Канонический метод структурного синтеза автомата Мили

Рассмотрен пример канонического метода синтеза структурного автомата Мили, заданного таблицами переходов и выходов, описывающих поведение абстрактного автомата. Более подробно данный метод синтеза рассмотрен в учебном пособии. Для синтеза блока памяти будем использовать, например, RS-триггеры. Исходные данные для выполнения синтеза структурной схемы приведены в двух таблицах: таблице переходов (табл. 1) и выходов (табл. 2).

Определяем вначале общее количество входов (L), выходов (N) и элементов памяти автомата (R):

$$L = [\log_2/Z/[=]\log_2 3[= 2;$$

$$N = [\log_2/W|[=]\log_2 5[=3;$$

$$R = |log_2|A|[= |log_24[= 2.$$

	Таблица 1					
8	5	a_1	a_2	a_3	a_4	
Z	1	a_2	a_2		a_1	
Z	2	a_3	a_4	a_2	_	
Z	3	a_4	a_3	a_4	a_2	

Таблица 2					
λ	a_1	a_2	a_3	a_4	
z_1	w_1	w_2	_	W_5	
z_2	w_2	w_2	w_4	_	
7.	1420	142-	1420	142.	

Структурная схема автомата, который должен быть построен в процессе выполнения канонического метода, изображена на рис. 1.

Рис.1. Структурная схема автомата

Таблица 3				
Z	x_1	x_2		
z_1	0	0		
z_2	0	1		
<i>Z</i> ₃	1	0		

	Таблица 4					
W	y_1	y_2	<i>y</i> ₃			
w_1	0	0	0			
w_2	0	0	1			
w_3	0	1	0			
w_4	0	1	1			
W_5	1	0	0			

Таблица 5				
A	τ_1	τ_2		
a_1	0	0		
a_2	0	1		
a_3	1	0		
a_4	1	1		

На основании полученных значений L, N и R выполним кодирование входного, выходного алфавита и внутренних состояний автомата (табл. 3–5).

По результатам кодирования строим таблицы переходов и выходов структурного автомата (табл. 6 и табл. 7).

Таблица 6 11 00 01 10 $\tau_1\tau_2$ a_1 a_2 a_3 a_4 x_1x_2 00 00 01 01 z_1 01 10 11 01 10 01 11 10 11 *Z*3

	Таблица 7				
	00	01	10	11	
$\tau_1\tau_2$	a_1	a_2	a_3	a_4	
x_1x_2					
00	000	001		100	
z_1	w_1	w_2	1	<i>W</i> ₅	
01	001	001	011		
z_2	w_2	w_2	w_4		
10	010	100	010	000	
<i>Z</i> 3	W3	W5	w_3	w_1	
1	∮ ∳ ∳	•	•		
J	$y_1y_2y_3$	y_1y_2	<i>y</i> 3		

Для того, чтобы реализовать функции возбуждения, которые подаются на входы элементов памяти (JK — триггеры), воспользуемся таблицей работы JK-триггера (табл. 8) и заполним еще одну таблицу - таблицу функций возбуждения элементов памяти, в каждой ячейке которой запишем значения, которые нужно подать на входы J и K триггера для выполнения соответствующего перехода.

			Ta6.	пица 8	
Q_t	JK				
	00	01	10	11	
0	0	0	1	1	
1	1	0	1	0	

Для пояснения, ниже показаны значения сигналов J и K, подаваемых на триггер для перевода его из старого состояния в новое:

$$0 \rightarrow 1$$
 - J -,

 $0 \rightarrow 0 - \overline{J} - .$

$$1 \rightarrow 0$$
 - - K,

$$1 \rightarrow 1$$
 - $-\overline{K}$.

В результате этого будет получена новая таблица функций возбуждения элементов памяти, приведенная в табл. 9.

			Табл	ица 9	
$\tau_1\tau_2$	00	01	10	11	
x_1x_2	a_1	a_2	a_3	a_4	
00	0-1-	00	_	-1-1	
z_1					
01	1-0-	10	-11-	_	
z_2					
10	1-1-	11	-01-	-1-0	
<i>Z</i> 3			// 11		
	// 1 1 1				
	/				
	$\mathbf{J}_1\mathbf{K}_1\mathbf{J}_2\mathbf{K}_2$				

На основании полученных табл. 7 и 9, которые можно рассматривать как таблицы истинности, может быть записана система булевых функций для построения комбинационной схемы автомата.

Рис. 2. Карты Карно для минимизации булевых функций

Далее, для примера реализации комбинационной схемы, будем рассматривать систему булевых функций, содержащую функции выходов y_1 , y_2 и y_3 и функции возбуждения элементов памяти J_1 , $K_{1,}\,J_{2,}\,K_{2}$.

Для упрощения комбинационной схемы выполним минимизацию каждой из булевых функций. Для этого используем метод минимизирующих карт Карно, приведенные на рис. 2.

По результатам минимизации запишем систему минимальных функций:

$$J_1 = x_2 \lor x_1$$

$$K_1 = x_2 \lor \tau_2$$

$$J_2 = \overline{x_2} \lor \tau_1$$

$$K_2 = x_1 \overline{\tau_1} \tau_2 \lor \overline{x_1} \tau_1 \tau_2$$

$$y_1 = K_2$$

$$y_2 = x_1 \overline{\tau_2} \lor x_2 \tau_1$$

$$y_3 = x_2 \lor \overline{x_1} \overline{\tau_1}$$

Рис. 3. Логическая схема автомата Мили

Практические задания.

Выполните синтез структурного автомата Мили по таблицам переходов и выходов, изображенным на рис.4. Память автомата реализовать на:

- а). D-триггерах;
- б). Т-триггерах;
- в). RS-триггерах;
- г). ЈК-триггерах.

По полученным функциям построить логическую схему автомата. Базис – любой функционально полный.

δ	a1	a2	a3	a4
z1	a3	a1	a2	-
z2	a2	_	a4	a1
z3	a1	a4	a3	a2

λ	a1	a2	a3	a4
z1	w2	w4	w1	1
z2	w1	_	w3	w4
z3	w3	w1	w4	w2

a).

δ	a1	a2	a3
z1	a2	a1	a2
z2	a3	_	a1
z3	a2	a3	a3
z4	_	a2	a1

λ	a1	a2	a3
z1	w2	w4	w3
z2	w3	_	w1
z3	w4	w1	w2
z4	_	w3	w4

б).

δ	a1	a2	a3	a4
z1	a2	a4	1	a1
z 2	_	a2	a2	a3
z3	a3	a1	a4	a4

λ	a1	a2	a3	a4
z1	w1	w2	ı	w4
z 2	_	w3	w2	w1
z3	w4	w1	w3	w2

в).

δ	a1	a2	a3
z1	a3	a2	_
z2	a2	a1	a1
z3	_	a3	a2

λ	a1	a2	a3
z1	w2	w4	1
z2	w1	w3	w2
z3	_	w1	w4

г).

δ	a1	a2	a3	a4
z1	a3	a1	a4	a2
z2	a2	_	a3	a1
z3	a4	a3	a1	_

λ	a1	a2	a3	a4
z1	w2	w3	w1	w2
z2	w3	_	w2	w1
z3	w1	w2	w3	_

Д).

Рис. 4. Таблицы переходов и выходов