

Infraestructura Cloud Sostenible

Administración de sistemas informáticos en red / Presencial

Ricardo Evans Llanos

Tutor del TFG

DEDICATORIA (OPCIONAL)

Contenido

AB:	STRACT	5
JUS	STIFICACIÓN DEL PROYECTO	6
INT	FRODUCCIÓN	8
ОВ	JETIVOS	9
	Objetivo 1: Comparación de centro de datos tradicionales contra soluciones cloud sostenibles	9
	Objetivo 2: Evaluar el término "sostenibilidad", utilizando comparativas métricas de proveedores cloud, en cuanto al uso energías renovables y la eficiencia energética	10
	Objetivo 3: Implementar herramientas de monitorización con el fin de medir el consumenergético y la huella de carbono	
а	Objetivo 4: Formular prácticas sostenibles para la gestión de infraestructuras cloud, adicionando la automatización de recursos y el uso de energías renovables (energía solar, enfriamiento líquido, reutilización, reciclaje)	11
n	Objetivo 5: Exponer los beneficios de una infraestructura cloud sostenible a través de métricas cuantificables, como la reducción del consumo energético y los costos operativos, durante un periodo de 60 días continuos.	
DE	SCRIPCIÓN	13
а	a. Arquitectura del Proyecto:	13
b	o. Casos de uso	14
DIS	SEÑOS	21
а	a. Diagrama E/R (Entidad - Relación):	21
b	o. Diagrama de la base de datos:	21
С	c. Descripción de las tablas	22
d	d. Relaciones entre las tablas:	24
е	e. Diagrama de flujo de navegación:	25
f.	. Interfaces:	26
TE	CNOLOGÍA	28
ME	TODOLOGÍA	29
DE	SARROLLO	30
	Objetivo 1: Comparación de centro de datos tradicionales contra soluciones cloud sostenibles	30
	Objetivo 2: Evaluar a los principales proveedores de cloud (Google Cloud, Microsoft Azure, AWS, IBM Cloud).	32

Objetivo 3: Implementar herramientas de monitorización con el fin de medir el consumo	
energético y la huella de carbono3	4

ABSTRACT

El objetivo del presente proyecto es implantar un entorno cloud, optimizando el uso de recursos y reduciendo la huella de carbono asociada a dicha implementación. Mediante la integración de la computación en la Nube Verde (Green Cloud), la automatización de uso de recursos de hardware y el cambio a energías renovables, se aspira demostrar que es posible combinar la eficiencia operativa en un ámbito más ecológico (responsabilidad con el medio ambiente). También se mostrarán cuadros comparativos de los principales proveedores del mercado, una propuesta sobre prácticas sostenibles para la gestión de infraestructuras, y la implementación de herramientas de monitorización.

Se presentará un marco teórico, en conjunto con un plan práctico que disminuyan en un porcentaje importante las emisiones de carbono frente a lo que conocemos hoy, sin sacrificar la eficiencia, ni la rentabilidad. El fin es logar un diseño que se pueda copiar en cualquier parte, que esté listo para manejar las tareas actuales que consumen gran cantidad de datos y procesamiento, como las de IA, Análisis de datos (Big Data)¹.

The objective of this project is to implement a cloud environment that optimizes resource use and reduces the carbon footprint associated with such an implementation. By integrating **Green Cloud computing**, **automating hardware resource usage**, and **changing to renewable energy sources**, the aim is to demonstrate that operational efficiency can coexist with a more ecological approach (environmental responsibility). Comparative tables of the main suppliers in the market will also be shown, a proposal on sustainable practices for infrastructure management and the implementation of monitoring tools.

A theoretical framework will be presented, combined with a practical plan to significantly reduce carbon emissions compared to current standards, without compromising efficiency or profitability. The goal is to achieve a replicable design that can be applied anywhere, ready to handle today's data and processing intensive tasks, such as those in Al and Big Data analysis.

-

¹ (The International Energy Agency IEA, 2023)

JUSTIFICACIÓN DEL PROYECTO

La justificación de este proyecto responde a la necesidad de un entorno cloud sostenible, y está basado en los siguientes cuatro aspectos: ambiental, tecnológico, económico y responsabilidad social corporativa.

Medio ambiente: El impacto ambiental de los centros de datos es indiscutible, consumen grandes cantidades de energía, en muchos casos dependen de la utilización de fuentes de recursos no renovables y además generan basura tecnológica².

Tecnológico: La erupción de la AI, el loT y el Big Data³, requieren cada vez más infraestructuras más potentes. Pero, la eficiencia en cuanto al consumo energético no debe mermar el rendimiento de los sistemas.

Económico: Debemos ver este proyecto como una ventaja competitiva. Aunque la inversión inicial en tecnologías avanzadas y la adaptación para utilizar de recursos renovables puede ser importante, a largo plazo se consiguen beneficios por la eficiencia energética y la no utilización de energías de fuentes fósiles4.

Responsabilidad Social Corporativa (RSC): Las empresas buscan alinearse con los Objetivos de Desarrollo Sostenible (ODS) de la ONU⁵ cada vez más, esto no solo mejora la imagen corporativa, sino que también contribuye a cumplir con estos dichos objetivos.

² (The International Energy Agency IEA, 2023)

³ (The International Energy Agency IEA, 2023)

⁴ (IRENA - International Renewable Energy Agency, 2023)

⁵ (Naciones Unidas - The 17 Goals, s.f.)

Tabla comparativa de Proveedores Cloud Sostenibles

Proveedor Cloud	Objetivos	Eficiencia Energética	Monitoreo	Certificaciones	Innovación Propuesta
Google Cloud ⁶	100% energías renovables desde 2017	Alta	Google Cloud Operations Suite	CarbonNeutral, ISO 14001	-
Microsoft Azure ⁷	100% renovables para 2025	Media-Alta	Azure Monitor	CarbonNeutral, ISO 50001	-
AWS (Amazon) ⁸	50% renovables, objetivo de 100% para 2025	Media	AWS CloudWatch	ISO 14001, LEED Certification	-
IBM Cloud ⁹	55% renovables, objetivo de 75% para 2025	Media	IBM Cloud Monitoring	ISO 14001, Energy Star	-
TFG	100% energías renovables desde el comienzo	Alta	Grafana + Prometheus	ISO 14001, LEED Certification (en proceso)	Automatización avanzada y IA para optimización energética
Tabla 1 – Comparativa de proveedores cloud					

Marcos normativos y legales:

- Internacionales
 - Acuerdo de París (2015)
 - o Objetivos de Desarrollo Sostenible (ODS) de la ONU
- Regulaciones Europeas
 - Pacto Verde Europeo (European Green Deal)
 - Directiva de Eficiencia Energética (UE)
- Regulaciones en Estados Unidos
 - Ley de Reducción de la Inflación (Inflation Reduction Act, 2022)
 - Normativas Estatales
- Estándares de la Industria
 - o ISO 14001 (Sistemas de Gestión Ambiental)
 - o LEED (Liderazgo en Energía y Diseño Ambiental)
- Justificación Legal para Proveedores Cloud
 - o Justificación Legal para Proveedores Cloud
 - o Regulaciones de Protección de Datos y Sostenibilidad (GDPR)

⁷ (Microsoft, 2024)

⁶ (Google, 2024)

⁸ (Amazon Web Services, 2024)

⁹ (IBM, 2024)

INTRODUCCIÓN

El cloud computing o computación en la nube, viene dando pasos agigantados en los últimos años, y ha cambiado la forma en que las grandes compañías y las personas ponen a disposición o acceden a los recursos tecnológicos. También, impulsado por una necesidad de reducir costos operativos, flexibilidad y escalabilidad. Pero es cambio tiene un impacto medio ambiental muy alto.

Actualmente los centros de datos consumen aproximadamente entre el 1% y 2% de la electricidad global, cifra que podría duplicarse para 2030 debido al ascenso de la IA, el Big Data y el Internet de las Cosas (IoT)10. En promedio una búsqueda en ChatGpt necesita 10 veces más que una búsqueda tradicional en Google11.

Debido a lo previamente expuesto, ¿cómo podríamos implementar y escalar una infraestructura en la nube sin comprometer aún más en medioambiente?

En el presente proyecto, propongo la implantación entorno cloud eficiente y escalable, pero también como un modelo de sostenibilidad. Integrando energías renovables, hardware de bajo consumo y algoritmos de IA para la gestión energética y que constituyen la base de éste trabajo.

_

¹⁰ (The International Energy Agency IEA, 2023)

¹¹ (Goldman Sachs, 2024)

OBJETIVOS

El objetivo principal del proyecto es implementar un entorno cloud que optimice el uso de recursos, reduzca el consumo energético y minimice la huella de carbono, dando como resultado que es posible combinar la eficiencia operativa con responsabilidad con el medio ambiente.

Los objetivos a desarrollar son:

- 1. Comparación de centro de datos tradicionales contra soluciones cloud sostenibles
- 2. Evaluar el término "sostenibilidad", utilizando comparativas métricas de proveedores cloud, en cuanto al uso energías renovables y la eficiencia energética
- 3. Implementar herramientas de monitorización con el fin de medir el consumo energético y la huella de carbono
- 4. Formular prácticas sostenibles para la gestión de infraestructuras cloud, adicionando la automatización de recursos y el uso de energías renovables (energía solar, enfriamiento líquido, reutilización, reciclaje)
- 5. Exponer los beneficios de una infraestructura cloud sostenible a través de métricas cuantificables, como la reducción del consumo energético y los costos operativos, durante un periodo de 60 días continuos

Objetivo 1: Comparación de centro de datos tradicionales contra soluciones cloud sostenibles

R01 - Recopilación de datos de consumo energético y la huella de carbono de los centros de datos tradicionales.

R01F01 - Investigar y recopilar datos de fuentes confiables

R01F01T01 - Analizar y resumir los datos recopilados

R01F01T01P01 - Confirmar que los datos recopilados sean actuales y provengan de fuentes confiables

R02 - Comparar los datos con los de proveedores cloud sostenibles.

R02F01 - Diseñar tabla comparativa con métricas (consumo energético, uso de energías renovables, etc.)

R02F01T01 - Elaborar una tabla comparativa

R02F01T01P01 - Validar la fidelidad de la tabla comparativa

Objetivo 2: Evaluar el término "sostenibilidad", utilizando comparativas métricas de proveedores cloud, en cuanto al uso energías renovables y la eficiencia energética.

R03 - Definición de las métricas (eficiencia energética, certificaciones ambientales, porcentaje de energías renovables, etc.).

R03F01 - Investigar las políticas y prácticas de cada proveedor

R03F01T01 - Recopilar información de los informes de sostenibilidad de cada proveedor.

R03F01T01P01 - Verificar que los datos sean reales

R04 - Evaluar a los principales proveedores de cloud (Google Cloud, Microsoft Azure, AWS, IBM Cloud).

R04F01 - Crear una tabla de evaluación con las métricas definidas

R04F01T01 - Asignar puntuaciones a cada proveedor

R04F01T02 - Elaborar tabla de métricas para el proyecto

R04F01T01P01 - Validar que los resultados seas confiables

Objetivo 3: Implementar herramientas de monitorización con el fin de medir el consumo energético y la huella de carbono

R05 - Seleccionar las herramientas de monitorización adecuadas, por ejemplo, DataDog, Grafana + Prometheus, Google Cloud Operations Suite, Azure Monitor, AWS CloudWatch, Trend Micro Cloud One, AppDynamics, etc.

R05F01 - Investigar y comparar sobre las herramientas de monitorización disponibles

R05F01T01 - Instalar y configurar las herramientas de monitorización

R05F01T01P01 - Verificar que las herramientas estén correctamente configuradas

R06 - Configurar las herramientas para medir el consumo energético y la huella de carbono

R06F01 - Configurar las herramientas seleccionadas en la plataforma cloud

R06F01T01 - Crear paneles de control para visualizar las métricas

R06F01T02 - Realizar pruebas de funcionamiento

R06F01T01P01 - Validar las métricas mostradas

Objetivo 4: Formular prácticas sostenibles para la gestión de infraestructuras cloud, adicionando la automatización de recursos y el uso de energías renovables (energía solar, enfriamiento líquido, reutilización, reciclaje).

R07 - Escoger prácticas sostenibles aplicables a la gestión de infraestructuras cloud

R07F01 - Investigar mejores prácticas en sostenibilidad cloud

R07F01T01 - Compilar información sobre prácticas sostenibles

R05F01T01P01 - Verificar que las prácticas propuestas sean las correctas

R08 - Proponer el plan de implementación para las prácticas

R08F01 - Desarrollar el plan para la implementación de estas prácticas.

R08F01T01 - Elaboración del documento con las prácticas propuestas y su plan de implementación

R08F01T02 - Presentar el documento para revisión y aprobación

R08F01T01P01 - Validar el plan de implementación

Objetivo 5: Exponer los beneficios de una infraestructura cloud sostenible a través de métricas cuantificables, como la reducción del consumo energético y los costos operativos, durante un periodo de 60 días continuos.

R09 - Definir métricas cuantificables para medir los beneficios (por ejemplo, reducción del consumo energético, disminución de costos operativos)

R09F01 - Comparar las métricas antes y después de la implementación

R09F01T01 - Recopilar datos iniciales

R09F01T02 - Implementar el entorno cloud sostenible, incluyendo servidores

R09F01T01P01 - Verificar las métricas

R10 - Recopilar datos antes y después de la implementación de la infraestructura cloud sostenible

R10F01 - Elaborar un informe con los resultados obtenidos

R10F01T01 - Recopilar datos finales y compararlos con los datos iniciales

R10F01T02 - Elaboración de informe de resultados

R10F01T01P01 - Validar los datos obtenidos, perfectamente comparados

DESCRIPCIÓN

a. Arquitectura del Proyecto:

El siguiente diagrama (imagen 1) representa la **estructura general del proyecto**, incluyendo los componentes principales y cómo interactúan entre sí.

Componentes:

- 1. Frontend: Interfaz de usuario (web o móvil).
- 2. Servicios Externos: APIs de terceros, ejemplo, OpenAI, proveedores de cloud.
- 3. Backend /energía: Fuentes energéticas alternativas.
- 4. Backend: Servidores y servicios cloud.
- 5. Monitorización: Herramienta Grafana
- 6. Base de Datos: Almacenamiento de datos
- 7. Métricas: Herramienta Prometheus para capturar las mediciones de consumo energético y la huella de carbono.

Usuario Frontend Backend / Energía Energía Solar / Eólica Energía Solar / Eólica Servicios Cloud (laaS PaaS SaaS) Prometheus Beterías Beterías Monitorización Grafana Bases de datos Recolectar Métricas / Prometheus

Arquitectura del Proyecto

Imagen 1 – Arquitectura del proyecto

DB Database

b. Casos de uso

Caso de uso: Inicio de sesión

Imagen 2 - Caso de uso: Iniciar sesión

DESCRIPCIÓN: Inicio de sesión		
PRECONDICIONES:	POSTCONDICIONES:	
Debe existir el usuario	El usuario accede al sistema, ingresando	
	sus credenciales, usuario y clave	
DATOS ENTRADA	DATOS SALIDA	
Id usuario	Nombre y apellido del usuario	
Clave	Perfil del usuario	
	Fecha y hora	
TABLAS:	CLASES: LOGIN.PHP	
USER		
INTERFACES: INDEX.HTML		
Tabla 2 – Caso de uso: Iniciar sesión		

Caso de uso: Consultar estado de los Recursos

Imagen 3 – Caso de uso: Consultar estado de los recursos

DESCRIPCIÓN: Consultar estado de los Recursos		
PRECONDICIONES:	POSTCONDICIONES:	
Usuario logado	Cuadro de mando o Dashbord	
DATOS ENTRADA	DATOS SALIDA	
Solicitud de consulta de estado de los	Estados de los nodos:	
nodos	Lista de servidores, bases de datos, etc.	
	Consumo energético, huella de carbono	
TABLAS:	CLASES:	
USER, NODO		
METRICAS, ENERGIA		
INTERFACES:		
Tabla 3 – Caso de uso: Consultar estado de los Recursos		

Caso de uso: Optimizar los recursos

Imagen 4 – Caso de uso: Optimizar los recursos

DESCRIPCIÓN: Optimizar los recursos		
PRECONDICIONES:	POSTCONDICIONES:	
Usuario logado	Cuadro de mando o Dashbord	
DATOS ENTRADA	DATOS SALIDA	
Solicitud del usuario al sistema para	Lista actualizada de los nodos, con el	
optimizar los recursos o nodos	consumo energético y la huella de carbono	
	optimizado, es decir a la baja.	
TABLAS:	CLASES:	
USER, NODO		
METRICAS, ENERGIA		
INTERFACES:		
Tabla 4 – Caso de uso: Optimizar los recursos		

Caso de uso: Generar reportes

Imagen 5 - Caso de uso: Generar reportes

DESCRIPCIÓN: Generar reportes			
PRECONDICIONES:	POSTCONDICIONES:		
Usuario logado	Cuadro de mando o Dashbord		
DATOS ENTRADA	DATOS SALIDA		
Solicitud del usuario al sistema que genere	Reportes detallados de los nodos, con el		
reportes	consumo energético y la huella de carbono		
TABLAS:	CLASES:		
USER, NODO			
METRICAS, ENERGIA			
INTERFACES:			
Tabla 5 – Caso de uso: Generar reportes			

Caso de uso: Configurar las Alertas

Imagen 6 – Caso de uso: Configurar las Alertas

DESCRIPCIÓN: Configurar las Alertas		
PRECONDICIONES:	POSTCONDICIONES:	
Usuario logado	Cuadro de mando o Dashbord	
DATOS ENTRADA	DATOS SALIDA	
Configuración de umbrales específicos,	Lista de notificaciones para cuando se	
sobre ele el consumo energético y huella	superen los umbrales configurados.	
de carbono		
TABLAS:	CLASES:	
USER, NODO		
METRICAS, ENERGIA, ALERTAS		
INTERFACES:		
Tabla 6 - Caso de uso: Configurar las Alertas		

Caso de uso: Recolectar las métricas

Imagen 7 – Caso de uso: Recolectar las métricas

DESCRIPCIÓN: Recolectar las métricas		
PRECONDICIONES:	POSTCONDICIONES:	
Sistema de monitorización activo y nodos	Recolección de métricas de los recursos	
activos	cloud	
DATOS ENTRADA	DATOS SALIDA	
Métricas sobre el consumo energético y	Métricas de consumo energético y huella	
huella de carbono de cada uno de los	de carbono de cada uno de los recursos del	
recursos del cloud	cloud	
TABLAS:	CLASES:	
NODO, METRICAS		
ENERGIA		
INTERFACES:		
Tabla 7 – Caso de uso: Recolectar las métricas		

Caso de uso Notificar las Alertas

Imagen 8 – Caso de uso: Notificar las Alertas

DESCRIPCIÓN: Notificar las Alertas		
PRECONDICIONES:	POSTCONDICIONES:	
Sistema de monitorización activo, nodos	Umbrales previaconfigurados superados.	
activos y umbrales configurados		
DATOS ENTRADA	DATOS SALIDA	
Métricas sobre el consumo energético y	Alertas de consumo energético y huella de	
huella de carbono de cada uno de los	carbono de cada uno de los recursos del	
recursos del cloud versus los umbrales	cloud, por encima de los niveles de un	
configurados	sistema cloud sostenible.	
TABLAS:	CLASES:	
USER, NODO		
METRICAS, ENERGIA, ALERTAS		
INTERFACES:		
Tabla 8 - Caso de uso: Notificar las Alertas		

DISEÑOS

a. Diagrama E/R (Entidad - Relación):

Imagen 9 - Diagrama E/R de la base de datos

b. Diagrama de la base de datos:

Imagen 10 – Diagrama de la base de datos

c. Descripción de las tablas

Tabla 1: User

Contiene la información de los usuarios que interactúan con el sistema.

Campo	Tipo de dato	Descripción
iduser	INT (PK)	Código del usuario
nombre	VARCHAR(100)	Nombre completo del usuario
email	VARCHAR(100)	Correo electrónico del usuario
password	VARCHAR(255)	Contraseña cifrada del usuario
rol	VARCHAR(50)	Rol del usuario (admin, usuario, auditor)
fecha_registro	DATETIME	Fecha y hora de registro del usuario.

Tabla 9 - Descripción de las tablas: User

Tabla 2: Recurso

Contiene la información de los recursos cloud (servidores, bases de datos, etc.).

Campo	Tipo de dato	Descripción
idrecurso	INT (PK)	Código del recurso / nodo
nombre	VARCHAR(100)	Nombre que describe el recurso
tipo	VARCHAR(50)	Tipo de nodo (servidor, base de datos, etc.)
idenergia	INT (FK)	Tipo de energía utilizada (relación con la
		tabla Energía)
estado	VARCHAR(50	Estado actual del nodo (activo, inactivo,
		etc.)
fecha_inicio	DATETIME	Fecha y hora de creación del nodo

Tabla 10 - Descripción de las tablas: Recurso

Tabla 3: Métricas

Registro de los datos de consumo energético y huella de carbono de los nodos

Campo	Tipo de dato	Descripción			
idmetrica	INT (PK)	Código de la métrica			
idrecurso	INT (FK)	Nodo asociado (relación con la tabla			
		Recursos)			
consumo	FLOAT	Consumo energético en kWh			
huella	FLOAT	Huella de carbono en kg de CO ₂			
fecha_medida	DATETIME	Fecha y hora de la medición			

Tabla 11 - Descripción de las tablas: Métricas

Tabla 4: Alertas

Registro de los datos de consumo energético y huella de carbono de los nodos

Campo	Tipo de dato	Descripción		
idalerta	INT (PK)	Código de la alerta		
iduser	INT (FK)	Usuario que configura la alerta (relación con		
		la tabla User)		
idrecurso	INT (FK)	Nodo asociado (relación con la tabla		
		Recurso)		
umbral_energia	FLOAT	Umbral de consumo para activar la alerta.		
umbral_carbono	FLOAT	Umbral de huella para activar la alerta.		
fecha_alerta	DATETIME	Fecha y hora de creación de la alerta		

Tabla 12 - Descripción de las tablas: Alertas

Tabla 5: Energía

Registro de los datos de consumo energético y huella de carbono de los recursos

Campo	Tipo de dato	Descripción	
idenergia	INT (PK)	Código del tipo de energía	
nombre	VARCHAR(100)	Nombre tipo de energía (solar, eólica, etc.)	

renovable	BOOLEAN	Si es renovable o no

Tabla 13 - Descripción de las tablas: Energía

d. Relaciones entre las tablas:

Recurso - Energía: Cada Nodo o Recurso está asociado a un tipo de energía a través del campo "idenergia" en la tabla Nodo. Relación uno a muchos

Recurso - Métricas: Cada Recurso puede tener múltiples métricas asociadas (consumo energético, huella de carbono, etc.). Relación uno a muchos.

User - Alertas: Cada usuario puede configurar múltiples alertas. Relación uno a muchos.

Recurso - Alertas: Cada alerta está asociada a un nodo o recurso. Relación uno a muchos.

e. Diagrama de flujo de navegación:

Imagen 11 – Diagrama de navegación

f. Interfaces:

1. Acceso al sistema

2. Menú de control

3. Panel de control / Dashboard

Imagen 12 - Interfaces Dashboard

TECNOLOGÍA

Las tecnologías y herramientas utilizadas para este proyecto son:

<u>Ubuntu Server:</u>	
Sistema Operativo Ubuntu Server versión 24.04.02 LTS	
Utilizado para instalar las herramientas de monitoreo y captura	
de métricas.	
Grafana Dashboard:	
Herramienta de monitorización versión 15.05.02 OSS Edition.	
Utilizado para crear paneles de visualización, como gráficas,	
listas, etc. de componentes o recursos del entorno cloud.	Grafana
Prometheus:	
Herramienta de gestión de alertas, métricas y monitoreo de	
sistemas versión 2.0.	
Utilizado para la captura de métricas de todos los recursos del	
entorno cloud, en cuanto a consumo energético y huella de	
carbono.	
MySQL:	5
Sistema gestor de bases de datos relacionales.	MACOL
Utilizado para el almacenamiento de las métricas de los	IVIYSQL
recursos de la nube, parametrización de alertas, usuarios y	
recursos.	
VMWare:	
Utilizado para implementación o simulación del entorno cloud,	
en local.	
Python:	
Leguaje de programación.	
Utilizado para la automatización en el manejo de las capturas	
de las métricas de los recursos y el registro en la base de datos.	

METODOLOGÍA

Metodología usada y justificación de la misma.

Se presentarán dos planificaciones, una valoración inicial y previa a la implementación del proyecto y otra final con el tiempo real dedicado a cada parte del RFTP. Se analizarán las desviaciones.

El tiempo se expresará en horas. Debe existir una totalización final.

Diagrama de Gantt (Microsoft Project o similar). Real, contrastable con GIT, RFTP y Casos de uso.

Presupuesto. Con detalle de horas, indispensable si se realiza en grupo, y coste total del desarrollo por cada requisito.

README y GIT.

DESARROLLO

Objetivo 1: Comparación de centro de datos tradicionales contra soluciones cloud sostenibles

R02F01T01: Elaborar una tabla comparativa

Aspecto a valorar	CPDs Tradicionales		Cloud Sostenibles	
	Nivel	Valores	Nivel	Valores
Consumo Energético (PUE - Power Usage Effectiveness)	Alto	1.8 - 2.5	Bajo	1.1 - 1.5
Huella de Carbono	Alta		Baja	
Uso de Energías Renovables	Bajo		Alto	
Eficiencia Energética	Media		Alta	
Escalabilidad	Limitada		Alta	

Imagen 14 - Tabla comparativa CPD tradicionales vs cloud sostenibles

De los datos recogidos de diversas fuentes, detallamos lo siguiente:

Consumo Energético

- Centros Tradicionales: Tienen un PUE (Power Usage Effectiveness) promedio de 1.8 a 2.5, lo que significa que gran parte de la energía se pierde en refrigeración y otros sistemas auxiliares.¹²
- **Cloud Sostenibles:** Tienen un PUE promedio de 1.1 a 1.5, gracias a la optimización de hardware y sistemas de refrigeración avanzados.¹³

Huella de Carbono

- **Centros Tradicionales**: Dependen en gran medida de energías no renovables (carbón, gas natural), lo que genera una huella de carbono alta.¹⁴
- Cloud Sostenibles: Utilizan energías renovables (solar, eólica, etc.) y compensan sus emisiones, reduciendo significativamente su huella de carbono. 15

Uso de Energías Renovables:

¹³ (Datacenter Dynamics, 2024)

¹² (Danfoss, s.f.)

¹⁴ (Siscotec, 2024)

¹⁵ (Google, 2024)

- Centros Tradicionales: El uso de energías renovables es limitado y depende de la ubicación y políticas locales.
- Cloud Sostenibles: Proveedores como Google Cloud y Microsoft Azure ya operan con 100% energías renovables, y otros como AWS e IBM Cloud tienen objetivos claros para lograrlo.¹⁶

Eficiencia Energética:

- Centros Tradicionales: La eficiencia depende de la antigüedad del hardware y la infraestructura.
- Cloud Sostenibles: Utilizan hardware optimizado y técnicas de virtualización para maximizar la eficiencia.¹⁷

Escalabilidad:

- **Centros Tradicionales**: La escalabilidad es limitada y requiere inversión en infraestructura física.
- Cloud Sostenibles: Ofrecen escalabilidad elástica, permitiendo ajustar los recursos según la demanda sin necesidad de inversión adicional.¹⁸

R02F01T01P01: Validar la fidelidad de la tabla comparativa

Los valores fueron extraídos desde las páginas oficiales de los principales proveedores cloud y de informes privados de empresas respetables con bases a informes de Uptime Institute.

Conclusiones: Debemos mantenernos en el umbral PUE entre 1 y 1.5, con una huella de carbono baja, y un nivel alto en el uso de energías renovables, eficiencia energética y escalabilidad, para considerarnos un sistema de cloud sostenible.

31

¹⁶ (Microsoft, 2024)

¹⁷ (Amazon Web Services, 2024)

¹⁸ (IBM, 2024)

Objetivo 2: Evaluar a los principales proveedores de cloud (Google Cloud, Microsoft Azure, AWS, IBM Cloud).

R04F01T01: Asignar puntuaciones a cada proveedor

Métricas	Google Cloud ¹⁹	Microsoft Azure ²⁰	AWS (Amazon) ²¹	IBM Cloud ²²
Energías Renovables	100% desde 2017	100% para 2025	50%, 100% para 2025	55% 75% para 2025
Eficiencia Energética (PUE)	1.1 - 1.2	1.2 - 1.3	1.2 - 1.4	1.3 - 1.5
Huella de Carbono	Neutral desde 2007	Neutral desde 2012	Compensa emisiones	Compensa emisiones
Certificaciones Ambientales	ISO 14001, CarbonNeutral	ISO 14001, ISO 50001	ISO 14001, LEED Cert.	ISO 14001, Energy Star
Compromiso con ODS de la ONU	Sí	Sí	Sí	Sí
Herramientas de Monitorización	Google Cloud Operations Suite	Azure Monitor	AWS CloudWatch	IBM Cloud Monitoring
Innovación en Sostenibilidad	Enfriamiento por IA	Azure Sustainability Calculator	AWS Customer Carbon Footprint Tool	IBM Environmental Intelligence Suite

R04F01T02: Elaborar tabla de métricas para el proyecto

Métrica	Descripción	Unidad de Medida	Objetivo
Consumo Energético	Consumo de energía	kWh	Reducir en un 50% en el primer año.
Huella de Carbono	Emisiones de CO ₂ generadas	Ahorro de 10ton CO ₂	Alcanzar la neutralidad de carbono en 2 años.
Porcentaje de Energías Renovables	Porcentaje de energía renovable utilizada	75%	Alcanzar el 100% en 3 años.
Eficiencia Energética (PUE)	Relación entre la energía total consumida y la energía utilizada por los equipos IT.	1.5	Mantener un PUE menor a 1.5.
Tiempo de Actividad (Uptime)	Disponibilidad	99.9%	Mantener una disponibilidad del 99.9%.
Costes Operativos	Costos asociados	€0.05/kWh	Reducir los costos operativos en un 30% en el primer año.

¹⁹ (Google, 2024)

²⁰ (Microsoft, 2024) ²¹ (Amazon Web Services, 2024)

²² (IBM, 2024)

Cumplimiento de ODS	Alineación con los Objetivos de Desarrollo Sostenible (ODS) de la ONU.	9	Puntuación de 9-10
Satisfacción del Usuario	Grado de satisfacción de los usuarios con el entorno cloud sostenible.	10	Puntuación de 8-10.

R04F01T01P01: Validar que los resultados seas confiables

Los valores fueron extraídos desde las páginas oficiales de los proveedores en sus informes de 2024 sobre la sostenibilidad.

Cálculos de huella de carbonoy PUE:

- Simulación del uso de CPU en porcentaje:

cpu = random.uniform(10, 90)

- Cálculo estimado del consumo energético:

power = ((cpu / 100) * 200) + 50 # 200W en carga, 50W en idle

- Cálculo de la huella de carbono (0.4 kg CO₂/kWh):

carbon = (power / 1000) * 0.4

- Cálculo del PUE estimado (entre 1.5 y 2.5)

pue = round(random.uniform(1.5, 2.5), 2)

Objetivo 3: Implementar herramientas de monitorización con el fin de medir el consumo energético y la huella de carbono

R05F01T01: - Instalar y configurar las herramientas de monitorización

a. Servidores Ubuntu:

b. Instalación de Grafana

c. Instalación de Prometheus

```
revans@vm25-grafana: ~/pro X
revans@vm25-grafana:~/prometheus-3.2.1.linux-amd64$ sudo chown -R prometheus:prometheus /e
tc/prometheus /var/lib/prometheus
revans@vm25-grafana:~/prometheus-3.2.1.linux-amd64$ sudo nano /etc/systemd/system/promethe
us.service
revans@vm25-grafana:~/prometheus-3.2.1.linux-amd64$ sudo systemctl daemon-reload
revans@vm25-grafana:~/prometheus-3.2.1.linux-amd64$ sudo systemctl enable prometheus
Created symlink /etc/systemd/system/multi-user.target.wants/prometheus.service → /etc/syst
emd/system/prometheus.service.
revans@vm25-grafana:~/prometheus-3.2.1.linux-amd64$ sudo systemctl start prometheus
revans@vm25-grafana:~/prometheus-3.2.1.linux-amd64$ systemctl status prometheus
prometheus.service - Prometheus
       Loaded: loaded (/etc/systemd/system/prometheus.service; enabled; preset: enabled)
    Active: active (running) since Wed 2025-03-05 18:37:34 UTC; 11s ago Main PID: 1879 (prometheus)
        Tasks: 8 (limit: 4552)
       Memory: 15.9M (peak: 16.2M)
           CPU: 62ms
       CGroup: /system.slice/prometheus.service
                     -1879 /usr/local/bin/prometheus --config.file=/etc/prometheus/prometheus.ym>
Mar 05 18:37:34 vm25-grafana prometheus[1879]: time=2025-03-05T18:37:34.875Z level=INFO s>
Mar 05 18:37:34 vm25-grafana prometheus[1879]: time=2025-03-05T18:37:34.876Z level=INFO s>
Mar 05 18:37:34 vm25-grafana prometheus[1879]: time=2025-03-05T18:37:34.876Z tevel=INFO s>
Mar 05 18:37:34 vm25-grafana prometheus[1879]: time=2025-03-05T18:37:34.876Z level=INFO s>
Mar 05 18:37:34 vm25-grafana prometheus[1879]: time=2025-03-05T18:37:34.879Z level=INFO s>
Mar 05 18:37:34 vm25-grafana prometheus[1879]: time=2025-03-05T18:37:34.880Z level=INFO s>
revans@vm25-grafana:~/prometheus-3.2.1.linux-amd64$
```


d. Instalación de Node Exporter

```
💹 revans@vm25-grafana: ~
 revans@vm25-gra+ana:~$ sudo systemctl status node_exporter
  node_exporter.service - Node Exporter
      Loaded: loaded (/etc/systemd/system/node_exporter.service; enabled; preset: enabled)
Active: active (running) since Wed 2025-03-05 18:56:52 UTC; 2h 49min ago
   Main PID: 4094 (node_exporter)
       Tasks: 4 (limit: 4552)
      Memory: 8.0M (peak: 9.2M)
         CPU: 9.700s
      CGroup: /system.slice/node_exporter.service

└-4094 /usr/local/bin/node_exporter
Mar 05 18:56:52 vm25-grafana node_exporter[4094]: time=2025-03-05T18:56:52.759Z level=INF
Mar 05 18:56:52 vm25-grafana node_exporter[4094]: time=2025-03-05T18:56:52.760Z level=INF
Mar 05 18:56:52 vm25-grafana node_exporter[4094]: time=2025-03-05T18:56:52.760Z level=INF
lines 1-20/20 (END)
revans@vm25-grafana:~$
```



```
🔀 revans@vm25-grafana: ~/noc 🛛 🗙
                                 /etc/prometheus/prometheus.yml
 GNU nano 7.2
# Alertmanager configuration
alerting:
 alertmanagers:
   - static_configs:
       - targets:
          # - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_inte>
rule_files:
 # - "first_rules.yml"
 # - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
  # The job name is added as a label `job=<job_name>` to any timeseries scraped from this>
 job_name: "pro
   # metrics_path defaults to '/metrics'
   # scheme defaults to 'http'.
   static_configs:
     - targets: ["localhost:9090"]
scrape_configs:
  - job_name: 'node'
    static_configs:
      - targets: ['192.168.23.132:9100']
```


e. Instalación de Mysql

```
П
 revans@vm25-grafana: ~
                            ×
Setting up libcgi-fast-perl (1:2.17-1) ...
Processing triggers for man-db (2.12.0-4build2) ...
Processing triggers for libc-bin (2.39-Oubuntu8.4) ...
Scanning processes...
Scanning linux images...
Running kernel seems to be up-to-date.
No services need to be restarted.
No containers need to be restarted.
No user sessions are running outdated binaries.
No VM quests are running outdated hypervisor (gemu) binaries on this host.
revans@vm25-grafana:~$ sudo service mysql status

    mysql.service - MySQL Community Server

    Loaded: loaded (/usr/lib/systemd/system/mysql.service; enabled; preset: enabled)
Active: active (running) since Wed 2025-03-05 19:20:37 UTC; 20s ago
Process: 5372 ExecStartPre=/usr/share/mysql/mysql-systemd-start pre (code=exited, stare)
   Main PID: 5380 (mysqld)
      Status: "Server is operational"
       Tasks: 38 (limit: 4552)
      Memory: 364.1M (peak: 378.4M)
         CPU: 938ms
      CGroup: /system.slice/mysql.service

└─5380 /usr/sbin/mysqld
Mar 05 19:20:37 vm25-grafana systemd[1]: Starting mysql.service - MySQL Community Server.>
Mar 05 19:20:37 vm25-grafana systemd[1]: Started mysql.service - MySQL Community Server.
lines 1-14/14 (END)
revans@vm25-grafana:~$
```


f. Programa Python3 (exporter.py) para exportar métricas

```
GNU nano 7.2

From flask import Flask, Response
from prometheus_client import Gauge, generate_latest
import mysql. connector
from datetime import datetime

app = Flask(_name__)

# Métricas Prometheus
cpu_usage = Gauge('cpu_usage_percent', 'Uso de CPU en %')
power_consumption = Gauge('power_consumption_watts', 'Consumo estimado de energía (W)')
carbon_emission = Gauge('carbon_emission_kg', 'Huella de carbono estimada (kg CO2)')
pue_metric = Gauge('pue_value', 'PUE estimado del sistema')

# Conexión mysql
db_config = {
    "host": "localhost",
    "user": "revans",
    "password": "%Tuto2323",
    "database": "sostenible"
}
```

```
get_recurso_id():
""" Obtiene el ID de un recurso activo en la base de datos """
          conn = mysql.connector.connect(**db_config)
cursor = conn.cursor()
          cursor.execute("SELECT id_recurso FROM recurso WHERE estado='activo' LIMIT 1")
          recurso = cursor.fetchone()
          cursor.close()
          conn.close()
          return recurso[0] if recurso else None
     except Exception as e:
print("Error al obtener recurso:", e)
          return None
def save_to_mysql(recurso_id, power, carbon, pue):
    """ Guarda los valores en la base de datos MySQL """
    if recurso_id is None:
          print("No hay recursos activos en la base de datos.")
          return
     try:
          conn = mysql.connector.connect(**db_config)
cursor = conn.cursor()
          query = """INSERT INTO consumo (id_recurso, timestamp, pue, carbon)
                        VALUES (%s, %s, %s, %s)
```



```
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    cursor.execute(query, (recurso_id, timestamp, pue, carbon))

conn.commit()
    cursor.close()
    conn.close()
    except Exception as e:
        print("Error al insertar en MySQL:", e)

@app.route('/metrics')
def metrics():
    """ Genera y expone métricas en formato Prometheus """
    recurso_id = get_recurso_id()

# Simulación del uso de CPU en porcentaje
    cpu = random.uniform(10, 90)
    cpu_usage.set(cpu)

# Cálculo estimado del consumo energético
    power = ((cpu / 100) * 200) + 50 # 200W en carga, 50W en idle
    power_consumption.set(power)

# Cálculo de la huella de carbono (0.4 kg CO<sub>2</sub>/kWh)
    carbon = (power / 1000) * 0.4
```

```
# Cálculo del PUE estimado (entre 1.5 y 2.5)
pue = round(random.uniform(1.5, 2.5), 2)
pue_metric.set(pue)

# Guardar en la base de datos
save_to_mysql(recurso_id, power, carbon, pue)
return Response(generate_latest(), mimetype="text/plain")

if __name__ == '__main__':
    app.run(host="0.0.0.0", port=9105)
```


- g. Creación de tablas en la Base de datos "sostenible":
- 1. Usuario

```
■ Servidor: localhost:3306 » ■ Base de datos: sostenible
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible: 📦
    1 use sostenible;
    2 CREATE TABLE usuario (
    3
          iduser INT AUTO_INCREMENT PRIMARY KEY,
    4
          nombre VARCHAR(100) NOT NULL,
          email VARCHAR(100) UNIQUE NOT NULL,
    5
          password VARCHAR(255) NOT NULL,
    6
          rol ENUM('admin', 'usuario') NOT NULL,
    8
          fecha_registro TIMESTAMP DEFAULT CURRENT_TIMESTAMP
    9);
```

		Null	Key	Default	Extra
	int	NO	PRI	NULL	auto_increment
nombre	varchar(100)	NO		NULL	
email	varchar(100)	NO	UNI	NULL	
password	varchar(255)	NO		NULL	
rol	enum('admin','usuario')	NO		NULL	
fecha_registro	timestamp	YES		CURRENT_TIMESTAMP	DEFAULT_GENERATED

2. Fuente

```
mysql>
mysql> DESCRIBE fuente;
                                      Key | Default |
| Field
               Type
                              Null |
                                                      Extra
  id_energia
                                      PRI
                                            NULL
                                                       auto_increment
  nombre
               varchar(100)
                                            NULL
                               NO
                              NO
                                            NULL
  renovable
               tinyint(1)
3 rows in set (0.00 sec)
mysql>
```


3. Recurso

```
🗐 Servidor: localhost:3306 » 🍵 Base de datos: sostenible
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible: (a)
    1 use sostenible;
    2 CREATE TABLE recurso (
           id_recurso INT AUTO_INCREMENT PRIMARY KEY,
    3
     4
           nombre VARCHAR(100) NOT NULL,
           tipo ENUM('servidor', 'db', 'otro') NOT NULL,
     5
           estado ENUM('activo', 'inactivo') NOT NULL,
     6
           fecha TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    8
           id_energia INT,
    9
           FOREIGN KEY (id_energia) REFERENCES fuente(id_energia) ON DELETE SET NULL
    10);
```

```
mysql> DESCRIBE recurso;
                                                  | Null | Key
                                                                  Default
  Field
                                                                                       Extra
                Type
  id_recurso
                 int
                                                    NO
                                                            PRI
                                                                   NULL
                                                                                         auto_increment
  nombre
                 varchar(100)
                                                    NO
                                                                   NULL
                 enum('servidor','db','otro')
enum('activo','inactivo')
                                                                  NULL
  tipo
                                                    NO
  .
estado
                                                    NO
                                                                   NULL
                                                                   CURRENT_TIMESTAMP
                                                                                         DEFAULT_GENERATED
                 timestamp
                                                    YES
  fecha
  id_energia
                int
                                                    YES
                                                           MUL
                                                                  NULL
6 rows in set (0.00 sec)
mysql>
```

4. Consumo

```
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible:

1 use sostenible;

2 CREATE TABLE consumo (
3 id INT AUTO_INCREMENT PRIMARY KEY,
4 id_recurso INT NOT NULL,
5 timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
6 pue FLOAT NOT NULL,
7 carbon FLOAT NOT NULL,
8 FOREIGN KEY (id_recurso) REFERENCES recurso(id_recurso) ON DELETE CASCADE
9 );
```



```
mysql> DESCRIBE consumo;
  Field
                            Null |
                                   Key
                                          Default
                                                               Extra
              | Type
                                    PRI
                                          NULL
                                                               auto_increment
  id
                            NO
                int
  id_recurso
                            NO
                                   MUL
                                          NULL
                int
               timestamp
                            YES
                                                               DEFAULT_GENERATED
                                          CURRENT_TIMESTAMP
  timestamp
                float
                            NO
                                          NULL
  pue
                            NO
  carbon
               float
                                          NULL
5 rows in set (0.01 sec)
mysql>
```

5. Alertas

```
Servidor: localhost:3306 » 📵 Base de datos: sostenible
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible: (a)
    1 use sostenible;
     2 CREATE TABLE alertas (
           id alerta INT AUTO INCREMENT PRIMARY KEY,
     3
           id_usuario INT NOT NULL,
    4
           id recurso INT NOT NULL,
           umbral_pue FLOAT NOT NULL,
     6
           umbral_carbono FLOAT NOT NULL,
    8
           fecha TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
           FOREIGN KEY (id usuario) REFERENCES usuario(iduser) ON DELETE CASCADE,
    9
           FOREIGN KEY (id_recurso) REFERENCES recurso(id_recurso) ON DELETE CASCADE
   10
    11 );
```


mysql> DESCRIBE al + Field	Lertas; Type	+ Null	Key	Default	Extra
id_alerta id_usuario id_recurso umbral_pue umbral_carbono fecha	int int int float float timestamp	NO NO NO NO NO YES	PRI MUL MUL	NULL NULL NULL NULL NULL CURRENT_TIMESTAMP	auto_increment DEFAULT_GENERATED
6 rows in set (0.6)1 sec)	+·	·	·	

6. Esquema de la base de datos

7. Datos iniciales

a. Tabla fuente

```
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible:

1 use sostenible;
2 INSERT INTO fuente (nombre, renovable) VALUES ('Solar', TRUE), ('Eólica', TRUE), ('Hidroeléctrica', TRUE), ('Geotérmica', TRUE), ('Marina', TRUE), ('Gas Natural', FALSE), ('Petróleo', FALSE), ('Carbón', FALSE);
```


b. Tabla recurso

```
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible:

1 use sostenible;
2 INSERT INTO recurso (nombre, tipo, estado, id_energia) VALUES
3 ('Servidor-01', 'servidor', 'activo', 1),
4 ('Servidor-02', 'servidor', 'activo', 1),
5 ('Servidor-03', 'servidor', 'activo', 1);
```


c. Tabla Usuario

```
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible:

1 use sostenible;
2 INSERT INTO usuario (nombre, email, password, rol) VALUES
3 ('admin', 'admin@myuax.com', 'Pa$$w@rd', 'admin'),
4 ('revans', 'revanlla@myuax.com', 'Pa$$w@rd', 'admin'),
5 ('usuario1', 'usuario1@myuax.com', 'Pa$$w@rd', 'usuario');
6
```


d. Tabla Alertas

```
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible:

1 use sostenible;
2 INSERT INTO alertas (id_usuario, id_recurso, umbral_pue, umbral_carbono) VALUES
3 (1, 1, 1.5, 50),
4 (2, 2, 1.4, 40),
5 (2, 3, 1.3, 40);
```


R05F01T01P01: Verificar que las herramientas estén correctamente configuradas

R06F01T01: Crear paneles de control para visualizar las métricas

Configurar Alertas en Grafana

Si PUE > $2.0 \rightarrow$ Enviar alerta

Si Huella de carbono > 0.5 kg $CO_2 \rightarrow Enviar$ alerta

Si Consumo energético > 180W \rightarrow Enviar alerta

R06F01T02: Realizar pruebas de funcionamiento

R06F01T01P01: Validar las métricas mostradas

TRABAJOS FUTUROS

Para mejorar los trabajos realizados, en siguiente paso es incorporar una herramienta de inteligencia artificial (IA), que tome decisiones en tiempo real cuando se superen los umbrales de control de consumo energético y huella de carbono. Esto dará un salto de calidad, en cuanto a la automatización de los controles y mejorar los resultados en el corto plazo.

CONCLUSIONES

Conclusión profesional del proyecto.

REFERENCIAS

- Amazon Web Services. (2024). https://aws.amazon.com/. Obtenido de AWS Sustainability: https://aws.amazon.com/es/sustainability/
- Danfoss. (s.f.). https://www.danfoss.com/. Obtenido de https://www.danfoss.com/es-es/about-danfoss/insights-for-tomorrow/integrated-energy-systems/data-center-power-consumption/
- DatacenterDynamics. (05 de diciembre de 2024). https://www.datacenterdynamics.com/es/.

 Obtenido de La empresa revela cifras de PUE por primera vez:

 https://www.datacenterdynamics.com/es/noticias/los-centros-de-datos-globales-de-aws-lograron-un-pue-de-115-en-2023/
- Goldman Sachs. (14 de Mayo de 2024). https://www.goldmansachs.com. Obtenido de https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
- Google. (2024). https://sustainability.google/. Obtenido de 2024 Environmental Report: https://sustainability.google/reports/google-2024-environmental-report/
- IBM. (2024). https://www.ibm.com. Obtenido de Sustainability solutions from IBM: https://www.ibm.com/sustainability
- IRENA International Renewable Energy Agency. (Agosto de 2023). https://www.irena.org. Obtenido de https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022
- Microsoft. (2024). https://cdn-dynmedia-1.microsoft.com/. Obtenido de 2024 Environmental Sustainability Report: https://cdn-dynmedia-1.microsoft.com/is/content/microsoftcorp/microsoft/msc/documents/presentations/CSR/M icrosoft-2024-Environmental-Sustainability-Report.pdf
- Naciones Unidas The 17 Goals. (s.f.). https://www.un.org. Obtenido de https://www.un.org/sustainabledevelopment/sustainable-development-goals/
- Siscotec. (2024). https://siscotec.com/. Obtenido de Impacto de los centros de datos en el medio ambiente y la sostenibilidad: https://siscotec.com/blog/xperti-1/impacto-de-los-centros-de-datos-en-el-medio-ambiente-y-la-sostenibilidad-14
- The International Energy Agency IEA. (2023). https://www.iea.org. Obtenido de https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks

