BIOINFORMATICS & HIGH-PERFORMANCE COMPUTING

WHAT WE WILL DO TODAY

- This is not a "Tool X" vs "Tool Y" workshop
- We will not go into the details of alignment algorithms

Who are you???

Bioinformatics Scientist

Identified that you need to align reads

Identified that you need to use Rivanna

What you will learn???

How to use bowtie2 on Rivanna

Understand SAM/BAM format

Perform downstream manipulations

Illumina Sequencing

Illumina Sequencing

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf

Short Read Processing

When to Align?

Identify Variation in Individuals

ATGATAGCATCGTCGGGTGTCTCAATAATAGTGCCGTATCATGCTGGTGTTATAATCGCCGCATGACATGATCAATGG

CAATAA**A**AGTGCCGTATCATGCTGGTGTTACAATCGCCGCA

CGTATCATGCTGGTGTTACAATCGCCGCATGACATGATCAATGG

TGTCTGCTCAATAA**A**AGTGCCGTATCATGCTGGTGTTA**C**AATC

ATCGTCGGGTGTCTCAATAAAAGTGCCGTATCATG--GGTGTTATAA

CTCAATAAGAGTGCCGTATCATG - - GGTGTTATAATCGCCGCA

GTTATAATCGCCGCATGACATGATCAATGG

Credit: UCD Genome Center, Bioinformatics Core, Alignment 2015-06-17

When to Align?

Quantify Abundance

Popular Aligners

• BWA / Bowtie2

They both use the Burrows – Wheeler Transform to index the reference genome

This massively reduces the memory footprint of long reference genomes, while allowing for rapid identification of potential origin of query sequence

Choice of aligner

Documentation → can I figure out how it works?

Input features → what input can it handle?

Output \rightarrow will the output be useful for downstream analysis?

Performance \rightarrow do I have the computational resources to run?

• **DO NOT QUOTE ME**: In some tests, Bowtie2 was slightly faster at marginal expense of sensitivity.

