Clustering: Concepts, Methods and Evaluation

Richard Liu

School of Mathematics, XMU

August 1, 2020

Content

- Introduction
- 2 K-means
- Agglomerative Hierarchical Clustering
- Density-Based Clustering: DBSCAN
- 6 Clustering Evaluation

Source

• Pang Ning Tan, Introduction to Data Mining

Section 1

Introduction

Introduction

- CLustering: An unsupervised classification method.
- In this chapter, we will introduce only exclusive, not overlapping or fuzzy methods. Only complete not partial clustering algorithms.
- K-means and DBSCAN are two classical clustering methods. Although many other methods such as BIRCH and CURE are proposed, we will not introduce them due to time limits.

Section 2

K-means

K-means: General Procedure

Algorithm 8.1 Basic K-means algorithm.

- 1: Select K points as initial centroids.
- 2: repeat
- 3: Form K clusters by assigning each point to its closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: until Centroids do not change.

K-means: Graph Illustration

- How to select points?
- The distance metric could be changed, it depends of
 - the objective function.

Why Centroid?

In fact, if the objective function is

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} (c_i - x)^2$$

where c_i is the centroid and x means the data points. By F.O.C we have

$$\frac{\partial}{\partial c_k} SSE = \frac{\partial}{\partial c_k} \sum_{i=1}^K \sum_{x \in C_i} (c_i - x)^2 = \sum_{x \in C_k} 2(c_k - x) = \mathbf{1}$$

This means $x = \frac{1}{m_k} \sum_{x \in C_k} x_k$, where $|C_k| = m_k$.

Why Centroid?

However, if the objective function is

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} |c_i - x|$$

Then we have

$$\sum_{\mathbf{x}\in\mathcal{C}_k} 2|\mathbf{c}_k - \mathbf{x}| = 0$$

This means $x = median\{x \in C_k\}$, where $|C_k| = m_k$.

Bisecting K-means

Algorithm 8.2 Bisecting K-means algorithm.

- 1: Initialize the list of clusters to contain the cluster consisting of all points.
- 2: repeat
- 3: Remove a cluster from the list of clusters.
- 4: {Perform several "trial" bisections of the chosen cluster.}
- 5: for i = 1 to number of trials do
- 6: Bisect the selected cluster using basic K-means.
- 7: end for
- 8: Select the two clusters from the bisection with the lowest total SSE.
- 9: Add these two clusters to the list of clusters.
- 10: until Until the list of clusters contains K clusters.

Pros and Cons

Pros:

- Efficient.
- Could be applied into different cases such as document data.

Cons:

- Not suitable for non-globular data, unequal size data and unequal density data.
- Hard to select points by random initialization and "farthest strategy".
- Hard to select *K*.

Non-globular Data

(a) Original points.

(b) Two K-means clusters.

Clustering: Concepts, Methods and Evaluation

Unequal Size Data

(a) Original points.

(b) Three K-means clusters.

Unequal Density Data

(b) Three K-means clusters.

Clustering: Concepts, Methods and Evaluation

Section 3

Agglomerative Hierarchical Clustering

Introduction

- Hierarchical Clustering: Another kind of clustering techniques.
 - Agglomerative: Merge, merge and merge.
 - Divisive: Split, split and split.
- We will draw a dendrogram to describe the result.

Dendrogram and Nested Cluster Diagram

516 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

(a) Dendrogram.

(b) Nested cluster diagram.

Clustering: Concepts, Methods and Evaluation

Agglomerative Hierarchical Clustering: General Procedure

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.

- 1: Compute the proximity matrix, if necessary.
- 2: repeat
- 3: Merge the closest two clusters.
- Update the proximity matrix to reflect the proximity between the new cluster and the original clusters.
- 5: until Only one cluster remains.

- How to compute distance?
- What is proximity?

Richard Liu

Example Data: xy Coordinates of points

Point	x Coordinate	y Coordinate	
p_1	0.40	0.53	
p_2	0.22	0.38	
p_3	0.35	0.32	
p_4	0.26	0.19	
p_5	0.08	0.41	
p_6	0.45	0.30	

Example Data: Distance Matrix

	p_1	p_2	p_3	p_4	p_5	p_6
p_1	0.00	0.24	0.22	0.37	0.34	0.23
p_2	0.24	0.00	0.15	0.20	0.14	0.25
p_3	0.22	0.15	0.00	0.15	0.28	0.11
p_4	0.37	0.20	0.15	0.00	0.29	0.22
p_5	0.34	0.14	0.28	0.29	0.00	0.39
p_6	0.23	0.25	0.11	0.22	0.39	0.00

Proximity Measurements

- MIN (Single Link), MAX (Complete Link), Group Average and Wald's Method (not explain here).
- Differences?

Single Link

(a) Single link clustering.

(b) Single link dendrogram.

Complete Link

(b) Complete link dendrogram.

Group Average

(a) Group average clustering.

(b) Group average dendrogram.

Pros and Cons

Pros:

Easy to understand the hierarchy.

Cons:

- Not so efficient.
- No global objective function.
- The merge is final.

By the way, we usually initialize with K-means to prevent some noises, outliers and so on.

Section 4

Density-Based Clustering: DBSCAN

Introduction

- Density-Based Clustering Method
- Three concepts: core, border and noise points.
- Two parameters: min distance and number of points within a range.
- Parameters Selection: K-dist method.
- Problem: Varying Densities, High-Dimensional Data

Core, Border and Noise Point

K-dist

Varying Distance

DBSCAN Result

Section 5

Clustering Evaluation

Evaluation Techniques

- Partitional Clustering: Similarity Matrix
- Hierarchical Clustering: Cophenetic Distance Matrix
- Select *K* in K-means: Elbow Method
- Clustering Tendency: Hopkins Statistic:

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} w_i + \sum_{i=1}^{p} u_i}$$

• CLassification-Oriented Measures: Confusion Matri

Similarity Matrix

(a) Well-separated clusters.

(b) Similarity matrix sorted by K-means cluster labels.

Cophenetic Distance Matrix (Single Link)

	p_1	p_2	p_3	p_4	p_5	p_6
p_1	0	0.222	0.222	0.222	0.222	0.222
p_2	0.222	0	0.148	0.151	0.139	0.148
p_3	0.222	0.148	0	0.151	0.148	0.110
p_4	0.222	0.151	0.151	0	0.151	0.151
p_5	0.222	0.139	0.148	0.151	0	0.148
p_6	0.222	0.148	0.110	0.151	0.148	0

Elbow Method

Thank you!

