9.1.5 DHCP Version6 (DHCPv6)

如果按照表 9-1 对 DHCP 数据包结构的定义,你会发现结构体中没有为 IPv6 地址提供足够的空间。为了解决这一问题,同时又不对 DHCP 协议进行改动,在 RFC3315 中提出了 DHCPv6 协议。由于 DHCPv6 不是基于 BOOTP 协议(DHCP 协议的前身)设计的,因此 DHCPv6 的数据包结构要比 DHCP 协议精简很多(见图 9-7)。

	动态主机配置协议Version 6 (DHCPv6)									
偏移位	八位组	0	1	2	3					
八位组	位	0–7	8-15	16-23	24-31					
0	0	消息类型	事务ID							
4+	32+	选项								

图 9-7 DHCPv6 数据包结构

如图 9-7 所示,DHCPv6 数据包结构仅包含 2 个固定字段,其作用与DHCP 中的类似字段相同。数据包的其他部分取决于位于第一个字节的消息 类型。在选项部分,每个选项由一个 2 字节的选项码和一个长度为 2 字节的 选项值字段组成。

DHCPv6 实现了和 DHCP 相同的功能,但要理解 DHCPv6 通信,我们必须把 DORA(Discover—Offer—Request—Acknowledgmen)替换为 SARR(Solicit—Advertise—Request—Reply)。这一过程如图 9-8 所示,描述了客户端的续租流程。

图 9-8 DHCPv6 SARR 续租过程

SARR 过程包括以下 4 个步骤。

- (1) 发起(Solicit): 客户端向一个特定的组播地址(ff02::1:2)发送一个初始化数据包,尝试在网络上发现可用的 DHCPv6 服务器。
- (2) 公告(Advertise): 一个可用的 DHCPv6 服务器直接回复客户端,表明此服务器能够提供地址分配和设置服务。

- (3) 请求(Request):客户端通过组播方式向服务器发起地址配置信息请求。
- (4) 回复(Reply): 服务器向客户端直接发送其请求的所有配置信息, SARR 过程完成。

SARR 过程的概要如图 9-9 所示,这部分数据包从 dhcp6 outlease acquisition.pcapng 中提取。在这个例子中,一台新接入网络的主机(fe80::20c:29ff: fe5e:7744)按照 SARR 过程,从 DHCPv6 服务器(fe80::20c:29ff:fe1f:a755)获取配置信息。每一个数据包代表了 SARR 过程中的一个步骤,其中,初始的 solicit(发起)和 advertise(公告)数据包的事务 ID 为 0x9de03f,request(请求)和 reply(回复)数据包的事务 ID 为 0x2d1603。这个通信过程使用 546 和 547 端口,这两个端口是DHCPv6 使用的标准端口。

No	Tim	Source	Destination	Protocol	Length	Info
Г	1 0	. fe80::20c:29ff:fe5e:7744	ff02::1:2	DHCPv6	118	Solicit XID: 0x9de03f CID: 000100011def69bd000c295e7744
	2 0	. fe80::20c:29ff:fe1f:a755	fe80::20c:29ff:fe5e:7744	DHCPv6	166	Advertise XID: 0x9de03f CID: 000100011def69bd000c295e7744 IAA: 2001:db8:1:2::1002
L	3 1	. fe80::20c:29ff:fe5e:7744	ff02::1:2	DHCPv6	164	Request XID: 0x2d1603 CID: 000100011def69bd000c295e7744 IAA: 2001:db8:1:2::1002
	4 1	. fe80::20c:29ff:fe1f:a755	fe80::20c:29ff:fe5e:7744	DHCPv6	166	Reply XID: 0x2d1603 CID: 000100011def69bd000c295e7744 IAA: 2001:db8:1:2::1002

图 9-9 客户端通过 DHCPv6 获得一个 IPv6 地址

总的来说,DHCPv6 和 DHCP 的数据包结构有很大区别,但是在功能实现思路上是一致的。这个过程仍然包括 DHCP 服务器发现步骤和正式的配置信息获取步骤。这些事件通过客户端和服务器之间交互数据包中的事务 ID 进行关联。传统的 DHCP 机制不支持 IPv6 地址分配,因此,如果你的设备能够从网络中的某个服务器自动获取 IPv6 地址,则这表明你的网络中已经在运行 DHCPv6 服务。如果你想要进一步比较 DHCP 和 DHCPv6,我们建议你使用抓包工具在客户端和服务器端逐步进行分析。