

AOSP62626E

60V N-Channel AlphaSGT™

General Description

- Trench Power AlphaSGTTM technology
- Low R_{DS(ON)}
- Logic Level Gate Drive
- ESD Protected
- Excellent Gate Charge x R_{DS(ON)} Product (FOM)
- RoHS and Halogen-Free Compliant

Applications

• High Frequency Switching and Synchronous Rectification

Product Summary

 $\begin{array}{ll} V_{DS} & 60V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 11A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 13.5 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & < 18 m\Omega \end{array}$

Typical ESD protection HBM Class 2

100% UIS Tested 100% Rg Tested

Orderable Part Number	rderable Part Number Package Type		Minimum Order Quantity		
AOSP62626E	SO-8	Tape & Reel	3000		

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	60	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain	T _A =25°C		11		
Current	T _A =70°C	'D	8.5	A	
Pulsed Drain Current [©]		I _{DM}	44	\neg	
Avalanche Current ^C		I _{AS}	14	А	
Avalanche energy	L=0.3mH	E _{AS}	29	mJ	
V _{DS} Spike ^G	10µs	V _{SPIKE}	72	V	
	T _A =25°C	В	3.1	W	
Power Dissipation ^B	T _A =70°C	$-P_{D}$	2.0	v	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics					
Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	31	40	°C/W
Maximum Junction-to-Ambient AD	Steady-State	IN _θ JA	59	75	°C/W
Maximum Junction-to-Lead	Steady-State	$R_{ heta JL}$	16	24	°C/W

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60			V	
	Zero Gate Voltage Drain Current	V _{DS} =60V, V _{GS} =0V			1	μA	
I _{DSS}	Zero Gate Voltage Drain Current	T _J =55°0			5	μΑ	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±10	μA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.7	2.3	V	
		V _{GS} =10V, I _D =11A		11	13.5	mΩ	
R _{DS(ON)} Sta	Static Drain-Source On-Resistance	T _J =125°0		17.8	21.9	11152	
		V_{GS} =4.5V, I_D =9A		14.3	18	mΩ	
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=11A$		35		S	
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.72	1	V	
Is	Maximum Body-Diode Continuous Curr	ent			4	Α	
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance			900		pF	
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =30V, f=1MHz		220		pF	
C _{rss}	Reverse Transfer Capacitance			20		pF	
R_g	Gate resistance	f=1MHz	0.6	1.3	2.0	Ω	
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge			15.2	25	nC	
Q _g (4.5V)	Total Gate Charge	V_{GS} =10V, V_{DS} =30V, I_{D} =11A		7.3	12	nC	
Q_{gs}	Gate Source Charge	GS=10V, VDS=30V, ID=11A		3.0		nC	
Q_{gd}	Gate Drain Charge			2.8		nC	
Q _{oss}	Output Charge	$V_{GS}=0V, V_{DS}=30V$		11		nC	
$t_{D(on)}$	Turn-On DelayTime			6		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =2.75 Ω ,		3		ns	
$t_{D(off)}$	Turn-Off DelayTime	$R_{GEN}=3\Omega$		21		ns	
t _f	Turn-Off Fall Time			3.5		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =11A, di/dt=500A/μs		15		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =11A, di/dt=500A/μs		45		nC	

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

www.aosmd.com Page 2 of 5 Rev.1.1: August 2023

B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using \leq 10s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ$ C. Ratings are based on low frequency and duty cycles to keep initialT_J=25° C.

D. The $R_{\theta,JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta,JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in? FR-4 board with

²oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

V_{DS} (Volts)
Figure 1: On-Region Characteristics (Note E)

V_{GS} (Volts)
Figure 2: Transfer Characteristics (Note E)

 $\label{eq:local_potential} \mathbf{I_{D}}\left(\mathbf{A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Rev.1.1: August 2023 **www.aosmd.com** Page 4 of 5

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Rev.1.1: August 2023 **www.aosmd.com** Page 5 of 5