EXPERIMENT NUMBER 5	GROUP 10	Trần Minh Quân-19151078
	DATE	22/04/2022
Investigate the characteristics of diodes and transistors	LECTURER	Tạ Đình Hiến
	REPORT DATE	
	GRADING	

Purpose:

- About knowledge: State the measurement method and the steps to conduct the experiment
- Test to determine the characteristics of Diode and Transistor.
- About skills: Fluently use measuring tools, follow the correct procedure
- Experiment yourself to get accurate data.
- Attitude: Careful, persistent, accurate, honest, objective.

I. Measuring Instruments

Experimental equipment includes:

- Physics experiment kit BKE-050 or MC-95.7
- Diode (silicon) and transistor (npn)
- 820Ω and $100k\Omega$ resistors
- Set of wiring harnesses (7 wires)
- Power supply 220VAC

II. Draw the Volt-Ampere characteristic curve of the diode

- a) Data Table 1
 - Accuracy level of voltmeter: $k_v =$
 - Voltmeter scale: U_m =
 - The smallest division of the voltmeter scale: ω_v =
 - Accuracy class of Ampere meter: k_A =
 - Ampere meter scale: $I_m =$
 - The smallest division of the Ampere meter scale: ω_A =

U (V)						
I (mA)						

b) Draw the characteristic I = f(U) of the semiconductor diode

U (V)						
I (mA)						

III. Draw characteristic curve $I_C = f(U_{CE}, I_B)$ of transistor

- a) Data table 2
 - Accuracy level of voltmeter: $k_v =$
 - Voltmeter scale: $U_m =$
 - The smallest division of the voltmeter scale: ω_v =
 - Accuracy class of Ampere meter 1: k_{A1} =
 - Ampere meter scale 1: I_{1m} =
 - The smallest division of the Ampere meter scale 1: ω_{I1} =
 - Accuracy class of Ampere meter 2: k_{A2} =
 - Ampere meter scale 2: I_{2m} =
 - The smallest division of the Ampere meter scale $2:\omega_{I2}=$
 - $\rightarrow \Delta U =$
 - $\rightarrow \Delta I_1 =$
 - $\rightarrow \Delta I_2 =$

		U _{CE} (V)					
$I_B =$	μΑ	I _C (mA)					
		U _{CE} (V)					
$I_B =$	$f_{B} = \mu A$	$I_{C}(mA)$					
		U _{CE} (V)					
$I_B =$	μΑ	$I_{C}(mA)$					
		U _{CE} (V)					
$I_B =$	μΑ	$I_{C}(mA)$					

b) Graph $I_C = f(I_B)$ and $I_C = f(U_{CE})$ on the same coordinate system

c) From the graph, determine the current gain of the transistor:

$$\beta = tg\alpha = \frac{I_{Ci} - I_{Cj}}{I_{Bi} - I_{Bj}}$$

.....

d) Calculate the errors of β

- Write measurement results $\beta = \beta \pm \Delta\beta$:
- Comment on measurement results: