Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 - Recuperação 01

Tema: Sistemas de Numeração e circuitos combinatórios

Exercícios:

01.) Dado o mapa de Veitch-Karnaugh:

n	m	M	f(a,b,c,d)				
0	a'b'c'd'	A+B+C+D					
1	a'b'c'd	A+B+C+D'					
2	a'b'c d'	A+B+C'+D					
3	a'b'c d	A+B+C'+D'					
4	a'b c'd'	A+B'+C+D					
5	a'b c'd	A+B'+C+D'					
6	a'b c d'	A+B'+C'+D					
7	a'b c d	A+B'+C'+D'					
8	a b'c'd'	A'+B+C+D					
9	a b'c'd	A'+B+C+D'					
Α	a b'c d'	A'+B+C'+D					
В	a b'c d	A'+B+C'+D'					
С	a b c'd'	A'+B'+C+D					
D	a b c'd	A'+B'+C+D'					
Е	a b c d'	A'+B'+C'+D					
F	abcd	A'+B'+C'+D'					

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
mintermos																
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
MAXTERMOS																

Determinar e implementar os circuitos equivalentes em Verilog e no Logisim:

- a.) expressão canônica para SoP(a,b,c,d)
- b.) expressão canônica para PoS(A,B,C,D)
- c.) simplificação de mintermos por mapa de Veitch-Karnaugh
- d.) simplificação de MAXTERMOS por mapa de Veitch-Karnaugh
- e.) expressão SoP equivalente com portas NAND (usar dupla negação)
- f.) expressão PoS equivalente com portas NOR (usar dupla negação)

02.) Implementar e testar a função lógica descrita em Verilog e no Logisim para obter a tabela-verdade:

```
module f ( output s, input a, input b, input c ); wire w1, w2, w3, w4; not NOT_1 (w1, b); not NOT_1 (w2, c); and AND_1 (w3, a, w2); and AND_2 (w4, a, w1, c); or OR_1 (s, w3, w4); endmodule // s = f (a,b,c)
```

03. Implementar no Logisim as expressões abaixo para obter as tabelas verdade:

```
a.) nand ( nand(nor(a,a), b), nand(nor(a,a), b) )b.) mux ( mux(b,b',c), mux(b',b,c'), a )
```

- 04.) Dado o valor negativo, em complemento de 2, 357(8), com um byte de representação
 - a.) encontrar o positivo na base 2
 - b.) representar em um byte 4 vezes o valor do binário equivalente DICA: Desprezar os bits que ultrapassarem a representação. Completar com zeros.
 - c.) representar em um byte o valor do binário equivalente dividido por 8 DICA: Desprezar os bits que ultrapassarem a representação. Completar com zeros.
- 05.) Calcular a diferença, em binário, entre o hexadecimal C4 e o quaternário 1232 em um byte.