Formale Grundlagen der Informatik II 3. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Alexander Kreuzer Carsten Rösnick SS 2011 15.06.11

Minitest Lösung

Betrachten Sie die Formeln in der Tabelle.

- Welche Formel ist in KNF, welche in DNF?
- Welche Formel/Formeln sind äquivalent zu der Formel

$$\varphi = r \land (s \lor t) \lor \neg s$$

und sind damit eine DNF bzw. KNF von φ ?

	KNF	DNF	$\equiv \varphi$
$r \wedge t$	\boxtimes	\boxtimes	
$(r \lor s) \land (r \lor t)$			
$r \vee \neg s$	\boxtimes	\boxtimes	\boxtimes
$r \vee (s \wedge (r \vee q))$			
$\neg r \lor (\neg s \land \neg t)$		\boxtimes	

Begründung: Für die Einteilung in DNF und KNF siehe Skript 3.2.

Zu der Äquivalenz mit φ : Es gilt

$$r \wedge (s \vee t) \vee \neg s \stackrel{(1)}{\equiv} \neg s \vee (r \wedge s) \vee (r \wedge t) \stackrel{(1)}{\equiv} ((\neg s \vee r) \wedge \overbrace{(\neg s \vee s)}^{\equiv 1}) \vee (r \wedge t) \equiv r \vee (r \wedge t) \vee \neg s \stackrel{(2)}{\equiv} r \vee \neg s$$

mit (1) Distributivgesetz und (2) Absorption.

Gruppenübung

Aufgabe G1

Finden Sie mittels Beweissuche im Sequenzenkalkül \mathcal{SK} für folgende Formeln bzw. Sequenzen entweder eine Herleitung oder eine nicht-erfüllende Belegung.

(a)
$$\vdash (p \land q) \lor \neg (q \lor r) \lor r \lor \neg p$$

(b)
$$p, q \lor r \vdash (p \land q) \lor (p \land r)$$

(c)
$$\vdash \neg(\neg(p \land q) \land r) \lor (q \land r)$$

Lösungsskizze:

$$\frac{\overline{q,p \vdash p,r}}{\frac{q,p \vdash p,r}{q,p}} \overset{\text{(Ax)}}{(\land R)} \frac{\overline{q,p \vdash p,q,r}}{\frac{q,p \vdash p \land q,r}{q \lor r,p \vdash p \land q,r}} \overset{\text{(Ax)}}{(\lor L)} \frac{\frac{q \lor r,p \vdash p \land q,r}{q \lor r \vdash p \land q,r, \neg p}}{(\neg R)} \overset{\text{(¬R)}}{\frac{\vdash p \land q, \neg (q \lor r),r, \neg p}{(\lor R)}} \overset{\text{(¬R)}}{(\lor R)} \frac{\overline{\vdash p \land q, \neg (q \lor r),r \lor \neg p}} \overset{\text{(¬R)}}{(\lor R)} \frac{\overline{\vdash p \land q, \neg (q \lor r),r \lor \neg p}} \overset{\text{(¬R)}}{(\lor R)} \frac{\overline{\vdash p \land q, \neg (q \lor r),r \lor \neg p}} \overset{\text{(¬R)}}{(\lor R)} \frac{\overline{\vdash p \land q, \neg (q \lor r),r \lor \neg p}} \overset{\text{(¬R)}}{(\lor R)} \frac{\overline{\vdash p \land q, \neg (q \lor r),r \lor \neg p}} \overset{\text{(¬R)}}{(\lor R)} \frac{\overline{\vdash p \land q,r}}{(\lor R)} \frac{\overline{\vdash q,r}}{(\lor R)} \frac{$$

$$\frac{\frac{p,q \vdash p,p \land r}{p,q \vdash p, \wedge q, p \land r}}{\frac{p,q \vdash p \land q, p \land r}{p, r \vdash p \land q, p \land r}}} \underset{(\land R)}{(\land R)} \frac{\frac{p,r \vdash p \land q,p}{p,r \vdash p \land q,p}}{\frac{p,r \vdash p \land q,p \land r}{p,r \vdash p \land q,p \land r}}} \underset{(\lor R)}{(\land R)}$$

$$\frac{r \vdash q, q \qquad r \vdash q, p}{r \vdash q, p \land q} (\land R) \quad \frac{r \vdash r, p \land q}{r \vdash r, p \land q} (\land R)$$

$$\frac{\frac{r \vdash q \land r, p \land q}{\neg (p \land q), r \vdash q \land r} (\neg L)}{\frac{\neg (p \land q), r \vdash q \land r}{\neg (p \land q) \land r), q \land r} (\neg R)}$$

$$\frac{\vdash \neg (\neg (p \land q) \land r) \lor (q \land r)}{\vdash \neg (\neg (p \land q) \land r) \lor (q \land r)} (\lor R)$$

Eine nicht erfüllende Belegung ist z.B. $r \mapsto 1$ und $q, p \mapsto 0$.

Aufgabe G2

(a) Weisen Sie semantisch die Korrektheit der folgenden Sequenzenregel nach:

$$\frac{\Gamma \vdash (\varphi \to \psi) \to \varphi, \Delta}{\Gamma \vdash \varphi, \Delta}$$

(b) Leiten Sie die folgende Sequenz in SK ab:

$$\vdash ((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi$$

Lösungsskizze:

(a) Angenommen, die Sequenz $\Gamma \vdash (\varphi \to \psi) \to \varphi, \Delta$ ist allgemeingültig. Wir müssen zeigen, dass dann auch die Sequenz $\Gamma \vdash \varphi, \Delta$ allgemeingültig ist.

Sei also $\mathfrak{J}\models \Gamma$ ein Modell der linken Seite. Da $\Gamma\vdash (\varphi\to\psi)\to \varphi, \Delta$ allgemeingültig ist, gibt es eine Formel $\delta\in\Delta\cup\{(\varphi\to\psi)\to\varphi\}$ mit $\mathfrak{J}\models\delta$. Wenn $\delta\in\Delta$ ist, dann sind wir fertig. Andernfalls gilt $\mathfrak{J}\models(\varphi\to\psi)\to\varphi$. Wir behaupten, dass dann $\mathfrak{J}\models\varphi$ gilt. Wenn das nicht so wäre, dann folgt einerseits $\mathfrak{J}\models\varphi\to\psi$, da $\mathfrak{J}(\varphi)=0$, aber andererseits auch $\mathfrak{J}\not\models\varphi\to\psi$, da $\mathfrak{J}\models(\varphi\to\psi)\to\varphi$ und $\mathfrak{J}(\varphi)=0$. Also $\mathfrak{J}\models\varphi$ und der Beweis ist fertig.

(b) Bekannt ist, dass $\varphi \to \psi \equiv \neg \varphi \lor \psi$ für aussagenlogische Formeln φ, ψ . Wir leiten nun wie folgt im \mathcal{SK} ab:

$$\frac{\frac{-}{\varphi \vdash \psi, \varphi} (Ax)}{\frac{\vdash \neg \varphi, \psi, \varphi}{\vdash (\varphi \rightarrow \psi), \varphi} (\lor R)} \frac{\frac{-}{\vdash (\varphi \rightarrow \psi), \varphi} (\lor R)}{\frac{\neg (\varphi \rightarrow \psi) \vdash \varphi}{\vdash \neg ((\varphi \rightarrow \psi) \rightarrow \varphi), \varphi} (\lor L)} \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \vdash \varphi}{\vdash \neg ((\varphi \rightarrow \psi) \rightarrow \varphi), \varphi} (\lor R)}{\frac{\vdash \neg ((\varphi \rightarrow \psi) \rightarrow \varphi), \varphi}{\vdash ((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi} (\lor R)}$$

Aufgabe G3

Sei $\mathcal{R}=(\mathbb{R},+^{\mathbb{R}},-^{\mathbb{R}},\cdot^{\mathbb{R}},<^{\mathbb{R}},0,1)$. Eine Formel $\varphi(x,y)$ definiert in \mathcal{R} die Relation

$$\varphi := \{ (a, b) \in \mathbb{R}^2 : \mathcal{R} \models \varphi[a, b] \}.$$

Geben Sie Formeln an, die die folgenden Relationen in \mathbb{R}^2 definieren:

- (a) Einen Kreis mit Radius 2 um den Ursprung.
- (b) Eine Gerade durch den Ursprung mit Steigung 2/3.
- (c) Die Strecke, welche vom Punkt (1,2) bis zum Kreis aus (i) führt und senkrecht auf diesem steht.
- (d) Einen Smiley.

Lösungsskizze:

(a)
$$\varphi(x,y) := x \cdot x + y \cdot y = 1 + 1 + 1 + 1$$
.

(b)
$$\varphi(x,y) := x + x = y + y + y \text{ oder } \varphi(x,y) := (1+1) \cdot x = (1+1+1) \cdot y.$$

(c)
$$\varphi(x,y) := (y+y=x) \land (x < 1 \lor x = 1) \land (0 < x) \land (1+1+1+1 < x \cdot x + y \cdot y \lor 1+1+1+1 = x \cdot x + y \cdot y)$$

$$\begin{array}{l} \text{(d)} \ \ \text{Z.B.:} \ \varphi(x,y) := (x \cdot x + y \cdot y = \underbrace{1 + 1 + \dots 1}_{\text{16-mal}}) \lor (x \cdot x + y \cdot y = \underbrace{1 + 1 + \dots 1}_{\text{9-mal}} \land y < -1) \\ \lor ((x - (1+1)) \cdot (x - (1+1)) + (y - 1) \cdot (y - 1) < 1) \lor ((x + (1+1)) \cdot (x + (1+1)) + (y - 1) \cdot (y - 1) < 1) \\ \end{array}$$

Hausübung

Aufgabe H1 (6 Punkte)

(a) Zeigen Sie, dass folgende Regeln korrekt sind.

(i)
$$\frac{\Gamma \vdash \emptyset}{\Gamma \vdash \varphi}$$
 (ex falso quodlibet)

(ii)
$$\frac{\Gamma, \varphi \lor \psi \vdash \chi}{\Gamma, \varphi \vdash \chi}$$

- (b) Geben Sie eine "direkte Simulation" von Regel (ii) in \mathcal{SK}^+ an.
- (Extra) Begründen Sie, warum Regel (ii) in \mathcal{SK} nicht direkt simulierbar ist. D.h. zeigen Sie, dass es keinen \mathcal{SK} Ableitungsbaum mit Wurzel $\Gamma, \varphi \vdash \chi$ gibt, dessen Blätter nur mit Axiomen oder $\Gamma, \varphi \lor \psi \vdash \chi$ beschriftet sind.

Hinweis: Betrachten Sie hierfür die Länge der Formeln von Prämisse und Konklusion der \mathcal{SK} Regeln.

Lösungsskizze:

(a) Zu Regel (i): Angenommen $\Gamma \vdash \emptyset$ ist allgemeingültig. Dann gilt $\bigwedge \Gamma \vDash 0$, d.h. es gilt $(\bigwedge \Gamma)^{\Im} = 0$ für alle Interpretationen \Im . Also ist $(\bigwedge \Gamma)^{\Im} \le \varphi^{\Im}$ für alle Interpretationen \Im , und es folgt, dass $\Gamma \vdash \varphi$ allgemeingültig ist.

Zu Regel (ii): Angenommen $\Gamma, \varphi \lor \psi \vdash \chi$ ist allgemeingültig und \mathfrak{I} eine (beliebige) Interpretation. Dann gilt $(\bigwedge \Gamma) \land (\varphi \lor \psi) \vDash \chi$, d.h. es gilt $((\bigwedge \Gamma) \land (\varphi \lor \psi))^{\mathfrak{I}} \le \chi^{\mathfrak{I}}$. Also ist $(\bigwedge \Gamma)^{\mathfrak{I}} \le \chi^{\mathfrak{I}}$ oder $(\varphi \lor \psi)^{\mathfrak{I}} \le \chi^{\mathfrak{I}}$.

Falls $(\bigwedge^{\gamma} \Gamma)^{\mathfrak{I}} \leq \chi^{\mathfrak{I}}$, dann folgt sofort $\min((\bigwedge^{\gamma} \Gamma)^{\mathfrak{I}}, \varphi^{\mathfrak{I}}) = ((\bigwedge^{\gamma} \Gamma) \wedge \varphi)^{\mathfrak{I}} \leq \chi^{\mathfrak{I}}$. Falls $(\varphi \vee \psi)^{\mathfrak{I}} \leq \chi^{\mathfrak{I}}$, dann folgt wegen $(\varphi \vee \psi)^{\mathfrak{I}} = \max(\varphi^{\mathfrak{I}}, \psi^{\mathfrak{I}})$, dass $\varphi^{\mathfrak{I}} \leq \chi^{\mathfrak{I}}$, also $\min((\bigwedge^{\gamma} \Gamma)^{\mathfrak{I}}, \varphi^{\mathfrak{I}}) = ((\bigwedge^{\gamma} \Gamma) \wedge \varphi)^{\mathfrak{I}} \leq \chi^{\mathfrak{I}}$.

In beiden Fällen folgt $((\bigwedge \Gamma) \land \varphi)^{\Im} \leq \chi^{\Im}$, also ist $\Gamma, \varphi \vdash \chi$ allgemeingültig.

(b)

$$\frac{\overline{\varphi \vdash \varphi, \psi}}{\varphi \vdash \varphi \lor \psi} \overset{\text{(Ax)}}{(\lor R)} \quad \frac{\vdots}{\Gamma, \varphi \lor \psi \vdash \chi} \text{(modus ponens)}$$

$$\Gamma, \varphi \vdash \chi$$

(Extra) In \mathcal{SK} -Ableitungen kommen alle Formeln, die in einer Regel oben stehen im unteren Teil als ganzes oder Teilformel vor, demzufolge kann Regel (ii) (da wir nicht wissen, wie Γ , φ , ψ und χ aussehen) nicht herleitbar sein.

Aufgabe H2

Wir definieren folgende partielle Ordnung auf aussagenlogischen \mathcal{V}_n -Interpretationen:

$$\mathfrak{I} \leq \mathfrak{I}'$$
 :gdw. $\mathfrak{I}(p) \leq \mathfrak{I}'(p)$ für alle Variablen $p \in \mathcal{V}_n$

Eine AL_n -Formel φ heißt monoton, wenn für alle Interpretationen $\mathfrak{I} \leq \mathfrak{I}'$ gilt:

$$\varphi^{\Im} \leq \varphi^{\Im'}$$
.

Beweisen Sie per Induktion über den Formelaufbau, dass jede aussagenlogische Formel φ , in der kein Negationszeichen vorkommt, monoton ist.

Bemerkung: Jede monotone Formel ist äquivalent zu einer Formel ohne Negationszeichen.

Lösungsskizze: Angenommen φ ist eine aussagenlogische Formel, in der kein Negationszeichen vorkommt und \Im , \Im' sind Interpretationen mit $\Im \leq \Im'$. Wir beweisen mit Induktion, dass $\varphi^{\Im} \leq \varphi^{\Im'}$ gilt.

• $\varphi = 0$, $\varphi = 1$ sind klar.

- $\varphi = p \in \mathcal{V}_n$: weil $\mathfrak{I} \leq \mathfrak{I}'$ gilt $\mathfrak{I}(p) \leq \mathfrak{I}'(p)$, also $\varphi^{\mathfrak{I}} \leq \varphi^{\mathfrak{I}'}$.
- $\varphi = \neg \psi$ kann nicht sein, da in φ kein Negationszeichen vorkommt.
- $\varphi = \psi \wedge \chi$: nach I.V. gilt $\psi^{\mathfrak{I}} \leq \psi^{\mathfrak{I}'}$ und $\chi^{\mathfrak{I}} \leq \chi^{\mathfrak{I}'}$. Also gilt $\min(\psi^{\mathfrak{I}}, \chi^{\mathfrak{I}}) \leq \min(\psi^{\mathfrak{I}'}, \chi^{\mathfrak{I}'})$, und es folgt $(\psi \wedge \chi)^{\mathfrak{I}} \leq (\psi \wedge \chi)^{\mathfrak{I}'}$.
- $\varphi = \psi \vee \chi$: nach I.V. gilt $\psi^{\mathfrak{I}} \leq \psi^{\mathfrak{I}'}$ und $\chi^{\mathfrak{I}} \leq \chi^{\mathfrak{I}'}$. Also gilt $\max(\psi^{\mathfrak{I}}, \chi^{\mathfrak{I}}) \leq \max(\psi^{\mathfrak{I}'}, \chi^{\mathfrak{I}'})$, und es folgt $(\psi \vee \chi)^{\mathfrak{I}} \leq (\psi \vee \chi)^{\mathfrak{I}'}$.