Wintersemester 2020/2021

Übungen zu Angewandte Mathematik: Numerik - Blatt 7

Abgabe der Lösungen als pdf-Datei bis Freitag, den 8.01.2021, 10:15 über die eCampus-Seite der entprechenden Übungspruppe.

Aufgabe 1 (Kondition von Funktionen, 2+2=4 Punkte)

Absolute und relative Konditionszahlen einer Funktion $f: \mathbb{R} \to \mathbb{R}$ am Punkt x sind definiert durch

$$K_{\mathrm{abs}} := |f'(x)|,$$
 $K_{\mathrm{rel}} := \left| \frac{f'(x) \cdot x}{f(x)} \right|.$

- a) Berechne jeweils die absoluten und relativen Konditionszahlen für die Funktionen $\exp(x)$ und $\ln(x)$. Für welche x sind diese Funktionen jeweils schlecht konditioniert?
- b) Beweise, dass für zwei Funktionen $f,g:\mathbb{R}\to\mathbb{R}$ die absolute Konditionszahl der Verkettung f(g(x)) sich als Produkt der absoluten Konditionszahlen von f und g berechnet. Zeige die analoge Aussage für die relativen Konditionszahlen.

Hinweis: Wenn man die Kondition von f(g(x)) am Punkt x betrachtet heißt das natürlich, dass man die Kondition von f am Punkt g(x) verwenden muss.

Aufgabe 2 (IEEE Fließkommazahlen, 2+2=4 Punkte)

Wir betrachten Fließkommazahlen gemäß IEEE Standard.

- a) Seien x, y > 0 zwei aufeinander folgende Zahlen mit einfacher Genauigkeit. Wie viele Zahlen z mit doppelter Genaugkeit und $x \le z < y$ gibt es?
- b) Was ist die kleinste natürliche Zahl $x \in \mathbb{N}$, die nicht ohne Rundungsfehler mit einfacher Genauigkeit darstellbar ist?

Hinweis: Bei einfacher Genauigkeit hat die Mantisse 24 bit, bei doppelter Genauigkeit sind es 53 bit.

Aufgabe 3 (Kondition der Normalengleichung, 4 Punkte)

Sei $A \in \mathbb{C}^{m \times n}$ mit m > n eine Matrix mit vollem Rang. Wir betrachten die Matrix $B := A^*A$ aus der Normalengleichung. Zeige

$$K_2(B) = (K_2(A))^2$$
.

Dabei bezeichnet K_2 die Kondition der Matrizen bezüglich der 2-Norm. Was bedeutet das für die Lösung linearer Ausgleichsprobleme anhand der Normalengleichung?

Hinweis: Verwende die Formel zur Berechnung der Matrixkondition anhand der Singulärwertzerlegung (Bemerkung 5.3 im Skript). Lassen sich aus der Singulärwertzerlegung von A Eigenschaften der Singulärwertzerlegung von B ableiten?

Bonusaufgabe 4 (Tikhonov-Regularisierung, 4 Punkte)

Sei $A\in\mathbb{C}^{m\times n}$ mit m>neine Matrix mit vollem Rang. Sei $\lambda>0$ und

$$T := \begin{pmatrix} A \\ \lambda \cdot I \end{pmatrix} \in \mathbb{C}^{(m+n) \times n}$$

wobei $I \in \mathbb{C}^{n \times n}$ die Einheitsmatrix ist. Sei σ_1 der größte Singulärwert von A und σ_n der kleinste (d.h. $K_2(A) = \frac{\sigma_1}{\sigma_n}$). Zeige

$$K_2(T) = \sqrt{\frac{\sigma_1^2 + \lambda^2}{\sigma_n^2 + \lambda^2}}.$$

Hinweis: Versuche aus der Singulärwertzerlegung von A eine Singulärwertzerlegung von T^*T zu konstruieren. Das Ergebnis der vorigen Aufgabe darf ohne Beweis genutzt werden.