

Elettrotecnica (082742 – 082748 – 097245) Proff. Bizzarri, Gruosso, Linaro, Maffezzoni, Pignari

Cognome	Nome
Matricola	Numero Progressivo

AVVERTENZE

- La prova dura 2 ore.
- Le domande D1 D8 a risposta multipla <u>hanno ciascuna una sola risposta esatta</u> (+1.5/-0.5/0 punti per ogni risposta giusta/errata/senza risposta).
- I punteggi massimi complessivi per ogni quesito sono riportati nella tabella sottostante. Gli studenti multi-chance NON devono rispondere alle domande D4, D6, D7, D8.

Esercizio	D1 – D8 12 punti	E1 6 punti	E2 6 punti	E3 8 punti		Voto Finale
Voto						

D1	In un circuito che opera in regime sinusoidale (AC) alla pulsazione ω, la generica funzione di rete	
	è sempre adimensionale.	
	non dipende da ω.	
	è il rapporto tra due fasori.	X

D2	Nel circuito in figura, la tensione $vc(t)$ $A \qquad \qquad V$	C(t)
	è costante nel tempo.	
	varia linearmente nel tempo.	X
	varia esponenzialmente nel tempo.	

D8	Il bipolo composito di morsetti a-b è costituito dalla serie di N bipoli lineari affini identici. Qual è l'espressione della massima potenza erogabile dal bipolo composito?	a e_s	R_s	$N in$ e_s	serie R_s	e _s	√\^ R _.	<i>b</i> å
	$\frac{2e_s^2}{NR_s}$							
	$\frac{(Ne_s)^2}{R_s}$							
	$\frac{Ne_s^2}{4R_s}$							X

Si determinino in forma letterale i parametri della rappresentazione ibrida di prima specie

$$\binom{v_1}{i_2} = \binom{H_{11}}{H_{21}} \quad \frac{H_{12}}{H_{22}} \binom{i_1}{v_2} + \binom{Eeq}{Aeq}$$

del doppio-bipolo in figura.

Il circuito in figura è composto da una terna simmetrica di generatori in sequenza positiva con valore efficace $V_{rms} = 100$ [V] e fase di Va pari a zero. Sapendo che la potenza complessa assorbita dal carico trifase equilibrato composto dalle tre impedenze Z_1 è pari a 1000 + j1000 [VA], si determinino

- il valore dell'impedenza Z_1 ,
- i fasori $\bar{\iota}_a$, $\bar{\iota}_b$ e $\bar{\iota}_c$.

Si colleghi poi l'impedenza trifase composta dalle tre impedenze $Z_2 = -j45$ [Ω], connettendo le coppie di morsetti a-A, b-B e c-C. Si calcolino i nuovi valori assunti dai fasori $\bar{\iota}_a$, $\bar{\iota}_b$ e $\bar{\iota}_c$.

$$S_{21} = \frac{1000 (1+j)}{3} \qquad S_{21} = \frac{V_{4}}{3} = \frac{V_{4}}{2!} = \frac{V_{4} \times S_{21}}{2!} = \frac{V_{4} \times S_{21}}{3!} = \frac{V_{4} \times$$

L'interruttore in figura è aperto da lungo tempo e si chiude all'istante t = 0. Sapendo che Is = 1 A,

R = 15 ohm e L = 1 H, si determinino:

- $i_L(0^-)$ ed $i_L(0^+)$;
- $i_x(0^-)$ ed $i_x(0^+)$;
- la costante di tempo τ del circuito per t > 0;
- l'equazione differenziale che governa la dinamica del circuito per t > 0;
- $i_x(t)$ per t > 0;
- la potenza dissipata, per $t \to \infty$, dal resistore connesso tra i nodi a e b (l'interruttore è chiuso).

t>0

Req:

$$R = \frac{R \cdot (zR)}{iz + 2R} = \frac{2}{3}R = 10R$$
 $R = \frac{1}{10} = 0.1 \text{ S}$

$$\begin{array}{c|c}
\hline
 & & \\
\hline$$

Eq. diff.
$$z \cdot \frac{d|L|+}{dt} + |L|t) = |L_0 = 0$$

 $|x(t>0) = (|x(0+)|-|x_0|) \cdot e^{-\frac{t}{2}} + |x_0|$
 $= (\frac{L}{3}-1) \cdot e^{-\frac{t}{3}} + 1 = \frac{1}{3}e^{-\frac{t}{3}} + 1$