Tutorial 10 - Solutions

Exercise 1

Let $C = \{x, y\}$ be a set of clocks such that $c_x = 2$ and $c_y = 2$.

- Draw a picture with all regions for the clocks x and y.
 - Graphical representation of the regions for clocks x and y.

- How many different regions there are on the picture?
 - There are 9 corner points, 22 line segments, and 13 area regions.
- Select four different regions (corner point, line, two areas) and describe them via clock constraints.
 - Solution (for example): $[x=0 \land y=0], [0 < x < 1 \land 1 < y < 2 \land x+1=y], [0 < x < 1 \land 0 < y < 1 \land x < y],$ and $[1 < x < 2 \land 0 < y < 1 \land x > y+1].$
- Try to find a general formula which describes a number of regions for two clocks and arbitrary maximal constants c_x and c_y .
 - Solution: $(c_x + 1)(c_y + 1) + 5c_x c_y + 3(c_x + c_y) + 3$

Exercise 2*

Draw a region graph of the following timed automaton.

$$x{:=}0, y{:=}0 \underbrace{ \begin{pmatrix} 0 < x \leq 1 \\ \ell_0 \end{pmatrix}}_{b} \underbrace{ \begin{pmatrix} a \\ y := 0 \end{pmatrix}}_{y{:}=0}$$

Since there is only one location ℓ_0 , it is omitted in symbolic states of the region graph.

Using the region graph decide whether the following configurations are reachable from the initial configuration.

- (ℓ_0, v) where v(x) = 0.7 and v(y) = 0.61
 - Solution: Yes, since the symbolic state

$$(\ell_0, [v]) = (\ell_0, 0 < x < 1 \land 0 < y < 1 \land x > y)$$

is reachable from the initial symbolic state $(\ell_0, x = y = 0)$ of the region graph.

- (ℓ_0, v) where v(x) = 0.2 and v(y) = 0.41
 - Solution: No, since the symbolic state

$$(\ell_0, [v]) = (\ell_0, 0 < x < 1 \land 0 < y < 1 \land x < y)$$

is *not* reachable from the initial symbolic state $(\ell_0, x = y = 0)$ of the region graph.

Exercise 3

Consider the following network of timed automata from the lecture.

- Give an example of a timed trace in the network above.
 - A timed trace could be as follows:

$$(20,\tau)(40,\tau)(60,\tau)(60,\tau)\cdots$$

An example of a sequence of states could be:

 $\begin{array}{l} \text{((free,rest,up), } [x=0,y=0,z=0]) \xrightarrow{\tau} \text{((busy,work,up), } [x=0,y=0,z=0]) \xrightarrow{20} \\ \text{((busy,work,up), } [x=20,y=20,z=20]) \xrightarrow{\tau} \text{((busy,work,half), } [x=0,y=20,z=20]) \\ \xrightarrow{40} \text{((busy,work,half), } [x=40,y=60,z=60]) \xrightarrow{\tau} \text{((busy,work,down), } [x=0,y=60,z=60]) \xrightarrow{\tau} \text{((free,rest,down), } [x=0,y=60,z=60]) \xrightarrow{\tau} \text{((free,rest,down), } [x=0,y=60,z=60]) \cdots \end{array}$

- Which of the following properties are true?
 - A[] (W.rest $\lor z \le 100$) : **True**
 - $E\langle\rangle$ (W.rest \wedge H.busy) : **False**
 - A⟨⟩ W.rest : True
 - E[] H.busy: False
 - W.work --> W.rest : **True**