Coursework 2: 2D Led Array

In this task, we assume that an 8×8 LED array is controlled by 2 words specified in led_array. Each bit in this memory space controls the on/off state of one LED with 1 turns on an LED and 0 turns off an LED. Each byte of the led_array maps to one row of LEDs and the least significant bit of this byte controls the right-most LED of this row.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	0 th byte
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	1 st byte
							Bit 16	2 nd byte
							Bit 24	3 rd byte
	Ass	ign	me	nt F	roj	ect	EX	am _v Help
		1:44	10.0	//4	.		Bit 40	5 th byte
		HILL	108.7	//tu	torc	S.C	0 m	
			ps.,	//tu	LOTC	S.C	OM Bit 48	6 th byte

One example is shown below. 0x81 is the first byte of led_array, the first bit is 1 and the last bit is also 1, this will turn on the top left and top right LEDs.

led_array DCD 0x00000081, 0x81000000

If there were issues found in this coursework specification after its initial release, it will be updated and announced on LMO.

Task 1: (60%)

In this task, we assume that only one LED on the edge of this led array is turned on. Implement the function "spin_single", which rotates the position of the light-emitting LED clock-wise once.

For example, if the original state of led_array is:

led array DCD 0x18666602, 0x00243C3C

After calling function "spin_single" once, led_array should become:

led array DCD 0x18666601, 0x00243C3C

Calling it once more, led_array should become:

led array DCD 0x18666700, 0x00243C3C

Calling it once more, led_array should become:

led array DCD 0x18676600, 0x00243C3C

There are 4 important requirements/restrictions on your program:

- 1. Your function should not modify the state of any LEDs in the middle. Only the LEDs on the edge can be changed.
- 2. You are not allowed to use DCD (or similar assembler directives like DCW or DCB) to declare new memory blocks.
- 3. Your function must return to its caller when finished.
- 4. You should not assume a fixed initial position of the light-emitting LED on the edge. It may appear at any position when spin single realled each $Exam\ Help$

https://tutorcs.com

WeChat: cstutorcs

Task 2: (40%)

Implement the function called "spin_multi", which rotates light-emitting LEDs on the edge clockwise once. There's no fixed pattern for light-emitting LEDs on the edge. Given the example state of led_array below:

After calling spin_multi once, it should become:

Just like task 1, There are 4 important requirements/restrictions on your program:

- 1. Your function should not modify the state of any LEDs in the middle. Only the LEDs on the edge can be changed.
- 2. You are not allowed to use DCD (or similar assembler directives like DCW or DCB) to declare new memory blocks.
- 3. Your function must return to its caller when finished.
- 4. You should not assume a fixed initial position of the light-emitting LED sequences on the edge.