

12. Consideramos las funciones $\mathcal{E}, \mathcal{I}: C([0,1]) \to \mathbb{R}$ definidas por:

$$\mathcal{E}(f) = f(0), \qquad \mathcal{I}(f) = \int_0^1 f(x) \ dx.$$

- (a) Demostrar que si utilizamos en C([0,1]) la distancia d_{∞} ambas resultan continuas.
- (b) Demostrar que si en cambio utilizamos en C([0,1]) la distancia d_1 , \mathcal{I} es una función continua pero \mathcal{E} no lo es.
- (c) Analizar si es posible que una función $\mathcal{F}:C([0,1])\to\mathbb{R}$ sea continua para la distancia d_1 pero no para d_∞ .

- 13. Sea (E, d) un espacio métrico.
 - (a) Sea $x_0 \in E$, y sea $f: E \to \mathbb{R}$ dada por $f(x) = d(x, x_0)$. Probar que f es continua.
 - (b) Usando esto, rehacer los items (b), (d) y (g) del Ejercicio 6 de la Práctica 3.

- 14. Sea (E, d) un espacio métrico.
 - (a) Sea $A \subseteq E$, y sea $g: E \to \mathbb{R}$ dada por g(x) = d(x, A).
 - i. Probar que g es continua
 - ii. Probar que si A es cerrado entonces g(x) > 0 para todo $x \notin A$.
 - (b) Sean $A, B \subseteq E$ cerrados, no vacíos y disjuntos, y sea $h: E \to [0,1]$ dada por

$$h(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Probar que h es continua, y que $h(x) = 0 \ \forall x \in A \ y \ h(x) = 1 \ \forall x \in B$.

(c) Sean $A, B \subseteq E$ cerrados, no vacíos y disjuntos. Probar que existen conjuntos abiertos y disjuntos U y V tales que $A \subseteq U$ y $B \subseteq V$.

15. (a) Sean (E,d) y (E',d') espacios métricos y sea $f:E\to E'$ una función para la cual existe $c\ge 0$ tal que

$$d'(f(x_1), f(x_2)) \le c \cdot d(x_1, x_2)$$

- para todos $x_1, x_2 \in E$. Probar que f es uniformemente continua.
- (b) Deducir que las funciones f y g de los ejercicios 13 y 14 son uniformemente continuas.

16. Para cada r>0 estudiar la continuidad uniforme de la función

$$f:(r,+\infty)\to\mathbb{R}, \qquad f(x)=\sqrt{x}.$$

- 17. (a) Sean (E,d) y (E',d') espacios métricos y $f:E\to E'$ una función. Probar que si existen dos sucesiones $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq E, \,\alpha>0$ y $n_0\in\mathbb{N}$ tales que
 - i. $\lim_{n\to\infty} d(x_n, y_n) = 0$ y
 - ii. $d'(f(x_n), f(y_n)) \ge \alpha$ para todo $n \ge n_0$,

entonces f no es uniformemente continua.

- (b) Verificar que la función $f(x) = x^2$ no es uniformemente continua en \mathbb{R} . ¿Y en $(-\infty, -\pi]$?
- (c) Verificar que la función f(x) = sen(1/x) no es uniformemente continua en (0,1).

18. Sea $f:(E,d)\to (E',d')$ una función uniformemente continua y sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en E. Probar que $(f(x_n))_{n\in\mathbb{N}}$ es una sucesión de Cauchy en E'.

- 19. (a) Dar un ejemplo de una función $f:\mathbb{R}\to\mathbb{R}$ acotada y continua pero no uniformemente continua.
 - (b) Dar un ejemplo de una función $f:\mathbb{R}\to\mathbb{R}$ no acotada y uniformemente continua.

20. Sea $f:(E,d)\to (E',d')$ una función uniformemente continua, y sean $A,B\subseteq E$ conjuntos no vacíos tales que d(A,B)=0. Probar que d'(f(A),f(B))=0.

