A)Write a Python program to create box plots to see how each feature i.e. Sepal Length, Sepal Width, Petal Length, Petal Width are distributed across the three species. (Use iris.csv dataset)

```
In [20]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
dt = pd.read_csv('iris.csv')

sns.boxplot(x='variety', y='sepal.length', data=dt)
plt.title('Box Plot of sepal.length by variety')
plt.show()
```



```
In [22]: sns.boxplot(x='variety', y='petal.length', data=dt)
```

1 of 3 10/12/24, 11:14 PM


```
In [23]: sns.boxplot(x='variety', y='petal.width', data=dt)
   plt.title('Box Plot of petal.width by variety')
   plt.show()
```


B)Write a Python program to view basic statistical details of the data (Use Heights and Weights Dataset)

```
In [24]: import pandas as pd
    df = pd.read_csv('weight-height.csv')
    df.describe()
```

2 of 3 10/12/24, 11:14 PM

Out[24]:		Height	Weight
	count	10000.000000	10000.000000
	mean	66.367560	161.440357
	std	3.847528	32.108439
	min	54.263133	64.700127
	25%	63.505620	135.818051
	50%	66.318070	161.212928
	75%	69.174262	187.169525
	max	78.998742	269.989699

3 of 3 10/12/24, 11:14 PM