

EXPLOTERAY DATA ANALYSIS

DATA VISUALIZATION

Notes

- Category features are not balanced.
- Some features, such as price, are highly skewed.
- Features have different ranges.
- Features contain many outliers.
- x, y, z, and carat are highly correlated with each other.
- Cut and depth features are not correlated with price.

Feature Engineering

- Volume: Calculated as $x \times y \times z$.
- Volume to Depth Ratio: Ratio of volume to depth, indicating diamond compactness.
- **Volume to Table Ratio:** Ratio of volume to table, adding analytical dimensions.
- Removed Uncorrelated Features: Dropped "depth" and "cut" due to weak price correlation.

Data Processing

- Oversampling and Undersampling: balance categorical features.
- Logarithm Transformation: Normalize skewed data, equalize the range, and remove outliers.
- Normalization: Achieve a mean of zero before model training.

OVERSAMPLING & UNDERSAMPLING

LOGARITHM TRANSFORMATION FOR FEATURES

	carat	table	х	у	z	volume	volume_depth_ratio	volume_table_ratio	price
count	4.312800e+04	4.312800e+04	43128.000000						
mean	-1.370737e-16	-1.948028e-15	1.133494e-15	-9.542440e-16	-5.588390e-16	6.010156e-16	4.323094e-16	1.212575e-16	7.745299
std	1.000012e+00	1.000012e+00	1.001382						
min	-1.411102e+00	-7.315294e+00	-1.070661e+01	-1.081159e+01	-9.078761e+00	-7.593446e+00	-2.648100e+00	-2.722815e+00	5.789960
25%	-9.189991e-01	-6.142355e-01	-9.352538e-01	-9.351735e-01	-9.329006e-01	-9.314457e-01	-9.301276e-01	-9.382759e-01	6.852243
50%	-1.173909e-01	-1.640217e-01	2.321928e-02	3.103315e-02	3.656647e-02	5.378109e-02	-6.271268e-02	-6.648548e-02	7.723562
75%	6.497424e-01	7.135756e-01	7.835498e-01	7.827099e-01	7.423372e-01	7.716198e-01	7.407497e-01	7.351745e-01	8.530307
max	4.572998e+00	8.160699e+00	3.220093e+00	1.255471e+01	1.201249e+01	5.712088e+00	7.777952e+00	7.625078e+00	9.841399

NORMALIZATION

AutoGluon

Machine Learning Model

- We have used AutoGluon to select our machine learning model.
- It determined that the best-fitting model for our data is WeightedEnsemble_L3.

Evaluation Model

 Our model achieved an R-squared score of 0.98 and an RMSE of 538

