

Vinylux, Inc. / VVBS1

Page: 1 of 32

EMC Test Report

Project Number: 4158282

Report Number: 4158282EMC02 Revision Level: 0

Client: Vinylux, Inc.

Equipment Under Test: Vintage Vinyl Bluetooth Speaker

Model Number: VVBS1

FCC ID: 2AL98VVBS1

Applicable Standards: FCC Part 15 Subpart C, § 15.247

ANSI C63.10: 2013

Report issued on: 15 June 2017

Test Result: Compliant

Tested by:

Jeremy O. Pickens, Senior EMC Engineer

Jeremy O. Mckens, Semon Elvic Engineer

Reviewed by:

David Schramm, EMC/RF/SAR/HAC Manager

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or Testing done by SGS International Electrical Approvals in connection with distribution or use of the product described in this report must be approved by SGS international Electrical Approvals in writing.

Vinylux, Inc. / VVBS1

Page: 2 of 32

Table of Contents

1	SU	UMMARY OF TEST RESULTS	4
	1.1	MODIFICATIONS REQUIRED FOR COMPLIANCE	4
2	Gl	ENERAL INFORMATION	5
	2.1	CLIENT INFORMATION	5
	2.1	TEST LABORATORY	
	2.2	GENERAL INFORMATION OF EUT	
	2.3	OPERATING MODES AND CONDITIONS	
	2.4	EUT CONNECTION BLOCK DIAGRAM	
	2.5	SYSTEM CONFIGURATIONS	6
3	O	CCUPIED BANDWIDTH	7
	3.1	TEST RESULT	7
	3.2	TEST METHOD	7
	3.3	TEST SITE	
	3.4	TEST EQUIPMENT	
	3.5	TEST DATA	8
4	PE	EAK OUTPUT POWER	9
	4.1	TEST RESULT	9
	4.2	TEST METHOD	
	4.3	TEST SITE	
	4.4	TEST EQUIPMENT	
	4.5	TEST DATA	
5	CO	ONDUCTED SPURIOUS EMISSIONS	11
	5.1	TEST RESULT	11
	5.2	TEST METHOD	11
	5.3	TEST SITE	
	5.4	TEST EQUIPMENT	
	5.5	TEST DATA	12
6	FI	IELD STRENGTH OF SPURIOUS RADIATION	
	6.1	TEST RESULT	13
	6.2	TEST METHOD	
	6.3	TEST SITE	
	6.4	TEST EQUIPMENT	
	6.5	TEST DATA – PEAK PLOTS	
	6.6	TEST DATA – TABULAR DATA	
7	RA	ADIATED EMISSIONS AT BAND EDGE / RESTRICTED BAND	19
	7.1	TEST RESULT	19
	7.2	TEST METHOD	
	7.3	TEST SITE	
	7.4	TEST EQUIPMENT	
	7.5	TEST DATA	20
8	PS	SEUDO-RANDOM HOP SEQUENCE	21
	8.1	TEST RESULT	21
	8.2	TEST METHOD	
9	CI	HANNEL SEPARATION	22
	9.1	TEST RESULT	22
	9.1	TEST RESULT	
	/· <u>~</u>	1	

Vinylux, Inc. / VVBS1

Page: 3 of 32

9.3	TEST SITE	22
9.4	TEST EQUIPMENT	22
9.5		
10 NU	EST SITE EST EQUIPMENT EST DATA BER OF HOPPING CHANNELS EST RESULT EST METHOD EST SITE EST EQUIPMENT EST DATA LL TIME EST RESULT EST BEULT EST BEULT EST BUILT EST EQUIPMENT EST EQUIPMENT EST EQUIPMENT EST EQUIPMENT EST EQUIPMENT EST BATA LOTS DUCTED EMISSIONS EST RESULT EST METHOD EST SITE EST EQUIPMENT EST SITE EST EQUIPMENT EST SITE EST EQUIPMENT EST SITE EST EQUIPMENT EST SITE EST SITE EST EQUIPMENT EST SITE EST SITE EST SITE EST SITE EST EQUIPMENT EST SITE EST SITE EST EQUIPMENT EST SETUP PHOTOGRAPHS EST DATA SION HISTORY	24
10.1	TEST RESULT	24
10.2	TEST METHOD	24
10.3	TEST SITE	24
10.4	TEST EQUIPMENT	24
10.5	Test Data	25
11 DW	VELL TIME	26
11.1	TEST RESULT	26
11.2	TEST METHOD	26
11.3	TEST SITE	26
11.4	TEST EQUIPMENT	26
11.5	TEST DATA	27
11.6	PLOTS	27
12 CO	ONDUCTED EMISSIONS	28
12.1	TEST RESULT	28
12.2		
12.3	TEST SITE	28
12.4	TEST EQUIPMENT	28
12.5	TEST SETUP PHOTOGRAPHS	29
12.6	Test Data	30
13 RE	EVISION HISTORY	32

Vinylux, Inc. / VVBS1

Page: 4 of 32

1 Summary of Test Results

Test Description	Test Specification		Test Result
Occupied Bandwidth	15.247(a)(1)	RSS-247 5.1(1)	Compliant
Peak Power Output	15.247(a)(1)	RSS-247 5.4(2)	Compliant
Conducted Spurious Emissions	15.247(d)	RSS-247 5.5	Compliant
Band Edge	15.247(d)	RSS-247 5.5	Compliant
Radiated Spurious Emissions	15.247(d), 15.35(b),15.209	RSS-GEN 8.10	Compliant
Pseudo-Random Hop Sequence	15.247(a)(1)	RSS-247 5.1(1)	Compliant
Channel Separation	15.247(a)(1)	RSS-247 5.1(2)	Compliant
Number of Hopping Channels	15.247(a)(1)(iii)	RSS-247 5.1(4)	Compliant
Dwell Time	15.247(a)(1)(iii)	RSS-247 5.1(4)	Compliant
Number of hopping frequencies	15.247(a)(1)(iii)	RSS-247 5.1(4)	Compliant
AC Powerline Conducted Emission	15.107, 15.207	RSS-GEN 7.2.4	Compliant

Modifications Required for Compliance

None

Vinylux, Inc. / VVBS1

Page: 5 of 32

2 General Information

Client Information 2.1

Name: Vinylux, Inc.

Address: 104 E Moreland Ave

City, State, Zip, Country: Philadelphia, PA 19118, USA

Test Laboratory 2.1

Name: SGS North America, Inc.

Address: 620 Old Peachtree Road NW, Suite 100

City, State, Zip, Country: Suwanee, GA 30024, USA

Accrediting Body: A2LA

Type of lab: Testing Laboratory

Certificate Number: 3212.01

General Information of EUT 2.2

Type of Product: Vintage Vinyl Bluetooth Speaker

Model Number: VVBS1 Serial Number: Not labeled

Frequency Range: 2402 to 2480 MHz, 79 Channels

Antenna: PCB Trace

Rated Voltage: 19.0 Vdc (Speaker)

100-240Vac, 50/60Hz (AC/DC Adapter)

Test Voltage: 19.0 Vdc (Speaker)

120Vac, 60Hz (AC/DC Adapter)

Sample Received Date: 06 June 2017

Dates of testing: 08 – 14 June 2017

Vinylux, Inc. / VVBS1

Page: 6 of 32

Operating Modes and Conditions

Test modes were not available for this system. The EUT was exercised in hopping mode by streaming a 1kHz tone from a paired Android device.

EUT Connection Block Diagram

System Configurations

Device reference	Manufacturer	Description	Model Number	Serial Number
А	Vinylux, Inc.	Vintage Vinyl Bluetooth Speaker	VVBS1	None
В	Hunt-key	AC/DC Adaptor	HKA03619021-8C	Y36WAA1691000162
С	Honeywell	Android Mobile Computer	1015CP01	004X1700300

Vinylux, Inc. / VVBS1

Page: 7 of 32

Occupied Bandwidth

Test Result 3.1

Test Description	Basic Standards	Test Result	
99% bandwidth	15.247(a)(1) RSS-247 5.1(1) ANSI C63.10: 2013	Compliant	

Test Method 3.2

Occupied bandwidth measurements were taken using the methods defined an ANSI C63.10, Clause 6.9; Measurements were recorded using the 99% OBW function of the measurement receiver.

Test Site 3.3

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 22.4 °C Relative Humidity: 49.5 %

Test Equipment 3.4

Test Date: 9-Jun-2017 Tester: JOP

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
EMI TEST RECEIVER	ESU8	ROHDE & SCHWARZ	B085759	21-Jul-2017
RF CABLE	141	HUBER & SUHNER	B095587	26-Jul-2017
RF CABLE	141	HUBER & SUHNER	B095586	26-Jul-2017
RF ENCLOSURE	T/T	LINDGREN RF ENCLOSURES	17011	CNR

Note: The equipment calibration period is 1 year except for the FSV which is one a 2 year cal cycle per manufacturer's recommendations.

Vinylux, Inc. / VVBS1

Page: 8 of 32

Test Data 3.5

Frequency	Channel No	99% bandwidth kHz
2402	0	983.0
2441	39	913.1
2480	78	917.1

Sample Plot

Date: 9.JUN.2017 13:32:21

Vinylux, Inc. / VVBS1

Page: 9 of 32

Peak Output Power

Test Result 4.1

Test Description	Test Specification	Test Result
Peak Output Power	15.247(a)(1) RSS-247 5.4(2) ANSI C63.10: 2013	Compliant

Test Method 4.2

Because the device did not have a detachable antenna or accessible port, output power measurements were taken using the radiated methods defined an ANSI C63.10.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt.

Test Site

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 22.9 °C Relative Humidity: 55.7 %

Test Equipment

Test Date: 13-Jun-2017 Tester: JOP

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
EMI TEST RECEIVER	ESU40	ROHDE & SCHWARZ	B079629	20-Jun-2017
ANTENNA, DRG HORN (MEDIUM)	3117	ETS LINDGREN	B079691	27-Jul-2017
RF CABLE	NMS-290-236.2-NMS	FLORIDA RF LABS	B095020	29-Jul-2017
RF CABLE	NFS-290-78.7-NFS	FLORIDA RF LABS	B095019	28-Jul-2017
RF CABLE	SF106	HUBER & SUHNER	B079660	25-Jul-2017
RF CABLE	104PE	HUBER & SUHNER	B079793	27-Jul-2017
LOW NOISE AMPLIFIER	TS-PR18	ROHDE & SCHWARZ	B094463	22-Feb-2018

Note: The equipment calibration period is 1 year.

Vinylux, Inc. / VVBS1

Page: 10 of 32

Test Data

Modulation	Frequency (MHz)	Field Strength (dBµV/m)	Peak Power (dBm)	Peak Power (Watts)
5 . 5 .	2402.000000	87.4	-7.8	0.0002
Basic Rate (GFSK)	2441.000000	85.7	-9.5	0.0001
(3. 514)	2480.000000	83.6	-11.6	0.0001

Peak Power was calculated by adjusting the field strength measurement by 95.2dB

Date: 13.JUN.2017 11:49:07

Vinylux, Inc. / VVBS1

Page: 11 of 32

Conducted Spurious Emissions

Test Result 5.1

Test Description	Test Specification	Test Result	
Conducted Spurious Emissions	15.247(d) RSS-247 5.4(2) ANSI C63.10: 2013	Compliant	

5.2 Test Method

Conducted spurious emissions measurements were taken using the methods defined an ANSI C63.10, Clauses 5.5 and 5.6. Authorized band edge measurements were recorded using the methods in clause 6.10.4. For this test, a coaxial interface was soldered to the output pins of the Bluetooth chipset.

The limit is 20 dB below the measured peak power.

Test Site 5.3

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 23.3 °C Relative Humidity: 50.7 %

Test Equipment 5.4

Test Date: 14-Jun-2017 Tester: JOP

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
SIGNAL ANALYZER	FSV30	ROHDE & SCHWARZ	B085749	8-Oct-2017
RF CABLE	141	HUBER & SUHNER	B095587	26-Jul-2017
RF CABLE	141	HUBER & SUHNER	B095586	26-Jul-2017
RF ENCLOSURE	T/T	LINDGREN RF ENCLOSURES	17011	CNR

Note: The equipment calibration period is 1 year except for the FSV which is one a 2 year cal cycle per manufacturer's recommendations.

Vinylux, Inc. / VVBS1

Page: 12 of 32

Test Data 5.5

Basic Rate - Hopping Lower band edge / Upper band edge

Conducted Spurs – 30MHz – 26GHz

Vinylux, Inc. / VVBS1

Page: 13 of 32

Field Strength of Spurious Radiation

Test Result 6.1

Test Description	Test Specification	Test Result
Field strength of spurious radiation	15.247(d), 15.35(b), 15.209, RSS-GEN S8.10	Compliant

Test Method 6.2

Exploratory scans were performed over the frequency range as indicated in the tables below using the max hold function and incorporating a Peak detector and using TILE! software. The final test data was measured using a Quasi-Peak detector below 1GHz and a Peak detector above 1GHz. For harmonics of the fundamental, Average measurements were made by correcting the peak value with the duty cycle correction factor. For emissions other than harmonics of the fundamental, the Average measurements were made using the Average detector. The receivers resolution bandwidth was set to 120 kHz for measurements taken in the 30MHz to 1GHz frequency range and 1MHz for measurements for 1GHZ and higher. Measurements were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna height was varied from 1 m to 4 m and the EUT was rotated 360° to find the maximum emitting point for each frequency. The radiated measurements were recorded and compared to the limits indicated in the table below.

Test distance:

9k to 30 MHz – Near field prescan to determine if there were any emissions. 30 MHz to 1 GHz - The EUT to measurement antenna distance is 3 meters 1 to 18 GHz - The EUT to measurement antenna distance is 3 meters 18 to 40 GHz - The EUT to measurement antenna distance is 3 meters

Fraguerov.	Limits ⁽¹⁾		Peak Limits
Frequency	Microvolts/m	dBuV/m	dBuV/m
30 - 88 MHz	100	40 (2)	
88 - 216 MHz	150	43.5 ⁽²⁾	
216 - 960 MHz	200	46 ⁽²⁾	
960 - 1000 MHz	500	54 ⁽²⁾	
1 - 40 GHz	500	54 ⁽³⁾	74

- (1) These limits are applicable to emissions outside of the intentional transmit frequency band.
- (2) Quasi-peak limit
- (3) Average limit

Test Site 6.3

10m Absorber Lined Shielded Enclosure (ALSE), Suwanee, GA

Environmental Conditions

Temperature: 23.2 °C Relative Humidity: 44.5 %

Vinylux, Inc. / VVBS1

Page: 14 of 32

Test Equipment

Test Date: 12-Jun-2017 Tester: JOP

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
EMI TEST RECEIVER	ESU40	ROHDE & SCHWARZ	B079629	25-Apr-2018
ANTENNA, BILOG	JB6	SUNOL	B079689	8-Sep-2017
RF CABLE	NMS-290-236.2-NMS	FLORIDA RF LABS	B095020	29-Jul-2017
RF CABLE	NFS-290-78.7-NFS	FLORIDA RF LABS	B095019	28-Jul-2017
RF CABLE	SF106	HUBER & SUHNER	B079660	25-Jul-2017
RF CABLE	104PE	HUBER & SUHNER	B079793	27-Jul-2017
LOW NOISE AMPLIFIER	TS-PR18	ROHDE & SCHWARZ	B094463	22-Feb-2018
ANTENNA, DRG HORN (MEDIUM)	3117	ETS LINDGREN	B079691	27-Jul-2017
HORN(SMALL)	LB-180400-20-C-KF	A-INFO	15007	21-Mar-2018
RF CABLE	SF102	HUBER & SUHNER	B079822	27-Jul-2017
RF CABLE	SF102	HUBER & SUHNER	B079824	27-Jul-2017
LOW NOISE AMPLIFIER	NSP1840-HG	MITEQ	B087572	29-Jul-2017

Note: The equipment calibration period is 1 year.

Vinylux, Inc. / VVBS1

Page: 15 of 32

Test Data - Peak Plots

No emissions associated with the radio were detected in the range 9kHz to 30MHz.

Bluetooth, Hopping 30-1000MHz Vertical (3m test distance)

No emissions associated with the Bluetooth radio. These measurements were recorded in an FCC Part 15, Supbart B evaluation.

Bluetooth, Hopping 30-1000MHz Horizontal (3m test distance)

No emissions associated with the Bluetooth radio. These measurements were recorded in an FCC Part 15, Supbart B evaluation.

Vinylux, Inc. / VVBS1

Page: 16 of 32

Bluetooth, Hopping 1-18GHz Vertical

Bluetooth, Hopping 1-18GHz Horizontal (3m test distance)

Vinylux, Inc. / VVBS1

Page: 17 of 32

Bluetooth, Hopping 18-26GHz Vertical (3m test distance)

Bluetooth, Hopping 18-26GHz Horizontal (3m test distance)

Vinylux, Inc. / VVBS1

Page: 18 of 32

Test Data - Tabular Data

Frequency	Raw Meas	Polarity	Correction	Corr Value	Limit	Margin	Detector
MHz	(dBuV)	(V/H)	(dB/m)	dBuV/m	(dBuV/m)	(dB)	Detector
3327.96	52.6	V	1.4	54.0	NA	NA	Peak
3327.96	49.6	V	1.4	51.0	NA	NA	Average
3327.96	55.3	Н	1.4	56.7	NA	NA	Peak
3327.96	52.2	Н	1.4	53.6	NA	NA	Average
4804.00	46.2	V	3.0	49.2	74.0	-24.8	Peak
4804.00	37.4	V	3.0	40.4	54.0	-13.6	Average
4804.00	44.8	Н	3.0	47.8	74.0	-26.2	Peak
4804.00	36.0	Н	3.0	39.0	54.0	-15.0	Average
4880.00	45.8	V	3.1	48.9	74.0	-25.1	Peak
4880.00	37.0	V	3.1	40.1	54.0	-13.9	Average
4880.00	41.6	Н	3.1	44.7	74.0	-29.3	Peak
4880.00	32.8	Н	3.1	35.9	54.0	-18.1	Average
4960.00	45.7	V	3.2	48.9	74.0	-25.1	Peak
4960.00	36.9	V	3.2	40.1	54.0	-13.9	Average
4960.00	50.1	Н	3.2	53.3	74.0	-20.7	Peak
4960.00	41.3	Н	3.2	44.5	54.0	-9.5	Average

^{*} These emissions did not fall within a restricted band.

Vinylux, Inc. / VVBS1

Page: 19 of 32

Radiated Emissions at Band Edge / Restricted Band

Test Result 7.1

Test Description	Test Specification	Test Result
Field strength of spurious radiation	15.247(d), 15.35(b), 15.209, RSS-GEN S8.10 ANSI C63.10: 2013	Compliant

Test Method 7.2

Peak and average field strength measurements were performed at the restricted band edges of 2390MHz and 2483.5MHz. Measurements were made using the radiated methods defined in ANSI C63.10.

Test Site 7.3

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 22.9 °C Relative Humidity: 55.7 %

Test Equipment 7.4

Test Date: 13-Jun-2017 Tester: JOP

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
EMI TEST RECEIVER	ESU40	ROHDE & SCHWARZ	B079629	20-Jun-2017
ANTENNA, DRG HORN (MEDIUM)	3117	ETS LINDGREN	B079691	27-Jul-2017
RF CABLE	NMS-290-236.2-NMS	FLORIDA RF LABS	B095020	29-Jul-2017
RF CABLE	NFS-290-78.7-NFS	FLORIDA RF LABS	B095019	28-Jul-2017
RF CABLE	SF106	HUBER & SUHNER	B079660	25-Jul-2017
RF CABLE	104PE	HUBER & SUHNER	B079793	27-Jul-2017
LOW NOISE AMPLIFIER	TS-PR18	ROHDE & SCHWARZ	B094463	22-Feb-2018

Note: The equipment calibration period is 1 year.

Vinylux, Inc. / VVBS1 Page: 20 of 32

Test Data 7.5

Date: 13.JUN.2017 10:54:35

Date: 13.JUN.2017 11:22:47

Vinylux, Inc. / VVBS1

Page: 21 of 32

Pseudo-Random Hop Sequence

Test Result 8.1

Test Description	Test Specification	Test Result
Pseudo-Random Hop Sequence	15.247(a)(1), RSS-247 5.1(1) ANSI C63.10	Compliant ⁽¹⁾

Note (1): The theory of operation states that the device is Bluetooth and operates using a pseudorandom hopping technique.

Test Method 8.2

Compliance is demonstrated by Manufacturer's declaration or is stated in the Theory of Operation.

Requirement

The hopset shall be such that the near-term distribution of frequencies appears random, with sequential hops randomly distributed in both direction and magnitude of change in the hopset, while the long-term distribution appears evenly distributed.

Vinylux, Inc. / VVBS1

Page: 22 of 32

Channel Separation

Test Result 9.1

Test Description	Test Specification	Test Result
	15.247(a)(1)(iii)	
Number of Hopping Channels	RSS-247 5.1(2)	Compliant
	ANSI C63.10	

Test Method 9.2

Measurements were taken using the methods defined in ANSI C63.10, Clause 7.8.2. The test data was measured using a spectrum analyzer with Peak detector (max hold) and a resolution bandwidth of 10 kHz. The trace was allowed to stabilize until all channels were displayed.

Requirement

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Site 9.3

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 23.6 °C Relative Humidity: 45.3 %

Test Equipment 9.4

Test Date: 8-Jun-2017 Tester: JOP

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
SIGNAL ANALYZER	FSV30	ROHDE & SCHWARZ	B085749	8-Oct-2017
RF CABLE	141	HUBER & SUHNER	B095587	26-Jul-2017
RF CABLE	141	HUBER & SUHNER	B095586	26-Jul-2017
RF ENCLOSURE	T/T	LINDGREN RF ENCLOSURES	17011	CNR

Note: The equipment calibration period is 1 year except for the FSV which is one a 2 year cal cycle per manufacturer's recommendations.

Vinylux, Inc. / VVBS1 Page: 23 of 32

9.5 Test Data

Date: 8.JUN.2017 14:32:06

Date: 8.JUN.2017 13:23:05

Vinylux, Inc. / VVBS1

Page: 24 of 32

10 Number of Hopping Channels

10.1 Test Result

Test Description	Test Specification	Test Result
Number of Hopping Channels	15.247(a)(1)(iii) RSS-247 5.1(4)	Compliant

10.2 Test Method

Measurements were taken using the methods defined in ANSI C63.10, Clause 7.8.3. The test data was measured using a spectrum analyzer with Peak detector (max hold) and a resolution bandwidth of 10 kHz. The trace was allowed to stabilize until all channels were displayed.

Requirement

Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

10.3 Test Site

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 23.6 °C Relative Humidity: 45.3 %

10.4 Test Equipment

Test Date: 8-Jun-2017 Tester: JOP

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
SIGNAL ANALYZER	FSV30	ROHDE & SCHWARZ	B085749	8-Oct-2017
RF CABLE	141	HUBER & SUHNER	B095587	26-Jul-2017
RF CABLE	141	HUBER & SUHNER	B095586	26-Jul-2017
RF ENCLOSURE	T/T	LINDGREN RF ENCLOSURES	17011	CNR

Note: The equipment calibration period is 1 year except for the FSV which is one a 2 year cal cycle per manufacturer's recommendations.

10.5 Test Data

There are 79 Channels.

Date: 8.JUN.2017 14:16:44

Vinylux, Inc. / VVBS1

Page: 26 of 32

11 Dwell Time

11.1 Test Result

Test Description	Test Specification	Test Result
Dwell Time	15.247(a)(1)(iii) RSS-247 5.1(4)	Compliant

11.2 Test Method

Measurements were taken using the methods defined in ANSI C63.10, Clause 7.8.4. The EUT was set to test mode which allowed it to be controlled by the Bluetooth Tester. The Bluetooth Tester was then set to operate on US/EU Hopping Scheme with pseudo-random data. For each packet type and data rate, the pulse width of the packet was measured and the pulses were counted over the total observation period.

Requirement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed (0.4*79=31.6s).

11.3 Test Site

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 23.6 °C Relative Humidity: 45.3 %

11.4 Test Equipment

Test Date: 8-Jun-2017

	Asset Number	Cal Due [
RZ	B085749	8-Oct-20

Tester: JOP

		21 2 212 2		
SIGNAL ANALYZER	FSV30	ROHDE & SCHWARZ	B085749	8-Oct-2017
RF CABLE	141	HUBER & SUHNER	B095587	26-Jul-2017
RF CABLE	141	HUBER & SUHNER	B095586	26-Jul-2017
RF ENCLOSURE	T/T	LINDGREN RF ENCLOSURES	17011	CNR

Note: The equipment calibration period is 1 year except for the FSV which is one a 2 year cal cycle per manufacturer's recommendations.

Vinylux, Inc. / VVBS1

Page: 27 of 32

11.5 Test Data

Pulse Width ms	Pulses per 31.6 sec	Dwell Time Sec	Limit	Result
0.146	54	0.008	0.4	PASS

11.6 **Plots**

Date: 8.JUN.2017 14:38:04

Date: 8.JUN.2017 14:46:36

Vinylux, Inc. / VVBS1

Page: 28 of 32

12 Conducted Emissions

12.1 Test Result

Test Description	Basic Standards	Test Result
Conducted Emission	RSS-GEN, Issue 4 ANSI C63.4:2014	Compliant

12.2 Test Method

With the receiver resolution bandwidth set to 9 kHz, exploratory scans were performed over the measuring frequency range (0.15MHz to 30MHz) using a max hold mode incorporating a Peak detector and Average detector and using the TILE! software. The final test data was measured using a Quasi-Peak detector and Average detector and compared against the limits indicated in the table below.

Frequency Range	Class B Limits (dBuV)
0.15 to 0.5 MHz	Avg 56 to 46 QP 66 to 56
0.5 to 5 MHz	Avg 46 Pk 56
5 to 30 MHz	Avg 50 Pk 60

12.3 Test Site

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 23.5 °C Relative Humidity: 50.9 % Atmospheric Pressure: 97.9kPa

12.4 Test Equipment

Test Date: 15-Jun-2017

Tester: JOP

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
EMI TEST RECEIVER	ESU8	ROHDE & SCHWARZ	B085759	21-Jul-2017
LINE IMPEDANCE STABILIZATION NETWORK	NNB 51	TESEQ	B087573	16-Nov-2017
RF CABLE	SF106	HUBER & SUHNER	B079659	26-Jul-2017

Note: The equipment calibration period is 1 year.

Software:

"Conducted Emissions" TILE! profile dated Dec 2015

Page: 29 of 32

12.5 Test Setup Photographs

SGS

Vinylux, Inc. / VVBS1

Page: 30 of 32

12.6 Test Data

Line 1 Conducted Emissions Plot

Line 1 Conducted Emissions Data

Frequency	QP Value	QP Limit	QP Margin	Avg Value	Avg Limit	Avg Margin
MHz	dBuV	dBuV	dB	dBuV	dBuV	dB
0.161	39.0	65.4	-26.5	21.9	55.4	-33.5
0.317	38.1	59.8	-21.7	37.5	49.8	-12.3
21.235	22.2	60.0	-37.8	15.1	50.0	-34.9
21.979	23.5	60.0	-36.5	15.9	50.0	-34.1
22.239	24.0	60.0	-36.0	17.9	50.0	-32.1
22.530	24.1	60.0	-35.9	18.2	50.0	-31.8
22.722	24.5	60.0	-35.5	17.9	50.0	-32.1
23.139	24.1	60.0	-35.9	19.0	50.0	-31.0
25.751	23.4	60.0	-36.6	18.1	50.0	-31.9
26.588	23.2	60.0	-36.8	16.7	50.0	-33.3

Vinylux, Inc. / VVBS1

Page: 31 of 32

Neutral Conducted Emissions Plot

Neutral Conducted Emissions Data

Frequency	QP Value	QP Limit	QP Margin	Avg Value	Avg Limit	Avg Margin
MHz	dBuV	dBuV	dB	dBuV	dBuV	dB
0.317	37.9	59.8	-21.8	37.4	49.8	-12.4
16.472	22.8	60.0	-37.2	10.1	50.0	-39.9
22.011	24.2	60.0	-35.8	17.5	50.0	-32.5
22.403	24.6	60.0	-35.4	18.9	50.0	-31.1
22.610	27.5	60.0	-32.5	21.9	50.0	-28.1
22.735	24.8	60.0	-35.2	19.1	50.0	-30.9
22.924	26.7	60.0	-33.3	20.7	50.0	-29.3
23.173	24.5	60.0	-35.5	19.8	50.0	-30.2
26.114	25.5	60.0	-34.5	20.6	50.0	-29.4
27.021	22.8	60.0	-37.2	16.5	50.0	-33.5

Vinylux, Inc. / VVBS1

Page: 32 of 32

13 Revision History

Revision Level	Description of changes	Revision Date
0	Initial release	15 June 2017