Численное исследование базовых разностных схем.

Для построения приближенного решения задачи

$$y'(x) + Ay(x) = 0$$
, $y(0) = 1$, $x \in [0, 1]$

с известным точным решением $y(x) = e^{-Ax}$ рассматриваются следующие схемы:

$$1)\frac{y_{k+1} - y_k}{h} + Ay_k = 0, \ y_0 = 1.$$

1)
$$\frac{h}{h} + Ay_k = 0, \ y_0 = 1.$$

2) $\frac{y_{k+1} - y_k}{h} + Ay_{k+1} = 0, \ y_0 = 1.$

3)
$$\frac{y_{k+1} - y_k}{h} + A \frac{y_{k+1} + y_k}{2} = 0, \ y_0 = 1$$

2)
$$\frac{h}{h} + Ay_{k+1} = 0, \ y_0 = 1.$$
3) $\frac{y_{k+1} - y_k}{h} + A\frac{y_{k+1} + y_k}{2} = 0, \ y_0 = 1.$
4) $\frac{y_{k+1} - y_{k-1}}{2h} + Ay_k = 0, \ y_0 = 1, \ y_1 = 1 - Ah.$

$$h = 1, y_1 = 1, y_1 = 1, h.$$

$$6) \frac{-0.5y_{k+2} + 2y_{k+1} - 1.5y_k}{h} + Ay_k = 0, y_0 = 1, y_1 = 1 - Ah.$$
Найти порядок аппроксимации, исследовать α -устойчивость предложенных схем.

Реализовать указанные схемы и заполнить таблицу:

$N_{\overline{0}}$	E_1	E_2	E_3	E_6	m	A

Здесь

в первом столбце указывается номер схемы;

 $E_n = \max_{x_k} |y(x_k) - y_k|, \ y_k$ — решение соответствующей схемы при $h = 10^{-n};$ m — порядок сходимости, т.е. $E_n \sim O(h^m)$;

параметр задачи A = 1, 10, 1000.