

US005780594A

United States Patent [19]

Carter

[11] Patent Number: 5

5,780,594

[45] Date of Patent:

Jul. 14, 1998

[54] BIOLOGICALLY ACTIVE PROTEIN FRAGMENTS CONTAINING SPECIFIC BINDING REGIONS OF SERUM ALBUMIN OR RELATED PROTEINS

[75] Inventor: Daniel C. Carter, Huntsville, Ala.

[73] Assignee: The United States of America as represented by the Administrator of

the National Aeronautics and Space Administration, Washington, D.C.

[21] Appl. No.: 448,196

[22] Filed: May 23, 1995

Related U.S. Application Data

[63]	Continuation of Ser. N	o. 24,547, Mar. 1, 1993, abandoned.
[51]	Int. Cl. ⁶	C07K 14/76
[52]	U.S. Cl	530/363 ; 530/350; 435/69.1;
		435/252.3; 435/320.1
[58]	Field of Search	435/69.1, 252.3,
		435/320.1; 530/350, 363

[56] References Cited

PUBLICATIONS

He et al "Atomic Structure and Chemistry . . . " Nature 358 pp. 209-215, Jul. 16, 1992.

Carter et al "Three Dimensional Structure ..." Science 244 pp. 1195–1198, Jun. 9, 1989.

Hirayama et al. "Rapid Confirmation and Revision . . ." Biochem Biophys. Res. Comm. vol. 173, No. 2 pp. 639–646 Dec. 14, 1990.

Hamilton et al. (1991) Locations of the Three Primary Binding Sites for Long-Chain Fatty Acids on Bovine Serum Albumin. Proc. Natl. Acad. Sci. USA. vol.88, pp. 2051–2054.

Johanson et al. (1981) Refolding of Bovine Serum Albumin and Its Proteolytic Fragments. J. Biol. Chem. vol. 256, No. 1, pp. 445–450.

Carter et al., "Structure of human serum albumin", Science, vol. 249, pp. 302-303, Jul. 20, 1990.

NASA, *Tech Briefs*, Mar. 1992, p. 94, Author: Daniel C. Carter, Sequences of Amino Acids for Human Serum Albumin

Primary Examiner—Robert A. Wax Assistant Examiner—Enrique D. Longton Attorney, Agent, or Firm—Robert L. Broad. Jr.

[57] ABSTRACT

In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

11 Claims, 4 Drawing Sheets

FIG. 2-1

	h4(II)	0.64	h5(II)	,h6(I	I);
241	251	261	271	281	291
VHTECCHGDL	LECADDRADL	AKYICENQDS	ISS KLKECCE		
VHKECCHGDL	LECADDRADL	AKYICDNQDT	ISS KLKECCI		
VHKECCHGDL	LECADDRADL	AKYICEHQDS) KPLLQKSHCI) KPVLEKSHCI	
VHKECCHGDL	LECADDRADL	AKYICDHQDA			
INKECCHGDL	LECADDRAEL	AKYMCENQAT	~) KPVLQKSQCL	
FIKDCCHGDM	FECMTERLEL	SEHTCOHKDE	LST KLEKCCN LSRAAGLSACCK	I LPLLERTYCI	
TVAPCCSGDM	VTCMKERKTL	VDEVCADESV			
201	$\Gamma^{h7}(II)$			h9(I	
301	311	321	331	341	351
DLPSLAADFV	ESKDVCKNYA	EAKDVFLGMF	LYEYARRHPD	YSVVLLLRLA	KTYETTLEKC
NLPPLTADFA	EDKDVCKNYQ	EAKDAFLGSF	LYEYSRRHPE	YAVSVLLRLA	KEYEATLEEC
DIPALAADFA	EDKEICKHYK	DAKDVFLGTF	LYEYSRRHPD	YSVSLLLRIA	KTYEATLEKC
NLPPLTADFA	EDKEVCKNYQ	EAKDVFLGSF	LYEYSRRHPE	YAVSVLLRLA	KEYEATLEDC
DLPSIAADFV	EDKEVCKNYA	EAKDVFLGTF	LYEYSRRHPD	YSVSLLLRLA	KKYEATLEKC
ELSKPITEFT	EDPHVCEKYA	ENKS*FL*EI	SPWQSQETPE	LSEQFLLQSA	KEYESLLNKC
GLSEHYDIHA	DIAAVCQTFT	KTPDVAMGKL	VYEISVRHPE	SSQQVILRFA	KEAEQALLQC
		A	- ·	1.0/**	T \
361		0(II)—h1(II) 381		401 h2(II	
361 CAAHDPHECY	h1 371 AKVFD EFKE	381	391 I	401 h2(II YKFONALLVR	1)— 411 YTKKVPQVST
CAAHDPHECY	371	381 PL VEEPQNLIKQ	391 NCELFKQLGE	401 YKFQNALLVR	411
•	371 AKVFD EFKE STVFD KLKE	381 PL VEEPQNLIKQ HL VDEPQNLIKQ	391 NCELFKQLGE NCDQFEKLGE	401 YKFQNALLVR YGFQNALIVR	411 YTKKVPQVST
CAAHDPHECY CAKDDPHACY CAEADPPACY	371 AKVFD EFKE STVFD KLKE	381 PL VEEPONLIKO HL VDEPONLIKO PL VEEPKSLVKK	391 I NCELFKQLGE NCDQFEKLGE NCDLFEEVGE	401 YKFQNALLVR YGFQNALIVR YDFQNALIVR	411 YTKKVPQVST YTRKVPQVST YTKKAPQVST
CAAHDPHECY CAKDDPHACY	371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE	381 PL VEEPQNLIKQ HL VDEPQNLIKQ PL VEEPKSLVKK HL VDEPQNLIKK	391 I NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELFEKHGE	401 YKFQNALLVR YGFQNALIVR	411 YTKKVPQVST YTRKVPQVST
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY	371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE	381 PL VEEPONLIKO HL VDEPONLIKO PL VEEPKSLVKK HL VDEPONLIKK PL VEEPKNLVKT	391 I NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELFEKHGE NCELYEKLGE	401 YKFQNALLVR YGFQNALIVR YDFQNALIVR YGFQNALIVR	411 I YTKKVPQVST YTRKVPQVST YTKKAPQVST YTRKAPQVST
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY	371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE GTVLA EFQE	381 PL VEEPONLIKO HL VDEPONLIKO PL VEEPKSLVKK HL VDEPONLIKK PL VEEPKNLVKT NE AKERFAYLKO	391 I NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELFEKHGE NCELYEKLGE NCDILHEHGE	401 YKFQNALLVR YGFQNALIVR YDFQNALIVR YGFQNALIVR YGFQNAVLVR	411 YTKKVPQVST YTRKVPQVST YTKKAPQVST YTRKAPQVST YTQKAPQVST
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY CFSDNPPECY CDMEDHAECV	371 AKVFD EFKH STVFD KLKH RTVFD QFTH ATVFD KLKH GTVLA EFQH KDGAD RFMM KTALAGSDIDKH	381 PL VEEPONLIKO HL VDEPONLIKO PL VEEPKSLVKK HL VDEPONLIKK PL VEEPKNLVKT NE AKERFAYLKO	391 I NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELFEKHGE NCELYEKLGE NCDILHEHGE	401 YKFQNALLVR YGFQNALIVR YDFQNALIVR YGFQNALIVR YGFQNAVLVR YLFENELLIR	YTKKVPQVST YTKKAPQVST YTKKAPQVST YTRKAPQVST YTQKAPQVST YTQKAPQVST
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY CFSDNPPECY	371 AKVFD EFKH STVFD KLKH RTVFD QFTH ATVFD KLKH GTVLA EFQH KDGAD RFMM KTALAGSDIDKH	381 PL VEEPONLIKO HL VDEPONLIKO PL VEEPKSLVKK HL VDEPONLIKK PL VEEPKNLVKT NE AKERFAYLKO	391 I NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELFEKHGE NCELYEKLGE NCDILHEHGE MCAAEAAVSD	401 YKFQNALLVR YGFQNALIVR YDFQNALIVR YGFQNALIVR YGFQNAVLVR YLFENELLIR	YTKKVPQVST YTKKVPQVST YTKKAPQVST YTRKAPQVST YTQKAPQVST YTKKMPQVSD YTRIMPQASF
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY CFSDNPPECY CDMEDHAECV h3 (371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE GTVLA EFQE KDGAD RFME KTALAGSDIDKE	381 PL VEEPQNLIKQ HL VDEPQNLIKQ PL VEEPKSLVKK HL VDEPQNLIKK PL VEEPKNLVKT NE AKERFAYLKQ KI TDETD*YYKK	391 NCELFKQLGE NCDLFEEVGE NCELFEKHGE NCELYEKLGE NCELYEKLGE NCDILHEHGE MCAAEAAVSD h4(III)	401 YKFQNALLVR YGFQNALIVR YDFQNALIVR YGFQNAVLVR YLFENELLIR DSFEKSMMVY	YTKKVPQVST YTKKVPQVST YTKKAPQVST YTKKAPQVST YTQKAPQVST YTKKMPQVSD YTRIMPQASF fh5(III)
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY CFSDNPPECY CDMEDHAECV h3 (371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE GTVLA EFQE KDGAD RFME KTALAGSDIDKE	381 PL VEEPQNLIKQ HL VDEPQNLIKQ PL VEEPKSLVKK HL VDEPQNLIKK PL VEEPKNLVKT NE AKERFAYLKQ KI TDETD*YYKK	391 NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELFEKHGE NCELYEKLGE NCDILHEHGE MCAAEAAVSD — h4(III) — 451	401 YKFQNALLVR YGFQNALIVR YDFQNALIVR YGFQNAVLVR YLFENELLIR DSFEKSMMVY	YTKKVPQVST YTKKVPQVST YTKKAPQVST YTKKAPQVST YTQKAPQVST YTQKAPQVST YTKKMPQVSD YTRIMPQASF h5(III) 471
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY CFSDNPPECY CDMEDHAECV h3 (391 PTLVEVSRNL PTLVEVSRSL PTLVEIGRTL	371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE GTVLA EFQE KDGAD RFME KTALAGSDIDKE III) 431 GKVGSKCCKH GKVGTRCCTK GKVGSRCCKL	381 PL VEEPQNLIKQ HL VDEPQNLIKQ PL VEEPKSLVKK HL VDEPQNLIKK PL VEEPKNLVKT NE AKERFAYLKQ KI TDETD*YYKK 441 PEAKRMPCAE PESERMPCTE PESERLPCSE	391 I NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELFEKHGE NCELYEKLGE NCDILHEHGE MCAAEAAVSD h4(III) 451 DYLSVVLNQL DYLSLILNRL NHLALALNRL	YKFQNALLVR YGFQNALIVR YDFQNALIVR YGFQNALIVR YGFQNAVLVR YLFENELLIR DSFEKSMMVY 461 CVLHEKTPVS CVLHEKTPVS	YTKKVPQVST YTKKVPQVST YTKKAPQVST YTKKAPQVST YTQKAPQVST YTQKAPQVSD YTRIMPQASF [h5 (III) 471 DRVTKCCTES EKVTKCCTES EKITKCCTDS
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY CFSDNPPECY CDMEDHAECV h3 (391 PTLVEVSRNL PTLVEVSRSL PTLVEIGRTL PTLVEIGRTL PTLVEISRSL	371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE GTVLA EFQE KDGAD RFME KTALAGSDIDKE III) 431 GKVGSKCCKH GKVGSRCCKL GKVGSRCCKL GKVGTKCCAK	381 PL VEEPQNLIKQ HL VDEPQNLIKQ PL VEEPKSLVKK HL VDEPQNLIKK PL VEEPKNLVKT NE AKERFAYLKQ A41 PEAKRMPCAE PESERMPCTE PESERMPCTE PESERMPCTE	391 NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELYEKLGE NCELYEKLGE NCELYEKLGE NCAAEAAVSD h4(III) 451 DYLSVVLNQL DYLSLILNRL NHLALALNRL DYLSLILNRL	YKFQNALLVR YGFQNALIVR YGFQNALIVR YGFQNALIVR YGFQNAVLVR YLFENELLIR DSFEKSMMVY 461 CVLHEKTPVS CVLHEKTPVS CVLHEKTPVS	YTKKVPQVST YTKKVPQVST YTKKAPQVST YTKKAPQVST YTQKAPQVST YTQKAPQVST YTKKMPQVSD YTRIMPQASF
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY CFSDNPPECY CDMEDHAECV h3 (391 PTLVEVSRNL PTLVEVSRSL PTLVEIGRTL PTLVEISRSL PTLVEISRSL PTLVEAARNL	371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE GTVLA EFQE KDGAD RFME KTALAGSDIDKE III) —————————————————————————————————	381 PL VEEPQNLIKQ HL VDEPQNLIKQ PL VEEPKSLVKK HL VDEPQNLIKK PL VEEPKNLVKT WE AKERFAYLKQ AT TDETD*YYKK 441 PEAKRMPCAE PESERMPCTE PESERMPCTE PEAQRLPCVE	391 NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELFEKHGE NCELYEKLGE NCELYEKLGE NCDILHEHGE MCAAEAAVSD — h4(III) 451 DYLSVVLNQL DYLSLILNRL NHLALALNRL DYLSLILNRL DYLSAILNRL	YKFQNALLVR YGFQNALIVR YDFQNALIVR YGFQNALIVR YGFQNAVLVR YLFENELLIR DSFEKSMMVY 461 CVLHEKTPVS CVLHEKTPVS CVLHEKTPVS CVLHEKTPVS	YTKKVPQVST YTKKVPQVST YTKKAPQVST YTKKAPQVST YTQKAPQVST YTQKAPQVST YTKKMPQVSD YTRIMPQASF (h5 (III) 471 DRVTKCCTES EKVTKCCTES EKVTKCCTES EKVTKCCTES EKVTKCCTES
CAAHDPHECY CAKDDPHACY CAEADPPACY CAKEDPHACY CAEGDPPACY CFSDNPPECY CDMEDHAECV h3 (391 PTLVEVSRNL PTLVEVSRSL PTLVEIGRTL PTLVEIGRTL PTLVEISRSL	371 AKVFD EFKE STVFD KLKE RTVFD QFTE ATVFD KLKE GTVLA EFQE KDGAD RFME KTALAGSDIDKE III) 431 GKVGSKCCKH GKVGSRCCKL GKVGSRCCKL GKVGTKCCAK	381 PL VEEPQNLIKQ HL VDEPQNLIKQ PL VEEPKSLVKK HL VDEPQNLIKK PL VEEPKNLVKT NE AKERFAYLKQ A41 PEAKRMPCAE PESERMPCTE PESERMPCTE PESERMPCTE	391 NCELFKQLGE NCDQFEKLGE NCDLFEEVGE NCELYEKLGE NCELYEKLGE NCELYEKLGE NCAAEAAVSD h4(III) 451 DYLSVVLNQL DYLSLILNRL NHLALALNRL DYLSLILNRL	YKFQNALLVR YGFQNALIVR YGFQNALIVR YGFQNALIVR YGFQNAVLVR YLFENELLIR DSFEKSMMVY 461 CVLHEKTPVS CVLHEKTPVS CVLHEKTPVS	YTKKVPQVST YTKKVPQVST YTKKAPQVST YTKKAPQVST YTQKAPQVST YTQKAPQVST YTKKMPQVSD YTRIMPQASF

FIG. 2-2

⊢h6(III)	コ		rh7(III)┌─	h8(III) -	
481	491	501	511	521	531
LVNRRPCFSA	LEVDETYVPK	EFNAETFTFH	ADICTLSEKE	RQIKKQTALV	ELVKHKPKAT
LVNRRPCFSA	LTPDETYVPK	AFDEKLFTFH	ADICTLPDTE	KQIKKQTALV	ELLKHKPKAT
LAERRPCFSA	LELDEGYVPK	EFKAETFTFH	ADICTLPEDE	KQIKKQSALA	ELVKHKPKAT
LVNRRPCFSD	LTLDETYVPK	PFDEKFFTFH	ADICTLPDTE	KQIKKQTALV	ELLKHKPKAT
LVERRPCFSA	LTVDETYVPK	EFKAETFTFH	SDICTLPDKE	KQIKKQTALA	ELVKHKPKAT
YSGMRSCFTA	LGPDEDYVPP	PVTDDTFHFD	DKICTANDKE	KQHIKQKFLV	KLIKVSPKLE
YSMRRHCILA	IQPDTEFTPP	ELDASSFHMG	PELCTKDSKD	LLLSGKKLLY	GVVRHKTTIT
r—h9(III			-h10(III) —		
541	551	561	571	581	
KEQLKAVMDD	FAAFVEKCCK	ADDKETCFAE	EGKKLVAASQ	AALGL	
EEQLKTVMEN	FVAFVDKCCA	ADDKEACFAV	EGPKLVVSTQ	TALA*	
KEQLKTVLGN	FSAFVAKCCG	REDKEACFAE	EGPKLVASSQ	LALA*	
DEQLKTVMEN	FVAFVDKCCA	ADDKEGCFVL	EGPKLVASTQ	AALA*	
EDQLKTVMGD	FAQFVDKCCK	AADKDNCFAT	EGPNLVARSK	EALA*	
KNHIDEWLLE	FLKMVQKCCT	ADEHQPCFDT	EKPVLIEHCQ	KLHP*	
EDHLKTISTK	YHTMKEKCCA	AEDQAACFTE	EAPKLVSESA	ELVKV	

FIG. 2-3

BIOLOGICALLY ACTIVE PROTEIN FRAGMENTS CONTAINING SPECIFIC BINDING REGIONS OF SERUM ALBUMIN OR RELATED PROTEINS

This application is a continuation of application Ser. No. 08/024,547, filed Mar. 1, 1993, now abandoned.

FIELD OF THE INVENTION

The invention relates to the specific binding regions of serum albumin and related proteins and to biologically active protein fragments containing these specific binding regions that can be safely and economically produced using conventional recombinant DNA techniques.

BACKGROUND OF THE INVENTION

The serum albumins belong to a multigene family of proteins that includes alpha-fetoprotein (AFP) and human group-specific component (Gc) or vitamin D-binding protein. The members of this multigene family are typically comprised of relatively large multi-domain proteins, and the serum albumins are major soluble protein constituents of the circulatory system which have many physiological functions. The albumins and their related proteins contribute significantly to colloid osmotic blood pressure and aid in the transport, distribution and metabolism of many endogenous and exogenous ligands. These ligands represent a spectrum of chemically diverse molecules, including fatty acids, amino acids (notably tryptophan and cysteine), steroids, metals such as calcium, copper and zinc, and numerous pharmaceuticals. They are thought to facilitate transfer of many ligands across organ-circulatory interfaces such as the liver, intestine, kidney and brain, and evidence suggests the existence of an albumin cell surface receptor (see Schnitzer et al., PNAS 85:6773 (1988)).

In addition, serum albumins are also found in tissues and secreted fluids throughout the body. For example, it is estimated that albumin in evascular protein comprises 60% of the body's total albumin. In humans, human serum 40 albumin, or HSA, is a protein of about 65,000 daltons in molecular weight and contains 585 amino acids. Its amino acid sequence contains a total of 17 disulphide bridges, one free thiol (Cys 34), and a single tryptophan (Trp 214). The disulphides are positioned in a repeating series of nine 45 loop-link-loop structures centered around eight sequential Cys—Cys pairs.

Studies of serum albumins have been made on a variety of animal species, and it has been determined that approximately 61% of the amino acid sequences are conserved 50 among the known sequences of bovine, rat and human serum albumins. More recently, additional sequences for the albumins have been determined with regard to a wide ranging group of vertebrates including sheep, frog, salmon, mouse, sequence homology and all of them share the characteristic repeating series of disulphide bridges. All members of the albumin multigene family for which sequences have been determined have internal sequence homology (from two- to common ancestral protein of possibly about 190 amino acids. Other studies have confirmed this homology (see, e.g., Carter et al., Science 244:1195 (1989)).

Currently, there are literally thousands of applications for and most often these applications have used the native serum albumin family of proteins obtained from bovine or human

sources. Unfortunately, at present, the numerous concerns with regard to the safety of albumin-containing plasma isolated from natural sources have greatly restricted the availability of albumin proteins for many of these applications. Included among these concerns is the heightened possibility that the plasma from which the albumins are obtained will be infected with various viral contaminants including HIV or other AIDS-related viruses, Hepatitis-B, herpes, and a number of other potentially pathogenic micro-10 organisms.

Because of these concerns, there have been many attempts to prepare recombinant DNA sequences coding for serum albumins which can be used in the artificial production of this important molecule. However, unfortunately, these 15 attempts have also been generally unsuccessful because of the fact that like most large proteins, serum albumins denature quite readily and are practically impossible to produce in usable quantities by genetic engineering. It thus has remained a problem to develop artificial serum solutions which are stable and which can maintain the biologically activity of natural serum albumins.

Clearly, the utility of the serum albumin molecules is based in large part in their ability to bind and thus transport a wide variety of important macromolecules so as to regulate a number of physiological functions in humans and animals. However, although the binding properties of serum albumin have been well-established, the precise nature and location of those binding regions have not. Thus, although certain amino acid sites, such as Lys 199 and Tyr 411 have been identified as involved in acetylation (see Hagag et al., Biochemistry 22:2420 (1983)) and esterification (see Sollene et al., Molec. Pharmac. 14:754 (1979)), very little has been previously been known about the binding sites of the serum albumins.

There has thus been a long-felt and unfulfilled need in the art to identify specific binding sites in the serum albumin family of proteins so as to allow the large-scale production of protein fragments having the same binding properties and biological activity as whole serum albumins. Since such smaller genetically engineered polypeptides are much more easily expressed and produced in large quantities than the full albumins, the identification of these specific binding sites would make commercial isolation and production of artificial polypeptides having all of the same binding properties of natural albumins much more economically and technically feasible.

SUMMARY OF THE INVENTION

In accordance with the present invention, it has now been discovered that specific portions of the serum albumin multigene family of proteins, specifically those portions known as subdomains IIA and IIIA, are primarily responsible for the binding properties of serum albumin and its pig and even sea lampreys. Most of these proteins share high 55 related proteins, and that biologically active artificial serums prepared from protein fragments containing at least one of these binding regions can be produced much more easily than serums containing the whole protein. In particular, the sequence for binding subdomain IIA appears to be from seven-fold), suggesting that the proteins evolved from a 60 about amino acids 190 through 300 on the albumin molecules, and subdomain IIIA appears to be located on the polypeptide at roughly from amino acid 380 to about amino acid 495.

Further, it also appears that a fusion product, which serum albumin protein and its related proteins, Gc and AFP, 65 includes not only the above binding subdomains IIA and IIIA but an additional region IIB, is also useful in binding. and this fusion product is coded on the polypeptide at about

amino acid 190 through 495. The discovery that the binding of the albumin family of proteins is based primarily on these specific binding regions will thus allow for the production of protein fragments containing one or more of these binding regions which are capable of exhibiting the same biological 5 activity as the whole albumin protein.

It is thus an object of the present invention to provide protein fragments containing at least one of the binding sites from the serum albumin family of proteins so as to allow the production of biologically active serum which does not 10 contain albumin family proteins obtained from natural sources.

It is further an object of the present invention to provide novel artificial polypeptides which can be constructed using conventional recombinant DNA techniques and which can be more safely, economically and effectively used in a variety of applications which call for serum albumins or other related proteins.

It is even further an object of the present invention to 20 construct biologically active protein fragments that are useful for a wide variety of physiological, chromatographic and crystallographic functions which can be produced in large quantities and which can effectively be used instead of whole serum albumins obtained from natural or artificial sources.

These and objects of the present invention are set forth in, or will become obvious from, the description of the preferred embodiments provided hereinbelow.

BRIEF DESCRIPTION OF THE DRAWING FIGURES:

FIG. 1 is a stereo view illustrating the overall topology of human serum albumin.

FIG. 2 is a representation of the sequence homology of the amino acid sequences of a variety of the serum albumins including from top to bottom, human serum albumin (SEQ ID NO:3), bovine serum albumin (SEQ ID NO:4), equine serum albumin (SEQ ID NO:5), ovine serum albumin (SEQ ID NO:6), rat serum albumin (SEQ ID NO:7), frog serum albumin (SEQ ID NO:8), and salmon serum albumin (SEQ ID NO:9).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS:

In accordance with the present invention, the characteristic binding locations of the serum albumin family of proteins were determined crystallographically at 3.1 Angstroms using a wild-type human serum albumin (HSA) and 50. at 2.8 Angstroms for a recombinant form of HSA expressed in yeast (rHSA). A complete description of the structural determination of a serum albumin protein through crystallographic means is set forth in Nature, Vol. 358:209 (July 1992), incorporated herein by reference. These crystallo- 55 forth at in SEQ ID NO:1, and this sequence runs from amino graphic studies confirmed that the topology of serum albumins such as human serum albumin is created by a repeating series of six helical subdomains, known as IA, IB, IIA, IIB, IIIA and IIIB. These six subdomains assemble to form a heart-shaped molecule, as had previously been determined 60 binding site on the albumin family of proteins, and this in the stereo view illustration as observed in FIG. 1. However, the previous determinations of the serum albumin structure gave little insight into its binding locations, and it was previously thought that a number of the helical subdomains were involved in albumin binding.

The detailed crystallography studies indicated that contrary to the prior albumin models, the principal binding

regions were located specifically in subdomain IIA and subdomain IIIA. The binding cavity in region IIIA appears to be the most active and accommodating on the human serum albumin, and many ligands have been found to preferentially bind in this region, such as digitoxin, ibuprofen and tryptophan. Other ligand binding affinities have been tested, and relative binding locations have now been determined crystallographically for several ligands at low resolution, as set forth below in Table 1. These tests showed that aspirin and iodinated aspirin analogues show nearly equal distributions between binding sites IIA and IIIA, while the composition known as Warfarin appears to occupy a single site in IIA. Further, the amino acid residues that have previously been thought to be involved in the binding 15 process, Trp 214, Lys 199 and Tyr 411, are all located strategically in the IIA or IIIA regions.

TABLE I

	Ligand 1	oinding loca	tions to HS.	<u>A</u>
Ligand	D	N	$R_{\mathbf{f}}$	Observed location
Aspirin	4.0	7362	0.11	IIA IIIA
Warfarin	5.0	2555	0.167	IΙΑ
Diazepam	6.8	2075	0.118	ША
Digitoxin	5.0	3751	0.137	ША
Clofibrate	6.0	2175	0.138	ША
Ibuprofen	6.0	2402	0.215	ША
AZT	4.0	7548	0.124	ША
IS	4.0	6334	0.19	IIA IIIA
DIS	4.0	4734	0.20	ПА ША
TIB	4.0	5431	0.12	ПА ША

Ligand-HSA complexes and X-ray diffraction data were obtained in a manner as previously described in Table 1. The observed locations refer to the primary binding sites.

D, Resolution or d-spacing in Å.

N, Number of paired unique reflections with $F > 5\sigma$.

 $R_{fr} \Sigma F_{PH} - F_{P} V \Sigma F_{P}$

AZT, 3'-Azido-3'-deoxythymidine.

IS, 5-iodosaiicylic acid. DIS, 3,5-Diiodosalievlie acid.

TIB, 2,3,5-Triiodobenzoic acid.

The structural determination of the binding regions of the serum albumin family of proteins shows that the amino acid sequences appear to be homologous along the various serum albumins, which is evidenced in FIG. 2 wherein the amino 45 acid sequences of human, bovine, equine, ovine, rat, frog and salmon albumins are compared The crystallographic studies conducted in order to locate and identify the albumin protein binding sites appear to show that the IIA subdomain is one of the key binding sites of the albumin protein, and this region corresponds to an amino acid sequence beginning at approximately amino acid number 190 of the albumin protein and extending to about amino acid number 300. In one specific embodiment, the sequence for the binding region IIA as determined in bovine serum albumin is set acid number 190 through amino acid number 298 on bovine serum albumin.

The crystallographic studies carried out by the inventor also revealed that the IIIA subdomain was another key binding subdomain corresponds to a sequence of amino acids which starts at about amino acid number 375 and extends to about amino acid number 495. In another specific embodiment, binding region IIIA has an amino acid sequence as set forth in SEQ ID NO:2, and this sequence appears to run from amino acid 378 through 494. In accordance with the present invention, a protein fragment con-

taining at least one of the binding regions IIA or IIIA discussed above can be prepared which will have the same or similar biological activity as a whole natural serum albumin.

In addition to the specific binding regions IIA or IIIA 5 discussed above, there also appears to be an additional fusion product of subdomains IIA and IIIA that also acts to give serum albumin some of its binding properties. This fusion product appears to be a fragment that includes not only binding regions IIA and IIIA, but subdomain IIB as well. A protein fragment in accordance with the present invention can thus also be constructed which contains the region including IIA, IIB and IIIA, and this region corresponds roughly to an amino acid sequence extending from 15 about amino acid 190 to about amino acid 495 on a serum albumin family protein. Further, it is possible that such a fragment would be even more biologically active and more likely to preserve all of the original binding peculiarities associated with the albumin family of proteins since there are sometimes measurable allosteric effects between the subdomains.

The isolation of any of the specific albumin family binding regions discussed above is advantageous in that not 25 only can biologically active serums be produced from isolates of these binding fragments from the natural albumins, but recombinant methods can be used as well to construct protein fragments containing only these specific binding 30 regions. In fact, the present invention is particularly advantageous because the protein fragments of the invention can be prepared artificially using conventional recombinant DNA techniques, and these fragments will be safer, more stable and more effective than the natural serums in a variety 35 of applications, including column chromatography, biosensors, crystallographic or solution drug binding experimentation, and a wide range of medical and biochemical procedures and experimentation. Thus, although isolates of the albumin proteins can be produced according to the present invention with one or more of the actual binding regions obtained from natural sources, it is preferred that conventional recombinant techniques be used to manufacture the protein fragments containing or corresponding to at 45 least one of the binding regions discussed above, and these artificial fragments can be recovered and/or purified so as to useful in all applications where natural serum albumin would be used.

In another aspect of the present invention, it has also been discovered that key invariant residues that are involved in the ligand binding subdomains and which are conserved in most or all the known albumins, and these key residues would thus appear to be primarily responsible for the binding properties attributed to these regions. Based on an examination of the sequence homology as observed in FIG. 2, and based on other studies involving the crystallographic patterns of the albumin proteins, it appears that there are certain key residues that are conserved between all of the determined albumin sequences and that fit precisely in the binding regions IIA and IIIA discussed above. In particular, these key invariant or conserved residues appear to be at amino acid residues 257 and 260 of the IIA region, and at

6

amino acid residues 390, 391, 410, 411, 423, 437, 450, 453 and 485 of the IIIA region. It is thus contemplated that any protein fragment that is constructed to contain at least the key residues of either or both of the subdomains IIA and IIIA as set forth above will also exhibit binding properties equivalent or similar to that of the whole albumin molecules.

In summary, the present invention allows for the production of protein fragments containing specific binding sites of the albumin proteins which can be generated by conventional recombinant DNA techniques and which have the same or similar binding properties as the natural serum albumins. It is thus contemplated that these protein fragments can be prepared efficiently and economically in large quantities so as to substituted for the natural form of the albumins in a variety of applications without any loss of binding strength. As set forth herein, the term "protein fragment" is well understood the those skilled in the art and generally refers to those polypeptides comprising an amino acid sequence that only constitutes a portion of a whole protein molecule.

These protein fragments, when constructed artificially using state-of-the-art recombinant means, will not only have the same or similar biological activity of the natural whole albumin proteins, but will also be safer that the natural form of the albumins since they will not carry many of the other viral or other pathogenic contaminants that are found in the natural products. As set forth herein, the term "biological activity" is well understood to one skilled in the art and is used generally to refer to the ability of a particular molecule, such as a whole protein or a particularly active fragment from a whole protein, to successfully carry out any of a number of biological or biochemical functions.

When preparing fragments containing the specific binding regions of the present invention, it will be well understood by those skilled in the art that a number of alternate sequences can be prepared which will differ in some slight manner from the binding regions as discussed above, yet which are considered within the scope of the invention. For example, these alternate embodiments include those fragments or sequences which have slight variations as to specific amino acids, such as those which include an addition or deletion of a particular amino acid, possibly at the leading or trailing end of the fragment, which maintain the binding properties of the albumin family of proteins in the manner set forth above. Additionally, those sequences which contain certain changes in specific amino acids which may enhance or decrease the binding affinity of various compounds, or reduce the likelihood of producing an antigenic response, will also be within the scope of the invention as would be obvious to one of ordinary skill in the art. Finally, as set forth above, it is contemplated that because the subdomain regions of the multigene family of albumin proteins appear to be the same or similar, the biologically active protein fragments of the present invention can be constructed from specific binding regions of any of the proteins of the serum albumin family, such as the Gc and AFP proteins discussed above. All of these embodiments are deemed to be covered within the scope of the present invention which is set forth in the claims appended hereto.

```
SEQUENCE LISTING
```

```
(\ \ 1\ \ )\ GENERAL\ INFORMATION:
```

(i i i) NUMBER OF SEQUENCES: 9

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 109 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

$(\begin{array}{cc} \boldsymbol{x} & i \end{array})$ SEQUENCE DESCRIPTION: SEQ ID NO:1:

 Ala
 Ser
 Ala
 Arg
 Gin
 Arg
 Leu
 Arg
 Cys
 Ala
 Ser
 lle
 Gin
 Lys
 Phe

 Gly
 Glu
 Arg
 Ala
 Leu
 Lys
 Ala
 Trp
 Ser
 Val
 Ala
 Arg
 Leu
 Ser
 Gln
 Lys

 Phe
 Pro
 Lys
 Ala
 Glu
 Cys
 Glu
 Val
 Thr
 Lys
 Leu
 Val
 Thr
 Asp
 Leu
 Glu
 Cys
 Ala
 Gly
 Asp
 Leu
 Glu
 Cys
 Ala
 Asp
 Leu
 Cys
 Ala
 Asp
 Leu
 Cys
 Ala
 Asp
 Asp
 Thr
 Asp
 Asp
 A

(2) INFORMATION FOR SEQ ID NO:2:

- (-i-) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (i i i) HYPOTHETICAL: NO
 - (i v) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: N-terminal

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:2:

 His
 Leu
 Val
 Asp
 Glu
 Pro
 Gln
 Asn
 Leu
 Ileu
 Lys
 Gln
 Asn
 Cys
 Asp
 Gln

 Phe
 Glu
 Lys
 Leu
 Gly
 Glu
 Tyr
 Gly
 Phe
 Gln
 Asn
 Ala
 Leu
 Ile
 Val
 Arg

 Tyr
 Thr
 Arg
 Lys
 Val
 Pro
 Gln
 Val
 Ser
 Thr
 Pro
 Thr
 Leu
 Val
 Glu
 Val

 Ser
 Arg
 Ser
 Leu
 Gly
 Lys
 Val
 Gly
 Thr
 Arg
 Cys
 Thr
 Lys
 Pro
 Glu
 Asp
 Tyr
 Leu
 Ser
 Leu
 Asp
 Pro
 Tyr
 Leu
 Ser
 Leu
 Asp
 Thr

 Ser
 Leu
 Cys
 Val
 Leu
 His
 Glu
 Lys
 Thr
 Pro
 Val
 Ser
 Leu
 Asp
 Thr
 Pro
 Cys

9 10 -continued

110

105

Leu Thr Pro Asp Glu

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENOTH: 585 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (i i i) HYPOTHETICAL: NO
 - (i v) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: N-terminal

($\mathbf{x} \ \mathbf{i} \)$ SEQUENCE DESCRIPTION: SEQ ID NO:3:

Asp 1	Ala	His	Lys	S e 1	Glu	V a l	Ala	H i s	Arg 10	Phe	Lys	Asp	Leu	G 1 y 1 5	Glu
G 1 u	Asn	Phe	L y s 2 0	Ala	Leu	Val	Leu	I 1 e 2 5	Ala	Phe	Ala	Gin	T y r 3 0	Leu	Gln
Gln	Суѕ	Pro 35	Phe	Glu	A s p	His	V a 1 4 0	Lys	Leu	Val	Asn	G 1 u 4 5	Val	Thr	Glu
Phe	A 1 a 5 0	Lys	Thr	Суs	Val	Ala 55	Asp	Glu	Ser	Ala	G 1 u 6 0	Asn	C y s	Asp	Lys
S e r 6 5	Leu	His	Thr	Leu	Phe 70	G 1 y	Asp	Lys	Leu	Cys 75	Thr	Val	Ala	ТЬг	L e u 8 0
Arg	Glu	Тыг	Туг	G 1 y 8 5	Glu	Met	Ala	Asp	Cys 90	Суѕ	Ala	Lys	Gln	G 1 u 9 5	Pro
Glu	Arg	Asn	G 1 u 1 0 0	Суs	Phe	Leu	G 1 n	His 105	Lys	Азр	Asp	Asn	Pro 110	Asn	Leu
Pro	Arg	Leu 115	V a 1	Агд	Рто	Glu	V a l 1 2 0	Asp	V a 1	Met	Сув	Thr 125	Ala	Phe	His
Asp	A s n 1 3 0	G 1 u	Glu	Thr	Phe	Leu 135	Lys	Lys	Туг	Leu	Туг 140	Glu	11 c	Ala	Arg
Arg 145	His	Рго	Туг	Phe	T y r 1 5 0	Ala	Pro	Glu	Leu	Leu 155	Phe	Phe	Ala	Lys	Arg 160
Туr	Lys	Ala	Ala	Phe 165	Thr	Glu	Сув	C y s	Gln 170	Ala	Ala	Asp	Lys	Ala 175	Ala
Суѕ	Leu	Leu	Pro 180	Lys	Leu	Asp	Glu	Leu 185	Arg	Asp	Glu	G 1 y	L y s 190	Ala	Ser
Ser	Ala	L y s 1 9 5	Gln	Arg	Leu	Lys	C y s 2 0 0	Ala	Ser	Leu	Gla	L y s 2 0 5	Phe	Gly	Glu
Arg	A 1 a 2 1 0	Phe	Lys	Ala	Trp	A 1 a 2 1 5	Val	Ala	Arg	Leu	S e r 2 2 0	G 1 n	Arg	Рье	Pro
L y s 2 2 5	Ala	Glu	Phe	Ala	G 1 u 2 3 0	Val	Ser	Lys	Leu	V a 1 2 3 5	Thr	Asp	Leu	Thr	L y s 2 4 0
V a 1	His	Thr	Glu	C y s 2 4 5	Суs	His	Gly	Asp	L e u 2 5 0	Leu	Glu	Суs	Ala	A s p 2 5 5	Asp
Arg	Ala	Asp	L e u 2 6 0	Ala	Lys	Туг	I i c	C y s 2 6 5	Glu	Asn	Gln	Asp	S e r 2 7 0	I l e	Ser
Ser	Lys	Leu 275	Lys	Glu	C y s	Суѕ	G 1 u 2 8 0	Lys	Pro	Leu	Leu	G 1 u 2 8 5	Lys	Ѕет	His
Суя	1 1 c 2 9 0	Ala	Glu	Val	Glu	As n 295	Asp	Glu	Met	Pro	A 1 a 3 0 0	Asp	Leu	Pro	Ser

							-cont	inued							
Leu 305	Ala	Ala	Asp	Phe	V a 1 3 1 0	G 1 u	Ser	Lys	Asp	V a 1 3 1 5	Суs	Lys	Asn	Туг	A 1 a 3 2 0
Glu	Ala	Lys	Asp	V a 1 3 2 5	Phe	Leu	Gly	Met	P h c 3 3 0	Leu	Туг	G 1 u	Туг	A 1 a 3 3 5	Агд
Агд	Нis	Рго	A s p 3 4 0	Туг	Ser	V a 1	V a 1	L e u 3 4 5	Leu	Leu	Агд	Leu	A 1 a 3 5 0	Lys	Thr
Туr	G 1 u	Thr 355	Thr	Leu	Glu	Lys	C y s 3 6 0	C y s	Ala	Ala	His	A s p 3 6 5	Pro	His	Glu
Сув	Tyr 370	Ala	Lys	V a 1	Phe	A s p 3 7 5	Glu	Phe	Lys	Pro	L e u 3 8 0	V a 1	Glu	G 1 u	Рго
G 1 n 3 8 5	Asn	Leu	lle	Lys	G 1 n 3 9 0	Asn	Сys	Glu	Leu	Phe 395	Lys	G1 n	Leu	Gly	G 1 u 4 0 0
Туr	Lys	Phe	Gln	A s n 4 0 5	Ala	Leu	Leu	Val	Arg 410	Туг	Thr	Lys	Lys	Val 415	Рго
Gln	Vai	Ser	Thr 420	Рто	Thr	Leu	Val	G 1 u 4 2 5	Val	Ser	Arg	Asn	Leu 430	G 1 y	Lys
V a 1	G 1 y	S e r 4 3 5	Lys	Суs	Суs	Lys	H i s	Pro	Glu	Ala	Lys	Arg 445	Met	Pro	Cys
Ala	G 1 u 4 5 0	Asp	Туг	Leu	Ser	V a 1 4 5 5	Val	Leu	Asn	Gln	L e u 4 6 0	C y s	Val	Leu	His
G 1 u 4 6 5	Lys	Тһг	Pro	V a 1	S e r 4 7 0	A s p	Агд	Val	Тыг	L y s 4 7 5	Суѕ	C y s	Thr	Glu	Ser 480
Leu	V a l	Asn	Arg	Arg 485	Pro	Cys	Phe	Ser	A 1 a 4 9 0	Leu	Glu	Val	Asp	G 1 u 4 9 5	Thr
Туг	Val	Рго	L y s 5 0 0	Glu	P h e	Asn	Ala	G 1 u 5 0 5	Тһг	Рће	Thr	Phe	H i s 5 1 0	Ala	Asp
I 1 e	C y s	T b r 5 1 5	Leu	Ser	Glu	Lys	G 1 u 5 2 0	Arg	Gln	Ile	Lys	L y s 5 2 5	Gla	Thr	Ala
Leu	V a 1 5 3 0	Glu	Leu	Val	Lys	His 535	Lys	Pro	Lys	Ala	Thr 540	Lys	G 1 u	Gln	Leu
L y s 5 4 5	Ala	V a 1	Met	Asp	A s p 5 5 0	Phe	A 1 a	Ala	Phe	V a l 5 5 5	Glu	Lys	Суѕ	Суѕ	L y s 5 6 0
Ala	A s p	Asp	Lys	G 1 u 5 6 5	Thr	Суѕ	Phe	Ala	G l u 570	Glu	Gly	Lys	Lys	Leu 575	Val
A 1 a	Ala	Ser	G 1 n 5 8 0	A 1 a	Ala	Leu	Gly	L e u 5 8 5							

(2) INFORMATION FOR SEQ ID NO:4:

- $(\ i\)$ SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 583 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (i i i) HYPOTHETICAL: NO
 - (i v) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: N-terminal
 - ($\boldsymbol{x}_{-}\boldsymbol{i}_{-}$) SEQUENCE DESCRIPTION: SEQ ID NO:4:
 - Asp Thr His Lys Ser Glu Ile Ala His Arg Phe Lys Asp Leu Gly Glu I 1 5 10 10 Ser Gln Tyr Leu Gln 25 30 Ser Glu Val Leu Ile Ala Phe Ser Gln Tyr Leu Gln 30

Gln Cys Pro Phe Asp Glu His Val Lys Leu Val Asn Glu Leu Thr Glu 35 45

			13				14
				 .	-cor	ntinued	
Phe	A 1 a 5 0	L y s	Thr	Cys Val	Ala Asp 55	Glu Ser H	is Ala Gly Cys Glu Lys 60
S e r 6 5	Leu	His	ТЪг	Leu Phe	Gly Asp		ys Lys Val Ala Ser Leu 5 80
Arg	Glu	ТЪг	Туг	Gly Asp 85	Met Ala	Asp Cys C 90	ys Glu Lys Gln Glu Pro 95
G 1 u	Агд	Asn	G l u 100	Cys Phe	Leu Ser	His Lys A 105	sp Asp Ser Pro Asp Leu 110
Pro	Lys	L e u 1 1 5	Lys	Pro Asp	Pro Asn 120		ys Asp Glu Phe Lys Ala 125
Asp	G 1 u 1 3 0	Lys	Lys	Phe Trp	Gly Lys 135	Tyr Leu T	yr Glu Ile Ala Arg Arg 140
H i s 1 4 5	Pro	Туг	Phe	Tyr Ai a 150		Leu Leu T 1	yr Tyr Ala Asn Lys Tyr 55 160
Asn	G 1 y	Val	Phe	Gln Glu 165	Cys Cys	Gln Ala G 170	lu Asp Lys Gly Ala Cys 175
Leu	Leu	Pro	L y s 180	lle Glu	Thr Met	Arg Glu L 185	ys Val Leu Ala Ser Ser 190
Ala	Arg	G l n 195	Агд	Leu Arg	Cys Ala 200		ln Lys Phe Gly Glu Arg 205
Ala	L e u 2 1 0	Lys	Ala	Trp Ser	Val Ala 215	Arg Leu S	er Gln Lys Phe Pro Lys 220
A 1 a 2 2 5	Glu	Phe	Val	Glu Val 230	-	Leu Vai T 2	hr Asp Leu Thr Lys Val 35 240
His	Lys	Glu	Сys	Cys His 245	Gly Asp	Leu Leu G 250	lu Cys Ala Asp Asp Arg 255
Ala	Азр	Lev	A 1 a 2 6 0	Lys Tyr	Ile Cys	Asp Asn G 265	In Asp Thr Ile Ser Ser 270
Lys	Leu	L y s 2 7 5	Glu	Cys Cys	Asp Lys 280		eu Glu Lys Ser His Cys 285
[] e	A 1 a 2 9 0	Glu	Val	Glu Lys	Asp Ala 295	Ile Pro G	lu Asn Leu Pro Pro Leu 300
Thr 305	Ala	Asp	Phe	Ala Glu 310			ys Lys Asn Tyr Gln Glu 15 320
Ala	Lys	Азр	Ala	Phe Leu 325	Gly Ser	Phe Leu T 330	yr Glu Tyr Ser Arg Arg 335
His	Рто	Glu	Tyr 340	Ala Val	Ser Val	Leu Leu A 345	rg Leu Ala Lys Glu Tyr 350
Glu	Ala	Thr 355	Leu	Glu Glu	Cys Cys 360		sp Asp Pro His Ala Cys 365
Туг	Ser 370	ТЬг	V a l	Phe Asp	Lys Leu 375	Lys His L	eu Val Asp Glu Pro Gla 380
A s n 3 8 5	Leu	1 1 e	Lys	Gln Ass 390			lu Lys Leu Gly Glu Tyr 95 400
G 1 y	Phe	Gln	Asn	Ala Leu 405	Ile Val	Arg Tyr T 410	hr Arg Lys Val Pro Gln 415
V a 1	Ser	Thr	Pro 420	Thr Lev	Val Glu	Val Ser A 425	rg Ser Leu Gly Lys Val 430
G 1 y	Thr	Arg 435	Cys	Cys Thi	Lys Pro 440		ilu Arg Met Pro Cys Thr 445
G 1 u	A s p 4 5 0	Туг	Leu	Ser Lev	Ile Leu 455	Asn Arg L	eu Cys Val Leu His Glu 460

Lys Thr Pro Val Ser Glu Lys Vai Thr Lys Cys Cys Thr Glu Ser Leu

5.780,594

15 16

-continued								
4 6 5		4 7 0	475		480			
Val Asn	Arg Arg Pro 485	Cys Phe Ser	Ala Leu Thr 490	Pro Asp Glu	Thr Tyr 495			
Val Pro	Lys Ala Phe 500	Asp Glu Lys	Leu Phe Thr 505	Phe His Ala 510	Asp Ile			
CysTbr	Leu Pro Asp 515	Thr Glu Lys 520	Gin Ile Lys	Lys Gla Thr 525	Ala Leu			
Val Glu 530	Leu Leu Lys	His Lys Pro 535	Lys Ala Thr	Glu Glu Gln 540	Leu Lys			
Thr Val	Met Glu Asn	Phe Val Ala 550	Phe Val Asp 555	Lys Cys Cys	Ala Ala 560			
Asp Asp	Lys Glu Ala 565	Cys Phe Ala	Vai Glu Gly 570	Pro Lys Leu	Val Val 575			
Ser Thr	Gin Thr Ala	Leu Ala						

(2) INFORMATION FOR SEQ ID NO:5:

- $(\ i\)$ SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 583 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (i i i) HYPOTHETICAL: NO
 - (i v) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: N-terminal
 - (x i) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Asp 1	Thr	His	Lys	S e r 5	Giu	lle	Ala	His	Arg 10	Phe	Asn	Asp	Leu	G 1 y 1 5	Glu
Lys	His	Phe	L y s 2 0	Gly	Leu	V a l	Lev	V a 1 2 5	A 1 a	Phe	Ser	Gln	T y r 3 0	Leu	Gln
Gln	Суѕ	Pro 35	Phe	Glu	Asp	His	V a 1 4 0	Lys	Leu	Val	Asn	G l u 4 5	V a 1	Тһг	G 1 u
Phe	A 1 a 5 0	Lys	Lys	Суs	Ala	A 1 a 5 5	Asp	Glu	Ser	Ala	G 1 u 6 0	Аѕъ	Суs	Asp	Lys
S e r 6 5	Leu	H i s	Thr	L e u	P h e 7 0	Gly	A s p	Lys	Leu	C y s	T h r	V a 1	Ala	Thr	Leu 80
Агд	Ala	Thr	Туr	G 1 y 8 5	Glu	Leu	Ala	Asp	C y s 90	Cys	Glu	Lys	G1 n	G 1 u 9 5	Рго
Glu	Arg	Asn	G 1 u 1 0 0	Суs	Ph e	Leu	Тһг	His 105	Lys	Asp	Asp	H i s	Pro 110	Asn	Leu
Pro	Lys	L e u 1 1 5	Lys	Pro	Glu	Pro	A s p 1 2 0	Ala	Gln	Сув	Ala	A 1 a 1 2 5	Phe	Gln	Glu
Asp	Pro 130	Asp	Lys	Phe	Leu	G 1 y 1 3 5	Lys	Туr	Leu	Туг	G 1 u 1 4 0	Val	Ala	Arg	Агд
His 145	Pro	Туг	P h e	Туг	G i y 1 5 0	Pro	Glu	Leu	Leu	Phe 155	His	Ala	Glu	Glu	T y r 1 6 0
Lys	Ala	A s p	P h e	Thr 165	Glu	C y s	C y s	Pro	A 1 a 170	Asp	Asp	Lys	Leu	Ala 175	Суѕ
Leu	Iìc	Рго	L y s 1 8 0	Leu	Asp	Ala	Leu	L y s 1 8 5	Glu	Arg	Ile	Leu	L e u 190	Ser	Ser
Ala	Lys	G 1 u 1 9 5	Агд	Leu	Lys	Суs	S e r 2 0 0	Ser	Phe	Gln	Asn	Phe 205	G 1 y	Glu	Arg

			1,									-			
							-cont	inued							
Ala	V a 1 2 1 0	Lys	Ala	Trp	Ser	V a 1 2 1 5	Ala	Arg	Leu	Ser	G 1 n 2 2 0	Lys	Phe	Pro	Lys
Ala 225	Asp	Phe	Ala	Glu	V a 1 2 3 0	Ser	Lys	Ilc	Val	Thr 235	Asp	Leu	Thr	Lys	V a l 2 4 0
His	L y s	Glu	C y s	C y s 2 4 5	His	Gly	A s p	Leu	L e u 2 5 0	G 1 u	C y s	Ala	A s p	A s p 2 5 5	Arg
Ala	Asp	Leu	A 1 a 2 6 0	L y s	Туr	Ile	Суs	G l u 2 6 5	His	Gln	A s p	Ser	I 1 e 2 7 0	Ser	G 1 y
Lys	Leu	L y s 2 7 5	Ala	C y s	Сys	A s p	L y s 2 8 0	Pro	Leu	Leu	G 1 n	L y s 2 8 5	Ser	His	C y s
Ile	A 1 a 2 9 0	Glu	Val	L y s	G 1 u	A s p 2 9 5	Asp	Leu	Pro	Ser	A s p 3 0 0	I 1 e	Pro	Ala	Leu
A 1 a 3 0 5	Ala	Asp	Phe	Ala	G 1 u 3 1 0	A s p	Lys	Glu	I 1 e	C y s 3 1 5	Lys	His	Туг	Lys	A s p 3 2 0
Ala	Lys	Asp	V a 1	Phe 325	Leu	Gly	Thr	Phc	L c u 3 3 0	Туг	Glu	Туr	Ser	Arg 335	Arg
Hìs	Pro	Asp	T y r 3 4 0	Ser	V a l	Ser	Leu	L c u 3 4 5	Leu	Arg	Ile	Ala	L y s 3 5 0	Thr	Тут
Glu	Ala	T b r 3 5 5	Leu	Glu	Lys	Сув	C y s 3 6 0	Ala	Glu	Ala	Asp	Pro 365	Pro	Ala	Cys
Туг	Arg 370	Thr	Val	Phe	A s p	G 1 n 3 7 5	Phe	Tbr	Pro	Leu	V a 1 3 8 0	Glu	Glu	Pro	L y s
Ser 385	Leu	Val	Lys	Lys	A s n 3 9 0	Сув	Asp	Leu	Phe	G 1 u 3 9 5	Glu	Val	G 1 y	G 1 u	Туг 400
Asp	Phe	Gln	Asn	A 1 a 4 0 5	Leu	I 1 ¢	Val	Агд	T y r 4 1 0	Thr	Lys	Lys	Ala	Pro 415	Gln
Val	Ser	Thr	Pro 420	Thr	Leu	Val	Glu	I 1 e 4 2 5	G 1 y	Arg	Thr	Leu	Gly 430	Lys	V a 1
G 1 y	Ser	Arg 435	Cys	Суs	Lys	Leu	Pro 440	Glu	Ser	G1 u	Агд	Leu 445	Pro	Cys	Ser
Glu	A s n 4 5 0	His	Leu	Ala	Leu	A 1 a 4 5 5	Leu	Asn	Arg	Leu	C y s 4 6 0	Val	Leu	His	Glu
Lys 465	Thr	Рго	Val	Ser	G I u 470	Lys	Ile	Thr	Lys	C y s 475	Суѕ	Thr	Asp	Ser	L e u 4 8 0
Ala	Glu	Arg	Arg	Pro 485	Суѕ	Phe	Ser	Ala	L e u 490	Glu	Leu	Asp	Glu	G1y 495	Туг
			Glu 500					505					5 1 0		
Cys	Thr	L e u 5 1 5	Pro	G 1 u	Asp	Glu	L y s 5 2 0	Gln	Ile	Lys	Lys	G l n 5 2 5	Ser	Ala	Leu
Ala	5 3 0		Val			5 3 5					5 4 0				
Thr 545			Gly		5 5 0					5 5 5					5 6 0
	-	-	Glu	5 6 5			Ala	Glu	G 1 u 5 7 0	Gly	Pro	Lys	Leu	V a 1 5 7 5	Ala
Ser	Sет	Gla	Leu 580	Ala	Leu	Ala									

$(\ 2\)$ Information for SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 583 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

-continued

19 20

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: NO

(i v) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

($|\mathbf{x}||\mathbf{i}|$) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Asp Thr His Lys Ser Glu Ile Ala His Arg Phe Asa Asp Leu Gly Glu 1 10 15 Glu Asa Phe Gla Gly Leu Val Leu Ile Ala Phe Ser Gla Tyr Leu Gla 20 25 Gln Cys Pro Phe Asp Glu His Val Lys Leu Val Lys Glu Leu Thr Glu 35Phe Ala Lys Thr Cys Val Ala Asp Glu Ser His Ala Gly Cys Asp Lys 50 55 : 60 Ser Leu His Thr Leu Phe Gly Asp Glu Leu Cys Lys Val Ala Thr Leu 65 75 80 Arg Glu Thr Tyr Gly Asp Met Ala Asp Cys Cys Glu Lys Gln Glu Pro 85 90 Glu Arg Asn Glu Cys Phe Leu Asn His Lys Asp Asp Ser Pro Asp Leu 100 Pro Lys Leu Lys Pro Glu Pro Asp Thr Leu Cys Ala Glu Phe Lys Ala 115 120 125 Asp Glu Lys Lys Phe Trp Gly Lys Tyr Leu Tyr Glu Val Ala Arg Arg 130 140 His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Asn Lys Tyr 145 150 155 Asn Gly Val Phe Gln Glu Cys Cys Gln Ala Glu Asp Lys Gly Ala Cys 165 170 Leu Leu Pro Lys Ile Asp Ala Met Arg Glu Lys Val Leu Ala Ser Ser 180 185 Ala Arg Gln Arg Leu Arg Cys Ala Ser Ile Gln Lys Phe Gly Glu Arg 195 200 205 Ala Leu Lys Ala Trp Ser Val Ala Arg Leu Ser Gla Lys Phe Pro Lys 210 215 220 Ala Asp Phe Thr Asp Val Thr Lys Ile Val Thr Asp Leu Thr Lys Val 225 230 235 His Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg 245 250 Ala Asp Leu Ala Lys Tyr lle Cys Asp His Gln Asp Ala Leu Ser Ser 265 270 Lys Leu Lys Glu Cys Cys Asp Lys Pro Val Leu Glu Lys Ser His Cys 275 280 Ala Asp Phe Ala Glu Asp Lys Glu Vai Cys Lys Asn Tyr Gln Glu 310 315 Ala Lys Asp Val Phe Leu Gly Ser Phe Leu Tyr Glu Tyr Ser Arg Arg 325 330 His Pro Glu Tyr Ala Val Ser Val Leu Leu Arg Leu Ala Lys Glu Tyr 340 350 Glu Ala Thr Leu Glu Asp Cys Cys Ala Lys Glu Asp Pro His Ala Cys 355 360 365

Tyr Ala Thr Val Phe Asp Lys Leu Lys His Leu Val Asp Glu Pro Gla

	-continued									
3 7 0		3 7 5	3 8 0							
Asn Leu	lie Lys Lys Asn	Cys Glu Leu Phe Glu	Lys His Gly Glu Tyr							
385	390	395	400							
GlyPhe	Gin Asn Ala Leu	Ile Val Arg Tyr Thr	Arg Lys Ala Pro Gln							
	405	410	415							
Val Ser	Thr Pro Thr Leu	Val Glu Ile Ser Arg	Ser Leu Gly Lys Val							
	420	425	430							
•	Lys Cys Cys Ala	Lys Pro Glu Ser Glu	Arg Met Pro Cys Thr							
	435	440	445							
Glu Asp	Tyr Leu Ser Leu	lle Leu Asn Arg Leu	Cys Val Leu His Glu							
450		455	460							
Lys Thr	Pro Val Ser Glu	Lys Val Thr Lys Cys	Cys Thr Glu Ser Leu							
465	470	475	480							
Val Asn	Arg Arg Pro Cys	Phe Ser Asp Leu Thr	Leu Asp Glu Thr Tyr							
	485	490	495							
Val Pro	Lys Pro Phe Asp	Giu Lys Phe Phe Thr	Phe His Ala Asp Ile							
	500	505	510							
•	Leu Pro Asp Thr	Glu Lys Gln Ile Lys	Lys Gla Thr Ala Leu							
	515	520	525							
Val Glu	Leu Leu Lys His	Lys Pro Lys Ala Thr	Asp Glu Gin Leu Lys							
530		535	540							
Thr Val 545	Met Glu Asn Phe	Val Ala Phe Val Asp	Lys Cys Cys Ala Ala							
	550	555	560							
Asp Asp	Lys Glu Gly Cys 565	Phe Val Leu Glu Gly 570	Pro Lys Leu Val Ala 575							
Ser Thr	Gln Ala Ala Leu 580	Ala								

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 584 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- $(\ i\ i\ i\)$ HYPOTHETICAL: NO
 - (i v) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: N-terminal
 - (\mathbf{x} \mathbf{i}) SEQUENCE DESCRIPTION: SEQ ID NO:7:

G 1 u 1	Ala	His	Lys	S e 1 5	Glu	I 1 e	Ala	His	Arg 10	Phe	Lys	A s p	Leu	G 1 y 1 5	Glu
Gln	His	РЬе	L y s 2 0	Gly	Leu	V a 1	Leu	I 1 e 2 5	Ala	Phe	Seı	Gln	T y r 3 0	Leu	Gln
Lys	Суs	Pro 35	Туг	Glu	Glu	His	I 1 e 4 0	Lys	Leu	V a l	Gln	G l u 4 5	V a 1	Thr	Asp
Phe	A 1 a 5 0	Lys	Thr	Суѕ	V a l	A 1 a 5 5	Asp	Glu	Asn	Ala	G 1 u 6 0	Asn	Суs	A s p	Lys
S e r 6 5	I l e	His	Thr	Leu	Phe 70	G 1 y	Asp	Lys	Leu	C y s	Ala	1 l e	Pro	Lys	L e u 8 0
Arg	A s p	Asn	Туг	G 1 y 8 5	G 1 u	Leu	Ala	Asp	C y s 9 0	Суs	Ala	Lys	Gln	G 1 u 9 5	Pro
Glu	Агд	Asn	G l u 1 0 0	Суя	Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Рго 110	Asn	Leu

-continued Pro Pro Phe Gla Arg Pro Glu Ala Glu Ala Met Cys Thr Ser Phe Gin 115 120 125 Glu Asn Pro Thr Ser Phe Leu Gly His Tyr Leu His Glu Val Ala Arg 130 140 Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Tyr Tyr Ala Glu Lys 145 150 155 Tyr Asn Glu Val Leu Thr Gln Cys Cys Thr Glu Ser Asp Lys Ala Ala 165 170 Cys Leu Thr Pro Lys Leu Asp Ala Val Lys Glu Lys Ala Leu Val Ala 180 185 Ala Val Arg Gln Arg Met Lys Cys Ser Ser Met Gln Arg Phe Gly Glu 195Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Met Ser Gln Arg Phe Pro 210 220 Asn Ala Glu Phe Ala Glu lle Thr Lys Leu Ala Thr Asp Val Thr Lys 225 230 240 lle Asn Lys Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 255 Arg Ala Glu Leu Ala Lys Tyr Met Cys Glu Asn Gln Ala Thr lle Ser 260 265 270 Ser Lys Leu Gln Ala Cys Cys Asp Lys Pro Val Leu Gln Lys Ser Gln 275 Cys Leu Ala Glu Thr Glu His Asp Asn Ile Pro Ala Asp Leu Pro Ser 290 295 IleAlaAlaAspPheValGluAspLysGluValCysLysAsnTyrAla305310315320 Glu Ala Lys Asp Val Phe Leu Gly Thr Phe Leu Tyr Glu Tyr Ser Arg 325 330 330 Arg His Pro Asp Tyr Ser Val Ser Leu Leu Leu Arg Leu Ala Lys Lys 340 Tyr Glu Ala Thr Leu Glu Lys Cys Cys Ala Glu Gly Asp Pro Pro Ala 355 360 365 Lys Asn Leu Val Lys Thr Asn Cys Glu Leu Tyr Glu Lys Leu Gly Glu 385 390 395 400 Tyr Gly Phe Gln Asn Ala Val Leu Val Arg Tyr Thr Gln Lys Ala Pro 405 410 415 Gin Val Ser Thr Pro Thr Leu Val Glu Ala Ala Arg Asn Leu Gly Arg $4\,2\,0$ Val Gly Thr Lys Cys Cys Thr Leu Pro Glu Ala Gla Arg Leu Pro Cys 435 440 440 Val Glu Asp Tyr Leu Ser Ala IIe Leu Asn Arg Leu Cys Val Leu His 450 455 Glu Lys Thr Pro Val Ser Glu Lys Val Thr Lys Cys Cys Ser Gly Ser 470 480Leu Val Glu Arg Arg Pro Cys Phe Ser Ala Leu Thr Vai Asp Glu Thr 485 490 495 Tyr Vai Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp 500

Ile Cys Thr Leu Pro Asp Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala 515 520 525

Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Glu Asp Gln Leu

-continued
-continued

Lys Thr Val Met Gly Asp Phe Ala Gln Phe Val Asp Lys Cys Cys Lys 545 550 555 560

Ala Ala Asp Lys Asp Asn Cys Phe Ala Thr Glu Gly Pro Asn Leu Val 565 570

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: NO

(2) INFORMATION FOR SEQ ID NO:8:

- (i v) ANTI-SENSE: NO
- (v) FRAGMENT TYPE: N-terminal

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Val Asp His His Lys His lle Ala Asp Met Tyr Asa Leu Leu Thr Glu 1 5 10 Arg Thr Phe Lys Gly Leu Thr Leu Ala Ile Val Ser Gln Asn Leu Gln 20 25 Lys Cys Ser Leu Glu Glu Leu Ser Lys Leu Val Asn Glu Ile Asn Asp 35 40 45 Ala Lys Ser Cys Thr Gly Asn Asp Lys Thr Pro Glu Cys Glu Lys 50 60 Ile Giy Thr Leu Phe Tyr Asp Lys Leu Cys Ala Asp Pro Lys Val 70 75 80 Gly Val Asn Tyr Glu Trp Ser Lys Glu Cys Cys Ser Lys Gln Asp Pro 85 90 95 Arg Ala Gln Cys Phe Arg Ala His Arg Val Phe Glu His Asn Pro 100 105 110 Val Arg Pro Lys Pro Glu Glu Thr Cys Ala Leu Phe Lys Glu His Pro 115 120 Asp Asp Leu Leu Ser Ala Phe Ile His Glu Glu Ala Arg Asn His Pro 130 135 140 Leu Tyr Pro Pro Ala Val Leu Leu Leu Thr Gln Gla Tyr Gly Lys 150 155 Val Glu His Cys Cys Glu Glu Glu Asp Lys Asp Lys Cys Phe Ala 165 170 Lys Met Lys Glu Leu Met Lys His Ser His Ser Ile Glu Asp Lys 180 185 Lys His Phe Cys Trp Ile Val Asn Asn Tyr Pro Glu Arg Val Ile 195 200 Ala Leu Asa Leu Ala Arg Val Ser His Arg Tyr Pro Lys Pro Asp 210 - 215 Phe Lys Leu Ala His Lys Phe Thr Glu Glu Thr Thr His Phe 1le Lys 225 230 240 Cys Cys His Gly Asp Met Phe Glu Cys Met Thr Glu Arg Leu Glu 245 255 Leu Ser Glu His Thr Cys Gln His Lys Asp Glu Leu Ser Thr Lys Leu 260 265 Glu Lys Cys Cys Asn Leu Pro Leu Leu Glu Arg Thr Tyr Cys Ile Val

												_	_~		
							-cont	inued							-
		2 7 5					280					2 8 5			
Thr	Leu 290	Glu	A s n	Asp	A s p	V a 1 2 9 5	Pro	Ala	Glu	Leu	S e r 3 0 0	Lys	Рто	Ιle	Thr
G 1 u 3 0 5	Phe	Thr	G 1 u	Asp	Pro 310	His	Val	Суs	Gln	L y s 3 1 5	Туг	Ala	Glu	Asn	L y s 3 2 0
Ser	Phe	Leu	Glu	I I e 3 2 5	Ser	Pro	Trp	Gln	Ser 330	Gin	Glu	Thr	Pro	G 1 u 3 3 5	Leu
Ser	Glu	Gln	Phe 340	Leu	Leu	Gln	Ser	A 1 a 3 4 5	Lys	Glu	Туr	G 1 u	S e r 3 5 0	Leu	Leu
Asn	Lys	C y s 3 5 5	Суs	Phe	Ser	A s p	A s n 3 6 0	Pro	Pro	Glu	Сув	T y r 3 6 5	Lys	Asp	Gly
Ala	A s p 3 7 0	Arg	Phe	Met	Asn	G i u 3 7 5	Ala	Lys	Glu	Агд	Phe 380	Ala	Туг	Leu	Lys
G 1 n 3 8 5	Asn	Суs	A s p	116	Leu 390	His	Glu	His	Gly	G 1 u 3 9 5	Туг	Leu	Phe	Glu	A s n 4 0 0
Glu	Leu	Leu	Ile	Arg 405	Туг	Thr	Lys	Lys	Met 410	Рто	Gln	Val	Ser	A s p 4 1 5	Glu
Thr	Leu	1 1 c	G 1 y 4 2 0	Ilc	A 1 a	His	G 1 n	Me t 425	Ala	A s p	I 1 e	G 1 y	G 1 u 4 3 0	His	C y s
Суs	Ala	V a 1 4 3 5	Pro	Glu	Asn	Gin	Arg 440	Met	Рто	Суs	Ala	G 1 u 4 4 5	G l y	Asp	Leu
Thr	I i e 4 5 0	Leu	Ile	Gly	Lys	Met 455	Суѕ	Glu	Агд	Gin	Lys 460	Lys	Thr	Phe	Ile
Asn 465	Asn	His	V a l	Ala	H i s 470	Суѕ	Сув	Thr	Asp	S e r 4 7 5	Туг	Ser	Gly	Met	Arg 480
Ser	C y s	Phe	Тыг	A 1 a 4 8 5	Leu	Gly	Pro	Asp	G 1 u 4 9 0	A s p	Туг	Val	Pro	Pro 495	Рго
Val	Thr	A s p	A s p 5 0 0	Thr	Phe	His	Phe	A s p 5 0 5	Asp	Lys	116	Cys	Thr 510	Ala	Asn
Asp	L y s	G 1 u 5 1 5	Lys	Gln	His	Ile	L y s 5 2 0	Gln	Lys	Phe	Leu	V a 1 5 2 5	Lys	Leu	I I c
Lys	V a 1 5 3 0	Ser	Рто	Lys	Leu	G 1 u 5 3 5	Lys	Asn	His	Ile	A s p 5 4 0	G 1 u	Ттр	Leu	Leu
G 1 u 5 4 5	Phe	Leu	Lys	Met	V a 1 5 5 0	Gln	Lys	Суs	Сys	Thr 555	Ala	Asp	Glu	His	Gln 560
Pro	Сув	Phc	Asp	Thr 565	Glu	Lys	Рто	V a 1	Leu 570	Ilc	Glu	His	Сys	G 1 n 5 7 5	L y s

Leu His Pro

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 590 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

- (i i i) HYPOTHETICAL: NO
- (i v) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: N-terminal
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:9:
- Ser Gln Ala Gln Asn Gln Ile Cys Thr Ile Phe Thr Glu Ala Lys Glu 1 10 15
- Asp Gly Phe Lys Ser Leu Ile Leu Val Gly Leu Ala Gln Asn Leu Pro

								-cont	inued								
-				2 0					2 5					3 0			
	A s p	Ser	T h r 3 5	Leu	Gly	A s p	Leu	V a 1 4 0	Рго	L c u	I 1 c	Ala	G 1 u 4 5	A 1 a	Leu	Ala	
	Met	G 1 y 5 0	V a 1	Lys	Суs	C y s	Ser 55	A s p	Thr	Pro	Рго	G l u 6 0	A s p	Суѕ	Glu	Агд	
	A s p 6 5	Val	Ala	Asp	Leu	Phe 70	Gln	Ser	Ala	Val	C y s	Ser	Ser	G 1 u	Thr	L e u 8 0	
	Val	G 1 u	L y s	Asn	A s p 8 5	Leu	Lys	Met	Cys	C y s 90	Glu	Lys	Thr	Ala	A 1 a 9 5	Glu	
	Агд	Thr	His	Cys 100	Phe	Val	A s p	His	Lys 105	Ala	Lys	Ile	Pro	Arg 110	Asp	Leu	
	Ser	Leu	L y s 1 1 5	Ala	Glu	Leu	Pro	A 1 a 1 2 0	Ala	Asp	Gln	Суѕ	G 1 u 1 2 5	Asp	Phe	Lys	
	Lys	A s p 1 3 0	His	Lys	Ala		1 3 5	·				1 4 0					
	S e 1 1 4 5	Asn	Pro	Met		Pro 150					1 5 5				Lys	160	
	Туг	·		Val	165	Thr		·	Cys	170					175	Thr	
	Cys	Phe	Asp	Thr 180					185					190	Lys	_	
	Val	Ala	G 1 u 195	Leu	Arg	Ser		200					205		Gly		
	J	V a 1 2 1 0	Val	-	Ala		2 1 5				·	S e r 2 2 0	Gln	Lys	Met	Pro	
	G i n 2 2 5	Ala	Ser		Gla	2 3 0					2 3 5	•	Lys			A 1 a 2 4 0	
	Тһт	Val	Ala	Pro	C y s 2 4 5	Суѕ	Ser	Gly	Азр	Met 250	Va1	Thr	Суѕ	Met	L y s 2 5 5	Glu	
	Ĭ	ŕ		260	Val				265		•			270		Ser	
	_		2 7 5		Leu			280					2 8 5			Arg	
	Gly	290	·		Glu		295	Ť		-		3 0 0			Gly		
	3 0 5				Asp	3 1 0					3 1 5					Thr 320	
					Thr 325					3 3 0					3 3 5		
				3 4 0	Pro				3 4 5		•			3 5 0			
			3 5 5		Gln			3 6 0					365				
		3 7 0			Lys		3 7 5					3 8 0					
	3 8 5				Thr	390					3 9 5					400	
					A s p 4 0 5					4 1 0					4 1 5		
				4 2 0	Gin				4 2 5					4 3 0			
	Тыг	Val	His 435	Asp	Val	Leu	His	A 1 a 4 4 0	Суs	Суs	Lys	Asp	G 1 u 4 4 5	Gln	Gly	His	

							-con	tinued							
Phe	V a 1 4 5 0	Leu	Pro	Суѕ	Ala	G 1 u 4 5 5	Glu	Lys	Leu	Thr	A s p 4 6 0	Ala	llc	Asp	Ala
Thr 465	C y s	Asp	Asp	Туя	A s p 4 7 0	Pro	Ser	Ser	Ile	Asn 475	Pro	His	1 1 e	Ala	H i s 480
Суѕ	Суs	Asn	G 1 n	S c r 4 8 5	Туг	Ser	Met	Агд	Arg 490	H i s	Суs	I 1 e	Leu	A 1 a 4 9 5	Ile
Gln	Рго	Asp	Thr 500	Glu	Phe	Тһт	Pro	Pro 505	Glu	Leu	A s p	Ala	S e r 5 1 0	Ser	Phe
Нis	M e t	G 1 y 5 1 5	Pro	Glu	Leu	Сув	Thr 520	Lys	A s p	Ser	Lys	A s p 5 2 5	Leu	Leu	Leu
Ser	G 1 y 5 3 0	Lys	L y s	Leu	Leu	T y r 5 3 5	G 1 y	V a 1	Val	Arg	H i s 5 4 0	Ĺуs	ТЬг	Thr	Ile
T b r 5 4 5	G 1 u	Азр	H i s	Leu	L y s 5 5 0	Thr	I 1 e	Ser	Thr	L y s 5 5 5	Туr	H i s	ТЬг	Met	L y s 5 6 0
Glu	L y s	Суѕ	C y s	A 1 a 5 6 5	Ala	Glu	A s p	Gln	A 1 a 5 7 0	Ala	C y s	Phe	Thr	G 1 u 5 7 5	Glu
Ala	Pro	L y s	L e u 5 8 0	V a 1	Ser	Glu	Ser	A 1 a 5 8 5	G 1 u	Leu	Val	Lys	V a 1 5 9 0		

25

What is claimed is:

1. A serum albumin protein fragment consisting of at least one serum albumin binding region selected from the group consisting of binding region subdomain IIA and binding region subdomain IIIA.

2. A serum albumin protein fragment according to claim 1 wherein the serum albumin binding region consists of binding region subdomain IIA.

- 3. A serum albumin protein fragment according to claim 1 wherein the serum albumin binding region consists of 35 binding region subdomain IIIA.
- 4. A serum albumin protein fragment according to claim 1 wherein the serum albumin binding region consists of binding region subdomains IIA. IIB and IIIA.
- 5. A serum albumin protein fragment according to claim 40 1 wherein the serum albumin binding region is a binding region of a serum albumin selected from the group consisting of human, bovine, equine, ovine, rat, frog, sheep, salmon, mouse, and sea lamprey serum albumin proteins.

6. A serum albumin protein fragment according to claim 5 wherein the serum albumin binding region is a human serum albumin binding region.

7. A serum albumin protein fragment according to claim
 5 wherein the serum albumin binding region is an equine serum albumin binding region.

8. A serum albumin protein fragment according to claim 5 wherein the serum albumin binding region is a bovine serum albumin binding region.

- 9. A serum albumin protein fragment according to claim 8 wherein the serum albumin binding region consists of SEQ ID NO: 1.
- 10. A serum albumin protein fragment according to claim 8, wherein the serum albumin binding region consists of SEQ ID NO:2.
- 11. A serum albumin protein fragment according to claim 4 wherein the serum albumin binding region consists of amino acids 190 to 494 of SEQ ID NO:4.

* * * * *