AGTA notes

October 29, 2013

Contents

1	Mixed and pure strategies	5
2	Nash equilibrium	7
	2.1 Methods	7
	2.2 Informal methods	7
	2.3 Proofs and properties	
3	Iterative Dominance	9
4	Notation and Definitions	11
	4.1 Basic definitions	11

Mixed and pure strategies

Nash equilibrium

Nash equilibrium occurs when two players are simultaneously playing their best strategy and no player can benefit by deviating from this strategy. Every game has a mixed strategy Nash equilibrium but not all games have a pure strategy Nash.

2.1 Methods

2.2 Informal methods

The following is a quick, informal method of finding Nash equilibrium although it is not advised to use definitively.

Example

Consider the following matrix:

$$\begin{array}{cccc}
A & B & C \\
D & 5,1 & 2,0 & 2,2 \\
E & 0,4 & 1,5 & 4,5 \\
F & 2,3 & 3,6 & 1,0
\end{array}$$

In order to find the Nash Equilibrium, we need to find each players best responses to each of the other players best responses. Starting with player 1 (the rows), we highlight the best response that player 1 can make if player 2 plays A:

$$\begin{array}{cccc}
A & B & C \\
D & 5,1 & 2,0 & 2,2 \\
E & 0,4 & 1,5 & 4,5 \\
F & 2,3 & 3,6 & 1,0
\end{array}$$

And then player 1's best response if player 2 plays B or C:

$$\begin{array}{cccc}
A & B & C \\
D & 5,1 & 2,0 & 2,2 \\
E & 0,4 & 1,5 & 4,5 \\
F & 2,3 & 3,6 & 1,0
\end{array}$$

We then do the same for player 2 for responses to player 1, obtaining.

$$\begin{array}{cccc}
A & B & C \\
D & 5,1 & 2,0 & 2,2 \\
E & 0,4 & 1,5 & 4,5 \\
F & 2,3 & 3,6 & 1,0
\end{array}$$

As (4, 5) and (3, 6) are both underlined, these are the Nash equilibriums of the game.

2.3 Proofs and properties

Iterative Dominance

We can intuitively see that if one strategy is better than another (i.e it is a dominant strategy) than the dominated strategy will never be played. The order that iterative dominance is conducted does not effect the result.

There are two types types of dominance - strict and weak dominance. If both player are playing strictly dominated strategies, it must be a unique Nash Equilibrium.

Strictly dominated strategy

A strictly dominated strategy can never be a best reply.

Thus, we should remove it as it will never be played.

If both player are playing strictly dominated strategies, it must be a unique Nash Equilibrium.

Notation and Definitions

4.1 Basic definitions

Definition: Mixed strategy profile

A set of all the possible combinations of mixed strategies usually denoted by x_i . A mixed strategy is pure if $x_i = 1$ and this is denoted $pi_{i,j}$

Definition: Pure strategy profile

A set of all the possible combinations of mixed strategies usually denoted by S_i

Definition: Mixed strategy

A mixed strategy is a randomised strategy x_i with a probability distribution over S_i (pure strategies). A player will choose a random strategy based on the probabilities of x_i . In other words x_i is a vector of probabilities that sum:

$$x_i(1) + x_i(2) + x_i(3) + \dots + x_i(m) = 1$$

Definition: Zero-sum game

In a zero sum game the utilities/pay-offs of the players must sum to zero. In other words $u_1 = -u_2$

Definition: $u_i(a_i, a_{-i})$

the pay off for playing a_i , regardless of all other strategies

Definition: $u_i(a_i, a_{-i}) < u_i(a_i, a_{-i})$

utility of a_i is better than a_i

Definition: Pareto efficient

To do

Definition: ESS: Evolutionary Stable Solution

todo