Практическая работа №1

«Агротехническая оценка косилок и валковых жаток».

- 1. Определение качества работы валковой жатки. Качество работы валковой жатки характеризуют следующие параметры:
 - 1. Ширина захвата, м: $B_{\mathcal{K}} = \frac{\sum_{i=1}^{n} B_{i}}{n}$
 - 2. Высота среза, см: $\bar{h} = \frac{\sum_{i=1}^{n} h_i}{n}$

Среднеквадратическое отклонение, см: $\delta_h = \sqrt{\frac{\sum_{i=1}^n (h_i - \overline{h})^2}{n-1}}$

Коэффициент вариации, %: $V = \frac{\delta_h}{\overline{h}} \cdot 100$

Аналогичная процедура оценки производится при определении:

Высоты валка, см;

Толщины валка, см;

Просвета между почвой и валком, см;

Ширины валка, см;

- 3. Потери зерна за жаткой, %:
- а) потери за жаткой свободного зерна в межвалковом пространстве, %: $\Delta q_{\it C3Ж} = \frac{10 \cdot q_{\it C3Ж}}{S_2 \cdot Y_3} \frac{10 \cdot q_e}{S \cdot Y_3}$, где

 $q_{\it C3Ж}$ – потери свободного зерна в межвалковом пространстве, г;

 q_e – потери зерна от само осыпания, г;

 S_2 — площадь рамки для учета потерь свободного зерна в межвалковом пространстве, м²;

S – площадь, с которой учтены потери от само осыпания, м²;

 V_3 – урожайность зерна, ц/га;

$$\boldsymbol{Y}_{3} = \frac{\boldsymbol{G}_{3} \cdot \boldsymbol{3}_{_{\mathcal{M}}}}{\boldsymbol{L} \cdot \boldsymbol{B}_{_{\mathcal{K}}}} + \frac{\boldsymbol{q}_{_{\mathit{HKK}}}}{10 \cdot \boldsymbol{S}_{_{1}}} + \frac{\boldsymbol{q}_{_{\mathit{CKK}}}}{10 \cdot \boldsymbol{S}_{_{1}}} + \frac{\boldsymbol{q}_{_{\mathit{C3K}}}}{10 \cdot \boldsymbol{S}_{_{2}}} + \left[\frac{\boldsymbol{q}_{_{\mathit{C3K}}}}{10 \cdot \boldsymbol{S}_{_{3}}} - \frac{\boldsymbol{q}_{_{\mathit{C3K}}}}{10 \cdot \boldsymbol{S}_{_{2}}} \right] \cdot \frac{\boldsymbol{S}_{_{3}}}{\boldsymbol{S}_{_{2}} + \boldsymbol{S}_{_{3}}} \,, \, \text{где}$$

 G_3 – масса зерна в бункере, кг;

·				

 $3_{_{M}}$ — содержание основного зерна и зерновой примеси в зерне из бункера, %;

L – длина учетной делянки, с которой собрано зерно в бункер, м:

 $q_{{\it HKK}}$ – потери зерна в не срезанных колосьях в межвалковом пространстве, г;

 S_1 – площадь рамки для учета потерь в срезанных и не срезанных колосьях, м²;

 $q_{\it C3Ж}$ – потери свободного зерна под валком;

 S_3 – площадь рамки для учета потерь свободного зерна под валком, м 2 ;

б) потери за жаткой свободного зерна под валком, %

$$\Delta q'_{C3\%} = \frac{10 \cdot q_{C3\%}}{V_{3} \cdot S_{3}} - \frac{10 \cdot q_{e}}{V_{3} \cdot S} \cdot \frac{S_{3}}{S_{2} + S_{3}}$$

в) потери за жаткой зерна в срезанных колосьях в межвалковом пространстве, %

$$\Delta q_{\it CKЖ} = \frac{10 \cdot q_{\it CKЖ}}{Y_{\it 3} \cdot S_{\it 1}} \,, \, \text{где} \,\, q_{\it CKЖ} \, - \text{потери зерна в срезанных колосьях},$$
 %

г) потери за жаткой зерна в не срезанных колосьях, % $\Delta q_{\it KK} = \frac{10 \cdot q_{\it KK}}{V_3 \cdot S_1}$

д) потери за жаткой зерна в не срезанных колосьях под валком, %

$$\Delta q'_{\mathit{HKЖ}} = \frac{10 \cdot q'_{\mathit{HKЖ}}}{V_3 \cdot S_4} \cdot \frac{S_4}{S_4 + S_1},$$
 где

 q'_{HKK} – потери зерна в не срезанных колосьях под валком, г; S_4 – площадь рамки для учета потерь зерна в не срезанных колосьях под валком, м²;

е) суммарные потери зерна за жаткой, %

$$\Delta q_{\mathcal{K}} = \Delta q_{\mathcal{C}\!3\mathcal{K}} + \Delta q_{\mathcal{K}\!\mathcal{K}} + \Delta q_{\mathcal{C}\!\mathcal{K}\!\mathcal{K}} + \Delta q'_{\mathcal{C}\!\mathcal{S}\!\mathcal{K}} + \Delta q'_{\mathcal{H}\!\mathcal{K}\!\mathcal{K}}$$

Производительность комбайна в час основного времени при уровне потерь зерна за молотилкой 1,5% на подборе валков, т;

$$W = 3.6 \cdot \frac{G_3 \cdot 3_{M}}{t \cdot 100}$$
, где t – время прохождения учетной делянки, с;

Распределение зерна по ширине валка, %:

Слева; Посредине; Справа.

Определить качество работы валковой жатки по следующим исходным данным.

Таблица 1. Исходные данные качества работы валковой жатки.

n	1	2	3	4	5
B_{i}	6	6	6	6	6
h_i	15	17	18	16	17

Вариант	1	2	3	4
q_{C3K} , ϵ	20	25	15	18
q_e, z	5	10	8	15
S_2, m^2	0,25	0,25	0,25	0,25
S, m^2	0,25	0,25	0,25	0,25
G_3 , κ e	2500	2300	2400	2450
3 _M ,%	90	96	93	87
<i>L</i> , м	100	100	100	100
q_{HKW} , $arepsilon$	5	8	5	10
S_1, m^2	0,25	0,25	0,25	0,25
$q'_{\mathit{C3}\mathscr{K}}$, $arepsilon$	20	25	30	18
S_3, m^2	0,25	0,25	0,25	0,25
q_{CKK} , $arepsilon$	5	3	6	8
$q_{K\!K}$, ε	0	0	0	0
q'_{HKW} , ε	2	3	1	2
S_4, m^2	0,25	0,25	0,25	0,25
t,c	200	200	200	200

