第三节 非周期信号的傅立叶变换

- 1 熟练掌握非周期信号傅立叶变换定义
- 2 深刻理解从周期信号傅立叶级数到非周期信号傅立叶变换的演变
- 3 理解非周期信号的频谱密度

周期信号指数形式的傅立叶级数:

$$x(t) = \sum_{k=-\infty}^{\infty} A_k e^{jk\Omega_0 t}$$

$$\overset{\bullet}{A}_{k} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) e^{-jk\Omega_{0}t} dt$$

当 $T_0 \rightarrow \infty$, 复数振幅的模 $A_k \rightarrow$ 无穷小

为了表示各量相对幅度的函数,定义一个新的量

$$X(\Omega) = \lim_{T_0 \to \infty} T_0 \cdot \dot{A}_k = \lim_{T \to \infty} T_0 \cdot \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\Omega_0 t} dt$$

$$\stackrel{\text{def}}{=} T_0 \rightarrow \infty, \ \Omega_0 \rightarrow d \ \Omega, k\Omega_0 \rightarrow \Omega$$

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

频谱密度函数 (频谱)

$$X(\Omega) = \lim_{T \to \infty} T_0 \cdot A_k = \lim_{\Omega_0 \to 0} 2\pi \frac{A_k}{\Omega_0}$$
 具有单位频带的振幅量纲

$$x(t) = \sum_{k=-\infty}^{\infty} A_k e^{jk\Omega_0 t}$$

$$x(t) = \sum_{k=0}^{\infty} A_{k}^{\bullet} e^{jk\Omega_{0}t} \qquad A_{k} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t)e^{-jk\Omega_{0}t} dt$$

$$x(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T_0} \left[\int_{-T_0/2}^{T_0/2} x(t) e^{-jk\Omega_0 t} dt \right] e^{jk\Omega_0 t}$$

$$T_0 = \frac{2\pi}{\Omega_0} \to \frac{2\pi}{d\Omega}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} (t)e^{-j\Omega t} dt \right] e^{j\Omega t} d\Omega$$

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$
 非周期信号的傅立叶积分

$$\frac{X(\Omega)\mathrm{d}\Omega}{2\pi} \to A_k$$

一、非周期信号的傅立叶变换

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
 傅立叶正变换

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$
 傅立叶反变换

傅立叶变换存在的充分条件:

- 1.平方可积条件: $\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$
- 2.狄利赫利条件:

$$(1) \int_{-\infty}^{\infty} |x(t)| dt < \infty$$

- (2) 在任何有限区间内只有有限个极值点,且极值有限
- (3) 在任何有限区间内只有有限个间断点,且不连续值有限

傅立叶级数收敛条件:
$$\int_0^T |x(t)|^2 dt < \infty$$

二、非周期信号的频谱密度

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt = |X(\Omega)|e^{j\varphi(\Omega)}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega)e^{j\Omega t}d\Omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)|e^{j(\Omega t + \varphi)}d\Omega$$

$$= \frac{1}{\pi} \int_{0}^{\infty} |X(\Omega)|\cos(\Omega t + \varphi)d\Omega$$

与周期信号的频谱相比:

相同: 非周期信号也可分解为不同频率的正弦分量

$$|X(\Omega)|$$
:幅度频谱 $\varphi(\Omega)$:相位频谱

不同:正弦分量包含(0-∞)一切频率

$$\frac{|X(\Omega)|d\Omega}{\pi} \to 0$$
 频谱密度→频谱图

傅立叶级数:

$$x(t) = \frac{A\tau}{T} \sum_{k=-\infty}^{\infty} Sa(\frac{k\Omega_0 \tau}{2}) e^{jk\Omega_0 t}$$

$$\begin{array}{c|c}
A & y \\
\hline
 & \tau \\
\hline
 & \chi \\
\hline
 & 2
\end{array}$$

$$\overset{\bullet}{A_k} = \frac{A\tau}{T} \cdot Sa(\frac{k\Omega_0\tau}{2})$$

解1:
$$X(\Omega) = \lim_{T \to \infty} T \cdot A_k = A \tau Sa(\tau \Omega/2)$$

解2:
$$X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t}dt = \frac{A}{-j\Omega}e^{-j\Omega t}\Big|_{-\tau/2}^{\tau/2} = A \tau Sa(\tau\Omega/2)$$

傅立叶级数:
$$x(t) = \frac{A\tau}{T} \sum_{k=-\infty}^{\infty} Sa(\frac{k\Omega_0\tau}{2})e^{jk\Omega_0t}$$

频谱密度: $X(\Omega) = A \tau Sa(\tau \Omega/2)$

三、非周期信号频谱密度的特点

1: 时域非周期一>频域连续

时域周期一>频域离散

2: 包络一致性

$$X(\Omega) = T \cdot \dot{A}_k \Big|_{k\Omega_0 = \Omega}$$

$$A_{k}^{\bullet} = \frac{1}{T} X(\Omega) \Big|_{\Omega = k\Omega_{0}}$$

3: 收敛性 定义非周期信号有效频宽

以信号振幅频谱中的第一个过零点为限,零点以外部分忽略不计; 以频谱最大幅度的 $\frac{1}{\sqrt{2}}$ 或 $\frac{1}{10}$ 为限,其它部分忽略不计; 以包含信号总能量的90%处为限,其余部分忽略不计;

几个常用信号傅立叶变换

1. 单边指数信号

$$x(t) = e^{-\alpha t}u(t)$$
 $\alpha > 0$

$$X(\Omega) = \int_0^\infty e^{-\alpha t} e^{-j\Omega t} dt = \frac{1}{\alpha + j\Omega}$$

$$|X(\Omega)| = \frac{1}{\sqrt{\alpha^2 + \Omega^2}}$$

$$\varphi(\Omega) = -arctg(\frac{\Omega}{\alpha})$$

2. 单位冲激信号

$$X(\Omega) = \int_{-\infty}^{\infty} \delta(t) e^{-j\Omega t} dt = 1$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} 1 \cdot e^{j\Omega t} d\Omega \xrightarrow{?} \delta(t) \qquad \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{\beta \to 0} e^{-\beta|\Omega|} \cdot e^{j\Omega t} d\Omega$$

$$\lim_{\beta \to 0} e^{-\beta|\Omega|}, \beta > 0$$

$$= \lim_{\beta \to 0} \frac{1}{2\pi} \left(\int_{0}^{\infty} e^{-\beta\Omega} \cdot e^{j\Omega t} d\Omega + \int_{-\infty}^{0} e^{\beta\Omega} \cdot e^{j\Omega t} d\Omega \right)$$

$$= \lim_{\beta \to 0} \frac{1}{2\pi} \left(\frac{1}{\beta - jt} + \frac{1}{\beta + jt} \right)$$

$$= \lim_{\beta \to 0} \frac{1}{2\pi} \left(\frac{2\beta}{\beta^2 + t^2} \right) \Longrightarrow \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases}$$

$$\lim_{\beta \to 0} \int_{-\infty}^{\infty} \frac{1}{2\pi} \left(\frac{2\beta}{\beta^2 + t^2} \right) dt = \lim_{\beta \to 0} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1 + (t/\beta)^2} d(t/\beta) = \mathbf{1}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\Omega t} d\Omega \to \delta(t)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\Omega t} d\Omega = \delta(t)$$

3. 单位阶跃信号

注意: u(t)不满足绝对可积条件

$$x(t) = e^{-at}u(t), \quad a > 0 \quad \Longrightarrow \quad \lim_{a \to 0} e^{-at}u(t) = u(t)$$

$$X(\Omega) = \frac{1}{a + j\Omega}$$

$$\frac{1}{a+j\Omega} = \frac{a}{a^2 + \Omega^2} - \frac{j\Omega}{a^2 + \Omega^2}$$

$$\lim_{a\to 0} \frac{1}{a+j\Omega} = \pi\delta(\Omega) + \frac{1}{j\Omega}$$

$$u(t) \leftrightarrow \pi \delta(\Omega) + \frac{1}{j\Omega}$$

$$\frac{a}{a^2 + \Omega^2} \quad a \to 0 \begin{cases} 0 & \Omega \neq 0 \\ \infty & \Omega = 0 \end{cases} \longrightarrow \pi \mathcal{S}(\Omega)$$

$$\lim_{a\to 0} \int_{-\infty}^{+\infty} \frac{a}{a^2 + \Omega^2} d\Omega = \lim_{a\to 0} \int_{-\infty}^{+\infty} \frac{1}{1 + (\Omega/a)^2} d(\frac{\Omega}{a}) = \lim_{a\to 0} \left. arctg(\frac{\Omega}{a}) \right|_{-\infty}^{+\infty} = \pi$$

$$x(t) = e^{j\Omega_0 t}$$

4. 复指数信号 $x(t) = e^{j\Omega_0 t}$ 周期信号 \rightarrow 傅立叶变换?

$$X(\Omega) = \int_{-\infty}^{\infty} e^{j\Omega_0 t} e^{-j\Omega t} dt = \int_{-\infty}^{\infty} e^{-j(\Omega - \Omega_0)t} dt \qquad \delta(t) \leftrightarrow 1$$

$$\delta(t) \leftrightarrow 1$$

$$\int_{-\infty}^{\infty} e^{-j\Omega t} d\Omega = 2\pi \delta(-t) = 2\pi \delta(t) \qquad \qquad \qquad \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\Omega t} d\Omega = \delta(t)$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\Omega t} d\Omega = \delta(t)$$

$$\Omega \leftrightarrow t$$
, $\int_{-\infty}^{\infty} e^{-j\Omega t} dt = 2\pi \delta(\Omega)$

 $\delta(t)$ 为偶函数

$$\Omega \to \Omega - \Omega_0$$

$$X(\Omega) = \int_{-\infty}^{\infty} e^{-j(\Omega - \Omega_0)t} dt = 2\pi \delta(\Omega - \Omega_0)$$

$$e^{j\Omega_0 t} \leftrightarrow 2\pi\delta(\Omega - \Omega_0)$$

$$1 \leftrightarrow 2\pi\delta(\Omega)$$

$$\cos(\Omega_0 t) \leftrightarrow \pi [\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)]$$

$$e^{j\Omega_0 t} \leftrightarrow 2\pi\delta(\Omega - \Omega_0)$$

$$\cos(\Omega_0 t) \leftrightarrow \pi[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)]$$

$$\sin(\Omega_0 t) \leftrightarrow \frac{\pi}{j}[\delta(\Omega - \Omega_0) - \delta(\Omega + \Omega_0)]$$

5 周期信号的傅里叶变换

$$x(t) = \sum_{k=-\infty}^{\infty} \mathring{A}_k \cdot e^{jk\Omega_0 t} , \quad \Omega_0 = \frac{2\pi}{T_0}$$

$$\dot{A}_{k} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) e^{-jk\Omega_{0}t} dt$$

$$e^{j\Omega_0 t} \leftrightarrow 2\pi\delta(\Omega - \Omega_0)$$

$$x(t) \longleftrightarrow 2\pi \sum_{k=-\infty}^{\infty} \mathring{A_k} \delta(\Omega - k\Omega_0)$$

- □由一些冲激组成离散频谱
- \Box 各个冲激位于信号的谐波处(k Ω_0)
- □ 每个谐波分量的大小是有限的,但占据的频带为无穷小

例: 求周期冲激序列的傅立叶变换

$$\delta_{T_0}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_0)$$

$$x(t) \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} A_k \delta(\Omega - k\Omega_0)$$

解: $A_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} \delta(t) e^{-jk\Omega_0 t} dt = \frac{1}{T_0}$

$$X(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \dot{A}_k \delta(\Omega - k\Omega_0) = \frac{2\pi}{T_0} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_0) = \Omega_0 \delta_{\Omega_0}(\Omega)$$

**第四节 傅立叶变换的基本性质

1线性特性:

$$a \cdot x_1(t) + b \cdot x_2(t) \longleftrightarrow a \cdot X_1(\Omega) + b \cdot X_2(\Omega)$$

2延时特性:

$$x(t) \leftrightarrow X(\Omega)$$
 \longrightarrow $x(t-t_0) \leftrightarrow X(\Omega)e^{-j\Omega t_0}$

$$X(\Omega) = A \tau Sa(\Omega \tau / 2)$$

$$X_1(\Omega) = A \tau Sa(\Omega \tau / 2)e^{-j\Omega \tau / 2}$$

$$|X_1(\Omega)| = |X(\Omega)|$$

$$\varphi_1(\Omega) = \varphi(\Omega) - \Omega \tau / 2$$

信号延时,幅度频谱不变,相位频谱产生一个滞后线性相移.

3 移频特性

$$x(t) \leftrightarrow X(\Omega)$$

则:
$$x(t)e^{j\Omega_0t} \leftrightarrow X(\Omega-\Omega_0)$$

例3:某信号x(t)的频谱如下图所示,求 $x(t)\cos\Omega_0 t$ 的频谱

$$x(t)\cos\Omega_0 t \rightarrow \frac{1}{2}[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$$

信号调制

4尺度变换特性

 \square 若: $x(t) \leftrightarrow X(\Omega)$

□则:
$$x(at) \leftrightarrow \frac{1}{|a|} X(\frac{\Omega}{a})$$

$$a > 0$$
 $x(at) \leftrightarrow \frac{1}{a}X(\frac{\Omega}{a})$

$$a < 0$$
 $x(at) \leftrightarrow -\frac{1}{a}X(\frac{\Omega}{a})$

$$a = -1$$
 $x(-t) \leftrightarrow X(-\Omega)$

脉冲宽度和频带宽度成反比关系

例4: 求下列信号的傅立叶变换

1)
$$u(-t) \longleftrightarrow \pi \delta(\Omega) - \frac{1}{j\Omega}$$

2)
$$\operatorname{sgn}(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases} = u(t) - u(-t) \leftrightarrow \frac{2}{j\Omega}$$

3)
$$e^{-a|t|} = e^{-at}u(t) + e^{at}u(-t)$$

$$e^{-at}u(t) \leftrightarrow \frac{1}{a+j\Omega}$$

$$e^{at}u(-t) \leftrightarrow \frac{1}{a-j\Omega}$$

$$e^{-a|t|} \leftrightarrow \frac{2a}{a^2+\Omega^2}$$

分析:
$$x(t) \rightarrow x(t-t_0)$$
 尺度变换 $x(at-t_0)$

$$X(\Omega)$$

$$X(\Omega)e^{-j\Omega t_0}$$

$$X(\Omega)$$
 $X(\Omega)e^{-j\Omega t_0}$ $\frac{1}{|a|}X(\frac{\Omega}{a})e^{-j\frac{\Omega}{a}t_0}$

尺度变换 延时 另解: $x(t) \rightarrow x(at) \rightarrow x(a(t-t_0/a))$

$$\frac{1}{|a|}X(\frac{\Omega}{a})$$

$$\frac{1}{|a|}X(\frac{\Omega}{a}) \qquad \frac{1}{|a|}X(\frac{\Omega}{a})e^{-j\frac{\Omega}{a}t_0}$$

5 共轭对称特性
$$x(t)$$
为实信号, $X^*(\Omega) = X(-\Omega)$

$$X^{*}(\Omega) = \int_{-\infty}^{\infty} x^{*}(t)e^{j\Omega t}dt = \int_{-\infty}^{\infty} x(t)e^{j\Omega t}dt = X(-\Omega)$$

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$= \int_{-\infty}^{\infty} x(t)\cos(\Omega t)dt - j\int_{-\infty}^{\infty} x(t)\sin(\Omega t)dt$$

$$= X_{Re}(\Omega) + jX_{Im}(\Omega)$$

$$x(t) = x_e(t) + x_o(t) \implies \begin{cases} x_e(t) & \to X_{\text{Re}}(\Omega) \\ x_o(t) & \to jX_{\text{Im}}(\Omega) \end{cases}$$

6 对偶特性 (互易特性)

若已知:
$$x(t) \leftrightarrow X(\Omega)$$

则:
$$X(t) \leftrightarrow 2\pi x(-\Omega)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$

$$t \to \Omega$$

$$2\pi x(\Omega) = \int_{-\infty}^{\infty} X(t) e^{j\Omega t} dt$$

$$2\pi x(-\Omega) = \int_{-\infty}^{\infty} X(t)e^{-j\Omega t}dt$$

两种特殊情况:

$$(1)$$
 若 $\mathbf{x}(t)$ 为实偶函数 \longrightarrow $\mathbf{X}(\Omega)$ 为实偶函数= $\mathbf{X}_{Re}(\Omega)$

$$X_{Re}(t) \longrightarrow 2\pi x(\Omega)$$

对偶性

$$\delta(t) \leftrightarrow 1$$
 $1 \leftrightarrow 2\pi\delta(\Omega)$

注意: 这种对称关系只适用与实偶函数

(2) 若
$$\mathbf{x}(\mathbf{t})$$
为实奇函数 $\longrightarrow \mathbf{X}(\Omega)$ 为虚奇函数= $\mathbf{j}\mathbf{X}_{\mathrm{Im}}(\Omega)$ $j\mathbf{X}_{\mathrm{Im}}(t)$ \longrightarrow $-2\pi x(\Omega)$

例6: 求x(t)

$$2\pi x(\Omega) = \Omega_c Sa(\frac{\Omega_c \Omega}{2})$$

$$\Rightarrow x(t) = \frac{\Omega_c}{2\pi} Sa(\frac{\Omega_c t}{2})$$

$$X(\Omega)e^{-j\Omega t_0}$$

$$x(t) = \frac{\Omega_c}{2\pi} Sa(\frac{\Omega_c(t - t_0)}{2})$$

$$x(t) = \frac{\Omega_c}{2\pi} Sa(\frac{\Omega_c t}{2})$$

例8: 己知 $x(t) = \frac{2}{t^2+1}$, 求 $X(\Omega)$ 。

曲于:
$$e^{-a|t|} \leftrightarrow \frac{2a}{a^2 + \Omega^2}$$
 $a > 0$

$$\stackrel{\text{def}}{=} a = 1, \quad e^{-|t|} \leftrightarrow \frac{2}{1 + \Omega^2}$$

根据对偶特性: $x(t) \leftrightarrow X(\Omega)$ $X(t) \leftrightarrow 2\pi x(-\Omega)$

可得: $X(\Omega) = 2\pi e^{-|\Omega|}$

例8: 己知 $x(t) = \frac{2}{t^2+1}$, 求 $X(\Omega)$ 。

曲于:
$$e^{-a|t|} \leftrightarrow \frac{2a}{a^2 + \Omega^2}$$
 $a > 0$

$$\stackrel{\text{def}}{=} a = 1, \quad e^{-|t|} \leftrightarrow \frac{2}{1 + \Omega^2}$$

根据对偶特性: $x(t) \leftrightarrow X(\Omega)$ $X(t) \leftrightarrow 2\pi x(-\Omega)$

可得: $X(\Omega) = 2\pi e^{-|\Omega|}$

例9: 已知
$$x(t) = \frac{\sin 2\pi (t-1)}{\pi (t-1)}$$
 求 $X(\Omega)$

解: 设
$$x_1(t) = \frac{\sin 2\pi t}{\pi t} = 2Sa(2\pi t)$$

则
$$x(t) = x_1(t-1)$$
 $X(\Omega) = X_1(\Omega)e^{-j\Omega}$

曲于
$$g_{\tau}(t) \leftrightarrow \tau Sa(\frac{\Omega \tau}{2})$$

所以
$$g_{4\pi}(t) \leftrightarrow 4\pi Sa(2\pi\Omega)$$

根据对偶特性:
$$x(t) \leftrightarrow X(\Omega)$$
 $X(t) \leftrightarrow 2\pi x(-\Omega)$

$$X(t) \leftrightarrow 2\pi \ x(-\Omega)$$

可得
$$4\pi Sa(2\pi t) \leftrightarrow 2\pi g_{4\pi}(\Omega)$$

$$2Sa(2\pi t) \leftrightarrow g_{4\pi}(\Omega)$$

$$X(\Omega) = X_1(\Omega)e^{-j\Omega} = g_{4\pi}(\Omega)e^{-j\Omega}$$

例10: 利用对偶特性证明频移特性: $x(t)e^{j\Omega_0t} \leftrightarrow X(\Omega - \Omega_0)$

证明: 设: $x(t) \leftrightarrow X(\Omega)$

利用对偶特性可得: $X(t) \leftrightarrow 2\pi x(-\Omega)$

利用时移特性可得: $X(t-\Omega_0) \leftrightarrow 2\pi x(-\Omega)e^{-j\Omega\Omega_0}$

再次利用对偶特性可得:

$$2\pi x(-t)e^{-j\Omega_0 t} \longleftrightarrow 2\pi X(-\Omega - \Omega_0)$$

利用尺度变换特性: $x(-t) \leftrightarrow X(-\Omega)$

所以: $x(t)e^{j\Omega_0t} \leftrightarrow X(\Omega-\Omega_0)$

7 时域微分特性

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$

若
$$x(t) \leftrightarrow X(\Omega)$$

则
$$\frac{dx(t)}{dt} \leftrightarrow j\Omega X(\Omega)$$

$$\frac{d^n x(t)}{dt^n} \longleftrightarrow (j\Omega)^n X(\Omega)$$

8 时域积分特性

$$x(t) \leftrightarrow X(\Omega)$$

则

$$\int_{-\infty}^{t} x(\tau)d\tau \leftrightarrow \frac{X(\Omega)}{j\Omega} + \pi X(0)\delta(\Omega)$$

若

$$X(0) = 0$$
 或

$$X(0) = 0$$
 或 不包含 $\Omega = 0$ 时

则

$$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{X(\Omega)}{j\Omega}$$

$$\int_{-\infty}^{t} x(\tau)d\tau \leftrightarrow \frac{X(\Omega)}{j\Omega} \qquad \underbrace{\int_{-\infty}^{t} \cdots \int_{-\infty}^{t} x(\tau)d\tau}_{n} \to \frac{X(\Omega)}{(j\Omega)^{n}}$$

例1: 利用时域微分和积分性质求三角脉冲的傅立叶变换

例2:

$$g(t) = \frac{dx(t)}{dt}, \text{MIX}(\Omega) = \frac{G(\Omega)}{j\Omega} + \pi[x(\infty) + x(-\infty)]\delta(\Omega)$$

$$g(t) = \frac{dx(t)}{dt}, \text{ 以以}(\Omega) = \frac{G(\Omega)}{j\Omega} + \pi[x(\infty) + x(-\infty)]\delta(\Omega)$$

证明:
$$\int_{-\infty}^{t} g(\tau)d\tau = x(t) - x(-\infty)$$

$$\frac{G(\Omega)}{j\Omega} + \pi G(0)\delta(\Omega) = X(\Omega) - 2\pi x(-\infty)\delta(\Omega)$$

$$G(\mathbf{0}) = \int_{-\infty}^{\infty} g(t)e^{-j\Omega t}dt|_{\Omega=\mathbf{0}} = x(\infty) - x(-\infty)$$

$$\frac{G(\Omega)}{i\Omega} + \pi[x(\infty) - x(-\infty)]\delta(\Omega) = X(\Omega) - 2\pi x(-\infty)\delta(\Omega)$$

$$X(\Omega) = \frac{G(\Omega)}{j\Omega} + \pi[x(\infty) + x(-\infty)]\delta(\Omega)$$

9 频域微分与积分特性

$$x(t) \leftrightarrow X(\Omega)$$

频域微分特性:

$$-jtx(t) \longleftrightarrow \frac{dX(\Omega)}{d\Omega}$$

$$(-jt)^n x(t) \leftrightarrow \frac{d^n X(\Omega)}{d\Omega^n}$$

$$tx(t) \leftrightarrow j \frac{dX(\Omega)}{d\Omega}$$

证明:
$$tu(t) \leftrightarrow j\pi\delta'(\Omega) - \frac{1}{\Omega^2}$$

$$u(t) \leftrightarrow \pi \delta(\Omega) + \frac{1}{j\Omega} \implies tu(t) \leftrightarrow j\pi \delta'(\Omega) - \frac{1}{\Omega^2}$$

频域积分特性:

$$-\frac{x(t)}{jt} + \pi x(0)\delta(t) \longleftrightarrow \int_{-\infty}^{\Omega} X(\Omega)d\Omega$$

例1: $x(t) \leftrightarrow X(\Omega)$, 求(1-t)x(1-t)傅立叶变换

分析: $tx(t) \rightarrow (1-t)x(1-t)$

解:
$$tx(t) \xrightarrow{\text{P8}} -tx(-t) \xrightarrow{\text{平8}} -(t-1)x(-(t-1))$$

$$(1-t)x(1-t) \to e^{-j(\Omega + \frac{\pi}{2})} \frac{d}{d\Omega} X(-\Omega)$$

10 卷积特性

$$\square$$
 若 $x_1(t) \leftrightarrow X_1(\Omega)$

$$x_2(t) \leftrightarrow X_2(\Omega)$$

1时域卷积

$$x_1(t) * x_2(t) \longleftrightarrow X_1(\Omega) \cdot X_2(\Omega)$$

2 频域卷积

$$x_1(t) \cdot x_2(t) \leftrightarrow \frac{1}{2\pi} X_1(\Omega) * X_2(\Omega)$$

例1: 证明积分性质
$$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \pi X(0) \delta(\Omega) + \frac{X(\Omega)}{j\Omega}$$

$$\int_{-\infty}^{t} x(\tau)d\tau = \int_{-\infty}^{\infty} x(\tau)u(t-\tau)d\tau = x(t) * u(t)$$

$$X(\Omega) \cdot (\pi \delta(\Omega) + \frac{1}{j\Omega}) = X(0) \cdot \pi \delta(\Omega) + \frac{X(\Omega)}{j\Omega}$$

例2: 证明
$$x(t)e^{j\Omega_0 t} \leftrightarrow X(\Omega - \Omega_0)$$

$$e^{j\Omega_0 t} \leftrightarrow 2\pi\delta(\Omega - \Omega_0)$$

$$x(t)e^{j\Omega_0 t} \leftrightarrow \frac{1}{2\pi}X(\Omega) * 2\pi\delta(\Omega - \Omega_0) = X(\Omega - \Omega_0)$$

例3: 己知
$$X(\Omega) = \frac{1}{(a+j\Omega)^2}$$
,求 $x(t)$

方法一:
$$e^{-at}u(t) \leftrightarrow \frac{1}{a+j\Omega}$$
 $(a>0)$

$$x(t) = e^{-at}u(t) * e^{-at}u(t) = te^{-at}u(t)$$

方法二:
$$te^{-at}u(t) \leftrightarrow j\frac{d}{d\Omega}(\frac{1}{a+j\Omega})$$

11 帕斯瓦尔定理

若: $x(t) \leftrightarrow X(\Omega)$

则:
$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)|^2 d\Omega$$

 $|X(\Omega)|^2$ 称为能量谱密度

若 x(t) 为周期信号

$$\frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |\dot{A}_k|^2$$

 $\left|\dot{A}_{k}\right|^{2}$ 称为功率谱

作业: 3.8 (c)(d)

3.11 (c) (e)

3.13

3.16