无锡学院 试卷

2024 - 2025 学年 第 2 学期

高等数学 I(2) 课程期中试卷

注意: 1		本课程为	必修	(注明必修或选修),	学时为	96	,学分为	6
-------	--	------	----	------------	-----	----	------	---

- 2、考试类型 闭卷 (注明开、闭卷)
- **3、本试卷共 4 页; 考试时间 90 分钟**; 出卷时间: <u>2025</u>年 4 月
- 4、姓名、学号等必须写在指定地方; 考试时间: 2025 年 5 月
- 5、本考卷适用专业年级: 2024 级理工科各专业

题 号	_	1 1	=	四	五	总分
得 分						
阅卷人						

(以上内容为教师填写)

专业	年级	班级
学号	姓名	教师

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场, 主考教师允许带入的除外。
- 6、 考试过程中,不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、 除非被允许, 否则考生交卷后才能离开座位。
- 10、考试违纪或作弊的同学将被请出考场,其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

一、选择题(每题4分,共72分)

1. 下列关于二元函数的结论错误的是(

A. 设函数
$$f(x, y) = xy + \frac{x}{y}$$
, 则 $f(x + y, 1) = 2(x + y)$.

B. 设函数
$$f(x+y,x-y) = x^2 - y^2$$
, 则 $f(x,y) = xy$.

C. 函数
$$f(x,y) = \sqrt{4-x^2-y^2} + \frac{1}{\sqrt{x^2+y^2-1}}$$
 的定义域为 $D = \{(x,y) | 1 < x^2 + y^2 \le 4\}$.

D. 函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 在点 $(0,0)$ 处连续.

- 2. 下列结论正确的是(
 - A. 函数 z = f(x,y) 在点 (x_0, y_0) 处的两个偏导存在,则 z = f(x,y) 在点 (x_0, y_0) 处可微.
 - B. 函数 z = f(x,y) 在点 (x_0, y_0) 处可微,则 z = f(x,y) 在点 (x_0, y_0) 处连续.
 - C. 函数 z = f(x,y) 在点 (x_0, y_0) 处的两个偏导存在,则 z = f(x,y) 在点 (x_0, y_0) 处连续.
 - D. 函数 z = f(x, y) 在点 (x_0, y_0) 处连续,则 z = f(x, y) 在点 (x_0, y_0) 处的两个偏导存在.
- 3. 设函数 z = f(x, y) 在点 (x_0, y_0) 处的两个偏导数存在,则 $f_v(x_0, y_0) = (x_0, y_0)$

A.
$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 + 2\Delta y) - f(x_0, y_0)}{\Delta y}$$

B.
$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0) - f(x_0, y_0 - \Delta y)}{\Delta y}$$

C.
$$\lim_{\Delta y \to 0} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$
 D. $\lim_{\Delta y \to 0} \frac{f(x_0, y_0 - \Delta y) - f(x_0, y_0)}{\Delta y}$

D.
$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 - \Delta y) - f(x_0, y_0)}{\Delta y}$$

4. 极限
$$\lim_{(x,y)\to(1,0)} \frac{\sin(xy)}{\sqrt{9+xy}-3} = ($$
).

5. 设
$$z = \sin xy + \ln \frac{y}{x}$$
, 则全微分 $dz = ($).

A.
$$\left(y\cos xy - \frac{1}{x}\right)dx + \left(x\cos xy + \frac{1}{y}\right)dy$$
 B. $\left(\cos xy + y\right)dx + \left(\cos xy + \frac{1}{x}\right)dy$

B.
$$(\cos xy + y) dx + (\cos xy + \frac{1}{x}) dy$$

C.
$$\left(y\cos xy + \frac{1}{x}\right)dx + \left(x\cos xy - \frac{1}{y}\right)dy$$
 D. $\left(y\cos xy + y\right)dx + \left(x\cos xy + \frac{1}{x}\right)dy$

D.
$$(y\cos xy + y)dx + \left(x\cos xy + \frac{1}{x}\right)dy$$

6. 设 $z = x \ln(xy)$,	则 $\frac{\partial^2 z}{\partial x \partial y} = ($).			
A. $\frac{1}{xy}$	B. <i>x</i>	$C\frac{x}{y^2}$	D. $\frac{1}{y}$	
7. 曲线 $x = t, y = 1$	$-2t, z = 1 - \frac{1}{2}t^2$ 在点 t	=1处的切线方程为().	
A. $\frac{x-1}{1} = \frac{y+1}{-2}$	$\frac{-1}{2} = \frac{z - \frac{1}{2}}{-1}$	B. $\frac{x-1}{1} = \frac{y+1}{2}$	$\frac{1}{z} = \frac{z - \frac{1}{2}}{-1}$	
C. $\frac{x+1}{1} = \frac{y-1}{1}$	$\frac{1}{2} = \frac{z + \frac{1}{2}}{-1}$	D. x-2y-z	$-\frac{5}{2} = 0$	
8. 若向量 a , b ,	$m{c}$ 两两互相垂直,且 $ m{a}$	c = 1, b = 2, c =	1 ,则向量 $\mathbf{s} = \mathbf{a} - \mathbf{b} + \mathbf{b}$	- 2c 的
模为().				
A. 3	B. 1	C. 4	D. 2	
9. 己知直线 $l: \frac{x-}{2}$	$\frac{1}{m} = \frac{y}{m} = \frac{z+2}{1} = \frac{z+2}{1}$	7: 3x + 6y - nz + 1 = 0	垂直,则 m 和 n 的值	分别为
().				
A. $1, -\frac{1}{2}$	B. $-4, \frac{3}{2}$	C. $4, -\frac{3}{2}$	D. $-1, \frac{1}{2}$	
10. 函数 $f(x,y)$ =	$=x^2y+\sin(xy)$ 在点 (0	,1) 处沿从点(0,1) 到	点 (1,2) 方向的方向导	}数为
().				
	B. $\frac{1}{2}$	C. $-\frac{\sqrt{2}}{2}$	D. $\frac{\sqrt{2}}{2}$	
11. 曲面 $e^z - z + x$	y=3在点(2,1,0)处的	切平面方程为().		
A. x - y + 2z + 2z = 0	-4 = 0 B. $x - 2y + z$	x + 4 = 0 C. $x + 2y - 4$	-4 = 0 D. $x + 2z +$	2=0
12. 设 D 是由 x =	$=1, y = \frac{1}{2}$ 所围成的闭图	区域,则二重积分∬(⊅	$xy^2 + 3)dxdy = ($).
A. $\frac{3}{2}$	B. 6	C. 0	D. $\frac{5}{2}$	
13. 函数 $f(x,y)$ =	= xe ^y 在点 P(2,0) 处的标	^弟 度为().		
A. (0,2)	B. (0,1)	C. (1,0)	D. (1,2)	

14. 设积分区域D是由x轴,y轴以及直线x+y=1所围成的闭区域, $I_1=\iint\limits_D (x+y)^2 \mathrm{d}\sigma$,

 $I_2 = \iint (x+y)^3 d\sigma$,则 I_1, I_2 的大小关系是(

- A. $I_1 = I_2$ B. $I_1 \ge I_2$ C. $I_1 \le I_2$ D. 不能确定

15. 已知 f(x, y) 在 \mathbb{R}^2 内连续,设 $I = \int_0^{\frac{\pi}{2}} dy \int_0^{y^2} f(x, y) dx$,则交换积分次序后 I = (

- A. $\int_{0}^{\frac{\pi}{2}} dx \int_{0}^{x^{2}} f(x, y) dy$.
- B. $\int_0^{\frac{\pi^2}{4}} dx \int_{-\pi}^{\frac{\pi}{2}} f(x, y) dy.$
- C. $\int_{a}^{\frac{\pi}{2}} dx \int_{a}^{\sqrt{x}} f(x, y) dy.$
- D. $\int_{0}^{\frac{\pi^{2}}{4}} dx \int_{x^{2}}^{\frac{\pi}{2}} f(x, y) dy$.

16. 设积分区域 $D = \{(x, y) | x^2 + y^2 \le 1\}$,则 $I = \iint_D \sqrt{x^2 + y^2} d\sigma = ($).

- A. $\frac{\pi}{2}$ B. $\frac{2}{2}\pi$
- C. 0

17. 曲面 $z = 1 - x^2 - y^2$ 与 xOy 坐标面所围成立体的体积为().

- A. 2π
- B. $\frac{\pi}{4}$ C. $\frac{\pi}{2}$

18. 设 Ω 是由圆锥面 $z = \sqrt{x^2 + y^2}$ 与上半球面 $z = \sqrt{2 - x^2 - y^2}$ 所围成的闭区域,则柱面坐 标系下可将三重积分 $I = \iiint_{\Omega} f(x, y, z) dV$ 化为三次积分(

- A. $\int_0^{\pi} d\theta \int_0^{\cos\theta} \rho d\rho \int_{\sqrt{2-\sigma^2}}^{\rho} f(\rho \cos\theta, \rho \sin\theta, z) dz$
- B. $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_{\sqrt{2-\rho^2}}^{\rho} f(\rho \cos \theta, \rho \sin \theta, z) dz$
- C. $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\sqrt{2}} \rho d\rho \int_0^{\rho} f(\rho \cos \theta, \rho \sin \theta, z) dz$
- D. $\int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \int_{0}^{\sqrt{2-\rho^{2}}} f(\rho \cos \theta, \rho \sin \theta, z) dz$

二、(7 分)设直线 l 过点 (1,0,-2),且与平面 $\pi:3x+4y-z+6=0$ 平行,又与直线 $l_1: \frac{x-3}{1} = \frac{y+2}{4} = \frac{z}{1}$ 垂直,求直线 l 的方程.

三、(7分)设函数 z = z(x, y) 是由方程 $z = 1 + \ln(x - 2y) - e^z$ 所确定的隐函数, 求 $z_y(1,0)$.

四、(7分) 求函数 $f(x, y) = x^3 - 4x^2 + 2xy - y^2 + 3$ 的极值.

五、(7 分) 计算二重积分 $I=\iint_D xy d\sigma$, 其中区域 D 是由 $x=\sqrt{y}, x=3-2y, y=0$ 所围成 的闭区域.

无锡学院

高等数学 I(2) 课程期中试卷评分标准及参考答案

一、选择题(每题4分,共72分)

题号	1	2	3	4	5	6	7	8	9
选项	D	В	В	С	A	D	A	A	С
题号	10	11	12	13	14	15	16	17	18
选项	D	С	В	D	В	В	В	С	D

二、(7分)

解: 平面 π 的法向量 $\mathbf{n} = (3,4,-1)$, 直线 \mathbf{l}_1 的方向向量 $\mathbf{s}_1 = (1,4,1)$,2分

因此,取所求直线 l 的方向向量为 s = (2, -1, 2),则直线方程为

三、(7分)

解法一:

方程 $z=1+\ln(x-2y)-e^z$ 两边同时对y 求导,得

$$z_{y} = \frac{-2}{x - 2y} - e^{z}z_{y} \qquad \dots \qquad 3 \,$$

在方程
$$z = 1 + \ln(x - 2y) - e^z$$
 中,令 $x = 1$, $y = 0$ 得 $z = 0$,代入上式可得 $z_y(1,0) = -1$.

解法二: