Séries

Nature d'une série

Exercice 1 (Convergente ou pas?)

Étudier la nature des séries suivantes :

(a)
$$\sum \frac{1}{n^2 + 1}$$
 (b) $\sum \frac{1}{n} \sin \left(\frac{1}{n}\right)$

(c)
$$\sum \frac{1}{n} \cos \left(\frac{1}{n}\right)$$
 (d) $\sum \frac{1}{\sqrt{n(n+1)}}$

(e)
$$\sum \frac{\cos(n)}{n!}$$
 (f) $\sum \ln\left(\frac{n-1}{n}\right)$

(g)
$$\sum \frac{\ln(n)}{n^3}$$
 (h) $\sum \frac{\ln(n)}{n^2}$ (i) $\sum \frac{\ln(n)}{n}$

Exercice 2 (Convergente ou pas? #2)

(a)
$$\sum \frac{\sqrt{n+1}}{n^2+n+3}$$
 (b) $\sum (-1)^n ne^{-n}$

(c)
$$\sum \frac{n+1}{\ln(n)}$$
 (d) $\sum \frac{\sqrt{n}}{n!}$ (e) $\sum \frac{(-3)^n}{n^n}$

Calcul de sommes

Exercice 3 (Sommes de séries usuelles)

Montrer que les séries suivantes convergent et calculer leur somme (démarrant à l'indice n = 0).

(a)
$$\sum \frac{1}{4^{n+1}}$$
 (b) $\sum \frac{2^{n+1}}{3^{n-1}}$ (c) $\sum \frac{(-2)^{2n+1}}{n!}$

(d)
$$\sum \frac{(-1)^n e^n}{n!}$$
 (e) $\sum \frac{2n(n-1)}{3^n}$ (f) $\sum \frac{n^2}{3^n}$

Exercice 4 (D'autres sommes)

Montrer que les séries suivantes convergent et calculer leur somme (démarrant à l'indice n = 2).

(a)
$$\sum \frac{1}{n(n+1)(n+2)}$$
 (b) $\sum \frac{1}{n^2-1}$

Indication : chercher $a, b, c, \alpha, \beta \in \mathbb{R}$ tels que

$$\frac{1}{n(n+1)(n+2)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}$$
$$\frac{1}{(n+1)(n-1)} = \frac{\alpha}{n+1} + \frac{\beta}{n-1}.$$

Exercice 5 (Séries hyperboliques)

Soit $x \in \mathbb{R}^*$. On pose

$$\forall N \in \mathbb{N}, \ S_N = \sum_{n=0}^N \frac{x^{2n}}{(2n)!} \text{ et } T_N = \sum_{n=0}^N \frac{x^{2n+1}}{(2n+1)!}.$$

1. Montrer que $S_N + T_N$ et $S_N - T_N$ sont les sommes partielles de deux séries usuelles à déterminer.

2. En déduire la convergence des séries $(S_N)_{N\geqslant 0}$ et $(T_N)_{\geq 0}$ et la valeur de leurs sommes.

Exercices classiques

Exercice 6 (Critère des séries alternées)

On considère une série de la forme :

$$\forall N \geqslant 0, \quad S_N = \sum_{n=0}^{N} (-1)^n a_n$$

où la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante et $\lim_{n\to+\infty} a_n = 0$.

- 1. (a) Montrer que les suites $(S_{2p})_{n\in\mathbb{N}}$ et $(S_{2p+1})_{n\in\mathbb{N}}$ sont adjacentes.
- (b) En déduire que la série $(S_N)_{N\geq 0}$ converge.
- 2. Application : on considère la série $\sum \frac{(-1)^n}{n+1}$
- (a) Justifier que cette série est convergente, mais pas absolument convergente.
- (b) Pour tout $N \geqslant 0$, en calculant l'intégrale $\int_0^1 \sum_{t=0}^{\infty} (-t)^n dt$ de deux façons, montrer l'égalité :

$$\sum_{n=0}^{N} \frac{(-1)^n}{n+1} = \ln(2) - \int_0^1 \frac{(-t)^{N+1}}{1+t} dt.$$

(c) Démontrer (rigoureusement) : $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \ln(2).$

Exercice 7 (Série de Riemann divergente)

Soit $\alpha \in]0,1[$.

- 1. Quelle est la nature de la série $\sum \frac{1}{n^{\alpha}}$?
- 2. À l'aide d'une comparaison série-intégrale, déterminer un encadrement de $S_N = \sum_{n=1}^{N} \frac{1}{n^{\alpha}}$ pour tout $N \ge 1$.
- 3. En déduire l'équivalent : $\sum_{n=1}^{N} \frac{1}{n^{\alpha}} \underset{N \to +\infty}{\sim} \frac{N^{1-\alpha}}{1-\alpha}.$

Exercice 8 (Série de Riemann convergente) Soit $\alpha > 1$.

1. Quelle est la nature de la série $\sum \frac{1}{n^{\alpha}}$?

Pour tout $N \geqslant 1$, on note $R_N = \sum_{N=1}^{+\infty} \frac{1}{n^{\alpha}}$ le reste d'ordre N de cette série.

2. À l'aide d'une comparaison série-intégrale, obtenir l'encadrement : $R_N \leqslant \frac{1}{(\alpha-1)N^{\alpha-1}} \leqslant R_N + \frac{1}{N^{\alpha}}$.

Indication: Encadrer d'abord la somme $\sum_{n=N+1}^{r} \frac{1}{n^{\alpha}}$ puis envoyer $p \to +\infty$.

3. En déduire un équivalent de R_N quand $N \to +\infty$.

Exercice 9 (Fonction définie par une série)

1. Pour $x \in \mathbb{R}_+$ fixé, justifier que la série $\sum \frac{1}{2^n + x}$ converge.

Pour tout $x \in \mathbb{R}_+$, on pose $f(x) = \sum_{n=0}^{+\infty} \frac{1}{2^n + x}$.

- 2. Montrer que : $\forall x \geq 0, \ f(2x) = \frac{1}{2}f(x) + \frac{1}{1+2x}$.
- 3. Montrer que f est décroissante sur \mathbb{R}_+ .
- 4. En déduire que f admet une limite finie en $+\infty$, puis la déterminer.

Exercice 10 (Séries de Bertrand)

On appelle "séries de Bertrand" les séries de la forme $\sum \frac{1}{n^{\alpha}(\ln(n))^{\beta}} \text{ pour } \alpha, \beta \in \mathbb{R}.$

1. On suppose $\alpha < 1$.

Montrer que $\frac{1}{n} = o\left(\frac{1}{n^{\alpha}(\ln(n))^{\beta}}\right)$. En déduire que la série diverge.

- 2. On suppose $\alpha > 1$.
- (a) Si $\beta \geqslant 0$, justifier que la série converge.
- (b) Si $\beta < 0$, montrer que $\frac{1}{n^{\alpha}(\ln(n))^{\beta}} = o\left(\frac{1}{n^{\alpha'}}\right)$ pour tout $\alpha' \in]1, \alpha[$. En déduire que la série converge.
- 3. On suppose finalement $\alpha = 1$.
- (a) Si $\beta < 0$, justifier que la série diverge.
- (b) On suppose $\beta \geqslant 0$. Déterminer une primitive de la fonction $t \mapsto \frac{1}{t(\ln(t))^{\beta}}$ sur $]1, +\infty[$.

À l'aide d'une comparaison série-intégrale, montrer :

$$\sum \frac{1}{n(\ln(n))^{\beta}} \text{ converge } \iff \beta > 1.$$

Indication : On s'inspirera fortement de la preuve de la convergence/divergence des séries de Riemann!

Oral HEC 2013

Pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $u_n(x) = \frac{x^n}{n}$.

- 1. (a) Déterminer l'ensemble des réels x pour lesquels $\lim_{n\to +\infty}u_n(x)=0$.
- (b) Déterminer l'ensemble des réels x pour lesquels la série $\sum u_n\left(x\right)$ est absolument convergente.
- 2. (a) Soit $x \in [-1,1[$. Calculer $\int_0^x t^{k-1} dt$ pour tout $k \in \mathbb{N}^*$, et en déduire que pour $n \in \mathbb{N}^*$, on a :

$$\sum_{k=1}^{n} u_k(x) = -\ln(1-x) - \int_0^x \frac{t^n}{1-t} dt.$$

- (b) Montrer que pour $x \in [-1, 1[, \lim_{n \to +\infty} \int_0^x \frac{t^n}{1-t} dt = 0.$
- (c) En déduire que pour tout $x \in [-1, 1[$, la série $\sum u_n(x)$ est convergente et donner la valeur de $\sum_{n=1}^{+\infty} u_n(x)$.
- $3. \left(\text{ Indication pour cette question}: \ \frac{1}{n^2-1} = \frac{1}{(n+1)(n-1)} = \frac{a}{n-1} + \frac{b}{n+1} \text{ pour certains } a,b \in \mathbb{R}... \right)$
- (a) Montrer que la série $\sum \frac{1}{n^2-1}$ est convergente et calculer $\sum_{n=2}^{+\infty} \frac{1}{n^2-1}$.
- (b) Montrer que pour tout $x \in [-1, 1[$, la série $\sum \frac{x^n}{n^2 1}$ est convergente et calculer $\sum_{n=2}^{+\infty} \frac{x^n}{n^2 1}$.
- (c) L'application $f: x \mapsto \sum_{n=2}^{+\infty} \frac{x^n}{n^2 1}$ est-elle continue sur [-1, 1]?