Alteración de la composición del bacterioma intestinal humano por parasitosis intestinales

Miguel Ángel Rodríguez Feregrino Ivan Oseas Jacobo Cruz Santiago Figueroa D'egremy

Introducción

Las parasitosis son el resultado de la infección y colonización de un diverso grupo de organismos a los que denominamos parásitos. Estos cuentan con características morfológicas, fisiológicas y conductuales específicas que les permiten ejecutar una invasión exitosa, ocasionando alteraciones en el hospedante, entre estas en la microbiota bacteriana.

Como parte de este proyecto descargamos datos de WGS de humanos parasitados y analizamos cómo variaron de acuerdo al parásito en cuestión.

Objetivo

 Buscar relaciones entre parásitos y sus perturbaciones de los grupos bacterianos en el intestino humano.

 Evaluar las relaciones entre parásitos de acuerdo a sus características biológicas

 Evaluar las diversidades alfa de las comunidades bacterianas resultantes de parasitosis intestinales

Metodología

- Descarga de datos.
 - Desde bash, txt con accesions: SRR
 - prefetch para obtener los archivos raw SRA.
 - fasterq-dump para obtener los fastq a partir de los archivos raw.
- Generar objeto phyloseq a partir de los datos.
 - Recortar por calidad phred y filtrar errores con learnErrors
 - Remover quimeras y unir F y R.
 - Asignar metadatos y asignar taxonomía con assignTaxonomy.
 - Usar DNAStringSet para asignar ASV a cada secuencia.
 - Exportar como RDS.

- 3. Filtrar y mejorar metadatos.
 - Buscar metadatos exactos de cada muestra para saber cuales estaban infectadas y de qué parásito.
 - Editar metadatos

```
43 dim(psH1_meta)
   v ← c(psH1_meta1$SampleName2)
   library(stringr)
49 - for (i in 1:93) {
50 a ← as.character(psH1_metal$SampleName[i])
     psH1_metal$"Ordenado"[which(str_detect(psH1_metal$SampleName2, a))] ← row.names(psH1_metal$SampleName[i])
52 - }
53
54 x ← 0
55 - for (i in 1:93) {
   a ← as.character(psH1_metal$SampleName[i])
57 if (all((psH1_metal$Ordenado == rownames(psH1_metal$SampleName[i])) == FALSE)){
59 - } else{
      psH1_meta1$Ordenado2[which(psH1_meta1$SampleName \Rightarrow a)] \leftarrow v[which(str_detect(psH1_meta1$SampleName2, a))]
61 4
62 4 ]
63 psH1_meta1
64
65 nueva ← data.frame(
     Parasitos = c(rep(0, 93)),
      Sample = c(rep(0, 93))
68 )
69 - for (i in 1:93) {
70 - if (psH1_meta1$Ordenado2[i] == 0){
       x \leftarrow x + 1
72 - } else {
        nueva$Parasitos[i] 

datos2$Groups.by.PCR.or.KK[which(datos2$Sample.id == psH1_meta1$Ordenado2[i])]
        nueva$Sample[i] 		 datos2$Sample.id[which(datos2$Sample.id == psH1_meta1$Ordenado2[i])]
75 - }
76 - }
    nueva2 ← as.data.frame(sample_data(psH1))
   all(rownames(nueva2) == rownames(nueva))
82 row.names(nueva) ← row.names(nueva2)
```

- 4. Unir otu tables de phylosegs con la función bindrows de tidyverse.
- 5. agregar una columna específica de cada parasitosis. Promediar las abundancias por ASV para cada parasitosis.
- 1.1 Calcular dist y cor de esta base de datos y construir red a partir de un umbral.
- 1.2 Construir base de datos con los datos de diversidad y generar una red a partir de dist y cor.
- 1.3 Construir una base de datos con datos biológicos de cada parásito y construir una matriz de adyacencia de cada variable biológica y generar la red.

Resultados 1: Redes de las características de los parásitos utilizados

Algunas características tomadas en cuenta:

- Mecanismo de patogenicidad.
- Intracelular o extracelular.
- Localización anatómica.
- Tipo de parásito.
- Ciclo infectivo.
- Transmisión.
- Distribución.
- Zoonosis.

Resultados 1: Redes de las características de los parásitos utilizados

Red pesada, no dirigida de la matriz de distancias.

Red no pesada, no dirigida de la matriz booleana.

Degree - nodos.

Betweenness - As, Ne, Ta, Ha.

Eccentricity - (+) Trichuris y Schistosoma

Clossenes -(+) Ascaris y Taenia

Resultados 2: Red de abundancias de ASV en microbiota post infección

2001	Parasito		ASV1	ASV2	ASV3 ÷	ASV4 + ASV	5 🕏	ASV6 ÷	ASV7 ÷	ASV8 ÷	ASV9	ASV10	ASV11 ÷	ASV12 + 1	ASV13	\$ ASV14	\$ ASV15	ASV16	‡ <i>j</i>
SRR115		his taichui								0		0 0				0		0	0
SRR177	02078 Ancilost	oma								0								0	0
SRR177	02123 Ancilost	oma	132				116			0		0 0				0	0 16	6	
SRR177	02126 Ancilost	oma								0		0 288						0	
SRR177	02128 Ancilost	oma		216						0		0 0	203					0	
SRR177	02056 Ascaris									0								0	
SRR177	02057 Ascaris			294	0		67			261			340					0	
SRR177	02058 Ascaris									0								0	
SRR177	02059 Ascaris			291			84			0		0 0			39	10		0	
SRR177	02069 Ascaris							254		0			387				0 29	9	
SRR177	02122 Ascaris		60	306						0		0 0	347		19	7 3	68 6	4	
SRR177	02124 Ascaris		297				174			0							0 24	9	
SRR177	02129 Ascaris									0		0 0				0		0	
	02130 Ascaris									0				432		0	0 14		
	02131 Ascaris							0		0		0 0				0			0
SRR177			325					0		0		0 0		0		0			0
	02132 Necator		(0	18	7	0	0		0 0	0	0	14				0
	02133 Necator 02050 Opistho	entrie.	(0 521	0	0	0	0		0 0 0 23		0		0		0 0 3 <u>1</u>	
SKII/	V1	V2	÷ V3		V4	V5	V6	Ť	V7	÷ ∨8		V9 ===	V10	[♀] V11	÷ V1		V13 ÷	V14	V15
orchis taichui	1.785714	1.571	1429	1.857143	1.42857	1.714286		1.357143	0.785	7143	1.428571	1.071429	1.28571	4 0.7857	143	0.6428571	1.00000	1.142857	0.00
Ancilostoma	705,245902	210.213	3115	88.065574	73.131148	73.393443	ε	4.983607	55.065	5738 5	5.459016	52.573770	54.90163	9 51.3114	754 4	7.3934426	45.83607	43.770492	42.22
Ascaris	431.312500	389.687	7500 2	94.312500	261.875000	267.000000	25	4.250000	209.562	5000 22	4.750000	197.937500	189.87500	0 248.9375	000 20	6.6250000	211.18750	188.937500	197.37
Necator	108.333333	0.000	0000	0.000000	0.000000	6.000000		2.333333	0.000	0000	0.000000	0.000000	0.00000	0.0000	0000	0.0000000	49.00000	0.000000	0.00
Opisthorchis	48.055556	22.83	3333	75.888889	80.277778	40.111111	2	4.944444	107,333	3333 3	5.944444	53.222222	42.77777	8 0.0000	0000 1	6.0555556	37.61111	11.000000	2.05
Plasmodium	8645.790576	8131.612	2565 46	55.534031	4034.801047	3005.141361	216	7.507853	1669.523	5602 155	1.895288	1342.397906	1267.18324	6 933.1675	393 92	0.2617801	912.38743	901.146597	873.85
enia Saginata	0.000000	114.666	5667	0.000000	0.000000	53.000000	12	2.333333	0.000	0000	0.000000	85.000000	34.33333	3 0.0000	0000	0.0000000	15.66667	188.333333	99.66
Trichuris	214.500000	159.333		0.000000	0.000000			4.166667	0.000		0.666667	83.666667				0.0000000	0.00000	42.500000	
Control	1789.676923	1238.076		87.061538	613.792308			3.276923	375.4000		2.792308	277.753846				5.5538462	182.31538	192.215385	
Schistosoma	0.000000	0.037		0.025000	0.000000			0.000000	0.0250		0.025000	0.025000				0.0000000	0.00000	0.000000	
Jenistosofila	0.000000	0.001	700	0.023000	0.00000	0.000000	65	0.000000	0.023	0000	20000	0,023000	0.02300	0.0123	000	0.000000	0.00000	0.000000	0.00


```
> summary(Shannova)
             Df Sum Sa Mean Sa F value Pr(>F)
tipo_parasito 3 11.67 3.889
                                1.393 0.314
               8 22.34
Residuals
                        2.792
> TukeyHSD(Shannova)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = Shannon ~ tipo_parasito, data = df_anova)
$tipo_parasito
                           diff
                                      lwr
                                                       p adi
cestodo-apicomplexo
                      2.0945707 -5.472624 9.661765 0.8120980
nematodo-apicomplexo
                      1.5529880 -4.167273 7.273250 0.8203663
trematodo-apicomplexo -0.5679346 -6.746523 5.610654 0.9904426
nematodo-cestodo
                      -0.5415827 -6.261844 5.178679 0.9895840
trematodo-cestodo
                     -2.6625054 -8.841094 3.516083 0.5437426
trematodo-nematodo
                      -2.1209227 -5.813336 1.571490 0.3236023
```

```
> summary(Simpsonova)
              Df Sum Sq Mean Sq F value Pr(>F)
                                    0.381
tipo_parasito 3 0.02054 0.006846
Residuals
               8 0.14393 0.017991
> TukeyHSD(Simpsonova)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = Simpson ~ tipo_parasito, data = df_anova)
$tipo_parasito
                              diff
                                          Lwr
                                                            p adj
                                                    upr
                       0.191476586 -0.4159746 0.7989278 0.7488142
cestodo-apicomplexo
nematodo-apicomplexo
                      0.133386107 -0.3258038 0.5925760 0.7901957
trematodo-apicomplexo 0.125635005 -0.3703468 0.6216168 0.8476186
nematodo-cestodo
                      -0.058090480 -0.5172804 0.4010995 0.9760350
trematodo-cestodo
                      -0.065841581 -0.5618234 0.4301402 0.9725360
trematodo-nematodo
                      -0.007751102 -0.3041569 0.2886547 0.9997708
```

Conclusiones

- Los grupos taxonómicos de los parásitos analizados no explicaron la variación de los cálculos de diversidades alfa.
- Al agrupar los parásitos por sus características biológicas, podemos apreciar una agrupación coherente con su taxonomía.
- Al analizar las abundancias bacterianas resultantes de distintas parasitosis intestinales (y *Plasmodium*) no se observan diferencias notables entre la mayoría de los parásitos, sin embargo, se notan diferenciadas del control (y *Plasmodium*).
- Una visión integral de los datos es indispensable para describir el impacto de parasitosis en la arquitectura de las comunidades bacterianas.

Bibliografía utilizada en este proyecto

Appiah-Twum, F., Akorli, J., Okyere, L., Sagoe, K., Osabutey, D., Cappello, M., & Wilson, M. D. (2023). The effect of singledose albendazole (400 mg) treatment on the human gut microbiome of hookworm-infected Ghanaian individuals. *Scientific Reports*, 13(1), 11302. https://doi.org/10.1038/s41598-023-38376-3

Easton, A. V., Quiñones, M., Vujkovic-Cvijin, I., Oliveira, R. G., Kepha, S., Odiere, M. R., Anderson, R. M., Belkaid, Y., & Nutman, T. B. (2019). The impact of anthelmintic treatment on human gut Microbiota based on cross-sectional and pre- and postdeworming comparisons in western Kenya. *mBio*, *10*(2). https://doi.org/10.1128/mBio.00519-19

Gobert, G. N., Atkinson, L. E., Lokko, A., Yoonuan, T., Phuphisut, O., Poodeepiyasawat, A., ... & Adisakwattana, P. (2022). Clinical helminth infections alter host gut and saliva microbiota. PLoS Neglected Tropical Diseases, 16(6), e0010491.

Prommi, A., Prombutara, P., Watthanakulpanich, D., Adisakwattana, P., Kusolsuk, T., Yoonuan, T., ... & Chaisiri, K. (2020). Intestinal parasites in rural communities in Nan Province, Thailand: changes in bacterial gut microbiota associated with minute intestinal fluke infection. Parasitology, 147(9), 972-984.

Jenkins, T. P., Rathnayaka, Y., Perera, P. K., Peachey, L. E., Nolan, M. J., Krause, L., ... & Cantacessi, C. (2017). Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. *PloS one*, *12*(9), e0184719.

Fin

