1. basic and free variables:
$$\begin{cases} X_1 & +2X_{3}=0 \\ X_2-3X_{3}=0 \end{cases} \Rightarrow \begin{cases} X_1=2t \\ X_2=3t \\ X_3=t \end{cases} X_3$$
 are basic variables, $X_1-3X_3=0 \Rightarrow \begin{cases} X_1=2t \\ X_2=3t \\ X_3=t \end{cases} X_3$ is free variable.

OA invertible Q
$$A\vec{x} = \vec{0} \Rightarrow \vec{x} = \vec{\delta} \otimes A \xrightarrow{\text{Yow operation}} I_n$$

Grant basis:
$$\binom{1}{0}$$
, $\binom{0}{1}$, Jennifer basis: $\binom{0}{1}$ $\binom{1}{1}$

$$\binom{5/3}{113}$$
 in Jennifer basis means $\binom{2}{1}$ $\frac{5}{5}$ + $\binom{7}{1}$ $\frac{1}{5}$ = $\binom{3}{2}$ in Grant basis.

$$T(x) = (x)$$
, $A_{G} = (0)$ in Grant basis

$$\binom{2}{1}A_1 = A_4\binom{2}{1}$$
 make transfer to Jennifer basis

$$A_1 = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}^{-1} A_4 \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$5$$
. Ann has n eigenvalues. $\lambda_1, \lambda_2, \dots, \lambda_n$, $|A| = \lambda_1 \lambda_2 \dots \lambda_n$, $tr(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$

suppose
$$\vec{p} = p_0 j_0 \vec{x}$$
 $A^T(\vec{x} - \vec{p}) = \vec{\sigma} \Rightarrow A^T(\vec{x} - A\vec{x}) = \vec{\sigma} \Rightarrow A^T(\vec{x} - A\vec{x})$

9. spectral decomposition: A-PDPT Porthogonal matrix

10. positive-definite: A symmetric, λi>0 eigenvector of ATA positive semi-definite: A symmetric, $\lambda i \ge 0$ regenvector of Λ orthogonal model Λ and Λ orthogonal model Λ orthogonal Λ orthogona orthogonal matrix

D. runk geometric property:

rank (VA) = rank(AV) = rank(A), U and V are invertible, rank(AT) = rank(A)

13. Euclidean morm: $d = \begin{pmatrix} d_1 \\ d_2 \\ d_n \end{pmatrix}$, $||d|| = \int d_1^2 + d_2^2 + \dots + d_n^2$

14. Compute orthogonal projection: normal equation

Is square root matrix: $\Sigma = PDP^T$, $D = diag(\lambda_1, \dots, \lambda_n)$ $\Sigma^{\frac{1}{2}} = P \widetilde{D} P^{T}, \ \widetilde{D} = diag(J_{\lambda_{1}, \dots, J_{n}})$ $(\Sigma_{\overline{i}})_{s} = PDP_{1}DDD_{2}DDD_{1} = PD_{2}DD_{2} = DDD_{2} = \overline{\Sigma}$