Pairs of Quantifiers

Pairs of Quantifiers

Paired quantifiers \exists , \exists

▶ There exists $x \in A$ so that there exists $y \in B$ so that P(x, y)

There exists $x \in \mathbb{N}$ so that there exists $y \in \mathbb{N}$ so that x + y = 5.

$$\forall$$
, \forall

▶ For all $x \in A$ and for all $x \in B$, P(x, y).

For all $x \in \mathbb{N}$ and for all $y \in \mathbb{N}$, xy > 0.

For all $x \in \mathbb{Z}$ and for all $y \in \mathbb{N}$, xy > 0.

$$\forall$$
, \exists

▶ For all $x \in A$ there exists $y \in B$ so that P(x, y).

For all $x \in \mathbb{N}$ there exists $y \in \mathbb{N}$ so that 2y = x.

For all $x \in \mathbb{Z}$ there exists $y \in \mathbb{Q}$ so that 2y = x.

For all $\epsilon \in \mathbb{R}$ with $\epsilon > 0$, there exists $\delta \in \mathbb{R}$ with $\delta > 0$ so that $x^2 < \epsilon$ when $x < \delta$.

\exists, \forall

▶ There exists $x \in A$ so that for all $y \in B$ we have P(x, y).

There exists $x \in \mathbb{N}$ so that for all $y \in \mathbb{N}$ we have xy > 1.

There exists $x \in \mathbb{Q}$ so that for all $y \in \mathbb{Q}$ we have xy < y.