- 10. Quelles conclusions peut-on extraire de la commande summary?
- 11. Retrouver la valeur Std. error pour l'intercept à partir d'une autre grandeur du summary.
- 12. Expliquer entièrement à quoi correspondent les commandes ci-après? Justifier le calcul du fit.

3 Valeur des logements autour de Boston

Le jeu de données étudié ici concerne la valeur des logements des villes aux alentours de Boston. On cherche à identifier les variables dont la valeur des logements dépend.

Les variables utilisées et leur signification sont les suivantes :

- CRIM taux de criminalité par habitant
- ZN proportion de terrains résidentiels
- INDUS proportion de terrains industriels
- CHAS 1 si ville en bordure de la rivière Charles 0 sinon
- NOX concentration en oxydes d'azote
- RM nombre moyen de pièces par logement
- AGE proportion de logements construit avant 1940
- DIS distance du centre de Boston
- RAD accessibilité aux autoroutes de contournement
- TAX taux de l'impôt foncier
- PTRATIO rapport élèves-enseignant par ville
- B $1000(B_k-0.63)^2$ où B_k est la proportion de Noirs par ville
- LSTAT % de la population à faibles revenus
- class valeur du logement en 1000\$

On commence par faire l'étude suivante :

```
> mod1 <- lm(class ~., data = housing)
> summary(mod1)
Call:
lm(formula = class ~ ., data = housing)
Coefficients:
```

	Estimate	Std. Error	t value	<i>Pr(> t)</i>	
(Intercept)	3.646e+01	5.103e+00	7.144	3.28e-12	***
CRIM	-1.080e-01	3.287e-02	-3.287	0.001087	**
ZN	4.642e-02	1.373e-02	3.381	0.000779	***
INDUS	2.055e-02	6.150e-02	0.334	0.738352	
CHAS	2.687e+00	8.616e-01	3.119	0.001924	**
NOX	-1.777e+01	3.820e+00	-4.651	4.24e-06	***
RM	3.810e+00	4.179e-01	9.116	< 2e-16	***
AGE	6.915e-04	1.321e-02	0.052	0.958274	
DIS	-1.476e+00	1.995e-01	-7.398	6.01e-13	***
RAD	3.060e-01	6.635e-02	4.613	5.07e-06	***
TAX	-1.233e-02	3.760e-03	-3.280	0.001112	**
PTRATIO	-9.528e-01	1.308e-01	-7.283	1.31e-12	***
В	9.311e-03	2.686e-03	3.467	0.000573	***
LSTAT	-5.248e-01	5.072e-02	-10.347	< 2e-16	***

Residual standard error: 4.745 on 492 degrees of freedom Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338

F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

> plot(mod1)

- 1. Quelle est la part de variance expliquée par ce modèle?
- 2. Le modèle de régression est-il significatif dans son ensemble (prendre un risque de première espèce $\alpha=1\%$)? Donner l'hypothèse H_0 , la statistique du test et la conclusion.
- 3. Quelles sont les variables significatives (prendre un risque de première espèce $\alpha = 1\%$)? Donner l'hypothèse H_0 , la statistique du test et la conclusion pour l'une d'elles.
- 4. Est-on sûr qu'il n'y en a pas d'autres? Proposer un test pour répondre à la dernière question. On explicitera H_0 et la statistique à considérer.
- 5. Pour un tel modèle, comment s'interprète le signe des coefficients obtenus? Illustrer votre réponse.
- 6. Analyser la sortie de > plot(mod1). Chaque graphique est à commenter avec soin.

On se propose maintenant d'ajouter les interactions. Les commandes R sont les suivantes :

```
> mod2 <- lm(class ~ .^2, data = housing)
> mod3 <- step(mod2,k=log(nrow(housing)))</pre>
```

7. A quoi correspond la commande > mod3 < -step(mod2, k = log(nrow(housing))). ? Pourquoi a-t-elle été utilisée? Expliquer le principe de la méthode. Donner deux méthodes alternatives.

Le bas de la table du \$summary\$ est le suivant :

. . . .

Residual standard error: 2.882 on 466 degrees of freedom Multiple R-squared: 0.9094, Adjusted R-squared: 0.

F-statistic: 119.9 on 39 and 466 DF, p-value: < 2.2e-16

. . . .

> plot(mod3)

8. Le modèle *mod*3 comporte 13 variables principales, combien d'interactions comporte-t-il? Ce modèle est-il meilleur que le modèle *mod*1?