2 March 2012 -- Computer Architectures -- part 2/2

Surname, Name, Matricola

.....

Question 1

Considering the MIPS64 architecture presented in the following:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- FP multiplier unit: pipelined 8 stages
- FP arithmetic unit: pipelined 4 stages
- FP divider unit: not pipelined unit that requires 10 clock cycles
- branch delay slot: 1 clock cycle, and the branch delay slot is not enable
- forwarding is enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.
- o and using the following code fragment, show the timing of the presented loop-based program and compute how many cycles does this program take to execute?

	.data				
V1:	.double "100 values"				
 V4:	.double "100 values"				
V5:	.double "100 zeros"				
	1 11 ((100 2)				
V7:	.double "100 zeros"				
	.text				
main:	daddui r1,r0,0				
	daddui r2,r0,100				
loop:	1.d f1,v1(r1)				
•	1.d f2,v2(r1)				
	div.d f5,f1,f2				
	s.d f5,v5(r1)				
	1.d f3,v3(r1)				
	mul.d f6,f2,f3				
	l.d f4,v4(r1)				
	div.d f7,f6,f4				
	add.d f7,f7,f3				
	s.d f6,v6(r1)				
	s.d $f7,v7(r1)$				
	daddi r2,r2,-1				
	daddui r1,r1,8				
	bnez r2,loop				

Halt

comments	Clock cycles
1	
r1← pointer	
r2 <= 100	
$f1 \ll v1[i]$	
$f2 \ll v2[i]$	
$f5 \leftarrow v1[i]/v2[i]$	
$v5[i] \leftarrow f5$	
$f3 \ll v3[i]$	
$f6 \leftarrow v2[i]*v3[i]$	
f4 <= v4[i]	
$f7 \leftarrow v6[i]/v4[i]$	
$f7 \leftarrow v6[i]/v4[i]+v3[i]$	
v6[i] ← f6	
v7[i] ← f7	
r2 ← r2 - 1	
$r1 \leftarrow r1 + 8$	

Total

2 March 2012 -- Computer Architectures -- part 2/2

Surname, Name, Matricola

Question 2

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 8 stages
 - v. 1 FP divider unit, which is not pipelined: 10 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 4 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).

o Complete the table reported below showing the processor behavior for the 2 initial iterations.

0

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)					
1	l.d f2,v2(r1)					
1	div.d f5,f1,f2					
1	s.d f5,v5(r1)					
1	l.d f3,v3(r1)					
1	mul.d f6,f2,f3					
1	l.d f4,v4(r1)					
1	div.d f7,f6,f4					
1	add.d f7,f7,f3					
1	s.d f6,v6(r1)					
1	s.d f7,v7(r1)					
1	daddi r2,r2,-1					
1	daddui r1,r1,8					
1	bnez r2,loop					
2	l.d f1,v1(r1)					
2	l.d f2,v2(r1)					
2	div.d f5,f1,f2					
2	s.d f5,v5(r1)					
2	l.d f3,v3(r1)					
2	mul.d f6,f2,f3					
2	l.d f4,v4(r1)					
2	div.d f7,f6,f4					
2	add.d f7,f7,f3					
2	s.d f6,v6(r1)			_		
2	s.d f7,v7(r1)					
2	daddi r2,r2,-1					
2	daddui r1,r1,8					
2	bnez r2,loop					