New York, 1982.
- 15. Morgan, C.T., Chapanis, A., Cook, J.S., & Lund, M.W., *Human engineering guide to equipment design*, McGraw-Hill, New York, 1963.
- 16. Parker, J.F., Jr., & West, V.R., *Bioastronautics data book* (2nd ed.), National Aeronautics and Space Administration, Washington, D.C., 1973.
- 17. Pulliam, R., Price, H.E., Bongarra, J.P., Jr., Sawyer, C.R., & Kisner, R.A., *A methodology for allocating nuclear power plant control functions to human or automatic control*, Nuclear Regulatory Commission, Washington, D.C., NUREG/CR3331, 1983.
- 18. Rigby, L.V., & Cooper, J.I., *Problems and procedures in maintainability*, Wright-Patterson Air Force Base, Ohio, ASD Technical Note 61-126 (AD-273-108), 1961.
- 19. Rigby, L.V., Cooper, J.I., & Spickard, W.A. *Guide to integrated system design for maintainability* Wright-Patterson Air Force Base, Ohio, ASD Technical Report 61-424, 1961.
- 20. Seminars, J.L, *Human factors methods for assessing and enhancing power plant maintainability*, Electric Power Research Institute, Palo Alto, EPRI-NP-2360, 1982.
- 21. Seminars, J.L., & Parsons, S. O., *Human factors review of power plant maintainability*, Electric Power Research Institute, Palo Alto, EPRI-NP-1567, 1981.
- 22. Seminars, J.L., Parsons, S. O., Schmidt, W.J., Gonzalez, W.R., & Dove, L.E., *Human factors review of power plant maintainability*, Electric Power Research Institute, Palo Alto, EPRI-NP-1567SY, 1980.
- 23. Seminars, J.L., Gonzalez, W.R., & Parsons, S. O. *Human factors review of nuclear power plant control room design*, Electric Power Research Institute, Palo Alto, EPRI-NP-309, 1977.
- 24. Smith, D.J., & Babb, A.H., Maintainability engineering, John Wiley & Sons, New York, 1973.
- 25. Van Cott, H.P., & Kinkade, R.G., *Human engineering guide to equipment design*, U.S. Government Printing Office, Washington, D.C., 1972.
- 26. Woodson, W.E., Human factors design handbook, McGraw-Hill, New York, 1981.

27. Zahn, H.S. et al. *Developing maintainability for fusion power systems*, Department of Energy, Washington, D.C., NTIS COO-4184-8, 1979.

1.2.1 Additional Source documents used for this revision

- 1. Arnold, R.S., Slovin, M., and Wilde, N. *Do design records really benefit software maintenance*. IEEE conference on software maintenance, 1993, pp. 234 243.
- 2. Caldiera, G. *Impact of ISO 9000 on software maintenance*, IEEE conference on software maintenance, 1993, pp. 228 230.
- 3. Caparetz, M.A. and Munro, M. *Configuration management discipline*, IEEE Conference on software maintenance, 1992, pp. 183 192.
- 4. Cherinka, C.M. Overstreet, L.M, Sparks, R. *Building an integrated software maintenance environment from a maintainers perspective*, IEEE Conference on software maintenance, 1993, pp. 31 40.
- 5. Department of Defense, *Human Engineering design criteria for military systems, equipment, and facilities.*, MIL-STD-1472F, 1998.
- 6. draft Department of Energy, *Human factors engineering design criteria: Volume I, general criteria*, DOE-HDBK-XXXX, 1994.
- 7. Garland, J.K. and Calliss, F.W. *Improved change tracking for software maintenance*, IEEE conference on software maintenance, 1991, pp. 32 41.
- 8. Gulla, B. *Improved maintenance support by multi-version visualizations*, IEEE Conference on software maintenance, 1992, pp. 376 383.
- 9. Harjani, D.K. and Queille, J.P. *A process model for the maintenance of large space systems software*, IEEE Conference on software maintenance, 1992, pp. 127 136.
- 10. Harrison, W. and Cook, C. *Insights on improving the maintenance process through software measurement,* IEEE Conference on software maintenance, 1990, pp. 37 45.
- 11. Leung, H.K. and White, L. *A study of integration testing and software regression at the integration level*, IEEE Conference on software maintenance, pp. 290 301.
- 12. Moubray, J. Reliability centered maintenance, Butterworth-Heinemann, Ltd., London, 1991.
- 13. National Aeronautics and Space Administration, *Man-System Integration Standards*, NASA-STD-3000, Vol. 1., 1987.
- 14. Pack, R.W. et. al., *Human engineering design guidelines for maintainability*, Electric Power Research Institute, Palo Alto, EPRI-NP-4350, 1985.
- 15. Pigoski, T.M. and Cowden, C.A. *Software transition: experience and lessons learned*, IEEE conference on software maintenance, 1992, pp. 294 298.

- 16. Pigoski, T.M. and Looney, C.S. *Software maintenance training: Transition experiences*, IEEE Conference on software maintenance, 1993, 314 318.
- 17. Van Cott, H.P. and Kinkade, R.G. *Human Engineering Guide to Equipment Design*, Revised Edition, U.S. Government Printing Office, Washington, D.C., 1972.
- 18. Vollman, T. *Transitioning from development to maintenance*, IEEE Conference on software maintenance, 1990, pp. 189 199.

