Программа государственной итоговой аттестации по направлению подготовки "Информатика и вычислительная техника", 2024/25 учебный год

Примечание: используется сквозная нумерация разделов после программы от кафедры ДМ.

4. Алгоритмы и структуры данных

4.1.	Динамический массив. Амортизационный анализ. Учетная оценка времени добавления элемента в динамический массив (с удвоением заполненного буфера)
4.2.	Связные списки. Стек, очередь, дек и их реализации.
4.3.	Быстрая сортировка (QuickSort). Поиск порядковой статистики методом "Разделяй и властвуй" (QuickSelect).
4.4.	Сортировка слиянием (MergeSort). Поразрядные сортировки.
4.5.	Двоичная куча и сортировка кучей (HeapSort). Слияние k отсортированных массивов с помощью кучи.
4.6.	Хеш-таблица, полиномиальная хеш-функция.
4.7.	Динамическое программирование: общая идея, линейная динамика, матричная, динамика на отрезках.
4.8.	RMQ. Sparse table. Дерево отрезков.
4.9.	LCA: сведение к RMQ и метод двоичного подъёма.
4.10.	Двоичное дерево поиска. Обходы в глубину и в ширину. Поиск ключа, наивные вставка и удаление ключа. АВЛ-дерево.
4.11.	Декартово дерево. Декартово дерево по неявному ключу.
4.12.	Минимальное остовное дерево: алгоритмы Прима и Крускала.
4.13.	Обход графа в глубину, ширину.
4.14.	Поиск кратчайших путей в графе: алгоритмы Дейкстры, Форда-Беллмана, Флойда-Уоршелла.
4.15.	Поиск сильно-связных компонент в графе.
4.16.	Мосты и точки сочленения в графе.
4.17.	Нахождение подстроки в строке: префикс-функция, алгоритм Кнута-Морриса-Пратта.
4.18.	Стандартные контейнеры: vector, deque, queue, priority_queue, set, map, итераторы, компараторы.
4.19.	Бор. Алгоритм Ахо-Корасик.
4.20.	Вычисление выпуклой оболочки множества точек в 2D.
4.21.	Планиметрия: примитивы точки, прямой, окружности. Построение прямой. Пересечения (прямых, окружностей).
4.22.	Проверка принадлежности точки многоугольнику.

5. Машинное обучение

5.1.	Постановка задачи обучения с учителем (supervised learning), постановка задачи обучения без учителя (unsupervised learning). Постановка задачи классификации и метрики качества классификации. Наивный Байесовский классификатор.
5.2.	Постановка задачи регрессии и метрики качества регрессии. Линейная регрессия. Теорема Гаусса-Маркова (формулировка). Проблема мультиколлинеарных признаков. L1 и L2 регуляризация, их влияние на веса признаков.
5.3.	Проблема несбалансированных классов. Работа с категориальными признаками и пропущенными значениями. Mean encoding. Примеры простых алгоритмов, решающих стандартные задачи: kNN, наивный байесовский классификатор.
5.4.	Логистическая регрессия. Понятия отступа (Margin). Эквивалентность решений полученных методом максимального правдоподобия и минимизации логистической функции потерь. Логистическая функция потерь, кросс-энтропия.
5.5.	Процедура построения решающего дерева, критерии информативности: энтропийный, Джини. Бустинг (принцип построения ансамбля).
5.6.	Bias-Variance decomposition (декларативно). Процедура bootstrap, алгоритм bagging. Random Forest.
5.7.	Градиентный бустинг. Принцип построения. Какие алгоритмы могут использоваться в качестве базовых алгоритмов.
5.8.	Задача снижения размерности: алгоритм РСА. Связь РСА и SVD. Может ли РСА давать не единственное решение?
5.9.	Проблема переобучения. Пример, причины возникновения (идейно). Кросс-валидация. Мотивация использования train, val и test выборок. Понятие параметров и гиперпараметров моделей. Процедура подбора гиперпараметров. Понятие регуляризации (в общем случае). Способы регуляризации различных моделей (линейные модели, деревья, ансамбли, нейронные сети).
5.10.	Метод градиентного спуска. Метод обратного распространения ошибки (backpropagation). Функции активации (Sigmoid, tanh, ReLU), их свойства и проблемы. Функции потерь в задаче многоклассовой классификации и регрессии. Методы регуляризации нейронных сетей: Dropout, Batch normalization, data augmentation.
5.11.	Методы регуляризации нейронных сетей: Dropout, Batch normalization, data augmentation. Слабые стороны стохастического градиентного спуска. Способы доработки: Momentum, Nesterov momentum, RMSprop, Adam. Минусы данных подходов.
5.12.	Рекуррентные нейронные сети (RNN) для упорядоченных данных. Основные принципы работы. Проблема затухающего градиента и ее возможные решения. Рекуррентные блоки: наивный (Vanilla RNN), LSTM, GRU, мотивация их использования. Функции активации в рекуррентных блоках.
5.13.	Методы работы с изображениями. Почему линейные слои не получили широкого применения в задаче компьютерного зрения? Сверточные слои в нейронной сети. Мотивация их использования в задачах анализа изображений и сигналов. Одномерные и двумерные свертки (Conv1d и Conv2d). Max & average pooling.

6. Формальные языки и трансляции

6.1.	Недетерминированные конечные автоматы (НКА). Различные варианты определений.
6.2.	Детерминированные конечные автоматы (ДКА). Эквивалентность ДКА и НКА.
6.3.	Свойства класса автоматных языков. Замкнутость относительно булевых операций. Минимальный ДКА
6.4.	Регулярные выражения. Теорема Клини о совпадении классов регулярных и автоматных языков. Регулярный автомат, выводимость в регулярном автомате. Алгоритм построения регулярного выражения по регулярному автомату.
6.5.	Теорема Майхилла-Нероуда. Лемма о разрастании для автоматных языков. Примеры неавтоматных языков.

7. Операционные системы, параллельные и распределенные вычисления

7.1.	Операционные системы и их компоненты. Ядро операционных систем. Системные вызовы и их отличия от обычных библиотечных функций. Способы реализации системных вызовов (прерывания, sysenter, syscall).
7.2.	Целочисленная арифметика в представлении компьютера. Знаковые и беззнаковые значения, способы представления отрицательных значений. Целочисленное переполнение и его контроль. Длинная целочисленная арифметика.
7.3.	Вещественная арифметика. Представления с фиксированной и плавающей точкой. Стандарт IEEE754. Специальные вещественные значения, определенные стандартом IEEE754 и операции над ними.
7.4.	Процессы и потоки. Сходства и различия между ними. Реализация многозадачности и алгоритмы планирования задач в операционных системах.
7.5.	Проблема многопоточной синхронизации. Атомарные переменные и объекты блокировки. Свободные от блокировок (lock-free) структуры данных и их реализация.
7.6.	Интерфейс передачи сообщений (MPI) Существующие реализации, задачи MPI как среды программирования. Жизненный цикл MPI программы. Создание и завершение процессов. Организация потока ввода-вывода.
7.7.	Понятие ускорения и масштабируемости параллельных программ. Вертикальная и горизонтальная масштабируемость. Закон Амдала. Оценка эффективности параллельных программ. Ярусно-параллельная форма программы.
7.8.	Распределенные файловые системы. Роли элементов системы, обеспечение отказоустойчивости. Алгоритмы чтения и записи в распределенных файловых системах. Репликация данных.
7.9.	Модель вычислений MapReduce. Пары ключ-значение в реализациях MapReduce. Основные стадии вычислений и дополнительные элементы модели.

Соединение данных (операция Join) в модели MapReduce. Модель вычислений и
оптимизации данных.
Итеративные вычисления на больших объемах данных. Модель ленивых
вычислений и структура хранения данных в реализации Spark (RDD). Кэширование результатов вычислений и итеративные вычисления.
Распределенные диспетчеры сообщений. Репликация и реализация отказоустойчивости. Семантики доставки сообщений.
Степени изоляции транзакций. Принципы атомарности, согласованности, изолированности и устойчивости (правила ACID). Применение (commit) и отмена транзакций.
Теорема Фишера-Линч-Патерсона (FLP-теорема) без доказательства, САР-теорема и их применение. Распределенные системы хранения конфигураций.
Иерархическая и сетевая модели данных: свойства, сходства и различия, достоинства и недостатки.
Реляционная модель данных. Основные понятия реляционной модели данных. Реляционная алгебра. Операции реляционной алгебры.
Нормальные формы. Перечислить все. Определения нормальных форм (до нормальной формы Бойса-Кодда включительно). Потенциальные, первичные, внешние ключи. Ссылочная целостность базы данных.