Barème.

- Calculs : chaque question sur 2 point, total sur 34 points, ramené sur 5 points.
- Exercice de TD et problème : chaque question sur 4 points, total sur 112 points, ramené sur 15 points, +75%.

Statistiques descriptives.

Soit
$$\varphi: \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right)$$
.

	Calculs	Problème	Note finale
Transformation	c	p	$\varphi\left(\frac{5c}{34} + 1,75\frac{15p}{112}\right)$
Note maximale	33	95	20+
Note minimale	11	13	6, 2
Moyenne	$\approx 22,64$	$\approx 32,39$	$\approx 10,80$
Écart-type	$\approx 4,59$	$\approx 14,92$	$\approx 3,35$
Premier quartile	20	22,75	8,5
Médiane	22	30, 5	10, 2
Troisième quartile	26	39	12, 1

Remarques générales.

- Les manipulations d'inégalités posent encore des problèmes insurmontables à certains. C'est consternant. Un rappel : on ne peut qu'additionner des inégalités (directement), pas les soustraire, ni les multiplier, ni les diviser.
- Vos réponses doivent être justifiées et les résultats simplifiés... et explicités.
- Ce n'est pas parce que la dérivée d'une fonction n'est pas strictement positive que cette fonction n'est pas strictement croissante (pensez à $x \mapsto x^3$).
- Le devoir était assez long, avec beaucoup de questions «élémentaires» (et peu abstraites). Les étudiants qui rédigent efficacement et travaillent vite peuvent gagner beaucoup de points sur une telle épreuve.
- Certains n'ont pas touché à la partie III. C'est dommage, il y avait énormément de choses simples à faire dedans et beaucoup de points à prendre. Sur un devoir de 3 h, vous pouviez sans problèmes passer 30 minutes sur cette partie et récolter beaucoup de points.

I - Un exercice vu en TD.

2) Une erreur vue parfois : $a + b < \lfloor a \rfloor + \lfloor b \rfloor + 2$, donc $a + b \leqslant \lfloor a \rfloor + \lfloor b \rfloor + 1$. Cet argument ne s'applique qu'aux entiers!

II - Étude d'une fonction complexe.

- 1) Lire des «f est définie si et seulement si $\bar{z} + 2 \neq 0$ » me déprime. Le premier membre ne dépend pas de z!
- 2a) Dire « $|z| = |\bar{z}|$ donc $|z+1| = |\bar{z}+2|$ » est franchement maladroit, et je l'ai légèrement sanctionné. Vous n'appliquez pas la première propriété à z, mais à z+2. Il convenait aussi d'expliquer que $\overline{z+2} = \overline{z}+2...$ J'ai relevé plusieurs fois une \mathbb{Z} HORREUR \mathbb{Z} : |z+2| = |z| + 2...
- **2b)** $\{z \in \Delta_f \mid |z+1| = |z+2| \}$ n'est pas une réponse explicite. Il convenait de faire attention à considérer que des élements de Δ_f .
- **4a)** Il fallait étudier en détail $x \mapsto \frac{x+1}{x+2}$. Répondre $\left\{ \left. \frac{x+1}{x+2} \right| \ x \in \mathbb{R} \setminus \{-2\} \right. \right\}$ n'est pas convenable. Vous devez expliciter cela.
- **4b)** La question précédente montre que 1 n'a pas d'antécédent $r\acute{e}el$. On ne peut en déduire que f n'est pas surjective.

- **5)** Il n'est pas possible d'avoir $2 \operatorname{Im}(z) = -i...$
- **7a)** Une erreur de calcul coûte cher ici, surtout sur le discriminant... Vérifiez vos calculs. Vous pouviez rédiger astucieusement en observant que i est solution. L'observation pouvait se faire par résolution complète... au brouillon!
- 7b) Le signe du discriminant n'a plus aucun intérêt maintenant...
- **9b)** Avant de dériver φ , justifiez que φ est dérivable. Préférez un tableau de variations à des explications verbeuses et compliquées.

III – Construction de la fonction racine p-ième.

Au vu de l'énoncé, il était à chaque fois préférable de donner des arguments non analytiques aux différentes questions. Les étudiants ayant fait cet effort ont été récompensés.

- 1a) Vous ne pouviez «bien entendu» pas utiliser la croissance stricte de $x \mapsto x^p$ sur \mathbb{R}_+ ici...
 - La positivité au sens large de $\frac{\mathrm{d}}{\mathrm{d}x}x^p$ ne donne rien, ici.

Ne confondez pas fonctions et suites : montrer $\forall x \in \mathbb{R}_+, (x+1)^p > x^p$ était hors sujet.

- 1) La fonction $x \mapsto x^p$ n'est pas croissante sur \mathbb{R} , pour un p quelconque.
- **2b)** $(1+x_0)^p > x_0$ ne montre pas immédiatement que $1+x^0$ majore $A(x_0)$.
- 3b) N'oubliez pas de citer le nom du résultat utilisé : la propriété de la borne supérieure.