24. 9. 2004

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

5日 2003年 8月

RECEIVED 2 1 OCT 2004

WIPO

PCT

出 Application Number:

人

特願2003-205935

[ST. 10/C]:

[JP2003-205935]

出 Applicant(s): 日本電気硝子株式会社

特許庁長官 Commissioner, Japan Patent Office

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

9月13日 2004年

ページ: 1/E

【書類名】 特許願

【整理番号】 03P00097

【提出日】 平成15年 8月 5日

【あて先】 特許庁長官 殿

【国際特許分類】 GO2B 6/00

【発明者】

【住所又は居所】 滋賀県大津市晴嵐2丁目7番1号 日本電気硝子株式会

社内

【氏名】 侯野 高宏

【発明者】

【住所又は居所】 滋賀県大津市晴嵐2丁目7番1号 日本電気硝子株式会

社内

【氏名】 吉原 聡

【特許出願人】

【識別番号】 000232243

【氏名又は名称】 日本電気硝子株式会社

【代表者】 井筒 雄三

【手数料の表示】

【予納台帳番号】 010559

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 光通信デバイス用基材、その製造方法およびそれを用いた光通信デバイス

【特許請求の範囲】

【請求項1】 $-40 \sim +100 \circ \text{C}$ における平均熱膨張係数が $-55 \sim -120 \times 10^{-7}/\circ \text{C}$ であり、 β - 石英固溶体もしくは β - ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなる光通信デバイス用基材において、 $-40 \circ \text{C}$ から $100 \circ \text{C}$ まで $1 \circ \text{C}$ 分での降温を行なった際に生じる最大の熱膨張セステリシスが12ppm未満であることを特徴とする光通信デバイス用基材。

【請求項3】 $-40 \sim +100 \circ \text{C}$ における平均熱膨張係数が $-55 \sim -120 \times 10^{-7}/\circ \text{C}$ であり、 β -石英固溶体もしくは β -ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなる光通信デバイス用基材の製造方法において、基材に対して $20 \circ \text{C}$ 以上の温度での高温処理と $20 \circ \text{C}$ 以下の温度での低温処理とを交互に各々複数回行ない高温処理と低温処理の温度差が $40 \sim 240 \circ \text{C}$ であることを特徴とする光通信デバイス用基材の製造方法。

【請求項4】 基材に対して-40℃以下での低温処理と、20~200℃での高温処理とを交互に各々複数回行なうことを特徴とする請求項3に記載の光通信デバイス用基材の製造方法。

【請求項5】 -40℃以下での1回の等温保持時間および20~200℃での1回の等温保持時間がそれぞれ60分以内であることを特徴とする請求項4に記載の光通信デバイス用基材の製造方法。

【請求項6】 請求項1または2に記載の光通信デバイス用基材に、正の熱

膨張係数を有する光部品を固定してなることを特徴とする光通信デバイス。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、負の熱膨張係数を有する光通信デバイス用基材、その製造方法およびその基材上に正の熱膨張係数を有する光部品を固定してなる光通信デバイスに関するものである。

[0002]

【従来の技術】

光通信技術の進歩に伴い、光ファイバを用いたネットワークが急速に整備され つつある。ネットワークの中では、複数の波長の光を一括して伝送する波長多重 技術が用いられるようになり、波長フィルタ、カプラ、導波路等が重要な光通信 デバイスになりつつある。

[0003]

この種の光通信デバイスの中には、温度によって特性が変化し、屋外での使用 に支障をきたすものがあるため、このような光通信デバイスの特性を温度変化に よらずに一定に保つ技術、いわゆる温度補償技術が必要とされている。

[0004]

温度補償を必要とする光通信デバイスの代表的なものとして、ファイバブラッググレーティング(以下、FBGという)がある。FBGは、光ファイバのコア内に格子状に屈折率変化を持たせた部分、いわゆるグレーティング部分を形成した光通信デバイスであり、下記の式1に示した関係に従って、特定の波長の光を反射する特性を有している。このため、波長の異なる光信号が1本の光ファイバを介して多重伝送される波長分割多重伝送方式の光通信システムにおける重要な光通信デバイスとして注目を浴びている。

[0005]

 $\lambda = 2 n \Lambda$ … (式1)

ここで、 λ は反射波長、nはコアの実効屈折率、 Δ は格子状に屈折率に変化を設けた部分の格子間隔を表す。

[0006]

しかしながら、このようなFBGは、温度が変化すると反射波長が変動するという問題がある。反射波長の温度依存性は、式1を温度Tで微分して得られる下記の式2で示される。

[0007]

 $\partial \lambda / \partial T = 2 \{ (\partial n / \partial T) \Lambda + n (\partial \Lambda / \partial T) \}$

 $=2\Lambda \mid (\partial n/\partial T) + n (\partial \Lambda/\partial T)/\Lambda \mid \cdots (式 2)$

この式 2 の右辺第 2 項の(∂ Λ / ∂ T)/ Λ は光ファイバの熱膨張係数に相当し、その値はおよそ 0. 6×1 0^{-6} / $\mathbb C$ である。一方、右辺第 1 項は光ファイバのコア部分における屈折率の温度依存性であり、その値はおよそ 7. 5×1 0^{-6} / $\mathbb C$ である。つまり、反射波長の温度依存性はコア部分の屈折率変化と熱膨張による格子間隔の変化の双方に依存するが、大部分は屈折率の温度変化に起因していることが分かる。

[0008]

このような反射波長の変動を防止するための手段として、温度変化に応じた張力をFBGに印加し、グレーティング部分の格子間隔を変化させることによって、屈折率変化に起因する成分を相殺する方法が知られている。

[0009]

この具体例として、予め板状に成形した原ガラス体を結晶化して得られる負の 熱膨張係数を有するガラスセラミックス基材に、所定の張力を印加したFBGを 接着固定することによって、FBGの張力をコントロールしたデバイス(例えば 、特許文献1参照。)や、セラミックスを焼結して得られる負の熱膨張係数を有 するセラミックス基材に、所定の張力を印加したFBGを接着固定することによ って、FBGの張力をコントロールしたデバイス(例えば、特許文献2参照。) が開示されている。

[0010]

上記デバイスは、温度が上昇するとセラミックス基材またはガラスセラミックス基材が収縮し、光ファイバのグレーティング部分に印加されている張力が減少する。一方、温度が低下するとガラスセラミックス基材またはセラミックス基材

が伸長して光ファイバのグレーティング部分に印加されている張力が増加する。 この様に、温度変化によってFBGにかかる張力を変化させることによってグレーティング部分の間隔を調節することができ、これによって反射中心波長の温度 依存性を相殺することができる。

[0011]

【特許文献1】

特表2000-553967号公報

【特許文献2】

特開2003-146693号公報

[0012]

【発明が解決しようとする課題】

特許文献1、2に記載のガラスセラミックス基材やセラミック基材は、熱膨張係数が負であり、単一部材からなるため簡便な機構で温度補償を行なうことができるが、昇温時と降温時での最大の寸法の差(熱膨張ヒステリシス)が大きく、これらのガラスセラミックス基材やセラミック基材を光通信デバイス用基材として使用し、正の熱膨張係数を有する光部品としてのFBGをこの基材に固定すると、光通信デバイス用基材の寸法が温度変化の速度によって異なるため、FBGによる反射中心波長が安定せず、光通信デバイスとして安定した性能を発揮できないという問題を有していた。

[0013]

本発明の目的は、上記事情に鑑みなされたものであり、温度補償技術に必要な 負の熱膨張係数を有するとともに、熱膨張ヒステリシスが小さい光通信デバイス 用基材、その製造方法およびそれを用いた光通信デバイスを提供することである

[0014]

【課題を解決するための手段】

本発明者等は、負の熱膨張係数を有するセラミックスまたはガラスセラミックスを低温処理と高温処理とを交互に各々複数回行なうことで、熱膨張ヒステリシスを小さくできることを見いだし、本発明を提案するものである。

[0015]

すなわち、本発明の光通信デバイス用基材は、-40~+100 における平均熱膨張係数が-55~-120×10 -7 / でであり、 β - 石英固溶体もしくは β - ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなる光通信デバイス用基材において、-40 でから100 で 1

[0016]

また、本発明の光通信デバイス用基材の製造方法は、-40~+100 における平均熱膨張係数が-55~-120×10 -7 / \mathbb{C} であり、 β - 石英固溶体もしくは β - ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなる光通信デバイス用基材の製造方法において、基材に対して 20 \mathbb{C} 以上の温度での高温処理と 20 \mathbb{C} 以下の温度での低温処理とを交互に各々複数回行ない高温処理と低温処理の温度差が 40~240 \mathbb{C} であることを特徴とする。

[0017]

また、本発明の光通信デバイスは、-40~+100℃における平均熱膨張係数が-55~-120×10-7/ $\mathbb C$ であり、 β -石英固溶体もしくは β -ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなる光通信デバイス用基材に、正の熱膨張係数を有する光部品を固定してなる光通信デバイスであって、光通信デバイス用基材において-40 $\mathbb C$ から10 $\mathbb C$ まで1 $\mathbb C$ / $\mathbb C$ 分での昇温、および100 $\mathbb C$ から-40 $\mathbb C$ まで1 $\mathbb C$ / $\mathbb C$ 分での降温を行なった際に生じる熱膨張ヒステリシスが最大12ppm未満であることを特徴とする。

[0018]

【作用】本発明の光通信デバイス用基材は-40~+100 における平均 熱膨張係数が-55~-120×10 -7/ であり、 β - 石英固溶体もしくは β - ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセ

ラミックスからなる光通信デバイス用基材において、-40℃から100℃まで1℃/分での昇温、および100℃から-40℃まで1℃/分での降温を行なった際に生じる最大の熱膨張ヒステリシスが12pm未満であるため、この基材に固定した光通信デバイスの反射中心波長ヒステリシスを20pm以下に抑制することができる。

[0019]

また、本発明の光通信デバイス用基材は、長期間にわたって高温高湿雰囲気に 曝されても、 $-40\sim100$ \mathbb{C} における平均熱膨張係数や、熱膨張ヒステリシス の変化を小さくすることができる。

[0020]

本発明の光通信デバイス用基材は、-40~+100 +10

[0021]

また、本発明の光通信デバイス用基材は、 β ー石英固溶体もしくは β ーユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなるため、充分な機械的強度を有するとともに機械加工性に優れており、所定の形状に容易に成形することができる。

[0022]

光通信デバイス用基材の形状は角柱状、円柱状、円筒状、平板状が加工しやすく、角柱状、円柱状、平板状の場合、光部品を収納するためにスリットが全長に わたって設けられていても構わない。

[0023]

本発明の光通信デバイス用基材は、100 ℃から-40 ℃まで1 ℃/分で降温した際、-40 \sim 100 ℃まで20 ℃毎に7 つに区切った温度範囲の平均熱膨張

係数の最大値と最小値の差が 6×10^{-7} / \mathbb{C} 以内であると、 $-40\mathbb{C}$ から $+10\mathbb{C}$ $0\mathbb{C}$ まで $1\mathbb{C}$ /分で昇温、および $100\mathbb{C}$ から $-40\mathbb{C}$ まで $1\mathbb{C}$ /分での降温を行なった際に生じる最大の熱膨張ヒステリシスが 12ppm未満になりやすい。

[0024]

また、本発明の光通信デバイス用基材は、シラン化合物、シロキサン化合物も しくはシラザン化合物から選ばれる有機珪素化合物の1種または2種以上を含む 溶液によって処理されてなると、高温高湿雰囲気に長期間曝されても基材の熱膨 張係数が変化しにくいとともに、熱膨張ヒステリシスを小さくしやすいため好ま しい。

[0025]

本発明の光通信デバイス用基材の製造方法は、-40~+100℃における平均熱膨張係数が-55~-120×10-7/℃であり、β-石英固溶体もしくはβ-ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなる光通信デバイス用基材の製造方法において、基材に対して20℃以上の温度での高温処理と20℃以下の温度での低温処理とを交互に各々複数回行ない高温処理と低温処理の温度差が40~240℃であるため、熱膨張ヒステリシスが小さく長期間にわたって高温高湿雰囲気に曝されても熱膨張係数や熱膨張ヒステリシスの変化が小さい光通信用デバイス用基材を得ることができる。特に、-40℃以下での低温処理と、20~200℃での高温処理とを交互に各々複数回行なうと、-40℃から+100℃まで1℃/分で昇温、および100℃から-40℃まで1℃/分での降温を行なった際に生じる最大の熱膨張ヒステシスを12ppm未満にすることができる。なお、低温処理と高温処理の順序は問わない。

[0026]

 β -石英固溶体もしくは β -ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスは、負に大きい熱膨張係数を有する β - 石英固溶体もしくは β -ユークリプタイト固溶体からなる複数個の結晶粒子の集合体(多結晶体)を主成分として含有しており、 β -石英固溶体もしくは β - - - β - - β - β

係数が負であり、a軸方向の熱膨張係数は正である結晶)であるため、異方性に よる歪みにより結晶粒子の粒界には、部分的に粒界空隙が形成される。温度変化 時のa軸方向の膨張または収縮は、この粒界空隙によって緩和されるが、c軸方 向の熱膨張係数が主にセラミックスまたはガラスセラミックスの熱膨張係数を支 配するため、セラミックスまたはガラスセラミックスは、負に大きい熱膨張係数 を有するようになる。

[0027]

熱膨張ヒステリシスは、昇温させたときの熱膨張曲線と降温させた時の熱膨張 曲線が一致しない現象を指す。粒界空隙は、降温時にはa軸方向に結晶粒子が収 縮することによって解離(粒界空隙の容積が増大)し、昇温時にはa軸方向に結 晶粒子が膨張することによって結合(粒界空隙の容積が減少)するが、eta - 石英 固溶体もしくはβ-ユークリプタイト固溶体を主結晶として含有するセラミック スまたはガラスセラミックスにおいて熱膨張ヒステリシスが発生する原因は、粒 界空隙の解離が、スムースに行なえず、温度変化に追随できないことにあると考 えられる。粒界空隙の解離がスムースに行われない理由は、空隙表面での摩擦に 起因すると考えられる。

[0028]

20℃の温度での高温処理と20℃以下の温度での低温処理とを交互に各々複 数回行ない、高温処理と低温処理の温度差が60~240℃であると、特に−4 0℃以下での低温処理と、20~200℃での高温処理を交互に各々複数回行な うと、熱膨張ヒステリシスの測定温度範囲において、粒界空隙に新しい表面が形 成されることがなく、粒界空隙の表面の摩擦を減少させることができるため、熱 膨張ヒステリシスが小さくなる。すなわち、低温処理温度から高温処理温度への 昇温、あるいは高温処理温度から低温処理温度への降温を繰り返すことによって 、粒界空隙の結合と解離が繰り返されることで、粒界空隙の表面が擦れ合って滑 らかになり、摩擦を減少させることができるため、熱膨張ヒステリシスが小さく なる。

[0029]

髙温処理と低温処理の温度差が60℃よりも小さいと粒界空隙が擦れ合って滑

らかになる効果が小さく、240℃よりも大きくても粒界空隙の表面が擦れ合って滑らかになる効果が増大することがなく、また、昇温または降温に時間がかかり生産性が悪く経済的でない。

[0030]

低温処理温度が、熱膨張ヒステリシスを測定する際の最低温度、具体的には-40℃よりも高いと、熱膨張ヒステリシスを測定する際に、粒界空隙に滑らかでない新しい表面が形成され、粒界空隙の表面同士の摩擦を増加させてしまうため好ましくない。

[0031]

また高温処理温度が、20 ℃よりも低いと、昇温時または降温時に粒界空隙の表面同士が擦れ合いにくく、粒界空隙の表面同士の摩擦を減少させにくい。20 0 ℃よりも高いと、昇温時または降温時に粒界空隙の表面同士が擦れ合うものの、この温度よりも高くしてもその効果が増大することがなく、また昇温または降温に時間がかかり生産性が悪く経済的ではない。

[0032]

また、-40℃以下での低温処理と、20~200℃での高温処理を交互に各々1回づつ行なうだけであると、粒界空隙の表面同士が擦れ合う回数が少なく、 粒界空隙の表面同士の摩擦が小さくなりにくい。

[0033]

-40℃以下での1回の等温保持時間および20~200℃での1回の等温保持時間がそれぞれ60分以内、好ましくは1~30分である。60分より長く熱処理を行なっても、粒界空隙の表面同士の摩擦をより小さくする効果が増大しないため、生産性が悪くなり、経済的でない。

[0034]

本発明の光通信デバイス用基材の製造方法は、シラン化合物、シロキサン化合物もしくはシラザン化合物から選ばれる有機珪素化合物の1種または2種以上を含む溶液で基材を処理すると、高温高湿雰囲気に長期間曝されても基材の熱膨張係数が変化しにくいとともに、熱膨張ヒステリシスを小さくしやすいため好ましい。なお、基材に対して−40℃以下での低温処理や20~200℃での高温処

理と、有機珪素化合物を含む溶液での処理を行なう順序は問わない。

[0035]

本発明の光通信デバイス用基材の製造方法は、基材を0℃における飽和水蒸気 圧よりも低い水蒸気圧の雰囲気において低温処理や高温処理を行なうと、結露や 霜が発生しないため基材に水分が付着せず、粒界空隙の表面同士が擦れ合うこと を阻害することなく、粒界空隙の表面同士の摩擦を減少させやすい。

[0036]

また、本発明の光通信デバイス用基材の製造方法は、基材を低温や高温で処理 する雰囲気がヘリウムガス雰囲気であると、基材に熱が伝わりやすいため好まし い。

[0037]

本発明の光通信デバイスは、-40~+100 Cにおける平均熱膨張係数が一 $55~-120\times10^{-7}$ / Cであり、 β -石英固溶体もしくは β -ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなる光通信デバイス用基材に正の熱膨張係数を有する光部品(例えば、FBG)を固定してなる光通信デバイスであって、光通信デバイス用基材において-40 Cから100 Cまで1 C/分での昇温、および100 Cから-40 Cまで1 C/分での降温を行なった際に生じる熱膨張ヒステリシスが最大12p m未満であるため、反射中心波長ヒステリシスを20p m以下に抑制することができる。

[0038]

本発明の光通信デバイスは、本発明の光通信デバイス用基材上に正の熱膨張係数を有する光部品を固定する際に使用する接着剤として、ガラス、ポリマー接着剤、または金属が使用可能であるが、ポリマー接着剤を用いると、安価で、強固に接着可能であり、高効率で光通信デバイスを生産できるため好ましく、具体的には、エポキシ系接着剤が好適であるが、その他にもシリコーン系やアクリル系接着剤が使用可能である。

[0039]

【実施例】

以下、本発明を実施例および比較例を用いて詳細に説明する。

[0040]

表1および2に、本発明の実施例 $1\sim10$ を示し、表3に比較例 $1\sim6$ を示す。また、図1は、本発明における実施例の光通信デバイスを示す平面図であり、図2は、 $-40\sim+100$ \sim 0 の範囲における基材の熱膨張ヒステリシスを示すグラフである。また、図3は、実施例8の長期耐久性試験の平均熱膨張係数(\square)と熱膨張ヒステリシス(\spadesuit)の結果を示すグラフであり、図4は、実施例6(\bigoplus)と比較例1(\spadesuit)の長期耐久性試験(温度サイクル試験)の結果を示すグラフである。

[0041]

【表1】

	実施例1	実施例2	実施例3	実施例4	実施例 5	
	セラミック	セラミック	セラミック	セラミック	セラミック	
基材	ス (A)	ス (A)	ス (A)	ス (A)	ス(A)	
低温処理温度 (℃)	-40	-40	-40	-40	-40	
等温保持時間 (分)	3	3	30	30	30	
高温処理温度 (℃)	20	100	100	100	100	
等温保持時間 (分)	з	3	30	30	30	
処理回数 (回)	2	2	2	5	10	
平均熟膨張係数 (× 1 0 ⁻⁷ /℃)	-81	-81	-81	-72	-82	
熱膨張ヒステリシス(p p m)	11	9	7	5	4	
20℃毎の平均熱膨張係数差 (×10 ⁻⁷ /℃)	6. 0	6. 0	5. 0	5. 0 5. 0		
波長ヒステリシス(pm)	16. 5	13.5	10. 5	7. 5	6. 0	

[0042]

【表2】

	実施例6	実施例7	実施例8	実施例 9	実施例10	
	セラミツ	セラミッ	セラミッ	セラミッ	ガラスセラミ	
基材	クス (A	クス (B	クス (C	クス(D)	ックス(E)	
低温処理温度 (℃)	-40	-40	-40	-40	-40	
等温保持時間 (分)	30	30	30	30	30	
高温処理温度 (°C)	20	100	100	100	100	
等溫保持時間 (分)	30	30	30	30	30	
処理回数 (回)	5	5	5	5	5	
平均熱膨張係数 (× 1 0 ⁻⁷ / °C)	-82	-77	-71	-65	-70	
熱膨張ヒステリシス(ppm)	9	3. 5	4	4	11	
2 O ℃毎の平均熱膨張係数差 (× 1 O ⁻⁷ / °C)	4. 5	5. 0	5. 0	5. 0	5. 5	
波長ヒステリシス(pm)	13.5	5. 5	6. 0	6. 0	16.5	

[0043]

【表3】

	比較例1	比較例2	比較例3	比較例4	比較例5	比較例6
	セラミッ	セラミッ	セラミッ	セラミッ	セラミッ	セラミッ
基材	クス(A)	クス(C)	クス(D)	クス(A)	クス(A)	クス(A)
低温処理温度 (℃)	_	_	_	30	0	-40
等温保持時間 (分)	-	-	_	3	3	1440
高温処理温度 (℃)	_		-	100	40	100
等温保持時間 (分)	_			3	3	1440
処理回数 (回)	-	_		5	5	1
平均熱膨張係数 (×10 ⁻⁷ /°C)	-80	-75	-70	-80	-80	-80
熱膨張ヒステリシス(p p m)	25	21	20	23	20	16
20℃毎の平均熱膨張係数差 (×10 ⁻⁷ /℃)	8.0	8. 0	8. 0	8. 0	7. 5	7. 5
波長ヒステリシス(pm)	37. 5	31.5	30.0	34. 5	30.0	24. 0

[0044]

まず、実施例 $1\sim 6$ は、焼結後の組成が、質量%でS i O_2 55.0%、A 1_2O_3 33.1%、L i $_2O$ 9.4%、T i O_2 0.8%、Z r O_2 1.0%、M g O 0.2%、 P_2O_5 0.5%となるように粉末を焼結し、 β - 石 英固溶体を主結晶として含有するセラミックス(A)からなる基材 1 を作製した

[0045]

図1に示すように、基材1は、長さ40mm、幅4mm、厚さ3mmの寸法を有し、上面に全面にわたって深さ0.6mmのスリット1aが形成されている。この基材1を $\{R^1Si(OH)_a(OCH_3)_bO(m-1)/m\}$ mで表されるシロキサン化合物を含むIPA(イソプロピルアルコール)溶液に浸し、10分間超音波振動を与えた後+100℃で10分間乾燥した。なお、上記シロキサン化合物は、 R^1 が C_6H_{13} 、aが0.07、bが1.88、mが2.1である。

[0046]

続いて、基材1を表1および表2に記載した処理温度、等温保持時間および処理回数で、恒温恒湿槽(日立恒温恒湿槽:EC-13MHP)によって処理した。

[0047]

なお、-40 \mathbb{C} 以下での低温処理と 20 -200 \mathbb{C} での高温処理をそれぞれ 1 回づつ行なった場合、処理回数を 1 回として数えた。

[0048]

最後に、各基材1のスリット1a中に、FBG2を挿入し、基材1の両端付近の2点をエポキシ系接着剤3(協立化学産業(株)製XOC-02THK)を用い、FBG2を基材1に接着固定することによって光通信デバイス10を作製した。なお、FBG2の基材1への接着は、3200mW/cm²の出力を有するメタルハライドランプを使用して、波長300~400nmの紫外線をエポキシ系接着剤3に2秒間照射して接着剤を硬化させて行なった。

[0049]

実施例 7 は、焼結後の組成が、質量%で SiO_2 55.5%、 Al_2O_3 3 2.6%、 Li_2O 9.2%、 TiO_2 0.9%、 ZrO_2 1.0%、Mg O 0.2%、 P_2O_5 0.5%となるように粉末を焼結し、 β 一石英固溶体を主結晶として含有するセラミックス(B)を使用した以外は、実施例 4 と同様にして基材および光通信デバイスを作製した。

[0050]

実施例 8 は、焼結後の組成が、質量%で SiO_2 5 6.0%、 Al_2O_3 3 2.1%、 Li_2O 9.0%、 TiO_2 0.9%、 ZrO_2 1.1%、Mg O 0.2%、 P_2O_5 0.7%となるように粉末を焼結し、 β 一石英固溶体を主結晶として含有するセラミックス (C) を使用した以外は、実施例 4 と同様にして基材および光通信デバイスを作製した。

[0051]

実施例 9 は、焼結後の組成が、質量%で SiO_2 5 6.0%、 Al_2O_3 3 2.6%、 Li_2O 8.6%、 TiO_2 0.9%、 ZrO_2 1.1%、Mg 0 0.3%、 P_2O_5 0.5%となるように粉末を焼結し、 β -石英固溶体を

主結晶として含有するセラミックス (D) を作製した以外は、実施例 4 と同様にして基材および光通信デバイスを作製した。

[0052]

実施例 10は、組成が質量%で SiO_2 46.2%、 $A1_2O_3$ 40.9%、 Li_2O 9.1%、 TiO_2 2.0%、 ZrO_2 1.8%となるように原料を調合した後、1200 ℃で 7 時間熔融し、急冷することによってガラスを作製し、次いで 1350 ℃で 15 時間加熱して主結晶として β 一石英固溶体が析出したガラスセラミックス(E)を使用した以外は、実施例 4 と同様にして基材および光通信デバイスを作製した。

[0053]

比較例1は、低温処理および高温処理を行なわなかった以外は実施例 $1\sim6$ と同様にして基材および光通信デバイスを作製した。

[0054]

比較例2は、低温処理および高温処理を行なわなかった以外は実施例8と同様 にして基材および光通信デバイスを作製した。

[0055]

比較例3は、低温処理および高温処理を行なわなかった以外は実施例9と同様 にして基材および光通信デバイスを作製した。

[0056]

比較例 $4\sim6$ は、表 3 に記載した温度-保持時間で熱処理を行なった以外は実施例 $1\sim6$ と同様にして基材および光通信デバイスを作製した。

[0057]

-40~+100 $\mathbb C$ の範囲における基材の平均熱膨張係数と熱膨張ヒステリシスの測定は、ディラトメーター(マックサイエンス製)を用いて行なった。熱膨張ヒステリシスは、図2 に示すように-40~100 $\mathbb C$ の間で1 $\mathbb C$ / 分で昇温および降温し、40 $\mathbb C$ における冷却時の寸法 L_1 と加熱時の寸法 L_2 を測定し、 L_1 と L_2 との差($|L_1-L_2|$)を常温で測定した寸法L で除した値とした。

[0058]

20℃毎の平均熱膨張係数差は、図2に示すように-40~100℃の間で1

℃/分で降温を行なった際の熱膨張曲線を20℃毎に7つの温度範囲に区分し、 それぞれの温度範囲における平均熱膨張係数を算出した後、それらの最大値と最 小値の差から求めた。

[0059]

[0060]

基材の長期耐久性は、基材を85℃、85%の高温高湿雰囲気で2000時間 放置し、基材の熱膨張係数および熱膨張ヒステリシスを経時的に測定して評価し た。

[0061]

光通信デバイスの長期信頼性(温度サイクル試験)は、室温(20°C)より-40°でまで1°C/分で降温させ、-40°Cで30分間保持した後、85°Cまで1°C/分で昇温、85°Cで30分間保持した後、室温(20°C)まで1°C/分で降温させる温度サイクルを最大500回行い、0回、200回、500回行なった際の、1550nm付近の中心波長をスペクトラムアナライザー(アドバンテスト製 Q-8384)を用いてpm単位で精密に測定し、-40°C-85°Cまでの温度変化による波長の変化量を温度依存性として算出し、温度サイクルが0回の時との差を温度依存性の変化量として評価した。

[0062]

表1、2から明らかなように、実施例 $1\sim10$ の光通信デバイスは、 $-40\sim100$ ℃における平均熱膨張係数が $-65\sim-81\times10^{-7}$ /℃であり、光通信デバイス用基材の20 ℃毎の平均熱膨張係数が 6×10^{-7} /℃以下であり、熱膨張ヒステリシスが11ppm以下と小さいため反射中心波長ヒステリシスも165pm以下と小さかった。

[0063]

また、図3から明らかなように、実施例8の光通信デバイス用基材は、長期間にわたって高温高湿雰囲気に放置されても、平均熱膨張係数や熱膨張ヒステリシスの変化が小さかった。なお、実施例1~7および9~10も実施例8と同様に長期間にわたって高温高湿雰囲気に放置しても平均熱膨張係数や熱膨張ヒステリシスの変化が小さかった。

[0064]

また、図4から明らかなように、実施例6の光通信デバイスは、長期信頼性試験である温度サイクル試験を行なっても、温度依存性の変化量が小さかった。なお、実施例 $1\sim5$ および $7\sim1$ 0も実施例6と同様に長期信頼性試験である温度サイクル試験を行なっても、温度依存性の変化量が小さかった。

[0065]

一方、表3から明らかなように比較例1~3の光通信デバイスは、低温処理および高温処理を行なわなかったため、光通信デバイス用基材の熱膨張ヒステリシスが20ppm以上と大きく、光通信デバイスの反射中心波長ヒステリシスも30pm以上と大きかった。また、比較例4および5の光通信デバイスは、−40℃以下の低温領域で低温処理を行なっていないため、光通信デバイス用基材の熱膨張ヒステリシスが20ppm以上と大きく、光通信デバイスの反射中心波長ヒステリシスも30pm以上と大きかった。また、比較例6の光通信デバイスは、−40℃以下の低温領域での低温処理と20~200℃の高温領域での高温処理をそれぞれ1回づつしか行なっていないため、光通信デバイス用基材の熱膨張ヒステリシスが16ppm以上と大きく、光通信デバイスの反射中心波長ヒステリシスが16ppm以上と大きく、光通信デバイスの反射中心波長ヒステリシスも24pm以上と大きかった。

[0066]

また、図4から明らかなように、比較例1の光通信デバイスは、長期信頼性試験である温度サイクル試験を行なった結果、温度依存性の変化量が大きかった。なお、比較例2~6も比較例1と同様に長期信頼性試験である温度サイクル試験を行なった結果、温度依存性の変化量が大きかった。

[0067]

【発明の効果】

以上説明したように、本発明の光通信デバイス用基材は、充分に大きな負の平均熱膨張係数を有するとともに熱膨張ヒステリシスが小さく、長期耐久性に優れるため、この基材にFBGを固定した光通信デバイスは、温度変化や、長期間高温多湿環境に曝されても、温度補償を充分に行なうことができ、FBGによる反射中心波長ヒステリシスを20pm以下と小さくすることができる。

[0068]

また、本発明の光通信デバイス用基材の製造方法は、熱膨張係数ヒステリシスが小さく、長期間にわたって熱膨張係数や熱膨張ヒステリシスの変化が小さい光 通信デバイス用基材を作製することができる。

[0069]

また、本発明の光通信デバイスは、充分に大きな負の平均熱膨張係数を有するとともに熱膨張ヒステリシスが小さく、長期耐久性に優れる基材に固定されているため長期間にわたって優れた特性を維持することができる。そのため、一度により多くの情報を伝達するために異なる波長の光を同時に伝送する波長分割多重伝送方式用の光通信デバイスとして好適である。

【図面の簡単な説明】

[図1]

本発明における実施例の光通信デバイスを示す平面図である。

【図2】

-40~100℃の範囲における基材の熱膨張ヒステリシスを示すグラフである。

【図3】

実施例8の長期耐久性試験の平均熱膨張係数と熱膨張ヒステリシスの結果を示すグラフである。

【図4】

実施例6と比較例1の長期耐久性試験(温度サイクル試験)の結果を示すグラフである。

【符号の説明】

1 基材

ページ: 19/E

- 1a スリット
- 2 FBG
- 3 接着剤
- 10 光通信デバイス

【書類名】 図面

【図1】

【図2】

【図4】

【書類名】

要約書

【要約】

【目的】 温度補償技術に必要な負の熱膨張係数を有するとともに、熱膨張ヒステリシスが小さい光通信デバイス用基材、その製造方法およびそれを用いた光通信デバイスを提供することである。

【構成】 本発明の光通信デバイス用基材は、 $-40 \sim +100 \sim$ における平均 熱膨張係数が $-55 \sim -120 \times 10^{-7} / \sim$ のあり、 β - 石英固溶体もしくは β - ユークリプタイト固溶体を主結晶として含有するセラミックスまたはガラスセラミックスからなる光通信デバイス用基材において、 $-40 \sim$ から $100 \sim$ まで $1 \sim$ 分での昇温、および $100 \sim$ から $-40 \sim$ まで $1 \sim$ 分での降温を行なった際に生じる熱膨張ヒステリシスが最大で12pm 未満であることを特徴とする。また、本発明の光通信デバイス用基材の製造方法は、基材に対して $20 \sim$ 以上の温度での高温処理と $20 \sim$ 以下の温度での低温処理とを交互に各々複数回行ない高温処理と低温処理の温度差が $40 \sim 240 \sim$ であることを特徴とする。

また、本発明の光通信デバイスは、光通信デバイス用基材が-40℃から100℃まで1℃/分での昇温、および100℃から-40℃まで1℃/分での降温を行なった際に生じる熱膨張ヒステリシスが最大12ppm未満であることを特徴とする。

【選択図】

図 1

特願2003-205935

出願人履歷情報

識別番号

[000232243]

1. 変更年月日

1990年 8月18日

[変更理由]

新規登録

住 所

滋賀県大津市晴嵐2丁目7番1号

氏 名 日本電気硝子株式会社