Quantum Information A Fall 2020 Final Exam

Choose **5 problems** from the 13 alternatives below to solve. Solutions are due in 12 noon on Monday Oct 26. Let me know if you find typos.

All problems except problem 7 are taken from Nielsen-Chuang, look them up from the book. You can use all available sources, but if you happen to find a solution somewhere, do not copy it without understanding every step. Note also that if two students return identical solutions, it will be noticed, and be a problem.

- 1. Excercise 3.29 from the book.
- 2. Exercise 4.36 from the book.
- 3. Exercise 4.41 from the book
- 4. Exercise 4.42 from the book.
- 5. Exercise 4.43 from the book.
- 6. Exercise 4.51 from the book.
- 7. **Period finding algorithm, simplified example.** If you found the discussion of the period finding algorithm a bit hard to digest in Nielsen-Chuang, you may want to consider working through this (rather straightforward) exercise. It introduces a slightly simplified version of the problem. Consider the function $f: \mathbf{Z}_N \to \mathbf{Z}_M$, where $\mathbf{Z}_N = \{0, 1, 2, ..., N-1\}$ with addition modulo N, where N, M are positive integers. We assume that the function satisfies the following properties:
 - f is periodic: there exists a positive integer r such that f(x+r)=f(x)
 - the period r is a factor of N: N = nr for some non-negative integer n. Thus f has an integer number of periods within \mathbf{Z}_N . (This assumption simplifies the algorithm.)
 - f is one-to-one: for all pairs (x,y) such that |x-y| < r, $f(x) \neq f(y)$.

We know a priori that r is a factor of N, but to determine it precisely we need an algorithm. We start with the discrete Fourier transformation, which we write as the map Q_N :

$$Q_N|x\rangle = \frac{1}{\sqrt{N}} \sum_{y \in \mathbf{Z}_N} \omega_N^{xy} |y\rangle \tag{1}$$

where $x \in \mathbf{Z}_N$ labels the computational basis, and $\omega_N \equiv e^{i2\pi/N}$. Thinking of Q_N as a matrix in the computational basis, e.g.

$$Q_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \; ; \; Q_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & e^{i2\pi/3} & e^{-i2\pi/3} \\ 1 & e^{-i2\pi/3} & e^{i2\pi/3} \end{pmatrix}$$
 (2)

and so on. One can verify $Q_N^{\dagger} = Q_N^{-1}$ so that it is unitary. Now let us specify the periodicity determination algorithm. We need a black box gate Q_f that realizes the function f, and two registers, the first of dimension N and the second of dimension M. The steps are (your task is to work out some details):

- Start with the state $|0\rangle|0\rangle$
- Apply Q_N to the first register. Show that the state becomes

$$\frac{1}{\sqrt{N}} \sum_{x \in \mathbf{Z}_N} |x\rangle |0\rangle.$$

• Apply Q_f to the second register, the state becomes

$$\frac{1}{\sqrt{N}} \sum_{x \in \mathbf{Z}_N} |x\rangle |f(x)\rangle.$$

• Measure the second register. Suppose one would recieve the answer $z \in \mathbf{Z}_M$ (we make an implicit measurement, so we do not need to know the answer), with $f(x_0 + jr) = z$ for some x_0 and integers j. Then the state of the first register collapses to

$$\sqrt{\frac{r}{N}} \sum_{j=0}^{(N/r)-1} |x_0 + jr\rangle .$$

• Apply Q_N to the first register state (implicitely of the form above). Since r divides N, N = nr for some n. Then $\omega_N^r = e^{i2\pi(r/N)} = \omega_n$. Show that the state of the first register can be written as

$$\frac{\sqrt{r}}{N} \sum_{y \in \mathbf{Z}_N} \omega^{yx_0} \left(\sum_{j=0}^{n-1} \omega_n^{jy} \right) |y\rangle .$$

Then, the term in the brackets is a geometric sum, for which we can use

$$\sum_{k=0}^{n-1} \omega^k = \begin{cases} \frac{1-\omega^n}{1-\omega} & \text{if } \omega \neq 1\\ n & \text{if } \omega = 1 \end{cases}$$

and $\omega_n^{jy} = 1$ if $y \equiv 0 \pmod{n}$, in other words if $y = \ell n$ for some ℓ . Thus show that the state of the first register can be rewritten as

$$\frac{1}{\sqrt{r}}\sum_{\ell=0}^{r-1}\omega_N^{\ell x_0 n}|\ell n\rangle .$$

• In the end, we measure the first register in the computational basis. **Explain** why from the above state, we can see that the only measurement outcomes with nonvanishing uniform probability are $k \equiv \ell_0 n$ for some $\ell_0 = 0, \ldots, r-1$. We now know N, k, and

$$k = \ell_0 n = \frac{\ell_0 N}{r}$$
, so $\frac{k}{N} = \frac{\ell_0}{r}$.

Recall that in the end of the day we want to know what is r. If we had luck, the measurement would have yielded an ℓ_0 such that ℓ_0 and r are mutually coprime. Then by canceling out common factors from k/N we would get ℓ_0/r from which we could read off r. What is the probability of obtaining such an ℓ_0 ? The following fact can be proven:

Fact. Fix a positive integer r and pick a positive integer ℓ_0 uniformly at random from the integers between 0 and r. Then the probability that ℓ_0 is coprime to r is $\Omega(1/\log\log r)$.

Thus, we keep repeating the algorithm. Every time we get k/N we cancel out common factors and get a candidate for r, which we can test by checking if f(x+r) = f(x). If the test fails, we repeat the algorithm again. The above fact implies that after $O(\log \log r) = O(\log \log N)$ repetitions we have with high probability found the right period r.

Note that if we do not know from the beginning that r must be a factor of N, one of the periods of the function will be incomplete in the domain \mathbf{Z}_N . This leads to smearing of the probabilities around ℓ_0 and will lead us to need the continued fractions analysis, as in Nielsen-Chuang.

- 8. Exercise 5.4 from the book.
- 9. Exercise 5.5 from the book.
- 10. Exercise 5.9 from the book.
- 11. Exercise 5.18 from the book.
- 12. Problem 5.3 from the book.
- 13. Exercise 6.3 from the book.