Kalman filter - for nonlinear systems Execise

Torben Knudsen

Given the following scalar system

$$\begin{split} x_k &= a \sin(x_{k-1} + \varphi_f) + b u_{k-1} + w_{k-1} \\ z_k &= \sin(cx_k + \varphi_h) + v_k \\ w &\in \text{NID}(0,Q) \ , \ v \in \text{NID}(0,R) \ , \ x_0 \in \text{N}(\hat{x}_0,P_0) \end{split}$$

assume $a, b, \varphi_f, c, \varphi_h, Q, R, x_0, P_0$ to be know.

- 1. For the system above, write the algorithm for the extended Kalman Filter.
- 2. The system can be simulated with the program NLSim.m. Here parameters are also given.
- 3. Try to program the EKF and make it work. If you don't succeed use the one in EKF.m. For comparision a linear KF is found in KF.m. To run these programs without errors you also need XCorrtk.m.
- 4. Compare and explain the performance of the EKF and linear KF for:
 - (a) Initial parameters.¹

$$a = 0.95$$
, $k = 1$, $b = k(1 - a)$, $c = 1$, $\varphi_f = 0$, $\varphi_h = 0$, $f_u = 0.02$

- (b) $\varphi_h = \frac{\pi}{16}$.
- (c) $\varphi_f = \frac{\pi}{16}$.
- (d) c = 10.

 $^{^{1}}f_{u}$ is the frequency for the square wave used as input in the simulation in NLSim.m.