Key Terms

- convergence
- sequence
- neighborhood
- cauchy
- accumulation points
- Bolzanno Weierstrass theorem
- sub-sequence
- increase
- decrease
- monotone
- limits
- continuous
- uniformly continuous
- closed
- open
- compact
- Extreme Value Theorem connected
- Intermediate Value Theorem
- Derivative
- Chain Rule
- relative max (min)
- Rolle's theorem
- Cauchy Mean Value Theorem
- L'Hopital
- First Mean Value Theorem
- Second Mean Value Theorem

Chapter Problems

- 1. 2,7,9,10,11,16,24,25,26,26,28,32,24,35,38,40,47
- 2. 2,7,11,12,15,19,22,24
- 3. 2,3,5,6,14,15,19,22
- 4.
- 5.

Sample Problems

- 1. Assume that e^x is continuous on \mathbb{R} . Use this and any theorem to show that $f(x) = x^2 e^x$ is uniformly continuous on [0,1].
- 2. Find

$$\lim_{x \to 0} x^2 \sin(\frac{1}{x})$$

3. Use the L'Hospital's rule to find:

$$\lim_{x\to 0}\frac{\sqrt{1+x}-1}{\sqrt{x}}$$

4. Use an $\epsilon - \mathbb{N}$ argument to find:

$$\lim_{x \to \infty} \frac{1}{n^2 + 1}$$

- 5. State the Bolzano's theorem in the context of letting $f:[a,b]\to\mathbb{R}$
- 6. Prove that $g(x) = x^3 + x 1$ has at least one root which lies in the open interval (0, 1).
- 7. State the Mean Value Theorem
- 8. State the Least Upper Bound Property of Real numbers
- 9. Give the definitions of the following:
 - accumulation point of a set of real numbers
 - uniformly continuous functions
 - Cauchy sequence of real numbers
 - open set of real numbers
- 10. State True (T) or False (F) for the following:
 - If A is a non-empty and compact set of real numbers then A contains inf A and sup A.

- If $f:(2,10) \to \mathbb{R}$ is uniformly continuous, then it is bounded
- If A and B are compact sets of real numbers then so is $A \cup B$
- If A and B are open sets of real numbers then so is $A \cup B$
- Every monotone sequence of real numbers converges.
- 11. Use $\epsilon \mathbb{N}$ argument to prove that the sequence $\left(\frac{n}{2n+1}\right)$ converges and find its limit
- 12. (a) (2 pts) Define what it means for the sequence $\{a_n\}_{n=1}^{\infty}$ to converge to a real number A.
 - (b) (2 pts) Define what it means for the sequence $\{a_n\}_{n=1}^{\infty}$ to be Cauchy.
 - (c) (2 pts) Let S be a set of real numbers. Define what it means for A to be an accumulation point of S.
 - (d) (2 pts) State the Least Upper Bound Property.
- 13. True or False (justify your answer).
 - (a) (2 pts) $(A \setminus B) \cup (B \setminus A) \subset (A \cup B) \setminus (A \cap B)$.
 - (b) (2 pts) There exists an infinite subset of \mathbb{R} that has no accumulation points.
 - (c) (2 pts) Every increasing sequence converges.
- 14. (a) (4 pts) Define the sequence $\{a_n\}_{n=1}^{\infty}$ by $a_1 = 15$ and $a_n = \sqrt{12 + a_{n-1}}$ for $n \ge 2$. Show that the sequence $\{a_n\}_{n=1}^{\infty}$ is decreasing and bounded.
 - (b) (4 pts) Is this sequence convergent? Why or why not? If convergent, find its limit.
- 15. Suppose that (a_n) and (b_n) are sequences of real numbers, such that (a_n) converges to A and (b_n) converges to B. Prove that $(a_n + b_n)$ converges to A + B.
- 16. Assume that y is an upper bound for a nonempty bounded from above set A. Prove that $y = \sup A$ if and only if for each $\epsilon > 0$, there is $a \in A$ such that $y \ge a > y \epsilon$.
- 17. (a) (2 pts) Give an example of a sequence $\{a_n\}_{n=1}^{\infty}$ of real numbers that is bounded but not convergetn.
 - (b) (2 pts) Consider your example from (a). Does the set $\{a_n \mid n = 1, 2, ...\}$ have any accumulation points? Explain your answer.
- 18. (a) (6 pts) If $\{a_n\}_{n=1}^{\infty}$ converges to A and $\{b_n\}_{n=1}^{\infty}$ converges to B, prove that $\{a_nb_n\}_{n=1}^{\infty}$ converges to AB. (This is Theorem 1.9 from the textbook. To get credit you must prove it, not just quote the theorem.)
 - (b) (2 pts) Can $\{a_nb_n\}_{n=1}^{\infty}$ converge without having that both $\{a_n\}_{n=1}^{\infty}$ converges and $\{b_n\}_{n=1}^{\infty}$ converges? Justify your answer.

- 19. Prove the compact set of real numbers is closed without the usage of the Heine Borel Theorem.
- 20. (a) Identify the set of all accumulation points of the set $E = (0,1] \cup \{3\}$ Explain your answer.
 - (b) Given an open cover of the set E that has no finite subcover
- 21. Suppose f,g: $D \to \mathbb{R}$ with x_0 as an accumulation point of D. Further suppose that f and g both have limits at x_0 . Prove that f+g has a limit at x_0 and

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

22. Define a function $f: \mathbb{R} \to \mathbb{R}$

$$\begin{cases} 0 & if x \in \mathbb{Q} \\ x^2 & if x \notin \mathbb{Q} \end{cases}$$

- (a) Is f continuous at x = 0? Justify your answer. (Justification based on definition will receive the most points)
- (b) Is f differentiable at x = 0? Justify your answer.
- 23. Let f: $D \to \mathbb{R}$ be uniformly continuous and let (x_n) be a Cauchy sequence of points in D. Prove that $f(x_n)$ is a Cauchy sequence.