5	
<u>6</u>	
I	

CURRENT: March 1982 (1 bar)

ರರರದರ ರರದರ

ರರದದರೆ ದರದದರ

ರರದ್ದರ ದರದ್ದರ

99.811 101.890 103.969 106.047 108.126 111.2283 111.2283 111.4362 116.440

185 172 185.575 185.971 186.360 186.741 187.116 187.845 187.845 188.201

20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786

5200 5200 5300 5300 5500 5600 5800 5900

167.437 167.785 168 128 168.465 168.797

165.601 165.981 166.355 167.082

												IIO	1-(, ~	.147	46	11	٠.	LIV	10	011	i 6 i	VIIV	<i>/</i> /\L		~ .	J 1 1	_0	,				
He ₁ (ref)	• = 0.1 MPa	log Kr	00	ರ ರ	o.	ರ ರ	ರ ರ	o ,	o o o	တ်တ်ဝ		00		ó	00	00	ರ	jo	ರ ರ	00	 : o o	0	o o .	ರ ರ ರ	00	್ ರ	ರ ರ	00	<i>i</i> o	o o	o o	ರ ರ	o' 0
	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k1-mol ⁻¹	δ,6	00	ರರ	ó	ರ ರ	ဝဝ	o i	o o .	ರ ರ ರ	်ဝံ	00	ooo	i oʻ	o' c	်ဝံဝံ	oʻ	ತ ರ	ರ ರ	o' c	ರರ	0	ರ ರ	ರ ರ ರ	Ö	ာ် ဝံ	ರ ರ	o' c	ာ် တံ	ರ ರ	ರರ	ರ ರ	o o
	Standard Stat	$\Delta_i H^{\bullet}$	00	ာ် စံ	oʻ	ರ ರ	00	o ·	o o .	ರರಂ	ó	o o	; o c	ö	o' c	600	ರ	် ဝံ	o o	o' c	်ဝဝ	ó	o o	ರ ರ ರ	Ö	ာ်ဝံ	ဝဝ	o' c	oo	ဝ ဝ	o o	ರ ರ	o 0
	×	$H^{\bullet}-H^{\bullet}(T_i)$	-6.197 -4.119	-2.040 -1.001	oʻ	0.038	2.117 3.156	4.196	8.353	10.431 12.510	16.667	18.746	22.903	27.060	29.139	33.296	37 453	41.610	43.689	47.846	\$2.004 \$4.082	56.161	58.239 60.318	62.397 64.475 66.554	68.632	72.790	74.868 76.947	79.025	83.183	85.261 87.340	89.418 91.497	93.576 95.654	97.733
	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $1 \cdot \text{K}^{-1} \text{mol}^{-1}$	$S^{\circ} - [G^{\circ} - H^{\circ}(T_{\bullet})]T$	INFINITE 144.632	128.053	126 152	126.152 126.405	126.968	128.507	130.231	133.629	138.135	139.475	141 941	144 163	145.196	147.124	148.893	150.528	151,300 152,045	152.765	154 135	155.422	156.037	157.215 157.781 158.331	158.867	159.901	160.399	191 191	162.280	162.726 163.161	163.588	164.417 164.819	165.214
	mperature J·K-'mol-'	S -{G	0.	122.491	126.152	126.281 129.485	132,260	136.899	140.688	149.116	153.288	155 096	158,300	161.076	162.336	164.648	166.728	168 619	169.504 170.352	171 168	173.438	174.142	174.824	176.123 176.74 17.346	177.932	179.056	179.596 180.122	180.635	181.625	182,103 182,570	183.027	183.912 184.340	184.760
(e)	eference Te	೮	20.786	20.786 20.786	20.786	20.786 20.786	20.786	20.786	20.786	20.786 20.786	20.786	20.786	20.786	20.786	20.786	20.786	20 786	20 786	20.786 20.786	20.786	20.786	20.786	20.786 20.786	20.786 20.786 20.786	20.786	20.786	20.786 20.786	20.786	20.786	20.786 20.786	20.786	20.786 20.786	20.786
Helium (He)	Enthalpy B	7 /K	° <u>8</u>	ន្តន	298.15	క్రస్ట	\$ 3	200	88	888	801	200	95	0091	929	200	2100	2300	2400 2500	2600	2800	3000	3200	8 8 8	3600	3808	3300 4000 4000	4100	4.4 9.06 9.00 9.00 9.00 9.00 9.00 9.00 9.00	4 4 00 4500	4600 4700	4 4 4 4 6 6 6 7 6 7 6 7 7 7 8 7 8 7 8 7 8 7 8 7	2000
$A_r = 4.00260$		$\Delta_t H^0(0 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$	$\Delta_f H \ (296.13 \text{ K}) = 0 \text{ KJ mol}$						9 A II wood covered leaved bear observed	asonable method of filling in these missing	properties to 6000 K. This is undoubted	fround state. I neterone, we first the ground ion of different fill and cutoff procedures.	is except for two minor differences. First	, whereas the CODATA recommendation rate gases arise due to the use of clichtly	es, this table agrees within the estimate	il.12 The estimated uncertainty is due to	Boltzmann statistics. In fact helium is	l except at extremely low temperature.101	gher temperatures. Since C_p° is the most sensitive At temperatures below approximately 50 K the			sonably accurate, although it has not bee	us low value, the reference state for heliur	ô	ular 467, Volume I, 1949].	0048, (1978).	Flements", American Society for Metals				3rd ed., Volume I, Nauka, Moscow, (1978).		Properties of Helium, Israel Program fo
REFERENCE STATE	0 to 6000 K Ideal Monatomic Gas		Flactonic I avale and Organium Wainhie	State \(\epsilon\), cm ⁻¹ \(\epsilon\)	1.50 0				noticities in tolean from Moore land Moore	re missing. Our calculations indicate that any re	n function, has no effect on the thermodynamic	rexerted tevel is over 155000 time above the grant experience of excited states and utilizar	exactly with recent CODATA recommendation	inis table uses a standard—state pressure of 1 bar f the order of 0 001_0 004 [.K - 1.mol-1 for the	1 J·K -1-mol-1. Considering these minor chang	ride et al., 5 Gurvich et al., and Wagman et	mixing constants, which are oxise on the 1991 re calculated assuming that helium gas obeys	ermal properties between the two are very sma	0.004 J·K ⁻¹ mol ⁻¹ and will be less at higher to are well within the stated uncertainty. At ter	istein statistics should be used.		om Hultgren et al. This value should prove rea	or the convenience of the reader. As a result of the	this may direct hom the choice of oursi authors.	3S-35. Volume I, (1970) [Reprint of NBS Circ	SR-TR-78-0960, Contract No. F44620-75-1-	oc of the		ordon, NASA SP-3001, (1973).	n. 55, 1101 (1983). of Data 2 663 (1973)	perties of Individual Substances,"	.1973). III, New York, 95 (1962).	rozova, Thermodynamic and Thermophysical
Helium (He)		IP(He, g) = 198310.76 \pm 0.02 cm ⁻¹	ion: N·t 700:0 = 761:071 = (N 61:067) 6				Heat of Formation Zero by definition.	•	Heat Capacity and Entropy Information on the Apparation and Assessing and Assessing Assessing to the Apparation and Assessing the Apparation and Assessing to the Apparation and Assessing the Ass	through n=4 but above that many predicted levels are missing. Our calculations indicate that any reasonable method of filling in these missing.	levels and cutting off the summation in the partition function has no effect on the thermodynamic properties to 6000 K. This is undoubtedly	a result of the right energy of these revers, the first excited rever is over 155000 till above the ground state of the resiston to higher temperatures may require consideration of excited states and utilization of different fill and cutoff procedures.	The thermodynamic functions at 298.15 K agree exactly with recent CODATA recommendations except for two minor differences. First	the entropy differs by (1.1044-1.4. mid) execuse mis alone uses a standard-state pressure or 1 par, whereas the Continentations are because on 1 par, whereas the Continentations are because on 1 par, whereas the Continentations are because on 1 par continents are pressured in the time of clightly are because on 1 parts covered arrives in the time of clightly are because on 1 parts covered arrives the continents are presented arrives are	different values for R; this table uses R = 8.31441	uncertainty with those by Hultgren et al., McBride et al., Gurvich et al., and Wagman et al. 12 The estimated uncertainty is due to	uncertaintes in the relative atonite mass and informental constants, which are cased on the 1901 state and the Transfer and the thermodynamic functions reported here are calculated assuming that helium gas obeys Boltzmann statistics. In fact helium is a	Bose-Einstein gas. However, the differences in thermal properties between the two are very small except at extremely low temperature. 1011	At 298.15 K the difference in C_p^s amounts to only 0.004 J·K ⁻¹ mol ⁻¹ and will be less at higher temperatures. Since C_p^s is the most sensitive of the themodynamic properties the differences are well within the stated uncertainty. At temperatures below approximately 50 K the	differences may become significant and Bose-Einstein statistics should be used.	Phase Data	The boiling point, 4.215 K (1 atm), is taken from Hultgren et al. This value should prove reasonably accurate, although it has not been	evaluated by the present authors, and is furnished for the convenience of the reader. As a result of this low value, the reference state for helium	IS CHOSCH TO UP THE RECAI BY AT All TOTHFOLDES. THIS HAY UNITED HOLD THE CHOICE OF OURSE	references ¹ C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Volume I. (1970) [Reprint of NBS Circular 467, Volume I, 1949]	² J. R. Downey, Jr., The Dow Chemical Co., AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).	 D. Cox, ICSU-CODATA Task Group, J. Chem. Thermodyn. 10, 903 (1978). D. Halleman, D. D. Darrig, 27 (1) "Salared Values of the Thermodynamic Properties of the 	Park, Ohio, (1973).	⁵ B. J. McBride, S. Heimel, J. G. Ehlers and S. Gordon, NASA SP-3001, (1973).	N. E. Holden and R. L. Martin, Pure Appl. Chem. 55, 1101 (1983). ⁷ E. P. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Days 2, 663 (1973).	L. V. Gurvich, I. V. Veits, et al., "Thermodynamic Properties of Individual Substances,"	W. C. Martin, J. Phys. Chem. Ref. Data 2, 257 (1973). ¹⁰ N. Davidson, Statistical Mechanics, McGraw-Hill, New York, 95 (1962).	¹ N. V. Tsederberg, V. N. Popov and N. A. Morozova, Thermodynamic and Thermophysical Properties of Helium, Israel Program for

Phase Data

"N. V. Tsederberg, V. N. Popov and N. A. Morozova, Thermodynamic

²D. D. Wagman, W. H. Evans et al., J. Phys. Chem. Ref. Data 11, Supp. 2, 39 (1982). Scientific Translations, Jerusalem, (1971), avail. NTIS.

PREVIOUS March 1977 (1 atm)

S°(298 15 K) = 131.913 ± 0.002 J·K⁻¹·mol⁻¹ $IP(He^*, g) = 438908.85 \pm 0.02 \text{ cm}^{-1}$

A.H°(f) V. 1 - 2377	7 - (VO) 13-	4pt (298.13 N)	

IDEAL GAS

Helium, Ion (He*)

4	O	25.5
%	e,, cm ⁻¹	State
ıghts	Electronic Levels and Quantum Weights	Electronic
HΔ		

Heat of Formation

ionization limit is converted from cm-1 to kJ·mol-1 using the factor, 1 cm-1 = 0 01196266 kJ·mol-1, which is derived from the late heat of formation. Rosenstock et al. have summarized additional ionization potential and appearance potential data. Gurvich et al. a and appearance potential data. Gurvich et al. a Wagman et al. adopted the same ionization potential, but the use of slightly different fundamental constants by Wagman et al. a result The ionization limit of neutral helium (198310.76 \pm 0.02 cm⁻¹) reported by Moore and Martin, 10 is adopted as $\Delta_t H^0(0 \text{ K})$ for He*(g). T CODATA fundamental constants. The uncertainty in the ionization limit corresponds to an uncertainty of less than 0.001 kJ·mol-1 in t in a heat of formation difference of 0.021 kJ·mol-1

He(r), and e⁻(r) ΔH^2 (He \rightarrow He⁺ + e⁻, 298 15 K) differs from a room temperature threshold energy due to inclusion of these enthalpies as to threshold effects discussed by Rosenstock *et al.* 3 ΔH^2 (298.15 K) should be changed by -6.197 kJ-mol⁻¹ if it is to be used in the in ΔH^0 (He⁺, g. 298 15 K) is obtained from ΔH^0 (He, g. 0 K) by using IP(He) with JANAF² enthalpies H^0 (0 K)– H^0 (298.15 K) for He⁴ convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

functions to 6000 K. This is a result of the high energy of these levels; the first excited level is over 329000 cm-1 above the ground sta reasonable method of including these levels and cutting off the summation in the partition function⁵ has no effect on the thermodynan uncertainty in S'(298.15 K) is due to uncertainties in the relative tonic mass and fundamental constants. Extension of these calculations abo The information on electronic energy levels and quantum weights given by Moore is complete to n=14. Our calculations indicate that a Since inclusion of these upper levels has no effect on the thermodynamic functions (to 6000 K) we list only the ground state. The report 6000 K may require consideration of the higher excited states and use of different fill and cutoff procedures.5

The thermodynamic functions reported here agree with those of Green et al., Hilsenrath et al., and Gurvich et al. except for one or to minor differences. First, the entropy differs by 0.1094 J. K⁻¹ mol⁻¹ because thus table uses a standard-state pressure of 1 bar, whereas the cite references used a pressure of 1 atm. Second, smaller differences arise from the use of slightly different values for the fundamental consta and the relative tonic mass

References

¹C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-34, 8 pp. (1970).
²E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (197

R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

¹JANAF Thermochemical Tables. He(r), 3-31-82; e⁻(r), 3-31-82.
⁴C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Volume I, (1970) [Reprint of NBS Circular 467, Volume I, 1949].

¹⁰W. C. Martin, J. Phys. Chem. Ref. Data 2, 257 (1973).
¹¹D. D. Wagman, W. H. Evans et al., J. Phys. Chem. Ref. Data 11, Supp. 2, 39 (1982).

Gurvich, I. V. Veits et al., "Thermodynamic Properties of Individual Substances", 3rd ed., Volume I, Nauka, Moscow, (1978). R. Downey, Jr., The Dow Chemical Co., AFOSR-TR – 78–0960, Contract No. F44620-75-1-0048, (1978).
 W Green, D. E. Poland, and J. L. Margrave, University of Wisconsin, Report AD–275542 (avail. NTIS), (1961).
 Hilsenrath, C. G. Messina, and W. H. Evans, U.S. Nat. Bur. Stand., Report AD–606163 (avail. NTIS), (1964).
 V. Gurvich, I. V. Veits et al., "Thermodynamic Properties of Individual Substances", 3rd ed., Volume I, Nauka, 9H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp (1977)

$72.524 \pm 0.001 \text{ kJ·mol}$ $(3) = [2378.522] \text{ kJ·mol}^{-1}$	Enthalpy R	eference Te	mperature J·K ⁻¹ mol ⁻¹	Enthalpy Reference Temperature = T, = 29&15 K		Standard State Pressure	te Pressure = p	o" = 0.1 MPa
	<i>1</i> /K	ប	S -{G	-[G*-H*(T _t)]/T	$H^{\bullet}-H^{\circ}(T_{t})$	$\Delta_{\rm r}H^{ullet}$	Φ_{iG}^{\bullet}	log K,
	0 00	0. 20.786	0.	INFINITE 150.394	-6.1 <i>97</i> -4119	2372.324		
	8 8 8 8	20 786 20.786	123 614	133.815	-2040			
	298 15	20.786	131.913	131.913	ő	2378.522	2370.549	-415.310
	88	20.786	132 042	131 914	0 038	2378.560	2370.499	-412,741
H ² (0 K) for He ² (g). The	\$	20.786	138 022	132.729	2.117	2380.639	2367.499	-309.164
derived from the latest	3 S	20.786	142.660	133.456	4.18 8.18	2381.678 2382.717	2363.794	-274.614
an 0.001 kJ·mol ⁻¹ in the	88	20 786	146 450	135.993	6.274	2384.796	2360.030	-205.459
ata. Gurvich et al.: and	88	20 786	152.430	137.721	8.353 10.431	2388.953	2355 738	-175.787
ייבקיונניו ניימיי ונאווינים	88	20 786 20.786	154.878	140.978	12.510	2391.032	2346.298	-136.176
1°(298.15 K) for He*(g).	801	20.786	159.049	143.897	16.667	2395 189	2335.926	-110.924
in of these enthalpies and	38	20 786	162.521	146.502	18.746	2397.267 2399.346	2324.794	-101.442 -93.411
מ נס כר מפכח ווו וויב וסוו	2 F 2 S 2 S	20 786 20.786	164.062 165.496	147.702 148.841	22.903	2401 425 2403.503	2318.981	-86.522 -80.547
	0001	20.786	166.837	149.925	27.060	2405.582	2306.920	-75.313
ulations indicate that any	88	20.786	169.286	151.943	31.217	2409.739	2294.337	-66.580
t on the thermodynamic	200 200 200 200 200 200	20.786 20.786	170 409 171 476	152.885	33.296 35.375	2411.818 2413.896	2287.869 2281.292	-62.898 -59.581
	2100	20.786	172.490	154.655	37.453	2415.975	2274.611	-56.578
these calculations show	30.	20 786	174.381	156.289	41.610	2418.053	2260.955	-53.845
area careanana acon	7,400 7,200 7,000	20.786 20.786	175 265	157.062	43 689 45.768	2424.289	2253.990 2246.938	-49 057 -46.947
l' except for one or two	2600	20 786	176.929	158.527	47.846	2426.368	2239.803	-44.998
f I bar, whereas the cited	2800 7800	20.786 20.786	178.469	159.223	49.925 52.004	2428.446	2232.588	-43.192
c Initiativelital Constants	3000	20.786	179 199	160,550	54 082	2432.604	2217.930	-39.949
	3100	20 786	180.585	161.798	58.239	2436.761	2202.985	-37.120
	3300	20 786	181 245	162.3%	60.318	2438.839	2195.410	-35.836
	3400 3500	20.786	182.505	163.542	64.475	2442.997	2172.305	-33.493
	3600	20 786	183.693	164.629	68.632	2447.154	2164.482	-31.406
i, 1949].	3800	20.786 20.786	184.263	165.152	117.07 117.07	249.232	2156.602	-30.446
1).	96. 900 900	20.786 20.786	185.357 185.883	166.160 166.647	74.868	2453.390	2140.673	-28.671
10.000	4100	20 786	186.397	167.122	79.025	2457.547	2124.532	-27 067
ind, Michaelw, (1976).	430	20.786	187.387	168.042	83.183	2461.704	2108.187	-25.609 -25.609
	\$ \$0 8 \$0	20.786	187.864	168.487	85.261 87.340	2463.783 2465.861	2099.942 2091.650	-24.929 -24.279
	4600 700 700	20.786	188.788	169.350	89.418	2467.940	2083.311	-23.657
	4800	20.786	189.673	170.178	93.576	2472.097	2066.499	-22,488
	200S	20.786	190.102	170.580 170.975	95.654 97.733	2474.176 2476.254	2058.027 2049.513	-21.939
	2300	20.786	190 933	171.362	99.811	2478.333	2040.958	-20.904
	2300	20.786	191 733	172.116	103.969	2482.490	2023.725	-19.945
	250 250 250 250 250 250 250 250 250 250	20.786 20.786	192.121 192.503	172.483 172.844	106.047 108 126	2484.569 2486.647	2015.050 2006.336	- 19.492 - 19.055
	5600 5700	20.786	192.877	173.198	110.204	2488 726	1997.584	-18.633
	2800 2800	20.786 20.786	193.607	173.889	114.362	2492.883	1979.970	-17.832
	0009	20 786	194,311	174.558	118.519	2497 040	1962.213	-17.083
	PREVIOUS: March 1977 (1 Atm)	March 1977	(1 Atm)			8	RRENT Marc	CURRENT March 1982 (1 Bar)