Algorithms

Xiyuan Yang 2025.10.26

SJTU Semester 2.1 Algorithms: Design and Analysis

目录

1. Lec1 Introduction	. 1
1.1. Problems and Computation	. 1
1.2. Algorithm	2
1.2.1. Definition	. 2
1.2.2. Pseudocode	. 2
1.3. RoadMap	. 3
1.3.1. Divide and Conquer	. 3
1.3.2. Greedy algorithms	3
1.3.3. Dynamic Programming	
1.3.4. Back Tracking	
1.3.5. Heuristic Algorithms	
1.4. Correctness of the algorithms	
1.5. 算法正确性证明	
1.5.1. 数学归纳法	
1.6. Complexity & Efficiency	
1.7. Asymptotic Notation	
1.8. Model of Computation	
1.10. 算法时间复杂度证明	
2. Simple Data Structure	
3. Computational Complexity	
4. Future of Algorithms	
5. Conclusion	
Concludion	. 0

§ 1. Lec1 Introduction

§ 1.1. Problems and Computation

The basis of AI:

- Search
- Learning

Definition 1.1.1 计算问题.

- Given a input, $I, x \in I$
- output, $O, y \in O$
- relation: $f: x \to y$: use the algorithm!
 - we have some boundaries: (s.t.)

Definition 1.1.2 Problem Domain.

The set of all the problems. $\langle I, O, f \rangle$

Definition 1.1.3 Problem Instance.

one simple case in the problem domain $\langle I, O, f, x \rangle$

What is algorithm:

- a piece of code
- handling the mapping from x to y

§ 1.2. Algorithm

§ 1.2.1. Definition

Definition 1.2.1.1 Algorithm.

- Fixed length code
- accept input with any length (or we say it can scale up!)
- at finite time terminate
- Natural Language
- pseudocode
- Written Codes

For example, birthday matching problems.

§ 1.2.2. Pseudocode

- if else end
- · foreach end
- init data structure (Use ←)
- 1 do something
- 2 do something else
- 3 while still something to do

```
4 | do even more
5 | if not done yet then
6 | wait a bit
7 | resume working
8 | else
9 | go home
10 | end
```

11 end

1 function BinarySearch(A, x)

```
2 low \leftarrow 0
 3 high ← A.length - 1
 4 while low \le high
      mid \leftarrow low + floor((high - low) / 2)
      if A[mid] == x then
 6
 7
       return mid
      else if A[mid] < x then
 8
 9
       | low \leftarrow mid + 1
      else
10
       \mid high \leftarrow mid - 1
11
12
      end
13 end
14 \text{ return } -1
15 end
```

§ 1.3. RoadMap

Recordings RoadMaps.

- 基本概念, 算法复杂度和正确性分析
- 分治法
- 排序算法
- 哈希表
- 贪心算法
- 动态规划
- 图搜索算法
- 回溯法
- 分支界限
- 启发式算法

§ 1.3.1. Divide and Conquer

- Like the merge sort and recursion.
- Split bigger problems into smaller ones.

§ 1.3.2. Greedy algorithms

• making the locally optimal choice at each stage with the hope of finding a global optimum.

§ 1.3.3. Dynamic Programming

- 最优子结构 optimal sub-structure
 - ▶ 这也是和 divide and conquer 算法之间最显著的区别
- 重叠的子问题 overlapping sub-problems
 - 这保证了动态规划的重复利用的部分,也是动态规划的高效性所在(不再重复计算)

§ 1.3.4. Back Tracking

• a brute-force searching algorithms with pruning.

- Like the DFS algorithm
 - ▶ N Queens Problems

§ 1.3.5. Heuristic Algorithms

- when encountering large solve space
- optimize (or tradeoff) for traditional searching algorithms.
- great for NP-hard problems.

§ 1.4. Correctness of the algorithms

给定输入-输出组 (x,y), 给出一个 judger function, 返回一个布尔值是否正确。

Recordings Judger Functions.

- 一般而言,算法求解的复杂度是更被关注的部分,算法求解的复杂度会高于算法验证正确性的复杂度
- 但是 Evaluation is also important!

§ 1.5. 算法正确性证明

§ 1.5.1. 数学归纳法

归纳法将问题的结构简化为了两个部分的证明:

Definition 1.5.1.1 数学归纳法.

- 基础情况的证明成立
- 递推关系的证明成立
 - · 在递推关系中, 存在"假设", 相当于多添加了一个前提条件。

Example Birthday Example.

4.2 生日匹配算法正确性证明

证明: 生日匹配算法的正确性

归纳基础: k=0, 记录中前k 个学生不包含匹配, 算法正确报告不匹配。

归纳假设: 对于 $k = k_0$ 个学生,如果前 k_0 个包含匹配,算法在访问第 $k_0 + 1$ 个学生之前返回匹配。

归纳步骤: 考虑 $k = k_0 + 1$ 的情况

- 如果前ko 个包含匹配,根据归纳假设,算法已经返回匹配
- 否则前 k_0 个没有匹配,所以如果前 k_0+1 个有匹配,匹配必须包含第 k_0+1 个学生
- 然后算法直接检查第 k_0+1 个学生的生日是否存在于前 k_0 个学生中

图 1 Demo for the correctness of algorithms for birthday

§ 1.6. Complexity & Efficiency

时间复杂度的衡量为了摆脱硬件性能的约束和影响,在衡量算法复杂度的时候,往往使用原子操作来代表基本的时间步:

- Number of atomic operations.
- 常数开销 O(1) 的操作: 例如加减乘除
 - ► O(1) 生万物

§ 1.7. Asymptotic Notation

Definition 1.7.1 Asymptotic Notation.

- O: Upper Bound
- Ω: Lower Bound
- Θ: 紧界
 - $f(n) = \Theta(g(n))$ 表示 f(n) 和 g(n) 的增长速度相同。
- Polynomial Complexity: $O(n^k)$
- Exponential Complexity: $O(k^n)$
 - ► X-hard problems

§ 1.8. Model of Computation

上述 O(1) 生万物 的计算模型基于 WordRAM 计算模型:

- 整数运算
 - · 浮点数? 理论上不是, 但是基本上是。
- 逻辑运算
- 位运算
- 内存访问(给定地址的特定内存块的读取和写入)

上述的运算都为O(1)的时间复杂度。

§ 1.9. 系统字节数

32 位系统和 64 位系统标定的是内存地址的长度

- 32 位系统: 4GB
- 64 位系统: 16EB
 - 保证给 16 EB 的内存寻址,在 O(1) 的时间复杂度进行存址

§ 1.10. 算法时间复杂度证明

记:

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

求证:

$$H(N) = \Theta(\log N)$$

使用积分不等式:

$$\int_{0}^{1} \frac{1}{x} dx \le \sum_{i=1}^{n} \frac{1}{i} \le \int_{0}^{1} \frac{1}{x} dx + 1$$

§ 2. Simple Data Structure

Example 翻转单项链表.

给定一个长度为 N 的链表,在 O(1) 空间复杂度和 O(N) 的时间复杂度实现单项链表的翻转

Solution: 使用三指针实现

Recordings 三指针实现.

- 从最基本的情况开始,如果只有三个节点,很显然,只需要修改两条链表边的指向就可以
- 在跟一般的情况,认为第三个节点的后继结点被占满了,这只需要存储一个 variable 保证链表不断裂就可以

§ 3. Computational Complexity

Lecture notes for MIT 6.006 Lecture 19: Complexity

- § 4. Future of Algorithms
- § 5. Conclusion