

(14 Points)

Name, First name, Student ID

General Questions

Examinant	: Prof. DrIng. Rainer Keller	Number of pages:	10
Courses:	Softwaretechnik & Medieninformatik Technische Informatik Ingenieurpädagogik	Semester:	SWB4 TIB4 IEP4
Exam:	Computerarchitektur	Exam number:	IT 105 4003, SWB428
Aids:	none, except calculator and 1 DIN A4 paper, both sides written (by yourself)	Duration:	90 minutes

Please read the instructions and questions carefully. Each task has sub-tasks, each of which is assigned a certain number of points. Each point is approximately one minute of time. Do use the available space and time and try to answer as elaborately, yet as thoroughly as possible. You may answer in English or in German. Please note the **hints and instruction set** on the last pages.

a)	How many Electronic Control units (ECUs, "computers") does a modern car approximately have?	
		1
b)	Name three common characteristics of microcontrollers:	
1.		
2.		3
3.		
c)	Please name 3 upsides and 3 downsides of the C programming language?	
Up	osides:	
1.		
2.		
3.		5
Do	ownsides:	
1.		
2.		
3.		

Summer semester 2023

l) In which	h situations sho	uld we use Asser	nbler (ASM)	, in which	n rather h	nigh-level
languag						
In which AS	SM?					
	gh-level language	nc?				
ii wilicii iliç	gii-level laliguage	:5!				
	ndian-ness relevent mples of function	vant when progran ons:	nming in a la	ınguage li	ke C? Plea	ase name
		igh-level language:	 :			
Examples o	of functions:					
Examples o	of functions:					
Examples o	of functions:					
Examples o	of functions:					
Examples o					(16 Pc	oints)
Archited	ctures	tored on HCS12, a	assuming x i	is located	•	•
Archited	ctures	tored on HCS12, a	assuming x i	is located	•	•
Archited	Ctures int x=0xcafe S		assuming x i	is located	•	•
Archited) How is an address	ctures int x=0xcafe s		assuming x i	is located	•	•
Archited) How is a second se	ctures int x=0xcafe s Old Value 0x01		assuming x i	is located	•	•
Archited Address 0x1020 0x1021	ctures int x=0xcafe s Old Value 0x01 0x00		assuming x i	is located	•	•
Archited Address 0x1020 0x1021 0x1022	ctures int x=0xcafe s Old Value 0x01 0x00 0xff		assuming x	is located	•	•
Archited Address 0x1020 0x1021 0x1022 0x1023	Ctures int x=0xcafe s Old Value 0x01 0x00 0xff 0x0a		assuming x	is located	•	•

c) Explain in your own words the note-worthy parts of current Intel Alder Lake Pcores – as shown in the architecture diagram below.

,		, , , , , , , , , , , , , , , , , , , ,	

d) Is the x86-64 architecture **and** specifically the above Intel Alder Lake an Harvardor a von-Neumann architecture? Please explain your argument?

Harvard- or von-Neumann architecture?
Please explain why:

e) Why is the Apple M2 SoC so performant?

4

5

HCS12 Assembler

(29 Points)

a) How long is shortest & longest HCS12 instruction in binary encoding (in Bytes)?

Shortest:		
Longest:		

b) Please state the error in the following instructions:

Instruction	Error	
LDAB #\$cafe		2
NEGD		

c) Given the following code, state the value of registers D, X and Y after execution:

.const: SECTION ORG \$C000

val1: DC.B \$57, \$65, \$6C, \$6C, \$20, \$64, \$6F, \$6E, \$65, \$00

val2: DC.W \$12, \$C00E
val3: DC.L \$89abcdef

.data: SECTION ORG \$2000

w: DS.W 1

Instruction	W: DS.W I	1	1	
LDAB val1 LDX val2 LDY val3 LDX #val1 LDD 1, X LDY #val2 LEAY 2, Y LDD 0, Y LDX -2, Y LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #w LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$SHD PSHX PULB PULA	Instruction	_	==	=
LDX val3 LDX #val1 LDD 1, X LDY #val2 LEAY 2, Y LDD 0, Y LDX -2, Y LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #w LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	Initial values:	\$cafe	\$0123	\$abcd
LDY val3 LDX #val1 LDD 1, X LDY #val2 LEAY 2, Y LDD 0, Y LDX -2, Y LDX SC LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #w LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDAB val1			
LDX #val1 LDD 1, X LDY #val2 LEAY 2, Y LDD 0, Y LDX -2, Y LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, w LDX #w LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA				
LDD 1, X LDY #val2 LEAY 2, Y LDD 0, Y LDX -2, Y LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDY val3			
LDY #val2 LEAY 2, Y LDD 0, Y LDX -2, Y LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDX #val1			
LEAY 2, Y LDD 0, Y LDX -2, Y LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 P\$HD P\$HX PULB PULA	LDD 1, X			
LDD 0, Y LDX -2, Y LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDY #val2			
LDX -2, Y LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LEAY 2, Y			
LDX #\$C LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDD 0, Y			
LDD [val1, X] LDY 0, Y MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDX -2, Y			
DDY 0, Y MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDX #\$C			
MOVW #\$AABB, W LDX #W LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDD [val1, X]			
LDX #w LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDY 0, Y			
LDAA +1, X LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	MOVW #\$AABB, w			
LDAB 1, X+ TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDX #w			
TFR A, Y LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDAA +1, X			
LDD #\$1122 LDX #\$3344 PSHD PSHX PULB PULA	LDAB 1, X+			
LDX #\$3344 PSHD PSHX PULB PULA	TFR A, Y			
PSHD PSHX PULB PULA				
PSHX PULB PULA	LDX #\$3344			
PULB PULA	PSHD			
PULA	PSHX			
	PULB			
PULY	PULA			
	PULY			

6

2

d) State the value after executing the instructions and the CCR flags?

Instruction	D	Negative (N)	Zero (Z)	Carry (C)
<pre>Init: LDD #\$a55a</pre>	\$a55a	V	-	-
ROLA				
ANDB #\$1				
ADDB #1				
MUL				
LSRD				

5

2

	e function ${\tt f}$ implements a std. LibC function with 1 parameter. nt: write the results of each line on the right):	
1.	PSHX PSHY TFR D, Y	
L1 :	LDX #0 : LDAB 1, Y+	
	BEQ L2 INX BRA L1	
e)	TFR X, D PULY PULX RTS What is the equivalent std. LibC function; Please state the signature?	
		4
f)	What's the value in the $\ensuremath{\mathtt{B}}$ register when reaching Label L2?	

Summer semester 2023

N. 1		
	me, First Name, Student ID	
g)	The function f is inefficient - please optimize by rewriting f:	
		6
		•
h)	What does the instruction BRA *+0 do?	
		2

Name, First Name, Student ID **C Programming** (31 Points) a) What is the content of variables S1 ... S6 after execution of: char a = 0x1, b = 0xa5, c = 0x10, S1, S2, S3, S4, S5, S6; S1 = !b;S2 = b & a; $S3 = b \mid c;$ $S4 = b ^ c;$ $S5 = \sim b;$ S6 = a >= b ? b : -c;S1= S2 =S3= 4 S4 =S5= S6= b) Consider You have the following function: long f(char * a, int b, long c) { int d; } Please state, where exactly the data is stored/passed, when using the HCS12 ABI? Stored where? How many bytes? Parameter a Parameter b 4 Parameter c Variable d Return value c) When declaring a C function as Interrupt Service Routine (ISR), how many Bytes have to be saved on the Stack per each invocation of this Interrupt? 2

d) Fill in the following code to use the ADC to measure voltages. The analog input is in the range of 0 ... 5V. First initialize the ADC using the ATD0 taking 8 samples using 10-bit resolution (right-adjusted) with the default 2MHz sampling clock from Channel 2. Convert the value back into a double-digit, fixed-comma value representing the range, i.e. 0 is 0V, 45 is 4,5V and 50 represents 5,0V etc.

void initADC(void) {	
	4
}	
unsigned int getADC(void) {	
	4
}	
unsigned int convert(unsigned int measured) {	
	— ,
}	
<pre>void main(void) { initADC();</pre>	
<pre>while (1) { unsigned int measured = getADC();</pre>	
<pre>unsigned int converted = convert(measured);</pre>	
 } }	
e) What is the highest value getADC() may return?	
	1
	1

	Measure a signal on Port T.5 using the Input Capture mode for Channel 4, triggering on a both edges. Set the clock divider to 0. Store the current timer value to lastTime.	
voi	d initTimer(void) {	
		5
,		
} uns	signed int lastTime;	
voi	d timer4Isr(void) {	
		3
}		
	d main(void) {	
i	nitTimer(); while (1) {	
	// uses lastTime	
}		
	Initialize the Serial Interface 0 to 57600 baud using 8 data bits, no parity and 1 stop Bit (8N1), and enable receiver and transmitter, but without interrupts.	
	d initSerial(void) {	
		3
}		

Hints:

Interrupt-Vector-Table

RTI Interrupt:

Interrupt period $T_{RTI} = 2^{9+X} * (Y + 1) / f_{OSCCLK}$. All values in ms @ $f_{OSCCLK} = 4$ MHz

Serial Interface: @ f_{BUSCLK} = 24 MHz
Clock Divider Register SCIxBD =f_{BUSCLK}/(16*f_{BIT})

5...=300 bit/s | 600 bit/s | 1.2 kbit/s | 2.4kbit/s | 4.8kbit/s | 4.8

Every modern microcontroller has a powerful timer unit for tasks like

- · Measuring time differences/timeouts in programs
- Measuring time instants of external events, pulse periods and pulse lengths of input signals (Input Capture Mode)
- Generation of interrupts and output signals at programmable times (Output

• Periodical interrupts can be generated using the RTI unit:

Register CRGINT: To enable the RTI interrupt (RTI Enable, short RTIE), set bit 7 in CRGINT to 1. The **other bits** must not be changed!

Register CRGFLG: At the end of the ISR, the RTI Interrupt Flag (RTIF), i.e. bit 7 in CRGFLG must be reset by writing a 1. The other bits must not be changed!

The HCS12 of the Dragon12 has two UARTs SCI0 and SCI1. SCI0 is used for the debugger communication. SCI1 is free for user programs, e.g. to communicate with a terminal (Hyperterminal or terminal-component of the HCS12 debugger) running on a PC.

Each serial interface has 3 configuration registers, which must be configured once

•	Baud Rate	SCIxBD	Clock divider:		
	Register	(16 bit			
	(x=0 for SCI0,)	register!)	$SCI \times BD = \frac{f_{BUSCLK}}{16 * f_{bit}} $ (Dragon12 @ $f_{BUSCLK} = 24 \text{ MHz}$)		
٠	Control Register 1	SCIxCR1	Default after reset: 8N1 (8 data bits, no parity, 1 stop bit)		
		(8 bit register)	If parity is required:		
			Bit 0 = 1 Uneven Parity (0 = odd Parity)		
			Bit 1 = 1 Use parity bit		
			Bit 72 Do not change		
	Control Register 2	SCIxCR2	Sender and receiver control		
			Bit 2 = 1 Receiver Enable		
			Bit 3 = 1 Transmitter (Sender) Enable		
			Bit 5 = 1 Receive Interrupt Enable		
			Bit 7 = 1 Transmit Interrupt Enable		
			Set other bits to to		
			Send and receive interrupts use the same interrupt vector		
			both types of interrupts are enable, the ISR must poll status		
reg			register SCIxSR1 to figure out, why the interrupt was triggered		

TSCR1 (8 bit register)	Enable the timer unit Bit 7 = 1 Set to 1 to enable Bit 60=0 Default after reset (don't touch)
TSCR2 (8 bit register)	Set the timer clock frequency Bit 73 = 0 Default after reset (don't touch) Bit 20 Set for Clock divider x to 0
TIOS (8 bit register)	Select In- or Output Capture Mode per Channel Bit y = 1 Channel y in Output Capture Mode (y=0,1,7) Default y=0, i.e. Input Capture Mode
TIE (8 bit register)	Interrupt Enable per Channel Bit y = 1 Channel y does generate interrupts y=0,1,7 Default: y=0, i.e. no interrupt Each channel has its own ISR, which will be called by its associated input or output events.
TFLG1 (8 bit register)	Interrupt Flag indicates an timer interrupts even Bit y = 1

TCTL3 (8 bit		4 3 2 1 0 00 Input not used onnel 6 Channel 5 Channel 4 01 Positive edge onnel 2 Channel 1 Channel 0 1 Positive edge 10 Negative edge 11 Positive edge 11 Positive edge 1 Posi	
ATDOCTL2 (8 bit register)	Enable the AE Bit 7 = 1 Bit 6 = 1 Bit 52 = 0000 _B Bit 1 = 1 Bit 0 = 1	OC and interrupts Enable the ADC module Automatic resetting of the CCF flag Miscellaneous options, don't change Enable interrupt after conversion completes Interrupt Flag, indicates an interrupt, must be reset by writing a 1 into this bit.	
ATDOCTL3 (8 bit register)	Conversion set Bit 7 = 0 Bit 63 Bit 20 = 000 _B	iquence Default Sequence Count, number of measurements Default	
ATDOCTL4 (8 bit register)	Bit 7 = 0 Bit 6,5 = 00 _B	d conversion speed 10 bit resolution (Bit 7-1 8 Bit) Sampling length 2 clocks (don't change) Clock divider f _{Apc} =2MHz @ f _{BUSCK} = 24 MHz (maximum clock frequency)	
ATDOCTL5 (8 bit register)	Data format and start of conversion Bit 75 = 100 ₈ Result in result register right-adjusted and unsigned Bit 4 0=single channel, 1=Multichannel conversion mode Bit 3 = 0 Default Bit 20 Channel select code, 17		
ATD0STAT0 (8 bit register) ATD0DRx (16 bit register)	Bit 7 = 1 Bit 60 Bit 150	End of conversion EOC Other status info, don't care Result of 1st channel / the only channel in single channel mode. Where x is the number of the sample.	

Sending and receiving uses the same data register:

-	-	_	
Data Register	SCIxDRL	If written:	TX data register (for transmission)
	(8 bit register)	If read:	RX data register (for reception)
			of the data register. Used only if the SCI is r character length > 8 bit.
	, -8,	,	

Polling the status of the serial interface

•	Status Register 1	SCIxSR1	Bit 7 = 1	TX data register free
		(8 bit register)	Bit 5 = 1	RX data register full = new character
			The other statu	s bits indicate various error conditions, e.g.
			Bit 3 = 1	Receive register overwritten by next character
				before the previous character was read.
			Bit 0 = 1	Parity error
•	Status Register 2	SCIxSR2 (8 bit register)	Optional for operating modes not described here.	

Due to implementation details of the hardware, the status register SCIxSR1 should always be read, before reading or writing characters from/to the data register. This will automatically clear the status flags for polling and interrupt mode.