K-D TREE

Binary Search Tree

Consider the following data:

Consider the following data :

Object	Position in X
Α	5
В	2
С	3
D	2
E	9
F	6
G	9

• Data points: 5, 2, 3, 2, 9, 6, 9

• Data points: 5, 2, 3, 2, 9, 6, 9

Consider the following data:

Similar to linear search!

Consider the following data:

Solution: Take medians and build balanced tree

Range Search using BST

- Query -
 - Select * from table where position_in_X > 2 and position_in_X < 5

K-D Tree

· What if -

Object	Position in X (A)	Position in Y (B)
Α	5	4
В	2	9
С	3	5
D	2	2
E	9	2
F	6	1
G	9	9

K-D Tree

- And Range Query -
 - Select * from table where position_in_X > 2 and position_in_Y<5

• To set B, we'll compare his x value with the x value of A, like so:

-B.x < A.x => 2 < 5

