-13- GC372

SEOUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Fowler, Timothy Stuart, Causey
- (ii) TITLE OF THE INVENTION: ENTEROBACTERIACEAE FERMENTATION STAINS
- (iii) NUMBER OF SEQUENCES: 3
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Genencor International, Inc.
 - (B) STREET: 925 Page Mill Road
 - (C) CITY: Palo Alto
 - (D) STATE: CA
 - (E) COUNTRY: US
 - (F) ZIP: 94304-1013
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/876,132
 - (B) FILING DATE: 23-JUN-1997
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Glaister, Debra J.
 - (B) REGISTRATION NUMBER: 33,888
 - (C) REFERENCE/DOCKET NUMBER: GC372
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 650-846-7620
 - (B) TELEFAX: 650-845-6504
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1660 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AGATCTACAC	AAGGCAAATT	GAAAAAATAG	ATAAAATTTT	CGCAGGTATT	AAAGCCGACT	60
TAAAACAAAT	GAGTGAAGAA	GAAAAGAAAA	AAATAAATAC	ATATTTTGAG	TTAGTAAAAG	120
AGAAAGAAAA	AATAAAAGAA	GACCTCGGCT	TAACAGTCGA	AAAACCAGAA	ATAATAAAAA	180
GAAAGAGACT	GTGATTTTTA	ATGGAAATCG	TGAGGAAAAG	AAAATTTTAA	TTTTCATTTT	240
CGAGGGATTA	ATTTGTTGTA	AGTTGATGAA	AAATCTAGAT	AAAAAATGCA	GATCAAAAAT	300

-14- GC372

GTGTTGAATT	TGACATTATT	GAAATACGTA	GTATATCAAT	AATGGGGGTT	TGTCTATTTT	360
ATTTTGCGAA	GATTGAAAAT	CTGAGTGAAA	GAAAATAGTT	TGCGAGAGCA	AAAAAACCCT	420
TGCCGTTTTT	TTCAAATGAC	TTTGGAAAAA	ATTCATTGTG	AGCGGTAGCG	AAACTTTGAA	480
ATTTTTTACA	TTGGAAATTT	GAAAAAATAA	GGCAAAAGAA	ACTCAAATGG	AAAAAATATT	540
ATTATAAAAA	AAGGAGATCG	GATATGGATT	TTAAAAGCAG	AAAACTGACA	TTGAATGAAA	600
AAAAAGATTT	GGAAAAAATC	TATGCTGAGA	GTGAATTAAA	AGCAAAAAA	TTGGGAACTC	660
AACCCGGTGT	TGTTTTAGAA	ATGACGATGA	AAGAAATGAT	GAAAAATATC	AACCTCGATG	720
TTAATGAAGA	AACAGCAGGT	CAATATAGGA	AATTATTCAA	AAATAAAGTT	GAGCATAGTA	780
AATCAGATGA	TCTAGTAACG	GGACTATTAG	AGTGTGGAAC	TCGAAATAGT	TTTGATAAAA	840
CAAGAAGTGC	CTTTCGTTTT	TGTATTTGTG	AGAGAATTCA	GCAACTGAGA	AAAGAAGCTG	900
ATAATGCAAG	AAGAGTAAAA	GATTTCGATA	CAATGAAAGC	AAAAACTAAA	GAGGCTTTTG	960
AATTGAGTTT	TGTTTTTGAT	AAGGATTTTT	TGAGTGAAAA	TAGAATTCAA	TGGAATGATA	1020
TTTCTCACAA	CAAAAAAGAC	TCTGCAAGTA	AAAGAAAAAC	AATGAAAGAA	GCGGACACAA	1080
TGGATGATAT	TTTTAAGAGG	CTAAAAAATA	ATAAATCTAC	ATATGATCGT	TATGCTGGAT	1140
TCCTTTCTAT	TTGTTCGATT	ACAGGTTGCA	GACCAGCAGA	AGTTTTAAAG	GGTATAGAGA	1200
TAGTAAGAAA	CAGATATGAG	GATGGTATAT	CTTTTAAAAT	ACTTGGTGCA	AAGGTTGGAA	1260
ATGACAGAGG	GCAAAGCGAA	AGAACATTAC	ATTTTGATTT	ATCAAAATAT	CATGATAATG	1320
AGCAAATGAA	TTATATTTTG	TCGCAATTAA	AAGATAATAA	ATTTTTCTAC	AAACCAGATG	1380
GGAAGCTCTA	CAACAGCTTG	AGGCAATACC	TCTACATCCA	ACATAGAACG	TTTTCACTGT	1440
ATACACTTCG	TCACAGGGTT	GCGAGTGATC	TCAAGGCATC	CGGTGCAGAT	GACTTCACCA	1500
TAGCGGCTNT	TTTGGGTCAC	AGAGTGACTC	AAAGCCAGGA	GTTACTACGG	CTATGCTCGT	1560
TCGTCGNAAG	GTGGTATCGC	TGTAACTGGT	GTTGAGTGCT	CTGATGTTGT	GAAAGCAAAC	1620
AAGAGTCAGT	TNGCTGTATC	AAGGACTCCG	AGCCAGATCT			1660

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1847 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

AGATCTCAAC	CAGTTTAAAA	TCGCACTTCA	AGAAGTAAAA	ATAGGGGCCG	GCACCGGCTC	60
TTTTTTTGGT	GTTTTTGTAG	TTAGTGGATA	TATCTGTTAG	CTACAGAGAA	AAGCGATTTT	120
AGAGGGTTTG	ACGAGGTTTT	TTCGAGCTAT	CCAGGGTTTT	TGGGTTTTTG	GGGTTGGATC	180
AGAAAAGTCG	TTCAAGATTA	TTGACATAAA	GACAGGAAGG	TTTATAACAA	GTACCAGATA	240
CGACAAAACC	AGCTTTGCAG	GCTGGCTTTG	AAGGACTAAA	AGAAGTGGGG	ACTTCTTTGA	300
GTCTTGTAAT	CAAGTTGGTC	AGAACTCGAT	TACGATTTGT	AAGTAGAAAT	CTAACTCACA	360
TTTCGCAGAA	AGTCAAACTT	ACCTCTTAGT	TACAACTCAA	AAATTTCCTA	GCCTTTTCAG	420
ATCCTTAAGC	ATACATATTT	TGTTTAAACC	GATTGTGTCC	GGTGTTTGGT	GTGGAGCCAT	480
TGATCCGAGT	GGTCAATATG	TGATTGTTCG	CCAAACAGTG	TATGTAGGTC	TAAACGGGGA	540
GTGCTACAAA		CGAAACGAGT	GCCTAAGTGT	TTTGGTTATC	AACCAGGTAA	600
GCTATGAGAA	AGCCCAGCCA	TAAATGGGGT	TAGGTTGAAG	CAAGTCTTCA	TATGGTGCGA	660
CACAAGGGGT	GTAGTAGGGT	GTCGTCAAAC	TGAAAGGTTT	GATAGCTCTA	AGCTTGTGCT	720
TCTGTGGGTC	AAGCCTCAAG	TGCTGATCTG	TGGTGTCGTC	TACCTGATAA	CTTTCACTTT	780
TTCGAGTGAA	ATTCAGGAGG	CGAAACTATG	GGTCAAGCCC	AGCTTTGCTG	GGGTTCGGCA	840
CATCCAGCTT	ACAGCATTGG	TGCTCTTGCG	AAGCTGAAGC	ACAAAAATCT	AATCCAGGGT	900
TTGGGTTTTT	TATACCAGAA	GCAAAACAAA	AAAATAAAAC	AAAGAAAAAT	TTTCGAGCGA	960
TTTATAAAAA	TGGAATTTTT	TAAAGGCGAT	ACTTGCTACC	GCACTTTTGC	CATATTTAAA	1020
ACCTGACTAT	CTTTATAAGT	TAATAGATAT	ATCCGTTAGA	TTATAAAGTA	TGTTAAAAAC	1080
GAGTAAAAAC	AATAACTTAT	ATATTTAATT	CTGAATTATA	TTTGACAGTG	ATTATTTAAT	1140
ATATTAAGAG	ATATATCTAT	TAGCTTAAAT	ATAACTAAAA	AAAGAGGTAA	ATATATGGAT	1200
TGTGTATTTA	AAAAAGCATT	AGAAAATGAA	ATAGAACATT	ATAAAAAAGA	CGGTGATATC	1260
AAATCTTTCT	TACAATACTT	GCATTACTTT	GATATAGATA	AAGCATTAAA	TGGTGATGAA	1320
TGTGGCGATA	TTATAAACTC	AAATTTATCC	ATTGATGAAA	GTTTTGATCT	TCTTGATGTT	1380
GAGCACAATT	TCGGCTGGGC	TTTCAATAAA	ATAATACAGA	GACGAAATGA	ATATTTATCA	1440

-15-GC372

GAAGAATTTA AATTACACAT AAATAACAAA	ATTACGATGA ATGGAGAAAT AGATATAAAA	TTTTAAAAA GATGAGTACA AACCATATGA GAAAGTCAGC ATTGATGAAG	ATACATCAAG ATAATAAAAT TCTTAAAAAT	AAATGATTAA AAGAGAATAT ATCTGCATTG	AGGATTAGAT ATTGATTTCG ATCGATGTTT	1500 1560 1620 1680 1740
		ATTGATGAAG GATCCAGATG				1740 1800
		ATTAAAAAAA			11000	1847

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 371 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

	(xi) SE		SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	3:				
Asn 1	Phe	Leu	His	Trp 5	Lys	Phe	Glu	Lys	Ile 10	Arg	Gln	Lys	Lys	Leu 15	Lys
Trp	Lys	Lys	Tyr 20	Tyr	Tyr	Lys	Lys	Arg 25	Arg	Ser	Asp	Met	Asp 30	Phe	Lys
Ser	Arg	Lys 35	Leu	Thr	Leu	Asn	Glu 40	Lys	Lys	Asp	Leu	Glu 45	Lys	Ile	Tyr
Ala	Glu 50	Ser	Glu	Leu	Lys	Ala 55	Lys	Lys	Leu	Gly	Thr 60	Gln	Pro	Gly	Val
Val 65	Leu	Glu	Met	Thr	Met 70	Lys	Glu	Met	Met	Lys 75	Asn	Ile	Asn	Leu	Asp 80
Val	Asn	Glu	Glu	Thr 85	Ala	Gly	Gln	Tyr	Arg 90	Lys	Leu	Phe	Lys	Asn 95	Lys
Val	Glu	His	Ser 100	Lys	Ser	Asp	Asp	Leu 105	Val	Thr	Gly	Leu	Leu 110	Glu	Cys
Gly	Thr	Arg 115	Asn	Ser	Phe	Asp	Lys 120	Thr	Arg	Ser	Ala	Phe 125	Arg	Phe	Cys
Ile	Cys 130	Glu	Arg	Ile	Gln	Gln 135	Leu	Arg	Lys	Glu	Ala 140	Asp	Asn	Ala	Arg
Arg 145	Val	Lys	Asp	Phe	Asp 150	Thr	Met	Lys	Ala	Lys 155	Thr	Lys	Glu	Ala	Phe 160
Glu	Leu	Ser	Phe	Val 165	Phe	Asp	Lys	Asp	Phe 170	Leu	Ser	Glu	Asn	Arg 175	Ile
Gln	Trp	Asn	Asp 180	Ile	Ser	His	Asn	Lys 185	Lys	Asp	Ser	Ala	Ser 190	Lys	Arg
Lys	Thr	Met 195	Lys	Glu	Ala	Asp	Thr 200	Met	Asp	Asp	Ile	Phe 205	Lys	Arg	Leu

Lys Asn Asn Lys Ser Thr Tyr Asp Arg Tyr Ala Gly Phe Leu Ser Ile Cys Ser Ile Thr Gly Cys Arg Pro Ala Glu Val Leu Lys Gly Ile Glu 235 Ile Val Arg Asn Arg Tyr Glu Asp Gly Ile Ser Phe Lys Ile Leu Gly Ala Lys Val Gly Asn Asp Arg Gly Gln Ser Glu Arg Thr Leu His Phe 265 Asp Leu Ser Lys Tyr His Asp Asn Glu Gln Met Asn Tyr Ile Leu Ser Gln Leu Lys Asp Asn Lys Phe Phe Tyr Lys Pro Asp Gly Lys Leu Tyr 295 Asn Ser Leu Arg Gln Tyr Leu Tyr Ile Gln His Arg Thr Phe Ser Leu Tyr Thr Leu Arg His Arg Val Ala Ser Asp Leu Lys Ala Ser Gly Ala 330 Asp Asp Phe Thr Ile Ala Ala Xaa Leu Gly His Arg Val Thr Gln Ser 340 Gln Glu Leu Leu Arg Leu Cys Ser Phe Val Xaa Arg Trp Tyr Arg Cys 360 Asn Trp Cys

370