Machine Learning for Weather Prediction

A proposal for ClimateWins to predict and analyze weather patterns in Europe using advanced machine learning techniques.

by Rose Alappat Joy

Project Objectives

- Find new patterns in weather changes over the last 60 years
- 2 Identify unusual weather patterns in Europe

- 3 Determine if unusual patterns are increasing
- Generate future weather predictions for next 25-50 years

Data and Methodology

Data Source

Weather observations from 18 European stations, late 1800s to 2022

Key Variables

Temperature, wind speed, snow, global radiation, and more

Approach

Unsupervised and supervised machine learning, deep learning models

Unsupervised Learning Insights

Clustering Methods

Single Linkage, Complete Linkage, Average Linkage, and Ward methods applied to compare weather patterns between stations and years.

Key Findings

Complete Linkage and Ward methods showed clearest distinctions between climate patterns, revealing significant differences between regions like Madrid and Munich.

Supervised Learning Models

Signid RelU RelU eLU ReLU Tanh

CNN Model Performance

51.6%

12%

Tanh Accuracy

Moderate performance, identifying patterns in 5 out of 15 classes

Sigmoid Accuracy

Poor performance, likely due to vanishing gradients

64.4%

ReLU Accuracy

Higher accuracy but unstable loss, identifying only 1 class

```
Epoch 1/30
1076/1076 - 22s - 20ms/step - accuracy: 0.0782 - loss: 24.5252
Epoch 2/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0658 - loss: 24.4837
Epoch 3/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0881 - loss: 25.0586
1076/1076 - 13s - 12ms/step - accuracy: 0.0736 - loss: 24.7445
Epoch 5/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0511 - loss: 25.1092
Epoch 6/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0510 - loss: 24.8289
Epoch 7/30
1076/1076 - 12s - 11ms/step - accuracy: 0.0267 - loss: 24.5668
Epoch 8/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0280 - loss: 24.8879
Epoch 9/30
1076/1076 - 12s - 11ms/step - accuracy: 0.0130 - loss: 24.8415
Epoch 10/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0107 - loss: 25.0344
Epoch 11/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0078 - loss: 24.7568
Epoch 12/30
1076/1076 - 21s - 19ms/step - accuracy: 0.0098 - loss: 24.5851
Epoch 13/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0150 - loss: 24.6720
Epoch 14/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0187 - loss: 24.2592
Epoch 15/30
1076/1076 - 21s - 20ms/step - accuracy: 0.0148 - loss: 24.5139
Epoch 16/30
1076/1076 - 20s - 19ms/step - accuracy: 0.0279 - loss: 24.3615
Epoch 17/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0264 - loss: 24.2377
Epoch 18/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0455 - loss: 24.1651
Epoch 19/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0626 - loss: 24.3312
Epoch 20/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0562 - loss: 25.0605
Epoch 21/30
1076/1076 - 12s - 12ms/step - accuracy: 0.0667 - loss: 25.0434
Epoch 22/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0742 - loss: 24.9951
1076/1076 - 12s - 11ms/step - accuracy: 0.0770 - loss: 24.2285
Epoch 24/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0464 - loss: 24.2724
Epoch 25/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0407 - loss: 24.3492
Epoch 26/30
1076/1076 - 13s - 12ms/step - accuracy: 0.0536 - loss: 24.5829
Epoch 27/30
1076/1076 - 21s - 19ms/step - accuracy: 0.0234 - loss: 24.3111
Epoch 28/30
1076/1076 - 20s - 19ms/step - accuracy: 0.0252 - loss: 24.4421
1076/1076 - 13s - 12ms/step - accuracy: 0.0363 - loss: 24.4558
Epoch 30/30
1076/1076 - 12s - 12ms/step - accuracy: 0.0495 - loss: 24.4351
```

RNN/LSTM Model Results

Initial Performance

Lower accuracy compared to CNN, with significant challenges in learning data patterns

Training Progress

Loss decreases over epochs but fluctuates, showing irregular convergence

Final Outcome

Despite lower loss compared to CNN, accuracy remains poor, suggesting underfitting or difficulty handling specific data categories

Random Forest Model Insights

City/Category	Key Indicators for Weather	Observations
Madrid & Budapest	<pre>temp_max , temp_mean , temp_min</pre>	Temperature observations are critical for predicting pleasant or unpleasant weather.
Basel	temp_max, precipitation, sunshine	A mix of temperature, precipitation, and sunshine determines pleasant or unpleasant weather.
General Observations	temp_max consistently ranks in the top three indicators across weather stations	Rising mean temperatures reflect global climate change, highlighting its importance in forecasting.

Key Findings: Feature Importance

Temperature

Maximum temperature consistently ranked as the most crucial indicator

Precipitation

Second most important feature for weather prediction

Sunshine

Third most significant factor in weather forecasting

Hyperparameter Optimization Results

All Weather Stations

Accuracy improved from 58.7% to 65.60% after optimization

All Weather Stations After Optimization

Stockholm Station

Accuracy increased from 98.78% to 100% after optimization

Deep Learning CNN Optimization

11.92%

92.2%

Before

After

Initial accuracy with Exponential loss growth

Optimized accuracy with loss reduced to 0.2319

Pred	BASEL	BELGRADE	BUDAPEST	DEBILT	DUSSELDORF	HEATHRON	KASSEL
True							
BASEL	3538	69	10	3	11	6	1
BELGRADE	81	988	15	1	0	4	. 0
BUDAPEST	23	8	169	13	0	1	. 0
DEBILT	14	1	9	56	2	6	0
DUSSELDORF	4	0	1	3	14	6	0
HEATHROW	5	1	0	2	7	67	0
KASSEL	9	0	1	1	1	6	4
LJUBLJANA	10	4	1	0	. 0	3	1
MAASTRICHT	5	0	0	0	0	2	. 0
MADRID	16	9	14	1	6	17	0
MUNCHENB	7	1	0	0	0	6	0
OSLO	9	0	0	0	1	6	0
STOCKHOLM	1	0	0	0	0	6	0
VALENTIA	1	0	0	0	0	6	0
Pred	LJUB	LJANA MA	ASTRICHT	MADRID	MUNCHENB	OSLO S	TOCKHOLM
True							
BASEL		4	2	38	0	0	0
BELGRADE		0	0	3	0	0	0
BUDAPEST		0	0	0	0	0	0
DEBILT		0	0	0	0	0	0
DUSSELDORF		1	0	0	0	0	0
HEATHROW		0	0	0	0	0	0
KASSEL		2	0	1	1	0	0
LJUBLJANA		41	0	1	0	0	0
MAASTRICHT		0	2	0	0	0	0

Visual Applications in Weather Prediction

Handwritten Recognition

Model achieved 40% accuracy on handwritten data, showing room for improvement

Radar Recognition

75% training accuracy and 74% validation accuracy, with low loss values indicating good generalization

GAN Applications in Weather Prediction

Satellite Imagery

Monitor storms and precipitation patterns

Climate Simulation

Generate future climate scenarios

Radar Processing

Automatic segmentation of meteorological phenomena

Evaluating Model Performance for Weather Event Classification

- A confusion matrix evaluates how well CNNs and Random Forests classify weather events by comparing predictions with actual outcomes.
- The confusion matrix highlights frequent misclassifications of "cloudy" as "shine" (22 times)
- Difficulties with "cloudy" vs. "rain." However, "shine" and "sunrise" are classified with high accuracy

Recommendations for ClimateWins

1 Segmented Analysis

Divide dataset by locations,
time intervals, or weather
features for focused

4

- time intervals, or weather forest for interpretability, features for focused then introduce CNN for predictions complex patterns
- Prioritize temperature
 (especially maximum) and
 precipitation in weather
 modeling

Key Variables

3

Optimization

Regularly refine models with new data and emerging machine learning techniques

Model Selection

Continuous

Start with optimized random

Next Steps for Implementation

Data Integration Combine historical and real-time data sources Model Development 2 Implement and fine-tune recommended ML models Validation 3 Rigorously test predictions against new data Deployment 4 Integrate predictive systems into ClimateWins operations

Thank You

Rose Alappt Joy

Mail Id: roseaj1510@gmail.com

www.linkedin.com/in/rose-alappat-joy-a9274896