第三章 作业

1、假设一个系统中有5个进程,它们的到达时间和服务时间如表3-1所示,忽略I/O以及其他开销时间,若分别按先来先服务(FCFS)、非抢占及抢占的短作业优先(SJF)、高响应比优先(HRRN)、时间片轮转(RR,时间片=1)、多级反馈队列调度算法(FB,第i级队列的时间片=2ⁱ⁻¹)进行CPU调度,请给出各进程的完成时间、周转时间、带权周转时间、平均周转时间和平均带权周转时间。

表 3-1 进程到达和需服务时间

进程	到达时间	服务时间
A	0	3
В	2	6
· С	4	4
D	6	5
E	8	2

135

1. HRRN.

进程	Α	В	C	D	E	平均
到达时间	0	2	4	6	8	
服务时间	3	6	4	7	2	
完成 时间	3	9	13	20	15	
固转时间	3	7	9	14	7	8
带权周转时间	1.90	617	2.15	2.80	3.50	2.14

1. RR

进程	Α	В	C	D	Е	平均
到达时间	0	2	4	6	8	
服务时间	3	6	4	7	2	
完成时间	4	18	17	ەد	15	
周转时间	4	16	13	14	7	10.8
带权围转时间	1.33	2.67	3.25	2.80	62.E	ا۲.د

1. FCFS 共创先得

进程	A	В	C	D	E	平均
到达时间	0	2	4	6	8	
服务时间	3	6	4	5	2	
完成 时间	3	9	13	18	20	
固转时间	3	7	9	12	12	8-6
带权周转时间	1	1.17	2x.C	2,4	6	2.56

1. FB 颈轮5.

进程	A	В	C	D	E	平均
到达时间	0	2	4	6	8	
服务时间	3	6	4	7	7	
完成 时间	4	18	12	20	16	
固转时间	4	16	11	14	8	10.6
带权周转时间	1.33	2.67	2.75	2.8	4	2.87

1. 超点SPF

进程	А	В	C	D	Е	平均
到达时间	0	2	4	6	8	
服务时间	3	6	4	7	2	
完成 时间	3	15	8	20	10	
固转时间	3	13	4	14	2	7.2
带权周转时间	I	2.16	1.00	2.80	1.00	1.59

1. FB

进程	А	В	C	D	E	平均
到达时间	0	2	4	6	8	
服务时间	3	6	4	7	2	
完成 时间	3	17	18	20	14	
周转时间	3	15	14	14	6	10.4
带权周转时间	1	3.5	3.5	2.8	3.00	256

1. 排轮点SPF

进程	А	В	C	D	Ε	平均
到达时间	0	2	4	6	8	
服务时间	3 '	6	4 4	72	7 3	
完成 时间	3	9	15	20	11	
固转时间	3	7	11	14	3	7.6
带权周转时间	1	1.17	2.75	2.80	1.50	1.84

- 2、设在时刻,系统中有5个进程,三种资源A、B、C的使用情况如下表所示,设系统可供使用的空闲资源数为Available=2,2,1。若此时有以下三种不同的分配请求,请用银行家算法判断系统能否予以分配,并写出具体步骤。(注:以下各小题没有因果关系,每小题都以表中所示状态为当前状态)
 - (1) P3进程申请资源A、B、C分别为2、0、0, 能否分配, 为什么
 - (2) P1进程申请资源A、B、C分别为0、0、2, 能否分配, 为什么
 - (3) P2进程申请资源A、B、C分别为1、1、1,能否分配,为什么

进程		Max			Need	
	Α	В	С	Α	В	С
P0	1	3	3	1	2	2
P1	3	2	2	2	2	1
P2	2	2	1	2	1	1
P3	2	0	2	1	0	1
P4	2	4	3	2	3	3

136

- 1) P3 不能分配。首先,2,0,0 和 Available=2,2,1 比较。Available 较大,可以分配。但是申请分配的资源大于需求的资源。故不可以分配。
- 2) P1 不能分配。首先, 0,0,2 和 Available=2,2,1 比较。Available 较小, 不可以分配。
- 3) P2 不能分配。首先,1,1,1 和 Available=2,2,1 比较。Available 较大,可以分配。其次,申请分配的资源小于需求的资源。假设可以分配,此时 Available=1,1,0。之后,不可以分配给任何一个进程。故不可以分配。