'הרצאה ליני – פתרון מועד ג' משפד" סמסטר א

שחר פרץ

2025 בינואר 27

......(1)

 $.u=\{B\cdot A\mid B\in m_{n\times m}(\mathbb{F})\}$ נגדיר $.A\in M_{n\times m}(\mathbb{F})$ ותהי ותהי ותהי $m,n,k\geq 1$ יהיי

 $M_{k imes n}(\mathbb{F})$ של ת"מ u כי ו.1

 $A_1, \lambda_2 \in \mathbb{F}$ ועבור $B_1, B_2 \in M_[k imes m]$ עבור לצ"ל. עבור $B_1, B_2 \in M_[k imes m]$ ועבור $A_1, A_2 \in \mathbb{F}$ ועבור ועבור $A_1, A_2 \in \mathbb{F}$ ועבור נתבונן ב־:

$$\lambda_1 B_1 A + \lambda_2 B_2 A = \underbrace{(\lambda_1 B_1 + \lambda_2 B_2)}_{\in M_{k \times m}} A \in u$$

 $\dim u$ את .2

הוכחה. נשים לב:

$$Row(B, A) \subseteq Row(A)$$

נסמן ב- $(v_1,v_2,\dots v_r)$ בסיס למ"ו השורות של $r=\operatorname{rk} A$ כאשר למ"ו בסיס למ"ו בסיס למ"ו

$$M_{ij} := \left\{ \begin{pmatrix} 0 \\ \vdots \\ | v_j^T | \\ \vdots \\ 0 \end{pmatrix} \right\}$$

 $\{\lambda_{ij}\}\subseteq \mathbb{F}$ מטריצות. קל לוודא שקב' זו בת"ל שהרי: (עבור k imes r מטריצות. אוהי קב

$$\sum_{i=1}^{k} \sum_{j=1}^{r} \lambda_{ij} M_{ij} = 0$$

 $.1 \leq k \leq r$. $\lambda_{ij}=0$ מתקיים בהכרח בסיס ובת"ל שכי שכי ומכייון שי הכייון שי בהכרח בהכרח בסיס ובת"ל מתקיים $\sum_{j=1}^r \lambda_{ij} v_j$ מתקיים: $1 \leq i \leq k$ מתקיים $B \in M_{k \times m}(\mathbb{F})$ cbux; kfk

$$\varphi_i^t \cdot (BA) = \sum_{i=1}^r \lambda_{ij}$$

 $\dim u=k imes r$ נונכל לרשום u=k imes r ולכן $BA=\sum_{i=1}^k\sum_{j=1}^r\lambda_{ij}M_{ij}\in\mathrm{span}(M_{ij})$ ונוכל לרשום $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ מתקיים ש־ $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ שהרי עבור $v_j\in\mathrm{Row}(A)$ שהרי עבור $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ מתקיים ש־ $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ שהרי עבור $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ מוכל להציג את $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ מתקיים ש־ $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ שהרי עבור $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ ווכל להציג את $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ מתקיים ש־ $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ שהרי עבור $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ מתקיים ש־ $v_j=\sum_{\ell=1}^m\alpha_\ell R_\ell$ מוכל

$$M_{ij} = \begin{pmatrix} | & 0 & | \\ \alpha_1 & \cdots & \alpha_m \\ | & 0 & | \end{pmatrix} \cdot A$$

 $\operatorname{rk}(T^n) < \operatorname{rk}(T^{n-1})$ נניח כי $n = \dim V \geq 2$ תהי $T \colon V \to V$ תהי

 $\operatorname{rk}(T^n) = \operatorname{dim} \ker T^{n-1} \leq \dim \ker T^n$ נשים לב: $\operatorname{rk}(T^{n-1}) \leq \ker T^n$ ולכן $\operatorname{ker} T^{n-1} \leq \ker T^n$ נשים לב: $\operatorname{rk}(T^{n-1}) < \operatorname{rk}(T^{n-2})$ נשים לב: $\operatorname{dim} \ker T^{n-1} = \operatorname{rk} T^{n-1}$ נסיק שקיים $\operatorname{dim} \operatorname{Im} T^n \neq \operatorname{dim} \operatorname{Im} T^{n-1} = \operatorname{rk} T^{n-1}$ נסיק שקיים $\operatorname{dim} \operatorname{Im} T^n = \operatorname{rk} T^{n-1}$ נחבונן בוקטור $\operatorname{rk}(T^n) = \operatorname{rk} T^{n-1}$ נחבונן בוקטור $\operatorname{rk}(T^n) = \operatorname{rk} T^{n-1}$

$$T_v \in \ker T^{n-1} \setminus \ker T^{n-2} \iff T^{n-2}(T_v) = T_v^{n-1} \neq 0, \ T^{n-1}(T_v) = T_v^n = 0$$

 $\operatorname{rk} T^{n-1} = \dim \operatorname{Im} T^{n-1} \neq \dim \operatorname{ker} T^{n-2} \neq \dim \operatorname{ker} T^{n-2} = \operatorname{ker} T^{n-1}$ שהרי כמקודם, $\dim \operatorname{ker} T^{n-1} \neq \dim \operatorname{ker} T^{n-2} = \operatorname{rk} T^{n-2}$

 $k \in [n]$ לכל $\operatorname{rk}(T^k) < \operatorname{rk}(T^{k-1})$. מוכיחו ש

הוכחה. באופן דומה, עבור $1 \leq k \in T^k$, נקבל: $1 \leq k \in T^k$ וגם $1 \leq k \in T^k$, כאשר $1 \leq k \leq n$, נקבל: $1 \leq k \leq n$, נקבל: $1 \leq k \leq n$ וגם $1 \leq k \leq n$ וגם $1 \leq k \leq n$ ואם $1 \leq k \leq n$ ואז קיים $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ ואז הקבוצה $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ ואז הקבוצה $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ ואז הקבוצה $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ ואז הקבוצה $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ ואז הקבוצה $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ ואז הקבוצה $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ ואז הקבוצה $1 \leq k \leq n$ ואז היים $1 \leq k \leq n$ שעבורו $1 \leq k \leq n$ ואז הקבוצה $1 \leq k \leq n$ ואז היים $1 \leq n$ ואז היים $1 \leq n \leq n$ וואז היים 1

$$X = \begin{pmatrix} A & A \\ B & C \end{pmatrix} \in M_4(\mathbb{F}) \text{ ותהי } \mathbb{F} \text{ ותהי } 2 \text{ מטריצות מסדר } 2 \text{ מטריצות מסדר } 3 \text{ מטריצות מסדר } 4 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \ B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, \ C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$
 תהינה $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

. $\det(X) = \det A \cdot (\det C - \det B)$.1. הוכיחו/הפריכו:

אז: $A=B=I_2, C=2I_2$ אז: מיתן דוגמה נגדית:

$$\det X = \begin{bmatrix} I_2 & I_2 \\ I_2 * 2I_2 \end{bmatrix} = \begin{bmatrix} I_2 & I_2 \\ 0 & I_2 \end{bmatrix} = 1, \ \det I_2(\det(2I_2) - \det I_2) = 3$$

.det $X = \det A \cdot \det(C - B)$.2.

$$\det X = \det \begin{pmatrix} A & A \\ B & C \end{pmatrix} = \det \begin{pmatrix} A & 0 \\ B & C - B \end{pmatrix} = \det A \det (C - B)$$

 $u,v\in\mathbb{F}^n$ ויהיו n מטריצת היחידה מטריצת ותהי ותהי ותהי ויהיו ויהיו מסדר מטריצת מטריצת ותהי

(א) הראו ש־:

$$\begin{pmatrix} I_n & 0_{n \times 1} \\ v^t & 1 \end{pmatrix} \begin{pmatrix} I + uv^t & u \\ 0_{1 \times n} & 1 \end{pmatrix} \begin{pmatrix} I_n & 0_{n \times 1} \\ -v^t & 1 \end{pmatrix} = \begin{pmatrix} I_n & u \\ 0_{1 \times n} & 1 + v^t u \end{pmatrix}$$

נבחין שכל המטריצות מסדר $(n+1) \times (n+1)$. זה פשוט כפל ידני של מטריצות. אין כאן שום הוכחה מעניינת. בשורה התחתונה נכפול ונקבל:

$$\cdots = \begin{pmatrix} I + uv^t & u \\ v^t + v^t uvv^t & v^t u + 1 \end{pmatrix} \begin{pmatrix} I_n & 0_{n \times 1} \\ -v^t & 1 \end{pmatrix} = \begin{pmatrix} I + uv^t - uv^t & u \\ v^t + v^t uv^t - v^t uv^t - v^t & v^t u + 1 \end{pmatrix} = \begin{pmatrix} I_n & u \\ 0_{1 \times n} & 1 + v^t u \end{pmatrix}$$

 $\det(I_n + uv^t) + 1 + v^t u \quad (2)$

$$\det(\cdots) = \begin{bmatrix} I_n & 0_{n \times 1} \\ v^t & 1 \end{bmatrix} \begin{bmatrix} I + uv^t & u \\ 0_{1 \times n} & 1 \end{bmatrix} \begin{bmatrix} I_n & 0_{n \times 1} \\ -v^t & 1 \end{bmatrix} = 1 \cdot |I + uv^t| \cdot 1 = \det(I + uv^t)$$

מצד שני:

$$\det\begin{pmatrix} I_n & u\\ 0 & 1 + v^t u \end{pmatrix} = 1 + v^t u$$

 $\det(I_n + uv^t) = 1 + v^t u$ כלומר,

 $\dots \dots \dots (5) \dots \dots \dots$	
בקורס. תעשו יהיו יהיה תהינה ותהיו פורמלית.	כאן היה פשוט צריך להגדיר 7 מושגים שהיו