Modular forms and L-functions (Michaelmas 2017) — example sheet #3

Comments/corrections to a.j.scholl@dpmms.cam.ac.uk

1. (i) Let $\Lambda \subset \mathbb{R}^n$ be a lattice. The *dual lattice* is the set

$$\Lambda' = \{ x \in \mathbb{R}^n \mid \text{for all } y \in \Lambda, (x, y) \in \mathbb{Z} \}$$

(where (x, y) is the usual inner product on \mathbb{R}^n). Show that Λ' is a lattice.

(ii) Consider the function $f(\underline{\mathbf{x}}) = \exp(-\pi t \|A\underline{\mathbf{x}}\|^2)$, where $\Lambda = A \mathbb{Z}^n$, $A \in GL_n(\mathbb{R})$. Compute its Fourier transform, and show by Poisson summation that the theta function

$$\vartheta_{\Lambda}(z) = \sum_{x \in \lambda} e^{\pi i \|x\|^2}$$

satisfies the transformation law

$$\vartheta_{\Lambda}(-1/z) = (z/i)^{n/2} v(\mathbb{R}^n/\Lambda)^{-1} \vartheta_{\Lambda'}(z)$$

where $v(\mathbb{R}^n/\Lambda)$ is the volume of the quotient.

- (iii) We say Λ is *self-dual* if $\Lambda' = \Lambda$, and *even* if $||x||^2 \in 2\mathbb{Z}$ for every $x \in \Lambda$. Show that if Λ is self-dual and even, then ϑ_{Λ} is a modular form of weight n/2 and level 1, and that n is divisible by 8. (Hint: compute $\vartheta_{\Lambda}^r|ST$, for r a suitable power of 2.)
- 2. Let $\Lambda \subset \mathbb{R}^8$ be the set of all $x = (x_1, \dots, x_8) \in \mathbb{R}^8$ satisfying

$$2x_i \in \mathbb{Z}, \qquad x_i - x_j \in \mathbb{Z}, \qquad \sum_{i=1}^8 x_i \in 2\mathbb{Z}.$$

Show that Λ is an even self-dual lattice. [Λ is usually denoted E_8 .] Show that ϑ_{Λ} is the normalised Eisenstein series E_4 . Hence (or directly) show that there are exactly 240 elements $x \in \Lambda$ with $||x||^2 = 2$.

3. (i) Let $f \in S_k(\Gamma(1))$ and $N \ge 1$, a, d integers with $ad \equiv 1 \pmod{N}$. Show that

$$f\left(\frac{-1}{N^2\tau} + \frac{a}{N}\right) = (N\tau)^k f\left(\tau - \frac{d}{N}\right).$$

(ii) Suppose further that f has q-expansion $\sum_{n\geq 1} c_n q^n$. By considering the Mellin transform of $g(\tau)=f(a/N+\tau)$, show that the function

$$M(f, a/N, s) = \left(\frac{N}{2\pi}\right)^s \Gamma(s) \sum_{n=1}^{\infty} e^{2\pi i a n/N} c_n n^{-s}$$

has the integral representation

$$M(f, a/N, s) = \int_{1/N}^{\infty} \left(f\left(\frac{a}{N} + iy\right) (Ny)^s + (-1)^{k/2} f\left(\frac{-d}{N} + iy\right) (Ny)^{k-s} \right) \frac{dy}{y}$$

and deduce that M(f,a/N,s) has an analytic continuation to $\mathbb C$ which satisfies the functional equation

$$M(f, a/N, k - s) = (-1)^{k/2} M(f, -d/N, s).$$

- 4. Let p > 2 be prime. Draw a fundamental domain for $\Gamma^0(p)$ as given in the lectures, and and show that the identifications of points along the boundary are given as follows:
 - the vertical lines $\text{Im}(z)=\pm p/2$ are identified by the translation $z\mapsto z+p$.
 - the circular arcs $C_a = \{|z a| = 1\}$, for integers a with 0 < |a| < p/2, are identified as follows: C_a is identified with C_b iff $ab \equiv -1 \pmod{p}$.
- 5. (i) Show that every element of finite order of $SL_2(\mathbb{Z})$ is conjugate to one of S^a , $(ST)^a$ for some $a \in \mathbb{Z}$.
 - (ii) Show that $\Gamma(N)$ is torsionfree if $N \geq 3$, and that the only elements of finite order of $\Gamma(2)$ are $\{\pm 1\}$.
 - (iii) Show that if $N \ge 4$ then $\Gamma_1(N)$ is torsionfree.
- 6. Let

$$\Gamma^* = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \Gamma \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

- (i) Show that if $f \in M_k(\Gamma)$, then the function $f^*(z) = \overline{f(-\overline{z})}$ belongs to $M_k(\Gamma^*)$.
- (ii) Show that if $\Gamma = \Gamma^*$ (for example, any one of $\Gamma_0(N)$, $\Gamma_1(N)$, $\Gamma(N)$) then $M_k(\Gamma)$ has a basis all of whose elements have real Fourier coefficients.
- 7. (i) Show that if every cusp of Γ has width one then Γ must be $\Gamma(1)$.
 - (ii)** Show that if Γ is a congruence subgroup containing -1, then $\Gamma \supset \Gamma(N)$ where N is the least common multiple of the widths of the cusps of Γ . (This gives a way to tell whether or not a given group is a congruence subgroup.)
- 8. Let N > 1, and let $c(M) \in \mathbb{C}$ be given for each M|N. Show that

$$\sum_{M|N} c(M) E_2(M\tau)$$

is a modular form of weight 2 on $\Gamma_0(N)$ if and only if $\sum M^{-1}c(M)=0$.

9. Let $k \geq 3$ and $\underline{r} = (r_1, r_2) \in \mathbb{Q}^2$ (row vectors). Define

$$G_{\underline{r},k}(z) = \sum_{m \in \mathbb{Z}^2} \frac{1}{((m_1 + r_1)z + m_2 + r_2)^k}$$

where ' means that the term $\underline{m} + \underline{r} = \underline{0}$ (if it exists) is omitted.

- (i) Show that if $\gamma \in \Gamma(1)$, the $G_{r,k}|_{k}\gamma = G_{r\gamma,k}$.
- (ii) Suppose $N \geq 1$ and $N\underline{r} \in \mathbb{Z}^2$. Show that $G_{r,k} \in M_k(\Gamma(N))$.
- 10. * Let $\Gamma \subset SL_2(\mathbb{Z})$ be a subgroup of finite index containing -1. Let $\Gamma_{\infty} \subset \Gamma$ be the stabiliser of the cusp ∞ . Show that if k > 2 is even, then the series

$$E_{\Gamma,k}(\tau) = \frac{1}{2} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \frac{1}{(c\tau + d)^k}$$
 where $\gamma = \begin{pmatrix} * & * \\ c & d \end{pmatrix}$

converges and defines an element of $M_k(\Gamma)$ which is not a cusp form, but which vanishes at every cusp of Γ other than ∞ .

By considering modular forms of the shape $E_{k,\Gamma'}|_k\gamma$, deduce that if Γ has ν cusps, then for even k>2 one has

$$\dim M_k(\Gamma) - \dim S_k(\Gamma) = \nu.$$