

Image courtesy: Asset Guardian (https://www.assetguardian.com/how-ai-is-changing-the-cyber-security-landscape/)

Quantitative Analysis of Machine Learning Classification Algorithms for the Design of Intrusion Detection/Prevention Systems

Research Interest Intersection of

- Cybersecurity
- Digital Forensics
 - Data Science
- Machine Learning

Current Research

Focuses on extracting and analyzing data patterns created by deleted and decaying digital files, and their application in digital forensics investigations to reconstruct previous user activity.

Ph.D. in Information Technology from George Mason University.

O. Cheche Agada, Ph.D. • MSc in Digital Forensics from George Mason University.

Assistant Professor Information Sciences and Technology College of Engineering and Computing George Mason University

- MSc in Computer and Information Sciences from Southern Arkansas University.
 - BSc in Computer Science from the University of Lagos, Nigeria.

Agenda

Intrusion Detection/Prevention Systems

Problem Description/Statement

Algorithms & Metrics

Dataset

Methodology

Results

Conclusion

Intrusion Detection/Prevention Systems What are IDS/IPS?

- Device or application that monitors network traffic.
- Detects/prevents malicious activities.
- Prevents security policy violations.

Problem Description

Problem Description

Legacy IDS/IPS

☐ Legacy IDSs use static databases.

☐ They are non-adaptive.

They are unable to detect previously unknown attacks.

□ Don't deal very well with the complexities of modern cyber-attacks.

M/L IDS/IPS

- ☐ Machine Learning-Based IDSs use self-learning algorithms.
- ☐ They are dynamic and adaptive.
- ☐ They can detect previously unknown attacks.
- ☐ Can deal with the complexities of modern cyber-attacks.
- Higher detection rates, lower false alarm rates, and reasonable computation and communication costs.

Problem Statement

The goal is to quantitatively evaluate a group of Machine Learning classification algorithms, to determine the most efficient machine learning algorithm for designing an IDS/IPS.

Algorithms & Metrics

Algorithms & Metrics

Algorithms

☐ Logistic Regression

☐ Naïve Bayes

☐ Decision Tree

☐K-Nearest Neighbor

☐ Support Vector Machine

Metrics

Dataset

Attack Type	Count
Normal	67343
Dos (Denial of Service)	45927
R2L (Remote to Local)	11656
Probe	995
U2R (User to Root)	52
Total	125973

Table 1. Breakdown of attacks in the Training Set

Traffic Type	Count
Normal	67343
Attack	58630
Total	125973

Table 2. Breakdown of Traffic Type – Training Set

70000 60000 50000 40000 count 30000 20000 10000 normal attack Traffic Type

Figure 1. Training Set

Figure 2. Traffic Type – Training Set

Attack Type	Count
Normal	9710
Dos (Denial of Service)	7456
R2L (Remote to Local)	2754
Probe	2421
U2R (User to Root)	202
Total	22543

Table 3. Breakdown of attacks in the Test Set

Attack Type	Count
Normal	9710
Attack	12833
Total	22543

Table 4. Breakdown of Traffic Type – Test Set

Figure 3. Test Set

Figure 4. Traffic Type – Test Set

Dataset – KDD CUP 99

	\top	
NSI	_	

#	Description	#	Description
1	duration	12	su_attempted
2	src_bytes	13	num_root
3	dst_bytes	14	num_file_creations
4	Land	15	num_shells
5	wrong_fragment	16	num_access_files
6	urgent	17	num_outbound_cmds
7	hot	18	is_host_login
8	num_failed_logins	19	is_guest_login
9	logged_in	20	count
10	num_compromised	21	srv_count
11	root_shell	22	serror_rate

#	Description	#	Description
23	srv_serror_rate	34	dst_host_srv_diff_host_rat e
24	rerror_rate	35	dst_host_serror_rate
25	srv_rerror_rate	36	dst_host_srv_serror_rate
26	same_srv_rate	37	dst_host_rerror_rate
27	diff_srv_rate	38	dst_host_srv_rerror_rate
28	srv_diff_host_rate	39	protocol_type
29	dst_host_count	40	service
30	dst_host_srv_count	41	flag
31	dst_host_same_srv_rate		
32	dst_host_diff_srv_rate		
33	dst_host_same_src_port_rate		

Features of the NSL-KDD Dataset

Methodology Quantitative Analysis of Machine Learning Classification Algorithms

Methodology

Phase 1

☐ Train all 5 algorithms using training set.

Run each algorithm over test set to generate predictions.

☐ Compare predictions with observed classes.

Determine accuracy of predictions.

Phase 2

- □ Retrain best 2 algorithms from phase 1.
- Generate 50 random samples from test set.
- ☐ Run both algorithm on each sample to generate predictions.
- Record execution time for each sample.
- ☐ Compare performance of both algorithms using 95% CI estimation.

Results

Results – Algorithm Accuracy – Phase 1

S/N	ALGORITHM	ACCURACY
I	Decision Tree	80%
2	SVM	<mark>80%</mark>
3	K-Nearest Neighbor	79%
4	Naïve Bayes	77%
5	Logistic Regression	75%

Results – Classification Reports – Phase 1

	precision	recall	f1-score	support		precision	recall	f1-score	support
0 1	0.92 0.64	0.61 0.93	0.73 0.76	12833 9710	0 1	0.97 0.69	0.68 0.97	0.80	12833 9710
accuracy macro avg weighted avg	0.78 0.80	0.77 0.75	0.75 0.75 0.75	22543 22543 22543	accuracy macro avg weighted avg	0.83 0.85	0.82 0.80	0.80 0.80 0.80	22543 22543 22543

Logistic Regression

	precision	recall	f1-score	support
	-			
0	0.98	0.66	0.79	12833
U	0.90	0.00	0.19	12033
1	0.69	0.98	0.81	9710
accuracy			0.80	22543
macro avg	0.83	0.82	0.80	22543
weighted avg	0.85	0.80	0.80	22543

Decision Tree

Results – Classification Reports – Phase I

	precision		f1-score	support
0 1	0.91 0.68	0.67 0.92	0.77 0.78	12833 9710
accuracy macro avg weighted avg	0.79 0.81	0.79 0.77	0.77 0.77 0.77	22543 22543 22543

Naïve Bayes

	precision	recall	f1-score	support
0 1	0.97 0.67	0.64 0.98	0.77	12833 9710
accuracy macro avg weighted avg	0.82 0.84	0.81 0.79	0.79 0.79 0.78	22543 22543 22543

Results – System Comparison – Phase 2

The execution times shown below are in seconds.

	Decision Tree	Support Vector Machine	
S/N	(A)	(B)	A - B
1	0.000999	1.196236	-1.19524
2	0.000998	1.218428	-1.21743
3	0.000997	1.190477	-1.18948
4	0.001	1.276542	-1.27554
5	0.001032	1.186174	-1.18514
6	0.000999	1.190952	-1.18995
7	0.000994	1.232021	-1.23103
8	0.000955	1.180771	-1.17982
9	0.001001	1.18945	-1.18845
10	0.001993	1.266891	-1.2649

Quantity	Value	Additional Comments		
x-bar (DT - SVM)	-1.1908781	Mean of (DT - SVM)		
<u>s(</u> DT - SVM)	0.02275773	Standard Dev of (DT - SVM)		
n	50	Sample size		
Alpha	0.05	Significance level		
1 - Alpha/2	0.975	Confidence coefficient		
Z1-Alpha/2	1.95996398	Inverse of the CDF		
1/2CI	0.006308	Half confidence interval		
C1	-1.1971861	Lower bound		
C2	-1.1845701	Upper Bound		

Table 7: 95% Confidence Interval Computation.

Execution Times

Confidence Interval Computations

$$(\overline{x}-z_{1-\alpha/2}\frac{s}{\sqrt{n}},\overline{x}+z_{1-\alpha/2}\frac{s}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $z_{1-\alpha/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

Conclusion Quantitative Analysis of Machine Learning Classification Algorithms

Conclusion

Interval	Value
CI	-1.1971861
C2	-1.1845701

- ☐ The interval does not contain zero, therefore both algorithms are not the same.
- \Box They are both negative which indicates that the value of B (SVM) is higher than A (DT).
- ☐ Since we are dealing with time, the smaller the better.
- ☐ Therefore, DT is faster than SVM.
- ☐ This is consistent with established facts in IDS literature.

