1 Lezione del 10-10-24

1.1 Dimostrazione di Thevenin

Avevamo detto che, attraverso Thevenin, si può trasformare qualsiasi rete come vista da due morsetti in una rete equivalente formata da un resistore e un generatore di tensione in serie. Dimostriamo questo risultato.

Supponiamo di avere un circuito elettrico che andiamo a dividere in due sottoreti. disegna due scatole

Poniamo di semplificare una di queste sottoreti (magari quella di sinsitra), presi due morsetti che la collegano all'altra. Avremo che da questi morsetti passa una corrente i(t) e che essi si trovano ad una differenza di potenziale v(t).

disegna due scatole con corrente e voltaggio

Possiamo quindi pensare di separare le due sottoreti, e di sostituire ai morsetti dei generatori di corrente che replicano la corrente i(t) vista prima. Se la tensione ai capi dei generatori resta v(t), allora i circuiti non sono cambiati.

disegna due scatole separate

Questo prende il nome di principio di sostituzione.

A questo punto possiamo dire che all'interno delle sottoreti troveremo dipoli attivi (genratori di tensione e di corrente), e passivi (resistori e generatori pilotati di tensione e di corrente).

disegna due scatole con tutti i componenti

Staccate dal resto del circuito si ha che le sottoreti portano i morsetti a tensione $v'(t) = v_0(t)$. Incluso il generatore di corrente di prima, possiamo pensare di disattivare i generatori dipendenti propri della sottorete, per ricavare un'altra tensione v''(t). Visto che il circuito è formato effettivamente da componenti passivi, possiamo calcolare una resistenza vista, che chiamiamo R_{12} . Abbiamo allora che, incluso il generatore di corrente di prova i(t):

$$v''(t) = -R_{12} \cdot i(t)$$

chiarisci il segno col disegno e quindi la tensione totale è:

$$v(t) = v_0(t) - R_{12} \cdot i(t)$$

Questo equivale a rappresentare il circuito come un generatore di tensione $v_{TH} = v_0(t)$ in serie ad una resistenza $v_{TH} = R_{12}$.

1.2 Metodo delle correnti di maglia