Training Binarized NN with MaxSAT

Knowledge and Representation Learning

Anna Putina¹

¹Università degli Studi di Padova

February, 2025

- Introduction
- Data Generation
- SAT Encoding
- Constraints
- Complexity Analysis
- Results

- Introduction
- Data Generation
- SAT Encoding
- 4 Constraints
- Complexity Analysis
- Results

Binarized Neural Networks

- Neural networks with binary ({-1,1}) inputs, outputs, and weights.
- The goal is to find the set of weights that maximize the correct predictions of the net.

Figure 1. Binarized NN Structure

Objectives

Fit a binarized neural network using MaxSAT:

- Implement a method to encode a binarized neural network layer with *m* inputs and *n* outputs in Max-SAT.
- Use this method to encode an entire BNN with multiple stacked layers in Max-SAT.
- Oefine a training approach for the BNN using Max-SAT.
- Generate train/test data for three binary functions (5 inputs, 5 outputs) and evaluate different network configurations.

- Introduction
- Data Generation
- SAT Encoding
- 4 Constraints
- Complexity Analysis
- 6 Results

Dataset Creation

- The dataset consists of all possible binary input combinations of size N=5, where each input is either -1 or 1.
- The outputs are generated using different logical functions, allowing for varying levels of complexity.

Logical Functions

- Three different logical functions are defined. Each function uses basic logical operations (AND, OR, XOR, NOT).
- Nested conditions that simulate real-world nonlinear relationships. The functions are designed to test the ability of the BNN to approximate logical structures.

Logical Functions Example

$$\mathsf{logical_function_1}(x) = \left\{ \begin{array}{ll} (x_3, & x_1 \lor x_2, & x_0, & \neg x_3, & x_3 \land x_4) \end{array} \right\}$$

$$\mathsf{logical_function_2}(x) = \left\{ \begin{array}{c} (x_0 \wedge x_1, \quad x_2 \vee x_3, \\ (x_2 \wedge \neg x_3) \vee (\neg x_2 \wedge x_3), \quad \neg x_3, \\ (x_4 \wedge x_0) \vee x_1) \end{array} \right\}$$

$$\mathsf{logical_function_3}(x) = \left\{ \begin{array}{l} ((x_0 \land x_1) \lor ((x_2 \land \neg x_3) \lor (\neg x_2 \land x_3))), \\ (x_1 \lor x_2) \land (\neg x_3 \lor x_4), \\ x_0 \lor (x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land \neg x_2 \land x_3), \\ (x_3 \land x_4) \lor (\neg x_0 \land \neg x_1) \lor (x_0 \land x_1), \\ ((x_2 \land x_3) \lor (x_4 \land \neg x_0) \lor (\neg x_4 \land x_0)) \land x_1 \end{array} \right\}$$

- Introduction
- Data Generation
- SAT Encoding
- 4 Constraints
- Complexity Analysis
- Results

Indexing Scheme

- A single-layer BNN consists of:
 - N input neurons
 - M output neurons
 - ► A weight matrix W of shape (N, M)
- A multi-layer BNN consists of:
 - N input neurons
 - H hidden neurons
 - M output neurons
 - ► Two weight matrices:
 - ★ W_1 of shape (N, H) (input to hidden)
 - * W_2 of shape (H, M) (hidden to output)
- We assign unique indices to neurons and weights to avoid overlap in MaxSAT.

General SAT Indexing Formula

SAT Indexing Function

$$SAT_{index}(i, n, N, offset) = offset + i \cdot N + n + 1$$

- *i* Current index (e.g., training sample).
- n Neuron or weight index in a layer.
- N Number of elements in the layer.
- offset Used to distinguish different sections.

Binarized NN MaxSAT Anna Putina February, 2025 12 / 26

Encoding Input Neurons

Input Encoding Formula

$$x_{\mathsf{enc}}(i, n) = \mathsf{SAT_index}(i, n, N, 0) = i \cdot N + n + 1$$

- N Number of input neurons.
- *n* Index of an input neuron.
- i Index of a training sample.

SAT Index for First Layer Weights

Formula

$$w_{1enc}(i, h) = SAT_{index}(n, h, H, train_{size} \times N) =$$

$$train_{size} \times N + (n \times H) + h + 1$$

- train_size Number of training samples.
- *N* Number of input neurons.
- H Number of hidden neurons.
- *n* Index of an input neuron.
- h Index of a hidden neuron.

SAT Index for Second Layer Weights

Formula

$$w_{2\mathsf{enc}}(h,m) = \mathsf{SAT_index}(h,m,M,\mathsf{train_size} \times N + N \times H) =$$

$$\mathsf{train_size} \times N + (N \times H) + (h \times M) + m + 1$$

- train_size Number of training samples.
- N Number of input neurons.
- H Number of hidden neurons.
- h Index of a hidden neuron.
- *M* Number of output neurons.
- *m* Index of an output neuron.

- Introduction
- Data Generation
- SAT Encoding
- Constraints
- Complexity Analysis
- 6 Results

Hard Constraints in MaxSAT

- Hard constraints are derived directly from the training data.
- Each input variable $x_i^{(n)}$ is assigned a unique SAT index.
- A constraint holds True when $x_i^{(j)} = 1$ and False when $x_i^{(j)} = -1$.

Activation Function Transformation

- Activation function is sign $(\sum x_i w_i)$
- We use use the majority rule:

$$\{\#x_iw_i>0\} > \{\#x_iw_i<0\}$$

• $x, w \in \{-1, 1\}$, thus $x_i w_i$ is equivalent to $x_i \equiv w_i$.

" $x_i \equiv w_i$ for at least more than half the i's."

 This leads to the soft constraints: penalizing for misclassification.

Activation Function as a logic formula

• Example for i = 1, 2, 3 for the postive output neuron.

$$(\neg x_1 \lor w_1) \land (\neg w_1 \lor x_1) \land (\neg x_2 \lor w_2) \land (\neg w_2 \lor x_2)$$

$$\lor$$

$$(\neg x_1 \lor w_1) \land (\neg w_1 \lor x_1) \land (\neg x_3 \lor w_3) \land (\neg w_3 \lor x_3)$$

$$\lor$$

$$(\neg x_2 \lor w_2) \land (\neg w_2 \lor x_2) \land (\neg x_3 \lor w_3) \land (\neg w_3 \lor x_3)$$

Università degli Studi di Padova

Activation Function in CNF

After transformation to CNF:

$$(x_{1} \lor x_{2} \lor \neg w_{1} \lor \neg w_{2}) \land (x_{1} \lor \neg x_{2} \lor \neg w_{1} \lor w_{2}) \land$$

$$(\neg x_{1} \lor x_{2} \lor w_{1} \lor \neg w_{2}) \land (\neg x_{1} \lor \neg x_{2} \lor w_{1} \lor w_{2})$$

$$\land$$

$$(x_{1} \lor x_{3} \lor \neg w_{1} \lor \neg w_{3}) \land (x_{1} \lor \neg x_{3} \lor \neg w_{1} \lor w_{3}) \land$$

$$(\neg x_{1} \lor x_{3} \lor w_{1} \lor \neg w_{3}) \land (\neg x_{1} \lor \neg x_{3} \lor w_{1} \lor w_{3})$$

$$\land$$

$$(x_{2} \lor x_{3} \lor \neg w_{2} \lor \neg w_{3}) \land (x_{2} \lor \neg x_{3} \lor \neg w_{2} \lor w_{3}) \land$$

$$(\neg x_{2} \lor x_{3} \lor w_{2} \lor \neg w_{3}) \land (\neg x_{2} \lor \neg x_{3} \lor w_{2} \lor w_{3})$$

DI PADOVA

- Introduction
- Data Generation
- SAT Encoding
- 4 Constraints
- Complexity Analysis
- Results

Computational Complexity with Hidden Layers

- Introducing a hidden layer significantly increases computational complexity.
- In a single-layer network, outputs are determined directly from input neurons and their corresponding weights.
- With a hidden layer, the output depends on:
 - ► The activation of hidden neurons, influenced by input values and weights w¹.
 - ▶ The combination of hidden neurons and their connections to output neurons via weights w^2 .
- This leads to exponential growth in the number of constraints required for encoding in CNF.

Computational Complexity Example

In the implementation case:

- With N = 5 input neurons, M = 5 output neurons and train_size = 22 training samples we have 8800 soft constraints.
- With N = 5 input neurons, H = 3 hidden neurons, M = 3 output neurons (the situation with 5 outputs is unfeasible for 15 Gb RAM computer) and train_size = 22 training samples we have 5068800 soft constraints.

Binarized NN MaxSAT Anna Putina February, 2025 23 / 26

- Introduction
- Data Generation
- SAT Encoding
- 4 Constraints
- Complexity Analysis
- Results

Experimental Results

- The dataset was split into 70% for training and 30% for testing.
- We compare a BNN without a hidden layer and a BNN with a hidden layer.
- The BNN without a hidden layer fails to handle even simple cases due to non-linearity of the logical functions.
- The BNN with a hidden layer achieves perfect training accuracy and high test accuracy but at a higher computational cost.
- Increasing the output neurons to 5 made training unfeasible, highlighting the scalability challenge of the MaxSAT approach.

Experimental Results

Model	Solver Cost	Training Accuracy	Test Accuracy
BNN Without Hidden Layer			
Function 1	27	0.75	0.54
Function 2	27	0.75	0.54
Function 3	26	0.76	0.52
BNN With Hidden Layer			
Function 1	2	1.00	0.80
Function 2	4	1.00	0.80
Function 3	1	1.00	0.80

Table 1. Comparison of BNN with and without a hidden layer

