

Effector: Target Ratio

FIG. 1

FIG. 2A

FIG. 2B

Figure 3

Figure 4

Figure 5

İ

Expression of P501S by the Baculovirus Expression System

0.6 million high Silvers in 5-well place were infected with an unrelated control virus BV/ECD_PD Silver Silver with silvers (lane 3), or with recombinant baculovirus for P501 at difference 128 Jane 4 - 8). Cell lysates were run on SDS-PAGE under the reducing constant is said analyzed by Western blot with a monoclonal analoody against 8 to 8 P501S-10E3-G4D30. Lane 1 is the biodinylated protein molecular weight marks of 3 Plabs.

Figure 8. Mapping of the epitope recognized by 10E3-G4-D3

Fig. 8

transmembrane, cytoplasmic, and extracellular regions Pigure 1. Schematic of P501S with predicted

ATVORTIVESHIJ RITRK AQULLYNDLITTETGI, AVORTILLEVGVERKEN TNIVLGIGPYLGI, YCYPLLGSAS

DHWRGRYGRRRP ELWALSLOHLLSLEHJPRAGIWL AGLI CPDPRPLE LALLINGYGLLDFCGQVCFTPL

FALLSDEFRDPDHCRQ AYSYYABABI GGGGGYI I PAL DWIYISALAP**YLGTQE**B

CLICILITATICYANTLAY ABEAALOP DEPARCUSAPSISPIO OP CRARIAFRALGALI PRI

HULCORAPRILIAN LIPYAKILOSIWAAN MINITI KYIDIP YGEGILYOGYPRAKIGILARRIIYDEGYI

MONLOLITLOCAINLYFNLYM DRLYQRFGTRAYYLAS YAAFFYAAGATGLSHSYAYYTA SAA

LTGETFSAL<u>oile</u>ytelasly hrekqvelekyroptggassedslaitselegreappergiiygaggsgl

LPPPPALCGASACDVSVRVVGEPTEARVVPGRG [CLDLAHDSAFILISQVAP<u>SLI</u>] MGSIVQLSQS

YTAYMVSAAGILGILVALYFAT QVVFDKSDIAKTSA

Indic sequence: Predicted intracellular domain. Sequence in bold/underlined: used to generate polyclonal rabbit semm <u>Underlined segmence: Predicted transmembrane domain; Bold sequence: Predicted extracellular domain;</u>

Cloverning Amino Acid Composition of Integral Membrane Proteins: Applications to topology Prediction.J.Mol Biol. 283, Localization of domains predicted using HMMTOP (G.B. Tusnady and I. Simon (1998) Principles

Genomic Map of (5) Corixa Candidate Genes

Fig. 10

FIGURE 4. Elisa assay of rabbit polyclonal antibody specificity

Fig. 11

40 5Ò 30 70 10 60 20 GTCACTTAGGAAAAGGTGTCCTTTCGGGCAGCCGGGCTCAGCATGAGGAACAGAAGGAATGACACTCTGG 70 ACAGCACCGGACCCTGTACTCCAGCGCGTCTCGGAGCACAGACTTGTCTTACACTGAAAGCGACTTGGT 140 GAATTTTATTCAAGCAAATTTTAAGAAACGAGAATGTGTCTTCTTTACCAAAGATTCCAAGGCCACGGAG 210 AATGTGTGCAAGTGTGGCTATGCCCAGAGCCAGCACATGGAAGGCACCCAGATCAACCAAAGTGAGAAAT 280 GGAACTACAAGAAACACCAAGGAATTTCCTACCGACGCCTTTGGGGATATTCAGTTTGAGACACTGGG 350 38C 39C 40G 410 360 370 420 GAAGAAAGGGAAGTATATACGTCTGTCCTGCGACACAGGACGCGGAAATCCTTTACGAGCTGCTGACCCAG 420 CACTGGCACCTGAAAACAIICCAACCTGGTCATTTCTGTGACCGGGGGCGCCAAGAACTTCGCCCTGAAGC 490 CGCGCATGCGCAAGATCTTUAGCCGGCTCATCTACATCGCGCAGTCCAAAGGTGCTTGGATTCTCACGGG 560 AGGCACCCATTATGGCCTGACGAAGTACATCGGGGGAGGTGGTGAGAGATAACACTATCAGCAGGAGTTCA 630 GAGGAGAATATTGTGGCCATTGGCATAGCAGCTTGGGGCATGGTCTCCAACCGGGAJACCCTCATCAGGA 700 73C 740 750 710 720 77C ATTGCGATGCTGAGGGCTATTTTTTTAGCCCAGTACCTTATGGATGACTTCACAAGGGATCCACTGTATAT 770 CCTGGACAACAACCACACACATTTGCTGCTGGTGGATAATGGCTGTCATGGACATCCCACTGTCGAAGCA 840 TCCCCAFFGTGTGTTTTGCCCAAGGAGGTGGAAAAGAGACTTTGAAAGCCATCAATAGCTCCATCAAAAA 980 TAAAATTOOTTGTGTGGGGGTGGAAGGCTCGGGGCGGAATCGCTGATGTGATCGCTAGCCTGGTGGAGGTG 1050 1060 1070 1080 1090 11CC 1110 1120 GAGGATGCCCCGACATCTTCTGCCGTCAAGGAGAAGCTGGTGCGCTTTTTACCCCGCACGGTGTCCCGGC 1120 TGTCTGAGGAGGAGACTGAGAGTTGGATCAAATGGCTCAAAGAA4TTCTCGAATGTTCTCACCTATTAAC 1190 AGTTATTAAAATGGAAGAAGCTGGGGATGAAAFTGTGAGCAAFGCCATCTCCTAGGCTCTATACAAAGCC 1260 TTCAGCACCAGTGAGCAAGACAAGGATAACTGGAATGGGC4GCTGAAGCTTCTGCTGGAGTGGAACCAGC TGGAETTAGCCAATGATGAGATTTTCACCAATGACCGCCGATGGGAGTCTGCTGACCTTCAAGAAGTCAT 14CO 141C 1430 1440 146C GTTTACGGCTCTCATAAAGGACAGACCCAAGTTTGTCCGCCTCTTTCTGGAGAATGGCTTGAACCTACGG 1470 AAGTTTCTCACCCATGATGTCCTCACTGAACTC TETECAACCACTTCAGCACGCTTGTGTACCGGAATC 1540 TGCAGATCGCCAAGAATTCCTATAATGATGCCCTCCTCACGTTTGTCTGGAAACTGGTTGCGAACTTCCG AAGAGGCTTCCGGAAGGAAGACAGAAATGGCCGGGACGACGACGACGACGTCTCCT 1680 ATTACTOGGCACCCCCTGCAAGCTCTCTTCATCTGGGCCATTCTTCAGAATAAGAAGGAACTCTCCAAAG 1750 1760 1770 178C 1790 1800 1810 1320 CAAAGTGAAGAAGGACATCAATGCTGCTGGGGAG IGAGGAGC TGGC TAATGAGT ACGAGACCCCGGGCT GTTGAGCTGTTCACTGAGTGTTACAGCAGCGATGAAGACTTGGCAGAACAGCTGCTGGTCTATTCCTGTG 1960 AAGCTTGGGGTGGAAGCAACTGTCTGGAGCTGGGGGGTGGAGGCCAGAGACCAGCATTTCACCGGCCAGCC 2030 TGGGGTCCAGAATTTTCTTTCTAAGCAATGG14F3G4GAG4TTTCCCG4G4C4CCAAGAACT3GA4G4TT 21CO

2110	2120	213C	2140	2150	2160	2170
TCCTGTGTCTGTTTA AGCACAAGAAGCTGCT GGTCTTCTACATCGCC CCCCCGAGCTGCTCC ATGGGGTGAATTATTT 2460 AATTGTATTTCACTC TACATTATTTTCACTC TGCTGCAGAGGAAGGC GAGCCCTACCTGGCCA	TTATACCETTG TTGGTACTATG TTCCTCCTGCT TGTACTCCCTG TACTGACCTGT 2470 CACTCTTCTAA CTAAGATTGATG GATCGATGTGT	GTGGGCTGTC TGGCGTTCTT GTTTGCCTAC GTCTTTGTCC GGAATGTGA 2480	CACCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCTTCGTGGTC CATGGATTTCC GATGAAGTCAG TGGGGCTTTTT 2500 TGGACGAGTCA AGAAACTTAGG TTGCGGTGTGG	ATTCGGTGCC ACAGTGGTAC TACTTCATAG 2510 TTTTCTGTCT ACCCAAGATT ATGGTGGCCT GTTCGGTCAT TGACTFTGCC	ACAC 2310 GTAA 2380 CAGG 2450 2520 GGAC 2520 ATAA 2590 TTGG 2660 CTAC 2730
		0930	2840	2850	2860	2070
GCACCTTCACTGGGA/ CGAGTGGATCACCAT(GTCGCCATGTTTGGC ACTTCCTGGTGCAGG CATGGTGGTGAAGAA	ATGAGTOCAAGO DECCCTGGTGTG TACACGGTGGGG AGTACTGCAAGTG	CAD GADA ACATOTACA CACOTECOAG CACOTCOEC ACOTCACTE	TATCCAI AAGAACAE CTTCCCCTC AAAAAAAA OP:E	ATGAGENERA ECACATOCTGO ECACAGETOTO ECATGAGETOTI ECATGAGETOTI ECATGAGETOTI ECATGAGETOTI	TGGTCAACCT GAAGTTCCAG TTCGCTTACT CTGTCTGCTG	GCTG 2940 GAGGT 3010 TCTA 3080 GTTTC 3160 3220
3160 	3170 		1	<u> </u>	<u> </u>	
AAAAATGAAGACAAT CAAAAGCCAACGACA CAAGGGTCTTCTGAA TAATTATAGCAAGAT TCAGACCCCTGGGTA	COTOAGAGGAA AGAGATTGOTA CATATTAAGGA CATGGTGGATG	ATGAGGU- V ATAAAATCAA ATGCTGATGA ATTTTAAATC	Jan (JASA) AATAAAACT AACCAATTTT JACCOTAGT 3840	TACTOBETALA TOTATERAPATERE TOTATERETERE TOTATERETERE	AAAGCT AATS AAAGAGAAATS AAATGAGAATAAA AAATAAGAGTT O638	AAATC 3360 BATTT 3430 AGTGT 3500 3570
GIGATIGGTITCATA GCCTGTTTCTCTCTCTC TTTTTCCTTTAATCT TCATGCTTTACTCCT ATGTGACTAATTAGT	CTTGAAGACGG TGTCTCAATGC TATTTTTGATG TGTATTGTTATT TGGCATATTGT	ATATAAAGG CTGGGGCTG AAGAGA"AT TTGTTGAT TAAAAGTCT BEBG	TTATABAA TAGTIBBAB AAGABBATA ABTTAADIT ATTAAADIT OBBB	TOCTTTATETE AGTTTAAGTGT CATCTATOCTA TTCTCTACTTT GGCCAGATTCT 3900	AAAACATGCT BTTCTTACGG TGAATAAGAA TCCCTTTTTI AAAACATGCT 3910	37431 3376 3710 3710 37411 3780 3850 3820
3860 AAGAGGACCCCGCTC GACAAGGCAGTCGCCC TGTGAAAAGTCGCCC TTTATTATTTTTCCC GAACATAAATTGTCC	AAABATTOTOTO DETTOTOTOTOTO DOAADATAAAATA TAAAAAATA NTTODATTAOOO	OTTTBTBAI BADDADTBAI BADBAABTT; ATDBETDBAI ADTAATBBAI BCCE	ATTTTTTA	IGATGCTTETTA IGAAGGAACCAC ITTTGTTCTTAT IATTTAGACCAT IATTTCTGGATG 4250	CCTGTCAGAGG CCCCATTCCT. TGGATACTCC ACAGAGATGT. GTTTTTCAAG 4260	AAATA 3990 TOTTA 4060 AGAAA 413C TOTAT 4200
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TGTCTCAATTCT TCACTTAGTAT ATAATAGGIAAG	TOTTTOAAAA TOTATTAAAA ADDATOTAGOGA TOAAOTAAAT	.2A2A7777. .7T777274. .7T422A7A. .7T4277472.	LATGITATCATA ATTATATICATA LITITGCICATI GTATITGGAAA	CTACATATAT GCCTTCTTAA GAAGGCTATC ATTTTCCAAG	ACATT 42/0 ACATT 43/40 TCCAG 44/10 GTTAG 44/80

Fig. 12A(3)