Data Science & Artificial Intelligence

Algorithms

Test Series 1500+

Lecture - COM ()5

Recap of Previous Lecture

Topic

Topic

Time Complexity

Sosting

Graphis

Suestions

Topics to be Covered

Questions

[NAT]

#Q5. Consider the following array

A	70	60	23	28	55	81	116

If Insertion sort is applied to sort in ascending order and If number of swaps are X and number of comparisons are Y then the value of X*Y is __for above array A?

Swaps -> X
Companisons -> Y

$$X = 7$$
 $Y = 11$

Ans: $X * Y = 77$
 $= 77$

Topic: Divide and Conquer

#Q3. Let's suppose you are given an array of n elements in which, the few elements in the beginning are \$ and remaining elements are @, then what is the complexity of most efficient algorithm to find the first @ symbol?

Soln:

Appr1; lineau Seauch; cuc: O(n)

Apprez: Avouy in sosted - Binary Seanch

2 m

5

Ows = 5

[MCQ]

#Q4. Consider the following statements:

S₁: Number inversions are same as number of comparisons in range sort.

S₂: Number of inversions are same as number of singles in insertion sort.

Which of the following is correct.?

Both X None

Soln: SI: Selection Sort

Sa: Insultion Sost

Innoxions = 0
$$\longrightarrow$$
 $(m-1)$ Comp

Gempansons n-1) Comp

Topic: Divide and Conquer

Soot

#Q9. Generally, merge is a divide and conquer technique which can also be implemented in a recursive manner. If there are 300 elements in an array then how many recursive functions calls are needed in merge sort?

20%

Ans:
$$600 - 2$$

$$= 598$$

6+6+2 = 14 ralls

n size array — 2n-2 Rounsine talls &

708 n=300

2X300-2

= 600-2 = 598 Rewsin calls

Topic: Divide and Conquer

#Q8. What is the auxiliary space complexity of merge sort

A 0(1)

C O(logn)

0(n)

D (nlogn)

Arn: B

WC.

Soln: murque Sost. Space Complexity Temposary Array (B) used for
runging \rightarrow O(n) 2 Recurs fon Stack - + 0 (1692n) Ormall SC: $O(n + log_2n) = O(n)$

6

[MSQ]

Which of the following sorting technique is/are stable sorting technique. #Q8.

- Bubble sort
- Insertion sort
- Selection sort
- Quick sort

Stable

- Bubblo cost
- Insertion Cort rurge Sort Radix Sort

Un-steuble

- Solection soof
- Heap sost
- Quick Cost.

Am: AB

Inpluce

- (1) Bubble sost
- 2 Sollection Sort
- (3) Insertion Sont
- 4) Buick Sost
- (5) Heap Sort

Not inplace

- (i) Murge Sort
- (2) Radix Cost

Topic: Heaps & Sorting

#Q.1 Which of the following is valid max heap?

A 28, 27, 12, 23, 22, 6, 5

B 190,100,10,90,80, 9,1, 70

Both (a) and (b)

Neither (a) nor (b)

Am: C

Array Representation of a mar-Heap (Starting ad [) inder Child => K

parent => [K2] 2/2 = 1 $3 \rightarrow \left[\frac{3}{2}\right] = \left[\frac{1.5}{5}\right] = 0$

Pw

[NAT]

#Q6. Consider the following array

A	500	700	130	90	850	210	160

How many comparisons are needed to start the above array using insertion sort?

Comp (007) Pass); pass 2. 8 20 PONSZ! (220) Days 4: 850 (210) 700 850 1 16 pons 6:

PW

[MCQ]

#Q.3 Consider a complete binary tree where the left and right subtrees of the root are max -heaps. The lower bounds for the number of operations to convert the tree to a heap is

for Worst Case - Opper Bound

Max - Keap

[MCQ]

#Q.4 Consider a max heap represented by the array:

Array	1	2	3	4	5	6	7	8	9
Value	50	40	30	20	25	26	27	18	14

Now consider that a value 35 is inserted into the heap. After insertion new heap is:-

50, 40, 30, 20, 25, 26, 27, 18, 14, 35

50, 40, 30, 20, 26, 35, 27, 18, 14, 25

50, 40, 30, 20, 35, 26, 27, 18, 14, 25

50, 40, 30, 20, 35, 26, 27, 14, 18, 25

50 40 30 20 25 26 27 18 19 gruen: Insultan Operation max - Pleap 50 30 40 30 Bottom - top 20 81 18 27 18 14 25 40 30 20 35 26 50

Topic: Divide and Conquer

#Q12. Assume that there are 8n sorted list of size n/4 then what is the time complexity of merging them into single sorted list

 $\begin{array}{c} \bullet \text{(nlogn)} \times \\ \bullet \text{(n^2)} \times \\ \end{array}$

2n Sorted lests Soln; 2n + 8n lists NC 2n = 4n lieb n/2 un - 2n Vistr 1 ast

Horof elems at enry local = 12n2 elems

Mugging $2n^2$ elum $\Rightarrow 0(2n^2)$ = $0(n^2)$ $\frac{1}{m} = 30(m+n) 0$ eury louble - 3 TL: O(n2)
no of cours - 3 O(log_n)

Herr Total TC = No reg Jenuls * TC of puch [eml

$$= O(\log n + n^2)$$

$$\frac{1}{2} \left(\frac{1}{2} \right) \log n$$

[MCQ]

#Q9. Consider the following array with 8 elements:

60	50	45	85	55	90	65	12

What is result after 3rd pass of bubble sort?

- 50, 60, 55, 45, 12, 65, 85, 90 X
- **B** 12, 45, 50, 60, 90, 65, 55, 85
- 45, 50, 55, 60, 12, 65, 85,90
- 50, 55, 45, 60, 12, 65, 85, 90

- $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{2}$
- Ans: C

90 65 12 45 85 55 \$5 55 90 255 85 65 55 55 85 55 60 65 Dass2: 65 12

2 mins Summary

Topic

Sosting

Topic

Heups

Topic

Tc + Dnc

Misc

Topic

Suls froms

THANK - YOU

Telegram Link for Aditya Jain sir: https://t.me/AdityaSir_PW