WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY. (PCT)

(51) International Patent Classification ⁵:
C07D 487/04, A61K 31/53 // (C07D 487/04, 253:00, 231:00)

(11) International Publication Number:

WO 94/19350

(43) International Publication Date:

1 September 1994 (01.09.94)

(21) International Application Number:

PCT/JP94/00213

A1

(22) International Filing Date:

9 February 1994 (09.02.94)

(81) Designated States: AU, CA, CN, HU, JP, KR, RU, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

9303993.1

26 February 1993 (26.02.93) GB

Published

With international search report.

(71) Applicant (for all designated States except US): FUJISAWA PHARMACEUTICAL CO., LTD. [JP/JP]; 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541 (JP).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KAWAI, Yoshio [JP/JP]; 3-33-14, Kamikashiwada, Ushiku-shi, Ibaraki 300-12 (JP). YAMAZAKI, Hitoshi [JP/JP]; 4-15-203, Tsuchida, Tsukuba-shi, Ibaraki 300-26 (JP). TANAKA, Hirokazu [JP/JP]; 3-10-21, Hanayashiki Souen, Takarazuka-shi, Hyogo 665 (JP). OKU, Teruo [JP/JP]; 8-2, Midorigaoka, Tsukuba-shi, Ibaraki 305 (JP).
- (74) Agent: SEKI, Hideo; Fujisawa Pharmaceutical Co., Ltd., Osaka Factory, 1-6, Kashima 2-chome, Yodogawa-ku, Osaka-shi, Osaka 532 (JP).

(54) Title: PYRAZOLITRIAZINES WITH INTERLEUKIN-1 AND TUMOUR NECROSIS FACTOR INHIBITIORY ACTIVITY

(57) Abstract

New heterocyclic derivatives of formula (I) wherein R¹ is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s), R² is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s), R³ is hydrogen or acyl, R⁴ is hydrogen, lower alkyl, cyclo(lower)alkyl, cyclo(lower)alkyl-(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, ar(lower)alkyl, which may have suitable substituent(s), ar(lower)alkyl, bridged tricyclicalkyl, heterocyclic group which may have suitable substituent(s), acyl, or a group of formula (b) (in which A is lower alkylene), and R⁵ is hydrogen or lower alkyl, and a pharmaceutically acceptable salt thereof which are useful as interleukin-1 and tumor necrosis inhibitors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IΕ	Ireland	NZ	New Zealand
BJ	Benin	rt	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

PCT/JP94/00213

WO 94/19350

- 1 -

DESCRIPTION

PYRAZOLITRIAZINES WITH INTERLEUKIN - 1 AND TUMOUR NECROSIS FACTOR INHIBITORY ACTIVITY

5 TECHNICAL FIELD

This invention relates to new heterocylic derivatives and pharmaceutically acceptable salts thereof which are useful as a medicament.

10

15

20

25

30

DISCLOSURE OF INVENTION

This invention relates to new heterocyclic derivatives. More particularly, this invention relates to pyrazole derivatives and pharmaceutically acceptable salts thereof which have pharmacological activities, processes for preparation thereof, a pharmaceutical composition comprising the same and a use of the same.

Accordingly, one object of this invention is to provide the new and useful pyrazole derivatives and pharmaceutically acceptable salts thereof which possess a strong inhibitory activity on the production of Interleukin-1 (IL-1) and a strong inhibitory activity on the production of tumor necrosis factor (TNF).

Another object of this invention is to provide processes for preparation of the pyrazole derivatives and salts thereof.

A further object of this invention is to provide a pharmaceutical composition comprising said pyrazole derivatives or a pharmaceutically acceptable salt thereof.

10

15

25

30

35

Still further object of this invention is to provide a use of said pyrazole derivatives or a pharmaceutically acceptable salt thereof as a medicament for prophylactic and therapeutic treatment of IL-1 and TNF mediated diseases such as chronic inflammatory diseases, specific autoimmune diseases, sepsis-induced organ injury, and the like in human being and animals.

The object pyrazole derivatives of the present invention are novel and can be represented by the following general formula (I):

wherein R¹ is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s),

R² is aryl which may have suitable substituent(s)
 or heterocyclic group which may have
 suitable substituent(s),

R³ is hydrogen or acyl, ·

R⁴ is hydrogen, lower alkyl, cyclo(lower)alkyl, cyclo(lower)alkyl-(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, ar(lower)alkyl which may have suitable substituent(s), ar(lower)alkenyl, bridged tricyclicalkyl, heterocyclic group which may have suitable substituent(s), acyl, or a group of the formula:

(in which A is lower alkylene), and $\ensuremath{\mathbb{R}}^5$ is hydrogen or lower alkyl.

The object compound (I) of the present invention can be prepared by the following processes.

Process (1)

15 (II) or a salt thereof

20 Reduction

30 (Ia) or a salt thereof

Process (2)

5

$$\begin{array}{c|c}
R^1 & N \\
N & N \\
R^2 & N - N \\
R^3 & H
\end{array}$$

(Ib)

or a salt thereof

Acylation

15

20

25

30

35

10

(Ic)

or a salt thereof

Process (3)

 $\begin{array}{c|c}
R^{1} & N & \\
N & N & \\
N & N & \\
N & COR^{6}
\end{array}$

(bI)

or a salt thereof

(Ie) or a salt thereof

15 Process (4)

or a salt thereof

Process (5)

5

10

30

20 (Ig) or a salt thereof

Elimination reaction of the hydroxy protective group

$$\begin{array}{c|c}
R^1 & N \\
N & N \\
R^3 & R^4_C
\end{array}$$

35 (Ih) or a salt thereof

Process (6)

5

$$\begin{array}{c|c}
R^1 & N \\
N & N \\
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
R^3 & R^4_d
\end{array}$$

(Ii)

or a salt thereof

15

10

Elimination reaction of the amino protective group

20

(Ij)

or a salt thereof

25 Process (7)

(Ik)

or a salt thereof

35

H-N (IV) or a salt thereof

8

5

15

10

or a salt thereof

(I2)

wherein R¹, R², R³ and R⁵ are each as defined above,

R⁴ is acyl,

R⁴ is acyl having protected hydroxy,

R⁴ is acyl having hydroxy,

R⁴ is acyl having amino,

R⁴ is acyl having a leaving group,

R⁴ is acyl having N-containing heterocyclic group,

R⁶ is hydrogen, C₁-C₅ alkyl, cyclo(lower)alkyl,

cyclo(lower)alkyl-(C₁-C₅)alkyl, aryl which

may have suitable substituent(s) or

ar(C₁-C₅)alkyl which may have suitable

substituent(s),

a group of the formula:

R⁷

-CH

is lower alkyl, cyclo(lower)alkyl,

cyclo(lower)alkyl-(lower)alkyl,

carboxy(lower)alkyl, protected

carboxy(lower)alkyl, ar(lower)alkyl which may have suitable substituent(s), ar(lower)alkenyl, bridged tricyclicalkyl, heterocyclic group which may have suitable substituent(s),

or a group of the formula :

10

5

(in which A is lower alkylene),

 $X^{1\bigcirc}$ is anion, and is N-containing heterocyclic group.

The starting compounds or salts thereof can be 15 prepared by the following Processes.

Process (A)

20

25

or a salt thereof

(V)

30

 R^9 R^9 CH-N R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

35

- 10 -

$$R^1$$
 O R^2 CH ~ N R^{10}

5

(VII) or a salt thereof

Process (B)

10

$$R^{1}$$
 O R^{2} CH ~ N R^{10} (VII)

15

or a salt thereof

20

25

30

or a salt thereof

Process (C)

5

R¹ ON

(IX)

or a salt thereof

10

Cleavage reaction of O-N bond

15

$$R^1$$
 O R^2 CN

20

(X) or a salt thereof

Process (D)

25

 \mathbb{R}^1 O \mathbb{R}^2 CN

(X)

30

or a salt thereof

1 halogenation

35

- 12 -

$$R^1$$
 X^2 R^2 CN

5 (XI) or a salt thereof

20 (XIII) or a salt thereof

Process (E)

(XIV) or a salt thereof

 R^2 -CH₂CN (XV) or a salt thereof

- 13 -

 5 (X) or a salt thereof

Process (F)

(X)
or a salt thereof

NH₂NH₂
(XII)
or a salt thereof

30 (XIII) or a salt thereof

- 14 -

Process (G)

5

10

(XIII)

or a salt thereof

diazotization

15

20

(XVI)

or a salt thereof

25 <u>Process (H)</u>

30

(XVI)

or a salt thereof

35

- 15 -

(R¹¹)₃P=CH-COR⁵
(XVII)
or a salt thereof

5

35

(IIa) or a salt thereof 15

Process (I)

25 (Ib) or a salt thereof

PCT/JP94/00213

WO 94/19350

- 16 -

10 (III)

5

35

or a salt thereof

wherein $R^{\frac{1}{2}}$, R^{2} , R^{5} , $X^{\frac{1}{2}}$ and $-CH < \frac{R^{7}}{8}$. 15 defined above, R^9 and X^3 are each a leaving group, x^2 is halogen, R¹⁰ is lower alkyl, \mathbb{R}^{11} is lower alkyl or aryl, and 20

X⁴ is acid residue.

Suitable pharmaceutically acceptable salts of the object compound (I) are conventional non-toxic salts and may include a salt with a base or an acid addition salt 25 such as a salt with an inorganic base, for example, an alkali metal salt (e.g., sodium salt, potassium salt, etc.), an alkaline earth metal salt (e.g., calcium salt, magnesium salt, etc.), an ammonium salt; a salt with an organic base, for example, an organic amine 30 salt (e.g., triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,N'-dibenzylethylenediamine salt, etc.); an inorganic acid addition salt (e.g., hydrochloride, hydrobromide, sulfate, phosphate, etc.);

20

35

an organic carboxylic or sulfonic acid addition salt (e.g., formate, acetate, trifluoroacetate, maleate, tartrate, fumarate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.);

- 17 -

a salt with a basic or acidic amino acid (e.g., arginine, 5 aspartic acid, glutamic acid, etc.).

In the above and subsequent descriptions of the present specification, suitable examples and illustration of the various definitions which the present invention intends to include within the scope thereof are explained in detail as follows.

The term "lower" is used to intend a group having 1 to 6 carbon atom(s), unless otherwise provided.

The term "higher" is used to intend a group having 7 to 20 carbon atoms, unless otherwise provided. 15

Suitable "lower alkyl" and "lower alkyl moiety" in the terms "cyclo(lower)alkyl-(lower)alkyl", "carboxy(lower)alkyl", "protected carboxy(lower)alkyl" and "ar(lower)alkyl" may include straight or branched one having 1 to 6 carbon atoms(s), such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, tert-pentyl, hexyl, 1,1-dimethylbutyl,

Suitable "lower alkenyl moiety" in the term 25 "ar(lower)alkenyl" may include vinyl, 1-(or 2-)propenyl, 1-(or 2- or 3-)butenyl, 1-(or 2- or 3- or 4-)pentenyl, 1-(or 2- or 3- or 4- or 5-)hexenyl, methylvinyl, ethylvinyl, 1-(or 2- or 3-)methyl-1-(or 2-)propenyl, 1-(or 2- or 3-)ethyl-1-(or 2-)propenyl, 1-(or 2- or 3- or 4-)methyl-1-(or 2- or 3-)butenyl, and the like, in which more 30 preferable example may be C_2-C_4 alkenyl.

2,2-dimethylbutyl, and the like.

Suitable "protected amino" and "protected amino moiety" in the term "acyl having protected amino" may include an acylamino or an amino group substituted by a conventional protecting group such as ar(lower)alkyl which

10

may have suitable substituent(s) (e.g., benzyl, trityl,
etc.) or the like.

Suitable "acyl" and "acyl moiety" in the term
"acylamino", "acyl having protected hydroxy", "acyl having
hydroxy", "acyl having protected amino", "acyl having
amino", "acyl having a leaving group" and "acyl having
N-containing heterocyclic group" may include carbamoyl,
cyclo(lower)alkylcarbamoyl, aliphatic acyl group and acyl
group containing an aromatic ring, which is referred to as
aromatic acyl, or heterocyclic ring, which is referred to
as heterocyclic acvl.

Suitable example of said acyl may be illustrated as follows:

Carbamoyl; Thiocarbamoyl;

- cyclo(lower)alkylcarbonyl (e.g., cyclopropylcarbonyl, cyclohexylcarbonyl, etc.);
 Aliphatic acyl such as lower or higher alkanoyl (e.g., formyl, acetyl, propanoyl, isobutyryl, butanoyl, pivaloyl, 2-methylpropanoyl, pentanoyl, 2,2-dimethylpropanoyl,
- 3,3-dimethylbutanoyl, 2,2-dimethylbutanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, nonadecanoyl, icosanoyl, etc.);
- lower or higher alkoxycarbonyl (e.g., methoxycarbonyl, ethoxycarbonyl, isobutyloxycarbonyl, t-butoxycarbonyl, t-pentyloxycarbonyl, heptyloxycarbonyl, etc.); lower alkoxyglyoxyloyl (e.g., methoxalyl, ethoxalyl, etc.),
- lower or higher alkylsulfonyl (e.g., methylsulfonyl, ethylsulfonyl, etc.); lower or higher alkoxysulfonyl (e.g., methoxysulfonyl, ethoxysulfonyl, etc.); or the like;

Aromatic acyl such as

aroyl (e.g., benzoyl, toluoyl, naphthoyl, etc.);

```
ar(lower)alkanoyl [e.g., phenyl(lower)alkanoyl (e.g.,
       phenylacetyl, phenylpropanoyl, phenylbutanoyl,
       phenylisobutanoyl, phenylpentanoyl, phenylhexanoyl, etc.),
       naphthyl(lower)alkanoyl (e.g., naphthylacetyl,
       naphthylpropanoyl, naphthylbutanoyl, etc.), etc.];
  5
       ar(lower)alkenoyl [e.g., phenyl(lower)alkenoyl (e.g.,
       phenylpropenoyl, phenylbutenoyl, phenylmethacryloyl,
       phenylpentenoyl, phenylhexenoyl, etc.),
       naphthyl(lower)alkenoyl (e.g., naphthylpropenoyl,
      naphthylbutenoyl, etc.), etc.];
 10
      ar(lower)alkoxycarbonyl [e.g. phenyl(lower)alkoxycarbonyl
      (e.g., benzyloxycarbonyl, etc.), etc.];
      aryloxycarbonyl (e.g., phenoxycarbonyl,
      naphthyloxycarbonyl, etc.);
      arylthio(lower)alkanoyl [e.g., phenylthio(lower)alkanoyl
15
      (e.g., phenylthioacetyl, phenylthiopropanoyl, etc.),
      etc.];
      aryloxy(lower)alkanoyl (e.g., phenoxyacetyl,
      phenoxypropionyl, etc.);
      arylcarbamoyl (e.g., phenylcarbamoyl, etc.);
20
      aryl-thiocarbamoyl (e.g., phenyl-thiocarbamoyl, etc.);
      arylglyoxyloyl (e.g., phenylglyoxyloyl,
      naphthylglyoxyloyl, etc.);
     rarylsulfonyl (e.g., phenylsulfonyl, p-tolylsulfonyl,
25
      etc.); or the like;
           Heterocyclic acyl such as
      heterocycliccarbonyl; heterocycliccarbamoyl;
      heterocyclic(lower)alkanoyl (e.g., heterocyclicacetyl,
      heterocyclicpropanoyl, heterocyclicbutanoyl,
      heterocyclicpentanoyl, heterocyclichexanoyl, etc.);
30
     heterocyclic(lower)alkenoyl (e.g., heterocyclicpropenoyl,
     heterocyclicbutenoyl, heterocyclicpentenoyl,
     heterocyclichexenoyl, etc.); heterocyclicglyoxyloyl; or
     the like;
     in which suitable "heterocyclic moiety" in the terms
35
```

"heterocycliccarbonyl", "heterocycliccarbamoyl",
"heterocyclic(lower)alkyl", heterocyclic(lower)alkenoyl"
and "heterocyclicglyoxyloyl" as mentioned above means, in
more detail, saturated or unsaturated, monocyclic or
polycyclic heterocyclic group containing at least one
hetero-atom such as an oxygen, sulfur, nitrogen atom and
the like.

And, especially preferable heterocyclic group may be heterocyclic group such as

- unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, dihydropyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g.,
- 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.), tetrazolyl (e.g., 1H-tetrazolyl, 2H-tetrazolyl, etc.), etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, purpoliding

nitrogen atom(s), for example, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 4 nitrogen atom(s), for example, indolyl, isoindolyl, 'indolinyl, indolizinyl, benzimidazolyl, quinolyl,

25 isoquinolyl, indazolyl, benzotriazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, oxazolyl, isoxazolyl, oxadiazolyl (e.g.,

1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.), etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example,

35 morpholinyl, sydnonyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, benzoxazolyl, benzoxadiazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6membered) heteromonocyclic group containing 1 to 2 sulfur
atom(s) and 1 to 3 nitrogen atom(s), for example,
thiazolyl, isothiazolyl, thiadiazolyl (e.g.,
1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl,
1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.),

10 dihydrothiazinyl, etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example, thiazolidinyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s), for example, thienyl, dihydrodithiinyl, dihydrodithionyl, etc.;

saturated 3 to 8-membered (more preferably 5 or 6membered) heteromonocyclic group containing 1 to 2 oxygen
atom(s), for example, tetrahydrofuryl, tetrahydropyranyl,
etc.;

unsaturated condensed heterocyclic group containing 1 'to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example, benzothiazolyl, benzothiadiazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing an oxygen atom, for example, furyl, etc.;

spiro heterocyclic group containing 1 to 2 oxygen atom(s), for example, dioxaspiroundecanyl (e.g., 1,5-dioxaspiro[5,5]undecanyl, etc.), etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing an oxygen atom and 1 to 2 sulfur atom(s), for example, dihydrooxathiinyl, etc.;

35 etc.;

25

10

35

unsaturated condensed heterocyclic group containing 1 to 2 sulfur atom(s), for example, benzothienyl, benzothienyl, etc.;

The acyl moiety as stated above may have one to ten,

unsaturated condensed heterocyclic group containing an oxygen atom and 1 to 2 sulfur atom(s), for example benzoxathiinyl, etc.; and the like.

same or different, suitable substituent(s) such as lower alkyl (e.g., methyl, ethyl, propyl, etc.); lower alkoxy (e.g., methoxy, ethoxy, propoxy, etc.); lower alkylthio (e.g., methylthio, ethylthio, etc.); lower alkylamino (e.g., methylamino, ethylamino, propylamino, etc.); mono(or di or tri)halo(lower)alkyl (e.g., fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl,

dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, tribromomethyl, 1 or 2-fluoroethyl, 1 or 2-bromoethyl, 1 or 2-chloroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, etc.), di(lower)alkylamino (e.g. dimethylamino, diethylamino, etc.); cyclo(lower)alkyl

(e.g., cyclopropyl, cyclopentyl, cyclohexyl, etc.);
cyclo(lower)alkenyl (e.g., cyclohexenyl, cyclohexadienyl,
etc.); halogen (e.g., fluorine, chlorine, bromine,
iodine); amino, protected amino as mentioned above;
hydroxy; protected hydroxy as mentioned below; cyano;

nitro; carboxy; protected carboxy as mentioned below; sulfo; aryl (e.g., phenyl, naphthyl, etc.); sulfamoyl; imino; oxo; amino(lower)alkyl (e.g., aminomethyl, aminoethyl, etc.); carbamoyloxy; hydroxy(lower)alkyl (e.g., hydroxymethyl, 1 or 2-hydroxyethyl, 1 or 2 or 3-hydroxypropyl, etc.) or the like.

Suitable "hydroxy protective group" in the term "protected hydroxy" and "acyl having protected hydroxy" may include acyl as mentioned above, phenyl(lower)alkyl which may have one or more suitable substituent(s) (e.g., benzyl, 4-methoxybenzyl, trityl, etc.), trisubstituted

20

silyl [e.g., tri(lower)alkylsilyl (e.g. trimethylsilyl, t-butyldimethylsilyl, etc.), etc.], tetrahydropyranyl and the like.

Suitable "aryl" and "aryl moiety" in the terms "ar(lower)alkyl", "ar(lower)alkenyl" and "ar(C_1-C_5)alkyl" may include phenyl, naphthyl and the like.

Suitable "leaving group" and "leaving group moiety" in the term "acyl having a leaving group" may include acid residue and the like.

- 10 Suitable "acid residue" may include halogen (e.g., fluorine, chlorine, bromine, iodine), acyloxy [e.g., sulfonyloxy (e.g., phenylsulfonyloxy, tosyloxy, mesyloxy, etc.), lower alkanoyloxy (e.g., acetyloxy, propionyloxy, etc.), etc.] and the like.
- 15 Suitable "halogen" may include fluorine, bromine, chlorine, iodine.

Suitable "protected carboxy" and "protected carboxy moiety" in the term "protected carboxy(lower)alkyl" may include esterified carboxy and the like. And suitable example of said ester may be the ones such as lower alkyl ester (e.g., methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, t-butyl ester, pentyl ester, t-pentyl ester, hexyl ester, etc.); 'lower alkenyl ester (e.g., vinyl ester, allyl ester,

- 25 etc.); lower alkynyl ester (e.g., ethynyl ester, propynyl ester, etc.); lower alkoxy(lower)alkyl ester (e.g., methoxymethyl ester, ethoxymethyl ester, isopropoxy ester, 1-methoxyethyl ester, 1-ethoxyethyl ester, etc.); lower alkylthio(lower)alkyl ester (e.g., methylthiomethyl ester, 30
- ethylthiomethyl ester, ethylthioethyl ester, isopropoxythiomethyl ester, etc.); mono(or di or tri)halo-(lower)alkyl ester (e.g., 2-icdoethyl ester, 2,2,2-trichloroethyl ester, etc.); lower alkanoyloxy(lower)alkyl ester (e.g., acetoxymethyl ester,
- 35 propionyloxymethyl ester, butyryloxymethyl ester,

```
valeryloxymethyl ester, pivaloyloxymethyl ester,
       hexanoyloxymethyl ester, 1-acetoxyethyl ester,
       2-acetoxyethyl ester, 2-propionyloxyethyl ester, etc.);
       cyclo(lower)alkyl ester (e.g., cyclopropyl ester,
  5
       cyclopentyl ester, cyclohexyl ester, etc.);
       lower alkoxycarbonyloxy(lower)alkyl ester (e.g.,
       methoxycarbonyloxymethyl ester, ethoxycarbonyloxymethyl
       ester, propoxycarbonyloxymethyl ester, 1-(or 2-)[methoxy-
       carbonyloxy]ethyl ester, 1-(or 2-)[ethoxycarbonyloxy]ethyl
 10
       ester, 1-(or 2-)[propoxycarbonyloxy]ethyl ester, 1-(or
       2-)[isopropoxycarbonyloxy]ethyl ester, etc.);
       lower alkanesulfonyl(lower)alkyl ester (e.g., mesylmethyl
      ester, 2-mesylethyl ester, etc.); lower alkoxycarbonyloxy-
       (lower)alkyl ester (e.g., methoxycarbonyloxymethyl ester,
15
      ethoxycarbonyloxymethyl ester, propoxycarbonyloxymethyl
      ester, t-butoxycarbonyloxymethyl ester, 1-(or
      2-)methoxycarbonyloxyethyl ester, 1-(or 2-)methoxy-
      carbonyloxyethyl ester, 1-(or 2-)ethoxycarbonyloxyethyl
      ester, 1-(or 2-)isopropoxycarbonyloxyethyl ester, etc.);
      phthalidylidene(lower)alkyl ester, or (5-lower alkyl-2-
20
      oxo-1,3-dioxol-4-yl)(lower)alkyl ester [e.g.,
      (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl ester,
      (5-ethyl-2-oxo-1,3-dioxol-4-yl)methyl ester,
     '(5-propyl-2-oxo-1,3-dioxol-4-yl)ethyl ester, etc.];
      ar(lower)alkyl ester, for example, phenyl(lower)alkyl
25
      ester which may have one or more suitable substituent(s)
      (e.g., benzyl ester, 4-methoxybenzyl ester, 4-nitrobenzyl
      ester, phenethyl ester, trityl ester, benzhydryl ester,
      bis(methoxyphenyl)methyl ester, 3,4-dimethoxybenzyl ester,
      4-hydroxy-3,5-di-t-butylbenzyl ester, etc.);
30
      aryl ester which may have one or more suitable
      substituent(s) such as substituted or unsubstituted phenyl
      ester (e.g., phenyl ester, tolyl ester, t-butylphenyl
      ester, xylyl ester, mesityl ester, cumenyl ester,
35
      4-chlorophenyl ester, 4-methoxyphenyl ester, etc.);
```

15

30

tri(lower)alkyl silyl ester; lower alkylthioester (e.g.,
methylthioester, ethylthioester, etc.) and the like.

Suitable "lower alkylene" may include straight or branched one such as methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, methylmethylene, ethylethylene, propylene, and the like, in which more preferable example may be $\rm C_1-\rm C_4$ alkylene.

Suitable "heterocyclic group" can be referred to the ones as exemplified above.

Suitable "bridged tricyclicalkyl" may include tricyclobutyl, tricyclopentyl, tricyclohexyl, tricycloheptyl, tricyclooctyl, tricyclononanyl, tricyclodecanoyl (e.g., adamantanyl, etc.), tricycloundecanyl, and the like.

Suitable "cyclo(lower)alkyl" and "cyclo(lower)alkyl moiety" in the terms "cyclo(lower)alkyl-(lower)alkyl" and "cyclo(lower)alkyl-(C_1 - C_5)alkyl" may include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.

Suitable "C₁-C₅ alkyl" and "C₁-C₅ alkyl moiety" in the terms "cyclo(lower)alkyl-(C₁-C₅)alkyl" and "ar(C₁-C₅)alkyl" may include straight or branched one having 1 to 5 carbon atom(s), such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, 'pentyl, tert-pentyl, neopentyl, and the like.

Suitable "N-containing heterocyclic group" and
"N-containing heterocyclic group moiety" in the term "acyl having N-containing heterocyclic group" may include

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, dihydropyridyl, triazolyl (e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.) tetrazolyl (e.g., 1H-tetrazolyl, 2H-tetrazolyl, etc.), etc.;

saturated 3 to 8-membered (more preferably 5 or

6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 4 nitrogen atom(s), for example, indolyl, isoindolyl, indolinyl, etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, morpholinyl, etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example, thiazolidinyl, etc.; and the like.

15

10

Suitable substituent" in the term" heterocyclic group which may have suitable substituent(s)" may include lower alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, neopentyl, t-pentyl, hexyl, 20 etc.), lower alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, isobutoxy, t-butoxy, pentyloxy, neopentyloxy, t-pentyloxy, hexyloxy, etc.), lower alkenyl (e.g., vinyl, 1-propenyl, allyl, 1-methylallyl, 1 or 2 or 3-butenyl, 1 'or 2 or 3 or 4-pentenyl, 1 or 2 or 3 or 4 or 5-hexenyl, etc.), lower alkynyl (e.g., ethynyl, 1-propynyl, 25 propargyl, 1-methylpropargyl, 1-methylpropargyl, 1 or 2 or 3-butynyl, 1 or 2 or 3 or 4-pentynyl, 1 or 2 or 3 or 4 or 5-hexynyl, etc.), mono(or di or tri)halo(lower)alkyl (e.g., fluoromethyl, difluoromethyl, trifluoromethyl, 30 chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, tribromomethyl, 1 or 2-fluoroethyl, 1 or 2-bromoethyl, 1 or 2-chloroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, etc.), halogen (e.g., chlorine, bromine, fluorine, iodine), carboxy, protected carboxy, hydroxy, protected hydroxy, aryl (e.g., 35

10

phenyl, naphthyl, etc.), ar(lower)alkyl such as phenyl(lower)alkyl (e.g., benzyl, phenethyl, phenylpropyl, etc.), carboxy(lower)alkyl, protected carboxy(lower)alkyl, nitro, amino, protected amino, di(lower)alkylamino (e.g., dimethylamino, diethylamino, diisopropylamino, ethylmethylamino, isopropylmethylamino, ethylpropylamino, etc.), hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, acyl as mentioned above, cyano, mercapto, lower alkylthio (e.g., methylthio, ethylthio, propylthio, isopropylthio, butylthio, etc.), imino, and the like.

Suitable "substituent" in the term "aryl which may have suitable substituent", "ar(lower)alkyl which may have suitable substituent(s)" and "ar(C_1-C_5)alkyl which may 15 have suitable substituent(s)" may include lower alkyl (e.g., methyl, ethyl propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, neopentyl, t-pentyl, hexyl, etc.), lower alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, isobutoxy, t-butoxy, pentyloxy, neopentyloxy, t-pentyloxy, 20 hexyloxy, etc.), lower alkenyl (e.g., vinyl, 1-propenyl, ally1, 1-methylally1, 1 or 2 or 3-buteny1, 1 or 2 or 3 or 4-pentenyl, 1 or 2 or 3 or 4 or 5-hexenyl, etc.), lower 'alkynyl (e.g., ethynyl, 1-propynyl, propargyl, 1-methylpropargyl, 1-methylpropargyl, 1 or 2 or 3-butynyl, 25 1 or 2 or 3 or 4-pentynyl, 1 or 2 or 3 or 4 or 5-hexynyl, etc.), mono(or di or tri)halo(lower)alkyl (e.g., fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, tribromomethyl, 1 or 30 2-fluoroethyl, 1 or 2-bromoethyl, 1 or 2-chloroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, etc.), halogen (e.g., chlorine, bromine, fluorine, iodine), carboxy, protected carboxy, hydroxy, protected hydroxy, aryl (e.g., phenyl, naphthyl, etc.), ar(lower)alkyl such as 35

WO 94/19350

phenyl(lower)alkyl (e.g., benzyl, phenethyl, phenylpropyl, etc.), carboxy(lower)alkyl, protected carboxy(lower)alkyl, nitro, amino, protected amino, di(lower)alkylamino (e.g., dimethylamino, diethylamino, diisopropylamino,

- 28 -

ethylmethylamino, isopropylmethylamino, ethylmethylamino, ethylpropylamino, etc.), hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, acyl as mentioned above, cyano, mercapto, lower alkylthio (e.g., methylthio, ethylthio, propylthio, isopropylthio, butylthio, etc.), imino, and the like.

The processes for preparing the object and starting compounds are explained in detail in the following.

Process (1)

35

The compound (Ia) or a salt thereof can be prepared by subjecting the compound (II) or a salt thereof to reduction reaction.

Reduction is carried out in a conventional manner, including chemical reduction and catalytic reduction.

Suitable reducing reagent to be used in chemical reduction are hydrides (e.g., hydrogen iodide, hydrogen sulfide, lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, etc.);

'a combination of borane, and tetrahydrofuran or

- di(lower)alkyl sulfide (e.g., dimethyl sulfide, etc.); or a combination of a metal (e.g., tin, zinc, iron, etc.) or metallic compound (e.g., chromium chloride, chromium acetate, etc.) and an organic acid or an inorganic acid (e.g., formic acid, acetic acid, propionic acid,
- trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.).

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts (e.g., platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.), palladium

- 29 -

catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.), nickel catalysts (e.g., reduced nickel, nickel oxide, Raney nickel, etc.), cobalt catalysts (e.g., reduced cobalt, Raney cobalt, etc.), iron catalysts (e.g., reduced iron, Raney copper, Ullman copper, etc.), and the like.

The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, alcohol (e.g., methanol, ethanol, propanol, etc.), tetrahydrofuran, dioxane, N,N-dimethylformamide, or a mixture thereof.

Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

20 Process (2)

WO 94/19350

5

10

15

35

The compound (Ic) or a salt thereof can be prepared by subjecting the compound (Ib) or its reactive derivative at the imino group or a salt thereof to acylation reaction.

Suitable acylating agent to be used in the present acylation reaction may include the compound of the formula:

$$R_a^4$$
 - OH (XIX)

(wherein R_a is acyl)

or its reactive derivative or a salt thereof.

Suitable reactive derivative at the imino group of the compound (Ib) may include a silyl derivative formed by the reaction of the compound (Ib) with a silyl compound such as N,O-bis(trimethylsilyl)acetamide, N-trimethyl-

silylacetamide or the like; a derivative formed by the reaction of the compound (Ib) with phosphorus trichloride or phosgene, and the like.

- 30 -

Suitable reactive derivative of the compound (XIX) may include an acid halide, an acid anhydride, an 5 activated ester, isothiocyanate, isocyanate, and the like. The suitable example may be an acid chloride; acid azide; a mixed acid anhydride with an acid such as substituted phosphoric acid (e.g., dialkylphosphoric acid, phenylphosphoric acid, diphenylphosphoric acid, 10 dibenzylphosphoric acid, halogenated phosphoric acid, etc.), dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, alkanesulfuric acid (e.g., methanesulfonic acid, ethanesulfonic acid, etc.), sulfuric 15 acid, alkylcarbonic acid, aliphatic carboxylic acid (e.g., pivalic acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, etc.); aromatic carboxylic acid (e.g., benzoic acid, etc.); a symmetrical acid anhydride; an activated amide with imidazole, 4-substituted imidazole, dimethylpyrazole, 20 triazole or tetrazole; an activated ester (e.g., cyanomethyl ester, methoxymethyl ester, dimethyliminomethyl $[(CH_3)_2N^{\bigoplus}-CH-]$ ester, vinyl ester, propargyl ester, p-nitrophenyl ester, 2,4-dinitrophenyl ester, trichlorophenyl ester, pentachlorophenyl ester, 25 mesylphenyl ester, phenylazophenyl ester, phenylthio ester, p-nitrophenyl thioester, p-cresyl thioester, carboxymethyl thioester, pyranyl ester, pyridyl ester, piperidyl ester, 8-quinolyl thioester, etc.); an ester 30 with a N-hydroxy compound (e.g., N,N-dimethylhydroxyamine, 1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide, N-hydroxybenzotriazole, N-hydroxyphthalimide, 1-hydroxy-6-chloro-lH-benzotriazole, etc.); substituted or unsubstituted aryl isocyanate; substituted or unsubstituted aryl isothiocyanate, and the like. These reactive 35

35

derivatives can optionally be selected from them according to the kind of the compound (XIX) to be used.

The reaction is usually carried out in a conventional solvent such as water, acetone, dioxane, acetonitrile, chloroform, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvents which do not adversely influence the reaction. These conventional solvents may also be used in a mixture with water.

- When the compound (XIX) is used in free acid form or its salt form in the reaction, the reaction is preferably carried out in the presence of a conventional condensing agent such as N,N'-dicyclohexylcarbodiimide; N-cyclohexyl-N'-morpholinoethylcarbodiimide;
- N-cyclohexyl-N'-(4-diethylaminocyclohexyl)carbodiimide;
 N,N'-diisopropylcarbodiimide;
 N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide;
 N,N-carbonyl-bis(2-methylimidazole);
 pentamethyleneketene-N-cyclohexylimine;
- diphenylketene-N-cyclohexylimine; ethoxyacetylene;
 1-alkoxy-1-chloroethylene; trialkyl phosphite; isopropyl
 polyphosphate; phosphorous oxychloride (phosphoryl
 chloride); phosphorous trichloride; thionyl chloride;
 oxalyl chloride; triphenylphosphite;
- 2-ethyl-7-hydroxybenzisoxazolium salt;
 2-ethyl-5-(m-sulfophenyl)isoxazolium hydroxide
 intra-molecular salt; 1-(p-chlorobenzenesulfonyloxy)-6chloro-1H-benzotriazole; so-called Vilsmeier reagent
 prepared by the reaction of N,N-dimethylformamide with
 thionyl chloride, phosgene, phosphorous oxychloride, etc.;
 or the like.

The reaction may be carried out in the presence of an inorganic or an organic base such as an alkali metal (e.g., sodium, potassium, etc.), an alkali metal hydroxide (e.g., sodium hydroxide, potassium hydroxide, etc.), an

alkali metal hydrogencarbonate (e.g., sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal carbonate (e.g., sodium carbonate, potassium carbonate, etc.), tri(lower)alkylamine (e.g.,

- trimethylamine, triethylamine, diisopropylethylamine, etc.), alkali metal hydride (e.g., sodium hydride, etc.), alkali metal (lower)alkoxide (e.g., sodium methoxide, sodium ethoxide, etc.), pyridine, lutidine, picoline, dimethylaminopyridine, N-(lower)alkylmorpholine,
- N,N-di(lower)alkylbenzylamine, N,N-di(lower)alkylamine, N-(lower)alkylpyrrolidone (e.g., N-methyl-2-pyrrolidone, etc.), or the like.

The reaction may be carried out in the presence of an acid including Lewis acid.

Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.] and an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, zinc halide (e.g. zinc chloride, zinc bromide, etc.), etc.] and the like.

When the acid, the base and/or the starting compound are in liquid, they can be used also as a solvent.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

The present invention includes, within the scope of the invention, the case that hydrogen in R³ is transformed into acyl group during the reaction.

Process (3)

35

The compound (Ie) or a salt thereof can be prepared by subjecting the compound (Id) or a salt thereof to reduction reaction.

This reduction can be carried out in a similar manner to that of the aforementioned <u>Process (1)</u>, and therefore the reagents to be used and the reaction conditions (e.g.,

solvent, reaction temperature, etc.) can be referred to those of the Process (1).

Process (4)

The compound (If) or a salt thereof can be prepared by subjecting the compound (III) or a salt thereof to reduction reaction.

This reduction can be carried out in a similar manner to that of the aforementioned <u>Process (1)</u>, and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of the Process (1).

Process (5)

10

20

35

The compound (Ih) or a salt thereof can be prepared by subjecting the compound (Ig) or a salt thereof to elimination reaction of the hydroxy protective group.

Suitable method of this elimination reaction may include conventional one such as hydrolysis, reduction and the like.

(i) For Hydrolysis:

The hydrolysis is preferably carried out in the 'presence of a base or an acid including Lewis acid.

- Suitable base may include an inorganic base and an organic base such as an alkali metal [e.g., sodium, potassium, etc.], an alkaline earth metal [e.g., magnesium, calcium, etc.], the hydroxide or carbonate or hydrogencarbonate thereof, trialkylamine [e.g.,
- trimethylamine, triethylamine, etc.], picoline, 1,5-diazabicyclo[4.3.0]-non-5-ene, or the like.

Suitable acid may include an organic acid [e.g., formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.], and an inorganic acid [e.g., hydrochloric acid, hydrobromic acid, sulfuric acid,

10

15

25

35

hydrogen chloride, hydrogen bromide, etc.].

The elimination using Lewis acid such as trihaloacetic acid [e.g., trichloroacetic acid, trifluoroacetic acid, etc.], or the like is preferably carried out in the presence of cation trapping agents [e.g., anisole, phenol, etc.].

The reaction is usually carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), tetrahydrofuran, dioxane, dichloromethane, ethylene dichloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, or any other organic solvent which does not adversely affect the reaction.

Among these solvents, hydrophilic solvents may be used in a mixture with water.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

(ii) For reduction :

20 Reduction is carried out in a conventional manner, including chemical reduction and catalytic reduction.

Suitable reducing reagent to be used in chemical reduction are hydrides (e.g., hydrogen iodide, hydrogen sulfide, lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, etc.), or a combination of a

- sodium cyanoborohydride, etc.), or a combination of a metal (e.g., tin, zinc, iron, etc.) or metallic compound (e.g., chromium chloride, chromium acetate, etc.) and an organic acid or an inorganic acid (e.g., formic acid, acetic acid, propionic acid, trifluoroacetic acid,
- p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.).

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts (e.g., platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.), palladium

WO 94/19350

5

15

20

25

30

35

catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.), nickel catalysts (e.g., reduced nickel, nickel oxide, Raney nickel, etc.), cobalt catalysts (e.g., reduced cobalt, Raney cobalt, etc.), iron catalysts (e.g., reduced iron, etc.), and the like.

- 35 -

The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, alcohol (e.g., methanol, ethanol, propanol, etc.), N,N-dimethylformamide, tetrahydrofuran, methylene dichloride, chloroform, dioxane, or a mixture thereof.

Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent.

The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling to warming.

Process (6)

The compound (Ij) or a salt thereof can be prepared by subjecting the compound (Ii) or a salt thereof to elimination reaction of the amino protective group.

This reaction can be carried out in a similar manner to that of the aforementioned <u>Process (5)</u>, and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of the <u>Process (5)</u>.

Process (7)

The compound (I1) or a salt thereof can be prepared by reacting the compound (Ik) or a salt thereof with the compound (IV) or a salt thereof.

WO 94/19350

5

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, dioxane, diethyl ether or any other solvent which does not adversely affect the reaction. These conventional solvent may also be used in a mixture with water.

- 36 -

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

- The reaction is usually carried out in the presence of an inorganic or an organic base such as an alkali metal (e.g., sodium, potassium, etc.), an alkali metal hydroxide (e.g., sodium hydroxide, potassium hydroxide, etc.), an alkali metal hydrogencarbonate (e.g., sodium
- hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal carbonate (e.g., sodium carbonate, potassium carbonate, etc.), tri(lower)alkylamine (e.g., trimethylamine, triethylamine, diisopropylethylamine, etc.), alkali metal hydride (e.g., sodium hydride, etc.),
- alkali metal (lower)alkoxide (e.g. sodium methoxide, sodium ethoxide, etc.), pyridine, lutidine, picoline, dimethylaminopyridine, N-(lower)alkylmorpholine, N,N-di(lower)alkylbenzylamine, N,N-di(lower)alkylaniline or the like.
- When the base and/or the starting compound are in liquid, they can be used also as a solvent.

Process (A)

The compound (VII) or a salt thereof can be prepared by reacting the compound (V) or a salt thereof with the compound (VI) or a salt thereof.

This reaction can be carried out in the manner disclosed in Preparation 2 or similar manners thereto.

PCT/JP94/00213 WO 94/19350

Process (B)

The compound (IX) or a salt thereof can be prepared by reacting the compound (VII) or a salt thereof with the compound (VIII) or a salt thereof.

- 37 ~

This reaction can be carried out in the manner disclosed in Preparation 3 or similar manners thereto.

Process (C)

5

20

25

The compound (X) or a salt thereof can be prepared by subjecting the compound (IX) or a salt thereof to cleavage 10 reaction of O-N bond.

This reaction can be carried out in the manner disclosed in Preparation 4 or similar manners thereto.

15 Process (D) -

The compound (XI) or a salt thereof can be prepared by subjecting the compound (X) or a salt thereof to halogenation reaction.

This halogenation is usually carried out by using a conventional halogenating agent such as halogen (e.g., chlorine, bromine, etc.), phosphorus trihalide (e.g., phosphorus tribromide, phosphorus trichloride, etc.), phosphorus pentahalide, (e.g., phosphorus pentachloride, 'phosphorus pentabromide, etc.), phosphorus oxychloride (e.g., phosphoryl trichloride, phosphoryl monochloride, etc.), thionyl halide (e.g., thionyl chloride, thionyl bromide, etc.), oxalyl halide (e.g., oxalyl chloride, oxalyl bromide, etc.) and the like.

This reaction is usually carried out in a solvent 30 such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), benzene, dioxane, N,N-dimethylformamide, tetrahydrofuran, methylene chloride, ethylene dichloride, chloroform, diethyl ether or any other solvent which does not adversely affect the reaction.

35 The reaction temperature is not critical and the

10

15

20

25

reaction is usually carried out under cooling to warming.

Process (D) - 2

The compound (XIII) or a salt thereof can be prepared by reacting the compound (XI) or a salt thereof with the compound (XII) or a salt thereof.

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

Process (E)

The compound (X) or a salt thereof can be prepared by reacting the compound (XIV) or a salt thereof with the compound (XV) or a salt thereof.

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, dioxane, diethyl ether or any other solvent which does not adversely affect the reaction. These conventional solvent may also be used in a mixture with water.

The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

of an inorganic or an organic base such as an alkali metal (e.g., sodium, potassium, etc.), an alkali metal hydroxide (e.g., sodium hydroxide, potassium hydroxide, etc.), an alkali metal hydrogencarbonate (e.g., sodium hydrogencarbonate (e.g., sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal carbonate (e.g., sodium carbonate, potassium

carbonate, etc.), tri(lower)alkylamine (e.g., trimethylamine, triethylamine, diisopropylethylamine, etc.), alkali metal hydride (e.g., sodium hydride, etc.), alkali metal (lower)alkoxide (e.g., sodium methoxide, sodium ethoxide, etc.), pyridine, lutidine, picoline, dimethylaminopyridine, N-(lower)alkylmorpholine, N,N-di(lower)alkylamiline

- 39 -

When the base and/or the starting compound are in liquid, they can be also as a solvent.

Process (F)

or the like.

WO 94/19350

5

15

20

The compound (XIII) or a salt thereof can be prepared by reacting the compound (X) or a salt thereof with the compound (XII) or a salt thereof.

This reaction is usually carried out in a solvent such as benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, dioxane, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

The reaction is usually carried out in the presence of an acid including Lewis acid.

Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.], an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, zinc halide (e.g. zinc chloride, zing bromide, etc.), etc.] and the like.

When the acid and/or the starting compound are in liquid, they can be also as a solvent.

Process (G)

The compound (XVI) or a salt thereof can be prepared

25

35

by subjecting the compound (XIII) or a salt thereof to diazotization reaction.

The reaction is usually carried out by using a conventional diazotizing agent such as a combination of an alkali metal nitrite (e.g., sodium nitrite, etc.) and an inorganic acid (e.g., hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, etc.), a combination of isopentyl nitrite and an organic acid (e.g., acetic acid, benzoic acid, etc.) and the like.

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction temperature is not critical and the reaction is usually carried out under cooling.

Process (H)

20 The compound (IIa) or a salt thereof can be prepared by reacting the compound (XVI) or a salt thereof with the compound (XVII) or a salt thereof.

This reaction is usually carried out in a solvent such as water, alcohol (e.g, methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylenechloride, ethylene dichloride, chloroform, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

Process (I)

The compound (III) or a salt thereof can be prepared by reacting the compound (Ib) or a salt thereof with the compound (XVIII) or a salt thereof.

10

15

20

30

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, dioxane, diethyl ether or any other solvent which does not adversely affect the reaction. These conventional solvent may also be used in a mixture with water.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

The reaction is usually carried out in the presence of an acid including Lewis acid.

Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.] and an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, zinc halide (e.g. zinc chloride, zinc bromide, etc.), etc.] and the like.

When the acid and/or the starting compound are in liquid, they can be used also as a solvent.

Suitable "anion" may include anion derived from the materials used in this reaction such as acid residue [e.g., halogen (e.g., fluorine, chlorine, bromine, iodine), etc.], OH and the like.

Suitable salts of the object and starting compounds
in Process (1)-(7) and (A)-(I) can be referred to the ones
as exemplified for the compound (I).

The new pyrazole derivatives (I) and a pharmaceutically acceptable salt thereof of the present invention possess a strong inhibitory activity on the production of Interleukin-1 (IL-1) and a strong inhibitory activity on the production of tumor necrosis factor (TNF), and therefore are useful as an inhibitor on the production of Interleukin-1 (IL-1) and an inhibitor on the production of tumor necrosis factor (TNF).

Accordingly, the new pyrazole derivatives (I)

WO 94/19350

and a pharmaceutically acceptable salt thereof can be used for prophylactic and therapeutic treatment of IL-1 and TNF mediated diseases such as chronic inflammatory diseases (e.g. rheumatoid arthritis, osteoarthritis, etc.) osteoporosis, rejection by transplantation, asthma, 5 endotoxin shock, specific autoimmune diseases [e.g. ankylosing spondylitis, autoimmune hematological disorders (e.g. hemolyticodo anaemia, aplastic anaemia, pure red cell anaemia, idiopathic thrombocytopenia, etc.), systemic 10 lupus erythematosus, polychondritis, scleroderma, Wegener granulamotosis, dermatomyositis, chronic active hepatitis, myasthenia gravis, psoriasis, idiopathic sprue, autoimmune inflammatory bowel disease (e.g. ulcerative colitis, Crohn's disease, etc.), endocrine opthalmopathy, Grave's disease, sarcoidosis, multiple scleosis, primary billiary 15 cirrhosis, juvenile diabetes (diabetes mellitus type I), Reiter's syndrome, non infection uveitis, autoimmune keratitis (e.g. keratoconjuntivitis sicca, vernal keratoconjunctivitis, etc.), interstitial lung fibrosis, 20 psoriatic arthritis, glomerulonephritis {e.g. nephrotic syndrome (e.g. idiopathic nephrotic syndrome, minimal change nephropathy, etc.), etc.}, etc.], cancer cachexia, AIDS cachexia, thrombosis, and the like.

- 42 -

In order to show the utilities of the pyrazole derivatives (I) and a pharmaceutically acceptable salt thereof of the present invention, pharmacological test data of the representative compounds of the pyrazole derivatives (I) are illustrated in the following.

The expression of each "Example 16-(5)" and Example 18-(2) in the following test means the compounds prepared in Example 16-(5) and Example 18-(2) respectively.

25

(a) Inhibitory activity on the production of Interleukin-1 (IL-1)

1. Test method

5

10

Purified human peripheral blood monocyte were stimulated with bacterial lipopolysaccharide (l $\mu g/10^4$ cells) in the absence or presence of appropriately diluted test compound for 2 days at 37°C in a humidified 5% CO₂ atmosphere. Culture supernatants were tested for IL-1 ELISA assay.

Test compound was dissolved in absolute DMSO (dimethyl sulfoxide) to achieve 10 mM stock solutions and was subsequently diluted in serum free RPMI1640.

IL-1 levels were quantified by a commercial ELISA kit (Ohtsuka assay, Japan) using a sandwich technique. The sensitivity levels for the detection of IL-1β were 20 pg/ml.

The inhibitory concentration that caused a 50% inhibition (IC₅₀) was calculated by regression analysis of the dose-response data.

2. Test result

25

Test compound	IC ₅₀ (M)
Example 16-(5)	9.2 x 10 ⁻⁸
Example 18-(2)	8.8×10^{-8}

30 (b) Inhibitory activity on the production of tumor necrosis factor (TNF)

1. Test method

Purified human peripheral blood monocyte were

stimulated with bacterial lipopolysaccharide (l $\mu g/10^4$ cells) in the absence or presence of appropriately diluted test compound for 2 days at 37°C in a humidified 5% CO₂ atmosphere. Culture supernatants were tested for TNF ELISA assay.

TNF levels were quantified by a commercial ELISA kit (Endogen, Inc. USA) using a sandwich technique. The sensitivity levels for the detection of TNF were 12 pg/ml.

The inhibitory concentration that caused a 50% inhibition (IC $_{50}$) was calculated by regression analysis of the dose-response data.

2. Test result

15

10

Test compound	IC ₅₀ (M)
Example 16-(5)	9.1 x 10 ⁻⁸
Example 18-(2)	1.1 x 10 ⁻⁷

20 For therapeutic administration, the object compounds (I) of the present invention and pharmaceutically acceptable salts thereof are used in a form of the conventional pharmaceutical preparation in admixture with 'a conventional pharmaceutically acceptable carrier such as an organic or inorganic solid or liquid excipient which is 25 suitable for oral, parenteral or external administration. The pharmaceutical preparation may be compounded in a solid form such as granule, capsule, tablet, dragee or suppository, or in a liquid form such as solution, 30 suspension or emulsion for injection, ingestion, eye drops, etc. If needed, there may be included in the above preparation auxiliary substance such as stabilizing agent, wetting or emulsifying agent, buffer or any other commonly used additives.

The effective ingredient may usually be administered

with a unit dose of 0.001 mg/kg to 500 mg/kg, preferably 0.01 mg/kg to 10 mg/kg, 1 to 4 times a day. However, the above dosage may be increased or decreased according to age, weight and conditions of the patient or the administering method.

Preferred embodiments of the object compound (I) are as follows.

R¹ is phenyl which may have 1 to 3 (more preferably one or 10 two) suitable substituent(s) [more preferably phenyl which may have 1 to 3 (more preferably one or two; most preferably one) substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, lower 15 alkenyl, lower alkynyl, mono(or di or tri)halo(lower)alkyl, halogen, carboxy, protected carboxy, hydroxy, protected hydroxy, aryl, ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, 20 di(lower)alkylamino, hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto, lower alkylthio and imino; most preferably halophenyl]; or pyridyl which may have 1 to 3 (more preferably one or 25 two) suitable substituent(s) [more preferably pyridyl which may have 1 to 3 (more preferably one or two; most preferably one) substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, mono(or di or 30 tri)halo(lower)alkyl, halogen, carboxy, protected carboxy, hydroxy, protected hydroxy, aryl, ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, di(lower)alkylamino, hydroxy(lower)alkyl, protected 35 hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto,

```
lower alkylthio and imino;
           most preferably pyridyl],
      {\ensuremath{\mathsf{R}}}^2 is phenyl which may have 1 to 3 (more preferably one or
           two) suitable substituent(s) [more preferably phenyl
 5
           which may have 1 to 3 (more preferably one or two;
           most preferably one) substituent(s) selected from the
           group consisting of lower alkyl, lower alkoxy, lower
           alkenyl, lower alkynyl, mono(or di or
           tri)halo(lower)alkyl, halogen, carboxy, protected
10
           carboxy, hydroxy, protected hydroxy, aryl,
           ar(lower)alkyl, carboxy(lower)alkyl, protected
           carboxy(lower)alkyl, amino, protected amino,
           di(lower)alkylamino, hydroxy(lower)alkyl, protected
           hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto,
15
           lower alkylthio and imino;
           most preferably halophenyl]; or
           pyridyl which may have 1 to 3 (more preferably one or
           two) suitable substituent(s) [more preferably pyridyl
           which may have 1 to 3 (more preferably one or two;
20
           most preferably one) substituent(s) selected from the
           group consisting of lower alkyl, lower alkoxy, lower
           alkenyl, lower alkynyl, mono(or di or
           tri)halo(lower)alkyl, halogen, carboxy, protected
           carboxy, hydroxy, protected hydroxy, aryl,
25
           ar(lower)alkyl, carboxy(lower)alkyl, protected
           carboxy(lower)alkyl, amino, protected amino,
           di(lower)alkylamino, hydroxy(lower)alkyl, protected
           hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto,
           lower alkylthio and imino;
30
           most preferably pyridyl, halopyridyl or lower
           alkoxypyridyl],
         is hydrogen or lower alkanoyl,
```

R is hydrogen or lower alkanoyl,
R is hydrogen;
lower alkyl;

35 cyclo(lower)alkyl;

cyclo(lower)alkyl-(lower)alkyl; carboxy(lower)alkyl; esterified carboxy(lower)alkyl [more preferably lower alkoxycarbonyl(lower)alkyl]; 5 phenyl(lower)alkyl which may have 1 to 3 (more preferably one or two) suitable substituent(s) [more preferably phenyl(lower)alkyl which may have 1 to 3 (more preferably one or two) substituent(s) selected from the group consisting of halogen, lower alkyl, 10 lower alkoxy, lower alkenyl, lower alkynyl, mono(or di or tri)halo(lower)alkyl and di(lower)alkylamino; most preferably mono(or di)halophenyl(lower)alkyl]; adamantanyl; phenyl(lower)alkenyl; tetrahydropyranyl, piperidyl or dioxaspiroundecanyl, each of which may 15 have 1 to 3 (more preferably one or two) substituent(s) selected from the group consisting of lower alkyl and acyl [more preferably tetrahydropyranyl, piperidyl or dioxaspiroundecanyl, each of which may have one or two substituent(s) 20 selected from the group consisting of lower alkyl and lower alkanoyl; most preferably tetrahydropyranyl, lower alkylpiperidyl, lower alkanoylpiperidyl, or di(lower)alkyldioxaspiroundecanyl]; 25 indanyl; lower alkanoyl which may have 1 to 3 (more preferably one or two) suitable substituent(s) [more preferably lower alkanoyl which may have 1 to 3 (more preferably one or two; most preferably one) substituent(s) 30 selected from the group consisting of carboxy, protected carboxy, lower alkoxy, halogen, protected amino, amino, hydroxy, protected hydroxy and di(lower)alkylamino; most preferably lower alkanoyl which may have a 35 substituent selected from the group consisting of

```
carboxy, esterified carboxy, lower alkoxy, halogen,
            lower alkoxycarbonylamino, lower alkanoylamino,
            amino, hydroxy, acyloxy (more preferably lower
            alkanoyloxy or cyclo(lower)alkylcarbonyloxy), and
  5
            di(lower)alkylamino];
            lower alkoxycarbonyl;
            lower alkoxyglyoxyloyl;
            lower alkylsulfonyl;
            cyclo(lower)alkylcarbonyl;
 10
            aroyl which may have 1 to 3 (more preferably one or
            two) suitable substituent(s) [more preferably benzoyl
            which may have 1 to 3 (more preferably one or two)
            substituent(s) selected from the group consisting of
           mono(or di or tri)halo(lower)alkyl, halogen, protected
           hydroxy and hydroxy; most preferably benzoyl which may
15
           have one or two substituent(s) selected from the group
           consisting of trihalo(lower)alkyl, halogen, acyloxy
           (more preferably lower alkanoyloxy) and hydroxy];
           ar(lower)alkanoyl which may have 1 to 3 (more
           preferably one or two) suitable substituent(s) [more
20
           preferably phenyl(lower)alkanoyl which may have 1 to
           3 (more preferably one or two) substituent(s)
           selected from the group consisting of lower alkoxy,
           aryl, halogen and mono(or di or tri)halo(lower)alkyl;
25
           most preferably phenyl(lower)alkanoyl which may have
           one or two substituent(s) selected from the group
           consisting of lower alkoxy, phenyl, halogen and
           trihalo(lower)alkyl];
           ar(lower)alkenoyl [more preferably
30
           phenyl(lower)alkenoyl];
           arylthio(lower)alkanoyl [more preferably
           phenylthio(lower)alkanoyl];
           arylcarbamoyl [more preferably phenylcarbamoyl];
           aryl-thiocarbamoyl [more preferably
35
           phenyl-thiocarbamoyl];
```

WO 94/19350 PCT/JP94/00213

- 49 -

arylglyoxyloyl which may have 1 to 3 (more preferably one or two) suitable substituent(s) [more preferably phenylglyoxyloyl which may have 1 to 3 (more preferably one or two; most preferably one) substituent(s) selected from the group consisting of 5 mono(or di or tri)halo(lower)alkyl and lower alkoxy; most preferably phenylglyoxyloyl which may have a substituent selected from the group consisting of trihalo(lower)alkyl and lower alkoxy]; carbamoyl which may have one or two suitable 10 substituent(s) selected from the group consisting of lower alkyl, hydroxy(lower)alkyl, protected hydroxy(lower)alkyl (more preferably acyloxy(lower)alkyl), lower alkoxy and cyclo(lower)alkyl; heterocycliccarbonyl [more 15 preferably morpholinylcarbonyl]; heterocyclic(lower)alkanoyl [more preferably indolyl(lower)alkanoyl or morpholinyl(lower)alkanoyl]; or 20 heterocycliccarbamoyl [more preferably piperidylcarbamoyl], and ${\tt R}^{\sf 5}$ is hydrogen or lower alkyl.

The following Preparations and Examples are given for the purpose of illustrating the present invention in more detail.

30

Preparation 1

To a solution of 4-methylpyridine (74.4 g) and ethyl 4-fluorobenzoate (134.4 g) in dry tetrahydrofuran (600 ml) was added a 1.0M solution of lithium

- bis(trimethylsilyl)amide in tetrahydrofuran (1.6 l)
 dropwise with ice cooling. The mixture was stirred at
 ambient temperature for 30 minutes. To the reaction
 mixture was added hexane (2.2 l) and the separated solid
 was collected, washed with hexane and dried. The obtained
 solid was dissolved in 3N-hydrochloric acid (800 ml) and
 the solution was neutralized with an aqueous saturated
 sodium bicarbonate solution. The separated solid was
 collected, washed with water and dried to give
- 1-(4-fluorophenyl)-2-(pyridin-4-yl)ethan-1-one (148 g).15 mp: 93-94°C

NMR (CDCl₃, δ): 4.28 (2H, s), 7.09-7.25 (4H, m), 8.01 (1H, d, J=5Hz), 8.06 (1H, d, J=5Hz), 8.60 (2H, d, J=6Hz)

20 Preparation 2

A mixture of 1-(4-fluorophenyl)-2-(pyridin-4-yl)-ethan-1-one (5.12 g) and N,N-dimethylformamide dimethyl acetal (16 ml) was stirred at 100°C for 3 hours under nitrogen. The cooled mixture was concentrated in vacuo.

The residue was crystallized from isopropyl ether to yield 3-dimethylamino-1-(4-fluorophenyl)-2-(pyridin-4-yl)-2-propen-1-one (6.15 g).

NMR (CDCl₃, δ): 2.82 (6H, s), 6.99 (2H, t, J=9Hz), 7.03 (2H, d, J=6Hz), 7.35-7.55 (3H, m), 8.48 (2H, br)

Preparation 3

30

35

A mixture of 3-dimethylamino-1-(4-fluorophenyl)-2-(pyridin-4-yl)-2-propen-1-one (6.15 g) and hydroxylamine hydrochloride (4.75 g) in dry ethanol (40 ml) was refluxed

10

25

for 20 minutes. The mixture was cooled and concentrated in vacuo. The residue was dissolved in dilute hydrochloric acid and then treated with an aqueous saturated sodium bicarbonate solution. The precipitates were collected by filtration, washed with water, and dried to give 5-(4-fluorophenyl)-4-(pyridin-4-yl)isoxazole (5.35 g).

mp : 95-97°C

NMR (CDCl₃, δ): 7.15 (2H, t, J=9Hz), 7.37 (2H, d, J=6Hz), 7.61 (2H, dd, J=5Hz and 9Hz), 8.46 (1H, s), 8.67 (2H, d, J=6Hz)

Preparation 4

A suspension of 5-(4-fluorophenyl)-4-(pyridin-4-yl)isoxazole (5.35 g) in 1N sodium hydroxide aqueous solution
(50 ml) was stirred for one hour at 60°C. The solution
was cooled and adjusted to pH 6 with concentrated
hydrochloric acid. The separated solid was collected,
washed with water, and dried to give

3-(4-fluorophenyl)-3-oyo-2-(pyridin 4 stl)-years in the

3-(4-fluorophenyl)-3-oxo-2-(pyridin-4-yl)propanenitrile (5.27 g).

mp : 222-225°C

NMR (CDCl₃ + CD₃OD, δ): 7.11 (2H, t, J=9Hz), 7.77 (2H, dd, J=5Hz and 9Hz), 7.82 (2H, d, J=6Hz), 8.21 (2H, d, J=6Hz)

Preparation 5

A solution of 3-(4-fluorophenyl)-3-oxo-2-(pyridin-4-yl)propanenitrile (240 mg) in phosphoryl trichloride (3 ml) was stirred for 15 minutes at 100°C and then evaporated under reduced pressure. To the residue was added toluene and concentrated in vacuo, and the residue was dissolved in ethanol (2 ml). To the mixture was added hydrazine monohydrate (150 mg). The mixture was refluxed for 3 hours, cooled, and poured into an aqueous saturated

sodium bicarbonate solution. The separated oil was extracted with a mixture of ethanol and dichloromethane (2:8). The extract was washed with water, dried and concentrated in vacuo. The residue was crystallized from methanol to yield 5-amino-3-(4-fluorophenyl)-4-(pyridin-4-yl)pyrazole (110 mg).

- 52 -

mp : >250°C

NMR (CDCl₃ + CD₃OD, δ): 7.08 (2H, t, J=9Hz), 7.23 (2H, d, J=6Hz), 7.33 (2H, dd, J=5Hz and 9Hz), 8.42 (2H, d, J=6Hz)

Preparation 6

5

10

15

20

Sodium (2.48 g) was dissolved in dry ethanol (37 ml) under nitrogen atmosphere. To the solution was added 4-fluorophenylacetonitrile (11.65 g) and ethyl isonicotinate (16.41 ml) and the solution was refluxed for 3 hours. The reaction mixture was cooled and poured into water. The ethanol of the mixture was removed under reduced pressure. The resulting aqueous solution was washed with ether and neutralized with diluted hydrochloric acid. The separated solid was collected, washed with water and dried to give 2-(4-fluorophenyl)-3-oxo-3-(pyridin-4-yl)propanenitrile (16.43 g).

mp: 230-232°C

25 NMR (CDCl₃ + CD₃OD, δ): 7.12 (2H, t, J=9Hz), 7.68 (2H, d, J=6Hz), 7.84 (2H, dd, J=5Hz and 9Hz), 8.69 (2H, d, J=6Hz)

Preparation 7

- A mixture of 2-(4-fluorophenyl)-3-oxo-3(pyridin-4-yl)propanenitrile (10 g), hydrazine monohydrate
 (2.4 ml) and acetic acid (5.2 ml) in dry benzene (100 ml)
 was refluxed for 4 hours. The reaction mixture was cooled
 and extracted with 3N-hydrochloric acid (80 ml x 3).
- 35 The extracts were concentrated in vacuo to 100 ml of the

20

30

volume and the solution was neutralized with aqueous ammonia solution. The separated solid was collected, washed with water and dried to give 5-amino-4-(4-fluorophenyl)-3-(pyridin-4-yl)pyrazole (2.02 g).

5 mp: 116-118°C

NMR (CDCl₃ + CD₃OD, δ): 7.12 (2H, t, J=9Hz), 7.25 (2H, dd, J=5Hz and 9Hz), 7.38 (2H, d, J=6Hz), 8.46 (2H, d, J=6Hz)

10 <u>Preparation 8</u>

To a mixture of 5-amino-4-(4-fluorophenyl)-3(pyridin-4-yl)pyrazole (100 mg) and concentrated
hydrochloric acid (0.2 ml) in water (0.4 ml) was added
sodium nitrite (28 mg) in water (0.12 ml) under ice
cooling. The mixture was stirred for 30 minutes and to
the mixture were added cold dichloromethane (5 ml), an

aqueous saturated sodium bicarbonate (2 ml) solution and 1-(triphenylphosphoranylidene)-2-propanone (126 mg) in dichloromethane (2 ml). The mixture was stirred at 10°C for 2 hours. The organic layer was separated dried and

for 2 hours. The organic layer was separated, dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel and the obtained oil was crystallized from diisopropyl ether to give 8-(4-fluorophenyl)-4-methyl-7-(pyridin-4-yl)pyrazolo-

25 [5,1-c][1,2,4]triazine (41 mg).

mp : 202.5-204.0°C

NMR (CDCl₃, δ): 2.91 (3H, s), 7.18 (2H, t, J=9Hz), 7.62 (2H, dd, J=5Hz and 9Hz), 7.68 (2H, d, J=6Hz), 8.70 (2H, d, J=6Hz), 8.79 (1H, s)

Preparation 9

The following compounds were obtained according to a similar manner to that of Preparation 8.

35 (1) 8-(4-Fluorophenyl)-7-(pyridin-4-yl)pyrazolo[5,1-c]-

10

30

35

[1,2,4]triazine mp: 180-182°C

(1H, m)

NMR (CDCl₃, δ): 7.20 (2H, t, J=9Hz), 7.55-7.70 (4H, m), 8.59 (1H, d, J=5Hz), 8.70 (2H, d, J=6Hz), 8.90 (1H, d, J=5Hz)

- (3) 7-(4-Fluorophenyl)-8-(pyridin-4-yl)pyrazolo[5,1-c][1,2,4]triazine

 NMR (CDCl₃, δ): 7.18 (2H, t, J=9Hz), 7.60-7.75 (4H, m), 8.59 (1H, d, J=4Hz), 8.68 (2H, d, J=6Hz),

8.93 (1H, d, J=4Hz)

20 Preparation 10

The following compounds were obtained according to a similar manner to that of Preparation 1.

- (1) 2-(2-Chloropyridin-4-yl)-1-(4-fluorophenyl)ethan-1one
 mp: 99-103°C
 NMR (CDCl₃, δ): 4.28 (2H, s), 7.11-7.22 (3H, m),
 7.27 (1H, s), 8.03 (2H, dd, J=6Hz and 9Hz), 8.37 (1H, d, J=6Hz)

Preparation 11

The following compounds were obtained according to similar manners to those of Preparation 2 and 3.

- 55 **-**

Preparation 12

The following compounds were obtained according to similar manners to those of Preparation 4 and 6.

- (2) 2-(2-Bromopyridin-4-yl)-3-(4-fluorophenyl)-3oxopropanenitrile

 mp: 217-219°C (dec.)

 NMR (CDCl₃ + CD₃OD, δ): 7.13 (2H, t, J=9Hz), 7.73
 (2H, dd, J=6Hz and 9Hz), 7.79-7.90 (2H, m), 8.23
 (1H, m)

10

Preparation 13

The following compounds were obtained according to similar manners to those of Preparation 5 and 7.

5 (1)5-Amino-4-(2-chloropyridin-4-yl)-3-(4-fluorophenyl)pyrazole ·

mp : 213-216°C

NMR (CDCl₃ + CD₃OD, δ): 7.03-7.14 (3H, m), 7.29-7.38 (3H, m), 8.23 (1H, d, J=6Hz)

10

(2) 5-Amino-4-(2-bromopyridin-4-yl)-3-(4-fluorophenyl)pyrazole

mp : 213-215°C

NMR (CDCl₃ + CD₃OD, δ): 7.01-7.14 (3H, m), 7.28-7.47 (3H, m), 8.24 (1H, d, J=6Hz)

15

Preparation 14

The following compounds were obtained according to a similar manner to that of Preparation 8.

20

(1) 8-(2-Chloropyridin-4-yl)-7-(4-fluorophenyl)pyrazolo-[5,1-c][1,2,4]triazine

mp : >250°C

NMR (DMSO- d_{6} , δ): 7.40 (2H, t, J=9Hz), 7.58 (1H, d, 25 J=6Hz), 7.70 (2H, dd, J=6Hz and 9Hz), 7.80 (1H, s), 8.49 (1H, d, J=6Hz), 9.20 (1H, d, J=5Hz), 9.40 (1H, d, J=5Hz)

8-(2-Bromopyridin-4-yl)-7-(4-fluorophenyl)pyrazolo-30 [5,1-c][1,2,4]triazine

mp : 258°C (dec.)

NMR (DMSO- d_c , δ): 7.42 (2H, t, J=9Hz), 7.58 (1H, d, J=6Hz), 7.71 (2H, dd, J=6Hz and 9Hz), 7.80 (1H, s), 8.50 (1H, d, J=6Hz), 9.20 (1H, d, J=5Hz),

35 9.43 (1H, d, J=5Hz)

10 Preparation 15

To a suspension of 7-(4-fluorophenyl)-8-(2fluoropyridin-4-yl)pyrazolo[5,1-c][1,2,4]triazine (350 mg) in methanol (2 ml) was added conc. sulfuric acid (0.32 ml) dropwise. The mixture was refluxed for 1 hour, cooled and 15 poured into cold water. The aqueous solution was neutralized with an aqueous saturated sodium bicarbonate solution and the separated oil was extracted with dichloromethane. The extract was washed with brine, dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel and the obtained oil 20 was crystallized from methanol to give 7-(4-fluorophenyl)-8-(2-methoxypyridin-4-yl)pyrazolo[5,1-c][1,2,4]triazine (220 mg).

mp: 223-225°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 3.99 (3H, s), 7.10-7.25 (4H, m), 7.69 (2H, dd, J=6Hz and 9Hz), 8.21 (1H, d, J=6Hz), 8.68 (1H, d, J=4Hz), 8.93 (1H, d, J=4Hz)

30

Example 1

To a suspension of 7-(4-fluorophenyl)-8-(pyridin-4yl)pyrazolo[5,1-c][1,2,4]triazine (2.2 g) in methanol (20 ml) was added sodium cyanoborohydride (480 mg). 5 the mixture was maintained at 3 to 4 for 2 hours with 1N hydrochloric acid. The procedure was repeated three additional times to completely finish the reduction. Then, the mixture was concentrated in vacuo and the residue was dissolved in 2N hydrochloric acid. mixture was stirred at 80°C for 30 minutes and cooled. 10 The solution was neutralized with an aqueous saturated sodium bicarbonate solution. The separated solid was collected, washed with water and methanol and dried to give 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-15 tetrahydropyrazolo[5,1-c][1,2,4]triazine (2.06 g). 233-235°C NMR (CDCl₃:CD₃OD = 9:1, \ddot{o}): 3.37 (2H, t, J=6Hz), 4.17 (2H, t, J=6Hz), 7.13 (2H, t, J=9Hz), 7.30-7.50 (4H, m), 8.24 (2H, d, J=6Hz)

20

Example 2

The following compounds were obtained according to a similar manner to that of Example 1.

- 25 (1) 7-(4-Fluorophenyl)-4-methyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 219-221°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 1.60 (3H, d, J=7Hz),
 3.05 (1H, dd, J=6Hz and 14Hz), 3.38 (1H, dd,
 J=4Hz and 14Hz), 4.33 (1H, m), 7.06 (2H, t,
 J=9Hz), 7.12 (2H, d, J=6Hz), 7.40 (2H, dd,
 J=6Hz and 9Hz), 8.37 (2H, d, J=6Hz)
- 8-(4-Fluorophenyl)-7-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine

mp : >250°C
NMR (CDCl₃, δ) : 3.38 (2H, q, J=6Hz), 3.60 (1H, m),
 4.21 (2H, t, J=6Hz), 5.47 (1H, d, J=5Hz), 7.06
 (2H, t, J=9Hz), 7.19 (2H, dd, J=6Hz and 9Hz),
 7.35 (2H, d, J=6Hz), 8.49 (2H, d, J=6Hz)

Example 3

To a solution of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (207 mg) in acetic acid (2 ml) was added acetic anhydride (75 mg) 10 with ice cooling. The solution was stirred at ambient temperature for 1 hour and concentrated in vacuo. residue was dissolved in water (3 ml) and the solution was neutralized with an aqueous saturated sodium bicarbonate 15 The separated oil was extracted with dichloromethane and the extract was dried and concentrated in vacuo. The residue was crystallized from ethyl acetate to give 2-acetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (195 mg). 20 mp: 216-218°C NMR $(CDCl_3:CD_3OD = 9:1, \delta)$: 2.28 (3H, s), 4.13 (2H, t, J=6Hz), 4.26 (2H, t, J=6Hz), 7.05 (2H, t, J=9Hz), 7.27 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.42 (2H, d, J=6Hz)

Example 4

25

The following compounds were obtained according to a similar manner to that of Example 3.

30 (1) 2-Acetyl-8-(4-fluorophenyl)-7-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
mp: 115-120°C

NMR (CDCl₃, δ): 2.28 (3H, s), 4.14 (2H, t, J=6Hz),
4.28 (2H, t, J=6Hz), 6.08 (1H, s), 7.09 (2H, t,
J=9Hz), 7.23 (2H, dd, J=6Hz and 9Hz), 7.35 (2H,

```
d, J=6Hz), 8.49 (2H, d, J=6Hz)
```

(2) 7-(4-Fluorophenyl)-2-formyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine

5 mp: 233-235°C

NMR (CDCl₃, δ): 4.10-4.20 (2H, m), 4.25-4.40 (2H, m), 6.50 (1H, br s), 7.05 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.45 (2H, d, J=6Hz), 8.55 (1H, s)

10

15

20

Example 5

To a mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (148 mg) and triethylamine (101 mg) in dry dichloromethane was added acetic anhydride (54 mg). The reaction mixture was stirred at ambient temperature for 4 hours and then, to the mixture was added methanol (1 ml). After standing for 30 minutes, the mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel. The first fraction was concentrated in vacuo and the obtained oil was crystallized from a mixture of diethyl ether and n-hexane to give 1,2-diacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine (22 mg).

25 mp: 162-164°C

NMR (CDCl₃, δ): 2.11 (3H, s), 2.32 (3H, s), 3.40 (1H, m), 4.20-4.45 (2H, m), 5.07 (1H, dd, J=6Hz and 14Hz), 7.10 (2H, t, J=9Hz), 7.14 (2H, d, J=6Hz), 7.33 (2H, dd, J=6Hz and 9Hz), 8.58 (2H, d, J=6Hz)

30

The second fraction was concentrated in vacuo and the obtained oil was crystallized from ethyl acetate to give 2-acetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (101 mg).

35 mp: 216-218°C

```
NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta) : 2.28 (3H, s), 4.12 (2H,
                  t, J=6Hz), 4.25 (2H, t, J=6Hz), 7.07 (2H, t,
                  J=9Hz), 7.20 (2H, d, J=6Hz), 7.40 (2H, dd,
                  J=6Hz and 9Hz), 8.42 (2H, d, J=6Hz)
   5
       Example 6
             The following two compounds were obtained by reacting
       7-(4-fluorophenyl)-4-methyl-8-(pyridin-4-yl)-1,2,3,4-
       tetrahydro[5,1-c][1,2,4]triazine according to a similar
 10
       manner to that of Example 5.
            2-Acetyl-7-(4-fluorophenyl)-4-methyl-8-(pyridin-4-
       yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
            mp : 247-249°C
 15
            NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta) : 1.60 (3H, d, J=7Hz),
                  2.30 (3H, s), 3.93 (1H, dd, J=6Hz and 13Hz),
                  4.10 (1H, dd, J=5Hz and 13Hz), 4.46 (1H, m),
                 7.06 (2H, t, J=9Hz), 7.21 (2H, d, J=6Hz), 7.41
                 (2H, dd, J=6Hz and 9Hz), 8.42 (2H, d, J=6Hz)
20
            1,2-Diacetyl-7-(4-fluorophenyl)-4-methyl-8-(pyridin-
       4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
            mp: 193-194°C
            NMR (CDCl<sub>3</sub>, \delta): 1.71 (3H, d, J=7Hz), 2.12 (3H, s),
25
                 2.31 (3H, s), 3.00 (1H, dd, J=11Hz and 13Hz),
                 4.43 (1H, m), 5.05 (1H, dd, J=6Hz and 13Hz),
                 7.00 (2H, t, J=9Hz), 7.13 (2H, d, J=6Hz), 7.35
                 (2H, dd, J=6Hz and 9Hz), 8.58 (2H, d, J=6Hz)
30
      Example 7
           To a mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-
      1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (100 mg,
      0.339 mmol) and pyridine (54 mg, 0.678 mmol) in
      N-methyl-2-pyrrolidone (1.5 ml) was added acetoxyacetyl
35
      chloride (60 mg, 0.441 mmol) in N-methyl-2-pyrrolidone
```

- 61 -

10

(0.5 ml) under nitrogen atmosphere with ice cooling. After stirring for 30 minutes, the reaction mixture was diluted with an aqueous saturated sodium bicarbonate solution, then extracted with ethyl acetate. The organic phase was washed with water and brine, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by chromatography on silica gel (eluent:dichloromethane/methanol; 100/1~20/1) and the obtained amorphous product was crystallized from diisopropyl ether to give 2-acetoxyacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine (76 mg).

mp : 121°C (dec.)

NMR (DMSO-d₆, δ): 2.10 (3H, s), 3.95-4.05 (2H, m), 4.10-4.20 (2H, m), 4.90 (2H, s), 7.15-7.30 (4H, m), 7.35-7.45 (2H, m), 8.45 (2H, d, J=6Hz), 8.70 (1H, s)

Example 8

- The following compounds were obtained according to a similar manner to that of Example 7.
- (1) 7-(4-Fluorophenyl)-2-methylsulfonyl-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp : 133-135°C
 NMR (CDCl₃:CD₃OD = 9:1, δ) : 3.16 (3H, s), 4.03 (2H, t, J=6Hz), 4.33 (2H, t, J=6Hz), 7.08 (2H, t, J=9Hz), 7.30-7.45 (4H, m), 8.40 (2H, d, J=6Hz)
- 30 (2) 7-(4-Fluorophenyl)-2-methoxycarbonyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 215-216°C

 NMR (DMSO-d₆, δ): 3.65 (3H, s), 3.90-4.00 (2H, m), 4.10-4.25 (2H, m), 7.15 (2H, d, J=6Hz), 7.20 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz),

10

```
8.45 (2H, d, J=6Hz), 8.55 (1H, s)
```

- (3) 7-(4-Fluorophenyl)-8-(pyridin-4-yl)-2-[4-(trifluoromethyl)benzoyl]-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine mp: 207-209°C NMR (DMSO- d_6 , δ): 4.10-4.40 (4H, m), 6.75-6.90 (2H, m), 7.10-7.45 (4H, m), 7.75-7.85 (4H, m), 8.20-8.35 (2H, m)
- (4) 2-Cinnamoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 228-230°C NMR (CDCl₃, δ): 4.25-4.40 (4H, m), 6.25 (1H, br s),
- 15 7.05 (2H, t, J=9Hz), 7.20 (2H, d, J=6Hz), 7.30-7.60 (8H, m), 7.80 (1H, d, J=15Hz), 8.55 (2H, d, J=6Hz)
- (5) 2-Benzoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-20 1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp : 141°C (dec.) NMR (CDCl₃, δ): 4.20-4.40 (4H, m), 6.85-7.10 (4H, m), 7.40 (2H, dd, J=6Hz and 9Hz), 7.45-7.65 (5H, m), 8.30-8.45 (2H, m) 25
 - (6) 2-[4-(Acetoxy)benzoyl]-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
- mp : 148°C (dec.) 30 NMR (CDCl₃, δ): 2.35 (3H, s), 4.25-4.40 (4H, m), 6.90-7.10 (4H, m), 7.20 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 7.65 (2H, d, J=9Hz),8.40 (2H, d, J=6Hz)
- 35 (7) 2-(3-Carboxypropanoyl)-7-(4-fluorophenyl)-8-(pyridin-

4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-triazine

mp : 214-215°C

- NMR (DMSO-d₆, δ): 2.45 (2H, t, J=6Hz), 2.72 (2H, t, J=6Hz), 4.02 (2H, t, J=5Hz), 4.15 (2H, t, J=5Hz), 7.10-7.30 (4H, m), 7.40 (2H, dd, J=6Hz and 9Hz), 8.49 (2H, d, J=6Hz), 8.70 (1H, s)
- (8) 2-Chloroacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 NMR (CDCl₃, δ): 4.15-4.25 (2H, m), 4.25-4.35 (2H, m), 4.40 (2H, s), 6.45 (1H, s), 7.00 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz)
- (9) 7-(4-Fluorophenyl)-2-methoxyacetyl-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp : 219°C (dec.)
- NMR (CDCl₃, δ): 3.45 (3H, s), 4.10-4.25 (2H, m), 4.25-4.35 (2H, m), 4.40 (2H, s), 6.45 (1H, br s), 7.05 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz)
- 25 (10) 7-(4-Fluorophenyl)-2-pivaloyl-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 248-250°C

 NMR (CDCl₃, δ): 1.30 (9H, s), 4.10-4.20 (2H, m),
 4.22-4.32 (2H, m), 6.28 (1H, br s), 7.04 (2H, t,
 J=9Hz), 7.14 (2H, d, J=6Hz), 7.41 (2H, dd, J=6Hz
 and 9Hz), 8.50 (2H, d, J=6Hz)
- (11) 2-Cyclohexylcarbonyl-7-(4-fluorophenyl)-8-(pyridin-4yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp : 209-211°C

```
NMR (CDCl<sub>3</sub>, δ): 1.20-1.60 (6H, m), 1.70-1.90 (4H,
     m), 2.95-3.10 (1H, m), 4.10-4.30 (4H, m), 6.15
     (1H, br s), 7.05 (2H, t, J=9Hz), 7.15 (2H, d,
     J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.50 (2H,
     d, J=6Hz)
```

- (12) 2-Cyclohexylcarbonyloxyacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine
- 10 mp : 178-181°C

NMR (CDCl₃, δ): 1.20-1.83 (8H, m), 1.90-2.05 (2H, m), 2.35-2.52 (1H, m), 4.10-4.20 (2H, m), 4.24-4.35 (2H, m), 5.00 (2H, s), 6.54 (1H, s), 7.05 (2H, t, J=9Hz), 7.12 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz)

(13) 2-Cyclopropylcarbonyl-7-(4-fluorophenyl)-8-(pyridin-4-y1)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine

20 mp: 192-194°C

NMR (CDCl₃, δ): 0.80-1.15 (4H, m), 2.52 (1H, m), 4.10-4.35 (4H, m), 6.52 (1H, s), 7.04 (2H, t, J=9Hz), 7.17 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hzand 9Hz), 8.49 (2H, d, J=6Hz)

25

15

5

(14) 2-(3,3-Dimethylbutyryl)-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine

mp : 120°C (dec.)

- 30 NMR (CDCl₃, δ): 1.03 (9H, s), 2.60 (2H, s), 4.14-4.30 (4H, m), 6.08 (1H, s), 7.03 (2H, t, J=9Hz), 7.17 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hzand 9Hz), 8.50 (2H, d, J=6Hz)
- 35 (15) 7-(4-Fluorophenyl)-2-isopropyloxycarbonyl-8-(pyridin-

```
4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-
triazine
```

mp: 170-172°C

- NMR (CDCl₃, δ): 1.32 (6H, d, J=6Hz), 4.10 (2H, t, 5 J=5Hz), 4.25 (2H, t, J=5Hz), 5.01 (1H, quint, J=6Hz), 6.60 (1H, br s), 7.03 (2H, t, J=9Hz), 7.16 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.51 (2H, d, J=6Hz)
- (16) 2-(3-Chloro-2,2-dimethylpropionyl)-7-(4-10 fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 188-189°C
- NMR (CDCl₃, δ): 1.20 (6H, s), 3.20 (2H, s), 4.14 15 (2H, t, J=5.5Hz), 4.32 (2H, t, J=5.5Hz), 7.00(2H, t, J=9Hz), 7.18 (2H, d, J=6Hz), 7.30 (2H, d)dd, J=6Hz and 9Hz), 8.58 (2H, d, J=6Hz)
- (17) 2-(2,2-Dimethylbutyryl)-7-(4-fluorophenyl)-8-20 (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine mp : 204°C (dec.) NMR (CDCl₃, δ): 0.79 (3H, t, J=9Hz), 1.27 (6H, s),
- 1.70 (2H, q, J=9Hz), 4.12-4.21 (2H, m), 25 4.24-4.33 (2H, m), 6.20 (1H, br s), 7.04 (2H, t, J=9Hz), 7.13 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hzand 9Hz), 8.52 (2H, d, J=6Hz)
- (18) 2-Ethoxalyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-30 1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 174-176°C NMR (CDCl₃, δ): 1.29 (3H, t, J=7Hz), 4.18 (2H, t, J=6Hz), 4.25-4.45 (4H, m), 6.95-7.15 (4H, m), 7.39 (2H, dd, J=6Hz and 9Hz), 8.37 (2H, d, 35

J=6Hz)

(20) 2-Acetoxyacetyl-8-(4-fluorophenyl)-7-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
mp: 231-232°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 2.18 (3H, s), 4.13 (2H,
t, J=6Hz), 4.30 (2H, t, J=6Hz), 4.92 (2H, s),
7.09 (2H, t, J=9Hz), 7.21 (2H, dd, J=6Hz and
9Hz), 7.36 (2H, d, J=6Hz), 8.48 (2H, d, J=6Hz)

Example 9

A mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (118 mg)
and ethyl isocyanate (30 mg) in dichloromethane (2 ml) was
stirred at ambient temperature for 1 hour. The mixture
was concentrated in vacuo and the residue was crystallized
from ethyl acetate to give 2-ethylcarbamoyl-7-(4
'fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (120 mg).
mp: 235-240°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 1.12 (3H, t, J=7Hz), 3.25 (2H, q, J=7Hz), 4.07 (2H, t, J=6Hz), 4.20 (2H, t, J=6Hz), 7.04 (2H, t, J=9Hz), 7.14 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.47

Example 10

30

35

The following compounds were obtained according to a similar manner to that of Example 9.

(2H, d, J=6Hz)

15

(2) 7-(4-Fluorophenyl)-2-phenylcarbamoyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 180-182°C

NMR (CDCl₃, δ): 4.17 (2H, t, J=6Hz), 4.28 (2H, t, J=6Hz), 6.95-7.10 (3H, m), 7.15-7.45 (9H, m), 8.12 (1H, s), 8.51 (2H, d, J=6Hz)

(3) 2-Carbamoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazinemp: 141-145°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 4.06 (2H, t, J=6Hz), 4.23 (2H, t, J=6Hz), 7.07 (2H, t, J=9Hz), 7.25 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.43 (2H, d, J=6Hz)

Example 11

A mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (74 mg)
and N,N'-disuccinimidylcarbonate (77 mg) in dry
N,N-dimethylformamide (2 ml) was stirred at ambient
temperature for 1 hour. To the mixture was added
diethylamine (0.13 ml) and the mixture was stirred at
ambient temperature for 3 hours. The reaction mixture was
poured into cold water and the separated oil was extracted
with ethyl acetate. The extract was washed with brine,
dried and concentrated in vacuo. The residue was
crystallized from ethyl acetate to give

2-diethylcarbamoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (80 mg).
mp: 223-226°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 1.01 (6H, t, J=7Hz),
3.27 (4H, q, J=7Hz), 3.84 (2H, t, J=6Hz), 4.35
(2H, t, J=6Hz), 7.03 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.40

10 Example 12

The following compounds were obtained according to a similar manner to that of Example 11.

(2H, d, J=6Hz)

- (1) 7-(4-Fluorophenyl)-2-morpholinocarbonyl-8-(pyridin-4yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 232-234°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 3.52 (4H, t, J=6Hz),
 3.63 (4H, t, J=6Hz), 3.86 (2H, t, J=6Hz), 4.35
 (2H, t, J=6Hz), 7.06 (2H, t, J=9Hz), 7.17 (2H,
 d, J=6Hz), 7.41 (2H, dd, J=6Hz and 9Hz), 8.41
 (2H, d, J=6Hz)
- (2) 2-Bis(2-hydroxyethyl)carbamoyl-7-(4-fluorophenyl)-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 118-121°C
 NMR (CDCl₃:CD₃OD = 1:1, δ): 3.50 (4H, t, J=6Hz),
 3.62 (4H, t, J=6Hz), 3.89 (2H, t, J=6Hz), 7.07
 (2H, t, J=9Hz), 7.18 (2H, d, J=6Hz), 7.38 (2H,
 dd, J=6Hz and 9Hz), 8.49 (2H, d, J=6Hz)
 - (3) 2-Cyclohexylcarbamoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
- 35 mp: 181-183°C

(4)

```
NMR (CDCl<sub>3</sub>, δ): 1.00-1.50 (4H, m), 1.50-1.80 (4H, m), 1.80-2.00 (2H, m), 3.60 (1H, m), 4.07 (2H, t, J=6Hz), 4.23 (2H, t, J=6Hz), 5.91 (1H, d, J=8Hz), 6.10 (1H, s), 7.03 (2H, t, J=9Hz), 7.11 (2H, d, J=6Hz), 7.42 (2H, dd, J=6Hz and 9Hz), 8.53 (2H, d, J=6Hz)
```

7-(4-Fluorophenyl)-2-(piperidin-1-yl)carbamoyl-8-

- (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 140-141°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 1.39 (2H, m), 1.65 (4H, m), 2.70 (4H, t, J=5Hz), 4.30 (2H, t, J=6Hz),
 4.23 (2H, t, J=6Hz), 7.07 (2H, t, J=9Hz), 7.15
 (2H, d, J=6Hz), 7.38 (2H, dd, J=6Hz and 9Hz),
 8.47 (2H, d, J=6Hz)
- (5) 7-(4-Fluorophenyl)-2-methoxycarbamoyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 209-210°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 3.73 (3H, s), 4.07 (2H, t, J=6Hz), 4.26 (2H, t, J=6Hz), 7.07 (2H, t, J=9Hz), 7.18 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.42 (2H, d, J=6Hz)

NMR (DMSO-d₆, δ): 3.13 (2H, m), 3.38 (2H, m), 3.85 (2H, t, J=6Hz), 4.07 (2H, t, J=6Hz), 4.65 (1H, t, J=5Hz), 6.85 (1H, t, J=5Hz), 7.20 (2H, t, J=9Hz), 7.27 (2H, d, J=5Hz), 7.37 (2H, dd, J=6Hz and 9Hz), 8.47 (2H, d, J=5Hz), 8.50 (1H, s)

35

25

Example 13

A mixture of 3-indolylacetic acid (57 mg, 0.325 mmol), 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide (50 mg, 0.325 mmol) and 1-hydroxybenzotriazole (44 mg, 0.325 mmol) in N,N-dimethylformamide (0.6 ml) was stirred for 1 5 hour at ambient temperature. Then to the mixture was added 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine (80 mg, 0.271 mmol) in N,N-dimethylformamide (1 ml). After stirring for 2 hours, the mixture was diluted with water and extracted 10 with ethyl acetate. The organic phase was washed with water and brine, dried over sodium sulfate and concentrated in vacuo. The residue was purified by crystallization from ethyl acetate to give 7-(4-fluorophenyl)-2-(3-indolylacetyl)-8-(pyridin-4-yl)-15 1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (87 mg). mp : 212-214°C NMR (CDCl₃ + CD₃OD, δ): 4.02-4.13 (4H, m), 4.18-4.27 (2H, m), 6.96-7.24 (7H, m), 7.32-7.42 (3H, m), 20 7.58 (1H, d, J=8Hz), 8.37 (2H, d, J=6Hz)

Example 14

25

The following compounds were obtained according to a similar manner to that of Example 13.

(1) 2-tert-Butoxycarbonylaminoacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine

NMR (CDCl₃, δ): 1.45 (9H, s), 4.10-4.20 (2H, m),
4.20-4.35 (4H, m), 5.20-5.30 (1H, m), 6.70 (1H,
br s), 7.05 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz),
7.35 (2H, dd, J=6Hz and 9Hz), 8.45 (2H, d,
J=6Hz)

35 (2) 7-(4-Fluorophenyl)-2-(2-methoxy-2-methylpropionyl)-

```
8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
              [1,2,4]triazine
             mp : 114-116°C
             NMR (CDCl<sub>3</sub>, \delta): 1.50 (6H, s), 3.28 (3H, s),
   5
                   4.20-4.36 (3H, m), 4.64-4.83 (1H, m), 7.03 (2H,
                   t, J=9Hz), 7.10 (2H, d, J=6Hz), 7.42 (2H, d,
                   J=6.9Hz), 8.50-8.56 (3H, m)
             7-(4-Fluorophenyl)-2-[(R)-(methoxy)(phenyl)acetyl]-8-
        (3)
 10
             (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
             [1,2,4]triazine
             : am
                   213-215°C
             NMR (CDCl<sub>3</sub>, \delta): 3.34 (3H, s), 3.70-3.88 (1H, m),
                  4.20-4.30 (2H, m), 4.45-4.58 (1H, m), 5.77 (1H,
 15
                  s), 5.88 (1H, s), 6.98-7.08 (4H, m), 7.27-7.33
                  (5H, m), 7.38 (2H, dd, J=6Hz and 9Hz), 8.56 (2H, m)
                  d, J=6Hz)
       (4) 2-[(Biphenyl-4-yl)acetyl]-7-(4-fluorophenyl)-8-
 20
            (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
            [1,2,4]triazine
            mp: 153°C
            NMR (CDCl<sub>3</sub>, \delta): 3.98 (2H, s), 4.12-4.20 (2H, m),
                  4.20-4.32 (2H, m), 6.04 (1H, s), 7.03 (2H, t,
25
                 J=9Hz), 7.08 (2H, d, J=6Hz), 7.23-7.57 (11H, m),
                 8.50 (2H, d, J=6Hz)
            2-[(2,6-Dichlorophenyl)acetyl]-7-(4-fluorophenyl)-8-
       (5)
            (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
30
            [1,2,4]triazine
            mp : >250°C
           NMR (CDCl<sub>3</sub> + CD<sub>3</sub>OD, \delta): 4.15-4.24 (2H, m),
                 4.24-4.37 (4H, m), 7.06 (2H, t, J=9Hz),
                 7.10-7.33 (5H, m), 7.43 (2H, dd, J=6Hz and 9Hz),
35
                 8.48 (2H, d, J=6Hz)
```

```
(6) 2-(N,N-Dimethylaminoacetyl)-7-(4-flurophenyl)-8-
            (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
            [1,2,4]triazine dihydrochloride
            mp : >250°C
            NMR (DMSO-d_{5}, \delta): 2.82 (6H, s), 4.10 (2H, t,
  5
                 J=5Hz), 4.25 (2H, t, J=5Hz), 4.40 (2H, s), 7.30
                 (2H, t, J=9Hz), 7.47 (2H, dd, J=6Hz and 9Hz),
                 7.79 (2H, d, J=6Hz), 8.70 (2H, d, J=6Hz), 10.12
                 (1H, s)
10
      (7) 7-(4-Fluorophenyl)-2-(phenylthioacetyl)-8-(pyridin-
            4-y1)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-
           triazine hydrochloride
           mp: 235-238°C
15
           NMR (DMSO-d_6, \delta): 3.95-4.20 (6H, m), 7.10-7.40 (7H,
                m), 7.49 (2H, dd, J=6Hz and 9Hz), 7.69 (2H, d,
                J=6Hz), 8.68 (2H, d, J=6Hz), 9.69 (1H, s)
           7-(4-Fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-
      (8)
           tetrahydro-2-[(3-trifluoromethylphenyl)acetyl]-
20
           pyrazolo[5,1-c][1,2,4]triazine hydrochloride
           mp : 254°C (dec.)
           NMR (CDCl<sub>3</sub> + CD<sub>3</sub>OD, \delta): 4.05 (2H, s), 4.17-4.39
                (4H, m), 7.13 (2H, t, J=9Hz), 7.24-7.42 (6H, m),
25
                7.62-7.74 (2H, m), 8.32-8.50 (2H, m)
           2-[(3,4-Dimethoxyphenyl)acetyl]-7-(4-fluorophenyl)-
      (9)
           8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
           [1,2,4]triazine hydrochloride
30
          NMR (CDCl<sub>3</sub>, \delta): 3.73 (6H, s), 3.96 (2H, s),
                4.18-4.26 (4H, m), 6.62 (1H, s), 6.64 (2H, d,
               J=8Hz), 7.13 (2H, t, J=9Hz), 7.37 (2H, dd, J=6Hz
               and 9Hz), 7.70-7.77 (2H, m), 8.10-8.20 (2H, m),
                9.60 (1H, br s)
```

10

15

20

25

```
(10) 2-(Acetylaminoacetyl)-7-(4-fluorophenyl)-8-(pyridin-
       4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-
       triazine hydrochloride
             239-243°C
       NMR (DMSO-d_6, \delta): 1.87 (3H, s), 4.01 (2H, t,
            J=5Hz), 4.12 (2H, d, J=6Hz), 4.20 (2H, t,
            J=5Hz), 7.30 (2H, t, J=9Hz), 7.48 (2H, dd, J=6Hz
            and 9Hz), 7.69 (2H, d, J=6Hz), 8.11 (1H, t,
            J=6Hz), 8.70 (2H, d, J=6Hz), 9.64 (1H, s)
 Example 15
      To a solution of 2-acetyl-7-(4-fluorophenyl)-8-
 (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-
 triazine (59 mg) in tetrahydrofuran was added
 borane-tetrahydrofuran complex (1.0 M solution in
 tetrahydrofuran, 1 ml) dropwise. The solution was stirred
 at ambient temperature for 5 hours and to the solution was
 added dropwise 1N-hydrochloric acid (3 ml). The solution
 was stirred at 80°C for 20 minutes and the tetrahydrofuran
 was evaporated. Then, the aqueous solution was
 neutralized with an aqueous saturated sodium bicarbonate
 solution and the separated oil was extracted with
 dichloromethane.
                   The extract was dried and concentrated
in vacuo. The residue was purified by column
chromatography on silica gel and the obtained oil was
crystallized from ethyl acetate to give
2-ethyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-
tetrahydropyrazolo[5,1-c][1,2,4]triazine (30 ml).
     mp: 144-145°C
     NMR (CDCl<sub>3</sub>, \delta): 1.23 (3H, t, J=7Hz), 2.88 (2H, q,
          J=7Hz), 3.37 (2H, t, J=6Hz), 4.25 (2H, t,
```

J=6Hz), 6.02 (1H, s), 7.04 (2H, t, J=9Hz), 7.22 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz),

8.40 (2H, d, J=6Hz)

35

WO 94/19350 PCT/JP94/00213

Example 16

35

The following compounds were obtained according to a similar manner to that of Example 15.

- 75 **-**

J=8Hz), 7.35-7.55 (4H, m), 8.41 (2H, d, J=6Hz)

- 5 2-(3,4-Dichlorophenyl)methyl-7-(4-fluorophenyl)-8-(1)(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine mp: 188-191°C NMR (CDCl₃, δ): 3.40 (2H, t, J=6Hz), 3.93 (2H, s), 10 4.30 (2H, t, J=6Hz), 5.68 (1H, s), 6.99 (2H, d, J=6Hz), 7.05 (2H, t, J=9Hz), 7.20 (1H, d,
- (2) 7-(4-Fluorophenyl)-2-isobutyl-8-(pyridin-4-yl)-15 1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 159-162°C NMR (CDCl₃, δ): 0.98 (6H, d, J=7Hz), 1.94 (1H, quint, J=7Hz), 2.58 (2H, d, J=7Hz), 3.32 (2H, t, J=6Hz), 4.25 (2H, t, J=6Hz), 5.58 (1H, s), 7.03 20 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.43 (2H,dd, J=6Hz and 9Hz), 8.47 (2H, d, J=6Hz)
- (3) 2-Cyclopropylmethyl-7-(4-fluorophenyl)-8-(pyridin-4yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine 25 mp: 137-139°C NMR (CDCl₃, δ): 0.29 (2H, m), 0.56 (2H, m), 0.98 (1H, m), 2.71 (2H, d, J=7Hz), 3.42 (2H, t,J=6Hz), 4.23 (2H, t, J=6Hz), 5.95 (1H, s), 7.03 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.42 (2H, d)30 dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz)
 - (4) 2-(3,3-Dimethylbutyl)-7-(4-fluorophenyl)-8-(pyridin-4-y1)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine 185°C (dec.)

```
NMR (CDCl<sub>3</sub>, δ): 0.94 (9H, s), 1.50-1.60 (2H, m), 2.75-2.85 (2H, m), 3.35 (2H, t, J=6Hz), 4.25 (2H, t, J=6Hz), 7.02 (2H, t, J=9Hz), 7.10 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hz and 9Hz), 8.48 (2H, d, J=6Hz)
```

(5) 7-(4-Fluorophenyl)-2-neopentyl-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
mp : 174°C (dec.)

NMR (CDCl₃, δ): 1.00 (9H, s), 2.59 (2H, s), 3.30 (2H, t, J=5Hz), 4.25 (2H, t, J=5Hz), 5.70 (1H, s), 7.03 (2H, t, J=9Hz), 7.08 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hz and 9Hz), 8.46 (2H, d, J=6Hz)

15

(6) 2-Cyclohexylmethyl-7-(4-fluorophenyl)-8-(pyridin-4yl)-1,2,3,4-tetrahydrcpyrazolo[5,1-c][1,2,4]triazine
mp : 120-135°C (dec.)

NMR (CDCl₃, δ): 0.84-1.05 (2H, m), 1.13-1.40 (4H, m), 1.54-1.90 (5H, m), 2.60 (2H, d, J=8Hz), 3.29 (2H, t, J=6Hz), 4.24 (2H, t, J=6Hz), 5.56 (1H, s), 7.02 (2H, t, J=9Hz), 7.08 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hz and 9Hz), 8.47 (2H, d, J=6Hz)

25

(7) 2-(2,2-Dimethylbutyl)-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-triazine

mp : 148-151°C (dec.)

NMR (CDCl₃, δ): 0.83 (3H, t, J=8Hz), 0.94 (6H, s), 1.36 (2H, q, J=8Hz), 2.59 (2H, s), 3.28 (2H, t, J=6Hz), 4.25 (2H, t, J=6Hz), 5.67 (1H, s), 7.02 (2H, t, J=9Hz), 7.07 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hz and 9Hz), 8.46 (2H, d, J=6Hz)

Example 17

To a mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (89 mg) and sodium cyanoborohydride (63 mg) in methanol (1 ml) was added acetone (0.1 ml) with ice cooling. The pH of the 5 mixture was adjusted to 3 to 4 with 1N hydrochloric acid and the solution was stirred at 4°C for 30 minutes. Then, the solution was neutralized with an aqueous saturated sodium bicarbonate solution and poured into cold 10 water. The separated oil was extracted with ethyl acetate and the extract was washed with brine, dried and concentrated in vacuo. The residue was crystallized from diethyl ether to give 7-(4-fluorophenyl)-2-isopropyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-15 triazine (75 mg). NMR (CDCl₃, δ): 1.20 (6H, d, J=7Hz), 3.09 (1H, m), 3.42 (2H, t, J=6Hz), 4.21 (2H, t, J=6Hz), 5.62 (1H, s), 7.03 (2H, t, J=9Hz), 7.10 (2H, d,

Example 18

d, J=6Hz)

The following compounds were obtained according to a similar manner to that of Example 17.

J=6Hz), 7.42 (2H, dd, J=6Hz and 9Hz), 8.48 (2H,

25

30

- (1) 2-(Adamantan-2-yl)-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 224°C (dec.)

 NMR (CDCl₃, δ): 1.47-2.18 (14H, m), 2.90 (1H, m), 3.44 (2H, t, J=6Hz), 4.18 (2H, t, J=6Hz), 5.63 (1H, s), 7.03 (2H, t, J=9Hz), 7.08 (2H, d, J=6Hz), 7.44 (2H, dd, J=6Hz and 9Hz), 8.48 (2H, d, J=6Hz)
- 35 (2) 2-Cyclohexyl-7-(4-Fluorophenyl)-8-(pyridin-4-yl)-

- 78 -

15

```
1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
           NMR (CDCl<sub>3</sub>, \delta): 1.10-1.40 (4H, m), 1.55-2.10 (6H,
                 m), 2.73 (1H, m), 3.45 (2H, t, J=6Hz), 4.19 (2H,
                 t, J=6Hz), 5.67 (1H, s), 7.03 (2H, t, J=9Hz),
5
                 7.10 \text{ (2H, d, J=6Hz), } 7.42 \text{ (2H, dd, J=6Hz and }
                 9Hz), 8.48 (2H, d, J=6Hz)
```

- 7-(4-Fluorophenyl)-8-(pyridin-4-yl)-2-(tetrahydro-(3) pyran-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-10 triazine NMR (CDCl₃, δ): 1.50-1.80 (2H, m), 1.85-2.05 (2H, m), 2.98 (1H, m), 3.30-3.50 (4H, m), 3.95-4.10 (2H, m), 4.21 (2H, t, J=6Hz), 5.70 (1H, s), 7.03
 - (4) 2-(1-Acetylpiperidin-4-yl)-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine

dd, J=6Hz and 9Hz), 8.48 (2H, d, J=6Hz)

(2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.41 (2H,

- 20 NMR (CDCl₃, δ): 1.52 (2H, m), 1.99 (2H, m), 2.11 (3H, s), 2.78 (1H, m), 2.98 (1H, m), 3.15 (1H, m), 3.47 (2H, t, J=6Hz), 3.85 (1H, m), 4.22 (2H, t, J=6Hz), 4.51 (1H, m), 5.69 (1H, s), 7.03 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.41 (2H, dd, 25 J=6Hz and 9Hz), 8.47 (2H, d, J=6Hz)
 - (5) 7-(4-Fluorophenyl)-2-(1-methylpiperidin-4-yl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine
- 30 NMR $(CDCl_3:CD_3OD = 9:1, \delta) : 1.50-1.75 (2H, m),$ 1.90-2.15 (4H, m), 2.30 (3H, s), 2.65-3.00 (3H, m), 3.46 (2H, t, J=6Hz), 4.19 (2H, t, J=6Hz), 7.07 (2H, t, J=9Hz), 7.12 (2H, d, J=6Hz), 7.39 (2H, dd, J=6Hz and 9Hz), 8.38 (2H, d, J=6Hz)35

```
(6) 7-(4-Fluorophenyl)-2-(1-methoxycarbonylethyl)-8-
            (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
            [1,2,4]triazine
            mp: 132-134°C
 5
            NMR (CDCl<sub>3</sub>, \delta): 1.50 (3H, d, J=7Hz), 3.27-3.58 (2H,
                 m), 3.78 (3H, s), 3.82 (1H, q, J=7Hz), 4.10-4.40
                 (2H, m), 6.04 (1H, s), 7.03 (2H, t, J=9Hz), 7.10
                 (2H, d, J=6Hz), 7.41 (2H, dd, J=6Hz and 9Hz),
                 8.48 (2H, d, J=6Hz)
10
       (7) 7-(4-Fluorophenyl)-2-(indan-2-yl)-8-(pyridin-4-yl)-
            1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
            mp : 232°C (dec.)
            NMR (CDCl<sub>3</sub>, \delta): 2.99-3.26 (4H, m), 3.48 (2H, t,
15
                 J=6Hz), 3.90 (1H, t, J=8Hz), 4.30 (2H, t,
                 J=6Hz), 5.68 (1H, s), 7.03 (2H, t, J=9Hz), 7.08
                 (2H, d, J=6Hz), 7.15-7.25 (4H, m), 7.41 (2H, dd,
                 J=6Hz and 9Hz), 8.48 (2H, d, J=6Hz)
      (8) 2-[(E)-Cinnamyl]-7-(4-fluorophenyl)-8-(pyridin-4-yl)-
20
            1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
           mp: 178-183°C
           NMR (CDCl<sub>3</sub>, \delta): 3.43 (2H, t, J=6Hz), 3.63 (2H, d,
                 J=6Hz), 4.27 (2H, t, J=6Hz), 5.80 (1H, br s),
25
                 6.27 (1H, td, J=6Hz and 15Hz), 6.60 (1H, d,
                 J=15Hz), 6.98-7.09 (4H, m), 7.27-7.36 (5H, m),
                 7.43 (2H, dd, J=6Hz and 9Hz), 8.40 (2H, d,
                 J=6Hz)
30
           2-(3,3-Dimethyl-1,5-dioxaspiro[5,5]undecan-9-yl)-7-
           (4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydro-
           pyrazolo[5,1-c][1,2,4]triazine
           mp : 186°C (dec.)
           NMR (CDCl<sub>3</sub>, \delta): 0.98 (6H, s), 1.44-1.76 (4H, m),
35
                1.85-1.98 (2H, m), 2.15-2.28 (2H, m), 2.78-2.91
```

(1H, m), 3.46 (2H, t, J=6Hz), 3.52 (4H, d, J=4Hz), 4.20 (2H, t, J=6Hz), 5.60 (1H, s), 7.03 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.41 (2H, dd, J=6Hz and 9Hz), 8.46 (2H, d, J=6Hz)

5

25

Example 19

A mixture of 2-acetoxyacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (75 mg, 0.190 mmol) and an aqueous sodium hydroxide solution (1N, 0.38 ml, 0.380 mmol) in ethanol 10 (1.5 ml) was stirred for 30 minutes at ambient temperature. After dilution of an aqueous saturated ammonium chloride solution, the mixture was extracted with ethyl acetate. The extracts were dried over sodium sulfate, and concentrated in vacuo. 15 The residue was purified by chromatography on silica gel (eluent: dichloromethane/methanol; 50/1~10/1), and the obtained amorphous product was crystallized from diisopropyl ether to give 7-(4-fluorophenyl)-2-hydroxyacetyl-8-(pyridin-4-20 yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (20 mg).

mp : 133°C (dec.)
NMR (DMSO-d₆, δ) : 3.95-4.05 (2H, m), 4.10-4.20 (2H, m), 4.25 (2H, d, J=6Hz), 4.75 (1H, t, J=6Hz),
7.15 (2H, d, J=6Hz), 7.25 (2H, t, J=9Hz), 7.40
(2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz),
8.55 (1H, s)

Example 20

A mixture of 2-(4-acetoxybenzoyl)-7-(4-fluorophenyl)8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (65 mg, 0.142 mmol) and potassium carbonate (20
mg, 0.142 mmol) in methanol (1.3 ml) was stirred for 30
minutes at ambient temperature. The mixture was adjusted
to pH 6 with an aqueous saturated ammonium chloride

solution, and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by chromatography on silica gel

(eluent:dichloromethane/methanol; 30/1~20/1), and the obtained amorphous product was crystallized from diisopropyl ether to give 7-(4-fluorophenyl)-2-(4-hydroxybenzoyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydro-pyrazolo[5,1-c][1,2,4]triazine (37 mg).

10 mp : 222°C (dec.)

NMR (CDCl₃ + CD₃OD, δ): 4.20-4.40 (4H, m), 6.85 (2H, d, J=9Hz), 6.95-7.10 (4H, m), 7.35 (2H, dd, J=6Hz and 9Hz), 7.55 (2H, d, J=9Hz), 8.30 (2H, d, J=6Hz)

15

Example 21

2-tert-Butoxycarbonylaminoacetyl-7-(4-fluorophenyl)8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (50 mg) was dissolved in trifluoroacetic acid
(0.5 ml). The solution was stirred at ambient temperature
for 30 minutes and concentrated in vacuo. The residue was
dissolved in water and the solution was neutralized with
an aqueous saturated sodium bicarbonate solution. The
separated oil was extracted with a mixture of
dichloromethane and ethanol (7:3) and the extract was

dichloromethane and ethanol (7:3) and the extract was washed with water, dried and concentrated in vacuo. The residue was crystallized from ethyl acetate to give 2-aminoacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (30 mg).

30 mp: 208-211°C

NMR (DMSO- d_6 , δ): 3.50 (2H, s), 4.01 (2H, t, J=6Hz), 4.16 (2H, t, J=6Hz), 7.19 (2H, d, J=6Hz), 7.22 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.49 (2H, d, J=6Hz)

10

15

20

Example 22

A mixture of 2-chloroacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (80 mg, 0.215 mmol), morpholine (37 mg, 0.430 mmol), and triethylamine (22 mg, 0.215 mmol) in 1,2-dichloroethane (2 ml) was stirred for 24 hours at ambient temperature. After dilution of dichloromethane, the mixture was washed with an aqueous saturated sodium bicarbonate solution, and brine. The organic phase was dried over sodium sulfate, and concentrated in vacuo. The residue was purified by chromatography on silica gel (eluent:ethyl acetate~ethyl acetate/methanol; 20/1), and the obtained oil was crystallized from diisopropyl ether to give 7-(4-fluorophenyl)-2-morpholinoacetyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (50 mg). NMR (CDCl₃, δ): 2.50 (4H, t, J=4.5Hz), 3.35 (2H,

NMR (CDC1₃, 6): 2.50 (4H, t, J=4.5Hz), 3.35 (2H, s), 3.65 (4H, t, J=4.5Hz), 4.20 (2H, d, J=6Hz), 4.30 (2H, d, J=6Hz), 7.05 (2H, t, J=9Hz), 7.10 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 7.95 (1H, br s), 8.50 (2H, d, J=6Hz)

Example 23

To a mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (118 mg)
and pyridine (64 mg) in N-methyl-1-pyrrolidone (2 ml) was
added phenylacetyl chloride (65 mg) under nitrogen
atmosphere with ice cooling. After stirring for 1 hour at
4°C, the reaction mixture was poured into cold water. The
separated oil was extracted with ethyl acetate and the
extract was washed with brine, dried and concentrated in
vacuo. The residue was purified by column chromatography
on silica gel and the obtain oil was dissolved in 10%
methanolic hydrogen chloride (1 ml). The resulting clear
solution was concentrated in vacuo. The residue was

crystallized from ethyl acetate to give 7-(4fluorophenyl)-2-phenylacetyl-8-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine hydrochloride (130 mg).

5 mp: 208-212°C NMR (DMSO-d₆, δ) 3.87 (2H, s), 4.07 (2H, t, J=5Hz), 4.18 (2H, t, J=5Hz), 7.00-7.20 (5H, m), 7.29 (2H, t, J=9Hz), 7.43 (2H, dd, J=6Hz and 9Hz),7.66 (2H, d, J=6Hz), 8.71 (2H, d, J=6Hz), 9.63 10 (1H, s)

Example 24

The following compounds were obtained according to a similar manner to that of Example 23.

15

- 7-(4-Fluorophenyl)-2-pentanoyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine hydrochloride
 - mp : 175°C (dec.)
- 20 NMR (CD₃Cl, δ): 0.90 (3H, t, J=6Hz), 1.25-1.45 (2H, m), 1.55-1.70 (2H, m), 2.55 (2H, t, J=6Hz), 4.10-4.30 (4H, m), 7.15 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 7.80-7.90 (2H, m),8.10-8.25 (2H, m), 9.60 (1H, br s)

- (2) 7-(4-Fluorophenyl)-2-isobutyryl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine hydrochloride
- NMR (CDCl₃, δ): 1.15 (6H, d, J=7Hz), 3.20-3.40 (1H, 30 m), 4.15-4.30 (4H, m), 7.15 (2H, t, J=9Hz), 7.40(2H, dd, J=6Hz and 9Hz), 7.80-7.90 (2H, m),8.15-8.30 (2H, m), 9.50 (1H, br s)
- 2-(3,4-Dichlorobenzoyl)-7-(4-fluorophenyl)-8-(3) 35 (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-

```
[1,2,4]triazine hydrochloride

NMR (DMSO-d<sub>6</sub>, δ): 4.22 (2H, t, J=6Hz), 4.33 (2H, t, J=6Hz), 7.29 (2H, t, J=9Hz), 7.40-7.60 (4H, m), 7.70 (2H, m), 7.94 (1H, s), 8.63 (2H, d, J=6Hz), 9.99 (1H, s)
```

- (4) 7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-4yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine hydrochloride
- - (5) 7-(4-Fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4tetrahydro-2-(4-trifluoromethylphenyl)glyoxyloylpyrazolo[5,1-c][1,2,4]triazine hydrochloride
 mp : 260-265°C (dec.)
- NMR (CDCl₃ + CD₃OD, δ): 4.32-4.50 (4H, m), 7.13 (2H, t, J=9Hz), 7.30-7.43 (4H, m), 7.79 (2H, d, J=9Hz), 7.93 (2H, d, J=9Hz), 8.22 (2H, d, J=6Hz)

Example 25

- To a mixture of 7-(4-fluorophenyl)-2-isobutyl-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (70 mg, 0.199 mmol) and pyridine (31 mg, 0.398
 mmol) in N-methyl-2-pyrrolidone (1.2 ml) was added acetyl
 chloride (19 mg, 0.239 mmol) in N-methyl-2-pyrrolidone
 (0.3 ml) at ambient termovalue.
- 30 (0.3 ml) at ambient temperature. The reaction mixture was stirred for 1 hour, then aqueous saturated sodium bicarbonate and ethyl acetate were added thereto. The organic phase was separated, and washed with water, brine, and dried over sodium sulfate. The solvent was
- evaporated, and the obtained residue was purified by

column chromatography on silica gel (eluent:dichloromethane/methanol; 100/1~40/1). The fractions containing the object compound were concentrated in vacuo and the obtained oil was crystallized from diisopropyl ether to give 1-acetyl-7-(4-fluorophenyl)-2isobutyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine (57.0 mg).

mp : 194-197°C (dec.)

NMR (CDCl₃, δ): 1.05 (3H, d, J=6Hz), 1.12 (3H, d, 10 J=6Hz), 1.90 (1H, m), 2.25 (3H, s), 2.57-2.69 (1H, m), 2.75-2.86 (1H, m), 3.43-3.70 (2H, m), 4.13-4.24 (1H, m), 4.33-4.50 (1H, m), 6.95-7.05 (4H, m), 7.34 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, dd)d, J=6Hz)

15

5

Example 26

The following compounds were obtained according to a similar manner to that of Example 1.

- 20 8-(2-Chloropyridin-4-yl)-7-(4-fluorophenyl)-1,2,3,4-(1)tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 219-221°C
- NMR (CDCl₃, δ): 3.48 (2H, q, J=5Hz), 3.68 (1H, q, J=5Hz), 4.20 (2H, t, J=5Hz), 5.65 (1H, d, 25 J=5Hz), 6.94 (1H, d, J=6Hz), 7.06 (2H, t, J=9Hz), 7.16 (1H, s), 7.40 (2H, dd, J=6Hz and 9Hz), 8.20 (1H, d, J=6Hz)
- (2) 8-(2-Bromopyridin-4-yl)-7-(4-fluorophenyl)-1,2,3,4-30 tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 212-216°C

NMR (CDCl₃, δ): 3.32-3.44 (2H, m), 3.68 (1H, m), 4.20 (2H, t, J=5Hz), 5.67 (1H, br s), 6.95 (1H, d, J=6Hz), 7.07 (2H, t, J=9Hz), 7.17 (1H, s), 35 7.40 (2H, dd, J=6Hz and 9Hz), 8.21 (1H, d, J=6Hz)

(3) 7-(4-Fluorophenyl)-8-(2-methoxypyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
mp: 205-209°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 3.35 (2H, t, J=6Hz),
3.89 (3H, s), 4.17 (2H, t, J=6Hz), 6.60 (1H, s),
6.68 (1H, d, J=6Hz), 7.05 (2H, t, J=9Hz), 7.42
(2H, dd, J=6Hz and 9Hz), 7.98 (1H, d, J=6Hz)

Example 27

The following compounds were obtained according to similar manners to those of Example 3, 7 and 13.

- (1) 2-Acetyl-8-(2-chloropyridin-4-yl)-7-(4-fluorophenyl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp : 208-209°C
- NMR (CDCl₃, δ): 2.34 (3H, s), 4.13-4.20 (2H, m), 4.20-4.31 (2H, m), 6.30 (1H, br s), 7.00-7.11 (3H, m), 7.24 (1H, s), 7.40 (2H, dd, J=6Hz and 9Hz), 8.23 (1H, d, J=6Hz)
- (2) 8-(2-Chloropyridin-4-yl)-7-(4-fluorophenyl)-2phenylglyoxyloyl-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 NMR (CDCl₃, δ): 4.30 (2H, t, J=5Hz), 4.45 (2H, t,
- J=5Hz), 6.54-6.60 (2H, m), 6.67 (1H, s), 7.03 (2H, t, J=9Hz), 7.30 (2H, m), 7.53 (2H, t, J=9Hz), 7.68 (1H, t, J=9Hz), 7.89-7.95 (3H, m)

- (3) 2-Acetyl-8-(2-bromopyridin-4-yl)-7-(4-fluorophenyl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 210-211°C

 NMR (CDCl₃, δ): 2.35 (3H, s), 4.12-4.32 (4H, m),
 6.30 (1H, br s), 7.00-7.12 (3H, m), 7.23 (1H,
 s), 7.40 (2H, dd, J=6Hz and 9Hz), 8.24 (1H, d,
 J=6Hz)
- (4) 8-(2-Bromopyridin-4-yl)-7-(4-fluorophenyl)-2phenylglyoxyloyl-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine

 NMR (CDCl₃, δ): 4.30 (2H, t, J=5Hz), 4.45 (2H, t,
 J=5Hz), 6.53-6.61 (2H, m), 6.68 (1H, s), 7.02
 (2H, t, J=9Hz), 7.25-7.35 (2H, m), 7.53 (2H, t,
 J=9Hz), 7.66 (1H, t, J=9Hz), 7.88-7.97 (3H, m)
- 20 mp: 231-245°C (dec.)

 NMR (CDCl₃, δ): 3.48 (3H, s), 4.24 (2H, t, J=6Hz),

 4.43 (2H, t, J=6Hz), 6.48 (2H, d, J=6Hz), 6.77

 (1H, s), 6.84 (1H, d, J=9Hz), 7.01 (2H, t,

 J=9Hz), 7.15 (1H, dt, J=2Hz and 9Hz), 7.32 (2H,

 dd, J=6Hz and 9Hz), 7.57 (1H, dt, J=2Hz and

 9Hz), 8.06-8.13 (3H, m)
- (6) 2-Acetyl-7-(4-fluorophenyl)-8-(2-methoxypyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 148-150°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 2.28 (3H, s), 3.91 (3H, s), 4.12 (2H, t, J=6Hz), 4.25 (2H, t, J=6Hz), 6.67 (1H, s), 6.72 (1H, d, J=6Hz), 7.06 (2H, t, J=9Hz), 7.41 (2H, dd, J=6Hz and 9Hz), 8.02 (1H, d, J=6Hz)

```
(7) 7-(4-Fluorophenyl)-8-(2-methoxypyridin-4-yl)-2-
             phenylglyoxyloyl-1,2,3,4-tetrahydropyrazolo[5,1-c]-
             [1,2,4]triazine
             mp: 129-133°C
 5
             NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta) : 3.81 (3H, s), 4.25 (2H,
                  t, J=6Hz), 4.42 (2H, t, J=6Hz), 6.20 (1H, s),
                  6.28 (1H, d, J=6Hz), 7.02 (2H, t, J=9Hz), 7.32
                   (2H, dd, J=6Hz and 9Hz), 7.46 (2H, t, J=8Hz),
                  7.61 (1H, t, J=8Hz), 7.75-7.85 (3H, m)
10
         (8) 2-Acetyl-7-(4-fluorophenyl)-8-(2-fluoropyridin-4-yl)-
             1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
             mp: 204-206°C
             NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta) : 2.28 (3H, s), 4.14 (2H,
                  t, J=6Hz), 4.26 (2H, t, J=6Hz), 7.02 (1H, d,
15
                  J=6Hz), 7.10 (2H, t, J=9Hz), 7.04 (2H, dd, J=6Hz
                  and 9Hz), 8.05 (1H, d, J=6Hz)
         (9) 7-(4-Fluorophenyl)-8-(2-fluoropyridin-4-yl)-2-
20
             phenylglyoxyloyl-1,2,3,4-tetrahydropyrazolo[5,1-c]-
             [1,2,4]triazine
             mp: 238-240°C
             NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta): 4.28 (2H, t, J=6Hz),
                  4.43 (2H, t, J=6Hz), 6.35 (1H, s), 6.60 (1H, d,
25
                  J=6Hz), 7.05 (2H, t, J=9Hz), 7.48 (2H, t,
                  J=8Hz), 7.62 (1H, t, J=8Hz), 7.75-7.90 (3H, m)
        (10) 2-Acetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-
             tetrahydropyrazolo[5,1-c][1,2,4]triazine
30
             hydrochloride
             mp : 262-270°C (dec)
             NMR (CHCl<sub>3</sub>, \delta): 2.29 (3H, s), 4.11-4,27 (4H, m),
                  7.12 \text{ (2H, t, J=9Hz), } 7.40 \text{ (2H, dd, J=6, 9Hz),}
                  7.80 (2H, d, J=6Hz), 8.49 (2H, d, J=6Hz), 9.57
35
                  (1H, br s)
```

15

20

(11) 7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 240.5-242.0°C
NMR (CDCl₃:CD₃OD = 9:1, δ): 4.27 (2H, t, J=6Hz), 4.45 (2H, t, J=6Hz), 6.70 (2H, d, J=6Hz), 7.01 (2H, t, J=9Hz), 7.30 (2H, dd, J=6Hz, 9Hz), 7.47 (2H, t, J=8Hz), 7.63 (1H, t, J=8Hz), 7.81 (2H, d, J=8Hz), 8.18 (2H, d, J=6Hz)

10 Example 28

To a suspension of 7-(4-fluorophenyl)-2phenylglyoxyloyl-8-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine (2.778 g) in a
mixture of ethanol (14 ml) and ethyl acetate (10 ml) was
added conc. sulfuric acid (0.67 g). To the resulting
clear solution was added ethyl acetate (30 ml) and the
solution was stirred at ambient temperature for 4 hours.
The separated solid was collected and recrystallized from
aqueous acetonitrile to give 7-(4-fluorophenyl)-2phenylglyoxyloyl-8-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine sulfate (2.7 g).

mp : 155-157°C NMR (DMSO-d₆, δ) : 4.25 (2H, m), 4.49 (2H, m), 7.12 (2H, d, J=7Hz), 7.15-7.50 (6H, m), 7.50-7.70 (3H, m), 8.56 (2H, d, J=7Hz), 9.43

(1H, s)

30

CLAIMS

1. A compound of the formula :

5

(in which A is lower alkylene), and R⁵ is hydrogen or lower alkyl, and a pharmaceutically acceptable salt thereof.

	2.	A compound of claim 1, wherein
		R^1 is phenyl which may have 1 to 3 suitable
		substituent(s), or
		pyridyl which may have 1 to 3 suitable
5		<pre>substituent(s),</pre>
		R^2 is phenyl which may have 1 to 3 suitable
		substituent(s) or
		pyridyl which may have 1 to 3 suitable
		<pre>substituent(s),</pre>
10		R ³ is hydrogen or lower alkanoyl,
		R4 is hydrogen; lower alkyl; cyclo(lower)alkyl;
		<pre>cyclo(lower)alkyl-(lower)alkyl;</pre>
		<pre>carboxy(lower)alkyl;</pre>
- -		esterified carboxy(lower)alkyl;
15		phenyl(lower)alkyl which may have 1 to 3
		<pre>suitable substituent(s); adamantanyl;</pre>
		phenyl(lower)alkenyl; tetrahydropyranyl,
		piperidyl or dioxaspire adecanyl, each of which
20		may have 1 to 3 substituent(s) selected from the
20		group consisting of lower alkyl and acyl; indanyl;
		lower alkanoyl which may have 1 to 3 suitable
		<pre>substituent(s); lower alkoxycarbonyl;</pre>
		<pre>lower alkoxyglyoxyloyl; lower alkylsulfonyl;</pre>
25		cyclo(lower)alkylcarbonyl; aroyl which may have
23		<pre>1 to 3 suitable substituent(s);</pre>
		ar(lower)alkanoyl which may have 1 to 3 suitable
		<pre>substituent(s); ar(lower)alkenoyl;</pre>
		arylthio(lower)alkanoyl; arylcarbamoyl;
30		aryl-thiocarbamoyl; arylglyoxyloyl which may
		have 1 to 3 suitable substituent(s);
		carbamoyl which may have one or two suitable
		substituent(s) selected from the group
		consisting of lower alkyl, hydroxy(lower)alkyl,
35		protected hydroxy(lower)alkyl, lower alkoxy and
		cyclo(lower)alkyl; heterocycliccarbonyl;

heterocyclic(lower)alkanoyl; or heterocycliccarbamoyl.

3. A compound of claim 2, wherein R is phenyl which may have 1 to 3 substituent(s) 5 selected from the group consisting of lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, mono(or di or tri)halo(lower)alkyl, halogen, carboxy, protected carboxy, hydroxy, 10 protected hydroxy, aryl, ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, di(lower)alkylamino, hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, nitro, acyl, 15 cyano, mercapto, lower alkylthio and imino; or pyridyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, mono(or di or tri)halo(lower)alkyl, 20 halogen, carboxy, protected carboxy, hydroxy, protected hydroxy, aryl, ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, di(lower)alkylamino, hydroxy(lower)alkyl, 25 protected hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto, lower alkylthio and imino, R² is phenyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, lower alkenyl, lower 30 alkynyl, mono(or di or tri)halo(lower)alkyl, halogen, carboxy, protected carboxy, hydroxy, protected hydroxy, aryl, ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, 35 di(lower)alkylamino, hydroxy(lower)alkyl,

I

	protogted budgets (I amount and I amount a second a second and I amount a second
	protected hydroxy(lower)alkyl, nitro, acyl,
	cyano, mercapto, lower alkylthio and imino; or
	<pre>pyridyl which may have 1 to 3 substituent(s)</pre>
_	selected from the group consisting of lower
5	alkyl, lower alkoxy, lower alkenyl, lower
	alkynyl, mono(or di or tri)halo(lower)alkyl,
	halogen, carboxy, protected carboxy, hydroxy,
	<pre>protected hydroxy, aryl, ar(lower)alkyl,</pre>
	carboxy(lower)alkyl, protected
10	carboxy(lower)alkyl, amino, protected amino,
	<pre>di(lower)alkylamino, hydroxy(lower)alkyl,</pre>
	protected hydroxy(lower)alkyl, nitro, acyl,
	cyano, mercapto, lower alkylthio and imino,
	R4 is hydrogen; lower alkyl; cyclo(lower)alkyl;
15	cyclo(lower)alkyl-(lower)alkyl;
	carboxy(lower)alkyl;
	lower alkoxycarbonyl(lower)alkyl;
	phenyl(lower)alkyl which may have 1 to 3
	substituent(s) selected from the group
20	consisting of halogen, lower alkyl, lower
	alkoxy, lower alkenyl, lower alkynyl, mono(or di
	or tri)halo(lower)alkyl and di(lower)alkylamino;
	adamantanyl; phenyl(lower)alkenyl;
25	tetrahydropyranyl, piperidyl or
23	dioxaspiroundecanyl, each of which may have one
	or two substituent(s) selected from the group
	consisting of lower alkyl and lower alkanoyl;
	indanyl; lower alkanoyl which may have 1 to 3
20	substituent(s) selected from the group
30	consisting of carboxy, protected carboxy, lower
	alkoxy, halogen, protected amino, amino,
	hydroxy, protected hydroxy and
	<pre>di(lower)alkylamino; lower alkoxycarbonyl;</pre>
	<pre>lower alkoxyglyoxyloyl; lower alkylsulfonyl;</pre>
35	cyclo(lower)alkylcarbonyl; benzoyl which may

	have 1 to 3 substituent(s) selected from the
	group consisting of mono(or di or
	tri)halo(lower)alkyl, halogen, protected hydroxy
	and hydroxy; phenyl(lower)alkanoyl which may
5	have 1 to 3 substituent(s) selected from the
	group consisting of lower alkoxy, aryl, halogen
	and mono(or di or tri)halo(lower)alkyl;
	<pre>phenyl(lower)alkenoyl;</pre>
	<pre>phenylthio(lower)alkanoyl; phenylcarbamoyl;</pre>
10	phenyl-thiocarbamoyl; phenylglyoxyloyl which may
	have 1 to 3 substituent(s) selected from the
	group consisting of mono(or di or
	tri)halo(lower)alkyl and lower alkoxy; carbamoyl
	which may have one or two suitable
15	substituent(s) selected from the group
	consisting of lower alkyl, hydroxy(lower)alkyl,
	acyloxy(lower)alkyl, lower alkoxy and
	cyclo(lower)alkyl; morpholinylcarbonyl;
	<pre>indolyl(lower)alkanoyl;</pre>
20	morpholinyl(lower)alkanoyl; or
	piperidylcarbamoyl.
	4. A compound of claim 3, wherein
25	R ¹ is halophenyl or pyridyl,
25	R ² is halophenyl, pyridyl, halopyridyl or lower
	alkoxypyridyl,
	R4 is hydrogen; lower alkyl; cyclo(lower)alkyl;
	cyclo(lower)alkyl-(lower)alkyl;
3.0	<pre>carboxy(lower)alkyl;</pre>
30	<pre>lower alkoxycarbonyl(lower)alkyl; mono(or</pre>
	<pre>di)halophenyl(lower)alkyl; adamantanyl;</pre>
	<pre>phenyl(lower)alkenyl; tetrahydropyranyl;</pre>
	<pre>lower alkylpiperidyl; lower alkanoylpiperidyl;</pre>
25	<pre>di(lower)alkyldioxaspiroundecanyl; indanyl;</pre>
35	lower alkanoyl which may have a substituent

		selected from the group consisting of carboxy, esterified carboxy, lower alkoxy, halogen, lower alkanoylamino, amino,
5		hydroxy, acyloxy and di(lower)alkylamino; lower alkoxycarbonyl; lower alkoxyglyoxyloyl; lower
		alkylsulfonyl; cyclo(lower)alkylcarbonyl;
		benzoyl which may have one or two substituent(s)
		selected from the group consisting of
10		trihalo(lower)alkyl, halogen, acyloxy and
		hydroxy; phenyl(lower)alkanoyl which may have
		one or two substituent(s) selected from the
		group consisting of lower alkoxy, phenyl,
		halogen and trihalo(lower)alkyl;
15		<pre>phenyl(lower)alkenoyl;</pre>
13		<pre>phenylthio(lower)alkanoyl; phenylcarbamoyl;</pre>
		phenyl-thiocarbamoyl; phenylglyoxyloyl which may
		have a substituent selected from the group
		consisting of trihalo(lower)alkyl and lower
20		alkoxy; carbamoyl which may have one or two
20		suitable substituent(s) selected from the group
		consisting of lower alkyl, hydroxy(lower)alkyl,
		acyloxy(lower)alkyl, lower alkoxy and
		<pre>cyclo(lower)alkyl; morpholinylcarbonyl;</pre>
		<pre>indoly1(lower)alkanoyl;</pre>
25		morpholinyl(lower)alkanoyl; or
		piperidylcarbamoyl.
	5.	A compound of claim 4, wherein
		R ⁴ is hydrogen; lower alkyl; cyclo(lower)alkyl;
30		cyclo(lower)alkyl-(lower)alkyl;
		Carboxx(lover)alkyl-lower)alkyl;

R⁴ is hydrogen; lower alkyl; cyclo(lower)alkyl;

cyclo(lower)alkyl-(lower)alkyl;

carboxy(lower)alkyl; lower alkoxycarbonyl(lower)alkyl; mono(or di)halophenyl(lower)alkyl; adamantanyl; phenyl(lower)alkenyl;
tetrahydropyranyl; lower alkylpiperidyl;
lower alkanoylpiperidyl;

		<pre>di(lower)alkyldioxaspiroundecanyl; indanyl;</pre>
		lower alkanoyl which may have a substituent
		selected from the group consisting of carboxy,
		esterified carboxy, lower alkoxy, halogen, lower
5		alkoxycarbonylamino, lower alkanoylamino, amino,
		hydroxy, lower alkanoyloxy, cyclo(lower)-
		alkylcarbonyloxy and di(lower)alkylamino;
		lower alkoxycarbonyl; lower alkoxyglyoxyloyl;
		lower alkylsulfonyl; cyclo(lower)alkylcarbonyl;
10		benzoyl which may have one or two substituent(s)
		selected from the group consisting of
		trihalo(lower)alkyl, halogen, lower alkanoyloxy
		and hydroxy; phenyl(lower)alkanoyl which may
		have one or two substituent(s) selected from the
15		group consisting of lower alkoxy, phenyl,
		halogen and trihalo(lower)alkyl;
		<pre>phenyl(lower)alkenoyl;</pre>
		<pre>phenylthio(lower)alkanoyl; phenylcarbamoyl;</pre>
		phenyl-thiocarbamoyl; phenylglyoxyloyl which may
20		have a substituent selected from the group
		consisting of trihalo(lower)alkyl and lower
		alkoxy; carbamoyl which may have one or two
		suitable substituent(s) selected from the group
		consisting of lower alkyl, hydroxy(lower)alkyl,
25		acyloxy(lower)alkyl, lower alkoxy and
		cyclo(lower)alkyl; morpholinylcarbonyl;
		<pre>indolyl(lower)alkanoyl;</pre>
		<pre>morpholinyl(lower)alkanoyl; or</pre>
		piperidylcarbamoyl.
30		
	6.	A compound of claim 5, wherein

R compound of class R is halophenyl, R is pyridyl, R is hydrogen, ${\ensuremath{\mathsf{R}}}^4$ is phenylglyoxyloyl, and R⁵ is hydrogen.

7. A compound of claim 6, which is selected from the group consisting of

5

- (1) 7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-4yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine,
- (2) 7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine hydrochloride, and
- (3) 7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine sulfate.
 - 8. A process for preparing a compound of the formula:

20

 $\begin{array}{c|c}
R^1 & N & \\
N &$

25

30

wherein R¹ is aryl which may have suitable
substituent(s) or heterocyclic group
which may have suitable substituent(s),
R² is aryl which may have suitable
substituent(s) or heterocyclic group
which may have suitable substituent(s),
R³ is hydrogen or acyl,
R⁴ is hydrogen, lower alkyl,
cyclo(lower)alkyl,
cyclo(lower)alkyl,

carboxy(lower)alkyl, protected
carboxy(lower)alkyl, ar(lower)alkyl
which may have suitable substituent(s),
ar(lower)alkenyl, bridged
tricyclicalkyl, heterocyclic group
which may have suitable
substituent(s), acyl, or a group of the
formula:

10

15

5

(in which A is lower alkylene), and \mathbb{R}^5 is hydrogen or lower alkyl, or a salt thereof, which comprises

(1) subjecting a compound of the formula:

20

wherein R^1 , R^2 and R^5 are each as defined above, or a salt thereof to reduction reaction to give a compound of the formula :

30

$$\begin{array}{c|c}
R^1 & N & \\
N &$$

wherein ${\mbox{R}}^1$, ${\mbox{R}}^2$ and ${\mbox{R}}^5$ are each as defined above, or a salt thereof, or

(2) subjecting a compound of the formula:

5

$$R^{1}$$
 N
 N
 R^{2}
 $N - N$
 R^{3}
 $N - N$

10

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, or a salt thereof to acylation reaction to give a compound of the formula:

20

15

25

wherein ${\bf R}^1$, ${\bf R}^2$, ${\bf R}^3$ and ${\bf R}^5$ are each as defined above, and ${\bf R}^4_a$ is acyl, or a salt thereof, or

30

(3) subjecting a compound of the formula:

wherein R^1 , R^2 , R^3 and R^5 are each as defined above,

10

 R^6 is hydrogen, C_1-C_5 alkyl, cyclo(lower)alkyl, cyclo(lower)alkyl- (C_1-C_5) alkyl, aryl which may have suitable substituent(s) or $ar(C_1-C_5)$ alkyl which may have suitable substituent(s),

15

or a salt thereof to reduction reaction to give a compound of the formula :

20

25

wherein R^1 , R^2 , R^3 , R^5 and R^6 are each as defined above,

or a salt thereof, or

30

(4) subjecting a compound of the formula:

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, x^{1-} is anion, and

a group of the formula :

cyclo(lower)alkyl-(lower)alkyl,
carboxy(lower)alkyl, protected
carboxy(lower)alkyl, ar(lower)alkyl which
may have suitable substituent(s),
ar(lower)alkenyl, bridged tricyclicalkyl,
heterocyclic group which may have suitable

substituent(s),
or a group of the formula :

(in which A is lower alkylene),
or a salt thereof to reduction reaction to give a
compound of the formula:

WO 94/19350

5

15

5

wherein R^1 , R^2 , R^3 , R^5 and a group of the formula : R^7 are each as defined above,

15

(5) subjecting a compound of the formula:

or a salt thereof, or

20

$$\begin{array}{c|c}
R^1 & N & \\
N & N & \\
N & N & \\
N & N & \\
R^3 & R_b^4
\end{array}$$

25

30

35

wherein R^1 , R^2 , R^3 and R^5 are each as defined above,

 $R_{
m b}^4$ is acyl having protected hydroxy, or a salt thereof to elimination reaction of the hydroxy protective group to give a compound of the

formula:

25

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and $R_C^4 \text{ is acyl having hydroxy,}$ or a salt thereof, or

(6) subjecting a compound of the formula:

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and R_d^4 is acyl having protected amino, or a salt thereof to elimination reaction of the

or a salt thereof to elimination reaction of the amino protective group to give a compound of the formula:

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and R_e^4 is acyl having amino, or a salt thereof, or

5

(7) reacting a compound of the formula:

15

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and

R_f is acyl having a leaving group, or a salt thereof with a compound of the formula:

20

wherein -N is N-containing heterocyclic group, or a salt thereof to give a compound of the formula:

25

$$\begin{array}{c|c}
R^1 & N & \\
N & N & \\
N & N & R^5
\end{array}$$

30

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and

- R_g^4 is acyl having N-containing heterocyclic group, or salt thereof.
- 9. A pharmaceutical composition which comprises, as an active ingredient, a compound of claim 1 or a pharmaceutically acceptable salt thereof in admixture with pharmaceutically acceptable carriers.
- 10. A use of a compound of claim 1 or a pharmaceutically
 10 acceptable salt thereof as an inhibitor on the
 production of Interleukin-1 (IL-1) and an inhibitor
 on the production of tumor necrosis factor (TNF).
- 11. A method for the prophylactic or therapeutic

 treatment of Interleukin-1 (IL-1) and tumor necrosis
 factor (TNF) mediated diseases which comprises
 administering a compound of claim 1 or a
 pharmaceutically acceptable salt thereof to human or
 animals.
 - 12. A process for preparing a pharmaceutical composition which comprises admixing a compound of claim 1 or a pharmaceutically acceptable salt thereof with a pharmaceutically acceptable carrier.

20

PCT/JP 94/00213

A. CLASSI IPC 5	CO7D487/04 A61K31/53 //(CO7D4	87/04,253:00,231:00)	
According to	o International Patent Classification (IPC) or to both national classifi	ication and IDC	
	SEARCHED	Caudi and IPC	
Minimum d IPC 5	ocumentation searched (classification system followed by classification CO7D A61K	on symbols)	·
Documentat	ion searched other than minimum documentation to the extent that s	uch documents are included in the fields a	earched
Electronic d	ata base consulted during the international search (name of data base	e and, where practical, search terms used)	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.
A	WO,A,92 12154 (FUJISAWA) 23 July see claims 1,7	1992	1,9
P,A	EP,A,O 531 901 (FUJISAWA) 17 Marc see claims 1,9	1,9	
Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
'A' docum consist 'E' earlier filing 'L' docum which citatic 'O' docum other 'P' docum later to	nent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international	"T" later document published after the int or priority date and not in conflict we cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the dearnot be considered to involve an indocument of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combined with one or ments, such combination being obvious in the art. "&" document member of the same patern Date of mailing of the international second	ith the application but heory underlying the claimed invention to econsidered to becoment is taken alone claimed invention anyentive step when the hore other such document to a person skilled to family earch report
2	28 April 1994	- 9, 05, 94	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Alfaro Faus, I	

emation on patent family members

PCT/JP 94/00213

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9212154	23-07-92	JP-T-	6502178	10-03-94
EP-A-0531901	17-03-93	AU-A-	2280592	11-03-93