

Video Lecture 3 Week 2 Essential sequential designs

ENGN4213/6213

Digital Systems and Microprocessors

What's in this lecture

- Essential sequential designs
 - Counters
 - Clock dividers
 - Shift registers

Resources

- Wakerly (5th edition) 11.1.1-11.1.2 for counters
- Wakerly (5th edition) 11.2.1 for shift registers

Some uses of flip-flops

- Last week we discussed D flip-flops
 - Circuits which sample the value at their D input as an active edge is presented to their *clock* input port
- D flip-flops are the type used in FPGA hardware
- Today we start off with some basic but essential and widespread designs which use flip-flops
 - Today we will only treat seemingly simple designs.
 - Bear in mind that sequential designs need not be much more difficult than this to design. Complexity is usually created through the interaction of many simple sub-units.

The "T" flip flop

- I promised that we would only learn D flip flops. This is not really a different type, just a variation.
- T stands for Toggle.
- If T is high, this design switches between logic values each time an active edge appears at the clock.
- If T is low, the flip-flop holds the previous value.

 This example, incidentally, shows that feedback is allowed in sequential circuits, can you explain why?

Asynchronous counter ("ripple" counter)

 Counter: a circuit which returns the number of active edges observed at the input

• **Asynchronous:** the update of the count bits is not simultaneous with the input clock (due to a "ripple" effect). This can be undesirable in some applications.

Synchronous counter

• Synchronous: all flip-flops in the chain switch at the same time.

Counters as clock dividers

- A binary counter can be used as a 2ⁿ clock divider. You can see that the Q0 output toggles at ½ the frequency of CLK, Q1 at ¼, etc.
 - Sometimes called modulo-m counters as they count up to m
- We will use this in some applications where we want the system (or parts of it) to run at slower clock speeds.

 Class exercise. How could we design a counter that counts up to an arbitrary number? (not a power of 2)

Arbitrary *m* up-counter

- The decoder associates the binary sequence for *m* with a 1 output.
- Instead of connecting the equality result to the counter reset, it can be used it to activate some other circuit event. Such use is called an event sequencer.

The heartbeat generator

- A system that gives a 1 output for 1 clock period in duration every n clock cycles (arbitrary n)
 - Compare below: a clock, clockdivider and heartbeat generator output (and the beat of a real heart).

 How would you modify the sequential design shown on the previous slide to achieve this behaviour?

Shift registers

- An assembly of n flip-flops with a provision for shifting data between them. E.g.,
- At each active clock edge, data is shifted from a FF to the next
 - The one on the right is called a serial-in, serial-out shift register.
 Data words are read at the input and produced at the output one bit at a time.

Shift registers (2)

- As well as serial-in serial-out (SISO)
 register, there are also others where
 the data word is read in or out with all
 bits at once (parallel).
 - Parallel operation is faster but requires more wires.
 - The circuit on the right can be used either as SISO or as SIPO (serial-in, parallel-out).
 - What would PIPO and PISO look like?

Shift registers (3)

- Another distinction between registers is given by the possible shift directions of data.
 - In first-in, first-out (FIFO) registers, data flows through in a queue fashion
 - In last-in, first-out (LIFO) registers, you can imagine data as stacked in a pile, with the last added item being on top
 - You will encounter FIFO and LIFO registers in LAB3
- Exercise before class... Given one of the types above, could you design the relevant register?

FIFO and LIFO

FIFO

LIFO

Summing up

- We have seen and discussed some basic uses of flip-flops
 - Counters
 - Clock dividers
 - Shift registers
- We have seen that feedback is admissible in sequential circuits and in fact it can be rather useful.
- We have again encountered matters of synchrony and timing.
 Synchrony errors are by far the most common issue with designs so I will insist on timing-related concepts over and over throughout the course.