PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-285184

(43)Date of publication of application: 15.10.1999

H02K 1/27 (51)Int.CI.

(71)Applicant : FUJITSU GENERAL LTD (21)Application number: 10-100197

(72)Inventor: FUKUDA YOSHIFUMI 27.03.1998 (22)Date of filing:

(54) PERMANENT-MAGNET MOTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To enhance motor efficiency by making effective use of magnet torque and reluctance torque, in a permanent-magnet motor.

SOLUTION: In an inner rotor-type permanent-magnet motor, permanent magnets 11 in a number equivalent to the number of poles concerned are embedded in the rim of a core at equal intervals, and the permanent magnets 11 are so formed that their cross-sectional shape is of convex lens. Flux barriers are formed at both the ends of the permanentmagnets 11, and the permanent magnets 11 are formed such that their faces on one side are located along the rim of the rotor core 10, and their faces on the other side are of a shape with the distance from the center hole 4 take into account. The distance between the adjacent permanent magnets 11 in different poles is set to a value not less than the thickness of one electromagnetic steel plate used for

the rotor core 10 to ensure magnetic path from the stator core 1. Caulking pins 12 are inserted and caulking areas 13 are formed in the region between the permanent magnets 11 and the center hole 4.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平11-285184

(43)公開日 平成11年(1999)10月15日

(51) Int Cl.8 H 0 2 K 1/27 識別記号 501

FΙ H 0 2 K 1/27

501A

501M

審査請求 未請求 請求項の数3 FD (全 5 頁)

		客查請求	未請求 請求項の数3 FD (宝 5 以)
(21) 出風番号	特顏平10-100197	(71) 出願人	000006611 株式会社富士通ゼネラル 神奈川県川崎市高津区末長1116番地 福田 好史 神奈川県川崎市高津区末長1116番地 株式 会社富士通ゼネラル内
(22)出顧日	平成10年(1998) 3月27日	(72) 発明者	
		(74)代理人	弁理士 大原 拓也

(54) 【発明の名称】 永久磁石電動機

(57)【要約】

【課題】 永久磁石電動機において、マグネットトルク およびリラクタンストルクを有効利用し、モータ効率の 向上を図る。

【解決手段】 インナーロータ型の永久磁石電動機にお いて、ロータコア10に当該極数分の永久磁石11をコ ア外周に沿って等間隔に埋設し、この永久磁石11の断 面形状を凸レンズ形状とする。この永久磁石11の両端 部側にはフラックスバリア11 a を形成し、永久磁石1 1の一方の面をロータコア10の外周に沿った形状と し、他方の面を中心孔4との距離を考慮した形状とす る。隣接する異極の永久磁石11の間隔はロータコア1 0に使用する電磁網板1枚の厚さ以上とし、ステータコ ア1からの磁気の路を確保する。各永久磁石11と中心 孔4との間の領域にはカシメピン12を通し、かつ、か しめ部13を形成する。

【特許請求の範囲】

ロータコアを内部に有する永久磁石電動 【請求項1】 機において、前記ロータコアに当該極数分の永久磁石を コア外周に沿って等間隔に埋設するとともに、該永久磁 石の断面形状を凸レンズ形状としてなることを特徴とす る永久磁石電動機。

1

前記埋設する永久磁石の隣接同士を異極 【請求項2】 とし、該異極の永久磁石の間隔を当該ロータコアに使用 する電磁鋼板1枚の厚さ以上とした請求項1記載の永久 磁石電動機。

前記永久磁石の一方の面をコア外周に沿 【請求項3】 った曲線に、他方の面を孤の中点と当該中心孔との距離 を所定値とした曲線にし、前記永久磁石の両端部側を面 取りすることによってフラックスバリアを形成してなる 請求項1または2記載の永久磁石電動機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、空気調和機や冷 蔵庫のコンプレッサ等に用いるインナーロータ型の永久 磁石電動機に係り、特に詳しくはマグネットトルクを得 20 る永久磁石の形状により、リラクタンストルクの有効利 用を可能とする永久磁石電動機に関するものである。

[0002]

【従来の技術】この種の永久磁石電動機のインナーロー タの構成は、ロータコアに永久磁石を埋設しており、例 えば図5に示すものが提案されている。

【0003】図5に示すように、24スロットのステー タコア1内のロータコア2には、当該永久磁石電動機の 極数(4極)分だけ板状の永久磁石3が外径に沿って円 周方向に埋設されている。なお、4は中心孔(シャフト 30 用の孔)、5はカシメピン、6はかしめ部である。

【0004】この場合、永久磁石3の形状がほぼ断面扇 状であり、この扇状の外側孤をコアの外周に沿って、ま たその扇状の内側弧を直線としていることから、永久磁 石3の使用量(磁石量)が多く、大きいマグネットトル クを得ることができる。また、前記扇状の内側は直線と しているため、コア中心部には正方形のボス部が形成さ れ、このボス部にカシメピン5を通し、かつ、かしめ部 6を形成することができ、永久磁石3と中心孔4との間 には距離もあり、コア強度の面からも好ましい。

[0005] 【発明が解決しようとする課題】しかしながら、前記永 **久磁石電動機においては、リラクタンストルクの利用が** できず、モータ効率の向上が見込めないという欠点があ る。すなわち、永久磁石3の使用量をより多くするため には、隣接する永久磁石3の間が狭く、また、永久磁石 3の幅(厚さ)を大きくしているために、ステータコア 1からの磁束の路を確保することが困難だからである。 【0006】この発明は、前記課題に鑑みなされたもの であり、その目的は永久磁石の断面形状を変えることに 50 くなり、リラクタンストルクの発生が見込める。

[0:007]

【課題を解決するための手段】前記目的を達成するため に、この発明はロータコアを内部に有する永久磁石電動 機において、前記ロータコアに当該極数分の永久磁石を コア外周に沿って等間隔に埋設するとともに、該永久磁 石の断面形状を凸レンズ形状としてなることを特徴とし ている。 10

[0008] この場合、前記埋設する永久磁石の隣接同 士を異極とし、該異極の永久磁石の間隔を当該ロータコ アに使用する電磁鋼板1枚の厚さ以上にすると好まし

【0009】前記永久磁石の一方の面をコア外周に沿っ た曲線に、他方の面を孤の中点と当該中心孔との距離を 所定値とした曲線にし、前記永久磁石の両端部側を面取 りすることによってフラックスバリアを形成するとよ ٧١_°

[0010]

【発明の実施の形態】以下、この発明の実施の形態を図 1ないし図4を参照して詳しく説明する。なお、図中、 図5と同一部分には同一符号を付して重複説明を省略す

【0011】この発明の永久弦石配動機は、ロータコア に埋設する永久磁石の断面形状を凸レンズ形状とすれ ば、永久磁石の使用量(磁石量)を多くすることがで き、つまりマグネットトルクが向上し、またステータコ アからの磁束の路を確保することができ、つまりリラク タンストルクの利用が見込めることに着目にしたもので ある。

【0012】そのため、図1および図2に示すように、 この永久磁石電動機のロータコア10には、断面凸レン ズ形状の永久磁石11がコア外周に沿って当該極数(四 極)分だけ等間隔に埋設されている。各永久磁石11は 一方の面をコア外周に沿うようにし、他方の面を中心孔 4に向けている。

【0013】さらに、図3に示すように、隣接する異極 の永久磁石11の間は、ステータコア1からの磁束の路 を確保するために所定幅 s とし、例えば、ロータコア 1 0に使用する電磁網板1枚の厚さ以上にすると好まし い。なお、永久磁石11の他方の面(中心孔4を向いて いる面) は、ステータコア1からの磁気の通路(いわゆ る磁束の路)に沿った曲線にするとよい。

【0014】 したがって、図1において、 q軸に関して はステータコア 1 からの磁束の路には永久磁石 1 1 が介 在し、d軸に関してはステータコア1からの磁束の路が その曲線に沿った形でロータコア10に形成されること になる。つまり、q軸とd軸インダクタンスの差が大き

【0015】また、各永久磁石11が断面凸レンズ形状 であることから、各永久磁石11および中心孔4との間 にはある程度の領域が生じ、この領域には、カシメビン 12を通し、かしめ部13を形成する。

【0016】さらに、図4に示すように、各永久磁石1 1の両端部側にはフラックスバリア用の孔11aを形成 するとよい。この場合、各永久磁石11の両端部をカッ トすればよい。このフラックスバリア用の孔11 a は、 磁束の短絡、漏洩を防止することから、永久磁石11の 磁束の損失を抑え、ひいてはマグネットトルクの低下を 10 抑える。

【0017】ところで、ロータコア10の製造において は、コアプレス金型を用いて自動プレスで電磁鋼板を打 ち抜き、金型内でかしめてロータコア10を一体的に形 成するコア積層方式(自動積層方式)を採用する。

【0018】 このプレス加工工程では、 コアシート10 a を打ち抜くとき、永久磁石11の孔およびカシメビン 1 2の孔を打ち抜くとともに、かしめ部13をコアシー ト10aの積層毎に形成する。 したがって、従来の自動 積層方式によるプレス加工をそのまま利用することがで 20

【0019】このようにして、自動的にプレス、積層さ きる。 れたコアをかしめた後、永久磁石11の孔に磁石(例え ばフェライト磁石)を埋設して蓋をし、カシメピン12 を通してロータコア10をかしめ、かつ永久磁石11を 凸レンズ形状の厚さ方向に磁化、着磁する。

【0020】なお、図4について追加説明をすると、2 4 スロットのステータコア1には、三相(U相、V相お よびW相)の電機子巻線が施されているが、スロット数 や電機子巻線が異なっていてもよい。また、ステータコ ア1において、例えば外径側の巻線をU相、内径側の巻 線をW相、その中間の巻線をV相としてもよい。

【0021】このように、各永久磁石11の断面を凸レ ンズ形状とすることで、永久磁石11の使用量は少なく とも従来と変わらず、つまりマグネットトルクが小さく ならず、その凸レンズの形状によっては使用量を多くす ることが可能であり、フラックスバリア用の孔11aに より、磁束の短絡、漏洩を防止することができる。

【0022】また、隣接する永久磁石11の間隔を所定 に開け、かつ永久磁石11の断面を凸レンズ形状として いることから、ステータコア1からの磁気の路を十分に 確保することができ、リラクタンストルクの発生を見込 むことができる。すなわち、 q軸と d軸インダクタンス の差 (La-Ld) が大きくなり、これによりリラクタ ンストルクを発生させることができるからである。 した がって、マグネットトルクおよびリラクタンストルクの 有効利用が図れ、ひいてはモータ効率の向上が図れる。

【0023】なお、永久磁石11の他方の面(中心孔4 を向いている面)については、永久磁石11と中心孔4 との距離を考慮して決めるとよい。これにより、コア強 50

度を低下させず済み、ひいては信頼性の低下を防止する ことができる。また、前述により形成されるロータコア を組み込んでDCブラシレスモータとし、空気調和機の 圧縮機モータ等として利用すれば、コストをアップする ことなく、空気調和機の性能アップ(運転効率の上昇、 振動や騒音の低下)を図ることができる。

[0024]

【発明の効果】以上説明したように、この永久磁石電動 機の請求項1記載の発明によると、ロータコアを内部に 有する永久磁石電動機において、前記ロータコアに当該 極数分の永久磁石をコア外周に沿って等間隔に埋設する とともに、この永久磁石の断面形状を凸レンズ形状とし てなるので、永久磁石の断面積(磁石の使用量)を少な くとも従来と同じ程度することができる。 しかも、永久 磁石の当該中心孔側が曲線であることから、ステータコ アからの磁束の路を確保してリラクタンストルクを発生 させることができ、これによりマグネットトルクおよび リラクタンストルクを有効利用することができ、ひいて はモータ効率の向上を図ることができるという効果があ

【0025】請求項2記載の発明によると、請求項1に おいて、前記埋設する永久磁石の隣接同士を異極とし、 この異極の永久磁石の間隔を当該ロータコアに使用する 電磁網板1枚の厚さ以上としたので、請求項1の効果に 加え、ステータコアからの磁束の路をより確保すること になる。つまり、磁気抵抗を小さくし、より大きいリラ クタンストルクの発生を見込むことができるため、モー タ効率の向上を図ることができるという効果がある。

【0026】請求項3記載の発明によると、請求項1ま たは2における永久磁石の一方の面をコア外周に沿った 曲線に、他方の面は孤の中点と当該中心孔との距離を所 定値とした曲線にし、前記永久磁石の両端部側を面取り することによってフラックスバリアを形成してなるの で、請求項1または2の効果に加え、コア強度を保ちな がら、永久磁石の使用量(磁石量)を最大限に多くする ことができるとともに、永久磁石の磁束の短絡、漏洩を 防止し、より大きいマグネットトルクの発生を見込むこ とができるため、モータ効率の向上を図ることができる という効果がある。

【図面の簡単な説明】

【図1】この発明の実施の一形態を示す永久磁石電動機

の概略的平面図。 【図2】図1に示すロータコアを説明するための概略的

断面図。 【図3】図1に示すロータコアを説明するための概略的

部分平面図。 【図4】この発明の変形実施の形態を示すロータコアの 概略的部分平面図。

【図5】従来の永久磁石電動機の概略的側面図。 【符号の説明】

5

1 ステータコア

4 中心孔 (シャフト用)

10 ロータコア(磁石埋込型界磁鉄心)

10a コアシート

【図1】

11 永久磁石 (断面凸レンズ形状)

11a 孔 (フラックスバリア用)

12 カシメピン

13 かしめ部

[図2]

[図3]

【図4】

[図5]

