Indicator - Predators in Norwegian Forests

Contents

Description	1
Wolf	1
Reference values	3
Map values to polygons	4
Export	7

Description

This indicator reflectes the population sizes (in terms of metabolic biomass) of the main large mammalian predators in Norwegian forests: wolves, bears, bold eagle, and lynx.

ECT-klasse	Geographic extant	Ecosystem	Time series	Last year
B1	Norway	Forets	Yes	2019

Wolf

Private username and password

```
myUser <- "anders.kolstad@nina.no"
myPwd <- ""</pre>
```

Import data from the Norwegian Nature Index.

```
ulv <- NIcalc::importDatasetApi(
  username = myUser,
  password = myPwd,
  indic = "Ulv",
  year = c(1990,2000,2010,2014,2019))</pre>
```

Specify the entire land area of Norway as NIunits:

```
myNIunits <- c(allArea = T, parts = T, counties = F)
```

Include all BSunits (municipalities)

```
myPartOfTotal <- 0
```

Storing temp file to save time

```
ulv_assemeble <- NIcalc::assembleNiObject(
  inputData = ulv,
  predefNIunits = myNIunits,
  partOfTotal = myPartOfTotal,
  indexType = "thematic",
  part = "ecosystem",
  total = "terrestrial")
saveRDS(ulv_assemeble, "cache/ulv_assemble.rds")</pre>
```

```
ulv_assemeble <- readRDS("cache/ulv_assemble.rds")</pre>
```

Extract raw values for expected (i.e. predicted) number of individuals in 2019

```
(wolf2019 <- ulv_assemeble$indicatorValues$'2019')</pre>
```

```
##
     ICunitId
                    ICunitName indId indName yearId yearName expectedValue
## 1
         3793 Rovviltregion 8
                                 209
                                          Ulv
                                                   9
                                                          2019
                                                                         0.0
## 2
         3795 Rovviltregion 7
                                 209
                                          Ulv
                                                          2019
                                                                         0.0
                                                   9
## 3
         3796 Rovviltregion 6
                                 209
                                          Ulv
                                                   9
                                                          2019
                                                                          2.8
## 4
         3799 Rovviltregion 1
                                 209
                                          Ulv
                                                   9
                                                          2019
                                                                          0.0
## 5
         3803 Rovviltregion 2
                                 209
                                          Ulv
                                                   9
                                                          2019
                                                                          0.5
## 6
         3807 Rovviltregion 3
                                 209
                                          Ulv
                                                   9
                                                          2019
                                                                         1.1
## 7
         3809 Rovviltregion 4
                                 209
                                          Ulv
                                                   9
                                                          2019
                                                                        20.3
## 8
         3811 Rovviltregion 5
                                 209
                                          Ulv
                                                   9
                                                          2019
                                                                        53.5
     lowerQuantile upperQuantile customDistributionUUID distributionFamilyId
               0.0
                              0.0
## 1
                                                       NA
## 2
               0.0
                              0.0
                                                        NA
                                                                              NA
## 3
               1.8
                              3.4
                                                       NA
                                                                              NA
## 4
               0.0
                              0.0
                                                        NA
                                                                              NA
## 5
               0.2
                              0.6
                                                        NΑ
                                                                              NA
## 6
               0.4
                              1.3
                                                        NA
                                                                              NA
## 7
              18.6
                             21.7
                                                        NA
                                                                              NA
## 8
                             55.5
              51.0
                                                        NA
##
     distributionFamilyName distParameter1 distParameter2 customDistribution
## 1
              ZIExponential
                                  1.0000000
                                                 1.57223995
## 2
                                                                              NΑ
              ZIExponential
                                  1.0000000
                                                 1.57223995
## 3
                  LogNormal
                                  0.9095956
                                                 0.47274695
                                                                              NA
## 4
              ZIExponential
                                  1.0000000
                                                 1.57223995
                                                                              NA
## 5
                  LogNormal
                                 -1.0601023
                                                 0.83473286
                                                                              NA
## 6
                  LogNormal
                                 -0.3317111
                                                 0.90327082
                                                                             NA
## 7
                  LogNormal
                                  3.0015211
                                                 0.11430431
                                                                             NA
                  LogNormal
## 8
                                  3.9753094
                                                 0.06269794
                                                                              NA
     scalingModelId scalingModel
```

```
## 1
                   1
                              Low
## 2
                  1
                              Low
## 3
                  1
                              Low
## 4
                  1
                              Low
## 5
                  1
                              Low
## 6
                  1
                              Low
## 7
                  1
                              Low
                   1
## 8
                              Low
```

There are eight values corresponding to the eight data regions.

Then we can get the same for year 2010.

```
wolf2010 <- ulv_assemeble$indicatorValues$'2010'</pre>
```

Reference values

We get the reference values in the same way as the expected values. The reference values are based on expert opinion, and is constant for all years.

(ref <- ulv_assemeble\$referenceValues)</pre>

##		ICunitId	ICunitNam	ne	indId	indName	yearId	yea	rName	expectedValue
##	1	3793	Rovviltregion	8	209	Ulv	0	Referanseverdi		528
##	2	3795	Rovviltregion	7	209	Ulv	0	Referanseverdi		248
##	3	3796	${\tt Rovviltregion}$	6	209	Ulv	0	Referanseverdi		412
##	4	3799	${\tt Rovviltregion}$	1	209	Ulv	0	O Referanseverdi		287
##	5	3803	${\tt Rovviltregion}$	2	209	Ulv	0	O Referanseverdi		287
##	6	3807	${\tt Rovviltregion}$	3	209	Ulv	0	Referanse	163	
##	7	3809	${\tt Rovviltregion}$	4	209	Ulv	0	Referanse	44	
##	8	3811	${\tt Rovviltregion}$	5	209	Ulv	0	Referanse	verdi	202
##	lowerQuantile upperQuantile customDistributionUUID distributionFamilyId									
##	1		509	5	546			NA		3
##	2		237	2	259			NA		3
##	3		396	4	126			NA		3
##	4		275	2	299			NA		3
##	5		275	2	299			NA		3
##	6		153	1	.71			NA		3
##	7		36		51			NA		3
##	8		191	2	211			NA		3
##		distribut	tionFamilyName	di	stPara	ameter1	distPara	ameter2 cu	stomDi	istribution
##	1		${\tt LogNormal}$		6.	267603	0.0	5201855		NA
##	2		TruncNormal		248.	.000000	16.30	0862440		NA
##	3		${\tt LogNormal}$		6.	.018471	0.0	5413959		NA
##	4		TruncNormal		287.	.000000	17.79	9122662		NA
##	5		TruncNormal		287.	.000000	17.79	9122662		NA
##	6		LogNormal		5.	.087485	0.08	3247645		NA
##	7		Gamma		44.	.013234	0.2	5565576		NA
##	8		LogNormal		5.	303225	0.0	7383999		NA

Map values to polygons

tm_polygons(col = "region",

palette = "RdYlGn")

To make these spatially explicit we need the map of the data regions.

Importing data regions

```
rovviltregioner <- sf::st_read("../../data/supportingData/rovviltregioner/rovviltregioner.shp")

## Reading layer 'rovviltregioner' from data source

## 'C:\Users\anders.kolstad\Documents\Github\ECA_NF22\data\supportingData\rovviltregioner\rovviltregi

## using driver 'ESRI Shapefile'

## Simple feature collection with 8 features and 1 field

## Geometry type: POLYGON

## Dimension: XY

## Bounding box: xmin: -99551.17 ymin: 6426048 xmax: 1121938 ymax: 7962743

## Projected CRS: ETRS89 / UTM zone 33N

tm_shape(rovviltregioner)+</pre>
```


crs(rovviltregioner)

Coordinate Reference System:

```
## Deprecated Proj.4 representation:
## +proj=utm +zone=33 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m
## +no defs
## WKT2 2019 representation:
## PROJCRS["ETRS89 / UTM zone 33N",
       BASEGEOGCRS ["ETRS89",
##
           DATUM["European Terrestrial Reference System 1989",
##
               ELLIPSOID["GRS 1980",6378137,298.257222101,
##
                    LENGTHUNIT["metre",1]]],
##
##
           PRIMEM["Greenwich",0,
##
               ANGLEUNIT["degree", 0.0174532925199433]],
##
           ID["EPSG",4258]],
##
       CONVERSION["UTM zone 33N",
##
           METHOD["Transverse Mercator",
##
               ID["EPSG",9807]],
##
           PARAMETER["Latitude of natural origin",0,
##
               ANGLEUNIT["degree", 0.0174532925199433],
##
               ID["EPSG",8801]],
##
           PARAMETER["Longitude of natural origin",15,
               ANGLEUNIT["degree", 0.0174532925199433],
##
##
               ID["EPSG",8802]],
##
           PARAMETER["Scale factor at natural origin", 0.9996,
##
               SCALEUNIT ["unity", 1],
               ID["EPSG",8805]],
##
           PARAMETER["False easting",500000,
##
               LENGTHUNIT["metre",1],
##
##
               ID["EPSG",8806]],
##
           PARAMETER["False northing",0,
##
               LENGTHUNIT ["metre", 1],
##
               ID["EPSG",8807]]],
##
       CS[Cartesian, 2],
##
           AXIS["(E)", east,
##
               ORDER[1],
##
               LENGTHUNIT["metre",1]],
##
           AXIS["(N)", north,
##
               ORDER[2],
##
               LENGTHUNIT ["metre", 1]],
##
       USAGE[
##
           SCOPE["Engineering survey, topographic mapping."],
           AREA["Europe between 12°E and 18°E: Austria; Denmark - offshore and offshore; Germany - on
##
##
           BBOX[46.4,12,84.01,18.01]],
##
       ID["EPSG",25833]]
This needs to be converted to PROJ.7
forestPredadors2019 <- rovviltregioner</pre>
forestPredadors2010 <- rovviltregioner</pre>
forestPredadors2019$value
                               <- wolf2019$expectedValue[match(forestPredadors2019$region, wolf2019$ICun</pre>
                               <- wolf2010$expectedValue[match(forestPredadors2010$region, wolf2010$ICun</pre>
forestPredadors2010$value
forestPredadors2019$reference <- ref$expectedValue[match(forestPredadors2019$region, ref$ICunitName)]
forestPredadors2010$reference <- ref$expectedValue[match(forestPredadors2010$region, ref$ICunitName)]</pre>
```

```
values <- tm_shape(forestPredadors2019)+</pre>
  tm_polygons(
    title = "Wolves - 2019",
    col = "value",
    palette = "RdYlGn",
    breaks = c(0, 10, 20, 30, 40, 50, 60))
values2 <- tm_shape(forestPredadors2010)+</pre>
  tm_polygons(
    title = "Wolves - 2010",
    col = "value",
    palette = "RdYlGn",
    breaks = c(0, 10, 20, 30, 40, 50, 60))
refs <- tm_shape(forestPredadors2019)+</pre>
  tm_polygons(
    title = "Wolves - reference",
    col = "reference")
tmap_arrange(values, values2, refs)
```

Some legend labels were too wide. These labels have been resized to 0.66, 0.66, 0.66, 0.66, 0.66. In

Export

We will keep the original shape format for as long as possible, but this will later become rasterized.

```
sf::st_write(forestPredadors2019, "../../data/variables/forestPredators2019.shp")
sf::st_write(forestPredadors2010, "../../data/variables/forestPredators2010.shp")
```