```
Noto per il corso di 15D di
Statistice per Big Date
```

Algoritm Partition

```
in in put una liute Le alle indici lih postituiso
un indice i portiziona le sattoliste [[1:k]
```

at 221

L[l;i] cle ontiene slumenti 2 [[i]
[[i+1:h] " " // > [[i]

```
Partition (A, l, h)
```

```
1. i = l-1
```

Assumiamo de 2 < h-1 e che quindi la sottoliste
A[l:k] contenga almeno du etementi

	Dimostriamo che alla fine del ciclo for per 3=1,, h-z abbiam che
(ж)	L[l:i+i] contiene sob elementi LP [i+1: J+1] contiene sob elementi >P
	e la setalista [[7:1+6]] mon è stata ahara esaminate
	Durante l'esecuzione del 3-esimo ci cho due casi sono possi
1)	L[J] >P Ad esemph [P=44]
	1 it 3-1 3 h-1
	In quoto cos l'algoritme non esegue alcune operazione e quindi il for incrementa il velore di 3, portando alla situazione seguente
	27 37 37 37 37 37 37 37 3

2)	LI3J4P
	In 9 Most caso l'algorithmo prima scambia [[iti], [[]] Ad esemph
	12 · · · [4] [45 85 · · · [73] [33] · · · [44] 8 J i j i j j j j j j j j j j j j j j j j
	12 · · · 4 3388 · · · /33 45 · · · /44 17 is it it it it it
	e successivamente incremente i (passo 6) e 3 (per effetts del cich for)
	12 · · · 4 33 88 · · · 73 45 . · · 49
duindi d una alla	e le condizioni lx) sono soddisfatte all'inizio di iterazione del ciclo for, allora restano soddisfa fine dell'iterazione
_	sho vale per 3=2, 8+1,, h~

Guardiams adesso all'ultima iterazione del cich for Der 3= 1-1 In quoto cesa [[]]=[[h-i]=p e quindi L[3] è scombiats cou L[iti] e pei i è post uguale a it! Il cich for termina e il vabre di i è restit. Ad esempis 88 77/... R-2 R-1=3 dop loscombis 94 88 h-2 h-1 incrementiamo i 7 46 i-1 i 1+1 Quindi L[l:i] contiene elementi ¿ L[i] / [141: R] contiene elementi 7/[i]