## Devoir facultatif n° 12

Ce problème étudie certaines propriétés des matrices à coefficients entiers. Les parties II et III sont indépendantes et chacune utilise des résultats de la partie I.

#### Notations.

Dans tout le problème, n et p désignent des entiers supérieurs ou égeux à deux.

- On note  $\mathcal{M}_{n,p}(\mathbb{Z})$  l'ensemble des matrices à n lignes et p colonnes, à coefficients dans  $\mathbb{Z}$ .
- On note  $\mathcal{M}_n(\mathbb{Z})$  l'ensemble des matrices carrées d'ordre n à coefficients dans  $\mathbb{Z}$ .
- On note  $\mathscr{GL}_n(\mathbb{Z})$  l'ensemble des matrices inversibles de  $\mathscr{M}_n(\mathbb{Z})$ , dont l'inverse est dans  $\mathcal{M}_n(\mathbb{Z})$ .
- On dit que deux matrices A et B de  $\mathcal{M}_n(\mathbb{Z})$  sont  $\mathbb{Z}$ -équivalentes s'il existe  $P,Q \in$  $\mathscr{GL}_n(\mathbb{Z})$  telles que B = PAQ.
- On considère sur  $\mathcal{M}_n(\mathbb{Z})$  trois opérations élémentaires sur les lignes d'une matrice :
  - $L_i \leftarrow -L_i$  qui transforme  $L_i$  en son opposé;
  - $L_i \leftrightarrow L_j$  qui échange les lignes  $L_i$  et  $L_j$ ;
  - $L_i \leftarrow L_i + \lambda L_i$  qui ajoute  $\lambda$  fois la ligne  $L_i$  à la ligne  $L_i$ , avec  $\lambda \in \mathbb{Z}$ .
- On définit de même les mêmes opérations élémentaires sur les colonnes.
- Pour des entiers  $a_1, \ldots, a_n$ , on définit  $\operatorname{diag}(a_1, \ldots, a_n) = \begin{pmatrix} a_1 & 0 & \ldots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & a_n \end{pmatrix}$ .

   On dit qu'une matrice  $A \in \mathcal{M}_{n,n}(\mathbb{Z})$  est dita (1).
- On dit qu'une matrice  $A \in \mathcal{M}_{n,p}(\mathbb{Z})$  est dite échelonnée (par lignes) si, pour toute ligne, le premier coefficient non nul de cette ligne est strictement à droite du premier coefficient non nul de la ligne précédente.
  - Plus formellement, en notant  $p(i) = \min \{ j \in [1, p] \mid a_{i,j} \neq 0 \}$  (avec  $p(i) = +\infty$ si cet ensemble est vide), on demande à ce que pour tout  $1 \le i < n, p(i) < p(i+1)$ .

### Partie I: Généralités.

- 1) Une matrice inversible à coefficients entiers est-elle nécessairement dans  $\mathscr{GL}_n(\mathbb{Z})$ ?
- 2) Montrer que  $(\mathscr{GL}_n(\mathbb{Z}), \times)$  est un groupe. Est-il commutatif?
- 3) Montrer que « A est  $\mathbb{Z}$ -équivalente à B » est une relation d'équivalence sur  $\mathcal{M}_n(\mathbb{Z})$ .
- 4) Montrer que, si  $A \in \mathcal{M}_n(\mathbb{Z})$ , alors det  $A \in \mathbb{Z}$ .
- 5) Montrer que, si  $A \in \mathscr{GL}_n(\mathbb{Z})$ , alors  $\det A \in \{-1, +1\}$ .

- 6) Montrer réciproquement que, si  $A \in \mathcal{M}_n(\mathbb{Z})$  vérifie det  $A \in \{-1; +1\}$ , alors  $A \in \mathcal{GL}_n(\mathbb{Z})$ .
- 7) Soit  $A \in \mathcal{M}_n(\mathbb{Z})$ . Montrer que toute matrice déduite de A par opérations élémentaires sur ses lignes ou ses colonnes est  $\mathbb{Z}$ -équivalente à A.

# Partie II : Échelonnement de matrice à coefficients entiers.

8) Soit  $a, b \in \mathbb{Z}$ , notons  $d = \operatorname{PGCD}(a, b)$  et a = da', b = db'. En utilisant des relations de Bézout, montrer qu'il existe  $M \in \mathscr{GL}_2(\mathbb{Z})$  telle que

$$M\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}.$$

9) Soit  $a_1, \ldots, a_n \in \mathbb{Z}$ , notons  $d = \text{PGCD}(a_{n-1}, a_n)$ . Montrer qu'il existe  $M \in \mathscr{GL}_n(\mathbb{Z})$  telle que

$$M \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_{n-2} \\ d \\ 0 \end{pmatrix}.$$

10) Soit  $a_1, \ldots, a_n \in \mathbb{Z}$ , notons  $d = \text{PGCD}(a_1, \ldots, a_n)$ . Montrer qu'il existe  $M \in \mathscr{GL}_n(\mathbb{Z})$  telle que

$$M \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} d \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

11) Soit  $A \in \mathcal{M}_{n,p}(\mathbb{Z})$ , écrite par blocs  $A = \begin{pmatrix} E & B \\ 0 & C \end{pmatrix}$ , où E est échelonnée, carrée de taille  $\ell$ , avec  $\ell \leqslant \min(n,p)$ . Soit  $M \in \mathscr{GL}_{n-\ell}(\mathbb{Z})$  et  $d = \mathrm{PGCD}(a_{\ell+1,\ell+1},\ldots,a_{n,\ell+1})$  tels que

$$M\begin{pmatrix} a_{\ell+1,\ell+1} \\ \vdots \\ a_{n,\ell+1} \end{pmatrix} = \begin{pmatrix} d \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Que peut-on dire du produit  $\begin{pmatrix} I_{\ell} & 0_{\ell,n-\ell} \\ 0_{n-\ell,\ell} & M \end{pmatrix} \times A$ ?

12) En déduire que, pour tout  $A \in \mathcal{M}_{n,p}(\mathbb{Z})$ , il existe  $P \in \mathcal{GL}_n(\mathbb{Z})$  tel que PA est échelonnée.

13) Application. On cherche à résoudre sur  $\mathbb{Z}^3$  l'équation diophantienne

$$2x + 3y + 5z = 0, (\mathscr{E})$$

que l'on écrit 
$$XA=0$$
, avec  $X=\begin{pmatrix} x & y & z \end{pmatrix}$  et  $A=\begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$ . On note  $B=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ .

- a) Déterminer une matrice  $M \in \mathscr{GL}_3(\mathbb{Z})$  telle que MA = B.
- b) En déduire que  $(\mathscr{E})$  est équivalente à une équation de la forme YB=0, où l'on précisera Y.
- c) Donner l'ensemble des solutions  $Y \in \mathcal{M}_{1,3}(\mathbb{Z})$  de l'équation précédente et en déduire l'ensemble des solutions de  $(\mathcal{E})$ .

#### Partie III : Réduction sous forme normale de Smith.

Soit  $A \in \mathcal{M}_n(\mathbb{Z})$  non nulle. On note  $\mathscr{A}$  l'ensemble des matrices  $\mathbb{Z}$ -équivalentes à A dont le coefficient supérieur gauche est strictement positif :

$$\mathscr{A} = \{ B \in \mathscr{M}_n(\mathbb{Z}) \mid b_{1,1} > 0 \text{ et } \exists P, Q \in \mathscr{GL}_n(\mathbb{Z}), B = PAQ \}.$$

Soit  $B \in \mathcal{A}$  tel que  $b_{1,1}$  soit minimal : pour tout  $B' \in \mathcal{A}$ ,  $b'_{1,1} \geqslant b_{1,1}$ . On pose  $d = b_{1,1}$ .

- 14) Justifier l'existence d'un tel B.
- **15)** Montrer que, pour tout  $2 \leq i \leq n$ , d divise  $b_{i,1}$ .
- **16)** Montrer qu'il existe  $C \in \mathcal{M}_n(\mathbb{K})$  telle que :

$$-C = \begin{pmatrix} d & 0 & \dots & 0 \\ 0 & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & c_{n,2} & \dots & c_{n,n} \end{pmatrix};$$

$$-C \text{ est } \mathbb{Z}\text{-\'equivalente \'e} A$$

- 17) Montrer que d divise tous les coefficients de la matrice C précédente.
- 18) En déduire qu'il existe des entiers naturels  $d_1, \ldots, d_p$  non nuls tels que  $D = \operatorname{diag}(d_1, \ldots, d_p, 0, \ldots, 0)$  est  $\mathbb{Z}$ -équivalente à A et  $d_1 | d_2 | \ldots | d_p$ .

