

Cornell University

IMPACT ON MULTILAYERED COMPOSITE PLATES

bу

B.S. Kim and F. C. Moon

April, 1977 Final Report NASA CR 135247

Theoretical and Applied 19951109 069 Mechanics

DISTRIBUTION STATEMENT A

Approved for public released

Thurston Hall Ithaca, New York

DTIC QUALITY INSPECTED 5

IMPACT ON MULTILAYERED COMPOSITE PLATES

by

B.S. Kim and F. C. Moon

April, 1977
Final Report NASA CR 135247

Accesio	n For	-
NTIS DTIC		No. of Street, or other Designation of the last
Unacine Justific		-
	ICAI memo	_
Distrib	ition/ 11-2-95	
	verlability Codes	
	the part of the second property of the second section of the property of the second section of the section	

1.Report No. NASA CR135247	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle		5. Report Date	
Impact on Multi layered Com	mosite Plates	4/1977	
Impact on Multi layered composite fixace		6. Performing Organization Code	
7. Author(s)		8. Performing Organization	
B.S. KIM and F.	C MOON	Report No.	
D.D. KIR Care 1.	Hoon	10. Work Unit No.	
9. Performing Organization Name and Address		10	
Department of Theoretical and Applied Mech. Cornell University		11. Contract or Grant No.	
Ithaca, N.Y. 1	•	NSG-3080	
		13. Type of Report and Peri Covered: Final Report	
12. Sponsoring Agency Name and Address		9/75-12/76	
National Aeronautics and Space Administration Washington, D.C., 20546		14. Sponsoring Agency Code	
15. Supplementary Notes _		1	
Proje	ect Manager: C.C. Chamis	atuma Dissision	
	Materials and Stru NASA Lewis Researc		
	Cleveland, Ohio, 1		
16. Abstract	7		
Stress wave propagation	in a multilayer composite plat	te due to impact has been	
	sotropic elasticity theory. The		
	copic layers and the approximat		
is then applied each layer to	o obtain a set of difference-di	ifferential equations of	
motion. Dispersion relations	s for harmonic waves and correct	ction factors are found. The	
governing equations are reduced as a second	eed to difference equations via	for an arbitrary number of	
layers in the plate and the t	cransient propagation of waves	is calculated by means of	
a Fast Fourier Transform algo			
The multilayered plate p	problem is extended to examine	the effect of damping layers	
	Layers. A reduction of the int		
is significant when the thick	mess of the damping layer is i	increased but it seems that	
the effect is mostly due to t	the softness of the damping lay	yer. Finally the problem	
of a composite plate with a c	crack on the interlarminar bour	idary has been formulated.	
,			
17. Key Words (Suggested by Au	1		
Multilayered Composite Plate		, unlimited	
mate Plate Theory of Mindlin			
Stress Wave, Dispersion Relationary Surface, Damping Layer, Crack			
Fourier Transform.	, 1000		
19. Security Classif. (of this	20 Security Classif (of	21. No. of 22. Price*	
report) Unclassified	this page) Unclassified	Pages	
L \ OHCTG99T1TEG	T O- / OTTCTCCDTTTTCC	-	

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22151

Contents

		Page
	Preface and Summary	ii
	Symbols Used	iv
I	Introduction	1
II	Impact on Multilayer Elastic Plate	5
III	Impact of a Composite Plate with an	
	Interlaminar Damping Layer	30
IV	Impact on a Plate with a Crack	37
V	Conclusion and Recommneded Research	43
	Reference	7+74
	Figures	47
	Appendix A - Flow Chart	72
	Appendix B - Sample Computer Deck	76
	Appendix C - Program and Sample Output	77

SYMBOLS USED

- Δ: Plate thickness (Nondimensional length unit)
- b: A half of the layer thickness
- N: Layer number in the plate
- ρ: Density
- t : Impact time
- $P_{0}(x_{1},t)$: Impact stress
- * $x_1(\eta)$, $x_2(\xi)$: Coordinate variables
- * t(τ): Time variable
 - T_o : Nondimensional time unit = $a/\sqrt{c_{66}/\rho}$
- * σ_{ii} , $\sigma(\Sigma)$, $\tau(T)$, σ_{11} : Stress tensor and its components
- * u_i , u(U), v(V): Displacement vector and its components
- * c_{ijkl} , $c_{ij}(C_{ij})$: Elastic Moduli ($\hat{c}_{11} = \hat{c}_{11} \frac{\hat{c}_{12}}{\hat{c}_{22}}$)
 - λ , μ : Lame's constants
 - $\epsilon_{\text{ii}}^{},\;\epsilon_{\text{i}}^{}\colon$ Infinitesimal strain tensor
 - $\hat{\bar{A}}$: Laplace transform (in τ) and Fourier transform (in η) of A
 - $P_n(\xi)$: Legendre polynomial of ξ
- * k(k): Wave number
- * $\omega(\bar{\omega})$: Frequency
 - $\theta,~\alpha,~\beta\colon$ Phase shifts (wave number through the thickness)
 - $\mathbf{C}_{D},~\mathbf{C}_{S}\colon$ Dilatational and shear wave speed
 - $G^*(\omega) = G^*(\omega) + iG^{"}(\omega)$: Complex modulus of elastomer
 - D: Thickness of viscoelastic layer
 - h: A half of the crack length

^{*} Quantities in () are nondimensional quantities.

Preface and Summary

This report is the last of a series on the response of composite plates to impact forces. The motivation for these studies has been an attempt to understand the damage to aircraft jet engine fan blades by foreign object impact such as ice balls, stones, and birds. In addition, the National Aeronautics and Space Administration, sponsors of this research, have sought to develop computer codes from these analyses which will aid the fan blade designer in locating potential failure modes and positions and thus assist in optimizing fan blade fabrication to create greater impact tolerance.

The basic approach of the principal investigator in these studies has been to use wave propagation techniques to model the early response of composite plates to impact type forces. In using the wave method, the plate can be simplified in the analyses by neglecting reflections from edge boundaries far from the impact point. Thus, while the overall geometry of the plate is no longer included in the analysis, more sophisticated mathematical models near the point of impact have been used.

The basic model for the composite plate studies has been the anisotropic plate theory as extended by Mindlin [1] to account for wave phenomena. The plate equations were used as an approximation of the exact theory of elasticity because they lead to simpler computational schemes for evaluating average stresses and displacements in the plate.

Fourier and Laplace transform techniques have been used throughout these studies and inversion of the transforms has been accomplished with a fast Fourier transform algorithm. This algorithm is an effective computational tool but requires careful scaling of the impact problem in both space and time

variables. When it is properly used it can lead to calculations of thousands of stress values in a fraction of the time of conventional finite element schemes.

In summary, the use of plate models for the fan blade impact has avoided the analytical complexities of the exact theory of elasticity as well as the computational difficulties of finite element methods.

In earlier reports both central and edge impact of an anisotropic plate were studied, [2-4]. In those reports only wave propagation in the plane of the plate was investigated. In another report [5] a multilayer plate model was developed in order to study impact induced wave propagation in both the thickness and inplane directions. In this final report further results are presented from the multilayer model. The composite plate has been modeled with as many as eight separate layers. Each layer may itself have several plys, so that effective anisotropic constants must be used for each layer in the analysis. The mathematical model exhibits wave propagation in both the thickness and implane directions. Impact generated waves are shown to lead to interlaminar shear stresses and interlaminar tensile stresses during and after impact.

This report also presents an analysis of an impact damping mechanism.

This consists of thin damping layer introduced between composite layers in the mathematical model. The resulting response due to impact shows that considerable reduction of stress can be achieved. However it appears that this stress reduction is linked to the lower elastic moduli of the damping sublayers and not the viscous nature of the sublayer.

Fianlly an attempt was made to analyze the impact of a plate with a crack. While the problem has been formulated, no progress was made on obtaining numerical answers to the crack problem.

I. INTRODUCTION

The present research is a continuation of our previous work on the stress wave propagation in a laminated composite [2-5]. It has been motivated by the problem of the impact on jet engine fan blades caused by ingestions of foreign materials, such as birds and hailstones. The successful application of fiber-reinforced composite materials depends on the ability of these materials to withstand forces due to such impact.

The simplest approach to examine the dynamic behavior of a composite plate is based upon the work of White and Angona [6]. In their work, referred to as the effective modulus theory, the response of the composite plate to waves propagating normal to the laminate is predicted by a single constant wave speed, regardless of the internal structure of composites. Even though this theory is satisfactory for many problems, it fails in the case of some problems when the wave lengths become short. To overcome this limitation, Sun and et al. proposed a model which includes the effects of internal structure, such as the layer thickness [7]. In their work, referred to so the effective stiffness theory, displacements of both the reinforce ing layer and the matrix layer are expressed as linear expansions about the midplanes of the layers and approximate equations of motion are derived for both layers. Then these approximate equations are required to satisfy the continuity conditions of displacement and stress components on every interface. Using this model the propagation of harmonic waves has been examined.

More recently a number of researchers have presented models for multilayer plates either by the discrete-continuum theory or the continuum mixture theory [8-14]. Many, however examined only the frequency-wave number dispersion relationship and stopped short of the transient

impact problem except for a few experimental or numerical works using the finite element method which sometimes show a considerable discrepancy from the experimental results.

In this report we present a new attempt to mathematically model the multilayer plate and develop a method by which we can examine the transient propagation of an impact wave in the plate, not only along the longitudinal direction but also through the thickness direction of the plate as well, using an inexpensive Fast Fourier Transform algorithm [3,15].

The composite plate under consideration for the first part of the present report is imagined to comprise N identical elastic layers. And each layer is made of a number of unidirectional plys lying alternately at a layup angle $\pm \phi$ from the symmetry axis, as shown in Fig. 1. elastic properties of the plate depend on the layup angle ϕ . A key assumption for the first step of the work is that all the layers are identical. While restricting the application, this assumption allows us to formulate the problem using difference-differential equations due to a rather simple periodic structure of the plate. This technique for periodic structures has been widely used in the study of electrical transmission lines [16] and in the vibration of multistory buildings [17]. By means of an approximate plate theory of Mindlin [18], a set of approximate equations of motion is developed for a typical layer using the interlaminar stresses as explicit variables. The relative motion of a layer to the adjacent layers is related by phase shifts which represent the solution of the difference parts of equations. In this way the number of the layers can be increased without increasing the size of matrix in the numerical process of invert to satisfy the boundary conditions.

It is also well understood that a thin viscoelastic layer present between elastic layers can reduce the elastic impact energy significantly by dissipating the strain energy into heat [19,20]. In our previous work [5] an elastomer layer is presented between a composite half space and a protection strip on the edge on which the impact is applied. Numerical results of the work showed an appreciable reduction in the normal stress. As an extension of this research and the first part of this report we now examine the wave propagation in a composite plate made of two elastic layers and an elastomer layer. Generalization of this problem is straightforward by assuming that our new periodic composite layer is now made of an elastic sublayer and a viscoelastic sublayer lying alternately. We can now develop the approximate theory which includes both sublayers. For the second part of the present research we will examine the simplest case of this kind, i.e., an impact on a composite plate consisting of two elastic layers and an elastomer layer between them.

Another possible extension of the multilayer composite plate which can be found in frequent practice is discussed in the last part of this report. In this chapter a crack is introduced on the interface between two elastic layers which represent the final step before a failure occurs in the composite either by spalling or by excessive shear stress. Such crack problems constitute the main part of the study of fracture mechanics. A serious mathematical difficulty arises even in the static problems because of the mixed boundary conditions along the crack direction. The difficulty becomes more serious in the case of dynamic problems due to the diffraction of waves at the crack tip [21-24]. By employing the approximate equations of motion developed in the first part, the transient wave problem has been formulated and dual integral

equations are obtained after application of the mixed boundary conditions.

But the resulting dual integral equations are not easy to solve and are under investigation at this time.

In the results presented in this report only a line impact has been examined. This has simplified the calculations and saved computer time in testing the model. The technique, however, can be extended to the two-dimensional or central impact problem. Since the impact speed is very high (~450 m/sec) and the impact time is short (< 100 µsec), the impact can be in the range of the elastic-plastic impact or even in the range of the hydraulic impact. But the initial transmission of impact energy is propagated by elastic waves, as if in an unbounded plate, and it is useful to investigate the problem by means of the linear theory of anisotropic elasticity in an infinite composite plate.

II. IMPACT ON MULTILAYER ELASTIC PLATE

1. Formulation

Basic Theory of Linear Anisotropic Elasticity

Cauchy's equations of motion in cartesian tensor form without body forces are given by

$$\sigma_{ij,i} = \rho \ddot{u}_{j}$$

$$\sigma_{ij} = \sigma_{ji}$$
(II-1)

where the repeated index implies summation on that index. A comma represents a partial differentiation with respect to the index following the comma and a superposed dot denotes a time derivative.

tensor is related to the infinitesimal strain tensor ϵ_{ij} by

$$\sigma_{ij} = c_{ijkl} \epsilon_{kl} \text{ or } \sigma_{i} = c_{ij} \epsilon_{j}$$
 (II-2)

Analysis of a Layer

For a layer shown in Fig. 1 we employ the approximate plate theory of Mindlin [18] and the displacement field \dot{u} is expanded in terms of the Legendre polynomials as

$$u(x_1, x_2, x_3, t) = \sum_{n=0}^{\infty} u^{(n)}(x_1, x_3, t) \cdot P_n(\xi)$$
 (II-3)

where ξ is the local coordinate along the thickness direction, normalized by b, a half layer thick.

Instead of solving Eq. (II-1) directly we solve a new approximate equation of motion which is obtained through a variational process by integration of Eq. (II-1) over the thickness ξ (see [1], [23]). The result is

$$b \cdot \sigma_{\alpha j \alpha}^{(n)} + [P_n(\xi) \cdot \sigma_{2j}]_{\xi=-1}^1 - \sigma_{2j}^{*(n)} = \frac{2\rho b}{2n+1} \ddot{u}_j^{(n)} : j = 1,2,3$$
(II-4)

where

$$\sigma_{\alpha j}^{(n)} = \int_{-1}^{1} P_n(\xi) \cdot \sigma_{\alpha j} d\xi$$

$$\sigma_{2j}^{*(n)} = \int_{-1}^{1} \frac{dP(\xi)}{d\xi} \sigma_{2j} d\xi$$

By substituting the constitutive relation (II-2) for the displacement expansion (II-3) into the above approximate equations of motion, we can find governing equations of motion in terms of $u_1^{(0)}$, $u_2^{(0)}$, $u_3^{(0)}$, $u_1^{(1)}$... The accuracy of this approximate theory depends on how many terms of the

displacement field we retain. Since the complexity in formulation increases rapidly with the number of terms included we keep terms only up to second order. Furthermore, we will examine harmonic waves propagating along the x_1 and x_2 directions so that we drop $u_3^{(n)}$ terms and set $\frac{\partial}{\partial x_3}$ { } = 0. Next to get rid of the undesired coupling with higher modes we set $\ddot{u}_1^{(2)} = \ddot{u}_2^{(2)} = 0$. Then the resulting equations are

$$2b(c_{11}u_{1,11}^{(0)} + \frac{1}{b}c_{12}u_{2,1}^{(1)}) + (\sigma_{21}^{+} - \sigma_{21}^{-}) = 2b\rho\ddot{u}_{1}^{(0)}$$

$$2bc_{66}(\frac{1}{b}u_{1,1}^{(1)} + u_{2,11}^{(0)}) + (\sigma_{22}^{+} - \sigma_{22}^{-}) = 2b\rho\ddot{u}_{2}^{(0)}$$

$$\frac{2b}{3}(c_{11}u_{1,11}^{(1)} + \frac{3}{b}c_{12}u_{2,1}^{(2)}) - 2c_{66}(\frac{u_{1}^{(1)}}{b} + u_{2,1}^{(0)}) + (\sigma_{21}^{+} + \sigma_{21}^{-}) = \frac{2}{3}b\rho\ddot{u}_{1}^{(1)}$$

$$\frac{2b}{3}(c_{66}u_{2,11}^{(1)} + \frac{3}{b}c_{66}u_{1,1}^{(2)}) - 2(c_{12}u_{1,1}^{(0)} + \frac{1}{b}c_{22}u_{2}^{(1)}) + (\sigma_{22}^{+} + \sigma_{22}^{-}) = \frac{2}{3}b\rho\ddot{u}_{2}^{(1)}$$

$$(\sigma_{22}^{+} - \sigma_{22}^{-}) - 2(c_{12}u_{1,1}^{(1)} + \frac{3}{b}c_{22}u_{2}^{(2)}) = 0$$

$$(II-5)$$

$$(\sigma_{21}^{+} - \sigma_{21}^{-}) - 2(c_{66}u_{2,1}^{(1)} + \frac{3}{b}c_{66}u_{1}^{(2)}) = 0$$

where the sign + and - represent the stress components on the top and bottom surfaces of the layer under examination, i.e., at $\xi=\pm 1$. Here we notice that the first, fourth, and last equations are written in terms of $u_i^{(n)}$, where (n+i) is an odd integer and represents the thickness stretching motion (or symmetric motion). In the rest of the equations in which (n+i) is an even integer the displacements represent the flexual motion (or antisymmetric motion). Hence, this process has decoupled the

stretching motion from bending motion. To get rid of the 2nd order modes from Eq. (II-5) we solve the last two equations for $u_2^{(2)}$ and $u_1^{(2)}$, and insert them into the remaining equations. Then Eq. (II-5) can be reduced as follows:

$$2b(c_{11}u_{1,11}^{(0)} + \frac{1}{b}c_{12}u_{2,1}^{(1)}) + (\sigma_{21}^{+} - \sigma_{21}^{-}) = 2b\rho\ddot{u}_{1}^{(0)}$$

$$2b(c_{66}(\frac{1}{b}u_{1,1}^{(1)} + u_{2,11}^{(0)}) + (\sigma_{22}^{+} - \sigma_{22}^{-}) = 2b\rho\ddot{u}_{2}^{(0)} \qquad (II-6)$$

$$\frac{2b}{3}\hat{c}_{11}u_{1,1}^{(1)} - 2c_{66}(\frac{u_{1}^{(1)}}{b} + u_{2,1}^{(0)}) + \frac{c_{12}b}{3c_{22}}(\sigma_{22}^{+} - \sigma_{22}^{-}),_{1} + (\sigma_{21}^{+} + \sigma_{21}^{-}) = \frac{2}{3}b\rho\ddot{u}_{1}^{(1)}$$

$$-2(c_{12}u_{1,1}^{(0)} + \frac{1}{b}c_{22}u_{2}^{(1)}) + (\sigma_{22}^{+} + \sigma_{22}^{-}) = \frac{2}{3}b\rho\ddot{u}_{2}^{(1)}$$

$$\cdot \text{ where } \hat{c}_{11} = c_{11} - c_{12}^{2}/c_{22}.$$

$$\underline{Plate \ Analysis}$$

In view of the Legendre polynomial expansion, the displacements on the both sides of a layer can be written as $u_{i}^{\pm} = u_{i}^{(0)} \pm u_{i}^{(1)}$ since the governing equations for a layer, Eq. (II-6), only include terms up to the first order of expansion, i.e., a linear expansion. Remembering that this analysis is valid for any arbitrary layer in a plate, say the nth layer, equation (II-6) can be immediately written as

These two motions are, of course, coupled through the boundary conditions.

$$\begin{split} \rho\left(\ddot{\mathbf{u}}_{n} + \ddot{\mathbf{u}}_{n-1}\right) &= c_{11}(\mathbf{u}_{n} + \mathbf{u}_{n-1})_{,11} + \frac{c_{12}}{b}(\mathbf{v}_{n} - \mathbf{v}_{n-1})_{,1} + \frac{1}{b}(\tau_{n} - \tau_{n-1}) \\ \rho\left(\ddot{\mathbf{v}}_{n} - \ddot{\mathbf{v}}_{n-1}\right) &= -\frac{3}{b}c_{12}(\mathbf{u}_{n} + \mathbf{u}_{n-1})_{,1} - \frac{3}{b^{2}}c_{22}(\mathbf{v}_{n} - \mathbf{v}_{n-1}) + \frac{3}{b}(\sigma_{n} + \sigma_{n-1}) + (\tau_{n} - \tau_{n-1})_{,1} \\ \rho\left(\ddot{\mathbf{u}}_{n} - \ddot{\mathbf{u}}_{n-1}\right) &= \hat{c}_{11}(\mathbf{u}_{n} - \mathbf{u}_{n-1})_{,11} - \frac{3c_{66}}{b^{2}}(\mathbf{u}_{n} - \mathbf{u}_{n-1}) - \frac{3}{b}c_{66}(\mathbf{v}_{n} + \mathbf{v}_{n-1})_{,1} \\ &+ \frac{c_{12}}{c_{22}}(\sigma_{n} - \sigma_{n-1})_{,1} + \frac{3}{b}(\tau_{n} + \tau_{n-1}) \\ \rho\left(\ddot{\mathbf{v}}_{n} + \ddot{\mathbf{v}}_{n-1}\right) &= c_{66}\left\{\frac{1}{b}(\mathbf{u}_{n} - \mathbf{u}_{n-1})_{,1} + (\mathbf{v}_{n} + \mathbf{v}_{n-1})_{,11}\right\} + \frac{1}{b}(\sigma_{n} - \sigma_{n-1}) \end{split}$$

where σ and τ are used to represent σ_{22} and σ_{12} and u and v denote u_1 and u_2 , respectively. These equations are the approximate equations of motion of a layer written in the form of a difference-differential equation. For a plate made of N layer, the above equations contain 4(N+1) unknowns $(u_0, v_0, \tau_0, \sigma_0, \dots u_N, v_N, \tau_N, \sigma_N)$ and offer 4N equations. Since the additional four conditions are supplied by boundary conditions on the top and bottom surfaces, solutions of these equations can be found.

In Eq. (II-7) we notice some important points. The first point is that the logitudinal coordinate \mathbf{x}_1 and the time variable are continuous variables while the thickness coordinate \mathbf{x}_2 is now discrete. This enables us to use integral transforms in \mathbf{x}_1 and time variables so that we can arrive at pure difference equations after integral transforms. The second point concerns the continuity conditions of stress and displacement. We note that $\mathbf{u}, \ \mathbf{v}, \ \sigma_{22}$, and $\ \sigma_{12}$ have to be continuous across the layer boundary and these conditions are identically satisfied by

Eq. (II-7). But the normal stress tangential to the layer boundary is not necessarily continuous and Eq. (II-7) allows such a possibility. One can retain higher order terms in the displacement expansion given by Eq. (II-3) to give more accurate results. This can be achieved more easily by using Eq. (II-7) and increasing the number of layers in a plate under consideration. This process does not give any additional difficulties except a little more computer time.

2. Dispersion Relationships of Harmonic Waves

Harmonic Waves

Before we examine the transient propagation of stress wave due to an impact we first investigate dispersion relations of harmonic waves in a composite plate governed by approximate equations of motion (II-7). For harmonic waves propagating along the x_1 axis we assume

$$\{u_n, v_n, \sigma_n, \tau_n\} = \{u_n, v_n, \Sigma_n, T_n\} \stackrel{i(kx_1-\omega t)}{e}$$
(II-8)

Substituting this into the approximate equations of motion (II-7) we obtain

$$\begin{split} (\overline{\omega}^2 - c_{11} \kappa^2) \, (U_n + U_{n-1}) + c_{12} i \kappa (V_n - V_{n-1}) + b \, (T_n - T_{n-1}) &= 0 \\ - 3 c_{12} i \kappa (U_n + U_{n-1}) + (\overline{\omega}^2 - 3 c_{22}) \, (V_n - V_{n-1}) + i \kappa b \, (T_n - T_{n-1}) + 3 b \, (\Sigma_n + \Sigma_{n-1}) &= 0 \\ 3 c_{66} i \kappa (U_n - U_{n-1}) + (\overline{\omega}^2 - c_{66} \kappa^2) \, (V_n + V_{n-1}) + b \, (\Sigma_n - \Sigma_{n-1}) &= 0 \\ (\overline{\omega}^2 - \hat{c}_{11} \kappa^2 - 3 c_{66}) \, (U_n - U_{n-1}) - 3 c_{66} i \kappa \, (V_n + V_{n-1}) + 3 b \, (T_n + T_{n-1}) \\ + \frac{c_{12}}{c_{12}} \, i \kappa b \, (\Sigma_n - \Sigma_{n-1}) &= 0 \end{split}$$

for $n = 1, 2 \dots N$. Here we set

$$\kappa = bk = k(\frac{\Delta}{2N}), \quad \Delta = 2bN$$

$$\bar{\omega}^2 = \rho b^2 \omega^2 = \rho \omega^2 \left(\frac{\Delta}{2N}\right)^2$$

and Δ is the total thickness of the plate. For a plate consisting of N layers, the boundary conditions require traction free surfaces, namely, $T_o = \Sigma_o = T_N = \Sigma_N = 0.$ When these conditions are applied to equation (II-9) we obtain 4N equations in terms of 4N unknowns $(U_o, V_o; U_n, V_n, T_n, \Sigma_n \text{ with } n = 1, \dots N-1; U_N, V_N)$. By setting the coefficient matrix to be singular, required dispersion relationships can be obtained.

One-layer Plate

The dispersion relationship for a plate made of a single layer can be found by setting N = 1 in equation (II-9) with $\Sigma_0 = T_0 = \Sigma_1 = T_1 = 0$. The resulting equations are now written in matrix form as follows:

$$\begin{bmatrix} (\bar{\omega}^2 - c_{11} \kappa^2) & c_{12} i \kappa & 0 & 0 \\ -c_{12} i \kappa & \frac{1}{3} (-3 c_{22} + \bar{\omega}^2) & 0 & 0 \\ 0 & 0 & c_{66} i \kappa & c_{66} \kappa^2 - \bar{\omega}^2 \\ 0 & 0 & \hat{c}_{11} \kappa^2 + 3 c_{66} - \bar{\omega}^2 & 3 c_{66} i \kappa \end{bmatrix} \cdot \begin{bmatrix} U_1 + U_0 \\ V_1 - V_0 \\ U_1 - U_0 \\ V_1 + V_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(II-10)

Then by setting the determinant of the coefficient matrix to zero we obtain

$$c_{11}\kappa^{2} - \frac{1}{3}(\bar{\omega}^{2} - 3c_{22})(\bar{\omega}^{2} - c_{11}\kappa^{2}) = 0$$

$$c_{66}\kappa^{2} - \frac{1}{3}(\bar{\omega}^{2} - \hat{c}_{11}\kappa^{2} - 3c_{66})(\bar{\omega}^{2} - c_{66}\kappa^{2}) = 0 .$$
(II-11)

Here we notice that the first relationship corresponds to the state of deformation of $U_1 = U_0$ and $V_1 = -V_0$, which represents the thickness extension of the plate (or the symmetric mode), and the second describes the flexual deformation (or antisymmetric mode). The exact theory of plates gives an infinite number of dispersion relationships, but because this model only has two inertia points (namely n = 0, 1), each of them having two components of displacement, we only have the first four relationships.

Dispersion relationships and corresponding phase velocities for an isotropic plate with Poisson's ratio 1/4 (namely $\lambda = \mu$) are given in Fig. 2a and 2b up to the range where the wave length becomes equal to the plate thickness. Solid lines represent the symmetric modes and dotted lines the antisymmetric modes. As predicted by Mindlin and Medick the optical branch of the symmetric mode approaches the dilatation wave [18]. The acoustic branch of the antisymmetric mode starts from the bending motion and approaches the shear wave when the wave number k becomes larger and larger *. Similar relationships for an anisotropic plate made of 55% graphite fiber-epoxy matrix with a layup angle of 45° are shown in Fig. 3a and 3b.

^{*} See section 5 for discussion about the large wave number limit.

Two-layer Plate

In this case we obtain eight equations by putting n = 1 and 2 in equation (II-9). Boundary conditions require $T_0 = \Sigma_0 = T_2 = \Sigma_2 = 0$. By following the same procedure we find the dispersion relations as

$$\{ (\overline{\omega}^2 - c_{11} \kappa^2) (\overline{\omega}^2 - 3c_{22}) - 3c_{12}^2 \kappa^2 \} (\overline{\omega}^2 - \hat{c}_{11} \kappa^2 - 3c_{66} + \frac{c_{66}^c 12}{c_{22}} \kappa^2)$$

$$+ 3(\overline{\omega}^2 - c_{11} \kappa^2) \{ (\overline{\omega}^2 - c_{66} \kappa^2) (\overline{\omega}^2 - \hat{c}_{11} \kappa^2 - 3c_{66}) - 3c_{66}^2 \kappa^2 \} = 0$$

$$(II-12)$$

$$\{(\bar{\omega}^2 - c_{66}\kappa^2)(\bar{\omega}^2 - \hat{c}_{11}\kappa^2 - 3c_{66}) - 3c_{66}^2\kappa^2\}$$

$$+3(\bar{\omega}^2-c_{66}\kappa^2)\{(\bar{\omega}^2-c_{11}\kappa^2)(\bar{\omega}^2-3c_{22})-3c_{12}^2\kappa^2\}=0$$

Again the first equation represents the symmetric mode and is shown as solid lines in Fig. 4 and 5. The second equation is plotted with dotted lines representing the antisymmetric mode.

As expected we have six relationships since the this two-layer model is equivalent to a three-mass system with two degrees of freedom for each mass. When the wave number $k\Delta$ increases the following are observed: for the symmetric mode the upper optical branch approaches the dilatation wave, whereas for the antisymmetric mode the lower optical branch approaches the shear wave.

^{*} See section 5 for discussions about the large wave number limit.

N-Layer Plate

In general, we can obtain a 2(N+1) order polynomial of ω^2 by expanding a $(4N) \times (4N)$ determinant and finding 2(N+1) dispersion relationships. But, unfortunately, this process involves considerably complicated algebra and it may be necessary to develop a computer technique to find roots of an equation in determinant form (not in polynomial form).

A difference equation approach can be used to solve the N set of four simultaneous first order difference equations given by Eq. (II-9). This proceedure is neat and can be generalized for any number of layers as discussed in the next section; but the last step of this approach, where a long polynomial is to be solved again, is not any simpler than the previous direct method.

3. Impact on an Elastic Composite Plate

Normalization and Integral Transforms of Governing Equations

The governing equations given by (II-7) are first nondimensionalized as follows:

$$\{U_{n}, V_{n}, n\} = \{u_{n}/\Delta, U_{n}/\Delta, x_{1}/\Delta\}$$

$$\{C_{ij}, T_{n}, \Sigma_{n}\} = \{c_{ij}/c_{66}, \tau_{n}/c_{66}, \sigma_{n}/c_{66}\}$$

$$\tau = t/T_{0}$$

where Δ is the total thickness of the plate and T is the time required for the quasi-shear wave to travel the impact radius. Next we apply a Laplace transform in τ and a Fourier transform in η , i.e.,

$$\hat{g}(s) = \int_{0}^{\infty} g(t)e^{-s\tau}d\tau$$

$$\bar{g}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\eta)e^{ik\eta}d\eta .$$

Then the resulting equations are

$$\begin{split} -(\mathbf{f}\mathbf{s}^2 + & \frac{c_{11}}{2N} \, \mathbf{k}^2) \, (\hat{\bar{\mathbf{U}}}_n + \hat{\bar{\mathbf{U}}}_{n-1}) - c_{12} \mathbf{i} \mathbf{k} \, (\hat{\bar{\mathbf{V}}}_n - \hat{\bar{\mathbf{V}}}_{n-1}) + (\hat{\bar{\mathbf{T}}}_n - \hat{\bar{\mathbf{T}}}_{n-1}) \, = \, 0 \\ \\ C_{12} \mathbf{i} \mathbf{k} \, (\hat{\bar{\mathbf{U}}}_n + \hat{\bar{\mathbf{U}}}_{n-1}) - (\frac{\mathbf{f}\mathbf{s}^2}{3} + 2NC_{22}) \, (\hat{\bar{\mathbf{V}}}_{n-1} - \hat{\bar{\mathbf{V}}}_{n-1}) + (\hat{\bar{\mathbf{\Sigma}}}_n + \hat{\bar{\mathbf{\Sigma}}}_{n-1}) \, - \frac{\mathbf{i}\mathbf{k}}{6N} (\hat{\bar{\mathbf{T}}}_n - \hat{\bar{\mathbf{T}}}_{n-1}) \, = \, 0 \\ \\ - C_{66} \mathbf{i} \mathbf{k} \, (\hat{\bar{\mathbf{U}}}_n - \hat{\bar{\mathbf{U}}}_{n-1}) - (\mathbf{f}\mathbf{s}^2 + \frac{C_{66}}{2N} \, \mathbf{k}^2) \, (\hat{\bar{\mathbf{V}}}_n + \hat{\bar{\mathbf{V}}}_{n-1}) + (\hat{\bar{\mathbf{\Sigma}}}_n - \hat{\bar{\mathbf{\Sigma}}}_{n-1}) \, = \, 0 \end{split}$$

$$(III-13)$$

$$- C_{66} \mathbf{i} \mathbf{k} \, (\hat{\bar{\mathbf{U}}}_n - \hat{\bar{\mathbf{U}}}_{n-1}) - (\mathbf{f}\mathbf{s}^2 + \frac{C_{66}}{2N} \, \mathbf{k}^2) \, (\hat{\bar{\mathbf{V}}}_n + \hat{\bar{\mathbf{V}}}_{n-1}) + (\hat{\bar{\mathbf{\Sigma}}}_n - \hat{\bar{\mathbf{\Sigma}}}_{n-1}) \, = \, 0$$

where the normalization factor f is given as

$$f = \frac{1}{2N} \frac{\Delta^2 \rho}{c_{66}^T \rho} = \frac{b\Delta \rho}{c_{66}^T \rho}$$

Solution of Difference Equations

Since the simultaneous difference equations given are linear and all the coefficients are constants the solution [26] has to be

$$\{\hat{\vec{U}}_n, \hat{\vec{v}}_n, \hat{\vec{T}}_n, \hat{\vec{\Sigma}}_n\} = \{A, B, C, D\}e^{2i\theta\eta}$$
 (II-14)

where the phase shift θ is complex, in general, and propagation through the thickness direction in the plate is characterized by θ . Namely, θ is the wave number in the thickness direction. By substituting solution (II-14) into the difference equation (II-13) we obtain a set of four simultaneous homogeneous equations through which the relationships among the constants A,B,C, and D have to be determined. If we set the resulting coefficient matrix of A,B,C, and D to be singular we obtain the following equation for phase shift θ :

$$\begin{split} &\cos^4\theta \, (\mathrm{fs}^2 + \frac{\mathrm{C}_{11} \mathrm{k}^2}{2\mathrm{N}}) \, (\mathrm{fs}^2 + \frac{\mathrm{C}_{66}}{2\mathrm{N}} \, \mathrm{k}^2) \\ &+ \, \sin^4\theta \, (\frac{\mathrm{fs}^2}{3} + 2\mathrm{N}\mathrm{C}_{22} - \frac{\mathrm{C}_{12} \mathrm{k}^2}{6\mathrm{N}}) \cdot (\frac{\mathrm{fs}^2}{3} + \frac{\hat{\mathrm{C}}_{11}}{6\mathrm{N}} \, \mathrm{k}^2 + 2\mathrm{N}\mathrm{C}_{66} - \frac{\mathrm{C}_{66}^{\,\mathrm{C}}_{12}}{6\mathrm{N}^2} \, \mathrm{k}^2) \\ &+ \, \cos^2\theta \, \sin^2\theta [\, (\mathrm{fs}^2 + \frac{\mathrm{C}_{11}}{2\mathrm{N}} \mathrm{k}^2) \, \{ \frac{\mathrm{k}^2}{6\mathrm{N}} \mathrm{C}_{66} + \frac{\mathrm{fs}^2}{3} + 2\mathrm{N}\mathrm{C}_{22} - (\frac{\mathrm{k}}{6\mathrm{N}})^2 \frac{\mathrm{C}_{66}^{\,\mathrm{C}}_{12}}{\mathrm{C}_{22}} \, \mathrm{fs}^2 + \frac{\mathrm{C}_{66}^{\,\mathrm{C}}_{2}}{2\mathrm{N}} \mathrm{k}^2) \, \} \\ &- \, \, (\mathrm{C}_{12} + \mathrm{C}_{66})^2 \mathrm{k}^2 + (\mathrm{fs}^2 + \frac{\mathrm{C}_{66}}{2\mathrm{N}} \mathrm{k}^2) \, (\frac{\mathrm{fs}^2}{3} + \frac{\hat{\mathrm{C}}_{11}}{6\mathrm{N}} \mathrm{k}^2 + 2\mathrm{N}\mathrm{C}_{66} + \frac{\mathrm{C}_{12}^2 \mathrm{k}^2}{6\mathrm{N}\mathrm{C}_{22}}) \,] \end{split} \tag{II-15}$$

$$= a_1 \cos^4 \theta + a_2 \cos^2 \theta + a_3 = 0.$$

This equation implies that for a given wave number k along x_1 and a frequency s (s represents the frequency for the case of harmonic waves), an infinite value of wave numbers exists for propagation through the thickness direction, but only four of them are sufficient to give all linearly independent solutions of the form of Eq. (II-14). If we denote the solution of the phase shift equation as

$$\cos^{2} \beta = \frac{-a_{2} + \sqrt{a_{2}^{2} - 4a_{1}a_{3}}}{2a_{1}}$$

$$\cos^{2} \alpha = \frac{-a_{2} - \sqrt{a_{2}^{2} - 4a_{1}a_{3}}}{2a_{1}}$$
(II-16)

the complete general solutions of difference equation (II-13) are

$$\begin{bmatrix} \hat{\bar{u}}_{n} \\ \hat{\bar{v}}_{n} \\ \hat{\bar{v}}_{n} \\ \hat{\bar{T}}_{n} \\ \hat{\bar{\Sigma}}_{n} \end{bmatrix} = \begin{bmatrix} A_{1} \\ B_{1} \\ C_{1} \\ D_{1} \end{bmatrix} e^{2i\beta n} + \begin{bmatrix} A_{2} \\ B_{2} \\ C_{2} \\ D_{2} \end{bmatrix} e^{-2i\beta n} + \begin{bmatrix} A_{3} \\ B_{3} \\ C_{3} \\ D_{3} \end{bmatrix} e^{2i\alpha n} + \begin{bmatrix} A_{4} \\ B_{4} \\ C_{4} \\ D_{4} \end{bmatrix}.$$

$$(III-17)$$

Next, by substituting the above solutions into the original difference equations (II-13) we find the relationships among A_i , B_i , C_i , and D_i . The results are

$$\begin{bmatrix} \hat{\bar{U}}_{n} \\ \hat{\bar{V}}_{n} \\ \hat{\bar{T}}_{n} \\ \hat{\bar{\Sigma}}_{N} \end{bmatrix} = \begin{bmatrix} x_{1}(\beta) & E_{1} \\ x_{2}(\beta) & E_{2} \\ x_{3}(\beta) & E_{3} \\ E_{1} \end{bmatrix} \cdot \cos 2n\beta + i \begin{bmatrix} x_{1}(\beta) & E_{2} \\ x_{2}(\beta) & E_{1} \\ x_{3}(\beta) & E_{1} \\ E_{2} \end{bmatrix} \cdot \sin 2n\beta$$

$$+ \begin{bmatrix} Y_{1}(\alpha) & E_{4} \\ Y_{2}(\alpha) & E_{3} \\ Y_{3}(\alpha) & E_{4} \end{bmatrix} \cdot \cos 2n\alpha + i \begin{bmatrix} Y_{1}(\alpha) & E_{3} \\ Y_{2}(\alpha) & E_{4} \\ Y_{3}(\alpha) & E_{3} \end{bmatrix} \cdot \sin 2n\alpha$$

$$(III-18)$$

where
$$E_1 = D_1 + D_2$$
, $E_2 = D_1 - D_2$, $E_3 = C_3 + C_4$, $E_4 = C_3 - C_4$ and
$$X_1(\beta) = -\frac{\Delta_1(\beta)}{\Delta(\beta)}$$

$$\Delta(\beta) = (fs^2 + \frac{C_{11}}{2n}k^2)(fs^2 + \frac{C_{66}}{2n}k^2)\cos^3\beta$$

$$+ \{(fs^2 + \frac{C_{66}}{2n}k^2)(\frac{fs^2}{3} + \frac{\hat{C}_{11}}{6n}k^2 + 2nC_{66}) - C_{66}C_{12}k^2 - C_{66}^2k^2\}\sin^2\beta \cdot \cos\beta$$

$$\Delta_1(\beta) = ik \sin^2\beta\cos\beta\{\frac{C_{12}}{6nc_{22}}(fs^2 + \frac{C_{66}}{2n}k^2) - (C_{12} + C_{66})\} \qquad (II-19)$$

$$\Delta_2(\beta) = i \sin^3\beta\{\frac{C_{66}C_{12}}{6nc_{22}}k^2 - (\frac{fs^2}{3} + \frac{\hat{C}_{11}}{6n}k^2 + 2nC_{66})\} - \cos^2\beta\sin\beta(fs^2 + \frac{C_{11}}{2n}k^2)$$

$$\Delta_3(\beta) = k \sin^3\beta\{(\frac{fs^2}{3} + \frac{\hat{C}_{11}}{6n}k^2 + 2nC_{66})C_{12} - \frac{C_{12}^2k^2}{6nC_{22}}C_{66}\}$$

$$+ k \sin\beta\cos^2\beta\{\frac{C_{12}}{6nC_{12}}(fs^2 + \frac{C_{11}k^2}{2n}) \cdot (fs^2 + \frac{C_{66}k^2}{2n}k^2) - (fs^2 + \frac{C_{11}}{2n}k^2)C_{66}\}$$

and

$$Y_{\underline{i}}(\alpha) = -\frac{\overline{\Delta}_{\underline{i}}(\alpha)}{\overline{\Delta}(\alpha)}$$

$$\bar{\Delta}(\alpha) = i \cos^{2}\alpha \cdot \sin\alpha \{ c_{66}k^{2}(c_{12}+c_{66}) - (fs^{2} + \frac{c_{66}}{2n}k^{2}) \cdot (\frac{fs^{2}}{3} + \frac{\hat{c}_{11}k^{2}}{6n} + 2nc_{66} + \frac{\frac{2}{12}k^{2}}{6nc_{22}}) \} + i \sin^{3}\alpha (\frac{fs^{2}}{3} + 2nc_{22})$$

$$\times \left(\frac{{^{C}66}^{C}_{12}k^{2}}{6n^{C}_{22}} - \frac{fs^{2}}{3} - \frac{{^{C}_{11}k}^{2}}{6n} - 2n_{C_{66}}\right)$$

$$\vec{\Delta}_1(\alpha) = \cos^3 \alpha (fs^2 + \frac{c_{66}}{2n} k^2)$$

+
$$\sin^2 \alpha \cdot \cos \alpha \{-(\frac{k}{6n})^2 \frac{C_{12}}{C_{22}} (fs^2 + \frac{C_{66}}{2n}k^2) + \frac{k^2}{6n}C_{66} + (\frac{fs^2}{3} + 2nC_{22}) \}$$

$$\overline{\Delta}_{2}(\alpha) = k \cdot \cos^{2} \alpha \sin \alpha (C_{12} + C_{66})$$
 (II-20)

+
$$k\sin^3\alpha \left\{\frac{1}{6n}\left(\frac{fs^2}{3} + \frac{\hat{C}_{11}k^2}{6n} + 2nC_{66}\right) - \left(\frac{k}{6n}\right)^2 \frac{C_{12}C_{66}}{C_{22}}\right\}$$

$$\bar{\Delta}_3(\alpha) = ik \sin^2 \alpha \cos \alpha \{ \frac{c_{66}^2}{6n} k^2 - \frac{1}{6n} (\frac{fs^2}{3} + \frac{\hat{c}_{11} k^2}{6n} + 2nc_{66}) (fs^2 + \frac{c_{66}}{2n} k^2)$$

$$+ c_{66}k(\frac{fs^2}{3} + 2nc_{22})$$
 } + ik $cos^3\alpha \{-c_{12}(fs^2 + \frac{c_{66}}{2n}k^2)\}$

Equations (II-18) with (II-19,20) and the phase shifts α and β given by (II-16) constitute the final form of the general solutions of the difference equations (II-13).

In Eqs. (II-19,20) we notice that when $k \to 0$ we have $X_1(\beta) = X_3(\beta) = Y_2(\alpha) = Y_3(\alpha) = 0$. Namely the propagation of the normal stress (with phase shift β) and the propagation of the shear stress (with phase shift α) are completely decoupled. This occurs when the waves are propagating only through the thickness direction [27].

Impact Boundary Condition

Boundary conditions for an impact can be described by any two conditions among u_o , v_o , σ_o , and τ_o and another two conditions from u_N , v_N , σ_N , and τ_N . For our present problem we have chosen a line impact by a normal stress along the x_3 axis (Figure 1), i. e.,

$$\sigma_{0} = -\frac{P_{0}}{4} (1-\cos\frac{2\pi t}{t_{0}}) (1+\cos\frac{\pi x}{a}) : |x| \le a \text{ and } 0 \le t \le t_{0}$$

$$= 0 : |x| > a \text{ or } t > 0 \text{ or } t > t_{0}$$

$$\tau_{0} = \sigma_{N} = \tau_{N} = 0 . \tag{II-21}$$

Hence, the boundary conditions for the present impact problem lead to the following equation

$$\begin{bmatrix} 0 & , & X_{3}(\beta) & , & 1 & , & 0 \\ 1 & , & 0 & , & 0 & , & Y_{3}(\alpha) \\ iX_{3}(\beta)\sin 2\beta N & , & X_{3}(\beta)\cos 2\beta N & , & \cos 2\alpha N & , & i\sin 2\alpha N \\ \cos 2\beta N & , & i\sin 2\beta N & , & iY_{3}(\alpha)\sin 2\alpha N & , & Y_{3}(\alpha)\cos 2\alpha N \end{bmatrix} \begin{bmatrix} E_{1} \\ E_{3} \\ E_{3} \\ E_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ q \\ 0 \\ 0 \end{bmatrix}$$
(II-22)

where q is the integral transform of the impact function (II-21) * . Solving the above equations for E_i 's we can have

$$\begin{split} \mathbf{E}_{\mathbf{i}} &= \frac{\mathcal{D}_{\mathbf{i}}}{\mathcal{D}} \mathbf{q} \\ \mathcal{D} &= \{1 + \mathbf{X}_{3}^{2}(\beta)\mathbf{Y}_{3}^{2}(\alpha)\}\sin 2\alpha \mathbf{N} \cdot \sin 2\beta \mathbf{N} + 2\mathbf{X}_{3}(\beta)\mathbf{Y}_{3}(\alpha)(\cos 2\alpha \mathbf{N} \cdot \cos 2\beta \mathbf{N} - 1) \\ \mathcal{D}_{1} &= \mathbf{X}_{3}(\beta)\mathbf{Y}_{3}(\alpha)(\cos 2\alpha \mathbf{N} \cdot \cos 2\beta \mathbf{N} - 1) + \sin 2\alpha \mathbf{N} \cdot \sin 2\beta \mathbf{N} \\ \mathcal{D}_{2} &= \mathbf{i}\{\cos 2\beta \mathbf{N} \cdot \sin 2\alpha \mathbf{N} - \mathbf{X}_{3}(\beta)\mathbf{Y}_{3}(\alpha)\cos 2\alpha \mathbf{N} \cdot \sin 2\alpha \mathbf{N}\} \\ \mathcal{D}_{3} &= \mathbf{i}\mathbf{X}_{3}(\beta)\{\mathbf{X}_{3}(\beta)\mathbf{Y}_{3}(\alpha)\sin 2\beta \mathbf{N} \cdot \cos 2\alpha \mathbf{N} - \cos 2\beta \mathbf{N} \cdot \sin 2\alpha \mathbf{N}\} \\ \mathcal{D}_{4} &= \mathbf{X}_{3}(\beta)\{\mathbf{X}_{3}(\beta)\mathbf{Y}_{3}(\alpha)\sin 2\alpha \mathbf{N} \cdot \sin 2\beta \mathbf{N} + \cos 2\beta \mathbf{N} \cdot \cos 2\alpha \mathbf{N} - 1\} \end{split}$$

Substituting the E's into the general solution (II-18) we can find the complete solutions which satisfy the impact boundary conditions given by (II-21). In other words, for given values of k and s we first find the phase shift α and β from (II-15,16) and with these we can find solutions in integral transform from equations (II-18,23) which are the final solutions under impact. After $\hat{\overline{U}}_n$, $\hat{\overline{V}}_n$, $\hat{\overline{T}}_n$ and $\hat{\overline{\Sigma}}_n$ are calculated

^{*} Allowing the determinant of the coefficient matrix to vanish leads to dispersion relations of an N-layer plate, namely $\mathcal{D}(\alpha,\beta)=0$. Then, α and β are obtained from (II-15,16) which gives the complete dispersion relationships.

with a given impact function q, they can be inverted easily by means of the fast Fourier transform routine [3,20] to give the complete displacement and the stress fields after impact.

Tangential Normal Stress

As discussed following Eq. (II-7), the tangential normal stress does not appear explicitly in the approximate equations of motion. Therefore, this component of the stress has to be calculated from the constitutive equation. Namely,

$$\sigma_{11_{0}} = c_{11}u_{0,1} + \frac{c_{12}}{2b} (v_{1}-v_{0})$$

$$\sigma_{11_{n}} = c_{11}u_{n,1} + \frac{c_{12}}{2b} (v_{n}-v_{n-1}) \quad 1 \le n \le N$$

or after normalization and integral transform they are

$$\hat{\bar{\sigma}}_{11_o} = -ikC_{11}\hat{\bar{U}}_o + N \cdot C_{12}(\hat{\bar{V}}_1 - \hat{\bar{V}}_o)$$

$$\hat{\bar{\sigma}}_{11_n} = -ikC_{11}\hat{\bar{U}}_n + N \cdot C_{12}(\hat{\bar{V}}_n - \hat{\bar{V}}_{n-1}) \qquad 1 \le n \le N .$$
(II-24)

Then once the displacement field is computed the tangential normal stress can be obtained from the above equation and inverted.

4. Some Numerical Results

The analysis discussed in the previous section includes the tronsient propagation in all directions but suitable choices of impact time, impact radius, sizes of time and distance steps are essential to make good use of the fast Fourier transform. For example, if we take a large time increment with a relatively thin plate propagation through the thickness will not be seen. For this matter we have examined several different cases.

Case 1: Longitudinal propagation

Propagation of impact generated waves along the longitudinal direction is examined for an isotropic plate (steel plate: $\lambda = \mu = 1.2 \times 10^7~\text{psi}$) employing a two-layer model. For these calculations we used an impact time $t_0 = 10~\mu\text{sec}$, plate thickness $\Delta = 1~\text{cm}$, and impact radius a = 4~cm. Some of the results at a few different time sequences are shown in Fig. 6 a-f.

In these figures we can see two distinct states of propagation and corresponding wave fronts: one for horizontal displacements (u) and longitudinal normal stresses (σ_{11}), and another for vertical displacements (v) and shear stresses (τ). In other words, the initial signals of the horizontal displacements and longitudinal normal stresses propagate through the plate with longitudinal wave speed at amplitudes that are relatively small. But the major parts of their signals are due to a bending wave propagating with shear stresses and vertical displacements with a lower velocity. When the group velocities of these waves are calculated from the numerical results, they are about 5 mm/ μ sec and 3 mm/ μ sec, respectively, while the phase velocities of the unbounded

medium of this material are $C_d = \sqrt{(\lambda + 2\mu)/\rho} = 5.61$ mm/µsec and $C_s = \sqrt{\mu/\rho} = 3.25$ mm/µsec.

Case 2: Propagation Through Thickness

To examine the propagation through the thickness it is necessary to have a sufficient number of layers in a plate. It is also essential to make the time step relatively small compared to the layer thickness. To do this we increase the thickness of the plate and the number of layers and reduce the impact time.

In Figs. 7 and 8 propagation of the transverse normal stress in the same plate (Δ = 4 cm, t_0 = 2 μ sec, a = 40 cm; 4-layer model) is shown at different time sequences. As seen in Fig. 7, the transverse normal stress is initially compressive due to the impact and a compression wave propagates through the thickness. But later it becomes a tension wave after reflection from the free surface and the tension wave propagates back to the impact surface. In Fig. 8 we see the change of the transverse normal stress and the interlaminar shear stress with time for the same impact conditions as in Fig. 7.

Similar results are also shown for the case of an anisotropic plate in Fig. 9 (55% graphite fibers-epoxy matrix, layup angle = 15° ; Δ = 1 cm, t_{o} = 2 μ sec, a = 2 cm; 8-layer model). Here we again notice a clear delay in time for waves to travel from one layer to the next one. Another important point is that the shape of the impact stress is relatively well preserved during the initial stage of propagation but changes immediately afterwards. The distortion of the shape becomes more serious with further propagation due to reflection, thus, showing the highly dispersive nature of the harmonic waves in the approximate plate theory.

When the group velocities are calculated from these results, we find 6.32 mm/µsec for the dilatation wave and 3.33 mm/µsec for the shear wave in the case of the isotropic plate and 2.5 mm/µsec for the quasi-dilatation wave of the anisotropic plate. Their expected values are, respectively, 5.61, 3.25, and 2.36 mm/µsec. In other words, waves going through the thickness are traveling faster than expected.

Case 3. Wave Surfaces

In the previous two cases we examined the transient waves propagating dominantly along either the \mathbf{x}_1 axis or through the thickness direction by suitable choices of the plate geometry and impact condition. now examine the combined effect, simultaneous propagation in both directions. This effect is shown in Fig. 10 (isotropic plate; $\Delta = 4$ cm, $t_o = 4\mu \mathrm{sec}$, a = 4 cm; 4-layer model) where the transverse normal stress generated from the line source due to impact not only spreads out in all directions but also reflects from the free surface.

When the plate is anisotropic, the situation is more complex in the sense that waves are neither dilatation nor shear but they are coupled together (now called quasi-dilational or quasi-shear waves). Due to the coupling, phase velocities of the anisotropic wave vary from one direction to another, resulting in complicated shapes for the velocity surfaces and wave fronts [2]. For an ansiotropic plate (made of 55% graphite fiber-epoxy matrix with layup angle 45°) the velocity surfaces and the wave surfaces are shown in Fig. 11. The stress state at 10 μ sec after the impact on the same plate (Δ = 4 cm, t₀ = 4 μ sec, a = 2 cm; 8-layer model) with the corresponding wave fronts are shown in Fig. 12a. In the

propagation of the quasi-longitudinal wave we notice that the longitudinal propagation is well bounded by the quasi-dilatational wave surface but the transverse propagation is not. The shear wave is not bounded by the quasi-shear wave front in either direction.

This interesting phenomenon of higher propagation speeds through the thickness is related to the dispersion relationship at short wave length limits; it is discussed in the next section.

5. Correction Factor and Conclusion

Correction Factor

According to the present model of a multilayer plate, one of the antisymmetric modes of the dispersion relationships approaches the shear speed when the wave length becomes shorter and shorter, as mentioned in Section 2. It is well understood that such a limit is incorrect, i.e., in the limit of short wave length there should be a Rayleigh wave instead of a shear wave. Such a discrepancy can be eliminated by introduction of proper correction factors, as shown by Mindlin and Medick [18]. Correction factors can be found by examining either the large wave number limit or the cut-off frequencies of both the exact theory and the present approximate theory. Since these two ways lead us to the same results we will find the factors by matching the cut-off frequencies of the two theories.

The cut-off frequencies of the exact theory for an isotropic plate can be obtained from the well-known Rayleigh-Lam's equation. The lowest cut-off frequencies are $\frac{\pi}{\Delta}\sqrt{(\lambda+2\mu)/\rho}$ for the symmetric mode and $\frac{\pi}{\Delta}\sqrt{\mu/\rho}$ for the antisymmetric mode. The corresponding cut-off frequencies of our approximate theory are $\frac{2}{\Delta}\sqrt{3c_{22}/\rho}$ and $\frac{2}{\Delta}\sqrt{3c_{66}/\rho}$. Hence, we notice that replacing c_{22} by $c_{22}\pi^2/12$ and c_{66} by $c_{66}\pi^2/12$ makes the two theories have the same two lowest cut-off frequencies. Furthermore the shear wave observed in the short wave length limit of the present approximation becomes a wave with a speed of $\frac{\pi}{\sqrt{12}}\sqrt{\mu/\rho}$, i.e., the Rayleigh wave.

Another important consequence of the correction factor is to reduce propagation speeds through the thickness, which are related to $\sqrt{c_{22}/\rho}$

The lowest two cut-off frequencies are found from Eq. (II-11) and they are independent of the layer number in the plate under investigation.

and $\sqrt{c_{66}/\rho}$, with a factor of $\pi/\sqrt{12}$. Propagation of the maximum value of the interlaminar normal stress through the thickness is examined with and without correction factors and the results are shown in Fig. 13. Without the correction factor the propagation speed in a composite plate is roughly about 2.60 mm/ μ sec obtained from the numerical results used in Fig. 12. When the same plate is subjected to identical impact conditions this reduces to about 2.41 mm/ μ sec with the correction factor. Comparing this with the group velocity in an unbounded composite space (= 2.36 mm/ μ sec) the agreement of the present approximate theory is remarkable. Similar results are also observed in the case of shear and quasi-shear waves. When these correction factors are introduced in the previous cases, shown in Figs. 8, 9, and 12, all the signals propagating through the thickness are now well bounded within the corresponding wave fronts, as shown in Fig. 12b and from this we can notice the importance of the correction factors.

Discussion and Computation Time

It is interesting to compare the computation time of this model with some other methods, such as the finite element method or the finite difference method. In the case of an 8-layer anisotropic plate model, from which Figs. 9 and 12 are produced, we have

- 9 steps along the thickness: 8-layer model;
- 32 step along the \mathbf{x}_1 direction: 64 points are used in pratice but only half of them are useful because of the symmetry of the problem,
- 32 steps in time;
- 2 displacement components at each point.

Therefore the total number of the unknowns, which are the basic unknowns either in case of the finite difference or finite element methods, is

18,432. After these primary variables are calculated, 27,648 secondary variables (three stress components at each points) have to be calculated again. According to our present model all these processes require only 200 K of computer space without using magnetic tapes or any kind of additional storage space and only 1 minute 6 seconds for CPU time in the IBM 370-168 model including compiling, linkage editing, I/O and execution.

Conclusion

The present theory is a generalization of Mindlin's approximate plate theory applied to a multilayer plate under an impact. By combined use of the finite difference technique in the thickness direction and the fast Fourier transform in the plane of plate and time, this model can be very useful for the study of wave propagation in a composite plate under impact forces. However, reasonable attention in usage of the fast Fourier transform is required to avoid spurious data. From the limited numerical data obtained from this model it appears that the anisotropy in the plate will lead to a considerable interlaminar shear which might lead to ply bonding failures. The model also shows that for short enough impact times, an interlaminar tension can develop as one would expect, which might also account for interlaminar ply failure.

III. IMPACT OF A COMPOSITE PLATE WITH AN INTERLAMINAR DAMPING LAYER

1. Description of Problem

Geometry of Plate

As an extension of the multilayer plate discussed in Chapter II we now examine the impact and the consequent stress

wave propagation in a composite plate with viscoelastic damping layers.

Possible models for damping mechanisms in plates are shown in Fig. 14.

We will formulate a model made of an alternating

number of elastic and viscoelastic layers, as shown in Fig. 14-c.

As long as the layer structure of the plate is periodic, the main part of the analysis in Chapter II for an elastic plate is valid with additional equations for viscoelastic layers.

Viscoelastic Property of Elastomer

The mechanical properties of an elastomer are usually expressed in terms of a complex modulus depending on the frequency, i.e.,

$$G^*(\omega) = G'(\omega) + iG''(\omega)$$
 (III-1)

With this the constitutive equation is written as

$$\bar{\sigma}_{ij}(\omega) = G^{*}(\omega)\bar{\epsilon}_{ij}(\omega)$$
 (III-2)

in the frequency space where $\bar{\sigma}_{ij}(\omega)$ and $\epsilon_{ij}(\omega)$ are respectively the Fourier transforms of σ_{ij} and ϵ_{ij} in time [29].

$$\bar{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$
.

^{*}For (III-2) the Fourier transform is defined as

The constitutive relation (III-2) with the complex modulus (III-1) implies the following constitutive equation in a time space:

$$\overset{\circ}{\sigma}(x,t) = \int_{-\infty}^{t} G(t-\tau) \dot{\varepsilon}(x,\tau) d\tau \tag{III-3}$$

where the relaxation function G(t) is related with the complex modulus $G^*(\omega)$ as

$$G^{*}(\omega) = \frac{1}{i\omega} \int_{\Omega}^{\infty} G(t)e^{-i\omega t} dt . \qquad (III-4)$$

Therefore, when the complex modulus $G^*(\omega)$ is obtained by experiments, usually by means of harmonic excitation of strain, the relaxation function G(t) can be found by inversion of equation (III-4).

The viscoelastic property of the elastomer under consideration has been extensively investigated (e.g. [19]) and its complex modulus is given in Fig. 15. This complex modulus can be reasonably well described by a three parameter equation as

$$G'(\omega) = a - \frac{6}{\omega^2 + c} . \qquad (III-5)$$

These three parameters are obtained from another set of parameters: the maximum values of $G'(\omega)$ when $\omega \to \infty$, the maximum value of $G''(\omega)/G'(\omega)$ and the ω_O at which $G''(\omega)/G'(\omega)$ becomes the maximum. Therefore if we characterize the complex modulus by proper choice of $G'(\omega)$, ω_O and the maximum of $G''(\omega_O)/G'(\omega_O)$, the relaxation functions are completely described.

2. Formulation

Elastic Layer

In Fig. 16 a typical viscoelastic layer (nth) is shown between two adjacent elastic layers (nth and (n+1)th) with appropriate discretization. The approximate equations of motion for the nth elastic layer given by Eq. (II-7) are still valid. But remembering the new discretizing notation in Fig. 16 we now have to replace ()_n and ()_{n-1} by ()_n and ()⁺_{n-1}, respectively. The results are

$$\rho(\ddot{u}_{n}^{-}+u_{n-1}^{+}) = c_{11}(u_{n}^{-}+u_{n-1}^{+})_{,11} + \frac{c_{12}}{b}(v_{n}^{-}-v_{n-1}^{+})_{,1} + \frac{1}{b}(\tau_{n}^{-}-\tau_{n-1}^{+})$$

$$\rho\left(\overset{..}{v_{n}}\overset{..}{-v_{n}}^{+}\right) = -\frac{3c_{12}}{b}(u_{n}^{-}+u_{n-1}^{+})_{,1} - \frac{3c_{22}}{b^{2}}(v_{n}^{-}-v_{n-1}^{+}) + \frac{3}{b}(\sigma_{n}^{-}+\sigma_{n-1}^{+}) + (\tau_{n}^{-}-\tau_{n-1}^{+})_{,1}$$

$$\rho(\ddot{u}_{n}^{-}u_{n-1}^{+}) = \hat{c}_{11}(u_{n}^{-}u_{n-1}^{+})_{,11} - \frac{3c_{66}}{b^{2}}(u_{n}^{-}u_{n-1}^{+}) - \frac{3c_{66}}{b}(v_{n}^{-}+v_{n-1}^{+})_{,1}$$
(III-6)

$$+\frac{c_{12}}{c_{22}}(\sigma_{n}^{-}-\sigma_{n-1}^{+})_{,1}+\frac{3}{b}(\tau_{n}^{-}+\tau_{n-1}^{+})$$

$$\rho(\overset{-}{v}_{n}^{+}\overset{-}{v}_{n-1}^{+}) = c_{66}\{\frac{1}{b}(\overset{-}{u}_{n}^{-}\overset{+}{u}_{n-1}^{+}), 1^{+}(\overset{-}{v}_{n}^{+}\overset{+}{v}_{n-1}^{+}), 11\} + \frac{1}{b}(\overset{-}{\sigma}_{n}^{-}\overset{+}{\sigma}_{n-1}^{+})$$

Viscoelastic Layer

Since the thickness of the elastomer is thin compared with the elastic layer, we can assume that the stress field is uniform through the thickness of the elastomer. In other words, we have $\sigma_n^- = \sigma_n^+ = \sigma_n$ and $\tau_n^- = \tau_n^+ = \tau_n$ for (III-6). Therefore, the following compatibility conditions for the

elastomer can be obtained immediately:

$$\varepsilon_{12(n)} = \frac{1}{4} \frac{\partial}{\partial x_1} (v_n^+ + v_n^-) + \frac{1}{2D} (u_n^+ - u_n^-)$$

$$\varepsilon_{22(n)} = \frac{1}{D} (v_n^+ - v_n^-)$$
(III-7)

where D is the thickness of the elastomer.

We further assume that the dissipation is mostly due to shear motion, i.e., that the normal component of the continuous traction vector is transmitted through the viscoelastic layer purely elastically. Therefore, by combining (III-7) with (III-3) we find

$$\sigma_{n} = \frac{E}{D} (v_{n}^{+} - v_{n}^{-})$$

$$\tau_{n} = \int_{-\infty}^{t} G(t - \tau) \{ \frac{1}{2} \frac{\partial}{\partial x_{1}} (\hat{v}_{n}^{+} + \hat{v}_{n}^{-}) + \frac{1}{D} (\hat{u}_{n}^{+} - \hat{u}_{n}^{-}) \} d\tau .$$
(III-8)

These two equations and four more from Eq. (III-6) are the complete equations needed to solve the impact on a composite plate with elastomer. For a plate made of N elastic layers and (N-1) viscoelastic layers Eq. (III-6) provides 4N equations and (III-8) gives 2(N-1) equations. Since the total number of the unknowns are now 6N+2 (u_0 , v_0 , σ_0 , τ_0 ; u_1^- , v_1^- , u_1^+ , v_1^+ , σ_1 , τ_1 ; ..., u_{N-1}^- , v_{N-1}^- , v_{N-1}^+ , v_{N-1}^+ , σ_{N-1} , τ_{N-1} ; u_N , v_N , σ_N , τ_N) we can solve this system of equations with four additional conditions supplied by the suitable boundary conditions.

Here we notice that the governing equations are now a set of six difference-integro-partial differential equations. These equations can be

reduced to difference equations after appropriate integral transforms and the resulting difference equations can be handled rather simply, as in the previous chapter.

3. Numerical Results and Discussion

Impact on Plate

For the report we examine the impact on a plate consisting of two elastic layers and a viscoelastic layer, as shown in Fig. 17, with an impact function

$$\sigma_{0} = P_{0}\{1 - (\frac{x_{1}}{a})^{2}\} \sin \frac{\pi t}{t_{0}} ; |x_{1}| < a \text{ and } 0 < t < t_{0}$$

$$= 0 ; |x_{1}| > a \text{ or } t > t_{0}, \text{ or } t < 0$$

with all other stress components vanishing on both surfaces of the plate. Now by putting n=1 and 2 into Eq. (III-6) we have eight equations and two more equations are obtained from Eq. (III-8). We again normalize these equations and take the integral transform, as in Chapter II. The resulting equations are:

$$\begin{split} -(\mathbf{f}\mathbf{s}^2 + \frac{c_{11}}{\Delta}\mathbf{b}\mathbf{k}^2) \, (\hat{\overline{\mathbf{u}}}_1^- + \hat{\overline{\mathbf{u}}}_o) - c_{12}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{v}}}_1^- - \hat{\overline{\mathbf{v}}}_o) + \hat{\overline{\mathbf{T}}}_1 &= 0 \\ \\ 3c_{12}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{u}}}_1^- + \hat{\overline{\mathbf{u}}}_o) - (\mathbf{f}\mathbf{s}^2 + \frac{3c_{22}\Delta}{b}) \, (\hat{\overline{\mathbf{v}}}_1^- - \hat{\overline{\mathbf{v}}}_o) + 3\hat{\overline{\mathbf{x}}}_1 - \mathbf{i}\mathbf{k}_D^+ \hat{\overline{\mathbf{T}}}_1 &= -3\hat{\overline{\mathbf{x}}}_o \\ -(\mathbf{f}\mathbf{s}^2 + \frac{b}{\Delta}\mathbf{c}_{66}\mathbf{k}^2) \, (\hat{\overline{\mathbf{v}}}_1^- + \hat{\overline{\mathbf{v}}}_o) - \mathbf{c}_{66}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{u}}}_1^- - \hat{\overline{\mathbf{u}}}_o) + \hat{\overline{\mathbf{x}}}_1 &= \hat{\overline{\mathbf{x}}}_o \\ -(\mathbf{f}\mathbf{s}^2 + \frac{b}{\Delta}\hat{\mathbf{c}}_{11}\mathbf{k}^2 + \frac{\Delta}{b}\mathbf{3}\mathbf{c}_{66}) \, (\hat{\overline{\mathbf{u}}}_1^- - \hat{\overline{\mathbf{u}}}_o) + \mathbf{3}\mathbf{c}_{66}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{v}}}_1^- + \hat{\overline{\mathbf{v}}}_o) - \frac{c_{12}}{c_{22}} \, \frac{b}{\Delta}\mathbf{i}\mathbf{k}\hat{\overline{\mathbf{x}}}_1 + 3\hat{\overline{\mathbf{T}}}_1 &= -\frac{c_{12}}{c_{22}} \, \frac{b}{\Delta}\mathbf{i}\mathbf{k}\hat{\overline{\mathbf{x}}}_o \\ -(\mathbf{f}\mathbf{s}^2 + \frac{c_{11}}{\Delta}\mathbf{b}\mathbf{k}^2) \, (\hat{\overline{\mathbf{u}}}_2^+ + \hat{\overline{\mathbf{u}}}_1^+) - c_{12}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{v}}}_2^- - \hat{\overline{\mathbf{v}}}_1^+) - \hat{\overline{\mathbf{T}}}_1 &= 0 \\ 3c_{12}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{u}}}_2^+ + \hat{\overline{\mathbf{u}}}_1^+) - (\mathbf{f}\mathbf{s}^2 + \frac{3c_{22}\Delta}{b}) \, (\hat{\overline{\mathbf{v}}}_2^- - \hat{\overline{\mathbf{v}}}_1^+) + 3\hat{\overline{\mathbf{x}}}_1 + \frac{b}{\Delta}\mathbf{i}\mathbf{k}\hat{\overline{\mathbf{T}}}_1 &= 0 \\ -(\mathbf{f}\mathbf{s}^2 + \frac{b}{\Delta}\hat{\mathbf{c}}_{66}\mathbf{k}^2) \, (\hat{\overline{\mathbf{v}}}_2^+ + \hat{\overline{\mathbf{v}}}_1^+) - c_{66}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{v}}}_2^- - \hat{\overline{\mathbf{v}}}_1^+) - \hat{\overline{\mathbf{x}}}_1 &= 0 \\ -(\mathbf{f}\mathbf{s}^2 + \frac{b}{\Delta}\hat{\mathbf{c}}_{66}\mathbf{k}^2) \, (\hat{\overline{\mathbf{v}}}_2^+ + \hat{\overline{\mathbf{v}}}_1^+) - c_{66}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{v}}}_2^- - \hat{\overline{\mathbf{v}}}_1^+) + 3\hat{\mathbf{c}}_{66}\mathbf{i}\mathbf{k} \, (\hat{\overline{\mathbf{v}}}_2^+ + \hat{\overline{\mathbf{v}}}_1^+) + \frac{c_{12}}{c_{22}} \, \frac{b}{\Delta}\mathbf{i}\mathbf{k}\hat{\overline{\mathbf{x}}}_1 + 3\hat{\overline{\mathbf{T}}}_1 &= 0 \\ \hat{\overline{\mathbf{x}}}_1 &= \mathbf{E}_D^\Delta(\hat{\overline{\mathbf{v}}}_1^+ - \hat{\overline{\mathbf{v}}}_1^-) - \frac{\mathbf{i}\mathbf{k}}{2}(\hat{\overline{\mathbf{v}}}_1^+ + \hat{\overline{\mathbf{v}}}_1^-) \} \end{split}{1}$$

where $\bar{\bf G}({\bf s})$ is the Laplace transform of the relaxation function ${\bf G}({\bf t})$ with respect to ${\bf \tau}={\bf t}/{\bf T}_{\bf O}$ and we have used the boundary conditions ${\bf \tau}_{\bf o}={\bf \tau}_2={\bf \sigma}_2={\bf 0}$. From the above 10 equations we can find 10 unknowns $(\hat{\bar{\bf U}}_{\bf o},\,\hat{\bar{\bf V}}_{\bf o},\,\hat{\bar{\bf U}}_{\bf 1}^-,\,\hat{\bar{\bf V}}_{\bf 1}^+,\,\hat{\bar{\bf V}}_{\bf 1}^+,\,\hat{\bar{\bf V}}_{\bf 1}^+,\,\hat{\bar{\bf V}}_{\bf 1}^-,\,\hat{\bar{\bf V}}_{\bf 1}^-,\,\hat{\bar{\bf V}}_{\bf 1}^-,\,\hat{\bar{\bf V}}_{\bf 1}^-,\,\hat{\bar{\bf V}}_{\bf 1}^+,\,\hat{\bar{\bf V}}_{\bf 1}^+,\,\hat{\bar{\bf V}}_{\bf 1}^-,\,\hat{\bar{\bf V}}_{\bf 1}^-,\,\hat{\bf V}_{\bf 1}^-,\,\hat{\bar{\bf V}}_{\bf 1}^-,\,\hat{\bar$

Numerical Results

For the present computation we have used the Young's modulus $E = .7*10^4 \text{ psi} \text{ and the shear modulus } G'(\omega) = .817*19^4 - \frac{2.41*10^{12}}{3*10^4 + \omega^2} \text{ for the elastomer where } \omega \text{ is given in hertz. The } G'(\omega) \text{ in this case implies that } G'(\infty) = .817*10^4 \text{ psi} \text{ and } \max(G''(\omega)/G'(\omega)) = 3.3 \text{ at } \omega_0 = 800 \text{ Hz.}$

The propagation of stress wave in this case is quite similar to that of the composite plate without an elastomer layer except the peak values of the interlaminar stress. Values of the peak stress with different thickness of the elastomer layer are plotted with those of the purely elastic plate in Fig. 18. As we can see in this figure the interlaminar shear stress has increased by a small amount while a reduction of the normal stress is considerable when the elastomer layer becomes thicker and thicker. From this result it is obvious that the reduction of the normal component of stress can be achieved by introducing such a soft and energy-dissipating elastomer layer.

Discussion

In addition to the simple reduction of the normal stress it is also observed that the amount of reduction increases with the value of $G''(\omega)/G'(\omega)$ and the location of ω_0 at which $G''(\omega)/G'(\omega)$ becomes the maximum value. In other words, we can make the dissipation effect more serious by choosing an elastomer whose $G''(\omega)/G'(\omega)$ becomes maximum at ω_0 around which the most of the impact energy is carried out.

It is also believed that a further dissipation effect will be possible if we make the transmission of the normal stress viscoelastic across the elastomer layer, which we have assumed is elastic for this report.

IV. IMPACT ON A PLATE WITH A CRACK

1. Introduction

When the impact stress is low, the impact is elastic and the stresses in the plate can be described by elastic wave propagation. When the stress is increased beyond a certain limit then the impact damage occurs. Elastic-plastic impact is complicated for two reasons, namely, unloading and loading must be treated differently, and the strain rate effect [30] must be included. If the impact stress is increased further to a certain level where the induced stress is higher than the strength of a target material then penetration begins to occur. In this limit the target material sometimes behaves as a fluid and Such a state of impact is known as a hydraulic impact [31]. Another failure mode is the occurrence of interlaminar cracks.

Investigation of the stress state in solids with cracks falls in the category of so-called fracture mechanics and has been under an extensive scrutiny since the famous enunciation by Griffith [32]. Presence of cracks inside a material usually leads us to a mixed boundary value problem and only a limited class of problems can be solved [33,34]. In the case of dynamic loading the problem becomes more difficult due to the scattering of the stress wave by the crack [21-24]. In this report we will formulate the problem of a plate with a crack which is subject to a dynamic loading.

Our original goal was to study the effect of interlaminar cracks in composite plates in response to impact loads. Debugging problems in other parts of this report, however, used valuable time originally set aside for this problem. The following section is an attempt to illustrate the

use of the Mindlin plate theory for the study of interlaminar cracks and to point out the mathematical difficulties that must be overcome in solving the problem.

2. Formulation

Description of Problem

The plate under consideration has a crack on the midplane running from $\mathbf{x_1} = -\mathbf{h}$ to +h as shown in Fig. 19. Stress can be applied either on the surface of the plate or on the crack surface. In the former case the crack surfaces can be in contact and the boundary conditions become more complex due to the partial continuity of stresses and displacements during the contact. For the present report to illustrate the mathematical difficulties we assume that the crack surface is subject to a known compressive impact.

Governing Equation and Boundary Conditions

We can formulate this crack problem by assuming that the lower and the upper half plates are made of a number of layers but for simplicity we consider the plate to consist of two identical layers and the crack to be present on the interface of these two layers. Following the notation shown in Fig. 19 we have the governing equations identical to Eq. (III-6) with n = 1 and 2. The boundary condition requires that both plate surfaces remain traction free. The crack surface is subject to a prescribed impact condition while the displacement and stress are continuous along the layer boundary outside the crack. Namely, we have

$$\sigma_{0} = \tau_{0} = \sigma_{2} = \tau_{2} = 0$$

$$\sigma_{1}^{+} = \sigma_{1}^{-} = -P_{0}(x_{1}, t) \} |x| < h$$

$$\tau_{1}^{+} = \tau_{1}^{-} = 0$$

$$u_{1}^{+} = u_{1}^{-}, v_{1}^{+} = v_{1}^{-}$$

$$\sigma_{1}^{+} = \sigma_{1}^{-}, \tau_{1}^{+} = \tau_{1}^{-}$$

$$|x| < h$$

$$|x| > h$$

Due to the twofold symmetry of the problem we now have $u_0 = u_2$, $v_0 = -v_2$, $\tau_1^+ = \tau_1^- = 0$ and we can set $u_1^+ = u_1^- = u_1$, $-v_1^+ = v_1^- = v_1$. Thus, the eight equations obtained from Eq. (III-6) are now reduced to

$$\rho(\ddot{\mathbf{u}}_{1} + \ddot{\mathbf{u}}_{0}) = c_{11}(\mathbf{u}_{1} + \mathbf{u}_{0})_{11} + \frac{c_{12}}{b}(\mathbf{v}_{1} - \mathbf{v}_{0})_{11}$$

$$\rho(\ddot{\mathbf{v}}_{1} - \ddot{\mathbf{v}}_{0}) = -\frac{3c_{12}}{b}(\mathbf{u}_{1} + \mathbf{u}_{0})_{11} - \frac{3c_{22}}{b^{2}}(\mathbf{v}_{1} - \mathbf{v}_{0}) + \frac{3\sigma}{b}$$

$$\rho(\ddot{\mathbf{u}}_{1} - \ddot{\mathbf{u}}_{0}) = \hat{c}_{11}(\mathbf{u}_{1} - \mathbf{u}_{0})_{11} - \frac{3c_{66}}{b^{2}}(\mathbf{u}_{1} - \mathbf{u}_{0}) - \frac{3c_{66}}{b}(\mathbf{v}_{1} + \mathbf{v}_{0})_{11} + \frac{c_{12}}{c_{22}}\sigma_{11}$$

$$\rho(\ddot{\mathbf{v}}_{1} + \ddot{\mathbf{v}}_{0}) = c_{66}(\frac{1}{b}(\mathbf{u}_{1} - \mathbf{u}_{0})_{11} + (\mathbf{v}_{1} + \mathbf{v}_{0})_{11}) + \frac{\sigma}{b}$$

$$(IV-2)$$

and the boundary condition is now

$$\sigma = -P_o(x_1,t) \qquad |x_i| < h$$

$$v_1 = 0 \qquad |x_i| > h$$
along $x_2 = 0$ (IV-3)

Dual Integral Equation

We now normalize the governing equation (IV-2) and take the integral transform. Then we have

$$\begin{bmatrix} (fs^{2} + \frac{b}{\Delta}C_{11}k^{2}), & C_{12}ik & , & 0 & , & 0 \\ -3C_{12}ik & , & (fs^{2} + \frac{3\Delta}{b}C_{22}), & 0 & , & 0 \\ 0 & , & 0 & , & C_{66}ik & , & (fs^{2} + \frac{b}{\Delta}C_{66}k^{2}) \\ 0 & , & 0 & , & (fs^{2} + \frac{b}{\Delta}C_{66}k^{2}) \end{bmatrix} \cdot \begin{bmatrix} \hat{\vec{U}}_{1} + \hat{\vec{U}}_{0} \\ \hat{\vec{V}}_{1} - \hat{\vec{V}}_{0} \\ \hat{\vec{U}}_{1} - \hat{\vec{U}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{\Sigma}} \end{bmatrix} \cdot \begin{bmatrix} \hat{\vec{U}}_{1} + \hat{\vec{U}}_{0} \\ \hat{\vec{V}}_{1} - \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{\Sigma}} \end{bmatrix} \cdot \begin{bmatrix} \hat{\vec{U}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} - \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{\Sigma}} \end{bmatrix} \cdot \begin{bmatrix} \hat{\vec{U}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} - \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{\Sigma}} \end{bmatrix} \cdot \begin{bmatrix} \hat{\vec{U}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{\Sigma}} \end{bmatrix} \cdot \begin{bmatrix} \hat{\vec{U}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{\Sigma}} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{\Sigma}} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{\Sigma}} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}_{1} + \hat{\vec{V}}_{0} \\ \hat{\vec{V}}_{1} + \hat{\vec{V}}_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\hat{\vec{V}_$$

and these can be solved for $\hat{\bar{v}}_o$, $\hat{\bar{v}}_1$, $\hat{\bar{v}}_o$, and $\hat{\bar{v}}_1$ in terms of $\hat{\bar{\Sigma}}$. Since the mixed boundary conditions are given by σ and v_1 we solve $\hat{\bar{v}}_1$ as

$$\hat{\bar{V}}_1 = K(s,k)\hat{\bar{\Sigma}}$$
 (IV-5)

with

$$K(s,k) = \frac{1}{2} \left[\frac{3}{A} (fs^2 + \frac{b}{\Delta}C_{11}k^2) + \frac{1}{B} \left\{ \frac{C_{12}}{C_{22}} \frac{b}{\Delta}C_{66}k^2 - (fs^2 + \frac{b}{\Delta}\hat{C}_{11}k^2 + \frac{3b}{\Delta}C_{66}) \right\} \right]$$

$$A = Det \begin{vmatrix} (fs^2 + \frac{b}{\Delta}C_{11}k^2) & , & C_{12}ik \\ -3C_{12}ik & , & (fs^2 + \frac{3\Delta}{b}C_{22}) \end{vmatrix}$$

$$(IV-6)$$

$$B = Det \begin{vmatrix} c_{66}^{ik} & , & (fs^2 + \frac{b}{\Delta}c_{66}^{k^2}) \\ (fs^2 + \frac{b}{\Delta}\hat{c}_{11}^{k^2} + \frac{3\Delta}{b}c_{66}^{k^2}) & , & -3c_{66}^{ik} \end{vmatrix}.$$

Next we take the inverse transform of $\hat{\overline{\Sigma}}$ and $\hat{\overline{V}}_1$, and apply the mixed boundary condition given in Eq. (IV-3). Since the boundary conditions are for all times t > 0 we only take the inverse Fourier transform to apply the boundary conditions, i.e.,

$$\hat{\Sigma}(\eta, s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{\Sigma} e^{-ik\eta} dk$$

$$\hat{V}_{1}(\eta, s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} K(s, k) \hat{\Sigma} e^{-ik\eta} dk \qquad (IV-7)$$

Application of the boundary condition given by Eq. (IV-3) results in the following integral equation:

$$-\hat{P}_{O}(\eta,s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{\Sigma} e^{-ik\eta} dk : |\eta| < h/\Delta$$

$$0 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} K(s,k) \hat{\Sigma} e^{-ik\eta} dk : |\eta| > h/\Delta$$
(IV-8)

for an unknown function $\hat{\Sigma}$.

3. Discussion

The integral equations of the type given in Eq. (IV-8) are known as dual integral equations, each of which has its own region of application and occur in mixed boundary value problems [35]. There are a number of ways to solve this type of integral equations, such as by reduction to a single Fredholm integral equation or by using the Wiener-Hopf technique [36]. Finding the solution depends on the kernel and in general it is rather difficult to do except for some special cases such as for Bessel kernels or trigonometric kernels.

Once the unknown function $\hat{\Sigma}$ is determined the other variables $(\hat{\bar{\mathbb{U}}}_0,\hat{\bar{\mathbb{V}}}_1,\hat{\bar{\mathbb{V}}}_0,\hat{\bar{\mathbb{V}}}_1)$ can be computed by solving the algebraic equation (IV-4) and the complete displacement can be found by inversions of the integral transform.

The problem formulated in this chapter is the simplest impact problem in that the contact of the crack surface does not occur and that it has a twofold symmetry. But it is expected that the critical response of the plate, particularly the stress field near the crack, can be a guide—line for a more complex problem.

V. CONCLUSION AND RECOMMENDED RESEARCH

The present theory is a generalization of Mindlin's approximate theory of plate applied to a multilayer plate under impact. By combined use of the finite difference technique in the thickness direction and integral transforms this model has been shown to be very effective for wave propagation analyses.

This model is extended to examine the effects of an elastomer layer between elastic layers of the plate. The reduction of interlaminar normal stress is significant due to the damping layer but further investigation seems necessary to determine the nature of the reduction.

The presence of a crack in the plate has been formulated. The resulting equations are given by dual integral equations which, as in many cases, are rather difficult to solve.

The basic idea of the periodic structure of the multilayer plate, where the governing equations are derived for each layer and given by a set of difference-differential equations, may be useful to handle different types of problems, such as heat conduction and thermoelastic problems in composite plates.

References

- [1] Mindlin, R.D., "High Frequency Vibrations of Crystal Plates", Quart. Appl. Math., Vol. 19, p. 51-61 (1961).
- [2] Moon, F.C., "Wave Surfaces Due to Impact on Anisotropic Plates", J. Composite Materials, Vol. 6, p. 62 (1972).
- [3] Moon, F.C. and Kang, C.K., "Analysis of Edge Impact Stresses in Composite Plates", TR to NASA Lewis Research Center, Princeton University (1974).
- [4] Moon, F.C., "One Dimensional Transient Waves in Anisotropic Plate", J. Appl. Mech., Trans. ASME, p. 485 (1973).
- [5] Moon, F.C., Kim, B.S. and Fang Landau, S.R., "Impact of Composite Plates: Analysis of Stresses and Forces", TR to NASA Lewis Research Center, Princeton University (1976).
- [6] White, J.E. and Angona, F.A., "Elastic Wave Velocities in Laminated Media", J. Acoust. Soc. Am., Vol. 27, p. 310 (1955).
- [7] Sun, C.T., Achenbach, J.D. and Herrmann, G., "Continuum Theory for a Laminated Media", J. Appl. Mech., Trans. ASME, p. 467 (1968).
- [8] Nayfeh, A.H. and Gurtman, G.A., "A Continuum Approach to the Propagation of Shear Waves in Laminated Wave Guides", J. Appl. Mech., Trans. ASME, p. 106 (1974).
- [9] Hegemier, G.A., Gurtman, G.A. and Nayfeh, A.M., "A Continuum Mixture Theory of Wave Propagation in Laminated and Fiber Reinforced Composites", <u>Int. J. Solids Struc.</u>, Vol. 9, p. 395 (1973).
- [10] Chao, T. and Lee, P.C.Y., "Discrete Continuum Theory for Periodically Layered Composite Materials", J. Acoust. Soc. Am., Vol. 57, p. 78 (1975).
- [11] Lee, P.Y.C. and Nikodem, Z., "An Approximate Theory for High Frequency Vibrations of Elastic Plates", <u>Int. J. Solids Struc.</u>, Vol. 8, p. 581 (1972).
- [12] Dong, S.B. and Nelson, R.B., "On Natural Vibrations and Waves in Laminated Orthotropic Plates", J. Appl. Mech., Trans. ASME, p. 739 (1972).
- [13] Hegemier, G.A. and Nayfeh, A.H., "A Continuum Theory for Wave Propagation in Laminated Composites, Case 1: Propagation Normal to the Laminates", J. Appl. Mech., Trans. ASME, p. 503 (1973).
- [14] Hegemier, G.A. and Nayfeh, A.H., "A Continuum Theory for Wave Propagation in Laminated Composites, Case 2: Propagation Parallel to the Laminates" J. Elasticity, Vol. 3, p. 125-140 (1973).

- [15] Cooley, J.W., Lewis, P.A.W. and Welch, P.D., "The Fast Fourier Transform Algorithm: Programming Considerations in the Calculation of since, cosine and Laplace Transforms", J. Sound Vib., Vol. 12, p. 315-337 (1970).
- [16] Brillouin, L. Wave Propagation in Periodic Structures, Dover, N.Y. (1946).
- [17] Thomson, W.T., <u>Vibration Theory and Application</u>, Prentice Hall, N.J. (1965).
- [18] Mindlin, R.D. and Medick, M.A., "Extensional Vibrations of Elastic Plates", J. Appl. Mech., Trans. ASME, p. 561 (1959).
- [19] Yan, M.J. and Dowell, E.H., "High Damping Measurements and Preliminary Evaluation of an Equation for Constrained Layer Damping", AIAA Journal, Vol. 11, p. 388 (1973).
- [20] Nakra, B.C. and Grootenhuis, P., "Structural Damping Using a Four Layer Sandwich", J. Eng. Ind., Trans. ASME, p. 81 (1972).
- [21] Achenback, J.D., "Crack Propagation Generated By a Horizontally Polarized Shear Wave", J. Mech. Phys. Solids, Vol. 18, p. 245 (1970).
- [22] Achenback, J.D. and Nuismer, R., "Fracture Generated by a Dilatational Wave", Int. J. Frac. Mech., Vol. 7, p. 77 (1971).
- [23] Nuismer, R.J. and Achenback, J.D., "Dynamically Induced Fracture", J. Mech. Phys. Solids, Vol. 20, p. 203 (1972).
- [24] Keer, L.M. and Luong, W.C., "Diffraction of Waves and Stress Intensity Factors in a Cracked Layered Composite", J. Acoust. Soc. Am., Vol. 56, p. 1681 (1974).
- [25] Levy, H. and Lessman, F., <u>Finite Difference Equations</u>, MacMillan Co. (1961).
- [26] Kim, B.S. and Moon, F., "Impact on a Laminated Half Space", to be published.
- [27] Premont, E.J. and Stubenrauch, K.R., "Impact Resistance of Composite Fan Blades", Tech. Rep. to NASA Lewis Research Center, NASA CR-134515, Pratt and Whitney Aircraft (1973).
- [28] Novak, R.C., "Multi-Fiber Composites", Tech. Rep. to NASA Lewis Research Center, NASA OR-135062, United Technology (1976).
- [29] Christensen, R.M., Theory of Viscoelasticity, Academic Press, N.Y. (1971).
- [30] Christescu, N., Dynamic Plasticity, North-Holland, New York (1967).
- [31] Birkhoff, A. et al, "Explosives with Lined Cavities", J. Appl. Phys. Vol. 19, p. $5\overline{63}$ (1948).

- [32] Griffith, A., "Phenomenon of Rupture and Flaw in the Solids", Phil. Trans. Roy. Soc. (London), Vol. A221, p. 163 (1921).
- [33] Liebowitz, H., (Ed.) Fracture, Vol. 2, Academic Press, N.Y. (1968).
- [34] Sneddon, I.N. and Lowengrub, M. Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons, New York (1969).
- [35] Sneddon, I.N., <u>Mixed Boundary Value Problems in Potential Theory</u>, North-Holland, Amsterdam (1966).
- [36] Noble, B., Method Based On the Wiener-Hopf Technique, Pergamon Press, New York (1958).

Figures

- Composite Plate and Layer
- 2 a,b. Dispersion Relationship and Phase Velocity for Isotropic Plate: One-layer Model ($\lambda = \mu$).
- 3 a,b. Dispersion Relationship and Phase Velocity for Composite Plate: One-layer Model (55% Graphite Fiber-Epoxy Matrix, Layup Angle 45°).
- 4 a,b. Dispersion Relationship and Phase Velocity for Isotropic Plate: Two-layer Model ($\lambda = \mu$).
- 5 a,b. Dispersion Relationship and Phase Velocity for Composite Plate: Two-layer Model (55% Graphite Fiber-Epoxy Matrix, Layup Angle 45°).
- 6 a~f. Longitudinal Propagation Impact Stress in Isotropic Plate: Two-layer Model ($\lambda = \mu = 1.2*10^7$ psi; $\Delta = 1$ cm, t = 10 μ sec, a = 4 cm).
- 7. Transverse Propagation of Normal Stress in Isotropic Plate: 4-layer Model ($\lambda = \mu = 1.2*10^7$ psi; $\Delta = 4$ cm, t = 2 μ sec, a = 40 cm).
- 8. Transverse Propagation of Normal and Shear Stress in Isotropic Plate: (Same as in Fig. 7).
- 9. Transverse Propagation of Normal Stress in Composite Plate: 8-layer Model (55% Graphite Epoxy-Fiber Matrix, Layup Angle 15°; Δ = 1 cm, t_o = 2 µsec, a = 2 cm).
- 10. Two Dimensional Propagation of Normal Stress in Isotropic Plate: 4-layer Model ($\lambda = \mu = 1.2*10^7$ psi; $\Delta = 4$ cm, t = 4 μ sec, a = 4 cm).
- 11. Velocity Surface and Wave Surface of Composite Plate (55% Graphite Fiber-Epoxy Matrix, Layup Angle 45°).
- 12a,b. Comparison of Theoretical Wave Front and Numerical Wave Front of Composite Plate 10 μ sec after Impact: 55% Graphite Fiber-Epoxy Matrix (For Numerical Results; 8-layer Model, Δ = 4 cm, t = 4 μ sec, a = 2 cm). Without and with Correction Factors.
- 13. Effect of Correction Factor or Transverse Propagation of Peak Value of Normal Stress: 8-layer Model (55% Graphite Fiber-Epoxy Matrix, Layup Angle 45°; Δ = 4 cm, t_0 = 4 μ sec, a = 2 cm).
- 14. Viscoelastic Impact Energy Absorbing Models.
- 15a,b. Complex Modulus of Elastomer.
- 16. Plate with Viscoelastic Layers.
- 17. Impact of Plate Made of 2 Elastic Layers and a Viscoelastic Layer.

- 18. Peak Value of Interlaminar Stress Vs Elastomer thickness (Two Elastic Layers and a Viscoelastic Layer: (Δ = 1 cm, t = 10 µsec, a = 4 cm).
- 19. Composite Plate with Crack.

Figure 1. Multilayered Composite Plate and Layer

Dispersion Relationship and Phase Velocity of Isotropic Plate: One-Layer Model (λ = μ , Poisson's Ration = 1/4) Figure 2.

Dispersion Relationship and Phase Velocity of Composite Plate: One-Layer Model (55% Graphite Fiber - Epoxy Matrix; Layup Angle = 45°) Figure 3.

Dispersion Relationship and Phase Velocity of Isotropic Plate: Two-layer Model ($\lambda = \mu$, Poisson's Ratio = 1/4) Figure 4.

($\lambda = \mu = 1.2 \times 10^{\prime} \mathrm{psi}$; $\Delta = 1 \mathrm{cm}$, $t_0 = 10 \mathrm{~\mu sec}$, $a = 4 \mathrm{~cm}$)

Figure 6 Continued

Figure 6 Continued

Transverse Propagation of Normal and Shear Stress (Same as in Figure 7) Figure 8.

Figure 9 Transverse propagation of normal stress in composite plate; 8-layer Model (55% Graphite Fiber - Epoxy Matrix, $\pm 15^{\circ}$ Layup; Δ = 1 cm, t_{o} = 2 μ sec, a = 2cm)

Two Dimensional Propagation of Normal Stress in Isotropic Plate: 4-layer Model (λ = μ = 1.2*107 psi; Δ = 4 cm, t_o = 4 µsec, a = 4 cm) Figure 10.

Figure 11. Velocity Surface and Wave Surface of Composite Plate (55% Graphite Fiber-Epoxy Matrix, Layup Angle 45°)

Figure 12a Wave front 10 μ sec after impact (without correction factor) (55% Graphite Fiber-Epoxy Matrix, $\pm 45^{\circ}$ Layup; Δ = 4 cm, 8-layer Model; t_O = 4 μ sec, a = 2 cm)

Figure 12b.Wave front 10 μ sec after impact (with correction factor) (55% Graphite Fiber-Epoxy Matrix, $\pm 45^{\circ}$ Layup; Δ = 4 cm, 8-layer Model; t = 4 μ sec, a = 2 cm)

Effect of correction factors on transverse propagation of max $\sigma_n(x_1 = 0)$; 8-layer Model. (55% Graphite Fiber-Epoxy Matrix, $\pm 45^{\circ}$ Layup; $\Delta = 4$ cm, $t_0 = 4 \mu sec, a = 2 cm$ Figure 13

Figure 14. Viscoelastic Impact Energy Absorbing Models

FIGURE 15a SHEAR MODULUS AND LOSS TANGENT AT T °F vs FREQUENCY FOR DUPONT LR3-604

FIGURE 156. THE COMPLEX YOUNG'S MODULUS OF LR3-604 MEASURED

Figure 16. Plate with Viscoelastic Layers

Figure 17. Impact of Plate Made of 2 Elastic Layers and a Viscoelastic Layer

Peak Value of Interlaminar Stress Vs. Elastomer Thickness (two elastic layers and a viscoelastic Layer; Δ = 1 cm, τ_0 = 10 μsec , a = 4 cm) *Calculated values Figure 18.

Figure 19. Composite Plate with Crack

APPENDIX A FLOW CHART

In this flow chart and program, U(I,J), V(I,J), TAU(I,J) SIGMA (I,J) and SIGMA1(I,J) represent $\hat{\vec{U}}$, $\hat{\vec{V}}$, $\hat{\vec{T}}$ and $\hat{\vec{\Sigma}}$ in Eq. (II-17,18) and integral transform of σ_{11}

- (i) Define the variables (U,V,TAU,SIGMA) for displacement and stress fields in matrix form
- (ii) Define other working matrices
- (iii) Supply the core space for the matrices
- (i) Read the elastic moduli of the composite plate (in PSI) and write them
- (ii) Normalize them by c₆₆
- (iii) Introduce correction factors for c_{22} and c_{66}
- (iv) Calculate E_{66} (c₆₆ in MKS unit) and store
- (i) Read and write the data for geometry of composite plate.

NLAYER: Number of layers in plate

DELTA: Thickness of the plate (in cm)

RHO: Density of the composite (in gr/cm³)

- (ii) Calculate the B (half of the layer thickness)
- (iii) Convert all quantities in MKS unit
- (i) Read and write all the impact data

NA: Impact radius by integer multiple of plate

thickness (A = NA* DELTA)

TAUO: Impact time (in second)

(ii) Read and write all the data of integral steps

NX: Total step number in space

NT: Total step number in time

NXIMP: Step number in impact radius

NTIMP: Step number in impact time

(iii) Calculate step size in time and space

Space: DX = A/NXIMP

Time: DT = TAUO/NTIMP

(i) Calculate normalization units

Space: UNITX = DELTA (Thickness of the plate)

Time: UNITT = $A/\sqrt{E_{66}/RH0}$ (Time refuired for the quasi-

shear wave to travel the impact radius)

(ii) Normalized all quantities by UNITT and UNITX

(iii) Calculate integral limits ($\omega_{_{\rm O}}$ and $k_{_{\rm O}}$) in Fast Fourier Transform

Calculate QO(I,J), CBX(I,J), CAX(I,J), XIBX(I,J), YIAX(I,J) Y3AX(I,J), over a half of the range of integration (I = 1 ~ NT, J = 1, NX/2).

QO: Impact function given in Eq. (II-22)

CBX, CAX: $\cos\beta$ and $\cos\alpha$ in Eq. (II-16,17) by DPHASE

X1BX, X2BX ...: $X_1(\beta)$, $X_2(\beta)$ in Eq. (II-18,19) by DELL

Y1AX, Y2AX ...: $Y_1(\alpha)$, $Y_2(\alpha)$ in Eq. (II-18,19) by DELL

Invert (see Block A) and check the impact function σ_0 with Q0

Block A Inversion

- (i) Data xx(I,J) in integral transformed space are generated for a half of the inverse transform range: $I = 1 \sim NT$, $J = 1 \approx NX/2$
- (iii) Invert them for displacement and stress fields by FOURT
- (iv) Take care of the coordinate shifts and multiplication factors in FOURT by FACT
- (v) Print out by MAP

APPENDIX B SAMPLE COMPUTER DECK

,						
18						
/ 			-	24		
	64	35	8	64		Data Card
	2		.E-06			Data Card
	8		1.		1.44	Data Card
	15	0.2456E 08	0.4000	E 06	0.1170E 07	0.3552E 06 Data Card
7760.S	YSIN DD	*				
(**						
	PROG	RAM IN SOURCE	DECK (see A	Appendi	к C)	
OV EXI	EC FURTO	CLG				
(Till 2011)					•	
		THE TANK I THIT!	シニビリーごと さのたーだ			
// 墨巴夫的)	TS REGI	DH=207K,LIME	S=5K,CLASS=(
/× = 1, (()	•		S=5K,CLASS=(
Ø*L)(F)	•	OM=207K,LIME:	S=5K,CLASS=(B	1	
	JOB	CARD		••		
00000	JOB	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 44 45 46 47 48 49 50 51 52 53 54 55 51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000000	JOB	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 37 38 39 40 41 42 4 1 1 1 1 1 1 1	3 44 45 46 47 48 49 50 51 52 53 54 55 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 57 53 55 66 51 62 63 54 65 66 67 68 69 70 77 73 74 76 76 77 77 78 78 78 78 78 78 78 78 78 78 78
0 0 0 0 0 0 1 2 3 4 5 1 1 1 1 1 1	JOB	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 37 38 39 40 41 42 4 1 1 1 1 1 1 1	3 44 45 46 47 48 49 50 51 52 53 54 55 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 27 28 29 60 21 62 63 64 63 56 61 68 53 10 11 12 13 14 13 16 11 16 13 61
0 0 0 0 0 0 1 2 3 4 5 1 1 1 1 1 1 2 2 2 2 2 2 2 :	JOB	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 44 45 46 47 48 49 50 51 52 53 54 55 51 1	6 57 53 55 66 51 62 63 54 65 66 67 68 69 70 77 73 74 76 76 77 77 78 78 78 78 78 78 78 78 78 78 78
0 0 0 0 0 0 0 1 2 3 4 5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3	JOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 44 45 46 47 48 49 50 51 52 53 53 54 55 55 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 2 3 4 5 5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3	JOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1
0 0 0 0 0 0 0 1 2 3 4 5 5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3	JOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 2 3 4 5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3	JOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 2 3 4 5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3	JOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 2 3 4 5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3	JOB 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 2 3 4 5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3	JOB 0 0 0 0 0 0 0 0 0 0 5 7 8 9 10 11 12 13 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 6 8 8 8 8 8 8 8 8	CARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

APPENDIX C LISTING OF PROGRAM AND SAMPLE OUTPUT

DATE = 7713921/11/39 31 RELEASE 2.0 MAIN C THIS PROGRAM CALCULATES THE TRANSIENT PROPAGATION OF STRESS WAVE C C IN A LAMINATED COMPOSITE PLATE DUE TO A NORMAL IMPACT. С C C C THE PRESENT PROGRAM IS A PART OF THE RESEARCH PROJECT OF C PROFESSOR FRANCIS C. MOON C DEPARTMENT OF THEORETICAL AND APPLIED MECHANICS C CORNELL UNIVERSITY C AND SUPPORTED BY NASA-LEWIS RESEARCH CENTER. C C C******************************** C C FOLLOWING USER'S GUIDES ARE PROVIDED BY DR. B.S.KIM AND ALL THE EQUATION C NUMERS CORRESPOND EQUATIONS IN THE ACCOMPANYING TECHNICAL REPORT C C C. C C 1. DATA TO BE SUPPLIED BY 4 DATA CARDS (IN THE ORDER OF READING) C C C IANGLE: FIBER LAYUP ANGLE IN COMPOSITES С C11.C12.. : ELASTIC MODULI OF COMPOSITE LAYER(IN PSI) C C NLAYER: NUMBER OF THE LAYERS IN THE GIVEN PLATE C D, DELTA: THICKNESS OF COMPOSITE PLATE(IN CM) C RHO: MASS DENSITY OF COMPOSITE LAYER(IN GR/CM**3) C NA: RADIUS OF THE IMPACT AS A MULTIPLE OF THE PLATE THICKNESS C C TAUO: IMPACT TIME(IN SECOND) C C NX: NUMBER OF INEGRATION STEPS IN SPACE C NT: NUMBER OF INTEGRATION STEPS IN TIME DOMAIN С NXIMP: NUMBER OF SPACE STEPS IN IMPACT RADIUS C NTIMP: NUMBER OF TIME STEPS IN IMPACT TIME C С C C С 2. WITH THE ABOVE DATA FOLLOWING PRIMARY DATA ARE CALCULATED C C

FI RELEASE 2.0 C C C C C C C C C C C C С С C C C C C C C Ċ C C С C C С C C C C C C C C C

> C C

> C C C

> C

C

MAIN

DATE = 77139 21/11/39

B: A HALF OF THE LAYER THICKNESS

K: WAVE NUMBER FOR FOURIER TRANSFORM

S: LAPLACE TRANSFORM VARIABLE

KO: LIMIT OF INTEGRATION FOR INVERSE FOURIER TRANSFORM FOR X OMEGAO: LIMIT OF INTEGRATION FOR INVERSE TRANSFORM IN TIME CO: LAPLACE TRANSFORM PARAMETER

3. DISPLACEMENT AND STRESS FIELDS ARE CALCULATED IN TRANSFORMED SPACE AND BY INVERSIONS THESE BECOME DISPLACEMENTS AND STRESSES. THEY ARE GIVEN IN A MATIX FORM AS XX(I,J) REPRESENTING QUANTITY AT ITH TIME STEP AND JTH SPACE STEP IN X

U(I,J): HRIZONTAL DISPLACEMENT V(I,J): VERTICAL DISPLACEMENT SIGMA(I,J): NORMAL STRESS

TAU(I,J): SHEAR STRESS

SIGMAL(I,J): TANGENTIAL NORNAL STRESS

4. FOLLOWINGS ARE WORKING MATRICES FOR THIS PROGRAM

DATA(I,J), SUB(I,J): WORKING MATRICES FOR SUBROUTINE FOURT QO(I,J): INTEGRAL TRANSFORM OF IMPACT FUCTION GIVEN IN EQ(II-22)

CAX(I,J), CBX(I,J): COS(ALPHA) AND COS(BETA) IN EQ(II-16) X1BX(I,J), Y1AX(I,J),...: X1(BETA), Y1(ALPHA),.. IN EQ(II-18)

5. FOLLOWING SUBROUTINE ARE SUPPLIED IN THE PRESENT PROGLAM

DPHASE: CALCULATES COS(BETA) AND COS(ALPHA) IN EQ(II-16) WITH GIVE VALUES OF WAVE NUMBER K AND LAPLACE TRANSFORM VARIABLE S

DELL: CALCULATES X1(BETA), Y1(ALPHA), ... IN EQ (II-19,20)

;1

4

1LATE ****)

21/11/39

FORMAT("1"///////////20X,"*** WAVE PROPAGATION IN COMPOSITE P

```
WRITE (6,5)
     FORMAT(22X, GRAPHITE FIBER(55%)-EPOXY MATRIX COMPOSITE')
5
C
   INPUT DATA FOR ELASTIC PROPERTIES OF COMPOSITE PLATE
C
   ALL THE DATA ARE SUPPLIED IN PSI UNIT BUT NORMALIZED BY C66
C
   WHICH IS CONSTANT REGARDLESS THE LAYUP ANGLE
C
C
C
     READ (5,101) IANGLE, C11, C12, C22, C66
     FORMAT(110,4015.7)
101
     CHAT=C11-C12**2/C22
     IF (IANGLE.EQ.100) GO TO 200
     WRITE(6,102) IANGLE, C11, C12, C22, C66
                 20X, LAYUP ANGLE= 1, 13, 3X, DEGREE
     FORMAT(//
102
     $ /20X, 'C(1,1) = ',D12.5,' PSI',10X, 'C(1,2) = ',D12.5,'
                                                          PSI 1
     $ /20X, 'C(2,2) = ',D12.5,' PSI',10X, 'C(6,6) = ',D12.5,'
                                                          PSI'//)
     GO TO 201
     CONTINUE
200
      WRITE(6,210) C11,C12,C22,C66
     FORMAT(/20X, PLATE IS ISOTROPIC WITH POISSON'S RATIO 1/4'
210
     $ /20X, 'C(1,1) = ',D12.5,' PSI',10X, 'C(1,2) = ',D12.5,'
                                                         PSI'//)
     $ /20X, *C(2,2) = *,D12.5, PSI*,10X, *C(6,6) = *,D12.5,
     CONTINUE
201
C
      E66=C66*6892.2D 00
      C11=C11/C66
      C12=C12/C66
      C22=C22/C66
      CHAT=CHAT/C66
      C66=1.D 00
C***** WITH CORRECTION FACTOR
      C66=PI**2/12.D 00
      C22=C22*C66
C
C
C
C
    INPUT DATA FOR GEOMETRY OF COMPOSITE PLATE
C
    ALL THE DATA ARE FIRST SUPPLIED IN CGS UNIT BUT CONVERTED INTO MKS UNIT
C
C
C
      READ(5,120) NLAYER, DELTA, RHO
120
     FORMAT(110,2020.10)
```

MAIN

;1

RELEASE 2.0

DATE = 77139

```
NL1=NLAYER+1
      FN=DFLOAT(NLAYER)
      B=DELTA/FN
      WRITE(6,121) DELTA, RHO, NLAYER, B
      FORMAT(20X, 'TOTAL THICKNESS OF COMPOSITE PLATE; DELTA=', F10.5,
121
     $ ' CM'/
     $ 20X, DENSITY OF COMPOSITE; RHO=',F10.5, GR/CM**3"/
     $ 20X, 'PLATE IS MADE OF ', I3, 3X, 'IDENTICAL LAYERS'/
     $ 20X, 'LAYER THICKNESS : 2B=',F10.5,' CM'//)
C
      DELTA=DELTA/100.D 00
      RHO=RHO*1000.D 00
      B=B/200.D 00
C
C
C
C
С
    INPUT DATA FOR IMPACT
C
C
      READ(5,60) NA, TAUO
      FORMAT(I10,D20.10)
60
      READ(5,111) NX,NT,NXIMP,NTIMP
111
      FORMAT(4110)
C
      WRITE(6,112) NX, NXIMP, NT, NTIMP
      FORMAT(20X, 'TOTAL SPACE STEPS; NX=', 13, 5X, 'WITH', 13, 2X, 'STEPS FOR
112
     $ CONTACT RADIUS'/
     $20X, TOTAL TIME STEPS; NT=1, 13, 5X, WITH1, 13, 2X, STEPS FOR CONTAC
     ST TIME!//)
C
      A=DFLOAT(NA) *DELTA
      DX=A/DFLOAT(NXIMP)
      DT=TAU0/DFLOAT(NTIMP)
C
      WRITE(6,61) A,DX, TAUO, DT
      FORMAT(20X, 'CONTACT RADIUS ; A=',D12.5, ' M'/
61
     $20X, 'SPACE STEP; DX=', D12.5,' M'/
     $20X, CONTACT TIME ; TAUO= ,D12.5,
     $20X, 'TIME STEP ; DT=', D12.5,' SECOND'//)
C
C
C
C
C
    NORMALIZE ALL THE INPUT DATA
C
C
      V66=DSQRT(E66/RHO)
```

MAIN

C

DATE = 77139

```
31 RELEASE 2.0
           UNITT = A/V66
           UNITX=DELTA
           F=D*D*RHO/(E66*UNITT**2)/2.D 00/FN
     C
           NX2=NX/2
           NN(1) = NT
           NN(2) = NX
           DX=DX/UNITX
           DT=DT/UNITT
           KO=PI/DX
           OMEGAO=PI/DT
           BL=A/D
           CO=DLOG(1.D 06*2.D 00*DT)/(3.D 00*DT*DFLOAT(NT))
     C
     C
     C
     C
     C
         CALCULATE THE IMPACT INPUT FUNCTION QO(I, J) IN EQ(II-22)
     C
         CALCULATE COS(BETA) AND COS(ALPHA) IN EQ(II-16) BY SUBROUTINE DPHASE
     C
     C
         CALCULATE X1(BETA), Y1(ALPHA) ,.. BY SUBROUTINE DELL
     C
     C
           DO 30 J=1,NX2
           K=2.D OO*KO*(DFLOAT(J)-.5)/DFLOAT(NX)-KO
           K2=K**2
           KX(J)=K
           Q=PI**2/DSQRT(P2)*DSIN(K*BL)/K/((K*BL)**2-PI**2)
     C
           DO 30 I=1,NT
           S=CO+SI*OMEGAO*(1.D OO-(DFLOAT(I)-.5D OO)*2.D OO/DFLOAT(NT))
           S2=S**2*F
           QO(I,J)=Q/2./S*(1.D OO-CDEXP(-S*TAUO/UNITT))*(P2*UNITT)**2
          $ /((S*TAUO)**2+(P2*UNITT)**2)
     C
           CALL DPHASE (K,S2,CB,CA,NLAYER)
           CBX(I,J)=CB
           CAX(I,J)=CA
     C
           CALL DELL(K, S2, CB, CA, SI, NLAYER)
           Y1AX(I,J)=Y1A
           Y2AX(I,J)=Y2A
           Y3AX(I,J)=Y3A
           X1BX(I,J)=X1B
           X2BX(I,J)=X2B
           X3BX(I,J)=X3B
```

MAIN

31 RELEASE 2.0

DATE = 77139

```
30
     CONTINUE
C
C
C
   REPRODUCE THE IMPACT FUNCTION TO CHECK INPUT
C
C
     DO 300 I=1,NT
     DO 300 J=1,NX2
300
     SUB(I,J) = QO(I,J)
     CALL FLIP(DATA, NX, NX2, NT, +1)
     CALL FOURT(DATA, NN, 2,-1,1,0)
     CALL FACT(DATA, NX, NT, CO, DMEGAO, KO, PI, SI)
     WRITE(6,301)
     FORMAT("1"//////////20X, "*** REPRODUCTION OF IMPACT FUNCTIO
301
    1N ****)
     CALL MAP(DATA, NX, NT, NX2, MM, INDEX)
C
C
C
C
C
   THIS IS THE MAIN PART OF THE PROGRAM.
C
C
   CALCULATE D(BETA), DBAR(ALPHA), ... IN EQ(II-19,20) BY SUBROUTINE DET
C
   NEXT CALCULATE 1, V, .. IN EQ(II-18) IN TRANSFORMED SPACE
C
   AND FLIP TO FIND FULL DATA AND INVERT THEM BY MEANS OF FOURT.
C
   REPEAT THIS PROCESS FROM N=0 TO NLAYER
C
C
     DO 11 N=1,NL1
     NY = N - 1
     NYY=NY-1
C
C
C
C
   GENERATION OF DATA FOR DISPLACEMENTS AND STRESS IN TRANSFORMED SPACE
С
C
     DO 100 J=1,NX2
     DO 100 I=1,NT
     CB=CBX(I,J)
     CA = CAX(I,J)
     X1B=X1BX(I,J)
     X2B=X2BX(I,J)
     X3B=X3BX(I,J)
```

```
DATE = 77139
                                                                       21/11/39
31 RELEASE 2.0
                             MAIN
            Y1A=Y1AX(I,J)
            Y2A=Y2AX(I,J)
            Y3A=Y3AX(I,J)
      C
            SB=CDSQRT(1.D 00-CB **2)
            SA=CDSQRT(1.D 00-CA**2)
            BETA=CB+SI*SB
            ALPHA=CA+SI*SA
            BETA = CDLOG (BETA)/SI
            ALPHA = CDLOG(ALPHA)/SI
      C
            CALL DET(ALPHA, BETA, SI, FN)
            C2NB=CDCOS(2.D 00*BETA*DFLOAT(NY))
            S2NB=CDSIN(2.D OO*BETA*DFLOAT(NY))
            C2NA = CDCOS(2.D OO * ALPHA*DFLCAT(NY))
            S2NA=CDSIN(2.D OO#ALPHA*DFLOAT(NY))
      C
             U(I,J) = (X1B*(D1*C2NB+SI*D2*S2NB) + Y1A*(D4*C2NA+SI*D3*S2NA)) *QO(I,J) 
            V(I,J) = (X2B*(D2*C2NB+SI*D1*S2NB)+Y2A*(D3*C2NA+SI*D4*S2NA))*QO(I,J)
            TAU(I,J)=(X3B*(D2*C2NB+SI*D1*S2NB)+(D3*C2NA+SI*D4*S2NA))*Q0(I,J)
            SIGMA(I,J)=((D1*C2NB+SI*D2*S2NB)+Y3A*(D4*C2NA+SI*D3*S2NA))*QO(I,J)
      100
            CONTINUE
      C
      C
      С
      C
      C
          INVERSION AND PRINTOUT OF HORIZONTAL DISPLACEMENT UN(I, J)
            DO 10 I=1,NT
            DO 10 J=1.NX2
      10
            SUB(I,J)=U(I,J)
            CALL FLIP(DATA, NX, NX2, NT,-1)
            CALL FOURT (DATA, NN, 2, -1, 1, 0)
            CALL FACT(DATA, NX, NT, CO, OMEGAO, KO, PI, SI)
            WRITE(6,981) NY
      981
            FORMAT('1'/////////20X,'U',I3)
            CALL MAP(DATA, NX, NT, NX2, MM, INDEX)
      C
      C
      C
      C
          INVERSION AND PRINTOUT OF VERTICAL DISPLACEMENT VN(1,J)
      C
      C
            DO 20 I=1,NT
            DO 20 J=1,NX2
      20
            SUB(I,J)=V(I,J)
            CALL FLIP(DATA, NX, NX2, NT, +1)
            CALL FOURT (DATA, NN, 2, -1, 1, 3)
```

DATE = 77139 21/11/39

```
31 FELEASE 2.0
                              MAIN
            CALL FACT(DATA, NX, NT, CO, DMEGAO, KO, PI, SI)
            WRITE(6,982) NY
            FORMAT('1'/////////20X,'V',I3)
      982
            CALL MAP (DATA, NX, NT, NX2, MM, INDEX)
      C
      C
      C
      C
          INVERSION AND PRINTOUT OF SHEAR STRESS TAU(I, J)
      C
      C
            DO 35 I=1,NT
            D0 35 J=1,NX2
             SUB(I,J)=TAU(I,J)
      35
            CALL FLIP(DATA, NX, NX2, NT,-1)
            CALL FOURT(DATA, NN, 2,-1,1,0)
            CALL FACT(DATA, NX, NT, CO, OMEGAO, KO, PI, SI)
            WRITE(6,983) NY
            FORMAT('1'/////////20X,'TAU',13)
      983
            CALL MAP(DATA, NX, NT, NX2, MM, INDEX)
      C
      C
      C
      C
          INVERSION AND PRINTOUT OF NORMAL STRESS SIGMA(I, J)
      C
      С
            DO 40 I=1,NT
             D0 40 J=1.NX2
             SUB(I,J) = SIGMA(I,J)
      40
            CALL FLIP(DATA, NX, NX2, NT, +1)
            CALL FOURT(DATA, NN, 2, -1, 1, 0)
            CALL FACT(DATA, NX, NT, CO, OMEGAO, KO, PI, SI)
            WRITE(6,984) NY
            FORMAT('1'//////////20X,'SIGMA',13)
      984
            CALL MAP (DATA, NX, NT, NX2, MM, INDEX)
      C
      C
      C
      C
          INVERSION AND PRINTOUT OF TANGENTIAL NORMAL STRESS SIGMAL(I, J)
      C
             IF (NY.EQ.O) GO TO 160
             DO 50 I=1,NT
             DO 50 J=1,NX2
            SUB(I,J)=SIGMAl(I,J)+FN*C12*V(I,J)
      50
             CALL FLIP(DATA, NX, NX2, NT, +1)
             CALL FOURT(DATA, NN, 2,-1,1,0)
             CALL FACT(DATA, NX, NT, CO, OMEGAO, KO, PI, SI)
```

WRITE(6,985) NYY

```
PELEASE 2.0
                       MAIN
                                         DATE = 77139
                                                              21/11/39
  985
        FORMAT('1'/////////20X,'SIGMA1',13)
        CALL MAP (DATA, NX, NT, NX2, MM, INDEX)
  C
        IF (NY.EQ.NLAYER) GO TO 70
        DO 51 I=1,NT
        DO 51 J=1.NX2
  51
        SIGMAl(I,J)=-SI*KX(J)*C11*U(I,J)-FN*C12*VX(I,J)
        GO TO 80
  C
  160
       CONTINUE
        DO 161 I=1,NT
        DO 161 J=1,NT
  161
        SIGMAl(I,J)=-SI*KX(J)*C11*U(I,J)-FN*C12*V(I,J)
        GO TO 80
  C
  70
        CONTINUE
        DO 71 I=1,NT
        DO 71 J=1,NX2
  71
        SUB(I,J) = -SI * KX(J) * C11 * U(I,J) + FN * C12 * (V(I,J) - VX(I,J))
        CALL FLIP(DATA, NX, NX2, NT, +1)
       CALL FOURT(DATA, NN, 2, -1, 1, 0)
       CALL FACT(DATA, NX, NT, CO, OMEGAO, KO, PI, SI)
        WRITE(6,985) NY
       CALL MAP(DATA, NX, NT, NX2, MM, INDEX)
       GO TO 90
  C
  80
       CONTINUE
       DO 81 I=1,NT
        DO 81 J=1,NX2
  81
       VX(I,J)=V(I,J)
  C
  90
       CONTINUE
  C
  C
  11
       CONTINUE
  C
  C
  C
        STOP
        END
```

```
C
C
C*****************************
C
   THIS SUBROUTINE CALCULATES THE PHASE SHIFT BETA AND ALPHA FROM
C
        EQ(II-15,16) OF THE PRESENT REPORT WITH GIVEN VALUES OF
C
        WAVE NUMBER K AND LAPLACE TRANSFORM VARIABLE S
C
C
C
        CA = COS(ALPHA)
C
        CB=COS(BETA)
C
C********************************
C
C
      SUBROUTINE DPHASE(K,S,CB,CA,NLAYER)
      IMPLICIT COMPLEX*16(A, X, Y)
      COMPLEX*16 ROOTP, ROOTM, S, CDSQRT, DCMPLX, DCB, DCA
      COMPLEX*16 D1, D2, D3, D4
      COMPLEX*16 CB,CA
      REAL*8 C11,C12,C22,C66,CHAT,N,K2,DFLOAT,DBLE,K
C
      COMMON Y1A, Y2A, Y3A, X1B, X2B, X3B, D1, D2, D3, D4, C11, C12, C22, C66, CHAT
      ROOTP(AA,AB,AC)=(-AB+CDSQRT(AB**2-4.D OO*AA*AC))/(2.D OO*AA)
      ROOTM(AA, AB, AC) = (-AB-CDSQRT(AB**2-4.D 00*AA*AC))/(2.D 00*AA)
C
      N=DFLOAT(NLAYER) #2.D 00
      K2=K**2
C
      \Delta 1 = (K2 + C11/N + S) + (K2 + C66/N + S)
      A2=K2*CHAT/(3.D 00*N)+N*C66+S/3.D 00-C12*C66*K2/(3.D 00*N*C22)
      A2=A2*(-C12*K2/(3.D 00*N)+N*C22+S/3.D 00)
      A3=N*C22+S/3.D 00-K2*C12*(C66*K2/N+S)/(9.D 00*N**2*C22)+C66*K2/
        (3.D 00*N)
      A3=A3*(C11*K2/N+S)-K2*(C12+C66)**2
      A3=A3+(C66*K2/N+S)*(CHAT*K2/(3.D 00*N)+N*C66+S/3.+C12**2*K2/
     $ (3.D 00*C22))
C
      AA = A1 + A2 - A3
      AB=A3-2.D 00*A2
      AC = A2
      DCB=ROOTP(AA, AB, AC)
      DCA=ROOTM(AA,AB,AC)
C
      CB=CDSQRT(DCB)
      CA=CDSQRT(DCA)
      RETURN
      END
```

DATE = 77139

21/11/39

MAIN

DEL2A=CA**2*SA*K*(C12+C66)

/ G1

RELEASE 2.0

```
C
C
C********************************
C
C
   THIS SUBROUTINE CALCULATES DELTA(BETA), DELTABAR(ALPHA), DELTA1(BETA), ...
C
        IN EQ(II-19,20) AND X1(BETA), Y1(ALPHA) IN EQ(II-18,19,20)
C
C
        X1B=X1(BETA), Y1A=Y1(ALPHA)
C
C
C ********************************
C
C
     SUBROUTINE DELL (K,S,CB,CA,SI,NLAYER)
     IMPLICIT REAL*8(K), COMPLEX*16(S, X, D, Y)
     COMPLEX*16 SB,CB,CDSQRT,SA,CA
     REAL*8 N.DFLOAT
     REAL #8 C11, C12, C22, C66, CHAT
C
     COMMON Y1A, Y2A, Y3A, X1B, X2B, X3E, D1, D2, D3, D4, C11, C12, C22, C66, CHAT
C
     K2=K**2
     N=DFLOAT (NLAYER)
C
C
     S11=S+C11*K2/2.D 00/N
     S66=S+C66*K2/2.D 00/N
     SA=CDSQRT(1.D 00-CA**2)
     SB=CDSQRT(1.D 00-CB**2)
C
C
     DELTAB=CB**3*S11*S66+SB**2*CB*(-C66*(C66+C12)*K2
        +S66*(S/3.D 00+CHAT*K2/6.D 00/N+2.D 00*N*C66))
     DEL18=SI*K*SB**2*CB*(-C66-C12+C12*S66/6.D 00/N/C22)
     DEL2B=SI*SB**3*(C12*C66*K2/6.D 00/N/C22-S/3.D 00
     $ -CHAT*K2/6.D 00/N-2.D 00*N*C66)-SI*CB**2*SB*S11
     DEL3B=CB**2*SB*(C12*K*S11*S66/6.D 00/N/C22-C66*K*S11)
     $ +SB**3*(C12*K*(S/3.D 00+CHAT*K2/6.D 00/N+2.D 00*N*C66)
     $ -C12**2*C66*K*K2/6.D 00/N/C22)
C
     DELTAA=SI*CA**2*SA*((C12+C66)*C66*K2-S66*(S/3.D 00+CHAT*K2
        /6.D 00/N+2.D 00*N*C66+C12**2*K2/6.D 00/N/C22))
        +SI*SA**3*(S/3.D 00+2.D 00*N*C22)*(C66*C12*K2/6.D 00/N/C22
       -S/3.D 00-CHAT*K2/6.D 00/N-2.D 00*N*C66)
     DEL1A=SA**2*CA*(-K2*C12*S66/6.D 00/6.D 00/N**2/C22+C66*K2/6.D 00/R
        +S/3.D 00+2.D 00*N*C22)+CA**3*S66
```

V G1 RELEASE 2.0

END

DELL

DATE = 77139

```
$ +SA**3*(K/6.D 00)/N*(S/3.D 00+CHAT*K2/6.D 00/N+2.D 00*N*C66)

$ -C66*C12*K**3/36.D 00/C22/N**2)

DEL3A=-SI*CA**3*C12*K*S66+SI*SA**2*CA*(C66*K*(S/3.D 00+2.D 00*N  
$ *C22+C66*K2/6.D 00/N)-K/6.D 00/N*S66*(S/3.D 00+CHAT*K2/6.D 00  
$ /N+2.D 00*N*C66))

C

X1B=-DEL1B/DELTAB

X2B=-DEL2B/DELTAB

X3B=-DEL3B/DELTAB

Y1A=-DEL1A/DELTAA

Y2A=-DEL2A/DELTAA

Y3A=-DEL3A/DELTAA

C

RETURN
```

```
/ G1
     RELEASE 2.0
                            MAIN
                                             DATE = 77139
                                                                 21/11/39
       С
       C
       C************************
       C
           THIS SUBROUTINE CALCUALTES D.DI... IN EQ(II-23) OF THE PRESENT REPORT
       C
       C
       C**********************
       C
       C
             SUBROUTINE DET (ALPHA, BETA, SI, FN)
             IMPLICIT COMPLEX*16(D,X,Y)
             COMPLEX*16 ALPHA, BETA
             COMPLEX*16 C2NB, C2NA, S2NA, S2NB, CDSQRT, SI
             REAL *8 FN
             REAL*8 C11, C12, C22, C66, CHAT
       C
             COMMON Y1A, Y2A, Y3A, X1B, X2B, X3B, D1, D2, D3, D4, C11, C12, C22, C66, CHAT
       C
             C2NA=CDCOS(2.D OO*ALPHA*FN)
             S2NA=CDSIN(2.D OO*ALPHA*FN)
             C2NB=CDCOS(2.D OO*BETA*FN)
             S2NB=CDSIN(2.D OO*BETA*FN)
       C
             X=Y3A*X3B*(1.D OO-C2NA*C2NB)
             Y=X3B *Y3A*S2NB*C2NA-S2NA*C2NB
       C
             D=-2.D 00*X+(1.D 00+X3B**2*Y3A**2)*S2NA*S2NB
             D1=-(X-S2NA*S2NB)
             D2=-SI*Y
             D3=SI * Y * X3B
             D4=X3B*(X3B*Y3A*S2NB*S2NA+C2NA*C2NB-1.D 00)
       C
             D1=D1/D
```

D2=D2/D D3=D3/D D4=D4/D

RETURN END

C

V G1 PELEASE 2.0

MAIN

DATE = 77139

```
C
C
C***********************
C
C
   ALL THE DATA IN THE MAIN PROGRAM ARE GENERATED FOR ONLY HALF OF THE
С
       PLATE WHEN X>0. DUE TO SYMMETRY OF THE PROBLEM WE CAN GENERATE
C
       THE FULL DATA BY FLIPPING THE HALF OF THE DATA.
C
C
C
C**********************
C
C
     SUBROUTINE FLIP(DATA, NX, NX2, NT, INDEX)
    COMPLEX DATA(NT,NX)
    DO 10 J=1,NX2
     JJ=NX+1-J
     DO 10 I=1,NT
     DATA(I,JJ)=FLOAT(INDEX)*DATA(I,J)
    CONTINUE
10
     RETURN
     END
```

V G1 PELEASE 2.0

MAIN

DATE = 77139

```
C
C
C*********************
С
   THIS SUBROUTINE TAKES CARE OF THE COORIDINATE SHIFT IN
C
        LAPLACE AND FOURIER TRANSFORM IN THE PROCESS OF APPLYING
C
C
        FAST FOURIER TRANSFORM ALGORITHM
C
C*********************
C
C
     SUBROUTINE FACT (DATA, NX, NT, CO, WO, KO, PI, SI)
     COMPLEX DATA(NT,NX)
     COMPLEX*16 CDEXP,SI
     REAL*8 DEXP, DSQRT, DFLOAT
     REAL*8 CO, WO, PI, KO, FT, FX
     FX=DFLOAT(NX)
     FT=DFLOAT(NT)
     NX2=NX/2
C
     DO 10 L=1,NX2
     DO 10 M=1,NT
     DATA(M,L)=DATA(M,L)*4.D 30*K0*W0/(DSQRT(2.D 00*PI)**3*FT*FX)
    $ *DEXP(CO*PI*DFLOAT(M-1)/WO)*CDEXP(SI*PI*(1.D 00-1.D 00/FX)
    $ *DFLOAT(L-1))*CDEXP(SI*PI*(1.D 00-1.D 00/FT)*DFLOAT(M-1))
10
     CONTINUE
     RETURN
     END
```

```
C******************************
C
C
   THIS SUBROUTINE CONTROLS THE FORMAT OF THE PRINTOUT OF THE FINAL RESULTS
C
C
        IF INDEX=0: ALL THE NUMERICAL VALUES ARE PRINTED
C
                =1: THE MAXIMUM AND NORMALIZED VALUES ARE PRINTED
C
C
C*******************************
C
C
     SUBROUTINE MAP (DATA, NX, NT, NX2, MM, INDEX)
     COMPLEX DATA(NT, NX), S
     DIMENSION MM(NX2)
     IF (INDEX.EQ.1) GO TO 200
     DO 44 IQ=1.NT
44
     WRITE(6,15) IQ, (DATA(IQ,I), I=1,NX2)
     FORMAT(I5, 2E14.5, 2X, 2E14.5, 2X, 2E14.5, 2X, 2E14.5/
15
          3(5X, 2E14.5, 2X, 2E14.5, 2X, 2E14.5, 2X, 2E14.5/)/
          4(5X,2E14.5,2X,2E14.5,2X,2E14.5,2X,2E14.5/)/)
     CONTINUE
200
     FIND THE MAXIMUM VALUE
     RS = 1.E - 3
     NT5=NT-5
     NX5 = NX2 - 5
     DO 114 I=1,NT5
     DO 114 J = 1, NX5
     S = DATA(I,J)
     TP= REAL(S)/RS
     IF (ABS(TP).LT.1.) GO TO 114
     RS= REAL(S)
114
     CONTINUE
     WRITE (6,516) RS
                       MAXIMUM VALUE = , E12.5, * *** *//)
516
     FORMAT(20X, ****
     DO 119 I=1,NT5
     DO 113 J=1.NX5
     S= DATA(I,J)
113
     MM(J) = REAL(S)/RS*100
     WRITE(6,515) (MM(KIM),KIM=1,27)
119
     CONTINUE
     FORMAT(10X,27I3)
515
     RETURN
     END
```

	RELEASE	2.0	FOURT		DATE =	77139		21/11/39	
•	1	SUBROUTINE FO DIMENSION DAT TWOPI=6.28318 IF(NDIM-1)920 NTOT=2 DO 2 IDIM=1,N	A(1),NN(1),IF 5307 ,1,1 DIM			,work)			FFTT079 FFTT079 FFTT080 FFTT081
٠	2	IF(NN(IDIM))9 NTOT=NTOT*NN(FFTT0820
	C C	MAIN LOOP FOR	EACH DIMENSI	ON					FFTT0840 FFTT0850 FFTT0860
	v	NP1=2 DO 910 IDIM=1 N=NN(IDIM) NP2=NP1*N IF(N-1)920,90							FFTT087(FFTT088(FFTT089(FFTT091(
	C C	FACTOR N							FFTT0920 FFTT0930
	C 5	M=N NTWO=NP1 IF=1							FFTT0940 FFTT0950 FFTT0960 FFTT0970
	10	IDIV=2 IQUOT=M/IDIV IREM=M-IDIV*I IF(IQUOT-IDIV							FFTT098C FFTT109C FFTT101C
	11 12	IF(IREM)20,12 NTWO=NTWO+NTW M=IQUOT	,20						FFTT102C FFTT103C FFTT104C
	20 30	GO TO 10 IDIV=3 IQUOT=M/IDIV IREM=M-IDIV*I	QUOT						FFTT105C FFTT106C FFTT107C FFTT108C
	31 32	IF(IQUCT-IDIV IF(IREM)40,32 IFACT(IF)=IDI)60,31,31 ,40						FFTT110 FFTT111(
	40	IF=IF+1 M=IQUOT GO TO 30 IDIV=IDIV+2							FFTT1120 FFTT1130 FFTT1140 FFTT1150
	50 51	GO TO 30 IF(IREM)60,51 NTWO=NTWO+NTW							FFTT1160 FFTT1170 FFTT1180
	60	GO TO 70 IFACT(IF)=M							FFTT1190 FFTT1200
	C C	SEPARATE FOUR 1. COMPLEX	CASES TRANSFORM OR	REAL	TRANSFORM	FOR THE	4TH,	5TH,ETC.	FFTT1210 FFTT1220 FFTT1230

```
DATE = 77139
                                                                   21/11/39
RELEASE 2.0
                          FOURT
                                                                               FFTT1240
  C
               DIMENSIONS.
           2. REAL TRANSFORM FOR THE 2ND OR 3RD DIMENSION. METHOD--
                                                                               FFTT1250
  C
               TRANSFORM HALF THE DATA, SUPPLYING THE CTHER HALF BY CON-
                                                                               FFTT1260
  C
                                                                               FFTT1270
  C
               JUGATE SYMMETRY.
                                                                               FFTT1280
            3. REAL TRANSFORM FOR THE 1ST DIMENSION, N ODD. METHOD--
  C
               TRANSFORM HALF THE DATA AT EACH STAGE, SUPPLYING THE OTHER
                                                                               FFTT1290
  C
                                                                               FFTT1300
  C
               HALF BY CONJUGATE SYMMETRY.
                                                                               FFTT1310
           4. REAL TRANSFORM FOR THE 1ST DIMENSION, N EVEN.
  C
                                                                 METHOD--
               TRANSFORM A COMPLEX ARRAY OF LENGTH N/2 WHOSE REAL PARTS
                                                                               FFTT1320
  C
               ARE THE EVEN NUMBERED REAL VALUES AND WHOSE IMAGINARY PARTS FFTT1330
  С
                                                                               FFTT1340
  Ċ
               ARE THE ODD NUMBERED REAL VALUES.
                                                   SEPARATE AND SUPPLY
                                                                               FFTT1350
               THE SECOND HALF BY CONJUGATE SYMMETRY.
  C
                                                                               FFTT1360
  C
                                                                               FFTT137(
  70
        NON2=NP1*(NP2/NTWO)
                                                                               FFTT1380
        ICASE=1
                                                                               FFTT1390
        IF(IDIM-4)71,90,90
                                                                               FFTT1400
        IF(IFORM)72,72,90
  71
                                                                               FFTT1410
  72
        ICASE=2
                                                                               FFTT1420
        IF(IDIM-1)73,73,90
                                                                               FFTT143(
  73
        ICASE=3
                                                                               FFTT1440
        IF(NTWC-NP1)90,90,74
                                                                               FFTT1450
  74
        ICASE=4
                                                                               FFTT1460
        NTWO=NTWO/2
                                                                               FFTT1476
        N=N/2
                                                                               FFTT1480
        NP2=NP2/2
                                                                               FFTT1490
        NTOT=NTOT/2
                                                                               FFTT1500
        I = 3
                                                                               FFTT1510
        DO 80 J=2,NTOT
                                                                               FFTT1520
        DATA(J) = DATA(I)
                                                                               FFTT153(
        I = I + 2
  80
                                                                               FFTT1540
  90
        IIRNG=NP1
                                                                               FFTT1550
        IF(ICASE-2)100,95,100
                                                                               FFTT1560
        IIRNG=NPO*(1+NPREV/2)
  95
                                                                               FFTT157(
  C
                                                                               FFTT1580
        SHUFFLE ON THE FACTORS OF TWO IN N. AS THE SHUFFLING
  C
        CAN BE DONE BY SIMPLE INTERCHANGE, NO WORKING ARRAY IS NEEDED
                                                                               FFTT1590
  ε
                                                                               FFTT1600
  C
                                                                               FFTT1610
        IF(NTWO-NP1)600,600,110
  100
                                                                               FFTT1620
        NP2HF=NP2/2
  110
                                                                               FFTT1630
        J=1
                                                                               FFTT1640
        DO 150 I2=1, NP2, NON2
                                                                               FFTT1650
        IF(J-I2)120,130,130
                                                                               FFTT1660
  120
        I1MAX = I2 + NON2 - 2
                                                                               FFTT167(
        DO 125 I1=I2, I1MAX, 2
                                                                               FFTT1680
        DO 125 I3=I1,NTOT,NP2
                                                                               FFTT1590
        J3=J+I3-I2
                                                                               FFTT1700
        TEMPR = DATA(13)
```

TEMPI=DATA(13+1)

FFTT171C

RELEASE	2.0	FOURT	DATE = 77139	21/11/39	,
	DATA(I3)=DATA(J3)			EET	T172
	DATA(13+1) = DATA(.				T173
	DATA(J3)=TEMPR				T174
125	DATA(J3+1)=TEMPI				T175
130	M=NP2HF				T176:
140	IF(J-M)150,150,14	·5		FFT	T177
145	J=J-M			FFT	T178:
	M=M/2			FFT	T1790
	IF(M-NON2)150,140	0,140			T180
150	J=J+M				T181
с с с с с					T182
C			FORM FOURIER TRANSF		T183
C			O IF NEEDED. THE T		
C			X)). CHECK FOR W=I		
C	AND REPEAT FOR W	:ISIGN*SQRT(−1)*CC	INJUGATE (W).		7186.
C	NON2T=NON2+NON2				T187∈ T188∈
	IPAR=NTWO/NP1				T189
310	IF(IPAR-2)350,330	1-320			T190
320	IPAR=IPAR/4	77320			T191
	GO TO 310				T192
330	DO 340 I1=1, I1RNO	· 2	•		T1930
	DO 340 J3=I1, NON2	.,NP1		FFT	T1941
	DO 340 K1=J3,NTO	,NON2T		FFT	T195
	K2=K1+NON2			FFT	T1960
	TEMPR = DATA (K2)				T197
	TEMPI = DATA (K2+1)				T1980
	DATA(K2) = DATA(K1)				T199(
	DATA(K2+1)=DATA(K				T200.
340	DATA(K1)=DATA(K1)				T201(
350	DATA(K1+1)=DATA(K MMAX=NCN2	(I+I)+(EMPI			T202∈ T203∈
360	IF(MMAX-NP2HF)370				T204
370	LMAX=MAXO(NON2T,N	•			T205
3.0	IF(MMAX-NON2)405				T206
380		T(NON2)/FLOAT(4*M	IMAX)		T207
	IF(ISIGN)400,390,				T208
390	THETA = - THETA				T2091
400	WR=COS(THETA)			FFT	T210∈
	WI=SIN(THETA)			FFT	T211
	WSTPR=-2.*WI*WI				T212(
	WSTPI=2.*WR*WI				T213€
405	DO 570 L=NON2, LMA	X,NON2T			T214(
	M=L	/ 0.0 / 1.0			T215
/10	IF (MMAX-NON2)420	42C,410			T216€
410	W2R=WR*WR-WI*WI				T217
	W2I=2.*WR*WI W3R=W2R*WR-W2I*WI				T2180
	M2V+M7V+MK-M71 & M1				T2190

RELEASE	2.0	FOURT	DATE =	77139	21/11/39	
	W3I=W2R*WI+W2I	******				FFTT2200
420	DO 530 II=1,II					FFTT221
420	DO 530 J3=I1,N	•				FFTT222C
	KMIN=J3+IPAR*M					FFTT223C
	IF(MMAX-NON2)4					FFTT224C
430	KMIN=J3	130,430,440				FFTT225
440	KDIF=IPAR*MMAX	,				FFTT226C
450	KSTEP=4*KDIF					FFTT2270
450	DO 520 K1=KMIN	LANTOT-KSTEP				FFTT228
	K2=K1+KDIF	1711131713121				FFTT2290
	K3=K2+KDIF					FFTT2300
	K4=K3+KDIF					FFTT2310
	IF(MMAX-NON2)4	60,460,480				FFTT232(
460	U1R=DATA(K1)+D	•				FFTT2330
	Uli=DATA(K1+1)					FFTT2340
	U2R=DATA(K3)+D	ATA(K4)				FFTT2350
	U2I=DATA(K3+1)	+DATA(K4+1)				FFTT2360
	U3R=DATA(K1)-D	ATA(K2)				FFTT237C
	U3I=DATA(K1+1)	-DATA(K2+1)				FFTT2380
	IF(ISIGN)470,4	75,475				FFTT2390
470	U4R=DATA(K3+1)					FFTT240C
	U4I = DATA(K4) - D	ATA(K3)				FFTT2410
	GO TO 510					FFTT242C
4 7 5	U4R = DATA(K4+1)					FFTT243C
	U4I=DATA(K3)-D	ATA(K4)				FFTT244C
	GO TO 510					FFTT245C
480		2)-W2I*DATA(K2+1)				FFTT2460
		2+1)+W2I*DATA(K2)				FFTT247C
)-WI*DATA(K3+1)				FFTT2480 FFTT2490
		+1)+WI*DATA(K3) 4)-W3I*DATA(K4+1)				FFTT250C
		4+1)+W3I*DATA(K4)				FFTT2510
	U1R=DATA(K1)+T					FFTT2520
	Uli=DATA(K1+1)					FFTT253C
	U2R=T3R+T4R	- / 6 1				FFTT2540
	U2I=T3I+T4I					FFTT255C
	U3R=DATA(K1)-T	2 R				FFTT256C
	U3 I = DATA (K1+1)					FFTT2570
	IF(ISIGN)490,5					FFTT258C
490	U4R=T3I-T4I			•		FFTT2590
	U4I=T4R-T3R					FFTT2600
	GO TO 510					FFTT2610
500	U4R=T4I-T3I					FFTT2620
	U4I=T3R-T4R					FFTT263C
510	DATA(K1)=U1R+U					FFTT2640
	DATA(K1+1)=U1I					FFTT2650
	DATA (K2) = U3R+U					FFTT2660
	DATA(K2+1)=U3I	+ U41				FFTT267C

	RELEASE	2.0	FOURT	DATE = 77139	21/11/39	
		DATA(K3)=U1	D_U2D			FFTT268
		DATA(K3+1)=				FFTT269
		DATA(K4)=U3				FFTT270
	520					FFTT271
*	520	DATA(K4+1)=				FFTT272
		KMIN=4*(KMI	N-031+03			
		KDIF=KSTEP	1/50 500 500			FFTT273
	530) 450,530,530			FFTT274
	530	CONTINUE				FFTT275(
		M=MMAX-M	0 550 550			FFTT276
	5 / 0	IF(ISIGN)54	0,550,550			FFTT277
	540	TEMPR=WR				FFTT278
		WR=-WI				FFTT279(
		WI=-TEMPR				FFTT280
	550	GO TO 560 TEMPR=WR				FFTT2810
	990	WR = WI				FFTT283
		WI=TEMPR				FFTT2840
	560	IF(M-LMAX)5	65-565-410			FFTT285
	565	TEMPR=WR	03,303,410			FFTT286
	505	· -	-WI *WSTPI+WR			FFTT287
	·570		+TEMPR*WSTPI+WI			FFTT288
	310	IPAR=3-IPAR	-			FFTT289
		MMAX=MMAX+M				FFTT290C
		GO TO 360				FFTT2910
	С					FFTT2920
	C C	MAIN LOOP F	OR FACTORS NOT EQ	UAL TO TWO. APPLY THE T	WIDDLE FACTOR	
	C			2-1)*(J1-J2)/(NP2*IFP1))		FFTT294
	С			OF LENGTH IFACT(IF), MAK		FFTT295L
	С	CONJUGATE S	YMMETRIES.			FFTT296
	С					FFTT297
	600	IF(NTWO-NP2)605,700,700			FFTT298
	605	IFP1=NON2				FFTT299
		I F = 1				FFTT300
		NP1HF=NP1/2				FFTT301
	610	IFP2=IFP1/I	FACT(IF)			FFTT302
		J1RNG=NP2				FFTT303
		IF(ICASE-3)	612,611,612			FFTT304
	611	JIRNG=(NP2+				FFTT305
		J2STP=NP2/I				FFTT3060
		J1RG2=(J2ST				FFTT307
	612	J2MIN=1+IFP	-			FFTT308
			1615,640,640			FFTT309(
	615		2MIN, IFP1, IFP2			FFTT310
			I*FLOAT(J2-1)/FLO	DAT (NP2)		FFTT311
1		IF(ISIGN)62	•			FFTT312
	620	THETA =-THET				FFTT313(
	625	SINTH=SIN(T				FFTT3140
		WSTPR=-2.*S	INIH#21NIH			FFTT315

RELEASE	2.0	FOURT	DATE = 77139	21/11/39	
	WSTPI=SIN	N(THETA)			FFTT3160
	WR = WSTPR+				FFTT3170
	WI=WSTPI				FFTT3180
	J1MIN=J2+	+IFP1			FFTT3190
	DO 635 J	L=J1MIN,J1RNG,IFP1			FFTT3200
	IIMAX=J1				FFTT3210 FFTT3220
		l=J1, I1MAX, 2			FFTT3230
		B=I1,NTOT,NP2			FFTT3240
		FIFP2-NP1			FFTT3250
		3=13,J3MAX,NP1			FFTT3260
	TEMPR=DA	TA(J3)	. T & (.) T		FFTT3270
	DATA(J3)	=DATA(J3) *WR-DATA(J3	11 #WP		FFTT3280
630		l)=TEMPR*WI+DATA(J3+	13 ***		FFTT3290
	TEMPR=WR	TPR-WI*WSTPI+WR			FFTT3300
155		*WSTPI+WI*WSTPR+WI			FFTT3310
635		WOPI/FLOAT(IFACT(IF))		FFTT3320
640)650,645,645	•		FFTT3330
645	THETA = -T				FFTT3340
650		N(THETA/2.)			FFTT3350
650		.*SINTH*SINTH			FFTT3360
	WSTPI=SI				FFTT3370
	KSTEP=2*	N/IFACT(IF)			FFTT3380
	KRANG=KS	TEP*(IFACT(IF)/2)+1			FFTT3390 FFTT3400
		1=1,I1RNG,2			FFTT3410
		3=I1,NTOT,NP2			FFTT3420
		MIN=1, KRANG, KSTEP			FFTT3430
		+J1RNG-IFP1			FFTT3440
		1=13,J1MAX,IFP1			FFTT3450
		+IFP2-NP1 3=J1,J3MAX,NP1			FFTT3460
		+IFP1-IFP2			FFTT3470
	J-KMINT(J3-J1+(J1-I3)/IFACT(IF))/NP1HF		FFTT3480
		1)655,655,665			FFTT3490
655	SUMR = 0.	1,033,033,003			FFTT3500
000	SUMI = 0.				FFTT3510
		2= J 3, J 2MAX, I FP2			FFTT3520
		R+DATA(J2)			FFTT3530
660		I+DATA(J2+1)			FFTT3540
	WORK(K)=	SUMR			FFTT3550 FFTT3560
	WORK(K+1)=SUMI			FFTT3570
	GO TO 68				FFTT3580
665		2*(N-KMIN+1)			FFTT3590
	J2=J2MAX			•	FFTT3620
	SUMR = DAT				FFTT3610
	SUMI = DAT				FFTT3620
	OLDSR=0.				EETT3630

FFTT3630

OLDSR=0. OLDSI=0.

RELEASE	2.0	FOURT	DATE = 77	7139	21/11/39	
670	J2=J2-IFP2 TEMPR=SUMR TEMPI=SUMI SUMR=TWOWR*SUMR-SUMI=TWOWR*SUMI	-OLDSR+DATA(J2) -OLDSI+DATA(J2+1)				FFTT364 FFTT365 FFTT366: FFTT367. FFTT368
675	OLDSR=TEMPR OLDSI=TEMPI J2=J2-IFP2 IF(J2-J3)675,67 TEMPR=WR*SUMR-O	•				FFTT370C FFTT371C FFTT372C FFTT373C
	TEMPI = WI *SUMI WORK(K) = TEMPR-T WORK(KCONJ) = TEM TEMPR = WR*SUMI-O TEMPI = WI *SUMR WORK(K+1) = TEMPR WORK(KCONJ+1) = T	EMPI PR+TEMPI LDSI+DATA(J2+1) +TEMPI				FFTT374C FFTT375C FFTT376C FFTT378C FFTT379C FFTT380C
680	CONTINUE IF(KMIN-1)685,6	85,686				FFTT381€ FFTT382€
685	WR=WSTPR+1. WI=WSTPI GO TO 690					FFTT383: FFTT384: FFTT385:
6 86	TEMPR=WR WR=WR*WSTPR-WI*WI=TEMPR*WSTPI+					FFTT3860 FFTT3870 FFTT3880
690	TWOWR=WR+WR IF(ICASE-3)692,	•				FFTT3890 FFTT3900
691 692	IF(IFP1-NP2)695 K=1 I2MAX=I3+NP2-NP DO 693 I2=I3,I20 DATA(I2)=WORK(K DATA(I2+1)=WORK	I MAX,NP1				FFTT3910 FFTT3930 FFTT3940 FFTT3950 FFTT3960
693	K=K+2 GO TO 698					FFTT397.
С С С		TRANSFORM IN THE ES AT EACH STAGE.	IST DIMENS	SION, N ODD,	BY CON-	FFTT400 FFTT4016 FFTT4026
695	J3MAX=I3+IFP2-NI D0 697 J3=I3,J38 J2MAX=J3+NP2-J25 D0 697 J2=J3,J21 J1MAX=J2+J1RG2- J1CNJ=J3+J2MAX+, D0 697 J1=J2,J18 K=1+J1-I3 DATA(J1)=WORK(K	MAX,NP1 STP MAX,J2STP IFP2 J2STP-J2 MAX,IFP2				FFTT4030 FFTT4040 FFTT4050 FFTT4060 FFTT4070 FFTT4080 FFTT4090 FFTT4100 FFTT41100

RELEASE	2.0	FOURT	DATE = 77139	21/11/39	
696 697 698	DATA(J1+1)=WORK IF(J1-J2)697,697 DATA(J1CNJ)=WORK DATA(J1CNJ+1)=-1 J1CNJ=J1CNJ-IFP2 CONTINUE IF=IF+1 IFP1=IFP2 IF(IFP1-NP1)700	7,696 ((K) WORK(K+1) 2			FFTT4120 FFTT4130 FFTT4140 FFTT4150 FFTT4160 FFTT4170 FFTT4180 FFTT4190 FFTT4200 FFTT4210
C C C	COMPLETE A REAL JUGATE SYMMETRI	TRANSFORM IN THE	1ST DIMENSION,	N EVEN, BY CON-	FFTT4220 FFTT4230 FFTT4240
700 701	GO TO (900,800,9) NHALF=N N=N+N THETA=-TWOPI/FL IF(ISIGN)703,70	DAT(N)			FFTT4250 FFTT4260 FFTT4270 FFTT4280 FFTT4290 FFTT4300
702 703	THETA=-THETA SINTH=SIN(THETA WSTPR=-2.*SINTH WSTPI=SIN(THETA WR=WSTPR+1. WI=WSTPI IMIN=3 JMIN=2*NHALF-1 GO TO 725	/2.) *SINTH			FFTT4310 FFTT4320 FFTT4330 FFTT4340 FFTT4350 FFTT4360 FFTT4370 FFTT4380
710	J=JMIN DO 720 I=IMIN,N SUMR=(DATA(I)+D SUMI=(DATA(I+1) DIFR=(DATA(I)-D DIFI=(DATA(I+1) TEMPR=WR*SUMI+W TEMPI=WI*SUMI-W DATA(I)=SUMR+TE DATA(I+1)=DIFI+ DATA(J)=SUMR-TE DATA(J+1)=-DIFI	ATA(J))/2. +DATA(J+1))/2. ATA(J))/2. -DATA(J+1))/2. I*DIFR R*DIFR MPR TEMPI MPR			FFTT4490 FFTT4410 FFTT4420 FFTT4430 FFTT4440 FFTT4450 FFTT4460 FFTT4470 FFTT4480 FFTT4490 FFTT4500 FFTT4510
7 20	J=J+NP2 IMIN=IMIN+2 JMIN=JMIN-2 TEMPR=WR WR=WR*WSTPR-WI* WI=TEMPR*WSTPI+	WSTPI+WR WI*WSTPR+WI			FFTT4510 FFTT4520 FFTT4530 FFTT4550 FFTT4560 FFTT4570
725 730 731	IF(IMIN-JMIN)71 IF(ISIGN)731,74 DO 735 I=IMIN,N	0,740			FFTT4580 FFTT4590

PΕ	LEASE	2.0	FOURT	DATE = 7713	39	21/11/39	
	7 35 7 40	DATA(I+1)=-DATA(NP2=NP2+NP2 NTOT=NTOT+NTOT J=NTOT+1 IMAX=NTOT/2+1	[[+1]			·	FFTT460C FFTT461C FFTT462C FFTT463C FFTT4640
	745	IMIN=IMAX-2*NHAU I=IMIN	_F				FFTT465C FFTT466C
	750	GO TO 755 DATA(J)=DATA(I)	· · · · · ·				FFTT4680 FFTT4690
	75 5	DATA(J+1)=-DATA(I=I+2 J=J-2	(1+1)				FFTT4700 FFTT4710
	7 60	IF(I-IMAX)750,76 DATA(J)=DATA(IM: DATA(J+1)=0.					FFTT4720 FFTT4730 FFTT4740
	765	IF(I-J)770,780, DATA(J)=DATA(I) DATA(J+1)=DATA(FFTT4750 FFTT4760 FFTT4770
	770	I = I - 2 J = J - 2					FFTT4780 FFTT4790
	775	IF(I-IMIN)775,77 DATA(J)=DATA(IM DATA(J+1)=0.					FFTT480C FFTT481C FFTT482C
	7 80	IMAX=IMIN GO TO 745 DATA(1)=DATA(1)	+DATA(2)				FFTT4840 FFTT4850
		DATA(2)=0. GO TO 900					FFTT4860 FFTT4870 FFTT4880
	CCC	COMPLETE A REAL CONJUGATE SYMME	TRANSFORM FOR THE TRIES.	2ND OR 3RD	CIMENSION	ВҮ	FFTT4900 FFTT4900
	C 800 805	IF(I1RNG-NP1)80 DO 860 I3=1,NTO	T,NP2	,			FFTT4920 FFTT4930 FFTT4940
		I2MAX=I3+NP2-NP DO 860 I2=I3,I2 IMIN=I2+I1RNG					FFTT495(FFTT496(FFTT497(
		IMAX=I2+NP1-2 JMAX=2*I3+NP1-I IF(I2-I3)820,82					FFTT4980 FFTT4990
	810 820 830	JMAX=JMAX+NP2 IF(IDIM-2)850,8 J=JMAX+NP0	50,830				FFTT500C FFTT501C FFTT5020
		DO 840 I=IMIN, I DATA(I)=DATA(J) DATA(I+1)=-DATA					FFTT503C FFTT504C FFTT505
	840 850	J=J-2 J=JMAX	13711				FFTT506C FFTT507C

RELEASE	2.0	FOURT	DATE =	77139	21/11/39	
860 C C C 900 910 920	DO 860 I=IMIN, INDATA(I)=DATA(J) DATA(I+1)=-DATA(J) J=J-NPO END OF LOOP ON ENDOPONE NPO=NP1 NP1=NP2 NPREV=N RETURN END					FFTT5080 FFTT5090 FFTT5100 FFTT5110 FFTT5120 FFTT5130 FFTT5140 FFTT5150 FFTT5160 FFTT5160 FFTT5180 FFTT5180
920						

*** WAVE PROPAGATION IN COMPOSITE PLATE *** GRAPHITE FIBER(55%)-EPOXY MATRIX COMPOSITE

DEGREE C(1,1) = 0.24560D + 08LAYUP ANGLE = 15

PSI PSI C(1,2) = 0.400000+06

C(6,6)= 0.35520D+06 PSI. PSI C(2,2) = 0.117000+07 1.00000 TOTAL THICKNESS OF COMPOSITE PLATE ; DELTA=

DENSITY OF COMPOSITE; RHO= 1.44000 GR/CM**3 PLATE IS MADE OF

IDENTICAL LAYERS 0.12500 CM PLATE IS MADE OF 8 LAYER THICKNESS ; 28=

STEPS FOR CONTACT RADIUS STEPS FOR CONTACT TIME WITH 8 WITH 24 NX= 64 NT= 32 TOTAL SPACE STEPS; TOTAL TIME STEPS ;

CONTACT RADIUS; A= 0.20000D-01 M SPACE STEP; DX= 0.25000D-02 M CONTACT TIME; TAU0= 0.60000D-05 SECOND

TIME STEP ; DT= 0.25000D-06 SECOND

** EPRODUCTION OF IMPACT FUNCTION MAXIMUM VALUE =-0.10003E+01 ∝ * ***

	=-0.10067E+01
	VALUE
1	MAXIMUM
SIGMA	计计计

0	C	0	0	0	0	0	C	0	0	0	0	0	0	0	$\overline{}$	0	0	0	0	0	0	0	C	0	0	_
																									0	
																									0	
																									0	
0	0	0	0	C	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	<
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u></u>
0	0	0	0	0	0	0	-	_	2	3	3	3	4	4	4	3	n	3	2	2	_		_	0	0	c
																									0	
																									_	
							1	_	_	7	2	2	n	n	n	7	2	2	7		7				_	
							-	7	3	n	4	4	4	S	4	4	4	3	m	7	7	_				
0	0	0	0	4	10	13	29	40	51	61	71	18	83	82	84	80	14	65	55	44	33	22	13	9	2	C
					7	7	ന	4	S	9	ω	α	6	9	6	Φ	ω	7	9	S	3	7	-		2	
0	0	O	0	4	12	22	34	46	9	72	83	16	σ	100	98	94	8 7	11	65	52	38	26	15	7	2	C
														-												

	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	0000000000000000000000
*	
*	000000000000000000000000000000000000000
00	000000000000000000000000000000000000000
97E+	000000000000000000000000000000000000000
699	000000000000000000000000000000000000000
0.9	000000000000000000000000000000000000000
1	
UE	
VAL	
MUM	000000000110004400000004400
	10000000000000000000000000000000000000
3 MAX	122 123 123 123 123 123 123 123 123 123
Ψ	12224442241 122244442241 12224442244422
S16 ***	2
	2888874485 2888874485 288874485 288874485 28874485 28874485 28874485 28874485 28874485 28874485 28874485
	0001110040880414040000
	110446000000000000000000000000000000000

SIGMA 5 *** MAXIMUM VALUE =-0.98567E+00

0	C	0	0	0	0	C	0	0	C	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	C
0	C	0	0	0	0	0	0	0	C	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	C
0	C	0	0	0	0	C	0	0	Ċ	0	0	0	0	0	C	0	0	0	0	0	C	0	0	C	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0
0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	O	0	0	0	0	0	O	0	0	0	0	Ō
0	0	0	0	0	0	0	0	0	C	0	0	Ü	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	C	0	0	0	0	C	0	0	0	0	0	0	0	0	-	-	-	-		-	-	7	_
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	7	7	n	4	4	2	9	9	9	7	9
0	0	0	0	ဂ	0	0	0	0	0	0	0	0	0		ო	2	7	5	11	13	14	16	11	17	17	15
0	0	0	0	C	0	0	7	0	0	0	0	ဂ	-	3	9	10	14	18	21	25	28	31	32	33	32	29
0	0	7	1		-	-		-	0	0	0	0	7	Ŋ	10	16	22	28	34	39	44	48	51	51	64	4 4
0	7	-	-	7	7	7	7	-	0	0	0	0	7	7	14	21	30	38	46	53	09	99	69	20	29	09
_	-	7	7	7	7	7	7	7	-	0	-1	0	n	6	17	56	37	41	22	99	42	81	85	82	81	23
		7	7	7	0	m	m	2		0	-	0		0	6	0	_	3	4	4	ന	_	9	9	91	7
-	_	7	2	7	n	3	m	2	-	0	7	0													92	
																								-		

SIGMA 7 *** MAXIMUM VALUE =-0.53190E+00 **

0000	00	0 (0	C	0	0	ဂ	0	0	0	0	C	0	0	C	0	0	0	0	C	0
0000	၀ ၀	0	0	Ċ	0	0	Ċ	0	0	0	0	0	0	0	0	0	0	0	0	C	0
0000	0	0	0	C	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0000	0	0	0	0	0	0	C	0	0	0	0	C	0	0	0	0	0	0	0	0	0
0000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000	00	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00000	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
00000	00	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	-
00000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	~	-
00000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			-	-
0000	00	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_		-	0
0000	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~		-	_	0
00000	00	0 (0	0	0	0	0	0	0	O	0	0	0	0	-	-	7	7	7	2	٦
0000	00	0 0	0	0	0	0	C	0	0	0	0	0	0	2	3	Ŋ	9	_	2	7	9
00000	0	0 0	0	0	0	0	0	0	0	7	-	0	7	Ŋ	6	12	15	11	11	17	15
00000	00	0 0	0	0	ت	0	C	0	7	-2	-2	0	4	11	11	23	28	32	33	32	29
0			- 0	0	Ü	0	0	0	-2	-4	-3	0	7	11	27	36	44	49	51	20	45
0117	77		- -	0	0			0	<u>n</u>	9-	15	0	10	23	36	49	29	19	70	89	62
7777	77	2 -		0	-	-		0	4-	1-	9-	0	12	28	44	9	13	81	85	83	16
12261	n m	٥ ر	٠ –	7	-	-		0	1	18	9-	0	14	31	49	19	81	16	96	46	86
12267	n m	2 0	7 —			-	p-vd	0	- 5	8	1-	0	15	32	51	69	84	95	100	16	8 9

U 4 *** MAXIMUM VALUE = 0.86667E-02 *

000001111111111100000 00000 001111111111111111100

VALUE MAXIMUM

	*
	VALUE =-0.94195E+00
4	MAXIMUM
SIGMA	长长

_	_	_	_	_	_	_	_	_	_	_	_	_				_	_			_	_					
0	0	, 0	C	0	0	0	0	0	0	0	C	0	0	0	0	C	0	0	C	0	0	0	0	C	0	<
0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	C	0	0	C	0	0	0	0	O	0	0	0	0	C	0	0	C	0	0	0	0	0	0	C
0	0	0	0	0	0	O	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	၁	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	-	_	_	_	_	-	_	_	_	_
0	C	0	0	0	0	0	0	0	0	0	0	0	_	7	7	3	4	2	S	9	9	9	9	9	9	2
0	0	0	0	0	0	0	0	0	0	0	-	7	4	9	æ	01	12	4	12	91	91	91	91	5	4.	3
0	C	0	0	0	0	C	0	0	0	0	7	Ŋ	œ	12	97	20	24	27	30	32]	32]	32	30	29 1	27]	23
0	0	0				-	-	0	0	7	4	8	3	0	S	7	ω	4	œ	0	_	0	ω	S	41 2	9
0	0	_		-	2	7		0	0		S	_	7	9	S	4	7	0	S	6	6	ω	S	_		8
0		-	-	7	7	7	-	0	0	7	9	n	2	2	n	4	4	m	0	4	Ŋ	+	0	LO.		മ
0	-	-	7	7	n	7	7	0	0	2	_	S	4	2	œ	0	7	m	0	S)	9	4	0	4	9	S
0	-	_	7	7	m ·	m	7	0	С ·	7	ω	2	2	_	0	m	S	ø	4	6	0	œ	3	ω	1 6.	ထ
												-	2	(L)	ĽΛ	9	2	Φ	σ		10	9	6	Φ	7	9

TAU 4
*** MAXIMUM VALUE =-0.10045E+00

0000000000000000000000 00000000000000000000000 000000000000000000000mum4m 00000000000000000000000HNM4500

SIGMA1 4 *** MAXIMUM VALUE =-0.34042E+00

0	7	7	7	7	7	7	7	0	0	0	-	~	1 6	(1)	3	'n	m	2	-	0	0	7	7	-2	-	1
7	-1	7	7-	7	7	7	C	0	0	0	7	2	7	l M	(1)	3	n	7	-	0	0	7	-2	-2	-2	C
-1	-	7	1-	7	7	0	0	0	0	-	-	7	7	(1)	n	n	3	3	2	-	0	7	-2	-2	-	C
-1	7	-1	7	7	-	0	0	0	0	7	,4	2	7	7	n	ന	m	n	7	-	0	-1	-2	7	0	r
- 1	-	-	7	-	0	0	C	0	_	7	-	7	7	7	7	n	3	ы	3	7	0	0	0	0	7	7
7	7	7	7	0	0	0	0	-	-	-	7	7	7	7	7	7	7	7	2	7	-	C	-	m	7	~
7	7	-1	0	0	0	0	-	-	7	7	7	7	7	~	-	7	7	7	7		7	7	Ŋ	8	13	20
7	-	0	0	0	0	0	-	-	7	7	7	7		-	-		~	-	-		n	Ŋ			21	
7	7	0	0	0	0	-	7	7	7	7	7	7	-	_		0	0	0	0	7	2		9	n		α
7	0	0	0	0	-	7	-	7	7	2	2	2	-	-	0	0	0	0	0	m	8	2	4	m	41	α
0	0	0	0	_	-	-	7	7	7	7	7	7	-		0	0	-	0	-	9		7	2	7	51 4	7
0	0	0	0	-	7	7	7	7	7	7	7	-	_	0	0	7	-	0	4	0						
0	0	0	-		7			7												_	7	6	_	0	9	α
0	0							7				_	0		2				4	ß	7	ω	6	1	0	C
0	-		7	7	7	7	7	7	7		-	0	-	•			4	12							11 7	
-								2						2			0	0	7	4	9	2	0	7	6	^
-	—	7	7	7	7	7	7	7	-	0	0	-2	ن.		•	8	æ	0	7	4	4	_	3	-		4
-	7	7	7	m	7	7	7	-	_	0	-2		3.		2	5									56 6	
_	7	7	7	m	n	7	2	7	0	-	'n	'n	-		7	3	7	_	7	_	2	4	6	6	9	2
-	7	7	7	9	ო	7	7	-	0	2	ι. I	-2	2 -	0	_	4	œ	_	_	9	7	7	3	0	36 4	_
7	7	7	2	7	7	7	7	0	0	· 	0	2	6	6	7	9	9	0	_	6	9	7	2	_	5 3	0
7	7	7	7	7	7	7	-	0	0	0	3	0	6.	7	9	6	0	ω	_	6	2	-	7	_	5 2	
7	7	7	7	7	7	-	0	0	0	m	6	6		2	6	7	0	2	4	8	7	m	œ	2 3		œ
7	7	7	7	7	_	_	0	0	—	9	9.	8	m	8	7	7	888	0	S	2	2	9	0	4	0	S
2	7	2	-	-	-	0	0	0	7	6	_	9	n	6	7	_	5 8	ന	S	m	7	0	4			
7	7	7	_	-	7	0	0	0	7	_	S	2	0	9	6	9	8	S	Ŋ	_	4	9	6	2	&	3-2
2	2	~	-		-	0	0	0	2	_	9	4	7	0	_	æ	6 00	2	S	0	m	4	æ	3		4-
												7	9	-	U١	U)	\circ	U'	w	-	u I	(1)	_		1	S