Pontificia Universidad Católica del Perú

Escuela de Posgrado

Análisis Complejo (semana 10)

Residuos

1. Para un ciclo $\gamma \subset \mathbb{C}$ cuando el subconjuto $\Omega \subset \{z \in \mathbb{C} : \eta(\gamma, a) = 1\}$ induce la inclusión del complemento $\mathbb{C} - \Omega \subset \{z \in \mathbb{C} : \eta(\gamma, a) \in \{0, \nexists\}\}\$ y f(z) es analítica en la traslación $\gamma + \Omega$, probar que

$$\int_{\gamma} f(z) = 0 \quad y \quad f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{w}{w - z} dw, \quad \forall z \in \Omega.$$

2. Si f(z) es analítica en la traslación $\gamma + \Omega$ (excepto en las singularidades) con Ω como en la pregunta 1 (la region limitada por γ), probar que

$$\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{j} Res_{a_{j}} f(z),$$

donde la suma recorre todas la singularidades a_i .

3. Sea f(z) una función analítica en un abierto U que satisface |f(z)-1|<1 para todo $z \in U$. Probar que

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

- sucede para cualquier curva cerrada $\gamma \subset U$. 4. El polinomio $p(z)=z^4-z^3-z+5$ tiene raiz simple en $\{z:1<|z|<2\}$ y tiene una en cada cuadrante.
- 5. Sea f(z) una función analítica en U, exepto en los polos b_j con a_j los ceros de f(z) se cumple

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} \eta(\gamma, a_i) - \sum_{i} \eta(\gamma, b_i)$$

para cualquier ciclo γ homologo a cero en U que no pasa por ningún cero o polo.

6. Sea γ un ciclo, homologo a cero en U tal que $\eta(\gamma,z) \in \{0,1\}$ para todo que no está en γ . Si f(z) y g(z) son analíticas en U y satisfacen

$$|f(z) - g(z)| < |f(z)|, \quad \forall z \in \gamma.$$

Probar que f(z) y g(z) tienen el mismo número de ceros encerrados por γ .

- 7. Considere dos funciones analíticas f(z) y g(z) en un abierto U. Probar la equivalencia de las siguientes afirmaciones
 - a) Existe $a \in U$ tal que $f^{(n)}(a) = g^{(n)}(a)$ para todo $n \ge 0$.
 - b) Existe un conjunto $A \subset U$ que admite un punto de acumulación en U tal que f(a) =q(a) para todo $a \in A$
 - c) Existe un conjunto abierto $V \subset U$ tal que f(v) = g(v) para todo $v \in V$
- 8. Encontrar el número de raices de $z^4 6z + 3 = 0$ que tiene módulo entre 1 y 2.
- 9. Hallar los ceros, los polos y los residuos de las siguientes funciones: (a) $\frac{1}{z^2 + 5z + 6}$

(b)
$$\frac{1}{(z^2-1)^2}$$
 (c) $\frac{1}{sen^2(z)}$ (d) $\frac{z^2+1}{z}$

- 10. Calcular la integral $\int_C \frac{z^2}{(z+1)(z-1)^2} dz$, donde C es la circunferencia centrada en 1 y radio 1.
- 11. Encontrar el residuo de $\frac{z^2}{z^2-1}$ en b=1
- 12. Mostrar que 3/4 es el residuo de $\frac{z^2}{(z+1)(z-1)^2}$ en b=1