Data Analytics with Python

Week 9 Assignment Solution

Q1. The following confusion matrix was obtained from a classifier. Confusion Matrix:

	True Class			
		Apple	Orange	Mango
Predicted Class	Apple	7	8	9
	Orange	1	2	3
	Mango	3	2	1

What is the accuracy of the classifier?

$$Accuracy = \frac{Number of Correct Prediction (Digonal elements)}{Total number of Predictions}$$

$$Accuracy = \frac{7+2+1}{7+8+9+1+2+3+3+2+1}$$

$$Accuracy = \frac{10}{36}$$

$$Accuracy = 0.27778 = 27\%$$

Q2. For the given confusion matrix, what is the number of False Positives for the Apple class?

	True Class			
		Apple	Orange	Mango
	Apple	7	8	9
Predicted Class	Orange	1	2	3
	Mango	3	2	1

False Positive means the label does not belong to the class, but classifier predicted as positive.

FP for Apple = (predicted as Apple but actually Orange) + (predicted as Apple but actually Mango)

$$= 8 + 9$$

Answer: False Positive for Apple = 17

Q3. For the given confusion matrix, what is the number of True Negative for the Apple class?

	True Class			
		Apple	Orange	Mango
Predicted Class	Apple	7	8	9
	Orange	1	2	3
	Mango	3	2	1

True Negative means that the label does not belong to the class, and it is correctly predicted.

TN for Apples =
$$2 + 3 + 2 + 1 = 8$$

Answer: TN for Apple = 8

Q4. For the given confusion matrix, what is the number of False Negative for the Apple class?

	True Class			
		Apple	Orange	Mango
	Apple	7	8	9
Predicted Class	Orange	1	2	3
	Mango	3	2	1

False Negative means that the label belong to the class but it predicted negative.

FN for Apples = Belong to Apple but predicted as Orange and Mango

= 1 + 3

= 4

Answer: FN for Apple = 4

Q5. For the given confusion matrix, what is the F1-score of the classifier for the Apple class?

	True Class			
		Apple	Orange	Mango
	Apple	7	8	9
Predicted Class	Orange	1	2	3
	Mango	3	2	1

For Apple Class

$$TP = 7$$

$$TN = 2 + 3 + 2 + 1 = 8$$

$$FP = 8 + 9 = 17$$

$$FN = 4$$

Precision =
$$\frac{TP}{TP + FP} = \frac{7}{7 + 17} = 0.29$$
 & Recall = $\frac{TP}{TP + FN} = \frac{7}{7 + 4} = 0.64$

$$F1 \, Score = 2 \times \frac{Precision \times Recall}{Precision + Recall} = 2 \times \frac{0.29 \times 0.64}{0.29 + 0.64} = 0.40$$

Answer: F1 Score = 0.4

Q6. In ROC analysis, a classifier is called 'good' if it has _____

ROC analysis

ROC = receiver operator/operating characteristic/curve

ROC space: good and bad classifiers.

Answer: High TPR and Low FPR

Q7. State True or False: Standardization of features is not required before training a Logistic regression model

- A. True
- B. False

Answer: True

Standardization is not required for logistic regression. The main goal of standardizing features is to help convergence of the technique used for optimization.

Q8. For the given confusion matrix, determine the sensitivity for the model.

	Actual			
Predicted	Disease Non disease			
	Positive	10	40	
	Negative 5 45			

Here

TP = 10

TN = 45

FP = 40

FN = 5

Sensitivity =
$$\frac{TP}{TP + FN} = \frac{10}{10 + 5} = 0.6667 \approx 67\%$$

Answer: Sensitivity = 67%

Q9. For the given confusion matrix, determine the specificity for the model.

	Actual			
Predicted	Disease Non disease			
	Positive	10	40	
	Negative 5 45			

Here

TP = 10

TN = 45

FP = 40

FN = 5

Specificity =
$$\frac{TN}{TN + FP}$$
 = $\frac{45}{45 + 40}$ = 0.5294 \approx 53%

Answer: Sensitivity = 53%

10. According to the ROC Curve and AUC below, choose the correct alternative for the effectiveness of classifiers A and B.

The AUC for A ROC curve is higher than that for the B ROC curve.

Therefore, We can say that A did a better job of classifying the positive class in the dataset

Answer: A > B

