Taller 2 — Extensiones del Job Shop Scheduling Problem en MiniZinc

Mantenimiento programado y Tardanza ponderada

John Freddy Belalcázar Samuel Galindo Cuevas Nicolás Herrera Marulanda

26 de octubre de 2025

Índice

1.	Job	shop Mantenimiento
	1.1.	Modelo
	1.2.	Implementación
	1.3.	Pruebas
	1.4.	Árboles de búsqueda
	1.5.	Análisis y conclusiones
2.	Jobs	shop Mantenimiento
	2.1.	Modelo
	2.2.	Implementación
	2.3.	Pruebas
	2.4.	Árboles de búsqueda
	2.5	Análisis y conclusiones

Repositorio del proyecto

Código fuente, instancias, scripts y PDF están disponibles en: https://github.com/Herreran903/taller-2-restricciones

1. Jobshop Mantenimiento

Planificación en un taller con trabajos, cada uno como una secuencia de operaciones que deben ejecutarse en máquinas específicas; cada máquina procesa a lo sumo una operación a la vez y las operaciones de un mismo trabajo respetan su orden. Se entregan intervalos de mantenimiento por máquina durante los cuales no están disponibles, y el objetivo es calendarizar todas las operaciones evitando solapes en la misma máquina y cumpliendo precedencias y ventanas de mantenimiento, de modo que se minimice el makespan.

1.1. Modelo

Parámetros

P1 — JOBS: Cantidad de trabajos.

P2 — TASKS: Cantidad de máquinas.

 ${f P3}$ — PROC_TIME: Matriz de duraciones $p_{i,m}$ de tamaño JOBS imes TASKS: PROC_TIME $[i,m]=p_{i,m}$.

P4 — MAX_MAINT_WINDOWS: Tope global de ventanas de mantenimiento por máquina.

P5 — MAINT_START, MAINT_END: Inicios $a_{m,k}$ y fines $b_{m,k}$ de cada ventana k en máquina m.

P6 — MAINT_ACTIVE: Indicadores booleanos MAINT_ACTIVE[m, k] que activan la ventana $[a_{m,k}, b_{m,k})$.

Constantes derivadas

D1 — *H*: Horizonte superior *seguro*, derivado como

$$H \; = \; \sum_{i=1}^{\texttt{JOBS}} \sum_{m=1}^{\texttt{TASKS}} p_{i,m} \; + \; \sum_{m=1}^{\texttt{TASKS}} \sum_{k=1}^{\texttt{MAINT_WINDOWS}} \left(b_{m,k} - a_{m,k}\right) \mathbf{1}[\texttt{MAINT_ACTIVE}[m,k]] \, .$$

D2 — J: Conjunto de trabajos, $J = \{1, \dots, JOBS\}$.

D3 — M: Conjunto de máquinas, $M = \{1, ..., TASKS\}$.

Variables

V1 — $s_{i,m}$: Inicio de la operación del trabajo i en la máquina m, con $s_{i,m} \in [0, H]$.

V2 — END: Makespan del programa, END $\in [0, H]$.

Restricciones principales

R1 — Precedencias dentro del trabajo: Las operaciones de cada trabajo siguen su orden dado.

$$\forall i \in J, \ \forall m \in \{1, \dots, |M|-1\}: \quad s_{i,m} + p_{i,m} \ \leq \ s_{i,m+1}, \qquad s_{i,|M|} + p_{i,|M|} \ \leq \ \mathtt{END}.$$

R2 — No solape por máquina: En cada máquina, las operaciones se procesan de a una (restricción disyuntiva).

$$\forall m \in M, \ \forall i, k \in J, \ i < k : \ (s_{i,m} + p_{i,m} \le s_{k,m}) \ \lor \ (s_{k,m} + p_{k,m} \le s_{i,m}).$$

R3 — Bloqueos por mantenimiento: Ninguna operación se ejecuta durante una ventana activa de mantenimiento.

$$\forall m \in M, \ \forall k \in \{1, \dots, \texttt{MAX_MAINT_WINDOWS}\} \ \text{con MAINT_ACTIVE}[m, k] = \texttt{true}, \ \forall i \in J: (s_{i,m} + p_{i,m} \le a_{m,k}) \ \lor \ (b_{m,k} \le s_{i,m}),$$

donde $a_{m,k} = \texttt{MAINT_START}[m,k]$ y $b_{m,k} = \texttt{MAINT_END}[m,k]$, con $0 \le a_{m,k} < b_{m,k} \le H$.

Restricciones redundantes

R4 — Cota por trabajo: El *makespan* no puede ser menor que la suma de duraciones de cada trabajo.

$$\forall i \in J: \quad \mathtt{END} \ \geq \ \sum_{m \in M} p_{i,m}.$$

R5 — Carga por máquina: El makespan acota inferiormente la carga total de cada máquina.

$$\forall m \in M: \quad \mathtt{END} \ \geq \ \sum_{i \in J} p_{i,m}.$$

R6 — Cota por horizonte: Las fechas de inicio y el makespan se restringen al horizonte H.

$$\forall i \in J, \ \forall m \in M: \ 0 \le s_{i,m} \le H, \qquad 0 \le \text{END} \le H.$$

Restricciones de simetría

R7 — **Trabajos idénticos:** Para evitar permutaciones equivalentes, si $p_{i,*} = p_{k,*}$ y i < k se impone orden léxico en los inicios:

$$(s_{i,1},\ldots,s_{i,|M|}) \leq_{\text{lex}} (s_{k,1},\ldots,s_{k,|M|}).$$

1.2. Implementación

Modelo

El modelo captura de forma correcta la estructura del problema mediante los parámetros definidos en la sección anterior y las restricciones principales R1-R3. Las variables $s_{i,m}$ y END permiten representar explícitamente el instante de inicio y finalización de cada operación, de modo que cualquier configuración factible de estas variables corresponde a un cronograma real. La restricción R1 asegura la correcta secuencia de operaciones dentro de cada trabajo, preservando el orden tecnológico sin permitir solapamientos entre tareas consecutivas del mismo job. La restricción R2 implementa la capacidad unitaria de cada máquina, garantizando que solo una operación se ejecute a la vez en ella; esto se logra mediante la disyunción de no solape, lo que define implícitamente un orden válido entre operaciones que comparten recurso. Finalmente, R3 extiende el modelo clásico incorporando las ventanas de mantenimiento: los intervalos definidos por MAINT_START, MAINT_END y activados por MAINT_ACTIVE se tratan como periodos ocupados dentro de la misma lógica de exclusión que entre operaciones.

Restricciones redundantes

Las restricciones R4–R6 son lógicamente implicadas por el modelo y sólo refuerzan la propagación. R4 (cota por trabajo) obliga a END a ser al menos la suma de duraciones de cada trabajo, descartando de inmediato valores imposibles del objetivo. R5 (carga por máquina) exige que END no sea menor que la carga total procesada por cada máquina. R6 acota todas las variables al horizonte seguro H; en la implementación esta cota se aplica de forma implícita mediante los dominios [0, H] de $s_{i,m}$ y END.

Restricciones de simetría

Cuando existen trabajos con la misma secuencia de duraciones (PROC_TIME[i,*] = PROC_TIME[k,*]), el problema admite soluciones equivalentes por simple intercambio de etiquetas. La restricción R7 impone un orden léxico sobre los vectores de inicios $(s_{i,1},\ldots,s_{i,|M|})$ para esos pares i < k, de modo que se conserve un único representante por clase de permutación.

1.3. Pruebas

 ${\bf Tabla~1:}~{\bf Resultados~de~pruebas~con}~{\bf restricciones~redundantes}.$

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth			
Gecode (E	Strategia:	first_fail + ind	$fomain_min)$							
test_01	gecode	first_fail	indomain_min	9.762	11	2	4			
${\rm test}_02$	gecode	$first_fail$	$indomain_min$	0.400	11	3	7			
$test_03$	gecode	$first_fail$	$indomain_min$	2.130	26	9	9			
$test_04$	gecode	$first_fail$	$indomain_min$	0.803	21	6	10			
${\rm test}_05$	gecode	$first_fail$	$indomain_min$	0.587	34	9	12			
$test_06$	gecode	$first_fail$	$indomain_min$	1.237	380	173	16			
${ m test}_07$	gecode	$first_fail$	$indomain_min$	1.867	429	198	27			
$test_08$	gecode	$first_fail$	$indomain_min$	0.842	46	10	21			
$test_09$	gecode	first_fail	indomain_min	1.012	37	10	16			
test10	gecode	first_fail	indomain_min	16.431	7563	3768	25			
$Gecode\ (Estrategia:\ dom_w_deg\ +\ indomain_split)$										
$test_01$	gecode	dom_w_{deg}	$indomain_split$	0.390	11	3	6			
$test_02$	gecode	dom_w_{deg}	$indomain_split$	0.332	22	5	16			
$test_03$	gecode	dom_w_{deg}	$indomain_split$	0.539	52	15	30			
$test_04$	gecode	dom_w_{deg}	$indomain_split$	0.733	37	8	22			
$test_05$	gecode	dom_w_{deg}	$indomain_split$	0.599	29	6	25			
$test_06$	gecode	dom_w_deg	$indomain_split$	1.184	231	91	51			
${ m test}_07$	gecode	dom_w_deg	indomain_split	1.822	81	25	44			
$test_08$	gecode	dom_w_{deg}	indomain_split	0.869	62	16	48			
test_09	gecode	dom_w_{deg}	indomain_split	1.392	65	19	46			
test10	gecode	dom_w_deg	indomain_split	2.001	245	104	61			
Gecode (E	Estrategia:	input_order +	$indomain_min)$							
${\rm test}_01$	gecode	$input_order$	$indomain_min$	0.239	12	3	5			
$test_02$	gecode	$input_order$	$indomain_min$	0.313	11	3	7			
$test_03$	gecode	$input_order$	indomain_min	0.454	39	16	9			
$test_04$	gecode	$input_order$	$indomain_min$	0.415	14	4	10			
$test_05$	gecode	input_order	indomain_min	0.587	18	5	13			
test_06	gecode	input_order	indomain_min	2.321	794	385	16			
test_07	gecode	input_order	indomain_min	2.761	112	48	21			
test_08	gecode	input_order	indomain_min	0.824	38	10	21			
test_09	gecode	input_order	indomain_min	1.081	94	35	16			
test_10	gecode	input_order	indomain_min	13.913	7375	3671	25			
		first_fail + ine								
$test_01$	chuffed	$first_fail$	$indomain_min$	1.000	13	1	5			
${\rm test}_02$	chuffed	$first_fail$	$indomain_min$	0.000	13	2	8			
$test_03$	chuffed	first_fail	indomain_min	0.000	27	5	10			
$test_04$	chuffed	first_fail	indomain_min	5.000	24	3	11			
$test_05$	chuffed	first_fail	indomain_min	1.000	37	6	13			
$test_06$	chuffed	first_fail	indomain_min	1.000	131	41	17			
$test_07$	chuffed	first_fail	indomain_min	2.000	114	31	21			
test_08	chuffed	first_fail	indomain_min	1.000	53	4	22			
test_09	chuffed	first_fail	indomain_min	1.000	58	10	17			
test10	chuffed	first_fail	indomain_min	3.000	206	64	26			
Chuffed (I		domwdeg +	indomain_split)							
${\rm test}_01$	chuffed	$\mathrm{dom}_\mathrm{w_deg}$	$indomain_split$	0.000	14	1	8			
${\rm test}_02$	chuffed	dom_w_{deg}	$indomain_split$	0.000	23	1	19			
$test_03$	chuffed	dom_w_{deg}	$indomain_split$	0.000	58	6	32			
${\rm test}_04$	chuffed	dom_w_{deg}	indomain_split	0.000	42	1	32			
${\rm test}_05$	chuffed	dom_w_deg	indomain_split	0.000	50	2	45			
$test_06$	chuffed	dom_w_deg	$indomain_split$	1.000	237	44	75			

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth		
test_07	chuffed	dom_w_deg	indomain_split	2.000	146	8	98		
$test_08$	chuffed	dom_w_deg	indomain_split	1.000	114	2	90		
$test_09$	chuffed	dom_w_deg	$indomain_split$	1.000	125	8	62		
${\rm test}_10$	chuffed	$\mathrm{dom}_\mathrm{w_deg}$	$indomain_split$	3.000	484	62	121		
Chuffed (I	Chuffed (Estrategia: input_order + indomain_min)								
$test_01$	chuffed	$input_order$	indomain_min	0.000	12	1	6		
${\rm test}_02$	chuffed	$input_order$	$indomain_min$	0.000	13	2	8		
$test_03$	chuffed	$input_order$	$indomain_min$	0.000	23	4	10		
$test_04$	chuffed	$input_order$	$indomain_min$	0.000	18	1	11		
$test_05$	chuffed	$input_order$	$indomain_min$	0.000	19	2	14		
$test_06$	chuffed	$input_order$	$indomain_min$	2.000	153	83	17		
${\rm test}_07$	chuffed	$input_order$	$indomain_min$	1.000	50	9	22		
$test_08$	chuffed	$input_order$	$indomain_min$	1.000	40	4	22		
$test_09$	chuffed	$input_order$	$indomain_min$	1.000	65	12	17		
${\rm test}_10$	chuffed	$input_order$	$indomain_min$	3.000	244	69	26		

Tabla 2: Resultados de pruebas sin restricciones redundantes.

Archivo Solver Var heur Val heur Time (ms) Nodes Failures Depth	Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
---	---------	--------	----------	----------	-----------	-------	----------	-------

1.4. Árboles de búsqueda

Se capturaron con Gecode Gist.

Árboles de búsqueda (Google Drive).

1.5. Análisis y conclusiones

2. Jobshop Mantenimiento

2.1. Modelo

Parámetros

Variables

Restricciones principales

Restricciones redundantes

Restricciones de simetría

2.2. Implementación

Modelo

Restricciones redundantes

Restricciones de simetría

2.3. Pruebas

Tabla 3: Resultados de pruebas con restricciones redundantes.

Archivo	Solver	Var heur	Val heur	$_{ m time}$	\mathbf{nodes}	fail	depth
---------	--------	----------	----------	--------------	------------------	------	------------------------

 ${\bf Tabla~4:}~{\bf Resultados~de~pruebas~sin}~{\bf restricciones~redundantes}.$

Archivo Solver Var heur Val heur time nodes fail depth

2.4. Árboles de búsqueda

Se capturaron con $Gecode\ Gist.$

Árboles de búsqueda (Google Drive).

2.5. Análisis y conclusiones