ST0270-031 Clase 9

J.F. Cardona

Universidad EAFIT

25 de febrero de 2020

Agenda

- Capítulo 2. Sintaxis
 - Transformaciones de gramáticas y formas normales

Forma Chomsky o normal binaria

- Hay dos tipos de reglas:
 - **1** binaria homogénea: $A \rightarrow BC$, donde $B, C \in V$
 - ② terminal con una única parte derecha: $A \to \alpha$, donde $\alpha \in \Sigma$
- Más aun, si cadena vacía está en el lenguaje, allí hay una regla S → ε pero el axioma no es permitido en el lado derecho.
- Con tales restricciones cualquier nodo interno de un árbol síntactico pueden tanto dos hermanos no-terminales o un solo terminal hijo.

Forma Chomsky o normal binaria

- Dada una gramática, suponiendo como hipótesis sin no-terminales que deriven a nulo.
- Cada regla A₀ → A₁A₂...A_n de longitud n > 2 es convertida a longitud 2 escogiendo escogiendo el primer símbolo A₁ y el sufijo remanente A₂...A_n.
- Entonces un nuevo no-terminal auxiliar es creado, y nombrado $\langle A_2 \dots A_n \rangle$ y la nueva regla

$$\langle A_2 \dots A_n \rangle \to A_2 \dots A_n$$

Ahora la regla original es reemplazada por

$$A_0 \rightarrow \langle A_1 \rangle \langle A_2 \dots A_n \rangle \quad \langle A_1 \rangle \rightarrow A_1$$

donde $\langle A_1 \rangle$ es un nuevo no-terminal auxiliar.

 Continue aplicando la misma serie de transformaciones a la gramática así obtenida, hasta que todas las reglas están en la forma requerida.

Ejemplo. Conversion a la forma normal Chomsky

La gramática

$$S
ightarrow dA \mid cB \mid A
ightarrow dAA \mid cS \mid c \mid B
ightarrow cBB \mid dS \mid d$$

se transforma en

$$S \rightarrow \langle d \rangle A \mid \langle c \rangle B \quad A \rightarrow \langle d \rangle \langle AA \rangle \mid \langle c \rangle S \mid c \quad B \rightarrow \langle c \rangle \langle BB \rangle \mid \langle d \rangle S \mid d \\ \langle d \rangle \rightarrow d \qquad \langle c \rangle \rightarrow c \qquad \langle AA \rangle \rightarrow AA \\ \langle BB \rangle \rightarrow BB$$

Conversión de gramáticas recursivas por la izquierda a recursivas por la derecha

- Otra forma normal denominada no-recursiva por la izquierda, es caracterizada por la ausencia de reglas recursivas por la izquierda o derivaciones (*I-recursions*);
- esta es indispensable para analizadores sintácticos descendentes.

Transformación de *I-recursions* inmediatas

- El caso más común y más fácil es cuando las I-recursion a ser eliminada es inmedidata.
- Considere las I-recursion alternativas de un no-terminal A:

$$A \rightarrow A\beta_1 \mid A\beta_2 \mid \ldots \mid A\beta_h, h \geq 1$$

donde ningún β_i es vacío, y tenemos

$$A \rightarrow \gamma_1 \mid \gamma_2 \mid \ldots \mid_k, \gamma_k \geq 1$$

sean las alternativas remanentes.

 Cree un nuevo no-terminal auxiliar A' y reemplace las reglas anteriores con las siguientes:

$$A \rightarrow \gamma_1 A' \mid \gamma_2 A' \mid \dots \mid \gamma_k A' \mid \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_k$$

$$A' \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_h A' \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_h$$

Transformación de recursiones por la izquierda inmediata

Ahora cada derivación original recursiva por la izquiera, como por ejemplo

$$A \Rightarrow A\beta_2 \Rightarrow A\beta_3\beta_2 \Rightarrow \gamma_1\beta_3\beta_2$$

es reemplazada con la equivalente derivación recursiva por la derecha

$$A \Rightarrow \gamma_1 A' \Rightarrow \gamma_1 \beta_3 A' \Rightarrow \gamma_1 \beta_3 \beta_2$$

Ejemplo

La gramática

$$E \rightarrow E + T \mid T \quad T \rightarrow T \times F \mid F \quad F \rightarrow (E) \mid i$$

Se transforma

$$E \rightarrow TE' \mid T \quad E' \rightarrow +TE' \mid +T$$

 $T \rightarrow FT' \mid F \quad T' \rightarrow \times FT' \mid \times F$
 $F \rightarrow (E) \mid i$

Transformación de recursiones por la izquierda no inmediata

- Hipótesis: la gramática G que se transformará es homogénea, no contiene derivaciones nulas, con reglas terminales únicas;
- en otras palabras, las reglas son como las forma normal Chomsky, pero entonces dos no-terminales son permitidos en la parte derecha.
- Sea $V = \{A_1, A_2, ..., A_m\}$ sea el alfabeto de los no-terminales y A_1 el axioma.
- Para un examen ordenado, veremos los no-terminales como un conjunto ordenado (arbitrario), de 1 a m.

Algoritmo para la eliminación de la recursividad por la izquierda

```
\begin{array}{l} \textbf{for } i=1 \text{ to } m \textbf{ do} \\ \textbf{for } j=1 \text{ to } i-1 \textbf{ do} \\ \text{reemplace cada regla de tipo } A_i \rightarrow A_j \alpha \text{, donde } i>j \text{, con las reglas:} \\ A_i \rightarrow \gamma_1 \alpha \mid \gamma_2 \alpha \mid \ldots \mid \gamma_k \alpha \\ \text{(-posiblemente creando recursiones a la izquierda inmediatas -)} \\ \text{donde } A_j \rightarrow \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_k \text{ son las alternativas del no-terminal } A_j \\ \textbf{end for} \\ \text{eliminando, por medio del algoritmo anterior, cualquier recursión por la} \\ \text{izquierda inmediata que puede surgir como una alternativa de } A_i \text{, creando un no-terminal auxiliar } A_i' \\ \textbf{end for} \end{array}
```

Ejemplo

Para la gramática G

$$A_1 \rightarrow A_2 a \mid b \quad A_2 \rightarrow A_2 c \mid A_1 d \mid e$$

i,

Elimina la recursiones por la izquierda inmediatas de A_1

2 1 Reemplaza $A_2 \rightarrow A_1 d$

Elimina la recursions por la izquierda inmediatas obteniendo G'_2 :

Grammar

$$A_1 \rightarrow A_2 a \mid b$$

$$A_2 \rightarrow A_2 c \mid A_1 d \mid e$$

 $A_1 \rightarrow A_2 A \mid b$

$$A_1 \rightarrow A_2A \mid b$$

$$A_2 \rightarrow A_2c \mid A_2ad \mid bd \mid e$$

$$A_1 \rightarrow A_2a \mid b$$

$$A_2 \rightarrow bdA'_2 \mid eA'_2 \mid bd \mid e$$

 $A'_2 \rightarrow cA'_2 \mid adA'_2 \mid c \mid ad$

Formas normales Greibach y de tiempo-real

 En la forma normal de tiempo-real cada regla inicia con un terminal:

$$A \rightarrow a\alpha$$
 donde $a \in \Sigma$, $\alpha \in \{\Sigma \cup V\}^*$

• Un caso especial de la anterior es la forma normal *Greibach*:

$$A \rightarrow a\alpha$$
 donde $a \in \Sigma$, $\alpha \in V^*$

• Cada regla excluyen la cadena vacía del lenguaje.

Formas normales Greibach y de tiempo-real

- Para la forma de tiempo-real:
 - Eliminar primero toda la recursividad por la izquierda;
 - entonces, por transformaciones elementales, expanda cualquier no-terminal que ocurre en la primera posición en un parte derecha, hasta que un prefijo de terminales es producido.
- Entonces continué para la forma Greibach:
 - Si en cualquier otra posición diferente a la primera, un terminal ocurre, reemplacelo por un auxiliar no-terminal y adicione la regla que lo deriva a este.

Ejemplo

La gramática

$$A_1 \rightarrow A_2 a$$
 $A_2 \rightarrow A_1 c \mid bA_1 \mid d$

Elimina las recursividades por la izquierda

Expande los no-terminales a la primera posición hasta que un prefijo terminal es producido

$$A_1 \rightarrow bA_1A_2'a \mid dA_2'a \mid da \mid bA_1a$$
 $A_2 \rightarrow bA_1A_2' \mid dA_2' \mid d \mid bA_1$
 $A_2' \rightarrow acA_2' \mid ac$

Substituye cualquier terminal en una posición diferente a la primera por no-terminales auxiliares:

$$A_{1} \rightarrow bA_{1}A'_{2}\langle a \rangle \mid dA'_{2}\langle a \rangle \mid bA_{1}\langle a \rangle \quad A_{2} \rightarrow bA_{1}A'_{2} \mid dA'_{2} \mid d \mid bA_{1}$$

$$A'_{2} \rightarrow a\langle c \rangle A'_{2} \mid a\langle c \rangle$$

$$\langle a \rangle \rightarrow a \qquad \langle c \rangle \rightarrow c$$

ST0270-031 Clase 10

J.F. Cardona

Universidad EAFIT

28 de febrero de 2020

Agenda

- Capítulo 2. Sintaxis
 - Gramáticas de lenguajes regulares
 - De expresiones regulares a gramáticas independientes de contexto
 - Gramáticas de lineales
 - Ecuaciones de gramáticas lineales

De expresiones regulares a gramáticas independientes de contexto

- Dada una expresión regular, es sencillo escribir una gramática para el lenguaje.
- Se analiza la expresión y se mapea sus subexpresiones dentro de reglas gramaticales.
- El núcleo de la construcción, los operadores interactivos (la estrella y la cruz) son reemplazados por reglas recursivas unilaterales.

De expresiones regulares a gramáticas independientes de contexto

- Primero, identificamos y numeramos las subexpresiones contenidas dentro de la expresión regular dada.
- De cada definición de una expresión regular, los posibles casos y las correspondientes reglas (con no-terminales en mayúsculas) están en la tabla siguiente.

	subexpresión	regla de la gramática
1	$r = r_1 \cdot r_2 \dots r_k$	$E \rightarrow E_1 E_2 \dots E_k$
2	$r = r_1 \cup r_2 \cup \ldots \cup \ldots \cup r_k$	$E \rightarrow E_1 \cup E_2 \cup \ldots \cup E_k$
3	$r=(r_1)^*$	$E \rightarrow EE_1 \mid \epsilon \circ E \rightarrow E \rightarrow E_1 E \mid \epsilon$
4	$r = (r_1)^+$	$E \rightarrow EE_1 \mid E_1 \circ E \rightarrow E_1 E \mid E_1$
5	$r = b \in \overline{\Sigma}$	$E \rightarrow b$
6	$r = \epsilon$	$E o \epsilon$

Capítulo 2. Sintaxis

Gramáticas de lenguajes regulares - De ER a GIC

Ejemplo. De expresión regular a gramática

La expresión regularw

$$E = (abc)^* \cup (ff)^+$$

Mapeo	Subexpresión	Regla gramática
2	$E_1 \cup E_2$	$E_0 \rightarrow E_1 \mid E_2$
3	E ₃ *	$E_1 \rightarrow E_1 E_3 \mid \epsilon$
4	E_4^+	$E_2 \rightarrow E_2 E_4 \mid E_4$
1	abc	E ₃ → abc
1	ff	$E_4 \rightarrow ff$

Capítulo 2. Sintaxis

Gramáticas de lenguajes regulares - De ER a GIC

Propiedad

La familia de los lenguajes regulares REG está estrictamente incluida en la familia de los lenguajes independientes de contexto CF, de forma que, $REG \subset CF$.

Gramáticas lineales

- Para un lenguaje regular es posible restringir una gramática a una forma muy simple, llamada lineal o de tipo 3.
- Tal forma produce evidencia de algunas propiedades fundamentales y conduce a la construcción sencilla del autómata, el cual reconoce las cadenas de un lenguaje regular.
- Se dice que una gramática es *lineal*, si para cada regla esta tiene la forma:

$$A \rightarrow uBv$$
 donde $u, v \in \Sigma^*, B \in (V \cup \epsilon)$

donde al menos un no-terminal esta su parte derecha.

- Visualizando su correspondiente árbol sintáctico, se observa que este nunca se subdivide en dos subárboles, pero este una estructura lineal hecha de un tronco con hojas directamente unidas a este.
- Las gramáticas lineales no son tan poderosas para generar los lenguajes regulares.

Capítulo 2. Sintaxis

Gramáticas de lenguajes regulares - Gramáticas lineales

Lenguaje líneal regular

El lenguaje

$$L_1 = \{b^n e^n \mid n\} = \{be, bbee, \ldots\}$$

La gramática líneal:

$$S \rightarrow bSe \mid be$$

Gramáticas de lenguajes regulares - Gramáticas lineales

Gramáticas lineales

 Una regla de la siguiente forma es llamada lineal por la derecha:

$$A \rightarrow uB$$
 donde $u \in \Sigma^*, B \in (V \cup \epsilon)$

 Simétricamente, una regla lineal por la izquierda tiene la forma

$$A \rightarrow Bu$$
 donde $u \in \Sigma^*, B \in (V \cup \epsilon)$

 Una gramática tal que todas las reglas son lineales por la derecha o todas lineales por la izquierda es llamada uni-lineal o de tipo 3.

Ejemplo

La expresión regular

$$(a | b)^*aa(a | b)^*b$$

La gramática líneal G_r:

$$S \rightarrow aS \mid bS \mid aaA \quad A \rightarrow aA \mid bA \mid b$$

2 La gramática líneal G_l:

$$S \rightarrow Ab \quad A \rightarrow Aa \mid Ab \mid Baa \quad B \rightarrow Ba \mid Bb \mid \epsilon$$

Una gramática equivalente no-unilineal para esta expresión regular

$$E_1 \rightarrow E_2 a a E_2 b \quad E_2 \rightarrow E_2 a \mid E_2 b \mid \epsilon$$

Ejemplo

Con la gramática G_l los árboles de derivación de la sentencia ambigua baaab

$$S \rightarrow Ab$$
 $A \rightarrow Aa \mid Ab \mid Baa$ $B \rightarrow Ba \mid Bb \mid \epsilon$

$$A \stackrel{S}{\downarrow} b$$

$$A \stackrel{A}{\downarrow} aa$$

$$B \stackrel{B}{\downarrow} b$$

$$B \stackrel{A}{\downarrow} aa$$

$$B \stackrel{B}{\downarrow} b$$

Ejemplo

El lenguaje

$$L = \{a, a + a, a \times a, a + a \times a, \ldots\}$$

está definido por la gramática lineal derecha G_r:

$$S \rightarrow a \mid a + S \mid a \times S$$

o por la gramática lineal izquierda G_l :

$$S \rightarrow a \mid S + a \mid S \times a$$

Gramáticas estrictamente uni-lineales

- Las forma de reglas uni-lineales puede ser aun más restringida.
- Una gramática es estrictamente uni-lineal si cada regla contiene al menos un carácter terminal, es decir, si tiene la forma

$$A \rightarrow aB$$
 (ó $A \rightarrow Ba$), donde $a \in (\Sigma \cup \epsilon)$, $B \in (V \cup \epsilon)$

- Una simplificación adicional es posible; imponer que las únicas reglas terminales son reglas vacías.
- En este caso se asume que la gramática contiene únicamente los siguientes tipos de reglas:

$$A \rightarrow aB \mid \epsilon \text{ donde } a \in \Sigma, B \in V$$

Ejemplo

La anterior gramática G_r puede ser transformada en una gramática estrictamente lineal por la derecha G'_r :

$$S \rightarrow a \mid aA \quad A \rightarrow +S \mid \times S$$

o en su equivalente con reglas terminales nulas:

$$S \rightarrow aA \quad A \rightarrow +S \mid \times S \mid \epsilon$$

Ecuaciones de lenguajes lineales

- Mostraremos los lenguajes que generan las gramáticas uni-lineales.
- La prueba consiste en la transformación de las reglas a un conjunto de ecuaciones lineales, que tiene lenguajes regulares como sus soluciones.
- Más adelante veremos que cada lenguaje regular puede ser definido como una gramática uni-lineal.
- Por simplicidad tome una gramática $G = (V, \Sigma, P, S)$ en una forma estrictamente lineal por la derecha con reglas terminales nulas.

Ecuaciones de lenguajes lineales

 Cualquiera de esas reglas puede ser transcribidas dentro de una ecuación lineal teniendo los lenguajes desconocidos generados por cada no-terminal, esto es

$$L_A = \{x \in \Sigma^* \mid A \stackrel{+}{\Rightarrow} x\}$$

- y en particular, $L(G) \equiv L_s$.
- Una cadena $x \in \Sigma^*$ está en el lenguaje L_A si:
 - x es la cadena vacía y P contiene la regla $A \rightarrow \epsilon$;
 - x es la cadena vacía, P contiene la regla $A \rightarrow B$ y $\epsilon \in L_B$;
 - x = ay inicia con el carácter a, P contiene la regla $A \rightarrow aB$ y la cadena $y \in \Sigma^*$ está en el lenguaje L_B .

Ecuaciones de lenguajes lineales

 Sea n = | V | sea un número de no-terminales. Cada no-terminal A_i es definida por un conjunto de alternativas

$$A_i \rightarrow aA_1 \mid bA_2 \mid \ldots \mid \ldots \mid aA_n \mid bA_n \mid \ldots \mid A_1 \mid \ldots \mid A_n \mid \epsilon$$

algunos posiblemente desaparecidos.

• Escribimos las correspondientes ecuaciones:

$$L_{A_i} = aL_{A_1} \cup bL_{A_2} \cup \ldots \cup aL_{A_n} \cup bL_{A_n} \cup \ldots \cup L_{A_1} \cup \ldots \cup L_{A_n} \cup \epsilon$$

- El último término desaparece si la regla no contiene la alternativa A_i → ε.
- Este sistema de n ecuaciones simultáneas en n desconocidos (los lenguajes generados por los no-terminales) puede ser resuelta por los métodos bien conocidos de eliminación Gaussiana.

Propiedad. La identidad Arden

La ecuación

$$X = KX \cup L \tag{1}$$

• donde *K* es lenguaje no vacío y *L* cualquier lenguaje, tiene y solamente una solución

$$X = K^*L \tag{2}$$

 Es simple ver que el lenguaje K*L es la solución de (1), debido a que si sustituimos esta por la variable a ambos lados obtenemos la identidad

$$K^*L = (KK^*L) \cup L$$

 También es posible demostrar que la ecuación (1) no tiene más soluciones que (2).

Lenguaje de ecuaciones

La gramática lineal por la derecha

$$S
ightarrow sS \mid eA \quad A
ightarrow sS \mid \epsilon$$

define un lista de elementos e, divididos por el separador s. Este es definido por el sistema

$$\left\{ egin{aligned} \mathsf{L}_{\mathcal{S}} = \mathsf{sL}_{\mathcal{S}} \cup \mathsf{eL}_{\mathcal{A}} \ \mathsf{L}_{\mathcal{A}} = \mathsf{sL}_{\mathcal{S}} \cup \epsilon \end{aligned}
ight.$$

Substituyendo la segunda ecuación dentro de la primera:

$$\begin{cases} L_{S} = sL_{S} \cup e(sL_{S} \cup \epsilon) \\ L_{A} = sL_{S} \cup \epsilon \end{cases}$$

Lenguaje de ecuaciones

Entonces aplicando la propiedad distribuitiva de la concatenación sobre la unión, para factorizar a la variable L_S como un sufijo común:

$$\begin{cases} L_S = (s \cup es)L_S \cup e \\ L_A = sL_S \cup \epsilon \end{cases}$$

Aplicando la identidad de Arden a la primera ecuación, se obtiene:

$$\begin{cases} L_{S} = (s \cup es)^{*}e \\ L_{A} = sL_{s} \cup \epsilon \end{cases}$$

y entonces
$$L_A = s(s \cup es)^*e \cup \epsilon$$

ST0270-031 Clase 11

J.F. Cardona

Universidad EAFIT

3 de marzo de 2020

Agenda

- Capítulo 2. Sintaxis
 - Gramáticas de lenguajes regulares
 - Comparación de lenguajes regulares e independientes de contexto
 - Límites de los lenguajes independientes de contexto
 - Propiedades de clausura de REG y CF
 - Gramáticas con expresiones regulares
 - Jerarquía de Chomsky

Propiedad. Bombeo de cadenas

- Tome una gramática uni-lineal G.
- Para cualquier sentencia x lo suficientemente larga, con una longitud superior a cualquier constante dependiente de la gramática,
- es posible encontrar una factorización x = tuv, donde la cadena u no está vacía,
- de tal forma que, para cada n ≥ 0, la cadena tuⁿv está en el lenguaje.
- Es habitual decir que la sentencia dada puede ser "bombeada" al inyectar arbitrariamente muchas veces la subcadena u.

Prueba de la propiedad de bombeo

- Tome una gramática completamente lineal por la derecha y sea k el número de símbolos no terminales.
- Observe el árbol de sintaxis de cualquier sentencia (frase) x de longitud k ó más;

 claramente dos nodos existen con la misma etiqueta no terminal A.

Prueba de la propiedad de bombeo

- Considere la factorización de $t = a_1 a_2 ..., u = b_1 b_2 ... y$ $v = c_1 c_2 ... c_m$.
- Por lo tanto hay una derivación recursiva:

$$S \stackrel{+}{\Rightarrow} tA \stackrel{+}{\Rightarrow} tuA \stackrel{+}{\Rightarrow} tuv$$

que puede ser repetida para generar las cadenas *tuuv*, *tu...uv* y *tv*.

Propiedad

Cada lenguaje regular es independiente de contexto y allí existen lenguajes independientes de contexto que no son regulares.

 $REG \subseteq CF$

Rol de las derivaciones auto-anidadas

- Algunos lenguajes tienen características especiales.
- Tal es el caso de los lenguajes de Dyck o palíndromos y alguno derivados, son claramente no regulares.
- Sus gramáticas tiene algo en común, todas utilizan derivaciones auto-anidadas.

$$A \stackrel{+}{\Rightarrow} uAv \quad u \neq \epsilon \ y \ v \neq \epsilon$$

- Al contrario, tales derivaciones no pueden ser obtenidas con gramáticas uni-lineales; las cuales permiten únicamente recursiones unilaterales.
- Por ahora, la ausencia de la recursión auto-anidada es la que nos permite resolver las ecuaciones lineales por la identidad de Arden.

Propiedad

Cualquier gramática independiente de contexto que no produce derivaciones auto-anidadas genera un lenguaje regular.

Propiedad. El lenguaje con tres potencias iguales

El lenguaje

$$L = \{a^n b^n c^n \mid n \ge 1\}$$

no es independiente de contexto.

Demostración

- Por contradicción, asuma que la gramática G de L existe e imagine el árbol sintáctico de la frase $x = a^n b^n c^n$.
- Enfoquese en los caminos de la raíz (axioma S) a las hojas.
- Al menos un camino debe tener una longitud que se incrementa con la longitud de frase x, y desde que n puede ser arbitrariamente largo, tal camino necesariamente recorre dos nodos con etiquetas no-terminales, digamos A.
- La situación es mostrada en el diagrama.

donde t, u, v, w, z son cadenas terminales.

Demostración

Este esquema denota la derivación

$$S \stackrel{+}{\Rightarrow} tAz \stackrel{+}{\Rightarrow} t uAw z \stackrel{+}{\Rightarrow} t u v w z$$

 Esta contiene una subderivación recursiva de A a A, la cual puede ser repetida cualquier número de j veces, produciendo cadenas de tipo

$$y = t \underbrace{u \dots u}_{j} v \underbrace{w \dots w}_{j} z$$

- Ahora, examine todos los posibles casos de las cadenas u, w:
 - Ambas cadenas contiene solo uno y el mismo carácter.
 - La cadena u contiene dos o más caracteres, por ejemplo u = ...a...b....
 - La cadena *u* contiene únicamente un carácter, digamos *a* y la cadena *w* contiene un carácter diferente, digamos *b*.

Lenguaje de copia o replica

- Un extraordinario paradigma es la replica, encontrado en mucho contextos técnicos, siempre que dos listas contiene elementos que deben ser idénticos o más generalmente deben coincidir cada uno.
- Un caso concreto es suministrado por la declaración/invocación del procedimiento: la correspondencia entre la lista de parámetros formales y lista actual de parámetros.
- En la forma más abstracta:

$$L_{replica} = \{uu \mid u \in \Sigma^+\}$$

 Para mostrar que el lenguaje de replica no es un lenguaje independiente de contexto, debemos aplicar de nuevo el razonamiento del bombeo.

Propiedades de clausura de REG y CF

reflexión	estrella	unión o concatenación	complemento	intersección
$R^R \in REG$	$R^* \in REG$	$R_1 \oplus R_2 \in REG$	¬R ∈ REG	$R_1 \cap R_2 \in REG$
$L^R \in CF$	L* ∈ CF	$L_1 \oplus L_2 \in CF$	¬L ∉ CF	$L_1 \cap L_2 \notin CF$
				$L \cap R \in CF$

Definición. Trans-literación o homomorfismo alfabético

Considere dos alfabetos: *fuente* Σ y el *objetivo* Δ .

Una transliteración alfabética es una función:

$$h \colon \Sigma \to \Delta \cup \{\epsilon\}$$

La **transliteración o imagen** del carácter $c \in \Sigma$ es h(c), un elemento del conjunto objetivo. Si $h(c) = \epsilon$, el carácter es borrado.

Una transliteración es **no-borrable** si, para ningún carácter fuente c, este es $h(c) = \epsilon$.

La imagen de la cadena fuente $a_1 a_2 \dots a_n, \ a_i \in \Sigma$ es la cadena

 $h(a_1)h(a_2)\dots h(a_n)$ obtenida de la concatenación de imágenes de los caracteres individuales.

La **imagen de la concatenación de dos cadenas** v y w es la concatenación de las imágenes de las cadenas:

$$H(v.w) = h(v).h(w)$$

Transliteración

Ejemplo

La siguiente transliteración describe el manejo de ciertos carácteres por impresoras ya obsoletas:

```
\begin{array}{ll} h(c) = c & \text{Si } c \in \{a,b,\ldots,z,0,1,\ldots,9\}; \\ h(c) = c & \text{Si } c \text{ es una marca de puntuación o un espacio;} \\ h(c) = \square & \text{Si } c \in \{\alpha,\beta,\ldots,\omega\}; \\ h(\text{stxt}) = \epsilon & \\ h(\text{etxt}) = \epsilon & \end{array}
```

Un ejemplo de transliteración es

```
h(\text{stxt the const. } \pi \text{ has value 3,14 etxt}) = 
the const. \square has value 3,14
```

Gramáticas independientes de contexto extendidas

- La legibilidad de las expresiones regulares son buenas para listas y estructuras similares.
- Las gramáticas independientes de contexto son confusas para este tipo de casos.
- La idea es combinar expresiones regulares y reglas gramáticales en la notación:
- Gramáticas independientes de contexto extendidas o EBNF.
- La parte derecha de una producción es una expresión regular.

Ejemplo

• Considere una lista de declaraciones de variables:

```
char text1, text2;
real temp, result;
int alpha, beta2, gamma;
```

 Esta puede ser construida con una expresion regular, cuyo alfabeto Σ = {c, i, r, v, ', ', ', '} donde c, i, r son char, int, real y v para el nombre de una variable:

$$((c | i | r)v(, v)^*;)^+$$

• Esta lista puede ser definida también por la gramática

$$D \rightarrow DE \mid E \mid E \rightarrow AN$$
; $A \rightarrow c \mid i \mid r \mid N \rightarrow v, N \mid v$

<u>Definición</u>

Una gramática independiente de contexto extendida o gramática *EBNF*; $G=(V,\Sigma,P,S)$ que contiene exactamente $\mid V\mid$ reglas cada una de la forma $A\to \alpha$, donde A es un non-terminal y α es una expresion regular del alfabeto $V\cup \Sigma$.

Derivación

- La parte derecha α de una regla extendida A → α es una expresión regular, la cual genera un conjunto infinito de reglas:
- Cada una vista como la parte derecha de una regla no extendida teniendo muchas alternativas sin limite.
- Por ejemplo: $A \rightarrow (aB)^+$ es el conjunto de reglas:

$$A \rightarrow aB \mid aBaB \mid \dots$$

Derivación

- La derivación puede ser definida para las gramáticas extendidas también, via la noción de derivaciones para las expresiones regulares.
- Para una gramática EBNF G, considere una regla A → α, donde α es una expresión regular.
- Esta expresión regular contiene operadores de elección (choice): estrella, cruz, unión y opción.
- Sea α' una cadena derivada de α , que no contiene ningún operador de elección.
- Para cualquiera (posiblemente vacías) cadenas δ y η existe una derivación de un paso:

$$\delta A \eta \Rightarrow \delta \alpha' \eta$$

Derivación

- Entonces podemos definir derivación de múltiples pasos iniciando desde el axioma y produciendo cadenas terminales;
- y finalmente el lenguaje generado por una gramática EBNF, en el misma manera como gramáticas básicas.

Ejemplo

La gramática G

$$E \to [+ |-]T((+ |-)T)^* \quad T \to F((\times |/)F)^* \quad F \to (a | '('E')')$$

La derivación izquierda

$$E \Rightarrow T + T - T \Rightarrow F + T - T \Rightarrow a + T - T \Rightarrow a + F - T$$
$$\Rightarrow a + a - T \Rightarrow a + a - F \times F$$
$$\Rightarrow a + a - a \times F \Rightarrow a + a - a \times a$$

Ambigüedad en gramáticas extendidas

- Una gramática ambigua permanece ambigua si es escrita como una gramática extendida.
- En las gramáticas EBNF una forma diferente de ambiguedad puede surgir si la expresión regular es ambigua.
- Por ejemplo la siguiente expresion regular es ambigua:

• Como consecuencia de lo anterior la gramática extendida:

$$S \rightarrow a^*bS \mid ab^*S \mid c$$

También es ambigua.

Jerarquía de Chomsky

- Es una esquema de clasificación para PSG (Phrase Structure Grammar) y sus correspondientes PSL (Phrase Structure Language) que ellos generan.
- Los PSG pueden ser clasificados en una jerarquía.
- La clasificación de una gramática acuerdo a la jerarquía de Chomsky es basado únicamente en la presencia de ciertos patrones en las producciones.
- Están nombrados con números desde el 0 al 3.
- Donde 0 es la gramática más general.

Nombre

Sin restricciones

Forma de las reglas

$$\beta \to \alpha$$

donde $\alpha, \beta \in (\Sigma \cup V)^+$

Familia del lenguaje

Recursivamente enumerable

Tipo de reconocedor

Máquinas de Turing

Nombre

Sensitiva al contexto

Forma de las reglas

$$\beta \to \alpha$$

donde $\alpha, \beta \in (\Sigma \cup V)^+$ y $|\beta| \leq |\alpha|$.

Familia del lenguaje

Contextual o dependiente del contexto

Tipo de reconocedor

Máquinas de Turing con complejidad del espacio limitada por la longitud de la cadena de entrada.

Nombre

Independiente al contexto o BNF

Forma de las reglas

$$A \rightarrow \alpha$$

donde A es un non-terminal $(A \in V)$ y $\alpha \in (\Sigma \cup V)^*$.

Familia del lenguaje

Independiente del contexto (CF) o algebraica.

Tipo de reconocedor

Autómata de pila.

Nombre

Regular o unilineal (lineal por la derecha o por la izquierda).

Forma de las reglas

Lineal por la derecha

$$A \rightarrow uB$$

Lineal por la izquierda

$$A \rightarrow Bu$$

donde A es un non-terminal ($A \in V$) y $u \in \Sigma^*$ y $B \in (V \cup \epsilon)$

Familia del lenguaje

Regular REG o racional o de estado finito.

Tipo de reconocedor

Autómata finito.

Jerarquía de Chomsky

Ejemplo de una gramática tipo 1 de lenguaje de potencia igual de tres elementos

$$L = \{a^n b^n c^n \mid n \ge I\}$$

Este es generado por la gramática sensitiva al contexto:

$$1.S \rightarrow aSBC$$
 $3.CB \rightarrow BC$ $5.bC \rightarrow bc$ $2.S \rightarrow abC$ $4.bB \rightarrow bb$ $6.cC \rightarrow cc$

Jerarquía de Chomsky

Ejemplo. Gramática tipo 1 de réplica con centro

El lenguaje $L = \{ycy \mid y \in \{a, b\}^+\}$ contiene frases como: aabcaab.

La gramática:

genera frase de dicho lenguaje L.