

ELM - 472 Öder 4 Makine Ögrenmesinin Temeller' Dr. Ögr. Üyes: Ahnet Güneş

Harrayan:

Alican Bayındır Elektronik Mühendisliği (Lisans) 20002002087

Alican Baynder 200102002087

1) Aşağıda verilen denklem p=1,2,3 değerleri için bir metrik midir? Regresyon problemi için p=1,2,3 değerlerinden hangilerini ne tür problemler için kullanmayı tercih edebilirsiniz? Açıklayınız.

$$d(x_1, x_2) = \sqrt[p]{|x_1 - x_2|^p}$$

d:
$$\times \times \times \rightarrow R$$
 $(x,y) \rightarrow d(x,y)$ fortsiyony $x,y,z \in \times$ olm, is, $d(x,y) > 0$

(i) $d(x,y) > 0$

(ii) $d(x,y) = 0 \iff x = y$

(iv) $d(x,y) = d(y,x)$

(iv) $d(x,y) = d(y,x)$

(iv) $d(x,y) = d(x,z) + d(z,y) \rightarrow \text{metric} \text{ fortsiyon} (X,d) \text{ bien}$

But any revenda is, and refer was adding a definity, $d(x,y,y) = (x,-x) + (y,-y,1) = 0$

(iv) $d(x,y,y), (x_2,y_2) = (x,-x_1) + (y,-y_1) = 0$

(iv) $d(x,y,y), (x_2,y_2) = (x,-x_1) + (y,-y_1) = 0$

(iv) $d(x,y,y), (x_2,y_2) = (x,-x_1) + (y,-y_1) = 0$

(iv) $d(x,y,y), (x_2,y_2) = (x,-x_1) + (y,-y_1) = (x_1-x_1) + (y_1-y_1) = (x_1-x_1) + (y_1-y_2) + (x_2-x_1) = (x_1-x_1) + (x_2-x_1) + (x_2-x_1) = (x_1-x_1) + (x_2-x_1) + (x_2-x_1) = (x_1-x_1) + (x_2-x_1) + (x_2-x_1) + (x_2-x_1) = (x_1-x_1) + (x_2-x_1) + (x_2-x_1) + (x_2-x_1) = (x_1-x_1) + (x_2-x_1) + (x_2-x_1) = (x_1-x_1) + (x_2-x_1) + (x_2-x_1) + (x_2-x_1) + (x_2-x_1) + (x_2-x_1) = (x_1-x_1) + (x_2-x_1) + (x_2-x_1) = (x_1-x_1) + (x_1-x_1) +$

Alican Baynow 200102002087

2) Aşağıda verilen Poisson olasılık dağılımının birinci ve ikinci momentini hesaplayınız.

$$P(x|\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0,1,2,\cdots$$

Alican Bayerder 200102002087

3) $\{[0.5, 0.5]^T, [0.5, 1.0]^T, [0.6, 0.5]^T\}$ örneklemini kullanarak en olası doğru denklemini bulunuz.

[a,	b] T = [9]	y= w, x + wo
X	1 2	- - - 	$\omega_{1} = \sum_{x_{1}^{2}, y_{2}^{2}} - \sum_{x_{1}^{2}, y_{2}^{2}} = \frac{1.05 - 1.06}{0.86 - 1.3}$ $\sum_{x_{1}^{2}, y_{2}^{2}} - (\sum_{x_{1}^{2}, y_{2}^{2}})^{2} = \frac{0.86 - 1.3}{0.86 - 1.3}$
1.6	- 0.53 = ×	0,5	$= 0.01 = 0.021 \text{ is the}$ $0.42 \text{ value of } \omega_1$
0,66		w. = g	$-\omega_{1} \times \rightarrow 0.66-0.21.053-0.668$ $\bar{y} = 0.668 + 0.021 \times$
			5