

DISTANCING LEARNING PROGRAMME

(Academic Session: 2019 - 2020)

PRE-MEDICAL: LEADER TEST SERIES / JOINT PACKAGE COURSE

TARGET: PRE-MEDICAL 2020

Test Type: MAJOR TEST # 01 Test Pattern: NEET(UG)

TEST DATE: 21 - 07 - 2020

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	1	3	1	3	4	3	2	3	2	4	3	4	4	2	2	2	1	3	3
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	4	2	1	3	3	2	1	2	2	1	3	3	4	1	2	3	3	2	2
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	4	1	2	3	3	3	4	4	2	3	2	1	2	4	3	3	2	4	4
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	3	4	3	2	3	4	4	1	1	4	3	3	4	4	4	2	3	4	2	1
Que.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	3	4	3	1	1	3	4	1	1	4	3	3	1	2	1	1	3	2	1	3
Que.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	2	4	1	2	3	4	2	4	2	4	3	1	2	3	2	2	4	1	3	3
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans.	3	3	1	2	3	2	4	3	ფ	1	4	1	3	4	2	2	3	4	1	2
Que.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans.	1	3	2	2	4	3	3	4	1	1	4	2	1	2	3	3	1	2	2	2
Que.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	2	2	4	2	3	1	2	2	4	3	2	2	2	3	3	3	2	4	1	2

(HINT - SHEET)

$$\mathbf{1.} \qquad \overrightarrow{\mathbf{A}} = 4\hat{\mathbf{i}} + 6\hat{\mathbf{j}}$$

$$\overrightarrow{B}=2\hat{i}+3\hat{j}$$

$$\frac{4}{2} = \frac{6}{3}$$
 \Rightarrow \vec{A} is parallel to \vec{B}

2.

$$\sqrt{2} \times \sin 30^{\circ} = 1 \times \sin i_2$$
$$i_2 = 45^{\circ}$$

$$\delta = i_1 + i_2 - A$$

= 0° + 45° - 30° = 15°

3.
$$B_{arc} = \frac{\mu_0 I \alpha}{4\pi R}$$

4.
$$F_{net} = 0$$

$$5. \qquad V_{rms} = \sqrt{\frac{3RT}{M_w}}$$

6. COLM
$$mu + 0 = 2mV_C$$

$$V_c = \frac{u}{2}$$

By COME
$$\frac{1}{2}(2m)V_{c}^{2} = 2mgh$$

$$h = \frac{v_c^2}{2g} = \frac{u^2}{8g} = \frac{1}{80}m = 1.25 \text{ cm}$$

7. use
$$t = \sqrt{\frac{2h}{g}}$$

8.
$$\Delta x = x_{7d} - x_{3d}$$

$$= \frac{13\lambda D}{2d} - \frac{5\lambda D}{2d} = \frac{4\lambda D}{d}$$

$$= \frac{4 \times 6.5 \times 10^{-7} \times 1}{1 \times 10^{-3}}$$

$$= 2.6 \text{ mm}$$

$$\mathbf{9.} \qquad r = \frac{\sqrt{2mqV_{acc.}}}{qB}$$

10.
$$\frac{1}{2}CV^2 = \text{m.s}\Delta T \Rightarrow V = \sqrt{\frac{2\text{ms}\Delta T}{C}}$$

Time period of mass oscillating on a spring is 11. independent of g.

12.
$$2T\ell$$
rest
 $(\pi r^2 \ell) \log$

for max dimetere $\cos \theta = 1$

$$2T\ell = \pi r^2 \ell \rho g$$

$$r = \sqrt{\frac{2T}{\pi g}} = \sqrt{\frac{2 \times 0.07}{\pi \times 8 \times 10^4}} = \sqrt{\frac{7 \times 10^{-6}}{12.56}} = 0.74$$

$$d = 2r = 1.48 \text{ mm}$$

13.
$$1 \text{ ms}^{-2}$$

 $20 \longleftarrow M \longrightarrow T$
 $F - T = m.a$

$$20 - T = 6 (1)$$

$$T = 14 N$$

Initially $P \to 4~N_0$; $Q \to N_0$ Half life $T_p = 1~min$; $T_Q = 2~min$ Let after time t number of nuclei of P and Q are

equal that is
$$\frac{4N_0}{2^{t/1}} = \frac{N_0}{2^{t/2}}$$

or
$$\frac{4}{2^{t/2}} = 1$$
 or $t = 4$ min

so at $t = 4 \min$

$$N_p = \frac{(4N_0)}{2^{t/2}} = \frac{N_0}{4}$$

at
$$t = 4$$
 min. $N_Q = \frac{N_0}{2^{4/2}} = \frac{N_0}{4}$

or no. of nuclei of R = $\left(4N_0 - \frac{N_0}{4}\right) + \left(N_0 - \frac{N_0}{4}\right)$

$$=\frac{9N_0}{2}$$

$$\mathbf{15.} \quad \mathbf{E} \cdot 2\pi \mathbf{r} = \left| \pi \mathbf{r}^2 \frac{\mathbf{dB}}{\mathbf{dt}} \right|$$

16.
$$E \propto r$$
V = $V_0(e^{-\lambda t})$
After 1 seconds

$$V_1 = 320(e^{-\lambda}) \Rightarrow 240 = 320(e^{-\lambda}) \Rightarrow e^{-\lambda} = \frac{3}{4}$$

After 2 seconds

$$V_2 = 320(e^{-\lambda})^2 = 320 \times \left(\frac{3}{4}\right)^2 m = 180 \text{ volts}$$

After 3 seconds

$$V_3 = 320 (e^{-\lambda})^3 = 320 \times \left(\frac{3}{4}\right)^3 = 135 \text{ volt}$$

For max. wavelength

$$\lambda = 2I$$

$$\lambda = 80 \text{cm}$$

Temperature on any scale can be converted into other scale by $\frac{x-LFP}{UFP-LFP}$ = Constant for all scales $\frac{x-20}{150-20} = \frac{60}{100} \implies x = 98^{\circ}C$

19. When KE is doubled, the stopping distance will be doubled for the same retarding force F.

20.
$$y = \overline{\overline{A} + \overline{B}} = AB$$

Given figure is equivalent to AND gate.

21. Pressure =
$$\frac{2I}{c}$$
, force = $\frac{2IA}{c}$

Momentum transferred in time $t = force \times t = \frac{2IAt}{c}$

Total energy E = IAt

So momentum transferred = $\frac{2E}{c}$

22.
$$I = \frac{4}{1+2+1+4} = \frac{1}{2} = 0.5 A$$

- 23. According to Kepler's second Law, equal areas are swept in equal intervals of time.
 As SCD = 2 area SAB, hence (t₁ = 2t₂)
- **24.** For A to B $V \propto T$, P = constant A to B is isobaric expansion For B to C, V = constant, $T \downarrow$ so $P \downarrow$ For C to A, T = const., $V \downarrow$ So option (1)

25.
$$\therefore \alpha = \frac{\tau}{I} = \frac{TR}{\frac{1}{2}MR^2} = \frac{2TR}{MR^2} = \frac{2T}{MR}$$

26.
$$|\vec{a}_{avg.}| = \frac{|\Delta \vec{v}|}{t} = \frac{2V \sin\left(\frac{180^{\circ}}{2}\right)}{\frac{\pi r}{V}} = \frac{2V^{2}}{\pi r}$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} - \frac{1}{12} = \frac{1}{-16}$$

$$v = 48 \text{ cm}$$

28. Force per unit length $F=\frac{\mu_0\,I_1\,I_2}{2\pi d}$

On 10 cm length of wire

$$F_{net} = (0.1) F = (0.1) \left[\frac{2 \times 10^{-7} \times 12}{2} - \frac{2 \times 10^{-7} \times 8}{3} \right]$$

$$\approx 6 \times 10^{-8} N$$

$$R = \frac{\rho \ell}{\Delta}$$

29.

30. Acceleration of car is

$$a = \frac{d^2x}{dt^2} = g\sqrt{3}$$

$$g_{eff.} = \sqrt{g^2 + (g\sqrt{3})^2} = 2g$$

$$T = 2\pi\sqrt{\frac{\ell}{g_{eff.}}} = \pi\sqrt{\frac{2\ell}{g}}$$

31.
$$V = K\sqrt{s}$$

$$\frac{ds}{dt} = K\sqrt{s}$$

$$\int_0^S \frac{1}{\sqrt{s}} ds = \int_0^t k dt$$

$$\sqrt{s} = \frac{kt}{2} \implies V = \frac{k^2t}{2}$$

By WET
$$W = \frac{1}{2}mv^2$$

$$= \frac{1}{2} m \left(\frac{k^4 t^2}{4} \right) = \frac{1}{8} m k^4 t^2$$

32.
$$4M/5 \xrightarrow{a} T T M/5 F$$

Equation of motion

$$F - T = \frac{M}{5} \times a \qquad \dots (1)$$

$$T = \frac{4M}{5} \times a \qquad \dots (2)$$

Solving (1) and (2)

$$T = 4 N$$

33. K.E. = $2 E_0 - E_0 = E_0$ (for $0 \le x \le 1$) $\Rightarrow \lambda_1 = \frac{h}{\sqrt{2mE_0}}$

K.E. =
$$2 E_0 \text{ (for x>1)} \Rightarrow \lambda_2 = \frac{h}{\sqrt{4mE_0}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{2}$$

34.
$$\varepsilon = \left| -L \frac{dI}{dt} \right| \Rightarrow 8 = L \propto \frac{4}{0.05}$$

35. During the growth of voltage in a C-R circuit the voltage across a capacitor at time t is given

by
$$V = V_0 \left(1 - e^{\frac{t}{CR}}\right)$$
 for the given circuit as per

given conduction at time t.

 $V = \frac{3}{4}$ th of the voltage applied across $C = \frac{3}{4}V_0$

So,
$$\frac{3}{4}V_0 = V_0 \left(1 - e^{\frac{t}{RC}}\right)$$

$$\Rightarrow e^{\frac{t}{RC}} = \frac{1}{4} \Rightarrow e^{\frac{t}{RC}} = 2^2$$

$$\Rightarrow$$
 t = 2RC ln 2

$$= 2 \times (2.5 \times 10^6) \times (4 \times 10^{-6}) \times (0.693) = 13.86 \text{ s}$$

 $v = a \sin (\omega t - kx)$ 36.

If it meets another wave producing a node at x = 0 then, it can be reflection at rigid end, then $y_r = a \sin (\omega t + kx + \pi) = -a \sin (\omega t + kx)$

- As mg = Buoyant force **37.** mg $\rho v_s g$, $(v_s = volume submerged)$ Here no change in m so v_s remain unchanged.
- 38. Net force towards centre = centripetal force

$$T - mg \cos \theta = \frac{mv^2}{r}$$

$$D = \frac{C}{r}$$

$$A = \frac{r}{r}$$

$$B = \frac{r}{r}$$

$$B$$

At point C; $\theta = 180^{\circ}$

$$\therefore \qquad T + mg = \frac{mv^2}{r}$$
or
$$mg < \frac{mv^2}{r}$$

For the positive half cycle of input the resulting network is shown below

$$\implies (V_0)_{\text{max}} = \frac{1}{2}(V_i)_{\text{max}} = \frac{1}{2} \times 10 = 5 \text{ V}.$$

 $V_r = 220 \text{ V}$, for device P, $I_p = 0.25 \text{ A}$

leads then voltage by angle $\pi/2$

It means R = 0, circuit is purely capacitive, $Z_1 = X_c$

For device Q, $V_r = 220V$

 $I_0 = 0.25$ A, & in same phase with applied voltage

So
$$Z_2 = R = X_C$$

If P & Q are series,

$$Z_{3} = \sqrt{R^{2} + X_{C}^{2}} = \sqrt{2} R = \sqrt{2} X_{C}$$

$$I_{3} = \frac{V_{r}}{\sqrt{2} R} = \frac{0.25}{\sqrt{2}} = \frac{1}{4\sqrt{2}}$$

$$\tan \phi = \frac{X_{C}}{R} = 1, \quad \phi = \frac{\pi}{4}$$

current leading in phase by $\frac{\pi}{4}$ with voltage.

41.
$$V_A - V_B = 1.5 \times 1$$
 $V_B - 2.5 \times 1 + 2 - V_D = 0$
 $V_A - V_B = 1.5$ $V_B - V_D - .5 = 0$
 $V_A - 0 = 1.5$ $0 - V_D = .5$
 $V_A = 1.5 \text{ V}$ $V_D = -0.5 \text{ V}$

42.
$$f' = f\left[\frac{v - v_0}{v - v_s}\right]$$

$$f' = f\left[\frac{v + v/s}{v}\right]$$

$$f' = \frac{6f}{5}$$

Percentage increase = $\frac{f'-f}{f} \times 100 = 20\%$

43.
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \implies \frac{T_2}{T_1} = \left(\frac{E_2}{E_1}\right)^{1/4} = \left(\frac{10^9}{10^5}\right)^{1/4} = 10$$
$$\implies T_2 = 10T_1 = 10 \times (273 + 227) = 5000 \, \text{K}$$

Moment of inertia of a cylinder about an axis passing through centre and normal to circular

face =
$$\frac{MR^2}{2}$$

Moment of inertia of a cylinder about an axis passing through centre and normal to its length.

$$= M \left[\frac{L^2}{12} + \frac{R^2}{4} \right]$$
But
$$\frac{MR^2}{2} = M \left[\frac{L^2}{12} + \frac{R^2}{4} \right]$$
or
$$\frac{R^2}{2} = \frac{L^2}{12} + \frac{R^2}{4}$$
or
$$\frac{R^2}{4} = \frac{L^2}{12}$$

$$\therefore \qquad \qquad L = \sqrt{3}R$$