

Aprendizaje automático

Preprocesamiento de texto

Dra. Yuridiana Alemán

¿Cómo representar un texto?

Datos numéricos

5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa 4.6,3.4,1.4,0.3, Iris-setosa 5.0,3.4,1.5,0.2,Iris-setosa 4.4,2.9,1.4,0.2, Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 5.4,3.7,1.5,0.2,Iris-setosa 4.8,3.4,1.6,0.2,Iris-setosa 4.8,3.0,1.4,0.1,Iris-setosa 4.3,3.0,1.1,0.1,Iris-setosa 5.8,4.0,1.2,0.2,Iris-setosa 5.7,4.4,1.5,0.4,Iris-setosa 5.4,3.9,1.3,0.4,Iris-setosa 5.1,3.5,1.4,0.3,Iris-setosa

Texto

NWH_Ingles.txt

- 1 I would definitely recommend this movie, another win for Marvel, they do an excellent job keeping the super hero formula fresh, but definitely not the best I've seen from Spiderman Positivo
- 2 The Spider-Man movie series is thriving harder than before with "No Way Home". With no doubts of being a true classic within the MARVEL movie lineup. Positivo
- 3 This was a movie. Not the concept that I expected, but all the action I loved from the other two movies. Seeing the 3 Spider-Men actors get together was fantastic. Seeing the set up for everything. Watching Tom's Spider-Man beat the demons that once corrupted the other 2 was a nice way to end this movie. Positivo
- 4 Absolutely amazing! Great cameos and strory. Can't wait to see Tom Holland back in action!
 Positivo
- 5 The best movie of my life, in my opinion is better than avengers endgame, watch the three spidermans fighting together and the classic villains is awesome. Positivo
- 6 6 This movie is only hype....There are so plots holes... Negativo

Procesamiento de texto

Texto

NWH_Ingles.txt ☑

- 1 I would definitely recommend this movie, another win for Marvel, they do an excellent job keeping the super hero formula fresh, but definitely not the best I've seen from Spiderman Positivo
- 2 The Spider-Man movie series is thriving harder than before with "No Way Home". With no doubts of being a true classic within the MARVEL movie lineup. Positivo
- 3 This was a movie. Not the concept that I expected, but all the action I loved from the other two movies. Seeing the 3 Spider-Men actors get together was fantastic. Seeing the set up for everything. Watching Tom's Spider-Man beat the demons that once corrupted the other 2 was a nice way to end this movie. Positivo
- 4 Absolutely amazing! Great cameos and strory. Can't wait to see Tom Holland back in action! Positivo
- 5 The best movie of my life, in my opinion is better than avengers endgame, watch the three spidermans fighting together and the classic villains is awesome. Positivo
- 6 6 This movie is only hype....There are so plots holes... Negativo

Representación numérica

¿Cómo representar un texto?

Características

- √ Vocabulario (Bolsa de palabras)
- ✓ Lemas
- ✓ Categorías gramaticales
- ✓ Stemming
- ✓ Sentimientos

Representación

- ✓ Binaria
- ✓ Frecuencia de términos
- ✓ Frecuencia inversa (Tf-Idf)

	Características
Instancias	Representación

EXTRACIÓN DE CARACTERÍSTICAS

	Características
Instancias	Representación

NLTK

- https://www.nltk.org/
- Es una Plataforma para trabajar con datos del lenguaje humano (sobre todo para el idioma Inglés)
- Integra un conjunto de bibliotecas de procesamiento de texto para clasificación, tokenización, lematización, etiquetado, análisis y razonamiento semántico, entre otras opciones

Tokenización

✓ Divide un texto en una lista de subcadenas (usualmente palabras)

```
>>> from nltk.tokenize import word_tokenize
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me
... two of them.\n\nThanks.'''
>>> word_tokenize(s)
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.',
'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
```

```
>>> from nltk.tokenize import wordpunct_tokenize
>>> wordpunct_tokenize(s)
['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', '
'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
```

```
>>> from nltk.tokenize import wordpunct_tokenize
>>> wordpunct_tokenize(s)
['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', '
'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
```

Tokenización

✓ Divide un texto en una lista de subcadenas (usualmente palabras)

```
from nltk.tokenize import word_tokenize as wt

def Tokeniza(doc):
    docto=codecs.open('Iniciales/'+doc+'.txt','r')
    Salida=codecs.open('Documentos/'+doc+'-Tokens.txt','w')
    for x in docto.readlines():
        if len(x)>1:
            datos=x.split('\t')
            Texto=wt(datos[1].lower())
            CadFinal = " ".join(Texto)
            Salida.write(datos[0]+'\t'+CadFinal+'\t'+datos[2])
        docto.close()
        Salida.close()
```

LEMAS, STOPWORDS, CATEGORÍAS GRAMATICALES

Lematización

✓ El lema es la forma que por convenio se acepta como representante de todas las formas flexionadas de una misma palabra.

am, you, are, is \rightarrow be Estudiante, estudiamos, estudio \rightarrow estudiar

Lematización

✓ WordNet

```
>>> import nltk
>>> nltk.download('wordnet')
>>> from nltk.stem.wordnet import WordNetLemmatizer
>>> lmtzr = WordNetLemmatizer()
>>> lmtzr.lemmatize('cars')
'car'
>>> lmtzr.lemmatize('feet')
'foot'
>>> lmtzr.lemmatize('people')
'people'
```

Lematización

✓ CLIPS (https://www.clips.uantwerpen.be/clips.bak/pages/pattern)

00851429b21722a4d62f63a328c601ca en ey sorry i am late I printed directions

```
from pattern.en import parse, split
docto=codecs.open('Doctos/English.txt','r')
for x in docto.readlines():
    datos=x.split('\t')
    s = parse(datos[2], lemmata=True)
    print(s)
docto.close()
```

ey/NN/B-NP/O/ey sorry/VB/B-VP/O/sorry i/NN/B-NP/O/i am/VBP/B-VP/O/be late/RB/B-ADVP/O/late I/PRP/B-NP/O/i printed/VBP/B-VP/O/print directions/NNS/B-NP/O/direction

Stemming

✓ Proceso de reducir la inflexión en las palabras a sus formas de raíz, incluso si la raíz en sí no es una palabra válida en el idioma (Derivar una palabra o una oración puede dar como resultado palabras que no son palabras reales).

```
# importing modules
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize

ps = PorterStemmer()

sentence = "Programmers program with programming languages"
words = word_tokenize(sentence)

for w in words:
    print(w, " : ", ps.stem(w))
```

Programmers : program
program : program
with : with
programming : program
languages : languag

Stemming


```
# -*- coding: utf-8 -*-
    import codecs
    import os, sys
    import re
    from nltk.stem import PorterStemmer
 6
   □def Stemming(doc):
 8
        docto=codecs.open('Documentos/'+doc+'-Lemas.txt','r')
        Salida=codecs.open('Documentos/'+doc+'-Sttemming.txt','w')
 9
        for x in docto.readlines():
10
11
            if len(x)>1:
               datos=x.split('\t')
12
13
               Texto=datos[1].lower().split(' ')
14
               CadFinal=""
15
               for w in Texto:
                   print(w, ": ", ps.stem(w))
16
17
                   CadFinal=CadFinal+ps.stem(w)+' '
                Salida.write(datos[0]+'\t'+CadFinal[1:]+'\t'+datos[2])
18
19
        docto.close()
2.0
        Salida.close()
21
    22
    ps = PorterStemmer()
    Stemming('NWH Ingles')
    Stemming('NWH Espanol')
```

POS tagging

✓ Part-of-speech tagging es el proceso que recibe como entrada texto en algún lenguaje y como salida regresa un conjunto de pares de la forma palabra-etiqueta gramatical (sustantivo, verbo, adjetivo, etc)

```
yuri@yuri-H110M-S2:~/Escritorio/ProcesamientoTexto$ python3 Lemas2.py
i/i/ccoNJ
would/would/PROPN
definitely/definitely/ADJ
recommend/recommend/PROPN
this/this/PROPN
movie/movie/ADJ
././PUNCT
another/another/PROPN
win/win/PROPN
for/for/PROPN
marvel/marvel/PROPN
,/,/PUNCT
they/they/ADJ
do/do/ADP
an/an/PROPN
excellent/excellent/PROPN
job/job/PROPN
keeping/keeping/PROPN
the/the/PROPN
super/super/PROPN
hero/hero/ADJ
formula/formula/PROPN
fresh/fresh/PROPN
././PUNCT
but/but/NOUN
```

StopWords

Palabras cerradas, palabras vacías.

- ✓ Términos extremadamente comunes que suelen aparecer en muchas ocasiones, generalmente son eliminadas en el preprocesamiento de texto.
- ✓ Palabras sin significado como artículos, pronombres, preposiciones.
- ✓ No hay una lista definitiva de StopWords
- ✓ No todas las herramientas de procesamiento de texto tienen disponible.
- ✓ No en todos los problemas es conveniente eliminarlas

a	at	has	its	to
an	be	he	of	was
and	by	in	on	were
are	for	is	that	will
as	at	it	the	with

StopWords


```
from nltk.corpus import stopwords

docto=codecs.open('Doctos/English.txt','r')

for x in docto.readlines():
    datos=x.split('\t')
    Text=datos[2].split(' ')
    NoStopWords=[x for x in Text if not x in stopwords.words('english')]
    Out = (" ").join(NoStopWords)
    print(Out)
    docto.close()
```

```
clase gente padres quieren

clase gente con la que nuestros padres, no quieren

reload(sys)

sys.setdefaultencoding("utf-8")

docto.readlines():

datos=x.split('\t')

Text=datos[2].split(' ')

NoStopWords=[x for x in Text if not x in stopwords.words('spanish') ]

out = (" ").join(NoStopWords)

print(Out)

docto.close()
```

Herramientas de procesamiento

WordNet

POS Tagger Stanford

Tree Tagger

CLIPS Pattern

Spycy

Freeling

REPRESENTACIÓN

	Características
Instancias	Representación

Ocurrencia

✓ Agrega un valor de atributo 0 cuando la palabra no aparece en la instancia, y 1 cuando aparece, sin importar las veces que lo haga

Id	ok	overall	top	10	dk	others	overrated	waste	money	Clase
1	0	0	0	0	0	0	0	0	0	Positivo
2	0	0	0	0	0	0	0	0	0	Positivo
3	0	0	0	0	0	0	0	0	0	Positivo
4	0	0	0	0	0	0	0	0	0	Positivo
5	0	0	0	0	0	0	0	0	0	Positivo
6	0	0	0	0	0	0	0	0	0	Negativo
7	0	0	0	0	0	0	0	0	0	Positivo
8	0	0	0	0	0	0	0	0	0	Positivo
9	0	0	0	0	0	0	0	0	0	Positivo
10	0	0	0	0	0	0	0	0	0	Positivo
11	0	0	0	0	0	0	0	0	0	Negativo
12	0	0	0	0	0	0	0	0	0	Negativo
13	0	0	0	0	0	0	0	0	0	Negativo
14	1	1	1	1	0	0	0	0	0	Negativo
15	0	0	0	0	1	1	1	1	1	Negativo

Frecuencia de términos

✓ La frecuencia de términos puede representarse como :

 $tf_{t,d} = Apariciones de t en d$

Donde:

t= Término

d=Instancia

Id	would	definitely	recommend	movie	another	win	marvel	excellent	Clase
1	1	2	1	1	1	1	1	1	Positivo
2	0	0	0	2	0	0	1	0	Positivo
3	0	0	0	3	0	0	0	0	Positivo
4	0	0	0	0	0	0	0	0	Positivo
5	0	0	0	1	0	0	0	0	Positivo
6	0	0	0	1	0	0	0	0	Negativo
7	0	0	0	2	0	0	0	0	Positivo
8	1	0	0	0	0	0	1	0	Positivo
9	0	0	0	0	0	0	1	0	Positivo
10	0	0	0	0	0	0	0	0	Positivo
11	0	0	0	2	0	0	2	0	Negativo
12	1	0	0	3	0	0	0	0	Negativo
13	1	0	0	1	0	0	0	0	Negativo
14	0	1	0	4	0	0	2	0	Negativo
15	0	0	0	0	0	0	0	0	Negativo

Frecuencia inversa del documento

Asigna un peso a cada término

$$idf_t = log \frac{N}{df_t}$$

Donde:

N= Número de documentos

 df_t =Frecuencia de documentos (número de documentos en los que aparece el término)

Término	df_t	idf_t
car	18,165	1.65
auto	6,723	2.08
insurance	19,241	1.62
best	25,235	1.50

N=806,791 documentos

Ponderación tf - idf

Produce un peso para cada término en un documento:

$$tf - idf_{t,d} = tf_{t,d} \times idf_t$$

En otras palabras, asigna a un termino t un peso en un documento d que es:

- \checkmark Muy alto cuando t ocurre muchas veces en pocos documentos.
- ✓ Bajo cuando el termino ocurre pocas veces en un documento, o en muchos documentos.
- ✓ Muy bajo cuando el termino ocurre en la mayoría de los documentos.

	Doc1	Doc2	Doc3	Df _t
Carro	27	4	24	18,165
Casa	3	33	0	6,723
Flor	0	33	29	19,241
Internet	14	0	17	25,235

N=806,791

	Doc1	Doc2	Doc3	Df _t
Carro	27	4	24	18,165
Casa	3	33	0	6,723
Flor	0	33	29	19,241
Internet	14	0	17	25,235

$$idf_t = log \frac{N}{df_t}$$

$$idf_{carro} = \log\left(\frac{806791}{18165}\right) = \log(44.4244) = 1.648$$

	Doc1	Doc2	Doc3	Df _t
Carro	27	4	24	18,165
Casa	3	33	0	6,723
Flor	0	33	29	19,241
Internet	14	0	17	25,235

N=806,791

$$idf_t = log \frac{N}{df_t}$$

$$idf_{carro} = log \left(\frac{806791}{18165}\right) = log(44.4244) = 1.648$$

$$tf - idf_{t,d} = tf_{t,d} \times idf_t$$
 $tf - idf_{carro,Doc1} = 27 * 1.648 = 44.4858$

	Doc1	Doc2	Doc3	Df _t
Carro	27	4	24	18,165
Casa	3	33	0	6,723
Flor	0	33	29	19,241
Internet	14	0	17	N=806,791 25,235

Palabra	ldf		tf - idf	
	ldf	Doc1	Doc2	Doc3
Carro	1.6476	44.4858	6.5905	39.5429
Casa	2.0792	6.2379	68.6167	0
Flor	1.6226	0	53.5468	47.0563
Internet	1.5048	21.0680	0	25.5825

Tf-Idf

М	U	C	U	L	ı	J	11	ı	I IIVI
Id	would	definitely	recommend	movie	another	win	marvel	excellent	Clase
1	0.57403127	1.75012253	1.17609126	0.17609126	1.17609126	1.17609126	0.39794001	1.17609126	Positivo
2	0	0	0	0.35218252	0	0	0.39794001	0	Positivo
3	0	0	0	0.52827378	0	0	0	0	Positivo
4	0	0	0	0	0	0	0	0	Positivo
5	0	0	0	0.17609126	0	0	0	0	Positivo
6	0	0	0	0.17609126	0	0	0	0	Negativo
7	0	0	0	0.35218252	0	0	0	0	Positivo
8	0.57403127	0	0	0	0	0	0.39794001	0	Positivo
9	0	0	0	0	0	0	0.39794001	0	Positivo
10	0	0	0	0	0	0	0	0	Positivo
11	0	0	0	0.35218252	0	0	0.79588002	0	Negativo
12	0.57403127	0	0	0.52827378	0	0	0	0	Negativo
13	0.57403127	0	0	0.17609126	0	0	0	0	Negativo
14	0	0.87506126	0	0.70436504	0	0	0.79588002	0	Negativo
15	0	0	0	0	0	0	0	0	Negativo

¿Otras características?

✓ De acuerdo con el conocimiento del dominio

¿Cómo determinar las características a utilizar en un algoritmo de aprendizaje?

- √ ¿Se deben de agregar todas las características en un solo modelo?
- ✓ ¿Es posible tener diferentes resultados de clasificación utilizando el mismo clasificador pero diferentes conjuntos de características?
- ✓ Si un conjunto de características es el que tiene buenos resultados en el conjunto A, ¿Seguirá teniendo los mejores resultados en otro conjunto B?