

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

Roteiro

- o Revisão
 - o Subtrator
 - o Detector de Validade de BCD
 - o Detector de igualdade
- o Aritmética Computacional
 - o Representação de Dados
 - OSomador e Subtrator em Complemento de Dois

Revisão

Circuitos Aritméticos

Aritmética Computacional

Aritmética Computacional

<u>Subtração</u>

Exemplo de subtração em decimal (dígitos de 0 a 9):

Empresta 1 da coluna da esquerda para formar a dezena

Aritmética Computacional

Aritmética Computacional

Subtração em Binário

Gera um "empresta-1" (carry out) da coluna seguinte: a 1^a coluna passa a valer 2_{10} = 10_2

O carry out será subtraído da coluna seguinte na continuação da operação

Exemplo

$$\frac{-0}{0}$$
 $\frac{-1}{1}$

Exercícios

- 1. Obtenha a Tabela Verdade para o circuito meio subtrator de 1 bit (considere como entradas: A e B; e como saídas: S e C_{out}).
- 2. Obtenha as expressões para a subtração S e para o $C_{\rm out}$ a partir da Tabela Verdade.
- 3. Simplifique as expressões $S \in C_{out}$.
- 4. Desenhe o diagrama de portas lógicas do circuito meio subtrator.

Aritmética Computacional

Aritmética Computacional

Subtração em Binário:

Exemplo

Gera um "empresta-1" (carry out) da coluna seguinte: a 1ª coluna passa a valer 10₂=2₁₀

```
1010
         1010
-0011
        -0011
```

```
Subtração
```


Exercícios

- 1. Obtenha a Tabela Verdade para o circuito subtrator completo de 1 bit (considere como entradas: A, B e C_{in} ; e como saídas: S e C_{out}).
- 2. Obtenha as expressões para a subtração S e para o $C_{\rm out}$ a partir da Tabela Verdade.
- 3. Simplifique as expressões $S \in C_{out}$.
- 4. Desenhe o diagrama de portas lógicas do circuito subtrator completo.

1) Entradas Saídas

Tabela Verdade para o Subtrator Completo

A	В	C _{in}	5	Cout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$S = \overline{A} \overline{B} C_{in} + \overline{A} B \overline{C}_{in} + A \overline{B} \overline{C}_{in} + A B C_{in}$$

$$C_{out} = \overline{A} \overline{B} C_{in} + \overline{A} B \overline{C}_{in} + \overline{A} B C_{in}$$

3)

Simplificando as expressões

$$S = \overline{A} \overline{B} C_{in} + \overline{A} \overline{B} \overline{C_{in}} + \overline{A} \overline{B} \overline{C_{in}} + \overline{A} \overline{B} C_{in}$$

$$S = \overline{A} (\overline{B} C_{in} + \overline{B} C_{in}) + A (\overline{B} C_{in} + \overline{B} C_{in})$$
 \longrightarrow $A \in \overline{A} \text{ em evidência}$

Como B
$$\oplus$$
 $C_{in} = \overline{B} C_{in} + B \overline{C_{in}}$ e B \oplus $C_{in} = \overline{B} \overline{C_{in}} + B C_{in}$

e
$$B \odot C_{in} = B C_{in} + B C_{in}$$

$$S = \overline{A} (B \oplus C_{in}) + A (B \odot C_{in})$$

Fazendo
$$X = B \oplus C_{in} e \overline{X} = B \odot C_{in}$$

$$S = \overline{A} X + A \overline{X}$$

$$S = A \oplus B \oplus C_{in}$$

3)

Simplificando as expressões

$$C_{\text{out}} = \overrightarrow{A} \overrightarrow{B} C_{\text{in}} + \overrightarrow{A} \overrightarrow{B} C_{\text{in}} + \overrightarrow{A} \overrightarrow{B} C_{\text{in}} + \overrightarrow{A} \overrightarrow{B} C_{\text{in}}$$

$$C_{\text{out}} = \overline{A}B + BC_{\text{in}} + \overline{A}C_{\text{in}}$$

 $P_2 = BC_{in}$

4)

$$S = A \oplus B \oplus C_{in}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = \overline{A}B + BC_{in} + \overline{A}C_{in}$$

Circuito Subtrator Completo

Aula de Hoje

Aritmética Computacional:

- o Representação de Dados
- o Somador e Subtrator em Complemento de Dois

Representação prática e fácil para ser processada??

XVII

vezes LIX

CLXX

-XVII

D(CCL)LL

DCCC LLLL X-X X-VII

= DCCC CC

III

= MIII

X-VII = VIIIII-VII = III

Como a informação é representada num processador?

- · A representação de um dado corresponde aos dígitos que escrevemos para simbolizá-lo.
- · Exemplos:

Valor (quantidade) 12

Representações:

```
(Hexadecimal
```

Romano ⇒ XII

Binário ⇒ 1100

Números de Ponto Fixo (Inteiros)

Números de Ponto Fixo <u>Sem Sinal</u>: usam representação binária convencional

Exemplo:

Binário	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7
<u> </u>	-

O valor do número é inteiro. Nenhum bit é usado para representar sinal.

Números de Ponto Fixo (Inteiros)

Números de Ponto Fixo Com Sinal

Existem 4 Métodos de Representação:

- 1. Sinal Magnitude
- 2. Complemento de 1
- 3. Complemento de 2
- 4. Notação em Excesso

Números de Ponto Fixo (Inteiros)

Representação Sinal Magnitude:

- Em decimal para representarmos as quantias +12 e −12⇒usamos os sinais + e − para indicar se o número é positivo ou negativo
- · Em Sinal Magnitude: Bit mais significativo (mais à esquerda) indica o sinal do número representado
 - O indica número positivo
 - 1 indica número negativo

Os bits restantes representam a Magnitude (valor do dado)

Números de Ponto Fixo (Inteiros)

Exemplo na Representação Sinal Magnitude:

Os bits restantes representam a Magnitude (valor do dado)

Números de Ponto Fixo (Inteiros)

Observações para a Representação Sinal Magnitude:

1. Há 2 representações para o número 0

$$+0_{10}$$
 $\Rightarrow 00000000_2$ -0_{10} $\Rightarrow 10000000_2$

- -Pode gerar erros de programação
- -Requer hardware mais complexo para comparar com os dois Os.

A!=00000000
e

A!=100000000

Números de Ponto Fixo (Inteiros)

Observações para a Representação Sinal Magnitude:

2. Intervalo de representação é menor, isto é, a quantidade de números representáveis é menor

Exemplo: 23=8

Isso significa que com 3 bits poderíamos representar até 8 valores diferentes, mas devido às duas representações do valor 0 (+0 e -0) podemos representar até 7 valores diferentes

011	+3
010	+2
001	+1
000	+0
100	-0
101	-1
110	-2
111	-3

Números de Ponto Fixo (Inteiros)

Representação em Complemento de 1:

- · Na representação em Complemento de 1 nós complementamos (invertemos) todos os bits 1 por 0 e os bits 0 por 1
- · Exemplo:

Os números positivos também têm

- o bit mais significativo em 0
- e os números <u>negativos</u> em 1

Números de Ponto Fixo (Inteiros)

Observações para a Representação Complemento de 1:

1. Há também 2 representações para o número 0

$$+0_{10}$$
 $\Rightarrow 00000000_2$ -0_{10} $\Rightarrow 11111111_2$

- -Pode gerar erros de programação
- -Requer hardware mais complexo para comparar com os dois Os.

```
A!=00000000
e

A!=11111111
```


Números de Ponto Fixo (Inteiros)

Observações para a Representação Complemento de 1:

2. Intervalo de representação é menor, isto é, a quantidade de números representáveis é menor

Exemplo: 23=8

Isso significa que com 3 bits poderíamos representar até 8 valores diferentes, mas devido às duas representações do valor 0 (+0 e -0) podemos representar até 7 valores diferentes

011	+3
010	+2
001	+1
000	+0
111	-0
110	-1
101	-2
100	-3

Números de Ponto Fixo (Inteiros)

Representação em Complemento de 2:

- Na representação em Complemento de 2 nós complementamos (invertemos) todos os bits 1 por 0 e os bits 0 por 1 e somamos 1 ao resultado do Complemento de 1
- · Exemplo:

$$+12_{10} \Rightarrow 00001100_2$$

Em Complemento de 2 os números <u>positivos</u> também têm o bit mais significativo em 0 e os números <u>negativos</u> em 1

$$-12_{10} \Rightarrow C1 = 11110011_{2}$$

$$+1$$

$$-12_{10} = 11110100_{2}$$

-12₁₀ em Complemento de 2

Números de Ponto Fixo (Inteiros)

Observações para a Representação Complemento de 2:

1. Há somente 1 representação para o número 0

$$+0_{10} \Rightarrow 00000000_2$$

$$-0_{10} \Rightarrow C1 = 111111111_{2}$$

$$+1$$

$$-0_{10} = 100000000_{2}$$

Carry é ignorado na conversão do número

-0₁₀ em Complemento de 2

Números de Ponto Fixo (Inteiros)

Observações para a Representação Complemento de 2:

2. Intervalo de representação é <u>maior</u> que dos outros métodos de representação anteriores porque só há uma representação para o Zero

011	+3	
010	+2	
001	+1	
000	+0	
000	-0	
111	-1	
110	-2	
101	-3	
100	-4	

Intervalo maior: 8 representações diferentes

Números de Ponto Fixo (Inteiros)

Representação em Excesso (Bias ou Deslocamento):

- A representação em Excesso tem o efeito de deslocar o número a ser representado, de forma que, o menor valor (negativo) corresponda à representação com todos os bits em zero e os valores sejam representados em ordem crescente, a partir do menor
- · Exemplo em Excesso de 128:

```
+12_{10} \Rightarrow +12+128 = 140 = 10001100<sub>2</sub>

-12_{10} \Rightarrow -12+128 = 116 = 01110100<sub>2</sub>
```


Números de Ponto Fixo (Inteiros)

Observações para a Representação Excesso:

- 1. Há somente 1 representação para o número 0
- 2. Intervalo de representação maior

```
+127_{10} \Rightarrow +127+128 = 255 = 111111111_{2}
...

0_{10} \Rightarrow +0+128 = 128= 10000000_{2}
...

-127_{10} \Rightarrow -127+128 = 1= 00000001_{2}
-128_{10} \Rightarrow -128+128 = 0= 00000000_{2}
```

Com 8 bits pode-se representar 2⁸=256 números (de 0 a 255)

Ordem crescente facilita comparações entre os números

Resumo das Representações de Dados

Decimal	Sem Sinal	Sinal Magnitude	Complemento de 1	Complemento de 2	Excesso de 4
+7	111	<u> </u>			
+6	110				
+5	101				
+4	100				
+3	011	011	011	011	111
+2	010	010	010	010	110
+1	001	001	001	001	101
+0	000	000	000	000	100
-0	-	100	111	000	100
-1	-	101	110	111	011
-2	-	110	101	110	010
-3	-	111	100	101	001
-4	-			100	000

Adição e Subtração em Complemento de 2

Aritmética Computacional em Complemento de 2

Adição e Subtração em Complemento de 2

Exemplos de Adição:

Complemento de 2 do valor -7_{10}

Overflow=0

Adição e Subtração em Complemento de 2

Exemplos de Adição:

$$C_{\text{out}}=1$$
 Overflow=0

em Complemento de 2

Complemento de 2 do valor -4₁₀

Complemento de 2

Despreza o carry

Adição e Subtração em Complemento de 2

Exemplos de Adição:

c) +3
$$3_{10}=0011_2$$
 + (+4) $4_{10}=0100_2$

Exemplos de Adição:

Complemento de 2 do valor -4₁₀

Complemento de 2 do valor -1₁₀

 $C_{\text{in}}=1$ Overflow=0

em Complemento de 2

0100 + 1 0101

Complemento de 2 de -5_{10}

Despreza o carry

Exemplos de Adição:

2 números positivos somados não podem resultar num número negativo

 $01001_2 = 9_{10}$

Erro de Overflow

em Complemento de 2

Não dá para representar 9 com registrador de 4 bits, com 1 bit de sinal

Exemplos de Adição:

f)
$$-7$$
 $+(-6)$ -13

Complemento de 2 do valor -7_{10}

 $\frac{1}{1}$ Complemento de 2 do valor -6₁₀

$$C_{\text{in}}=0$$
 Overflow=1

em Complemento de 2

Despreza o carry

2 números negativos somados não podem resultar num número positivo

<u>Subtração</u>

A Subtração pode ser efetuada usando um circuito Somador

Minuendo

- Subtraendo

Subtração

Usa o Complemento de 2 do Subtraendo e soma-o ao Minuendo

Exemplos de Subtração:

a) 2 -(+7) 5

$$7_{10}$$
=0111₂

Complemento de 2 do valor 7_{10}

1000 + 1 1001

$$\begin{array}{c}
0100 \\
+ 1 \\
\hline
0101
\end{array}$$
Complemento de 2 de -5₁₀

Overflow=0

Exemplos de Subtração:

b) 5 - (+2)

Complemento de 2 do valor 2₁₀

$$C_{\text{in}}=1$$
 Overflow=0

em Complemento de 2

Despreza o carry

Exemplos de Subtração:

Complemento de 2 do valor -5_{10}

Complemento de 2 do valor 2₁₀

 $C_{\text{in}}=1$ $C_{\text{out}}=1$ Overflow=0

em Complemento de 2

0110 + 1 0111

Complemento de 2 de -7₁₀

Despreza o carry

Exemplos de Subtração:

Complemento de 2 do valor 2₁₀

Complemento de 2 do valor -2₁₀

Complemento de 2 de -2=2

$$C_{\text{in}}=0$$
 $C_{\text{out}}=0$
Overflow=0

em Complemento de 2

Exemplos de Subtração:

+0111

.º 1110 =-2₁₀

em Complemento de 2

Complemento de 2 do valor 7_{10}

Complemento de 2 do valor -7_{10}

Complemento de 2 de -7=7

$$C_{\text{in}}=1$$
 $C_{\text{out}}=0$
Overflow=1

Erro de Overflow

01110₂=14₁₀

Não dá para representar 14 com registrador de 4 bits, com 1 bit de sinal

din

Exemplos de Subtração:

Complemento de 2 do valor 4₁₀

Complemento de 2 do valor 6₁₀

Erro de Overflow

2 números negativos somados não podem resultar num número positivo

Obs: Para obter o circuito somador/subtrator em complemento de 2 vamos usar a porta XOR

TV da Porta XOR

Entradas Saída

ک		
A	В	5
0	0	0
0	1	1
1	0	1
1	1	0

Símbolo da Porta XOR

TV da Porta XOR

Entradas Saída

A	В	5
0	0	0
0	1	1
1	0	1
1	1	0

Se fixar uma entrada em 0

Deixando uma entrada de controle em 0, o dado "X" é copiado para a saída

TV da Porta XOR

Entradas Saída

A	В	5
0	0	0
0	1	1
1	0	1
1	1	0

Se fixar uma entrada em 1

Deixando uma entrada de controle em 1, o dado "X" é complementado na saída: S=X

Para obter o complemento de 2 precisa somar 1 ao bit menos significativo do dado

Exercícios

- 1. Projete um circuito somador/subtrator em complemento de 2 usando um MUX para fazer o controle da geração do complemento de 2 do dado (subtraendo).
- 2. O custo do "novo" circuito somador/subtrator é maior ou menor que o do circuito anterior?

Soluções

1. Projete um circuito somador/subtrator em complemento de 2 usando um MUX para fazer o controle da geração do complemento de 2 do dado (subtraendo).

Soluções

2. O custo do "novo" circuito somador/subtrator é maior ou menor que o do circuito anterior?

Para circuitos de 4 bits:

Circuito 1: 4 Portas XOR

Circuito 2: 4x5=20 Portas

Decisão de Projeto:

- -<u>Arquitetura:</u> decide se vai oferecer adição em Complemento de 2
- -Organização: decide como implementar (escolhe entre o circuito 1 e o circuito 2)

Resumo da Aula de Hoje

Tópicos mais importantes:

- o Aritmética computacional:
 - o Representação de Dados
 - o Somador e Subtrator em Complemento de Dois

