NASA CR-121211 IITRI-B6107-34 (Part 1)

ADDITIONAL THERMAL FATIGUE DATA ON NICKEL- AND COBALT-BASE SUPERALLOYS

By

Maurice A. H. Howes Metals Research Division

IIT RESEARCH INSTITUTE 10 West 35 Street Chicago, Illinois 60616

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

March 15, 1973

CONTRACT NAS3-14311

NASA-Lewis Research Center Cleveland, Ohio Peter T. Bizon, Project Manager

1. Report No.	2. Government Accession No.		3. Recipient's Catalog	No.
NASA CR-121211				
4. Title and Subtitle		1	5. Report Date	0.72
ADDITIONAL THERMAL FATIGUE	DATA ON NICKEL- AND	-	March 15, 1	
COBALT-BASE SUPERALLOYS			u. Ferrorming Organiz	ation code
7. Author(s)			8. Performing Organiza	tion Report No.
Maurice A. H. Howes			IITRI-B6107- (Part 1)	•34 •
Madiice A. H. Howes			10. Work Unit No.	
9. Performing Organization Name and Address				
IIT Research Institute		<u> </u>	11. Contract or Grant	No.
10 West 35 Street Chicago, Illinois 60616			NAS 3-14311	
Chicago, Illinois 00010		-	13. Type of Report an	d Pariod Covered
12. Sponsoring Agency Name and Address			Contractor	
		L	6/11/70-2/2	
National Aeronautics and S Washington, D.C. 20546	pace Administration		Sponsoring Agency	Code
Washington, D.C. 20546				_
15. Supplementary Notes				
Project Manager, Peter T.	Bizon, Materials and	Structures	Division,	
NASA-Lewis Research Center	, Cleveland, Ohio 44	135		
16. Abstract				
The fluidized bed techn	ique has been used to	measure t	he relative t	hermal-
fatigue resistance of 21 s	uperalloys: B1900, B1	.900 DID, 1	N-100, MAR-M	200,
Udimet 700 wrought and cas	T, NA-100, WAZ-2U, 18	Z-OA, MZZ, NiCr MAR-	. IN /136, IN M 302 WT-52	/30, and
IN 162, MAR-M 509, René 80 X-40. IN-100, MAR-M 200,	NX-188. WAZ-20 and TA	Z-8A were	also tested i	n the
directionally solidified f	orm. B1900, B1900 D1	D, IN-100,	MAR-M 200, U	dimet
700, NX-188, WAZ-20, and I	'AZ-8A were tested wit	h surface	protection.	Among
the 36 variations of compo	sition, solidification	n method,	and surface p	rotec-
tion the cycles to cracking				
suffered serious weight lo fatigue data on some of th	sses and oxidation.	Previous i	:lulaizea bea . cp_72738	tnermaı
fatigue data, oxidation, a	nd dimensional change	s are pres	ented in this	report.
Metallographic and hardnes	s data are reported i	n NASA CR-	·121212. Thi	s investi-
gation is part of a genera	1 study of thermal fa	tigue cond	lucted by the	NASA-Lewis
Research Center.				
7. Key Words (Suggested by Author(s))		bution Statement		
Thermal Fatigue	Unc	lassified	Unlimited	
Coatings				
Nickel Base Alloys Cobalt Base Alloys				
Oxidation				
Fluidized Bed				
19. Security Classif. (of this report)	20. Security Classif. (of this page		21. No. of Pages	22. Price*
Unclassified	Unclassified		93	\$3.00

			-
			v
			**
			-
			-

FOREWORD

This report describes the work performed under NASA Contract NAS3-14311 on the project entitled "Thermal Fatigue Testing of High-Temperature Alloys." The report covers the period June 11, 1970 to February 28, 1973. Other fluidized bed thermal fatigue data of nickel- and cobalt-base alloys obtained between March 24, 1967 and May 20, 1970 are reported in NASA CR-72738.

This report is presented in two parts. Part 1, presented here, describes the thermal fatigue testing and the results obtained. Part 2 (NASA CR-121212) describes the metallographic examination.

The NASA personnel assigned to this contract were:

Leonard W. Schopen - Contracting Officer Peter T. Bizon - Project Manager

The IITRI personnel who contributed to this project include Maurice Howes (Project Manager), E. R. Porlier (Administrative Supervisor), R. K. Nolen, G. Grzeda, T. Croak, E. Chester, L. Hopkins, and V. Johnson.

Data are contained in Logbooks No. C20053, C20054, C20059, C200902, and C20061.

The IITRI internal designation for this report is IITRI-B6107-34 (Part 1).

TABLE OF CONTENTS

Pa	ge
SUMMARY	1
INTRODUCTION	2
EXPERIMENTAL WORK	3
Materials and Conditions	3
Thermal Fatigue Facility	5
Facility Performance	6
Thermal Fatigue Fixture	6
m	6
Measurement of Transient Temperatures	7
Inspection of Specimens During Testing	8
RESULTS	8
Thermal Fatigue Data	8
Physical Changes During Testing	9
Ranking	0
CONCLUSIONS	1
REFERENCES	2

LIST OF TABLES

	I	Page
1	Alloys and Variations Used in Test Program	13
2	Compositions of All Alloys Used in the Program	14
3	Tensile Properties at 1400°F (760°C)	15
4	Stress-Rupture Properties at 1800°F (982°C)	16
5	Summary of Test Conditions for All Specimens	17
6	Calibration Data for Instrumented IN-100 Specimens When Cycled Into the High Temperature Bed	18
7	Calibration Data for Instrumented IN-100 Specimens When Cycled Into the Intermediate Temperature Bed	19
8	Calibration Data for Instrumented IN 713C Specimens When Cycled Into the High Temperature Bed	20
9	Calibration Data for Instrumented IN 713C Specimens When Cycled Into the Intermediate Temperature Bed	21
10	Calibration Data for Instrumented IN 162 Specimens When Cycled Into the High Temperature Bed	22
11	Calibration Data for Instrumented IN 162 Specimens When Cycled Into the Intermediate Temperature Bed	23
12	Calibration Data for Instrumented MAR-M 509 Specimens When Cycled Into the High Temperature Bed	24
13	Calibration Data for Instrumented MAR-M 509 Specimens When Cycled Into the Intermediate Temperature Bed	25
14	Calibration Data for Instrumented René 80 Specimens When Cycled Into the High Temperature Bed	26
15	Calibration Data for Instrumented René 80 Specimens When Cycled Into the Intermediate Temperature Bed	27
16	Calibration Data for Instrumented X-40 Specimens When Cycled Into the High Temperature Bed	28
17	Calibration Data for Instrumented X-40 Specimens When Cycled Into the Intermediate Temperature Bed 2	29
18	Calibration Data for Instrumented B1900 Specimens	3.0

LIST OF TABLES (cont.)

				Page
19	Calibration Data for Instrumented B1900 Spe When Cycled Into the Intermediate Temperate	ecimens ure Bed	•	31
20	Calibration Data for Instrumented B1900 DII Specimens When Cycled Into the High Tempera) + Jocoat ature Bed	•	32
21	Calibration Data for Instrumented B1900 DII Specimens When Cycled Into the Intermediate ture Bed	D + Jocoat E Tempera-	•	33
22	Calibration Data for Instrumented NX-188 Sp When Cycled Into the High Temperature Bed.	pecimens		34
23	Calibration Data for Instrumented NX-188 Sp When Cycled Into the Intermediate Temperatu	pecimens ure Bed	•	35
24	Calibration Data for Instrumented TAZ-8A DS When Cycled Into the High Temperature Bed.	S Specimens		36
25	Calibration Data for Instrumented TAZ-8A DS When Cycled Into the Intermediate Temperatu	S Specimens are Bed		37
26	Calibration Data for Instrumented WAZ-20 Sp When Cycled Into the High Temperature Bed.	oecimens		38
27	Calibration Data for Instrumented WAZ-20 Sp When Cycled Into the Intermediate Temperatu	oecimens ire Bed	•	39
28	Calibration Data for Instrumented IN 738 Sp When Cycled Into the High Temperature Bed.	ecimens	•	40
29	Calibration Data for Instrumented IN 738 Sp When Cycled Into the Intermediate Temperatu	pecimens are Bed		41
30	Calibration Data for Instrumented NASA VI A When Cycled Into the High Temperature Bed.	Specimens	•	42
31	Calibration Data for Instrumented NASA VI A When Cycled Into the Intermediate Temperatu	Specimens are Bed		43
32	Calibration Data for Instrumented TAZ-8A (S Wedge) Specimens When Cycled Into the High Bed	ingle Edge Temperature	•	44
33	Calibration Data for Instrumented TAZ-8A (S Wedge) Specimens When Cycled Into the Inter Temperature Bed.	ingle Edge mediate		45

LIST OF TABLES (cont.)

				Page
34	Total Thermal Cycles for Each Specimen	•	•	46
35	Summary of Crack Propagation for Series G Specimens Cycled Between 2065°F (1129°C) and 675°F (357°C)			47
36	Summary of Crack Propagation for Series H Specimens Cycled Between 1915°F (1046°C) and 525°F (274°C)		•	56
37	Summary of Crack Propagation for Series I Specimens Cycled Between 1990°F (1088°C) and 600°F (316°C)	•	•	64
38	Thermal Cycles Required to Initiate the First Crack in Each Edge	•	•	73
39	Weight Change of Series G Specimens	•	•	74
40	Weight Changes in Series H Specimens			75
41	Weight Changes in Series I Specimens			76
42	Dimensional Changes in Series G Specimens			77
43	Dimensional Changes in Series H Specimens	•		78
44	Dimensional Changes in Series I Specimens			79
45	Summary of Average Weight Change Rates	•		80
	LIST OF FIGURES			
1	Dimensions of Test Specimens Used in the Program			81
2	Thermal Fatigue Facility	•	•	82
3	Thermal Fatigue Fixture	•	•	83
4	Thermocouple Locations in Instrumented Specimens	•		84
5	Appearance of Series G Specimens After Indicated Thermal Cycles	•		85
6	Weight Changes of Some Series G Specimens			93

		-
		•
		-
		-
		د
		-

SUMMARY

This investigation is part of a general study of thermal fatigue conducted by the NASA-Lewis Research Center. This program used the fluidized bed heating and cooling technique to measure the relative thermal fatigue resistance of 21 superalloys. An earlier investigation is reported in NASA CR-72738. The alloys in this investigation included B1900, B1900 DID, IN-100, MAR-M 200, Udimet 700 (cast and wrought), NX-188, WAZ-20, TAZ-8A, M22, IN-713C, IN-738, IN-162, MAR-M 509, René 80, RBH, NASA VI A, TD-NiCr, MAR-M 302, WI-52, and X-40. Four types of surface protection were used on selected alloys. These were Jocoat, Xcoat A, clad + Xcoat B and RT-1A coat. The IN-100, MAR-M 200, NX-188, WAZ-20, and TAZ-8A were tested in both the random and directionally solidified forms. The resistance to cracking was measured by cycling specimens between fluidized beds at 1129°C and 357°C, 1046°C and 274°C, and 1088°C and 316°C. The time of immersion in each bed was 3 minutes. The specimens were examined for cracks at intervals, and the lengths of the first three cracks were measured. When sufficient crack propagation data were obtained, the specimen was removed from test.

The tested alloys having the best resistance to thermal fatigue cracking were NX-188 directionally solidified and TAZ-8A clad + Xcoat B. The number of cycles required to crack different alloys varied widely, from over 6100 cycles for the best materials to 13 cycles for several of the worst materials. This represents a 500:1 difference in behavior under very severe testing conditions. Oxidation occurs during thermal cycling, and some alloys experienced considerable weight loss. The directionally solidified alloys were particularly susceptible and normally should be protected with a coating.

Metallographic examination indicates that as much attention should be given to processing the alloy as to the alloy composition. Directional solidification is an obvious case of improving properties through processing, but other techniques of controlling microstructure are also important. Any structure with a large constituent or line of constituents is potentially weak in thermal fatigue. The test results indicate that processing should be designed to give a fine well-dispersed structure without a pronounced dendritic pattern and without grain boundaries lined with carbides or blocks of other constituents.

INTRODUCTION

The purpose of the reported work was to use the fluidized bed technique to measure the relative thermal fatigue cracking resistance of twenty-one high-temperature superalloys that could be used for advanced air breathing engines. The study included metallographic and hardness studies before and after thermal fatigue testing. The work was carried out in a facility designed and built by IIT Research Institute.

This investigation is part of a general study of thermal fatigue being undertaken by the NASA-Lewis Research Center. Other parts of the study and the possible use of the data are described by Spera. (1) An earlier part of this general study was the previous fluidized bed thermal fatigue work by Howes. (2) An analytical life prediction to these data is given by Spera et al. (3)

Thermal fatigue is a possible failure mechanism in any situation that involves fluctuating temperatures. If certain materials are heated or cooled rapidly and continuously, cracking sometimes occurs. This phenomenon, which is often called thermal shock, is caused by thermal gradients present during rapid temperature change. As a result, strain is produced which is related to the coefficient of expansion of the material. Failure occurs when thermally induced stresses exceed the strength of the material after starting as a crack in the most sensitive area. In metals, the thermal fatigue mechanism often results in the gradual formation of a network of cracks and is commonly referred to as craze cracking, heat cracking, or fire cracking. Any part which undergoes temperature cycling during service is likely to fail by this mechanism.

Failures due to thermal fatigue can be found in brake drums, turbine blades, internal combustion engine pistons, rolls for forming hot steel, forging dies, railway wheels, furnace components, and in molds used for glass and metal molding. Thermal fatigue can become the dominant failure mode in aircraft gas turbine engines as the operating temperature and thermal gradients become more severe and the expected service life becomes longer.

Many methods of heating and cooling have been used to simulate the thermal cycles experienced in actual applications. Some of the earliest work used direct flame impingement on a surface. However, unless carefully controlled, the combustion products and variation in temperature conditions can introduce an arbitrary environment which can influence the cracking mechanism.

High-frequency heating and electrical resistance heating systems can be used to establish simulated thermal cycling conditions; however, they are generally expensive to construct for the

multi-station test facilities which are needed to amass data quickly. In the consideration of thermal fatigue, the crack propagation rate is as important as the start of cracking. For instance, a material that cracks early might be satisfactory if the crack propagation rate is very slow. With high frequency and resistance heating, the formation of a crack alters the flux or current density in such a way that the crack is overheated and measurement of propagation rate becomes meaningless.

The fluidized bed heating system for thermal fatigue testing has many advantages and no significant disadvantages. The bed construction is simple and relatively inexpensive. The rate of heat transfer to a specimen or group of specimens is high. The heat content of a particulate solid fluidized media is also high, so that a large number of specimens or a large specimen can be rapidly and repeatedly heated without lowering the bed temperature significantly. The fluid bed system uses low-velocity air flows (on the order of 1 fps), and in this respect the high-velocity gas flows in a turbine engine are not simulated. The first reported use of fluidized beds for thermal fatigue testing was in 1958 by Glenny and co-workers. (4) Since that time there have been many reports of the use of this technique to evaluate thermal fatigue resistance. (5-13) A bibliography of the literature of thermal fatigue up to 1967 was compiled by Carden. (14)

The original high-temperature bed described by Glenny was 6 in. in diameter and was heated by wire-wound elements of 4 kw total input. For this program much heavier loads of test specimens had to be cycled, and a bed diameter of 11.5 in. with a power input of 55 kw was required. The low-temperature bed was controlled at an intermediate temperature instead of room temperature; thus the lower temperature beds were required to have provisions for both heating and cooling. These features are described in the section under Experimental Work which deals with the thermal fatigue facility.

The entire report is presented in two parts. This is Part 1, which includes all thermal fatigue results, together with weight and dimensional changes. Part 2 describes the metallographic and hardness measurements.

EXPERIMENTAL WORK

Materials and Conditions

Thirty-six variations of alloys and treatment were studied in this program. These are listed in Table 1. Twenty-one different

material compositions were used as shown in Table 2. The variables studied in this program include

- 1. Composition
- 2. Test piece shape (i.e., double or single edge wedges)
- 3. Solidification method
- 4. Surface protection
- 5. Temperature of exposure.

For the thermal fatigue testing two types of test piece were used (Figure 1). Most testing used the double-edge wedge type having nominal edge radii of 0.025 in. and 0.040 in. Only four tests including the two clad tests were single-edge wedges (SEW) having a nominal edge radius of 0.030 in.

Five alloys were used in the directionally solidified condition. These were IN-100, MAR-M 200, NX-188, WAZ-20, and TAZ-8A. Randomly solidified specimens of the same alloy were also tested for comparison.

Four types of surface protection were used as follows:

- Jocoat a silicon-modified nickel aluminide coating (Pratt & Whitney Aircraft proprietary process PWA 47)
- 2. Xcoat A (used only on IN-100) an experimental nickel aluminide coating applied by NASA-Lewis pack process. The pack composition was 1A1-1NaBr-98Al₂O₃. The pack was under an argon blanket at 2000°F for 15 hr resulting in a coating about 2 mils thicks. After pack the specimens were heat treated for 25 hr at 2100°F.
- 3. Clad + Xcoat B The 5 mil thick clad composition was 19.24Cr, 3.92Al, 1.22Si, 0.059C, bal. Ni. The diffusion bond process parameters were 15,000 psi for 3 hr at 2175°F. The diffusion bond process is completely described in ref. 15. Xcoat B was an experimental nickel aluminide coating applied by NASA-Lewis pack process similar to that above except that the pack composition was 1A1-1NH4Cl-98Al₂O₃ at a temperature of 1900°F.

4. RT-1A Coat - a chromium-aluminum duplex coating (Chromalloy Corporation proprietary process similar to PWA 32 but a lower temperature version).

Tensile properties at 1400°F (760°C) and stress-rupture properties at 1800°F (982°C) were obtained by NASA-Lewis using the uniaxial specimens (Figure 1). The results are given in Tables 3 and 4. The stress-rupture results for IN-713C, M22, TD-NiCr, B1900 DID, and IN 738 are significantly lower than average published data.

Thermal Fatigue Facility

A schematic drawing of the thermal fatigue testing facility is shown in Figure 2. It consists of a 9.0 in. diameter high-temperature bed situated between two 14 in. diameter intermediate-temperature beds.

The center high-temperature bed has either an Inconel retort or a silicon carbide retort (depending on the maximum temperature requirements), and a stainless steel air-diffuser box supplied with air from a low-pressure blower. The bed is heated by 12 silicon carbide elements with a total power of 55 kw. Heat insulation is provided by two layers of refractory insulating brick and 1 in. of Fiberfrax.

The intermediate beds are double-walled, with a stainless steel liner and a 1 in. insulation of Fiberfrax. Heating is provided by three Calrod elements (total power of 12 kw for each bed) situated above the stainless steel air box. For cooling, the heat exchanger can be either a multi-tube, water-cooled copper assembly (left bed, Figure 2) for bed temperatures up to 400°F or an air-cooled stainless steel jacket (right bed, Figure 2) for bed temperatures above 400°F. These heat exchangers are interchangeable. For all work carried out on this program, the air-cooled heat exchanger was used.

The specimens are cycled by means of automatically controlled pneumatic cylinders which are sequenced by timers and limit switches. The facility will cycle automatically for the number of cycles selected.

The air supply for fluidization is controlled through flow-meters for each bed. The maximum fluidization air demand is about 3500 cu ft/sq ft/hr (3500 cfh) for each of the intermediate beds at $100\,^{\circ}\text{F}$ and $900\,^{\circ}\text{Cu}$ ft/sq ft/hr (600 cfh) for the high-temperature bed at $2000\,^{\circ}\text{F}$. Less inlet air is required as the bed temperature

is increased due to the expansion of the air as it passes through the bed. Tests show that the fluidization range is fairly narrow since the bed will rapidly empty if excessive air is used.

Each bed is fitted with four thermocouples for control, overtemperature protection, low-temperature test cutoff, and recording purposes.

Facility Performance

The high-temperature bed will operate at 2300°F (1260°C) using a silicon carbide retort and could be run at this temperature for testing small samples. However, as the weight of the specimen load in pounds per hour is increased, the maximum permissible bed temperature must be decreased. Otherwise the temperature of the heating elements would exceed the maximum permissible value of 2750°F (1510°C). With a specimen load of 15 lb, the maximum bed temperature is about 2000°F (1204°C) with a constant input of about 45 kw. At below 2000°F bed temperature, the Inconel retort may be used.

The intermediate beds will run at a maximum temperature of 800°F (427°C). When cooling a 15 lb load from 2000°F every 4 min, the air-cooled and water-cooled heat exchangers will hold the bed temperatures at 400°F (204°C) and 200°F (83°C), respectively.

Thermal Fatigue Fixture

The fixture used for this program is shown in Figure 3. It consisted of three RA 333 vertical supports of the same section as the test pieces and tapered at the bottom to simulate test piece configuration. Specimens were bolted between supports using threaded 330 alloy. The fixture could be adjusted for different numbers of specimens by inserting different spacer blocks at the top of the fixture. This fixture had an average life of approximately 250 cycles at the extreme test condition of 2065/675°F (1129/357°C).

Test Conditions

The complete range of test pieces was not available at the start of the program, and specimens were cycled as they became available for test. Sets of test pieces varied from twelve to six.

Specimens were placed at random in the fixture as regards position from end and orientation.

The following fluidizing conditions were maintained constant through the entire test series:

	Air F1 (Measured a 2 psi pre ft ³ /ft ² /hr	t 150°F,
Hot bed	900	275
Intermediate bed	2100	640

The fluidized media was 28-48 mesh tabular alumina.

The time of immersion in each bed was held constant at 3 min. The temperatures used for each series were as follows:

	Hot	Bed	Intermediate	Bed
<u>Series</u>	· F	°C	F	c
G	2065	1129	675	357
Н	1915	1046	525	274
I	1990	1088	600	316

All test combinations were not tested at the three temperatures, and duplicate specimens were run under the same conditions in some cases. Table 5 summarizes the specimens tested at each temperature.

Measurement of Transient Temperatures

The transient temperatures achieved during the cycling of series G, H, and I were established using instrumented specimens, each fitted with five thermocouples. The couple positions are shown in Figure 4. Fourteen alloys were calibrated in this way: B1900, B1900 DID + Jocoat, IN-100, NX-188, WAZ-20, TAZ-8A DS, TAZ-8A (SEW), IN-713C, IN-738, IN-162, MAR-M 509, René 80, NASA VI A, and X-40. The thermocouples were magnesium oxide insulated, Inconel 600 sheathed, ISA type K (Chromel/Alumel) with an outside sheath diameter of 0.020 in. These couples were fabricated to meet specifications MIL-Q-9858 and ASTM E-235. The couples were run in grooves milled in the surface of the specimen. Grooves were 0.022 in. wide and 0.020 in. deep. The thermocouples were

secured in place using an air-setting two-part Allen P-1 ceramic cement. After curing at 600°F (316°C) an adherent bond is formed sufficient to hold the thermocouple in place. Temperatures were recorded on a multichannel high-speed recorder.

Complete tabulated data are shown in Tables 6 to 33.

Inspection of Specimens During Testing

The specimens were removed at regular cycle intervals, and the test edges were examined for cracks using a 30% microscope. Inspections were made at intervals such as 25, 50, 100, 200, 300, 500, 700, 1000, etc., cycles with the intervals lengthening with increasing numbers of cycles. At the longest exposures (up to 6000 cycles) intervals of up to 750 cycles were used. Inspection was complicated by the fact that not all specimens were available for test at the start of a particular test sequence and new specimens were added to the specimen group during the test. Thus not all specimens within the group had experienced the same number of cycles. When a crack was discovered, the length from crack tip to specimen edge was measured on both sides of the specimen and the average taken as the crack length. Measurement was made using a traveling microscope.

Table 34 summarizes the total cycles that each specimen underwent during test.

When sufficient crack data were obtained, the specimen was removed from the fixture and replaced by a stainless steel dummy specimen.

At regular intervals the specimens were weighed and measured, and hardness readings were taken. A Rockwell C hardness reading was taken on the surface at the center of the specimen and a 1 kg DPH taken on the end of the 0.040 in. radius after cleaning off the surface oxide with fine emery paper. These results are presented in Part 2.

RESULTS

Thermal Fatigue Data

Complete crack propagation data are contained in Tables 35, 36, and 37. Data are given as crack length versus number of cycles for a maximum of three cracks in each edge. The appearance of some

specimens after testing is shown in Figure 5. These specimens are from Series G, 2065/675°F (1129/357°C), which represents the most severe test condition.

The number of cycles requires to initiate cracks was of primary interest in this study. There are several ways of determining this number, which cannot be measured directly. Glenny (4) used the procedure of averaging the cycles between the last inspection cycle to show no crack and the first inspection when the crack was observed. A refinement of this method is to plot crack length versus cycle number and extrapolate to zero crack length. This latter procedure is of particular value when the test section is of constant thickness and the crack length versus cycle number curves approximate to straight lines. The wedge section specimen used in this investigation results in curved crack propagation curves and makes it difficult to accurately extrapolate the curves to zero crack length. The averaging method of Glenny has been used in this investigation, and the cycles to initiate the first crack in each alloy are summarized in Table 38.

In some cases the 0.040 in. test edge initiated cracks before the 0.025 in. edge. This was probably due to weaknesses in the 0.040 in. edge causing preferred initiation. Once a crack was well established, it is probable that the stresses were relieved sufficiently to delay crack initiation in the opposite edge. It was also noticeable that when several cracks propagated, they did so at regular intervals along the specimen. When one crack formed, it relieved the stresses locally and thus prevented another crack forming within the immediate neighborhood of the first crack.

Physical Changes During Testing

Weight changes during testing are given in Tables 39, 40, and 41. Dimensional changes are shown in Tables 42, 43, and 44. Specimens having the greatest weight loss are:

IN-100 DS

MAR-M 200 DS

WAZ-20 DS + Jocoat

IN-100 DS + Jocoat

NX-188 DS

NX-188

TAZ-8A (SEW)

A complete summary of the average weight change rates for the complete testing cycle is shown in Table 45. This information should be used with some reserve since the weight change is sometimes nonlinear. Figure 6 shows the weight changes of some Series G specimens during cycling. Some specimens showed slight weight gains before losing weight.

Certain specimens, notably the B1900 and Udimet 700 alloys, showed dislocation in addition to dimensional change (see Figure 5b and 5h). This would indicate some instability in the alloy. Another interesting feature was the tendency of some alloys to crack at the fixing holes, usually starting at the hole and propagating outwards. These alloys included B1900, B1900 DID, IN-100, MAR-M 200, Udimet 700, IN-738, René 80, and RBH. It would seem that these alloys are more notch-sensitive than the remainder.

Ranking

If thermal fatigue cracking resistance is based upon the number of cycles required to form the first crack then the alloys can be ranked as follows for Series G, 2065/657°F (1129/357°C):

Rank	A11oy	Cycles to 1st Crack
Double-edg	ge wedge specimens	
l (highest)	NX-188 DS + RT-1A Coat	>6100
2	NX-188 DS	5125
3	IN-100 DS + Jocoat	1950
4	B1900 DID + Jocoat	1550
5	WAZ-20 DS + Jocoat	1350
6	B1900 + Jocoat	>1200
7-9	IN-100 DS, MAR-M 200 DS, TAZ-8A DS	1200
10	TAZ-8A	450
11	NX-188 + RT-1A Coat	200
12	X-40	150
13	MAR-M 509	100
Single-edg	e wedge specimens (SEW)	
l (highest)	TAZ-8A (SEW) Clad + Xcoat B	6100 *
2	TAZ-8A (SEW)	2350
3	Udimet 700 (SEW) Wrought, Clad + Xcoat B	1300

[&]quot;Small cracks were present but obscured by peeling cladding.

All other specimens cracked within 100 cycles.

The most thermal resistant materials when tested at 2065°F (1129°C) are NX-188 DS and the TAZ-8A used for the SEW specimens. The materials in the top half of the ranking for double-edge wedge specimens are either directionally solidified or coated or both.

CONCLUSIONS

The purpose of this investigation was to use the fluidized bed heating and cooling technique to measure the relative thermal fatigue cracking resistance of 36 combinations of superalloy composition, specimen design, casting technique, and coating.

The alloys having the best resistance to thermal fatigue cracking are NX-188 directionally solidified and coated and TAZ-8A clad and coated. The number of cycles required to crack different alloys varied widely from over 6100 for the best materials to 13 cycles for several of the worst. This represents a 500:1 difference in behavior under very severe testing conditions.

Oxidation occurs during thermal cycling, and some alloys experience considerable weight loss. The directionally solidified alloys are particularly susceptible and normally should be protected with a coating.

The metallographic and hardness results are presented in Part 2 of this report.

REFERENCES

- Spera, D. A., "Aerospace Structural Materials," NASA-SP-227, November 1969, pp. 43-57.
- 2. Howes, M. A. H., "Thermal Fatigue Data on 15 Nickel- and Cobalt-Base Alloys," NASA CR-72738, 1970.
- 3. Spera, D. A., et al., "Thermal Fatigue Resistance of 15 High-Temperature Alloys Determined by the Fluidized-Bed Technique," NASA TMX-52975, March 1971.
- 4. Glenny, E., et al., "A Technique for Thermal-Shock and Thermal-Fatigue Testing Based on the Use of Fluidized Solids," J. Inst. Metals, 87, 1958-1959, 294-302.
- Glenny, E., and Taylor, T. A., "A Study of the Thermal-Fatigue Behavior of Metals," J. Inst. Metals, <u>88</u>, 1959-1960, 449-461.
- 6. Cox, M., and Glenny, E., "Thermal Fatigue Investigations," Engineer, 210, 1960, 346-350.
- 7. Glenny, E., and Taylor, T. A., "The Thermal Fatigue Behavior of Metals," J. Inst. Metals, 89, 1960-1961, 439 (discussion).
- 8. Glenny, E., "Thermal Fatigue," Met. Rev., $\underline{6}$ (24), 1961, 387-465.
- 9. Glenny, E., "A Study of the Significant Factors Governing the Thermal Fatigue Behavior of High-Temperature Alloys," Ph.D. Dissertation, University of London, 1962.
- 10. Franklin, A. W., et al., "Some Metallurgical Factors Influencing the Thermal Fatigue Resistance of Wrought Ni-Cr-Base High-Temperature Alloys," J. Inst. Metals, 92, 1963-1964, 313-321.
- 11. Glenny, E., and Northwood, J. E., "Some Observations on the Thermal-Fatigue Behavior of Casting Alloys for Gas-Turbine Blading," Foundry Trade J., 119, 1965, 607-620.
- 12. Glenny, E., and Restall, J. E., "Evaluation of the Properties of Protected Molybdenum and 0.45 Percent Titanium-Molybdenum Alloy," J. Less-Common Metals, 9, 1965, 367-387.
- 13. Northwood, J. E., et al., "An Evaluation of a Chromium-Base Alloy for High-Temperature Service," J. Less-Common Metals, 14, 1968, 157-165.
- 14. Carden, A. E., "Bibliography of the Literature on Thermal Fatigue," Rep. MH67-AEC-3, NASA Grant NsG-381, August 1967, 120 pp.
- 15. Gedwill, M. A., and Grisaffe, S. J., "Oxidation Resistant Claddings for Superalloys," Metals Eng. Quart., 12, May 1972, 55-61.

TABLE 1. - ALLOYS AND VARIATIONS USED IN TEST PROGRAM

```
B1900
B1900 + Jocoat
B1900 DID + Jocoata
IN-100
IN-100 + Jocoat
IN-100 + Xcoat A
IN-100 DS
IN-100 DS + Jocoat
MAR-M 200
MAR-M 200 + Jocoat
MAR-M 200 DS
Udimet 700 wrought
Udimet 700 cast
Udimet 700 wrought, clad + Xcoat B (SEW)
NX-188a
NX-188 + RT-1A coata
NX-188 DSa
NX-188 DS + RT-1A coat^a
WAZ-20 + Jocoat
WAZ-20 DS + Jocoat
TAZ-8A
TAZ-8A (SEW)
TAZ-8A clad + Xcoat B (SEW)
TAZ-8A DS
M22
IN 713C
IN 738
IN 162
MAR-M 509
René 80b
RBH (experimental alloy)<sup>C</sup> NASA VI A
TD-NiCr
MAR-M 302
WI-52
X-40
DS indicates that the alloy was direc-
tionally solidified. SEW indicates single
edge wedge; all others double edge. DID
(Ductility Improvement Discovery) indicates
that the alloy had a small hafnium addition.
<sup>a</sup>Specimens supplied by Pratt & Whitney
 Aircraft Corporation.
bSpecimens supplied by General Electric
 Corporation.
<sup>c</sup>Specimens supplied by Cabot Corporation.
```

TABLE 2. - COMPOSITIONS OF ALL ALLOYS USED IN THE PROGRAM

	Cact							Comp	Composition	. Wt%				
Alloy	Number	C	Æ	Si	Cr	Ni	3	ΨO	3			Zr	B	Other
B1900		0.10	0.10	<0.10	8.11	Bal.	10.15	6.11	<0.10	60.9	0.98	90.0	0.013	4.28Tr, 0.16Fe, 4.28V
B1900 DID		0.09	0.003	90.0	8.13	Bal.	10.19	5.90	0.04	96.5	0.98	0.04	0.009	4.3Ta, 9.06Fe, 1.64Hf
IN-100 (also IN-100 DS)	KJ2206	0.17	0.17 <0.02		10.30	Bal.	15.10	2.96	!	5.45	4.76	0.084	0.016	0.21Fe, 0.97V
MAR-M 200 KD2012 (also MAR-M 200 DS)	KD2012 DS)	0.15	0.15 <0.02	0.080	9.20	Bal.	10.25	;	12.55	5.05	2.13	0.048	0.017	0.36Fe, 0.95Cb, <0.01V
Udimet 700 (wrought)	6541	0.113		0.02	14.85	Bal.	17.50	5.10	‡ 	4.55	3.45	<0.02	0.013	0.85Fe
	85V2416 0	0.08	<0.10	<0.10	14.24	Bal.	14.87	4.18	ŧ	4.25	3.26	<0.01	0.012	0.30Fe
NX-188	EXF1655	0.033	;	1	;	;	;	18.03	:	8.13	:	;	!	1
		0.17		†	;	Bal.	-	;	20.9	6.28	:	1.2	;	;
	049-29	0.01	;	;	6.20	Bal.	;	3.86	3.86	5.96	:	0.88	!	
TAZ-8A ^a	T24	0.10	;	;	5.85	Bal.	;	5.41	3.90	07.9	;	0.52	39PPM	7.93Ta, 2.44Cb
M22	67-635	90.0	;	;	6.35	Bal.	;	1.96	11.37	6.24	:	0.65	;	2.87Тя
IN-713C	65611	0.11	<0.10	<0.10	13.40	Bal.	¦ 1	4.50	;	5.95	0.83	0.08	0.009	2.24Cb+Ta, 0.27Fe
IN-738	9409529	0.17	0.01	0.11	15.98	Bal.	8.37	1.81	2.49	3.52	3,39	0.11	0.012	
IN-162	96317	0.10		0.04	10.03	Bal.	0.03	4.05	2.03	6.35	0.93	0.11	0.018	1.97Ta, 0.17Fe, 0.88Cb
MAR-M 509	T-3008	0.62		<0.1	23.4	10.0	Bal.	!	6.95	1	0.19	0.54	<0.01	3.46Ta, <0.1Fe
René 80	101V9494	0.18		<0.10	14.0	Bal.	9.91	4.00	3.84	3.11	4.90	0.03	0.014	0.18Fe, <1PPM Ag
RBH	70-670-4	0.64		0.39	20.91	16.00	Bal.	:	5.46	0.33	0.24	0.16	;	0.73Fe,
NASA VI A	FB5487 0.11	0.11	0.02	<0.10	5.86	Bal.	7.24	2.11	5.96	5.27	0.95	0.10	0.021	9.03Ta, 0.32Re, 0.39Hf 0.45Cb, 0.08Fe
TD-Nicr	1862	0.038	;	1	21.39	Bal.	:	;	1	;	!	i	;	2.5Th02, .0005N, .006S
	2858	0.020		:	19.72	Bal.	i	:	;	t I	:	:	:	004N
MAR-M 302	T272	0.88	<0.10	0.22	21.9	0.49	Bal.	<0.1	9.89	:	:	0.24	<0.01	8.80Ta, 1.11Fe
WI-52	59-682	0.46	0.21	0.28	20.86	0.23	Bal.	<0.05	11.06	;	;	{	1	1.75Fe, 1.87Cb
X-40	12C6412	0.48	<0.05	0.33	25.59	10.52	Bal.	0.04	7.87	:	!	0.03	0.005	0.46Fe, 0.02N

^aThis cast of TAZ-8A was used for the directionally solidified specimens and for the SEW specimens.

TABLE 3. - TENSILE PROPERTIES AT 1400°F (760°C)

	Propo	rtional Lin	n i.t	Ultimate	Tensile S		
Alloy	psi	N/cm ²	% of Nominal 0.2% YS	_psi_	N/cm ²	% of Nominal UTS	Reduction of Area,
B1900	136,000	93,800	116	158,000	109,000	114	8
B1900 DID	101,500	70,000	88	137,800	95,000	92	12.5
IN-100	115,000	79,300	92	140,000	96,500	90	13
IN-100 DS	122,000	84,100		150,000	103,400	107	16
MAR-M 200	124,000	85,500	102	145,000	100,000	107	5
Udimet 700 (wrought)	110,000	75,800	92	143,000	98,600	95	30
Udimet 700 (cast)	108,000	74,500		148,000	102,000	114	16
NX-188	104,800	72,300	85	130,900	90,300	101	3.7
NX-188 DS	126,600	87,300	77	134,500	92,700	79	3.8
WAZ-20	102,700	70,800	105	108,200	74,600	9 9	4.0
WAZ-20 DS	102,300	70,500	96	124,000	85,500	104	8.9
TAZ-8A	150,000	103,400		174,000	120,000	134	2
TAZ-8A DS	130,000	89,600	93	171,400	118,200	110	4.5
M22	139,000	95,800	124	153,000	105,500	116	8
IN-713C	118,000	81,400	109	147,000	101,400	108	12
IN-738	115,200	79,400	100	146,700	101,100	105	8.5
IN-162	130,000	89,600	106	163,000	112,400	112	11
MAR-M 509	42,600	29,400	80	90,000	62,100	105	13.5
René 80	110,100	75,900	110	155,600	107,300	101	10.8
NASA VI A	132,000	91,000	96	161,600	111,400	102	5.8
TD-NiCr	42,000	29,000	105	47,000	32,400	107	6
MAR-M 302	101,000	69,600	180	117,000	80,700	115	3
WI-52	84,000	57,900	168	111,000	76,500	126	7
X-40	56,000	38,600		86,000	59,300	123	20

Each result is the average of two tests.

TABLE 4. - STRESS-RUPTURE PROPERTIES AT 1800°F (982°C)

	Str	ess	Life	(Nomina	l 100 hr)	Reduction
Alloy	psi	N/cm^2	H	ours	% of Nominal	of Area,
В1900	25,000	17,200	99	95	97	11
B1900 DID ^a	24,500	16,900	66.4	33.5	50	13.1
IN-100	25,000	17,200	94	70	82	16
IN-100 DS	23,000	15,900	144	164	154	62
MAR-M 200	26,000	17,900	114	73	94	10
Udimet 700 (wrought)	16,000	11,000	141	133	137	32
Udimet 700 (cast)	18,000	12,400	121	118	120	22
NX-188	14,000	9,650	117.8	141.1	130	1.7
NX-188 DS	20,000	13,800	60.1	54.8	58	24.7
WAZ-20	18,000	12,400	113.2	47.9	81	10.6
WAZ-20 DS	25,000	17,200	43.1	77.1	60	19.0
TAZ-8A	18,000	12,400	89	79	84	8
TAZ-8A DS	25,000	17,200	43.6	147.9	96	29.6
M22 ^a	29,000	20,000	7.5	11	9.3	4
IN-713C ^a	21,000	14,500	75	54	64	22
IN-738 ^a	20,000	13,800	22.5	21.7	22	13.1
IN-162	24,000	16,500	115	71	93	10
MAR-M 509	15,000	10,300	150.6	132.2	141	22.2
René 80	21,000	14,500	110.0	126.6	118	12.0
NASA VI A	29,800	20,500	71.5	75.6	74	6 .9
TD-NiCr ^a	11,000	7,600	0.1		0.1	3
TD-NiCr ^b	5,000	3,400	1268		NA	6
MAR-M 302	14,000	9,700	69	95	82	8
WI-52	13,000	9,000	158	153	156	15
X-40	11,000	7,600	183	>105	183	33

^aRupture strength significantly lower than published data.

bSupplementary test.

TABLE 5. - SUMMARY OF TEST CONDITIONS FOR ALL SPECIMENS

	Number of Spec	cimens at Test	Temperatures
Alloy and Condition	1915/525°F (1046/274°C)	1990/600°F (1088/316°C)	2065/675°F (1129/357°C)
B1900 B1900 + Jocoat B1900 DID + Jocoat	1	1 ^a 1a 2	2 1
IN-100 IN-100 + Jocoat IN-100 + Xcoat A IN-100 DS IN-100 DS + Jocoat	1 1 1	1 ^a 1 ^a 1 1 ^a 1 ^a	1 1 1
MAR-M 200 MAR-M 200 + Jocoat MAR-M 200 DS	1	1 ^a 1 1 + 1 ^a	1 1
Udimet 700 wrought Udimet 700 cast Udimet 700 wrought, clad + Xcoat B (SEW)	1	1 ^a 1 ^a	1
NX-188 NX-188 + RT-1A coat NX-188 DS NX-188 DS + RT-1A coat		2 2 2 2	1 1 1
WAZ-20 + Jocoat WAZ-20 DS + Jocoat		2 2	1 1
TAZ-8A TAZ-8A (SEW) TAZ-8A clad + Xcoat B (SEW)	1	1 + 1 ^a 1	1 1 1
TAZ-8A DS		2	1
M22 IN 713C IN 738 IN 162	1 1 1 1	l ^a la l la	1
MAR-M 509 Ren e 80 RBH NASA VI A	1 1	1 1 1	1 1 1
TD-NiCr	1	1 ^a 1 ^a	1
MAR-M 302 WI-52 X-40	1 1 1	1a 1a 1a	1

aThese specimens were tested in an earlier program and reported in Ref. 2.

TABLE 6. - CALIBRATION DATA FOR INSTRUMENTED IN-100 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

į	Time		1915/5	750 F C	1 d J	Tempera	ature,	°F, at	Eac	h Couple	e Position	tion	20657675°F	1 1	رمداه	
min	min-sec		2	3	7			الما		7			2		4	
	0	575	620	630	61 0	580	650	069	700	069	099	720	750	770	260	730
	m	925	680	665	700	1020	1000	740	735	750	1100	1075	825	810	850	1170
	9	1025	730	710	740	1100	1100	800	780	810	1170	1180	870	850	880	1250
	6	1125	800	740	810	1200	1200	870	815	880	1290	1270	950	890	096	1355
	12	1175	825	785	840	1275	1250	895	855	910	1350	1320	970	930	086	1425
	15	1225	860	820	875	1325	1290	935	895	950	1390	1360	1000	96 5	1020	1450
	30	1390	1050	1010	1060	1450	1460	1120	1080	1130	1530	1525	1190	1150	1200	1600
	45	1525	1210	1180	1220	1575	1600	1280	1250	1290	1660	1675	1350	1320	1360	1735
1	0	1600	1340	1310	1350	1650	1680	1410	1385	1420	1730	1750	1485	1460	1500	1800
7	15	1700	1460	1440	1470	1730	1765	1530	1510	1540	1800	1840	1600	1580	1610	1870
П	30	1750	1580	1565	1590	1765	1825	1625	1610	1635	1840	1900	1700	1680	1710	1915
7	45	1790	1650	1640	1660	1800	1860	1700	1690	1710	1880	1935	1770	1760	1780	1950
2	0	1825	1720	1710	1730	1830	1900	1770	1760	1780	1915	1970	1840	1830	1850	1980
2	15	1850	1760	1750	1765	1855	1920	1815	1805	1820	1925	1990	1885	1875	1890	1995
2	30	1865	1800	1790	1805	1870	1940	1855	1845	1860	1945	2010	1935	1920	1940	2015
2	4.5	1880	1815	1805	1820	1885	1955	1885	1875	1890	1960	2025	1960	1950	1965	2030
33	0	1885	1830	1820	1835	1890	1960	1910	1900	1915	1965	2035	1975	1970	1980	2040

TABLE 7. - CALIBRATION DATA FOR INSTRUMENTED IN-100 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

						Temperature	ature,	°F, a	t Each	Coup1	Position	tion	77.67.6	0		
Ti min	Time, min-sec		$\frac{1915/5}{2}$	3 3	Cycle	2		2	100 E	/600°F Cycle			2065/6	7 F	Cycle	5
	0	1840	1800	1810	1790	1830	1920	1880	1890	1870	1915	2000	1950	1960	1945	2000
	3	1660	1755	1770	1740	1640	1730	1830	1850	1820	1740	1800	1900	1920	1890	1820
	9	1600	1720	1730	1710	1520	1680	1770	1810	1760	1600	1750	1840	1880	1830	1675
	6	1550	1680	1700	1660	1460	1625	1750	1780	1739	1530	1700	1820	1850	1800	1600
	12	1510	1630	1670	1610	1420	1590	1700	1750	1680	1500	1660	1775	1820	1760	1575
	15	1425	1610	1635	1590	1330	1550	1680	1715	1670	1460	1625	1750	1785	1735	1535
	30	1300	1450	1475	1440	1230	1370	1520	1550	1510	1300	1440	1590	1620	1580	1375
	45	1160	1300	1330	1290	1100	1235	1370	1405	1350	1165	1300	1440	1475	1420	1235
H	0	1040	1190	1215	1180	1000	1120	1265	1290	1250	1060	1190	1340	1360	1330	1130
-	15	950	1070	1090	1060	910	1030	1140	1165	1120	066	1100	1220	1235	1220	1060
Н	30	860	970	985	950	830	940	1040	1060	1020	006	1010	1115	1130	1100	970
1	45	800	880	006	860	770	870	950	970	930	850	076	1020	1040	1010	920
7	0	730	770	800	160	710	810	860	880	850	790	880	930	950	920	860
2	15	680	725	740	715	670	092	800	815	790	750	830	875	890	865	820
7	30	079	675	069	665	630	715	750	092	745	705	190	810	830	800	780
2	4.5	610	640	645	630	009	685	710	720	705	689	09/	780	790	770	755
3	0	290	620	625	610	580	999	069	700	685	099	730	750	770	760	735

TABLE 8. - CALIBRATION DATA FOR INSTRUMENTED IN 713C SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

5 1290/000 F 3 4 5 1 2000/000 F 3 5 12 2 3 4 5 1 2000/000 F 3 5 535 620 650 665 640 610 700 735 745 5 1115 1125 700 695 710 1185 1175 780 770 6 1115 1125 700 695 710 1185 1175 780 770 7 1115 1125 775 835 1350 1400 770 770 770 8 1345 1410 930 870 950 1415 920 890 945 9 1345 1440 1200 1455 1450 1455 1450 1455 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 145	E				0 1		Temperature	ature,	°F, at		Each Couple	e Position	tion	27 5 70	} L		
540 575 585 565 585 650 650 665 640 610 700 735 745 1045 625 615 615 1115 1125 700 695 710 1185 1175 780 770 1275 1275 780 770 1275 1275 1275 780 770 1275 1275 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 1275 1276 1275 775 780 780 1275 1276 780 780 780 1280 860 880	nin-s	ec		2/2/2/	100	4	5	T	2	4	4	5		2002/0	1 1	7	2
1045 625 615 635 1115 1125 700 695 710 1185 1175 780 770 780 710 1185 710 710 710 710 710 711 712 712 715 715 715 715 715 715 715 715 715 715 715 710 715 715 715 715 715 715 815 715 8		0	240	575	585	565	535	620	650	999	079	610	700	735	745	725	695
1145 675 685 685 1195 1225 750 735 760 1275 1275 880 805 1230 745 695 750 1270 1310 825 775 835 1350 860 850 1286 775 745 745 745 1316 825 875 1400 1415 860 850 1386 775 835 875 1400 1415 970 860 850 890 1387 775 875 140 930 870 970 1415 970 970 945 890 1488 190 1060 1095 1515 1410 1400 1415 1460		3 1	045	625	615	635	1115	1125	700	695	710	1185	1175	780	770	790	1265
1230 745 695 750 1270 1310 825 775 835 1350 836 860 825 875 1400 1415 920 850 1325 775 745 795 1315 1365 860 825 1430 1455 960 890 1325 835 1345 1410 930 870 950 1435 1455 960 945 1485 100 1060 1095 1515 1570 1140 170 170 1455 1460		6 1	145	675	655	685	1195	1225	750	735	760	1275	1275	830	805	840	1345
1325 775 745 795 1315 1365 860 825 875 1400 1415 930 870 950 1435 960 945 1325 835 1345 1410 930 870 950 1455 960 945 1485 1090 1060 1095 1515 1570 1140 1200 1615 1225 1205 1450 1460 1475 1460 1460 1475 1460 1460 1475 1460 1460 1475 1460		, ,	230	745	695	750	1270	1310	825	775	835	1350	1355	880	850	890	1420
1325 835 795 855 1345 1410 930 870 950 1455 960 945 1485 1090 1060 1095 1515 1570 1190 1140 1500 1615 1225 1205 1605 1310 1085 1315 1630 1690 1365 1400 1710 1735 1465 1405 1605 1310 1670 1775 1575 1560 1795 1845 1640 1675 1685 1860 1865 1860 1885 1860 1875 1876 1876 1875 1876	, -1		285	775	745	795	1315	1365	860	825	875	1400	1415	920	890	935	1470
1485109010601095151515701190114012001615122512251205160513101285131516301690139013651400171017351465145016951495147515501772157515551590179518451640176015901580160017751840167516601685186019701745180016851675181018101820192019701880184017851845194518851875194019501950195018751840188019501910191019151950196019501885188518851925194019601955202019801970188518861886195619251940196020302030200018851886188618961935192519401965203020302015	-	 1	325	835	795	855	1345	1410	930	870	950	1430	1455	096	945	975	1510
1605131012851315163016901390136514001710173514651465169514951475155017751575155515901795184516401615176015801600177518401675168018001745174518001685167516901815188017701755178018951935181518351730177517301865193518501970197019801950187018801950191019151950195019601950196019501960	3		485	1090	1060	1095	1515	1570	1190	1140	1200	1600	1615	1225	1205	1240	1670
16951495147515501775157515551559179518451640161517601590158016001775184016751660168518601902174517301800168516901815188017701755178018951935182518151880184017851775179018651935186518751890195019101915195019501950187518351846188018551890195619101960195520201980195018851845186018951960193519251940196520352020201518901855186018951960193519401965203520202015	7			1310	1285	1315	1630	1690	1390	1365	1400	1710	1735	1465	1450	1475	1780
176015901580160017751840167516601685186019031745173018001685167516901815188017701755178018951935182518151835173017201735184519101810180018201970198018701860178517751790186519351885187518901950193519501875183518401880195019101915195520201980197018851850186018951960193519251940196520302030200518901855186018951960193519401965203520202015	7	0 1		1495	1475	1550	1720	1775	1575	1555	1590	1795	1845	1640	1615	1650	1870
1800168516751690181518801770175517801895193518251825183517301770173518451910181018051875194019701980193518601785177517901865193518651875187519401950191519501915195019151950191519501915195019151960191519601965203020052000189018551860189519601935192519401965203520202015	1 1			1590	1580	1600	1775	1840	1675	1660	1685	1860	1900	1745	1730	1755	1925
183517301720173518451910181018001820197018801870186017851775179018651935186518551875194020001935192518701805179518101875194518851875189019501960195019501875183518401855188019501910191519552020198019701885185018451860189519601935192519401965203520052015189018551860189519601935192519401965203520202015	1 3			1685	1675	1690	1815	1880	1770	1755	1780	1895	1935	1825	1815	1830	1955
1860178517751790186519351865185518751940200019351925187018051775181018751945188518751890195019151950191519501970187518351840185518901955191519151955202019801970188518451860189519601935192519401965203520202015	1 4			1730	1720	1735	1845	1910	1810	1800	1820	1920	1970	1880	1870	1885	1985
187018051795181018751945188518751890195019501960195019501950187518351840185518901955191519151955202019801970188518401855186019551960193519401965203520202015	2			1785	1775	1790	1865	1935	1865	1855	1875	1940	2000	1935	1925	1940	2010
1875 1835 1825 1840 1880 1950 1910 1900 1915 1955 2020 1980 1970 1885 1850 1840 1855 1890 1955 1925 1915 1940 1965 2035 2020 2015 2090 1895 1860 1895 1960 1935 1925 1940 1965 2035 2020 2015	2 1		870	1805	1795	1810	1875	1945	1885	1875	1890	1950	2010	1960	1950	1965	2020
1885 1850 1840 1855 1890 1955 1925 1915 1930 1960 2030 2005 2000 1890 1855 1845 1860 1895 1960 1935 1925 1940 1965 2035 2020 2015	2 3		875	1835	1825	1840	1880	1950	1910	1900	1915	1955	2020	1980	1970	1985	2030
1890 1855 1845 1860 1895 1960 1935 1925 1940 1965 2035 2020 2015	2 4		885	1850	1840	1855	1890	1955	1925	1915	1930	1960	2030	2005	2000	2015	2040
	3	_	890	1855	1845	1860	1895	1960	1935	1925	1940	1965	2035	2020	2015	2025	2045

TABLE 9. - CALIBRATION DATA FOR INSTRUMENTED IN 713C SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

i L	/5°F Cycle 3 4 5	2015 2020 1860	2000 1960 1655	1975 1925 1545	1930 1880 1490	1880 1810 1450	1835 1750 1400	1600 1645 1240	1360	1275 1230 1000	1140 1100 930	1040 1010 865	945 920 820	880 860 785	840 820 750	800 780 725	765 750 710	735 720 685
77.2.0	2 5 13 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2015	1975	1950	1900	1830	1770	1660	1370	1240	1115	1020	930	870	830	790	760	730
tion	-	1970	1815	1650	1550	1520	1475	1330	1200	1065	066	920	860	815	770	735	715	069
e Position	5	1750,	1625	1475	1375	1350	1300	1180	1030	930	850	805	09/	730	. 069	670	079	615
Couple	Cycle	1910	1870	1840	1780	1725	1700	1500	1330	1180	1050	950	860	790	725	700	099	630
at Each	3 5	1935	1915	1895	1835	1800	1765	1555	1385	1225	1095	066	006	825	760	730	695	665
مأد	2	1925	1880	1855	1800	1750	1715	1510	1350	1200	1070	970	880	805	745	710	670	650
ature,	H	1885	1735	1575	1485	1455	1400	1265	1120	1000	910	840	780	745	700	089	645	620
Temperature	5	1700	1550	1390	1310	1280	1230	1105	965	845	780	715	670	635	595	580	260	535
	Cycle	1835	1800	1775	1705	1660	1625	1425	1265	1105	086	875	790	720	655	630	585	565
L	325-F C	1855	1835	1815	1755	1720	1685	1475	1305	1145	1015	905	820	745	685	650	615	585
101878	2/2	1845	1810	1795	1715	1670	1635	1435	1275	1115	066	880	800	725	665	079	595	575
		1805	1655	1495	1405	1375	1325	1185	1045	915	830	765	700	665	620	009	565	540
(} •7 E	ilme, nin-sec	0	e	9	6	12	15	30	45	0	15	30	45	0	15	30	45	0
c	8										\vdash	Н	-	7	7	7	7	ᠬ

TABLE 10. - CALIBRATION DATA FOR INSTRUMENTED IN 162 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

						Temperature	ature,	°F, at	t Each	Couple	e Position	tion				
Ti	Time		1915/5	525°F C	Cycle			1960/661	600° F C	Cycle			2065/675°F		Cycle	}
min	min-sec		2	3	4	2	H	2	3	4	5	I	2	3	4	2
	0	595	625	635	620	585	665	695	700	069	655.	730	765	775	260	720
	n	1045	670	049	700	1135	1080	775	715	810	1170	1115	820	780	890	1245
	9	1135	715	665	755	1205	1220	800	740	840	1275	1295	855	790	950	1375
	6	1225	775	715	815	1295	1300	850	790	890	1370	1355	910	840	1010	1445
	12	1285	815	755	855	1335	1355	890	830	930	1405	1425	970	006	1065	1520
	15	1325	865	805	905	1385	1450	920	880	096	1510	1500	1020	096	1110	1575
	30	1485	1125	1065	1165	1525	1560	1200	1140	1240	1600	1635	1290	1220	1350	1690
	45	1615	1335	1285	1375	1645	1690	1410	1360	1450	1710	1750	1490	1430	1520	1780
-	0	1685	1495	1455	1525	1705	1760	1570	1530	1600	1760	1830	1635	1600	1680	1860
	15	1735	1605	1575	1625	1740	1810	1660	1625	1680	1815	1880	1740	1715	1775	1915
-	30	1785	1670	1655	1695	1790	1850	1755	1730	1780	1855	1925	1815	1790	1820	1945
	45	1815	1735	1725	1740	1820	1890	1880	1810	1830	1895	1965	1890	1875	1900	1980
2	0	1845	1775	1765	1785	1850	1920	1850	1840	1860	1925	1985	1925	1915	1935	2000
7	15	1855	1810	1800	1815	1860	1930	1885	1875	1890	1935	2000	1960	1950	1965	2010
2	30	1865	1845	1835	1855	1870	1940	1920	1960	1925	1945	2015	1995	1985	2000	2020
2	45	1875	1860	1850	1870	1880	1950	1935	1925	1940	1955	2025	2010	2000	2015	2030
Э	0	1885	1870	1860	1875	1890	1960	1945	1935	1950	1965	2035	2020	2010	2025	2040

TABLE 11. - CALIBRATION DATA FOR INSTRUMENTED IN 162 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

						Temperature	ature.	°F. a	at Each Couple	Coup1	e Position	tion				
Ti	Time,		1915/5	525°F C				1990/66	00°F C	Cycle			2065/675° F	1 1	Cycle	
min	min-sec	-	2	3	4	2	H	2	3	7	5	1	2	3	7	5
	0	1645	1855	1865	1825	1565	1720	1920	1935	1900	1610	1930	2025	2040	1980	1820
	က	1565	1805	1815	1745	1505	1635	1875	1885	1825	1565	1760	2005	2015	1930	1640
	9	1500	1780	1790	1725	1445	1570	1850	1870	1780	1500	1680	1960	2000	1870	1560
	6	1445	1760		1685	1395	1520	1830	1860	1750	1440	1580	1910	1960	1815	1470
	12	1400	1725		1645	1355	1470	1800	1830	1720	1370	1510	1860	1915	1780	1400
	15	1345			1605	1305	1420	1755	1795	1675	1340	1470	1810	1870	1720	1370
	30	1145			1405	1115	1220	1555	1590	1475	1175	1290	1620	1660	1530	1230
	45	1025			1245	995	1100	1350	1390	1310	1050	1145	1400	1440	1355	1100
г	0	925			1085	895	1000	1185	1205	1155	950	1035	1270	1310	1250	1010
7	15	845	1015		975	825	920	1085	1105	1045	875	950	1140	1190	1130	930
-	30	765	925	945	885	755	835	1000	1020	980	800	880	1060	1080	1050	860
7	4 5	705	845	865	825	695	775	915	935	890	260	830	066	1015	980	815
2	0	685	785	805	765	675	755	855	875	835	745	190	915	930	905	780
2	15	665	735	745	715	655	725	810	830	790	715	765	825	835	820	755
2	30	645	685	695	665	635	695	755	765	740	685	745	795	805	790	740
2	45	615	650	099	979	605	675	725	735	720	670	735	780	790	775	730
ო	0	595	625	635	620	585	999	200	700	069	099	730	765	775	260	720

TABLE 12. - CALIBRATION DATA FOR INSTRUMENTED MAR-M 509 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

						Temperature	ature,	°F, at	t Each	Couple	e Position	tion		1 1		
T.	Time.		1915/3	525°F C)9/0661	OO'F C	ycle			2065/675° F	_ [Cycle	1
min	n-sec	-	2	8	7	5	Ľ	2	3	7	2	-	2	m	4	۲
	0	290	625	630	620	580	999	695	700	700	655 -	720	740	755	735	715
	က	725	650	635	670	006	006	720	705	740	1150	1170	800	09/	820	1350
	9	1100	700	049	730	1190	1210	770	710	800	1300	1340	865	780	905	1440
	6	1190	760	675	800	1265	1300	830	092	870	1375	1400	925	850	096	1480
	12	1235	815	730	850	1315	1340	885	840	920	1420	1460	066	910	1045	1530
	15	1290	880	800	910	1360	1400	950	870	980	1470	1510	1030	970	1090	1570
	30	1460	1140	1060	1160	1515	1560	1210	1130	1240	1615	1660	1305	1250	1370	1720
	45	1590	1340	1290	1380	1620	1680	1410	1360	1450	1710	1770	1515	1470	1560	1805
-	0	1670	1490	1450	1520	1700	1760	1560	1520	1590	1790	1850	1660	1600	1690	1875
, - 1	15	1745	1600	1565	1615	1770	1820	1670	1640	1690	1845	1905	1760	1730	1790	1930
H	30	1780	1680	1660	1700	1800	1850	1750	1730	1770	1870	1945	1840	1820	1860	1970
-	45	1820	1750	1730	1760	1830	1890	1820	1800	1830	1900	1980	1915	1900	1925	2000
7	0	1850	1800	1780	1810	1855	1920	1870	1860	1880	1925	2010	1950	1940	1960	2015
2	15	1865	1825	1820	1830	1870	1935	1900	1895	1905	1940	2025	1985	1975	1995	2030
2	30	1875	1845	1840	1850	1880	1945	1920	1915	1925	1950	2035	2015	2005	2020	2040
2	45	1890	1865	1860	1870	1895	1960	1940	1935	1945	1965	2040	2025	2020	2030	2045
3	0	1900	1875	1870	1880	1905	1970	1955	1950	1960	1975	2045	2035	2030	2040	2050
			-													

TABLE 13. - CALIBRATION DATA FOR INSTRUMENTED MAR-M 509 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

į	,		1016	- A P O T	-	Temperature	ature,	°F, a	Eac	Couple	Position	tion	77.4700	l L	ļ	
Ě	Time,		1915/	325 F	Cycle	~	-	1990/6	000 F	Cycle	ļ.		2065/6/5°F	. 1	Cycle	ı
	0 [1810	1875	1870	• • •	1700	1880	1950	1940	1960	1750	1950	2035	2030	2040	1820
	3	1620	1840	1865	1820	1490	1690	1910	1935	1900	1550	1650	1985	2025	1960	1590
	9	1510	1800	1840	1785	1390	1600	1870	1910	1855	1480	1580	1935	1990	1920	1510
	6	1420	1760	1805	1740	1340	1490	1830	1875	1810	1410	1525	1900	1965	1875	1460
	12	1370	1710	1765	1690	1300	1440	1780	1835	1760	1370	1480	1850	1925	1820	1410
	15	1330	1670	1720	1650	1240	1400	1740	1790	1720	1310	1450	1815	1880	1785	1360
•	30	1150	1485	1520	1455	1075	1220	1540	1575	1520	1150	1300	1600	1650	1590	1200
4	45	1020	1300	1330	1280	980	1090	1355	1385	1335	1050	1150	1405	1450	1395	1070
1	0	920	1130	1175	1120	890	066	1185	1225	1170	096	1035	1240	1285	1230	066
4	15	840	1010	1050	1000	810	930	1060	1100	1050	006	096	1115	1150	1105	925
	30	780	915	076	905	750	870	965	066	955	840	895	1010	1040	1005	860
-	45	720	835	850	825	700	190	885	006	875	770	820	940	096	935	815
	0	680	770	780	765	099	750	820	830	815	730	190	870	890	865	785
	15	650	725	735	720	630	720	775	785	770	200	745	820	840	815	740
	30	620	680	069	675	610	069	720	730	715	680	735	790	805	785	730
•	45	900	645	650	640	290	670	705	710	700	099	725	760	775	755	720
_	0	290	625	630	620	580	099	069	695	685	650	720	740	755	735	715

TABLE 14. - CALIBRATION DATA FOR INSTRUMENTED RENÉ 80 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

T.	٩		1915/	915/525°F	ما يام	Tempe	emperature,	° F	at Each	n Couple	1	Position	206574	065/675° F	a Jay	
min-	nin-sec		2	Ι.	77.	5		2	3	4	2		2	Ι.	44	5
	0	570	630	625	635	580	940	680	675	685	650	720	745	755	740	715
	က	980	069	650	700	1075	1050	700	685	720	1110	1100	810	160	835	1210
	9	1110	750	675	092	1170	1180	810	720	830	1240	1270	870	780	910	1350
	6	1170	800	720	820	1250	1240	860	780	890	1310	1380	925	835	096	1420
	12	1230	830	160	890	1290	1300	006	830	096	1360	1430	965	885	1030	1480
	15	1280	870	805	076	1330	1350	076	875	1010	1400	1500	1030	935	1100	1530
	30	1470	1130	1060	1180	1510	1540	1200	1130	1250	1580	1650	1330	1250	1390	1665
	45	1590		1280	1400	1610	1660	1400	1350	1445	1680	1750	1525	1460	1580	1770
7	0	1680	1490	1440	1535	1700	1750	1560	1510	1600	1770	1835	1660	1615	1700	1850
~	15	1750		1575	1630	1760	1820	1680	1645	1700	1830	1895	1770	1735	1810	1905
Н	30	1790		1670	1730	1800	1860	1770	1740	1795	1870	1940	1840	1815	1860	1945
7	45	1835	1760	1740	1780	1845	1910	1830	1810	1850	1920	1965	1890	1880	1900	1970
2	0	1850	1795	1785	1805	1860	1925	1865	1850	1875	1935	1990	1940	1930	1950	1995
2	15	1860	1830	1820	1840	1870	1940	1900	1890	1910	1950	2015	1990	1985	1995	2020
2	30	1875	1855	1850	1860	1880	1950	1930	1925	1935	1955	2025	2000	1995	2005	2030
2	45	1885	1870	1865	1875	1890	1960	1945	1940	1940	1965	2030	2005	2000	2010	2035
က	0	1895	1880	1875	1885	1900	1970	1955	1950	1960	1975	2035	2010	2002	2015	2040

TABLE 15. - CALIBRATION DATA FOR INSTRUMENTED RENÉ 80 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

	~	1850	1700	1600	1535	1455	1410	1260	1135	1010	970	870	820	780	770	160	745	715
	Cycle 4	1990	1950	1910	1860	1810	1760	1560	1370	1200	1080	980	925	865	825	790	775	765
		2020	2000	1970	1930	1890	1850	1640	1430	1270	1130	1030	950	885	840	805	790	780
	2065/675°F	2000	1970	1925	1880	1830	1780	1580	1390	1230	1100	1000	930	870	830	795	780	770
Position	-	1925	1745	1645	1575	1505	1460	1290	1180	1030	1000	890	840	800	780	775	770	720
	\ \	1800	1620.	1500	1450	1385	1350	1195	1080	970	890	830	780	735	695	675	099	645
Each Couple	Cycle 4	1910	1885	1835	1790	1735	1690	1490	1330	1175	1055	955	845	795	770	730	715	705
at Eac	300°F (1960	1950	1915	1875	1835	1790	1575	1395	1222	1105	1000	875	815	788	740	725	715
•	1990/	1925	1910	1855	1810	1765	1725	1525	1360	1190	1070	965	855	805	775	735	720	710
Temperature		1865	1675	1570	1520	1450	1400	1230	1105	985	006	840	790	745	700	680	665	650
Tempe	 	1740	1550	1430	1380	1315	1280	1125	1010	006	820	160	710	665	625	605	590	575
	Sycle	1840	1810	1760	1720	1660	1620	1415	1250	1100	980	880	770	720	695	655	970	630
	525°F (1885	1875	1840	1800	1760	1715	1500	1320	1150	1030	920	800	740	710	999	650	979
	1915/	1855	1835	1780	1735	1690	1650	1450	1285	1115	995	890	780	730	700	099	945	635
		1805	1605	1500	1450	1380	1330	1160	1035	915	830	770	720	675	630	610	595	580
	Time,	0	m	9	σ	12	15	30	45	0	15	30	45	0	15	30	45	0
	II;									_		-	~	2	2	2	2	3

TABLE 16. - CALIBRATION DATA FOR INSTRUMENTED X-40 SPECIMENS

WHEN CYCLED INTO THE HIGH TEMPERATURE BED

		5	725	1115	1195	1315	1400	1470	1615	1745	1825	1875	1900	1950	1990	2010	2030	2035	2040
	Sycle	7	765	825	880	935	1010	1090	1310	1540	1660	1760	1845	1895	1950	1970	1995	2020	2035
	675°F (2 3	775	785	840	885	950	1025	1240	1470	1625	1740	1825	1880	1940	1960	1985	2010	2025
	2065/	2	770	815	870	925	1000	1075	1300	1530	1650	1750	1835	1885	1945	1965	1990	2015	2030
tion		-	735	1035	1135	1240	1310	1395	1575	1710	1800	1865	1900	1950	1985	2000	2025	2030	2035
e Position		2	650	1100	1170	1265	1355	1375	1550	1680	1750	1800	1830	1880	1920	1940	1955	1960	1970
Coupl	Cycle	7	680	750	810	880	935	1010	1270	1470	1590	1700	1770	1835	1880	1910	1930	1950	1965
t Each	600° F	8	700	715	770	815	875	950	1170	1400	1550	1670	1750	1820	1870	1900	1920	1940	1955
°F, a	1990/	2	680	745	800	870	925	1000	1250	1460	1580	1690	1760	1825	1875	1905	1925	1945	1960
ature,		<u> </u>	665	1000	1100	1175	1235	1300	1500	1650	1735	1800	1825	1875	1915	1935	1950	1955	1960
Tempera		2	585	1045	1145	1205	1255	1305	1475	1615	1685	1735	1760	1810	1850	1870	1890	1895	1900
	Cycle	7	625	680	730	800	865	955	1170	1395	1525	1615	1695	1755	1805	1835	1865	1880	1895
	1915/525°F	6	630	645	695	745	805	885	1100	1325	1485	1595	1675	1745	1795	1825	1855	1870	1885
	1915/	2	625	675	725	795	855	945	1160	1385	1515	1605	1685	1750	1800	1830	1860	1875	1890
			595	965	1045	1125	1165	1225	1425	1575	1665	1725	1755	1805	1845	1865	1885	1890	1895
	Time,	min-sec	0	n	9	6	12	15	30	45	1 0	1 15	1 30	1 45	2 0	2 15	2 30	2 45	3 0
	ŗ	m									• •			• •	- •	- •		- •	

TABLE 17. - CALIBRATION DATA FOR INSTRUMENTED X-40 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

Cycle	5 5	1990 1885	1970 1715	1915 1625	1875 1545	1810 1475	1760 1450	1560 1270	1360 1150	1220 1050	1120 975	1020 900	950 860	885 825	835 790	785 770	775 750	765 725
/675°F C	3	2010	1990	1950	1900	1850	1800	1600	1425	1260	1145	1050	975	006	850	800	785	775
2065/	2	2000	1975	1925	1880	1820	1770	1570	1375	1230	1130	1030	955	890	840	190	780	770
Position		1985	1815	1700	1635	1575	1500	1345	1250	1100	1000	930	880	835	800	790	755	735
- 1	5	1770	1625	1530	1475	1425	1375	1200	1075	975	006	840	790	750	725	695	675	655
n couple Cycle	7	1920	1890	1845	1795	1740	1690	1490	1270	1160	1040	950	870	820	760	720	705	069
at Each 600°F C	6	1950	1915	1875	1825	1780	1735	1525	1350	1200	1075	975	006	835	775	735	715	700
1990/	2	1930	1900	1850	1805	1750	1700	1500	1280	1170	1050	096	880	825	765	725	710	695
emperature		1850	1710	1610	1550	1500	1440	1275	1175	1020	935	860	810	765	735	700	685	665
Тепре	2	1665	1525	1465	1405	1365	1305	1125	1005	905	835	765	715	675	645	620	610	585
Cycle	7	1860	1815	1775	1720	1670	1625	1415	1190	1080	970	880	800	750	695	655	079	625
15/525°F	3	1890	1845	1805	1750	1710	1665	1455	1270	1120	1000	905	825	765	705	665	645	630
1915/	2	1870	1825	1785	1730	1680	1635	1425	1200	1090	980	890	810	755	695	655	940	625
		1725	1605	1525	1465	1425	1375	1205	1055	945	865	795	735	695	665	635	615	595
ime,	min-sec	0	3	9	6	12	15	30	45	0	15	30	45	0	15	30	45	0
H	i.i.ll										-	1		7	2	2	2	3

TABLE 18. - CALIBRATION DATA FOR INSTRUMENTED B1900 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

		i 				Temperature	ature,	°F, at	t Each	Couple	e Position					
Time, min-sec	 G,	- -	1915/525°F		Cycle	2	-1	1990/6(I	600°F C	Cycle 4	2	1 2	2065/675°F	וראו	Cycle 4	5
	0 5	585	009	610	595	575	655	670	680	665	945	725	740	750	735	715
	3 9	920	079	610	670	1075	066	710	680	140	1185	1200	780	750	800	1285
_	6 10	1050	700	635	730	1185	1120	770	705	800	1275	1320	840	795	870	1375
•	9 11	1140	750	069	790	1270	1210	820	760	860	1360	1375	915	845	945	1450
12		1200	800	750	860	1340	1270	870	820	920	1415	1430	066	925	1010	1500
15		1260	860	800	915	1390	1330	930	870	980	1460	1480	1045	066	1080	1550
30		1440	1140	1080	1195	1530	1510	1210	1150	1260	1600	1625	1335	1290	1360	1680
45		1560	1340	1300	1390	1620	1630	1410	1370	1460	1690	1730	1530	1510	1555	1780
, -	0 16	1640	1500	1470	1530	1700	1710	1570	1540	1600	1770	1820	1680	1655	1695	1865
1 15		1705	1605	1585	1630	1750	1775	1675	1655	1700	1830	1900	1780	1765	1795	1930
1 30		1770	1690	1680	1700	1800	1840	1760	1750	1780	1870	1935	1860	1845	1875	1970
1 45		1820	1740	1730	1750	1840	1890	1810	1800	1820	1910	1970	1920	1905	1930	1990
7	0 18	1850	1790	1780	1795	1870	1920	1860	1850	1870	1940	1995	1960	1950	1970	2010
2 15		1860	1825	1815	1830	1875	1930	1895	1885	1900	1945	2010	1990	1980	1995	2020
2 30		1870	1850	1840	1855	1880	1940	1920	1910	1925	1950	2015	2000	1990	2005	2025
2 45		1875	1860	1850	1865	1885	1945	1930	1920	1935	1955	2020	2010	2000	2015	2030
e E	0 18	1880	1870	1860	1875	1890	1950	1940	1930	1945	1960	2025	2015	2005	2020	2035
	-															

TABLE 19. - CALIBRATION DATA FOR INSTRUMENTED B1900 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

	2	1760	1670	1585	1510	1460	1405	1225	1050	995	006	840	795	765	750	735	720	715
a	7	2000	1970	1940	1900	1855	1810	1580	1380	1215	1085	950	875	815	780	760	745	735
NO E	13/2	2005	1995	1980	1960	1920	1880	1635	1430	1250	1110	975	006	840	800	780	760	750
2065/675°F Cvcle	2	2010	1980	1955	1930	1875	1835	1610	1410	1230	1100	096	885	825	190	770	750	740
osition		1900	1770	1660	1575	1510	1460	1275	1075	1025	965	925	815	785	760	745	730	725
	5	1670	1560	1470	1410	1360	1310	1160	1040	930	850	815	740	700	670	655	645	635
h Couple	4	1910	1870	1845	1795	1760	1720	1510	1320	1155	1030	935	855	795	750	720	069	099
at Each	<u>.</u>	1930	1920	1900	1875	1825	1785	1580	1380	1205	1065	970	885	820	775	740	705	680
°F, at		1920	1890	1870	1820	1790	1750	1540	1345	1175	1045	950	870	805	760	730	695	670
ature,		1830	1655	1570	1500	1430	1390	1210	1080	096	880	840	760	720	685	999	655	645
[emperature	5	1610	1500	1410	1350	1300	1250	1100	980	870	790	735	680	940	019	595	585	575
2 0 0 0 0	77	1840	1800	1775	1725	1690	1650	1440	1250	1085	096	870	785	720	680	650	620	595
1 1	1 1	1860	1850	1830	1805	1755	1715	1510	1310	1135	995	006	815	750	705	670	635	610
1015/50505	2/2/2/	1850	1820	1800	1750	1720	1680	1470	1275	1105	975	890	800	735	069	099	625	009
		1770	1595	1510	1440	1370	1330	1150	1020	006	820	760	700	099	625	605	595	585
	min-sec	0	Ж	9	6	12	15	30	45	0	1.5	30	45	0	15	30	45	0
E	min									 -I	<u>, –</u>	٢	~	7	7	7	7	3

TABLE 20. - CALIBRATION DATA FOR INSTRUMENTED B1900 DID + JOCOAT SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

£			101575	1 1	1 1	Temperature	ature	°F, at	I K	Each Couple	e Position		2065/675°F Cvc] B	بة 14 م	a	
nin-sec	sec sec		2 2 2	3 F C	CVC1e	5		ا. ماء	11	4			2 2	13/2	7	5
	0	575	585	595	580	565	650	099	670	655	079	720	730	735	725	710
	r	076	009	590	630	1190	1020	675	675	705	1230	1100	740	735	790	1250
	9	1110	099	610	069	1325	1165	735	685	775	1340	1225	800	09/	855	1360
	6	1210	720	650	760	1375	1260	795	720	835	1425	1310	865	825	920	1470
	12	1275	790	720	825	1425	1335	865	790	006	1475	1380	930	885	066	1530
	15	1325	850	785	890	1450	1400	925	860	965	1530	1475	1005	096	1075	1610
	30	1470	1160	1090	1200	1580	1500	1235	1165	1275	1655	1630	1325	1280	1365	1740
•	4.5	1580	1370	1310	1420	1665	1655	1445	1385	1490	1740	1750	1540	1510	1580	1820
г	0	1675	1525	1480	1550	1730	1750	1600	1555	1625	1800	1840	1690	1670	1710	1890
_	15	1740	1630	1595	1650	1800	1815	1700	1665	1720	1870	1900	1795	1775	1810	1935
-	30	1780	1700	1670	1725	1820	1855	1775	1745	1795	1890	1950	1865	1850	1880	1980
-	45	1820	1760	1735	1780	1835	1895	1835	1810	1850	1910	1980	1910	1895	1925	1995
2	0	1840	1810	1790	1825	1850	1915	1885	1865	1895	1925	2000	1955	1940	1970	2010
2	15	1860	1835	1820	1845	1865	1935	1910	1895	1920	1940	2020	1980	1970	1990	2025
2	30	1870	1850	1840	1855	1875	1945	1925	1915	1930	1950	2030	2000	1990	2010	2035
2	4.5	1875	1860	1850	1865	1880	1950	1935	1925	1940	1955	2035	2020	2010	2025	2040
3	0	1880	1870	1860	1875	1885	1955	1945	1935	1950	1960	2040	2030	2020	2035	2045

TABLE 21. - CALIBRATION DATA FOR INSTRUMENTED B1900 DID + JOCOAT SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

	}	7	1565	1485	1425	1360	1320	1280	1115	066	890	840	810	765	745	730	725	720	710
	1e	4	1965	1930	1875	1825	1770	1725	1490	1290	1130	1015	920	850	802	775	745	735	725
	°F Cycle	m	2000	1980	1950	1910	1850	1805	1560	1355	1190	1060	970	890	840	795	092	745	735
	065/675°F	2	1990	1955	1915	1860	1810	1760	1520	1320	1160	1030	076	865	815	785	755	740	730
ion	20	Ī	1760	1660	1590	1520	1465	1310	1230	1100	066	910	850	795	765	740	730	725	720
Position		5	1500	1435	1355	1300	1245	1200	1040	006	820	770	725	069	999	655	645	079	635
Couple	Cycle	7	1900	1870	1825	1770	1725	1675	1410	1195	1040	930	840	775	720	705	675	999	655
Each	ı	3	1935	1910	1875	1835	1775	1730	1485	1250	1075	965	885	810	750	725	695	680	670
°F, at	990/600°F	2	1915	1885	1840	1795	1745	1690	1440	1225	1055	945	865	790	735	715	685	670	099
ture,			1690	1590	1510	1450	1390	1340	1140	1000	006	820	765	715	685	099	650	645	079
Temperature		5	1440	1360	1280	1225	1170	1125	970	830	750	695	650	019	585	580	570	565	260
L	Cvcle	4	1830	1795	1750	1695	1650	1600	1330	1115	965	855	775	705	650	630	900	590	580
	725°F C		1860	1835	1800	1760	1700	1650	1410	1175	1000	890	810	735	680	650	620	605	595
	1915/52		1840	1810	1765	1720	1670	1615	1365	1150	980	870	790	715	665	940	610	595	585
			1630	1530	1440	1390	1320	1265	1070	930	830	745	069	979	610	585	575	570	565
	Time	-sec	С	, (*	9	6	12	15	30	45	· C	15	30	4.5	0	7.	30	45	0
	F	min									۴	ا	ı	ا	2	,	٠,	7	· "

TABLE 22. - CALIBRATION DATA FOR INSTRUMENTED NX-188 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 7 1 2 3 4 5 7	Time.		1915/	5/525°F C	Cvcle	Temperature	ature,	°F, at		Each Couple	e Position		2065/675°F	70 <u>7</u> 03	a	
590 600 580 560 650 640 640 620 670 715 715 725 650 600 680 1130 1010 710 660 740 1190 1105 770 770 770 770 770 770 770 770 770 770 810 1130 1100 775 770 810 1130 1100 775 770 810 1130 1250 1250 1160 775 770 810 1130 1230 820			2	1 1	7				· (C)	4	5		2		4	5
650 680 680 1130 1101 710 660 740 1190 1105 775 700 810 1130 1250 1250 1160 775 700 810 1310 1250 1250 1250 1280 840 760 810 1325 1280 840 760 810 1325 1280 840 760 810 1325 1480 960 810 1480		570	590	009	580	260	630	650	099	079	620	695	715	725	705	685
715 650 750 1250 1160 775 700 810 1385 1330 920 820 780 700 810 1325 1280 840 760 870 1385 1330 920 820 840 750 885 1375 1280 860 1010 1480 1400 910 910 900 820 950 1420 1410 960 880 1010 1480 1600 1700 1800 910 1190 1110 1220 1470 1560 1460 1310 1480 1780 1800 1800 1900		950	650	900	ar)	1130	1010	710	099	740	1190	1105	770	725	810	1200
780 700 810 1325 1280 840 760 870 1385 1330 920 820 840 750 885 1375 1330 900 810 945 1435 1400 910 910 900 820 950 1420 1410 960 880 1010 1480 1000 910 1190 1110 1220 1420 1460 1870 1620 1370 1470 1780 1800 <td>٦</td> <td>100</td> <td>715</td> <td>650</td> <td>2</td> <td>1250</td> <td>1160</td> <td>775</td> <td>700</td> <td>810</td> <td>1310</td> <td>1230</td> <td>835</td> <td>260</td> <td>880</td> <td>1370</td>	٦	100	715	650	2	1250	1160	775	700	810	1310	1230	835	260	880	1370
840 750 885 1375 1330 900 810 945 1435 1400 910 945 1440 1400 960 880 1010 1480 1460 1000	П	.230	780	700	\vdash	1325	1280	840	260	870	1385	1330	920	820	096	1440
900 820 950 1420 1440 960 880 1010 1480 1460 1870 1480 1480 1480 1480 1690 1480 1800 1630 1630 1870 1300 1190 1110 1220 1570 1560 1250 1170 1280 1630 1630 1870 1870 1870 1870 1870 1870 1870 1870 1880 <td></td> <td>.280</td> <td>840</td> <td>750</td> <td>∞</td> <td>1375</td> <td>1330</td> <td>006</td> <td>810</td> <td>945</td> <td>1435</td> <td>1400</td> <td>1000</td> <td>910</td> <td>1050</td> <td>1500</td>		.280	840	750	∞	1375	1330	006	810	945	1435	1400	1000	910	1050	1500
1190 1110 1220 1570 1560 1250 1170 1280 1630 1620 1570 1560 1460 1310 1470 1730 1730 1560 1520 1400 1250 1410 1670 1690 1460 1310 1470 1730 1730 1560 15	-	1350	006	820	950	1420	1410	096	880	1010	1480	1460	1080	1000	1125	1540
1400125014101670169014601310147017301560155016501535151015601770174015951570162017801805181017901640162516601770180017001685172018301895181017901710177017501780188518351815184519151975194019301820188018601905188518851895191019752000197519701835184518701920199019101925202020152010185018851885192019101925194520202015201018601880194519301920193519502025202020151865188518851935192519401955203020252020	F-1	1500	1190	1110	1220	1570	1560	1250	1170	1280	1630	1620	1370	1300	1400	1680
15351510156017201740159515701620178018201705168016401625166017701800177016851720183518101790171017001720181518401770176017801875195018801770175017801885188518651895197519751970182018801876192019101925201020052010185018651880194519201910192519452020201518601885188019451935192019351950202520202015186518801945193519401955203020252020	• •	1630	1400	1250	1410	1670	1690	1460	1310	1470	1730	1730	1560	1520	1585	1780
16401625166017701800170016851720189518101790171017001720181518401770176017801875195018901880177017501780188518851815184519151975194019301820188018801900189019101935201020052000183518451875193019201910192519452020201520101850188518801945193019201940195520252020201518651880194519351920194019552030202520201865188718851950193519401955203020252020		1680	1535	1510	1560	1720	1740	1595	1570	1620	1780	1820	1705	1680	1725	1860
17101700172018151840177017601780187519501890188017701750178018851885181518451915197519401930182018801860190518851865189519252000197519701835184518701920191019251945202020152010185018501886198619361920194520252020201518651870188519501935192519401955202520252020		1740	1640	1625	1660	1770	1800	1700	1685	1720	1830	1895	1810	1790	1830	1925
17701750178018851885183518151845191519751940193018201800183018601905188518651895192520001975197018351825184518701920190018901910193520102005200018501840185518751935192019101925194520202015201018601850188019451935192019351940195520302025202018651870188519501935192519401955203020252020		1780	1710	1700	1720	1815	1840	1770	1760	1780	1875	1950	1890	1880	1895	1965
182018001830186019051885186518951925200019751970183518251845187019201900189019101935201020052005200018501840185518801945192019101925194520202015201018601850188519501935192519401955202520252020		1820	1770	1750	1780	1850	1885	1835	1815	1845	1915	1975	1940	1930	1945	1990
1835182518451870192019901890191019352010200520001850184018551875193519201910192519452020201520101860185518801945193019201935195020252020201518651870188519501935192519401955203020252020		1840	1820	1800	1830	1860	1905	1885	1865	1895	1925	2000	1975	1970	1980	2010
18501840185518751935192019101925194520202015201018601850188518501950193519251940195520302025202018651870188519501935192519401955203020252020		1855	1835	1825	1845	1870	1920	1900	1890	1910	1935	2010	2005	2000	2010	2020
1860 1850 1865 1880 1945 1930 1920 1935 1950 2025 2020 2015 1865 1855 1870 1885 1950 1935 1925 1940 1955 2030 2025 2020		1865	1850	1840	1855	1875	1935	1920	1910	1925	1945	2020	2015	2010	2020	2025
1865 1855 1870 1885 1950 1935 1925 1940 1955 2030 2025 2020		1875	1860	1850	1865	1880	1945	1930	1920	1935	1950	2025	2020	2015	2025	2030
		1880	1865	1855	1870	1885	1950	1935	1925	1940	1955	2030	2025	2020	2030	2035

TABLE 23. - CALIBRATION DATA FOR INSTRUMENTED NX-188 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

T. T.	يو ا		1915/5	25°F C		Temperature	ature,	°F, at	Eac	h Couple Cycle	Position		79/590	2065/675°F Cycle	cle	
min-	-sec	-	2		7	2	H	2		7			2	m	4	
	0	1660	1860	1855	1855	1580	1730	1930	1925	1920	1650	1810	2005	2020	1985	1730
	က	1570	1840	1850	1825	1485	1640	1910	1920	1895	1555	1730	1970	2015	1950	1640
	9	1490	1805	1840	1770	1410	1560	1875	1910	1840	1480	1660	1930	1965	1910	1575
	6	1425	1760	1800	1720	1360	1495	1830	1870	1790	1430	1600	1890	1925	1865	1520
	12	1375	1695	1750	1670	1300	1445	1765	1820	1740	1370	1540	1840	1880	1810	1475
	15	1320	1640	1685	1620	1260	1390	1710	1755	1690	1330	1480	1790	1830	1740	1430
	30	1110	1400		1380	1040	1180	1470	1510	1450	1110	1270	1530	1560	1490	1220
	45	096	1190	1230	1170	915	1030	1260	1300	1240	985	1110	1310	1340	1285	1070
 1	0	860	1020	1060	1000	825	930	1090	1130	1070	895	1000	1145	1170	1120	096
Н	15	190	006	930	880	755	860	970	1000	950	825	915	1015	1040	1000	890
-	30	725	810	840	790	700	795	880	910	860	770	830	920	076	905	810
Н	45	670	730	760	715	650	740	810	830	785	720	795	860	880	845	770
7	0	630	680	700	665	610	700	750	770	735	680	260	820	830	805	750
2	15	609	079	665	630	590	675	715	735	705	099	740	780	790	770	730
7	30	585	620	630	610	570	655	069	700	680	979	720	750	760	740	710
7	45	575	605	615	595	565	645	675	685	665	635	705	730	740	720	695
3	0	570	290	009	580	260	049	099	670	650	630	695	715	725	705	685

TABLE 24. - CALIBRATION DATA FOR INSTRUMENTED TAZ-8A DS SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

ol	2 640 685 760 815	3	7			0 (0 0 0 1					10100	1111		
		7		7		2	m	7	2		2		77	
		000	635	009	999	700	710	695	099	725	745	755	740	720
		655	780	1120	1130	745	715	840	1180	950	800	09/	880	1100
		675	840	1220	1220	820	735	006	1280	1270	860	780	096	1320
•		730	006	1290	1290	875	790	096	1350	1360	920	840	1025	1405
12 1290	885	775	076	1350	1350	945	835	1000	1410	1420	066	006	1090	1475
15 1340	950	840	1000	1390	1400	1010	006	1060	1450	1475	1050	096	1145	1520
30 1500	1220	1125	1260	1550	1570	1290	1195	1330	1620	1650	1350	1260	1425	1680
45 1600	1410	1340	1460	1650	1670	1480	1410	1530	1720	1760	1560	1510	1640	1785
1 0 1690	1550		1580	1710	1760	1620	1570	1650	1780	1850	1705	1665	1735	1880
1 15 1760		1615	1675	1780	1830	1710	1685	1745	1850	1910	1800	1765	1830	1925
1 30 1805		1700	1745	1815	1875	1790	1770	1815	1885	1955	1875	1845	1900	1965
1 45 1830	1780	1760	1790	1840	1900	1850	1830	1860	1910	1980	1925	1900	1950	1990
2 0 1850	1810	1800	1820	1855	1920	1880	1890	1890	1925	2000	1970	1955	1985	2010
2 15 1860	1845	1840	1850	1865	1930	1925	1920	1920	1935	2015	1995	1980	2005	2020
2 30 1870	1865	1860	1870	1875	1940	1935	1930	1940	1945	2025	2020	2005	2015	2030
2 45 1880	1875	1870	1880	1885	1950	1945	1940	1950	1955	2035	2020	2015	2025	2040
3 0 1890	1885	1880	1890	1895	1960	1955	1950	1960	1965	2040	2025	2020	2030	2045

TABLE 25. - CALIBRATION DATA FOR INSTRUMENTED TAZ-8A DS SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

						Temperature	ature,	°F, at	Each	Couple	Position	1 .				
Time			1915/525°F	1)9/066]	600° F $_{ m C_{ m J}}$	Cycle		7	2065/675°F Cycle	CY CY	cle	ŀ
min-sec	ec 3ec	-1	2	1 1	7	5		2	3	4	2	-	7		t	
	C	1680	1860	1880	1850	1620	1740	1920	1940	1910	1670	1800	2000	2020	1980	1725
) (°	1580	1825	1870	1785	1540	1640	1885	1930	1845	1590	1700	1950	2010	1935	1650
	,	1520	1800	1835	1760	1490	1580	1860	1895	1820	1540	1630	1910	1975	1885	1570
	6	1460	1760	1800	1720	1420	1520	1820	1860	1780	1470	1580	1870	1945	1835	1510
•	12	1400	1725	1760	1680	1370	1460	1785	1820	1740	1420	1525	1820	1910	1785	1450
. ,-	15	1350	1680	1720	1645	1320	1410	1740	1780	1705	1360	1500	1770	1870	1735	1400
	30	1180	1465	1510	1445	1140	1240	1525	1570	1505	1190	1320	1560	1645	1535	1235
7	45	1060	1285	1310	1260	1030	1120	1345	1370	1320	1070	1200	1405	1450	1370	1110
-		950	1140	1170	1120	920	1010	1200	1230	1180	970	1065	1250	1275	1210	1010
		860	1015	1035	1000	830	920	1075	1095	1060	880	975	1100	1125	1075	930
	30	800	925	935	900	775	860	985	995	096	825	890	1000	1020	985	870
	45	740	850	870	830	725	800	910	930	890	780	830	930	955	920	850
۰ ۵		710	770	795	760	700	770	830	855	820	160	800	870	890	860	820
۰ ۵	ا د	665	730	740	720	099	725	790	800	780	720	09/	820	840	810	770
۰ ،	30	079	695	705	069	635	700	755	760	750	695	745	790	800	785	740
۱ ۵	5.7	625	650	099	645	620	685	715	720	710	989	735	160	770	755	730
1 K	0	605	979	650	635	900	999	700	710	695	099	725	745	755	740	720
)	'															

TABLE 26. - CALIBRATION DATA FOR INSTRUMENTED WAZ-20 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

- F			1 1		Temperature	ature,		Eac	Coup1e	1 1	Position		1 [
Ilme, min-sec	1 0	1915/3	325 F C	Cycle 4	5		1990/6	600° F C	Cycle	 	12	2065/675°F	5°F Cyc	cle	6
													,		
J	575	290	595	585	265	650	665	670	099	049	720	735	740	730	710
K)	006	620	595	630	1160	962	695	670	705	1210	1030	750	740	765	1270
9	1060	665	009	069	1285	1110	710	675	735	1330	1165	790	760	820	1370
6	1140	730	635	770	1360	1200	770	700	800	1400	1260	850	800	880	1450
12	1210	800	710	840	1415	1260	830	780	870	1460	1320	915	865	950	1500
15	1265	870	775	920	1460	1325	910	850	096	1500	1380	066	925	1020	1540
30	1460	1190	1115	1235	1610	1510	1240	1170	1290	1660	1555	1300	1210	1325	1715
45	1610	1430	1370	1470	1700	1660	1480	1420	1520	1750	1700	1535	1475	1560	1810
1 0	1700	1570	1530	1600	1760	1750	1640	1590	1670	1810	1800	1690	1655	1710	1880
1 15	1770	1670	1630	1700	1825	1820	1730	1690	1760	1875	1880	1800	1775	1815	1925
1 30	1825	1770	1730	1780	1850	1875	1830	1800	1840	1900	1925	1880	1860	1890	1960
1 45	1850	1810	1800	1820	1870	1920	1870	1860	1880	1930	1985	1930	1920	1940	2005
2 0	1860	1845	1835	1850	1875	1930	1910	1900	1915	1940	2015	1960	1965	1970	2020
2 15	1870	1865	1860	1865	1880	1940	1935	1930	1940	1945	2020	1980	2000	1990	2025
2 30	1875	1870	1865	1875	1885	1945	1940	1935	1945	1950	2025	2000	2015	2005	2030
2 45	1880	1875	1870	1880	1888	1950	1945	1940	1950	1955	2030	2020	2020	2025	2035
3 0	1885	1880	1875	1885	1890	1955	1950	1945	1955	1960	2035	2030	2025	2035	2040

TABLE 27. - CALIBRATION DATA FOR INSTRUMENTED WAZ-20 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 6 1 1 1 1 2 3 4 9 1 1 1 2 3 4 9 1	Time.		1915/5	525°F Cvel	e	Temperature	ature,	°F, a	at Each	Each Couple	e Position		2065/675° F	5°F Cvc	cle	
1780 1870 1870 1860 1650 1830 1925 1915 1690 1880 1980 1980 1980 1980 1980 1960 <th< td=""><td>min-se</td><td>- - - </td><td>2</td><td></td><td></td><td></td><td> - </td><td>7</td><td>6</td><td>4</td><td>5</td><td> - </td><td>7</td><td>(· ·)</td><td></td><td>2</td></th<>	min-se	- - -	2				-	7	6	4	5	-	7	(· ·)		2
1710 1865 1870 1851 1760 1940 1950 1560 1860 1865 1870 1865 1870 1865 1870 1860 1860 1860 1870 1860 1890 1975 1870 <th< td=""><td>0</td><td>1780</td><td>1870</td><td>1875</td><td>1860</td><td>1650</td><td>1830</td><td>1925</td><td>1935</td><td>1915</td><td>1690</td><td>1880</td><td>1980</td><td>2000</td><td>1960</td><td>1730</td></th<>	0	1780	1870	1875	1860	1650	1830	1925	1935	1915	1690	1880	1980	2000	1960	1730
1560 1835 1865 1820 1420 1610 1890 1925 1875 1460 1670 1870 1975 1880 1870 <th< td=""><td>3</td><td>1710</td><td>1865</td><td>1870</td><td></td><td>1510</td><td>1760</td><td>1910</td><td>1930</td><td>1900</td><td>1560</td><td>1810</td><td>1950</td><td>1990</td><td>1910</td><td>1600</td></th<>	3	1710	1865	1870		1510	1760	1910	1930	1900	1560	1810	1950	1990	1910	1600
1475 1790 1850 1770 1375 1830 1910 1810 1420 1585 1860 1940 1850 14410 1750 1810 1720 1260 1460 1790 1870 1700 1520 1830 1900 1810 1360 1750 1810 1760 1665 1205 1415 1750 1820 1720 1250 1830 1810 1800 1810 1800 1810 1800 1810 1800 1810 1800 1800 1800 1810 1800 1820 1720 1250 1400 1800	9	1560		1865	1820	1420	1610	1890	1925	1875	1460	1670	1910	1975	1880	1500
1410 1750 1810 1720 1260 1460 1790 1870 1770 1300 1520 1890 1810 1770 1800 1830 1810 1810 1810 1810 1810 1810 1810 1820 <th< td=""><td>6</td><td>1475</td><td></td><td>1850</td><td>1770</td><td>1375</td><td>1535</td><td>1830</td><td>1910</td><td>1810</td><td>1420</td><td>1585</td><td>1860</td><td>1940</td><td>1850</td><td>1450</td></th<>	6	1475		1850	1770	1375	1535	1830	1910	1810	1420	1585	1860	1940	1850	1450
1360 1700 1760 1665 1205 1415 1750 1820 1720 1265 1460 1860 1850 1460 1860 1850 1460 1860 <th< td=""><td>12</td><td></td><td></td><td>1810</td><td>1720</td><td>1260</td><td>1460</td><td>1790</td><td>1870</td><td>1770</td><td>1300</td><td>1520</td><td>1830</td><td>1900</td><td>1810</td><td>1340</td></th<>	12			1810	1720	1260	1460	1790	1870	1770	1300	1520	1830	1900	1810	1340
1155 1450 1505 1405 1500 1550 1460 1070 1265 1540 1600 1500 1025 1240 1285 1200 925 1060 1290 1335 1250 950 1100 1340 1380 1300 915 1202 925 1060 1290 1335 1250 950 1100 1340 1380 1300 815 120 925 1060 1290 1335 1250 950 1100 1340 1380 1300 815 940 975 915 1125 1100 1030 975 1000 1175 1220 1150 735 840 865 810 680 745 800 685 910 970 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910	15				1665	1205	1415	1750	1820	1720	1250	1470	1800	1855	1760	1300
1025 1240 1285 1200 925 1060 1290 1335 1250 950 1100 875 1100 1340 1380 1300 915 1075 1120 1050 835 955 1125 1170 1100 875 1000 1175 1220 1150 815 940 975 915 750 865 1000 1030 975 790 910 1050 1175 1150 1150 815 840 865 810 680 745 865 730 850 950 910 865 950 910 865 910 910 865 910 </td <td>30</td> <td></td> <td></td> <td></td> <td>1405</td> <td>1030</td> <td>1210</td> <td>1500</td> <td>1555</td> <td>1460</td> <td>1070</td> <td>1265</td> <td>1540</td> <td>1600</td> <td>1500</td> <td>1100</td>	30				1405	1030	1210	1500	1555	1460	1070	1265	1540	1600	1500	1100
915 1075 1120 1050 835 955 1125 1170 1100 875 1000 1175 1220 1150 815 940 975 915 1020 1030 975 790 910 1050 1085 1025 735 840 865 810 680 795 890 915 865 970 970 970 930 690 760 785 740 635 745 820 845 800 885 910 865 650 700 740 660 770 740 785 810 765 600 620 670 690 710 670 645 740 785 715 745 585 600 615 590 570 660 665 655 660 630 725 745 740 735 740 730	45				1200	925	1060	1290	1335	1250	950	1100	1340	1380	1300	066
815 940 975 915 750 865 1000 1030 975 790 910 1050 1085 1025 735 840 865 810 915 865 730 850 970 970 930 690 760 780 745 820 845 800 685 910 865 650 700 710 680 600 710 760 740 660 770 830 840 810 620 650 670 690 720 745 700 645 740 785 810 765 600 620 670 690 710 670 645 740 785 810 745 585 600 650 670 685 660 635 745 775 745 575 590 585 640 660 655 655 655 655	1 0	915			1050	835	955	1125	1170	1100	875	1000	1175	1220	1150	910
735840865810680795890915865730850950970930690760780745820845800685800885910865650700710680600710760780740660770830840810620650675630590690720745700645740785810765600620640670650670685660635725745750740585600615585565640660665655655655653725745750740575590595585565640660665655655655650730735746	1 15			975		750	865	1000	1030	975	790	910	1050	1085	1025	830
690760785740635745820845800685800885910865620700710680600710760780740660770830840810620650675630690720745700645740785810765600620640600575670690710670640730755775745585600615590570650670685660635725745750740575590595585565640660665655630720735740730	1 30	735		865	810	680	795	890	915	865	730	850	950	970	930	780
650 700 710 680 600 710 760 780 740 660 770 830 840 810 620 650 675 630 590 690 720 745 700 645 740 785 810 765 600 620 640 600 575 670 690 710 670 640 730 755 775 745 745 590 570 650 670 685 660 635 725 745 750 740 730 575 745 750 740 755 745 750 740 755 750 740 750 755 750 740 750 750 750 740 750 750 750 750 750 750 750 750 750 75	1 45			785	740	635	745	820	845	800	685	800	885	910	865	750
620 650 675 630 590 690 720 745 700 645 740 785 810 765 600 620 640 600 575 670 690 710 670 640 730 755 775 745 585 600 615 590 570 650 670 685 660 635 725 745 750 740 575 590 595 585 565 640 660 665 655 630 720 735 740 730	2 0	650		710	680	009	710	092	780	07/	099	770	830	840	810	735
620 640 600 575 670 690 710 670 640 730 755 775 745 600 615 590 570 650 670 685 660 635 725 745 750 740 590 595 585 565 640 660 665 655 630 720 735 740 730	2 15			675		290	069	720	745	200	645	740	785	810	765	725
600 615 590 570 650 670 685 660 635 725 745 750 740 590 595 585 565 640 660 665 655 630 720 735 740 730	2 30	009	620	049	009	575	670	069	710	670	049	730	755	775	745	720
590 595 585 565 640 660 665 655 630 720 735 740	2 45	585		615	290	570	650	670	685	099	635	725	745	750	740	715
	3 0	575		595	585	565	079	099	665	655	630	720	735	740	730	710

TABLE 28. - CALIBRATION DATA FOR INSTRUMENTED IN 738 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

Time,			1915/52	525°F C	Cycle			1990/600°F	1	Cycle		2	065/67	5°F Cyc.	cle	
min-s	် ၂ ၁၂		2	3	7	2		2	[]	7	2	H	2	[]	7	5
-	0	009	630	940	625	290	670	700	710	695	099	720	730	740	725	700
- •	3	915	989	645	735	1225	985	750	715	805	1325	1130	800	740	835	1475
-	9	1130	730	650	790	1360	1200	800	720	860	1480	1300	885	09/	920	1600
<u>.</u>	9]	1210	805	700	865	1430	1280	875	770	935	1530	1390	970	845	995	1650
ij	2 1	1280	880	160	930	1480	1350	950	830	1000	1550	1470	1065	925	1085	1700
Ä	5	1330	950	830	962	1520	1400	1020	006	1065	1590	1510	1145	1000	1180	1735
30		1510	1250	1150	1285	1650	1580	1320	1220	1365	1720	1670	1435	1345	1460	1840
45		1665	1490	1400	1520	1750	1725	1560	1470	1590	1820	1800	1640	1570	1660	1900
) 	0	1750	1640	1570	1650	1790	1820	1710	1630	1720	1860	1880	1775	1735	1805	1955
1 1	5 1	1810	1730	1695	1740	1850	1880	1800	1765	1810	1920	1960	1870	1840	1880	2000
1 30		1840	1785	1770	1795	1860	1910	1855	1835	1860	1930	1990	1955	1930	1970	2010
1 45		1855	1840	1815	1850	1870	1925	1920	1900	1920	1940	2005	1990	1970	2000	2020
7 (0 1	1865	1860	1850	1875	1880	1935	1935	1925	1945	1950	2015	2010	2000	2020	2030
2	5 1	1875	1875	1870	1880	1890	1945	1945	1940	1950	1955	2025	2020	2015	2025	2040
2 3(0	1890	1880	1875	1885	1895	1955	1950	1945	1955	1960	2035	2030	2025	2035	2045
2 45		1893	1885	1880	1890	1898	1960	1955	1950	1960	1965	2040	2035	2030	2040	2048
3	0 1	1895	1890	1885	1895	1900	1965	1960	1955	1965	1970	2045	2040	2035	2045	2050

TABLE 29. - CALIBRATION DATA FOR INSTRUMENTED IN 738 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

						Temperature	ature,	°F, at	1 X	Each Couple	e Position		# 41 # 4X			
Time,	d)		1915/5	25°F C	Cycle			19/0661	600° F C	Cycle		7	2065/6/5°F	5° F Cyc	cle	
min-sec	sec	r	2	3	7	<u>ν</u>	-1		3	7	2	-	2	m	4	7
	0	1700	1870	1885	1860	1530	1770	1940	1955	1930	1600	1870	2025	2030	2015	1730
	c	1600	1835	1880	1810	1450	1670	1905	1950	1880	1520	1820	2010	2025	1985	1550
	9	1550	1800	1855	1775	1360	1620	1870	1925	1845	1430	1750	1980	2010	1950	1420
	6	1500	1765	1820	1740	1300	1570	1835	1890	1810	1370	1700	1940	1980	1910	1360
	12	1450	1730	1785	1710	1270	1520	1800	1855	1780	1340	1650	1900	1930	1870	1300
, •	15	1410	1690	1740	1665	1220	1480	1760	1810	1735	1290	1590	1840	1900	1825	1260
- '	30	1200	1490	1550	1470	1020	1270	1560	1620	1540	1090	1360	1625	1675	1600	1100
,	45	1060	1285	1340	1260	910	1130	1355	1410	1330	980	1210	1430	1465	1390	1010
-	0	930	1110	1155	1100	810	1000	1180	1185	1170	880	1080	1260	1300	1235	925
H	15	830	980	1020	970	730	006	1050	1090	1040	800	970	1125	1160	1110	870
,i	30	160	870	905	860	089	830	076	965	930	750	910	1020	1040	1000	830
_	45	710	790	810	780	650	780	860	880	850	720	850	935	950	920	780
2	0	665	730	750	720	635	735	800	820	790	705	805	875	885	865	09/
7	15	635	675	700	665	620	705	745	765	735	069	770	800	810	790	740
2	30	615	650	670	645	605	685	720	740	715	675	750	09/	770	750	725
2	45	605	049	650	635	595	675	710	720	705	665	735	740	750	735	710
m	0	009	630	970	625	290	670	700	710	695	099	720	730	740	725	700

TABLE 30. - CALIBRATION DATA FOR INSTRUMENTED NASA VI A SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

Time.		1915/1	1595°F (ما يمي	Temperature	ature,	°F, a	at Each	h Couple		Position	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	£ 21 02	,	
min-sec		2		4	5		- 1	m	4	2		20/00/	3 5	7 7	
0) 590	615	625	605	575	650	680	685	675	049	710	735	745	725	700
.,	3 940	675	625	710	1380	066	680	685	715	1410	1050	770	745	790	1435
9	1170	725	650	770	1460	1210	770	710	800	1510	1250	820	750	850	1555
U.	1270	06/	695	835	1530	1330	840	755	880	1580	1390	890	800	930	1625
12	1340	098 (750	006	1575	1400	910	800	096	1625	1470	096	850	1020	1675
15	1390	925	805	985	1615	1450	975	860	1035	1665	1510	1025	915	1100	1720
30	1560	1240	1130	1280	1720	1620	1300	1190	1340	1785	1685	1355	1250	1410	1850
45	1665	1450	1360	1480	1790	1735	1510	1430	1550	1860	1800	1580	1500	1620	1930
7	1760	1600	1535	1625	1840	1830	1665	1605	1685	1905	1885	1725	1670	1760	1980
1 15	1820	1700	1660	1720	1865	1890	1770	1730	1790	1930	1945	1835	1780	1860	2010
1 30	1840	1775	1740	1785	1875	1910	1840	1810	1850	1935	1980	1905	1865	1920	2020
1 45	1865	1810	1805	1830	1880	1935	1900	1875	1910	1940	2000	1955	1920	1970	2025
2 C	1875	1850	1835	1860	1885	1945	1920	1905	1930	1945	2010	1985	1975	2000	2030
2 15	1880	1870	1860	1880	1890	1950	1940	1930	1950	1950	2020	2000	2000	2010	2035
2 30	1885	1880	1875	1885	1895	1955	1950	1945	1955	1955	2030	2020	2015	2025	2040
2 45	1890	1885	1880	1890	1898	1960	1955	1950	1960	1958	2035	2030	2025	2035	2045
3 0	1895	1890	1885	1895	1900	1965	1960	1955	1965	1960	2040	2035	2030	2040	2050

TABLE 31. - CALIBRATION DATA FOR INSTRUMENTED NASA VI A SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

Time.	e e		1915/525°F	i L		Temperature	ature,	°F, at	Eac	h Couple Cycle	e Position		2065/67	75°F Cycle	cle	
min-	n-sec	H	2	3	7	2		2	5	7	5		2		7	
	0	1705	1870	1885	1840	1425	1785	1940	1955	1915	1520	1880	2005	2030	1985	1650
	3	1605	1845	1880	1805	1350	1675	1915	1950	1875	1420	1740	1980	2025	1945	1490
	9	1525	1815	1850	1760	1290	1585	1885	1920	1830	1340	1640	1940	2005	1905	1390
	6	1450	1765	1815	1705	1235	1520	1835	1885	1775	1285	1580	1915	1970	1870	1330
	12	1370	1710		1660	1185	1450	1780	1845	1730	1230	1525	1865	1935	1825	1260
	15	1340	1670	1740	1615	1135	1400	1740	1810	1685	1185	1475	1825	1885	1775	1220
	30	1170	1450	1520	1420	096	1230	1520	1590	1490	1015	1300	1610	1675	1570	1070
	45	1020	1270	1330	1250	870	1090	1340	1400	1320	920	1170	1415	1480	1385	096
_	0	900	1105		1085	790	970	1175	1240	1155	840	1050	1250	1305	1225	885
7	15	825	980	1020	096	720	885	1050	1090	1030	790	970	1125	1160	1105	850
-	30	755	890	920	870	680	815	096	066	076	750	006	1025	1060	1005	820
	4.5	710	810	830	790	640	770	875	895	855	700	845	935	096	925	775
7	0	680	750	765	735	610	740	810	825	795	675	800	870	885	860	750
7	15	650	700	715	069	009	710	760	775	750	665	770	815	830	805	730
2	30	620	670	680	099	290	680	730	740	720	655	750	780	800	770	720
2	45	900	630	979	620	580	099	695	705	685	645	730	750	765	745	710
က	0	290	615	625	605	575	650	675	685	999	079	710	735	745	725	700

TABLE 32. - CALIBRATION DATA FOR INSTRUMENTED TAZ-8A (SINGLE EDGE WEDGE) SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

F		101575	7 5 6 5 C 7 10 1		Temperature	ature,	°F, at	Eac		e Posit	ion	727370	בי ב ב	0,010	
min-sec	H	2	3	77.7	5		2		4	5	7 I	2 2	367	7	2
0	625	009	625	620	575	200	675	700	069	94 5	765	740	765	760	715
3	625	740	625	069	1020	700	810	700	770	1040	765	870	765	830	1040
9	049	820	645	770	1110	710	890	715	840	1140	770	950	775	910	1190
6	670	880	675	840	1180	740	950	745	910	1230	800	1020	805	980	1270
12	720	930	725	006	1230	790	1000	795	970	1280	840	1080	850	1040	1320
15	770	962	775	950	1270	078	1065	845	1025	1320	890	1140	006	1100	1360
30	1040		1045	1190	1420	1110	1280	1115	1090	1480	1175	1355	1185	1325	1550
45	1260		1275	1370	1530	1330	1460	1340	1440	1600	1400	1530	1410	1510	1675
1 0	1335		1355	1510	1630	1410	1600	1430	1580	1700	1570	1685	1580	1665	1770
1 15	1575	1640	1585	1630	1700	1650	1710	1660	1690	1770	1710	1780	1720	1770	1850
1 30	1660	1710	1675	1700	1750	1730	1780	1740	1760	1820	1800	1860	1810	1850	1910
1 45	1725	1760	1735	1750	1790	1800	1830	1810	1820	1860	1865	1920	1875	1910	1950
2 0	1780	1800	1790	1790	1825	1850	1870	1860	1860	1900	1920	1965	1930	1955	1970
2 15	1810	1825	1815	1815	1845	1880	1905	1885	1895	1920	1960	1970	1965	1960	1990
2 30	1835	1845	1835	1835	1860	1910	1925	1910	1920	1930	1985	1990	1990	1980	2010
2 45	1850	1860	1850	1850	1870	1920	1940	1920	1930	1940	2000	2010	2000	2000	2020
3 0	1860	1870	1860	1865	1880	1930	1945	1930	1940	1950	2010	2020	2010	2015	2030

TABLE 33. - CALIBRATION DATA FOR INSTRUMENTED TAZ-8A (SINGLE EDGE WEDGE) SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

	7	1780	1670	1600	1550	1500	1460	1275	1150	1040	930	860	810	780	750	735	725	715	
cle	7	1910	1860	1810	1765	1710	1680	1480	1300	1140	1020	930	865	820	790	780	770	760	
S of Cy		1995	1970	1945	1910	1860	1820	1605	1400	1240	1100	066	915	855	820	800	780	765	
2065/675°F Cycle	2	1880	1840	1790	1745	1690	1645	1460	1280	1120	1000	910	845	800	770	760	750	740	
] [1995	1975	1950	1920	1870	1830	1615	1410	1250	1110	1000	920	860	820	800	780	765	
Position	2	1725	1630	1560	1500	1450	1410	1225	1090	975	875	810	755	725	662	675	099	645	
Each Couple	7	1860	1810	1760	1720	1660	1630	1430	1260	1100	066	006	830	780	750	720	705	069	
Each	3	1920	1910	1885	1860	1820	1770	1560	1355	1190	1040	076	875	825	160	730	700	695	
°F, at	2	1840	1800	1750	1710	1650	1610	1410	1240	1080	970	880	810	760	725	700	685	670	
ture,		1920	1910	1890	1865	1830	1780	1570	1365	1200	1050	950	880	830	765	730	700	695	
Temperature		1670	1580	1510	1450	1400	1360	1175	1030	910	820	160	705	049	049	605	290	575	
T T	7	1830	1770	1735	1695	1640	1605	1380	1210	1070	950	860	795	740	695	099	049	620	
525°F Cx	! !	1860	1850	1820	1795	1765	1715	1510	1305	1135	066	890	825	765	705	099	079	625	
915/57	2/2	1800	1750	1715	1670	1615	1580	1360	1190	1040	930	840	775	720	675	079	620	009	
		1860	1850	1830	1805	1775	1725	1520	1315	1145	1000	006	830	770	710	099	079	625	
T. T.	in-sec	0	ĸ	9	6	12	15	30	4.5	0	15	30	45	0	15	30	45	0	
1:1	min									٦	-	,	-	7	2	7	7	3	

TABLE 34. - TOTAL THERMAL CYCLES FOR EACH SPECIMEN

	(3 min da	Total Cycles well in fluidize	od hoda)
Allow and Condition	2065/675°F	1915/525°F	1990/600°F
Alloy and Condition	(1129/357°C)	<u>(1046/274°C)</u>	(1088/316°C)
B1900	-	600	-
B1900 + Jocoat B1900 DID + Jocoat	1300, 1700 2300	-	2050 1000
IN-100	2300	-	3250, 1200
IN-100 IN-100 + Jocoat	300	200 500	-
IN-100 + Xcoat A	200	500	470
IN-100 DS	2400	-	-
IN-100 DS + Jocoat	2200	-	-
MAR-M 200	-	200	-
MAR-M 200 + Jocoat MAR-M 200 DS	550	-	470
	2400	-	4000
Udimet 700 wrought	-	200	-
Udimet 700 cast Udimet 700 wrought,	1300	500	-
clad + Xcoat B (SEW)	1500	-	-
NX-188	500	-	500 700
NX-188 + RT-1A coat	1100	-	500, 700 700, 1200
NX-188 DS	6500	-	6250 ^a
NX-188 DS + RT-1A coat	6100	-	6250 a
WAZ-20 + Jocoat	50	-	700 ^a
WAZ-20 DS + Jocoat	6100	-	5500 ^a
TAZ-8A	1100	600	1200
TAZ-8A (SEW) TAZ-8A clad + Xcoat B (SEW)	6100 6100	-	6250
TAZ-8A DS	2200	-	6250 ^a
M22	-	500	-
IN 713C	-	500	<u>-</u>
IN 738	200	500	500
IN 162	-	600	-
MAR-M 509	500	500	700
René 80 RBH	200 300	500	500
NASA VI A	300	600	500 700
TD-NiCr	200	200	, 00
MAR-M 302	-	500	•
WI-52	-	500	-
X-40	300	500	-

a_{Two} specimens were tested for the same number of cycles.

TABLE 35. - SUMMARY OF CRACK PROPAGATION FOR SERIES G SPECIMENS CYCLED BETWEEN 2065°F (1129°C) AND 675°F (357°C)

(3 min dwell in each bed)

AVB	out	1	1 1
Third Crack nt Back	long 1	! !	1 1
Thire	cox. 0.200	th fixture holes. but specimen distorted. section not initiating at edges [Specimen 1) p fixing hole. le 0.300 in length. d.	: :
in. ck Avg	les apprecimen.	les. distorte nitiatir 	11
ck length, i Second Grack nt Back	ure ho of sp	ure ho cimen i not i	: I
Crack length, in. Second Crack Front Back Av	both fixt ched. remainder remainder	both fixt ea but spe of section h. top fixin hole 0.30	
First Crack ont Back Avg	Cracks not observed. Cracks starting from both fixture holes approx. 0.200 long but no cracks in test area. Top of specimen detached. Severe distortion of remainder of specimen. Specimen lost in bed, not available for inspection.	Cracks not observed. Gracks starting from both fixture holes. No cracks in test area but specimen distorted. Crack across center of section not initiating om bottom: 1.65 in. 370 .380 .375 Cracks not observed. B1900 DID + Jocoat (Specimen 1) Cracks not observed. Cracks not observed. Cracks at top fixing hole. Gracks at top fixing hole. Top of specimen detached.	om bottom: 1.92 in. 420 .420 .425 .550 .560 .550 Cracks not observed.
First	Cracks not c Cracks start no cracks in Top of speci Severe dist	Cracks not Cracks star No cracks i Crack acros from bottom: .370 .38 Cracks not B1900 Cracks not Cracks not Cracks at t Top of spec	from bottom: .420 .44. .550 .50
Cycles	$ \left\{ \begin{array}{c} 100 \\ 300 \\ 700 \\ 1200 \\ 1700 \end{array} \right. $	\begin{cases} 100 & 300 & 800 & 13000 & 1300 & 1300 & 1300 & 1300 & 1300 & 1300 & 1300 & 1300 & 1300	Distance 1800 2300 2300
Edge Radius, in.	$0.025 \ 0.040 \$	$ \begin{array}{c} 0.025 \\ 0.040 \end{array} $ $ 0.025 \\ 0.025 \end{array} $	0,025

TABLE 35 (cont.)

H dob					40000	1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Radius, in.	Cycles	Front	First Crack t Back	k Avg	Second Front B	nd Crack Back	k Avg	Third Front B	rd Crack Back	AVB
		NI	IN-100 + J	Jocoat (S	(Specimen	P)				
0.025	Distance 25 50 100 200 300	from bot Cracks .282 .357 .388 .434	bottom: 2.67 i cks not observed 2 .312 .297 7 .375 .366 8 .435 .412 4 .450 .442	2.67 in. erved .297 .366 .412 .442						
0.040	300	Cracks	not obs	observed						
		NI	IN-100 + X	Xcoat A ((Specimen	1)				
0.025	Distance 25 50	from bot Cracks	bottom: cks not obs	2.00 in. erved			2.60 in.			
	100 200	.327	.352 .340 .426 .432	.432	0 607.	.373	0.391			
0.040	200	Cracks	not obs	observed						
			IN-100	DS (Specimen	imen 7)					
0.025	Distance 1100	from boti Cracks	om: not	1.30 in.			2.10 in.			
	1300 1500	.030	.03	030	.016	.014	.015			
	1700	.065	•	. 064	.034	.033	.034			
	1900 2400		• •	.078	.045	.040	.043			
0,040	2400	Cracks	not	observed		<u>.</u>				

TABLE 35 (cont.)

ļ		\$	Crook longth	j		
Edge Radius, in.	Cycles	First Crack Front Back Avg Fro	Second Crack Front Back	AVE	Third Crack Front Back	rack
		IN-100 DS + Jocoat (Spe	(Specimen 5)			
0.025	Distance 1700	from bottom: 1.10 in. Cracks not observed.	Coating started	2.25 in. to chip	off edge at	ш
	2200	900 cycles. .132 .106 .119 .093	93 .070	.082		
0.040	2200	Cracks not observed				
		MAR-M 200 + Jocoat	at			
0.025	550	Cracks not observed				
0.040	Distance	£r		2.25 in.		
	0 25					
	50	.380 .415 .398 0 Top cracked off .550	0 0 50 .520	0 .535		
		MAR-M 200 DS				
0.025	Distance	from bottom: 1.94 in. Cracks not observed		2.86 in.		
	1300 1500	.035 .033 .093 .089		0		
	1700 1900 2400	.142 .133 .147 .04 .142* .133* .147* .05 .142 .133 .147	.049 .039 .050 .045	048		
	* Crack to cycles oright an	turned at right angles and prostite branch cracks were .250 a angle branch cracks were both	gles and propagating in both directions were .250 and .080 long. At 2400 cycles were both .400 long.	n both dir ng. At 24	ections. 100 cycles	At 1900 the
0,040	2400	Cracks not observed				

TABLE 35 (cont.)

Edge Radius, in.	Cycles	Front Udimet 70	rst Crack Back	k Avg ht, Clad	Crack le Second Front B	Crack length, Second Crack ront Back Xcoat B (SEW)	in. Avg	Third Front B	rd Cracl Back	Avg
0.030	25. 50 300 800 1300	Cracks not Cracks star Cracked thr Distortion Apparent cr		rved from fixir st ar	wer hole but in.	fixing hole no cracks from bottom	e m	obscured b	by cladding	ing
0.025	Distance 100 200 300 500	from bot .130 .223 .245 .278	tom: .154 .207 .211		.122 .197 .227 .258	.161 .188 .205	2.27 in. .142 .193 .216	.140 .268 .285	. 125 . 212 . 255	1.35 in. .133 .240 .270
0.040	Distance 100 200 300 500	from bott Cracks .206 .210 .215 .X-18	com: not ob .204 .212 .212 .218	2.00 in. served .205 .211 .217	0 .192 .200 .Specimen	22. 6	2.67 in. 0 .197 .208	0 .121 .148	1 2	1.35 in. 0 .119 .152
0.025	Distance 100 300 500 700 1100	from Cr .0 .1	.0m: not ob .084 .237 .332	9.3 3.3	0 .125 .215 .290		2.84 in. 0 .140 .211	0	0	1.85 in.
0.040	Distance 500 700 1100	from bot Cracks .094 .129	com: not obs 136	2.30 in. served .047	0.103	0.137	1.68 in.			•

TABLE 35 (cont.)

Edge				Crack	Crack length.	in			
Radius, in.	Cycles	First Crack Front Back	Avg	Second Front B	and Crack Back	וצו	Third Front B	Ird Crack Back	Avg
	•		NX-188 DS	S (1)					
$0.025 \\ 0.040$	$\begin{cases} 3500 \\ 4000 \end{cases}$	Cracks not ob Short cracks	not observed cracks at fixing holes	holes					
0.025	Distance 4750	fr	2.34 in.			2.96 in.			1.61 in.
	5500 6500	. 145 . 181 . 163 . 266 . 268 . 267	. 163	.144	.209	.254	0.189	0.190	0.190
0.040	6500	Cracks not ob	not observed						
		NX-186	NX-188 DS + RT-1A Coat (4)	1A Coat	(4)				
$0.025 \\ 0.040$	$\begin{cases} 3600 \\ 6100 \end{cases}$	Coating detaching from both edges Cracks not observed	hing from	both ed	lges				
		WAZ-20	WAZ-20 + Jocoat (Specimen 3)	(Specime	n 3)				
0.025	Distance	from bottom: Cracks not ob	1.83 in.			3.19 in.			2.54 in.
	25 50	.381 .397 .389 .467 .420 .444	389.	.293	.347	.320	.327	0.368	0.348
0,040	50	Cracks not ob	not observed						
		WAZ-	$WAZ-20 DS + J_0$	+ Jocoat (3	<u></u>				
0.025	Distance 900	£r	2.34 in. sappearing in	g in edges	. se				
	1600	Cracks r Notches .317	not observed approx150 deep, .488 .403 (ap)	р С	rface rute exte	ep, surface roughening very noticeable (apparent extent of crack but may be cracks in oxide coating)	s very n ack but	noticeal may be	1e
	3600	Notch depth a	depth approx300	00			ò		
0.040	6100	Notches appro	approx050 deep.	eep.					

TABLE 35 (cont.)

7.7					-					
rage vadius		1	•		शह	ll Section	1n.	· ·	į	
in.	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Inira Crac t Back	Avg
				TAZ-8A	Ą					
0.025	Distance	fr(1.20 in.			1.88 in.			2.75 in.
	700	Ŭ		served						
	200	•	9	.359	.345	.281	.313			
	009		6	.394	.380	.359	.370	0	0	0
	700	-	9,5	.400	.411	.376	.394	.395	.410	.403
	1100	7. 067.	36	467.	.501	.392.	.465	.400	.415 .444	.408 .466
0,040	1100	Cracks	not obs	observed						
				TAZ-8A ((SEW)					
0.030	Distance	from bot	: mo:	2.70			2.25 in.			1.35 in.
	1100	Cracks	-	observed						
	1600	Cracks		ne	fixing	hole ap	approx1	121 long		
	2100	Cracks		served in	test s	section				
	2600	960.		.094	040.	.052	970.	0	0	0
	6100	.185		.195 .190		.210	. 204	.195	.205	.200
		- •	TAZ-8A	Clad + Xco	at B	(SEW)				
0.030	500 6100	Claddi Cracks	Cladding commenc Cracks not obser	ing ved		ba obs	ge by	peeling cl	cladding	
		Metall	ographic	xami		showed than	t sma		were pre	present.
			TAZ-8	DS	(Specimen 1	コ				
0.025	Distance	from bo	com:	1.27 in.						
	1300		960	106						
	1500		.136	. 137						
	1700 2200	.152	.156	.154 .198						
0,040	2200	Cracks	not	observed						

TABLE 35 (cont.)

Edge					Crack	1 21	in.		1 1	
Kadlus, in.	Cycles	Front	Back	Avg	Second Front B	nd Crac Back	Avg	Third Front B	rd Crack Back	ck Avg
			IN		(Specimen 2)					1
0.025	Distance 100 200	from bott .261	ttom: .271 .335	1.78 in. .266 .322	.279	.288	2.25 in. 284 .309	0.287	0.276	3.00 in.
0.040	Distance 100 200	from bot Cracks .022	ttom: 1.55 s not observed .020 .021	1.55 in. served .021						
			MAR-M	509	(Specimen 9	~				
0.025	Distance 200	from bo	ttom: s not ob	2.90 in. observed			2.20 in.			2.50 in.
	300 400 500	.104 .249 .278	.137 .220 .308	.121 .235 .293	.053 .133 .160	.089	.071 .144 .168	.048 .106 .140	.076	. 129
0.040	Distance 100 200 300 400	from bo Crack .052 .141	ttom: s not ob: .102 .162	m: 2.17 in. ot observed .102 .077 .162 .152 .240 .227						
	200		.282 Ren é	.281 né 80 (Spe	(Specimen 1					
0.025	Distance 100 200	from bol .322 .342	ttom: .269 .342	1.50 in. .296 .342	.288	.220	2.00 in. 254	.284	.260	2.40 in. .272 .294
0.040	Distance 100 200	from bo Crack .096	X	om: 2.80 in. not observed .052 .074	.082	0	1.45 in.			

TABLE 35 (cont.)

Edge					Crack		in.			
Radius, in.	Cycles	Front	irst Crack Back	ck Avg	Second Front Be	nd Crack Back	Avg	Thi Front	Third Crack	Avg
			⊠ I	RBH (Specimen	men 1)					
0.025	Distance	from bo	ttom:	2.71 in.			2.14 in.			1.83 in
	100 200	.332	.173	.341	.157	.115	136	.160	.166	. 163
	200	666.	000.	, , , , ,	. 283	.281	787.	1/7.	. 794	.275
0.040	Distance 100 200 300	from bo Crack .209	tom: not .18	2.25 in. observed 2 .196						
))	 	NASA	NASA VI A (Snecimen		2)				
				127	- 1	7				
0.025	Distance	from bo	: mo:	3.35 in.			1.38 in.			
	20		not	served						
	100	. 282	.312	.297	0	0	0			
	200	.345	.330	30 .338	.338	.349	.345			
	300	.367	.346	.357	.420	.400	.410			
0.040	Distance	from bo		2.58 in.						
	(2 (2)	755 255	.s 110 c 00%	Observed						
	001		333	331						
	200		390	380						
	300	707	.392	398						

TABLE 35 (cont.)

Edge					Crack	Crack length,	in.			
Radius.		Firs	t Crack		Second	nd Crack	וצו	Third	rd Crack	ᅩ
in.	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Back	AVB
				TD-NiCr						
0.025	Distance 25	from bott 270	оm: .2	2.70 in.	.225	φ	0	.113	4	90
	50 100	.372	.363	.368	.385	385	.352 .385	.355	.345	.350
	200	.403	4.	/07	.423	7	Υ)	.390	Ω	_
0,040	Distance	from bott	:шо	2.75 in.			2.30 in.			1.55 in.
	25 50	$\frac{Cracks}{112}$	$\frac{1}{1}$	served 131	5	0	.026	0	0	
	100	. 220		.217	.121	.121	.121	.045	.065	.055
	7007	0/7.	•	707.	`	`	! !) })
				V-40						
0.025	Distance	from bot	com:	1.62 in.			2.64 in.			1.00 in.
	100	Cracks	not c	served	<	V	Ľ	C	C	C
	300 300 300	. 298	277	. 288	276	. 246	.261	.139	.137	.138
0.040	Distance	from bot	ttom:	2.60 in.			2.33 in.			1.63 in.
	100 200	Cracks 100	not observed .090 .095	served .095	.042	.020	.031	.040	.022	.031
	300	.183	. 200	.192	.047	.091	690.	.051	.040	970.

TABLE 36. - SUMMARY CRACK PROPAGATION FOR SERIES H SPECIMENS CYCLED BETWEEN 1915°F (1046°C) AND 525°F (274°C)

(3 min dwell in each bed)

Edge Radius.		Firs	st Crack	¥	Crack	Crack length in. Second Crack	in.	Th f w	rd Crack	
in.	Cycles		i m i	Ave	1141	Back	Avg	Front	וסו	AVB
0.025	Distance	from bot	-	1.43 in.			2.30 in.			2.63 in.
	700 700 700 700 700	No cracks . 244 301	obs 219 247 287 310	.rved .232 .274 .298	. 237 . 289 . 309	. 217 . 278 . 282	. 227 . 284 . 296	0 .178 .226 .260	. 176 . 272 . 285	0 .177 .252
0.040	009	No cracks		observed] 	
				IN-100						
0.025	Distance 50	otto		2.60 in.			1.80 in.			1.30 in.
	100 150 200	300 . 300 . 360	297 342 385	.299 .322 .373	.257 .324 .374	.247 .333 .350	. 253 . 329 . 362	.181 .219 .225	. 228 . 249 . 263	. 205 . 234 . 244
0.040	Distance 100 150 200	from bottom: No cracks .095 .1	ob 127 132	1.48 in. rved .111						
		•	IN-100	+ Jocoat	By TRW	(M				
0.025	Distance 300	from botto) Pha	1.05 in.			2.10 in.			2.48 in.
	400 500	.405	81. 81.	.393	.265 .287	.256 .285~	.261 .286	.279	.232	.256

TABLE 36 (cont.)

1 P				enegapine increase de l'agrandició de la desta	Crack	1enoth	<u>.</u>	*		1
Edge Radius, in.	Cycles	Front	t Crack Back	Avg	Sec	Second Crack ront Back Av	ck Avg	Thi	Third Crack	Avg
0.040	Distance 300 400 500	from bottom No cracks .258	: obse 288 290	2.22 in. rved .273 .281						
			IN-	IN-100 + Xcoat	oat A					
0.025	Distance 50 100 150 200	from bott. 278 .308 .336 .358	om: .300 .311 .339	2.28 in. .289 .310 .338	.284 .345 .347	.235 .310 .328 .330	1.35 in. .260 .328 .338			
	300 400 500	.381 .418 .422	.380 .409 .415	.381 .414 .419	.365 .371 .397	.370 .428 .441	.368 .400 .419			
0,040	200	No crac	ks	observed MAR-M_2	200					
0.025	Distance 50 100 150 200	from bott .255 .354 .363 .363	tom: .258 .341 .343	1.33 in. 257 .248 .253 .358	.161 .308 .340 .365	.162 .332 .360	1.91 in. 162 320 350 363	. 090 . 092 . 097 . 090	.105 .113 .113	1.72 in. .098 .103 .105
0.040	Distance 50 100 150 200	I k ord	om: ks obs .240 .278 .278	2.70 in. erved .253 .299	. 240 . 240	. 240 . 289	1.14 in. 0 .240 .265			

TABLE 36 (cont.)

Edge					Crack	Crack Length	ı, in			
Radius,		Fir	st Crack	×	Seco	Second Crack	1.	Th	Third Crack	١
in.	Cycles	Front	Back	Avg	Front	Back	Avg	Front	l a	Avg
			Udimet	700	(Wrought)					
0.025	Distance 100	from bot Cracks		1.32 in.			2.20 in.			2.75 in.
	150 200	.298	.319 .309 .365 .346	.309	.108	.074	.091	.305	.312	0.309
0,040	Distance 150 200	from bo Crack .235	ttom: 2.00 s not observed .210 .233	2.00 in. served .233						
			ÞΙ	Udimet 700	(Cast)					
0.025	Distance	from bo	ttom:	1.34 in.			2.30 in.			2.75 in.
	100		Ĕ	served						
	150		.140	. 133	. 047	.042	. 045	0	0	0
	200		. 247	. 237	$\frac{199}{1}$. 185	.192	. 182	. 203	.193
	200		299	. 292	. 235	. 233	. 234	. 297	. 268	. 283
	500	.364	.325	.325 .345	.282	.285	. 283	.330 .355	.313 .329	.322
0.040	Distance	from bo	ttom:	2.33 in.			1.45 in.			
	150	Cracks 075	not ob	er						
	300		.076	• •						
	400		118		0	0	0			
	200		177	•	0	.085	. 043			
				TAZ-8A	~ 1					
$0.025\ 0.040$	009	No cra	acks obs	observed						

TABLE 36 (cont.)

Edge Radius.		FI	rst Crack	¥	Crack L	Crack Length Second Crac	in.	7.4. C.E.	1 1	<u> </u>
in.	Cycles		Ba	AVB M22	Fro	1 401	Avg	Front	Back	AVB
0.025	tance	o t	tom:	0		C	2.14 in.			1.30 in.
	100 150	. 160	.127	.097 .097 .147			. 092 . 206	0	0	0
	300 300 300	. 177	.141	r) r) r	. 201	.329	.218	.020		.010
	500	.330	.400	\sim	20	セセ	\sim	2	.316	25
0.040	Distance 300 400 500	from bot No cra	tom: cks obse .015	2.70 in. erved .017						
	· ·		,	IN-713C	3C					
0.025	tance	from bott	com:	2.4			1.64 in.			1.14 in.
	150	.092	eks obs .051	erved .072	.050	4	4			
	200 300	.157	.16	.160	.200	-1 ~	20		_	٦
	400	365	371	368	359	341	.350	.290	305	.298
			۲.	0/6.	7/6.	\cap	٥		7	7
0.040	Distance 400 500	from bott No crac	tom: cks obse	2.10 in. served .037						

TABLE 36 (cont.)

Edge					Crack	o) l	i, in.	Ē	- 1	
Radius, in.	Cycles	Front	rst Crack Back	AVB	Second Front B	nd Crack Back	Avg	Front B	Back	AVB
				IN-738	∞l					
0.025	Distance	from bot	tom:	2.02 in.			1.20 in.			2.82 in.
	100	'n	cks obs	rved			·			
	150	. 226	_	. 222	0			,	•	•
	200	.276	0	. 266	.157	∞	7			
	300	.311	_	.326	.291	\vdash	0	∞	9	\sim
	400	.354	.359	.357	.340	.341	.341	.239	. 183	.211
	200	000.	`		1770.	١ .	•))	1
0,040	Distance	bot	tom:	2.64 in.						
	150	cra	cks obs	erved						
	200	\sim 0	. 14	.138						
	300	~ `	.22	. 226						
	400 500	.264	247	. 253						
		,			c					
				791-N1	21					
0.025	Distance	from bot	tom:	1.20 in.			2.87 in.			2.33 in.
	300	No or	rks obs	erved						
		2000	2000	230	c	C	<u> </u>	c	C	C
	900	7,70	677.	2,7	130	17.5	_	-	17.2	_
	000	•	4.0	700	100	200	. L.J.C	177.	2,7	261
	009	•	Υ.	907.	. 195	>	>	_	047.	0
0,040	009	No cra	cks obse	served						
				MAR-M	509					
0.025	Dietano	from hot	+ Cm •	1 83 in			1.47 in.			2.30 in.
0.00	35) C	c, C,	yed ved						
	150	7 2	050	70.						
	200	760	\circ		C	C	C	0	0	0
	000				193	110	-	700	000	α
	300	1.23	. L L U	117.	150	17%	111.	135	105	120
	400 100	. TOO	+ C -	101.	.139	17.	0	157	167	JV
	200	. I8y	.190	.190	. L94	C/T.	0	/CT:	/OT:	0

Table 36 (cont.)

Crack Length, in. Second Crack Second Crack Second Crack Second Crack I.45 in.											
dius, First Crack Second Crack Front Back Avg Front Back	Edge					Crack	Length				
1.0 Cycles Front Back Avg Front Back Avg Front Front Back Avg Front Front Back Avg Front Front Back Avg Front Distance from bottom: 1.45 in. 2.58 in. 100	Radius.		Fir	st	V	Seco	nd Crac	<u>بر ا</u>	Third	d Crack	
040 Distance from bottom: 1.45 in. 2.58 in 300 cracks observed 400 .167 .033 .100 .090 .072 .081 .178 .129 .154 .143 .080 .112 .108 .109 .072 .081 .112 .129 .154 .143 .080 .112 .100 .003 .107 .083 .100 .000 .000 .000 .120 .093 .107 .098 .0 0 .049 .205 .120 .205 .197 .115 .141 .207 .214 .207 .211 .167 .115 .141 .207 .216 .194 .205 .199 .205 .200 .275 .226 .251 .205 .192 .199 .205 .000 .275 .226 .251 .205 .192 .199 .205 .000 .275 .226 .251 .205 .194 .205 .199 .205 .200 .000 sided cracks only that do not propagate .200 .000 .200 .331 .331 .332 .332 .332 .332 .332 .332	in.	Cycles	Front	MI	1	ront	S K	1	10	Back	Avg
300 No cracks observed 400 .167 .033 .100 .090 .072 .081 500 .178 .129 .154 .143 .080 .112 René 80 Distance from bottom: 2.08 in. 100 .093 .107 .098 .0.049 300 .214 .207 .211 .167 .115 .141 400 .275 .226 .251 .205 .192 .199 500 .283 .230 .257 .216 .194 .205 500 One sided cracks only that do not propagate No cracks observed 300 .348 .330 .335 .287 .296 400 No cracks observed 600 No cracks observed TD-NICK Distance from bottom: 1.13 in. 200 No cracks observed 300 .351 .350 .331 .345 .328 .335 600 No cracks observed TD-NICK Distance from bottom: 2.67 in. Distance from bottom: 2.67 in. Distance from bottom: 2.67 in. 1.80 in 50 .336 .337 .328 .335 500 .336 .335 .345 .341 .343 50 .336 .337 .348 .335	0,040	Distance	from bot	tom:	10			.58			1.77 in.
René 80 1.30 in 1.30 in 1.00 1.00 1.20		300 400 500	No cra .167 .178	cks obs .033 .129	rve .1	.090	07 08	08 11	~ ∞	.063	.067
Distance from bottom: 2.08 in. 1.30 in 100					René	80					
150	0.025	Distance	from bot	.от:	2.08			.30			2.25 in.
500 One sided cracks only that do not propagate NASA VI A		150 200 300 500	No cra .120 .140 .214 .275	. KS ODS. . 093 . 153 . 207 . 226 . 230	rved .10 .14 .21 .25	0 .098 .167 .205	11 19 19	0 .049 .141 .199	001	0 .079 .119	0 .072 .105
Distance from bottom: 1.13 in. 200 No cracks observed 300 .305 .317 .311 .305 .287 .296 .16 .306 .351 .350 .351 .350 .351 .362 .342 .325 .24 .287 .296 .16 .363 .361 .362 .345 .343 .28 .296 .180 .180 .19 .039 .0020 .020	0,040		One si	pa			t pr	agate		e c	
Distance from bottom: 1.13 in. 200 No cracks observed 300 305 317 311 305 327 2296 316 320 335 337 335 337 335 328 327 328 328 329 328 329 328 329 328 328					- 1	ľ					
300 .305 .317 .311 .305 .287 .296 .16 300 .305 .317 .311 .305 .322 .325 .21 400 .348 .330 .339 .327 .328 .325 .21 500 .351 .350 .351 .342 .328 .335 .24 600 .363 .361 .362 .345 .341 .343 .28 .040 600 No cracks observed TD-NiCr TD-NiCr TD-NiCr 1.80 in. 1.80 in. 1.00 .130 .119 .039 0 .020 1.00 .334 .335 .345 .345 .341 .343 .240 .270	0.025	Distance		tom:	1.13			.78 i			2.52 in.
.040 .363 .361 .362 .342 .328 .323 .244 .343 .285 .040 .363 .361 .362 .345 .341 .343 .285 .040 .040 No cracks observed $\frac{\overline{\text{TD-NiCr}}}{\overline{\text{TD-NiCr}}}$.025 Distance from bottom: 2.67 in. 1.80 in. 1.00 .130 .119 .039 0 .020 .020 .020		300 400 100 100 100 100 100 100 100 100 1	305 348 348	.317 .330	. 33 . 33 . 33 . 33	00%	328	32	16 21	.148	. 156
.040 600 No cracks observed TD-NiCr		009	.363	.36	2	t > t	ケア	34	28 28	7	⊅ ∞
.025 Distance from bottom: 2.67 in. 1.80 in. 50 .130 .108 .119 .039 0 .020 .030 .039 0 .020	0.040	009	o cr	cks obs	erved						
.025 Distance from bottom: 2.67 in. 1.80 in. 50 .130 .108 .119 .039 0 .020 .030 3.6 3.3 3.3 3.5 3.70 3.68 3.69 27.					TD-Ni	Cr.					
336 335 370 368 360 97	0.025	Distance 50	from bo 130	tom:	.67 i	.039	0	.80	0		1.45 in.
tz. 000. 000.		100	.33	3	33	.370	36	36	24	3	. 238
.451 .439 .445 .444 .453 .4 .465 .440 .453 .460 .465 .4		150 200		60	44 45	.444 .460	6.5	4	46 48	.465	.467

TABLE 36 (cont.)

Edge			Í		Crack	Le	in.		ı	
Radius, in.	Cycles	Firs	t Crack Back	Avg	Second Front B	nd Crac Back	AVB	Front B	Back	Avg
0.040	Distance 50 100 150 200	$rac{a}{a}$	S O	4.2						
и С	•	, d	• •	MAR-M	302		1 30 in			u; 77 6
0.025	Distance 200 300 400 500	cra 55 14 52	cks obse .073 .137 .169	rved .069 .126	.061 .158 .200	.068 .147 .199	. 965 . 153 . 200	.060 .113 .168	.063 .126 .148	062 120 158
0.040	Distance 200 300 400 500	from bot1 No crac .134 .173	com: cks obs .120 .172 .172	2.56 in. erved .127 .173 .218	.110 .140 .214	.101 .144	3.02 in. .106 .142 .203	.138 .191 .225	0 .142 .180	1.86 in. .069 .167 .203
200	Dietanoe	from hot	+ CB.	WI-5	7]		2.20 in.			2.68 in.
0.00	100 100 200 300 400 500	00 C K C K C K C K C K C K C K C K C K C	. obs 088 166 222 255 265	ved .096 .166 .214 .253	. 133 . 207 . 253 . 270	0 .117 .197 .237 .282	. 125 . 125 . 202 . 245	0 .082 .141 .165	0 .060 .124 .153	071 .071 .133 .149
0.040	Distance 200 300 400 500	from bot No cra .128 .150	ttom: acks obse .065 .117 .125	1.65 in. erved .097 .134	.071 .125 .130	.068 .108	1.95 in. .070 .117 .123	.116 .122 .132	.044	2.17 in. .080 .098 .120

TABLE 36 (cont.)

Edge					Crack	Crack Length, in.	ı, in.			
Radius,		Fir	First Crack	¥	Seco	Second Crack	소	Thi	Third Crack	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
in.	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg
				X-40						
0.025	Distance	rom bo	ttom:	1.00 in.			1.48 in.			2.07 in
	150	No cr	acks observed	erved						
	200	.065	.053	.059	.031	0	910.	0	0	0
	300	.117	.116	.117	.041	.030	.036	.125	.077	101
	700	. 200	. 203	. 202	.110	. 112	.111	.191	.176	.184
	200	.251	.253	. 252	.138	.115	.127	. 264	. 249	.257
0.040	Distance	from bo	ttom:	1.58 in.						
	200	No cr	acks observed	erved						
	300	090.	.047	.054						
	400	.085	.078	.082						
	200	060.	.102	960.						

TABLE 37. - SUMMARY OF CRACK PROPAGATION FOR SERIES I SPECIMENS

CYCLED BETWEEN 1990°F (1088°C) AND 600°F (316°C)

(3 min dwell in each bed)

Edge					Crack	เสม	, in.		1	
Radius, in.	Cycles	First Front 1	rst Crack Back	AVB + Iooost	Second Front Ba	nd Crack Back	Avg	Third	d Crack Back	Avg
0.025	Distance	from bott	. 1	2.15 in.	ł		2.55 in.			
	470 700 900 1200	Gracks .297 .367 .404	not obs .317 .343 .385	observed 17 .307 43 .355 85 .395	0 .286 .357	. 280 . 342	283 350			
0,040	1200	Cracks	not	observed						
		B.	B1900 DID	+ Jocoat	t (Specimen	men 2)				
0.025	Distance 2000 2750 3250	from bottom: Cracks not .366 .3	not not .38	1.40 in. observed 0 .373 2 .417	.273	.308	2.40 in291			
0,040	3250	Cracks	not obs	observed IN-100 + Xcoat	coat A					
0.025	Distance 0 50	~ ~	com: not	1.02 in.	C	C	1.80 in.			
	100 175 300 470	372 380 382 465			.280 .330 .390 .413	.254 .325 .360 .370	.267 .328 .375 .392			
0,040	470	Cracks	not obs	observed						

TABLE 37 (cont.)

Edge Radius, in.	Cycles	Fi	irst Crack Back	k Avg	Crack Lose Second Front B	Length, nd Crack Back	k Avg	Third Front B	rd Crack Back	Avg
			MAR-M	t-M 200 +	Jocoat					
0.025	Distance	from bot	ttom:	1.33 in.			2.30 in.			
	0 50	ack 50	not ob .380	r.						
	100	.415	•	44	C	c	c			
	300 470	422	420	.421	.365	.380	.373			
0.040	470	Cracks	not	observed	i))) •				
			MAR-M 2	200 DS (S	(Specimen	12)				
0.025	Distance	from bo	:ош:	2.92 in.			1.71 in.			2.50 in.
	2000		.025	. 024	~	.010	\vdash			
	2750	090.	110	.085	.055	.050	.053	.063	.048	.056
	4000		.135	139	- 9	.155	9	.147	. 134	.141
0.040	4000	Cracks	not obs	observed						
			XX	NX-188 (Spe	(Specimen 2)					
0.025	Distance	from bot	ttom:	1.4			2.50 in.			2.12 in.
	300	Cracks .225	not observed . 207	ero 2	.185	.171	/	.051	.083	.067
	470	.312	302	307	. 295	.288	. 292	.155	.150	.153
0,040	Distance	from bo	tom:	2.70 in.	<u>}</u>		38			1.60 in.
	175 300 470	Cracks .058 .088	not obse .072 .121	served .065 .106	.045	.070	.058	0.071	030	0.051
	200		. 174	.155	.130	0	.114	.131	.059	.095

TABLE 37 (cont.)

Edop				Crack	Crack Length	j.			
Radius, in.	Cycles	First Cr Front Back	Crack ack Avg	Seco	Second Crack nt Back		Third	d Crack Back	Avg
			X-188	(Specimen 4)					†
0.025	Distance					1.54 in.			1.94 in
	200 500	Cracks not ol .170 .227 .340 .316	observed 27 .199 16 .328	.182	.178	.180	.095	.080	.088
0.040	Distance 200 500	from bott Cracks .055	om: 2.20 in not observed .013 .034	•					
		NX-188	+ RT-1A	Coat (Specimen	imen 1)				
0.025	Distance	from bott				2.40 in.			1.63 in
	200 400 700	Cracks n .119 .289	ot observed .120 .120 .280 .285	.057	.025	.041	0.220	0.241	0.231
0,040	700	Cracks not	observed						
		NX-188	+ RT-1A	Coat (Specimen	imen 2)				
0.025	Distance	from bottom:		•		1.68 in.			
	700 900 1200	.275 .20 .330 .33	.268 .272 .334 .332	.246	.254	.250			
0.040	1200	Cracks not	not observed						
		Z)	NX-188 DS (S	(Specimen 2					
0.025	Distance 4000	from bottom: Cracks not	obse	.68 in. rved, specimens	1 covered	.73 in with	ı. green oxide	de and	have
	4700 5500 6250	. 088 . 121 . 121 . 220		. 026 . 106 . 115	.052 .095 .100	.039 .101 .108			
0.040	6250	Cracks not	observed						

TABLE 37 (cont.)

Edge			Crack	Length, in.		
Radius, in.	Cycles	First Crack Front Back Avg	图	Second Crack ont Back Avg	Third (Front Ba	Crack Back Avg
		NX-188 DS	S (Specimen 4	~		
0.025	Distance 4000	from bottom: 1 Cracks not obse	3 in. ed, specimens	2.76 in. covered with g	n. green oxide	2.34 in and have
	4700 5500 6250	lost 15 20 30	ï	.030 .032 .080 .080 .090 .088	. 027 . 075 . 080	.025 .026 .074 .075 .084 .082
0.040	Distance 4000	from bottom: 1 Cracks not obse	93 in.	covered with	green oxide	and have
	4700 5500 6250	obviously lost ma .009 .014 .0 .032 .040 .0	naceriai 012 036 050			
		+ S(RT-1A Coat (Spe	(Specimen 1)		
0.025	Distance 4000 4700 5500 6250	from bottom: 2. Horizontal lines Coating starting .157 .225 .	in. eveloping post of to the control of the control	2.85 i coating acrodges of test 0 0 0 .201 .165	n. ss center of piece	test piece
0.040	6250	Cracks not observed	ed			
		NX-188 DS + RT	RT-1A Coat (Spe	(Specimen 2)		
0.025	Distance 4000 4700 5500 6250	from bottom: 2. Horizontal lines Coating starting .121 .087187125	in. eveloping j chip off 4	coating acro dges of test	oss center of piece	test piece
0,040	6250	Cracks not observed	e d			

TABLE 37 (cont.)

T doe				Crack	Crack Length,	ı, in.			
Radius, in.	Cycles	First Crack Front Back	ack Avg	Second Front B	nd Cracl Back	Avg	Third	d Crack Back	Avg
		WAZ-20	+ Jocoat	(Specimen	n 1)				
0.025	Distance	:mo:	2.92 in.			2.03 in.			0.98 in.
	100 175	not	observed 90 .305		(, (
	300 470	.390 .380 .392 .395	.385 .394	.375 .375	355.	.365 .420	385	385	385
0,040	700		bser) 	•) -)		
		WAZ-20	+ Jocoat	(Specimen	n 2)				
0.025	Distance	from bottom:	3.36 in.			2.37 in.			1.62 in.
	0 0	Cracks not o	bserved	טיי	216	305	319	787	208
	200 400	.306 .342 .372 .368	.368 .370	.386	.332	.359	.352	302	.327
	700	.373 .387	.380	.392	967.	777.	.380	.389	.385
0.040	700	Cracks not o	observed						
		WAZ-20	AZ-20 DS + Jocoat	t (Specimen	[men]				
0.025	Distance 2000	from bottom: 2 Surface started the formation o	.50 to fa	in. roughen from rough scale.	om the coe. Some	1.90 in. the commencement of Some indication of accurate measurement		cycling cracks a	2.20 in. 1g within 1 at 1.90 not be
		emp ted							
	3250 4700 5500	si αρού T	dropping off in parting to crumble .250 .265 .1	in patches uble and e	rode .160	with inlets .175 .	ets 0.30 in.	in. deep .130	ep .125
0,040	5500	not	observed						

TABLE 37 (cont.)

Edge		Crack Length. in.	
Radius,	•	rst Crack	
ın.	Cycles	AVE Fro	
0.025	Distance 2000	fr	'n.
		the formation of a rough scale. Some indication of cracks at 2.80 and 3.00 in. was observed, but accurate measurement could	
		not be attempted.	
	3250 4700	Coating dropping off in patches	
	5500	.326 .320 .323 .218 .260 .239 .176 .150 .163	
0.040	5500	Cracks not observed	
		TAZ-8A	
0.025	Distance	£r	ָב
	200	Cracks not observed	
	006	.272 .273 .268 .238	
	1200	.391 .409 .400 .326 .346 .336 .355 .385 .370	
0.040	1200	Cracks not observed	

TABLE 37 (cont.)

	Ę	in o tions.		,	in.				
Avg	3.00	o te c	.055 .075 .102		2.00	0.029			
rd Crack Back	ζ.	pr men opa er	.048 .054 .100 .120			000.			
Third		crac s spe not by 1	.062 .096 .104		•	0.027			•
in. Avg		e surfle on etal has sh	.063 .082 .103 .136		0.95 in	0 .062 .071			0 0 .118
Length ond Crac Back		s s e n	.066 .085 .103	<u>7</u>		0 .054 .065	,	(+)	0.116
Crack L Second Front B	le Wedge	These the crac crac the the son		(Specimen		0 690. 070.		(Specimen	0.120
Avg	S	1.83 in. erved .070 .110 .120	.063 .070 .076 .108	8A DS (Sr	1.17 in.	erved .056 .062 .099	observed	OS	1.98 in. observed 75 .073 33 .088
t Crack Back	TAZ	: t obs 058 075 090 sked		TAZ-8	com:	s not observed .055 .056 .057 .062 .095 .099	not obs	TAZ-8A	not not . 1(
Firs		from bottom Cracks no .085 . .142 . .150 .	. 040 . 045 . 047 . 090		from bottom	Cracks .057 .067 .103	Cracks		from bott Cracks .070 .072
Cycles		Distance 1 700 900 1200 1500 2000	3250) 4000 4700 5500 6250		Distance	4000 4700 5500 6250	6250		Distance 4000 4700 5500 6250
Edge Radius,		0.025			0.025		0.040		0.025

TABLE 37 (cont.)

Edge Radius, in.	Cvcles	Firs	st Crack Back	AVO	Crack L Second	Length, nd Crack	in.	Third	1 Crack	
0.040	Distance	fror	4	2.78 in.	2110	Dack	2.38 in.	FIOIL	Dack	AVB
	4000 4700 5500		00.00 00.00 00.00	. 225 . 267 . 350	0 .118 .208	.070	. 0 . 094			
	6250		55	.363	. 7	. 208	.214			
0.025	Distance 0	from b		1.9.	-1		2.64 in.		J	0.74 in.
	200 500	362	.406	.388	.272	.306	.289	.275	.255	.265
0.040	200	Cracks	not obs	erved						
				MAR-M 5	60					
0.025	Distance 175	K O	ottom: ks not obs	0 4			1.99 in.			2.80 in.
	300 470 700	103 184 245	. 186	. 101 . 185 . 246	.114	.081	.096	105	.095	.100
0,040	Distance	from bot	tom:	1.63 in.			0)))
	700		.116	116	.110	.085	860.			
0.025	Distance	from bott	tom:	René 8 2.12 in.	80		1.22 in.		~	02 th
	0 200	Cracks .230	not ob .244	served.237	.210		14	770.	20	.082
	500	. 267	.280	.274	. 252	.255	. 254	.240	.254	.247

TABLE 37 (cont.)

Edge					Crack	Length	, in.			
Radius, in.	Cycles	Firs	rst Crack Back	Avg	Seco Front	Second Crack ont Back	≪	Third Front	d Crack Back	Avg
0.040	Distance	ш	ttom:	2.14 in.			1.54 in.			2.80 in.
	200 200 500	Cracks .115 .137	not observed .111 .113 .124 .131	erved .113 .131	.111	. 097 . 098	.104	0.230	0.214	.222
				RBH						
0.025	Distance	تن	:mo	2.28 in.			0.80 in.			1.95 in.
	200 500	Cracks .180 .230	not .1	observed 74 .177 27 .229	.140	.142	.141	.115	.117	.116
0.040	Distance	from bott	ttom:	2.58 in.			1.60 in.			1.02 in.
	200	Cracks .216	s not observed .214	served .214	.185	.194	.190	.105	.173	.139
				NASA VI	IA					
0.025	Distance	H	ttom:	2.07 in.			0.69 in.			2.88 in.
	100 175 300	Cracks .320 360	not observed .290 .305 340 .350	served .305 350	325	0	0.328	0	0	0
	470 700		344	.369	. 407	354	368	.320	.315	.318
0.040	Distance 300 470 700	H T	om bottom: 1.32 Cracks not observed .150 .120 .135 .300 .308 .304	1.32 in. served .135						

TABLE 38. - THERMAL CYCLES REQUIRED TO INITIATE

THE FIRST CRACK IN EACH EDGE

	2065/	 ′675° F	1915/			600°F
	(1129/	′357°C)	(1046/		$\frac{(1088/)}{.025}$	316°C) .040
Alloy and Condition	. 025 edge	. 040 edge	. 025 edge	. 040 edge	edge	edge
B1900 B1900 + Jocoat	>1200	>1200	250 -	>600 -	400 ^a 1190 ^a	800 ^a 1700 ^a
B1900 DID + Jocoat	(1050) 1550	(>1300) >2300	-	-	2375 (585)	>3250 (>1200)
IN-100 IN-100 + Jocoat IN-100 + Xcoat A IN-100 DS IN-100 DS + Jocoat	37 37 1200 1950	2300 200 2400 2200	75 350 25 -	125 350 >500 -	38 ^a 600 ^a 25 2400 ^a 2400 ^a	150 ^a 400 ^a >470 >5000 ^a 2400 ^a
MAR-M 200 MAR-M 200 + Jocoat MAR-M 200 DS	>550 1200	13 >2400	25 -	75 - -	13 ^a 25 1750 4700 <u>a</u>	38 ^a >470 >4000 >5000a
['dimet 700 wrought Edimet 700 cast Edimet 700 wrought, clad — Xcoat B (SEW)	1300	- - -	125 125	175 175 -	13 ^a 75a	75 ^a 150 ^a
NX-188	50	150	-	-	238	238
NX-188 + RT-1A coat	200	600	-	-	(100) 800 (300)	(350) >1200 (>700)
NX-188 DS	5125	>6500	-	-	4350 (4350)	>6250 (4350)
NX-188 DS + RT-1A coat	>6100	6100	-	-	5100 (5100)	>6250 (>6250)
WAZ-20 + Jocoat	13	~50	-	-	138 (100)	>700 (>700)
WAZ-20 DS + Jocoat	1350	5600	-	-	1750 (1750)	>5500 (> 5 500)
TA Z-8A	450	>1100	>600	>600	800 600 ^a	>1200 4500 ^a
TAZ-8A (SEW) TAZ-8A clad + Xcoat B (SEW) TAZ-8A DS	2350 -6100 1200	- - >2200	- - -	- - -	800 4350 (4350)	>6250 (3625)
M22 IN 713C IN 738 IN 162	- 50 -	- 150 -	25 125 125 350	350 450 175 >600	13 ^a 250 ^a 100 400 ^a	75 ^a 600 ^a >500 600 ^a
MAR-M 509 René 80 RBH NASA VI A	250 50 50 75	150 150 150 38	125 125 - 250	350 >500 - 600	238 100 100 138	585 100 350 385
TD-NiCr MAR-M 302 WI-52 X-40	13 - 150	38 - 150	25 250 125 175	75 250 250 250	250 ^a 75 ^a 75 ^a 600 ^a	>1000 ^a 250 ^a 400 ^a 600 ^a

^() indicates duplicate specimen

^a From CR 72738

TABLE 39. - WEIGHT CHANGE OF SERIES G SPECIMENS 2065/675°F (1129/357°C) cycle, 3 min dwell in each bed

Allow and Condition	Spec.	Original Weight,	25	50	100	Weight 200	Change 300	After (Given Cycles, 500 600	les, %	700	006	1100
	P P	111.808 111.250 115.870	+0.04 - 0	+0.045	+0.04 +0.03 +0.01	+0.03 +0.01	+0.05	+0.02	+0.02	+0.01	0	-0.03	-0.08
IN-100 + Jocoat IN-100 + Xecat A IN-100 DS IN-100 DS + Jocoat	7 1 L S	111.420 112.250 110.680 110.680	+0.01	+0.01	-0.01 +0.01 -0.95 -0.01	-0.08 +0.02 -1.95 0.06	-0.17	-4.22	-5.70	-7.50	-8.63 -0.86	-10.76	-12.92
MAR-M 200 + Jocoat MAR-M 200 DS	3.2	122.037 122.260	+0.04	+0.05 +0.05	+0.02	-0.15		-1.03	-1.94	-2.69	-3.41	-4.22	-5.28
Udimet 700 wrought, clad + Xcoat B (SEW)	03	114.640	+0.01	+0.01	+0.01	ı	+0.02						
NX-188 NX-188 + RT-1A coat NX-188 DS NX-188 DS + RT-1A coat	45131	113.780 115.597 124.720 124.239	+0.013	+0.016	-0.05 +0.02 -0.08 +0.02	-0.16	-0.31 +0.03 -0.41 +0.03	1 1 1 1	-0.62		-1.22	1 1 1	+0.06
WAZ-20 + Jocoat WAZ-20 DS + Jocoat	ოო	134.861 135.398	+0.10 +0.14	+0.12 +0.18	+0.23	1	+0.44	ı	ı	•	ı	•	-0.12
TAZ-8A (SEW) TAZ-8A, clad + Xcoat B (SEW) TAZ-8A DS	R4 1	122,470 115,318 119,237 131,450	+0.02 +0.02 +0.01	+0.03 +0.02 +0.01	+0.03 +0.02 +0.01 +0.04	+0.03	- +0.02 +0.01 +0.03	+0.04	+0.04	40.04	+0.04	+0.04	+0.02 -0.20 +0.02
IN-738	2	119.670	,	ı	+0.07	+0.0+							
MAR-M 509 René 80 RBH NASA VI A	9 1 2	125.830 118.940 128.260 126.170	+0.03	+0.02	+0.02 +0.06 +0.02 +0.05	+0.01 -0.08 +0.04 +0.07	- +0.04	+0.03	+0.07	+0.03			
TD-NiCr X-40		12%,900 121,320	0+0,01	00	00	-0.01	•	-0.31					
				Continue	ued Cycle	es							
IN-100 DS	~ .	1500	1600	1700	1900	2000	2100	2200	2400	2500	2600	2900	3000
IN-100 DS + Jocoat MAR-M 200 DS MAR-188 + RT-1A coat NX-188 DS + RT-1A coat WAZ-20 DS + Jocoat TAZ-8A (SEW) TAZ-8A b§			+0.93 -0.021 -1.61 -0.66	-2.04 	-9.83 - - - - - - - - - - - - - - - - - - -	-3.93	-0.061 -5.86 -1.20 -0.17		-14.26	24.69	- -0.20 -8.37 -1.84	1 1 1 1 1	-5.55
IN-100 DS NX-188 DS + RT-1A coat NX-188 DS + BT-1A coat WAZ-20 DS + Jocoat TAZ-8A (SEW)	∠ 14€	3100 -0.39 -10.85 -2.55	3400	3500	3600 -0.56 -12.50 -3.13	3900	4000	-0.82 -14.97 -4.25	- 4750 -8.11 5 - 5	5100 -1.18 -16.59	5500	6100 -2.26 -20.04	-10.05

TABLE 40. - WEIGHT CHANGES IN SERIES H SPECIMENS 1915/525°F (1046/274°C) cycle, 3 min dwell in each bed

Alloy and Condition	Spec. Ident.	Original Weight,		eight Ch Given C 200	ange ycles, % _500
B1900 IN 100 IN 100 + Jocoat IN 100 + Xcoat A MAR-M 200	Т 2	111.61 111.79 111.04 112.54 121.40	+0.02 +0.05 +0.05 +0.02 +0.04	+0.02 -0.22 +0.03 -0.01 +0.05	+0.03 -0.08 -0.15
Udimet 700 wrought Udimet 700 cast TAZ-8A		114.32 111.12 122.28	+0.02 +0.03 +0.02	+0.04 +0.04 +0.02	-0.12 +0.02
M22 IN 713C IN 738 IN 162	1	120.37 112.77 118.74 110.82	+0.02 +0.01 +0.03 +0.01	+0.01 0 +0.05 +0.01	+0.01 -0.02 +0.04 +0.01
MAR-M 509 René 80 NASA VI A	11 2 9	127.64 125.40 125.97	+0.04 +0.07 +0.04		+0.05 -0.28 +0.04
TD-NiCr MAR-M 302 WI-52 X-40		123.12 128.49 126.43 123.75	0 +0.02 +0.01 0	-0.01 +0.01 +0.02 0	-0.03 -0.21 -0.01

TABLE 41. - WEIGHT CHANGES IN SERIES I SPECIMENS 1990/603°F (1088/315°C) sycle, 3 min dwell in each bed

											; !	i i	
Alloy and Condition	Spec. Ident.	Original Weight,	20	200	300	Weight 470	Change A	Change After Given Cycles, 500 1200	n Cycles, 1200	2000	3250	0007	2500
B1900 DID + Jocoat B1900 DID + Jocoat	4 7	$\frac{117.620}{118.272}$	+0.005	1 1	+0.013	1 1	1 1	+0.016 +0.016	-0. 03 5 +0.017	-0.16	-0.54		
IN-100 + Xcoat A MAR-M 200 + Jocoat MAR-M 200 DS	112	112.191 121.235 121.120	+0.012 +0.031 -0.024	1 1 1	+0.021 +0.043 -0.045	+0.026	1	-0.45	-1.58	-4.65	-8.60	-11.51	
NX-188 NX-188	745	113.934	-0.046	0.026	-0.24		+0.22	-0.74					
NX-188 + RT-1A coat NX-188 + RT-1A coat NX-188 DS	-88	116.911 115.911 125.882	-0.013 -0.019		-0.061 -0.22 -0.25	1 1 1	1 1 1	-0.15 -0.93 -0.88	-0.25 -1.90 -1.60	-3.18	-5.06	-5.94	-8.11
NX-188 DS NX-188 DS + RT-1A coat NX-188 DS + RT-1A coat	511	127.165 127.165 128.034	-0.006	1 1	-0.064			-0.15	-0.22	-0.30	-0.38	-0.41	-0.5/
+ Jocoat + Jocoat DS + Jocoa DS + Jocoa	7777	132.437 133.390 136.172 136.209	+0.071 - +0.11 +0.11	+0.13	+0.094 +0.18 +0.18	1111	1 1 1 1	+0.069 +0.15 +0.31 +0.29	+0.30	-0.017 +0.10	-1.64 -1.58	-2.57	-4.94 -4.91
TAZ-8A TAZ-8A (SEW) TAZ-8A DS TAZ-8A DS	77	121.073 115.304 130.782 130.281	+0.010 +0.028 +0.017 +0.021	1 1 1 1	+0.022 +0.029 +0.021 +0.024	1 1 1 1	1111	-0.023 -0.039 +0.005 +0.017	-0.023 -0.23 +0.044 -0.016	-0.80 -0.36 -0.22	-2.40 -1.17 -0.98	-3.21 -1.83 -1.49	-5.53 -3.38 -3.06
IN-738 MAR-M 509 René 80 RBH NASA VI A	3 15 2 14	118.983 127.799 117.842 128.454 126.586	+0.013		+0.007		+0.035	+0.004					

Cycled 2055/675°F (1129/357°C), 3 min dwell in each bed TABLE 42, - DIMENSIONAL CHANGES IN SERIES G SPECIMENS

		I	Initial I	Dimensio	Ē			Dimen	sions	After Te	sting,	in.
Alloy and Condition	Spec. Ident.	Length	Width	Thick- ness	Nom. 0.040	Nom. 0.025	Cycled	Length	Width	Thick- ness	Radi Nom. 0.040	us Nom. 0.025
B1900 + Jocoat B1900 + Jocoat B1900 DID + Jocoat	A 1	4.012 4.000 3.995	1.242 1.245 1.233	0.250 0.252 0.251	0.042 0.042 0.040	9.02 6 0.026 0.025	1700 1300 2300	Lost dur a a	ing te 1.280 1.240	st 0.260 0.252	0.041	0.024 0.022
IN-100 + Jocoat IN-100 + Xcoat A IN-100 DS IN-100 DS + Jocoat	P 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.010 4.012 4.019 4.011	1.246 1.249 1.253 1.256	0.251 0.252 0.249 0.251	0.040 0.038 0.035 0.043	0.024 0.023 0.019 0.025	300 200 2400 2200	a 4.015 3.875 3.939	1.247 1.251 0.940 1.253	0.252 0.251 0.185 0.262	0.034 0.032 0.010 0.033	0.019 0.019 0.005 0.019
MAR-M 200 + Jocoat MAR-M 200 DS Udimet 700 wrought, clad + Xcoat B (SEW)	2 3 U3	4.010 4.001 4.020	1.243 1.253 1.023	0.252 0.249 0.261	0.042	0.021 0.025 0.030	550 2400 1300	а 3.969 а	1.248 1.222 b	0.255 0.234 0.275	0.040	0.019 0.003 0.032
NX-188 NX-188 + RT-1A coat NX-188 DS NX-188 DS + RT-1A coat	4 1 3 1	4.030 4.006 4.212 4.240	1.244 1.247 1.244 1.244	0.240 0.244 0.252 0.250	0.040 0.042 0.043 0.042	0.025 0.025 0.026 0.024	500 1100 6500 6100	4.033 4.010 4.195 4.237	1.243 1.253 1.219 1.240	0.238 0.246 0.237 0.261	0.039 0.041 0.035 0.037	0.023 0.026 0.013 0.030
WAZ-20 + Jocoat WAZ-20 DS + Jocoat	നന	3.980	1.235	0.258	0.045	0.032 0.029	50 6100	3.985 3.994	1.236 1.140	0.258	0.044	0.031
TAZ-8A TAZ-8A (SEW) TAZ-8A clad + Xcoat B (SEW)	R4	4.005 3.970 3.977	1.245 0.981 1.016	0.247 0.253 0.252	0.044	0.024 0.022 0.028	1100 6100 6100	4.005 3.964 b	1.249 0.997 b	0.250 0.252 0.265	0.045	0.025 0.023 0.035
TAZ-8A DS IN-738	1 2	4.245	1.249 1.246	0.248	0.040	0.026 0.026	2200 200	4.245 a	1.245	0.249	0.036	0.020
MAR-M 509 René 80 RBH NASA VI A TD-NiCr X-40	2	4.010 4.030 4.014 4.037 4.017 4.000	1.246 1.241 1.241 1.238 1.247 1.250 1.240	0.248 0.251 0.256 0.250 0.246 0.246	0.042 0.043 0.044 0.044 0.041	0.026 0.028 0.030 0.028 0.025 0.025	200 200 300 300 300 300	3.998 4.029 4.004 4.039 4.019 3.975	1.256 1.242 1.248 1.247 1.253 1.253	0.251 0.252 0.247 0.251 0.252 0.249	0.045 0.040 0.042 0.044 0.041	0.026 0.025 0.029 0.024 0.024

^aEnds missing. ^bCladding detached.

TABIE 43. - DIMENSIONAL CHANGES IN SERIES H SPECIMENS Cycled 1915/525°F (1046/274°C), 3 min dwell in each bed

			Initial I	Dimensions,	in.			Dime	Dimensions .	After Te	Testing, i	n.
Allov and Condition	Spec. Ident.	Length	Width	Thick-	R:d om. 040	ius Nom. 0.025	Cycled	Length	Width	Thick- ness	Radius k- Nom. Nom. s 0.040 0.02	us Nom. 0.025
B1900 IN-100 IN-100 + Jocoat IN-100 + Xcoat A MAR-M 200	7 T T	4.025 4.010 4.013 4.011 4.005	1.243 1.243 1.247 1.247	0.251 0.251 0.251 0.254 0.254	0.042 0.037 0.038 0.038		600 200 500 200	4.021 4.010 4.012 4.012 4.008	1.244 1.245 1.248 1.247 1.247	0.249 0.251 0.252 0.254 0.251	0.041 0.035 0.033 0.037 0.036	0.027 0.019 0.016 0.021 0.019
Udimet 700 wrought		4.000	1.253	0.251	0.038	0.022	200	4.004	1.255	0.252	0.039	0.023
Udimet 700 cast		4.003	1.243	0.247	0.040	0.025	500	4.004	1.245	0.248	0.038	0.024
TAZ-8A		4.016	1.250	0.246	0.040	0.024	600	4.015	1.250	0.246	0.042	0.025
M22	1	4.010	1.246	0.243	0.031	0.021	500	4.007	1.247	0.243	0.033	0.018
IN-713C		4.002	1.240	0.248	0.038	0.018	500	4.005	1.242	0.248	0.038	0.018
IN-738		4.000	1.247	0.251	0.041	0.026	500	4.000	1.250	0.252	0.042	0.025
IN-162		3.995	1.243	0.254	0.040	0.021	600	3.995	1.254	0.245	0.039	0.022
MAR-M 509	11	4.029	1.247	0.249	0.042	0.026	500	4.020	1.251	0.249	0.044	0.025
René 80	2	4.038	1.243	0.268	0.032	0.028	500	4.039	1.243	0.268	0.047	0.026
NASA VI A	9	4.015	1.248	0.248	0.044	0.028	600	4.016	1.249	0.249	0.043	0.026
TD-NiCr		4.005	1.250	0.249	0.039	0.025	200	4.025	1.253	0.249	0.038	0.025
MAR-M 302		4.005	1.246	0.244	0.039	0.021	500	4.003	1.247	0.242	0.039	0.023
WI-52		4.002	1.249	0.246	0.044	0.024	500	4.000	1.255	0.249	0.037	0.027
X-40		4.000	1.243	0.251	0.042	0.030	500	3.998	1.255	0.251	0.042	0.029

TABLE 44. - DIMENSIONAL CHANGES IN SERIES I SPECIMENS Cycled 1990/600°F (1088/316°C), 3 min dwell in each bed

		I	Initial	Dimensio	ons, in.			Dime	nsions	After Te	sting,	in.
Alloy and Condition	Spec. Ident.	Length	Width	Thick- ness	Nom. 0.040	Nom. 0.025	Cycled	Length	Width	Thick- ness	Ra Nоm. 0.04С	Idius Nom. 0.025
B1900 DID + Jocoat B1900 DID + Jocoat	C1 <+	4.000	1.231 1.236	0.252	0.040	0.025	7250 1200	3.995 3.995	$\frac{1.234}{1.237}$	$0.252 \\ 0.253$	0.039	0.024
IN-100 + Xcoat A MAR-M 200 + Jocoat MAR-M 200 DS	112	4.014 4.011 4.000	1.247 1.243 1.253	0.250 0.252 0.249	0.038 0.036 0.039	0.023 0.021 0.024	470 470 4000	4.015 4.013 3.979	1.248 1.244 1.225	0.249 0.254 0.238	0.031 0.034 0.024	0.020 0.018 0.004
NX-188 NX-188 NX-188 + RT-1A coat NX-188 + RT-1A coat NX-188 DS	7577	3.995 4.004 3.998 4.020	1.242 1.242 1.245 1.245 1.245	0.240 0.238 0.251 0.248 0.248	0.042 0.040 0.042 0.042 0.043	0.025 0.023 0.025 0.024 0.026	700 500 700 1200 6250	3.993 4.002 3.996 4.020	1.241 1.244 1.249 1.247 1.247	0.239 0.236 0.251 0.249	0.040 0.039 0.042 0.041	0.024 0.022 0.024 0.023
NX-188 DS NX-188 DS + RT-1A coat NX-188 DS + RT-1A coat	517	4.280 4.275 4.305		.25	222	.02	6250 6250 6250	.27 .28 .31		23.	.045	.03
WAZ-20 + Jocoat WAZ-20 + Jocoat WAZ-20 DS + Jocoat WAZ-20 DS + Jocoat	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	3.977 3.995 4.000 4.002	1.232 1.233 1.233 1.230	0.257 0.259 0.260 0.261	0.045 0.045 0.046 0.046	0.032 0.032 0.029 0.029	700 700 5500 5500	3.980 4.006 4.062 4.065	1.236 1.234 1.215 1.205	0.258 0.260 0.275 0.270	0.045 0.045 0.020 0.029	0.031 0.030 0.014 0.024
TAZ-8A TAZ-8A (SEW) TAZ-8A DS TAZ-8A DS	74	4.020 3.970 a	1.249 0.982 1.249 1.249	0.243 0.253 0.250 0.250	0.040	0.024 0.022 0.026 0.026	1200 6250 6250 6250	4.019 3.971 a	1.251 1.000 1.220 1.223	1.244 0.254 0.249 0.249	0.041 0.033 0.037	0.022 0.021 0.013 0.012
IN-738 MAR-M 509 René 80 RBH NASA VI A	3 15 14	4.009 4.028 4.010 4.008 4.011	1.246 1.245 1.247 1.238 1.238	0.250 0.249 0.250 0.252 0.250	0.041 0.042 0.042 0.043 0.044	0.026 0.026 0.028 0.030 0.028	500 700 500 700	4.010 4.023 4.009 4.000	1.248 1.247 1.244 1.247 1.247	0.252 0.251 0.251 0.251 0.251	0.044 0.043 0.038 0.043	0.026 0.026 0.022 0.029 0.029

aCannot be accurately measured.

TABLE 45. - SUMMARY OF AVERAGE WEIGHT CHANGE RATES

	Weight Ch	ange Rate, g/100	0 cycles
Alloy and Condition	2065/675°F (1129/357°C)	1915/525°F (1046/274°C)	1990/600°F (1088/316°C)
B1900	-	+0.06	-
B1900 + Jocoat B1900 DID + Jocoat	+0.017 (+0.010) -0.073	-	-0.16 (+0.014)
IN-100	-	-1.10	-
IN-100 + Jocoat	-0.40	-0.16	+0.055
IN-100 + Xcoat A	+0.10 -13.20	-0.30	- 0.033
IN-100 DS IN-100 DS + Jocoat	-2.31	-	-
		+0.25	_
MAR-M 200	+0.10	TU.23	+0.085
MAR-M 200 + Jocoat MAR-M 200 DS	-5. 94	<u>-</u>	-2.88
Udimet 700 wrought	_	+0.20	-
Udimet 700 wrought	_	-0.24	-
Udimet 700 wrought, clad + Xcoat B (SEW)	+0.07	<u>-</u>	-
NX-188	-1.24	-	-1.06 (+0.44)
NX-188 + RT-1A coating	+0.58	-	-0.14 (-0.21)
NX-188 DS	-1.55	-	-1.47 (-1.32)
NX-188 DS + RT-1A coating	-0.37	-	-0.014 (-0.113)
WAZ-20 + Jocoat	+0.24	-	+0.10 (+0.21)
WAZ-20 DS + Jocoat	-3.29	-	-0.90 (-0.90)
TAZ-8A	+0.02	+0.04	-0.019
TAZ-8A (SEW)	-1.10	-	-1.0
TAZ-8A clad + Xcoat B (SEW)	-0.08	-	0 61 (0 56)
TAZ-8A DS	-0.71		-0.61 (-0.56)
M22	-	+0.02	-
IN-713C	- 25	-0.04 +0.08	+0.07
IN-738	+0.35	+0.08	+0.07 -
IN-162			
MAR-M 509	+0.05 -0.40	+0.10 -0.56	+0.006 -0.50
René 80	+0.20	-0.50	+0.13
RBH NASA VI A	+0.35	+0.08	+0.026
	0	-0.05	-
TD-NiCr MAR-M 302	-	-0.06	-
WI-52	-	-0.42	-
X-40	0	-0.02	-

^() Indicates duplicate specimen.

Figure 1

81

Figure 2
Thermal Fatigue Facility

Figure 3
Thermal Fatigue Fixture

ALL THERMOCOUPLES ARE 0.010" BELOW SURFACE AND AT MID-CHORD OF SPECIMEN

Figure 4

Thermocouple Locations in Instrumented Specimens.

IN-100 + Xcoat A (200 cycles) MAR-M 509 (9) (600 cycles) NASA VI A (12) (300 cycles)

B1900 DID + Jocoat (1)^a (1300 cycles)

IN-100 + Jocoat (P) (300 cycles)

^aSpecimen is shown at a later stage of testing in Fig. 5g or 5h.

Appearance of Series G Specimens After Indicated Thermal Cycles Figure 5

WAZ-20 DS + Jocoat (3)a (1600 cycles) WAZ-20 + Jocoat (3) (50 cycles)

B1900 + Jocoat (A)^a (700 cycles)

TAZ-8A (SEW) Clad + Xcoat B (R4)^a (1600 cycles)

^aSpecimen is shown at a later stage of testing in Fig. 5g or 5h.

(e)

Figure 5 (cont.)

TAZ-8A (SEW)^a (1600 cycles) NX-188 DS + RT-1A Coating (4)^a (1600 cycles) NX-188 + RT-1A Coating (1100 cycles) Jocoat (2) (50 cycles) MAR-M 200 +

^aSpecimen is shown at a later stage of testing in Fig. 5g or 5h.

(c) Figure 5 (cont.)

NX-188 DS (1)^a (2000 cycles)

NX-188 (1) (500 cycles)

RBH (1) (300 cycles)

^aSpecimen is shown at a later stage of testing in Fig. 5g or 5h.

(p)

Figure 5 (cont.)

B1900 + Jocoat (B)a (300 cycles)
IN-100 DS + Jocoat (5) (2200 cycles)
1N /38 (2) (200 cycles)
Rene 80 (1) (200 cycles)
TAZ-8A DS (1) (2200 cycles)

aSpecimen is shown at a later stage of testing in Fig. 5g or 5h.

(e)

Figure 5 (cont.)

IN-100 DS (7)⁸ MAR-M 200 DS (3) (2400 cycles) (2400 cycles) TD-NiCr (200 cycles) X-40 (300 cycles) TAZ-8A (1700 cycles)

^aSpecimen is shown at a later stage of testing in Fig. 5g or 5h.

Figure 5 (cont.)

(£)

TAZ-8A (SEW) (6100 cycles) TAZ-8A (SEW) Clad + Xcoat B (R4) (6100 cycles) NX-188 DS + RT-1A Coating (4) (6100 cycles) NX-188 DS (1) (6500 cycles) B1900 + Jocoat (A) (1700 cycles)

Figure 5 (cont.)

(g)

Specimens shown in Figs. 5g and 5h (except Udimet 700) are shown in an earlier stage of test in Figs. 5a-5f.) (Note:

Udimet 700 Wrought Clad + Xcoat B (U3) (1300 cycles) WAZ-20 DS + Jocoat (3) (6100 cycles) IN 100-DS (7) (2900 cycles) Œ B1900 DID + Jocoat (1) (2300 cycles) Jocoat (B) (1300 cycles) B1900 +

Figure 5 (cont.)

Specimens shown in Figs. 5g and 5h (except Udimet 700) are shown in an earlier stage of test in Figs. 5a-5f.) (Note:

Figure 6
Weight Changes of Some Series G Specimens

			•
			-
			ď.
			•
			9
			-