

Perturbation-Resilient Clustering Problems

2023年12月1日

Problem

Def. 1(k-Clustering with the l_p Objective)

An instance of k-clustering with the l_p objective $(p \ge 1)$ consists of a metric space (X, d) and a natural number k. The goal is to partition X into k disjoint clusters C_1, \cdots, C_k and assign a center c_i to each cluster C_i so as to minimize the following objective function:

$$\sum_{i=1}^k \sum_{u \in C_i} d^p(u, c_i).$$

• For $p = \infty$, the objective function is $\max_{i \in \{1, \dots, k\}, u \in C_i} |d(u, c_i)|$.

2023年12月1日

Problem

Def. 2(λ -Center Proximity)

Let (X, d) be an instance of the k-clustering problem with the l_p objective. Consider an optimal solution C_1, \dots, C_k with centers c_1, \dots, c_k .

- We say that c_1, \dots, c_k satisfies the λ -center proximity condition (where $\lambda \geq 1$) if $\forall u \in C_i$ and $j \neq i$, we have $\lambda d(u, c_i) < d(u, c_i)$.
- We say that (X,d) has an optimal solution satisfying the λ -center proximity condition if there exists an optimal solution C_1, \cdots, C_k with centers c_1, \cdots, c_k satisfying the λ -center proximity condition.

数學系

Restatement of Perturnation Resilience

Def. 3(Perturbations and Metric Perturbations)

Consider a metric space (X, d).

- We say that a symmetric function $d': X \times X \to \mathbb{R}^+$ is a γ -perturbation of d if for all $u,v \in X$ we have $\frac{1}{\gamma}d(u,v) \leq d'(u,v)$.
- We say that d' is a metric γ -perturbation of d if d' is a γ -perturbation of d and a metric itself: i.e., d' satisfies the triangle inequality.

2023年12月1日

Restatement of Perturnation Resilience

Def. 4(Perturbation Resilience)

Consider an instance (X, d) of the k-clustering problem with the l_p objective. Let C_1, \dots, C_k be the optimal clustering. Then,

- (X, d) is γ -perturbation resilient if for every γ -perturbation of d, the unique optimal clustering of (X, d) is C_1, \dots, C_k .
- Similarly, (X, d) is **metric** γ -**perturbation-resilient** if for **every** metric γ -perturbation of d, the unique optimal clustering of (X, d) is C_1, \dots, C_k .

2023年12月1日

Observation

Thm. 5(Awasthi et al., 2012, and Angelidakis et al., 2017)

Let (X,d) be a metric γ -perturbation-resilient instance of the k-clustering problem with the l_p objective $(p \geq 1)$. Consider the unique optimal solution $C = (C_1, \cdots, C_k)$ and an optimal set of centers $\{c_1, \cdots, c_k\}$ (which is not necessarily unique). Then, centers c_1, \cdots, c_k satisfy the γ -center proximity property.

1902

2023年12月1日

Observation

Pf. 考虑 X 内任意一点 p. Let c_i be the closest center to p in $\{c_1, \cdots, c_k\}$ $(p \in C_i)$ and c_j be another center. We need to show that $d(p, c_j) > \gamma d(p, c_i)$.

使用反证法. 假设 $d(p,c_j) \leq \gamma d(p,c_i)$. 令 $r^* = d(p,c_i)$. 下面我们设法定义有助于我们解决问题的 d'.

考虑 X 上的完全图 G=(X,E). 对于每一条边 (u,v), 使 len(u,v)=d(u,v), 保持其它边的 len 不动,仅缩短 $len(p,c_i)$,即定义:

$$len'(u, v) = \begin{cases} r^*, & (u, v) = (p, c_j) \\ d(u, v), & (u, v) \neq (p, c_j) \end{cases}$$

现在我们在完全图 G 上考虑 len', 并据此定义 d' 为最短路的长度, 易知:

$$d'(u, v) = \min(d(u, v), d(u, p) + r^* + d(c_i, v), d(u, c_i) + r^* + d(p, v)).$$

1902

920 E 4E>4E>4G>4G>

2023年12月1日

京大学数学系

7 / 18

Observation

(续) 由 $d(p, c_i) \leq \gamma d(p, c_i)$, 可得

$$\frac{1}{\gamma}d(u,v) \le d'(u,v) \le d(u,v),$$

故 d' 是 γ -perturbation.

又 d 满足三角不等式 (分类讨论容易验证),故 d 是 metric γ -perturbation.

Thus, 由于 (X,d) 是 metric γ -perturbation-resilient, $C=(C_1,\cdots,C_k)$ 也是对于 d 的唯

优解, 故

$$d'(p, c_i) < d'(p, c_i).$$

而

$$d'(p, c_i) = d(p, c_i), d'(p, c_i) = d(p, c_i).$$

This leads to a contradiction!

Thm. 6(Angelidakis et al., 2017)

There exists a polynomial-time algorithm that given an instance (X, d) of k-clustering with the l_p objective outputs an optimal solution if (X,d) has an optimal solution satisfying the 2-center proximity condition.

Algorithm. Consider the complete graph G on X , in which every edge (u,v) has length d(u,v)

- Construct the minimum spanning tree (MST) T in G
- Cluster T using dynamic programming (later(*))

2023年12月1日

Thm. 7

Consider an instance (X, d) of k-clustering with the l_p objective.

- Let C_1, \dots, C_k be an optimal clustering with centers c_1, \dots, c_k satisfying the 2-center proximity condition
- Let T = (X, E) be the minimum spanning tree (MST) in the complete graph on X with edge lengths d(u, v).

Then, each cluster C_i is a subtree of T (i.e., for every two vertices $u, v \in C_i$, the unique shortest path from u to v in T completely lies within C_i).

2023年12月1日

Lemma 8

Consider an instance (X, d) of the k-clustering problem with the l_p objective. Suppose that C_1, \dots, C_k is an optimal clustering for (X, d) and c_1, \dots, c_k is an optimal set of centers.

• If c_1, \dots, c_k satisfy the 2-center proximity property, then for every two distinct clusters C_i and C_j and all points $u \in C_i$ and $v \in C_j$, we have $d(u, c_i) < d(u, v)$.

Pf.

lacktriangle Since c_1,\cdots,c_k satisfy the 2-center proximity property and by the triangle inequality, we have

$$2d(u, c_i) < d(u, c_j) \le d(u, v) + d(v, c_j), \ 2d(v, c_j) < d(v, c_i) \le d(u, v) + d(v, c_i).$$

② Thus, we can sum the left inequality $\times \frac{2}{3}$ and right inequality $\times \frac{1}{3}$ to get the proof.

2023年12月1日

Pf. of Thm. 7.

- **1** 我们只要证,在最小生成树 T 中,for every two vertices $u,v\in C_i$, the unique shortest path from u to v in T completely lies within C_i .
- ② 从 C_i 中任取一点 u, u 到 c_i 在最小生成树 T 中有唯一的 path, 途经的点设为 u_1,\cdots,u_M , 其中 $u_1=u,u_M=c_i$. 下面我们只需要证明 $u_m\in C_i,\ m=2,\cdots,M-1$. 由数学归纳法, 我们只需证明 $u_m\in C_i$ 可以推出 $u_{m+1}\in C_i$.
- 由 MST 的 cycle poverty, 在圏

$$u_m \to u_{m+1} \to \cdots \to u_M \to u_m$$

中,有

$$d(u_m, u_M) \ge d(u_m, u_{m+1}).$$

 \bullet \blacksquare Lemma 8, $u_{m+1} \in C_i$.

1902

2023年12月1日

13 / 18

Algorithm for 2-Perturbation-Resilient Instances

(*)**Dynamic Program** Let us choose an arbitrary vertex r in X as a root for the MST T. Denote by T_u the subtree rooted at vertex u.

- OPT(u, m) := the optimal(minimum) cost of partitioning subtree T_u into m clusters that are subtrees of T.
- $OPT_{AC}(u, m, c) :=$ the optimal(minimum) cost of partitioning subtree T_u into m clusters subject to the following constraint: vertex u and all points in its cluster must be assigned to the center c.

The cost of k-clustering X equals OPT(r,k). For simplicity, we can assume that the T is a binary tree (the general case can be handled by transforming any tree to a binary tree by adding "dummy" vertices). Let left(u) be the left child of u and right(u) be the right child of u. And we have

$$OPT(u, m) = \min_{c \in X} OPT_{AC}(u, m, c).$$

2023 年 12 月 1 日 南京大学数学系

- ullet To find $OPT_{AC}(u,m,c)$, we find the optimal solutions for the left and right subtrees and combine them.
- ullet To this end, we need to guess the number of clusters m_L and m_R in the left and right subtrees.
- ullet We present formulas for $OPT_{AC}(u,m,c)$ in the four possible cases.

$$\begin{cases} \min_{\substack{m_L, m_R \in \mathbb{Z}^+ \\ m_L + m_R = m + 1}} & d(c, u) + OPT_{AC}(left(u), c, m_L) + OPT_{AC}(right(u), c, m_R) \\ \min_{\substack{m_L, m_R \in \mathbb{Z}^+ \\ m_L + m_R = m}} & d(c, u) + OPT_{AC}(left(u), c, m_L) + OPT(right(u), c, m_R) \\ \min_{\substack{m_L, m_R \in \mathbb{Z}^+ \\ m_L + m_R = m}} & d(c, u) + OPT(left(u), c, m_L) + OPT_{AC}(right(u), c, m_R) \\ \min_{\substack{m_L, m_R \in \mathbb{Z}^+ \\ m_L + m_R = m + 1}} & d(c, u) + OPT(left(u), c, m_L) + OPT(right(u), c, m_R) \end{cases}$$

1902

902

2023年12月1日

- We compute the values of $OPT_{AC}(u, m, c)$ in the 4 cases above(e.g. p=1) and choose the minimum among them.
- The sizes of the DP tables for OPT and OPT_{AC} are O(nk) and $O(n^2k)$, respectively.
- It takes O(n) and O(k) time to compute each entry in the tables OPT and OPT_{AC} , respectively. Thus, the total running time of the DP algorithm is $O(n^2k^2)$.

Now, we have proved Thm. 6.

1902

2023年12月1日

$(3+\epsilon)$ -Certified Local Search Algorithm for k-Medians

Now We take the k-medians(p = 1) as an instance.

- Consider an arbitrary set of centers c_1, \dots, c_k . $u \in C_i$ if and only if c_i is the closest center to u. Denote by $cost(c_1, \dots, c_k)$ its cost.
- We now describe a 1-local search algorithm. The algorithm maintains a set of k centers c_1, \dots, c_k .
- It starts with an arbitrary set of centers c_1, \dots, c_k .
- While (\exists pair (c_i, u) , $cost(c_1, \cdots, c_{i-1}, u, c_{i+1}, \cdots, c_k) < cost(c_1, \cdots, c_k)$) { Replace the center c_i with u. (the size of the swaps is 1) }
- ullet We call the obtained set of centers 1-locally optimal and denote it by L.

1902

2023年12月1日

南京大学数学系

16 / 18

ρ -local search algorithm

- ρ -local search algorithm is a more powerful (alas less practical) version of the local search algorithm considering swaps of size up to ρ instead of 1.
- Its running time is exponential in ρ .

Thm. 9(Cohen-Addad and Schwiegelshohn, 2017 and Balcan and White, 2017)

The ρ -local search algorithm for k-medians outputs the optimal solution on $(3+O(\frac{1}{\rho}))$ -perturbation-resilient instances.

2023年12月1日

End

Thanks for listening!

2023年12月1日