Exercise 1

Goal of Machine Learning

다음 데이터를 가장 잘 설명하는 함수를 찾아라

$$(0.0, 0.0)$$
 $(1.0, 1.0)$ $(1.0, 2.0)$

$$f(x; w_0, w_1) = w_1 x + w_0$$

$$Error = \sum_{(\mathbf{x}, \mathbf{y}) \in Data} (y - f(\mathbf{x}; w_1, w_2, ..., w_m))^2$$

Gradient Descent Method

Steps

learning rate

Randomly choose an initial solution, w^0

Repeat

$$w^{t+1} = w^t + \eta \frac{dE}{dw} \bigg|_{w=w^t}$$

Until stopping condition is satisfied

- |w^{t+1} w^t|is very small f(w) little moves

 - fixed number of iterations

Coding 전에 생각해 볼 것

- ▶ 입력 데이터 : (0.0), (1.0), (1.0)
- 출력 데이터 : (0.0), (1.0), (2.0)
- Optimizer: gradient descent method
- Loss function: Mean square error

준비 단계 1

- ▶ 입력 데이터 : (0.0), (1.0), (1.0)
- 출력 데이터 : (0.0), (1.0), (2.0)

```
x_train = torch.FloatTensor([[0], [1], [1]])
y_train = torch.FloatTensor([[0], [1], [2]])
```

▶ Model: $f(X; W_0, W_1) = W_1*X + W_0$

```
hypothesis = x_train * w + b
```

▶ Loss function : Error = $\sum (y-f(X; W1, W2,..., Wm))^2$

```
cost = torch.mean( (hypothesis - y_train)**2)
```


optimizer

Optimizer : SGD

Adadelta	Implements Adadelta algorithm.	
Adagrad	Implements Adagrad algorithm.	
Adam	Implements Adam algorithm.	
AdamW	Implements AdamW algorithm.	
SparseAdam	Implements lazy version of Adam algorithm suitable for sparse tensors.	
Adamax	Implements Adamax algorithm (a variant of Adam based on infinity norm).	
ASGD	Implements Averaged Stochastic Gradient Descent.	
LBFGS	Implements L-BFGS algorithm, heavily inspired by minFunc.	
RMSpzop	Implements RMSprop algorithm.	
Rprop	Implements the resilient backpropagation algorithm.	
SGD	Implements stochastic gradient descent (optionally with momentum).	

https://pytorch.org/docs/stable/optim.html?highlight=optimizer#torch.optim.Optimizer

optimizer

Optimizer : SGD

Exercise 1

```
import torch
import numby as no
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
x_train = torch.FloatTensor([[0], [1], [1]])
y_train = torch.FloatTensor([[0], [1], [2]])
                                                  f(x; w_0, w_1) = w_1 x + w_0
w = torch.zeros(1, requires_grad = True)
b = torch.zeros(1, requires grad = True)
optimizer = optim.SGD([w, b] , Ir = 0.01)
nb = pochs = 1000
for epoch in range( nb_epochs + 1):
   hypothesis = x train * w + b
   cost = torch.mean( (hypothesis - v train)**2)
   optimizer.zero_grad()
   cost.backward()
   optimizer.step()
    if epoch % 100 == 0:
       print( 'Epoch {:5d}/{} w:{:.3f} b:{:.3f} cost: {:.3f}'
             .format(epoch, nb_epochs, w.item(), b.item(), cost.item() ))
```

Exercise 1

```
0/3000 w:0.020 b:0.020 cost: 1.667
Epoch
       -100/3000 w:0.782 b:0.509 cost: 0.283
Epoch
       200/3000 w:0.981 b:0.403 cost: 0.230
Epoch:
       300/3000 w:1.114 b:0.301 cost: 0.202
Epoch
       400/3000 w:1.212 b:0.225 cost: 0.186
Epoch
       500/3000 w:1.285 b:0.168 cost: 0.178
Epoch
Epoch
       600/3000 w:1.340 b:0.125 cost: 0.173
       -700/3000 w:1.380 b:0.093 cost: 0.170
Epoch
Epoch 800/3000 w:1.411 b:0.070 cost: 0.169
      900/3000 w:1.433 b:0.052 cost: 0.168
Epoch
Epoch 1000/3000 w:1.450 b:0.039 cost: 0.167
Epoch 1100/3000 w:1.463 b:0.029 cost: 0.167
Epoch 1200/3000 w:1.472 b:0.022 cost: 0.167
Epoch 1300/3000 w:1.479 b:0.016 cost: 0.167
Epoch 1400/3000 w:1.485 b:0.012 cost: 0.167
Epoch 1500/3000 w:1.488 b:0.009 cost: 0.167
Epoch 1600/3000 w:1.491 b:0.007 cost: 0.167
Epoch 1700/3000 w:1.494 b:0.005 cost: 0.167
Epoch 1800/3000 w:1.495 b:0.004 cost: 0.167
Epoch 1900/3000 w:1.496 b:0.003 cost: 0.167
Epoch 2000/3000 w:1.497 b:0.002 cost: 0.167
Epoch 2100/3000 w:1.498 b:0.002 cost: 0.167
Epoch 2200/3000 w:1.499 b:0.001 cost: 0.167
Epoch 2300/3000 w:1.499 b:0.001 cost: 0.167
Epoch 2400/3000 w:1.499 b:0.001 cost: 0.167
Epoch 2500/3000 w:1.499 b:0.000 cost: 0.167
Epoch 2600/3000 w:1.500 b:0.000 cost: 0.167
Epoch 2700/3000 w:1.500 b:0.000 cost: 0.167
Epoch 2800/3000 w:1.500 b:0.000 cost: 0.167
Epoch 2900/3000 w:1.500 b:0.000 cost: 0.167
Epoch 3000/3000 w:1.500 b:0.000 cost: 0.167
```

Quiz 1

Data: (x1, x2, x3) (Y)

```
x_train = torch.FloatTensor([[73,80,75], [93,88,93], [89, 91, 90],[96,98,100],[73,66,70]])
y_train = torch.FloatTensor([[152], [185], [180], [196], [142]])
```

hint

- [a1, a2, a3]*[w1, w2, w3] =?
- MSELOSS ?

Docs > torch.nn > MSELoss

>_

MSELOSS

CLASS torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')

[SOURCE]

Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input x and target y.

The unreduced (i.e. with reduction set to 'none') loss can be described as:

$$\ell(x,y) = L = \{l_1, \dots, l_N\}^{\top}, \quad l_n = (x_n - y_n)^2,$$

where N is the batch size. If reduction is not 'none' (default 'mean'), then:

$$\ell(x,y) = \begin{cases} \text{mean}(L), & \text{if reduction} = \text{`mean'}; \\ \text{sum}(L), & \text{if reduction} = \text{`sum'}. \end{cases}$$

Examples:

```
>>> loss = nn.MSELoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()
```

Answer 1

```
import torch
import numby as no
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
x_train = torch.FloatTensor([[73,80,75], [93,88,93], [89, 91, 90], [96,98,100], [73,66,70]])
y_train = torch.FloatTensor([[152], [185], [180], [196], [142]])
w = torch.zeros((3, 1), requires_grad = True)
b = torch.zeros(1, requires grad = True)
                                                              loss = nn.MSELoss()
optimizer = optim.SGD([w, b] , Ir = 1e-5)
                                                              nb_{epochs} = 1000
nb = pochs = 1000
                                                              for epoch in range( nb_epochs + 1):
for epoch in range( nb epochs + 1):
                                                                  #hypothesis = x_train * w + b
                                                                  hypothesis = x train.matmul(w) + b
    #hypothesis = x_train * w + b
    hypothesis = x train.matmul(w) + b
                                                                  #cost = torch, mean( (hypothesis - v_train)**2)
                                                                  #cost = F, mse_loss(hypothesis, v_train)
    #cost = torch, mean( (hypothesis - v_train)**2)
                                                                  cost = loss(hypothesis, y_train)
    cost = F.mse_loss(hypothesis, y_train)
    optimizer.zero_grad()
    cost.backward()
    optimizer.step()
    if epoch % 100 == 0:
        print( 'Epoch {:5d}/{} cost: {:.3f}'
              .format(epoch, nb_epochs, cost.item() ))
        print( w.squeeze() )
```


MSE Loss

▶ Torch.nn.function : 함수, torch.nn : 클래스

SOURCE CODE FOR TORCH.NN.MODULES.LOSS

```
import warnings

from .distance import PairwiseDistance
from .module import Module
from .. import functional as F
from .. import _reduction as _Reduction

class MSELoss(_Loss):
    """Creates a criterion that measures the mean squared error (squared L2 norm) between
    each element in the input :math:'x' and target :math:'y'.

__constants__ = ['reduction']

def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
    super(MSELoss, self).__init__(size_average, reduce, reduction)

def forward(self, input: Tensor, target: Tensor) -> Tensor:
    return F.mse_loss(i)put, target, reduction=self.reduction)
```

SOURCE CODE FOR TORCH, NN. FUNCTIONAL

```
r"""Functional interface"""
from typing import Callable, List, Optional, Tuple
import math
import warnings
```

```
def mse_loss(
   input: Tensor,
    target: Tensor,
   size_average: Optional[bool] = None,
    reduce: Optional[bool] = None,
   reduction: str = "mean",
) -> Tensor:
   r"""mse loss(input, target, size average=None, reduce=None, reduction='mean') -> Tensor
    Measures the element-wise mean squared error.
    See :class: `~torch.nn.MSELoss` for details.
    if has torch function variadic(input, target):
       return handle_torch_function(
            mse_loss, (input, target), input, target, size_average=size_average, reduce=reduce,
reduction=reduction
   if not (target.size() == input.size()):
       warnings.warn(
            "Using a target size ({}}) that is different to the input size ({}}). "
            "This will likely lead to incorrect results due to broadcasting. "
            "Please ensure they have the same size.".format(target.size(), input.size()),
            stacklevel=2,
    if size_average is not None or reduce is not None:
       reduction = _Reduction.legacy_get_string(size_average, reduce)
    expanded_input, expanded_target = torch.broadcast_tensors(input, target)
    return torch._C._nn.mse_loss(expanded_input, expanded_target,
_Reduction.get_enum(reduction))
```


Tip

Data Preprocessing

How can we make Deep Neural Network?

```
W = torch.zeros((3, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
```


nn.Module (1)

```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class MultivariateLinearRegressionModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(3, 1)

def forward(self, x):
    return self.linear(x)
```

nn.Module (2)

nn.Module (3)

```
nb_epochs = 20

for epoch in range(nb_epochs + 1):
# H(x) 계산
prediction = model(x_train)

# cost 게산
cost = F.mse_loss(prediction, y_train)

# cost로 H(x) 개선
optimizer.zero_grad()
cost.backward()
optimizer.step()

# 20世마다 로그 출력
print('Epoch {:4d}/{} Cost: {:.6f}'.format(
epoch, nb_epochs, cost.item()
))
```

Pytorch

GPU

```
import torch
import numpy as np

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(device)

#net = Model.to(device)
#inputs = data.to(device)
```

Question and Answer