AlphaTensor

Рецензия

AlphaTensor Recap

- We want to discover fast matrix multiplication algorithms.
- Let's represent matrix multiplication as a game.
- And run AlphaZero on it.

Authors

- Alhussein Fawzi (EPFL PhD):
 - ML for mathematics.
 - Adversarial robustness.
- Matej Balog (Cambridge-Tubingen PhD):
 - Program synthesis (DeepCoder).
- Aja Huang (NTNU PhD):
 - Reinforcement learning (AlphaGo, AlphaStar).
- Thomas Hubert (Stanford MS, Financial Mathematics):
 - Reinforcement learning (AlphaGo, AlphaZero).

Authors

- Alexander Novikov (Skolkovo PhD, Bayes Group):
 - Reinforcement Learning.
 - Tensor Decompositions.

AlphaZero, 2017 Recap

- Key to the success of AlphaTensor.
- Generalist algorithm for turn-based games.
- Deep RL + MCTS.

Strassen, 1969 Before AlphaTensor

- Novel algorithm for matrix multiplication.
- 2x2 matrices require 7 operations instead of 8.
- Long time (50 years) best for 4x4 over a finite field.
- AT outperforms Strassen's algorithm on 4x4.

Size (n, m, p)	Best method known	Best rank known	-	ensor rank Ir Standard
(2, 2, 2)	(Strassen, 1969) ²	7	7	7
(3, 3, 3)	(Laderman, 1976) ¹⁵	23	23	23
(4, 4, 4)	(Strassen, 1969) ² $(2, 2, 2) \otimes (2, 2, 2)$	49	47	49
(5, 5, 5)	(3, 5, 5) + (2, 5, 5)	98	96	98

Other Human Search Approaches

Before AlphaTensor

- Laderman (1976) best for 3x3.
- Hopcroft and Kerr (1971) best for a set of small matrices.
- Hand-crafted algorithms.
- Matched by AT.

Size (n, m, p)	Best method known	Best rank known	-	ensor rank r Standard
(2, 2, 2)	(Strassen, 1969) ²	7	7	7
(3, 3, 3)	(Laderman, 1976) ¹⁵	23	23	23
(4, 4, 4)	(Strassen, 1969) ² $(2, 2, 2) \otimes (2, 2, 2)$	49	47	49
(5, 5, 5)	(3, 5, 5) + (2, 5, 5)	98	96	98

Other Methods

Before AlphaTensor

- Relatively new: 2013 and 2021.
- Continuous optimisation (Smirnov, Sedoglavic):
 - Rewrite the problem and solve continuously.
 - Some results beaten by AT.
- Combinatorial search (Heule, Kauers, Seidl):
 - Convert problem to SAT.
 - Do combinatorial optimisation.

Arg min	$\sum_{i=0}^{q} P_i \otimes Q_i \otimes S_i - \sum_{i=0}^{m} \sum_{j=0}^{n} \sum_{k=0}^{p} E_i^j \otimes E_k^k \otimes E_k^i \bigg\ $
-	$+\lambda \left(\sum_{i=0}^{q} \left\ P_i - \widetilde{P}_i\right\ + \left\ Q_i - \widetilde{Q}_i\right\ + \left\ S_i - \widetilde{S}_i\right\ \right).$

(2, 3, 3)	(Hopcroft and Kerr, 1971) ¹⁶	15	15	15
(2, 3, 4)	(Hopcroft and Kerr, 1971) ¹⁶	20	20	20
(2, 3, 5)	(Hopcroft and Kerr, 1971) ¹⁶	25	25	25
(2, 4, 4)	(Hopcroft and Kerr, 1971) ¹⁶	26	26	26
(2, 4, 5)	(Hopcroft and Kerr, 1971) ¹⁶	33	33	33
(2, 5, 5)	(Hopcroft and Kerr, 1971) ¹⁶	40	40	40
(3, 3, 4)	(Smirnov, 2013) ¹⁸	29	29	29
(3, 3, 5)	(Smirnov, 2013) ¹⁸	36	36	36
(3, 4, 4)	(Smirnov, 2013) ¹⁸	38	38	38
(3, 4, 5)	(Smirnov, 2013) ¹⁸	48	47	47
(3, 5, 5)	(Sedoglavic and Smirnov, 2021)	¹⁹ 58	58	58

The FBHHRBNRSSSHK-Algorithm for Multiplication is still not the end of the story.

- Published after AlphaTensor (Kauers and Moosbauer, 2022).
- Outperforms AT on 5x5 matrices (from 96 to 95).
- Matches AT on 4x4 over finite field.
- Method unknown.

RL is dead long live RL

Other areas

- Video compression:
 - MuZero (2019) used in YouTube compression.
- Job Scheduling:
 - Zhang, Diettenh (1995).
 - Tassel, Gebser, Schekotihin (2021).
- Compiler optimisations:
 - Finding new hash functions (anecdote, not published).