

6주1강 연속형 확률분포1

6.1절

6.1 균등분포

연속형 확률분포

- □ 이산형 확률분포가 셀 수 있는 이산점에서 0이 아닌 확률을 갖는 데 비하여 **연속형 확률분** 포는 특정한 실수구간에서 0이 아닌 확률을 갖는 확률분포를 말한다. 확률분포의 형태는 그 구간에서 정의된 확률밀도함수에 의하여 결정된다.
- □ 이러한 연속형 확률분포로 대표적인 것은 다음과 같다.
 - ① 균등분포(uniform distribution)
 - ② 정규분포(normal distribution)
 - ③ 지수분포(exponential distribution)
 - ④ *t*-분포(*t*-distribution)
 - ⑤ χ^2 -분포(f^2 -distribution)
 - ⑥ *F*-분포(*F*-distribution)
- \square 여기서, t-분포와 χ^2 -분포, F-분포는 정규분포로부터 유도된 분포이다.

균등분포(uniform distribution)

- 1. 균등분포(uniform distribution)는 연속형 분포에서 가장 단순한 분포형태로 특정구간 내의 값들이 가능성이 균등한 분포를 말한다.
- □ 예를 들면, L교수가 학교에 출근하는 시간이 오전 9시에서 10시사이이며 그 시간 동안 특정 시간에 출근할 가능성이 동일하다고 할때, 확률변수 X를 'L교수의 출근시간'이라고 정의하면 X는 9시에서 10시사이에 균등한 확률분포를 가진다.
- □ 연속형 확률변수 X가 실수구간 [a,b]에서 나타날 가능성이 균등할 때, X는 균등분포를 따른다고 하며 $X \sim U(a,b)$ 로 표현한다. X의 확률밀도함수는 다음과 같다.

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le X \le b \\ 0, & 다른 곳에서 \end{cases}$$

2. 균등분포의 평균과 분산

□ 확률변수 X가 $X \sim U(a,b)$ 라고 할 때, X의 평균과 분산은 다음과 같다.

① 평균 :
$$E(X) = \frac{b+a}{2}$$

② 분산 :
$$Var(X) = \frac{1}{12}(b-a)^2$$

3. 균등분포의 확률계산

$$P_r(\alpha \le X \le \beta) = \frac{\beta - \alpha}{b - a}, \qquad \alpha \le \alpha, \qquad \beta \le b$$

균등분포의 평균과 분산

□ 평균 : $E(X) = \frac{b+a}{2}$

증명)

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^2}{2} \right]_{a}^{b} = \frac{1}{b-a} \cdot \frac{b^2 - a^2}{2} = \frac{b+a}{2}$$

□ 분산: $Var(X) = \frac{1}{12}(b-a)^2$

증명)

$$Var(X) = \int_{-\infty}^{\infty} x^2 f(x) dx - \left(\frac{b+a}{2}\right)^2 = \frac{1}{b-a} \int_a^b x^2 dx - \left(\frac{b+a}{2}\right)^2 = \frac{1}{b-a} \left[\frac{x^3}{3}\right]_a^b - \left(\frac{b+a}{2}\right)^2$$
$$= \frac{b^2 + ab + a^2}{3} - \frac{a^2 + 2ab + b^2}{4} = \frac{a^2 - 2ab + b^2}{12} = \frac{1}{12} (b-a)^2$$

예 6-1 원에 0에서 1까지의 눈금이 표시되어 있고, 가운데 축에 화살이 있다. 이 화살을 돌려서 나오는 눈금의 위치를 측정하는 실험에서 이 화살이 1/2 과 3/4 사이에서 멈출 확률을 계산하라.

(sol) 확률변수 X를 `화살이 멈춘 위치'라고 할 때, 화살이 0과 1 사이에서 멈출 가능성이 균등하게 나타나므로 X의 확률밀도함수는 다음과 같이 나타난다.

$$f(x) = 1, \qquad 0 \le x \le 1$$

화살이 1/2 과 3/4 사이에서 멈출 확률은 다음과 같이 계산되고 그래프로 나타 난다.

$$P_r\left(\frac{1}{2} \le X \le \frac{3}{4}\right) = \frac{3}{4} - \frac{1}{2} = \frac{1}{4}$$

예 6-2 확률변수 Y가 구간 [5,10]에서 균등한 분포를 가질 때 $6 \le Y \le 7$ 의 확률을 계산하라.

(sol) Y의 확률밀도함수와 $6 \le Y \le 7$ 의 확률은 다음과 같이 계산된다.

$$f(y) = \frac{1}{10 - 5} = \frac{1}{5}, \qquad 5 \le y \le 10$$

$$P_r(6 \le X \le 7) = \frac{1}{5} \times 1 = \frac{1}{5}$$

■ *X~U*(0,1)인 경우

$$E(X) = \frac{1+0}{2} = \frac{1}{2}$$

$$Var(X) = \frac{1}{12}(1-0)^2 = \frac{1}{12}$$

■ *X~U*(5,10)인 경우

$$E(X) = \frac{10+5}{2} = \frac{15}{2}$$

$$Var(X) = \frac{1}{12}(10-5)^2 = \frac{25}{12}$$

6.2절

6.2 정규분포

정규분포

- □ **정규분포**란 가능한 값이 (-∞,∞)사이의 모든 실수값이고 분포의 형태가 종모양(bell shape) 인 분포를 말한다. 정규분포(normal distribution)는 통계이론에 있어서 가장 중요한 확률분 포로 **대부분의 통계분석은 수집된 자료가 정규분포를 따른다고 전제**한다.
- □ 확률변수 X가 평균 μ 와 분산 σ^2 을 갖는 정규분포를 따른다고 할 때, X 확률밀도함수는 다음과 같다.

$$X \sim N(\mu, \sigma^2) \qquad f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \qquad -\infty < x < \infty$$

 정규분포는 분포의 중심이 가장 높으며 이 중심을 축으로 좌우대칭인 형태를 갖고 있다. 정규분포의 특성은 중심축의 위치와 분포가 중심축을 중심으로 하여 흩어진 정도이며, 각각 정규분포의 모수인 평균(μ)과 분산(σ²)으로 인해 나타나고 분포의 모양이 결정되어진다.

① 정규분포의 일반적 형태

③ 평균은 같으나 분산이 다른 정규분포

② 평균이 다르고 분산이 같은 정규분포

④ 평균과 분산이 각각 다른 경우의 정규분포

표준정규분포

□ 확률변수 Z가 평균이 0이고 분산이 1인 정규분포를 따를 때 Z는 **표준정규분포**를 따른다고 하며, $Z \sim N(0,1)$ 으로 표현한다. Z의 확률밀도함수는 다음과 같다.

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}, \quad -\infty < z < \infty$$

□ 표준정규분포의 형태는 다음과 같으며, 중심 0에서부터 양의 값 Z까지의 확률은 색칠한 부분의 넓이와 같다. 수식을 통해 확률값을 구하는 것이 쉽지 않으므로 확률 $P(0 \le Z \le Z)$ 은 주로 표준정규분포표를 이용하여 확률값을 구한다.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3279	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907 .4082	.3925	.3944	.3962	.3980 .4147	.3997 .4162	.4015
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
1.1	.3643	.3665	.3686	.3708	.3279	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4903	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4974	.4975	.4970	.4977	.4984	.4976	.4979	.4975	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990

정규분포의 확률계산

- 특정 실수영역에 있어서의 정규분포 확률은 적분 계산이 매우 복잡하여 부록의 표준정규확률분포표
 에 표준정규분포의 확률값을 계산한다.
- □ 다음과 같이 확률변수 *X*를 선형 변환하면 표준정규확률변수를 유도할 수 있으며 이러한 표준정규확률변수에 의하여 *X*의 특정구간에 대한 확률을 구할 수 있다.
- ① 표준화
- □ 정규분포를 따르는 확률변수 $X \sim N(\mu, \sigma^2)$ 에서 $Z = \frac{X-\mu}{\sigma}$ 로 정의하면, $Z \sim N(0, 1)$ 이다.
- □ 위의 표준화 공식을 이용하여 정규분포를 따르는 확률변수를 표준정규분포로 표준화시켜 특정구간의 확률을 구할 수 있다. 표준정규분포의 특정 실수영역 (a, b)에 있어서 확률은 다음과 같다.

$$P_r(a \le Z \le b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

□ 위의 적분계산은 매우 복잡하여 쉽지 않음을 알 수 있다. 위의 표준정규분포에서 설명한 바와 같이 부록의 표3에 제시된 확률값을 이용해 확률을 계산해 낼 수 있다.

예6-3. 확률변수 X가 $X \sim N(20, 25)$ 일 때, X가 15에서 30 사이에 있을 확률을 계산하라.

(sol) $\mu = 20$, $\sigma = \sqrt{25} = 5$ 이므로 다음의 식과 같이 확률이 계산됨을 알 수 있다.

$$P_r(15 \le X \le 30) = P_r\left(\frac{15 - 20}{5} \le \frac{X - \mu}{\sigma} \le \frac{30 - 20}{5}\right)$$

$$= P_r(-1 \le Z \le 2)$$

$$= P_r(-1 \le Z \le 0) + P_r(0 \le Z \le 2)$$

$$= P_r(0 \le Z \le 1) + P_r(0 \le Z \le 2)$$

표준정규분포표를 이용하여 다음과 같이 계산된다.

$$P_r(15 \le X \le 30) = 0.3413 + 0.4772 = 0.8185$$

예6-4. 2007년도 대학입학 수능시험의 성적은 평균이 200점이고 표준편차가 20점인 정규분포를 따른다고 한다. 수능시험을 치른 한 학생을 임의로 선택하였을 때 다음 각각의 확률을 구하라.

(sol) 확률변수 X를 선택된 학생의 수능시험 성적이라고 할 때, $X \sim N(200, 20^2)$ 임을 알 수 있다. 표준정규분포표를 이용하여 다음과 같이 확률을 구한다.

(a) 그 학생의 성적이 200점 이상일 확률

$$P_r(X \ge 200) = P_r\left(\frac{X-\mu}{\sigma} \ge \frac{200-200}{20}\right) = P_r(Z \ge 0) = 0.5$$

(b) 그 학생의 성적이 164점에서 240점 사이에 있을 확률

$$P_r(164 \le X \le 240) = P_r\left(\frac{164 - 200}{20} \le \frac{X - \mu}{\sigma} \le \frac{240 - 20}{20}\right) = P_r(-1.8 \le Z \le 2.0)$$
$$= P_r(-1.8 \le Z \le 0) + P_r(0 \le Z \le 2) = 0.4641 + 0.4772 = 0.9413$$

(c) 그 학생의 성적이 240점 이상일 확률

$$P_r(X \ge 240) = P_r\left(\frac{X-\mu}{\sigma} \ge \frac{240-200}{20}\right) = P_r(Z \ge 2.0) = 0.5 - 0.4772 = 0.0228$$

(d) 그 학생의 성적이 170점 이하이거나 240점 이상일 확률

$$P_r(X \le 170) + P_r(X \ge 240) = P_r(Z \le -1.5) + P_r(Z \ge 2.0) = (0.5 - P_r(0 \le Z \le 1.5)) + (0.5 - P_r(0 \le Z \le 2))$$
$$= (0.5 - 0.4332) + (0.5 - 0.4772) = 0.0668 + 0.0228 = 0.0896$$

예 6-5 [예 6.4]에 주어진 대입수능시험 성적의 분포에 대하여 다음을 구하라.

- (a) 상위 5% 학생들의 성적은 몇 점 이상인가?
- (sol) 확률을 표준화와 보간법을 이용해 계산하면 다음과 같다.

$$P_r(X \ge a) = P_r\left(\frac{X-\mu}{\sigma} \ge \frac{a-\mu}{\sigma}\right) = P_r\left(Z \ge \frac{a-\mu}{\sigma}\right) = 0.05, \ \mu = 200, \ \sigma = 20$$

 $\Rightarrow \frac{a-\mu}{\sigma} = 1.645 \implies a = 200 + 1.645 \times 20 = 232.9$

즉 상위 5% 학생들은 약 233점 이상이라고 할 수 있다.

(b) 상위 40% 학생들이 대학에 진학한다고 할 때 몇 점 이상인 학생들이 대학에 진학한다고 할 수 있나? (sol) 확률을 표준화와 보간법을 이용해 계산하면 다음과 같다.

$$P_r(X \ge b) = P_r\left(\frac{X-\mu}{\sigma} \ge \frac{b-200}{20}\right) = P_r\left(Z \ge \frac{b-200}{20}\right) = 0.40$$

$$\implies \frac{b-200}{20} = 0.253 \implies b = 200 + 0.253 \times 20 = 205.06$$

즉 약 205점 이상인 학생들이 대학에 진학한다고 할 수 있다.

예 6-6 확률변수 Z가 표준정규분포를 따를 때 다음 구간의 확률을 구하라.

- (a) $P(-1.645 \le Z \le 1.645)$
- (sol) 표준정규분포표를 이용해 확률을 구하면 다음과 같다. $P(-1.645 \le Z \le 1.645) = 0.90$
- (b) $P(-1.96 \le Z \le 1.96)$
- (sol) 표준정규분포표를 이용해 확률을 구하면 다음과 같다. $P(-1.96 \le Z \le 1.96) = 0.95$
- (c) $P(-2.57 \le Z \le 2.57)$
- (sol) 표준정규분포표를 이용해 확률을 구하면 다음과 같다. $P(-2.57 \le Z \le 2.57) = 0.99$

6.3절

6.3 지수분포

지수분포

- 지수분포란 어떤 사건이 포아송분포에 의하여 발생될 때, 지정된 시점으로부터 이 사건이 처음 발생될 때까지 걸린 시간을 측정하는 확률분포이다.
- 확률변수 T가 다음과 같은 확률밀도함수를 가질 때 T는 모수 λ를 갖는 지수분포를 따른다고 하며 다음과 같이 표현한다.

$$f(t) = \lambda e^{-\lambda t}, \qquad t > 0$$

lacktriangle 예를 들어, 어떤 사건이 단위구간에서 평균 λ 를 갖는 포아송분포를 따른다면 t구간에서는 평균이 λt 가 되고, 확률변수 X가 t구간에서 발생되는 사건의 수를 나타낸다고 할 때 X는 평균이 λt 인 포아송분포를 따르며

$$P_r(X=k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \qquad k = 0, 1, 2, \dots$$

□ 확률 변수 T가 지정된 시간(t=0)부터 처음 사건이 발생할 때까지의 걸린 사간을 측정한다면 $P_r(T \ge t)$ 은 X가 (0,t)구간에서 발생되지 않는 확률과 같으므로

$$P_r(T \ge t) = P_r(X = 0) = e^{-\lambda t}, \quad t > 0$$

$$T$$
의 누적분포함수 : $F_T(t) = P_r(T \le t) = 1 - P_r(T \ge t) = 1 - e^{-\lambda t}$

$$f_T(t) = \frac{d}{dt}F_T(t) = \frac{d}{dt}(1 - e^{-\lambda t}) = \lambda e^{-\lambda t}, \quad t > 0$$

지수분포의 평균과 분산 : $E(T)=rac{1}{\lambda},\;Var(X)=rac{1}{\lambda^2}$

$$E(T) = \int_0^\infty t\lambda e^{-\lambda t} dt = \lim_{k \to \infty} \left\{ \left[-te^{-\lambda t} \right]_0^k - \int_0^k (-e^{-\lambda t}) dt \right\}$$
$$= \lim_{k \to \infty} \left\{ -ke^{-\lambda k} + \left[\frac{e^{-\lambda t}}{-\lambda} \right]_0^k \right\} = \lim_{k \to \infty} \left\{ -ke^{-\lambda k} - \frac{e^{-\lambda t}}{\lambda} + \frac{1}{\lambda} \right\} = \frac{1}{\lambda}$$

$$Var(T) = \int_0^\infty t^2 \lambda e^{-\lambda t} \, dt - \left(\frac{1}{\lambda}\right)^2 = \lim_{k \to \infty} \left\{ \left[-t^2 e^{-\lambda t} \right]_0^k - \int_0^k 2t (-e^{-\lambda t}) \, dt \right\} - \left(\frac{1}{\lambda}\right)^2$$
$$= \lim_{k \to \infty} \left\{ -k^2 e^{-\lambda k} + \frac{2}{\lambda} \int_0^k t \lambda e^{-\lambda t} \, dt \right\} - \left(\frac{1}{\lambda}\right)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

예 6-7. 한사무실에는 전화가 평균 10분에 5번꼴로 걸려온다. 이 사무실에서 전화가 한 번 걸려온 때부터 다음 전화가 걸려올 때까지 걸린 시간을 분으로 측정하는 확률분포를 구하라.

(sol) 전화가 평균 10분에 5번 꼴로 걸려오므로 1분을 단위로 할 때는 으로 1분에 0.5번 꼴로 걸려온다고 할 수 있다.

따라서 $\lambda = 0.5$ (전화가 한 번 걸려온 후에 다음 전화가 걸려올 때까지 걸린 시간)인 지수분포를 따른다. 확률밀도함수는 다음과 같다.

$$f(t) = 0.5e^{-0.5t}, \qquad t > 0$$

예 6-8. [예 6.7]에 있어서 한 번 전화가 걸려온 후에 다음 전화가 걸려올 때까지 걸린 시간이 5분 이내일 확률과 2분 이상일 확률을 구하라.

(sol) 다음 전화가 걸려올 때까지 걸린 시간이 5분 이내일 확률은 다음과 같이 계산된다.

$$P_r(T \le 5) = \int_0^5 0.5e^{-0.5t} dt = 1 - e^{-0.5 \times 5}$$
$$= 1 - e^{-2.5} = 1 - 0.08208 = 0.918$$

다음 전화가 걸려올 때까지 걸린 시간이 2분 이상일 확률은 다음과 같이 계산된다.

$$P_r(T \ge 2) = 1 - P_r(T \le 2) = 1 - \int_0^2 0.5e^{-0.5t} dt$$

= $e^{-0.5 \times 2} = e^{-1} = 0.3679$

$$P_r(T \ge a) = \int_a^\infty f(t) dt = \int_a^\infty \lambda e^{-\lambda t} dt$$
$$= \lim_{k \to \infty} \left[-e^{-\lambda t} \right]_a^k = \lim_{k \to \infty} \left\{ -e^{-\lambda k} + e^{-\lambda a} \right\} = e^{-\lambda a}$$

$$P_r(T \le a) = 1 - e^{-\lambda a}$$

예 6-9 한 공장의 자동화기계는 평균 1시간에 3번씩 고장을 일으킨다. 기계가 고장나서 고친후에 다시 고장이 발생될 때까지 걸리는 시간을 측정하는 분포를 구하고, 2시간 이내에는 고장나지 않을 확률을 구하라.

(sol) 시간의 기본단위을 시간(hour)으로 하고, 한 번 고장이 난 후에 다음 고장이 발생될 때까지 걸리는 시간을 나타내는 확률변수를 T라고 할 때, $\lambda t=3$ 에서 t=1이므로 $\lambda=3$ 이다. 그러므로 T는 평균이 3인 지수분포를 따른다.

$$f_T(t) = 3e^{-3t}, \qquad t > 0$$

한 번 고장이 난 후에 2시간 이내에는 다시 고장이 발생되지 않을 확률은 다음과 같이 계산된 다

$$P_r(T \ge 2) = 1 - P_r(T \le 2) = 1 - \int_0^2 3e^{-3} dt = 1 - (1 - e^{-6}) = e^{-6} = 0.00248$$

예 6-10 [예 6.7]에서 한 번 전화가 걸려온 후에 다음 전화가 걸려올 때까지의 평균시간은 얼마인가?

(sol) [예 6.6]에서 $\lambda = 0.5$ 이므로 평균은 다음과 같이 계산된다.

$$E(T) = \frac{1}{\lambda} = \frac{1}{0.5} = 2$$

예 6-11 [예 6.9]에서 자동화기계가 한 번 고장난 후에 다시 고장날 때까지 걸리는 시간의 평균은 얼마인가?

sol) [예 6.9]에서 $\lambda = 3$ 이므로 평균은 다음과 같이 계산된다.

$$E(T) = \frac{1}{\lambda} = \frac{1}{3}$$

