CS 5350/6350, DS 4350: Machine Learning, Fall 2024

Sample Midterm Questions

This document contains a set of questions to give a flavor of the midterm exam. (The actual midterm will not be as long as this.) Feel free to discuss these questions with the instructor, the TAs and other students.

- 1. How would you train a decision tree using the ID3 algorithm if some attributes are missing?
- 2. Step through the process of constructing a decision tree using the ID3 algorithm for a small dataset like the Tennis data in the lecture.
- 3. Show that Dataset 1 in table 1 is linearly separable by providing a linear threshold unit that correctly classifies the examples.
- 4. How would you avoid overfitting when you use the decision tree algorithm? Why might shorter decision trees be more robust to noise in the training data?
- 5. Consider Dataset 2 in table 2 and answer the following questions
 - (a) Which of the three features x_1 , x_2 or x_3 has the highest information gain?
 - (b) Construct a decision tree of depth one (i.e. that uses just one feature) using the feature with the highest information gain. Justify your choice for the labels on the leaves.
 - (c) What is the training error of the tree you constructed for the previous question?
- 6. For each function below, state whether it can be written as a linear threshold unit in terms of the variables specified. If it can be written as one, write the linear threshold unit that is equivalent to the function. If not, suggest a transformation of the underlying space so that the function is linear in the new space.
 - (a) $\neg x_1$
 - (b) $x_1 \vee \neg x_2$
 - (c) $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3)$

x_1	x_2	x_3	y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0

Table 1: Dataset 1

x_1	x_2	x_3	y
-1	-1	-1	1
-1	-1	1	1
-1	1	-1	-1
-1	1	1	1
1	-1	-1	-1
1	-1	1	-1

Table 2: Dataset 2

- 7. Show that the Halving algorithm for a finite concept space C will not make more than $\log |C|$ mistakes. Apply this to get a limit on the number of mistakes the algorithm will make for the class of k-conjunctions of n Boolean variables.
- 8. State with an explanation whether the following are true or false.
 - (a) The mistake bound model assumes that training and test examples are drawn from the same fixed, but unknown distribution.
 - (b) The Perceptron mistake bound theorem guarantees that the algorithm will find a linear separator for *any* dataset.
 - (c) A learning algorithm that makes a finite number of mistakes on any dataset is called a mistake bound algorithm.
- 9. Prove the Perceptron mistake bound.
- 10. Using Dataset 2 in table 2, step through the Perceptron algorithm, starting with all weights and the bias term being zero.
- 11. Prove a mistake bound for the margin Perceptron. More formally, the margin Perceptron updates its weights for an example \mathbf{x}_i with label y_i if $y_i \mathbf{w}_t^T \mathbf{x}_i \leq \mu$. Here, μ is a fixed parameter.
 - As with the standard Perceptron, suppose all examples are contained in a ball of radius R and let a unit vector \mathbf{u} perfectly classify the data with margin γ .
 - (For such a proof, you will have to follow the template of the Perceptron mistake bound proof: First, prove that $\mathbf{u}^T \mathbf{w}_t$ keeps increasing with each update Then, prove that $\|\mathbf{w}_t\|$ is bounded above. Finally, combine these two bounds in exactly the same fashion as in the Perceptron case to get an inequality involving the number of updates.)
- 12. How many mistakes will the Perceptron algorithm make for disjunctions with n attributes? To answer this, you will first have to identify what R and γ are for this concept class. To get started with γ , see what happens when n=2.
- 13. Suppose our learning problem has n binary features. What is the size of the hypothesis space consisting of all decision trees over this space?
- 14. You wish to learn a hidden concept f using m training examples that are drawn from a distribution D. If the training set is called S and the hypothesis that your learning generates is h, write expressions for the empirical and true errors.