

Convolutional Neural Networks (8DC00)

Navchetan Awasthi

Navchetan Awasthi Phd.

Background: B.Tech. Electronics and Communication Engineering, M.Tech. in Computational Science, PhD in Medical Imaging

Work/internship experience: Harvard Medical School, Massachusetts General Hospital, Indian Institute of Science

PhD Research: Deep learning, Medical image analysis, Medical Image reconstruction, Ultrasound Imaging, Photoacoustics, Inverse Problems

$\hat{y} = \mathbf{\theta}^{\mathsf{T}} \mathbf{x}$

Previously – Linear regression

$$p(y = 1 \mid \mathbf{x}) = \sigma(\mathbf{\theta}^{\mathsf{T}} \mathbf{x})$$

Previously – Logistic regression

Previously – Neural networks

Previously – Neural networks

ARTIFICIAL INTELLIGENCE

Early artificial intelligence stirs excitement.

MACHINE LEARNING

Machine learning begins to flourish.

DEEP LEARNING

Deep learning breakthroughs drive AI boom.

Today: Convolutional neural networks (CNN)

■ Neural networks → Convolutional neural networks

Building blocks for deep learning models for image analysis:

- Convolutional layer
- Max-pooling layer

Not needed for the project, but will be on the exam

Learning outcomes

- Student can explain the concept of convolutions in a neural network
- Student can describe why we can use a convolutional approach for (medical) images
- Student can explain why convolutions enable development of deep (and large) neural networks
- Students can explain and apply the max-pooling layer in a convolutional neural network
- Students can motivate the choice for a kernel size

Lecture outline

- Images as input to neural network
- Reducing # of weights
- 1D convolutions
- 2D convolutions
- Break (15 mins)
- Kernels
- Max-pooling
- Interactive example

Images as input to neural networks

24 pixels

3 color channels (red, green, blue)

= 1728 features (\mathbf{x}_i are 1728 dimensional vectors)

If we train linear regression with these inputs (such as in the first practical), we will have 1728 weights w and a bias b.

 $\theta^\intercal \mathbf{x}$

Every pixel is an input

Every pixel from every color channel is multiplied by a weight

Post-training: visualizing what model has learned

Reshape vector of parameters into 24x24x3 image

Post-training: visualizing what model has learned

Only 25% of training samples.. Looks noisy!

Post-training: visualizing what model has learned

You can think of it as "there is not enough training data to reliably estimate all model weights".

Many weights

With large inputs such as images and deep networks, the number of weights "explodes". We need a way to reduce the number of weights, without sacrificing performance.

••• "regular" NN 15 weights

receptive field ••• ... ••• sparsely connected NN 9 weights

How many weights?

3 weights

Shared weights

$$a_1 = x_1 \mathbf{w_1} + x_2 \mathbf{w_2} + x_3 \mathbf{w_3}$$

$$a_2 = x_2 w_1 + x_3 w_2 + x_4 w_3$$

$$a_3 = x_3 \mathbf{w_1} + x_4 \mathbf{w_2} + x_5 \mathbf{w_3}$$

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} =$$

$$= \operatorname{sigm}(a_3) \qquad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} * \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 \end{bmatrix}$$

shared weights

3 weights

convolution, thus convolutional NN

How can we keep the same number of features in hidden layer 1?

Zero-padding!

$$a_1 = x_1 w_1 + x_2 w_2 + x_3 w_3$$

$$a_2 = x_2 w_1 + x_3 w_2 + x_4 w_3$$

$$a_3 = x_3 w_1 + x_4 w_2 + x_5 w_3$$

$$[a_{1} \quad a_{2} \quad a_{3}] = [x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5}] * [\frac{w_{1}}{w_{1}} \quad w_{2} \quad w_{3}]$$

Properties of convolutional neural networks

- Sparse connectivity
- Weight sharing
- Parallel computations

Why does this work?

- Multiple layers
- Hidden layers contain features calculated from previous layers

Why does this work?

- Different layers contain different transformation
 - Simple (e.g. edges, colors)
 - Complex (final layers)

One added benefit is that the learned transformations will be equivariant with translation (if the features/image is shifted up/down the features will still be detected).

two sets shared weights
6 weights

We can add additional sets of weights that can learn additional interesting transformation of the input.

Note that the added neurons <u>are not</u> a new layer. They are part of layer 1.

two sets shared weights
6 weights

$$[a_{1,1} \quad a_{1,2} \quad a_{1,3}] =$$

$$[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5] * [w_{1,1} \quad w_{1,2} \quad w_{1,3}]$$

$$[a_{2,1} \quad a_{2,2} \quad a_{2,3}] =$$

$$[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5] * [w_{2,1} \quad w_{2,2} \quad w_{2,3}]$$

 $[w_{1,1} \quad w_{1,2} \quad w_{1,3}]$, and $[w_{2,1} \quad w_{2,2} \quad w_{2,3}]$ are **convolution kernels**. They extract <u>features</u>. However, they are not hand-designed features – they were <u>learned</u> by the neural network.

Convolutional neural networks are ideal for images

Because of the weight sharing, convolutional neural networks only work with structured data (such as images) as inputs.

Convolutions + non-linearity

Convolutions + non-linearity (sigmoid)

Convolutions + non-linearity (ReLU)

Commonly used activation Functions

- Every activation function (or non-linearity) takes a single number and performs a certain fixed mathematical operation on it.
- There are several activation functions you may encounter in practice.

Sigmoid

Sigmoid

- The sigmoid non-linearity has the mathematical form $\sigma(x)=1/(1+e-x)$.
- It takes a real-valued number and "squashes" it into range between 0 and 1.
- In particular, large negative numbers become 0 and large positive numbers become 1.
- The sigmoid function has seen frequent use historically since it has a nice interpretation as the firing rate of a neuron: from not firing at all (0) to fully-saturated firing at an assumed maximum frequency (1).
- In practice, the sigmoid non-linearity has recently fallen out of favor and it is rarely ever used.

Drawbacks of Sigmoid

- A very undesirable property of the sigmoid neuron is that when the neuron's activation saturates at either tail of 0 or 1, the gradient at these regions is almost zero.
- This (local) gradient will be multiplied to the gradient of this gate's output for the whole objective.
- Therefore, if the local gradient is very small, it will effectively "kill" the gradient and almost no signal will flow through the neuron to its weights and recursively to its data.
- Additionally, one must pay extra caution when initializing the weights of sigmoid neurons to prevent saturation.
- For example, if the initial weights are too large then most neurons would become saturated and the network will barely learn.

ReLU

ReLU

- The Rectified Linear Unit has become very popular in the last few years.
- It computes the function f(x)=max(0,x).
- In other words, the activation is simply thresholded at zero.

ReLU

- It was found to greatly accelerate (e.g. a factor of 6 in Krizhevsky et al.) the convergence of stochastic gradient descent compared to the sigmoid/tanh functions.
- It is argued that this is due to its linear, non-saturating form.
- Compared to tanh/sigmoid neurons that involve expensive operations (exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero.

Break!

Quokka (Australia) https://imgur.com/r/aww/GqJi0il

Convolutional kernels

Kernel size

1 x 1

3 x 3

5 x 5

- More weights → more information
- More computations / memory
- Receptive field

Receptive field

Receptive Field

https://distill.pub/2019/computing-receptive-fields/

Computing Receptive Fields of Convolutional Neural Networks

Mathematical derivations and <u>open-source library</u> to compute receptive fields of convnets, enabling the mapping of extracted features to input signals.

Stride

- We must specify the **stride** with which we slide the filter.
- When the stride is 1 then we move the filters one pixel at a time.
- When the stride is 2 (or uncommonly 3 or more, though this is rare in practice) then the filters jump 2 pixels at a time as we slide them around.
- This will produce smaller output volumes spatially.

Max-pooling

Max-pooling

- Reduce size of feature space
- Maximum of features
- Typical kernel size = 2 x 2

Example:

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. **Left:** In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the volume depth is preserved. **Right:** The most common downsampling operation is max, giving rise to **max pooling**, here shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square). https://cs231n.github.io/

Benefits of max-pooling

- "Quickly" reduces the number size of the feature maps
- Introduces translation invariance (slightly translated version of the input image will result in the same output)

Alternative: Average Pooling

Demo

https://poloclub.github.io/cnn-explainer/

Let try it out!

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

An Interactive Node-Link Visualization of Convolutional Neural Networks

Adam W. $Harley^{(\boxtimes)}$

Department of Computer Science, Ryerson University, Toronto, ON M5B 2K3, Canada aharley@scs.ryerson.ca

Training of Convolutional Neural Networks

- Similar to training of 'fully connected' neural networks
- Choose some (random) initial values for network weights
- Optimize networks weights with respect to a loss function that describes difference between network output and label/annotation
- Update networks weights iteratively

Through a process called 'backpropagation'. A good explanation can be found here: https://www.youtube.com/watch?v=i940vYb6noo (5:10 - 28:00, not exam material)

Keep track of model performance on train & validation set

Summary

- Concept of convolutions in a neural network
- Why can we use a convolutional approach for (medical) images
- Convolutions enable development of deep (and large) neural networks
- Max-pooling layer in a convolutional neural network
- Kernel size
- Receptive field

