

Deep Reinforcement Learning

Prof. Dr.-Ing. Björn Schuller 07.01.2020

Content

- Introduction
- Reinforcement Learning
- Deep Reinforcement Learning

Content

- Introduction
- Reinforcement Learning
- Deep Reinforcement Learning

Major types of machine learning algorithms

- Supervised learning
 - Learning on: Labeled data
- Unsupervised learning
 - Learning on: Unlabeled data
- Reinforcement learning
 - Learning on: Reward-based interaction with environment

Supervised Learning

- Main topic of this lecture
- Input: Set of known training data
 - E.g. pictures, sound waves, pre-processed features, etc.
- Output: Predictions for training data
 - Classification (e.g. cat or dog)
 - Regression (e.g. cat or dog localisation)
- Deep Learning (Neural Networks)
 - Predict output from input

Supervised Learning

- Good performance if
 - Big amount of labeled training data
- Acquisition of labeled training data
 - Time-consuming
 - Not suited for every use-case

Unsupervised Learning

- Input: Set of training data without annotations
 - E.g. pictures, sound waves, pre-processed features, etc.
- Output: Clustering the training data
 - Exploratory data analysis (e.g. cat or plant)
- Deep Learning (Neural Networks)
 - Representation learning

Case: Interactive Agent

- Input: Environment
 - Described by feature
- Output: Action
 - Given set of possible actions
- Predefined Goal
 - E.g. cross the street (robot), chat-bot

Approaches

- Unsupervised Learning
 - Only clustering of environment data possible
- Supervised Learning
 - Labeling best action for each data point
 - Very time-consuming (if possible)
 - Potentially many actions leading to goal

Approaches

- Reinforcement Learning
 - Agent exploring environment
 - Agent obtaining reward for every action
 - Reward based on environmental change to action
 - Agent learning rule system from reward

Supervised learning -- Learning from teacher

Cross the street (robot)

Label: move

Label: wait

image source: https://www.youtube.com /watch?v=N1IhHHkUzYg

Unsupervised learning -- Clustering the environment

Cross the street (robot)

Reinforcement learning -- Learning from experience

Observation

Agent

Action: Cross the street

image source:

https://images.app.goo.gl/AnjY15t7jbg1a9Uo9 https://images.app.goo.gl/WT4n5N4RoxANk4eC8 https://images.app.goo.gl/sczEdBxV6QhhUdV46 https://images.app.goo.gl/PqqiBdbrYc9oQabF6

Winter Semester

Reward

Supervised learning

Not flexible (sometimes generate good dialogue, sometimes bad)

image source:

https://images.app.goo.gl/KPmi94ysStTjbQAS7 https://images.app.goo.gl/M4fxtmBjKXKHBPGR8

Unsupervised learning

Mostly the dialogues are bad

image source:

https://images.app.goo.gl/KPmi94ysStTjbQAS7 https://images.app.goo.gl/M4fxtmBjKXKHBPGR8 Winter Semester

Reinforcement learning

Learn to maximize the expected reward

Chat-bot

image source:

https://images.app.goo.gl/KPmi94ysStTjbQAS7 https://images.app.goo.gl/M4fxtmBjKXKHBPGR8

https://images.app.goo.gl/RKkRin3WGZ9ThBLr7

Winter Semester

- Supervised Learning
 - learning a static model to predict the label
 - classification, regression
- Unsupervised Learning
 - clustering, segmentation, dimension reduction
- Reinforcement Learning
 - learning a dynamic model
 - reward system, decision process, recommendation system

Playing games -- a widely study in reinforcement learning

Input:

What the robot observes is pixels

Output:

• The robot give action commands

Procedure:

Machine learns to win by maximizing the reward

Tools:

- Gym: https://gym.openai.com/
- Universe: https://openai.com/blog/universe/

Human-level control through deep reinforcement learning

reference: Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S., 2015. Human-level control through deep reinforcement learning. *Nature*, *518*(7540), p.529.

Fire: Move left or right

Observation o_1

Observation o_2

Observation o_3

Learning to maximize the expected cumulative score.

Training *t* iterations

Win or Game over $(Score: s_t)$

More applications

Driving

Four actions and six parameters:

- Dash (power, direction)
- Turn (direction)
- Tackle (direction)
- Kick (power, direction)

Autonomous Helicopter

Four actions:

- longitudinal (front-back) cyclic pitch control
- latitudinal (left-right) cyclic pitch control
- main rotor collective pitch control
- tail rotor collective pitch control

video source: https://www.youtube.com/watch?v=0JL04JJjocc reference:

Robot

Discrete actions:

- open
- close
- terminate

Continuous actions:

- cartesian vector
- gripper rotation

QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

video source: https://www.youtube.com/watch?v=W4joe3zzgIU reference:

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V. and Levine, S., 2018. Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293.

Difficulties of reinforcement learning

- Reward delay
 - Only 'fire' obtains reward, but the moving direction (left or right) can affect the result of 'fire'
 - learn to coordinate the actions
- Agent's actions affect the reward
 - learn to explore the actions which have not been tried

Content

- Introduction
- Reinforcement Learning
- Deep Reinforcement Learning

• Framework of Reinforcement Learning

State

- Description of environment and agent
- Often hand-crafted features
- Current state s_i extracted from current situation
- Knowledge of possible state $s_i \in S$
- Examples
 - Coordinates of Super Mario, distance to closest obstacle

$$s_i = (x_M, y_M, d_O)$$

Action

- Actions available to agent
- Knowledge of available actions $a_i \in A$
- Examples
 - Jump, Move right, Move left $A = \{J, R, L\}$
- Leading to new situation s_{i+1}

Policy

- Probability of choosing action a_i in situation s_i $\pi(s_i, a_i) \to [0, 1]$
- Learning target during training
- Applied at each timestep

Reward

- User rewarded with numerical value $r_i \in \mathbb{R}$
- Can depend on situation after action s_{i+1}
- Applied at each timestep
- Basis for learning goal

Problem

- State-transitions and rewards difficult to predict
- Non-deterministic environment
 - Same action at different points in time
 - → Different reward
 - → Different resulting state
- E.g. Football player shooting on goal
 - Hit: High reward
 - Miss: Low reward

Exploitation vs. Exploration

- Exploitation
 - Choosing most promising action
 - Guaranteed high reward (if well explored)
 - No new information
- Exploration
 - Choose less explored action
 - Possibly low reward
 - Gain of information

Goal of RL

- Maximizing expected future reward (value) V_{π}
 - Expected reward depending on policy $\pi(s_i, a_i) \rightarrow [0, 1]$
 - → Learn policy to maximize reward
- Problem
 - Infinite runtime of algorithm
 - → Infinite sum of rewards
 - Define expected future reward V_{π}

Expected future reward (value) functions

- Finite-horizon model $V_{\pi} = E(\sum_{t=0}^{h} r_t)$
 - Finite horizon of steps
- Infinite-horizon model $V_{\pi} = E(\sum_{t=0}^{\infty} \gamma^t r_t), 0 \le \gamma \le 1$
 - $-\gamma$: discount rate
- Average-reward model $V_{\pi} = \lim_{h \to \infty} E(\frac{1}{h} \sum_{t=0}^{h} r_t)$

Basics of Reinforcement Learning

Two basic reinforcement learning approaches

Markov Decision Process (MDP)

- Modeling the problem
- MDP defined by
 - Set of possible states S
 - Set of possible actions A
 - Reward function $R(s_i, a_i)$ → \mathbb{R}
 - Expected reward when choosing action a_j in situation s_i
 - Transition function $T(s_i, a_j, s_l) \rightarrow [0, 1]$ Probability of transitioning from state s_i to state s_l when choosing action

Markov Decision Process (MDP)

Optimal Value Function

- Assuming MDP model known
- Optimal reward gained from state
 - I.e. using optimal policy
- Infinite-horizon case $V^*(s) = \max_{\pi} E(\sum_{t=0}^{\infty} \gamma^t r_t)$
- As Bellman equation
 - Optimal solution consisting of optimal solutions for subproblems $V^*(s) = \max_a (R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^*(s')$

Value iteration

Learn optimal value iteratively

```
initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V(s') V(s) := \max_{a} Q(s,a) end loop end loop
```

Derive optimal policy from optimal values

• Example -- chat bot before training with MDP

S: RELEASE AIRLINE	Do you want to choose another airline?
U:	What?
S: RETRIEVAL	
S: CONSTRAIN DEPART. TIME	When do you want to leave?
U:	UH? I want to go to Boston.
S: OUTPUT DATA	There are 12,000 flights
U:	I don't understand, can you please show me the flights from San Francisco to Boston?
S: CLOSE DIALOGUE	Thank you for using AT&T.

after training with MDP

S: GREETING	This is the AT&T flight information. How may I help you?
U:	I want to go to Boston.
S: CONSTRAIN ORIGIN	Where do you want do leave from?
U:	San Francisco
S: CONSTRAIN AIRLINE	Which airline?
U:	Delta
S: RETRIEVAL (30 flights)	
S: CONSTRAIN DEPART. TIME	When do you want to leave?
U:	In the late afternoon.
S: RETRIEVAL (30 flights)	
S: OUTPUT DATA	Flightleaves at, flightleaves at
U:	Thanks.
S: CLOSE DIALOGUE	Thank you for using AT&T.

Winter Semester

Deep Learning

Problem

- MDP model not known
- Model-based algorithms
 - Learn MDP model → Derive optimal policy
- Model-free algorithms
 - Learn policy without learning model

Model-based approach

- Example: Certainty equivalence
 - Straight forward method
 - Random selection of actions → Explore environment
 - Keep track of transitions and rewards
 - Calculate T and R statistically
- Other Algorithms
 - Dyna
 - Prioretized Sweeping

Model-free approach

- Learn policy rather than MDP model
- Algorithms
 - Q-learning
 - Adaptive heuristic critic
 - Model-free learning with average reward
- Model-free vs Model-based
 - Superiority of either heavily discussed

Q-learning

- Popular Algorithm for RL
- Given situation s
- Expected reward $Q^*(s, a)$
 - choosing action a
 - subsequently choosing optimal action
- Optimal Value $V^*(s) = \max_a Q^*(s, a)$

$$\to Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \max_{a'} Q^*(s',a')$$

Q-learning

- Learning *Q*-Values
 - Performing action a in situation s
 - Obtaining reward r transitioning into state s'

$$\rightarrow Q(s,a) := Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

- Exploration: Choose actions (partially randomly)
- ullet Exploitation: Choose action with optimal Q-Value

Agent

Q-learning

Q-learning

• The computation part is usually a table -- Q-table

training

		Action							
	1	up	down	left	right	left-up	left- down	right- up	right- down
	2	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0
State	4	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	0

		Action							
	1	up	down	left	right	left-up	left- down	right- up	right- down
	2	0.12	0.34	0.35	0.78	0.01	0.25	0.57	0.68
	3								
State	4								
	5								
	6								
	7								
	8								

Improvement of Q-learning

- Fuzzy Q-learning
 - a collection of fuzzy rules as an agent that produces continuous-valued actions
- Object focused Q-learning
 - treats the state space as a collection of objects organized into different object classes

references:

Glorennec, P.Y. and Jouffe, L., 1997, July. Fuzzy Q-learning. In *Proceedings of 6th international fuzzy systems conference*(Vol. 2, pp. 659-662). IEEE. Cobo, L.C., Isbell, C.L. and Thomaz, A.L., 2013, May. Object focused q-learning for autonomous agents. In *Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems* (pp. 1061-1068). International Foundation for Autonomous Agents and Multiagent Systems.

Content

- Introduction
- Reinforcement Learning
- Deep Reinforcement Learning

Situation Set

Reinforcement Learning

- So far
 - Provided set of situations
 - Provided set of actions
 - Provided reward function
 - Determine optimal policy function
- Problem
 - Where does the set of situations come from?

Situation Sets

Situation Sets

- Situation Variables often handcrafted
 - Subjective selection of features
 - Only applicable to one task
- Situation Variables based on sensory input
 - Pre-processing necessary (high dimensionality)
 - Applicable to multiple tasks
 - E.g. computer game: pixels of screen
 - Often used in Deep Reinforcement Learning (DRL)

General Approach

Try to learn Q-Values

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \max_{a'} Q^*(s',a')$$

- So far linear updates to Q-Values
 - Guaranteed Convergence
 - No Generalisation between actions and situations

$$Q(s,a) \coloneqq Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Approximator Approach

- Estimate action Value $Q(s, a, \theta) \approx Q^*(s, a)$
 - Estimation often linear in θ
- Deep *Q*-Network
 - Using DNN for estimation of Q^*
 - Non-linear functions in θ
 - Convergence not guaranteed
 - Good generalisation

Q-Network

- Prediction of Q-values
 - Depend on parameters θ_i of Neural Net at iteration i
- Training of Q-Values
 - Given situation s
 - Calculate Q-Value $Q(s, a, \theta_i)$ for actions $a \in A$
 - Perform action a e.g. with highest Q-Value (greedy)
 - Get reward r and get to situation s'

Action a_i

Agent

Policy

 $\pi(s_i,a_i) o [0,1]$

Q-Network

Q-Network

- Training of Q-Values
 - Compare Q-Value $Q(s, a, \theta)$ with Q-Values for s'
 - Approximating target value

$$y = r + \gamma \max_{a'} Q(s', a', \theta_i^-)$$

- θ_i^- : DNN parameters of prior iteration (e.g. i-1)

Q-Network

- Training of *Q*-Values
 - Define loss function
 - For minibatch of tuples (s, a, r, s')
 - Mean squared error

$$L_i(\theta_i) = E_{s,a,r}[(E_{s'}[y] - Q(s,a,\theta_i))^2]$$

Calculate gradient $\nabla_{\theta_i} L(\theta_i)$ for update steps

Q-Network

- Summary
 - Deep Reinforcement Learning approach
 - Model-free
 - Learning Q-Values with DNNs
 - Labels based on previous data
 - → No supervised learning

61

Deep Q-learning Convolutional Neural Networks applied to select actions

reference: Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S., 2015. Human-level control through deep reinforcement learning. Nature, 518(7540), p.529. Winter Semester

Deep Learning

Deep Q-learningSpace Invaders

t-SNE of the embedding of the representations in the last hidden layer

- High values for the full (top right) and complete (bottom left) screen, because a complete screen leads to a new full screen
- Partially completed screens (bottom) have lower state values, because less immediate reward is available

 Deep Q-learning outperforms the best approaches in many tasks

Deep Double Q-learning

Q-learning
$$Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') \max_{a'} Q^*(s', a')$$

Double
$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \max_{a'} Q'(s',a')$$
 Q-learning

- Q-learning estimates the value of the greedy policy according to the current values
- Double Q-learning uses a second set of weights to fairly evaluate of the policy

reference: Van Hasselt, H., Guez, A. and Silver, D., 2016, March. Deep reinforcement learning with double q-learning. In Thirtieth AAAI conference on artificial intelligence.

Deep Double Q-learning

- The middle row shows the value estimates (in log scale) for two games in which DQN's overoptimism is quite extreme.
- The bottom row shows the detrimental effect of this on the score achieved by the agent as it is evaluated during training: the scores drop when the overestimations begin. Learning with Double DQN is much more stable.

Deep Double Q-learning

Evolving Learning

How to select deep learning architectures, and hyper-parameters?

Brute-force search

- require high experiences
- time-consuming

Is it possible to use reinforcement learning?

Evolving learning

Evolving Algorithms

- Example: RNN for classification problem
 - Goal: Learn hyperparameters for each layer i
 - Number of hidden nodes h_i
 - Activation function φ_i
 - Given set of hyper-parameters $\tau = \{h_1, \varphi_1, h_2, \varphi_2, \dots\}$
 - Create child-network specified by hyperparameters
 - Train child-network on classification task
 - Obtain reward: Accuracy on development set *R*

Evolving Algorithms

- Example: RNN for classification problem
 - Probability for child network τ : $p(\tau|\theta)$
 - ullet Depends on Parameter of Controller Network heta
 - For optimal architecture of Controller Network
 - Maximize expected reward

$$J(\theta) = \sum_{\tau} R(\tau) p(\tau | \theta)$$

• Update θ with gradient $\nabla_{\theta}J(\theta)$

Evolving Learning

reward
$$J(\theta) = \sum_{\tau}^{\tau} \frac{\text{prediction controller parameters}}{R(\tau)p(\tau\theta)}$$
reward $I(\theta) = \sum_{\tau}^{\tau} \frac{R(\tau)p(\tau\theta)}{\text{probability network architecture}}$

Search space of hyper-parameters

Types	Hyper-parameters
# layers	1, 2, 3, 4, 5
# node per layer	0, 40, 80, 120, 160, 200
Activation functions	Tanh, ReLU, sigmoid

Evolving Learning vs other approaches

approaches	UAR[%]
Seq2seq [33]	62.1
End-to-end [34]	63.5
BoAW [35]	67.7
ComParE [28]	71.9
Evolved GRU-RNN	70.1

Conclusions

Reinforcement learning

- Model-based approach
 - Markov decision process
- Model-free approach
 - Q-learning
 - Adaptive heuristic critic
 - Model-free learning with average reward

Deep reinforcement learning

- Deep Q-learning, deep double Q-learning
- Evolving learning