

gradients one Zero out side not d'freventialele, also saturates, we need a better cost function! St we need a cost function that saturales accorrect classification & does n't to satinate @ incorpot classifications

Dering Corr

$$\frac{1}{1+e^{2}} = \frac{1}{1+e^{3}}$$

$$\frac{d\sigma(2)}{dz} = \sigma(2)(1-\sigma(2))$$

$$\frac{d\sigma(2)}{dz} = \frac{1}{1+e^{3}}$$

$$\frac{d\sigma(2)}{dz} = \frac{$$

Twant do combine 2 with tayet to arrive @ cost
Ruction that
doesn't saturate

So they choose YZ as that combination such that log (p(41) = yz = p(4)= e42 P(y) = e^{y2} = e^{y2}

Charmodized) \leq e^{y2}

(y tookes values OL1)

A "kird of" probability distribution) P(4)= -((24-1)3) ast function of gregular logistic repression also saturates $P(Y_1, \dots, Y_m) = \prod_{i=1}^{m} P(Y_i/x_i)$ $max log (\prod_{i=1}^{m} P(Y_i/x_i))$ max & ly (p(y/x,)) min = \$ - (b (41/x1)) Cost func: $y(0) = -(0) p(y/x^{1})$ = $-(0)(-(2y-1)z_{3}) = (-(2y-1)z_{3})$

Why thought function with what I have? $P(Y_1=1/\gamma_1) = \sigma(Z_1)$ $P(Y_1=0/\chi_1) = 1 - \sigma(Z_1)$ $P(Y_1) = (\sigma(Z_1))^{(1)} (1 - \sigma(Z_1))$ P(y1,y2, --- yn | x1, x2 -- xm) = TT (p(yi/xi))

= m
(o (3i)) yi (1 - o (3i))

PARO (=1) = log (p(y1, y2 --) ym | x1, x2 -- 2m)) max 5 [y(doy(-(z()) + (-y)) lg(1-o(z())) = min = - (y; lg-(zi)+ (1-yi) (g(1-r(zi))) 2>>0 y=1 2>>0 y=0 -> saturates also satuates ;-; = (Z) Saturates > log (- -(Z1) saturates (ultimately) when o(2) =) problem// Closent change mach at all)

Up next: Soft max, Orelea & how to deal with them)

	Aight, Lets say moutputs are there
	Then how down fordict
	(WTh 1b) is input
	(1 T.
((wh+b) = Zi = log p(y=i/x) funnormalizied $(y=i/x)$ $(y=i/x)$ $(y=i/x)$
	A'= 'pd
	unnoman atol
	with a log probabilities
7	$\mathcal{L}^{(7)} = \left(\frac{1}{x} \right)$
	Z_{λ}
	$p(y=i/x) = \frac{e^{x}}{2e^{x}}$ form classes
	se si torricas
	Why distribution? This is a multinomial dist. We can seey it belows here 0.2 0.7 0.1
	we can seem it bul carps here
	0.2 0.3 0.1
	> so we can "turn" zinto a probability this
	> 30 me can" turn "Zinto a probability this
	The dont normally maximize (HE probabilities
	Some marining the (unnormalized) lop
	> une dont normally maximize THE probabilities Some proof maximize the (unnormalized) log probabilities
	then we vermalize

Doltmax = (p(Y=2/x))P(Y=2/x)) (P(Y=1/x It is however not for sure that 7.0, Bince you't hit local minima often Posthis 1'S Class Some ituations PSince Ls we might need early stoppip is does 2 Other a chrokion /funcs. Kelv: differentiability problem @ 'O' take withen LHS, on RHS derivatile Leaky Rel Li= 9(Zx) = max(0,31) + wi min (0,31) absolute value advakon function take mar of each wixth in each division and all neurous in that division have max of divisor in that (movert) output This maxout

Don't use sigmoid, tenh(2) setmates lesser, use that
make sure you shift origin of this softplus (of (tiez)
endialbosis graph)
softplus (of (tiez)
hardtorn max (-1, min (1,a))