Міністерство освіти і науки України Львівський національний університет імені Івана Франка Факультет електроніки та комп'ютерних технологій

Звіт про виконання лабораторної роботи №1 ДИСКРЕТНА ЗГОРТКА СИГНАЛІВ

Виконав

студент групи ФеС-21С

Осадчук Д. М.

Перевірив

Вдовиченко В. М.

Лабораторна робота №1

Дискретна згортка сигналів

Мета роботи:

Ознайомитися з поняттям дискретних систем. Освоїти процес та алгоритм дискретної згортки сигналів.

Завдання до роботи:

Створити програму для знаходження дискретної згортки $\{f_m\}$ дискретних сигналів $\{x_k\}$ і $\{y_k\}$.

Теоретичні відомості

Узагальнена структурна схема дискретної системи представлена на рис. 1.

Вхідний аналоговий сигнал переводиться в послідовність відліків $s_{\text{вx}}(k)$ і надходить на пристрій обробки, звідки знімається вихідна імпульсна послідовність $s_{\text{вих}}(k)$, яка потім згладжується фільтром.

Окремим випадком дискретної системи є система цифрової обробки сигналу (ЦОС), коли послідовність вхідних відліків $s_{\rm Bx}(k)$ оцифровується. У цьому випадку, очевидно, пристрій обробки повинен мати аналогово-цифровий перетворювач (АЦП) на вході і цифро-аналоговий перетворювач (ЦАП) на виході.

Перехід від аналогового безперервного сигналу s(t) до дискретного $s_D(t)$ здійснюється шляхом дискретизації по часу (рис. 2). З рисунків бачимо, що вихідний неперервний сигнал s(t) представляється послідовністю відліків $\{s_k\}$, де $s_k = s(k\Delta t)$. Інтервал Δt називають кроком дискретизації, а $f_D = -$ частотою дискретизації. Зрозуміло, що для уникнення втрат інформації крок дискретизації повинен бути досить малим. З іншого боку, занадто часті відліки ведуть до невиправданої надмірності інформації і ускладнення апаратури. Відповідь про правильний вибір Δt дає теорема Найквіста-Котельникова-Шенонна.

Теорема Найквіста-Котельникова-Шеннона: довільний сигнал s(t), спектр якого обмежений частотою F_B , може бути повністю відтворений по послідовності своїх відліків, взятих з інтервалом \leq .

При цьому відновлення здійснюється за допомогою ряду:

$$s(t) = .$$

Згортку двох аналогових сигналів можна зобразити у вигляді:

$$x(t) * y(t) = f(t) = =$$

За аналогією зі згорткою неперервних сигналів в теорії дискретних систем вводять дискретну згортку — сигнал, відліки якого пов'язані з відліками дискретних сигналів $\{x_k\}$ і $\{y_k\}$ співвідношенням:

$$f_m = 1$$
, $m = 0$, 1 , 2 ...

Варіант 6

Програма для знаходження дискретної згортки дискретних сигналів:

Вхідні дані:

	8, 1, 0	5, 6, 9
6	6, 4, 2, 7, 9, 3	4, 9, 0, 8, 1, 7, 2,
	6, 4, 7, 0, 8, 1, 2	3, 4, 8, 7, 0, 6

Скріншот роботи програми:

```
| is to the code of the code o
```

```
| lab1 × | | : | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | :
```

Висновок: