# Cours de MOMI Licence I Math-Info

CHAPITRE VII: NOMBRES COMPLEXES

### 1 - Définition des nombres complexes

On note  $\mathbb{R}^2$  le produit cartésien  $\mathbb{R} \times \mathbb{R}$  dont les éléments sont des couples (a,b), où  $a,b \in \mathbb{R}$ .

On rappelle que (a, b) = (a', b') équivaut à a = a' et b = b'.

<u>Définition</u>. On appelle ensemble des nombres complexes, noté  $\mathbb{C}$ , l'ensemble  $\mathbb{R}^2$  que l'on munit des opérations suivantes:

#### Addition +:

Pour tous 
$$(a, b), (a', b') \in \mathbb{C}, (a, b) + (a', b') = (a + a', b + b').$$

# Multiplication ×:

Pour tous 
$$(a, b), (a', b') \in \mathbb{C}, (a, b) \times (a', b') = (aa' - bb', ab' + a'b).$$

On introduit quelques simplifications:

- (a) Pour tout  $a \in \mathbb{R}$ , on identifie le nombre complexe (a,0) avec le réel a. Ainsi, on peut voir  $\mathbb{R}$  comme une partie de  $\mathbb{C}$ . De plus, les opérations de  $\mathbb{C}$  étendent l'addition et la multiplication de  $\mathbb{R}$ .
- **(b)** Le nombre complexe (0,1) vérifie:

$$(0,1)^2 = (0,1) \times (0,1) = (-1,0) = -1$$
. On note  $i = (0,1)$ .

(c) Pour tout nombre complexe  $z = (a, b) \in \mathbb{C}$ , on vérifie:  $(a, b) = (a, 0) + (0, 1) \times (b, 0)$ .

Ainsi, avec les points (a) et (b), l'écriture du nombre complexe z devient alors:

$$z = a + i b$$
, avec  $a, b \in \mathbb{R}$  où  $i^2 = -1$ .

Dorénavant, c'est cette écriture des nombres complexes qu'on va utiliser.

<u>Définition</u>. Soit z = a + i b un nombre complexe avec  $a, b \in \mathbb{R}$ .

- Le nombre a s'appelle la partie réelle de z, on le note Re(z).
- Le nombre b s'appelle la partie imaginaire de z, on le note  $\operatorname{Im}(\mathbf{z})$ .
- On dit que z est imaginaire pur si Re(z) = 0.
- On dit que z est réel si Im(z) = 0.

# 2 - Propriétés des opérations de $\ensuremath{\mathbb{C}}$

Rappelons les opérations de  $\mathbb C$  en prenant en compte la nouvelle notation des complexes:

$$(a+ib) + (a'+ib') = a+a'+i(b+b'),$$

$$(a + i b) \times (a' + i b') = aa' - bb' + i (ab' + a'b).$$

Ces deux opérations vérifient les propriétés suivantes:

#### Pour l'addition:

- La commutativité: Pour tous  $z, z' \in \mathbb{C}$ z+z'=z'+z.
- L'associativité: Pour tous  $z, z', z'' \in \mathbb{C}$  (z+z')+z''=z+(z'+z'').
- 0 est l'élément neutre, ceci signifie que pour tout  $z \in \mathbb{C}$  0+z=z+0=z. (rappelons que  $0=0+i\,0$ ).
- Pour tout  $z \in \mathbb{C}$ , il existe  $z' \in \mathbb{C}$  vérifiant: z+z'=z'+z=0

Ce complexe z' s'appelle l'opposé de z et on le note -z. Concrètement, si z = a + i b, alors -z = -a + i (-b). En particulier, -(i b) = i (-b) pour tout réel b.

### Pour la multiplication:

• La commutativité: Pour tous  $z, z' \in \mathbb{C}$ 

$$z \times z' = z' \times z$$
.

- L'associativité: Pour tous  $z, z', z'' \in \mathbb{C}$   $(z \times z') \times z'' = z \times (z' \times z'').$
- 1 est l'élément neutre, ceci signifie que pour tout  $z \in \mathbb{C}$   $1 \times z = z \times 1 = z$ .

(rappelons que 1 = 1 + i0).

• La multiplication est distributive par rapport à l'addition: Pour tous  $z,z',z''\in\mathbb{C}$ 

$$z \times (z'+z'') = z \times z' + z \times z''.$$

• Pour tout  $z \in \mathbb{C}$  **non nul**, il existe  $z' \in \mathbb{C}$  vérifiant:

$$z \times z' = z' \times z = 1.$$

Ce nombre complexe z' s'appelle l'inverse de z et on le note  $\frac{1}{z}$  ou  $z^{-1}$ . Concrètement, si z = a + ib, alors

(\*) 
$$\frac{1}{z} = \frac{a}{a^2 + b^2} + i \frac{-b}{a^2 + b^2}.$$

**Remarques.** Soient z, z' deux nombres complexes.

- (1) Si  $z' \neq 0$ , la notation  $\frac{z}{z'}$  signifie  $z \times \frac{1}{z'}$ .
- (2) Si  $z \neq 0$  et  $z' \neq 0$ , alors  $\frac{1}{z \times z'} = \frac{1}{z} \times \frac{1}{z'}$ .

**Exemple.** Soient z = -3 + 2i et z' = 1 - 2i. En appliquant directement la formule du produit donnée précédemment, on obtient:

$$z \times z' = ((-3) \times (1) - (2) \times (-2)) + i((-3) \times (-2) + (2) \times (1)) = 1 + 8i.$$

On peut retrouver ce calcul en multipliant les termes entre eux en raison des propriétés de l'addition et de la multiplication qu'on vient de donner, en gardant à l'esprit  $i^2 = -1$ :

$$z \times z' = -3(1-2i) + (2i) \times (1-2i)$$

$$= -3+6i+2i+(2i) \times (-2i)$$

$$= -3+6i+2i+-4i^{2}$$

$$= -3+8i+4$$

$$= 1+8i.$$

### 3 - Conjugué d'un nombre complexe

<u>Définition</u>. On appelle **conjugué** d'un nombre complexe z = a + i b, où a, b des réels, le nombre complexe  $\overline{z} = a + i (-b)$ .

# Propriétés du conjugué.

- (1) Pour tout  $z \in \mathbb{C}$ :  $\overline{(\overline{z})} = z$ . (la conjugaison est involutive).
- (2) Pour tous  $z, z' \in \mathbb{C}$ , on a:

$$\overline{z+z'} = \overline{z} + \overline{z'}$$
 et  $\overline{z \times z'} = \overline{z} \times \overline{z'}$ .

(3) Pour tous  $z, z' \in \mathbb{C}$  avec  $z' \neq 0$ , on a:

$$\overline{\left(\frac{1}{z'}\right)} = \frac{1}{\overline{z'}} \quad \text{et} \quad \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}.$$

(4) Pour tout  $z \in \mathbb{C}$  et  $n \in \mathbb{N}$ , on a:  $\overline{z^n} = (\overline{z})^n$ .

Preuve. À faire en exercice.

**Proposition.** Soit z un nombre complexe. On a:

(1) 
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 et  $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$ .

- $(2) z \in \mathbb{R} \iff z = \overline{z}.$
- (3) z est imaginaire pur  $\iff z = -\overline{z}$ .

**Preuve.** (1) Posons z = a + i b avec  $a, b \in \mathbb{R}$ . Alors,  $\overline{z} = a + i (-b)$ . Donc, on a

$$z + \overline{z} = a + i b + a + i (-b)$$

$$= a + a + i (b - b)$$

$$= 2a + i 0 = 2a = 2\operatorname{Re}(z).$$

Ainsi,  $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ . De même on a

$$z - \overline{z} = a + i b - (a + i (-b))$$
  
=  $a + i b + (-a) + i (-(-b))$   
=  $0 + 2i b = 2i \operatorname{Im}(z)$ .

Ainsi, 
$$\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$$
.

- (2) On a  $z \in \mathbb{R} \iff \operatorname{Im}(z) = 0 \overset{\operatorname{par}(1)}{\iff} z = \overline{z}$ .
- (3) z est imaginaire pur  $\iff$   $\operatorname{Re}(z) = 0 \stackrel{\operatorname{par}(1)}{\iff} z = -\overline{z}$ .

### 4 - Module d'un nombre complexe

<u>Définition</u>. On appelle module d'un nombre complexe z = a + i b, où a, b des réels, le nombre positif  $\sqrt{a^2 + b^2}$ .

On note le module de z par |z|.

**Remarque.** (1) Si le complexe z est **réel**, alors le module de z n'est autre que sa valeur absolue.

(2) Soit  $z \in \mathbb{C}$ . On a  $|z| > 0 \iff z \neq 0$ .

En effet, on a

$$|z| = 0 \iff \operatorname{Re}(z) = 0 \text{ et } \operatorname{Im}(z) = 0 \iff z = 0.$$

# Voici quelques propriétés que vérifie le module:

# **Proposition.** Soient $z, z' \in \mathbb{C}$ . On a:

- (1)  $|z| = |\overline{z}|$ .
- (2)  $z \times \overline{z} = |z|^2$ .
- $(3) |z \times z'| = |z| \times |z'|.$
- (4) Si  $z \neq 0$ , alors  $\left|\frac{1}{z}\right| = \frac{1}{|z|}$ .
- (5) Si  $z' \neq 0$ , alors  $|\frac{z}{z'}| = \frac{|z|}{|z'|}$ .
- (6) Pour tout  $n \in \mathbb{N}$ , on a  $|z^n| = |z|^n$ .

Preuve. Les assetions (1), (2) son faciles à vérifier.

- (3) On a par (2):  $|z \times z'|^2 = (z \times z') \times \overline{(z \times z')} = z \times z' \times \overline{z} \times \overline{z'}$ . Comme la multiplication est commutative, on a  $|z \times z'|^2 = z \times \overline{z} \times z' \times \overline{z'} = |z|^2 \times |z'|^2$ . En passant à la racine carrée (le module est positif), on déduit la formule  $|z \times z'| = |z| \times |z'|$ .
- (4) Supposons  $z \neq 0$ . On applique (3) à l'égalité  $z \times \frac{1}{z} = 1$ , on obtient  $|z| \times |\frac{1}{z}| = |1| = 1$ . Par conséquent,  $|\frac{1}{z}| = \frac{1}{|z|}$ .
- (5) Si  $z' \neq 0$ , alors on a par (3) et (4):

$$\left|\frac{z}{z'}\right| = \left|z \times \frac{1}{z'}\right| = |z| \times \left|\frac{1}{z'}\right| = |z| \times \frac{1}{|z'|} = \frac{|z|}{|z'|}.$$

(6) On procède par récurrence.

L'inverse d'un nombre complexe non nul se calcule en utilisant le module et le conjugué:

**Lemme.** Soit z un nombre complexe non nul. Alors, on a

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}.$$

(on retrouve la formule (\*) de la page 7 donnant l'inverse).

**Preuve.** Puisque  $z \neq 0$ , alors  $\overline{z}$  est non nul et son inverse existe.

On a 
$$\frac{1}{z} = \frac{\overline{z}}{z \times \overline{z}} = \frac{\overline{z}}{|z|^2}$$
.

**Exemple.** Soit z = 4 - 3i. On a  $|z|^2 = 4^2 + (-3)^2 = 25$ . Ainsi, on obtient

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{1}{25}(4+3i) = \frac{4}{25} + \frac{3i}{25}.$$

**Remarque.** Pour tout nombre complexe z, on a

$$\operatorname{Re}(z) \le |z|$$
 et  $\operatorname{Im}(z) \le |z|$ .

En effet, posons  $z=a+i\,b$  avec  $a,b\in\mathbb{R}$ . On a  $\operatorname{Re}(z)=a\leq |a|=\sqrt{a^2}\leq \sqrt{a^2+b^2}=|z|$ . De même, on a  $\operatorname{Im}(z)\leq |z|$ .

Théorème. (Inégalité triangulaire) Pour tous  $z, z' \in \mathbb{C}$ , on a  $|z + z'| \le |z| + |z'|$ .

**Preuve.** Les deux membres de l'inégalité étant des réels positifs, on compare leurs carrés. D'une part, on a:

$$|z + z'|^{2} = (z + z') \times \overline{z + z'}$$

$$= (z + z') \times (\overline{z} + \overline{z'})$$

$$= z \times \overline{z} + z \times \overline{z'} + z' \times \overline{z} + z' \times \overline{z'}$$

$$= |z|^{2} + |z'|^{2} + z \times \overline{z'} + \overline{z \times \overline{z'}}$$

$$= |z|^{2} + |z'|^{2} + 2\operatorname{Re}(z \times \overline{z'}).$$

D'autre part:

$$(|z| + |z'|)^{2} = |z|^{2} + 2|z| \times |z'| + |z'|^{2}$$
$$= |z|^{2} + 2|z| \times |\overline{z'}| + |z'|^{2}$$
$$= |z|^{2} + |z'|^{2} + 2|z| \times |\overline{z'}|.$$

Or 
$$\operatorname{Re}(z \times \overline{z'}) \leq |z \times \overline{z'}|$$
 (remarque précédente), on déduit que  $|z + z'|^2 \leq (|z| + |z'|)^2$ , ce qui donne  $|z + z'| \leq |z| + |z'|$ .

**Corollaire.** Pour tous  $z, z', z'' \in \mathbb{C}$ , on a:

(1) 
$$|z-z''| \leq |z-z'| + |z'-z''|$$
.

(2) 
$$||z| - |z'|| \le |z - z'| \le |z| + |z'|$$
.

**Preuve.** (1) Par l'inégalité triangulaire, on a  $|z-z''|=|z-z'+(z'-z'')| \le |z-z'|+|z'-z''|$ .

(2) On a par (1): 
$$|z| \le |z - z'| + |z'|$$
. Donc

$$(\star\star) \qquad |z|-|z'|<|z-z'|.$$

De même, on montre

$$(\star\star\star) \quad |z'|-|z|\leq |z-z'|.$$

En combinant  $(\star\star)$  et  $(\star\star\star)$ , on obtient

$$-|z-z'| \le |z| - |z'| \le |z-z'|,$$

ce qui signifie  $||z| - |z'|| \le |z - z'|$ .

### 5 - Interprétation géométrique

On appelle plan complexe, un plan  $\mathcal{P}$  rapporté à un repère orthonormé orienté  $(O, \vec{e_1}, \vec{e_2})$ . À tout nombre complexe z = a + i b, où  $a, b \in \mathbb{R}$ , on associe un point  $M_z$  de  $\mathcal{P}$  de coordonnés (a, b). On a donc une application (**bijective**):

$$\mathbb{C} \longrightarrow \mathcal{P}$$

$$z = a + ib \mapsto M_z$$

On dit que z est l'affixe de  $M_z$ .

De même, on associe à z le vecteur  $\vec{u}_z = a\vec{e}_1 + b\vec{e}_2$ . On dit aussi que z est l'affixe de  $\vec{u}_z$ .

#### Illustration:



- $-|z| = \sqrt{a^2 + b^2}$  est la distance de O à  $M_z$ .
- $-M_{\overline{z}}$  est le symétrique de  $M_z$  par rapport à l'axe des abscisses.

# 6 - Argument d'un nombre complexe

**<u>Définition.</u>** Soit z = a + i b un nombre complexe non nul, où  $a, b \in \mathbb{R}$ . Un nombre réel  $\theta$  vérifiant:

$$\begin{cases} \cos \theta = \frac{a}{|z|} \\ \sin \theta = \frac{b}{|z|} \end{cases}$$

s'appelle un argument de z, on le note arg(z).

**Remarque.** L'argument est unique à un multiple de  $2\pi$  près, c'est-à-dire, si  $\theta$  et  $\theta'$  sont deux arguments de z, alors il existe  $k \in \mathbb{Z}$  tel que  $\theta = \theta' + 2k\pi$ . On écrit  $\theta \equiv \theta' \pmod{2\pi}$  et on lit " $\theta$  est congru à  $\theta'$  modulo  $2\pi$ ".

**Exercice.** (1) 
$$\arg(\overline{z}) \equiv -\arg(z) \pmod{2\pi}$$
. (2) Si  $z \neq 0$ , alors  $\arg(\frac{1}{z}) \equiv -\arg(z) \pmod{2\pi}$ .

Explicitement,  $\arg(z)$  est l'angle  $(\vec{e_1}, \vec{u_z})$  entre les vecteurs  $\vec{e_1}$  et  $\vec{u_z}$ . Voir la figure ci-dessous:



# 7 - Formes d'un nombre complexe

### 7.1 Forme algébrique

<u>Définition.</u> La forme algébrique (ou cartésienne) d'un nombre complexe z est son écriture sous la forme z=a+i b, où a,  $b\in\mathbb{R}$ .

**Exemple.** Donner la forme algébrique de  $z = \frac{2+i}{1+i}$ .

On se sert de la formule de l'inverse:

$$z = \frac{2+i}{1+i} = \frac{(2+i)(1-i)}{(1+i)(1-i)} = \frac{(2+i)(1-i)}{|1+i|^2} = \frac{3-i}{2} = \frac{3}{2} - \frac{i}{2}.$$

### 7.2 Forme trigonométrique

**<u>Définition.</u>** Soit z = a + i b un nombre complexe, où  $a, b \in \mathbb{R}$ . Soit  $\theta$  un argument de z. On sait qu'on a:  $\cos \theta = \frac{a}{|z|}$  et  $\sin \theta = \frac{b}{|z|}$ . Ainsi, on a la formule:

$$z = |z|(\cos\theta + i\,\sin\theta)$$

qu'on appelle la forme trigonométrique de z.

**Exemple.** Donner la forme trigonométrique de  $z=1+i\sqrt{3}$ . On a  $|z|=\sqrt{1^2+(\sqrt{3})^2}=\sqrt{4}=2$ . Donc,  $z=2(\frac{1}{2}+i\frac{\sqrt{3}}{2})=\frac{1}{2}(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3})$ .

#### 7.3 Forme exponentielle

**<u>Définition.</u>** Pour tout  $\theta \in \mathbb{R}$ , on note  $e^{i\theta} = \cos \theta + i \sin \theta$ .

Soit z un nombre complexe non nul d'argument  $\theta$ . On a déjà vu que  $z = |z|(\cos \theta + i \sin \theta)$ . Ainsi, on a la formule:

$$z = |z|e^{i\theta}$$

qu'on appelle la forme exponentielle de z.

**Exemple.** Donner la forme exponentielle de z=1-i. On a  $|z|=\sqrt{2}$ . Donc

$$z = \sqrt{2} \left( \frac{1}{\sqrt{2}} + i \left( \frac{-1}{\sqrt{2}} \right) \right)$$
$$= \sqrt{2} \left( \frac{\sqrt{2}}{2} + i \left( \frac{-\sqrt{2}}{2} \right) \right)$$
$$= \sqrt{2} \left( \cos(\frac{\pi}{4}) + i \sin(\frac{-\pi}{4}) \right)$$
$$= \sqrt{2} e^{-i\frac{\pi}{4}}.$$

**Remarques.** (1) Pour tout  $\theta \in \mathbb{R}$ , on a  $|e^{i\theta}| = 1$  (car  $(\cos \theta)^2 + (\sin \theta)^2 = 1$ ).

(2) 
$$e^{i\,\theta} = e^{i\,\theta'} \iff \theta \equiv \theta' \pmod{2\pi}$$
.

(3) Si 
$$z = |z|e^{i\theta}$$
, alors  $\overline{z} = |z|e^{-i\theta}$  (car  $\arg(\overline{z}) \equiv -\arg(z) \pmod{2\pi}$ ).

Proposition. (Formules d'Euler) Soit  $\theta \in \mathbb{R}$ . Alors:

$$\cos \theta = \frac{e^{i\,\theta} + e^{-i\,\theta}}{2}$$
 et  $\sin \theta = \frac{e^{i\,\theta} - e^{-i\,\theta}}{2i}$ .

Preuve. On sait que

$$\operatorname{Re}(e^{i\,\theta}) = \frac{e^{i\,\theta} + \overline{e^{i\,\theta}}}{2} \quad \text{et} \quad \operatorname{Im}(e^{i\,\theta}) = \frac{e^{i\,\theta} - \overline{e^{i\,\theta}}}{2i}.$$

On utilise que  $\cos \theta = \text{Re}(e^{i\theta})$ ,  $\sin \theta = \text{Im}(e^{i\theta})$  et  $\overline{e^{i\theta}} = e^{-i\theta}$  (la remarque précédente).

**Proposition.** Pour tous  $\theta, \theta' \in \mathbb{R}$ , on a:

$$e^{i\theta} \times e^{i\theta'} = e^{i(\theta+\theta')}$$
.

#### Preuve. On a

$$e^{i\theta} \times e^{i\theta'} = (\cos \theta + i \sin \theta) \times (\cos \theta' + i \sin \theta')$$

$$= (\cos \theta \cos \theta' - \sin \theta \sin \theta') + i (\cos \theta \sin \theta' + \sin \theta \cos \theta')$$

$$= \cos(\theta + \theta') + i \sin(\theta + \theta')$$

$$= e^{i(\theta + \theta')}.$$

**Remarque.** On peut retrouver les formules de  $\cos(\theta+\theta')$  et  $\sin(\theta+\theta')$  en utilisant  $e^{i\,\theta}\times e^{i\,\theta}=e^{i(\theta+\theta')}$  et en comparant les parties réelles et les parties imaginaires des deux membres de l'égalité.

### **Corollaire.** (Formule de Moivre)

Soit  $\theta$  un nombre réel et  $n \in \mathbb{N}$ . Alors:

$$(e^{i\,\theta})^n = e^{i\,n\theta}.$$

Autrement dit:  $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$ .

**Preuve.** On utilise une récurrence sur *n* et la proposition précédente.

# **Corollaire.** (Propriétés des arguments)

Soient z, z' deux nombres complexes. Alors, on a:

- (1)  $arg(\overline{z}) \equiv -arg(z)$  (modulo  $2\pi$ ).
- (2) Si  $z \neq 0$ , alors  $\arg(\frac{1}{z}) \equiv -\arg(z)$  (modulo  $2\pi$ ).
- (3)  $\arg(zz') \equiv \arg(z) + \arg(z') \pmod{2\pi}$ .
- (4) Si  $z' \neq 0$ , alors  $\arg(\frac{z}{z'}) \equiv \arg(z) \arg(z')$  (modulo  $2\pi$ ).
- (5) Pour tout  $n \in \mathbb{N}$ , on a  $\arg(z^n) \equiv n \arg(z) \pmod{2\pi}$ .

**Preuve.** Posons  $z = |z|e^{i\theta}$  et  $z' = |z'|e^{i\theta'}$ .

- (1) et (2) sont faits dans l'exercice de la page 19.
- (3) Se déduit du fait

$$z \times z' = |z|e^{i\theta} \times |z'|e^{i\theta'} = |zz'|e^{i(\theta+\theta')}$$
.

- (4) On utilise  $\frac{z}{z'} = z \times \frac{1}{z'}$ , puis on applique (2) et (3).
- (5) On utilise  $z^n = |z|^n (e^{i\theta})^n = |z^n|e^{in\theta}$ .

**Exercice.** Soient les nombres complexes z=1+i et  $z'=-1+i\sqrt{3}$ . Donner la forme exponentielle de zz' et  $\frac{z}{z'}$ .

(1) Pour z: On a  $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$ . Donc

$$z = \sqrt{2} \left( \frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2} \right) = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{i\frac{\pi}{4}}.$$

Un argument de z est  $\frac{\pi}{4}$ .

**(2) Pour** z': De même on a: |z'| = 2 et

$$z' = 2\left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right) = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{2i\pi}{3}}.$$

Un argument de z' est  $\frac{2\pi}{3}$ .

#### En conclusion.

• 
$$|zz'| = 2\sqrt{2}$$
 et  $|\frac{z}{z'}| = \frac{\sqrt{2}}{2}$ .

- Un argument de zz' est  $\frac{\pi}{4} + \frac{2\pi}{3} = \frac{11\pi}{12}$ .
- Un argument de  $\frac{z}{z'}$  est  $\frac{\pi}{4} \frac{2\pi}{3} = \frac{-5\pi}{12}$ .

• 
$$zz' = 2\sqrt{2}e^{i\frac{11\pi}{12}}$$
 et  $\frac{z}{z'} = \frac{\sqrt{2}}{2}e^{-i\frac{5\pi}{12}}$ 

### 8 - Nombres complexes et vecteurs

Soit  $\mathcal{P}$  le plan complexe rapporté à un repère orthonormé orienté  $(O, \vec{e_1}, \vec{e_2})$ . Pour M un point de  $\mathcal{P}$  de coordonnés (a, b), on note  $\overrightarrow{OM}$  le vecteur  $a\vec{e_1} + b\vec{e_2}$  défini par les points O et M. L'opposé de  $\overrightarrow{OM}$ , qu'on note  $-\overrightarrow{OM}$  ou  $\overrightarrow{MO}$ , est le vecteur  $-a\vec{e_1} - b\vec{e_2}$ . Plus généralement, étant donnés deux points A(x,y) et B(x',y') de  $\mathcal{P}$ , on note  $\overrightarrow{AB}$  le vecteur  $(x'-x)\vec{e_1} + (y'-y)\vec{e_2}$ , autrement dit  $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ . La norme de  $\overrightarrow{AB}$ , qu'on note  $||\overrightarrow{AB}||$ , est la distance de A à B.

Étant donnés deux points  $M_z$  et  $M_{z'}$  de  ${\mathcal P}$  d'affixes z et z', alors:

- z' + z est l'affixe du vecteur  $\overrightarrow{OM_z} + \overrightarrow{OM_{z'}}$ .
- z' z est l'affixe du vecteur  $\overrightarrow{M_z M_{z'}}$ . Donc,  $|z' z| = M_z M_{z'}$ .
- Pour tout  $\alpha \in \mathbb{R}$ , le complexe  $\alpha z$  est l'affixe du vecteur  $\alpha \overrightarrow{OM_z}$ .

#### Illustration:







**Exemples.** (1) Soient r > 0 un réel et A un point d'affixe z. Alors, l'ensemble des points M d'affixe z' vérifiant |z' - z| = r est le cercle de centre A et de rayon r.

(2) Soient  $A_1$  et  $A_2$  deux points de  $\mathcal{P}$  distincts d'affixes respectifs  $z_1$  et  $z_2$ . Alors, l'ensemble des points M d'affixe z vérifiants  $|z-z_1|=|z-z_2|$  est la médiatrice du segment  $[A_1A_2]$ .

# 9 - Nombres complexes et trigonométrie

On introduit la figure ci-dessous récapilutant les fonctions *cosinus*, *sinus* et *tangente*:



Rappelons que  $\cos\theta=0 \iff \theta=(2k+1)\frac{\pi}{2}$  pour un certain  $k\in\mathbb{Z}$ . De même,  $\sin\theta=0 \iff \theta=k\pi$  pour un certain  $k\in\mathbb{Z}$ . Pour tout  $\theta\in\mathbb{R}$ ,  $\cos\theta=\cos(-\theta)$  et  $\sin(-\theta)=-\sin\theta$  (c'est-à-dire, cosinus est paire et sinus est impaire). La fonction tangente est définie pour les réels distincts de  $(2k+1)\frac{\pi}{2}$  pour  $k\in\mathbb{Z}$ . Elle est impaire sur l'intervalle où elle est définie.

On récapitule quelques formules trigonométriques (on renvoie aussi au cours de Calculus 1 pour plus de détails sur ces formules et d'autres):

**Proposition.** Soient  $\theta, \theta' \in \mathbb{R}$ . Alors, on a:

(1) 
$$\cos(\theta + \theta') = \cos\theta\cos\theta' - \sin\theta\sin\theta'$$
.

(2) 
$$\sin(\theta + \theta') = \sin \theta \cos \theta' + \cos \theta \sin \theta'$$
.

(3) 
$$\cos(\theta - \theta') = \cos\theta\cos\theta' + \sin\theta\sin\theta'$$
.

(4) 
$$\sin(\theta - \theta') = \sin\theta\cos\theta' - \sin\theta'\cos\theta$$
.

(5) 
$$\cos(2\theta) = (\cos\theta)^2 - (\sin\theta)^2 = 2(\cos\theta)^2 - 1.$$

(6) 
$$\sin(2\theta) = 2\sin\theta\cos\theta$$
.

(7) 
$$\cos \theta + \cos \theta' = 2 \cos(\frac{\theta + \theta'}{2}) \cos(\frac{\theta - \theta'}{2}).$$

(8) 
$$\cos \theta - \cos \theta' = -2\sin(\frac{\theta + \theta'}{2})\sin(\frac{\theta - \theta'}{2}).$$

(9) 
$$\sin \theta + \sin \theta' = 2 \sin(\frac{\theta + \theta'}{2}) \cos(\frac{\theta - \theta'}{2})$$
.

(10) 
$$\sin \theta - \sin \theta' = 2 \sin(\frac{\theta - \theta'}{2}) \cos(\frac{\theta + \theta'}{2})$$
.

Rappelons que les formules (1) et (2) se déduisent de  $e^{i\theta} \times e^{i\theta'} = e^{i(\theta+\theta')}$  et permettent de déduire les autres.

Cours de MOMI

# **Linéarisation des expressions** $(\cos x)^m(\sin x)^n$

## **Définition.** (Le factoriel)

Soit  $n \in \mathbb{N}$ . On définit l'entier n!, appelé *factoriel* n, comme suit: n! = 1 si n = 0, et  $n! = 1 \times 2 \times \cdots \times n$  si n > 0.

**Exemple.** (1) 
$$0! = 1$$
;  $1! = 1$ ;  $2! = 2$ ;  $3! = 6$ ; etc (2)  $(n+1)! = n! \times (n+1)$ .

# **Définition.** (Coefficient binomial)

Pour tous  $k, n \in \mathbb{N}$  avec  $k \leq n$ , soit  $C_n^k$  le nombre  $\frac{n!}{k! \times (n-k)!}$ , qu'on appelle un coefficient binomial. Parfois on note ce nombre  $\binom{n}{k}$ .

Explicitement, ce nombre représente le nombre de parties de cardinal k d'un ensemble de cardinal n.

**Exemple.** (1) 
$$C_n^0 = C_n^n = 1$$
.

(2) Pour 
$$0 \le k < n$$
, on a  $C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$ . (à faire en exercice).

Le calcul des coefficients binomiaux à l'aide du triangle de Pascal sera expliqué en TD.

<u>Théorème.</u> (Formule du binôme de Newton) Soient  $n \in \mathbb{N}$  et u, v deux nombres complexes. Alors, on a

$$(u+v)^n = \sum_{k=0}^n C_n^k u^{n-k} v^k.$$

(C'est-à-dire:

$$(u+v)^n = C_n^0 u^n v^0 + C_n^1 u^{n-1} v^2 + C_n^2 u^{n-2} v^2 + \dots + C_n^n u^0 v^n.$$

On rappelle que  $z^0 = 1$  pour tout nombre complexe z.

**Preuve.** On procède par récurrence sur *n*.

Exemple.

$$(u+v)^2 = u^2 + 2uv + v^2$$

$$(u+v)^3 = u^3 + 3u^2v + 3uv^2 + v^3.$$

### Linéarisation.

On utilise les formules d'Euler pour exprimer l'expression  $(\cos x)^m(\sin x)^n$  comme une somme finie de puissances de  $e^{ix}$ , puis on regroupe les termes conjugués pour avoir une combinaison linéaire de  $\cos(px)$  et  $\sin(qx)$ . Ainsi, la nouvelle expression de  $(\cos x)^m(\sin x)^n$  ne contient pas de puissance de  $\cos x$  et  $\sin x$ , d'où le vocabulaire de "linéarisation".

**Exemple.** Linéariser l'expression  $(\sin x)^3 \cos x$ .

On a 
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 et  $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$ .

$$(\sin x)^{3}(\cos x)^{2} = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{3} \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{2}$$

$$= \frac{1}{(2i)^{3} \cdot 2^{2}} \left(e^{ix} - e^{-ix}\right) \left(\left(e^{ix} + e^{-ix}\right) \left(e^{ix} - e^{-ix}\right)\right)^{2}$$

$$= \frac{1}{(2i)^{3} \cdot 2^{2}} \left(e^{ix} - e^{-ix}\right) \left(\left(e^{ix}\right)^{2} - \left(e^{-ix}\right)^{2}\right)^{2}$$

$$= \frac{1}{(2i)^{3} \cdot 2^{2}} \left(e^{ix} - e^{-ix}\right) \left(e^{2ix} - e^{-2ix}\right)^{2}$$

$$= \frac{1}{(2i)^{3} \cdot 2^{2}} \left(e^{ix} - e^{-ix}\right) \left(e^{4ix} - 2 + e^{-4ix}\right)$$

$$= \frac{1}{(2i)^{3} \cdot 2^{2}} \left(e^{5ix} - 2e^{ix} + e^{-3ix} - e^{3ix} + 2e^{-ix} - e^{-5ix}\right)$$

$$= \frac{1}{(2i)^{2} \cdot 2^{2}} \left(\frac{e^{5ix} - e^{-5ix}}{2i} - 2\frac{e^{ix} - e^{-ix}}{2i} - \frac{e^{3ix} - e^{-3ix}}{2i}\right)$$

$$= \frac{-\sin(5x)}{16} + \frac{\sin x}{8} + \frac{\sin(3x)}{16}.$$

# 10 - Équations de second degré

<u>Définition</u>. On appelle racine carrée d'un nombre complexe z tout nombre complexe u vérifiant  $u^2 = z$ .

**Remarque.** Trouver les racines carrées de z revient à résoudre dans  $\mathbb C$  l'équation:  $X^2-z=0$ .

On va montrer que tout nombre complexe  $z \neq 0$  admet deux racines carrées distinctes (l'une est l'opposé de l'autre).

Exemples. (1) 0 est l'unique racine carrée de 0.

- (2) i et -i sont des racines carrées de -1 car  $i^2 = -1$  et  $(-i)^2 = -1$ .
- (3) Si  $a \in \mathbb{R}$  avec a > 0, alors a admet deux racines carrées réelles, l'une est positive et l'autre est négative. La racine carrée de a positive est notée  $\sqrt{a}$ .

(4) Si  $a \in \mathbb{R}$  avec a < 0, alors les racines carrées de a dans  $\mathbb{C}$  sont  $i\sqrt{-a}$  et  $-i\sqrt{-a}$ . Mais a n'admet pas de racine carrée dans  $\mathbb{R}$ .

<u>Méthode de calcul de la racine carrée.</u> Soit z = a + i b un nombre complexe avec  $a, b \in \mathbb{R}$ .

Soit u = x + i y un nombre complexe avec  $x, y \in \mathbb{R}$ . Alors,  $u^2 = z$  équivaut à

$$\begin{cases} x^2 - y^2 = a & (\mathbf{1}) \\ 2xy = b & (\mathbf{2}) \end{cases}$$

Ajouter à cela l'équation

$$x^2 + y^2 = \sqrt{a^2 + b^2}$$
 (3)

qui provient de  $|u|^2 = |z|$ . Les équations (1) et (3) permettent d'avoir les valeurs de x et y à un signe près:

$$\begin{cases} x = \pm \sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}} \\ y = \pm \sqrt{\frac{\sqrt{a^2 + b^2} - a}{2}} \end{cases}$$

puis l'équation (2) permet de fixer les signes de x et y.

**Exemple.** Donner les racines carrées de z = 3 - 4i. On a  $|z| = \sqrt{3^2 + (-4)^2} = \sqrt{25} = 5$ .

Soit u=x+iy avec  $x,y\in\mathbb{R}$  une racine carrée de z. Comme on vient de l'expliquer, il y a trois équations à prendre en compte:

$$\begin{cases} x^2 - y^2 = 3 & (1) \\ 2xy = -4 & (2) \\ x^2 + y^2 = 5 & (3) \end{cases}$$

En ajoutant (1) à (3), on déduit  $2x^2=8$ . Ainsi,  $x=\pm 2$ . De même on retranche (1) à (3), on obtient  $2y^2=2$ . Ainsi,  $y=\pm 1$ . L'équation (2) nous dit que x et y sont de signes opposés, par conséquent les racines carrées de 3-4i sont:

$$2 - i$$
 et  $-2 + i$ .

## **Résolution dans** $\mathbb{C}$ **de l'équation** $aX^2 + bX + c = 0$ .

Soit  $a, b, c \in \mathbb{C}$  avec  $a \neq 0$ . Pour résoudre dans  $\mathbb{C}$  l'équation

$$aX^2 + bX + c = 0 (E)$$

on commence par transformer l'expression littérale  $aX^2+bX+c$ . En effet, on a:

$$aX^{2} + bX + c = a\left(X^{2} + \frac{b}{a}X\right) + c$$

$$= a\left(X + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a} \qquad (E')$$

$$= a\left(X + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$$

Posons  $\Delta = b^2 - 4ac$ , qu'on appelle le discriminant de l'équation (E). On discute sur  $\Delta$ :

cas 1: Supposons  $\Delta = 0$ . Alors, par (E'), on a:

$$aX^2 + bX + c = 0 \iff X + \frac{b}{2a} = 0 \iff X = -\frac{b}{2a}.$$

cas 2: Supposons  $\Delta \neq 0$ . Soient  $\delta_1$  et  $\delta_2$  les deux racines carrées de  $\Delta$ . Rappelons que  $\delta_2 = -\delta_1$ . Ainsi, par (E'), on obtient:

$$aX^{2} + bX + c = 0 \iff a\left(X + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a} = 0$$

$$\iff \left(X + \frac{b}{2a}\right)^{2} = \frac{\Delta}{4a^{2}}$$

$$\iff \left(X + \frac{b}{2a}\right)^{2} = \left(\frac{\delta_{1}}{2a}\right)^{2}$$

$$\iff X + \frac{b}{2a} = \frac{\pm \delta_{1}}{2a}$$

$$\iff X = \frac{-b \pm \delta_{1}}{2a}$$

#### Conclusion.

En résumé, les solutions de l'équation  $aX^2 + bX + c = 0$  (avec  $a \neq 0$ ) sont données comme suit selon la valeur du discriminant  $\Delta = b^2 - 4ac$ :

- Si  $\Delta = 0$ , alors l'équation admet une seule solution  $\frac{-b}{2a}$ .
- Si  $\Delta \neq 0$ , alors l'équation admet deux solutions distinctes  $\frac{-b+\delta_1}{2a}$  et  $\frac{-b+\delta_2}{2a}$ , où  $\delta_1$  et  $\delta_2$  sont les racines carrées de  $\Delta$ .

**Exemple.** Résoudre dans  $\mathbb{C}$  l'équation  $X^2 + iX - 1 + i = 0$ .

On a  $\Delta=i^2-4(-1+i)=3-4i$ . D'après un exemple précédent, les racines carrées de  $\Delta$  sont: 2-i et -2+i. Ainsi, les solutions de l'équation sont:

$$\begin{cases} \frac{-i+(2-i)}{2} = 1 - i \\ \frac{-i+(-2+i)}{2} = -1. \end{cases}$$

**Remarques.** (1) Si  $r_1$  et  $r_2$  sont les nombres complexes solutions de l'équation  $aX^2 + bX + c = 0$  (avec  $a, b, c \in \mathbb{C}$  et  $a \neq 0$ ), alors on a la factorisation

$$aX^2 + bX + c = a(X - r_1)(X - r_2).$$

- (2) Lorsque  $a, b, c \in \mathbb{R}$  avec  $a \neq 0$ , on résout l'équation  $aX^2 + bX + c = 0$  dans  $\mathbb{R}$  en discutant sur le signe du discriminant  $\Delta = b^2 4ac$ :
  - Si  $\Delta < 0$ , l'équation n'a pas de solution dans  $\mathbb{R}$ .
  - Si  $\Delta = 0$ , l'équation a une seule solution  $\frac{-b}{2a}$ .
  - Si  $\Delta > 0$ , l'équation admet deux solutions réelles distinctes:

$$\frac{-b+\sqrt{\Delta}}{2a}$$
 et  $\frac{-b-\sqrt{\Delta}}{2a}$ ,

où  $\sqrt{\Delta}$  est le réel positif racine carrée de  $\Delta$ .

## 11 - Quelques transformations géométriques du plan

Soit  $\mathcal{P}$  le plan complexe rapporté à un repère orthonormé orienté  $(O, \vec{e_1}, \vec{e_2})$ .

Soit  $f:\mathbb{C}\longrightarrow\mathbb{C}$  une application. Cette application induit une transformation  $\tilde{f}$  du plan  $\mathcal{P}$  qui à tout point M d'affixe z associe le point M' d'affixe f(z).

**Exemple 1.** Soit  $f: \mathbb{C} \longrightarrow \mathbb{C}$  qui à  $z \in \mathbb{C}$  associe  $\overline{z}$ .

Si z=a+i b (avec  $a,b\in\mathbb{R}$ ), alors  $\overline{z}=a+i$  (-b). Donc, le point M(a,b) est envoyé par  $\tilde{f}$  sur le point M(a,-b). Ainsi, la transformation  $\tilde{f}$  est la symétrie axiale par rapport à l'axe des abscisses.

**Exemple 2.** Soit  $a \in \mathbb{C}$  non nul et  $f : \mathbb{C} \longrightarrow \mathbb{C}$  l'application qui à  $z \in \mathbb{C}$  associe az.

**Cas 1.** Si a=1, alors  $\tilde{f}$  est l'identité qui envoie chaque point sur lui-même.

**Cas 2.** Si  $a \neq 1$ . Alors,  $f(z) = z \iff z = 0$  (car  $a \neq 1$ ). Donc, l'origine O est l'unique point fixe par  $\tilde{f}$ .

Posons  $a=\rho e^{i\alpha}$  et  $z=|z|e^{i\theta}$ . Alors,  $z'=f(z)=\rho|z|e^{i(\alpha+\theta)}$ . Ce qui signifie:

$$\begin{cases} OM' = \rho OM \\ (\overrightarrow{OM}, \overrightarrow{OM'}) = \alpha. \end{cases}$$

Par conséquent,  $\tilde{f}$  est la rotation de centre O et d'angle  $\alpha$  composée avec l'homothétie de centre O et de rapport  $\rho$ .

Cas particulier. Si  $a=e^{i\alpha}\neq 1$ , alors  $\tilde{f}$  est la rotation de centre O et d'angle  $\alpha$ .

