(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

(10) International Publication Number WO 02/081722 A2

C12P 13/08 // (51) International Patent Classification7: (C12P 13/08, C12R 1:19)

(21) International Application Number: PCT/EP02/02421

(22) International Filing Date: 6 March 2002 (06.03.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

101 16 518.8

3 April 2001 (03.04.2001)

(71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).

(72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). HERMANN, Thomas; Zirkonstrasse 8, 33739 Bielefeld (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS USING STRAINS OF THE FAMILY ENTEROBACTE-RIACEAE THAT CONTAIN AN ATTENUATED ACEA GENE

(57) Abstract: The invention relates to a process for the production of L-amino acids. in particular L-threonine, in which the folle wige that where we will also it we have a point and laterages from soft to demily. The each settlifued as provisionly the define Hearming acid, in which the aceA gene or nucleotide sequences coding therefor are attenuated, in particular are switched off; b) enrichment of

the L-amino acid in the medium or in the cells of the bacteria; and c) isolation of the L-amino acid.

BEST AVAILABLE COPY

WO 02/081722 PCT/EP02/02421

Process for the Production of L-Amino Acids using Strains of the Family Enterobacteriaceae that contain an Attenuated aceA Gene

Field of the Invention

5 The present invention relates to a process for the enzymatic production of L-amino acids, in particular L-threonine, using strains of the family Enterobacteriaceae in which the aceA gene is attenuated.

Prior Art

- 10 L-amino acids, in particular L-threonine, are used in human medicine and in the pharmaceutical industry, in the foodstuffs industry, and most especially in animal nutrition.
- It is known to produce L-amino acids by fermentation of 15 strains of Enterobacteriaceae, in particular Escherichia coli (E. coli) and Serratia marcescens. On account of their great importance efforts are constantly being made to improve processes for producing the latter. Process improvements may relate to fermentation technology
- 20 measures, such as for example stirring and provision of oxygen, or the composition of the nutrient media, such as for example the sugar concentration during the fermentation, or the working-up to the product form, for example by ion exchange chromatography, or the intrinsic
- 25 performance properties of the microorganism itself.
 - Methods comprising mutagenesis, selection and mutant choice are employed in order to improve the performance properties of these microorganisms. In this way strains are obtained that are resistant to antimetabolites, such as for example
- 30 the threonine analogue α -amino- β -hydroxyvaleric acid (AHV) or are auxotrophic for regulatorily important metabolites, and that produce L-amino acids such as for example L-threonine.

WO 02/081722 PCT/EP02/02421 2

Methods of recombinant DNA technology have also been used for some years in order to improve strains of the family Enterobacteriaceae producing L-amino acids, by amplifying individual amino acid biosynthesis genes and investigating 5 their effect on production.

Object of the Invention

The object of the invention is to provide new measures for the improved enzymatic production of L-amino acids, in particular L-threonine.

10 Summary of the Invention

The invention provides a process for the enzymatic production of L-amino acids, in particular L-threonine, using microorganisms of the family Enterobacteriaceae that in particular already produce L-amino acids and in which 15 the nucleotide sequence coding for the aceA gene is attenuated.

Detailed Description of the Invention

Where L-amino acids or amino acids are mentioned hereinafter, this is understood to mean one or more amino 20 acids including their salts, selected from the group comprising L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan and 25 L-arginine. L-threonine is particularly preferred.

The term "attenuation" describes in this connection the reduction or switching off of the intracellular activity of one or more enzymes (proteins) in a microorganism that are coded by the corresponding DNA, by using for example a weak 30 promoter or a gene or allele that codes for a corresponding enzyme with a low activity and/or that inactivates the

20

corresponding enzyme (protein) or gene, and optionally combining these measures.

By means of these attenuation measures the activity or concentration of the corresponding protein is generally 5 reduced to 0 to 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild type protein, or the activity or concentration of the protein in the initial microorganism.

The process is characterized in that the following steps 10 are carried out:

- a) fermentation of microorganisms of the family Enterobacteriaceae in which the aceA gene is attenuated,
- b) enrichment of the corresponding L-amino acid in the medium or in the cells of the microorganisms of the family Enterobacteriaceae, and
 - c) isolation of the desired L-amino acid, in which optionally constituents of the fermentation broth and/or the biomass in its entirety or portions thereof remain in the product.

The microorganisms that are the subject of the present invention can produce L-amino acids from glucose, sucrose, lactose, fructose, maltose, molasses, optionally starch, optionally cellulose or from glycerol and ethanol. The microorganisms are members of the family Enterobacteriaceae selected from the genera Escherichia, Erwinia, Providencia and Serratia. The genera Escherichia and Serratia are preferred. In the case of the genus Escherichia the species Escherichia coli may in particular be mentioned, and in the case of the genus Serratia the species Serratia

marcescens may in particular be mentioned.

WO 02/081722 PCT/EP02/02421

Suitable strains of the genus Escherichia, in particular those of the species Escherichia coli, that produce in particular L-threonine, include for example:

Escherichia coli TF427

5 Escherichia coli H4578

Escherichia coli KY10935

Escherichia coli VNIIgenetika MG442

Escherichia coli VNIIgenetika M1

Escherichia coli VNIIgenetika 472T23

10 Escherichia coli BKIIM B-3996

Escherichia coli kat 13

Escherichia coli KCCM-10132

Suitable strains of the genus Serratia, in particular of the species Serratia marcescens, that produce L-threonine include for example:

> Serratia marcescens HNr21 Serratia marcescens TLr156 Serratia marcescens T2000

Strains of the family of Enterobacteriaceae producing 20 L-threonine preferably have, inter alia, one or more of the genetic or phenotype features selected from the following group: resistance to α -amino- β -hydroxyvaleric acid, resistance to thialysine, resistance to ethionine, resistance to α-methylserine, resistance to diaminosuccinic 25 acid, resistance to α -aminobutyric acid, resistance to borrelidin, resistance to rifampicin, resistance to valine analogues such as for example valine hydroxamate, resistance to purine analogues such as for example 6-dimethylaminopurine, need for L-methionine, optionally 30 partial and compensable need for L-isoleucine, need for meso-diaminopimelic acid, auxotrophy with regard to threonine-containing dipeptides, resistance to L-threonine, resistance to L-homoserine, resistance to L-lysine, resistance to L-methionine, resistance to L-glutamic acid,

WO 02/081722 PCT/EP02/02421 5

resistance to L-aspartate, resistance to L-leucine, resistance to L-phenylalanine, resistance to L-serine, resistance to L-cysteine, resistance to L-valine, sensitivity to fluoropyruvate, defective threonine

- 5 dehydrogenase, optionally ability to utilize sucrose, enhancement of the threonine operon, enhancement of homoserine dehydrogenase, I-aspartate kinase I, preferably of the feedback-resistant form, enhancement of homoserine kinase, enhancement of threonine synthase, enhancement of
- 10 aspartate kinase, optionally of the feedback-resistant form, enhancement of aspartate semialdehyde dehydrogenase, enhancement of phosphoenol pyruvate carboxylase, optionally of the feedback-resistant form, enhancement of phosphoenol pyruvate synthase, enhancement of transhydrogenase,
- 15 enhancement of the RhtB gene product, enhancement of the RhtC gene product, enhancement of the YfiK gene product, enhancement of a pyruvate carboxylase, and attenuation of acetic acid formation.

It has now been found that microorganisms of the family 20 Enterobacteriaceae after attenuation, in particular after switching off the aceA gene, produce L-amino acids, in particular L-threonine, in an improved way.

The nucleotide sequences of the Escherichia coli genes belong to the prior art and may also be obtained from the 25 genome sequence of Escherichia coli published by Blattner et al. (Science 277, 1453 - 1462 (1997)).

The aceA gene is described inter alia by the following data:

Designation: Isocitrate lyase

30 EC-No.: 4.1.3.1

> Matsuoko and McFadden; Journal of Reference:

> > Bacteriology 170, 4528-4536 (1988)

Accession No.: AE000474

WO 02/081722 PCT/EP02/02421

Apart from the described aceA gene, alleles of the gene may be used that result from the degeneracy of the genetic code or from functionally neutral sense mutations, the activity of the protein not being substantially altered.

5 In order to achieve an attenuation the expression of the gene or the catalytic properties of the enzyme proteins may for example be reduced or switched off. Optionally both measures may be combined.

The gene expression may be reduced by suitable culture 10 conditions, by genetic alteration (mutation) of the signal structures of the gene expression, or also by antisense-RNA techniques. Signal structures of the gene expression are for example repressor genes, activator genes, operators, promoters, attenuators, ribosome-binding sites, the start

- 15 codon and terminators. The person skilled in the art may find relevant information in, inter alia, articles by Jensen and Hammer (Biotechnology and Bioengineering 58: 191-195 (1998)), by Carrier and Keasling (Biotechnology Progress 15, 58-64 (1999), Franch and Gerdes (Current
- 20 Opinion in Microbiology 3, 159-164 (2000)) and in known textbooks of genetics and molecular biology, such as for example the textbook by Knippers ("Molekulare Genetik", 6th Edition, Georg Thieme Verlag, Stuttgart, Germany, 1995) or that by Winnacker ("Gene and Klone", VCH
- 25 Verlagsgesellschaft, Weinheim, Germany, 1990).

Mutations that lead to a change or reduction of the catalytic properties of enzyme proteins are known from the prior art. As examples there may be mentioned the work by Qiu and Goodman (Journal of Biological Chemistry 272: 8611-

30 8617 (1997)), Yano et al. (Proceedings of the National Academy of Sciences, USA 95, 5511-5515 (1998), Wente and Schachmann (Journal of Biological Chemistry 266, 20833-20839 (1991). Detailed information may be obtained from known textbooks on genetics and molecular biology, such as

PCT/EP02/02421 WO 02/081722 7

for example that by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).

Suitable mutations include transitions, transversions, insertions and deletions. Depending on the action of the 5 amino acid exchange on the enzyme activity, one speaks of missense mutations or nonsense mutations. Insertions or deletions of at least one base pair in a gene lead to frame shift mutations, which in turn lead to the incorporation of false amino acids or the premature termination of a

- 10 translation. If as a result of the mutation a stop codon is formed in the coding region, this also leads to a premature termination of the translation. Deletions of several codons typically lead to a complete disruption of the enzyme activity. Details regarding the production of
- 15 such mutations belong to the prior art and may be obtained from known textbooks on genetics and molecular biology, such as for example the textbook by Knippers ("Molekulare Genetik", 6th Edition, Georg Thieme Verlag, Stuttgart, Germany, 1995), that by Winnacker ("Gene und Klone", VCH
- 20 Verlagsgesellschaft, Weinheim, Germany, 1990) or that by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).

Suitable mutations in the genes such as for example deletion mutations may be incorporated by gene and/or 25 allele exchange in suitable strains.

A conventional method is the method of gene exchange by means of a conditionally replicating pSC101 derivate pMAK705 described by Hamilton et al. (Journal of Bacteriology 171, 4617 - 4622 (1989)). Other methods 30 described in the prior art, such as for example that of Martinez-Morales et al. (Journal of Bacteriology 181, 7143-7148 (1999)) or that of Boyd et al. (Journal of Bacteriology 182, 842-847 (2000)) may likewise be used.

It is also possible to transfer mutations in the respective genes or mutations relating to the expression of the relevant genes, by conjugation or transduction into various strains.

5 Furthermore for the production of L-amino acids, in particular L-threonine, using strains of the family Enterobacteriaceae it may be advantageous in addition to the attenuation of the aceA gene also to enhance one or more enzymes of the known threonine biosynthesis pathway or enzymes of anaplerotic metabolism or enzymes for the production of reduced nicotinamide-adenine-dinucleotide phosphate.

The term "enhancement" describes in this connection the raising of the intracellular activity of one or more

15 enzymes or proteins in a microorganism that are coded by the corresponding DNA, by for example increasing the number of copies of the gene or genes, using a strong promoter or a gene that codes for a corresponding enzyme or protein having a high activity, and optionally by combining these measures.

By means of the enhancement measures, in particular overexpression, the activity or concentration of the corresponding protein is in general raised by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500%, at 25 most up to 1000% or 2000% referred to that of the wild type protein and/or the activity or concentration of the protein in the initial microorganism.

Thus, one or more of the genes selected from the following group may for example by simultaneously enhanced, in particular overexpressed:

• the thrABC operon coding for aspartate kinase, homoserine dehydrogenase, homoserine kinase and thrapping symthoge (US-1-4.078,768).

PCT/EP02/02421 WO 02/081722

- the pyc gene coding for pyruvate carboxylase (DE-A-19 831 609),
- the pps gene coding for phosphoenol pyruvate synthase (Molecular and General Genetics 231:332 (1992)),
- 5 the ppc gene coding for phosphoenol pyruvate carboxylase (Gene 31:279-283 (1984)),
 - the genes pntA and pntB coding for transhydrogenase (European Journal of Biochemistry 158:647-653 (1986)),
- the gene rhtB imparting homoserine resistance (EP-A-0 994 190), 10
 - the mgo gene coding for malate:quinone oxidoreductase (DE 100 348 33.5),
 - the gene rhtC imparting threonine resistance (EP-A-1 013) 765), and
- 15 the thrE gene of Corynebacterium glutamicum coding for threonine export (DE 100 264 94.8).

The use of endogenous genes is in general preferred. term "endogenous genes" or "endogenous nucleotide sequences" is understood to mean the genes or nucleotide sequences 20 present in the population of a species.

Furthermore for the production of L-amino acids, in particular L-threonine, it may be advantageous in addition to the attenuation of the aceA gene also to attenuate, in particular to switch off or reduce the expression of one or 25 more of the genes selected from the following group:

• the tdh gene coding for threonine dehydrogenase (Ravnikar and Somerville, Journal of Bacteriology 169, 4716-4721 (1987)),

15

- the mdh gene coding for malate dehydrogenase (E.C. 1.1.1.37) (Vogel et al., Archives in Microbiology 149, 36-42 (1987)),
- the gene product of the open reading frame (orf) yjfA
 (Accession Number AAC77180 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA),
 - the gene product of the open reading frame (orf) ytfP (Accession Number AAC77179 des National Center for Biotechnology Information (NCBI, Bethesda, MD, USA),
- 10 the pckA gene coding for the enzyme phosphoenol pyruvate carboxykinase (Medina et al. (Journal of Bacteriology 172, 7151-7156 (1990)),
 - the poxB gene coding for pyruvate oxidase (Grabau and Cronan (Nucleic Acids Research 14 (13), 5449-5460 (1986)),
 - the dgsA gene coding for the regulator of the phosphotransferase system (Hosono et al., Bioscience, Biotechnology and Biochemistry 59, 256-251 (1995) and Accession No.: AE000255), and
- 20 the fruR gene coding for the fructose repressor (Jahreis et al., Molecular and General Genetics 226, 332-336 (1991) and Accession No.: AE000118)
 - Furthermore for the production of L-amino acids, in particular L-threonine, it may be advantageous in addition
- 25 to the attenuation of the aceA gene also to switch off undesirable secondary reactions (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
- 30 The microorganisms produced according to the invention may be cultivated in a hatch process (hatch cultivation), in a

fed batch process (feed process) or in a repeated fed batch process (repetitive feed process). A summary of known cultivation methods is described in the textbook by Chmiel (Bioprozesstechnik 1. Einführung in die

5 Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren and periphere Einrichtungen (Vieweg Verlag, Brunswick / Wiesbaden, 1994)).

The culture medium to be used must appropriately satisfy

10 the requirements of the respective strains. Descriptions
of culture media of various microorganisms are contained in
the handbook "Manual of Methods for General Bacteriology"
of the American Society for Bacteriology (Washington D.C.,
USA, 1981).

- 15 As carbon sources, sugars and carbohydrates such as for example glucose, sucrose, lactose, fructose, maltose, molasses, starch and optionally cellulose, oils and fats such as for example soya bean oil, sunflower oil, groundnut oil and coconut oil, fatty acids such as for example
- 20 palmitic acid, stearic acid and linoleic acid, alcohols such as for example glycerol and ethanol, and organic acids such as for example acetic acid, may be used. These substances may be used individually or as a mixture.

As nitrogen source, organic nitrogen-containing compounds

25 such as peptones, yeast extract, meat extract, malt
extract, maize starch water, soya bean flour and urea or
inorganic compounds such as ammonium sulfate, ammonium
chloride, ammonium phosphate, ammonium carbonate and
ammonium nitrate may be used. The nitrogen sources may be

30 used individually or as a mixture.

As phosphorus source, phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts may be used. The

such as for example magnesium sulfate or iron sulfate, that are necessary for growth. Finally, essential growth promoters such as amino acids and vitamins may be used in addition to the aforementioned substances. Apart from these, suitable precursors may be added to the culture medium. The aforementioned starting substances may be added to the culture in the form of a single batch or may be metered in in an appropriate manner during the cultivation.

- 10 In order to regulate the pH of the culture basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water, or acidic compounds such as phosphoric acid or sulfuric acid are used as appropriate. In order to control foam formation antifoaming agents such as for example fatty acid polyglycol esters may be used. In order to maintain the stability of plasmids, suitable selectively acting substances, for example antibiotics, may be added to the medium. In order to maintain aerobic conditions, oxygen or oxygen-containing gas mixtures such as for example air are fed into the culture. The temperature of the culture is normally 25°C to 45°C, and preferably 30°C to 40°C. Cultivation is continued until a maximum amount of L-amino acids (or L-threonine) has been formed. This target is normally achieved within 10 hours to 160 hours.
- The L-amino acids may be analyzed by anion exchange chromotography followed by ninhydrin derivation, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190), or by reversed phase HPLC, as described by Lindroth et al. (Analytical Chemistry (1979) 51: 1167-30 1174).

The process according to the invention can be used for the enzymatic production of L-amino acids, such as for example L-threonine, L-isoleucine, L-valine, L-methionine, L-homoserine and L-lysine, in particular L-threonine.

A pure culture of the Escherichia coli K-12 strain DH5α/pMAK705 was filed as DSM 13720 on 08 September 2000 at the German Collection for Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany) according to the Budapest 5 Convention.

The present invention is described in more detail hereinafter with the aid of examples of implementation.

The isolation of plasmid DNA from Escherichia coli as well as all techniques for the restriction, Klenow treatment and alkaline phosphatase treatment are carried out according to Sambrook et al. (Molecular Cloning - A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press). The transformation of Escherichia coli is, unless otherwise described, carried out according to Chung et al.

15 (Proceedings of the National Academy of Sciences of the United States of America, USA (1989) 86: 2172-2175).

The incubation temperature in the production of strains and transformants is 37°C. In the gene exchange process according to Hamilton et al., temperatures of 30°C and 44°C are used.

Example 1 .

Construction of the deletion mutation of the aceA gene.

Parts of the gene regions lying upstream and downstream of the aceA gene are amplified from Escherichia coli K12 using 25 the polymerase chain reaction (PCR) as well as synthetic oligonucleotides. Starting from the nucleotide sequence of the aceBAK operon in E. coli K12 MG1655 DNA (SEQ ID No. 1) the following PCR primers are synthesized (MWG Biotech, Ebersberg, Germany):

30 aceA'5'-1: 5' - ATGCTTACTCACGCCTGTTG - 3' (SEQ ID No. 3)

aceA'3'-1: 5' - CAACAACAACCGTTGCTGAC - 3' (SEQ ID No. 5)

aceA'3'-2: 5' - CAGTTCGTTCGCCACCTGTA - 3' (SEO ID No. 6)

The chromosomal E. coli K12 MG1655 DNA used for the PCR is isolated according to the manufacturer's instructions using 5 "Qiagen Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A ca. 700 bp large DNA fragment from the region lying upstream of the aceA gene (designated 'aceB) and a ca. 800 bp large DNA fragment from the region lying downstream of the aceA gene (designated aceK') can be amplified with 10 the specific primers under standard PCR conditions (Innis et al. (1990) PCR Protocols. A guide to methods and applications, Academic Press) with Tag DNA polymerase (Gibco-BRL, Eggenstein, Germany). The PCR products are ligated according to the manufacturer's instructions in 15 each case with the vector pCR2.1TOPO (TOPO TA Cloning Kit, Invitrogen, Groningen, Netherlands) and transformed in the E. coli strain TOP10F'. The selection of plasmid-carrying cells is carried out on LB agar to which 50 µg/ml of ampicillin has been added. After the plasmid DNA isolation enzymes EcoRV and SpeI, and the 'aceB fragment after

- the vector pCR2.1TOPO'aceB is cleaved with the restriction enzymes EcoRV and SpeI, and the 'aceB fragment after separation in 0.8% agarose gel is isolated using the QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany).

 After the plasmid DNA isolation the vector pCR2.1TOPOaceK'
- 25 is cleaved with the enzymes Ecl136II and SpeI and ligated with the isolated 'aceB fragment. The E. coli strain DH5α is transformed with the ligation batch and plasmid-carrying cells are selected on LB agar to which 50 μg/ml of ampicillin has been added. After the plasmid DNA
- 30 isolation, those plasmids in which the mutagenic DNA sequence shown in SEQ ID No. 7 is present in cloned form are detected by control cleavage with the enzymes HindIII and XbaI. One of the plasmids is designated pCR2.1TOPO∆aceA.

Example 2

Construction of the exchange vector pMAK705∆aceA

The aceBAK allele described in Example 1 is isolated from the vector pCR2.1TOPOΔaceA after restriction with the 5 enzymes HindIII and XbaI and separation in 0.8% agarose gel, and is ligated with the plasmid pMAK705 (Hamilton et al. (1989) Journal of Bacteriology 171, 4617 - 4622), that had been digested with the enzymes HindIII and XbaI. The ligation batch is transformed in DH5α and plasmid-carrying cells are selected on LB agar to which 20 μg/ml of chloramphenicol have been added. The successful cloning is detected after plasmid DNA isolation and cleavage with the enzymes BamHI, KpnI, SphI, SpeI and PstI. The resultant exchange vector pMAK705ΔaceA (= pMAK705deltaaceA) is shown in Fig. 1.

Example 3

Site-specific mutagenesis of the aceA gene in the E. colistrain MG442

The E. coli strain MG442 producing L-threonine is described in patent specification US-A- 4,278,765 and is filed as CMIM B-1628 at the Russian National Collection for Industrial Microorganisms (VKPM, Moscow, Russia).

For the exchange of the chromosomal aceA gene by the plasmid-coded deletion construct, MG442 is transformed with the plasmid pMAK705ΔaceA. The gene exchange is carried out by the selection process described by Hamilton et al. (1989) Journal of Bacteriology 171, 4617 - 4622) and is verified by standard PCR methods (Innis et al. (1990) PCR Protocols. A guide to methods and applications, Academic Press) with the following oligonucleotide primers:

aceA'5'-1: 5' - ATGCTTACTCACGCCTGTTG - 3' (SEQ ID No. 3)

16

aceA'3'-2: 5' - CAGTTCGTTCGCCACCTGTA - 3' (SEQ ID No. 6)

The resultant strain is designated MG442∆aceA.

Example 4

Production of L-threonine using the strain MG442∆aceA

- 5 MG442ΔaceA is cultivated on minimal medium having the following composition: 3.5 g/l Na₂HPO₄·2H₂O, 1.5 g/l KH₂PO₄, 1 g/l NH₄Cl, 0.1 g/l MgSO₄·7H₂O, 2 g/l glucose and 20 g/l agar. The formation of L-threonine is checked in batch cultures of 10 ml that are contained in 100 ml Erlenmeyer
- 10 flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast extract, 10 g/l (NH₄)₂SO₄, 1 g/l KH₂PO₄, 0.5 g/l MgSO₄·7H₂O, 15 g/l CaCO₃, 20 g/l glucose are inoculated and incubated for 16 hours at 37°C and 180 rpm in an ESR incubator from Kühner AG
- 15 (Birsfelden, Switzerland). 250 μl of this preculture are reinoculated in 10 ml of production medium (25 g/l (NH₄)₂SO₄, 2 g/l KH₂PO₄, 1 g/l MgSO₄·7H₂O, 0.03 g/l FeSO₄·7H₂O, 0.018 g/l MnSO₄·1H₂O, 30 g/l CaCO₃ and 20 g/l glucose) and incubated for 48 hours at 37°C. After incubation the
- 20 optical density (OD) of the culture suspension is measured with an LP2W photometer from the Dr. Lange company (Dusseldorf, Germany) at a measurement wavelength of 660 nm.
- The concentration of formed L-threonine is then determined in the sterile-filtered culture supernatant using an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column reaction with ninhydrin detection.

The result of the test is given in Table 1.

PCT/EP02/02421 WO 02/081722 17

Table 1

Strain	OD (660 nm)	L-threonine g/l				
MG442	6.0	1.5				
MG442∆aceA	6.2	1.9				

Brief Description of the Figure:

Fig. 1: pMAK705∆aceA (= pMAK705deltaaceA)

5 Length data are given as approximate values. The abbreviations and acronyms used have the following meanings:

cat: chloramphenicol resistance gene

temperature-sensitive replication region of rep-ts: 10 the plasmid pSC101

part of the 3' region of the aceB gene 'aceB:

aceA': ATG start codon of the aceA gene

part of the 5' region of the aceK gene

The abbreviations for the restriction enzymes have the 15 following meanings:

restriction endonuclease from Bacillus BamHI: amyloliquefaciens

restriction endonuclease from Bacillus BglII: globigii

20 • ClaI: restriction endonuclease from Caryphanon latum

restriction endonuclear a more Transmission and ECORI:

ECORV: restriction endonuclease from Escherichia coli

	•	HindIII:	restriction influenzae	endonuclease	from	Haemophilus
5	•	KpnI:	restriction pneumoniae	endonuclease	from	Klebsiella
	•	PstI:	restriction stuartii	endonuclease	from	Providencia
	.• .	PvuI:	restriction	endonuclease	from	Proteus vulgaris
10	•	SacI:	restriction achromogenes	endonuclease	from	Streptomyces
	•	SalI:	restriction albus	endonuclease	from	Streptomyces
	•.	SmaI:	restriction marcescens	endonuclease	from	Serratia
15	•	SphI:	restriction phaeochromog	endonuclease genes	from	Streptomyces
	•	SspI:	restriction species	endonuclease	from	Sphaerotilus
20	•	XbaI:	restriction badrii	endonuclease	from	Xanthomonas
	•	XhoI:	restriction holcicola	endonuclease	from	Xanthomonas

WO 02/081722 PCT/EP02/02421 19

What is Claimed is:

15

30

Process for the production of L-amino acids, in particular L-threonine, wherein the following steps are carried out:

- 5 fermentation of the microorganisms of the family a) Enterobacteriaceae producing the desired L-amino acid, in which the aceA gene or nucleotide sequences coding therefor are attenuated, in particular are switched off,
- 10 b) enrichment of the L-amino acid in the medium or in the cells of the microorganisms, and
 - isolation of the L-amino acid, in which C) optionally constituents of the fermentation broth and/or the biomass in its entirety or portions thereof remain in the product.
 - Process according to claim 1, wherein microorganisms are used in which in addition further genes of the biosynethesis pathway of the desired L-amino acid are enhanced.
- 20 3. Process according to claim 1, wherein microorganisms are used in which the metabolic pathways that reduce the formation of the desired L-amino acid are at least partially switched off.
- Process according to claim 1, wherein the expression 25 . of the polynucleotide(s) that codes/code for the aceA gene is attenuated, in particular is switched off.
 - 5. Process according to claim 1, wherein the regulatory and/or catalytic properties of the polypeptide (enzyme protein) for which the polynucleotide aceA codes are reduced.

WO 02/081722 PCT/EP02/02421

- 6. Process according to claim 1, wherein, for the production of L-amino acids, microorganisms of the family Enterobacteriaceae are fermented in which at the same time one or more of the genes selected from the following group is enhanced, in particular overexpressed:
 - 6.1 the thrABC operon coding for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase,
- 10 6.2 the pyc gene coding for pyruvate carboxylase,
 - 6.3 the pps gene coding for phosphoenol pyruvate synthase,
 - 6.4 the ppc gene coding for phosphoenol pyruvate carboxylase,
- 15 6.5 the genes pntA and pntB coding for transhydrogenase,

5

25

- 6.6 the gene rhtB imparting homoserine resistance,
- 6.7 the mgo gene coding for malate:quinone oxidoreductase,
- 20 6.8 the gene rhtC imparting threonine resistance, and
 - 6.9 the thrE gene coding for threonine export.
 - 7. Process according to claim 1, wherein, for the production of L-amino acids, microorganisms of the family Enterobacteriaceae are fermented in which at the same time one or more of the genes selected from the following group is attenuated, in particular switched off, or the expression is reduced:
 - 7.1 the tdh gene coding for threonine dehydrogenase,
 - 7.1 tue mái gade coding mor malace dangorogenase,

- 7.3 the gene product of the open reading frame (orf) yjfA,
- 7.4 the gene product of the open reading frame (orf) ytfP,
- 5 7.5 the pckA gene coding for phosphoenol pyruvate carboxykinase,
 - 7.6 the poxB gene coding for pyruvate oxidase,
 - 7.7 the dgsA gene coding for the regulator of the phosphotransferase system, and
- 10 7.8 the fruR gene coding for the fructose repressor.

Fig. 1:

SEQUENCE LISTING

5	<110>	Degussa AG					•	
J	<120>	Process for family Enter	the p	roduction eriaceae	of L-amino	acids usin	ng strains of ted aceA gene	the
1.0	<130>	010131 BT						
10	<160>	7						
	<170>	PatentIn ver	sion	3.1				
15	<210> <211> <212> <213>	1 4855 DNA Escherichia	coli	·				
20	<220> <221> <222> <223>	CDS (1632)(293 aceA gene	36)					
25	<400>	1						50
		gaac aggcaaca						120
30		caaa ttcttact						120
50		caac gcaataa						180 240
		ttgc ctgattt attc ctgcgga	•		•	•		300
35		rtga tcaacgo						360
		gcac cagactgo						420
40		acca tcagtta						480
		ttga tttgtcg						540
		gcaa teecegg						600
45		ttgg caaaggg						660
		gcct ggtggage						720
50		atca aggcgac						780
		cacg cgctgcg				•		840
		tata tcaaaac						900
55		atgg ataaacc						960
		ggtg cttttgc						1020
60		aacc aggtgct						1080
- -		ggca catggat						1140
								2000
	7			- · · · · · · · · - ·	2			1

					•			-									
	act	gccga	atc a	agct	gctgg	gc a	ctt	gtgai	t gg	tgaa	cgca	ccg	aaga	agg	tatg	cgcgcc	1260
	aaca	attc	gcg 1	tggct	gtgo	ca gi	tacai	tcgaa	a gc	gtgga	atct	ctg	gcaa	cgg	ctgt	gtgccg	1320
5	atti	atg	gacit	tgat	ggaag	ga to	gegge	gac	g gci	tgaaa	attt	ccc	gtac	ctc	gatc	tggcag	1380
	tgga	atcca	atc a	atcaa	aaaa	ac gi	tga	gcaat	t gg	caaa	ccgg	tga	ccaa	agc	cttg	ttccgc	1440
10	caga	atgct	tgg (gegaa	agaga	at ga	aaagi	tcati	gc.	cagc	gaac	tgg	gcga	aga	acgt	ttctcc	1500
_0	cag	gggc	gtt 1	ttgad	gato	ac ci	gcac	gctt	g at	ggaa	caga	tca	ccac	ttc	cgat	gagtta	1560
	atto	gatti	tee 1	gac	cctgo	cc ag	gcta	accg	c ct	gttag	gegt	aaa	ccac	cac	ataa	ctatgg	1620
15	agca	atcto	gca (Mei 1	g aaa t Lys	a acc	e egi	t aca y Thi 5	a caa	a caa n Gli	a att	t gaa	a gaa 1 Gli 10	a tt u Le	a ca u Gl:	g aaa n Lys	1670
20	gag Glu	tgg Trp 15	act Thr	caa Gln	ccg Pro	cgt Arg	tgg Trp 20	gaa Glu	ggc Gly	att Ile	act Thr	cgc Arg 25	cca Pro	tac Tyr	agt Ser	gcg Ala	1718
25	gaa Glu 30	gat Asp	gtg Val	gtg Val	aaa Lys	tta Leu 35	cgc Arg	ggt Gly	tca Ser	gtc Val	aat Asn 40	cct Pro	gaa Glu	tgc Cys	acg Thr	ctg Leu 45	1766
30	gcg Ala	caa Gln	ctg Leu	ggc Gly	gca Ala 50	gcg Ala	aaa Lys	atg Met	tgg Trp	cgt Arg 55	ctg Leu	ctg Leu	cac His	ggt Gly	gag Glu 60	tcg Ser	1814
	aaa Lys	aaa Lys	ggc Gly	tac Tyr 65	atc Ile	aac Asn	agc Ser	ctc Leu	ggc Gly 70	gca Ala	ctg Leu	act Thr	ggc Gly	ggt Gly 75	cag Gln	gcg Ala	1862
35	ctg Leu	caa Gl'n	cag Gln 80	gcg Ala	aaa Lys	gcg Ala	ggt Gly	att Ile 85	gaa Glu	gca Ala	gtc Val	tat Tyr	ctg Leu 90	tcg Ser	gga Gly	tgg Trp	1910
40	cag Gln	gta Val 95	gcg Ala	gcg Ala	gac Asp	gct Ala	aac Asn 100	ctg Leu	gcg Ala	gcc Ala	agc Ser	atg Met 105	tat Tyr	ccg Pro	gat Asp	cag Gln	1958
45	tcg Ser 110	ctc Leu	tat Tyr	ccg Pro	gca Ala	aac Asn 115	tcg Ser	gtg Val	cca Pro	gct Ala	gtg Val 120	gtg Val	gag Glu	cgg Arg	atc Ile	aac Asn 125	2006
50	aac Asn	acc Thr	ttc Phe	cgt Arg	cgt Arg 130	gcc Ala	gat Asp	cag Gln	atc Ile	caa Gln 135	tgg Trp	tcc Ser	gcg Ala	ggc Gly	att Ile 140	gag Glu	2054
					cgc Arg												2102
55					ttt Phe												2150
60.					gcc Ala						His						2198
55					aaa - ::												2346

	act Thr	cag Gln	gaa Glu	gct Ala	att Ile 210	cag Gln	aaa Lys	ctg Leu	gtc Val	gcg Ala 215	gcg Ala	cgt Arg	ctg Leu	gca Ala	gct Ala 220	gac Asp	2294
5	gtg Val	acg Thr	ggc Gly	gtt Val 225	cca Pro	acc Thr	ctg Leu	ctg Leu	gtt Val 230	gcc Ala	cgt Arg	acc Thr	gat Asp	gct Ala 235	gat Asp	gcg Ala	2342
10	gcg Ala	gat Asp	ctg Leu 240	atc Ile	acc Thr	tcc Ser	gat Asp	tgc Cys 245	gac Asp	ccg Pro	tat Tyr	gac Asp	agc Ser 250	gaa Glu	ttt Phe	att Ile	2390
15	acc Thr	ggc Gly 255	gag Glu	cgt Arg	acc Thr	agt Ser	gaa Glu 260	ggc Gly	ttc Phe	ttc Phe	cgt Arg	act Thr 265	cat His	gcg Ala	ggc Gly	att Ile	2438
20	gag Glu 270	caa Gln	gcg Ala	atc Ile	agc Ser	cgt Arg 275	Gly ggc	ctg Leu	gcg Ala	tat Tyr	gcg Ala 280	cca Pro	tat Tyr	gct Ala	gac Asp	ctg Leu 285	2486
	gtc Val	tgg Trp	tgt Cys	gaa Glu	acc Thr 290	tcc Ser	acg Thr	ccg Pro	gat Asp	ctg Leu 295	gaa Glu	ctg Leu	gcg Ala	cgt Arg	cgc Arg 300	ttt Phe	2534
25	gca Ala	caa Gln	gct Ala	atc Ile 305	cac His	gcg Ala	aaa Lys	tat Tyr	ccg Pro 310	ggc Gly	aaa Lys	ctg Leu	ctg Leu	gct Ala 315	tat Tyr	aac Asn	2582
30	tgc Cys	tcg Ser	ccg Pro 320	tcg Ser	ttc Phe	aac Asn	tgg Trp	cag Gln 325	aaa Lys	aac Asn	ctc Leu	gac Asp	gac Asp 330	aaa Lys	act Thr	att Ile	2630
35	gcc Ala	agc Ser 335	ttc Phe	cag Gln	cag Gln	cag Gln	ctg Leu 340	tcg Ser	gat Asp	atg Met	Gly ggc	tac Tyr 345	aag Lys	ttc Phe	cag Gln	ttc Phe	2678
40	atc Ile 350	acc Thr	ctg Leu	gca Ala	ggt Gly	atc Ile 355	cac His	agc Ser	atg Met	tgg Trp	ttc Phe 360	Asn	atg Met	ttt Phe	gac Asp	ctg Leu 365	2726
	gca Ala	aac Asn	gcc Ala	tat Tyr	gcc Ala 370	cag Gln	ggc Gly	gag Glu	ggt Gly	atg Met 375	aag Lys	cac His	tac Tyr	gtt Val	gag Glu 380	aaa Lys	2774
45	gtg Val	cag Gln	cag Gln	ccg. Pro 385	gaa Glu	ttt Phe	gcc Ala	gcc Ala	gcg Ala 390	Lys	qaA	ggc Gly	tat Tyr	acc Thr 395	ttc Phe	gta Val	2822
50	tct Ser	cac His	cag Gln 400	cag Gln	gaa Glu	gtg Val	Gly	Thr	ggt Gly	tac Tyr	ttc Phe	gat Asp	aaa Lys 410	gtg Val	acg Thr	act Thr	2870
55	att Ile	att Ile 415	cag Gln	Gly	ggc Gly	Thr	tct Ser 420	tca Ser	gtc Val	acc Thr	gcg Ala	ctg Leu 425	acc Thr	ggc Gly	tcc Ser	act Thr	2918
60	gaa Glu 430	gaa Glu	tcg Ser	cag Gln	ttc Phe	taa	gcaa	caac	aa c	cgtt	gctg	ra ct	gtag	gccg	i		2966
	gata	aggo	gt t	cacg	ccgc	a to	cggc	aato	ggt	gcac	gat	gcct	gatg	cg a	.cgct	tgcgc	3026
	gtet	tato	at g	rccta	cago	c gt	tgcc	gaac	gta	ggct	gga	taag	gcgt	tt a	cącc	gcatc	3085
: I	تزر ت	HEDT	-1. :	. 2507	ವಚನ್ನ	3 5 3	2935	25.00	. 23.1	. Igos	523	ujyo	31 79	ರೂ ಕ	tati		0146

	ctcaaaccat	tttgcaaggc	ttcgatgctc	agtatggtcg	attcctcgaa	gtgacctccg	3206
5	gtgcgcagca	gcgtttcgaa	caggccgact	ggcatgctgt	ccagcaggcg	atgaaaaacc	3266
•	gtatccatct	ttacgatcat	cacgttggtc	tggtcgtgga	gcaactgcgc	tgcattacta	3326
	acggccaaag	tacggacgcg	gcatttttac	tacgtgttaa	agagcattac	acccggctgt	3386
10	tgccggatta	cccgcgcttc	gagattgcgg	agagcttttt	taactccgtg	tactgtcggt	3446
	tatttgacca	ccgctcgctt	actcccgagc	ggctttt0tat	ctttagctc	t cagccagage	350
1 5	gccgctttcg	taccattccc	cgcccgctgg	cgaaagactt	tcaccccgat	cacggctggg	3566
15	aatctctact	gatgcgcgtt	atcagcgacc	taccgctgcg	cctgcgctgg	cagaataaaa	3626
	gccgtgacat	ccattacatt	attcgccatc	tgacggaaac	gctggggaca	gacaacctcg	3686
20	cggaaagtca	tttacaggtg	gcgaacgaac	tgttttaccg	caataaagcc	gcctggctgg	3746
	taggcaaact	gatcacacct	tccggcacat	tgccattttt	gctgccgatc	caccagacgg	3806
0.5	acgacggega	gttatttatt	gatacetgee	tgacgacgac	cgccgaagcg	agcattgttt	3866
25		gcgttcttat					3926
	ggctacggga	aattctgcca	ggtaaaacca	ccgctgaatt	gtatatggct	atcggctgcc	3986
30	agaagcacgc	caaaaccgaa	agctaccgcg	aatatctcgt	ttatctacag	ggctgtaatg	4046
	agcagttcat	tgaagcgccg	ggtattcgtg	gaatggtgat	gttggtgttt	acgctgccgg	4106
		ggtattcaaa					4166
35		tegtgeetge					4226
	,	ggagtttgaa				•	4286
40		gcttcaggaa					4346
		ttatattgag					4406
		gttgcgcgac					4466
45		tttccctggc					4526
		ttatgattac					4586
50		gcgctatccg					4646
		tttcccggaa					4706
•							
55.		agagatgcac	•				4766
		tgaagggcat			teggegeagg	caaagattta	4826
60		tggggagatg	cccccttga				4855
00	<210> 2 <211> 434 <212> PRT <213> Esci	herichia co	li				

WO 02/081722 PCT/EP02/02421 5

	<400 Met 1			Arg	Thr 5	Gln	Gln	Ile	Glu	Glu 10	Leu	Gln	Lys	Glu	Trp 15	Thr
5	Gln	Pro	Arg	Trp 20	Glu	Gly	Ile	Thr	Arg 25	Pro	Tyr	Ser	Ala	Glu 30	Asp	Val
10	Val	Lys	Leu 35	Arg	Gly	Ser	Val	Asn 40	Pro	Glu	Cys	Thr	Leu 45	Ala	Gln	Leu
	Gly	Ala 50	Ala	Lys	Met	Trp	Arg 55	Leu	Leu	His	Gly	Glu 60	Ser	Lys	Lys	Gly
15	Tyr 65	Ile	Asn	Ser	Leu	Gly 70	Ala	Leu	Thr	Gly	Gly 75	Gln	Ala	Leu	Gln	Gln 80
	Ala	Lys	Ala	Gly	11e 85	Glu	Ala	Val	Tyr	Leu 90	Ser	Gly	Trp	Gln	Val 95	Ala
20	Ala	Asp	Ala	Asn 100	Leu	Ala	Ala	Ser	Met 105	Tyr	Pro	Asp	Gln	Ser 110	Leu	TYT
25	Pro	Ala	Asn 115	Seŗ	Va1	Pro	Ala	Val 120		Glu	Arg	Ile	Asn 125		Thr	Phe
	Arg	Arg 130	Ala	Asp	Gln	Ile	Gln 135	Trp	Ser	Ala	Gly	Ile 140	Glu	Pro	Gly	Asp
30	Pro 145	Arg	Tyr	Val	Asp ·	Tyr 150	Phe	Leu	Pro	Ile ·	Val 155	Ala	Asp	Ala	Glu	Ala 160
	Gly	Phe	Gly	Gly	Val 165	Leu	Asn	Ala	Phe	Glu 170	Leu	Met	Lys	Ala	Met 175	Ile
35	Glu	Ala	Gly	Ala 180	Ala	Ala	Val		Phe 185	Glu	Asp	Gln	Leu	Ala 190	Ser	Val
40	Lys	Lys	Cys 195	Gly	His	Met	Gly	Gly 200	Lys	Val	Leu	Val	Pro 205	Thr	Gln	Glu
	Ala	Ile 210	Gln	Lys	Leu	Val	Ala 215	Ala	Arg	Leu	Ala ·	Ala 220	Asp	Val	Thr	Gly
45	Val 225	Pro	Thr	Leu	Leu	Val 230	Ala	Arg	Thr	Asp	Ala 235	Asp	Ala	Ala	Asp	Leu 240
	Ile	Thr	Ser	Asp	Cys 245	Asp	Pro	Tyr	Asp	Ser 250	Glu	Phe	Ile	Thr	Gly 255	Glu
50	Arg	Thr	Ser	Glu 260	Gly	Phe	Phe	Arg	Thr 265	His	Ala	Gly	İle	Glu 270	Gln	Ala
55	Ile	Ser	Arg 275	Gly	Leu	Ala	Tyr	Ala 280	Pro	Tyr	Ala	qzA	Leu 285	Val	Trp	Суѕ
•	Glu	Thr 290	Ser	Thr	Pro	Asp	Leu 295	Glu	Leu	Ala	Arg	Arg 300	Phe	Ala	Gln	Ala
60	Ile 305	His	Ala	Lys	Tyr	Pro 310	Gly	Lys	Leu	Leu	Ala 315	Tyr	Asn	Cys	Ser	Pro 320
	Ser	Phe	Asn	Trp	Gln 325	Lys	Asn	Leu	Asp	Asp 330	Lys	Thr	Ile	Ala	Ser 335	Phe
ćΞ	āln.	Clr	ol:	೭೬೮	3 827	Lep	Dua 1	CLy	T_ =	<u></u> .3	3:.£	Cla	îi.s	Ila	<u> </u>	يدي

				340					345					350		•	
5	Ala Gl	ly 1	le 355	His	Ser	Met	Trp	Phe 360	Asn	Met	Phe	Asp	Leu 365	Ala	Asn	Ala	
	Tyr Al	la 6 70	ln	Gly	Glu	Gly	Met 375	Lys	His	Tyr	Val	Glu 380	Lys	Val	Gln	Gln	
10	Pro G1 385	lu I	he	Ala	Ala	Ala 390	Lys	Asp	Gly	Tyr	Thr 395	Phe	Val	Ser	His	Gln 400	
	Gln G	lu V	/al	Gly	Thr 405	Gly	Tyr	Phe	Asp	Lys 410	Val	Thr	Thr	Ile	Ile 415	Gln	
15	Gly Gl	ly 1	hr	Ser 420	Ser	Val	Thr	Ala	Leu 425	Thr	Gly	Ser	Thr	Glu 430	Glu	Ser	
	Gln Ph	1e															
20	<210><211><211><212><213>	20 DN	IA.	icía	al se	equer	ıce										
25	<220> <221> <222> <223>	P1 (1	ime	er)	_					6						
30		3				g											20
35	<210> <211> <212> <213>	20 DI	IA.	icia	al se	equer	ıce										
40	<220> <221> <222> <223>	(-1	.)	(20)			•										
	<400> catgto	4 gcag	ja t	gcto	cata	ag			. -								20
50	<210> <211> <212> <213>	20 DN	IA ·	icia	al se	equer	ıce										
55	<220> <221> <222> <223>	(1	.)														
50	<400> caacaa	5 acaa	ic c	gtto	gctga	ac											20
JU .	<210><211><312>	20													٠		

```
<220>
     <221> Primer
     <222> (1)..(20)
<223> aceA `3`-2
 5
     <400> 6
     cagttcgttc gccacctgta
                                                                             20
     <210> 7
<211> 1643
<212> DNA
10
     <213> Escherichia coli
     <220>
15
     <221> misc_feature
     <222> (1)..(33)
     <223> Technical DNA/ remainder polylinker sequence
     <220>
20
     <221> misc_feature
     <222>
            (34)..(742)
     <223> Part of the 3' region of the aceB gene, intergenic region,
            ATG start codon of the aceA gene
25
     <220>
     <221> misc_feature
     <222> (743)..(810)
     <223> Technical DNA/ remainder polylinker sequence
30
     <220>
     <221> misc_feature
     <222> (811)..(1591)
     <223> Part of the 5' region of the aceK gene
35
     <220>
     <221> misc_feature
     <222> (1592)..(1643)
     <223> Technical DNA/ remainder polylinker sequence
40
     agettggtac cgagatetge agaattegee ettatgetta etcacgeetg ttgattaaaa
                                                                             60
                                                                            120
     cctgccataa acgcggtgct tttgcgatgg gcggcatggc ggcgtttatt ccgagcaaag
45
     atgaagagca caataaccag gtgctcaaca aagtaaaagc ggataaatcg ctggaagcca
                                                                            180 ·
     ataacggtca cgatggcaca tggatcgctc acccaggcct tgcggacacg gcaatggcgg
                                                                            240
50
     tattcaacga cattctcggc tcccgtaaaa atcagcttga agtgatgcgc gaacaagacg
                                                                            300
     cgccgattac tgccgatcag ctgctggcac cttgtgatgg tgaacgcacc gaagaaggta
                                                                            360
                                                                            420
      tgcgcgccaa cattcgcgtg gctgtgcagt acatcgaagc gtggatctct ggcaacggct
55
                                                                            480
      gtgtgccgat ttatggcctg atggaagatg cggcgacggc tgaaatttcc cgtacctcga
   tctggcagtg gatccatcat caaaaaacgt tgagcaatgg caaaccggtg accaaagcct
                                                                            540
60
                                                                            600
    tgttccgcca gatgctgggc gaagagatga aagtcattgc cagcgaactg ggcgaagaac
      gtttctccca ggggcgtttt gacgatgccg cacgcttgat ggaacagatc accacttccg.
                                                                            660
      atgagttaat tgatttoctg accetgecag goodbogeca: goodbogtaa accetgecag
65
```

	aactatggag	catctgcaca	tgaagggcga	attccagcac	actggcggcc	gttactagta	780
	acggccgcca	gtgtgctgga	attcgccctt	caacaacaac	cgttgctgac	tgtaggccgg	840
5	ataaggcgtt	cacgccgcat	ccggcaatcg	gtgcacgatg	cctgatgcga	cgcttgcgcg	900
	tcttatcatg	cctacageeg	ttgccgaacg	taggctggat	aaggcgttta	cgccgcatcc	960
10	ggcaattctc	tgctcctgat	gagggcgcta	aatgccgcgt	ggcctggaat	tattgattgc	1020
	tcaaaccatt	ttgcaaggct	tcgatgctca	gtatggtcga	ttcctcgaag	tgacctccgg	1080
	tgcgcagcag	cgtttcgaac	aggccgactg	gcatgctgtc	cagcaggcga	tgaaaaaccg	1140
15	tatccatctt	tacgatcatc	acgttggtct	ggtcgtggag	caactgcgct	gcattactaa	1200
	cggccaaagt	acggacgcgg	catttttact	acgtgttaaa	gagcattaca	cccggctgtt	1260
20	gccggattac	ccgcgcttcg	agattgcgga	gagcttttt	aactccgtgt	actgtcggtt	1320
	atttgaccac	cgctcgctta	ctcccgagcg	gctttttatc	tttagctctc	agccagagcg	1380
	ccgctttcgt	accatteece	gcccgctggc	gaaagacttt	caccccgatc	acggctggga	1440
25	atctctactg	atgcgcgtta	tcagcgacct	accgctgcgc	ctgcgctggc	agaataaaag	1500
	ccgtgacatc	cattacatta	ttcgccatct	gacggaaacg	ctggggacag	acaacctcgc	1560
30	ggaaagtcat	ttacaggtgg	cgaacgaact	gaagggcgaa	ttctgcagat	atccatcaca	1620
	ctggcggccg	ctcgagcatg	cat				1643

010131 BT Original (for **SUBMISSION**) - printed on 05.03.2002 09:26:15.AM

D-1	Form - PCT/RO/134 (EASY) Indications Relating to Deposited Microorganism(s) or Other Biological Material (PCT Rule 13bis)	
0-1-1	Prepared using	PCT-EASY Version 2.92
	, repaired territy	(updated 01.01.2002)
0-2	International Application No.	(updated 01.01.2002)
	menadona Approducti (10)	
)-3	Applicant's or agent's file reference	010131 BT
1	The indications made below relate to the deposited microorganism(s) or other biological material referred to in the description on:	
1-1	page	13
1-2	line	1-5
1-3	Identification of Deposit	
1-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
,	,	Mikroorganismen und Zellkulturen GmbH
1-3-2	Address of depositary institution	Mascheroder Weg 1b, D-38124
_	,	Braunschweig, Germany
1-3-3	Date of deposit	08 September 2000 (08.09.2000)
1-3-4	Accession Number	1
1-4	Additional Indications	DSMZ 13720
1-5	<u> </u>	NONE
1-5	Designated States for Which Indications are Made	all designated States
1-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	
	FOR	RECEIVING OFFICE USE ONLY
0-4	This form was received with the international application: (yes or no)	YES
0-4-1	Authorized officer	B. GATINET (0)70/3402181
	FOR INTE	ERNATIONAL BUREAU USE ONLY
0-5	This form was received by the	
0-5-1	international Bureau on:	
U-U- (Authorized offices	
		L

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa-Hüls AG Kantstr. 2 33790 Halle

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. IDENTIFICATION OF THE MICROORGANISM									
Identification reference given by the DEPOSITOR: DH5α/pMAK705	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 13720								
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESI	GNATION								
The microorganism identified under I. above was accompanied by: (X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).									
III. RECEIPT AND ACCEPTANCE									
This International Depositary Authority accepts the microorganism identified u (Date of the original deposit).	under I. above, which was received by it on 2000-09-08								
IV. RECEIPT OF REQUEST FOR CONVERSION									
The microorganism identified under I above was received by this International and a request to convert the original deposit to a deposit under the Budapest T for conversion).	Depositary Authority on (date of original deposit) reaty was received by it on (date of receipt of request								
V. INTERNATIONAL DEPOSITARY AUTHORITY									
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2000-09-12								

Form DSMZ-BP/4 (sole page) 0196

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired.

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa-Hüls AG Kantstr. 2 33790 Halle

> VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITOR	II. IDENTIFICATION OF THE MICROORGANISM
Name: Degussa-Hüls AG Kantstr. 2 Address: 33790 Halle	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 13720 Date of the deposit or the transfer!: 2000-09-08
III. VIABILITY STATEMENT	
The viability of the microorganism identified under II above was tested on On that date, the said microorganism was (X) ³ viable () ³ no longer viable	
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN	PERFORMED*
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2000-09-12

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test. Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

PCT

(10) International Publication Number WO 02/081722 A3

(51) International Patent Classification⁷: C12P 13/08, 13/04 // (C12P 13/08, C12R 1:19)

(21) International Application Number: PCT/EP02/02421

(22) International Filing Date: 6 March 2002 (06.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 101 16 518.8 3 April 2001 (03.04.2001) DE

(71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).

(72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). HERMANN, Thomas; Zirkonstrasse 8, 33739 Bielefeld (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description
- (88) Date of publication of the international search report: 30 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS USING STRAINS OF THE FAMILY ENTEROBACTE-RIACEAE THAT CONTAIN AN ATTENUATED ACEA GENE

2/081722 A3

with groups are defined to a discount above the configuration of a configuration of a configuration of a configuration of a configuration of the L-amino acid in the medium or in the cells of the bacteria; and c) isolation of the L-amino acid.

Intern al Application No PCT/EP 02/02421

		101/11 02	7 02 721
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C12P13/08 C12P13/04 //(C12P1	13/08,C12R1:19)	
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do	ocumentation searched (classification system followed by classification C12P C12N	on symbols)	
	tion searched other than minimum documentation to the extent that s		
ł	ata base consulted during the international search (name of data ba ternal, WPI Data, PAJ, BIOSIS, MEDL)	•	1)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
Y	US 4 368 266 A (TOSAKA OSAMU ET 11 January 1983 (1983-01-11) column 1, line 39 -column 2, line examples 1-3 tables 3-5 claim 1	•	1-7
Y	EP 0 952 221 A (AJINOMOTO KK) 27 October 1999 (1999-10-27) page 2, line 24 -page 3, line 2 page 6, line 42 -page 7, line 6 claim 1		1-7
Y	EP 0 955 368 A (AJINOMOTO KK) 10 November 1999 (1999-11-10) page 2, line 22-56 page 6, line 9-31 claim 6	-/	1-7
X Funt	her documents are listed in the continuation of box C.	χ Patent family members are listed	in annex.
"A" docume consid "E" earlier of filing d	ent which may throw doubts on priority claim(s) or	"T" tater document published after the inte or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the or cannot be considered novel or cannot involve an inventive step when the do	the application but eory underlying the claimed invention to be considered to current is taken alone
citation "O" docume other i "P" docume	is cited to establish the publication date of another on other special reason (as specified) on the special reason (as specified) means on published prior to the International filing date but nan the priority date claimed	 Y document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvior in the art. document member of the same patent 	ventive step when the ore other such docu- us to a person skilled
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report
2	0 May 2003	02/06/2003	· -
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authorized officer	
ļ	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	van de Kamp, M	

Intern al Application No PCT/EP 02/02421

ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
MATSUOKA M ET AL.: "Isolation, hyperexpression, and sequencing of the aceA gene encoding isocitrate lyase in Escherichia coli" JOURNAL OF BACTERIOLOGY, vol. 170, no. 10, 1988, pages 4528-4536, XP008016923 ISSN: 0021-9193 cited in the application abstract	1-7
MICHAL G: "Biochemical pathways: an atlas of biochemistry and molecular biology" 1999 , JOHN WILEY & SONS INC. AND SPEKTRUM AKADEMISCHER VERLAG , NEW YORK - HEIDELBERG XP002240819 ISBN: 0-471-33130-9 figures 3.8-2, 3.9-1 figures 4.2-1, 4.5-1 and 4.5-2	1-7
KRAEMER R: "Genetic and physiological approaches for the production of amino acids" JOURNAL OF BIOTECHNOLOGY, vol. 45, no. 1, 1996, pages 1-21, XP002178648 ISSN: 0168-1656 the whole document	1-7
US 4 278 765 A (DEBABOV VLADIMIR G ET AL) 14 July 1981 (1981-07-14) cited in the application the whole document	1-7
EP 0 643 135 A (AJINOMOTO KK) 15 March 1995 (1995-03-15) the whole document	1-7
EP 0 237 819 A (KYOWA HAKKO KOGYO KK) 23 September 1987 (1987-09-23) the whole document	1-7
DATABASE WPI Section Ch, Week 199148 Derwent Publications Ltd., London, GB; Class B05, AN 1991-351136 XP002241222 & JP 03 236786 A (KYOWA HAKKO KOGYO KK), 22 October 1991 (1991-10-22) abstract	1-7
	MATSUOKA M ET AL.: "Isolation, hyperexpression, and sequencing of the aceA gene encoding isocitrate lyase in Escherichia coli" JOURNAL OF BACTERIOLOGY, vol. 170, no. 10, 1988, pages 4528-4536, XPO08016923 ISSN: 0021-9193 cited in the application abstract MICHAL G: "Biochemical pathways: an atlas of biochemistry and molecular biology" 1999, JOHN WILEY & SONS INC. AND SPEKTRUM AKADEMISCHER VERLAG, NEW YORK — HEIDELBERG XPO02240819 ISBN: 0-471-33130-9 figures 3.8-2, 3.9-1 figures 4.2-1, 4.5-1 and 4.5-2 KRAEMER R: "Genetic and physiological approaches for the production of amino acids" JOURNAL OF BIOTECHNOLOGY, vol. 45, no. 1, 1996, pages 1-21, XPO02178648 ISSN: 0168-1656 the whole document US 4 278 765 A (DEBABOV VLADIMIR G ET AL) 14 July 1981 (1981-07-14) cited in the application the whole document EP 0 643 135 A (AJINOMOTO KK) 15 March 1995 (1995-03-15) the whole document EP 0 237 819 A (KYOWA HAKKO KOGYO KK) 23 September 1987 (1987-09-23) the whole document DATABASE WPI Section Ch, Week 199148 Derwent Publications Ltd., London, GB; Class 805, AN 1991-351136 XPO02241222 JP 03 236786 A (KYOWA HAKKO KOGYO KK), 22 October 1991 (1991-10-22)

Interr pai Application No
PCT/EP 02/02421

C /O	ALL DOCUMENTS CONCINED TO CO.	PCT/EP 02/02421
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	oraden of document, with indicated, while appropriate, or the relevant passages	Helevallt to claim No.
Α	WO 99 53035 A (ALTMAN ELLIOT ;GOKARN RAVI R (US); EITEMAN MARK A (US); UNIV GEORG) 21 October 1999 (1999-10-21) page 5, line 20-24 examples 4,7,9,10 claims 41,49 figures 1,4	1-7
A	JETTEN M S M ET AL.: "Recent advances in the physiology and genetics of amino acid-producing bacteria." CRC CRITICAL REVIEWS IN BIOTECHNOLOGY, vol. 15, no. 1, 1995, pages 73-103, XP000613291 ISSN: 0738-8551 figure 1 page 83, right-hand column, line 1-36 page 90, left-hand column, line 1 -page 92, left-hand column, line 17	1-7
A	CHUNG T ET AL.: "Glyoxylate bypass operon of Escherichia coli: cloning and determination of the functional map." JOURNAL OF BACTERIOLOGY, vol. 170, no. 1, January 1988 (1988-01), pages 386-392, XP008015355 ISSN: 0021-9193 abstract	1-7
A	SAWERS G: "The anaerobic degradation of L-serine and L-threonine in enterobacteria: networks of pathways and regulatory signals" ARCHIVES OF MICROBIOLOGY, vol. 171, no. 1, 1998, pages 1-5, XP002953871 ISSN: 0302-8933 the whole document	1-7
E	WO 02 081698 A (DEGUSSA) 17 October 2002 (2002-10-17) the whole document page 9, line 21 -page 10, line 22 claim 7	1-7
E	WO 02 081721 A (DEGUSSA) 17 October 2002 (2002-10-17) the whole document page 9, line 24 -page 10, line 25 claim 7	1-7

...._mation on patent family members

Intern µal Application No PCT/EP 02/02421

· · · · · · · · · · · · · · · · · · ·			PCT/EP 02/02421			
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 4368266	A	11-01-1983	JP	142683	1 C	25-02-1988
			JP	5701899	D A	30-01-1982
			JP	6203667		07-08-1987
			JP	142680	1 C	25-02-1988
			JP	5609279		27-07-1981
			JP	6203667		07-08-1987
			FR	247261) A1	03-07-1981
EP 0952221	Α	27-10-1999	AU	75650		16-01-2003
			AU	2122399		30-09-1999
			BR	990117:		28-03-2000
			CN	1233660		03-11-1999
			EP	095222		27-10-1999
			JP	2000189169		11-07-2000
			PL	332072		27-09-1999
			US	6331419		18-12-2001
			US 	2001019836	A1	06-09-2001
EP 0955368	. A	10-11-1999	AU	746542		02-05-2002
			ΑU	2122499		30-09-1999
			BR	9901174		28-03-2000
			CN	1233661		03-11-1999
			EP	0955368		10-11-1999
			JP	2000106869		18-04-2000
			PL	332071		27-09-1999
			RU	2188236		27-08-2002
			US	6197559		06-03-2001
UC 4070767			US	2002004231	AI	10-01-2002
US 4278765	Α	14-07-1981	SU Hu	875663		15-09-1982
	بري م ك من يك .			190999	D	28-12-1986
EP 0643135	Α	15-03-1995	AT	203769		15-08-2001
			CZ	9401658		15-12-1994
			DE	69330518		06-09-2001
			DE	69330518		08-05-2002
			DK	643135		15-10-2001
			EP 10	0643135		15-03-1995
			JP Sr	3331472		07-10-2002
			SK	81994		10-05-1995
			US Ep	5661012 1020526		26-08-1997
	-	•	ES			19-07-2000
			MO E2	2158867 9411517		16-09-2001
			RU	2113484		26-05-1994
				4113404	 -	20-06-1998
EP 0237819	A	23-09-1987	DE	3788583		10-02-1994
			DE	3788583		19-05-1994
			EP ar	0237819		23-09-1987
			JP ar	2574786		22-01-1997
			JP V B	63273487		10-11-1988
			KR	9108634		19-10-1991
		_	US	5017483	A	21-05-1991
						01 00 1000
JP 3236786	A	22-10-1991	JP	2877414	B2	31-03-1999
JP 3236786 W0 9953035	A	22-10-1991 21-10-1999	JP AU BR	2877414 	Α	01-11-1999 12-12-2000

Intern ul Application No PCT/EP 02/02421

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9953035	A		CA EP JP WO US	2325598 A1 1073722 A1 2002511250 T 9953035 A1 2003087381 A1 6455284 B1	21-10-1999 07-02-2001 16-04-2002 21-10-1999 08-05-2003 24-09-2002
WO 02081698	A	17-10-2002	DE WO WO US	10116518 A1 02081721 A2 02081698 A2 02081722 A2 2003054503 A1 2003059903 A1	17-10-2002 17-10-2002 17-10-2002 17-10-2002 20-03-2003 27-03-2003
WO 02081721	A	17-10-2002	MO MO MO S S S S S S S S S S S S S S S S	10116518 A1 02081721 A2 02081698 A2 02081722 A2 2003054503 A1 2003059903 A1	17-10-2002 17-10-2002 17-10-2002 17-10-2002 20-03-2003 27-03-2003

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.