Linked list Basis

ant Ass)	(1) random (1) -> OU; -> how if we store	oid be	not continous	A(3) A(4)
Con you stook	10 01 10	10,00	mare	Memony (RAM)
ty contig	ous locati	om. Eme	non fra	gmentation]
	At Start	A4 ~		At Kth parition (vardon) O(N)
Incertion	OW	00	()	
Delation	OLN)	04)	OCN)
3 * 121 1	31 7 => 31 40	uff existing right & t	epent en inc	s ert

Linked list

Cran Node &

inf data;

Node next;

Node (int val) &

self. data = val

self. next = null

3

Create a list of 4 values -> A(u)

Node head = new Mode (A(01))

head.next = new Node (A(11))

head.next = new Node (A(11))

head.next.next = new Node (A(23))

head.next.next = new Node (A(23))

head.next.next = new Node (A(33))

head.next.next.next = new Node (A(33))

Node curr= head

while (curr!= null) {

print (curr.data)

curr= curr.next

I terate over linked list

10 - 20 - 30 - null curr curr next

=) 10 20 30

Create LL using 100f

Nocle head = new Node (A101)

curr = head

for (i=1; i<n; ++i) {

curr.next = new Node (A111)

curr = curr.next

3

Insert Af Start

Refore

Insert Af Start

Node insertAt Start (head, val) & head

Node newNode: new Node (val)

NewNode newt = head

TC: D(1)

head = new Node

return head

Insert at Kth parition (random)

inkert at K=2

to reach curr, iterate

Node insurt At K (node, val, K) }

new Node z new Node (val)

curr= head

forlizo; ick-1; -1+i) }
wrr= wrr. next

x { newNode. next = wrr. next

Snew Node. nent = curr. nent > Curr. nent = new Node

return head

TC:OCK) > OW)

3

Dunton order. Print LL in reverse 1->2->3->4->5->nul Print (head, next) Print (head) main ques tron printaevse (nead) void print Reverse (Node curr) & if (mrs == null) } return] print Reverse (mrr. next) print (urr. data) [] -> [2] -> [3] -> M -> Mull print Rever (1) -> print Reverse (2) -> print Revesse (3) print Revs (null) = print Revese (M)

Recommendations

- 1. Wrik code on paper
- 2. Dy vu
- 3. Neuer use " hit & toial"
- 4. Edge Cases > Uis null? (nead=null) Size of 22=1?
 - 8i2 2/3?
 - problem specific