Differential proportionality – an alternative to differential gene expression not requiring sample normalization

I. Erb¹, T. Quinn², D. Lovell³, and C. Notredame¹

¹Centre for Genomic Regulation (CRG), C\Dr Aiguader 88, 08003 Barcelona, Spain; *ionas.erb@crg.eu*²Deakin University, Geelong, Victoria, Australia

³Queensland University of Technology, Brisbane, Queensland, Australia

Abstract

In gene expression, the emergence of large aggregated data sets along with new single-cell technologies have led to a heterogeneity of samples that makes normalization extremely difficult. The few existing log-ratio applications to gene expression analysis (Fernandes and others, 2013; Lovell and others, 2015) do not fully overcome the problem of sample heterogeneity as their results depend crucially on the choice of a reference in the form of a gene or gene set (Erb and Notredame, 2016).

Here we propose a differential analysis of all possible gene ratios. More precisely, considering n samples coming from two different conditions, we propose a statistic to detect proportionality (i.e. log-ratio variance close to zero) between genes \vec{x} and \vec{y} in one condition that differs in the proportionality factor in the other condition:

$$\vartheta(\vec{x}, \vec{y}) = \frac{k \cdot \text{var } \mathbf{L}_{\{1,\dots,k\}}^{\vec{x}, \vec{y}} + (n - k) \cdot \text{var } \mathbf{L}_{\{k+1,\dots,n\}}^{\vec{x}, \vec{y}}}{n \cdot \text{var } \mathbf{L}_{\{1,\dots,n\}}^{\vec{x}, \vec{y}}},$$
(1)

where by $\mathcal{L}_{\{1,\dots,k\}}^{\vec{x},\vec{y}}$ we denote the log ratio of \vec{x} and \vec{y} over the indices $\{1,\dots,k\}$. ϑ can be obtained from a decomposition of log-ratio variance into between and within group variance. (The denominator corresponds to the latter, and ϑ values fall between 0 and 1, with smaller values indicating better separation.) Note that ϑ is related to the statistic F underlying one-way ANOVA by $F = (1 - \vartheta)/\vartheta$. In fact, a standard differential expression framework can now be applied (applied, however, on ratios) using false discovery rates from permutation tests to detect significant values of ϑ .

As an example, we apply this framework to a data set of 98 post-mortem brain samples (Lonsdale, J. and others, 2013) from cortex and cerebellum. Unlike in classical differential expression studies, where the main result is a list of genes whose read counts differ between conditions, here we obtain a list of gene pairs whose ratio of co-expression differs between conditions. This allows for a subsequent network analysis, cf. (Tesson and others, 2010) for the classical equivalent called differential correlation.

We also derive an alternative to ϑ that can handle zeroes and compares with the use of pseudo counts. For this statistic, the three terms of the form $k \cdot \text{var } L_{\{1,\ldots,k\}}^{\vec{x},\vec{y}}$ in (1) are replaced respectively by

$$\sum_{i=1}^{k} \left(\frac{x_i^{\alpha}}{\frac{1}{k} \sum_{j=1}^{k} x_j^{\alpha}} - \frac{y_i^{\alpha}}{\frac{1}{k} \sum_{j=1}^{k} y_j^{\alpha}} \right)^2.$$
 (2)

This is inspired by the observation that chi-square distances converge to log-ratio variances when applying a Box-Cox transformation with the parameter $\alpha \to 0$ (Greenacre, 2009). We supplement this work with an R package that provides a fast and efficient implementation of these analyses.

References

Fernandes, A. et al. (2013). ANOVA-Like Differential Gene Expression Analysis of Single-Organism and Meta-RNA-Seq. *PLoS one* 8(7), e67019.

Lovell, D. et al. (2015). Proportionality: a valid alternative to correlation for relative data. *PLoS Comp Biol* 11, e1004075.

- Erb, I. and Notredame, C (2016). How should we measure proportionality on relative gene expression data? *Theory Biosci* 135(1-2), pp. 21–36.
- Lonsdale, J. et al. (2013). The genotype-tissue expression (GTEx) project. Nat Genet 45, 580585.
- Tesson, B.M. et al. (2010). DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. *BMC Bioinformatics* 11, pp. 497.
- Greenacre, M. (2009). Power transformations in correspondence analysis. *Comput Statist Data Anal 53*, pp. 3107–3116.