decir, dE/dt = 0. La demostración de este hecho es un cálculo simple; utilizamos la Ecuación (2), la regla de la cadena y la Ecuación (1):

$$\frac{dE}{dt} = m\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}} + (\nabla V) \cdot \dot{\mathbf{r}} = \dot{\mathbf{r}} \cdot (-\nabla V + \nabla V) = 0.$$

Velocidad de escape

Como aplicación del principio de conservación de la energía, vamos a calcular la velocidad que debe alcanzar un cohete para escapar de la influencia gravitacional de la Tierra. Supongamos que el cohete tiene una masa m y se encuentra a una distancia R_0 del centro de la Tierra (o de otro planeta) cuando alcanza su velocidad de escape v_e y a partir de ahí viaja en punto muerto. La energía en ese instante es

$$E_0 = \frac{1}{2}mv_e^2 - \frac{mMG}{R_0}. (3)$$

Por el principio de la conservación de la energía, E_0 es igual a la energía en un instante posterior, lo que podemos expresar como

$$E_0 = E = \frac{1}{2}mv^2 - \frac{mMG}{R},\tag{4}$$

donde v es la velocidad y R es la distancia desde el centro de la Tierra (o el otro planeta). Lo que designamos mediante el término velocidad de escape es la velocidad v_e elegida de tal forma que el cohete alcance grandes distancias, pero entonces apenas se mueva. Es decir, v se aproxima a cero y R es muy grande. Por tanto, a partir de la Ecuación (4), vemos que E=0 y, por tanto, $E_0=0$; resolviendo $E_0=0$ para obtener v_e en la Ecuación (3) tenemos:

$$v_e = \sqrt{\frac{2MG}{R_0}}.$$

Ahora, GM/R_0^2 es exactamente g, la aceleración debida a la gravedad a la distancia R_0 del centro del planeta. Por tanto, podemos escribir:

$$v_e = \sqrt{2gR_0}.$$

En el caso de la Tierra, si la velocidad de escape se alcanzara en la superficie de la misma (por supuesto, esto no es muy realista), obtendríamos

$$v_e = \sqrt{2 \cdot 9.8 \text{ m/s}^2 \cdot 6.371\ 000 \text{ m}} = 11.127 \text{ m/s}.$$

Sin embargo, esta es una buena aproximación de la velocidad que un satélite situado en una órbita baja alrededor de la Tierra necesita para escapar del campo gravitatorio terrestre.

Líneas de flujo

Un concepto importante relacionado con los campos vectoriales generales (no necesariamente campos gradiente) es el de línea de flujo, que se define como sigue.