Introdução à Teoria Formal de Objetos

Pedro Bruel, António Miranda 09 de Junho

Programação Orientada a Objetos 2015

ÍNDICE

- 1. Contextualização
 - 1.1 Cálculo- λ
 - 1.2 Tipos e Categorias
 - 1.3 Exemplo
- 2. Cálculo-ς
 - 2.1 Primitiva objeto
 - 2.2 Semântica das primitivas
 - 2.3 Sintaxe
 - 2.4 Exemplo da calculadora
 - 2.5 Classe
 - 2.6 Herança

Contextualização

$CÁLCULO-\lambda$

- · É um sistema formal para expressão de cálculos;
- · Representa a Aplicação e Abstração de funções;
- · Pode ser Tipado ou Não-Tipado;

CÁLCULO- λ

- · É um sistema formal para expressão de cálculos;
- Representa a Aplicação e Abstração de funções;
- · Pode ser Tipado ou Não-Tipado;
- · Aplicação ao "Problema de Decisão" (Entscheidungsproblem);
- · Implementação de Linguagens Funcionais.

$\overline{\mathsf{CALCULO}}$

Function calculi and their features

Calculus:	λ	F ₁	F _{1<:}	$F_{1\mu}$	F _{1<:μ}	impλ	F	F<:	\mathbf{F}_{μ}	F<:μ
- ·	()	7.3	0.1	0.1	9.2	10.3	13.1-	13.1-	13.1-	13.1-
Defined in:	6.3	7.3	8.1	9.1	9.2		13.2	13.2	13.2	13.2
functions	•	•	•	•	•	•	•	•	•	•
function types		•	•	•	•		•	•	•	•
subtyping			•		•			•		•
recursive types				•	•				•	•
side-effects						•				
quantified types							•	•	•	•

Expressões são compostas de:

- \cdot V_1, V_2, \ldots, V_n
- · Abstração: λ e .
- · Aplicação: ()

Expressões são compostas de:

- V_1, V_2, \dots, V_n
- · Abstração: λ e .
- · Aplicação: ()

Conjunto ∧ de Expressões:

- $\cdot x \in \Lambda$
- $\cdot \ x \in \Lambda, M \in \Lambda \Rightarrow (\lambda x.M) \in \Lambda$
- · $M, N \in \Lambda \Rightarrow (M, N) \in \Lambda$

Variáveis Livres:

- $\cdot FV(x) = \{x\}$
- $\cdot FV(\lambda x.M) = FV(M) \setminus \{x\}$
- $\cdot FV(MN) = FV(M) \bigcup FV(N)$

Variáveis Livres:

- $\cdot FV(x) = \{x\}$
- $\cdot FV(\lambda x.M) = FV(M) \setminus \{x\}$
- $\cdot FV(MN) = FV(M) \bigcup FV(N)$

Representação em Lisp, Haskel, ...:

$$(lambda (x) (* x x))$$

TIPOS E CATEGORIAS

TEORIA DE TIPOS

Principia Mathematica:

· Problema: Paradoxo de Russel;

TEORIA DE TIPOS

Principia Mathematica:

- · Problema: Paradoxo de Russel;
- · Solução: Restringir operações a certos Tipos.

TEORIA DE TIPOS

Principia Mathematica:

- · Problema: Paradoxo de Russel;
- · Solução: Restringir operações a certos Tipos.

Exemplo em julialang:

```
(Integer <: Number) => true
(FloatingPoint <: Number) => true
(Int64 <: Integer) => true
(Float64 <: FloatingPoint) => true
(ASCIIString <: Number) => false
```

TEORIA DE CATEGORIAS

Categorias:

- · Estruturas compostas de objetos e morfismos;
- · Analogia com Sistemas de Tipos.

TEORIA DE CATEGORIAS

Categorias:

- · Estruturas compostas de objetos e morfismos;
- · Analogia com Sistemas de Tipos.

TEORIA DE CATEGORIAS

Sistema de Tipos como Categoria:

EXEMPLO

Covariância e Contravariância:

- · Propriedades de Functores (Mapeamentos entre Categorias);
- · Contravariância: Mapeamento do oposto de uma Categoria.

EXEMPLO

Covariância e Contravariância:

- · Propriedades de Functores (Mapeamentos entre Categorias);
- · Contravariância: Mapeamento do oposto de uma Categoria.

Em Linguagens Orientadas a Objetos:

- · Restrição de operações a certos tipos e subtipos;
- · Relações entre tipos;

EXEMPLO: COVARIÂNCIA

Sejam A e B tipos, então a composição AxB é covariante nos dois tipos, pois:

 $AxB <: A'xB' \Leftrightarrow A <: A', B <: B'$

EXEMPLO: COVARIÂNCIA

Sejam A e B tipos, então a composição AxB é covariante nos dois tipos, pois:

```
AxB <: A'xB' \Leftrightarrow A <: A', B <: B'
```

Exemplo em julialang:

```
typeof((2::Int64, 2.0::Float64)) <: (Number, Number)
true
typeof((2::Int64, 2.0::Float64)) <: (Integer, FloatingPoint)
true
typeof((2::Int64, 2.0::Float64)) <: (Integer, Integer)
false</pre>
```

EXEMPLO: CONTRAVARIÂNCIA

Sejam A e B tipos, então a função $f:A\to B$ é covariante em B, mas contravariante em A, pois:

$$f:A\to B<:f:A'\to B'\Leftrightarrow A'<:A,B<:B'$$

EXEMPLO: CONTRAVARIÂNCIA

Sejam A e B tipos, então a função $f:A\to B$ é covariante em B, mas contravariante em A, pois:

```
f: A \rightarrow B <: f: A' \rightarrow B' \Leftrightarrow A' <: A, B <: B'
```

Exemplo em julialang:

```
function f{T <: Integer}(n::T)
   return string(n)
end</pre>
```

OBJECT CALCULI

Object calculi and their features

Calculus:	ς	Ob ₁	Ob _{1<}	nn	$Ob_{1\mu}$	$Ob_{1<:\mu}$	nn	impς	nn
Defined in:	6.2	7.3	8.1	8.7	9.1	9.2	9.7	10.1	11.1
objects	•	•		•		•	•	•	•
object types				•			•		•
subtyping				•		•	•		•
variance				•					
recursive types					•		•		
dynamic types							•		
side-effects									•

Calculus:	Оь	Ob_{μ}	Ob<	Ob<;µ	ςОь	S	S∀	nn	$Ob_{\omega <: \mu}$
Defined in:	13.1-	13.1-	13.1-	13.1-	13.5	16.2	16.3	17.1-	20.1-
	13.2	13.2	13.2	13.2				17.3	20.3
objects	•	•	•	•	•	•	•	•	•
object types	•	•	•		•	•	•	•	•
subtyping			•	•	•	•	•	•	•
variance			0	0		•	•	•	•
recursive types		•		•					•
dynamic types									
side-effects								•	
quantified types	•	•	•	•			•	•	•
Self types				0	•	•	•	•	0
structural rules						•	•		
type operators									•

CÁLCULO-ς

CÁLCULO-5

Para formalizar a ideia de um objeto, no livro A theory of objects de Martín Abadi e Luca Cardelli, foi desenvolvido o cálculo- ς (sigma).

Baseado no já conhecido cálculo- λ (lambda), trata-se de um cálculo não-tipado que define a semântica para os objetos e trata-os como primitivas.

CÁLCULO-5: PRIMITIVA OBJETO

No cálculo- ς , um objeto é considerado uma estrutura computacional. É uma coleção de atributos (não anônimos), onde todos são métodos.

Um método é composto por uma variável que representa o self e por um corpo que produz o resultado.

As únicas operações válidas sobre objetos são atualização e invocação de métodos.

CÁLCULO-5: PRIMITIVA OBJETO

A notação usada para um objeto e seus métodos:

- · $\varsigma(x)b$ método com x como parâmetro self e corpo b;
- $[l_1 = \varsigma(x_1)b_1, \ldots, l_n = \varsigma(x_n)b_n]$ um objeto com n métodos, onde cada método é identificado pelo l_1, \ldots, l_n ;
- · o.l o objeto o invoca o método l;
- · o.l $\leftarrow \varsigma(x)b$ atualizando o método l do objeto o com o método $\varsigma(x)b$ (a atualização de um método produz uma cópia do objeto o com o $\varsigma(x)b$ no lugar do método l).

Exemplo de um objeto: $[l_1=\varsigma(x_1)[], l_2=\varsigma(x_2)x_2.l_1]$

CÁLCULO-5: PRIMITIVA OBJETO

Métodos que não usam o parâmetro self, $l_1 = \varsigma(x_1)[]$ do exemplo anterior, são considerados campos do objeto. Simplificações na notação de um campo:

- $[\ldots, l=b,\ldots]$ é equivalente a $[\ldots, l=\varsigma(y)b,\ldots]$ para um parâmetro y (self) não usado (declaração de um campo);
- · o.l := b é equivalente a o.l $\subseteq \varsigma(y)$ b para um y não usado (atualização de um campo).

Terminologia para atributos e operações num objeto:

		Atributos				
		campos	métodos			
Operações	seleção	seleção	invocação			
	atualização	atualização	atualização			

A execução de um termo num cálculo-ς pode ser expresso como uma sequência de redução de passos. Isso é conhecido por **semântica primitiva**. Ela representa da forma mais simples e direta possível a semântica pretendida do objeto.

Para definir essas semânticas primitivas, foram introduzidas as seguintes notações:

- · $\Phi_i^{i \in 1...n}$ denota $\Phi_1, \Phi_2, ..., \Phi_n$;
- \cdot b \mapsto c significa que b reduz a c em um passo;
- b {{x ← c}} indica a substituição do termo c para as ocorrências de x em b.

Passos da redução para as operações existentes no cálculo- ς : Seja o $\equiv [l_i = \varsigma(x_i)b_i^{\ i \in 1...n}]$ um objeto, onde todos os l_i são distintos. Temos,

- · o. $l_j \mapsto b_j \{\{x_j \leftarrow o\}\}\ (j \in 1 \dots n)$ redução de uma invocação;
- · o.l $\leftarrow \varsigma(y)b \mapsto [l_j = \varsigma(y)b, l_i = \varsigma(x_i)b_i^{i \in 1...n}]$ ($j \in 1...n$) redução de uma atualização.

A invocação do o. l_j consiste na substituição do objeto host pelo self no copro do método l_i .

A atualização do método o.l $\subset \varsigma(y)$ b se reduz a uma cópia do objeto host com o método trocado pela versão atualizada.

Supondo que os símbolos \doteq e \equiv significam respectivamente "igual por definição" e "sintaticamente igual", vamos apontar alguns exemplos de reduções.

A substituição própria (self-substitution) está no core das semânticas primitivas da invocação de um método, portanto, é fácil programar computações não-terminais sem o uso explícito da recursão.

```
Seja o_2 \doteq [l = \varsigma(x)x.l] então o_2.l \mapsto x.l\{\{x \leftarrow o_2\}\} \equiv o_2.l \mapsto \dots
```

A substituição própria também permite retornar e modificar o self.

Seja
$$o_3 \doteq [l = \varsigma(x)x]$$
então
$$o_3.l \mapsto x\{\{x \leftarrow o_3\}\} \equiv o_3$$
Seja
$$o_4 \doteq [l = \varsigma(y)(y.l \leftarrow \varsigma(x)x)]$$
então
$$o_4.l \mapsto (y.l \leftarrow \varsigma(x)x)\{\{y \leftarrow o_4\}\} \equiv o_3$$

OBS: Em linguagens baseadas em classes, é comum um método modificar seus atributos, apesar desses atributos serem campos e não métodos.

CÁLCULO-5: SINTAXE

A sintaxe do cálculo-ς é descrita pela gramática baixo:

```
a,b ::= (termo) x \text{ (variável)} \\ [l_i = \varsigma(x_i)b_i \text{ (i} \in 1 \dots n)] \text{ (criação de um objeto, } l_i \text{ distintos)} \\ \text{a.l. (seleção de campos ou invocação de métodos)} \\ \text{a.l.} \sqsubseteq \varsigma(x)b \text{ (atualização de campos ou métodos)}
```

Qualquer expressão gerada por essa gramática é um termo-ς.

A notação a,b ::= ... descreve indutivamente um conjunto de expressões, onde a e b pertencem ao conjunto das expressões a serem definidos.

CÁLCULO-5: SINTAXE

As outras definições significam que um termo a ou b podem ser uma:

- · variável x;
- · expressão da forma $[l_i = \varsigma(x_i)b_i^{i \in 1...n}]$ (onde l_i é um rótulo, x_i é uma variável e b_i é um termo);
- expressão da forma a.l (onde a é um termo e l é o rótulo de um método ou campo);
- expressão da forma a.l $\subset \varsigma(x)$ b (onde a e b são termos, l é o rótulo de um método ou campo e x uma variável).

CÁLCULO-5: EXEMPLO DA CALCULADORA

```
calculadora \doteq
[ arg = 0.0,
   aux = 0.0,
   inserir = \varsigma(s)\lambda(n)s.arg := n,
   mais = \varsigma(s)(s.aux := s.igual).igual \leftarrow \varsigma(s')s'.aux + s'.arg,
   menos = \varsigma(s)(s.aux := s.igual).igual \leftarrow \varsigma(s')s'.aux - s'.arg,
   igual = \varsigma(s)s.arg,
   reiniciar = \varsigma(s)(s.arg := 0.0).aux := 0.0 ]
```

As variáveis arg e aux são usadas nas operações internas da calculadora.

Os métodos inserir, mais, menos, igual e reiniciar provêm a interface.

CÁLCULO-5: EXEMPLO DA CALCULADORA

Exemplo de uso e comportamento da calculadora.

calculadora.inserir(5.0).igual = 5.0 calculadora.inserir(5.0).menos.inserir(3.5).igual = 1.5 calculadora.inserir(5.0).mais.mais.igual = 15.0 calculadora.inserir(5.0).reiniciar = 0.0

CÁLCULO-ς: CLASSE

No cálculo-ς, uma classe é considera um gerador de objetos com informações sobre si mesma. Em outras palavras podemos dizer que uma classe é uma coleção de pré-métodos (informações) que possui um método *new* para gerar os novos objetos.

Um pré-método é um método da forma:

$$l_i = \varsigma(z) \lambda(x_i) b_i$$
 onde $i \in 1 \dots n$

ou

$$l_i = \lambda(x_i)b_i$$
 onde $i \in 1...$ n

OBS: Informações de uma classe (pré-métodos) podem ser contribuições de outras classes.

CÁLCULO-ς: CLASSE

c
$$\doteq$$
[new = $\varsigma(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1...n}],$
 $l_i = \lambda(s)b_i^{i \in 1...n}]$

O método *new* simplesmente aplica o *self* do novo objeto na coleção de pré-métodos da classe, que por conseguinte os transforma em métodos.

Dada uma classe c, a invocação c.new um objeto do tipo c. Exemplo:

$$o \doteq c.new = [l_i = \varsigma(x_i)b_i^{i \in 1...n}]$$

Cálculo-ς: Herança

Consiste em reusar pré-métodos entre classes (ou *traits*). Exemplo, se uma classe c' é definida reusando todos os pré-métodos de uma classe c $(c.l_j j \in 1...n)$ e adicionando mais pré-métodos $(\lambda(s)b_k)$ $k \in n+1...n+m$, informalmente podemos dizer que c' é uma subclasse de c.

```
\begin{split} c^{'} &\doteq \\ & [ \quad \text{new} = \varsigma(\mathbf{z})[l_i = \varsigma(\mathbf{s})\mathbf{z}.l_i(\mathbf{s})^{i \in 1...n+m}], \\ & l_j = \mathbf{c}.l_j \stackrel{j \in 1...n}{=}, \\ & l_k = \lambda(\mathbf{s})b_k \stackrel{k \in n+1...n+m}{=} ] \end{split}
```

CÁLCULO-5: HERANÇA

Uma subclasse pode sobrescrever pré-métodos em vez de herdá-los. Exemplo, se uma classe c'' é definida reusando os primeiros n-1 pré-métodos de uma classe c e sobrecarregando o último pré-método.

$$c'' \doteq \\ [new = \varsigma(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1...n}], \\ l_j = c.l_j \stackrel{j \in 1...n-1}{\longrightarrow}, \\ l_k = \lambda(s) \dots c.l_n(s) \dots c.l_p(s) \dots]$$

O método sobrecarregado l_n pode referenciar a um pré-método original de c como c. l_n , ou até a um outro pré-método de uma super classe de c, com c. l_p , onde p $\in 1...n$. Assim modelamos o comportamento do **super**.

OBS: A herança múltipla é obtida através do reúso de pré-métodos de múltiplas classes (ou *traits*).

Referências

REFERÊNCIAS

- 1. Abadi, M., e Cardelli, L. (1996). A theory of objects. Springer Science & Business Media.
- 2. Pierce, B. (2002). *Types* and programming Languages. The MIT Press.

