(19) World Intellectual Property **Organization** International Bureau

(43) International Publication Date 18 August 2005 (18.08.2005)

PCT

(10) International Publication Number WO 2005/075605 A1

C09K 19/38, (51) International Patent Classification⁷: B81B 3/00

(21) International Application Number:

PCT/IB2005/050313

(22) International Filing Date: 26 January 2005 (26.01.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 04100405.2

EP 4 February 2004 (04.02.2004)

(71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BROER, Dirk, J. [NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). DE WITZ, Christiane, M., R. [BE/BE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). MOL, Grietje, N. [NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (74) Agents: TOL, Arie, J., W. et al.; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, .TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: FLEXIBLE FOIL MOVEABLE BY NON-MECHANICAL MEANS

2/075605 (57) Abstract: A foil moveable by non-mechanical means, such as light or heat, comprises an alternating array of first and second foil sections each resiliently and non-mechanically moveable between a flattened state and a bent state. The direction in which the first foil sections bend, when moved from the flattened to the bent state, is opposite to the direction in which the second foil sections bend when moved from the flattened to the bent state. When, in the flattened state, non-mechanically stimulating the first and second foil sections in unison, the first and second foil sections bend in opposite directions causing the foil to wrinkle, which results in a movement which is substantially linear. Using a different or removing the non-mechanical stimulus, the foil sections can be made to unbend resulting in a flattening and expansion of the foilto its original shape.