Homework 2 Solutions

Problem 1

 $S_{v} = 350 \text{ MPa}.$

MSS:
$$\sigma_1 - \sigma_3 = S_y/n \implies n = \frac{S_y}{(\sigma_1 - \sigma_3)}$$

DE:
$$\sigma' = (\sigma_A^2 - \sigma_A \sigma_B + \sigma_B^2)^{1/2} = \frac{S_y}{n} \implies n = \frac{S_y}{\sigma'}$$

(a) MSS:
$$\sigma_1 = 100 \text{ MPa}, \ \sigma_3 = 0 \implies n = \frac{350}{100 - 0} = 3.5 \text{ Ans}.$$

DE:
$$n = \frac{350}{[100^2 - (100)(100) + 100^2]^{1/2}} = 3.5$$
 Ans.

(b) MSS:
$$\sigma_1 = 100$$
, $\sigma_3 = -100$ MPa $\Rightarrow n = \frac{350}{100 - (-100)} = 1.75$ Ans.

DE:
$$n = \frac{350}{\left[100^2 - (100)(-100) + \left(-100\right)^2\right]^{1/2}} = 2.02$$
 Ans.

(c) MSS:
$$\sigma_1 = 0$$
, $\sigma_3 = -100 \text{ MPa} \implies n = \frac{350}{0 - (-100)} = 3.5$ Ans.

DE:
$$n = \frac{350}{\left[\left(-50 \right)^2 - \left(-50 \right) \left(-100 \right) + \left(-100 \right)^2 \right]^{1/2}} = 4.04$$
 Ans.

Problem 2

 $S_{yt} = 60 \text{ kpsi}$, $S_{yc} = 75 \text{ kpsi}$. Eq. (5-26) for yield is

$$n = \left(\frac{\sigma_1}{S_{yt}} - \frac{\sigma_3}{S_{yc}}\right)^{-1}$$

(a)
$$\sigma_1 = 25 \text{ kpsi}, \ \sigma_3 = 0 \implies n = \left(\frac{25}{60} - \frac{0}{75}\right)^{-1} = 2.40 \text{ Ans.}$$

(b)
$$\sigma_A, \sigma_B = \frac{-12+15}{2} \pm \sqrt{\left(\frac{-12-15}{2}\right)^2 + (-9)^2} = 17.7, -14.7 \text{ kpsi}$$

$$\sigma_1 = 17.7, \ \sigma_2 = 0, \ \sigma_3 = -14.7 \text{ kpsi} \implies n = \left(\frac{17.7}{60} - \frac{-14.7}{75}\right)^{-1} = 2.04 \quad Ans.$$

Problem 3

$$S_{ut} = 30 \text{ kpsi}, S_{uc} = 90 \text{ kpsi}$$

BCM: Eqs. (5-31), p. 250 MM: see Eqs. (5-32), p. 250

(a)
$$\sigma_A$$
, $\sigma_B = \frac{-15+10}{2} \pm \sqrt{\left(\frac{-15-10}{2}\right)^2 + (-15)^2} = 17.03$, -22.03 kpsi BCM: Eq. (5-31b), $n = \left(\frac{17.03}{30} - \frac{-22.03}{90}\right)^{-1} = 1.23$ Ans.

MM: $\sigma_A \ge 0 \ge \sigma_B$, and $|\sigma_B/\sigma_A| \ge 1$, Eq. (5-32b),

$$n = \left[\frac{\left(S_{uc} - S_{ut} \right) \sigma_A}{S_{uc} S_{ut}} - \frac{\sigma_B}{S_{uc}} \right]^{-1} = \left[\frac{\left(90 - 30 \right) 17.03}{90 \left(30 \right)} - \frac{-22.03}{90} \right]^{-1} = 1.60 \quad Ans.$$

(b) $\sigma_A = 15 \text{ kpsi}, \ \sigma_B = -15 \text{ kpsi},$

BCM: Eq. (5-31a),
$$n = \left(\frac{15}{30} - \frac{-15}{90}\right)^{-1} = 1.5$$
 Ans.

MM:
$$\sigma_A \ge 0 \ge \sigma_B$$
, and $|\sigma_B/\sigma_A| \le 1$, Eq. (5-32a), $n = \frac{S_{ut}}{\sigma_A} = \frac{30}{15} = 2.0$ Ans.

Problem 4

From Table A-20, $S_v = 370$ MPa. From the solution of Prob. 3-69, in the plane of analysis

$$\sigma_1 = 275$$
 MPa, $\sigma_2 = -12.1$ MPa, and $\tau_{max} = 144$ MPa

The state of stress is *plane stress*. Thus, the three-dimensional principal stresses are

$$\sigma_1 = 275$$
 MPa, $\sigma_2 = 0$, and $\sigma_3 = -12.1$ MPa

MSS: From Eq. (5-3),
$$n = \frac{S_y}{\sigma_1 - \sigma_3} = \frac{370}{275 - (-12.1)} = 1.29$$
 Ans.

DE: From Eqs. (5-13) and (5-19)

$$n = \frac{S_y}{\sigma'} = \frac{S_y}{\left(\sigma_A^2 - \sigma_A \sigma_B + \sigma_B^2\right)^{1/2}} = \frac{370}{\left[275^2 - 275\left(-12.1\right) + \left(-12.1\right)^2\right]^{1/2}}$$
$$= 1.32 \quad Ans.$$

Problem 5

From Table A-20, for AISI 1035 CD, $S_v = 67$ kpsi.

From force and bending-moment equations, the ground reaction forces are found in two planes as shown.

The maximum bending moment will be at B or C. Check which is larger. In the xy plane,

$$M_B = 223(8) = 1784 \text{ lbf} \cdot \text{in and } M_C = 127(6) = 762 \text{ lbf} \cdot \text{in.}$$

In the xz plane, $M_B = 123(8) = 984$ lbf · in and $M_C = 328(6) = 1968$ lbf · in.

$$M_B = [(1784)^2 + (984)^2]^{\frac{1}{2}} = 2037 \text{ lbf} \cdot \text{in}$$

$$M_C = [(762)^2 + (1968)^2]^{\frac{1}{2}} = 2110 \text{ lbf} \cdot \text{in}$$

So point C governs. The torque transmitted between B and C is T = (300 - 50)(4) = 1000 lbf·in. The stresses are

$$\tau_{xz} = \frac{16T}{\pi d^3} = \frac{16(1000)}{\pi d^3} = \frac{5093}{d^3} \text{ psi}$$

$$\sigma_x = \frac{32M_C}{\pi d^3} = \frac{32(2110)}{\pi d^3} = \frac{21492}{d^3}$$
 psi

For combined bending and torsion, the maximum shear stress is found from

$$\tau_{\text{max}} = \left[\left(\frac{\sigma_x}{2} \right)^2 + \tau_{xz}^2 \right]^{1/2} = \left[\left(\frac{21.49}{2d^3} \right)^2 + \left(\frac{5.09}{d^3} \right)^2 \right]^{1/2} = \frac{11.89}{d^3} \text{ kpsi}$$

Max Shear Stress theory is chosen as a conservative failure theory. From Eq. (5-3)

$$\tau_{\text{max}} = \frac{S_y}{2n} = \frac{11.89}{d^3} = \frac{67}{2(2)}$$
 \Rightarrow $d = 0.892 \text{ in}$ Ans.