Theorem 2.0.18. For any sets A and B,

$$(A \cup B)^c = A^c \cap B^c$$

Proof. We want to show that $(A \cup B)^c \subseteq A^c \cap B^c$ and $A^c \cap B^c \subseteq (A \cup B)^c$.

1.
$$(A \cup B)^c \subseteq A^c \cap B^c$$

Let $x \in (A \cup B)^c$. Then $x \notin A$ and $x \notin B$. Hence $x \in A^c$ and $x \in B^c$. Thus $x \in A^c \cap B^c$. Therefore $(A \cup B)^c \subseteq A^c \cap B^c$.

Notice that this proof is nice and boring but it gets the job done.

2.
$$A^c \cap B^c \subseteq (A \cup B)^c$$

Let $x \in A^c \cap B^c$. Then $x \in A^c$ and $x \in B^c$ which implies $x \notin A$ and $x \notin A$. Hence $x \notin A \cap B$ and it follows that $x \in (A \cap B)^c$. Therefore $A^c \cap B^c \subseteq (A \cup B)^c$.

This proof has a little more flavor than the former but it is still kept simple.

Problem 2.0.19. Prove that for any set A and B, $(A \cap B)^c = A^c \cup B^c$.