Exercise 3 參考解答

一、單選題: (100 小題, 每題 1 分, 共 100 分)

1. () 試化簡
$$\frac{x-2}{x+1} + \frac{2x-5}{x+1} = (A)\frac{x-7}{x+1}$$
 (B) $\frac{3x-3}{x+1}$ (C) $\frac{x-3}{x+1}$ (D) $\frac{3x-7}{x+1}$

【隨堂卷】

解答 D

[解析] $\frac{x-2}{x+1} + \frac{2x-5}{x+1} = \frac{(x-2)+(2x-5)}{x+1} = \frac{3x-7}{x+1}$

2. ()
$$\text{Liff} \frac{x^2 - x - 2}{x^2 - 4x + 3} \div \frac{x + 1}{x - 3} = (A) \frac{x - 1}{x - 2} (B) \frac{x - 2}{x - 1} (C) \frac{x - 3}{x - 1} (D) \frac{x - 3}{x - 2}$$

【隨堂卷】

解答B

解析 原式 = $\frac{x^2 - x - 2}{x^2 - 4x + 3} \times \frac{x - 3}{x + 1} = \frac{(x + 1)(x - 2)}{(x - 1)(x - 3)} \times \frac{x - 3}{x + 1} = \frac{x - 2}{x - 1}$

3. () 分式方程式
$$\frac{2x+1}{x-2}$$
 = 3 的解為 (A) $x = -2$ (B) $x = 1$ (C) $x = 3$ (D) $x = 7$

【隨堂卷】

解答 D

解析 原式等式兩邊同乘 x-2 得 2x+1=3(x-2)=3x-6 $\Rightarrow x=7$,代回分母 $\neq 0$,故 x=7

4. ()試求
$$2x^3 - 3x^2 - 2x + 7$$
 除以 $x^2 - 3x + 1$ 的餘式為 (A) $5x + 4$ (B) $-13x + 10$ (C) $2x + 3$ (D) $-9x + 21$

【隨堂卷】

解答A

解析

5. () 若將
$$(x^3+2x^2-3x+4)(5x^2+6x-2)$$
展開,則 x^3 項之係數為 (A)-5 (B)1 (C)5 (D)-6 【隨堂卷】

解答 A

可得 x^3 項之係數=1×(-2)+2×6+(-3)×5=-5

【隨堂卷】

解答 I

解析 $f(x)+g(x) = (2x^3+x^2+4x+5)+(7+2x+4x^2+x^3)$ $=(2x^3+x^2+4x+5)+(x^3+4x^2+2x+7)=3x^3+5x^2+6x+12$

7. () 下列何者為多項式? (A)
$$\frac{3x}{2x+7}$$
 (B) $|5x+4|$ (C) $\sqrt{6x-1}$ (D) $\sqrt{5}x+2$

D

多項式x不可出現在分母、根號、絕對值中,故 $\sqrt{5}x+2$ 為多項式

8. () 設
$$f(x) = x^2 + 2x + 2$$
 整除 $g(x) = 2x^3 + 3x^2 + ax + b$,則 $2a + b = (A)0$ (B)2 (C)4 (D)6

【99 數(A)歷屆試題】

利用長除法

利用長除法
$$\frac{2x-1}{x^2+2x+2} \underbrace{)2x^3 +3x^2 + ax + b}$$

$$\frac{2x^3 +3x^2 + ax + b}{-x^2 +(a-4)x + b}$$

$$\frac{-x^2 -2x - 2}{(a-2)x +(b+2)}$$

$$\therefore f(x)$$
整除 $g(x)$: 餘式 $(a-2)x+(b+2)$

 $\therefore f(x)$ 整除 g(x) \therefore 餘式 (a-2)x+(b+2)=0 $\exists \exists a-2=0 \ , \ b+2=0 \Rightarrow a=2 \ , \ b=-2 \ , \ \exists \exists a+b=2\times 2+(-2)=2$

9. () 設
$$f(x)=x^3-4x^2+4x-5$$
 , $g(x)=x^2-1$, 令 $q(x)$ 、 $r(x)$ 分別為 $f(x)$ ÷ $g(x)$ 的商式與餘式,則 $2q(x)-r(x)=$ (A) $-3x+1$ (B) $-2x+1$ (C) $2x-1$ (D) $3x-1$

【105 數(A)歷屆試題】

解答

利用長除法

$$\begin{array}{rrrrr}
1-4 \\
1+0-1)1 & -4 & +4 & -5 \\
\underline{1 & +0 & -1} \\
-4 & +5 & -5 \\
\underline{-4 & +0 & +4} \\
5 & -9
\end{array}$$

$$\therefore x^{3} - 4x^{2} + 4x - 5 = (x^{2} - 1)(x - 4) + (5x - 9)$$

同
$$q(x) \quad r(x)$$

$$\therefore 2q(x)-r(x)=2(x-4)-(5x-9)=-3x+1$$

10. () 方程式
$$\frac{1}{x-4} - \frac{x}{x+6} = \frac{3}{x-2} - \frac{x}{x+2}$$
 之解的個數有幾個? (A)1 (B)2 (C)3 (D)4

【super 講義-綜合評量】

解析 原式 $\Rightarrow \frac{(x+6)-x(x-4)}{(x-4)(x+6)} = \frac{3(x+2)-x(x-2)}{(x-2)(x+2)}$ $\Rightarrow \frac{x+6-x^2+4x}{(x-4)(x+6)} = \frac{3x+6-x^2+2x}{(x-2)(x+2)} \Rightarrow \frac{-x^2+5x+6}{(x-4)(x+6)} = \frac{-x^2+5x+6}{(x-2)(x+2)}$ $\Rightarrow \frac{x^2 - 5x - 6}{(x - 4)(x + 6)} = \frac{x^2 - 5x - 6}{(x - 2)(x + 2)} \Rightarrow \frac{x^2 - 5x - 6}{x^2 + 2x - 24} = \frac{x^2 - 5x - 6}{x^2 - 4}$

⇒
$$(x^2 - 5x - 6)(x^2 - 4) = (x^2 - 5x - 6)(x^2 + 2x - 24)$$

⇒ $(x^2 - 5x - 6)[(x^2 - 4) - (x^2 + 2x - 24)] = 0 \Rightarrow (x^2 - 5x - 6)(-2x + 20) = 0$
⇒ $(x - 6)(x + 1)(2x - 20) = 0 \Rightarrow x = 6$ 或 $x = -1$ 或 $x = 10$
代回原方程式分母均不為 0 ,故原方程式解有 3 個

11. () 解方程式
$$\frac{1}{x(x+1)} + \frac{1}{(x+1)(x+2)} + \frac{1}{(x+2)(x+3)} = \frac{1}{x^2 - 2x - 6}$$
 所得的根,其和等於? (A) $-\frac{15}{2}$ (B) $-\frac{9}{2}$ (C) $\frac{9}{2}$ (D) $\frac{15}{2}$

【super 講義-綜合評量】

解答 (

解析 原式 ⇒ $\left(\frac{1}{x} - \frac{1}{x+1}\right) + \left(\frac{1}{x+1} - \frac{1}{x+2}\right) + \left(\frac{1}{x+2} - \frac{1}{x+3}\right) = \frac{1}{x^2 - 2x - 6}$ $\Rightarrow \frac{1}{x} - \frac{1}{x+3} = \frac{1}{x^2 - 2x - 6} \Rightarrow \frac{x+3-x}{x(x+3)} = \frac{1}{x^2 - 2x - 6}$ $\Rightarrow \frac{3}{x^2 + 3x} = \frac{1}{x^2 - 2x - 6} \Rightarrow 3x^2 - 6x - 18 = x^2 + 3x$ $\Rightarrow 2x^2 - 9x - 18 = 0 \Rightarrow (2x+3)(x-6) = 0 \Rightarrow x = -\frac{3}{2} \vec{x} = 6$ 代回原方程式,分母均不為 0,所以方程式的所有根的和 = $\left(-\frac{3}{2}\right) + 6 = \frac{9}{2}$

12. () 設 $f(x) = x^4 + 3x^2 - 1$, $g(x) = x^2 + x + 1$, 若 $f(x) \div g(x)$ 得商式為 q(x) , 則 q(1) = (A)3 (B)2 (C)1 (D)0

【super 講義-綜合評量】

解答

A

利用長除法求 $f(x) \div g(x)$

$$\begin{array}{r}
x^2 - x + 3 \\
x^2 + x + 1 \overline{\smash)x^4 + 0x^3 + 3x^2 + 0x - 1} \\
\underline{x^4 + x^3 + x^2} \\
- x^3 + 2x^2 + 0x \\
\underline{- x^3 - x^2 - x} \\
3x^2 + x - 1 \\
\underline{- 3x^2 + 3x + 3} \\
-2x - 4
\end{array}$$

...商式 $q(x) = x^2 - x + 3 \Rightarrow q(1) = 1 - 1 + 3 = 3$

13. () 設多項式 $f(x) = (5x^3 - 3x^2 - 2x + 2)(x^2 + 3x + 2)$,展開後各項係數和為 f(1) = a,常數項為 f(0) = b,則 a + b 之值為 (A)10 (B)12 (C)14 (D)16

【super 講義-綜合評量】

解答

D

各項係數和=f(1)=(5-3-2+2)(1+3+2)=12,常數項=f(0)= $2\times2=4$,a+b=f(1)+f(0)=12+4=16

14. () 化簡 $\frac{6}{x+1}$ 一 可得 (A) $\frac{6x-3}{(x+1)^2}$ (B) $\frac{6x+2}{(x+1)^2}$ (C) $\frac{6x+10}{(x+1)^2}$ (D) $\frac{x-3}{(x+1)^2}$

【龍騰自命題】

解答B

所述
$$\frac{6}{x+1} - \frac{4}{(x+1)^2} = \frac{6(x+1)}{(x+1)^2} - \frac{4}{(x+1)^2} = \frac{6(x+1)-4}{(x+1)^2} = \frac{6x+2}{(x+1)^2}$$

15. () 化簡
$$\frac{4}{x-2} - \frac{3x+1}{x^2+1}$$
可得 (A) $\frac{x^2+5x+6}{(x-2)(x^2+1)}$ (B) $\frac{x^2-5x+6}{(x-2)(x^2+1)}$ (C) $\frac{x^2-5x-6}{(x-2)(x^2+1)}$ (D) $\frac{x^2+5x-6}{(x-2)(x^2+1)}$

【龍騰自命題】

解答 A

解析
$$\frac{4}{x-2} - \frac{3x+1}{x^2+1} = \frac{4(x^2+1)}{(x-2)(x^2+1)} - \frac{(x-2)(3x+1)}{(x-2)(x^2+1)} = \frac{(4x^2+4) - (3x^2-5x-2)}{(x-2)(x^2+1)}$$
$$= \frac{x^2+5x+6}{(x-2)(x^2+1)}$$

16. () 化簡
$$\frac{2x^2-x-3}{x^2-x-2}$$
 可得 (A) $\frac{2x-3}{x+2}$ (B) $\frac{2x+3}{x-2}$ (C) $\frac{2x+3}{x+2}$ (D) $\frac{2x-3}{x-2}$

【龍騰自命題】

解答I

解析
$$\frac{2x^2 - x - 3}{x^2 - x - 2} = \frac{(2x - 3)(x + 1)}{(x - 2)(x + 1)} = \frac{2x - 3}{x - 2}$$

17. () 化簡
$$\frac{2}{x+1} + \frac{2}{x}$$
可得 (A) $\frac{2}{x(x+1)}$ (B) $\frac{4x+2}{x(x+1)}$ (C) $\frac{4x}{x(x+1)}$ (D) $\frac{4x-2}{x(x+1)}$

【龍騰自命題】

解答B

解析
$$\frac{2}{x+1} + \frac{2}{x} = \frac{2x}{x(x+1)} + \frac{2(x+1)}{x(x+1)} = \frac{2x+2(x+1)}{x(x+1)} = \frac{4x+2}{x(x+1)}$$

18. ()設
$$f(x)$$
 為四次多項式, $g(x)$ 為五次多項式, $h(x) = f(x) \times g(x)$, $k(x) = f(x) + g(x)$ 且 $h(x)$ 為 a 次多項式, $k(x)$ 為 b 次多項式,則 $a - b =$ (A) 4 (B) 14 (C) 9 (D) 6

【課本自我評量】

解答 解析

A

deg
$$f(x) = 4$$
, deg $g(x) = 5$
deg $h(x) = \deg f(x) + \deg g(x) = 4 + 5 = 9 = a$
deg $h(x) = \deg (f(x) + g(x)) = \deg g(x) = 5 = b$
fight $a - b = 9 - 5 = 4$

19. () 如圖,
$$A \times B \times C$$
 為長方體相鄰的三面,其面積分別為 $x^2 - x - 6 \times 2x^2 - x - 15 \times 2x^2 + 9x + 10$ 平方單位,則此長方體體積為多少立方單位?

(A)
$$2x^3 + 3x^2 - 17x - 30$$
 (B) $2x^3 - 3x^2 - 17x - 30$ (C) $2x^3 - 3x^2 + 17x - 30$ (D) $2x^3 + 3x^2 + 17x + 30$

【課本自我評量】

解答

A

解析」將三面面積分別因式分解

$$x^2 - x - 6 = (x - 3)(x + 2)$$
, $2x^2 - x - 15 = (2x + 5)(x - 3)$, $2x^2 + 9x + 10 = (2x + 5)(x + 2)$

故體積 = $(x-3)(x+2)(2x+5) = 2x^3 + 3x^2 - 17x - 30$ (立方單位)

20. () 設
$$f(x) = (a-3)x^3 + (b+1)x^2 + (c+5)x + 2$$
 為零次多項式,則 $a+b+c$ 之值為 (A) 3 (B) 1 (C) -1 (D) -3

【學習卷】

解答I

解析 : f(x) 為零次多項式 \Rightarrow a-3=0 , b+1=0 , c+5=0 \Rightarrow a=3 、 b=-1 、 c=-5

a+b+c=3-1-5=-3

21. ()
$$\text{L}$$
 $\frac{2}{x+1} - \frac{3}{x-2} =$

$$(A) \frac{x-7}{(x+1)(x-2)} \quad (B) \frac{-x-7}{(x+1)(x-2)} \quad (C) \frac{-1}{(x+1)(x-2)} \quad (D) \frac{-7}{(x+1)(x-2)}$$

【學習卷】

解答 E

解析 $\frac{2}{x+1} - \frac{3}{x-2} = \frac{2(x-2)}{(x+1)(x-2)} - \frac{3(x+1)}{(x+1)(x-2)} = \frac{(2x-4)-(3x+3)}{(x+1)(x-2)} = \frac{-x-7}{(x+1)(x-2)}$

22. () $\text{Liff} \frac{-x}{x-3} + \frac{3}{x-3} =$ (A)0 (B)1 (C)-1 (D) $\frac{-(x+3)}{x-3}$

【學習卷】

解答(

【學習卷】

解答 I

解析 真分式的分子次數小於分母次數,故分子的次數為零次得a=0,b=0, $c\neq 0$

24. () 若 $f(x) = ax^3 + bx^2 + cx + d$ 為二次多項式,則 (A) $a \neq 0$ (B) a = 0 (C) a = 0, $b \neq 0$ (D) a = 0, b = 0

【龍騰自命題】

蔣合 (

解析 :: f(x)是二次多項式 $:: a = 0 \perp b \neq 0$

25. ()試求 $(4x^3 - 2x^2 + 2x - 5)(2x^2 - 5x - 6)$ 乘積中, x^3 的係數為 (A) -10 (B) -24 (C) 17 (D) 0

【龍騰自命題】

解答 4

 $(4x^3 - 2x^2 + 2x - 5)(2x^2 - 5x - 6)$

上方展開式中, x^3 項 = $-24x^3 + 10x^3 + 4x^3 = -10x^3$

∴ 係數為-10

26. () 設 $f(x) = (a-3)x^4 + (b+1)x^3 + 2x^2 - 5$ 為二次多項式,則 a+b= (A) 3 (B) -1 (C) 2 (D) -2

【龍騰自命題】

解答C

27. () 設 $f(x) = ax^2 - 2x + c$, $g(x) = 3x^2 + bx + 1$,若 f(x) = g(x),則 a - b + c = (A) 6 (B) 5 (C) 4 (D) 2

【龍騰自命題】

解答 A

解析
$$\therefore f(x) = g(x) \qquad \therefore \begin{cases} a = 3 \\ b = -2 \Rightarrow a - b + c = 6 \end{cases}$$

28. ()已知 $x^2 - 2x + 11$ 除 $5x^3 - 16x^2 + mx + n$ 得餘式-9x + 55,則 m = (A) 58 (B) 45 (C) 36 (D) 28

【龍騰自命題】

解答

解析

 $\therefore m - 67 = -9 \Rightarrow m = 58$

29. ()設 $f(x) \cdot g(x)$ 為兩多項式, $\deg f(x) = 3$ 且 $\deg g(x) = 5$,則 $\deg [f(x) \times g(x)] = (A) 15$ (B) 8 (C) 5 (D) 3

【龍騰自命題】

解答]

解析 $\deg[f(x) \times g(x)] = \deg f(x) + \deg g(x) = 3 + 5 = 8$

30. ()若以 x-2 除 $3x^5-2x^4+6x^2+5x+a$ 得餘式為-15,則 a 之值為何? (A) -113 (B) -56 (C) 1 (D) 12

【龍騰白命題】

解答

由餘式定理知:x = 2 代入 $3x^5 - 2x^4 + 6x^2 + 5x + a$,所得之值就是餘式 ∴ $3 \times 2^5 - 2 \times 2^4 + 6 \times 2^2 + 5 \times 2 + a = -15 \Rightarrow 96 - 32 + 24 + 10 + a = -15 \Rightarrow a = -113$

31. ()已知 $f(x) = x^3 + ax^2 - x + 5$ 與 $g(x) = x^3 - x^2 + bx + 7$ 分別除以 $x^2 - 3x + 2$ 得到相同之餘式,則 a + b 之值為何? (A) -6 (B) -5 (C) -1 (D) 3

【龍騰自命題】

解答

:得到相同之餘式 $\therefore x^2 - 3x + 2 = f(x) - g(x)$ 之因式

$$\Rightarrow x^2 - 3x + 2 \not\equiv (a+1)x^2 - (1+b)x - 2 \not\supseteq \boxtimes \overrightarrow{\exists} \Rightarrow \begin{cases} a+1 = -1 \\ 1+b = -3 \end{cases} \Rightarrow \begin{cases} a = -2 \\ b = -4 \end{cases}$$

 $\therefore a + b = -6$

32. () 若多項式 f(x)除以 x^3-1 得餘式為 $2x^2-3x+4$,則 f(x)除以 x^2+x+1 的餘式為何? (A) x+1 (B) 2x-3 (C) 3x-1 (D) -5x+2

【龍騰自命題】

解答 D

解析

由題意知: $f(x) = (x^3 - 1)Q(x) + 2x^2 - 3x + 4 = (x - 1)(x^2 + x + 1)Q(x) + 2x^2 - 3x + 4$

$$\frac{2}{\cancel{\text{III}}} x^2 + x + 1 \sqrt{\frac{2x^2 - 3x + 4}{2x^2 + 2x + 2}} \\
-5x + 2$$

∴餘式為-5x+2

33. () 因式分解
$$1-x^2+y^2-x^2y^2$$
 (A) $(1+x)(1-x)(1+y^2)$ (B) $(1+y)(1-y)(1+x^2)$ (C) $(1+x)(1-x)(1+y)(1-y)$ (D) $(1+y)(1+x)(x^2+y^2)$

【龍騰自命題】

解答

.77.LC

$$1 - x^2 + y^2 - x^2y^2 = (1 - x^2) + (y^2 - x^2y^2) = (1 - x^2) + y^2 (1 - x^2) = (1 - x^2)(1 + y^2) = (1 + x)(1 - x)(1 + y^2)$$

34. () 因式分解
$$(3x-1)^2 - 2(3x-1)(x+1) - 8(x+1)^2$$
 (A) $(x-5)(5x+1)$ (B) $(x+5)(5x-1)$ (C) $-(x-5)(5x-1)$ (D) $-(x+5)(5x+1)$

【龍騰自命題】

解答 解析

D

 $\Rightarrow 3x - 1 = A \cdot x + 1 = B$

∴原式 =
$$A^2 - 2AB - 8B^2 = (A + 2B)(A - 4B) = [(3x - 1) + 2(x + 1)][(3x - 1) - 4(x + 1)] = (5x + 1)(-x - 5) = -(5x + 1)(x + 5)$$

$$A + 2B$$

$$A - 4B$$

35. () 因式分解
$$2(3x+1)^2 - 5(3x+1)(y-2) - 12(y-2)^2$$
 (A) $(6x+3y-4)(3x-4y+9)$ (B) $(6x-3y+4)(3x+4y-9)$ (C) $(6x-3y-4)(3x-4y-9)$ (D) $(6x+3y+4)(3x+4y-9)$

【龍騰自命題】

解答

四七

A

$$\Leftrightarrow 3x+1=A \cdot y-2=B$$

∴ 原式 =
$$2A^2 - 5AB - 12B^2 = (2A + 3B)(A - 4B) = [2(3x + 1) + 3(y - 2)][(3x + 1) - 4(y - 2)]$$

= $(6x + 3y - 4)(3x - 4y + 9)$
 $2A + 3B$
 $A - 4B$
 $-8AB + 3AB = -5AB$

36. () 因式分解
$$9x^4 - 37x^2 + 4$$
 (A) $(x+2)(x-2)(3x+1)(3x-1)$ (B) $(x+1)(x-1)(3x+2)(3x-2)$ (C) $(x+3)(x-3)(x^2+x-1)$ (D) $(x-3)(x+2)(2x^2-x+5)$

【龍騰自命題】

解答

A

$$9x^{4} - 37x^{2} + 4 = (9x^{2} - 1)(x^{2} - 4) = (3x + 1)(3x - 1)(x + 2)(x - 2)$$

$$9x^{2} - 1$$

$$x^{2} - 4$$

$$-36x^{2} - x^{2} = -37x^{2}$$

37. ()設
$$f(x) = x^3 + x^2 + mx + n$$
,若 $f(x)$ 除以 $x - 2$,餘式為 4;除以 $x - 1$,餘式為 3,則 $m - n$ 之值為何? (A) -19 (B) -1 (C) 1 (D) 19

【龍騰自命題】

解答

A

解析 | 由餘式定理知: f(2) = 4且f(1) = 3

) 因式分解 2ax + by - 2cx + ay + 2bx - cy (A) (a - b + c)(2x + y) (B) (a - b + c)(2x - y)**38.** ((C) (a+b-c)(2x+y) (D) (a+b-c)(2x-y)

【龍騰白命題】

解答

解析 原式 = 2ax - 2cx + 2bx + by + ay - cy = 2x(a - c + b) + y(a - c + b) = (a - c + b)(2x + y)

) 因式分解 $50x^2 - 60x + 18$ (A) $(5x - 3)^2$ (B) $(5x + 3)^2$ (C) $2(5x + 3)^2$ (D) $2(5x - 3)^2$ **39.** (

【龍騰自命題】

D

解析

 $50x^2 - 60x + 18 = 2(25x^2 - 30x + 9) = 2[(5x)^2 - 2 \times 5x \times 3 + 3^2] = 2(5x - 3)^2$

)因式分解 $72x^2 + 6x - 45$ (A) 3(4x - 3)(6x - 5) (B) 3(4x - 3)(6x + 5) (C) 3(4x + 3)(6x - 5)**40.** ((D) 3(4x+3)(6x+5)

【龍騰自命題】

解答

 $72x^2 + 6x - 45 = 3(24x^2 + 2x - 15) = 3(4x - 3)(6x + 5)$ 解析

> 4x - 3 $6x^{\times} + 5$ 20x - 18x = 2x

41. (3)(x-1)(x+5) (C) $(x^2+5x+24)(x+7)(x-2)$ (D) (2x-1)(2x+1)(x+3)(x-3)

【龍騰自命題】

解答 解析

)設 $f(x) = (3x^{13} + 5x^9 - 5x^7 - 7x + 3)^{888}$, $g(x) = 8x^9 - 4x^8 + 3$,則 $f(x) \times g(x)$ 的各項係數和為 (A)-5 (B)-7 (C)5 (D)7

-14A + 24A = 10A

【super講義-綜合評量】

解答

42. (

D

 $f(x) \times g(x)$ 之各項係數和 = $f(1) \times g(1) = (-1)^{888} \times 7 = 7$

)多項式 $(9x^4-5x^2+7x+1)(4x^3+2x^2+3x-7)$ 的 x^5 項的係數為何? (A)-20 (B)-2 (C) **43.** (7 (D) 63

【104 數(A)歷屆試題】

解答 \mathbf{C}

解析

 $(9x^4-5x^2+7x+1)(4x^3+2x^2+3x-7)$

 x^5 項的係數為 $9 \times 3 + (-5) \times 4 = 7$

)若多項式f(x)除以x+2的餘式為-1,則 $(3x^3+1)f(x)+x^2+x+1$ 除以x+2的餘式為何? **44.** ((A)-3 (B)3 (C)13 (D)26

解答 D

f(x)除以x+2的餘式為 $-1 \Rightarrow f(-2)=-1$

欲求 $(3x^3+1)f(x)+x^2+x+1$ 除以x+2的餘式,即將x=-2代回,可得

$$(3\times(-2)^3+1)f(-2)+(-2)^2+(-2)+1=(-23)(-1)+4-2+1=26$$

45. () 已知 n 次多項式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$,則 f(x) 的各項係數之和 $a_n + a_{n-1} + a_{n-2} + \dots + a_1 + a_0$ 為 (A) f(1) (B) f(-1) (C) f(0) (D) a_0

【學習卷】

解答

A

解析 將 x = 1 代入 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$ 得各項係數之和為 $f(1) = a_n + a_{n-1} + a_{n-2} + \dots + a_1 + a_0$

46. () 試求 $(2x^3 + 4x^2 + 1)(2x^2 - x - 4)$ 展開式中 x^4 項係數為 (A) 4 (B) 8 (C) 6 (D) 5

【龍騰自命題】

解答

解析 展開得 $-2x^4 + 8x^4 = 6x^4$ ∴ 係數為 6

47. () 若 f(x) = ax + b 為零次多項式,則 $a \cdot b$ 需滿足下列何者條件? (A) $a \neq 0$ (B) a = 0 , b = 0 (C) a = 0 , $b \neq 0$ (D) a = 0

【龍騰自命題】

解答

解析 f(x) = ax + b 為零次多項式 $\Rightarrow a = 0$, $b \neq 0$

48. () 設 $f(x) = 3x^4 + ax^3 - 7x^2 + ax + 5$,若 f(-1) = -7,則 a 值為 (A) -4 (B) -3 (C) 3 (D) 4

【龍騰自命題】

解答

解析

f(-1) = -7

 $\therefore 3 \times (-1)^4 + a \times (-1)^3 - 7 \times (-1)^2 + a \times (-1) + 5 = -7 \Rightarrow 3 - a - 7 - a + 5 = -7 \Rightarrow a = 4$

49. () $f(x) = x^5 - 42x^3 - 51x^2 + 75$, $\Re f(7) = (A) - 22$ (B) -23 (C) -24 (D) -25

【龍騰自命題】

解答

В

解析 f(x)除以(x-7)之餘式為f(7)

利用綜合除法

50. () 下列何者為 $f(x) = x^3 - 7x + 6$ 的因式? (A)x + 1 (B)x + 2 (C)x - 2 (D)x - 3

【龍騰白命題】

解答解析

C

 $\therefore f(1) = 1 - 7 + 6 = 0$ $\therefore x - 1$ 是 f(x)的因式

利用綜合除法:

$$1 + 0 - 7 + 6 \mid 1$$

1 +1 -6
$$\lfloor +0 \rfloor$$

 $f(x) = (x-1)(x^2+x-6) = (x-1)(x-2)(x+3)$

51. ()已知f(x)為二次多項式函數,滿足f(1) = f(-2) = 0,且f(-1) = 10,則f(2)之值為何?

$$(A) - 20$$
 $(B) - 15$ $(C)12$ $(D)20$

【龍騰自命題】

解答

A

f(1) = f(-2) = 0f(x)有因式 x - 1, x + 2

 $\Leftrightarrow f(x) = k(x-1)(x+2)$

 $\nabla : f(-1) = 10$ $: k(-1-1)(-1+2) = 10 \Rightarrow k = -5$

f(x) = -5(x-1)(x+2)

可知f(2) = -5(2-1)(2+2) = -20

52. ()設x-a能同時整除 $2x^2-5x-3$ 和 $4x^2+8x+3$,則下列何者正確? (A) $-2 < a \le -1$ (B) $-1 < a \le 0$ (C) $0 < a \le 1$ (D) $1 < a \le 2$

【99數(A)歷屆試題】

解答 B

解析 : $2x^2 - 5x - 3 = (2x + 1)(x - 3) = 2(x + \frac{1}{2})(x - 3)$ ·····①

 $4x^2 + 8x + 3 = (2x+1)(2x+3) = 2(x+\frac{1}{2})(2x+3)\cdots$

又x-a能同時整除 $2x^2-5x-3$ 和 $4x^2+8x+3$

∴由①②知: $x-a=x+\frac{1}{2} \Rightarrow a=-\frac{1}{2}$,則 $-1 < a \le 0$

53. ()已知多項式 f(x)以 x+1 除之餘式為 1,以 x-2 除之餘式為 7,試求以(x+1)(x-2)除 f(x) 的餘式為何? (A) x-1 (B) x+1 (C) 2x-1 (D) 2x+3

【龍騰自命題】

解答解析

D

由餘式定理知:f(-1) = 1 且 f(2) = 7

 $\Leftrightarrow f(x) = (x+1)(x-2)Q(x) + ax + b$

 $\therefore f(-1) = 1 \quad \therefore -a + b = 1 \cdots$

 \mathbb{Z} : f(2) = 7 : 2a + b = 7 ····· 2

曲①②知: $\begin{cases} a=2\\b=3 \end{cases}$...餘式為 2x+3

54. ()設f(x)為整係數三次多項式,已知f(-1) = 0, $f(\frac{1}{2}) = 0$,f(2) = 45,f(-2) = -35,則f(3) 之值為何? (A) -120 (B) -80 (C) 25 (D) 160

【龍騰自命題】

解答

解析 $\therefore f(-1) = f(\frac{1}{2}) = 0$ $\therefore f(x)$ 有因式 x+1, 2x-1

 $\Leftrightarrow f(x) = (x+1)(2x-1)(ax+b)$

f(2) = 45 $(2+1)(4-1)(2a+b) = 45 \cdots$

 $\nabla : f(-2) = -35$ $: (-2+1)(-4-1)(-2a+b) = -35 \cdots (2)$

曲①②知: $\begin{cases} 2a+b=5\\ -2a+b=-7 \end{cases} \Rightarrow \begin{cases} a=3\\ b=-1 \end{cases}$

 $\therefore f(x) = (x+1)(2x-1)(3x-1) \Rightarrow f(3) = (3+1)(6-1)(9-1) = 160$

55. () 若 f(x) 為不低於 2 次之多項式,已知 f(x) 除以 x-2 所得之餘式為 11,除以 x+1 所得之餘式為 2,則 f(x) 除以 x^2-x-2 所得餘式為何? (A) 2x+7 (B) 3x+5 (C) x+9 (D) x+3

【龍騰自命題】

解答

В

解析

由餘式定理知:f(2) = 11 且 f(-1) = 2

$$\Rightarrow f(x) = (x^2 - x - 2)Q(x) + ax + b = (x - 2)(x + 1)Q(x) + ax + b$$

$$\therefore f(2) = 11 \quad \therefore 2a + b = 11 \cdots \cdots \textcircled{1}$$

$$\nabla : f(-1) = 2$$
 $\therefore -a + b = 2 \cdots 2$

由①②知:
$$\begin{cases} a=3\\b=5 \end{cases}$$
 ∴餘式為 $3x+5$

56. ()設 $a \cdot b \cdot k$ 為常數。若對每一實數x 皆滿足 $x^4 - x^3 - 2x^2 + 13x + k = (x^2 + 2x + a)(x^2 - 3x + b)$,則k =

$$(A)-5$$
 $(B)-3$ $(C)3$ $(D)5$

【103 數(B)歷屆試題】

解答

A

胖机

 $x^{4} - x^{3} - 2x^{2} + 13x + k$ $= (x^{2} + 2x + a)(x^{2} - 3x + b) = x^{4} - x^{3} + (a + b - 6)x^{2} + (2b - 3a)x + ab$ $\begin{cases} a + b - 6 = -2 \cdot \dots \cdot \text{1} \\ 2b - 3a = 13 \cdot \dots \cdot \text{2} \\ ab = k \cdot \dots \cdot \text{3} \end{cases}$

中① 得 $a+b=4\cdots$ ④ $\Rightarrow 2a+2b=8\cdots$ ⑤

⑤ - ② 得
$$5a = -5 \Rightarrow a = -1$$
 ,代入 ④ 得 $-1 + b = 4 \Rightarrow b = 5$

$$\therefore k = ab = -5$$

57. ()給定一分式 $\frac{x+1}{x^2-1} + \frac{x^2+x-6}{x^2+6x+9}$ 。若已知該分式化成最簡分式為 $\frac{ax^2+bx+c}{dx^2+2x+e}$,其中 $x \neq -3$,-1,

$$(A)-2$$
 $(B)0$ $(C)2$ $(D)4$

【104數(B)歷屆試題】

解答

C

解析 $\frac{x+1}{x^2-1} + \frac{x^2+x-6}{x^2+6x+9} = \frac{x+1}{(x+1)(x-1)} + \frac{(x+3)(x-2)}{(x+3)^2} = \frac{1}{x-1} + \frac{x-2}{x+3}$ $= \frac{x+3}{x^2+2x-3} + \frac{x^2-3x+2}{x^2+2x-3} = \frac{x^2-2x+5}{x^2+2x-3}$

$$\Rightarrow \frac{x^2 - 2x + 5}{x^2 + 2x - 3} = \frac{ax^2 + bx + c}{dx^2 + 2x + e}$$

: 分母的 2x 相同,則比較係數得 a=1 , b=-2 , c=5 , d=1 , e=-3

$$\therefore a+b+c+d+e=1+(-2)+5+1+(-3)=2$$

58. () 因式分解 $x^3 + 6x^2 + 12x + 8$ 為下列何者? (A) $(2x-1)^3$ (B) $(2x+1)^3$ (C) $(x+2)^3$ (D) $(x-2)^3$

【super 講義-綜合評量】

解答

 \mathbf{C}

 $x^{3} + 6x^{2} + 12x + 8$ $= x^{3} + 3 \times x^{2} \times 2 + 3 \times x \times 2^{2} + 2^{3}$ $= (x+2)^{3}$

59. () 因式分解 $8x^3 - 27$ 為下列何者? (A) $(2x-3)(4x^2+6x+9)$ (B) $(2x+3)(4x^2+6x+9)$ (C) $(2x+3)(4x^2-6x+9)$ (D) $(2x-3)(4x^2-6x+9)$

解答

A

解析

$$8x^{3} - 27$$

$$= (2x)^{3} - 3^{3}$$

$$= (2x - 3) [(2x)^{2} + 2x \times 3 + 3^{2}]$$

$$= (2x - 3) (4x^{2} + 6x + 9)$$

60. ()已知多項式 $f(x) = 3x^4 - 4x^3 - x^2 + 3x + 1$, $g(x) = 2x^2 + 3x - 5$,則 $f(x) \times g(x)$ 的 x^5 項係數為 (A)1 (B) -1 (C)17 (D) -17

【龍騰自命題,淮階卷】

解答

A

 x^5 項的係數為 $3 \times 3 + (-4) \times 2 = 9 - 8 = 1$

61. () 設x-1為 $f(x)=2x^3-kx^2+7x-5$ 之因式,則k= (A)1 (B)2 (C)3 (D)4

【課本自我評量】

解答解析

D

因為 x-1 為 $f(x) = 2x^3 - kx^2 + 7x - 5$ 之因式 由因式定理知: $f(1) = 0 \Rightarrow 2 - k + 7 - 5 = 0$,所以 k = 4

62. () 若 $x^2 - 3x + 2$ 是 $ax^3 + 3x^2 + bx - 2$ 的因式,則a + b之值為 (A) $-\frac{4}{3}$ (B)-1 (C) $-\frac{1}{3}$ (D)0

【課本自我評量】

解答

В

63. ()已知多項式 f(x) ,以 x^2+2x-3 除之,得餘式為 2x+3 ,則 f(1) 之值為 (A)4 (B)5 (C)6 (D)7

【中壢家商段考題 light 講義-類題】

解答

В

設 f(x)除以 $x^2 + 2x - 3$ 的商式為 q(x),由除法原理知 $f(x) = (x^2 + 2x - 3) \times q(x) + (2x + 3) \implies f(1) = (1 + 2 - 3) \times q(1) + (2 + 3) = 0 \times q(1) + 5$ = 5

64. () 試求(x-1)除x²⁰¹⁹+x²-1之餘式為 (A)-1 (B)0 (C)1 (D)2

【松山家商段考題 light 講義-類題】

解答

 \mathbf{C}

解析 設 $f(x) = x^{2019} + x^2 - 1$,又除式x - 1 = 0 \Rightarrow x = 1,f(x)除以x - 1之餘式為f(1)又 $f(1) = 1^{2019} + 1^2 - 1 = 1$,故餘式為 1

12

65. () $\stackrel{\text{in}}{\text{math }} f(x) = x^5 - 6x^4 - 4x^3 - 25x^2 + 30x - 7$, $\stackrel{\text{gl}}{\text{gl}} f(7) = (A)9$ (B)8 (C)7 (D)6

【岡山農工段考題 light 講義-類題】

解答

 \mathbf{C}

解析 f(7)即 f(x)除以 x-7 的餘式,乘數 $\Rightarrow x-7=0 \Rightarrow x=7$ 亦可用 f(x)=f(7)得出乘數 x=7 1 -6 -4 -25 +30 -7 7

利用綜合除法,餘式為7,故f(7)的值為7

66. ()設 f(x) 為二次多項式函數,且 f(1) = f(-2) = 0 , f(-1) = 2 ,則 f(0) 之值為 (A)0 (B)2 (C)4 (D)6

【岡山農工段考題 light 講義-類題】

解答

解析 因為f(1) = f(-2) = 0,所以(x-1)(x+2)是f(x)的因式

又 f(x)為二次多項式函數,故可設 f(x) = a(x-1)(x+2)

又
$$f(-1)=2$$
,得 $a(-1-1)(-1+2)=2$,乘開得 $-2a=2$,所以 $a=-1$

因此可得
$$f(x) = -(x-1)(x+2) = -(x^2+x-2) = -x^2-x+2$$
, 故 $f(0) = -0-0+2=2$

67. () 因式分解 $x^2 + 3x - 10 =$

(A)
$$(x+5)(x+2)$$
 (B) $(x+5)(x-2)$ (C) $(x-5)(x+2)$ (D) $(x-5)(x-2)$

【宜蘭高商段考題 light 講義-類題】

解答 B 解析

$$\frac{x}{5x} + \frac{-2}{(-2x)} = 3x$$

$$x^2 + 3x - 10 = (x + 5)(x - 2)$$

68. ()已知 $f(x) = x^2 - 2x + 4$ 、g(x) = 3x - 2,則 $f(x) \times g(x)$ 的 x^2 項係數為 (A)-8 (B)16 (C)-2 (D)3

【light 講義-綜合評量】

解答

A

解析 分離係數法

不定元
$$x^3$$
 x^2 x 常 1 -2 $+4$ $\times) 3 -2$

$$\frac{3 - 6 + 12}{3 - 8 + 16 - 8}$$

所以 $f(x) \times g(x) = 3x^3 - 8x^2 + 16x - 8$,因此 x^2 項係數為 -8

69. () 因式分解(a-3)x+(3a-9)= (A)(a+3)(x+3) (B)(a-3)(x+3) (C)(a+3)(x-3) (D)(a-3)(x-3)

【light 講義-綜合評量】

解答

_ I

$$(a-3)x + (3a-9) = (a-3)x + 3(a-3) = (a-3)(x+3)$$

70. () 仁簡 $\frac{x^2 + x}{x^2 - 16} \div \frac{x + 1}{x - 4} =$

(A)
$$\frac{x}{x+4}$$
 (B) $\frac{x}{x-4}$ (C) $\frac{x+1}{x+4}$ (D) $\frac{x+1}{x-4}$

【light 講義-綜合評量】

解答 A

所
$$\frac{x^2+x}{x^2-16} \div \frac{x+1}{x-4} = \frac{x^2+x}{x^2-16} \times \frac{x-4}{x+1} = \frac{x(x+1)}{(x+4)(x-4)} \times \frac{x-4}{x+1} = \frac{x}{x+4}$$

71. ()已知 $f(x)=x^2+bx+c$ 為二次多項式。若 f(x)被 $(x+1)^2$ 除的餘式被 x-1整除,且 f(x)被 $(x-1)^2$ 除的餘式被 x+1整除,則 c=? (A) -3 (B) -1 (C)1 (D)3

【110數(B)歷屆試題】

解答

解析

依題意計算

又
$$\lceil (b-2)x+(c-1) \rceil$$
被 $(x-1)$ 整除

$$\Rightarrow (b-2) \times 1 + (c-1) = 0 \Rightarrow b+c-3 = 0 \cdots$$

依題意計算

又 $\lceil (b+2)x+(c-1) \rceil$ 被(x+1)整除

$$\Rightarrow$$
 $(b+2)(-1)+(c-1)=0$ \Rightarrow $-b+c-3=0$ 2

解(1)② 聯立得 2c-6=0 \Rightarrow c=3

72. () 設多項式 f(x)以 x+1 除之得餘式為 -2,以 x-3 除之得餘式為 6,求 f(x)以 (x+1)(x-3) 除之所得餘式為 (A)2x (B)4x (C)2x-3 (D)4x-6

【龍騰自命題,進階卷】

解答

Α

解析

 \therefore 除式(x+1)(x-3)為二次式 \therefore 假設餘式為一次式 : ax+b 中除法原理得 $f(x) = (x+1)(x-3) \times g(x) + gx + b$

由除法原理得
$$f(x) = (x+1)(x-3) \times q(x) + ax + b$$

又由題意知:
$$\begin{cases} f(-1) = -2 \\ f(3) = 6 \end{cases} \Rightarrow \begin{cases} -a+b=-2 \\ 3a+b=6 \end{cases} \Rightarrow \begin{cases} a=2 \\ b=0 \end{cases}$$

故所得之餘式為 2x

73. ()已知 f(x) 為 3 次多項式且領導係數為 2, g(x) 為 2 次多項式且領導係數為 3,下列敘述何者恆為正確? (A) f(3x)+g(2x) 為 5 次多項式且領導係數為 54 (B) f(3x)-g(-2x) 為 3 次多項式且領導係數為 54 (C) $f(2x)\times g(3x)$ 為 5 次多項式且領導係數為 36 (D) f(2x) 除以 g(-3x) 之商式為 1 次多項式且領導係數為 1

【110數(A)歷屆試題】

解答

В

 $\lim_{x \to \infty} f(x) = 2x^3 \quad , \quad g(x) = 3x^2$

(A)
$$f(3x) + g(2x) = 2(3x)^3 + 3(2x)^2 = 54x^3 + 12x^2$$
 (※) (B) $f(3x) - g(-2x)$
 $= 2(3x)^3 - 3(-2x)^2 = 54x^3 - 12x^2$ (○) (C) $f(2x) \times g(3x) = 2(2x)^3 \times 3(3x)^2 = 16x^3 \times 27x^2 = 432x^5$
(※) (D) $f(2x) = 2(2x)^3 = 16x^3$, $g(-3x) = 3(-3x)^2 = 27x^2$, $f(2x)$ 除以 $g(-3x)$ 為
 $\frac{16x^3}{27x^2} = \frac{16}{27}x$ (※) (: 領導係數不為1)

74. () 設 $f(x) = 3x^3 + 2x^2 - ax + b$, $g(x) = x^2 - x - 1$,若 $f(x) \div g(x)$ 得餘式為 7x + 9 ,則 $a^2 + b^2$ 之 值為 (A)15 (B)16 (C)17 (D)18

【super 講義-綜合評量】

解答

C

解析 利用長除法求 $f(x) \div g(x)$

$$\begin{array}{r}
3x +5 \\
x^2 - x - 1 \overline{\smash)3x^3 +2x^2 - ax + b} \\
\underline{3x^3 -3x^2 - 3x + b} \\
\underline{5x^2 + (3-a)x + b} \\
\underline{5x^2 - 5x - 5} \\
(8-a)x + (b+5)
\end{array}$$

∴餘式 =
$$(8-a)x + (b+5) = 7x + 9$$
,比較係數 $\begin{cases} 8-a=7 \\ b+5=9 \end{cases} \Rightarrow \begin{cases} a=1 \\ b=4 \end{cases}$ 故 $a^2 + b^2 = 1 + 16 = 17$

75. () 設 $f(x) = x^4 + mx^2 + nx - 11$,以 x - 1除 f(x) 得餘式為 10 ,以 x + 1除 f(x) 得餘式為 16 ,則 m + n = (A) 20 (B) 21 (C) 22 (D) 23

【super 講義-綜合評量】

解答

A

解析」 分析:餘式定理,以x-a除 f(x)所得的餘式為 f(a) $f(x) = x^4 + mx^2 + nx - 11$

由題意得知 $\begin{cases} f(1)=10 \\ f(-1)=16 \end{cases}$ \Rightarrow $\begin{cases} 1+m+n-11=10 \\ 1+m-n-11=16 \end{cases}$ \Rightarrow $\begin{cases} m+n=20\cdots\cdots 1 \\ m-n=26\cdots\cdots 2 \end{cases}$

由(1)可得 m + n = 20

76. ()因式分解 $a^2 - b^2 + 4b - 4$ 得 (A)(a+b-2)(a+b-2) (B)(a+b-2)(a-b+2) (C)(a+b+2)(a-b+2) (D)(a+b+2)(a-b-2)

【龍騰自命題,進階卷】

解答

短桁

$$a^{2} - b^{2} + 4b - 4 = a^{2} - (b^{2} - 2 \times b \times 2 + 2^{2}) = a^{2} - (b - 2)^{2}$$
$$= [a + (b - 2)][a - (b - 2)] = (a + b - 2)(a - b + 2)$$

77. () 解方程式 $\frac{2}{x-2} = \frac{1}{x+1}$, 其解為 (A)-1 (B)-2 (C)-3 (D)-4

【super 講義-綜合評量】

解答

D

解析」 將原式等號兩邊同乘以(x-2)(x+1),得2(x+1)=(x-2) ⇒ 2x+2=x-2 ⇒ x=-4 ⇒ x=-4 代入原式分母,分母皆不為0,所以方程式的解為x=-4

78. ()已知 f(x) 是一個二次多項式,且 f(1) = f(-2) = 0 , f(2) = 8 ,則 x + 3 除 f(x) 的餘式為何? (A) -8 (B) -2 (C) 4 (D) 8

【111 數(B)歷屆試題】

解答解析

D

 $\lim_{x \to \infty} f(x) = a(x-1)(x+2) + 0$

: f(2) = 8

 \therefore $a \times 1 \times 4 + 0 = 8 \implies a = 2$

得f(x) = 2(x-1)(x+2)

 $\Leftrightarrow x+3=0 \Rightarrow x=-3$ 則所求餘式為 $f(-3)=2\times(-4)\times(-1)=8$

79. ()設一個次數不小於3之多項式 f(x) ,以 x+2 除之餘 -6 ,以 x-3 除之餘 9 。若以 (x+2)(x-3) 除 f(x) 所得餘式為 r(x) ,則 r(1) 之值為何? (A) -6 (B) 0 (C) 3 (D) 9

【light 講義-類題】

解答(

 $\overline{\text{pff}}$ 設f(x)除以(x+2)(x-3)的商式為q(x),

餘式為r(x)=ax+b,由除法原理知: $f(x)=(x+2)(x-3)\times q(x)+(ax+b)$

又由餘式定理知: $\begin{cases} f(-2) = -6 \\ f(3) = 9 \end{cases} \Rightarrow \begin{cases} -2a + b = -6 \\ 3a + b = 9 \end{cases}, 解聯立得 \begin{cases} a = 3 \\ b = 0 \end{cases}$

∴餘式為 $r(x) = 3x \Rightarrow r(1) = 3$

80. ()已知 a 為實數,若多項式 $f(x)=3x^3+ax^2+5x+62$ 除以 x-3 的餘式為 95 ,則 a=(A)-7 (B) -5 (C) -3 (D) -1

【light 講義-類題】

解答

A

解析 由餘式定理可知 f(x) 除以 x-3 的餘式為 95 ,即 f(3)=95 故 $3\times3^3+a\times3^2+5\times3+62=95 \Rightarrow 9a=95-81-15-62 \Rightarrow 9a=-63 ∴ <math>a=-7$

81. () 若 $f(x) = (a^2 + a - 2)x^2 + (a + 2)x + a$ 為一次多項式,g(x) = (b - 3)x + 2018 為零次多項式,則 數對 (a,b) = (A)(3,1) (B)(1,0) (C)(2,3) (D)(1,3)

【light 講義-類題】

解答解析

D

 $f(x) = (a^2 + a - 2)x^2 + (a + 2)x + a$

為一次多項式,則

$$\begin{cases} a^2 + a - 2 = 0 \\ a + 2 \neq 0 \end{cases} \Rightarrow \begin{cases} (a+2)(a-1) = 0 \\ a \neq -2 \end{cases}$$
$$\Rightarrow \begin{cases} a = -2 \text{ if } 1 \\ a \neq -2 \end{cases}$$

 \therefore a=1

g(x) = (b-3)x + 2018 為零次多項式

 $\exists [b-3=0 \Rightarrow b=3]$

故數對(a,b)=(1,3)

82. ()已知(x-3)為 x^3+kx-6 之因式,則下列何者為 x^3+kx-6 之因式分解? (A) (x-3)(x-2)(x-1) (B)(x-3)(x-2)(x+1) (C)(x-3)(x+2)(x-1) (D)

(x-3)(x+2)(x+1)

【103 數(B)歷屆試題】

解答 解析

D

利用綜合除法

$$1 + 3 + 2 + 0$$

83. ()已知多項式 $f(x) = 2x^2 - 5x + 2$, $g(x) = x^3 - x^2 + ax + b$ 。若 f(x) + g(x) 可以被 $x^2 + 1$ 整除,则 a + b =

$$(A)-2$$
 $(B)0$ $(C)3$ $(D)5$

【106 數(B)歷屆試題】

解答

D

解析

$$f(x)+g(x)=x^3+x^2+(a-5)x+(b+2)$$

利用長除法

$$\begin{array}{r}
x+1 \\
x^2+0x+1 \overline{\smash)x^3+x^2+(a-5)x+(b+2)} \\
\underline{x^3+0x^2+x} \\
x^2+(a-6)x+(b+2) \\
\underline{x^2+0x+1} \\
(a-6)x+(b+1)
\end{array}$$

因為整除 \Rightarrow 餘式為 $0 \Rightarrow a-6=0$ 且 $b+1=0 \Rightarrow a=6$, b=-1 ,故 a+b=5

84. ()已知 α 、 β 及-3為方程式 $x^3-x^2-11x+3=0$ 的三個相異解。求 $|\alpha-\beta|=$? (A) $2\sqrt{3}$ (B) 4 (C) 6 (D) $4\sqrt{5}$

【109 數(B)歷屆試題】

解答

A

已知-3為其中一解

$$\therefore \alpha \wedge \beta \stackrel{\text{h}}{=} x^2 - 4x + 1 = 0 \stackrel{\text{l}}{=} 0$$

根據根與係數得 $\alpha + \beta = 4$, $\alpha\beta = 1$

$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = 16 - 4 = 12$$

$$\therefore |\alpha - \beta| = \sqrt{12} = 2\sqrt{3}$$

85. ()已知 $(x+1)^3$ 除 f(x)的餘式為 x^2-2x+3 。若 $(x+1)^2$ 除 f(x)的餘式為ax+b,則a+b=? (A) -2 (B)-1 (C)3 (D)4

【109 數(B)歷屆試題】

解答

A

解析 設f(x)除以 $(x+1)^3$ 的商式為q(x)

由除法原理知:

$$f(x) = (x+1)^{3} \times q(x) + (x^{2} - 2x + 3)$$

$$= (x+1)^{2} [(x+1) \times q(x)] + \underline{x^{2} - 2x + 3}$$
①

①式可被 $(x+1)^2$ 整除

將②式除以 $x^2 + 2x + 1$

即

故f(x)除以 $(x+1)^2$ 之餘式為-4x+2

 $\exists \exists a = -4 , b = 2$

所以a+b=-4+2=-2

[另解]

根據除法原理

$$f(x) = (x+1)^3 q(x) + (x^2 - 2x + 3) = (x+1)^3 q(x) + (x^2 + 2x + 1) + (-4x + 2)$$
$$= (x+1)^3 q(x) + (x+1)^2 + (-4x+2) = (x+1)^2 [(x+1)q(x) + 1] + (-4x+2)$$

根據除法原理 f(x)除以 $(x+1)^2$ 之商式為(x+1)q(x)+1,餘式為-4x+2

$$\therefore$$
 $a = -4$, $b = 2$ \Rightarrow $a + b = -4 + 2 = -2$

86. ()若 f(x) 為三次多項式,且 f(1)=0、f(-1)=0、f(2)=0、f(3)=16,則下列何者不為 f(x) 之因式? (A)x-1 (B)x+1 (C)x-2 (D)x-3

【隨堂卷】

解答 解析

D

 $f(1) = 0 \land f(-1) = 0 \land f(2) = 0 \land f(3) = 16$

由因式定理知:

 $x-1 \cdot x+1 \cdot x-2$ 為f(x)之因式

x-3 不為 f(x) 之因式

87. () 已知 $f(x) = 5x^2 + 4x + a$ 除以 x - 1 餘 3 ,則 a = (A) 9 (B) -9 (C) 6 (D) -6

【隨堂卷】

解答 D

解析 由餘式定理知: $f(1)=3 \Rightarrow 5+4+a=3 \Rightarrow a=-6$

88. ()若多項式 f(x)除以 x-1 得商式為 $x^{12}-x-1$,餘式為 3,則 f(x)除以 x^2-1 的餘式為何? (A) x+1 (B) x+2 (C) 2x-1 (D) 3x+5

【龍騰白命題, 淮階卷】

解答

 \mathbf{B}

解析 曲題意知: $f(x) = (x-1)(x^{12}-x-1)+3 \Rightarrow f(1)=3$ 且 f(-1)=1 $\Leftrightarrow f(x) = (x^2-1)Q(x)+ax+b=(x+1)(x-1)Q(x)+ax+b$ f(1)=3 f(

由①②知: $\begin{cases} a=1 \\ b=2 \end{cases}$ ∴餘式為 x+2

89. () 設 f(x) = (x+1)(x-1),g(x) = (x+1)(x+2),若欲使 $f(x) \times g(x) = 0$ 而 $f(x) + g(x) \neq 0$,則 x 值可為 (A) 2 (B) 1 (C) 0 (D) -1

【龍騰自命題,進階卷】

解答

В

解析 (i) $f(x) \times g(x) = (x+1)^2(x-1)(x+2) = 0$ ∴ x = -1 或 1 或 -2

(ii) $f(x) + g(x) = (x+1)(2x+1) \neq 0$ ∴ $x \neq -1$ 或 $-\frac{1}{2}$, 故 x = 1 或 -2

90. ()已知多項式 f(x) 除以 (x+2)(x-7) 的餘式為 ax+3。若 (x-7) 為 f(x) 的因式,則 f(-2)=? (A) $\frac{27}{7}$ (B) $\frac{29}{7}$ (C) $\frac{31}{7}$ (D) $\frac{33}{7}$

【112數(B)歷屆試題】

解答

A

設f(x)÷(x+2)(x-7)的商式為Q(x),則 $f(x)=(x+2)(x-7)\times Q(x)+(ax+3)$

故
$$f(x) = (x+2)(x-7) \times Q(x) + \left(-\frac{3}{7}x+3\right)$$

則 $f(-2) = -\frac{3}{7} \times (-2) + 3 = \frac{6}{7} + 3 = \frac{27}{7}$

91. () 已知a 、b 為實數,若 $x^3 + ax^2 + bx - 6$ 可被 $x^2 - x + 3$ 整除,則a + b = (A) -2 (B)0 (C)2 (D)4

【課本自我評量】

解答

 $x^{3} + ax^{2} + bx - 6$ 有因式 $x^{2} - x + 3$,可利用長除法且其餘式 = 0

$$\begin{array}{r}
x - 2 \\
x^2 - x + 3 \overline{\smash)x^3 + ax^2 + bx - 6} \\
\underline{x^3 - x^2 + 3x} \\
\underline{(a+1)x^2 + (b-3)x - 6} \\
\underline{-2x^2 + 2x - 6} \\
\underline{(a+3)x^2 + (b-5)x + 0}
\end{array}$$

餘式為 0,則 a+3=0,b-5=0,即 a=-3,b=5,故 a+b=-3+5=2

92. () 設 f(x) 為多項式,且 $4x^3 + x + 1 = f(x)(2x^2 - x + 3) - 4x - 2$,則 f(x) = (A) 10x - 2 (B) 6x + 2 (C) 4x - 1 (D) 2x + 1

【課本自我評量】

解答解析

D

原式整理得 $4x^3 + 5x + 3 = f(x)(2x^2 - x + 3)$, 等式同除以 $2x^3 - x + 3$

得
$$f(x) = \frac{4x^3 + 5x + 3}{2x^2 - x + 3}$$
,利用長除法 $\frac{(2x+1)(2x^2 - x + 3)}{(2x^2 - x + 3)} = 2x + 1$

$$\begin{array}{r}
2x - x + 3 \\
2x + 1 \\
2x^{2} - x + 3 \overline{\smash)4x^{3} + 0 + 5x + 3} \\
\underline{4x^{3} -2x^{2} + 6x} \\
2x^{2} - x + 3 \\
\underline{2x^{2} - x + 3} \\
0$$

93. () 若多項式 $f(x) = ax^2(x+3) + 5x(x+3) + 2(x+3)$ 被 x+2 除盡,則 a=(A)-2 (B)-1 (C)1 (D)2

【課本自我評量】

解答

D

解析 f(x)被 x+2 整除,由因式定理知:f(-2)=0 即 $a \times (-2)^2(-2+3)+5 \times (-2)(-2+3)+2(-2+3)=0$

計算得 4a - 10 + 2 = 0,則 4a = 8,所以 a = 2

94. ()以x-4除 $f(x)=100x^5-318x^4-228x^3-311x^2-256x-232$ 之餘式為 (A)168 (B)386 (C)

解答

Α

解析 利用綜合除法

 $\therefore x-4$ 除f(x)的餘式為168

95. () 設多項式 f(x) 除以 $x^2 + 2x - 8$ 之餘式為 2x + 5 ,則 f(2) = (A) 9 (B) 10 (C) 11 (D) 12

【super 講義-綜合評量】

解答

A

解析 由除法原理設 $f(x) = (x^2 + 2x - 8) \times q(x) + 2x + 5$ $\therefore f(2) = (4 + 4 - 8) \times q(2) + 2 \times 2 + 5 = 9$

96. () 解方程式 $\frac{x-1}{x+1}$ = 0 , 其解為 (A)1 (B)2 (C)-1 (D)-2

【super 講義-綜合評量】

解答

A

將原式等號兩邊同乘以x+1,得 $x-1=0 \Rightarrow x=1$ 將x=1代入原式分母,分母 $\neq 0$,所以方程式的解為x=1

97. () 設 $x^2 - 3x + 1 = 0$,試求 $x + \frac{1}{x}$ 之值 (A) $\frac{3 - \sqrt{5}}{2}$ (B)2 (C)3 (D) $\frac{3 + \sqrt{5}}{2}$

【super 講義-綜合評量】

解答

C

解析 $x^2 - 3x + 1 = 0$,將等號兩邊同除以x,得 $x - 3 + \frac{1}{x} = 0 \Rightarrow x + \frac{1}{x} = 3$

98. () <u>巧曼</u>將邊長為3a 的正方形布料沿著虛線剪成二塊正方形及二塊長方形布料,如果拿掉邊長為2b的小正方形後,再將剩下的三塊拼成一塊矩形拼布,則此塊矩形拼布較長的邊長為何?

(A) 3a + 2b (B) 3a + 4b (C)

(C) 6a + 2b (D) 6a + 4b

【super 講義-綜合評量】

解答

Α

解析 如圖所示:

拼成後矩形面積 = $(3a)^2 - (2b)^2 = (3a+2b)(3a-2b)$ 矩形較長的邊長為3a+2b

99. () $\exists x^4 + 2x^2 + 1 = (a+1)x^4 + (b-1)x^3 + (c+1)x^2 + (d-3)x + (e+4)$, $\exists x^4 + 2x^2 + 1 = (a+1)x^4 + (b-1)x^3 + (c+1)x^2 + (d-3)x + (e+4)$, $\exists x^4 + 2x^2 + 1 = (a+1)x^4 + (b-1)x^3 + (c+1)x^2 + (d-3)x + (e+4)$, $\exists x^4 + 2x^2 + 1 = (a+1)x^4 + (b-1)x^3 + (c+1)x^2 + (d-3)x + (e+4)$, $\exists x^4 + 2x^2 + 1 = (a+1)x^4 + (b-1)x^3 + (c+1)x^2 + (d-3)x + (e+4)$, $\exists x^4 + 2x^2 + 1 = (a+1)x^4 + (b-1)x^3 + (c+1)x^2 + (d-3)x + (e+4)$, $\exists x^4 + 2x^2 + 1 = (a+1)x^4 + (b-1)x^3 + (c+1)x^2 + (d-3)x + (e+4)$, $\exists x^4 + 2x^2 + 1 = (a+1)x^4 + (b-1)x^3 + (c+1)x^2 + (d-3)x + (e+4)$

【99數(B)歷屆試題】

解答

D

 $\Rightarrow x = 1$ 代入原式得 $3+2+1=a+1+b-1+c+1+d-3+e+4 \Rightarrow 6=a+b+c+d+e+2$ ∴ a+b+c+d+e=4

100. () 設 $a \cdot b \cdot c \cdot d$ 為實數,若 $x^2 - 1$ 為 $f(x) = ax^3 + bx^2 + cx + d$ 之因式,且f(x) 除以x - 2 餘 6,則2a + b = (A)—4 (B)—2 (C)2 (D)4

【99 數(C)歷屆試題】

解答解析

 \mathbf{C}

又f(x)除以x-2餘6,由餘式定理知: $f(2)=6 \Rightarrow 8a+4b+2c+d=6\cdots$

由① : c = -a與由② : d = -b分別代入③

得 $8a+4b+2(-a)+(-b)=6 \Rightarrow 6a+3b=6 \Rightarrow 2a+b=2$