LP METODE SIMPLEKS (MAKSIMASI)

Program Studi Informatika Universitas Indraprasta PGRI

BENTUK STANDAR LP

Bentuk standar Linier programming digunakan dalam metode simpleks pada langkah pertama sebelum persoalan diringkas dalam tabel simpleks.

Aturan bentuk baku model linier programming:

- a. Semua kendala berupa persamaan dengan sisi kanan non-negatif.
- b. Semua variabel nonnegative.
- c. Fungsi tujuan dapat maksimum atau minimum.

MENGUBAH KE BENTUK BAKU

Suatu kendala jenis ≥ atau ≤ dapat diubah menjadi suatu persamaan dengan menambahkan suatu variabel **slack** atau mengurangkan variabel **surplus** dari sisi kiri kendala.

 Batasan dengan tanda "≥" dikonversikan menjadi "=" dengan mengurangkan variable surplus pada sisi kiri batasan

Contoh: $4X_1 - 3X_2 \ge 10$

Menjadi $4X_1 - 3X_2 - S = 10$

MENGUBAH KE BENTUK BAKU

o Batasan dengan tanda "≤" dikonversikan menjadi "=" dengan menambah variable **slack** pada sisi kiri batasan

Contoh:
$$7 X_1 + 2X_2 \le 10$$

Menjadi $7 X_1 + 2X_2 + S = 10$

 Sisi kanan batasan yang bertanda negative dikalikan pada kedua sisi dengan -1

Contoh:
$$3 X_1 - X_2 \ge -8$$

Menjadi: -
$$3X_1 + X_2 \le 8$$

CONTOH SOAL

- Output of the output of the
- \circ Maksimum Z = 9 $X_1 + 18 X_2$
- o Dengan batasan: $6X_1 + 3X_2 \le 18$

$$2 X_1 + 2X_2 \le 16$$

$$X_{1}, X_{2} \le 0$$

LANGKAH-LANGKAH ALGORITMA SIMPLEKS

Langkah-langkah perhitungan dalam algoritma simpleks:

- 1. Berdasar bentuk baku, tentukan solusi awal
- 2. Pilih sebuah entering variable diantara yang sedang menjadi variabel nonbasis.
- 3. Pilih leaving variabel pada variabel basis.
- 4. Tentukan solusi yang baru dengan membuat entering variabel dan leaving variabel menjadi non basis.

OPTIMASI

- o Dalam kasus maksimasi, jika semua variabel non basis mempunyai koefisien non-negatif dalam persamaan Z, maka solusi telah optimum.
- Jika tidak, variabel non basis dengan koefisien negatif terbesar dipilih sebagai entering variabel.
- Sedangkan untuk kasus minimasi, variabel yang mempunyai **koefisien positif terbesar** dalam persamaan Z dipilih sebagai entering variabel.

LEAVING VARIABEL DAN ELEMEN PIVOT

Leaving variabel:

Variabel yang mempunyai ratio terkecil antara sisi kanan persamaan kendala dengan koefisien bersangkutan yang positif pada entering variabel.

Pivot elemen = perpotongan entering kolom dan pivot equation

PERHITUNGAN DALAM SIMPLEKS

- Persamaan pivot
 - Elemen persamaan pivot tabel baru
 - = Elemen persamaan pivot tabel lama : elemen pivot
- Persamaan yang lain termasuk persamaan Z

Elemen tabel baru = elemen tabel lama – [elemen entering kolom X elemen pivot tabel baru]

CONTOH SOAL

Maksimum
$$Z = 3X_1 + 2X_2$$

Batasan:
$$X_1 + X_2 \le 15$$

$$2X_1 + X_2 \le 28$$

$$X_1 + 2X_2 \le 20$$

Selesaikan dengan menggunakan metode simpleks!

PENYELESAIAN 1. MENGUBAH KE BENTUK BAKU

Bentuk baku model LP:

Maksimum
$$Z - 3X_1 - 2X_2 - 0S_1 - 0S_2 - 0S_3 = 0$$

Batasan :
$$X_1 + X_2 + S_1 = 15$$

$$2X_1 + X_2 + S_2 = 28$$

$$X_1 + 2X_2 + S_3 = 20$$

PENYELESAIAN

2. Tabel Simpleks awal

Basis	\mathbf{X}_1	X_2	S_1	S_2	S_3	Solusi	Rasio
Z	-3	-2	0	0	0	0	0
S_1	1	1	1	0	0	15	15/1 =
							15
S_2	2	1	0	1	0	28	28/2 =
							14
S_3	1	2	0	0	1	20	20/1 =
							20

- EnteringVariabel:X1
- Leaving variabel: S2

PERHITUNGAN PIVOT TABEL BARU

Pivot tabel baru:

2/2 ½ 0/2 ½ 0/2 28/2

Basis	X_1	\mathbf{X}_2	S_1	S_2	S_3	Solusi
X_1	1	1/2	0	1/2	0	14

PERHITUNGAN PERSAMAAN Z

$$-3 - (-3 \times 1) = 0$$

$$-2 - (-3 \times \frac{1}{2}) = -\frac{1}{2}$$

TABEL

Basis	\mathbf{X}_1	\mathbf{X}_2	S_1	S_2	S_3	Solusi
Z	0	-1/2	0	3/2	0	42
X_1	1	1/2	0	1/2	0	14

PERHITUNGAN PERSAMAAN S1 DAN S3

• Persamaan S_1 :

 \circ Persamaan S_3 :

TABEL SIMPLEKS ITERASI PERTAMA

Basis	X_1	\mathbf{X}_2	S_1	S_2	S_3	Solusi
Z	0	-1/2	0	3/2	0	42
S_1	0	1/2	1	-1/2	0	1
X_1	1	1/2	0	1/2	0	14
S_3	0	3/2	0	-1/2	1	6

TABEL SIMPLEKS ITERASI PERTAMA

Basis	\mathbf{X}_1	\mathbf{X}_2	S_1	S_2	S_3	Solusi	Rasio
Z	0	-1/2	0	3/2	0	42	0
S_1	0	1/2	1	-1/2	0	1	1:1/2 = 2
X_1	1	1/2	0	1/2	0	14	14:1/2 = 28
S_3	0	3/2	0	-1/2	1	6	6:3/2=4

TABEL SIMPLEKS ITERASI KEDUA (OPTIMUM)

Basis	\mathbf{X}_1	\mathbf{X}_2	S_1	S_2	S_3	Solusi	Rasio
Z	0	0	1	1	0	43	
X_2	0	1	2	-1	0	2	
X_1	1	0	-1	1	0	13	
S_3	0	0	-3	1	1	3	

Solusi

- Berdasarkan tabel di atas, maka solusi optimum telah tercapai, karena semua variabel non basis mempunyai koefisien non-negatif dalam persamaan Z.
- o Solusi : $X_1 = 13$; $X_2 = 2$; $S_3 = 3$ (menunjukkan adanya sumber daya yang tidak habis dipakai)