UNIVERSITÉ DE SHERBROOKE

Faculté de génie Département de génie électrique et génie informatique

RAPPORT ÉDIFICE MAL AU CŒUR

Mathématiques de base de l'ingénieur GEN124

Présenté à Karina Lebel, ing. PhD.

Présenté par François Giguère – gigf1905 Alexis Juteau – juta1101

Sherbrooke – 22 septembre 2021

1. CIRCUIT DE RÉCEPTION

1.1 CALCUL ET VALEUR LA RÉSISTANCE DE CHARGE POUR MAXIMISER LA PUISSANCE

D'abord, il faut trouver P_{MAX} (puissance maximale) pour le circuit de réception. Pour se faire, ne connaissant pas la tension aux bornes de R_{out} , mais plutôt celle de V_{in} , il faut utiliser une autre formule pour la puissance : $P = I^2 *R$. Finalement, il faut trouver la dérivée de celle-ci. La procédure est la suivante :

$$P = VI \rightarrow P = I^{2}R$$

$$I_{total} = \frac{V_{in}}{R_{c} + R_{out}}$$

$$P_{out} = \left(\frac{V_{in}}{R_{c} + R_{out}}\right)^{2} \cdot R_{out} \rightarrow \frac{V_{in}^{2} \cdot R_{out}}{(R_{c} + R_{out})^{2}}$$

$$\frac{dR_{out}}{dP_{out}} = \frac{V_{in}^{2} \cdot (R_{c} + R_{out})^{2} - V_{in}^{2}R_{out} \cdot 2 \cdot (R_{c} + R_{out})}{\left[(R_{c} + R_{out})^{2}\right]^{2}}$$

$$= \frac{1}{(R_{c} + R_{out})^{4}} \left[\left(V_{in}^{2}(R_{c} + R_{out})^{2}\right) - \left(V_{in}^{2}R_{out} \cdot \left(2 \cdot (R_{c} + R_{out})\right)\right)\right]$$

$$= \frac{1}{(R_{c} + R_{out})^{4}} \cdot V_{in}^{2} \left[(R_{c} + R_{out})^{2} - 2R_{out} \cdot (R_{c} + R_{out})\right]$$

$$= \frac{1}{(R_{c} + R_{out})^{4}} \cdot V_{in}^{2}(R_{c} + R_{out}) \cdot \left[R_{c} + R_{out} - 2R_{out}\right]$$

$$= \frac{V_{in}^{2}(R_{c} + R_{out} - 2R_{out})}{(R_{c} + R_{out})^{3}} \rightarrow \frac{V_{in}^{2}(R_{c} - R_{out})}{(R_{c} + R_{out})^{3}}$$

Ensuite, il faut optimiser en trouvant le maxima de la dérivée. Dans cette optique, la dérivée doit être égale à 0.

$$\frac{V_{in}^{2}(R_{c} - R_{out})}{(R_{c} + R_{out})^{3}} = 0$$

$$V_{in}^{2}(R_{c} - R_{out}) = 0 \times (R_{c} + R_{out})^{3}$$

$$\frac{V_{in}^{2}(R_{c} - R_{out})}{V_{in}^{2}} = \frac{0}{V_{in}^{2}}$$

$$R_{c} - R_{out} = 0$$

$$R_{c} = R_{out}$$

Finalement, pour maximiser la puissance, la résistance R_{OUT} doit être égale à R_C.

2. Analyse des signaux transmis

2.1 ÉQUATIONS ANALYTIQUES POUR MODÉLISER LES SIGNAUX TRANSMIS

D'une part, il faut dérivée les équations des signaux V1, V2 et V3.

Signal 1 (V₁):

$$egin{aligned} \{t \in \mathbb{R} | 0 \leq t \leq T\} &= [0,T] \ V_1\left(t
ight) &= A_1 \sin\left(rac{2\pi t}{T}
ight) \ V_1'(t) &= rac{A_1 2\pi}{T} \cos\left(rac{2\pi t}{T}
ight) \end{aligned}$$

Signal 2 (V₂):

$$egin{align} V_2\left(t
ight) &= rac{4A_2}{T}t + b
ightarrow \left[0,rac{T}{4}
ight] \ V_2\left(t
ight) &= rac{-4A_2}{T}t + b
ightarrow \left[rac{T}{4},rac{3T}{4}
ight] \ V_2\left(t
ight) &= rac{4A_2}{T}t + b
ightarrow \left[rac{3T}{4},T
ight] \ V_2ightarrow \left(t
ight) &= rac{4A_2}{T} \ V_2ightarrow \left(t
ight) &= rac{-4A_2}{T} \ \end{array}$$

Signal 3 (V₃):

$$f(x) = a(x - h)^{2} + k$$

$$h = x$$

$$k = y$$

$$V_{3}(t) = a\left(x - \frac{T}{4}\right)^{2} + A_{3}$$

$$a = \frac{-A_{3}}{\left(-\frac{T}{4}\right)^{2}} = \frac{-16A_{3}}{T^{2}}$$

$$V_{3}(t) = \frac{-16A_{3}}{T^{2}} \left(t - \frac{T}{4}\right)^{2} + A_{3} \to \left[0, \frac{T}{2}\right]$$

$$V_{3}(t) = \frac{16A_{3}}{T^{2}} \left(t - \frac{3T}{4}\right)^{2} - A_{3} \to \left[\frac{T}{2}, T\right]$$

$$V_{3}'(t) = \frac{-16A_{3}}{T^{2}} \cdot 2\left(t - \frac{T}{4}\right) \to \frac{-32A_{3}}{T^{2}} \left(t - \frac{T}{4}\right)$$

$$V_{3}'(t) = \frac{16A_{3}}{T^{2}} \cdot 2\left(t - \frac{3T}{4}\right) \to \frac{32A_{3}}{T^{2}} \left(t - \frac{3T}{4}\right)$$

2.2 CALCUL DES VALEURS RMS DES DÉRIVÉES DES SIGNAUX V1, V2 ET V3

Par la suite on utilise la formule du RMS aves la dérivée des signaux.

Signal 1 (V₁):

$$RMS = \sqrt{\frac{1}{T}} \int_{0}^{T} \left(\frac{A_{i}2\pi}{T} \cos(\frac{2\pi t}{T}) \right)^{2} dt$$

$$= \frac{A_{i}2\pi}{T} \sqrt{\frac{1}{T}} \int_{0}^{T} \frac{1 + \cos\left(\frac{2 \cdot 2\pi t}{T}\right)}{2} dt$$

$$= \frac{A_{i}2\pi}{T} \sqrt{\frac{1}{2T}} \int_{0}^{T} 1 + \cos\left(\frac{4\pi t}{T}\right) dt$$

$$\int_{0}^{T} 1 dt + \int_{0}^{T} \cos\left(\frac{4\pi t}{T}\right) dt$$

$$\int_{0}^{T} 1 dt = t$$

$$\int_{0}^{T} \cot\left(\frac{4\pi t}{T}\right) dt + \int_{0}^{T} \cos\left(\frac{4\pi t}{T}\right) dt$$

$$\int_{0}^{T} 1 dt = t$$

$$\int_{0}^{T} \cot\left(\frac{4\pi t}{T}\right) dt + \int_{0}^{T} \cos\left(\frac{4\pi t}{T}\right) dt$$

$$\int_{0}^{T} \cot\left(\frac{4\pi t}{T}\right) dt + \int_{0}^{T} \cos\left(\frac{4\pi t}{T}\right) dt$$

$$\int_{0}^{T} \cot\left(\frac{4\pi t}{T}\right) dt + \int_{0}^{T} \cos\left(\frac{4\pi t}{T}\right) dt$$

$$\int_{0}^{T} \cot\left(\frac{4\pi t}{T}\right) dt + \int_{0}^{T} \cos\left(\frac{4\pi t}{T}\right) dt$$

$$\int_{0}^{T} \cot\left(\frac{4\pi t}{T}\right) dt + \int_{0}^{T} \cos\left(\frac{4\pi t}{T}\right) dt$$

$$\int_{0}^{T} \cos\left(\frac{4\pi t}{T}\right) dt + \cos\left(u\right) dt$$

$$\int_{0}^{T} \cot\left(\frac{4\pi t}{T}\right) dt + \cos\left(u\right) dt$$

$$\int_{0}^{T} \cot\left(u\right) dt + \cos\left(u\right) dt$$

$$\int_{0}^{T} \cot\left(u\right) dt + \cos\left(u\right) dt$$

$$\int_{0}^{T} \cot\left(u\right) dt$$

Signal 2 (V₂):

$$\begin{split} &= \frac{1}{T} \int_{0}^{\frac{T}{4}} \left(\frac{4A_{2}}{T}\right)^{2} dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} \left(-\frac{4A_{2}}{T}\right)^{2} dt + \int_{\frac{3T}{4}}^{T} \left(\frac{4A_{2}}{T}\right)^{2} dt \\ &= \left(\frac{4A_{2}}{T}\right)^{2} \frac{1}{T} \int_{0}^{\frac{T}{4}} 1 dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 1 dt + \int_{\frac{3T}{4}}^{T} 1 dt \\ &= \sqrt{\left(\frac{4A_{2}}{T}\right)^{2} \frac{1}{T} \int_{0}^{\frac{T}{4}} 1 dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 1 dt + \int_{\frac{3T}{4}}^{T} 1 dt \\ &= \frac{4A_{2}}{T} \sqrt{\frac{1}{T} \int_{0}^{\frac{T}{4}} 1 dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 1 dt + \int_{\frac{3T}{4}}^{T} 1 dt \\ &= \sqrt{\frac{1}{T} \left([t+c]_{0}^{\frac{T}{4}} + [t+c]_{\frac{T}{4}}^{\frac{3T}{4}} + [t+c]_{\frac{3T}{4}}^{\frac{3T}{4}}\right)} \\ &= \sqrt{\frac{1}{T} \left(\frac{T}{4} + \left(\frac{3T}{4} - \frac{T}{4}\right) + \left(T - \frac{3T}{4}\right)\right)} \\ &= \sqrt{\frac{1}{T} \left(\frac{T}{4} + \frac{2T}{4} + \frac{T}{4}\right)} \\ &= \sqrt{\frac{1}{T} \cdot T} \\ &= \sqrt{1} \end{split}$$

Donc
$$=rac{4A_2}{T}\cdot\sqrt{1}
ightarrow RMSv_2$$
', $(t)=rac{4A_2}{T}$

Signal 3 (V₃):

$$x = \frac{1}{T} \int_{0}^{\frac{T}{2}} \left(\frac{-32A_3}{T^2} \cdot \left(t - \frac{T}{4} \right) \right)^2 + \int_{\frac{T}{2}}^{T} \left(\frac{32A_3}{T^2} \left(t - \frac{3T}{4} \right) \right)^2$$

$$f(t) = \sqrt{x}$$

$$\left(\frac{-32A_3}{T^2} \right)^2 \int_{0}^{\frac{T}{2}} \left(t - \frac{T}{4} \right)^2 dt$$

$$\left(\frac{32A_3}{T^2} \right) \int_{\frac{T}{2}}^{T} \left(t - \frac{3T}{4} \right)^2 dt$$

$$u_1 = t - \frac{T}{4}$$

$$u_2 = t - \frac{3T}{4}$$

$$du = 1 dt$$

$$\left[\frac{1}{3} \cdot (u_1)^3 \right]_{0}^{\frac{T}{2}} + \left[\frac{1}{3} \cdot (u_2)^3 \right]_{\frac{T}{2}}^{T}$$

$$\left(\frac{T}{2} - \frac{T}{4} \right)^3 - \left(0 - \frac{T}{4} \right)^3 = \left(\frac{T}{4} \right)^3 - \left(\frac{-T}{4} \right)^3 = \frac{T^3}{64} - \frac{-T^3}{64} = \frac{1}{3} \cdot \frac{2T^3}{64} = \frac{2T^3}{192} \rightarrow \frac{T^3}{96}$$

$$\left(T - \frac{3T}{4} \right)^3 - \left(\frac{T}{2} - \frac{3T}{4} \right)^3 = \left(\frac{T}{4} \right)^3 - \left(\frac{-T}{4} \right)^3 = \frac{1}{3} \cdot \frac{2T^3}{64} = \frac{2T^3}{192} \rightarrow \frac{T^3}{96}$$

$$\left(\frac{-32A_3}{T^2} \right)^2 \cdot \frac{T^3}{96} + \left(\frac{32A_3}{T^2} \right)^2 \cdot \frac{T^3}{96}$$

$$\left(\frac{1024A_3^2}{7^4} \cdot \frac{T^3}{96} + \frac{1024A_2^2}{3T} \cdot \frac{T^3}{96} \right)$$

$$\frac{1024A_3^2}{96T} \rightarrow \frac{64A_3^2}{3T}$$

$$RMS = \sqrt{\frac{1}{T} \cdot \frac{64A_3^2}{3T}} - \sqrt{\frac{64A_3^2}{3T^2}}$$

$$RMS v_3'(t) = \frac{8A_3}{\sqrt{3T}}$$

2.3 CONDITIONS SUR LES AMPLITUDES DES SIGNAUX.

Puis on compare les signaux pour obtenir les états des équations, sois 1 ou 0.

$$rac{A_1 2 \pi}{T \sqrt{2}} = rac{4 A_2}{T}$$
 $A_1 2 \pi = rac{4 A_2 T \sqrt{2}}{T}$
 $A_1 = rac{4 A_2 \sqrt{2}}{2 \pi} = 0.9 A_2$
 $A_2 = 1.11 A_1$
 $V_1'(t) = rac{A_1 2 \pi}{T \sqrt{2}}$
 $A_1 = rac{8 A_3}{\sqrt{3}T}$
 $A_1 = rac{8 A_3 \sqrt{2}}{2 \pi} = 0.9 A_2$
 $A_2 = 1.01 A_1$
 $A_1 = rac{8 A_3 \sqrt{2}}{T \sqrt{2}} = rac{8 A_3}{\sqrt{3}T}$
 $A_1 = rac{8 A_3 \sqrt{2}}{2 \pi \sqrt{3}} = 1,04 A_3$
 $A_3 = 0,96 A_1$
 $A_2 = rac{8 A_3}{\sqrt{3}T}$
 $A_2 = rac{2 A_3}{\sqrt{3}}$
 $A_2 = 1,15 A_3$
 $A_3 = 0,87 A_2$

Équations lorsque l'état est vrai (1):

$$A_1 \ge 0, 9A_2 = 1$$
 $A_1 \ge 1, 04A_3 = 1$
 $A_2 \ge 1, 11A_1 = 1$
 $A_2 \ge 1, 15A_3 = 1$
 $A_3 \ge 0, 96A_1 = 1$
 $A_3 \ge 0, 87A_2 = 1$

Équations lorsque l'état est faux (0) :

$$A_1 < 0, 9A_2 = 0$$
 $A_1 < 1, 04A_3 = 0$
 $A_2 < 1, 11A_1 = 0$
 $A_2 < 1, 15A_3 = 0$
 $A_3 < 0, 96A_1 = 0$
 $A_3 < 0, 87A_2 = 0$

2.4 REPRÉSENTATION DES DÉRIVÉES DES SIGNAUX SUR QUELQUES CYCLES

Signal 1 (V₁):

Signal 2 (V₂):

Signal 3 (V₃):

3. DÉCRYPTAGE DE L'IMAGE

3.1 ÉQUATIONS SOUS FORMES DE PRODUITS DE MATRICES

Encryption:

$$I_{\scriptscriptstyle (A-G)}\cdot E_{\scriptscriptstyle 1} = Q_{\scriptscriptstyle 1}$$

$$I_{(H-M)} \cdot E_{22} = Q_2$$

Décryption:

$$I_{(A-G)} \cdot E_1 \cdot E_1^{-1} = Q_1$$

$$I_{(A-G)}\cdot (I.D.) = Q_1\cdot E_1^{-1}$$

$$I_{(H-M)} \cdot E_{22} \cdot E_{22}^{-1} = Q_2$$

$$I_{(H-M)} \cdot (I.D.) = Q_2 \cdot E_{22}^{-1}$$

3.2 CALCUL DES ÉLÉMENTS DE LA MATRICE DE CRYPTAGE E1 PAR DEUX MÉTHODES.

Résolution du système d'équation

$$\begin{bmatrix} 1 & 5 & -2 & -1 & | & -2 \\ 0 & -4 & 2 & 0 & | & 2 \\ -2 & 1 & 1 & 0 & | & 5 \\ 0 & -2 & -1 & 2 & | & -3 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 8 & 4 & 5 \\ 0 & 0 & -2 & 2 & | & -4 \\ 0 & 1 & 1 & 2 & | & -2 \\ 0 & 1 & 1 & 2 & | & -2 \\ 0 & 0 & 1 & 1 & 2 & | & -2 \\ 0 & 0 & 0 & 2 & | & 6 & | & 5 \\ 0 & 0 & 0 & 2 & | & 6$$

y=3

1)
$$\frac{2}{5}9 = \frac{6}{5}$$

 $9 = \frac{6}{5} \cdot \frac{5}{2} = \frac{30}{10} = 3$
2) $2 - \frac{4}{5} \cdot 3 = \frac{13}{5} + \frac{12}{5} = \frac{25}{5} = 5$
3) $8 - \frac{5}{2} = -\frac{1}{2} + \frac{5}{2} = \frac{4}{3} = 2$
 $9 + 10 - 40 - 3 = -2$

Deuxième méthode par Cramer:

$$A = \begin{bmatrix} 1 & 5 & -2 & -1 \\ 1 & 1 & 0 & -1 \\ -2 & 1 & 1 & 0 \\ 0 & -2 & -1 & 2 \end{bmatrix}$$

$$(-1)^{2+1} \cdot 1 \cdot \begin{vmatrix} 5 & -2 & -1 \\ 1 & 1 & 0 \\ -2 & -1 & 2 \end{vmatrix} = (-1)^{2+1} \cdot 1 \cdot \begin{vmatrix} -2 & -1 \\ -1 & 2 \end{vmatrix} + (-1)^{2+2} \cdot (1) \cdot \begin{vmatrix} 5 & -1 \\ -2 & 2 \end{vmatrix} = -1 \cdot (-4-1) + 1 \cdot (10-2) = 13$$

$$(-1)^{2+2} \cdot 1 \cdot \begin{vmatrix} 1 & -2 & -1 \\ -2 & 1 & 0 \\ 0 & -1 & 2 \end{vmatrix} = (-1)^{2+1} \cdot (-2) \cdot \begin{vmatrix} -2 & -1 \\ -1 & 2 \end{vmatrix} + (-1)^{2+2} \cdot 1 \cdot \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = 2 \cdot (-4-1) + 1 \cdot (2-0) = -8$$

$$(-1)^{2+4} \cdot (-1) \cdot \begin{vmatrix} 1 & 5 & -2 \\ -2 & 1 & 1 \\ 0 & -2 & -1 \end{vmatrix} = (-1)^{2+1} \cdot (-2) \cdot \begin{vmatrix} 5 & -2 \\ -2 & -1 \end{vmatrix} + (-1)^{2+2} \cdot (1) \cdot \begin{vmatrix} 1 & -2 \\ 0 & -1 \end{vmatrix} + (-1)^{2+3} \cdot (1) \cdot \begin{vmatrix} 1 & 5 \\ 0 & -2 \end{vmatrix}$$

$$(2 \cdot (-9)) + (1 \cdot (-1)) + (-1 \cdot (-2)) = -17$$

$$(-1 \cdot (13)) + (1 \cdot (-8)) + (-1 \cdot (-17)) = -4$$

$$\det(A) = -4$$

$$A\alpha = \begin{bmatrix} 2 & 5 & -2 & -1 \\ 0 & 1 & 0 & -1 \\ 5 & 1 & 1 & 0 \\ 3 & -2 & -1 & 2 \end{bmatrix}$$

$$(-1)^{2+2} \cdot 1 \cdot \begin{vmatrix} -2 & -2 & 1 \\ 5 & 1 & 0 \\ -3 & -1 & 2 \end{vmatrix} = (1)^{2+1} \cdot (5) \cdot \begin{vmatrix} -2 & -1 \\ -1 & 2 \end{vmatrix} + (-1)^{2+2} \cdot 1 \cdot \begin{vmatrix} -2 & -1 \\ -3 & 2 \end{vmatrix} = -5 \cdot (-4-1) + 1 \cdot (-4-3) = 18$$

$$\left(-1\right)^{2+4} - 1 \cdot \begin{vmatrix} -2 & 5 & -2 \\ 5 & 1 & 1 \\ -3 & -2 & -1 \end{vmatrix} = \left(-1\right)^{2+1} \cdot 5 \cdot \begin{vmatrix} 5 & -2 \\ -2 & -1 \end{vmatrix} + \left(-1\right)^{2+2} \cdot 1 \cdot \begin{vmatrix} -2 & -2 \\ -3 & -1 \end{vmatrix} + \left(-1\right)^{2+3} \times 1 \cdot \begin{vmatrix} -2 & 5 \\ -3 & -2 \end{vmatrix} = ?$$

$$(-5) \cdot (-5 - 4) + (1) \cdot (2 - 6) + (-1) \cdot (4 - (-15)) = 45 - 23 = 22$$

$$(1) \cdot (18) + (-1) \cdot (22) = -4$$

$$det(A\alpha) = -4$$

$$A\delta = \begin{bmatrix} 1 & 5 & -2 & -1 \\ 1 & 1 & 0 & -1 \\ -2 & 1 & 5 & 0 \\ 0 & -2 & -3 & 2 \end{bmatrix}$$

$$(-1)^{2+1} \cdot 1 \cdot \begin{vmatrix} 5 & -2 & -1 \\ 1 & 5 & 0 \\ -2 & -3 & 2 \end{vmatrix} + (-1)^{2+1} \cdot 1 \cdot \begin{vmatrix} -2 & -1 \\ -3 & 2 \end{vmatrix} + (-1)^{2+2} \cdot 5 \cdot \begin{vmatrix} 5 & -1 \\ -2 & 2 \end{vmatrix} = (-1) \cdot (-4-3) + (5) \cdot (10-2) = 47$$

$$(-1)^{2+2} \cdot 1 \cdot \begin{vmatrix} 1 & -2 & -1 \\ -2 & 5 & 0 \\ 0 & -3 & 2 \end{vmatrix} = (-1)^{2+1} \cdot (-2) \cdot \begin{vmatrix} -2 & -1 \\ -3 & 2 \end{vmatrix} + (-1)^{2+2} \cdot 5 \cdot \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = (2) \cdot (-y - 3) + (5) \cdot (2) = -4$$

$$(-1)^{2+4} \cdot (-1) \cdot \begin{vmatrix} 1 & 5 & -2 \\ -2 & 1 & 5 \\ 0 & -2 & -3 \end{vmatrix} = (1)^{2+1} \cdot (-2) \cdot \begin{vmatrix} 5 & -2 \\ -2 & -3 \end{vmatrix} + (-1)^{2+2} \cdot 1 \cdot \begin{vmatrix} 1 & -2 \\ 0 & -3 \end{vmatrix} + (-1)^{2+3} \cdot 5 \cdot \begin{vmatrix} 1 & 5 \\ 0 & -2 \end{vmatrix} = ?$$

$$2 \cdot (-15 - 4) + 1 \cdot (-3) + (-5) \cdot (-2) = -31$$

$$(-1) \cdot (47) + (1) \cdot (-4) + (-1) \cdot (-31) = -20$$

$$\det(A\delta) = -20$$

$$Ay = \begin{bmatrix} 1 & 5 & -2 & -2 \\ 1 & 1 & 0 & 0 \\ -2 & 1 & 1 & 5 \\ 0 & -2 & -1 & -3 \end{bmatrix}$$

$$(-1)^{2+1} \cdot 1 \cdot \begin{vmatrix} 5 & -2 & -2 \\ 1 & 1 & 5 \\ -2 & -1 & -3 \end{vmatrix} = (-1)^{3+1} \cdot (-2) \cdot \begin{vmatrix} -2 & -2 \\ 1 & 5 \end{vmatrix} + (-1)^{3+2} \cdot (-1) \cdot \begin{vmatrix} 5 & -2 \\ 1 & 5 \end{vmatrix} + (-1)^{3+3} \cdot (-3) \cdot \begin{vmatrix} 5 & -2 \\ 1 & 1 \end{vmatrix} = ?$$

$$(-2) \cdot (-10+2) + (1) \cdot (25+2) + (-3) \cdot (5+2) = 43 - 21 = 22$$

$$(-1)^{2+2} \cdot (1) \cdot \begin{vmatrix} 1 & -2 & -2 \\ -2 & 1 & 5 \\ 0 & -1 & -3 \end{vmatrix} = (-1)^{3+2} \cdot (-1) \cdot \begin{vmatrix} 1 & -2 \\ -2 & 5 \end{vmatrix} + (-1)^{3+3} \cdot (-3) \cdot \begin{vmatrix} 1 & -2 \\ -2 & 1 \end{vmatrix} = 1 \cdot (5-4) + (-3) \cdot (1-4) = 10$$

$$(-1) \cdot (22) + (1) \cdot (10) = -12$$

$$\det(Ay) = -12$$

$$\alpha = \frac{\det(A\alpha)}{\det(A)} = \frac{-4}{-4} = 1$$

$$\beta = \frac{\det(A\beta)}{\det(A)} = \frac{-8}{-4} = 2$$

$$\delta = \frac{\det(A\delta)}{\det(A)} = \frac{-20}{-4} = 5$$

$$y = \frac{\det(Ay)}{\det(A)} = \frac{-12}{-4} = 3$$

3.3 IDENTIFICATION DE LA MATRICE E22 ET E21(LEURRE)

En calculant les déterminants, il est possible de conclure que E_{21} est un leurre et que E_{22} est la matrice utilisée pour l'encryption. Le déterminant de E21 est équivalent à 0, c'est-à-dire qu'elle est non inversible.

$$E_{21} = \begin{bmatrix} 1 & 0 \\ 1 & 5 \\ -1 & -1 & 5 \end{bmatrix}$$

$$det E_{21} = 1 \begin{vmatrix} 1 & 5 \\ -1 & 2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 5 \\ -1 & 2 \end{vmatrix} + 9 + 1 + 1$$

$$1 (2 - 5) - 1 (2 - 5) = 0$$

$$7$$

$$E_{22} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 5 \\ -1 & -1 & 2 \end{bmatrix}$$

$$det(E_{22}) = 2 \begin{vmatrix} -1 & 5 \\ -1 & 2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 5 \\ -1 & 2 \end{vmatrix} + 6$$

$$2 (-2 - 5) - (2 - 5)$$

$$6 - 7 = -1$$

3.4 DÉCRYPTAGE DES POINTS A À G: UTILISATION DE 2 MÉTHODES POUR L'INVERSION

$$E_{1} = \begin{bmatrix} -y & \delta(& \alpha + \beta) \\ -\alpha & \beta & \beta \\ \alpha & -\alpha & \alpha \end{bmatrix}$$

$$\alpha = 1; \beta = 2; \delta = 5; y = 3$$

$$E_{1} = \begin{vmatrix} -3 & 5 & 3 \\ -1 & 2 & 2 \\ 1 & -1 & 1 \end{vmatrix}$$

lèse méthode Gauss

$$E_{1} = \begin{bmatrix} -3 & 5 & 6 & 1 & 0 & 0 \\ -1 & 2 & 2 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 2 & 2 & 0 & 0 \\ -1 & 2 & 2 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 2 & 2 & 0 & 0 \\ -1 & 2 & 2 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 2 & 2 & 0 & 0 \\ -1 & 2 & 2 & 0 & 0 \\ -1 & 2 & 2 & 0 & 0 \\ -1 & 2 & 2 & 3 & 0 \\ -1 & 3 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 3 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 & 1 \\ -1 & 3 & 0 & 0 & 1 \\ -1 & 3 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 3 & 0 & 0 \\ -1 &$$

21ème methode/matrice adjointe

Avec déterminant

$$E_{1} = \begin{bmatrix} -3 & 5 & 6 \\ -1 & 2 & 2 \\ 1 & -1 & 1 \end{bmatrix}$$

$$1^{\text{inc}} \text{ calcular distrins membra}$$

$$det(E_{1}) = -3 \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} - 5 \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix} + 6 \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

$$-3 ((2 \cdot 1) - (-1 \cdot 2)) \sim (5 ((-1 \cdot 1) - (2 \cdot 1)) + 6 ((-1 \cdot -1) - (2 \cdot 1))$$

$$-3 (4) - 5 (-3) + 6 (1)$$

$$-12 + 15 - 6 = -3 \neq 0 \text{ done inverse existe}$$

3ine ctope : Conatrice de E.

$$\begin{bmatrix} 4 & -3 & -1 \\ 11 & -9 & -2 \\ -2 & 6 & -1 \end{bmatrix} \cdot \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 & -1 \\ -11 & -9 & 2 \\ -2 & 0 & -1 \end{bmatrix}$$

Hiere stope: Inverse E,
$$E_{1}^{-1} = \frac{1}{\det(E_{1})} \cdot \text{Constrict}_{(E_{1})} = \frac{1}{-3} \begin{bmatrix} 4 & -11 & -2 \\ 3 & -9 & 0 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} -\frac{4}{3} & \frac{11}{3} & \frac{2}{3} \\ -1 & 3 & 0 \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

Décryptage de Q1 avec l'inverse de E1

① 0
② 0
③ 0
④
$$(-\frac{4}{3}, -24) + (\frac{11}{3}, -8) + (\frac{2}{3}, -8) = 8$$

⑤ $(-1, -24) + (3, -8) + 0 = 0$
⑥ $(\frac{1}{3}, -24) + (\frac{12}{3}, -8) + (\frac{1}{3}, -8) = 0$
⑥ $(-1, -16) + (\frac{11}{3}, -8) + 0 = 8$
⑧ $(-1, -16) + (\frac{11}{3}, -8) + 0 = 8$
⑨ $(\frac{1}{3}, -16) + (\frac{12}{3}, -8) + 0 = 0$

Tableau de l'image décodée

3.5 DÉCRYPTAGE DES POINTS H À M: UTILISATION DE 2 MÉTHODES POUR L'INVERSION MATRICIELLE DE E22 ET CALCUL DES POINTS DÉCRYPTÉS.

Décryptage de Q2 avec l'inverse de E22

$$(7.10) + (-4.11) + (10.-2) = 6$$
 $(7.13) + (-4.37) + (10.6) = 3$

$$9(3.9) + (2.36) + (5.6) = 3$$

$$\oplus$$
 (3.13)+(2.37)+(5.6)= 5

Tableau de l'image décodée

4. GÉOMÉTRIE DU BÂTIMENT

4.1 ÉQUATIONS DES DROITES DÉFINISSANT LES ARÊTES DE LA FORME GÉOMÉTRIQUE DU BÂTIMENT POUR L'ÉTAGE LE PLUS HAUT DU BÂTIMENT INCLUANT LE PLANCHER DU DERNIER ÉTAGE.

$$\begin{array}{lll} r_x = r_0 + \lambda \overrightarrow{v} \\ L = (3;5;5) & \overrightarrow{IJ} = (5-3;3-3;7-6) \rightarrow (2;0;1) \\ K = (5;5;6) & r_x = 3+2\lambda \\ J = (5;3;7) & r_z = 6+\lambda \\ \overline{JK} = (3,3,6) & \overline{JK} = (5-5;5-3;6-7) \rightarrow (0;2;-1) \\ \overrightarrow{LM} = (4-3;4-5;12-5) \rightarrow (1;-1;7) & r_x = 5 \\ r_x = 3+\lambda & r_y = 5-\lambda & r_z = 7-\lambda \\ \overline{KM} = (4-5;4-5;12-6) \rightarrow (-1;-1;6) & r_x = 5-2\lambda \\ r_y = 5-\lambda & r_z = 6+6\lambda & \overrightarrow{LI} = (3-3;3-5;6-5) \rightarrow (0;-2;1) \\ \overrightarrow{JM} = (4-5;4-3;12-7) \rightarrow (-1;1;5) & r_x = 3 \\ r_x = 5-\lambda & r_y = 5 \\ \overrightarrow{JM} = (4-5;4-3;12-7) \rightarrow (-1;1;5) & r_x = 3 \\ r_x = 5-\lambda & r_y = 5 + \lambda \\ \overrightarrow{LI} = (3-3;3-5;6-5) \rightarrow (0;-2;1) \\ \overrightarrow{JM} = (4-5;4-3;12-7) \rightarrow (-1;1;5) & r_x = 3 \\ r_x = 5-\lambda & r_y = 5 + \lambda \\ \overrightarrow{LI} = (3-3;3-5;6-5) \rightarrow (0;-2;1) \\ \overrightarrow{JM} = (4-3;4-3;12-6) \rightarrow (1;1;6) & r_x = 3+\lambda \\ r_y = 3+\lambda & r_z = 6+6\lambda & \overrightarrow{LI} = (3-3;3-3;7-6) \rightarrow (0;2;1) \\ \overrightarrow{JK} = (4-3;4-5;12-6) \rightarrow (1;1;6) & r_x = 3+\lambda \\ \overrightarrow{LJ} = (3-3;3-5;6-5) \rightarrow (0;-2;1) \\ \overrightarrow{LJ} = (3$$

4.2 ÉQUATIONS DES PLANS QUI DÉTERMINENT LES PLANCHERS DES DIFFÉRENTS ÉTAGES.

Plancher 1:

$$P_1 = (6; 2; 3)$$
 $\overrightarrow{FG} = (6 - 6; 6 - 2; 4 - 3) \rightarrow (0; 4; 1)$

$$\overrightarrow{FE} = (2 - 6; 2 - 2; 2 - 3) \rightarrow (-4; 0; -1)$$

$$\begin{bmatrix} 0 & 4 & 1 \\ -4 & 0 & -1 \end{bmatrix}$$

$$W_x = (-1)^{1+1} \cdot (4 \cdot -1) - (1 \cdot 0) = 4 \cdot 1 = 4$$

$$W_y = (-1)^{1+2} \cdot (0 \cdot -1) - (-4 \cdot 1) = -4 \cdot -1 = 4$$

$$W_z = (-1)^{1+3} \cdot (0 \cdot 0) - (-4 \cdot 4) = -16 \cdot 1 = -16$$

$$W_x \cdot p_1 X + W_y \cdot p_1 Y + W_z \cdot p_1 Z + D = 0$$

$$4 \cdot 6 + 4 \cdot 2 + -16 \cdot 3 + D = 0$$

$$24 + 8 - 48 + D = 0$$

$$-16 + D = 0 \rightarrow D = 16$$

$$x + y - 4z + 4 = 0$$

Plancher 2 (haut):

$$L = (3; 5; 5)$$

$$K = (5; 5; 6)$$

$$I = (3; 3; 6)$$

$$\overrightarrow{LK} = (5-3; 5-5; 6-5) \rightarrow (2; 0; 1)$$

$$\vec{L}I = (3-3; 3-5; 6-5) \rightarrow (0; -2; 1)$$

$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & -2 & 1 \end{bmatrix}$$

$$\omega_x = (-1)^{1+1} \cdot (1 \cdot 0) - (-2 \cdot 1) = 2 \cdot 1 = 2$$

$$\omega_y = (-1)^{1+2} \cdot (2 \cdot 1) - (0 \cdot 1) = 2 \cdot -1 = -2$$

$$W_z = (-1)^{1+3} \cdot (2 \cdot -2) - (0 \cdot 0) = -4 \cdot 1 = -4$$

$$2 \cdot 3 + - 2 \cdot 5 + - 4 \cdot 5 + D = 0$$

$$6 - 10 - 20 + D = 0 \rightarrow D = 24$$

$$x - y - 2z + 12 = 0$$

4.3 L'ENGIN EXPLOSIF EST-IL DIRECTEMENT SUR UN DES PLANCHERS DU BÂTIMENT ?

$$\frac{|Ax + By + Cz + D|}{PL_1 = x + y - 4z + 4}$$

$$P_B = (4; 4; 4)$$

$$\frac{|4 + 4 + (-4 \cdot 4) + 4|}{\sqrt{1^2 + 1^2 + 4^2}} = 0.94$$

Non, elle n'est pas directement sur le plancher, il y a une distance de 0,94 à partir du plancher 1.

4.4 EXPLICATION DES MOTS "ÉDIFICE MAL AU CŒUR".

Hypothèse : l'ingénieur de ce bâtiment subissait une gastro-entérite durant la création de la tour Eiffel. On observe que les planchers ne sont pas de niveau. Le « mal de cœur » du titre vient de cette hypothèse. À chaque contraction de son abdomen, l'ingénieur créait des lignes croches.

4.5 Dessin en 3D du bâtiment.

