CMPUT 428: Visual Servoing

Roderick Lan

Contents

	ture - Feb 8	2
1.1	Vision Based Control (Visual Servoing)	2
1.2	Problems	2
1.3		2
1.4	Find J Method 2	2
1.5	Find J Method 3	2
1.6	Specifications	9

1 Lecture - Feb 8

lec10VisServEmbVid.pdf

1.1 Vision Based Control (Visual Servoing)

Robot acting in Euclidean space, gonna be in some manifold of projective space. 4 points give homography, homography not necessarily euclidean, leverage the fact that the top is in euclidean space, . . .

If full motion isnt convex, there exists some subdivision of motion that is convex \rightarrow intermediate goal points w/ convex subsections of motion.

1.2 Problems

Chaining transforms \rightarrow accumulate errors

1.3

Use broyden's method for optimization (dont need to calc. deriv.) error y = f(x) is visual error, assume it is smooth convex func. Getting Jacobian: can always get discrete deriv (ie. deriv b/w frames in optical flow)

```
move joint 1 (up to 10°), get all partial derivs for joint
do same for other joints
fill in jacobian
```

1.4 Find J Method 2

For every motion, jacobian should obey "secant constraint"

```
get 'constraints' from joint motion stack into matrix, fit J
```

1.5 Find J Method 3

Recursive Secant constraints iterative secant update for jacobian (Broyden)

1.6 Specifications

```
image encoding E(y) = 0
Guarantee that you're actually solving the problem (ie. objects are actually touching and don't just look like they are due to perspective) (task ambiguity)
```