

<u>Help</u> Ţ

sandipan_dey ~

<u>Syllabus</u> laff routines **Community Discussion** <u>Outline</u> <u>Course</u> **Progress** <u>Dates</u>

☆ Course / Week 9: Vector Spaces / 9.2 When Systems Don't Have a Unique Solution

(

Next >

9.2.1 When Solutions Are Not Unique

□ Bookmark this page

Previous

■ Calculator

Week 9 due Dec 9, 2023 18:12 IST Completed

9.2.1 When Solutions Are Not Unique

Video

Start of transcript. Skip to the end.

Dr. Robert van de Geijn: Let's quickly demonstrate

that systems of linear equations may not have a unique solution.

Let's consider the system right here.

I don't know about you, but I can just look at that

O:00 / 0:00

▶ 2.0x

and tall whather this has a unique

66

Video

▲ Download video file

Transcripts

Reading Assignment

0 points possible (ungraded) Read Unit 9.2.1 of the notes. [LINK]

Done

Submit

✓ Correct

Discussion

Topic: Week 9 / 9.2.1

Hide Discussion

by recent activity >

Add a Post

Show all posts

There are no posts in this topic yet.

■ Calculator

Homework 9.2.1.1

10/10 points (graded) Evaluate

$$\begin{pmatrix} 2 & -4 & -2 \\ -2 & 4 & 1 \\ 2 & -4 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{bmatrix} 4 & & \checkmark \text{ Answer: 4} \\ & & \checkmark \text{ Answer: -3} \\ & & \checkmark \text{ Answer: -3} \\ & & \checkmark \text{ Answer: 2}$$

1.

$$\begin{pmatrix} 2 & -4 & -2 \\ -2 & 4 & 1 \\ 2 & -4 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} = \begin{bmatrix} 4 & & \checkmark \text{ Answer: 4} \\ & & \checkmark \text{ Answer: -3} \\ & & \checkmark \text{ Answer: -3} \\ & & \checkmark \text{ Answer: 2} \end{pmatrix}$$

2.

$$\begin{pmatrix} 2 & -4 & -2 \\ -2 & 4 & 1 \\ 2 & -4 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{bmatrix} 4 & \checkmark & Answer: 4 \\ -3 & \checkmark & Answer: -3 \\ 2 & \checkmark & Answer: 2 \end{bmatrix}$$

3.

Does the system
$$\begin{pmatrix} 2 & -4 & -2 \ -2 & 4 & 1 \ 2 & -4 & 0 \end{pmatrix} \begin{pmatrix} \chi_0 \ \chi_1 \ \chi_2 \end{pmatrix} = \begin{pmatrix} 4 \ -3 \ 2 \end{pmatrix}$$
 have multiple solutions?

YES ✓ Answer: YES

Clearly, this system has multiple solutions.

Submit

Previous Next >

© All Rights Reserved

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>