Deep Learning for Natural Language Processing

Exercise 3 – Backpropagation

Niraj Dev Pandey

Ubiquitous Knowledge Processing Lab Technische Universität Darmstadt

- Backpropagation Example
- Regular exercise
- Tensorflow Introduction

- Backpropagation Example
- Regular exercise
- Tensorflow Introduction

Backpropagation

- Purpose:
 - Obtaining a gradient for each weight in each layer of the network
 - This is necessary to train multilayer perceptrons (MLPs) and other more complex networks
- Principle:
 - The network error is propagated from the output layer back to the input layer

Backpropagation: Steps

Given a neural network and a training input (x, t):

- 1. Forward propagation
 - Compute activation (the output of the activation function) and pre-activation for each neuron in the network
- 2. Backward propagation
 - Compute the error derivative $\frac{\partial E}{\partial p_i}$ at each neuron p_i
 - Compute the error derivative $\frac{\partial E}{\partial u_{ik}}$ for each weight u_{ik} in the weight matrices $U = W^{(1)}, W^{(2)}, W^{(3)}, ...$

Backpropagation: Gradient at Neurons

2. Backward propagation

- Compute the error derivative $\frac{\partial E}{\partial p_i}$ at each neuron p_i
 - For the output layer: *E* is the network's loss function
 - For the hidden layers, use: $\frac{\partial E}{\partial p_i} = \sum_j \frac{\partial E}{\partial y_j} \sigma'(z_j) w_{ij}$
 - p_i: neuron for which we compute the error
 - y_j : neurons from which the error is propagated backwards
 - σ' : derivative of the activation function at y_j
 - z_j : pre-activation at y_j (argument of σ during forward propagation)

Backpropagation: Gradient at Weights

2. Backward propagation

- Compute the error derivative $\frac{\partial E}{\partial u_{ik}}$ for each weight u_{ik} in the weight matrices $U = W^{(1)}, W^{(2)}, W^{(3)}, ...$
 - $\frac{\partial E}{\partial u_{ik}} = \frac{\partial E}{\partial m_k} \sigma'(z_k) l_i$
 - m_k: the output/activation at the layer corresponding to matrix *U*
 - l_i: the output/activation at the previous layer
 - z_k : pre-activation at m_k (argument of σ during forward propagation)

Backprop Example

- Color coding: preactivation, activation, error deriv. at neurons, weights
- All activation functions are tanh, loss is square loss
- Initialization: $\mathbf{u} = (0.2, 0.5, -1), \mathbf{v} = (0.9, -0.5), \mathbf{w} = (0.2, -5)$
- Round to two decimal places after each computation

• Assume that x = (1,0,1) and t = 1

Backprop Example: Forward Pass

- Color coding: preactivation, activation, error deriv. at neurons, weights
- All activation functions are tanh, loss is square loss
- Initialization: $\mathbf{u} = (0.2, 0.5, -1), \mathbf{v} = (0.9, -0.5), \mathbf{w} = (0.2, -5)$
- Round to two decimal places after each computation

• Assume that x = (1,0,1) and t = 1

Backprop Example: Gradient at Neurons

- Color coding: preactivation, activation, error deriv. at neurons, weights
- All activation functions are tanh, loss is square loss
- Initialization: $\mathbf{u} = (0.2, 0.5, -1), \mathbf{v} = (0.9, -0.5), \mathbf{w} = (0.2, -5)$
- Round to two decimal places after each computation

Backprop Example: Gradient at Neurons (cont.)

- Color coding: preactivation, activation, error deriv. at neurons, weights
- All activation functions are tanh, loss is square loss
- Initialization: $\mathbf{u} = (0.2, 0.5, -1), \mathbf{v} = (0.9, -0.5), \mathbf{w} = (0.2, -5)$
- Round to two decimal places after each computation

$$\bullet \quad \frac{\partial E}{\partial p_i} = \sum_j \frac{\partial E}{\partial y_j} \sigma'(z_j) w_{ij}$$

$$\frac{\partial p_1}{\partial p_1} = -3.88 * (1 - \tanh^2(-1.7)) * 0.2$$

= -3.88 * (1 - (-0.94)²) * 0.2 = -0.09

 $tanh' = 1 - tanh^2$

Backprop Example: Gradient at Neurons (cont.)

- Color coding: preactivation, activation, error deriv. at neurons, weights
- All activation functions are tanh, loss is square loss
- Initialization: $\mathbf{u} = (0.2, 0.5, -1), \mathbf{v} = (0.9, -0.5), \mathbf{w} = (0.2, -5)$
- Round to two decimal places after each computation

Backprop Example: Gradient at Neurons finished

- Color coding: preactivation, activation, error deriv. at neurons, weights
- All activation functions are tanh, loss is square loss
- Initialization: $\mathbf{u} = (0.2, 0.5, -1), \mathbf{v} = (0.9, -0.5), \mathbf{w} = (0.2, -5)$
- Round to two decimal places after each computation

- Assume that x = (1,0,1) and t = 1
- Square loss: $(t y)^2$

Backprop Example: Gradient at Weights

- Color coding: preactivation, activation, error deriv. at neurons, weights
- All activation functions are tanh, loss is square loss
- Initialization: $\mathbf{u} = (0.2, 0.5, -1), \mathbf{v} = (0.9, -0.5), \mathbf{w} = (0.2, -5)$
- Round to two decimal places after each computation

$$\frac{\partial E}{\partial u_{ik}} = \frac{\partial E}{\partial m_k} \sigma'(z_k) l_i$$

$$\frac{\partial E}{\partial w_1} = -3.88 \cdot (1 - \tanh^2(-1.7)) \cdot (-0.53)$$
$$= 0.24$$

- ✓ Backpropagation Example
- Regular exercise
- Tensorflow Introduction

- ✓ Backpropagation Example
- ✓ Regular exercise
- Tensorflow Introduction