p. 544

Théorème central limite

En établissant d'abord le théorème de Lévy, on démontre le théorème central limite, qui dit que si (X_n) est une suite de variables aléatoires identiquement distribuées admettant un moment d'ordre 2, alors $\frac{X_1+\cdots+X_n-n\mathbb{E}(X_1)}{\sqrt{n}}$ converge en loi vers $\mathcal{N}(0,\operatorname{Var}(X_1))$.

Notation 1. Si X est une variable aléatoire réelle, on note ϕ_X sa fonction caractéristique.

Théorème 2 (Lévy). Soient (X_n) une suite de variables aléatoires réelles définies sur un espace probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et X une variable aléatoire réelle définie sur le même espace. Alors :

$$X_n \xrightarrow{(d)} X \iff \phi_{X_n}$$
 converge simplement vers ϕ_X

Démonstration. Sens direct : On suppose que (X_n) converge en loi vers X. Pour tout $t \in \mathbb{R}$, la fonction $g_t : x \mapsto e^{itx}$ est continue et bornée sur \mathbb{R} . Donc par définition de la convergence en loi :

$$\lim_{n \to +\infty} \mathbb{E}(g_t(X_n)) = \mathbb{E}(g_t(X))$$

ce que l'on voulait.

<u>Réciproque</u>: Soit $\varphi \in L_1(\mathbb{R})$. On suppose que sa transformée de Fourier, $f = \widehat{\varphi}$ appartient également à $L_1(\mathbb{R})$. Alors

$$\mathbb{E}(f(X_n)) = \mathbb{E}\left(\int_{\mathbb{R}} e^{itX_n} \varphi(t) \, \mathrm{d}t\right)$$

Comme la fonction $(\omega, t) \mapsto e^{itX_n(\omega)}\varphi(t)$ est intégrable pour la mesure $\mathbb{P} \otimes \lambda$, on peut appliquer le théorème de Fubini-Lebesgue pour intervertir espérance et intégrale :

$$\mathbb{E}(f(X_n)) = \int_{\mathbb{R}} \mathbb{E}(e^{itX_n})\varphi(t) \,\mathrm{d}t$$

On définit maintenant la suite de fonction $g_n: t \to \mathbb{E}(e^{itX_n})\varphi(t)$. Alors :

- \forall *n* ∈ \mathbb{N} , g_n est mesurable.
- La suite de fonction (g_n) converge presque partout vers $g: t \mapsto \mathbb{E}(e^{itX})\varphi(t)$ par hypothèse.
- $\forall n \in \mathbb{N} \text{ et pp. en } t \in \mathbb{R}, \, |g_n(t)| \leq \mathbb{E}(|e^{itX_n}|)|\varphi(t)| \leq \mathbb{P}(\Omega)|\varphi(t)| = |\varphi(t)| \text{ avec } |\varphi| \in L_1(\mathbb{R}).$

On peut donc appliquer le théorème de convergence dominée pour obtenir

$$\mathbb{E}(f(X_n)) \longrightarrow \int_{\mathbb{R}} \mathbb{E}(e^{itX}) \varphi(t) \, \mathrm{d}t = \mathbb{E}(f(X))$$

Ainsi, le résultat est vrai pour toute fonction $L_1(\mathbb{R})$ dans l'image de $L_1(\mathbb{R})$ par la transformée de Fourier. En particulier, il est vrai pour tout $f \in \mathcal{S}(\mathbb{R})$, dense dans $(\mathcal{C}(\mathbb{R}), \|.\|_{\infty})$. Soient maintenant

 $f \in \mathcal{C}(\mathbb{R})$ et (f_k) une suite de fonctions de $\mathcal{S}(\mathbb{R})$ qui converge uniformément vers f. Alors,

$$\begin{split} |\mathbb{E}(f(X_n)) - \mathbb{E}(f(X))| &= |\mathbb{E}(f(X_n)) - \mathbb{E}(f_k(X_n)) + \mathbb{E}(f_k(X_n)) \\ &- \mathbb{E}(f_k(X)) + \mathbb{E}(f_k(X)) - \mathbb{E}(f(X))| \\ &\leq 2\|f - f_k\|_{\infty} + |\mathbb{E}(f_k(X_n)) - \mathbb{E}(f_k(X))| \\ &\longrightarrow 0 \end{split}$$

Lemme 3. Soient $u, v \in \mathbb{C}$ de module inférieur ou égal à 1 et $n \in \mathbb{N}^*$. Alors

$$|z^n - u^n| \le n|z - u|$$

Démonstration.
$$|z^n - u^n| = |(z - u) \sum_{k=0}^{n-1} z^k u^{n-1-k}| \le n|z - u|$$
.

Théorème 4 (Central limite). Soit (X_n) une suite de variables aléatoires réelles indépendantes de même loi admettant un moment d'ordre 2. On note m l'espérance et σ^2 la variance commune à ces variables. On pose $S_n = X_1 + \cdots + X_n - nm$. Alors,

$$\left(\frac{S_n}{\sqrt{n}}\right) \xrightarrow{(d)} \mathcal{N}(0, \sigma^2)$$

Démonstration. On a $S_n = \sum_{k=1}^n (X_k - m)$. Notons ϕ la fonction caractéristique de $X_1 - m$. Comme les variables aléatoires $X_1 - m, \dots, X_n - m$ sont indépendantes de même loi, la fonction caractéristique de $\frac{S_n}{\sqrt{n}}$ vaut $\forall t \in \mathbb{R}$,

$$\phi_{\frac{S_n}{\sqrt{n}}}(t) = \mathbb{E}\left(e^{iS_n\left(\frac{t}{\sqrt{n}}\right)}\right)$$

$$= \mathbb{E}\left(\prod_{k=1}^n e^{i(X_k - m)\left(\frac{t}{\sqrt{n}}\right)}\right)$$

$$= \prod_{k=1}^n \phi_{X_k - m}\left(\frac{t}{\sqrt{n}}\right)$$

$$= \phi\left(\frac{t}{\sqrt{n}}\right)^n$$

D'après le Théorème 2, pour montrer que $\frac{S_n}{\sqrt{n}}$ converge en loi vers $\mathcal{N}(0,\sigma^2)$, il suffit de montrer que

$$\forall t \in \mathbb{R}, \lim_{n \to +\infty} \phi \left(\frac{t}{\sqrt{n}}\right)^n = e^{-\frac{\sigma^2}{2}t^2}$$

car $t \mapsto e^{-\frac{\sigma^2}{2}t^2}$ est la fonction caractéristique de la loi $\mathcal{N}(0, \sigma^2)$.

Comme X_1 admet un moment d'ordre 2, ϕ est de classe \mathscr{C}^2 et

$$- \phi(0) = 1.$$

$$- \phi'(0) = i^1 \mathbb{E}(X_1^1) = 0.$$

$$- \phi''(0) = i^2 \mathbb{E}(X_1^2) = -E(X^2) = -\sigma^2 \text{ (car } m = 0).$$

Ce qui donne le développement limité en 0 de ϕ à l'ordre 2 (par la formule de Taylor-Young) :

$$\phi(t) = \phi(0) + \frac{\phi'(0)}{1!}(t - 0) + \frac{\phi''(0)}{2!}(t - 0)^2 + o(t^2) = 1 - \frac{\sigma^2 t^2}{2} + o(t^2)$$
 (*)

Et, en appliquant le Lemme 3:

$$\left| \phi \left(\frac{t}{\sqrt{n}} \right)^n - e^{-\frac{\sigma^2}{2}t^2} \right| = \left| \phi \left(\frac{t}{\sqrt{n}} \right)^n - \left(e^{-\frac{\sigma^2}{2n}t^2} \right)^n \right|$$

$$\leq n \left| \phi \left(\frac{t}{\sqrt{n}} \right) - e^{-\frac{\sigma^2}{2n}t^2} \right|$$

On a d'une part, par développement limité:

$$e^{-\frac{\sigma^2}{2n}t^2} = 1 - \frac{\sigma^2}{2n}t^2 + o\left(\frac{1}{n}\right)$$

Et d'autre part, par (*):

$$\phi\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{\sigma^2}{2n}t^2 + o\left(\frac{1}{n}\right)$$

On obtient ainsi le résultat cherché, à savoir :

$$n\left|\phi\left(\frac{t}{\sqrt{n}}\right) - e^{-\frac{\sigma^2}{2n}t^2}\right| = o(1)$$

Bibliographie

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5^e éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$