1 Differential Equations

1.1 Ordinary differential equations (ODE's)

Given F, a function of x, y, and derivatives of y. Then an equation of the form

$$F(x, y, y', \dots, y^{(n)}) = 0$$

is an implicit ODE of order n. Order is determined by the highest derivative. Implicit means the equation equals 0.

1.2 Linear ODE's

A differential equation is said to be linear if F can be written as a linear combination of the derivatives of y:

$$b(x) = \sum_{i=0}^{n} a_i(x) \cdot y^{(i)}$$

where $a_i(x)$ and b(x) are continuous functions. Why is this called linear?

$$D = \frac{d^{(k)}}{dx^k} + a_{k-1} \frac{d^{(k-1)}}{dx^{k-1}} + \dots + a_0$$
$$D(\alpha f + \beta g) = \alpha D(f) + \beta D(g)$$
$$Df_1 = b_1, Df_2 = b_2 \Rightarrow D(f_1 + f_2) = b_1 + b_2$$

1.3 Homogenous

A linear ODE is homogenous when b(x) = 0. Inhomogenous otherwise.

1.4 Solution Space

Let $I \subset \mathbf{R}$ be an open interval and $k \geq 1$ an integer, and let

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = 0$$

be a linear ODE over I with continuous coefficients.

- (1) The set S of k-times differentiable solutions $f: I \to \mathbb{C}$ of the equation is a complex vector space wich is a subspace of the space of complex valued functions on I. (Analogous for real numbers, if all a_i are real valued)
- (2) The dimension of S is k and for any choice of $x_0 \in I$ and any $(y_0, \ldots, y_{k-1}) \in \mathbb{C}^k$ there exists a unique f such that

$$f(x_0) = y_0, f'(x_0) = y_1, \dots, f^{(k-1)}(x_0) = y_{k-1}$$

(Analogous for real numbers, if all a_i are real)

- (3) For an arbitrary b the solution set is $S_b = \{f + f_p \mid f \in S_0\}$ where f_p is a "particular" solution.
- (4) For any initial condition there is a unique solution.

1.5 Solving linear ODE's of order 1

Let us consider

$$y' + ay = b.$$

Here a, b are constant functions.

(1) Find solutions of the corresponding homogenous equation y'+ay=0. Note that if f is a solution so is $z\cdot f\quad \forall z\in\mathbb{C}$. Example:

$$\begin{aligned} y' + ay &= 0 \\ y' &= -ay \\ \frac{y'}{y} &= -a \\ ln(y) &= -\int a + C = -A + C \\ y &= e^{-A+C} = z \cdot e^{-A} \quad z \in \mathbb{C} \end{aligned}$$

(2) Find a particular solution $f_p:I\to\mathbb{C}$ such that $f'_p+af_p=b$. Use educated guess or variation of constants.

1.6 Educated Guess

Note

- (1) If b(x) is a linear combination of basic functions listed here try the linear combination of educated guesses
- (2) If the educated guess is the same as the solution of the homogenous problem, then try multiplying by x^m where m denotes the multiplicity of the root λ .

b(x)	Guess	
$a \cdot e^{\alpha x}$	$b \cdot e^{lpha x}$	
$a\sin(\beta x)$	$c\sin(\beta x) + d\cos(\beta x)$	
$b\cos(\beta x)$	$c\sin(\beta x) + d\cos(\beta x)$	
$ae^{\alpha x}\sin(\beta x)$	$e^{\alpha x} \Big(c \sin(\beta x) + d \cos(\beta x) \Big)$	
$be^{\alpha x}\cos(\beta x)$	$e^{\alpha x} \Big(c \sin(\beta x) + d \cos(\beta x) \Big)$	
$P_n(x)e^{\alpha x}$	$R_n(x) \cdot e^{\alpha x}$	
$P_n(x)e^{\alpha x}\sin(\beta x)$	$e^{\alpha x} \Big(R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \Big)$	
$P_n(x)e^{\alpha x}\cos(\beta x)$	$e^{\alpha x} \Big(R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \Big)$	

1.6.1 Variation of constants

- (1) Assume $f_p = z(x)e^{-A(x)}$ for some function $z: I \to \mathbb{C}$
- (2) We plug this into the equation and see what it forces z to satisfy

$$f_p = z(x)e^{-A(x)} = y$$

$$y' = z'(x)e^{-A(x)} - z(x)A'(x)e^{-A(x)}$$

$$y' = e^{-A(x)} \left(z'(x) - z(x)a(x)\right)$$

$$ay = a \cdot z(x)e^{-A(x)}$$

$$y' + ay = z'(x)e^{-A(x)} = b(x)$$

$$b(x) = z'(x)e^{A(x)}$$

$$z(x) = \int \frac{e^{A(x)}}{b(x)}$$

$$y_p = z(x)e^{-A(x)}$$

or for degree two

- (1) Assume the homogenous solution is $f = z_1 f_1 + z_2 f_2$
- (2) We will try $f_n = z_1(x)f_1 + z_2(x)f_2$
- (3) Solve the following system

$$z'_1(x)f_1 + z'_2(x)f_2 = 0$$

$$z'_1(x)f'_1 + z'_2(x)f'_2 = b$$

1.6.2 Solving Linear ODE's with constant coefficients

We want to solve

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y = b(x)$$

We assume our solution is $e^{\lambda x}$.

$$P(\lambda) = \lambda^k e^{\lambda x} + a_{k-1} \lambda^{k-1} e^{\lambda x} + \dots + a_0 e^{\lambda x} = 0$$
$$= e^{\lambda x} \left(\lambda^k + a_{k-1} \lambda^{k-1} + \dots + a_0 \right) = 0$$
$$\Rightarrow 0 = \lambda^k + a_{k-1} \lambda^{k-1} + \dots + a_0$$

Which can then be solved for λ . Keep in mind that $\lambda \in \mathbb{C}$ and we might be able to simplify with Euler's formula.

$$e^{ix} = \cos(x) + i\sin(x)$$

If there is a multiple root α of multiplicity j we have

Solutions:
$$e^{\alpha x}$$
, $xe^{\alpha x}$, ..., $x^{j-1}e^{\alpha x}$

1.7 Complex roots

If $\alpha=\beta+\gamma i$ is a complex root of $P(\lambda)$, then so is $\bar{\alpha}=\beta-\gamma i$. Hence $f_1=e^{\alpha x}$ and $f_2=e^{\bar{\alpha} x}$ are solutions and can be replaced by a linear combination of $\tilde{f}_1=e^{\beta x}\cos(\gamma x)$ and $\tilde{f}_2=e^{\beta x}\sin(\gamma x)$. Further if $y^{(k)}+a_{k-1}y^{(k-1)}+\cdots+a_0y=0$ has real coefficients, then each pair of complex conjugate roots $\beta_j\pm\gamma_j i$ with multiplicity m_j leads to solution

$$x^l e^{\beta_j x} \Big(\cos(\gamma_j x) + i \sin(\gamma_j x) \Big)$$
 for $0 \le l \le m_j$

1.8 Separation of variables

A differential equation of oder 1 is separable if it is of the form

$$y' = b(x)g(y)$$

$$\frac{dy}{dx} = b(x)g(y)$$

$$\frac{dy}{g(y)} = b(x)dx$$

$$\int \frac{dy}{g(y)} = \int b(x)dx$$

2 Differentials in \mathbb{R}^n

2.1 Monomial

A monomial of degree e is a function

$$(x_1, \dots, x_n) \mapsto \alpha x_1^{d_1} \cdot \dots \cdot x_n^{d_n}$$

 $e = d_1 + \dots + d_n$

2.2 Polynomial

A polynomial in n variables of degree $\leq d$ is a finite sum of monomials of degree $e \leq d$

2.3 Convergence

Let $(x_k)_{k\in\mathbb{N}}$, $x_k\in\mathbf{R}^n$ and $x_k=(x_{k,1},x_{k,2},\ldots,x_{k,n})$. The following equivalently define $\lim_{k\to\infty}x_k=y$.

- (1) $\forall \varepsilon > 0 \ \exists N \ge 1 \ \text{s.t.} \ \forall k \ge N \quad ||x_k y|| < \varepsilon$
- (2) For each i, $1 \le i \le n$ the sequence $(x_{k,i})_k$ of real numbers converges to y_i .
- (3) The sequence of real numbers $||x_k y||$ converges to 0.

Let $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}^m$ and $x_0 \in \mathcal{X}, y \in \mathbf{R}^m$. We say f has a limit to y as $x \to x_0$ where $x \neq x_0$ if any of the following apply

- (1) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ \forall x \in \mathcal{X}, \ x \neq x_0 \ \text{such that} \ \|x x_0\| < \delta$ we have $\|f(x) y\| < \varepsilon$.
- (2) \forall sequences (x_k) in \mathcal{X} such that $\lim x_k = x_0$ and $x_k \neq x_0$ the sequence $f(x_k)$ converges to y.

2.4 Continuity

Let $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}^m$ and $x_0 \in \mathcal{X}$. We say f is continuous at x_0 if any of the following apply

- (1) $\forall \varepsilon > 0 \ \exists \delta > 0 \text{ s.t.}$ if $x \in \mathcal{X}$ satisfies $||x x_0|| < \delta$ then $||f(x) f(x_0)|| < \varepsilon$.
- (2) \forall sequences (x_k) in \mathcal{X} s.t. $\lim x_k = x_0$ we have $\lim f(x_k) = f(\lim x_k)$.

f is continuous in \mathcal{X} if f is continuous in every point $x_0 \in \mathcal{X}$. The following statements also hold

- (1) $f(x = x_1, ..., x_n) \mapsto (f_1(x), ..., f_m(x))$ and $f_i : \mathbf{R}^n \mapsto \mathbf{R}$ is continuous $\Leftrightarrow f_i \,\forall i = 1, ..., m$ are continuous.
- (2) Linear functions $x \mapsto Ax$ are continuous.
- (3) Polynomials are continuous.
- (4) Sums, products of continuous functions are continuous.
- (5) Functions of separated variables are continuous if the factors are continuous.
- (6) Composition of continuous functions are continuous.

2.5 Sandwich lemma

If $f, g, h : \mathbf{R}^n \to \mathbf{R}$ where $f(x) < g(x) < h(x) \quad \forall x \in \mathbf{R}^n$. Let $a \in \mathbf{R}^n$.

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \Rightarrow \lim_{x \to a} g(x) = L$$

2.6 Polar Coordinates

It is sometimes helpful to use polar coordinates, especially with rational functions $f: \mathbf{R} \rightarrow \mathbf{R}$. $f(x,y) = f(r\cos(\theta), r\sin(\theta))$

2.7 Bounded set

A set $\mathcal{X} \subset \mathbf{R}^n$ is bounded if the set $\{||x|| \mid x \in \mathcal{X}\}$ is bounded in \mathbf{R} .

2.8 Closed set

A set $\mathcal{X} \subset \mathbf{R}^n$ is closed if for every sequence $(x_k)_{k \in \mathbb{N}} \subset \mathcal{X}$ that converges in \mathbf{R}^n , converges to a point $y \in \mathcal{X}$.

Here it is often helpful to consider a ball. Counterexamples often include $\frac{1}{k}$ and <.

2.9 Compact set

A compact set is a closed and bounded set.

2.10 Continuous and closed

If $f: \mathbf{R}^n \to \mathbf{R}^m$ is continuous, then for every $Y \subset \mathbf{R}^m$ that is closed the set $f^{-1}(Y) = \{x \in \mathbf{R}^n \mid f(x) \in Y\} \subset \mathbf{R}^n$ is closed. Careful: Does not imply bounded or compact!

2.11 Min-Max theorem

Let $\mathcal{X} \subset \mathbf{R}^n$ be a compact set, $f: \mathcal{X} \rightarrow \mathbf{R}$ a continuous function. Then f is bounded and attains its max and min.

$$f(x^+) = \sup_{x \in \mathcal{X}} f(x)f(x^-)$$
 = $\inf_{x \in \mathcal{X}} f(x)$

2.12 Open set

A set $\mathcal{X} \subset \mathbf{R}^n$ is called open if its complement $\mathbf{R}^n \setminus \mathcal{X}$ is closed. This is equivalent to $\forall x \in \mathcal{X} \ \exists r > 0 \text{ s.t.}$ the set $\{y \in \mathbf{R}^n \mid ||y - x|| < r\} = B_r(x) \subset \mathcal{X}$.

Here are some examples

- (1) $(a,b) \subset \mathbf{R}$ is open.
- (2) $[a,b) \subset \mathbf{R}$ is neither open nor closed.
- (3) \mathbf{R}^n and \emptyset are both open.
- (4) $(a_1, b_1) \times (a_2, b_2) \subset \mathbf{R}^2$ is open.
- (5) Inverse image of open sets under continuous maps are open.

2.13 Derivative

Given $f: \mathbf{R} \rightarrow \mathbf{R}^n$ the derivative is

$$f'(x_0) = \begin{pmatrix} f'_1(x_0) \\ \vdots \\ f'_n(x_0) \end{pmatrix}$$

2.14 Partial derivatives

A partial derivative of a function $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}$ is obtained by pretending all but one variable are constants and then differentiating the one variable.

$$\frac{\partial f}{\partial x_{0,j}} = \lim_{h \to 0} \frac{f(x_{0,1}, \dots, x_{0,j} + h, \dots, x_{0,n}) - f(x_0)}{h}$$

If $f: \mathbf{R}^n \to \mathbf{R}^m$ for $x_0 \in \mathbf{R}^n$ then

$$\frac{\partial f(x_0)}{\partial x_j} := \begin{pmatrix} \partial f_1(x_0)/\partial x_j \\ \vdots \\ \partial f_m(x_0)/\partial x_j \end{pmatrix}$$

Properties include (assuming partial derivatives for f,g exist w.r.t. x_j)

(1)
$$\frac{\partial f + g}{\partial x_i} = \frac{\partial f}{\partial x_i} + \frac{\partial g}{\partial x_i}$$

(2)
$$\frac{\partial f \cdot g}{\partial x_i} = \frac{\partial f}{\partial x_i} \cdot g + \frac{\partial g}{\partial x_i} \cdot f$$

(3) if
$$g \neq 0$$
: $\frac{\partial f/g}{\partial x_j} = \frac{\frac{\partial f}{\partial x_j} \cdot g - \frac{\partial g}{\partial x_j} \cdot f}{g^2}$

2.15 Jacobi Matrix

A Matrix with m rows and n columns where

$$J_f = \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

2.16 Gradient

The Jacobian of a function $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}$. Is often denoted as ∇f . The geometric interpretation is that it indicates the direction and rate of fastest increase.

2.17 Directional derivative

Let direction $v=(a,b)\neq (0,0)$. Instead of adding +h to one component we add +ah, +bh and so on to all components and find that derivative as we normally would with a limit. Further, we have

$$\frac{df(x_0 + t\vec{\mathbf{v}})}{dt} = J_f(x_0) \cdot \vec{\mathbf{v}}$$

2.18 Differentiabiliy

Let $\mathcal{X} \subset \mathbf{R}^n \to \mathbb{R}^{>}$ be function and $x_0 \in \mathcal{X}$. We say f is differentiable at x_0 if a linear map $u : \mathbf{R}^n \to \mathbf{R}$ exists such that

$$\lim_{x \to x_0, x \neq x_0} \frac{f(x) - f(x_0) - u(x - x_0)}{\|x - x_0\|} = 0$$

and u is called the total differential of f at x_0 . Further, if f, g are differentiable at $x_0 \in \mathcal{X}$ we have

- (1) f is continuous at x_0
- (2) f has all partial derivatives at x_0 and the matrix represents the linear map $df(x_0): x \mapsto Ax$ in the canonical basis is given by the Jacobi Matrix of f at x_0 , i.e. $A = J_f(x_0)$
- (3) $d(f+q)(x_0) = df(x_0) + dq(x_0)$
- (4) If m = 1 and $f, g : \mathbf{R}^n \to \mathbf{R}$ differentiable in x_0 then so is $f \cdot g$ and if $g \neq 0$ f/g as well.

Lastly we have

All partial derivatives \exists and cont. \Rightarrow f is differentiable

2.19 Tangent space

The approximation of the function at x_0 using one derivative.

$$\{(x,y) \in \mathbf{R}^n \times \mathbf{R}^m \mid y = f(x_0) + u(x - x_0)\}$$

An example:

$$f(x,y) = \sqrt{x^2 + y^2}$$

$$J_f = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$

$$J_f(3,4) = \left(\frac{3}{5}, \frac{4}{5}\right)$$

$$\Rightarrow g(x,y) = 5 + \left(\frac{3}{5}, \frac{4}{5}\right) \begin{pmatrix} x - 3\\ y - 4 \end{pmatrix}$$

2.20 Chain rule

Let $\mathcal{X} \subset \mathbf{R}^n$ be open, $\mathcal{Y} \subset \mathbf{R}^m$ be open and let $f: \mathcal{X} \rightarrow \mathcal{Y}$, $g: \mathcal{Y} \rightarrow \mathbf{R}^p$ be differentiable functions. Then $g \circ f = g(f): \mathcal{X} \rightarrow \mathbf{R}^p$ is differentiable in \mathcal{X} . In particular

$$d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$$
$$J_{g \circ f}(x_0) = J_g(f(x_0)) \cdot J_f(x_0)$$

2.21 Change of variables

We say f is a change of variables around x_0 if there is a radius $\rho > 0$ s.t. the restriction of f to the Ball $B = \{x \in \mathbf{R}^n \mid ||xx_0|| < \rho\}$ so that the image Y = f(B) is open in \mathbf{R}^n and a differentiable map $g: Y \to B$ exists, such that $f \circ g = \operatorname{id}_Y$ and $g \circ f = \operatorname{id}_B$. I.e.

 $f\Big|_{B(x_0)}$ is a bijection to the image with a differentiable inverse g

2.22 Inverse function theorem

Let $\mathcal{X} \subseteq \mathbf{R}^n$ be open and $f: \mathcal{X} \to \mathbf{R}^n$ differentiable. If $x_0 \in \mathcal{X}$ is such that $det(J_f(x_0)) \neq 0$, i.e. $J_f(x_0)$ is invertible, then f is a change of variables around x_0 . Moreover the Jacobian of g at x_0 is defined by

$$J_g(f(x_0)) = J_f(x_0)^{-1}$$

2.23 Higher derivatives

Let $\mathcal{X} \subset \mathbf{R}^n$, $f: \mathcal{X} \to \mathbf{R}^m$. We say f is of class C' if f is differentiable on \mathcal{X} and all of its partial derivatives are continuous. We say $f \in C^k$ for $k \geq 2$ if it is differentiable and each $\partial_{x_i} f: \mathcal{X} \to \mathbf{R}^m$ is of class C^{k-1} . Further, f is smooth or C^{∞} if $f \in C^k$ $\forall k$. Lastly: mixed partials (up to order k) commute:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

2.24 Hessian

The $n \times n$ symmetric matrix

$$\operatorname{Hess}_f(x_0) := \left(\frac{\partial^2 f(x_0)}{\partial x_i \partial x_i}\right)$$

2.25 Taylor Polynomial

The Taylor polynomial of f at x_0 of order 1 is

$$T_1 f(y; x_0) := f(x_0) + \nabla f(x_0) \cdot y$$

while the first order approximation of f at x_0 is

$$T_1 f(x - x_0; x_0) := f(x_0) + \nabla f(x_0) \cdot (x - x_0)$$

and the second order

$$T_2 f(y; x_0) := f(x_0) + \nabla f(x_0) \cdot (x - x_0)$$

$$+\frac{1}{2}\cdot(x-x_0)^t\cdot\operatorname{Hess}_f(x_0)\cdot(x-x_0)$$

Finally, the general form is

$$+ \sum_{m_1 + \dots + m_n = k} \frac{1}{m_1! \dots m_n!} \frac{\partial^k f(x_0) \cdot y_1^{m_1} \dots y_n^{m_n}}{\partial x_1^{m_1} \dots \partial x_n^{m_n}}$$

Lastly if $f \in C^k$ for $x_0 \in \mathcal{X}$ we have

$$f(x) = T_k(x - x_0; x_0) + E_k(f, x, x_0)$$

$$\lim_{x \to x_0} \frac{E_k(f, x, x_0)}{\|x - x_0\|^k} \to 0$$

2.26 Local max/min

Let $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}$ be differentiable. We say $x_0 \in \mathcal{X}$ is a local maximum (minimum) if we can find a neighborhood $B_r(x_0) = \{x \in \mathbf{R}^n \mid ||x - x_0|| < r\} \subset \mathcal{X}$

$$\forall x \in B_r(x_0) \quad f(x) \le (\ge) f(x_0)$$

We also have

$$x_0 \in \mathcal{X}$$
 is a local extrema $\Rightarrow \nabla f(x_0) = 0$

2.27 Critical point

A point $x_0 \in \mathcal{X}$ where $\nabla f(x_0) = 0$.

2.28 Saddle point

A critical point which is not a local min or max.

2.29 Global extrema

If $f: \mathcal{X} \to \mathbf{R}$ is differentiable on the interior of \mathcal{X} and \mathcal{X} is closed and bounded, then a global extrema of f exists and it is either at a critical point or the boundary of \mathcal{X} .

Check =
$$int(\mathcal{X}) \cup bd(\mathcal{X})$$

2.30 Definite

We have the following

(1) Positive Definite: All eigenvalues are Positive

(2) Negative Definite: All eigenvalues are Negative

(3) Indefinite: Positive and Negative Eigenvalues

Eigenvalues can be found with the characteristic polynomial:

$$det \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} -\lambda & 0 \\ 0 & -\lambda \end{pmatrix} \end{pmatrix} = det \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix}$$

$$\Rightarrow \lambda^2 - 1 = 0$$

2.31 Calculating determinates

For 2 dimensions we have

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot d - c \cdot b$$

For 3 dimensions we have

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a \cdot \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \cdot \det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \cdot \det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

2.32 Test critical point

Let $f: \mathcal{X} \subseteq \mathbf{R}^n \to \mathbf{R}$ and $f \in \mathbb{C}^2$. Let x_0 be a non-degenerate critical point of f. Then

- (1) If $\operatorname{Hess}_f(x_0)$ pos def. then x_0 is a local minimum
- (2) If $\operatorname{Hess}_f(x_0)$ neg def. then x_0 is a local maximum
- (3) If $\operatorname{Hess}_f(x_0)$ is Indefinite then x_0 is a saddle point

We cannot use this theorem when x_0 is a degenerate critical point $(det(Hess_f(x_0)) = 0)$ and must decide on a case by case basis!

3 Integrals in \mathbb{R}^n

3.1 Simple integral

For $f: \mathbf{R} \rightarrow \mathbf{R}^n$ the integral is

$$\int_{a}^{b} f(t)dt = \begin{pmatrix} \int_{a}^{b} f_{1}(t)dt \\ \vdots \\ \int_{a}^{b} f_{n}(t)dt \end{pmatrix}$$

3.2 Curve

The image of a function $\gamma:[a,b]{\rightarrow} \mathbf{R}^n$ where the function γ is continuous and piecewise $\in C^1$.

3.3 Line integral

Let $\gamma:[a,b]{\rightarrow}\mathbf{R}^n$ be a parametrization of a curve and let $\mathcal{X}\subset\mathbf{R}^n$ be a set which contains the image of γ . Further, let $f:\mathcal{X}{\rightarrow}\mathbf{R}^n$ be a continuous function. A line integral then is

$$\int_{\gamma} f(s) \ d\vec{\mathbf{s}} = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \ dt$$

The line integral has the following properties

 It is independent of orientation preserving reparametrization, i.e.

$$\gamma : [a, b] \rightarrow \mathbf{R}^{n}$$

$$\tilde{\gamma} : [c, d] \rightarrow \mathbf{R}^{n}$$

$$\Phi : [c, d] \rightarrow [a, b]$$

$$\tilde{\gamma} = \gamma \circ \Phi = \gamma(\Phi)$$

$$\Rightarrow \int_{\gamma} f \, ds = \int_{\tilde{\gamma}} f \, ds$$

(2) Let $\gamma_1 + \gamma_2$ be the path formed by the concatenation of the two curves. Then

$$\gamma_1 + \gamma_2 := \begin{cases} \gamma_1(t) & t \in [a, b] \\ \gamma_2(t) & t \in [b, d+b-c] \end{cases}$$
$$\int_{\gamma_1 + \gamma_2} f \, ds = \int_{\gamma_1} f \, ds + \int_{\gamma_2} f \, ds$$

(3) If $\gamma: [a, b] \to \mathbb{R}^n$ is a path, let $-\gamma$ be the path traced in the opposite direction, i.e. $(-\gamma)(t) := \gamma(a+b-t)$. Then

$$\int_{-\gamma} f \, ds = -\int_{\gamma} f \, ds$$

3.4 Vector Field

A function $f: \mathbf{R}^n \to \mathbf{R}^n$

3.5 Potential

A differentiable scalar field $g: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}$ such that $\nabla g = f, \ f: \mathcal{X} \to R^n$ is called a potential for f. This can make stuff easier:

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, dt$$
$$= \int_{a}^{b} \nabla g(\gamma(t)) \cdot \gamma'(t) \, dt$$
$$= \int_{a}^{b} \frac{d}{dt} (g \circ \gamma) \, dt$$
$$= (g \circ \gamma)(b) - (g \circ \gamma)(a)$$

It should be noted that not every function has a potential! Example:

$$f(x,y) = (2xy^2, 2x)$$
$$\frac{\partial g}{\partial x} = 2xy^2 \Rightarrow g(x,y) = x^2y^2 + h(y)$$
$$\frac{\partial g}{\partial y} = 2x \neq 2x^2y + h'(y)$$

3.6 Conservative vector field

Let $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}^n$ be a continuous vector field. The following are equivalent.

- (1) If for any $x_1, x_2 \in \mathcal{X}$ the line integral $\int_{\gamma} f \, ds$ is independent of the curve in \mathcal{X} from x_1 to x_2 , then the vector field f is conservative
- (2) Any line integral of f around a closed curve is 0.
- (3) A potential for f exists.

We also have the following necessary but not sufficient condition

$$f$$
 is conservative $\Rightarrow \frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$

3.7 Path connected

Let $\mathcal{X} \subset \mathbf{R}^n$ be open. \mathcal{X} is said to be path connected if for every pair of points $x, y \in \mathcal{X}$ a C^1 path $\gamma : (0,1] : \to \mathcal{X}$ exists with $\gamma(0) = x, \gamma(1) = y$.

3.8 Star shaped

A subset $\mathcal{X} \subset \mathbf{R}^n$ is called star shaped if $\exists x_0 \in \mathcal{X}$ such that $\forall x \in \mathcal{X}$ the line segment joining x_0 to x is contained in \mathcal{X} . Note

Convex
$$\Rightarrow$$
 Star shaped

Further if \mathcal{X} is a star shaped open set of \mathbf{R}^n and $f \in C^1$ is a vector field s.t.

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i} \quad \forall i, j \quad \Rightarrow \quad f \text{ is conservative}$$

$$curl(f) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow f \text{ is conservative}$$

3.9 Curl

Let $\mathcal{X} \subset \mathbf{R}^3$ be open and $f: \mathcal{X} \to \mathbf{R}^3$ be a C^1 vector field. Then the curl of f is the vector field on \mathcal{X} defined by

$$curl(f) := \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$$

3.10 Partition

A partition P of a closed rectangle $Q = I_1 \times \cdots \times I_n$ where $I_k = [a_k, b_k]$ is a subcollection of rectangular boxes $Q_1, \ldots, Q_k \subset Q$ such that

- (1) $Q = \bigcup_{i=1}^k Q_i$
- (2) Int $Q_i \cap \text{int } Q_j = \emptyset \quad \forall i \neq j$

and $Norm(P) = \delta_P := \max(\operatorname{diam} Q_j)$ while $vol(Q) = \prod_{i=1}^n (b_i - a_i)$

3.11 Riemann Sum

Riemann sum of f, for partition P, interlude point $\{\xi_i\}$ is the sum

$$R(f, P, \xi) = \sum_{i=1}^{k} f(\xi_i) \cdot vol(Q_j)$$

For the lower sum instead of $f(\xi_i)$ use $\inf_{x\in Q_j} f(x)$ and for upper sum $\sup_{x\in Q_i} f(x)$

3.12 Integrable

The lower Riemann sum equals the upper Riemann sum. We have for $f: \mathbf{R}^n \to \mathbf{R}$, Q rectangular boxes in \mathbf{R}^n

- (1) f is continuous on $Q \Rightarrow f$ is integrable
- (2) $f,g:Q\subset \mathbf{R}^n{
 ightarrow}\mathbf{R}$ integrable, $\alpha,\beta\in\mathbf{R}\Rightarrow \alpha f+\beta g$ is integrable and equals

$$\int_{Q} (\alpha f + \beta g) \ dx = \alpha \int_{Q} f \ dx + \beta \int_{Q} g \ dx$$

(3) If $f(x) < g(x) \quad \forall x \in Q$ then

$$\int_{Q} f(x) \ dx \le \int_{Q} g(x) \ dx$$

(4) if $f(x) \geq 0$ then

$$\int_{Q} f(x) \ dx \ge 0$$

(5) We have

$$\begin{split} \Big| \int_G f(x) \ dx \Big| &\leq \int_Q |f(x)| \ dx \\ &\leq \Big(\sup_Q |f(x)| \Big) \cdot vol(Q) \end{split}$$

(6) If f = 1 then

$$\int_{Q} 1 \ dx = vol(Q)$$

3.13 Fubini's theorem

Let $Q = I_1 \times \cdots \times I_n$ and f be continuous on Q. Then

$$\int_{Q} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$= \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_n \dots dx_1$$

Should the domain of integration be of the type $D_1 := \{(x,y) \mid a \le x < b \text{ and } q(x) < y < h(x)\}$, then

$$\int_{D} f(x,y) dx dy = \int_{a}^{b} \int_{a(x)}^{h(x)} f(x,y) dy dx$$

If on the other hand $D_2 := \{(x,y) \mid c \leq y \leq d \text{ and } G(y) < x < H(y)\},$ then

$$\int_D f(x,y) \ dxdy = \int_c^d \int_{G(y)}^{H(y)} f(x,y) \ dx \, dy$$

3.14 Changing the order of integration

Changing the order of integration is sometimes necessary, as in the following example.

$$\begin{split} \int_{0}^{1} \int_{x}^{1} e^{y^{2}} \, dy \, dx &= \int_{0}^{1} \int_{0}^{y} e^{y^{2}} \, dx \, dy \\ &= \int_{0}^{1} \left(x \cdot e^{y^{2}} \Big|_{x=0}^{x=y} \right) \, dy \\ &= \int_{0}^{1} y \cdot e^{y^{2}} \, dy \\ &= \frac{e^{y^{2}}}{2} \, \Big|_{0}^{1} \end{split}$$

3.15 Negligible sets in \mathbb{R}^n

If for $1 \leq m \leq n$ a parametrized m-set in \mathbb{R}^n is a continuous function

$$\varphi: [a_1, b_1] \times \cdots \times [a_m, b_m]$$

which is C^1 on $(a_1, b_1) \times \cdots \times (a_m, b_m)$, then a subset $Y \subset \mathbf{R}^n$ is negligible if there exist finitely many parametrized m_i -sets $\varphi_i : \mathcal{X}_i \to \mathbf{R}^n$ with $m_i < n$ such that

$$Y \subset \bigcup \varphi_i(\mathcal{X}_i)$$

This means in practice that when we split up an integral we don't need to worry about counting the bounds twice. We also have:

If $Y \subset \mathbf{R}^n$ closed, bounded and negligible

$$\Rightarrow \int_{Y} f dx_1 \dots dx_n = 0 \text{ for any } f$$

3.16 Improper Integrals

Let $f: \mathcal{X} \subset \mathbf{R}^n \to \mathbf{R}^n$ be a non compact set and f a function such that $\int_K f \ dx$ exists for every compact set $K \subset \mathcal{X}$ and suppose f > 0. Finally we have a sequence of regions \mathcal{X}_k $k = 1, 2, \ldots$ s.t.

- (1) Each region \mathcal{X}_k is closed and bounded
- $(2) \mathcal{X}_k \subset \mathcal{X}_{k+1}$
- $(3) \bigcup_{k=1}^{\infty} \mathcal{X}_k = \mathcal{X}$

hen

$$\int_{\mathcal{X}} f \ dx := \lim_{n \to \infty} \int_{\mathcal{X}_n} f \ dx$$

3.17 Change of variables

Let $\varphi: \mathcal{X} \to Y$ be a continuous map, where $\mathcal{X} = \mathcal{X}_0 \cup B$, $Y = Y_0 \cup C$ are closed and bounded sets with \mathcal{X}_0 , Y_0 open, B, C negligible subsets of \mathbf{R}^n . Suppose $\varphi: \mathcal{X}_0 \to Y_0$ is C^1 and bijective with $\det J_{\varphi}(x) \neq 0 \quad \forall x \in \mathcal{X}_0$. Let $Y = \varphi(\mathcal{X})$. Suppose $f: Y \to \mathbf{R}$ is continuous, then

$$\int_{Y} f(y) \ dy = \int_{\varphi^{-1}(Y)} f(\varphi(x)) \cdot |\det J_{\varphi}(x)| \ dx$$

Here an example with polar coordinates on a quarter circle:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cos(\theta) \\ r \sin(\theta) \end{pmatrix}$$

$$J = \begin{pmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{pmatrix}$$

$$\det(J) = r$$

$$dx \, dy = r \, dr \, d\theta$$

$$\int_{\mathcal{X}} \frac{dx \, dy}{1 + x^2 + y^2} = \int_0^{\frac{\pi}{2}} \int_0^1 \frac{1}{1 + r^2} \cdot r \, dr \, d\theta$$

$$= \frac{\log(1 + r^2)}{2} \Big|_0^1$$

We have the following shortcuts

- (1) Polar coordinates: $dx du = r dr d\theta$
- (2) Cylindrical coordinates: $dx dy dz = r dr d\theta dz$
- (3) Spherical coordinates: $dx dy dz = r^2 \sin(\varphi) dr d\theta d\varphi$

3.18 Green's formula

Let \mathcal{X} be a closed and bounded region in \mathbf{R}^2 . Let γ be a curve forming the boundary of \mathcal{X} .

$$\int \int_{\mathcal{X}} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy = \int_{\gamma} f ds$$
where $f: (x, y) \to \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix}$.

There are implicit assumptions.

(1) We assume that the vector field $f = (f_1, f_2)$ has components f_1, f_2 s.t. $\frac{\partial f_2}{\partial x}, \frac{\partial f_1}{\partial y}$ exist in the region \mathcal{X} . The usual assumption is that if $f \in C^1$, then $\frac{\partial f_i}{\partial x}, \frac{\partial f_i}{\partial y}$ i = 1, 2 exist and are continuous so that curl(f) is continuous. Thus the integral on the left side exists.

- (2) The region \mathcal{X} needs to be closed and bounded and that its boundary is a simple closed parametrized curve γ : $[a, b] \rightarrow \mathbb{R}^2$. (closed: $\gamma(a) = \gamma(b)$, simple: no knots)
- (3) X is always to the left hand side of a tangent vector to the boundary (corners no problem).
- (4) Unions of simple closed curves also work (eg. doughnut). Then we would have

$$\int \int_{\mathcal{X}} curl(f) \ dx \ dy = \sum_{i=1}^{k} \int_{\gamma_i} f \ ds$$

If we wanted to calculate the area of a set, then handy functions with $\operatorname{curl}(f)=1$ are

$$f = (0, x)$$
 or $f = (-y, 0)$

We also have

$$\int_{\gamma} f \ ds = \int_{\gamma_1} f \ ds + \int_{\gamma_2} f \ ds$$

3.19 Divergence

For a vector field $f: \mathbf{R}^n \to \mathbf{R}^n$ and $f \in C^1$, $f = (f_1, \dots, f_n)$ the divergence of f is defined by

$$div f = \frac{\partial f_1}{\partial x_1} + \dots + \frac{\partial f_n}{\partial x_n}$$

which for n=2 we can calculate using Green's formula.

$$\tilde{f}(x, y) = (-f_2, f_1)$$

$$curl(\tilde{f}) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} = div(f)$$

$$\int \int_{\mathcal{X}} div(f) \, dx \, dy = \int \int_{\mathcal{X}} curl(f) \, dx \, dy = \int_{\partial \mathcal{X}} \tilde{f} \, ds$$

$$\int_a^b (f_1(\gamma(t)), f_2(\gamma(t))) \cdot (\gamma_2'(t), -\gamma_1'(t)) \, dt$$

$$= \int_a^b (f_1(\gamma(t)), f_2(\gamma(t))) \cdot n(t) \, dt$$

Here n(t) is called the exterior normal to the curve and $\gamma'(t) \cdot n(t) = 0$.

3.20 Divergence-flux

The form or the normal form of Green's theorem.

$$f: (f_1, f_2): \mathcal{X} \rightarrow \mathbf{R}^2$$

$$\int \int_{\mathcal{X}} div(f) \, dx \, dy = \int_{\partial \mathcal{X}} f \, d\vec{\mathbf{n}}$$
or
$$\int \int_{\mathcal{X}} curl(f) \, dx \, dy = \int_{\partial \mathcal{X}} \vec{\mathbf{f}} \, d\vec{\mathbf{s}}$$

4 Other

4.0.1 Injektiv/Surjektiv

Injektiv: $\forall a, b \in X, \ f(a) = f(b) \Rightarrow a = b$ Surjektiv: $\forall y \in Y, \exists x \in X, f(x) = y$

4.0.2 Suprenum / Infimum

Sei $A \subseteq \mathbf{R}$, $A \neq \emptyset$ und A nach oben / unten beschränkt. Dann gibt es eine kleinste obere /grösste untere Schranke von A. Es gibt also ein $c \in \mathbf{R}$ so dass:

- 1. $\forall a \in A \ a \leq c$
- 2. Falls $\forall a \in A \ a \leq x \text{ ist } c \leq x$

Man bezeichnet $c := \sup A / c := \inf A$

4.0.3 Dreiecksungleichung

$$\forall x, y \in \mathbf{R} : ||x| - |y|| \le |x \pm y| \le |x| + |y|$$

4.0.4 Bernoulli Ungleichung

$$\forall x \in \mathbf{R} \ge -1 \text{ und } n \in \mathbf{N} : (1+x)^n \ge 1 + nx$$

4.0.5 Exponentialfunktion

Für ein $z \in \mathbf{C}$ berechnet man die Exponentialfunktion wie folgt:

$$exp(z) := 1 + z + \frac{z^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

und es gilt:

$$exp(z) = \lim_{n \to \infty} (1 + \frac{z}{n})^n$$

Die reelle Exponentialfunktion $\exp:\mathbf{R}\to]0,\infty[$ ist streng monoton wachsend, stetig und surjektiv.

Es gelten weiter folgende Rechenregeln:

(1)
$$exp(x+y) = exp(x) * exp(y)$$

(2)
$$x^a := exp(a * ln(x))$$

(3)
$$exp(iz) = cos(z) + i * sin(z) \quad \forall z \in \mathbf{C}$$

Merke: e^x entspricht exp(x).

4.0.6 Natürliche Logaritmus

Der natürliche Logaritmus wir als $ln:]0,\infty[\to \mathbf{R}$ bezeichnet und ist eine streng monoton wachsende stetige funktion. Es gilt auch, dass

$$(1) ln(a*b) = ln(a) + ln(b)$$

(2)
$$ln(a/b) = ln(a) - ln(b)$$

(3)
$$ln(x^a) = a * ln(x)$$

(4)
$$(x^a)^b = x^{a*b}$$

(5)
$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \quad (-1 < x \le 1)$$

4.1 Rechenregeln der Ableitung

(1)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

(2)
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

(3)
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{(g(x_0))^2}$$

(4)
$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

4.1.1 Faktorisierungs Lemma

$$a^{n} - b^{n} = (a - b)(a^{n-1} + ba^{n-2} + \dots + b^{n-2}a + b^{n-1})$$

4.1.2 Kompaktes Intervall

EIn Intervall $\subset \mathbf{R}$ ist kompakt, wenn es von der Form $\mathbf{I} = [a, b]$, a < b ist.

4.1.3 Funktionenfolge

Eine Funktionenfolge ist eine Abbildung:

$$f: \mathbf{N} \to \mathbf{R}^{\mathbf{D}} = \{f: \mathbf{D} \to \mathbf{R}\}$$

 $n \to f_n$

wobei $f_n: \mathbf{D} \to \mathbf{R}$ eine Funktion ist. Für jedes $x \in \mathbf{D}$ erhält man eine Folge $(f_n(x))_{n \geq 1}$ reeller Zahlen.

4.1.4 Trigonometrische Funktionen

$$sin(z) := z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$
$$cos(z) := 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

$$tan(z) := \frac{sin(z)}{cos(z)} \quad \forall z \notin \{\frac{\pi}{2} + \pi k\}$$

welche alle stetige Funktionen sind. Es gilt weiter:

(1)
$$cos(z) = cos(-z)$$

$$(2) \sin(-z) = -\sin(z)$$

(3)
$$cos^2(z) + sin^2(z) = 1 \quad \forall z \in \mathbf{C}$$

$$(4) \sin(2x) = 2 \cdot \sin(x) \cos(x)$$

(5)
$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

α	0°	30°	45°	60°	90°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(\alpha)$	$\frac{1}{2}\sqrt{0}$	$\frac{1}{2}\sqrt{1}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{4}$
$\cos(\alpha)$	$\frac{1}{2}\sqrt{4}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{1}$	$\frac{1}{2}\sqrt{0}$

5 Tabellen

5.1 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$(x-1)e^x$	xe^x	$(x+1)e^x$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a \ (a \neq -1)$	$a \cdot x^{a-1}$
$\frac{1}{k\ln(a)}a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
	$\frac{\sin(x)^2}{2}$	$\sin(x)\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x-\frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\tan(x) - x$	$\tan(x)^2$	$2\sec(x)^2\tan(x)$
$-\cot(x)-x$	$\cot(x)^2$	$-2\cot(x)\csc(x)^2$
$\frac{1}{2}(x+\frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$
		$1 + \tan^2(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$rac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1 - \ln(x)}{x^2}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$\frac{1}{\ln(a)x}$

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\arcsin(x)/\arccos(x)$	$\frac{1/-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$x\arcsin(x) + \sqrt{1-x^2}$	$\arcsin(x)$
$x \arccos(x) - \sqrt{1-x^2}$	$\arccos(x)$
$x \arctan(x) - \frac{1}{2} \ln(1 + x^2)$	$\arctan(x)$
$\ln(\cosh(x))$	$\tanh(x)$
$x^x \ (x>0)$	$x^x \cdot (1 + \ln x)$
$f(x)^{g(x)}$	$e^{g(x)ln(f(x))}$
$f(x) = \cos(\alpha)$	$f(x)^n = \sin(x + n\frac{\pi}{2})$
$f(x) = \frac{1}{ax+b}$	$f(x)^n = (-1)^n * a^n * n! * (ax+b)^{-n+1}$
$-\ln(\cos(x))$	$\tan(x)$
$\ln(\sin(x))$	$\cot(x)$
$\ln\!\left(\tan\!\left(\frac{x}{2}\right)\right)$	$\frac{1}{\sin(x))}$
$\ln\left(\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right)$	$rac{1}{cos(x)}$

5.1.1 Kritische Stelle

Eine **kritische Stelle** einer Funktion ist ein x_0 an der $f'(x_0)$ null oder undefiniert ist.

5.1.2 Hyperbol Funktionen

(1)
$$cosh(x) := \frac{e^x + e^{-x}}{2} : \mathbf{R} \to [1, \infty]$$

(2)
$$sinh(x) := \frac{e^x - e^{-x}}{2} : \mathbf{R} \to \mathbf{R}$$

(3)
$$tanh(x) := \frac{e^x - e^{-x}}{e^x + e^{-x}} : \mathbf{R} \to [-1, 1]$$

und es gilt
$$cosh^2(x) - sinh^2(x) = 1$$

$$f(\mathbf{x}) \qquad \qquad \mathbf{F}(\mathbf{x})$$

$$\int f'(x)f(x) \, \mathrm{d}x \qquad \qquad \frac{1}{2}(f(x))^2$$

$$\int \frac{f'(x)}{f(x)} \, \mathrm{d}x \qquad \qquad \ln|f(x)|$$

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x \qquad \qquad \sqrt{\pi}$$

$$\int (ax+b)^n \, \mathrm{d}x \qquad \qquad \frac{\frac{1}{a(n+1)}(ax+b)^{n+1}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$$

$$\int (ax^p+b)^n x^{p-1} \, \mathrm{d}x \qquad \qquad \frac{(ax^p+b)^{n+1}}{ap(n+1)}$$

$$\int (ax^p+b)^{-1} x^{p-1} \, \mathrm{d}x \qquad \qquad \frac{\frac{1}{a} \ln|ax^p+b|}{ap(n+1)}$$

$$\int \frac{ax+b}{cx+d} \, \mathrm{d}x \qquad \qquad \frac{\frac{ax}{c} - \frac{ad-bc}{c^2} \ln|cx+d|}{\frac{1}{a} \arctan \frac{x}{a}}$$

$$\int \frac{1}{x^2+a^2} \, \mathrm{d}x \qquad \qquad \frac{\frac{1}{a} \ln\left|\frac{x-a}{x+a}\right|}{\frac{1}{2a} \ln\left|\frac{x-a}{x+a}\right|}$$

$$\int \sqrt{a^2+x^2} \, \mathrm{d}x \qquad \qquad \frac{\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x+f(x))}{\frac{x^2+a^2}{2}\ln(x+f(x))}$$

5.1.3 Potenzen der Winkelfunktion

$$sin^{2}(x) = \frac{1}{2}(1 - cos(2x))$$
$$cos^{2}(x) = \frac{1}{2}(1 + cos(2x))$$

5.1.4 Funktionen Verknüpfung

$$x \mapsto (g \circ f)(x) := g(f(x))$$

5.1.5 Häufungspunkt

 $x_0 \in \mathbf{R}$ ist ein **Häufungspunkt** der Menge **D**, falls $\forall \delta > 0$ $(|x_0 - \delta, x_0 + \delta| \{x_0\}) \cap \mathbf{D} \neq \emptyset$