AHORA SON MÁS! SISTEMAS DE ECUACIONES:

RESOLUCIÓN Y APLICACIONES

GRADO 9

CONTENIDOS

- 1 Sección 1: introducción
- 2 Sección 2: Solución de sistemas ecuaciones
 - Técnica de Igualación
 - Técnica de Sustitución
 - Técnica de Reducción
 - Técnica de Determinantes
- 3 Aplicaciones
- 4 Sección 3: Actividades

SECCIÓN 1: INTRODUCCIÓN

SITUACIÓN CLÁSICA!

Un zoológico tiene (bípedos) y bestias (cuadrúpedos). Si el zoológico tiene 60 cabezas y 200 patas ¿cuántas aves y bestias viven allí?

INDICADORES DE LOGROS

Propósito

Desarrollar y resolver sistemas de ecuaciones (2 o más) con incógnitas (2 o más) usando diversas técnicas de solución.

Desempeños

- Aplico las técnicas para resolver un sistema de ecuaciones (solución y verificación).
- Resuelvo problemas donde intervienen varias ecuaciones.

DEFINICIÓN: QUÉ ES UN SISTEMA DE ECUACIONES?

Es la reunión de dos o más ecuaciones con dos más incógnitas y cuya finalidad es encontrar un conjunto de soluciones. Las soluciones pueden ser:

■ <u>Simultáneas</u>, cuando sólo hay un conjunto de soluciones. Ejemplo: sistema 2×2

$$A + B = 60,$$

 $2A + 4B = 200$

■ <u>Indeterminadas</u>, cuando hay muchos (infinitos!) conjuntos de soluciones. Ejemplo: sistema 1×3

$$x + y + z = 3$$

USOS Y APLICACIONES

Figura: ¿Para que sirven?

- Física: movimiento uniforme, equilibrio fuerzas
- Electricidad: circuitos simples
- Computación y programación: solución de muchas ecuaciones!

USOS Y APLICACIONES

Figura: ¿Para que sirven?

Figura: Ejemplo de circuito simple.

TÉCNICAS DE SOLUCIÓN

El modo o procedimiento para encontrar la solución a un sistema de ecuaciones depende de la cantidad de ecuaciones e incógnitas; existen diversas técnicas a nivel de secundaria y superior adecuadas para cada situación o problema a resolver. Aunque, en esencia como herramienta fundamental es necesario el dominio completo en la solución de una simple ecuación. Las técnicas (métodos) a abordar son:

- Igualación
- Sustitución
- Reducción
- Determinantes (matrices)
- Gráfico

SECCIÓN 2: SOLUCIÓN DE SISTEMAS

ECUACIONES

IGUALACIÓN

Tal y como lo menciona el título de esta técnica, se trata de igualar las ecuaciones respecto a una incógnita para luego despejar la otra incógnita.

Procedimiento

- 1. Despejar una variable (quizás la más simple).
- Igualar ambas ecuaciones despejadas según la incógnita despejada.
- 3. Resolver la ecuación simple para hallar la primera incógnita.
- 4. Reemplazar la incógnita hallada en una de las ecuaciones (quizás la más simple) y encontrar la siguiente incógnita.
- 5. Verificar las soluciones halladas.

EJEMPLO DE IGUALACIÓN

Problema. Resolver el sistema 2x2

$$\begin{cases} 8x - 7y = 5, \\ 6x - 3y = 6 \end{cases}$$

Solución. Despejar la x,

$$x = \frac{5 + 7y}{8}$$
$$x = \frac{6 + 3y}{6}$$

igualar,

$$\frac{5+7y}{8} = \frac{6+3y}{6}$$
$$6(5+7y) = 8(6+3y)$$

EJEMPLO DE IGUALACIÓN

resolver la ecuación simple,

$$30 + 42y = 48 + 24y$$

 $y = 1$

Y... reemplazar en una ecuación, para hallar x

en una ecuación, para nallar
$$x$$

$$x = \frac{6+3(1)}{6} = \frac{6+3}{6} = \frac{9}{6} = \frac{3}{2}$$

$$x = \frac{3}{2}$$

Luego, la solución es

$$\begin{cases} x = \frac{3}{2}, \\ y = 1 \end{cases}$$

Sustitución

Aquí su esencia es <u>sustituir</u> una de las incógnitas dentro de otra ecuación para luego despejar la otra incógnita.

Procedimiento

- Tomar una incógnita para despejar, eligiendo aquella en donde una sea múltiplo de la otra y despejando dentro de las ecuaciones la de menor número.
- 2. Sustituir la incógnita despejada en la otra ecuación.
- 3. Resolver la ecuación simple para hallar la primera incógnita.
- 4. Reemplazar la incógnita hallada en una de las ecuaciones y encontrar la siguiente incógnita.
- 5. Verificar las soluciones halladas.

EJEMPLO DE SUSTITUCIÓN

Problema. Resolver el sistema 2×2

$$\begin{cases} 3x + 5y &= 7 \\ -6x + y &= 8 \end{cases}$$

Solución. Despejar x de la primera, pues el coeficiente es menor y múltiplo de -6

$$x = \frac{7 - 5y}{3}$$

Ahora, <u>sustituir</u> en la segunda para obtener y

$$-6\left(\frac{7-5y}{3}\right) + y = 8$$

$$\frac{-6(7-5y)}{3} + y = 8$$

$$-2(7-5y) + y = 8$$

$$-14 + 10y + y = 8$$

EJEMPLO DE SUSTITUCIÓN

$$11y = 22$$

 $y = 2$

De nuevo, sustituyendo y = 2 en la ecuación de x despejada

$$X = \frac{7 - 5(2)}{3} = \frac{7 - 10}{3} = \frac{-3}{3}$$
$$X = -1$$

Por tanto, el conjunto solución es

$$\begin{cases} X &= -1 \\ y &= 2 \end{cases}$$

REDUCCIÓN

En está técnica los coeficientes de una misma incógnita son reducidos a un número común para facilitar la eliminación de una incógnita y hallar rápidamente la otra incógnita; una escritura ordenada por columnas facilita el desarrollo y entendimiento de está técnica. Por ejemplo, un sistema 3x3

Es apropiada cuando el sistema es superior al 2x2 o cuando hay coeficientes decimales.

REDUCCIÓN

Procedimiento

- 1. Escribir ordenadamente las ecuaciones por columnas.
- 2. Eliminar una de las incógnitas; para ello una de la ecuaciones (o ambas) se multiplica por un número adecuado para eliminar una incógnita; la finalidad es que al operar los coeficientes de la incógnita estos se anulen. Tales números pueden hallarse:
 - 2.1 por simple observación.
 - 2.2 por trocamiento de números
 - 2.3 por mínimo común múltiplo cuando los coeficientes no son tan simples.
- 3. Resolver la ecuación simple para hallar la primera incógnita.
- 4. Repetir el esquema anterior para hallar la otra incógnita o reemplazar la incógnita hallada en una de las ecuaciones.
- 5. Verificar las soluciones halladas.

EJEMPLO DE REDUCCIÓN

Problema. Resuelve

$$\begin{cases} x - 2y = 8 \\ -3x + 4y = -18 \end{cases}$$

Solución. El sistema se escribe en forma ordenada por columnas

$$\begin{array}{rcl}
x & -2y & = & 8 \\
-3x & +4y & = & -18
\end{array}$$

Reducir la incógnita x multiplicando la primera ecuación por 3 (toda!), resolviendo las operaciones por columnas

$$\begin{array}{rcl}
3x & -6y & = & 24 \\
-3x & +4y & = & -18 \\
\hline
& -2y & = & 6 \\
& y & = & -3
\end{array}$$

EJEMPLO DE REDUCCIÓN

Similarmente, para <u>reducir</u> la incógnita y la primera ecuación se multiplica por 2

$$\begin{array}{rcl}
2X & -4y & = & 16 \\
-3X & +4y & = & -18 \\
\hline
-X & = & -2 \\
X & = & 2
\end{array}$$

La solución del sistema es

$$\begin{cases} x = 2 \\ y = -3 \end{cases}$$

DETERMINANTES

Determinante: definición

Se denomina <u>determinante</u> a un número que es obtenido mediante la resta del producto de diagonales en un arreglo cuadrado de 2 filas y 2 columnas.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Ejemplos

$$\begin{vmatrix} 3 & 1 \\ -1 & -2 \end{vmatrix} = 3(-2) - 1(-1) = -6 - (-1) = -6 + 1 = -5$$
$$\begin{vmatrix} 9 & 11 \\ 6 & -5 \end{vmatrix} = -45 - 66 = -111$$

DETERMINANTES

Procedimiento (Regla de Cramer)

- 1. Escribir ordenadamente las ecuaciones como arreglos cuadrado 2×2 y en columna; el arreglo 2×2 se llama **A** y la columna como **b**.
- 2. Hallar el determinante de A: det A.
- 3. Hallar el determinante det \mathbf{A}_{x} del arreglo \mathbf{A} , pero cuya primera columna es reemplazada por la columna \mathbf{b} .
- 4. Hallar el determinante det \mathbf{A}_y del arreglo \mathbf{A} , pero cuya segunda columna es reemplazada por la columna \mathbf{b} .
- 5. Las soluciones del sistema simplificadas son

$$x = \frac{\det \mathbf{A}_x}{\det \mathbf{A}}, \quad y = \frac{\det \mathbf{A}_y}{\det \mathbf{A}}$$

6. Verificar las soluciones halladas.

EJEMPLO DE DETERMINANTES

Problema. Hallar las soluciones del conjunto de ecuaciones

$$\begin{cases}
-5x + 7y &= -7 \\
2x - 3y &= 2
\end{cases}$$

Solución. El sistema en forma de arreglos se escribe

$$\underbrace{\begin{pmatrix} -5 & 7 \\ 2 & -3 \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} -7 \\ 2 \end{pmatrix}}_{\mathbf{h}}$$

Hallar los respectivos <u>determinantes</u> <u>manejando</u> con atención las cantidades negativas. Tener en cuenta que los productos diagonales <u>inician desde el número superior izquierdo</u> del arreglo.

EJEMPLO DE DETERMINANTES

$$\det \mathbf{A} = \begin{vmatrix} -5 & 7 \\ 2 & -3 \end{vmatrix} = 15 - 14 = 1$$

$$\det \mathbf{A}_{X} = \begin{vmatrix} -7 & 7 \\ 2 & -3 \end{vmatrix} = 21 - 14 = 7$$

$$\det \mathbf{A}_{Y} = \begin{vmatrix} -5 & -7 \\ 2 & 2 \end{vmatrix} = -10 + 14 = 4$$

Finalmente las soluciones son:

$$x = \frac{\det \mathbf{A}_{x}}{\det \mathbf{A}} = \frac{7}{1} = 7, \quad y = \frac{\det \mathbf{A}_{y}}{\det \mathbf{A}} = \frac{4}{1} = 4$$

Este método es apropiado para resolver sistemas con coeficientes fraccionarios o decimales, pues su desarrollo se basa en multiplicaciones y sumas algebraicas. Incluso, puede extenderse a sistemas 3×3 modificando la forma de evaluar los determinantes.

Ejemplos

APLICACIONES

CIRCUITOS ELÉCTRICOS Y LA LEY DE OHM

Figura : Circuito de 3 tramos y 2 mallas.

- Ley de Ohm: V = IR
- ¿Cuál es el valor de la corriente I₁ y I₂ que circula por cada malla?

- 3 tramos 2 mallas + 1 = 2 corrientes desconocidas
- Planteamiento de la ley:

malla 1:
$$II_1 + 10(I_1 - I_2) = -7$$

malla 2: $15I_2 + 10(I_2 - I_1) = 5$

Problema a resolver:

$$\begin{pmatrix} 11 & -10 \\ -10 & 25 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \end{pmatrix}$$

SECCIÓN 3: ACTIVIDADES

Resolver por el método de igualación:

1.

$$\begin{cases} x + 6y = 27, \\ 7x - 3y = 9 \end{cases}$$

2.

$$\begin{cases} 3x - 2y = -2, \\ 5x + 8y = -60 \end{cases}$$

3.

$$\begin{cases} 7x - 4y = 5, \\ 9x + 8y = 13 \end{cases}$$

$$\begin{cases} 9x + 16y = 7, \\ 4y - 3x = 0 \end{cases}$$

$$\begin{cases} 7X + 9y = 42, \\ 12X + 10y = -4 \end{cases}$$

Resolver y verificar las ecuaciones:

1. $\begin{cases} 2a - 5b = 23, \\ 3a + b = 9 \end{cases}$

2.

$$\begin{cases} 3(2x+y) - 2(y-x) = -4(y+7), \\ 3(2y+3x) - 20 = -53 \end{cases}$$

- Un número es cuatro menos que otro. La suma de los dos números es cuatro veces su diferencia. Hallar los números.
- 4. En un rectángulo la razón altura a base es ³/₄. Si el perímetro es de 42 metros, ¿cuáles son sus medidas?

Resolver cada ecuación con su <u>verificación</u> usando el método de sustitución.

1.

$$\begin{cases} 2m+n = 6 \\ 4m+3n = 14 \end{cases}$$

2.

$$\begin{cases} 3h - 2k &= -4 \\ 2h + k &= 2 \end{cases}$$

- 3. En un triángulo rectángulo, uno de sus ángulos agudos es 12 grados mayor que el otro. ¿Cuánto miden sus tres ángulos?
- 4. Hallar un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial.

- 1. Resolver y verificar los puntos de la actividad 1 usando determinantes.
- 2. Con dos camiones cuyas capacidades de carga son respectivamente de 3 y 4 toneladas, se hicieron en total 23 viajes para transportar 80 toneladas de harina. ¿Cuántos viajes realizó cada camión?

REFERENCIAS

J. A. BALDOR.

ALGEBRA.

Grupo Editorial Patria, 1983.

J. M. GUTIÉRREZ.

SUPERMAT 9.

Editorial Voluntad, 2000.

BACKUP FRAME

This is a backup frame, useful to include additional material for questions from the audience.