Kvik bestun

Bergur Snorrason

31. janúar 2022

▶ Talnarunan $a_1, a_2, ...$ kallast k-ta stigs rakningarvensl ef til er fall $f: \mathbb{R}^k \to \mathbb{R}$ þannig að

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

▶ Talnarunan $a_1, a_2, ...$ kallast k-ta stigs rakningarvensl ef til er fall $f: \mathbb{R}^k \to \mathbb{R}$ þannig að

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

fyrir ölll n > k.

Frægasta dæmið um rakningarvensl er Fibonacci runan.

▶ Talnarunan $a_1, a_2, ...$ kallast k-ta stigs rakningarvensl ef til er fall $f: \mathbb{R}^k \to \mathbb{R}$ þannig að

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- Hún er stigs rakningarvensl gefin með fallinu f(x,y) = x + y.

▶ Talnarunan $a_1, a_2, ...$ kallast k-ta stigs rakningarvensl ef til er fall $f: \mathbb{R}^k \to \mathbb{R}$ þannig að

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- ▶ Hún er annars stigs rakningarvensl gefin með fallinu f(x,y) = x + y.

▶ Talnarunan $a_1, a_2, ...$ kallast k-ta stigs rakningarvensl ef til er fall $f: \mathbb{R}^k \to \mathbb{R}$ þannig að

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- ▶ Hún er annars stigs rakningarvensl gefin með fallinu f(x,y) = x + y.
- Reikna má upp úr þessum venslum endurkvæmt.

▶ Talnarunan $a_1, a_2, ...$ kallast k-ta stigs rakningarvensl ef til er fall $f: \mathbb{R}^k \to \mathbb{R}$ þannig að

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- ► Hún er annars stigs rakningarvensl gefin með fallinu f(x, y) = x + y.
- Reikna má upp úr þessum venslum endurkvæmt.

```
3 int fib(int x)
4 {
5     if (x < 3) return 1;
6     return fib(x - 1) + fib(x - 2);
7 }</pre>
```

• Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(\)$.

▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.

- ▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.
- Við getum þó bætt þetta til muna með því að geyma niðurstöðuna úr hverju kalli.

- ▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.
- Við getum þó bætt þetta til muna með því að geyma niðurstöðuna úr hverju kalli.
- Þá nægir að reikna hvert gildi einu sinni.

- ▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.
- Við getum þó bætt þetta til muna með því að geyma niðurstöðuna úr hverju kalli.
- ▶ Þá nægir að reikna hvert gildi einu sinni.
- Þessi viðbót kallast minnun (e. memoization).

```
1 #include <stdio.h>
 2 #define MAXN 1000000
 3
   int d[MAXN]; // Hér geymum við skilagildi fib (...).
                   Ef d[i] = -1 þá eigum við eftir að reikna fib(i).
   int fib(int x)
7
  {
8
       if (d[x] != -1) return d[x];
9
       if (x < 2) return 1;
10
       return d[x] = fib(x-1) + fib(x-2);
11 }
12
13 int main()
14
  {
15
       int n, i;
       scanf("%d", &n);
16
17
       for (i = 0; i < n; i++) d[i] = -1;
18
       printf("%d \ n", fib(n - 1));
       return 0:
19
20 }
```

Nú reiknum við hvert gildi aðeins einu sinni.

- Nú reiknum við hvert gildi aðeins einu sinni.
- ▶ Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(\)$ tíma, svo í heildina er forritið $\mathcal{O}(\)$.

- Nú reiknum við hvert gildi aðeins einu sinni.
- Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}($

- Nú reiknum við hvert gildi aðeins einu sinni.
- ▶ Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}(n)$.

- Nú reiknum við hvert gildi aðeins einu sinni.
- ▶ Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}(n)$.
- An minnunar náum við með erfiðum að reikna fertugustu Fibonacci töluna (því eframatið $\mathcal{O}(2^n)$ mætti bæta ögn) en með minnun náum við hæglega að reikna milljónustu Fibonacci töluna (hún mun þó ekki einu sinni passa í 64 bita).

- Nú reiknum við hvert gildi aðeins einu sinni.
- ▶ Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}(n)$.
- An minnunar náum við með erfiðum að reikna fertugustu Fibonacci töluna (því eframatið $\mathcal{O}(2^n)$ mætti bæta ögn) en með minnun náum við hæglega að reikna milljónustu Fibonacci töluna (hún mun þó ekki einu sinni passa í 64 bita).
- ► Ef lausnin okkar er endurkvæm með minnun kallast hún ofansækin kvik bestun (e. top down dynamic programming).

Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.

- Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.
- Eina sem við þurfum að passa er að reikna gildin í vaxandi röð.

- Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.
- Eina sem við þurfum að passa er að reikna gildin í vaxandi röð.

```
1 #include <stdio.h>
2
3 int main()
4 {
5     int n, i;
6     scanf("%d", &n);
7     int a[n];
8     a[0] = a[1] = 1;
9     for (i = 2; i < n; i++) a[i] = a[i - 1] + a[i - 2];
10     printf("%d\n", a[n - 1]);
11     return 0;
12 }</pre>
```

- Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.
- Eina sem við þurfum að passa er að reikna gildin í vaxandi röð.

```
1 #include <stdio.h>
2
3 int main()
4 {
5    int n, i;
6    scanf("%d", &n);
7    int a[n];
8    a[0] = a[1] = 1;
9    for (i = 2; i < n; i++) a[i] = a[i - 1] + a[i - 2];
10    printf("%d\n", a[n - 1]);
11    return 0;
12 }</pre>
```

Pegar ofansækin kvik bestunar lausn er útfærð með ítrun köllum við það *neðansækin kvik bestun* (e. *bottom up dymanic programming*).

▶ Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.

- Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- Í ofansækinni kvikri bestun brjótum við fyrst flóknu dæmin niður í smærri dæmi sem við vitum svarið við og reiknum svo út úr því.

- ▶ Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- Í ofansækinni kvikri bestun brjótum við fyrst flóknu dæmin niður í smærri dæmi sem við vitum svarið við og reiknum svo út úr því.
- ► Ef endurkvæmnafallið okkar er háð *k* breytum þá segjum við að lausnin okkar sé *k víð kvik bestun*.

- ▶ Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- Í ofansækinni kvikri bestun brjótum við fyrst flóknu dæmin niður í smærri dæmi sem við vitum svarið við og reiknum svo út úr því.
- ► Ef endurkvæmnafallið okkar er háð *k* breytum þá segjum við að lausnin okkar sé *k víð kvik bestun.*
- Ofansækin kvik bestun hentar þegar við erum að vinna með fleiri en eina vídd.

- Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- Í ofansækinni kvikri bestun brjótum við fyrst flóknu dæmin niður í smærri dæmi sem við vitum svarið við og reiknum svo út úr því.
- ► Ef endurkvæmnafallið okkar er háð *k* breytum þá segjum við að lausnin okkar sé *k víð kvik bestun.*
- Ofansækin kvik bestun hentar þegar við erum að vinna með fleiri en eina vídd.
- Þá getur verið erfitt að ítra í gegnum stöðurnar í "réttri röð".

Annar kostur ofansækinnar kvikrar bestunar er að lausnirnar geta verið nokkuð einsleitar.

Annar kostur ofansækinnar kvikrar bestunar er að lausnirnar geta verið nokkuð einsleitar.

```
1 #include <stdio.h>
2 #define MAXN 1000000
4 int d[MAXN];
  int dp lookup(int x)
6
7
       if (d[x] != -1) return d[x];
       if (/* Er betta grunntilfelli? */)
10
           /* Skila tilheyrandi grunnsvari */
11
12
       /* Reikna d[x] */
13
       return d[x];
14 }
15
16 int main()
17 {
18
       int n, i;
19
       scanf("%d", &n);
20
       for (i = 0; i < MAXN; i++) d[i] = -1;
       printf("%d\n", dp lookup(n));
21
22
       return 0;
23 }
```

▶ Neðansækin kvik bestun hefur sýna kosti.

- ► Neðansækin kvik bestun hefur sýna kosti.
- ▶ Það er stundum hægt að bæta tímaflækjuna með til dæmis sniðugri gagnagrind.

- Neðansækin kvik bestun hefur sýna kosti.
- Það er stundum hægt að bæta tímaflækjuna með til dæmis sniðugri gagnagrind.
- Sumar þessara bætinga krefjast þess að útfærsla sé neðansækin.

Lengsta sameiginlega hlutruna

► Tökum annað dæmi.

Lengsta sameiginlega hlutruna

- ▶ Tökum annað dæmi.
- ▶ Látum $S = s_1 s_2 ... s_n$ og $T = t_1 t_2 ... t_m$ vera strengi af lengd n og m, þannig að $1 \le n, m \le 10^3$.

Lengsta sameiginlega hlutruna

- Tökum annað dæmi.
- ▶ Látum $S = s_1 s_2 ... s_n$ og $T = t_1 t_2 ... t_m$ vera strengi af lengd n og m, þannig að $1 \le n, m \le 10^3$.
- Hver er lengd lengsta strengs X þannig að hann sé hlutruna í bæði S og T?

Lengsta sameiginlega hlutruna

- Tökum annað dæmi.
- ▶ Látum $S = s_1 s_2 ... s_n$ og $T = t_1 t_2 ... t_m$ vera strengi af lengd n og m, þannig að $1 \le n, m \le 10^3$.
- Hver er lengd lengsta strengs X þannig að hann sé hlutruna í bæði S og T?
- ► Takið eftir að "12" og "13" eru hlutrunur í "123" en "21" er það ekki.

► Getum við sett upp dæmið með þægilegum rakningarvenslum?

- ► Getum við sett upp dæmið með þægilegum rakningarvenslum?
- ► Ef svo er þá getum við notað kvika bestun.

- ► Getum við sett upp dæmið með þægilegum rakningarvenslum?
- Ef svo er þá getum við notað kvika bestun.
- ▶ Það er yfirleitt þægilegast að hugsa um rakningarvenslin sem fall, frekar en runu.

- Getum við sett upp dæmið með þægilegum rakningarvenslum?
- ► Ef svo er þá getum við notað kvika bestun.
- ▶ Pað er yfirleitt þægilegast að hugsa um rakningarvenslin sem fall, frekar en runu.
- Látum f(i,j) tákna lengstu sameiginlegu hlutrunu strengjanna $s_1s_2...s_i$ og $t_1t_2...t_j$.

- Getum við sett upp dæmið með þægilegum rakningarvenslum?
- Ef svo er þá getum við notað kvika bestun.
- ▶ Það er yfirleitt þægilegast að hugsa um rakningarvenslin sem fall, frekar en runu.
- Látum f(i,j) tákna lengstu sameiginlegu hlutrunu strengjanna $s_1s_2...s_i$ og $t_1t_2...t_i$.
- Now The Normal Normal

► Við vitum að f(0, i) = f(j, 0) = 0.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- ▶ Þetta munu vera grunntilfellin okkar.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.
- ► Ef $s_i \neq t_j$ þá verður annað stakið (eða bæði stökin) að vera ekki í hlutrununni.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.
- ► Ef $s_i \neq t_j$ þá verður annað stakið (eða bæði stökin) að vera ekki í hlutrununni.
- Við veljum að sjálfsögðu að sleppa þeim sem gefur okkur betra svar, það er að segja $f(i,j) = \max(f(i-1,j), f(i,j-1))$.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.
- ► Ef $s_i \neq t_j$ þá verður annað stakið (eða bæði stökin) að vera ekki í hlutrununni.
- Við veljum að sjálfsögðu að sleppa þeim sem gefur okkur betra svar, það er að segja $f(i,j) = \max(f(i-1,j), f(i,j-1))$.
- ▶ Við getum svo sett allt saman og fengið

$$f(i,j) = \left\{ \begin{array}{ll} 0, & \text{ef } i=0 \text{ e\~oa } j=0 \\ f(i-1,j-1)+1, & \text{annars, og ef } s_i=t_j \\ \max(f(i-1,j),f(i,j-1)), & \text{annars.} \end{array} \right.$$

```
1 #include <stdio.h>
 2 #include <string.h>
 3 #define MAXN 1001
 4 int max(int a, int b) { if (a < b) return b; return a; }
 5
 6 char s[10001], t[10001];
7 int d[MAXN][MAXN];
  int dp lookup(int x, int y)
 9
10
       if (d[x][y] != -1) return d[x][y];
11
       if (x == 0 \mid \mid y == 0) return 0;
12
       if (s[x-1] = t[y-1]) return d[x][y] = dp \ lookup(x-1, y-1) + 1;
        return \ d[x][y] = max(dp\_lookup(x-1, y), \ dp\_lookup(x, y-1)); 
13
14 }
15
16 int main()
17 {
18
       int n, m, i, j;
19
       fgets(s, MAXN, stdin);
       fgets(t, MAXN, stdin);
20
21
       n = strlen(s) - 1;
22
       m = strlen(t) - 1;
23
       for (i = 0; i < n + 1; i++) for (j = 0; j < m + 1; j++) d[i][j] = -1;
24
       printf("%d\n", dp lookup(n, m));
25
       return 0;
26 }
```

▶ Pað er þessi virði að bera saman dp_lookup(...) fallið í forritinu og f(i,j) af glærunni í framan.

$$f(i,j) = \left\{ \begin{array}{ll} 0, & \text{ef } i=0 \text{ e\'oa } j=0 \\ f(i-1,j-1)+1, & \text{annars, og ef } s_i=t_j \\ \max(f(i-1,j),f(i,j-1)), & \text{annars.} \end{array} \right.$$

```
8 int dp_lookup(int x, int y)
9 {
10     if (d[x][y] != -1) return d[x][y];
11     if (x == 0 || y == 0) return 0;
12     if (s[x - 1] == t[y - 1]) return d[x][y] = dp_lookup(x - 1, y - 1) + 1;
13     return d[x][y] = max(dp_lookup(x - 1, y), dp_lookup(x, y - 1));
14 }
```

Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1)\cdot (m+1)$ talsins.

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.
- ▶ En hvert gildi má reikna í $\mathcal{O}($) tíma.

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.
- ▶ En hvert gildi má reikna í $\mathcal{O}(1)$ tíma.

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.
- ▶ En hvert gildi má reikna í $\mathcal{O}(1)$ tíma.
- Svo forritið hefur tímaflækjuna $\mathcal{O}($).

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.
- ▶ En hvert gildi má reikna í $\mathcal{O}(1)$ tíma.
- ▶ Svo forritið hefur tímaflækjuna $\mathcal{O}(n \cdot m)$.

Skoðum aftur Skiptimyntadæmið úr síðustu viku.

- Skoðum aftur Skiptimyntadæmið úr síðustu viku.
- ▶ Þú ert með ótakmarkað magn af *m* mismunandi myntum.

- Skoðum aftur Skiptimyntadæmið úr síðustu viku.
- Þú ert með ótakmarkað magn af m mismunandi myntum.
- Pær eru virði $x_1, x_2, ..., x_m$. Til þæginda gerum við ráð fyrir því að $x_1 = 1$.

- Skoðum aftur Skiptimyntadæmið úr síðustu viku.
- ▶ Þú ert með ótakmarkað magn af *m* mismunandi myntum.
- Pær eru virði $x_1, x_2, ..., x_m$. Til þæginda gerum við ráð fyrir því að $x_1 = 1$.
- Hver er minnsti nauðsynlegi fjöldi af klinki ef þú vilt gefa n krónur til baka.

ightharpoonup Gerum ráð fyrir að við byrjum að gefa til baka x_j krónur.

- ightharpoonup Gerum ráð fyrir að við byrjum að gefa til baka x_i krónur.
- ightharpoonup Þá erum við búin að smækka dæmið niður í $n-x_j$.

- ► Gerum ráð fyrir að við byrjum að gefa til baka x_i krónur.
- ▶ Þá erum við búin að smækka dæmið niður í $n x_j$.
- Við getum því skoðað öll mögulega gildi x_i og séð hvað er best.

- ▶ Gerum ráð fyrir að við byrjum að gefa til baka x_i krónur.
- ightharpoonup Pá erum við búin að smækka dæmið niður í $n-x_j$.
- ▶ Við getum því skoðað öll mögulega gildi xi og séð hvað er best.
- Við viljum því reikna gildin á fallinu

$$f(i) = \left\{ \begin{array}{ll} \infty, & \text{ef } i < 0 \\ 0, & \text{ef } i = 0 \\ \min_{j=1,2,\dots,m} f(i-x_j) + 1, & \text{annars.} \end{array} \right.$$

```
7 int n, m, a[MAXM];
8 int d[MAXN];
9 int dp lookup(int x)
10 {
11
       int i:
       if (x < 0) return INF; // Pessi lína þarf að vera fremst!
12
13
       if (d[x] != -1) return d[x];
14
       if (x = 0) return 0;
15
       d[x] = INF;
16
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
       return d[x];
17
18 }
```

▶ Þetta dæmi má þó hæglega gera neðansækið.

```
1 #include <stdio.h>
 2 #define INF (1 << 30)
 3 int min(int a, int b) { if (a < b) return a; return b; }
 4
5 int main()
 6
   {
7
       int i, j, n, m;
       scanf("%d%d", &n, &m);
8
9
       int d[n + 1], a[m];
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
10
11
       for (i = 0; i < n + 1; i++) d[i] = INF;
12
       d[0] = 0:
13
       for (i = 0: i < m: i++)
14
15
           for (j = 0; j < n + 1 - a[i]; j++) if (d[j] < INF)
16
17
               d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
18
       }
19
20
21
       printf("%d\n", d[n]);
22
       return 0;
23 }
```

► Breytum dæminu örlítið.

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).
- Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n krónur, ef það er á annað borð hægt.

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).
- Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n krónur, ef það er á annað borð hægt.
- Nú er óþarfi að gera ráð fyrir því að $x_1 = 1$.

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).
- Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n krónur, ef það er á annað borð hægt.
- Nú er óþarfi að gera ráð fyrir því að $x_1 = 1$.
- Hvernig mætti breyta neðansæknu lausninni til að höndla þetta?

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).
- Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n krónur, ef það er á annað borð hægt.
- Nú er óþarfi að gera ráð fyrir því að $x_1 = 1$.
- Hvernig mætti breyta neðansæknu lausninni til að höndla þetta?
- Skoðum aftur neðansæknu lausnina.

Hefðbundna skiptimyntadæmið

```
1 #include <stdio.h>
 2 #define INF (1 << 30)
 3 int min(int a, int b) { if (a < b) return a; return b; }
 4
   int main()
       int i, j, n, m;
8
       scanf("%d%d", &n, &m):
       int d[n + 1], a[m];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
15
           for (j = 0; j < n + 1 - a[i]; j++) if (d[j] < INF)
16
                d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
17
18
       }
19
20
       printf("%d\n", d[n]);
21
22
       return 0:
23 }
```

Nýja dæmið

```
1 #include <stdio.h>
 2 #define INF (1 << 30)
 3 int min(int a, int b) { if (a < b) return a; return b; }
 4
 5
  int main()
 6
   {
       int i, j, n, m;
8
       scanf("%d%d", &n, &m):
9
       int d[n + 1], a[m];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
15
           for (j = n - a[i]; j >= 0; j--) if (d[j] < INF)
16
                d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
17
18
       }
19
20
       printf("%d\n", d[n]);
21
22
       return 0:
23 }
```

Skoðum báðar aðferðirnar á litlu sýnidæmi.

- Skoðum báðar aðferðirnar á litlu sýnidæmi.
- Skoðum fyrst með endurtekningum og síðan án endurtekningar.

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 4, 5, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4]
```

$$n = 10$$

 $a = [1, 3, 5]$

$$0$$
 1 2 3 4 5 6 7 8 9 10 $d = [0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2]$

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, 2, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, 2, 3, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, 2, -1, 2, 3, -1]
```

$$n = 10$$

 $a = [1, 3, 5]$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$

$$d = [0, 1, -1, 1, 2, 1, 2, -1, 2, 3, -1]$$

Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- ▶ Við þurfum að hugsa það aðeins öðruvísi.

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.
- Nú höfum við um tvennt að velja fyrir hvern pening.

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.
- Nú höfum við um tvennt að velja fyrir hvern pening.
- Annaðhvort notum við hann, eða ekki.

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.
- Nú höfum við um tvennt að velja fyrir hvern pening.
- Annaðhvort notum við hann, eða ekki.
- Svo við látum f(n,j) tákna minnsta fjölda af klinki sem þarf til að gefa til baka n krónur, ef við megum nota klink $x_j, x_{j+1}, ..., x_m$.

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.
- Nú höfum við um tvennt að velja fyrir hvern pening.
- Annaðhvort notum við hann, eða ekki.
- Svo við látum f(n,j) tákna minnsta fjölda af klinki sem þarf til að gefa til baka n krónur, ef við megum nota klink $x_j, x_{j+1}, ..., x_m$.
- Þá fáum við að

$$f(i,j) = \begin{cases} \infty, & \text{ef } i < 0 \\ \infty, & \text{ef } i \neq 0 \text{ og } j = m+1 \\ 0, & \text{ef } i = 0 \text{ og } j = m+1 \\ \min(f(i,j+1), & \\ f(i-x_j,j+1)+1), & \text{annars.} \end{cases}$$

Það er nokkuð létt að meta tímaflækjurnar á neðansæknu lausnunum.

- Það er nokkuð létt að meta tímaflækjurnar á neðansæknu lausnunum.
- ▶ Þær eru báðar tvöfaldar for-lykkjur, sú ytri af lengd m og innri af lengd $\mathcal{O}(n)$.

- Það er nokkuð létt að meta tímaflækjurnar á neðansæknu lausnunum.
- ▶ Þær eru báðar tvöfaldar for-lykkjur, sú ytri af lengd m og innri af lengd $\mathcal{O}(n)$.
- Svo tímaflækjurnar eru $\mathcal{O}($).

- Það er nokkuð létt að meta tímaflækjurnar á neðansæknu lausnunum.
- ▶ Þær eru báðar tvöfaldar for-lykkjur, sú ytri af lengd m og innri af lengd $\mathcal{O}(n)$.
- Svo tímaflækjurnar eru $\mathcal{O}(n \cdot m)$.

ightharpoonup Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.

```
9 int dp lookup(int x)
10 {
11
       int i:
12
        if (x < 0) return INF; // Þessi lína þarf að vera fremst!
13
        if (d[x] \stackrel{!}{=} -1) return d[x];
14
        if (x == 0) return 0;
       d[x] = INF;
15
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
        return d[x];
18 }
```

- ▶ Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n + 1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}($) tíma.

```
9 int dp lookup(int x)
10 {
11
       int i:
       if (x < 0) return INF; // Pessi lína þarf að vera fremst!
12
13
       if (d[x] != -1) return d[x];
14
       if (x == 0) return 0;
       d[x] = INF;
15
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

- ▶ Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}(m)$ tíma.

```
9 int dp_lookup(int x)
10 {
11
       int i:
       if (x < 0) return INF; // Pessi lína þarf að vera fremst!
12
13
       if (d[x] = -1) return d[x];
14
       if (x == 0) return 0;
       d[x] = INF;
15
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

- ▶ Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}(m)$ tíma.
- Svo í heildina er hún $\mathcal{O}($).

```
9 int dp lookup(int x)
10 {
11
       int i:
       if (x < 0) return INF; // Pessi lína þarf að vera fremst!
12
13
       if (d[x] != -1) return d[x];
14
       if (x == 0) return 0;
15
       d[x] = INF;
       for (i = 0; i < m; i++) d[x] = min(d[x], dp_lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

- ▶ Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}(m)$ tíma.
- Svo í heildina er hún $\mathcal{O}(n \cdot m)$.

```
9 int dp_lookup(int x)
10 {
11
       int i:
       if (x < 0) return INF; // Pessi lína þarf að vera fremst!
12
13
       if (d[x] != -1) return d[x];
14
       if (x == 0) return 0;
15
       d[x] = INF;
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

▶ Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.

- ▶ Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.
- ▶ Hvert gildi má þó reikna í $\mathcal{O}($) tíma.

- ▶ Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.
- Hvert gildi má þó reikna í $\mathcal{O}(1)$ tíma.

- ▶ Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.
- Hvert gildi má þó reikna í $\mathcal{O}(1)$ tíma.
- Svo í heildina er hún $\mathcal{O}($).

- ▶ Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.
- Hvert gildi má þó reikna í $\mathcal{O}(1)$ tíma.
- Svo í heildina er hún $\mathcal{O}(n \cdot m)$.

► Hvað gerum við ef við viljum vita *hvaða* klink á að gefa til baka, ekki bara hversu mikið?

- ► Hvað gerum við ef við viljum vita *hvaða* klink á að gefa til baka, ekki bara hversu mikið?
- ▶ Það er yfirleitt farið aðra af tveimur leiðum.

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- ▶ Það er yfirleitt farið aðra af tveimur leiðum.
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x a[y], y + 1) + 1) þá erum við í raun að velja hvort er betra: dp(x, y + 1) eða dp(x a[y], y + 1) + 1.

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- ▶ Það er yfirleitt farið aðra af tveimur leiðum.
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x a[y], y + 1) + 1) þá erum við í raun að velja hvort er betra: dp(x, y + 1) eða dp(x a[y], y + 1) + 1.
- Fyrri aðferðin felur í sér að geyma fyrir hvert inntak í dp_lookup(...) hver besta leiðin er.

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- ▶ Það er yfirleitt farið aðra af tveimur leiðum.
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x a[y], y + 1) + 1) þá erum við í raun að velja hvort er betra: dp(x, y + 1) eða dp(x a[y], y + 1) + 1.
- Fyrri aðferðin felur í sér að geyma fyrir hvert inntak í dp_lookup(...) hver besta leiðin er.
- ► Kvik bestun byggir á því að besta leiðin sé alltaf sú sama.

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- ▶ Það er yfirleitt farið aðra af tveimur leiðum.
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x a[y], y + 1) + 1) þá erum við í raun að velja hvort er betra: dp(x, y + 1) eða dp(x a[y], y + 1) + 1.
- Fyrri aðferðin felur í sér að geyma fyrir hvert inntak í dp_lookup(...) hver besta leiðin er.
- Kvik bestun byggir á því að besta leiðin sé alltaf sú sama.
- Síðan er eftir á hægt að þræða sig í gegn og finna klinkið sem þarf.

Finnur bara fjöldann

```
1 #include <stdio.h>
 2 #define INF (1 << 30)
3 int min(int a, int b) { if (a < b) return a; return b; }
   int main()
 6
7
       int i, j, n, m, x;
8
       scanf("%d%d", &n, &m);
9
       int d[n + 1], a[m];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
       d[0] = 0;
12
13
       for (i = 0; i < m; i++)
14
            for (j = 0; j < n + 1 - a[i]; j++)
                \inf (d[i] < INF \&\& d[j + a[i]] > d[j] + 1)
15
       {
16
           d[i + a[i]] = d[i] + 1:
17
18
       }
19
20
21
       printf("%d\n", d[n]);
22
23
24
25
26
27
28
29
       return 0:
30 }
```

Finnur hvaða klink

```
1 #include <stdio.h>
2 #define INF (1 << 30)
 3 int min(int a, int b) { if (a < b) return a; return b; }
 5
   int main()
 6
7
       int i, j, n, m, x;
8
       scanf("%d%d", &n, &m);
9
       int d[n + 1], a[m], e[n + 1];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
11
       for (i = 0; i < n + 1; i++) d[i] = INF;
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
            for (j = 0; j < n + 1 - a[i]; j++)
15
                if (d[i] < INF && d[j + a[i]] > d[j] + 1)
       {
16
17
           d[j + a[i]] = d[j] + 1;
18
           e[j + a[i]] = a[i];
19
20
21
       printf("%d\n", d[n]);
22
       x = n:
23
       while (x != 0)
24
            printf("%d ", e[x]);
25
26
           \times -= e[\times]:
27
       printf("\n"):
28
29
       return 0:
30 }
```

► Hin aðferðin hentar oft betur ef við erum með ofansækina kvika bestun.

- Hin aðferðin hentar oft betur ef við erum með ofansækina kvika bestun.
- Pá búum við til annað endurkvæmt fall sem notar dp_lookup(...) til að finna besta skrefið.

- Hin aðferðin hentar oft betur ef við erum með ofansækina kvika bestun.
- Pá búum við til annað endurkvæmt fall sem notar dp_lookup(...) til að finna besta skrefið.
- Þetta fall er auðvelt að smíða því það mun vera næstum eins og dp_lookup(...).

- Hin aðferðin hentar oft betur ef við erum með ofansækina kvika bestun.
- Pá búum við til annað endurkvæmt fall sem notar dp_lookup(...) til að finna besta skrefið.
- Þetta fall er auðvelt að smíða því það mun vera næstum eins og dp_lookup(...).
- ▶ Pegar það er búið að finna besta gildið prentar það hvert gildið er, og heldur svo áfram endurkvæmt.

```
6 int n, m, a[MAXM], d[MAXN];
7 int dp lookup(int x)
 8
   {
9
       int i:
       if (x < 0) return INF; // Pessi lína þarf að vera fremst!
10
11
       if (d[x] != -1) return d[x];
12
       if (x == 0) return 0;
13
       d[x] = INF;
14
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
15
       return d[x];
16 }
17 int dp traverse(int x)
18
19
       if (x < 0) return INF;
20
       if (x = 0) return 0;
21
       int i, mn = INF, mni;
22
       for (i = 0; i < m; i++) if (mn > dp lookup(x - a[i]) + 1)
23
           mn = dp lookup(x - a[i]) + 1, m\overline{n}i = i;
       printf("%d ", a[mni]);
24
       dp traverse(x - a[mni]);
25
26
       return mn:
27 }
```

▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(\)$ tíma.

Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.

- Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.
- Í seinni aðferðinni tekur það jafnalangan tíma og dp_lookup(...) tekur að meta hverja stöðu.

- ▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.
- Í seinni aðferðinni tekur það jafnalangan tíma og dp_lookup(...) tekur að meta hverja stöðu.
- Þetta má þó bæta með minnun.

- ▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.
- Í seinni aðferðinni tekur það jafnalangan tíma og dp_lookup(...) tekur að meta hverja stöðu.
- Þetta má þó bæta með minnun.
- ▶ Petta kemur bara til með að gera nógu góða lausn hæga ef það þarf að reikna fyrir mörg n.

- ▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.
- Í seinni aðferðinni tekur það jafnalangan tíma og dp_lookup(...) tekur að meta hverja stöðu.
- Þetta má þó bæta með minnun.
- Þetta kemur bara til með að gera nógu góða lausn hæga ef það þarf að reikna fyrir mörg n.
- Skoðum nú hvernig við gætum nýtt þetta til að finna lengsta sameiginlega hlutstreng.

```
6 int d[MAXN][MAXN];
7 int dp lookup(int x, int y)
8
9
       if (d[x][y] != -1) return d[x][y];
if (x == 0 || y == 0) return 0;
10
11
        if (s[x-1] = t[y-1]) return d[x][y] = dp_lookup(x-1, y-1) + 1;
12
        return d[x][y] = max(dp lookup(x - 1, y), dp lookup(x, y - 1));
13
14
15 void dp traverse(int x, int y)
16
   {
17
        if (x == 0 \mid \mid y == 0) return;
18
        if (s[x-1] = t[y-1])
19
20
            dp traverse(x - 1, y - 1);
            printf("%c", s[x - 1]);
21
22
23
        else if (dp lookup(x - 1, y) > dp lookup(x, y - 1)) dp traverse(x - 1, y);
24
        else dp traverse(x, y -1);
25 }
```

Seinni skiptadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).

- Seinni skiptadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).
- Dæmið er einfalt.

- Seinni skiptadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).
- Dæmið er einfalt.
- ▶ Gefnar eru n tölur a_1, \ldots, a_n ásamt tölu c.

- Seinni skiptadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).
- Dæmið er einfalt.
- ▶ Gefnar eru n tölur a_1, \ldots, a_n ásamt tölu c.
- Hvaða hlutruna af tölum gefur hæstu summuna án þess að fara yfir c.

$$c = 15$$
$$b = 0$$

a: 1 2 7 9

a: 1 2 7 9

a: 1 2 7 9

c = 15

b = 9

a: 1 2 7 9

$$c = 15$$
$$b = 9$$

^ ^

$$c = 15$$
$$b = 9$$

a: 1 2 7 9

$$c = 15$$

 $b = 11$

c = 15b = 12

a: 1 2 7 9

$$c = 15$$

 $b = 12$

a: 1 2 7 9

c = 15b = 12

a: 1 2 7 9

$$c = 15$$

 $b = 12$

a: 1 2 7 9

Látum

$$f(i,j) = \left\{ egin{array}{ll} 1, & ext{ef til er hlutruna af } a_1, \ldots, a_i ext{ sem hefur summu } j, \\ 0, & ext{annars.} \end{array}
ight.$$

Látum

$$f(i,j) = \left\{ \begin{array}{ll} 1, & \text{ef til er hlutruna af } a_1, \dots, a_i \text{ sem hefur summu } j, \\ 0, & \text{annars.} \end{array} \right.$$

Við getum nú umritað

$$f(i,j) = \left\{ egin{array}{ll} 1, & ext{ef } i=0 ext{ og } j=0, \ 0, & ext{ef } i=0 ext{ og } j
eq 0, ext{ eða } j < 0, \ \min(1,f(i-1,j) \ +f(i-1,j-a_i)), & ext{ef } i
eq 0. \end{array}
ight.$$

```
7 int d[MAXN][MAXC], b[MAXN];
8 int dp lookup(int x, int y)
9 {
10
       if (x < 0 \&\& y == 0) return 1;
       if (y < 0 \mid | x < 0) return 0;
11
       if (d[x][y] != -1) return d[x][y];
12
13
       return d[x][y] = dp lookup(x - 1, y) \mid\mid dp lookup(x - 1, y - b[x]);
14 }
15
16 int subsetsum (int *a, int n, int c)
17
18
       int i, j;
       for (i = 0; i < n; i++) for (j = 0; j < c + 1; j++) d[i][j] = -1;
19
20
       for (i = 0; i < n; i++) b[i] = a[i];
21
       while (!dp lookup(n-1, c)) c--;
22
       return c:
23 }
```

▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}($).

▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- ightharpoonup Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- lacktriangle Við þurfum í versta falli að reinka $n\cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}($) tíma að reikna f(i,j).

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- ightharpoonup Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).
- ► En sökum minnunar tekur það $\mathcal{O}(q + n \cdot c)$ tíma að reikna q sinnum fallgildi fallsins f.

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).
- ► En sökum minnunar tekur það $\mathcal{O}(q + n \cdot c)$ tíma að reikna q sinnum fallgildi fallsins f.
- Við þurfum að reikna það, í versta falli, c sinnum, svo forritið er $\mathcal{O}($).

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- ▶ Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).
- ► En sökum minnunar tekur það $\mathcal{O}(q + n \cdot c)$ tíma að reikna q sinnum fallgildi fallsins f.
- ▶ Við þurfum að reikna það, í versta falli, c sinnum, svo forritið er $\mathcal{O}(n \cdot c)$.

Ein algeng hagnýting á þessu er tvískipting talna.

- Ein algeng hagnýting á þessu er tvískipting talna.
- ightharpoonup Látum a_1, \ldots, a_n vera heiltölur.

- Ein algeng hagnýting á þessu er tvískipting talna.
- ightharpoonup Látum a_1, \ldots, a_n vera heiltölur.
- Hvernig er best að skipta þeim í tvo hópa þannig að mismunur summa hvors hóps sé sem minnstur.

- Ein algeng hagnýting á þessu er tvískipting talna.
- ightharpoonup Látum a_1, \ldots, a_n vera heiltölur.
- Hvernig er best að skipta þeim í tvo hópa þannig að mismunur summa hvors hóps sé sem minnstur.
- ► Ef tölurnar eru (10, 2, 10, 30, 15, 2, 30, 10) þá skiptum við í (2, 2, 10, 10, 30) og (10, 15, 30).

- Ein algeng hagnýting á þessu er tvískipting talna.
- ightharpoonup Látum a_1, \ldots, a_n vera heiltölur.
- Hvernig er best að skipta þeim í tvo hópa þannig að mismunur summa hvors hóps sé sem minnstur.
- ► Ef tölurnar eru (10, 2, 10, 30, 15, 2, 30, 10) þá skiptum við í (2, 2, 10, 10, 30) og (10, 15, 30).
- ▶ Summurnar eru 54 og 55, og mismunur þeirra er 1.

► Hvernig getum við leyst þetta?

- ► Hvernig getum við leyst þetta?
- Látum T vera summu allra talnanna.

- ► Hvernig getum við leyst þetta?
- Látum T vera summu allra talnanna.
- ▶ Við getum nú notað subsetsum(...) með $c = \lfloor T/2 \rfloor$.

- ► Hvernig getum við leyst þetta?
- Látum T vera summu allra talnanna.
- ▶ Við getum nú notað subsetsum(...) með $c = \lfloor T/2 \rfloor$.
- Það gefur okkur annan hópinn og hinn hópurinn verður afgangurinn.

- Hvernig getum við leyst þetta?
- Látum T vera summu allra talnanna.
- ▶ Við getum nú notað subsetsum(...) með c = |T/2|.
- Það gefur okkur annan hópinn og hinn hópurinn verður afgangurinn.
- Okkur vantar þó að finna hvaða tölur eiga að vera í hvorum hóp.

```
7 int d[MAXN][MAXC], b[MAXN];
8 int dp lookup(int x, int y)
9 {
10
       if (x < 0 \&\& y == 0) return 1;
11
       if (y < 0 \mid | x < 0) return 0;
12
       if (d[x][y] != -1) return d[x][y];
13
       return d[x][y] = dp \ lookup(x-1, y) \ || \ dp \ lookup(x-1, y-b[x]);
14 }
15
16 void partition (int *a, int *r, int n)
17
  {
18
       int i, j, t = 0, c;
19
       for (i = 0; i < n; i++) t += a[i], r[i] = 0, b[i] = a[i];
20
       c = t/2;
21
       for (i = 0; i < n; i++) for (j = 0; j < c + 1; j++) d[i][j] = -1;
22
       while (!dp lookup(n - 1, c)) c--;
23
       i = n - 1, j = c;
24
       while (i > 0 \&\& i > 0)
25
       {
           if (dp lookup(i-1, j) > dp lookup(i-1, j-a[i])) i--;
26
           else r[i] = 1, j = a[i], i = -i
27
28
29 }
```

► Látum T vera summu allra talnanna.

- ► Látum *T* vera summu allra talnanna.
- ightharpoonup Þá er tímaflækjan $\mathcal{O}($).

- ► Látum *T* vera summu allra talnanna.
- ▶ Þá er tímaflækjan $\mathcal{O}(n \cdot T)$.

- Látum T vera summu allra talnanna.
- ▶ Þá er tímaflækjan $\mathcal{O}(n \cdot T)$.
- ▶ Það er til skemmtileg leið til að fá tímaflækjuna $\mathcal{O}(n \cdot w)$, þar sem w er stærsta talan í inntakinu.

- Látum T vera summu allra talnanna.
- ▶ Þá er tímaflækjan $\mathcal{O}(n \cdot T)$.
- ▶ Það er til skemmtileg leið til að fá tímaflækjuna $\mathcal{O}(n \cdot w)$, þar sem w er stærsta talan í inntakinu.
- Við skoðum hana kannski í næstu viku.

► Hlutmengjadæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).

- Hlutmengjadæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).
- Gerum ráð fyrir að við séum með n hluti sem allir hafa einhverja vigt og verðgildi.

- Hlutmengjadæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).
- ► Gerum ráð fyrir að við séum með *n* hluti sem allir hafa einhverja vigt og verðgildi.
- ▶ Við erum einnig með bakpoka sem þolir tiltekna samtals vigt.

- Hlutmengjadæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).
- Gerum ráð fyrir að við séum með n hluti sem allir hafa einhverja vigt og verðgildi.
- ▶ Við erum einnig með bakpoka sem þolir tiltekna samtals vigt.
- Verkefnið snýst þá um að hámarka heildar verðgildi hluta sem hægt er að setja í bakpokann.

Nánar, við höfum tölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.

- Nánar, við höfum tölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.
- ▶ Við viljum ákvarða tölur $b_1, \ldots, b_n \in \{0, 1\}$ þannig að

$$\sum_{i=1}^n b_i \cdot w_i \le c \quad \text{ og } \quad \sum_{i=1}^n b_i \cdot v_i \text{ s\'e h\'amarka\~ð}.$$

- Nánar, við höfum tölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.
- $lackbox{Við viljum ákvarða tölur } b_1,\ldots,b_n\in\{0,1\}$ þannig að

$$\sum_{i=1}^n b_i \cdot w_i \leq c$$
 og $\sum_{i=1}^n b_i \cdot v_i$ sé hámarkað.

Látum f(i,j) tákna hámarks verðgildi sem má fá úr fyrst i hlutunum og bakpoka sem þolir þyngd j.

- Nánar, við höfum tölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.
- lackbox Við viljum ákvarða tölur $b_1,\ldots,b_n\in\{0,1\}$ þannig að

$$\sum_{i=1}^n b_i \cdot w_i \leq c$$
 og $\sum_{i=1}^n b_i \cdot v_i$ sé hámarkað.

- Látum f(i,j) tákna hámarks verðgildi sem má fá úr fyrst i hlutunum og bakpoka sem þolir þyngd j.
- Við höfum þá

$$f(i,j) = \left\{ egin{array}{ll} -\infty, & ext{ef } j < 0, \ 0, & ext{annars, ef } i = 0 \ ext{max}(f(i-1,j) \ +f(i-1,j-w_i)+w_i), & ext{annars.} \end{array}
ight.$$

```
8 int d[MAXN][MAXC], a[MAXN], b[MAXN];
9 int dp lookup(int x, int y)
10 {
11
       if (y < 0) return -INF;
12
       if (x < 0) return 0;
13
       if (d[x][y] != -1) return d[x][y];
       return d[x][y] = max(dp lookup(x - 1, y),
14
                                dp lookup(x - 1, y - b[x]) + a[x]);
15
16 }
17
  void knapsack(int *v, int *w, int *r, int n, int c)
18
  {
19
20
       int i, j, s[MAXN], ss;
21
       for (i = 0; i < n; i++) for (j = 0; j <= c; j++) d[i][j] = -1;
       for (i = 0; i < n; i++) a[i] = v[i], b[i] = w[i], r[i] = 0;
22
23
       i = c:
24
       for (i = n - 1; i >= 0; i--)
25
           if (dp_lookup(i-1, j) < dp_lookup(i-1, j-w[i]) + v[i])
26
               j = w[i], r[i] = 1;
27 }
```

▶ Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.

- ▶ Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}($).

- ▶ Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(1)$.

- ▶ Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(1)$.
- ▶ Í heildina er þetta því $\mathcal{O}($).

- ▶ Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(1)$.
- ▶ Í heildina er þetta því $\mathcal{O}(n \cdot c)$.

 Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- ► Tökum vel þekkt dæmi.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- ► Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel bekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.
- Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð þannig að við byrjum og endum í sömu stöðu, förum í hverja stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og tökum sem stystan tíma.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.
- Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð þannig að við byrjum og endum í sömu stöðu, förum í hverja stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og tökum sem stystan tíma.
- ▶ Petta er fræga Farandsölumannadæmið (e. Travelling Salseman Problem).

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.
- Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð þannig að við byrjum og endum í sömu stöðu, förum í hverja stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og tökum sem stystan tíma.
- ▶ Petta er fræga Farandsölumannadæmið (e. Travelling Salseman Problem).
- ▶ Sígilt er að leysa þetta dæmi endurkvæmt í $\mathcal{O}((n+1)!)$ tíma.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.
- Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð þannig að við byrjum og endum í sömu stöðu, förum í hverja stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og tökum sem stystan tíma.
- ▶ Petta er fræga Farandsölumannadæmið (e. Travelling Salseman Problem).
- ▶ Sígilt er að leysa þetta dæmi endurkvæmt í $\mathcal{O}((n+1)!)$ tíma.
- ▶ Við höfum nú tólin til að gera betur.

► Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- ▶ Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum P tákna mengi alla staða, A vera eiginlegt hlutmengi þar í og s vera stak utan A.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum P tákna mengi alla staða, A vera eiginlegt hlutmengi þar í og s vera stak utan A.
- Við getum þá látið f(s, A) vera stysta leiðin til að fara í allar stöður A nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum *P* tákna mengi alla staða, *A* vera eiginlegt hlutmengi þar í og *s* vera stak utan *A*.
- Við getum þá látið f(s, A) vera stysta leiðin til að fara í allar stöður A nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.
- ▶ Tökum eftir að $f(s, \emptyset) = d_{s1}$.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum *P* tákna mengi alla staða, *A* vera eiginlegt hlutmengi þar í og *s* vera stak utan *A*.
- Við getum þá látið f(s, A) vera stysta leiðin til að fara í allar stöður A nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.
- ▶ Tökum eftir að $f(s, \emptyset) = d_{s1}$.
- ▶ Við getum nú sett fallið f fram endurkvæmt með

$$f(s,A) = \left\{ egin{array}{ll} d_{s1}, & ext{ef } A = \emptyset \\ \min_{e \in A} (d_{se} + f(e,A \setminus e)), & ext{annars}. \end{array}
ight.$$

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum *P* tákna mengi alla staða, *A* vera eiginlegt hlutmengi þar í og *s* vera stak utan *A*.
- Við getum þá látið f(s, A) vera stysta leiðin til að fara í allar stöður A nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.
- ▶ Tökum eftir að $f(s, \emptyset) = d_{s1}$.
- ▶ Við getum nú sett fallið f fram endurkvæmt með

$$f(s,A) = \left\{ egin{array}{ll} d_{s1}, & ext{ef } A = \emptyset \\ \min_{e \in A} (d_{se} + f(e,A \setminus e)), & ext{annars}. \end{array}
ight.$$

Svarið við dæminu fæst svo með f(

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum *P* tákna mengi alla staða, *A* vera eiginlegt hlutmengi þar í og *s* vera stak utan *A*.
- Við getum þá látið f(s, A) vera stysta leiðin til að fara í allar stöður A nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.
- ▶ Tökum eftir að $f(s, \emptyset) = d_{s1}$.
- ▶ Við getum nú sett fallið f fram endurkvæmt með

$$f(s,A) = \left\{ egin{array}{ll} d_{s1}, & ext{ef } A = \emptyset \\ \min_{e \in A} (d_{se} + f(e,A \setminus e)), & ext{annars}. \end{array}
ight.$$

▶ Svarið við dæminu fæst svo með $f(1, P \setminus \{1\})$.

▶ Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna falligildi á f, ef við erum með n stöður.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}($) tíma.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}($

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.
- ightharpoonup Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \leq 10^8$

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.
- Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \le 18$.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.
- Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \le 18$.
- ▶ Við náum bara $n \le með$ augljósu endurkvæmnu lausninni.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^{n-1}$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.
- Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \le 18$.
- Við náum bara $n \le 10$ með augljósu endurkvæmnu lausninni.

```
1 #include <stdio.h>
 2 #include <assert.h>
 3 #define MAXN 18
 4 #define INF (1 << 30)
 5 int min(int a, int b) { if (a < b) return a; return b; }
7 int a[MAXN][MAXN], d[MAXN][1 \ll MAXN], n;
  int dp lookup(int x, int y)
9 {
10
       int i:
11
       if (d[x][y] != -1) return d[x][y];
12
       if (y = 0) return a[x][0];
13
       d[x][y] = INF;
14
       for (i = 0; i < n; i++) if ((y&(1 << i)) != 0)
15
           d[x][y] = min(d[x][y], dp_lookup(i, y - (1 << i)) + a[x][i]);
16
       return d[x][v]:
17 }
18
19 int main()
20 {
21
       int i, j;
22
       scanf("%d", &n);
23
       for (i = 0; i < n; i++) for (j = 0; j < (1 << n); j++) d[i][j] = -1;
24
       for (i = 0; i < n; i++) for (j = 0; j < n; j++) scanf("%d", &a[i][j]);
25
       printf("%d\n", dp lookup(0, (1 \ll n) - 2));
26
       return 0:
27 }
```