Polynômes à plusieurs indéterminées

Christophe Antonini¹, Olivier Teytaud², Pierre Borgnat³, Annie Chateau⁴, and Edouard Lebeau⁵

¹Enseignant en CPGE, Institut Stanislas, Cannes ²Chargé de rechercher INRIA, Université d'Orsay, Orsay ³Chargé de recherche CNRS, ENS Lyon, Lyon ⁴Maitre de conférence, Université Montpellier-2, Montpellier ⁵Enseignant en CPGE, Lycée Henri Poincaré, Nancy

17 juillet 2023

Généralités sur les polynômes à plusieurs indéterminées et zoologie.

1 Polynômes à plusieurs indéterminées

Cette partie sera délibérément très peu détaillée; beaucoup de démonstrations sont calquées sur le cas des polynômes à une indéterminée. On peut en première lecture se limiter à la partie ??, ou l'on travaillera avec des polynômes à une seule indéterminée, et fournissant les méthodes permettant de s'attaquer à cette partie plus abstraite.

1.1 Généralités

Définition 0.1 polynôme à n indéterminées à coefficients dans A

Soit A un anneau commutatif unitaire.

On appelle **polynôme à** n **indéterminées à coefficients dans** A l'ensemble des applications presque nulles de \mathbb{N}^n dans A. On note $A[X_1, \ldots, X_n]$ l'ensemble des polynômes à n indéterminées à coefficients dans A. Par la suite, on dira souvent simplement, pour gagner en concision, polynôme.

On dit que $P \in \mathbb{K}[X_1, \dots, X_n]$ est **de degré** d si d est le max des $|\nu|$ tels que P_{ν} est non nul (voir Définition ?? pour les rappels sur les opérations dans \mathbb{N}^n).

Si $i \in [[1, n]]$, on dit que P est de degré d en X_i si le sup des ν_i tels que $P_{\nu} \neq 0$ est d.

On note X_i l'élément de $A[X_1, \ldots, X_n]$ nul partout sauf en $\nu = (\delta_{i,j})_{j \in [1,n]}$, avec $X_{\nu} = 1$. Etant donnés P et Q deux polynômes, on note $R = P \times Q$ le **produit de** P **et** Q avec

$$R_{\nu} = \sum_{\alpha + \beta = \nu} P_{\alpha} Q_{\beta}$$

(pour les opérations dans N^n , voir Définition ??).

On appelle **monôme** un polynôme dont un seul élément est non nul.

On appelle **dérivé formel** d'un polynôme P par D^{ν} pour $\nu \in \mathbb{N}^n$ le polynôme

$$\sum_{\alpha \in \mathbb{N}^n} \frac{(\nu + \alpha)!}{\alpha!} P_{\alpha + \nu}.$$

On note parfois $\frac{\delta}{\delta X_i}$ D^{ν} avec $\nu_j = (\delta_{i,j})_{j \in [1,n]}$.

Proposition 0.1

On identifie $A[X_1, \ldots, X_n]$ à $A[X_1, \ldots, X_{n-1}][X_n]$.

On identifie $A[X_1, \ldots, X_p][X_{p+1}, \ldots, X_n]$ à $A[X_1, \ldots, X_n]$.

 $A[X_1,\ldots,X_n]$ est intègre si et seulement si A est intègre.

 $A[X_1, \ldots, X_n]$ est muni naturellement d'une structure de A-module. Muni de la multiplication définie plus haut, il s'agit d'une A-algèbre.

L'ensemble des monômes unitaires est une base de $A[X_1, \ldots, X_n]$.

Etant donnée B une A-algèbre associative commutative unitaire, $P \in A[X_1, \ldots, X_n]$ et x_1, \ldots, x_n n éléments de B, on appelle **valeur de** P **en** (x_1, \ldots, x_n) l'élément de $B = \sum_{\nu \in \mathbb{N}^n} P_{\nu} x_1^{\nu_1} x_2^{\nu_2} \ldots x_n^{\nu_n}$. On note cet élément $\tilde{P}(x_1, \ldots, x_n)$. On constate ainsi qu'un polynôme P s'identifie naturellement à une application \tilde{P} de B^n dans B. On note $A[x_1, \ldots, x_n]$ l'ensemble des $\tilde{P}(x_1, \ldots, x_n)$ pour $P \in A[x_1, \ldots, x_n]$.

Si (x_1, \ldots, x_n) vérifie $P(x_1, \ldots, x_n) = 0$, on dit que (x_1, \ldots, x_n) est un zéro de P.

Etant donné (x_1, \ldots, x_n) n éléments de B, l'ensemble des polynômes P vérifiant $P(x_1, \ldots, x_n) = 0$ est un idéal de $A[X_1, \ldots, X_n]$, engendré par les $(X_i - a_i)$ pour $i \in [1, n]$.

1.2 Si A est un corps \mathbb{K}

Proposition 0.2

Si \mathbb{K} est un corps, $\mathbb{K}[X_1, \dots, X_n]$ est naturellement muni d'une structure de \mathbb{K} -espace vectoriel. Formule de Taylor, si \mathbb{K} est un corps de caractéristique nulle : soit $P \in \mathbb{K}[X]$, alors

$$P = \sum_{\nu \in \mathbb{N}^n} \frac{1}{\nu!} (D^{\nu} P)(0) X^{\nu}.$$

1.3 Zoologie des polynômes à plusieurs indéterminées : les polynômes symétriques

Attention A est supposé ici anneau commutatif et unitaire.

DÉFINITION 0.2 polynôme symétrique

Soit $P \in A[X_1,...,X_n]$. P est dit **polynôme symétrique** si et seulement si pour tout σ permutation de [1,...,n], $P(X_1,...,X_n) = P(X_{\sigma(1)},X_{\sigma(2)},...,X_{\sigma(n)})$.

On appelle polynômes symétriques élémentaires les polynômes de la forme

$$\Sigma_{k,n} = \sum_{1 \le a_1 \le a_2 \le ... \le a_k \le n} X_{a_1} X_{a_2} ... X_{a_k} \text{ pour } 1 \le k \le n$$

On appelle k-ième polynôme de Newton le polynôme $N_k = \sum_{i=1}^n X_i^k$.

Les polynômes symétriques élémentaires sont de la forme suivante, dans le cas n=3:

$$\Sigma_{1,3} = X_1 + X_2 + X_3$$
 $\Sigma_{2,3} = X_1 X_2 + X_2 X_3 + X_1 X_3$
 $\Sigma_{3,3} = X_1 X_2 X_3$

Apllication On verra en section ?? une application des polynômes symétriques en géométrie et en section ?? une application aux polynômes à une indéterminée.

On ne donnera pas ici de preuve des résultats énoncés; on pourra se référer à [1]. On a les propriétés suivantes :

- •Les polynômes symétriques élémentaires sont symétriques (évident).
- •Les polynômes de Newton sont symétriques (évident).
- •Si Q est un polynôme à n indéterminées, alors $P = Q(\Sigma_{1,n}, \Sigma_{2,n}, ..., \Sigma_{n,n})$ est un polynôme symétrique (facile).
- •Si $P \in A[X_1, ..., X_n]$ est symétrique, alors il existe un polynôme Q tel que $P = Q(\Sigma_{1,n}, \Sigma_{2,n}, ..., \Sigma_{n,n})$ (pas évident du tout, récurrence sur le nombre d'indéterminées et sur le degré du polynôme.
 - •Relations de Newton : Si $1 \le k \le n$ on a

$$N_k = \sum_{i=1}^{k-1} (-1)^i N_{k-i} \Sigma_{i,n} + (-1)^k k \Sigma_{k,n}.$$

Si
$$n \le k$$
, on a $N_k = \sum_{i=1}^{n} (-1)^i N_{k-i} \Sigma_{i,n}$.

Références

[1] P. Tauvel, Mathématiques générales pour l'agrégation, Masson, 1997.