Finding tandem repeats in genomic data

Projects in Bioinformatics, 10 ECTS Astrid Christiansen, 201404423 Supervised by Thomas Mailund Aarhus University

June 2022

Table of Contents

Introduction

Suffix tree algorithm

Suffix array algorithm

Implementation

Experiments

Table of Contents

Introduction

Suffix tree algorithm

Suffix array algorithm

Implementation

Experiments

Tandem repeat: ATCTG ATCTG.

Tandem repeat: ATCTG ATCTG.

Find all TRs in string x of length n.

Tandem repeat: ATCTG ATCTG.

- \triangleright Find all TRs in string x of length n.
- ► Suffix tree- vs. suffix array algorithm.

Tandem repeat: ATCTG ATCTG.

- \triangleright Find all TRs in string x of length n.
- ► Suffix tree- vs. suffix array algorithm.
- ▶ Both time $O(n \log n + z)$.

▶ Non-branching vs. branching TRs.

▶ Non-branching vs. branching TRs.

```
0 1 2 3 4 5 6 7 8 1 10 11
A C C A C C A G T G T $

(0,6)

(1,6) *

(1,2) *

(1,2) *

(1,2) *

(1,2) *

(1,2) *
```

▶ Non-branching vs. branching TRs.

► Every *non-branching* TR is a *left-rotation* of another TR that starts one place to its right.

▶ Non-branching vs. branching TRs.

- ► Every *non-branching* TR is a *left-rotation* of another TR that starts one place to its right.
- Find all TRs from branching ones in time O(z).

Table of Contents

Introduction

Suffix tree algorithm

Suffix array algorithm

Implementation

Experiments

Suffix tree

Figure: Suffix tree for string x = ACCACCAGTGT\$.

Algorithm BRANCHING-REPEATS(T)

```
    for each inner node, v, in T do
    for each leaf, i', in sub-tree of v do
    if leaf i' + D(v) is also in sub-tree of v and x[i'] ≠ x[i' + 2D(v)] then
    report (i', 2D(v))
    end if
    end for
    end for
```

Algorithm BRANCHING-REPEATS(T)

```
    for each inner node, v, in T do
    for each leaf, i', in sub-tree of v do
    if leaf i' + D(v) is also in sub-tree of v and x[i'] ≠ x[i' + 2D(v)] then
    report (i', 2D(v))
    end if
    end for
```

How to determine if leaf is in sub-tree of node v?

▶ DFS numbering ⇒ constant query time.

Running time

Running time

Worst case: $\Theta(n^2)$.

The smaller half trick

Algorithm BRANCHING-REPEATS-SMALLER-HALF(T)

```
1: for each inner node, v, in T do
2:
       for each leaf, i', in "sub-tree of v except widest(v)" do
3:
           if leaf i' + D(v) is also in sub-tree of v and x[i'] \neq x[i' + 2D(v)] then
4:
               report (i', 2D(v))
5:
           end if
6:
           i' \leftarrow i' - D(v)
7:
           if leaf j' is in sub-tree of widest(v) and x[j'] \neq x[j' + 2D(v)] then
8:
               report (j', 2D(v))
9:
           end if
10:
        end for
11: end for
```

The smaller half trick

Algorithm BRANCHING-REPEATS-SMALLER-HALF(T)

```
1: for each inner node, v, in T do
2:
       for each leaf, i', in "sub-tree of v except widest(v)" do
3:
           if leaf i' + D(v) is also in sub-tree of v and x[i'] \neq x[i' + 2D(v)] then
4:
               report (i', 2D(v))
5:
           end if
6:
           i' \leftarrow i' - D(v)
7:
           if leaf j' is in sub-tree of widest(v) and x[j'] \neq x[j' + 2D(v)] then
8:
               report (j', 2D(v))
9:
           end if
10:
        end for
11: end for
```

Smaller half trick: $O(n \log n)$.

The smaller half trick

Algorithm BRANCHING-REPEATS-SMALLER-HALF(T)

```
1: for each inner node, v, in T do
2:
       for each leaf, i', in "sub-tree of v except widest(v)" do
3:
           if leaf i' + D(v) is also in sub-tree of v and x[i'] \neq x[i' + 2D(v)] then
4:
               report (i', 2D(v))
5:
           end if
6:
           i' \leftarrow i' - D(v)
7:
           if leaf j' is in sub-tree of widest(v) and x[j'] \neq x[j' + 2D(v)] then
8:
               report (j', 2D(v))
9.
           end if
10:
        end for
11: end for
```

Smaller half trick: $O(n \log n)$. Total time: $O(n \log n + z)$.

Table of Contents

Introduction

Suffix tree algorithm

Suffix array algorithm

Implementation

Experiments

Suffix array

ℓ -intervals

SA:	LCP:
\$	0
ACCACCAGTGT\$	0
ACCAGTGT\$	4
AGTGT\$	1
CACCAGTGT\$	0
CAGTGT\$	2
CCACCAGTGT\$	1
CCAGTGT\$	3
GT\$	0
GTGT\$	2
T\$	0
TGT\$	1

ℓ-intervals

```
SA:
                   LCP:
                                  \ell = min_{k \in (i,j)} LCP[k] and either
ACCACCAGTGT$
                                   i = 0 or LCP[i] < \ell and either
ACCAGTGT$
                                  j = n \text{ or } LCP[j] < \ell
AGTGT$
CACCAGTGT$
CAGTGT$
CCACCAGTGT$
CCAGTGT$
GT$
GTGT$
Τ$
TGT$
```

ℓ-intervals

▶ Use RMQ to find ℓ .

Find TRs using suffix array

Find TRs using suffix array

▶ Again time $\Theta(n^2)$ ⇒ use smaller half trick!

Find TRs using suffix array - smaller half trick

Find TRs using suffix array - smaller half trick

▶ Time $O(n \log n)$.

Find TRs using suffix array - smaller half trick

- ightharpoonup Time $O(n \log n)$.
- ▶ Total time $O(n \log n + z)$.

Table of Contents

Introduction

Suffix tree algorithm

Suffix array algorithm

Implementation

Experiments

Implementation: Finding branching TRs

```
def branching_TR_smaller_half(x, sa, lcp):
       isa = construct_isa(sa)
2
       M = RMQ_preprocess(lcp)
3
       for (i, j) in get_inner_nodes(lcp, M, 0, len(x)):
            child_nodes = list(get_child_nodes(lcp, M, i, j))
5
            (w_i, w_j) = widest(child_nodes)
6
            (_, L) = RMQ(lcp, M, i + 1, j)
7
           for (ii, jj) in child_nodes:
                if (ii, jj) == (w_i, w_j):
                    continue
10
                for q in valid_isa_index(sa, ii, jj, +L):
11
                    r = isa[sa[q] + L]
12
                    if (i \leq r < j) and not (ii \leq r < jj):
13
                        vield (sa[q], 2*L)
14
                for q in valid_isa_index(sa, ii, jj, -L):
15
                    r = isa[sa[q] - L]
16
                    if w_i \le r < w_j:
17
                        yield (sa[r], 2*L)
18
```

Implementation: Finding all TRs

```
def find_all_tandem_repeats(x, branching_TRs):
    for (i, L) in branching_TRs:
        yield (i, L)
    while can_rotate(x, i, L):
        yield (i-1, L)
        i -= 1

def can_rotate(x, i, L):
    return i > 0 and x[i - 1] == x[i + L - 1]
```

Table of Contents

Introduction

Suffix tree algorithm

Suffix array algorithm

Implementation

Experiments

Correctness

******** ************* TANDEM REPEATS, (index, length), for string: TANDEM REPEATS, (index, length), for string: x: aaaaaa\$ x: ACCACCAGTGT\$ (0, 6): ACC ACC (0, 2): a a (0, 4): aa aa (1, 2): C C (0, 6): aaa aaa (1, 6): CCA CCA (1, 2): a a (4, 2): C C (1, 4): aa aa (7, 4): GT GT (2, 2): a a (2, 4): aa aa (3, 2): a a (4, 2): a a

Correctness

```
TANDEM REPEATS, (index, length), for string:
TANDEM REPEATS, (index, length), for string:
                                                 x: aaaaaa$
x: ACCACCAGTGT$
                                                 (0, 2): a a
(0, 6): ACC ACC
                                                 (0, 4): aa aa
(1, 2): C C
                                                 (0, 6): aaa aaa
(1, 6): CCA CCA
                                                 (1, 2): a a
(4, 2): C C
                                                 (1, 4): aa aa
(7, 4): GT GT
                                                 (2, 2): a a
                                                 (2, 4): aa aa
                                                 (3, 2): a a
                                                 (4, 2): a a
```

Number of found TRs for A^n :

Running time: Worst case input

Finding branching tandem repeats:

Finding all tandem repeats:

Running time: Random input

Finding branching tandem repeats:

Finding all tandem repeats:

Discussion and conclusion

- ► TRs can be found using ST or SA.
- ▶ Same time complexity, $O(n \log n + z)$.
- ► ST better for visualising algorithm.
- ► SA more space efficient and simpler data structures.

Every *non-branching* TR is a *left-rotation* of another TR that starts one place to its right.

Every *non-branching* TR is a *left-rotation* of another TR that starts one place to its right.

• (i', ℓ) where $x[i', i' + \ell) = \alpha \alpha = a\beta a\beta$.

Every *non-branching* TR is a *left-rotation* of another TR that starts one place to its right.

- (i', ℓ) where $x[i', i' + \ell) = \alpha \alpha = a\beta a\beta$.
- Non-branching $\Rightarrow x[i', i' + \ell] = a\beta a\beta a$.

Every *non-branching* TR is a *left-rotation* of another TR that starts one place to its right.

- (i', ℓ) where $x[i', i' + \ell) = \alpha \alpha = a\beta a\beta$.
- Non-branching $\Rightarrow x[i', i' + \ell] = a\beta a\beta a$.
- $ightharpoonup (i', \ell)$ is a left-rotation of $(i' + 1, \ell)$.

Every *non-branching* TR is a *left-rotation* of another TR that starts one place to its right.

- (i', ℓ) where $x[i', i' + \ell) = \alpha \alpha = a\beta a\beta$.
- Non-branching $\Rightarrow x[i', i' + \ell] = a\beta a\beta a$.
- (i', ℓ) is a left-rotation of $(i' + 1, \ell)$.

We can find all the TRs by repeated left-rotations from the branching TRs! Time O(z).