

"SAPIENZA" UNIVERSITÀ DI ROMA INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA DIPARTIMENTO DI INFORMATICA

Automi, Calcolabilità e Complessità

Appunti integrati con il libro "Introduzione alla teoria della computazione", Michael Sipser

Author Simone Bianco

Indice

Informazioni e Contatti			1
1	Ling	guaggi regolari	2
		Linguaggi	2
	1.2	Determinismo	5
	1.3		9
		1.3.1 Equivalenza tra NFA e DFA	12
	1.4	Chiusure dei linguaggi regolari	15
	1.5	Espressioni regolari	20
		1.5.1 NFA generalizzati	23
		1.5.2 Equivalenza tra espressioni e linguaggi regolari	29
	1.6	Pumping lemma per i linguaggi regolari	30
	1.7	Esercizi svolti	33
2	Ling	guaggi acontestuali	38
	2.1	Grammatiche acontestuali	38
	2.2	Linguaggi acontestuali ad estensione dei regolari	42
	2.3	Forma normale di Chomsky	44
	2.4	Automi a pila	47
		2.4.1 Equivalenza tra CFG e PDA	50
	2.5	Pumping lemma per i linguaggi acontestuali	55
	2.6	Chiusure dei linguaggi acontestuali	60
3	Dec	idibilità e Riducibilità	67
	3.1	Macchine di Turing	67
		3.1.1 Varianti della macchina di Turing	72
		3.1.2 Tesi di Church-Turing	77
	3.2	Problemi decidibili	78
	3.3	Argomento diagonale di Cantor	85
		3.3.1 Esistenza di linguaggi non riconoscibili	88
	3.4	Problemi indecidibili	89
	3.5	Riducibilità	93
		3.5.1 Riducibilità tramite mappatura	97

Informazioni e Contatti

Appunti e riassunti personali raccolti in ambito del corso di *Automi, Calcolabilità e Complessità* offerto dal corso di laurea in Informatica dell'Università degli Studi di Roma "La Sapienza".

Ulteriori informazioni ed appunti possono essere trovati al seguente link: https://github.com/Exyss/university-notes. Chiunque si senta libero di segnalare incorrettezze, migliorie o richieste tramite il sistema di Issues fornito da GitHub stesso o contattando in privato l'autore:

• Email: bianco.simone@outlook.it

• LinkedIn: Simone Bianco

Gli appunti sono in continuo aggiornamento, pertanto, previa segnalazione, si prega di controllare se le modifiche siano già state apportate nella versione più recente.

Prerequisiti consigliati per lo studio:

Apprendimento del materiale relativo al corso Progettazione di Algoritmi.

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

1

Linguaggi regolari

1.1 Linguaggi

Definizione 1: Alfabeto

Definiamo come alfabeto un insieme finito di elementi detti simboli

Esempio:

- L'insieme $\Sigma = \{0, 1, x, y, z\}$ è un alfabeto
- L'insieme $\Sigma = \{0, 1\}$ è un alfabeto. In particolare, tale alfabeto viene detto **alfabeto** binario

Definizione 2: Stringa

Data una sequenza di simboli $w_1, \ldots, w_n \in \Sigma$, definiamo:

$$w := w_1 \dots w_n$$

come stringa (o parola) di Σ

Esempio:

- Dato l'alfabeto $\Sigma = \{0,1,x,y,z\},$ una stringa di Σ è 0x1yyy0

Definizione 3: Linguaggio

Dato un alfabeto Σ , definiamo come **linguaggio di** Σ , indicato come Σ^* , l'insieme delle stringhe di Σ

Definizione 4: Lunghezza di una stringa

Data una stringa $w \in \Sigma^*$, definiamo la **lunghezza di** w, indicata come |w|, come il numero di simboli presenti in w

Definizione 5: Concatenazione

Data la stringa $x := x_1 \dots x_n \in \Sigma^*$ e la stringa $y := y_1 \dots y_m \in \Sigma^*$, definiamo come **concatenazione di** x **con** y la seguente operazione:

$$xy = x_1 \dots x_n y_1 \dots y_n$$

Proposizione 1: Stringa vuota

Indichiamo con ε la **stringa vuota**, ossia l'unica stringa tale che:

- \bullet $|\varepsilon|=0$
- $\bullet \ \forall w \in \Sigma^* \ w \cdot \varepsilon = \varepsilon \cdot w = w$
- $\bullet \ \Sigma^* \neq \varnothing \implies \varepsilon \in \Sigma^*$

Definizione 6: Conteggio

Data una stringa $w \in \Sigma^*$ e un simbolo $a \in \Sigma^*$ definiamo il **conteggio di** a **in** w, indicato come $|w|_a$, il numero di simboli uguali ad a presenti in w

Esempio:

 \bullet Data la stringa w:=010101000 $\in \{0,1\}^*,$ si ha che $|w|_0=6$ e $|w|_1=3$

Definizione 7: Stringa rovesciata

Data una stringa $w = a_1 \dots a_n \in \Sigma^*$, dove $a_1 \dots a_n \in \Sigma$, definiamo la sua **stringa rovesciata**, indicata con w^R , come $w^R = a_n \dots a_1$.

Esempio:

ullet Data la stringa $w:=\mathtt{abcdefg}\in\Sigma^*,$ si ha che $w^R=\mathtt{gfedcba}$

Definizione 8: Potenza

Data la stringa $w \in \Sigma^*$ e dato $n \in \mathbb{N}$, definiamo come **potenza** la seguente operazione:

$$w^n = \begin{cases} \varepsilon & \text{se } n = 0\\ ww^{n-1} & \text{se } n > 0 \end{cases}$$

Proposizione 2: Operazioni sui linguaggi

Dati i linguaggi $L, L_1, L_2 \subseteq \Sigma^*$, definiamo le seguenti operazioni:

• Operatore unione:

$$L_1 \cup L_2 = \{ w \in \Sigma^* \mid w \in L_1 \lor w \in L_2 \}$$

• Operatore intersezione:

$$L_1 \cap L_2 = \{ w \in \Sigma^* \mid w \in L_1 \land w \in L_2 \}$$

• Operatore complemento:

$$\overline{L} = \{ w \in \Sigma^* \mid w \notin L \}$$

• Operatore concatenazione:

$$L_1 \circ L_2 = \{ xy \in \Sigma^* \mid x \in L_1, x \in L_2 \}$$

• Operatore potenza:

$$L^{n} = \begin{cases} \{\varepsilon\} & \text{se } n = 0\\ L \circ L^{n-1} & \text{se } n > 0 \end{cases}$$

• Operatore star di Kleene:

$$L^* = \{w_1 \dots w_k \in \Sigma^* \mid k \ge 0, \forall i \in [1, k] \ w_i \in L\} = \bigcup_{n \ge 0} L^n$$

• Operatore plus di Kleene:

$$L^{+} = \{w_{1} \dots w_{k} \in \Sigma^{*} \mid k \geq 1, \forall i \in [1, k] \ w_{i} \in L\} = \bigcup_{n \geq 1} L^{n} = L \circ L^{*}$$

Teorema 1: Leggi di DeMorgan

Dati due linguaggi L_1 e L_2 , si ha che:

$$L_1 \cup L_2 = \overline{\overline{L_1} \cap \overline{L_2}}$$

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

(dimostrazione omessa)

1.2 Determinismo

Definizione 9: Automa

Un **automa** è un meccanismo di controllo (o macchina) progettato per seguire automaticamente una sequenza di operazioni o rispondere a istruzioni predeterminate, mantenendo informazioni relative allo **stato** attuale dell'automa stesso ed agendo di conseguenza, **passando da uno stato all'altro**.

Esempio:

- Un sensore che apre e chiude una porta può essere descritto tramite il seguente automa, dove Chiuso e Aperto sono gli stati dell'automa e N, F, R e E sono le operazioni di transizione tra i due stati indicanti rispettivamente:
 - N: il sensore non rileva alcuna persona da entrambi i lati della porta
 - F: il sensore rileva qualcuno nel lato frontale della porta
 - R: il sensore rileva qualcuno nel lato retrostante della porta
 - E: il sensore rileva qualcuno da entrambi i lati della porta

• L'automa appena descritto è in grado di interpretare una **stringa in input** che ne descriva la sequenza di operazioni da svolgere (es: la stringa NFNNNFRR terminerà l'esecuzione dell'automa sullo stato Aperto)

Definizione 10: Deterministic Finite Automaton (DFA)

Un **Deterministic Finite Automaton (DFA)** (o Automa Deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- ullet Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \to Q$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa, ossia l'insieme degli stati su cui, a seguito della lettura di una stringa in input, l'automa accetta la corretta terminazione

Esempio:

• Consideriamo il seguente DFA

dove:

- $-Q = \{q_1, q_2, q_3\}$ è l'insieme degli stati dell'automa
- $\Sigma = \{0,1\}$ è l'alfabeto dell'automa
- $-\delta: Q \times \Sigma \to Q$ definita come

$$\begin{array}{c|ccccc}
\delta & q_1 & q_2 & q_3 \\
\hline
0 & q_1 & q_3 & q_2 \\
1 & q_2 & q_2 & q_2
\end{array}$$

è la funzione di transizione degli stati dell'automa

- $-q_1$ è lo stato iniziale dell'automa
- $-F = \{q_2\}$ è l'insieme degli stati accettanti

Definizione 11: Funzione di transizione estesa

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo $\delta^* : Q \times \Sigma^* \to Q$ come funzione di transizione estesa di D la funzione definita ricorsivamente come:

$$\left\{ \begin{array}{l} \delta^*(q,\varepsilon) = \delta(q,\varepsilon) = q \\ \delta^*(q,aw) = \delta^*(\delta(q,a),w), \ \text{dove} \ a \in \Sigma, w \in \Sigma^* \end{array} \right.$$

Proposizione 3: Stringa accettata in un DFA

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Data una stringa $w \in \Sigma^*$, diciamo che w è accettata da D se $\delta^*(q_0, w) \in F$, ossia l'interpretazione di tale stringa **termina su uno stato** accettante

Esempio:

- Consideriamo ancora il DFA dell'esempio precedente.
- La stringa 0101 è accettata da tale DFA, poiché:

$$\delta^*(q_1, 0101) = \delta^*(\delta(q_1, 0), 101) = \delta^*(q_2, 101) = \delta^*(\delta(q_2, 1), 01) = \delta^*(q_2, 01) =$$
$$= \delta^*(\delta(q_2, 0), 1) = \delta^*(q_3, 1) = \delta^*(\delta(q_3, 1), \varepsilon) = \delta^*(q_2, \varepsilon) = q_2 \in F$$

• La stringa 1010, invece, non è accettata dal DFA, poiché:

$$\delta^*(q_1, 1010) = \delta^*(q_2, 010) = \delta^*(q_3, 10) = \delta^*(q_2, 0) = \delta^*(q_3, \varepsilon) = q_3 \notin F$$

Definizione 12: Linguaggio di un automa

Sia A un automa. Definiamo come **linguaggio di** A, indicato come L(A), l'insieme di stringhe accettate da A

$$L(A) = \{ w \in \Sigma^* \mid A \text{ accetta } w \}$$

Inoltre, diciamo che D riconosce L(A)

Esempi:

1. • Consideriamo il seguente DFA D

• Il linguaggio riconosciuto da tale DFA corrisponde a

$$L(D) = \{x \in \{0,1\}^* \mid x := y1, \exists y \in \{0,1\}^*\}$$

ossia al linguaggio composto da tutte le stringhe terminanti con 1

2. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid 1y, \exists y \in \{0, 1\}^*\}$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

3. • Consideriamo il seguente linguaggio

$$L = \{w \in \{0,1\}^* \mid |w|_1 \ge 3\}$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

4. • Consideriamo il seguente linguaggio

$$L = \{w \in \{0, 1\}^* \mid w := 0^n 1, n \in \mathbb{N} - \{0\}\}\$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

Definizione 13: Configurazione di un DFA

Sia $D:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Definiamo la coppia $(q,w)\in Q\times \Sigma^*$ come configurazione di D

Definizione 14: Passo di computazione in un DFA

Definiamo come passo di computazione la relazione binaria definita come

$$(p, aw) \vdash_D (q, w) \iff \delta(p, a) = q$$

Definizione 15: Computazione deterministica

Definiamo una computazione come **deterministica** se ad ogni passo di computazione segue un'unica configurazione:

$$\forall (q, aw) \exists !(p, w) \mid (q, aw) \vdash_D (p, w)$$

Proposizione 4: Chiusura del passo di computazione

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. La chiusura riflessiva e transitiva di \vdash_D , indicata come \vdash_D^* , gode delle seguenti proprietà:

- $(p, aw) \vdash_D (q, w) \implies (p, aw) \vdash_D^* (q, w)$
- $\forall q \in Q, w \in \Sigma^* \ (q, w) \vdash_D^* (q, w)$
- $(p, abw) \vdash_D (q, bw) \land (q, bw) \vdash_D (r, w) \implies (p, abw) \vdash_D^* (r, w)$

Osservazione 1

Sia $D:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Dati $q_i,q_f\in Q,w\in\Sigma^*,$ si ha che

$$\delta^*(q_i, w) = q_f \iff (q_i, w) \vdash_D^* (q_f, \varepsilon)$$

1.3 Non determinismo

Definizione 16: Alfabeto epsilon

Dato un alfabeto Σ , definiamo $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ come alfabeto epsilon di Σ

Definizione 17: Non-deterministic Finite Automaton (NFA)

Un Non-deterministic Finite Automaton (NFA) (o Automa Non-deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- $\bullet~Q$ è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- $\delta:Q\times\Sigma_{\varepsilon}\to\mathcal{P}(Q)$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa

Nota: $\mathcal{P}(Q)$ è l'insieme delle parti di Q, ossia l'insieme contenente tutti i suoi sottoinsiemi possibili

Esempio:

• Consideriamo il seguente NFA

dove:

- $Q=\{q_1,q_2,q_3\}$ è l'insieme degli stati dell'automa
- $\Sigma = \{a,b\}$ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \rightarrow Q$ definita come

$$egin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline arepsilon & \{q_3\} & arnothing & arnothing \\ \mathbf{a} & arnothing & \{q_2,q_3\} & \{q_1\} \\ \mathbf{b} & \{q_2\} & \{q_3\} & arnothing \end{array}$$

è la funzione di transizione degli stati dell'automa

- $-q_1$ è lo stato iniziale dell'automa
- $-\ F = \{q_1\}$ è l'insieme degli stati accettanti

Osservazione 2: Computazione in un NFA

Sia $N := (Q, \Sigma, \delta, q_0, F)$ un NFA. Data una stringa $w \in \Sigma_{\varepsilon}$ in ingresso, la **computazione** viene eseguita nel seguente modo:

- Tutte le volte che uno stato potrebbe avere più transizioni per diversi simboli dell'alfabeto, l'automa N si duplica in **più copie**, ognuna delle quali segue il suo corso. Si vengono così a creare più **rami di computazione** indipendenti che sono eseguiti in **parallelo**.
- Se il prossimo simbolo della stringa da computare non si trova su nessuna delle transizioni uscenti dello stato attuale di un ramo di computazione, l'intero ramo termina la sua computazione (terminazione incorretta).
- Se almeno una delle copie di *N* termina correttamente su uno stato di accettazione, l'automa accetta la stringa di partenza.
- Quando a seguito di una computazione ci si ritrova in uno stato che possiede un ε -arco in uscita, la macchina si duplica in più copie: quelle che seguono gli ε -archi e quella che rimane nello stato raggiunto.

Esempio:

• Consideriamo il seguente NFA

• Supponiamo che venga computata la stringa w = 1010:

 \bullet Poiché esiste un ramo che termina correttamente, l'NFA descritto accetta la stringa w = 1010

Proposizione 5: Stringa accettata in un NFA

Sia $N := (Q, \Sigma, \delta, q_0, F)$ un NFA. Data una stringa $w := w_0 \dots w_k \in \Sigma^*$, dove w_0, \dots , $w_k \in \Sigma_{\varepsilon}$, diciamo che w è **accettata da** N se esiste una sequenza di stati r_0, r_1, \dots , $r_{k+1} \in Q$ tali che:

- $\bullet \ r_0 = q_0$
- $\forall i \in [0, k] \ r_{i+1} \in \delta(r_i, w_i)$
- $r_{k+1} \in F$

1.3.1 Equivalenza tra NFA e DFA

Definizione 18: Classe dei linguaggi riconosciuti da un DFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un **DFA** il seguente insieme:

$$\mathcal{L}(\mathsf{DFA}) = \{ L \subseteq \Sigma^* \mid \exists \; \mathsf{DFA} \; D \; \mathsf{t.c} \; L = L(D) \}$$

Definizione 19: Classe dei linguaggi riconosciuti da un NFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un NFA il seguente insieme:

$$\mathcal{L}(\mathsf{NFA}) = \{ L \subseteq \Sigma^* \mid \exists \; \mathsf{NFA} \; N \; \mathsf{t.c} \; L = L(N) \}$$

Teorema 2: Equivalenza tra NFA e DFA

Date le due classi di linguaggi $\mathcal{L}(\mathsf{DFA})$ e $\mathcal{L}(\mathsf{NFA})$, si ha che:

$$\mathcal{L}(\mathsf{DFA}) = \mathcal{L}(\mathsf{NFA})$$

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathcal{L}(\mathsf{DFA})$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Poiché il concetto di NFA è una generalizzazione del concetto di DFA, ne segue automaticamente che D sia anche un NFA, implicando che $L \in \mathcal{L}(\mathsf{NFA})$ e di conseguenza che:

$$\mathcal{L}(\mathsf{DFA}) \subset \mathcal{L}(\mathsf{NFA})$$

Seconda implicazione.

- Dato $L \in \mathcal{L}(NFA)$, sia $N := (Q_N, \Sigma, \delta_N, q_{0_N}, F_N)$ il NFA tale che L = L(N)
- Consideriamo quindi il DFA $D := (Q_D, \Sigma, \delta_D, q_{0_D}, F_D)$ costruito tramite N stesso:
 - $-Q_D = \mathcal{P}(Q_N)$
 - Dato $R \in Q_D$, definiamo l'estensione di R come:

$$E(R) = \{q \in Q_N \mid q \text{ è raggiungibile in } N \text{ da } q' \in R \text{ tramite } k \geq 0 \text{ } \varepsilon\text{-archi}\}$$

$$-q_{0_D} = E(\{q_{0_N}\})$$

$$- F_D = \{ R \in Q_D \mid R \cap F_N \neq \emptyset \}$$

– Dati $R \in Q_D$ e $a \in \Sigma$, definiamo δ_D come:

$$\delta_D = (R, a) = \bigcup_{r \in R} E(\delta_N(r, a))$$

 \bullet A questo punto, per costruzione stessa di D si ha che:

$$w \in L = L(N) \iff w \in L(D)$$

implicando dunque che $L \in \mathcal{L}(\mathsf{DFA})$ e di conseguenza che:

$$\mathcal{L}(\mathsf{NFA}) \subseteq \mathcal{L}(\mathsf{DFA})$$

Osservazione 3

Dato un NFA N, seguendo i passaggi della dimostrazione precedente è possibile definire un DFA D equivalente ad N

Esempio:

• Consideriamo ancora il seguente NFA

• Definiamo quindi l'insieme degli stati del DFA equivalente a tale NFA:

$$Q_D = \{\emptyset, \{q_1\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}, \{q_2, q_3\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\} =$$

• Per facilitare la lettura, riscriviamo i vari stati con la seguente notazione

$$Q_D = \{\emptyset, q_1, q_2, q_3, q_{1,2}, q_{2,3}, q_{1,3}, q_{1,2,3}\}$$

• A questo punto, poniamo:

$$- q_{0_D} = E(\{q_{0_N}\}) = E(\{q_1\}) = \{q_1, q_3\} = q_{1,3}$$

$$- F_D = \{q_1, q_{1,2}, q_{1,3}, q_{1,2,3}\}\$$

• Le transizioni del DFA corrisponderanno invece a:

$$- \delta_{D}(\{q_{1}\}, a) = E(\delta_{N}(q_{1}), a) = \varnothing$$

$$- \delta_{D}(\{q_{1}\}, b) = E(\delta_{N}(q_{1}), b) = \{q_{2}\} = q_{2}$$

$$- \delta_{D}(\{q_{2}\}, a) = E(\delta_{N}(q_{2}), a) = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \delta_{D}(\{q_{2}\}, b) = E(\delta_{N}(q_{2}), b) = \{q_{2}\} = q_{2}$$

$$- \delta_{D}(\{q_{1}, q_{2}\}, a) = E(\delta_{N}(q_{1}, a)) \cup E(\delta_{N}(q_{2}, a)) = \varnothing \cup \{q_{2}, q_{3}\} = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \delta_{D}(\{q_{1}, q_{2}\}, b) = E(\delta_{N}(q_{1}, b)) \cup E(\delta_{N}(q_{2}, b)) = \{q_{2}\} \cup \{q_{3}\} = \{q_{2}, q_{3}\} = q_{2,3}$$

• Il DFA equivalente corrisponde dunque a:

Definizione 20: Linguaggi regolari

Dato un alfabeto Σ , definiamo come **insieme dei linguaggi regolari di** Σ , indicato con REG, l'insieme delle classi dei linguaggi riconosciuti da un DFA:

$$\mathsf{REG} := \mathcal{L}(\mathsf{DFA})$$

Osservazione 4

Tramite il teorema dell'Equivalenza tra NFA e DFA, si ha che:

$$REG := \mathcal{L}(DFA) = \mathcal{L}(NFA)$$

1.4 Chiusure dei linguaggi regolari

Teorema 3: Chiusura dell'unione in REG

L'operatore unione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \mathsf{REG} \ L_1 \cup L_2 \in \mathsf{REG}$$

Dimostrazione I.

- Dati $L_1, L_2 \in \mathsf{REG}$, siano $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $D_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due DFA tali che $L_1 = L(D_1)$ e $L_2 = L(D_2)$
- Definiamo quindi il DFA $D = (Q, \Sigma, \delta, q_0, F)$ tale che:

$$-q_0=(q_1,q_2)$$

$$-Q = Q_1 \times Q_2$$

$$- F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\}$$

 $- \forall (r_1, r_2) \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

• A questo punto, per costruzione stessa di D ne segue che:

$$w \in L_1 \cup L_2 \iff w \in L(D)$$

dunque che $L_1 \cup L_2 = L(D) \in \mathsf{REG}$

Dimostrazione II.

- Dati $L_1, L_2 \in \mathsf{REG}$, siano $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due NFA tali che $L_1 = L(N_1)$ e $L_2 = L(M_2)$
- Definiamo quindi il NFA $N = (Q, \Sigma, \delta, q_0, F)$ tale che:
 - $-q_0$ è un nuovo stato iniziale aggiunto

$$-Q = Q_1 \cup Q_2 \cup \{q_0\}$$

$$-F = F_1 \cup F_2$$

 $- \forall q \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{se } q \in Q_1 \\ \delta_2(q, a) & \text{se } q \in Q_2 \\ \{q_1, q_2\} & \text{se } q = q_0 \land a = \varepsilon \\ \varnothing & \text{se } q = q_0 \land a \neq \varepsilon \end{cases}$$

 \bullet A questo punto, per costruzione stessa di N ne segue che:

$$w \in L_1 \cup L_2 \iff w \in L(N)$$

dunque che $L_1 \cup L_2 = L(N) \in \mathsf{REG}$

Rappresentazione grafica della dimostrazione

Teorema 4: Chiusura dell'intersezione in REG

L'operatore intersezione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \mathsf{REG} \ L_1 \cap L_2 \in \mathsf{REG}$$

Dimostrazione.

- Dati $L_1, L_2 \in \mathsf{REG}$, siano $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $D_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due DFA tali che $L_1 = L(D_1)$ e $L_2 = L(D_2)$
- Definiamo quindi il DFA $D=(Q,\Sigma,\delta,q_0,F)$ tale che:

$$-q_0=(q_1,q_2)$$

$$-Q = Q_1 \times Q_2$$

$$- F = F_1 \times F_2 = \{ (r_1, r_2) \mid r_1 \in F_1 \land r_2 \in F_2 \}$$

 $- \forall (r_1, r_2) \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

• A questo punto, per costruzione stessa di D ne segue che:

$$w \in L_1 \cap L_2 \iff w \in L(D)$$

dunque che $L_1 \cap L_2 = L(D) \in \mathsf{REG}$

Teorema 5: Chiusura del complemento in REG

L'operatore complemento è chiuso in REG, ossia:

$$\forall L \in \mathsf{REG} \ \overline{L} \in \mathsf{REG}$$

Dimostrazione.

- Dato $L \in \mathsf{REG}$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Definiamo quindi il DFA $D' = (Q, \Sigma, \delta, q_0, Q F)$, dunque il DFA uguale a D ma i cui stati accettanti sono invertiti. Per costruzione stessa di D' ne segue che:

$$w \in L \iff w \notin L(D)$$

dunque che $\overline{L} = L(D') \in \mathsf{REG}$

Teorema 6: Chiusura della concatenazione in REG

L'operatore concatenazione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \mathsf{REG} \ L_1 \circ L_2 \in \mathsf{REG}$$

Dimostrazione.

- Dati $L_1, L_2 \in \mathsf{REG}$, siano $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due NFA tali che $L_1 = L(N_1)$ e $L_2 = L(N_2)$
- Definiamo quindi il NFA $N=(Q,\Sigma,\delta,q_0,F)$ tale che:

$$-q_0=q_1$$

$$-Q = Q_1 \cup Q_2$$

$$- F = F_2$$

 $- \forall q \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{se } q \in Q_1 - F_1 \\ \delta_1(q, a) & \text{se } q \in F_1 \land a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & \text{se } q \in F_1 \land a = \varepsilon \\ \delta_2(q, a) & \text{se } q \in Q_2 \end{cases}$$

ullet A questo punto, per costruzione stessa di N ne segue che:

$$w \in L_1 \circ L_2 \iff w \in L(N)$$

dunque che $L_1 \circ L_2 = L(N) \in \mathsf{REG}$

Rappresentazione grafica della dimostrazione

Corollario 1: Chiusura della potenza in REG

L'operatore potenza è chiuso in REG, ossia:

$$\forall L \in \mathsf{REG}, n \in \mathbb{N} \ L^n \in \mathsf{REG}$$

Teorema 7: Chiusura di star in REG

L'operatore star è chiuso in REG, ossia:

$$\forall L \in \mathsf{REG}\ L^* \in \mathsf{REG}$$

Dimostrazione.

- Dato $L \in \mathsf{REG}$, sia $N = (Q, \Sigma, \delta, q_0, F)$ il NFA tale che L = L(N)
- Definiamo quindi il DFA $N' = (Q', \Sigma, \delta', q_{0*}, F')$ tale che:
 - $-\ q_{0*}$ è un nuovo stato iniziale aggiunto
 - $Q' = Q \cup \{q_{0*}\}\$
 - $F' = F \cup \{q_{0*}\}\$
 - $\forall q \in Q', a \in \Sigma \text{ si ha che:}$

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{se } q \in Q - F \\ \delta(q, a) & \text{se } q \in F \land a \neq \varepsilon \\ \delta(q, a) \cup \{q_0\} & \text{se } q \in F \land a = \varepsilon \\ \{q_0\} & \text{se } q = q_{0*} \land a = \varepsilon \\ \varnothing & \text{se } q = q_{0*} \land a \neq \varepsilon \end{cases}$$

• A questo punto, per costruzione stessa di N' ne segue che:

$$w \in L^* \iff w \in L(N')$$

dunque che $L^* = L(N') \in \mathsf{REG}$

 $Rappresentazione\ grafica\ della\ dimostrazione$

Corollario 2: Chiusura di plus in REG

L'operatore plus è **chiuso in REG**, ossia:

$$\forall L \in \mathsf{REG}\ L^+ \in \mathsf{REG}$$

Dimostrazione.

• Analoga a quella dell'operatore star, rimuovendo tuttavia lo stato iniziale dall'insieme degli stati accettanti

1.5 Espressioni regolari

Definizione 21: Espressione regolare

Dato un alfabeto Σ , definiamo come **espressione regolare di** Σ una stringa R rappresentante un linguaggio $L(R) \subseteq \Sigma^*$. In altre parole, ogni espressione regolare R rappresenta in realtà il linguaggio L(R) ad essa associata.

In particolare, definiamo l'insieme delle espressioni regolari di Σ , indicato con re(Σ), come:

- $\varnothing \in \operatorname{re}(\Sigma)$
- $\varepsilon \in \operatorname{re}(\Sigma)$
- $a \in \operatorname{re}(\Sigma)$, dove $a \in \Sigma$
- $R_1, R_2 \in \operatorname{re}(\Sigma) \implies R_1 \cup R_2 \in \operatorname{re}(\Sigma)$
- $R_1, R_2 \in \operatorname{re}(\Sigma) \implies R_1 \circ R_2 \in \operatorname{re}(\Sigma)$
- $R \in \operatorname{re}(\Sigma) \implies R^* \in \operatorname{re}(\Sigma)$
- $R \in \operatorname{re}(\Sigma) \implies R^+ \in \operatorname{re}(\Sigma)$

Osservazione 5

Data un'espressione regolare $R \in re(R)$, si ha che:

- $R = \emptyset \in \operatorname{re}(\Sigma) \implies L(R) = \emptyset$
- $R = \varepsilon \in \operatorname{re}(\Sigma) \implies L(R) = \{\varepsilon\}$
- $R = a \in re(\Sigma), a \in \Sigma \implies L(R) = \{a\}$
- $R = R_1 \cup R_2 \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1) \cup L(R_2)$
- $R = R_1 \circ R_2 \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1) \circ L(R_2)$
- $R = R_1^* \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1)^*$
- $R = R_1^+ \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1)^+$

Esempi:

- 1. $0 \cup 1$ rappresenta il linguaggio $\{0\} \cup \{1\} = \{0, 1\}$
- 2. 0*10* rappresenta il linguaggio $\{0\}^* \circ \{1\} \circ \{0\}^* = \{x1y \mid x, y \in \{0\}^*\}$
- 3. $\Sigma^*1\Sigma^*$ rappresenta il linguaggio $\Sigma^* \circ \{1\} \circ \Sigma^* = \{x1y \mid x, y \in \Sigma^*\}$
- 4. $(0 \cup 1000)^*$ rappresenta il linguaggio $(\{0\} \cup \{1000\})^* = \{0, 1000\}^*$
- 5. \emptyset^* rappresenta il linguaggio $\emptyset^* = \{\varepsilon\}$ (ricordiamo che per definizione stessa si ha che $\forall L \subseteq \Sigma^*$ $L^0 = \{\varepsilon\}$)

- 6. $0^*\emptyset$ rappresenta il linguaggio $\{0\}^* \circ \emptyset = \emptyset$
- 7. $(0 \cup \varepsilon)(1 \cup \varepsilon)$ rappresenta il linguaggio $\{\emptyset, 0, 1, 01\}$
- 8. Σ^+ equivale all'espressione $\Sigma\Sigma^*$

Definizione 22: Classe dei linguaggi descritti da esp. reg.

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ descritti da un'espressione regolare il seguente insieme:

$$\mathcal{L}(re) = \{ L \subseteq \Sigma^* \mid \exists R \in re(\Sigma) \text{ t.c. } L = L(R) \}$$

Lemma 1: Conversione da espressione regolare a NFA

Date le due classi di linguaggi $\mathcal{L}(re)$ e $\mathcal{L}(NFA)$, si ha che:

$$\mathcal{L}(re) \subset \mathcal{L}(NFA)$$

Dimostrazione.

Procediamo per induzione strutturale, ossia dimostrando che se per ogni sottocomponente vale una determinata proprietà allora essa varrà anche per ogni componente formato da tali sotto-componenti

Caso base.

• Se $R=\varnothing\in \operatorname{re}(\Sigma)$, definiamo il NFA $N_\varnothing=(\{q_0\},\Sigma,\delta,q_0,\varnothing)$, ossia:

$$\operatorname{start} \longrightarrow q_0$$

per cui si ha che $w \in L(R) \iff w \in L(N_{\varnothing})$ dunque $L(R) = L(N_{\varnothing}) \in \mathcal{L}(NFA)$

• Se $R = \varepsilon \in \operatorname{re}(\Sigma)$, definiamo il NFA $N_{\varepsilon} = (\{q_0\}, \Sigma, \delta, q_0, \{q_0\})$, ossia:

$$\operatorname{start} \longrightarrow q_0$$

per cui si ha che $w \in L(R) \iff w \in L(N_{\varepsilon})$ dunque $L(R) = L(N_{\varepsilon}) \in \mathcal{L}(NFA)$

• Se $R = a \in re(\Sigma)$ con $a \in \Sigma$, definiamo il NFA $N_a = (\{q_0, q_1\}, \Sigma, \delta, q_0, \{q_1\})$ dove per δ è definita solo la coppia $\delta(q_0, a) = q_1$, ossia:

start
$$\longrightarrow q_0$$
 a q_1

per cui si ha che $w \in L(R) \iff w \in L(N_a)$ dunque $L(R) = L(N_a) \in \mathcal{L}(NFA)$

 $Ipotesi\ induttiva.$

• Date $R_1, R_2 \in \text{re}(\Sigma)$, assumiamo che $\exists \mathsf{NFA}N_1, N_2 \mid L(R_1) = L(N_1), L(R_2) = L(N_2)$, dunque che $L(R_1), L(R_2) \in \mathcal{L}(\mathsf{NFA})$

Passo induttivo.

- Se $R = R_1 \cup R_2$, tramite la Chiusura dell'unione in REG, otteniamo che: $L(R) = L(R_1) \cup L(R_2) = L(N_1) \cup L(N_2) \in \mathsf{REG} = \mathcal{L}(\mathsf{NFA})$
- Se $R = R_1 \circ R_2$, tramite la Chiusura della concatenazione in REG, otteniamo che:

$$L(R) = L(R_1) \circ L(R_2) = L(N_1) \circ L(N_2) \in \mathsf{REG} = \mathcal{L}(\mathsf{NFA})$$

• Se $R=R_1^*$, tramite la Chiusura di plus in REG, otteniamo che:

$$L(R) = L(R_1)^* = L(N_1)^* \in \mathsf{REG} = \mathcal{L}(\mathsf{NFA})$$

Esempio:

- Consideriamo l'espressione regolare $(a \cup ab)^*$
- Costruiamo il NFA corrispondente a tale espressione partendo dai suoi sotto-componenti

$$a \qquad \Rightarrow \qquad \text{start} \longrightarrow b \qquad b$$

$$ab \qquad \Rightarrow \qquad \text{start} \longrightarrow b \qquad b$$

$$(a \cup ab) \qquad \Rightarrow \qquad \text{start} \longrightarrow \varepsilon \qquad a \qquad c \qquad b$$

$$\text{start} \longrightarrow \varepsilon \qquad a \qquad \varepsilon \qquad b$$

$$\text{start} \longrightarrow \varepsilon \qquad a \qquad \varepsilon \qquad b$$

$$\text{start} \longrightarrow \varepsilon \qquad a \qquad \varepsilon \qquad b$$

$$\text{start} \longrightarrow \varepsilon \qquad a \qquad \varepsilon \qquad b$$

1.5.1 NFA generalizzati

Definizione 23: Generalized NFA (GNFA)

Un Generalized NFA (GNFA) è una quintupla $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ dove:

- Q è l'insieme finito degli stati dell'automa dove $|Q| \geq 2$
- Σ è l'alfabeto dell'automa
- $q_{\text{start}} \in Q$ è lo stato iniziale dell'automa
- $q_{\text{accept}} \in Q$ è l'unico stato accettante dell'automa
- δ: (Q {q_{accept}}) × (Q {q_{start}}) → re(Σ) è la funzione di transizione degli stati dell'automa, implicando che:
 - Lo stato q_{start} abbia solo transizioni **uscenti**
 - Lo stato q_{accept} abbia solo transizioni **entranti**
 - Tra tutte le possibili coppie di stati $q, q' \in Q$ (incluso il caso in cui q = q') vi sia una transizione $q \to q'$ ed una transizione $q' \to q$
 - Le "etichette" delle transizioni sono delle **espressioni regolari**

Esempio:

Osservazione 6

In un GNFA, il risultato $\delta(q,q')=R$ può essere interpretato come "l'espressione regolare che effettua la transizione da q a q' è R". Di conseguenza, possiamo immaginare un GNFA come un NFA che legga la stringa in input blocco per blocco

Proposizione 6: Stringa accettata in un GNFA

Sia $G := (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ un GNFA. Data una stringa $w := w_0 \dots w_k \in \Sigma^*$, dove $w_0, \dots, w_k \in \Sigma^*$ (ossia sono delle sottostringhe), diciamo che w è **accettata da** G se esiste una sequenza di stati $r_0, r_1, \dots, r_{k+1} \in Q$ tali che:

- $r_0 = q_{\text{start}}$
- $\forall i \in [0, k] \ w_i \in L(\delta(r_i, r_{i+1}))$
- $r_{k+1} = q_{\text{accept}}$

Esempio:

- Il GNFA dell'esempio precedente accetta la stringa ababaaaba, poiché:
 - $-\delta(q_{\text{start}},q_1) = ab^*$, dunque viene letta in blocco la sottostringa abab
 - $-\delta(q_1,q_1)=aa^*$, dunque viene letta in blocco la sottostringa aa
 - $-\delta(q_1,q_{\text{accept}}) = \mathtt{ab} \cup \mathtt{ba}$, dunque viene letta in blocco la sottostringa ba

Corollario 3

Una transizione con "etichetta" pari a \varnothing è una transizione inutilizzabile in quanto $L(\varnothing)=\varnothing$

Definizione 24: Classe dei linguaggi riconosciuti da un GNFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un GNFA il seguente insieme:

$$\mathcal{L}(\mathsf{GNFA}) = \{ L \subseteq \Sigma^* \mid \exists \; \mathsf{GNFA} \; G \; \mathsf{t.c} \; L = L(G) \}$$

Lemma 2: Conversione da DFA a GNFA

Date le due classi di linguaggi $\mathcal{L}(\mathsf{DFA})$ e $\mathcal{L}(\mathsf{GNFA})$, si ha che:

$$\mathcal{L}(\mathsf{DFA}) \subseteq \mathcal{L}(\mathsf{GNFA})$$

Dimostrazione.

- Dato $L \in \mathcal{L}(\mathsf{DFA})$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L(D) = L
- Consideriamo quindi il GNFA $G := (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$ costruito tramite D stesso:
 - $-Q' = Q \cup \{q_{\text{start}}, q_{\text{accept}}\}$
 - $-\delta'(q_{\text{start}}, q_0) = \varepsilon$
 - $\forall q \in F \ \delta'(q, q_{\text{accept}}) = \varepsilon$

- Per ogni transizione con etichetta multipla in D, in G esiste una transizione equivalente con etichetta corrispondente all'unione di tali etichette multiple
- Per ogni coppia di stati per cui non esiste una transizione entrante o uscente in D, viene aggiunta una transizione con etichetta \varnothing
- \bullet A questo punto, per costruzione stessa di G si ha che:

$$w \in L = L(D) \implies L(G)$$

implicando dunque che $L(D) \in \mathcal{L}(\mathsf{DFA})$ e di conseguenza che:

$$\mathcal{L}(\mathsf{DFA}) \subseteq \mathcal{L}(\mathsf{GNFA})$$

Esempio:

• Consideriamo il seguente DFA:

• Il suo GNFA equivalente corrisponde a:

Algoritmo 1: Riduzione minimale di un GNFA

```
Dato un GNFA G = (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}}), il seguente algoritmo restituisce un GNFA G'
avente solo due stati e tale che L(G) = L(G'):
   function REDUCEGNFA(G)
       if |Q| == 2 then
            return G
       else if |Q| > 2 then
            q := q \in Q - \{q_{\text{start}}, q_{\text{accept}}\}
            Q' := Q - \{q\}
            for q_i \in Q' - \{q_{\text{accept}}\}\ \mathbf{do}
                 for q_i \in Q' - \{q_{\text{start}}\}\ do
                      \delta'(q_i, q_i) := \delta(q_i, q)\delta(q, q)^*\delta(q, q_i) \cup \delta(q_i, q_i)
                 end for
            end for
            G' := (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})
            return reduceGNFA(G')
        end if
   end function
```

Dimostrazione.

Siano G_0, \ldots, G_n i vari GNFA prodotti dalla ricorsione dell'algoritmo, implicando che $G_0 = G$ e che G_n sia l'output. Procediamo per induzione sul numero $k \in \mathbb{N}$ di riduzioni effettuate, mostrando che $L(G) = L(G_0) = \ldots = L(G_n)$

Caso base.

• Se k=0, allora $G_0=G$, dunque $L(G)=L(G_0)$

Ipotesi induttiva.

• Dato $k \in \mathbb{N}$, assumiamo che per il GNFA $G_k := (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ si abbia che $L(G) = L(G_k)$

Passo induttivo.

• Consideriamo quindi il GNFA $G_{k+1} := (Q', \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ ottenuto rimuovendo uno stato $q \in Q$ (dunque $Q' = Q - \{q\}$) e ponendo

$$\delta'(q_i,q_j) := \delta(q_i,q)\delta(q,q)^*\delta(q,q_j) \cup \delta(q_i,q_j)$$

per ogni $q_i \in Q' - \{q_{\text{accept}}\}, q_j \in Q' - \{q_{\text{start}}\}$

• Data una stringa $w := w_0 \dots w_m \in L(G_k)$, dove $w_0, \dots, w_m \in \Sigma^*$, esiste una sequenza di stati $q_0, \dots, q_m \in Q$ tali che:

```
-q_0 = q_{\text{start}} e q_m = q_{\text{accept}}-\forall i \in [0, m-1] \ w_i \in L(\delta(q_i, q_{i+1}))
```

• A questo punto, consideriamo la costruzione della funzione δ' :

$$\delta'(q_i, q_j) = \delta(q_i, q)\delta(q, q)^*\delta(q, q_j) \cup \delta(q_i, q_j)$$

- Se $q \notin \{q_0, \ldots, q_m\}$, allora tramite l'unione si ha che $w_i \in L(\delta(q_i, q_j)) \implies w \in L(\delta'(q_i, q_j))$, dunque tutte le possibili sottostringhe passanti per le transizioni dirette da q_i a q_j vengono riconosciute
- Se $q \in \{q_0, \ldots, q_m\}$, allora la concatenazione $\delta(q_i, q)\delta(q, q)^*\delta(q, q_j)$ permette il riconoscimento di tutti i cammini da q_i a q_j passanti per q, implicando che $w \in L(\delta'(q_i, q_i))$
- Viceversa, poiché ogni $\delta'(q_i, q_j)$ è definito come la combinazione di tutti i cammini possibili da q_i a q_j (dunque passando per q o non), ne segue automaticamente che $w \in L(G_{k+1}) \implies w \in L(G_k)$
- Esprimendo il tutto graficamente, risulta evidente che le seguenti transizioni siano del tutto equivalenti:

• Di conseguenza, otteniamo che $w \in L(G_k) \iff w \in L(G_{k+1})$, concludendo quindi, per ipotesi induttiva, che $L(G) = L(G_k) = L(G_{k+1})$

Esempio:

• Consideriamo nuovamente il seguente GNFA, applicando su esso l'algoritmo reduceGNFA:

• Rimuoviamo quindi lo stato q_0 calcolando le nuove transizioni:

$$\delta'(q_{\text{start}}, q_1) = \delta(q_{\text{start}}, q_0)\delta(q_0, q_0)^*\delta(q_0, q_1) \cup \delta(q_{\text{start}}, q_1) = \varepsilon(0 \cup 1)^*2 \cup \varnothing = (0 \cup 1)^*2$$

$$\delta'(q_{\text{start}}, q_{\text{accept}}) = \delta(q_{\text{start}}, q_0)\delta(q_0, q_0)^*\delta(q_0, q_{\text{accept}}) \cup \delta(q_{\text{start}}, q_{\text{accept}}) = \varepsilon(0 \cup 1)^*\varnothing \cup \varnothing = \varnothing$$

$$\delta'(q_1, q_1) = \delta(q_1, q_0)\delta(q_0, q_0)^*\delta(q_0, q_1) \cup \delta(q_1, q_1) = \varnothing(0 \cup 1)^*2 \cup (0 \cup 1) = 0 \cup 1$$

$$\delta'(q_1, q_{\text{accept}}) = \delta(q_1, q_0)\delta(q_0, q_0)^*\delta(q_0, q_{\text{accept}}) \cup \delta(q_1, q_{\text{accept}}) = \varnothing(0 \cup 1)^*\varnothing \cup \varepsilon = \varepsilon$$

• Infine, rimuoviamo lo stato q_1 calcolando le nuove transizioni:

$$\delta''(q_{\text{start}}, q_{\text{accept}}) = \delta'(q_{\text{start}}, q_1)\delta'(q_1, q_1)^*\delta'(q_1, q_{\text{accept}}) \cup \delta'(q_{\text{start}}, q_{\text{accept}}) =$$

$$= (0 \cup 1)^*2(0 \cup 1)^*\varepsilon \cup \varnothing = (0 \cup 1)^*2(0 \cup 1)^*$$

• Il GNFA minimale, dunque, corrisponde a:

start
$$\longrightarrow$$
 q_{start} $(0 \cup 1)^* 2(0 \cup 1)^*$ q_{accept}

Corollario 4: Conversione da GNFA ad espressione regolare

Date le due classi di linguaggi $\mathcal{L}(\mathsf{GNFA})$ e $\mathcal{L}(\mathsf{re})$, si ha che:

$$\mathcal{L}(\mathsf{GNFA}) \subseteq \mathcal{L}(\mathrm{re})$$

Dimostrazione.

- Dato $L \in \mathcal{L}(\mathsf{GNFA})$, sia $G := (Q, \Sigma, \delta, q_{\mathsf{start}}, q_{\mathsf{accept}})$ il GNFA tale che L(G) = L
- Dato il GNFA G' ottenuto applicando reduceGNFA, sia $R \in \text{re}(\Sigma)$ l'espressione regolare tale che $R = \delta'(q_{\text{start}}, q_{\text{accept}})$. Essendo l'unica transizione di G' ed essendo G' equivalente a G, ne segue automaticamente che:

$$L = L(G) = L(G') = L(R) \in re(\Sigma)$$

da cui traiamo che:

$$\mathcal{L}(\mathsf{GNFA}) \subseteq \mathcal{L}(\mathrm{re})$$

1.5.2 Equivalenza tra espressioni e linguaggi regolari

Teorema 8: Equivalenza tra espressioni e linguaggi regolari

Date le due classi di linguaggi $\mathcal{L}(re)$ e REG, si ha che:

$$\mathcal{L}(re) = REG$$

Dimostrazione.

Prima implicazione.

• Tramite la Conversione da espressione regolare a NFA, otteniamo che:

$$\mathcal{L}(re) \subseteq \mathcal{L}(NFA) = REG$$

• Inoltre, in quando un NFA è anche un GNFA, ne segue automaticamente che:

$$\mathcal{L}(\mathsf{NFA}) \subseteq \mathcal{L}(\mathsf{GNFA})$$

Seconda implicazione.

• Tramite la Conversione da DFA a GNFA e Conversione da GNFA ad espressione regolare, otteniamo che:

$$REG = \mathcal{L}(DFA) \subseteq \mathcal{L}(GNFA) \subseteq \mathcal{L}(re)$$

Proposizione 7: Classi dei linguaggi regolari

Dato un alfabeto Σ , si ha che:

$$REG := \mathcal{L}(DFA) = \mathcal{L}(NFA) = \mathcal{L}(GNFA) = \mathcal{L}(re)$$

In altre parole, per ogni linguaggio regolare L esistono un DFA, un NFA e un GNFA che lo riconoscono e un'espressione regolare che lo descrive

1.6 Pumping lemma per i linguaggi regolari

Consideriamo il seguente linguaggio composto dalle stringhe aventi un numero uguale di simboli 0 ed 1:

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

Nel provare a costruire un automa che riconosca tale linguaggio, notiamo che sarebbe necessario che l'automa avesse **infiniti stati**, in quanto esso dovrebbe memorizzare la quantità di simboli 0 ed 1 letti. Di conseguenza, non è possibile costruire un **automa a stati finiti** (dunque un DFA, NFA o GNFA) che riconosca tale linguaggio.

Lemma 3: Pumping lemma per i linguaggi regolari

Dato un linguaggio L, se $L \in \mathsf{REG}$ allora $\exists p \in \mathbb{N}$, detto **lunghezza del pumping**, tale che $\forall w := xyz \in L$, con $|w| \geq p$ e $x, y, z \in \Sigma^*$ (ossia sono sue sottostringhe), si ha che:

- $\forall i \in \mathbb{N} \ xy^iz \in L$, ossia è possibile concatenare y per i volte rimanendo in L
- |y| > 0, dunque $y \neq \varepsilon$
- $|xy| \le p$, ossia y deve trovarsi nei primi p simboli di w

Dimostrazione.

- Dato $L \in \mathsf{REG}$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Consideriamo quindi p := |Q|. Data la stringa $w := w_1 \dots w_n \in L$ dove $w_1, \dots, w_n \in \Sigma$ e dove $n \geq p$, consideriamo la sequenza di stati r_1, \dots, r_{n+1} tramite cui w viene accettata da D:

$$\forall k \in [1, n] \ \delta(r_k, w_k) = r_{k+1}$$

- Notiamo quindi che $|r_1, \ldots, r_{n+1}| = n+1$, ossia che il numero di stati attraversati sia n+1. Inoltre, in quanto $n \geq p$, ne segue automaticamente che $n+1 \geq p+1$. Tuttavia, poiché p := |Q| e $n+1 \geq p+1$, ne segue necessariamente che $\exists i, j \mid 1 \leq i < j \leq p+1 \land r_i = r_j$, ossia che tra i primi p+1 stati della sequenza vi sia almeno uno stato ripetuto
- A questo punto, consideriamo le seguenti sottostringhe di w:
 - $-x = w_1 \dots w_{i-1}$, tramite cui si ha che $\delta^*(r_1, x) = r_i$
 - $-y = w_i \dots w_{j-1}$, tramite cui si ha che $\delta^*(r_i, y) = r_j = r_i$
 - $-z = w_i \dots w_n$, tramite cui si ha che $\delta^*(r_i, z) = r_{n+1}$
- Poiché $\delta^*(r_i, y) = r_i$, ossia y porta sempre r_i in se stesso, ne segue automaticamente che

$$\forall k \in \mathbb{N} \ \delta^*(r_i, y^k) = r_i \implies \delta(r_1, xy^k z) = r_{n+1} \in F \implies xy^k z \in L(D) = L$$

• Inoltre, ne segue direttamente che |y| > 0 in quanto i < j e che $|xy| \le p$ in quanto $j \le p+1$

Rappresentazione grafica della dimostrazione

Esempio:

- Consideriamo il linguaggio $L = \{x \in \{0,1\}^* \mid x := y1, \exists y \in \{0,1\}^*\}$
- Tale linguaggio risulta essere regolare in quanto il seguente DFA è in grado di riconoscerlo:

- Essendo un linguaggio regolare, per esso vale il Pumping lemma per i linguaggi regolari. Ad esempio, preso p=5 e la stringa $w:=0100010101\in L$, è possibile separare w in tre sottostringhe $x:=010,\ y=00$ e z=10101 tali che:
 - $-\ xy^0z = 01010101 \in L$
 - $-xy^1z = 0100010101 \in L$
 - $-xy^2z = 010000010101 \in L$
 - $-xy^3z = 01000000010101 \in L$

- ...

Osservazione 7: Dimostrazione di non regolarità

Il Pumping lemma per i linguaggi regolari può essere utilizzato per dimostrare che un linguaggio **non è regolare**

Esempi:

- Consideriamo il linguaggio $L = \{0^n 1^n \mid n \in \mathbb{N}\}$
- Supponiamo per assurdo che L sia regolare. In tal caso, ne segue che per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $w := 0^p 1^p \in L$. Poiché $|w| \ge p$, possiamo suddividerla in tre sottostringhe $x, y, z \in \Sigma^*$ tali che w = xyz, per poi procedere con uno dei due seguenti approcci:

1. Approccio enumerativo:

- Se y è composta da soli 0, allora ogni stringa generata dal pumping non sarà in L in quanto il numero di 0 sarà superiore al numero di 1
- Se y è composta da soli 1, allora ogni stringa generata dal pumping non sarà in L in quanto il numero di 1 sarà superiore al numero di 0
- Se y è composta sia da 0 che da 1, allora ogni stringa generata dal pumping non sarà in L in quanto esse assumeranno la forma 0000...101010...1111
- Di conseguenza, poiché in ogni caso viene contraddetto il pumping lemma, ne segue necessariamente che L non sia regolare

2. Approccio condizionale:

- Poiché la terza condizione del pumping lemma impone che $|xy| \le p$ e poiché $w := 0^p 1^p$, ne segue che $xy = 0^m$ e $z = 0^{p-m} 1^p$, dove $m \in [1, p]$
- Inoltre, per la seconda condizione, si ha che |y|>0, dunque necessariamente si ha che $x=0^{m-k}$ e $y=0^k$, dove $k\in[1,m]$
- A questo punto, consideriamo la stringa xy^0z . Notiamo immediatamente che

$$xy^0z = 0^{m-k}(0^k)^00^{p-m}1^p = 0^{m-k}0^{p-m}1^p = 0^{p-k}1^p$$

implicando dunque che $xy^0z\notin L$, contraddicendo la prima condizione del lemma per cui si ha che $\forall i\in\mathbb{N}\ xy^iz\in L$

- Dunque, ne segue necessariamente che L non sia regolare

1.7 Esercizi svolti

Problema 1: Linguaggio rovesciato

Dato un linguaggio L e il suo linguaggio rovesciato $L^R = \{w^R \mid w \in L\}$, dimostrare che

$$L \in \mathsf{REG} \implies L^R \in \mathsf{REG}$$

Dimostrazione.

- Dato $L \in \mathsf{REG}$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Definiamo quindi un primo NFA $N=(Q',\Sigma,\delta',q_0,\{q_f\})$ tale che:
 - $-q_f$ è il nuovo unico stato accettante aggiunto
 - $Q' = Q \cup \{q_f\}$
 - $\forall q \in Q, a \in \Sigma \ \delta'(q, a) = \delta(q, a)$, ossia tutti gli archi rimangono invariati
 - $\ \forall q \in F \ \delta'(q,\varepsilon) = q_f,$ ossia tutti gli stati finali precedenti hanno un $\varepsilon\text{-arco}$ verso q_f
- A questo punto, per costruzione stessa di N ne segue che:

$$w \in L = L(D) \iff w \in L(N)$$

dunque che L = L(D) = L(N)

- Definiamo quindi un secondo NFA $N^R=(Q',\Sigma,\delta'',q_f,\{q_0\})$ tale che:

$$\forall p, q \in Q', a \in \Sigma_{\varepsilon} \ \delta'(p, a) = q \implies \delta''(q, a) = p$$

ossia avente tutti gli archi invertiti rispetto ad N

• A questo punto, per costruzione stessa di N' ne segue che:

$$w \in L = L(N) \iff w^R \in L(N^R)$$

dunque che $L^R = L(N)^R = L(N^R) \in \mathsf{REG}$

Problema 2: Complemento di un'espressione regolare

Data l'espressione regolare $R = (01^+)^*$, costruire il DFA D tale che:

$$L(D) = \{ w \in \{0, 1\}^* \mid w \notin L(R) \}$$

Soluzione:

• Prima di tutto, costruiamo un DFA D_R tale che $L(D_R) = L(R)$:

• A questo punto, ci basta costruire il DFA D tale che $L(D) = \overline{L(D_R)}$ utilizzando la Chiusura del complemento in REG:

Problema 3

Dato il linguaggio $L=\{w\in\{0,1\}^*\mid |w|_0=|w|_1\},$ dimostrare che $L\notin\mathsf{REG}$

Dimostrazione.

- ullet Supponiamo per assurdo che L sia regolare, implicando ch
 per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $w:=0^p1^p\in L$. Poiché $|w|\geq p$, possiamo suddividerla in tre sottostringhe $x,y,z\in \Sigma^*$ tali che w=xyz

- Poiché la terza condizione del pumping lemma impone che $|xy| \le p$ e poiché $w := 0^p 1^p$, ne segue che $xy = 0^m$ e $z = 0^{p-m} 1^p$, dove $m \in [1, p]$
- Inoltre, per la seconda condizione, si ha che |y| > 0, dunque necessariamente si ha che $x = 0^{m-k}$ e $y = 0^k$, dove $k \in [1, m]$
- A questo punto, consideriamo la stringa xy^0z . Notiamo immediatamente che

$$xy^{0}z = 0^{m-k}(0^{k})^{0}0^{p-m}1^{p} = 0^{m-k}0^{p-m}1^{p} = 0^{p-k}1^{p}$$

$$\implies |xy^{0}z|_{0} \neq |xy^{0}z|_{1} \implies xy^{0}z \notin L$$

contraddicendo la prima condizione del lemma per cui si ha che $\forall i \in \mathbb{N} \ xy^iz \in L$

ullet Dunque, ne segue necessariamente che L non sia regolare

Problema 4

Dato il linguaggio $L = \{1^{n^2} \mid n \in \mathbb{N}\}$, dimostrare che $L \notin \mathsf{REG}$

Dimostrazione.

- \bullet Supponiamo per assurdo che Lsia regolare, implicando ch
 per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $w:=1^{p^2}\in L$. Poiché $|w|\geq p$, possiamo suddividerla in tre sottostringhe $x,y,z\in \Sigma^*$ tali che w=xyz
- Poiché la terza condizione del lemma impone che $|xy| \le p$ e poiché $w:=1^{p^2}$, ne segue che $xy=1^m$ e $z=1^{p^2-m}$, dove $m\in[1,p]$
- Inoltre, per la seconda condizione del lemma, si ha che |y| > 0, dunque necessariamente si ha che $x = 1^{m-k}$ e $y = 1^k$, dove $k \in [1, m]$
- \bullet A questo punto, consideriamo la stringa xy^0z . Notiamo immediatamente che

$$xy^0z = 1^{m-k}(1^k)^01^{p^2-m} = 1^{p^2-k}$$

- Tuttavia, poiché $k \in [1, p]$, ne segue che $\nexists n \in \mathbb{N} \mid n^2 = p^2 k$, implicando dunque che $xy^0z \notin L$, contraddicendo la prima condizione del lemma per cui si ha che $\forall i \in \mathbb{N} \ xy^iz \in L$
- $\bullet\,$ Dunque, ne segue necessariamente che L non sia regolare

Problema 5

Sia $\Sigma = \{a, b, c\}$. Determinare un'espressione regolare $R \in \operatorname{re}(\Sigma)$ descrivente il linguaggio di Σ composto dalle stringhe contenenti almeno una a ed almeno una b. Determinare inoltre un DFA D che riconosca lo stesso linguaggio.

Soluzione:

- Nonostante il problema inviti alla determinazione dell'espressione regolare e poi del DFA ad essa equivalente, trovare quest'ultimo risulta molto più rapido
- Difatti, il DFA D in grado di riconoscere il linguaggio richiesto corrisponde a:

• A questo punto, osservando il DFA possiamo già notare che l'espressione regolare ad esso equivalente corrisponde a:

$$c^*(a(a \cup c)^*b \cup b(a \cup c)^*a)\Sigma^*$$

- Volendo procedere più rigorosamente, possiamo ricavare tale espressione regolare convertendo il DFA costruito nel suo GNFA equivalente, per poi ridurre al minimo tale GNFA, ottenendo l'espressione regolare
- Definiamo quindi il GNFA equivalente (del quale vengono omesse le sue transizioni etichettate con \varnothing):

• Procediamo quindi con la riduzione:

• Come anticipato, l'espressione regolare ottenuta corrisponde a:

$$c^*(a(a \cup c)^*b \cup b(b \cup c)^*a)\Sigma^*$$

Linguaggi acontestuali

2.1 Grammatiche acontestuali

Definizione 25: Context-freee Grammar (CFG)

Una Context-free Grammar (CFG) (o Grammatica acontestuale) è una quadrupla (V, Σ, R, S) dove:

- \bullet V è l'insieme delle variabili della grammatica
- $\bullet~\Sigma$ è l'insieme dei terminali della grammatica e
- \bullet R è l'insieme delle regole o produzioni della grammatica
- $S \in V$ è la variabile iniziale della grammatica
- $V \cap \Sigma = \emptyset$, ossia variabili e terminali sono tutti distinti tra loro

Le **regole in** R assumono la forma $A \to X$, dove $A \in V$, ossia è una variabile, e $X \in (V \cup \Sigma_{\varepsilon})^*$, ossia è una stringa composta da una o più variabili e/o terminali.

Esempio:

• La seguente quadrupla $G=(\{A,B\},\{0,1,\#\},R,A)$ è una CFG dove in R sono definite le seguenti regole:

$$A \rightarrow 0A1$$

$$A \to B$$

$$B \to \#$$

Osservazione 8: Acontestualità

Con acontestualità intendiamo la condizione secondo cui il lato sinistro delle regole della grammatica è composto sempre e solo da una singola variabile.

Esempio:

- La regola $A \to B$ può appartenere ad una CFG
- La regola $AB \to B$ non può appartenere ad una CFG

Osservazione 9: Notazione contratta per le regole

Data una CFG $G = (V, \Sigma, R, S)$, se in R esistono più regole $A \to X_1, X_2, \ldots, A \to X_n$ definite sulla stessa variabile A, è possibile indicare tali regole con la seguente notazione contratta:

$$A \to X_1 \mid X_2 \mid \dots \mid X_n$$

Esempio:

• Le regole della CFG dell'esempio precedente possono essere contratte in:

$$A \rightarrow 0A1 \mid B$$

$$B \rightarrow \#$$

Definizione 26: Produzione

Sia $G = (V, \Sigma, R, S)$ una CFG. Se u, v, w sono stringhe di variabili o terminali ed esiste la regola $A \to w$, allora la stringa uAv **produce** la stringa uwv, denotato come $uAv \Rightarrow uwv$.

$$u, v, w \in (V \cup \Sigma)^*, A \to w \in R \implies uAv \Rightarrow uwv$$

Esempio:

• Consideriamo la grammatica $G = (\{A, B\}, \{0, 1, \#\}, R, A)$ dove:

$$A \rightarrow 0A1 \mid B$$

$$B \rightarrow \#$$

 \bullet Tramite le regole di G è possibile ottenere la stringa 000#111 attraverso la seguente catena di produzioni:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000#111$$

• Tale catena può anche essere descritta graficamente dal seguente albero di produzione:

Definizione 27: Derivazione

Sia $G = (V, \Sigma, R, S)$ un CFG. Date $u, v \in (V \cup \Sigma)^*$, diciamo che u deriva v, denotato come $u \stackrel{*}{\Rightarrow} v$, se u = v oppure se $\exists u_1, \ldots, u_k \in (V \cup \Sigma)^*$ tali che:

$$u \Rightarrow u_1 \Rightarrow \ldots \Rightarrow u_k \Rightarrow v$$

Definizione 28: Context-free Language (CFL)

Sia $G = (V, \Sigma, R, S)$ una CFG. Definiamo come Context-free Language (CFL) (o Linguaggio acontestuale) generato da G, indicato come L(G), l'insieme di stringhe derivate dalle regole di G tramite la variabile S:

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

Esempi:

1. Data la CFG $G = (\{S\}, \{a, b\}, R, S), dove:$

$$S \to \varepsilon \mid aSb \mid SS$$

si ha che:

- $S \Rightarrow aSb \Rightarrow a\varepsilon b = ab$, dunque $ab \in L(G)$
- $S \Rightarrow aSb \Rightarrow aaSbb = \Rightarrow aa\varepsilon bb = aabb$, dunque $aabb \in L(G)$
- $S \Rightarrow SS \stackrel{*}{\Rightarrow} aSbaSb \stackrel{*}{\Rightarrow} a\varepsilon ba\varepsilon b = abab$, dunque $abab \in L(G)$
- 2. Data la CFG $G = (\{S, T\}, \{0, 1\}, R, S)$, dove:

$$S \rightarrow T1T1T1T$$

$$T \rightarrow \varepsilon \mid 0T \mid 1T$$

si ha che:

$$L(G) = \{w \in \{0,1\}^* \mid |w|_1 \ge 3\}$$

3. Data la CFG $G = (\{S\}, \{0, 1\}, R, S)$, dove:

$$S \rightarrow \varepsilon \mid 0S0 \mid 1S1$$

si ha che:

$$L(G) = \{w \in \{0, 1\}^* \mid w = w^R \land |w| \equiv 0 \pmod{2}\}$$

4. Data la CFG $G = (\{S, T\}, \{a, b, c\}, R, S), dove:$

$$S \rightarrow aSc \mid T$$

$$T \rightarrow bTc \mid \varepsilon$$

si ha che:

$$L(G) = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^{i+j} \in \Sigma^* \mid i, j \in \mathbb{N} \}$$

Osservazione 10

Sia G una CFG. Data la stringa $w \in L(G)$, possono esistere più derivazioni di w

Esempio:

• Data la CFG

$$E \rightarrow E + E \mid E \cdot E \mid (E) \mid a$$

la stringa a + a + a può essere derivata in due modi:

Definizione 29: Derivazione a sinistra

Data una CFG $G = (V, \Sigma, R, S)$, definiamo la derivazione $S \stackrel{*}{\Rightarrow} w$ come **derivazione sinistra** se ad ogni produzione interna alla derivazione viene valutata la variabile più a sinistra

Esempio:

• Riprendiamo la CFG dell'esempio precedente:

$$E \rightarrow E + E \mid E \cdot E \mid (E) \mid a$$

• Per maggior chiarezza, riscriviamo tali regole come:

$$E \to E + F \mid E \cdot E \mid (E) \mid a$$

 $F \to E$

ottenendo una CFG del tutto equivalente alla precedente

• Una derivazione sinistra della stringa a + a + a corrisponde a:

$$E\Rightarrow E+F\Rightarrow E+F+F\Rightarrow a+F+F\Rightarrow a+E+F\Rightarrow a+a+F\Rightarrow a+a+E\Rightarrow a+a+a$$

Osservazione 11

L'uso delle derivazioni a sinistra permette di fissare un "ordine", rimuovendo la maggior parte delle derivazioni multiple per una stessa stringa.

Tuttavia, in alcune grammatiche possono esistere più di una derivazione a sinistra per la stessa stringa.

Definizione 30: Grammatica ambigua

Definiamo una grammatica G come **ambigua** se $\exists w \in L(G)$ tale che esistono almeno due derivazioni a sinistra per w

2.2 Linguaggi acontestuali ad estensione dei regolari

Definizione 31: Classe dei linguaggi acontestuali

Dato un alfabeto Σ , definiamo come classe dei linguaggi acontestuali di Σ il seguente insieme:

$$\mathsf{CFL} = \{ L \subseteq \Sigma^* \mid \exists \; \mathsf{CFG} \; G \; \mathsf{t.c} \; L = L(G) \}$$

Lemma 4: Conversione da DFA a CFG

Date le due classi di linguaggi REG e CFL, si ha che:

$$REG \subset CFL$$

Dimostrazione.

- Dato $L \in \mathsf{REG}$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Consideriamo quindi la CFG $G = (V, \Sigma, R, S)$ tale che:
 - Esiste una funzione biettiva $\varphi: Q \to V: q_i \mapsto V_i$

$$-S = \varphi(q_0) = V_0$$

– Dati $q_i, q_j \in Q$ e $a \in \Sigma$, si ha che:

$$\delta(q_i, a) = q_i \implies \varphi(q_i) \to a\varphi(q_i) \implies V_i \to aV_i$$

$$-q_f \in F \implies \varphi(q_f) \to \varepsilon \implies V_f \to \varepsilon$$

• A questo punto, per costruzione stessa di G si ha che:

$$w \in L(D) \implies w \in L(G)$$

implicando dunque che $L(D) \in \mathsf{CFL}$ e di conseguenza che:

$$\mathsf{REG} \subseteq \mathsf{CFL}$$

Esempio:

• Consideriamo il seguente DFA

• Una CFG $G = (V, \Sigma, R, S)$ equivalente è costituita da:

$$-V = \{V_1, V_2, V_3, V_4\}$$

$$-S = V_1$$

-R definito come:

$$V_1 \to 0V_1 \mid 1V_2$$

 $V_2 \to 0V_2 \mid 1V_3$
 $V_3 \to 0V_3 \mid 1V_4$
 $V_4 \to 0V_4 \mid 1V_4 \mid \varepsilon$

• Difatti, sia il DFA sia la CFG descrivono il seguente linguaggio:

$$L = \{ w \in \Sigma^* \mid |w|_1 \ge 3 \}$$

Teorema 9: Ling. acontestuali estensione dei ling. regolari

Date le due classi di linguaggi REG e CFL, si ha che:

$$REG \subsetneq CFL$$

Dimostrazione.

- Tramite la Conversione da DFA a CFG, sappiamo che REG ⊂ CFL
- Consideriamo quindi il linguaggio $L = \{0^n 1^n \mid n \in \mathbb{N}\}$
- Tale linguaggio è generabile dalla grammatica $G = (\{S\}, \{0, 1\}, R, S),$ dove:

$$S \rightarrow 0S1 \mid \varepsilon$$

dunque abbiamo che $L = L(G) \in \mathcal{L}(\mathsf{CFG})$

- \bullet Tuttavia, abbiamo già dimostrato nella sezione 1.6 che Lnon sia regolare, dunque abbiamo che $L \not\in \mathsf{REG}$
- Di conseguenza, concludiamo che:

$$REG \subsetneq CFL$$

2.3 Forma normale di Chomsky

Definizione 32: Chomsky's Normal Form (CNF)

Una CFG $G = (V, \Sigma, R, S)$ viene detta in **Chomsky's Normal Form (CNF)** (o Forma Normale di Chomsky) se tutte le regole in R assumono una delle seguenti tre forme:

$$A \to BC$$
 $A \to a$ $S \to \varepsilon$

dove $A \in V$, $a \in \Sigma$ e $B, C \in V - \{S\}$

Teorema 10: Conversione in Forma Normale di Chomsky

Per ogni CFG G, si ha che:

$$\exists \mathsf{CFG} G' \text{ in CNF } \mid L(G) = L(G')$$

Dimostrazione.

- Data una CFG $G = (V, \Sigma, R, S)$, costruiamo una CFG G' in CNF equivalente a G:
 - 1. Vengono aggiunte una variabile S_0 e una regola $S_0 \to S$, dove S_0 è la **nuova** variabile iniziale
 - 2. Finché in R esiste una ε -regola $A \to \varepsilon$ dove $A \in V \{S_0\}$, tale regola viene eliminata e per ogni regola in R contenente delle occorrenze di A vengono aggiunte delle regole in cui vengono eliminate tutte le possibili combinazioni di occorrenze di A

(es: se viene rimossa $A \to \varepsilon$ e in R esiste $B \to uAvAw \mid u, v, w \in (V \cup \Sigma)^*$, vengono aggiunte le regole $B \to uvAw \mid uAvw \mid uvw$)

- 3. Ogni regola nella forma $A \to B$ (dette **regole unitarie**) per cui esiste una regola nella forma $B \to u \mid u \in (V \cup \Sigma)^*$ viene **sostituita** con la regola $A \to u$
- 4. Per ogni regola $A \to u_1 \dots u_k$ dove $k \ge 3$ e $u \in (V \cup \Sigma)$, vengono **aggiunte** le variabili A_1, \dots, A_k e le seguenti regole:

$$A \to u_1 A_1 \qquad \dots \qquad A_{k-3} \to u_{k-2} A_{k-2} \qquad A_{k-2} \to u_{k-1} u_k$$

per poi eliminare la regola iniziale $A \to u_1 u_2 \dots u_k$

- 5. Per ogni regola rimanente nella forma $A \to u_1u_2 \mid u_1, u_2 \in (V \cup \Sigma)$, se $u_1 \in \Sigma$ allora viene aggiunta una variabile U_1 ed una regola $U_1 \to u_1$, sostituendo la regola $A \to u_1u_2$ con la regola $A \to U_1u_2$. Analogamente, lo stesso viene svolto se $u_2 \in \Sigma$.
- Poiché le operazioni svolte dall'algoritmo non modificano le stringhe generabili dalla CFG, ne segue automaticamente che L(G) = L(G')

Esempio:

 \bullet Consideriamo la seguente grammatica G non in CNF, dove S è la variabile iniziale:

• Aggiungiamo la nuova variabile iniziale S_0 e la regola $S_0 \to S$:

$$G: S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

• Eliminiamo la ε -regola $B \to \varepsilon$:

$$G: S_0 \to S$$

$$S \to ASA \mid aB \mid \mathbf{a}$$

$$A \to B \mid S \mid \mathbf{\varepsilon}$$

$$B \to b \mid \mathbf{\varepsilon}$$

• Eliminiamo la ε -regola $A \to \varepsilon$:

$$G: S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$A \rightarrow B \mid S \mid \varepsilon$$

$$B \rightarrow b$$

• Eliminiamo la regola unitaria $S \to S$:

• Eliminiamo la regola unitaria $S_0 \to S$:

$$G: S_0 \rightarrow S \mid ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

• Eliminiamo le regole unitarie $A \to B$ e $A \to S$:

$$G: S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S \mid b \mid ASA \mid aB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

• Separiamo ogni regola con tre o più elementi a destra in regole con massimo due elementi a destra:

$$G: S_0 \rightarrow ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$B \rightarrow b$$

• Infine, convertiamo tutte le regole aventi due elementi a destra di cui almeno uno è un terminale:

$$G: S_0 \rightarrow AA_1 \mid aB \mid UB \mid a \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid aB \mid UB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AA_1 \mid aB \mid UB \mid a \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$U \rightarrow a$$

$$B \rightarrow b$$

• La grammatica finale ottenuta risulta sia equivalente a quella iniziale sia in forma normale di Chomsky:

$$G: S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$U \rightarrow a$$

$$B \rightarrow b$$

2.4 Automi a pila

Definizione 33: Pushdown Automaton (PDA)

Un **Pushdown Automaton (PDA)** (o *Automa a pila*) è una sestupla $(Q, \Sigma, \Gamma, \delta, q_0, F)$ dove:

- Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- Γ è l'alfabeto dello stack (o *pila*) dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ è la funzione di transizione dell'automa, dove se $(q, c) \in \delta(p, a, b)$ si ha che:
 - Viene letto il simbolo a dalla stringa in input e se il simbolo b è in cima allo stack allora l'automa passa dallo stato p allo stato q e il simbolo b viene sostituito dal simbolo c
 - L'etichetta della transizione da p a q viene indicata come $a; b \rightarrow c$

Osservazione 12

Dato $(q,c) \in \delta(p,a,b)$ dove δ è la funzione di transizione di un PDA, si ha che:

- Se $b, c = \varepsilon$ (dunque $a; \varepsilon \to \varepsilon$) allora l'automa leggerà a dalla stringa e passerà direttamente dallo stato p allo stato q, senza modificare lo stack
- Se $b = \varepsilon$ e $c \neq \varepsilon$ (dunque $a; \varepsilon \to c$) allora l'automa leggerà a dalla stringa, passerà direttamente dallo stato p allo stato q e in cima allo stack viene aggiunto il simbolo c (**push**)
- Se $b \neq \varepsilon$ e $c = \varepsilon$ (dunque $a; b \to \varepsilon$) allora l'automa leggerà a e se in cima allo stack vi è b, l'automa passerà dallo stato p allo stato q e rimuoverà b dalla cima dello stack (**pop**)

Esempio:

• Consideriamo il seguente PDA:

- Data la stringa aab, uno dei possibili rami di computazione del PDA procede nel seguente ordine:
 - 1. Viene letta la prima ${\tt a}$ e viene inserita la prima ${\tt c}$ in cima allo stack, rimanendo nello stato $q_1.$
 - 2. Viene letta la seconda a e viene inserita la seconda c in cima allo stack, rimanendo nello stato q_1 .
 - 3. Viene letta la b, passando da q_1 a q_2 e lasciando lo stack inalterato
 - 4. Viene "letta" la prima ε , rimuovendo la seconda c dallo stack (poiché essa è in cima), rimanendo nello stato q_2 .
 - 5. Viene "letta" la seconda ε , rimuovendo la prima c dallo stack (poiché essa è in cima), rimanendo nello stato q_2 .
 - 6. Sia la stringa che lo stack sono vuoti, dunque la computazione termina necessariamente poiché non vi sono transizioni percorribili
- Notiamo in particolare che, in tal caso, la stringa verrebbe accettata anche se la computazione si fermasse al terzo passo
- Difatti, lo stack non deve necessariamente esser vuoto affinché la stringa possa essere accettata

Proposizione 8: Stringa accettata in un PDA

Sia $P := (Q, \Sigma, \Gamma, \delta, q_0, F)$ un PDA. Data una stringa $w := w_0 \dots w_k \in \Sigma^*$, dove $w_0, \dots, w_k \in \Sigma_{\varepsilon}$, diciamo che w è **accettata da** P se esiste una sequenza di stati $r_0, r_1, \dots, r_{k+1} \in Q$ ed una sequenza di stringhe $s_1, \dots, s_n \in \Gamma^*$ tali che:

- $r_0 = q_0$
- $\bullet \ r_{k+1} \in F$
- $s_0 = \varepsilon$, dunque lo stack è inizialmente vuoto
- $\forall i \in [0, k]$ si abbia che:

$$-(r_{i+1},b) \in \delta(r_i,w_i,a)$$

$$-s_i = at$$

$$- s_{i+1} = bt$$

dove $a,b\in\Gamma_{\varepsilon}$ e dove $t\in\Gamma^*$ è la stringa composta dai caratteri nello stack

Esempi:

• Il seguente automa riconosce il linguaggio $L = \{0^n 1^n \mid n \in \mathbb{N}\}$

• Il seguente automa riconosce il linguaggio $L = \{ww^R \mid w \in \{0, 1\}^*\}$

2.4.1 Equivalenza tra CFG e PDA

Definizione 34: Classe dei linguaggi riconosciuti da un PDA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un PDA il seguente insieme:

$$\mathcal{L}(\mathsf{PDA}) = \{ L \subseteq \Sigma^* \mid \exists \; \mathsf{PDA} \; P \; \mathsf{t.c} \; L = L(P) \}$$

Proposizione 9: Scrittura di una stringa sullo stack

Sia $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ un PDA. Dati $u_1, \ldots, u_k \in \Gamma$, introduciamo una notazione per cui δ possa ammettere la scrittura diretta sullo stack della stringa $u := u_1 \ldots u_k$.

Formalmente, diciamo che:

$$(q, u_1 \dots u_k) \in \delta(p, a, b) \iff \exists r_1, \dots, r_{k-1} \in Q \text{ tali che:}$$

- $\delta(p, a, b) \ni (r_1, u_k)$
- $\delta(r_1, \varepsilon, \varepsilon) = \{(r_2, u_{k-1})\}$
- . . .
- $\delta(r_{k-1}, \varepsilon, \varepsilon) = \{(q, u_1)\}$

Esempio:

• Dato $(q, xyz) \in \delta(p, a, b)$ si ha che:

Lemma 5: Conversione da CFG a PDA

Date le due classi di linguaggi CFL e $\mathcal{L}(PDA)$, si ha che:

$$CFL \subset \mathcal{L}(PDA)$$

Dimostrazione.

- Dato $L \in \mathsf{CFL}$, sia $G = (V, \Sigma, R, S)$ la CFG tale che L = L(G)
- Consideriamo quindi il PDA $P = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, F)$ tale che:
 - $-Q = \{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}\} \cup Q_{\delta}$, dove Q_{δ} sono i minimi stati aggiunti affinché la sua funzione δ sia ben definita (vedi i punti successivi)
 - $\Gamma = V \cup \Sigma$

- $-F = \{q_{\text{accept}}\}$
- Dato $q_{\text{start}} \in Q$ si ha che

$$\delta(q_{\text{start}}, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, S\$)\}$$

 $- \forall A \in V \text{ si ha che}$

$$\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, u) \mid (A \to u) \in R, \ u \in \Gamma^*\}$$

 $- \forall a \in \Sigma \text{ si ha che}$

$$\delta(q_{\text{loop}}, a, a) = \{(q_{\text{loop}}, \varepsilon)\}$$

- Dato $q_{\text{accept}} \in Q$ si ha che

$$\delta(q_{\text{loop}}, \varepsilon, \$) = \{(q_{\text{accept}}, \varepsilon)\}$$

ullet A questo punto, per costruzione stessa di P si ha che:

$$w \in L = L(G) \iff w \in L(P)$$

dunque che $L = L(P) \in \mathcal{L}(\mathsf{PDA})$

Esempio:

• Consideriamo la seguente grammatica:

$$G: S \to aTb \mid b$$
$$T \to Ta \mid \varepsilon$$

• Il PDA in grado di riconoscere L(G) corrisponde a:

Lemma 6: Conversione da PDA a CFG

Date le due classi di linguaggi $\mathcal{L}(PDA)$ e CFL, si ha che:

$$\mathcal{L}(\mathsf{PDA}) \subset \mathsf{CFL}$$

Dimostrazione.

- Dato $L \in \mathcal{L}(\mathsf{PDA})$, sia $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ il PDA tale che L = L(P)
- Consideriamo il PDA $P'=(Q', \Sigma, \Gamma, \delta', q_0, \{q_{\text{accept}}\})$ tale che:
 - Ogni transizione effettua solo un'operazione di push o di pop, ma mai una sostituzione diretta:

$$(q,c) \in \delta(p,a,b) \implies \exists r \in Q' \mid (r,\varepsilon) \in \delta'(p,a,b) \land \delta'(r,\varepsilon,\varepsilon) = \{(q,c)\}$$

- $-Q'=Q\cup Q_{\delta'}\cup \{q_{\text{accept}}\}$, dove $Q_{\delta'}$ sono gli stati aggiunti per il punto precedente
- $-q_{\text{accept}} \in Q'$ è il nuovo unico stato accettante:

$$\forall q \in F \ (q_{\text{accept}}, \varepsilon) \in \delta'(q, \varepsilon, \varepsilon)$$

- Lo stack deve essere svuotato prima di poter accettare una stringa:

$$\forall q \in F, a \in \Sigma \ (q, \varepsilon) \in \delta'(q, \varepsilon, a)$$

• A questo punto, per costruzione stessa di P' si ha che:

$$w \in L(P) \iff w \in L(P')$$

dunque che L = L(P) = L(P')

- Consideriamo quindi la CFG $G = (V, \Sigma, R, S)$ tale che:
 - $-V = \{A_{p,q} \mid p, q \in Q'\}$
 - $-S = A_{q_0,q_{\text{accent}}}$
 - Ogni variabile $A_{p,q}$ è grado di derivare tutte le stringhe generabili passando dallo stato p allo stato q:
 - * $\forall p \in Q'$ si ha che:

$$(A_{p,p} \to \varepsilon) \in R$$

* $\forall p, q, r, s \in Q', u \in \Gamma \in a, b \in \Sigma_{\varepsilon}$ si ha che:

$$(r,u) \in \delta'(p,a,\varepsilon) \land (q,\varepsilon) \in \delta(s,b,u) \iff (A_{p,q} \to aA_{r,s}b) \in R$$

* $\forall p, q, r \in Q'$ si ha che:

$$(A_{p,q} \to A_{p,r}A_{r,q}) \in R$$

• Affermazione: dati $p, q \in Q'$ e $x \in \Sigma^*$, se $A_{p,q} \stackrel{*}{\Rightarrow} x$ allora x porta il PDA P' dallo stato p allo stato q con uno stack vuoto:

Dimostrazione.

Procediamo per induzione sul numero n di produzioni che compongono la derivazione $A_{p,q} \stackrel{*}{\Rightarrow} x$

Caso base.

– Per n=1, la derivazione è composta da una sola produzione. Di conseguenza, l'unica regola possibile affinché $A_{p,q} \Rightarrow x$ è la regola $A_{p,q} \to \varepsilon$, implicando che p=q e che $x=\varepsilon$, dunque la stringa x porta correttamente il PDA P' dallo stato p allo stato q con uno stack vuoto

Ipotesi induttiva forte.

– Assumiamo che per ogni stringa $x \in \Sigma^*$ derivabile da $A_{p,q}$ (dunque tale che $A_{p,q} \stackrel{*}{\Rightarrow} x$) tramite $k \leq n$ produzioni, tale stringa x porti il PDA P' da p a q con uno stack vuoto

Passo induttivo.

- Consideriamo la derivazione $A_{p,q} \stackrel{*}{\Rightarrow} x$ composta da n+1 produzioni. Poiché tale derivazione è composta da almeno due produzioni, la prima produzione deve essere necessariamente data dalla regola $A_{p,q} \to aA_{r,s}b$ o dalla regola $A_{p,q} \to A_{p,r}A_{r,q}$
 - (a) Consideriamo il caso in cui $A_{p,q} \Rightarrow aA_{r,s}b \stackrel{*}{\Rightarrow} x$.

Sia x = ayb, dove $A_{r,s} \stackrel{*}{\Rightarrow} y$. Poiché $A_{r,s} \stackrel{*}{\Rightarrow} y$ è composta da n produzioni, per ipotesi induttiva la stringa y porta il PDA P' da r ad s con uno stack vuoto.

Inoltre, per costruzione stessa di G, tale regola di derivazione si ha che:

$$(r,u) \in \delta'(p,a,\varepsilon) \land (q,\varepsilon) \in \delta(s,b,u) \iff (A_{p,q} \to aA_{r,s}b) \in R$$

dunque concludiamo che:

$$\left. \begin{array}{l} a \text{ porta } P' \text{ da } p \text{ in } r \\ y \text{ porta } P' \text{ da } r \text{ in } s \\ b \text{ porta } P' \text{ da } s \text{ in } q \end{array} \right\} \implies x = ayb \text{ porta } P' \text{ da } p \text{ in } q$$

(b) Consideriamo il caso in cui $A_{p,q} \Rightarrow A_{p,r}A_{r,q} \stackrel{*}{\Rightarrow} x$.

Sia x = yz, dove $A_{p,r} \stackrel{*}{\Rightarrow} y$ e $A_{r,q} \stackrel{*}{\Rightarrow} z$. Poiché $A_{p,r} \stackrel{*}{\Rightarrow} y$ è composta da $m \le n$ produzioni e $A_{r,q} \stackrel{*}{\Rightarrow} z$ da $n - m \le n$ produzioni, per ipotesi induttiva le stringhe y e z portano il PDA P' rispettivamente da p ad r e da r a q con uno stack vuoto, dunque concludiamo che:

$$\left. \begin{array}{l} y \text{ porta } P' \text{ da } p \text{ in } r \\ z \text{ porta } P' \text{ da } r \text{ in } q \end{array} \right\} \implies x = yz \text{ porta } P' \text{ da } p \text{ in } q$$

• Affermazione: dati $p, q \in Q'$ e $x \in \Sigma^*$, se la stringa x porta il PDA P' dallo stato p allo stato q con uno stack vuoto allora $A_{p,q} \stackrel{*}{\Rightarrow} x$

Dimostrazione.

Procediamo per induzione sul numero n di transizioni percorse da P' durante la lettura di x

Caso base.

– Per n=0, il PDA percorre zero transizioni, dunque $x=\varepsilon$ e x porta il PDA da p a p. Pertanto, la regola $A_{p,p} \to \varepsilon$ soddisfa la derivazione $A_{p,p} \Rightarrow x$

Ipotesi induttiva forte.

– Assumiamo che per ogni stringa $x \in \Sigma^*$ che porta il PDA P' da p a q con uno stack vuoto percorrendo $k \leq n$ transizioni, si abbia che $A_{p,q} \stackrel{*}{\Rightarrow} x$

Passo induttivo.

- Consideriamo la stringa $x \in \Sigma^*$ che porta il PDA P' da p a q con uno stack vuoto percorrendo n+1 transizioni. A seconda dell'evolvere dello stack durante la computazione, abbiamo due casi:
 - (a) Se lo stack risulta vuoto solo all'inizio e alla fine della computazione, ciò implica che $\exists u \in \Gamma$ inserito nella prima transizione e rimosso solo nell'ultima.

Sia quindi $a \in \Sigma_{\varepsilon}$ il simbolo letto durante tale prima transizione. In tal caso, $\exists r, s \in Q'$ tali che:

$$(r,u) \in \delta(p,a,\varepsilon) \land (q,\varepsilon) \in \delta(s,b,u)$$

Sia quindi x = ayb, dove y è una stringa che porta P' da r a s. Affinché la computazione di x termini con lo stack vuoto, è necessario che ciò valga anche per la computazione di y.

Poiché la computazione di y percorre n-1 transizioni, per ipotesi induttiva abbiamo che $A_{r,s} \stackrel{*}{\Rightarrow} y$, dunque data la regola $A_{p,q} \to aA_{r,s}b$ concludiamo che:

$$A_{p,q} \Rightarrow aA_{r,s}b \stackrel{*}{\Rightarrow} ayb = x$$

(b) Se lo stack si svuota durante la computazione, ciò implica che $\exists r \in Q'$ percorso durante la computazione di x in cui ciò accade.

Sia quindi x = yz, dove y e z sono due stringhe che portano P' rispettivamente da p a r e da r a q.

Poiché le computazioni di y e z percorrono rispettivamente $m \leq n$ e $n-m \leq n$ transizioni, per ipotesi induttiva abbiamo che $A_{p,r} \stackrel{*}{\Rightarrow} y$ e $A_{r,q} \stackrel{*}{\Rightarrow} z$, dunque data la regola $A_{p,q} \to A_{p,r} A_{r,q}$ concludiamo che:

$$A_{p,q} \Rightarrow A_{p,r} A_{r,q} \stackrel{*}{\Rightarrow} yz = x$$

• Tramite le due affermazioni, abbiamo che:

 $A_{q_0,q_{\mathrm{accept}}} \stackrel{*}{\Rightarrow} x \iff x \text{ porta } P' \text{ da } q_0 \text{ in } q_{\mathrm{accept}} \text{ con uno stack vuoto}$

da cui concludiamo che:

$$x \in L(G) \iff A_{q_0,q_{\text{accept}}} \iff x \in L(P')$$

dunque che $L = L(P) = L(P') = L(G) \in \mathsf{CFL}$

Teorema 11: Equivalenza tra CFG e PDA

Date le due classi di linguaggi $\mathcal{L}(\mathsf{PDA})$ e CFL, si ha che:

$$\mathcal{L}(PDA) = CFL$$

(seque dai due lemmi precedenti)

2.5 Pumping lemma per i linguaggi acontestuali

Proposizione 10: Altezza delle derivazioni in una CFG in CNF

Sia $G=(V,\Sigma,R,S)$ una CFG in CNF. Data $x\in L(G)$ e data l'altezza h dell'albero di derivazione di x, si ha che $|x|<2^{h-1}$

Dimostrazione. Procediamo per induzione sul'altezza h dell'albero della derivazione $S \stackrel{*}{\Rightarrow} x$

Caso base.

• Per h=1, la derivazione è composta da una sola produzione. Essendo G in CNF, l'unica regola applicabile è nella forma $S\to a$, dove $x=a\in \Sigma$, implicando che $|x|=1\leq 2^{1-1}=1$

Ipotesi induttiva forte.

• Assumiamo che data $x \in L(G)$ tale che il suo albero di derivazione abbia altezza $k \le h$ si abbia che $|x| \le 2^{h-1}$

Passo induttivo.

• Consideriamo la stringa x il cui albero di derivazione ha altezza h+1. Poiché G è in CNF, la prima produzione di tale derivazione deve essere ottenuta tramite una regola nella forma $S \to AB$.

- Sia quindi x=yz, dove $A \stackrel{*}{\Rightarrow} y$ e $B \stackrel{*}{\Rightarrow} z$. Poiché la derivazione $S \Rightarrow AB \stackrel{*}{\Rightarrow} yz = x$ ha altezza h+1, ne segue che l'altezza dei due sottoalberi delle derivazioni $A \stackrel{*}{\Rightarrow} y$ e $B \stackrel{*}{\Rightarrow} z$ sia h
- Di conseguenza, per ipotesi induttiva si ha che $|y| \leq 2^{h-1}$ e $|z| \leq 2^{h-1}$, implicando che:

$$|x| = |y| + |z| \le 2^{h-1} + 2^{h-1} = 2^h = 2^{(h+1)-1}$$

Lemma 7: Pumping lemma per i linguaggi acontestuali

Dato un linguaggio L, se $L \in \mathsf{CFL}$ allora $\exists p \in \mathbb{N}$, detto **lunghezza del pumping**, tale che $\forall w := uvxyz \in L$, con $|w| \geq p$ e $u, v, x, y, z \in \Sigma^*$ (ossia sono sue sottostringhe), si ha che:

- $\bullet \ \forall i \in \mathbb{N} \ uv^ixy^iz \in L$
- |vy| > 0, dunque $v \neq \varepsilon$ o $y \neq \varepsilon$
- $|vxy| \le p$

Dimostrazione.

- Dato $L \in \mathsf{CFL}$, sia $G = (V, \Sigma, R, S)$ la CFG in CNF tale che L = L(G)
- Sia $p = 2^{|V|}$. Data una stringa $w \in L$ tale che $|w| \ge p$, per la proposizione precedente l'albero di derivazione di w deve avere un'altezza $h \ge |V| + 1$, poiché altrimenti w non sarebbe generabile da esso
- Consideriamo quindi un cammino di lunghezza h di tale albero, dunque passante per almeno $k \geq |V| + 2$ nodi. Trattandosi di un cammino all'interno di un albero di derivazione, solo l'ultimo nodo del cammino corrisponderà ad un terminale, implicando che in tale cammino vi siano $k-1 \geq |V| + 1$ variabili.
- Sia quindi A_1, \ldots, A_{k-1} la sequenza di variabili del cammino (dove $S = A_1$). Poiché $k-1 \geq |V|+1 \geq |V|$, ne segue necessariamente che $\exists i,j \mid k-|V|-2 \leq i < j \leq k-1 \land A_i = A_j$, ossia che tra le ultime |V|+1 variabili del cammino vi sia almeno una variabile ripetuta
- Consideriamo quindi le cinque sottostringhe $u, v, x, y, z \in \Sigma^*$ tali che:
 - -w = uvxyz
 - $-S \stackrel{*}{\Rightarrow} uA_iz$
 - $-A_i \stackrel{*}{\Rightarrow} vA_i y$
 - $-A_i \stackrel{*}{\Rightarrow} x$

• Poiché $A_i = A_j$, all'interno di ogni derivazione $A_i \stackrel{*}{\Rightarrow} vA_jy$ possiamo sostituire A_j con A_i stesso. Ripetendo tale procedimento $i \in \mathbb{N}$ volte ricorsivamente, otteniamo che:

$$A_i \stackrel{*}{\Rightarrow} vA_iy = vA_iy \stackrel{*}{\Rightarrow} v^iA_iy^i \Rightarrow v^ixy^i$$

implicando dunque che $\forall i \in \mathbb{N} \ S \stackrel{*}{\Rightarrow} uv^i x y^i z$ e quindi che $uv^i x y^i z \in L(G) = L$

- Poiché G è in CNF, dunque al suo interno non possono esserci ε -regole o regole unitarie, la derivazione $A_i \stackrel{*}{\Rightarrow} vA_jy$ deve necessariamente aver utilizzato una regola del tipo $A_i \to BC$ dove $B \stackrel{*}{\Rightarrow} vA_j$ e $C \stackrel{*}{\Rightarrow} y$ oppure $B \stackrel{*}{\Rightarrow} v$ e $C \stackrel{*}{\Rightarrow} A_jy$. Poiché non vi sono ε -regole, in entrambi i casi si ha che $v \neq \varepsilon$ o $y \neq \varepsilon$, implicando che |vy| > 0
- Poiché A_i si trova tra le ultime |V| + 1 variabili del cammino, ne segue che il suo sottoalbero abbia altezza $h' \leq |V| + 1$ (contando anche il terminale finale). Per la proposizione precedente, dunque, ne segue che:

$$|vxy| \le 2^{h'-1} \le 2^{|V|} = p$$

Rappresentazione grafica della dimostrazione

Esempio:

- 1. Consideriamo il linguaggio $L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$
 - Supponiamo per assurdo che $L \in \mathsf{CFL}$. In tal caso, ne segue che per esso debbia valere il pumping lemma, dove p è la lunghezza del pumping
 - Consideriamo quindi la stringa $w := 0^p 1^p 2^p$. Poiché $|w| \ge p$, possiamo suddividerla in cinque sottostringhe $u, v, x, y, z \in \Sigma^*$ tali che w = uvxyz.
 - Poiché la terza condizione del pumping lemma impone che $|vxy| \le p$, le uniche possibilità sono:
 - (a) Se $vxy = 0^m$ con $1 \le m \le p$, si ha che $u = 0^h$ e $z = 0^{p-m-h}1^p2^p$, dove $1 \le m+h \le p$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che $v \in 0$ y contengono almeno uno 0
 - (b) Se $vxy = 1^m$ con $1 \le m \le p$, si ha che $u = 0^p 1^h$ e $z = 1^{p-m-h} 2^p$, dove $1 \le m+h \le p$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che v e/o y contengono almeno un 1
 - (c) Se $vxy = 2^m$ con $1 \le m \le p$, si ha che $u = 0^p 1^p$ e $z = 2^{p-m-h}$, dove $leq m + h \le p$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che $v \in o$ y contengono almeno un 2
 - (d) Se $vxy = 0^m 1^h$ con $1 \le m + h \le p$, si ha che $u = 0^{p-m}$ e $z = 1^{p-h} 2^p$. Inoltre, poiché la seconda condizione impone che |vy| > 0, si ha che v contiene almeno uno 0 e/o y contiene almeno un 1
 - (e) Se $vxy=1^m2^h$ con $1\leq m+h\leq p$, si ha che $u=0^p1^{p-m}$ e $z=2^{p-h}$. Inoltre, poiché la seconda condizione impone che |vy|>0, si ha che v contiene almeno uno 1 e/o y contiene almeno un 2
 - In tutti i casi possibili descritti, risulta automatico che

$$\nexists n \in \mathbb{N} \mid n = \left| uv^0xy^0z \right|_0 = \left| uv^0xy^0z \right|_1 = \left| uv^0xy^0z \right|_2 \implies uv^0xy^0z \not\in L$$

contraddicendo quindi la prima condizione del pumping lemma

- Di conseguenza, ne segue necessariamente che $L \notin \mathsf{CFL}$
- 2. Consideriamo il linguaggio $L = \{ww \mid w \in \{0, 1\}^*\}$
 - Supponiamo per assurdo che $L \in \mathsf{CFL}$. In tal caso, ne segue che per esso debbia valere il pumping lemma, dove p è la lunghezza del pumping
 - Consideriamo quindi la stringa $w := 0^p 1^p 0^p 1^p$. Poiché $|w| \ge p$, possiamo suddividerla in cinque sottostringhe $u, v, x, y, z \in \Sigma^*$ tali che w = uvxyz.

- Poiché la terza condizione del pumping lemma impone che $|vxy| \le p$, le uniche possibilità sono:
 - (a) Se $u=0^h$, $vxy=0^m$ e $z=0^{p-m-h}1^p0^p1^p$, dove $1 \le m+h \le p$, poiché la seconda condizione impone che |vy|>0, si ha che v e/o y contengono almeno uno 0, dunque si ha che:

$$\exists k < m \mid v^0 x y^0 = 0^k \implies u v^0 x y^0 z = 0^h 0^k 0^{p-m-h} 1^p 0^p 1^p = 0^{p-m+k} 1^p 0^p 1^p$$

dove $k < m \implies p - m - k < p$ e dunque che $uv^0xy^0z \notin L$

- (b) Se $u=0^p1^p0^h$, $vxy=0^m$ e $z=0^{p-m-h}1^p$, dove $1\leq m+h\leq p$, procedendo analogamente al caso (a) otteniamo che $uv^0xy^0z\notin L$
- (c) Se $u=0^p1^h$, $vxy=1^m$ e $z=1^{p-m-h}0^p1^p$, dove $1\leq m+h\leq p$, procedendo analogamente al caso (a) otteniamo che $uv^0xy^0z\notin L$
- (d) Se $u=0^p1^p0^p1^h$, $vxy=1^m$ e $z=1^{p-m-h}$, dove $1\leq m+h\leq p$, procedendo analogamente al caso (a) otteniamo che $uv^0xy^0z\notin L$
- (e) Se $u = 0^{p-h}$, $vxy = 0^h 1^m$ e $z = 1^{p-m} 0^p 1^p$, dove $1 \le m+h \le p$, poiché la seconda condizione impone che |vy| > 0, si ha che v contiene almeno uno 0 e/o y contiene almeno un 1, dunque si ha che:

$$\exists j < h, j < m \mid v^0 x y^0 = 0^j 1^k \implies$$

$$uv^{0}xy^{0}z = 0^{p-h}0^{j}1^{k}1^{p-m}0^{p}1^{p} = 0^{p-h+j}1^{p-m+k}0^{p}1^{p}$$

dove $j < h, k < m \implies p - h + j, p - m + k < p$ e dunque che $uv^0xy^0z \notin L$

- (f) Se $u=0^p1^p0^{p-h}$, $vxy=0^h1^m$ e $z=1^{p-m}$, dove $1\leq m+h\leq p$, procedendo analogamente al caso (e) otteniamo che $uv^0xy^0z\notin L$
- (g) Se $u=0^p1^{p-h}$, $vxy=1^h0^m$ e $z=0^{p-m}1^p$, dove $1\leq m+h\leq p$, poiché la seconda condizione impone che |vy|>0, si ha che v contiene almeno uno 1 e/o y contiene almeno un 0, dunque si ha che:

$$\exists j < h, j < m \mid v^0 x y^0 = 1^j 0^k \implies$$

$$uv^{0}xy^{0}z = 0^{p}1^{p-h}1^{j}0^{k}0^{p-m}1^{p} = 0^{p}1^{p-h+j}0^{p-m+k}1^{p}$$

dove $j < h, k < m \implies p - h + j, p - m + k < p$ e dunque che $uv^0xy^0z \not\in L$

- Di conseguenza, poiché il pump down non può essere effettuato nè in un blocco di soli 0 o soli 1 (casi a, b, c, d), nè a cavallo tra degli 0 ed 1 (casi e, f), nè al centro della stringa (caso g), ne segue che la prima condizione del pumping lemma venga contraddetta
- \bullet Di conseguenza, ne segue necessariamente che $L\notin\mathsf{CFL}$

2.6 Chiusure dei linguaggi acontestuali

Teorema 12: Chiusura dell'unione in CFL

L'operatore unione è chiuso in CFL, ossia:

$$\forall L_1, \ldots, L_n \in \mathsf{CFL} \ L_1 \cup \ldots \cup L_n \in \mathsf{CFL}$$

Dimostrazione.

- Dati $L_1, \ldots, L_n \in \mathsf{CFL}$, siano G_1, \ldots, G_n le tali che $\forall i \in [1, n]$ $G_i = (V_i, \Sigma_i, R_i, S_i) \land L_i = L(G_i)$.
- Consideriamo quindi la CFG $G = (V, \Sigma, R, S)$ tale che:
 - -S è una nuova variabile iniziale

$$-V = \left(\bigcup_{i=0}^{n} V_i\right) \cup \{S\}$$

$$-\Sigma = \bigcup_{i=0}^{n} \Sigma_i$$

$$-R = \left(\bigcup_{i=0}^{n} R_i\right) \cup \{S \to S_j \mid j \in [1, n]\}$$

• Data $w \in \bigcup_{i=0}^{n} L(G_i)$, si ha che $\exists j \in [1, n] \mid w \in L(G_j)$

Di conseguenza, poiché $(S \to S_i) \in R$, ne segue che

$$w \in L(G_j) \iff S_j \stackrel{*}{\Rightarrow} w \implies S \Rightarrow S_j \stackrel{*}{\Rightarrow} w \implies w \in L(G)$$

• Data $w \in L(G)$, invece, dove $w \in L(G) \iff S \stackrel{*}{\Rightarrow} w$, poiché le uniche regole applicabili su S sono $\{S \to S_j \mid j \in [1, n]\}$, ne segue necessariamente che:

$$w \in L(G) \implies \exists j \in [0, n] \mid S \Rightarrow S_j \stackrel{*}{\Rightarrow} w \implies w \in L(G_j) \subseteq \bigcup_{i=0}^n L(G_i)$$

• Di conseguenza, concludiamo che:

$$L_1 \cup \ldots \cup L_n = L(G_1) \cup \ldots \cup L(G_n) = L(G) \in \mathsf{CFL}$$

Teorema 13: Chiusura della concatenazione in CFL

L'operatore concatenazione è chiuso in CFL, ossia:

$$\forall L_1, \ldots, L_n \in \mathsf{CFL} \ L_1 \circ \ldots \circ L_n \in \mathsf{CFL}$$

Dimostrazione.

- Dati $L_1, \ldots, L_n \in \mathsf{CFL}$, siano G_1, \ldots, G_n le tali che $\forall i \in [1, n]$ $G_i = (V_i, \Sigma_i, R_i, S_i) \land L_i = L(G_i)$.
- Consideriamo quindi la CFG $G = (V, \Sigma, R, S)$ tale che:
 - -S è una nuova variabile iniziale

$$- V = \left(\bigcup_{i=0}^{n} V_i\right) \cup \{S\}$$

$$- \Sigma = \bigcup_{i=0}^{n} \Sigma_i$$

$$- R = \left(\bigcup_{i=0}^{n} R_i\right) \cup \{S \to S_1 \dots S_n\}$$

• Sia $w := w_1 \dots w_n \in L(G_1) \circ \dots \circ L(G_n)$, dove $\forall j \in [1, n] \ w_j \in L(G_j)$ Poiché $(S \to S_1 \dots S_n) \in R$, ne segue che

$$\forall j \in [1, n] \ w_i \in L(G_j) \iff S_j \stackrel{*}{\Rightarrow} w_j$$

dunque abbiamo che:

$$S \Rightarrow S_1 \dots S_n \stackrel{*}{\Rightarrow} w_1 \dots w_n = w \implies w \in L(G)$$

• Data $w \in L(G)$, invece, dove $w \in L(G) \iff S \stackrel{*}{\Rightarrow} w$, poiché l'unica regola applicabile su $S \stackrel{\circ}{\circ} S \to S_1 \dots S_n$, ne segue necessariamente che:

$$w \in L(G) \implies S \Rightarrow S_1 \dots S_n \stackrel{*}{\Rightarrow} w$$

dunque $\exists w_1 \in L(G_1), \ldots, w_n \in L(G_n)$ tali che:

$$S \Rightarrow S_1 \dots S_n \stackrel{*}{\Rightarrow} w_1 S_2 \dots S_n \stackrel{*}{\Rightarrow} w_1 w_2 \dots w_n = w$$

implicando che:

$$w = w_1 w_2 \dots w_n \in L(G_1) \circ \dots \circ L(G_n)$$

• Di conseguenza, concludiamo che:

$$L_1 \circ \ldots \circ L_n = L(G_1) \circ \ldots \circ L(G_n) = L(G) \in \mathsf{CFL}$$

Esempio:

• Consideriamo i seguenti linguaggi:

$$L_1 = \{0^n 1^n \mid n \in \mathbb{N}\} \qquad L_2 = \{1^m 0^m \mid m \in \mathbb{N}\}$$

• Consideriamo quindi le due grammatiche:

$$G_1: A \to 0A1 \mid \varepsilon$$

$$G_2: B \to 1A0 \mid \varepsilon$$

tali che $L_1 = L(G_1)$ e $L_2 = L(G_2)$

• La grammatica G tale che $L(G) = L_1 \cup L_2$, corrisponderà a:

$$G: S \to A \mid B$$

$$A \to 0A1 \mid \varepsilon$$

$$B \to 0B1 \mid \varepsilon$$

• La grammatica G' tale che $L(G') = L_1 \circ L_2$, corrisponderà a:

$$\begin{aligned} G: & S \to AB \\ & A \to 0A1 & \mid & \varepsilon \\ & B \to 0B1 & \mid & \varepsilon \end{aligned}$$

Teorema 14: Chiusura di star in CFL

L'operatore star è chiuso in CFL, ossia:

$$\forall L \in \mathsf{CFL} \ L^* \in \mathsf{CFL}$$

Dimostrazione.

- Dato $L \in \mathsf{CFL}$, sia $G = (V, \Sigma, R, S)$ la CFG tale che L = L(G).
- Consideriamo quindi la CFG $G' = (V, \Sigma, R', S_0)$ tale che:
 - $-S_0$ è una nuova variabile iniziale

$$-R' = R \cup \{S_0 \rightarrow \varepsilon, S_0 \rightarrow S, S_0 \rightarrow S_0 S_0\}$$

- Data $w := w_1 \dots w_n \in L^*$, abbiamo che:
 - Se $w = \varepsilon$, poiché $(S_0 \to \varepsilon) \in R$, ne segue che

$$S_0 \Rightarrow \varepsilon = w \implies w = \varepsilon \in L(G')$$

- Se $w \neq \varepsilon$, invece, si ha che $\forall j \in [1, n] \ w_j \in L = L(G) \iff S \stackrel{*}{\Rightarrow} w_j$. Dunque si ha che:
 - * Se n=1, dunque $w=w_1$, tramite la regola $(S_0 \to S) \in R$ ne segue che:

$$S_0 \Rightarrow S \stackrel{*}{\Rightarrow} w_1 = w \implies w \in L(G')$$

* Se invece n > 1, tramite $(S_0 \Rightarrow S_0 S_0) \in R$ ne segue che:

$$S_0 \Rightarrow S_0 S_0 \stackrel{*}{\Rightarrow} S_0^n \stackrel{*}{\Rightarrow} S^n \stackrel{*}{\Rightarrow} w_1 \dots w_n = w \implies w \in L(G')$$

- Data $w \in L(G')$, dove $w \in L(G') \iff S_0 \stackrel{*}{\Rightarrow} w$, poiché le uniche regole applicabili su S_0 sono $\{S_0 \to \varepsilon, S_0 \to S, S_0 \to SS\}$, ne segue necessariamente che:
 - Se $S_0 \Rightarrow \varepsilon = w$, ne segue direttamente che $w = \varepsilon \in L^0$
 - Se $S_0 \Rightarrow S \stackrel{*}{\Rightarrow} w$, ne segue direttamente che $w \in L(G) = L^1$
 - Se $S_0 \Rightarrow S_0 S_0 \stackrel{*}{\Rightarrow} w$, dato $n \geq 2$ si ha che:

$$S_0 \Rightarrow S_0 S_0 \stackrel{*}{\Rightarrow} S_0^n \stackrel{*}{\Rightarrow} S^n$$

Siano quindi $w_1, \ldots, w_n \in L(G) = L$. Poiché $\forall j \in [1, n] \ w_j \in L(G) = L \iff S \stackrel{*}{\Rightarrow} w_j$, ne segue automaticamente che:

$$S_0 \stackrel{*}{\Rightarrow} S^n \stackrel{*}{\Rightarrow} w_1 \dots w_n = w \implies w \in L^n$$

Dunque, dato $n \geq 2$, abbiamo che:

$$w \in L^0 \cup L^1 \cup L^n = L^*$$

• Di conseguenza, concludiamo che:

$$L^* = L(G') \in \mathsf{CFL}$$

Esempio:

• Consideriamo il seguente linguaggio e la sua grammatica generante:

$$L = \{0^n 1^n \mid n \in \mathbb{N}\} \qquad \qquad G: A \to 0A1 \ \mid \ \varepsilon$$

• La grammatica G' tale che $L(G) = L(G)^*$, corrisponderà a:

$$G': S \to \varepsilon \mid A \mid SS$$
$$A \to 0A1 \mid \varepsilon$$

Teorema 15: Non chiusura dell'intersezione in CFL

L'operatore intersezione <u>non</u> è chiuso in CFL, ossia:

$$\exists L_1, L_2 \in \mathsf{CFL} \mid L_1 \cap L_2 \notin \mathsf{CFL}$$

Dimostrazione.

• Consideriamo i seguenti due linguaggi:

$$L_1 = \{a^i b^i c^j \mid i, j \in \mathbb{N}\}\$$
 $L_2 = \{a^i b^j c^j \mid i, j \in \mathbb{N}\}\$

• Tali linguaggi sono descritti dalle seguenti due grammatiche:

$$G_1: S \to TV$$
 $G_2: S \to VT$
 $T \to aTb \mid \varepsilon$ $T \to bTc \mid \varepsilon$
 $V \to cV \mid \varepsilon$ $V \to aV \mid \varepsilon$

dove $L_1 = L(G_1)$ e $L_2 = L_2(G_2)$

• L'intersezione di tali linguaggi risulta essere:

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}\$$

il quale abbiamo già dimostrato non essere un linguaggio acontestuale (sezione 2.5)

• Di conseguenza, concludiamo che $L_1, L_2 \in \mathsf{CFL}$ ma $L_1 \cap L_2 \notin \mathsf{CFL}$

Teorema 16: Non chiusura del complemento in CFL

L'operatore complemento <u>non</u> è chiuso in CFL, ossia:

$$\exists L \in \mathsf{CFL} \mid \overline{L} \not\in \mathsf{CFL}$$

Dimostrazione.

• Consideriamo il seguente linguaggio:

$$L = \{a, b\}^* - \{ww \mid w \in \{a, b\}^*\}$$

• Consideriamo quindi la seguente grammatica:

$$G: S \rightarrow A \mid B \mid AB \mid BA$$

$$A \rightarrow a \mid aAa \mid aAb \mid bAa \mid bAb$$

$$B \rightarrow b \mid aBa \mid aBb \mid bBa \mid bBb$$

- Data $x \in L$ tale che |x| sia dispari, notiamo che:
 - Se il simbolo centrale di $x \in a$, allora $S \Rightarrow A \stackrel{*}{\Rightarrow} x$
 - Se il simbolo centrale di $x \in b$, allora $S \Rightarrow B \stackrel{*}{\Rightarrow} x$

dunque ne segue che $x \in L(G)$

- Viceversa, data $x \in L(G)$ tale che |x| sia dispari, ne segue immediatamente che $\nexists w \in \{a,b\}^* \mid x = ww \implies x \in L$
- Sia quindi $x \in L$ tale che |x| sia pari.

Dati $x_1, \ldots, x_n \in \{a, b\}$ tali che $x = x_1 \ldots x_n$, ne segue che:

$$x \in L \implies \exists i \in [1, n] \mid x_i \neq x_{\frac{n}{2} + i}$$

• Siano quindi $u := x_1 \dots x_{2i-1}$ e $v := x_{2i} \dots x_n$. Notiamo che il simbolo centrale di u corrisponde a $x_{\frac{1+2i-1}{2}} = x_i$, mentre quello di v corrisponde a $x_{\frac{2i+n}{2}} = x_{\frac{n}{2}+i}$, da cui traiamo che:

$$x_i \neq x_{\frac{n}{2}+i} \implies x_{\frac{1+2i-1}{2}} = x_i \neq x_{\frac{n}{2}+i} = x_{\frac{2i+n}{2}} \implies u \neq v$$

• Inoltre, notiamo che |u| e |v| siano dispari, dunque si ha che $u, v \in L(G)$. Di conseguenza, otteniamo che:

$$S \Rightarrow AB \stackrel{*}{\Rightarrow} uv = x$$
 oppure $S \Rightarrow BA \stackrel{*}{\Rightarrow} uv = x$

implicando quindi che $x \in L(G)$

• Sia quindi $x \in L(G)$ tale che |x| sia pari.

Poiché |x| è pari, ne segue necessariamente che:

$$S \Rightarrow AB \stackrel{*}{\Rightarrow} x \text{ oppure } S \Rightarrow BA \stackrel{*}{\Rightarrow} x$$

Poiché i due casi sono analoghi, senza perdita di generalità consideriamo il caso in cui $S\Rightarrow AB\overset{*}{\Rightarrow}x$

- Siano quindi $u := x_1 \dots x_k$ e $v := x_{k+1} \dots v_n$ tali che x = uv, $S \Rightarrow A \stackrel{*}{\Rightarrow} u$ e $S \Rightarrow B \stackrel{*}{\Rightarrow} v$.
- Poiché $S \Rightarrow A \stackrel{*}{\Rightarrow} u$ e $S \Rightarrow B \stackrel{*}{\Rightarrow} v$, otteniamo che:
 - -|u|=k e |v|=n-k sono dispari
 - $S \Rightarrow A \stackrel{*}{\Rightarrow} u$ implica che il simbolo centrale di usia a,ossia che $x_{\frac{1+k}{2}} = a$
 - $-S \Rightarrow B \stackrel{*}{\Rightarrow} v$ implica che il simbolo centrale di v sia b, ossia che $x_{\frac{k+1+n}{2}} = b$

• Siano quindi che $w := w_1 \dots w_h$ e $w' := w'_1 \dots w'_h$ tali che |w| = |w'| = h e che u = ww', implicando dunque che $h = \frac{n}{2}$. Per il risultato precedente, ne segue automaticamente che:

$$w_{\frac{1+h}{2}} = x_{\frac{1+k}{2}} = a \neq b = x_{\frac{k+1+n}{2}} = w'_{\frac{1+h}{2}} \implies w \neq w' \implies x = ww' \in L$$

- Dunque, abbiamo ottenuto $L = L(G) \in \mathsf{CFL}$
- Il complemento di tale linguaggio risulta essere:

$$\overline{L} = \{ww \mid w \in \{a, b\}^*\}$$

il quale abbiamo già dimostrato non essere un linguaggio acontestuale (sezione 2.5)

• Di conseguenza, concludiamo che $L \in \mathsf{CFL},$ ma $\overline{L} \notin \mathsf{CFL}$

Decidibilità e Riducibilità

3.1 Macchine di Turing

Nel 1936, il pioniere dell'informatica Alan Turing sviluppò un modello di calcolo simile ad un automa a stati finiti ma dotato di una memoria illimitata e senza alcuna restrizione. Sebbene essa richieda una grande mole di tempo, la **macchina di Turing** è in grado di elaborare tutto ciò che un reale computer è in grado di elaborare. Per tanto, essa costituisce un perfetto modello astratto di un reale computer, implicando che ogni problema per essa **irrisolvibile** lo sarà anche per un computer.

Il modello di Turing utilizza un **nastro infinito** come memoria illimitata ed è dotata di una **testina di lettura-scrittura**. Il nastro è formato da celle, le quali, inizialmente, contengono solo una stringa data in input (tutte le altre celle sono vuote). Inoltre, il nastro viene continuamente **spostato** a sinistra e destra, in modo che la testina possa leggere o scrivere sulle varie celle. La macchina continua la sua computazione finché essa non raggiungerà lo stato di **accettazione** o lo stato di **rifiuto** della stringa in input. Se la macchina non è in grado di raggiungere nessuno dei due stati, essa rimarrà in un **loop infinito**, non terminando mai l'esecuzione.

Ad esempio, consideriamo il linguaggio $L = \{w \# w \mid w \in \{0,1\}^*\}$. Descriviamo in modo informale una macchina di Turing M in grado di accettare le stringhe di tale linguaggio:

M = "Data la stringa w in input:

- 1. Muoviti a zig-zag lungo il nastro tra tutte le posizioni corrispondenti su entrambi i lati del simbolo #. Se i due simboli combaciano, cancella entrambi sovrascrivendoli con una x. Se i due simboli non combaciano o se non viene mai trovato il simbolo #, rifiuta la stringa.
- 2. Quando tutti i simboli a sinistra del simbolo # sono stati cancellati, controlla se a destra del simbolo # vi sono simboli diversi da x. Se vi sono, rifiuta la stringa, altrimenti accettala."

Data la stringa in input 011000#011000, l'esecuzione della macchina procede come:

dove il simbolo ⊔ indica una **cella vuota**

Definizione 35: Turing Machine (TM)

Una Turing Machine (TM) è una settupla $(Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ dove:

- Q è l'insieme finito degli stati della macchina
- Σ è l'alfabeto della macchina, dove $\sqcup \notin \Sigma$
- Γ è l'alfabeto del nastro, dove $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$
- $q_{\text{start}} \in Q$ è lo **stato iniziale** dell'automa
- $q_{\text{accept}} \in Q$ è lo stato accettante dell'automa
- $q_{\text{reject}} \in Q$ è lo stato rifiutante dell'automa, dove $q_{\text{reject}} \neq q_{\text{accept}}$
- $\delta: Q \{q_{\text{accept}}, q_{\text{reject}}\} \times \Gamma \to Q \times \Gamma \times \{L, R\}$ è la funzione di transizione della macchina, dove se $\delta(p, a) = (q, b, X)$ si ha che:
 - Viene letto il simbolo a dal nastro, sostituendolo con b e la macchina passa dallo stato p allo stato q. Inoltre, in nastro viene spostato a sinistra se X = L e a destra se X = R
 - L'etichetta della transizione da p a q viene indicata come $a \to b$; X

Definizione 36: Configurazione di una TM

Sia $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ una TM. Definiamo la stringa uqav come **configurazione di** M, dove:

- $q \in Q$ è lo stato attuale della macchina
- $a \in \Gamma$ è il simbolo del nastro su cui si trova attualmente la testina della macchina
- $u \in \Gamma^*$ è composta dai simboli precedenti ad a sul nastro
- $v \in \Gamma^*$ è composta dai simboli successivi ad a sul nastro

Definizione 37: Passo di computazione in una TM

Data una TM $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$, si ha che:

$$uaq_ibv$$
 produce $uq_iacv \iff \delta(q_i,b) = (q_i,c,L)$

$$uaq_ibv$$
 produce $uacq_iv \iff \delta(q_i,b)=(q_i,c,R)$

Proposizione 11: Stringa accettata in una TM

Sia $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ una TM. Data un stringa $w \in \Sigma^*$, diciamo che w è accettata da M se esiste una sequenza di configurazioni c_1, \ldots, c_k tali che:

- $c_1 = q_{\text{start}} w$
- $\forall i \in [1, k-1]$ c_i produce c_{i+1}
- $q_{\text{accept}} \in c_k$

Esempio:

1. • La seguente TM riconosce il linguaggio $L = \{01^n0 \mid n \in \mathbb{N}\}$:

• Difatti, durante la lettura della stringa 01110, la macchina assume le seguenti configurazioni:

$$q_1 \ 0 \ 1 \ 1 \ 1 \ 0$$
 $x \ q_2 \ 1 \ 1 \ 0$
 $x \ y \ q_2 \ 1 \ 1 \ 0$
 $x \ y \ y \ q_2 \ 1 \ 0$
 $x \ y \ y \ y \ q_2 \ 0$
 $x \ y \ y \ x \ q_3 \ \sqcup$
 $x \ y \ y \ x \ x \ \sqcup \ q_{\rm accept} \ \sqcup$

2. • La seguente TM riconosce il linguaggio $L = \{0^n 1^n \mid n \in \mathbb{N}\}:$

(tutte le transizioni omesse vanno allo stato q_{reject})

• Difatti, durante la lettura della stringa 000111, la macchina assume le seguenti configurazioni:

```
q_1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1
                            x q_1 x 0 y 1 1
                                                         x x q_1 0 y y 1
x q_2 0 0 1 1 1
                            x \ x \ q_2 \ 0 \ y \ 1 \ 1
                                                         x x x q_2 y y 1
                                                                                       x x x q_3 y y y
x \ 0 \ q_2 \ 0 \ 1 \ 1 \ 1
                            x \ x \ 0 \ q_2 \ y \ 1 \ 1
                                                         x x x y q_2 y 1
                                                                                       x x x y q_4 y y
x \ 0 \ 0 \ q_2 \ 1 \ 1 \ 1
                            x \ x \ 0 \ y \ q_2 \ 1 \ 1
                                                         x x x y y q_2 1
                                                                                       x x x y y q_4 y
x \ 0 \ q_3 \ 0 \ y \ 1 \ 1
                            x x 0 q_3 y y 1
                                                         x x x y q_3 y y
                                                                                       x x x y y y q_4 \sqcup
x q_3 0 0 y 1 1
                            x \ x \ q_3 \ 0 \ y \ y \ 1
                                                         x x x q_3 y y y
                                                                                       x x x y y y \sqcup q_{\text{accept}} \sqcup
q_3 \times 0 \times 0 \times 1 \times 1
                            x q_3 x 0 y y 1
                                                          x x q_3 x y y y
```

Definizione 38: TM Decisore

Data una TM $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$, definiamo M come **decisore** se essa termina sempre la sua esecuzione (ossia non può entrare in un loop infinito).

Inoltre, se M è un decisore diciamo che M decide L(M)

Definizione 39: Classe dei linguaggi Turing-riconoscibili

Dato un alfabeto Σ , definiamo come classe dei linguaggi Turing-riconoscibili di Σ il seguente insieme:

$$\mathsf{REC} = \{ L \subseteq \Sigma^* \mid \exists \; \mathsf{TM} \; M \; \mathsf{t.c} \; L = L(M) \}$$

Definizione 40: Classe dei linguaggi Turing-decidibili

Dato un alfabeto Σ , definiamo come classe dei linguaggi Turing-decidibili di Σ il seguente insieme:

$$\mathsf{DEC} = \{ L \subseteq \Sigma^* \mid \exists \ \text{decisore } M \text{ t.c } L = L(M) \}$$

Esempio:

• Entrambi i linguaggi dei due esempi precedenti sono Turing-decidibili in quanto nessuna delle due TM mostrate è in grado di entrare in un loop infinito

Osservazione 13: Descrizione informale delle TM

Negli esempi e dimostrazioni successive, le TM verranno descritte in modo informale, poiché la loro descrizione formale richiederebbe una grande quantità di stati e transizioni.

Ovviamente, tali descrizioni informali conterranno solo operazioni eseguibili dalle TM

Definizione 41: Codifica di un oggetto

Dato un oggetto O, indichiamo come $\langle O \rangle$ la sua **codifica**, ossia una stringa che ne descriva le caratteristiche

Esempi:

- Dato un polinomio $p = a_0 + a_1x_1 + \ldots + a_nx_n$, possiamo immaginare la sua codifica come una stringa composta dai suoi coefficienti, ossia $\langle p \rangle = \#a_1, a_2, \ldots, a_n\#$
- Dato un grafo G, possiamo immaginare la sua codifica $\langle G \rangle$ come una stringa formata da una serie di coppie (x,y) rappresentanti gli archi del grafo

3.1.1 Varianti della macchina di Turing

Definizione 42: Stay-put TM

Una Stay-put TM è una TM $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ la cui funzione di transizione è definita come:

$$\delta: Q - \{q_{\text{accept}}, q_{\text{reject}}\} \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

dove il simbolo S indica che il nastro possa anche rimanere **immobile**

Teorema 17: Equivalenza tra TM e Stay-put TM

Dato un linguaggio $L \subseteq \Sigma^*$ si ha che:

$$L \in \mathsf{REC} \iff \exists \mathsf{Stay-put} \; \mathsf{TM} \; M \; \mathsf{t.c} \; L = L(M)$$

In altre parole, le TM e le Stay-put TM sono equivalenti tra loro

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathsf{REC}$, sia M la TM tale che L = L(M)
- Poiché una TM è una particolare Stay-put TM le cui transizioni con non rimangono mai immobili, ne segue automaticamente che essa stessa sia la Stay-put TM in grado di riconoscere L=L(M)

Seconda implicazione.

- Sia $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ la Stay-put TM tale che L = L(M)
- Consideriamo la TM $M' = (Q', \Sigma, \Gamma, \delta', q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ tale che:

$$\delta(p,a) = (q,b,S) \iff \exists r \in Q \mid \forall c \in \Gamma \ \delta'(p,a) = (r,b,R) \land \delta'(r,c) = (q,c,L)$$

• Per costruzione stessa di M', si ha che:

$$x \in L = L(M) \iff x \in L(M')$$

implicando che $L = L(M) = L(M') \in \mathsf{REC}$

Definizione 43: Multitape TM

Una Multitape TM a k nastri è una TM $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ la cui funzione di transizione è definita come:

$$\delta: Q - \{q_{\text{accept}}, q_{\text{reject}}\} \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}$$

dove il simbolo S indica che il nastro possa anche rimanere **immobile**

Teorema 18: Equivalenza tra TM e Multitape TM

Dato un linguaggio $L \subseteq \Sigma^*$ si ha che:

$$L \in \mathsf{REC} \iff \exists \; \mathsf{Multitape} \; \mathsf{TM} \; M \; \mathsf{t.c} \; L = L(M)$$

In altre parole, le TM e le Multitape TM sono equivalenti tra loro

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathsf{REC}$, sia M la TM tale che L = L(M)
- Poiché una TM è una particolare Multitape TM ad 1 nastro le cui transizioni non rimangono mai immobili, ne segue automaticamente che essa stessa sia la Multitape TM in grado di riconoscere L=L(M)

Seconda implicazione.

- Sia M la Multitape TM a k nastri tale che L = L(M)
- Consideriamo la Stay-put TM S definita come:

S = "Date in input le stringhe $a_1 \ldots a_n, b_1 \ldots b_m, \ldots, k_1 \ldots k_h$ rappresentati gli input dei k nastri:

1. S pone il nastro uguale a

$$\sharp a_1^{\bullet} \dots a_n \sharp b_1^{\bullet} \dots b_m \sharp \dots \sharp k_1^{\bullet} \dots k_h \sharp$$

dove il simbolo # separa i vari k nastri simulati e il marcatore \bullet indica le testine virtuali di ogni nastro

2. Per simulare una mossa di M, S scansiona il nastro dal primo # fino al (k+1)-esimo #, ossia dall'estremità sinistra fino all'estremità destra, determinando i simboli puntati dalle testine virtuali. Successivamente, S esegue un secondo passaggio per aggiornare i nastri simulati in base alla funzione di transizione di M

- 3. Se in qualsiasi momento una delle testine virtuali finisce su un # durante uno spostamento a destra, S scrive un simbolo \square e sposta di una posizione a destra l'intero contenuto del nastro di S successivo al simbolo scritto, per poi riprendere la normale esecuzione"
- Per costruzione stessa di S, si ha che:

$$x \in L(M) \iff x \in L(S)$$

implicando che L = L(M) = L(S)

• Infine, per l'Equivalenza tra TM e Stay-put TM, se segue automaticamente che $L = L(M) = L(S) \in \mathsf{REC}$

Definizione 44: Non deterministic TM

Una Non deterministic TM (NTM) è una TM $N = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ la cui funzione di transizione è definita come:

$$\delta: Q - \{q_{\text{accept}}, q_{\text{reject}}\} \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

Teorema 19: Equivalenza tra TM e NTM

Dato un linguaggio $L \subseteq \Sigma^*$ si ha che:

$$L \in \mathsf{REC} \iff \exists \mathsf{NTM} \ N \ \mathrm{t.c} \ L = L(N)$$

In altre parole, le TM e le NTM sono equivalenti tra loro

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathsf{REC}$, sia M la TM tale che L = L(M)
- Poiché una TM è una particolare NTM le cui transizioni sono tutte deterministiche, ne segue automaticamente che essa stessa sia la NTM in grado di riconoscere L=L(M)

Seconda implicazione.

- Sia $N = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ la NTM tale che L = L(N)
- Consideriamo l'albero di computazione non deterministica di N. Ad ogni nodo di tale albero associamo un indirizzo:
 - Sia b il numero di transizioni uscenti dello stato di N avente il maggior numero di transizioni uscenti
 - Se il nodo è la radice dell'albero, il suo indirizzo è ε

- Se il nodo non è la radice, il suo indirizzo è xa, dove x è l'indirizzo del padre di tale nodo ed $a \in \{1, \ldots, b\}$ è l'identificatore associato a tale nodo tra i figli del suo padre
- \bullet Consideriamo quindi la seguente Multitape TM M a 3 nastri, dove:
 - Il nastro 1 contiene la stringa w in input ad N
 - Il nastro 2 è il nastro su cui viene simulata N con w in input
 - -Il nastro 3 contiene l'indirizzo del nodo dell'albero di computazione fino a cui simulare ${\cal N}$
- M è definita come:
 - M = "Data la stringa w in input:
 - 1. Inizialmente, il nastro 1 di M contiene w, il nastro 3 contiene ε e il nastro 2 è vuoto
 - 2. Ripeti gli step successivi:
 - 3. M copia il nastro 1 sul nastro 2
 - 4. *M* simula *N* tramite il nastro 2 eseguendo un suo ramo di computazione. Prima di ogni passo simulato, *M* consulta il prossimo simbolo sul nastro 3 per poter scegliere su quale ramo proseguire.
 - 5. Se la simulazione accetta la stringa, anche M la accetta.
 - 6. Se invece non rimangono più simboli sul nastro 3 o se la simulazione rifiuta la stringa, sostituisci la stringa sul nastro 3 con l'indirizzo del nodo direttamente a destra del nodo precedente. Se non vi è un nodo a destra, viene scelto il nodo più a sinistra del livello successivo"
- Per costruzione stessa di M, si ha che:

$$x \in L(N) \iff x \in L(M)$$

implicando che L = L(N) = L(M)

• Infine, per l'Equivalenza tra TM e Multitape TM, se segue automaticamente che $L = L(N) = L(M) \in \mathsf{REC}$

Rappresentazione grafica della dimostrazione

Definizione 45: Enumeratore

Un **enumeratore** è una TM $E=(Q,\Sigma,\Gamma,\delta,q_{\rm start},q_{\rm accept},q_{\rm reject})$ connessa ad una "stampante" (ad esempio un nastro secondario), la quale stampa le stringhe di un linguaggio in ordine casuale e con eventuali ripetizioni.

Inoltre, il nastro di input dell'enumeratore è vuoto e diciamo che E enumera L(E)

Teorema 20: Equivalenza tra TM e Enumeratori

Dato un linguaggio $L \subseteq \Sigma^*$ si ha che:

$$L \in \mathsf{REC} \iff \exists \text{ enumeratore } E \text{ t.c } L = L(E)$$

In altre parole, le TM e gli enumeratori sono equivalenti tra loro

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathsf{REC}$, sia M la TM tale che L = L(M). Siano inoltre $w_1, w_2, \ldots \in \Sigma^*$ tutte le stringhe di Σ^*
- Consideriamo l'enumeratore E definito come:

E = "Dato nulla in input:

- 1. Ripeti lo step seguente per $i = 1, 2, 3, \ldots$
 - 2. Ripeti lo step seguente per $j = 1, \ldots, i$:
 - 3. Simula M per i passi con w_j in input. Se la simulazione accetta w_j , stampa w_j

 \bullet Per costruzione stessa di E, si ha che:

$$x \in L(M) \iff x \in L(E)$$

implicando che L = L(M) = L(E)

Seconda implicazione.

- Sia E l'enumeratore tale che L = L(E)
- Consideriamo la TM M definita come:

M = "Data la stringa w in input:

- 1. Simula E. Ogni volta che E stampa una stringa, comparala con w.
- 2. Se w appare almeno una volta nell'output di E, M accetta
- Per costruzione stessa di M, si ha che:

$$x \in L(E) \iff x \in L(M)$$

implicando che $L = L(E) = L(M) \in \mathsf{REC}$

3.1.2 Tesi di Church-Turing

Proposizione 12: Tesi di Church-Turing

Data una funzione f, si ha che:

f computabile da un algoritmo $\iff f$ computabile da una TM

In altre parole, le TM e gli algoritmi sono equivalenti tra loro, implicando che qualsiasi tipo di computazione possa essere svolto tramite una TM. Dunque, la tesi di Church-Turing può essere vista come una formalizzazione del concetto di algoritmo.

Definizione 46: TM universale

Una TM universale è una TM M in grado di simulare qualsiasi altra TM

Definizione 47: Turing-completezza

Definiamo un modello di calcolo come **Turing-completo** se esso è equivalente ad una TM universale

Esempi:

- Il lambda calcolo non tipato è un modello di calcolo Turing-completo
- Tutti i linguaggi di programmazione sono Turing-completi
- Il gioco di carte *Magic: The Gathering* è un modello di calcolo Turing-completo (più info qui: https://arxiv.org/abs/1904.09828)

3.2 Problemi decidibili

Teorema 21: Problema dell'accettazione per DFA

Sia A_{DFA} il linguaggio definito come:

$$A_{\mathsf{DFA}} = \{ \langle D, w \rangle \mid D \; \mathsf{DFA}, w \in L(D) \}$$

Tale linguaggio è **decidibile**, ossia $A_{\mathsf{DFA}} \in \mathsf{DEC}$

Dimostrazione.

• Sia M la TM definita come:

M = "Data in input la codifica $\langle D, w \rangle$, dove D è un DFA e w una stringa:

- 1. Se la codifica in input è errata, M rifiuta
- 2. M simula D con input w
- 3. Se la simulazione termina su uno stato accettante di D, allora M accetta, altrimenti rifiuta."
- Per costruzione stessa di M, si ha che:

$$\langle D, w \rangle \in L(M) \iff w \in L(D) \iff \langle D, w \rangle \in A_{\mathsf{DFA}}$$

implicando che $L(M) = A_{DFA}$

• Inoltre, poiché un DFA termina sempre, anche la simulazione terminerà sempre, implicando che M sia un decisore, concludendo che $A_{\mathsf{DFA}} = L(M) \in \mathsf{DEC}$.

Teorema 22: Problema dell'accettazione per NFA

Sia A_{NFA} il linguaggio definito come:

$$A_{\mathsf{NFA}} = \{ \langle N, w \rangle \mid N \mathsf{NFA}, w \in L(N) \}$$

Tale linguaggio è decidibile, ossia $A_{NFA} \in DEC$

Dimostrazione.

- ullet Sia M_{DFA} il decisore utilizzata nel Problema dell'accettazione per DFA
- Sia M la TM definita come:

M = "Data in input la codifica $\langle N, w \rangle$, dove N è un NFA e w una stringa:

- 1. Se la codifica in input è errata, M rifiuta
- 2. M converte N in un DFA D tale che L(N) = L(D)
- 3. M esegue il programma di M_{DFA} con input $\langle D, w \rangle$
- 4. Se l'esecuzione accetta, allora M accetta, altrimenti rifiuta"
- Per costruzione stessa di M, si ha che:

$$\langle N, w \rangle \in A_{\mathsf{NFA}} \iff \langle D, w \rangle \in A_{\mathsf{DFA}} = L(M_{\mathsf{DFA}}) \iff \langle N, w \rangle \in L(M)$$

implicando che $L(M) = A_{NFA}$

• Inoltre, poiché M_{DFA} è un decisore, dunque la sua esecuzione termina sempre, anche M terminerà sempre, implicando che anche esso sia un decisore, concludendo che $A_{\mathsf{NFA}} = L(M) \in \mathsf{DEC}$.

Teorema 23: Problema dell'accettazione per le esp. reg.

Sia A_{REX} il linguaggio definito come:

$$A_{\mathsf{REX}} = \{ \langle R, w \rangle \mid R \in \mathrm{re}(\Sigma), w \in L(R) \}$$

Tale linguaggio è **decidibile**, ossia $A_{\mathsf{REX}} \in \mathsf{DEC}$

Dimostrazione.

- \bullet Sia M_{NFA} il decisore utilizzata nel Problema dell'accettazione per NFA
- Sia M la TM definita come:

M = "Data in input la codifica $\langle R, w \rangle$, dove $R \in \operatorname{re}(\Sigma)$ e w una stringa:

1. Se la codifica in input è errata, M rifiuta

- 2. M converte R in un NFA N tale che L(R) = L(N)
- 3. M esegue il programma di M_{NFA} con input $\langle N, w \rangle$
- 4. Se l'esecuzione accetta, allora M accetta, altrimenti rifiuta"
- Per costruzione stessa di M, si ha che:

$$\langle R, w \rangle \in A_{\mathsf{REX}} \iff \langle N, w \rangle \in A_{\mathsf{NFA}} = L(M_{\mathsf{NFA}}) \iff \langle R, w \rangle \in L(M)$$

implicando che $L(M) = A_{REX}$

• Inoltre, poiché M_{NFA} è un decisore, dunque la sua esecuzione termina sempre, anche M terminerà sempre, implicando che anche esso sia un decisore, concludendo che $A_{\mathsf{REX}} = L(M) \in \mathsf{DEC}$.

Teorema 24: Problema dell'accettazione per le CFG

Sia A_{CFG} il linguaggio definito come:

$$A_{\mathsf{CFG}} = \{ \langle G, w \rangle \mid G \; \mathsf{CFG}, w \in L(G) \}$$

Tale linguaggio è **decidibile**, ossia $A_{CFG} \in DEC$

Dimostrazione.

• Affermazione: Sia $G = (V, \Sigma, R, S)$ una CFG in CNF. Data $w \in L(G)$, se $|w| \ge 1$, la sua derivazione è composta da esattamente $2 \cdot |w| - 1$ produzioni

Dimostrazione.

Procediamo per induzione sulla lunghezza n di w

Caso base.

– Per n=1, si ha che w=a, dove $a\in \Sigma$. Di conseguenza la sua derivazione è composta solo dalla regola $S\Rightarrow a=w$, ossia da $2\cdot 1-1=1$ produzioni

Ipotesi induttiva forte.

– Assumiamo che per ogni stringa $w \in L(G)$ tale che $1 \leq |w| \leq n$ sia derivabile tramite tramite 2|w|-1 produzioni

Passo induttivo.

- Sia $w \in L(G)$ tale che |w| = n + 1. Essendo G in CNF, ne segue che la derivazione di w sia nella forma $S \Rightarrow AB \stackrel{*}{\Rightarrow} w$.
- Siano quindi $x, y \in \Sigma^*$ tali che w = xy, dove $A \stackrel{*}{\Rightarrow} x$ e $B \stackrel{*}{\Rightarrow} y$.
- Poiché G è in CNF, ne segue che $x,y\neq \varepsilon$, implicando che $1\leq |x|\leq n$ e $1\leq |y|\leq n$

- Siano quindi |x|=k e |y|=n+1-k. Per ipotesi induttiva, x e y sono derivabili tramite esattamente 2k-1 produzioni e 2(n+1-k)-1 produzioni
- Di conseguenza, poiché $S \Rightarrow AB \stackrel{*}{\Rightarrow} xy = w$, ne segue che il numero di produzioni della derivazione di w sia esattamente:

$$1 + 2k - 1 + 2(n+1-k) - 1 = 2n + 2 - 1 = 2(n+1) - 1 = 2|w| - 1$$

• Sia M la TM definita come:

M = "Data in input la codifica $\langle G, w \rangle$, dove G è un CFG e w una stringa:

- 1. Se la codifica in input è errata, M rifiuta
- 2. M converte G in una CFG G' in CNF tale che L(G) = L(G')
- 3. Se $|w| \neq 0$, M lista tutte le derivazioni di G composte da 2n-1 produzioni, dove |w| = n. Altrimenti, M lista tutte le derivazioni composte da 1 produzione
- 4. Se almeno una delle derivazioni genera w, M accetta, altrimenti rifiuta"
- Per costruzione stessa di M, si ha che:

$$\langle G, w \rangle \in L(M) \iff w \in L(G) \iff \langle G, w \rangle \in A_{\mathsf{CFG}}$$

implicando che $L(M) = A_{CFG}$

• Inoltre, poiché la lista utilizzata da M sarà sempre composta da un numero finito di derivazioni, ne segue che M terminerà sempre, concludendo che $A_{\mathsf{CFG}} = L(M) \in \mathsf{DEC}$.

Teorema 25: Ling. decidibili estensione dei ling. acontestuali

Date le classi dei linguaggi CFL e DEC, si ha che:

$$\mathsf{CFL} \subsetneq \mathsf{DEC}$$

Dimostrazione.

- Sia M_{CFG} il decisore utilizzato nel Problema dell'accettazione per le CFG
- Dato $L \in \mathsf{CFL}$, sia G la CFG tale che L = L(G)
- Consideriamo quindi la TM M definita come:

M = "Data la stringa w in input:

- 1. M esegue il programma di M_{CFG} con input $\langle G, w \rangle$
- 2. Se l'esecuzione accetta, M accetta, altrimenti rifiuta"

• Per costruzione stessa di M, si ha che:

$$w \in L(M) \iff \langle G, w \rangle \in A_{\mathsf{CFG}} \iff w \in L(G)$$

implicando che L(M) = L(G). Inoltre, poiché A_{CFG} è un decisore, anche M è un decisore, implicando che $\mathsf{CFG} \subseteq \mathsf{DEC}$

- Consideriamo quindi il linguaggio $L = \{ww \mid w \in \{a,b\}^*\}$. Per dimostrazione precedente (sezione 2.5), sappiamo che $L \notin \mathsf{CFL}$. Tuttavia, possiamo facilmente definire un decisore M (simile a quella vista nella sezione 3.1) per cui $L = L(M) \in \mathsf{DEC}$
- Di conseguenza, concludiamo che:

$$CFL \subseteq DEC$$

Teorema 26: Problema del vuoto per DFA

Sia E_{DFA} il linguaggio definito come:

$$E_{\mathsf{DFA}} = \{ \langle D \rangle \mid D \mathsf{ DFA}, L(D) = \emptyset \}$$

Tale linguaggio è **decidibile**, ossia $A_{\mathsf{DFA}} \in \mathsf{DEC}$

Dimostrazione.

• Sia M la TM definita come:

M = "Data in input la codifica $\langle D \rangle$, dove $D = (Q, \Sigma, \delta, q_0, F)$ è un DFA:

- 1. Se la codifica in input è errata, M rifiuta
- 2. Marca lo stato iniziale di D
- 3. Ripeti lo step seguente finché vengono marcati dei nuovi stati
 - 4. Marca ogni stato avente una transizione entrante da uno stato già marcato
- 4. Se tra gli stati marcati vi è uno stato accettante di D, allora M rifiuta, altrimenti accetta"
- A questo punto, notiamo che:

$$\langle D \rangle \in E_{\mathsf{DFA}} \iff L(D) = \varnothing \iff \nexists w \in L(D) \iff \forall w \in \Sigma^* \ \delta^*(q_0, w) \notin F \iff \langle D \rangle \in L(M)$$

implicando che $L(M) = E_{DFA}$

• Inoltre, poiché il numero di stati marcabili da M è finito, ne segue che M termini sempre, concludendo che $E_{\mathsf{DFA}} = L(M) \in \mathsf{DEC}$

Teorema 27: Problema del vuoto per CFG

Sia E_{CFG} il linguaggio definito come:

$$E_{\mathsf{CFG}} = \{ \langle G \rangle \mid G \; \mathsf{CFG}, L(G) = \emptyset \}$$

Tale linguaggio è **decidibile**, ossia $A_{CFG} \in DEC$

Dimostrazione.

• Sia M la TM definita come:

M = "Data in input la codifica $\langle G \rangle$, dove $G = (V, \Sigma, R, S)$ è un DFA:

- 1. Se la codifica in input è errata, M rifiuta
- 2. Marca tutti i terminali in Σ
- 3. Ripeti lo step seguente finché vengono marcate delle nuove variabili
 - 4. Marca ogni variabile $A \in V$ per cui in R esiste una regola $A \to u_1 \dots u_k$ tale che u_1, \dots, u_k sono variabili o terminali già marcati
- 4. Se la variabile S è marcata, M rifiuta, altrimenti accetta."
- A questo punto, notiamo che:

$$\langle G \rangle \in E_{\mathsf{CFG}} \iff L(G) = \varnothing \iff \nexists w \in L(D) \iff \forall w \in \Sigma^* \ S \not \Rrightarrow w \iff \langle G \rangle \in L(M)$$

implicando che $L(M) = E_{CFG}$

• Inoltre, poiché il numero di variabili marcabili da M è finito, ne segue che M termini sempre, concludendo che $E_{\mathsf{CFG}} = L(M) \in \mathsf{DEC}$

Teorema 28: Problema dell'equivalenza tra DFA

Sia EQ_{DFA} il linguaggio definito come:

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle \mid A, B \mathsf{DFA}, L(A) = L(B) \}$$

Tale linguaggio è **decidibile**, ossia $EQ_{DFA} \in DEC$

Dimostrazione.

• Consideriamo la differenza simmetrica tra L(A) e L(B), definita come:

$$L(A) \ \Delta \ L(B) := (L(A) \cap \overline{L(B)}) \cup (L(B) \cap \overline{L(A)})$$

ossia tutti gli elementi presenti in L(A) o L(B), ma non in $L(A) \cap L(B)$

• Poiché le operazioni di unione, intersezione e complemento sono chiuse in REG (Teoremi 3, 4 e 5), ne segue automaticamente che:

$$L(A), L(B) \in \mathsf{REG} \implies L(A) \Delta L(B) \in \mathsf{REG}$$

dunque $\exists C \text{ DFA} \mid L(C) = L(A) \Delta L(B)$

• Inoltre, mostriamo che:

$$L(A) \Delta L(B) = \varnothing \iff$$

$$(L(A) \cap \overline{L(B)}) \cup (L(B) \cap \overline{L(A)}) = \varnothing \iff$$

$$\nexists x \in \Sigma^* \mid (x \in L(A) \land x \notin L(B)) \lor (x \in L(B) \land x \notin L(A)) \iff$$

$$\forall x \in \Sigma^* \ (x \in L(A) \iff x \in L(B)) \iff$$

$$L(A) = L(B)$$

- ullet Sia M_E il decisore utilizzato nel Problema del vuoto per DFA
- Sia M la TM definita come:

M = "Data in input la codifica $\langle A, B \rangle$, dove A e B sono due DFA:

- 1. Se la codifica in input è errata, M rifiutante
- 2. M costruisce il DFA C tale che $L(C) = L(A) \Delta L(B)$ tramite le procedure dei teoremi 2, 3, 4 e 5
- 3. M esegue il programma di M_E con input $\langle C \rangle$
- 4. Se l'esecuzione accetta, M accetta, altrimenti rifiuta."
- A questo punto, notiamo che:

$$\langle A,B\rangle \in EQ_{\mathsf{DFA}} \iff L(A) = L(B) \iff L(C) = L(A) \ \Delta \ L(B) = \varnothing \iff \langle C\rangle \in L(M_E) \iff \langle A,B\rangle \in L(M)$$

implicando che $L(M) = EQ_{DFA}$

3.3 Argomento diagonale di Cantor

Teorema 29: Insiemi con stessa cardinalità

Dati due insiemi $A \in B$ si ha che:

$$\exists f: A \to B \text{ biettiva} \implies |A| = |B|$$

(dimostrazione omessa)

Definizione 48: Insiemi infiniti numerabili

Un insieme A viene detto **numerabile** se $|A| < +\infty$ o se $|A| = |\mathbb{N}|$

Esempio:

• Dato l'insieme $2\mathbb{N} = \{2n \mid n \in \mathbb{N}\}$, consideriamo la seguente funzione:

$$f: \mathbb{N} \to 2\mathbb{N}: n \mapsto 2n$$

• Tale funzione risulta essere sia iniettiva:

$$f(n) = f(m) \implies 2n = 2m \implies n = m$$

sia suriettiva:

$$\forall 2n \in 2\mathbb{N} \ \exists n \in \mathbb{N} \mid f(n) = 2n$$

• Di conseguenza, poiché f è biettiva, concludiamo che $|\mathbb{N}| = |2\mathbb{N}|$ nonostante $2\mathbb{N} \subseteq \mathbb{N}$

Metodo 1: Argomento diagonale di Cantor

L'argomento diagonale di Cantor è una tecnica dimostrativa atta a dimostrare l'esistenza o inesistenza di una funzione biettiva tra due insiemi A e B disponendo i loro elementi in forma tabellare, per poi concludere la tesi.

Teorema 30: Razionali positivi numerabili

L'insieme $\mathbb{Q}_{\geq 0}$ dei numeri razionali non negativi è **numerabile**

Dimostrazione.

- Siano $\mathbb{N}_{>0}$ e $\mathbb{Q}_{>0}$ gli insiemi dei numeri naturali e razionali positivi
- ullet Consideriamo la matrice A avente righe e colonne infinite le cui entrate sono definite come:

$$a_{i,j} = \frac{i}{j}$$

dove $i, j \in \mathbb{N}$

• Costruiamo una lista di elementi di tale matrice procedendo diagonale per diagonale, partendo dalla diagonale composta dall'entrata $a_{1,1}$ e saltando tutti gli elementi che sono già stati inseriti nella lista (ad esempio, poiché $a_{1,1} = \frac{1}{1} = \frac{2}{2} = a_{2,2}$, l'entrata $a_{2,2}$ non verrà inserita nella lista):

Rappresentazione grafica del processo di creazione della lista

- Procedendo all'infinito, otterremo la lista $\frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{3}{1}, \frac{1}{3}, \dots$ contenente tutti gli elementi di $Q_{>0}$, senza alcuna ripetizione. Inoltre, aggiungiamo all'inizio di tale lista il numero 0.
- A questo punto, consideriamo la funzione $f: \mathbb{N} \to \mathbb{Q}_{\geq 0}$ definita come:

$$f(n) = n$$
-esimo elemento della lista

- Poiché la lista contiene tutti gli elementi di $Q_{>0}$ senza alcuna ripetizione, ogni nesimo elemento della lista sarà mappato esclusivamente dal numero $n \in \mathbb{N}$.
- Di conseguenza, otteniamo che f sia biettiva, concludendo che $|\mathbb{N}| = |\mathbb{Q}_{\geq 0}|$ e quindi che $\mathbb{Q}_{\geq 0}$ sia numerabile

Teorema 31: Reali non numerabili

L'insieme \mathbb{R} dei numeri reali **non è numerabile**

Dimostrazione.

- Dato $[0,1] \subseteq \mathbb{R}$, supponiamo per assurdo che $\exists f : \mathbb{N} \to [0,1]$ biettiva
- Consideriamo il numero x definito come:

 $\forall i \geq 1$ i-esima cifra decimale di $x \neq i$ -esima cifra decimale di f(i)

- Per definizione stessa di x, ne segue che $\nexists n \in \mathbb{N} \mid f(n) = x$, implicando che f non sia suriettiva, contraddicendo l'ipotesi per cui essa sia biettiva
- Di conseguenza, ne segue necessariamente che $\nexists f: \mathbb{N} \to [0,1]$ biettiva, implicando che $|\mathbb{N}| < |[0,1]| \le |\mathbb{R}|$ e dunque che \mathbb{R} non sia numerabile

Rappresentazione grafica della dimostrazione

Teorema 32: Sequenze binarie infinite non numerabili

L'insieme \mathcal{B} di tutte le stringhe binarie infinite **non è numerabile**

Dimostrazione.

- Supponiamo per assurdo che $\exists f : \mathbb{N} \to \mathcal{B}$ biettiva
- Consideriamo la sequenza binaria x definita come:

 $\forall i \geq 1$ i-esima cifra di $x \neq i$ -esima cifra di f(i)

- Per definizione stessa di x, ne segue che $\nexists n \in \mathbb{N} \mid f(n) = x$, implicando che f non sia suriettiva, contraddicendo l'ipotesi per cui essa sia biettiva
- Di conseguenza, ne segue necessariamente che $\nexists f: \mathbb{N} \to \mathbb{B}$ biettiva, implicando che $|\mathbb{N}| < |\mathcal{B}|$ e dunque che \mathcal{B} non sia numerabile

Rappresentazione grafica della dimostrazione

3.3.1 Esistenza di linguaggi non riconoscibili

Teorema 33: Esistenza di linguaggi non riconoscibili

Dato un alfabeto Σ , si ha che:

$$\exists L \subseteq \Sigma^* \mid L \notin \mathsf{REC}$$

Dimostrazione.

• Sia $<_{\ell}$ la relazione definita su Σ^* tale che:

$$\forall x,y \in \Sigma^* \ x <_{\ell} y \iff x \text{ precede } y \text{ lessico-graficamente}$$

• Sia inoltre \prec la relazione definita su Σ^* tale che:

$$\forall x, y \in \Sigma^* \ x \prec y \iff (|x| < |y|) \lor (|x| = |y| \land x <_{\ell} y)$$

ossia che ordina le stringhe di Σ^* in base alla loro lunghezza e, a parità di lunghezza, in base al loro ordine lessico-grafico

Dalla definizione stessa di \prec , risulta evidente che tale relazione sia un ordine totale.

• Sia quindi $f: \mathbb{N} \to \Sigma^*$ la funzione definita come:

$$f(i) = i$$
-esima stringa di Σ^* secondo \prec

Tale funzione risulta intuitivamente essere biettiva, implicando che $|\mathbb{N}| = |\Sigma^*|$, dunque che Σ^* sia numerabile

• Consideriamo quindi il linguaggio $\mathcal{M} \subseteq \Sigma^*$ definito come:

$$\mathcal{M} = \{ \langle M \rangle \mid M \text{ è una TM} \}$$

Poiché $\mathcal{M}\subseteq\Sigma^*$ e Σ^* è numerabile, ne segue automaticamente che anche \mathcal{M} sia numerabile

- Consideriamo inoltre l'insieme $\mathcal{L} = \mathcal{P}(\Sigma^*)$, corrispondente alla classe di tutti i linguaggi definiti su Σ
- Dato un linguaggio $L \in \mathcal{L}$, definiamo la sequenza binaria $\chi_L = b_1 b_2 \dots$ come sequenza caratteristica di L, definita come:

$$b_i = \begin{cases} 1 & \text{se } s_i \in L \\ 0 & \text{se } s_i \notin L \end{cases}$$

dove s_1, s_2, \ldots sono tutte le stringhe di Σ^*

• Consideriamo quindi la seguente funzione:

$$g: \mathcal{L} \to \mathcal{B}: L \mapsto \chi_L$$

Tale funzione risulta intuitivamente essere biettiva, implicando che $|\mathcal{L}| = |\mathcal{B}|$. Di conseguenza, poiché \mathcal{B} non è numerabile, ne segue che anche \mathcal{L} non sia numerabile

• A questo punto, poiché \mathcal{M} è numerabile e \mathcal{L} no, concludiamo che la seguente funzione:

$$h: \mathcal{M} \to \mathcal{L}: M \mapsto L(M)$$

non sia biettiva, implicando che $\exists L \in \mathcal{L} \mid \not\exists M \in \mathcal{M} \text{ t.c } L = L(M)$

3.4 Problemi indecidibili

Teorema 34: Problema dell'accettazione per le TM

Sia A_{TM} il linguaggio definito come:

$$A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \; \mathsf{TM}, w \in L(M) \}$$

Tale linguaggio è riconoscibile ma indecidibile, ossia $A_{\mathsf{TM}} \in \mathsf{REC} - \mathsf{DEC}$

Dimostrazione riconoscibilità.

• Sia *U* una TM universale a 2 nastri definita come:

U = "Data in input la codifica $\langle M, w \rangle$, dove $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ è una TM e w una stringa:

- 1. Se la codifica in input è errata, M rifiuta
- 2. M scrive $\langle M, w \rangle$ sul nastro 1
- 3. M scrive $\langle q_{\text{start}}, w \rangle$ sul nastro 2

- 4. Ripeti lo step seguente:
 - 5. Sia $\langle (x,q,y) \rangle$ la stringa attuale sul nastro 2, dove $x,y \in \Sigma^*$. M scansiona il nastro 1 in cerca di $\langle \delta \rangle$. Una volta trovato, M cerca una stringa $\langle (q,a), (r,b,Z) \rangle$, dove $\delta(q,a) = (r,b,Z)$ e $Z \in \{L,R\}$
 - 6. Se $a \neq y[i]$, M cerca la prossima regola valida
 - 7. Se a = y[i], M scrive sul nastro due la configurazione prodotta dalla configurazione xqy passando per la transizione $\delta(q, a) = (r, b, Z)$
 - 8. Se nel nastro 2 è scritto $\langle q_{\text{accept}} \rangle$, M accetta. Se è scritto $\langle q_{\text{reject}} \rangle$, M rifiuta"
- \bullet Per costruzione stessa di U, si ha che:

$$\langle M, w \rangle \in L(U) \iff w \in L(M) \iff \langle M, w \rangle \in A_{\mathsf{TM}}$$

implicando che $A_{\mathsf{TM}} = L(U) \in \mathsf{REC}$.

Nota: poiché M potrebbe andare in loop, anche U può andare in loop, implicando che essa non sia un decisore.

Dimostrazione indecidibilità.

- Supponiamo per assurdo che $A_{\mathsf{TM}} \in \mathsf{DEC}$. Sia quindi H il decisore tale che $L(H) = A_{\mathsf{TM}}$
- Sia D la TM definita come:

D = "Data in input la codifica $\langle M, w \rangle$, dove M è una TM e w una stringa:

- 1. Esegui il programma di H con input $\langle M, w \rangle$
- 2. Se l'esecuzione accetta, D rifiuta, altrimenti accetta
- Per costruzione stessa di D, si ha che:

$$\langle M, w \rangle \in L(D) \iff \langle M, w \rangle \notin L(H) = A_{\mathsf{TM}} \iff w \notin L(M)$$

Inoltre, poiché H è un decisore, ne segue che anche D sia un decisore, implicando che essa possa solo accettare o rifiutare, senza altre opzioni

• Consideriamo quindi la codifica $\langle D, \langle D \rangle \rangle$. Notiamo che:

$$\langle D, \langle D \rangle \rangle \in L(D) \iff \langle D, \langle D \rangle \rangle \notin L(H) = A_{\mathsf{TM}}$$
 $\iff \langle D \rangle \notin L(D) \iff \langle D, \langle D \rangle \rangle \notin L(D)$

ottenendo quindi una contrazione in quanto D possa solo accettare o rifiutare

 $\bullet\,$ Di conseguenza, ne segue necessariamente che $A_{\mathsf{TM}}\notin\mathsf{DEC}$

Corollario 5: Gerarchia dei linguaggi

Dato un alfabeto Σ , si ha che:

$$\mathsf{REG} \subsetneq \mathsf{CFL} \subsetneq \mathsf{DEC} \subsetneq \mathsf{REC} \subsetneq \mathcal{P}(\Sigma^*)$$

(segue dai teoremi 9, 25, 33 e 34)

Definizione 49: Classe dei linguaggi coTuring-riconoscibili

Dato un alfabeto Σ , definiamo come classe dei linguaggi co Turing-riconoscibili di Σ il seguente insieme:

$$\mathsf{COREC} = \{ L \subseteq \Sigma^* \mid \overline{L} \in \mathsf{REC} \}$$

Nota: $COREC \neq \mathcal{P}(\Sigma^*) - REC$

Teorema 35: Decidibilità, riconoscibilità e co-riconoscibilità

Un linguaggio L è decidibile se e solo se è riconoscibile e co-riconoscibile.

In altre parole, si ha che:

$$\mathsf{DEC} = \mathsf{REC} \cap \mathsf{COREC}$$

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathsf{DEC}$, sia M il decisore tale che L = L(M)
- Sia \overline{M} la TM definita come:

 \overline{M} = "Data in input la stringa w:

- 1. Esegui il programma di M con input w
- 2. Se l'esecuzione accetta, \overline{M} rifiuta, altrimenti accetta
- Per costruzione stessa di \overline{M} , si ha che:

$$w \in L(\overline{M}) \iff w \notin L(M)$$

implicando che $\overline{L}=\overline{L(M)}=L(\overline{M})\in\mathsf{REC}$

• Dunque, poiché $L \in \mathsf{DEC} \subseteq \mathsf{REC}$ e $\overline{L} \in \mathsf{REC}$, ne segue che $L \in \mathsf{REC} \cap \mathsf{COREC}$

Seconda implicazione.

- Dato $L \in \mathsf{REC} \cap \mathsf{COREC}$, siano $M \in \overline{M}$ le TM tali che L = L(M) e $\overline{L} = L(\overline{M})$
- Sia D la TM definita come:

D = "Data in input la stringa w:

- 1. Esegui in parallelo, ossia alternando ad ogni istruzione le loro esecuzioni, i programmi di M e \overline{M} con input w
- 2. Se l'esecuzione di Maccetta, Daccetta. Se l'esecuzione di \overline{M} accetta, Drifiuta
- Per costruzione stessa di D, si ha che:

$$w \in L(D) \iff w \in L(M)$$

implicando che L(D) = L(M) = L

• Inoltre, per definizione stessa si ha che:

$$w \in L = L(M) \iff w \notin \overline{L} = L(\overline{M})$$

Di conseguenza, una delle due esecuzioni parallele accetterà qualsiasi stringa in input, implicando che D non vada mai in loop e quindi che $L=L(D)\in \mathsf{DEC}$

Corollario 6

Dato $L \subseteq \Sigma^*$, si ha che:

$$L \in \mathsf{REC} - \mathsf{DEC} \implies \overline{L} \notin \mathsf{REC}$$

(segue dal teorema 35)

Esempio:

 $\bullet \,$ Il linguaggio $\overline{A_{\mathsf{TM}}}$ è irriconoscibile

3.5 Riducibilità

Metodo 2: Riducibilità

Dati due problemi A e B, definiamo come **riduzione** il metodo dimostrativo tramite cui sapendo la soluzione di B è possibile risolvere A.

Teorema 36: Problema della terminazione per le TM

Sia $HALT_{\mathsf{TM}}$ il linguaggio definito come:

$$HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \; \mathsf{TM} \; e \; M(w) \; \mathrm{termina} \}$$

Tale linguaggio è **indecidibile**, ossia $HALT_{\mathsf{TM}} \notin \mathsf{DEC}$

Dimostrazione.

- Supponiamo per assurdo che $HALT_{\mathsf{TM}} \in \mathsf{DEC}$. Sia quindi H il decisore tale che $L(H) = HALT_{\mathsf{TM}}$
- Sia D la TM definita come:
 - D = "Data in input la stringa $\langle M, w \rangle$:
 - 1. Se la codifica in input è errata, M rifiuta
 - 2. Esegui il programma di H con input $\langle M, w \rangle$. Se l'esecuzione rifiuta, allora D rifiuta
 - 3. Altrimenti, D simula M con input w.
 - 4. Se la simulazione accetta, D accetta. Altrimenti, D rifiuta
- Per costruzione stessa di D, si ha che:

$$\langle M, w \rangle \in L(D) \iff \langle M, w \rangle \notin L(H) \land w \in L(M) \iff \langle M, w \rangle \in A_{\mathsf{TM}}$$

implicando che $L(D) = A_{\mathsf{TM}}$.

- A questo punto, notiamo che se $\langle M, w \rangle \notin L(H)$, allora la simulazione terminerà sempre. Di conseguenza, poiché H è un decisore e la simulazione termina sempre, ne segue che anche D sia un decisore, implicando che $A_{\mathsf{TM}} = L(D) \in \mathsf{DEC}$. Tuttavia, ciò risulta assurdo in quanto sappiamo che $A_{\mathsf{TM}} \notin \mathsf{DEC}$ (Problema dell'accettazione per le TM)
- Di conseguenza, ne segue necessariamente che $HALT_{\mathsf{TM}} \notin \mathsf{DEC}$

Teorema 37: Problema del vuoto per le TM

Sia E_{TM} il linguaggio definito come:

$$E_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \; \mathsf{TM}, L(M) = \emptyset \}$$

Tale linguaggio è **indecidibile**, ossia $E_{\mathsf{TM}} \notin \mathsf{DEC}$

Dimostrazione.

- Supponiamo per assurdo che $E_{\mathsf{TM}} \in \mathsf{DEC}$. Sia quindi E il decisore tale che $L(E) = E_{\mathsf{TM}}$
- Sia D la TM definita come:

D ="Data in input la stringa $\langle M, w \rangle$:

- 1. Se la codifica in input è errata, M rifiuta
- 2. Costruisci una TM M' definita come:

M' = "Data in input la stringa x:

- (a) Se $x \neq w$, allora rifiuta
- (b) Se x = w, esegui il programma di M con input x
- (c) Se l'esecuzione accetta, M' accetta. Altrimenti, rifiuta
- 3. Esegui il programma di E con input $\langle M' \rangle$.
- 4. Se l'esecuzione accetta, D rifiuta. Altrimenti, D accetta
- Per costruzione stessa di D, si ha che:

$$\langle M, w \rangle \in L(D) \iff \langle M' \rangle \in L(E) \iff L(M') = \{w\}$$

$$\iff w \in L(M) \iff \langle M, w \rangle \in A_{\mathsf{TM}}$$

implicando che $L(D) = A_{\mathsf{TM}}$. Tuttavia, poiché E è un decisore, anche D risulta esserlo, implicando che $A_{\mathsf{TM}} = L(D) \in \mathsf{DEC}$. Tuttavia, ciò risulta assurdo in quanto sappiamo che $A_{\mathsf{TM}} \notin \mathsf{DEC}$ (Problema dell'accettazione per le TM)

 $\bullet\,$ Di conseguenza, ne segue necessariamente che $E_{\mathsf{TM}} \notin \mathsf{DEC}$

Teorema 38: Problema della regolarità per le TM

Sia REG_{TM} il linguaggio definito come:

$$REG_{\mathsf{TM}} = \{ \langle M \rangle \mid M \; \mathsf{TM}, L(M) \in \mathsf{REG} \}$$

Tale linguaggio è indecidibile, ossia $REG_{TM} \notin DEC$

Dimostrazione.

- Supponiamo per assurdo che $REG_{\mathsf{TM}} \in \mathsf{DEC}$. Sia quindi R il decisore tale che $L(R) = REG_{\mathsf{TM}}$
- Sia D la TM definita come:
 - D = "Data in input la stringa $\langle M \rangle$:
 - 1. Se la codifica in input è errata, M rifiuta
 - 2. Costruisci una TM M' definita come:
 - M' = "Data in input la stringa x:
 - (a) Se $x \in \{0^n 1^n \mid n \in \mathbb{N}\}$, allora accetta.
 - (b) Altrimenti, simula M con input w. Se la simulazione accetta, M' accetta.
 - 3. Esegui il programma di R con input $\langle M' \rangle$.
 - 4. Se l'esecuzione accetta, D accetta. Altrimenti, D rifiuta
- Supponiamo che $w \in L(M)$. In tal caso, M' accetterà qualsiasi stringa x, implicando che $L(M') = \Sigma^* \in \mathsf{REG}$
- Supponiamo ora che $w \notin L(M)$. In tal caso, abbiamo che:
 - Se $x \in \{0^n 1^n \mid n \in \mathbb{N}\}$, allora $x \in L(M')$
 - Se $x \notin \{0^n 1^n \mid n \in \mathbb{N}\}$, allora $x \notin L(M')$ poiché M' andrà in loop

di conseguenza, otteniamo che $L(M') = \{0^n 1^n \mid n \in \mathbb{N}\} \notin \mathsf{REG}$ (sezione 1.6)

- Di conseguenza, concludiamo che $w \in L(M) \iff L(M') \in \mathsf{REG}$
- A questo punto, per costruzione stessa di D, si ha che:

$$\langle M, w \rangle \in L(D) \iff \langle M' \rangle \in L(R) \iff L(M') \in \mathsf{REG}$$

$$\iff w \in L(M) \iff \langle M, w \rangle \in A_\mathsf{TM}$$

implicando che $L(D) = A_{\mathsf{TM}}$. Tuttavia, poiché R è un decisore, anche D risulta esserlo, implicando che $A_{\mathsf{TM}} = L(D) \in \mathsf{DEC}$. Tuttavia, ciò risulta assurdo in quanto sappiamo che $A_{\mathsf{TM}} \notin \mathsf{DEC}$ (Problema dell'accettazione per le TM)

• Di conseguenza, ne segue necessariamente che $REG_{\mathsf{TM}} \notin \mathsf{DEC}$

Teorema 39: Problema dell'equivalenza per le TM

Sia EQ_{TM} il linguaggio definito come:

$$EQ_{\mathsf{TM}} = \{ \langle M, M' \rangle \mid M, M' \mathsf{TM}, L(M) = L(M') \}$$

Tale linguaggio è **indecidibile**, ossia $EQ_{\mathsf{TM}} \notin \mathsf{DEC}$

Dimostrazione.

- Supponiamo per assurdo che $EQ_{\mathsf{TM}} \in \mathsf{DEC}$. Sia quindi E il decisore tale che $L(E) = EQ_{\mathsf{TM}}$
- Sia D la TM definita come:

D = "Data in input la stringa $\langle M, M' \rangle$:

- 1. Se la codifica in input è errata, M rifiuta
- 2. Costruisci una TM M' definita come:

M' = "Data in input la stringa x:

- (a) M' rifiuta
- 3. Esegui il programma di E con input $\langle M, M' \rangle$.
- 4. Se l'esecuzione accetta, D accetta. Altrimenti, D rifiuta
- Per costruzione stessa di D, si ha che:

$$\langle M, w \rangle \in L(D) \iff \langle M, M' \rangle \in L(R) \iff L(M) = L(M') = \varnothing \iff \langle M \rangle \in E_{\mathsf{TM}}$$

implicando che $L(D) = E_{\mathsf{TM}}$. Tuttavia, poiché E è un decisore, anche D risulta esserlo, implicando che $E_{\mathsf{TM}} = L(D) \in \mathsf{DEC}$. Tuttavia, ciò risulta assurdo in quanto sappiamo che $E_{\mathsf{TM}} \notin \mathsf{DEC}$ (Problema del vuoto per le TM)

 $\bullet\,$ Di conseguenza, ne segue necessariamente che $EQ_{\mathsf{TM}}\notin\mathsf{DEC}$

3.5.1Riducibilità tramite mappatura

Definizione 50: Funzione calcolabile

Data $f: \Sigma^* \to \Sigma^*$, definiamo f come calcolabile se esiste una TM M tale che:

 $\forall w \in \Sigma^* \ M(w)$ termina con solo f(w) sul nastro

Definizione 51: Riducibilità tramite mappatura

Dati due linguaggi A e B, diciamo che A è riducibile a B tramite mappatura, indicato come $A \leq_m B$, se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$, detta **riduzione** $\mathbf{da} \ A \ \mathbf{a} \ B$, tale che:

$$w \in A \iff f(w) \in B$$

Teorema 40: Decidibilità tramite riduzione

Dati due linguaggi $A \in B$ tali che $A \leq_m B$, si ha che:

$$B \in \mathsf{DEC} \implies A \in \mathsf{DEC}$$

Dimostrazione.

- Dato $B \in \mathsf{DEC}$, sia D_B il decisore tale che $L(D_B) = B$
- Sia D_A la TM definita come:

 $D_A =$ "Data in input la stringa w:

- 1. Calcola f(w)
- 2. Esegui il programma di D_B con input f(w).
- 3. Se l'esecuzione accetta, D accetta. Altrimenti, D rifiuta
- Per costruzione stessa di D_A , si ha che:

$$w \in L(D_A) \iff f(w) \in L(D_B) = B \iff w \in A$$

implicando che $L(D_A) = A$. Inoltre, poiché D_B è un decisore e poiché f è calcolabile, ne segue che anche D_A sia un decisore e quindi che $A = L(D_A) \in \mathsf{DEC}$

Corollario 7: Indecidibilità tramite riduzione

Dati due linguaggi A e B tali che $A \leq_m B$, si ha che:

$$A \notin \mathsf{DEC} \implies B \notin \mathsf{DEC}$$

Esempi:

- 1. Sia $f: \Sigma^* \to \Sigma^*$ la funzione calcolata dalla seguente TM F definita come:
 - F = "Data in input la stringa $\langle M, w \rangle$:
 - 1. Costruisci una TM M' definita come:
 - M' = "Data in input la stringa x:
 - i. Esegui il programma di M con input x.
 - ii. Se l'esecuzione accetta, M' accetta. Altrimenti, M' muove la testina a destra per sempre (va in loop)
 - 2. Restituisci in output la stringa $\langle M', w \rangle$
 - Notiamo che:

$$\langle M, w \rangle \in A_{\mathsf{TM}} \iff w \in L(M) \implies w \in L(M')$$

$$\implies f(\langle M, w \rangle) = \langle M', w \rangle \in HALT_{\mathsf{TM}}$$

e inoltre che:

$$\langle M, w \rangle \notin A_{\mathsf{TM}} \iff w \notin L(M) \implies M'(w) \text{ va in loop}$$

$$\implies f(\langle M, w \rangle) = \langle M', w \rangle \notin HALT_{\mathsf{TM}}$$

• Di conseguenza, poiché:

$$\langle M, w \rangle \in A_{\mathsf{TM}} \iff f(\langle M, w \rangle) \in HALT_{\mathsf{TM}}$$

ne segue che $A_{\mathsf{TM}} \leq_m HALT_{\mathsf{TM}}$

- Infine, poiché $A_{\mathsf{TM}} \notin \mathsf{DEC}$, concludiamo che $HALT_{\mathsf{TM}} \notin \mathsf{DEC}$
- 2. Sia $f: \Sigma^* \to \Sigma^*$ la funzione calcolata dalla seguente TM F definita come:

F = "Data in input la stringa $\langle M \rangle$:

1. Costruisci una TM M' definita come:

M' = "Data in input la stringa x:

- i. Rifiuta
- 2. Restituisci in output la stringa $\langle M, M' \rangle$
- Notiamo che:

$$\langle M \rangle \in E_{\mathsf{TM}} \iff L(M) = \varnothing = L(M') \iff f(\langle M \rangle) = \langle M, M' \rangle \in EQ_{\mathsf{TM}}$$

Di conseguenza, poiché:

$$\langle M \rangle \in E_{\mathsf{TM}} \iff f(\langle M \rangle) \in EQ_{\mathsf{TM}}$$

ne segue che $E_{\mathsf{TM}} \leq_m EQ_{\mathsf{TM}}$

• Infine, poiché $E_{\mathsf{TM}} \notin \mathsf{DEC}$, concludiamo che $EQ_{\mathsf{TM}} \notin \mathsf{DEC}$

Teorema 41: Riconoscibilità tramite riduzione

Dati due linguaggi A e B tali che $A \leq_m B$, si ha che:

$$B \in \mathsf{REC} \implies A \in \mathsf{REC}$$

(analoga al teorema 40)

Corollario 8: Irriconoscibilità tramite riduzione

Dati due linguaggi A e B tali che $A \leq_m B$, si ha che:

$$A \notin \mathsf{REC} \implies B \notin \mathsf{REC}$$

Teorema 42: Riducibilità complementare

Dati due linguaggi $A \in B$, si ha che:

$$A \leq_m B \iff \overline{A} \leq_m \overline{B}$$

Dimostrazione.

• Data la riduzione f tale che $A \leq_m B$, si ha che:

$$w \in \overline{A} \iff w \notin A \iff f(w) \notin B \iff f(w) \in \overline{B}$$

dunque f è anche la riduzione da \overline{A} ad \overline{B} , implicando che $\overline{A} \leq_m \overline{B}$

Teorema 43: EQ_{TM} non riconoscibile e non co-riconoscibile

Il linguaggio EQ_{TM} non è né riconoscibile né co-riconoscibile

Dimostrazione.

• Sia $f: \Sigma^* \to \Sigma^*$ la funzione calcolata dalla seguente TM F definita come:

F ="Data in input la stringa $\langle M, w \rangle$:

1. Costruisci una TM M_1 definita come:

 $M_1 =$ "Data in input la stringa x:

- (a) Rifiuta
- 2. Costruisci una TM M' definita come:

 $M_2 =$ "Data in input la stringa x:

- (a) Esegui il programma di M con input w. Se l'esecuzione accetta, M' accetta. Altrimenti, rifiuta.
- 3. Restituisci in output la stringa $\langle M_1, M_2 \rangle$
- Notiamo che:

$$\langle M, w \rangle \in A_{\mathsf{TM}} \implies L(M_1) = \varnothing \wedge L(M_2) = \Sigma^* \implies L(M_1) \neq L(M_2) \iff \langle M_1, M_2 \rangle \notin EQ_{\mathsf{TM}} \iff e \text{ inoltre che:}$$

$$\langle M,w\rangle\notin A_{\mathsf{TM}} \implies L(M_1) = \varnothing \wedge L(M_2) = \varnothing \implies L(M_1) = L(M_2) \iff \langle M_1,M_2\rangle \in EQ_{\mathsf{TM}} \iff \langle M_$$

• Di conseguenza, poiché:

$$\langle M, w \rangle \in A_{\mathsf{TM}} \iff f(\langle M, w \rangle) \in \overline{EQ_{\mathsf{TM}}}$$

ne segue che $A_{\mathsf{TM}} \leq_m \overline{EQ_{\mathsf{TM}}}$