Contents

El Problema de la Division

Dada una funcion generalizada f(t) y una funcion analitica g(t) hallar una funcion generalizada x(t) tal que g(t)x(t)=f(t)

Planteo g(t)x(t) = 0 y veo que puede haber diferentes casos

1. g tiene un unico cero de orden n en t_0

$$\Rightarrow x(t) = \sum_{k=0}^{n-1} C_k \delta^{(n)}(t - t_0)$$

2. g tiene ceros t_k de orden n_k y $\nexists \lim_{k\to\pm\infty} t_k$

$$x(t) = \sum_{k \in \mathbb{Z}} x_k(t)$$

$$x_k(t) = C_k \delta^{(n_k - 1)}(t - t_0)$$

esta parte esta dudosa, seria mejor leer los archivos de Rafa

Ejemplo

Resolver el problema de la division para $(t^2 - 4)x(t) = 4\delta''(t - 3)$

1. Solucion general de la homogenea

$$(t^2 - 4)x_k(t) = 0$$

Los ceros son $t_1 = 2$; $n_1 = 1$ y $t_2 = -2$; $n_2 = 1$. Entonces

$$x_k(t) = A\delta(t-2) + B\delta(t+2)$$

Para resolver la particular, propongo x_p como una combinación lineal de derivadas de $\delta(t)$

Nota:
$$h(t)\delta'(t-t_0) = h(t_0)\delta'(t-t_0) - h'(t_0)\delta(t-t_0)$$

Generalizado,

$$< h(t)\delta^{(n)}(t-t_0), \phi(t) > = < \delta^{(n)}(t-t_0), h(t)\phi(t) >$$

 $< \delta^{(n)}(t-t_0), h(t)\phi(t) > = (-1)^n < \delta(t-t_0), (h(t)\phi(t))^{(n)} >$

$$(h(t)\phi(t))^{(n)} = \sum_{k=0}^{n} nCk(-1)^{n-k}h^{n-k}(t)\delta^{(k)}(t-t_0)$$

Volviendo a la resolucion del ejemplo...

$$x_p = C\delta''(t-3) + D\delta(t-3) + E\delta'(t-3)$$

Ahora me queda calcular h(t) por cada uno de esos terminos usando el resultado que anote arriba para calcular el producto de h(t) por las sucesivas derivadas de δ . No lo escribo porque es muy cuentoso.