IEEE PCB Design Workshop: (Week 01) Introduction to Schematics

Hosted By: Adrian Sucahyo and IEEE at the University of Utah Adapted From: IEEE x FSAE Workshop SP25 with Nick Howard and Adrian Sucahyo

Workshop Outline

Tentatively scheduled for ~9 weeks

- Sept. 3 Introduction to Schematics
- Sept. 10 Schematics Continued
- Sept. 17 Introduction to PCB Layout
- Sept. 24 Layout Continued
- Oct. 1 Open Work Session
- ** FALL BREAK **
- Oct. 22 Soldering Week 1
- Oct. 29 Soldering Week 2
- Nov. 5 Soldering Week 3
- Nov. 12 Final Notes and Next Steps

Workshop Logistics

- We highly recommend attending all workshop sessions
 - Each session is designed to build off previously discussed materials
- By the end of the workshop, you will be able to:
 - Build an adjustable <u>USB-C Breadboard Power Supply</u>
 - Understand the basics of schematic layout, PCB layout, and board manufacturing
 - Gain experience with through-hole and surface mount PCB assembly
 - Have a basic understanding of manufacturing techniques and equipment used in the industry

Workshop Logistics

- We hope to not charge a fee for this workshop and supporting materials
 - Tentative on ASUU funding for the Fall Semester
 - Will know by October if fees will be necessary
- Want to pursue a different project? Chat or Email Us!
 - We may be able to support individual projects get board manufactured

Want more experience?

- Consider joining the FSAE tractive team!
 - The Tractive Team is currently looking for students to assist with designing and assembling the electrical system for an electric formula-style race car!
 - No experience required!

Join the IEEE Discord

 If you haven't already, please join the IEEE Discord server for additional information and updates regarding this workshop

What is a schematic?

- Schematics are a graphical representation of an electrical circuit or system
 - A step up from a block diagram
 - Shows all parts and electrical connections in a circuit
 - Used to route PCB traces during layout
- Schematics are NOT a physical representation of component positions on the PCB

Components in a Schematic

- Every electrical component will have its own symbol within the schematic
 - Contains all pins connected to the component
 - May contain additional information such as signal type
 - Relatively consistent across platforms

https://learn.sparkfun.com/tutorials/how-to-reada-schematic/all

Symbol Attributes

- Symbols may have additional information regarding the component they represent
 - Designators
 - Values
 - Part Numbers
 - Pin Name
 - Pin Number

US vs International Symbols

- You may see variations on certain components between US and International Schematics
 - Resistors, Capacitors, Inductors and more may have slightly different schematic symbols

https://learn.sparkfun.com/tutorials/how-to-reada-schematic/all

Nets and Nodes

- Schematic Nets are how components are electrically connected in a circuit
 - Represented with lines between components
- Nodes/Junctions are locations where wires split in two (or more)
 - A connection on a node is denoted by a dot

Net Labels

- Net Labels allow electrical connections to be made without having to draw a line between components
 - Net Labels tend to be local to the current schematic sheet
 - Power Labels tend to be global to the full design
- Note: Ports are similar but have a different purpose
 - Useful for hierarchal / multisheet design

Good Schematic Practice

- Readability is KEY!
 - The schematic needs to be read by other engineers to assist with layout and debugging
 - Readable schematics make it easier to find electrical errors which would be translated into the physical layout

https://xkcd.com/730/

Tips:

- Read Left to Right
- Don't Overcrowd
 - Use a larger sheet or use multi-sheet drawings
- Use Logical Blocks to Divide Circuit Elements
- Reference Manufacturer Datasheets
 - Follow established layouts
- Label Signals
 - Especially those which are not immediately obvious
- Keep Power Sources at the top and GND at the Bottom

Examples:

ECAD Software

- ECAD (Electronic Computer-Aided Design) are software used to design and create diagrams and layouts for PCBs
- There are many different vendors for ECAD software:
 - Altium
 - KiCAD
 - Eagle
 - OrCAD
 - EasyEDA

Why Altium?

- Altium is very commonly used in the industry for PCB and circuit assembly
- Not many opportunities to get access to the software outside of university
 - Please get your student license ASAP if you haven't already
- Great addition to your resume!

EMPLOYMENT / JOB APPLICATION

	PERSONA	L INFORMATION	٧	
FULL NAME:		DATE:		
First	Middle	Last		
ADDRESS: Street Address			Apt/Suite	
City	State		Zip Code	
E-MAIL:		PHONE:		
SOCIAL SECURITY NU	JMBER (SSN):			
DATE AVAILABLE:		DESIRED PAY: \$		_ □ HOUR □ SALAR
POSITION APPLIED FO	OR:			
EMPLOYMENT DESIR	ED: FULL-TIME P	ART-TIME SEASON	AL.	

Project Introduction

- USB-C Breadboard Power Supply
 - Dual Switching Supplies
 - Independent Voltage Outputs
 - Switch between isolated / tandem supplies
 - Dual Input Supplies
 - Primary and Secondary Supplies
 - Terminal Block Input
 - USB-C PD trigger on Primary Supply
 - Additional Barrel Jack DC input
 - Configurable output bleeder resistors

Block Diagram

Power Inputs and Input Selection

Power Inputs

- Terminal Block Input
- Barrel Jack Input
- USB-C PD Breakout
- 20 VDC Max

Input Selection

- Select between a primary and secondary supply
- Isolate supply A and B for independent operation

Switching Supplies

- Texas Instruments Simple Switchers – LM2596
 - Buck Converter
 - Adjustable Output
 - 3 Amp Output Load Capacity
- Reference Datasheet for more information and reference circuit

https://www.ti.com/product/LM2596

Power Outputs

- Power Outputs
 - Terminal Block Input
 - Pin Headers
 - Breadboard width for easy utilization
- Output Bleeder Resistors

Questions?

Questions?

Download Today's Project Files

Navigate to the workshop GitHub and download today's files

https://github.com/IEEE-U-of-U/IEEE-PCB-Workshop-Fall-2025

