

"Space Data Processing: Making Sense of Experimental Data"

Continuation of topic 2 "Quasi-optimal approximation under uncertainty"

Tatiana Podladchikova Rupert Gerzer Term 4, March 28 – May 27, 2016 t.podladchikova@skoltech.ru

Exponential smoothing

$$\widehat{X}_i = \widehat{X}_{i-1} + \alpha(z_i - \widehat{X}_{i-1})$$

Errors of exponential smoothing due to measurement errors

$$\sigma_{\widehat{X}}^2 = \sigma_{\eta}^2 \frac{\alpha}{2 - \alpha}$$

Process *X* is characterized by sudden and unpredictable changes

Optimal
$$\alpha$$
 for random walk model
$$\alpha = \frac{-\chi + \sqrt{\chi^2 + 4\chi}}{2}$$

Muth J.F. (1960), Optimal properties of exponentially weighted forecasts of time series with permanent and transitory components, J.Amer. Statist. Ass.01960.-Vol.55.-p.299.

$$\chi = rac{\sigma_w^2}{\sigma_\eta^2}$$

 σ_{η}^2 - variance of measurement noise

Muth J.F. (1960), Optimal properties of exponentially weighted forecasts of time series with permanent and transitory components, J.Amer. Statist. Ass.01960.-Vol.55.-p.299.

$$\chi = \frac{\sigma_w^2}{\sigma_\eta^2}$$

 σ_{η}^2 - variance of measurement noise

Variances $\sigma_w^2 \ \sigma_\eta^2$ should be identified

Identification of noise statistics σ_w^2 and σ_η^2

Process
$$X_i$$
 \Rightarrow $X_i = X_{i-1} + w_i$ 1

Measurements \Rightarrow $z_i = X_i + \eta_i$ 2

Residual v_i \Rightarrow $v_i = z_i - z_{i-1}$ 3

Residual ρ_i \Rightarrow $\rho_i = z_i - z_{i-2}$ 4

Residual v_i \Rightarrow $v_i = w_i + \eta_i - \eta_{i-1}$ 5

Residual ρ_i \Rightarrow $\rho_i = w_i + w_{i-1} + \eta_i - \eta_{i-2}$ 6

Math. expectation \Rightarrow $E[v_i^2] = \sigma_w^2 + 2\sigma_\eta^2$ 7

Math. expectation \Rightarrow $E[\rho_i^2] = 2\sigma_w^2 + 2\sigma_\eta^2$ 8

Anderson, W. N., G. B. Kleindorfer, P. R. Kleindorfer, and M. B. Woodroofe (1969), Consistent estimates of the parameters of a linear system, Ann. Math. Stat., 40(3), 2064–2075.

Identification of noise statistics σ_w^2 and σ_η^2

Process
$$X_i$$
 $X_i = X_{i-1} + w_i$ 1

Measurements $Z_i = X_i + \eta_i$ 2

Residual v_i $v_i = z_i - z_{i-1}$ 3

Residual ρ_i $\rho_i = z_i - z_{i-2}$ 4

Residual v_i $v_i = w_i + \eta_i - \eta_{i-1}$ 5

Residual ρ_i $\rho_i = w_i + w_{i-1} + \eta_i - \eta_{i-2}$ 6

Math. expectation $E[v_i^2] = \sigma_w^2 + 2\sigma_\eta^2$ 7

Math. expectation $E[\rho_i^2] = 2\sigma_w^2 + 2\sigma_\eta^2$ 8

$$\left[E[
u_i^2]pprox rac{1}{N-2} \sum_{k=2}^N
u_k^2
ight] \left[E[
ho_i^2]pprox rac{1}{N-3} \sum_{k=3}^N
ho_k^2
ight]$$

Consistent estimates σ_w^2 and σ_η^2 are obtained by solving system of equations (7,8)