last

Problem 1: Review: Solve this DE using the Method of Undetermined Coefficients

Summer 2022

Consider the following linear, non-autonomous differential equation which describes a cycloid:

DE:
$$y'' + 0 \cdot y' + 1 \cdot y = 25t$$
 IC: $y(0) = 50$, $y'(0) = 0$

Above, the forcing term f(t) = 25t grows linearly in time.

- **a.** Find the particular solution $y_p = At + b$
 - i. Give the derivative of your guess:

$$y' = \begin{bmatrix} A \end{bmatrix}$$

- ii. Give the double derivative of your guess: y'' =
- iii. Solve for the unknown coefficients A and B.

Plugging into the full DE we find: (show work here.)

$$0 + 0 * (A) + 1(At + b) = 25t$$

 $At + b = 25t$
 $A = 25, b = 0$

so, the particular solution is:

$$y_p = \begin{vmatrix} 25t \end{vmatrix}$$

- **b.** Find the general solution to the **homogeneous DE**: $y'' + 0 \cdot y' + 1 \cdot y = 0$
 - i. Give the characteristic equation.

$$r^2 + 1 = 0$$

ii. The roots are the complex conjugates:

$$r_1 = \boxed{ -i }$$

and
$$r_2 =$$
 +i

iii. So, the general homogeneous solution y_h is: (Use c_1 for the cosine term and c_2 for the sine.)

$$y_h = \boxed{ c_1 \sin(t) + c_2 \cos(t)}$$

c. The complete solution to the nonhomogeneous DE is:

$$y(t) = y_p(t) + y_h(t) = c_1 \sin(t) + c_2 \cos(t) + 25t$$

d. Find the coefficients c_1 and c_2 that match the initial conditions.

$$c_1 = \begin{bmatrix} -25 \end{bmatrix}$$
 and $c_2 = \begin{bmatrix} 50 \end{bmatrix}$

$$y(0) = 50 = c_1 sin(0) + c_2 cos(0) + 25 * 0$$

$$50 = c_2$$

$$y'(0) = c_1 cos(t) - c_2 sin(t) + 25$$

$$y'(0) = 0 = c_1 cos(0) - c_2 sin(0) + 25$$

$$-25 = c_1$$

Problem 2: The Cycloid Revisited! Equations in Normal Form

Consider the same differential equation for a cycloid seen in the previous problem.

DE:
$$y'' + 0 \cdot y' + 1 \cdot y = 25t$$
 IC: $y(0) = 50$, $y'(0) = 0$

a. Represent the system in **normal form** after defining $x_1 = y$ and $x_2 = y'$ so that the **state vector** is:

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y \\ y' \end{bmatrix} \text{ and its derivative is } \vec{\mathbf{x}}' = \begin{bmatrix} y' \\ y'' \end{bmatrix}$$

Give the matrix A and the vector $\vec{\mathbf{b}}(t)$ so that our DE is equivalent to: $\frac{d}{dt} \vec{\mathbf{x}} = A \vec{\mathbf{x}} + \vec{\mathbf{b}}(t)$

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\vec{\mathbf{b}}(t) = \begin{bmatrix} 0 \\ 25t \end{bmatrix}$$

b. Give the initial value of the state vector:
$$\vec{\mathbf{x}}(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 50 \\ 0 \end{bmatrix}$$

c. Verify that $\vec{\mathbf{x}}_p(t) = \begin{bmatrix} 25t \\ 25 \end{bmatrix}$ is a particular solution to the DE: $\frac{d}{dt} \vec{\mathbf{x}} = A \vec{\mathbf{x}} + \vec{\mathbf{b}}(t)$

LHS:
$$\frac{d}{dt} \vec{\mathbf{x}} = \begin{bmatrix} 25 \\ 0 \end{bmatrix}$$

LHS:
$$\frac{d}{dt}\vec{\mathbf{x}} = \begin{bmatrix} 25\\0 \end{bmatrix}$$
 RHS: $A\vec{\mathbf{x}} + \vec{\mathbf{b}}(t) = \begin{bmatrix} 0 & 1\\-1 & 0 \end{bmatrix} \begin{bmatrix} 25t\\25 \end{bmatrix} + \begin{bmatrix} 0\\25t \end{bmatrix}$

d. Verify that $\vec{\mathbf{x}}_h(t) = \begin{bmatrix} c_1 \cos(t) + c_2 \sin(t) \\ -c_1 \sin(t) + c_2 \cos(t) \end{bmatrix}$ is a solution to the <u>homogeneous</u> DE: $\frac{d}{dt} \vec{\mathbf{x}} = A \vec{\mathbf{x}}$

LHS:
$$\frac{d}{dt} \vec{\mathbf{x}} = \begin{bmatrix} -c_1 \sin(t) + c_2 \cos(t) \\ -c_1 \cos(t) - c_2 \sin(t) \end{bmatrix}$$

LHS:
$$\frac{d}{dt} \vec{\mathbf{x}} = \begin{bmatrix} -c_1 \sin(t) + c_2 \cos(t) \\ -c_1 \cos(t) - c_2 \sin(t) \end{bmatrix}$$
 RHS: $A \vec{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \cos(t) + c_2 \sin(t) \\ -c_1 \sin(t) + c_2 \cos(t) \end{bmatrix}$

e. The general solution to the full DE is thus:

$$\vec{\mathbf{x}}(t) = \vec{\mathbf{x}}_p(t) + \vec{\mathbf{x}}_h(t) = \begin{bmatrix} 25t \\ 25 \end{bmatrix} + \begin{bmatrix} c_1 \cos(t) + c_2 \sin(t) \\ -c_1 \sin(t) + c_2 \cos(t) \end{bmatrix}$$

f. Find the specific solution matching the initial condition that: $\vec{\mathbf{x}}(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 50 \\ 0 \end{bmatrix}$. That is, find c_1 and c_2 .

$$c_1 = \begin{bmatrix} 50 \end{bmatrix}$$
 and $c_2 = \begin{bmatrix} -25 \end{bmatrix}$

3

Note: The top component $x_1(t)$ gives the same solution as in the previous problem:

$$x_1(t) = y(t) = y_p(t) + y_h(t) = 25t + 50\cos(t) - 25\sin(t)$$

Problem 3: The Cycloid Revisited - Solve the cycloid DE using the Laplace Transform

Use Laplace Transforms to solve this differential equation for the cycloid.

DE:
$$y'' + 0 \cdot y' + 1 \cdot y = 25t$$
 IC: $y(0) = 50$, $y'(0) = 0$

a. Find the transform of the RHS forcing function f(t) = 25t.

$$\mathcal{L}\{25t\} = \frac{\frac{25}{s^2}}$$

b. Find the transform of the double derivative term on the LHS. Denote the transform of the unknown y(t) as Y(s).

$$\mathcal{L}\{y''\} = s\mathcal{L}\{y'\} - y'(0) = s^2Y - sy(0) - y'(0) = Y(s) * (s^2 + 1) - 50s$$

c. Solve for the solution $Y = \frac{N(s)}{D(S)}$ (in transform space) as a ratio of two polynomials in s.

$$Y = \frac{50s^3 + 25}{(s^2 + 1)s^2}$$

- **d.** Find the partial fraction expansion for $Y = \frac{50s^3 + 25}{s^2 \cdot (s^2 + 1)} = \frac{A}{s} + \frac{B}{s^2} + \frac{Cs + D}{s^2 + 1}$
 - i. First find B using the Heaviside Cover-up Method. For free, you would find A = 0.

$$B = \begin{bmatrix} 25 \end{bmatrix}$$

e. From the partial fraction expansion for $Y_1 = Y - \frac{A}{s} - \frac{B}{s^2} = 25 \cdot \frac{2s-1}{s^2+1}$ we see that C = 50 and D = -25.

Thus, the full partial fraction expansion is: $Y = \frac{50s^3 + 25}{s^2 \cdot (s^2 + 1)} = \frac{25}{s^2} + \frac{50s - 25}{s^2 + 1}$ Give the solution in the time domain.

$$y(t) = 25t + 50\cos(t) - 25\sin(t)$$

Here's a plot of the solution in phase space with y' on the vertical axis and y on the horizontal axis.

