Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа	К работе допущен
Студент <u>Васильев Александр Сергеевич Г</u>	Р <u>3217</u> Работа выполнен <u>а</u>
Векшин Арсений Иванович Р3216	В Преподаватель <u>Иванов В.Ю.</u>
Отчет принят	
Рабочий протокол и о	отчет по лабораторной

Изучение центрального соударения двух тел. Проверка второго	
Закона Ньютона.	
	-

работе №1.03

1. Цель работы.

Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.

Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

2. Задачи, решаемые при выполнении работы.

Расчет импульсов тел в каждом из опытов, относительных изменений импульса и энергии.

Вычисление силы натяжения нити при проведении опытов с разной массой тележек.

3. Объект исследования.

Упругие и неупругие соударения тележек.

Движение тележки под действием постоянной силы.

4. Метод экспериментального исследования.

Замер таких величин как: масса тележек, скорость тележек.

5. Рабочие формулы и исходные данные.

Для задания 1:

 m_1 – масса первой тележки, m_2 - масса второй тележки, v_{10} - скорость первой тележки до соударения, v_{1x} - скорость первой тележки после соударения, v_{2x} - скорость второй тележки после соударения, p_{10x} - импульс первой тележки до соударения, p_{1x} - импульс первой тележки после соударения, p_{2x} — импульс второй тележки после соударения, δ_p - относительное изменения импульса системы при соударении, δ_W - относительное изменения кинетической энергии системы при соударении, $\overline{\delta_p}$ и $\overline{\delta_W}$ - средние значения данных величин соответственно, погрешности данных величин -

 $\Delta\overline{\delta_p}$, $\Delta\overline{\delta_W}$; $\delta_W^{(T)}$ - теоретическое значение относительного изменения механической энергии.

$$p_{10x} = m_1 v_{10x}, \ p_{1x} = m_1 v_{1x}, \ p_{2x} = m_2 v_{2x}.$$

$$\delta_p = \Delta p_x / p_{10x} = \frac{\left(p_{1x} + p_{2x}\right)}{p_{10x}} - 1 \qquad \delta_W = \Delta W_{\kappa} / W_{\kappa 0} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$$

$$\Delta \overline{\delta}_{p} = t_{\alpha_{\text{aoa}},N} \sqrt{\frac{\displaystyle\sum_{i=1}^{N} \left(\delta_{pi} - \overline{\delta}_{p}\right)^{2}}{N(N-1)}} \; ; \; \Delta \overline{\delta}_{W} = t_{\alpha_{\text{aoa}},N} \sqrt{\frac{\displaystyle\sum_{i=1}^{N} \left(\delta_{Wi} - \overline{\delta}_{W}\right)^{2}}{N(N-1)}}$$

где $t_{\alpha_{\text{\tiny max}},N}$ – коэффициент Стьюдента для доверительной вероятности $\alpha_{\text{\tiny дов}}$ = 0,95

$$\delta_W^{({\scriptscriptstyle {\rm T}})} = -\frac{W_{{\scriptscriptstyle {\rm HOT}}}}{\underline{m_1 v_{10}^2}} = -\frac{m_2}{m_1 + m_2}$$

 v_{10} - скорость первой тележки до соударения, v - скорость системы тележек после неупругого соударения

 $p_{10} = m_1 v_{10}$ – импульс системы до соударения;

 $p = (m_1 + m_2)v$ – импульс системы после соударения;

$$\delta_p = \Delta p/p_{10} = \frac{p_1}{p_{10}} - 1$$
 — относительное изменение импульса;

 $\delta_W^{(3)}$ — экспериментальное значение относительного изменения механической энергии, вычисляемое по формуле

$$\delta_W^{(3)} = \Delta W_{\kappa} / W_{\kappa 0} = \frac{\left(m_1 + m_2\right) v_2^2}{m_1 v_{10}^2} - 1 ,$$

 $\delta_W^{(\tau)}$ — теоретическое значение относительного изменения механической энергии, вычисляемое по формуле

$$\delta_W^{(\tau)} = -\frac{W_{\text{not}}}{\underline{m_1 v_{10}^2}} = -\frac{m_2}{m_1 + m_2}$$

Для задания 2:

m – масса гирьки, v_1 - скорость тележки при прохождении первых ворот, v_2 - скорость тележки при прохождении вторых ворот, a - ускорение тележки, T- сила натяжения нити, M_1 - масса тележки, b – коэффициент наклона экспериментальной зависимости, $F_{\rm TP}$ – сила трения действующая на тележку.

$$a = \frac{(v_2)^2 - (v_1)^2}{2(x_2 - x_1)}, \quad T = m(g - a)$$

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2};$$

$$ma = mg - T$$

6. Измерительные приборы.

Таблица 1.

Наименование средства измерения	Прелел измерений	Пена деления	Класс точности	Погрешность
Линейка на рельсе	1,30 м	1 см/дел	_	0,5 см
ПКЦ-3 в режиме измерения скорости	9,99 м/с	0,01 м/с.	_	0,01 м/с
Лабораторные весы	250 г	0,01 г	_	0,01 г

7. Схема установки.

Рис. 1 Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Для задания 1:

Таблица №1.1

№ опыта	m ₁ , г	m ₂ , г	V _{10x} , M/C	V _{1x} , M/C	V _{2x} , M/C
1			0,47	0,46	0,06
2			0,44	0,43	0,06
3	51	47	0,48	0,48	0,06
4			0,45	0,44	0,07
5			0,45	0,4	0,07

Таблица №1.2

№ опыта	m ₁ , г	m ₂ , г	V _{10x} , M/C	V _{1x} , M/C	V _{2x} , M/C			
1			0,43	0,24	0,06			
2		98	98	98		0,45	0,28	0,09
3	51				0,48	0,29	0,06	
4				0,48	0,27	0,09		
5			0,45	0,29	0,11			

Таблица №2.1

№ опыта	m ₁ , г	m ₂ , г	V ₁₀ , M/C	v, m/c
1			0,43	0,21
2			0,43	0,21
3	54	50	0,44	0,21
4			0,44	0,21
5			0,47	0,23

Таблица №2.2

№ опыта	m ₁ , г	m ₂ , г	V ₁₀ , M/C	v, m/c
1			0,42	0,15
2			0,4	0,14
3	54	102	0,42	0,14
4			0,42	0,15
5			0,44	0,15

Таблица №4.1

№ опыта	р _{10х} , мН*с	р _{1х} , мН*с	р _{2х} , мН*с	$\delta_{ m p}$	δw
1	23,97	23,46	2,82	0,1	-0,03
2	22,44	21,93	2,82	0,1	-0,03
3	24,48	24,48	2,82	0,12	0,01
4	22,95	22,44	3,29	0,12	-0,02
5	22,95	20,4	3,29	0,03	-0,19

Таблица №4.2

№ опыта	р _{10х} , мН*с	р _{1х} , мН*с	р _{2х} , мН*с	δ_{p}	δω
1	21,93	12,24	5,88	-0,17	-0,65
2	22,95	14,28	8,82	0,01	-0,54
3	24,48	14,79	5,88	-0,16	-0,6
4	24,48	13,77	8,82	-0,08	-0,62
5	22,95	14,79	10,78	0,11	-0,47

Таблица №5.1

№ опыта	р ₁₀ , мН*с	р, мН*с	δ_{p}	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{(T)}$
1	23,22	21,84	-0,06	-0,54	
2	23,22	21,84	-0,06	-0,54	
3	23,76	21,84	-0,08	-0,56	-0,480769
4	23,76	21,84	-0,08	-0,56	
5	25,38	23,92	-0,06	-0,54	

Таблица №5.2

№ опыта	р ₁₀ , мН*с	р, мН*с	δ_p	$\delta_W^{(ext{ iny 9})}$	$\delta_W^{(T)}$
1	22,68	23,4	0,03	-0,63	
2	21,6	21,84	0,01	-0,65	
3	22,68	21,84	-0,04	-0,68	-0,653846
4	22,68	23,4	0,03	-0,63	
5	23,76	23,4	-0,02	-0,66	

Для задания 2:

Таблица №3.1

№ опыта	Состав гирьки	т, г	V1, M/C	V2, M/C
1	подвеска	1	0,25	0,33
2	подвеска + одна шайба	2	0,32	0,77
3	подвеска + две шайбы	3	0,36	0,9
4	подвеска + три шайбы	4	0,43	1
5	подвеска + четыре шайбы	5	0,46	1,09
6	подвеска + пять шайб	6	0,49	1,17
7	подвеска + шесть шайб	7	0,53	1,26

Масса тележки М₁=54 г

Таблица №3.2

№ опыта	Состав гирьки	т, г	V1, M/C	V2, M/C
1	подвеска	1	0,11	0,27
2	подвеска + одна шайба	2	0,23	0,57
3	подвеска + две шайбы	3	0,25	0,63
4	подвеска + три шайбы	4	0,27	0,64
5	подвеска + четыре шайбы	5	0,3	0,72
6	подвеска + пять шайб	6	0,34	0,82
7	подвеска + шесть шайб	7	0,38	

Масса тележки М₁=54г

Таблица №6.1

	. do. // da 11-011					
Nº						
опыта	m, г	а, м/с ²	Т, мН			
1	1	0,04	9,78			
2	2	0,38	18,88			
3	3	0,52	27,9			
4	4	0,63	36,76			
5	5	0,75	45,35			
6	6	0,87	53,7			
7	7	1,01	61,67			

Таблица №6.2

№ опыта	т, г	а, м/с ²	Т, мН
1	1	0,05	9,77
2	2	0,21	19,22
3	3	0,26	28,68
4	4	0,26	38,24
5	5	0,33	47,45
6	6	0,43	56,34
7	7	0,47	65,45

9. Графики.

Графики зависимостей T от а для случаев с разгоном неутяжеленной и утяжеленной тележки.

10. Окончательные результаты.

Доверительные интервалы для относительных изменений импульса и энергии при упругом соударении двух легких тележек и соударении легкой тележки с утяжеленной $\overline{\delta_p}, \, \overline{\delta_W}$

1)
$$\overline{\delta_p} = 0.094 \pm 0.1475$$

$$\overline{\delta_W} = -0.052 \pm 0.09805$$

2)
$$\overline{\delta_p} = -0.58 \pm 0.1475$$

$$\overline{\delta_W} = -0.576 \pm 0.089$$

Теоретическое значение относительного изменения механической энергии

$$\delta_{W}^{(T)} = -0.4796$$

Доверительные интервалы для относительных изменений импульса и энергии при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной $\delta_n, \delta_W^{(3)}$

1)
$$\delta_p = -0.068 \pm 0.667$$

$$\delta_W^{(9)} = -0.548 \pm 0.014$$

2)
$$\delta_p = 0.002 \pm 0.907$$

$$\delta_W^{(9)} = -0.65 \pm 0.2637$$

Масса M_1 неутяжеленной тележки и доверительный интервал этой величины $M_1 = 54 \pm ~1~\mathrm{r}$

Масса M_1 утяжеленной тележки и доверительный интервал этой величины $M_1 = 102 \pm 1 \, \mathrm{r}$

Величина силы трения:

$$F_{\rm TD} \approx 2.3204 \, H$$

11. Выводы и анализ результатов работы.

Теоретическое значение в экспериментальные доверительные интервалы не попадает. Табличные значения масс тележек совпадают с доверительными интервалами