10/613,411

ACCESSION NUMBER:

110:154319 CA

TITLE:

Preparation of 6-heterocyclylcarbostyril derivatives

for treatment of heart diseases

INVENTOR(S):

Tamada, Shigeharu; Fujioka, Takafumi; Ogawa, Hidenori;

Teramoto, Shuji; Kondo, Kazumi

PATENT ASSIGNEE(S):

Otsuka Pharmaceutical Co., Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 30 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

Ι

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
,				
JP 63230687	A2	19880927	JP 1987-65202	19870318
JP 07121937	B4	19951225	•	
PRIORITY APPLN. INFO.	:	JP	1987-65202	19870318
OTHER SOURCE(S):	MA	RPAT 110:154319		
CT			•	

AB The title compds. [I, R1 = H, lower alkyl, lower alkenyl, phenyl-lower alkyl; R2 = Q (wherein X, Y, Z = CH or N, R4, R5 = H, lower alkoxy, halo, or NH2); R3 = H, halo, NO2, NH2, lower alkanoylamino, lower alkoxy, OH, lower alkyl, lower alkylthio, satd. 5- or 6-membered (lower alkyl) heterocyclyl, 5- or 6-membered heterocyclyl-lower alkyl; the linkage between 3- and 4-position is a single or double bond] were prepd. as cardiotonics, etc. 7-Methoxy-6-carboxy-3,4-dihydrocarbostyril 0.3 and 3,4-diaminopyridine 0.16 g were added to a 1:10 mixt. of P2O5 and Me2SO3H. The mixt. was heated 2 h at 100.degree., poured into ice-water, and made weakly alk. with 10% aq. NaOH and satd. NaHCO3. The pptd. crystals were removal by filtration, washed with H2O, dried and purified on a silica gel chromatog. to give, after acidification with HCl in EtOH, 0.29 g 7-methoxy-6-[1H-imidazo[4,5-c]pyridin-2-yl]-3,4-dihydrocarbostyril (II)-HCl.H2O. II.HCl.H2O at 300 n mol increased myocardial contractility 23.1% and coronary blood flow 0.4 mL/min in dog heart in vitro. 1 ML ampules were formulated from II 500, polyethyleneglycol 0.3, NaCl 0.9, polyoxyethylenesorbitan monooleate 0.4, sodium metabisulfite 0.1, methylparaben 0.18, propylparaben 0.02 g, and water 100 mL.

IT

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prepn. of, as cardiotonic)

RN 119714-56-6 · CA 10/613,411

CN 2(1H)-Quinolinone, 3-(1H-imidazo[4,5-b]pyridin-2-yl)-, ethanedioate (2:1) (9CI) (CA INDEX NAME)

CM 1

CRN 119714-55-5 CMF C15 H10 N4 O

CARBOSTYRIL DERIVATIVE

Patent Number:

JP63230687

Publication date:

1988-09-27

Inventor(s):

TAMADA SHIGEHARU; others: 04

Applicant(s):

OTSUKA PHARMACEUT CO LTD

Requested Patent:

☐ JP63230687

Application Number: JP19870065202 19870318

Priority Number(s):

IPC Classification:

C07D401/04; C07D471/04; C07D473/00

EC Classification:

Equivalents:

JP2097167C, JP7121937B

Abstract

NEW MATERIAL:A compound expressed by formula I [R<1> represents H, lower alkyl, lower alkenyl or phenyl lower alkyl; R<2> represents formula II (X, Y and Z represent -CH= or N; R<4> and R<5> represent H, lower alkoxy, halogen atom or amino); R<3> represents H, halogen atom, nitro, amino, lower alkanoylamino, lower alkoxy, etc.; bonds at the 3- and 4-positions of carbostyril skeleton are single or double bond] and salt thereof.

EXAMPLE:8-Bromo-6-[1H-imidazo-(4,5-c)-pyridin-2-yl]-3,4-dihydrocarbostyril-hy drochloride.monohydrate. USE:A cardiac, hypotensor and antiphlogistic, which has low toxicity and small side-effect.

PREPARATION:A compound expressed by formula III is reacted with a compound expressed by formula IV, as necessary, in the presence of a solvent (example; water, methanol or THF), preferably at room temperature -200 deg.C for 1-10hr.

Data supplied from the esp@cenet database - I2

⑩ 公開特許公報(A) 昭63-230687

	@Int.Cl.4	識別記号	庁内整理番号	❸公開	昭和63年(1988) 9月27日
	C 07 D 401/04 471/04 473/00	2 3 3 1 0 7	6761-4C K-7430-4C 7430-4C	. •	·
//	A 61 K 31/47	ABE ABP ABU			
	31/52		7431-4C	審査請求 未請求	発明の数 1 (全30頁)

❷発明の名称 カルポスチリル誘導体

②特 願 昭62-65202

20出 願 昭62(1987)3月18日

仞発	明	者	玉	æ	重	喟	徳島県板野郡北島町新喜来字二分1の16
09発	明	者	藤	岡	孝	文	徳島県板野郡藍住町勝瑞字成長186-5
⑫発	眀	者	小	Л	英	則	徳島県徳島市応神町吉成字轟21-3
@発	明	者	寺	本	修	=	徳島県徳島市川内町北原161-4
⑫発	明	者	近	藤	_	見	徳島県徳島市川内町加賀須野463-10
⑪出	顋	人	大均	₹製:	薬株式会	社	東京都千代田区神田町町2丁目9番地
@代	理	人	弁理	土	三枝 英	=	外2名

明細菌

発明の名称 カルポスチリル誘導体 特許請求の範囲

① 一般式

〔式中R¹は水素原子、低級アルキル基、低級 アルケニル基又はフェニル低級アルキル基を

Y及びZは同一又は異なって基一CH=又は 窒素原子を、R⁴及びR⁵ は同一又は異なっ て水素原子、低級アルコキシ基、ハロゲン原 子又はアミノ基をそれぞれ示す)を示す。 R³ は水素原子、ハロゲン原子、ニトロ基、 アミノ基、低級アルカノイルアミノ基、低級アルコキシ基、水酸基、低級アルキル基、低級アルキル基、複素環基上に低級アルキル基を置換基として有することのある飽和の5~6員複素環基を有する低級アルキル基を示す。またカルボスチリル骨格の3・4~位結合は一重結合又は二重結合を示す。)

で表わされるカルポスチリル誘導体及びその塩。 発明の詳細な説明

産業上の利用分野

本発明は、新規なカルポスチリル誘導体及びそ の塩に関する。

発明の開示

本発明のカルポスチリル誘導体は、下記一般式 (1)で表わされる。

(式中R!は水素原子、低級アルキル基、低級アルケニル基又はフェニル低級アルキル基を示す。

は同一又は異なって基一CH=又は窒素原子を、R・及びR⁵ は同一又は異なって水素原子、低級アルコキシ基、ハロゲン原子又はアミノ基をそれぞれ示す)を示す。R³ は水素原子、ハカイン原子、ニトロ基、アミノ基、低級アルカ、低級アルキル基、低級アルキル基、複素環基として有する。とのある飽和の5~6員複素環基又は置換基とし

振せん等の副作用が少ないという特徴をも有して いる。

上記一般式(1)において、定義される各基の 具体例は、それぞれ以下の通りである。

低級アルキル基としては、メチル、エチル、プロピル、イソプロピル、プチル、tertープチル、ペンチル、ヘキシル基等の炭素数1~6の直鎖又は分枝鎖状アルキル基を例示できる。

低級アルケニル基としては、ピニル、アリル、 2ープテニル、3ープテニル、1ーメチルアリル、 2ーペンテニル、2ーペキセニル基等の炭素数2 ~6の直鎖又は分枝鎖状アルケニル基を例示できる。

フェニル低級アルキル基としては、ベンジル、 2-フェニルエチル、1-フェニルエチル、3-フェニルプロピル、4-フェニルプチル、1,1 -ジメチル-2-フェニルエチル、5-フェニル ペンチル、6-フェニルヘキシル、2-メチル- て飽和の5~6員複素環基を有する低級アルキル基を示す。またカルポスチリル骨格の3,4 一位結合は一重結合又は二重結合を示す。)

3 - フェニルプロピル基等のアルキル部分が炭素数1~6の直鎖又は分枝鎖状アルキル基であるフェニルアルキル基を例示できる。

低級アルコキシ基としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、プトキシ、tertープトキシ、ペンチルオキシ、ヘキシルオキシ基等の炭素数1~6の直鎖又は分枝鎖状アルコキシ基を例示できる。

ハロゲン原子としては、弗素原子、塩素原子、 臭素原子、沃素原子等を例示できる。

低級アルカノイルアミノ基としては、ホルミルアミノ、アセチルアミノ、プロピオニルアミノ、プチリルアミノ、ペンタノイルアミノ、はertープチルカルボニルアミノ、ヘキサノイルアミノ基等の炭素数1~6の直鎖又は分枝鎖状アルカノイルアミノ基を例示できる。

低級アルキルチオ基としては、メチルチオ、エ チルチオ、プロピルチオ、イソプロピルチオ、ブ チルチオ、tertープチルチオ、ペンチルチオ、ヘキシルチオ基等の炭素数1~6の直鎖又は分枝鎖 状アルキルチオ基を例示できる。

本発明のカルポスチリル誘導体及びその塩は、 例えば下記反応式に示す方法により製造すること ができる。

〈反応式-1〉

R¹

(1)

COOH
$$R^{3}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

(式中R¹、R²、R³、X、Y、Z及びカルボスチリル骨格の3、4 - 位結合は前記に同じ。) - 般式(2)の化合物と一般式(3)の化合物との反応は、適当な溶媒中又は無溶媒で、脱水剤の存在下に行なうことができる。ここで使用できる溶媒としては、例えば水、メタノール、エタノール、プロパノール等の低級アルコール類、ジオ

キサン、テトラヒドロフラン等のエーテル類、ペンゼン、トルエン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、アセトン、ジメチルスルホキシド、ジメチルホルリン性極性溶媒等を例示できる。脱水剤としては、例えば塩酸、硫酸等の鉱酸等の筋関、チオニルクロライド、ロートルエンスルホン酸等の有機酸、ポリリン酸、オキシ塩化リン、五塩化リン等のリン化合物等を例示できる。

一般式(3)の化合物の使用量は、一般式 (2)の化合物に対して、通常ほぼ等モル~5倍 モル最、好ましくは等モル~2倍モル量程度とす るのが適当であり、反応は、一般に約0~250 で、好ましくは室過~200で付近の過度下に、 約1~10時間程度を要して行なわれる。

上記反応式-1において、出発原料として用い

られる一般式(2)で表わされる化合物は、例えば下記各反応式-2~-7に示す各種方法により 製造することができる。

〈反応式-2〉 .

$$COOR^{\circ} \xrightarrow{CHO} \stackrel{R^{\circ}}{\underset{R'}{\bigcap}} COOR^{\circ} \xrightarrow{R^{\circ}} \stackrel{R^{\circ}}{\underset{R'}{\bigcap}} (2a)$$

(式中R¹ 及びR³ は前記に向じ。R⁸ は水素原 子又は低級アルキル基を示す。)

一般式(4)の化合物の環化反応は、適当な塩 基性化合物の存在下に、適当な溶媒中で実施される。ここで用いられる塩基性化合物としては、例 えば炭酸ナトリウム、炭酸カリウム、酢酸ナトリ ウム、酢酸カリウム、水酸化ナトリウム、炭酸水 素ナトリウム、金属ナトリウム、金属カリウム、 ナトリウムアミド、水素化ナトリウム等の無機塩

10時間程度で完結する。

上記反応により得られる一般式(2a)の化合物の内で、R®が低級アルキル基を示す化合物は、これを加水分解することにより、対応するR®が水素原子である所望の化合物に誘導できる。

上記加水分解反応できる。 連当な溶媒体・溶体できる。 連当なできる。 と性化のでは、アントーのでは、アントーのでは、アントーのでは、アントーででは、アントーででは、では、アントーででは、では、アントーでは、では、アントーででは、アントーでは、アン

基、ナトリウムエチラート、ナトリウムメチラー ト、カリウム - tert- ブトキシド等のアルコラー ト類、トリエチルアミン、トリプロピルアミン、 ピロリジン、ピペリジン、ピリジン等の有機塩基 等を例示できる。かかる塩基性化合物の使用量は、 通常一般式(4)の化合物に対して少なくとも等 モル量程度、好ましくは等モル~2倍モル量程度 とするのがよい。また溶媒としては、ベンゼン、 トルエン、キシレン等の芳香族炭化水素類、メタ ノール、エタノール、イソプロパノール、tert-プタノール等のアルコール類、ジエチルエーテル、 ジオキサン、テトラヒドロフラン、エチレングリ コールジメチルエーテル等のエーテル類、N-メ チルピロリドン、ジメチルホルムアミド、ジメチ ルスルホキシド、ヘキサメチルリン酸トリアミド、 無水酢酸等の極性溶媒等を使用することができる。 反応は、通常室温~約150℃程度、好ましくは 室温~100℃程度の温度下に進行し、約1~

〈反応式-3〉

(式中R¹、R²及びカルボスチリル骨格の3,4 - 位結合は前記に同じ。X₁はハロゲン原子を示す。)

られるのがよい。使用される溶媒としては、例えばジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、酢酸、プロピオン酸等のアルカン酸、水等を例示できる。 反応は、通常約0~100℃程度、好ましくは約0~40℃付近の温度にて、約1~15時間程度で終了する。

尚、上記反応の際には、必要に応じて反応系内 に鉄粉等の金属乃至その塩を添加存在させること もできる。

上記反応式-3に示す方法により得られる一般式 (2 b) の化合物の内で、R®が低級アルキル基を示す化合物は、これを前記反応式-2示す方法により得られる一般式 (2 a) の化合物の加水分解反応と同様にして、加水分解反応させることにより、対応するR®が水素原子である所望の化合物に誘導できる。

レン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルリン酸 トリアミド等を使用することができる。

一般式(6)の化合物と一般式(7)の化合物との使用割合は、特に限定がなく広い範囲内で適宜扱することができるが、通常前者に対して後者を少なくとも等モル量程度、好ましくは等モル量~3倍モル量程度とするのがよい。反応は、通常的〇~100℃程度、好ましくは約0~70℃付近の温度下に進行し、一般に約0.5~12時間程度で終了する。

上記に示す方法により得られる一般式(2c)の化合物の内で、R®が低級アルキル基を示す化合物は、これを前記反応式ー2に示す方法により得られる一般式(2a)の化合物の加水分解反応と同様にして、加水分解反応させることにより、対応するR®が水素原子である所望の化合物に誘導できる。

〈反応式-4〉

(式中R³、R⁵、X₁及びカルポスチリル骨格の3,4一位結合は前配に同じ。R^{1a}は水素原子以外の前配R¹基を示す。)

一般式(6)の化合物と一般式(7)の化合物との反応は、適当な溶媒中、塩基性化られる塩基性化られるここで用いられるここで用いられるは、次酸化ナトリウム、酸化カリウム、大力リウム、大力リウムできた。カリウムアミド、カリウムアミドンストリウムアミドンストリウムアミアングリコールジメチル、キシテル等のエーテル類、ペンゼン、トルニシ

また、上記反応式 - 4に示す反応において、一 設式(6)の化合物としてR®が水素原子のもの (カルボン酸)を用いる場合は、該カルボン酸の カルボキシル基も周時にエステル化される場合が あるが、かくして得られる化合物は、反応系内よ り容易に分離可能であり、またかかる化合物は、 上記加水分解反応によって、容易にカルボン酸化 合物に導くことができる。

CH₂ - CHCH₂ CH - CH₂ CH - CH₂
$$(9)$$
 (10)
 (11)
 (11)
 (13)
 (13)
 (13)
 (13)
 (14)
 (14)
 (14)
 (14)
 (14)
 (14)
 (14)
 (14)
 (14)
 (14)

(2d)

7 (DBU)、1. 4-ジアザピシクロ(2.2. 2) オクタン(DABCO) 等の有機塩基等を例 示できる。上記反応は無溶媒でも、溶媒を用いて も実施することができる。用いられる溶媒として は、反応に悪影響を与えない各種の不活性溶媒、 例えば水、メタノール、エタノール、プロパノー ル、アタノール、エチレングリコール等のアルコ ール類、ジメチルエーテル、ジオキサン、テトラ ヒドロフラン、モノグライム、ジグライム等のエ ーテル類、アセトン、メチルエチルケトン等のケ トン類、ベンゼン、トルエン、キシレン等の芳香 族炭化水素類、酢酸メチル、酢酸エチル等のエス テル類、ジメチルホルムアミド、ジメチルスルホ キシド、ヘキサメチルリン酸トリアミド等の非プ ロトン性極性溶媒等や之等の混合溶媒を例示する ことができる。

上記反応は、また例えばヨウ化ナトリウム、ヨ ウ化カリウム等の金属ヨウ化物の存在下に行なう (式中 R^1 、 X_1 及びカルボスチリル母格の3。 4 一位結合は前記に同じ。 R^7 は低級アルキル基 を示す。 X_2 はハロゲン原子を示す。)

ことができ、之等のヨウ化物を用いるのが一般に 有利である。

上記反応における一般式(8)の化合物と一般式(9)の化合物との使用割合は、特に限定されるが、通常で選択されるが、通常をわりません。反応温度としては、特に限定される。好好を担けてはないが、通常室温付近~200℃程度がある。以前ではないが、反応時間は前1~70時間程度である。

、上記反応により得られる一般式(10)の化合物から一般式(11)の化合物を得る反応は、一般にクライゼン転位と呼ばれるものであり、例えば適当な溶媒中で、一般式(10)の化合物を加熱することにより実施される。ここで用いられる溶媒としては、例えばN, N ージメチルアニリン、

ジメチルホルムアミド、テトラリン等の高沸点溶 媒を例示できる。加熱温度としては、通常的 100~250℃程度、好ましくは約150~ 250℃程度が採用され、反応は約1~20時間 程度で完結する。

かくして得られる一般式(11)の化合物と、 一般式(12)の化合物との反応は、前記一般式 (8)の化合物と一般式(9)の化合物との反応 と同様の条件下に実施できる。

また、一般式(13)の化合物を一般式(14)の化合物に導く反応は、適当な酸又は塩基性化合物の存在下に、適当な溶媒中で実施することができる。ここで酸としては、例えばリン酸、酢酸、飲寒の無機酸、Pートルエンスルホン酸、酢酸、無水酢酸等の有機酸、之等の混合酸等を使用できる。また、塩基性化合物としては、例えばカリウム・tertープトキシド、nープチルリチの酸塩等を例示できる。之等の酸又は塩

通常の各種のもの、例えば過マンガン酸カリウム、 過マンガン酸ナトリウム等の過マンガン酸塩類、 過ョウ素酸ナトリウム等の過ョウ素酸塩類、上記 過マンガン酸塩類と過ヨウ素酸塩類との混合物、 クロム酸、ニクロム酸カリウム、ニクロム酸ナト リウム等のクロム酸及びその塩類、四塩化ルテニ ウム等を例示できる。之等の酸化剤は、通常一般 式(14)の化合物に対してほぼ等モル量~大過 刺量、好ましくは等モル量~約7倍モル量程度の 範囲で利用されるのが望ましい。また溶媒として・ は、例えばペンゼン、トルエン、キシレン等の芳 香族炭化水素類、水、アセトン等のケトン類又は 之等の混合溶媒等を有利に利用できる。反応は、 通常約0~100℃程度、好ましくは約0~70 で付近の温度下に、約1~10時間程度を要して 行なわれる。尚、上記酸化反応は、例えば炭酸カ リウム、炭酸ナトリウム、炭酸水素ナトリウム、 炭酸水素カリウム、水酸化ナトリウム、水酸化カ

基性化合物は、通常一般式(13)の化合物に対して少なくとも等モル量、好ましくはほぼ等モル量~2倍モル量程度の範囲で使用されるのがよい。また、浴媒としては、例えばペンゼン、トルホルン、キシレン等の方音族炭化水素類、ジメチルホルリン酸トリアミド等の極性溶媒等を例示できる。反応は、通常約0~150℃程度、約10分間~5時間程度を要して行なわれる。

上記で得られる一般式(14)の化合物は、これを酸化反応させることにより、所望の一般式 - (2d)の化合物に誘導できる。この酸化反応は、適当な溶媒中で、酸化剤の存在下に実施するか、或いは、通常のオゾン分解によって実施することができ、特に上記酸化剤の存在下に実施する方法が有利である。

. この方法において、用いられる酸化剤としては、

リウム等の塩基性化合物の存在下に実施すること もでき、かかる塩基性化合物の利用によれば、よ り有利に反応が進行する。

〈反応式-6〉

R^S 00C
$$\longrightarrow$$
 0H \longrightarrow 0H \longrightarrow 0R⁷ \times 2 \longrightarrow 00C \longrightarrow 0R⁷ \longrightarrow 0R⁷ \longrightarrow 0R¹ \longrightarrow (2 f)

(式中R¹、R⁸、R⁷、X₂及びカルポスチリ ル骨格の3.4 - 位結合は前記に同じ。)

一般式(2 e)の化合物と一般式(1 2)の化合物との反応は、前記反応式-5に示した一般式(1 1)の化合物と一般式(1 2)の化合物との、反応と同様の条件下に実施することができる。

尚、上記反応において、一般式(2e)の化合物としてR®が水素原子のもの(カルボン酸)及び/又はRIが水素原子のものを用いる場合は、カルボン酸のカルボキシル基のエステル化及び/

又はR ¹ 基のアルキル化がそれぞれ同時に起こる場合があるが、かくして得られるエステルは、反応系内より容易に分離可能であり、また例えば前記反応式ー2に示す方法により得られる一般式(2 a)の化合物の加水分解反応と同様の加水分解反応によって、カルボン酸に誘導することができる。

を要して実施できる。

上記一般式(2 f)の化合物を一般式(2 e)の化合物に導く反応は、また例えば塩化アルミニウム、三臭化ポロン、三弗化ポロン等のルイスロを用いて、臭化水素酸、塩酸等の酸と水、クロロメタン、四塩化炭素等のハインルで、メタノール、エタノール、インプロパノール等のアルコール類又は之等の混合で、対1~20℃の温度下に、約1~20時間反応できる。

尚、上記還元反応において、R®が低級アルキル基を示す一般式(2 f)の化合物を用いる場合は、該化合物のCOOR®基もCOOH基に変換されることがあるが、このものは容易に分離可能である。

(式中R¹、R³、X¹及びカルボスチリル骨格の 3,4 - 位結合は前記に同じ。R⁵は芳香族アミンを示す。)

一般式(15)の化合物と一般式(16)の化合物(芳香族アミン)との反応は、適当な溶媒中で又は無溶媒で実施される。溶媒としては、反応に悪影響を与えない不活性のものがいずれも使用でき、その例としては、例えばクロロホルム、塩化メチレン、ジクロロメタン、四塩化炭素等のハ

上記反応により得られる一般式 (17)の化合物の加水分解反応は、水酸化ナトリウム、水酸化カリウム等の無機塩基性化合物の存在下に、水中

で、室温~約150℃程度の温度下に約1~10時間程度を要して行ない得、この加水分解反応により、所望の一般式(2g)の化合物を製造できる。

尚、上記反応式ー7に示す方法において、原料として利用される一般式(15)の化合物は、例えば下記反応式ー8に示す方法により、製造することができる。

〈反応式-8〉

(式中R¹、R³、X₁、X₂及びカルポスチリ

の化合物の使用量は、一般式(18)の化合物に対して通常少なくと等モル量、好ましくは等モル 一約4倍モル量程度とされるのがよい。反応は、通常室温~約120℃程度、好ましくは室温~約70℃の温度下に実施され、用いられる原料化合物、触媒(ルイス酸)、反応温度等に応じて、約30分~24時間程度で終了する。

本発明のカルポスチリル誘導体及びその塩は、 また下記反応式 - 9 及び - 1 0 に示す方法によっ ても製造することができる。

〈反応式-9〉

 (式中R²、R³、R¹a、X」及びカルポスチリル骨格の3,4-位結合は前記に同じ。)

 上記反応式-9に示す方法に従う一般式(1a)

ル骨格の3,4一位結合は前記に同じ。)

一般式(18)の化合物と、一般式(19)の 化合物又は一般式(20)の化合物との反応は、 一般にフリーデルクラフツ反応と呼ばれるもので あり、適当な溶媒中、ルイス酸の存在下に行ない 得る。溶媒としては、この種反応に通常用いられ る各種のものをいずれも使用できる。その例とし ては、例えば二硫化炭素、ニトロペンゼン、クロ ロペンゼン、ジクロロメタン、ジクロロエタン、 トリクロロエタン、四塩化炭素等を例示できる。 ルイス酸としても通常用いられるものがすべて使 用できる。その例としは、例えば塩化アルミニウ ム、塩化亜鉛、塩化鉄、塩化錫、三臭化ホウ素、 三フッ化ホウ素、濃硫酸等を例示できる。かかる ルイス酸の使用量は適宜決定でき、通常は一般式 (18)の化合物に対して約2~6倍モル量、好 ましくは約3~4倍モル量程度とするのが好済で ある。一般式(19)の化合物又は一般式(20)

の化合物と一般式(7)の化合物との反応は、前記反応式 - 4に示した一般式(6)の化合物と一般式(7)の化合物との反応と同様にして実施することができる。

〈反応式-10〉

(式中R¹、R²及びR³は前配に同じ。) 上記反応式-10に示す方法に従う一般式

(1 c)の化合物の脱水素反応は、適当な溶媒中、酸化剤を使用して行なわれる。用いられる酸化剤としては、例えば2、3ージクロロー5、6ージシアノベンゾキノン、クロラニル(2、3、5、6ーテトラクロロベンゾキノン)等のベンゾキノン類、Nープロモコハク酸イミド、臭素等のハロゲン化剤、二酸化セ

レン、パラジウムー炭素、パラジウム黒、酸化パ ラジウム、ラネーニツケル等の水素化触媒等を挙 げることができる。ハロゲン化剤の使用量として は、特に限定されず広い範囲内から適宜選択すれ ばよいが、通常一般式(1 C)の化合物に対して 等モル~5倍モル量程度、好ましくは等モル~2 倍モル程度とするのがよい。また水素化触媒を用 いる場合には、通常の触媒量とするのがよい。溶 媒としては、例えばジオキサン、テトラヒドロフ ラン、メトキシエタノール、ジメトキシメタン等 のエーテル類、ペンゼン、トルエン、キシレン、 クメン等の芳香族炭化水素類、ジクロロメタン、 ジクロロエタン、クロロホルム、四塩化炭素等の ハロゲン化炭化水素類、プタノール、アミルアル コール、ヘキサノール等のアルコール類、酢酸等 の極性プロトン溶媒類、ジメチルホルムアミド、 ジメチルスルホキシド、ヘキサメチルリン酸トリ アミド等の非プロトン性極性溶媒類等を例示でき

る。反応は、通常室温~300℃程度、好ましくは室温~200℃程度にて行なわれ、一般に1~40時間程度で完結する。

上記各反応式に示す方法により本発明の一般式 (1)で表わされるカルボスチリル誘導体を製造 することができる。

また、一般式(1)で表わされる本発明化合物のうち、R¹が水素原子であり且つカルポスチリル骨格の3,4一位結合が二重結合である化合物は、下記反応式-11に示すように、ラクタムーラクチム型の互変異性をとり得る。

〈反応式-11〉

$$R^{2} \xrightarrow{N \to 0} R^{3}$$

$$H$$

$$(1e)$$

$$(1f)$$

(式中R²及びR³は前記に同じ。)

更に、一般式(1)で表わされる本発明化合物は、その有するR³ 基の種類に応じて、以下に示す各種方法によっても製造することができる。

一般式(1)の化合物中、R³が水酸基である

化合物は、前記反応式 - 6 に示す一般式 (2 e) の化合物と一般式 (12) の化合物との反応と同様の反応によって、R³ が低級アルコキシ基である化合物に導くことができる。

一般式(1)の化合物中、R³が低級アルコキシ基である化合物は、前記反応式 - 6に示す一般式(2°1)の化合物を一般式(2°2)の化合物に導く還元反応と同様の反応によって、R³が水酸基である化合物に導くことができる。

一般式(1)の化合物中、R³がアミノ基である化合物は、これに適当なアシル化剤を反応させることによって、R³が低級アルカノイルアミノ基である化合物に導くことができる。

このアシル化反応において、アシル化剤としては、例えば酢酸等の低級アルカン酸、無水酢酸等の低級アルカン酸の低級アルカン酸無水物、アセチルクロライド等の低級アルカン酸ハロゲン化物等を用いることができる。アシル化剤として低級アルカン酸無水物

又は低級アルカン酸ハロゲン化物を使用する協合、 上記アシル化反応は塩基性化合物の存在下に実施 される。塩基性化合物としては、例えば金属ナト リウム、金属カリウム等のアルカリ金属及び之等 アルカリ金属の水酸化物、炭酸塩、重炭酸塩或は ピリジン、ピペリジン等の芳香族アミン化合物等 を使用できる。反応は無溶媒下又は溶媒中のいず れでも進行するが、通常適当な溶媒中で実施する のが望ましい。溶媒としては、例えばアセトン、 メチルエチルケトン等のケトン類、ジエチルエー テル、ジオキサン等のエーテル類、ペンゼン、ト ルエン、キシレン等の芳香族炭化水素類、水等を 使用できる。アシル化剤は、原料化合物に対して ほぼ等モル〜大過剰量の範囲で用いられるが、一 殷には約5~10倍モル量用いるのがよい。また 反応は約0~150℃程度で進行するが、一般に は約0~80℃程度で行なうのがよい。また、ア シル化剤として低級アルカン酸無水物又は低級ア

遠元剤を用いる方法、パラジウム - 炭素等の遠元 触媒を用いる接触遠元方法等の常法に従うことが できる。

一般式(1)の化合物中、R³が低級アルキルチオ基である化合物は、同R³が水酸基である一般式(1)の化合物に、一般式

$$R^{0}$$
 $\stackrel{S}{||}$ $> N - C - X_{1}$ (21)

〔式中R®及びR®は低級アルキル基を示す。

X1は前記に同じ。)

で表わされる化合物を反応させ、次いで得られる中間体を、無溶媒で、通常約150~250℃程度、好ましくは約200~250℃程度に加熱することにより、収得することができる。

尚、この方法は、これを前記反応式 - 6 に示す 一般式 (2 e) の化合物に適用することによって、 同様にして、一般式 (2 e) の化合物の水酸基を ルカン酸を使用する場合、反応系内に脱水剤として硫酸、塩酸等の鉱酸や p ートルエンスルホン酸、ベンゼンスルホン酸、エタンスルホン酸等のスルホン酸類を添加し、好ましくは約50~120℃程度に反応温度を維持することにより、上記アシル化反応が有利に進行する。

一般式(1)の化合物中、R³が低級アルカノイルアミノ基である化合物は、前記反応式ー2の項で詳述したエステルの加水分解反応と同様の加水分解反応によって、R³がアミノ基である化合物に導くことができる。

一般式(1)の化合物中、R³がアミノ基である化合物は、また、該R³がニトロ基である化合物を還元反応させることにより、容易に製造することができる。

この週元反応は、芳香族ニトロ基を芳香族アミノ基に週元する通常の方法に従って行ない得る。 より具体的には、亜硝酸ソーダ、亜硫酸ガス等の

低极アルキルチオ基に変換することもできる。

本発明の一般式(1)で表わされるカルボスチリル誘導体のうち、塩基性基を有する化合物は、これに適当な酸を作用させることにより容易に医薬的に許容される酸付加塩とすることができる。 該酸としては、例えば塩酸、硫酸、リン酸、臭化 水素酸等の無機酸、シュウ酸、マレイン酸、フマール酸、リンゴ酸、酒石酸、クエン酸、安息香酸等の有機酸を挙げることができる。

また、本発明の一般式(1)で表わされるカルボスチリル誘導体のうち、酸性基を有する化合物は、これに適当な塩基性化合物を作用させることにより容易に医薬的に許容される塩を形成させることができる。該塩基性化合物としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸水素カリウム等を挙げることができる。

かくして得られる各々の工程での目的化合物及び本発明化合物は、通常の分離手段により容易に 単離精製することができる。該分離手段としては、 例えば溶媒抽出法、希釈法、再結晶法、カラムク ロマトグラフィー、プレパラティブ薄層クロマト グラフィー等を例示できる。

尚、本発明は、光学異性体及び立体異性体も当

リウム、カンテン末、ラミナラン末、炭酸水素ナ トリウム、炭酸カルシウム、ポリオキシエチレン ソルピタン脂肪酸エステル類、ラウリル硫酸ナト リウム、ステアリン酸モノグリセリド、デンプン、 乳糖等の崩壊剤、白糖、ステアリン、カカオバタ ー、水素添加油等の崩壊抑制剤、第4級アンモニ ウム塩基、ラウリル硫酸ナトリウム等の吸収促進 剤、グリセリン、デンプン等の保湿剤、デンプン、 乳糖、カオリン、ペントナイト、コロイド状ケイ 酸等の吸着剤、精製タルク、ステアリン酸塩、ボ ウ酸末、ポリエチレングリコール等の滑沢剤等を 使用できる。さらに錠剤は必要に応じ通常の剤皮 を施した錠剤、例えば糖衣錠、ゼラチン被包錠、 腸溶被錠、フイルムコーテイング錠あるいは二重 錠、多層錠とすることができる。丸剤の形態に成 形するに際しては、担体として例えばアドウ館、 乳糖、デンプン、カカオ脂、硬化植物油、カオリ ン、タルク等の賦形剤、アラピアゴム末、トラガ

然に包含するものである。

本発明化合物及びその塩は、通常一般的な医薬 製剤の形態で用いられる。製剤は通常使用される 充填削、增量削、結合削、付湿削、崩壊削、表面 活性剤、滑沢剤等の希釈剤あるいは賦形剤を用い て調整される。この医薬製剤としては各種の形態 が治療目的に応じて選択でき、その代表的なもの として錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、 顆粒剤、カプセル剤、坐削、注射剤(液剤、懸濁 剤等)等が挙げられる。錠剤の形態に成形するに 際しては、担体として例えば乳糖、白糖、塩化ナ トリウム、アドウ糖、尿素、デンプン、炭酸カル シウム、カオリン、結晶セルロース、ケイ酸等の 賦形剤、水、エタノール、プロパノール、単シロ ツプ、プドウ糖胺、デンプン胺、ゼラチン溶液、 カルポキシメチルセルロース、セラツク、メチル セルロース、リン酸カリウム、ポリピニルピロリ ·ドン等の結合剤、乾燥デンプン、アルギン酸ナド

ント末、ゼラチン、エタノール等の結合剤、ラミ ナラン、カンテン等の崩壊剤等を使用できる。坐 剤の形態に成形するに際しては、担体として例え ばポリエチレングリコール、カカオ脂、高級アル コール、高級アルコールのエステル類、ゼラチン、 半合成グリセライド等を使用できる。カプセル剤 は常法に従い通常本発明化合物又はその塩を上記 で例示した各種の担体と混合して硬質ゼラチンカ プセル、軟質カプセル等に充塡して調整される。 注射剤として調整される場合、液剤、乳剤及び懸 濁剤は殺菌され、かつ血液と等張であるのが好ま しく、これらの形態に成形するに際しては、希釈 剤として例えば水、エチルアルコール、マクロゴ ・ール、プロピレングリコール、エトキシ化イソス テアリルアルコール、ポリオキシ化イソステアリ ルアルコール、ポリオキシエチレンソルビタン脂 肪酸エステル類等を使用できる。なお、この場合 等張性の溶液を調整するに充分な量の食塩、プド

ウ糖あるいはグリセリンを医薬製剤中に含有せしめてもよく、また通常の溶解補助剤、緩衝剤、無痛化剤等を添加してもよい。更に必要に応じて着色剤、保存剤、香料、風味剤、甘味剤等や他の医薬品を医薬製剤中に含有せしめてもよい。

上記医薬製剤中に含有されるべき本発明化合物 又はその塩の量としては、特に限定されず広範囲 に適宜選択されるが、通常医薬製剤中に1~70 重量%、好ましくは1~30重量%とするのがよい。

上記医薬製剤の投与方法は特に制限がなく、各 種製剤形態、患者の年齢、性別その他の条件、疾 患の程度等に応じて決定される。例えば錠剤、丸 剤、液剤、乳剤、乳剤な剤及びカプセル剤 は経口投与される。注射剤は単独で又はプドウ糖、 アミノ酸等の通常の補液と混合して静脈内投与され、更に必要に応じて単独で筋肉内、皮内、 もしくは腹腔内投与される。坐剤は直腸内投与さ

を加え、クロロホルム抽出し、飽和食塩水で洗浄 後、硫酸マグネシウムで乾燥した。溶媒を留去し て得られた残渣をシリカゲルカラムクロマトグラ フィーにて精製して、700mgの6-エトキシカ ルポニル-3-(1-ピロリジニル)カルポスチ リルを得た。

NMR (CDC@3) 8:

- 1. 41(3H, t, J-7, 12Hz)
- 1. 98 (4H. m), 3. 62 (4H. m)
- 4. 4 (2H, q, J = 7. 12Hz)
- 6.53(1H.s)
- 7. 09 (1H, d, J=8, 42Hz)
- 7.85 (1H, dd, J=8, 42Hz)
- 8. 11 (1H, d)、9. 7 (1H, brs) 参考例2

6-エトキシカルボニル-3, 4-ジヒドロカルボスチリル20gのクロロホルム350m2溶液に、鉄粉500mgを加え、これに氷冷撹拌下に、

れる。

上配医薬製剤の投与量は、用法、患者の年齢、性別その他の条件、疾患の程度等により適宜選択されるが、通常有効成分である本発明化合物又はその塩の量が1日当り体重1kg当り約0.01~10mg程度とするのがよい。また、投与単位形態中に有効成分を0.1~200mg含有せしめるのがよい。

寒 施 例

以下に参考例、実施例、素理試験結果及び製剤例を挙げる。

参考例1

2-(1-ピロリジニル)-N-(2-ホルミル-4-エトキシカルポニルフェニル)アセタミド5gの無水エタノール2Oの口溶液に、ナトリウム420可及び無水エタノール2O口より調整したナトリウムエトキシドを加えた。1時間加熱 還流後、エタノールを留去し、得られた残渣に水

臭素5.2mのクロロホルム50m溶液を徐々に 滴下した。その後、室温に戻し、終夜撹拌した。 クロロホルムを滅圧下に留去した後、得られた残 渣をシリカゲルカラムクロマトグラフィーにて精 製して、2.6gの8ープロモー6ーエトキシカ ルボニルー3.4ージヒドロカルボスチリルを得 た。

NMR (CDC@3) 8:

- 1. 35(3H, t, J=7, 1Hz)
- 2.64-2.71(2H, m)
- 3.02-3.69(2H.m)
- 4. 36(2H, q, J-7, 1Hz)
- 7. 92 (1H, d. J=1.8Hz)
- 8.10(1H, brs)
- 8. 11 (1H, d, J=1.8Hz)

参考例3

水酸化ナトリウム1.3gを水20m及びメタ ノール20mに溶解し、これに8-プロモー6-

エトキシカルポニルー3, $4-\Im$ ビドロカルポス NMR (DMSO-d $_8$) δ : チリル2.09を加え、50~60℃にて30分 間加熱撹拌した。その後、溶媒を留去し、得られ た残渣を水に溶解し、濃塩酸にて酸性とした。析 出する結晶を炉取し、水洗後、クロロホルムーメ タノールより再結晶して、1.1gの8ープロモ - 6 - カルポキシー3,4-ジヒドロカルポスチ リルを得た。

NMR (DMSO-ds) 8:

- 2.46-2.70(2H.m)
- 2.85-3.20(2H, m)
- 7. 88 (1H, d, J=1, 5Hz)
- 7. 91 (1H, d, J=1.5Hz)
- 9.40 (1H. brs)

上記参考例3と同様にして、適当な出発原料を 用いて、下配各化合物を得た。

○6-カルボキシー3-(1-ピロリジニル)カ ルポスチリル

12.1(1H, brs)

o6-カルボキシ-3-(1-ピロリジニルメチ ル)カルポスチリル

NMR (DMSO-ds) 8:

- 1.95 (4H, brs)
- 3.31(4H.brs)
- 4.25(2H, s)
- 7. 45 (1H, d, J = 8, 6Hz)
- 8. 10 (1H, dd, J=8. 6Hz,

1.8Hz)

- 8. 28 (1H, d, J=1.8Hz)
- 8.40(1H,s)
- 12.48(1H, brs)
- ○1-(2-フェネチル)-6-カルボキシ-3, 7.20(1H, d, J=8.6Hz)

4-ジヒドロカルポスチリル

NMR (DMSO-ds) 8:

- 4.65-4.72(2H, m)
- 4.66-5.01(4H, m)

- 1.63(4H, m), 3.46(4H, m)
- 6.647(1H, s)
- 7. 16 (1H, d, J=8. 6Hz)
- 7. 72 (1H, d, J=8.6Hz)
- 8.00(1H, s)
- 11.60 (1H, brs)
- ○6-カルボキシ-3-(4-メチル-1-ピペ

ラジニル)カルボスチリル

NMR (DMSO-ds) 8:

- 2. 29 (3H. s)
- 2.57(4H, brs)
- 3. 23 (4H, brs)
- 7. 25 (1H. s)
- 7.30(1H, d, J=8, 6Hz)
- 7. 85(1H, dd, J=8.6Hz.

1.7Hz)

8. 18 (1H, d, J=1.7Hz)

- 4. 22 (2H. t. J = 7.4Hz)
- 7:10(1H, d, J=8.6Hz)
- 7.26(5H, m)
- 7. 94 (1H, d, J=1.8Hz)
- 8. 03 (1H, dd, J=1.8Hz,

8.6Hz)

○ 1 - イソプロピルー 6 - カルポキシー 3 . 4 -ジヒドロカルポスチリル

NMR (CDC(3) 8:

- 1. 55(6H, d, J=7.0Hz)
- 2.58-2.65(2H, m)
- 2.88-2.93(2H, m)
- 4. 72(1H, septet, J=7. OHz)
- 7.92(1H.s)
- 8. 00 (1H. d. J-8. 6Hz)
- 1 ペンジル 6 カルボキシカルボスチリル
- NMR (DMSO-de-CDC@3)8:

- 5.57(2H.s)
- 6.82(1H, d, J=9.5Hz)
- 7. 22-7. 35 (6H, m)
- 7. 80(1H. d. J=9.5Hz)
- 8.07(1H.d.J=9Hz)
- 8.29(1H.s)
- o 1 ベンジル 6 カルポキシ 7 メトキシ
- -3,4-ジヒドロカルボスチリル

融点 154~158℃

性状 無色針状晶(メタノール-水より再結晶)

1 - ペンジルー6 - カルボキシー7 - エトキシ

-3,4-ジヒドロカルポスチリル

融点 140~141.5℃

性状 無色針状晶(メタノールー水より再結晶)

o 1 - ベンジル - 6 - カルボキシ - 7 - n - プロ

ポキシー3.4-ジヒドロカルポスチリル

融点 155~156.5℃

性状 無色針状晶(メタノールー水より再結晶)

より再結晶)

- o 6 カルポキシ- 7 メトキシ- 1 メチルー
 - 3. 4-ジヒドロカルボスチリル

融点 202.5~206.5℃

性状 無色プリズム状晶(メタノールより再結晶)

o 6 - カルボキシ- 7 - メチルチオー3 . 4 - ジ

ヒドロカルポスチリル

融点 300~307℃(分解)

性状 淡黄色針状晶(ジメチルホルムアミドーメ

タノールより再結晶)

参考例 4

2-(4-メチル-1-ピペラジニル)-N-(2-ホルミル-4-エトキシカルボニルフェニル)アセタミド5.47gをtert-プタノール100㎡中に溶解し、これにカリウムtert-プトキシド2.1gを加え、70℃にて1時間加熱撹拌した。次にtert-プタノールを減圧留去し、得られた残渣に水を加え、クロロホルム抽出した。

○6 - カルボキシー 7 - エトキシー 3 . 4 - ジヒ ドロカルボスチリル

融点 246~249℃(分解)

性状 白色粉末状(メタノールー水より再結晶)

○6-カルボキシー7-nープロポキシー3.4

- ジヒドロカルボスチリル

融点 242~246℃(分解)

性状 無色蹲片状晶(酢酸エチルーメタノールより再結晶)

6 - カルボキシー 7 - メチルー 3 . 4 - ジヒド ロカルボスチリル

融点 300℃以上(分解)

性状 淡黄色粉末状(ジメチルホルムアミドーメタノールより再結晶)

○6-カルボキシー7-クロロー3.4-ジヒドロカルボスチリル

融点 310℃以上(分解)

性状 淡黄色粉末状(ジメチルホルムアミドー水

飽和食塩水にて洗浄後、硫酸マグネシウムにて乾燥し、クロロホルムを留去した。ジエチルエーテルにて結晶化させて、3.0gの6-エトキシカルボニル-3-(4-メチル-1-ピペラジニル)カルボスチリルを得た。

NMR (CDC23) 8:

- 1. 42 (3H, t, J-7. 1Hz)
- 2.40(3H, s), 2.70(4H, m)
- 3.35(4H, m)
- 4. 40 (2H, q, J-7, 1Hz)
- 7. 28(1H, d, J=8.5Hz)
- 8. 01 (1H, dd, J=1.8Hz, 8.5Hz)

8. 23 (1H. d. J-1. 8Hz)

11.07(1H, brs)

上記参考例4と同様にして、適当な出発原料を 用いて、以下の化合物を得た。

o6-エトキシカルボニル-3-(1-ピロリジ

ニルメチル)カルポスチリル

NMR (CDC@a) 8:

- 1. 4243 (3H, t, J=7. 12Hz)
- 1. 67 (4H, m), 2. 71 (4H, m)
- 3.75(2H,s)
- 4. 41 (2H, q, J = 7, 12Hz)
- 7. 38 (1H, d, J=8.55Hz)
- 7.98(1H,s)
- 8. 13 (1H, dd, J=1.84Hz,

8.55Hz)

- 8.32(1H, d, J=1.84Hz)
- 11.60(1H, brs)

参考例5

6-エトキシカルポニルー3、4-ジヒドロカルポスチリル5g、水酸化カリウム4、5g及びβ-プロモエチルベンゼンのジメチルスルホキシド50m溶液を、室温にて8時間関拌した。その後、反応混合物を水中に注ぎ込み、酢酸エチルに

上記参考例 5 と同様にして、適当な出発原料を 用いて、以下の化合物を得た。

- 1-イソフロビルー6ーエトキシカルボニルー
 - 3. 4-ジヒドロカルボスチリル

NMR (CDC@3) 8:

- 1. 39 (3H, t, J=7, 1Hz)
- 1. 53(6H, d, J-7, OHz)
- 2. 54-2. 62 (2H. m)
- 2.84 2.91(2H.m)
- 4. 37(2H, q, J=7, 1Hz)
- 4. 70(1H, septet, J = 7.0Hz)
- 7. 16 (1H, d, J=8.5Hz)
- 7. 65(1H, d, J=2.1Hz)
- 7. 81 (1H, dd, J = 2. 1Hz.

8.5Hz)

○1-ペンジルー6-カルボキシー7-ヒドロキシー3、4-ジヒドロカルボスチリル

融点 212~216C(分解)

て抽出し、水及び飽和食塩水で順次洗浄後、硫酸マグネシウムにて乾燥した。酢酸エチルを留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液:ジクロロメタン)にて精製して、6.0gの1ー(2ーフェネチル)-6-エトキシカルボニル-3、4-ジヒドロカルボスチリルを得た。

NMR (CDC 2 3) 8:

- 1. 40(3H, t, J-7.1Hz)
- 2.61-2.65(2H, m)
- 2.65-2.98(4H, m)
- 4. 20 (2H, t, J-8. 0Hz)
- 4. 38 (2H, q, J=7. 1Hz)
- 7. 06 (1H, d, J = 8.6Hz)
- 7. 21-7. 34 (5H, m)
- 7. 66 (1H. d. J = 2.0Hz)
- 7. 95 (1H, dd, J-8, 6Hz,

2. OHz)

性状 無色針状晶 (メタノールーエタノールより 再結晶)

○ 1 - メチル - 6 - メトキシカルボニル - 7 - メ

トキシー3. 4ージヒドロカルポスチリル

融点 154.5~156.5℃

性状 無色針状晶(メタノールより再結晶)

- o6-カルポキシ-7-メトキシ-1-メチル-
 - 3, 4-ジヒドロカルポスチリル

融点 202.5~206.5℃

性状 無色プリズム状晶 (メタノールより再結晶) 参考例 6

5ーヒドロキシー3,4ージヒドロカルボスチリル15gのジメチルホルムアミド150 配溶液に炭酸カリウム19gを加え、氷冷下、これに臭化アリル12配のジメチルホルムアミド20 配溶液を滴下した。滴下終了後、室温にて一晩撹拌し、反応混合物を氷水10中に注ぎ込み、析出した結晶を护取し、水洗後、メタノールより再結晶して、

特開昭63-230687 (17)

12.9gの5ーアリルオキシー3.4ージヒドロカルポスチリルを得た。

融点 140~148℃

性状 淡黄色板状晶

参考例 7

5-アリルオキシー3、4ージヒドロカルボスチリル17gのジメチルホルムアミド70 政溶液を、窒素気流下、5時間加熱速流させ、放冷後、反応混合物を氷冷し、濃塩酸50 成及び水1 eの希塩酸中に注ぎ込み、析出した結晶を炉取し、水洗後、メタノールより再結晶して、11.1gの5-ヒドロキシー6-アリルー3、4ージヒドロカルボスチリルを得た。

融点 108~116℃(分解) .

性状 無色針状晶

参考例8

5-ヒドロキシー6-アリルー3.4-ジヒドロカルポスチリル4.10のジメチルホルムアミ

融点 154~158℃

性状 無色針状晶(メタノールー水より再結晶) 参考例 9

5-メトキシー6-アリルー3,4-ジヒドロカルボスチリル3,3gのジメチルスルホキシド30配溶液に、室温下、カリウムtertープトキシド2,6gを加え、50℃にて30分間撹拌した。反応混合物を氷水中に注ぎ込み、塩酸酸性とした後、析出晶を炉取し、水洗後、メタノールより再結晶して、2,8gの5-メトキシー6ー(1ープロペニル)-3,4-ジヒドロカルボスチリルを得た。

融点 199~207℃

性状 無色牌片状晶

上記参考例9と同様にして、適当な出発原料を 用いて、以下の化合物を得た。

○5 - n - プロポキシー6 - (1 - プロペニル)-3.4 - ジヒドロカルポスチリル

ド40 配溶液に、炭酸カリウム5.5 gを加え、次いで氷冷下にヨウ化メチル2.5 配を滴下し、流下終了後、周温度にて30分間提拌し、更に室温にて2.5 時間撹拌した。反応混合物を氷水50 配中に注ぎ込み、折出した結晶を炉取した。これを水洗後、メタノールー水より再結晶して、3.6 gの5 - メトキシー6 - アリルー3,4 - ジェドロカルポスチリルを得た。

融点 170~172℃

性状 無色針状晶

上記参考例8と周様にして、適当な出発原料を 用いて、以下の化合物を得た。

○5-n-プロポキシー6-アリルー3, 4-ジ ヒドロカルポスチリル

融点 131~132℃

性状 無色針状晶 (メタノールー水より再結晶)

o 1 - ペンジルー 6 - カルボキシー 7 - メトキシー 3 . 4 - ジヒドロカルボスチリル

融点 155~159℃

性状 淡黄色脾片状晶 (メタノールより再結晶) 参考例 10

17gの5-メトキシー6-カルポキシー3.
 4-ジヒドロカルポスチリルを得た。

融点 263~265°C(分解)

性状 無色針状晶

上記参考例10と同様にして、適当な出発原料 を用いて、以下の化合物を得た。

5 − N − プロポキシー6 − カルボキシー3, 4− ジヒドロカルポスチリル

融点 258~263℃(分解)

性状 無色針状晶 (メタノールより再結晶) 参考例 1 1

6-クロロアセチルー 7 ーヒドロキシー 3 , 4 ージヒドロカルポスチリル 4 3 . 4 g及びピリジン 3 5 0 mを 8 0~9 0℃にて 1 時間加熱撹拌した。冷却後、折出した結晶を护取し、エタノールにて洗浄した。得られた 6 ーピリジニウムアセチルー 7 ーヒドロキシー 3 , 4 ージヒドロカルポスチリル・クロリドを水酸化ナトリウム 4 0 g の水

500 四溶液中に入れ、80~90℃にて1時間加熱搅拌した。冷却後、濃塩酸にて酸性とし、析出晶を炉取し、水洗後、乾燥して、30、4gの6-カルボキシー7ーヒドロキシー3、4ージヒドロカルボスチリルを得た。

性状 茶色粉末状

参考例12

前記参考例8と同様にして、適当な出発原料を 用いて、以下の各化合物を得た。

○1-ベンジルー6-カルボキシー7-エトキシー3,4-ジヒドロカルボスチリル

融点 140~141.5℃

性状 無色針状晶 (メタノールー水より再結晶)

• 1 - ペンジルー 6 - カルボキシー 7 - N - プロポキシー3 , 4 - ジヒドロカルポスチリル

融点 155~156.5℃

性状 無色針状晶 (メタノールー水より再結晶) * 06 - メトキシカルポニルー 7 - エトキシー 3,

・4 - ジヒドロカルポスチリル

融点 191.5~193.0°C

性状 淡黄色針状晶 (メタノールー水より再結晶) ○ 6 - メトキシカルポニルー 7 - n - プロポキシ - 3 , 4 - ジヒドロカルポスチリル

融点 166.5~168.0℃

性状 無色針状晶(酢酸エチル-n-ヘキサンより再結晶)

○ 6 - カルボキシー 7 - エトキシー 3 , 4 - ジヒ ドロカルボスチリル

融点 246~249℃(分解)

性状 白色粉末状 (メタノールー水より再結晶) ・6 - カルポキシー7 - n - プロポキシー3, 4 - ジヒドロカルポスチリル

融点 242~246℃(分解)

性状 無色蜱片状晶(酢酸エチルーメタノールより再結晶)

参考例13

塩化アルミニウム 6 . 6 gのジクロロメタン 2 0 m 懸 滴液に、氷冷下、 2 ークロロアセチルクロリド 2 m のジクロロメタン 5 m 溶液を滴下した。 室温にて 4 0 分間選择し、次いで 6 5 ℃にて 2 0 分間選择後、再び氷冷し、 7 ーメチルー3 . 4 ージヒドロカルポスチリル 2 . 0 gを加え、注ぎ込み、行出した結晶を で取し、水洗後、ジメチルホルムアミドーメタノールより 再結晶して、 2 . 2 gの6 ー (α ークロロアセチル)ー 7 ーメチルー3 . 4 ージヒドロカルポスチリルを得た。

融点 201~203℃

性状 無色針状晶

上記参考例13と同様にして、適当な出発原料 を用いて、以下の化合物を得た。

6-(α-クロロアセチル)-7-クロロ-3,4-ジヒドロカルポスチリル

融点 207~214℃(分解)

性状 淡茶色針状晶 (ジメチルホルムアミドーメ タノールより再結晶)

参考例14

6-メトキシカルボニルー 7-ヒドロキシー3,4-ジヒドロカルボスチリル14gのジメチルホルムアミド200 m 懸濁液に、氷冷下に水素化ナトリウム2.8gを加え、室温で20分間撹拌し、次いで40℃にて20分間撹拌した。次に再度氷冷後、ジメチルチオカルバモイルクロリド

11.7gを加え、同温度で1時間、更に室温で2時間各々撹拌した。その後、更にジメチルチオカルバモイルクロリド4gを加えて室温で1時間 撹拌した。反応混合物を氷水中に注ぎ込み、析出した結晶を护取し、水洗後、粗結晶を約10%水酸化ナトリウム水溶液600mに加え、室温にて20分間撹拌後、再度炉取し、充分に水洗後、メタノールークロロホルムにて再結晶して、9.6gの6-メトキシカルボニルー7ージメチルチオ

実施例1

メタンスルホン酸20g及び五酸化リン2gの 溶液中に、8-プロモー6-カルポキシー3.4 - ジヒドロカルポスチリル1、10及び3、4-ジアミノピリジン〇、49gを加えた。室温にて 2時間撹拌後、50~60℃にて1時間、次いで 100℃にて2時間それぞれ加熱撹拌した。その 後、反応混合物を水中に注ぎ込み、50%水酸化 ナトリウム水溶液にて弱アルカリ性とし、析出し た結晶を炉取し、水洗し、得られた結晶をシリカ ゲルカラムクロマトグラフィー(溶出液:ジクロ ロメタン:メタノール=1〇:1)にて精製後、 エタノールー激塩酸にて塩酸塩とした。次いでエ タノールー水より再結晶して、〇. 8gの8-ブ ロモー6-(1H-イミダゾ(4,5-c)-ピ リジン-2-イル)-3.4-ジヒドロカルポス チリル・塩酸塩・1水和物を得た。

融点 300℃以上

カルパモイルオキシー3. 4 - ジヒドロカルポスチリルを得た。

融点 219~220℃

性状 無色針状晶

参考例15

6ーメトキシカルボニルー 7 ージメチルチオカルバモイルオキシー 3 、 4 ージヒドロカルボスチリル 9 . 6 g を、窒素雰囲気下に、 2 2 0 ~ 2 3 0 ℃にて 2 時間加熱した。 放冷 接後、 で混合物にメタノールを加え、 塊状物を溶解をして、 1 のの にて 精製後、メタノールークロスタンー 1 1 0 0 にて 精製後、メタノールークロスカルボスチルチオー 3 . 4 ージヒドロカルボスチリルを得た。

融点 212~216℃ 性状 微黄色針状晶

性状 白色粉末状

NMR (DMSO-ds) 8:

- 2.51-2.65(2H.m)
- 3.00-3.20(2H, m)
- 8. 08 (1H. d. J=6. 48Hz)
- 8.16(1H, s), 8.38(1H, s)
- 8.52(1H, d, J=6.48Hz)
- 9.34(1H, s), 9.56(1H, s)

実施例2

7-メトキシー6ーカルボキシー3,4ージヒドロカルボスチリル0.3g及び3,4ージアミノピリジン0.16gを、五酸化リンーメタンスルホン酸(1:10)混合物7g中に加え、

100℃にて2時間撹拌した。反応混合物を氷水中に注ぎ込み、10%水酸化ナトリウム水溶液及び飽和炭酸水素ナトリウム水溶液により弱アルカリ性とし、折出した結晶を炉取し、水洗及び乾燥した。シリカゲルカラムクロマトグラフィー(溶

出被:メタノール:クロロホルムー1:20~1:

15)にて精製後、エタノールー濃塩酸にて塩酸塩とし、水ーエタノールより再結晶して、

0. 29007-メトキシ-6-(1H-イミダソ(4. 5-c)-ピリジン-2-イル)-3

4 ージヒドロカルポスチリル・塩酸塩・1水和物を得た。

融点 240~263℃ (分解)

性状 白色粉末状

NMR (DMSO-da) 8:

- 2. 47-2. 57 (2H, m)
- 2.89-2.99(2H, m)
- 4.02(3H, s), 6.79(1H, s)
- 8. 11 (1H, d, J-6, OHz)
- 8.17(1H,s)
- 8. 51 (1H, d, J-6. OHz)
- 9.25(1H,s)
- 10.40(1H, s)

実施例3~41

実施例1及び実施例2と同様にして、適当な出発原料を用いて、下記第1表に示す各化合物を得た。

また、得られた各化合物の形態、結晶形及び融点(及び場合によりNMR分析結果)を第2表に示す。

第	1	表	
R 2—	\mathfrak{T}	N O	R3
		Ī	
		R١	

実施例	R¹	R²	R³	3,4-位 結 合
3	H	6 < N N N	Н	一 重
4	Н	3 < N N	Н	二重
5	CH₃	6 < N > N	Н	一 重
6	H	6 < N XN	8-C0	一 重
7	. н	6 < N N N	н	重

実施	R¹	R²	R³	3,4-位 桔 合
8	· C2 Hs	$6 \stackrel{N}{\swarrow}_N$	Н	一 重
9	CH (CH ₃) ₂	6 < N \ N N	Н	一 重
10	CH₂ CH=CH₂	$6 < N \longrightarrow N$	н	一 追
11	-CH ₂ -	6 4 X X Z	Н	一 童
12	-(CH ₂) ₂ -	6 < N X N	н	一 重
13	-CH ₂ -	6 < N \ N \ N \ N \ N \ N \ N \ N \ N \ N	н	三重

特開昭 63-230687 (21)

実施例	R۱	R²	R³	3,4 結	位合
14	н	6 \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3-N	=	重
15	Н	6 < N / N	3-N_N-¢H ₃	Ξ	重
16	Н	6 < N N N	3-CH₂ N	=	重
17	н	6 < N X N	8-NO ₂	-	重
18	н	$6 \stackrel{N}{\underset{H}{\swarrow}} N$	8-NH2	-	重
19	Н	$e <_N^H \searrow_N^N$	8-NHC-CH	_	Ħ

実施 例	R۱	R²	R³	3,4-位 精 合
20	Н	6 X X X	8-0CH ₃	- 重
21	Н	6 KZH	5-0CH₃	- 重
22	Н	6 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5-0 (CH ₂) ₂ CH ₃	- ±
23	Н	6 < N \ N N	7-OC2 Hs	- 重
24	Н	6 < N X N	7-0 (CH ₂) ₂ CH ₃	重
25	Н	$6 \stackrel{N}{\underset{H}{\swarrow}} N$	7-OH	- 重

実施例	R¹	R²	R³	3,4-位 精 合
26	Н	e Szt	7-C2	- 重
27	Н	6 < N X X	7 CH₃	童
28	н	6 < N X X	3-CH₃	重
29	н	6 < N > N	4 – CH₃	一 重
30	н	6 < N \ N \ N \ N \ N \ N \ N \ N \ N \ N	8 – CH₃	- 重
31	Н	3 < N N N	Н	- 1

実施例	R¹	R²	R³	3,4-位 結 合
32	H	7 < N \ N N N N	Н	重
33	н	8, XX	н	- 重
34	н	6 < N X	н	一 重
35	н	6 ≺N OCH₃	Н	- 重
36	H	6 < N OCH₃ H OCH₃	н	一 重
37	Н	6 < N C &	H ·	重

実施例	R¹	R²	R³	3,4-位 结 合
38	3 H 7 < N N N		Н	一 重
39	Н	6 < N N N	7-0CH₃	- 童
40	Н	6 ~ N ~ N N	7-SCH₃	- 重
41	н	6 < N NH2	Н	一重

		第 2 表	
実統例	形態	結 晶 形 (再結晶溶媒)	融 点(℃) (NMR*)
3	HC 2 · 1/2 H ₂ O	黄色粉末状 (エタノールー水)	300以上(*1)
4	1/2 (COOH) ₂ • H ₂ O	黄色粉末状 (エタノールー水)	300以上 (*2)
5	(COOH) ₂	白色粉末状 (エタノール)	147-148
6	3/4 H₂ O	淡黄色粉末状 (ジメチルホルムアミド)	320以上 (*3)
7	1/2 H ₂ SO ₄ • 3/2 H ₂ O	無色プリズム状 (エタノールー水)	300以上 (* 4)
8	HC2	無色粉末状 (エタノールー水)	300以上 (*5)
9	(C00H) ₂	無色プリズム状 (エタノールー水)	248-250
10	遊離	無色粉末状 (エタノールー水)	300以上 (*6)
11	遊戲	無色粉末状 (エタノールー水)	298-300 (分解)
12	HC0 · 2H2 O	白色粉末状 (エタノールー水)	274-282 (分解)

	T		
実施	形想	結 晶 形 (再結晶溶媒)	融 点(℃) (NMR*)
13	遊離	無色プリズム状 (エタノールー水)	300以上 (*7)
14	遊離	茶色粉末状 (エタノールー水)	300以上 (*8)
15	3 HC2 · 3 H ₂ O	黄色粉末状 (エタノールー水)	300以上 (*9)
16	2 HCe · 5/2 H ₂ O	白色粉末状 (エタノールー水)	300以上 (* 10)
17	遊離	黄色粉末状 (エタノールー水)	300以上 (* 11)
18	遊離	黄色プリズム状 (エタノールー水)	300以上 (** 12)
19	遊離	黄色プリズム状 (エタノールー水)	284-286 (分解)
20	遊離	無色針状 (エタノールー水)	262-269 (分解)
21	HCQ · H ₂ O	無色針状 (エタノールー水)	250以上 (分解) (** 13)
22	HC2 + 1/2 H ₂ O	白色粉末状 (エタノールー水)	270以上 (分解) (* 14)

			
実施例	形態	結 晶 形 (再結晶溶媒)	融 点(℃) (NMR*)
23	HCe · H₂ O	淡黄色粉末状 (エタノールー水)	280-290 (分解) (* 15)
24	HC2 · 3/2 H₂ O	無色針状 (エタノールー水)	280-288 (分解) (* 16)
25	HCe	微黄色粉末状 (水)	290以上 (分解) (** 17)
26	HCe · H ₂ O	白色粉末状 (エタノールー水)	300以上 (** 18)
27	HCQ · 2/3 H ₂ O	無色針状 (エタノールー水)	320以上 (* 19)
28	HCQ · H ₂ O	無色粉末状 (エタノールー水)	300以上 (** 20)
29	HCQ · H ₂ O	無色粉末状 (エタノールー水)	300以上 (* 21)
30	HCe • 1/2 H ₂ O •	無色粉末状 (エタノールー水)	300以上 (* 22)
31	HC2 · 3/2 H ₂ O	無色粉末状 (エタノールー水)	300以上 (* 23)
3.2	HC2 · 2 H ₂ O	無色針状 (エタノールー水)	300以上(** 24)

実施例	形 態	結 晶 形 (再結晶溶媒)	融点(℃) (NMR*)
33	HCQ • H₂ O	無色プリズム状 (エタノールー水)	300以上 (* 25)
34	遊離	無色プリズム状 (ジメ チルホルムアミドー水)	177-182 (分解)
35	H₂ O	淡黄色粉末状(ジメチ ルホルムアミドー水)	148-163 (分解) (*26)
36	H₂ O	淡黄色粉末状(ジメチ ルホルムアミドー水)	165以上 (分解)(**27)
37	H₂ O	無色プリズム状 (ジメ チルホルムアミドー水)	199-200 (分解)
38	HC2 · 3/2 H ₂ O	無色プリズム状 (エタノールー水)	300以上 (* 28)
39	HC2 · 4/3 H ₂ O	淡黄色針状 (エタノールー水)	230-250 (分解) (*29)
40	HC0 · 3/2 H ₂ O	淡黄色針状 (エタノールー水)	320以上 (#30)
41	HCe		(# 31)

- (* 4) NMR (DMSO-ds) 8:
 - 2.40-2.75(2H.m)
 - 2.90-3.20(2H.m)
 - 7.06(1H, d, J-9Hz)
 - 7.85 (1H, d, J=6Hz)
 - 8. 10 (1H, d, J=9Hz)
 - 8.20(1H, s)
 - 8.45 (1H, d, J-6Hz)
 - 9.20(1H,s)
 - 10.55(1H.brs)
- (*5) NMR (DMSO-d₆+D₂O)δ:
- 1. 20 (3H. t. J=7. 5Hz)
- 2.50-2.80(2H, m)
- 2.80-3.20(2H.m)
- 3.90(2H, q, J-7.5Hz)
- 7. 32 (1H, d, J-8Hz)
- 7. 90-8. 30 (3H, m)
- 8.50(1H, m)

- (*1) NMR (DMSO-d_β)δ:
 - 2.40-2.80(2H.m)
- 2.85-3.20(2H.m)
- 7. 08 (1H. d. J-9Hz)
- 7. 48 (1H. dd. J-8Hz. 5Hz)
- 8. 10-8. 40 (3H, m)
- 8.48(1H, d, J-5Hz)
- 10.50(1H.brs)
- (*2) NMR (DMSO-ds) 8:
- 7. 20-8. 40 (7H. m)
- 9.21(1H.s)
- (*3) NMR (DMSO-d_δ)δ:
 - 2.43-2.75(2H.m)
 - 2.90-3.20(2H, m)
 - 3.48(1H.brs)
 - 7. 10-7. 30 (1H. m)
 - 7.85-8.40(4H.m)
 - 9.49(1H.brs)
 - 9.10(1H, brs)
- (*6) NMR (DMSO-ds) 8:
- 4.60(2H, m)
- 4.95-5.30(2H.m)
- 5.60-6.20(1H, m)
- 7. 28 (1H, d, J = 9Hz)
- 8.05-8.35(3H, m)
- 8.60(1H, d. J-7Hz)
- 9.36(1H,s)
- (*7) NMR (DMSO-d₆) ð:
- 5.56(2H,s)
- 6.83 (1H, d, J=9, 4Hz)
- 7. 18-7. 27 (5H, m)
- 7. 62 (1H, d, J=8.9Hz)
- 8.08(1H, d, J=6.5Hz)
- 8. 13 (1H, d, J=9, 4Hz)
- 8.40(1H, d, J=8.9Hz)
- 8. 52 (1H, d, J = 6. 5Hz)

- (*8) NMR (DMSO-d₈) δ:
- 1.75-2.05(4H.m)
- 2.40-2.60(4H, m)
- 6.69(1H,s)
- 7.40(1H, d, J=8.6Hz)
- 8. 10-8. 20 (2H, m)
- 8.45(1H,s)
- 8. 58 (1H, d, J=6. 4Hz)
- 9.39(1H,s)
- 12.09(1H, s)
- (*9) NMR (DMSO-d₈) ð:
- 2.82(3H,s)
 - 3. 10-3. 80 (6H, m)
 - 3.90-4.10(2H.m)
 - 7.34(1H,s)
 - 7. 48 (1H, d, J=8. 5Hz)
 - 8. 10 (1H, d, J=6, 45Hz)
- 8.30(1H, d, J-8, 5Hz)
- 8.94(1H, d, J=1.8Hz)
- 9.43(1H, s)
- (* 12) NMR (DMSO-ds) ð:
- 2. 50-2. 70 (2H. m)
- 2.90-3.10(2H, m)
- 7. 43 (1H, s), 7. 53 (1H, s)
- 8.00(1H, d, J=5.0Hz)
- 8.50 (1H. d. J=5.0Hz)
- 9.30(1H, s), 9.65(1H, s)
- (* 13) NMR (DMSO-ds) 8:
- 2.50-2.60(2H, m)
- 2.99-3.09(2H, m)
- 3.78(3H, s)
- 8. 91 (1H. d. J-8. 6Hz)
- 8. 12 (1H, d. J=6. 4Hz)
- 8. 14 (1H. d. J-8. 6Hz) 2. 89-2. 99 (2H. m)
- 8. 54 (1H, d. J=6. 4Hz)
- 9.33(1H, s), 10.55(1H, s)

- 8.56(1H, d, J=6.45Hz)
- 8.65(1H, s), 9.37(1H, s)
- 11.14 (1H, brs)
- 12.28(1H, s)
- (* 10) NMR (DMSO-ds) &:
 - 2.00(4H, m), 3.50(4H, m).
 - 4.34(2H, s)
 - 7.60(1H, d, J=8.79Hz)
 - 8. 10 (1H, d, J-6, 45Hz)
 - 8. 45-8. 65 (3H. m)
 - 8.76(1H,s),9.38(1H,s)
 - 10.60(1H, brs)
 - 12.58(1H, s)
 - (* 11) NMR (DMSO-d₆) ð:
 - 2.60-2.80(2H, m)
 - 3. 10-3. 35 (2H, m)
- 8. 14 (1H, d, J+6. 43Hz)
 - 8.58(2H, m)
 - (* 14) NMR (DMSO-d₈) δ:
 - 0.87 (3H, t. J=7.0Hz)
 - 1. 69 (2H, sixt, J-7. OHz)
 - 2.50-2.60(2H, m)
 - 2.98-3.08(2H, m)
 - 3. 71(2H, t. J-7. OHz)
 - 6.89 (1H, d, J-8.5Hz)
 - 7. 97 (1H, d, J=8.5Hz)
 - 8.09(1H, d, J=6.5Hz)
 - 8. 56(1H, d, J=6.5Hz)
 - 9.40(1H, brs)
 - 10.54(1H.s)
- (* 15) NMR (DMSO-d_δ) δ:
 - 1.46 (3H, t, J=7.0Hz)
 - 2. 48-2. 58 (2H, m)

 - 4. 35(2H, q, J=7.0Hz)
 - 6.81(1H.s)

- 8. 09 (1H, d, J-6. 4Hz)
- 8.13(1H,s)
- 8.50(1H, d, J=6.4Hz)
- 9.26(1H, s)
- 10.38(1H.s)
- (* 16) NMR (DMSO-ds) &:
 - 0.95(3H, t, J-7.2Hz)
 - 1. 90(2H, sixt, J-7.2Hz)
- 7. 46-7. 56 (2H. m)
- 2.89-2.99(2H, m)
- 4. 24 (2H, t, J-7. 2Hz)
- 6.82(1H.s)
- 8. 13 (1H, d, J-6, 4Hz)
- 8.14(1H.s)
- 8. 53(1H.d.J-6.4Hz)
- 9.30(1H,s),10.38(1H,s)
- (* 17) NMR (D₂ O) ð:
 - 2. 45-2. 55 (2H, m)
- 7. $47 \cdot (1H, d, J = 6.2Hz)$
- 9. 26 (1H, s) \ 10. 29 (1H, s)
- (*20) NMR (トリフルオロ酢酸-d) ð:
 - 1. 43(3H, d, J=8HZ)
 - 2.90-3.65(3H; m)
 - 7. 25-7. 55 (2H. m)
 - 7.80-9.30(4H, m)
- (* 21) NMR (DMSO-ds) 8:
 - 1. 32(3H, d, J-7Hz)
 - 2. 20-3. 40 (3H. m)
 - 7. 12 (1H, d, J=8Hz)
 - 8.10-8.33(3H, m)
 - 8. 60 (1H. d. J-7Hz)
- 9.34(1H.s)
- (# 22) NMR (DMSO-d₈ +D₂ O) ð:
- 2.31(3H,s)
- 2.45-2.80(2H.m)
- 2.80-3.25(2H.m)

- 2.82-2.92(2H, m)
- 6. 57 (1H, s), 7. 93 (1H, s)
- 8. 00 (1H, d, J = 6. 3Hz)
- 8.38(1H.d.J=6.3Hz)
- 9.04(1H.s)
- (* 18) NMR (DMSO-d₆) &:
 - 2.50-2.60(2H, m)
 - 2. 95-3. 05 (2H, m)
 - 7. 14 (1H, s), 7. 91 (1H, s)
 - 8. 16(1H, d, J=6.4Hz)
 - 8. 60(1H, d, J-6.4Hz)
 - 9.47(1H, s), 10.55(1H, s)
- '(* 19) NMR (DMSO-ds). 8:
 - 2. 45-2. 55 (2H, m)
 - 2.59(3H,s)
- 2.86-2.96(2H, m)
- .6.86(1H.s), 7.79(1H.s)
- 7. 99 (1H, d, J=6. 2Hz)
- 7.80(2H, m)
- 7.90-8.20(1H, m)
- .8.40-8.60(1H, m)
- 9.15(1H, s)
- (* 23) NMR (D₂ O) ð:
- 6. 30 (1H, d, J = 8Hz)
- 6. 45-7. 10(3H.m)
- 7. 30 (1H, d, J = 7Hz)
- 7.88(1H,s)
- 7.85(1H, d, J=7Hz)
- 8.30(1H, s)
- (* 24) NMR (DMSO-ds) 8:
 - 2. 45-2.55(2H, m)
 - 2.95-2.05(2H, m)
- 7. 45(1H, d, J=8.0Hz)
- 7.83(1H.s)
- 7. 90 (1H, dd, J-1, 8Hz,
 - 8. OHz)

- 8. 11 (1H, d, J = 6. 5Hz)
- 8. 56(1H, d, J=6.5Hz)
- 9.41(1H, s), 10.46(1H, s)

(* 25) NMR (DMSO-d₆) &:

- 2.55-2.65(2H.m)
- 3.00-3.10(2H, m)
- 7. 22 (1H, t, J = 7. 6Hz)
- 7. 51 (1H. d. J = 7. 6Hz)
- 8. 17(1H, d, J=6.4Hz)
- 8. 21 (1H, d, J=7. 6Hz)
- 8. 62 (1H, d, J=6. 4Hz)
- 9.54(1H,s),11.58(1H,s)

(* 26) NMR (DMSO-d_β) δ:

- 2.46-2.56(2H.m)
- 2. 93-3. 03 (2H. m)
- 3.79(3H.s)
- 6.80(1H, dd, J=2.4Hz,
 - 8.8Hz)
 - 2.99-3.05(2H.m)
 - 7. 06 (1H, d, J-8, 2Hz)
 - 8. 10-8. 20 (2H.m)
 - 9.0-9.4(2H, brs)
 - 10.50(1H,s)
- (*29) NMR (DMSO-d₈) 8:
- 2.56-2.66(2H,m)[^]
- 2.90-3.00(2H, m)
- 3.37(3H, s), 4.15(3H, s)
- 6.92(1H.s)
- 8. 12 (1H, d, J-6. 4Hz)
- 8.22(1H.s)
- 8. 53 (1H, d. J-6. 4Hz)
- 9.29(1H, brs)
- (*30) NMR (DMSO-ds) 8:
 - 2.43(3H.s)
 - 2.50-2.60(2H, m)
 - 2.90-3.00(2H, m)

- 6.96(1H, d, J=8.2Hz)
 - 6. 90-7.00(1H, brs)
- 7. 43 (1H, d, J=8.8Hz)
- 7. 90 (1H, d, J=8. 2Hz)
- 7.94(1H, s), 10.31(1H, s)
- 12.58 (1H, brs)
- (* 27) NMR (CDC@3) 8:
- 2.60-2.70(2H, m)
- 2.98-3.08(2H, m)
- 3.93(6H,s)
- 6.89(1H, d, J-8.3Hz)
- 6.97(1H.brs)
- 7. 28 (1H. brs)
- 7.84(1H, d, J=8.3Hz)
- 7.97(1H,s)
- 11.30(1H, brs)
- (* 28) NMR (DMSO-d₆)δ:
 - 2.50-2.59(2H.m)
- 7.05(1H, s), 7.90(1H, s)
- 8. 10 (1H. d. J-6. 4Hz)
- 8. 56 (1H, d, J=6, 4Hz)
- 9.41(1H, s), 10.40(1H, s)

(*31) NMR (DMSO-d₆) ∂:

- 2.50-2.60(2H, m)
- 2.90-3.10(2H, m)
- 3.35(2H, brs)
- 6.90-7.10(3H, m)
- 7. 49 (1H, d, J=8.8Hz)
- 7. 95 (1H, d, J-8, 8Hz)
- 8.01(1H, s)
- 10.52(1H, brs)

実施例42

- 8-アミノー6-(1H-イミダゾ(4,5-
- c)-ピリジン-2-イル)-3.4-ジヒドロ
- カルポスチリル〇、4gを無水酢酸2〇〇中に加
 - え、磯硫酸1滴を加え、80-90℃で7時間加

熟撹拌した。その後、反応混合物を水に注ぎ込み、50%水酸化ナトリウム水溶液にてり日7~8とし、水を減圧留去した。得られた残渣をクロロホルムーエタノールより抽出かかルカラムクロマトグた。得られた残渣をシリカゲルカラムメタンロマトグラフィー(溶出液・ジクロメタンに、は温を5%炭酸カリウム水溶液30㎡に、エタノーループ温を10に、エタノーループ温を10に、エタノーループ温を10にでは、エタノールーでは、11円では、11

融点 284~286℃(分解)

性状 黄色プリズム状

実施例43

6-(1H-イミダゾ(4.5-c)ビリジン -2-イル)-7-エトキシ-3.4-ジヒドロ

2.45-2.55(2H.m)

2.82-2.92(2H.m)

6.57(1H, s), 7.93(1H, s)

8.00(1H, d, J=6.3Hz)

8.38 (1H, d, J=6, 3Hz)

9.04(1H, s)

製剤例1

6-(ペンズイミダゾールー2-

イル)-3.4-ジヒドロカルボ

スチリル5 mgデンプン1 3 2 mgマグネシウムステアレート1 8 mg乳 糖4 5 mg

24 49 4 4 5 My

計、 200mg

常法により1錠中、上記組成物の錠剤を製造した。

製剤例2

7ーメトキシー6ー(1Hーイミ

性状 微黄色粉末状

融点 290℃以上(分解)

NMR (Dg O) 8:

ダゾ (4,5-c) ピリジン-2 -イル)-3,4-ジヒドロカル

ポスチリル 500 mg ポリエチレングリコール 0.3g(分子量:4000) 塩化ナトリウム 0.9qポリオキシエチレンソルビタン 0.49モノオレエート メタ重亜硫酸ナトリウム 0.1g メチルーパラベン 0.18g プロピルーパラベン 0.029注射用蒸留水 100 m2

上記パラベン類、メタ重亜硫酸ナトリウム及び 塩化ナトリウムを撹拌しながら80℃で上記の蒸 留水に溶解する。得られた溶液を40℃まで冷却 し、本発明化合物、ポリエチレングリコール及び ポリオキシエチレンソルピタンモノオレエートを 順次溶解させ、次にその溶液に注射用蒸留水を加 えて最終の容量に調製し、適当なフィルターペーパーを用いて減菌が過することにより減菌して 1 ぬずつアンプルに分注し、注射剤を調製する。

〈血液灌流摘出乳頭筋標本〉

- 6-(6-クロロ-1H-ベンズイミダゾール-2-イル)-3.4-ジヒドロカルボスチリル・1水和物
- 3. 8-プロモー6-(1H-イミダゾ(4.5 -c)ピリジン-2-イル)-3. 4-ジヒ ドロカルポスチリル・1塩酸塩・1水和物
- 4.8-メトキシー6ー(1H-イミダゾ(4.5-c)ピリジン-2-イル)-3.4-ジ ヒドロカルポスチリル
- 5. 7-メトキシー6ー(1Hーイミダゾ(4,5-c)ピリジン-2-イル)-3,4-ジ ヒドロカルポスチリル・1 塩酸塩・1水和物
- 6.6-(5-メトキシ-1H-ベンズイミダゾ -ル-2-イル)-3,4-ジヒドロカルボ スチリル・1水和物
- 7.6-(1H-イミダゾ(4.5-b)ピリミジン-2-イル)-3.4-ジヒドロカルボスチリル・塩酸塩・3/2水和物

は1.5gで乳頭筋の発生張力は力変位交換器を介して測定する。前中隔動脈の血流量は電磁流量計を用いて測定する。発生張力及び血流量はインク客を記録計により記録した。この方法の詳細は、遠聴と橋本により既に報告されている(Am. J. Physiol. 218,1459-1463,1970)。

供試化合物は、10~30 μ ℓ の容量で4秒間で動脈内投与した。供試化合物の変力作用は、築物投与前の発生張力に対する%変化として表わした。冠血流量に対する作用は、投与前からの絶対値の変化(m2/分)として表わした。

以下の各化合物を供試化合物として用いた結果 を下配第3表に示す。

〈供試化合物〉

- 1.8-アミノー6-(1H-イミダゾ(4.5 -c)ピリジン-2-イル)-3.4-ジヒ ドロカルポスチリル
- 8. 7-メチルー6-(1H-イミダソ(4.5 -c)ピリジン-2-イル)-3.4-ジヒ ドロカルポスチリル・塩酸塩・2/3水和物
- 9. 1 メチル- 7 メトキシ- 6 (1 H イミダソ(4.5 c) ピリジン- 2 イル)- 3,4 ジヒドロカルポスチリル・塩酸塩・4/3水和物
- 10.6-(5-アミノ-1H-ペンズイミダゾ -ル-2-イル)-3.4-ジヒドロカルボ スチリル
 - 11. 7-ヒドロキシー6-(1H-イミダゾ (4.5-c)ピリジン-2-イル)-3.4-ジヒドロカルポスチリル・塩酸塩
 - 12.7-クロロー6-(1H-イミダゾ(4.5-c)ピリジン-2-イル)-3.4-ジ ヒドロカルポスチリル・塩酸塩・1水和物
 - 13. 4-メチルー6ー(1Hーイミダゾ(4. 5-c)ピリジン-2-イル)-3. 4-ジ

ヒドロカルボスチリル・塩酸塩・1水和物

- 14.8-メチルー6ー(1Hーイミダ(4,5 ーC)ピリジンー2ーイル)ー3,4ージヒ ドロカルポスチリル・塩酸塩・1/2水和物
- 15.6-(1H-イミダゾ(4,5-c)ピリ ジン-2-イル)-3.4-ジピドロカルボ スチリル・1/2硫酸塩・3/2水和物
- 16.6-(1H-イミダゾ(4,5-b)ピリ ジン-2-イル)-3.4-ジヒドロカルポ スチリル・塩酸塩・1/2水和物
- 17.1-アリルー6-(1H-イミダソ(4, 5-c)ピリジン-2-イル)-3,4-ジ ビドロカルポスチリル
- 18. 1-エチル-6-(1H-イミダソ(4, 5-C)ピリジン-2-イル)-3,4-ジ ヒドロカルポスチリル・塩酸塩
- 19. 5-n-プロポキシ-6-(1H-イミダ(4,5-c) ピリジン-2-イル)-3.
- 25.3-メチルー6ー(1Hーイミダソ(4.5-c)ピリジン-2-イル)-3.4-ジ ヒドロカルボスチリル・塩酸塩・1水和物
 26.6-(1H-ペンズイミダゾール-2-イル)-3.4-ジヒドロカルボスチリル

4 - ジヒドロカルポスチリル・塩酸塩・1 / 2 水和物

- 20.1-(2-フェネチル)-6-(1H-イミダゾ(4.5-c)ピリジン-2-イル)-3.4-ジヒドロカルポスチリル・塩酸塩・2水和物
- 21.1-ペンジルー6ー(1H-イミダソ(4, 5-c)ピリジンー2ーイル)カルポスチリ
- 22.8-二トロー6-(1H-イミダソ(4.5-c)ピリジン-2-イル)-3.4-ジ ヒドロカルポスチリル
- 23.8-アセチルアミノー6-(1H-イミダ ソ(4,5-c)ピリジン-2-イル)-3, 4-ジヒドロカルポスチリル
 - 24.5-メトキシ-6-(1H-イミダソ(4, 5-C)ピリジン-2-イル)-3,4-ジ ヒドロカルポスチリル・塩酸塩・1水和物

第 3 奏

		n 3 ax	
供試化合 物No.	投 与 量 (モル)	心室筋の収縮変化 (%)	冠動脈血流量変化 (配/分)
1	10 n	32.4	1. 0
2	1μ	27. 1	0. 4
3	30n	20. 2	1. 2
4	100n	17. 8	0. 8
5	300n	23. 1	0. 4
6	1μ	27. 7	0. 4
7	300 n	107	0. 9
8	1μ	59.6	1. 2
9	1μ	44.2.	28
10	1μ	68. 1	2. 9
11	300n	22. 4	1. 0
12	1μ	66. 1	3. 8
13	10n	21. 9	1. 0
14	10 n	28. 7	1. 5
15	10 n	13. 4	1. 0

供試化合 物No.	投 与 量 (モル)	心室筋の収縮変化 (%)	冠動脈血流量変化 (102/分)
16	300n	47	0. 8
17	1μ	63	1. 3
18	1μ	61. 2	2. 5
19	1μ	34	1. 8
20	1μ	22.8	3. 3
21	1μ	19. 2	1. 6
22	100n	26. 2	0.5
23	100n	83. 6	1. 5
24	300n	4 2	1. 7
25	10 n	66. 7	0. 9
.26	100n	19	1. 0

(以上)

代理人 弁理士 三 枝 英 二

