Multivariable Calculus (Lecture-11)

Department of Mathematics Bennett University

21st November, 2018

Multiple Integration of (Scalar Valued Function of Vector Variable) (Scalar Field)

 $F: R \subseteq \mathbb{R}^n \to \mathbb{R}, \ n = 2,3$ (Continuation....)

Learning Outcome of this lecture

In the last lecture, we have learnt double integral over rectangular region.

In this lecture, we learn double integral over simple and bounded region \mathcal{R} .

- Double Integral of $f : \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ where \mathcal{R} is a Bounded region in \mathbb{R}^2 .
- Double Integral of $f : \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ where \mathcal{R} is a Simple region in \mathbb{R}^2 .
- \bullet Iterated Integral of f and Fubini's Theorem for Simple Regions
- Applications of Double Integrals

Double Integral of f over Non-Rectangular region

Let \mathcal{D} be a bounded set in \mathbb{R}^2 .

Let f be a bounded, real valued function on \mathcal{D} .

Take a rectangular region \mathcal{R} such that $\mathcal{D} \subset \mathcal{R}$.

Define a function $\tilde{f}: \mathcal{R} \to \mathbb{R}$ by

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in \mathcal{D}, \\ 0 & \text{if } (x,y) \in \mathcal{R} \setminus \mathcal{D} \end{cases}$$

If the double integral of \tilde{f} over the rectangular region \mathcal{R} exists then the double integral of f over the region \mathcal{D} is defined by

$$\iint_{\mathcal{D}} f(x, y) dA = \iint_{\mathcal{R}} \tilde{f}(x, y) dA.$$

Picture: Integration over non-rectangular region

In the following pictures,

R is a non-rectangular region.

Therefore, a rectangular region \mathcal{R}' is considered such that $\mathcal{R} \subset \mathcal{R}'$.

Lower Sum (Inscribed Parallelepiped)

Note: f is 0 on the set $\mathcal{R}' \setminus \mathcal{R}$.

Upper Sum (Circumscribed Parallelepiped)

Note:

If \mathcal{D} is a bounded set with some arbitrary shape then computing the double/iterated integral of f may become difficult.

So, we look for simple / elementary region \mathcal{D} on which evaluation of the iterated integral of f becomes easier.

Simple / Elementary Regions in \mathbb{R}^2

Simple / Elementary Regions in \mathbb{R}^2 and Double Integrals over Simple Regions

Vertically Simple / Type-I / y-simple Regions/ y-regular Regions

• Vertically Simple/Type-I Region:

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : x \in [a, b] \text{ and } g_1(x) \le y \le g_2(x)\},\$$

where $g_1(x)$ and $g_2(x)$ are continuous functions on [a,b] and $g_1(x) \le g_2(x)$ for all $x \in [a,b]$.

Horizontally Simple / Type-II / x-simple Regions / x-Regular Regions

• Horizontally Simple/Type-II Region:

 $h_1(y) < h_2(y)$ for all $y \in [c, d]$.

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : h_1(y) \le x \le h_2(y) \text{ and } y \in [c, d]\},$$

where $h_1(y)$ and $h_2(y)$ are continuous functions on $[c, d]$ and

Simple Regions (Both Type-I and Type-II)

• Simple Region: If a region is both vertically simple and horizontally simple then it is said to be a simple region.

More Examples

Some non-simple region can be divided into union of simple regions

Fubini's Theorem for Vertically Simple Regions

Theorem

If $f: \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ is continuous on a vertically simple region

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : x \in [a, b] \text{ and } g_1(x) \le y \le g_2(x)\},\$$

where $g_1(x)$ and $g_2(x)$ are continuous functions on [a,b] and $g_1(x) \le g_2(x)$ for all $x \in [a,b]$. Then

$$\iint_{\mathcal{R}} f(x, y) dA = \int_{x=a}^{x=b} \left(\int_{y=g_1(x)}^{y=g_2(x)} f(x, y) dy \right) dx.$$

Finding Integral Limits for Vertically Simple Regions

- Inner most Integral: Inner most integral is with respect to the variable y. Draw a Vertical Strip or (Arrow headed Line Parallel to y-axis) over the region \mathcal{R} .
- y-Limits: Where the vertical strip enters the region (Bottom Curve of the Region \mathcal{R})? Where the vertical strip leaves the region (Top Curve of the Region \mathcal{R})?
- x-Limits: Slide the vertical strip over the region \mathcal{R} from left to right. While vertical strip is sliding over the region \mathcal{R} , What is the starting value of x (Left most value of x)? What is the ending value of x (Right most value of x)?

Example-1

Let $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x \in [0,1] \text{ and } x^3 \le y \le x\}$ and f(x,y) = (1-x) for $(x,y) \in \mathbb{R}^2$. Compute $\iint_{\mathcal{R}} f(x,y) dA$? **Solution:**

$$\iint_{\mathcal{R}} f(x,y)dA = \int_{x=0}^{1} \left(\int_{y=x^{3}}^{x} (1-x)dy \right) dx$$

$$= \int_{x=0}^{1} (1-x) \left(\int_{y=x^{3}}^{x} dy \right) dx = \int_{x=0}^{1} (1-x) \left(|y|_{x^{3}}^{x} \right) dx$$

$$= \int_{x=0}^{1} (1-x)(x-x^{3}) dx = \int_{x=0}^{1} (x-x^{2}-x^{3}+x^{4}) dx$$

$$= \left| \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} \right|_{0}^{1}$$

$$= \frac{1}{2} - \frac{1}{3} - \frac{1}{4} + \frac{1}{5} = \frac{7}{60}.$$

Example-2

Let $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x \in [-2,1] \text{ and } 0 \le y \le 1-x\}$ and f(x,y) = (4-y) for $(x,y) \in \mathbb{R}^2$. Compute $\iint_{\mathcal{R}} f(x,y) dA$? Solution:

$$\iint_{\mathcal{R}} f(x,y)dA = \int_{x=-2}^{1} \int_{y=0}^{1-x} (4-y)dydx$$

$$= \int_{x=-2}^{1} \left(\int_{y=0}^{1-x} (4-y)dy \right) dx = \int_{x=-2}^{1} \left| 4y - \frac{y^2}{2} \right|_{0}^{1-x} dx$$

$$= \int_{x=-2}^{1} \left(4(1-x) - \frac{(1-x)^2}{2} \right) dx$$

$$= \frac{27}{2}.$$

Fubinis Theorem for Horizontally Simple Regions

Theorem

If $f: \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ is continuous on a horizontally simple region

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : h_1(y) \le x \le h_2(y) \text{ and } y \in [c, d]\},\$$

where $h_1(y)$ and $h_2(y)$ are continuous functions on [c,d] and $h_1(y) \le h_2(y)$ for all $y \in [c, d]$. Then

$$\iint_{\mathcal{R}} f(x, y) dA = \int_{y=c}^{y=d} \left(\int_{x=h_1(y)}^{x=h_2(y)} f(x, y) dx \right) dy.$$

Finding Integral Limits for Horizontally Simple Regions

- Inner most Integral: Inner most integral is with respect to the variable x. Draw a Horizontal Strip or (Arrow headed Line Parallel to x-axis) over the region \mathcal{R} .
- *x*-Limits: Where the horizontal strip enters the region (Leftmost/Bottom Curve of the Region \mathcal{R})? Where the horizontal strip leaves the region (Rightmost/Top Curve of the Region \mathcal{R})?
- y-Limits: Slide the horizontal strip over the region \mathcal{R} from bottom to top. While horizontal strip is sliding over the region \mathcal{R} , What is the starting value of y (Bottommost/Lowest value of y)? What is the ending value of y (Topmost/highest value of y)?

Example (Take same Example-2)

Let $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : y \in [0,3] \text{ and } -2 \le x \le 1-y\}$ and f(x,y) = (4-y) for $(x,y) \in \mathbb{R}^2$. Compute $\iint_{\mathcal{R}} f(x,y) dA$? **Solution:**

$$\iint_{\mathcal{R}} f(x, y) dA = \int_{y=0}^{3} \int_{x=-2}^{1-y} (4 - y) dx dy$$

$$= \int_{y=0}^{3} (4 - y) \left(\int_{x=-2}^{1-y} dx \right) dy = \int_{y=0}^{3} (4 - y) |x|_{-2}^{1-y} dy$$

$$= \int_{y=0}^{3} (4 - y)(3 - y) dy$$

$$= \frac{27}{2}.$$

