"曹艺舰的迷你语音学实验室"使用说明

中国语言文学系 曹艺舰

2001210879 cyjian@pku.edu.cn

"曹艺舰的迷你语音学实验室"是一个简单的语音分析程序,此程序能完成一些基础的语音学相关的分析工作,如播放语音,切分语音,显示基频、功率谱和共振峰等。

本项目为孔江平老师《语音分析与编程》课期末作业,使用 Matlab R2016b 进行开发,由学生在孔江平老师和梁昌维助教的指导下完成。

一、使用说明

打开 main.m 文件进入程序。

用户可以在 main.fig 对该程序的用户图形界面进行修改。

figure1_WindowButtonDownFcn 和 figure1_WindowButtonUpFcn 函数分别记录了鼠标按下和抬起时指针所在的坐标,进而实现对语音样本指定范围的截取。坐标的获取由函数 get(axes, 'CurrentPoint')实现。

图形界面的主体包括两个图像框,上图用于呈现语音波形,下图用呈现语图和语音的可视化数据。当图像发生更改时,程序调用 refresh_Callback 函数,根据新得到的语音信号、坐标轴范围、语音可视化数据的开关,重新绘制波形图和语图,以达到刷新的效果。

接下来,简单介绍菜单栏中各个按钮的功能。工具栏上的按钮的功能都能在菜单栏中找到对应,故不再赘述。

1.1 "文件"菜单

打开:对应 open_Callback 函数,打开一个语音文件,将其信号存放在变量 handles.sig 中,同时对各种参数进行初始化定义,如语音可视化数据的开关,语音的时长,文件读取状态等。该功能使用到的核心函数有: audioread、uigetfile。

保存:对应 save_Callback 函数,将程序中的语音文件覆盖保存至原文件。 该功能使用到的核心函数有: audiowrite。

另存为:对应 saveas Callback 函数,弹出窗口,输入名称,将程序中的语音

文件保存到新的位置。该功能使用到的核心函数有: audiowrite、uiputfile。

退出:对应 exit Callback 函数,退出程序。

1.2 "查看"菜单

查看全部: 对应 view_all_Callback 函数,在窗口中展示 handles.sig 的全部波形。

查看选中区域:对应 view_selected_Callback 函数,在窗口中展示 handles.sig 被选中区域的波形。该功能通过把选中区域的两端传递到窗口的两端实现。

宽窄带语图切换:对应 switch_band_Callback 函数,在语图窗口中实现宽带语图和窄带语图的切换。切换由开关 handles.bandswitch 控制,开关存放于refresh Callback 函数,由 switch...case...语句实现。

语图颜色切换: 对应 colormap_Callback 函数,在语图窗口中实现颜色的切换,有三种颜色,分别为 flipud(gray),hsv 和 jet。切换由 handles.colormap 控制,该变量所对应的各种颜色在 refresh_Callback 函数中,由 switch...case...语句实现。

输出波形图:对应 plot_wave_Callback 函数,把当前窗口的波形图输出到一个新的 figure 窗口。

输出语图:对应 plot_spec_Callback 函数,把当前窗口的语图输出到一个新的 figure 窗口。

1.3 "编辑"菜单

撤销: 对应 undo_Callback 函数,每次执行函数,handles. num_time 的值减少 1 个单位,而所有对 handles.sig 的操作都使 handles. num_time 的值加 1 个单位,将每个 num_time 所对应的 sig 存放在新的元胞数组中,refresh_Callback 函数根据当前的 num_time 读取对应的 sig 值。

缺点: 只能撤销恢复对 sig 的操作,不能对振幅、基频、共振峰图的删减进 行撤销恢复。

恢复: 对应 redo_Callback 函数,每次执行函数, handles. num_time 的值增加 1 个单位。

删除(选中):对应 cut_Callback 函数,删除选中的语音片段,设置两个变量 sig1与 sig2,分别对应从左到左光标,从右光标到右,然后令 sig=[sig1 sig2]。

删除(未选中):对应 trim Callback 函数,删除未选中的语音片段。

上下翻转:对应 invert_Callback 函数,将语音波形上下翻转,令 sig=sig*-1。

前后翻转:对应 inverse_Callback 函数,将语音波形前后翻转,该功能使用到的核心函数有: flipud。

1.4 "效果"菜单

播放(全部):对应 play_all_Callback 函数,播放 sig 的全部音频,该功能使用到的核心函数有:sound。

播放(选中): 对应 play_selected_Callback 函数,播放 sig 的选中区域音频, 该功能使用到的核心函数有: sound。

播放(未选中): 对应 play_unselected_Callback 函数,播放 sig 的未选中区域 音频,该功能使用到的核心函数有: sound。

语音信号放大:对应 wave_plus_Callback 函数,放大波形至原来的 1.2 倍。 **语音信号缩小**:对应 wave minus Callback 函数,缩小波形至原来的 0.8 倍。

语音信号归一化:对应 normalization_Callback 函数,对波形进行归一化处理,使原波形的最大值定在 0.9,其他值保持相对大小关系。

低通滤波:对应 low pass Callback 函数,对语音信号进行低通滤波处理。

高通滤波:对应 hig_pass_Callback 函数,对语音信号进行高通滤波处理。

带通滤波:对应 band_pass_Callback 函数,对语音信号进行带通滤波处理。滤波功能使用到的核心函数有: remez、conv。低通滤波 remez 函数的参数为[1100],高通滤波为[0011],带通滤波为[0110]。

1.5 "音长"菜单

查看音长(全部): 对应 duration_all_Callback 函数,查看整个语音样本的时长。

查看音长(选中): 对应 duration_selected_Callback 函数,查看语音样本选中 区域的时长。

1.6 "音强"菜单

显示能量:对应 power_Callback 函数,在语图上显示能量数据的折线图。显示由开关 handles.powerswitch 控制,开关存放于 refresh Callback 函数。

该回调函数使用外部的 power amp 函数,使用 enframe 函数分帧1。

¹ 所有需要分帧处理的步骤均由 enframe 函数实现,下文不再赘述。

显示振幅:对应 amplitude_Callback 函数,在语图上显示振幅数据的折线图。显示由开关 handles.amplitudeswitch 控制,开关存放于 refresh Callback 函数。

该回调函数使用外部的 amplitude 函数,振幅与能量的关系可表述为 amplitude=10*log10(power)。

输出能量图:对应 power_output_Callback 函数,把能量的折线图打印到新的 figure。

输出振幅图:对应 amplitude_output_Callback 函数,把能量的折线图打印到新的 figure。

输出能量数据:对应 power_output_txt_Callback 函数,打印能量数据到 txt 文件,实现时间与能量的对应。该功能使用到的核心函数有: table、writetable。

输出振幅数据:对应 amplitude_output_txt_Callback 函数,打印振幅数据到 txt 文件,实现时间与振幅的对应。该功能使用到的核心函数有: table、writetable。

1.7 "音高"菜单

自相关法:对应 f0a_Callback 函数,该菜单下的功能均调用外部的 F0_extraction 函数,函数包括低通滤波、分帧、中心削波、三电平处理、计算自相关等步骤。

菜单下的其他功能有:显示基频、查看全部区域基频、查看选中区域基频、 删除选中区域基频、删除未选中区域基频、输出基频数据。

显示基频对应 f0extraction_Callback 函数,在语图上显示基频数据的散点图。显示由开关 handles.f0switch 控制,开关存放于 refresh Callback 函数。

查看全部区域基频对应 f0_view_all_a_Callback 函数,把整个语音信号的基频打印到新的 figure 中。

查看选中区域基频对应 f0_view_all_a_Callback 函数,把选中区域的基频打印到新的 figure 中。

删除选中区域基频对应 f0_delete_selected_a_Callback 函数,把选中区域的基频,从存放基频数据的数组 f0 中删除,同时在语图上刷新显示。

删除未选中区域基频对应 f0_delete_unselected_a_Callback 函数,把选中区域的基频,从存放基频数据的数组 f0 中删除,同时在语图上刷新显示。

输出基频数据对应 f0_output_original_a_Callback 函数,打印基频数据到 txt 文件,该功能使用到的核心函数有: table、writetable。

倒谱法:对应 f0b_Callback 函数,该菜单下的功能均调用外部的 F0 extraction cep 函数,使用倒谱提取基频。

菜单下的其他功能与上文自相关法类似,不再赘述。

Kawahara 法: 对应 f0c_Callback 函数,该菜单下的功能均调用外部的 MulticueF0v14 函数²。

菜单下的其他功能与上文自相关法类似,不再赘述。

1.8 "傅立叶变换"菜单

功率谱(单点): 对应 power_spec_Callback 函数,把单点的功率谱打印到新的 figure 上。

该回调函数使用外部的 fft_single 函数,在选中的信号点左右共选取 512 个点,执行快速傅立叶变换,该功能使用到的核心函数有: blackman、fft。

功率谱(选中区域): 对应 power_spec_selected_Callback 函数,把选中区域的功率谱打印到新的 figure 上。

该回调函数使用外部的 fft_all 函数,对选中的信号范围执行快速傅立叶变换,该功能使用到的核心函数有: blackman、fft。

谱包络(单点): 对应 spec_envelope_Callback 函数,把单点的谱包络打印到新的 figure 上。

该回调函数使用外部的 cep_env 函数,在 fft 的基础上计算谱包络。该功能使用到的核心函数有: dct、idct。

谱包络(选中区域):对应 spec_envelope_selected_Callback 函数,把选中区域的谱包络打印到新的 figure 上。

该回调函数使用外部的 cep_env_all 函数,在 fft 的基础上计算谱包络。该功能使用到的核心函数有: det、idet。

功率谱和谱包络(单点): 对应 power_spec_envelope_Callback 函数,把单点的功率谱和谱包络打印到新的 figure 上,使用 hold on 功能,把上文两个相关功能实现在同一个 figure 中。

功率谱和谱包络(选中区域): 对应 power_spec_envelope_selected_Callback 函数,把选中区域的功率谱和谱包络打印到新的 figure 上,使用 hold on 功能,把上文两个相关功能实现在同一个 figure 中。

倒谱(单点): 对应 cepstrum_Callback 函数, 把单点的倒谱打印到新的 figure 上, 并把该点的基频值标注在图中。

该回调函数使用外部的 cepstrum 函数,在 fft 的基础上计算倒谱。该功能使用到的核心函数有: dct。

_

² 该函数的注释中提到了函数的设计者: Designed and coded by Hideki Kawahara, 31/August/2004 first conceiled version, 30/June/2016 refactored for Octave compatibility。

1.9 "线性预测分析"菜单

LPC(单点):对应 lpc_single_Callback 函数,把单点的 LPC 打印到新的 figure 上。

该回调函数使用外部的 lpc_single 函数,该功能使用到的核心函数有: lpc、fft。

LPC(选中区域):对应 lpc_all_Callback 函数,把选中区域的 LPC 打印到新的 figure 上。

该回调函数使用外部的 lpc_all 函数, 该功能使用到的核心函数有: lpc、fft。

逆滤波:对应 lpc_inversefilter_Callback 函数,对语音信号 sig 进行逆滤波处理。

该回调函数使用外部的 lpc_inversefilter函数³, 该功能使用到的核心函数有: lpc、real、filter。

高频提升逆滤波: 对应 lpc_preinversefilter_Callback 函数,对语音信号进行高频提升逆滤波处理。

该回调函数使用外部的 lpc_pre_inversefilter 函数 4 ,该功能使用到的核心函数有: lpc、real、filter。和逆滤波相比,多了一步 filter([1-0.98],...)的高频提升。

1.10 "共振峰"菜单

显示共振峰:对应 formant_display_Callback 函数,在语图上显示共振峰数据的散点图。显示由开关 handles.formantswitch 控制,开关存放于 refresh_Callback 函数。

共振峰的提取调用了外部的 formant_display 函数,该函数使用 LPC 求根法对共振峰进行计算。共振峰的频率要介于 150Hz 和采样频率的一半之间,且带宽要小于 700Hz,这是数据能确实成为共振峰的必要条件(宋知用 2013, 267)。学生把这个条件加到了 formant_display 函数中进行判断,不符合要求的数据均用 NaN 替代。

但实际上,共振峰的提取并不是特别理想,以 shehui.wav 为例,第二共振峰和第三共振峰会出现错乱,如图所示:

³ 该函数由孔江平老师编写。

⁴ 同上。

输出共振峰图:对应 formant_output_Callback 函数,把整个语音信号的共振峰数据打印到新的 figure 中。

输出共振峰数据:对应 formant_output_txt_Callback 函数,打印共振峰数据 到 txt 文件,前五个共振峰分布在表格的五行。该功能使用到的核心函数有: table、 writetable。

二、结语与不足

这学期的学习让学生收获很多,在今后的田野调查中,学生可以试着用自己编写的程序去解决一些实际问题,如更高效率地提取基频,并直接在 Matlab 内部完成数据的输出和统计,这会大大提升研究生的工作效率。

当然,不足也是存在的:程序方面,所有的功能目前都在采样频率为11025Hz的 shehui.wav 上完成,当采样率改变后,函数内部的一些参数可能也会改变。把语音数据投射到语图的时间轴上时,对应关系可能会有小数的偏差,使得信号点和时间并不总是一一对应。此外,上文提到过的撤销恢复问题、共振峰问题,都可以进一步改进。

学生个人方面,我对许多语音学概念的数学和物理意义还不是很了解,仍需 进一步学习。

参考文献

[1]. 宋知用. MATLAB 在语音信号分析与合成中的应用[M]. 北京航空航天大学出版社, 2013