Automatic vs Manual Transmission in term of MPG

 $Ameen\ AboDabash$

Sep 2, 2016

Executive Summary

We'll explore *mtcars* dataset to build a regression model which will confirm Manual is better than Automatic transimtions in term of MPG "Miles Per Gallon" (2.9 mpg much better), and quntify that difference.

Setting the Scene

Let's look at the data first, *mtcars* data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models), So *mtcars* is A data frame with 32 observations on 11 variables (Fig.1 Scatter plot for all vars)

[, 1] mpg Miles/(US) gallon	[, 9] am Transmission (0=automatic, 1=manual)
[, 2] cyl Number of cylinders	[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower	[, 5] drat Rear axle ratio
[, 6] wt Weight (lb/1000) [, 8] vs V/S	[, 7] qsec 1/4 mile time [,10] gear Number of forward gears
[,11] carb Number of carburetors	

Frankly speaking, its seems Manual transisission better than Automatice from data plotting "Appendex Fig.1", So lets get the *P-Value* to confirm this "we can call it" assumtion or hypothesis:

```
t.test(mpg~am,mtcars,paired=FALSE,var.equal=FALSE)
```

```
##
## Welch Two Sample t-test
##
## data: mpg by am
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean in group Automatic mean in group Manual
## 17.14737 24.39231
```

So, P-Value is 0.001374 which sless than 0.05 which confirm our first assumtion.

Regression Model and Qunitifiying the difference

So the following basic model which multivariate linear regression with all variables:

```
summary(lm(mpg~am,mtcars))
```

##

```
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
  -9.3923 -3.0923 -0.2974
##
                           3.2439
                                    9.5077
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 17.147
                             1.125
                                   15.247 1.13e-15 ***
## amManual
                  7.245
                             1.764
                                     4.106 0.000285 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

Indeed, it looks like wt is the only factor that significantly changes with mpg. However, including all variables will possibly result overfitting, R has an automatic variable-selection function *step*. so lets enhance our model using *step* as following:

```
summary(step(lm(data = mtcars, mpg ~ .), trace=0))
```

```
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -3.4811 -1.5555 -0.7257
                           1.4110
                                   4.6610
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 9.6178
                            6.9596
                                     1.382 0.177915
## wt
                -3.9165
                            0.7112
                                    -5.507 6.95e-06 ***
## qsec
                 1.2259
                            0.2887
                                     4.247 0.000216 ***
## amManual
                 2.9358
                            1.4109
                                     2.081 0.046716 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

So wt (weight) included by step function and qsec (1/4 mile time) as long as am (Transimession Type), wt negatively changes with mpg, and qsec and am positively changes. Every lb/1000 weight increase will cause a decrease of roughly 4 mpg, every increase of 1/4 mile time will cause an increase of 1.2 mpg, and on average, manual transmission is 2.9 mpg better than automatic transmission. Appendix (Fig. 2).

Appendix

Fig.1

```
require(graphics)
pairs(mtcars, main = "mtcars data")
```

mtcars data

MPG in term of MPG

Hallollissi

Fig.2

```
par(mfrow = c(2,2))
plot(step(lm(data = mtcars, mpg ~ .), trace=0))
```


 $Analysis\ available\ on\ [github] https://github.com/aabodabash/autoVsManualMPG.git$