

EexamPlace student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- · This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Introduction to Quantum Computing

Exam: IN2381 / Retake **Date:** Friday 9th October, 2020

Examiner: Prof. Dr. Christian Mendl **Time:** 16:15 – 17:45

P 1	P 2	P 3	
]

Working instructions

- This exam consists of 8 pages with a total of 3 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 60 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources: one A4 sheet (both sides) with your own notes
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- · Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at

Problem 1 (20 credits)

In the following, we consider the so-called three-qubit W-State $|W_3\rangle$:

$$\left|W_{3}\right\rangle = \frac{1}{\sqrt{3}}\left(\left|100\right\rangle + \left|010\right\rangle + \left|001\right\rangle\right).$$

We also define a two-qubit gate B(p), for a real parameter $p \in [0, 1]$:

where

$$G(p) = \begin{pmatrix} \sqrt{p} & -\sqrt{1-p} \\ \sqrt{1-p} & \sqrt{p} \end{pmatrix}.$$

0	a) Determine the outputs of $B(p)$ for the four input basis states $ 00\rangle$, $ 01\rangle$, $ 10\rangle$ and $ 11\rangle$
1	
2	d
3	1
4	d
5	
6	

b) Add B(p) gates with suitably chosen values of p to the following circuit such that the output is $|W_3\rangle$, and verify your construction. Hint: Two B(p) gates are sufficient.

emonstrate that a	it of $ W_3 angle$ leaves th	ne remaining tw	o qubits entang	led in general.		is) per-
Describe the measuren	nent as a projection $ \psi\>$	$ \psi\rangle$ $\langle\psi ,$ where $ \psi\rangle$ =	$\frac{\alpha 0\rangle + \beta 1\rangle}{}$ is a ge	neral single qubit st	ate.	

Problem 2 (20 credits)

A quantum operation, \mathcal{E} , describes in general terms how a quantum system evolves. It can be expressed using the operator-sum representation as

$$\mathcal{E}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger},$$

where ρ is the density matrix of the system and the complex matrices E_k are the so-called Kraus operators.

0	
1	Н
2	

a) What condition must the Kraus operators satisfy such that $\mathcal E$ is compatible with the laws of quantum mechanics?

0	
1	Н
2	Н
3	
4	Н
5	Н
6	
7	Н

b)* An example of a quantum operation is the depolarizing channel, which models quantum noise. Its Kraus operators (for a real parameter $p \in [0, \frac{3}{4}]$) are

$$E_0 = \sqrt{1 - pI}$$
, $E_1 = \sqrt{p/3}X$, $E_2 = \sqrt{p/3}Y$ and $E_3 = \sqrt{p/3}Z$.

Compute $\mathcal{E}(\rho)$ using the Bloch sphere representation of the density matrix, $\rho = (I + \vec{r} \cdot \vec{\sigma})/2$ with $\vec{r} \in \mathbb{R}^3$, $||\vec{r}|| \le 1$, to show that the depolarizing channel acts as a contraction of the Bloch vector \vec{r} . You may use without proof that

$$XY = -YX = iZ$$

 $YZ = -ZY = iX$

$$ZX = -XZ = iY$$
.

C)	The	depolarizing	channel	can	also	he	written	as
C,	11110	depolarizing	Chamic	Can	aisu	DC	MILLIA	as

$$\mathcal{E}(\rho) = \tilde{p}\frac{l}{2} + (1 - \tilde{p})\rho$$

with $\tilde{p}=\frac{4}{3}p\in[0,1].$ A corresponding circuit implementation is

where the middle and bottom wires serve as environment. Describe how this circuit realizes the depolarizing channel.

d)* The "purity" of a quantum state with density matrix ρ is defined as $Tr(\rho^2)$. Compute the minimum purity of a single qubit quantum state.

Hint: You might recall an expression for $Tr(\rho^2)$ in terms of the Bloch vector of ρ . Alternatively, why can we assume that ρ is a diagonal

Problem 3 (20 credits)

We consider a quantum system of n qubits, and use the notation X_j , Y_j , Z_j to denote that one of the Pauli matrices acts on the jth qubit; e.g., $X_1Z_3 \equiv X \otimes I \otimes Z$ for n = 3.

Conjugation by U refers to the transformation UgU^{\dagger} of a quantum gate g by a unitary operation U. The following table summarizes several conjugation transformations:

Here $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ is the phase gate.

a) State the check matrix representation of $g_1, g_2 \in G_4$ given by

$$g_1 = Y \otimes I \otimes Z \otimes X,$$

$$g_2 = X \otimes Z \otimes Y \otimes X.$$

Based on this representation, show that g_1 commutes with g_2 .

2

3

b)* Specify an element g of the Pauli group G_4 such that

$$R = \langle X_1 Y_3, Y_1 X_2 Z_3 Y_4, g \rangle$$

stabilizes a non-trivial vector space and the three generators of R are independent. Also state the properties which g must satisfy (a proof of them is not required).

	up G_3 . Show that the vector space V_T stabilized by T is invariant under multiplication by
	is S the phase gate), in other words, $\psi \in V_T$ if and only if $(S \otimes X \otimes S)\psi \in V_T$.
	the three qubit bit flip code $C = \text{span}\{ 0_L\rangle, 1_L\rangle\} = \text{span}\{ 000\rangle, 111\rangle\}$, affected by amplitude on the first qubit. Recall that the operator-sum representation of the amplitude dampin
ıantum channe	
	$\mathcal{E}_{AD}(\rho) = E_0 \rho E_0^\dagger + E_1 \rho E_1^\dagger \text{with} E_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{pmatrix}, E_1 = \begin{pmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{pmatrix},$
ıd a real param	neter $\gamma \in (0, 1)$. Show that this noise process acting on C is not error-correctable.

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

