Can Airlines Predict the Satisfaction of their Customers?

— Peter Kryspin, Shijie Li, Ke Wu, Yu Luan, Viona Xu

Motivation

- "Commercial aviation drives 5% of U.S. GDP—the equivalent of \$1.25 trillion in 2022" (https://www.airlines.org/impact)
- Training the models on our data can be used to predict future cases of customer satisfaction
- Predicting satisfaction through modeling allows companies to cater their resources towards the specific areas that improve customer satisfaction the most.

Data Cleaning

Gender: Gender of the passengers

Customer Type: The customer type (based on loyalty)

Age: The actual age of the passengers

Type of Travel: Purpose of the flight of the passengers *Class:* Travel class in the plane of the passengers *Flight distance:* The flight distance of this journey

Inflight wifi service: Satisfaction level of the inflight WIFI service

Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient

Ease of Online booking: Satisfaction level of online booking

Gate location: Satisfaction level of Gate location Food and drink: Satisfaction level of Food and drink Online boarding: Satisfaction level of online boarding

Seat comfort: Satisfaction level of Seat comfort

Inflight entertainment: Satisfaction level of inflight entertainment

On-board service: Satisfaction level of On-board service Leg room service: Satisfaction level of Leg room service Baggage handling: Satisfaction level of baggage handling Check-in service: Satisfaction level of Check-in service Inflight service: Satisfaction level of inflight service

Cleanliness: Satisfaction level of Cleanliness

Departure Delay in Minutes: Minutes delayed when departure

Arrival Delay in Minutes: Minutes delayed when Arrival

Satisfaction: Airline satisfaction level(Satisfaction, neutral or dissatisfaction)

• One-Hot encoding method for categorical level variables

Features in the Models

• Gender

What is the gender of the traveler, male or female?

Customer Type

Whether this customer is loyal or not?

Type of Travel

A personal travel or business travel.

Class

What is the class of the flight? Business/Eco/Eco plus

Building data set

- Source: https://www.kaggle.com/datasets/teejmahal20/airline-passeng er-satisfaction contains two data sets train.csv and test.csv.
 - 1. There are 100K rows in train.csv and 26K rows in test.csv.
 - 2.Based on the response variable. There are 40% satisfaction and 60% neutral or unsatisfied in both train and test data set. So they are not imbalanced.

• Data Transformation:

Change categorical data in features Gender/Customer type/

Type of Travel/Class/Satisfaction become the dummy variables by get_dummies method

```
def transformData (feature):
    df_ = pd.get_dummies(feature, drop_first=False)
    df_name = df_.columns[0]
    return df .drop([df name], axis=1)
```

Response variable

• Satisfaction

Whether this traveler is satisfied or not (coded as a 1 for satisfied or a 0 for neutral/dissatisfied).

Our Models

- Logistic regression
- KNN classification
- Decision tree
- Stacking model

Model: LASSO Logistic Regression

• Parameters:

C=1

Penalty: L1 Penalty

• Model Performance:

Accuracy =0.872

Recall=0.833

Precision=0.869

AUC = 0.926

ROC CURVE for Logistic Regression Model

Model: Decision Tree

• Hyperparameter tuning:

- 1. Find best max_depth=16
- 2. Grid search by comparing criterion ["gini","entropy","log_loss"]
- 3.Best criterion is "Entropy"

Model: Decision Tree

• Parameters:

criterion='entropy'

 $max_depth=16$

random_state=0

• Model Performance:

Accuracy =0.949

Recall=0.943

Precision=0.941

AUC = 0.948

ROC CURVE for Decision Tree Model

Model: Knn

• Parameters:

n_neighbors=9
metric='manhattan'

• Model Performance:

Accuracy = 0.825

Precision = 0.817

Recall = 0.774

AUC = 0.897

ROC CURVE for Knn Model

Models: Knn and Decision Tree Stacked

• Parameters:

Knn: n_neighbors=9

metric='manhattan'

Decision Tree: criterion='entropy'

max depth=16

 $random_state=0$

• Model Performance:

Accuracy = 0.953

Precision is = 0.954

Recall = 0.939

AUC = 0.983

ROC CURVE for Stacked Decision Tree & Knn Model

Conclusion

	Accuracy	Recall	Precision	AUC
Logistic Regression	0.872	0.833	0.869	0.926
KNN	0.825	0.817	0.774	0.897
Decision Tree*	0.949	0.943	0.941	0.948
Stacking Model**	0.953	0.954	0.939	0.983

Feature Importance & Possible Issues

Features	Importance	
Online boarding	0.19	
Inflight wifi service	0.14	
Type of Travel	0.09	
Class	0.07	

- Unknown Correlation
- Single & Unspecified Standard of Satisfaction