CS & IT ENGINEERING

C Programming

Practice Session

Lecture No.- 01

Recap of Previous Lecture

- do-while loop
- While Loop
- for loop
- PYQ Practice

Topics to be Covered

- Jumping statements

- PYQ (GATE, ISRO, NIELIT ---)

- 2) Continue: It cause Control to go to Leginning of block (bottom to top) 1 uni-directional control strongs
- : It causes Gentral to move in both Directions. I >> Bi-directional Control Start.
- 4) deturn: It is used in functions to beturn value & Control to Caller Junction.

$$i=1$$
 $K=10T$ $\frac{1=-3}{\text{false}}$ $\frac{11/4=-1}{\text{Tsue}}$ $\frac{1}{\text{Fil}}$ $\frac{1}{\text{Tsue}}$

Continue

Yold reain()

{

int
$$\lambda$$
;

for($\lambda=1$; $\lambda<=10$; $\lambda+=2$)

{

if $((\lambda=-3)!;(2./4==1))$

Continue;

Printf("./d", λ);

}

d 7 = 1=7

= 35

goto	Example	Syntax:	Joto	label; Any valid	identifier	input <1 =
	Void main!	>			24 po	7*1=7
£	ant i,	j=1;				7*2=14 7*3=21
		12", 4:);	./1	1. Jul. 3. 3.	(2*3));	7 * 4 = 28
		f(3<10)	19=		J	7 * 6 = 42
		¿ ;				7*7=49
		- gots XYZ	-;			749 = 63
	4	4				7×10=78

tre whole number = 65536

#Q. What does the following program do when the input is unsigned 16 bit integer?

#include <stdio.h></stdio.h>	A << n	== A *2"	i=0 2 << 0 => 2*2= 2*1=2		2	2 * 2 = 8		
main(){ unsigned int num;		i=0	1000 0000	0000 0000		The second second	0000	0010(2)=6 010c(4)=6
int i; scanf("%u", #);	num=2	احز	1000 0000	0000 0000	4	0000 0000	0000	1000 (8)=6 (16) 1
for(i=0;i<16;i++){ printf("%d", num<<	<i&<mark>1<<15)?1</i&<mark>	1:0);			1			(32) (64) 1
}	1*26 Tm			i	1			(128) (256) (512)
A. It prints all even bit					1			(1024)
B. It prints all odd bits C. It prints binary equ D. None of above	ivalent of nu	um _	1000 00	000 0000 0	0000			32768 = 1

Pw

#Q. Consider the following C program, It produces

```
main()
             > j= 2.0 × 103
float sum= 0.0, j=1.0, i=2.0;
while(i/j>0.001){
  j=j+1;
  sum=sum+i/j;
  printf("%f/n", sum);
                                = 20 2105
A. 0-9 lines of output
                                = 2.0*1000
B. 10-19 lines out output
                                >2000.00
C. 20 – 29 lines of output
D. More than 29 lines of output
```

$$|\vec{j}|: \frac{2.0|1.0 = 2.0 \times 0.001}{2.0|2.0 = 1.0 \times 0.001} \quad \text{Print}$$

$$\frac{2.0|3.0 = 0.66 \times 0.001}{2.0|3.0 = 0.66 \times 0.001} \quad \text{Print}$$

1998 lines of output

#Q. How many lines of output does the following C code produce?

```
float i=2.0;
                                 Condition will be True
float j=1.0;
                               1.0
float sum = 0.0;
main(){
                               20 2
  while (i/j > 0.001)
                               400
                                               2048:0 False
                              800
    sum=sum+(i/j);
    printf("%f\n", sum);
                                               (1) 1024.0
   10
```


#Q. What is the output of the following C program?

Shift (Bitwise operator) #include<stdio.h> 000 101 111 void main(void){ 0570=> int shifty; >>4 000 000 000 010 shifty=0570; As octal Integer shifty=shifty>>4; <<6 J 000 000 000 010 111 shifty=shifty<<6; printf("The value of shifty is (%o \n", shifty);

- A. The value of shifty is 15c0
- B. The value of shifty is 4300
- C. The value of shifty is 5700
- D. The value of shifty is 2700

#Q. The for loop

prints

- B. 0111111111
- C. 0000000000
- D. 1111111111

#Q. Consider the following program fragment

Ing program fragment

$$i=6720$$
, $j=9 \Rightarrow 6720$, $j=0$ Take

 $i=1680$, $j=5$
 1680 , $j=5$
 1680 , $j=5$
 1680 , $j=6$
 336 , $j=7$
 36 , $j=7$

return x;

Topic: Practice Session

#Q. Consider the following C function definition $2^{nd} \Rightarrow x = 2(2x) \Rightarrow 2^{2} * X$ int f (int x, int y) {

A) 2 < 10 $\frac{10^{\frac{1}{100}}}{10^{\frac{1}{100}}} \Rightarrow 2^{\frac{1}{100}} * 2^{\frac{1}{100}} * 2^{\frac{1}{100}}$ for (int i = 0; i<y; i++) { x = x + x + y;}

B) $2 < 2^{0}$ $2^{0} + 2^{0} + 2^{0} + 2^{0}$ $2^{0} + 2^{0} + 2^{0} + 2^{0}$ C) 2 < 10 $2^{0} + 2^{0} + 2^{0} + 2^{0}$ C) 2 < 10 $2^{0} + 2^{0} + 2^{0} + 2^{0}$ C) 2 < 10 $2^{0} + 2^{0} + 2^{0} + 2^{0}$ A) $2^{0} + 2^{0} + 2^{0} + 2^{0}$ C) $2^{0} < 10^{0} + 2^{0} + 2^{0} + 2^{0}$ A) $2^{0} < 10^{0} + 2^{0} + 2^{0} + 2^{0}$ B) $2^{0} < 10^{0} + 2^{0} + 2^{0} + 2^{0}$ B) $2^{0} < 10^{0} + 2^{0} + 2^{0}$ C) $2^{0} < 10^{0} + 2^{0}$ C) $2^{0} < 10^{0} + 2^{0}$ C) $2^{0} < 10^{0}$ C) 2^{0

Which of the following statements is/are TRUE about the above function?

(A) If the inputs are x = 20, y = 10, then the return value is greater than 2^{20} ×

(B) If the inputs are x = 20, y = 20, then the return value is greater than 2^{20} ×

(C) If the inputs are x = 20, y = 10, then the return value is less than 2^{10} ×

D) 2 < 20 20 times = 20 x 10+(x)

(D) If the inputs are x = 10, y = 20, then the return value is greater than 2 20

MSQ, GATE 2024 SET-1

#Q. The following function computes XY for positive integers X and Y.

GATE 2016

```
int exp(int X, int Y) {
  int res = 1, a = X, b = Y;
  while (b!=0) {
    if (b%2 == 0) {
      a = a*a;
      b = b/2; }
    else
      res = res*a;
      b = b-1;
  return res;
```

```
HW
```

(A)
$$X^{Y} = a^{b}$$

(B) $(res*a)^{Y} = (res*X)^{b}$
(C) $X^{Y} = res*a^{b}$
(D) $X^{Y} = (res*a)^{b}$

Which one of the following conditions is TRUE before every iteration of the loop

#Q. Consider the following C program

```
main() {
  int x, y, m, n;
  scanf ("%d %d", &x, &y);
  /* Assume x > 0 and y > 0 */
  m = x;
  n = y;
  while (m! = n) {
    if (m > n)
      m = m - n;
    else
      n = n - m; }
  print f ("% d", n);
The program computes
```


GATE 2004

- (A) x ÷ y using repeated subtraction
- (B) x mod y using repeated subtraction
- (C) the greatest common divisor of x and y
- (D) the least common multiple of x and y

#Q. What will be the output of the following C code?

```
#include <stdio.h>
main() {
  int i;
  for(i=0;i<5;i++) {
    int i=10;
    printf("%d", i);
    i++;
  return 0;
   10 11 12 13 14
   10 10 10 10 10
   01234
   Compilation error
```


2 mins Summary

- Jumping Statements
- PYQ Practice

THANK - YOU