Matemática Discreta

Lógica Proposicional

Universidade de Aveiro 2018/2019

http://moodle.ua.pt

Lógica proposicional

- Princípio da não contradição: uma proposição não pode ser verdadeira e falsa (ao mesmo tempo).
- Princípio do terceiro excluído: uma proposição ou é verdadeira ou é falsa (i.e., verifica-se sempre um destes casos e nunca um terceiro).
- O valor lógico de uma proposição é verdadeiro (V ou 1) ou falso (F ou 0).

Exemplos

São proposições:

- 1) 2 > 3
- 2) Luís Vaz de Camões escreveu os Lusíadas
- 3) a equação $x^2 = 4$ tem duas soluções reais

Não são proposições:

- 1) x > 3
- 2) Apreciem a paisagem
- 3) $x^2 = 4$

Exemplos

São proposições:

1) 2 > 3

- \rightarrow Falso
- 2) Luís Vaz de Camões escreveu os Lusíadas -> Verdadeiro
- 3) a equação $x^2 = 4$ tem duas soluções reais \rightarrow Verdadeiro

Não são proposições:

- 1) x > 3
- 2) Apreciem a paisagem
- 3) $x^2 = 4$

Decomposição de proposições

Uma proposição

atómica não se pode decompor noutras proposições.

Denotam-se por letras minúsculas: p, q, ...

composta pode decompor-se em proposições atómicas e operadores lógicos.

Exemplo de proposição composta:

- Se o cão tem fome então o cão come muito,
- proposições atómicas:
 - p: "o cão tem fome"
 - q: "o cão come muito"

operador lógico: ⇒

$$p \Rightarrow q$$

Operadores lógicos (ou conectivos)

Negação ¬ (não)

Conjunção ∧ (e)

Disjunção ∨ (ou)

Implicação ⇒ (se ... então)

Equivalência \Leftrightarrow (se e só se (sse))

Tabelas de verdade

Tabela de verdade da negação:

p	¬ <i>p</i>
1	
0	

Tabelas de verdade

Tabela de verdade da negação:

p	$\neg p$
1	0
0	1

Tabelas de verdade (cont.)

Tabela de verdade da conjunção:

p	q	$p \wedge q$
1	1	
1	0	
0	1	
0	0	

Tabela de verdade da disjunção:

p	q	$p \vee q$
1	1	
1	0	
0	1	
0	0	

Lógica Proposicional consistentes occorrented proposicional consistentes occorrented proposicional consistentes occorrented proposicional occorrented proposicional consistentes occorrented proposicional consistentes occorrented proposicional consistentes occorrented proposicional occorrented proposicion

Tabelas de verdade (cont.)

Tabela de verdade da conjunção:

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

Tabela de verdade da disjunção:

p	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

Tabelas de verdade (cont.)

Tabela de verdade da implicação:

p	q	$p \Rightarrow q$
1	1	
1	0	
0	1	
0	0	

Tabela de verdade da equivalência:

p	q	$p \Leftrightarrow q$
1	1	
1	0	
0	1	
0	0	

Tabelas de verdade (cont.)

Tabela de verdade da implicação:

p	q	$p \Rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Tabela de verdade da equivalência:

p	q	$p \Leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

Fórmulas bem formadas

Definição [fórmula bem formada (fbf)]

- Verdadeiro (V ou 1) é uma fbf;
- Falso (F ou 0) é uma fbf;
- Uma proposição atómica é uma fbf;
- 4 se r é uma fbf então $\neg r$ é uma fbf;
- se r e s são fbf's então $(r \wedge s)$, $(r \vee s)$, $(r \Rightarrow s)$, $(r \Leftarrow s)$ e $(r \Leftrightarrow s)$ são fbf's.

Uma fórmula bem formada também se designa por expressão lógica.

Tautologias e contradições

Definição de tautologia e contradição

Uma **tautologia** é uma fórmula que tem valor lógico 1 qualquer que seja a interpretação.

Uma **contradição** é uma fórmula que tem valor lógico **0** qualquer que seja a interpretação.

Exemplo de tautologia: $p \lor \neg p$

Exemplo de contradição: $p \land \neg p$

Fórmulas válidas, inconsistentes e equivalentes

Definição [fórmula válida]

Uma fbf diz-se **válida** se é uma tautologia, i.e., se é verdadeira sobre qualquer das suas possíveis interpretações.

Uma fbf diz-se não válida (ou inválida) se não é válida.

Definição [fórmula inconsistente]

Uma fbf diz-se **inconsistente** se é uma contradição, i.e., se é falsa qualquer que seja a interpretação.

Uma fbf diz-se consistente se não é inconsistente.

Fórmulas lógicas equivalentes

Definição [fórmulas equivalentes]

Duas fórmulas lógicas, r e s, dizem-se **equivalentes** (\equiv) se $r \Leftrightarrow s$ é uma tautologia.

- Duas fórmulas lógicas com as mesmas variáveis são equivalentes quando têm a mesma tabela de verdade.
- Como consequência, podemos afirmar que
 (p ⇒ q) é equivalente a ¬p ∨ q
 conforme decorre das respectivas tabelas de verdade.

Comutatividade, leis de De Morgan e associatividade

- Comutatividade:
 - $(p \land q) \Leftrightarrow (q \land p)$
 - $(p \lor q) \Leftrightarrow (q \lor p)$
- Leis de De Morgan:
 - $(\neg(p \land q)) \Leftrightarrow (\neg p \lor \neg q)$
 - $(\neg(p \lor q)) \Leftrightarrow (\neg p \land \neg q)$
- Associatividade:
 - $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$
 - $((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$

Lógica Proposicional ococo Fórmulas bem formadas (fbf) Fórmulas válidas e inconsistentes ococo Propriedades Inferência Ou exclusivo ococo

Idempotência, distributividade, lei da contraposição, lei da dupla negação

- Idempotência:
 - $(p \land p) \Leftrightarrow p$
 - $(p \lor p) \Leftrightarrow p$
- Distributividade:
 - $(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$
 - $(p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$
- Lei da contraposição:
 - $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$
- Lei da dupla negação:
 - $\neg(\neg p) \Leftrightarrow p$

Seja p uma proposição arbitrária.

- $(p \land 1) \Leftrightarrow p$;
- $(p \lor 1) \Leftrightarrow 1$;
- $(p \land 0) \Leftrightarrow 0$;
- $(p \lor 0) \Leftrightarrow p$;
- ¬1 ⇔ 0;
- ¬0 ⇔ 1;

Lógica Proposicional

Fórmulas bem formadas (fbf)

Fórmulas válidas e inconsistentes

Propriedades

Inferência

Modus ponens e modus tollens

- Modus ponens:
 - $[p \land (p \Rightarrow q)] \Rightarrow q$

- Modus tollens:
 - $[(p \Rightarrow q) \land \neg q] \Rightarrow \neg p$

Outras regras

- Adição:
 - $p \Rightarrow (p \lor q)$
- Simplificação:
 - $(p \land q) \Rightarrow p$
- Silogismo hipotético:
 - $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$

Lógica Proposicional Fórmulas bem formadas (fbf) Fórmulas válidas e inconsistentes Propriedades Inferência Ou exclusivo

Utilização do "ou exclusivo" em fórmulas lógicas

- Para além do conectivo ∨ que se designa também por ou inclusivo, por vezes adopta-se o ou exclusivo (ou rejeição) que se denota por v.
- Este *ou exclusivo* aplicado às proposições $p \in q$ produz a proposição $p \lor q$ que significa p ou q, mas não ambos.
- Assim, a proposição p∨q é verdadeira quando uma e apenas uma das proposições p ou q é verdadeira.

Referências bibliográficas

- Referência bibliográfica principal:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2009.
- Referência bibliográfica complementar:
 - N. L. Biggs, *Discrete Mathematics*, Oxford University Press, 2nd Ed. (2002).