ÔN TẬP PHƯƠNG PHÁP TÍNH

Những bài dưới đây là những bài lạ và cơ bản nhất, nên xem thêm slide, trật tử không chịu trách nhiệm

NHỚ ĐỔI QUA RADIAN

Câu 1:

Cho phương trình $e^x + 2x^2 + \cos x - 10 = 0$ trong khoảng cách ly nghiệm [1,2]. Sử dụng phương pháp Newton, xác định x_0 theo điều kiện Fourier, tìm nghiệm gần đúng của x_2 của phương trình trên và đánh giá sai số của Δ nó.

$$x_2 = 1.5973$$

$$\Delta x_2 = 0.0028$$

Bài giải

$$f(x) = e^x + 2x^2 + \cos x - 10; a = 1; b = 2$$

$$m = \min |f'(x)|$$

Nếu f(a)f''(a) > 0 chọn $x_0=a$, f(a)f''(a) < 0 chọn $x_0=b$

Nhập vào máy tính:

"
$$X = X - \frac{f(X)}{f'(X)} : \frac{|f(X)|}{A},$$

NHỚ ĐỔI QUA RADIAN

Câu 2:

Cho hệ phương trình;

$$\begin{cases} 34x_1 + 2.73x_2 - 1.85x_3 = 12.89\\ 1.34x_1 + 29x_2 - 3.24x_3 = 15.73\\ 1.18x_1 - 4.87x_2 + 32.6x_3 = 18.42 \end{cases}$$

Sử dụng phương pháp Jacobi với $x^{(0)} = (0.1, 0.3, 0.4)^T$, tìm vecto lặp $x^{(3)}$

Đáp số: $x_1^{(3)} = 0.3663$

 $x_2^{(3)} = 0.5969$ $x_3^{(3)} = 0.6404$

Bài giải

Nhập vào máy tính:

" $X = (12.89 - 2.73B + 1.85C) \div 34 : Y = (15.73 - 1.34A + 3.24C) \div 29 : C =$ $(18.42 - 1.18A + 4.87B) \div 32.6 : A = X : B = Y$ "

"CALL"

B = 0.3; C = 0.4; A = 0.1

Nhấn tiếp "=" cho tới kết quả

	X ₁	x ₂	X 3
(1)	0.3768	0.5825	0.6062
(2)	0.3653	0.5927	0.6384
(3)	0.3663	CN 0.5969	0.6404

Câu 3:

Cho hệ phương trình;

$$\begin{cases} 34x_1 + 2.73x_2 - 1.85x_3 = 12.89\\ 1.34x_1 + 29x_2 - 3.24x_3 = 15.73\\ 1.18x_1 - 4.87x_2 + 32.6x_3 = 18.42 \end{cases}$$

Sử dụng phương pháp Gauss-Seidel với $x^{(0)} = (0.1, 0.3, 0.4)^T$, tìm vecto lặp $x^{(3)}$

$$\mathbf{\mathcal{D}\acute{a}p}\ s\acute{o}: \qquad x_1^{(3)} = \mathbf{0.3661}$$

$$x_2^{(3)} = 0.5971$$
 $x_3^{(3)} = 0.6410$

$$x_2^{(3)} = 0.6410$$

Bài giải

Nhập vào máy tính:

"A = $(12.89 - 2.73B + 1.85C) \div 34 : B = (15.73 - 1.34A + 3.24C) \div 29 : C =$ $(18.42 - 1.18A + 4.87B) \div 32.6$ "

"CALL"

B = 0.3; C = 0.4; (KHÔNG NHẬP A)

Nhấn tiếp "=" cho tới kết quả

	\mathbf{x}_1	X2	X 3
(1)	0.3768	0.5697	0.6365

(2)	0.3680	0.5965	0.6408
(3)	0.3661	0.5971	0.6410

Câu 4:

Cho bảng số

X	1.1	1.6	2.1
y	2.2	5.3	6.6

Spline bậc ba g(x) thỏa điều kiện g'(1.1)=0.2 và g'(2.1)=0.5 nội suy bảng số trên để xấp xỉ giá trị của hàm tại x=1.4 và x=1.9

 g(1.9) = 6.4148

Bài giải

Kẻ bảng cho không bị lộn

$\mathbf{x}_{\mathbf{k}}$	h_k	a_k		В	C_{k}	b_{k}	$d_{\scriptscriptstyle k}$
1.1	0.5	2.2	$\alpha = 0.2$	18	23.55	$\alpha = 0.2$	-23.1
1.6	0.5	5.3	6.2	-10.8	- 11.1	$\alpha = 0.2$	-23.1
1.0	0.5	5.5	2.6	-10.8	-11.1	6.425	6.0
2.1	0.5	6.6	$\beta = 0.5$	-6.3	-0.75	6.425	6.9

Ta có

- ♦ h_k=x_{k+1}-x_k TAI LIÊU SƯU TÂF
- \bullet $a_k = y_k$
- **♦** $B = 3([]_{k+1} []_k)$

$$A = \begin{pmatrix} 2h_0 & h_0 & 0 \\ h_0 & 2(h_1 + h_0) & h_1 \\ 0 & h_1 & 2h_1 \end{pmatrix} = \begin{pmatrix} 1 & 0.5 & 0 \\ 0.5 & 2 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix} \text{mà } A.C = B \Rightarrow C = A^{-1}.B \text{ (Dùng ma)}$$

trận để giải tìm ra C, A ma trận 3x3, B là ma trận 3x1)

$$b_k = \frac{y_{k+1} - y_k}{h_k} - \frac{h_k}{3} (C_{k+1} + 2C_k) = \left[-\frac{h_k}{3} (C_{k+1} + 2C_k) \right]$$

$$d_k = \frac{C_{k+1} - C_k}{3h_k}$$

Nếu $b_{k1} \neq \alpha$ tính lại từ đầu hoặc bỏ làm câu khác.

Bảng hệ số:

NGÔ TIẾN ĐẠT – ĐH BÁCH KHOA TPHCM - 0932803350

	a	b	С	d
(0)	2.2	0.2	23.55	-23.1
(1)	5.3	6.425	-11.1	6.9

Ta có phương trình

$$\begin{cases} g(x) = 2.2 + 0.2(x - 1.1) + 23.55(x - 1.1)^2 - \frac{346}{15}(x - 1.1)^3; 1.1 \le x \le 1.6 \\ g(x) = 5.3 + 6.425(x - 1.6) - 11.1(x - 1.6)^2 - 6.9(x - 1.6)^3; 1.6 \le x \le 2.1 \end{cases}$$

Tính g(1.4) thế x=1.4 vào g(x) tại $1.1 \le x \le 1.6$

Tính g(1.9) thế x=1.9 vào g(x) tại $1.6 \le x \le 2.1$

Câu 5

Cho bảng số

X	0.7	1.0	1.2	1.3	1.5
у	3.1	2	4.5	2.6	6.7

Sử dụng phương pháp bình phương bé nhất, tìm hàm $f(x) = A + B\sin x + C\cos^2 x$ xấp xỉ tốt nhất bảng số trên

$$;B = -138.2293$$

$$C = -88.7070$$

Bài giải

$$f(x) = A + B\sin x + C\cos^2 x = (A + C) + B\sin x - C\sin^2 x$$

$$f(x) = A + B\sin x + C\cos^2 x = (A + C) + B\sin x - C\sin^2 x$$

$$C \leftrightarrow -C$$

$$B \leftrightarrow B$$

$$A \leftrightarrow A + C$$

Nhập vào máy tính:

Dạng f(x)	Phím ấn
A+Bx	2
$A+Bx+Cx^2$	3
ln(A+Bx)	4
Ae^{Bx}	5
$A.B^{x}$	6
$A.x^B$	7
1	8
A + Bx	

Chọn chế độ "STAT" ("MODE" "3")

Nhập giá trị x và y (chú ý: nhập sinx chứ không phải nhập x)

sinx	y
$\sin(0.7)$	3.1
sin(1.0)	2
sin(1.2)	4.5
sin(1.3)	2.6
sin(1.5)	6.7

Nhấn "SHIFT" "1" "7" để có giá trị A,B,C

NHỚ ĐỔI QUA RADIAN

Câu 6

Cho bảng số

X	0.7	1.0	1.2	1.3	1.5
У	3.1	2 O A	C/4.5	2.6	6.7

Sử dụng phương pháp bình phương bé nhất, tìm hàm $f(x) = Ax + B\cos x$ xấp xỉ tốt nhất bảng số trên

$$\Theta$$
áp số: $A = 3.5255$ (3) ; $B = -0.6210$

Bài giải

Đặt
$$g(x) = x$$
; $h(x) = \cos x$

Nhập vào máy tính: TAI LIÊU SƯU TÂP

"
$$A = A + g^2(x) : B = B + g(x)h(x) : C = C + g(x)Y : D = D + h^2(x) : M = M + h(x)Y$$
"

A,B,C,D,M ban đầu nhập bằng không.

X,Y nhập theo bảng cho đến hết

Sau khi tính ra A,B,C,D,M giải hệ phương trình sau

$$\begin{cases} Ax + By = C \\ Bx + Dy = M \end{cases}$$

Kết quả là giá trị cần tìm

Câu 7(dạng này lạ, mấy câu khác dễ hơn có trong slide)

Cho bảng số

NGÔ TIẾN ĐẠT – ĐH BÁCH KHOA TPHCM - 0932803350

X	0.1	0.3	0.6	0.9
у	2.4	3.7	3.2	4.3

Sử dụng đa thức nội suy Lagrange, hãy xấp xỉ đạo hàm cấp 1 của hàm tại x=0.5

Đáp số:
$$y'(0.5) \approx -2.6694$$

Bài giải

$$\text{Dặt } P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$y_i = a_0 + a_1 x_i + a_2 x_i^2 + a_3 x_i^3, i = 0,1,2,3$$

Ta có hệ phương trình:

$$\begin{pmatrix} x_1 - x_0 & x_1^2 - x_0^2 & x_1^3 - x_0^3 & y_1 - y_0 \\ x_2 - x_0 & x_2^2 - x_0^2 & x_2^3 - x_0^3 & y_2 - y_0 \\ x_3 - x_0 & x_3^2 - x_0^2 & x_3^3 - x_0^3 & y_3 - y_0 \end{pmatrix}$$

 a_1, a_2, a_3 là nghiệm của hệ phương trình

$$y'(x^*) \approx P'(x^*) = a_1 + 2a_2x^* + 3a_3(x^*)^2$$

a_1	a_2	a_3
5171	-1723	1135
240	36	36

$$y'(0.5) \approx P'(0.5) = \frac{5171}{240} + 2\frac{-1723}{36}(0.5) + 3\frac{1135}{36}(0.5)^2$$

Câu 8

Cho bảng số

X	1.1	1.7	2.4	3.3
y	1.3	3.9	4.5	α

Sử dụng đa thức nội suy Newton, tìm giá trị của α để đa thức nội suy có giá trị xấp xĩ đạo hàm tại x = 1.5 là y'(1.5)=2.8

Bài giải

$$\mathbf{D}\mathbf{a}\mathbf{t} \ P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$y'(x^*) \approx P'(x^*) = a_1 + 2a_2x^* + 3a_3(x^*)^2 = y^*$$

$$y_i = a_0 + a_1 x_i + a_2 x_i^2 + a_3 x_i^3$$

Giải hệ phương trình sau:

$$\begin{pmatrix} x_1 - x_0 & x_1^2 - x_0^2 & x_1^3 - x_0^3 & y_1 - y_0 \\ x_2 - x_0 & x_2^2 - x_0^2 & x_2^3 - x_0^3 & y_2 - y_0 \\ 1 & 2x^* & 3x^{*2} & y^* \end{pmatrix}$$

Ta có a₁, a₂, a₃ là 3 nghiệm của hệ phương trình

Từ
$$y_o = a_0 + a_1 x_0 + a_2 x_0^2 + a_3 x_0^3 \Rightarrow a_0$$

$$\alpha = a_0 + a_1 x_3 + a_2 x_3^2 + a_3 x_3^3$$

	a_1	\mathbf{a}_2	\mathbf{a}_3	a_0	α
	44.810566	-22.644688	3.840518	-26.427049	12.86386
STO	В	C	D	A	

Câu 9(còn mấy dạng nữa, xem thêm slide cho chắc cũng dễ ah)

Cho tích phân $I = \int_{1.3}^{2.5} \ln \sqrt{x+6} dx$. Hãy xấp xỉ tích phân I bằng công thức hình thang mở rộng với n=8

Đáp số: I=1.2395 TẠI LIỆU SƯU TẬP

Bài giải

Đặt
$$f(x) = \ln \sqrt{x+6}$$
; a=1.3'; b=2.5; $h = \frac{b-a}{n}$

Nhập vào máy tính

"
$$A = A + \frac{h}{2} [f(X) + f(X+h)] : X = X + h$$
"

Cho A ban đầu bằng 0, X ban đầu bằng a, nhấn "=" cho tới khi X = b - h

Câu 10

Cho bảng số

X	1.0	1.2	1.4	1.6	1.8	2.0	2.2
f(x)	2	3.3	2.4	4.3	5.1	6.2	7.4

Sử dụng công thức Simpson mở rộng tính tích phân $I = \int_{1.0}^{2.2} \left[xf^2(x) + 2.2x^3 \right] dx$

 $heta \hat{o} : I=59.8250$

Bài giải

Đặt
$$F(X,Y)=XY^2+2.2X^3$$

$$h = x_1 - x_0 = 0.2$$

X	1.0	1.2	1.4	1.6	1.8	2.0	2.2
f(x)	2	3.3	2.4	4.3	5.1	6.2	7.4
k	0	1	2	3	4	5	6
В	1	4	2	4	2	4	1

Nhập vào máy tính

"
$$A = A + B \frac{h}{3} F(X,Y) : X = X + h$$
"

A ban đầu bằng 0, X ban đầu bằng x_0 , Y nhập theo bảng.

	1	ở vị trí đầu và cuối
В	2	ở vị trí chẵn ở giữa
	4	ở vị trí lẻ, ở giữa

Câu 11

TÀI LIỆU SƯU TẬP

Cho bài toán Cauchy

$$\begin{cases} y' = 2x + x \sin(x + 2y), x \ge 1\\ y(1) = 2.4 \end{cases}$$

Sử dụng phương pháp Runge-Kutta bậc 4 xấp xỉ y(1.2) với bước h=0.2

$$\hat{D}$$
áp số: $y(1.2)=2.8449$

Bài giải

$$D$$
ăt $f(X,Y)=2X+X\sin(X+2Y)$

$$x_0=1; y_0=2.4$$

Nhập vào máy tính hàm h.f(X,Y)

"CALL"

X	Y	STO
\mathbf{x}_0	\mathbf{y}_0	A
$x_0+h\div 2$	$y_0+A\div 2$	В
$x_0+h\div 2$	$y_0+B\div 2$	С
x_0+h	y_0+C	D

Ta có:

$$y_1 = y_0 + (A+2B+2C+D) \div 6$$

NHỚ ĐỔI QUA RADIAN

Câu 12

Cho bài toán Cauchy

$$\begin{cases} y''(x) = 4y'' - xy' + 2x^2y + 2; 1 \le x \le 1.8 \\ y(1) = 1.2; y'(1) = 1.1; y''(1) = 2.1 \end{cases}$$

Dùng hệ phương trình vi phân cấp 1. Sử dụng công thức Euler, giải gần đúng phương trình vi phân với bước chia h=0.2

$$y(1.8)=3.041$$

Bài giải

Đặt
$$y_1 = y'$$
; $y_2 = y'' \rightarrow y_1' = y_2$

$$y_2'=4y_2-xy_1+2x^2y+2$$

$$y(1) = 1.2$$
; $y_1(1) = 1.1$; $y_2(1) = 2.1$ HCMUT-CNCP

Nhập vào máy tính

"
$$C = Y + hA$$
: $D = A + hB$: $B = B + h(4B - XA + 2X^2Y + 2)$: $X = X + h$: $Y = C$: $A = D$ "

"CALC"

$$Y \rightarrow y_0$$
; $A \rightarrow y_{10}$; $B \rightarrow y_{20}$; $X \rightarrow x_0$

Lấy kết quả ở "C"

X	1.2	1.4	1.6	1.8
Y	1.4200	1.7240	2.2056	3.041

Câu 13

$$\begin{cases} y''(x) = 4y' + x^2y = 2.6; 1 \le x \le 1.6 \\ y(1) = 0.3; y'(1) = 1.1 \end{cases}$$

Dùng hệ phương trình vi phân cấp 1. Sử dụng công thức Euler cải tiến, giải gần đúng phương trình vi phân với bước chia h=0.2

y(1.6)=3.9626

Bài giải

Đặt
$$z = y'; z' = y'' \rightarrow z(1)=1.1$$

$$\begin{cases} y' = z; y(1) = 0.3; z(1) = 1.1 \\ z' = 4z + x^2y + 2.6 \end{cases}$$

$$\begin{cases}
K1y = hz_i \\
K1z = h(4z_i + x_i^2 y_i = 2.6) \\
K2y = h(z_i + K1z) \\
K2z = h(4[z_i + K1z] + x_{i+1}^2[y + K1y] + 2.6) \\
y_{i+1} = y_i + (K1y + K2y)/2 \\
z_{i+1} = z_i + (K1z + K2z)/2
\end{cases}$$

$$K1y \rightarrow A$$
; $K1z \rightarrow B$; $K2y \rightarrow C$; $K2z \rightarrow D$

Nhập vào máy tính (lưu ý máy tính không đủ độ dài nên "0.2" bấm ".2")

"A=.2M:

$$B=.2(4M+X^2Y+2.6)$$
:

$$C=.2(M+B)$$
:

ÀI LIỆU SƯU TẬP

X=X+.2:

$$D=.2(4(M+B)+X^2(Y+A)+2.6)$$
:

$$Y=Y+(A+C)\div 2$$
:

$$M=M+(B+D)\div 2"$$

"CALC"

$$x_0=1 \rightarrow X; \quad y_0=0.3 \rightarrow Y; \quad z_0=1.1 \rightarrow M;$$

Lấy kết quả ở "Y"

X	1.2	1.4	1.6
у	0.6660	1.6301	3.9626

Câu 14(câu này 10 ăn 1 không dễ nuốt, mà hình như chắc chắn có)

Cho bài toán biên tuyến tính cấp 2

$$\begin{cases} xy "+ x^2y'-4.6y = 2 + 2(x+2)^2; 0.4 \le x \le 1.2 \\ y(0.4) = 0.3; y(1.2) = 2.6 \end{cases}$$

Sử dụng phương pháp sai phân hữu hạn , hãy xấp xỉ giá trị của hàm y(x) trên đoạn [0.4;1.2] với bước chia h=0.2

 $\theta \dot{a} p \ s \dot{o} : \ y(0.6) = -0.3821$

y(0.8) = -0.1215

y(1.0)=0.8932

Bài giải

$$D$$
ăt $p(x)=x$

$$q(x)=x^2$$

$$r(x) = -4.6$$

$$f(x) = 2 + 2(x+2)^2$$

a = 0.4

b=1.2

h=0.2

 $x_1=a+h=0.6$

 $x_2 = a + 2h = 0.8$

 $x_3 = a + 3h = 1.0$

alpha = 0.3

beta = 2.6

Nhập vào máy tính Casio (Không dùng máy vinacal)

"A=
$$p(x) \div h^2$$
: B = $q(x) \div 2 \div h$: C = A - B: $r(x) - 2A$: D = A + B: $f(x) - MC - YD$ "

(4;5;6)

"CALL"

$$X? \rightarrow x_1$$
; $M? \rightarrow alpha; y? \rightarrow 0$

$$X? \rightarrow x_2 \; ; M? \rightarrow 0 \; ; \; y? \rightarrow 0$$
 (3;4;5;6)

$$X? \rightarrow x_3$$
; $M? \rightarrow 0$; $y? \rightarrow beta$ (3;4;6)

Ta có bảng giá trị

15	0.9	14.1	-34.6(1)	15.9(2)	11.29(3)
20	1.6	18.4(4)	-44.6(5)	21.6(6)	17.68(7)
25	2.5	22.5(8)	-54.6(9)	27.5	-51.5(10)

Lấy các giá trị theo vị trí như trên ráp vào hệ phương trình 3 phương trình:

$$\begin{cases} (1)x + (2)y + 0.z = (3) \\ (4)x + (5)y + (6)z = (7) \\ 0.x + (8)y + (9)z = (10) \end{cases}$$

Giải hệ phương trình ra ta được y(0.6); y(0.8); y(1.0), (theo đúng thứ tự)

Câu 15

Cho hàm $f(x) = (x^2 + 1)e^{2x} - \ln(x^4 + 2)\sin(3x + 1)$. Sử dụng sai phân hướng tâm xấp xỉ f'(0.7),f''(0.7) với bước chia h=0.15.

Bài giải

$$X^*=0.7$$

Nhập vào máy tính hàm f(x)

"
$$(X^2+1)e^{2X} - \ln(X^4+2)\sin(3X+1)$$
"

"CALC"

CALC		BÅI	HCMUT	- CNCP
	OT?	001	11011101	01101

	STO
X^*+h	A
X*-h	В
X^*	С

Ta có:

$$f'(0.7) = \frac{A - B}{2h}$$

$$f''(0.7) = \frac{A - 2C + B}{h^2}$$

