Stochastic Analysis

Zhiyuan Zhan thaleszhan@gmail.com

October 22, 2025

Contents

1	Symmetric Markov Operator		
	1.1	Markov Operator	2
	1.2	Generator	4
	1.3	Compact Markov Operators	6
	1.4	Poincaré Inequality	8
	1.5	Applications with PI	12
	1.6	Strong Gradient Bound	13

Chapter 1

Symmetric Markov Operator

In this chapter, let E be a Polish space that is a separable complete metric space and let E be equipped with the Borel σ -field \mathcal{F} . Then the measure decomposition theorem implies that for any probability measure μ on the product σ -field $\mathcal{F} \otimes \mathcal{F}$ on $E \times E$ with $\mu_1 = \pi_1^\# \mu$, the first projection, then

$$\mu(dx, dy) = k(x, dy)\mu_1(dx)$$

for some probability transition kernel $k \colon E \times \mathcal{F} \to [0,1]$. Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space.

Remark 1.0.1. Moreover, because of the existence of kernels, by Ionescu–Tulcea theorem, for any probability measure μ on E^n , there are kernels k_i from E^{i-1} to E such that

$$\mu(dx_1, dx_2, \cdots, dx_n) = \mu_1(dx_1)k_2(x_1, dx_2)k_3(x_1, x_2, dx_3)\cdots k_n(x_1, \cdots, x_{n-1}, dx_n).$$

For now on any measure μ is assumed to be σ -finite.

1.1 Markov Operator

Definition 1.1.1. A Markov operator P on (E, \mathcal{F}) is a linear operator $P: \mathcal{B}_b(E) \to \mathcal{B}_b(E)$ such that

- (1) (Mass conversation) P1 = 1 for constant function $1(x) \equiv 1$,
- (2) (Positivity preserving) for $f \geq 0$, $Pf \geq 0$.

Remark 1.1.2. For $0 \le f \le 1$,

$$P(\mathbb{1} - f) \ge 0 \implies 0 \le Pf \le P\mathbb{1} \le \mathbb{1}.$$

Therefore, $||Pf||_{\infty} \leq ||f||_{\infty}$ for all $f \in \mathcal{B}_b(E)$.

Proposition 1.1.3 (Jensen's inequality). For any convex $\phi \colon \mathbb{R} \to \mathbb{R}$ and any $f \in \mathcal{B}_b(E)$, if P is a Markov operator, then

$$P(\phi(f)) > \phi(Pf)$$

Proof. Because ϕ is convex, for any $b \in \mathbb{R}$, there is a = a(b) such that

$$\phi(c) \ge \phi(b) + a(b)(c-b), \quad \forall \ c \in \mathbb{R}$$

For any $x \in E$, let c = f(x). We have

$$\phi(f(x)) \ge \phi(b) + a(b)(f(x) - b) \quad \Rightarrow \quad \phi(f) \ge \phi(b) + a(b)(f - b)$$

By the positivity and mass properties of P, we have

$$P(\phi(f)) \ge \phi(b) + a(b)(Pf - b)$$

So for any $x \in E$,

$$P(\phi(f))(x) \ge \phi(b) + a(b)(Pf(x) - b)$$

Then let b = Pf(x), we get

$$P(\phi(f))(x) \ge \phi(Pf(x))$$

which is true for any $x \in E$.

Definition 1.1.4 (Invariant Measure). A measure μ on (E, \mathcal{F}) is called invariant for a Markov operator P if

$$\int_E Pfd\mu = \int_E fd\mu,$$

for all $f \in \mathcal{B}_b(E)$.

Remark 1.1.5. When $f \in \mathcal{B}_b(E)$ is 0 μ -a.e., Pf = 0 μ -a.e.. Therefore, P can be extended on $L^{\infty}(\mu)$. Moreover, μ is invariant for P if

$$\int_{E} Pf d\mu = \int_{E} f d\mu, \quad \forall \ f \in L^{1}(\mu) \cap L^{\infty}(\mu).$$

Note that for $1 \leq p < \infty$, $L^1(\mu) \cap L^{\infty}(\mu) \subset L^{\infty}(\mu)$ that is because

$$||f||_p^p = \int |f|^p d\mu \le ||f||_\infty^{p-1} \int |f| d\mu = ||f||_\infty^{p-1} ||f||_1.$$

So by Jensen's inequality for $\phi(x) = |x|^p$ $(1 \le p < \infty)$,

$$\int |Pf|^p d\mu \le \int P(|f|^p) d\mu = \int |f|^p d\mu, \quad \forall f \in L^1(\mu) \cap L^\infty(\mu).$$

Lemma 1.1.6. For any $1 \leq p < \infty$,

$$L^1(\mu) \cap L^\infty(\mu) \subset L^p(\mu)$$

is dense.

Proof. Let $f \in L^p$ and $\varepsilon > 0$.

• Step 1: For any $n \in \mathbb{N}$, let

$$g_n(x) := \max(-n, \min(f(x), n)) \in [-n, n].$$

Therefore, $g_n \in L^{\infty}$ and

$$||f - g_n||_p^p = \int_{|f| > n} ||f| - n|^p d\mu \le \int_{|f| > n} |f|^p d\mu \xrightarrow[n \to \infty]{} 0.$$

So let n be sufficiently large such that $||f - g_n||_p \le \varepsilon/2$.

• By σ -finiteness, choose $E_k \uparrow E$ with $\mu(E_k) < \infty$ and put $h_k = g_n \mathbb{I}_{E_k}$. So $h_k \in L^1 \cap L^\infty$. Because $\mathbb{I}_{E_k^x} \to 0$ as $k \to \infty$, by DCT,

$$||g_n - h_k||_p^p = \int_{E_k^c} |g_n|^p d\mu \le \int_{E_k^c} |f|^p d\mu \xrightarrow[k \to \infty]{} 0.$$

Therefore,

$$||f - h_k||_p \le ||f - g_n||_p + ||g_n - h_k||_p < \varepsilon.$$

Then because

$$||Pf||_p \le ||f||_p$$
, $\forall f \in L^1(\mu) \cap L^\infty(\mu)$,

and the density,

$$P \colon L^p(\mu) \to L^p(\mu)$$

for all $1 \leq p \leq \infty$. Note that this definition should fix an invariant μ .

Definition 1.1.7 (Reversible Measure). A measure μ is called reversible for a Markov operator P if

 $\int fPgd\mu = \int gPfd\mu, \quad \forall \ f,g \in L^2(\mu).$

Remark 1.1.8. It is obviously that if μ is reversible, then it is invariant, because it can choose $g_n \in L^2(\mu)$ such that $g_n \uparrow \mathbb{1}$ by the σ -finiteness of μ .

Definition 1.1.9. A symmetric Markov semigroup on (E, \mathcal{F}, μ) is a family of $(P_t)_{t\geq 0}$ of Markov operators such that

- (i) (Initial Condition) $P_0 f = f$ for all $f \in L^{\infty}$;
- (ii) (Semigroup) for every $t, s \ge 0$, $P_t P_s = P_{t+s}$;
- (iii) (Symmetry) for every $t \geq 0$, μ is reversible for P_t ;
- (iv) (Strong Continuity) for all $f \in L^2(\mu)$, $P_t f \to f$ in $L^2(\mu)$ as $t \to 0$.

Remark 1.1.10. Note that strong continuity implies that $P_t \to P_{t_0}$ in the strong operator topology on $L^2(\mu)$ as $t \to t_0$ with the help of the initial condition and the semigroup property.

Theorem 1.1.11 (Kernel Representation). Let P be a Markov operator on (E, \mathcal{F}) that is continuous on $L^1(\nu)$. Then there exists a probability kernel p on (E, \mathcal{F}) such that for every $f \in L^{\infty}(\nu)$ and ν -a.e. $x \in E$,

$$Pf(x) = \int_{E} f(y)p(x, dy).$$

1.2 Generator

For a given symmetric Markov semigroup $(P_t)_{t\geq 0}$ on (E, \mathcal{F}, μ) , we can similarly define the generator but the domain is different,

$$\mathcal{D}(L) := \left\{ f \in L^2(\mu) \colon \lim_{t \to 0} \frac{Q_t f - f}{t} \text{ exists in } L^2(\mu) \right\}.$$

And we also define $\mathcal{D}_p(L)$ for considering the convergence in $L^p(\mu)$. Except for the domain, some properties are as same as the generator of a Feller semigroup, like, $\mathcal{D}(L) \subset L^2(\mu)$ dense, and $L(P_t f) = P_t(L f)$. So

$$P_t f - f = \int_0^t P_s(Lf) ds = \int_0^t L(P_s f) ds.$$

Moreover, by the symmetry of $(P_t)_{t\geq 0}$, for any $f,g\in\mathcal{D}(L)$

$$\int_{E} f L g d\mu = \int_{E} g L f d\mu,$$

and for every $f \in \mathcal{D}_1(L)$,

$$\int Lfd\mu = 0.$$

Assume there exists an algebra $\mathcal{A} \subset \mathcal{D}(L)$, for example, $\mathcal{A} = C_c^{\infty}(\mathbb{R}^n)$.

Definition 1.2.1 (Carré du Champ). The carré du champ associated to L is the bilinear form Γ on $\mathcal{A} \times \mathcal{A}$ defined by

$$\Gamma(f,g) = \frac{1}{2}(L(fg) - fLg - gLf).$$

 $\Gamma(f) = \Gamma(f, f).$

Note that

$$\frac{d}{dt} (P_t f)^2 = 2f \frac{d}{dt} P_t f = 2f L P_t f,$$

and by Jensen's inequality,

$$L(f^{2}) = \lim_{t \to 0} \frac{P_{t}(f^{2}) - f^{2}}{t} \ge \lim_{t \to 0} \frac{(P_{t}f)^{2} - f^{2}}{t} = \frac{d(P_{t}f)^{2}}{dt} \bigg|_{t=0} \le 2fLf,$$

which implies that $\Gamma(f) \geq 0$. Then by the Cauchy-Schwartz inequality,

$$\Gamma(f,g)^2 \le \sqrt{\Gamma(f)\Gamma(g)}.$$

Proposition 1.2.2. Let $(P_t)_{t\geq 0}$ on (E, \mathcal{F}, μ) be a given symmetric Markov semigroup and L be its generator. Then L is a self-adjoint operator on L^{μ} and so it is closed.

Moreover, because

$$0 \le \int_E \Gamma(f) d\mu = -\int_E f L f d\mu,$$

L is non-positive definite.

Construct semigroup from generator L. Let's assume

$$L = \sum_{i,j=1}^{n} \sigma_{ij}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}},$$

where b_i and σ_{ij} are continuous functions and $\sigma = (\sigma_{ij}(x)) \in \mathbb{R}^{n \times n}$ is symmetric and nonnegative. $\mathcal{D}(L) = C_c^{\infty}(\mathbb{R}^n)$. Moreover, of σ is invertible, L is called an elliptic diffusion operator. A Borel measure μ is called symmetric for L if for any $f, g \in C_c^{\infty}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} gLf d\mu = \int_{\mathbb{R}^n} fLg d\mu.$$

In the following, let's fix a measure μ symmetric for L.

Note that because $\mathcal{D}(L) = C_c^{\infty}(\mathbb{R}^n) \subset L^2(\mathbb{R}^n, \mu)$ is dense, L is a non-positive symmetric operator that is densely defined on $L^2(\mathbb{R}^n, \mu)$. But it is not self-adjoint. However, it can be extended to a self-adjoint operator.

Theorem 1.2.3 (Friedrichs Extension). On the Hilbert space $L^2(\mathbb{R}^n, \mu)$, for L defined above, there exists a densely defined non-positive self-adjoint extension of L.

In fact, if L is essentially self-adjoint, then the Friedrichs extension is the closed operator \overline{L} . In such case,

$$\ker(-L^* + \lambda I) = \{0\}, \ \lambda > 0.$$

It means

$$-Lf + \lambda f = 0 \implies f = 0,$$

where Lf, the differential in the sense of distribution.

Therefore, in the following, we assume L is essentially self-adjoint and replace \overline{L} by L. Then L is self-adjoint on $L^2(\mathbb{R}^n, \mu)$. So we can define

$$P_t = e^{tL} = \int_{\mathbb{R}} e^{t\lambda} dE_L(\lambda) = \int_0^\infty e^{-t\lambda} dE_L(\lambda), \forall \ t \ge 0,$$

where E_L is the spectral measure associated with L. The P_t : $L^2(\mathbb{R}^n, \mu) \to L^2(\mathbb{R}^n, \mu)$ is a bounded operator. Note that

- (i) $P_t P_s = P_{t+s}$ for all $t, s \ge 0$.
- (ii) for all $f \in L^2$,

$$||P_t f||_2 \leq ||f||_2$$
.

- (iii) for all $f \in L^2$, $t \mapsto P_t f$ is continuous in $L^2(\mu, \mathbb{R}^n)$.
- (iv) for all $f, g \in L^2$,

$$\int_{\mathbb{R}^n} f P_t g d\mu = \int_{\mathbb{R}^n} g P_t f d\mu,$$

i.e., μ is reversible for P_t .

(v) for all $f \in L^2$,

$$\lim_{t \to 0} \|P_t f - f\|_2 = 0$$

(vi) for all any $f \in \mathcal{D}(L)$,

$$\lim_{t \to 0} \left\| \frac{P_t f - f}{t} - L f \right\|_2 = 0.$$

(vii) if $\mathbb{1} \in \mathcal{D}(L)$ and $L\mathbb{1} = 0$, then $P_t\mathbb{1} = \mathbb{1}$.

1.3 Compact Markov Operators

Definition 1.3.1 (Diffusion Carré du Champ). Let $\mathcal{A} \subset \mathbb{R}^E$ be an algebra such that for any $k \in \mathbb{N}$, any $f_1, \dots, f_k \in \mathcal{A}$, and any $\Psi \in C^{\infty}(\mathbb{R}^k)$, $\Psi(f_1, \dots, f_k) \in \mathcal{A}$. We say a bilinear form $\Gamma \colon \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is called a diffusion carré du champ if for any Ψ and f_i as above,

$$\Gamma\left(\Psi\left(f_{1},\ldots,f_{k}\right),g\right)=\sum_{i=1}^{k}\partial_{i}\Psi\left(f_{1},\ldots,f_{k}\right)\Gamma\left(f_{i},g\right).$$

Consider a symmetric Markov semigroup with generator L and the corresponding carré du champ

$$\Gamma(f,g) = \frac{1}{2}(L(fg) - fLg - gLf).$$

If Γ is a diffusion carré du champ, then

$$L\Psi(f_1,\ldots,f_k) = \sum_{i=1}^k \partial_i \Psi(f_1,\ldots,f_k) Lf_i + \sum_{i,j=1}^k \partial_i \partial_j \Psi(f_1,\ldots,f_k) \Gamma(f_i,f_j).$$
 (1.1)

In particular, for k=1,

$$\Gamma(\psi(f), g) = \psi'(f)\Gamma(f, g)$$

$$L\psi(f) = \psi'(f)Lf + \psi''(f)\Gamma(f).$$

Definition 1.3.2 (Diffusion Semigroup). An operator L satisfying (1.1) is called a diffusion generator. A symmetric Markov semigroup whose generator is a diffusion generator is called a diffusion semigroup.

Definition 1.3.3 (Dirichlet Form). A bilinear form $\mathcal{E}: \mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E}) \to \mathbb{R}$ is called a Dirichlet form if

- (i) $\mathcal{D}(\mathcal{E}) \subset L^2(\mu)$ dense for some μ ,
- (ii) $\mathcal{E}(f,g) = \mathcal{E}(g,f)$ for $f,g \in \mathcal{D}(\mathcal{E})$,
- (iii) $\mathcal{E}(f) = \mathcal{E}(f, f) \ge 0$ for $f \in \mathcal{D}(\mathcal{E})$,
- (iv) $\mathcal{D}(\mathcal{E})$ is complete w.s.t.

$$\langle f, g \rangle_{\mathcal{E}} := \int_{\mathbb{R}} fg d\mu + \mathcal{E}(f, g),$$

(v) for any $f \in \mathcal{D}(\mathcal{E})$, $0 \vee f \wedge 1 \in \mathcal{D}(\mathcal{E})$ and

$$\mathcal{E}(0 \vee f \wedge 1) < \mathcal{E}(f)$$
.

Remark 1.3.4. Note that for any symmetric, non-negative bilinear form \mathcal{E} defined on some dense $D \subset L^2(\mu)$, if \mathcal{E} satisfies that for any $f_n \to 0$ in $L^2(\mu)$ and f_n Cauchy w.s.t. $\langle \cdot, \cdot \rangle_{\mathcal{E}}$, $\mathcal{E}(f_n) \to 0$, then D can be extended to the closure of D w.s.t. $\|\cdot\|_2 + \mathcal{E}(\cdot)$.

If Γ is a diffusion carré du champ on an algebra $\mathcal{A} \subset L^2(\mu)$ dense and $\Gamma(f, f) \geq 0$ for all $f \in \mathcal{A}$, then let

$$\mathcal{E}(f,g) := \int_{E} \Gamma(f,g) d\mu$$

and taking $\mathcal{D}(\mathcal{E})$ be the closure of \mathcal{A} w.s.t. $\langle \cdot, \cdot \rangle_{\mathcal{E}}$. It can prove that such \mathcal{E} is a Dirichlet form. Moreover, by the symmetric and positivity of \mathcal{E} , Riesz representation theorem implies that we can define a a non-positive, symmetric operator L by

$$\int gLfd\mu = -\mathcal{E}(f,g)$$

on the domain

$$\mathcal{D}(L) = \{ f \in \mathcal{D}(\mathcal{E}) : \exists C \text{ such that } \mathcal{E}(f, g) \leq C \|g\|_2 \text{ for all } g \in \mathcal{D}(\mathcal{E}) \}.$$

Moreover, it can be extended to a self-adjoint operator L by using Friedrichs extension.

Definition 1.3.5 (Compact Markov Diffusion Triple). Let (E, \mathcal{F}, μ) be a polished measure space and μ be a probability measure. For $\mathcal{A} \subset L^2(\mu)$, let

$$\Gamma \colon \mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

be a symmetric bilinear form. We say (E, μ, Γ) a compact Markov diffusion triple the followings are satisfied.

- (a) \mathcal{A} is dense in $L^2(\mu)$,
- (b) \mathcal{A} is an algebra closed under composition with smooth functions,
- (c) $\Gamma(f) = \Gamma(f, f) \ge 0$ for all $f \in \mathcal{A}$,
- (d) Γ is a diffusion carré du champ,

(e) $\Gamma(f) = 0$ implies that f is a constant,

and let $\mathcal{E}(f,g) = \int_E \Gamma(f,g) d\mu$ for all $f,g \in \mathcal{A}$, which satisfies

(f) for every $f \in \mathcal{A}$, there exist a C > 0 such that $\mathcal{E}(f,g) \leq C \|g\|_2$ for all $g \in \mathcal{A}$.

It follows that \mathcal{E} can be extended to a Dirichlet form. Let L be the self-adjoint operator defined on $\mathcal{D}(L)$ such that

$$\int gLfd\mu = -\mathcal{E}(f,g).$$

Note that $\mathcal{A} \subset \mathcal{D}(L)$. Let $P_t = e^{tL}$ called the semigroup be assumed that

- (g) $LA \subset A$,
- (h) $P_t \mathcal{A} \subset \mathcal{A}$.

Proposition 1.3.6. Let (E, \mathcal{F}, μ) be a compact Markov diffusion triple and P_t be its semigroup.

- (1) P_t is a symmetric Markov semigroup for μ .
- (2) For any $f \in L^2(\mu)$,

$$\lim_{t \to \infty} P_t f = \int_E f d\mu$$

in L^2 , which is called the ergodic property.

Curvature.

Definition 1.3.7. Given a compact Markov diffusion triple (E, \mathcal{F}, μ) . For any $f, g \in \mathcal{A}$,

$$\Gamma_2(f,g) = \frac{1}{2} \left(L\Gamma(f,g) - \Gamma(f,Lg) - \Gamma(g,Lf) \right),\,$$

and $\Gamma_2(f) = \Gamma_2(f, f)$.

Definition 1.3.8 (Curvature Dimension). For $\rho \in \mathbb{R}$ and $n \in [1, \infty]$, a compact Markov diffusion triple (E, \mathcal{F}, μ) is to said to satisfy the curvature-dimension condition $CD(\rho, n)$ if

$$\Gamma_2(f) \ge \rho \Gamma(f) + \frac{1}{n} (Lf)^2.$$

1.4 Poincaré Inequality

Proposition 1.4.1. Let P_t be the semigroup of a compact Markov triple. TFAE.

- (1) $CD(\rho, \infty)$ holds for some $\rho \in \mathbb{R}$.
- (2) For every $f \in \mathcal{A}$ and $t \geq 0$,

$$\Gamma(P_t f) \le e^{-2\rho t} P_t \Gamma(f).$$

(3) For every $f \in A$ and $t \geq 0$,

$$P_t(f^2) - (P_t f)^2 \le \frac{1 - e^{-2\rho t}}{\rho} P_t \Gamma(f).$$

(4) For every $f \in \mathcal{A}$ and $t \geq 0$,

$$P_t(f^2) - (P_t f)^2 \ge \frac{e^{2\rho t} - 1}{\rho} \Gamma(P_t f).$$

For the last two conditions, if $\rho = 0$, then the coefficients in RHS can be taken as 2t.

Proof. (1) \Rightarrow (2): for $f \in \mathcal{A}$, let

$$\Lambda(s) = e^{-2\rho} P_s \Gamma(P_{t-s} f).$$

Then by chain rule,

$$\Lambda'(s) = 2e^{-2\rho s} P_s \left(\Gamma_2 \left(P_{t-s} f \right) - \rho \Gamma \left(P_{t-s} f \right) \right) \ge 0.$$

because of $CD(\rho, \infty)$. Therefore, $\Lambda(t) \geq \Lambda(0)$.

 $(2) \Rightarrow (3)$: Let

$$\Lambda(s) = P_s \left(P_{t-s} f \right)^2.$$

So $\Lambda'(s) = 2P_s\Gamma(P_{t-s}f)$ and

$$\Lambda(t) - \Lambda(0) = 2 \int_0^t P_s \Gamma(P_{t-s}f) ds$$

$$\leq 2 \int_0^t e^{-2\rho(t-s)} P_t \Gamma(f) ds$$

$$= \frac{1 - e^{-2\rho t}}{\rho} P_t \Gamma(f).$$

(2) \Rightarrow (4): Similarly, as above, by using $P_s\Gamma\left(P_{t-s}f\right) \geq e^{2\rho s}\Gamma\left(P_tf\right)$,

$$\Lambda(t) - \Lambda(0) \ge 2 \int_0^t e^{2\rho s} \Gamma(P_t f) ds = \frac{e^{2\rho t} - 1}{\rho} \Gamma(P_t f).$$

(3) \Rightarrow (1): Note that for any $h \in \mathcal{A}$,

$$P_t h = h + tLh + \frac{t^2}{2}L^2h + o(t^2), \quad t \to 0.$$

Therefore choosing h = f and $h = f^2$, we have

$$P_t(f^2) - (P_t f)^2 = tL(f^2) + \frac{t^2}{2}L^2(f^2) - 2tfLf - t^2(Lf)^2 - t^2fL^2f + o(t^2)$$
$$= 2t\Gamma(f) + \frac{t^2}{2}L^2(f^2) - t^2(Lf)^2 - t^2fL^2f + o(t^2).$$

On the other hand,

$$\frac{1 - e^{-2\rho t}}{\rho} P_t \Gamma(f) = 2t\Gamma(f) - 2\rho t^2 \Gamma(f) + 2t^2 L\Gamma(f) + o\left(t^2\right).$$

Therefore, by (3),

$$\frac{1}{2}L^{2}\left(f^{2}\right)-(Lf)^{2}-fL^{2}f+o(1)\leq-2\rho\Gamma(f)+2L\Gamma(f)+o(1).$$

As $t \to 0$, we have

$$\frac{1}{2}L^2(f^2) - (Lf)^2 - fL^2f \le -2\rho\Gamma(f) + 2L\Gamma(f).$$

Then by arranging,

$$L\Gamma(f) - 2\Gamma(f, Lf) \ge 2\rho\Gamma(f).$$

 $(4) \Rightarrow (1)$: It is similarly as above.

For (3) in above proposition, by the ergodic property, as $t \to \infty$,

$$\int f^2 d\mu - \left(\int f d\mu\right)^2 \le \frac{1}{\rho} \int \Gamma(f) d\mu,$$

which is called a Poincaré inequality.

Definition 1.4.2 (Poincaré inequality). Let μ be a probability measure and \mathcal{E} be a Dirichlet form on $L^2(\mu)$. We say that μ and \mathcal{E} satisfy a Poincaré inequality with constant C if

$$\int_{E} f^{2} d\mu - \left(\int_{E} f d\mu \right)^{2} \le C \mathcal{E}(f),$$

for any $f \in \mathcal{D}(\mathcal{E})$. The Poincaré constant of μ and \mathcal{E} is the smallest C such that above inequality holds for all $f \in \mathcal{D}(\mathcal{E})$.

Remark 1.4.3. When considering a compact Markov triple, because $\mathcal{A} \subset \mathcal{D}(\mathcal{E})$ is dense, it suffices to check PI on \mathcal{A} . Moreover, if a compact Markov triple satisfies $\mathrm{CD}(\rho, \infty)$, it satisfies $\mathrm{PI}(1/\rho)$.

Corollary 1.4.4. The compact Markov triple (E, μ, Γ) satisfies $CD(\rho, \infty)$ if and only if for any $t \geq 0$ and $x \in E$ μ -a.e., the measure $p_t(x, \cdot)$ satisfies PI with constant $(1 - e^{-2\rho t})/\rho$.

Proposition 1.4.5 (Spectral Gap). If the compact Markov triple (E, μ, Γ) satisfies PI(C) for some constant C, then the spectrum of L

$$\sigma(L) \subset (-\infty, -\frac{1}{C}] \cup \{0\}.$$

Proof. Let $\lambda \in \sigma(L)$ such that $\lambda \neq 0$. Because L is self-adjoint, i.e., $\sigma(L) = \sigma_{ap}(L)$, there exists $f_n \in \mathcal{D}(L)$ such that $||f||_2 = 1$ and

$$||Lf_n - \lambda f_n||_2 \to 0, \quad n \to \infty.$$

Note that because μ is a probability measure, $||Lf_n - \lambda f_n||_1 \to 0$. It follows that $\int f_n d\mu \to 0$ by $\int Lf_n d\mu = 0$ for all n. Then PI implies that

$$\int_{E} f_n^2 d\mu - \left(\int_{E} f_n d\mu\right)^2 \le C \int_{E} \Gamma(f_n) d\mu = -C \int_{E} f_n L f_n d\mu.$$

As $n \to \infty$,

$$\lambda = \int_{E} f_n L f_n d\mu \le -\frac{1}{C}.$$

PI under $CD(\rho, n)$.

Lemma 1.4.6. Suppose the compact Markov triple (E, μ, Γ) satisfies $CD(\rho, \infty)$ with some $\rho > 0$. It satisfies PI(C) for some C > 0 if and only if

$$\int_{E} \Gamma(f) d\mu \le C \int_{E} (Lf)^{2} d\mu, \quad \forall \ f \in \mathcal{D}(L).$$

Proof. \Rightarrow : Let

$$\Lambda(t) = \int_{E} (P_t f)^2 d\mu.$$

Then

$$\Lambda'(t) = -2 \int_E \Gamma(P_t f) d\mu, \quad \Lambda''(t) = 4 \int_E (L P_t f)^2 d\mu.$$

Because it satisfies $CD(\rho, \infty)$ with some $\rho > 0$, by

$$\Gamma(P_t f) \le e^{-2\rho t} P_t \Gamma(f) \le P_t \Gamma(f) \le \Gamma(f)$$

Then by DCT, $\lim_{t\to\infty} \Lambda'(t)$ exists. And by ergodicity,

$$\lim_{t \to \infty} \Lambda(t) = \int_E f d\mu,$$

 $\lim_{t\to\infty} \Lambda'(t) = 0$. By assumption,

$$\Lambda''(t) \ge -\frac{2}{C}\Lambda'(t).$$

Therefore,

$$\int f^2 d\mu - \left(\int f d\mu\right)^2 = -\int_0^\infty \Lambda'(t) dt$$

$$\leq \frac{C}{2} \int_0^\infty \Lambda''(t) dt$$

$$= -\frac{C}{2} \Lambda'(0)$$

$$= C \int_E \Gamma(f) d\mu.$$

 \Leftarrow : Choosing $f \in \mathcal{D}(L)$ with mean 0 (otherwise, let $f - \int f d\mu$ and note that $\Gamma(c,g) = 0$ for any constant c and function g). By Cauchy-Schwartz inequality,

$$\begin{split} \int_E \Gamma(f) d\mu &= \int_E f(-Lf) d\mu \\ &\leq \sqrt{\int_E f^2 d\mu \int_E (Lf)^2 d\mu} \\ &\leq \sqrt{C \int_E \Gamma(f) d\mu \int_E (Lf)^2 d\mu}. \end{split}$$

Theorem 1.4.7. Let (E, μ, Γ) be a compact Markov triple. If it satisfies $CD(\rho, n)$ for some $\rho > 0$ and n > 1, then μ satisfies PI(C) with $C = \frac{n-1}{\rho n}$.

Proof. Because of $CD(\rho, n)$,

$$\int_{E} \Gamma_{2}(f) d\mu \ge \rho \int_{E} \Gamma(f) d\mu + \frac{1}{n} \int_{E} (Lf)^{2} d\mu.$$

Because $\int Lhd\mu = 0$,

$$\int_{E} \Gamma_{2}(f) = \frac{1}{2} \left(\int_{E} L\Gamma(f) d\mu - \int_{E} \Gamma(f, Lf) d\mu \right)$$

$$\begin{split} &=\frac{1}{2}\int_E L\Gamma(f)d\mu-\frac{1}{2}\int_E L(fLf)d\mu+\frac{1}{2}\int_E (Lf)^2+fL^2fd\mu\\ &=\int_E (Lf)^2d\mu. \end{split}$$

Therefore,

$$\frac{n-1}{\rho n} \int_E (Lf)^2 d\mu \ge \int_E \Gamma(f) d\mu.$$

Then by above lemma, it has the result.

1.5 Applications with PI

Decay of Variance. For a probability measure μ and $f \in L^2(\mu)$, let

$$\operatorname{Var}_{\mu}(f) = \int_{E} f^{2} d\mu - \left(\int_{E} f d\mu\right)^{2}.$$

Proposition 1.5.1. The compact Markov triple (E, μ, Γ) satisfies PI(C) if and only if

$$\operatorname{Var}_{\mu}(P_t f) \le e^{-\frac{2t}{C}} \operatorname{Var}_{\mu}(f), \quad f \in L^2(\mu).$$

Proof. \Rightarrow : For $f \in \mathcal{A}$,

$$\frac{d}{dt} \int_{E} (P_{t}f)^{2} d\mu = 2 \int_{E} P_{t}f L P_{t}f d\mu = -2\mathcal{E} \left(P_{t}f \right).$$

Define

$$\Lambda(t) = e^{2t/C} \operatorname{Var}_{\mu}(P_t f),$$

SO

$$\Lambda'(t) = \frac{2}{C} \operatorname{Var}_{\mu} (P_t f) - 2\mathcal{E} (P_t f) \le 0$$

by $\operatorname{PI}(C)$. It follows that $\Lambda(t) \leq \Lambda(0)$. For general $f \in L^2(\mu)$, it can get by density. \Leftarrow : It suffices to prove that for $f \in \mathcal{A}$ with $\int f d\mu = 0$. Note that

$$P_t f = f + tLf + o(t),$$

and so

$$\operatorname{Var}(P_t f) = \int_E f^2 d\mu + 2t \int_E f L f d\mu + o(t).$$

On the other hand,

$$e^{-2t/C}\operatorname{Var}_{\mu}(f) = \left(1 - \frac{2t}{C} + o(t)\right)\operatorname{Var}_{\mu}(f).$$

Therefore,

$$2t \int_{E} f L f d\mu + o(t) \le \left(-\frac{2t}{C} + o(t) \right) \operatorname{Var}_{\mu}(f).$$

Then dividing t on the both sides and taking $t \to 0$,

$$2\int_{E} fLfd\mu \le -\frac{2}{C}\operatorname{Var}_{\mu}(f).$$

Log-concave measures.

Definition 1.5.2. The probability measure μ on \mathbb{R}^n defined by

$$d\mu(x) = e^{-W(x)}dx$$

is called log-concave if $W: \mathbb{R}^n \to \mathbb{R}$ is convex. For $\rho > 0$, μ is called ρ -strongly log-concave if $W(x) - \rho |x|^2$ is convex.

Assume $W \in C^{\infty}(\mathbb{R}^n)$. And on \mathbb{R}^n ,

$$\Gamma(f, q) = \langle \nabla f, \nabla q \rangle$$

is a carré du champ. Then by divergence theorem,

$$-\int_{\mathbb{R}^n} \Gamma(f,g) d\mu = -\int_{\mathbb{R}^n} \left\langle e^{-W} \nabla f, \nabla g \right\rangle dx = \int_{\mathbb{R}^n} f(\Delta g - \langle \nabla W, \nabla g \rangle) d\mu.$$

Therefore,

$$Lq = \Delta q - \langle \nabla W, \nabla q \rangle.$$

If all derivatives of W(x) grow at most polynomially fast as $|x| \to \infty$, then $(\mathbb{R}^n, \mu, \Gamma)$ is a compact Markov triple with \mathcal{A} being the class of smooth, bounded functions whose derivatives all vanish super-polynomially fast.

Moreover,

$$\Gamma_2(f,g) = \langle \nabla^2 f, \nabla^2 g \rangle + (\nabla f)^\top (\nabla^2 W) \nabla g,$$

By the strongly convexity of W,

$$\Gamma_2(f, f) \ge \rho \|f\|_2 = \rho \Gamma(f),$$

i.e., $(\mathbb{R}^n, \mu, \Gamma)$ is $CD(\rho, \infty)$.

Corollary 1.5.3. Every ρ -strongly log-concave probability measure satisfies $PI(1/\rho)$, i.e.,

$$\operatorname{Var}_{\mu}(f) \leq \frac{1}{\rho} \mathbb{E}_{\mu}[\|\nabla f\|^{2}].$$

1.6 Strong Gradient Bound