GERENCIAMENTO DE PROCESSOS E ALGORITMOS DE ESCALONAMENTO EM SISTEMAS OPERACIONAIS

SISTEMAS OPERACIONAIS

Professor: Thallles Canela

Alunos: Gulherme Batista, Kauã Santo, Rennan Almeida, Reney Lima, David Marques

O que é um Processo?

- Um processo é essencialmente um programa em execução.
- Navegador da web, editores de texto, sistemas de banco de dados
- Sem um gerenciamento eficiente, o desempenho do sistema seria muito menor.

Ciclo de Vida de um Processo

- Um processo passa por diferentes estados durante sua existência.
- Processos:
 - Novo.
 - Pronto.
 - Execultando
 - Bloqueado.
 - Finalizado.

O Papel do Scheduler

- O scheduler é o "organizador" que determina a ordem e o tempo que cada processo pode usar a CPU.
- Crucial para garantir que a CPU esteja sempre ocupada e que os processos sejam gerenciados de maneira eficiente.
- Decide qual processo terá prioridade, o que afeta diretamente o desempenho e a responsividade do sistema.

Algoritmos de Escalonamento

FIFO

O primeiro processo a chegar é o primeiro a ser executado, e ele continua até terminar ou ser bloqueado.

RR

Cada processo recebe um tempo fixo para rodar, se o processo não terminar ele volta para a fila. **Prioridade**

Cada processo recebe uma prioridade, e o scheduler escolhe o processo com a maior prioridade para executar.

Troca de Contexto

- O escalonador decide qual processo deve ser executado a seguir. Durante a troca de contexto, o estado do processo atual é salvo no Bloco de Controle de Processo (BCP) e o estado do próximo processo é carregado a partir do BCP.
- O BCP armazena informações essenciais sobre o estado de cada processo. O escalonador usa essas informações para gerenciar a execução de processos, salvando e restaurando estados conforme necessário para garantir a continuidade da execução.

Bloco de Controle de Processo - BCP

• Uma estrutura de dados que armazena informações sobre o processo. Permitindo que o processo seja retomado de onde parou. Que quando o processo volta à execução, o BCP garante que tudo esteja exatamente como antes.

Processos em SOs

SISTEMAS OPERACIONAIS	Especificidade
UNIX/LINUX	Escalonamento focado em equidade e escalabilidade
Windows	Foco em equilíbrio entre responsividade e desempenho
IOS	Eficiência energética para dispositivos móveis.

Conclusão

- O scheduler garante o uso eficiente da CPU e o BCP garante que os processos possam ser trocados corretamente sem perder seu estado.
- Cada SO usa essas ferramentas de maneira diferente para atender suas necessidades específicas, mas todos dependem desses princípios.