# Cost-Efficient Anonymous Authentication Scheme based on Set-Membership Zero-Knowledge Proof

# Christopher Wiraatmaja and Shoji Kasahara

Nara Institute of Science and Technology, Japan









#### **Table of Contents**

- Introduction
- Preliminaries
- Proposed Method
- Implementation
- Experiment
- Conclusion

# Introduction

#### Risk of IoT Devices



IoT Devices is a target to Security and Privacy Attacks due to their proximity to the Users

#### IoT Devices Protection Answer



Administrator employs an Access Control to prevents Security and Privacy Attack

### Security Issue on Access Control



Security Attacks on Access Control leads to Unauthorized Access

#### Security Issue Solution



Previous works [Yut+19,Mae+19] leverage Blockchain properties to develop a Blockchain-Based Access Control

#### Scalability Issue on Blockchain-Based Access Control



Scalability is an important metric on BBAC due to the Blockchain limitations

#### Scalability Issue Solution



Previous Work [Wir+21] addressed the Scalability Issues by improving the Cost-Efficiency of BBAC

#### New Issue on Blockchain-Based Authentication



Previous BBAC Authentication Schemes require Users to show their Credential to create an Authentication Proof

#### Privacy Issue on Blockchain-Based Access Control



Previous works didn't consider potential Privacy Attacks from Malicious Actor

#### Potential Solution for Privacy Issue



Hiding User Credential in the Authentication Proof prevents Privacy Attacks from Malicious Actor

#### Research Goal

#### We aim to:

 Address the Privacy Issue on BBAC while paying attention to its Security and Performance Issue

#### Our steps to reach our goal:

- Develop a Scalable Blockchain-Based Anonymous Authentication Scheme
  - The Authentication Proof needs to hide the User Credential from Privacy Attacks
- Prevent potential Security Attacks in our scheme while preventing Privacy Attacks

# **Preliminaries**

## Zero Knowledge Proof



Zero-Knowledge Proof allows a Prover to convince a Verifier about some Statements is True while hiding the supporting Witnesses

## Zero Knowledge Set-Membership Proof



zk-Set-Membership Proof guarantees an Element is inside a Set while hiding that element

# **Proposed Method**

#### **Anonymous Authentication Design**



The User generates an Authentication Proof which hides their Credential using zk-Set-Membership Proof

#### Set-Membership-based Authentication Scheme



The User Credential is represented as Public-Private Key Pair to prevent unauthorized access

## Difficulty in Communication



The User can't directly communicate with the Administrator without revealing their Credential

### **Anonymous Agent Delegation**



The User delegates another entity called an Agent to send the Authentication Proof to the Administrator

Anonymous icons created by Slidicon - Flaticon

#### Proposed Authentication Schematic



Blockchain

User always delegates a new Agent to prevent Administrator tracking the Agent's Credential

### Replay Attack Problem



Replayed Attack occurs when another user utilized existing proof to bypass security measure



Replay Attack can be prevented by either distinguishing the Replayed Proofs or the Malicious Agents

## **Spotting Malicious Agent**



Putting a name or the Agent's Credential in the Authentication Proof helps the Admin to distinguish Malicious Agents

#### Zero-Knowledge Named Proof



zkNamedProof works by engraving an immutable name which can be verified by the Administrator

#### Named Authentication Proof



The User generates a Named Authentication Proof by composing zkSet-Membership Proof and zkNamedProof

#### Replay Attack Prevention Scheme



Replay Attack is prevented by comparing the Agent Credential and the Name in the Authentication Proof

# Implementation

# Implementation - Technology Stack

| Technology                          | Technology                              |
|-------------------------------------|-----------------------------------------|
| Zero-knowledge Set-Membership Proof | RSA-based set-membership Proof [Ben+21] |
| SNARK                               | LegoGroth16 [Ben+21]                    |
| SNARK Library                       | Arkworks-rs (Rust) [ark]                |
| Hash Function                       | Blake2S                                 |
| Curve                               | BLS12-381                               |
| Blockchain                          | Ethereum                                |

# Experiment

# Similar Works Comparison

| Authentication Scheme | Replay Attack Prevention Technique |                          |  |
|-----------------------|------------------------------------|--------------------------|--|
|                       | Distinguishing                     | Technique                |  |
| AnonParking [Ho+21]   | Replayed Proof                     | Rotating Nonce           |  |
| HashAuth              | Replayed Proof                     | Collision Resistant Hash |  |
| PseudoAuth [Luong+22] | Malicious Agent                    | Pseudonym                |  |
| NPAuth (Ours)         | Malicious Agent                    | Named Proof              |  |

## Blockchain Implementation Scalability

To investigate the scalability of our work, we compared the similar works in the following performance:

- Cost-Performance
  - o How much gas is used on access request?
- Processing Performance
  - O How many request can be processed at a time?

#### **Cost Performance Calculation**



We only calculate the replay attack prevention gas cost in our experiment

# Replay Attack Prevention Gas Cost Comparison

| Process Detail   | AnonParking | HashAuth | PseudoAuth | NPAuth (Ours) |
|------------------|-------------|----------|------------|---------------|
| Write Operation  | 22,900      | 20,000   | -          | -             |
| Read Operation   | 4,200       | 2,100    | 2,100      | -             |
| Hash Calculation | 472         | 960      | -          | -             |
| Minor Operation  | 494         | 442      | 185        | 395           |
| Total Gas Cost   | 28,066      | 23,502   | 2,285      | 395           |

Our Authentication Scheme is significantly cheaper than the other schemes

## Processing Performance on Blockchain



Capability of processing multiple access request implies high performance on Blockchain

# Racing Condition Occurrence



Racing Condition prevents multiple processing access requests on the same block

# Racing Condition Probability Comparison

| Authentication Scheme | Racing Condition<br>Probability | Processing Limit per<br>Block |
|-----------------------|---------------------------------|-------------------------------|
| AnonParking           | High                            | 1 request                     |
| HashAuth              | Negligible                      | High                          |
| PseudoAuth            | -                               | High                          |
| NPAuth (Ours)         | -                               | High                          |

Our Scheme is capable of processing multiple requests simultaneously

# **Experiment Summary**

To summarize our experiment results, we compare each authentication by each of its characteristic.

| Characteristic  | AnonParking | HashAuth | PseudoAuth | NPAuth (Ours) |
|-----------------|-------------|----------|------------|---------------|
| Fully Anonymous | V           | ·        | X          | ~             |
| Cheap Gas Cost  | X           | X        | X          | ~             |
| High Throughput | X           | ~        | ~          | V             |

# Conclusion

#### Conclusion

#### To conclude our work, we proposed:

- Replay Attack Prevention Scheme called zkNamedProof that is robust against privacy attack
- Blockchain-Based Authentication Scheme, which are:
  - Fully Anonymous
  - Cost-efficient
  - High-throughput

#### We aim to address these problems in the future:

- Anonymous Registration Process
- ZKP Verification Cost on Blockchain

# Thank You for Listening

Visit our GitHub Repository



If you have any questions, please let me know