

On the Connections of High-Frequency Approximated Ambisonics and Wave Field Synthesis

Frank Schultz¹, Gergely Firtha², Fiete Winter¹, Sascha Spors¹

¹Institute of Communications Engineering,

University of Rostock
²Department of Networked Systems and Services,

Budapest University of Technology and Economics

45th DAGA, Rostock, Virtual Acoustics

Introduction

Near Field Compensated Higher Order Ambisonics (NFC-HOA), Wave Field Synthesis (WFS)

Motivation

Connections on Near Field Compensated Infinite Order Ambisonics (NFC-IOA) and WFS?

Obviously, WFS constitutes spatially fullband synthesis so that all previous discussions on fullband synthesis apply also here though keeping in mind that WFS is a high-frequency approximation. Similar results can be obtained for spherical secondary source distributions and other non-planar and non-linear geometries.

This important result may be summarized as:

Wave Field Synthesis constitutes a <u>high-frequency approximation</u> of Near-field Compensated *Infinite* Order Ambisonics.

Ahrens J (2012): Analytic Methods of Sound Field Synthesis. Springer

Motivation

$$P(\mathbf{x}, \omega) = \int_{C} D(\mathbf{x}_{0}, \omega) G(\mathbf{x} - \mathbf{x}_{0}, \omega) dC$$
$$P(\mathbf{x}, \omega) = \sum_{N} D(\mathbf{x}_{0,n}, \omega) G(\mathbf{x} - \mathbf{x}_{0,n}, \omega) \Delta_{n}$$

On the connections of different sound field production approaches:

- Fazi F (2010): Sound Field Reproduction, dissertation
- Ahrens J (2012): Analytic Methods of Sound Field Synthesis. Springer
- Zotter F, Frank M (2012): All-Round Ambisonic Panning and Decoding, JAES 60(10):807
- Franck A, Wang W, Fazi F (2017): Sparse ℓ_1 -Optimal Multiloudspeaker Panning and Its Relation to Vector Base Amplitude Panning, IEEE TALSP 25(5):996
- Firtha G et al. (2018): On the General Relation of Wave Field Synthesis and Spectral Division Method for Linear Arrays, IEEE TASLP 26(12):2393
- Winter, Hahn, Spors: Local Wave Field Synthesis

Plane Wave Synthesis WFS vs. NFC-IOA

Referencing scheme for WFS $\mathbf{x}_{\mathsf{Ref}} = \mathbf{0}$ (Firtha 2017)

How to Prove 2.5D NFC-IOA \equiv 2.5D WFS?

Synthesis integral for circular secondary source distribution

$$P(\mathbf{x}, \omega) = \int_{\phi_0=0}^{2\pi} D(\mathbf{x}_0, \omega) G(\mathbf{x} - \mathbf{x}_0, \omega) r_0 \, d\phi_0$$

We can search for a closed analytic description

- of the Fourier series of D_{IOA}
- of the Fourier coefficients for Dwfs
- of the Fourier series of P_{IOA}
- of the Fourier coefficients for Pwes.

in order to analytically prove one of

$$\begin{split} D_{\text{IOA,FS}}(m,\omega) &\equiv D_{\text{WFS,FS}}(m,\omega) \quad D_{\text{IOA}}(\mathbf{x}_0,\omega) \equiv D_{\text{WFS}}(\mathbf{x}_0,\omega) \\ P_{\text{IOA,FS}}(m,\omega) &\equiv P_{\text{WFS,FS}}(m,\omega) \quad P_{\text{IOA}}(\mathbf{x}_0,\omega) \equiv P_{\text{WFS}}(\mathbf{x}_0,\omega) \end{split}$$

Stationary Phase Approximation of 2.5D SFS Integral

Synthesis integral for circular secondary source distribution

$$P(\mathbf{x}, \omega) = \int_{\phi_0=0}^{2\pi} D(\mathbf{x}_0, \omega) G(\mathbf{x} - \mathbf{x}_0, \omega) r_0 \, d\phi_0$$

Example: unit amplitude plane wave driving filter for NFC-HOA

$$D(\mathbf{x}_0, \omega)_{\text{NFC-HOA}} = \sum_{m=-M}^{+M} \frac{2\mathbf{j}}{\frac{\omega}{c} r_0} \frac{(-\mathbf{j})^{|m|}}{h_{|m|}^{(2)}(\frac{\omega}{c} r_0)} \mathrm{e}^{\mathbf{j} m (\phi_0 - \phi_{PW})}$$

With usual treatments $\frac{\omega}{c}r_0\to\infty, M\to\infty$ SPA yields

$$P(\mathbf{x},\omega) = \frac{r_0}{\mathrm{e}^{-\mathrm{j}\frac{\omega}{c}r_0}} \frac{\mathrm{e}^{-\mathrm{j}\frac{\omega}{c}|\mathbf{x}-\mathbf{x}_0^*|}}{|\mathbf{x}-\mathbf{x}_0^*|} \stackrel{\mathrm{for}\,\mathbf{x}=0}{=} 1$$

SPA of NFC Infinite Order Ambisonics

$$\begin{split} D_{\text{PW,HOA}}(\mathbf{x}_{0},\omega) &= \sum_{m=-\infty}^{+\infty} \underbrace{\frac{2\mathbf{j}}{c} r_{0}} \frac{(-\mathbf{j})^{|m|}}{h_{|m|}^{(2)} (\frac{\omega}{c} r_{0})} \mathrm{e}^{-\mathbf{j} m \phi_{PW}} \, \mathrm{e}^{\mathbf{j} m \phi_{0}} \\ D_{\text{PW,HOA}}(m,\omega) &= \sqrt{\frac{\mathbf{j}\omega}{c}} \sqrt{8\pi} \cdot w(\mathbf{x}_{0}) \cdot \sqrt{|\mathbf{x}_{\text{Ref}} - \mathbf{x}_{0}|} \cdot \\ \langle \mathbf{n}_{\text{PW}}, \mathbf{n}(\mathbf{x}_{0}) \rangle \cdot \mathrm{e}^{-\mathbf{j}\frac{\omega}{c} \langle \mathbf{n}_{\text{PW}}, \mathbf{x}_{0} \rangle} \circ \longrightarrow D_{\text{PW,FS}}(m,\omega)?? \end{split}$$

multiplication of secondary source selection window $w(\mathbf{x}_0)$ with 2.5D WFS Neumann-Rayleigh \mathbf{x}_0 -part \to convolution in Fourier series domain

$$\begin{split} D_{\text{PW,HOA}}(m,\omega) &= \frac{2\mathrm{j}}{\frac{\omega}{c} r_0} \frac{(-\mathrm{j})^{|m|}}{h_{|m|}^{(2)}(\frac{\omega}{c} r_0)} \mathrm{e}^{-\mathrm{j} m \phi_{PW}} \\ D_{\text{PW,WFS}}(m,\omega) &= -\sqrt{\frac{\mathrm{j} \omega}{c}} \sqrt{8\pi r_0} \cdot \\ & \left[\frac{1}{2\pi} \frac{-\mathrm{i}}{m} (\mathrm{e}^{-\mathrm{i} m (\phi_{PW} + \pi/2))} - \mathrm{e}^{-\mathrm{i} m (\phi_{PW} + 3\pi/2))}) \right] *_m \\ & \left[\frac{\mathrm{e}^{-\mathrm{j} m \phi_{PW}}}{2\,\mathrm{j}^{m-1}} (J_{m-1}(\frac{\omega}{c} r_0) - J_{m+1}(\frac{\omega}{c} r_0)) \right] \end{split}$$

Hahn N, Winter F, Spors S (2016): Local Wave Field Synthesis by Spatial Band-limitation in the Circular/Spherical Harmonics Domain, Proc. 140th AES Conv Paris

Conclusion

- WFS and NFC-HOA are precisely identical in the single stationary phase point, when number of modes $M \to \infty$ and $k \, r_0 \to \infty$
- NFC-HOA for $M \to \infty$, $k \, r_0 \to \infty$ merges to WFS for sources that fulfill WFS's high frequency / farfield approximation with referencing to the origin

Open Source:

- https://github.com/spatialaudio/ sfs-with-local-wavenumber-vector-concept
- https://sfs-python.readthedocs.io/en/0.5.0/