Comparison of Ridge Regression With Random Forest Algorithm When Solving Boston Housing Problem

By: Fabio Eugenio dos Santos de Sampaio Doria

Introduction

<u>Aims</u>

- Implement Ridge Regression Machine learning method.
- Run and analyse performance on Boston Housing Problem Dataset.
- Repeat same process for Random Forest algorithm and compare the results.

Objectives

- Create program using Object-Oriented Design.
- Full implementation life cycle.
- Display data visualisation when using different parameters and Kernels.

Context – Why the issue matters

Significance of Boston Housing Dataset

• Individual Impact – Finding fair prices of houses for families

• Large-scale Impact (Economy) – House prices linked to consumer

spending

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	LSTAT	MEDV
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	2.94	33.4
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3	222	18.7	5.21	28.7

Labels

Significance of Comparing Algorithms

- Performance Can impact accuracy and speed of predictions
- Generalisation Under and over fitting issues can occur

Main Concepts

Regression in Machine Learning

- Supervised learning Provide labels to new unlabelled samples
 - Learn from a set of labelled samples, i.e., houses z
- Occurs when prediction set is infinite (house prices = Real Numbers)
- Sum of squares error equation is used to find line of best fit through data

Ridge Regression

- Improvement over regular regression algorithm, specifically overfitting
- Adds a 'penalty term' to the end of SSE equation
- Regularises the model by adding bias which decreases accuracy but improves overall performance

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)^2$$

$$SSE_{L2} = \sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{P} \beta_j^2$$

Main Concepts

Random Forest

- Breaks dataset down into smaller subsets.
 - At the same time deploys decision trees.
- Multiple models are trained, each using random subsets of the dataset.
- Average result of all models are average to find predicted value.

Benefits

- Resilient to overfitting due to large number of random subsets.
- Multiple trees can be trained in parallel, computationally more efficient.
- Easy to identify important features as they are

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)^2$$

$$SSE_{L2} = \sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{P} \beta_j^2$$

My approach – Progress so far

Preparation

- In-depth research on Ridge Regression and Random Forest algorithms
- Gather information from both articles and research papers
- Found datasets with different number of features for testing

Code

- Completed Ridge Regression model implementation into program
- Started implementation of Random Forest algorithm
- Using Test Driven Development (TDD) to follow modern software engineering principles

Conclusion – Further Steps

• Code

- Fully implement Random Forest algorithm
- Implement a proper graphical user interface (GUI)
- Add automatic tests that examine comparison of different kernels and parameters

Write-up

- Reflect and discuss findings, compare both results and come to a conclusion on both algorithms
- Detail specific issues with implementation, such as data structures and numerical methods needed

Summary

Main Goal

 Define the difference in performance between Ridge Regression and Random Forest algorithm.

How to get there

- Create program implementing both algorithms and run them on Boston Housing problem Dataset
 - Do so in a proper manner, i.e., proper software principles followed, full OOP design, user graphical interface.
- Program shows complete breakdown of results.
 - Data visualisation.
 - Shows results when using different parameters etc, for optimisation.