MISSO: Minimization by Incremental Stochastic Surrogate Optimization for Large Scale Nonconvex Problems

Anonymous Author(s)

Affiliation Address email

Abstract

To be completed

2 1 Introduction

We consider the *constrained* minimization problem of a finite sum of functions:

$$\min_{\boldsymbol{\theta} \in \Theta} \mathcal{L}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i(\boldsymbol{\theta}) , \qquad (1)$$

- where Θ is a convex, compact, and closed subset of \mathbb{R}^p , and for any $i \in [1, n]$, the function \mathcal{L}_i :
- $\mathbb{R}^p \to \mathbb{R}$ is bounded from below and is (possibly) non-convex and non-smooth.
- Notations We denote $[1, n] = \{1, \dots, n\}$. Unless otherwise specified, $\|\cdot\|$ denotes the standard
- 7 Euclidean norm and $\langle \cdot | \cdot \rangle$ is the inner product in Euclidean space. For any function $f: \Theta \to \mathbb{R}$,
- 8 $f'(\theta, d)$ is the directional derivative of f at θ along the direction d, i.e.,

$$f'(\boldsymbol{\theta}, \boldsymbol{d}) := \lim_{t \to 0^+} \frac{f(\boldsymbol{\theta} + t\boldsymbol{d}) - f(\boldsymbol{\theta})}{t} . \tag{2}$$

9 The directional derivative is assumed to exist for the functions introduced throughout this paper.

10 2 MISSO Algorithm

- 11 For any $i \in [\![1,n]\!]$, we consider a surrogate function $\widehat{\mathcal{L}}_i(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}})$ which satisfies
- 12 **S1.** For all $i \in [1, n]$ and $\overline{\theta} \in \Theta$, the function $\widehat{\mathcal{L}}_i(\theta; \overline{\theta})$ is convex w.r.t. θ , and it holds

$$\widehat{\mathcal{L}}_i(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}) \ge \mathcal{L}_i(\boldsymbol{\theta}), \ \forall \ \boldsymbol{\theta} \in \Theta \ , \tag{3}$$

- 13 where the equality holds when $\theta = \overline{\theta}$.
- 14 **S2.** For any $\overline{\boldsymbol{\theta}}_i \in \Theta$, $i \in [\![1,n]\!]$ and some $\epsilon > 0$, the difference function $\widehat{e}(\boldsymbol{\theta}; \{\overline{\boldsymbol{\theta}}_i\}_{i=1}^n) :=$
- 15 $\frac{1}{n}\sum_{i=1}^{n}\widehat{\mathcal{L}}_{i}(\boldsymbol{\theta};\overline{\boldsymbol{\theta}}_{i}) \mathcal{L}(\boldsymbol{\theta})$ is defined for all $\boldsymbol{\theta} \in \Theta_{\epsilon}$ and differentiable for all $\boldsymbol{\theta} \in \Theta$, where
- 16 $\Theta_{\epsilon} = \{ \boldsymbol{\theta} \in \mathbb{R}^d, \inf_{\boldsymbol{\theta}' \in \Theta} \| \boldsymbol{\theta} \boldsymbol{\theta}' \| < \epsilon \}$ is an ϵ -neighborhood set of Θ . Moreover, for some constant
- 17 L, the gradient satisfies

$$\|\nabla \widehat{e}(\boldsymbol{\theta}; \{\overline{\boldsymbol{\theta}}_i\}_{i=1}^n)\|^2 \le 2L\widehat{e}(\boldsymbol{\theta}; \{\overline{\boldsymbol{\theta}}_i\}_{i=1}^n), \ \forall \ \boldsymbol{\theta} \in \Theta \ . \tag{4}$$

Algorithm 1 MISSO method

- 1: **Input:** initialization $\theta^{(0)}$; a sequence of non-negative numbers $\{M_{(k)}\}_{k=0}^{\infty}$.
- 2: For all $i \in [1, n]$, draw $M_{(0)}$ Monte-Carlo samples with the stationary distribution $p_i(\cdot; \boldsymbol{\theta}^{(0)})$.
- 3: Initialize the surrogate function as

$$\widetilde{\mathcal{A}}_{i}^{0}(\boldsymbol{\theta}) := \widetilde{\mathcal{L}}_{i}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(0)}, \{z_{i,m}^{(0)}\}_{m=1}^{M_{(k)}}), \ i \in [1, n].$$

$$(7)$$

- 4: **for** k = 0, 1, ... **do**
- 5: Pick a function index i_k uniformly on [1, n].
- 6: Draw $M_{(k)}$ Monte-Carlo samples with the stationary distribution $p_i(\cdot; \boldsymbol{\theta}^{(k)})$.
- 7: Update the individual surrogate functions recursively as:

$$\widetilde{\mathcal{A}}_{i}^{k+1}(\boldsymbol{\theta}) = \begin{cases} \widetilde{\mathcal{L}}_{i}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(k)}, \{z_{i,m}^{(k)}\}_{m=1}^{M_{(k)}}), & \text{if } i = i_{k} \\ \widetilde{\mathcal{A}}_{i}^{k}(\boldsymbol{\theta}), & \text{otherwise.} \end{cases}$$
(8)

- 8: Set $\boldsymbol{\theta}^{(k+1)} \in \arg\min_{\boldsymbol{\theta} \in \Theta} \widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathcal{A}}_{i}^{k+1}(\boldsymbol{\theta})$.
- 9: end for
- Let Z be a measurable set, $p_i: \mathsf{Z} \times \Theta \to \mathbb{R}_+$ be a pdf, $r_i: \Theta \times \Theta \times \mathsf{Z} \to \mathbb{R}$ be a measurable
- function and μ_i be a σ -finite measure, we consider surrogate functions which satisfy S1, S2 that can
- 20 be expressed as an expectation:

$$\widehat{\mathcal{L}}_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}) := \int_{\mathbf{Z}} r_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{i}) p_{i}(z_{i}; \overline{\boldsymbol{\theta}}) \mu_{i}(dz_{i}) \quad \forall \ (\boldsymbol{\theta}, \overline{\boldsymbol{\theta}}) \in \Theta \times \Theta \ . \tag{5}$$

- 21 The MISSO method replaces the expectation in (5) by Monte Carlo integration and then optimizes
- 22 (1) incrementally.
- Denote by $M \in \mathbb{N}$ the Monte Carlo batch size and let $z_m \in \mathbb{Z}$, m = 1, ..., M be a set of samples.
- 24 To this end, we define

$$\widetilde{\mathcal{L}}_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, \{z_{m}\}_{m=1}^{M}) := \frac{1}{M} \sum_{m=1}^{M} r_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{m})$$
(6)

25 and we summarize the proposed MISSO method in Algorithm 1.

26 3 Convergence Analysis

- 27 We provide non-asymptotic convergence bound for the MISSO method.
- **H1.** For all $i \in [1, n]$, $\overline{\theta} \in \Theta$, $z_i \in \mathbb{Z}$, the measurable function $r_i(\theta; \overline{\theta}, z_i)$ is convex in θ and is
- 29 lower bounded.

30

32

H2. For the samples $\{z_{i,m}\}_{m=1}^M$, there exists finite constants C_r and C_{gr} such that

$$C_{\mathsf{r}} := \sup_{\overline{\boldsymbol{\theta}} \in \Theta} \sup_{M > 0} \frac{1}{\sqrt{M}} \mathbb{E}_{\overline{\boldsymbol{\theta}}} \left[\sup_{\boldsymbol{\theta} \in \Theta} \left| \sum_{m=1}^{M} \left\{ r_i(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{i,m}) - \widehat{\mathcal{L}}_i(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}) \right\} \right| \right]$$
(9)

$$C_{\mathsf{gr}} := \sup_{\overline{\boldsymbol{\theta}} \in \Theta} \sup_{M > 0} \sqrt{M} \mathbb{E}_{\overline{\boldsymbol{\theta}}} \left[\sup_{\boldsymbol{\theta} \in \Theta} \left| \frac{1}{M} \sum_{m=1}^{M} \frac{\widehat{\mathcal{L}}'_{i}(\boldsymbol{\theta}, \boldsymbol{\theta} - \overline{\boldsymbol{\theta}}; \overline{\boldsymbol{\theta}}) - r'_{i}(\boldsymbol{\theta}, \boldsymbol{\theta} - \overline{\boldsymbol{\theta}}; \overline{\boldsymbol{\theta}}, z_{i,m})}{\|\overline{\boldsymbol{\theta}} - \boldsymbol{\theta}\|} \right|^{2} \right]$$
(10)

- 33 for all $i \in [1, n]$, and we denoted by $\mathbb{E}_{\overline{\theta}}[\cdot]$ the expectation w.r.t. a Markov chain $\{z_{i,m}\}_{m=1}^M$ with
- initial distribution $\xi_i(\cdot; \overline{\theta})$, transition kernel $P_{i,\overline{\theta}}$, and stationary distribution $p_i(\cdot; \overline{\theta})$.

H3. For all $i \in [1, n]$, $(\theta, \overline{\theta}) \in \Theta^2$, $z_i \in \mathbb{Z}$ we assume the existence of a function $C_r : \mathbb{Z} \to \mathbb{R}$ such that:

$$\sup_{M>0} \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \left\{ r_i(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{i,m}) - \widehat{\mathcal{L}}_i(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}) \right\} < C_{\mathsf{r}}(z_i)$$

$$\mathbb{E}_{\overline{\boldsymbol{\theta}}}[C_{\mathsf{r}}(z_i) | \mathcal{F}] < \infty$$
(11)

where \mathcal{F} is the filtration of the total randomness. Besides,

$$\sup_{M>0} \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \left\{ \frac{\widehat{\mathcal{L}}_{i}'(\boldsymbol{\theta}, \boldsymbol{\theta} - \overline{\boldsymbol{\theta}}; \overline{\boldsymbol{\theta}}) - r_{i}'(\boldsymbol{\theta}, \boldsymbol{\theta} - \overline{\boldsymbol{\theta}}; \overline{\boldsymbol{\theta}}, z_{i,m})}{\|\overline{\boldsymbol{\theta}} - \boldsymbol{\theta}\|} \right\} < C_{gr}(z_{i})$$

$$\mathbb{E}_{\overline{\boldsymbol{\theta}}}[C_{gr}(z_{i})|\mathcal{F}] < \infty$$
(12)

Stationarity measure As problem (1) is a constrained optimization, we consider the following stationarity measure:

$$g(\overline{\boldsymbol{\theta}}) := \inf_{\boldsymbol{\theta} \in \Theta} \frac{\mathcal{L}'(\overline{\boldsymbol{\theta}}, \boldsymbol{\theta} - \overline{\boldsymbol{\theta}})}{\|\overline{\boldsymbol{\theta}} - \boldsymbol{\theta}\|} \quad \text{and} \quad g(\overline{\boldsymbol{\theta}}) = g_{+}(\overline{\boldsymbol{\theta}}) - g_{-}(\overline{\boldsymbol{\theta}}) , \tag{13}$$

- where $g_{+}(\overline{\boldsymbol{\theta}}) := \max\{0, g(\overline{\boldsymbol{\theta}})\}, g_{-}(\overline{\boldsymbol{\theta}}) := -\min\{0, g(\overline{\boldsymbol{\theta}})\}$ denote the positive and negative part of $g(\overline{\boldsymbol{\theta}})$, respectively. Note that $\overline{\boldsymbol{\theta}}$ is a stationary point if and only if $g_{-}(\overline{\boldsymbol{\theta}}) = 0$ [?].
- 42 Also, denote

$$\widehat{\mathcal{L}}^{(k)}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{L}}_{i}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(\tau_{i}^{k})}), \quad \widehat{e}^{(k)}(\boldsymbol{\theta}) := \widehat{\mathcal{L}}^{(k)}(\boldsymbol{\theta}) - \mathcal{L}(\boldsymbol{\theta}).$$
(14)

- We first establish a non-asymptotic convergence rate for the MISSO method:
- **Theorem 1.** Under S1, S2, H1, H3. For any $K_{\text{max}} \in \mathbb{N}$, let K be an independent discrete r.v. drawn
- uniformly from $\{0,...,K_{max}-1\}$ and define the following quantity:

$$\Delta_{(K_{\text{max}})} := 2nL\mathbb{E}[\widetilde{\mathcal{L}}^{(0)}(\boldsymbol{\theta}^{(0)}) - \widetilde{\mathcal{L}}^{(K_{\text{max}})}(\boldsymbol{\theta}^{(K_{\text{max}})})] + \sum_{k=0}^{K_{\text{max}}-1} \frac{4LC_{\text{r}}}{\sqrt{M_{(k)}}}, \tag{15}$$

46 Then we have following non-asymptotic bounds:

$$\mathbb{E}[\|\nabla \widehat{e}^{(K)}(\boldsymbol{\theta}^{(K)})\|^{2}] \leq \frac{\Delta_{(K_{\text{max}})}}{K_{\text{max}}}, \ \mathbb{E}[g_{-}(\boldsymbol{\theta}^{(K)})] \leq \sqrt{\frac{\Delta_{(K_{\text{max}})}}{K_{\text{max}}}} + \frac{C_{\text{gr}}}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}-1} M_{(k)}^{-1/2}. \tag{16}$$

- Note that $\Delta_{(K_{\max})}$ is finite for any $K_{\max} \in \mathbb{N}$. As expected, the MISSO method converges to a
- stationary point of (1) asymptotically and at a sublinear rate $\mathbb{E}[g_{-}^{(K)}] \leq \mathcal{O}(\sqrt{1/K_{\mathsf{max}}})$.
- 49 **Proof** We begin by recalling the definition

$$\widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathcal{A}}_{i}^{k}(\boldsymbol{\theta}). \tag{17}$$

50 Notice that

$$\widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathcal{L}}_{i}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(\tau_{i}^{k+1})}, \{z_{i,m}^{(\tau_{i}^{k+1})}\}_{m=1}^{M_{(\tau_{i}^{k+1})}})
= \widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}) + \frac{1}{n} \big(\widetilde{\mathcal{L}}_{i_{k}}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(k)}, \{z_{i_{k},m}^{(k)}\}_{m=1}^{M_{(k)}}) - \widetilde{\mathcal{L}}_{i_{k}}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(\tau_{i_{k}}^{k})}, \{z_{i_{k},m}^{(\tau_{i_{k}}^{k})}\}_{m=1}^{M_{(\tau_{i_{k}}^{k})}}) \big).$$
(18)

51 Furthermore, we recall that

$$\widehat{\mathcal{L}}^{(k)}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{L}}_{i}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(\tau_{i}^{k})}), \quad \widehat{e}^{(k)}(\boldsymbol{\theta}) := \widehat{\mathcal{L}}^{(k)}(\boldsymbol{\theta}) - \mathcal{L}(\boldsymbol{\theta}).$$
(19)

52 Due to S2, we have

$$\|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\|^2 \le 2L\widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)}). \tag{20}$$

To prove the first bound in (16), using the optimality of $\theta^{(k+1)}$, one has

$$\widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}^{(k+1)}) \leq \widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}^{(k)})
= \widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) + \frac{1}{n} (\widetilde{\mathcal{L}}_{i_k}(\boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(k)}, \{z_{i_k,m}^{(k)}\}_{m=1}^{M_{(k)}}) - \widetilde{\mathcal{L}}_{i_k}(\boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i_k}^k)}, \{z_{i_k,m}^{(\tau_{i_k}^k)}\}_{m=1}^{M_{(\tau_{i_k}^k)}}))$$
(21)

- Let \mathcal{F}_k be the filtration of random variables up to iteration k, i.e., $\{i_{\ell-1}, \{z_{i_{\ell-1},m}^{(\ell-1)}\}_{m=1}^{M_{(\ell-1)}}, \boldsymbol{\theta}^{(\ell)}\}_{\ell=1}^k$.
- 55 We observe that the conditional expectation evaluates to
- Need to improve upper bound here. H2 is too restricting

$$\mathbb{E}_{i_{k}}\left[\mathbb{E}\left[\widehat{\mathcal{L}}_{i_{k}}(\boldsymbol{\theta}^{(k)};\boldsymbol{\theta}^{(k)},\{z_{i_{k},m}^{(k)}\}_{m=1}^{M_{(k)}})|\mathcal{F}_{k},i_{k}\right]|\mathcal{F}_{k}\right]$$

$$= \mathcal{L}(\boldsymbol{\theta}^{(k)}) + \mathbb{E}_{i_{k}}\left[\mathbb{E}\left[\frac{1}{M_{(k)}}\sum_{m=1}^{M_{(k)}}r_{i_{k}}(\boldsymbol{\theta}^{(k)};\boldsymbol{\theta}^{(k)},z_{i_{k},m}^{(k)}) - \widehat{\mathcal{L}}_{i_{k}}(\boldsymbol{\theta}^{(k)};\boldsymbol{\theta}^{(k)})|\mathcal{F}_{k},i_{k}\right]|\mathcal{F}_{k}\right]$$

$$\leq \mathcal{L}(\boldsymbol{\theta}^{(k)}) + \frac{C_{r}}{\sqrt{M_{(k)}}},$$
(22)

where the last inequality is due to H3. Moreover,

$$\mathbb{E}\left[\widetilde{\mathcal{L}}_{i_k}(\boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i_k}^k)}, \{z_{i_k,m}^{(\tau_{i_k}^k)}\}_{m=1}^{M_{(\tau_{i_k}^k)}}) | \mathcal{F}_k\right] = \frac{1}{n} \sum_{i=1}^n \widetilde{\mathcal{L}}_i(\boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_i^k)}, \{z_{i,m}^{(\tau_i^k)}\}_{m=1}^{M_{(\tau_i^k)}}) = \widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}).$$
(23)

Taking the conditional expectations on both sides of (21) and re-arranging terms give:

$$\widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) - \mathcal{L}(\boldsymbol{\theta}^{(k)}) \le n \mathbb{E} \left[\widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) - \widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}^{(k+1)}) | \mathcal{F}_k \right] + \frac{C_{\mathsf{r}}}{\sqrt{M_{(k)}}}$$
(24)

59 Proceeding from (24), we observe the following lower bound for the left hand side

$$\widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) - \mathcal{L}(\boldsymbol{\theta}^{(k)}) \stackrel{(a)}{=} \widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) - \widehat{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) + \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})$$

$$\stackrel{(b)}{\geq} \widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) - \widehat{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) + \frac{1}{2L} \|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\|^{2}$$

$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{1}{M_{(\tau_{i}^{k})}} \sum_{m=1}^{M_{(\tau_{i}^{k})}} r_{i}(\boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i}^{k})}, z_{i,m}^{(\tau_{i}^{k})}) - \widehat{\mathcal{L}}_{i}(\boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i}^{k})}) \right\}}_{:=-\delta^{(k)}(\boldsymbol{\theta}^{(k)})} + \frac{1}{2L} \|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\|^{2}$$

$$(25)$$

- where (a) is due to $\hat{e}^{(k)}(\boldsymbol{\theta}^{(k)}) = 0$ [cf. S1], (b) is due to (20) and we have defined the summation in
- the last equality as $-\delta^{(k)}(\boldsymbol{\theta}^{(k)})$. Substituting the above into (24) yields

$$\frac{\|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\|^2}{2L} \le n\mathbb{E}\left[\widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) - \widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}^{(k+1)})|\mathcal{F}_k\right] + \frac{C_{\mathsf{r}}}{\sqrt{M_{(k)}}} + \delta^{(k)}(\boldsymbol{\theta}^{(k)}) \tag{26}$$

Observe the following upper bound on the total expectations:

$$\mathbb{E}\left[\delta^{(k)}(\boldsymbol{\theta}^{(k)})\right] \le \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{C_{\mathsf{r}}}{\sqrt{M_{(\tau_{i}^{k})}}}\right],\tag{27}$$

which is due to H3. It yields

$$\mathbb{E}\big[\|\nabla\widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\|^2\big] \leq 2nL\mathbb{E}\big[\widetilde{\mathcal{L}}^{(k)}(\boldsymbol{\theta}^{(k)}) - \widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}^{(k+1)})\big] + \frac{2LC_{\mathsf{r}}}{\sqrt{M_{(k)}}} + \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\Big[\frac{2LC_{\mathsf{r}}}{\sqrt{M_{(\tau_i^k)}}}\Big]$$

Finally, for any $K_{\text{max}} \in \mathbb{N}$, we let K be a discrete r.v. that is uniformly drawn from $\{0, 1, ..., K_{\text{max}} - 1\}$. Using H3 and taking total expectations lead to

$$\mathbb{E}[\|\nabla \widehat{e}^{(K)}(\boldsymbol{\theta}^{(K)})\|^{2}] = \frac{1}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}-1} \mathbb{E}[\|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\|^{2}] \\
\leq \frac{2nL\mathbb{E}[\widetilde{\mathcal{L}}^{(0)}(\boldsymbol{\theta}^{(0)}) - \widetilde{\mathcal{L}}^{(K_{\text{max}})}(\boldsymbol{\theta}^{(K_{\text{max}})})]}{K_{\text{max}}} + \frac{2LC_{r}}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}-1} \mathbb{E}\Big[\frac{1}{\sqrt{M_{(k)}}} + \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{M_{(\tau_{i}^{k})}}}\Big]$$
(28)

For all $i \in [1, n]$, the index i is selected with a probability equal to $\frac{1}{n}$ when conditioned independently on the past. We observe:

$$\mathbb{E}[M_{(\tau_i^k)}^{-1/2}] = \sum_{i=1}^k \frac{1}{n} \left(1 - \frac{1}{n}\right)^{j-1} M_{(k-j)}^{-1/2}$$
(29)

68 Taking the sum yields:

$$\begin{split} &\sum_{k=0}^{K_{\text{max}}-1} \mathbb{E}[M_{(\tau_{i}^{k})}^{-1/2}] = \sum_{k=0}^{K_{\text{max}}-1} \sum_{j=1}^{k} \frac{1}{n} \left(1 - \frac{1}{n}\right)^{j-1} M_{(k-j)}^{-1/2} = \sum_{k=0}^{K_{\text{max}}-1} \sum_{l=0}^{k-1} \frac{1}{n} \left(1 - \frac{1}{n}\right)^{k-(l+1)} M_{(l)}^{-1/2} \\ &= \sum_{l=0}^{K_{\text{max}}-1} M_{(l)}^{-1/2} \sum_{k=l+1}^{K_{\text{max}}-1} \frac{1}{n} \left(1 - \frac{1}{n}\right)^{k-(l+1)} \leq \sum_{l=0}^{K_{\text{max}}-1} M_{(l)}^{-1/2} \end{split}$$

$$(30)$$

where the last inequality is due to upper bounding the geometric series. Plugging this back into (28)
 yields

$$\mathbb{E}[\|\nabla \hat{e}^{(K)}(\boldsymbol{\theta}^{(K)})\|^{2}] = \frac{1}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}-1} \mathbb{E}[\|\nabla \hat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\|^{2}] \\
\leq \frac{2nL\mathbb{E}[\tilde{\mathcal{L}}^{(0)}(\boldsymbol{\theta}^{(0)}) - \tilde{\mathcal{L}}^{(K_{\text{max}})}(\boldsymbol{\theta}^{(K_{\text{max}})})]}{K_{\text{max}}} + \frac{1}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}-1} \frac{4LC_{\text{r}}}{\sqrt{M_{(k)}}} = \frac{\Delta_{(K_{\text{max}})}}{K_{\text{max}}}.$$
(31)

71 This concludes our proof for the first inequality in (16).

To prove the second inequality of (16), we define the shorthand notations $g^{(k)} := g(\boldsymbol{\theta}^{(k)}), g_-^{(k)} := -\min\{0, g^{(k)}\}, g_+^{(k)} := \max\{0, g^{(k)}\}$. We observe that

$$g^{(k)} = \inf_{\boldsymbol{\theta} \in \Theta} \frac{\mathcal{L}'(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)})}{\|\boldsymbol{\theta}^{(k)} - \boldsymbol{\theta}\|}$$

$$= \inf_{\boldsymbol{\theta} \in \Theta} \left\{ \frac{\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{L}}'_{i}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i}^{k})})}{\|\boldsymbol{\theta}^{(k)} - \boldsymbol{\theta}\|} - \frac{\left\langle \nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)}) \mid \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)} \right\rangle}{\|\boldsymbol{\theta}^{(k)} - \boldsymbol{\theta}\|} \right\}$$

$$\geq -\|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\| + \inf_{\boldsymbol{\theta} \in \Theta} \frac{\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{L}}'_{i}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i}^{k})})}{\|\boldsymbol{\theta}^{(k)} - \boldsymbol{\theta}\|}$$
(32)

where the last inequality is due to the Cauchy-Schwarz inequality and we have defined $\widehat{\mathcal{L}}_i'(\theta, d; \theta^{(\tau_i^k)})$ as the directional derivative of $\widehat{\mathcal{L}}_i(\cdot; \theta^{(\tau_i^k)})$ at θ along the direction d. Moreover, for any $\theta \in \Theta$,

$$\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{L}}'_{i}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i}^{k})}) \\
= \underbrace{\widetilde{\mathcal{L}}^{(k)'}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)})}_{\geq 0} - \widehat{\mathcal{L}}^{(k)'}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}) + \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{L}}'_{i}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i}^{k})}) \\
\geq \frac{1}{n} \sum_{i=1}^{n} \left\{ \widehat{\mathcal{L}}'_{i}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i}^{k})}) - \frac{1}{M_{(\tau_{i}^{k})}} \sum_{m=1}^{M_{(\tau_{i}^{k})}} r'_{i}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\tau_{i}^{k})}, z_{i,m}^{(\tau_{i}^{k})}) \right\}$$
(33)

where the inequality is due to the optimality of $\theta^{(k)}$ and the convexity of $\widetilde{\mathcal{L}}^{(k)}(\theta)$ [cf. H1]. Denoting a scaled version of the above term as:

$$\boldsymbol{\epsilon}^{(k)}(\boldsymbol{\theta}) \coloneqq \frac{\frac{1}{n} \sum_{i=1}^n \left\{ \frac{1}{M_{(\boldsymbol{\tau}_i^k)}} \sum_{m=1}^{M_{(\boldsymbol{\tau}_i^k)}} r_i'(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\boldsymbol{\tau}_i^k)}, \boldsymbol{z}_{i,m}^{(\boldsymbol{\tau}_i^k)}) - \widehat{\mathcal{L}}_i'(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta} - \boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(\boldsymbol{\tau}_i^k)}) \right\}}{\|\boldsymbol{\theta}^{(k)} - \boldsymbol{\theta}\|}$$

79 We have

$$g^{(k)} \ge -\|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\| + \inf_{\boldsymbol{\theta} \in \Theta} (-\epsilon^{(k)}(\boldsymbol{\theta})) \ge -\|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\| - \sup_{\boldsymbol{\theta} \in \Theta} |\epsilon^{(k)}(\boldsymbol{\theta})|. \tag{34}$$

80 Since $g^{(k)}=g_+^{(k)}-g_-^{(k)}$ and $g_+^{(k)}g_-^{(k)}=0$, this implies

$$g_{-}^{(k)} \le \|\nabla \widehat{e}^{(k)}(\boldsymbol{\theta}^{(k)})\| + \sup_{\boldsymbol{\theta} \in \Theta} |\epsilon^{(k)}(\boldsymbol{\theta})|. \tag{35}$$

- 81 Consider the above inequality when k = K, i.e., the random index, and taking total expectations on
- 82 both sides gives

$$\mathbb{E}[g_{-}^{(K)}] \leq \mathbb{E}[\|\nabla \hat{e}^{(K)}(\boldsymbol{\theta}^{(K)})\|] + \mathbb{E}[\sup_{\boldsymbol{\theta} \in \Theta} \epsilon^{(K)}(\boldsymbol{\theta})]$$
(36)

83 We note that

$$\left(\mathbb{E}[\|\nabla \widehat{e}^{(K)}(\boldsymbol{\theta}^{(K)})\|]\right)^{2} \leq \mathbb{E}[\|\nabla \widehat{e}^{(K)}(\boldsymbol{\theta}^{(K)})\|^{2}] \leq \frac{\Delta(K_{\text{max}})}{K_{\text{max}}},\tag{37}$$

where the first inequality is due to the convexity of $(\cdot)^2$ and the Jensen's inequality, and

$$\mathbb{E}[\sup_{\boldsymbol{\theta} \in \Theta} \epsilon^{(K)}(\boldsymbol{\theta})] = \frac{1}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}} \mathbb{E}[\sup_{\boldsymbol{\theta} \in \Theta} \epsilon^{(k)}(\boldsymbol{\theta})] \stackrel{(a)}{\leq} \frac{C_{\text{gr}}}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}-1} \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} M_{(\tau_{i}^{k})}^{-1/2}\right]$$

$$\stackrel{(b)}{\leq} \frac{C_{\text{gr}}}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}-1} M_{(k)}^{-1/2}$$
(38)

where (a) is due to H_3 and (b) is due to (30). This implies

$$\mathbb{E}[g_{-}^{(K)}] \le \sqrt{\frac{\Delta_{(K_{\text{max}})}}{K_{\text{max}}}} + \frac{C_{\text{gr}}}{K_{\text{max}}} \sum_{k=0}^{K_{\text{max}}-1} M_{(k)}^{-1/2}, \tag{39}$$

and concludes the proof of the theorem.

87 4 Numerical examples

- 88 Have Logistic Regression with missing values and MNIST Bayesian LeNet5 from last year paper.
- 89 Working on CIFAR-10 using Bayesian ResNet.