# Point Estimation (MLE) (6.4)

Notes



#### Some new terms

Sample mean: 
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Sample variance: 
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Sample standard deviation:  $s = \sqrt{s^2}$ 



#### Point Estimation

Let's say we are given a distribution (family), and have random samples from this distribution, but don't know the value of the parameter,  $\theta$ .

(often, we use  $\theta$  as the generic term for an unknown parameter).

Definition: The **parameter space**,  $\Omega$ , is the range of all possible values of  $\theta$ .

## E.g.

 $X \sim Exp(\theta)$ ,

 $X \sim Binom(n, \theta)$ 

 $X \sim Geom(\theta)$ 

 $X \sim N(\theta, 1)$ 

#### **Point Estimation**

Goal: Estimate  $\theta \in \Omega$ 

We will observe n samples,  $X_1$ ,  $X_2$ , ...,  $X_n$ , and estimate  $\theta$  with n sample values,  $x_1$ ,  $x_2$ , ...,  $x_n$ .

The statistic,  $u(X_1, X_2, ... X_n)$ , is an <u>estimator</u> of  $\theta$ .

Using the values from the observations, we can find an **estimate** of  $\theta$ ,  $u(x_1, x_2, ... x_n)$ .



## Simple example of Point Estimate

What was the true mean score on Midterm 2?  $(\mu)$ 

- Population: All students in Math 463/Stat 400
- Right now: only have 30 grades.

$$\bar{x} = \frac{1}{30} \sum_{i=1}^{30} x_i = 85$$

This is a point estimate of  $\mu$ .

## Binomial example

Suppose that I perform an experiment 10 times and define success as 1. I don't know p. We would like to estimate the parameter, p.

If I get a sample: 1,1,1,1,1,0,1,1,1. What is the best estimate for p?

## Joint pmf/pdf

- Assuming that X<sub>1</sub>, X<sub>2</sub>, ... X<sub>n</sub> are independent and identically distributed, we know that the joint pmf (or pdf) is equal to the product of the pmf/pdfs.
- Bivariate: if X and Y are independent, f(x,y) = f(x)f(y)

## Joint pmf/pdf

For multiple independent observations from the same distribution (iid), the **joint distribution** (joint pdf or joint pmf) is the product of the individual pdf/pmfs.



#### The Likelihood function

The likelihood function looks exactly like the joint pdf (or pmf). It is obtained through finding the joint distribution.

It is a function of  $\theta$ , not of  $x_i$ .

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$$
semicolon

**Probability**: Know the value of parameters. Calculate probability of observing some data.

**Statistics**: Know what data look like. Come up with an estimate of parameters.

## Binomial Example (MLE)

 Flipping a loaded coin 10 times. It shows heads on 9 of 10 flips.

Let 
$$X \sim Binom(10, \theta)$$
  

$$f(9; \theta) = {10 \choose 9} \theta^9 (1 - \theta)^1 = L(\theta)$$

Now, given that I have gotten 9 successes, what value of theta makes this expression the largest (most likely)? How can I find that value?

$$f(9;\theta) = {10 \choose 9}\theta^9(1-\theta)^1 = L(\theta)$$

```
x = seq(from = 0, to = 1, by = 0.01)

y = 10*x^9 * (1-x)

plot(x,y)
```

## Using Calculus to find MLE

Step 1: Find  $L(\theta)$ 

Step 2: Take the (natural) log of  $L(\theta)$ ,  $\log L(\theta)$ 

Step 3: Take first derivative of  $\log L(\theta)$  w.r.t  $\theta$ .

Step 4: Set expression equal to 0

Step 5: Solve for  $\theta$ 

#### In case you forgot...

Suppose f(x) is a function of x that is twice differentiable at a stationary point  $x_0$ .

1. If  $f''(x_0) > 0$ , then f has a local minimum at  $x_0$ .

2. If  $f''(x_0) < 0$ , then f has a local maximum at  $x_0$ .



## MLE Example

```
Let X_1, X_2, ... X_n, be iid \sim f(x; \theta) = \theta^{-2} x e^{-x/\theta}, x > 0, \theta > 0
a) Find the MLE of \theta, \hat{\theta}.
```

(2)

## MLE Example continued $f(x;\theta) = \theta^{-2}xe^{-\frac{x}{\theta}}, \quad x > 0, \quad \theta > 0$

$$f(x;\theta) = \theta^{-2}xe^{-\frac{x}{\theta}}, \qquad x > 0, \qquad \theta > 0$$

(5)

(3,4)

## MLE Example continued $f(x; \theta) = \theta^{-2}xe^{-x/\theta}$

$$f(x;\theta) = \theta^{-2}xe^{-x/\theta}$$

Find an estimate of  $\theta$  when

$$x_1 = 1$$
,  $x_2 = 0.75$ ,  $x_3 = 2$ ,  $x_4 = 1.5$ ,  $x_5 = 0.75$ 

### MLE Example (for you to practice at home)

Let  $X_1, X_2, ... X_n$ , ~Bern(p). Find the MLE of p.

$$f(x_i; p) = p^{x_i} (1-p)^{1-x_i}$$

(1) 
$$L(p) = \prod_{i=1}^{n} f(x_i; p)$$
  
=  $p^{x_1} (1-p)^{1-x_1} \cdot p^{x_2} (1-p)^{1-x_2} \cdot \dots \cdot p^{x_n} (1-p)^{1-x_n}$ 

(2)

## MLE Example (for you to practice at home)

(3,4)

(5)

