

LABORATORIO DI FISICA III

A CURA DI PEPPINO SALUMIERI

Indice

1	\mathbf{Ard}	luino
2	Sorg	genti di radiazione
	2.1	Tipi di radiazione
		2.1.1 Radiazioni ionizzanti
		2.1.2 Sorgenti di radiazioni naturali
		2.1.3 Sorgenti di radiazioni artificiali
		2.1.4 Radiazioni cariche
		2.1.5 Radiazioni neutre
		2.1.6 Radiazione cosmica secondaria
	2.2	Energia e potere penetrante
		2.2.1 Range energia di interesse
		2.2.2 Capacità penetrazione radiazioni
	2.3	Nuclei instabili
	2.4	Legge del decadimento radioattivo
		2.4.1 Excursus: la datazione al carbonio ¹⁴ C
	2.5	Isotopi radioattivi β
		2.5.1 Esempio: decadimento doppio ${}^{90}\mathrm{Sr}/{}^{90}\mathrm{Y}$
	2.6	Isotopi radioattivi α
	2.7	Isotopi radioattivi γ
	2.8	Sorgenti di fissione
	2.9	Radiazione cosmica
	2.10	Unità di misura e nomenclatura
		2.10.1 Attività di una sorgente
		2.10.2 Concetto di dose
		2.10.3 Concetto di dose equivalente
		2.10.4 Dosi tipiche
		1
3	Per	dita di energia-particelle cariche
	3.1	Principali meccanismi
		3.1.1 Interazione coulombiana (inelastica) con gli elettroni atomici
		3.1.2 Interazione (elastica) con i nuclei
	3.2	Relazione di Bethe-Bloch
		3.2.1 Perdita di energia per composti
		3.2.2 Picco di Bragg
	3.3	Fluttuazioni statistiche nella perdita di energia
		3.3.1 Range di una particella

4	VL	ЭI	\mathcal{C}	I	\overline{J}
---	----	----	---------------	---	----------------

	3.3.2	Il channeling	33
	3.3.3	Come calcolare il range di una particella	33
3.4	Radia	zione Cherenkov	33
3.5	Possib	oili esercizi	35
	3.5.1	Il potenziale di ionizzazione medio	36
	3.5.2	Come tenere conto di uno spessore finito	36

Capitolo 1

Arduino

Carusi non ho tempo poi la faccio sta parte.

Capitolo 2

Sorgenti di radiazione

Gran parte del corso è dedicata allo studio dei diversi tipi di rivelatore, e per capire come funziona un rivelatore bisogna innanzitutto capire come la radiazione che vogliamo andare a rivelare interagisce con la materia, in quanto i rivelatori sfruttano proprio tali meccanismi di interazione per estrarre le informazioni utili per l'utente.

Cominceremo con una breve introduzione sui tipi di radiazione.

2.1 Tipi di radiazione

2.1.1 Radiazioni ionizzanti

Per ionizzante intendiamo qualcosa che riesce a innescare un fenomeno di ionizzazione ne nella materia, cioè riesce a creare una coppia ione-elettrone, quindi si strappa un elettrone all'atomo inizialmente neutro e si crea tale coppia. Tale fenomeno è detto ionizzazione. Quando parliamo di radiazioni ionizzanti, intendiamo delle radiazioni che hanno energia tale da produrre effetto di ionizzazione o di un atomo o di una molecola. Esse possono essere di origine corpuscolare o elettromagnetica. In particolare sono:

• Particelle subatomiche, quali elettroni e protoni. I neutroni sono un po' un caso a parte perché possono produrre effetti di ionizzazione attraverso altri meccanismi, ad esempio a seguito dell'interazione producono particelle cariche. Oltre a queste esiste uno zoo di particelle che, sebbene non esista in natura, può essere prodotto attraverso reazioni o collisioni; tra queste vi è il muone, che rappresenta una radiazione naturale in quanto è una parte della componente secondaria dei raggi cosmici.

In generale quindi tutte le particelle cariche subatomiche, purché abbiano energia sufficiente per farlo, sono in grado di ionizzare la materia;

• Radiazioni elettromagnetiche con energia sufficiente. Infatti, lo spettro delle onde elettromagnetiche è molto vasto e si caratterizza in base alla frequenza dell'onda, da cui dipende l'energia della radiazione e quindi la capacità di ionizzare (ricordiamo che per ionizzare un atomo o una molecola è necessaria un'energia minima di ionizzazione, per cui ad esempio la luce visibile o le onde radio non riescono, mentre X, γ sì).

2.1.2 Sorgenti di radiazioni naturali

- Materiali emettitori naturali (ad esempio il Radon);
- Sorgenti radioattive (ad esempio isotopi radioattivi);
- Radiazione cosmica, che proviene dal cosmo, perché prodotta da sorgenti di origine astrofisica. In particolar modo noi non siamo sottoposti alla radiazione prodotte da tali sorgenti (che prende il nome di radiazione primaria), bensì alla radiazione secondaria, in quanto quella primaria quando incontra le molecole dell'atmosfera terrestre interagisce, producendo degli sciami di particelle secondarie. L'atmosfera dunque agisce da filtro, proteggendoci dalla radiazione primaria

Noi conviviamo con il livello di radiazione proveniente sia dagli isotopi naturali presenti nei materiali da costruzione, negli alimenti ecc. che dalla radiazione cosmica. Il nostro organismo si è quindi sviluppato in maniera tale da poter tollerare un certo livello di radiazione senza sviluppare dei danni di tipo biologico.

2.1.3 Sorgenti di radiazioni artificiali

- Macchine acceleratrici per scopi o diagnostici (TAC, PET) con cui veniamo sottoposti a radiazioni prodotte da tali macchine, o terapeutici come la radioterapia con cui si è soggetti a radiazioni prodotte da isotopi iniettatici nell'organismo;
- Acceleratori di particelle, cioè strumenti in grado di generare fasci di particelle che possiedono una determinata energia.

2.1.4 Radiazioni cariche

Si tratta di particelle dotate di carica, che si distinguono in

- Particelle cariche pesanti (protoni, alfa, ioni pesanti);
- Elettroni.

Tale distinzione viene fatta perché i meccanismi con cui le particelle cariche pesanti interagiscono con la materia sono diversi da quelli con cui interagiscono gli elettroni. Ricordiamo che la massa elettrone è pari a $0.511~{\rm MeV}$ mentre la massa del protone è dell'ordine del GeV, dunque tra i due c'è un fattore $2 \cdot 10^3$.

2.1.5 Radiazioni neutre

Associate a particelle neutre o a radiazione elettromagnetica:

- Radiazione elettromagnetica (noi ci interesseremo di X e γ);
- Neutroni, ma non ci occuperemo molto di questi perché i loro meccanismi di interazione possono dar luogo a processi nucleari e formazione di particelle cariche, quindi producono ionizzazione attraverso meccanismi secondari.

2.1.6 Radiazione cosmica secondaria

Essa è una radiazione innescata dall'interazione dei cosmici primari con l'atmosfera. Sono costituiti principalmente da:

- Muoni, il "cugino pesante dell'elettrone". È una particella elementare come l'elettrone, ma con una massa di 200 volte circa quella dell'elettrone e può avere carica sia positiva che negativa (μ₊ e μ₋). Sono una particella molto penetrante, cioè riesce ad attraversare i vari strati dell'atmosfera giungendo fino al livello del mare (se ha energia sufficiente), costituendo la maggior parte delle radiazioni cosmiche secondarie. Hanno una vita media di pochi microsecondi, tuttavia riusciamo ad osservarle a terra per effetti relativistici (dilatazione del tempo). È difficile schermarsi dai muoni, per cui bisogna ricordarsi che un qualunque rivelatore li misurerà, quindi per esperimenti in cui essi rappresentano un rumore di fondo (perché interessati ad altri fenomeni) si lavora in caverne (ad esempio il laboratorio nazionale del Gran Sasso).
- Elettroni.

2.2 Energia e potere penetrante

2.2.1 Range energia di interesse

- Sorgenti radioattive: da pochi eV (quindi poco energetiche) a 10^7 eV(= 10MeV);
- Radiazione cosmica secondaria: dal MeV al GeV. In questo caso le energie sono più alte perché in partenza i cosmici primari hanno delle energie notevoli (che non riusciamo a riprodurre con nessun acceleratore di particelle, tant'è che costituiscono l'accelerazione più grande che l'uomo abbia mai osservato) e di conseguenza anche i cosmici secondari.

2.2.2 Capacità penetrazione radiazioni

Indica quanto materiale le radiazioni riescono ad attraversare prima di essere arrestate. Si parla infatti di *potere penetrante*.

- Elettroni emessi da sorgenti radioattive (β): alcuni millimetri di materiale (hanno pochi MeV);
- Particelle α da sorgenti: qualche centinaio di μm di materiale solido, quindi rispetto alle particelle β hanno meno potere penetrante in quanto, essendo particelle più pesanti (ricordiamo che sono nuclei di elio), nell'attraversamento perdono più facilmente la loro energia, arrestandosi in pochissimo spazio. Ad esempio nell'aria percorrono qualche centimetro.
 - Sebbene ciò rappresenti un vantaggio dal punto di vista della radio-protezione, da quello della rivelazione delle particelle α rappresenta un problema perché rischiamo che i rivelatori non misurino niente in quanto le particelle vengono arrestate totalmente da pochi centimetri d'aria. Per questo motivo per tali radiazioni si adopera una camera da vuoto;

• Muoni cosmici: sono estremamente penetranti, per cui servono spessori anche di centinaia di metri per poter arrestare i muoni più energetici.

2.3 Nuclei instabili

Quando parliamo di sorgenti radioattive, intendiamo degli isotopi che decadono nel tempo, che sono quindi instabili, cioè cambiano la loro natura.

Nel grafico abbiamo il numero di protoni di un nucleo sulle ascisse ed il numero di neutroni sulle ordinate (rispettivamente Z è il numero di protoni ed N=A-Z il numero di neutroni).

La linea retta rappresenta la bisettrice del grafico. Se un nucleo si trova all'interno di essa allora avrà numero di protoni uguale al numero di neutroni.

In natura gli isotopi tendono a disporsi secondo la distribuzione arancione; in particolare i punti più scuri rappresentano gli isotopi stabili, che non decadono nel tempo e quindi non cambiano natura. Si osserva che la stabilità all'inizio, per i nuclei più leggeri, viene assicurata quando il nucleo possiede ugual numero di protoni e di neutroni (pensiamo ad esempio al C^{12} , che ha 6 protoni e 6 neutroni). Ciò vale fino a Z=20; quando invece il numero di protoni aumenta e quindi il nucleo diventa più pesante, la condizione

di stabilità si può avere solo quando il numero di neutroni è maggiore del numero di protoni. Il motivo è che, a causa della repulsione coulombiana tra i protoni che costituiscono il nucleo, è necessario un maggior numero di neutroni che fungono da "collante" grazie all'interazione forte.

Osservando il grafico notiamo che per ogni nucleo, cioè fissato un valore di Z, abbiamo, oltre al punto scuro, altri punti più chiari lungo la verticale che rappresentano tutti i possibili isotopi di un determinato nucleo al variare del numero di neutroni N. Ad esempio per l'idrogeno abbiamo il deuterio (due neutroni) e il trizio (tre neutroni), per il carbonio esiste il 13 C ed il 14 C. Il fatto che siano colorati più chiari indica che sono instabili, cioè tendono a cambiare la loro natura nel tempo.

L'ultimo isotopo stabile che si trova in natura è il piombo, che ha Z=82; tutti gli isotopi più pesanti di esso sono instabili.

2.4 Legge del decadimento radioattivo

Tale legge è valida per tutti i decadimenti radioattivi. Essa ci dice che in un campione di N isotopi instabili, il numero medio di nuclei che decade in un intervallo infinitesimo di tempo dt è

$$dN = -\lambda N dt$$

Il numero infinitesimo dn dipenderà quindi

- Dal numero N di isotopi di partenza;
- Dall'intervallo infinitesimo dt considerato:
- Dalla costante λ detta costante di decadimento, che è caratteristica di ciascun isotopo. Essa esprime la probabilità che il nucleo decada, quindi più è grande più nuclei decadono.

Il segno meno è dovuto al fatto che se i nuclei decadono il numero N diminuisce. Tale legge è un'equazione differenziale che ha come soluzione la vera e propria legge di decadimento radioattivo:

$$N(t) = N_0 e^{-\lambda t}$$

dove N_0 è il numero iniziale di nuclei. Tale legge ci dice che il numero di nuclei ancora presenti nel campione all'istante generico t.

Talvolta anziché λ si adopera una di queste due grandezze:

- Vita media: $\tau = \frac{1}{\lambda}$;
- Tempo di dimezzamento o emivita: $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$.

Entrambe le grandezze hanno le dimensioni di un tempo, dunque si misurano in secondi. In particolare la vita media corrisponde al tempo necessario affinché il numero di nuclei si riduca di un fattore e, cioè il tempo per passare da N_0 a N_0/e , l'emivita invece

corrisponde al tempo necessario affinché il numero di nuclei di partenza si dimezzi, cioè il tempo per passare da N_0 a $N_0/2$. La relazione con la costante di decadimento si ricava tramite semplici passaggi matematici: imponendo $N(t) = N_0/2$ si ha che

$$\frac{N_0}{2} = N_0 e^{-\lambda t} \implies -\ln 2 = -\lambda t \implies t = \frac{\ln 2}{\lambda}$$

Le emivite variano da alcuni giorni a diversi miliardi di anni. $T_{\frac{1}{2}}$ e τ sono legati tramite la relazione

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \tau \ln 2$$

Solitamente come riferimento per il tempo si prendono multipli dell'emivita perché è facile calcolare il corrispondente numero di isotopi restanti.

Notiamo inoltre che il tempo di dimezzamento viene prima della vita media (del resto $\ln 2 < 1$). Infatti per $t = \tau$ si ha

$$N = N_0 \cdot e^{-\lambda \cdot \frac{1}{\lambda}} = N_0 \cdot e^{-1} = \frac{N_0}{e} < \frac{N_0}{2}$$

Vediamo ora cosa cambia al variare del valore della costante di decadimento λ :

Se λ è elevata, l'esponenziale è più rapido, cioè la probabilità di decadere è maggiore, per cui si dice che la sorgente ha un'elevata attività; viceversa, ad un valore piccolo di λ corrisponde minore pendenza.

In termini di radioprotezione, λ influisce anche sul tempo che deve trascorrere affinché il livello di radiazione emesso dal materiale non sia più dannoso per le persone.

Facciamo degli esempi con l'emivita (che è più facile da immaginare concettuamente) anziché la costante di decadimento:

Elemento	$T_{1/2}$
Radon 222	3.8 giorni
Piombo 210	22 anni
Radio 226	1600 anni
Carbonio 14	5730 anni
Uranio 238	$4.56 \cdot 10^9$ anni

Notiamo come ci sia un'estrema variabilità nel valore del tempo di dimezzamento, quindi ci sono enormi differenze da isotopo a isotopo.

2.4.1 Excursus: la datazione al carbonio ¹⁴C

L'isotopo ¹⁴C ha un'emivita di 5730 anni. Esso viene usato per tecniche di datazione, cioè per sapere qual è l'età di un reperto di origine organica (ad esempio resti umani). Gli esseri viventi scambiano carbonio con l'atmosfera, ma con la morte dell'organismo tale scambio termina, e il ¹⁴C presente nell'individuo (che fino ad ora si è tenuto costante grazie a tale scambio continuo) incomincia a decadere. Andando a vedere il quantitativo residuo di ¹⁴C presente nell'organismo si può risalire, grazie alla legge di decadimento, all'età del campione.

Tale metodo non è utilizzabile con reperti eccessivamente antichi: la regola di norma è che al massimo possiamo datare campioni eventi età pari a 10 volte l'emivita del campione considerato, quindi al massimo 60 mila anni. Il motivo è che dopo 10 emivite il quantitativo di ¹⁴C residuo è veramente poco, per cui non ci permette, da un punto di vista statistico, di fare una misura precisa dell'età del campione.

2.5 Isotopi radioattivi β

Il decadimento β corrisponde all'emissione di elettroni o di positroni (rispettivamente decadimento β^- e β^+). Ciò corrisponde rispettivamente alla trasformazione, all'interno del nucleo, di un neutrone in un protone, con l'emissione di un elettrone e di un antineuntrino elettronico, oppure viceversa alla trasformazione di un protone in un neutrone, con l'emissione di un positrone e di un neutrino elettronico:

$$\beta^-: n \longrightarrow p + e^- + (A, Z) \longrightarrow (A, Z + 1)$$

 $\beta^+: p \longrightarrow n + e^+ + \nu (A, Z) \longrightarrow (A, Z - 1)$

Quando inizialmente si scoprì tale fenomeno, non si capiva se, oltre all'elettrone, venisse emesso un altro tipo di radiazione. Inoltre non si capiva l'origine di questi elettroni, perché le energie che si misuravano per queste particelle erano elevate, arrivavano all'ordine del MeV, cosa che fece capire che non potevano essere elettroni atomici, i quali non possono possedere tali energie. Si capì poi che erano elettroni provenienti dal nucleo.

Un'altra difficoltà che si ebbe riguardava l'energia di tali elettroni, in quanto non erano fisse: potevano variare tra un minimo e un massimo, cosa strana se l'unica particella emessa fosse stata l'elettrone, perché in tal caso allo stato finale avremmo avuto due corpi: il nucleo residuo e l'elettrone emesso, per cui se il nucleo a causa delle sue dimensioni assorbe pochissima energia questa sarebbe andata tutta all'elettrone, ma allora l'energia avrebbe dovuto avere un valore fisso. Ciò non si capiva perché i rivelatori dell'epoca misuravano solo l'emissione di elettroni. La spiegazione fu data dalla scoperta del fatto che viene emesso anche un neutrino, il quale è difficile da essere rivelato a causa della sua bassa sezione d'urto.

Dal punto di vista del nucleo, se esso ha numero di massa A e numero atomico Z, dopo il decadimento avremo un nucleo residuo con stesso numero di massa ma numero atomico aumentato o diminuito di una unità a seconda del tipo di decadimento.

Nella figura accanto possiamo vedere lo schema del decadimento nucleare di un nucleo (A, Z) ad un nucleo (A, Z + 1). In questo caso si avrà l'emissione di un β^- .

Questo decadimento avviene grazie ad un bilancio energetico che favorisce il nucleo finale.

Vediamo alcuni esempi di isotopi che decadono β :

Isotopo	Vita media	Energia massima (Mev)
$^{3}\mathrm{H}$	12.26 y	0.0186
$^{14}\mathrm{C}$	5730 y	0.156
$^{90}{\rm Sr}/^{90}{\rm Y}$	27.7 y/64 h	0.546/2.27
⁹⁹ Tc	$2.12 \cdot 10^5 \text{ y}$	0.292

In laboratorio adopereremo $^{90}\mathrm{Sr}$ e $^{90}\mathrm{Y}$ come sorgenti di raggi β .

Il decadimento β è a tre corpi (nucleo residuo, elettrone/positrone e neutrino), per cui l'energia si deve suddividere tra questi. Il nucleo residuo, essendo molto massivo, non acquisisce praticamente nulla, per cui il Q-value di questo decadimento (cioè l'energia totale emessa nel decadimento) sì ripartisce tra l'elettrone e il neutrino, che sono gli elementi più leggeri; a seconda di come si suddividono l'energia, l'energia dell'elettrone varierà. In generale lo spettro delle energie ha forma come nel grafico: parte da un valore, sale fino a un massimo e poi scende, raggiungendo un massimo di energia detto endpoint dello spettro. Nota: il punto iniziale è il valore minimo di energia perché sulle ascisse c'è l'energia.

In realtà gli spettri dei decadimenti β^+ e β^- sono leggermente diversi tra di loro a causa della repulsione coulombiana presente tra il nucleo residuo e l'elettrone/positrone. Ne segue che lo spettro del β^+ è shiftato a destra, cioè sono favoriti maggiormente degli impulsi (dunque delle energie) più grandi rispetto al β^- .

Ciò che è importante ricordare è che per questi elettroni ci aspettiamo energie che variano in maniera continua tra zero e un valore massimo.

2.5.1 Esempio: decadimento doppio $^{90}\mathrm{Sr}\,/\,^{90}\mathrm{Y}$

Osserviamo lo spettro energetico del decadimento doppio $^{90}\mathrm{Sr}\,/\,^{90}\mathrm{Y}:$

Essi sono decadimenti consequenziali, cioè lo stronzio-90 decade in ittrio-90 e quest'ultimo a sua volta decade ulteriormente.

Lo spettro complessivo tiene conto di entrambi i decadimenti. In particolare la parte di basse energie corrisponde al decadimento dello stronzio, quella a più alta energia al decadimento dell'ittrio. Lo spettro finale, ricavabile dalla teoria di Fermi, è dato dalla sovrapposizione dei due spettri dovuti ai due isotopi. Si evince che abbiamo una grossa componente di elettroni a bassa energia ma anche una componente a più alta energia, fino ad un endpoint di circa 2.3 MeV

Andando a studiare i meccanismi di interazione degli elettroni con la materia, cioè come gli elettroni perdono energia, è possibile stimare lo spessore di materia necessario per fermare tutti gli elettroni emessi da questo tipo di sorgente.

2.6 Isotopi radioattivi α

Il decadimento α corrisponde all'emissione di una particella α , che non è altro che un nucleo di elio ovvero costituito due protoni e due neutroni. Esso avviene nei nuclei pesanti. Osserviamo adesso uno schema di decadimento:

In esso ogni livello rappresenta un livello nucleare di un isotopo a una data energia. Si nota che si possono avere diversi decadimenti α verso lo stesso isotopo figlio, quello che cambia sono i livelli di energia di questo, per cui si può avere un decadimento verso un livello eccitato dell'isotopo figlio. Ognuno dei possibili decadimenti ha una sua probabilità di avvenire, detta branching ratio (rapporto di ramificazione), quindi ci saranno decadimenti verso alcuni livelli più probabili rispetto a quelli verso altri livelli. Se il decadimento α avviene verso un livello eccitato, esso sarà inevitabilmente seguito da un decadimento γ , perché il nucleo, che si trova in uno stato eccitato, tenderà a portarsi nello stato fondamentale attraverso un decadimento γ . Va quindi ricordato che le particelle α emesse da un isotopo potrebbero avere energie diverse perché il decadimento può avvenire verso diversi livelli eccitati dell'isotopo figlio.

Cosa ci aspettiamo in questo caso per lo spettro?

Essendo il decadimento α a due corpi (nucleo residuo e particella α), tutta l'energia disponibile viene acquistata dalla particella α sotto forma di energia cinetica, in quanto

è più leggera rispetto al nucleo residuo. Ci aspettiamo quindi che la particella α abbia sempre la stessa energia, ecco perché si parla di sorgenti monoenergetiche:

Se misuriamo tale energia e la rappresentiamo in un istogramma otteniamo lo spettro energetico, che ci aspettiamo avere idealmente la struttura di una delta di Dirac, cioè dovremmo misurare sempre la stessa energia, come si vede in figura per vari isotopi. In realtà c'è una certa larghezza nel picco, che non è dovuta alla fisica di partenza (cioè le particelle α hanno veramente la stessa energia), bensì dipende dal modo con cui vengono misurate, dunque dalla precisione dello strumento di misura. L'allargamento del picco è quindi dovuto a questioni di risoluzione del rivelatore.

Vediamo alcuni esempi di isotopi che decadono α :

Isotopo	Vita media	Alpha Energy (Mev)
^{238}U	$4.5 \cdot 10^9 \text{ y}$	4.196/4.149
²³⁹ Pu	$2.4 \cdot 10^4 \text{ y}$	5.105/5.143/5.155
$^{241}\mathrm{Am}$	433 y	5.443/5.486

Notiamo che le energie delle particelle α , nonostante le vite medie molto differenti, sono tutte molto simili, aggirandosi intorno a pochi MeV. La prima differenza tra radiazioni α e β riguarda quindi lo spettro: le energie in gioco sono simili, ma lo spettro è molto diverso: continuo per le radiazioni β , "a righe" per le α .

2.7 Isotopi radioattivi γ

γ-radiation: high-energy electromagnetic waves

In questo caso il decadimento avviene tra uno stato eccitato e uno stato a energia più bassa dello stesso nucleo, che quindi mantiene numero atomico e di massa invariato, mentre ciò che cambia è il suo livello energetico.

Nota: per indicare che un nucleo si trova nello stesso stato eccitato si usa un asterisco (Es. 240 Pu*).

Quando il nucleo passa allo stato fondamentale (cioè allo stato più basso in energia) emette una radiazione elettromagnetica che cade nella zona energetica dei γ .

Vediamo uno schema di livelli delle sorgenti (in laboratorio adopereremo ⁶⁰Co e ¹³⁷Ce):

Notiamo come il 60 Co emette due γ perché può avere diversi livelli nello stato finale, mentre il 137 Ce emette un solo γ .

È interessante notare che il decadimento γ è sempre consequenziale ad un'altra tipologia di decadimento (queste due sorgenti ad esempio decadono β^-).

In termini di spettro energetico, anche in questo caso il gamma dovrebbe portare con sé tutta l'energia disponibile, quindi dovremmo avere uno spettro a righe. In realtà lo spettro misurato con un rivelatore ha una forma molto più complessa, per cui abbiamo un picco in corrispondenza del valore nominale di energia e poi un continuo per valori più bassi di energia (fondo continuo).

Questo continuo lo spiegheremo in seguito, in quanto il γ interagisce con il rivelatore attraverso diversi meccanismi che danno luogo a tale fondo continuo, tuttavia si osserva sempre un picco in corrispondenza dell'energia attesa.

I γ sono quindi monoenergetici, ma anche qui ci possono essere effetti di risoluzione dell'apparato sperimentale che trasformano quella che dovrebbe essere una delta di Dirac in un picco con una data larghezza (tanto più largo è il picco, peggiore è la risoluzione, e se questa è scarsa nel caso del 60 Co c'è il rischio che i due picchi delle due emissioni si sovrappongano).

2.8 Sorgenti di fissione

Tra i fenomeni naturali si possono verificare anche delle fissioni. Alcuni nuclei pesanti possono, in maniera spontanea, frammentarsi in due nuclei di massa intermedia. Tale processo è detto di fissione. Ad esempio, l'²³⁵U in maniera spontanea si divide in ¹⁴¹Ba e ⁹²Kr. Oltre a questi due frammenti, si possono produrre anche dei neutroni, i quali a loro volta potrebbero innescare altri fenomeni di fissione (in questo caso si parla di fissione indotta). Tale meccanismo viene adoperato in maniera controllata dalle centrali nucleari, in quanto nel processo oltre ai frammenti di massa intermedia ed i neutroni viene prodotta anche energia; negli ordigni nucleari invece il processo di fissione indotta avviene fuori controllo.

Nella fissione i frammenti che vengono prodotti non sono mai simmetrici: ciò è dovuto a questioni di bilancio energetico nel processo di fissione.

Nel grafico a destra possiamo vedere la distribuzione del numero di massa dei frammenti. Essa ha una forma a due picchi, che indica il fatto che i frammenti non assumono valori di massa qualsiasi, bensì preferenzialmente assumono valori che si concentrano sui picchi. Tale asimmetria ha come conseguenza che anche le energie dei frammenti non sono esattamente le stesse: il frammento più leggero prenderà più energia e viceversa quello più pesante, come possiamo vedere nel grafico a sinistra raffigurante la distribuzione delle energie dei frammenti.

2.9 Radiazione cosmica

Negli alti strati dell'atmosfera i raggi cosmici primari incidono e interagiscono con gli atomi e le molecole dell'atmosfera, dando origine ai cosmici secondari.

I cosmici primari sono costituiti da protoni (anche nuclei però, perché la composizione di tali raggi rispecchia l'abbondanza dei diversi nuclei presenti nello spazio) aventi energia elevatissima, che interagendo con l'atmosfera generano cascate di particelle il cui numero è proporzionale all'energia del cosmico primario. Alcune di queste particelle compongono la parte elettromagnetica dello sciame (gamma, elettroni, positroni), altre la parte più penetrante, ad esempio i muoni.

Lo spettro di energia dei cosmici primari (rappresentato in scala logaritmica sia in ascisse che in ordinate perché ci sono numeri che variano parecchio) ha in ascisse l'energia, che varia da 10^9 a 10^{21} eV, e in ordinata il flusso, cioè il numero di particelle che arrivano per metro quadro e nell'unità di tempo con una data energia, che varia da 10^{-28} a 10^4 . Tale grafico ci dice che ad esempio per valori di energia intorno a $10^{11}/10^{12}$ eV, avendo a disposizione di un rivelatore della superficie di 1 m² misureremo circa una particella al secondo, mentre per i primari più energetici (10^{20} eV) ci servirebbe un rivelatore di 1 km² per misurare una particella per anno. Essendo quest'ultime molto rare, di solito si studiano i cosmici secondari e si cerca di ricostruire le energie dei primari (e in questo caso si parla di rivelazione indiretta), mentre alle basse energie è possibile effettuare delle misure dirette portando un rivelatore al di fuori dell'atmosfera terrestre e misurando il flusso di raggi cosmici.

2.10 Unità di misura e nomenclatura

2.10.1 Attività di una sorgente

Rappresenta il numero di particelle emesse nell'unità di tempo. Si misura in

• Becquerel (Bq): 1 Bq = 1 disintegrazione/s;

• Curie (Ci): 1 Ci = $3.7 \cdot 10^{10}$ disintegrazioni/s (attività di 1 g di 226 Ra). Esprime una grandezza molto grande, per cui si preferisce lavorare con sottomultipli come il μ Ci. Si ha che μ Ci = $37 \cdot 10^3$ Bq.

2.10.2 Concetto di dose

La dose rappresenta l'energia che viene depositata da una radiazione per unità di massa. Si misura in J/kg, quantità che viene chiamata Gray (Gy). 1 Gy corrisponde a 1 J/1 kg. Alternativamente si può adoperare il rad, unità di misura tale che 1 Gy = 100 rad.

2.10.3 Concetto di dose equivalente

Tale concetto viene introdotto perché non è importante soltanto quanta energia viene depositata per unità di massa, ma anche il tipo di radiazione che ha depositato quell'energia, informazione che ci aiuta a capire il danno prodotto da una radiazione ad esempio nell'organismo.

La dose equivalente è pari alla dose moltiplicata per un fattore di qualità, il quale dipende dal tipo di radiazione: esso vale

- ~ 1 per gamma e beta;
- ~ 10 per protoni e neutroni veloci;
- ~ 20 per alfa.

Deduciamo che, a parità di energia depositata per unità di massa, sono più dannose le particelle alfa; a seguire i protoni e ancora dopo i gamma. È chiaro che il danno dipende anche dal tessuto colpito.

La dose equivalente si misura in Sievert (Sv) o rem.

1 Sv = (Fattore di qualità) · 1 Gy 1 Sv = 100 rem 1 mSv = 100 mrem

2.10.4 Dosi tipiche

Vediamo a che livello di radiazioni siamo sottoposti quotidianamente.

Sorgenti naturali

- Radiazione cosmica: 28 mrem/anno;
- Fondo naturale (isotopi naturali): 26 mrem/anno;
- Radioattività interna al corpo¹: 26 mrem/anno;

 $^{^{1}}$ Noi emettiamo β a causa del 14 C e del 40 K.

Sorgenti artificiali

• Radiografia: variabile a seconda del tipo. Ad esempio una RX al torace corrisponde a qualche mrem, una TAC a 10³ mrem.

È chiaro che ci sono dei limiti che bisogna rispettare affinché si eviti il danno biologico. Tale limite è variabile (a seconda che sia una persona qualunque o un lavoratore esposto). In genere per la popolazione il limite è $200-300~\mathrm{mrem/anno}$.

Ci sono poi delle condizioni in cui siamo esposti, in maniera naturale, ad una maggiore dose di radiazioni. Ad esempio in alta montagna (a quote di 2000 – 3000 m) si è esposti ad una maggiore radiazione perché viene meno il "filtro" dell'atmosfera.

Trivia: il caso della banana

Proviamo a stimare l'attività dovuta a un certo quantitativo di banane, in maniera tale da capire se sono dannose.

In media una banana contiene 0,5 g di 40 K, che corrisponde a un'attività di 15 Bq = 15 disintegrazioni/secondo. A causa della loro diffusione, è stata creata la dose dovuta al mangiare una banana: 1 BED (Banana Equivalent Dose) \sim 0, 1 μ Sv. Ogni giorno siamo sottoposti a una dose di radiazione naturale di 100 BED; una radiografia corrisponde a $5 \cdot 10^4$ BED. QUesti esempi ci fanno capire come una banana non sia affatto dannosa.

Capitolo 3

Perdita di energia-particelle cariche

In base al tipo di radiazione può cambiare il meccanismo di interazione con la materia. Vedremo quindi i diversi meccanismi con cui le radiazioni interagiscono con la materia, con conseguente perdita di energia. Cercheremo dunque di stimare anche la perdita di energia delle particelle nella materia, cioè di trovare espressioni quantitative che ci permettano di capire quali sono i parametri che influenzano la perdita di energia.

Tale argomento ci interessa perché lo studio dei diversi rivelatori di particelle si basa sui meccanismi di interazione, che usano per misurare le particelle.

Concentriamoci innanzitutto sulle particelle cariche pesanti, cioè dal protone in su. In realtà in questa categoria rientrano anche le particelle di massa intermedia (muoni, pioni), aventi massa minore di quella del protone ma non piccola quanto quella dell'elettrone, per cui hanno un comportamento maggiormente simile a quello delle particelle pesanti.

3.1 Principali meccanismi

Vediamo adesso quali sono i meccanismi con cui le particelle pesanti interagiscono con la materia.

3.1.1 Interazione coulombiana (inelastica) con gli elettroni atomici

È la modalità con cui le particelle perdono maggiormente energia all'interno della materia.

Cerchiamo di quantificare il numero di interazioni con gli elettroni che avvengono durante il tragitto delle particelle all'interno della materia. Vediamo allora quanta energia può essere trasferita al massimo in una singola collisione: se E è l'energia iniziale, al massimo in un urto si perde un'energia pari a

$$E_{\rm urto}^{\rm max} = 4E\frac{m_e}{m}$$

dove m_e è la massa dell'elettrone e m la massa della particella incidente. Ne segue che maggiore è la massa della particella, minore sarà l'energia che può essere trasferita in una singola collisione.

Facciamo un esempio: se la particella incidente è un protone, allora l'energia massima trasferita in una collisione sarà

$$E_{\rm urto}^{\rm max} = 4E \frac{m_e}{m_p} \sim \frac{1}{500} E$$

Ne segue che se ad ogni urto venisse ceduta la quantità massima di energia, ci vorrebbero 500 collisioni perché si perda tutta l'energia a disposizione. Nella realtà le collisioni sono di più perché abbiamo usato un valore massimo, ma nei fatti avvengono anche trasferimenti di energia minore.

Da tale relazione capiamo che una particella carica pesante, quando attraversa la materia, subisce diverse collisioni con gli elettroni atomici e in ognuna di queste perde una piccola parte della sua energia; pertanto l'energia diminuisce gradualmente, a piccoli passi, fatto che ha un effetto su quello che si misura e sul percorso che può effettuare la particella.

Il risultato del passaggio di una particella all'interno della materia è che, cedendo energia ad ogni collisione agli elettroni atomici, questi ultimi, ricevendo energia, si eccitano oppure possono addirittura, se l'energia è sufficiente, essere strappati dall'atomo, sfuggendo al legame atomico; in quest'ultimo caso può avvenire un processo di ionizzazione. Talvolta gli elettroni che vengono strappati possono produrre delle ionizzazioni secondarie, perché possiedono elevate energia. Se ciò avviene, questi elettroni prendono il nome di raggi δ .

Riassumendo: una particella carica pesante, attraversando un materiale, perde energia attraverso multiple collisioni con gli elettroni atomici, i quali possono eccitarsi o addirittura essere strappati dall'atomo e di conseguenza nel tragitto seguito dalla particella si vengono a creare atomi eccitati o addirittura ioni, e la velocità (quindi l'energia) della particella gradualmente diminuirà fino a che questa non si arresta del tutto.

3.1.2 Interazione (elastica) con i nuclei

Può anche avvenire un'interazione elastica con i nuclei che compongono il materiale. Questo processo è meno importante, perciò l'energia persa con tale fenomeno, rispetto a quella persa per interazione coulombiana, è trascurabile. Per capirne il motivo basta pensare alla sezione d'urto, ossia alla probabilità che avvenga un evento di questo tipo: dobbiamo confrontare le dimensioni di un atomo con quelle di un nucleo, per cui c'è un fattore 10^5 tra le due sezioni d'urto.

Tale interazione diventa importante quando le dimensioni della particella incidente sono simili a quelle del nucleo che compongono il materiale (ad esempio particelle α che incidono su idrogeno), ma di solito si trascura.

Altri meccanismi

Avvengono poi altri meccanismi ancora meno rilevanti.

• Può verificarsi emissione di radiazioni di frenamento (Bremsstrahlung), il quale è un meccanismo più importante per le particelle leggere, mentre per quelle pesanti è trascurabile in quanto la sezione d'urto per Bremsstrahlung dipende all'inverso del quadrato della massa della particella incidente.

- Può avvenire l'emissione di luce Cherenkov, cioè emissione di luce perché la particella ha velocità superiore alla velocità della luce nel mezzo attraversato. Anche questo contributo è trascurabile rispetto all'interazione coulombiana.
- Possono avvenire processi di interazione nucleare.

3.2 Relazione di Bethe-Bloch

Abbiamo visto che se ci concentriamo sulle particelle cariche pesanti dobbiamo semplicemente andare a valutare quanta energia viene persa attraverso l'interazione coulombiana con gli elettroni atomici. Siamo allora interessati a calcolare l'energia persa per unità di percorso, dunque vogliamo conoscere qual è l'energia dE che perde la particella dopo aver percorso uno spazio infinitesimo dx a seguito dei meccanismi sopracitati.

In altre parole, siamo interessati a calcolare lo **Stopping Power** o perdita di energia specifica, che si indica con dE/dx. Essa si esprime in MeV/cm.¹

Il problema dello stopping power fu affrontato per primo da Bohr, producendo una teoria che si basava su argomenti classici. Tale teoria fu successivamente ripresa da Bethe e Bloch i quali, usando la meccanica quantistica, giunsero alla formula di Bethe-Bloch²:

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Tale formula descrive la perdita di energia media per unità di percorso. Rispetto a prima aggiungiamo il termine "media" perché la perdita di energia non è sempre la stessa per questioni di fluttuazioni statistiche. Inoltre il segno meno indica il fatto che è una perdita di energia, cioè dE deve essere negativo perché l'energia sta diminuendo.

In questa formula stiamo supponendo di avere delle particelle cariche pesanti incidenti, con un'energia E, che devono attraversare uno spessore infinitesimo dx di materiale. Una volta attraversato questo spessore sarà stata persa una parte dell'energia, quindi la particella avrà energia residua $E-\mathrm{d}E$.

La relazione di Bethe-Bloch ci dice che in media la variazione dE/dx dipende da:

- Una costante $K = 4\pi N_A r_e^2 m_e c^2 = 0.307 \text{ MeV mol}^{-1} \text{ cm}^2$;
- Il quadrato della carica della particella incidente, indicata con z^2 . Tale dipendenza ci permette di identificare la particella incidente: infatti, se ad esempio confrontiamo un protone con una particella α , a parità di energia incidente, essendo una relazione quadratica, il protone perde un quarto di energia di quella persa dall' α ;

 $^{^1 {\}rm II}$ motivo per cui si usano i centimetri anziché i metri è che le particelle cariche pesanti percorrono lunghezze piccole.

²Di questa esistono diverse formulazioni. Noi faremo riferimento a quella del Particle Data Group. https://pdg.lbl.gov/2022/reviews/rpp2022-rev-passage-particles-matter.pdf

• $1/\beta^2$, dove β è definito come il rapporto della velocità della particella rispetto alla velocità della luce nel vuoto ($\beta = v/c$). Da un punto di vista classico β^2 è proporzionale all'energia, in quanto

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}m\beta^2c^2 \implies \frac{1}{\beta^2} \propto \frac{1}{E}$$

Tale dipendenza ci dice che se la particella incidente ha bassa energia, ci aspettiamo un'altra perdita di energia, perché l'andamento è iperbolico (1/E);

• Il rapporto Z/A, cioè numero atomico/numero di massa del mezzo. Esso vale 0, 5 per i nuclei più leggeri, ma man mano che il nucleo diventa pesante il numero di neutroni diventa maggiore di quello dei protoni, per cui Z/A risulterà minore di 0, 5. Deduciamo che le particelle perdono maggiormente energia se incidono su materiali leggeri.

Le prime tre sono dipendenze dalle caratteristiche della particella incidente, l'ultima dalle proprietà del mezzo.

Passiamo adesso ad analizzare i termini tra parentesi.

Il primo termine prende il nome di *risalita relativistica*, il quale ha l'andamento di ln E (in quanto compare il termine $\beta^2 \propto E$). Figurano poi altri fattori quali

- il fattore di Lorentz γ , definito come $\gamma = \frac{1}{\sqrt{1-\beta^2}}$;
- $W_{\rm max}$, che rappresenta la perdita di energia massima in una singola collisione;
- il potenziale di ionizzazione medio I, ossia l'energia che in media è necessaria per la ionizzazione. Esso è un valore medio perché quando formiamo energia ad un atomo a volte produciamo ionizzazione mentre altre volte l'energia viene persa per eccitazione, quindi tale energia sarà più alta del lavoro di estrazione di un elettrone perché una parte viene persa per eccitazione degli atomi.

Abbiamo poi un termine correttivo δ , detto correzione di densità: esso si inserisce perché il campo elettrico della particella carica tende a polarizzare gli atomi lungo la sua traiettoria, e a causa di questo effetto di polarizzazione gli elettroni atomici più lontani con cui la particella incidente avrebbe interagito vengono schermati. Ciò fa sì che l'energia persa per collisione con questi elettroni atomici più lontani risulti essere minore di quella ottenuta senza considerare tale fattore.

Tale termine dipende dall'energia della particella: maggiore è l'energia, maggiore sarà l'incidenza di questo fattore, in quanto gli effetti di polarizzazione saranno più consistenti³.

Di solito compare anche un altro termine correttivo, detto correzione di shell e indicato con C, il quale interviene a basse energie. Si introduce perché, a basse energie della particella incidente, viene a mancare una ipotesi del modello di Bohr secondo cui gli elettroni atomici sono praticamente stazionari, fermi rispetto alla particella incidente: se invece questa ha energia bassa, la sua velocità è paragonabile a quella degli elettroni

³Inoltre è chiaro che tale effetto dipende anche dalla densità del materiale (da cui il nome di tale fattore), in quanto la polarizzazione indotta sarà maggiore in materiali più densi rispetto a quella in materiali rarefatti come gas.

orbitali e di conseguenza è necessario apportare una modifica correttiva alla relazione di Bethe-Bloch tramite tale fattore.

Oltre che come Mev/cm, il dE/dx può essere espresso in un altro modo: gli spessori infatti possono essere espressi anche in unità di densità superficiale. Ciò si fa perché, fissato lo spessore di materiale attraversato, l'effetto della radiazione cambia al variare della densità; per liberarci quindi della dipendenza dalla densità del materiale, si moltiplica lo spessore attraversato espresso in centimetri per la densità⁴: lo spessore allora si esprimerà in g/cm^2 . In questo modo ci rendiamo indipendenti dalla densità e diventa più facile fare un confronto tra materiali.

Se esprimiamo il dx in unità di densità superficiale, il dE/dx si esprimerà in MeV cm²/g:

$$\left[\frac{1}{\rho}\frac{\mathrm{d}E}{\mathrm{d}x}\right] = \frac{\mathrm{MeV}\,\mathrm{cm}^2}{\mathrm{g}}$$

Con tale unità di misura si trovano valori molto simili della perdita di energia per diversi tipi di materiali. In particolare si trova che il MIP (Minimum Ionizing Particles) cioè la minore perdita energia che può avere una particella⁵, corrisponde più o meno per tutte le particelle e per tutti i materiali a $1-2 \text{ MeV cm}^2/\text{g}$.

Vediamo adesso graficamente la relazione di Bethe-Bloch in funzione dell'impulso della particella incidente:

⁴Il Leo chiama questa grandezza surface density o mass thickness e la definisce come $\varepsilon = \rho \cdot t$ dove ρ è la densità e t lo spessore.

 $^{^5}$ Questa definizione fornita dalla professoressa è concettualmente sbagliata: le MIP sono delle particelle che si muovono ad una velocità $v\simeq 0.96\,c$ in corrispondenza della quale si trova il valore minimo per la perdita di energia.

In ascisse è riportato il valore $\beta \gamma = p/Mc$ della particella incidente, ovvero l'impulso scalato rispetto alla massa, in modo da rendendoci indipendenti da quest'ultima. Ovviamente potremmo riportare semplicemente l'impulso, ma ciò significherebbe che i valori delle ascisse differirebbero in base al tipo di particella (come possiamo vedere in figura); sulle ordinate è riportata la perdita di energie in unità di densità superficiale. Per entrambi gli assi la scala è logaritmica; inoltre le varie curve sono relative a diversi materiali attraversati.

Consideriamo ad esempio un protone che incide su piombo Pb. La perdita di energia dipenderà dall'impulso del protone: per impulsi bassi la perdita di energia ha valori elevati, intorno a 10 MeV cm²/g, man mano che consideriamo protoni con impulso maggiore la perdita di energia diventa sempre più bassa, fino a raggiungere un valore minimo leggermente maggiore di 1 MeV cm²/g. Una volta superato il minimo abbiamo una risalita, dovuta alla risalita relativistica della formula di Bethe-Bloch. Se allora dobbiamo individuare quali sono le zone del grafico influenzate dai diversi fattori della formula, possiamo dire che

- la regione a sinistra del minimo è influenzata dall'andamento grosso modo iperbolico di $1/\beta^2$;
- la regione a destra del minimo è influenzata dalla risalita relativistica, che ha un andamento logaritmico di e a sinistra interviene il fattore correttivo di Shall a destra quello relativo alla densità.

Ricordiamo inoltre che nella regione all'estrema sinistra ad impulsi più bassi interviene il fattore correttivo di shell, mentre quella all'estrema destra ad impulsi più alti è influenzata dal fattore correttivo di densità.

In figura possiamo vedere il grafico relativo a pioni che incidono su rame Cu. Le linee tratteggiate mostrano come sarebbe il grafico se non considerassimo i fattori correttivi.

3.2.1 Perdita di energia per composti

Consideriamo il caso in cui il materiale su cui incide la particella non è formato da un solo elemento bensì è un composto, cioè è costituito da atomi di diversi elementi. In tal caso, per calcolare la perdita di energia si fa una sorta di media pesata, data da

$$\frac{1}{\rho} \frac{\mathrm{d}E}{\mathrm{d}x} = \sum_{i} \frac{n_i A_i}{\rho_i A} \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_i$$

dove n_i , A_i , ρ_i e $(dE/dx)_i$ sono rispettivamente il numero di atomi, il peso atomico, la densità e la perdita di energia specifica della specie *i*-esima del composto. Consideriamo ad esempio la molecola CH₂: per essa abbiamo che

$$n_{\rm C} = 1 \quad A_{\rm C} = 12$$

$$n_{\rm H} = 1$$
 $A_{\rm H} = 1$

quindi la perdita di energia sarà data da

$$\frac{1}{\rho} \frac{\mathrm{d}E}{\mathrm{d}x} = \frac{2 \cdot 12}{\rho_{\mathrm{C}} A} \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{C}} + \frac{1 \cdot 1}{\rho_{\mathrm{H}} A} \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{H}}$$

3.2.2 Picco di Bragg

Finora abbiamo parlato di stime medie della perdita di energia, ma abbiamo accennato al fatto che potrebbero esserci delle fluttuazioni rispetto a tale valore medio. Concentriamoci adesso su questo aspetto.

Consideriamo il seguente grafico, chiamato picco di Bragg:

In tale grafico la perdita di energia specifica è rappresentata in funzione dello spessore attraversato. In particolare il grafico mostrato è ottenuto da particelle α che attraversano l'aria, avendo un'energia di 5.49 MeV.

La perdita di energia si calcolerà tramite Bethe-Bloch, in cui i valori di β e γ si ricavano da questo valore di energia iniziale.

Man mano che la particella attraversa il materiale avvengono multiple collisioni con gli elettroni atomici e l'energia diminuisce. Di conseguenza $\mathrm{d}E/\mathrm{d}x$ aumenta⁶, come osserviamo anche nel grafico, fino a raggiungere un valore massimo per poi diminuire bruscamente. Attenzione! Questa rapida discesa non è evidenziata nei precedenti grafici, in cui manca una parte ad energie ancora più basse, dove intervengono diversi fattori che fanno sì che la curva torni a zero. La parte finale del picco di Bragg è quindi dovuta al fatto che la particella si sta arrestando, avendo velocità e impulsi quasi nulli, per cui la perdita di energia va a zero⁷. Da ciò capiamo che tale grafico è una diretta conseguenza del grafico visto precedentemente.

Il picco di Bragg è alla base dell'utilizzo delle radiazioni per la cura dei tumori, perché ci dice che ad esempio un protone che attraversa un determinato spessore di materiale non rilascia la sua energia in maniera costante lungo il percorso, bensì deposita la maggior parte della sua energia in corrispondenza del picco, poco prima di arrestarsi. Ciò costituisce un vantaggio perché può essere usato per fare un rilascio mirato di energia in alcune zone del corpo. Il limite di questa tecnica sta nella profondità che si può raggiungere, perché per arrivare più in profondità serve maggiore energia e quindi acceleratori più potenti, che non sempre sono disponibili; inoltre quando si raggiungono energie

⁶Si può intuire che sia così leggendo da destra verso sinistra il grafico avente in ascisse l'impulso: man mano che la velocità diminuisce arriviamo nella regione in cui l'andamento è iperbolico, per cui la perdita di energia aumenta bruscamente. Un'altra maniera di visualizzare il fenomeno è che la particella, essendo più lenta, interagirà maggiormente con la materia.

⁷Come riportato dal Knoll, "[...] la formula di Bethe-Bloch inizia ad essere fallace ad energie basse, dove lo scambio di carica tra particella e assorbitore diventa rilevante. La particella carica positivamente tenderà a strappare elettroni dall'assorbitore, riducendo così la sua carica e di conseguenza il dE/dx. Alla fine della sua traiettoria, la particella avrà accumulato z elettroni diventando così un atomo neutro.".

molto elevate si possono indurre altri fenomeni di origine nucleare con produzione di altre particelle con il conseguente rischio di arrecare dei danni.

3.3 Fluttuazioni statistiche nella perdita di energia

Analizziamo ora le fluttuazioni statistiche.

Se inviamo sul materiale particelle identiche (stessa massa, stessa energia e stesso angolo di incidenza quindi stessa direzione di incidenza), esse non perderanno la stessa energia, in quanto ogni particella seguirà un percorso diverso, subendo un numero di collisioni diverso e perdendo di conseguenza un'energia diversa.

Le fluttuazioni statistiche che si presentano nella perdita di energia possono avere distribuzioni diverse, in particolare due:

Se consideriamo spessore grandi, ci si aspetta che il numero di collisioni sia elevato. Ciò fa sì che la distribuzione della perdita di energia in uno spessore grande abbia un andamento abbastanza simmetrico che segue la distribuzione di Gauss;

Se invece consideriamo spessori piccoli, il numero di collisioni è minore, e la perdita di energia segue una distribuzione che può essere descritta dalla teoria di Landau-Vavilov. È una distribuzione asimmetrica che presenta un picco e poi una lunga coda a valore elevati. Essa ci dice che, quando una particella attraversa uno spessore sottile, in media perde un certo quantitativo di energia, ma ci sono dei casi in cui può perdere anche valori notevoli di energia, magari perché la particella segue altre percorsi.

Per valutare se uno spessore è grande o piccolo esiste un parametro che dipende dal valore dell'energia massima che si può perdere per singolo urto, il quale ci permette di individuare il regime in cui ci troviamo.

3.3.1 Range di una particella

Come abbiamo appena detto, anche se le condizioni sono uguali (stessa tipo di particella incidente, stessa energia ecc.), l'energia persa non è sempre la stessa. Ciò deriva dai processi di fluttuazioni statistiche dovuti alle diverse collisioni che una particella può subire all'interno del materiale: essendo le collisioni parecchie, ogni particella avrà un

suo percorso e dunque una sua perdita di energia. Vediamo che effetto hanno tali fluttuazioni sul range di una particella.

Per range di una particella si intende il percorso effettuato da questa all'interno di un mezzo prima di arrestarsi.

Prima di andare a fare un confronto tra cosa ci aspetteremmo idealmente e cosa realmente osserviamo, dobbiamo definire il coefficiente di trasmissione. Per capire cos'è quest'ultimo immaginiamo di inviare delle particelle con una data energia iniziale E su uno spessore di materiale Δx . Immaginiamo poi che il flusso di particelle incidenti (che si misura in particelle per unità di superficie al secondo) sia pari ad un valore I_0 .

Supponiamo di misurare un flusso in uscita pari I, che corrisponde a quante particelle sopravvivono all'attraversamento del materiale. In base allo spessore verrà persa una certa quantità di energia ΔE , per cui le particelle che riescono a fuoriuscire avranno energia $E - \Delta E$.

Numericamente il ΔE può essere valutato mediante la relazione

$$\Delta E = \left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle \Delta x$$

Tuttavia in questo mondo stiamo compiendo un'inesattezza: stiamo supponendo che il dE/dx sia costante, ma esso è funzione dell'energia, per cui come vedremo il modo corretto per valutarlo è mediante un integrale.

Sotto l'ipotesi di $dE/dx = \cos t$, ci aspettiamo che all'aumentare di Δx aumenti anche ΔE . Se non ci fossero fluttuazioni statistiche, ci aspetteremo che finché Δx è piccolo le particelle perdono una certa energia ΔE ma riescono comunque a passare, per cui si avrebbe che $I = I_0$, cioè si misura un numero di particelle per unità di tempo e superficie in uscita pari a quelle in entrata; man mano che si aumenta Δx si arriverebbe ad un punto in corrispondenza del quale la perdita di energia ΔE coinciderà con l'energia totale E della particella, che quindi viene persa completamente. Pertanto, superato questo spessore, ci aspetteremmo che nessuna particella dovrebbe riuscire ad attraversare lo spessore. Allora il coefficiente di trasmissione T, definito come

$$T = \frac{I}{I_0} \qquad \left[\frac{\text{n° particelle uscenti}}{\text{n° particelle incidenti}} \right]$$

al variare di Δx dovrebbe avere un andamento piatto pari a 1 fino ad un certo valore R, raggiunto il quale diventa nullo in quanto in tale punto la perdita di energia diventa pari proprio a $E.^8$ Lo spessore R prende il nome di range della particella perché è proprio lo spessore attraversato dalla particella finché non si arresta.

Nella realtà intervengono le fluttuazioni statistiche, che rendono il percorso di ciascuna particella peculiare. Ne segue che di volta in volta si può perdere più o meno energia e di conseguenza la particella si fermerà rispettivamente prima o dopo rispetto a R. Ciò fa sì che la curva ottenuta è una sorta di sigmoide, che parte da 1 ma poi si smussa,

⁸In altre parole, nel caso ideale in assenza di fluttuazioni statistiche (il che significherebbe che le particelle seguirebbero tutte lo stesso percorso, subendo un uguale numero di collisioni e quindi perdendo la stessa energia), ci aspettiamo un andamento a gradino.

per cui non c'è un passaggio netto dalla situazione in cui la particella passa a quella in cui non passa. Questa è la curva che osserviamo sperimentalmente⁹.

Il grafico così realizzato prende il nome di grafico di trasmissione. Sulle ascisse riportiamo lo spessore attraversato, che può essere espresso sia in unità lineari (ad esempio cm) che in unità superficiali, mentre in ordinate il coefficiente di trasmissione. Esso si può definire per qualsiasi radiazione e può essere utile per determinare che spessore di materiale adoperare per essere schermati da un tipo di radiazione.

Analizziamo adesso in maniera più dettagliata la curva di trasmissione:

La dispersione dell'energia depositata e del range della particella prendono il nome di effetti di straggling, cioè di allargamento: mentre idealmente R è un valore definito, nei fatti è difficile da definire in quanto ogni particella ha un suo range, nel senso che si può fermare prima o dopo rispetto al valore nominale. È comunque possibile definire il range di una particella: dal grafico possiamo ricavare il range medio, spessore in corrispondenza del quale il fascio viene dimezzato (cioè riescono a passare solo il 50% delle particelle). In alternativa, si può ricavare il range estrapolato, definito come l'intersezione della tangente alla sigmoide nel punto del range medio con l'asse delle ascisse.

Nel grafico figura anche una gaussiana: essa rappresenta lo spessore percorso da un certo numero di particelle prima di fermarsi, che non sempre è la stessa, per cui abbiamo una

⁹Per misurare sperimentalmente il range di una particella dovremmo avere una sorgente che emette la particelle a una data energia, un rivelatore posizionato a una certa distanza e a quel punto effettuiamo delle misure interponendo spessori di un dato materiale via via crescenti, andando a misurare il numero di particelle osservate rispetto al numero di particelle senza nessuno spessore.

distribuzione di valori centrata intorno al Valor medio e con una certa larghezza che dipende dalle caratteristiche della particella e del materiale.

È chiaro che maggiori sono le fluttuazioni nel range, più la sigmoide sarà smussata, se invece le fluttuazioni sono piccole la curva tenderà sempre più ad una curva a gradino. Nel caso particolare di particelle cariche pesanti la sigmoide è molto vicina ad una curva a gradino.

Oltre che per la funzione di schermaggio, il range può essere usato per valutare lo spessore che deve avere un rivelatore per arrestare totalmente una particella e quindi misurarne tutta l'energia.

Oltre che in termini di range, gli effetti di straggling si manifestano anche in termini energetici.

Nel grafico possiamo vedere degli spettri di energia ottenuti da un rivelatore che misura l'energia di particelle provenienti da una sorgente ad energia fissata E al variare dello spessore di materiale assorbitore interposto.

Senza interporre alcun materiale tra sorgente e rivelatore, quello che si dovrebbe misurare dovrebbe essere una delta di Dirac, cioè idealmente dovremmo misurare sempre lo stesso valore di energia con cui vengono emesse dalla sorgente, ed è ciò che si osserva nel picco più a destra, il quale ha una sua larghezza per motivi di risoluzione dell'apparato sperimentale. Il fatto che sia un picco molto stretto ci dice che l'energia delle particelle che stanno arrivando assume quasi sempre lo stesso valore, con delle fluttuazioni molto piccole.

Se adesso interpretiamo un materiale tra sorgente e rivelatore, le particelle incideranno su di esso, e se questo è sufficientemente sottile riusciranno ad attraversarlo perdendo una parte della loro energia, per cui giungeranno al rivelatore con un'energia degradata pari a $E-\Delta E$; ne segue che andando a misurare l'energia delle particelle adesso vedremo il picco spostato a sinistra, a valori un po' più piccoli; inoltre esso si allarga. Questo effetto di allargamento diventa sempre più evidente man mano che aumenta lo spessore, infatti i picchi che vediamo in figura andando verso sinistra sono stati ottenuti interponendo spessori via via crescenti. È chiaro che se stiamo misurando qualcosa significa che gli spessori sono inferiori al range della particella, altrimenti non misureremo nulla perché le particelle verrebbero arrestate.

Il fatto che le distribuzioni si allargano ci dice che è come se ci fosse una indeterminazione maggiore nell'energia residua della particella, che equivale a delle fluttuazioni nell'energia depositata nel materiale, che sono tanto più grandi quanto maggiore è lo spessore di materiale interposto.

In sintesi, un altro modo di mettere in evidenza gli effetti di straggling è quello di interporre materiale con spessore via via maggiore: quello che si osserva è non solo una maggiore perdita di energia, ma anche che quest'ultima ha delle fluttuazioni via via più geandi.

3.3.2 Il channeling

Per quanto riguarda la perdita di energia per collisioni, si deve fare un discorso leggermente diverso quando si parla di materiale cristallini.

Fig. 2.6. Schematic diagram of channeling in crystalline materials. The particle suffers a series of correlated scatterings which guides it down an open channel of the lattice

In questi infatti si può verificare un altro effetto che prende il nome di channeling, cioè la particella, entrando con un opportuno angolo di incidenza, potrebbe seguire un percorso tra i piani del cristallo, quindi subirà meno collisioni di quante ne avrebbe avute con un angolo di incidenza diverso o attraversando un materiale amorfo. Nei casi di channeling la formula di Bethe-Bloch sovrastima la perdita di energia, nel senso che nei fatti si perde meno energia del valore teorico in virtù del fatto che le particelle seguono un percorso particolare.

Per verificarsi tale effetto il materiale deve essere cristallino, cioè dotato di una struttura ordinata di atomi e la particella deve entrare nel cristallo con un angolo di incidenza molto piccolo rispetto all'asse di simmetria del cristallo.

3.3.3 Come calcolare il range di una particella

Da un punto di vista teorico, il range medio di una particella che incide su un materiale con energia $E_{\rm inc}$ si può calcolare mediante l'integrale

$$R(E_{\rm inc}) = \int_0^{E_{\rm inc}} \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1} \mathrm{d}E$$

il quale può essere valutato mediante integrazione numerica.

3.4 Radiazione Cherenkov

È uno dei possibili meccanismi di perdita di energia. L'emissione di tale radiazione avviene quando la velocità della particella nel mezzo supera la velocità della luce nello stesso mezzo. Quest'ultima è data da

$$\beta c = v = \frac{c}{n}$$

dove n è l'indice di rifrazione del mezzo e c la velocità della luce nel vuoto. Ne segue che la condizione affinché una particella emetta radiazione Cherenkov è

$$v_{\text{part}} > \frac{c}{n}$$

È un po' lo stesso effetto che avviene per il suono con il cosiddetto "cono di Mach", che si presenta quando si supera la velocità del suono in quel mezzo. In questo caso viene generata un'onda d'urto elettromagnetica con fronte d'onda conico.

Tale radiazione è direzionata: viene messa all'interno di un cono con una certa apertura, la quale dipende da n e dalla velocità della particella: maggiore è la velocità, minore sarà l'apertura del cono

$$\vartheta_{\rm Ch} = \arccos\left(\frac{1}{\beta n}\right)$$

La radiazione emessa ha uno spettro continuo, nel senso che non ci sono dei valori di frequenza privilegiati; tuttavia, concentrandoci nel visibile, questo spettro è proporzionale alla frequenza, per cui si ha una maggiore emissione nel blu.

È una luce polarizzata linearmente e la perdita di energia dE/dx dovuta a questo effetto (che è già inclusa nella formula di Bethe-Bloch, sebbene trascurabile) è un contributo piccolo, che vale 10^{-3} MeV cm²/g per i solidi e 10^{-1} - 10^{-2} MeV cm²/g per i gas, mentre nei grafici precedenti il minimo di ionizzazione si trova a 1-2 MeV cm²/g. Tuttavia essa è da menzionare per l'uso che se ne fa in fisica. Ad esempio viene adoperata per rivelare particelle: un esempio si ha in astronomia, dove TeV di radiazioni gamma incidono sulla atmosfera, producendo coppie elettrone-positrone e queste particelle producono radiazione Cherenkov nell'atmosfera. Se abbiamo un rivelatore in grado di misurare tale radiazione (telescopio Cherenkov), possiamo andare effettuare misure dei gamma di partenza, ed essendo una luce direzionata possiamo anche ricostruire la direzione di arrivo dei gamma.

Un'applicazione simile si ha nella fisica dei neutrini, i quali interagiscono pochissimo con la materia, per cui per rivelarli sono necessari rivelatori di grandi volumi in modo da aumentare la probabilità di interazione. A causa di ciò, negli ultimi anni si è pensato che anziché usare oggetti creati dall'uomo si possono usare risorse naturali come l'acqua del mare e il ghiaccio, ponendo in essi dei rivelatori e usandoli come materiale attivo di rivelazione. L'idea è che ad esempio un neutrino attraversi km di acqua, interagisca e produca un muone, il quale produce effetto Cherenkov. Se siamo in grado di misurare tale luce, abbiamo indirettamente misurato l'arrivo di un neutrino. Ne è un esempio il Km3net: torri di rivelatori di luce (fotomoltiplicatori) calate in mare per andare a misurare la radiazione Cherenkov con lo scopo di misurare i neutrini.

Nel campo della fisica delle particelle e della fisica nucleare esistono i rivelatori Cherenkov, i quali servono a identificare le particelle, perché attraverso la rivelazione del cono Cherenkov cioè di questa luce abbiamo informazioni sulle particelle: dalla velocità possiamo ricavare l'impulso e quindi la massa, la quale ci permette di identificare le particelle. Esistono poi i contatori Cherenkov, che permettono di misurare particelle davanti velocità al di sopra di una certa soglia.

Tale radiazione viene usata nei reattori a fissione per andare a misurare l'attività presente, in quanto nei processi di fissione si generano sempre particelle cariche che producono radiazione Cherenkov.

3.5 Possibili esercizi

Esercizio 3.1

Valutare la perdita di energia di particelle α da 5 Mev in un foglio di carta alluminio da cucina. Dati:

- Spessore fogli della carta da cucina: 0.016 mm;
- Densità alluminio: 2.7 g/cm³;
- Densità superficiale: $2.7 \cdot 0.0016 \text{ g/cm}^2 = 0.004 \text{ g/cm}^2$.

Per tale attività serve la formula di Bethe-Bloch e poi bisogna costruire un grafico dei valori di perdita di energia specifica al variare dello spessore del foglio. La perdita di energia si calcolerà come

$$\Delta E = \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)\Delta x$$

con dE/dx calcolato con Bethe-Bloch.

Attenzione! Questa formula è un'approssimazione: sarebbe valida se dE/dx fosse costante al variare di x. Nella realtà sappiamo che man mano che la particella penetra nel materiale perde energia e di conseguenza dE/dx cambia. Essa è comunque valida per valori piccoli di Δx .

Esercizio 3.2

Valutare la perdita di energia di muoni cosmici verticali (al minimo di ionizzazione) in

- a. una lastra di ferro di 10 cm di spessore;
- b. un solaio di cemento di 30 cm di spessore.

Stavolta non viene fornito l'impulso della particella, viene detto che incidono verticalmente sulla lastra e si trovano al minimo di ionizzazione, pertanto dobbiamo ricavare graficamente tale valore. Un'altra difficoltà è il fatto che il cemento non è una sostanza pura, per cui dobbiamo capirne la composizione e fare una stima della perdita di energia usando la formula della perdita di energia per i composti. Da tale esperienza deduciamo che con tali spessori i muoni perdono energia ma riescono ad attraversare il materiale.

Esercizio 3.3

Valutare lo spessore necessario per degradare in energia un fascio di protoni da 600 MeV fino a portarli a 500 MeV mediante uno spessore di Rame (vedi Esempio 2.2 nel Leo).

3.5.1 Il potenziale di ionizzazione medio

Alcuni termini della formula di Bethe-Bloch possono essere definiti in diverso modo. Ne è un esempio il potenziale di ionizzazione medio, che abbiamo indicato con I e può essere definito come:

- Un valore proporzionale a Z;
- Un valore costante valido per tutti gli atomi, sebbene in realtà esso vari in base al numero atomico: varia molto negli elementi leggeri, per poi stabilizzarsi per elementi pesanti. Si può allora pensare di farne un valor medio;
- Una formula per parametrizzare se siamo in regime di nuclei leggeri o pesanti;
- Un valore preso da tabelle.

3.5.2 Come tenere conto di uno spessore finito

Per valutare la perdita di energia in uno spessore finito inizialmente abbiamo usato l'approssimazione con cui valutavamo il dE/dx in corrispondenza dell'energia incidente iniziale e moltiplicavamo questo per lo spessore attraversato Δx . Ciò che in realtà è corretto fare è dividere il Δx in tanti piccoli spessori dx, valutare lo stopping power all'inizio di ciascun intervallino, cioè cerchiamo di capire quant'è l'energia in ingresso, calcoliamo il dE/dx e poi la perdita di energia in tale spessore. Dopodiché passiamo allo spessore successivo in cui le energie in ingresso sarà data alla differenza dell'energia di prima meno la perdita di energia dE. Si procede per passi di dx fin quando valutiamo la perdita di energia complessiva in tutto lo spessore. Con tale metodo teniamo conto del fatto che la perdita di energia assume via via un valore diverso, la quale aumenta man mano che la particella penetra nel materiale.