Closed-Form Factorization of Latent Semantics in GANs

Seungmin Lee (profile2697@gmail.com; 2020-20866), Dept. of Electrical and Computer Engineering, Seoul National University

1. Introduction

The latent space of Generative Adversarial Network (GAN) has a rich set of interpretable directions that we can use to edit synthesized images. However, previous methods to find the interpretable directions require human annotations on a collection of synthesized images. In this paper, the authors propose a closed-form algorithm that identifies the semantic directions without using human annotations. More specifically, the proposed method discovers semantics by only using the weights of a pre-trained generator.

2. Preliminaries: Manipulating Generator in GAN Latent Space

A generator $G(\cdot)$ takes a d-dimensional latent vector \mathbf{z} from the latent space $\mathcal{Z} \in \mathbf{R}^d$ and produces an image $\mathbf{I} = G(\mathbf{z})$. The authors focus on the first layer of the generator $(G_1 \colon \mathbf{R}^d \to \mathbf{R}^m)$ since it directly acts on the latent space. Like most many GANs have done, the authors assume G_1 is an affine transformation:

$$\mathbf{y} := G_1(\mathbf{z}) = \mathbf{W}\mathbf{z} + \mathbf{b},$$

where $\mathbf{W} \in \mathbf{R}^{m \times d}$ and $\mathbf{b} \in \mathbf{R}^m$ denote the weights and bias, respectively.

- 3. Method
- 4. Results
- 5. Personal Note

References