

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № __5__

Название: <u>Исследование регистров</u>

Дисциплина: Схемотехника

Студент	ИУ6-52Б (Группа)	(Подпись, дата)	И.С. Марчук (И.О. Фамилия)
Преподаватель		(Подпись, дата)	Т.А.Ким (И.О. Фамилия)

Цель работы: изучение принципов построения регистров сдвига, способов преобразования параллельного кода в последовательный и обратно, сборка схем регистров сдвига и их экспериментальное исследование.

Вариант 8 (01101010)

Ход работы

1. Исследование регистра сдвига:

составить и собрать схему пятиразрядного регистра сдвига на синхронных
D-триггерах с динамическим управлением записью, организовав сначала соединения триггеров для сдвига информации вправо;

Составим схему пятиразрядного регистра сдвига вправо (рисунок 1).

Рисунок 1 - Пятиразрядный регистр сдвига вправо Проанализируем схемы, составив ее таблицу переходов (таблица 1).

Таблица 1 - таблица переходов регистра

		1 ' 1	1			
D	C	Q_1	Q_2	Q_3	Q_4	Q_5
X	0	0	0	0	0	0
1	1	1	0	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	0
0	0	0	1	0	0	0
0	1	0	0	1	0	0
0	0	0	0	1	0	0
0	1	0	0	0	1	0

Продолжение таблицы 1

0	0	0	0	0	1	0
0	1	0	0	0	0	1
0	0	0	0	0	0	1
0	1	0	0	0	0	0

Как видно из таблицы 1, рассматриваемый регистр при переходе синхросигнала из 0 в 1 записывает в левый разряд входное значение, а остальные значения сдвигаются вправо, значение крайнего правого.

- соединить прямой выход пятого разряда Q (нумерация слева направо) с входом D триггера первого разряда регистра (циклический режим);

Внеся данное изменение в схемы, мы создали регистр, работающий в циклическом режиме (рисунок 2).

Рисунок 2 - Регистр сдвига вправо в циклическом режиме

Проанализируем работу схемы с помощью таблицы 2.

Таблица 2 - таблица переходов регистра

D	С	Q_1	Q_2	Q_3	Q_4	Q_5
X	0	0	0	0	0	0
1	1	1	0	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	0
0	0	0	1	0	0	0
0	1	0	0	1	0	0

Продолжение таблицы 2

0	0	0	0	1	0	0
0	1	0	0	0	1	0
0	0	0	0	0	1	0
0	1	0	0	0	0	1
0	0	0	0	0	0	1
0	1	1	0	0	0	0

Как видно из таблицы 2, данный регистр работает аналогично первому, но при очередном сдвиге содержимое крайнего правого разряда циклически перенесется в крайний левый.

проверить работу регистров сдвига влево в статическом и динамическом режимах;

Составим схему регистра сдвига влево (рисунок3).

Рисунок 3 - Регистр сдвига влево

Проанализируем работу регистра в статическом режиме с помощью таблицы 3.

Таблица 3 - таблица переходов регистра

D	C	Q_1	\mathbf{Q}_2	Q_3	Q_4	Q_5
X	0	0	0	0	0	0
1	1	0	0	0	0	1
0	0	0	0	0	0	1
0	1	0	0	0	1	0

Продолжение таблицы 3

0	0	0	0	0	1	0
0	1	0	0	1	0	0
0	0	0	0	1	0	0
0	1	0	1	0	0	0
0	0	0	1	0	0	0
0	1	1	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0

Как видно из таблицы 3, регистр сдвига влево при очередном переходе синхросигнала из 0 в 1 записывает входное значение в правый разряд, а значения остальных разрядов сдвигаются влево.

Составим схему для анализа работы регистра сдвига влево в динамическом режиме (рисунок 4). Проанализируем ее на основе временной диаграммы (рисунок 5).

Рисунок 4 - Регистр сдвига влево в динамическом режиме

Рисунок 5 - Временная диаграмма сигналов

Результаты временной диаграммы подтверждают истинность выводов, сформулированных при анализе работы регистра в статическом режиме.

 повторить ознакомление с регистром сдвига, соединив инверсный выход пятого разряда с входом D триггера первого разряда

Составим описанную схему (рисунок 6) и проанализируем ее с помощью временной диаграммы (рисунок 7).

Рисунок 6 - Схема пятиразрядного регистра сдвига влево с инверсией

Как видно из временной диаграммы, в таком регистре изначально записанные данные зацикливаются, при этом инвертируясь при каждом цикле.

- 2. Исследование универсального регистра на ИС К555ИР11(74LS194):
 - собрать схему 8-разрядного регистра сдвига;
 - провести исследование режимов работы универсального регистра в статическом и динамическом режимах.

Примечание: ключи инвертированы относительно стандартного положения. Function Table

	Inputs									Out	puts		
Clear	Mo	de	Clock	Se	rial		Par	allel		QA	QB	Qc	QD
Clear	S1	S0	CIOCK	Left	Right	Α	В	С	D	⊸ A	ΨB		⊸ D
L	Х	Х	X	X	X	Х	Х	Х	Х	L	L	L	L
Н	X	Х	L	×	X	X	Х	Х	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{DO}
н	н	Н	†	X	X	а	b	С	d	а	b	С	d
н	L	Н	↑	X	н	Х	X	X	Х	Н	Q_{An}	Q _{Bn}	Q _{Cn}
н	L	Н	↑	X	L	Х	X	X	Х	L	Q_{An}	Q _{Bn}	Q _{Cn}
н	н	L	↑	н	X	X	X	X	Х	Q_{Bn}	Q _{Cn}	Q_{Dn}	Н
н	н	L	†	L	X	X	Х	Х	X	Q_{Bn}	Q _{Cn}	Q_{Dn}	L
Н	L	L	Х	Х	Х	Х	Х	Х	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{DO}

Рисунок 8 – Отрывок datasheet на микросхему 74LS194

Составим схему 8-разрядного регистра сдвига (рисунок 8). Проверим работу регистра в режиме параллельного ввода данных (в статическом режиме). Для этого выставим соответствующие входные значения и S_0 =1, S_1 =1. Убедимся, что код записан в регистр с помощью светодиодов.

Рисунок 9 - схема 8-разрядного регистра сдвига

Проверим работу регистра в режиме сдвига вправо (S_0 =1, S_1 =0, рисунок 9) и влево (S_0 =0, S_1 =1, рисунок 10).

Рисунок 10 - временные диаграммы при сдвиге вправо

Рисунок 11 - временные диаграммы при сдвиге влево

Данные на временных диаграммах аналогичны данным, полученным при анализе регистров сдвига вправо и влево в статическом режиме в первой части лабораторной работы.

3. Определить по временным диаграммам параметры быстродействия от входа С до выходов регистров и максимальную частоту сигналов сдвига.

Измерим время задержки при циклическом сдвиге вправо (рисунок 11).

Рисунок 12 - определение времени задержки

Как видно из временной диаграммы $t_{\rm вр. 3. p. cq} = 20.9 \ \rm hc.$ Расчитаем максимальную частоту срабатывания.

$$f_{max} = \frac{1}{\mathsf{t}_{{}_{\mathrm{Bp.3.p.cq}}}} = 47846889,952\Gamma$$
ц ~ 47МГц

Вывод: Я изучил внутреннее устройство регистров сдвига, а также построил схему, содержащую универсальные регистры, благодаря чему, посчитал максимальную частоту их срабатывания.