Def. Let V be a vector space over R/C and $T: V \rightarrow V$ a linear transformation. A nonzero vector v in V is called an eigenvector of T with eigenvalue λ if $T(v) = \lambda \cdot v$ for some λ in R/C.

E.g. Zero map, id. number 0. $id_V: V \rightarrow V$ O. (v) = 0 = 0.0The sero vector server vector v = v = v.

When a basis & for V is chosen, V is identified with RICO, and CTJ&x is an nxn matrix.

Def. Let A be an nxn matrix with entries in R/O, a vector \vec{v} in R/O" is called an eigenvector of A with eigenvalue χ if $A\vec{v} = \lambda\vec{v}$ for some χ in R/O.

Write it as a column vector (i.e., nx1 matrix)

A is invertible if and only D is not an eigenvalue of A

"A is not invertible \iff 0 is an eigenvalue of A"

O is an eigenvalue of A: exists a nonzero vector \vec{v} such that $A \cdot \vec{v} = 0 \cdot \vec{v} = \vec{0}$

Let V be a vector space over \mathbb{R}/\mathbb{C} with basis y and $T: V \to V$ a linear transformation. We can express each eigenvector of T as a linear combination of the vectors in y.

1. a. Let \mathfrak{X} be the **standard basis** $\{(1,0,0),(0,1,0),(0,0,1)\}$ of \mathbb{R}^3 . In Workshop 3 we saw that $\mathfrak{Y} = \{(1,1,0),(0,0,1),(1,0,1)\}$ is another basis. Write down $[id_{\mathbb{R}^3}]_{\mathfrak{YX}},[id_{\mathbb{R}^3}]_{\mathfrak{XY}}$ (these are called **change of basis matrices**) and compute $[id_{\mathbb{R}^3}]_{\mathfrak{YX}}[id_{\mathbb{R}^3}]_{\mathfrak{XY}},[id_{\mathbb{R}^3}]_{\mathfrak{XY}},[id_{\mathbb{R}^3}]_{\mathfrak{YX}}$. In general, change of basis matrices are invertible, and every invertible matrix is a change of basis matrix.

b. Let
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 be the linear transformation with $[T]_{\mathfrak{XX}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Compute $[T]_{\mathfrak{YX}}, [T]_{\mathfrak{XY}}, [T]_{\mathfrak{YY}}$.

$$[T]_{gg} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times (\lambda - 1)(\lambda - 1)(\lambda - 3)$$

Can express eigenvectors (1,0.0), (0,1.0), (0,0.1) cach as a linear combination of the vectors in Y: (1,0,0) = 0.(1,1.0) - 1.(0,0.1) + 1.(1,0.1) (0,1,0) = 1.(1,1.0) + 1.(0,0.1) - 1.(1.0.1) [0,0,1) = 0.(1,1.0) + 1.(0,0.1) + 0.(1.0.1) [0,0,1] = [0] = [0] + [

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -2 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Question: If only given [T] yy, how do we express eigenvectors as linear combinations of the vectors in of?

So this polynomial is also called the characteristic polynomial of T. $(\lambda-0)^3$ $(\lambda-0)^3$

A by the fundamental theorem of algebra, it will always have n complex roots (counted with multiplicity), some of which may not be real.