4. Übung für die Vorlesung Technische Informatik

Wintersemester 2022/2023

Abgabe: spätestens Dienstag, 22.11.2022, 8:15 Uhr

Aufgabe 1. Vollständige Operatorensysteme

Zeigen oder widerlegen Sie, dass die folgenden Operatorenmengen jeweils ein vollständiges Operatorensystem bilden:

(Hinweis: Es genügt nur NAND oder NOR nachzuweisen, dies sind wie in der Vorlesung gezeigt bereits vollständige Operatorensysteme.)

- 1. $\{\neg, \land\}$
- 2. $\{\rightarrow, 0\}, \rightarrow \text{ ist definiert als } x \rightarrow y := \neg x \lor y.$
- 3. $\{\leftrightarrow\}$, wobei der Operator \leftrightarrow definiert sei als $x \leftrightarrow y := \neg(x \leftrightarrow y)$
- 4. $\{ \nrightarrow, 1 \}$, wobei der Operator \nrightarrow definiert sei als $x \nrightarrow y := \neg(x \to y)$
- 5. $\{\leftrightarrow, \land, 1\}$

Aufgabe 2. Shannonentwicklung

Gegeben sei die folgende boolesche Funktion:

$$f(a, b, c, d) = ((a + b) \leftrightarrow c)d + ((ab) \oplus c)d'$$

wobei $a \leftrightarrow b = ab + a'b'$ (Äquivalenz) und $a \oplus b = a'b + ab'$ (Antivalenz). Führen Sie insgesamt vier verschiedene Shannonentwicklungen durch, indem Sie die Funktion f nach jeweils einer der vier Variablen entwickeln. Die positiven und negativen Kofaktoren sollen dabei nur soweit vereinfacht werden, dass keine 0'en oder 1'en mehr vorkommen. Was fällt Ihnen auf?

Aufgabe 3. ROBDD, Shannon entwicklung

Entwickeln Sie aus dem folgenden ROBDD die dargestellte boolesche Funktion, in dem Sie die Shannonentwicklung rekursiv anwenden.

7 P.

4 P.

4 P.

Aufgabe 4. Resolutionsblöcke

4 P.

Zeigen Sie mittels der Rechenregeln der Booleschen Algebra, dass in einem 4x4-KV-Diagramm ein beliebiger Viererblock aus Einsen (Größe 1x4, 4x1 oder 2x2) zu einem einzelnen Monom mit zwei Variablen zusammengefasst werden kann.

Aufgabe 5. KV-Diagramme

3 P.

Bestimmen Sie die maximalen Resolutionsblöcke (Primimplikanten) in folgenden KV-Diagrammen (Einzeichnen genügt). "-" bezeichne hierbei einen "don't care".

1.

cdak	00	01	11	10
00	1	1	1	1
01		1		-
11			1	
10	1	-	1	1

2.

al cd	00	01	11	10
00		1	1	
01			1	1
11	1			1
10	1	1		

3.

al d	00	01	11	10
00	-	1	1	1
01	1			-
11				-
10				

Aufgabe 6. KV-Diagramme, Wertetabelle

4 P.

Gegeben seien die Wertetabellen für die Funktion f (siehe Tabelle 1). "-" bezeichne hierbei einen "don't care".

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	-
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	_
1	1	1	0	1
1	1	1	1	0

Tabelle 1: Wertetabellen von f

- 1. Erstellen Sie ein KV-Diagramm von $f(x_1, x_2, x_3, x_4)$.
- 2. Ermitteln Sie die minimale Darstellung von $f(x_1, x_2, x_3, x_4)$ indem Sie die Primimplikanten aus dem KV-Diagramm auslesen.