Leveraging Machine Learning in R for Predicting Outcomes: A Case Study

Jagadish Katam

Introduction

Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), and Data Science (DS) have been frequently interchangeably used. ML is a subset of AI that focuses on developing algorithms and models that enable computers to learn from and make predictions or decisions based on data, without being explicitly programmed.

Data

	Age	Gender	:	BMI	${\tt AlcoholConsumption}$	Smoking	${\tt GeneticRisk}$	PhysicalActivity
1	58	(3	5.85758	17.272828	0	1	0.6589402
2	71	1	1 3	0.73247	2.201266	0	1	1.6705567
3	48	() 1	9.97141	18.500944	0	0	9.9283083
4	34	1	l 1	6.61542	12.632870	0	0	5.6301294
5	62	1	l 1	6.06583	1.087815	0	1	3.5662180
6	27	1	L 2	4.28521	12.885134	0	2	2.8820269
	Diab	etes E	Іур	ertensio	n LiverFunctionTes	t Diagnos	sis	
1		0			0 42.7342	1	1	
2		1			0 67.3098	2	1	
3		0			0 63.7389	3	0	
4		0			0 64.5558	7	1	
5		1			77.8686	9	1	
6		0			0 50.5350	3	1	

Box Plot

Bar Chart

Bar Charts of Factor Columns by Diagnosis

Model Summary

Call: stats::glm(formula = Diagnosis ~ Age + Gender + BMI + AlcoholConsumption + Smoking + GeneticRisk + Hypertension + LiverFunctionTest + PhysicalActivity + Diabetes, family = binomial, data = trainData) Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) 0.720853 -15.103 < 2e-16 *** -10.887044 0.004956 7.619 2.56e-14 *** Age 0.037756 Gender1 BMI 0.076820 0.011688 6.572 4.95e-11 *** AlcoholConsumption 0.247559 0.017858 13.863 < 2e-16 *** 1.760336 0.196054 8.979 < 2e-16 *** Smoking1 GeneticRisk1 -0.140282 0.176799 -0.793 0.428 GeneticRisk2 Hypertension1 LiverFunctionTest PhysicalActivity 0.260131 4.241 2.22e-05 *** Diabetes1 1.103333 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1697.72 on 1234 degrees of freedom

Residual deviance: 934.08 on 1223 degrees of freedom

AIC: 958.08

Number of Fisher Scoring iterations: 6

Model Accuracy

[1] 0.8516129

Confusion Matrix

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 181 37 1 32 215

Accuracy : 0.8516

95% CI: (0.816, 0.8827)

No Information Rate : 0.5419 P-Value [Acc > NIR] : <2e-16

Kappa : 0.7017

Mcnemar's Test P-Value: 0.6301

Sensitivity: 0.8532 Specificity: 0.8498 Pos Pred Value: 0.8704 Neg Pred Value: 0.8303

> Precision: 0.8704 Recall: 0.8532

> > F1: 0.8617

Prevalence : 0.5419
Detection Rate : 0.4624
Detection Prevalence : 0.5312
Balanced Accuracy : 0.8515

'Positive' Class : 1

Receiver Operating Characteristic (ROC)

Call:

Data: model\$fitted.values in 551 controls (trainData\$Diagnosis 0) < 684 cases (trainData\$Diagnosis 0)

Predicted Probabilities

