Thus, both $x = \phi_1(x)$ and $x = \phi_3(x)$, give us convergent sequences of iteration, we shall take $x = \phi_1(x) = \frac{1}{x^2+1}$ for more rapid convergence than $x = \phi_3(x) = (1-x)^{1/3}$. We take $x_0 = 0.5$ and $x = \phi_1(x) = \frac{1}{x^2+1}$.

n	x_n	$\phi_1(x_n)$
0	0.5	0.8
1	0.8	0.61
2	0.61	0.73
3	0.73	0.65
4	0.65	0.70
5	0.70	0.67
6	0.67	0.69
7	0.69	0.677
8	0.677	0.6857
9	0.6857	0.6802
10	0.6802	0.6836
check 11	0.6836	-0.6815

.. 0.68 is the root of the equation, correct up to two decimal places.

EXAMPLE 6.6.6 Find, by the method of iteration, the root of $2x - \log_{10} x - 7 = 0$, correct to four decimal places, which between 3 and 4.

SOLUTION: Let
$$f(x) = 2x - \log_{10} x - 7$$
.

Here
$$f(3) = -1.47 < 0$$
 and $f(4) = 0.39 > 0$.

Thus, one root of the equation between 3 and 4. We re-write the equation as

$$x = \frac{1}{2}[\log_{10} x + 7] = \phi(x).$$

 $|\phi'(x)| = \frac{1}{2x} \cdot \frac{1}{\log_e 10} < 1 \text{ in } (3,4),$ as Max $[\phi'(3)|, |\phi'(4)|] = \text{Max } [0.07, 0.05] = 0.07 < 1$. We take $x_0 = 3$, and $\phi(x) = \frac{1}{2}[\log_{10} x + 7]$.

	n	x_n	$\phi(x_n)$
	0	3.0	3.7
-	1	3.7	3.78
	2	3.78	1.7887
	3	3.7887	3.7892
	4	3.7892	3.78927
	5	3.78927	3.78928
- che	eck 6	3.78928	3.789278

: 3.7893 is the root of the equation, correct up to four decimal places.

Newton-Raphson Method

This is also an iterative method and is used to find isclated roots of an equation f(x) = 0. The object of this mediod is to correct the approximate root x_0 (say)

successively to its exact value α . Initially, a crude approximation small interval $[a_0, b_0]$ is found out in which replaced α . Initially, a crude approximation small interval $[a_0, b_0]$

is found out in which only one root α (say) of f(x) = 0 lies. Let $x = x_0 (a_0 \le x_0 \le b_0)$ is an approximation of the root α of the equation f(x) = 0. Let h be a small correction on x_0 , then $x_1 = x_0 + h$ is the correct root.

$$f(x_1) = 0 \Rightarrow f(x_0 + h) = 0.$$

Therefore, by Taylor series expansion, we get,

$$f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \dots = 0.$$

As h is small, neglecting the second and higher power of h, we get,

$$h = -\frac{f(x_0)}{f'(x_0)} \tag{6.7.1}$$

$$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}. \tag{6.7.2}$$

Further, if h_1 be the correction on x_1 , then $x_2 = x_1 + h_1$ is the correct root of f(x) = 0.

$$f(x_2) = f(x_1 + h_1) = 0.$$

Thus,

$$f(x_1) + h_1 f'(x_1) + \frac{h_1}{2!} f''(x_1) + \cdots = 0.$$

Neglecting the second and higher power of h_1 , we get,

$$h_1 = -\frac{f(x_1)}{f'(x_1)}.$$

$$\therefore x_2 = x_1 + h_1 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$
(6.7.3)

Proceeding in this way, we get the (n+1)th corrected root as,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$
(6.7.4)

The formula (6.7.4) generates a sequence of successive corrections on an approximate root x_0 to get the correct root α of f(x) = 0, provided the sequence is convergent. The formula (6.7.4) is known as the iteration formula for Newton-Raphson Method. The number of iterations required depends upon the desired degree of accuracy of the root.

6.7.1 Convergence of Newton-Rapisson Method

Comparing with the iteration method, we may assume the iteration function as

$$\phi(x) = x - \frac{f(x)}{f'(x)}.$$

Thus, the above sequence will be convergent, if and only if,

$$|\phi'(x)| = \left| 1 - \frac{\{f'(x)\}^2 - f(x)f''(x)\}}{\{f'(x)\}^2} \right| < 1, \text{ i.e., } \left| \frac{f(x)f''(x)}{\{f'(x)\}^2} \right| < 1$$

$$\therefore |\{f'(x)\}^2| > |f(x) \cdot f''(x)|.$$

$$(6.7.5)$$

6.7.2 Estimation of Error in Newton-Raphson Method

If x_{n+1} be the (n+1)th approximation of a root α of f(x)=0 and ε_{n+1} be the corresponding error, we have

$$\alpha - x_{n+1} = \varepsilon_{n+1}$$
and $x_{n+1} = x_n + h_n$
or $\alpha - x_{n+1} = \alpha - x_n - h_n$
or $\varepsilon_{n+1} = \varepsilon_n - h_n$ [by (6.7.6)]
or $\varepsilon_n = \varepsilon_{n+1} + h_n$ (6.7.7)

where

$$h_n = -\frac{f(x_n)}{f'(x_n)} \text{ or, } f(x_n) + h_n f'(x_n) = 0.$$
 (6.7.8)

Again we have

$$\alpha = x_n + \varepsilon_n$$
or, $f(\alpha) = 0 = f(x_n + \varepsilon_n) = f(x_n) + \varepsilon_n f'(x_n) + \frac{\varepsilon_n^2}{2!} f''(\xi_n); (x_n < \xi_n < \alpha).$

$$(6.7.9)$$

Subtracting (6.7.8) from (6.7.9), we get,

$$(\varepsilon_n - h_n)f'(x_n) + \frac{\varepsilon_n^2}{2!}f''(\xi_n) = 0, \text{ or, } \varepsilon_{n+1}f'(x_n) + \frac{\varepsilon_n^2}{2!}f''(\xi_n) = 0$$
or, $\left|\frac{\varepsilon_{n+1}}{\varepsilon_n^2}\right| = \frac{1}{2} \left|\frac{f''(\xi_n)}{f'(x_n)}\right|$.

If the iteration converges ne., $x_n, \xi_n \to \alpha$, as $n \to \infty$

$$\lim_{n \to \infty} \left| \frac{\varepsilon_{n+1}}{\varepsilon_n^2} \right| = \frac{1}{2} \left| \frac{f''(\alpha)}{f'(\alpha)} \right| \quad \text{or,} \quad \lim_{n \to \infty} \left| \frac{\alpha - x_{n+1}}{(\alpha - x_n)^2} \right| = \frac{1}{2} \left| \frac{f''(\alpha)}{f'(\alpha)} \right|. \tag{6.7.10}$$

Thus, it is clear that Newton-Raphson iteration method is a second order iterative process. Therefore, this iterative process converges vary rapidly with constant asymptotic error equal to $\frac{1}{2} \left| \frac{f''(\alpha)}{f'(\alpha)} \right|$.

6.7.3 Geometrical Interpretation of Newton-Raphson Method

We draw the graph [Fig. 6.7] of the curve y = f(x) w.r.t. ox and oy as axes. Let the tangent at $P_0[x_0, f(x_0)]$ meet the x-axis, A_1 , where $oA_1 = x_1$ and the tangent at $P_1[x_1, f(x_1)]$ meet the x-axis at A_2 , where $oA_2 = x_2$, etc.

Thus,

$$P_0 A_0 = A_1 A_0 \tan \angle P_0 A_1 A_0 = A_1 A_0 f'(x_0)$$
or $f(x_0) = (x_0 - x_1) f'(x_0)$
or $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$.

Fig. 6.7

Thus, it is clear that the successive approximations of the root, i.e., $x_1, x_2, x_3, \cdots, x_{n+1}$ are obtained respectively by the points at which the tangents at $x_0, x_1, x_2, \cdots, x_n$ to the curve y = f(x) meet the x-axis.

 \square Remark 6.7.1 If ε_n be a tolerable error, we should terminate the iteration when

$$|x_{n+1}-x_n|\leq \varepsilon_n.$$

- \square REMARK 6.7.2 Newton-Raphson Method fails when, f'(x) = 0 or very small in the neighbourhood of the root.
- □ REMARK 6.7.3 If the initial approximation is very close to the root, then the convergence in Newton-Raphson Method is faster than the iteration method.
- ☐ REMARK 6.7.4 The initial approximation must be taken very close to the root, otherwise the iterations may diverge.

6.8 Newton's Iterative Formula for Finding qth root of a Positive Real Number R

Let $x = \sqrt[q]{R}$: $x^q - R = 0$.

Using Newton-Raphson Method to $f(x) \equiv x^q - R = 0$, we have the iteration formula as:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^q - R}{qx_n^{q-1}}$$

$$= \frac{(q-1)x_n^q + R}{qx_n^{q-1}} \quad (n = 0, 1, 2, \cdots). \tag{6.8.1}$$

Number of iterations required depends upon the desired degree of accuracy.

Corollary 6.8.1 To find the square root of a positive real number R, we substitute q=2 in (6.8.1) and then the iteration formula becomes

$$x_{n+1} = \frac{1}{2} \left[x_n + \frac{R}{x_n} \right] \quad (n = 0, 1, 2, \cdots).$$
 (6.8.2)

This iterative procedure known as Hero's process.

Corollary 6.8.2 To find the cube root of a positive real number R, we substitute q=3 in (6.8.1) and the iteration formula transfers to

$$x_{n+1} = \frac{2x_n^3 + R}{3x_n^2}$$
 $(n = 0, 1, 2, 3, \cdots).$ (6.8.3)

6.9 Solved Problems

EXAMPLE 6.9.1 Find the root of $x^3 - 8x - 4 = 0$, which between 3 and 4, by Newton-Raphson Method, correct to four decimal places. [VH '89]

SOLUTION: Let $f(x) = x^3 - 8x - 4$. .: f(3) = -1 < 0 and f(4) = 28 > 0. Thus, f(x) = 0, has a root between 3 and 4.

$$f'(x) = 3x^2 - 8$$
 and $f'(3) = 19$.

We take, $x_0 = 3$ and the successive approximations are computed in the table as follows:

$n x_n$	$f(x_n)$	$f'(x_n)$	$h_n = -\frac{f(x_n)}{f'(x_n)}$	$x_{n+1} = x_n + hn$
0.3	-1.0	19.0 ,	0.05	3.05
1 3.05	-0.027	19.9075	0.0014	3.0514
2 3.0514	0.000513	19.93312	-0.0000257	3.051374
check 3 3.051374	-0.000005	19.932649	0.00000025	3,0513742

Thus, 3.0514 is the root of the given equation, correct up to four decimal places.

EXAMPLE 6.9.2 Find a positive root of $x^2 + 2x - 2 = 0$, by Newton-Raphson Method, correct to two significant figures. [CH '81], [VH '90]

SOLUTION: Let
$$f(x) = x^2 + 2x - 2$$
. $f(0) = -2$, $f(0.5) = -0.75$, $f(0.7) = -0.11$, $f(0.8) = 0.24$. Here $f'(x) = 2x + 2$ and $f'(0.7) = 3.4$.

Thus, f(x) = 0 has a root between 0.7 and 0.8.

We take, $x_0 = 0.7$. Now we compute the successive approximations in a table as follows:

n	x_n	$j''(x_n)$	$f'(x_n)$	$h_n = -\frac{f(x_n)}{f'(x_n)}$	$x_{n+1} = x_n + h_n$
0	0.7	-0.11	3.4	0.03	0.73
1	0.73	-0.0071	3.46	0.00205	0.73205
check 2	0.73205	-0.0000028	3.4641	0.0000008	0.732051

. 0.73 is the root of the equation, correct up to two significant figures.

EXAMPLE 6.9.3 Find a positive root of $x + \ln x - 2 = 0$, by Newton-Raphson Method, correct to six significant figures.

Solution: Let $f(x) = x + \ln x - 2$.

f(1) = -1, f(1.5) = -0.09, f(2) = 0.69.f(x) = 0 has a root between 1.5 and 2.0.

Now $f'(x) = 1 + \frac{1}{x}$ and f'(1.5) = 1.67.

(1,2)x (0,1)x

ung xo	= 1.5, the suc	ressive appr	oximati	ons are compu	ted in the table as
_	n xn	$f(x_n)$	$f'(x_n)$	$h_n = -\frac{f(z_n)}{f'(z_n)}$	$x_{n+1} = x_n + h_n$
	0 1.5	-0.09	1.67	0.054	1.554
	1 1.554 2 1.557146			0.003146	1.557146
	3 1 557146	0.0000007	1.6422	-0.0000004	1.5571453
checi	3 1.5571453 k 4 1.5571456	-0.0000005	1.6422	0.0000003	1.5571456
-	1 1.00/1456	0.000000	1.6422	0.0000000	1.5571456

.. 1.55714 is the root of the equation, correct to six significant figures.

EXAMPLE 6.9.4 Find by Newton-Raphson Method the real root of

$$3x - \cos x - 1 = 0.$$
 [CH '87]

1.5571456

0.0000000

SOLUTION: Let $f(x) = 3x - \cos x - 1$: f(0) = -2, f(0.5) = -0.37, f(0.7) = 0.34.

Thus, one real root of f(x) = 0 between 0.5 and 0.7.

Now $f'(x) = 3 + \sin x$ and f'(0.5) = 3.48.

Taking $x_0 = 0.5$, the successive approximations of the root are computed in the following table.

	$n x_n$	$f(x_n)$	$f'(x_n)$	$h_n = -\frac{f(x_n)}{f'(x_n)}$	$x_{n+1} = x_n + h_n$
	0 0.5	-0.37	3.48	0.1063	0.6063
	1 0.6063	-0.00286		0.000801	0.607101
	2 0.607101	-0.00000231	3.570489	0.00000064	0.60710164
check	3 0.6071016	-0.00000017	3.570489	0.00000003	0.60710163

 \therefore 0.60710 is the root of f(x) = 0, correct up to five decimal places.

Example 6.9.5 Find a real root of $x^x + x - 4 = 0$, by Newton-Raphson Method, correct to six decimal places.

SOLUTION: Let
$$f(x) = x^{x} + x - 4$$
 and $f'(x) = x^{x}(1 + \ln x) + 1$

$$f(1) = -2, f(1.5) = -0.66, f(1.6) = -0.27, f(1.7) = 0.16$$

Thus, f(x) = 0 has a root between 1.6 and 1.7.

f'(1.6) = 4.12.

Taking $x_0 = 1.6$, the successive iterations are computed in the following table:

$n x_n$	$f(x_n)$	$f'(x_n)$	$h_n = -\frac{f(x)}{f'(x)}$	$x_{n+1} = x_n + h_n$
0 1.6	-0.27	4.12	0.066	1.666
1 1.666	0.0065	4.5352	-0.00143	1.66457
2 1.66457	0.0000318		-0.000007	1.664563
3 1.664563	0.0000002	4.5254887	-0.00000004	1.664563

Thus, 1.664563 is a root of f(x) = 0, correct up to six decimal places.

EXAMPLE 6.9.6 Find a positive root of $10^x + x - 4 = 0$, by Newton-Raphson Method, correct to six significant figures.

SOLUTION: Let $f(x) = 10^x + x - 4$. $f'(x) = 10^x \times \ln 10 + 1$ f(0) = -3, f(0.5) = -0.34, f(0.6) = 0.58. Therefore, one root of f(x) = 0between 0.5 and 0.6.

Now f'(0.5) = 8.28.

Taking $x_0 = 0.5$, we compute the successive approximations as follows:

$n x_n$	$f(x_n)$	$f'(x_n)$	$h_n = -\frac{f(x)}{f'(x)}$	$x_{n+1} = x_n + h_n$
0 0.5	-0.34	8.28	0.04	0.54
1 0.54		8.9839	-0.00082	0.53918
2 0.53918	0.0000079	8.968851	-0.00000088	0.5391792
3 0.5391792	-0.0000007	8.9688360	0.00000008	0.5391792

Thus, 0.539179 is root of f(x) = 0, correct to six significant figures.

▶ Example 6.9.7 Compute the positive root of $x^3 - x - 0.1 = 0$, by Newton-Raphson Method, correct to six significant figures.

SOLUTION: Let $f(x) = x^3 - x - 0.1$: $f'(x) = 3x^2 - 1$. Now f(0) = -0.1, f(1) = -0.1, f(1.5) = 4.78, f(1.1) = 0.131.

Thus, one root of f(x) = 0 between 1.0 and 1.1.

And f'(1.1) = 2.63.

Now taking $x_0 = 1.0$, we compute the successive iterations as follows:

$n x_n$	$f(x_n)$. $f'(x_n)$	$h_n = -\frac{f(x_n)}{f'(x_n)}$	$x_{n+1} = x_n + h_n$
0 1.0	-0.1 2.0	0.05	1.05
1 1.05	0.0076 2.3075	-0.00329	1.04671
2 1.04671	0.000067 2.28680	-0.000029	1.046681
3-1.046681	0.0000011 2.286623	3 - 0.00000048	1.046681

- \therefore 1.046681 is a root of f(x) = 0, correct up to six significant figures.
- Example 6.9.8 Use Hero's process to compute (i) $\sqrt{27}$ and (ii) $\sqrt{8}$, correct up to six decimal places.

SOLUTION: (i) Let $x = \sqrt{27}$ and $f(x) \equiv x^2 - 27 = 0$. Substituting R = 27 in (6.8.2), we get the iteration formula as

$$x_{n+1} = \frac{x_n^2 + 27}{2x_n},$$

Taking $x_0 = 5.0$, we have

n	x_n	x_{n+1} .
0	5.0	5.2
1	5.2	5.196
2	5.196	5.196154
3	5.196154	5.196154

 $\therefore \sqrt{27} = 5.196154$, correct up to six decimal places.

(ii) Let $x = \sqrt{8}$ and $J(x) \equiv x^2 - 8 = 0$. Substituting R = 8 in (6.8.2), we get the iteration formula as

$$x_{n+1} = \frac{x_n^2 + 8}{2x_n}.$$

Taking $x_0 = 2.5$, we lave the successive approximations as follows:

		and the same of th
\overline{n}	x_n	x_{n+1}
0	2.5	2.85
1	2.85	2.8285
2	2.8285	2.8284271
3	2.8284271	2.8284271

 $\sqrt{8} = 2.828427$, correct up to six decimal places.

EXAIPLE 6.9.9 From the equation $x^5-a=0$, deduce Newtonian iterative procedure.

$$x_{n+1} = \frac{1}{5} \left[4x_n^4 + \frac{a}{x_n^4} \right]$$

for \sqrt{a} . Use this method to find $\sqrt[5]{3}$.

[VH '88]

Solution: Let $x = \sqrt[5]{a}$. $x^5 = a$.

Using Newton-Raphson Method to $f(x) \equiv x^5 - a = 0$, we have the iteration formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^5 - a}{5x_n^4} = \frac{1}{5} \left[4x_n^5 + \frac{a}{x_n^4} \right].$$

To compute $\sqrt[5]{3}$, putting a=3 in the above iteration formula, we have

$$x_{n+1} = \frac{4x_n^5 + 3}{5x_n^4}.$$

Take $i_{10}x_0 = 1$, we have successive approximations as follows:

\overline{n}	x_n	x_{n+1}
0	1	1.4
1	1.4	1.276
2	1.276	1.2471
3	1.2471	1.2457
4	1.2457	1.2457301

 $\sqrt[5]{3} = 1.2457$, correct up to four decimal places.

EXAMPLE 6.9.10 For finding the square root of 'a' (a > 0) derive the iteration ormula

$$x_{n+1} = \frac{1}{2} \left(x_{n} + \frac{a}{x_{n}} \right), \quad n = 0, 1, 2, 3, \dots,$$

where $\mathfrak{D}(>0)$ is any initial approximation and x_n is the nth approximation his formula to find $\sqrt{2}$ correct up to three significant figures.

SOLUTION: Let $x = \sqrt{a}$. $x^2 = 0$.

Using Newton-Raphson Method to $f(x) \equiv x^2 - a = 0$, we get the iteration formula as:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left[\frac{x_n^2 + a}{x_n} \right]$$
$$= \frac{1}{2} \left[x_n + \frac{a}{x_n} \right], n = 0, 1, 2, \dots$$

To compute $\sqrt{2}$, putting a=2, in the above formula, we get the interation formula

$$x_{n+1} = \frac{1}{2} \left[\frac{x_n^2 + 2}{x_n} \right].$$

Now taking $x_0 = 1$, we have successive approximations as follows:

-		7
n	x_n	x_{n+1}
0	1	1.5
1	1.5	1.42
2	1.42	1.414
3 -	1.414	1.4142

 $\sqrt{2} = 1.41$, correct up to three significant figures.

Regula-Falsi Method or 6.10Method of False Position

In this method we first find a sufficiently small interval $[a_0,b_0]$, such that $f(a_0)f(b_0)$ 0, by tabulation or graphical method, and which contains only rear root α (say) of f(x) = 0, i.e., f'(x) maintains same sign in $[a_0, b_0]$.

This method is based on the assumption that the graph of y = f(x) in shall interval $[a_0,b_0]$ can be represented by the chord joining $(a_0,f(a_0))$ and $(b_0,f(b_0))$. The the point $x = a_1 = a_0 + h_0$ at which the chord meets the x-axis gives us an approx value of the root α of the equation f(x) = 0. Thus, we obtain two intervals and $[x_1,b_0]$, one of which must contain the root α , depending upon the cond $f(a_0)f(x_1) < 0$ or $f(x_1) \cdot f(b_0) < 0$. If $f(x_1)f(b_0) < 0$, then α lies in the in $[x_1, b_0]$ which we re-name as $[a_1, b_1]$. Again we consider that the graph of y = f $[a_1, b_1]$ as the chord joining $(a_1, f(a_1))$ and $(b_1, f(b_1))$, thus, the point of inters of the chord with the x-axis (say) $x_2 = a_1 + h_1$ gives us an approximate value Foot α and x_2 is called the second approximation of the root α .

Proceeding in this way, we shall get a sequence $\{x_1, x_2, x_3, \dots, x_n\}$ each me of which is the successive approximation of the exact root α of the equation f(x)Now we are going to establish an iteration formula which may generate a seq vecessive approximations of an exact root α of the equation $f(x) = \gamma$, geometric adjoining Fig. 6.8, we assume that one real root α of f(x) = 0 lies in $[a_n, b_n]$ and $f(a_n) < 0$ and $f(b_n) > 0$. Let PRQ be the graph of y = 0 $\sqrt{27} = 5.196154$, cothe x-axis at R.