Exercice 1

------ Voir correction -

Étudier les variations de chacune des fonctions suivantes sur l'intervalle I, ainsi que leurs limites aux bornes de leurs ensembles de définition.

1) $f(x) = \cos x - x$ définie sur $I = \mathbb{R}$

- 4) $k(x) = \ln(\sin x)$ définie sur $I =]0, \pi[$.
- 2) $g(x) = -3\sin(x/2)$ définie sur $I = [0, 2\pi]$
- 5) $m(x) = x \frac{x^3}{6} \sin x$ définie sur $I = \mathbb{R}_+$

3) $h(x) = \cos^2(2x)$ définie sur $I = [0, \pi]$

Exercice 2 -

Voir correction –

Dans chaque cas, résoudre dans I l'équation ou l'inéquation :

1) $\cos x = -\frac{1}{2}$, $I = [0, 2\pi]$

4) $\sin(3x) = \frac{\sqrt{3}}{2}$, $I = [-\pi, \pi]$

2) $\tan x = -1$, $I =]-\pi/2, \pi/2[$

5) $\sin(2x) > \frac{\sqrt{2}}{2}$, $I = [-\pi, 3\pi]$

3) $\tan x = 0$, $I = [5\pi/2, 7\pi/2]$

 $\qquad \qquad \star \qquad \qquad 6) \; \cos x < \frac{\sqrt{2}}{2}, \quad I = [-3\pi, \tfrac{\pi}{6}]$

Exercice 3 —

- 1) Montrer que pour tout réel x on a : $\cos x + \sin x = \sqrt{2}\cos(x \frac{\pi}{4})$
- 2) En déduire les solutions de $\cos 2x + \sin 2x \ge -1$ sur $\mathbb R$

Exercice 4

Résoudre dans \mathbb{R} les équations suivantes :

1) $\cos(2x) = \cos x$

3) $\sin(2x) = \cos x$

 $2) \cos(2x) = \sin x$

 $4) \cos(3x) = \cos x$

Exercice 5

— Voir correction —

Résoudre l'équation $\cos x + \sin x = -\frac{\sqrt{6}}{2}$ dans \mathbb{R} .

Exercice 6 -

Montrer que pour tout réel x, $2\cos(2x) - 8\cos x + 1 \ge 0$ et déterminer les cas d'égalité.

1) Montrer que pour tout entier naturel n et tout réel x on a :

$$\sin(2^{n+2}x) = 2\sin(2^{n+1}x) - 4\sin(2^{n+1}x)\sin(2^nx)^2$$

2) Soit (u_n) la suite définie pour tout entier naturel n par :

$$u_{n+2} = 2u_{n+1} - 4u_{n+1} \times (u_n)^2$$
; $u_0 = \frac{\sqrt{2}}{2}$; $u_1 = 1$

Montrer que (u_n) est une suite stationnaire (i.e. à partir d'un certain rang N, on a $u_{n+1} = u_n$). Quelle est alors la valeur limite de la suite (u_n) ?

Voir correction -

On note D l'ensemble des réels qui ne sont pas des entiers relatifs, soit $D = \mathbb{R} \setminus \mathbb{Z}$.

Pour tout $x \in D$, on note $\cot(x) = \pi \frac{\cos(\pi x)}{\sin(\pi x)}$

- 1) Vérifier que cot est définie et continue sur D, qu'elle est impaire et périodique de période 1.
- 2) Étudier les variations de cot sur $]-1,0[\cup]0,1[$. On précisera les limites en -1, en 0 et en 1.
- 3) Montrer que $\lim_{x\to 0} x(\cot(x)) = 1$.
- 4) Démontrer que pour tout $x \in D$ on a $\frac{x}{2} \in D$ et $\frac{x+1}{2} \in D$, puis montrer que

$$\cot\left(\frac{x}{2}\right) + \cot\left(\frac{x+1}{2}\right) = 2\cot x$$

5) À l'aide de l'égalité précédente, montrer par récurrence que pour tout $n \in \mathbb{N}$ on a :

$$\forall x \in D, \cot x = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} \cot \left(\frac{x+k}{2^n} \right)$$

Correction des exercice

Correction de l'exercice 1 :

1) On a

$$\forall x \in \mathbb{R}, \quad f'(x) = -\sin x - 1$$

Or, on sait que $\forall x \in \mathbb{R}, -1 \leq \sin x \leq 1, \text{ donc } -2 \leq -\sin x - 1 \leq 0.$

On en déduit que f est décroissante sur \mathbb{R} .

De plus,
$$f(x) = -x\left(1 - \frac{\cos x}{x}\right)$$
, et $-1 \le \cos x \le 1$ donc $-\frac{1}{x} \le \frac{\cos x}{x} \le \frac{1}{x}$. Comme $\lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \left(-\frac{1}{x}\right) = 0$, on en déduit d'après le théorème des gendarmes que $\lim_{x \to +\infty} \frac{\cos x}{x} = 0$. De même, $\lim_{x \to -\infty} \frac{\cos x}{x} = 0$.

Par somme et par produit de limites, on en conclut que

$$\lim_{x \to -\infty} f(x) = +\infty \quad \text{et} \quad \lim_{x \to +\infty} f(x) = -\infty$$

2) On a $\forall x \in [0, 2\pi], g'(x) = -\frac{3}{2}\cos(x/2).$ $x \in [0, 2\pi] \iff \frac{x}{2} \in [0, \pi].$

Pour $X \in [0,\pi]$, on a $\cos X \ge 0 \Longleftrightarrow X \in [0,\frac{\pi}{2}]$. Ainsi, $\cos(x/2) \ge 0 \Longleftrightarrow \frac{x}{2} \in [0,\pi/2] \Longleftrightarrow x \in [0,\pi]$.

On en déduit le tableau de variation suivant :

x	0		π		2π
g'(x)		_	0	+	
g(x)	0		-3		0

3) On a $\forall x \in [0, \pi], h'(x) = -4\sin(2x)\cos(2x) = -2\sin(4x)$ d'après la formule de duplication du sinus. Or, $0 \le x \le \pi \iff 0 \le 4x \le 4\pi$.

Sur l'intervalle $[0,4\pi]$, $\sin X \ge 0 \Longleftrightarrow X \in [0,\pi] \cup [2\pi,3\pi]$ d'après la courbe représentative de la fonction sinus.

On en déduit que $\sin(4x) \ge 0 \Longleftrightarrow 4x \in [0, \pi] \cup [2\pi, 3\pi] \Longleftrightarrow x \in [0, \frac{\pi}{4}] \cup [\frac{\pi}{2}, \frac{3\pi}{4}].$

Finalement, on a le tableau de variations suivant

x	0	$\frac{\pi}{4}$		$\frac{\pi}{2}$		$\frac{3\pi}{4}$		π
h'(x)	_	0	+	0	_	0	+	
g(x)	1			, 1		~ ₀ ~		, 1

4) $k = \ln u$ avec $u(x) = \sin x$ donc $k' = \frac{u'}{u}$

$$k'(x) = \frac{\cos x}{\sin x}$$

Or, $\forall x \in]0, \pi[, \sin x > 0, \text{ et } \cos x \ge 0 \iff x \in [0, \pi/2]$

De plus, $\lim_{x\to 0} \sin x = 0$ et $\lim_{X\to 0} \ln X = -\infty$, donc par composition de limites, $\lim_{x\to 0} \ln(\sin x) = -\infty$.

De même, $\lim_{x\to\pi} \ln(\sin x) = -\infty$. On en déduit le tableau de variations suivant :

x	$0 \qquad \qquad \frac{\pi}{2}$	π
k'(x)	+ 0 -	
k(x)	-∞ ⁰ -	∞

5) On a

$$\forall x \in \mathbb{R}_+, \ m'(x) = 1 - \frac{x^2}{2} - \cos x$$

puis

$$\forall x \in \mathbb{R}_+, \ m''(x) = -x + \sin x$$

et enfin

$$\forall x \in \mathbb{R}_+, \ m'''(x) = -1 + \cos x$$

Comme, $\forall x \in \mathbb{R}, -1 \le \cos x \le 1$, on a $-2 \le -1 + \cos x \le 0$, donc m'' est décroissante sur \mathbb{R}_+ . Comme m''(0) = 0, on en conclut que $m''(x) \le 0$ pour tout $x \in \mathbb{R}_+$.

Ainsi, m' est décroissante sur \mathbb{R}_+ , et on a aussi m'(0) = 0, ce qui permet d'en déduire que $m'(x) \leq 0$ pour tout $x \in \mathbb{R}_+$. Finalement, m est décroissante sur \mathbb{R}_+ .

Lorsque x tend vers $+\infty$, on peut majorer m(x) par $m(x) \le x - \frac{x^3}{6} + 1$ qui tend vers $-\infty$, donc par théorème de comparaison, $\lim_{x \to +\infty} m(x) = -\infty$. On en déduit le tableau suivant :

x	0	$+\infty$
m'(x)	_	
m(x)	0	$-\infty$

Correction de l'exercice 2:

- 1) Dans $[0; 2\pi]$, $\cos x = -\frac{1}{2} \iff x = \frac{2\pi}{3}$ ou $x = -\frac{2\pi}{3}$. $S = \left\{-\frac{2\pi}{3}, \frac{2\pi}{3}\right\}$
- 2) $\tan x = -1 \iff \frac{\sin x}{\cos x} = -1 \iff \cos x \neq 0$ et $\sin x = -\cos x$. Il n'y a que sur l'intervalle $]-\frac{\pi}{2}; \frac{\pi}{2}$ que sin et cos ont un signe opposé. De plus, sin est strictement croissante sur cet intervalle et cos est strictement décroissante. On pose $f(x) = \sin x + \cos x$, dérivable sur $[-\frac{\pi}{2}, 0]$ avec $f'(x) = \cos x \sin x$ pour tout x dans cet intervalle. Or $\cos x \geq 0$ et $-\sin x \geq 0$ sur cet intervalle et elles ne s'annulent jamais simultanément, donc f'(x) > 0 sur cet intervalle. f est donc strictement croissante sur $[-\frac{\pi}{2}, \frac{\pi}{2}]$ et $f(-\frac{\pi}{2}) = -1$ et f(0) = 1 donc d'après le corollaire du théorème des valeurs intermédiaires f s'annule une et une seule fois sur cet intervalle. De plus on sait que $\sin \frac{\pi}{4} = -\cos \frac{-\pi}{4} = -\frac{\sqrt{2}}{2}$ donc

$$\frac{\sqrt{2}}{2}$$
 est l'unique solution.

- 3) $\tan x = 0 \iff \sin x = 0 \iff x = \frac{6\pi}{2} = 3\pi$. Donc $S = \{3\pi\}$
- 4) Commençons par résoudre sur \mathbb{R} :

$$\sin(3x) = \frac{\sqrt{3}}{2} \iff 3x = \frac{\pi}{3} + 2k\pi \quad \text{ou} \quad 3x = \frac{2\pi}{3} + 2k\pi \quad \text{avec } k \in \mathbb{Z}$$

$$\iff x = \frac{\pi}{9} + \frac{2k\pi}{3} \quad \text{ou} \quad x = \frac{2\pi}{9} + \frac{2k\pi}{3} \quad \text{avec } k \in \mathbb{Z}$$

On ne retient que les solutions qui sont dans $[-\pi, \pi]$, on trouve :

$$x \in [-\pi, \pi]$$
 et $\sin(3x) = \frac{\sqrt{3}}{2} \iff x \in \left\{-\frac{5\pi}{9}; \frac{-4\pi}{9}; \frac{\pi}{9}; \frac{2\pi}{9}; \frac{7\pi}{9}; \frac{8\pi}{9}\right\}$

$$S = \left\{ -\frac{5\pi}{9}; \frac{-4\pi}{9}; \frac{\pi}{9}; \frac{2\pi}{9}; \frac{7\pi}{9}; \frac{8\pi}{9} \right\}$$

5) Dans \mathbb{R} on a

$$\sin(2x) > \frac{\sqrt{2}}{2} \Longleftrightarrow \frac{\pi}{4} + 2k\pi < 2x < \frac{3\pi}{4} + 2k\pi \quad \text{avec } k \in \mathbb{Z}$$

$$\iff \frac{\pi}{8} + k\pi < x < \frac{3\pi}{8} + k\pi$$

On ne retient que les solutions qui sont dans $[-\pi; 3\pi]$ et on trouve

$$S = \left] \frac{-7\pi}{8}; \frac{-5\pi}{8} \right[\cup \left] \frac{\pi}{8}; \frac{3\pi}{8} \right[\cup \left] \frac{9\pi}{8}; \frac{11\pi}{8} \right[\cup \left] \frac{17\pi}{8}; \frac{19\pi}{8} \right[\right]$$

6) Dans $[-\pi; \pi]$, $\cos x < \frac{\sqrt{2}}{2} \iff x \in [-\pi; -\frac{\pi}{4}] \cup [\frac{\pi}{4}; \pi]$.

Par périodicité, on en déduit que sur $[-3\pi; \frac{\pi}{6}]$, $\cos x < \frac{\sqrt{2}}{2} \Longleftrightarrow x \in [-3\pi; -\frac{9\pi}{4}] \cup [-\frac{7\pi}{4}; -\frac{\pi}{4}] \cup [\frac{\pi}{4}; \frac{\pi}{6}]$

Correction de l'exercice 3:

1) Soit $x \in \mathbb{R}$, on a

$$\cos\left(x - \frac{\pi}{4}\right) = \cos x \cos(\pi/4) + \sin x \sin(\pi/4)$$
$$= \cos x \frac{\sqrt{2}}{2} + \sin x \frac{\sqrt{2}}{2}$$

Ainsi, $\sqrt{2}\cos\left(x - \frac{\pi}{4}\right) = \cos x + \sin x$.

2) D'après la question 1 on a, pour tout $x \in \mathbb{R}$,

$$\cos 2x + \sin 2x \ge -1 \iff \sqrt{2}\cos\left(2x - \frac{\pi}{4}\right) \ge -1$$

$$\iff \cos\left(2x - \frac{\pi}{4}\right) \ge -\frac{1}{\sqrt{2}}$$

$$\iff \cos\left(2x - \frac{\pi}{4}\right) \ge -\frac{\sqrt{2}}{2}$$

D'après les variations et les valeurs remarquables de la fonction cosinus, on sait que :

$$\cos X \ge -\frac{\sqrt{2}}{2} \Longleftrightarrow \exists k \in \mathbb{Z}, \ -\frac{3\pi}{4} + 2k\pi \le X \le \frac{3\pi}{4} + 2k\pi$$

donc

$$\cos\left(2x - \frac{\pi}{4}\right) \ge -\frac{\sqrt{2}}{2} \iff \exists k \in \mathbb{Z}, \ -\frac{3\pi}{4} + 2k\pi \le 2x - \frac{\pi}{4} \le \frac{3\pi}{4} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ -\frac{\pi}{2} + 2k\pi \le 2x \le \pi + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, -\frac{\pi}{4} + k\pi \le x \le \frac{\pi}{2} + k\pi$$

$$\iff x \in \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{4} + k\pi; \frac{\pi}{2} + k\pi \right]$$

Finalement l'ensemble des solutions est donc :

$$S = \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{4} + k\pi; \frac{\pi}{2} + k\pi \right]$$

Correction de l'exercice 4:

1) On sait que pour tout $x \in \mathbb{R}$, $\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 - 1$ On a donc

$$\cos(2x) = \cos x \Longleftrightarrow 2\cos^2 x - \cos x - 1 = 0$$

En posant $X = \cos x$, l'équation devient $2X^2 - X - 1 = 0$.

L'équation $2X^2 - X - 1 = 0$ a deux solutions dans $\mathbb{R}: X = 1$ et $X = -\frac{1}{2}$

Ainsi, $\cos x = 1$ ou $\cos x = -\frac{1}{2}$, donc $x \in \{0 + 2k\pi, \frac{2\pi}{3} + 2k\pi, -\frac{2\pi}{3} + 2k\pi \mid k \in \mathbb{Z}\}$

$$S = \left\{ 0 + 2k\pi, \frac{2\pi}{3} + 2k\pi, -\frac{2\pi}{3} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

2) $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x$ donc

$$\cos 2x = \sin x \iff 1 - 2\sin^2 x = \sin x$$
$$\iff 0 = 2\sin^2 x + \sin x - 1$$

On pose $X = \sin x$ et on résout $2X^2 + X - 1 = 0$. On trouve X = -1 ou $X = \frac{1}{2}$, donc $\sin x = -1$ ou $\sin x = \frac{1}{2}$. Ainsi

$$S = \left\{ -\frac{\pi}{2} + 2k\pi, \frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

3) $\sin(2x) = 2\sin x \cos x$, donc

$$\sin(2x) = \cos x \iff 2\sin x \cos x = \cos x$$

$$\iff \cos x (2\sin x - 1) = 0$$

$$\iff \cos x = 0 \quad \text{ou} \quad \sin x = \frac{1}{2}$$

On en conclut que les solutions sont

$$S = \left\{ -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi, \frac{\pi}{6} + 2k\pi, \frac{\pi}{6} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

4) Commençons par exprimer $\cos(3x)$ en fonction de $\cos x$:

$$\cos(3x) = \cos(2x + x)$$

$$= \cos(2x)\cos x - \sin(2x)\sin x$$

$$= (\cos^2 x - \sin^2 x)\cos x - 2\sin^2 x\cos x$$

$$= \cos^3 x - (1 - \cos^2 x)\cos x - 2(1 - \cos^2 x)\cos x$$

$$= \cos^3 x - \cos x + \cos^3 x - 2\cos x + 2\cos^3 x$$

$$= 4\cos^3 x - 3\cos x$$

Ainsi, on a

$$\cos(3x) = \cos x \iff 4\cos^3 x - 3\cos x = \cos x$$

$$\iff 4\cos^3 x - 4\cos x = 0$$

$$\iff 4\cos x(\cos^2 x - 1) = 0$$

$$\iff 4\cos x(\cos x - 1)(\cos x + 1) = 0$$

$$\iff \cos x = 0 \quad \text{ou} \quad \cos x = 1 \quad \text{ou} \quad \cos x = -1$$

On trouve donc

$$S = \left\{ -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi, 0 + 2k\pi, \pi + 2k\pi \mid k \in \mathbb{Z} \right\} = \left\{ \frac{\pi}{2} + k\pi, 0 + k\pi \mid k \in \mathbb{Z} \right\}$$

Correction de l'exercice 5 : Pour tout $\theta \in \mathbb{R}$, $\cos(x-\theta) = \cos x \cos \theta + \sin x \sin \theta$. En posant $\theta = \frac{\pi}{4}$, comme on a $\cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \sqrt{2}/2$ on obtient

$$\cos\left(x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}(\cos x + \sin x)$$

On a donc $\cos x + \sin x = 1 \Longleftrightarrow \frac{\sqrt{2}}{2}(\cos x + \sin x) = \frac{\sqrt{2}}{2} \Longleftrightarrow \cos\left(x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.

Or, dans $[-\pi, \pi]$ on a $\cos X = \frac{\sqrt{2}}{2} \iff X \in \{\frac{\pi}{4}, -\frac{\pi}{4}\}$ donc dans \mathbb{R} on a

$$\cos X = \frac{\sqrt{2}}{2} \Longleftrightarrow X \in \{\frac{\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi \mid k \in \mathbb{Z}\}.$$

Finalement, dans \mathbb{R} on a

$$\cos x + \sin x = 1 \Longleftrightarrow x - \frac{\pi}{4} \in \{ \frac{\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi \mid k \in \mathbb{Z} \}$$

$$\iff x \in \{ 0 + 2k\pi, \frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z} \}$$

Correction de l'exercice 7 :

1) Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on a

$$\begin{split} \sin(2^{n+2}x) &= \sin(2 \times 2^{n+1}x) \\ &= 2\sin(2^{n+1}x)\cos(2^{n+1}x) \\ &= 2\sin(2^{n+1}x)\cos(2 \times 2^nx) \\ &= 2\sin(2^{n+1}x)(\cos^2(2^nx) - \sin^2(2^nx)) \\ &= 2\sin(2^{n+1}x)(1 - 2\sin^2(2^nx)) \\ \hline &= 2\sin(2^{n+1}x) - 4\sin(2^{n+1}x)\sin^2(2^nx) \end{split}$$

2) La suite (u_n) vérifie la même relation de récurrence double que la suite (v_n) définie par $v_n(x) = \sin(2^n x)$ pour tout $n \in \mathbb{N}$.

Si $u_0 = \sin(2^0 x)$ et $u_1 = \sin(2^1 x)$, alors on aura $u_n = \sin(2^n x)$ pour tout $n \in \mathbb{N}$.

Il suffit de prendre $x = \frac{\pi}{4}$ pour avoir $\sin(2^0 x) = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} = u_0$, et $\sin(2^1 x) = \sin \frac{\pi}{2} = 1 = u_1$.

On a alors pour tout $n \in \mathbb{N}$, $u_n = \sin\left(2^n \frac{\pi}{4}\right)$.

Or, pour $n \geq 2$, 2^n est un multiple de 4 donc $2^n \frac{\pi}{4}$ est un multiple de π . On a $\sin(k\pi) = 0$ pour tout $k \in \mathbb{Z}$ donc $u_n = \sin(2^n \frac{\pi}{4}) = 0$ pour tout $n \geq 2$.

Ainsi, (u_n) est stationnaire égale à 0 à partir du rang n=2, sa limite est donc 0.

Correction de l'exercice 8 :

1) — On sait que $\sin(\pi x) = 0 \Longleftrightarrow \pi x = 0 + k\pi, \ k \in \mathbb{Z} \Longleftrightarrow x = 0 + k, k \in \mathbb{Z} \Longleftrightarrow x \in \mathbb{Z}$. Ainsi, pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$ on a $\sin \pi x \neq 0$ donc f(x) est bien définie.

- De plus, f est continue sur D comme quotient de fonctions continues dont le dénominateur ne s'annule pas.
- Pour tout $x \in D$, on a $-x \in D$ et :

$$f(-x) = \pi \frac{\cos(-\pi x)}{\sin(-\pi x)}$$

$$= \pi \frac{\cos(\pi x)}{-\sin(\pi x)}$$

$$= -\pi \frac{\cos(\pi x)}{\sin(\pi x)}$$

$$= -f(x)$$
car sinus est impaire

donc f est impaire

Pour tout $x \in D$, on a $x + 1 \in D$ et :

$$f(x+1) = \pi \frac{\cos(\pi x + \pi)}{\sin(\pi x + \pi)}$$
$$= \pi \frac{-\cos(\pi x)}{-\sin(\pi x)}$$
$$= \pi \frac{\cos(\pi x)}{\sin(\pi x)}$$
$$= f(x)$$

donc f est périodique de période 1.

2) f est dérivable sur D comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas, et pour tout $x \in D$ on a:

$$f'(x) = \pi \frac{-\pi \sin(\pi x) \sin(\pi x) - \pi \cos(\pi x) \cos(\pi x)}{\sin^2(\pi x)}$$
$$= \pi \frac{-\pi (\cos^2(\pi x) + \sin^2(\pi x))}{\sin^2(\pi x)}$$
$$= \frac{-\pi^2}{\sin^2(\pi x)}$$

donc $f'(x) \leq 0$ pour tout $x \in D$, ainsi f est décroissante sur tout intervalle où elle est définie.

f est décroissante sur]-1,0[et décroissante sur]0,1[.

- En -1, on a $\lim_{x\to -1}\cos(\pi x)=-1$ et $\lim_{x\to -1}\sin(\pi x)=0$. De plus, si $x\in]-1,0[$ on a $\sin(\pi x)<0$. On a donc, par quotient de limites, $\lim_{x\to -1}\cot(x)=+\infty$.
- En 0, on a $\lim_{x \to 0} \cos(\pi x) = 1$

En 0^- on a $\lim_{x\to 0^-} \sin(\pi x) = 0^-$ et en 0^+ on a $\lim_{x\to 0^+} \sin(\pi x) = 0^+$. Ainsi, par quotient de limites, $\lim_{x\to 0^-} \cot(x) = -\infty \text{ et } \lim_{x\to 0^+} \cot(x) = +\infty.$

$$\lim_{x \to 0^{-}} \cot(x) = -\infty \text{ et } \lim_{x \to 0^{+}} \cot(x) = +\infty.$$

— En 1 on a $\lim_{x\to 1}\cos(\pi x)=-1$ et $\lim_{x\to 1^-}\sin(\pi x)=0^+$. Ainsi, par quotient de limites, $\lim_{x\to 1^-}\cot(x)=-\infty$

3) Soit $x \in D$, on a $x \cot(x) = \pi x \frac{\cos(\pi x)}{\sin(\pi x)} = \cos(\pi x) \times \frac{\pi x}{\sin(\pi x)}$.

Or on sait d'après le cours que $\lim_{x\to 0} \frac{\sin x}{x} = 1$ donc $\lim_{x\to 0} \frac{\sin \pi x}{\pi x} = 1$. Par inverse de limite, on a aussi $\lim_{x\to 0} \frac{\pi x}{\sin \pi x} = 1$. Finalement, comme $\lim_{x\to 0} \cos(\pi x) = 1$, on a $\lim_{x\to 0} x \cot(x) = 1$.

4) Soit $x \in D$. Montrons d'abord que $\frac{x}{2} \in D$ et $\frac{x+1}{2} \in D$.

On raisonne par l'absurde : supposons que $\frac{x}{2} \in \mathbb{Z}$, alors il existe $k \in \mathbb{Z}$ tel que $\frac{x}{2} = k$. On a alors x = 2k donc $x \in \mathbb{Z}$, ce qui contredit l'hypothèse de départ.

De même, si $\frac{x+1}{2} = k \in \mathbb{Z}$, on a x+1 = 2k donc $x = 2k-1 \in \mathbb{Z}$, ce qui contredit l'hypothèse de départ. On en déduit que $\frac{x}{2} \notin \mathbb{Z}$ et $\frac{x+1}{2} \notin \mathbb{Z}$, autrement dit $\frac{x}{2} \in D$ et $\frac{x+1}{2} \in D$.

Soit $x \in D$. Écrivons $\cot(x) = \cot\left(2 \times \frac{x}{2}\right)$.

Alors

$$\cot(x) = \pi \frac{\cos\left(2 \times \frac{\pi x}{2}\right)}{\sin\left(2 \times \frac{\pi x}{2}\right)}$$
$$= \pi \frac{\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}$$

D'autre part, on a

$$\cot\left(\frac{x}{2}\right) + \cot\left(\frac{x+1}{2}\right) = \pi \frac{\cos\left(\frac{\pi x}{2}\right)}{\sin\left(\frac{\pi x}{2}\right)} + \pi \frac{\cos\left(\frac{\pi x}{2} + \frac{\pi}{2}\right)}{\sin\left(\frac{\pi x}{2} + \frac{\pi}{2}\right)}$$

$$= \pi \frac{\cos\left(\frac{\pi x}{2}\right)}{\sin\left(\frac{\pi x}{2}\right)} + \pi \frac{-\sin\left(\frac{\pi x}{2}\right)}{\cos\left(\frac{\pi x}{2}\right)}$$

$$= \pi \frac{\cos^2\left(\frac{\pi x}{2}\right) - \sin^2\left(\frac{\pi x}{2}\right)}{\sin\left(\frac{\pi x}{2}\right)\cos\left(\frac{\pi x}{2}\right)}$$

$$= 2\cot(x)$$

d'après l'égalité précédente.

- 5) On note $\mathcal{P}(n): \forall x \in D, \cot(x) = \frac{1}{2^n} \sum_{k=0}^{2^n-1} \cot\left(\frac{x+k}{2^n}\right)$ et on raisonne par récurrence.
 - Initialisation: Le cas n=1 est celui que nous avons montré dans la question 4, donc $\mathcal{P}(1)$ est vraie.
 - **Hérédité :** Supposons que $\mathcal{P}(n)$ soit vraie pour un certain rang $n \in \mathbb{N}$. Pour tout $k \in [0, 2^n - 1]$, on peut appliquer l'égalité de la question 4. pour obtenir :

$$2\cot\left(\frac{x+k}{2^n}\right) = \cot\left(\frac{x+k}{2^{n+1}}\right) + \cot\left(\frac{\frac{x+k}{2^n}+1}{2}\right)$$
$$2\cot\left(\frac{x+k}{2^n}\right) = \cot\left(\frac{x+k}{2^{n+1}}\right) + \cot\left(\frac{x+k+2^n}{2^{n+1}}\right)$$
$$\cot\left(\frac{x+k}{2^n}\right) = \frac{1}{2}\left[\cot\left(\frac{x+k}{2^{n+1}}\right) + \cot\left(\frac{x+k+2^n}{2^{n+1}}\right)\right]$$

Par hypothèse de récurrence, on a

$$\cot(x) = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} \cot\left(\frac{x+k}{2^n}\right)$$

$$\begin{split} &= \frac{1}{2^n} \sum_{k=0}^{2^n-1} \frac{1}{2} \left[\cot \left(\frac{x+k}{2^{n+1}} \right) + \cot \left(\frac{x+k+2^n}{2^{n+1}} \right) \right] \\ &= \frac{1}{2^{n+1}} \sum_{k=0}^{2^n-1} \cot \left(\frac{x+k}{2^{n+1}} \right) + \frac{1}{2^{n+1}} \sum_{k=0}^{2^n-1} \cot \left(\frac{x+2^n+k}{2^{n+1}} \right) \\ &= \frac{1}{2^{n+1}} \sum_{k=0}^{2^n-1} \cot \left(\frac{x+k}{2^{n+1}} \right) + \frac{1}{2^{n+1}} \sum_{k'=2^n}^{2^n+2^n-1} \cot \left(\frac{x+k'}{2^{n+1}} \right) \quad \text{par changement de variable } k' = 2^n + k \\ &= \frac{1}{2^{n+1}} \sum_{k=0}^{2^{n+1}-1} \cot \left(\frac{x+k}{2^{n+1}} \right) \end{split}$$

donc $\mathcal{P}(n+1)$ est vraie.

— Conclusion : par principe de récurrence, on en conclut :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \cot(x) = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} \cot\left(\frac{x+k}{2^n}\right)$$

