

Chemistry data booklet

For use during the course and in the examinations First assessment 2025

Version 1.0

Diploma Programme Chemistry data booklet

Published February 2023

educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Published on behalf of the International Baccalaureate Organization, a not-for-profit Switzerland by the

International Baccalaureate Organization (UK) Lto
Peterson House, Malthouse Avenue, Cardiff Gate
Cardiff, Wales CF23 8GL
United Kingdom
Website: ibo.org

© International Baccalaureate Organization 2023

produced to support these programmes. and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials The International Baccalaureate Organization (known as the IB) offers four high-quality

copyright material used. The IB is grateful for permissions received for material used efforts to identify and obtain permission before publication from rights holders of all Wikipedia. The IB respects the principles of intellectual property and makes strenuous and authenticity, particularly when using community-based knowledge sources such as in this publication and will be pleased to correct any errors or omissions at the earliest The IB may use a variety of sources in its work and check information to verify accuracy

system, or transmitted, in any form or by any means, without the IB's prior written permission, or as expressly permitted by the Rules for use of IB Intellectual Property. All rights reserved. No part of this publication may be reproduced, stored in a retrieval

on the IB public website. educational publishers and operators of curriculum mapping or teacher resource digital (including but not limited to tutoring organizations, professional development providers, by third parties acting in the IB's ecosystem without a formal relationship with the IB ibo.org). Any commercial use of IB publications (whether fee-covered or commercial) Licence requests should be sent to copyright@ibo.org. More information can be obtained platforms, etc.) is prohibited and requires a subsequent written licence from the IB IB merchandise and publications can be purchased through the IB Store (email: sales@

Contents

24	23 References
23	22. Mass spectral fragments lost
22	21. ¹ H NMR data
21	20. Infrared data
20	l9. Standard reduction potentials at 298.15 K
10	18. Acid–base indicators
18	17. Triangular bonding diagram (van Arkel–Ketelaar triangle)
17	16. Lattice enthalpies at 298.15 K (experimental values)
16	15. Colour wheel with wavelengths of the visible spectrum
15	14. Enthalpies of combustion
14	13. Thermodynamic data (selected compounds)
: 13	l2. Bond enthalpies or average bond enthalpies at 298.15 K
	11. Covalent or average covalent bond lengths
:	10. Atomic and ionic radii of the elements
10	9. First ionization energy, electron affinity and electronegativity of the elements
	3. Melting points and boiling points of the elements at 101.325 kPa
	The periodic table
6	5. Names of the elements
	5. The electromagnetic spectrum
	4. Unit conversions and standard conditions
	3. Metric (SI) multipliers
:	. Physical constants
	. Some relevant equations
:	ntroductionntroduction

≤.

This page is intentionally blank.

Introduction

DP Chemistry teacher support material. It contains chemical and physical equations and constants, chemical symbols, the periodic table, and other chemical data relevant to the course. This Diploma Programme (DP) Chemistry data booklet accompanies the DP Chemistry guide and

"Understandings" sections of the guide. This helps to maintain the emphasis on interpretation and Students must have access to a copy of this booklet for the duration of the course, so that they application rather than memorization of symbols, constants and equations. can become familiar with its contents. Direct reference is made to relevant equations in the

It is the responsibility of the school to download a copy of this booklet from IBIS or the Programme Resource Centre and to ensure that there are sufficient copies available for all students. Each student must have access to a clean copy of the Chemistry data booklet during examinations.

6

Some relevant equations

$n = \frac{M}{m}$	E = hf	$oldsymbol{c}=f\lambda$	Equation

$$n = \frac{m}{M}$$

$$n = CV$$

$$PV = nRT$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$Q = mc\Delta T$$

% atom economy =
$$\frac{\text{molar mass of desired product}}{\text{molar mass of all reactants}} \times 100$$

$$\Delta H^{\ominus} = \sum (\Delta H_{f}^{\ominus}_{\text{products}}) - \sum (\Delta H_{f}^{\ominus}_{\text{reactants}})$$
$$\Delta H^{\ominus} = \sum (\Delta H_{c}^{\ominus}_{\text{reactants}}) - \sum (\Delta H_{c}^{\ominus}_{\text{products}})$$

$$\Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus}$$

 $\Delta G = \Delta G^{\ominus} + RT \ln Q$

$$\Delta G^{\ominus} = -RT \ln K$$

$$\Delta G^{\ominus} = -nFE^{\ominus}$$

$$k = Ae^{\frac{-E_a}{RT}}$$

$$\ln k = \frac{-E_a}{RT} + \ln A$$

$$\ln k = \frac{-E_a}{RT} + \ln A$$

$$pH = -\log_{10} [H_3O^{\dagger}]$$

$$or$$

$$pH = -\log_{10} [H^{\dagger}]$$

$$K_w = [H^{\dagger}] [OH^{\dagger}]$$

 $pOH = -log_{10} [OH^-]$

2

2. Physical constants

Quantity	Symbol	Approximate value
Elementary charge	O	$1.602177 \times 10^{-19} \text{ C}$
Electron rest mass	$m_{ m e}$	$9.109384 \times 10^{-31} \text{ kg}$
Proton rest mass	$m_{ m p}$	$1.672622 \times 10^{-27} \mathrm{kg}$
Neutron rest mass	$m_{\scriptscriptstyle extsf{n}}$	$1.674927 \times 10^{-27} \text{kg}$
Speed of light in vacuum	C	$3.00 \times 10^8 \text{ m s}^{-1}$
Planck constant	ħ	6.63 × 10 ^{−34} J s
Avogadro constant	N _A	$6.02 \times 10^{23} \text{ mol}^{-1}$
Gas constant	Z	8.31 J K ⁻¹ mol ⁻¹
Molar volume of an ideal gas at STP	V _m	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$
Specific heat capacity of water	C _w	$4.18 \text{ kJ kg}^{-1} \text{ K}^{-1} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
Ionic product constant for water at 298.15 K	\mathcal{K}_{w}	$1.00 \times 10^{-14} \text{mol}^2 \text{dm}^{-6}$
Faraday constant	F	$9.65 \times 10^4 \text{ C mol}^{-1}$

3. Metric (SI) multipliers

femto	pico	nano	micro	milli	centi	deci	deca	hecto	kilo	mega	giga	tera	peta	Prefix
- h	р	n	ᆫ	В	С	d	da	h	~	3	G	T	Р	Abbreviation
10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	10^{-2}	10 ⁻¹	10 ¹	10^2	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	Value

4. Unit conversions and standard conditions

Temperature (K) = temperature (°C) + 273.15

 $1 dm^3 = 1 \text{ litre} = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3$

STP conditions: 273.15 K and 100 kPa

SATP conditions: 298.15 K and 100 kPa

5. The electromagnetic spectrum

6. Names of the elements

Element	Symbol	Atomic number				
actinium	Ac	89				
aluminium	Al	13				
americium	Am	95				
antimony	Sb	51				
argon	Ar	18				
arsenic	As	33				
astatine	At	85				
barium	Ва	56				
berkelium	Bk	97				
beryllium	Ве	4				
bismuth	Bi	83				
bohrium	Bh	107 5				
boron	В					
bromine	Br	35				
cadmium	Cd	48				
caesium	Cs	55				
calcium	Ca	20				
californium	Cf	98				
carbon	С	6				
cerium	Ce	58				
chlorine	Cl	17				
chromium	Cr	24				
cobalt	Со	27				
copernicium	Cn	112				
copper	Cu	29				
curium	Cm	96				
darmstadtium	Ds	110				
dubnium	Db	105				

Element	Symbol	Atomic number
dysprosium	Dy	66
einsteinium	Es	99
erbium	Er	68
europium	Eu	63
fermium	Fm	100
flerovium	Fl	114
fluorine	F	9
francium	Fr	87
gadolinium	Gd	64
gallium	Ga	31
germanium	Ge	32
gold	Au	79
hafnium	Hf	72
hassium	Hs	108
helium	He	2
holmium	Но	67
hydrogen	Н	1
indium	In	49
iodine	I	53
iridium	Ir	77
iron	Fe	26
krypton	Kr	36
lanthanum	La	57
lawrencium	Lr	103
lead	Pb	82
lithium	Li	3
livermorium	Lv	116
lutetium	Lu	71

Element	Symbol	Atomic number			
magnesium	Mg	12			
manganese	Mn	25			
meitnerium	Mt	109			
mendelevium	Md	101			
mercury	Hg	80			
molybdenum	Мо	42			
moscovium	Mc	115			
neodymium	Nd	60			
neon	Ne	10			
neptunium	Np	93			
nickel	Ni	28			
nihonium	Nh	113			
niobium	Nb	41			
nitrogen	N	7			
nobelium	No	102			
oganesson	Og	118			
osmium	Os	76			
oxygen	0	8			
palladium	Pd	46			
phosphorus	Р	15			
platinum	Pt	78			
plutonium	Pu	94			
polonium	Po	84			
potassium	K	19			
praseodymium	Pr	59			
promethium	Pm	61			
protactinium	Pa	91			
radium	Ra	88			
radon	Rn	86			
rhenium	Re	75			
rhodium	Rh	45			

Element	Symbol	Atomic number					
roentgenium	Rg	111					
rubidium	Rb	37					
ruthenium	Ru	44					
rutherfordium	Rf	104					
samarium	Sm	62					
scandium	Sc	21					
seaborgium	Sg	106					
selenium	Se	34					
silicon	Si	14					
silver	Ag	47					
sodium	Na	11					
strontium	Sr	38					
sulfur	S	16					
tantalum	Та	73					
technetium	Tc	43					
tellurium	Te	52					
tennessine	Ts	117					
terbium	Tb	65					
thallium	Tl	81					
thorium	Th	90					
thulium	Tm	69					
tin	Sn	50					
titanium	Ti	22					
tungsten	W	74					
uranium	U	92					
vanadium	V	23					
xenon	Xe	54					
ytterbium	Yb	70					
yttrium	Υ	39					
zinc	Zn	30					
zirconium	Zr	40					

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H 1.01						Atomic Eler	number nent										2 He 4.00
2	3 Li 6.94	4 Be 9.01					Relative ma	e atomic ass					5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.96	79.90	83.80
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.96	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La †	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T l	Pb	Bi	Po	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	(209)	(210)	(222)
7	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	Ac ‡	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
	(223)	(226)	(227)	(267)	(268)	(269)	(270)	(269)	(278)	(281)	(281)	(285)	(286)	(289)	(288)	(293)	(294)	(294)

†

‡

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

8. Melting points and boiling points of the elements at 101.325 kPa

-259.2 H						Melting p	point / °C										He
-252.9 180.5 Li 1342	1287 Be 2468						nent					2077 B 4000	3500 C 4827	-210.0 N -195.8	-218.8 O -183.0	-219.7 F -188.1	-268.9 -248.6 Ne -246.0
97.79 Na 882.9	650.0 Mg 1090					<u> </u>		I				660.3 Al 2519	1414 Si 3265	44.15 P 280.5	115.2 S 444.6	-101.5 Cl -34.04	-189.3 Ar -185.8
63.38 K 758.8	842.0 Ca 1484	1541 Sc 2836	1670 Ti 3287	1910 V 3407	1907 Cr 2671	1246 Mn 2061	1538 Fe 2861	1495 Co 2927	1455 Ni 2913	1085 Cu 2560	419.5 Zn 907.0	29.77 Ga 2229	938.2 Ge 2833	816.8 As 613.0	220.8 Se 684.8	-7.050 Br 58.78	-157.4 Kr -153.4
39.30 Rb 687.8	768.8 Sr 1377	1522 Y 3345	1854 Zr 4406	2477 Nb 4741	2622 Mo 4639	2157 Tc 4262	2333 Ru 4147	1963 Rh 3695	1555 Pd 2963	961.8 Ag 2162	321.1 Cd 766.8	156.6 In 2027	231.9 Sn 2586	630.6 Sb 1587	449.5 Te 987.8	113.7 I 184.4	-111.8 Xe -108.1
28.44 Cs 670.8	725.0 Ba 1845	920.0 La† 3464	2233 Hf 4600	3017 Ta 5455	3414 W 5555	3453 Re 5900	3033 Os 5008	2446 Ir 4428	1768 Pt 3825	1064 Au 2836	-38.83 Hg 356.6	303.8 Tl 1473	327.5 Pb 1749	271.4 Bi 1564	253.8 Po 962.0	301.8 At 336.8	-71.15 Rn -61.85
27.00 Fr 676.8	699.8 Ra 1140	1050 Ac ‡ 3200									,				,		

-		

795	935	1024	1042	1072	826	1313	1360	1410	1472	1529	1545	824	1663
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
3433	3510	3074	(2730)	1791	1596	3273	3230	2567	2694	2900	1950	1194	3402
1750 Th 4788	1572 Pa (4000)	1135 U 3818	637 Np (3900)	640 Pu 3230	1176 Am (2067)	1340 Cm 3110	986 Bk (2623)	900 Cf	(860) Es	Fm	827 Md	No	Lr

9. First ionization energy, electron affinity and electronegativity of the elements

1312 -73 H 2.2				First ioniz energy / k		Electron a		/ kJ mol ⁻¹ / kJ mol ⁻¹)									2372 He
520 -60	900					Element						801 –27	1086 -122	1402	1314 -141 (+753)	1681 -328	2081
Li 1.0	Be 1.6				Ele	ectronegativ	vity					B 2.0	C 2.6	N 3.0	O 3.4	F 4.0	Ne
496 -53	738								•			578 -42	787 -134	1012 -72	1000 -200 (+545)		1520
Na 0.9	Mg 1.3											Al 1.6	Si 1.9	P 2.2	S 2.6	Cl 3.2	Ar
419 -48	590 –2	633 –18	659 -8	651 -51	653 -64	717	762 -15	760 –64	737 -112	745 -119	906	579 -41	762 -119	944 -78	941 -195	1140 -325	1351
K 0.8	Ca 1.0	Sc 1.4	Ti 1.5	V 1.6	Cr 1.7	Mn 1.6	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.8	Ge 2.0	As 2.2	Se 2.6	Br 3.0	Kr
403 -47	549 -5	600 -30	640 -41	652 -88	684 -72	702 -53	710 -101	720 -110	804 -54	731 -126	868	558 -29	709 -107	831 -101	869 -190	1008 -295	1170
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.3	Nb 1.6	Mo 2.2	Tc 2.1	Ru 2.2	Rh 2.3	Pd 2.2	Ag 1.9	Cd 1.7	In 1.8	Sn 2.0	Sb 2.0	Te 2.1	I 2.7	Xe
376 -46	503 -14	538 -45	659 -1	728 -31	759 -79	756 -14	814 -106	865 -151	864 -205	890 -223	1007	589 -36	716 -35	703 -91	812 -183	-270	1037
Cs 0.8	Ba 0.9	La† 1.1	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2	Rn
393 -47	509 -10	499 -34							•								
Fr 0.7	Ra 0.9	Ac ‡ 1.1															

	534 -63	528 -93	533 -185	539	545	547 -83	593	566 -112	573 < 0	581	589	597 -99	603 2	524 -33
†	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	1.1	1.1	1.1		1.2		1.2		1.2	1.2	1.2	1.3		1.0
	609	568	598	605	581	576	578	598	606	619	627	635	642	473
‡	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	1.3	1.5	1.7	1.3	1.3									

10. Atomic and ionic radii of the elements

The values for atomic radii used in this table are the covalent radii of the elements.

32 H						10-	radius /										37 He
130 Li 76 (1+)	99 Be 45 (2+)					lonic r	nent adius / (charge)					84 B 27 (3+)	75 C 16 (4+)	71 N 146 (3-)	64 O 140 (2-)	60 F 133 (1-)	62 Ne
160 Na 102 (1+)	140 Mg 72 (2+)				,			•				124 Al 54 (3+)	114 Si 40 (4+)	109 P 38 (5+)	104 S 184 (2-)	100 Cl 181 (1-)	101 Ar
200 K 138 (1+)	174 Ca 100 (2+)	159 Sc 75 (3+)	148 Ti 86 (2+) 61 (4+)	144 V 79 (2+) 54 (5+)	130 Cr 62 (3+) 44 (6+)	129 Mn 83 (2+) 53 (4+)	124 Fe 61 (2+) 55 (3+)	118 Co 65 (2+) 55 (3+)	117 Ni 69 (2+)	122 Cu 77 (1+) 73 (2+)	120 Zn 74 (2+)	123 Ga 62 (3+)	120 Ge 53 (4+) 272 (4-)	120 As 58 (3+) 46 (5+)	118 Se 198 (2-)	117 Br 196 (1-)	116 Kr
215 Rb 152 (1+)	190 Sr 118 (2+)	176 Y 90 (3+)	164 Zr 72 (4+)	156 Nb 72 (3+) 64 (5+)	146 Mo 65 (4+)	138 Tc 65 (4+)	136 Ru 68 (3+) 62 (4+)	134 Rh 67 (3+) 60 (4+)	130 Pd 86 (2+) 62 (4+)	136 Ag 115 (1+)	140 Cd 95 (2+)	142 In 80 (+3)	140 Sn 118 (2+) 69 (4+)	140 Sb 76 (3+)	137 Te 221 (2-)	136 I 220 (1-)	136 Xe
238 Cs 167 (1+)	206 Ba 135 (2+)	194 La† 103 (3+)	164 Hf 71 (4+)	158 Ta 64 (5+)	150 W 66 (4+) 60 (6+)	141 Re 63 (4+) 53 (7+)	136 Os 63 (4+) 55 (6+)	132 Ir 68 (3+) 63 (4+)	130 Pt 80 (2+) 63 (4+)	130 Au 137 (1+) 85 (3+)	132 Hg 119 (1+) 102 (2+)	144 Tl 150 (1+) 89 (3+)	145 Pb 119 (2+) 78 (4+)	150 Bi 103 (3+) 76 (5+)	142 Po 97 (4+)	148 At	146 Rn
242 Fr	211 Ra	201 Ac ‡					, ,	, ,	. ,					, ,			

	1	
	I	
	•	

184 Ce 101 (3+) 87 (4+)	190 Pr 99 (3+) 85 (4+)	188 Nd 98 (3+)	186 Pm 97 (3+)	185 Sm 96 (3+)	183 Eu 117 (2+) 95 (3+)	182 Gd 94 (3+)	181 Tb 92 (3+) 76 (4+)	180 Dy 91 (3+)	179 Ho 90 (+3)	177 Er 89 (3+)	177 Tm 88 (3+)	178 Yb 87 (3+)	174 Lu 86 (3+)
190 Th 94 (4+)	184 Pa 104 (3+) 90 (4+)	183 U 89 (4+) 73 (6+)	180 Np 101 (3+) 87 (4+)	180 Pu 100 (3+) 86 (4+)	173 Am 98 (3+) 85 (4+)	168 Cm 97 (3+)	168 Bk 96 (3+)	168 Cf 95 (3+)	165 Es	167 Fm	173 Md	176 No 110 (2+)	161 Lr

11. Covalent or average covalent bond lengths

Single bonds

	C—I	C — Br	C — Cl	C — F	C — S	C — P	C — Si	C-0	C — N	C — C	С—Н		H — I	H — Br	H — Cl	H-F	н – н	Bond
	214	194	177	138	182	184	185	143	147	154	108		160	141	128	92	74	Length / 10 ⁻¹² m
		0 — Cl	0 — F	0-8	0 — P	0 — Si	0-0	0 - H		N — Br	N — CI	Z 	N – S	N Si	N — 0	Z 	Z 	Bond
		170	142	161	154	163	148	97		214	197	136	175	174	136	146	101	Length / 10 ⁻¹² m
			P — I	P — Br	P — Cl	P — F	P — S	P — P	P — H		Si — I	Si — Br	Si — Cl	Si – F	<u>Si</u> – S	Si — Si	Si — H	Bond
			247	220	203	154	210	221	142		243	216	202	156	215	232	148	Length / 10 ⁻¹² m
I-I	Br — I	Br — Br		Cl — I	Cl — Br	Cl — Cl		F—I	F — Br	F—Cl	F — F		S — Br	S — Cl	S – F	S – S	S — H	Bond
267	247	228		232	214	199		257	176	163	142		227	199	158	205	134	Length / 10 ⁻¹² m

Multiple bonds

Bond	Length / 10 ⁻¹² m	Bond	Length / 10 ⁻¹² m	Bond	
C = C	134	Z Z	125		0 = 0
C Z	130	N = 0	114		0 = 8
C = 0	122				
C = S	156				S II S
C≡C	120	z III z	110		
C ≡ Z	116				
C ≡ 0	113				

12. Bond enthalpies or average bond enthalpies at 298.15 K

Single bonds

	C — I	C — Br	C — CI	C — F	C — S	C — P	C — Si	C — O	C — N	C — C	С—Н		H — I	H — Br	H — Cl	H — F	H — H	Bond
	228	285	324	492	289	264	307	358	286	346	414		298	366	431	567	436	Enthalpy / kJ mol ⁻¹
				0-1	0 — Br	0 — Cl	0—F	0 — P	0 — Si	0-0	0 — H		N — Cl	Z 	N — 0			Bond
				201	201	206	191	363	466	144	463		192	278	214	158	391	Enthalpy / kJ mol ⁻¹
				P — I	P — Br	P — Cl	P — F	P — P	P — H		Si — I	Si — Br	Si — Cl	Si — F	<u>Si</u> — S	Si — Si	Si — H	Bond
				184	264	322	490	198	322		234	330	400	597	293	226	323	Enthalpy / kJ mol ⁻¹
I-I	Br — I	Br — Br		Cl — I	Cl — Br	Cl — Cl		F — I	F — Br	F—Cl	F—F		S — Br	s—Cl	S-F	s — s	S — H	Bond
151	178	193		211	219	242		280	249	255	159		218	271	327	266	364	Enthalpy / kJ mol ⁻¹

Multiple bonds

C≡S 536 S=S C≡C 839 N≡N 945 C≡N 890 C≡O 1077	Bond C C C C C C C C C	Enthalpy / kJ mol ⁻¹ 614 615	Z	Enthalpy / kJ mol ⁻¹ 470 587	Bond 0 = 0
804 536 839 N≡N 945 890 1077	C N	615	Z O	587	0 = 8
536 839 N≡N 945 890 1077	C = 0	804			
839 N≡N 1077	C = S	536			S = S
839 N≡N 890 1077					
	$C \equiv C$	839	Z N	945	
	C≡N	890			
	C ≡ 0	1077			

13. Thermodynamic data (selected compounds)

Substance	Formula	State	∆H _f [⊖] / kJ mol ⁻¹	∆G _f [⊕] / kJ mol ⁻¹	S ^O / J K ⁻¹ mol ⁻¹
methane	CH ₄	9	-74	-50	+186
ethane	C ₂ H ₆	g	-84	-32	+230
propane	C_3H_8	g	-105	-24	+270
butane	C ₄ H ₁₀	д	-126	-17	+310
pentane	C ₅ H ₁₂	_	-173		
hexane	C ₆ H ₁₄	_	-199		
ethene	C ₂ H ₄	g	+52	+68	+220
propene	C ₃ H ₆	g	+20	+62	+267
but-1-ene	C ₄ H ₈	g	+0.1	+71	+306
cis-but-2-ene	C ₄ H ₈	g	-7	+66	+301
trans-but-2-ene	C ₄ H ₈	g	111	+63	+297
ethyne	C ₂ H ₂	g	+228	+211	+201
propyne	C_3H_4	g	+185	+194	+248
buta-1,3-diene	C_4H_6	д	+110	+151	+279
cyclohexane	C ₆ H ₁₂	1	-156		
benzene	C ₆ H ₆	_	+49	+125	+173
methylbenzene	C ₆ H ₅ CH ₃	_	+12		
ethylbenzene	C ₆ H ₅ CH ₂ CH ₃	_	-12		
phenylethene	C ₆ H ₅ CHCH ₂	_	+104		
chloromethane	CH ₃ Cl	g	-82	-58	+235
dichloromethane	CH ₂ Cl ₂	_	-124		+178
trichloromethane	CHCl ₃	_	-134	-74	+202
bromomethane	CH ₃ Br	g	-36	-26	+246
iodomethane	$CH_3\mathrm{I}$	_	-14		+163
chloroethane	C ₂ H ₅ Cl	g	-137	-53	
bromoethane	C ₂ H ₅ Br	_	-90	-26	+199
chlorobenzene	C ₆ H ₅ Cl	_	+11		
methanol	СН ₃ ОН	_	-239	-167	+127
ethanol	C ₂ H ₅ OH	_	-278	-175	+161
phenol	C ₆ H ₅ OH	S	-165		+144
methanal	нсно	g	-109	-102	+219
ethanal	CH ₃ CHO	g	-166	-133	+264
propanone	(CH ₃) ₂ CO	_	-248		+200
methanoic acid	нсоон	_	-425	-361	+129
ethanoic acid	СН ₃ СООН	_	-484	-390	+160
benzoic acid	C ₆ H ₅ COOH	s	-385		+168
methylamine	CH ₃ NH ₂	В	-23	+32	+243
water	H ₂ O	_	-286	-237	+70
steam	H ₂ O	g	-242	-229	+189
carbon monoxide	CO	g	-111	-137	+198
carbon dioxide	CO ₂	g	-394	-394	+214
hydrogen bromide	HBr	g	-36	-53	+199
hydrogen chloride	HCI	д	-92	-95	+187
hydrogen fluoride	퓨	g	-273	-275	+174
hydrogen iodide	H	g	+26	+2	+207

14. Enthalpies of combustion

The values of the molar enthalpy of combustion (ΔH_c^{\ominus}) in the following table refer to a temperature of 298.15 K and a pressure of 100 kPa.

Substance	Formula	State	∆ H _c [⊕] / kJ mol ⁻¹
hydrogen	H ₂	g	-286
sulfur	S	s	-297
carbon (graphite)	С	S	-394
carbon monoxide	CO	g	-283
methane	CH ₄	g	-891
ethane	C_2H_6	g	-1561
propane	C ₃ H ₈	g	-2219
butane	C ₄ H ₁₀	g	-2878
pentane	C ₅ H ₁₂	l	-3509
hexane	C ₆ H ₁₄	l	-4163
octane	C ₈ H ₁₈	l	-5470
cyclohexane	C ₆ H ₁₂	l	-3920
ethene	C ₂ H ₄	g	-1411
buta-1,3-diene	C ₄ H ₆	g	-2541
ethyne	C ₂ H ₂	g	-1301
benzene	C ₆ H ₆	l	-3268
methylbenzene	C ₆ H ₅ CH ₃	l	-3910
naphthalene	C ₁₀ H ₈	s	-5156
chloroethane	C ₂ H ₅ Cl	g	-1413
iodoethane	C ₂ H ₅ I	l	-1463
trichloromethane	CHCl ₃	l	-473
methanol	CH₃OH	l	-726
ethanol	C ₂ H ₅ OH	l	-1367

Substance	Formula	State	∆H _c [⊕] / kJ mol ⁻¹
propan-1-ol	C ₃ H ₇ OH	l	-2021
butan-1-ol	C ₄ H ₉ OH	l	-2676
cyclohexanol	C ₆ H ₁₁ OH	S	-3728
phenol	C ₆ H ₅ OH	S	-3053
ethoxyethane	$(C_2H_5)_2O$	l	-2724
methanal	нсно	g	-571
ethanal	CH₃CHO	g	-1167
benzaldehyde	C ₆ H ₅ CHO	l	-3525
propanone	(CH ₃) ₂ CO	l	-1790
pentan-3-one	(C ₂ H ₅) ₂ CO	l	-3100
phenylethanone	CH ₃ COC ₆ H ₅	l	-4149
methanoic acid	нсоон	l	-255
ethanoic acid	CH₃COOH	l	-874
benzoic acid	C ₆ H ₅ COOH	S	-3228
ethanedioic acid	(COOH) ₂	S	-243
ethyl ethanoate	CH ₃ COOC ₂ H ₅	l	-2238
ethanamide	CH ₃ CONH ₂	S	-1186
methylamine	CH ₃ NH ₂	g	-1086
phenylamine	C ₆ H ₅ NH ₂	l	-3393
nitrobenzene	C ₆ H ₅ NO ₂	l	-3088
urea	CO(NH ₂) ₂	S	-633
glucose	C ₆ H ₁₂ O ₆	S	-2803
sucrose	C ₁₂ H ₂₂ O ₁₁	S	-5640

15. Colour wheel with wavelengths of the visible spectrum

16. Lattice enthalpies at 298.15 K (experimental values)

The lattice enthalpy values $(\Delta H^{\Theta}_{\text{lattice}})$ in the following tables relate to the endothermic process $M_a X_b(s) \to a M^{b+}(g) + b X^{a-}(g)$ in which the gaseous ions of a crystal are separated to an infinite distance from each other.

The data in these tables are experimental values obtained by means of a suitable Born–Haber cycle.

Cs	Rb	X	N _a	<u></u>		Alkali metal halides
759	795	829	930	1049	П	
670	695	720	790	864	CI	$\Delta H_{\text{lattice}}^{\Theta}$
647	668	691	754	820	Br	∆H _{lattice} / kJ mol⁻¹
613	632	650	705	764	I	

$\Delta H_{ m lattice}^{\Theta}$ / kJ mol ⁻¹
2651
3033
2540
2271
2170
2069
3791
3401

tances	ΔH [®] _{lattice} / kJ mol⁻¹ 3223 3054 2824 974
CuCl ₂	2824
AgF	974
AgCl	918
AgBr	905
AgI	892

Triangular bonding diagram (van Arkel-Ketelaar triangle)

18. Acid-base indicators

			Colour change	change
Indicator	$p K_{a}$	pH range	Acid	Alkali
methyl orange	3.7	3.1-4.4	red	yellow
bromophenol blue	4.2	3.0-4.6	yellow	blue
bromocresol green	4.7	3.8-5.4	yellow	blue
methyl red	5.1	4.4-6.2	red	yellow
bromothymol blue	7.0	6.0-7.6	yellow	blue
phenol red	7.9	6.8-8.4	yellow	red
phenolphthalein	9.6	8.3-10.0	colourless	pink

19. Standard reduction potentials at 298.15 K

+2.87	$\frac{1}{2}F_2(g)+e^- \implies F^-(aq)$
+1.51	1
+1.36	1
+1.36	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \implies 2Cr^{3+}(aq) + 7H_2O(1)$
+1.23	$\frac{1}{2}O_2(g) + 2H^+(aq) + 2e^- \implies H_2O(1)$
+1.09	$\frac{1}{2} Br_2(l) + e^- \implies Br^-(aq)$
+0.80	$Ag^{\dagger}(aq) + e^{-} \implies Ag(s)$
+0.77	$Fe^{3+}(aq) + e^- \implies Fe^{2+}(aq)$
+0.54	$\frac{1}{2}I_2(s) + e^- \implies I^-(aq)$
+0.52	$Cu^{\dagger}(aq) + e^{-} \rightleftharpoons Cu(s)$
+0.40	$\frac{1}{2}O_2(g) + H_2O(l) + 2e^- \implies 2OH^-(aq)$
+0.34	$Cu^{2+}(aq) + 2e^- \implies Cu(s)$
+0.17	$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \implies H_2SO_3(aq) + H_2O(1)$
+0.15	$Cu^{2+}(aq) + e^- \rightleftharpoons Cu^+(aq)$
0.00	$H^+(aq) + e^- \implies \frac{1}{2}H_2(g)$
-0.13	$Pb^{2+}(aq) + 2e^- \implies Pb(s)$
-0.14	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^- \iff \operatorname{Sn}(s)$
-0.26	$Ni^{2+}(aq) + 2e^- \iff Ni(s)$
-0.45	$Fe^{2+}(aq) + 2e^- \iff Fe(s)$
-0.76	$Zn^{2+}(aq) + 2e^- \iff Zn(s)$
-0.83	$H_2O(l) + e^- \rightleftharpoons \frac{1}{2}H_2(g) + OH^-(aq)$
-1.18	$Mn^{2+}(aq) + 2e^- \implies Mn(s)$
-1.66	$Al^{3+}(aq) + 3e^- \iff Al(s)$
-2.37	$Mg^{2+}(aq) + 2e^- \iff Mg(s)$
-2.71	$Na^{+}(aq) + e^{-} \implies Na(s)$
-2.87	$Ca^{2+}(aq) + 2e^- \iff Ca(s)$
-2.93	$K^+(aq) + e^- \implies K(s)$
-3.04	$Li^{+}(aq) + e^{-} \rightleftharpoons Li(s)$
E [⊕] / V	Oxidized species Reduced species

20. Infrared data

Characteristic ranges for infrared absorption due to stretching vibrations in organic molecules

Bond	Types of organic molecules	Wavenumber / cm ⁻¹	Intensity
C — I	iodoalkanes	490–620	strong
C — Br	bromoalkanes	500-600	strong
C — Cl	chloroalkanes	600-800	strong
C — F	fluoroalkanes	1000–1400	strong
C — O	alcohols, esters, ethers	1050–1410	strong
C = C	alkenes	1620–1680	medium-weak; multiple bands
C = O	aldehydes, ketones, carboxylic acids and esters	1700–1750	strong
C≡C	alkynes	2100–2260	variable
O — H	carboxylic acids (with hydrogen bonding)	2500–3000	strong, very broad
C — H	alkanes, alkenes, arenes	2850-3090	strong
O — H	alcohols and phenols (with hydrogen bonding)	3200–3600	strong, broad
N — H	primary amines	3300–3500	medium; two bands

21. ¹H NMR data

Typical proton chemical shift values (δ) relative to tetramethyIsilane (TMS)

R represents an alkyl group, and Hal represents F, Cl, Br or I.

These values may vary for different solvents and conditions.

R ^C /H	o=0	H	НО	CH=C H ₂	R-0- H	R C O H	O 	R-0-C H ₂ -	—C H ₂ -Hal	—C≡C− H	———CH ₃	R C CH ₂ —	$\overset{O}{\overset{I}}{\overset{I}{\overset{I}}{\overset{I}{\overset{I}}{\overset{I}{\overset{I}}{\overset{I}{\overset{I}}{\overset{I}{\overset{I}}{\overset{I}{\overset{I}}{\overset{I}}{\overset{I}{\overset{I}}{\overset{I}}{\overset{I}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}{\overset{I}}}{\overset{I}}}{\overset{I}}}{\overset{I}}}{\overset{I}}}{\overset{I}}}}{\overset{I}}{\overset{I}}{\overset{I}}}}{\overset{I}}}}{\overset{I}{\overset{I}}{\overset{I}}{\overset{I}}}}{\overset{I}}}}{\overset{I}}}}{\overset{I}}}}}}}}}$	—CHR ₂	—CH ₂ -R	—C H ₃	Type of proton
	9.4–10.0	6.9–9.0	4.0–12.0	4.5-6.0	1.0-6.0	9.0–13.0	3.7–4.8	3.3–3.7	3.5-4.4	1.8-3.1	2.5–3.5	2.2–2.7	2.0–2.5	1.5	1.3–1.4	0.9–1.0	Chemical shift / ppm

22. Mass spectral fragments lost

45	31	29	28	18	17	15	Mass lost (M _r)
•C00H	•OCH ₃	•CH ₂ CH ₃ •CHO	CH ₂ =CH ₂ CO	H ₂ O	•0H	•CH ₃	Possible neutral fragment lost

23. References

Data in sections 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21 and 22 were taken fully or in part from:

Blackman, A., Gahan, L. R., Aylward, G. H., & Findlay, T. J. V. (2014). Aylward and Findlay's SI Chemical Data. (7th ed.). John Wiley & Sons.

National Institute of Standards and Technology. (2021). NIST Chemistry WebBook SRD 69, NIST Standard Reference Database. U.S. Department of Commerce. http://webbook.nist.gov

Rumble, J. R. (Ed.). (2019). CRC Handbook of Chemistry and Physics. (100th ed.). CRC Press.

Data in section 17 are reproduced with permission from the author:

synthesis.com/webbook/30_timeline/timeline.html Leach, M. R. (2021). The Chemogenesis Web Book: Timeline of structural theory. http://www.meta-

6