

PATENT APPLICATION
NOVEL METHODS OF DIAGNOSIS OF ANGIOGENESIS,
COMPOSITIONS AND METHODS OF SCREENING FOR
ANGIOGENESIS MODULATORS

Inventor(s):

Richard Murray, a citizen of the United States residing at
22643 Woodridge Court, Cupertino, California 95014

Richard Glynne, a citizen of the United Kingdom residing at
2039 Alma Street, Palo Alto, CA 94301

Susan R. Watson, a citizen of the United Kingdom residing at
805 Balra Drive, El Cerrito, CA 94530

Assignee:

EOS Biotechnology, Inc.

Entity: Small

NOVEL METHODS OF DIAGNOSIS OF ANGIOGENESIS, COMPOSITIONS AND METHODS OF SCREENING FOR ANGIOGENESIS MODULATORS

~~CROSS-REFERENCES TO RELATED APPLICATIONS~~

The present application is a continuation-in-part (CIP) of co-pending United States Patent Application "Novel Methods Of Diagnosis Of Angiogenesis, Compositions And Methods Of Screening For Angiogenesis Modulators", Attorney Docket No. A65110-1, filed on August 11, 2000, which claims the benefit of priority to U.S.S.N. 60/148,425 filed August 11, 1999, both of which are incorporated herein by reference.

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in angiogenesis; and to the use of such expression profiles and compositions in diagnosis and therapy of angiogenesis. The invention further relates to methods for identifying and using agents and/or targets that modulate angiogenesis.

BACKGROUND OF THE INVENTION

Both vasculogenesis, the development of an interactive vascular system comprising arteries and veins, and angiogenesis, the generation of new blood vessels, play a role in embryonic development. In contrast, angiogenesis is limited in a normal adult to the placenta, ovary, endometrium and sites of wound healing. However, angiogenesis, or its absence, plays an important role in the maintenance of a variety of pathological states. Some of these states are characterized by neovascularization, *e.g.*, cancer, diabetic retinopathy, glaucoma, and age related macular degeneration. Others, *e.g.*, stroke, infertility, heart disease, ulcers, and scleroderma, are diseases of angiogenic insufficiency.

Angiogenesis has a number of stages (see, e.g., Folkman, *J.Natl Cancer Inst.*

30 82.4-6, 1990; Firestein, *J Clin Invest.* 103:3-4, 1999; Koch, *Arthritis Rheum.* 41:951-62, 1998; Carter, *Oncologist* 5(Suppl 1):51-4, 2000; Browder *et al.*, *Cancer Res.* 60:1878-86, 2000; and Zhu and Witte, *Invest New Drugs* 17:195-212, 1999). The early stages of angiogenesis include endothelial cell protease production, migration of cells, and proliferation. The early

stages also appear to require some growth factors, with VEGF, TGF- α , angiostatin, and selected chemokines all putatively playing a role. Later stages of angiogenesis include population of the vessels with mural cells (pericytes or smooth muscle cells), basement membrane production, and the induction of vessel bed specializations. The final stages of vessel formation include what is known as "remodeling", wherein a forming vasculature becomes a stable, mature vessel bed. Thus, the process is highly dynamic, often requiring coordinated spatial and temporal waves of gene expression.

Conversely, the complex process may be subject to disruption by interfering with one or more critical steps. Thus, the lack of understanding of the dynamics of angiogenesis prevents therapeutic intervention in serious diseases such as those indicated. It is an object of the invention to provide methods that can be used to screen compounds for the ability to modulate angiogenesis. Additionally, it is an object to provide molecular targets for therapeutic intervention in disease states which either have an undesirable excess or a deficit in angiogenesis. The present invention provides solutions to both.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods for detecting or modulating angiogenesis associated sequences.

In one aspect, the invention provides a method of detecting an angiogenesis-associated transcript in a cell in a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridized to a sequence at least 80% identical to a sequence as shown in Table 1. In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, which are often mRNA.

In another embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide. Often, the polynucleotide comprises a sequence as shown in Table 1. The polynucleotide can be labeled, for example, with a fluorescent label and can be immobilized on a solid surface.

In other embodiments the patient is undergoing a therapeutic regimen to treat a disease associated with angiogenesis or the patient is suspected of having an angiogenesis-associated disorder.

In another aspect, the invention comprises an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Table 1. The nucleic acid molecule can be labeled, for example, with a fluorescent label,

In other aspects, the invention provides an expression vector comprising an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Table 1 or a host cell comprising the expression vector.

5 In another embodiment, the isolated nucleic acid molecule encodes a polypeptide having an amino acid sequence as shown in Table 2.

In another aspect, the invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Table 1. In one embodiment, the isolated polypeptide has an amino acid sequence as shown in Table 2.

10 In another embodiment, the invention provides an antibody that specifically binds a polypeptide that has an amino acid sequence as shown in Table 2. The antibody can be conjugated to an effector component such as a fluorescent label, a toxin, or a radioisotope. In some embodiments, the antibody is an antibody fragment or a humanized antibody.

15 In another aspect, the invention provides a method of detecting a cell undergoing angiogenesis in a biological sample from a patient, the method comprising contacting the biological sample with an antibody that specifically binds to a polypeptide that has an amino acid sequence as shown in Table 2. In some embodiment, the antibody is further conjugated to an effector component, for example, a fluorescent label.

20 In another embodiment, the invention provides a method of detecting antibodies specific to angiogenesis in a patient, the method comprising contacting a biological sample from the patient with a polypeptide comprising a sequence as shown in Table 2.

25 The invention also provides a method of identifying a compound that modulates the activity of an angiogenesis-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a polypeptide that comprises at least 80% identity to an amino acid sequence as shown in Table 2; and (ii) detecting an increase or a decrease in the activity of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence as shown in Table 2. In another embodiment, the polypeptide is expressed in a cell.

30 The invention also provides a method of identifying a compound that modulates angiogenesis, the method comprising steps of: (i) contacting the compound with a cell undergoing angiogenesis; and (ii) detecting an increase or a decrease in the expression of a polypeptide sequence as shown in Table 2. In one embodiment, the detecting step comprises hybridizing a nucleic acid sample from the cell with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Table 1.

In another embodiment, the method further comprises detecting an increase or decrease in the expression of a second sequence as shown in Table 2.

In another embodiment, the invention provides a method of inhibiting angiogenesis in a cell that expresses a polypeptide at least 80% identical to a sequence as shown in Table 2, the method comprising the step of contacting the cell with a therapeutically effective amount of an inhibitor of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence shown in Table 2. In another embodiment, the inhibitor is an antibody.

In other embodiments, the invention provides a method of activating angiogenesis in a cell that expresses a polypeptide at least 80% identical to a sequence as shown in Table 2, the method comprising the step of contacting the cell with a therapeutically effective amount of an activator of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence shown in Table 2.

Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

Table 1 provides nucleotide sequence of genes that exhibit changes in expression levels as a function of time in tissue undergoing angiogenesis compared to tissue that is not.

Table 2 provides polypeptide sequence of proteins that exhibit changes in expression levels as a function of time in tissue undergoing angiogenesis compared to tissue that is not.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and treatment of disorders associated with angiogenesis (sometimes referred to herein as angiogenesis disorders or AD), as well as methods for screening for compositions which modulate angiogenesis. By "disorder associated with angiogenesis" or "disease associated with angiogenesis" herein is meant a disease state which is marked by either an excess or a deficit of vessel development. Angiogenesis disorders associated with increased angiogenesis include, but are not limited to, cancer and proliferative diabetic retinopathy. Pathological states for which it may be desirable to increase angiogenesis include stroke, heart disease, infertility, ulcers, and scleradoma. Also provided are methods for treating AD.

Definitions

The term "angiogenesis protein" or "angiogenesis polynucleotide" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acids, to an angiogenesis protein sequence of Table 2; (2) bind to antibodies, *e.g.*, polyclonal antibodies, raised against an immunogen comprising an amino acid sequence of Table 2, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to an anti-sense strand corresponding to a nucleic acid sequence of Table 1 and conservatively modified variants thereof; (4) have a nucleic acid sequence that has greater than about 95%, preferably greater than about 96%, 97%, 98%, 99%, or higher nucleotide sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a sense sequence corresponding to one set out in Table 1. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, *e.g.*, human; rodent, *e.g.*, rat, mouse, hamster; cow, pig, horse, sheep, or any mammal. An "angiogenesis polypeptide" and an "angiogenesis polynucleotide," include both naturally occurring or recombinant.

A "full length" angiogenesis protein or nucleic acid refers to an angiogenesis polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type angiogenesis polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translation processing.

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, *e.g.*, of an angiogenic protein. Such samples include, but are not limited to, tissue isolated from primates, *e.g.*, humans, or rodents, *e.g.*, mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histologic purposes. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate *e.g.*, chimpanzee or human; cow; dog; cat; a rodent, *e.g.*, guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of

cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention *in vivo*. Archival tissues, having treatment or outcome history, will be particularly useful.

5 The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 70% identity, preferably 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region (e.g., SEQ ID NOS:1-4), when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site <http://www.ncbi.nlm.nih.gov/BLAST/> or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

20 For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

25 A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, *Adv. Appl. Math.* 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, *J. Mol.*

Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, *Proc. Nat'l. Acad. Sci. USA* 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and 5 visual inspection (see, e.g., *Current Protocols in Molecular Biology* (Ausubel *et al.*, eds. 1995 supplement)).

A preferred example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.*, *Nuc. Acids Res.* 25:3389-3402 (1977) and Altschul *et al.*, *J. 10 Mol. Biol.* 215:403-410 (1990), respectively. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying 15 short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul *et al.*, *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as 20 far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the 25 quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a 30 comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, *Proc. Natl. Acad. Sci. USA* 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, *Proc. Nat'l. Acad. Sci. USA* 90:5873-5877 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match 5 between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

An indication that two nucleic acid sequences or polypeptides are substantially 10 identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two 15 molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host 20 cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "polypeptide," "peptide" and "protein" are used interchangeably 25 herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

The term "amino acid" refers to naturally occurring and synthetic amino acids, 30 as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is

bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

5 Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

10 "Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid 15 variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally 20 identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence with respect to the expression product, but not with respect to actual probe sequences.

25 As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. 30 Conservative substitution tables providing functionally similar amino acids are well known in

the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.

The following eight groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, *Proteins* (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts *et al.*, *Molecular Biology of the Cell* (3rd ed., 1994) and Cantor and Schimmel, *Biophysical Chemistry Part I: The Conformation of Biological Macromolecules* (1980). “Primary structure” refers to the amino acid sequence of a particular peptide. “Secondary structure” refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. “Tertiary structure” refers to the complete three dimensional structure of a polypeptide monomer. “Quaternary structure” refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

A “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include ^{32}P , fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide.

An “effector” or “effector moiety” or “effector component” is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The “effector” can be a variety of molecules including, for example, detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such

as epitope tags, a toxin; a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" *e.g.*, beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der 5 Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, *e.g.*, biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a 10 nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (*i.e.*, A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere 15 with hybridization. Thus, for example, probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, 20 lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence.

The term "recombinant" when used with reference, *e.g.*, to a cell, or nucleic 25 acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.

The term "heterologous" when used with reference to portions of a nucleic 30 acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, *e.g.*, a promoter from one source and a coding region

from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A "promoter" is defined as an array of nucleic acid control sequences that 5 direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most 10 environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid 15 corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be 20 transcribed operably linked to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

The phrase "stringent hybridization conditions" refers to conditions under 25 which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in 30 *Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays"* (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50%

of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 5 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C. For PCR, a temperature of about 36°C is typical for low stringency amplification, although annealing temperatures may vary between about 32°C and 48°C depending on primer length. For high stringency PCR amplification, a temperature of about 62°C is typical, although high stringency annealing temperatures can range from about 50°C to about 65°C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90°C - 95°C for 30 sec - 2 min., an annealing phase lasting 30 sec. - 2 min., and an extension phase of about 72°C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis *et al.* (1990) *PCR Protocols, A Guide to Methods and Applications*, Academic Press, Inc. N.Y.).

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology, ed. Ausubel, *et al*

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of an angiogenesis protein includes the determination of a parameter that is indirectly or directly under the influence of the angiogenesis protein, *e.g.*, a functional, physical, or chemical effect, such as the ability to increase or decrease angiogenesis. It 5 includes binding activity, the ability of cells to proliferate, expression in cells undergoing angiogenesis, and other characteristics of angiogenic cells. "Functional effects" include *in vitro*, *in vivo*, and *ex vivo* activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of an angiogenesis protein sequence, *e.g.*, functional, physical and chemical effects. Such 10 functional effects can be measured by any means known to those skilled in the art, *e.g.*, changes in spectroscopic characteristics (*e.g.*, fluorescence, absorbance, refractive index), hydrodynamic (*e.g.*, shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the angiogenesis protein; 15 measuring binding activity or binding assays, *e.g.* binding to antibodies, and measuring cellular proliferation, particularly endothelial cell proliferation. Determination of the functional effect of a compound on angiogenesis can also be performed using angiogenesis assays known to those of skill in the art such as an *in vitro* assays, *e.g.*, *in vitro* endothelial cell tube formation assays, and other assays such as the chick CAM assay, the mouse corneal 20 assay, and assays that assess vascularization of an implanted tumor. The functional effects can be evaluated by many means known to those skilled in the art, *e.g.*, microscopy for quantitative or qualitative measures of alterations in morphological features, *e.g.*, tube or blood vessel formation, measurement of changes in RNA or protein levels for angiogenesis-associated sequences, measurement of RNA stability, identification of downstream or 25 reporter gene expression (CAT, luciferase, β -gal, GFP and the like), *e.g.*, via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

"Inhibitors", "activators", and "modulators" of angiogenic polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules 30 identified using *in vitro* and *in vivo* assays of angiogenic polynucleotide and polypeptide sequences. Inhibitors are compounds that, *e.g.*, bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of angiogenesis proteins, *e.g.*, antagonists. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate

angiogenesis protein activity. Inhibitors, activators, or modulators also include genetically modified versions of angiogenesis proteins, *e.g.*, versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, *e.g.*, expressing the 5 angiogenic protein *in vitro*, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of angiogenesis can also be identified by incubating angiogenic cells with the test compound and determining increases or decreases in the expression of 1 or 10 more angiogenesis proteins, *e.g.*, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more angiogenesis proteins, such as angiogenesis proteins comprising the sequences set out in Table 2.

Samples or assays comprising angiogenesis proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of an angiogenesis polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (*i.e.*, two to five fold higher relative to the control), more preferably 1000-3000% higher.

“Antibody” refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody 25 will be most critical in specificity and affinity of binding.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair 30 having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD). The NH_2 -terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, *e.g.*, as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce $F(ab')_2$, a dimer of Fab which itself is a light chain joined to V_H - C_H1 by a disulfide bond. The $F(ab')_2$ 5 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the $F(ab')_2$ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (*see Fundamental Immunology* (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized *de novo* using recombinant DNA methodologies (*e.g.*, single chain Fv) or those identified using phage display libraries (*see, e.g.*, McCafferty *et al.*, *Nature* 40:552-554 (1990))

For preparation of antibodies, *e.g.*, recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (*see, e.g.*, Kohler & Milstein, *Nature* 256:495-497 (1975); Kozbor *et al.*, *Immunology Today* 4: 72 (1983); Cole *et al.*, pp. 77-96 in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc. (1985); Coligan, *Current Protocols in Immunology* (1991); Harlow & Lane, *Antibodies, A Laboratory Manual* 20 (1988); and Goding, *Monoclonal Antibodies: Principles and Practice* (2d ed. 1986)).

Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies.

Alternatively, phage display technology can be used to identify antibodies and heteromeric 25 Fab fragments that specifically bind to selected antigens (*see, e.g.*, McCafferty *et al.*, *Nature* 348:552-554 (1990); Marks *et al.*, *Biotechnology* 10:779-783 (1992)).

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function 30 and/or species; or an entirely different molecule which confers new properties to the chimeric antibody, *e.g.*, an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

The present application may be related to USSN 09/437,702, filed Nov. 10, 1999; USSN 09/437,528, filed Nov. 10, 1999; USSN 09/434,197, filed Nov. 4, 1999; USSN 60/183,926, filed Feb. 22, 2000; USSN 09/440,493, filed Nov. 15, 1999; USSN 09/520,478, filed Mar. 8, 2000; USSN 09/440,369, filed Nov. 12, 1999; Attorney Docket number 5 A68928, filed Dec. 15, 2000; Attorney Docket number A69789, filed Jan. 22, 2001; and Attorney Docket number A69806, filed Dec. 15, 2000.

The detailed description of the invention includes discussion of the following aspects of the invention: Expression of angiogenesis-associated sequences

Informatics

Angiogenesis-associated sequences

Detection of angiogenesis sequence for diagnostic and therapeutic applications

- Modulators of angiogenesis

Methods of identifying variant angiogenesis-associated sequences

Administration of pharmaceutical and vaccinecompositions

Kits for use in diagnostic and/or prognostic applications.

Expression of angiogenesis-associated sequences

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is unique to the state of the cell. That is, normal tissue may be distinguished from AD tissue. 20 By comparing expression profiles of tissue in known different angiogenesis states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. The identification of sequences that are differentially expressed in angiogenic versus non-angiogenic tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be 25 evaluated: does a chemotherapeutic drug act to down-regulate angiogenesis, and thus tumor growth or recurrence, in a particular patient. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Angiogenic tissue can also be analyzed to determine the stage of angiogenesis in the tissue. Furthermore, these gene expression profiles (or individual genes) allow screening of drug 30

candidates with an eye to mimicking or altering a particular expression profile; for example, screening can be done for drugs that suppress the angiogenic expression profile. This may be done by making biochips comprising sets of the important angiogenesis genes, which can then be used in these screens. These methods can also be done on the protein basis; that is, 5 protein expression levels of the angiogenic proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the angiogenic nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the angiogenic proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

10 Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in angiogenesis, herein termed "angiogenesis sequences". As outlined below, angiogenesis sequences include those that are up-regulated (i.e. expressed at a higher level) in disorders associated with angiogenesis, as well as those that are down-regulated (i.e. expressed at a lower level). In a preferred embodiment, the angiogenesis sequences are from humans; however, as will be appreciated by those in the art, angiogenesis sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other angiogenesis sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc). Angiogenesis sequences from other 15 organisms may be obtained using the techniques outlined below.

20

Angiogenesis sequences can include both nucleic acid and amino acid sequences. In a preferred embodiment, the angiogenesis sequences are recombinant nucleic acids. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed *in vitro*, in general, by the manipulation of nucleic acid *e.g.*, using polymerases and 25 endonucleases, in a form not normally found in nature. Thus an isolated nucleic acid, in a linear form, or an expression vector formed *in vitro* by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, *i.e.* using the *in vivo* cellular machinery of the 30 host cell rather than *in vitro* manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention.

Similarly, a "recombinant protein" is a protein made using recombinant techniques, *i.e.* through the expression of a recombinant nucleic acid as depicted above. A

recombinant protein is distinguished from naturally occurring protein by at least one or more characteristics. For example, the protein may be isolated or purified away from some or all of the proteins and compounds with which it is normally associated in its wild type host, and thus may be substantially pure. For example, an isolated protein is unaccompanied by at least 5 some of the material with which it is normally associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of the total protein in a given sample. A substantially pure protein comprises at least about 75% by weight of the total protein, with at least about 80% being preferred, and at least about 90% being particularly preferred. The definition includes the production of an angiogenesis protein 10 from one organism in a different organism or host cell. Alternatively, the protein may be made at a significantly higher concentration than is normally seen, through the use of an inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. Alternatively, the protein may be in a form not normally found in nature, as in the addition of an epitope tag or amino acid substitutions, insertions and 15 deletions, as discussed below.

In a preferred embodiment, the angiogenesis sequences are nucleic acids. As will be appreciated by those in the art and is more fully outlined below, angiogenesis sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; for example,

20 biochips comprising nucleic acid probes to the angiogenesis sequences can be generated. In the broadest sense, then, by "nucleic acid" or "oligonucleotide" or grammatical equivalents herein means at least two nucleotides covalently linked together. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, for 25 example, phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphosphoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, 30 and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, for

example to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip.

As will be appreciated by those in the art, nucleic acid analogs may find use in the present invention. In addition, mixtures of naturally occurring nucleic acids and analogs 5 can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids.

10 This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is 15 relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or 20 contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the

complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and 25 combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus for example the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

An angiogenesis sequence can be initially identified by substantial nucleic 30 acid and/or amino acid sequence homology to the angiogenesis sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

For identifying angiogenesis-associated sequences, the angiogenesis screen typically includes comparing genes identified in a modification of an *in vitro* model of angiogenesis as described in Hiraoka, Cell 95:365 (1998) with genes identified in controls. Samples of normal tissue and tissue undergoing angiogenesis are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, for example from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

In a preferred embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, including, but not limited to lung, heart, brain, liver, breast, kidney, muscle, prostate, small intestine, large intestine, spleen, bone and placenta. In a preferred embodiment, those genes identified during the angiogenesis screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimize possible side effects.

In a preferred embodiment, angiogenesis sequences are those that are up-regulated in angiogenesis disorders; that is, the expression of these genes is higher in the disease tissue as compared to normal tissue. "Up-regulation" as used herein means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. All accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al., Nucleic Acids Research 26:1-7 (1998) and <http://www.ncbi.nlm.nih.gov/>. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ). In addition, most preferred genes were found to be expressed in a limited amount or not at all in heart, brain, lung, liver, breast, kidney, prostate, small intestine and spleen.

In another preferred embodiment, angiogenesis sequences are those that are down-regulated in the angiogenesis disorder; that is, the expression of these genes is lower in angiogenic tissue as compared to normal tissue. "Down-regulation" as used herein means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred.

Angiogenesis sequences according to the invention may be classified into discrete clusters of sequences based on common expression profiles of the sequences. Expression levels of angiogenesis sequences may increase or decrease as a function of time in a manner that correlates with the induction of angiogenesis. Alternatively, expression levels of angiogenesis sequences may both increase and decrease as a function of time. For example, expression levels of some angiogenesis sequences are temporarily induced or diminished during the switch to the angiogenesis phenotype, followed by a return to baseline expression levels. Table 1 provides genes, the mRNA expression of which varies as a function of time in angiogenesis tissue when compared to normal tissue.

Table 2 provides protein sequences corresponding to the coding regions of the sequences that undergo changes in expression as a function of time in tissue undergoing angiogenesis.

In a particularly preferred embodiment, angiogenesis sequences are those that are induced for a period of time, typically by positive angiogenic factors, followed by a return to the baseline levels. Sequences that are temporarily induced provide a means to target angiogenesis tissue, for example neovascularized tumors, at a particular stage of angiogenesis, while avoiding rapidly growing tissue that require perpetual vascularization. Such positive angiogenic factors include α FGF, β FGF, VEGF, angiogenin and the like.

Induced angiogenesis sequences also are further categorized with respect to the timing of induction. For example, some angiogenesis genes may be induced at an early time period, such as within 10 minutes of the induction of angiogenesis. Others may be induced later, such as between 5 and 60 minutes, while yet others may be induced for a time period of about two hours or more followed by a return to baseline expression levels.

In another preferred embodiment are angiogenesis sequences that are inhibited or reduced as a function of time followed by a return to "normal" expression levels. Inhibitors of angiogenesis are examples of molecules that have this expression profile. These sequences also can be further divided into groups depending on the timing of diminished expression. For example, some molecules may display reduced expression within 10 minutes of the induction of angiogenesis. Others may be diminished later, such as between 5 and 60 minutes, while others may be diminished for a time period of about two hours or more followed by a return to baseline. Examples of such negative angiogenic factors include thrombospondin and endostatin to name a few.

In yet another preferred embodiment are angiogenesis sequences that are induced for prolonged periods. These sequences are typically associated with induction of angiogenesis and may participate in induction and/or maintenance of the angiogenesis phenotype.

5 In another preferred embodiment are angiogenesis sequences, the expression of which is reduced or diminished for prolonged periods in angiogenic tissue. These sequences are typically angiogenesis inhibitors and their diminution is correlated with an increase in angiogenesis.

10 *Informatics*

The ability to identify genes that undergo changes in expression with time during angiogenesis can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with angiogenesis-associated disease. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see, Anderson, L., "Pharmaceutical Proteomics: Targets, Mechanism, and Function," paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see, U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

25 Thus, in another embodiment, the present invention provides a database that includes at least one set of data assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in substantially any form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

30 The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing angiogenesis, *i.e.*, the identification of angiogenesis-associated sequences described herein, provide an abundance of information, which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multi-dimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, *e.g.*, with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, *e.g.*, a neoplastic lesion or another tissue specimen to be analyzed for angiogenesis. In another 5 variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, *e.g.*, a target molecular structure and/or characteristic separation coordinate (*e.g.*, electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

10 The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or 15 transistor gate states, such as an array of cells in a DRAM device (*e.g.*, each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique 20 identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The 25 comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (*e.g.*, FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

The invention also preferably provides a magnetic disk, such as an IBM- 30 compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (*e.g.*, Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, *etc.*) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of 5 magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal 10 includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the 15 degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

20 The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, 25 a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a

collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

5

Angiogenesis-associated sequences

Angiogenesis proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the angiogenesis protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Molecular Biology of the Cell, 3rd Edition, Alberts, Ed., Garland Pub., 1994). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate.

In another embodiment, the angiogenesis sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular

domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine 5 kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor 10 guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane 15 domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g. PSORT web site <http://psort.nibb.ac.jp/>).

The extracellular domains of transmembrane proteins are diverse; however, 20 conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. 25 For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell for example via a glycosylphosphatidylinositol 30 (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Angiogenesis proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful

in imaging modalities. Antibodies may be used to label such readily accessible proteins *in situ*. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeabilized to provide access to intracellular proteins.

It will also be appreciated by those in the art that a transmembrane protein can 5 be made soluble by removing transmembrane sequences, for example through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the angiogenesis proteins are secreted proteins; the 10 secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous 15 aspects of physiology. Angiogenesis proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood or serum tests.

An angiogenesis sequence is initially identified by substantial nucleic acid 20 and/or amino acid sequence homology or linkage to the angiogenesis sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

25 As detailed in the definitions, percent identity can be determined using an algorithm such as BLAST. A preferred method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively. The alignment may include the introduction of gaps in the sequences to be aligned. In addition, for sequences which contain either more or fewer nucleotides than 30 those of the nucleic acids of the figure, it is understood that the percentage of homology will be determined based on the number of homologous nucleosides in relation to the total number of nucleosides. Thus, for example, homology of sequences shorter than those of the sequences identified herein and as discussed below, will be determined using the number of nucleosides in the shorter sequence.

In one embodiment, the nucleic acid homology is determined through hybridization studies. Thus, *e.g.*, nucleic acids which hybridize under high stringency to a nucleic acid of Table 1, or its complement, or is also found on naturally occurring mRNAs is considered an angiogenesis sequence. In another embodiment, less stringent hybridization 5 conditions are used; for example, moderate or low stringency conditions may be used, as are known in the art; see Ausubel, *supra*, and Tijssen, *supra*.

In addition, the angiogenesis nucleic acid sequences of the invention, *e.g.*, the sequence in Table 1, are fragments of larger genes, *i.e.* they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding 10 and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the angiogenesis genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, *et al.*, *supra*. Much can be done by informatics and many sequences can be clustered to include multiple sequences, *e.g.*, systems such as 15 UniGene (see, <http://www.ncbi.nlm.nih.gov/UniGene/>).

Once the angiogenesis nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire angiogenesis nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, *e.g.*, contained within a plasmid or other vector or excised therefrom as a linear nucleic acid 20 segment, the recombinant angiogenesis nucleic acid can be further-used as a probe to identify and isolate other angiogenesis nucleic acids, for example extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant angiogenesis nucleic acids and proteins.

The angiogenesis nucleic acids of the present invention are used in several 25 ways. In a first embodiment, nucleic acid probes to the angiogenesis nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, for example for gene therapy, vaccine, and/or antisense applications. Alternatively, the angiogenesis nucleic acids that include coding regions of angiogenesis proteins can be put into expression vectors for the expression of angiogenesis proteins, again 30 for screening purposes or for administration to a patient.

In a preferred embodiment, nucleic acid probes to angiogenesis nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the angiogenesis nucleic acids, *i.e.* the target sequence (either the target

sequence of the sample or to other probe sequences, for example in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (*i.e.* have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be

formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to the biochip in a wide variety of ways, as 5 will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to 10 contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in copending application entitled Reusable Low Fluorescent Plastic Biochip, U.S. Application Serial No. 09/270,214, filed March 15, 20 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including 25 closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, for example, the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups 30 being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, for example using linkers as are known in the art; for example, homo- or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200, incorporated

herein by reference). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

5 In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

10 Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized *in situ*, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChip™ technology.

Often, amplification-based assays are performed to measure the expression level of angiogenesis-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, an angiogenesis-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of angiogenesis-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for 20 quantitative PCR are provided, e.g., in Innis *et al.* (1990) *PCR Protocols, A Guide to Methods and Applications*, Academic Press, Inc. N.Y.).

30 In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of

amplification (see, for example, literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see, Wu and Wallace (1989) *Genomics* 4: 560, Landegren *et al.* (1988) 5 *Science* 241: 1077, and Barringer *et al.* (1990) *Gene* 89: 117), transcription amplification (Kwoh *et al.* (1989) *Proc. Natl. Acad. Sci. USA* 86: 1173), self-sustained sequence replication (Guatelli *et al.* (1990) *Proc. Natl. Acad. Sci. USA* 87: 1874), dot PCR, and linker adapter PCR, etc.

In a preferred embodiment, angiogenesis nucleic acids, e.g., encoding angiogenesis proteins are used to make a variety of expression vectors to express angiogenesis proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, *supra*, and Gene Expression Systems, Fernandez & Hoeffler, Eds, Academic Press, 1999) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the angiogenesis protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or 25 secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, 30 and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the angiogenesis

protein; for example, transcriptional and translational regulatory nucleic acid sequences from *Bacillus* are preferably used to express the angiogenesis protein in *Bacillus*. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

5 In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

10 Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

15 In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in mammalian or insect cells for expression and in a prokaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct.

20 The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez & Hoeffler, *supra*).

25 In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

30 The angiogenesis proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding an angiogenesis protein, under the appropriate conditions to induce or cause expression of the angiogenesis protein. Conditions appropriate for angiogenesis protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest

is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are *Saccharomyces cerevisiae* and other yeasts, *E. coli*, *Bacillus subtilis*, Sf9 cells, C129 cells, 293 cells, 5 *Neurospora*, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the angiogenesis proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include 10 retroviral and adenoviral systems. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez & Hoeffler, *supra*). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 15 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenylation signals include those derived from SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as 20 well as other hosts, is well known in the art, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

25 In a preferred embodiment, angiogenesis proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; for example, the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring 30 promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the angiogenesis protein in bacteria. The protein is either

secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which 5 render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for *Bacillus subtilis*, *E. coli*, *Streptococcus cremoris*, 10 and *Streptococcus lividans*, among others (e.g., Fernandez & Hoeffler, *supra*). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

15 In one embodiment, angiogenesis proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

20 In a preferred embodiment, angiogenesis protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for *Saccharomyces cerevisiae*, *Candida albicans* and *C. maltosa*, *Hansenula polymorpha*, *Kluyveromyces fragilis* and *K. lactis*, *Pichia guillermondii* and *P. pastoris*, *Schizosaccharomyces pombe*, and *Yarrowia lipolytica*.

25 The angiogenesis protein may also be made as a fusion protein, using techniques well known in the art. Thus, for example, for the creation of monoclonal antibodies, if the desired epitope is small, the angiogenesis protein may be fused to a carrier protein to form an immunogen. Alternatively, the angiogenesis protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the angiogenesis protein is an angiogenesis peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

30 In one embodiment, the angiogenesis nucleic acids, proteins and antibodies of the invention are labeled. By "labeled" herein is meant that a compound has at least one element, isotope or chemical compound attached to enable the detection of the compound. In general, labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) immune labels, which may be antibodies or antigens; and c) colored or fluorescent dyes. The labels may be incorporated into the angiogenesis nucleic acids, proteins and antibodies at any position. For example, the label should be capable of

producing, either directly or indirectly, a detectable signal. The detectable moiety may be a radioisotope, such as ^3H , ^{14}C , ^{32}P , ^{35}S , or ^{125}I , a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., *Nature*, 144:945 (1962); David et al., *Biochemistry*, 13:1014 (1974); Pain et al., *J. Immunol. Meth.*, 40:219 (1981); and Nygren, *J. Histochem. and Cytochem.*, 30:407 (1982).

Accordingly, the present invention also provides angiogenesis protein sequences. An angiogenesis protein of the present invention may be identified in several ways. "Protein" in this sense includes proteins, polypeptides, and peptides. As will be appreciated by those in the art, the nucleic acid sequences of the invention can be used to generate protein sequences. There are a variety of ways to do this, including cloning the entire gene and verifying its frame and amino acid sequence, or by comparing it to known sequences to search for homology to provide a frame, assuming the angiogenesis protein has an identifiable motif or homology to some protein in the database being used. Generally, the nucleic acid sequences are input into a program that will search all three frames for homology. This is done in a preferred embodiment using the following NCBI Advanced BLAST parameters. The program is blastx or blastn. The database is nr. The input data is as "Sequence in FASTA format". The organism list is "none". The "expect" is 10; the filter is default. The "descriptions" is 500, the "alignments" is 500, and the "alignment view" is pairwise. The "Query Genetic Codes" is standard (1). The matrix is BLOSUM62; gap existence cost is 11, per residue gap cost is 1; and the lambda ratio is .85 default. This results in the generation of a putative protein sequence.

Also included within one embodiment of angiogenesis proteins are amino acid variants of the naturally occurring sequences, as determined herein. Preferably, the variants are preferably greater than about 75% homologous to the wild-type sequence, more preferably greater than about 80%, even more preferably greater than about 85% and most preferably greater than 90%. In some embodiments the homology will be as high as about 93 to 95 or 98%. As for nucleic acids, homology in this context means sequence similarity or identity, with identity being preferred. This homology will be determined using standard techniques well known in the art as are outlined above for the nucleic acid homologies.

Angiogenesis proteins of the present invention may be shorter or longer than the wild type amino acid sequences. Thus, in a preferred embodiment, included within the

definition of angiogenesis proteins are portions or fragments of the wild type sequences. herein. In addition, as outlined above, the angiogenesis nucleic acids of the invention may be used to obtain additional coding regions, and thus additional protein sequence, using techniques known in the art.

5 In a preferred embodiment, the angiogenesis proteins are derivative or variant angiogenesis proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative angiogenesis peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the

10 angiogenesis peptide.

Also included within one embodiment of angiogenesis proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the angiogenesis protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant angiogenesis protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the angiogenesis protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

25 While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed angiogenesis variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example, M13 30 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of angiogenesis protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger

insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to 5 minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the angiogenesis protein are desired, substitutions are generally made in accordance with the amino acid substitution chart provided in the definition section.

Substantial changes in function or immunological identity are made by 10 selecting substitutions that are less conservative than those provided in the definition of "conservative substitution". For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general 15 are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, *e.g.* seryl or threonyl, is substituted for (or by) a hydrophobic residue, *e.g.* leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, *e.g.* lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, *e.g.* 20 glutamyl or aspartyl; or (d) a residue having a bulky side chain, *e.g.* phenylalanine, is substituted for (or by) one not having a side chain, *e.g.* glycine.

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the angiogenesis proteins as needed. Alternatively, 25 the variant may be designed such that the biological activity of the angiogenesis protein is altered. For example, glycosylation sites may be altered or removed.

Covalent modifications of angiogenesis polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of an angiogenesis polypeptide with an organic derivatizing agent that is 30 capable of reacting with selected side chains or the N- or C-terminal residues of an angiogenesis polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking angiogenesis polypeptides to a water-insoluble support matrix or surface for use in the method for purifying anti-angiogenesis polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, *e.g.*, 1,1-

bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

5 Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, threonyl or tyrosyl residues, methylation of the γ -amino groups of lysine, arginine, and histidine side chains [T.E.

Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San 10 Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

15 Another type of covalent modification of the angiogenesis polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence angiogenesis polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence angiogenesis polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express angiogenesis-associated sequences can result in different glycosylation patterns.

20 Addition of glycosylation sites to angiogenesis polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence angiogenesis polypeptide (for O-linked glycosylation sites). The angiogenesis amino acid sequence may optionally be altered through changes at the DNA 25 level, particularly by mutating the DNA encoding the angiogenesis polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the angiogenesis polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 30 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the angiogenesis polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical

100-115-116-117-118-119-120-121-122-123-124-125

deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., *Arch. Biochem. Biophys.*, 259:52 (1987) and by Edge et al., *Anal. Biochem.*, 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura et al., *Meth.*

5 *Enzymol.*, 138:350 (1987).

Another type of covalent modification of angiogenesis comprises linking the angiogenesis polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

10 Angiogenesis polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising an angiogenesis polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of an angiogenesis polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl-terminus of the angiogenesis polypeptide. The presence of such epitope-tagged forms of an angiogenesis polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the angiogenesis polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of an angiogenesis polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

25 Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 [Field et al., *Mol. Cell. Biol.*, 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., *Molecular and Cellular Biology*, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., *Protein Engineering*, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide 30 [Hopp et al., *BioTechnology*, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., *Science*, 255:192-194 (1992)]; tubulin epitope peptide [Skinner et al., *J. Biol. Chem.*, 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., *Proc. Natl. Acad. Sci. USA*, 87:6393-6397 (1990)].

Also included with an embodiment of angiogenesis protein are other angiogenesis proteins of the angiogenesis family, and angiogenesis proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related 5 angiogenesis proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the angiogenesis nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well 10 known in the art (e.g., Innis, PCR Protocols, *supra*).

In addition, as is outlined herein, angiogenesis proteins can be made that are longer than those encoded by the nucleic acids of the figures, *e.g.*, by the elucidation of extended sequences, the addition of epitope or purification tags, the addition of other fusion sequences, etc.

15 Angiogenesis proteins may also be identified as being encoded by angiogenesis nucleic acids. Thus, angiogenesis proteins are encoded by nucleic acids that will hybridize to the sequences of the sequence listings, or their complements, as outlined herein.

20 In a preferred embodiment, when the angiogenesis protein is to be used to generate antibodies, *e.g.*, for immunotherapy or immunodiagnosis, the angiogenesis protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller angiogenesis protein will be able to bind to the full-length protein, 25 particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity. In a preferred embodiment, the epitope is selected from a protein sequence set out in Table 2.

Methods of preparing polyclonal antibodies are known to the skilled artisan 30 (*e.g.*, Coligan, *supra*; and Harlow & Lane, *supra*). Polyclonal antibodies can be raised in a mammal, *e.g.*, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in

the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose 5 dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, *Nature*, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Table 1, or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, *Monoclonal Antibodies: Principles and Practice*, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed 10 mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture 15 medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two 20 epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid Table 1 or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent 25 reagents.

In a preferred embodiment, the antibodies to angiogenesis protein are capable of reducing or eliminating a biological function of an angiogenesis protein, as is described below. That is, the addition of anti-angiogenesis protein antibodies (either polyclonal or preferably monoclonal) to angiogenic tissue (or cells containing angiogenesis) may reduce or 5 eliminate the angiogenesis activity. Generally, at least a 25% decrease in activity is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

In a preferred embodiment the antibodies to the angiogenesis proteins are humanized antibodies (e.g., Xenerex Biosciences, Mederex, Inc., Abgenix, Inc., Protein 10 Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues form a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies 15 may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise 20 at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., *Nature*, 321:522-525 (1986); Riechmann et al., *Nature*, 332:323-329 (1988); and Presta, *Curr. Op. Struct. Biol.*, 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art.

Generally, a humanized antibody has one or more amino acid residues introduced into it from 30 a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., *Nature*, 321:522-525 (1986); Riechmann et al., *Nature*, 332:323-327 (1988); Verhoeyen et al., *Science*, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the

corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which 5 some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, *J. Mol. Biol.*, 227:381 (1991); Marks et al., *J. Mol. Biol.*, 222:581 (1991)]. The techniques of Cole et al. and 10 Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, p. 77 (1985) and Boerner et al., *J. Immunol.*, 147(1):86-95 (1991)]. Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. 15 This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., *Bio/Technology* 10, 779-783 (1992); Lonberg et al., *Nature* 368 856-859 (1994); 20 Morrison, *Nature* 368, 812-13 (1994); Fishwild et al., *Nature Biotechnology* 14, 845-51 (1996); Neuberger, *Nature Biotechnology* 14, 826 (1996); Lonberg and Huszar, *Intern. Rev. Immunol.* 13 65-93 (1995).

By immunotherapy is meant treatment of angiogenesis with an antibody raised against angiogenesis proteins. As used herein, immunotherapy can be passive or active. 25 Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are 30 desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the angiogenesis proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory,

antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted angiogenesis protein.

In another preferred embodiment, the angiogenesis protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the angiogenesis protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane angiogenesis protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the angiogenesis protein. The antibody is also an antagonist of the angiogenesis protein.

Further, the antibody prevents activation of the transmembrane angiogenesis protein. In one aspect, when the antibody prevents the binding of other molecules to the angiogenesis protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF- α , TNF- β , IL-1, INF- γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, angiogenesis is treated by administering to a patient antibodies directed against the transmembrane angiogenesis protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be any number of molecules, including labelling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the angiogenesis protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the angiogenesis protein. The therapeutic moiety may inhibit enzymatic activity such as protease or collagenase activity associated with angiogenesis.

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to angiogenesis tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with angiogenesis. Cytotoxic agents are numerous and varied and include, but are not limited to,

cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against angiogenesis

5 proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane angiogenesis proteins not only serves to increase the local concentration of therapeutic moiety in the angiogenesis afflicted area, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.

10 In another preferred embodiment, the angiogenesis protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the angiogenesis protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.

15 The angiogenesis antibodies of the invention specifically bind to angiogenesis proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding is also 20 important.

25 In a preferred embodiment, the angiogenesis protein is purified or isolated after expression. Angiogenesis proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the angiogenesis protein may be purified using a standard anti-angiogenesis protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For 30 general guidance in suitable purification techniques, see Scopes, R., Protein Purification, Springer-Verlag, NY (1982). The degree of purification necessary will vary depending on the use of the angiogenesis protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the angiogenesis proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

5 *Detection of angiogenesis sequence for diagnostic and therapeutic applications*

In one aspect, the RNA expression levels of genes are determined for different cellular states in the angiogenesis phenotype. Expression levels of genes in normal tissue (i.e., not undergoing angiogenesis) and in angiogenesis tissue (and in some cases, for varying severities of angiogenesis that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or angiogenic tissue. This will provide for molecular diagnosis of related conditions.

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus angiogenic tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart, Nature Biotechnology, 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, Northern analysis and RNase protection. As outlined

10
15
20
25
30

above, preferably the change in expression (*i.e.*, upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, *e.g.*, with antibodies to the angiogenesis protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to angiogenesis genes, *i.e.*, those identified as being important in an angiogenesis phenotype, can be evaluated in an angiogenesis diagnostic test.

In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In this embodiment, the angiogenesis nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of angiogenesis sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the angiogenesis protein are detected. Although DNA or RNA encoding the angiogenesis protein may be detected, of particular interest are methods wherein an mRNA encoding an angiogenesis protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed *in situ*. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxigenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding an angiogenesis protein is detected by binding the digoxigenin with an anti-digoxigenin

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, angiogenesis proteins, including intracellular, transmembrane or secreted proteins, find use as markers of angiogenesis. Detection of these proteins in putative angiogenesis tissue allows for detection or diagnosis of angiogenesis. In one embodiment, antibodies are used to detect angiogenesis proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the angiogenesis protein is detected, e.g., by immunoblotting with antibodies raised against the angiogenesis protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the angiogenesis protein find use in *in situ* imaging techniques, e.g., in histology (e.g., *Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993)). In this method cells are contacted with one to many antibodies to the angiogenesis protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the angiogenesis protein(s) contains a detectable label, for example an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of angiogenesis proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing angiogenesis from blood samples. As previously described, certain angiogenesis proteins are secreted/circulating molecules. Blood samples, therefore, are useful as samples to be probed or tested for the presence of secreted angiogenesis proteins. Antibodies can be used to detect 5 an angiogenesis protein by previously described immunoassay techniques including ELISA, immunoblotting (Western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous angiogenesis protein.

In a preferred embodiment, *in situ* hybridization of labeled angiogenesis 10 nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including angiogenesis tissue and/or normal tissue, are made. *In situ* hybridization (see, e.g., Ausubel, *supra*) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of 15 outcomes.

In a preferred embodiment, the angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in prognosis 20 assays. As above, gene expression profiles can be generated that correlate to angiogenesis severity, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. As above, angiogenesis probes may be attached to biochips for the detection and quantification of angiogenesis sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more 25 sensitive and accurate quantification.

In a preferred embodiment members of the three classes of proteins as described herein are used in drug screening assays. The angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" 30 or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al., *Science* 279, 84-8 (1998); Heid, *Genome Res* 6:986-94, 1996).

In a preferred embodiment, the angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified angiogenesis proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the angiogenesis phenotype or an identified physiological function of an angiogenesis protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in angiogenesis, test compounds can be screened for the ability to modulate gene expression or for binding to the angiogenic protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing angiogenesis, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in angiogenic tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in angiogenic tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, *e.g.*, through the use of antibodies to the angiogenesis protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entities, *i.e.*, an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein..

In this embodiment, the angiogenesis nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of angiogenesis sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, *e.g.*, of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Modulators of angiogenesis

Expression monitoring can be performed to identify compounds that modify the expression of one or more angiogenesis-associated sequences, *e.g.*, a polynucleotide sequence set out in Table 1. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate angiogenesis, modulate angiogenesis proteins, bind to an angiogenesis protein, or interfere with the binding of an angiogenesis protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, *e.g.*, protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, *etc.*, to be tested for the capacity to directly or indirectly alter the angiogenesis phenotype or the expression of an angiogenesis sequence, *e.g.*, a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses an angiogenesis phenotype, for example to a normal tissue fingerprint. In another embodiment, a modulator induced an angiogenesis phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, *i.e.*, at zero concentration or below the level of detection.

In one aspect, a modulator will neutralize the effect of an angiogenesis protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and thereby has substantially no effect on a cell.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to an angiogenesis polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, *e.g.*, inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more

assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., murein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop *et al.* (1994) *J. Med. Chem.* 37(9): 1233-1251).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka (1991) *Int. J. Pept. Prot. Res.*, 37: 487-493, Houghton *et al.* (1991) *Nature*, 354: 84-88), peptoids (PCT Publication No WO 91/19735, 26 Dec. 1991), encoded peptides (PCT Publication WO 93/20242, 14 Oct. 1993), random bio-oligomers (PCT Publication WO 92/00091, 9 Jan. 1992), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs *et al.*, (1993) *Proc. Nat. Acad. Sci. USA* 90: 6909-6913), vinylogous polypeptides (Hagihara *et al.* (1992) *J. Amer. Chem. Soc.* 114: 6568), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann *et al.*, (1992) *J. Amer. Chem. Soc.* 114: 9217-9218), analogous organic syntheses of small compound libraries (Chen *et al.* (1994) *J. Amer. Chem. Soc.* 116: 2661), oligocarbamates (Cho, et al., (1993) *Science* 261:1303), and/or peptidyl phosphonates (Campbell *et al.*, (1994) *J. Org. Chem.* 59: 658). See, generally, Gordon *et al.*, (1994) *J. Med. Chem.* 37:1385, nucleic acid libraries (see, e.g., Strategene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn *et al.* (1996) *Nature Biotechnology*, 14(3): 309-314), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang *et al.*, (1996) *Science*, 274: 1520-1522, and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum (1993) C&EN, Jan 18, page 11; isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (*see, e.g.*, ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, *etc.*).

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of angiogenesis gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, for example, U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (*i.e.*, in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide

detailed protocols for various high throughput systems. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring 5 proteins or fragments of naturally occurring proteins. Thus, *e.g.*, cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, *e.g.*, substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 10 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 15 to about 15 being particularly preferred. The peptides may be digests of naturally occurring 20 proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be 25 designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence 30 preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, for example, of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of angiogenesis can also be nucleic acids, as defined above.

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids.

For example, digests of prokaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

5 After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an *in vitro* transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

10 In a preferred embodiment, the target sequence is labeled with, for example, a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the 15 streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

20 As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 25 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

30 A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to,

temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, *e.g.* albumin, detergents, *etc.* which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, *etc.*, may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the angiogenesis phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, *e.g.*, for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress an angiogenesis expression pattern leading to a normal expression pattern, or to modulate a single angiogenesis gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated angiogenesis tissue reveals genes that are not expressed in normal tissue or angiogenesis tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for angiogenesis

genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated angiogenesis tissue sample.

5 Thus, in one embodiment, a test compound is administered to a population of angiogenic cells, that have an associated angiogenesis expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (*i.e.*, a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, *e.g.*, PCT US97/01019. Regulatable gene therapy systems can also be used.

Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

20 Thus, for example, angiogenesis tissue may be screened for agents that modulate, *e.g.*, induce or suppress the angiogenesis phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on angiogenesis activity. By defining such a signature for the angiogenesis phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

25 Measure of angiogenesis polypeptide activity, or of angiogenesis or the angiogenic phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the angiogenesis polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention.

30 When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of angiogenesis associated with tumors, tumor growth, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (*e.g.*, northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In

the assays of the invention, mammalian angiogenesis polypeptide is typically used, e.g., mouse, preferably human.

A variety of angiogenesis assays are known to those of skill in the art. Various models have been employed to evaluate angiogenesis (e.g., Croix *et al.*, *Science* 289:1197-1202, 2000 and Kahn *et al.*, *Amer. J. Pathol.* 156:1887-1900). Assessment of angiogenesis in the presence of a potential modulator of angiogenesis can be performed using cell-culture-based angiogenesis assays, e.g., endothelial cell tube formation assays, as well as other bioassays such as the chick CAM assay, the mouse corneal assay, and assays measuring the effect of administering potential modulators on implanted tumors. The chick CAM assay is described by O'Reilly, *et al.* *Cell* 79: 315-328, 1994. Briefly, 3 day old chicken embryos with intact yolks are separated from the egg and placed in a petri dish. After 3 days of incubation, a methylcellulose disc containing the protein to be tested is applied to the CAM of individual embryos. After about 48 hours of incubation, the embryos and CAMs are observed to determine whether endothelial growth has been inhibited. The mouse corneal assay involves implanting a growth factor-containing pellet, along with another pellet containing the suspected endothelial growth inhibitor, in the cornea of a mouse and observing the pattern of capillaries that are elaborated in the cornea. Angiogenesis can also be measured by determining the extent of neovascularization of a tumor. For example, carcinoma cells can be subcutaneously inoculated into athymic nude mice and tumor growth then monitored. The cancer cells are treated with an angiogenesis inhibitor, such as an antibody, or other compound that is exogenously administered, or can be transfected prior to inoculation with a polynucleotide inhibitor of angiogenesis. Immunoassays using endothelial cell-specific antibodies are typically used to stain for vascularization of tumor and the number of vessels in the tumor.

Assays to identify compounds with modulating activity can be performed *in vitro*. For example, an angiogenesis polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the angiogenesis polypeptide levels are determined *in vitro* by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the angiogenesis polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNase protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled

detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using the angiogenesis protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "angiogenesis proteins". In preferred embodiments the angiogenesis protein comprises a sequence shown in Table 2. The angiogenesis protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

Preferably, the angiogenesis protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. In one embodiment an angiogenesis protein is conjugated to an immunogenic agent or BSA.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the angiogenesis proteins can be used in the assays.

30 These, in a preferred embodiment, the methods comprise combining an angiogenesis protein and a candidate compound, and determining the binding of the compound to the angiogenesis protein. Preferred embodiments utilize the human angiogenesis protein, although other mammalian proteins may also be used, for example for

the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative angiogenesis proteins may be used.

Generally, in a preferred embodiment of the methods herein, the angiogenesis protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusible. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

In a preferred embodiment, the angiogenesis protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the angiogenesis protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the angiogenesis protein may be done in a number of ways. In a preferred embodiment, the compound is labelled, and binding determined directly, e.g., by attaching all or a portion of the angiogenesis protein to a solid support, adding a labelled candidate agent (e.g., a

fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

By "labeled" herein is meant that the compound is either directly or indirectly labeled with a label which provides a detectable signal, *e.g.* radioisotope, fluorescers, 5 enzyme, antibodies, particles such as magnetic particles, chemiluminescers, or specific binding molecules, etc. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin, etc. For the specific binding members, the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures, as outlined above. The label can directly or 10 indirectly provide a detectable signal.

In some embodiments, only one of the components is labeled, *e.g.*, the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, *e.g.*, ^{125}I for the proteins and a fluorophor for the compound. Proximity reagents, *e.g.*, quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (*i.e.* an angiogenesis protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound 20 and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, *e.g.*, to facilitate rapid high throughput 25 screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding 30 to the angiogenesis protein and thus is capable of binding to, and potentially modulating, the activity of the angiogenesis protein. In this embodiment, either component can be labeled. Thus, for example, if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the angiogenesis protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the 5 support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the angiogenesis protein.

10
15
20
25
30

In a preferred embodiment, the methods comprise differential screening to identify agents that are capable of modulating the activity of the angiogenesis proteins. In this embodiment, the methods comprise combining an angiogenesis protein and a competitor in a first sample. A second sample comprises a test compound, an angiogenesis protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the angiogenesis protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the angiogenesis protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native angiogenesis protein, but cannot bind to modified angiogenesis proteins. The structure of the angiogenesis protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of an 20 angiogenesis protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the 25 protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These 30 include reagents like salts, neutral proteins, *e.g.* albumin, detergents, *etc.* which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, *etc.*, may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of an angiogenesis protein. The methods comprise adding a test compound, as defined above, to a cell comprising angiogenesis proteins. Preferred cell types include almost any cell. The cells contain a recombinant 5 nucleic acid that encodes an angiogenesis protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, for example hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including 10 chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate angiogenesis agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of 15 the angiogenesis protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting angiogenic cell division is provided. The method comprises administration of an angiogenesis inhibitor. In another embodiment, a method of inhibiting angiogenesis is provided. The method comprises administration of an angiogenesis inhibitor. In a further embodiment, methods of treating 20 cells or individuals with angiogenesis are provided. The method comprises administration of an angiogenesis inhibitor.

In one embodiment, an angiogenesis inhibitor is an antibody as discussed above. In another embodiment, the angiogenesis inhibitor is an antisense molecule.

25 Polynucleotide modulators of angiogenesis

Antisense Polynucleotides

In certain embodiments, the activity of an angiogenesis-associated protein is downregulated, or entirely inhibited, by the use of antisense polynucleotide, *i.e.*, a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA 30 nucleic acid sequence, *e.g.*, an angiogenesis protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring

subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the angiogenesis protein

5 mRNA. See, *e.g.*, Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

10 Antisense molecules as used herein include antisense or sense

oligonucleotides. Sense oligonucleotides can, *e.g.*, be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for angiogenesis molecules. A preferred antisense molecule is for an angiogenesis sequences in Table 1, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 15 20 20 1988) and van der Krol *et al.* (BioTechniques 6:958, 1988).

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of angiogenesis-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (*see, e.g.*, Castanotto *et al.* (1994) *Adv. in Pharmacology* 25: 25 289-317 for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, *e.g.*, in Hampel *et al.* 30 (1990) *Nucl. Acids Res.* 18: 299-304; Hampel *et al.* (1990) European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (*see, e.g.*, Wong-Staal *et al.*, WO 94/26877; Ojwang *et al.* (1993) *Proc. Natl. Acad. Sci. USA* 90: 6340-6344; Yamada *et al.* (1994) *Human Gene Therapy* 1: 39-45; Leavitt *et al.*

(1995) *Proc. Natl. Acad. Sci. USA* 92: 699-703; Leavitt *et al.* (1994) *Human Gene Therapy* 5: 1151-120; and Yamada *et al.* (1994) *Virology* 205: 121-126).

Polynucleotide modulators of angiogenesis may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of angiogenesis may be introduced into a cell containing the target nucleic acid sequence, *e.g.*, by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Thus, in one embodiment, methods of modulating angiogenesis in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-angiogenesis antibody that reduces or eliminates the biological activity of an endogeneous angiogenesis protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding an angiogenesis protein. This may be accomplished in any number of ways. In a preferred embodiment, for example when the angiogenesis sequence is down-regulated in angiogenesis, such state may be reversed by increasing the amount of angiogenesis gene product in the cell. This can be accomplished, *e.g.*, by overexpressing the endogeneous angiogenesis gene or administering a gene encoding the angiogenesis sequence, using known gene-therapy techniques, for example. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), for example as described in PCT/US93/03868, hereby incorporated by reference in its entirety. Alternatively, for example when the angiogenesis sequence is up-regulated in angiogenesis, the activity of the endogeneous angiogenesis gene is decreased, for example by the administration of a angiogenesis antisense nucleic acid.

In one embodiment, the angiogenesis proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to angiogenesis proteins. Similarly, the angiogenesis proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify angiogenesis

antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a angiogenesis protein; that is, the antibodies show little or no cross-reactivity to other proteins. The angiogenesis antibodies may be coupled to standard affinity chromatography columns and used to purify 5 angiogenesis proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the angiogenesis protein.

Methods of identifying variant angiogenesis-associated sequences

Without being bound by theory, expression of various angiogenesis sequences 10 is correlated with angiogenesis. Accordingly, disorders based on mutant or variant angiogenesis genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant angiogenesis genes, *e.g.*, determining all or part of the sequence of at least one endogenous angiogenesis genes in a cell. This may be accomplished using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the angiogenesis genotype of an individual, *e.g.*, determining all or part of the sequence of at least one angiogenesis gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation 15 of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced angiogenesis gene to a known angiogenesis gene, 20 *i.e.*, a wild-type gene.

The sequence of all or part of the angiogenesis gene can then be compared to the sequence of a known angiogenesis gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the angiogenesis gene of 25 the patient and the known angiogenesis gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the angiogenesis genes are used as probes to determine the number of copies of the angiogenesis gene in the genome.

In another preferred embodiment, the angiogenesis genes are used as probes to 30 determine the chromosomal localization of the angiogenesis genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the angiogenesis gene locus.

Administration of pharmaceutical and vaccine compositions

In one embodiment, a therapeutically effective dose of an angiogenesis protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel *et al.*, *Pharmaceutcal Dosage Forms and Drug Delivery*, Lippincott, Williams & Wilkins Publishers, ISBN:0683305727; Lieberman (1992) *Pharmaceutical Dosage Forms* (vols. 1-3), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) *The Art, Science and Technology of Pharmaceutical Compounding*, Amer. Pharmaceutical Assn, ISBN 0917330889; and Pickar (1999) *Dosage Calculations*, Delmar Pub, ISBN 0766805042). As is known in the art, adjustments for angiogenesis degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

The administration of the angiogenesis proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, for example, in the treatment of wounds and inflammation, the angiogenesis proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise an angiogenesis protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic

acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that angiogenesis protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise an angiogenesis protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the

patient's needs (e.g., *Remington's Pharmaceutical Science*, 15th ed., Mack Publishing Company, Easton, Pennsylvania (1980) and Goodman and Gillman, *The Pharmacological Basis of Therapeutics*, (Hardman, J.G, Limbird, L.E, Molinoff, P.B., Ruddon, R.W, and Gilman, A.G., eds) The McGraw-Hill Companies, Inc., 1996).

5 Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., *Remington's Pharmaceutical Science* and Goodman and Gillman, *The Pharmacological Basis of Therapeutics, supra*.

10 The compositions containing modulators of angiogenesis proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered
20 depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical
25 condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer.

30 It will be appreciated that the present angiogenesis protein-modulating compounds can be administered alone or in combination with additional angiogenesis modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in Table 1, such as antisense polynucleotides or ribozymes, will be introduced into cells, *in vitro* or *in vivo*. The present invention provides methods, reagents, vectors, and cells useful for expression of angiogenesis-associated 5 polypeptides and nucleic acids using *in vitro* (cell-free), *ex vivo* or *in vivo* (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Berger and Kimmel, *Guide to Molecular Cloning Techniques, Methods in Enzymology* volume 152 Academic Press, Inc., San Diego, CA (Berger), F.M. Ausubel *et al.*, eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 1999), and Sambrook *et al.*, *Molecular Cloning - A Laboratory Manual* (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989.

In a preferred embodiment, angiogenesis proteins and modulators are 20 administered as therapeutic agents, and can be formulated as outlined above. Similarly, angiogenesis genes (including both the full-length sequence, partial sequences, or regulatory sequences of the angiogenesis coding regions) can be administered in a gene therapy application. These angiogenesis genes can include antisense applications, either as gene 25 therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Angiogenesis polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL and antibody responses. Such vaccine compositions can include, for example, lipidated peptides (e.g., Vitiello, A. *et al.*, *J. Clin. Invest.* 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) 30 ("PLG") microspheres (see, e.g., Eldridge, *et al.*, *Mol. Immunol.* 28:287-294, 1991; Alonso *et al.*, *Vaccine* 12:299-306, 1994; Jones *et al.*, *Vaccine* 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi *et al.*, *Nature* 344:873-875, 1990; Hu *et al.*, *Clin Exp Immunol.* 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., *Proc. Natl. Acad. Sci. U.S.A.* 85:5409-

5413, 1988; Tam, J.P., *J. Immunol. Methods* 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. *et al.*, In: *Concepts in vaccine development*, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. *et al.*, *Nature* 320:535, 1986; Hu, S. L. *et al.*, *Nature* 320:537, 1986; Kieny, M.-P. *et al.*, *AIDS Bio/Technology* 4:790, 1986; Top, F. H. *et al.*, *J. Infect. Dis.* 124:148, 1971; Chanda, P. K. *et al.*, *Virology* 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. *et al.*, *J. Immunol. Methods* 192:25, 1996; Eldridge, J. H. *et al.*, *Sem. Hematol.* 30:16, 1993; Falo, L. D., Jr. *et al.*, *Nature Med.* 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. *Annu. Rev. Immunol.* 4:369, 1986; Gupta, R. K. *et al.*, *Vaccine* 11:293, 1993), liposomes (Reddy, R. *et al.*, *J. Immunol.* 148:1585, 1992; Rock, K. L., *Immunol. Today* 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. *et al.*, *Science* 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., *Vaccine* 11:957, 1993; Shiver, J. W. *et al.*, In: *Concepts in vaccine development*, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., *Annu. Rev. Immunol.* 12:923, 1994 and Eldridge, J. H. *et al.*, *Sem. Hematol.* 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quill A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff *et. al.*, *Science* 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies

include "naked DNA", facilitated (bupivacaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, for example, as a vector to express nucleotide sequences that encode angiogenic polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover *et al.*, *Nature* 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization e.g. adeno and adeno-associated virus vectors, retroviral vectors, *Salmonella typhi* vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata *et al.* (2000) *Mol Med Today*, 6: 66-71; Shedlock *et al.*, *J Leukoc Biol* 68,:793-806, 2000; Hipp *et al.*, *In Vivo* 14:571-85, 2000).

Methods for the use of genes as DNA vaccines are well known, and include placing an angiogenesis gene or portion of an angiogenesis gene under the control of a regulatable promoter or a tissue-specific promoter for expression in an angiogenesis patient. The angiogenesis gene used for DNA vaccines can encode full-length angiogenesis proteins, but more preferably encodes portions of the angiogenesis proteins including peptides derived from the angiogenesis protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from an angiogenesis gene. For example, angiogenesis-associated genes or sequence encoding subfragments of an angiogenesis protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the angiogenesis polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment angiogenesis genes find use in generating animal models of angiogenesis. When the angiogenesis gene identified is repressed or diminished in angiogenic tissue, gene therapy technology, *e.g.*, wherein antisense RNA directed to the angiogenesis gene will also diminish or repress expression of the gene.

5 Animal models of angiogenesis find use in screening for modulators of an angiogenesis-associated sequence or modulators of angiogenesis. Similarly, transgenic animal technology including gene knockout technology, for example as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the angiogenesis protein. When desired, tissue-specific expression or knockout of the angiogenesis protein may be necessary.

It is also possible that the angiogenesis protein is overexpressed in angiogenesis. As such, transgenic animals can be generated that overexpress the angiogenesis protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of angiogenesis and are additionally useful in screening for modulators to treat angiogenesis.

Kits for Use in Diagnostic and/or Prognostic Applications

20 For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits may include any or all of the following: assay reagents, buffers, angiogenesis-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, dominant negative angiogenesis polypeptides or polynucleotides, small molecules 25 inhibitors of angiogenesis-associated sequences *etc.* A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

30 In addition, the kits may include instructional materials containing directions (*i.e.*, protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. Any 35 medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (*e.g.*, magnetic discs, tapes, cartridges, chips), optical media (*e.g.*, CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional 40 materials.

The present invention also provides for kits for screening for modulators of angiogenesis-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: an angiogenesis-associated polypeptide or polynucleotide, reaction tubes, and 5 instructions for testing angiogenic-associated activity. Optionally, the kit contains biologically active angiogenesis protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

10
15
20
25
30

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

EXAMPLES

Example 1: Tissue Preparation, Labeling Chips, and Fingerprints

Purify total RNA from tissue using TRIzol Reagent

Homogenize tissue samples in 1ml of TRIzol per 50mg of tissue using a Polytron 3100 homogenizer. The generator/probe used depends upon the tissue size. A generator that is too large for the amount of tissue to be homogenized will cause a loss of 20 sample and lower RNA yield. TRIzol is added directly to frozen tissue, which is then homogenize. Following homogenization, insoluble material is removed by centrifugation at 7500 x g for 15 min in a Sorvall superspeed or 12,000 x g for 10 min. in an Eppendorf 25 centrifuge at 4°C. The clear homogenate is transferred to a new tube for use. The samples may be frozen now at -60° to -70°C (and kept for at least one month). The homogenate is 30 mixed with 0.2ml of chloroform per 1ml of TRIzol reagent used in the original homogenization and incubated at room temp. for 2-3 minutes. The aqueous phase is then separated by centrifugation and transferred to a fresh tube and the RNA precipitated using isopropyl alcohol. The pellet is isolated by centrifugation, washed, air-dried, resuspended in an appropriate volume of DEPC H₂O, and the absorbance measured.

Purification of poly A+ mRNA from total RNA is performed as follows. Heat an oligotex suspension to 37°C and mixing immediately before adding to RNA. The Elution Buffer is heated at 70°C. Warm up 2 x Binding Buffer at 65°C if there is precipitate in the buffer. Mix total RNA with DEPC-treated water, 2 x Binding Buffer, and Oligotex 5 according to Table 2 on page 16 of the Oligotex Handbook. Incubate for 3 minutes at 65°C. Incubate for 10 minutes at room temperature. Centrifuge for 2 minutes at 14,000 to 18,000 g. Remove supernatant without disturbing Oligotex pellet. A little bit of solution can be left behind to reduce the loss of Oligotex. Gently resuspend in Wash Buffer OW2 and pipet onto spin column. Centrifuge the spin column at full speed for 1 minute. Transfer spin column to a new collection tube and gently resuspend in Wash Buffer OW2 and centrifuge as describe 10 herein. Transfer spin column to a new tube and elute with 20 to 100 ul of preheated (70oC) Elution Buffer. Gently resuspend Oligotex resin by pipetting up and down. Centrifuge as above. Repeat elution with fresh elution buffer or use first eluate to keep the elution volume 15 low. Read absorbance, using diluted Elution Buffer as the blank. Before proceeding with cDNA synthesis, precipitate the mRNA as follows: add 0.4 vol. of 7.5 M NH4OAc + 2.5 vol. of cold 100% ethanol. Precipitate at -20oC 1 hour to overnight (or 20-30 min. at -70oC). Centrifuge at 14,000-16,000 x g for 30 minutes at 4oC. Wash pellet with 0.5ml of 20 80%ethanol (-20oC) then centrifuge at 14,000-16,000 x g for 5 minutes at room temperature. Repeat 80% ethanol wash. Air dry the ethanol from the pellet in the hood.. Suspend pellet in DEPC H₂O at 1ug/ul concentration.

To further Clean up total RNA using Qiagen's RNeasy kit, add no more than 100ug to an RNeasy column. Adjust sample to a volume of 100ul with RNase-free water. Add 350ul Buffer RLT then 250ul ethanol (100%) to the sample. Mix by pipetting (do not 25 centrifuge) then apply sample to an RNeasy mini spin column. Centrifuge for 15 sec at >10,000rpm. Transfer column to a new 2-ml collection tube. Add 500ul Buffer RPE and centrifuge for 15 sec at >10,000rpm. Discard flowthrough. Add 500ul Buffer RPE and centrifuge for 15 sec at >10,000rpm. Discard flowthrough then centrifuge for 2 min at maximum speed to dry column membrane. Transfer column to a new 1.5-ml collection tube and apply 30-50ul of RNase-free water directly onto column membrane. Centrifuge 1 min at >10,000rpm. Repeat elution. and read absorbance.

cDNA synthesis using Gibco's "SuperScript Choice System for cDNA Synthesis" kit

First Strand cDNA synthesis is performed as follows. Use 5ug of total RNA or 1ug of polyA+ mRNA as starting material. For total RNA, use 2ul of SuperScript RT. For

polyA+ mRNA, use 1ul of SuperScript RT. Final volume of first strand synthesis mix is 20ul. RNA must be in a volume no greater than 10ul. Incubate RNA with 1ul of 100pmol T7-T24 oligo for 10 min at 70C. On ice, add 7 ul of: 4ul 5X 1st Strand Buffer, 2ul of 0.1M DTT, and 1 ul of 10mM dNTP mix. Incubate at 37C for 2 min then add SuperScript RT.

5 Incubate at 37C for 1 hour.

For the second strand synthesis, place 1st strand reactions on ice and add: 91ul DEPC H₂O; 30ul 5X 2nd Strand Buffer; 3ul 10mM dNTP mix; 1ul 10U/ul E.coli DNA Ligase; 4ul 10U/ul E.coli DNA Polymerase; and 1ul 2U/ul RNase H. Mix and incubate 2 hours at 16C. Add 2ul T4 DNA Polymerase. Incubate 5 min at 16C. Add 10ul of 0.5M EDTA. A further clean-up of DNA is performed using phenol:chloroform:isoamyl Alcohol (25:24:1) purification.

In vitro Transcription (IVT) and labeling with biotin is performed as follows: Pipet 1.5ul of cDNA into a thin-wall PCR tube. Make NTP labeling mix by combining 2ul T7 10xATP (75mM) (Ambion); 2ul T7 10xGTP (75mM) (Ambion); 1.5ul T7 10xCTP (75mM) (Ambion); 1.5ul T7 10xUTP (75mM) (Ambion); 3.75ul 10mM Bio-11-UTP (Boehringer-Mannheim/Roche or Enzo); 3.75ul 10mM Bio-16-CTP (Enzo); 2ul 10x T7 transcription buffer (Ambion); and 2ul 10x T7 enzyme mix (Ambion). The final volume is 20ul. Incubate 6 hours at 37°C in a PCR machine. The RNA can be furthered cleaned.

Fragmentation is performed as follows. 15 ug of labeled RNA is usually fragmented. Try to minimize the fragmentation reaction volume; a 10 ul volume is recommended but 20 ul is all right. Do not go higher than 20 ul because the magnesium in the fragmentation buffer contributes to precipitation in the hybridization buffer. Fragment RNA by incubation at 94 C for 35 minutes in 1 x Fragmentation buffer (5 x Fragmentation buffer is 200 mM Tris-acetate, pH 8.1; 500 mM KOAc; 150 mM MgOAc). The labeled RNA transcript can be analyzed before and after fragmentation. Samples can be heated to 65°C for 15 minutes and electrophoresed on 1% agarose/TBE gels to get an approximate idea of the transcript size range

For hybridization, 200 ul (10ug cRNA) of a hybridization mix is put on the chip. If multiple hybridizations are to be done (such as cycling through a 5 chip set), then it is recommended that an initial hybridization mix of 300 ul or more be made. The hybridization mix is: fragment labeled RNA (50ng/ul final conc.); 50 pM 948-b control oligo; 1.5 pM BioB; 5 pM BioC; 25 pM BioD; 100 pM CRE; 0.1mg/ml herring sperm DNA; 0.5mg/ml acetylated BSA; and 300 ul with 1xMES hyb buffer.

Labeling is performed as follows: The hybridization reaction includes non-biotinylated IVT (purified by RNeasy columns); IVT antisense RNA 4 μ g: μ l; random Hexamers (1 μ g/ μ l) 4 μ l and water to 14 μ l. The reaciton is incubated at 70°C, 10 min. Reverse transcription is performed in the following reaction: 5X First Strand (BRL) buffer, 6 μ l; 0.1 M DTT, 3 μ l; 50X dNTP mix, 0.6 μ l; H₂O, 2.4 μ l; Cy3 or Cy5 dUTP (1mM), 3 μ l; SS RT II (BRL), 1 μ l in a final volume of 16 μ l. Add to hybridization reaction. Incubate 30 min., 42°C. Add 1 μ l SSII and incubate another hour. Put on ice. 50X dNTP mix (25mM of cold dATP, dCTP, and dGTP, 10mM of dTTP: 25 μ l each of 100mM dATP, dCTP, and dGTP; 10 μ l of 100mM dTTP to 15 μ l H₂O. dNTPs from Pharmacia)

RNA degradation is performed as follows. Add 86 μ l H₂O, 1.5 μ l 1M NaOH/ 2mM EDTA and incubate at 65°C, 10 min.. For U-Con 30, 500 μ l TE/sample spin at 7000g for 10 min, save flow through for purification. For Qiagen purification, suspend u-con recovered material in 500 μ l buffer PB and proceed using Qiagen protocol. For DNase digestion, add 1 μ l of 1/100 dil of DNase/30ul Rx and incubate at 37°C for 15 min. Incubate at 5 min 95°C to denature the DNase/

For sample preparation, add Cot-1 DNA, 10 μ l; 50X dNTPs, 1 μ l; 20X SSC, 2.3 μ l; Na pyro phosphate, 7.5 μ l; 10mg/ml Herring sperm DNA; 1ul of 1/10 dilution to 21.8 final vol. Dry in speed vac. Resuspend in 15 μ l H₂O. Add 0.38 μ l 10% SDS. Heat 95°C, 2 min and slow cool at room temp. for 20 min. Put on slide and hybridize overnight at 64°C. Washing after the hybridization: 3X SSC/0.03% SDS: 2 min., 37.5 mls 20X SSC+0.75mls 10% SDS in 250mls H₂O; 1X SSC: 5 min., 12.5 mls 20X SSC in 250mls H₂O; 0.2X SSC: 5 min., 2.5 mls 20X SSC in 250mls H₂O. Dry slides and scan at appropiate PMT's and channels.

Example 2. A model of angiogenesis is used to determine expression in angiogenesis

In the model of angiogenesis used to determine expression of angiogenesis-associated sequences, human umbilical vein endothelial cells (HUVEC) were obtained, e.g., as passage 1 (p1) frozen cells from Cascade Biologics (Oregon) and grown in maintenance medium: Medium 199 (Life Technologies) supplemented with 20% pooled human serum, 100 mg/ml heparin and 75 mg/ml endothelial cell growth supplements (Sigma) and gentamicin (Life Technologies). An *in vitro* cell system model was used in which 2x10⁵ HUVECs were cultured in 0.5 ml 3 mgs/ml plasminogen-depleted fibrinogen (Calbiochem, San Diego, CA) that was polymerized by the addition of 1 unit of maintenance medium

supplemented with 100 ng/ml VEGF and HGF and 10 ng/ml TGF-a (R&D Systems, Minneapolis, MN) added (growth medium). The growth medium was replaced every 2 days. Samples for RNA were collected, *e.g.*, at 0, 2, 6, 15, 24, 48, and 96 hours of culture. The fibrin clots were placed in Trizol (Life Technologies) and disrupted using a Tissuemizer.

- 5 Thereafter standard procedures were used for extracting the RNA (*e.g.*, Example 1).

Angiogenesis associated sequences thus identified are shown in Table 1. As indicated, some of the Accession numbers include expression sequence tags (ESTs). Thus, in one embodiment herein, genes within an expression profile, also termed expression profile genes, include ESTs and are not necessarily full length.

Table 1

AAA4 DNA sequence

Gene name: CGI-100 protein

Unigene number: Hs.275253

Probeset Accession #: AA089688

Nucleic Acid Accession #: NM_016040 cluster

Coding sequence: 142-831 (predicted start/stop codons underlined)

10	GTTCGCCGCC	GCCGCCCGG	CCACCTGGAG	TTTTTCAGA	CTCCAGATT	CCCTGTCAAC	60
	CACGAGGAGT	CCAGAGAGGA	AACCGGGAGC	GGAGACAAAC	GTACCTGACG	CCTCTTCAG	120
	CCCGGGATCG	CCCCAGCAGG	<u>GAT</u> GGGCGAC	AAGATCTGGC	TGCCCTTCCC	CGTGCTCCTT	180
	CTGGCCGCTC	TGCCCTCGGT	GCTGCTGCCT	GGGGCGGCCG	GCTTCACACC	TTCCCTCGAT	240
15	AGCGACTTCA	CCTTTACCC	TCCCGGCCGGC	CAGAAGGAGT	GCTTCTACCA	GCCCATGCC	300
	CTGAAGGCCT	CGCTGGAGAT	CGAGTACCAA	GTTTTAGATG	GAGCAGGATT	AGATATTGAT	360
	TTCCATCTTG	CCTCTCCAGA	AGGCAAAAC	TTAGTTTTG	AACAAAGAAA	ATCAGATGGA	420
	GTTCACACTG	TAGAGACTGA	AGTTGGTGT	TACATGTTCT	GCTTGCACAA	TACATTGAGC	480
	ACCATTCTG	AGAAGGTGAT	TTCTTTGAA	TTAATCCTGG	ATAATATGGG	AGAACAGGCA	540
20	CAAGAACAA	AAGATTGAA	GAAATATATT	ACTGGCACAG	ATATATTGGA	TATGAAACTG	600
	GAAGACATCC	TGGAATCCAT	CAACAGCATC	AAAGTCCAGAC	TAAGCAAAAG	TGGGCACATA	660
	CAAACCTCTGC	TTAGAGCATT	TGAAGCTCGT	GATCGAAAC	TACAAGAAAG	CAACTTGTAT	720
	AGAGTCAATT	TCTGGTCTAT	GGTTAATTTA	GTGGTCATGG	TGGTGGTGT	AGCCATTCAA	780
25	GTTTATATGC	TGAAGAGTCT	GTGGAAGAT	AAGAGGAAA	GTAGAACTTAA	<u>AAACTCCAAA</u>	840
	CTAGAGTACG	TAACATTGAA	AAATGAGGCA	AAAAATGCA	ATAAACTGTT	ACAGTCAAGA	900
	CCATTAATGG	TCTTCTCCAA	AAATATTTGA	GATATAAAAG	TAGGAAACAG	GTATAATT	960
	AATGTGAAA	TTAAGTCTTC	ACTTTCTGTG	CAAGTAATCC	TGCTGATCCA	GTTGTACTTA	1020
	AGTGTGTAAC	AGGAATATT	TGCAAGATAT	AGGTTTAACT	GAATGAAGCC	ATATTAATAA	1080
	CTGCATTTTC	CTAACTTTGA	AAAATTGTC	AAATGTCTTA	GGTGAATTAA	ATAATGAGT	1140
	ATTGGGCCTA	AA					

AAA7 DNA sequence

Gene name: Endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 (EDG1)

Unigene number: Hs.154210

Probeset Accession #: M31210

Nucleic Acid Accession #: NM_001400 cluster

Coding sequence: 251-1396 (predicted start/stop codons underlined)

40	TCTAAAGGTC	GGGGGAGCA	GCAAGATGCG	AAGCGAGCCG	TACAGATCCC	GGGCTCTCCG	60
	AACGCAACT	CGCCCTGCTT	GAGCGAGGCT	GCGGTTCCG	AGGCCCTCTC	CAGCCAAGGA	120
	AAAGCTACAC	AAAAAGCCTG	GATCACTCAT	CGAACCAACCC	CTGAAGCCAG	TGAAGGCTCT	180
	CTCGCCTCGC	CCTCTAGCGT	TCGTCTGGAG	TAGGCCACC	CCGGCTTCCCT	GGGGACACAG	240
45	GGTTGGCAC	ATGGGGCCCA	CCAGCGTCCC	GCTGGTCAAG	GCCCACCGCA	GCTCGGTCTC	300
	TGACTACGTC	AACTATGATA	TCATCGTCCG	GCATTACAAC	TACACGGGAA	AGCTGAATAT	360
	CAGCGCGGAC	AAGGAGAAC	GCATTAACACT	GACCTCGGTG	GTGTTCATTC	TCATCTGCTG	420
	CTTTATCATC	CTGGAGAAC	TCTTTGTCTT	GCTGACCATT	TGGAAAACCA	AGAAATTCCA	480
	CCGACCCATG	TACTATTTA	TTGGCAATCT	GGCCCTCTCA	GACCTGTTGG	CAGGAGTAGC	540
50	CTACACAGCT	AACCTGCTCT	TGTCTGGGGC	CACCACTAC	AAGCTCACTC	CCGCCCAGTG	600
	GTTCCTGCGG	GAAGGGAGTA	TGTTTGTGGC	CCTGTAGCC	TCCGTGTTCA	GTCTCTCCG	660
	CATCGCCATT	GAGCGCTATA	TCACAATGCT	GAAAATGAAA	CTCCACAAACG	GGAGCAATAA	720
	CTTCGGCTCT	TTCCTGCTAA	TCAGCGCTG	CTGGGTCATC	TCCCTCATCC	TGGGTGGCCT	780
	GCCTATCATG	GGCTGGAAC	GCATCAGTGC	GCTGTCCAGC	TGCTCCACCG	TGCTGCCGCT	840
55	CTACCACAA	CACTATATCC	TCTCTGCAC	CACGGTCTTC	ACTCTGCTTC	TGCTCTCCAT	900
	CGTCATTCTG	TACTGCAGAA	TCTACTCTT	GGTCAGGACT	CGGAGCCGCC	GCCTGACGTT	960
	CCGCAAGAAC	ATTTCCAAGG	CCAGCGCGAG	CTCTGAGAAT	GTGGCGCTGC	TCAAGACCGT	1020
	AATTATCGTC	CTGAGCGTCT	TCATCGCTG	CTGGGCACCG	CTCTTCATCC	TGCTCCTGCT	1080
	GGATGTGGGC	TGCAAGGTGA	AGACCTGTGA	CATCCTCTTC	AGAGCGGAGT	ACTTCCTGGT	1140
60	GTTAACCTGTG	CTCAACTCCG	GCACCAACCC	CATCATTAC	ACTCTGACCA	ACAAGGAGAT	1200
	GCGT ¹³ GGCC	TTCATCCGGA	TCATGTCTG	CTGCAAGTGC	CCGAGCGGAG	ACTCTGCTGG	1260
	CAAATTCAAG	CGACCCATC	TCAGCGGGCAT	GGAATTTCAGC	CGCAGCAAAT	CGGACAATT	1320
	CTCCCAACCC	CAGAAAGACG	AAGGGGACAA	CCCAGAGACC	ATTATGTCTT	CTGGAAACGT	1380
	CAACTCTCT	TCCTAGAACT	GGAAAGCTGT	CACCCACCGG	AAGCGCTCTT	TACTTGGTGC	1440
	CTGGCCACCC	CAGTGTGTTGG	AAAAAAATCT	CTGGGCTTCG	ACTGCTGCCA	GGGAGGAGCT	1500
65	GCTGCAAGCC	AGAGGGAGGA	AGGGGGAGAA	TACGAACAGC	CTGGTGGTGT	CGGGTGTGG	1560
	TGGGTAGAGT	TAGTCTCTGT	GAACAATGCA	CTGGGAAGGG	TGGAGATCAG	GTCCCAGGCT	1620
	GGAATATATA	TTCTACCCCC	CTGGAGCTTT	GATTTTGAC	TGAGCCAAG	GTCTAGCATT	1680
	GTCAAGCTCC	TAAAGGGTTC	ATTGGCCCC	TCCTCAAAGA	CTAATGTCCC	CATGTGAAAG	1740

CGTCTCTTGT	TCTGGAGCTT	TGAGGAGATG	TTTCCTTCA	CTTTAGTTTC	AAACCCAAGT	1800	
GAGTGTGTGC	ACTTCTGCTT	CTTAGGGAT	GCCCTGTACA	TCCCACACCC	CACCCCTCCCT	1860	
TCCTTCATA	CCCCTCTCA	ACGTTCTTTT	ACTTTATACT	TTAACTACCT	GAGAGTTATC	1920	
AGAGCTGGGG	TTGTGGAATG	ATCGATCATC	TATAGCAAAT	AGGCTATGTT	GAGTACGTAG	1980	
5	GCTGTGGGAA	GATGAAGATG	GTTGGAGGT	GTAAAACAAT	GTCTTCGCT	GAGGCCAAAG	2040
TTTCCATGTA	ACCGGGATCC	GTTTTTGGA	ATTGGTTGA	AGTCACTTTG	ATTTCTTAA	2100	
AAAACATCTT	TTCAATGAAA	TGTGTTACCA	TTTCATATCC	ATTGAAGCCG	AAATCTGCAT	2160	
AAGGAAGCCC	ACTTTATCTA	AATGATATTA	GCCAGGATCC	TTGGTGTCT	AGGAGAAACA	2220	
GACAAGCAA	ACAAAGTGA	AACCGAATGG	ATTAACCTTT	GCAAACCAAG	GGAGATTCT	2280	
10	TAGCAAATGA	GTCTAACAAA	TATGACATCC	GTCTTCCTCA	CTTTGTTGA	TGTTTATTC	2340
AGAATCTTGT	GTGATTCTATT	TCAAGCAACA	ACATGTTGA	TTTGTGTG	TTAAAAGTAC	2400	
TTTCTTGAT	TTTTGAATGT	ATTGTTTC	GGAAAGAAGTC	ATTTTATGGA	TTTTCTAAC	2460	
CCGTGTTAAC	TTTTCTAGAA	TCCACCCCTCT	TGTGCCCTTA	AGCATTACTT	TAACTGGTAG	2520	
GGAACGCCAG	AACTTTAAG	TCCAGCTATT	CATTAGATAG	TAATTGAAGA	TATGTATAAA	2580	
15	TATTACAAAG	AATAAAAATA	TATTACTGTC	TCTTAGTAT	GGTTTCAGT	GCAATTAAAC	2640
CGAGAGATGT	CTTGTGTTTT	TAAGAAGAAT	AGTATTAAAT	AGGTTCTGA	CTTTGTGGA	2700	
TCATTTGCA	CATAGCTTTA	TCAACTTTA	AACTATTAATA	AACTGATT	TTTAAAG		

AAB3 DNA sequence

Gene name: Solute carrier family 20 (phosphate transporter), member 1, Human

leukaemia virus receptor 1 (GLVR1)

Unigene number: Hs.78452

Probeset Accession #: L20859

Nucleic Acid Accession #: NM_005415 cluster

Coding sequence: predicted 371-2410 (predicted start/stop codons underlined)

20	GAGCTGTCCC	CGGTGCCGCC	GACCCGGGCC	GTGCCGTGTG	CCCGTGGCTC	CAGCCGTGC	60
CGCCTCGATC	TCCTCGTCTC	CCGCTCCGCC	CTCCCCTTTC	CCTGGATGAA	CTTGCCTCCT	120	
TTCTCTTCTC	CGCCATGGAA	TTCTGCTCCG	TGCTTTAGC	CCTCCTGAGC	CAAAGAAACC	180	
CCAGACAACA	GATGCCATA	CGCAGCGTAT	AGCAGTAAC	CCCCAGCTCG	TTTTCTGTGC	240	
CGTAGTTAC	AGTATTAAAT	TTTATATAAT	ATATATTATT	TATTATAGCA	TTTTTGATAC	300	
CTCATATTCT	GTTTACACAT	CTTGAAGGGC	GCTCAGTAGT	TCTCTTACTA	AACAACCACT	360	
ACTCCAGAGA	ATGGCAACGC	TGATTACCAAG	TACTACAGCT	GCTACCGCCG	CTTCTGGTCC	420	
TTTGGTGGAC	TACCTATGGA	TGCTCATCCT	GGGCTTCATT	ATTGCATTG	TCTTGGCATT	480	
CTCCGTGGGA	GCCAATGATG	TAGCAAATT	TTTGGTACA	GCTGTGGGCT	CAGGTGTAGT	540	
GACCCCTGAAG	CAAGCCTGCA	TCCTAGCTAG	CATCTTGAA	ACAGTGGGCT	CTGTCTTACT	600	
GGGGGCCAAA	GTGAGCGAAA	CCATCCGGAA	GGGCTTGATT	GACGTGGAGA	TGTACAACCTC	660	
GACTCAAGGG	CTACTGATGG	CCGCTCTAGT	CAGTGCTATG	TTTGGTCTG	CTGTGTGGCA	720	
40	ACTCGTGGCT	TCGTTTTG	AGCTCCCTAT	TTCTGGAAAC	CATTGTATTG	TTGGTCAAC	780
TATTGGTTTC	TCCCTCGTGG	CAAAGGGCA	GGAGGGTGTG	AAGTGGTCTG	AACTGATAAA	840	
AATTGTGATG	TCTTGGTCTG	TGTTCCCCACT	GCTTCTGGA	ATTATGTCG	GAATTTTATT	900	
CTTCCTGGTT	CGTGATTCA	TCTCCATAA	GGCAGATCCA	GTTCTTAATG	TTTGCAGAGC	960	
TTTGCCAGTT	TTCTATGCCT	GCACAGTTGG	AATAAACCTC	TTTCCATCA	TGTATACTGG	1020	
45	AGCACCGTTG	CTGGGCTTTG	ACAAAATTCC	TCTGTGGGCT	ACCATCCTCA	TCTCGGGGG	1080
ATGTGCAGTT	TTCTGTGCC	TTATCGTCTG	GTTCTTGTA	TGTCCCAGGA	TGAAGAGAAA	1140	
AATTGAACGA	GAAATAAAAGT	GTAGTCCCTC	TGAAAGCCCC	TTAATGGAAA	AAAAGAATAG	1200	
CTTGAAAGAA	GACCATGAAG	AAACAAAGTT	GTCTGTTGGT	GATATTGAAA	ACAAGCATCC	1260	
TGTTTCTGAG	GTAGGGCTG	CCACTGTGCC	CCTCCAGGCT	GTGGTGGAGG	AGAGAACAGT	1320	
50	CTCATTCAA	CTTGGAGATT	TGGAGGAAGC	TCCAGAGAGA	GAGGGCTTC	CCAGCGTGG	1380
CTTGAAAGAG	GAAACCAGCA	TAGATGAC	CGTGAATGGT	GCAGTGCAGT	TGCCTTAATGG	1440	
GAACCTTGTC	CAGTCAGTC	AAAGCCGTAG	CAACCAAATA	AACTCCAGTG	GCCACTCCCCA	1500	
GTATCACACC	GTGCATAAGG	ATTCCGGCCT	GTACAAAGAG	CTACTCCATA	AATTACATCT	1560	
TGCCAAGGTG	GGAGATTCA	TGGGAGACTC	CGGTGACAAA	CCCTTAAGGC	GCAATAATAG	1620	
55	CTATACTTCC	TATACCATGG	CAATATGTTG	CATGCCCTTG	GATTCAATTCC	GTGCCAAAGA	1680
AGGTGAACAG	AAGGGCGAAG	AAATGGAGAA	GCTGACATGG	CCTAATGCG	ACTCCAAGAA	1740	
GCGAATTGCA	ATGGACAGTT	ACACCAAGTT	CTGCAATGCT	GTGCTGACC	TTCACTCAGC	1800	
ATCTGAGATA	GACATGAGTG	TCAAGGCAGC	GATGGGTCTA	GGTGACAGAA	AAGGAAGTAA	1860	
TGGCTCTCTA	GAAGAATGGT	ATGACCTAGGA	TAAGCCTGAA	GTCTCTCTCC	TCTTCCAGTT	1920	
60	CCTGCAGATC	CTTACAGCCT	GCTTGTG	ATTGCCCCAT	GGTGGCAATG	ACGTAAGCAA	1980
TGCCATTGGG	CCTCTGTTG	CTTATATT	GGTTTATGAC	ACAGGAGATG	TTTCTTCAA	2040	
AGTGGCAACCA	CCAATATGGC	TTCTACTCTA	TGGTGGT	GGTATCTGTG	TTGGTCTGTG	2100	
GGTTTGGGGA	AGAAGAGTTA	TCCAGACCAT	GGGAAAGGAT	CTGACACCGA	TCACACCC	2160	
TAGTGGCTTC	AGTATTGAAC	TGGCATCTGC	CCTCACTGTG	GTGATTGCA	CAAATATTGG	2220	
65	CCTCCCATC	AGTACAACAC	ATTGAAAGT	GGGCTCTGTT	GTGCTGTTG	GCTGGCTCCG	2280
GTCAGAGAAG	GCTGTTGACT	GGCGTCTCTT	TCGTAACATT	TTTATGGCCT	GGTTGTCAC	2340	
AGTCCCCATT	TCTGGAGTTA	TCAGTGTGTC	CATCATGGCA	ATCTTCAGAT	ATGTCATCCT	2400	
CAGAATGTGA	AGCTGTTGA	GATTAAAATT	TGTGTCAATG	TTTGGGACCA	TCTTAGGTAT	2460	

TCCTGCTCCC CTGAAGAATG ATTACAGTGT TAACAGAAGA CTGACAAGAG TCTTTTATT 2520
 TGGGAGCAGA GGAGGAAGT GTTACTTGTG CTATAACTGC TTTGTGCTA AATATGAATT 2580
 GTCTCAAAAT TAGCTGTGTA AAATAGCCCG GGTCCACTG GCTCCTGCTG AGGTCCCCCTT 2640
 TCCTCTGGG CTGTGAATTCT CTGTACATAT TTCTCTACTT TTTGTATCAG GCTTCAATTTC 2700
 5 CATTATGTT TAATGTGTC TCTGAAGATG ACTTGTGATT TTTTTTCTT TTTTTAAAC 2760
 CATGAAGAGC CGTTGACAG ACCATGCTCT GCGTTGTTGG TTTCACCAAGC TTCTGCCCTC 2820
 ACATGCACAG GGATTTAACAA AAAAAAAT AACTACAAC TCCCTGTAG TCTCTTATAT 2880
 AAGTAGAGTC CTTGGTACTC TGCCCTCCTG TCAGTAGTGG CAGGATCTAT TGGCATATTTC 2940
 GGGAGCTCT TAGAGGGATG AGGTTCTTG AACACAGTGA AAATTTAAAT TAGTAACCTT 3000
 10 TTTGCAAGCA GTTTATTGAC TGTTATTGCT AAGAAGAAGT AAGAAAGAAA AAGCCTGTTG 3060
 GCAATCTGG TTATTTCTT AAGATTTCTG GCAGTGTGGG ATGGATGAAT GAAGTGGAAAT 3120
 GTGAACCTTG GGCAAGTTAA ATGGGACAGC CTTCCATGTT CATTGTCTA CCTCTTAAC 3180
 GAATAAAAAA GCCTACAGTT TTAGAAAAA ACCCGAATTTC

15 AAB4 DNA sequence

Gene name: Matrix metalloproteinase 10 (stromelysin 2)

Unigene number: Hs.8258

Probeset Accession #: X07820

Nucleic Acid Accession #: NM_002425

Coding sequence: predicted 23-1453 (predicted start/stop codons underlined)

AAAGAAGGTA AGGGCAGTGA GAATGATGCA TCTTGCATTC CTTGTGCTGT TGTGTCTGCC 60
 AGTCTGCTCT GCCTATCCTC TGAGTGGGGC AGAAAAGAG GAGGACTCCA ACAAGGATCT 120
 TGCCCAGCAA TACCTAGAAA AGTACTACAA CCTCGAAAAG GATGTGAAAC AGTTTAGAAG 180
 25 AAAGGACAGT AATCTCATTG TAAAAAAAT CCAAGGAATG CAGAAGTTCC TTGGGTTGGA 240
 GGTGACAGGG AAGCTAGACA CTGACACTCT GGAGGTGATG CGCAAGGCCA GGTGTGGAGT 300
 TCCTGACGTT GGTCACTTCA GCTCCTTCC TGGCATGCC AAGTGGAGGA AAACCCACCT 360
 TACATACAGG ATTGTGAATT ATACACCAGA TTTGCCAAGA GATGCTGTTG ATTCTGCCAT 420
 30 TGAGAAAAGCT CTGAAAGTCT GGGAAAGAGT GACTCCACTC ACATCTCTCA GGCTGTATGA 480
 AGGAGAGGCT GATATAATGA TCTCTTTCG AGTTAAAGAA CATGGAGACT TTTACTCTTT 540
 TGATGGCCCA GGACACAGTT TGCTCATGC CTACCCACCT GGACCTGGGC TTTATGGAGA 600
 TATTCACTTT GATGATGATG AAAAATGGAC AGAAGATGCA TCAGGCACCA ATTTATTCCCT 660
 CGTTGCTGCT CATGAACCTG GCCACTCCCT GGGGCTCTT CACTCAGCCA ACACTGAAGC 720
 35 TTTGATGTAC CCACTCTACA ACTCATTACAG AGAGCTCGCC CAGTTCGCGC TTTCGCAAGA 780
 TGATGTGAAT GGCATTCACT CTCCTACGG ACCTCCCCCT GCCTCTACTG AGGAACCCCT 840
 GGTGCCACAA AAATCTGTT CTCGGGATC TGAGATGCCA GCCAAGTGTG ATCCCTGCTTT 900
 GTCCCTTCGAT GCCATCAGCA CTCTGAGGGG AGAATATCTG TTCTTTAAAG ACAGATATTT 960
 TTGGCGAAGA TCCCCTGGA ACCCTGAACC TGAATTCTAC TTGATTCTG CATTGGGCC 1020
 40 CTCTCTTCCA TCATATTGAG ATTGTGCTAC TGAAGTTAAC AGCAGGGACA CCGTTTTTAT 1080
 TTTTAAGGA AATGAGTCT GGCCCATCAG AGGAAATGAG GTACAAGCAG GTTATCCAAG 1140
 AGGCATCCAT ACCCTGGGTT TTCTCTCAAC CATAAGAAA ATTGATGCACT CTGTTCTGA 1200
 CAAGGAAAAG AAGAAAACAT ACTTCTTTCG AGCGGACAAA TACTGGAGAT TTGATGAAAAA 1260
 TAGCCAGTCC ATGGAGCAAG GCTTCCCTAG ACTAATAGCT GATGACTTT CAGGAGTTGA 1320
 45 GCCTAAGGTT GATGCTGTAT TACAGGCATT TGGATTTC TACTTCTTCA GTGGATCATC 1380
 ACAGTTTGAG TTTGACCCCA ATGCCAGGAT GGTGACACAC ATATTAAAGA GTAACAGCTG 1440
 GTTACATTGC TAGGGCAGAT AGGGGGAAAGA CAGATATGGG TGTGTTAAAT AAATCTAATA 1500
 ATTATTCTATC TAATGTATTA TGAGCCAAA TGGTTAATT TTCTCTGCATG TTCTGTGACT 1560
 GAAGAAGATG AGCCTTGCAG ATATCTGCAT GTGTCATGAA GAATGTTCT GGAATTCTTC 1620
 50 ACTTGCTTT GAATTGCACT GAACAGAAATT AAGAAATACT CATGTGCAAT AGGTGAGAGA 1680
 ATGTATTTTC ATAGATGTGT TATTACTTCC TCAATAAAAAA GTTTTATTTC GGGCCTGTT 1740
 CTT

55 AAB6 DNA sequence

Gene name: Podocalyxin-like

Unigene number: Hs.16426

Probeset Accession #: U97519

Nucleic Acid Accession #: NM_005397 cluster

Coding sequence: 251-1837 (predicted start/stop codons underlined)

AAACGCCGCC CAGGACGCAG CGCCGCCCGC CGCCGCTCCT CTGCCACTGG CTCTGCC 60
 CAGCCCGGCT CTGCTGCAAGC GGCAGGGAGG AAGAGCCGCC GCAGCGCGAC TCGGGAGCCC 120
 CGGGCCACAG CCTGGCCTCC GGAGCCACCC ACAGGCCCTCC CCGGGCGGCG CCCACGCTCC 180
 TACCGCCGGG ACGCGCGGAT CCTCCGCGG CACCGCAGCC ACCTGCTCCC GGCCCCAGAGG 240
 65 CGACGACACG ATGCGCTGCG CGCTGGCGCT CTCGGCGCTG CTGCTACTGT TGTCAACGCC 300
 GCGCGCTGCTG CGCTCGTCGCG CGTCGCCGTC GCCGTCGCCG TCGCCCTCCC AGAATGCAAC 360
 CCAGACTACT ACGGACTCAT CTAACAAAAC AGCACCGACT CCAGCATCCA GTGTCACCAT 420

	CATGGCTACA GATAACAGCCC AGCAGAGCAC AGTCCCCACT TCCAAGGCCA ACGAAATCTT	480
	GGCTCGGTC AAGGCAGCA CCCCTGGTGT ATCCAGTGAC TCACCGGGGA CTACAACCT	540
	GGCTCAGCAA GTCTCAGGCC CAGTCACAC TACCGTGGCT AGAGGAGGCC GCTCAGGCCA	600
	CCCTACTACC ACCATCGAGA GCCCCAAGAG CACAAAAAGT GCAGACACCA CTACAGTTGC	660
5	AACCTCCACA GCCACAGCTA AACCTAACAC CACAAGCAGC CAGAATGGAG CAGAAGATAC	720
	AACAAACTCT GGGGGGGAAA GCAGCCACAG TGTGACCACA GACTCACAT CCACTAAGGC	780
	AGAACATCTG ACGACCCCTC ACCCTACAAG TCCACTTAGC CCCCCACAAC CCACTTTGAC	840
	GCATCCTGTG GCCACCCAA CAAGCTGGG ACATGACCAT CTATGAAAAA TTTCAAGCAG	900
	TTCAAGCACT GTGGCTATCC CTGGCTACAC CTTCACAAGC CGGGGGATGA CCACCACCT	960
10	ACCGTCATCG GTTATCTCGC AAAAGAACTCA ACAGACCTCC AGTCAGATGC CAGCCAGCTC	1020
	TACGGCCCTC TCCTCCCAGG AGACAGTGCA GCCCCAGGAGC CCGGCAACGG CATTGAGAAC	1080
	ACCTACCCCTG CCAGAGACCA TGAGCTCCAG CCCCCACAGCA GCATCAACTA CCCACCGATA	1140
	CCCCAAAACA CCTCTCTCCA CTGTGGCTCA TGAGAGTAAC TGGGCAAAGT GTGAGGATCT	1200
	TGAGACACAG ACACAGAGTG AGAAGCAGCT CGTCTGAAAC CTACACAGGA ACACCCCTCG	1260
15	TGCAGGGGGC GCTTCGGATG AGAAATTGAT CTCACTGATA TGCGGAGCAG TCAAAGCCAC	1320
	CTTCAACCCG GCCCAAGATA AGTGCAGCAT ACGGCTGGCA TCTGTTCCAG GAAGTCAGAC	1380
	CGTGGTCGTC AAAGAAATCA CTATTACAC TAAGCTCCCT GCCAAGGGATG TGTACGAGCG	1440
	GCTGAAGGAC AAATGGGATG AACTAAAGGA GGCAGGGGTC AGTGCACATGA AGCTAGGGGA	1500
	CCAGGGGCCA CGGAGGAGG CCGAGGACCG CTTCACTGATG CCCCTCATCA TCACCATCGT	1560
20	CTGCATGGCG TCATTCTGC TCCTCGTGGC GGCCTCTAT GGCTGCTGCC ACCAGCGCCT	1620
	CTCCCAGAGG AAGGACCCAGC AGCGGCTAAC AGAGGAGCTG CAGACAGTGG AGAATGGTTA	1680
	CCATGACAAAC CCAACACTGG AAGTGTATGGA GACCTCTCT GAGATGCAGG AGAAGAAGGT	1740
	GGTCAGCCTC AACGGGGAGC TGGGGGACAG CTGGATCGTC CCTCTGGACA ACCTGACCAA	1800
	GGACGACCTG GATGAGGAGG AAGACACACA CCTCTAGTCC GGTCTGCCGG TGGCCTCCAG	1860
25	CAGCACCACA GAGCTCCAGA CCAACCACCC CAAGTGCCGT TTGGATGGGG AAGGAAAGA	1920
	CTGGGGAGGG AGAGTGAACCT CGGAGGGGTG TCCCCTCCCA ATCCCCCCAG GGCCTTAATT	1980
	TTTCCCTTTT CAACCTGAAC AAATCACATT CTGTCCAGAT TCCCTCTGTAA AAATAACCCA	2040
	CTAGTGCCTG AGCTCACTGC TGCTGGATGA TGAGGGAGAT CAAAGAAAAG CCACGTAAGG	2100
	GACTTTATAG ATGAACCTAGT GGAATCCCTT CATTCTGCAG TGAGATTGCC GAGACCTGAA	2160
30	GAGGGTAAGT GACTTCCCAGA AGGTCAAGAGC CACTTGGTGA CAGAGCCAGG ATGAGAACAA	2220
	AGATTCCATT TGACCACTGC CACACTGCTG TGTTACATG TGCTTCCCGT CCAGAGCACT	2280
	CCCGGGCAGG GGTAAACCTC CAGCAGGTGG CTGGCTGGA AAGGAGGGCA GGGCTACATC	2340
	CTGGCTCGGT GGGATCTGAC GACCTGAAAG TCCAGCTCCC AAGTTTCTCT TCTCCTACCC	2400
	CAGCCTCGTG TACCCATCTT CCCACCCCTCT ATGTTCTTAC CCCTCCCTAC ACTCAGTGT	2460
35	TGTTCCACT TACTCTGTCC TGGGGCCTCT GGGATTAGCA CAGGTTATTG ATAACCTTGA	2520
	ACCCCTTGTG CTGGATTCCG ATTTCTCAC ATTTGCTTCG TGAGATGGGG GCTTAACCCA	2580
	CACAGGTCTC CGTGGTGA CCAGGTCTGC TTAGGGGACC TCGTGCAGG TGAGGAGAGA	2640
	AGGGGACACT CGAGTCCAGG CTGGTATCTC AGGGCAGCTG ATGAGGGGTC AGCAGGAACA	2700
	CTGGCCCATG GCCCCTGGCA CTCCCTGCAAG AGGCCACCCA CGATCTTCTT TGGGCTTCCA	2760
40	TTTCCACCAAG GGACTAAAAT CTGCTGTAGC TAGTGAGAGC AGCGTGTCC TTTTGTGTT	2820
	CACTGCTCA CTGATGGGAG TGATTCTCTG AGACCCAGTA TGAAAGAGCA GTGGCTGCAG	2880
	GAGAGGCCCTT CCCGGGGCCC CCCATCAGCG ATGTGTCTTC AGAGACAATC CATTAAAGCA	2940
	GCCAGGAAGG ACAGGCTTC CECTGTATAT CATAGGAAAC TCAGGGACAT TTCAAGTGT	3000
	TGAGAGTTTT GTTATAGTTG TTTTCTAAC CAGCCCTCCA CTGCCAAAGG CAAAAGCTC	3060
45	AGACAGTTGG CAGACGTCCA GTTAGCTCAT CTCACTCACT CTGATTCTCC TGTGCCACAG	3120
	AAAAAGAGGG CCTGGAAAGC GCAGTGCATG CTGGGTGCAT GAAGGGCAGC CTGGGGGACA	3180
	GACTGTTGTG GGAACGTCCC ACTGTCTCTG CCTGGAGCTA GGCCCTGCTG TTCCCTCTCT	3240
	CTGTGAGCCT AGTGGGGCTG CTGGGGTTCT CTTGCAGTTT CTGGTGGCAT CTCAGGGGAA	3300
	CACAAAGCT ATGTCTATTC CCAATATAG GACTTTATG GGCTCGGCAG TTAGCTGCCA	3360
50	TGTAGAAGGC TCCTAACAGC TGGGCATGGT GAGGTTCTAT CTGATTGAGA AGGGGAATC	3420
	CTGTGTGGAA TGTGAACCTT TCGCCATGGT CTCCATCGTT CTGGCGTAA ATTCCCTGGG	3480
	ATCAAGTAGG AAAATGGGCA GAACTGCTTA GGGGAATGAA ATTGCCATT TTGGGGTGAA	3540
	ACGCCACACC TCCAGGGTCT TAAGAGTCAG GCTCCGGCTG TAGTAGCTCT GATGAAATAG	3600
	GCTATCCACT CGGGATGGCT TACTTTTAA AAGGGTAGGG GGAGGGGCTG GGGAAAGATCT	3660
55	GTCCTGCACC ATCTGCTAA TTCTTCTCT ACAGTCTGTA GCCATCTGAT ATCCTAGGGG	3720
	AAAAGGAAG GCCAGGGTT CACATAGGGC CCCAGCGAGT TTCCCAGGAG TTAGAGGGAT	3780
	GCGAGGCTAA CAAGTCCAA AAACATCTGC CCCGATGCTC TAGTGTGTTGG AGGTGGGCAG	3840
	GATGGAGAAC AGTGCCTGTT TGGGGAAAAA CAGGAATCT TGTAGGCTT GAGTGAGGTG	3900
	TTTGTCTCT TCTTGGCCAG CGCTGGGTTC TCTCCACCCA GTAGGTTTTC TGTGTGGTC	3960
60	CCGTGGGAGA GGCCAGACTG GATTATTCTC CCTTTGCTGA TCCTGGGTC CACTTCACCA	4020
	GCCAGGGCTT TTGACGGAGA CAGCAAATAG GCCTCTGCAA ATCAATCAA GGCTGCAACC	4080
	CTATGGCCTC TTGGAGACAG ATGATGACTG GCAAGGACTA GAGAGCAGGA GTGCTGGCC	4140
	AGGTGGTCTC TGACTCTCT GACTCTCAT CGCTCTGTC AAGGAGAACCC CGGAGAGGCT	4200
	CTGGGCTGAT TCAGAGGTAA CTGCTTTATA TTCGTCAAA CTGTGTTAGT CTAGGCTTAG	4260
65	GACAGCTTC GAATCTGACA CCTTGCCTTG CTCTTGCAC CAGGACACCT ATGTCACAG	4320
	GCCAAACAGC CATGCATCTA TAAAGGTCT CATCTTCTGC CACCTTACT GGGTTCTAAA	4380
	TGCTCTCTGA TAATTCTAGAG AGCATTGGGT CTGGGAAGAG GTAAGAGGAA CACTAGAAC	4440
	TCAGCATGAC TTAAACAGGT TGTACCAAAG ACAGTTTATC ATCAACTCTT TCAGTGGTAA	4500

ACTGTGGTTT	CCCCAAGCTG	CACAGGAGGC	CAGAAACCAC	AAGTATGATG	ACTAGGAAGC	4560	
CTACTGTCAT	GAGAGTGGGG	AGACAGGCAG	CAAAGCTTAT	GAAGGAGGTA	CAGAATATTC	4620	
TTTGCCTTGT	AAGACAGAAT	ACGGGTTTAA	TCTAGTCTAG	GCRCAGATT	TTTTCCCGC	4680	
5	TTGATAAGGA	AAGCTAGCAG	AAAGTTTATT	AAACCACTT	CTTGAGCTTT	4740	
ACAATATACT	GGAGAAACTT	TGAAGAACAA	GTTCAAACTG	ATACATATAAC	ACATATTTTT	4800	
TTGATAATGT	AAATACAGTG	ACCATGTAA	CCTACCCCTGC	ACTGCTTTAA	GTGAACATAC	4860	
TTTGAAGAAG	CATTATGTTA	GCTGAGTGAT	GGCCAAGTTT	TTTCTCTGGA	CAGGAATGTA	4920	
10	AATGTCCTAC	TGGAATGAC	AAAGTTTTCG	TTGATTTTTT	TTTTAAACA	4980	
TATAACAAGA	CAAACCTATG	ATAAAGTATT	TGTCTGTAG	ATCAGGTGTT	TTGTTTTGTT	5040	
TTTTAATTAA	AAAAATGCAA	CCCTGCCCGC	CCCCCAGCAA	AGTCACAGCT	CCATTTCACT	5100	
AAAGGTTGGA	GTCAATATGC	TCGGTTGGC	AGGCAACCCCT	GTAGTCATGG	AGAAAGGTAT	5160	
15	TTCAGATCT	AGTCCAATCT	TTTCTAGAG	AAAAAGATAA	TCTGAAGCTC	ACAAAGATGA	5220
AGTGACTTCC	TCAAAATCAC	ATGGTTCAGG	ACAGAAACAA	GATTAAAACC	TGGATCCACA	5280	
GACTGTGCGC	CTCAGAAGGA	ATAATCGGTA	AATTAGAAAT	TGCTACTCGA	AGGTGCCAGA	5340	
ATGACACAAA	GGACAGAATT	CCTTCCCAG	TTGTTACCCCT	AGCAAGGCTA	GGGAGGGCAT	5400	
GAACACAAAC	ATAAGAACTG	GTCTTCTCAC	ACTTTCTCTG	AATCATTAG	TTTAAGATG	5460	
TAAGTGAACA	ATTCTTCTT	TCTGCCAAGA	AAACAAAGTTT	TGGATGAGCT	TTTATATATG	5520	
GAACCTTACTC	CAACAGGACT	GAGGGACCAA	GGAAACATGA	TGGGGGAGGC	AAGAGAGGGC	5580	
AAAGACTAAA	ACTGTAGCAT	AGCTTTGTC	ACGGTCATA	GCTGATCCCT	CAGGTCTGCT	5640	
20	GCAAAACACAG	CATGGAGGC	ACAGATGACT	CTTGGTGT	GGTCTTTTG	TCTGCAGTGA	5700
ATGTTCAACA	GTGGCCCG	GAACTGGGGG	ATCATATATG	TCTTAGTGG	CAGGGGTCTG	5760	
AAGTACACTG	GAATTACTG	AGAAACTTGT	TTGTAACAAAC	TATAGTTAAT	AATTATTGCA	5820	
TTTCTTACA	AAAATATATT	TTGGAAAATT	GTATACTGTC	AATTAAAGT			

~~AAB8 DNA sequence~~

Gene name: EGR-containing fibulin-like extracellular matrix protein 1
 Unigene number: Hs.76224
 Probeset Accession #: U03877
 Nucleic Acid Accession #: NM_004105 Transcript variant 1
 Coding sequence: 150-1631 (predicted start/stop codons underlined)

25	CTAGTATTCT	ACTAGAACTG	GAAGATTGCT	CTCCGAGTTT	TTTTTTGTT	ATTTGTTAA	60
30	AAAATAAAAA	GCTTGAGCG	CAATTCAAT	TACTGTCACA	GGTATTTTG	CTGTGCTGTG	120
35	CAAGGTAAC	CTGCTAGCTA	AGATTCACAA	TGTTGAAAGC	CCTTTCTTA	ACTATGCTGA	180
40	CTCTGGCGCT	GGTCAAGTC	CAGGACACCG	AAGAAACCAT	CACGTACACG	CAATGCACTG	240
45	ACGGATATGA	GTGGGATCCT	GTGAGACAGC	AATGCAAAGA	TATTGATGAA	TGTGACATTG	300
50	TCCCAGACGC	TTGTAAGGT	GGAAATGAAGT	GTGTCAACCA	CTATGGAGGA	TACCTCTGCC	360
55	TTCCGAAAC	AGCCCAGATT	ATTGTCAATA	ATGAACAGCC	TCAGCAGGAA	ACACAACCAG	420
60	CAGAAGGAAC	CTCAGGGCA	ACCACGGGGG	TTGTAGCTG	CAGCAGCATG	GCAACCACTG	480
65	GAGTGTGCGC	CGGGGGTGGT	TTTGTGGCC	GTGCTGTCG	AGTCGAGGC	CCTGAAATGC	540
70	AGACTGGCCG	AAATAACTTT	GTGATCCGGC	GGAACCCAGC	TGACCCCTAG	CGCATTCCCT	600
75	CCAACCCCTC	CCACCGTATC	CAGTGTGCG	CAGGCTACGA	GCAAAGTGA	CACAACGTGT	660
80	GCCAAGACAT	AGACGAGTGC	ACTGCAAGGA	CGCACAACG	TAGAGCAGAC	CAAGTGTGCA	720
85	TCATTTACG	GGGATCCTT	GCATGTCAGT	GCCCTCTGG	ATATCAGAAG	CGAGGGGAGC	780
90	AGTGCCTAGA	CATAGATGAA	TGTAACATCC	CTCCATATTG	CCACCAAAGA	TGCGTGAATA	840
95	CACCAGGCTC	ATTTTTATTGC	CAGTGCAGTC	CTGGGTTTCA	ATTGGCAGCA	AACAACATATA	900
100	CCTCGCTAGA	TATAAATGAA	TGTGATGCCA	GCAATCAATG	TGCTCAGCAG	TGCTACAAACA	960
105	TTCTGGTTC	ATTCATCTGT	CAGTGCATTC	AAGGATATGA	GCTAAGCAGT	GACAGGCTCA	1020
110	ACTGTGAAGA	CATTGATGAA	TGCAAGAACCT	CAAGCTACCT	GTGCAATAT	CAATGTC	1080
115	ATGAACCTGG	GAAATTCTCA	TGTATGTGCC	CCCAGGATA	CCAAGTGGTG	AGAAGTAGAA	1140
120	CATGTCAAGA	TATAAATGAG	TGTGAGACCA	CAAATGAATG	CCGGGAGGAT	GAAATGTGTT	1200
125	GGAATTATCA	TGGCGGCTTC	CGTTGTTATC	CACGAAATCC	TTGTCAGAT	CCCTACATTG	1260
130	TAACACCGA	GAACCGATGT	GTGGGACCG	TCTCAATG	CATGTGCCGA	GAACGTCCCC	1320
135	AGTCAATAGT	CTACAAATAC	ATGAGCATCC	GATCTGATAG	GTCTGTGCCA	TCAGACATCT	1380
140	TCCAGATACA	GGCCACAAC	ATTATGCCA	ACACCATAA	TACTTTCTGG	ATTAATCTG	1440
145	GAAATGAAA	TGGAGAGTC	TACCTACGAC	AAACAAGTCC	TGTAAGTGCA	ATGCTTGTG	1500
150	TCGTGAAGTC	ATTATCAGGA	CCAAGAGAAC	ATATCGTGA	CCTGGAGATG	CTGACAGTCA	1560
155	GCAGTATAGG	GACCTTCCGC	ACAAGCTCTG	TGTTAAGATT	GACAATAATA	GTGGGGCCAT	1620
160	TTTCATTTT	<u>G</u> CTTTTCTA	AGAGTCACC	ACAGGCATT	AAGTCAGGCC	AAGAATATTG	1680
165	TTACCTTAA	GAACATTTTT	ATTATAGAT	ATATCTAGT	CATCTACATC	TCTATACTGT	1740
170	ACACTCACCC	ATAACAAACA	ATTACACCAT	GGTATAAAAGT	GGCCTTTAA	TATGTAAGA	1800
175	TTCAAAGTT	GTCTTATTAA	CTATATGAA	ATTAGACATT	AATCCACTAA	ACTGGCTTTC	1860
180	TTCAAGAGAG	CTAAGTATAC	ACTATCTGGT	GAAGACTGG	TTCTTTCTA	AAAAAGTGGG	1920
185	ACCAAGCAAT	GATGATCTTC	TGTGGTGT	AAAGAAACTT	ACTAGAGCTC	CACTAACAGT	1980
190	CTCATAAGGA	GGCAGCCATC	ATAACCATG	AATAGCATGC	AAGGGTAAGA	ATGAGTTTTT	2040
195	AACTGCTTG	TAAGAAAATG	GAAAAGGTCA	ATAAAAGATAT	ATTCTTTAG	AAAATGGGGA	2100
200	TCTGCCATAT	TTGTGTTGGT	TTTTATTTTC	ATATCCAGCC	TAAAGGTGGT	TGTTTATTAT	2160

	ATAGTAATAA ATCATTGCTG TACAACATGC TGGTTCTGT AGGGTATTT TAATTTGTC	2220
	AGAAAATTTA GATTGTAAT ATTTTGTAAA AAACAGTAAG CAAAATTTT CAGAATTCCC	2280
	AAAATGAACC AGATACCCC TAGAAAATTA TACTATTGAG AAATCTATGG GGAGGATATG	2340
	AGAAAATAAA TTCCCTCTAA ACCACATGG AACTGACCTG AAGAAGCAA CTCGGAAAT	2400
5	ATAATAACAT CCCTGAATT AGCATTCAAC AAGATGCAGA ACAAAATGGA TAAAAGGTAT	2460
	TTCACTGGAG AAGTTTAAT TTCTAAGTAA AATTTAACCT CTAACACTTC ACTAATTAT	2520
	AACTAAAATT TCTCATCTTC GTACTTGATG CTCACAGAGG AAGAAAATGA TGATGGTTT	2580
	TATTCTGGC ATCCAGAGTG ACAGTGAAC TAAAGCAAATT ACCCTCCTAC CCAATTCTAT	2640
	GGAATATTTT ATACGTCCTCC TTGTTTAAAGA TCTGACTGCT TTACTTTGAT GTATCATATT	2700
10	TTAAATAAA AATAAAATT CCTTTAGAAG ATCACTCTAA AA	

AAB9 DNA sequence

Gene name: Melanoma adhesion molecule, MUC 18 glycoprotein

Unigene number: Hs.211679

Probeset Accession #: M28882

Nucleic Acid Accession #: NM_006500 cluster

Coding sequence: 27-1967 (predicted start/stop codons underlined)

	ACTTGCCTCT CGCCCTCCGG CCAAG <u>CATGG</u> GGCTTCCCAG GCTGGTCTGC GCCTTCTGC	60
	TCGGCGCTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG	120
	CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC	180
	AGTCCCAGG CAACCTCAGC CATGTCGACT GGTTTCTGT CCACAAGGAG AAGCGGACGC	240
20	TCATCTTCCG TGTGCCAGG GGCAGGGCC AGAGCGAAC TGGGGAGTAC GAGCAGCGC	300
	TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC	360
	GCATCTCTT GTGCCAGGGC AAGGCCCTC GGTCCAGGA GTACCGCCTC CAGCTCCGCG	420
	TCTACAAAGC TCCGGAGGGAG CCAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA	480
	GTAAAGGAGCC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCTCAAG	540
	TCATCTGGTA CAAGAAATGGC CGGCCCTCTGA AGGAGGAGA GAACCGGGTC CACATTCACT	600
	CGTCCCAGAC TGTGGAGTCG AGTGGTTGT ACACCTTGC GAGTATTCTG AAGGCACAGC	660
	TGGTTAAAGA AGACAAAGAT GCCCAGTTT ACTGTGAGCT CAAACTACCGG CTGCCAGTG	720
	GGAAACACAT GAAGGAGTCC AGGGAAGTCA CCGTCCCTGT TTTCTACCCG ACAGAAAAAG	780
	TGTGGCTGGA AGTGGAGCC GTGGGAATGC TGAAGGAAGG GGACCGCGTG GAAATCAGGT	840
	GTGGCTGTA TGGCAACCCCT CCACCACACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA	900
	GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGCCT GGTGCTGGAG CCTGCCCGGA	960
	AGGAACACAG TGGCGCTAT GAATGTCAGG CCTGGAACCTT GGACACCATG ATATCGCTGC	1020
	TGAGTGAACC ACAGGAACCA CTGGTGAACAT ATGTGTCGTGA CGTCCGAGTG AGTCCCGCAG	1080
	CCCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGCAGAG AGTAGCCAGG	1140
	ACCTCGAGTT CCAGTGGCTG AGAGAAGAGA CAGACCAAGT GCTGGAAAGG GGGCCTGTGC	1200
40	TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGCTA TCGCTCGTG GCGTCTGTGC	1260
	CCAGCATACCG CGGCTCTGAAC CGCACACAGC TGGTCAACCTT GGCATTTCTT GGGCCCCCTT	1320
	GGATGGCATT CAAGGAGAGG AAGGTGTGGG TGAAAGAGAA TATGGTGTG AATCTGCTT	1380
	GTGAAGCGTC AGGGCACCCCC CGGCCACCA TCTCTGGAA CGTCAACGGC ACGGCAAGTG	1440
	AACAAGACCA AGATCCACAG CGAGTCCCTGA GCACCCCTGAA TGTCTCGTG ACCCCGGAGC	1500
45	TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAC ACCAGCATCC	1560
	TCTTCCTGGA GCTGGTCAAT TTAACCACCC TCACACCAGA CTCCAACACA ACCACTGGCC	1620
	TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC	1680
	TGCCGGAGCC GGAGAGCCGG GGCGTGGTCA TCGTGGCTGT GATTGTGTGC ATCCTGGTCC	1740
	TGGCGGTGCT GGGCGCTGTC CTCTATTCTC TCTATAAGAA GGGCAAGCTG CCGTGCAGGC	1800
	GCTCAGGGAA GCAGGAGATC ACGCTGCCCT CGTCTCGTAA GACCGAACCTT GTAGTTGAAG	1860
	TTAAGTCAGA TAAGCTCCC GAAGAGATGG CCCTCTCTGA GGGCAGCAGC GGTGACAAGA	1920
	GGGCTCCGGG AGACCAGGG GAGAAATACA TCGATCTGAG GCATTAGCCC CGAACATCTT	1980
	CAGCTCCCTT CCTGCTCTGG ACCATCTCCA GCTCCCTGCT CACTCTTCTC TCAGCCAAG	2040
	CCTCCAAAGG GACTAGAGAG AAGCCTCTG CTCCCCCTCAC CTGCACACCC CTTTCAGAG	2100
55	GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTTT TCAGGGACCA	2160
	GTCCACCACCT ATCTCTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC	2220
	CCGAGCGGGT AGGAGAGTTT CTTGAGAAC GTGTTTTTC TTACACACA TTATGGCTGT	2280
	AAATACCTGG CTCTGCCAG CAGCTGAGCT GGGTAGCTC TCTGAGCTGG TTTCTGCC	2340
	CAAAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC	2400
	GCCTGCTCAT GTTGAAGTGC GCTGTTCACCA CGCTCTCCGG AGAGCACCCC AGCGGCATCC	2460
	AGAAGCAGCT GCAGTGGTGC TGCCACCACC CTCTGCTCG CCTCTTCAA GTCTCTGTG	2520
	ACATTTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTCTT CCTTAAAGA TACGTGCCGG	2580
	GGCCAGGTG GGTGGCTCAC GCCTGTAATC CCAGCCTT GGGAGGCCGA GGGGGGGCGA	2640
	TCACAAAGTC AGGACAGAGAC CATCTGGCT AACACGGTGA AACCCCTGTCT CTACTAAAAA	2700
	TACAAAGAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG	2760
	CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC	2820
	CACTGCACTC CAGCCCTGGGC AACACAGCGA GACTCCGTCT CGAGGAAAAA AAAAGAAAAG	2880
65	ACGCGTACCT GCGGTGAGGA AGCTGGCGC TGTTTCGAG TTCAGGTGAA TTAGCCTCAA	2940

TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAAC GAAAGGCAGC 3000
 GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAGC TATGGTTATA 3060
 TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG 3120
 AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CCTCGGGTGT GTGTGTCTGT 3180
 5 CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTGT CAGGTGTGA AATTGCAAA 3240
 TTGTTTCTT TATATATGTA TGTATATATA TATATGAAAAA TATATATATA TATGAAAAAT 3300
 AAAGCTTAAT TGCCCAGAA AATCATACTAT TGCTTTTTA TTCTACATGG GTACCACAGG 3360
 AACCTGGGG CCTGTGAAAC TACAACCAA AGGCACACAA AACCGTTCC AGTTGGCAGC 3420
 AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG 3480
 10 CTACCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC 3540
 TGTAGCAGG AGCTATGTCC CTTCTATCG TTTCCGTCCA CTT

AAC1 DNA sequence

Gene name: Matrix metalloproteinase 1 (interstitial collagenase)
 Unigene number: Hs.83169
 Probeset Accession #: X54925
 Nucleic Acid Accession #: NM_002421 cluster
 Coding sequence: 69-1478 (predicted start/stop codons underlined)

20 ATATTGGAGT AGCAAGAGGC TGGGAAGCCA TCACCTACCT TGCACTGAGA AAGAAGACAA 60
 AGGCCAGTAT GCACAGCTT CCTCCACTGC TGCTGCTGCT GTTCTGGGT GTGGTGTCTC 120
 ACAGCTTCCC AGCGACTCTA GAAACACAAG AGCAAGATGT GGACTTAGTC CAGAAATACC 180
 TGGAAAATA CTACAACTG AAGAATGATG GGAGGCAAGT TGAAAAGCGG AGAAATAGTG 240
 25 GCCCAGTGGT TGAAAATTG AAGCAAATGC AGGAATTCTT TGGGCTGAAA GTGACTGGGA 300
 AACAGAGATGC TGAAACCTG AAGGTGATGA AGCAGCCCAG ATGTGGAGTG CCTGATGTGG 360
 CTCAGTTGT CCTCACTGAG GGGAACCTC GCTGGGAGCA AACACATCTG ACCTACAGGA 420
 TTGAAAATTCA CACGCCAGAT TTGCAAGAG CAGATGTGGA CCATGCCATT GAGAAAGCCT 480
 30 TCCAACCTCTG GAGTAATGTC ACACCTCTGA CATTCAACCA GGTCTCTGAG GGTCAAGCAG 540
 ACATCATGAT ATCTTTGTC AGGGGAGATC ATCGGGACAA CTCTCCTTTT GATGGACCTG 600
 GAGGAAATCT TGCTCATGCT TTTCAACAG GCCCCAGGTAT TGGAGGGGAT GCTCATTTG 660
 ATGAAGATGA AAGGTGGACC AACAAATTCA GAGAGTACAA TTACATCGT GTTGCAGCTC 720
 ATGAACATCGG CCATTCTCTT GGACTCTCCC ATTCTACTGA TATCAGGGCT TTGATGTACC 780
 35 CTAGCTACAC CTTCACTGGT GATGTTCAAG TAGCTCAGGA TGACATTGAT GGCATCCAAG 840
 CCATATATGG ACGTTCCCAA AATCCTGTCC AGCCCACATCGG CCCACAAACC CCAAAAGCAT 900
 GTGACAGTAA GCTAACCTT GATGCTATAA CTACGATTG GGGAGAAGTG ATGTTCTTTA 960
 AAGACAGATT CTACATGCGC ACAAAATCCCT TCTACCCGGA AGTTGAGCTC AATTTCATTT 1020
 CTGTTTCTG GCCACAACCTG CCAAATGGGC TTGAAGCTGC TTACGAATTG GCCGACAGAG 1080
 ATGAAGTCCG GTTTTCTCAA GGAATAAGT ACTGGGCTGT TCAGGGACAG AATGTGCTAC 1140
 40 ACGGATACCC CAAGGACATC TACAGCTCC TTGGCTTCCC TAGAACTGTG AAGCATATCG 1200
 ATGCTGCTCT TTGAGGAA AACACTGGAA AAACTCTT CTTTGTGCT AACAAATACT 1260
 GGAGGTATGA TGAATATAAA CGATCTATGG ATCCAGGTTA TCCCAAAATG ATAGCACATG 1320
 ACTTTCTCTG AATTGGCCAC AAAGTTGATG CAGTTTCTAT GAAAGATGGA TTTTTCTATT 1380
 45 TCTTTCATGG AACAAAGACAA TACAAATTG ATCCTAAAC GAAGAGAATT TTGACTCTCC 1440
 AGAAAGCTAA TAGCTGGTTC AACTGCAGGA AAAATTGAAAC ATTACTAATT TGAATGGAAA 1500
 ACACATGGTG TGAGTCCAAA GAAGGTGTTT TCCTGAAGAA CTGCTATT TCTCAGTCAT 1560
 TTTTAACCTC TAGAGTCACT GATAACACAGA ATATAATCTT ATTATACCT CAGTTTGAT 1620
 ATTTTTTTAC TATTAGAAT GTAGCCCTT TTGTACTGAT ATAATTTAGT TCCACAAATG 1680
 50 GTGGGTACAA AAAGTCAAGT TTGTGGCTTA TGGATTCTA TAGGCCAGAG TTGCAAAGAT 1740
 CTTTTCCAGA GTATGCAACT CTGACGTTGA TCCCAGAGAG CAGCTTCAGT GACAAACATA 1800
 TCCTTTCAAG ACAGAAAGAG ACAGGAGACA TGAGTCTTTG CCGGAGGAAA AGCAGCTCAA 1860
 GAACACATGT GCAGTCACTG GTGTCACCCCT GGATAGGCAA GGGATAACTC TTCTAACACA 1920
 AAATAAGTGT TTTATGTTG GAATAAAGTC AACCTGTGTT CTACTGTTT

AAC3 DNA sequence

Gene name: Branched chain aminotransferase 1, cytosolic
 Unigene number: Hs.157205
 Probeset Accession #: AA423987
 Nucleic Acid Accession #: NM_005584 cluster
 Coding sequence: 1-1155 (predicted start/stop codons underlined)

55 ATGGATTGCA GTAACGGATC GGCAAGAGTGT ACCGGAGAAC GAGGATCAAAGAGGTGGT 60
 GGGACTTTTA AGGCTAAAGA CCTAATAGTC ACACCAAGCTA CCATTTAAAAA GGAAAAACCA 120
 GACCCCAAATA ATCTGGTTT TGGAACCTGTG TTCACGGATC ATATGCTGAC GGTGGAGTGG 180
 TCCTCAGAGT TTGGATGGGAA GAAACCTCAT ATCAAGGCTC TTCAAGAACCT GTCATTGCAC 240
 CCTGGCTCAT CAGCTTGCA CTATGCACTG GAATTATTTG AAGGATTGAA GGCATTCGA 300
 GGAGTAGATA ATAAAATTG ACTGTTTCAG CCAAACCTCA ACATGGATAG AATGTATCGC 360

TCTGCTGTGA GGGCAACTCT GCCGGTATTT GACAAAGAAG AGCTTTAGA GTGTATTCAA 420
 CAGCTTGTGA AATTGGATCA AGAATGGTC CCATATTCAA CATCTGCTAG TCTGTATATT 480
 CGTCCTGCAT TCATTGGAAC TGAGCCTTCT CTTGGAGTCA AGAACGCTAC CAAAGCCCTG 540
 CTCTTGTAC TCTTGAGCCC AGTGGGACCT TATTTTCAA GTGGAACCTT TAATCCAGTG 600
 5 TCCCTGTGGG CCAATCCAA GTATGTAAGA GCCTGGAAAG GTGGAACCTG GGACTGCAAG 660
 ATGGGAGGGAA ATTACGGCTC ATCTCTTTT GCCCAATGTG AAGACGTAGA TAATGGGTGT 720
 CAGCAGGTCC TGTGGCTCA TGGCAGAGAC CATCAGATCA CTGAAGTGGG AACTATGAAT 780
 CTTTTCTTT ACTGGATAAA TGAAGATGGA GAAGAAGAAC TGGCAACTCC TCCACTAGAT 840
 GGCAATTC TTCCAGGAGT GACAAGGCGG TGCATTCTGG ACCTGGCACA TCAGTGGGT 900
 10 GAATTTAAGG TGTCAGAGAG ATACCTCACC ATGGATGACT TGACAACAGC CCTGGAGGG 960
 AACAGAGTGA GAGAGATGTT TAGCTCTGGT ACAGCCTGTG TTGTTGCC AGTTTCTGAT 1020
 ATACTGTACA AAGGCAGAGAC AATACACATT CCAACTATGG AGAATGGTCC TAAGCTGGCA 1080
 AGCCGCATCT TGAGCAAATT AACTGATATC CAGTATGGAA GAGAAGAGAG CGACTGGACA 1140
 ATTGTGCTAT CCTGA

15

*Omni
A13*
 ACG4 DNA sequence:
 Gene name: Pentaxin-related gene, rapidly induced by IL-1 beta
 Unigene number: Hs.2050
 Probeset Accession #: M31166
 Nucleic Acid Accession #: NM_002852 cluster
 Coding sequence: 68-1213 (predicted start/stop codons underlined)

20 CTAAACTCA GCTCACTTGA GAGTCCTCCTC CCGCCAGCTG TGGAAAGAAC TTTGCGTCTC 60
 TCCAGCAATG CATCTCCTTG CGATCTGTGTT TTGTGCTCTC TGGTCTGCAG TGGTGGCGA 120
 GAACTCGGAT GATTATGATC TCATGTATGT GAATTGGAC AACGAAATAG ACAATGGACT 180
 CCATCCCACT GAGGACCCC CGCCGTGCGA CTGCGGTCAAG GAGCACTCGG AATGGGACAA 240
 GCTCTTCATC ATGCTGAGA ACTCGCAGAT GAGAGAGCGC ATGCTGCTGC AAGCCACCGA 300
 CGACGTCCTG CGGGCGAGC TGCAGAGGCT GCGGGAGGAG CTGGGCGCCGC TCGCGAAAG 360
 25 CCTGGCGAGG CCGTGCAGC CGGGGGCTCC CGCAGAGGCC AGGCTGACCA GTGCTCTGGA 420
 CGAGCTGCTG CAGGCGACCC GCGACGCGGG CGCAGGCTG GCGCGTATGG AGGGCGCGA 480
 GCGCAGCGC CGAGAGGAGG CGGGCGCGC CCTGGCCGCG GTGCTAGAGG AGCTGCGGCA 540
 GACCGGAGCC GACCTGCACG CGGTGCAGGG CTGGGCTGCC CGGAGCTGGC TGCCGGCAGG 600
 TTGTGAAACA GCTATTCTAT TCCAATGCG TTCCAAGAAG ATTTTGGAA GCGTGCATCC 660
 30 AGTGAGACCA ATGAGGCTTG AGTCTTTAG TGCCTGCATT TGGGTCAAAG CCACAGATGT 720
 ATAAACACAA ACCATCCTGT TTTCTATGG CACAAAGAGG AATCCATATG AAATCCAGCT 780
 GTATCTCAGC TACCAATCCA TAGTGTGTTGT GGTGGGTGGA GAGGAGAAC AACTGGTTGC 840
 TGAAGCCATG GTTCCCCTGG GAAGGGTGGAC CCACCTGTGC GGCACCTGGA ATTCAAGAGGA 900
 35 AGGGCTCACA TCCCTGTGGG TAAATGGTGA ACTGGCGGT ACCACTGTG AGATGGCCAC 960
 AGGTACACATT GTTCTGTGAG GAGGAATCCT GCAGATTGGC CAAGAAAAGA ATGGCTGCTG 1020
 TGTTGGTGGT GGCTTGTGAT AACATTAGC CTTCTCTGG AGACTCACAG GCTTCATAT 1080
 CTGGGATAGT GTTCTTAGCA ATGAAGAGAT AAGAGAGACC GGAGGAGCAG AGTCTTGTCA 1140
 CATCCGGGGG AATATTGTTG GGTGGGGAGT CACAGAGATC CAGCCACATG GAGGAGCTCA 1200
 GTATGTTCA TAAATGGTGT GAAACTCCAC TTGAAGCCAA AGAAAGAAAC TCACACTTAA 1260
 40 AACACATGCC AGTTGGGAAG GTCTGAAAAC TCAGTGCATA ATAGGAACAC TTGAGACTAA 1320
 TGAAAGAGAG AGTTGAGACC AATCTTTATT TGTACTGGCC AAATACTGAA TAAACAGTTG 1380
 AAGGAAAGAC ATTGGAAAAA GCTTTGAGG ATAATGTTAC TAGACTTTAT GCCATGGTGC 1440
 TTTCAGTTA ATGCTGTGTC TCTGTCAAGT AAACCTCAA ATAATTAAAA AGGACTGTAT 1500
 45 TGTTGAACAG AGGGACAATT GTTTTACTTT TCTTTGGTTA ATTTGTTTT GGCCAGAGAT 1560
 GAATTTTACA TTGGAAGAAT AACAAAATAA GATTGTTGT CCATTGTTCA TTGTTATTGG 1620
 TATGTACCTT ATTACAAAAA AAATGATGAA AACATATTTA TACTACAAGG TGACTTAACA 1680
 ACTATAAATG TAGTTATGT GTTATAATCG AATGTCACTG TTTGAGAAG ATAGTCATAT 1740
 50 AAGTTATATT GCAAAAGGGA TTGTTATTA TTAAAGACTA TTTTGTAAA GCTCTACTGT 1800
 AAATAAAATAA TTTTATAAAA CTAAAAAAA AAAAAAA

55

ACG5 DNA sequence:
 Gene name: Von Willebrand factor, Coagulation factor VIII
 Unigene number: Hs.110892
 Probeset Accession #: M10321
 Nucleic Acid Accession #: NM_000552
 Coding sequence: 311-8752 (predicted start/stop codons underlined)

60 AGCTCACAGC TATTGTTGGT GGAAAGGGAG GGTGGTTGGT GGATGTCACA GCTTGGCTT 60
 TATCTCCCCC AGCACTGGGG ACTCCACAGC CCCTGGCTA CATAACAGCA AGACAGTCCG 120
 GAGCTGTAGC AGACCTGATT GAGCCTTGC AGCAGCTGAG AGCATGGCCT AGGGTGGCG 180
 65 GCACCATTGT CCAGCAGCTG AGTTCCCAG GGACCTTGGA GATAGCCGCA GCTCTCATTT 240
 GCAGGGGAAG GCACCAATTGT CCAGCAGCTG AGTTCCCAG GGACCTTGGA GATAGCCGCA 300

	GCCCTCATT	ATGATTCTG	CCAGATTGC	CGGGGTGCTG	CTTGCTCTGG	CCCTCATT	360
	GCCAGGGACC	CTTGTGCA	AAGGAAC	CGGCAGGTCA	TCCACGGCCC	GATGCAGCCT	420
	TTTCCGAAGT	GACTTCGTCA	ACAC	TTGAGCATG	TACAGCTT	CGGGATACTG	480
	CAGTTACCTC	CTGGCAGGGG	GCTGCCAGAA	ACGCTCC	TCGATTATTG	GGGACTTCCA	540
5	GAATGGCAAG	AGAGTGAGCC	TCTCGTGTA	TCTTGGGAA	TTTTTGACA	TCCATTGTT	600
	TGTCAATGGT	ACCGTGACAC	AGGGGACCA	AAGAGTCTCC	ATGCCCTATG	CCTCCAAAGG	660
	GCTGTATCTA	GAAACTGAGG	CTGGGACTA	CAAGCTGTCC	GGTGGAGGCCT	ATGGCTTGT	720
	GGCCAGGATC	GATGGCAGCG	GCAACTTCA	AGTCCCTGTG	TCAGACAGAT	ACTTCAACAA	780
	GACCTGCGGG	CTGTGTGGCA	ACTTTAACAT	CTTGCTGAA	GATGACTTT	TGACCCAAAGA	840
10	AGGGACCTTG	ACCTCGGACC	CTTATGACTT	TGCCAACTCA	TGGGCTCTGA	GCAGTGGAGA	900
	ACAGTGGTGT	GAACGGGCAT	CTTCTCCCAG	CAGCTCATGC	AAACATCTCCT	CTGGGGAAAT	960
	GCAGAAGGGC	CTGTGGGAGC	AGTGCCAGCT	TCTGAAGAGC	ACCTCGGTGT	TTGCCCGCTG	1020
	CCACCCCTCTG	GTGGACCCCG	AGCCTTTGT	GGCCCTGTGT	GAGAAGACTT	TGTGTGAGTG	1080
	TGCTGGGGGG	CTGGAGTGCG	CCTGCCCTGC	CCTCCTGGAG	TACGCCCGGA	CCTGTGCCCA	1140
15	GGAGGGAAATG	GTGCTGTACG	GCTGGACCGA	CCACAGCGCG	TGCAGCCCAG	TGTGCCCTGC	1200
	TGGTATGGAG	TATAGGCAGT	GTGTGTCCCC	TTGCGCCAGG	ACCTGCCAGA	GCCTGCACAT	1260
	CAATGAAATG	TGTCAGGAGC	GATGCGTGGA	TGGCTGCAGC	TGCCCTGAGG	GACAGCTCCT	1320
	GGATGAAGGC	CTCTCGGTGG	AGAGCACCGA	GTGCTCC	GTGCATTCCG	GAAAGCGCTA	1380
	CCCTCCCGGC	ACCTCCCTCT	CTCGAGACTG	CAACACCTGC	ATTGCGGAA	ACAGCCAGTG	1440
	GATCTGCAGC	AATGAAGAAT	GTCCAGGGGA	GTGCTTGTGTC	ACTGGTCAAT	CCCAC	1500
	GAGCTTGTAC	AACAGATACT	TCACCTTCAG	TGGGATCTGC	CAGTACCTGC	TGGCCCGGGA	1560
	TTGCCAGGAC	CACTCCCTCT	CCATTGTCA	TGAGACTGTC	CAGTGTGCTG	ATGACCGCGA	1620
	CGCTGTGTG	ACCCGCTCCG	TCACCGTCCG	GTCGCTGGC	CTGCACAAACA	GCCTTGTA	1680
	ACTGAAGCAT	GGGGCAGGAG	TTGCTCATGGA	TGGCCAGGAC	ATCCAGCTCC	CCCTCTGAA	1740
25	AGGTGACCTC	CGCATCCAGC	ATACAGTGA	GGCCTCCGTG	CGCCTCAGCT	ACGGGGAGGA	1800
	CCTGCAGATG	GACTGGGATG	GCCGCGGGAG	GCTGCTGGT	AAGCTGTCCC	CCGTCTACGC	1860
	CGGGAAGACC	TGCGGCCTGT	GTGGGAATT	CAATGGCAAC	CAGGGCGACG	ACTTCCTTAC	1920
	CCCTCTGGG	CTGGCAGAGC	CCCGGGTGG	GGACTTCGGG	AACGCC	AGCTGCACGG	1980
	GGACTGCCAG	GACCTGCAGA	AGCAGCACAG	CGATCCCTGC	GCCCTCAACC	CGCGCATGAC	2040
30	CAGGTTCTCC	GAGGAGGC	GGCGGGTCC	GACGTC	ACATTGAGG	CCTGCCATCG	2100
	TGCGGTG	CCGCTGCCCT	ACCTGCGGAA	CTGCGCTAC	GACGTG	CCTGCTCGGA	2160
	CGGCCGCG	TGCGCTGCG	GGCCCTG	CAGCTATGCC	GCGGCTGCG	CGGGGAGAGG	2220
	CGTGCAGC	CGCTGGCGC	AGCCAGGCC	CTGTGAGCTG	AACTGCCGGA	AAGGCCAGGT	2280
	GTACCTGAG	TGCGGGACCC	CCTGCAACCT	GACCTGCCG	TCTCTCTCT	ACCCGGATGA	2340
35	GGAATGCAAT	GAGGCC	TGAGGGCTG	CTTCTGCC	CCAGGGCTCT	ACATGGATGA	2400
	GAGGGGGGAC	TGCGTGC	AGGCCAGTG	CCCCTGT	TATGACGGTG	AGATCTTCA	2460
	GCCAGAAGAC	ATCTCTCA	ACCACACAC	CATGTGCTAC	TGTGAGGATG	GCTTCATGCA	2520
	CTGTACCATG	AGTGGAGTCC	CCGGAAGCTT	GTCGCTGAC	GCTGCTCTCA	GCAGTCCCCT	2580
	GTCTCATCGC	AGCAAAAGGA	GCCTATCTG	TCGGCCCC	ATGGTCAAGC	TGGTGTGTC	2640
40	CGCTGACAAAC	CTGCGGCTG	AAGGGCTGA	GTGTAC	ACGTGCCAGA	ACTATGACCT	2700
	GGAGTGCATG	AGCATGGGCT	GTGTCTCTG	CTGCC	CCCCCGGGCA	TGGTCCGGCA	2760
	TGAGAACAGA	TGTGTGCCCC	TGAAAGGTG	TCCCTGCTTC	CATCAGGGCA	AGGAGTATGC	2820
	CCCTGGAGAGA	ACAGTGAAGA	TTGGCTGAA	CACTTG	TGTCGGGACC	GGAAAGTGGAA	2880
	CTGCACAGAC	CATGTGTG	ATGCCAGCTG	CTCCACGATC	GGCATGGCCC	ACTACCTCAC	2940
45	CTTCGACGGG	CTCAAATACC	TGTTCCCCGG	GGAGTGCCAG	TACGTTCTGG	TGCAGGATTA	3000
	CTGCGGAGT	AACCTGGG	CCTTCGG	CCTAGTGGG	AATAAGGGAT	GCAGCCACCC	3060
	CTCAGTGAA	TGCAAGAAC	GGGTCA	CCTGGTGGAG	GGAGGAGAGA	TTGAGCTGTT	3120
	TGACGGGGAG	GTGAATGTGA	AGAGGCC	GAAGGATGAG	ACTCA	AGGTGGTGG	3180
	GTCTGGCCG	TACATCATTC	TGCTGCTGG	CAAAGCC	TCCGTGGT	GGGACCGCCA	3240
50	CCTGAGC	TCCGTGGTCC	TGAAGCAGAC	ATACCAGGAG	AAAGTGTGTG	GCCTGTGTG	3300
	GAATT	TGAT	GGC	ACATCCAGA	ACAATGACCT	TGGAGGAAGA	3360
	CCCTGTGGAC	TTTGGGAA	ACT	CACCTGCGAG	TGTGCTGACA	CCAGAAAAGT	3420
	GCCTCTGGAC	TCATCC	CCAC	CTG	TGTGAGTCCA	CGATGGTGG	3480
	TTCCTCTGT	AGAATCCTT	CCAGTGA	CTTCCAGGAC	TGCAACAAAGC	TGGTGGACCC	3540
55	CGAGG	CTGGATGTCT	GCAT	TACGA	CACCTGCTCC	TGGAGTCCA	3600
	CCGCTGCTTC	TGCGACACCA	TTGCTG	CTA	TGTC	TTGGGAGCTG	3660
	GGTGA	AGGACGGCCA	CATTG	TGCCCACG	TGTG	ATGGCAAGGT	3720
	GAACGGGTAT	GAGTGTGAGT	GGCG	TATAA	CCAGTGTGCA	ATCTCCGG	3780
	TCAGCACCCT	GAGCC	ACTG	GGC	CCTG	AAGTCACGT	3840
60	CCCTCCAGGG	AAAATCCTG	ATGAG	CTG	GAGGGCTG	ATGCCCACTG	3900
	AGTGTGTGAG	GTGGCTGGCC	GGCG	TTT	GCA	AAGACTGTCC	3960
	TGACCC	CTAG	CCAGA	CTC	GATG	TGAATCCCAG	4020
	CCAGGAGCCG	GGAGG	CTG	GGT	GTG	GTGAAGCTG	4080
	GTATGTGGAG	GACAT	CTCG	GCAC	GAGT	GGCTACTGG	4140
65	CCTGGTCTTC	CTGCTGGAT	GCT	CC	GAGT	AAGTGTGAA	4200
	GGC	TTT	GTG	GG	GAGT	TCCCGTGGC	4260
	CGTGGTGGAG	TACCA	CGAC	GCT	GG	GGAAAGCGACC	4320
	GTCA	AGAGCTG	CGG	GCATTG	GG	GGCAGGCCAG	4380

	CAGCGAGGTC TTGAAATACA CACTGTTCCA AATCTTCAGC AAGATCGACC GCCCTGAAGC	4440
	CTCCCGCATC GCCCTGCTCC TGATGGCCAG CCAGGAGCCC CAACGGATGT CCCGGAACCT	4500
	TGTCCGCTAC GTCCAGGGCC TGAAGAAGAA GAAGGTCAATT GTGATCCCGG TGGGCATTGG	4560
	GCCCCATGCC AACCTCAAGC AGATCCGCCT CATCGAGAAG CAGGCCCCCTG AGAACAAAGGC	4620
5	CTTCGTGCTG AGCAGTGTGG ATGAGCTGGA GCAGCAAAGG GACGGAGATCG TTAGCTACCT	4680
	CTGTGACCTT GCCCCCTGAAG CCCCTCCTCC TACTCTGCC CCCCATGG CACAAGTCAC	4740
	TGTGGGGCCG GGGCTCTTGG GGGTTTCGAC CCTGGGGCCC AAGAGGAACCT CCATGGTTCT	4800
	GGATGTGGCG TTCGTCTTGG AAGGATCGGA CAAATTGGT GAAGCCGACT TCAACAGGAG	4860
	CAAGGAGTTC ATGGAGGAGG TGATTCAAGCG GATGGATGTG GGCCAGGACA GCATCCACGT	4920
10	CACGGTGTG AGTACTCCT ACATGGTGAC CGTGGAGTAC CCCTTCAGCG AGGCACAGTC	4980
	CAAAGGGGAC ATCCTGCAGC GGGTGCAGA GATCCGCTAC CAGGGCGGCA ACAGGACAA	5040
	CACTGGGCTG GCCCTGCCGT ACCTCTCTGA CCACAGCTTC TTGGTCAGCC AGGGTGACCG	5100
	GGAGCAGGCG CCCAACCTGG TCTACATGGT CACCGGAAAT CCTGCCTCTG ATGAGATCAA	5160
	GAGGCTGCCG GGAGACATCC AGGTGGTGCC CATTGGAGTG GGCCCTAATG CCAACGTGCA	5220
15	GGAGCTGGAG AGGATTGGCT GGCCCAAATGC CCCTATCCCT ATCCAGGACT TTGAGACGCT	5280
	CCCCCGAGAG GCTCTGACCC TGTTGCTGCA GAGGTGCTGC TCCGGAGAGG GGCTGCAGAT	5340
	CCCCACCCCTC TCCCCTGCAC CTGACTGCAG CCAGCCCCCTG GACCTGATCC TTCTCCTTGG	5400
	TGGCTCTTCC AGTTTCCAG CTTCTTATTG TGATGAAATG AAGAGTTTCG CCAAGGCTTT	5460
	CATTCAAAA GCCAATATAG GGCCTCGTCT CACTCAGGTG TCAGTGTGTC AGTATGGAAAG	5520
20	CATCACCAC ATTGACGTG CATGGAACGT GGTCCCCGAG AAAGCCCATT TGCTGAGCCT	5580
	TGTGGACGTC ATGCAGGGGG AGGGAGGCC CAGCCAAATC GGGGATGCCT TGGGCTTTGC	5640
	TGTGGCATAAC TTGACTTCAG AAATGCATGG TGCCAGGCCG GGAGCCTCAA AGGCGGTGGT	5700
	CATCCTGGTC ACGGACGTCT CTGTGGATTG AGTGGATGCA GCAGCTGATG CCGCCAGGTC	5760
	CAACAGAGTC ACAGTGTCC CTATTGGAAT TGGAGATCGC TACCGATGCAG CCCAGCTACG	5820
25	GATCTTGGCA GGCCCAGCAG GCGACTCCAA CGTGGTGAAG CTCCAGCGAA TCGAAGACCT	5880
	CCCTACCATG GTCACCTTGG GCAATTCCCTT CCTCCACAAA CTGTGCTCTG GATTGTTAG	5940
	GATTGCGATG GATGAGGATG GGAATGAGAA GAGGCCCGG GACGTCTGGA CCTTGCCAGA	6000
	CCAGTGCCAC ACCGTGACTT GCCAGCCAGA TGGCCAGACC TTGCTGAAGA GTCATCGGGT	6060
	CAACTGTGAC CGGGGGCTGA GGCCCTCGTG CCCTAACAGC CAGTCCCCCTG TTAAAGTGG	6120
30	AGAGACCTGT GGCTGCGCT GGACCTGCCG CTGCTGTGCA ACAGGCGAGCT CCACCTGGCA	6180
	CATCGTGCAC TTTGATGGC AGAATTCAA GCTGACTTGC AGCTGTTCTT ATGCTTATT	6240
	TCAAAACAAG GAGCAGGACC TGGAGGTGAT TCTCCATAAT GGTGCCTGCA GCCCCTGGAGC	6300
	AAGGCAGGGC TGCAATGAAAT CCATCGAGGT GAAGCACAGT GCCCTCTCCG TCGAGCTGCA	6360
	CACTGACATG GAGGTGACGG TGAATGGGAG ACTGGTCTCT GTTCTTACG TGGGTTGGAA	6420
35	CATGGAAGTC AACGTTTATG GTGCCATCAT GCATGAGGTC AGATTCAATC ACCTTGGTCA	6480
	CATCTTCACA TTCACTCCAC AAAACAATGA GTTCCAACTG CAGCTCAGCC CCAAGACTTT	6540
	TGCTTCAAAG ACGTATGGTC TGTGTGGGAT CTGTGATGAG AACGGAGCCA ATGACTTCAT	6600
	GCTGAGGGAT GGCACAGTCA CCACAGACTG GAAAACACTT GTTCAGGAAT GGACTGTGCA	6660
	GGGGCCAGGG CAGACGTGCC ACCCCATCCTT GGAGGAGCAG TGTCTTGTCC CCGACAGCTC	6720
40	CCACTGCCAG GTCTCTCTT TACCACTGTT TGCTGAATGC CACAAGGTCC TGGCTCCAGC	6780
	CACATTCTAT GCCATCTGCC AGCAGGACAG TTGGCACCAAG GAGCAAGTGT GTGAGGTGAT	6840
	CGCCTCTTAT GCCCACCTCT GTCGACCAA CGGGGCTCTG GTTGACTTGGA GGACACCTGA	6900
	TTTCTGTGCT ATGTCATGCC CACCATCTCT GGTCTACAAAC CACTGTGAGC ATGGCTGTCC	6960
	CCGGCACTGT GATGGCAACG TGAGCTCTG TGGGGACCAT CCCTCCGAAG GCTGTTCTG	7020
45	CCCTCCAGAT AAAGTCATGT TGGAAGGAG CTGTGCCCCCT GAAGAGGCCT GCACTCAGTG	7080
	CATTGGTGA GATGGAGTCC ACCACCAGTT CCTGGAAGCC TGGGCTCCCG ACCACCAGCC	7140
	CTGTCAGATC TGACATGCC TCAGCGGGCG GAAGGTCAAC TGACACACGC AGCCCTGCC	7200
	CACGGCCAAA GCTCCCACGT GTGGCCTGTG TGAAAGTAGCC CGCTCTCCGCC AGAATGCAGA	7260
	CCAGTGTGTC CCCGAGTATG AGTGTGTGTG TGACCCAGTG AGCTGTGACC TGCCCCCAGT	7320
50	GCCTCACTGT GAACGTGGCC TCCAGCCAC ACTGACCAAC CCTGGCGAGT GCAGACCCAA	7380
	CTTCACCTGC GCCTGCAGGA AGGAGGAGTC CAAAAGACTG TCCCCACCT CCTGCCCCCCC	7440
	GCACCGTTTG CCCACCTCTC GGAAGACCCA GTGCTGTGAT GAGTATGAGT GTGCCTGCAA	7500
	CTGTGTCACAC TCCACAGTGA GCTGTCCCCCT TGGGTACTTG GCCTCAACCG CCACCAATGA	7560
	CTGTGGCTGT ACCACAACCA CCTGCTTCC CGACAAGGTG TGTGTCCACC GAAGCACCAT	7620
55	CTACCCCTGTG GGCCAGTTCT GGGAGGAGGG CTGCGATGTG TGCACTTGCA CCGACATGGA	7680
	GGATGCCGTG ATGGGCCTCC GCGTGGCCCA GTGCTCCCAG AAGCCCTGTG AGGACAGCTG	7740
	TCGGTCGGGC TTCACCTACG TTCTGCATGA AGGCGAGTGC TGTGGAAGGT GCCTGCCATC	7800
	TGCCCTGTGAG GTGGTGAACG GCTCACCGCG GGGGGACTCC CAGCTTCTCT GGAAGAGTGT	7860
	CGGCTCCCAAG TGGGCCTCCC CGGAGAACCC CTGCTCTATC AATGAGTGTG TCCGAGTGAA	7920
60	GGAGGAGGTC TTTATACAAAC AAAGGAACGT CTCCCTGCCCT AGCTGGAGG TCCCTGTCTG	7980
	CCCCTCGGGC TTTCAGCTGA GCTGTAAGAC CTCAGCGTGC TGCCCAAGCT GTCGCTGTGA	8040
	GCCCATGGAG GCCTGCATGC TCAATGGCAC TGTCATTGGG CCCCCGGAAAG CTGTGATGAT	8100
	CGATGTGTGAC ACGACCTGCC GCTGCATGGT CGAGGTGGGG GTCATCTCTG GATTCAAGCT	8160
	GGAGTGCAGG AAGACCAACCT GCAACCCCTG CCCCCCTGGGT TACAAGGAAG AAAATAACAC	8220
65	AGGTGAATGT TGTGGGAGAT GTTGCCTAC GGCTTGACCC ATTCAAGCTAA GAGGAGGACA	8280
	GATCATGACA CTGAAGCGTG ATGAGACGCT CCAGGATGGC TGTGATACTC ACTTCTGCAA	8340
	GGTCAATGAG AGAGGAGAGT ACTTCTGGGA GAAGAGGGTC ACAGGCTGCC CACCCCTTGA	8400
	TGAACACAAG TGTCTGGCTG AGGGAGGTAAGATTATGAAA ATTCCAGGCA CCTGCTGTGA	8460

CACATGTGAG GAGCCTGAGT GCAACGACAT CACTGCCAGG CTGCAGTATG TCAAGGTGGG 8520
 AAGCTGTAAG TCTGAAGTAG AGGTGGATAT CCACTACTGC CAGGGCAAAT GTGCCAGCAA 8580
 AGCCATGTAC TCCATTGACA TCAACGATGT GCAGGACCAAG TGCTCCTGCT GCTCTCCGAC 8640
 ACGGACGGAG CCCATGCCAGG TGGCCCTGCA CTGCAACCAAT GGCTCTGTTG TGTACCATGA 8700
 5 GTTCTCAAT GCCATGGAGT GCAAATGCTC CCCCAGGAAG TGCAAGCT GAGGCTGCTG 8760
 CAGCTGCATG GGTGCCTGCT GCTGCCTGCC TTGGCCTGAT GGCCAGGCCA GAGTGCTGCC 8820
 AGTCCTCTGC ATGTTCTGCT CTTGTGCCCT TCTGAGCCA CAATAAAGGC TGAGCTCTTA 8880
 TCTTGCTGCA TGTTCTGCTC TTGTGCCCTT CTGAGCCAC AAT

10

Unpubl. 1/15
 AAC57 DNA sequence
 Gene name: KIAA1294 protein
 Probeset Accession #: AA432248
 Nucleic Acid Accession #: AB037715
 Coding sequence: 370-3489 (predicted start/stop codons underlined)

15

20

25

30

35

40

45

50

55

60

65

GAACGCTCAC AGAACACAGGCA GTGCAATTCC ATGTTCCCT TAAGTATGTT AGCCCTACCG 60
 GGAGCTGAGC TGGCCAGTCT ACTTGGAGAG GAAAAGTAGA TCTGGGGAAG GTGGAAGGGT 120
 CAGTTCTAA GTGACTTCCT CCTCCGGGGAT GGTAAGGGCA TTGCTGATC TCCAGTGA 180
 GCCTGGTGCCT CATGGTCAG ACTCGGCTGT CTCACTCCA GATATCTGAT TTTGCAAAA 240
 GGGACACACC TATCTGCAGC AAAGAAGACA CTGACCAAGAT TGCGAGCGGT GCTTTGGAT 300
 GCTCTGTAGC CACCCGGGGC CCAGGAGGAC TGACTCGGCA GCAGGATTG TGATGGGAA 360
 TCGGAGACCA TGGCACTGCA GCTGGTGCCT GACTCAGCTC TCGGCCCTGCT GATGATGACG 420
 GAGGGCCGCC GATGTCAAGT ACATCTTCTT GATGACAGGA AGCTGGAACT CCTAGTACAG 480
 CCCAAGCTGT TGGCCAAGGA GCTCTTGTGAC CTTGTGGCTT CTCACCTCAA TCTGAAGGAA 540
 AAGGAGTACT TTGGAATAGC ATTACACAGAT GAAACGGAC ACTTAAACTG GCTTCAGCTA 600
 GATCGAAGAG TATTGGAACA TGACTTCCT AAAAAGTCAG GACCCGTGGT TTTTAACTTT 660
 TGTGTCAGGT TCTATATAGA AAGCATTCA TACCTGAAGG ATAATGCTAC CATTGAGCTT 720
 TTCTTTCTGA ACGCGAAAGTC CTGCATCTAC AAGGAGCTTA TTGACGTTGA CAGCGAAGTG 780
 GTGTTTGAAT TAGCTTCCTA TATTTTACAG GAGGCAAAGG GAGATTTTC TAGCAATGAA 840
 GTTGTGAGGA GTGACTTGAA GAAGCTGCCA GCCCTTCCA CCCAAGGCCCT GAAGGAGCAC 900
 CCTTCCCTGG CCTACTGTGA AGACAGAGTC ATTGAGCACT ACAAGAAACT GAACGGTCAG 960
 ACAAGAGGTC AAGCAATCGT AAACATACATG AGCATCGGG AGTCTCTCCC AACCTACGGG 1020
 GTTCACTATT ATGCACTGAA GGACAAGCGAG GGCATACCAT GGTGGCTGGG CCTGAGCTAC 1080
 AAAGGGATCT TCCAGTATGA CTACCATGAT AAAGTGAAGC CAAGAAAGAT ATTCCAATGG 1140
 AGACAGTTGG AAAACCTGTA CTTCAGAGAA AAGAAGTTT CCGTGGAAAGT TCATGACCCA 1200
 CGCAGGGCTT CAGTGACAAG GAGGACGTTT GGGCACAGCG GCATTGCACT GCACACGTGG 1260
 TATGCATGTC CGGCATTGAT CAAGTCCATC TGGGCTATGG CCATAAGCCA ACACCAGTTC 1320
 TATCTGGACA GAAAGCAGAG TAAGTCCAAA ATCCATGCG CACCCAGCCT GAGTGAGATC 1380
 40 GCCATCGACC TGACCCGAGAC GGGGACGCTG AAGACCTCGA AGCTGGCCAA CATGGGTAGC 1440
 AAGGGGAAGA TCATCAGCGG CAGCAGCGGC AGCCCTGCTG CTTCAAGGTT TCAGGAATCA 1500
 GATAGCTCGC AGTCGGCCAA GAAGGACATG CTGGCTGCC TGAAGTCCAG GCAGGAAGCT 1560
 CTGGAGGAAA CCCTCGCTCA GAGGCTGGAG GAACTGAAGA AGCTGTGTC CCGAGAAAGCT 1620
 GAGCTCACCG GCAAGCTGCC AGTAGAATAT CCCCTGGATC CAGGGGAGGA ACCACCCATT 1680
 45 GTTCGGAGAA GAATAGGAAC AGCCTCAAA CTGGATGAAC AGAAAATCCT GCCCAAAGGA 1740
 GAGGAAGCTG AGCTGGAACG CCTTGGAACGA GAGTTGCCA TTCAGTCCC GATTACGGAG 1800
 GCCGCCGCC GCCTAGCCAG TGACCCCAAC GTCAGAAAA AACTGAAGAA ACAAAAGGAA 1860
 ACCTCGTATC TGAATGCACT GAAGAAACTG CAGGAGATTG AAAATGCAAT CAATGAGAAC 1920
 CGCATCAAGT CTGGGAAGAA ACCCACCCAG AGGGCTTCGC TGATCATAGA CGATGGAAC 1980
 50 ATTGCCAGTG AAGACAGCTC CCTCTCAGAT GCCCTTGTTC TTGAGGATGA AGACTCTCAG 2040
 GTTACCAAGCA CAATATCCCC CCTACATTCT CCTCACAAGG GACTCCCTCC TCGGCCACCG 2100
 TCGCACAAAC GGCCTCCCTCC TCCCCAGTCC CTGGAGGGAC TCCGACAGAT GCACTATCAC 2160
 CGCAACGACT ATGACAAGTC ACCCATCAAG CCCAAATGT GGAGTGAGTC CTCTTTAGAT 2220
 GAAACCTATG AGAAGGTCAA GAAGGCTCC TCTCACAGCC ATTTCAGCAG CCACAAGCGC 2280
 55 TTCCCCAGCA CAGGAAGCTG TGCGGAAGCC GGCAGGAGGA GCAACTCCTT GCAGAACAGC 2340
 CCCATCCCGCG GCCTCCCGCA CTGGAACCTCC CAGTCCAGCA TGCCGTCCAC GCCAGACCTG 2400
 CGGGTCCCGGA GTCCCCACTA CGTCCATTCC ACGAGGTCGG TGGACATCAG CCCCACCCGA 2460
 CTGCACTGCC TCGCACTGCA CTTTAGGCAC CGGAGCTCCA GCCTGGAGTC CCAGGGCAAG 2520
 CTCCTGGGCT CGGAAAACGA CACCGGGAGC CCCGACTTCT ACACCCCGCG GACTCGTAGC 2580
 60 AGCAACGGCT CAGACCCAT GGACGACTGC TCGTCGTGCA CCAGCCACTC GAGCTCGGAG 2640
 CACTACTACC CGGCGCAGAT GAACGCCAAC TACTCCACGC TGGCCGAGGA CTCGCGTCC 2700
 AAGGCGCGCC AGAGGCAGAG GCAGCGGCAG CGGGCGGGCGG GCGCACTGGG CTCAGCCAGC 2760
 TCGGGCAGCA TGCCCAACCT GGCGGCGCGC GGGGGTGCAG GGGGCGGGGG GGGCGCGGG 2820
 GCGGGTGTGT ACCTGCAACAG CCAGACCCAG CCCAGCTCG AGTACCGCAT CAAGGAGTAC 2880
 65 CGGCTGTACA TCGAGGGCGG CGCCACGCCCT GTGGTGGTGC GCAGCCTGGA GAGCGACCAAG 2940
 GAGTGCCACT ACAGCGTCAA GGCTCAGTTA AAGACGTCCA ACTCCTACAC GGCGGGCGGC 3000
 CTGTTCAAGG AGAGCTGGCG CGGCGGGCGC GGCGACGAGG GCGACACGGG CCGCCTGACG 3060
 CGGTGCGAT CGCAGATCCT GCGGACTCCG TCGCTGGCC GCGAGGGCGC CCACGACAAG 3120

	GGCGCGGGCC	GTGCCGCCGT	CTCAGACGAG	CTGCGCCAGT	GGTACCAGCG	TTCCACCGCC	3180
	TCGCACAAGG	AGCACAGCG	CCTGTCGCAC	ACCAGCTCCA	CCTCCTCGGA	CAGCGGCTCG	3240
	CAGTACAGCA	CCTCCTCCCA	GAGCACCTTC	GTGGCGACA	GCAGGGTCAC	CAGGATGCC	3300
	CAGATGTGCA	AGGCCACGTC	AGCTGCCTTA	CCTCAAAGCC	AGAGAAGCTC	GACACCGTCA	3360
5	AGTGAATTG	GAGCCACCCC	CCCAAGCAGC	CCCCACACCA	TCCTAACCTG	GCAGACTGGA	3420
	GAAGCAACAG	AAAACCTACC	CATTCTGGAT	GGGTCTGAGT	CTCCACCTCA	CCAAAGTACT	3480
	GATGAATAGA	GGAGCTACAA	TGATAGCTGT	TTCCTGGATT	CCTCCCTCTA	TCCAGAACTA	3540
	GCTGATGTCC	AGTGGTACGG	GCAGGAAAAAA	GCCAAGCCCG	GGACACCTCGT	GTGAGCCAGC	3600
10	CCGGCCTAAT	CTGACCCCT	CAACGCCATT	CTGAGATCAC	CTCACTGCCT	CTCATTGCC	3660
	TTACCCAGAC	GCACCGTCAC	CTTGCACCAAG	CTTTGGCCCT	CAGCACTTTT	TTTCTCTGT	3720
	CTCCGATTC	CCTCCCCCTT	GAAAACCTGA	CTGAGGAGAC	ATTCTGGAAG	GTTCCGGTCC	3780
	CACTGTGTGT	CCCCTGGCGC	TCTTGCCTAT	AGAGAGCCAG	ACACCAATCC	TCAATGGCAC	3840
	CTTGGTGGCT	TCCCTCTGCC	ATGACAGCCC	CTAGGCCAGG	AACCATCAGG	GGGGCCAGCC	3900
15	GGCATCCAAT	TCCTGCGGAT	AAAGTAGCGTT	GGGAGAGAAC	GGGAAAGGGG	ACTTGGGTTA	3960
	CAGGGTGACC	CAGAAAGACG	ATTCACTGTG	GTCCAGCTG	CCACCCATAC	GTAGGCCAAC	4020
	CAAGCACTTC	ATGAAGAGGA	GGCCTCGTGG	CATACTTCACT	TTACACCTGA	AATATTCTT	4080
	GATGGGACAG	CTTGTGGGG	TGGCTATGGG	GGAAAGGGGAG	GTTGAGAAAG	GAAGTTCTCG	4140
	ACACCAGAAA	TGCATCGGAG	GACCACAAATC	AGTTCTATGC	TGCCAAAGAT	AAAAAATAAA	4200
	TAAAAAACATA	AAAATTAAG	AGGGGCGAAC	AGGAAGACAT	TCTTCTGCA	AGGAAATTTC	4260
20	TTTTAAATTTC	TGAACCTGCTA	CTACACACAA	GTGAAAGTCA	ACCTATGTA	AACTGGTGT	4320
	CTCTCTCTAG	CCCTCTCCCT	TACTGGCCCA	CTTCTCTCTC	CGTAGAGAGC	CTGAAAAGT	4380
	GCCCCAATGC	CACGGTAAAG	GGCAGGAAGT	CTTGGCTGGC	GTTGCTGACT	CACAGTCGCC	4440
	ATCCATCTGG	ACACAAAGAG	AGACCTGTGG	GAGTCATAGA	GGGTACTGTT	AGCCCCGGTC	4500
	CATGCAGGGG	GTTCAGCCGA	GCCCAAGACT	CAAAGCTGCT	TTCTTTCTAG	GATTGTTAGT	4560
25	AACGTAAGGT	GATAATGGCC	AAAAGTGGTT	CTCTCTCATT	AAACCAACCA	GTAAAAGCGT	4620
	ATCCTATTTC	TTTGCTATAAG	GTGTTTCATT	TTCGTTTTA	TGGGAAACCA	AGGGAAAAGC	4680
	ACATTGCGAT	CCATTCACTG	TTTAACTGTC	GTGGCTCATT	TTCTGTTCGT	TAGCACTTGT	4740
	GTGACAAAAG	AGCTCACTC	CGACTTCTCC	TATGTCAC	TTATTCCAAG	AACCCAACTA	4800
	TGCCCTTAGG	TAGAAAGATT	TGACTCGTGT	GTCTACTAGC	CAACAGGCAG	AGCAGGGTTG	4860
30	AAAAAAATAT	CAGCTCCCAA	AGGGCCCATG	TGTCTACATC	ATCAGTTACT	GTCACTGCC	4920
	ACATTGTTGT	GCAGATACCA	AAAGAGGAGG	AAAGAAGAAA	AAAATTAATG	TGTGGGAGCT	4980
	GCACGTTTAC	ATGTTTGAG	CTATGCTCA	ACACAACTG	GAAGCCATC	AATCTCAA	5040
	GGCCTAAAAA	ATACTTTTAT	AGTAACAACT	GCACGACTTT	AGTGGGTTA	TTCAAGATGG	5100
	CACAAAAAAGG	TTTCCCAGA	GGTGGTATGC	TGTGTTTTG	GCGCAAGTGG	TGGGGGGATG	5160
35	GGGGTGGGGG	TGGAATTTTT	TTCTCACTCT	AATGACTTCC	TATTGGAAAG	GCATTGACAG	5220
	CCAGGGACAG	GAGCCAGGGT	GGGGTAGTT	TTGTGGAAA	GCAGAACTGA	AGTTAGCTT	5280
	AGCATAAAAA	CAAAGAAAAA	TCTTCGCTTT	TCATGTATGT	GGAAATCCAAG	AATAACCATA	5340
	GGCTCTACCA	GACCAGGAGG	GTAAGGATGG	ACACTAAAAT	GAACACAAATA	CCAAGGTATT	5400
40	CCTTCTGCTG	CAGCCCTGGAG	ACCACCGAGA	GTCGAGCTGG	GGCACACACAA	CACCTGGCCG	5460
	GGACCCGGCA	GGGACAAAGC	GGGCCGTGGC	CTCCCTCCACC	AAGCTCTCT	AGACAATTCA	5520
	GGGCTCTGCT	TCCCCAGCTC	TCATGCATGGC	TGGACTGGT	ATTCCAGGGT	CGAGAAGGGA	5580
	TTCATATTCC	CAGAACGCTT	TAAGTGTACA	CCTGCAGGAT	AAAGAGATAC	CGGTTACATT	5640
	ATTAATATGAT	TCTAGGGATT	CACTGGGGGA	TATTTTTGTT	GCTTTACTT	TCATGGTTAG	5700
	AGCTACAAAG	AACAGTGTGATT	TTTTTTTTT	CTCCCTCC	CATTAGAAA	CATTATACAT	5760
45	TGGGCCATTTC	TCATGTTCTCC	CAAAGAAGAT	TCATGGATAG	TCAGACTGAA	CTGTGTGCAA	5820
	CAGGAAAAGT	AAAAGGGAA	AAGGCAGCTG	ATGAGGTTAC	ATGGTTACAT	GTTCTACATC	5880
	ATGCAGAGTA	GCTTGAATTC	TAGTCTGGAG	AAAACTGGAT	CAAGATTCTA	GCCCACCTGGA	5940
	GTTGCAAGGA	ATGAGAGGCA	AAAATTCTAA	AGATTGGGT	TATATTTC	ACTTGGGGGA	6000
	CAGAGAGAAA	TGGAGAGCAG	GAATTACAGT	TCCAACAAAC	ATCATGATAG	TCTGGTAGTC	6060
50	AAGACAGAGA	TTAAGTAAA	CAGGTTTAC	TGTTTAGCTG	AGTTCACTT	ATACAAAATG	6120
	TACATAAAAC	GTGAGCTCTT	TGAGACTGAC	ATGATTAATG	ATCACTGTG	TGGGAAATGA	6180
	TGTAGTTATT	GTACACAGAC	ACTTGCAAAAC	TCTTATCCC	TATTCTTTA	AAACAAAATA	6240
	AGGTGAAATT	CGAAGTCCTT	GGTCTGATAT	AAAGCCCTTA	TTGGATTCTT	CGGATGCGTA	6300
	AAAGAAAATTG	CCTGTTTCAG	CCAGAGACT	GGTAAAACAA	CATACATCAG	ACTATGTTGT	6360
55	GAGCCAGGTT	GATTTTTAT	TTTATTAT	GCAGGGAGT	GTTGAAACTG	TTAAAATTC	6420
	AATTGTTTT	CATTCACTG	TAGTTAGTT	CTAAATATAG	CAAACCCAT	CCAGGTGCTA	6480
	TCAGATGACC	AGTTACTGCT	TAGTTAACTA	GGTGTAAAGT	TTTACATATA	CATTAATTTC	6540
	AATAGTTAT	TACAAGTTGT	GTAAAATGGA	CTCTAGTTA	ATAATGGGG	AAAAAAGATT	6600
	AGGTGTTCC	TGAAACTGAC	TGAGAGCAT	GTAAAATGAT	TTTACTGGAT	TCTGTTCAAC	6660
60	TGTAAT	ATGAAAGATG	TACGTTGTAG	ACAAAGTGC	AGAATTAAAAA	AAAGAAATCT	6720
	GCTTTAATT	TATTCTTTTT	GTATTAAGAA	TTTGTATAGT	ATCTTTACAT	TTTGCAAAAC	6780
	AGTGTGTC	ACACTTATTA	AAGCATTTC	AAAATG			

65 ACG8 DNA sequence
 Gene name: ubiquitin E3 ligase SMURF2
 UniGene number: Hs.21806 (3' UTR only)
 Probeset Accession #: AA398243

Cont
A15
Nucleic Acid Accession #: AF301463 cluster
Coding sequence: 9-2255 (predicted start/stop codons underlined)

5	CCGGGGACAT	GTCTAACCCCC	GGAGGCCGGA	GGAACGGGCC	CGTCAAGCTG	CGCCTGACAG	60
	TAATCTGTGC	AAAAAACCTG	GTGAAAAAGG	ATTTTTCCG	ACTTCCTGAT	CCATTTGCTA	120
	AGGTGGTGGT	TGATGGATCT	GGGCAATGCC	ATTCTACAGA	TACTGTGAAG	AATACGCTTG	180
	ATCCAAAGTG	GAATCAGCAT	TATGACCTGT	ATATTGGAAA	GTCTGATTCA	GTATACGATCA	240
	GTGTATGGAA	TCACAAGAAG	ATCCATAAGA	AACAAGGTGC	TGGATTCTC	GGTTGTGTT	300
	GTCTTCTTTC	CAATGCCATC	AACCGCCTCA	AAGACACTGG	TTATCAGAGG	TTGGATTITAT	360
10	GCAAACACTGG	GCCAAATGAC	AATGATACAG	TTAGAGGACA	GATAGTAGTA	AGTCTTCAGT	420
	CCAGAGACCC	AATAGGCACA	GGAGGACAAG	TTGTGGACTG	CAGTCGTTA	TTTGATAACG	480
	ATTTACCCAGA	CGGCTGGAA	GAAAGGAGAA	CCGCCTCTGG	AAGAATCCAG	TATCTAAACC	540
	ATATAACAAG	AACTACCGAA	TGGGAGCGCC	CAACACGACC	GGCATCCGAA	TATTCTAGCC	600
	CTGGCAGACCC	TCTTAGCTGC	TTTGTGATG	AGAACACTCC	AATTAGTGGA	ACAAATGGTG	660
15	CAACATGTGG	ACAGTCTTC	GATCCCAGGC	TGGCAGAGAG	GAGAGTCAGG	TCACAACCGAC	720
	ATAGAAATTA	CATGAGCAGA	ACACATTTCAC	ATACTCCCTC	AGACCTACCA	GAAGGCTATG	780
	AACAGAGGAC	AACGCAACAA	GGCCAGGGTGT	ATTTCTTACA	TACACAGACT	GGTGTGAGCA	840
	CATGGCATGA	TCCAAGAGT	CCCAGGGATC	TTAGCAACAT	CAATTGTGAA	GAGCTTGGTC	900
	CGTGGCTTCTC	TGGATGGGAG	ATCCGTAATA	CGGCAACAGG	CAGAGTTTAT	TCCTGTTGACC	960
20	ATAAACACAG	AACAACACAA	TTTACAGATC	CTCGGCTGTC	TGCTAACTTG	CATTTAGTTT	1020
	TAATCGGCA	GAACCAATTG	AAAGACCAAC	AGCAACAGCA	AGTGGTATCG	TTATGTCCTG	1080
	ATGACACAGA	ATGCCTGACA	GTCCCAAGGT	ACAAGCGAGA	CCTGGTTCA	AAACTAAAAA	1140
	TTTGCGGCA	AGAACTTCC	CAACAAACAGC	CTCAGGCAAGG	TCATTGCCGC	ATTGAGGTTT	1200
	CCAGGGAAGA	GATTTTGAG	GAATCATATC	GACAGGTCAT	GAAAATGAGA	CCAAAAGATC	1260
25	TCTGGAAAGCC	ATTAATGATA	AAATTTCTG	GAGAAGAAGG	CCTTGACTAT	GGAGGCGTTG	1320
	CCAGGGAATG	GTGTATCTC	TTGTCACATG	AAATGTTGAA	TCCATACTAT	GGCCTCTTCC	1380
	AGTATTCAAG	AGATGATATT	TATACATTGC	AGATCAATCC	TGATTCTGCA	GTTAATCCGG	1440
	AACATTTCAC	CTATTCCAC	TTTGTGGAC	GAATAATGGG	AATGGCTGTG	TTTCATGGAC	1500
	ATTATATTGA	TGGTGGTTTC	ACATTGCCCT	TTTATAAGCA	ATTGCTTGGG	AAGTCATTA	1560
30	CCTTGGATGA	CATGGAGTTA	GTAGATCCGG	ATCTTCACAA	CAGTTAGTG	TGGATACTTG	1620
	AGAATGATAT	TACAGGTGTT	TTGGACCATA	CCTCTGTGT	TGAACATAAT	GCATATGGTG	1680
	AAATTATTCA	GCATGAACCT	AAACCAATG	GCAAAAGAT	CCCTGTTAAT	GAAGAAAATA	1740
	AAAAAGAATA	TGTCAGGCTC	TATGTGAACT	GGAGATTTT	ACGAGGCATT	GAGGCTCAAT	1800
	TCTTGGCTCT	GCAGAAAGGA	TTTAATGAAG	TAATTCCACA	ACATCTGCTG	AAGACATTG	1860
35	ATGAGAAGGA	GTTAGAGCTC	ATTATTTGTG	GACTTGGAAA	GATAGATGTT	AATGACTGG	1920
	AGGTAAACAC	CCGGTTAAAA	CACTGTACAC	CAGACAGCAA	CATTGTCAAA	TGGTTCTGGA	1980
	AAGCTGTGGA	GTTTTTGAT	GAAGAGCGAC	GAGCAAGATT	GCTTCAGTTT	GTGACAGGAT	2040
	CCTCTCGAGT	GCCTCTGCAG	GGCTTCAAAG	CATTGCAAGG	TGCTGCAGGC	CCGAGACTCT	2100
	TTACCATACA	CCAGATTGAT	GCCTGCACTA	ACAACCTGCC	GAAAGCCCAC	ACTTGCTTCA	2160
40	ATCGAATAGA	CATTCCACCC	TATGAAAGCT	ATGAAAAGCT	ATATGAAAAG	CTGCTAACAG	2220
	CCATTGAAGA	AACATGTGGA	TTTGCTGTGG	<u>AATGACAAGC</u>	TTCAAGGATT	TACCCAGGAC	

45 ACN1 DNA sequence
Gene name: ESK
Unigene number: Hs.30089
Probeset Accession #: AA410480
CAT cluster #: 96816_1

50 Coding sequence: Partial sequence, possible frameshift. Predicted stop codon underlined.

55	CTCCACTATG	GACAGAGCCT	CCACTGAGCT	GTCGCCTGCC	CGCCACATAC	CCAGCTGACA	60
	GGGGCCCCCG	AGAGCCATGC	AGCTGTGCTG	GGGTGATCCT	GGGCTTCCTC	CTGTTCCGAG	120
	GCCACAACTC	CCAGCCACAA	ATGACCCAGA	CCTCTAGCTC	TCAGGGAGGC	CTTGGCGGTC	180
	TAAGTCTGAC	CACAGAGCA	GTTCCTTCA	ACCCAGGATA	CATCCCTTCC	TCAGAGGCTA	240
	ACAGGCCAAG	CCATCTGTCC	AGCACTGGTA	CCCCAGGCCG	AGGTGTCCCC	AGCAGTGGAA	300
	GAGACGGGAGG	CACAAGCAGA	GACACATTTC	AAACTGTTCC	CCCCAATTCA	ACCACCATGA	360
	GCCTGAGCAT	GAGGGAAAGAT	GCGACCATCC	TGCCCAGCCC	CACGTCAAGAG	ACTGTGCTCA	420
	CTGTGGCTGC	ATTGGGTGTT	ATCAGCTTC	TTGTCATCCT	GGTGGTTGTG	GTGATCATCC	480
60	TAGTTGGTGT	GGTCAGCCTG	AGGTTCA	AGT	GTCGGAAGAG	CAAGGAGTCT	540
	AGAAACCTGG	AGAGCGGGAG	GAGAAGGTGG	GACATAGGAG	GGAACCCCTAC	CCCTGGAATT	600
	GACTTGGACT	CTGGGTCTGG	AAACGCAAGT	TCAAATCTCA	CCCATTGTT	CCAGGAGGTT	660
	CTGGCTGATG	AGGAAGACCC	TTGTTGGAGG	GGGGCCCCCTG	CCCTCCAGTT	AGCTCTTCTT	720
	GGCTGTGCTG	GGTTCATGT	TCTCATGAG	GGATGGAGTC	GGGTGGAGAG	CCCACCTCTGG	780
65	CTAGGGGGCG	GCAGGCTGAG	AGCTCACCTG	TTCAGCAGAG	AAGTGGAACT	CACTTTGCTC	840
	CTGGAGCCTC	CCTACACAGT	ACTTATCTGG	GAAGGGAATG	CCGGACTCTT	GTTGGCCCT	900
	TTGTCCCCCC	GACTGGCCCC	CTTCGCCG				

ACJ2 DNA sequence

Gene name: Complement component C1q receptor

Unigene number: Hs.97199

Probeset Accession #: AA487558

Nucleic Acid Accession #: NM_012072

Coding sequence: 149-2107. Predicted start/stop codons underlined

10	AAAGCCCTCA	GCCTTTGTGT	CCTTCTCTGC	GCCGGAGTGG	CTGCAGCTCA	CCCCTCAGCT	60
	CCCCTGGGG	CCCAGCTGGG	AGCCGAGATA	GAAGCTCCTG	TCGGCCTGG	GCTTCTCGCC	120
	TCCCGCAGAG	GGCCACACAG	AGACCGGGAT	<u>GGCCACCTCC</u>	ATGGGCCTGC	TGCTGCTGCT	180
	GCTGCTGTC	CTGACCCAGC	CCGGGGCGGG	GACGGGAGCT	GACACGGAGG	CGGTGGCTCG	240
15	CGTGGGGACC	GCCTGCTACA	CGGGCCACTC	GGGCAAGCTG	AGCGCTGCCG	AGGCCAGAA	300
	CCACTGCAAC	CAGAACGGGG	GCAACCTGGC	CACTGTGAAG	AGCAAGGAGG	AGGCCAGCA	360
	CGTCCAGCGA	GTACTGCCC	AGTCCTGAG	GCGGGAGGCA	GCCCTGACGG	CGAGGATGAG	420
	CAAGTTCTGG	ATTGGGCTCC	AGCGAGAGAA	GGGCAAGTGC	CTGGACCTA	GTCTGCGCT	480
	GAAGGGCTTC	AGCTGGTGG	GCGGGGGGGA	GGACACGCTC	TACTCTAACT	GGCACAAAGGA	540
20	GCTCCGGAAC	TCGTGCATCT	CCAAGCGCTG	TGTGTCTCTG	CTGCTGGACC	TGTCCCAGCC	600
	GCTCTTCCC	AACCGCTCTG	CCAAGTGGTC	TGAGGGCCCC	TGTGGGAGCC	CAGGCTCCCC	660
	CGGAAGTAAC	ATTGAGGGCT	TCGTGTGCAA	GTTCAGCTTC	AAAGGCATGT	GCCGGCCTCT	720
	GGCCCTGGGG	GGCCCAGGTC	AGGTGACCTA	CACCACCCCC	TTCCAGACCA	CCAGTTCCCTC	780
	CTTGGAGGCT	GTGCCCTTTC	CCTCTGCGGC	CAATGTAGCC	TGTGGGAGAAG	GTGACAAGGA	840
25	CGAGACTCAG	AGTCATTATT	TCCTGTGCAA	GGAGAAGGCC	CCCGATGTGT	TCGACTGGGG	900
	CAGCTCGGGC	CCCCTCTGTG	TCAGCCCCAA	GTATGGCTGC	AACTTCAACA	ATGGGGCTG	960
	CCACCAGGAC	TGCTTTGAAG	GGGGGGATGG	CTCCCTCCTC	TGCGGCTGCC	GACCAGGATT	1020
	CCGGCTGCTG	GATGACCTGG	TGACCTGTGC	CTCTCGAAAC	CCTTGCAGCT	CCAGCCCCATG	1080
30	TCTGTGGGGGG	GCCACGTGCG	TCTGGGACC	CCATGGGAAA	AACTACACGT	GCCGCTGCC	1140
	CCAAGGGTAC	CAGCTGACT	CGAGTCAGCT	GGACTGTGTC	GACGGTGGAT	AATGCCAGGA	1200
	CTCCCCCTGT	GGCCAGGAGT	GTGTCAACAC	CCCTGGGGC	TTCCGCTGCC	AATGCTGGGT	1260
	TGGCTATGAG	CGGGGCGGTC	CTGGAGAGGG	GGCCTGTCAG	GATGTGGATG	AGTGTGCTCT	1320
35	GGGTCGCTCG	CCTTGCCTCC	AGGGCTGCAC	CAACACAGAT	GGCTCATTTC	ACTGCTCCTG	1380
	TGAGGAGGGC	TACGTCTGG	CGGGGGAGGA	CGGGACTCAG	TGCCAGGACG	TGGATGAGTG	1440
	TGTGGGCCCC	GGGGGCCCCC	TCTGCACAG	CTTGTGCTTC	AACACACAAG	GGTCCTTCCA	1500
	CTGTGGCTGC	CTGCCAGGCT	GGGTGCTGGC	CCCAAATGGG	GTCTCTTGCA	CCATGGGGCC	1560
40	TGTGTCTCTG	GGACCACCAT	CTGGGGCCCCC	CGATGAGGAG	GACAAAGGAG	AGAAAGAAGG	1620
	GAGCACCGTG	CCCCGCGCTG	CAACAGCCAG	TCCCACAAAG	GGCCCCGAGG	GCACCCCCAA	1680
	GGCTACACCC	ACCACAAGTA	GACCTTCGCT	GTCATCTGAC	GCCCCCATCA	CATCTGCC	1740
	ACTCAAGATG	CTGGGCCCCA	GTGGGCTCTC	AGGCCTCTG	AGGGAGGCCA	GCATCCATCA	1800
45	CGCCACAGCT	GCCTCTGGC	CCCAGGAGCC	TGCAGGTGGG	GACTCTCCG	TGGCCACACA	1860
	AAACAACGAT	GGCACTGACG	GGCAAAAGCT	GCTTTTATT	TACATCTTAG	GCACCGTGGT	1920
	GGCCATCTTA	CTCCTGCTGG	CCCTGGCTCT	GGGGCTATG	GTCTATCGCA	AGCGGAGAGC	1980
	GAAGAGGGAG	GAGAAGAAGG	AGAAGAAGCC	CCAGAATGCG	GCAGACAGTT	ACTCCTGGGT	2040
50	TCCAGAGCGA	GCTGAGAGCA	GGGCCATGGG	GAACCACTAC	AGTCCGACAC	CTGGGACAGA	2100
	CTGCTGAAAG	TGAGGTTGGCC	CTAGAGACAC	TAGAGTCACC	AGCCACCATC	CTCAGAGCTT	2160
55	TGAACTCCCC	ATTCCAAAGG	GGCACCCACA	TTTTTTGAA	AGACTGGACT	GGAATCTTAG	2220
	CAAACAATTG	TAAGTCTCCT	CCTTAAAGGC	CCCTTGGAAC	ATGCAGGTAT	TTTCTACGGG	2280
	TGTTTGATGT	TCCTGAAGTG	GAAGCTGTGT	GTTGGCGTGC	CACGGTGGGG	ATTTCGTGAC	2340
	TCTATAATGA	TTGTTACTCC	CCCTCCCTT	TCAAATTCCA	ATGTGACCAA	TTCCGGATCA	2400
60	GGGTGTGAGG	AGGCTGGGGC	TAAGGGGCTC	CCCTGAATAT	CTTCTCTGCT	CACTTCCACC	2460
	ACTTAAGAGG	AAAAGGTGAG	TTGCTCATGC	TGATTAGGAT	TGAAATGATT	TGTTTCTCTT	2520
	CCTAGGATGA	AAACTAAATC	AATTAATTAT	TCAATTAGGT	AAGAAAGATCT	GGTTTTTTGG	2580
	TCAAAGGGAA	CATGTTCGGA	CTGGAAACAT	TTCTTACAT	TTGCATTCTC	CCATTTCGCC	2640
	AGCACAAGTC	TTGCTTAATG	TGTAACTGTT	GACATCCTCC	AGAATGGCCA	GAAGTGAAT	2700
65	TAACCTCTTA	GGTGGCAAGG	AGGCAGGAAG	TGCCTCTTTA	GTTCTTACAT	TTCTAAATAGC	2760
	CTTGGGTTTA	TTTGCAAGG	AAGCTGAAA	AATATGAGAA	AAGTTGCTTG	AAGTGCATTA	2820
	CAGGTGTTTG	TGAAGTCACA	TAATCTACGG	GGCTAGGGCG	AGAGAGGCCA	GGGATTTGTT	2880
	CACAGATACT	TGAATTAATT	CATCCAAATG	TACTGAGGTT	ACCACACACT	TGACTACCGA	2940
	TGTGATCAAC	ACTAACAGG	AAACAAATT	AAGGACAACC	TGTCTTGTGAG	CCAGGGCAGG	3000
70	CCTCAGACAC	CCTGCCTGTG	GCCCCGCC	CACTTCATCC	TGCCCCGAAT	GCCAGTGTCTC	3060
	CGAGCTCAGA	CAGAGGAAGC	CCTGCAGAAA	GTTCCATCAG	GCTGTTTGT	AAAGGATGTG	3120
	TGAACGGGGAG	ATGATGCACT	GTGTTTTGAA	AGTTGTCTT	TTAAAGCATT	TTAGCACAGT	3180
	TCATAGTCCA	CAGTTGATGC	AGCATCCTGA	GATTTAAAT	CCTGAAGTGT	GGGTGGCGCA	3240
	CACACCAAGT	AGGGAGCTAG	TCAGGCAGTT	TGCTTAAGGA	ACTTTTGTTC	TCTGTCTCTT	3300
	TTCCCTAAAA	TTGGGGTAA	GGAGGAAGG	AAGAGGAAA	GAGATGACTA	ACTAAAATCA	3360
	TTTTTACAGC	AAAAACTGCT	CAAAGCCATT	TAATTATAT	CCTCATTTTA	AAAGTTACAT	3420
	TTGCAAATAT	TTCTCCCTAT	GATAATGCAG	TCGATAGTGT	GCACCTTTTC	TCTCTCTCTC	3480
	TCTCTCTCAC	ACACACACAC	ACACACACAC	ACACACACAC	AGAGACACGG	CACCATTCTG	3540
	CCTGGGGCAC	TGGAACACAT	TCCTGGGGT	CACCGATGGT	CAGAGTCACT	AGAAGTTACC	3600

55 TGAGTATCTC TGGGAGGCCT CATGTCCTCCT GTGGGCTTT TACCACCACT GTGCAGGAGA 3660
 ACAGACAGAG GAAATGTGTC TCCCTCCAAG GCCCCAAAGC CTCAGAGAAA GGGTGTTCCT 3720
 GGTGTCAGG GGTAAACT CTTGCCAGTT TTGAAATATA GATGCTATGG TTCAGATTGT 3780
 5 TTTAAATAGA AAACTAAAGG GGCAAGGGAA GTGAAAGGAA AGATGGAGGT TTTGTGCCGC 3840
 TCGATGGGGC ATTTGGAAC TCTTTTAAAGT GTCATCTCAT GGTCTCCAGT TTTCAGTTGG 3960
 AACTCTGGTG TTTAACACTT AAGGGAGACA AAGGCTGTGT CCATTGGA 4020
 10 GGCACAGAGA CTCTAGGTGA TGTGTGAAGC TGGGCAGTCT GTGGTGTGGA 4080
 CTGTCTGGCC ATTCAGAGGA TTCTAAAGAC ATGGCTGGAT GCGCTGCTGA CCAACATCAG 4140
 15 CACTAAATA AATGCAAATG CAACATTTCT CCCTCTGGC CTTGAAAATC CTTGCCCTTA 4200
 TCATTTGGGG TGAAGGAGAC ATTTCTGTCC TTGGCTTCCC ACAGCCCCAA CGCAGTCITGT 4260
 GTATGATTCC TGGGATCCAA CGAGCCCTCC TATTTTACA TGCTCTGTAT TGCTCTCAC 4320
 GCCCAGGCC ATCGTCTGTCT CTCGAATGC AGCCCTGTC TCAACAAACAG GGAGGTCTG 4380
 20 GAACCCCTCT GTGGAACCCA CAAGGGAGA AATGGGTGAT AAAGAATCCA GTTCTCTCAA 4440
 15 ACCTCCCTG GCAGGCTGGG TCCCTCTCCCT GCTGGGTGGT GCTTCTCTT GCACACCACT 4500
 CCCACCACGG GGGGAGAGCC AGCAACCCAA CCAGACAGCT CAGGTTGTGC ATCTGATGGA 4560
 AACCACTGGG CTCAAACACG TGCTTTATTTC TCCTGTTAT TTTGCTGTT ACTTTGAAGC 4620
 ATGGAATTC TTGTTGGGG GATCTTGGGG CTACAGTAGT GGGTAAACAA ATGCCACCG 4680
 25 GCCAAGAGGC CATTAAACAA TCGTCCTTGT CCTGAGGGGC CCCAGCTTGC TCGGGCGTGG 4740
 CACAGTGGGG AATCCAAGGG TCACAGTATG GGGAGAGGTG CACCTGCCA CCTGCTAACT 4800
 TCTCGCTAGA CACAGTGTGCTT CTGCCAGGT GACCTGTTCA GCAGCAGAAC AAGCCAGGGC 4860
 CATGGGGACG GGGGAAGTTT TCACTTGGAG ATGGACACCA AGACAATGAA GATTGTTGT 4920
 30 CCAAATAGGT CAATAATTCT GGGAGACTCT TGAAAAAAAC TGAATATATT CAGGACCAAC 4980
 TCTCTCCCTC CCCTCATCCC ACATCTCAA GCAGACAATG TAAAGAGAGA ACATCTCAC 5040
 CACCCAGCTC GCCATGCCA CTCAATTCTG AATTTCAGGT GCCATCACTG CTCTTCTT 5100
 CTTCTTGTC ATTTGAGAAA GGATGCAGGA GGACAATTCC CACAGATAAT CTGAGGAATG 5160
 35 CAGAAAAAAC AGGGCAGGAC AGTTATCGAC AATGCATTAG AACTTGGTGA GCATCTCTG 5220
 TAGAGGGACT CCACCCCTGC TCAACAGCTT GGCTTCCAGG CAAGACCAAC CACATCTGGT 5280
 CTCTGCCCTTC GGTGGCCAC ACACCTAAGC GTCATCGTC TTGCCATAGC ATCATGATGC 5340
 AACACATCTA CGTGTAGCAC TACGACGTTA TGTTGGGTA ATGTGGGGAT GAACTGCATG 5400
 40 AGGCTCTGAT TAAGGATGTG GGGAAAGTGGG CTGCGGTAC TGTCGGCCTT GCAAGGCCAC 5460
 CTGGAGGCCT GTCTGTGTC CAGTGGTGGA GGAGCAAGGC TTCAGGAAGG GCCAGGCCACA 5520
 TGCCATCTTC CCTGCGATCA GGCAAAAAAG TGGAATTAAA AAGTCAAACC TTTATATGCA 5580
 TGTGTTATGT CCATTTGCA GGATGAACTG AGTTTAAAG AATTTTTTTT TCTCTTCAAG 5640
 TTGCTTTGTC TTTTCCATCC TCATCACAAGT CCCTGTTTG AGTGTCTTAT CCCTGAGCAA 5700
 45 TCTTCGATG GATGGAGATG ATCATTAGGT ACTTTGTTT CAACCTTAT TCCGTAAAT 5760
 ATTCTGTGAA AAACAGAGG AACAGAGATG AGATTGACA AAAAAAAATT GAATTAAAAA 5820
 TAACACAGTC TTTTAAAC TAACATAGGA AAGCCTTCC TATTATTTCT CTTCTTAGCT 5880
 TCTCCATTGT CTAAATCAGG AAAACAGGAA AACACAGCTT TCTAGCAGCT GCAAATGGT 5940
 50 TTAATGCCCT CTACATATT CCATCACCTT GAACAATAGC TTTAGTTGG GAATCTGAGA 6000
 TATGATCCCA GAAAACATCT GTCTCTACTT CGGCTGCAA ACCCATGGTT TAAATCTATA 6060
 TGTTTGTGC ATTTCTCAA CTAAAAATAG AGATGATAAT CGAATTCTC CATATATTCA 6120
 CTAATCAAAG ACACATTCTT CATACTAGAT TCCGAGACA AATACTCACT GAAGGGCTTG 6180
 55 TTAAAAATA AATTGTGTTT TGGCTGTTC TTGTAGATAA TGCCCTTCTA TTTTAGGTAG 6240
 45 AAGCTCTGGA ATCCCTTAT TGTGCTGTG CTCTTATCTG CAAGGTGGCA ACCAGTTCTT 6300
 TTCAGCAGAT TTTGCCACT ATTCCTCTGA GCTGAAGTTC TTGCTAGA TTGGCTTAA 6360
 GCTGGAATTA GATCCCTGCA AAGGCTTGTCT CTGTGATGTC AGATGTAATT GTAAATGTCA 6420
 GAAATCAACT CATGAATGCT AATGAGAAT GTAAGTATT TAAATGTGT GTATTTCAA 6480
 60 TTGTTTGAC TAATTCTGGA ATTACAAGAT TTCTATGCGA GATTACCTT CATCCTGTGC 6540
 ATGTTCCA AACTGTGAGG AGGGAGGGCT CAGAGATCGA GCTTCTCTC TGAGTTCTAA 6600
 CAAAATGGTG CTTTGAGGGT CAGCCTTCTAG GAAGGTGCAG CTTTGTGTC CTTTGAGCTT 6660
 TCTGTTATGT GCCTATCCTA ATAAACTCTT AAACACATT

55 ACJ3 DNA sequence

Gene name: FLT1 vascular endothelial growth factor receptor

Unigene number: Hs.138671

Probeset Accession #: AA047437

Nucleic Acid Accession #: NM_002019

Coding sequence: 250-4266 (predicted start/stop codons underlined)

65 GCGGACACTC CTCTCGGCTC CTCCCCGGCA GCGGGCGCGG CTGGAGCGG GCTCCGGGGC 60
 TCGGGTGCAG CGGCCAGCGG GCCTGGCGGC GAGGATTACC CGGGGAAGTG GTTGTCTCCT 120
 GGCCTGGAGCC GCGAGACGGG CGCTCAGGGC CGGGGGCGGG CGCGCGCAGA CGAGAGGACG 180
 GACTCTGGCG GCCGGGTGCT TGGCCGGGG AGCGCGGGCA CGGGCGAGC AGGCCCGCTC 240
 GCGCTCACCA TGGTCAGCTA CTGGGACACC GGGTCTCTGC TGTGCGCGCT GCTCAGCTGT 300
 CTGCTTCTCA CAGGATCTAG TTCAAGGTTCA AAATTAAAAG ATCTGAACT GAGTTTAAA 360
 GGCACCCAGC ACATCATGCA AGCAGGCCAG ACACAGCATC TCCAATGCA GGGGAAAGCA 420

	GCCCATAAAT	GGTCTTGCC	TGAAATGGTG	AGTAAGGAAA	GCGAAAGGCT	GAGCATAACT	480
	AAATCTGCCT	GTGGAAGAAA	TGGCAAAACAA	TTCTGCAGTA	CTTTAACCTT	GAACACAGCT	540
	CAAGCAAAC	ACACTGGCTT	CTACAGCTGC	AAATATCTAG	CTGTACCTAC	TTCAAAGAAG	600
	AAGGAAACAG	AATCTGCAAT	CTATATATTT	ATTAGTGATA	CAGGTAGACC	TTTCGTAGAG	660
5	ATGTACAGTG	AAATCCCGA	AATTATACAC	ATGACTGAAG	GAAGGGAGCT	CGTCATTCCC	720
	TGCCGGGTTA	CGTCACCTAA	CATCACTGTT	ACTTTAAAAA	AGTTTCCACT	TGACACTTTG	780
	ATCCCTGATG	GAAAACGCAT	AATCTGGGAC	AGTAGAAAGG	GCTTCATCAT	ATCAAATGCA	840
	ACGTACAAAG	AAATAGGGCT	TCTGACCTGT	GAAGCAACAG	TCAATGGGCA	TTTGTATAAG	900
10	ACAAACTATC	TCACACATCG	ACAAACCAAT	ACAATCATAG	ATGTCCAAT	AAGCACACCA	960
	CGCCCAGTCA	AATTACTTAG	AGGCCATACT	CTTGTCTCA	ATTGTAUTGC	TACCACTCCC	1020
	TTGAACACGA	GAGTTCAAAT	GACCTGGAGT	TACCCGTATG	AAAAAAATAA	GAGAGCTTCC	1080
	GTAAGGCAC	GAATTGACCA	AAGCAATTCC	CATGCCAAC	TATTCTACAG	TGTTCTTACT	1140
	ATTGACAAAA	TGCAGAACAA	AGACAAAGGA	CTTTATACTT	GTCGTGTAAG	GAGTGGACCA	1200
15	TCATTCAAAT	CTGTTAACAC	CTCAGTGCAT	ATATATGATA	AAGCATTCTAT	CACTGTGAAA	1260
	CATCGAAAAC	AGCAGGTGCT	TGAAACCGTA	GCTGGCAAGC	GGTCTTACCG	GCTCTCTATG	1320
	AAAGTGAAGG	CATTCCCTC	GCCGGAAGTT	GTATGGTTAA	AAGATGGGTT	ACCTGCGACT	1380
	GAGAAATCTG	CTCGCTATT	GACTCGTGC	TACTCGTTAA	TTATCAGGA	CGTAACATGAA	1440
	GAGGATGCG	GGATTATAC	AATCTTGCTG	AGCATAAAAC	AGTCAAATGT	GTAAACAAAC	1500
20	CTCACTGCCA	CTCTAATTGT	CAATGTGAAA	CCCCAGATT	ACGAAAAGGC	CGTGTCTCG	1560
	TTTCCAGACC	CGGCTCTCTA	CCCACTGGGC	AGCAGACAAA	TCCTGACTTG	TACCGCATAT	1620
	GGTATCCCTC	AACCTACAAT	CAAGTGGITC	TGGCACCCCT	GTAACCATAA	TCATTCCGAA	1680
	GCAAGGTGTG	ACTTTGGTTC	CAATAATGAA	GAGTCCTTTA	TCCTGGATGC	TGACAGCAAC	1740
	ATGGGAAACA	GAATTGAGAG	CATCACTCAG	CGCATGGCAA	TAATAGAAGG	AAAGAATAAG	1800
25	ATGGCTAGCA	CCTTGGTTGT	GGCTGACTCT	AGAATTCTG	GAATCTACAT	TTGCATAGCT	1860
	TCCAATAAAG	TTGGGACTGT	GGGAAGAAC	ATAAGCTTT	ATATCACAGA	TGTGCCAAT	1920
	GGGTTTCATG	TTAACTTGG	AAAAATGCCG	ACCGAAGGAG	AGGACCTGAA	ACTGTCTTGC	1980
	ACAGTTAACAA	AGTTCTTATA	CAGAGACGTT	ACTTGGATTT	TACTGCGGAC	AGTTAAATAAC	2040
	AGAACAAATGC	ACTACAGTAT	TAGCAAGCAA	AAAATGGCA	TCATAAAGGA	GCACCTCATC	2100
30	ACTCTTAATC	TTACCATCAT	GAATGTTTCC	CTGCAAGATT	CAGGCACCTA	TGCCTGCAGA	2160
	GCCAGGAATG	TATACACAGG	GGAAAGAAC	CTCCAGAAGA	AAGAAATTAC	AATCAGAGAT	2220
	CAGGAAGCAC	CATACTCCT	GGCAAAACCTC	AGTGTACACA	CAGTGGCCAT	CAGCAGTTC	2280
	ACCACTTTAG	ACTGTCTATC	TAATGGTGT	CCCGAGCCTC	AGATCACTTG	GTAAACAAAC	2340
	AACCACAAAA	TACAACAAAGA	GCCTGGAATT	ATTTTACGGAC	CAGGAAGCAG	CACGCTGTTT	2400
35	ATTGAAAGAG	TCACAGAAGA	GGATGAAGGT	GTCTATCACT	GCAAAGCCAC	CAACCAGAAG	2460
	GGCTCTGTGG	AAAGTTCAGC	ATACCTCACT	GTTCAAGGAA	CCTCGGACAA	GTCTAATCTG	2520
	GAGCTGATCA	CTCTAACATG	CACCTGTGTG	GTCGCGACTC	TCTTCTGGCT	CCTATTAAACC	2580
	CTCCTTATCC	AAAAATGAA	AAGGTCTTCT	TCTGAAATAA	AGACTGACTA	CCTATCAATT	2640
	ATAATGGACC	CAGATGAAGT	TCCCTTGGAT	GAGCACTGTG	AGCGGCTCCC	TTATGATGCC	2700
40	AGCAAGTGGG	AGTTTGGCCCG	GGAGAGACTT	AAACTGGCA	AATCACTTGG	AAGAGGGGCT	2760
	TTTGGAAAAG	TGGTTCAAGC	ATCAGCATT	GGCATTAAAGA	AATCACCTAC	GTGCCGACT	2820
	GTGGCTGTGA	AAATGCTGAA	AGAGGGGCC	ACGGCCAGCG	AGTACAAAGC	TCTGATGACT	2880
	GAGCTAAAAAA	TCTTGACCCA	CATTGGCCAC	CATCTGAACG	TGGTTAACCT	GCTGGGAGCC	2940
	TGCACCAAGC	AAGGAGGGCC	TCTGATGGTG	ATTGTTGAAT	ACTGCAAATA	TGGAAATCTC	3000
	TCCAACCTACC	TCAAGAGCAA	ACGTGACTTA	TTTTTCTCA	ACAAGGATGC	AGCACTACAC	3060
45	ATGGAGCCTA	AGAAAGAAAA	AATGGAGCCA	GGCCTGGAAC	AAGGCAAGAA	ACCAAGACTA	3120
	GATAGCGTC	CCAGCAGCGA	AAGCTTTGCG	AGCTCCGCT	TTCAGGAAGA	TAAAAGTCTG	3180
	AGTGTATGTT	AGGAAGAGGA	GGATTCTGAC	GGTTTCTACA	AGGAGCCCAT	CACTATGGAA	3240
	GATCTGATT	CTTACAGTTT	TCAAGTGGCC	AGAGGCATGG	AGTTCCTGTC	TTCCAGAAAG	3300
	TGCATTCTATC	GGGACCTGGC	AGCGAGAAC	ATTCTTTAT	CTGAGAACAA	CGTGGTGAAG	3360
50	ATTGTGATT	TTGGCCTTGC	CCGGATATT	TATAAGAAC	CCGATTATGT	GAGAAAAGGA	3420
	GATACTCGAC	TTCCCTGAA	ATGGATGGCT	CCCGAATCTA	TCTTGTGACAA	AATCTACAGC	3480
	ACCAAGAGCG	ACGTGTGGTC	TTACGGAGTA	TTGCTGTGGG	AAATCTTCTC	CTTAGGTGGG	3540
	TCTCCATACC	CAGGAGTACA	AATGGATGAG	GACTTTTGCA	GTCCGCTGAG	GGAAGGCATG	3600
	AGGATGAGAG	CTCCTGAGT	CTCTACTCCT	GAATCTATC	AGATCATGCT	GGACTGCTGG	3660
55	CACAGAGACC	AAAAGAAAG	GCAGAAGATT	GCAGAACTTG	TGGAAAAAAACT	AGGTGATTG	3720
	CTTCAAGCAA	ATGTACAAACA	GGATGGTAA	GAATCATCC	CAATCAATGC	CATACTGACA	3780
	GGAAATAGTG	GGTTTACATA	CTCAACTCCT	GCCTTCTCTG	AGGACTTCTT	CAAGGAAAGT	3840
	ATTCAGCTC	CGAAGTTAA	TTCAAGGAAGC	TCTGTATGATG	TCAGATATGT	AAATGCTTTC	3900
	AAGTTCATGA	GCCTGAAAG	AATCAAAACC	TTTGAAGAAC	TTTACCGAA	TGCCACCTCC	3960
60	ATGTTTGATG	ACTTCAGGG	CGACAGCAGC	ACTCTGTTGG	CCTCTCCCAT	GCTGAAGCGC	4020
	TTCACCTGGA	CTGACAGCAA	ACCAAGGCC	TCGCTCAAGA	TTGACTTGTG	AGTAACCACT	4080
	AAAAGTAAGG	AGTCGGGGCT	GTCTGTGTC	ACGAGGCCCA	GTTCTGCCA	TTCCAGCTGT	4140
	GGGCACGTCA	GGCAAGGCCA	GCGCAGGTTC	ACCTACGACC	ACCGTGAGCT	GGAAAGGAAA	4200
	ATCGCGTGT	GCTCCCGGCC	CCCGACTAC	AACTCGTGG	TCCCTGACTC	CACCCCAACCC	4260
65	ATCTAGAGTT	TGACACGAAG	CCTTATTTCT	AGAAGCACAT	GTGTATTTAT	ACCCCCAGGA	4320
	AACTAGCTTT	TGCCAGTATT	ATGCATATAT	AAGTTACAC	CTTATCTTT	CCATGGGAGC	4380
	CAGCTGCTTT	TTGTGATT	TTAATAGTG	CTTTTTTTT	TTGACTAACA	AGAATGTAAC	4440
	TCCAGATAGA	GAAATAGTGA	CAAGTGAAGA	ACACTACTGC	TAATCCTCA	TGTTACTCAG	4500

	GCA	CCACCTCAGG	4560				
	GCACCCAGGA	CCAGTTGAT	TGAGGAGCTG	CACTGATCAC	CCAATGCATC	ACGTACCCC	4620
	CTGGGCCAGC	CCTGCAGCCC	AAAACCCAGG	GCAACAAAGCC	CGTTAGCCCC	AGGGGATCAC	4680
5	TGGCTGGCCT	GAGCAACATC	TCGGGAGTCC	TCTAGCAGGC	CTAACAGACATG	TGAGGAGGAA	4740
	AAGGAAAAAA	AGCAAAAGC	AAGGGAGAAA	AGAGAAACCG	GGAGAAGGCA	TGAGAAAGAA	4800
	TTTGAGACGC	ACCATGTGGG	CACGGAGGGG	GACGGGGCTC	AGCAATGCCA	TTTCAGTGGC	4860
	TTCCAGCTC	TGACCCCTCT	ACATTTGAGG	GCCCAGCCAG	GAGCAGATGG	ACAGCGATGA	4920
	GGGGACATT	TCTGGATTCT	GGGAGGCAAG	AAAAGGACAA	ATATCTTTT	TGGAACTAAA	4980
10	GCAAATTTA	GACCTTAC	TATGGAAGTG	GTTCTATGTC	CATTCTCATT	CGTGGCATGT	5040
	TTTGATTTGT	AGCACTGAGG	GTGGCACTCA	ACTCTGAGCC	CATACTTTG	GCTCCTCTAG	5100
	TAAGATGCAC	TGAAAACCTA	GCCAGAGTTA	GGTTGTCTCC	AGGCCATGAT	GGCCTTACAC	5160
	TGAAAATGTC	ACATTCTATT	TTGGGTATTAA	ATATATAGTC	CAGACACTTA	ACTCAATTTC	5220
	TTGTTATTAT	TCTGTTTGC	ACAGTTAGTT	GTGAAAGAAA	GCTGAGAAGA	ATGAAAATGC	5280
15	AGTCCTGAGG	AGAGTTTCT	CCATATCAA	ACGAGGGCTG	ATGGAGGAAA	AAGGTCAATA	5340
	AGGTCAAGGG	AAGACCCCGT	CTCTATACCA	ACCAAAACAA	TTCACCAACA	CAGTTGGGAC	5400
	CCAAAACACA	GGAAGTCAGT	CACGTTTCC	TTTCATTAA	TGGGATTCC	ACTATCTCAC	5460
	ACTAATCTGA	AAGGATGTTG	AAGAGCATT	GCTGGCGCAT	ATTAAGCACT	TTAAGCTCCT	5520
	TGAGTAAAAA	GGTGGTATGT	AATTATGCA	AGGTATTCT	CCAGTTGGGA	CTCAGGATAT	5580
	TAGTTAATGA	GCCATCACTA	GAAGAAAAGC	CCATTTCAA	CTGCTTGA	ACTTGCCTGG	5640
20	GGTCTGAGCA	TGATGGAAT	AGGGAGACAG	GGTAGGAAAG	GGGCCCTACT	CTTCAGGGTC	5700
	TAAAGATCAA	GTGGGCCTTG	GATCGCTAAG	CTGGCTCTGT	TTGATGCTAT	TTATGCAAGT	5760
	TAGGGTCTAT	GTATTAGGA	TGCGCCTACT	CTTCAGGGTC	AAAGATCAA	GTGGGCCTTG	5820
	GATCGCTAAG	CTGGCTCTGT	TTGATGCTAT	TTATGCAAGT	TAGGGTCTAT	GTATTTAGGA	5880
	TGTCGCACC	TTCTGCAGCC	AGTCAAGAAGC	TGGAGAGGCA	ACAGTGGATT	GCTGCTCTT	5940
25	GGGGAGAAGA	GTATGCTTCC	TTTTATCCAT	GTAATTAAAC	TGAGAACCT	GAGCTCTAAG	6000
	TAACCGAAGA	ATGTATGCCT	CTGTTCTTAT	GTGCCACATC	CTTGTAA	GGCTCTCTGT	6060
	ATGAAGAGAT	GGGACCGTCA	TCAGCACATT	CCCTAGTGAG	CCTACTGGCT	CCTGGCAGCG	6120
	GCTTTGTGG	AAGACTCACT	AGCCAGAAGA	GAGGAGTGGG	ACAGTCTCT	CCACCAAGAT	6180
	CTAAATCCAA	ACAAAAGCAG	GCTAGAGCCA	GAAGAGAGGA	CAAATCTTG	TTGTTCTCT	6240
30	TCTTACACA	TACGCAAC	ACCTGTGACA	GCTGGCAATT	TTATAATCA	GGTAACTGG	6300
	AGGAGGTTAA	ACTCAGAAA	AAAGAGACCT	CAGTCATT	TCTACTTTT	TTTTTTTTT	6360
	TCCAATACAG	ATAATAGCC	ACCAAATAGT	GATAACAAAT	AAAACCTAG	CTGTTCATGT	6420
	CTTGATTTCA	ATAATTAATT	CTTAATCATT	AAGAGACCAT	AATAAATACT	CCTTTTCAAG	6480
	AGAAAAGCAA	AACCATTAGA	ATTGTTACTC	AGCTCCTCA	AACTCAGGTT	TGTAGCATAC	6540
35	ATGAGTCCAT	CCATCAGTCA	AAGAATGGTT	CCATCTGGAG	TCTTAATGTA	GAAAGAAAAA	6600
	TGGAGACTTG	TAATAATGAG	CTAGTTACAA	AGTGCTTGT	CATTAAAATA	GCACTGAAA	6660
	TTGAAACATG	AATTAAC	TAATATTCCA	ATCATTG	ATTATGACA	AAAATGGTTG	6720
	GCACTAACAA	AGAACGAGCA	CTTCCTTCA	GAGTTCTGA	GATAATGTC	GTGGAACAGT	6780
40	CTGGGTGGAA	TGGGGCTGAA	ACCATGTGCA	AGTCTGTGTC	TTGTCAGTCC	AAGAAGTGAC	6840
	ACCGAGATGT	TAATTAGG	GACCCGTGCC	TTGTTCTA	GCCCCAACAGA	ATGCAAACAT	6900
	CAAACAGATA	CTCGCTAGCC	TCATTTAAAT	TGATTAAGG	AGGAGTGCAT	CTTTGGCCGA	6960
	CAGTGGTGT	ACTGTGTGT	TGTGTGTGT	TGTGTGTGT	TGTGTGTGT	TGTGGGTGT	7020
	GGTGTATGT	TGTTTGTGC	ATAACTATT	AAGGAAACTG	GAATTTAA	GTTACTTTA	7080
45	TACAAACAA	GAATATATGC	TACAGATATA	AGACAGACAT	GGTTGGTCC	TATATTCTA	7140
	GTCATGATGA	ATGTATTTG	TATACCATCT	TCATATAATA	TACTAAAAA	TATTTCTAA	7200
	TTGGGATTG	TAATCGTACC	AACTTAATTG	ATAAACTTGG	CAACTGCTTT	TATGTTCTGT	7260
	CTCCTTCCAT	AAATTTTCA	AAATACTAAT	TCAACAAAGA	AAAAGCTTT	TTTTTTCTA	7320
	AAATAAAACTC	AAATTTATCC	TTGTTTAGAG	CAGAGAAAAA	TTAAGAAAAA	CTTGTAAATG	7380
50	GTCTAAAAAA	ATTGCTAAAT	ATTTCAATG	AAAAACTAA	TGTAGTTA	GCTGATTGTA	7440
	TGGGGTTTCA	GAACCTTCA	CTTTTGTGTT	GTTTTACCA	TTTCACA	GTGTAAATTG	7500
	CCAAATAATT	CTGTCCATGA	AAATGCAAAT	TATCCAGTGT	AGATATATT	GACCATCACC	7560
	CTATGGATAT	TGGCTAGTT	TGCTTATT	AAGCAAAATT	ATTCAGCCT	GAATGTCTGC	7620
	CTATATATT	TCTGCTCTT	GTATTCTCT	TTGAACCCGT	AAAACATCC	TGTGGCACTC	

55 AC59 DNA sequence

Gene name: Purine nucleoside phosphorylase

Unigene number: HS_75514

Probeset Accession #: K02514

Nucleic acid Accession #: X00737 cluster

Coding sequence: 110-979 (predicted start/stop codons underlined)

65	AACTGTGCGA	ACCAGACCCG	GCAGCCTTGC	TCAGTTCAGC	ATAGCGGAGC	GGATCCGATC	60
	GGATCGGAGC	ACACCGGAGC	AGGCTCATCG	AGAAGGGC	TGGAGAACGG	120	
	ATACACCTAT	GAAGATTATA	AGAACACTGC	AGAATGGCTT	CTGTCTCAT	CTAACGACCG	180
	ACCTCAAGTT	GCAATAATCT	GTGGTTCTGG	ATTAGGAGGT	CTGACTGATA	AATTAAC	240
	GGCCCAGATC	TTTGACTACA	GTGAAATCCC	CAACTTCC	CGAAGTACAG	TGCCAGGTCA	300
	TGCTGGCCGA	CTGGTGTGTTG	GGTTCTGAA	TGGCAGGGCC	TGTGTGATGA	TGCAGGGCAG	360

	GTTCACATG TATGAAGGGT ACCCACTCTG GAAGGTGACA TTCCCAGTGA GGGTTTTCCA	420
	CCTCTGGGT GTGGACACCC TGGTAGTCAC CAATGCAGCA GGAGGGCTGA ACCCCAAGTT	480
5	TGAGGTTGGA GATATCATGC TGATCCGTGA CCATATCAAC CTACCTGGTT TCAGTGGTCA	540
	GAACCCCTCTC AGAGGGCCA ATGATGAAAG GTTTGGAGAT CGTTTCCCTG CCATGTCTGA	600
	TGCCCTACGAC CGGACTATGA GGCAGAGGGC TCTCAGTAC TGGAAACAAA TGGGGGAGCA	660
	ACGTGAGCTA CAGGAAGGCA CCTATGTGAT GGTGGCAGGC CCCAGCTTG AGACTGTGGC	720
	AGAATGTCGT GTGCTGCAGA AGCTGGGAGC AGACGCTGTT GGCATGAGTA CAGTACCA	780
10	AGTTATCGTT GCACGGCACT GTGGACTTCG AGTCTTGGC TTCTCACTCA TCACTAACAA	840
	GGTCATCATG GATTATGAAA GCCTGGAGAA GGCCAACCAT GAAGAAGTCT TAGCAGCTGG	900
	CAAACAAGCT GCACAGAAAT TGGAACAGTT TGTCTCCATT CTTATGGCCA GCATTC	960
	CCCTGACAAA <u>GCCAGTGTAC</u> CTGCCCTGGGA GTCGTCTGGC ATCTCCCACA CAAGACCAA	1020
	GTAGCTGCTA CTTCTTTGG CCCCTTGCTG GAGTCATGTG CCTCTGTCCT TAGGTTGTAG	1080
15	CAGAAAGGAA AAGATTCTG TCCCTCACCT TTCCCACCTT CTTCTACCAG ACCCTTCTGG	1140
	TGCCAGATCC TCTTCTCAA GCTGGGATTA CAGGTGTGAG CATAGTGAGA CCTTGGCGCT	1200
	ACAAAATAAA GCTGTTCTA TTCTGTTCT TTCTTACACA AGAGCTGGAG CCCGTGCCCT	1260
	ACACACACATC TGTGGAGATG CCCAGGATT GACTCGGGCC TTAGAACTTT GCATAGCAGC	1320
	TGCTACTAGC TCTTGAGAT AATACATTCC GAGGGGCTCA GTTCTGCCTT ATCTAAATCA	1380
	CCAGAGACCA AACAGGACT AATCCAATAC CTCTTGGGA	

~~ACK4 DNA sequence~~

Gene name: EST

Unigene number: Hs.265499

Probeset Accession #: R68763

CAT cluster#: Cluster 46668_2

Sequence: Both the EST corresponding to the probeset accession and exon prediction; number and the CAT cluster align with the Homo sapiens BAC clone AC009414 RP11-490M8. Using FGENESH, 2 exons predicted on this BAC clone upstream of the probeset.

Predicted exon 1: bases 5808-5837 of BAC clone AC009414

	AAAGTCTCGG CCAAACCTTG TTCCGGCACAA CCAGCGCCGA GGGGGCGGCG CAGGCCAGGT	60
	GGGAGGGGGC CCGCAGCGGG CGGCCGTACC TTGCAAACG CCCGCTTCGT ACTCGGTGAG	120
	GGAGTCGCCA TTGAGCGGGG GGCGGATGAC ACAACGCAGC CCCCGGTGCG AGGTTCCGTA	180
40	AATCCCAGG GTGCCGCCGC AGCTCTCGTT CCTCTGGCTG GCGCACGTGT AGCAGCAGCC	240
	GCAGACGCCG TGACAGATGC TCCCCGGGCA GTTCCCTGGC TCCTCGCACT TGGACTCGTC	300
	ACAGGGCAGG CAGACCAGCG CCCGGGTGCC GGAGCGCCGC AGCAGCAGCA GCAGCCCCAG	360
	CAGCGAGACCC AGGAGGTGCC CGCAGCGGCC CAACCCCTG TCCCCCGCA CCAAGTACAT	420
	CCTCCTGCGC CGGCCGCCGC TCCCTCTCGC AGCCGGGCG GGAGCGGGGC GGGCGCCCTC	480
45	CCCTGCGCGG GGCACACCGC CGCCGCCGC CGCACACAGCA GCCCGCGGTC CTCACCGCC	540
	CTCTCGGGGC CCCCAGGGCG CGCCTCCCCCT CGCGGGGCCA GGCCCCCGCC CCTTCTGCGG	600
	GCCGCGCCGA CCCCAGGCC ACCAGCCTTG GCGCCGGCG CAGCTTCCCC TCCCTCTCCT	660
	CCTCCTCCCTC CCGGGAGGGG GGGGGAAAAA AGAAAAAAAGT TTCTCTCCCG CAGCTCCGGT	720
	TCAACCCAAA CTTCTGGCGC GGCGGCGGCC GTGGCTGCTG CGCTCGGCTC CAGCCCGGGC	780
50	CGGCGGCCGC TCCCTCCCTC CCTCCTCCGA GTCGGCCGGC CCCGAGCGG CGCAGCTCC	840
	GGGCGGGTCC CCGCCTCCCG AGCTGCCAG TGGGCGGGT GGCGCAGCAC AGATCCCG	900
	CGCTCCGCTC CGCGCGCCGC GCTCGCTCA CTCCCTGCC GCTCTCTCCGG GCGCTTGT	960
	ATGGCTGGAG CCTCAGCCGC TCGGGCTGCG CCCTCCCCCA TCCTACCTCC TCCCCCAGAC	1020
	CTTCCCCCCTA CCCCCACCGC CGCGCGGCC CTCATTGGCT GCCCCCCCCCTC CCCGGCCGG	1080
55	CGGGCCCCCTC CCGCCTCCCCC CTCCCCCTCT CGGGCGGGCG GGGCGCTTCTC CCTCCTCTA	1140
	CACGCCCTCCA CCTCTCTCCCT ATCTCTCTCCT CCCCAGGCC GGCGCACCGA GCCGGCGGT	1200
	CCACCGAGCT GCGGCTCTGG CCCCAGGCC GCGGGTGC GCGGGATGGG CTTGGGGCGC	1260
	ACCCAGCGAG CAGCGAGAGT CGCGGTGTCC CGGGCGCTCG CTGGCACCGT GGCGCAGCG	1320
	GCCGGCGCTGG GAGCCAGGAG GGGGAGGCC CGCACCTTC GGGGCCAGAT TGGAGTTCGA	1380
	AGAGTGGCGG GTACCCAGA AGCTGGGGC CGGGGGCATG GCTGCAGCCT CGGGAGGGTA	
	TCGCCGGATC GAACTCCGGG AAAGGAAGC AAAGGCATGG AACCTCCGCA CACTGGATGA	

~~Predicted ACK4 gene seq (predicted start/stop codons underlined)~~

	AT <u>GGCCCGGG</u> AACAGCATCA TCAGCCAAAC AAAGTCTCGC CCAAACCTTG TT <u>GGCACAA</u>	60
	CCAGCGCCGA GGGGGCGGCG CAGGCCAGGT GGGAGGGGGC CGCGAGCGGG CGGCGCTTAC	120
	TTCGCAAACG CCCGCTTCGT ACTCGGTGAG GGAGTCGCCA TTGAGCGGGG GGCGGATGAC	180
	ACAACGCAGC CCCGGTGCAG AGTTCCGTA AATCCCCAG GTGCCGCCGC AGCTCTCGTT	240
	CCTCTGGCTG CGCAGCGTGT AGCAGCAGCC GCAGACGCC TGACAGATGC TCCCCGGCA	300
65	GTTCCTGGGC TCCTCGCACT TGGAATCGTC ACAGGGCAGG CAGACCGCG CCCGGTGCC	360
	GGAGCGCGCC AGCAGCAGCA GCAGCCCCAG CAGCGAGACC AGGAGGTGCC CGCAGCCGGC	420
	CAACCCCTG TCCCCCGCA CCAAGTACAT CCTCTCGCG CGCCGCCGCC TCCTCTCGC	480
	AGCCGGGCCGG GGAGCGGGGC GGGCGCCCTC CCCTGCCGGG GGCACACCGC CGCGCCGCC	540

CGCACCAAGCA	GCCCCGGTC	CTCACCGCCC	CTCTCGGGC	CCCCGGGGCG	CGCCTCCCT	600	
CGCGGGGCGA	GGCCCCCGCC	CCTTCTGCGG	GCCGCGCCGA	CCCCGAGGCC	ACGAGCCTTG	660	
CGGCCGGCGG	CAGCTTCCCC	TCCTCCTCCT	CCTCCTCCTC	CCGGGAGGGA	GGGGGAAAAAA	720	
AGAAAAAAAGT	TTCCCTCCCG	CAGCTCCGGT	TCAACCCAAA	CTTCTGGCGC	GGCGGGCGCG	780	
5	GTGGCTGCTG	CGCTCGGCTC	CAGCCGGGC	CGGCGGGGCC	TCCTCCCTCT	CCTCCTCCGA	840
	GTCGGGGCGG	CCCAGCGCTC	GGGCCGGTCC	CCGGCTCCCG	AGCTGCCGAG	900	
	TGGCGCGGT	GGCGCAGCAC	AAGATCCCGG	GCGTCCGCTC	CGCGCGCCCC	GCTCGCTCA	960
	CTCCTGCGCC	GCTCCTCCGG	GCGCTGTTT	ATGGCTGGAG	CCTCAGCCGC	TCGGGCTGCG	1020
10	CCCTCCCCCA	TCCTACCTCC	TCCCCCAGAC	CTTCCCCCA	CCCCCACGCG	CCGCGCGCC	1080
	CTCATTGGCT	GCCCCCCTC	CCCCGGCCGG	CGGGCCCCCT	CCGGCTCCCC	CTCCCCCTCT	1140
	CGGGCGGCCG	GGCCCTTCCT	CCCTCCCTCA	CACGCCCTCA	CCTCTTCCCG	ATCTCCTCCT	1200
	CCCCGAGCCC	GGCGCACCGA	GGCGGCCGTG	CCACCGAGCT	GCGGCTCTGG	CCCCGGCGCC	1260
	GCGGGTGC	TGCGGATGGG	CTTGGGGCGC	ACCCAGCGAG	CAGCGAGAGT	CGCGGTGTCC	1320
15	CGGGCGCTCG	CTGGCACCGT	GGCCGCAGCG	GCGGCCCTGG	GAGCCAGGAG	GGCGAGGGGG	1380
	CTGCACCTTC	GGGGCCAGAT	TGGAGTCGA	AGAGTGGCGG	GTACCCAGA	AGCTCGGGGC	1440
	CGGGGCATG	GCTGAGCCT	CGGGAGGGTA	TCGCGGATC	GAACTCCGGG	AAAGGAAAGC	1500
	AAAGGCATGG	AACCTCCGCA	CACTGGATGA				

AAA8 DNA sequence

Gene name: ETL protein, with extended open reading frame

Unigene number: Hs.57958

Probeset Accession #: D58024

Nucleotide Accession #: AF192403

Coding sequence: 151-2136. Underlined sequences correspond to extended sequence not included in AF192403.

ATGAAAACAG	CCGCACTCAC	TCCCGCCGC	TCTCCGCCAC	CGCCACCACT	GGGGCCACCG	60	
CCAATGAAAC	GCCTCCCGCT	CCTAGTGGTT	TTTCCACTT	TGTTGAATTG	TTCCTATACT	120	
CAAAATTGCA	CCAAGACACC	TTGCTCTCCA	AATGAAAAT	GTGAAATACG	CAATGGAATT	180	
GAAGCCTGCT	ATTGCAACAT	GGGATTTC	GGAAATGGTG	TCACAATTG	TGAAGATGAT	240	
AATGAATGTC	GAAATTAAAC	TCAGTCCGT	GGCGAAAATG	CTAATTGCAC	TAACACAGAA	300	
GGAAGTTATT	ATTGTATGTC	TGTACCTGGC	TTCAAGATCCA	GCAGTAACCA	AGACAGGTTT	360	
ATCACTAATG	ATGGAACCGT	CTGTATAGAA	AATGTGAATG	CAAACGTCCA	TTTAGATAAT	420	
GTCTGTATAG	CTGCAAATAT	TAATAAAACT	TTAACAAAAA	TCAGATCCAT	AAAAGAACCT	480	
GTGGCTTTGC	TACAAGAAGT	CTATAGAAAT	TCTGTGACAG	ATCTTCAACC	AACAGATATA	540	
ATTACATATA	TAGAAATATT	AGCTGAATCA	TCTTCATTAC	TAGGTTACAA	GAACAAACACT	600	
ATCTCAGCCA	AGGACACCC	TTCTAACTCA	ACTCTTACTG	AATTGTAAA	AACCGTGAAT	660	
AATTTTGTTC	AAAGGGATAC	ATTGTAGTT	TGGGACAAGT	TATCTGTGAA	TCATAGGAGA	720	
40	ACACATCTA	CAAACATCAT	GCACACTGTT	GAACAAGCTA	CTTAAGGAT	ATCCCAGAGC	780
TTCACAAAGA	CCACAGAGT	TGATACAAAT	TCAACGGATA	TAGCTCTCAA	AGTTTTCTT	840	
TTTGATTCTAT	ATAACATGAA	ACATATTCTAT	CCTCATATGA	ATATGGATGG	AGACTACATA	900	
AATATATTTC	CAAAGAGAAA	AGCTGCATAT	GATTCAAATG	GCAATGTTGC	AGTTGCATTT	960	
TTATATTATA	AGAGTATTGG	TCCTTGCTT	TCATCATCTG	ACAACCTCTT	ATTGAAACCT	1020	
45	CAAAATTATG	ATAATTCTGA	AGAGGAGGAA	AGAGTCATAT	CTTCAGTAAT	TTCACTCTCA	1080
ATGAGCTAA	ACCCACCCAC	ATTATATGAA	CTTGAAAAAA	TAACATTTC	ATTAAGTCAT	1140	
CGAAAGGTCA	CAGATAGGT	TAGGAGTCTA	TGTGCATTTT	GGAAATTACTC	ACCTGATACC	1200	
ATGAATGGCA	GCTGGCTTC	AGAGGGCTGT	GAGCTGACAT	ACTCAAATGA	GACCCACACC	1260	
50	TCATGCCGT	GTAATCACCT	GACACATTTC	GCAATTTCGA	TGTCCTCTGG	TCCTTCCATT	1320
GGTATTTAAAG	ATTATAATAT	TCTTACAAGG	ATCACTCAAC	TAGGAATAAT	TATTTCACTG	1380	
ATTGTCTTG	CCATATGCAT	TTTACCTTC	TGGTTCTCA	GTGAAATTCA	AAGCACCAGG	1440	
ACAACAAATTC	ACAAAAAATCT	TTGCTGTAGC	CTATTTCTTG	CTGAACCTGT	TTTTCTTGT	1500	
GGGATCAATA	CAAATACAA	TAAGCTCATT	TCTGTTCAA	TCATTGCCGG	ACTGCTACAC	1560	
55	TACTTCTTT	TAGCTGCTT	TGCAATGGATG	TGCAATTGAAG	GCATACATCT	CTATCTCATT	1620
GTGTTGGGTG	TCATCTACAA	CAAGGGATT	TTGCCACAAGA	ATTTTTATAT	CTTTGGCTAT	1680	
CTAACGCCAG	CCGTGGTAGT	TGGATTTTCG	GCAGCACTAG	GATACAGATA	TTATGGCACA	1740	
ACAAAAGTAT	GTTGGCTTAG	CACCGAAACA	CACTTTATT	GGAGTTTTAT	AGGACCAGCA	1800	
TGCCCTAATCA	TTCTTGTAA	TCTCTGGCT	TTTGGAGTCA	TCATATACAA	AGTTTTTCGT	1860	
60	CACACTGCAG	GGTGAACACC	AGAAGTTAGT	TGCTTTGAGA	ACATAAGGTC	TTGTGCAAGA	1920
GGAGCCCTCG	CTCTTCTGTT	CCTTCTCGGC	ACCACCTGG	TCTTGGGGT	TCTCCATGTT	1980	
GTGCACTGCAT	CAGTGGTTAC	AGCTTACCTC	TTCACAGTC	GCAATGCTTT	CCAGGGGATG	2040	
TTCATTTC	TATTCCTGTC	TGTTTATCT	AGAAAGATT	AAGAAGAATA	TTACAGATTG	2100	
TTCAAAATG	TCCCCCTGTT	TTTGGATGT	TTAAGGAAA	CATAGAGAT	GGTGGATAAT	2160	
TACAAACTGCA	CTAAAAAATTA	AAATTCCAAG	CTGTGGATGA	CCAATGTATA	AAAATGACTC	2220	
65	ATCAAATTAT	CCAATTATTA	ACTACTAGAC	AAAAAGTATT	TTAAATCAGT	TTTTCTGTT	2280
ATGCTATAGG	AACTGTAGAT	AATAAGGTAA	AATTATGTAT	CATATAGATA	TACTATGTTT	2340	
TTCTATGTGA	AATAGTTCTG	TCAAAAATAG	TATTGCAAGAT	ATTGGAAAG	TAATTGGTTT	2400	
CTCAGGAGTG	ATATCACTGC	ACCCAAGGAA	AGATTTCTT	TCTAACACGA	GAAGTATATG	2460	

AATGTCCTGA AGGAAACAC TGGCTTGATA TTTCTGTGAC TCGTGTGCG TTTGAAACTA 2520
 GTCCCCCTACC ACCTCGTAA TGAGCTCCAT TACAGAAAGT GGACACATAAG AGAATGAAGG 2580
 GGCAGAAATAT CAAACAGTGA AAAGGGAATG ATAAGATGTA TTTGAAATGA ACTGTTTTT 2640
 5 CTGTAGACTA GCTGAGAAAT TGTTGACATA AAATAAAGAA TTGAAGAAAC ACATTTTAC 2700
 ATTTTGAA TTGTTCTGAA CTTAAATGTC CACTAAAACA ACTTAGACTT CTGTTTGCTA 2760
 AAATCTGTTTC TTTTTCTAAT ATTCTAAAAA AAAAAAAAG GTTMCYCC CAAATTGAAA 2820
 AAAAAAGGGA AAAAAAAATC TGTTTCTAAG GTTAGACTGA GATATATACT ATTCCTTAC 2880
 TTATTCACA GATTGTGACT TTGGATAGTT AATCAGTAAA ATATAATGT GTCGA

10 Hm 023
 AAC6 DNA sequence
 Gene name: Homo sapiens cDNA FLJ13465 fis, clone PLACE1003493, weakly similar to
 endothelial cell multimerin precursor
 Unigene number: Hs.134797
 Probeset Accession #: AA025351
 Nucleotide Accession #: AK023527
 Coding sequence: predicted 75-2921
 Extended sequence: 729-3465 (underlined sequence)

20 AAGACAAACGT CACTAGCGT TTCTGGAGCT ACTTGCCAAG GCTGAGTGTG AGCTGAGCCT 60
 GCCCCACAC CAAGATGATC CTGAGCTTGC TGTTCAGCCT TGGGGGCCCG CTGGGCTGG 120
 GGCCTGCTGGG GGCATGGGCC CAGGCTTCCA GTACTAGCCT CTCTGATCTG CAGAGCTCCA 180
 GGACACCTGG GGTCTGGAAG GCAGAGGCTG AGGACACCCAG CAAGGACCCC GTTGGACGTA 240
 ACTGGTGCCCG CTACCCAATG TCCAAGCTGG TCACCTTACT AGCTCTTGC AAAACAGAGA 300
 AATTCTCAT CCACTCGCAG CAGCCGTGTC CGCAGGGAGC TCCAGACTGC CAGAAAGTCA 360
 AAGTCATGTA CCGCATGGCC CAAAGGCCAG TGTACCGAGT CAAGCAGAAAG GTGCTGACCT 420
 CTTTGGCTCG GAGGTGCTGC CCTGGCTACA CGGGCCCCAA CTGCGAGCAC CACGATTCCA 480
 TGGAATATCCC TGAGCTGCA GATCTGGTG ACAGCCACCA GGAACCTCG GATGGACCGAG 540
 TCAGCTTCAA ACCTGGCCAC CTTGCTGAG TGATCAATGA GGTGAGGTG CAACAGGAAC 600
 AGCAGGAACA TCTGCTGGG GATCTCCAGA ATGATGTGCA CGGGTGGCA GACAGCCTGC 660
 CAGGCCCTGTG GAAAGCCCTG CCTGGTAACC TCACAGCTGC AGTGTATGGAA GCAAATCAA 720
 CAGGGCACGA GTTCCCTGAT AGATCCTTGG AGCAGGTGCT GCTACCCAC GTGGACACCT 780
 TCCTACAAAGT GCATTCAGC CCCATCTGGA GGAGCTTTAA CCAAAGCCTG CACAGCCTTA 840
 CCCAGGCCAT AAGAAACCTG TCTCTTGACG TGGAGGCCAA CGGCCAGGCC ATCTCCAGAG 900
 35 TCCAGGACAG TGCCGTGGCC AGGGCTGACT TCCAGGAGCT TGGTGCCTAA TTTGAGGCCA 960
 AGGTCCAGGA GAACACTCAG AGAGTGGGTC AGCTGCCACCA GGACGTGGAG GACCGCCTGC 1020
 AGCCCCAGCA CTTTACCTG CACCGCTCGA TCTCAGAGCT CCAAGCCGAT GTGGACACCA 1080
 AATTGAAGAG GCTGCACAAG GCTCAGGAGG CCCCAGGGAC CAATGGCAGT CTGGTGTG 1140
 CAACGCCCTG GGCTGGGCCA AGGCCTGAGC CGGACAGCCT GCAGGCCAGG CTGGGCCAGC 1200
 40 TGCAGGAGGA CCTCTCAGAG CTGCACATGA CCACGGCCCG CAGGGAGGAG GAGTTGCACT 1260
 ACACCCCTGGA GGACATGAGG GCCACCCCTGA CCCGGCACGT GGATGAGATC AAGGAACCTG 1320
 ACTCCGAATC GGACGAGACT TTGATCAGA TTAGCAAGGT GGAGCGGCAG GTGGAGGAGC 1380
 TCCAGGTGAA CCACACGGCG CTCCGTGAGC TGCGCTGAT CCTGATGGAG AAGTCTCTGA 1440
 TCATGGAGGA GAACAAGGAG GAGGTGGAGC GGCAGCTCCT GGAGCTCAAC CTCACGCTGC 1500
 45 AGCACCTGCA GGGTGGCCAT GCCGACCTCA TCAAGTACGT GAAGGACTGC AATTGCCAGA 1560
 AGCTCTATT AGACCTGGAC GTCATCCGGG AGGGCCAGAG GGACGCCACG CGTGCCTCTGG 1620
 AGGAGACCCA GGTGAGCCTG GACGAGCGGC GGCAGCTGGA CGGCTCCTCC CTGCAGGCC 1680
 TGCAGAACGC CGTGGACGCC GTGTCGCTGG CGTGGAGCAGC GCACAAAGCG GAGGGCGAGC 1740
 GGGCGGGGG GCACAGCTCG CGGCTCTGGGA GCCAAGTGCAG GGCCTGGAT GACGAGGTGG 1800
 50 GGCCTGCTGAA GGGGGGCCCG GCGCAGGAGT GCGCCAGCTG CACAGCCTGC 1860
 TCGCCGCCCT GCTGGAGGAGC GCGCTGCGGC ACGAGGGCGT GCTGGCCCGC CTCTCGGGG 1920
 AGGAGGTGCT GGAGGAGATG TCTGAGCAGA CGCCGGGACC GCTGCCCCCTG AGCTACGAGC 1980
 AGATCCGCTG GGCCCTGCA GACGCCGCTA GCGGGCTGCA GGAGCAGGCG CTCGGCTGGG 2040
 ACGAGCTGGC CGCCCGAGTG ACGGCCCTGG ACCAGGCCCTC GGAGCCCCCG CGGCCGGCAG 2100
 55 AGCACCTGGA GCCCAGCCAC GACGCCGGCC GCGAGGAGGC CGCCACCAAC GCCCTGGCCG 2160
 GGCTGGCGCG GGAGCTCCAG AGCCTGAGCA ACGACGTCAA GAATGTCGGG CGGTGCTGCG 2220
 AGGCGYAGGC CGGGGCCGGG GCCGCCTCCC TCAACGCCCTC CCTTGACGCC CTCCACAAACG 2280
 CACTCTTCGC CACTCAGCGC AGCTTGGAGC ACCACCAAGCG GCTCTTCCAC AGCCTCTTGC 2340
 GGAACCTCCA AGGGCTCATG GAAGCCAACG TCAGCTGGAA CCTGGGGAAAG CTGCAGACCA 2400
 60 TGCTGAGCAG GAAAGGAAAG AAGCAGCAGA AAGACCTGGA AGCTCCCCCG AAGAGGGACA 2460
 AGAAGGAAGC GGAGCTTTG GTGGACATAC GGGTCACAGG GCCTGTGCCA GGTGCCTTGG 2520
 GCGCGGGCGCT CTGGGGAGCA GRWTCCTCTG TGGCTTCTA TGCCAGCTT TCAGAAGGGA 2580
 CGGCTGCCCT GCAGACAGTG AAGTCAACA CCACATACAT CAACATTGCC AGCAGCTACT 2640
 TCCCTGAACA TGGCTACTTC CGAGCCCCCTG AGCGTGGTGT CTACCTGTT GCAGTGGCG 2700
 65 TTGAATTGTTG CCCAGGGCCA GGCACCGGGC AGCTGGTGTG TGGAGGTAC CATCGGACTC 2760
 CAGTCTGTAC CACTGGGCAG GGGAGTGGAA GCACAGAAC GGTCTTGCCT ATGGCTGAGC 2820
 TGCAGAAGGG TGAGGGAGTA TGTTTGTAGT TAACCCAGGG ATCAATAACA AAGAGAAGCC 2880
 TGTCGGGCAC TGCATTGGG GGCTTCCCTGA TGTTTAAGAC CTGAACCCCA GCCCCAATCT 2940

GATCAGACAT CATGGACTCG CCCAGCTCTC CTCGGCCCTGG GGCTCTGGCC AAGGATGGGC 3000
 TGGAGGTCA TCAGTTGGTC TGTCTCTTCC CTGGAAACCT TCTGCAAAGA TGGTGTGGTG 3060
 TACGTGGCTT CCCTGTAACC ACATGGGCT TGGCCATTTC TCCATGATGA GAAGGACTGG 3120
 AATGCTTCTC CGGGCAGGAC ATGGTCCTAG GAAGCCTGAA CCTTGGCTTG GCATGCCTTC 3180
 5 TCAGACAGCA CGGCCTGGG TCCAACCTT CACCACACCC TGTATTCTAC AACITCTTG 3240
 GTGTTTGTG CCTCCTGTGG TTGGAAACTT CTGTACAACA CTTAAACTT TTCTCTTGCT 3300
 TCCTCTCTC TTCTCCCTA TCGTATGATA GAAAGACATT CTTCCCAGG AGGAATGTT 3360
 AAAATGGAGG CAACATTTG GCCAACATTG GAAAGCACTA GAGGGCAATG GGATTAACC 3420
 AACCTGCTTG GTCTCTATTA GTCACTAATG AAGACGACAG CCTGGCCAAC CAAGGGAAAG 3480
 10 GAAATTAGTA TCTTAGTTT CAGTCATTCC TTGTAGGATA TGGTTAGCT GTGCCCCAC 3540
 CTAAAATATC ATCTTGAAATT GAAATCCCTA TAATCCCCAC ATCAAGGGAG AGATCAGGTG 3600
 GAGGTAATTG GATCTTGGG CGGGTCCCTC CATGCTGTC TTGTGATAGT TCTCACGAGA 3660
 TCTGATGATT TTATAAGTTT GATAGTTCTC CCTGTGTC TCTCCCTTC TGCCACCTTG 3720
 TGAAGATGCC TTGGTCCCTC TTCACTGTCT GCCATGATTG TAAGTTCTC GAGGCCTCCC 3780
 15 CAGCCATGTG GAACAGTGAG TCAATTAAAC CTCTTCCCTT TATAAATT

ACH7 DNA sequence

Gene name: ESTs

Unigene number: Hs.3807

Probeset Accession #: AA292694

BAS Accession #: AL161751

FGENESH predicted exons: FGENESH predicts 2 exons on the minus strand of AL161751 upstream of the ACH7 probeset.

FGENESH predicted exon 1:

ATGGGCAAG	ACTTCATGAC	TAAAACACCA	AAAGCATTG	CAACAAAAGC	CAAAATTGAC	60
AAATGGGATC	TAATTAACCT	AAAGAGCTTC	TGCACAGCAA	AAGAAACTAT	CATCAGAGTG	120
AACAGTCAAC	CTACAGACTG	GCAGAAAACT	TTTGAATCT	ATCCATCTGA	CAAAGGGTA	180
ATAGCCAGAA	TCTACAAGGA	GCTTGAACAA	ATTTATAAGA	AAAAAAAACC	AACAAAAAA	

FGENESH predicted exon 2:

CGCTCCGCAC	ACATTCCTG	TCGGCCCTA	AGGGAAACTG	TTGGCCGCTG	GGCCCGCGGG	60
GGGATTCTTG	GCAGTTGGGG	GGTCCGTCGG	GAGCGAGGGC	GGAGGGGAAG	GGAGGGGGAA	120
CCGGGTTGGG	GAAGCCAGCT	GTAGAGGGCG	GTGACCGCGC	TCCAGACACA	GCTCTGCGTC	180
CTCGAGCGGG	ACAGATCCAA	GTGAGGGAGCA	GCTCTGCGTG	CGGGGCTCA	GAGAATGAGG	240
CCGGCGTTCG	CCCTGTGCGCT	CCCTCTGGCG	GCGCTCTGGC	CCGGGGCGGG	CGGGGGCGAA	300
CACCCCACTG	CCGACCGTGC	TGGCTGCTCG	GCCTCGGGGG	CCTGCTACAG	CCTGCACAC	360
GCTACCATGA	AGCGGCAGGC	GGCCGAGGAG	GCCTGCATCC	TGGAGGGTGG	GGCGCTCAGC	420
40 ACCGTGCGTG	CGGGCGCGGA	GCTGCGCGCT	GTGCTCGCGC	TCCCTGCGGC	AGGCCAGGG	480
CCCAGGAGGG	GCTCCAAAGA	CTCTGCTGTC	TGGGTGCGAC	TGGAGCGCAG	GCGTCCAC	540
TGCACCCCTGG	AGAACCGAGCC	TTTGCAGGGGT	TTCTCCTGGC	TGTCCTCCGA	CCCCGGCGGT	600
CTCGAAAGCG	ACACGCTGCA	GTGGGTGGAG	GAGCCCCAAC	GCTCTGCGAC	CGCGCGGAGA	660
45 TCGCGCGTAC	TCCAGGCCAC	CGGTGGGGTC	GAGCCCGCAG	CTGGAAGGAG	ATGCGATGCC	720
ACCTGCGCGC	CAACGGCTAC	CTGTGCAAGT	ACCAGTTGA	GGTCTTGTG	CCTGCGCCG	780
50 GCCCCGGGGC	CGCCTCTAAC	TTGAGCTATC	GCGCGCCCTT	CCAGCTGCAC	AGCGCCGTC	840
TGGACTTCAG	TCCACCTGGG	ACCGAGGTGA	GTGCGCTCTG	CGGGGACAG	CTCCCGATCT	900
CAGTTACTTG	CATCGCGGAC	GAATCGGGC	CTCGCTGGGA	CAAACCTCTG	GGCGATGTGT	960
TGTGTCCTG	CCCCGGGAGG	TACCTCCCTG	CTGGCAATAG	CGCAGAGCTC	CCTAAC TGCC	1020
55 TAGACGACTT	GGGAGGCTTT	GCCTGCGGAAT	GTGCTACGGG	CTTGGAGCTG	GGGAAGGAGC	1080
GGCGCTCTTG	TGTGACCGAT	GGGGAGGAC	AGCGACCCCT	TGGGGGGACC	GGGGTGCCTA	1140
CCAGGCGCCC	GCCGGCCACT	GCAACCAGCC	CCGTGCGCA	GAGAACATGG	CCAATCAGGG	1200
TCGACGAGAA	GCTGGGAGAG	ACACCACTTG	TCCCTGAACA	AGACAATTCA	GTAACATCTA	1260
60 TTCCTGAGAT	TCCTCCGATGG	GGATCACAGA	GCACGATGTC	TACCCCTCAA	ATGTCCTTC	1320
AAGCCGAGTC	AAAGGCCACT	ATCACCCCAT	CAGGGAGCGT	GATTCCAAG	TTTAATTCTA	1380
CGACTTCCTC	TGCCACTCCT	CAGGCTTTCG	ACTCCTCTC	TGCCGTGGTC	TTCATATTG	1440
TGAGCACAGC	AGTAGTAGTG	TTGGTGATCT	TGACCATGAC	AGTACTGGGG	CTTGTCAAGC	1500
TCTGCTTCTA	CGAAAGCCCC	TCTTCCCAGC	CAAGGAAGGA	GTCTATGGGC	CCGCCGGGCC	1560
TGGAGAGTGA	TCTGAGGCC	GCTGTTTGG	GCTCCAGTTC	TGCACATTGC	ACAAACATG	1620
GGGTGAAAGT	CGGGGACTGT	GATCTGCGGG	ACAGAGCAGA	GGTGCCTTG	CTGGCGGGAGT	1680
CCCCCTTGTG	CTCTAGTGAT	GCATAG				

ACH7 predicted coding seq (predicted start/stop codons- underlined)

ATGGGCAAG	ACTTCATGAC	TAAAACACCA	AAAGCATTG	CAACAAAAGC	CAAAATTGAC	60
AAATGGGATC	TAATTAACCT	AAAGAGCTTC	TGCACAGCAA	AAGAAACTAT	CATCAGAGTG	120
AACAGTCAAC	CTACAGACTG	GCAGAAAACT	TTTGAATCT	ATCCATCTGA	CAAAGGGTA	180
ATAGCCAGAA	TCTACAAGGA	GCTTGAACAA	ATTTATAAGA	AAAAAAAACC	AACAAAAACG	240
CTCCGCACAC	ATTCCTGTC	GGGGCCTAAG	GGAAACTGTT	GGCGCTGGGG	CCCGCGGGGG	300

GATTCTTGGC AGTTGGGGGG TCCGTCGGGA GCGAGGGCGG AGGGGAAGGG AGGGGGAAACC 360
 GGTTGGGGAGGCCAGCTGT AGAGGGCGGT GACCGCCCTC CAGACACAGC TCTGCGTCCT 420
 CGAGCGGGAC AGATCCAAGT TGGGAGCAGC TCTGCGTCG 480
 GGCCTTCGCC CTGTGCCTCC TCTGGCAGGC GCTCTGGCCC 540
 5 CCCCACTGCC GACCGTGTGCT GCTGCTCGGC CTCGGGGGCC TGCTACAGCC 600
 TACCATGAAG CGGCAGGGCGG CGCAGGAGGC CTGCATCTG CGAGGTGGGG CGCTCAGCAC 660
 CGTGCCTGCG GGCAGCCAGC TGCAGCTGT GCTCGCCCTC 720
 CGGAGGGGGC TCCAAAGACC TGCTGTTCTG GGTCGCACTG GAGCGCAGGC 780
 CACCCCTGGAG AACGAGCCTT TGCAGGGGTTT CTCCCTGGCTG TCCTCCGACC 840
 10 CGAAAGCGAC ACGCTGCAAGT GGGTGGAGGA GCCCCAACGC TCCTGCACCG CGCGGAGATG 900
 CGCGGTACTC CAGGCCACCG GTGGGGTCGA GCCCCAGCT 960
 CTGCGCGCCA ACGGCTACCT GTGCAAGTAC CAGTTGAGG TCTTGTGTCC 1020
 CCCGGGGCCG CCTCTAACTT GAGCTATCGC GCGCCCTTCC 1080
 GACTTCAGTC CACCTGGGAC CGAGGTGAGT GCGCTCTGCC 1140
 15 GTTACTTGCA TCGCGGACGA AATCGCGCT CGCTGGACAA 1200
 TGTCCTCGCC CCGGGAGGTA CCTCCGCTG 1260
 GACGACTTGG GAGGCTTGC CTGCGAATGT GCTACGGGCT 1320
 CGCTCTTGTG TGACCGATGG GGAAGGACAG CCGACCCCTG 1380
 AGGGCGCCCG CGGCCACTGC AACCAAGCCCC 1440
 GACGAGAAGC TGGGAGAGAC ACCACTTGTC CCTGAACAAG 1500
 CCTGAGATTG CTCGATGGGG ATCACAGAGC ACGATGCTA 1560
 GCCGAGCTAA AGGCCACTAT CACCCCATCA GGGAGCGTGA 1620
 ACTTCCTCTG CCACTCCTCA GGCTTTCGAC TCCTCCTCTG 1680
 AGCACAGCAG TAGTAGTGTG GGTGATCTG ACCATGACAG 1740
 TGCTTCACGG AAAGCCCTC TTCCAGGCCA AGGAAGGAGT 1800
 GAGAGTGTAC CTGAGCCCGC TGCTTGGGC TCCAGTCTG 1860
 GTGAAAGTCG GGGACTGTGA TCTGCGGGAC AGAGCAGAGG 1920
 CCTCTGGCT CTAGTGTATGC ATAG

30
 35
 40
 45
 50
 55
 60

AAD3 DNA sequence
 Gene name: ESTs
 Unigene number: Hs.17404
 Probeset Accession #: N39584
 Nucleic Acid Accession #: M39584
 Coding sequence: no identified ORF; possible frameshifts

AAATGGGATT GAGTTAAAAC TATTTTATTT TAAATATACA TTTAAAGCA GTTCTTTTT 60
 TTTTTTTTTT TTTTATTATA CACACACTTC AAGAGAATAT GCACAGTCTA 120
 40 GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGGCGA GGCATGTGGA TCACCTGAGG 180
 TCAGGAGTTT GAGACCAGCC TAGACAACAT GGTGAAACCT TGTCTCTATG AAAAATACAA 240
 AATTGCTGG GAGTGGTGT GCATGCCCTG AATCCCAGCT ACTTGGAAAGG 300
 AGAATGTCTT GAACCTAGGA GGTGGAGGTT GCAGTGAGCT GAGATTGCAC 360
 CAGCCTGTGC AACAAAAGTG AAACCTCATT TCAAGAAAAA AAAAAAAAAGAATATGCA 420
 45 CAGTCTGAAT GTATACCAAG AGTGTGAGAG ACACATGCC ACTTCATGCA 480
 TCAAAGTCTA AATCAGATAT TTTTATTAAC AATGACAAC TGTGCAAC 540
 TAATCACCAA AGACCCAGGG TACCTAAAAG GACTTTGCAA CCAAGCAAAG 600
 CAAATCTGGA TACACACTTT CCCTCTGTGTA GATTCAAAG GTGCTTCTT 660
 TCCAGCTTC TTACTCTCTT TTCTGGGATT TCTTTTCTT CTTCTTTCT 720
 50 CCACTGGCTG AACTGGTCC CCTAATGAA ACAGCCCTG ACTTAGCCCA 780
 CTTTAGCTGC TGTGAGAATT TTGCTTCTC CACCAGGAG GTCCCTCAAGG 840
 AGCCAGTGTCTT TAAGAGCAA CTTCCCGCAA ATCAGAAACT CACTGTGATT 900
 TTCTGAGGCC TGGACCCCTG CCCCCAAAT ATTTCATCT TTCCCCCAA 960
 AGGAGCATGC ATAACAGTGT GCTGAAAGAC AGTTGTGGT TTTTGATTT 1020
 55 TTCCCTGTAT GAAATATGTT TTATATAATC TCCTATTATT TTTATCTTAT 1080
 GTTGATAAAAT CCCTTTTGT CCTCTAAGA TGTTCTATTG TAAAATCACT 1140
 GATTACTCTT TATGCTATTA CTTTATATGC CATTGGGTA ATAAAATAGTA 1200
 GATATGATTG ACTGATGCGC AGTCCAGAGC ATGTATGAAT AATCTCATAA 1260
 CAGACATTAA GCTAAAATGT TTCTGGGGGG TGAAAGAACACTCATACTT 1320
 60 GTCAATATTA ATTGTTGCA AATATTTAAT TTAAATAAAC ATTTTGATAC 1380
 AAAAAAAA AAAAAAAA AAAAAAAA

65
 70
 75
 80
 85

AAD4 DNA Sequence
 Gene name: ERG
 Unigene number: Hs.279477 / Hs.45514
 Probeset Accession #: R32894
 Nucleic Acid Accession #: M17254

Coding sequence: 257-1645 (predicted start/stop codons underlined)

5	GTCCGCGCGT	GTCCGCGCCC	GGCGTGTCCA	GCGCGCGTGC	CTTGGCCGTG	CGCGCCGAGC	60
	CGGGTCGCAC	TAACTCCCTC	GGCGCCGACG	GCGCGCTAA	CCTCTCGGTT	ATTCCAGGAT	120
	CTTGGAGAC	CCGAGGAAAG	CCGTGTTGAC	CAAAAGCAAG	ACAAATGACT	CACAGAGAAA	180
	AAAGATGCCA	GAACCAAGGG	CAACTAAAGC	CGTCAGGTT	TGAACAGCTG	GTAGATGGC	240
	TGGCTTACTG	AAGGAC <u>ATGA</u>	TTCAGACTGT	CCCGGACCCA	GCAGCTCATA	TCAAGGAAGC	300
	CTTATCAGTT	GTGAGTGAGG	ACCACTCGTT	GTTTGAGTGT	GCCTACGGAA	CGCCACACCT	360
10	GGCTAAGACA	GAGATGACCG	CGTCCTCCTC	CAGCGACTAT	GGACAGACTT	CCAAGATGAG	420
	CCCACGCGTC	CCTCAGCAGG	ATTGGCTGTC	TCAACCCCCA	GCCAGGGTCA	CCATCAAAAT	480
	GGAATGTAAC	CCTAGCCAGG	TGAATGGCTC	AAGGAACCTCT	CCTGATGAAT	GCAGTGTGGC	540
	CAAAGGCGGG	AAGATGGTGG	GCAGCCCAGA	CACCGTTGGG	ATGAACACTACG	GCAGCTACAT	600
	GGAGGAGAAG	CACATGCCAC	CCCCAAACAT	GACCACGAAC	GAGGCGCAGAG	TTATCGTGC	660
15	AGCAGATCCT	ACGCTATGGA	GTACAGACCA	TGTGCGGCAG	TGGCTGGAGT	GGGCGGTGAA	720
	AGAATATGGC	CTTCCAGACG	TCAACATCTT	GTTATTCCAG	AAACATCGATG	GGAAAGGAAC	780
	GTGCAAGATG	ACCAAGGACG	ACTTCCAGAG	GCTCACCCCC	AGCTACAAACG	CCGACATCCT	840
	TCTCTCACAT	CTCCACTACC	TCAGAGAC	TCCCTTCCA	CATTGACTT	CAGATGATGT	900
	TGATAAAAGC	TTACAAAACT	CTCCACGGTT	AATGCATGCT	AGAAACACAG	ATTTACCATATA	960
	TGAGCCCCCC	AGGAGATCAG	CCTGGACCGG	TCACGGCCAC	CCACGCCCC	AGTCGAAAGC	1020
20	TGCTCAACCA	TCTCCTTCCA	CAGTGCCCAA	AACTGAAGAC	CAGCGCTCTC	AGTTAGATCC	1080
	TTATCAGATT	CTTGGACCAA	CAAGTAGCCG	CCTTGCAAAAT	CCAGGCAGTG	GCCAGATCCA	1140
	GCTTTGGCAG	TTCCCTCTGG	AGCTCCTGTC	GGACAGCTCC	AACTCCAGCT	GCATCACCTG	1200
	GGAAGGCACC	AACGGGGAGT	TCAAGATGAC	GGATCCCGAC	GAGGTGGCCC	GGCGCTGGGG	1260
25	AGAGCGGAAG	AGCAAACCCA	ACATGAACTA	CGATAAGCTC	AGCCGCGCCC	TCCGTTACTA	1320
	CTATGACAAG	AACATCATGA	CCAAGGTCCA	TGGGAAGCGC	TACGCCCTACA	AGTTCGACTT	1380
	CCACGGGATC	GCCCAGGCC	TCCAGCCCCA	CCCCCCCCGAG	TCATCTCTGT	ACAAGTACCC	1440
	CTCAGACCTC	CCGTACATGG	GCTCTATCA	CGCCCCACCCA	CAGAAGATGA	ACTTTGTGGC	1500
	GCCCCACCCCT	CCAGCCTCTC	CCGTGACATC	TTCCAGTTT	TTTGTGCCCC	CAAACCCATA	1560
	CTGGAATTCA	CCAACTGGGG	GTATATACCC	CAACACTAGG	CTCCCCACCA	GCCATATGCC	1620
30	TTCTCATCTG	GGCACTTACT	<u>ACTAAAGACC</u>	TGGCGGAGG	TTTCCCACATC	AGCGTGCATT	1680
	CACCAGCCA	TCGCCACAAA	CTCTATCGGA	GAACATGAAT	CAAAGTGC	TCAAGAGGAA	1740
	TGAAAAAAAGC	TTTACTGGGG	CTGGGGAGG	AAGCCGGGGA	AGAGATCCAA	AGACTCTTGG	1800
	GAGGGAGTTA	CTGAAGTCTT	ACTACAGAAA	TGAGGAGGAT	GCTAAAATG	TCACGAATAT	1860
	GGACATATCA	TCTGTGGACT	GACCTTGAA	AAGACAGTGT	ATGTAGAAGC	ATGAAGTCTT	1920
35	AAGGACAAAG	TGCCAAAGAA	AGTGGTCTTA	AGAAATGTAT	AAACTTTAA	GTAGAGTTG	1980
	AATCCCACCA	ATGCAAACATG	GGATGAAACT	AAAGCAATAG	AAACAACACA	GTTTTGACCT	2040
	AAACATACCGT	TTATAATGCC	ATTTTAAGGA	AAACTACCTG	TATTTAAAAA	TAGTTTCATA	2100
	TCAAAAAAACAA	GAGAAAAGAC	ACGAGAGAGA	CTGTGGCCCA	TCAACAGACG	TTGATATGCA	2160
40	ACTGCATGGC	ATGTGCTGTT	TTGGTTGAAA	TCAAATACAT	TCCTCTTGT	GGACAGCTGT	2220
	CAGCTTCTC	AAACTGTGAA	GATGACCCAA	AGTTTCCAAC	TCCTCTTACAG	TATTACCGGG	2280
	ACTATGAAC	AAAAGGTGGG	ACTGAGGATG	TGTATAGAGT	GAGCGTGTGA	TTGTAGACAG	2340
	AGGGGTGAAG	AAGGAGGAGG	AAGAGGCAGA	GAAGGAGGAG	ACCAAGCTGG	GAAAGAAACT	2400
	TCTCAAGCAA	TGAAGACTGG	ACTCAGGACA	TTTGGGGACT	GTGTACAATG	AGTTATGGAG	2460
45	ACTCGAGGGT	TCATGCAGTC	AGTGTATAC	CAAACCCAGT	GTTAGGAGAA	AGGACACAGC	2520
	GTAATGGAGA	AAGGGAAAGTA	GTAGAATTCA	GAACAAAAAA	TGCGCATCTC	TTTCTTTGTT	2580
	TGTCAAATGA	AAATTTAAC	TGGAATTGTC	TGATATTAA	GAGAAACATT	CAGGACCTCA	2640
	TCATTATGTG	GGGGCTTGT	TCTCCACAGG	GTCAGGTAAAG	AGATGGCCTT	CTTGGCTGCC	2700
	ACAATCAGAA	ATCACGCAGG	CATTTGGGT	AGGCGGCCCTC	CAGTTTCCCT	TTGAGTCGCG	2760
50	AACGCTGTGC	TTTTGTCAGA	ATGAAGTATA	CAAGTCATG	TTTTTCCCCC	TTTTATATA	2820
	ATAATTATAT	AACTTATGCA	TTTATACACT	ACGAGTTGAT	CTCGGCCAGC	CAAAGACACA	2880
	CGACAAAAAGA	GACAATCGAT	ATAATGTGGC	CTTGAATTTT	AACTCTGTAT	GCTTAATGTT	2940
	TACAATATGA	AGTTTATTAGT	TCTTAGAATG	CAGAATGTAT	GTAATAAAAT	AAGCTTGGCC	3000
	TAGCATGGCA	AATCAGATT	ATACAGGAGT	CTGCATTTC	ACTTTTTTA	GTGACTAAAG	3060
55	TTGCTTAATG	AAAACATGTG	CTGAATGTTG	TGGATTTGT	GTATAATT	ACTTTGTCCA	3120
	GGAACTTGTG	CAAGGGAGAG	CCAAGGAAAT	AGGATTTTG	GCACCC		

~~AADS DNA sequence~~

Gene name: activin A receptor type II-like 1 (ALK-1)

Unigen ID number: Hs.8881 / Hs.172670

Probeset Accession #: T57112

Nucleic Acid Accession #: NM_000020

Coding sequence: 283-1794 (predicted start/stop codons underlined)

65	AGGAAACGGT	TTATTAGGAG	GGAGTGGTGG	AGCTGGCCA	GGCAGGAAGA	CGCTGGAATA	60
	AGAAACATT	TTGCTCCAGC	CCCCATCCCA	GTCCCGGGAG	GCTGCCGCC	CAGCTGCC	120
	GAGCGAGGCC	CTCCCCGGCT	CCAGCCCGGT	CCGGGGCCGC	GCCGGACCCC	AGCCCGCCGT	180
	CCAGCGCTGG	CGGTGCAACT	GCGGCCGCC	GGTGGAGGGG	AGGTGGCCCC	GGTCCGCCGA	240

	AGGCTAGCGC	CCCGCCACCC	GCAGAGCGGG	CCCAGAGGGA	CCATGACCTT	GGGCTCCCC	300
	AGGAAAGGCC	TTCTGATGCT	GCTGATGGCC	TTGGTGACCC	AGGGAGACCC	TGTGAAGCCG	360
	TCTCGGGGCC	CGCTGGTGAC	CTGCACGTGT	GAGAGCCCAC	ATTGCAAGGG	GCCTACCTGC	420
5	CGGGGGGCC	GGTGACAGT	AGTGCTGGTG	CGGGAGGAGG	GGAGGCACCC	CCAGGAACAT	480
	CGGGGCTGCG	GGAACATTGCA	CAGGGAGGCTC	TGCAGGGGGC	GCCCCACCGA	GTTCGTCAAC	540
	CACTACTGCT	GCGACAGCCA	CCTCTGCAAC	CACAACGTGT	CCCTGGTGT	GGAGGCCACC	600
	CAACCTCCTT	CGGAGCAGCC	GGGAACAGAT	GGCCAGCTGG	CCCTGATCCT	GGGCCCCGTG	660
	CTGGCCTTGC	TGGCCCTGGT	GGCCCTGGGT	GTCCCTGGCC	TGTGGCATGT	CCGACGGAGG	720
10	CAGGAGAACG	AGCGTGGCCT	GCACAGCGAG	CTGGGAGAGT	CCAGTCTCAT	CCTGAAAGCA	780
	TCTGAGCAGG	GCGACACGAT	GTGGGGGAC	CTCCTGGACA	GTGACTGCAC	CACAGGGAGT	840
	GGCTCAGGGC	TCCCCTTCCT	GGTGCAGAGG	ACAGTGGCAC	GGCAGGTTGC	CTTGGTGGAG	900
	TGTGTGGGAA	AAGGCCGCTA	TGGCGAAGTG	TGGCGGGCT	TGTGGCACGG	TGAGAGTGTG	960
	GCCGTCAAGA	TCTTCTCCTC	GAGGGATGAA	CAGTCCTGGT	TCCGGGAGAC	TGAGATCTAT	1020
15	AACACAGTAT	TGCTCAGACA	CGACAACATC	CTAGGCTTCA	TCGGCTCAGA	CATGACCTCC	1080
	CGCAACTCGA	GCACGCACTG	GTGGCTCATC	ACGCACTACC	ACGAGCACGG	CTCCCTCTAC	1140
	GACTTCTGC	AGAGACAGAC	GCTGGAGCCC	CATCTGGCTC	TGAGGCTAGC	TGTGTCCCG	1200
	GCATCGGGC	TGGCGCACCT	GCACGTGGAG	ATCTTGGTA	CACAGGGCAA	ACCAGCCATT	1260
	GCCCACCGCG	ACTTCAAGAG	CCGCAATGTG	CTGGTCAAGA	GCAACCTGCA	GTGTTGCATC	1320
	GCCGACCTGG	GCCTGGTGT	GATGCACTCA	CAGGGCAGCG	ATTACCTGGA	CATCGGCAAC	1380
20	AACCCGAGAG	TGGGCACCAA	GCGGTACATG	GCACCCGAGG	TGCTGGACGA	GCAGATCCGC	1440
	ACGGACTGCT	TTGAGTCTTA	CAAGTGGACT	GACATCTGGG	CCTTGGCCT	GGTGCTGTGG	1500
	GAGATTGCC	GCCGGACCAT	CGTGAATGGC	ATCGTGGAGG	ACTATAGACC	ACCCTTCTAT	1560
	GATGTGGTGC	CCAATGACCC	CAGCTTTGAG	GACATGAAGA	AGGTGGTGTG	TGTGGATCAG	1620
	CAGACCCCCA	CCATCCCTAA	CCGGCTGGCT	GCAGACCCGG	TCCTCTCAGG	CCTAGCTCAG	1680
25	ATGATGCCGG	AGTGTGGTA	CCCAAACCCC	TCTGCCGCAC	TCACCGCGCT	GCGGATCAAG	1740
	AAGACACTAC	AAAAAAATTAG	CAACAGTCCA	GAGAAGCCTA	AAGTGAATTCA	ATAGCCCAGG	1800
	AGCACCTGAT	TCCTTCTGC	CTGCAAGGGG	CTGGGGGGGT	GGGGGGCAGT	GGATGGTGCC	1860
	CTATCTGGT	AGAGGTAGTG	TGAGTGTGGT	GTGTGCTGGG	GATGGGCAGC	TGCGCCTGCC	1920
	TGCTCGGCC	CCAGCCCCC	CAGCCAAAAA	TACAGCTGGG	CTGAAACCTG	ATCCCCTGCT	1980
30	GCTTGGCTG	CTCAAAGCGG	CAGGCTCCCT	GACGCCCTGG	TCTCTCCCCA	CCCTATGGC	2040
	CAGCATGGTG	CACCCCTAC	CACTCCCGGG	ACAGGATGCA	AAAGAGGCTC	CAGAGTCAGA	2100
	GTGCCAAGCC	AGGGAATCCC	AGTCCCAGAC	TCAGAGCCCG	GGCCTGCACT	TTGCCCCCTG	2160
	CCCTTGATCA	ACCCCACTGC	CCACCAAGAG	CTGCCAGGGT	GGCACAGGGC	CCTGTCCAGC	2220
	CCCTGGCACA	CACTCCCTG	CCAGGCCTCA	GCCTCTAGCA	TAAGCTCCAG	AGAGCCAGGG	2280
35	CCCATCAGTT	TCTCTCTGTG	GATTTGTATC	TCAGCTCCAT	GATGCCCTGG	GCTTTCTGTC	2340
	TCCCTAACAA	GAGTGCAGCT	TGCTGAATGT	CAGCTGCTG	AGAGAGCTGG	GGCCTGACTT	2400
	ACTAGGGCAT	TAATCTAA	GAGGTCTTAC	TGAGGTGTGG	CAGGATCACA	GGCCAGTGG	2460
	AAAAGGGCAG	GTCAGATGGG	CAAGGCCAG	GACTTTCA	TTAATGAGA	GGATATCGAG	2520
	GCCAAGCATG	GCAGGGGG	GGTCAGTGGG	TGTCAAGAGA	CCCAGGCTG	ACCCCGGATG	2580
40	TTGCTCCAT	GTGACAAAAG	CAGGCTGTC	TCAGGACCTT	TTCTTTCTT	TTTCCTTCT	2640
	TTTTTTTTT	GACACGGAGT	TTCGCTTTG	TTGTCCAGG	TAGAGTGCAA	TGGCATGATC	2700
	CCAGCTCACC	GCAACGTCTA	CCTCCAGGT	TCAAATCATT	CTCTTGCCCTC	AGACTCCGA	2760
	GTAGCTGGG	TTACAGGCAC	ATGCCACCAT	GCCTGGCTAA	TTTTGTATAT	TTAGTAGAAA	2820
	CAGGGTTTC	CCATGCTGGC	CATGCTGGT	CTCGAACTCC	TGACCTCAGG	TGTTCCACCT	2880
45	ACCTCAGCCT	CCAAAGTGC	TGGGTTACA	GGTGTGAGCC	ATCGGCCCTG	GCCAGGACCT	2940
	TTGTTTCTTA	TCTACATATT	GGAAGATTG	GTCCTGATGT	CCTTGTAGGC	TTCTTTAGCT	3000
	CTAGTTCTCT	GACACTTCAG	CCTATATCAC	AGCTAACTC	YTCACTCTCA	TCTATTCTT	3060
	ATGCTCCAGC	CCCTGGCAAT	TTGCTGCAAG	ATGGGGTTT	GAAAATAACT	TTACCTGACT	3120
	CAAGGAGTGT	CTGGGACACC	TCTCTAGTCA	AGTCTGCAAG	CTCCAGTTCT	TGCCTAAAC	3180
50	CATGCCAGTG	GCCACCCCTG	GGCTCAGACA	GCTCTGGGC	TTTGTACCCAC	AAGCCAGCCC	3240
	CTCGCCCTCT	CTGTGGCATA	GTCTTCTCTG	CCCCCAGGACT	GCAGGGCGGC	TTCCCTCAAG	3300
	GCTTCCAAGG	CTAAAAGAA	ATTTGGCTCC	ATCCAAGAAG	GCTCCAGCTC	CCCTACTGGC	3360
	CCCTGGCTTC	AGGCCCCACAC	CCCTGGGCCA	GGSCCAGAGA	GTGTGCTCA	GGAGAATTCA	3420
	ATGGGCTCTA	GAGAGACACA	CAGAAAGTTT	GGGCATTG	GAAATTTC	AGGRTGTATG	3480
55	TATGGYTCA	GTATGGWGCA	GGTTGTCTG	GTCCYKGGGT	GCAGGGAAGT	GGGCTGCAGG	3540
	GAAGTGGATT	GGAGGGGAGC	TTGAGGAATA	TAAGGAGCGG	GGGTGGAGAC	TCAGGCTATG	3600
	GACAAGGACA	GCCCCAAGGT	TGGAAGACC	TGGCCTTAGT	CGTCTCTCAGC	CTAGGGCAGG	3660
	GCAGTGAAGA	AAGCTCTCCC	CGCTCTGT	GTAATGACCC	AGAGTAGCCT	CCCCAGGCCG	3720
	GCATGTTATG	TGTGTCTTCC	ACCATCTCA	TGGTGGCACT	TTTCTAGGCC	TGTCTCCAG	3780
60	CATTGTGCAA	GGCTCGGAAG	AGAACCAAG	AGTGAACATG	GGTGAACAA	GAAAGCTCAA	3840
	TGGATGGGT	AGGTTCCCAG	ATCATTAGG	CAGAGTTGC	ACGTCCCTCTG	TTCACTGGG	3900
	AATCCACCCA	GCCCACGAAT	CATCTCCCTC	TTTGAAGGGAT	TTTWATTCT	ACTGGGTTTT	3960
	GGAAACAAACT	CCTGCTGAGA	CCCCACAGCC	AGAAACTGAA	AGCAGCAGCT	CCCCAAAGCC	4020
	TGGAAAATCC	CTAAGAGAAAG	GCCTGGGGGA	MAGGAAKTGG	AGTGACAGGG	GACAGGTAGA	4080
65	GAGAAGGGGG	CCCAATGGCC	AGGGAGTGAA	GGAGGGTGGCG	TTGCTGAGAG	CAGTCTGCAC	4140
	ATGCTTCTGT	CTGAGTGCAG	GAAGGTGTT	CAGGGTCGAA	ATTACACTTC	TCGTACCTGG	4200
	AGACGCTGTT	TGTGGGAGCA	CTGGGCTCAT	GCCTGGCACA	CAATAGGTCT	GCAATAAAC	4260
	ATGGTTAAAT	CCTGAAAAAA	AAAAAAA				

Um
Q31
5
~~AAD8 DNA sequence~~

Gene name: ESTs

Unigene number: Hs.144953

Probeset Accession #: AA404418

Nucleic Acid Accession #: n/a

Coding sequence: no ORF identified; possible frameshifts

10	TATGTCCACC AAAGACACCT CGTTGGTCAT GTTCTATCAC CTCTTCGTCA AATTGACATC	60
	AGGTCCCTAAC AGGTCACCTT CAAGATAACAG AAGAGGAAA TTTGTTTG AGACTTG GCC	120
	ATTCCTAGGG TCAGCAAAGT GTATTCCTGG CAGCCAGAC TTCAGTCACT TATCAGGAAA	180
	TGCTTGACCT AAAGACAGAC AATTCTTTCC CCAAACATTG CTGTTCTTT TTTGAGTCTT	240
	TGTTGAAAGA TTTCTTTAA AAGGCGTTCG TGTGAGAAGA TCACAGCAAC AAATCTGGCT	300
15	TGTTCTGTT TAGACTTACT TTCTTAACCT TTGGGCAGAA GAAAATGAAT GAGATTGAA	360
	GACCTTGAT ACCTTGGGT GACAAAGCTT GCCTTGAAAC TAGAAAATAG ACGAAACTAG	420
	ATTTAAGGG GAAAAAAATT GCTAGTGGTA ATATAATTGG TTTGTTTCA TTTTTTATG	480
	AGTCTGAGGA GTTGACATT AACGTTGGGA TGTGCTTGT TAAATGAAGT CATTCAATT	540
	TTTGCACACT TTAACATCTG CATGCTTCCA TAAACAGTGG GTTGGAAACAA AAGAAAATGT	600
20	GACTAAGGGAA TATCCCTTAA ATTCTTTTT ATGTTATGAG AGAGAATATT GGAATATAAA	660
	GAATGTTACT TTATCTGGTA AACCATCTCA TAGGCCAGAA GCACAAACAG TTTGAATGGT	720
	TGGCTTAAA AAAAACGGGA GTCTTGAAT TTAAGCTTAT GTAAAATTAC TATGCAAATA	780
	TAGGTTTATTA TTATTTTTA CAGTAAAAT AAAACACTAT TGAAGTATAA ATGGAAAGAA	840
25	AATAAAAGCA AAGCCTGTT AATATAGAGA CATTAAATGTT GATATCACTG TACGAACAGT	900
	CATAGCTTGC TGCTCACTGC CGTTAAAGGG TTGACATACA AACATTGTGG AAGAGATTC	960
	AGTTTGAGGG CTAGTGTCTG AATTATGGAC TCCCTACCT ACTCCACAC TTAAAACATT	1020
	TTAGAGACTT TTGTGAAATT AACAGGTCA ATAATTAAATA ATTGTTGTTT TATGTACATT	1080
	TATTGAAAGG CCATATTGAG GCTTCCATTGA TTTTTTTTCC TGCAATTATA TCAGTATCGA	1140
30	ATTAGAAAAT TGAACCTTCA GTGTTACTAG ATGAAATCT ACCAAAAGT AGCAAGGTT	1200
	ACGAATGGTG GGATTATTG GTGATTAAAC ATTTTTTCC TGATTTTAT AAGTTTACAA	1260
	TTACATTAC AATGAGAAAA AAATGTAAAT GTAGAATTAA AGTCTGTTA ATATCGTAAT	1320
	TTGCCTATTG CTGTACTAAA AGAAGCTTCT ATAAAATGTA TCATTCTCAT CCTTAGATTC	1380
	AGGCCAGAAA GTAACTTCA GTGTTAGGTAA TTTGAAATAA TGCAGCTGT CATATGTA	1440
35	CTGGTTACCA GAATGAAAAA ACAAAAAGAG ATACATACAT AGTAAGGAAA CATGAAATTG	1500
	GAGGAATTGA TCCCCATGTG TATTGCAAGCT TCATATACCA GTAGTCTCTA ATAAGTCATT	1560
	GCTTTAATAA AAAAAAAAT AGAAAATTAA AA	

Um
Q32
40
~~ACA2 DNA sequence~~

Gene name: EST

Unigene number: Hs.16450

Probeset Accession #: AA478776

Nucleic Acid Accession #: AA478778

Coding sequence: no ORF identified; possible frameshifts

45	TATTTTGTA CGTAAAATGA TTCTATTATG ACTGCCTTG CATGTAGTAA TATGACAAAG	60
	TGATCCTTCA TTATCACGGT ACACATTGT TTACTTTCA TCTGTAAATG TTTTATTGTT	120
	ACTTTTTAA AATGAATTAA TTAAAACAA TCTAGCCATC ATCAAGGTGC TATAAGAGTT	180
	GTATAAAAGA TATTTGGC ATTCTAGGC AAGTATCAGC CAATAAGTAT GTAGTGTATA	240
50	TCACAGATTG TACCAACTAT TAACATTGT AAATAAGTAT TCAGTTTCA TGTATCTCG	300
	GGAAAAAAAT ATGCTGCCTT GGTGCTAATA TTGTATGTAT TAAATGATC ATCTGACTCA	360
	GAAATATAAA CACTTTAAAT GAAAGGGAGG AACGGAAGGA CAATTTCCAG TGCACAGAAT	420
	CACTTGGATG AAATAAGACC AGCTCTTAC CCTTATTTT GGATATGCCT TTTTGGAAAG	480
	AGACTTAGAC TTATCCTTA TTGTGTTAG TGTTGTTAAT ATTGTTGCT TCAGCCCACG	540
55	GTGCCTGGT CTCTCCACAA TCAAATGGAG GATCCCCAA GCAGCTTCAT TACAGAGTGA	600
	TATTGGGAAA GTGAGATCCT CTCACCATTG TGCCAAGATA CTCTAAAATG ACATCCAAGT	660
	TTACCACTAG AAAGACACAG GATGCACAGA ATGGGCATGA CCTTCAGCTC ACGAGCACAC	720
	CTGGAGAAAT TCAGAACCG GTTCTGAATC ATCACGATTG CCTTTGCT GAAAACATCG	780
	GCTGGTGATG TGACTTCTCT TCAGGCCATG AGCCTAACAY CCTGCCGGTT TTCATGCCG	840
60	CTGCAGTAAT GGACGTTGT GTGAGAAGAAAT GAACTGTGGA GTACAAAAA CTTTGAGTCT	900
	TTCCGATTGC TCATTAATTG ACTTTTTTGT TACTCTTC CAAAATGGAA GTGCTGAAGC	960
	CATGGTCTT CTGCCCTCC AAGCTGATGA AGGGAAGCCT TTGCCAATGG CCCATGGAAG	1020
	ACACTGGTT TGAGAAACCC TGCCCCACTTC CAAAGACCAA AGAGATTAGG AAAAGCTGG	1080
	CAGTATTCTC CAACTCCAAA CAAGCTCTAG AGTGCCTCCAG GAAAAGTTAT ATTCACTATA	1140
65	TGAATAAGTG TTATCTCCA TTATTAATGT GTTCTGAAAAA TATATTATGA ATAAATACAT	1200
	CACCACACCC AAAAAAAA AAAAAAAA AAAA	

John
9335
ACA4 DNA sequence

Gene name: alpha satellite junction DNA sequence

Unigene number: Hs.247946

Probeset Accession #: M21305

Nucleic Acid Accession #: M21305

Coding sequence: 1-165 (predicted start/stop codons underlined)

ATGGAATGGA ATGGAATGGC ATGGAATCGT ATAAAGTGG A ATGGAATCAA CTCGAGTGG 60
ATGGAATGGA ATGGAATGGA ATGGAATGCA GTACAATGCA ATAGAATGGA ATGGAATGAA 120
CTCGAGTTGA CTGGAATGGA ATGGAATGGA ATGCATTGGA ATTGA

10

John
9345
ACG6 DNA sequence

Gene name: intercellular adhesion molecule 2 (ICAM2)

Unigene number: Hs.83733

Probeset Accession #: M32334

Nucleic Acid Accession #: NM_000873

Coding sequence: 63-890 (predicted start/stop codons underlined)

20

CTAAAGATCT CCCTCCAGGC AGCCCTTGGC TGGTCCCTGC GAGCCCGTGG AGACTGCCAG 60
AGATGTCCCTC TTTCGGTTAC AGGACCCCTGA CTGTGGCCCT CTTCACCCCTG ATCTGCTGTC 120
CAGGATCGGA TGAGAAAGGT A TTGAGGTTAC ACGTGAGGCC AAAGAAGCTG GCGGTTGAGC 180
CCAAAGGGTC CCTCGAGGTC AACTGCAGCA CCACCTGTAA CCAGCCTGAA GTGGGTGGTC 240
TGGAGACCTC TCTAAATAAG ATTCTGCTGG ACGAACAGGC TCAGTGGAAA CATTACTTGG 300
TCTCAAACAT CTCCCATGAC ACGGTCCCTCC AATGCCACTT CACCTGCTCC GGGAAAGCAGG 360
AGTCATGAA TTCCAAACGT ACAGTGTACG AGCCTCAG GCAGGTCTAC CTGACACTGC 420
AACCACATTG TGTGGCTGTG GGCAAGTCTC TCACCATTTGA GTGCAGGGTG CCCACCGTGG 480
AGCCCCCTGGA CAGCCTCACC CTCTTCCCTGT TCCGTGCAA TGAGACTCTG CACTATGAGA 540
CCTTCGGGAA GGCAGCCCCCT GCTCCGCAGG AGGCCACAGC CACATTCAAC AGCACGGCTG 600
ACAGAGAGGA TGGCCACCCG AACTTCTCCT GCCTGGCTGT GCTGGACTTG ATGTCTCGCG 660
GTGGCAACAT CTTTCACAAA CACTCAGCCC CGAAGATGTT GGAGATCTAT GAGCCTGTGT 720
CCGACAGCCA GATGGTCATC ATAGTCACGG TGGTGTCCGT GTTGTGTGTC CTGTTCGTGA 780
CATCTGTCCT GCTCTGCTTC ATCTTCGGCC AGCACTTGC G CCAGCAGCGG ATGGGCACCT 840
ACGGGGTGC G AGCGGCTTGG AGGAGGCTGC CCCAGGCCCTT CGGCCATAG CAACCATGAG 900
TGGCATGGCC ACCACCACGG TGTCACTTGG AACTCACTGT GACTCCTCAG GGTTGAGGTC 960
CAGCCCTGGC TGAAGGACTG TGACAGGCAG CAGAGACTTG GGACATTGCC TTTTCTAGCC 1020
CGAATACAAA CACCTGGACT T

40

John
9355
ACG7 DNA sequence

Gene name: Cadherin 5, VE-cadherin (CDH5)

Unigene number: Hs.76206

Probeset Accession #: X79981

Nucleic Acid Accession #: NM_001795

Coding sequence: 25-2379 (predicted start/stop codons underlined)

45

GCACGATCTG TTCTCTCTGG GAAGATGCAG AGGCTCATGA TGCTCCTCGC CACATCGGGC 60
GCCTGCCTGG GCCTGCCTGG AGTGGCAGCA GTGGCAGCAG CAGGTGCTAA CCCTGCCAA 120
CGGGACACCC ACAGCCTGCT GCCCACCAC CGGGCCTAAA AGAGAGATTG GATTGGAAC 180
CAGATGCCACA TTGATGAAAGA GAAAACACCC TCACTTCCCC ATCATGTAGG CAAGATCAAG 240
TCAAGCGTGA GTCGCAAGAA TGCCAAAGTAC CTGCTCAAAG GAGAATATGT GGGCAAGGTC 300
TTCCGGGTCTG ATGCAGAGAC AGGAGACGTG TTGCGCATTG AGAGGCTGGA CGGGGAGAAT 360
ATCTCAGAGT ACCACCTCAC TGCTGTCAATT GTGGACAAGG ACACTGGTGA AAACCTGGAG 420
ACTCCTTCCA GCTTCACCAT CAAAGTTCAT GACGTGAACG ACAACTGGCC TGTGTTCACG 480
55 CATCGGTTGT TCAATCGTC CGTGCCTGAG TCGTCGGCTG TGGGGACCTC AGTCATCTCT 540
GTGACAGCAG TGGATGCAGA CGACCCCACT GTGGGAGACC ACGCCTCTGT CATGTACCAA 600
ATCCTGAAGG GGAAAGAGTA TTTTGCCTAC GATAATTCTG GACGTATTAT CACAATAACG 660
AAAAGCTTGG ACCGAGAGAA GCAGGCCAGG TATGAGATCG TGGTGGAAAGC GCGAGATGCC 720
CAGGGCCTCC GGGGGGACTC GGGCACGGCC ACCGTGCTGG TCACCTGCA AGACATCAAT 780
60 GACAACCTCC CCTCTTCCAC CCAGACCAAG TACACATTG TGCTGCCTGA AGACACCGT 840
GTGGGCACCT CTGTCGGCTC TCTGTTGTT GAGGACCCAG ATGAGCCCCA GAACCGGATG 900
ACCAAGTACA GCATCTTGC GGGCAGTAC CAGGACGCTT TCACCATTTGA GACAAACCCC 960
GCCCAACACG AGGGCATCAT CAAAGCCCATG AAGCCTCTGG ATTATGAATA CATCCAGCAA 1020
TACAGCTTCA TCGTCGAGGC CACAGACCC ACCATCGACC TCCGATACAT GAGCCCTCCC 1080
65 GCGGGAAACA GAGCCCAGGT CATTATCAAC ATCACAGATG TGGACGAGCC CCCCCATTTC 1140
CAGCAGCCTT TCTACCACTT CCAGCTGAAG GAAAACAGA AGAAGCCTCT GATTGGCACA 1200
GTGCTGGCCA TGGACCCCTGA TGGGGCTAGG CATAGCATTG GATACTCCAT CGCGAGGACC 1260
AGTGACAAGG GCCAGTTCTT CCGAGTCACA AAAAAGGGG ACATTTACAA TGAGAAAGAA 1320

5 CTGGACAGAG AAGTCTACCC CTGGTATAAC CTGACTGTGG AGGCCAAAGA ACTGGATTCC 1380
 ACTGGAACCC CCACAGGAAA AGAATCCATT GTGCAAGTCC ACATTGAAGT TTTGGATGAG 1440
 AATGACAATG CCCCGGAGTT TGCCAAGCCC TACCAGCCA AAGTGTGTGA GAACGCTGTC 1500
 CATGGCCAGC TGGTCCTGCA GATCTCCGCA ATAGACAAGG ACATAACACC ACGAAACGTG 1560
 AAGTTCAAAT TCACCTTGAA TACTGAGAAC AACTTACCC TCACGGATAA TCACGATAAC 1620
 10 ACAGGCCAACA TCACAGTCAA GTATGGGCAG TTTGACCGGG AGCATACCAA GGTCCACTTC 1680
 CTACCCGTGG TCATCTCAGA CAATGGGATG CCAAGTCGCA CGGGCACCAG CACGCTGACC 1740
 GTGGCCGTGT GCAAGTGCAG CGAGCAGGGC GAGTTACCT TCTGCGAGGA TATGGCCGCC 1800
 CAGGTGGGCG TGAGCATCCA GGCAGTGGTA GCCATCTAC TCTGCATCCT CACCATCACA 1860
 15 GTGATCACCC TGCTCATCTT CCTGCGGGCGG CGGCTCCGGA AGCAGGCCCG CGCGCACGGC 1920
 AAGAGCGTGC CGGAGATCCA CGAGCAGCTG GTCACCTACG ACGAGGAGGG CGGCGGCCAG 1980
 ATGGACACCA CCAGCTACGA TGTGTCGGTG CTCAACTCGG TGCGCCGCGG CGGGGCCAAG 2040
 CCCCCGCGGC CGCGCTGGA CGCCCGGCCCT TCCCTCTATG CGCAGGTGCA GAAGCCACCG 2100
 AGGCACGCGC CTGGGGCACA CGGAGGGCCC GGGGAGATGG CAGGATGAT CGAGGTGAAG 2160
 20 AAGGACGAGG CGGACCAAGA CGGCGACGGC CCCCCCTACG ACACGCTGCA CATCTACGGC 2220
 TACGAGGGCT CCGAGTCCAT AGCCGAGTCC CTCAGCTCCC TGGGACCGA CTCTACCGAC 2280
 TCTGACGTGG ATTACGACTT CCTAAACGAC TGGGGACCA GTTTAAAGAT GCTGGCTGAG 2340
 CTGTACGGCT CGGACCCCCG GGAGGAGCTG CTGTATTAGG CGGGCGAGGT CACTCTGGC 2400
 CTGGGGACCC AAACCCCTG CAGCCCCAGGC CAGTCAGACT CCAGGCACCA CAGCCTCCAA 2460
 25 AAATGGCAGT GACTCCCCAG CCCAGCACCC CTTCCTCGTG GGTCCCAGAG ACCTCATCAG 2520
 CCTTGGGATA GCAAACCTCA GGTTCCTGAA ATATCCAGGA ATATATGTCA GTGATGACTA 2580
 TTCTCAAATG CTGGCAAATC CAGGCTGGTG TTCTGTCTGG GCTCAGACAT CCACATAACC 2640
 CTGTCACCCCA CAGACGCCG TCTAACTCAA AGACTTCCCT TGGCTCCCA AGGCTGCAA 2700
 GCAAAACAGA CTGTGTTAA CTGCTGCAGG GTCTTTTCT AGGGTCCCTG AACGCCCTGG 2760
 30 TAAGGCTGGT GAGGTCCCTGG TGCCTATCTG CCTGGAGGCA AAGGCCCTGG AAGCTTGACT 2820
 TGTGGGGCAG GATTCTCTGC AGCCCATTC CAAGGGAGAC TGACCATCAT GCCCTCTCTC 2880
 GGGAGGCCCTA GCCCTGCTCC AACTCCATAC TCCACTCCAA GTGCCCCACC ACTCCCCAAC 2940
 CCCCCTCCAG GCCTGTCAAG AGGGAGGAAG GGGGCCCCATG GCAGCTCTCG ACCTTGGGTC 3000
 CTGAAGTGCAG CTCACTGGCC TGCCATGCCA GTAACTGTGC TGTACTGAGC ACTGAACCA 3060
 ATTCAAGGAA ATGCTTATTA AACCTTGAAG CAACTGTGAA TTCAATTCTGG AGGGGCAGTG 3120
 GAGATCAGGA GTGACAGATC ACAGGGTGAG GGCCACCTCC ACACCCACCC CCTCTGGAGA 3180
 AGGCCTGGAA GAGCTGAGAC CTTGCTTGA GACTCCTCAG CACCCCTCCA GTTTGCTCTG 3240
 AGAAGGGGCA GATGTTCCCG GAGATCAGAA GACGTCTCCC CTTCTCTGCC TCACCTGGTC 3300
 35 GCCAATCCAT GCTCTCTTTC TTTCTCTGT CTACTCCTTA TCCCTTGGTT TAGAGGAACC 3360
 CAAGATGTGG CCTTTAGCAA AACTGACAAT GTCCAAACCC ACTCATGACT GCATGACGGA 3420
 GCCGAGCATG TGTCTTTACA CCTCGCTGTT GTCACATCTC AGGAACTGA CCCTCAGGCA 3480
 CACCTTGCAG AAGGAAGGCC CTGCCCTGCC CAACCTCTGT GGTACCCAT GCATCATCTC 3540
 ACTGGAACGT TTCACTGCAA ACACACCTTG GAGAAGTGGC ATCAGTCAAC AGAGAGGGC 3600
 AGGGAAGGAG ACACCAAGT CACCCCTCGT CATGGACCGA GTTCCCCACT CTGGCAAAGC 3660
 40 CCCTCACACT GCAAGGGATT GTAGATAACA CTGACTTGTGTT TGTTTTAACCAATAACTAGC 3720
 TTCTTATAAT GATTTTTTTA CTATGATAC TTACAAGTTT CTAGCTCTCA CAGACATATA 3780
 GAATAAGGGT TTTTGATCAA TAAGCAGGTT GTTATTTAGG TTAACAATAT TAATTGAGGT 3840
 TTTTAGTTG GAAAAACAAT TCCGTAAACC TTCTATTTTC TATAATTGTA GTAATTGCTC 3900
 TACAGATAAT GTCTATATAT TGGCCAAACT GGTGCATGAC AAGTACTGTA TTTTTTATA 3960
 45 CCTAAATAAA GAAAAATCTT TAGCCTGGGC AACAAAAAAA

ACG9 DNA sequence

Gene name: lysyl oxidase-like 2 (LOXL2)

Unigene number: Hs.83364

Probeset Accession #: U899942

Nucleic Acid Accession #: NM_002318 cluster

Coding sequence: 248-2572 (predicted start/stop codons underlined)

55 ACTCCAGCGC CGGGCTACCT ACGCTTGGTG CTGCTTTCT CCAGCCATCG GAGACCAGAG 60
 CCGCCCCCTC TGCTCGAGAA AGGGGCTCAG CGGCGGCCGA AGGGGAGGGG GACCACCGTG 120
 GAGAGCGCGG TCCCAGCCCG GCCACTGCGG ATCCCTGAAA CAAAAAAAGCT CCTGCTGCTT 180
 CTGTACCCCG CCTGTCCCTC CCAGCTGCGC AGGGCCCCCT CGTGGGATCA TCAGCCCGAA 240
 GACAGGGATG GAGAGGCCCTC TGTGCTCCCA CCTCTGCAGC TGCTGGCTA TGCTGGCCCT 300
 60 CCTGTCCCCC CTGAG~~T~~TGG CACAGTATGA CAGCTGGCCC CATTA~~CCCG~~ AGTACTTCCA 360
 GCAACCGGCT CCTGA~~T~~TATC ACCAGCCCCA GGGCCCCGCC AACGTTGGCCA AGATTCAGCT 420
 GGCCTGGCT GGGCAGAAGA GGAAGCACAG CGAGGGCCGG GTGAGGTGT ACTATGATGG 480
 CCAGTGGGGC ACCGTGTGCG ATGACGACTT CTCCATCCAC GCTGCCCACG TCGTCTGCCG 540
 GGAGCTGGGC TATGTGGAGG CCAAGTCCTG GACTGCCAGC TCCTCCTACG GCAAGGGAGA 600
 65 AGGGCCCATC TGGTTAGACA ATCTCCACTG TACTGGCAAC GAGGCGACCC TTGCAGCATG 660
 CACCTCCAAT GGCTGGGGCG TCACTGACTG CAAGCACACG GAGGATGTG GTGTGGTGTG 720
 CAGCGACAAA AGGATTCTG GTTCAAATT TGACAATTG TTGATCAACC AGATAGAGAA 780
 CCTGAATATC CAGGTGGAGG ACATTCGGAT TCGAGCCATC CTCTCAACCT ACCGCAAGCG 840

CACCCCAAGTG ATGGAGGGCT ACGTGGAGGT GAAGGAGGGC AAGACCTGGA AGCAGATCTG 900
 TGACAAGCAC TGGACGGCCA AGAATTCCCG CGTGGCTCTGC GGCAATGTTG GCTTCCCTGG 960
 GGAGAGGACA TACAATACCA AAGTGTACAA AATGTTGCC TCACGGAGGA AGCAGCGCTA 1020
 5 CTGGCCATTC TCCATGGACT GCACCGGCAC AGAGGCCCAC ATCTCCAGCT GCAAGCTGGG 1080
 CCCCCCAGGTG TCACTGGACC CCATGAAGAA TGTCACCTGC GAGAATGGGC TGCCGGCCGT 1140
 GGTGAGTTGT GTGCCTGGGC AGGTCTTCAG CCCTGACGGA CCCTCGAGAT TCCGGAAAGC 1200
 ATACAAGCCA GAGCAACCCC TGTTGCGACT GAGAGGGGT GCCTACATCG GGGAGGGCCG 1260
 CGTGGAGGTG CTCAAAATG GAGAATGGGG GACCGTCTGC GACGACAAGT GGGACCTGGT 1320
 GTCGGCCAGT GTGGTCTGCA GAGAGCTGGG CTTTGGGAGT GCCAAAGAGG CAGTCACTGG 1380
 10 CTCCCAGCTG GGGCAAGGGA TCGGACCCAT CCACCTCAAC GAGATCCAGT GCACAGGCAA 1440
 TGAGAAGTCC ATTATAGACT GCAAGTCTAA TGCCGAGTCT CAGGGCTGCA ACCACGAGGA 1500
 GGATGCTGGT GTGAGATGCA ACACCCCTGC CATGGGCTTG CAGAAGAAGC TGCGCCTGAA 1560
 CGGCGGCCGC AATCCCTACG AGGGCCAGT GGAGGTGCTG GTGGAGAGAA ACGGGTCCCT 1620
 15 TGTGTGGGG ATGGTGTGTC GCAAAAGCTG GGGCATCGT GAGGGCATGG TGGTCTGCCG 1680
 CCAGCTGGGC CTGGGATTCG CCAGCAACGC CTTCCAGGAG ACCTGGTATT GGCACGGAGA 1740
 TGTCAACAGC AACAAAGTGG TCATGAGTGG AGTGAAGTGC TCAGGGAACGG AGCTGTCCCT 1800
 GCGCGACTGC CGCCACCGACG GGGAGGACGT GGCCTGGCCC CAGGGCGGG TGCACTACGG 1860
 GGCGGGAGTT GCCTGCTCAG AAACCGCCCC TGACCTGGTC CTCAATGCGG AGATGGTGC 1920
 GCAGACCACC TACCTGGAGG ACCGGCCCAT GTTCATGCTG CAGTGTGCCA TGGAGGAGAA 1980
 20 CTGCCTCTCG GCCTCAGCCG CGCAGACCGA CCCCACACG GGCTACCGCC GGCTCCTGCCG 2040
 CTTCTCCTCC CAGATCCACA ACAATGGCCA GTCCGACTTC CGGCCCCAAGA ACGGCCGCCA 2100
 CGCGTGGATC TGGCAGGACT GTCACAGGCA CTACACACAGC ATGGAGGTGT TCACCCACTA 2160
 TGACCTGCTG AACCTCAATG GCACCAAGGT GGCAGAGGGC CACAAGGCCA GCTTCTGCTT 2220
 GGAGGACACA GAATGTGAAG GAGACATCCA GAAGAATTAC GAGTGTGCCA ACTTCGGCGA 2280
 25 TCAGGGCATC ACCATGGGCT GCTGGGACAT GTACCGCCAT GACATCGACT GCCAGTGGGT 2340
 TGACATCACT GACGTGCCCC CTGGAGACTA CCTGTTCCAG GTTGTATTAA ACCCCAACCTT 2400
 CGAGGTTGCA GAATCCGATT ACTCCAACAA CATCATGAAA TGCAAGGAGCC GCTATGACGG 2460
 CCACCGCATIC TGGATGTACA ACTGCCACAT AGGTGGTCC TTCAAGCGAAG AGACGGAAAA 2520
 AAAGTTTGAG CACTTCAGCG GGCCTTTAA CAACCAAGCTG TCCCCGCAGT AAAGAAGCCT 2580
 30 CGCTGGTCAA CTCTCTGCTT CAGGCCACAC CACATCTCC ATGGGACTTC CCCCCAACAA 2640
 CTGAGTCTGA ACGAATGCCA CGTGCCTCA CCCAGCCCCG CCCCCACCCCT GTCCAGACCC 2700
 CTACAGCTGT GTCTAAAGCTC AGGAGGAAAG GGACCCCTCC ATCATTCAAT GGGGGCTGCT 2760
 ACCTGACCCCT TGGGGCCTGA GAAGGCCCTG GGGGGGTGGG GTTGTCCAC AGAGCTGCTG 2820
 GAGCAGCACC AAGAGCCAGT CTTGACCGGG ATGAGGCCA CAGACAGGTT GTCATCAGCT 2880
 35 TGTCCCATTG AAGCCACCCG GCTCACCACA GACACAGTGG AGCCCGCGCTC TTCTCCAGTG 2940
 ACACGTGGAC AAATGCCGGC TCATCAGGCC CCCAGAGAG GGTCAAGGCCG AACCCCATTT 3000
 CTCCTCTCTCT TAGGTCAATT TCAAGCAACT TGAATATCTA GACCTCTCTT CCAATGAAAC 3060
 CCTCCAGTCT ATTATAGTCA CATAGATAAT GGTGCCACGT GTTTCTGAT TTGGTGAGCT 3120
 CAGACTTGGT GCTTCCCTCT CCACAACCCC CACCCCTTGT TTTCAAGAT ACTATTATTA 3180
 40 TATTTTCACA GACTTTGAA GCACAAATT ATTGGCATT AATATTGGAC ATCTGGGCC 3240
 TTGGAAGTAC AAATCTAAGG AAAAACCAAC CCACTGTGTA AGTGAACCAT TTCCCTGTTG 3300
 TTCCAATTCT GTGGGTTTT GATTCAACGG TGCTATAACC AGGGTCTGG GTGACAGGGC 3360
 GTCACTGAG CACCATGTGT CATCACAGAC ACTTACACAT ACTTGAAACT TGGAATAAAA 3420
 GAAAGATTAA TG
 45

Ans
 59 A37
 ACH2 DNA sequence
 Gene name: Tie tyrosine protein kinase
 Unigene number: Hs.78824
 Probeset Accession #: X60957
 Nucleic Acid Accession #: NM_005424 cluster
 Coding sequence: 37-3452 (predicted start/stop codons underlined)

CGCTCGTCCT GGCTGGCCTG GGTCAACGGCTC TGGAGTATGG TCTGGCGGGT GCCCCCTTT 60
 55 TTGCTCCCCA TCCTCTCTT GGCTTCTCAT GTGGGCGCGG CGGTGGACCT GACGCTGCTG 120
 GCCAACCTGC GGCTCACCGA CCCCCACGCG TTCTTCTCTGA CTTGCGTGTG TGAGGAGGCC 180
 GGGGCGGGGA GGGGCTCGGA CGCCTGGGGC CCGCCCTCTG TGCTGGAGAA GGACGACCGT 240
 ATCGTGCAGCA CCCCCCCCCG GCCACCCCTG CGCCTGGCGC GCAACCGGTC GCACCAAGGTC 300
 60 ACGCTTCGGCG GCTTCTCCAA GCCCCCTGGAC CTCGTGGCGC TCTTCTCTG CGTGGGCGGT 360
 GCTGGGGCGC GGCACACCG CGTCACTAC GTGCA~~AT~~ACA GCCCTGGAGC CCACCTGCTT 420
 CCAGACAAGG TCACACACAC TGTGAACAAA GGTGAC~~AT~~CGC CTGACTTTTC TGCACTGCTG 480
 CACAAGGAGA AGCAGACAGA CGTGATCTGG AAGAGCAACG GATCCTACTT CTACACCCCTG 540
 GACTGGCATG AAGCCCCAGGA TGCGCGGTT CGCTGTGAGC TCCAAATGTT GCAGCCACCA 600
 TCGAGCGGCA TCTACAGTGC CACTTACCTG GAAGCCAGCC CCCTGGGAGC CGCCTTCTTT 660
 65 CGGCTCATCG TGCGGGTTG TGGGGCTGGG CGCTGGGGC CAGGCTGTAC CAAGGAGTGC 720
 CCAGGTTGCC TACATGGAGG TGCTGCCAC GACCATGAGC GCGAATGTGT ATGCCCTCCCT 780
 GGCTTCACTG GCACCCGCTG TGAACAGGCC TGCAGAGAGG GCGCTTTGG GCAGAGCTGC 840
 CAGGAGCAGT GCCCAGGCAT ATCAGGCTGC CGGGGCTCA CCTTCTGCTT CCCAGACCCC 900

	TATGGCTGCT	CTTGTGGATC	TGGCTGGAGA	GGAAGCCAGT	GCCAAGAACG	TTGTGCCCT	960
	GGTCATTTTG	GGGCTGATTG	CCGACTCCAG	TGCCAGTGTG	AGAATGGTGG	CACTTGTGAC	1020
	CGGTTCAGTG	GTTGTGTC	CCCCCTGGG	TGGCATGGAG	TGCAGTGTG	GAAGTCAGAC	1080
5	CGGATCCCCC	AGATCCTCAA	CATGGCCTCA	GAACGTGAGT	TCAACTTAGA	GACGATGCC	1140
	CGGATCAACT	GTGCAGCTGC	AGGGAACCCC	TTCCCCGTGC	GGGGCAGCAT	AGAGCTACGC	1200
	AAGCCAGACG	GCACTGTGCT	CCTGTCCACC	AAGGCCATTG	TGGAGCCAGA	GAAGACCACA	1260
	GCTGAGTTCG	AGGTGCCCG	CTTGGTTCTT	GCGGACAGTG	GGTTCTGGGA	GTGCCGTGTG	1320
	TCCACATCTG	GCGGCCAAGA	CAGCCGGCGC	TTCAAGTCA	ATGTGAAAGT	GCCCCCGGTG	1380
10	CCCCCTGGCTG	CACCTCGGCT	CCTGACCAAG	CAGAGCCGCC	AGCTTGTGGT	CTCCCCGCTG	1440
	GTCTCGTTCT	CTGGGGATGG	ACCCATCTCC	ACTGTCCGCC	TGCACTACCG	GCCCCAGGAC	1500
	AGTACCATGG	ACTGGTCGAC	CATTGTGGTG	GACCCAGTG	AGAACGTGAC	TTAACATGAAC	1560
	CTGAGGCCAA	AGACAGGATA	CACTGTTCGT	GTGCAGCTGA	GCCGGCCAGG	GGAAGGAGGA	1620
	GAGGGGGCCT	GGGGGCTCC	CACCCATG	ACCACAGACT	TCTCTGAGCC	TTTGTGCAAG	1680
15	CCGTGGTTGG	AGGGCTGGCA	TGTGGAAGGC	ACTGACCGGC	TGCGAGTGTG	CTGGTCCTTG	1740
	CCCTTGGTGC	CGGGGCACT	GGTGGGGCAG	GGTTTCTGC	TGCGGCTGTG	GGACGGGACA	1800
	CGGGGGCAGG	AGCGGCCGGA	GAACGTCTCA	TCCCCCCAGG	CCCGCACTGC	CCTCCTGACG	1860
	GGACTCACGC	CTGGCACCCA	CTACCACTG	GATGTGCA	TCTACCACTG	CACCCCTCCTG	1920
	GGCCCCGGCT	CGCCCCCTGC	ACACGTGCTT	CTGCCCCCA	GTGGGCTCC	AGCCCCCGA	1980
20	CACCTCCACG	CCCAGGCCCT	CTCAGACTCC	GAGATCCAGC	TGACATGGAA	GCACCCGGAG	2040
	GCTCTGCCTG	GGCCAATATC	CAAGTACGTT	GTGGAGGTG	AGGTGGCTGG	GGGTGCAGGA	2100
	GACCCACTGT	GGATAGACGT	GGACAGGCCT	GAGGAGACAA	GCACCATCAT	CCGTGGCCTC	2160
	AACGCCAGCA	CGCGCTACCT	CTTCCGCATG	CGGGCAGCA	TTCAGGGCT	GGGGGACTGG	2220
	AGCAACACAG	TAGAAGAGTC	CACCCCTGGC	AACGGGCTGC	AGGCTGAGGG	CCCAGTCCAA	2280
25	GAGAGCCGGG	CAGCTGAAGA	GGGCCTGGAT	CAGCAGCTGA	TCCCTGGCGGT	GGTGGGCTCC	2340
	GTGTCTGCCA	CCTGCCTCAC	CATCCTGGCC	GCCCTTTAA	CCCTGGTGTG	CATCCGCA	2400
	AGCTGCCCTG	ATCGGAGACG	CACCTTACCC	TACCACTG	GCTCGGGCGA	GGAGACCATC	2460
	CTGCAGTTCA	GCTCAGGGAC	CTTGACACTT	ACCCGGCGC	CAAAACTGCA	GCCCAGGCC	2520
	CTGAGCTACC	CAGTGTAGA	GTGGGAGGAC	ATCACCTTG	AGGACCTCAT	GGGGGAGGGG	2580
30	AACTTCGGCC	AGGTCACTCG	GGGCATGATC	AAGAAGGACG	GGCTGAAGAT	GAACGCAGCC	2640
	ATCAAAATGC	TGAAAGAGTA	TGCTCTGAA	AATGACCATC	GTGACTTTG	GGGAGAACTG	2700
	GAAGTTCTGT	GCAAATTGGG	GCATCACCCC	AACATCATCA	ACCTCCTGGG	GGCCTGTAAG	2760
	AACCGAGGTT	ACTTGTATAT	CGCTATTGAA	TATGCCCT	ACGGGAACCT	GCTAGATTT	2820
	CTGCGGAAA	GCCGGGCTCT	AGAGACTGAC	CCAGCTTTG	CTCGAGAGCA	TGGGACAGCC	2880
35	TCTACCCCTTA	GCTCCCGGCA	GCTGCTGCGT	TTCGCCAGTG	ATGCGGCCAA	TGGCATGCG	2940
	TACCTGAGTG	AGAAGCAGTT	CATCCACAGG	GACCTGGCTG	CCCCGAATGT	GCTGGTCGGA	3000
	GAGAACCTAG	CCTCCAAAGAT	TGCAGACTTC	GGCCTTTCTC	GGGAGAGGAA	GGTTTATGTG	3060
	AAGAAAGACGA	TGGGGCGTCT	CCCTGTGCG	TGGATGCCA	TTGAGTCCT	GAACATACAGT	3120
40	GTCTATACCA	CCAAGAGTGA	TGTCGGTCC	TTTGGAGTCC	TTCTTTGGG	GATAGTGAGC	3180
	CTTGGAGGTA	CACCCCTACTG	TGGCATGACC	TGTGCCGAGC	TCTATGAAA	GCTGCCAG	3240
	GGCTACCGCA	TGGAGCAGCC	TCGAAACTGT	GACGATGAA	TGTACGAGCT	GATGCGTCAG	3300
	TGCTGGCGGG	ACCGTCCCTA	TGAGCGACCC	CCCTTGCCC	AGATTGCGCT	ACAGCTAGC	3360
45	CGCATGCTGG	AAGCCAGGA	GGCCTATG	AACATGTC	TGTTTGAGAA	CTTCACATTAC	3420
	GGGGGATTG	ATGCCACAGC	TGAGGAGGCC	<u>TGAGCTGCCA</u>	TCCAGCCAGA	ACGTGGCTCT	3480
	GCTGGCCGG	GCAAACCTCTG	CTGTCTAAC	TGTGACCA	CTGACCCCTTA	CAGCCTCTGA	3540
	CTTAAGCTGC	CTCAAGGAAT	TTTTTAACT	TAAGGGAGAA	AAAAAGGGAT	CTGGGGATGG	3600
	GGTGGGCTTA	GGGAAGCTGG	GTTCCTCATG	TTTGTAGGTG	TCTCATAGCT	ATCCTGGGCA	3660
	TCCTTCTTTC	TAGTTCACTG	GCCCCACAGG	TGTGTTCCC	ATCCCACATG	TCCCCCAACA	3720
	CAAACCCCCA	CTCCAGCTCC	TTCGCTTAAG	CCAGCACTCA	CACCACTAAC	ATGCCCTGTT	3780
50	CAGCTACTCC	CACTCCCGGC	CTGTCATTCA	AAAAAAAATA	AATGTTCTAA	TAAGCTCCAA	3840
	AAAAAA						

ACH3 DNA sequence

Gene name: placental growth factor (PGF; PIGF1; VEGF-related protein)

Unigene number: Hs.2894

Probeset Accession #: X54936

Nucleic Acid Accession #: NM_002632 cluster

Coding sequence: 322-768 (predicted start/stop codons underlined)

55	GGGATTGGGG	CCGCCCCAGCT	ACGGGAGGAC	CTGGAGTGGC	ACTGGGCGCC	CGACGG ^{AT} CA	60
	TCCCCGGGAC	CCGCTGCCC	CTCGGCGCC	CGCCCCGGCG	GGCCGCTCCC	CGTCGG ^{AT} TC	120
	CCCAGCCACA	GCCTTACCTA	CGGGCTCCTG	ACTCCGCAAG	GCTTCCAGAA	GATGCTCGAA	180
	CCACCGGGCCG	GGGCTCGGG	GCAGCACTGA	GGGAGGGCGTC	CAGCCCCCA	CTCAGCTCTT	240
	CTCCTCCTGT	GCCAGGGGCT	CCCCGGGGGA	TGAGCATGGT	GGTTTCCCT	CGGAGCCCC	300
60	TGGCTGGGGA	CGTCTGAGAA	<u>GATG</u> CCGGTC	ATGAGGCTGT	TCCCTTGCTT	CCTGCAGCTC	360
	CTGGCCGGGG	TGGCGCTGCC	TGCTGTGCC	CCCCAGCA	GGGCCTTGTC	TGCTGGGAAC	420
	GGCTCGTCAG	AGGTGGAAGT	GGTACCCCTTC	CAGGAAGTGT	GGGGCCGCAG	CTACTGCCG	480
	GCGCTGGAGA	GGCTGGTGA	CGTCGTGTCC	GAGTACCCCA	GCGAGGTGGA	GCACATGTTC	540

5	AGCCCACATCCT	GTGTCTCCCT	GCTGCGCTGC	ACCGGCTGCT	GCGGCGATGA	GAATCTGCAC	600
	TGTGTGCCGG	TGGAGACCGGC	CAATGTCACC	ATGCAGCTCC	AAAGATCCG	TTCTGGGAC	660
	CGGCCCTCCT	ACGTGGAGCT	GACGTTCTCT	CAGCACCGTC	GTCGAATG	CCGGCCTCTG	720
	CGGGAGAAGA	TGAAGCCGG	AAGGTGCGGC	GATGCTGTT	CCCGGAGGTA	<u>ACCCACCCCT</u>	780
10	TGGAGGAGAG	AGACCCCGCA	CCCGGCTCGT	GTATTTATTA	CCGTACACT	CTTCAGTGAC	840
	TCCTGCTGGT	ACCTGCCCTC	TATTTATTAG	CCAACTGTTT	CCCTGCTGAA	TGCCTCGCTC	900
	CCTTCAGAC	GAGGGGCAGG	GAAGGACAGG	ACCCCTCAGGA	ATTCACTGTC	TTCAACAACG	960
	TGAGAGAAAG	AGAGAAAGCC	GCCACAGACC	CCTGGGAGCT	TCCGCTTGTG	AAGAAGCAAG	1020
15	ACACGTGGCC	TCGTGAGGGG	CAAGCTAGGC	CCCAGAGGCC	CTGGAGGTCT	CCAGGGGCCT	1080
	GCAGAAGGAA	AGAAGGGGGC	CCTGCTACCT	GTTCTGGGC	CTCAGGCTCT	GCACAGACAA	1140
	GCAGGCCCTTG	CTTTCGGAGC	TCCTGTCCAA	AGTAGGGATG	CGGATTCTGC	TGGGGCCGCC	1200
	ACGGCCCTGGT	GGTGGGAAGG	CCCGCAGCGG	GCGGAGGGGA	TTCACTGCT	TCCCCCTCTT	1260
	CTTCTGAAGA	TCAGAACATT	CAGCTCTGG	GAACAGTGGT	TGCCTGGGGG	CTTTTGCCAC	1320
	TCCTTGTCCC	CCGTGATCTC	CCCTCACACT	TTGCCATTG	CTTGTACTGG	GACATTGTT	1380
	TTTCCGGCCG	AGGTGCCACC	ACCCCTGCCCC	CACTAAGAGA	CACATACAGA	GTGGGGCCCG	1440
	GGCTGGAGAA	AGAGCTGCT	GGATGAGAAA	CAGCTCAGCC	AGTGGGGATG	AGGTCAACAG	1500
	GGGAGGAGCC	TGTGCGTCCC	AGCTGAAGGC	AGTGGCAGGG	GAGCAGGTT	CCCAAGGGCC	1560
	CTGGCACCCCC	CACAAGCTGT	CCCTGCAGGG	CCATCTGACT	GCCAAGCCAG	ATTCTCTTGA	1620
	ATAAAAGTATT	CTAGTGTGGA	AACGC				

20

ACH4 DNA sequence

Gene name: nidogen 2 (NID2)

Unigene number: Hs.82733

ProbeSet Accession #: D86425

Nucleic Acid Accession #: NM_007361 cluster

Coding sequence: 1-4131 (predicted start/stop codons underlined)

30	<u>ATGGAGGGGG</u>	ACCGGGTGGC	CGGGCGGCCG	GTGCTGTCGT	CGTTTACCACT	GCTACTGTC	60
	CTGCAGTTGC	TAATGTGCG	GGCCGCGGCCG	CTGCACCCAG	ACGAGCTCTT	CCCACACGGG	120
	GAGTCGTGGT	GGGACCAGCT	CCTGCAGGAA	GGCGACGACG	AAAAGCTCAG	CCGTGGTGAA	180
	GCTGGCGAAT	CCCCTGCACT	TCTTACGAAG	CCCAGATTAG	CAACCTCTAC	GTGGGCACCA	240
	ACGGCATTAT	CTCCACTCAG	GACTTCCCCA	GGGAAACGCA	GTATGTGGAC	TATGATTTC	300
35	CCACCGACTT	CCCGGCCATC	GCCCCTTTTTC	TGGCGGACAT	CGACACGAGC	CACGGCAGAG	360
	GCCGAGTCCT	GTACCGAGG	GACACCTCCC	CCCGCAGTGCT	GGGCCTGGCC	GCCCCTATG	420
	TGCGCGCTGG	CTTCCCCGCG	TCTGCGCGT	TTTACCCCC	ACCCACGCC	TCCTGGCCAC	480
	CTGGGAGCAG	GTAGGGCGCTT	ACGAGGAGGT	AAAACGGGGG	CGCTGCCCTC	GGGAGAGCTG	540
	AACACTTTCC	AGGCAGTTT	GGCATCTGT	GGGTCTGATA	GCTACGCCCT	CTTTCTTTAT	600
	CCTGCCAACG	CCCTGCGAGT	CTTCTGGAAACC	CGCCCCAAAG	AGTCTTACAA	TGTCCAGCTT	660
40	CAGCTTCCAG	CTCGGGTGGG	CTTCTGCCGA	GGGGAGGCTG	ATGATCTGAA	GTCAGAAGGA	720
	CCATATTTC	GCTTGACTAG	CACTGAACAG	TCTGTGAAAA	ATCTCTATCA	ACTAAGCAAC	780
	CTGGGGATCC	CTGGAGCTGT	GGCTTCCAT	ATCGGCAGCA	CTTCCCCGTT	GGACAATGTC	840
	AGGCCAGCTG	CAGTTGGAGA	CCTTCCCGCT	GCCCACCTT	CTGTTCCCC	GGGACGTTCC	900
	TTCAGCCATG	CTACAGCCCT	GGAAAGTGA	TATAATGAGG	ACAATTGGA	TTACTACGGAT	960
45	GTGAATGAGG	AGGAAGCTGA	ATACCTTCG	GGTGAACCAG	AGGAGGCATT	GAATGGCCAC	1020
	AGCAGCATTG	ATGTTCCCT	CCAATCCAAA	GTGGATACAA	AGCCCTTATA	GGAAATCTTCC	1080
	ACCTTGGATC	CTCACACCAA	AAAGGAAACA	TCTCTGGAG	AGTAGGGGGG	CCCAGATTAA	1140
	AAAGGCCAAG	TTGAGCCCTG	GGATGAGAGA	GAGACCAAGA	GCCCACTCC	ACCAGAGGTA	1200
	GACAGAGAT	CACTGGCTCC	TTCTCTGGAA	ACCCACCCAC	CGTACCCCCA	AAACGGGAAGC	1260
50	ATCCAGCCCT	ACCCAGATGG	AGGGCCAGTG	CCTTCGAAA	TGGATGTTCC	CCCAGCTCAT	1320
	CCTGAAGAAG	AAATTGTTCT	TCGAAGTTAC	CCTGCTTCAG	GTCACACTAC	ACCTTAAAGT	1380
	CGAGGGACGT	ATGAGGGTGGG	ACTGGAAGAC	AACATAGGTT	CCAACACCGA	GGTCTTCACG	1440
	TATAATGCTG	CCAACAAGGA	AACTGTGAA	CACAACCACA	GACAATGCTC	CCGGCATGCC	1500
	TTCTGCACGG	ACTATGCCAC	TGGCTTCTGC	TGCCACTGCC	AATCCAAGTT	TTATGAAAT	1560
55	GGGAAGCACT	GTCTGCCCTGA	GGGGCACCT	CACCGAGTGA	ATGGGAAAGT	GAGTGGCCAC	1620
	CTCCACGTGG	GCCATACACC	CGTGCACCTTC	ACTGATGTTG	ACCTGCACTGC	GTATATCGTG	1680
	GGCAATGATG	GCAGAGCCTA	CACGGCCATC	AGCCACATCC	CACAGCCAGC	AGCCCAGGCC	1740
	CTCCCTCCCC	TCACACCAAT	TGGAGGCCCTG	TTTGGCTGGC	TCTTGTCTT	AGAAAAAACCT	1800
	GGCTCTGAGA	ACGGCTTCAG	CCTCGCAGGT	GCTGCCCTTA	CCCATGACAT	GGAAGTTACA	1860
60	TATACCCGG	GAGAGGAGAC	GGTTCTGATC	ACTCAAACG	CTGAGGGACT	TGACCCAGAG	1920
	AACATCTG	GCATTAAGAC	CAACATTCA	GGCCAGGTC	CTTACGTCCC	AGCAAATTTC	1980
	ACAGCCCCACA	TCTCTCCCTA	CAAGGAGCTG	TACCAACT	CCGACTCCAC	TGTGACCTCT	2040
	ACAAGTTCCA	GAGACTACTC	TCTGACTTTT	GGTGCAATCA	ACCAAACATG	GTCCTACCGC	2100
	ATCCACCAAGA	ACATCACTTA	CCAGGTGTGC	AGGCACGCC	CCAGACACCC	GTCCTCCCC	2160
65	ACCACCCAGC	AGCTGAACGT	GGACGGGGTC	TTTGCCTTGT	ATAATGATGA	AGAAAGAGTG	2220
	CTTAGATTG	CTGTGACCAA	TCAAATTGGC	CCGGTCAAAG	AAGATTCA	CCCCACTCCG	2280
	GTGAATCCTT	GCTATGATGG	GAGCCACATG	TGTGACACAA	CAGCAGGGT	CCATCCAGGG	2340
	ACAGGTGTAG	ATTACACCTG	TGAGTGCAC	TCTGGGTACC	AGGGAGATGG	ACGGAACGTG	2400

45 GTGGATGAAA ATGAATGTGC AACTGGCTTT CATCGCTGTG GCCCCAACTC TGTATGTATC 2460
 AACTTGCCTG GAAGCTACAG GTGTGAGTGC CGGAGTGGTT ATGAGTTTGC AGATGACCGG 2520
 CATACTTGCA TCTTGATCAC CCCACCTGCC AACCCCTGTG AGGATGGCAG TCATACCTGT 2580
 GCTCCTGCTG GGCAGGGCCCG GTGTGTTCAC CATGGAGGCA GCACGTTCAAG CTGTGCCGTG 2640
 5 CTGCCTGGTT ATGCCGGCGA TGGGCACCAG TGCACGTATG TAGATGAATG CTCAGAAAAC 2700
 AGATGTCACC CTGCAGCTAC CTGCTACAAT ACTCCTGGTT CCTTCTCCCTG CCGTTGTCAA 2760
 CCCGGATATT ATGGGGATGG ATTTCACTGAC ATACCTGACT CCACCTCAAG CCTGACACCC 2820
 TGTGAACAAAC AGCAGCGCCA TGCCCAGGCC CAGTATGCCT ACCCTGGGGC CCGGTTCCAC 2880
 ATCCCCAAT GCGACGAGCA GGGCAACTTC CTGCCCTAC AGTGTATGG CAGCACTGGT 2940
 10 TTCTGCTGGT GCGTGGACCC TGATGGTCAT GAAGTTCTG GTACCCAGAC TCCACCTGGC 3000
 TCCACCCCGC CTCACGTGTT ACCATCACCA GAGCCCCACCC AGAGGGCCCCC GACCATCTGT 3060
 GAGCGCTGGA GGGAAAAACCT GCTGGAGCAG TACGGTGGCA CCCCCCGAGA TGACCACTAC 3120
 GTGCCCCAGT GCGATGACCT GGCGACTTC ATCCCCCTGC AGTGCACCGG AAAGAGCGAC 3180
 TTCTGCTGGT GTGTGGACAA AGATGGCAGA GAGGTGCGAG GCACCCGCTC CCAGCCAGGC 3240
 15 ACCACCCCTG CGTGTATACC CACCGTCGCT CCACCCATGG TCCGGCCAC GCCCCGGCCA 3300
 GATGTGACCC CTCCATCTGT GGGCACCTTC CTGCTCTATA CTCAAGGGCCA GCAGATTGGC 3360
 TACTTACCCC TCAATGGCAC CAGGCTTCAG AAGGATGCAG CTAAGACCCCT GCTGTCTCTG 3420
 CATGGCTCCA TAATCGTGGG AATTGATTAC GACTGCCGG AGAGGATGGT GTACTGGACA 3480
 GATGTTGCTG GACGGACAAT CAGCCGTGCC GGTCTGGAAC TGGGAGCAGA GCCTGAGACG 3540
 20 ATCGTGAATT CAGGTCTGAT AAGCCCTGAA GGACTTGCCA TAGACCACAT CCGCAGAAC 3600
 ATGTACTGGA CGGACAGTGT CCTGGATAAG ATAGAGAGCG CCCTGCTGGA TGGCTCTGAG 3660
 CGCAAGGTCC TCTTCTACAC AGATCTGGT AATCCCCGTG CCATCGCTGT GGATCCAATC 3720
 CGAGGCAACT TGTACTGGAC AGACTGGAAT AGAGAAGCTC CTAAAATTGA AACGTCATCT 3780
 TTAGATGGAG AAAACAGAAC AATTCTGATC AATACAGACA TTGGATTGCC CAATGGCTTA 3840
 25 ACCTTTGACC CTTTCTCTAA ACTGCTCTGC TGCGCAGATG CAGGAACCAA AAAACTGGAG 3900
 TGTAACACTAC TGATGGAAC TGCGCAGCTG GTCATTCAA ACAACCTCAA GTACCCCTTC 3960
 AGCATCGTAA GCTATGCAAG TCACTTCTAC CACACAGACT GGAGGAGGGG TGGTGTGTA 4020
 TCAGTAAATA AACATAGTGG CCAGTTTACT GATGAGTATC TCCCAGAAC ACGATCTCAC 4080
 CTCTACGGGA TAACTGCACT CTACCCCTAC TGCCCAACAG GAAGAAAGTA AGTACAGTAA 4140
 30 TGTAAGGAA GACTTGGAGT TTACAATCAG AACCTGGACC CTAAAGAACAA GTGACTGCAA 4200
 AGGAAAGAA AGTAAAAAAAG GAATTGGCCA TTAGACGTTG CTGAGCATCC AAGATGAACA 4260
 TTTTGTAGTG CAAAAAGACT TTTGTGAAAA GCTGATACCT CAATCTTTAC TACTGTATTT 4320
 TTAAAAATGA AGGTTGTTAT TGCAAGTTA AAAAGGTAAAC AGAATTTAA CTGTTGCTTA 4380
 TTAAAGCAAC TTCTTGAAA CATTATTCAT TAATATTTAA AAGATCAAAT TCATTCAACT 4440
 35 AAGAATTAGA GTTTAAGACT CTAACACCTGA TTTTGCCAT GGATTCCTTC TGGCCAAGAA 4500
 ATTAAGAAC ATGTGATCAA TATAACATA TAATCCTAA CCTTGACAGT TGGAGAACCC 4560
 ATGCAAGAAC TGATGGAAA GGACAATTTA TTTATAGTTT CCCAACAAA GTTCTAAGAT 4620
 TTTTACCTC TGATCGACTG CATTCTATT TATATCAAAA GGTGCTAAA TGATTCAATT 4680
 TGCATTTCT GATCCTGTAG TGCCCTCTATA GAAGTACCCA CAGAAAGTAA AGTATCACAT 4740
 40 TTATAAAATAC CAAAGATGTA ACAATTTAA AATTTCTAG ATTACTCCAA TAAAGTGT 4800
 TAAGTTAAA AAAAAAAA AAAAAAAA

ACH5 DNA sequence

Gene name: SNL Tsinged-like; sea urchin fascin homolog-like
 UniGene number: Hs.118400
 Probase Accession #: M03057
 Nucleic Acid Accession #: NM_003088
 Coding sequence: 112-1593 (predicted start/stop codons underlined)

45 GCGGAGGGTG CGTGGGGGCC GCGGCAGCCG AACAAAGGAG CAGGGGGGCC GCGCAGGG 60
 CCCGCCACCC ACCTCCCGGG GCCGCGCAGC GGCCTCTCGT CTACTGCCAC CATGACCGCC 120
 AACGGCACAG CCGAGGGCGGT GCAGATCCAG TTCGGCTCTA TCAACTGCCG CAACAAGTAC 180
 CTGACGGCCG AGGCCTTCGG GTTCAAGGTG AACGCGTCCG CCAGCAGCCT GAAGAAGAAG 240
 55 CAGATCTGGA CGCTGGAGCA GCCCCCTGAC GAGGGGGCA GCGCGGCCGT GTGCTGCGC 300
 AGCCACCTGG GCCGCTACCT GGCAGGGAC AAGGACGGCA ACGTGACCTG CGAGCGCGAG 360
 GTGCCCGGTC CCGACTGCGC TTCTCTCATC GTGGCGCACG AGCACGGTCG CTGGTCTG 420
 CAGTCCGAGG CGCACCGGCC CTACTCTGGC GGCACGGAGG ACCGGCTGTCG CTGCTTCCG 480
 CAGACGGGTG CCCCCCGCGA GAATGGAGG GTGCACATCG CCATGACACCC TCAGGTCAAC 540
 60 ATCTACAGTG TCACCCGTAA GCGCTACCGC CACCTGAGCG CGCGGCCGGC CGACGAGATC 600
 GCGGTGGACC GCGACGGTGC CTGGGGCGTC GACTCGCTCA TCACCCCTCGC CTTCCAGGAC 660
 CAGCGCTACA GCGTGACAGC CGCCGACAC CGCTTCTCTG GCCACGACGG GCGCCTGGTG 720
 GCGCGCCCG AGCCGCCAC TGCTACACCG CTGGAGTTCC GCTCCGGCAA GGTGGCCTTC 780
 65 CGCGACTGCG AGGGCCGTTA CCTGGCGCCG TCGGGGCCA GCGGCACGCT CAAGGCAGGGC 840
 AAGGCCACCA AGGTGGCAA GGACGAGCTC TTTGCTCTGG AGCAGAGCTG CGCCCAAGGTC 900
 GTGCTGCAAGG CCGCAACGA GAGGAACGTC TCCACGCGCC AGGGTATGGA CCTGCTGCGC 960
 AATCAGGAGC AGGAGACCGA CCAGGAGACCC TTCCAGCTGG AGATCGACCG CGACACCAAA 1020
 AAGTGTGCCT TCCGTACCCA CACGGGCAAG TACTGGACGC TGACGGCCAC CGGGGGCGTG 1080

5 CAGTCCACCG CCTCCAGCAA GAATGCCAGC TGCTACTTTG ACATCGAGTG GCGTGACCGG 1140
 CGCATCACAC TGAGGGCGTC CAATGGCAAG TTTGTGACCT CCAAGAAGAA TGGGCAGCTG 1200
 GCCGCCTCGG TGGAGACAGC AGGGGACTCA GAGCTCTTCC TCATGAAGCT CATCAACCGC 1260
 CCCATCATCG TGTTCCCGGG GGAGCATGGC TTTCATCGGCT GCGCAAGGT CACGGGCACC 1320
 CTGGACGCCA ACCGCTCCAG CTATGACGTC TTCCAGCTGG AGTCAACGA TGGCGCTAC 1380
 AACATCAAAG ACTCCACAGG CAAATACTGG ACGGTGGGCA GTGACTCCGC GGTCACCAAGC 1440
 AGCGGCGACA CTCCTGTGGA CTTCTCTTC GAGTTCTGCG ACTATAACAA GGTGGCCATC 1500
 AAGGTGGGCG GGCCTACCT GAAGGGCGAC CACGCAGGCG TCCTGAAGGC CTCGGCGAA 1560
 ACCGTGGACC CCGCCTCGCT CTGGGAGTAC TAGGGCCGGC CCGCTCTTC CGGCCCCCTGC 1620
 10 CCACATGGCG GCTCTGCCA ACCCTCCCTG CTAACCCCTT CTCCGCCAGG TGGGCTCCAG 1680
 GGCAGGGAGGC AAGCCCCCTT GCCTTTCAAA CTGGAAACCC CAGAGAAAAC GGTGCCCCCA 1740
 CCTGTGCGCC CTATGGACTC CCCACTCTCC CCTCCGCCCG GGTCCCTAC TCCCCTCGGG 1800
 TCAGCGGCTG CGGCCTGGCC CTGGGAGGGA TTTCAGATGC CCCTGCCCTC TTGTCTGCCA 1860
 CGGGCGAGT CTGGCACCTC TTCTCTTGA CCTCAGACGG CTCTGAGCCT TATTCTCTTG 1920
 15 GAAGCGGCTA AGGGACGGTT GGGGGCTGGG AGCCCTGGG GTGAGTGTAA ACTGGAATCT 1980
 TTTGCTCTC CCAGCCACCT CCTCCCAGCC CCCCAGGAGA GCTGGGCACA TGTCCTAAC 2040
 CTGTAGTGG CCCTCCCTGG TGCACTGTCC CCGAAACCC TGCTTGGGAA GGGAAAGCTGT 2100
 CGGGAGGGCT AGGACTGACC CTTGTGGTGT TTTTTGGGT GGTGGCTGGA AACAGCCCC 2160
 CTCCCCACGTG GGAGAGGCTC AGCCTGGCTC CTTCCCTGG AGCCGCAGGG CGTGACGGCC 2220
 20 ACAGGGTCTG CCCGCTGCAC GTTCTGCCA GGTGGTGGT GCGGGCGGGT AGGGGTGTGG 2280
 GGGCCGCTT CCTCCTGTCT CTTCCCTTTC ACCCTAGCCT GACTGGAAGC AGAAAATGAC 2340
 CAAATCAGTA TTTTTTTTAA TGAAATATTA TTGCTGGAGG CGTCCCAGGC AAGCCTGCT 2400
 GTAGTAGCGA GTGATCTGGC GGGGGCGTC TCAGCACCT CCCCAGGGGG TGCATCTCAG 2460
 CCCCTCTTT CCGTCCTTCC CGTCCAGGCC CAGCCCTGGG CCTGGCTGC CGACACCTGG 2520
 25 GCAGAGGCC CTGCTGTGAT TGGTGCCTCC TGGGCCTCCC GGGTGGATGA AGCCAGGGGT 2580
 CGCCCCCTCC GGGAGCCCTG GGGTGAAGCCG CCGGGGGCCC CCTGCTGCCA GCCTCCCCCG 2640
 TCCCCAACAT GCATCTCACT CTGGGTGTCT TGGTCTTTA TTTTTGTAA GTGTCAATTG 2700
 TATAACTCTA AACGCCCATG ATAGTAGCTT CAAACTGGAA ATAGCGAAAT AAAATAACTC 2760
 30 AGTCTGC

ACH6 DNA sequence

Gene name: endothelial protein C receptor (EPCR; PROCR)

Unigene number: Hs.82353

Probeset Accession #: L35545

Nucleic Acid Accession #: NM_006404

Coding sequence: 25-41 (predicted start/stop codons underlined)

40 CAGGTCCGGA GCCTCAACTT CAGGATGTTG ACAACATTGC TGCCGATACT GCTGCTGTCT 60
 GGCTGGGCT TTTGTAGCCA AGACGCTCA GATGGCCTCC AAAGACTTCA TATGCTCCAG 120
 ATCTCTACT TCCGCGACCC CTATCACGTG TGGTACCAAGG GCAACCGCAGC GCTGGGGGG 180
 CACCTAACGC ACGTGTGGA AGGCCAGAC ACCAACACCA CGATCATTCA GCTGCAGCCC 240
 TTGCAGGAGC CCGAGAGCTG GGCAGCAGCAG CAGAGTGGCC TGCACTCCTA CCTGCTCCAG 300
 TTCCACGGCC TCGTGCCTCT GGTGACCAAG GAGCGGACCT TGGCCTTTCC TCTGACCATC 360
 45 CGCTGCTTCC TGGGCTGTGA GTCGCTCCC GAGGGCTCTA GAGCCCATGT CTTCTTCGAA 420
 GTGGCTGTGA ATGGGAGCTC CTTGTGAGT TTCCGGCCGG AGAGAGCCTT GTGGCAGGCA 480
 GACACCCAGG TCACCTCCGG AGTGGTCACC TTCACTCTGC AGCAGCTCAA TGCCTACAAAC 540
 CGCACTCGGT ATGAACGTGCG GGAATTCTG GAGGACACCT GTGTGAGTA TGTGCAGAAA 600
 CATATTTCCG CGGAAACAC GAAAGGGAGC CAAACAGCC GCTCTCACAC TTCGCTGGTC 660
 50 CTGGGCGTCC TGGTGGGGG TTTCATCATT GCTGGTGTGG CTGTAGGCAT CTTCTGTGC 720
 ACAGGTGGAC GGCATGTTA ATTACTCTCC AGCCCCCTCA GAAGGGGCTG GATTGATGGA 780
 GGCTGGCAAG GGAAAGTTT AGCTCACTGT GAAGCCAGAC TCCCCAACTG AAACACCAAGA 840
 AGTTTGGAG TGACAGCTCC TTTCTCTCC CACATCTGCC CACTGAAGAT TTGAGGGAGG 900
 GGAGATGGAG AGGAGAGGTG GACAAAGTAC TTGGTTGCT AAGAACCTAA GAACGTGTAT 960
 55 GCTTGCTGA ATTAGCTGA TAAGTGAATG TTTATCTATC TTTGTGGAAA ACAGATAATG 1020
 GAGTTGGGGC AGGAAGCTA TGCAGCATCC TCCAAAGACA GACAGAATCA CCTGAGGGGT 1080
 TCAAAAGATA TAACCAAATA AACAAAGTCAT CCACAATCAA AATACAACAT TCAATACTTC 1140
 CAGGTGTGTC AGACTTGGGA TGGGACGCTG ATATAATAGG GTAGAAAGAA GTAACACGAA 1200
 GAAGTGGTGG AAATGTAAAA TCCAAGTCAT ATGGCAGTGA TCAATTATTA ATCAATTAAAT 1260
 60 AATATTAATA AATTCTTAT ATTT

ACH8 DNA sequence

Gene name: melanoma adhesion molecule (MCAM; MUC18)

Unigene number: Hs.211579

Probeset Accession #: D51069

Nucleic Acid Accession #: NM_006500

Coding sequence: 27-1967 (predicted start and stop codons underlined)

	ACTTGGCTCT CGCCCTCCGG CCAAGCATGG GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC	60
	TCGCCGCTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCTG	120
	CGCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCTCTCCC	180
5	AGTCCCAAGG CAACCTCAGC CATGTCGACT GGTTTCTGT CCACAAGGAG AAGCGGACGC	240
	TCATCTTCCG TGTGCCAGG GCCCAGGGCC AGAGCGAAC TGGGGAGTAC GAGCAGCGC	300
	TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC	360
	GCATCTTCTT GTGCCAGGGC AACGCCCTC GGTCCCAGGA GTACCGCATC CAGCTCCGCG	420
10	TCTACAAAGC TCCGGAGGAG CCAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA	480
	GTAAGGAGGC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCCCTAAG	540
	TCATCTGGTA CAAGAATGGC CGGCCTCTGA AGGAGGAGAA GAACCGGGTC CACATTCAAGT	600
	CGTCCCAGAC TGTGGAGTCG AGTGGTTTG ACACCTTGCA GAGTATTCTG AAGGCACAGC	660
	TGGTTAAAGA AGACAAAGAT GCCCAGTTT ACTGTGAGCT CAACTACCGG CTGCCCCAGT	720
15	GGAACACAT GAAGGAGTCC AGGGAAGTCA CCGTCCCCGT TTTCTACCCG ACAGAAAAAG	780
	TGTGGCTGGA AGTGGAGGCC GTGGAATGC TGAAGGAAGG GGACCGCGTG GAAATCAGGT	840
	GTTGGCTGA TGGCAACCCCT CCACCAACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA	900
	GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGTCCCT GGTGCTGGAG CCTGCCCGGA	960
	AGGAACACAG TGGCGCTAT GAATGTCAGG CCTGGAACCTT GGACACCATG ATATCGCTGC	1020
20	TGAGTGAACC ACAGGAACTA CTGGTGAAC ATGTGTCATC CGTCCGAGTG AGTCCCAGC	1080
	CCCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGCAGAG AGTAGCCAGG	1140
	ACCTCGAGTT CCAGTGGCTG AGAGAAAGAGA CAGACCAGGT GCTGGAAAGG GGGCCTGTGC	1200
	TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGCTA TCGCTCGCTG GCGTCTGTGC	1260
	CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCATTTTTT GGCCCCCTT	1320
	GGATGGCATT CAAGGAGAGG AAGGTGTGGG TGAAAGAGAA TATGGTGTG AATCTGTCTT	1380
25	GTGAAGCGTC AGGGCACCCC CGGCCACCA TCTCTGGAA CGTCAACGGC ACGGCAAGTG	1440
	AACAAGACCA AGATCCACAG CGAGTCTGCA GCACCCCTGA TGTCCTCGTG ACCCCGGAGC	1500
	TGTTGGAGAC AGGTGTTGAA TGCACGGCT CCAACGACCT GGGCAAAAC ACCAGCATCC	1560
	TCTTCTGGA GCTGGTCAAT TTAACCAACCC TCACACCCAGA CTCCAACACA ACCACTGCC	1620
	TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCACAG CACCTCCACA GAGAGAAAGC	1680
30	TGCCGGAGCC GGAGAGCCGG GCGTGGTCA TCGTGGCTGT GATTGTTGTC ATCCCTGGTCC	1740
	TGGCGGTGCT GGGCGCTGTC CTCTATTTC TCTATAAGAA GGGCAAGCTG CCGTGCAGGC	1800
	GCTCAGGGAA GCAGGAGATC ACGCTGCCCT CGTCTCGTAA GACCGAACTT GTAGTTGAAG	1860
	TTAACGTAGA TAAGCTCCC GAAGAGATGG GCCTCTGCA GGGCAGCAGC GGTGACAAGA	1920
	GGGCTCCGGG AGACCAGGGA GAGAAATACA TCGATCTGAG GCATTAGCCC CGAACACTT	1980
35	CAGCTCCCTT CCCTGCTGTC ACCATTCCTG GCTCCCTGCT CACTCTTCTC TCAGCCAAG	2040
	CCTCCAAAGG GACTAGAGAG AACGCTCTG CTCCCTCAC CTGACACCC CCTTTCAAG	2100
	GGCCACTTGGG TTAGGACTCAG AGGACCTCAC TTGGCCCTGC AAGCCGCTT TCAGGGACCA	2160
	GTCCACCACT ATCTCTTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC	2220
	CCGAGCGGGT AGGAGAGTTT CTTGAGAAC GTGTTTTTC TTACACACA TTATGGCTGT	2280
40	AAATACCTGG CTCCGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTGG TTTCCTGCC	2340
	CAAAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC	2400
	GCCTGCTCAT GTTGAAGTGC GCTGTCACA CCCGCTCCGG AGAGCACCCC AGCGGCATCC	2460
	AGAACGAGCT GCAGTGTGTC TGCCACCACT CTCCTGCTCG CCTCTTCAA GTCTCTGTG	2520
	ACATTTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTATT CCTTAAAGA TACGTGCCGG	2580
45	GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTT GGGAGGCCGA GGCGGGCGGA	2640
	TCACAAAGTC AGGACGAGAC CATCTGGCT AACACGGTGA AACCTGTCT CTACTAAAAA	2700
	TACAAAAAAA AATTAGCTAG CGCTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG	2760
	CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT CGAGCTGAGCC GAGACCGTGC	2820
	CACTGCACT CAGCCTGGC AACACAGCGA GACTCCGTCT CGAGGAAAAA AAAAGAAAAG	2880
50	ACCGTACCT GCGGTGAGGA AGCTGGCGC TGTGTTGAG TTCAAGGTGA TTAGCCTCAA	2940
	TCCCCGTGTT CACTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAAACT GAAAGGAGC	3000
	GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA	3060
	TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG	3120
	AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTGGGTGT GTGTGTCTGT	3180
55	CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTGT CAGGTGTGA AATTTGCAA	3240
	TTGTTTCTT TATATATGTA TGTTATATA TATATGAAA TATATATATA TATGAAAAAT	3300
	AAAGCTTAAT TGTCCCAGAA AATCATACTAT TGCTTTTTTA TTCTACATGG GTACCACAGG	3360
	AACCTGGGG CCTGTGAAAC TACAACCAA AGGCACACAA AACCGTTCC AGTTGGCAGC	3420
	AGAGATCAGG GTTACCTCT GCTCTGAGC AAAATGGCTCA AGCTTACCA GAGCAGACAG	3480
60	CTACCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC	3540
	TGTTAGCAGG AGCTATGTCC CTTCCTATCG TTTCCGTCCA CTT	0

65 ACH9 DNA sequence

Gene name: endothelin-1 (EDN1)

Unigene number: Hs.2271

Probeset Accession #: J05068

Nucleic Acid Accession #: NM_001955

Coding sequence: 337-975 (predicted start/stop codons underlined)

5 GGAGCTGTTT ACCCCCACCTC TAATAGGGT TCAATATAAA AAGCCGGCAG AGAGCTGTCC 60
AAGTCAGACG CGCCTCTGCA TCTGCGCCAG GCGAACGGGT CCTGCGCCTC CTGCAGTCCC 120
AGCTCTCCAC CACCGCCGCG TGCCTCGCA GACGCTCCGC TCGCTGCCTT CTCTCCTGGC 180
AGGCCTGCC 5' TTTTCTCCCC GTTAAAGGGC ACTTGGGCTG AAGGATCGCT TTGAGATCTG 240
AGGAACCCGC AGCGCTTGA GGGACCTGAA GCTGTTTTC TTGCTTTCC TTTGGGTTCA 300
GTTTGAACGG GAGGTTTTG ATCCCTTTT TTCAGAATGG ATTATTTGCT CATGATTTTC 360
TCTCTGCTGT TTGTGGCTTG CCAAGGAGCT CCAGAACACAG CAGTCTTAGG CGCTGAGCTC 420
10 AGCGCGGTGG GTGAGAACGG CGGGGAGAAA CCCACTCCCA GTCCACCCCTG GCGGCTCCGC 480
CGGTCCAAGC GCTGCTCCTG CTCGCTCCCTG ATGGATAAAG AGTGTGTCTA CTTCTGCCAC 540
CTGGACATCA TTTGGGTCAA CACTCCCGAG CACGTTGTT CGTATGGACT TGGAAGCCCT 600
AGGTCCAAGA GAGCCTGGA GAATTACTT CCCACAAAGG CAACAGACCG TGAGAATAGA 660
TGCCAATGTC CTAGCCAAAAG AGACAAGAAG TGCTGGAATT TTTGCCAAGC AGGAAAAGAA 720
15 CTCAGGGCTG AAGACATATT GGAGAAAGAC TGGATAAATC ATAAGAAAGG AAAAGACTGT 780
TCCAAGCTTG GGAAAAAGTG TATTATTCAG CAGTTAGTGA GAGGAAGAAA AATCAGAAGA 840
AGTTCAAGG AACACCTAAG ACAAACCAGG TCGGAGACCA TGAGAACAG CGTCAAATCA 900
TCTTTTCAATG ATCCCAAGCT GAAAGGCAAG CCCTCCAGAG AGCGTTATGT GACCCACAAAC 960
20 CGAGCACATT GGTGACAGAC TTGGGGCCT GTCTGAAGCC ATAGCCTCCA CGGAGAGCCC 1020
TGTTGGCCGAC TCTGCACTCT CCACCCCTGGC TGGGATCAGA GCAGGAGCAT CCTCTGCTGG 1080
TTCCTGACTG GCAAAGGACC AGCGTCCTCG TTCAAAACAT TCCAAGAAAAG GTTAAGGAGT 1140
TCCCCCAACC ATCTTCACTG GCTTCCATCA GTGGTAACTG CTTTGGCTC TTCTTTCATC 1200
TGGGGATGAC AATGGACCTC TCAGCAGAAA CACACAGTCA CATTGAAATT C

~~ACJ1 DNA sequence~~

~~Gene name: BMX non-receptor tyrosine kinase~~

~~Unigene number: Hs.27372~~

~~Probeset Accession #: X83107~~

~~Nucleic Acid Accession #: NM_001721~~

Coding sequence: 34-2061 (predicted start/stop codons underlined)

35 GCAAGCACGG AACAAAGCTGA GACGGATGAT AATATGGATA CAAAATCTAT TCTAGAAGAA 60
CTTCTTCTCA AAAGATCACA GCAAAAGAAG AAAATGTCAC CAAATAATTAA CAAAGAACGG 120
CTTTTGTGTT TGACCAAAAC AAACCTTTCC TACTATGAAT ATGACAAAAT GAAAAGGGC 180
AGCAGAAAAG GATCCATTGA AATTAAGAAA ATCAGATGTG TGGAGAAAGT AAATCTCGAG 240
GAGCAGACGC CTGTAGAGAG ACAGTACCCA TTTCAGATTC TCTATAAAGA TGGGCTTCTC 300
TATGTCTATG CATCAAATGA AGAGAGCGGA AGTCAGTGGT TGAAAGCATT ACAAAAAGAG 360
ATAAGGGGTA ACCCCCCACCT GCTGGTCAAG TACCATAGTG GGTCTTCCTG GGACGGGAAG 420
40 TTCTGTGTT GCCAGCAGAG CTGTAAGCA GCCCCAGGAT GTACCCCTCTG GGAAGCATAT 480
GCTAATCTGC ATACTGCAGT CAATGAAGAG AAACACAGAG TTCCCACCTT CCCAGACAGA 540
GTGCTGAAGA TACCTCGGGC AGTTCTGTT CTCAAAATGG ATGCACCATC TTCAAGTACC 600
ACTCTAGCCC AATATGACAA CGAACATCAAAG AAAAATATG GCTCCCAGCC ACCATCTTCA 660
AGTACCAGTC TAGCGCAATA TGACAGCAAC TCAAAAGAAA TCTATGGCTC CCAGCCAAAC 720
45 TTCAACATGC AGTATATTCC AAGGGAAGAC TTCCCTGACT GGTGGCAAGT AAGAAAATCG 780
AAAAGTAGCA GCAGCAGTGA AGATGTTGCA AGCAGTAACC AAAAAGAAAG AAATGTGAAT 840
CACACCACCT CAAAGATTTC ATGGGAATT CCTGAGTCAT GTTCATCTGA AGAAGAGGAA 900
AACCTGGATG ATTATGACTG GTTTGCTGGT AACATCTCCA GATCACAATC TGAACAGTTA 960
CTCAGACAAAAGGGGAAGAG AGGAGCATTG ATGGTTAGAA ATTGAGGCA AGTGGGAATG 1020
50 TACACAGTGT CCTTATTAG TAAGGCTGTG AATGATAAAA AAGGAACCTGT CAAACATTAC 1080
CACGTGCATA CAAATGCTGA GAACAAATTAA TACCTGGCAG AAAACTACTG TTTTGATTCC 1140
ATTCCAAAGC TTATTCTTAA TCATCAACAC AATTCAAGCAG GCATGATCAC ACGGCTCCGC 1200
CACCCCTGTGT CAACAAAGGC CAACAAAGGTG CCGCAGCTCTG TGTCCTGGG AAATGGAATC 1260
TGGGAACGTGA AAAGAGAAGA GATTACCTTG TTGAAGGAGC TGGGAAGTGG CCAGTTGG 1320
55 GTGGTCCAGC TGGGCAAGTG GAAGGGCAG TATGATGTTG CTGTTAACAGT GATCAAGGAG 1380
GGCTCCATGT CAGAAGATGA ATTCTTTCAAG GAGGCCAGA CTATGATGAA ACTCAGCCAT 1440
CCCAAGCTGG TAAATCTCA TGGAGTGTGT TCAAAGGAAT ACCCCATATA CATACTGACT 1500
GAATATATAA GCAATGGCTG CTTGCTGAAT TACCTGAGGA GTCACGGAAA AGGACTTGAA 1560
CCTTCCCAGC TCTTAAATGT GTGCTACGAT GTCTGTGAAG GCATGGCCTT CTTGGAGAGT 1620
60 CACCAATTC TACACCGGGC CTTGGCTGCT CGTAACCTGT TGGTGGACAG AGATCTCTGT 1680
GTGAAAGTA CTGACTTTGG AATGACAAGG TATGTTCTTG ATGACCGATA TGTCAAGTTCA 1740
GTCGGAAACAA AGTTCCAGT CAAGTGGTCA GCTCCAGAGG TGTCTTCAATT CTTCAAATAC 1800
AGCAGCAAGT CAGACGTATG GGCAATTGGG ATCCTGATGT GGGAGGTGTT CAGCCTGGGG 1860
65 AAGCAGCCCT ATGACTTGTG TGACAACTCC CAGGTGGTTC TGAAGGTCTC CCAGGGCCAC 1920
AGGCTTTACC GGCCCCACCT GGCATCGGAC ACCATCTACC AGATCATGTA CAGCTGCTGG 1980
CACGAGCTTC CAGAAAAGCG TCCCACATT CAGCAACTCC TGTCTTCCAT TGAACCACCT 2040
CGGGAAAAAG ACAAGCATTG AAGAAGAAAT TAGGAGTGT GATAAGAATG AATATAGATG 2100
CTGGCCAGCA TTTTCATTCA TTTTAAGGAA AGTAGGAAGG CATAAGTAAT TTTAGCTAGT 2160

5 TTTTAATAGT GTTCTCTGTA TTGCTTATA TTTAGAAATG AACAAAGGCAG GAAACAAAAG 2220
 ATTCCCTTGA AATTTAGATC AAATTTAGTAA TTTTGTTTA TGCTGCTCCT GATATAACAC 2280
 TTTCAGCCT ATAGCAGAAG CACATTTCA GACTGCAATA TAGAGACTGT GTTCATGTGT 2340
 AAAGACTGAG CAGAACTGAA AAATTTACTTA TTGGATATTC ATTCTTTCT TTATATTGTC 2400
 ATTGTACAA CAATTAATA TACTACCAAG TACAGAAATG TGGAAAAAAA AAACCG

ACJ4 DNA sequence

~~Gene name: prostaglandin G/H synthase 2 (COX-2; PGHS-2)~~

~~Unigene number: Hs.196384~~

~~Probeset Accession #: D28235~~

~~Nucleic Acid Accession #: NM_000963~~

~~Coding sequence: 135-1949 (predicted start/stop codons underlined)~~

15 CAATTGTCA ACGACTTGCA GTGAGCGTC GGAGCAGCTC CAGGAACCTCC TCAGCAGCGC 60
 CTCCTTCAGC TCCACAGCCA GACGCCCTCA GACAGCAAAG CCTACCCCCG CGCCGCGCCC 120
 TGCCCGCCGC TCGGATGTC GCCCCGCGCCC TGCTGCTGT CGCGGTCTGT GCGCTCAGCC 180
 ATACAGCAAA TCCTTGCTGT TCCCCACCAT GTCAAAACCG AGGTGTATGT ATGAGTGTGG 240
 GATTGACCA GTATAAGTGC GATTGTACCC GGACAGGATT CTATGGAGAA AACTGCTCAA 300
 CACCGGAATT TTTGACAAGA ATAAAATTAT TTCTGAAACC CACTCCAAAC ACAGTGCAC 360
 ACATACTTAC CCACCTCAAG GGATTTGGA ACGTTGTGA TAACATTCCC TTCCCTCGAA 420
 ATGCAATTAT GAGTTATGTC TTGACATCCA GATCACATT GATTGACAGT CCACCAACTT 480
 ACAATGCTCA CTATGGCTAC AAAAGCTGGG AAGCCTCTC TAAACCTCTCC TATTATACTA 540
 GAGCCCTTCC TCCTGTGCCT GATGATTGCC CGACTCCCT GGGTGTCAA GGTAAAAGC 600
 AGCTTCCCTGA TTCAAATGAG ATTGTGGAAA AATTGCTCT AAGAAGAAAAG TTCATCCCTG 660
 ATCCCCAGGG CTCAAACATG ATGTTGCTAT TCTTGCCCA GCACCTCACG CATCAGTTT 720
 TCAAGACAGA TCATAAGCGA GGGCCAGCTT TCACCAACGG GCTGGGCCAT GGGGTGGACT 780
 TAAATCATAT TTACGGTGAA ACTCTGGCTA GACAGCGTAA ACTGCGCCTT TTCAAGGATG 840
 GAAAAATGAA ATATCAGATA ATTGATGGAG AGATGTATCC TCCCACAGTC AAAGATACTC 900
 AGGCAGAGAT GATCTACCCCT CCTCAAGTCC CTGAGCATCT ACGTTTGCT GTGGGGCAGG 960
 AGGTCTTGG TCTGGTGCCCT GGCTCTGTGA TGTATGCCAC AATCTGGCTG CGGGAAACACA 1020
 ACAGAGTATG CGATGTGCTT AAACAGGAGC ATCTGTATG GGGTGTGAG CAGTTGTTCC 1080
 AGACAAGCAG GCTAACTACTG ATAGGAGAGA CTATAAGAT TGTGATTGAA GATTATGTGC 1140
 AACACTTGG TGGCTATCAC TTCAAACCTGA AATTGACCC AGAAACTACTT TTCAACAAAC 1200
 35 AATTCCAGTA CCAAATCGT ATTGCTGTG AATTAAACAC CCTCTATCAC TGGCATCCCC 1260
 TTCTGCCCTGA CACCTTTCAA ATTGATGACC AGAAATACAA CTATCAACAG TTTATCTACA 1320
 ACAACTCTAT ATTGCTGGAA CATGGAATTA CCCAGTTGT TGAATCATTC ACCAGGCAAA 1380
 TTGCTGGCAG GGTGCTGGT GGTAGGAATG TTCCACCCGC AGTACAGAAA GTATCACAGG 1440
 CTTCCATTGA CCAGAGCAGG CAGATGAAAT ACCAGTCTTT TAATGAGTAC CGAAACCGCT 1500
 40 TTATGCTGAA GCCCTATGAA TCATTTGAA AACTTACAGG AGAAAAGGAA ATGTCTGCAG 1560
 AGTTGGAAGC ACTCTATGGT GACATCGATG CTGTTGGACT GTATCTGTCC CTTCTGGTAG 1620
 AAAAGCCTCG GCCAGATGCC ATCTTTGGTG AAACCATGGT AGAAGTTGGA GCACCATTCT 1680
 CCTTGAAAGG ACTTATGGGT AATGTTATAT GTTCTCTGC CTACTGGAAAG CCAAGCACTT 1740
 TTGGTGGAGA AGTGGGTTT CAAATCATCA ACATGCGCTC AATTCACTCT CTCATCTGCA 1800
 45 ATAACGTGAA GGGCTGTCCC TTAACTTCTAT TCAGTGTCTC AGATCAGAG CTCATTTAAA 1860
 CAGTCACCAT CAATGCAAGT TCTTCCCGCT CGGAGCTAGA TGATATCAAT CCCACAGTAC 1920
 TACTAAAAGA ACGTTCGACT GAACTGAGA AGTCTAATGA TCATATTTAT TTATTTATAT 1980
 GAACCATGTC TATTAATTAA ATTATTTAAAT AATATTTATA TAAACTCCT TATGTTACTT 2040
 AACATCTTCT GTAACAGAAG TCAGTACTCC TGTGCGGAG AAAGGAGTCA TACTTGTGAA 2100
 50 GACTTTATG TCACTACTCT AAGATTTTG CTGTTGCTGT TAAGTTTGGAA AAACAGTTTT 2160
 TATTCTGTTT TATAAACCAG AGAGAAATGA GTTTTGACGT CTTTTTACTT GAATTTCAC 2220
 TTATATTATA AGAACGAAAG TAAAGATGTT TGAATACTTA AACACTATCA CAAGATGGCA 2280
 AAATGCTGAA AGTTTTACA CTGTCGATGT TTCCAATGCA TCTTCCATGA TGCATTAGAA 2340
 GTAACTAATG TTTGAAATTAA TAAAGTACTT TTGGTTATTT TTCTGTCTC AAACAAAAAAC 2400
 55 AGGTATCACT GCATTATTA ATAAGATTTT AAATTAGACA TTACAGTAA TTTCATGTCT 2460
 ACTTTTAAAT ATCAGCAATG AAACAATAAT TTGAAATTTC TAAATTCTA GGGTAGAATC 2520
 ACCTGTAAAA GCTTGTGTTGA TTTCTTAAAG TTATTAACACT TGTACATATA CAAAAAAAGAA 2580
 GCTGTCTTGG ATTAAATCT GTAAATCAG ATGAAATTTC ACTACAATTG CTTGTTAAA 2640
 TATTTTAAATG GTGATGTTCC TTTTCACCA AGAGTATAAA CCTTTTTAGT GTGACTGTTA 2700
 60 AAACCTTCAATT TTAAATCAAATG CACCCAAATT TATTAACGTG GTGGAGGCCAC TGCAGTGTAA 2760
 TCTCAAAATA AGAAATTTTT GTTGAGATAT TCCAGAAATT TTTTATATGG CTGGTAACAT 2820
 GTAAAATCTA TATCAGCAAA AGGGTCTACC TTTAAATAA GCAATAACAA AGAAGAAAAC 2880
 CAAATTATTG TTCAAATTTA GGTAAACT TTTGAAGCAA ACTTTTTTTT ATCCCTTGTC 2940
 ACTGCAGGCC TGGTACTCAG ATTGCTAT GAGGTTAATG AAGTACCAAG CTGTGCTTGA 3000
 65 ATAACGATAT GTTTCTCAG ATTGCTGTG GTACAGTTA ATTAGCAGT CCATATCACA 3060
 TTGCAAAAGT AGCAATGACC TCATATAAA CCTCTTCAAATG ATGCTTAAAT TCATTTCAA 3120
 CATTAAATTAAATG ATCTCAGTCT TGAAGCCAAT TCAGTAGGTG CATTGGAATC AAGCCTGGCT 3180
 ACCTGCATGC TGTTCTTCTT CTTTCTCTCT TTTAGCCATT TTGCTAAGAG ACACAGTCTT 3240

5 CTCATCACTT CGTTTCTCCT ATTGTTGTTT ACTAGTTTA AGATCAGAGT TCACCTTCTT 3300
 TGGACTCTGC CTATATTTTC TTACCTGAAC TTTGCAAGT TTTCAGGTAACCTCAGCTC 3360
 AGGACTGCTA TTTAGCTCCT CTTAAGAAGA TTAAAAGAGA AAAAAAAAGGCCCTTTAAA 3420
 AATAGTATAACCTTATTGTTA AGTGAAGAGC AGAGAATTTC ATTATAGCT AATTTTAGCT 3480
 10 ATCTGTAACC AAGATGGATG CAAAGAGGCT AGTGCCTCAG AGAGAACTGT ACGGGGTTG 3540
 TGACTGGAAA AAGTTACGTT CCCATTCTAA TTAAATGCCCT TTCTTATTAA AAAACAAAAC 3600
 CAAATGATAT CTAAGTAGTT CTCAGCAATA ATAATAATGA CGATAAACT TCTTTTCAC 3660
 ATCTCATTGT CACTGACATT TAATGGTACT GTATATTACT TAATTTATTG AAGATTATTA 3720
 TTATGTCTT ATTAGGACAC TATGGTTATA AACTGTGTT AAGCCTACAA TCATTGATT 3780
 15 TTTTTGTTA TGTCAACATC AGTATATTGTT TTGTTGGGTT ACCTCTCTGA ATATTATGTA 3840
 ACAAATCCAA AGAAATGATT GTATTAAGAT TTGTGAATTTA ATTGTTAGAAATCTGATTGG 3900
 CATATTGAGA TATTAAAGGT TGAATGTTG TCCTTAGGAT AGGCCTATGT GCTAGCCAC 3960
 AAAGAAATATT GTCTCATTAG CCTGAATGTG CCATAAGACT GACCTTTAA AATGTTTGA 4020
 GGATCTGTG GATGCTCGT TAATTTGTT AGCCACAAATT TATTGAGAAA ATATTCTGTG 4080
 20 TCAAGCACTG TGGGTTTAA TATTTTAAA TCAAACGCTG ATTACAGATA ATAGTATTAA 4140
 TATAAAATAAT TGAAAAAAAT TTCTTTTGG GAAGAGGGAG AAAATGAAAT AAATATCATT 4200
 AAAGATAACT CAGGAGAACAT TTCTTTACAA TTTTACGTTT AGAATGTTA AGGTTAAGAA 4260
 AGAAATAGTC AATATGCTTG TATAAAACAC TGTTCACTGT TTTTTTAAA AAAAAAAACTT 4320
 GATTGTTAT TAACATTGAT CTGCTGACAA AACCTGGAA TTGGGTTGT GTATGCGAAT 4380
 GTTCAGTGC CTCAGACAAA TGTGTATTAA ACTTATGTAAGATAAGTC TGAAATAAAA 4440
 TGTCGTTTA TTTTGTTACT ATTTA

ACJ6 DNA sequence
 Gene name: SEC14-like-1
 Unigene number: Hs.75232
 Probeset Accession #: D67629
 Nucleic Acid Accession #: NM_003003
 Coding sequence: 304-2451 (predicted start/stop codons underlined)

25 CAAGTGCCGT CGCCGGGCC CTTCCCCCTC CCGCCTCCCC GGCCCCCTCC CCGGAACCGG 60
 CGGTGAGCT ACGGTCGCGG ACCAGGTGGAA CCGAGACTGC CCCGCGGAGC CGCCGGTATG 120
 AGCGCCCTC GCCACCCCGT GTCCCAGGCC CGGCCTTCTC GACAAGAGCT AGACTTCGGG 180
 CTCTTGAGG ATATTCACTT TTGTATGTTT GAATATCCTC TCACCATGTT CAGCATAAAAG 240
 TACCAATTCTT AATGATTATC CTCAACAAAGA CAGGTGTGAG AGGGTTGCTG TTGCATTGCA 300
 ATCATGGTC AAAATACCA GTCCCCAGTG AGAGTGTACA AATACCCCTT TGAATTAAATT 360
 ATGGCTGCCT ATGAAAGAGG GTTCCCTACA TGTCCTTGA TTCCGATGTT CGTGGGCAGT 420
 GACACTGTGA GTGAATTCAA GAGCGAAGAT GGGGCTATTG ATGTCATTGAA AAGGCGCTGC 480
 AAGCTGGATG TAGATGCACC CAGACTGCTG AAGAAGATTG CAGGAGTTGA TTATGTTAT 540
 40 TTTGTCCAGA AAAACTCACT GAATTCTCGG GAACGTACTT TGACACATTGA GGCTTATAAT 600
 GAAACGTTT CCAATCGGGT CATCATTAAAT GAGCATTGCT GCTACACCGT TCACCCGTGAA 660
 AATGAAGATT GGACCTGTT TGAACAGTCT GCAAGTTTAG ATATTAATC TTTCTTTGGT 720
 TTTGAAAGTA CAGTGGAAAA AATTGCAATG AAACAATATA CCAGCAACAT TAAAAAAAGGA 780
 AAGGAAATCA TCGAACATACT CTTTCGCCAA TTAGAAGAAG AAGGCATAAC CTTTGTGCC 840
 45 CGTTGGAGTC CGCCTCCAT CACGCCCTCT TCAGAGACAT CTTCATCATC CTCCAAGAAA 900
 CAAGCAGCGT CCATGGCCGT CGTCATCCCA GAAGCTGCC TCAAGGAGGG GCTGAGTGGT 960
 GATGCCCTCA GCAGCCCGAG TGACCTGTAG CCCGTGGTGG GCACCCCTGA CGACAAACTA 1020
 GATGCCGACC ACATCAAGAG ATACCTGGGC GATTTGACTC CGCTGCAGGA GAGCTGCCTC 1080
 ATTAGACTTC GCCAGTGGCT CCAGGAGACC CACAAGGGCA AAATTCCAAA AGATGAGCAT 1140
 50 ATTCTTCGGT TCCTCCGTG ACAGGATTTT AATATTGACA AAGCCAGAGA GATCATGTGT 1200
 CAGTCTTGA CGTGGAGAAA GCAGCATCAG GTAGACTACA TTCTTGAAAC CTGGACCCCT 1260
 CCTCAGGTCC TTCAGGATTA CTACGCCGGA GGCTGGCATC ATCACGACAA AGATGGGGGG 1320
 CCCCTCTACG TGCTCAGGCT GGGGCAGATG GACACCAAAG GCTTGGTGAG AGCGCTCGG 1380
 GAGGAAGGCC TGCTGAGATA CGTTCTCTCC GTAAATGAAAG AACGGCTAAG GCGATGCGAA 1440
 55 GAGAACAA AAGTCTTGG TCGGCCTATC AGCTCATGGA CCTGCCTGGT GGACTTGGAA 1500
 GGGCTGAACA TGCGCCACTT GTGGAGACCT GGTGTGAAAG CGCTGCTGCG GATCATCGAG 1560
 GTGGTGGAGG CCAACTACCC TGAGAACACTG GGCCGCCCTC TCATCCTGCG GGCGCCCCAGG 1620
 GTATTTCTC TGCTCTGGAC GCTGGTTAGT CGCTTCATTG ATGACAACAC CAGAAGGAAG 1680
 60 TTCTCTCATTG ATGCAAGGAAA TGACTACAG GGTCTGGAG GCCTGCTGGA TTACATCGAC 1740
 AAAGAGAGTTA TTCCAGATT CCGTAGTGGAG GAGTGCATGT GCGAAGTGCC AGAGGGTGG 1800
 CTGGTCCCCA AATCTCTGTA CCGGACTGCA GAGGAGCTGG AGAACGAAGA CCTGAAGCTC 1860
 TGGACTGAGA CCATCTACCA GTCTGCAAGC GTCTCAAAG GAGCCCCACAA TGAGATTCTC 1920
 ATTCAAGATTG TGGATGCCCTC GTCACTGCATC ACTTGGGATT TCGACGTGTG CAAAGGGAC 1980
 ATTGTGTTTA ACATCTATCA CTCCAAGAGG TCGCCACAAC CACCCAAAAA GGACTCCCTG 2040
 65 GGAGCCCACA GCATCACCTC TCCGGGTGGG AACAAATGTC AGCTCATAGA CAAAGTCTGG 2100
 CAGCTGGGCC GCGACTACAG CATGGTGGAG TCGCCTCTGA TCTGCAAAGA AGGAGAAAGC 2160
 GTGCAGGGTT CCCATGTGAC CAGGTGGCCG GGCTTCTACA TCCCTGCACTG GAAATTCCAC 2220
 AGCATGCCTG CGTGGCCCGC CAGCAGCCTT CCCCCGGGTGG ACGACGTGCT TGCCTGCT 2280

CAGGTCTCTT CGCACAAAGTG TAAAGTGTG TACTACACCG AGGTGATCGG CTCGGAGGAT 2340
 TTCAGAGGT CCATGACGAG CCTGGAGTCC AGCCACAGCG GCTTCTCCCA GCTGAGTGCC 2400
 GCCACCCACCT CCTCCAGCCA GTCCCACTCC AGCTCCATGA TCTCCAGGTA GTGCCGCGCT 2460
 GCCTGCACCT AGTGTGCGAG GGGGACGGCC GCCCCCTCCCG GGACAGCAGC TGCACCCGCC 2520
 5 CACCCAGCGG CGACATTGTA CAGACTCCTC TCACCTCTAG ATAGCAAATA GCTCTCAGAT 2580
 GTAAACGTA GTCGTTGAT CCCAAAAGTA CCTTGGCAGG TAGTTTAAC TCTGATCTA 2640
 ACTTAACTCA ATAGCCATAG ATTTTGATATA CGTTGTGAC AAAATCCAAC CAGAGCGCAA 2700
 GGGCTCTCTT GAAAGAAAAG TAGTTTCTGT ACCAATTAAA GGATTGACGT GGTCTCAGAT 2760
 ATTGATGCAA AAAATTTC CAACGAACTC CGCATTGTC ATTAGTGAAT GAATTCCCTGT 2820
 10 GACATCCTCC AGAGATGGCC CCTCCTCACC TGGGACGGAA GCTGCCAGCT CGCTTCCCCC 2880
 AAGCTGCCTC ATGGCCCGCA CGGCCCTCA CGGCCCCCAT GCTTCCCAGCC AGTCAAGATG 2940
 GTCTGTGGAC TTAGGGCCAG CCCCTTGAGGT CCTTATCCTC TGAGGATTCA GAGGTTGCCT 3000
 GCGGAGTACC TTGTCCCAAGG GCCAGACACA CCCACACCCAC CCACGTCTG CAGTGGGCC 3060
 GGGGGCTAG GAGGGGCTCT CAGGGACTCC TGGTGACTCC AGGAAAATGC TGCCATCGTT 3120
 15 AACATTACT TTCTCTTCC TCCTTTCAA ATCTTTTGA TACTTTTAAAG AGCAGGATT 3180
 TTCTGTATGT GAACCTGGGT GGGGGGGTTC TTCCCGTTTC CCTCCGTGCG TCGCCCCCTCT 3240
 CACCTGCAGT CAGCTCCAG CCCAGTGTAG GCCATCTCTT CTGTCGCCCT TGAGGCTCA 3300
 TTGTCTCAGA GCCCAGACAG TTCCAGGCCAC TAGGAGGCCG TCTTGAACC AGCAAGTCGC 3360
 ATTGCCCCACT TGACACTGTC CATGGGGTTT TATTAGTAGC TAAGCAGCAG CTCTCGCATC 3420
 20 CACTTCAGGG TGGCGTGTGG CATGTAGGAG TCCTGCTTCT TTGTACATGG GAATTGTGGA 3480
 CTCATGCGTG TGTGTGTGTG CATGTGCTGT GTGTGTGCAT GTGTGCATGA CGGTGGGGT 3540
 GCTGGGGGGG CGGGGTAGT GAAAACCTAG TTTGAGTAAT GAAGGAATCT TCACAGAAC 3600
 AAATCAGAAT ATGGGATTTG TTTGCCTTTT ACATTTGTT TAATTCTGA TTTTAAAGCC 3660
 TGCTCTATCT GGTACAGGCC CCTTTTTT CAGCTTTTA TGGGAAAAGC AGGTTATTG 3720
 25 AGAATCTGTC CAGAAGTTGC ATAGGGGATG GCCTCCACGA TAAGGACATG CAACACGTGT 3780
 TTCTGTGTGC AGCAGAGGCC GTGTTTTTCA TGCCAAACCC CACGCCGCTG TCAACTGTGT 3840
 GCGTGGTAGG CATGGAGATC CTGGTTGTGC CGTCTCAGCT CGCCTCTGA GGCACGTGT 3900
 GGGTGTGCG TGACTGGAGA GCTGTGTGGA GGCCATGTGT GCCCCGTGCA GGGATCAGGA 3960
 30 GGGCGGGGGG GGGACCGAGC AGCCCTCTTG CCCGGTCCGG TCAGCCCTAG TGGCTGCCTG 4020
 CACACTGTAG ACGTCCCAAGG GCCTGTGCTG TGATCACCTG CTTTGGACC ACATTTGTGT 4080
 TTGCTCTTAG AGATCGAGCT CCTCAGTGT ACCTGAAGCC TTTGCTTCCG GAAAGCGCGG 4140
 TAGGGTTCGT AGGTAGGGCT AGTAGGTAGG GTTAGTAGGT AGGGCTAGTA GGTAGGGCTA 4200
 GTAGGTAGGG TTAGTAGGTA GGGTCGTAG GTAGGGCTGG TAGTAGGGGT TAGTAGGTAG 4260
 GGCTAGTAGG TAGGGTTCGT AGTAGGGCT AGTAGGTAGG GTTAGTAGGT AGGGCTAGTA 4320
 35 GGTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTCGTAG GTAGGGCTGG TAGGTAGGGT 4380
 TAGTAGGTAGG GGCTAGTAGG TAGGGTTCGT AGGTAGGGCT AGTAGGTAGG GTTAGTAGGT 4440
 AGGGCTAGTA GGTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTCGTAG GTAGGGCTGG 4500
 TAGGTAGGGT TAGTAGGTAGG GGCTAGTAGG TAGGGCTAGT AGTAGGGCT AGTAGGTAGG 4560
 GTTAGTAGGT AGGGCTAGTA GTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTCGTAG 4620
 40 GTAGGGCTGG TAGGTAGGGT TAGTAGGTAGG GGCTAGTAGG TAGGGCTAGT AGGTAGGGCT 4680
 AGTAGGTAGG GCTAGTAGGT AGGGCTAGTA GGTAGGGCTA GTAGGTAGGG CTAGTAGGTA 4740
 GGGTCGTAG GTAGGGCTGG TAGGTAGGGT TCGTAGGTAGG GTTAGTAGTC GCGTCTGTGC 4800
 TGCTTCCACC TGGTGTCTCC TGGTCCAAA TCACAAAGGGC CTGAAGGTGG TCCCTGCTTT 4860
 CTCTTCTCTT TTCTCTGTGT CTCAGATGGC GATTTGCTG ACAGCTGCCA AGAAAATGCT 4920
 45 TCACTCAACA GTCTCATGT GCCCAGAGAT GTTTATAGAA CTGTTGAAT TGCAGCCATC 4980
 CCCTGCCCCC TCCCAGGCTG AAGATCTGTT CTTTTTAAGT TGATTGGGA GTGGCATTCT 5040
 TTTATACCA AAGACTGTAG TGCACTTGA AGAGCTAAA GCACATGACC GCACAAATGC 5100
 TTACAGGGTT TCCTCCCGAG TAATCCAATC TCACCTCCCT TGTAAGGGAA TTCTGGGCCA 5160
 GCTATGGTTT GAGTATGCG TTTGCATCGT GTTTCTACCT TTAGTACCTT GCCACTCTTT 5220
 50 TAAAACGCTG CTGTCATTTCC CCAATTCTTA GTACTAATGA TTCTTTGATT CTCCCTCTAT 5280
 TATGTCTTAA TTCACTTTCC TTCTAAATT TGTTATTGTC ATATCAAATT CTGTAATGT 5340
 TTGTAACAA TATTACCTCA CTGGTAATA CAATACTGAT AGTCTTAAAG AGATTTTTT 5400
 ATTGTTATCA ATAATAAAATG TGAACTATT AAAG

55 Q17 AG18 DNA sequence

Gene name: intercellular adhesion molecule 1 (ICAM1; CD54)

Unigene number: HS_168383

ProbeSet Accession #: M24283

Nucleic Acid Accession #: NM_000201

Coding sequence: 58-1656 (predicted start/stop codons underlined)

60 GCGCCCCAGT CGACGCTGAG CTCTCTGTCT ACTCAGAGTT GCAACCTCAG CCTCGCTATG 60
 GCTCCCGAGCA GCCCCCGGCC CGCGCTGCC GCACTCTGG TCCTGCTCGG GGCTCTGTC 120
 65 CCAGGACCTG GCAATGCCCA GACATCTGTG TCCCCCTCAA AAGTCATCCT GCCCCGGGG 180
 GGCTCCGTGC TGGTGACATG CAGCACCTCC TGTGACAGC CCAAGTTGTT GGGCATAGAG 240
 ACCCCGTTGC CTAAAAAGGA GTTGCTCTG CCTGGGAACA ACCGGAAAGGT GTATGAAC 300
 AGCAATGTGC AAGAAGATAG CCAACCAATG TGCTATTCAA ACTGCCCTGA TGGCAGTCA 360

ACAGCTAAAA CCTTCCTCAC CGTGTACTGG ACTCCAGAAC GGGTGGAACT GGCACCCCTC 420
 CCTCTTGCGC AGCCAGTGGG CAAGAACCTT ACCCTACGCT GCCAGGTGGA GGGTGGGCA 480
 CCCCGGGCCA ACCTCACCGT GGTGCTGCTC CGTGGGGAGA AGGAGCTGAA ACGGGAGCCA 540
 GCTGTGGGGG AGCCCGCTGA GGTACCGACC ACGGTGCCTGG TGAGGAGAGA TCACCATGGA 600
 5 GCCAATTCT CGTGGCCAC TGAACGTGGAC CTGCGGCCA AAGGGCTGGA GCTGTTGAG 660
 AACACCTCGG CCCCTACCA GCTCAGAACCTT TTGTCCTGC CAGCGACTCC CCCACAATT 720
 GTCAGCCCCC GGGTCCTAGA GGTGGACACG CAGGGGACCG TGGTCTGTT CCTGGACGGG 780
 CTGTTCCCAG TCTCGGAGGC CCAGGTCCAC CTGGCACTGG GGGACCAAGAG GTTGAACCCC 840
 ACAGTCACCT ATGGCAACGA CTCCCTCTCG GCCAAGGCCT CAGTCAGTGT GACCGCAGAG 900
 10 GACGAGGGCA CCCAGGGCT GACGTGTGCA GTAATACTGG GGAACCAAGAG CCAGGAGACA 960
 CTGCAGACAG TGACCATCTA CAGCTTCCG GCGCCAAACG TGATTCTGAC GAAGCCAGAG 1020
 GTCTCAGAAG GGACCGAGGT GACAGTGAAG TGTGAGGCC ACCCTAGAGC CAAGGTGACG 1080
 CTGAATGGGG TTCCAGGCCA GCCACTGGC CCGAGGGCC AGCTCCTGCT GAAGGCCACC 1140
 CCAGAGGACA ACGGGCGCAG CCTCTCTGCTC TCTGCAACCC TGGAGGTGGC CGGCCAGCTT 1200
 15 ATACACAAGA ACCAGACCCG GGAGCTTCGCT GTCCCTGTATG GCCCCCAGCT GGACGAGAGG 1260
 GATTGTCCGG GAAACTGGAC GTGCCAGAA AATTCGGCAG AGACTCCAAT GTGCCAGGCT 1320
 TGGGGGAAAC CATTGCCCCA GCTCAAGTGT CTAAAGGATG GCACCTTCCC ACTGCCATC 1380
 GGGGAATCAG TGACTGTAC TCGAGATCTT GAGGGCACCT ACCTCTGTGCG GGCCAGGAGC 1440
 ACTCAAGGGG AGGTCACCCG CGAGGTGACC GTGAATGTGCT TCTCCCCCGT GTATGAGATT 1500
 20 GTCATCATCA CTGTGGTAGC AGCCGCAGTC ATAATGGCA CTGCAGGCC CAGCACGTAC 1560
 CTCTATAACC GCCAGGGAA GATCAAGAAA TACAGACTAC AACAGGCCA AAAAGGGACC 1620
 CCCATGAAAC CGAACACACA AGCCACGCC CCGTGAACCT ATCCCAGGAC AGGGCCTCTT 1680
 CCTCGGCCCTT CCCATATTGG TGGCAGTGGT GCCACACTGA ACAGAGTGGA AGACATATGC 1740
 CATGCAGCTA CACCTACCGG CCCTGGGACG CCGGAGGACA GGGCATTGTC CTCAGTCAGA 1800
 TACAACAGCA TTTGGGGCA TGGTACCTGC ACACCTAAA CACTAGGCCA CGCATCTGAT 1860
 CTGTAGTCAC ATGACTAAGC CAAGAGGAAG GAGCAAGACT CAAGACATGA TTGATGGATG 1920
 TAAAGTCTA GCCTGTAGAG AGGGGAAGTG GTGGGGGAGA CATAGCCCCA CCATGAGGAC 1980
 ATACAACCTGG GAAATACTGA AACATGCTGC CTATTGGTA TGCTGAGGCC CACAGACTTA 2040
 CAGAAGAAGT GGCCTCCAT AGACATGTGT AGCATCAAA CACAAAGGCC CACACTTCCT 2100
 GACGGATGCC AGCTGGCA CTGCTGTCTA CTGACCCCAA CCCTTGATGA TATGATTTA 2160
 30 TTCAATTGTT ATTTTACCAAG CTATTTATTG AGTGTCTTT ATGTAGGCTA AATGAACATA 2220
 GGTCTCTGGC CTCACGGAGC TCCCAGTCCA TGTCACATTC AAGGTCAACCA GGTACAGTTG 2280
 TACAGGTGCTG ACTACTGCAGG AGAGTGCCTG GCAAAAGAT CAAATGGGC TGGGACTTCT 2340
 CATTGGCCAA CCTGCCCTTC CCCAGAAGGA GTGATTTTC TATCGGCACA AAAGCACTAT 2400
 35 ATGGACTGGT AATGGTCAC AGGTTCAAGAG ATTACCCAGT GAGGCCTTAT CCCTCCCTTC 2460
 CCCCCAAAC TGACACCTTT GTTAGGCCACC TCCCCACCCA CATAACATTTC TGCCAGTGT 2520
 CACAATGACA CTCAGCGGTC ATGCTGGAC ATGAGTGCCTC AGGAAATATG CCCAAGCTAT 2580
 GCCTTGTCTT CTTGTCCTGT TTGCAATTCA CTGGGAGCTT GCACATTGTC AGCTCCAGTT 2640
 40 CCTCTGCAGTG ATCAGGGTCC TCGAAGCAGT GGGGAAGGG GCCAAGGTAT TGGAGGACTC 2700
 CCTCCCTGGCT TTGGAAGGGT CATCCGGTGT TGTTGTGTG TGTTGTGTG GACAAGCTCT 2760
 CGCTCTGTCA CCCAGGGTGG AGTGCAGTGG TGCAATCATG GTTCACTGCA GTCTTGACCT 2820
 TTGGGCTCA AGT GATCCTC CCACCTCAGC CTCCGTAGTA GCTGGGACCA TAGGCTCACA 2880
 ACACCACACC TGGCAAATTG GATTTTTTTT TTTTTTTCA GAGACGGGGT CTCGCAACAT 2940
 TGGCCAGACT TCCTTGTGT TAGTTAATAA AGCTTCTCA ACTGCC

Q48
ACK3 DNA sequence

Gene name: angiopoietin 1 receptor (TIE-2; TEK)

Unigene number: Hs.89540

Probeset Accession #: E05139

Nucleic Acid Accession #: NM_000459

Coding sequence: 149-3523 (predicted start/stop codons underlined)

45 CCTCTGTGCT GTTCCTCTT GCCTCTAACT TGTAAACAAG ACGTACTAGG ACGATGCTAA 60
 50 TGAAAGTC AAAACCGCTG GTTTTGAA AGGATCCTTG GGACCTCATG CACATTGTC 120
 GAAACTGGAT GGAGAGATTG GGGGAAGCAT GGACTCTTA GCCAGCTTAG TTCTCTGTGG 180
 AGTCAGCTTG CTCCCTCTG GAACGTGGAA AGGTGCCATG GACTTGTATC TGATCAATT 240
 CCTACCTCTT GTATCTGTG CTGAAACATC TCTCACCTGC ATTGCCTCTG GGTGGCGCC 300
 CCATGAGGCC ATCACCATAG GAAGGGACTT TGAAGCCTTA ATGAAACCAGC ACCAGGATCC 360
 55 GCTGGAAGTT ACTCAAGATG TGACCAAGAGA ATGGGCTAAA AAAGTTGTTT GGAAGAGAGA 420
 AAAGGCTAGT AAGATCAATG GTGCTTATTG CTGTGAAGGG CGAGTTCGAG GAGAGGCAAT 480
 CAGGATACGA ACCATGAAGA TCGTCAACA AGCTTCTTC CTACCAAGCTA CTTTAACCT 540
 GACTGTGGAC AAGGGAGATA ACCTGAACAT ATCTTCAAA AAGTATTGA TTAAAGAAGA 600
 AGATGCAGTG ATTACCAAA ATGGTTCCTT CATCCATTCA GTGCCCGGCG ATGAAGTACC 660
 60 TGATATTCTA GAAGTACACC TGCTCATGC TCAGCCCCAG GATGCTGGAG TGTACTCGGC 720
 CAGGTATATA GGAGGAAACC TCTCACCTC GGCTTCACC AGGCTGATAG TCCGGAGATG 780
 TGAAGCCAG AAGTGGGAC CTGAATGCAA CCATCTCTGT ACTGCTTGTG TGAACAATGG 840
 TGTCTGCCAT GAAGATACTG GAGAATGCAT TTGCCCTCCT GGGTTATGG GAAGGACGTG 900

	TGAGAAGGCT TGTGAAC TGC ACACGTTGG CAGAACTTGT AAAGAAAGGT GCAGTGGACA	960
	AGAGGGATGC AAGTCTTATG TGTCTGTCT CCCTGACCCC TATGGGTGTT CCTGTGCCAC	1020
	AGGCTGGAAG GGTCTGCAGT GCAATGAAGC ATGCCACCT GTTTTTACG GGCCAGATTG	1080
	TAAGCTTAGG TGCAGCTGCA ACAATGGGG AATGTGTGAT CGCTTCCAAG GATGTCTCTG	1140
5	CTCTCCAGGA TGGCAGGGC TCCAGTGTGA GAGAGAAGGC ATACCGAGGA TGACCCCCAA	1200
	GATAGTGGAT TTGCCAGATC ATATAGAAGT AAACAGTGGT AAATTTAAC CCATTTGCAA	1260
	AGCTTCTGGC TGGCCGCTAC CTACTAATGA AGAAATGACC CTGGTGAAGC CGGATGGGAC	1320
	AGTGCTCCAT CAAAAGACT TAAACCATAC GGATCATTC TCAGTAGGCC TATTACCAT	1380
	CCACCGGATC CTCCCCCTG ACTCAGGAGT TTGGGTCTGC AGTGTGAACA CAGTGGCTGG	1440
10	GATGGTGGAA AAGCCCTCA ACATTTCTGT TAAAGTTCTT CCAAAGCCCC TGATGCC	1500
	AAACGTGATT GACACTGGAC ATAATTTGTC TGTCTAACAC ATCAGCTCTG AGCCTTACTT	1560
	TGGGGATGGA CCAATCAAAT CCAAGAAGCT TCTATACAA CCCGTTAACAT ACTATGAGGC	1620
	TTGGCAACAT ATTCAAGTGA CAAATGAGAT TGTTACACTC AACTATTTGG AACCTCGGAC	1680
	AGAATATGAA CTCTGTGTGC AACTGGTCCG TCGTGGAGAG GGTGGGAAAG GGCATCCTGG	1740
15	ACCTGTGAGA CGCTTCACAA CAGCTTCTAT CGGACTCCCT CCTCCAAGAG GTCTAAATCT	1800
	CCTGCCTAAA AGTCAGACCA CTCTAAATTG GACCTGGCAA CCAATATTTC CAAGCTCGGA	1860
	AGATGACTTT TATGTTGAAG TGGAGAGAAG GTCTGTGCAA AAAAGTGTAC AGCAGAAATAT	1920
	TAAAGTTCCA GGCAACTTGA CTTCGGTGCT ACTTAACAC TTACATCCCA GGGAGCAGTA	1980
	CGTGGTCCGA GCTAGAGTCA ACACCAAGGC CCAGGGGAA TGGAGTGAAG ATCTCACTGC	2040
20	TTGGACCCCTT AGTGACATT TCCTCTCTCA ACCAGAAAATC ATCAAGATTT CCAACATTAC	2100
	ACACTCCTCG GCTGTGATTTC CTGGACAAAT ATTGGATGGC TATTCTATTTC CTTCTATTAC	2160
	TATCCGTTAC AAGGTTCAAG GCAAGAATGA AGACCAGCAC GTTGATGTGA AGATAAAAGAA	2220
	TGCCACCATC ATTCAAGTAC AGCTCAAGGG CCTAGAGCCT GAAACAGCAT ACCAGGTGGA	2280
	CATTTTGCA GAGAACAAACA TAGGGTCAAG CAACCCAGCC TTTTCTCATG AACTGGTGC	2340
25	CCTCCCAGAA TCTCAAGCAC CAGCGGACCT CGGAGGGGG AAGATGCTGC TTATAGCCAT	2400
	CCTTGGCTCT GCTGGATGA CCTGCGTGAC TGTGCTGTT GCCTTCTGA TCATATTGCA	2460
	ATTGAAGAGG GCAAATGTGC AAAGGAGAAT GGCCCAAGCC TTCCAAAAGC TGAGGGAAGA	2520
	ACCAGCTGTG CAGTTCAACT CAGGGACTCT GGCCCTAAAC AGGAAGGTCA AAAACAACCC	2580
	AGATCCTACA ATTATTCAG TGCTTGACTG GAATGACATC AAATTTCAAG ATGTGATTGG	2640
30	GGAGGGCAAT TTTGGCCAAG TTCTTAAGGC GCGCATTCAAG AAGGATGGGT TACGGATGGA	2700
	TGCTGCCATC AAAAGAATGA AAGAATATGC CTCCAAAGAT GATCACAGGG ACTTTGCAGG	2760
	AGAACTGGAA GTTCTTGTA AACATGGACA CCATCCAAAC ATCATCAATC TCTTAGGAGC	2820
	ATGTGAACAT CGAGGCTACT TGACCTGGC CATTGAGTAC GCGCCCATG GAAACCTTCT	2880
	GGACTTCTCT CGCAAGAGCC GTGTGCTGGA GACGGACCCA GCATTTGCCA TTGCAATAG	2940
35	CACCGCGTC CACACTGTCT CCCAGCAGCT CCTTCACCTC GCTGCCGACG TGGCCCGGG	3000
	CATGGACTAC TTGAGCCAA AACAGTTTAT CCACAGGGAT CTGGCTGCCA GAAACATTTC	3060
	AGTTGGTGA AACTATGTGG CAAAAATAGC AGATTTGGA TTGTCGGAG GTCAAGAGGT	3120
	GTACGTGAA AAGACAATGG GAAGGCTCCC AGTGCCTGAG ATGCCATCG AGTCACTGAA	3180
	TTACAGTGTG TACACAAACCA ACAGTGTATG ATGGTCTTAT GGTGTGTTAC TATGGGAGAT	3240
40	TGTTAGCTTA GGAGGCACAC CCTACTGCGG GATGACTTGT GCAGAACTCT ACGAGAAAGCT	3300
	GCCCCAGGG TACAGACTGG AGAAGCCCT GAACGTGTAT GATGAGGTGT ATGATCTAAT	3360
	GAGACAATGC TGGCGGGAGA AGCCTTATGA GAGGCCATCA TTTGCCAGA TATTGGTGTG	3420
	CTTAAACAGA ATGTTAGAGG AGCAGAAAGAC CTACGTGAAT ACCACGCTTT ATGAGAAAGTT	3480
	TACTTATGCA GGAATTGACT GTTCTGTGA AGAAGGGCC <u>TAGGACAGAA</u> CATCTGTATA	3540
45	CCCTCTGTTT CCCTTTCACT GGCATGGAG ACCCTTGACAT ACTGCTGAG AACACATGCCT	3600
	CTGCCAAAGG ATGTGTATTA TAAGTGTACA TATGTGTGG AATTCTAACCA AGTCATAGGT	3660
	TAATATTAA GACACTGAAA AATCTAAGTG ATATAAAATCA GATTCTTCTC TCTCATTTA	3720
	TCCCTCACCT GTAGCATGCC AGTCCCGTTT CATTAGTCA TGTGACCACT CTGTCTTG	3780
	TTTCCACAGC CTGCAAGTTC AGTCCAGGAT GCTAACATCT AAAAATAGAC TTAAATCTCA	3840
50	TTGCTTACAA GCCTAAAGAAT CTTTAGAGAA GTATACATAA GTTTAGGATA AAATAATGGG	3900
	ATTTCTTTT CTTTCTCTG GTAATATTGA CTTGTATATT TTAAGAAATA ACAGAAAGCC	3960
	TGGGTGACAT TTGGGAGAGCA TGTGACATT ATATAATTGAA TTAAATATCCC TACATGTATT	4020
	GCACATTGTA AAAAGTTTA GTTTGTGATGA GTTGTGAGTT TACCTGTAT ACTGTAGGCA	4080
55	CACTTGTGAC TGATATATCA TGAGTGAATA AATGTCTTGC CTACTCAAA AAAAAAAA	

PZA6 DNA sequence

Gene name: prostate differentiation factor (PLAB; MIC-1)

Unigene number: Hs.11657

Probeset Accession #: AB000584

Nucleic Acid Accession #: NM_004864

Coding sequence: 26-952 (predicted start/stop codons underlined)

65	CGGAACGAGG GCAACCTGCA CAGCCATGCC CGGGCAAGAA CTCAGGACGG TGAATGGCTC	60
	TCAGATGCTC CTGGTGTGTC TGTTGCTCTC GTGGCTGCCG CATGGGGCG CCCTGTCTCT	120
	GGCCGAGGG AGCCGCCAA GTTCCCGGG ACCCTCAGAG TTGCACTCCG AAGACTCCAG	180
	ATTCCGAGAG TTGGGAAAC GCTACGAGGA CCTGCTAACC AGGCTGCCGG CCAACCAGAG	240
	CTGGGAAGAT TCGAACACCG ACCTCGTCCC GGCCCTGCA GTCCGGATAC TCACGCCAGA	300

	AGTGC GGCTG GGATCCGGCG GCCACCTGCA CCTGCGTATC TCTCGGGCCG CCCTTCCCGA	360
	GGGGCTCCCC GAGGCCTCCC GCCTTCACCG GGCTCTGTC CCGCTGTCCC CGACGGCGTC	420
5	AAGGTCGTGG GACGTGACAC GACCGCTGCG GCGTCAGTC AGCCTTGCAA GACCCCAAGC	480
	GCCC GCGCTG CACCTGCGAC TGTCGCCGCG GCGTCGCGAG TCGGACCAAC TGCTGGCAGA	540
	ATCTTCGTCC GCACGGCCC AGCTGGAGTT GCACTTGCGG CGCGAACAGCG CCAGGGGGCG	600
	CCGCAGAGCG CGTGC GCGCA ACGGGGACGA CTGTCGCTC GGGCCCGGGC GTTGTGCGG	660
	TCTGCACACG GTCCGGCGGT CGCTGGAAAGA CCTGGGCTGG GCGGATTGGG TGCTGTGCC	720
10	ACGGGAGGTG CAAGT GACCA TGTCGATCGG CGCGT GCGCG AGCCAGTTCC GGGCGGCAA	780
	CATGCACCGC CAGATCAAGA CGAGCTGCA CGCCTGAAAG CGCGACACGG AGCCAGCGCC	840
	CTGCTGGCGT CCCGCCAGCT ACAATCCCAT GGTGCTCATT CAAAAGACCG ACACCGGGGT	900
	GTCGCTCCAG ACCTATGATG ACTTGTGAGC CAAAGACTGC CACTGCATAT GAGCAGTCCT	960
	GGTCCTTCCA CTGTGACACCT GCGCGGGGA GCGACCTCA GTTGTGCTGC CCTGTGGAAT	1020
	GGGCTCAAGG TTCCGTGAGAC ACCCGATTCC TGCCCAAACA GCTGTATTAA TATAAGTCTG	1080
	TTATTTATTA TTAATTATTGGGGT GACCT TCTGGGGAC TCGGGGGCTG GTCTGATGGA	1140
15	ACTGTGTATT TATTTAAAAC TCTGGTATA AAAATAAAGC TGTCTGAAC GTTAAAAAAA	1200
	AAAAA	

AAC8 DNA sequence

Gene name: none

Unigene number: Hs.6682

Probeset Accession #: AA227926

Nucleic Acid Accession #: none

Coding sequence: no ORF identified, possible frameshifts

20	AAGCTGCAGT TAGCCAAGAT CGCATCATTG CACTCCAGCC TAGGGGACAA GAGCGCGAGA	60
	CTTCATCTCA AAGATTTTTA AATAATAGCT AAAGGTATGTC TCTCTAGTC ATCCTTAGTT	120
	TATTAGTACT GTACTTTAAA ATTATTTTTA TAATAGTCAA TTTTGGGAGA TAATTATTTTC	180
25	TTTCCTTATA TTTTCCAATT AGTTGGTGTCA TAAAAATAAA TGTTTTGTCT AATTTTAGAT	240
	CAGGTATACA TTACACAAAAG CATAAATCAT AGTCTCACAG GAAATTCAAC AATTTCCAT	300
	ATGTCGTGAG ATAATCTGTC TTCTACAAAC CTCATAACAA TGAATTATA TAATTACCTA	360
	GATTTCTTA GTGTGAATCT ACCCATTAGT TTTATTTCT TGGTAGTTAT TTTTTCCCT	420
30	CCTCTCTGTT ACTATTGGCC TAAAAATACA CAGGAGGACG GTTACAGTGT CTAATAGCT	480
	GTACATGTG TGTGTTGAG CAGTACTGAA TCAAGTGTAC ATTATAGTA CCAATAACCG	540
	CCTTACAGC TTTACAGTTA ACAATTCTCT CACAAAATG TAGAGCATTAG GGCATCTGAG	600
35	ACCCATAGAG GGCAACTTT GTTCCAGAGT GAACATGCTT TTTTCTCA ACATATAACAC	660
	TACTGATTTT TTTTAAAAGT ATGACTTTCA AGTGAATTAA TGTATTGGTT AGGAGAACTG	720
	CTTGCTAACT CCTTATTACC TCTGTTAAA GCCTCAGAAG GCGTGTGA AAGCCAGAGG	780
	GGAAAAAAAG AGTAATGCAC AGGTATCTCT TTTGAGTGG TGACTGTATT TTGAGTACCT	840
40	TGTGTGACAG GGTATTATTA CAGCATTTG TGGGAAAACC TATTAGGCCT TTGCATGTTA	900
	AAGCTGTATA ATTTGTGGG TTGTGAGTGG TCTGACTTAA ATGTTGATTA TAAAATTAG	960
	ACATCAAATT TTCCACTAA CTAACCTTAT TAGATGCATA CTTGGAAGCA CAGTCATATC	1020
	ACACTGGGAG GCAATGCAAT GTGGTTACCT GGTCTTAGGT TTGAACTGTC TTATTTCAA	1080
45	AGATTTCTGA ATTAATTTT CCCTAGAATT TCTCTTCAAT CTCAGGATAC AAACATACTT	1140
	TGAGGAATGA AACAGATTG TCCCATGAAT GTATGCTCAT ACTCGACTAG AAACGATCTA	1200
	TGTTAAATGA CTGTGTATAT GAATTATTTA AAGTACTACC CCAAATAACT TTCTTATTG	1260
	TCTGAAAGAA GAAAAGCAAT GTAAATCACT ATGATTATTG CACAAACAAAC CAGAATTCTC	1320
	CAACAATTTT AAGTAATCTG ATCCCTCTCT TGGAGAAAAT TGTTACCTA TAGTTTTCC	1380
50	TTATGAATGT TATTACTACT GGTATAAAATC AAATTTCTAT AAATTCCTA CTTAAAGTCT	1440
	TAARAACCTGG GTTCTTCTT TGATGTTATT CATGTTCAGA AAGGGAAACA ACACCTTACT	1500
	TTTTAGGGA CAATTTCTAG AATCTATAGT AGTATCAGGA TATATTTGC TTAAAATAT	1560
	ATTTGGGTA TTTGAAATAC AGACATTGGC TCCAAATTTT CATCTTGCA CAATAGTATG	1620
	ACCTTTCACT AGAACTCTC AACATTGGG AACTTGCAC ATATGAGCAT CATATGTTG	1680
55	AAGGCTGTAT CATTAAATGC TATGAGATAC ATTGTTCT CTCCTATGCCA AACAGGTGAA	1740
	CAAACGTTAGT TGTTTTTAC TGACTAAAG TGTTGGTAC CTGTGATT TTAGTATGCA	1800
	CATGTCAGAA AAAGGCAAGA CAAATGGCCT CTTGACTGA ATACTTCGGC AAACTTATTG	1860
	GGGTCTTCAT TTTCTGACAG ACAGGATTG ACTCAATATT TGAGAGCTT GCGTAGGAAT	1920
	GGGATTACAT GGGTAGTGTAG GCACTGGTAG GAAATGGTTT TTAGTATTG ACTCAGGAAT	1980
60	TCACTCTGG ATGAATCTT TATGTTTTT TATTGTAAGG CATATCTGGA ATTTACTTTA	2040
	TAAAGGCTGG GTTTAGGAAA GCTTTGTCTT AAAAATTGGG CCCCCGGGGAT GGGAACTTCA	2100
	TTTTCAGTTG CCAAGGGGTA GAAAATAAT ATGTTGTTG TTATGTTTAT GTTAACATAT	2160
	TATTAGGTAC TATCTATGAA TGTTTTAAA TATTTCTAT ATTCTGTGAC AAGCATTAT	2220
	AATTGCAAC AAGTGGAGTC CATTAGGCC AGTGGGAAAG TCTTGGAACT CAGGTACCC	2280
65	TTGAAGGATA TGCTGGCAGC CATCTCTTGT ATCTGTGCTT AAACGTAAAT TTATAGACCA	2340
	GCTAAATCCC TAACTGGAT CTGGAATGCA TTAGTTATGA CCTGTACCA TTCCCAGAAT	2400
	TTCAAGGGCA TCGTGGGTTT GGTCTAGTGA TTGAAAACAC AAGAACAGAG AGATCCAGCT	2460
	GAAAAGAGT GATCCTCAAT ATCCTAACTA ACTGGTCTC AACTCAAGCA GAGTTTCTTC	2520
	ACTCTGGCAC TGTGATCATG AAACCTTAGTA GAGGGGATTG TGTGTATTG ATACAAATT	2580

AATAACAATGT CTTACATTGA TAAAATTCTT AAAGAGCAAA ACTGCATTT ATTTCTGCAT 2640
 CCACATTCCA ATCATATTAG AACTAAGATA TTTATCTATG AAGATATAAA TGGTGCAGAG 2700
 AGACTTTCAT CTGTGGATTG CGTTGTTCT CTAGGGTCC TCAGCCACTG ATGCCCTGCC 2760
 5 ACAAGCCATG TGATATGTGA AATAAAAAGG GATTCTTCCT ATAGCCTAAA TGAAGTTCCC 2820
 TCTGGGAGA GTTCTGGTAC TGCATCACA ATGCCAGATG GTGTTATGG GCTATTTGTG 2880
 TAAGTAAGTG GTAAAGATGCT ATGAAGTAAG TGTGTTGTT TTCACTTAT CGAAACTCTT 2940
 GATGCATGTG CTTTGTATG GAATAAATTG TGGTCAATA TGATGTCATT CAACTTGCA 3000
 TTGAATTGAA TTTTGGTTGT ATTATATATGT ATTATACCTG TCACGCTCT AGTTGCTCA 3060
 ACCATTTAT AACCATTTT GTACATATTG TACTTGAAGA TATTTAAAT GGAAATTAA 3120
 10 ATAAACATTT GATAGTTAC ATAAAAAAA AAAAAAAA A

AAD2 DNA sequence

Gene name: Thrombospondin-1

Unigene number: HS_87499

Probeset Accession #: AA238645

Nucleic Acid Accession #: NM_003246

Coding sequence: 112-3624 (predicted start stop codons underlined)

20 GGACGCACAG GCATTCCTCC CGCCCCCTCCA GCCCTCGCCG CCCTCGCCAC CGCTCCCCGC 60
 CGCCGCGCTC CGGTACACAC AGGATCCCTG CTGGGCACCA ACAGCTCCAC CATGGGGCTG 120
 GCCTGGGGAC TAGGCGCTCT GTTCCTGATG CATGTGTGTG GCACCAACCG CATTCCAGAG 180
 TCTGGCGGAG ACAACAGCGT CTTTGACATC TTTGAACCTCA CCGGGGCCGC CCGCAAGGG 240
 TCTGGCGCC GACTGGTGA GGGCCCCGAC CTTCCAGCC CAGCTTCCG CATCGAGGAT 300
 GCCAACCTGA TCCCCCTGT GCCTGATGAC AAGTTCCAAG ACCTGGTGGA TGCTGTGCGG 360
 25 GCAGAAAAGG GTTTCCTCCT TCTGGCATCC CTGAGGCAGA TGAAGAAAGAC CGGGGGCACG 420
 CTGCTGGCCC TGGAGCGGAA AGACCACTCT GGCCAGGTCT TCAGCGTGGT GTCCAATGGC 480
 AAGGCGGGCA CCCTGGACCT CAGCCTGACC GTCCAAGGAA AGCAGCACGT GGTGTCTGTG 540
 GAAGAAAGCTC TCCTGGCAAC CGGCCAGTGG AAGAGCATCA CCTCTGGTGTG GCAGGAAGAC 600
 AGGGCCCAGC TGTACATCGA CTGTGAAAG ATGGAGAAAT CTGAGTTGGA CGTCCCCATC 660
 30 CAAAGCGTCT TCACCAAGAGA CCTGGCCAGC ATGCCAGAC TCCGCATCGC AAAGGGGGC 720
 GTCAATGACA ATTTCAGGG GGTGCTGAG AATGTGAGGT TTGTCTTTGG AACACACCA 780
 GAAGACATCC TCAGGAACAA AGGCTGCTCC AGCTCTACCA GTGTCTCTCT CACCCCTTGAC 840
 AACAAACGTGG TGAATGGTC CAGCCCTGCC ATCCGCACCA ACTACATTGG CCACAAGACA 900
 AAGGACTTGC AAGCCATCTG CGGCATCTCC TGTGATGAGC TGTCCAGCAT GGTCCTGGAA 960
 35 CTCAGGGGCC TGCGCACCAT TGTGACCACG CTGCAGGACA GCATCCGCAA AGTGAAGTAA 1020
 GAGAACAAAG AGTTGGCCAA TGAGCTGAGG CGGCCCTCCCC TATGCTATCA CAACGGAGTT 1080
 CAGTACAGAA ATAACGAGGA ATGGACTGTT GATAGCTGCA CTGAGTGTCA CTGTCAGAAC 1140
 TCAGTTACCA TCTGAAAAA GGTGCTCTGC CCCATCATGC CCTGCTCCAA TGCCACAGTT 1200
 CCTGATGGAG AATGCTGTCC TCGCTGTTGG CCCAGCGACT CTGCGGACGA TGGCTGGTCT 1260
 40 CCATGGTCCC AGTGGACCTC CTGTTCTACG AGCTGGCA ATGGAATTC ACGGACCTGC 1320
 CGCTCTGGC ATAGCTCTAA CAAAGGATGT GAGGCTCTC CCGGCTCAGAC ACAGGACCTGC 1380
 CACATTCAAG AGTGTGACAA AAGATTTAA CAGGATGGTG GCTGGAGCCA CTGGTCCCCG 1440
 TGGTCATCTT GTTCTGTGAC ATGTGGTGAT GGTGTGATCA CAAGGATCCG GCTCTGCAAC 1500
 TCTCCCAGCC CCCAGATGAA TGGGAAACCC TGTGAAGGCG AAGCGCGGGG GACCAAAGCC 1560
 45 TGCAAGAAAG ACGCCTGCC CATCAATGGG GGCTGGGTC CTTGGTCACC ATGGGACATC 1620
 TGTTCTGTCA CCTGTGGAGG AGGGGTACAG AAACGTAGTC GTCTCTGCAA CAACCCCGCA 1680
 CCCCAGTTG GAGGCAAGGA CTGCGTTGGT GATGTAACAG AAAACCGAGAT CTGCAACAAG 1740
 CAGGACTGTC CAATTGATGG ATGCCTGTCC AATCCCTGCT TTGCCGGCGT GAAGTGTACT 1800
 AGCTACCTG ATGGCAGCTG GAAATGTGGT GCTTGTCCCC CTGTTACAG TGGAAATGGC 1860
 50 ATCCAGTGCA CAGATGTGA TGAGTGCAGA GAACTGGCTG ATGCCCTGCTT CAACCCACAAT 1920
 GGAGAGCACC GGTGTGAGAA CACGGACCCC GGCTACAACT GCCTGCCCTG CCCCCCCACGC 1980
 TTACCGGGCT CACAGCCCTT CGGCGAGGGT GTCGAACATG CCACGGGCAA CAAACAGGTG 2040
 TGCAAGCCCC GTAACCCCTG CACGGATGGG ACCCAGCAGT GCAACAAGAA CGCCAAGTGC 2100
 AACTACCTGG GCCACTATAG CGACCCCCATG TACCGCTGCG AGTGAAGGCC TGGCTACGCT 2160
 55 GGCAATGGCA TCATCTGGG GGAGGACACA GACCTGGATG GCTGGCCCAA TGAGAACCTG 2220
 GTGTGCGTGG CCAATGCGAC TTACCACTGC AAAAAGGATA ATTGCCCCAA CCTTCCCAAC 2280
 TCAGGGCAGG AAGACTATGA CAAGGATGGA ATTGGTGATG CCTGTTGATGA TGACGATGAC 2340
 AATGATAAAA TTCCAGATGA CAGGGACAAC TGTCCATTCC ATTACAACCC AGCTCAGTAT 2400
 GACTATGACA GAGATGATGT GGGAGACCGC TGTGACAAC GTCCCTACAA CCACAACCCA 2460
 60 GATCAGGGCAG ACACAGACAA CAATGGGAA GGAGACGCC GTGCTGCAGA CATTGATGGA 2520
 GACGGTATCC TCAATGAACG GGACAACCTGC CAGTACGTCT ACAATGTGGA CCAGAGAGAC 2580
 ACTGATATGG ATGGGGTTGG AGATCAGTGT GACAATTGCG CCTTGGAAACA CAATCCGGAT 2640
 CAGCTGGACT CTGACTCAGA CGGCAATTGGA GATACCTGTG ACAACAAATCA GGATATTGAT 2700
 GAAGATGGCC ACCAGAACAA TCTGGACAAC TGTCCTATG TGCCCAATGC CAACCAGGCT 2760
 65 GACCATGACA AAGATGGCAA GGGAGATGCC TGTGACCAAG ATGATGACAA CGATGGCATT 2820
 CCTGATGACA AGGACAACCTG CAGACTCGTG CCCAATCCCG ACCAGAACGA CTCTGACGGC 2880
 GATGGTCGAG GTGATGCCCTG CAAAGATGAT TTTGACCATG ACAGTGTGCC AGACATCGAT 2940
 GACATCTGTC CTGAGAAATGT TGACATCACT GAGACCGATT TCCGCCGATT CCAGATGATT 3000

CCTCTGGACC CCAAAGGGAC ATCCAAAAT GACCCTAATC GGGTTGTACG CCATCAGGGT 3060
 AAAGAACTCG TCCAGACTGT CAACTGTGAT CCGGACTCG CTGTAGGTTA TGATGAGTTT 3120
 AATGCTGTGG ACTTCAGTGG CACCTTCTTC ATCAACACCG AAAGGGACGA TGACTATGCT 3180
 GGATTGTCT TTGGCTACCA GTCCAGCAGC CGCTTTATG TTGTGATGTG GAAGCAAGTC 3240
 5 ACCCAGTCCT ACTGGGACAC CAACCCACG AGGGCTCAGG GATACTCGGG CCTTTCTGTG 3300
 AAAGTTGTAA ACTCCACAC AGGGCCTGGC GAGCACCTGC GGAACGCCCT GTGGCACACA 3360
 GGGAAACACCC CTGGCCAGGT GCGCACCTCG TGGCATGACC CTCGTCACAT AGGCTGGAAA 3420
 GATTTCACCG CCTACAGATG GCGCTCAGC CACAGGCCA AGACGGGTTT CATTAGAGTG 3480
 GTGATGTATC AAGGGAGAA AATCATGGCT GACTCAGGAC CCATCTATGA TAAAACCTAT 3540
 10 GCTGGTGTGTA GACTAGGGTT GTTTGTCTTC TCTCAAGAAA TGGTGTCTT CTCTGACCTG 3600
 AAATACGAAT GTAGAGATCC CTAATCATCA AATTGTTGAT TGAAAGACTG ATCATAAAC 3660
 AATGCTGGTA TTGCACCTTC TGGAACTATG GGCTTGAGAA AACCCCAAGG ATCACTTCTC 3720
 CTTGGCTTCC TTCTTTCTG TGCTTGCATC AGTGTGGACT CCTAGAACGT GCGACCTGCC 3780
 TCAAGAAAAT GCAGTTTCA AAAACAGACT CATCAGCATT CAGCCTCCAA TGAATAAGAC 3840
 15 ATCTCCAAG CATATAAACAA ATTGCTTGG TTTCTTTG AAAAAGCATC TACTTGCTTC 3900
 AGTTGGGAAG GTGCCCATTC CACTCTGCCT TTGTCACAGA GCAGGGTGT ATTGTGAGGC 3960
 CATCTCTGAG CAGTGGACTC AAAAGCATT TCAGGCATGT CAGAGAAGGG AGGACTCACT 4020
 AGAATTAGCA AACAAAACCA CCTGACATC CTCCCTCAGG AACACGGGAA GCAGAGGCCA 4080
 AAGCCTAAG GGGAGGGCAGC ATACCCGAGA CGATTGTATG AAGAAAATAT GGAGGAACGT 4140
 20 TTACATGTTG GGTACTAAGT CATTTCAGG GGATTGAAAG ACTATTGCTG GATTTCATGA 4200
 TGCTGACTGG CGTTAGCTGA TTAACCCATG TAAATAGGCA CTAAATAGA AGCAGGAAAG 4260
 GGAGACAAAG ACTGGCTTCT GGACTTCCTC CCTGATCCCC ACCCTTACTC ATCACCTTGC 4320
 AGTGGCCAGA ATTAGGAAAT CAGAATCAA CCAGTGTAAAG GCAGTGTCTG CTGCCATTGC 4380
 CTGGTCACAT TGAAATTGGT GGCTTCATTC TAGATGTAGC TTGTGCAGAT GTAGCAGGAA 4440
 25 AATAGGAAAA CCTACCATCT CAGTGAGCAC CAGCTGCCTC CCAAAGGAGG GGCAGCCGTG 4500
 CTTATATTTT TATGGTTACA ATGGCACAAA ATTATTATCA ACCTAACTAA AACATTCCCT 4560
 TTCTCTTTT TCCGTAAATT CTAGGTAGTT TTCTAATTCT CTCTTTGGA AGTATGATT 4620
 TTTTAAAGTC TTTACGATGT AAAATATTTA TTTTTACTT ATTCTGGAAG ATCTGGCTGA 4680
 AGGATTATTC ATGGAACAGG AAGAAGCGTA AAGACTATCC ATGTCATCTT TGTTGAGAGT 4740
 30 CTCGTAACCT GTAAAGATTGT AAATACAGAT TATTATTAATC CTCTGTTCTG CCTGGAATT 4800
 TAGGCTTCAT ACGGAAAGTGG TTGAGGAGCA AGTGTGAC ATTATCAGC AAATCTCTTGC 4860
 CAAGAACAGC ACAAGGAAAA TCAGTCTAAT AAGCTGCTCT GCCCCCTTGTC CTCAGAGTGG 4920
 ATGTTATGGG ATTCCCTTTT TCTCTGTTT ATCTTTCAA GTGGAATTAG TTGGTTATCC 4980
 ATTGCAAAAT GTTTAAATT GCAAAGAAAG CCATGAGGTC TTCAATACTG TTTTACCCCA 5040
 35 TCCCTGTGC ATATTTCCAG GGAGAAGGAA AGCATATACA CTTTTTCTT TCATTTTCC 5100
 AAAAGAGAAA AAAATGACAA AACGTGAAAC TTACATACAA ATATTACCTC ATTTGTTGTG 5160
 TGACTGAGTA AAGAATTTTT GGATCAAGCG GAAAGAGTTT AAGTGTCTAA CAAACTAAA 5220
 GCTACTGTAG TACCTAAAAA GTCAAGTGTG TACATAGCAT AAAAACTCTG CAGAGAAGTA 5280
 TTCCAATAA GGAAATAGCA TTGAAATGTT AAATACAATT TCTGAAAGTT ATGTTTTTT 5340
 40 TCTATCATCT GGTATACCAT TGCTTTATTT TTATAAATTA TTTCTCATT GCCATTGGAA 5400
 TAGAATATTC AGATTGTGTA GATATGCTAT TTAAATAATT TATCAGGAAA TACTGCCCTGT 5460
 AGAGTTAGTA TTTCTATTTT TATATAATGT TTGCACACTG AATTGAAGAA TTGTTGGTTT 5520
 TTTCTTTTTT TTGTTTTTTT TTTTTTTT TTTTTTGTG CTTTTGACCT CCCATTTTA 5580
 CTATTTGCCA ATACCTTTT CTAGGAATGT GCTTTTTT GTACACATT TTATCCATT 5640
 45 TACATTCTAA AGCAGTGTAA GTTGTATATT ACTGTTCTT ATGTACAAGG AACAAACAATA 5700
 ATCATATGG AAATTTATAT TT

AA9 DNA sequence

Gene name: LIM homeobox protein cofactor (CLIM-1)

Unigene number: Hs.4980

Probeset Accession #: F13782

Nucleic Acid Accession #: AF047337

Coding sequence: 110-1231 (predicted start/stop codons underlined)

50 Elmo 55
 GTGAGCGTGT GTGCGTGCCT CTACTTTGTA CTGGGAAGAA CACAGCCCAT GTGCTCTGCA 60
 TGGACGTTAC TGATACTCTG TTTAGCTTGA TTTTCGAAAAA GCAGGGCAAGA TGTCCAGCAC 120
 ACCACATGAC CCCTCTTATT CTTCTCCTT CGGCCCATTT TATAGGAGGC ATACACCATA 180
 60 CATGGTACAG CCAGAGTACC GAATCTATGA GATGAACAAG AGACTGCA AT CTCGCACAGA 240
 GGATAGTGC AACCTCTGGT GGGACGCCCT TGCCACTGAA TTTTTTG AG ATGACGCCAC 300
 ATTAACCCTT TCATTTGTT TGAAGATGG ACCAAAGCGA TACACTATCG GCAGGACCT 360
 CATCCCCCGT TACTTAGCA CTGTGTTGAGA AGGAGGGGTG ACCGACCTGT ATTACATTCT 420
 CAAACACTCG AAAGAGTCAT ACCACAACTC ATCCCATACG GTGACTGCG ACCAGTGTAC 480
 CATGGTACCC CAGCACGGGA AGCCCATGTT TACCAAGGTG TGACAGAAAG GCAGACTGAT 540
 65 CTTGGAGTTC ACCTTGTGAT ATCTCATGAG AATCAAACAA TGGCACTTTA CCATTAGACA 600
 ATACCGAGAG TTAGTCCCGA GAAAGCATCCT AGCCATGCA GCACAAAGATC CTCAGGTCC 660
 GGATCAGCTG TCCAAAACAA TCACCAAGGAT GGGCTAACAA AACTTCACCC TCAACTACCT 720
 CAGGTTGTGT GTAATATTGG AGCCAATGCA GGAAGTGTG TCGAGACATA AAACCTACAA 780

CCTCAGTCCC CGAGACTGCC TGAAGACCTG CTTGTTTCAG AAGTGGCAGA GGATGGTGGC 840
 TCCGCCAGCA GAACCCACAA GGCAACCAAC AACCAAACGG AGAAAAAGGA AAAATTCCAC 900
 CAGCAGCACT TCCAACAGCA GCGCTGGAA CAATGCAAAC AGCACTGGCA GCAAGAAGAA 960
 GACCACAGCT GCAAACCTGA GTCTGTCCAG TCAGGTACCT GATGTGATGG TGGTAGGAGA 1020
 5 GCCAACACTG ATGGGAGGTG AGTTTGGGGA CGAGGACGAA AGGCTAATCA CTAGATTAGA 1080
 AACACGCAA TATGATGCGG CCAACGGCAT GGACGACGAG GAGGACTTCA ACAATTCAACC 1140
 CGCGCTGGGG AACAAACAGCC CGTGGAACAG TAAACCTCCC GCCACTCAAG AGACCAAATC 1200
 AGAAAACCCC CCACCCCGG CTTCCCAAAT AGATGATCGG CACAGAATC CACTGTCAAT 1260
 AGGCCCGTGG GTGATCATTAA CAATTGCAAA TCTTTACTTA CAGGAGAGGA AACAGAAGAG 1320
 10 ATAAAAAACTT TTCCATGCCA ATATCTATTG CTAAACCCACA ATGATCTGAT TTTCTTCTT 1380
 CTTCTTTTT TTCTAATTGA GAGGATTATT CCCAGTAAGC TTCCATGACC CTTTCTGGA 1440
 GGCTTCACA GTTAATACAG ATACTGGCAC TGATTGTAAT TAAAATGAGA GAAAACCTTA 1500
 GGCATCTTC TGGCACGGTT TTAACAACGT GTTTGTGTTG AATTTCCTT TTATGCATCA 1560
 AACGAAGGCC ATATTGCTCA TAAATGCTCA GTGCTCAGGA TCTCATTAAAT ATGCCGAACC 1620
 15 TAACTACAGA TGACTTTTTA ATATTGAAA ATATTTCTG CTTTTTGACT TGCACTGAG 1680
 AGTTTCTTGT TTCAAGTAAA AAAGAAAAGA CAAAAAAATC AGCTTTGGAA AGTAATTAA 1740
 ATGTACCTTA TTTTTTTTTT CTTTATGTTT TCTTTCATTG GGCAACAGCT AAGAGGGCC 1800
 AGCAAGGTAA TTTATGTTG AGCTGATGTC AATTGGTTCT TGCTTGAGT CGACTCAATT 1860
 TAGCCCAAGT GCTGAAACAA GAAATGTCAT TTTTTTCATC AAAGACACCA GGGCAGATT 1920
 20 TTAAGTAAAG AAAGACATT GGACCCCTAA GAATTATGTC ATTGTAAGG TTGCTGTTGA 1980
 TCCAAATATT TTCAAGGCCAT GTAATCCATT GGTGTTGTC GCAGTTAAAT AAACCTGAAC 2040
 CTTGTGTTGTT TTTCTAATTG TACCTGAGTT GACCATCCTT TCTTTTATA GTATATTCT 2100
 TGATGATAT TTTGTAAGC TCTCACCTGG TTCTTTTATG GGGACTTTTC GTTTTTGGC 2160
 AACTCCAGTG TATTATGAG AAACTTTATA AGAGAATTAA TTTTCCATT TGCATATTAA 2220
 25 TATGTTCTC CACACATGTA AAGGCACAGT GGCTCCGTG GTTAAAAAAC AGCTGTATTT 2280
 TATGTATGCT TTACTGATAA GTGTGCCAAT AATAAACTGT GTTAATGACC

AAE1 DNA sequence

Gene name: guanine nucleotide binding protein 11
 Unigene number: Hs.83281
 Probeset Accession #: U31384
 Nucleic Acid Accession #: NM_004126.1
 Coding sequence: 108-329 (predicted start/stop codons underlined)

30 GGCACGAGCT CGTGCCGGCC TTCAAGTTGTT TCGGGACGCG CCGAGCTTCG CCGCTCTTCC 60
 AGCGGCTCCG CTGCCAGAGC TAGCCCGAGC CCGGTTCTGG GGGAAAATG CCTGCCCTTC 120
 ACATCGAAGA TTTGCCAGAG AAGGAAAAC TGAAAATGGA AGTTGAGCAG CTTCGCAAAG 180
 40 AAGTGAAGTT GCAGAGACAA CAAGTGTCTA AATGTTCTGA AGAAATAAAAG AACTATATTG 240
 AAAAACGTTG TGGAGAGGAT CCTCTAGTAA AGGGAAATTCC AGAAGACAAG AACCCCTTA 300
 AAGAAAAGG CAGCTGTT ATTTCATAAA TAACTGGGA GAAACTGCAT CCTAAGTGG 360
 AGAACTAGTT TGTTTAGTT TTCCAGATA AAACCAACAT GCTTTTAAG GAAGGAAGAA 420
 TGAAATTAAA AGGAGACTT CTTAAGCACC ATATAGATAG GTTATGTT AAAAGCATAT 480
 GTGCTACTCA TCTTGCTCA CTATGCAGTC TTTTTAAGA GAGCAGAGAG TATCAGATGT 540
 45 ACAATTATGG AAATAAGAAC ATTACTTGAG CATGACACTT CTTTCAGTAT ATTGCTTGAT 600
 GCTTCAAATA AAGTTTGTC TT

AAE2 DNA sequence

Gene name: Transcription factor 4 (immunoglobulin transcription factor 2) (ITF-2)
 (SL3-3 Enhancer factor 2) (SEF-2)
 Unigene number: Hs.289068
 Probeset Accession #: M74719
 Nucleic Acid Accession #: NM_001199.1
 Coding sequence: 200-2203 (predicted start/stop codons underlined)

50 CGGGGGGATC TTGGCTGTGT GTCTGCGGAT CTGTAGTGGC GGCGGCGGCG GCGGCGGGCG 60
 GGAGGCAGCA GGCAGGGAG CGGGCGCAGG AGCAGGGCGC GGCGGTGGCG GCGGCGGGTTA 120
 GACATGAACG CCGCCTCGGC GCCGGCGGTG CACGGAGAGC CCTCTCTCGC GCGCGGGCGG 180
 60 TTTGTGTTGAT TTTGCTAAAAA TGATCACCAC ACAGCGAATG GTCGCTTAG GGACGGACAA 240
 AGAGCTGAGT GATTACTGG ATTTCAGTGC GATGTTTCA CCTCCTGTGA GCAGTGGGAA 300
 AAATGGACCA ACTTCTTGG CAAGTGGACA TTTTACTGGC TCAAATGTAG AAGACAGAAG 360
 TAGCTCAGGG TCCCTGGGGAA ATGGAGGACA TCCAAGGCCG TCCAGGAACAT ATGGAGATGG 420
 GACTCCCTAT GACCACATGA CCAGCAGGGG CCTTGGGTCA CATGACAATC TCTCTCCACC 480
 65 TTTTGTCAAT TCCAGAATAC AAAGTAAAAC AGAAAGGGGC TCATACTCAT CTTATGGGAG 540
 AGAATCAAAC TTACAGGGTT GCCACCCAGGAG GAGTCTCTT GGAGGTGACA TGGATATGGG 600
 CAACCCAGGA ACCCTTCGC CCACCAAACCG TGGTTCCAG TACTATCAGT ATTCTAGCAA 660
 TAATCCCCGA AGGAGGCCCTC TTCACAGTAG TGCCATGGAG GTACAGACAA AGAAAGTTCG 720

	AAAAGTTCCCT CCAGGTTTGC CATCTTCAGT CTATGCTCCA TCAGCAAGCA CTGCCGACTA	780
	CAATAGGGAC TCGCCAGGCT ATCCTTCCTC CAAACCAGCA ACCAGCACTT TCCCTAGCTC	840
	CTTCTTCATG CAAGATGGCC ATCACAGCAG TGACCCCTGG AGCTCCTCCA GTGGGATGAA	900
	TCAGCCTGGC TATGCAGGAA TGTGGGCAA CTCTTCTCAT ATTCCACAGT CCAGCAGCTA	960
5	CTGTAGCCTG CATCCACATG AACGTTTGTAG CTATCCATCA CACTCCTCAG CAGACATCAA	1020
	TTCCAGTCTT CCTCCGATGT CCACTTTCCA TCGTAGTGGT ACAAAACATT ACAGCACCTC	1080
	TTCCCTGACG CCTCCTGCCA ACGGGACAGA CAGTATAATG GCAAATAGAG GAAGCGGGC	1140
	AGCCGGCAGC TCCCAGACTG GAGATGCTCT GGGGAAAGCA CTTGCTTCGA TCTATTCTCC	1200
	AGATCACACT AACAAACAGCT TTTCATCAA CCCTTCAACT CCTGTTGGCT CTCCTCCATC	1260
10	TCTCTCAGCA GGCACAGCTG TTTGGTCTAG AAATGGAGGA CAGGCCTCAT CGTCTCCTAA	1320
	TTATGAAGGA CCCCTAACACT CTTGCAAAG CCGAATTGAA GATCGTTAG AAAGACTGGA	1380
	TGATGCTATT CATGTTCTCC GGAACCATGC AGTGGGCCCA TCCACAGCTA TGCCCTGGTGG	1440
	TCATGGGAC ATGCATGGAA TCATTGGACC TTCTCATAAT GGAGCCATGG GTGGTCTGGG	1500
	CTCAGGGTAT GGAACCGGCC TTCTTCAGC CAACAGACAT TCACTCATGG TGGGGACCCA	1560
15	TCGTGAAGAT GGCCTGGCCC TGAGAGGCAG CCATTCTCTT CTGCCAAACC AGGTTCCGGT	1620
	TCCACAGCTT CCTGTCCAGT CTGGCACTTC CCCTGACCTG AACCCACCCC AGGACCCCTA	1680
	CAGAGGCATG CCACCAAGGAC TACAGGGCA GAGTGTCTCC TCTGGCAGCT CTGAGATCAA	1740
	ATCCGATGAC GAGGGTGTAG AGAACCTGCA AGACACGAAA TCTTCGGAGG ACAAGAAATT	1800
	AGATGACGAC AAGAAGGATA TCAAAATCAAT TACTAGCAAT AATGACGATG AGGACCTGAC	1860
20	ACCAGAGCAG AAGGCAGAGC GTGAGAGGA GCGGAGGATG GCGAACAAATG CCCGAGAGCG	1920
	TCTGCGGGTC CGTGACATCA ACGAGGCTT CAAAGAGCTC GGCGCATGG TGCAGCTCCA	1980
	CCTCAAGAGT GACAAGCCCC AGACCAAGCT CCTGATCCTC CACCAGGGCGG TGGCGTCAT	2040
	CCTCAGTCTG GAGCAGCAAG TCCGAGAAG GAATCTGAAT CCGAAAGCTG CGTGTCTGAA	2100
	AAGAAGGGAG GAAGAGAAGG TGTCTCGGA GCCTCCCCCT CTCTCCTTGG CCGGCCCACA	2160
25	CCCTGGAATG GGAGACGCAT CGAACATCACAT GGGACAGATG <u>AAAAGGGTC</u> CAAGTTGCCA	2220
	CATTGCTTCA TTAAAACAAG AGACCACTTC CTTAACAGCT GTATTATCTT AAACCCACAT	2280
	AAACACTTCT CCTTAACCCC CATTGGTAA ATATAAGACA AGTCTGAGTA GTTATGAATC	2340
	GCAGACGCAA GAGGTTTCAG CATTCCAAAT TATCAAAAAA CAGAAAAACA AAAAAAAAGAA	2400
	AGAAAAAAAGT GCAACTTGAG GGACGACTTT CTTAACATA TCATTGAGAA TGTGCAAAGC	2460
30	AGTATGTACA GGCTGAGACA CAGCCCAGAG ACTGAACGGC	

AAE4 DNA sequence

Gene name: phosphatidylcholine 2-acylhydrolase

Unigene number: HS_211587

Probeset Accession #: M68874

Nucleic Acid Accession #: M68874

Coding sequence: 139-2388 (predicted start/stop codons underlined)

40	GAATTCTCCG GAGCTGAAAA AGGATCCTGA CTGAAAGCTA GAGGCATTGA GGAGCCTGAA	60
	GATTCTCAGG TTTAAAGAC GCTAGAGTGC CAAAGAACAC TTGAAAGTGT GAAAACATT	120
	CCTGTAATTG AAACCAAAAT GTCATTTATA GATCCTTAC AGCACATTAT AGTGGAGCAC	180
	CAGTATTCCC ACAAGTTAC GGTAGTGGTG TTACGTGCCA CCAAAGTGC AAAGGGGCC	240
	TTTGGTACA TGCTTGATAC TCCAGATCCC TATGTGAAC TTTTATCTC TACAACCCCT	300
45	GACAGCAGGA AGAGAACAAAG ACATTTCAAT AATGACATAA ACCCTGTGTG GAATGAGACC	360
	TTTGAATTAA TTTGGATCC TAATCAGGAA AATGTTTGG AGATTACGTT AATGGATGCC	420
	AATTATGTCA TGGATGAAAC TCTAGGGACA GCAACATTAA CTGTATCTTC TATGAAGGTG	480
	GGAGAAAAGA AAGAAGTTCC TTTTATTTTC AACCAAGTCA CTGAAATGGT TCTAGAAATG	540
	TCTCTTGAAG TTTGCTCATG CCCAGACCTA CGATTTAGTA TGGCTCTGTG TGATCAGGAG	600
50	AAAGACTTTCA GACAACAGAG AAAAGAACAC ATAAGGGAGA GCATGAAGAA ACTCTTGGGT	660
	CCAAAGAATA GTGAAGGATT GCATTCTGCA CGTGATGTGC CTGTGGTAGC CATATTGGGT	720
	TCAGGTGGGG GTTCCGAGC CATGGTGGGA TTCTCTGGT TGATGAAGGC ATTATACGAA	780
	TCAGGAATTG TGGATTGTGC TACCTACGTT GCTGGTCTTT CTGGCTCCAC CTGGTATATG	840
	TCAACCTTGT ATTCTCACCC TGATTTCCA GAGAAAAGGC CAGAGGAGAT TAATGAAGAA	900
55	CTAATGAAAA ATGTTAGCCA CAATCCCTT TTACTTCTCA CACCAAGAA AGTTAAAAGA	960
	TATGTTGAGT CTTTATGGAA GAAGAAAAGC TCTGGACAAAC CTGTCACCTT TACTGACATC	1020
	TTTGGGATGT TAATAGGAGA AACACTAATT CATAATAGAA TGAATACTAC TCTGAGCAGT	1080
	TTGAAGGAAA AAGTTAATAC TGCAACATGC CCTTTACCTC TTTTACACCTG TCTTCATGTC	1140
60	AAACCTGACG TTTCAGAGCT GATGTTGCA GATTGGGTT AATTAGTCC ATACGAAATT	1200
	GGCATGGCTA AATGGGTAC TTTTATGGCT CCCGACTTAT TTGGAAGCAA ATTGTTTATG	1260
	GGAACAGTCG TTAAGAAGTA TGAAGAAAAC CCCTTGCACT TCTTAATGGG TGTCTGGGCC	1320
	AGTGCCTTTT CCATATTGTT CAACAGAGTT TTGGGCGTTT CTGGTTCAAA AAGCAGAGGC	1380
	TCCACAATGG AGGAAGAATT AGAAAATATT ACCACAAAGC ATATTGTGAG TAATGATAGC	1440
65	TCGGACAGTG ATGATGAATC ACAGCAACCC AAAGGCAGTCG AAAATGAAGA TGCTGGAAGT	1500
	GACTATCAAATGATAAGCAAGTTGG ATTCACTCGTA TGATAATGGC CTTGGTGAGT	1560
	GATTGAGCTT TATTCAATAC CAGAGAAGGA CGTGCTGGGA AGTACACAA CTTCATGCTG	1620
	GGCTTGAATC TCAATACATC TTATCCACTG TCTCCTTGA GTGACTTTGC CACACAGGC	1680
	TCCTTTGATG ATGATGAACT GGATGCAGCT GTAGCAGATC CTGATGAATT TGAGCGAATA	1740

TATGAGCCTC TGGATGTCAA AAGTAAAAAG ATTCATGTAG TGGACAGTGG GTCACATTT 1800
 AACCTGCCGT ATCCCTTGAT ACTGAGACCT CAGAGAGGGG TTGATCTCAT AATCTCCTT 1860
 GACTTTCTG CAAGGCCAAG TGACTCTAGT CCTCCGTTCA AGGAACCTCT ACCTGCAGAA 1920
 AAGTGGGCTA AAATGAACAA GCTCCCCTT CCAAAGATTG ATCCTTATGT GTTGATCGG 1980
 5 GAAGGGCTGA AGGAGTGTCA TGTCTTTAAA CCCAAGAAC CTGATATGGA GAAAGATTGC 2040
 CCAACCATCA TCCACTTGT TCTGGCAAC ATCAACTCA GAAAGTACAA GGCTCCAGGT 2100
 GTTCCAAGGG AACTGAGGA AGAGAAAGA ATCGCTGACT TTGATATTT TGATGACCA 2160
 GAATCACCAT TTTCAACCTT CAATTTCAA TATCCAAATC AAGCATTCAA AAGACTACAT 2220
 GATCTTATGC ACTTCAATAC TCTGAACAAAC ATTGATGTGA TAAAAGAAGC CATGGITGAA 2280
 10 AGCATTGAAT ATAGAAGACA GAATCCATCT CGTTGCTCTG TTTCCCTTAG TAATGTTGAG 2340
 GCAAGAAGAT TTTTCAACAA GGAGTTTCTA AGTAAACCCA AAGCATAGTT CATGTAUTGG 2400
 AAATGGCAGC AGTTTCTGAT GCTGAGGGAG TTTGCAATCC CATGACAAC GGATTTAAAAA 2460
 GTACAGTACA GATAGTCGTA CTGATCATGA GAGACTGGCT GATACTCAAA GTTGCAGTTA 2520
 CTTAGCTGCA TGAGAATAAT ACTATTATAA GTTAGGTGAC AAATGATGTT GATTATGTAA 2580
 15 GGATATACTT AGCTACATTT TCAGTCAGTA TGAACCTCCT GATACAAATG TAGGGATATA 2640
 TACTGTATTT TTAAACATTT CTCACCAACT TTCTTATGTG TGTCTTTTT AAAAATTTTT 2700
 TTTCTTTAA AATATTAAAC AGTTCAATCT CAATAAGACC TCGCATTATG TATGAATGTT 2760
 ATTCACTGAC TAGATTATT CATACCATGA GACAACACTA TTTTATTTA TATATGCATA 2820
 TATATACATA CATGAAATAA ATACATCAAT ATAAAAATAA AAAAAAACGG AATTC

ACA1 DNA sequence

Gene name: tissue factor pathway inhibitor 2 (TFPI2, placental protein 5 (PP5)

Unigene number: Hs.78045

Probeset Accession #: D29992

Nucleic Acid Accession #: D29992.1

Coding sequence: 57-764 (predicted start/stop codons underlined)

GCCGCCAGCG GCTTTCTCGG ACGCCTTGCC CAGCGGGCCG CCCGACCCCCC TGCACCATGG 60
 ACCCCGCTCG CCCCTGGGG CTGTCGATTC TGCTGCTTTT CCTGACGGAG GCTGCACCTGG 120
 GCGATGCTGC TCAGGAGCCA ACAGGAAATA ACGCGGAGAT CTGTCCTCTG CCCCTAGACT 180
 ACGGACCCCTG CCGGGGCTCA CTTCTCCGTT ACTACTACGA CAGGTACACG CAGAGCTGCC 240
 GCCAGTCCCT GTACGGGGC ACGCCAACAA TTCTACACC TGGGAGGCTT 300
 GCGACGATGC TTGCTGGAGG ATAGAAAAAG TTCCCAAAGT TTGCCGGCTG CAAGTGAGTG 360
 35 TGGACGACCA GTGTGAGGGG TCCACAGAAA AGTATTCTT TAATCTAAGT TCCATGACAT 420
 GTGAAAATT CTTTTCCGTT GGGTGTCAAC GGAACCGGAT TGAGAACAGG TTTCCAGATG 480
 AAGCTACTTG TATGGGCTTC TGCGCACCAA AGAAAATTCC ATCATTTCG TACAGTCCAA 540
 AAGATGAGGG ACTGTGCTCT GCCAATGTGA CTCGCTATTA TTTAATCCA AGATACAGAA 600
 CCTGTGATGC TTTCACCTAT ACTGGCTGTG GAGGGAAATGA CAATAACTTT GTTAGCAGGG 660
 40 AGGATTGCAA ACGTGATGT GCAAAAGCTT TGAAAAGAA AAAGAACATG CCAAAGCTTC 720
 GCTTTGCCAG TAGAATCCGG AAAATTCGGA AGAACCAATT TAAACATTC TTAATATGTC 780
 ATCTGTTTG TCTTTATGGC TTATTCGCT TTATGGTTG ATCTGAAGAA TAATATGACA 840
 GCATGAGGAA ACAAACTATT GGTGATTTAT TCACCAAGTT TTATAATAC AAGTCACCTT 900
 TTCAAAATT TGGATTTTT TATATATAAC TAGCTGCTAT TCAATGTGA GTCTACCATT 960
 45 TTTAATTTAT GGTTCAACTG TTGAGAC GAATTCTTGC AATGCATAAG ATATAAAAGC 1020
 AAATATGACT CACTCATTTC TTGGGGTCGT ATTCTGATT TCAGAACAGG ATCATAACTG 1080
 AAACAAACATA AGACAAATATA ATCATGTGCT TTTAACATAT TTGAGAATAA AAAGGACTAG 1140
 CC

ACB8 DNA sequence

Gene name: myosin X

Unigene number: Hs.61638

Probeset Accession #: N77151

Nucleic Acid Accession #: NM_012334

Coding sequence: 223-6399 (predicted start/stop codons underlined)

GAGACAAAGG CTGCCGTCGG GACGGGCGAG TTAGGGACTT GGGTTGGGC GAACAAAAGG 60
 TGAGAAGGAC AAGAAGGGAC CGGGCGATGG CAGC GGGGA GCCCCGCGGG CGCGCGTCCT 120
 60 CGGGAGTGGC GCGTGCACAC GCATGGTTTC CCCAACCG CGGCGGGCGCT GACTTCCGCG 180
 AGTCGGAGCG GCACTCGGCG AGTCCGGAC TGCGCTGGAA CAATGGATAA CTTCTTCACC 240
 GAGGGACAC GGGTCTGGCT GAGAGAAAAT GGCCAGCATT TTCAAGTAC TGAAATTCC 300
 TGTGCAGAAG GCATCGCTGT CTTCGGACA GACTATGGTC AGGTATTAC TTACAAGCAG 360
 AGCACAATTAA CCCACCAAGAA GGTGACTGCT ATGCACCCCCA CGAACGAGGA GGGCGTGGAT 420
 65 GACATGGCGT CCTTGACACA GCTCCATGGC GGCTCCATCA TGATAACTT ATTCCAGCGG 480
 TATAAGAGAA ATCAAATATA TACCTACATC GGCTCCATCC TGCCCTCCGT GAACCCCTAC 540
 CAGCCCCATCG CGGGCTGTA CGAGCCTGCC ACCATGGAGC AGTACAGCCG GCGCCACCTG 600
 GGGCAGCTGC CCCCGCACAT CTTGCCATC GCCAACGAGT GCTACCGCTG CCTGTGGAAG 660

	CGCTACGACA ACCAGTCAT CCTCATCAGT GGTGAAAGTG GGGCAGGTAA AACCGAAAGC	720
	ACTAAATTGA TCCTCAAGTT TCTGTCAGTC ATCAGTCAC AGTCTTGGAA ATTGTCCCTA	780
	AAGGAGAAGA CATCCCTGTGT TGAACGAGCT ATTCTTGAAA GCAGCCCCAT CATGGAAGCT	840
	TTCCGCAATG CGAAGACCGT GTACAACAAAC AACTCTAGTC GCTTTGGGAA GTTTGTTCA	900
5	CTGAACATCT GTCAGAAAGG AAATATTCAG GGCAGGGAAA TTGTAGATTA TTTATTAGAA	960
	AAAAACCGAG TAGTAAAGCA AAATCCCGG GAAAGGAATT ATCACATATT TTATGCACTG	1020
	CTGGCAGGGC TGGAACATGA AGAAAAGGAA GAATTTTATT TATCTACGCC AGAAAACATAC	1080
	CACTACTGTA ATCAGTCTGG ATGTGTGAA GACAAGACAA TCAGTGCACCA GGAATCCCTT	1140
	AGGGAAGTTA TTACGGCAAT GGACGTGATG CAGTTCAGCA AGGAGGAAGT TCGGGAAAGTG	1200
10	TCGAGGCTGC TTGCTGGTAT ACTGCATCTT GGGAAACATAG AATTATCAC TGCTGGTGG	1260
	GCACAGGTTT CCTTCAAAAC AGCTTTGGC AGATCTGCGG AGTTACTTGG GCTGGACCCA	1320
	ACACAGCTCA CAGATGCTT GACCCAGAGA TCAATGTTCC TCAGGGGAGA AGAGATCC	1380
	ACGCCCTCA ATGTTCAACA GGCAGTAGAC AGCAGGGACT CCCTGGCCAT GGCTCTGTAT	1440
	GGGTGCTGCT TTGAGTGGGT AATCAAGAAG ATCAACAGCA GGATCAAAGG CAATGAGGAC	1500
15	TTCAAGTCTA TTGGCATCCT CGACATCTTT GGATTGAAA ACTTTGAGGT TAATCACTT	1560
	GAACAGTTCA ATATAAACTA TGCAAACGAG AAACCTCAGG AGTACTTCAA CAAGCATATT	1620
	TTTCTTTAG ACAACTAGA ATATAGCCGG GAAGGATTAG TGTGGAGA TATTGACTGG	1680
	ATAGACAATG GAGAATGCTT GGACTTGATT GAGAAGAAC TTGGCCTTAC AGCCCTTATC	1740
	AATGAAGAAA GCCATTTC TCAAGGCCACA GACAGCACCT TATTGGAGAA GCTACACAGT	1800
20	CAGCATGCGA ATAACCACTT TTATGTGAAG CCCAGAGTTG CAGTTAACAA TTTTGGAGTG	1860
	AAGCACTATG CTGGAGAGGT GCAATATGAT GTCCGAGGTA TCTTGGAGAA GAACAGAGAT	1920
	ACATTCGAG ATGACCTTCT CAATTGCTA AGAGAAAGCC GATTGACTT TATCTACGAT	1980
	CTTTTGAAAC ATGTTCAAG CCGCAACAAAC CAGGATACCT TGAAATGTGG AAGCAAACAT	2040
25	CGGGCGCTA CAGTCAGCTC ACACTTCAAG GACTCACTGC ATTCTTAAT GGCAACGCTA	2100
	AGCTCCTCTA ATCCTTCTT TGTCGCTGT ATCAAGCCAA ACATGCAGAA GATGCCAGAC	2160
	CAGTTGACC AGGCGGGTGT GCTGAACCAG CTGCGGTACT CAGGGATGCT GGAGACTGTG	2220
	AGAATCCGCA AAGCTGGTA TCGGGTCCGA AGACCCTTC AGGACTTTA CAAAAGGTAT	2280
	AAAGTGTGA TGAGGAATCT GGCTCTGCCT GAGGACGTCC GAGGAAAGTG CACGAGCTG	2340
	CTGCAGCTCT ATGATGCCTC CAACAGCGAG TGGCAGCTGG GGAAGACCAA GGTCTTTCTT	2400
30	CGAGAACCTT TGGAACAGAA ACTGGAGAG CCGAGGGAG AGGAAGTGG CCACGCGGCC	2460
	ATGGTGATTC GGGCCATGT CTTGGGCTTC TTAGCAGAA AACAAATACAG AAAGGTCTT	2520
	TATTGTGTGG TGATAATACA GAAGAAATTAC AGAGCATTC TTCTGAGGAG GAGATTTTG	2580
	CACCTGAAAA AGGCAGCCAT AGTTTCCAG AAGCAACTCA GAGGTCAGAT TGCTCGGAGA	2640
	GTTTACAGAC AATTGCTGGC AGAGAAAAGG GAGCAAGAAG AAAAGAAGAA ACAGGAAGAG	2700
35	GAAGAAAAGA AGAAACGGGA GGAAGAAGAA AGAGAAAGAG AGAGAGAGCG AAGAGAAGCC	2760
	GAGCTCCCGC CCCAGCAGGA AGAAGAAACG AGGAAGCAGC AAGAACTCGA AGCCTTGAG	2820
	AAGAGCCAGA AGGAAGCTGA ACTGACCCGT GAACTGGAGA AACAGAAGGA AAATAAGCAG	2880
	GTGGAAGAGA TCCTCCGTCT GGAGAAAGAA ATCGAGGACC TGCAAGCGCAT GAAGGAGCAG	2940
	CAGGAGCTGT CGCTGACCGA GGCTTCCCTG CAGAAGCTGC AGGAGCGGCC GGACCAGGAG	3000
40	CTCCGCAGGC TGGAGGAGGA AGCGTCAGG GCGGCCCAAG AGTCCCTCGA GTCCCCTCAAT	3060
	TTCGACGAGA TCGACGAGTG TGTCCGGAT ATCGAGCGGT CCCCTGCTGGT GGGAAAGCGAA	3120
	TTTCCAGCG AGCTGGCTGA GAGCGCATGC GAGGAGAAC CCAACTTCAA CTTCAGCCAG	3180
	CCCTACCCAG AGGAGGGAGT CGATGAGGGC TTCAAGGCG AGCACGACGAC CTTCAAGGAC	3240
	TCCCCCAACC CCAGCGAGCA CGGCAACTCA GACCAGCGAA CAAGTGGCAT CCGGACCAAGC	3300
45	GATGACTCTT CAGAGGAGGA CCCATACATG AACGACACGG TGGTCCCCAC CAGCCCCAGT	3360
	GCGGACAGCA CGGTGCTGCT CGCCCCATCA GTGCAGGACT CGGGAGCCT ACACAACCTC	3420
	TCCAGCGGCC AGTCCACCTA CTGCATGCC CAGAACCTG GGGACTTGCC CTCCCCAGAC	3480
	GGCGACTACAG ACTACGACCA GGATGACTAT GAGGACGGTG CCATCACTTC CGGCAGCAGC	3540
	GTGACCTTCT CCAACTCTA CGGCAGCCAG TGGTCCCCCG ACTACCGCTG CTCTGTGGG	3600
50	ACCTACAACA GCTCGGGTGC CTACCGGTTG AGCTCTGAGG GGGCGCAGTC CTCGTTTGAA	3660
	GATAGTGAAG AGGACTTTGA TTCCAGGTTT GATACAGATG ATGAGCTTC ATACCGGGGT	3720
	GACTCTGTGT ACAGCTGTGT CACTCTGCCG TATTTCACCA GCTTTCTGTA CATGAAAGGT	3780
	GGCCTGTGATG ACTCTTGAA AGCCCGCTGG TGCGTCTCA AGGATGAAAC CTTCTTGTTGG	3840
	TTCCGCTCCA AGCAGGAGGC CCTCAAGCAA GGCTGGCTCC ACAAAAAAAGG GGGGGCTCC	3900
55	TCCACGCTGT CCAGGAGAAA TTGGAAGAAG CGCTGGTTG TCCCTCGCCA GTCCAAGCTG	3960
	ATGTACTTTG AAAACGACAG CGAGGAGAAG CTCAAGGGCA CCGTAGAAGT GCGAACGGCA	4020
	AAAGAGATCA TAGATAACAC CACCAAGGGAG AATGGGATCG ACATCATTAT GGCGGATAGG	4080
	ACTTTCCACC TGATTGCGA GTCCCCAGAA GATGCCAGCC AGTGGTTCAG CGTGTGAGT	4140
	CAGGTCCACCG CGTCCACCGA CCAGGAGATC CAGGAGATGC ATGATGAGCA GGGAAACCCA	4200
60	CAGAATGCTG TGGGCACCTT GGATGTGGGG CTGATTGATT CTGTTGTCAG CTCGACAGC	4260
	CCTGTAGAC CCAACTCGTT TGTGATCATC ACGGCCAACC GGGTGTGCA CTGCAACGCC	4320
	GACACGCCGG AGGAGATGCA CCACTGGATA ACCCTGCTGC AGAGGTCCAA AGGGGACACC	4380
	AGAGTGGAGG GCCAGGAATT CATCGTGAGA GGATGGTTGC ACAAAGAGGT GAAGAACAGT	4440
	CCGAAGATGT CTTCACTGAA ACTGAAGAAA CGGTGGTTG TACTCACCA CAATTCCCTG	4500
65	GATTACTACA AGAGTTCAGA GAAGAACGCG CTCAAACCTGG GGACCCCTGGT CCTCAACAGC	4560
	CTCTGCTCTG CGTCCCCCCC AGATGAGAAG ATATTCAAAG AGACAGGCTA CTGGAACGTC	4620
	ACCGTGTACG GGCGCAAGCA CTGTTACCGG CTCTACACCA AGCTGCTCAA CGAGGCCACC	4680
	CGGTGGTCCA GTGCCATTCA AACAGTGACT GACACCAAGG CCCCGATCGA CACCCCCACC	4740

5	CAGCAGCTGA TTCAAGATAT CAAGGAGAAC TGCCTGAAC CGGATGTGGT GGAACAGATT	4800
	TACAAGCGGA ACCCGATCCT TCGATACACC CATCACCCCT TGCACTCCCC GCTCCTGCC	4860
	CTTCCGTATG GGGACATAAA TCTCAACTTG CTCAAAGACA AAGGCTATAC CACCCCTTCAG	4920
	GATGAGGCCA TCAAGATATT CAATTCCCTG CAGCAACTGG AGTCCATGTC TGACCCAATT	4980
5	CCAATAATCC AGGGCATCCT ACAGACAGGG CATGACCTGC GACCTCTGCG GGACGAGCTG	5040
	TACTGCCAGC TTATCAAACA GACCAACAA GTGCCCCACC CGGGCAGTGT GGGCAACCTG	5100
	TACAGCTGGC AGATCCTGAC ATGCCCTGAGC TGCACCTTCC TGCCGAGTC AGGGATTCTC	5160
	AAGTATCTCA AGTTCATCTC GAAAAGGATA CGGGAACAGT TTCCAGGAAC CGAGATGGAA	5220
10	AAATACGCTC TCTTCACTTA CGAATCTCTT AAGAAAACCA AATGCCGAGA GTTGTGCCT	5280
	TCCCAGATG AAATAGAAGC TCTGATCCAC AGGCAGGAAA TGACATCCAC GGTCTATTGC	5340
	CATGGCGGCC GCTCTGCAA GATCACCAC AACTCCCACA CCACGTGCTGG GGAGGTGGTG	5400
	GAGAAGCTGA TCCGAGGCCT GGCATGGAG GACAGCAGGA ACATGTTGC TTTGTTGAA	5460
	TACAACGGCC ACGTCGACAA AGCCATTGAA AGTCGAACCG TCGTAGCTGA TGTCTTAGCC	5520
15	AAGTTTGAAA AGCTGGCTGC CACATCCGAG GTTGGGACCG TGCCATGGAA ATTCTACTTC	5580
	AAACTTTACT GCTTCCTGGA CACAGACAAAC GTGCCAAAG ACAGTGTGGA GTTGCATT	5640
	ATGTTTGAAC AGGCCACGA AGCGGTTATC CATGGCCACC ATCCAGCCCC GGAAGAAAAC	5700
	CTCCAGGTTC TTGCTGCCCT GCGACTCCAG TATCTGAGG GGGATTATAC TCTGCACCGT	5760
	GCCATCCCAC CTCTCGAAGA GTTTTATTCC CTGAGAGAC TCAAGGCCCG CATCAGCCAG	5820
20	TCAACCAAAA CTTTACCCCC TTGTAACCGG CTGGAGAGA GGGCGACGAG CGTCCCTAGAG	5880
	GGGACCTGGA GCGGAGCTT CCGGACAGGA TCCGGTGTCC GGCAGAAGGT CGAGGAGGAG	5940
	CAGATGCTGG ACATGTTGAT TAAGGAAGAA GTCTCCTCTG CTCGAGCCAG TATCATTGAC	6000
	AAGTGGAGGA AATTCAGGG AATGAACCCAG GAACAGGCCA TGGCAAGTA CATGGCCTTG	6060
	ATCAAGGAGT GGCTGGCTA TGGCTCGACG CTGTTGATG TGGAGTGCAA GGAAGGTGGC	6120
25	TTCCCTCAGG AACTCTGGTT GGGTGTAGC GCGGACGCCG TCTCCGTCTA CAAGCGTGA	6180
	GAGGGAAAGAC CACTGGAAGT CTTCCAGTAT GAACACATCC TCTCTTTGG GGCACCCCTG	6240
	GCGAATACGT ATAAGATCGT GGTGATGAG AGGGAGCTGC TCTTGAAAC CAGTGGAGTG	6300
	GTGGATGTGG CCAAGCTCAT GAAAGCCTAC ATCAGCATGA TCGTGAAGAA GCGCTACAGC	6360
30	ACGACACGCT CCGCCAGCAG CCAGGGCAGC TCCAGGTGA GGGGGACAG AGCCCACCTG	6420
	TCTTGCTAC CTGAACGCAC CACCCCTCTGG CCTAGGCTGG CTCCAGTGTG CCATGCCAG	6480
	CCAAAACAAA CACAGAGCTG CCCAGGCTTT CTGGAAGCTT CTGGCTGTAG GGAGGTGTCT	6540
	CCGAGGATGC TTTGCTGTC CGCCTTCATT GATCCTGTAT TAAGCTGTCA ACTTTAACAG	6600
35	TCTGCACAGT TTCCAAAGCT TTACTACTCT TAGAGGACAC ATGCCCTAAA AAAGGAGGG	6660
	AGGAACCCAG CTGCCACAA AGCAGGCCGA ATGCCCTTAA CTGTGGAAC CAACACTAAT	6720
	CGACCGTAAC TGTGCTACTG AAGGGAACTG CTTTCCCCC TTCTGGGGGA GACTTAACAG	6780
40	AGCGTGGAAAG GGGGGCATT TCTGTCAATG ATGCACTAAC CTCCCAACCT GATTTCCCCG	6840
	AATCTGAGGG AAGGTGAGGG AGTGGGAAGG GGGATGGAGA GCTCGAGGGG ACAGTGTGTT	6900
	TGAGCTGGAG TGCTGGGGC AGCCTTCTC ATGGAATGAC ATGAATCAAC TTTTTCTT	6960
	GTTCATCTT TTAAGTGTAC GTGCTGGCT GTTCGTGCAT GTGTTCAAA ACTCAACACT	7020
	TTAATCATGG TTTCATGAGC ATTAAAAAGC AAAGGGAAAA AGGATGTGTA ATGGTGTACA	7080
45	CAGTCTGTAT ATTTTAATAA TGCAGAGCTA TAGTCTCAAT TGTACTTTA TAAGGTGGTT	7140
	TTATTAACAA ACCCAATCC TGGATTTCTC TGTCTTGTCT GTATTTGAA AAACACGTGT	7200
	TGACTCCATT GTTTTACATG TAGCAAAGTC TGCCATCTGT GTCTGCTGTA TTATAAACAG	7260
	ATAAGCAGCC TACAAGATAA CTGTATTAT AAACCACTCT TCAACAGCTG GCTCCAGTGC	7320
	TGTTTTAGA ACAAGAATGA AGTCATTGAG GAGTCTTCA TGCTAAAAG ATTTAAGTTA	7380
50	AAAACAAAGT GTTACTTGGA AGGTTAGCTT CTATCATCT GGATAGATTA CAGATATAAT	7440
	AACCATGTTG ACTATGGGG AGAGACGCTG CATTCCAGAA ACGTCTTAAC ACTTGAGTGA	7500
	ATCTCAAAG GACCTGACA TAAATGCTG AGGCTTAAAT ACACACATAT TTTATCCAA	7560
	GTTTATAATG GTGGTCTGAA CAAGGCACCT GTAAATAAT CAGCATTAT GACCAGAAGA	7620
	AAAATAATCT GGTCTGGAC TTTTATTTT TATATGGAAA AGTTTTAAGG ACTTGGGCCA	7680
55	ACTAAGTCTA CCCACACGAA AAAAGAAATT TGCCTGTCC CTTTGTGTAC AACCATGCAA	7740
	AACTGTTTGT TGGCTCACAG AAGTCTGAC AATAAAAGAT ACTAGCT	

ACC3 DNA sequence

Gene name: calcitonin receptor-like (CALCRL)

Unigene number: Hs.152175

Probeset Accession #: L76380

Nucleic Acid Accession #: NM_005795

Coding sequence: 555-1940 (predicted start/stop codons underlined)

60	GCACGAGGGAA ACAACCTCTC TCTCTSCAGC AGAGAGTGTC ACCTCCTGCT TTAGGACCAT	60
	CAAGCTCTGC TAACTGAATC TCATCCTAAT TGCAGGATCA CATTGCAAAG CTTTCACTCT	120
	TTCCCACCTT GCTTGTGGGT AAATCTCTTC TGCGGAATCT CAGAAAGTAA AGTTCCATCC	180
	TGAGAATATT TCACAAAGAA TTTCCTTAAG AGCTGGACTG GGTCTTGACC CCTGGAATT	240
65	AAGAAATTCT TAAAGACAAT GTCAAATATG ATCCAAGAGA AAATGTGATT TGAGTCTGGA	300
	GACAATGTCATATGCT AATAATAAAA ACCCATCTA GCCTATAGAA AACAAATATT	360
	GAATAATAAA AACCCATACT AGCCTATAGA AAACAATATT TGAAAGATTG CTACCACTAA	420
	AAAGAAAAC ACTACAACCTT GACAAGACTG CTGCAAACCTT CAATTGGTCA CCACAACTTG	480

ACAAGGTTGC TATAAAACAA GATTGCTACA ACTTCTAGTT TATGTTATAC AGCATATTC 540
 ATTTGGGCTT AATGATGGAG AAAAGTGTAA CCCTGTATTT TCTGGTTCTC TTGCCTTTTT 600
 TTATGATTCT TGTTACAGCA GAATTAGAAG AGAGTCTGA GGACTCAATT CAGTTGGAG 660
 TTACTAGAAA TAAAATCATG ACAGCTCAAT ATGAATGTTA CCAAAAGATT ATGCAAGACC 720
 5 CCATTCAACA AGCAGAAGGC GTTACTGCA ACAGAACCTG GGATGGATGG CTCTGCTGGA 780
 ACGATGTTGC AGCAGGAACG GAATCAATGC AGCTCTGCCC TGATTACTTT CAGGACTTTG 840
 ATCCCATCAGA AAAAGTACA AAGATCTGTG ACCAAGATGG AAACCTGGTT AGACATCCAG 900
 CAAGCAACAG AACATGGACA AATTATACCC AGTGTAAATGT TAACACCCAC GAGAAAGTGA 960
 AGACTGCACT AAATTGTTT TACCTGACCA TAATTGGACA CGGATTGTCT ATTGCATCAC 1020
 10 TGCTTATCTC GCTTGGCATTA TTCTTTTATT TCAAGAGCCT AAGTTGCCAA AGGATTACCT 1080
 TACACAAAAA TCTGTTCTTC TCATTGTTTG GTAACTCTGT TGTAACAATC ATTACACCTCA 1140
 CTGCAGTGGC CAACAAACAG GCCTTAGTAG CCACAAATCC TGTTAGTTGC AAAGTGTCCC 1200
 AGTTCAATTCA TCTTACCTG ATGGGCTGTG ATTACTTTG GATGCTCTGT GAAGGCATTT 1260
 ACCTACACAC ACTCATTGTG GTGGCCGTGT TTGCAGAGAA GCAACATTTA ATGTGGTATT 1320
 15 ATTTTCTTGG CTGGGATTT CCACGTGATTC CTGCTTGAT ACATGCCATT GCTAGAAGCT 1380
 TATATTACAA TGACAATTGC TGATCAGTT CTGATACCCCA TCTCCTCTAC ATTATCCATG 1440
 GCCCAATTG TGCTGCTTTA CTGGTGAATC TTTTTTCTT GTAAATATT GTACGCGTTC 1500
 TCATCACCAA GTTAAAGT ACACACCAAG CGGAATCCAA TCTGTACATG AAAGCTGTGA 1560
 GAGCTACTCT TATCTTGGTGC CCATTGCTTGC CATTGAAATT TGTGCTGATT CCATGGCGAC 1620
 20 CTGAGGAAA GATTGAGAG GAGGTATATG ACTACATCAT GCACATCCTT ATGCACTTCC 1680
 AGGGTCTTTT GGTCTTACCT ATTCTCTGCT TCTTTAATGG AGAGGTTCAA GCAATTCTGA 1740
 GAAGAAACTG GAATCAATAC AAAATCCAAT TTGAAACAG CTTTCCAAAC TCAGAAGCTC 1800
 TTCGAGTGC GTCTTACACA GTGTCAACAA TCAGTGTGATGG TCCAGGTTAT AGTCATGACT 1860
 GTCTAGTGA ACACTTAAAT GGAAAAGCA TCCATGATAT TGAAAATGTT CTCTTAAAC 1920
 CAGAAAATTG ATATAATTGA AAATAGAAGG ATGGTTGTCT CACTGTTTGG TGCTTCTCCT 1980
 AACTCAAGGA CTTGGACCA TGACTCTGTG GCCAGAAGAC TTCAATATTAA AATGACTTTG 2040
 GGGAAATGTCA TAAAGAAGAG CCTTCACATG AAATTAGTAG TGTGTTGATA AGAGTGTAAAC 2100
 ATCCAGCTCT ATGTGGAAA AAAGAAATCC TGTTTGTAATGTTTGTCAG TAAATACTCC 2160
 CACTATGCCT GATGTGACGC TACTAACCTG ACATCACCAC GTGTTGAAATT GGAGAAAAGC 2220
 ACAATCAACT TTTCTGAGCT GGTGTAAGCC AGTCCAGCA CACCATGAT GAATTCAAAC 2280
 25 AAATGGCTGT AAAACTAAAC ATACATGTG GGCATGATTC TACCCCTTATT CSCCCCCAAGA 2340
 GACCTAGCTA AGGTCTATAA ACATGAAGGG AAAATTAGCT TTTAGTTTTA AAACCTTTA 2400
 TCCCATCTTG ATTGGGCGAG TTGACTTTTT TTTTTTCCCA GAGTGCCTGA GTCTTTTG 2460
 TAACTACCC CTCAAATGGA CAATACCGAGA AGTGAATTAT CCCTGCTGGC TTTCTTTCT 2520
 CTATGAAAAG CAACTGAGTA CAATTGTTAT GATCTACTCA TTTGCTGACA CATCAGTTAT 2580
 ATCTTGCGC ATATCCATTG TGAAACTGATGG ATGAACAGGA TGATAATAT GCAATCTTAC 2640
 TTCTATATCA TTAGGAAAAC ATCTTAGTTG ATGCTACAAA ACACCTTGTC AACCTCTTCC 2700
 TGTCTTACCA AACAGTGGGA GGGAAATTCCCT AGCTGTAAT ATAAATTTTG CCCTTCCATT 2760
 TCTACTGTAT AAACAAATTG GCAATCATT TATATAAAGA AAATCAATGA AGGATTCTT 2820
 30 40 ATTTTCTTGG AATTTGTAATGAA AAAGAAATTG TGAAAATGTA GCTGTAAAT ACTCCATTAT 2880
 TTTATTTAT AGTCTCAAAT CAAATACATA CAACCTATGT AATTTTTAAA GCAAATATAT 2940
 AATGCAACAA TGTGTGTATG TTAATATCTG ATACTGTATC TGGGCTGATT TTTAAATAA 3000
 AATAGAGTCT GGAATGCT

45 ACC4 DNA sequence

Gene name: Homo sapiens mRNA, cDNA DKFZD586E1624

Unigene number: HS_94030

Probeset Accession #: AA452000

Nucleic Acid Accession #: AL10152.1

Coding sequence: no ORF identified, possible frameshifts

45 ACGCGTCCGA AGACATTAAG TAAAAAATTG GAACTATGAT TTTTCTTGT CATTTCCTAA 60
 AAAAGAATTAA TTTTATTAAC CTGCTGGCAT ATAATCTGA GTTCTTTCA CAACCTTACT 120
 55 TTTCTGATT TGCTTTATTG AATGATTGAA TACTCATTC TTTCTAAAAA TATGTTGTAA 180
 ATTCTCCCTT GGCAAGATTG CTCCCTATGA GGGTAGTTAT TATTTGAGTC TGCCAAGTGG 240
 TTACCATGGG GCAAGGTGCC ATGATGTATT CTTGGGTGCA TTGGTTTTTG GCGCATTGTA 300
 AATTTAAGAC ACTTATAGTA AGTGGACTCA TTCATAGATG AGTTTCAGAA CCTTTACGT 360
 TCTCGGTAGA GGCTTCTGTC GACAGGCAG AAGAGTGTAT TCCTCACTTT TTTTTTGTC 420
 60 TTCAAATTCC AGTAAGGCAT GACACTTTA AGAAATTAGA ATTTTTCTAT CATCTATGCA 480
 AATGATATTG ATGTTAATAT TAAATATCTT ATGTTACACT GGGAGTAATT TGAGGTGCAA 540
 TTATTTTAT TACTACTTTG AATAGAGGAC CATTATCCTT CTTCTTCAG AAAACTAAGA 600
 AGTAAGTGTG ACTTTTAAAG TAAGTATATA TCAGTGTGAGAG TAGGCTTGTGTT TACAACTAT 660
 TTCTAGGCCAG TGAGTGTGTT TTTCATGTCT CATCAAAAGA CAATACACCA TTGCATCATT 720
 65 TTACAAAATA TGTGTGTCATT TCTCATTTCA TGTAACATA GGAAATAGA TATTTCTTAG 780
 ATGATTTCTG AGTTCTTAC TGCAAGAAC AGTTATAAT TGTTATACAT GTGTCTCTGT 840
 AATAGGGATA ATATTGATAT ATCTGTGCT ACATATTAA GAATCATTCT ATCTTATGTT 900
 GTCTTGAGGC CAAGATTAC CACGTTGCC CAGTGTATTG AATTGGTGGT AGAAGGTAGT 960

TCCATGTTCC ATTTGTAGAT CTTTAAGATT TTATCTTGA TAACTTTAAT AGAATGTGGC 1020
 TCAGTTCTGG TCCTTCAAGC CTGTATGGTT TGGATTTCA GTAGGGGACA GTTGTGTTG 1080
 AGTCATCTC TTTGGTACAC AGGAAGCTTT ATAAAATTT ATTACACGAAT CTCTTATTT 1140
 GGGAAAGCTGT TTTGCATATG AGAAGAACAC TGTTGAAATA AGGAACATAA GCTTTATATA 1200
 5 TTGATCAAGG TGATTCTGAA AGTTTTAATT TTTAATGTTG TAATGTTATG TTATTGTTAA 1260
 TTGTACTTTA TTATGTATTG AATAGAAAAT CATGATTAT TAATAAAAGC TTAAATCTC 1320
 ATCTAAAAAA AAAAAAAA A

10 Yn6
960
ACC5 DNA sequence

Gene name: Selectin E (endothelial adhesion molecule 1)

Unigene number: Hs.89546

ProbeSet Accession #: M24736

Nucleic Acid Accession #: NM_000450

Coding sequence: 117-1949 (predicted start/stop codons underlined)

CCTGAGACAG	AGGCAGCACT	GATAACCACC	TGAGAGATCC	TGTGTTGAA	CAACTGCTTC	60
CCAAAACGGA	AAGTATTTC	AGCCTAAACC	TTTGGGTGAA	AAGAACTCTT	GAAGTCATGA	120
TTGCTTCACA	GTTTCTCTCA	GCCTCTACTT	TGGTGCCTCT	CATTAAGAG	AGTGGACGCT	180
GGTCTTACACA	CACCTCCACG	GAAGCTATGA	CTTATGATGA	GGCCAGTGT	TATTGTCAGC	240
AAAGGTACAC	ACACCTGGTT	GCAATTCAA	AACAAAGAAGA	GATTGAGTAC	CTAAACTCCA	300
TATTGAGCTA	TTCACCAAGT	TATTACTGGGA	TTGGAATCAG	AAAAGTCAC	AATGTGTTGG	360
TCTGGGTAGG	AACCCAGAAA	CCTCTGACAG	AAAAGCCAA	GAACCTGGGCT	CCAGGTGAAC	420
CCAACAATAG	GCAAAAAGAT	GAGGACTGCG	TGGAGATCTA	CATCAAGAGA	AAAAAAAGATG	480
TGGGCATGTG	GAATGATGAG	AGGTGCAGCA	AGAAGAAAGCT	TGCCCTATGC	TACACAGCTG	540
CCTGTACCAA	TACATCCTGC	AGTGGCCACG	GTGAATGTGT	AGAGACCATC	AATAATTACA	600
CTTGCAAGTG	TGACCCCTGGC	TTCAAGTGTGA	GCAAATTGTG	AACTGTACAG	660	
CCCTGGAATC	CCCTGAGCAT	GGAAAGCCTGG	TTTGCAGTCA	CCCACGGGA	AACTTCAGCT	720
ACAATTCTTC	CTGCTCTATC	AGCTGTGATA	GGGGTTAACCT	GCCAAAGCAGC	ATGGAGACCA	780
TGCACTGTAT	GTCCTCTGGA	GAATGGAGTG	CTCCCTATTCC	AGCCTGCAAT	GTGGTTGAGT	840
GTGATGCTGT	GACAAATCCA	GCCAATGGGT	TCGTGGAATG	TTTCAAAACAC	CCTGGAAGCT	900
TCCCCATGGAA	CACAAACCTGT	ACATTGACT	GTGAAGAAGG	ATTGAACTA	ATGGGAGCCC	960
AGAGCCTTCA	GTGTACCTCA	TCTGGGAATT	GGGACAACGA	GAAGCCAACG	TGTAAGCTG	1020
TGACATGCG	GGCCGCTCCG	CAGCCTCAGA	ATGGCTCTGT	GAGGTGCAGC	CATTCCCCGT	1080
CTGGAGAGTT	CACCTTCAAA	TCATCCTGCA	ACTTCACCTG	TGAGGAAGGC	TCATGTTGC	1140
AGGGACCAGC	CCAGGTGAA	TGCAACACTC	AAAGGGCAGTG	GACACAGCAA	ATCCCAGTTT	1200
GTGAAGCTTT	CCAGTCACA	GCCTTGTCCA	ACCCCGAGCG	AGGCTACATG	AATTGTCCTC	1260
CTAGTGTTC	TGGCAGTTTC	CGTTATGGGT	CCAGCTGTGA	GTTCTCTGT	GAGCAGGGTT	1320
TTGTGTTGAA	GGGATCCAAA	AGGCTCCAAT	GTGGCCCCAC	AGGGGAGTGG	GACAACGAGA	1380
40 AGCCCACATG	TGAAGCTGTG	AGATGCGATG	CTGTCCACCA	GCCCCCGAAG	GGTTGGTGA	1440
GGTGTGCTCA	TTCCCTTATT	GGGAAATTCA	CCTACAAGTC	CTCTTGTGCC	TTCAGCTGTG	1500
AGGAGGGATT	TGAATTATAT	GGATCAACTC	AACTTGAGTG	CACATCTCAG	GGACAATGGG	1560
CAGAAGAGGT	TCCTCTCTGC	CAAGTGGTAA	AATGTTCAAG	CCTGGCAGTT	CCGGGAAAGA	1620
TCAACATGAG	CTGCACTGGG	GAGCCCCGTG	TTGGCAGTGT	GTGCAAGTTC	GCCTGTCTG	1680
45 AAGGATGGAC	GCTCAATGGC	TCTGCAGCTC	GGACATGTGG	AGCCACAGGA	CACTGGCTG	1740
GCCTGCTACC	TACCTGTGAA	GCTCCCCTCG	AGTCCAACAT	TCCCTTGGTA	GCTGGACTTT	1800
CTGCTGCTGG	ACTCTCCCTC	CTGACATTAG	CACCATTTCT	CCTCTGGCTT	CGGAAATGCT	1860
TACGGAAAGC	AAAGAAATTTC	GTCCTCTGCCA	GCAGCTGCCA	AAGCCTTGAA	TCAGACGGAA	1920
GCTACCAAAA	GCCTCTTAC	ATCCCTTAAAG	TTCAAAAGAA	TCAGAAACAG	GTGCATCTGG	1980
50 GGAACATAGAG	GGATACACTG	AAAGTTAACAG	AGACAGATAA	CTCTCCTCGG	GTCTCTGCC	2040
CTTCTTGCCT	ACTATGCCAG	ATGCCCTTAT	GGCTGAAACC	GCAACACCCA	TCACCACTTC	2100
AATAGATCAA	AGTCCAGCAG	GCAAGGACGG	CCTTCAACTG	AAAAGACTCA	GTGTTCCCTT	2160
TCCTACTCTC	AGGATCAAGA	AAAGTGTGGC	TAATGAAGGG	AAAGGATATT	TTCTTCCAAG	2220
55 CAAAGGTGAA	GAGACCAAGA	CTCTGAAATC	TCAGAACTT	TTTCTTAACT	CTCCCCTGCT	2280
CGCTGTAAAG	TCTTGCACA	GAAACACAAT	ATTTGTGGC	TTTCTTTCTT	TTGCCCTTCA	2340
CAGTGTTCG	ACAGCTGATT	ACACAGTTGC	TGTCTAAAGA	ATGAAATAATA	ATTATCCAGA	2400
GTTTAGAGGA	AAAAAATGAC	TAAAAATATT	ATAACTTAA	AAAATGACAG	ATGTTGAATG	2460
60 CCCACAGGCA	AATGCATGGA	GGGTTGTTAA	TGGTCAAAT	CCTACTGAAT	GCTCTGTGCG	2520
AGGGTTACTA	TGCACAAATT	AATCACTTT	ATCCCCTATGG	ATTTCAGTGC	TTCTTAAAGA	2580
GTTCTTAAGG	ATTGTGATAT	TTTACTTGC	ATTGAATATA	TATAATCTT	CCATAACTCT	2640
TCATTCAATA	CAAGTGTGGT	AGGGACTTAA	AAAACCTGTA	AATGCTGTCA	ACTATGATAT	2700
GGTAAAAGTT	ACTTATTCTA	GATTACCCCC	TCATTGTTA	TAAACAAATT	ATGTTACATC	2760
TGTTTTAAAT	TTATTCAAA	AGGGAAACT	ATTGTCCCT	AGCAAGGCAT	GATGTTAAC	2820
AGAATAAAAGT	TCTGAGTGT	TTTACTACAG	TTGTTTTTG	AAAACATGGT	AGAATTGGAG	2880
65 AGTAAAAGT	GAATGGAAGG	TTTGTATATT	GTCAGATATT	TTTCAGAAA	TATGTGGTTT	2940
CCACGATGAA	AAACTCTCAT	GAGGCCAAAC	GTGTTGAACT	AATAAAAGCA	TAATGCAA	3000
CACACAAAGG	TATAATTAA	TGAATGTCTT	TGTTGGAAA	GAATACAGAA	AGATGGATGT	3060
GCTTTGCATT	CCTACAAAGA	TGTTGTCAAG	ATGTGATATG	AAAACATAAT	TCTTGTATAT	3120

5 TATGGAAGAT TTTAAATTCA CAATAGAAC TCACCATGTA AAAGAGTCAT CTGGTAGATT 3180
 TTTAACGAAT GAAGATGCT AATAGTTATT CCCTATTGT TTTCTCTGT ATGTTAGGGT 3240
 GCTCTGGAAG AGAGGAATGC CTGCTGAGC AAGCATTAT GTTTATTTAT AAGCAGATT 3300
 ACAATTCCA AAGGAATCTC CAGTTTCAG TTGATCACTG GCAATGAAAAA ATTCTCAGTC 3360
 AGTAATTGCC AAAGCTGCTC TAGCCTGAG GAGTGTGAGA ATCAAAAATC TCCTACACTT 3420
 CCATTAACCT AGCATGTGTT GAAAAAAA GTTTCAGAGA AGTCTGGCT GAACACTGGC 3480
 AACGACAAAG CCAACAGTC AAACAGAGAT GTGATAAGGA TCAGAACAGC AGAGGTTCTT 3540
 10 TAAAGGGGC AGAAAAACTC TGGAATAA GAGAGAACAA CTACTGTGAT CAGGCTATGT 3600
 ATGGAATACA GTGTTATTTT CTTGAAATT GTTTAAGTGT TGTAATATT TATGTAACT 3660
 GCATTAGAAA TTAGCTGTT GAAATACCAG TGTGGTTGT GTTGAGTTT TATTGAGAA 3720
 TTTAAATTAT AACTAAAAAT ATTTATAAT TTTAAAGTA TATATTATT TAAGCTTATG 3780
 TCAGACCTAT TTGACATAAC ACTATAAAGG TTGACAATAA ATGTGCTTAT GTTT

15 ACCB DNA sequence

Gene name: Chemokine (C-X-C motif), receptor 4 (fusin)
 Unigene number: Hs.89414
 Probeset Accession #: L06797
 Nucleic Acid Accession #: NM_003467
 Coding sequence: 89-1147 (predicted start/stop codons underlined)

20 TTTGTTGGC TGCGGCAGCA GGTAGCAAAG TGACGCCAG GGCCTGAGTG CTCCAGTAGC 60
 CACCGCATCT GGAGAACCAAG CGTTTACCAT GGAGGGATC AGTATATACA CTTCAGATAA 120
 25 CTACACCGAG GAAATGGGCT CAGGGGACTA TGACTCCATG AAGAACCCCT GTTCCGTGA 180
 AGAAAATGCT AATTCAATA AAATCTTCCCT GCCCACCATC TACTCCATCA TCTTCTTAAC 240
 TGGCATTGTT GGCAATGGAT TGTCATCCT GTCATGGGT TACAGAAGA AACTGAGAAG 300
 CATGACGGC AAGTACAGGC TGACCTGTC AGTGGCCGAC CTCCCTTTG TCATCACGCT 360
 TCCCTTCTGG CGACTGTGATC CGCTGGCAAA CTGGTACTTT GGGAACTTCC TATGCAAGGC 420
 AGTCCATGTC ATCTACACAG TCAACCTCTA CAGCAGTGT CTCATCCTGG CCTTCATCAG 480
 30 TCTGGACCGC TACCTGGCCA TCGTCCACGC CACCAACAGT CAGAGGCCAA GGAAGCTGTT 540
 GGCTGAAAAG GTGGTCTATG TTGGCGTCTG GATCCCTGCC CTCCCTGCTGA CTATTCCCGA 600
 CTTCATCTT GCCAACGTC A GTGAGGAGA TGACAGATAT ATCTGTGACC GCTTCTACCC 660
 CAATGACTTG TGGGTGGTTG TGTTCAGTT TCAGCACATC ATGGTTGGCC TTATCCTGCC 720
 TGGTATTGTC ATCCTGTCCT GCTATTGAT TATCATCTCC AAGCTGTAC ACTCCAAGGG 780
 35 CCACCAGAAG CGCAAGGCC C TCAAGACCAC AGTCATCCTC ATCCCTGGCTT TCTTCGCTG 840
 TTGGCTGCCT TACTACATTG GGATCAGCAT CGACTCCTTC ATCCCTCTGG AAATCATCAA 900
 GCAAGGGTGT GAGTTTGAGA ACACTGTGCA CAAGTGTGATT TCCATCACCG AGGCCCTAGC 960
 TTTCTTCCAC TGGTGTCTGA ACCCCATCCT CTATGCTTTC CTTGGAGCCA AATTAAAAC 1020
 CTCTGGCCAC CACGCACTCA CCTCTGTGAG CAGAGGCCA AGCCTCAAGA 1080
 40 AGGAAAGCGA GGTGGACATT CATCTGTTT CACTGAGTCT GAGTCTTCAA GTTTTCACTC 1140
 CAGCTAACAC AGATGTTAAA GACTTTTTT TATACGATAA ATAATTTTTT TTTAAGTAC 1200
 ACATTTTCA GATATAAAAG ACTGACCAAT ATTGTACAGT TTTTATTGCT TGTTGGATT 1260
 TTGTCTTGTG TTTCTTGTAGT TTTTGTGAAG TTTAATTGAC TTATTTATAT AAATTTTTT 1320
 45 TGTTTCAATAT TGATGTGTGT CTAGGCAGGA CCTGTGCCA AGTCTTGTAGT TGCTGTATGT 1380
 CTCGTGGTAG GACTGTAGAA AAGGGAACTG AACATTCAG AGCGTGTAGT GAATCACGTA 1440
 AAGCTAGAAA TGATCCCCAG CTGTTTATGC ATAGATAATC TCTCCATTCC CGTGGAACGT 1500
 TTTTCCTGTT CTTAAGACGT GATTTGCTG TAGAAGATGG CACTTATAAC CAAAGCCCAA 1560
 AGTGGTATAG AAATGCTGGT TTTCAGTTT TCAGGAGTGG GTTGATTTCA GCACCTACAG 1620
 TGTCAGTCT TGTATTAAGT TGTAAATAAA AGTACATGTT AAACTTACTT AGTGTATG

50

ACF2 DNA sequence

Gene name: Endothelial cell-specific molecule 1
 Unigene number: Hs.41716
 Probeset Accession #: X89426
 Nucleic Acid Accession #: NM_007036
 Coding sequence: 56-610 (predicted start/stop codons underlined)

60 CTTCCCACCA GCAAAGACCA CGACTGGAGA GCGGAGCCGG AGGCAGCTGG GAAACATGAA 60
 GAGCGTCTTG CTGCTGACCA CGCTCCTCGT GCCTGACAC CTGGTGGCCG CCTGGAGCAA 120
 TAATTATGCG GTGGACTGCC CTCAACACTG TGACAGCAGT GAGTGCAGAA GCAGCCCGCG 180
 CTGCAAGAGG ACAGTGTCTG AGGACTGTGG CTGCTGCCGA GTGTGCGCTG CAGGGCGGG 240
 AGAAAATTCG TACCGCACAG TCTCAGGCT GGATGGCAT AGGTGTGGCC CGGGGCTGAG 300
 GTGTCAGCCT TCTAATGGGG AGGATCCTT TGGTGAAGAG TTTGTTATCT GCAAAGACTG 360
 65 TCCCTACGGC ACCTTCGGGA TGATTGAGCA AGAGACCTGC AACTGCCAGT CAGGCATCTG 420
 TGACAGGGGG ACGGGAAAT GCCTGAAATT CCCCTCTTC CAATATTCA TAACCAAGTC 480
 TTCCAACAGA TTGTTTCTC TCACGGAGCA TGACATGGCA TCTGGAGATG GCAATATTGT 540
 GAGAGAAGAA GTTGTGAAAG AGAATGCTGC CGGGTCTCCC GTAATGAGGA AATGGTTAAA 600

TCCACGCTGA TCCCAGCTGT GATTTCTGAG AGAAGGCTCT ATTTCGTGA TTGTTCAACA 660
 CACAGCCAAC ATTTTAGGAA CTTCTAGAT ATAGCATAAG TACATGTAAT TTTTGAAGAT 720
 CCAAATTGTG ATGCATGGTG GATCCAGAAA AAAAAAAGTA GGATACTTAC AATCCATAAC 780
 ATCCATATGA CTGAACACTT GTATGTGTTT GTTAAATATT CGAATGCATG TAGATTTGTT 840
 5 AAATGTGTGT GTATAGTAAC ACTGAAGAAC TAAAATGCA ATTAGGTAA TCTTACATGG 900
 AGACAGGTCA ACCAAAGAGG GAGCTAGGC AAGCTGAAGA CCGCAGTGAG TCAAATTAGT 960
 TCTTTGACTT TGATGTACAT TAATGTTGGG ATATGGAATG AAGACTTAAG AGCAGGAGA 1020
 GATGGGGAGG GGGTGGGAGT GGGAAATAAA ATATTTAGCC CTTCTTGGT AGGTAGCTC 1080
 TCTAGAATT T AATTGTGCTT TTTTTTTTT TTTGGCTTG GGAAAAGTC AAATAAAACA 1140
 10 ACCAGAAAAC CCCTGAAGGA AGTAAGATGT TTGAAGCTTA TGGAATTTG AGTAACAAAC 1200
 AGCTTGAAAC TGAGAGCAAT TTCAAAAGGC TGCTGATGTA GTTCCCGGGT TACCTGTATC 1260
 TGAAGGACGG TTCTGGGCA TAGGAAACAC ATACACTTCC ATAAATAGCT TTAACGTATG 1320
 CCACCTCAGA GATAAACTCA AGAAGTATTT TACCCACTGG TGGTTTGTGT GTGTATGAA 1380
 GTAAATATT T ATATATTTT ATAATAAAAT GTGTTAGTGC AAGTCATCTT CCCTACCCAT 1440
 15 ATTATCATC CTCTTGAGGA AAGAAATCTA GTATTATTTG TTGAAAATGG TTAGAATAAA 1500
 AACCTATGAC TCTATAAGGT TTCAAAACAT CTGAGGCATG ATAATTTAT TATCCATAAT 1560
 TATAGGAGTC ACTCTGGATT TCAAAAAATG TCAAAAAATG AGCAACAGAG GGACCTTATT 1620
 TAAACATAAG TGCTGTGACT TCGGTGAATT TTCAATTAA GGATGAAA TAAGTTTTA 1680
 GGAGGTTTGT AAAAGAAGAA TCAATTTCAGA GCAGAAAACA TGTCAACTTT AAAATATAGG 1740
 20 TGGAAATTAGG AGTATATTTG AAAAGAATCTT AGCACAAACA GGACTGTTGT ACTAGATGTT 1800
 CTTAGGAAAT ATCTCAGAAG TATTTTATTG GAAGTGAAGA ACTTATTTAA GAATTATTC 1860
 AGTATTTAC TGTATTTAT TCTTGAAGTT GGCAACAGA GTTGTGAATG TGTGTGAAAG 1920
 GCCTTGAAT GTAAAGCTGC ATAAGCTGTT AGGTTTGTGTT TAAAGGAC ATGTTTATTA 1980
 TTGTTCAATA AAAAGAACA AGATAC
 25

ACF4 DNA sequence

Gene name: P53-responsive gene 2 similar to *D.melanogaster* peroxidasin (U11052)
 Unigene number: Hs.118893

Probeset Accession #: D86983

Nucleic Acid Accession #: D86983

Coding sequence: 1-4491 (predicted stop codon underlined, sequence is open at 5' end)

30 AGCCGGCCGT GGTGGCTCCG TGCCTCCGAG CGTCCGTCCG CGCCGTCGGC CATGGCCAAG 60
 CGCTCCAGGG GCCCCGGCG CGCCTGCCTG TTGGCGCTCG TGCTGTTCTG CGCCTGGGG 120
 ACGCTGGCCG TGGTGGCCCA GAAGCCGGC GCAGGGTGTG CGAGCCGCTG CCTGTGCTTC 180
 CGCACCAACCG TGCGCTGCAT GCATCTGCTG CTGGGAGCCG TGCCCGCCGT GGCGCCGCAG 240
 ACCTCCATCC TAGATCTTCG CTAAACAGA ATCAGAGAGA TCCAACCTGG GGCATTCAAGG 300
 40 CGGCTGAGGA ACTTGAACAC ATTGCTCTC AATAATAATC AGATCAAGAG GATACCTAGT 360
 GGAGCATTGG AAGACTTGG AATTTAAAAA TATCTCTATC TGTCAGAGAA TGAGATCCAG 420
 TCAATTGACA GGCAAGCATT TAAGGGACTT GCCTCTCTAG AGCAACTATA CCTGCACTTT 480
 AATCAGATAG AAACCTTGG CCCAGATTG TTCCAGCATC TCCCGAAGCT CGAGAGGCTA 540
 TTTTGCAATA ACAACCGGAT TACACATTTA GTTCCAGGGT CATTAAATCA CTTGGAATCT 600
 45 ATGAAGAGAT TGCGACTGGA CTCAAACACA CTTCACTGCG ACTGTGAAAT CCTGTGGTTG 660
 GCGGATTTCG TGAAAACCTA CGGGAGTCG GGGAACCGC AGGCAGCGGC CATCTGTGAA 720
 TATCCCAGAC GCATCCAGGG ACGCTCAGTG GCAACCATCA CCCCCGAAGA GCTGAACTGT 780
 GAAAGGCCCG GGATCACCTC CGAGCCCCAG GACGAGATG TGACCTCGGG GAACACCGTG 840
 TACTTCACCT GCAGAGCCGA AGGCAACCCC AAGCCTGAGA TCATCTGGCT GCGAAACAAT 900
 50 AATGAGCTGA GCATGAAGAC AGATTCGGC CTAAATTCG TGGACGATGG GACCCCTGATG 960
 ATCCAGAACA CACAGGAGAC AGACCAGGGT ATCTACCACT GCAATGGCAA GAACGTGGCC 1020
 GGAGAGGTGA AGACGCAAGA GGTGACCTC AGGTACTTCG GGTCTCCAGC TCGACCCACT 1080
 TTTGTAATCC AGCCACAGAA TACAGAGGTG CTGGTTGGGG AGAGCGTCAC GCTGGAGTGC 1140
 AGCGCCACAG GCCACCCCCC GCCGCGGATC TCCGGACGA GAGGTGACCG CACACCTTG 1200
 55 CCAGTTGACCG CGCGGGTGA CATCACGCC TCTGGGGC TTTACATACA GAACGTCGTA 1260
 CAGGGGACA GCGGAGAGTA TGCGTGCCTC GCGACCAACA ACATTGACAG CGTCCATGCC 1320
 ACCGCTTCA TCATCGTCCA GGCTCTTCCT CAGTTCACTG TGACGCCCTCA GGACAGAGTC 1380
 GTTATTGAGG GCCAGACCGT GGATTTCCAG TGTGAAGCCA AGGGCAACCC GCGCCCGTC 1440
 ATCGCCTGTA CCAAGGGAGG GAGCCAGCTC TCCGTGGACC GGGGCCACCT GGTCTGTCA 1500
 60 TCGGGAACTC TTAGAATCTC TGTTGTTGCC CTCCACGACC AGGGCCAGTA CGAATGCCAG 1560
 GCTGTCAACA TCATCGGCTC CCAGAAGGTC GTGGCCACCC TGACTGTGCA GCCCAGAGTC 1620
 ACCCCAGTGT TTGCCAGCAT TCCCAGCGAC ACAACAGTGG AGGTGGGCAG CAATGTGCA 1680
 CTCCCCGTGCA GCTCCCCAGGG CGAGCCCCAG CGAGCCATCA CCTGGAACAA GGATGGGTT 1740
 CAGGTGACAG AAAGTGGAAA ATTTCACATC AGCCCTGAAG GATTCTTGAC CATCAATGAC 1800
 65 GTTGGCCCTG CAGACCGAGG TCGCTATGAG TGTGTGGCCC GGAACACCAT TGGGTGGGCC 1860
 TCGGTGAGCA TGGTGTCTAG TGTAACGTT CCTGACGTCA GTCGAATGG AGATCCGTTT 1920
 GTAGCTACCT CCATCGTGGA AGCGATTGCG ACTGTTGACA GAGCTATAAA CTCAACCCGA 1980
 ACACATTGTGTTGACAGCCG TCCTCGTTCT CCAAATGATT TGCTGGCCTT GTTCCGGTAT 2040

CCGAGGGATC CTTACACAGT TGAACAGGCA CGGGCGGGAG AAATCTTGA ACGGACATTG 2100
 CAGCTCATTC AGGAGCATGT ACAGCATGGC TTGATGGTC ACCTCAACGG ACAAGTTAC 2160
 CACTACAACG ACCTGGTGT CTCACAGTAC CTGAACCTCA TCGAAACCT 2220
 ACCGCCCCACCG GGCGCGTGAA CAACTGCTCG GACATGTGCT TCCACCCAGAA GTACCGGACG 2280
 5 CACGACGGCA CCTGTAACAA CCTGCAGCAC CCCATGTGGG GCGCCTCGCT GACCGCCTTC 2340
 GAGCGCCTGC TGAAATCCGT GTACGAGAAT GGCTTCAACA CCCCTCGGGG CATCAACCCC 2400
 CACCGACTGT ACAACGGCA CGCCCTTCCC ATGCCGCGCC TGGTGTCCAC CACCCGTATC 2460
 GGGACGGAGA CCGTCACACC CGACGAGCAG TTCACCCACA TGCTGATGCA GTGGGGCCAG 2520
 TTCTGGACCC ACGACCTCGA CTCCACGGTG GTGGCCCTGA GCCAGGCAAG CTTCTCCGAC 2580
 10 GGACAGCACT GCAGCAACGT GTGCAGCAAC GACCCCCCT GCTTCTCTGT CATGATCCCC 2640
 CCCAATGACT CCCGGGCCAG GAGCGGGGCC CGCTGCATGT TCTTCTGTGCG CTCCAGCCCT 2700
 GTGTGCGGCA CGGGCATGAC TTGCGCTGTC ATGAACCTCG TGTACCCGCG GGAGCAGATC 2760
 AACCAAGCTCA CCTCCTACAT CGACGCATCC AACGTGTACG GGAGCACGGA GCATGAGGCC 2820
 CGCAGCATCC GCGACCTGGC CAGCCACCGC GGCGTGTGC GGCAGGGCAT CGTGCAGCGG 2880
 15 TCCGGGAAGC CGCTGCTCCC CTTCGCCACC GGGCCGCCA CGGAGTGCAT GCGGGACGAG 2940
 AACGAGAGGCC CCATCCCTG CTTCCTGGCC GGGGACCAACCGA GCAGCTGGGC 3000
 CTGACCAAGCA TGACACAGCT GTGGTTCGGC GAGCACAAACCGA GCATTGCCAC 3060
 AAGCTGAACCG CGCACTGGGA CGCGACACCC ATCTACTATG AGACCGAGAA GATCGTGGGT 3120
 CGGGAGATCC AGCACATCAC CTACCAAGCAC TGGCTCCGA AGATCCTGGG GGAGGTGGG 3180
 20 ATGAGGACGC TGGGAGAGTA CCACGGCTAC GACCCCCGCA TCAATGCTGG CATCTTCAAC 3240
 GCCTTCGCCA CCGCGGCCCT CAGGTTTGGC CACACGTTG TCAACCCACT GCTTACCGG 3300
 CTGGACGAGA ACTTCCAGCC CATTGACAA GATCACCTCC CCCCTCACAA AGCTTCTTC 3360
 TCTCCCTTCC GGATTGTGAA TGAGGGCGGC ATCGATCCGC TTCTCAGGGG GCTGTTCGGG 3420
 GTGGCGGGGA AAATGCGTGT GCCCTCGCAG CTGCTGAACA CGGAGCTCAC GGAGCGGCTG 3480
 TTCTCCATGG CACACACGGT GGCTCTGGAC CTGGCGGCCA TCAACATCCA GCGGGGCCGG 3540
 GACCACGGGA TCCCACCCCTA CCACGACTAC AGGGTCTACT GCAATCTATC GGCGGCACAC 3600
 ACGITCGAGG ACCTGAAAAA TGAGATTAAA AACCCGTAGA TCCGGGAGAA ACTGAAAAGG 3660
 TTGTATGGCT CGACACTCAA CATCGACCTG TTTCGGCGC TCGTGGTGGA GGACCTGGTG 3720
 CTCGGCAGCC GGCTGGGCC CACCTGTATG TGTCTTCGA GCACACAGTT CAAGCGCTG 3780
 CGAGATGGGG ACAGGTTGTG GTATGAGAAC CCTGGGGTGT TCTCCCCGGC CCAGCTGACT 3840
 30 CAGATCAAGC AGACGTCGCT GGGCAGGATC CTATGCGACA ACGCGGACAA CATCACCCGG 3900
 GTGCAGAGCG ACGTGTTCAAG GGTGGCGGAG TTCCCTCACG GCTACGGCAG CTGTGACGAG 3960
 ATCCCCAGGG TGGACCTCCG GGTGTGGCAG GACTGCTGTG AAGACTGTAG GACCAGGGGG 4020
 CAGTTCAATG CCTTTTCTTA TCATTTCCGA GGCAGACGGT CTCTTGAGTT CAGCTACAG 4080
 35 GAGGACAAGC CGACCAAGAA AACAAAGACCA CGGAAAATAC CCAGTGTGTTG GAGACAGGGG 4140
 GAACATCTCA GCAACACGAC CTCAGCCTTC AGCACACGCT CAGATGCATC TGGGACAAT 4200
 GACTTCAGAG AGTTGTTCT GGAAATGCAAG AAGACCATCA CAGACCTCAG AACACAGATA 4260
 AAGAAAATTC AATCACCGGT CAGTACCAAC GAGTGTGTG AGTCCGGGGG CGAATCTCAC 4320
 40 GCCAACAACA CCAAGTGGAA AAAAGATGCA TGCACCATTT GTGAATGCAA AGACGGGAG 4380
 GTCACCTGCT TCGTGGAAAG TTGCCCCCTT GCCACCTGTG CTGTCACCGT GAACATCCA 4440
 GGGGCCCTGCT GTCCAGCTG CTTACAGAAAG AGGGCGGAG AAAAGCCCTA GGCTCCTGGG 4500
 AGGCTCCTCA GAGTTGTTCT GCTGTGCCAT CGTGAGATCG GGTGGCCGAT GGCAGGGAGC 4560
 TCGGGACTGC AGACCAAGGA ACACCCAGAA CTCGTGACAT TTCAATGACAA CGTCCAGCTG 4620
 GTGCTGTTAC AGAAGGGCAGT GCAGGAGGCT TCCAACCAGA GCATCTCGGG AGAAGGAGGC 4680
 45 ACAGCAGGTG CCTGAAGGG ACGAGGCAGG AGTCCTAGCT TCACGTTAGA CTTCTCAGGT 4740
 TTTTATTTAA TTCTTTAAAT ATGAAAAAATT GGTGCTACTA TTAAATTGCA CAGTTGAATC 4800
 ATTTAGGCGC CTAAATTGGT TTGCTCTCCC AACACCATTT CTTTTAAAT AAAGCAGGAT 4860
 ACCTCTATAT GTCAGCCTTG CCTTGTTCAG ATGCCAGGAG CGGCAGAAC TGTCACCCGC 4920
 AGGTGGGGTG AGTCTCGGAG CTGCCAGAGG GGTCACCGA ATACGGGGTT CCATCACAAAG 4980
 50 CTATGTTAA AAAGAAAATT GGTGTTGGC AAACGGAAAC GAACCTTGTG TGAGAGCGTT 5040
 CACAGGGACA CTGTCAGGG GTGCAGTGC ACGCCCCCGC CTCTTCCCTG GGAACCTCTG 5100
 AACTCCCTCT TCTCTGGGC TCTCTGAAAC ATTTCACAC ACGTGACAT CTAATCCCAA 5160
 GACAAACATT CCCGCTGCTC GAAGCAGCTG TATAGCCTGT GACTCTCCGT GTGTCAGCTC 5220
 CTTCCACACC TGATTAGAAC ATTCAAAACG CACATTAGA AACAGATTTG CTTTCAGCTG 5280
 55 TCACTTGAC ACATACTGCC TAGTTGTGAA CCAAATGTGA AAAAACCTCC TTCAATCCCAT 5340
 TGTGTATCTG ATACCTGCCG AGGGCCAAGG GTGTGTGTTG ACAACGCCGC TCCCAGCCGG 5400
 CCCTGGTTGC GTCCACGTCC TGAACAAGAG CCGCTTCCGG ATGGCTCTTC CCAAGGGAGG 5460
 AGGAGCTCAA GTGTGGGAA CTGTCTAACT TCAGGTTGTG TGAGTGCCTG

60 ACFS DNA sequence

Gene name: Mitogen-activated protein kinase kinase kinase kinase 4

Unigene number: Hs.3628

Probeset Accession #: NS4067

Nucleic Acid Accession #: NM_004834

Coding sequence: 80-3577 (predicted start/stop codons underlined)

AATTGAGGAA TCCGGGTACC ATGGCACAGA GCGACAGAGA CATTATTGT TATTGTTTT

60

TTGGTGGCAA AAAGGGAAAA TGCGAACGA CTCCCCGCA AAAAGCTGG TGGACATCGA 120
 CCTCTCCCTCC CTGCGGGATC CTGCTGGGAT TTTTGACCTG GTGGAAGTGG TTGAAATGG 180
 CACCTATGGA CAAGTCTATA AGGGTCGACA TGTTAAAACG GGTCACTTGG CAGCCATCAA 240
 AGTTATGGAT GTCACTGAGG ATGAAGAGGA AGAAATCAA CTGGAGATAA ATATGCTAAA 300
 5 GAAATACTCT CATCACAGAA ACATTGCAAC ATATTATGGT GCTTCTATCA AAAAGAGCCC 360
 TCCAGGACAT GATGACCAAC TCTGGCTTGT TATGGAGTTC TGTGGGGCTG GGTCCATTAC 420
 AGACCTTGTG AAGAACACCA AAGGGAACAC ACTCAAAGAA GACTGGATCG CTTACATCTC 480
 CAGAGAAAATC CTGAGGGGAC TGCACTCATCT TCACATTATC CATGTGATTG ACCGGGATAT 540
 CAAGGGCCAG AATGTGTTGC TGACTGAGAA TGCAAGGGTG AAACCTGTTG ACTTTGGTGT 600
 10 GAGTGTCTAG CTGGACAGGA CTGTGGGGCG GAGAAATACG TTCATAGGCA CTCCCTACTG 660
 GATGGCTCCT GAGGTCTATCG CCTGTGATGA GAACCCAGAT GCCACCTATG ATTACAGAAAG 720
 TGATCTTGG TCTTGTGGCA TTACAGCCAT TGAGATGGCA GAAGGTGCTC CCCCTCTCTG 780
 TGACATGCAT CCAATGAGAG CACTGTTCT CATTCCCAGA AACCCCTCCTC CCCGGCTGAA 840
 GTCAAAAAAA TGGTGCAAGA AGTTTTTAG TTTTATAGAA GGGTGCCTGG TGAAGAATTA 900
 15 CATGCAAGCGG CCCTCTACAG AGCAGCTTTT GAAACATCT TTTATAAGGG ATCAGCCAAA 960
 TGAAAGGCCA GTTAAATCC AGCTTAAGGA TCATATAGAT CGTACCCAGGA AGAAGAGAGG 1020
 CGAGAAAGAT GAAACTGAGT ATGAGTACAG TGGGAGTGGAG GAAGAAGAGG AGGAAGTGCC 1080
 TGAACAGGAA GGAGAGCCAA GTTCCATTGT GAACGTCCT GGTGAGTCTA CTCTTCGCCG 1140
 AGATTCCTG AGACTGCAGC AGGAGAACAA GGAACGTTCC GAGGCTCTC GGAGACAACA 1200
 20 GTTACTACAG GAGCAACAGC TCCGGGAGCA GGAAGAAATAT AAAAGGCAAC TGCTGGCAGA 1260
 GAGACAGAAG CGGATTGAGC ACCAGAAAGA ACAGAGCGA CGGCTAGAAG AGCAACAAAG 1320
 GAGAGAGCGG GAGGCTAGAA GGCAAGCAGGA ACGTGAACAG CGAAGGAGAG ACAAGAAGA 1380
 AAAGAGGCGT CTAGAGGAGT TGGAGAGAAG GCGCAAAAGAA GAAGAGGAGA GGAGACGGC 1440
 AGAAGAAGAA AAGAGGAGAG TTGAAAGAGA ACAGGAGTAT ATCAGGCGAC AGCTAGAAGA 1500
 GGAGCAGCGG CACTTGAAG TCCCTCAGCA GCAGCTGCTC CAGGAGCAGG CCATGTTACT 1560
 GCATGACCAT AGGAGGCCGC ACCCGCAGCA CTCGCAGCAG CGCCCAACAC CGCAGCAGGA 1620
 AAGGAGCAAG CCAAGCTTCC ATGCTCCCGA GCCCAAAGGC CACTACGAGC CTGCTGACCG 1680
 AGCCGAGAG GTTCTGTGA GAAACATCTC TCGCTCCCT GTTCTGTCCC GTCGAGATTC 1740
 CCCACTGCGAG GGCAGTGGGC AGCAGAATAG CCAGGCAGGA CAGAGAAACT CCACCACTAT 1800
 TGAGCCCAGG CTTCTGTGGG AGAGAGTGGA GAAGCTGGT CCGCACCTG GCAGTGGCAG 1860
 CTCCTCAGGG TCCAGCAACT CAGGATCCCA GCCCAGGCT CACCCCTGGGT CTCAGAGTGG 1920
 CTCCGGGGAA CGCTTCAGAG TGAGATCATC ATCCAAGTCT GAAGGCTCTC CATCTCAGCG 1980
 CCTGGAAAAT GCAGTGGAAA AACCTGAAGA TAAAAGGAA GTTTTCAGAC CCCTCAAGCC 2040
 TGCTGGCAGA GTGGATCTGA CCGCACTGGC CAAAGAGCTT CGAGCAGTGG AAGATGTACG 2100
 GCCACCTCAC AAAGTAACGG ACTACTCCTC ATCCAGTGAG GAGTCGGGGA CGACGGATGA 2160
 GGAGGACGAC GATGTGGAGC AGGAAGGGC TGACGAGTCC ACCTCAGGAC CAGAGGACAC 2220
 CAGAGCAGCG TCATCTCTGA ATTTGAGCAA TGGTGAACG GAATCTGTGA AAACCATGAT 2280
 TGTCCATGAT GATGTAGAAA GTGAGCCGGC CATGACCCCCA TCCAAAGGAGG GCACTCTAAT 2340
 CGTCCGCCAG ACTCAGTCCG CTAGTAGCAC ACTCCAGAAA CACAAATCTT CCTCCTCCTT 2400
 40 TACACCTTTT ATAGACCCCCA GATTACTACA GATTCTCCA TCTAGCGGAA CAACAGTGAC 2460
 ATCTGTGGTG GGATTTCTC GTGATGGGAT GAGCACAGAA GCCATAAGGC AAGATCCTAC 2520
 CCGGAAAGGC TCAGTGGTC ATGTGAATCC TACCAACACT AGGCCACAGA GTGACACCCC 2580
 GGAGATTCGT AAATACAAAGA AGAGGTTAA CTCTGAGATT CTGTGTGCTG CCTTATGGGG 2640
 AGTGAATTG CTAGTGGGTA CAGAGAGTGG CCTGATGCTG CTGGACAGAA GTGGCCAAGG 2700
 45 GAAGGTCTAT CCTCTTATCA ACCGAAGACG ATTTCAACAA ATGGACGTAC TTGAGGGCTT 2760
 GAATGTCTTG GTGACAATAT CTGGCAAAA GGATAAGTTA CGTGTCTACT ATTTGTCTG 2820
 GTTAAGAAAT AAAATACTTC ACAATGATCC AGAAGTTGAG AAGAAGCAGG GATGGACAAAC 2880
 CGTAGGGGAT TTGGAAGGGAT GTGTACATTA TAAAGTTGTA AAATATGAAA GAATCAAATT 2940
 TCTGGTGATT GCTTGTGAGA GTTCTGTGGA AGTCTATGCG TGGCACCAA AGCCATATCA 3000
 50 CAAATTTATG GCCTTAAAGT CATTGGAGA ATTGGTACAT AAGCCATTAC TGGTGGATCT 3060
 CACTGTGAG GAAGGCCAGA GGTGAAAGT GATCTATGGA TCCTGTGCTG GATTCCATGC 3120
 TGTTGATGTC GATTCAAGT CAGTCTATGA CATTATCTA CCAACACATG TAAGAAAGAA 3180
 CCCACACTCT ATGATCCAGT GTAGCATCAA ACCCCATGCA ATCATCATCC TCCCAATAC 3240
 AGATGGAATG GAGCTTCTGG TGTGCTATGA AGATGAGGGG GTTATGTAA ACACATATGG 3300
 55 AAGGATCACC AAGGATGTAG TTCTACAGTG GGGAGAGATG CCTACATCAG TAGCATATAT 3360
 TCGATCCAAT CAGACAATGG GCTGGGGAGA GAAGGCCATA GAGATCCGAT CTGTGGAAAC 3420
 TGGTCACTTG GATGGTGTGT TCATGCACAA AAGGGCTCAA AGACTAAAAT TCTTGTGTGA 3480
 ACGCAATGAC AAGGTGTTCT TTGCTCTGT TCGGTCTGGT GGCAGCAGTC AGGTTTATTT 3540
 CATGACCTTA GGCAGGACTT CTCTTCTGAG CTGGTAAAG CAGTGTGATC CAGGGATTAC 3600
 60 TGGCCTCCAG AGTCTTCAG ATCCCTGAGAA CTTGGAATTC CTTGTAACCT GAGCTCGGAG 3660
 CTGCACCGAG GGCAACCAGG ACAGCTGTGT GTGCAGACCT CATGTGTTCG GTTCTCTCCC 3720
 CTCCCTCTTG TTCCTCTTAT ATACCAAGTTT ATCCCCATTC TTTTTTTTT TCTTACTCCA 3780
 AAATAAAATCA AGGCTGCAAT GCAGCTGGTG CTGTTCAAGAT TCCAAAAAAA AAAAAAAACC 3840
 ATGGTACCCG GATCCTCGAA TTCC

65 ACF8 DNA sequence

Gene name: Phospholipase A2, group IVC (cytosolic, calcium-independent)

Ont
Ab5
5
Coding sequence: 310-1935 (predicted start/stop codons underlined)

Unigene number: Hs.18858
 Probeset Accession #: AA054087
 Nucleic Acid Accession #: NM_003706

10	CACGAGGCAG	GGGCCATT	ACCTCCAGGT	TGGCCCTGCT	CAGGACCAGG	AGGAAACACC	60
	TCCAGCCCAG	GACCTCC	CACAGGGG	AAAGGAAAGC	AGGAGGACCA	CAGAAGCTTT	120
	GGCACCGAGG	ATCCC	GGCAG	TCTTCACCCG	CGGAGATTCC	GGCTGAAGGA	180
	GA	ACTACACCG	CTAAGCCAG	GGAGCCCAAG	CCTCCGCACC	GGATTCCGGA	240
15	CACCGCGCAT	GC	GCACACGC	CCCAGACCC	GGCTCAGGAG	GACTGAGAAT	300
	CA	AGTGCACCA	TGGGAAGCTC	TGAAGTTCC	ATAATTCC	GGCTCCAGAA	360
	GGGGCCGTGG	AGAGACGAAG	ACTTCATGTG	CTGAAAGCTC	TGAAGAAGCT	AAGGATTGAG	420
	GCTGATGAGG	CCCCAGTTGT	TGCTGTGCTG	GGCTCAGGCG	GAGGACTGCG	GGCTCACATT	480
	GCCTGCCTTG	GGGTCTGAG	TGAGATGAA	GAACAGGCC	TGTTGGATGC	CGTCACGTAC	540
20	CTCGCAGGGG	TCTCTGATC	CACTTGGCA	ATATCTCTC	TCTACACAA	TGATGGT	600
	ATGGAAGCTC	TCGAGGCTG	CCTGAAACAT	CGATTTACCC	GACAGGAGTG	GGACTTGGCT	660
	AAGAGCCTAC	AGAAAACAT	CCAAGCAGCG	AGGTCTGAGA	ATTACTCTC	GACCGACTTC	720
	TGGGCCATACA	TGGTATCTC	TAAGCAAAC	AGAGAACTGC	CGGAGTCTCA	TTTGTCCAAT	780
	ATGAAGAACG	CCGTGAAAGA	AGGGACTA	CCCTACCCAA	TATTTGCAGC	CATTGACAAT	840
25	GACCTGCAAC	CTTCCTGGCA	GGAGGCAAGA	GCACCA	GAGA	CCTGGITCGA	900
	CACCA	CGCTG	CTTCTG	ACTGGGGG	TTTGT	TCAACCCACTT	960
	TTCAAGAAGG	GAAGACTGGT	CAGAACTC	CCTGAGAGAG	ACCTGACTTT	CCTGAGAGGT	1020
	TTATGGGAA	GTGCTCTTGG	TAACACTGAA	GTCATTAGGG	AATACATT	TGACCA	1080
30	AGGAATCTGA	CCCTGAAAGG	TTTATGGAGA	AGGGCTGTTG	CTAATGCTAA	AAGCATTGGA	1140
	CACCTTATTT	TTGCCC	GATT	ACTGAGGCTG	CAAGAAAGTT	CACAAGGGG	1200
	CCAGAAGATG	AAGGCGGTG	GCCTGAACAC	ACCTGGCTG	CTGAGATGCT	CGAGAATTGG	1260
	ACCAAGACCT	CCCTGGAAA	GCAGGAGCG	CCCCATGAGG	ACCCGAAAG	GAAAGGCTCA	1320
	CTCAGTA	ACTTGATGATT	TGTA	AGAGAA	ACAGGCATT	GCGCTCAA	1380
	GGGACCA	CTC	AACTCTC	GTACAAAC	GGTGGCATCC	GGGAAAGAT	1440
	CGGAAGCACC	TCCACCTGGT	GGATGCTG	TTAGCC	ATCA	ACACTCC	1500
	CTGCCCCCGA	CGCGGGAGGT	TCACCTCATC	CTCTCCTTC	ACTTCAGTGC	CGGAGATCCT	1560
	TTCGAGACCA	TCCGGCTAC	CACTGACTAC	TGCGGCCG	ACAAGATCCC	CTT	1620
	GTAGAAGAGG	CTGAGCTGGA	TTTGTGGTCC	AAGGCCCCG	CCAGCTG	CATCCTGAA	1680
	GGAGAAACTG	GACCAGTGGT	GATA	CATT	TTGCTGACAC	CTACACTCTA	1740
	GATATTGAGG	CATGGAGTGA	CACATACGAC	ACATTCAAGC	TTGCTGAC	1800	
	GATGTGGTGG	TGCTACTCTT	GGCATTAGCC	AAGAAGAATG	TCAGGGAAA	CAAGAAGAAG	1860
35	ATCCTTAGAG	AGTTGATGAA	CGTGGCCGGG	CTCTACTAC	CGAAGGATAG	TGCCCCGA	1920
	TGCTGCTTGG	CATAGATGAG	CCTCAGCTTC	CAGGGCACT	TGGCCTGTT	GGTCTACTAG	1980
	GGCCCTGAAAG	TCCACCTGGC	CTTCTGTT	TTCACTCC	TCAGCCACAC	GCTTCATGGC	2040
40	CTTGAGTTCA	CTTGGCTG	CCTAACAGGG	CCAATCACCA	GTGACCA	AGACTGTGAT	2100
	TTTGATAGCC	TCATTGAGAA	GAAGGTGTC	AAGGAGCTGA	AGGTGGTGA	ATTGTC	2160
	CAGGTCCC	CTGGAGATCT	GGAGCTGGAG	CATGAGTGT	TGACAATCAG	AAGCATCATG	2220
	TCCAATGTC	AGATGGCCAG	AATGAATGTG	ATAGTCAGA	CCAATGCCTT	CCACTGCTCC	2280
	TTTATGACTG	CACTTCTAGC	CAGTAGCTC	GCACAAGTTA	GCTCTGTAGA	AGTAAGAACT	2340
45	TGGGCTTAAA	TCATGGCTA	TCTCTCCACA	GCCAAGTGG	GCTCTGAGAA	TACAACAAGT	2400
	GCTCAATAAA	TGCTGCTG	TTGACTGATG	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	2460
	AAAAAAAAAA	AAAAA	AAAAA	AAAAA	AAAAA	AAAAA	

50 ACG1 DNA sequence
 Gene name: Carbohydrate (chondroitin 6/keratan) sulfotransferase 1
 Unigene number: Hs.104576
 Probeset Accession #: AA868063
 Nucleic Acid Accession #: NM_003654
 Coding sequence: 367-1602 (predicted start/stop codons underlined)

55	GGGGAGGGCG	CGGGAGGGCG	AGGATGCCG	CGCGGCTGCT	GCCGCCGCG	CCACCCGCG	60
	GTCCCCGGCG	ACCCTACTCC	AGACCCGAGG	ATGGAGCCG	CGCTGGCGC	TGCAGCTGCT	120
	CCCGCGCGT	CCCCGACCA	GTAGCTGGT	TCACCTCG	GTGGTGGAA	GAAGACTTC	180
60	TCCCCAGCTG	CATTCCC	GGCGCC	CGACCTGGAG	GCCGGTCTG	CTGGCCACAG	240
	GGCTGCGCA	CTGGCTGG	CTGCCAGCTG	GGCCTGAGA	CGCTGGTGC	TGTGGACTCC	300
	CCAGCTTGG	GCAGTCC	TTTGACCTCA	CCCCTTGGAG	AAGCAGCCCC	ATGAAGGTGC	360
	CCAGCCATGC	AATGTTCTG	GAAGGCC	CTCCTCTT	CCCTGGCC	CATTGCCATC	420
	CAGTACACGG	CCATCCG	CTTACCC	AAGTCCTT	ACACCTGCC	CGGGCTGGCA	480
	GAGGCCGGCG	TGGCGAGCG	ACTGTGCGAG	GAGAGCCCA	CCTTCG	CAACCTCTCC	540
65	CGCAAGACCC	ACATCCTCAT	CTTGGCCACC	ACGCGCAGCG	GCTCTCCTT	CGTGGGCCAG	600
	CTCTTCAACC	AGCACCTGGA	CGTCTTCTAC	CTGTTGAGC	CCCTCTACCA	CGTCCAGAAC	660
	ACGCTCATCC	CCCGCTTCAC	CCAGGGCAAG	AGCCCGCCG	ACCGGCGGGT	CATGCTAGGC	720

	GCCAGCCGCG	ACCTCCTGCG	GAGCCTCTAC	GAUTGCGACC	TCTACTTCCT	GGAGAACTAC	780
	ATCAAGCCGC	CGCCGGCTAA	CCACACCACC	GACAGGATCT	TCCGCCGCGG	GGCCAGCCGG	840
	GTCTCTCTGCT	CCCGGCTGT	GTGCGACCCCT	CCGGGGCCAG	CCGACCTGGT	CCTGGAGGAG	900
5	GGGGACTGTG	TGCGCAAGTG	CGGGCTACTC	AACCTGACCG	TGGCGGCCGA	GGCGTGCAGC	960
	GAGCGCAGCC	ACGTGGCCAT	CAAGACGGTG	CGCGTCCCCG	AGGTGAACGA	CCTGCGCGCC	1020
	CTGGTGGAAAG	ACCCGGCGATT	AAACCTCAAG	GTCATCCAGC	TGGTCCGAGA	CCCCCGCGGC	1080
	ATTCTGGCTT	CGCGCAGCGA	GACCTTCCGC	GACACGTACC	GGCTCTGGCG	GCTCTGGTAC	1140
10	GGCACCGGGA	GGAAACCTA	CAACCTGGAC	GTGACCGAGC	TGACCAACGGT	GTGCGAGGAC	1200
	TTCTCCAATC	CCGTGTCCAC	CGGCCTCATG	CGGCCCCCGT	GGCTCAAGGG	CAAGTACATG	1260
	TTGGTGCCTG	ACGAGGACCT	GGCTCGGAAC	CCTATGAAGA	AGACCGAGGA	GATCTACGGG	1320
	TTCTGGGCA	TCCCCTGGGA	CAGCCACGTG	CCCCGCTGGA	TCCAGAACAA	CACGCGGGGC	1380
15	GACCCCCACCC	TGGGCAAGCA	CAAATACGGC	ACCGTGCAGA	ACTCGGCGGC	CACGGCCGAG	1440
	AAGTGGCGCT	TCCGCCTCTC	CTACGACATC	GTGGCCCTTG	CCAGAACACGC	CTGCCAGCAG	1500
	GTGCTGGCCC	AGCTGGGCTA	CAAGATCGCC	GCCTCGGAGG	AGGAGCTGAA	GAACCCCTCG	1560
	GTCAGCCTGG	TGGAGGAGCG	GGACTTCCGC	CCCTTCCTGT	<u>GACCCGGGCG</u>	GTGCGGGTGG	1620
	GGGCGGGAGG	CGCAAGGTGT	CGGTTTTGAT	AAAATGGACC	<u>GTTTTAACT</u>	GTTGCCTTAT	1680
	TAACCCCTCC	CTCTCCCAAC	TCATCTTCGT	GTCTTCCTG	CCCCCAGCTC	ACCCCACCTCC	1740
20	CTTCTGCCCC	TTTTTTGCT	CTGAAATTG	CACTACCGTCT	TGGACGGGAA	TCACTGGGGC	1800
	AGAGGGCGCC	TGAAGTAGGG	TCCCCTCCCC	CCCACCCCAT	TCAGACACAT	GGATGTTGGG	1860
	TCTCTGTGCG	GACGGTGACA	ATGTTTACAA	GCACCCACATT	TACACATCCA	CACACGACAA	1920
	CGGGCACTCG	CGAGGGCACT	TCTCAAGCTT	TTGAATGGGT	GAGTGGTCGG	GTATCTAGTT	1980
	TTTGCACTGT	CTTACTATTG	AAGGTAAGAG	GATACAAACA	AGAGGACAC	TTGTCTCTAA	2040
25	TTTATGAATG	GTGTCCATCC	TTTCCCCATC	CCTGCCTCCT	GCCCTGACG	CCCATTCCC	2100
	CCCTTAGAGC	AGCGAAACTG	CCCCCTCCTG	CCCGCCCTTG	CCTGTCGGTG	AGGCAGGTTT	2160
	TTACTGTGAG	GTGAACGTGG	ACCTGTTTCT	GTTCCTCAGTC	TGTGGTGATG	CTGTCTGTCT	2220
	GTCTGAGTCT	CGTGGCCGCC	CCTGGACCAAG	TGATGACTGA	TGAATCTTAT	GAGCTTCTGA	2280
	TTGATCTCGG	GGTCCATCTG	TGATATTCT	TTGTGCCAAA	AAGAAAAAAA	AAGAGTGGAT	2340
	CAGTTTGCTA	AATGAACATT	GAATTGAAA	TGCTTTATCT	GTGTTTCTG	AAATAAAAAG	2400
	AGTGCAATAA	TCACC					

AC65 DNA sequence

Gene name: Multimerin

Unigene number: Hs.268107

Probeset Accession #: U27109

Nucleic Acid Accession #: U27109.1

Coding sequence: 72-3758 (predicted start/stop codons underlined)

40	CTGCTATCAA	AAAGGCCATA	AGGATTTGT	CCCCAAATTT	CACATGAGCT	ACCTTGCTTC	60
	AAACTACTGA	<u>GATGAAGGGG</u>	GCAAGATTAT	TTGTCCTTCT	TTCTAGTTA	TGGAGTGGGG	120
	GCATTGGGCT	TAACAAACAGT	AAGCATTCTT	GGACTATACC	TGAGGATGGG	AACTCTCAGA	180
	AGACTATGCC	TTCTGCTTCA	GTTCCTCCAA	ATAAAATACA	AAGTTGCAA	ATACTGCCTAA	240
45	CCACTCGGGT	CATGTGGCG	GAGATAGCTA	CAACTCCAGA	GGCAAGAACT	TCTGAAGACA	300
	GTCTTCTTAA	ATCAACACTG	CCTCCCTCAG	AAACAAGTGC	ACCTGCTGAG	GGTGTGAGAA	360
	ATCAAACCTC	CACATCCACA	GAGAAAGCAG	AAGGAGTGGT	CAAGTTACAG	AATCTTACCC	420
	TCCCAACCAA	CGCTAGCATC	AAGTTCAATC	CTGGAGCAGA	ATCACTGGTC	CTTTCCAATT	480
	CTACACTGAA	ATTCTTCAG	AGCTTTGCCA	AAAAGTCAAA	TGAACAAGCA	ACTTCTCTAA	540
50	ACACAGTTGG	AGGCACCTGGA	GGCATTGGAG	GGTTTGAGG	CACTGGAGGC	GTGGGAAATC	600
	GAGCCCCACG	GGAAACATAC	CTCAGCCGGG	GTGACAGCAG	TTCCAGCCAA	AGAACTGACT	660
	ACCAAAATC	AAATTTCGAA	ACAACTAGAG	AAAAGAATTG	GTGTGCTTAT	GTACATACCA	720
	GGTTATCTCC	CACAGTGACAA	TTGGACAAACC	AGGTCACTTA	TGTTCAGGT	GGGAAAGGAC	780
	CTTGTGGCTG	GACCGGTGGA	TCTGTCTC	AGAGATCTCA	GAAGATATCC	AATCCTGTCT	840
	ATAGGATGCA	ACATAAAATT	GTCACTCTAT	TGGATTTGGAG	GTGCTGTCT	GGATACAGTG	900
55	GGCCGAAATG	TCAACTAAGA	GCCCAGGAAC	AGCAAAGTTT	GATACACACC	AACCAGGCTG	960
	AAAGTCATAC	AGCTGTGGC	AGAGGAGTAG	CTGAGCAGCA	GCAGCAGCAA	GGCTGTGGTG	1020
	ACCCAGAAGT	GATGAAAAAA	ATGACTGATC	AGGTGAACTA	CCAGGCAATG	AAACTGACTC	1080
	TTCTGCAGAA	GAAGATTGAC	AATATTCTT	TGACTGTGAA	TGATGTAAGG	AACACTTACT	1140
60	CCTCCCTAGA	AGGAAAAGTC	AGCGAAGATA	AAAGCAGAGA	ATTCAATCT	CTTCTAAAAG	1200
	GTCTAAAATC	CAAAGCATT	AATGTAATG	TAAGAGACAT	AGTAAGAGAA	CAATTAAAAA	1260
	TTTTTCAAAA	TGAATGCAA	GAGACTGTAG	CACAGCTCTT	CAAGACTGTA	TCAAGTCTAT	1320
	CAGAGGACCT	CGAAAGCACC	AGGCAAATAA	TTCAAAAAGT	TAATGAATCT	GTGGTTTCAA	1380
	TAGCAGCCCA	GCAAAAGTTT	GTTTGGTG	AAGAGAATCG	GCCCACTTTG	ACTGATATAG	1440
	TGGAACTAAG	GAATCACAT	GTGAATGAA	GGCAAGAAAT	GACTCTTACA	TGTGAGAAGC	1500
65	CTATTAAGA	ACTAGAAAGTA	AAGCAGACTC	ATTTAGAAGG	TGCTCTAGAA	CAGGAACACT	1560
	CAAGAAGCAT	TCTGTATTAT	GAATCCCTCA	ATAAAACCTC	TTCTAAATTG	AAGGAAGTAC	1620
	ATGAGCAGCT	TTTATCAACT	GAACAGGTAT	CAGACCAAGAA	GAATGCTCCA	GCTGCTGAGT	1680
	CAGTTAGCAA	TAATGTCACT	GAGTACATGT	CTACTTACA	TGAAAATATA	AAGAAGCAGA	1740
	GTTTGATGAT	GCTGCAAATG	TTTGAAGATT	TGCACATTCA	AGAAAGCAAG	ATTAACAATC	1800

5	TCACCGTCTC	TTGGAGATG	GAGAAAGAGT	CTCTCAGAGG	TGAATGTGAA	GACATGTTAT	1860
	CCAATGCAG	AAATGATTT	AAATTCAC	TTAAGGACAC	AGAAGAGAAT	TTACATGTGT	1920
	TAATCAAAAC	ATTGGCTGAA	CTTCTTTTC	CAATGGACAA	TAAGATGGAC	AAAATGAGTG	1980
	AGCAACTAAA	TGATTTGACT	TATGATATGG	AGATCCTCA	ACCCTTGCTT	GAGCAGGGAG	2040
	CATCACTCAG	ACAGACAATG	ACATATGAAC	AACCAAAGGA	AGCAATAGTG	ATAAGGAAAAA	2100
	AGATAGAAAAA	TCTGACTAGT	GCTGTCATA	GTCTAAATT	TATTATCAA	GAACTTACAA	2160
	AAAGACACAA	CTTACTTTAGA	AATGAAGTAC	AGGGTCTGAA	TGATGCTTA	GAAAGACGTA	2220
	TCAATGAATA	TGCCTTAGAA	ATGGAAGATG	GCCTCAATAA	GACAATGACT	ATTATAAATA	2280
	ATGCTATTGA	TTTCATCAA	GATAACTATG	CCCTAAAAGA	GACTTTAAGT	ACTATTAAGG	2340
10	ATAATAGTGA	GATCCATCAT	AAATGTACCT	CCGATATGGA	AACTATTTG	ACATTTATTC	2400
	CTCAGTCCA	CCGCTGAAT	GATTCTATT	AGACTTTGGT	CAATGACAAT	CAGAGATATA	2460
	ACTTTGTTT	GCAAGTCGCC	AAGACCTTG	CAGGTATTCC	CAGAGATGAG	AAACTAAATC	2520
	AGTCAACTT	CCAAAAGATG	TATCAAATGT	TCAATGAAAC	CACTTCCCA	GTGAGAAAAT	2580
	ACCAGAAAAA	TATGAGTCAT	TTGGAAGAAA	AACTACTCTT	AACTACCAAG	ATTTCCAAA	2640
15	ATTTGAGAC	TCGGTTGCAA	GACATTGAGT	CTAAAGTTAC	CCAGACGTC	ATACCTTATT	2700
	ATATTCAGT	AAAAAAGGC	AGTGTAGTTA	CAAATGAGAG	AGATCAGGCT	CTTCAACTGC	2760
	AACTATTTAA	TTCCAGATT	AAGGCGTTG	AAGCAAATC	TATCCATTT	TCAATTAACT	2820
	TCTTTTCGCT	TAACAAAATC	CTCCACGAG	TTTTAACAA	GTGTCAACAT	GCTTCTACAA	2880
	GTGTGTCAGA	ACTGAATGCT	ACCATCCCTA	AGTGGATAAA	ACATTCCCTG	CCAGATATT	2940
20	AACTTCTCA	GAAAGGTCTA	ACAGAATTG	TGGAACCAAT	AATTCACAAATA	AAAACCAAG	3000
	CTGCCCTATC	TAATTCACT	TGTTGTATAG	ATCGATCGTT	GCCTGGTAGT	CTGGCAAATG	3060
	TTGTCAAGTC	TCAGAACAA	GTAAAATCAT	TGCCAAAGAA	AATTAACGCA	CTTAAGAAC	3120
	CAACGGTAA	TCTTACCCACA	GTCCGTATAG	GCCGGACTCA	AAGAACACG	GACAACATAA	3180
	TATATCCTGA	GGAGTATTCA	AGCTGTAGTC	GGCATCCGTG	CCAAAATGGG	GGCACGTGCA	3240
	TAAATGGAAG	AACTAGCTT	ACCTGTGCCT	GCAGACATCC	TTTACTGGT	GACAACGTGCA	3300
	CTATCAAGCT	TGTGGAGAA	AATGCTTTAG	CTCCAGATT	TTCCAAAGGA	TCTTACAGAT	3360
	ATGCACCCAT	GGTGGCATTT	TTGCATCTC	ATACGTATGG	AATGACTATA	CCTGGTCTA	3420
	TCCTGTTAA	TAACCTGGAT	GTCAATTATG	GAGCTTCATA	TACCCCAAGA	ACTGGAAAAT	3480
	TTAGAATTCC	GTATCTGG	GTATATGTT	TCAAGTACAC	CATCGAGTC	TTTAGTGTCT	3540
	ATATTTCTGG	ATTTTAGT	GTGATGAGA	TAGACAAGCT	TGCATTGAG	TCTGAAAATA	3600
	TTAACAGTGA	AATACACTGT	GATAGGGTTT	TAACTGGGA	TGCTTATT	GAATTAATT	3660
	ATGGGAGGA	AGTCTGGTA	CGACTTGCAA	AAGGAACAAT	TCCAGCCAAG	TTTCCCCCTG	3720
	TTACTACATT	TAGTGGCTAT	TTATTATATC	GTACATAAGT	TAGTATGAAA	AACAGACTAT	3780
	CACCTTTATT	GAGAAACACG	CAGTGTTC	ATTTATCTT	GCTGACAT	CTGCTCTGTT	3840
	TTGGTTTTTC	TACAGGAAAT	GAAAATCAAC	TTGTTTTTT	AATATGAGTA	AACTTGTATG	3900
	TCTATTTAT	AAAATTATTT	GAATATTGTT	TAATGTCCTGA	ATATGAAAGA	GTTCTTGATC	3960
	CTAAAGAAAT	TTAGTGGCAC	AGAAAACAAA	GTGAATTG	TAGCATAATT	ATTCTTATTC	4020
	TTATTTCTTC	ATTTAAGTC	ATTGCAATGG	AAAGTAATAT	TATAAAACGG	TAATTACAAAC	4080
	ATATTATCAG	TCACAGTTT	CTTCCAAATT	AAACACTTAA	CTTTGTTAT	TCCCTGTATA	4140
40	TAATATATA	ACACACATTT	TCTAGATTCA	CAAATTAA	TAATTACTC	AAAAATG	

ACC6 DNA sequence
 Gene name: Homo sapiens cDNA FLJ11502 fis, clone HEMBA1002102, weakly similar to ANKRYIN
 Unigene number: Hs.213194
 Probeset Accession #: AA107101
 Nucleic Acid Accession #: AK021564
 Coding sequence: 1-450 (predicted stop codon underlined, 5' end sequence is open)

50	GTGCCGCGC	GGCCGCCGGT	GAGCCGCATG	GAGCCCCGGG	CGGCGGACGG	CTGCTTCTG	60
	GGCGACGTGG	GTTCCTGGGT	GGAGCGGACC	CCTGTGCACG	AGGCAGCCCA	GCGGGGTGGAG	120
	AGCCTGCAGC	TGCAACAGCT	GATCGAGAGC	GGCGCCTGCG	TGAACCAGGT	CACCGTGAC	180
	TCCATCACGC	CCCTGCACGC	AGCCAGTCTG	CAGGGCCAGG	CGCGGTGTGT	GCAGCTGCTG	240
	CTGGCGGCTG	GGGCCCAGGT	GGATGCTCGC	AAACATCGACG	GCACGACCCCC	GCTCTGCGAT	300
	GCCTGCGCCT	CGGGCAGCAT	CGAGTGTGTG	AAGCTCTTGC	TGTCTACGG	GGCCAAGGTC	360
	AACCCCTCCCC	TGTACACAGC	GTCCCCCTG	CACGAGGCCA	GCTTCCCCCG	CCTCCTGAGC	420
	ACCCCTGGCTT	CGACGCCCTG	GATCAACT <u>GA</u>	GCCAGGTGGA	ACTCTGGGG	GACATGGATC	480
	GCAATGAATT	CGACCACTAT	TTAACACTC	CTGGCTACCC	AGACTCCGCC	ACAGGGGCCA	540
60	TGGCCCTCA	TGGGCATGTT	CCGGTCTCCC	AGGT <u>TA</u> CACC	AACGGGTCCC	ACAGAGACCA	600
	GCCTCATCTC	CGTCCCTGGCT	GATGCCACGG	CCACGTA	CAACAGCTAC	AGTGTGTCT	660
	AGAGCTGGAG	GCGCCCGGTC	CGGTCA	GGCCCTC	TCCCTCTTGT	GCCTTGAGT	720
	GCAGAGGAGC	CGTCCAGCCA	CACAGCTT	CCTCCCACCG	CTCAGGGCAG	GGAGGTCTGA	780
	ACTGCGGCC	CAGAGCTTT	GGCTTAAGCT	GGACTCTCT	TATCCGAGTG	CCGCCTCTAT	840
65	CCCCTTCCCC	ACGTTCCAGC	CCCTGCAGCC	CACATT	GTATATTCT	TCAAGTGAGT	900
	TTTCCCTCCAG	CCCCTGAGAG	TTGCTGTCTC	CCAGTGAAT	GTTCACTGAC	GTCTTTCTT	960
	GGTAGCCATC	ATCGAAACTA	ATGGGGGAC	AGACTTGATA	GCCAAGGTCC	CTTCTGGTCC	1020
	AGTTTCTGA	TTTAGGGTTC	TCTCAAGATT	AATAAAGGAA	GATGGGGAAA	TTTGACTCAT	1080

TAATGAGCTC GCTAACCTAC GATCTGGTGA TAATTTGTG TGCACAGCCC AAGGACCAAG 1140
 AGGCTTTCTG CACTTTCTG ACCCCCTTCC AAAGTGACCA CAAAATTTCA AAGGGACTCA 1200
 TACAATTGAGA GAAAAAACAG TCAACCTGAT TTGAGAAATT AACCACTATG GCTAACTATA 1260
 TCACAGAAAA TGGGATTGAG TTAAAACATAT TTTATTTAA ATATACATT TAAAGCAGTT 1320
 5 CTTTTTTTGTGTTAATTG TTTATTATAC ACACACTTCA AGAGAATATG CACAGTCTAG 1380
 GCCGGGCACCG GTGGCTCACG CCTGTAATCC CAGCACTTG GGAGGCCAG GCATGTGGAT 1440
 CACCTGAGGT CAGGAGTTG AGACCAGCCT AGACAACATG GTGAAACCTT GTCTCTATGA 1500
 AAAATACAAA ATTTGCTGGG AGTGGTGGTG CATGCCGTGA ATCCCAGCTA CTTGGAAGGC 1560
 TGAGGCAGGA GAATGCTTG AACCTAGGAG GTGGAGGTTG CAGTGAGCTG AGATTGCACC 1620
 10 ATTGCACTCC AGCCTGTGCA ACAAGAGTGA AACTCCATT CAAG

ACC7 DNA sequence

Gene name: Human RAL A gene

Unigene number: HS.6906

Probeset Accession #: AA083572

Nucleic Acid Accession #: contig of X15014.1 and AK026850

Coding sequence: 1-621 (predicted start/stop codons underlined)

120 ATGGCTGCAA ATAAGCCAA GGGTCAGAAT TCTTGGCTT TACACAAAGT CATCATGGTG 60
 GCGAGTGGTG GCGTGGCAA GTCAGCTCTG ACTCTACAGT TCATGTACGA TGAGTTGTG 120
 GAGGACTATG AGCCTACCA AGCAGACAGC TATCGGAAGA AGGTAGTGT AGATGGGAG 180
 GAAGTCCAGA TCGATATCTT AGATACAGCT GGGCAGGAGG ACTACGCTGC AATTAGAGAC 240
 AACTACTTCC GAAGTGGGA GGGGTTCTC TGTGTTTCT CTATTACAGA AATGGAATCC 300
 TTTGCAGCTA CAGCTGACTT CAGGGAGCAG ATTTAAAGAG TAAAGAAGA TGAGAATGTT 360
 CCATTCTAC TGTTGGTAA CAAATCAGAT TTAGAACATA AAAGACAGGT TTCTGTAGAA 420
 GAGGCAAAA ACAGAGCTGA GCAGTGGAA GTTAACTACG TGGAAACATC TGCTAAAACA 480
 CGAGCTAATG TTGACAAGCT ATTTTTGAT TTAATGAGAG AAATTCGAGC GAGAAAGATG 540
 GAAGACAGCA AAGAAAAGAA TGAAAAAAAG AAGAGGAAAA GTTGTAGCCAA GAGAACAGA 600
 30 GAAAGATGCT GCATTTATA ATCAAAGCCC AAACCTCTT CTTATCTTGA CCATACTAAT 660
 AAATATAATT TATAAGCATT GCCATTGAAG GCTTAATTGA CTGAAATTAC TTTAACATT 720
 TGAAAATTGT TGTATATCAC TAAAAGCATG AATTGGAACT GCAATGAAAG TCAAATTTC 780
 TTTAAAAGA AATTAATATG GCTTCACCAA GAAGCAAAGT TCAACTTATT TCATAATTGC 840
 CTACATTAT CATGGCTCTG AATGTAGCGT GTAAGCTGT GTTTCTTGGG CAGTCTTCT 900
 35 TGAAATTGAA GAGGTGAAAT GGGGGTGGGG AGTGGGAGGA AAGGTGACTT CCTCTGGTGT 960
 TTATTATAAA GCTTAAATT TATATCATT TAAATGTC TGGTCTTCTA CTGCCTTGAA 1020
 AAATGACAAT TGTGAACATG ATAGTTAAC TACCACTT TTAACCATT ATTATGCAA 1080
 ATTAGAAGA AAAGTTATTG GCATGGTTGT TGCATATAGT TAAACTGAGA GTAATTCA 1140
 TGTGAATCTG CTTTAATTAC CTGGTAGATA ACTTAGAAAA GTGGTGTAAA CTTGTACATG 1200
 40 GAATTTTTG AATATGCCCTT AATTAGAAA CTGAAAAATA TCCGGTTATA TCATTCTGGG 1260
 TGTTCTTCA CTGACACAGC GGGTCCGCTG CCCCATGTGT CCTGGTGAGA AAATATATGC 1320
 CTGGCACAGC TTTGTATAG AAAATTCTTG AGAAGTAACT GTCCGCTAGA AGTCTGTCCA 1380
 AATTAAAT GTGTGCCATA TTCTGGTTCT TGAAAATAAG ATTCCAGAGC TCTTGTAC 1440
 CTTTAATAA ACTGCAAGTT CATTAATT GAAGGCCAG CATATATACT TGCAAGATAA 1500
 45 TTTTCAGCTG CAAGGATTCA GCACCATTA TGTTGAATG AACCCCTCCTT TTCTCTGAGA 1560
 TTCTGGTCCC TGGAAATCCC TTTCTGCTAG TGGTGACCAT GTA GTGTTA AGTTTTAAT 1620
 CTGGGAGCAG GGCATAGGAA GAAAATGTCA GTAGTGTAA TGCATTTGC ACTAGAACGC 1680
 TTCGGGAAAA TATTCATGCT TGCCATCTGT TCATTCTAA ATTATATTC ATAAAGTTAC 1740
 AGTTTGATAC AGGAATTATT AGGAGTAATT CTTTCTGTT TCTGTTATA ATGAAGAAC 1800
 50 CTGTAGCTAC ATTTCAGAA GTTAACATCA AGCCATCAA CCTGGTATA GTGCAGAAGA 1860
 CGTGGCACAC ACTGACCACCA CATTAGGCTG TGTCA CCTGGTGTGA CCTGCTGAA 1920
 GAATTCTAGC ATGCTACTTG GGGACATAAT TTCAGTGGGA AATATGCCAC TGACCGATT 1980
 TTTTTTTTTT CCTCTTGCA GTGGGGCTAG GACAGTTGAT TCAACAAAGT ATTTTTTCT 2040
 TTTTCTCAG GACAGGTCAA AGATGTGTT AGGCATTCCA GGTAACAGGT 2100
 55 GTGTATGTAA AGTAAAAAT AGGCTTTTA GGAACTCA CTTAGATAT TTACATCCAG 2160
 CTTCTCATGT TAAATATTG TCCTTAAAGG GTTTGAGATG TACATCTTC ATTTCGTATT 2220
 TCTCATAGGC TATGCCATGT GCGGAATTCA AGTTACCA GTA ACACTGG CCAGCGGCC 2280
 CAGCAATCTC CATGTGACT TATTACAGTC TTATTAACC AGGGTCCTA ACCACTAAC 2340
 TTGTGACTTT GCTTGAGAC CTTCCCTCTC CTGGGTACTG AGGTGCTATG AAGCCACTG 2400
 60 ACAAAGATGC ATCACGTGTC TTAGGCTGAT GCCACTACCC GATTGTTTA TTTGCTTT 2460
 GAGCCATTAA AAGACCAATA AACTCCCTT TTTAAAAAAA AAAAAAAA AAAAAAAA 2520

ACC9 DNA sequence

Gene name: KIAA0955 protein

Unigene number: HS.10031

Probeset Accession #: AA027168

Int
a70
Nucleic Acid Accession #: AB023172
Coding sequence: 314-1609 (predicted start/stop codons underlined)

5	CTGGTTCTCA	ACTTCTTTG	AAATAATGTT	CATAGAGAAG	GAGGGCTGTC	TGAGATTCGA	60
	GGGAAACAAG	CTCTCAGGAC	TTCCGGTCGC	CATGATGGCT	GTGGGCGGTA	AACGCGGTTA	120
	GTGCAAGCAT	CTGGGCCATC	TTCAATGGTA	AAAAAGATAC	AGTAAAGACA	TAAATACCAAC	180
	ATTTGACAAA	TGGAAAAAAA	GGAGTGTCCA	AAAAAGAGTA	GCAGCAGTGA	GGAAGAGCTG	240
	CCGAGACGGG	TATACAGGGG	GCTACCCGT	GTTTCTGAGA	CCCTTGTGA	CATCTCACAT	300
10	TTTTTCCAAG	AAGATGATGA	GACAGAGGC	GAGCCATTAT	TGTTCCGTGC	TGTTCTGAG	360
	TGTCAACTAT	CTGGGGGGG	CATTCCCAGG	AGACATTG	TCAGAAGAGA	ATCAAATAGT	420
	TTCCCTTTAT	GCTTCTAAAG	TCTGTTTGA	GATCGAAGAA	GATTATAAAA	ATCGTCAGTT	480
	TCTGGGGCCT	GAAGGAAATG	TGGATGTTGA	GTTGATTGAT	AAGAGCACAA	ACAGATAACAG	540
	CGTTTGGTTC	CCCACGTCTG	GCTGGTATCT	GTGGTCAGCC	ACAGGCCTCG	GCTTCCTGGT	600
15	AAGGGATGAG	GTCACAGTGA	CGATTGCGTT	TGGTCCCTGG	AGTCAGCACC	TGGCCCTGGA	660
	CTTGCAGCAC	CATGAACAGT	GGCTGGTGGG	CGGCCCCCTTG	TTTGATGTCA	CTGCAGAGCC	720
	AGAGGAGGCT	GTCGCCAAA	TCCACCTCCC	CCACTTCATC	TCCCTCCTAAG	GTGAGGTGGA	780
	CGTCTCTGG	TTTCTCGTTG	CCCATTTAA	GAATGAAGGG	ATGGTCTGG	AGCATCCAGC	840
	CCGGGTGGAG	CCTTCTATG	CTGTCCTGG	AAGCCCCAGC	TTCCTCTGA	TGGGCATCCT	900
	GCTGCGGATC	GCCAGTGGG	CTCGCCTCTC	CATCCCCATC	ACTTCCAACA	CATTGATCTA	960
20	TTATCACCCC	CACCCCGAAG	ATATTAAGTT	CCACTTGAC	CTTGTCCTCCA	GCGACGCCCT	1020
	GCTAACAAAG	GCGATAGATG	ATGAGGAAGA	TCGCTTCAT	GGTGTGCGCC	TGCAGACTTC	1080
	GCCCCCAATG	GAACCCCTGA	ACTTTGGTTC	CAGTTATATT	GTGTCTAATT	CTGCTAACCT	1140
	GAAAGTAATG	CCCAAGGAGT	TGAAATTGTC	CTACAGGAGC	CCTGGAGAAA	TTCAGCACTT	1200
	CTCAAAATTG	TATGCTGGC	AGATGAAGGA	ACCCATTCAA	CTTGAGGATTA	CTGAAAAAAG	1260
	ACATGGGACT	TTGGTGTGGG	ATACTGAGGT	GAAGCCAGTG	GATCTCCAGC	TTGTAGCTGC	1320
	ATCAGCCCCCT	CCTCCTTCT	CAGGTGCAGC	CTTGTGAAG	GAGAACCCACC	GGCAACTCCA	1380
	AGCCAGGATG	GGGGACCTGA	AAGGGGTGCT	CGATGATCTC	CAGGACAATG	AGGTTCTTAC	1440
	TGAGAATGAG	AAGGAGCTGG	TGGAGCAGGA	AAAGACACGG	CAGAGCAAGA	ATGAGGCC	1500
	GCTGAGCATG	GTGGAGAAGA	AAGGGGACCT	GGCCCTGGAC	GTGCTCTCA	GAAGCATTAG	1560
30	TGAAAGGGC	CCTTACCTCG	TGTCTTATCT	TAGACAGCAG	AATTGTAAA	ATGAGTCAGT	1620
	TAGGTAGTCT	GGAAGAGAGA	ATCCAGCGTT	CTCATTGAA	ATGGATAAAC	AGAAATGTGA	1680
	TCATTGATT	CAGTGTCAA	GACAGAAGAA	GACTGGTAA	CATCTATCAC	ACAGGCTTTC	1740
	AGGACAGACT	TGTAACCTGG	CATGTACCTA	TTGACTGTAT	CCTCATGCAT	TTTCCTCAAG	1800
	AATGTCTGAA	GAAGGTAAGT	ATATTCTTT	TAATTTTT	CCAACCATTG	CTTGATATAT	1860
	CACTATTTA	TCCATTGACA	TGATTCTTGA	AGACCCAGGA	TAAAGGACAT	CCGGATAGGT	1920
	GTGTTTATGA	AGGATGGGC	CTGGAAAGGC	AACTTTCTC	GATTAATGTG	AAAAATAATT	1980
	CCTATGGACA	CTCCGTTGA	AGTATCACCT	TCTCATACT	AAAAGCAGAA	AAGCTAACAA	2040
	AAGCTTCTCA	GCTGAGGACA	CTCAAGGCAT	ACATGATGAC	AGTCTTTTT	TTTTTTGTAT	2100
	GTAGGACTT	TAACACTTTA	TCTATGGCTA	CTGTTTATAG	AACAATGTAA	ATGTATTGTC	2160
40	TGAAAGAGAG	CACAAAAATG	GGAGAAAATG	CAAACATGAG	CAGAAATAT	TTTCCCACTG	2220
	GTGTGTAGCC	TGCTACAAAG	AGTTGTTGGG	TTAAATGTT	ATGGTCAACT	CCAAGGAATA	2280
	CTGAGATGAA	ATGTGGTAA	TCAACTCCAC	AGAACCA	AAAAGAAAAT	GAGGGTAATT	2340
	CAGCTTATTG	TGAGACAGAC	ATTCTGGCA	ATGTACCAT	CAAAAAATAA	GCCAACCTCG	2400
	ACATTGGAT	TCTACCATAG	ACTCTGTCA	TTTGTAGCCA	TTTCAGCTGT	CTTTGATTA	2460
45	ATGTTTTCGT	GGCACACATA	TTTCCATCCT	TTTATGTTA	ATCTGTTAA	AACAAGTTCC	2520
	TAGTAGACAC	CATCTGGTTG	AGTCAGTTT	TTTTATGGTG	TATTTGAAC	CCATTCTGAT	2580
	AGTCTCTTTT	AACTGGAAGA	TTTCAATTAC	TTACGTTAAT	GTAATTATTA	ATATGTTAGG	2640
	ATTATATCCTC	AGTCAGCCAG	TTTGTATGT	CTTTCTATT	CTACTGTTAT	CACATTGTA	2700
	CCACTTAAAG	TGGAATCTAG	GCACCTTATC	ACCATTAGA	TCCTTATTAC	TTTCTCATC	2760
50	TAGGATATAG	TTATCTCTA	CATAATCTT	CTGTATCTA	AAACCCATCA	ATAAATTATT	2820
	ATATATTCTC	TACTTTAAT	CACTCAGAAG	ATTTAAAAAA	CTCATGAGAA	GAGTAATCTG	2880
	TTATGTTTT	CCAGATATT	ACCATTCTG	TTGCTCTCC	TTCAATTATT	TCCAAATTTC	2940
	GTCTGCAAA	TTTCCACTTC	TTCTGATAGA	CGTTTTTAG	TTCTTTAGA	GTGGTTCTGA	3000
	TAGGTACAGA	TTCTCTTATT	TTTGCTTCC	TCTGAGGACA	TCTTTTCTC	ACCTTCATTC	3060
55	TCAGTGATGT	TTTTTGCTTG	TAGTATT	AGTTGACATT	TTTTCTGTT	CAGCAGTTTC	3120
	CTTTTACGTT	CCGTATTCTC	TGATGAGAAA	TCTGCAGTCA	TTCAAATTGT	TGTTTCCCTG	3180
	TATGTAGTGT	GTCATTCTTC	TGTCAGATT	CAAGGTATT	ATCTTTAGTT	TTTAGCCATT	3240
	TCATTATGTT	GGGGATGAGT	TTCCCTGTTT	TATTCCCTT	GGAATTGCT	CCAATTCTA	3300
	ATTTTGCACT	TTTATGCTT	TTACCAAATC	TAGAGTTT	CAGCCTAATT	TCTAAAATA	3360
60	CTTTTATTA	GCCTGATTTT	CATCTTTATA	GGAAATAGTT	TAAGTGTG	CAAGTTCCAA	3420
	TAGCTTATAT	GCCCAGAAGG	CCTCAAAAT	AAGAATT	AAAGAATACA	GAAAACAAAC	3480
	TTTTATATCC	TTCTCATGTC	TTCTACTGTA	AAATTCTAT	GCTTGCTAC	TCTAAACCTA	3540
	GTGTGAAATC	AACAGCTTGC	AGAATAGATG	AAAATTG	TGAATAGTGG	AATTCTTTA	3600
	AATGGAAACC	TCTTACATGT	GATTTTCCCT	GCCATCTAGA	AATAAACCAT	AGTATTATG	3660
	TTGAATCAAT	CAATATTATA	TTTTGTTTTT	TTCTCTCT	TCTGAGACTC	TTATTGTTGGA	3720
65	AATGTTAGAC	TTTTATGTTT	TCCTAAATGT	CCCTGATATT	CTACTTATT	AGAACATCTT	3780
	TTCAATTCT	CCATTATTCT	GATTGGTAA	TTTTAATTG	TCTATTTC	AATTGCTGG	3840
	AGTGTTCACC	TGTTGTTGTC	TGTGTCGTC	CACTGAGTGC	ATTCAACCACC	TTTTAAATT	3900

5	TGGTCACTGT ATGTATCAGT TCTAAAATTT CCATTTGTT CTCTATATTT TAAATTTCTT	3960
	GGCTTATATT CTATTTCTT GCAAATGTGT CAGCATTGTC TTGTTTGAGC TTTTTTTTTT	4020
	TCAAGACAGG GTCTCAACTC TGTACCCAG GCTGGAGTGC AGTGGTGCAG TCTCAGCTCA	4080
	CTGCAACCTC TGCCCTCTGG TTCAAGCGAT TATTGTCCT CAGCCTCCCTG AGTAGCTGGG	4140
	ATTACAGGCA TGCACCAACCA CAGCCCAGCT AATTTTTGT ATTTTTAGTA GAGACAGAGT	4200
	TTTGCTATGT TGGCAGGCT GGTTTGAAC TCCCTGGCTC AAGTGTACCA CCCACCTCAG	4260
	CCTCCCAAAG TGCTGGATT ACAGGCCACT ACACCTGGCA CATTGAGTA TTTTTTTTTT	4320
	TTTTTTTTT TTGAGATGGA GTCTCGCTCT GTCATCTAGG CTGGAGTGC GTGGTGTGAT	4380
10	CTCAGCTCAC TGAGCCTCT GTCTCCCAGG CTCAAGCGAT TCTCTTGCT CAGCCTCCCTG	4440
	AGTAGCTAGG ACTACAGGTG CATGCCAACCA CGCCCGGCTA ATTTTTTAA AAAATATTTT	4500
	TAGTAGAGAC AGGGTTTCAC CATTGGCC AGGATGGTCT CGATCTCCCTG ACCTCATGAT	4560
	CCACCCGCCT CGGCCTTCCA AAGTGCCTGGG ATTACAGGCA TGAGCCACCG TGCCCTGGCCT	4620
	CATTGAGTA TTTTTATAAT GTCTCTTTA AAGTCTTGT CAGATAATTG CACTGTACAT	4680
	GTATTCTAGT GTTTGGTGC CACTGAGTTG TCATTTGCCA GACAAGTGGA GATTTTGCA	4740
15	GCTCATCCTT GTATTCTCAG TAGTTCCGAT ATGTACCTCT GACATGTGAA TGTTATCTTA	4800
	TGAGACTCTG TTTTATTGT ATCCAACAGA AGATGTTAT TATTATTTG GCTTCTGTG	4860
	AACTGAGGTC TTAATATCAG CTCACTTTAA AAGTCTTGC AGTGGTATTG GGATCTATCC	4920
	TGTGTGTGCC TATGAGATT GGTGAGTGT ATCCTGTTAG CTCCATTCTC AGGGCGTTG	4980
	AATGTGAATT AGGACCAACCG CAATGAATGCA TCAAGTTGGG GTTGGCGTT AGAATTCTATA	5040
20	AAAGTCTTTA TATGCTCAG	

ACF6 DNA sequence

Gene name: Homo sapiens cDNA FLJ10669 fis, clone NT2RP2006275, weakly similar to
 Microtubule-associated protein 1B [CONTAINS: LIGHT CHAIN LC1]
 Unigene number: Hs.66046
 Probeset Accession #: AA609717
 Nucleic Acid Accession #: AK001531
 Coding sequence: 176-2194 (predicted start/stop codons underlined),

5	CATCTCCCCC AACCTGGGGG TCGTGTCTT CAACGCCTGC GAGGCCGCGT CGCGGCTGGC	60
	GGCCGGCGAG GATGAGGGGG AGCTGGCGCT GAGCCTCTG GCGCAGCTGG GCATCACGCC	120
	TCTGCCACTC AGCCGCGGCC CCGTGCCAGC CAAACCCACC GTGCTCTCG AGAAGATCGG	180
	CGTGGGCCGG CTGGACATGT ATGTGCTGCA CCCGCCCTCC GCGGCCGCGC AGCGCACCGCT	240
	GGCCTCTGTG TGCGCCCTGC TGGTGTGGCA CCCGCCGGC CCCGGCGAGA AGGTGGTGC	300
	CGTGCTGTT CCCGGTTGCA CCCGCCCGC CTGCCTCTG GACGGCCTGG TCCGCCGTGCA	360
	GCACTTGAGG TTCCCTGGAG AGCCCGTGGT GACGCCCGAG GACCTGGAGG GGCCGGGGCG	420
	AGCCGAGAGC AAAGAGAGCG TGGGCTCCCG GGACAGCTCG AAGAGAGAGG GCCTCCTGGC	480
	CACCCACCCCT AGACCTGGCC AGGAGCGGCC TGGGGTGGCC CGCAAGGAGC CAGCACGGC	540
40	TGAGGCCCCA CGCAAGACTG AGAAAAGAACG CAAGACCCCC CGGGAGTTGA AGAAAAGACCC	600
	CAAACCGAGT GTCTCCCGGA CCCAGCCGC GGAGGTGCGC CGGGCAGCCT CTCTGTGCCC	660
	CAACCTCAAG AAGACGAATG CCCAGCGGCC ACCCAAGCCC CGCAAGAGC CCAGCACGTC	720
	CCACTCTGGC TTCCCCCGGG TGGCAAATGG ACCCCCGCAGC CGGCCCGAGCC TCCGATGTGG	780
	AGAAGGCCAGC CCCCCCAGTG CAGCCTGCGG CTCTCCGAGCC TCCCAGCTGG TGGGCCACGCC	840
45	CAGCCTGGAG CTGGGGCGA TCCCAGCCGG GGAGGAGAAC GCACTGGAGC TGCCCTTGGC	900
	CGCCAGCTCA ATCCCAAGGC CACGCACACC CTCCCCCTGAG TCCCACCGGA GCCCCCGCAGA	960
	GGGCAGCGAG CGGCTGTCGC TGAGCCACT GCGGGGCGGG GAGGCCGGGC CAGACGCCCTC	1020
	ACCCACAGTG ACCACACCCA CGGTGACCAAC GCCCTCACTA CCCCAGAGG TGGGCTCCCC	1080
	GCACTCGACC GAGGTGGACG AGTCCCTGTC GGTGTCTTT GAGCAGGTGC TGCCGCCATC	1140
50	CGCCCCCACC AGTGAGGCTG GGCTGAGCCT CCCGCTGCCGT GGCCTCCGGG CGCGGCCGCTC	1200
	GGCTTCCCCCA CACGATGTGG ACCCTGTCCT GGTGTACCCC TGTAATTG AGCATCGCAA	1260
	GGCGGTGCCA ATGGCACCGG CACCTGCGTC CCCCGGAGC TCGAATGACA GCAGTGGCCCG	1320
	GTCACAGGAA CGGGCAGGTG GGCTGGGGGC CGAGGAGAGC CCACCCACAT CGGTCAAGCGA	1380
	GTCCCCGCC ACCCTGCTG ACTCGGATCC CGTCCCCCTG GCCCCCGGT CGCAGACTC	1440
55	AGACGAAGAC ACAGAGGGCT TTGGAGTCCC TCGCCACGAC CTTTGCCCTG ACCCCCTCAA	1500
	GGTCCCCCACA CCACTGCTG ACCCATCCAG CATCTGCATG GTGGACCCCG AGATGCTGCC	1560
	CCCCAAGACA GCACGGAAA CGGAGAACGT CAGCCGCACC CGGAAGCCCC TGGCCCGCCC	1620
	CAACTCACGC GCTGCCGCC CCAAAGCCAC TCCAGTGGCT GTCGCCAAAA CCAAGGGCT	1680
	TGCTGGTGGG GACCGTGCCTA GCGTACCACT CAGTGGCCGG AGTGAGCCCA GTGAGAAGGG	1740
60	AGGCCGGGCA CCCCTGTCCA GAAGTGCCTC AACCCCCAAG ACTGCCACTC GAGGCCCGTC	1800
	GGGGTCAGCC AGCAGCCGGC CCGGGGTGTC AGCCACCCCA CCCAAGTCCC CGGTCTACCT	1860
	GGACCTGGCC TACCTGCCCA GCGGGAGCAG CGCCCACTTG GTGGATGAGG AGTTCTTCCA	1920
	GCGCGTGCCTC AGCTCAGTCACTC TACTGGCCAG CAAGCAGCAT TGGGACCGTG ACCTGCAGGT	1980
	GCGGGCCGTC CTGGACGCCG TACTGGCCAG CAAGCAGCAT TGGTACCGAG AGACGCACGC	2040
65	GACCCCTGATC CCCACTTCTG ACTCGGTGGC CATGCATACG TGGTACCGAG AGACGCACGC	2100
	CCGGCACCAG GCGCTGGGGCA TCACGGTGT GGGCAGCAAC GGCAATGGT CGCCGACACG CCCCCCACTC	2160
	TGACGCCCTTC CGGCCCTGCA AGGTGGAGTT CTAGCCCCAT CGCCGACACG CCCCCCACTC	2220
	AGCCCAGCCC GCCTGTCCCT AGATTCAAGCC ACATCAGAAA TAAACTGTGA CTACACTTG	

TABLE 2

~~AAA4 Protein sequence:~~

Gene name: CCG-100 protein

Unigene number: Hs.275253

Probeset Accession #: AA089688

Protein Accession #: NP_057124

Signal sequence: predicted 1-23 (first underlined sequence)

Transmembrane Domain: predicted 201-217 (second underlined sequence)

emp24/gp25L/p24 domain: predicted 13-22?

Summary: gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. Members of this family are implicated in bringing cargo forward from the ER and binding to coat proteins by their cytoplasmic domains.

15	MGDKIWLPPF	VLLLAALPPV	LLPAGAAGFTP	SLDSDFFTFL	PAGQKECFYQ	PMPLKASLEI	60
	EYQVLDGAGL	DIDFHLASPE	GKTLVFEQRK	SDGVHTVETE	VGDYMFCDN	TFSTISEKVI	120
	FFELIILDNMG	EQAQEQQEDWK	KYITGTDILD	MKLEDILESI	NSIKSRLSKS	GHIQTLRAF	180
	EARDRNIQES	NFDRVNFWSM	<u>VNLVVMMVVVS</u>	AIOVYMLKSL	FEDKRKSRT		

~~AAA7 Protein sequence:~~

Gene name: Endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 (EDG1)

Unigene number: Hs.154210

Probeset Accession #: M31210

Protein Accession #: NP_001391

7 Transmembrane Domains: predicted 50-71, 92-110, 122-140, 160-177, 201-222, 251-269, 281-301 (underlined sequences)

Summary: Endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 may regulate the differentiation of endothelial cells. It binds the sphingolipid metabolite, sphingosine-1-phosphate, which may function as a second messenger in cell proliferation and survival.

20	MGPTSVPLVK	AHRSSVSDYV	NYDIIVRHYN	YTGKLNISAD	KENSIKLT <u>SV</u>	<u>VFILICCFII</u>	60
25	<u>LENIFVLLTI</u>	WKTKKFHRPM	YYFIGNALS	<u>DLLAGVAYTA</u>	<u>NLLSGATTY</u>	KLTPAQWFLR	120
30	EGSMFVALSA	<u>SVFSLLAIAI</u>	ERYITMLKMK	LHNGSNNFRL	<u>FLLISACWVI</u>	<u>SLILGGPIM</u>	180
35	GWNCISALSS	CSTVLPFLYHK	HYILFCCTTVF	<u>TLLLLSIVIL</u>	YCRIYSLVRT	RSRRLTFRKN	240
40	ISKASRSSEN	<u>VALLKTVIIV</u>	LSVFIACWAP	LFILLLLDVG	<u>CKVKTCDILF</u>	RAEYFLVLA	300
	LNSGTNPIII	TLTNKEMRRA	FIRIMSCCKC	PSGDSAGKFK	RPIIAGMEFS	RSKSDNSSHP	360
	QKDEGDNPET	IMSSGNVNSS	S				

~~AAB3 Protein sequence:~~

Gene name: Solute carrier family 20 (phosphate transporter), member 1 Human leukaemia virus receptor 1 (GLVR1)

Unigene number: Hs.78452

Probeset Accession #: L20859

Protein Accession #: NP_005406

Transmembrane domains: predicted 24-40, 62-78, 164-180, 198-214, 232-248, 513-529, 562-578, 604-620, 655-671

Cellular Localization: Likely a Type IIIa membrane protein (Ncyt Cexo)

45	MATLITSTTA	ATAASGPLVD	<u>YLWMLILGFI</u>	IAFVLAFSVG	ANDVANSFGT	AVGSGVVTLK	60
50	<u>QACILASIFE</u>	TVGSVILGAK	VSETIRKGLI	DVEMYNSTQG	LLMAGSVSAM	FGSAWQQLVA	120
55	SFLKLPISGT	HCIVGATIGF	SLVAKGQEGV	KWSELIKIVM	<u>SWFVSPLLSG</u>	<u>IMSGILFFLV</u>	180
60	RAFILHKADP	VPNGLRALPV	FYACTVGINL	FSIMYTGAPL	LGFDKLPLWG	<u>TILISVGCAV</u>	240
65	<u>FCALIVWFFV</u>	CPRMKRKIER	EIKCSPSESP	LMEKKNSLKE	DHEETKLSVG	DIENKHPVSE	300
	VGPATVPLQA	VVEERTVFSK	LGDLEEAPER	ERLPSVDSLKE	ETSIDSTVNG	AVQLPNGNLV	360
	QFSQAVSNQI	NSSGHQSQYHT	VHKDSGLYKE	LLHKLHLAKV	GI..1GDSGDK	PLRRNNSYTS	420
	YTMAICGMPL	DSFRAKEGEQ	KGEEMEKLW	PNADSKKRIR	ML..YTSYCNA	VSDLHSASEI	480
	DMSVKAAMGL	GDRKGNSNGSL	EEWYDQDKPE	<u>VSLLFQFLQI</u>	LTACFGSFAH	GGNDVSNAIG	540
	PLVALYLVYD	TGDVSSKVAT	<u>PI</u> <u>WLLLYGGV</u>	GICVGLVWG	RRVIQTMGKD	LTPITPSSGF	600
	<u>SIELASALTV</u>	VIASNIGLPI	STTHCKVGSV	VSVGWLRSKK	AVDWRLFRNI	FMAWFVTVPI	660
	<u>SGVISA</u>	AIMA	IFRYVILRM				

~~AAB4 Protein sequence:~~

Grat
G75
5

Gene name: Matrix metalloproteinase 10 (stromelysin 2)
Unigene number: Hs.2258
Probeset Accession #: X07820
Protein Accession #: NP_002416
Signal sequence: predicted 1-17 (underlined sequence)
Cellular Localization: predicted secreted

10 MMHLAFLVLL CLPVCSAYPL SGAKEEDSN KDLAQYLEK YYNLEKDVQ FRRKDSNLIV 60
KKIQGMQKFL GLEVTGKLDT DTLEVMRKPR CGVPDVGHFS SFPGMPKWRK THLTYRIVNY 120
TPDLPRTDAVD SAIKALKVW EEVTPLTFSR LYEGEADIMI SFAVKEHGDF YSFDPGHS 180
AHAYPPGPGL YGDIHFDDDE KWTEDASGTN LFLVAAHELG HSLGLFHSAN TEALMYPLYN 240
SFTELAQFRL SQDDVNGIQS LYGPPPASTE EPLVPTKSVP SGSEMPAKCD PALSFDAIST 300
LRGEYLFFKD RYFWRRSHWN PEPEFHLISA FWPSLPSYLD AAYEVNSRDT VFIFKGNEFW 360
AIRGNEVQAG YPRGIHTLGF PPTIRKIDAA VSDKEKKTY FFAADKYWRF DENSQSMEQG 420
15 FPRLIADDFF GVEPKVDAVL QAFGFFYFFS GSSQFEFDPN ARMVTHILKS NSWLHC

Verne
A76
20 AAB6 Protein sequence:
Gene name: Podocalyxin-like
Unigene number: Hs.16426
Probeset Accession #: U97510
Protein Accession #: NP_005388
Transmembrane domain: predicted 432-448 (underlined sequence)
Cellular Localization: predicted Type Ia membrane protein (Nexo)

25 MRCALALSAL LLLLSTPPPLL PSSPSPSPSP SPSQNATQTT TDSSNKTAAPT PASSVTIMAT 60
DTAQQSTVPT SKANEILASV KATTLGVSSD SPGTTTLLAQO VSGPVNTTVA RGGGSGNPTT 120
TIESPKSTKS ADTTTVATST ATAKPNTTSS QNGAEDTTNS GGKSSHSVTT DLTSTKAEHL 180
TTPHPTSPLS PRQPTLTHPV ATPTSSGHDH LMKISSSSST VAIPGYTFTS PGMTTTLPSS 240
VISQRTQQTS SQMPASSTAP SSQETVQPTTS PATALRTPTL PETMSSSPTA ASTTHRYPK 300
PSPTVAHESN WAKCEDLETQ TQSEKQLVLN LTGNTLCAAGG ASDEKLISLI CRAVKATFNP 360
AQDKCGIRLA SVPGSQTVVV KEITIHTKLP AKDVYERLKD KWDELKEAGV SDMKLGDQGP 420
PEEAEDRFSM PLIITIVCMA SFLLLVAALY GCCHQRLSQR KDQQLTEEL QTVENGYHDN 480
35 PTLEVMETSS EMQEKKVVSL NGELGDSWIV PLDNLTQKDDL DEEEDTHL

Am
A77
40 AAB8 Protein sequence:
Gene name: EGF-containing fibulin-like extracellular matrix protein 1
Unigene number: Hs.76224
Probeset Accession #: U03877
Protein Accession #: NP_004096 Variant 1
Signal sequence: predicted 1-17 (underlined sequence)
Summary: This gene spans approximately 18 kb of genomic DNA and consists of 12 exons. Two transcripts with distinct 5' UTR have been described; the resulting proteins have distinct N-terminal amino acid sequences. Translation initiation from internal methionine residues was observed with *in vitro* translation. A signal peptide sequence is predicted for translation initiation sites 1, 2, and 4. The protein isoforms contain 5 or 6 calcium-binding EGF2 domains and 5 or 6 EGF2 domains. Mutations in this gene cause the retinal disease Malattia Leventinese.
50 Transcript Variant: This variant (1) has a distinct 5' UTR and N-terminal protein sequence as compared to variant 2.

55 MLKALFLTML TLALVKSQDT EETITYTQCT DGYEWDPVRQ QCKDIDECDI VPDACKGGMK 60
CVNHYGGYLC LPKTAQIIVN NEQPQQETQP AEGTSGATTG VVAASSMATS GVLPGGGFVA 120
SAAAVAGPEM QTGRNNFVIR RNPADPQRIP SNPSHRIQCA AGYEQSEHNV CQDIDECTAG 180
THNCRADQVC INLRGFSFACQ CPPGYQKRGE QCVDIDECTI PPYCHQRCVN TPGSFYCQCS 240
PGFQLAANNY TCVDINECDA SNQCAQQCYN ILGSFICQCN QGYELSSDRL NCEDIDECRT 300
SSYLCQYQCV NEPGKFSCMC PGQYQVVRSR TCQDINECET TNECREDEMC WNYHGGFRCY 360
60 PRNPQCDPYI LTPENRCVCP VSNAMCRELP QSIVYKYMSI RSDRSVPSDI FQIQATTIYA 420
NTINTFRIKS GNENGEFYLR QTSPVSAMLV LVKSLSGPRE HIVDLEMLTV SSIGTFRTSS 480
VRLRTIIVGP FSF

Am
A78
65 AAB9 Protein sequence:
Gene name: Melanoma adhesion molecule, MUC 18 glycoprotein
Unigene number: Hs.231579
Probeset Accession #: M88882
Protein Accession #: NP_006491

*Cont
G18*
Signal sequence: predicted 1-17 (first underlined sequence)
Transmembrane domain: predicted 558-575 (second underlined sequence)
Cellular localization: predicted Type Ia membrane protein (Nex1)

5 MGLPRLVCAF LLAACCCP R VAGVPGEAEQ PAPELVEVEV GSTALLKCGL SQSQGNLSHV 60
DWF SVHKEKR TLIFRVRQGQ GQSEPG EYEQ RL SLQDRGAT LALTQVTPQD ERIFLCQGKR 120
PRSQEYRIQL RVYKAP EEPN IQVNPLGIPV NSKEPEEVAT CVGRNGYPIP QVIWYKNGRP 180
LKEEKNRVHI QSSQTVESSG LYTLQSLILKA QLVKEDKDAQ FYCELN YR L P SGNHMKESRE 240
VTVPVF YPTE KVWLEVEPVG MLKEGDRVEI RCLADGNPPP HFSISKQNP S TREAEETTN 300
10 DNGVLVLEPA RKEHSGRYEC QAWNLD TMIS LLSEPQELLV NYVSDRV RSP AAPERQEGSS 360
LT LTCEAESS QDLEFQWLRE ETDQVLERGP VLQLHDLKRE AGGGYRCVAS VPSIPGLNRT 420
QLV KLAIFGP PWMAFKERKV WVKENMV LNL SCEASGHPRP TISWNVN GTA SEQDQDPQRV 480
LSTLNLV LTP ELLETGVECT ASNDLGKNTS ILFLELVNL TLT PDSNTTT GLSTSTASPH 540
TRANSTSTER KLPEPESRGV VIVAVIVCIL VLAVLGAVLY FLYKKGKLPC RRSGKQEITL 600
15 PPSRKTELVV EVKSDKLPEE MGLLQGSSGD KRAPG DQGEK YIDL RH

*Unk
G19*
AAC1 Protein sequence:
Gene name: Matrix metalloproteinase 1 (interstitial collagenase)
Unigene number: Hs.83169
Probeset Accession #: X54925
Protein Accession #: NP_002412
Signal sequence: predicted 1-19 (underlined sequence)
Cellular localization: predicted secreted protein

20 MHSFPPPL LLL LFVGVVSHSF PATLETQE QD VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV 60
VEK LKQM QEF FGLKVTGKPD AETLKVMKQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN 120
YTPDLP RADV DHAIEKA FQL WSNVTPLTFT KVSEGQADIM ISFVRGDH RD NSPF DGP GGN 180
LAHAFQPGPG IGGDAH FDED ERWTNNFREY NLH RVAAH ELS GHSL GLSH ST DIG ALM YPSY 240
TFSGDVQLAQ DDIDGQIA Y GRSQNPVQPI GPQTPKACDS KLT FDAITTI RGE VMFFKDR 300
FYMRTNPYFYP EVELNFISVF W PQLPNGLEA AYE FADRDEV RFFF KGNK YWA VQGQNVLHGY 360
PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKY WRY DEY KRSMDPG YPKMIAHDFP 420
GIGHKVD AVE MKDGF YFFH GTRQYKFDPK TKRILTLQKA NSW FNC RKN

*Unk
G20*
AAC3 Protein sequence:
Gene name: Branched chain aminotransferase 1, cytosolic
Unigene number: Hs.157205
Probeset Accession #: AA423987
Protein Accession #: NP_005495
Cellular Localization: cytosolic
Summary: The lack of the cytosolic enzyme branched-chain amino acid transaminase (BCT) causes cell growth inhibition. There may be at least 2 different clinical disorders due to a defect of branched-chain amino acid transamination: hypervalinemia and hyperleucine-isoleucinemia. Since there are 2 distinct BCATs, mitochondrial and cytosolic, it is possible that one is mutant in each of these 2 conditions.

50 MDCSNGSAEC TGE GGSKEVV GT FKA KDLIV TPATILKEKP DPNNLVFGTV FTDHMLTVEW 60
SSEFGWEKPH IKPLQNL SLH PGSSALHYAV ELFEGLKAFR GVDNKIRLFQ PNLMMDR MYR 120
SAVRATLPV DKEELLCI QQLV KLDQEWV PYSTSASLYI RPAFIGTEPS LGVKKPTKAL 180
LFVLLSPVGP YFSSGT FNPV SLWANPKYVR AWKGGTG DCK MGGNYGSSLF AQCEDV DNGC 240
QQVLWLYGRD HQITEV GTM N LFLYWINEDG EEEELATPPLD GII LPGVTRR CILDLA HQWG 300
EFKV SERYLT MDDLT TALEG N RVREM FSSG TACVVCPVSD ILYKG E I H PTMENGPKLA 360
55 SRILSKLTDI QYGREESDWT IVLS

*Unk
G21*
ACG4 Protein sequence:
Gene name: Pentaxin-related gene, rapidly induced by IL-1 beta
Unigene number: Hs.2050
Probeset Accession #: M31166
Protein Accession #: NP_002843
Signal sequence: predicted 1-19 (underlined sequence)
Cellular localization: predicted secreted
Summary: TNF-inducible member of hyaluronate binding protein family, related to CD44

MHLLAILFCA LWSAVLAENS DDYDLMYVNL DNEIDNGLHP TEDPTPCDCG QEHSEWDKLF 60

IMLENSQMRE RMLLQATDDV LRGELQRLRE ELGRLAESLA RPCAPGAPAE ARLTSALDEL 120
 LQATRDAGRR LARMEGAEAQ RPEEAGRALA AVLEELRQTR ADLHAVQGWA ARSWLPAGCE 180
 TAILFPMRSK KIFGSVHPVR PMRLESFSAC IWVKATDVNL KTILFSYGTK RNPYEIQQLYL 240
 SYQSIVFVVG GEENKLVAEA MVSLGRWTHL CGTWNSEEGL TSLWVNGELA ATTVEMATGH 300
 5 IVPEGGILQI GQEKGCCVG GGFDETLAFLS GRLTGFNIWD SVLSNEEIRE TGGAESCHIR 360
 GNIVGWGVTE IQPHGGAQYV S

6/23
 10 ACK5 Protein sequence:
 Gene name: Von Willebrand factor; Coagulation factor VIII
 Unigene number: Hs.110802
 Probeset Accession #: M10321
 Protein Accession #: NP_000543
 15 Signal peptide: predicted 1-22 (underlined sequence)
 Cellular localization: predicted secreted

16 *6/23*
 MIPARFAGVL LALALILPGT LCAEGTRGRS STARCSLFGS DFVNTFDGSM YSFAGYCSYL 60
 LAGGCQKRSF SIIGDFQNGK RVSLSVYLGE FFDIHLFVNG TVTQGDQRVS MPYASKGLYL 120
 ETEAGYYKLS GEAYGFVARI DGSGNFQVLL SDRYFNKTCG LCGNFNIAE DDFMTQEGTL 180
 20 TSDPYDFANS WALSSGEQWC ERASPPSSSC NISSGEMQKG LWEQCOLLKS TSVFARCHPL 240
 VDPEPFVVALC EKTLCECAGG LECACPALLE YARTCAQEGM VLYGWTDHSA CSPVCPAGME 300
 YRQCVCSPCAR TCQSLHINEM CQERCVDGCS CPEGQLLDEG LCVESTECPC VHSGKRYPPG 360
 TSLSRDCNTC ICRNSQWICS NEECPGECLV TGQSHFKSFD NRYFTFSGIC QYLLARDCQD 420
 HFSIVIETV QCADDRAAVC TRSFTVRLPG LHNSLVKLKH GAGVAMDQD IQLPLLKGD 480
 RIQHTVTASV RLSYGEDLQM DWDGRGRLLV KLSPVYAGKT CGLCGNYNGN QGDDFLTPSG 540
 LAEPRVEDFG NAWKLHGDCQ DLQKQHSDPC ALNPRMTRFS EEACAVLTSP TFEACHRAVS 600
 PLPYLRNCRY DVCSCSDGRE CLCGALASYA AACAGRGRVW AWREPRGRCEL NCPKGQVYLO 660
 CGTPCNLTCR SLSYPDEECN EACLEGCFCP PGLYMDERGD CVPKAQCPY YDGEI FQPED 720
 25 IFSDDHMTCY CEDGFMHCTM SGVPGSLLPD AVLSSPLSHR SKRSLSCRPP MVKLVCPADN 780
 LRAEGLECTK TCQNYDLECM SMGCVSGCLC PPGMVRHENR CVALERCPCF HQGKEYAPGE 840
 TVKIGCNTV CRDRKWNCTD HVCADATCSTI GMAHYLTFDG LKYLFPGECCQ YVLVQDYCGS 900
 NPGTFRILVG NKGCSHPSVK CKKRVTILVE GGEIELFDGE VNVKRPKMD THFEVVESGR 960
 YIILLLGKAL SVVWDRHLSI SVVLKQTYQE KVCGLCGNFD GIQNNDLTSS NLQVEEDPV 1020
 FGNWKVSSQ CADTRKVPLD SSPATCHNNI MKQTMVDSSC RILTSDFVQD CNKLVDPEPY 1080
 30 LDVCIYDTCS CESIGDCACF CDTIAAYAHV CAQHGKVVTW RTATLCPQSC EERNLRENGY 1140
 ECEWRYNSCA PACQVTCQHP EPLACPVQCV EGCHAHCPPG KILLELLQTC VDPEDCPVCE 1200
 VAGRRFASGK KVTLNPSDPE HCQICHCDVV NLTCEACQEP GGLVVPPDTA PVSPTTLVY 1260
 DISEPPLHDF YCSRLLLDVF LLDGSSRLSE AEFEVLIKAFV VDMMERLRS QKWVRVAVVE 1320
 YHDGSHAYIG LKDRKRPSL RRIASQVKYA GSQVASTSEV LKYTLFQIFS KIDRPEASRI 1380
 40 ALLLMASQEP QRMSRNFVRY VQGLKKKVI VIPVGIGPHA NLKQIRLIEK QAPENKAFV 1440
 SSVDELEQQR DEIVSYLCDL APEAPPPTLP PHMAQTVTGP GLLGVSTLGP KRNSMVLDA 1500
 FVLEGSDKIG EADFNRSKEF MEEVIQRMDV GQDSIHVTWL QYSYMTVVEY PFSEAQSKGD 1560
 ILQRVREIRY QGGNRTNTGL ALRYLSDHSF LVSQGDREQA PNLYMVTGN PASDEIKRLP 1620
 45 GDIQVVPICG GPNANVQELE RIGWPNAPIL IQDFETLPR APDVLVQRCC SGEGLQIPTL 1680
 SPAPDCSQPL DVILLDGSS SFPASYFDEM KSFAKAFISK ANIGPRLTQV SVLQYGSITT 1740
 IDVPWNVVP KAHLLSLVDV MQREGGSPQI GDALGFAVRY LTSEMHGARP GASKAVVILV 1800
 TDVSVDVDA AADAARSNRV TVFPIGIGDR YDAAQLRILA GPAGDSNVVK LQRIEDLPTM 1860
 VTLGNSFLHK LCSGFVRICM DEDGNEKRPQ DVWTLPDQCH TVTCQPDQG LLKSHRVNCD 1920
 RGLRPSCPNS QSPVKVEETC GCRWTCPCVC TGSSTRHIVT FDGQNFKLTG SCSYVLFQNK 1980
 50 EQDLEVILHN GACSPGARQG CMKSIEVKHS ALSVELHSDM ETVVNGLRVS VPYVGGNMEV 2040
 NVYGAIMHEV RFNHLGHIFT FTPQNNEFQL QLSPKTFASK TYGLCGICDE NGANDFMLRD 2100
 GTVTTDWKTL VQEWTQVRPG QTCQPILEQ CLVPDSSHQV VLLPLFLAEC HKVLAPATFY 2160
 AICQQDSDSCHQ EQVCEVIAISY AHLCRTNGVC VDWRTPDFCA MSCPPSLVYN HCEHGCPRHC 2220
 DGNVSSCGDH PSEGCFCPD KVMLEGSCVP EEACTQCIGE DGVOHQFLEA WVPDHQPCQI 2280
 55 CTCLSGRKVN CTTQPCPTAK APTCGLCEVA RLRQNADQCC PEYECVCDPV SCDLPPVPHC 2340
 ERGLQPTLTN PGECRPNFTC ACRKEECKRV SPPSCPPHRL PTLRKTQCCD EYECACNCVN 2400
 STVSCPGLYI ASTATNDCGC TTTCLPDKV CVHRSTIYPV GQFWEEGCDV CTCTDMEDAV 2460
 MGLRVAQCSQ KPCEDCSRSG FTYVLHEGEC CGRCLPSACE VVTGSPRGS QSSWKSVGSQ 2520
 60 WASPENPCLI NECVRVKEEV FIQQRNVSCP ^LEVPVCPGQ FQLSCKTSAC CPSCRCEM 2580
 ACMNLNTVIG PGKTVMDVC TTCCRQMVQVG ISGFKLECR KTTCNPCPLG YKEENNTGEC 2640
 CGRCLPCTACT IQLRGQGQIMT LKRDETLDQDG CDTHFCKVNE RGEYFWEKRV TGCPPFDEHK 2700
 CLAEGGKIMK IPGTCCDTCE EPECNDITAR LQYVKVGSCX SEVEVDIHYC QGKCASKAMY 2760
 SIDINDVQDQ CSCCSPTRTE PMQVALHCTN GSVVYHEVNL AMECKCSPRK CSK

6/23
 65 AA17 protein sequence:
 Gene name: KIAA1294 protein
 Probeset Accession #: AA432248

Cont
a 83

Protein Accession #: BAA92532
 Cellular localization: predicted nuclear protein
 PFAM prediction: 22-153 Band 41 domain (underlined seq). A number of cytoskeletal-associated proteins that associate with various proteins at the interface between the plasma membrane and the cytoskeleton contain a conserved N-terminal domain of about 150 amino-acid residues.

10 MAVQLVPDSA LGLLMMTEGR RCOVHLLDDR KLELLVQPKL LAKELLDLVA SHFNLKEKEY 60
 FGIATD**E**TG HLNWLQ**D**RR VLEHDFPKKS GPVVL**Y**FCVR FYIESISY**L**K DNATIELFFL 120
 NAKSCIY**K**EL IDVDSEVV**F**E LASY**I**L**Q**EAK GDFSSNEVVR SDLKKL**P**ALP TQALKEHPSL 180
 AYCEDRVIEH YKKLNG**Q**TRG QAI**V**N**Y**MSIV ESLPTYGV**H** YAV**K**D**K**Q**G**IP WWLGLSY**K**GI 240
 FQ**D**YDH**K**V**K** PRK**I**F**Q**W**R**QL ENLYF**R**EKK**F** SVEV**H**D**P**RR**A** SVT**R**RT**F**GH**S** GIAV**H**T**W**Y**A**C 300
 PALIKSIWAM AISQHQ**F**YLD R**K**QSKSK**I**HA ARSL**S**EIA**I**LD LTET**G**TL**K**TS KLAN**M**GS**K**G**K** 360
 IISGSSGSLL SSGSQESDSS QSAKK**D**MLAA L**K**SR**Q**E**A**LEE**L** TLR**Q**R**L**EE**L**K KLCL**R**EA**E**LT 420
 15 GKL**P**VEY**P**LD P**G**EEPP**I**IV**R** RIGT**A**FK**L**DE Q**K**ILPK**G**EEA E**L**ER**L**ER**E**FA I**Q**S**Q**ITE**A**AR 480
 R**L**ASD**P**N**V**SK K**L**KK**Q**R**K**TS**Y** L**N**AL**K**KL**Q**E**I** EN**A**IN**E**NI**R**IK SG**K**KPT**Q**R**A**S L**I**I**D**D**G**NI**A**S 540
 EDSSLS**D**ALV**L** LE**D**ED**S**Q**V**TS**T** T**I**SP**L**H**S**PK**H** GLPP**R**PP**S**HN RPPPPQSLEG LR**Q**M**H**Y**H**R**N**D 600
 YDK**S**PI**K**PK**M** W**S**ESS**L**DE**P**Y E**K**V**K**KR**S**SS**H**S HSSSH**K**R**F**PS TG**C**AEAGGG SNSL**Q**N**S**PI**R** 660
 GLPHWNSQSS MP**S**TP**D**L**R**VR**R** SP**H**YV**H**STR**S** VDISP**T**RL**H**S LALH**F**R**H**RSS S**L**ES**Q**G**K**LL**G** 720
 SENDTGSPDF YTPRTRSSNG SDPMDDCCSC TSHSSSEHYY PAQM**N**AN**Y**ST LAED**D**PS**K**AR 780
 QRQRQRQRAA GALGSASSGS MP**N**LAARGGA GGAGGAGGGV YLHSQSQPSS QYRIKEYPLY 840
 IEGGATPVVV RSLES**D**Q**E**CH YSV**K**A**Q**F**K**TS NSYTAGGL**F**K ESWRG**G**GG**D**E GDTGRLTPSR 900
 SQILRTPSLG REGAHDKGAG RAAV**S**DEL**R**Q WYQRSTASH**K** EH**S**RLSHTSS TSSDS**G**S**Q**YS 960
 TSSQSTFVAH SRVTRMPQMC KAT**S**ALP**Q**S QRS**S**TP**S**SEI GATPPSSPH**H** ILT**W**QT**G**EAT 1020
 ENSPILD**G**SE SPPHQ**S**TDE

8mz
a 84

ACG8 Protein sequence:

Gene name: ubiquitin E3 ligase SMURF2
 Unigene number: Hs.21806 (3' UTR only)
 Probeset Accession #: AA398243
 Protein Accession #: AF301463_1
 Cellular Localization: predicted cytoplasmic
 Summary: Smurf2 Is a Ubiquitin E3 Ligase Mediating Proteasome-dependent Degradation of Smad2 in Transforming Growth Factor-beta Signaling

40 MSNP**G**RRNG PV**K**LRL**T**V**L** AKNLV**K**K**D**FF RLPDP**F**AK**V**V VDGSG**Q**CH**H**ST DTV**K**NT**L**DP**K** 60
 WNQHYDLY**I**IG KSDSV**T**IS**V**W NHKK**I**HK**K**Q**G** AGFL**G**C**V**LL S**N**AIN**R**L**K**DT G**Y**Q**R**LD**L**CK**L** 120
 GPN**D**ND**T**VR**G** QIVV**S**LS**Q**SR**D** RIGT**G**Q**V**V**D** CS**R**LF**D**ND**L**P DG**W**E**R**RT**A**S G**R**I**Q**Y**L**N**H**IT 180
 RTT**Q**WERP**T**TR PASEY**S**SP**G**R PL**S**CF**V**D**E**NT P**I**S**G**T**N**G**A**TC G**Q**SS**D**P**R**LA**E** RR**V**RS**Q**R**H**RN 240
 45 YMSRT**H**L**H**TP**R** PDL**P**EG**E**Y**Q**R TT**Q**Q**G**Q**V**Y**F**L HT**Q**T**G**V**S**TH**W** D**P**RV**P**RD**L**SN IN**C**EE**L**GP**L**P 300
 PG**W**ER**I**NT**T**AT GRV**Y**F**V**D**H**NN RT**T**Q**F**TD**P**RL SANL**H**L**V**LN**R** Q**N**Q**L**K**D**QQ**Q**Q**Q** Q**V**V**S**LC**P**DD**T** 360
 E**C**LT**V**PRY**K**R DL**V**Q**K**L**K**IL**R** Q**E**LS**Q**QQ**Q**P**Q**A G**H**C**R**IE**V**S**R**E E**I**FE**E**SY**R**Q**V** MK**M**RP**K**D**L**W**K** 420
 RLM**I**K**F**R**G**E**E** GL**D**Y**G**GV**A**RE W**L**Y**L**LSHE**M**L N**P**Y**Y**GL**F**Q**Y**S R**D**DI**Y**TL**Q**IN P**D**SA**V**N**P**E**H**L 480
 SYFH**F**V**G**RIM G**M**AV**F**H**G**HY**I** DGG**F**TL**P**F**Y**K Q**LL**G**K**S**I**T**L**D DM**E**L**V**DP**D**L**H** NS**L**V**W**I**E**ND 540
 IT**G**V**L**D**H**TF**C** VEH**N**AY**G**E**I**I Q**H**EL**K**P**N**GS**K**S IP**V**N**E**EN**K**KE Y**V**R**L**Y**V**N**W**R**F** L**R**G**I**E**A**Q**F**LA 600
 L**Q**K**G**F**N**E**V**I**P** Q**H**LL**K**T**F**DE**K** E**E**LE**I**I**C**GL**G** K**I**D**V**N**D**K**V**N**T** R**L**K**H**C**T**P**D**S N**I**V**K**W**F**K**A**V 660
 50 EFF**D**E**R**R**A**R LL**Q**F**V**T**G**SS**R** V**P**L**Q**G**F**K**A**Q**G**P**R**L**F**TI HQ**I**DA**T**NN**L** P**K**A**H**TC**F**N**R**I 720
 DIP**P**Y**E**SY**E**K LY**E**KL**L**TA**I**E E**T**CG**F**AV**E**

8mz
a 85

ACM Protein sequence:

Gene name: EST
 Unigene number: Hs.30089
 Probeset Accession #: AA410480
 CAT cluster #: cluster 96816_1
 Summary: predicted open reading frame

60 PLWTEPPLSC CLPATYPADR GPAEPCSCAG VILGFLLFRC HNSQPTMTQT S**T**SQGGLG**G** 60
 SLT**T**EPV**S**SN P**G**Y**I**PS**S**SE**N** RPSHLSSTGT PGAGVPSSGR DGG**T**SR**D**TF**Q** T**T**PPN**S**TT**M**S 120
 LSM**R**ED**A**T**I**L PS**P**T**S**ET**V**LT VAAFG**V**IS**F**I VILVVVV**V**I**L** VG**V**V**S**LR**F**K**C** R**K**S**K**E**S**GD**P**Q 180
 KPG**E**RE**E**K**V**G HR**R**E**P**P**W**N

8mz
a 86

ACJ2 Protein sequence:

Gene name: Complement component C1q receptor
 Unigene number: Hs.97199
 Probeset Accession #: AA487558

Protein Accession #: NP_036204
Signal sequence: 1-17 (first underlined sequence)
Transmembrane domain: 589-605 (second underlined sequence)
Cellular localization: This gene encodes a predicted type I membrane protein.
Summary: This protein acts as a receptor for complement protein Clq, mannose-binding lectin, and pulmonary surfactant protein A. This protein is a functional receptor involved in ligand-mediated enhancement of phagocytosis.

	<u>MATSMGLLL</u>	<u>LLLLLTOPGA</u>	GTGADTEAVV	CVGTACYTAH	SGKLSAAEQ	NHCNQNGNL	60
10	ATVKSKEEAQ	HVQRVLAQLL	RREAALTARM	SKFWIGLQRE	KGKCLDPSLP	LKGFSWVGGG	120
	EDTPYSNWHK	ELRNCSISKR	CVSLLLLDSLQ	PLLPNRLPKW	SEGPAGSPGS	PGSNIEGFVC	180
	KFSFKGMCRP	LALGGPGQVT	YTPPFQTTSS	SLEAVPFASA	ANVACGEGDK	DETQSHYFLC	240
	KEKAPDVFDW	GSSGPLCVSP	KYGCNFNNGG	CHQDCFEGGD	GSFLCGCRPG	FRLDDDLVTC	300
	ASRNPCSSSP	CRGGATCVLG	PHGKNYTCRC	PQGYQLDSSQ	LDCVDVDECQ	DSPCAQEBCVN	360
15	TPGGFRCECW	VGYEPGGPGE	GACQDVDECA	LGRSPCAQGC	TNTDGSFHCS	CEEYVVLAGE	420
	DGTQCDVDE	CVGPGGPLCD	SLCFNTQGSF	HCGCLPGWVL	APNGVSTCMG	PVSLGPPSGP	480
	PDEEDKGKE	GSTVPRRAATA	SPTRGPEGTP	KATPTTSRPS	LSSDAPITSA	PLKMLAPSNS	540
	SGVWREPSIH	HATAASGPQE	PAGGDSSVAT	QNNDGTDGQK	LLLFIYILGTV	<u>VAILLLLALA</u>	600
	LGLLVYRKRR	AKREEKKEKK	PONAADSYW	VPERAESRAM	ENQYSPTPGT	DC	

ACJ3 Protein sequence:
Gene name: FLT1/vascular endothelial growth factor receptor
Unigene number: Hs.138671
Probeset Accession #: AA047437
Transmembrane domain: predicted 764-780 (underlined sequence)
Cellular Localization: predicted cell surface tyrosine kinase

30	MVSYWDTGVL	LCALLSCLLL	TGSSSGSKLK	DPELSLKGTQ	HIMQAGQTLH	LQCRGEAAHK	60
	WSLPEMVSKE	SERLSITKSA	CGRRNGKQFCS	TLTLLNTAQAN	HTGFYSCKYL	AVPTSKKKET	120
	ESAIYIFISD	TGRPFVEMYS	EIPEIHHMTE	GRELVIPCRV	TSPNITVTLK	KFPLDTLIPD	180
	GKRIIWDSRK	GFIISNATYK	EIGLLTCEAT	VNGHLYKTNY	LTHRQTNII	DVQ1STPRPV	240
	KLLRGHTLVL	NCTATTPLNT	RVQMTWSYPD	EKNKRASVRR	RIDQSNSHAN	IFYSVLTIDK	300
	MQNKDKGGLYT	CRVRSGPSFK	SVNTSVHIYD	KAFITVKHRK	QVQLETVAGK	RSYRLSMKVK	360
35	AFPSPEVVWL	KDGLPATEKS	ARYLTRYGSL	IIKDVTDEEDA	GNYTILLSIK	QSNVFKNLTA	420
	TLIVNVKPKQI	YEKAVSSFPD	PALYPLGSRQ	ILTCTAYGIP	QPTIKWFWHP	CNHNHSEARC	480
	DFCSNNEESF	ILDADSNMGN	RIESITQRMIA	IEGKNNMAS	TLVUVADSRIS	GIYICIASNK	540
	VGTVGRNISF	YITDVPNGFH	VNLEKMPTEG	EDLKLSTCTVN	KFLYRDTVTW	LLRTVNNRTM	600
	HYSISKQKMA	ITKEHSITLN	LTIMMVSLQD	SGTYACRARN	VYTGEEILQK	KEITIRDQEA	660
40	PYLLRNLSDH	TVAISSLSTT	DCHANGVPEB	QITWFKNNHK	IQQEPMIILG	PGSSTLFIER	720
	VTEEDEGVYH	CKATNQKGSV	ESSAYLTVQG	TSDKSNLELI	TLTCTCVAAT	<u>LFWLLLLLL</u>	780
	RKMKRSSLSEI	KTDYLSIIMD	PDEVPLDEQC	ERLPYDASKW	EFARERLKG	KSLGRGAFGK	840
	VVQASAFGIK	KSPTCRTVAV	KMLKEGATAS	EYKALMTELK	ILTHIGHHLN	VVNLLGACTK	900
	QGGPLMVIVE	YCKYGNLSNY	LKSKRDLFFL	NKDAALHMEP	KKEKMEPGL	QGKKPRLDHV	960
45	TSSESFASSG	FQEDKSLSDV	EEEEDSDGFY	KEPITMEDLI	SYSFQVARGM	EFLSSRKCIH	1020
	RDLAARNILL	SENNVVKICD	FGLARDIYKN	PDIVVRKGDT	LPLKWMAPES	IFDKIYSTKS	1080
	DVWSYGVLLW	EIFSLGGSPY	PVGQMDLEDFC	SRLREGMRM	APEYSTPEIY	QIMLDCWHRD	1140
	PKERPRFAEL	VEKLGDLQQA	NVQQDGKDYI	PINAILTGN	GFTYSTPAFS	EDFFKESISA	1200
	PKFNGSSDD	VRYVNAFKFM	SLERIKTFFEE	LLPNATSMFD	DYQGDSSTLL	ASPLMLKRFTW	1260
50	TDSKPKASLK	IDLRTVTSKSK	ESGLSDVSRP	SFCHSSCGHV	SEGKRRFTYD	HAELEKIA	1320
	CSPPPDYNSV	VLYSTPPI					

~~ACJ9 Protein sequence:~~
Gene name: Purine nucleoside phosphorylase
Unigene number: HS_75514
~~Probeset Accession #:~~ K02574
Protein Accession #: P0025320
Cellular Localization: predicted cytoplasmic
Summary: likely to catalyze the reversible phosphorolytic cleavage of purine ribonucleosides and 2'-deoxyribonucleosides

65	MENGYTYEDY	KNTAEWLLSH	TKHRPQVAAI	CGSGLGGLTD	KLTQAQIFDY	SEIPNFPQRST	60
	VPGHAGRLVF	GFLNGRACVM	MQGRFHMYEG	YPLWKVTFPV	RVFHLLGVDT	LVVTNAAGGL	120
	NPKFEVGDIM	LIRDHINLPG	FSGQNPLRGP	NDERFGDRFP	AMSDAYDRTM	RQRALSTWKQ	180
	MGEQRELOEG	TYVMVAGPSF	ETVAECRVLQ	KLGADAVGMS	TVPEVIVARH	CGLRVFGFSL	240
	ITNKVIMDYE	SLEKANHEEV	LAAGKQAAQK	LEQFVSIILMA	SIPLPDKAS		

Un
A89
5
10
L
20
30
40
50
60
70
80
90
100

ACK4 Protein sequence

Gene name: EST
Probeset Accession #: R68763
Predicted amino acid seq: EGENESH exon prediction on BAC clone AC009414
Predicted nuclear target motifs: from 25 (4) RRRP (underlined); 176 (5) RRRR (underlined); 177 (5) RRRR (underlined; 239 (8) KRKK (underlined); 399 (4) PPRARRT (underlined); 400 (5) PRARRT (underlined)
Cellular localization: predicted nuclear

MPPEQHHQPN KVSPKLCSAQ PAPRGRRRP GRGPAAGGRT FANARFVLGE GVAIERGADD 60
TTQPPVAGSV NPEGAAALV PLAGARVAAA ADALHDAPRA VPGLLALGLV TGQADQRPG 120
GARQQQQQPQ QRDQEVPAAAG QPPVPRHQVH PPAPPPPPR SRAGSGAGAL PCAGHTRRRRR 180
RTSSPRSSPP LSGPPGRASP RGARPPPLLR AAPTPSPRAL APAAASPPPP PPPPGREGEK 240
15 RKKFPPGSSG STQTSGAAAA VAAALGSSPG RRRLLPLLLR VGRPRSGAAS GPVPASRAAE 300
WARWRSTRSA ASAPRAPLAS LLRRSSGRLF MAGASAARAA PSPILPPPPD LPPTPTRRAP 360
LIGCPPSPAR PAPSASPSPS RAAGPFLPPS HASTSSRSPP PRARRTEPAV PPSCGSGPGA 420
AGALRMGLGR TQRAARVAVS RALAGTVAAS AGLGARRARR LHLRGQIGVR RVAGTPEARG 480
RGDGCSLGRV SPDRTPGKGS KGMEPPHTG

AAA8 Protein sequence

Gene name: ETL protein, with extended open reading frame
Unigene number: Hs.57958
Probeset Accession #: D58014
Protein Accession #: AAG33021
Transmembrane domains: predicted 454-470, 486-502, 511-527, 528-544, 556-572, 600-616, 642-661, 672-689 (underlined sequences)
Extended sequence: Residues 1-564 were added to the sequence in AAG33021
Cellular Localization: predicted cell surface serpentine receptor

MKTAALTPPR SPPPPPLRPP PMKRLPLVV FSTLLNCSYT QNCTKTPCLP NAKCEIRNGI 60
EACYCNMGFS GNGVTICEDD NECGNLTQSC GENANCTNT E GSYYCMCVPG FRSSSNQDRF 120
ITNDGTVIE NVNANCHLDN VCIAANINKT LTKIRSIKEP VALLQEYVRN SVTDLSPTDI 180
ITYIEILAES SSSLGYKNNT ISAKDTLSNS TLTEFVKTVN NFVQRDTFVV WDKLSVNHR 240
THLTKLMHTV EQATLRIQS FQKTTEDTN STDIALKVF FDSYNMKHIH PHMNMDGDI 300
NIFPKRKAAY DSNGNVAVAF LYKKSIGPLL SSSDNFLKP QNYDNSEEEE RVISSVISVS 360
MSSNPPTLYE LEKITFTLSH RKVTDYRSL CAFWNYSPTD MNGWSSEGC ELTYSNETHT 420
SCRNCNLHTH AILMSSGPSI GIKDYNILTR ITQLGIIISL ICLAI CIFTF WFFSEI QSTR 480
40 TTIHKNLCCS LFLAELVFLV GINTNTNKX SVSIIAGLLH YFFLAFAWM CIEGIHLYLI 540
VVGVIYNKGF LHKNFYIFGY LSPAVVVGFS AALGYRYYGT TKVWLSTET HFIWSFIGPA 600
CLIIILVNLLA FGVIILYKVFR HTAGLKPEVS CFENIRSCAR GALALLFLLG TTWIFGVILHV 660
VHASVVTAYL FTVSNAFOGM FIFLFLCVLS RKIQEEYYRL FKNVPCCFG 660

Un
A91
5
10
20
30
40
50
60
70
80
90
100

AAC6 Protein sequence:

Gene name: EST
Unigene number: Hs.134797
Probeset Accession #: AA025351
Protein accession #: BAA14599
Signal sequence: predicted 1-24 (first underlined sequence)
extended sequence: second underlined sequence

MILSLLFSLG GPLGWGLLGA WAQASSTSL S DLQSSRTPGV WKAEEADTSK DPVGRNWCPY 60
PMSKLVTLLA LCKTEKFLIH SQQPCPQGAP DCQKVVKMYR MAHKPVYQVK QKVLTSLAWR 120
CCPGYTGPNC EHHDSMAIPE PADPGDSHQE PQDGPVSKP GHЛАAVINEV EVQQEQQEHL 180
LGDLQNDVHR VADSLPLWV ALPGNLTAAV MEANQTGHEF PDRSLEQVLL PHVDTFLQVH 240
FSPIWRSFNO SLHSLTOAIR NLSLDVEANR QAI SRVQDSA VARADFOELG AKFEAKVQEN 300
TORVGOLRQD VEDRLHAQPF TLHRSISELO ADVDTKLKRL HKAQEAPGTN GSLVLATPPGA 360
60 GARPEPDSLQ ARLGQLOF SELHMTTARR EEELOYTLED MRATLTRHVD EIKELYSESD 420
ETFDQDISKVE RQVEELQVNH TALERLVRV MEKSLIMEEN KEEVEROLLE LNLTLOHLOG 480
GHADLIKYVK DCNCOKYLD LDVIREQORD ATRALEETQV SLDREROLDG SSQALQNAV 540
DAVSLAVDAH KAEGERARAAS TSRRLRSQVQA LDDEVGALKA AAAEARHEVR OLHSAFAALL 600
EDALRHEAVL AALFGEVLE EMSEQTPGPL PLSYEQIRVA LQDAASGLOE QALGWDELAA 660
RVTALEQASE PPRPAEHL EP SHDAGREEAA TTALAGLARE LOSLSNDVKN VGRCCCEAAG 720
AGAASLNASL DGLHNALFAT ORSLEQHQRL FHSLFGNFOG LMEANVSLDL GKLOTMLSRK 780
GKKOOKDLEA PRKRDKKEAE PLVDIRVTGP VPGALGAALW EASPVAFYAS FSEGTAALQ 840
VKFNTTYINI GSSYFPEHGY FRAPERGVYL FAVSVEFGPG PGTGOLVFGG HHRTPVCTTG 900

QGSGSTATVF AMAELOKGER VWFELTOGSI TKRSLSGTAF GGFLMFKT

AAD7 Protein sequence:

Gene name: EST
Unigene number: Hs 3807
Probeset Accession #: AA292694
BAC Accession #: AL161751
FGENESH predicted aa seq: 1-647; based on BAC clone AL161751

5	MGKDFMTKTP	KAFATKAKID	KWDLIKLKSF	CTAKETIIRV	NSQPTDWQKT	FAIYPSDKGV	60
10	IARIYKELEQ	IYKKKKPDKT	LRTHFLSRPK	GNCWPLGPRG	DSWQLGGPSG	ARAEGKGGGT	120
15	GLGKPAVEGG	DRAPDTALRP	RAGQIQVGSS	SACGASENEA	GVRPVPPLAG	ALARAGRRT	180
20	PHCRPCWLIG	LGGLLOPAPR	YHEAAGGRGG	LHPARWGAQH	RACGRRAACR	ARAPAGRPRA	240
25	RRGLQRPVAL	GRTGAQAFPL	HPGERAFAGF	LLAVLPRRRS	RKRHAAVGGG	APTLHRAEM	300
30	RGTPGHRWGR	ARSWKEMRCH	LRANGYLCKY	QFEVLCRAPR	PGAASNLSYR	APFQLHSAAL	360
35	DFSPPGTEVS	ALCRGKLPI	VTCIADEIGA	RWDKLSGDVL	CPCPGRLRA	GKCAELPNCL	420
40	DDLGGFACEC	ATGFELGKD	RSCVTSGEQG	PTLGGTGVPT	RRPPATATSP	VPQRTWPIRV	480
45	DEKLGETPLV	PEQDNSVTSI	PEIPIRWGSQS	TMSTLOMSLQ	AESKATITPS	GSVISKFNST	540
50	TSSATPQAFD	SSSAVVFIFV	STAVVVLVIL	TMTVGLVKL	CFHESPPSSQP	RKESMGPPGL	600
55	ESDPEPAALG	SSSAHCTNNG	VKVGDCDLRD	RAEGALLAES	PLGSSDA		

AAD4 Protein sequence:

Gene name: ERG
Unigene number: Hs 45514
Probeset Accession #: R32894
Protein Accession #: AAA52398
Signal sequence: none
Transmembrane domains: none
PFAM domains: predicted Ets-domain 294-373; SAM_PNT: 122-206
Summary: ERG2 is a sequence-specific DNA-binding protein.

5	MIQTVPDPAA	HIKEALSVVS	EDQSLFECAY	GTPHLAKTEM	TASSSSDYGQ	TSKMSPRVPQ	60
10	QDWLSQPPAR	VTIKMECNPS	QVNGSRNSPD	ECSVAKGGKM	VGSPDTVGMN	YGSYMEEKHM	120
15	PPPNMTTNER	RVIVPADPTL	WSTDHVQRWL	EWAVKEYGLP	DVNILLFQNI	DGKELCKMTK	180
20	DDFQRLLTPSY	NADILLSHLH	YLRETPLPHL	TSDDVDKALQ	NSPRLMHARN	TDLPYEPPRR	240
25	SAWTGHGHPT	PQSKAAQPSP	STVPKTEDQR	PQLDPYQILG	PTSSRLANPG	SGQIQLWQFL	300
30	LELLSDSSNS	SCITWEGLNG	EFKMTDPDEV	ARRWGERKSK	PNMNYDKLSR	ALRYYYDKNI	360
35	MTKVHGKRYA	YKFDFHGIAQ	ALQPHPPPESS	LYKYPSDLPY	MGSYHAHPQK	MNFVAPHPPA	420
40	LPVTSSSSFA	APNPYWNNSPT	GGIYPNTRLP	TSHMPHLGT	YY		462

AAD5 Protein sequence:

Gene name: activin A receptor type II-like 1 (ALK-1)
Unigene number: Hs.172670
Probeset Accession #: T57112
Protein Accession #: NP_000011
Signal sequence: predicted 1-21
Transmembrane domain: predicted 119-135
PFAM domains: predicted kinase 204-489
Summary: Type Ia membrane protein; receptor tyrosine kinase

5	MTLGSPRKGL	LMLLMALVTO	GDPVKPSRGP	LVTCTCESPH	CKGPTCRGAW	CTVVLVREEG	60
10	RHPQEHRGCG	NLHRELCRGR	PTEFVNHYCC	DSHLCNHNVS	LVLEATQPPS	EQPGTDGQLA	120
15	LILGPVLALL	ALVALGVLGL	WHVRRRQEKG	RGLHSELGES	SLILKASEQG	DTMLGDLLDS	180
20	DCTTGSGSGL	PFLVQRTVAR	QVALVECVKG	GRYGEWRGL	WHGESVAVKI	FSSRDEQSWF	240
25	RETEIYNTVL	LRHDNILGFI	ASDMTSRNSS	TQLWLITHYH	EHGSLYDFLQ	RQTLEPHLAL	300
30	RLAVSAACGL	AHLHVEIFGT	QGKPAIAHRD	FKSRNVLVVS	NLQCCIADLG	LAVMHSQGSD	360
35	YLDIGNNPRV	GTKRYMAPEV	LDEQIRTDGF	ESYKWTDLTA	FGLVLWEIAR	RTIVNGIVED	420
40	YRPPFYDVVP	NDPSFEDMKK	VVCVDQQQTPT	IPNRLAADPV	LSGLAQMMRE	CWYPNPSARL	480
45	TALRIKKTLO	KISNSPEKPK	VIQ				

AAD8 Protein sequence:

Gene name: ESTs
Unigene number: Hs.144853
Probeset Accession #: AA04418

*Cont
a25*

5 Protein Accession #: n/a
Signal sequence: n/a
Transmembrane domains: n/a
PFAM domains: n/a
Summary: no ORF identified; possible frameshifts. Nearby to PCTAIRE protein kinase 2 (PCTK2) on the genome (within 100 kb).

10 **ACA2 Protein sequence**

Gene name: EST
Unigene number: Hs.16450
Probeset Accession #: AA478778
Protein Accession #: n/a
Signal sequence: n/a
15 Transmembrane domains: n/a
PFAM domains: n/a
Summary: no ORF identified, possible frameshifts; although a match was found to the HTGS genomic sequence, the sequence does not extend far enough upstream to predict coding exons.

20 **ACA4 Protein sequence**

Gene name: alpha satellite junction DNA sequence
Unigene number: Hs.247946
Probeset Accession #: M21305
Protein Accession #: AAA88020
Signal sequence: none
Transmembrane domains: none
PFAM domains: none

25 30 MEWNGMAWNR IKWNGINSSG MEWNGMEWNA VQCNRMEWNE LELTGMEWNG MHLN

096
ACG6 Protein sequence

Gene name: intercellular adhesion molecule 2 (ICAM2)
Unigene number: Hs.83733
Probeset Accession #: M22334
Protein Accession #: NP_000864
Signal sequence: predicted 1-21
Transmembrane domain: predicted 224-248
PFAM domains: predicted 41-98, 127-197; immunoglobulin-like C2-type domains
Summary: a predicted Type Ia membrane protein; it plays a role in cell adhesion and is the ligand for the LFA-1 protein. ICAM2 is also called CD102.

40 45 MSSFGYRTLT VALFTLICCP GSDEKVFEVH VRPKKLAVER KGSLEVNCST TCNQPEVGGL 60
ETSLNKILLDE EQAQWKHYLV SNISHDTVLQ CHFTCSGKQE SMNSNVSVYQ PPRQVILTLQ 120
PTLVAVGKSF TIECRVPTVE PLDSLTLFLF RGNETLHYET FGKAAPAPQE ATATFNSTAD 180
REDGHRNFS LAVLDLMSRG GNIFHKHSAP KMLEIYEPVS DSQMVIIITV VSVLLSLFVT 240
SVLLCFIFGQ HLRQQRMGTY GVRAAWRRLP QAFRP

097
ACG7 Protein sequence

Gene name: Cadherin 5, VE-cadherin (CDH5)
Unigene number: Hs.76208
Probeset Accession #: X79981
Protein Accession #: NP_001786
Signal sequence: predicted 1-27
Transmembrane domain: predicted 604-620
PFAM domains: Cadherin domains predicted 58-141, 156-249, 263-364, 377-470, and 487-576
Summary: Likely a Type I membrane protein. Cadherins are calcium-dependent adhesive proteins that mediate cell-to-cell interaction. VE-cadherin is associated with intercellular junctions.

50 55 60 65 65 MQRLMMLLAT SGACLGLLAV AAAVAAAGANP AQRDTHSLLP THRRQKRDWI WNQMHIDEEK 60
NTSLPHHVGK IKSSVSRKNA KYLLKGKEYVG KVFRVDAETG DVFAIERLDR ENISEYHLTA 120
VIVDKDTGEN LETPSSFTIK VHDVNDNWPV FTHRLFNASV PESSAVGTSV ISVTAVDADD 180
PTVGDHASVM YQILKGKEYF AIDNSGRIIT ITKSLDREKQ ARYEIVVEAR DAQGLRGDSG 240
TATVLVTLQD INDNFPFFTQ TKYTFVVPED TRVGTSGSL FVEDPDEPQN RMTKYSILRG 300

DYQDAFTIET NPAHNEGIK PMKPLDYEYI QQYSFIVEAT DPTIDLRYMS PPAGNRAQVI 360
 INITDVDEPP IFQQPFYHFQ LKENQKKPLI GTVLAMDPDA ARHSIGYSIR RTSDKGQFFR 420
 VTKKGDIYNE KELDREVYPW YNLITVEAKEL DSTGTPGKE SIVQVHIEVL DENDNAPEFA 480
 KPYQPKVCEN AVHGQLVLQI SAIDKDITPR NVKFKFTLNT ENNFTLTDNH DNTANITVKY 540
 5 GQFDREHTKV HFLPVVISDN GMPSRTGTST LTVAVCKCNE QGEFTFCEDM AAQVGVSQIA 600
 VVAILLCILT ITVITLLIPL RRLRKQARA HGKSVPEIHE QLVTYDEEGG GEMDTTSYDV 660
 SVLNSVRRGG AKPPRPALDA RPSLYAQVQK PPRHAPGAHG GPGEAMAIE VKKDEADHDG 720
 DGPPYDTLHI YGYEGSEIA ESLSSLGTDS SDSDVDYDFL NDWGPRFKML AELYGSDPRE 780
 ELLY

10

ACG9 Protein sequence

Gene name: lysyl oxidase-like 2 (LOXL2)

Unigene number: Hs.03354

Probeset Accession #: U89942

Protein Accession #: NP_002309

Signal sequence: predicted 1-25

Transmembrane domains: none predicted
 PFAM domains: scavenger receptor cysteine-rich domains predicted 68-159, 203-238, 336-425, 439-528; Lysyl oxidase predicted 548-749.

Summary: Likely a secreted protein. Lysyl oxidase is a copper-dependent amine oxidase that belongs to a heterogeneous family of enzymes that oxidize primary amine substrates to reactive aldehydes, acting on the extracellular matrix substrates, e.g., collagen and elastin.

MERPLCSHLC SCLAMLALLS PLSLAQYDSW PHYPEVFQQP APEYHOPQAP ANVAKIQLRL 60
 AGQKRKHSEG RVEVYDGOW GTVCDDDFSI HAAHVVCREL GYVEAKSWTA SSSYGKGEGP 120
 15 IWLDNLHCTG NEATLACTS NGWGVTDCKH TEDVGVVCSD KRPFGKFDN SLINQIENLN 180
 IQVEDIRIRA ILSTYRKRTP VMEGYEVKE GKTWKQICDK HWTAKNSRVV CGMFGFPGER 240
 20 TYNTKVKYKMF ASRRKQRYPFS FSDMCTGTEA HISSCKLGPQ VSLDPMKNTV CENGLPAVVS 300
 CVPGQVFSPD GPSRFRKAYK PEQPLVRLRG GAYIGEGRVE VLKNGEWGTW CDDKWDLVSA 360
 25 SVVCRELGFG SAKEAVTGSR LGQQGIGPIHL NEIQCTGNEK SIIDCKFNAE SQGCNHEEDA 420
 GVRCNTPAMG LQKKLRLNNG RNPyEGRVEV LVERNGSLVW GMVCGQNNGI VEAMVVCRL 480
 GLGFASNAFQ ETWYWHGDNV SNKVVMSGVK CSGTELSLAH CRHGEDEVAC PQGGVQYGAG 540
 30 VACSETAPDL VLNAEMVQQT TYLEDRPMFM LQCAAMEENCL SASAAQTDPT TGYRLLLRF 600
 SQIHNNNGQSD FRPKNGRHAW IWHDCHRHYH SMEVFTHYDL LNLngTKVAE GHKASFCLED 660
 35 TECEGDIQKN YECANFGDQG ITMGCWDMYR HDIDCQWVDI TDVPPGDYLF QVVINPNFEV 720
 AESDYSNNIM KCRSRYDGHR IWMYNNCHIGG SFSEETEKKF EHFSGLNNQ LSPQ

40

ACH2 Protein sequence

Gene name: TIE tyrosine-protein kinase

Unigene number: Hs.78824

Probeset Accession #: U60957

Protein Accession #: NP_005415

Signal sequence: predicted 1-21

Transmembrane domain: predicted 770-786

PFAM domains: laminin-EGF predicted 234-267; FN3 predicted 460-520, 548-632, and 644-729; tyrosine_kinase predicted 839-1107

Summary: Likely a Type Ia membrane protein; TIE is a tyrosine-kinase receptor with an unknown ligand; its expression is likely necessary for normal blood vessel development.

MVWRVPPFL PILFLASHVG AAVDLTLLAN LRLTDQRFV LTCVSGEAGA GRGSDAWGPP 60
 45 LLLEKDDRIV RTPPGPPLRL ARNGSHQVTL RGFSKPSDLV GVFSVCGGAG ARRTRVIYVH 120
 NSPGAHLLPD KVHTVNGD GD TAVLSARVHK EKQTDVWKS NGSYFYTLDW HEAQDGRFLL 180
 QLPNVQPPSS GIYSATYLEA SPLGSAFFRL IVRGCAGRW GPGCTKECPG CLHGGVCHDH 240
 DGEVCVPPGF TGTRCEQACR EGRFGQSCQE QCPGISGCRG LTFLCPDPYQ CSCGSGWRGS 300
 QCQF CAPGH FGADCRQLCQ CQNGGTCDRF SGCVCPGWH GVHCEKSDRI PQILNMASEL 360
 50 EFNI TMPRI NCAAAAGNPFP VRGSIELRKP DGTVLLSTKA IVEPEKTTAE FEVPRVLVAD 420
 SGFWECRVST SGGQDSRRFK VNVKVPVPL AAPRLLTKQS RQLVVSPLVS FSGDGPISTV 480
 RLHYRPQDST MDWSTIVVDP SENVTLMNLR PKTGYSVRQ LSRPGEGGEG AWGPPTLMTT 540
 DCPEPLLQPW LEGWHVEGTD RLRVWSLPL VPGPLVGDF LLRLWDGTRG QERRENVSSP 600
 55 QARTALLTGL TPGTHYQLDV QLYHCTLLGP ASPPAHVLLP PSGPPAPRHL HAQALSDSEI 660
 QLTWKHPEAL PGPISKYVVE VQVAGGAGDP LWIDVDRPEE TSTIIRGLNA STRYLFRMRA 720
 SIQGLGDWSN TVEESTLGNG LQAEGPVQES RAAEGLDQQ LILAVVGSVS ATCLTILAAL 780
 60 LTLVCIRRSC LHRRTFTYQ SGSGEETILQ FSSGTLTLTR RPKLQPEPLS YPVLEWEDIT 840
 FEDELIGEGNF GQVIRAMIKK DGLKMNAAIK MLKEYASEND HRDFAGELEV LCKLGHHPNI 900

INLLGACKNR GYLYIAIEYA PYGNLLDFLR KSRVLETDPA FAREHGTAST LSSRQLLRFA 960
SDAANGMQYL SEKQFIHRDL AARNVLVGEN LASKIADFGL SRGEEVYVKK TMGRLPVRWM 1020
AIESLNYSVY TTKSDVWSFG VLLWEIVSLG GTPYCGMTCA ELYEKLPGY RMEQPRNCDD 1080
EVYELMRQCW RDRPYERPPF AQIALQLGRM LEARKAYVNM SLFENFTYAG IDATAEEA

5
John
10/10
ACH3 Protein sequence
Gene name: placental growth factor (PGF; PIGF1; VEGF-related protein)
Unigene number: Hs.2894
Probeset Accession #: X54936
Protein Accession #: NP_002623
Signal sequence: predicted 1-21
Transmembrane domain: none predicted
PFAM domains: PDGF predicted 52-190
Summary: Likely a secreted protein; likely regulates angiogenesis by interacting with FLTI and FLK1.

20 MPVMRLFPCF LQLLAGLALP AVPPQQWALS AGNGSSEVEV VPFQEYWGRS YCRALERLVD 60
VVSEYPSEVE HMFSPSCVSL LRCTGCCGDE NLHCVPVETA NVTMQLLKIR SGDRPSYVEL 120
TFSQHVRCEC RPLREKMKPE RCGDAVPRR

□
□
John
10/11
ACH4 Protein sequence
Gene name: nidogen 2 (NID2)
Unigene number: Hs.82733
Probeset Accession #: D86425
Protein Accession #: NP_031387
Signal sequence: predicted 1-30
Transmembrane domain: none predicted
PFAM domains: EGF-like_domains predicted 489-524, 764-800, 806-843, 853-891, and 897-930; thyroglobulin_repeats predicted 941-1006, and 1020-1085; LDL_receptor_repeats predicted 1155-1197, 1199-1240, and 1242-1285.
Summary: A secreted protein; NID2 likely interacts with collagens I and IV and laminin-1 to promote cell adhesion to the basement membrane.

25 MEGDRVAGRP VLSSLPVLLL LQLLMLRAAA LHPDELFPHG ESWWDQLLQE GDDVKLSRGE 60
AGESPALLTK PDSATSTWAP TASSPLRTSP GKRSMWTMIS PPTSRPSPLF WRTSTRATAE 120
AESCTERTPP PQCWAWPPAM CALASRALRA FYPHPRLPGH LGAGRRLRGQ QTRALPSGEL 180
40 NTFQAVLASD GSDSYALFLY PANGLQFLGT RPKESYNQL QLPARVGFCR GEADDLKSEG 240
PYFSLTSTEQ SVKNLYQLSN LGIPGVWAFH IGSTSPLDNV RPAAVGDLSA AHSSVPLGRS 300
FSHATALESQ YNEDNLYYD VNEEEAEYLP GEPEEALNGH SSIDVFSFQSK VDTKPLEESS 360
TLDPHTKEGT SLGEVGGPDL KGQVEPWDER ETRSPAPPEV DRDSLAPSWE TPPPYPPENG 420
IQPYPDGGPV PSEMDVPPAH PEEEIVLRSY PASGHTTPLS RGTYEVGLED NIGSNTEVFT 480
YNAANKETCE HNHRQCSRHA FCTDYATGFC CHCQSKFYGN GKHCLPEGAP HRVNGKVSQH 540
45 LHVGHTPVHF TDVDLHAYIV GNDGRAYTAI SHIPQPAQAQ LLPLTPIGGL FGWLFALEKP 600
GSENGFSLAG AAFTHDMEVT FYPGEETVRI TQTAEGLDPE NYLSIKTNIQ GQVPYVPANF 660
TAHISPYKEL YHYSSTDVTS TSSRDYSLTF GAINQTWSYR IHQNITYQVC RHAPRHPSP 720
TTQQLNVDRV FALYNDEERV LRFAVTNQIG PVKEDSDPTP VNPCYDGSHM CDTTARCHPG 780
50 TGVDYTCECA SGYQGDGRNC VDENECATGF HRCGPNSVCI NLPGSYRCEC RSGYEFADDR 840
HTCILITPPA NPCEDGSHTC APAGQARCVH HGGSTFSCAC LPGYAGDGHQ CTDVDECSEN 900
RCHPAATCYN TPGSFSRCQC PGYYGDGFQC IPDSTSSLLTP CEQQQRHAQA QYAYPGARFH 960
1 IPQCDEQGNF LPLQCHGSTG FCWCVDPDGH EVPGTQTPPG STPPHCGPSP EPTQRPPIC 1020
ERWRRENLLHE YGGTPRDDQY VPQCDDLGHF IPLQCHGKSD FCWCVDKDGR EVOGTRSQPG 1080
55 TTPACIPTVA PPMVRPTPRP DVTPPSVGTF LLYTOQQQIG YLPLNGTRLQ KDAAKTLLSL 1140
HGSIIIVGIDY DCRERMVYWT DVAGRTISRA GLELGAEPET IVNSGLISPE GLAIDHIRRT 1200
MYWTDSVLDK IESALLDGSE RKVLFYTDLV NPRAIAVDPI RGNLYWTDWN REAPKETSS 1260
LDGENRRILLI NTDIGLPNGL TFPDFSKLLC WADAGTKKLE CTLPDGTGRR VIQNNLKYPF 1320
SIVSYADHFY HTDWRRDGVV SVNKHSGQFT DEYLPEQRSH LYGITAVYPY CPTGRK

60
John
10/2
ACH5 Protein sequence
Gene name: SNL (singed-like; sea urchin fascin homolog-like)
Unigene number: Hs.118400
Probeset Accession #: U03057
Protein Accession #: NP_003079
Signal sequence: none identified
Transmembrane domain: none identified
PFAM domains: none identified

*Contd
9/102*

~~Summary: a cytoplasmic, actin-bundling protein that is likely to be involved in the assembly of actin filament bundles present in microspikes, membrane ruffles, and stress fibers~~

5 MTANGTAEAV QIQFGLINCG NKYLTAEAFG FKVNASASSL KKKQIWTLEQ PPDEAGSAAV 60
CLRSHLGRYL AADKDGTVTC EREVPGPDCR FLIVAHDDGR WSLQSEAHRR YFGGTEDRLS 120
CFAQTVSPA E KWSVHIAHMP QVNIYSVTRK RYAHLSARPA DEIAVDRDVP WGVDSLITLA 180
FQDQRYSVQT ADHRFLRHG RLVARPEPAT GYTLEFRSGK VAFRDCEGRY LAPSGPSGTL 240
KAGKATKVGK DELFALEQSC AOVVLQAANE RNVSTRQGMD LSANQDEETD QETFQLEIDR 300
10 DTKKCAFRTH TGKYWTLTAT GGVQSTASSK NASCYFDIEW RDRRITLRAS NGKFVTSKKN 360
GQLAASVETA GDSEFLMKL INRPIIVFRG EHGFIGCRKV TGTL DANRSS YDVFQLEFND 420
GAYNIKDSTG KYWTVGSDSA VTSSGDTTPVD FFFEFCDYNA VAIKVGGRL KGDHAGVLKA 480
SAETVDPASL WEY

15 ACH6 Protein sequence
Gene name: endothelial protein C receptor (EPCR; PROCR)
Unigene number: Hs.82353
Probeset Accession #: E35545
Protein Accession #: NP_006395
Signal sequence: predicted 1-17
Transmembrane domain: predicted 211-227
PFAM domains: none identified
Summary: a Type Ia membrane protein, EPCR likely binds to [thrombin]-activated Protein C, a vitamin K-dependent serine protease zymogen necessary for blood coagulation.

0 MLTTLLPILL LSGWAFCSQD ASDGLQRLHM LQISYFRDPY HWWYQGNASL GGHLTHVLEG 60
0 PDTNTTIIQL QPLQEPESWA RTQSGLQSYL LQFHGLVRLV HQERTLAFPL TIRCFLGCEL 120
0 PPEGSRAHVF FEVAVNGSSF VSFRPERALW QADTQVTSGV VTFTLQQLNA YNRTRYELRE 180
0 FLEDTCVQYY QKHISAENTK GSQTSRSYTS LVLGVLVGGF IIAGVAVGIF LCTGRRRC

20 ACH8 Protein sequence
Gene name: melanoma adhesion molecule (MCAM; MUC18)
Unigene number: Hs.211579
Probeset Accession #: D51069
Protein Accession #: NP_006491
Signal sequence: predicted 1-17
Transmembrane domain: predicted 559-575
PFAM domains: immunoglobulin domains predicted 264-324 and 356-410.
Summary: a Type Ia membrane protein, associated with tumor progression and the development of metastasis in human malignant melanoma, and may play a role in neural crest cells during embryonic development.

25 MGLPRLVCAF LLAACCCP R VAGVPGEAEQ PAPELVEVEV GSTALLKCGL SQSQGNLSHV 60
DWFSVHKEKR TLIFRVRQGQ GQSEPGYEQ RLSLQDRGAT LALTQVTPQD ERIFLCQGKR 120
PRSQEYRIQL RVYKAPEEPN IQVNPLGIPV NSKEPEEVAT CVGRNGYPIP QVIWYKNGRP 180
LKEEKNRVHI QSSQTVESSG LYTLQOSILKA QLVKEDKDAO FYCELNRYLP SGNHMKESRE 240
30 VTVPVFYPTE KWLEVEPVG MLKEGDRVEI RCLADGNPPP HFSISKQNP S TREAEEETTN 300
DNGVLVLEPA RKEHSGRYEC QAWNLLDTMIS LLSEPQELLV NYVSDVRVSP AAPERQEGSS 360
LTLTCEAESS QDLEFQWLRE ETDQVLERGP VLQLHDLKRE AGGGYRCVAS VPSIPGLNRT 420
OLVKLAIFGP PWMAFKERKV WVKENMWLNL SCEASGHPRP TISWNVNNTA SEQDQDPQRV 480
50 LSTLNVLVTP ELLETGVECT ASNDLGKNTS ILFLELVNL TLTQDSNTT GLSTSTASPH 540
TRANSTSTER KLPEPESRGV VIVAVIVCIL VLAVLGAVLY FLYKKGKLPC RRSGKQEITL 600
PPSRKTELVV EVKSDKLPEE MGLLQGSSGD KRAPGDOGEK YIDLRH

60 ACH9 Protein sequence
Gene name: endothelin-1 (EDN1)
Unigene number: Hs.2271
Probeset Accession #: J05008
Protein Accession #: NP_001945
Signal sequence: predicted 1-17
Transmembrane domain: none predicted
PFAM domains: Endothelin domains predicted 59-73, and 108-129.

Cart
ac05

Summary: a secreted zymogen; the active protein is likely a 26-amino acid peptide with potent mammalian vasoconstrictor activity; it is necessary for normal vessel development.

5 MDYLLMIFSL LFVACQGAPE TAVLGAELSA VGENGGEKPT PSPPWRLRRS KRCSCSSLMD 60
KECVYFCHLD IIWVNTPEHV VPYGLGSPRS KRALENLLPT KATDRENRCQ CASQKDKKCW 120
NFCQAGKELR AEDIMEKDWN NHKKGKDCSK LGKKCIYQQL VRGRKIRRSS EEHLRQTRSE 180
TMRNSVKSSF HDPLKLGKPS RERYVTHNRA HW

10

Ulm
Q106

ACN1 Protein sequence

Gene name: BMX non-receptor tyrosine kinase
Unigene number: Hs.24372
Probeset Accession #: X83107
Protein Accession #: NP_001712
Signal sequence: none identified
Transmembrane domain: none identified
PFAM domains: plektrin homology domain predicted 6-111; SH2 domain predicted 294-383; protein kinase domain predicted 417-563
Summary: a cytoplasmic protein, it likely plays a role in the growth and differentiation of hematopoietic cells; it is known to also be expressed in endothelial cells.

20

MDTKSILEEL LLKRSQQKKK MSPNNYKERL FVLTKTNLSY YEYDKMKRGS RKGSIEIKKI 60
RCVEKVNLLE QTPVERQYPF QIVYKDGGLY VYASNEESRS QWLKALQKEI RGNPHLLVKY 120
HSGFFVDGKF LCCQSQCKAA PGCTLWEAYA NLHTAVNEEK HRVPTFPDRV LKIPRAVPVL 180
KMDAPSSTT LAQYDNESKK NYGSOPPPSS TSLAQYDSNS KKIYGSQPNF NMQYIPREDF 240
PDNWQVRKLK SSSSSEDVAS SNQKERNVNH TTSKISWEFP ESSSSEEEEN LDDYDWFAGN 300
ISRSQSEQLL RQKGKEGAFM VRNSSQVGMY TVSLFSKAVN DKKGTVKHYH VHTNAENKLY 360
LAENYCFDSI PKLIHYHQHN SAGMITRLRH PVSTKANKVP DSVSLGNGIW ELKREEITLL 420
KELGSGQFGV VQLGKWKQY DVAVKMIKEG SMEDEFFQEA QTMMKLSHP KLVKFYGVCS 480
KEYPIYIVTE YISNGCLLN YLSHGKGLEP SQLLEMCYDV CEGMAFLESH QFIHRDLAAR 540
NCLVDRDLCV KVSDFGMTRY VLDDQYVSSV GTKFPVKWSA PEVFHYFKYS SKSDVWAFGI 600
LMWEVFSLGK QPYDLYDNSQ VVLKVSQGHR LYRPHLASDT IYQIMYSCWH ELPEKRPTFQ 660
QLLSSIEPLR EKDKH

25

30

35

40

45

50

55

60

Ulm
Q107

ACJ4 Protein sequence

Gene name: prostaglandin G/H synthase 2 (COX-2; PGHS-2)
Unigene number: Hs.196384
Probeset Accession #: D98215
Protein Accession #: NP_000954
Signal sequence: predicted 1-17
Transmembrane domain: none identified
PFAM domains: EGF-like domain predicted 18-55.
Summary: a microsomal enzyme; COX-2 is the therapeutic target of the nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin.

MLARALLLC VLALSHTANP CCHPCQNRG VCMCSVGFQY KCDCTRTGFY GENCSTPEFL 60
TRIKLFLKPT PNTVHYILTH FKGFVNIVNN IPFLRNAIMS YVLTTSRSHLI DSPPTYNADY 120
GYKSWEAFSN LSYYTRALPP VPDDCPTPLG VKGKKQLPDS NEIVEKLLLR RKFIPDPQGS 180
NMMFAFFAQH FTHQFFKTDH KRGPAGFTNGL GHGVDLNHIY GETLARQRKL RLFKDGKMKY 240
QIIDGEMYPP TVKDTQAEMI YPPQVPEHLR FAVGQEVFGL VPGLMMYATI WLREHNRCVD 300
VLKQEHPEWG DEQLFQTSLR ILIGETIKIV IEDYVQHLSG YHFKLKFDPE LLFNKQFOYQ 360
NRIAAEFNTL YWHHPLLPDT FQIHDQKYNV QQFIYNNNSIL LEHGTQFVE SFTRQIAGR 420
AGGRNVPPAV QKVSQASIDQ SRQMKYQSFN EYRKRFMLKP YESFEELTGE KEMSAELEAL 480
YGDIDAVELY PALLVEKPRP DAIFGETMVE VGAPFLSKGL MGNVICSPAY WKPSTFGGEV 540
GFGQIINTASI QSLICNNVKG CPFTSFVSPD PELIKTVTIN ASSRSGLDD INPTVLLKER 600
STEL

40

45

50

55

60

Ulm
Q108

ACN6 Protein sequence

Gene name: SEC14-like 1
Unigene number: Hs.75232
Probeset Accession #: D67029
Protein Accession #: NP_002994
Signal sequence: none identified
Transmembrane domain: none identified

Cont
A10
PFAM domains: none identified

Summary: a cytoplasmic protein

5 MVQKYQSPVR VYKYPFELIM AAYERRFPTC PLIPMFGVSD TVSEFKSEDG AIHVIERRCK 60
LDVDAPRLLK KIAGVDYVF VQKNSLNSRE RTLHIEAYNE TFSNRVIINE HCCYTVHPEN 120
EDWTCFEQSA SLDIKSSFFG ESTVEKIAMK QYTSNIKKGK EIIIEYYLRLQ EEEGITFVPR 180
WSPPSITPSS ETSSSSSKKQ AASMAVVIPE AALKEGLSGD ALSSPSAEP VVGT PDDKLD 240
ADHIKRYLGD LTPLQESCLI RLRQLWLQETH KGKIPKDEHI LRFLRARDFN IDKAREIMCQ 300
SLTWRKQHQV DYILETWTTP QVLQDYYAGG WHHHDKDGRP LYVLRLGQMD TKGLVRALGE 360
10 EALLRYVLSV NEERLRCEE NTKVGRPIS SWTCLVDLEG LNMRHLWRPG VKALLRIIEV 420
VEANYPETLGC RLLILRAPRV FPVLWTLVSP FIDDNTRRKF LIYAGNDYQG PGGLLDYIDK 480
EIIPDFLSGE CMCEVPEGGL VPKSLYRTAE ELENEIDLKLW TETIYQSASV FKGAPHEILI 540
QIVDASSVIT WDFDVCKGDI VFNIYHSKRS PQPPKKDSLQ AHSITSPGGN NVQLIDKVWQ 600
15 LGRDYSMVES PLICKEGESV QGSHVTRWPG FYILQWKFHS MPACAASSLP RVDDVLASLQ 660
VSSHKCKVMY YTEVIGSEDV RGSMTSLESS HSGFSQLSAA TTSSSSQSHSS SMISR

~~ACJ3 Protein sequence~~

Gene name: intercellular adhesion molecule 1 (ICAM1; CD54)

20 Unigene number: Hs.168383

Probeset Accession #: M24283

Protein Accession #: NP_000192

Signal sequence: predicted 1-27

Transmembrane domain: predicted 481-497

PFAM domains: immunoglobulin_domains predicted 128-186, and 325-373.

Summary: a Type 1a membrane protein; ICAM1 is typically expressed on endothelial cells and cells of the immune system; ICAM1 binds to integrins of type CD11a/CD18, or CD11b/CD18; ICAM1 is also exploited by Rhinovirus as a receptor.

30 MAPSSPRPAL PALLVLLGAL FPGPGNAQTS VSPSKVILPR GGSVLVTCST SCDQPKLLGI 60
ETPLPKKELL LPGNNRKVYE LSNVQEDSQP MCYSNCPDGQ STAKTFLTVY WTPERVELAP 120
LPSWQPVGKN LTLRCQVEGG APRANLTVVL LRGEKELKRE PAVGEPAEVTTTVLVRDHH 180
GANFSCRTEL DLRPQGLELF ENTSAPYQLQ TFVLPATPPQ LVSPRVLEVD TQGTVVCSLD 240
GLFPVSEAQV HLAQDQLRN PTVTYGNDSF SAKASVSVTA EDEGTQLRTC AVILGNQSQE 300
TLQTVTIYSF PAPNVILTKP EVSEGTEVTV KCEAHPRAKV TLNGVPAQPL GPRAQLLLKA 360
TPEDNGRSFS CSATLEVAGQ LIHKNQTREL RVLYGPRLD RDCPGNWTP ENSQQTPMCQ 420
AWGNPLPELK CLKDGTFPLP IGESVTVTRD LEGTYLCCRAR STQEVTRREV TVNVLSPRYE 480
IVIITVVAAA VIMTAGLST YLYNRQRKIK KYRLQQAQKG TPMKPNTQAT PP

~~ACK3 Protein sequence~~

Gene name: angiopoietin 1 receptor (TIE-2; TEK)

Unigene number: Hs.89640

Probeset Accession #: L06139

Protein Accession #: NP_000450

Signal sequence: predicted 1-18

Transmembrane domain: predicted 746-770

PFAM domains: immunoglobulin_domains predicted 44-102, 370-424; EGF_like_domains

predicted 210-292, 254-299, and 301-341; FN3_domains predicted 444-536, 541-634, and 638-732; protein_kinase_domain predicted 824-1096.

Summary: a Type 1a membrane protein; it is expressed almost exclusively in endothelial cells in mice, rats, and humans; the ligand for this receptor is angiopoietin-1; defects in TEK are associated with inherited venous malformations; the TEK signaling pathway appears to be critical for endothelial cell-smooth muscle cell communication in venous morphogenesis.

40
45
50
55
60
65
MDSLASLVLC GVSLLLSGTV EGAMDLILIN SLPLVSDAET SLTCIASGWR PHEPITIGRD 60
FEALMNQHQD PLEVTQDVTR EWAKKVVWKR EKASKINGAY FCEGRVRGEA IRIRTMKMRQ 120
QASFPLPATLT MTVDKGDNVN ISFKKVLIKE EDAVIYKNGS FIHSVPRHEV PDILEVHLPH 180
AQPQDAGVYS ARYIGGNLFT SAFTRLIVRR CEAQKWGPEC NHLCTACMNN GVCCHEDTGE 240
ICPPGFMGR RTCEKACELHTF GRTCKERCSG QEGCKSYVFC LPDPYGCSCA TGWKGQLCNE 300
ACHPGFYGPD CKLRCSCNNG EMCDRFQGCL CSPGWQQLQC EREGI PRMTP KIVDLPDHIE 360
VNSGKFNPIK KASGWPLPTN EEMTLVKPDG TVLHPKDFNH TDHFSVAIFT IHRILPPDSG 420
VVWCSVNTVA GMVEKPFNIS VKVLPKPLNA PNVIDTGHNF AVINISSEPY FGDGPIKSKK 480
LLYKPVNHYE AWQHIQVTNE IVTLNLYEPR TEYELCVQLV RRGEGGEGHP GPVRRFTAS 540
IGLPPPRGLN LLPKQSQTTLN LTWQPIFPSS EDDFYEVER RSVQKSDQCN IKVPGNLTSV 600
LLNNLHPREQ YVVRARVNTK AQGEWSEDLT AWTLSDIPLP QPENIKISNI THSSAVISWT 660
ILDGYSISSI TIRYKVQGKN EDQHVDVKIK NATIIQYQLK GLEPETAYQV DIFAEENNIGS 720

5 SNPAFSELV TLPESQAPAD LGGGKMLLIA ILGSAGMTCL TVLLAFLIIL QLKRNANQRR 780
 MAQAFQNVRE EPAVQFNSGT LALNRKVKNN PDPTIYPVLD WNDIKFQDVI GEGNFGQVLK 840
 ARIKKDGLRM DAAIKRMKEY ASKDDHRDFA GELEVLCGLG HHPNIINLLG ACEHRGYLYL 900
 AIEYAPHGNL LDFLRKSRVL ETDPAFAIAN STASTLSSQQ LLHFAADVAR GMDYLSQKQF 960
 IHRDLAARNI LVGENYVAKI ADFGLSRGQE VYVKKTMGRL PVRWMAIESL NYSVYTTNSD 1020
 VWSYGVLLWE IVSLGGTPYC GMTCAELYEK LPQGYRLEKP LNCDDDEVYDL MRQCWREKPY 1080
 ERPSFAQILV SLNRMLEERK TYVNNTLYEK FTYAGIDCSA EAAA

10 PXA6 Protein sequence
 Gene name: prostate differentiation factor (PLAB; MIC-1)
 Unigene number: Hs.116577
 Probeset Accession #: AB000584
 Protein Accession #: NP_004855
 Signal sequence: predicted 1-29
 Transmembrane domain: none identified
 PFAM domains: TGF beta domain predicted 211-308.
 Summary: a secreted protein; its exact function is unclear; it inhibits proliferation of primitive hematopoietic progenitors; it inhibits activation of macrophages; it is highly expressed in placenta and in serum of pregnant women; it may promote fetal survival by suppressing the production of maternally-derived proinflammatory cytokines within the uterus.

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300
 MPGQELRTVN GSQMLLVLV LSWLPHGGAL SLAEASRASF PGPSELHSED SRFRELKRY 60
 EDLLTLLRAN QSWEDSNSDL VPAPAVRILT PEVRLGSGGH LHLRISRAAL PEGLPEASRL 120
 HRALFRLSPT ASRSWDVTRP LRRQLSLARP QAPALHLRLS PPPSQSDQLL AEASSARPQL 180
 ELHLRPQAAR GRRRARARNG DDCPLGPGRC CRLHTVRASL EDLGWADWVL SPREVQVTMC 240
 IGACPSQFRA ANMHAQIKTS LHRLKPDTEP APCCVPASYN PMVLIQKTDT GVSLQTYDDL 300
 LAKDCHCI

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300
AAD2 Protein sequence:
 Gene name: Thrombospondin-1
 Unigene number: Hs.87409
 Probeset Accession #: AA232645
 Protein Accession #: NP_003237.1
 Signal sequence: predicted 1-18 (first underlined sequence)
 Transmembrane Domain: none identified
 Summary: Thrombospondin is a large modular glycoprotein component of the extracellular matrix and contains a variety of distinct domains, including three repeating subunits (types I, II, and III) that share homology to an assortment of other proteins.

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300
 MGLAWGLGVFLMHVCGTNR IPESGGDNSV FDIFELTGAA RKGSGRRLVK GPDPSSPA 60
 45 IEDANLIPPV PDDKFQDLVD AVRAEKGFLL LASLRQMKKT RGTLALERK DHSGQVF 120
 SNGKAGTLDL SLTVQGKQHV VSVEEALLAT GQWKSITLFV QEDRAQLYID CEKMENA 180
 VPIQSVFTRD LASIARLRIA KGGVNDNFQG VLQNVRVFG TTPEDILRNK GCSSST 240
 TLDNNVVNGS SPAIRTYIG HKTQLQQAIC GISCDELSSM VLELRGLRTI VTTLQD 300
 VTEENKELAN ELRRPPLCYH NGVQYRNNEE WTVDSCTECH CQNSVTICKK VSCPIM 360
 50 ATPVDGECCP RCWPSDSADD GWSPWSEWTS CSTSCGNQIQRGRSCDSLNRCEGSS 420
 RTCHIQECDK RFKQDGWWSH WSPWSSCSVTCGDPGVITRIRLCNSPSPQMNGKPCGE 480
 TKACKKDACP INGGWGPWSD WDICSVTCCG GVQKRSRLCN NPAPQFGGKD CVGDV 540
 CNKQDCPIDI CLSNPCFAGV KCTSYPDGSW KCGACPPGYS GNGIQCTDVD ECKEVP 600
 NHNGEHRCE NTDPGYNCLPC PPRFTGSQPF GQGVHEHATAN KQVCKPRNPC TDGTHDC 660
 55 AKCNYLGHYS DPMYRCECKP GYAGNGIICG EDTDLDGWPN ENLVCVANAT YHCKKDNC 720
 LPNSGQEDYD KDGIGDACDD DDDNDKIPDD RDNCPFHYNP AQYDYDRDDV GDRC 780
 HNPQADTDN NGEGDACAAD IDGDGILNER DNCQYVYNNVQ DQCDNCPLEH 840
 NPDQLDSDSD RIGDTCDNNQ DIDEDEGHQNN LDNCPYVPNA NQADHDKDQK GDACD 900
 60 DGI PDDKDNC RLVPNPDKD SDGDGRGDAC DDDFDHDSVP DIDDICPENV DISE 960
 QMIPLDPKGT SQNDPNWVVR HQGKELVQTV DDPGLAVGY DEFNAVDFSG TFFINTER 1020
 DYAGFVFGYQ SSSRFYVVMW KQVTQSYWDT NPTRAQGYSG LSVKVVNSTT GPGEHL 1080
 WHTGNTPGQV RTLWHDPRHI GWKDFTAYRW RLSHRPKTGF IRVVMYEGKK IMADSG 1140
 KTYAGGRLGL FVFSQEMVFF SLDKYECRDP

65 AAD9 protein sequence
 Gene name: LIM homeobox protein cofactor (CLIM-1)
 Unigene number: Hs.4989

Q113
5 Probeset Accession #: F13782
Protein Accession #: AAC83552

Pfam: LIM bind

Transmembrane Domain: none identified

Summary: The LIM homeodomain (LIM-HD) proteins, which contain two tandem LIM domains followed by a homeodomain, are critical transcriptional regulators of embryonic development. The LIM domain is a conserved cysteine-rich zinc-binding motif found in LIM-HD proteins, cytoskeletal components, LIM kinases, and other proteins. LIM domains are protein-protein interaction motifs, can inhibit binding of LIM-HD proteins to DNA, and can negatively regulate LIM-HD protein function.

10 MSSTPHDPFY SSPFGPFYRR HTPYMVQPEY RIYEMNKRLQ SRTEDSDNLW WDAFATEFFE 60
DDATLTLSSLFC LEDGPKRYTI GRTLIPRYFS TVFEGGVSDL YYILKHSKES YHNSSITVDC 120
DQCTMVTQHQH KPMFTKVCTE GRLILEFTFD DLMRIKTWHF TIRQYRELVP RSILAMHAQD 180
15 PQVLDQLSKN ITRMGLTNFT LNYLRLCVIL EPMQELMSRH KTYNLSPRDC LKTCLFQKQWQ 240
RMVAPPAAEPT RQPTTKRRKR KNSTSSTSNS SAGNNANSTG SKKTTAANL SLSSQVPDVM 300
VVGEPTLMGG EFGDEDERERLI TRLENTQYDA ANGMDEEDF NNSPALGNNS PWNSKPPATQ 360
ETKSENPPQQ ASQ

20 AAE1 protein sequence

Gene name: guanine nucleotide binding protein 11

Unigene number: Hs.83381

Probeset Accession #: U31384

Protein Accession #: NP_004117.1

Pfam: G-gamma, CAAAX motif (farnesylation site) prediction underlined

Summary: The G gamma proteins are a component of the trimeric G-proteins that interact with cell surface receptors. The G protein beta and gamma subunits directly regulate the activities of various enzymes and ion channels after receptor ligation. Unlike most of the other known gamma subunits, gamma 11 is modified by a farnesyl group and is not capable of interacting with beta 2.

25 MPALHIEDLP EKEKLKMEVE QLRKEVKLQR QQVSKCSEEI KNYIEERSGE DPLVKGIPED 60
KNPFKEKGSC VIS

30 AAE2 protein sequence

Gene name: Transcription factor 4 (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 Enhancer factor 2) (SEF-2)

Unigene number: Hs.289068

Probeset Accession #: M74719

Protein Accession #: NP_003190.1

Pfam: HLH domain prediction underlined

Summary: Transcription factor 4 is a helix-loop-helix (HLH) protein which belongs to a family of nuclear proteins, designated SL3-3 enhancer factors 2 (SEF2), that interact with an Eprussi box-like motif within the glucocorticoid response element in the enhancer of the murine leukemia virus SL3-3. Various cell types display differences both in the sets of SEF2-DNA complexes formed and in their amounts. Molecular analysis of cDNA clones show the existence of multiple related mRNA species containing alternative coding regions, which are most probably a result of differential splicing.

40 MHHQRMAAL GTDKELSDL禄 DFSAMFSPPV SSGKNGPTSL ASGHFTGSNV EDRSSSGSWG 60
55 NGGHPSPSRN YGDGTPYDHM TSRDLGSHDN LSPPFVNSRI QSKTERGSYS SYGRESNLQG 120
CHQQSLLGGD MDMGNPGTLS PTKPGSQYYQ YSSNNPRRP LHSSAMEVQT KKVRKVPPL 180
PSSVYAPSAS TADYNRDSPG YPSSKPATST FPSSFFMQDG HHSSDPWSSS SGMNQPGYAG 240
MLGNSSHIPQ SSSYCSLPHP ERLSYPSHSS ADINSSLPPM STFHRSGTNH YSTSSCTPPA 300
50 NGTDSIMANR GSGAAGSSQT GDALGKALAS IYSPDHTNNS FSSNPSTPVG S^{TP}PSL SAGTA 360
VWSRNGGQAS SSPNYEGPLH SLQSRIEDRL ERLDDAIHVL RNHAVGPSTA M^{AG}GHGDMHG 420
60 IIGPSHNGAM GGLGSGYGTG LLSANRHSLM VGTHREDGVA LRGSHSLLPN QVPVPQLPVQ 480
SATSPDLNPP QDPYRGMPG LQGQSVSSGS SEIKSDDEGD ENLQDTKSSE DKKLDDDKKD 540
IKSITSNNDD EDLTPEQKAE REKERRMANN ARERLVRDI NEAFKELGRM VQLHLKSDKP 600
65 QTKLLILHQV VAVILSLEQQ VRERNLNPKA ACLKRREEEK VSSEPPPLSL AGPHPGMGA 660
SNHMGQM

AAE4 protein sequence

Gene name: phosphatidylcholine 2-acylhydrolase

Unigene number: Hs.211587

Probeset Accession #: M68874

Protein Accession #: AAA60105.1

Pfam: PLA2 B, C2 domain prediction underlined

Summary: Phospholipases A₂ (PLA₂s) play a key role in inflammatory processes through production of precursors of eicosanoids and platelet-activating factor. PLA₂ is a 100 kd protein that contains a structural element homologous to the C2 region of protein kinase C.

MSFIDPYQHI IVEHQYSHKF TVVVLRATKV TKGAFGDMLD TDPDPYVELFI STTPDSRKRT 60
RHFNNNDINPV WNETFEFILD PNOENVLEIT LMDANYVMDE TLGTATFTVS SMKVGEKKEV 120
PFIFNQVTEM VLEMSLEVCS CPDLRFSMAL CDQEKTFRQQ RKEHIRESMK KLLGPKNSEG 180
LHSARDVPVV AILGSGGGFR AMVGFSGVMK ALYESGILD C ATYVAGLSGS TWYMSLTYSH 240
15 PDPPEKGKPEE INEELMKNVS HNPLLLLTPQ KVKRYVESLW KKKSSGQPVT FTDFGMLIG 300
ETLIHNRMNT TLSSLKEKVN TAQCPLPLFT CLHVVKPDVSE LMFADWVEFS PYEIGMAKYG 360
TFMAPDLFGS KFFMGTVVKK YEEENPLHFLM GVVWGSASFIL FNRLVGVS GS QSRGSTMEEE 420
LENITTKHIV SNDSSDSDDE SHEPKGTENE DAGSDYQSDN QASWIHRMIM ALVSDSALFN 480
TREGRAGKVKH NFMLGLNLNT SYPLSPLSDF ATQDSFDDDE LDAAVADPDE FERIYEPLDV 540
20 KSKKIHVVDS GLTFNLPYPL ILRQORGVDL IIISFDFSARP SDSSPPFKEL LLAEKWAKMN 600
KLPFPKIDPY VFDREGLKEC YVFKPKNPDM EKDCPTIHF VLAININFRKY KAPGVPRETE 660
EEKEIADFDI FDDPESPFST FNFQYPNQAF KRLHDLMHFN TLNNIDVIKE AMVESIEYRR 720
QNPSRCVSL SNVEARRFFN KEFLSKPKA

ACAI protein sequence

Gene name: tissue factor pathway inhibitor 2 TFPI2, placental protein 5 (PP5)

Unigene number: Hs.78045

Probeset Accession #: D29992

Protein Accession #: PAA06272.1

Pfam: Kunitz BPTI

Signal sequence: underlined

Summary: ACA1 is a serine proteinase inhibitor that was originally purified from conditioned medium of the human glioblastoma cell line T98G. ACA1 is identical to placental protein 5 (PP5) and TFPI2, a placenta-derived glycoprotein with serine proteinase inhibitor activity. PP5 belongs to the Kunitz-type serine proteinase inhibitor family, having three putative Kunitz-type inhibitor domains.

MDPAPRLGLS ILLLFLTEAA LGDAAQEPTG NNAEICLLPL EYGPCRALL RYYYDRYTQS 60
40 CRQFLYGGCE GNANNFTW EACDDACWRIE KVPVKVCRQV SVDDQCEGST EKYFFNLSSM 120
TCEKFFSGGC HRNRIENRFP DEATCMGFCA PKKIPSFCYS PKDEGLCSAN VTRYYYFNPYR 180
RTCDAAFTYTG CGGNDNNFVS REDCKRACAK ALKKKKKMPK LRFASRIRKI RKKQF

ACB8 protein sequence

Gene name: myosin X

Unigene number: Hs.61638

Probeset Accession #: N77151

Protein Accession #: NP_036466

Pfam: myosin head, IQ (Calmodulin Binding motif), PH, MyTH4

Summary: Myosins are molecular motors that move along filamentous actin. Seven classes of myosin are expressed in vertebrates: conventional myosin, or myosin-II, as well as the 6 unconventional myosin classes-I, -V, -VI, -VII, -IX, and -X.

55 MDNFFTEGTR VWLRENGQHF PSTVNSCAEG IIVVFRTDYQG VFTYKQSTIT HQKVTAMHPT 60
NEEGVDDMAS LTELHGGSIM YNLFQRYKRN QIYTYIGSIL ASVNPYQPIA GLYEPATMEQ 120
YSRRHLGEPL PHIFAIANEY YRCLWKRYDN QCILISGESG AGKTESTKLI LKFLSVISQQ 180
SLELSLKEKT SCVERAILES SPIMEAEGNA KTVYNNNNSR FGKFVQLNIC QKGNIQGGRI 240
VDYLLKEKNRV VRQNPGERNY HIFYALLAGL EHEEREFLY STPENYHYLN QSGCVEDKTI 300
SDQESFREVI TAMDVMQFSK EEVREVSRLL AGILHGNIE FITAGGAQVS FKTALGRSAE 360
LLGLDPTQLT DALTQRSMFL RGEELTPLN VQQAVDSDRS LAMALYACCF EWWVIKKINSR 420
IKGNEDFKSI GILDIFGFEN FEVNHFQFN INYANEKLQE YFNKHIFSLE QLEYSREGLV 480
WEDIDWIDNG ECLDLIEKKL GLLALINEES HFPQATDSTL LEKLNHSQHAN NHFYVKPRVA 540
VNNFGVKHYA GEVQYDVRGI LEKNRDTFRD DLLNLLRESR FDFIYDLFEH VSSRNNQDTL 600
65 KCGSKHRRPT VSSQFKDSLH SLMATLSSSN PFFVRCIKPN MQKMPDQFDQ AVVLNQLRYS 660
GMLETVRIRK AGYAVRRPFQ DFYKRYKVL M RNLALPEDVR GKCTSLLQLY DASNSEWQLG 720
KTKVFLRESL EQKLEKRREE EVSCHAAMVIR AHVLGFLARK QYRKVLYCVV IIQKNYRAFL 780
LRRRFLHLKK AAIVFQKQLR GQIARRVYRQ LLAEKREQEE KKKQEEEEEKK KREEEERERE 840

5 RERREAEELRA QQEEETRKQQ ELEALQKSQK EAELTRELEK QKENKQVEEI LRLEKEIEDL 900
 QRMKEQQELS LTEASLQKLQ ERRDQELRRRL EEEACRAAQE FLESLNFDEI DECVRNIERS 960
 LSVGSEFSSE LAESACEEKP NFNFSQPYPE EEVDEGFEAD DDAFKDSPNP SEHGHSQRT 1020
 SGIRTSDDSS EEDPYMNDTV VPTSPSADST VLLAPSQVQDS GSLHNSSSGE STYCMQPNAG 1080
 10 DLPSPDGDYD YDQDDYEDGA ITSGSSVTFS NSYGSQWSPD YRCVGTYNS SGAYRFSSEG 1140
 AQSSFEDSEE DFDSRFDTDD ELSYRRDSVY SCVTLPYFHS FLYMKGGLMN SWKRRWCVLK 1200
 DETFLWFRSK QEALKQGWLH KKGGGSSTLS RRNWKWRWFV LRQSKLMYFE NDSEEKLKGT 1260
 VEVRTAKEII DNNTKENGID IIMADRTFHL IAESPEDASQ WFSVLSQVHA STDQEIQEMH 1320
 DEQANPQNAV GTLDVGLIDS VCASDSPDRP NSFVIITANR VLHCNADTPF EMHHHWITLQ 1380
 15 RSKGDTRVEG QEFIVRGWLH KEVKNSPKMS SLKLKKRWFV LTHNSLDYYK SSEKNALKLG 1440
 TLVLNSLCV VPPDEKIFKE TGYNWNTVYVG RKHCYRIFTK LLNEATRWW AIQNVTDTKA 1500
 PIDTPTQQLI QDIKENCLNS DVVEQIYKRN PILRYTHHPL HSPLPLPYG DINLNLLKDK 1560
 GYTTLQDEAI KIFNSLQQLE SMSDPPIIQ GILQTGHDLR PLRDELYCQL IKQTNKVPHP 1620
 GSVGNLYSWQ ILTCLSCTFL PSRGILKYLK FHLKRIREQF PGTEMEKYAL FTYESLKKTK 1680
 20 CREFVPSRDE IEALIHRQEM TSTVYCHGGG SCKTINSH TAGEVVEKLI RGLAMEDSRN 1740
 MFALFNEYNGH VDKAIESRTV VADPVLAKFEK LAATSEVGDL PWKFYFKLYC FLDTDNPVPKD 1800
 SVEFAFMFEQ AHEAVIHHH PAPEENLQVL AALRLQYLGQ DYTLLHAAIPP LEEVYSLQRL 1860
 KARISQSTKT FTPCERLEKR RTSFLEGTLR RSFRTGSVVR QKVEEEQMLD MWIKEEVSSA 1920
 RASIIDKWRK FQGMNQEQAQ AKYMALIKEW PGYGSTLFDV ECKEGGFPQE LWLGVSADAV 1980
 SVYKRGEGRP LEVFQYEHIL SFGAPLANTY KIVVDERELL FETSEVVVDVA KLMKAYISMI 2040
 VKKRYSTTRS ASSQGSSR

AC03 protein sequence

Gene name: calcitonin receptor-like (CALCRL)
 Unigene number: Hs.152175
 Probeset Accession #: L76380
 Protein Accession #: NP_005786.1
 Pfam: 7TM 2 (7 transmembrane receptor (Secretin family))
 Transmembrane domains: predictions underlined
 Signal sequence: first underlined region
 Summary: Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse biological effects including potent vasodilator activity. The human CGRP1 receptor shares significant peptide sequence homology with the human calcitonin receptor, a member of the G-protein-coupled receptor superfamily. Stable expression in 293 (HEK 293) cells produces specific, high affinity binding sites for CGRP. Exposure of these cells to CGRP results in a 60 fold increase in cAMP production.

25 MEKKCTLYFL VLLPFFMILV TAELEESPED SIQLGVTRNK IMTAQYECYQ KIMQDPIQQA 60
 EGVYCNRTWD GWLCWNDVAA GTESMQLCPD YFQDFDPSEK VTKICDQDGW WFRHPASNRT 120
 30 WTNYTOCNVN THEKVKTALN LFYLTIIHG GLSIASLISL GIFFYFKSLS CQRITLHKNL 180
 FFSFVCNSVV TIIHLTAVAN NOALVATNPV SCKVSQFIHL YLMGCNYFWM LCEGIYLHTL 240
 35 IIVAVFAEKQ HLMWYYFLGW GPFPLIPACIH AIARSLYYND NCWISSDTHL LYIIHGPICA 300
 ALLVNLFFLL NIVRVLITKL KVTHQAESNL YMKAVERATLI LVPLLGIEFV LIPWRPEGKI 360
 40 AEEVYDYIMH ILMHFOGLLV STIFCFNGE VQAILRRWN QYKIQFGNSF SNSEALRSAS 420
 YTVSTISDGP GYSHDCPSEH LNGKSIHDIE NVLLKPNLY N

AC05 protein sequence

45 Gene name: Selectin E (endothelial adhesion molecule 1)
 Unigene number: Hs.89546
 Probeset Accession #: M24736
 Protein Accession #: NP_000441.1
 Pfam: lectin c, EGF like domain, sushi (SCR domain)
 Signal sequence: first underlined region
 Transmembrane domain: second underlined region
 Summary: Focal adhesion of leukocytes to the blood vessel lining is a key step in inflammation and certain vascular disease processes. Endothelial leukocyte adhesion molecule-1 (ELAM-1), a cell surface glycoprotein expressed by cytokine-activated endothelial, mediates the adhesion of blood neutrophils. The primary sequence of ELAM-1 predicts an amino-terminal lectin-like domain, an EGF domain, and six tandem repetitive motifs (about 60 amino acids each) related to those found in complement regulatory proteins. A similar domain structure is also found in the MEL-14 lymphocyte cell surface homing receptor, and in granule-membrane protein 140, a membrane glycoprotein of platelet and endothelial secretory granules that can be rapidly mobilized (less than 5 minutes) to the cell surface by thrombin and other stimuli. Thus, ELAM-1 may be a member of a nascent gene family of cell

Cont
A/20
surface molecules involved in the regulation of inflammatory and immunological events at the interface of vessel wall and blood.

5 MIASOFLSAL TLVLLIKESG AWSYNTSTEA MTYDEASAYC QQRYTHLVAI QNKEEIEYLN 60
SILSYSPSYY WIGIRKNNV WVWVGTQKPL TEEAKNWAPG EPNNRQKDED CVEIYIKREK 120
DVGWMNDERC SKKKLALCYT AACTNTSCSG HGECVETINN YTCKCDPGFS GLKCEQIVNC 180
TALESPEHGS LVCSPHPLGNF SYNSSCSISC DRGYLPSSME TMQCMSSGEW SAPIPACNVV 240
ECDAVTNPAN GFVECFQNPNG SFPWNTTCTF DCEEGFELMG AQLSQCTSSG NWDNEKPTCK 300
AVTCRAVRQP QNGSVRCSHS PAGEFTFKSS CNFTCEEFGM LOGPAQVECT TQGQWTQQIP 360
10 VCEAFQCTAL SNPERGYMNC LPSASGSFRY GSSCEFSCSEQ GFVLKGSKRL QCGPTGEWDN 420
EKPTCEAVRC DAVHQPKGL VRCAHSPIGE FTYKSSCAFS CEEGFELYGS TQLECTSQGQ 480
WTEEVPSQCV VKCSSLAVPG KINMSCSGEP VFGTVCKFAC PEGWTNGSA ARTCGATGHW 540
SGLLPTCEAP TESNIPLVAG LSAAGLSLLT LAPFLLWLRK CLRKAKKFVP ASSCQSLESD 600
GSYQKPSYIL

15

ACC8 protein sequence

Gene name: Chemokine (C-X-C motif), receptor 4 (fusin)

Unigene number: Hs.89414

Probeset Accession #: L06797

Protein Accession #: NP_003458.1

Pfam: 7TM 1 (7 transmembrane receptor (rhodopsin family))

Signal sequence: none identified

Transmembrane domains: predictions underlined

Summary: The chemokine receptor CXCR4 (also designated fusin and LESTR) is a cofactor for fusion and entry of T cell-tropic strains of HIV-1.

A/20

60 MEGISIYTSD NYTEEMGSGD YDSMKEPCFR EENANFNKIF LPTIYIIFI L TGIVGNGLVI 60
LVMGYQKKLR SMTDKYRLHL SVADLLFVIT LPFWAVDAV NWYFGNFLCK AVHVIYTVNL 120
YSSVLILAFI SLDRYLAIVH ATNSQRPRKL LAEKVVVVG WIPALLLTIP DFIFANVSEA 180
DDRYICDRFY PNDLWVVVFQ FQHIMVGLL PGIVILSCYC IIISKLSHSK GHQKRKALKT 240
TVILILAFFA CWLPYYIGIS IDSFILEII KQGCEFENTV HKWISITEAL AFFHCCLNPI 300
LYAFLGAKFK TSAQHALTSV SRGSSLKILS KGKRGHSSV STEESSSSFH SS

25

ACF2 protein sequence

Gene name: Endothelial cell-specific molecule 1

Unigene number: Hs.41716

Probeset Accession #: X89426

Protein Accession #: NP_008967.1

Signal sequence: underlined

Pfam: IGFBR (Insulin-like growth factor binding proteins)

Summary: Human endothelial cell-specific molecule (called ESM-1) was cloned from a human umbilical vein endothelial cell (HUVEC) cDNA library. Constitutive ESM-1 gene expression is seen in HUVECs but not in the other human cell lines. The cDNA sequence contains an open reading frame of 552 nucleotides and a 398-nucleotide 3'-untranslated region including several domains involved in mRNA instability and five putative polyadenylation consensus sequences. The deduced 184-amino acid sequence defines a cysteine-rich protein with a functional NH2-terminal hydrophobic signal sequence.

A/22

35

60 MKSVLLLTTL LVPAHLVAW SNNYAVDCPQ HCDSSECKSS PRCKRTVLDD CGCCRVCAAG 60
RGETCYRTVS GMDGMKCGPG LRCQPSNGED PFGEEFGICK DCPYGTFGMD CRETCNCQSG 120
ICDRGTGKCL KFPFFQYSVT KSSNRFVSLT EHDMASGDGN IVREEVVKEN AAGSPVMRKW 180
55 LNPR

A/23

ACF4 protein sequence

Gene name: P53-responsive gene 2 similar to D.melanogaster peroxidasin(U11052)

Unigene number: Hs.118893

Probeset Accession #: D86983

Protein Accession #: BAA13219
Pfam: LRRNT (Leucine rich repeat N-terminal domain), LRR (Leucine Rich Repeat), LRRCT (Leucine rich repeat C-terminal domain), Ig (immunoglobulin domain), Peroxidase, VWC (von Willebrand factor type C domain)

Summary: ACF4 is a gene originally identified from KG-1 cell and brain cDNA libraries.

5 'SRPWWRASE RPSAPSAMAK RSRGPGRRCL LALVLFCAWG TLAVVAQKPG AGCPSRCLCF 60
 RTTVRCMHLL LEAVPAVAPQ TSILDLRFNR IREIQPGAFR RLRNLNTLLL NNNQIKRIPS 120
 GAFEDLENLK YLYLYKNEIQ SIDRQAFKGL ASLEQLYLHF NQIETLDPDS FQHLPKLERL 180
 FLHNNRITHL VPGTFNHLES MKRLRLDSNT LHCDCIEILWL ADLLKTYAES GNAQAAAICE 240
 YPRRIQGRSV ATITPEELNC ERPRITSEPO DADVTSGNTV YFTCRAEGNP KPEIIWLRNN 300
 10 NELSMKTDSR LNLLDDGTLI IQNTQETDQG IYQCMAKNVA GEVKTQEVTL RYFGSPARPT 360
 FVIQPQNTEV LVGESVTL EC SATGHPPPRT SWTRGDRTPL PVDPRVNITP SGGLYIQNVV 420
 QGDSEGYACCS ATNNIDSVHA TAFIIIVQALP QFTVTPQDRV VIEGQTVDFQ CEAKGNNPPP 480
 IAWTKGGSQL SVDRRHVLIS SGTLRISGVA LHDQGQYECQ AVNIIGSQKV VAHLLTVQPRV 540
 15 TPVFASIPSD TTVEVGANVQ LPCSSQGEPE PAITWNKDGV QVTESGKFHI SPEGFLTIND 600
 VGPADAGRYE CVARNTIGSA SVSMVLSVNV PDVSRNGDPF VATSIVEAIA TVDRAINSTR 660
 THLFDSRPRS PNDLLALFRY PRDPYTVQEA RAGEIFERTL QLIQEHVQHG LMVVDLNGTSY 720
 HYNDLVSPQY LNLIANLNGC TAHRRVNNCS DMCFHQKYRT HDGTCNNLQH PMWGASLTAF 780
 ERLLKSVYEN GFNTPRGINP HRLYNGHALP MPRLVSTTLI GTETVTPDEQ FTHMLMQWQ 840
 20 FLDHLDLSTV VALSQARFSD GQHCSNVCSN DPPCFSVMPNDSRARSGA RCMFFVRSSP 900
 VCGSGMTSLL MNSVYPREQI NQLTSYIDAS NVYVGSTEHEA RSIRDLASHR GLLRQGIVQR 960
 SGKPLLPFAT GPPTECMRDE NESPIPCFLA GDHRAENEQLG LTSMHTLWFR EHNRRIATELL 1020
 KLNPHWDGDT IYYETRKIVG AEIQHITYQH WLPKILGEVG MRTLGEYHG YDPGINAGIFN 1080
 AFATAAFRFG HTLVNPPLYR LDENFQPIAQ DHLPLHKAFF SPFRIVNEGG IDPLLRGLFG 1140
 25 VAGKMRVPSQ LLNTELTERL FMSAHTVALD LAAINIQRGR DHGIPPYHDY RVYCNLSAAH 1200
 TFEIDLKNEIK NPEIREKLR LYGSTLNIDL FPALVVEDLV PGSRLGPTLM CLLSTQFKRL 1260
 RDGDRLWYEN PGVFSPAQLT QIKQTSLARI LCDNADNITR VQSDVFRVAE FPHGYGSCDE 1320
 IPRVDSLWVQ DCCEDCRTRG QFNAFSYHFR GRRSLEFSYQ EDKPTKKTRP RKIPSVGRQG 1380
 EHLSNSTSAF STRSDASGTN DFREFVLEMQ KTITDLRTQI KKLESRLSTT ECVDAGGESH 1440
 ANNTKWKDADT CTICECKDGQ VTCFVEACPP ATCAVPVNIP GACCPVCLQK RAEEKP

ACF5 protein sequence

Gene name: Mitogen-activated protein kinase kinase kinase kinase 4

Unigene number: Hs.3628

Probeset Accession #: N54067

Protein Accession #: NP_004825.1

Pfam: pkainase (Eukaryotic protein kinase domain), CNH domain

Summary: The yeast serine/threonine kinase STE20 activates a signaling cascade that includes STE11 (mitogen-activated protein kinase kinase kinase), STE7 (mitogen-activated protein kinase kinase), and FUS3/KSS1 (mitogen-activated protein kinase) in response to signals from both Cdc42 and the heterotrimeric G proteins associated with transmembrane pheromone receptors. ACF5 is a human cDNA encoding a protein kinase homologous to STE20. This protein kinase, also designated HPK/GCK-like kinase (HGK), has nucleotide sequences that encode an open reading frame of 1165 amino acids with 11 kinase subdomains. HGK is a serine/threonine protein kinase that specifically activated the c-Jun N-terminal kinase (JNK) signaling pathway when transfected into 293T cells, but does not stimulate either the extracellular signal-regulated kinase or p38 kinase pathway. HGK also increased AP-1-mediated transcriptional activity in vivo. HGK may be a novel activator of the JNK pathway. The cascade may look like this: HGK -> TAK1 -> MKK4, MKK7 -> JNK kinase cascade, which may mediate the TNF-alpha signaling pathway.

50 MANDSPAKSL VDIDLSSLRD PAGIFELVEV VGNNTYQGVY KGRHVKTGQL AAIKVMDVTE 60
 DEEEEIKLEI NMLKKYSHHR NIATYYGAFI KKSPPGHDDQ LWLVMEFCGA GSITDLVKNT 120
 KGNTLKDWEI AYISREILRG LAHLHIIHVII HRDIKGQNVL LTENAEVKLV DFGVSAQLDR 180
 TVGRRNTFIG TPYWMAPEVI ACDENPDATY DYRSDLWSCG ITAIEMAEGA PPLCDMHPMR 240
 ALFLIPRNNP PRLKSKKKWPK KFWSFIEGCL VKNYMQRPST EQLLKHPFIR DQPNERQVRI 300
 55 QLKDHIDRTK KKRGEKDETE YEYSGSEEEE EEVPEQEGERP SSIVNVPGES TLRRDFLRLQ 360
 QENKERSEAL RRQQLLQEQQ LREQEYKQ LLAERQKRIE QQKEQRRRLQ EQQRREREAR 420
 RQQEREQRRR EQEERKRLLE LERRRKEEE RRRRAEEKRR VEREQEYIRR QLEEEQRHLE 480
 VLIQQQLLQEQQ AMLLHDHRRP HPQHSQQPPP PQQERSKPSF HAPEPKAHYE PADRAREVPV 540
 RTTSRSPVLS RRDSPPLQGSG QNNSQAGQQRN STSIEPRLLW ERVEKLVPRP GSGSSSGSSN 600
 60 SGSPQPGSHPG SQSGSGERFR VRSSSKSEGS PSQRLENNAVK KPEDKKEVFR PLKPAGEV 660
 TALAKELRAV EDVRRPPHKVT DYSSSSEESG TTDEEDDDVE QEGADESTSG PEDTRAAS 720
 NLSNGETESV KTMIVHDDVE SEPAMTPSKE GTLIVRQTQS ASSTLQKHKS SSSFTPFIIDP 780
 RLLQISPSSG TTVTSVVGFS CDGMRPEAIR QDPTRKGSSV NVNPTNTRPQ SDTPEIRKYK 840
 KRFNKSILCA ALWGVNLLVG TESGLMLLDR SGQGKVYPLI NRRRFQQMDV LEGLNVLVTI 900
 65 SGKKDKLRLVY YLSWLRNKL HNDPVEEKQ GWTTVGLEG CVHYKVVKYE RIKFLVIALK 960
 SSVEVYAWAP KPYHKFMFK SFGEVLHKPL LVDLTVEEGQ RLKVIYGSCA GFHAVDVDSG 1020
 SVYDIYLPTH VRKNPHSMIQ CSIKPHAI 111 LPNTDGMELL VCYEDEGVYV NTYGRITKDV 1080
 VLQWGEMPTS VAYIRSNQTM GWGEKAIEIR SVETGHLGIV FMHKRAQRLK FLCERNDKVF 1140

FASVRSGGSS QVYFMTLGRT SLLSW

ACF8 protein sequence

Gene name: Phospholipase A2, group IVC (cytosolic, calcium-independent)

Unigene number: Hs.18858

Probeset Accession #: AA054087

Protein Accession #: NP_003697.1

Pfam: none identified

Summary: ACF8 is a membrane-bound, calcium-independent PLA2 named cPLA2-gamma. The sequence encodes a 541-amino acid protein containing a domain with significant homology to the catalytic domain of the 85-kDa cPLA2 (cPLA2-alpha). cPLA2-gamma does not contain the regulatory calcium-dependent lipid binding (CaLB) domain found in cPLA2-alpha. cPLA2-gamma does contain two consensus motifs for lipid modification, a prenylation motif (-CGLA) at the C terminus and a myristylation site at the N terminus. cPLA2-gamma demonstrates a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid. cPLA2-gamma encodes a 3-kilobase message, which is highly expressed in heart and skeletal muscle, suggesting a specific role in these tissues.

MGSSEVSIIP GLQKEEKAAV ERRRLHVLKA LKKLRIEADE APVVAVLGSG GGLRAHIACL 60
GVLSEMKEQG LLDATVTLAG VSGSTWAISS LYTNNDGMEE LEADLKHRTF RQEWDLAKSL 120
QKTIQAAARSE NYSLTDFWAY MVIISKQTRREL PESHLNSMKK PVEEGTLPPY IFAAIDNDLQ 180
PSWQEARAPE TWFEFTPHHA GFSALGAFVS ITHFGSKFKK GRLVRTHPER DLTFLRGLWG 240
SALGNTEVIR EYIFDQLRNL TLKGLWRRAV ANAKSIGHLI FARLLRLQES SQGEHPPPED 300
EGGEPEHTWL TEMLENWTRT SLEKQEQPHE DPERKGSLSN LMDFVKKTGI CASKWEWGTT 360
HNFLYKHGGI RDKIMSSRKH LHLVDAGLAI NTPFPVLVLP TREVHLILSF DFSAGDPFET 420
IRATTDYCRR HKIPFPQVEE AELDLWSKAP ASCYILKGET GPVVIHFPLF NIDACGGDIE 480
AWSDTYDTFK LADTYTLDVV VLLLALAKKN VRENKKKILR ELMNVAGLYY PKDSARSCCL 540

A

ACG1 protein sequence

Gene name: Carbohydrate (chondroitin 6/keratan) sulfotransferase 1

Unigene number: Hs.104976

Probeset Accession #: AA858063

Protein Accession #: NP_003645.1

Pfam: none identified

Summary: Chondroitin 6-sulfotransferase (C6ST) is the key enzyme in the biosynthesis of chondroitin 6-sulfate, a glycosaminoglycan implicated in chondrogenesis, neoplasia, atherosclerosis, and other processes. C6ST catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to carbon 6 of the N-acetylgalactosamine residues of chondroitin.

MQCSWKAVLL LALASIAIQW TAIRTFTAKS FHTCPGLAEA GLAERLCEES PTFAYNLSRK 60
THILILATTR SGSSFVGQLF NQHLDVFYLF EPLYHVQNTL IPRFTQGKSP ADRRVMLGAS 120
RDLRLRSLYDC DLYFLENYIK PPPVNHTTDR IFRRGASRVL CSRPVCDPPG PADLVLEEGD 180
CVRKCGLLNL TVAAEACRER SHVAIKTVRV PEVNDLRLALV EDPRNLKVI QLVRDPRGIL 240
ASRSETFRDT YRLWRLWYGT GRKPYNLDVT QLTTVCEDFS NSVSTGLMRP PWLKGKYMLV 300
RYEDLARNPM KKTEEYGF GIPLDHSVAR WIQNNTRGDP TLGKHKYGTV RNAATAEKW 360
RFRLSYDIVA FAQNACQQVL AQLGYKIAAS EEELKNPSVS LVEERDFRPF S

ACG5 protein sequence

Gene name: Multimerin

Unigene number: Hs.268147

Probeset Accession #: U27109

Protein Accession #: AAC52065

Sign. sequence: prediction underlined

Pfam: EGF-like domain, C1q domain

Summary: Multimerin is a massive, soluble protein found in platelets and in the endothelium of blood vessels. Multimerin is composed of varying sized, disulfide-linked multimers, the smallest of which is a homotrimer. Multimerin is a factor V/Va-binding protein and may function as a carrier protein for platelet factor V. Northern analyses show a 4.7-kilobase transcript in cultured endothelial cells, a megakaryocytic cell line, platelets, and highly vascular tissues. The multimerin cDNA can encode a protein of 1228 amino acids with the probable signal peptide

On
1/27

cleavage site between amino acids 19 and 20. The protein is predicted to be hydrophilic and to contain 23 N-glycosylation sites. The adhesive motif RGDS (Arg-Gly-Asp-Ser) and an epidermal growth factor-like domain were identified. Multimerin contains a probable coiled coil structures in the central portion of its sequence. Additionally, the carboxyl-terminal region of multimerin resembles the globular, non-collagen-like, carboxyl-terminal domains of several other trimeric proteins, including complement C1q and collagens type VIII and X.

10	MKGARLFVLL SSLWSGGIGL NNSKHSWTIP EDGNSQKTM P SASVPPNQIQ SLQILPTTRV	60
	MSAEIATTPE ARTSEDSLK STLPSETSA PAEGVRNQTL TSTEKAEGVV KLNQNLTLPTN	120
	ASIKFNPGAE SVVLSNSTLK FLQSFARKSN EQATSLNTVG GTGGIGGVGG TGGVGNRAPR	180
	ETYLSRGDSS SSQRDTYQKS NFETTRGKMW CAYVHTRLSP TVTLDNQVTVY VPGGKGPCGW	240
	TGGSCPQRSQ KISNPVYRMQ HKIVTSLDWR CCPGYSGPKC QLRAQEQQSL IHTNQAESHT	300
15	AVGRGVAEQQ QQQGCGDPEV MQKMTDQVNY QAMKLTLLQK KIDNISLTVN DVRNTYSSLE	360
	GVKSEDKSRE FQSLKKLKS KSIINVLRIDI VREQFKIFQDN DMQETVAQLF KTVSSLSEDL	420
	ESTRQIIQKV NESVVSIAAQ QKFVLVQENR PTLTDIVELR NHIVNVRQEM TLTCEKPIKE	480
	LEVQTHLEG ALEQEHSRSI LYYESLNKTL SKLKEVHEQL LSTEQVSDQK NAPAAESVSN	540
	NVTEYMSLH ENIKKQSLMM LQMFEDELHIQ ESKINNLTVS LEMEKESLRG ECEDMLSKCR	600
20	NDFKFQLKDT EENLHVNLQT LAEVLFPMODN KMDKMSEQLN DLTYDMEILQ PLLEQGASLR	660
	QTMTYEQPKE AIVIRKKIEN LTSAVNSLNF IIKELTKRHN LLRNEVQGRD DALERRINEY	720
	ALEMEDGLNK TMTIINNAID FIQDNYALKE TLSTIKDNSE IHHKCTSDME TILTFIPQFH	780
	RLNDSIQTTLV NDNQRYNFVL QVAKTLAGIP RDEKLNQSNF QKMYQMFNET TSQVRKYQQN	840
	MSHLEEKLLL TTKISKNFET RLQDIESKVT QTLIPYYISV KKGSVVTNER DQALQLQVLN	900
25	SRFKALEAKS IHLSINFFSL NKTLLHEVLT CHNASTSVSE LNATIPKWK HSLPDIQLLQ	960
	KGLTEFVEPI IQIKTQAALS NSTCCIDRSL PGSLANVVK S QKQVKSLPKK INALKKPTVN	1020
	LTTVLIGRTQ RNTDNIIYPE EYSSCSRHPQ QNGGTCINGR TSFTCACRHP FTGDNCTIKL	1080
	VEENALAPDF SKGSYRYAPM VAFFASHTYQ MTIPGPILFN NLDVNYGASY TPRTGKFRIP	1140
30	YLGVYVFKYT IESFSAHISG FLVVDGIDKL AFESENINSE IHCDRVLTD ALLELNYGQE	1200
	VWLRLLAKGTI PAKFPPVTTF SGYLLYRT	

ACC6 protein sequence

Gene name: Homo sapiens cDNA FLJ11502 fis, clone HEMBA1002102, weakly similar to ANKRYXIN
 Unigene number: Hs.213194
 Probeset Accession #: AA187101
 Protein Accession #: none
 Pfam: ankyrin repeats

40	VAARPPVSRM EPRAADGCFL GDVGFWVERT PVHEAAQRGE SLQLQQLIES GACVNQVTVD	60
	SITPLHAASL QGQARCVQLL LAAGAOVDAR NIDGSTPLCD ACASGSIECV KLLLSYGAKV	120
	NPPLYTASPL HEASFPRLLS TLASTPWIN	

ACC7 protein sequence

Gene name: Human RALA gene

Unigene number: Hs.6906

Probeset Accession #: AA083572 cluster

Protein Accession #: P11233

Pfam: ras

Features: CAAX motif is underlined

Summary: The RALA gene encodes a low molecular mass ras-like GTP-binding protein that shares about 50% similarity with the ras proteins. GTP-binding proteins mediate the transmembrane signaling initiated by the occupancy of certain cell surface receptors. The RALA gene maps to 7p22-p15.

55	MAANKPKGQN SLALHKVIMV GSGGVGKSAL TLQFMYDEFV EDYEPTKADS YRKKVVLGE	60
	EVQIDILDTA QQEDYAAIRD NYFRSGEGFL CVFSITEMES FAATADFREQ ILRVKEDENV	120
	PFLLVGNKSD LEDKRVQSV EAKNRAEQWN VNYVETSAKT RANVDKVFFD LMREIRARKM	180
60	EDSKEKNGKK KRKSLAKRIR ERCC ⁶⁵	

ACC9 protein sequence

Gene name: KIAA0955 protein

Unigene number: Hs.10031

Probeset Accession #: AA027168

Protein Accession #: BAA76799.1

Pfam: CARD (Caspase recruitment domain)

Cont
G130
Summary: Gene was originally isolated as a brain cDNA. The coding region contains a CARD domain, suggesting involvement in apoptotic signaling pathways.

5 MMRQRQSHYC SVLFLSVNLY GGTFFPGDICS EENQIVSSYA SKVCFEIEED YKNRQFLGPE 60
GNVDVELIDLK STNRYSVWFP TAGWYIWSAT GLGFLVRDEV TVTIAFGSWS QHLALDLQHH 120
EQWLVLGGPLF DVTAEPEEAV AEIHLPHFIS LQGEVDVSWF LVAHKNEGM VLEHPARVEP 180
FYAVLESPSF SLMGILLRIA SGTRLSIPIT SNTLIYYHPH PEDIKFHLYL VPSDALLTKA 240
IDDEEDRFHG VRLQTSSPPME PLNFGSSYIV SNSANLKVMP KELKLSYRSP GEIQHFSKFY 300
10 AGQMKEPIQL EITEKRHGTL VWDTEVKPVD LQLVAASAPP PFSGAAVFKE NHRQLQARMG 360
DLKGVLDDLQ DNEVLTENEK ELVEQEKTRO SKNEALLSMV EKKGDLALDV LFRSISERDP 420
YLVSYLRQQN L

ACF6 Protein sequence

15 Gene name: Homo sapiens cDNA FLJ10669 fis, clone NT2RP2006275, weakly similar to
Microtubule-associated protein 1B [CONTAINS: LIGHT CHAIN LC1]

Unigene number: Hs.66048

ProbeSet Accession #: AA609717

Protein Accession #: BAA9143_1

pfam: none identified

Summary: The cDNA for FLJ10669 was originally isolated from NT2 neuronal precursor cells (teratocarcinoma cell line) after 2-weeks of retinoic acid (RA) treatment. The protein sequence has similarity to microtubule-associated protein 1B (MAP-1B), suggesting a function for ACF6 in the regulating the cytoskeleton.

MGVGRLLDMYV LHPPSAGAER TLASVCALLV WHPAGPGEKV VRVLFPGCTP PACLLDGLVR 60
LQHLRFLREP VVTPQDLEGP GRAESKESVG SRDSSKREGL LATHPRPGQE RPGVARKEPA 120
RAEAPRKTEK EAKTPRELKK DPKPSVSRQ PREVRRAASS VPLNLKKTNAQ AAPKPRKAPS 180
TSHSGFPPVA NGPRSPPSLR CGEASPPSAA CGSPASQLVA TPSLELGPIP AGEEKALELP 240
LAASSIPRPR TPSPESHRSP AEGSERLSSL PLRGGEAGPD ASPTVTTPTV TTPSLPAEVG 300
SPHSTEVDLS LSVSFEQVLP PSAPTSEAGL SLPLRGPRAR RSASPHDSDL CLVSPCEFEH 360
RKAVPMAPAP ASPGSSNDSS ARSQERAGGL GAEETPPTSV SESLPTLSDS DPVPLAPGAA 420
DSDEDTEGFG VPRHDPLPDP LKVPPPLPDP SSICMVDPEM LPPKTARQTE NVSRTKPLA 480
RPNsRAAAAPK ATPVAAAKTK GLAGGDRASR PLSARSEPSE KGGRAPLSRK SSTPKTATRG 540
PSGSASSRPG VSATPPKSPV YLDLAYLPSG SSAHLVDEEF FQRVRALCYV ISGQDQRKEE 600
GMRAVLDALL ASKQHWRDRL QVTLIPTFDS VAMHTWYAEH HARHQALGIT VLGSNGMVSM 660
QDDAFAFPACKV EF