Лабораторная 7. Вариант 3.

Задача. Негативное изображение

Описание

В данной лабораторной работе вам необходимо реализовать две функции. Одна обычным способом, другая рекурсивным.

Также нужно создать декоратор, который будет отслеживать время работы каждой функции и эмпирически показать, какой из способов является оптимальным.

В отдельном файле test.txt прописать минимум 10 всевозможных случаев(рассмотреть также частные случаи), включающих проверку как для больших, так и маленьких по длине или значению входных данных.

Формат записи, следующий:

Случай 1	
#Обычная функция	
Название функции:	
Аргументы:	
Время выполнения:	сек
Результат:	
#Рекурсивная функция	
Название функции:	
Аргументы:	
Время выполнения:	сек
Результат	
•	
Случай N	

Формулировка задачи

Негативное изображение — это изображение, наиболее светлые участки которого выглядят тёмными, а наиболее тёмные — светлыми.

Предположим, что изображение можно представить в виде списка нулей и единиц. Напишите функцию, которая принимает изображение в виде списка и возвращает другой список — негативное изображение.

Входные данные

Матрица (список списков)

Выходные данные

Матрица (список списков)

Пример 1

Входные данные

```
reverse_image([
    [1, 0, 0],
    [0, 1, 0],
    [0, 0, 1]
```

Выходные данные

```
[[0, 1, 1],
[1, 0, 1],
[1, 1, 0]]
```

Пример 2

Входные данные

```
reverse_image([
    [1, 1, 1],
    [0, 0, 0]
])
```

Выходные данные

```
[[0, 0, 0],
[1, 1, 1]]
```

Пример 3

Входные данные

```
reverse_image([
   [1, 0, 0],
   [1, 0, 0]
])
```

Выходные данные

```
[[0, 1, 1],
[0, 1, 1]]
```

Дополнительные тесты

Файл main.py проверяеться с помощью линтера $\underline{super_linter}$. При проверке игнорируються ошибки D, S, I.