<u>LAB – 2</u>

Name: Gandevia Keval Dharmeshbhai

Sem: VII

Roll No: CE046

Subject: Image Processing

<u>Aim:</u> Implement basic intensity transformation functions such as image negatives, log transformations, power-law transformations, contrast stretching.

Q. 1: Take your own grayscale photo and apply negative transformation.

* Code:

```
a_1.m 
img = imread('Keval_Image.jpg');
gry = rgb2gray(img);

subplot(2, 2, 1);
imshow(gry);

neg_img = 255 - gry;
subplot(2, 2, 2);
imshow(neg_img);
```

* Output:

Q. 2: Consider image ex_log.tif. Enhance the image by applying log transformation.

Explanation: After applying any transformation, if we apply mat2gray function, then we would be able to get the original image.

❖ Code:

```
a_1.m × a_2.m × +
       img = imread('ex_log.tif');
       img = double(img);
       subplot (2, 3, 1);
       imshow(img, []);
       new_img = log(img + 1);
6 -
     subplot(2, 3, 2);
8 -
     imshow(new img);
9
10 -
     n_nrm = mat2gray(new_img);
11 -
     subplot(2, 3, 3);
12 -
       imshow(n_nrm);
13
```


Q. 3: Consider images ex_power1.tif and ex_power2.tif and enhance them with power law transformation.

Explanation: During enhancing the image, if we kept gamma greater than 1 then it will brighten the image and if we kept gamma less than 1 then it will lighten the image.

❖ Code:

```
Editor - E:\IP_LAB_2_CE018\a_3.m
  a_1.m × a_2.m × a_3.m × +
       img_powerl = imread('ex_powerl.tif');
       img powerl = double(img powerl);
 3
 4 -
       subplot (2, 2, 1);
 5 -
       imshow(img powerl, []);
 6
      new power1 = power(img power1, 0.5);
 7 -
      subplot (2, 2, 2);
 8 -
 9 -
       imshow(new powerl, []);
10
       img power2 = imread('ex power2.tif');
11 -
12 -
       img power2 = double(img power2);
13
14 -
       subplot(2, 2, 3);
15 -
       imshow(img power2, []);
16
17 -
       new_power2 = power(img_power2, 3.8);
18 -
       subplot (2, 2, 4);
19 -
       imshow(new_power2, []);
20
```

❖ Output:

Q. 4: Consider your over exposed photo and enhance it by power law transformation. Specify the value of gamma which is suitable for this enhancement.

❖ **Explanation:** Over exposed image means there is too much light in it. Therefore, we need to enhance that image to get back original image. For that we can use power law transformation with the gamma value greater than 1 as it brightens the image.

❖ Code:

```
Editor - E:\IP_LAB_2_CE018\a_4.m
   a_1.m \times a_2.m \times a_3.m \times a_4.m \times +
        img = imread('lenna img.png');
 2 -
       img = rgb2gray(img);
3
      overExposed = img + 100;
       overExposed = double(overExposed);
5 -
      subplot(2, 2, 1);
        imshow(overExposed, []);
8
      new img = power(overExposed, 25);
10 -
      subplot (2, 2, 2);
11 -
      imshow(new_img, []);
```


Q. 5: Consider your over exposed photo and enhance it by power law transformation. Specify the value of gamma which is suitable for this enhancement.

❖ **Explanation:** Under exposed image means there is not enough light in it. Therefore, we need to enhance that image to get back original image. For that we can use power law transformation with the gamma value less than 1 as it lightens the image.

❖ Code:

Q. 6: Contrast stretching example: A 3 X 3 bits/pixel image is given by [7 12 8, 16 9 6, 10 15 1]. Apply contrast stretch to the image so that the new image has a dynamic range of [0, 255].

Also show the output image. Sketch the transformation you used for contrast stretching.

	B
* FON 8=12	* FOO 0 = 10:
$S = \left(\frac{25-0}{16-1}\right)\left(12-1\right)+6$	
5 = 187	S=153
S= (055-0) (8-1) + 6	\$ = (255-0) (15-1) + 0
[1 = 119] (3 -) Decision of the state of th	(16-+)
* FOO. 7 = 16:	and himself of the second
16-1	$-S = (255 - 0) \cdot (1 - 1) + 0$ $-S = (255 - 0) \cdot (1 - 1) + 0$
x Fox x = 9:	Rodred wood
$S = \left(\frac{0.55 - 0}{16 - 1}\right) \left(9 - 1\right) + 0$	* output image
(= 136)	102 187 119 QUI 136 85 153 Q38 0
* FOX X=6:	
$S = \begin{pmatrix} 0.55 - 0 \\ 16 - 1 \end{pmatrix} \begin{pmatrix} 6 - 1 \end{pmatrix} + 0$	

Q. 7: Do contrast stretching for the image ex_contrast.tif. Obtain contrast stretched image from low contrast image and apply thresholding.

❖ Code:

```
a_7.m 🖾
 1 pkg load image
 3 img = imread('ex contrast.tif');
 5 subplot(2, 3, 1);
 6 imshow(img);
 8 \text{ r_max} = \text{max(max(img))};
 9 r_min = min(min(img));
 10
11 s_{max} = 255;
12 s_{min} = 0;
13
14 new_img = round(((s_max - s_min) / (r_max - r_min)) * (img - r_min) + s_min);
15 subplot (2, 3, 2);
16 imshow(new_img, []);
17
18 % applying thresholding
19 thresholdingImg = im2bw(new img, 0.6);
20 subplot (2, 3, 3);
21 imshow(thresholdingImg);
```


Q.8: Take any photo of yours:

a) Convert it into gray scale.

❖ Code:

b) Create a function that would decrease the contrast of this image.

Code:

```
a_8.m × decrease_contrast.m × +
      img = imread('Keval Image.jpg');
2 -
      img = rgb2gray(img);
      subplot (2, 3, 1);
      imshow(img);
5 -
      title('Grayscale Image');
6
7 -
      lowing = decrease contrast(img);
8 -
      subplot(2, 3, 2);
9 -
      imshow(img);
10 -
      title('Low Contrast Image');
```

```
Editor - D:\SEM - 7\IP\LAB - 2\decrease_contrast.m
 a_8.m × decrease_contrast.m × +
2 -
         [m, n] = size(img);
3 -
         r_{max} = max(max(img));
4 -
         r_min = min(min(img));
5
        for i = 1 : m
7 -
            for j = 1 : n
8 -
                 lowimg(i, j) = ((155 - 0) / (r_max - r_min)) * (img(i, j) - r_min);
9 -
             end
10 -
          end
     end
11 -
```


c) Enhance the contrast of that image using piecewise linear operation for contrast stretching.

❖ Code:

```
a_8.m × decrease_contrast.m × +
13 -
      rangel = [];
14 -
      range2 = [];
15 -
      range3 = [];
      [r,c] = size(lowimg);
16 -
17 - - for i = 1 : r
18 - - for j = 1 : c
19 -
              if(lowimg(i,j) < 110)
20 -
                   rangel(end+l) = lowimg(i,j);
21 -
              elseif(lowimg(i,j) < 140)</pre>
22 -
                   range2(end+1) = lowimg(i,j);
23 -
               elseif(lowimg(i,j) < 255)
24 -
                   range3(end+1) = lowimg(i,j);
25 -
               end
26 -
           end
27 -
      end
```

```
a_8.m ×
            decrease_contrast.m ×
28
29 -
        rmax1 = max(rangel);
30 -
        rmax2 = max(range2);
31 -
       rmax3 = max(range3);
32 -
       rmin1 = min(rangel);
33 -
       rmin2 = min(range2);
34 -
       rmin3 = min(range3);
35
36 -
       smax1 = 109;
37 -
       sminl = 0;
       smax2 = 139;
38 -
39 -
       smin2 = 110;
40 -
       smax3 = 255;
41 -
       smin3 = 140;
42
```

```
a_8.m × decrease_contrast.m × +
42
43 - for i = 1 : r
44 - for j = 1 : c
45 -
               if(lowimg(i,j) < 110)
                   new img(i,j) = ((smaxl - sminl) / (rmaxl - rminl)) * (lowing(i,j) - rminl) + sminl;
46 -
47 -
               elseif(lowimg(i,j) < 140)</pre>
48 -
                  new img(i,j) = ((smax2 - smin2) / (rmax2 - rmin2)) * (lowimg(i,j) - rmin2) + smin2;
49 -
               elseif(lowing(i,j) < 255)
50 -
                   new img(i,j) = ((smax3 - smin3) / (rmax3 - rmin3)) * (lowing(i,j) - rmin3) + smin3;
51 -
               end
52 -
           end
53 -
      end
54 -
       subplot (2, 3, 3);
55 -
       imshow(new img);
56 -
       title('Piecewise Image');
```

