习题 1.4.31. $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5})$ 的基本单位分别是什么?

解答.

习题 **2.1.2.** 若 ζ 是 K 中的一个单位根, 则 $|\zeta| = 1$.

证明.

习题 2.1.3. 对于非阿赋值 $|\cdot|$, 如果 $|x| \neq |y|$, 则 $|x + y| = \max\{|x|, |y|\}$.

证明.

习题 **2.1.6.** 设 $K=\mathbb{Q}$. 对于素数 p, 定义 $v_p(p^n\frac{a}{b})=n$, 其中 $a,b\in\mathbb{Z},p\nmid ab$. 则 v_p 是 \mathbb{Q} 的一个加性赋值, $|\cdot|_p=p^{-v(\cdot)}$ 是 \mathbb{Q} 的一个乘性赋值.

证明.

习题 2.1.7. 证明下述函数为非阿赋值.

- (1) 设 K 为 \mathbb{C} 上的亚纯函数全体, $x \in \mathbb{C}$, 定义 $\operatorname{ord}_x(f)$ 为 f 在 x 处的 阶, $f \in K^{\times}$.
 - (2) 设 k 为一个域, k[[T]] 为形式幂级数环, 即

$$k[[T]] = \left\{ \sum_{n=0}^{+\infty} a_n T^n \mid a_n \in k \right\}.$$

令 $K = k((T)) = k[[T]][T^{-1}]$ 为其分式域. 定义 $v(\sum_{n=m}^{+\infty} a_n T^n) = m, a_m \neq 0.$

(3) 设
$$K = \mathbb{Q}(i)$$
, $\alpha = 3^k \frac{a+bi}{c}$, 其中 $a, b, c \in \mathbb{Z}, 3 \nmid c$ 且 $3 \nmid a$ 或 b . 定义

$$v_3(\alpha) = \max \{ n \mid \alpha \in 3^n \mathbb{Z}[i] \} = k.$$

(4) 设 $K = \mathbb{Q}(i)$, $\alpha = 2^k a + 2^{\ell} bi$, 其中 a, b 是奇数. 定义

$$v_{1+i}(\alpha) = \max\{n \mid \alpha \in (1+i)^n \mathbb{Z}[i]\} = \begin{cases} 2\min\{k,\ell\}, & \text{mf. } k \neq \ell; \\ 2k+1, & \text{mf. } k = \ell. \end{cases}$$

习题 2.1.9. 计算习题 2.1.7 中的赋值环.

解答.

习题 2.1.14. 对于非阿赋值域, $\{x_k\}_{k\geq 1}$ 是柯西列当且仅当 $|x_{k+1}-x_k|\to 0$. 换言之, 完备非阿赋值域中 $\sum_{k=1}^{\infty}a_k$ 收敛当且仅当 $a_k\to 0$.

	2
证明.	
习题 2.1.17. 给出习题 2.1.7 中赋值环的一个素元并计算剩余域.	
解答.	