RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	101804.331A
Source:	1FWO,
Date Processed by STIC:	4/2/07

ENTERED

IFWO

RAW SEQUENCE LISTING DATE: 04/02/2007 PATENT APPLICATION: US/10/804,331A TIME: 16:00:49

Input Set : A:\9368-5 SUBSTITUTE.ST25.TXT
Output Set: N:\CRF4\04022007\J804331A.raw

3 <110> APPLICANT: Smith, Johnathan F. Kamrud, Kurt I. 4 Rayner, Jon O. 5 7 <120> TITLE OF INVENTION: IMPROVED ALPHAVIRUS REPLICONS AND HELPER CONSTRUCTS 9 <130> FILE REFERENCE: 9368-5 11 <140> CURRENT APPLICATION NUMBER: US 10/804,331A 12 <141> CURRENT FILING DATE: 2004-03-19 14 <150> PRIOR APPLICATION NUMBER: US 60/456,196 15 <151> PRIOR FILING DATE: 2003-03-20 17 <160> NUMBER OF SEQ ID NOS: 44 19 <170> SOFTWARE: PatentIn version 3.3 21 <210> SEO ID NO: 1 22 <211> LENGTH: 18 23 <212> TYPE: PRT 24 <213> ORGANISM: Artificial 26 <220> FEATURE: 27 <223> OTHER INFORMATION: Alphavirus attenuating amino acid insertion sequence 29 <400> SEQUENCE: 1 31 Ile Thr Ser Met Asp Ser Trp Ser Ser Gly Pro Ser Ser Leu Glu Ile 32 1 10 35 Val Asp 39 <210> SEQ ID NO: 2 40 <211> LENGTH: 357 41 <212> TYPE: DNA 42 <213> ORGANISM: Artificial 44 <220> FEATURE: 45 <223> OTHER INFORMATION: Spacer sequence generated by AluI digest of pCDNA 47 <400> SEQUENCE: 2 48 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 60 50 acgttgcgca aactattaac tggcgaacta cttactctag ctaccaactc tttttccgaa 120 52 ggtaactggc ttcagcagag cgcagatacc aaatactgtt cttctagtgt agccgtagtt 180 54 aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 240 56 accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata 300 58 gttaccggat aaggegeage ggtegggetg aaeggggggt tegtgeacae ageceag 357 61 <210> SEQ ID NO: 3 62 <211> LENGTH: 342 63 <212> TYPE: DNA 64 <213> ORGANISM: Artificial 66 <220> FEATURE: 67 <223> OTHER INFORMATION: Spacer sequence generated by AluI digest of pCDNA 69 <400> SEQUENCE: 3 70 ctattccaga agtagtgaqq aqqctttttt ggaggcctag gcttttqcaa aaaqcttgta 60

72 tatccatttt cggatctqat caaqagacag gatgaggatc gtttcqcatq attgaacaag

76 cacaacagac aatcggctgc tctgatgccg ccgtgttccg gctgtcagcg caggggcgcc 78 cggttctttt tgtcaagacc gacctgtccg gtgccctgaa tgaactgcag gacgaggcag	180 240 300 342
89 <223> OTHER INFORMATION: Spacer sequence generated by AluI digest of	pCDNA
91 <400> SEQUENCE: 4	
92 ctcatttttt aaccaatagg ccgaaatcgg caaaatccct tataaatcaa aagaatagac	60
	120
3.0000000000000000000000000000000000000	180
22	240
100 gagcccccga tttagag 103 <210> SEQ ID NO: 5	257
103 <210> SEQ 1D NO: 5 104 <211> LENGTH: 383	
105 <212> TYPE: DNA	
106 <213> ORGANISM: Artificial	
108 <220> FEATURE:	
109 <223> OTHER INFORMATION: Spacer sequence generated by AluI digest of	pCDNA
111 <400> SEQUENCE: 5	
112 ctgcgcaagg aacgcccgtc gtggccagcc acgatagccg cgctgcctcg tcctgcagtt	60
114 cattcagggc accggacagg tcggtcttga caaaaagaac cgggcgcccc tgcgctgaca	120
116 gccggaacac ggcggcatca gagcagccga ttgtctgttg tgcccagtca tagccgaata	180
118 gcctctccac ccaageggee ggagaacetg egtgeaatee atettgttea ateatgegaa	240
120 acgatectea teetgtetet tgateagate egaaaatgga tatacaaget eacteattag	300
122 gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat tgtgagcgga	360
124 taacaatttc acacaggaaa cag	383
127 <210> SEQ ID NO: 6	
128 <211> LENGTH: 579 129 <212> TYPE: DNA	
130 <213> ORGANISM: Artificial	
132 <220> FEATURE:	
133 <223> OTHER INFORMATION: Spacer sequence generated by AluI digest of	pCDNA
135 <400> SEQUENCE: 6	F
136 ctgcaataaa caagttgggg tgggcgaaga actccagcat gagatccccg cgctggagga	60
138 tcatccagcc ggcgtcccgg aaaacgattc cgaagcccaa cctttcatag aaggcggcgg	120
140 tggaatcgaa atctcgtgat ggcaggttgg gcgtcgcttg gtcggtcatt tcgaacccca	180
142 gagtcccgct cagaagaact cgtcaagaag gcgatagaag gcgatgcgct gcgaatcggg	240
144 agcggcgata ccgtaaagca cgaggaagcg gtcagcccat tcgccgccaa gcttgtatat	300
146 ccattttcgg atctgatcaa gagacaggat gaggatcgtt tcgcatgatt gaacaagatg	360
148 gattgcacgc aggttctccg gccgcttggg tggagaggct attcggctat gactgggcac	420
150 aacagacaat cggctgctct gatgccgccg tgttccggct gtcagcgcag gggcgcccgg	480
152 ttctttttgt caagaccgac ctgtccggtg ccctgaatga actgcaggac gaggcagcgc	540
154 ggctatcgtg gctggccacg acgggcgttc cttgcgcag	579
157 <210> SEQ ID NO: 7	
158 <211> LENGTH: 749	

<212> TYPE: DNA	
<213> ORGANISM: Artificial	
	pCDNA
<400> SEQUENCE: 7	
	60
	120
	180
gagtcccgct cagaagaact cgtcaagaag gcgatagaag gcgatgcgct gcgaatcggg	240
ageggegata eegtaaagea egaggaageg gteageeeat tegeegeeaa getetteage	300
aatatcacgg gtagccaacg ctatgtcctg atagcggtcc gccacaccca gccggccaca	360
• • • • • • • • • • • • • • • • • • • •	420
	480
	540
	600
	660
	720
	749
-	
tggcgcgccg ctcggaattc cccctctccc	30
·	
	29
••	
	2.0
	30
CANOS DEĞOBUCE: II	
	<pre><213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Spacer sequence generated by AluI digest of <400> SEQUENCE: 7 ctgcaataaa caagttgggg tgggcgaaga actccagcat gagatccccg cgctggagga tcatccagcc ggcgtcccgg aaaacgattc cgaagccaa cctttcatag aaggcgggg tggaatcgaa atctcgtgat ggcagttgg gcgtcgcttg gtcggtcatt tcgaacccca gagtcccgct cagaagaact cgtcaagaag gcgatagaag gcgatagcget gcgaatcggg agcggcgata ccgtaaagca cgaggaagcg gtcagccat tcgccgccaa gctcttcagc aatatcacgg gtagccaacg ctatgtcctg atagcggcc gccacaccca gccggcacaa gtcgatgaat ccagaaaagc ggccatttc caccatgata ttcggcaagc agcatcgcc atgggtcacg acgagatcct cgccgtcggg catgcgccc ttgagcctgg cgaacagttc ggctggcgcg agcccctgat gctcttcgtc cagatcatcc tgatcgacaa gaccggcttc catccgagta cgtgctcgct cgatgcgatg tttcgcttgg tggtcgaatg ggcaggtagc cggatcaagc gtatgcagcc gccgcattgc atcagccatg atggatactt tctcggcagg agcaaggtga gatgacagga gatcctgcc cggcacttcg cccaatagca gccagtccct tcccgcttca gtgaccaacgt cgagcacag <210> SEQ ID NO: 8 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer <400> SEQUENCE: 8</pre>

238	cgatctagat tacgccccgc cctgccactc a	31
241	<210> SEQ ID NO: 12	
242	<211> LENGTH: 26	
243	<212> TYPE: DNA	
244	<213> ORGANISM: Artificial	
246	<220> FEATURE:	
247	<223> OTHER INFORMATION: PCR primer	
249	<400> SEQUENCE: 12	
250	cggaattcat tatcatcgtg tttttc	26
253	<210> SEQ ID NO: 13	
254	<211> LENGTH: 31	
255	<212> TYPE: DNA	
256	<213> ORGANISM: Artificial	
258	<220> FEATURE:	
259	<223> OTHER INFORMATION: PCR primer	
261	<400> SEQUENCE: 13	
262	cgggatcccc cctaacgtta ctggccgaag c	31
265	<210> SEQ ID NO: 14	
266	<211> LENGTH: 27	
267	<212> TYPE: DNA	
268	<213> ORGANISM: Artificial	
270	<220> FEATURE:	
271	<223> OTHER INFORMATION: PCR primer	
273	<400> SEQUENCE: 14	
274	aggcgcgcca ttatcatcgt gtttttc	27
277	<210> SEQ ID NO: 15	
278	<211> LENGTH: 29	
279	<212> TYPE: DNA	
280	<213> ORGANISM: Artificial	
282	<220> FEATURE:	
283	<223> OTHER INFORMATION: PCR primer	
285	<400> SEQUENCE: 15	
286	aggegegeee taggggtett teeeetete	29
289	<210> SEQ ID NO: 16	
290	<211> LENGTH: 42	
291	<212> TYPE: DNA	
292	<213> ORGANISM: Artificial	
294	<220> FEATURE:	
295	<223> OTHER INFORMATION: PCR primer	
297	<400> SEQUENCE: 16	
	gcggcatgcc aatcgccgcg agttctatgt aagcagcttg cc	42
	<210> SEQ ID NO: 17	
	<211> LENGTH: 26	
	<212> TYPE: DNA	
	<213> ORGANISM: Artificial	
	<220> FEATURE:	
	<223> OTHER INFORMATION: PCR primer	
	<400> SEQUENCE: 17	
310	cgggatccat ggctgcgaga gcgtca	26

313	<210> SEQ ID NO: 18	
314	<211> LENGTH: 28	
315	<212> TYPE: DNA	
316	<213> ORGANISM: Artificial	
318	<220> FEATURE:	
319	<223> OTHER INFORMATION: PCR primer	
321	<400> SEQUENCE: 18	
322	cgggatcctt attgagacaa ggggtcgc	28
	<210> SEQ ID NO: 19	
326	<211> LENGTH: 24	
327	<212> TYPE: DNA	
328	<213> ORGANISM: Artificial	
330	<220> FEATURE:	
331	<223> OTHER INFORMATION: PCR primer	
	<400> SEQUENCE: 19	
	ccctgctcgt gccagtgttg atgc	24
	<210> SEQ ID NO: 20	
	<211> LENGTH: 35	
339	<212> TYPE: DNA	
340	<213> ORGANISM: Artificial	
342	<220> FEATURE:	
343	<223> OTHER INFORMATION: PCR primer	
	<400> SEQUENCE: 20	
	acacgtgggg caaccctgat ttatgcctgt tgtcc	35
	<210> SEQ ID NO: 21	
350	<211> LENGTH: 30	
351	<212> TYPE: DNA	
352	<213> ORGANISM: Artificial	
354	<220> FEATURE:	
355	<223> OTHER INFORMATION: PCR primer	
	<400> SEQUENCE: 21	
	agttaactca aaaagagaaa acaaaaatgc	30
	<210> SEQ ID NO: 22	
	<211> LENGTH: 33	
363	<212> TYPE: DNA	
364	<213> ORGANISM: Artificial	
366	<220> FEATURE:	
367	<223> OTHER INFORMATION: PCR primer	
	<400> SEQUENCE: 22	
370	agatatette tettgaaaat aggaettgte cae	33
	<210> SEQ ID NO: 23	
374	<211> LENGTH: 25	
375	<212> TYPE: DNA	
376	<213> ORGANISM: Artificial	
378	<220> FEATURE:	
379	<223> OTHER INFORMATION: PCR primer	
381	<400> SEQUENCE: 23	
382	gttcccgttc cagccaatgt atccg	25
	<210> SEQ ID NO: 24	

Input Set : A:\9368-5 SUBSTITUTE.ST25.TXT
Output Set: N:\CRF4\04022007\J804331A.raw

Invalid <213> Response:

Use of "Artificial" only as "<213> Organism" response is incomplete, per 1.823(b) of New Sequence Rules. Valid response is Artificial Sequence.

Seq#:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28 Seq#:29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44 VERIFICATION SUMMARY

PATENT APPLICATION: US/10/804,331A

DATE: 04/02/2007

TIME: 16:00:50