1 Veröffentlichungsnummer: 0 456 112 A1

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeidenummer: 91107095.1

2 Anmeldetag: 02.05.91

(1) Int. Cl.5: CO7C 215/50, C07C 251/54, C07C 323/29, C07C 323/47, C07D 307/42, C07D 307/14, C07D 309/20, C07D 333/16, C07D 317/28, C07D 409/12, C07D 407/12, //C07D339/06, A01N43/90,A01N43/02,

Priorität: 09.05.90 DE 4014986 20.10.90 DE 4033423

(43) Veröffentlichungstag der Anmeldung: 13.11.91 Patentblatt 91/46

84) Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI NL

(71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

@ Erfinder: Misslitz, Ulf, Dr. Am Herzel 40 W-6730 Neustadt(DE) Erfinder: Mever. Norbert, Dr. Dossenhelmer Weg 22 W-6802 Ladenburg(DE) Erfinder: Kast, Juergen

Kastanienstrasse 24

W-6737 Boehl-Iggelheim(DE) Erfinder: Goetz, Norbert, Dr.

A01N33/24

Schoefferstrasse 25 W-6520 Worms 1(DE)

Erfinder: Harreus, Albrecht, Dr.

Teichgasse 13

W-6700 Ludwigshafen(DE) Erfinder: Wuerzer, Bruno, Dr.

Ruedigerstrasse 13 W-6701 Otterstadt(DE) Erfinder: Walter, Helmut, Dr. **Gruenstadter Strasse 82** W-6719 Obrigheim(DE)

Erfinder: Westphalen, Karl-Otto, Dr.

Mausbergweg 58 W-6720 Speyer(DE)

Erfinder: Gerber, Matthias, Dr.

Ritterstrasse 3

W-6704 Mutterstadt(DE)

(S) Cyclohexenonoximether, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide.

© Cyclohexenonoximether

$$R^{2} \longrightarrow \begin{pmatrix} OH \\ N-O-A-Z-X_{n} \\ R^{1} \end{pmatrix}$$
 (I)

in der die Substituenten folgende Bedeutung haben:

R١

ggf. substituiertes Alkylen oder Alkenylen, in dem eine Methylengruppe durch ein Sauerstoff-, ein Α Schwefelatom, eine Sulfoxid-, eine Sulfongruppe oder -NRa- ersetzt ist,

- Z Phenyl; ein 5- oder 6-gliedriger Heteroaromat;
- X ggf. substitutertes Amino, Nitro, Cyano, Halogen, Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Carboxyl, C₁-C₄-Alkoxycarbonyl, ggf. substitutertes Benzyloxycarbony, Phenyl;
- n 0 bis 3 oder 1 bis 5 für den Fall, daß Z Halogen bedeutet;
- R² Alkoxyalkyl oder Alkylthioalkyl;
 - ggf. substituiertes Cycloalkyl oder Cycloalkenyl
 - ggf. substituierter 5-gliedriger gesättigter Heterocyclus mit ein oder zwei Heteroatomen
 - ggf. substituierter 6- oder 7-gliedriger Heterocyclus, mit 1-2 Heteroatomen und 0-2 Doppelbindungen,
 - ggf. substituierter 5-gliedriger Heteroaromat, mit 1-3 Heteroatomen
 - ggf. substituiertes Phenyl oder Pyridyl,

sowie ihre landwirtschaftlich nutzbaren Salze und Ester von C_1 - C_{10} -Carbonsäuren und anorganischen Säuren, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide.

Die Erfindung betrifft neue herbizid wirksame Cyclohexenonoximether der Formel I

$$R^{2} \longrightarrow \begin{array}{c} OH \\ N-O-A-Z-X_{n} \\ R^{1} \end{array}$$
 (1)

10 in der die Substituenten folgende Bedeutung haben:

R¹ eine C₁-C₆-Alkylgruppe;

- A eine ggf. C₁-C₃-Alkyl-substituierte C₃-C₆-Alkylen- oder C₄-C₆-Alkenylenkette, in der eine Methylengruppe durch ein Sauerstoff-, ein Schwefelatom, eine Sulfoxid-, eine Sulfongruppe oder -N(R^a)-, worin
 - R^a Wasserstoff, eine C_1 - C_4 -Alkylgruppe, eine C_3 - C_6 -Alkenylgruppe oder eine C_3 - C_6 -Alkinylgruppe bedeutet,

ersetzt ist;

5

15

20

25

30

35

40

45

50

55

- Z Phenyl, ein 5-gliedriger Heteroaromat mit ein bis drei Heteroatomen, ausgewählt aus einer Gruppe bestehend aus drei Stickstoffatomen und einem Sauerstoff- oder Schwefelatom,
 - ein 6-gliedriger Heteroaromat mit ein bis vier Stickstoffatomen;

X eine Aminogruppe -NR^aR^b, worin

Ra Wasserstoff, eine C₁-C₄-Alkylgruppe, eine C₃-C₆-Alkenylgruppe oder eine C₃-C₆-Alkinylgruppe und

R^b Wasserstoff, eine C₁-C₄-Alkylgruppe, eine C₃-C₆-Alkenylgruppe, eine C₃-C₆-Alkinylgruppe, eine C₁-C₆-Acylgruppe oder ein Benzoylrest, wobei der aromatische Ring ein bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe bestehend aus Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und C₁-C₄-Halogenalkyl bedeuten oder

Nitro, Cyano, Halogen, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, Carboxyl, C₁-C₄-Alkoxycarbonyl, Benzyloxycarbonyl, Phenyl, wobei die aromatischen Reste Zusätzlich einen bis drei der folgenden Substituenten tragen können: Nitro, Cyano, Halogen, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, Carboxyl, C₁-C₄-Alkoxycarbonyl, Benzyloxycarbonyl,

n 0 bis 3 oder 1 bis 5 für den Fall, daß Z Halogen bedeutet;

R² eine C₁-C₄-Alkoxy-C₁-C₆-alkyl- oder C₁-C₄-Alkylthio-C₁-C₆-alkylgruppe;

eine C_3 - C_7 -Cycloalkylgruppe oder eine C_5 - C_7 -Cycloalkenylgruppe, wobei diese Gruppen ein bis drei Substituenten tragen können, ausgewählt aus einer Gruppe bestehend aus C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio, partiell oder vollständig halogeniertem C_1 - C_4 -Alkyl, Hydroxy und Halogen:

ein 5-gliedriger gesättigter Heterocyclus der ein oder zwei Heteroatome enthält, ausgewählt aus einer Gruppe bestehend aus Sauerstoff und Schwefel, wobei der Heterocyclus noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe bestehend aus C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und partiell oder vollständig halogeniertem C₁-C₄-Alkyl;

ein 6- oder 7-gliedriger gesättigter, ein- oder zweifach ungesättigter Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus einer Gruppe bestehend aus Sauerstoff und Schwefel, wobei der Heterocyclus noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe bestehend aus Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und partiell oder vollständig halogeniertem C₁-C₄-Alkyl;

ein 5-gliedriger Heteroaromat, enthaltend ein bis drei Heteroatome, ausgewählt aus einer Gruppe bestehend aus zwei Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, wobei dieser Ring noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe bestehend aus Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy. C₁-C₄-Alkylthio, partiell oder vollständig halogeniertem C₁-C₄-Alkyl, C₂-C₅-Alkenyl, C₂-C₆-Alkenyloxy, partiell oder vollständig halogeniertem C₂-C₅-Alkenyl und C₁-C₄-Alkoxy-C₁-C₄-alkyl;

die Phenylgruppe oder die Pyridylgruppe, wobei diese Gruppen noch ein bis drei Reste tragen können, ausgewählt aus einer Gruppe bestehend aus Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertem C₁-C₄-Alkyl, C₃-C₆-Alkenyloxy, C₃-

C₆-Alkinyloxy und -NR^aR^b, worin R^a und R^b die oben genannte Bedeutung haben, bedeuten.

sowie ihr landwirtschaftlich nutzbaren Salze und Ester von C₁-C₁₀-Carbon-Säuren und anorganischen Säuren.

Die erfindungsgemäßen Cyclohexenone I haben offensichtlich sauren Charakter, d.h. sie können einfache Umsetzungsprodukte wie Salze von Alkali- oder Erdalkaliverbindungen oder Enolester bilden.

Die Verbindungen der Formel I können in mehreren tautomeren Formen auftreten, die alle vom Anspruch erfaßt werden.

In der Literatur sind Cyclohexenone der allgemeinen Formel I'

10

15

20

25

30

in der u.a.

- D Benzyl und E 2-Ethylthiopropyl (US-A 4 440 566);
- D Benzyl, But-2-enyl und E einen substituierten 5-gliedrigen Heteroarylrest (EP-A 238 021, EP-A 125 094);
- D Benzyl, But-2-enyl und E ein substituiertes Phenyl (EP-A 80 301);
- D But-2-enyl und E einen 5- bis 7-gliedrigen heterocyclischen Ring mit bis zu zwei O-, S-Atomen und mit bis zu zwei Doppelbindungen (EP-A 218 233)

bedeutet, als Herbizide beschrieben.

Es werden jedoch Verbindungen gesucht, die bei geringer Aufwandmenge hohe Selektivität aufweisen, d.h. unerwünschte Pflanzen bekämpfen, ohne dabei die Kulturpflanzen zu schädigen.

Entsprechend dieser Aufgabe wurden die neuen Cyclohexenonoximether der Formel I gefunden, die sich durch eine gute herbizide Wirkung gegen unerwünschte Gräser auszeichnen. Die Verbindungen sind mit breitblättrigen Kulturpflanzen sowie einige mit Gramineenkulturen wie Reis verträglich.

Die Cyclohexenone der Formel I können in an sich bekannter Weise aus schon bekannten Derivaten der Formel II (EP-A 80 301, EP-A-125 094, EP-A 142 741, US-A 4 249 937, EP-A 137 174 und EP-A 177 913) und den entsprechenden Hydroxylaminen der Formel III (Houben-Weyl, 10/1 S. 1181 ff) hergestellt werden (EP-A 169 521).

35

$$R^{2} \xrightarrow{OH} O + H_{2}N-O-A-Z-X_{n} \longrightarrow R^{2} \xrightarrow{OH} N-O-A-Z-X_{1}$$

$$III \qquad IIII \qquad I$$

40

45

50

Zweckmäßig führt man die Umsetzung in heterogener Phase in einem Lösungsmittel, bei einer ausreichenden Temperatur unterhalb von etwa 80°C, in Gegenwart einer Base durch und verwendet das Hydroxylamin III in Form seines Ammoniumsalzes.

Geeignete Basen sind z. B. Carbonate, Hydrogencarbonate, Acetate, Alkoholate oder Oxide von Alkalioder Erdalkalimetallen, insbesondere Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid. Außerdem können organische Basen wie Pyridin oder tertiäre Amine Verwendung finden. Die Base wird beispielsweise in einer Menge von 0,5 bis 2 Mol-Äquivalent bezogen auf die Ammoniumverbindung zugesetzt.

Als Lösungsmittel eignen sich beispielsweise Dimethylsulfoxid; Alkohole wie Methanol, Ethanol und Isopropanol; aromatische Kohlenwasserstoffe wie Benzol und Toluol; chlorierte Kohlenwasserstoffe wie Chloroform und Dichlorethan; aliphatische Kohlenwasserstoffe wie Hexan und Cyclohexan; Ester wie Essigsäureethylester und Ether wie Diethylether, Dioxan und Tetrahydrofuran. Vorzugsweise führt man die Umsetzung in Methanol mit Natriumhydrogencarbonat als Base durch.

Die Reaktion ist nach wenigen Stunden beendet. Die Zielverbindung kann z.B. durch Einengen der Mischung, Verteilung des Rückstandes in Methylenchlorid/Wasser und Abdestillieren des Lösungsmittels unter vermindertem Druck isoliert werden.

Man kann für diese Umsetzung aber auch unmittelbar die freie Hydroxylaminbase, z.B. in Form einer wäßrigen Lösung, verwenden; je nach verwendetem Lösungsmittel für die Verbindung II erhält man ein einoder zweiphasiges Reaktionsgemisch.

Geeignete Lösungsmittel für diese Variante sind beispielsweise Alkohole wie Methanol, Ethanol, Isopropanol und Cyclohexanol; aliphatische und aromatische, gegebenenfalls chlorierte Kohlenwasserstoffe wie Hexan, Cyclohexan, Methylenchlorid, Toluol und Dichlorethan; Ester wie Essigsäureethylester; Nitrile wie Acetonitril und cyclische Ether wie Dioxan und Tetrahydrofuran.

Alkalimetallsalze der Verbindungen I können durch Behandeln der 3-Hydroxyverbindungen mit Natriumoder Kaliumhydroxid bzw. -alkoholat in wäßriger Lösung oder in einem organischen Lösungsmittel wie Methanol, Ethanol, Aceton und Toluol erhalten werden.

Andere Metallsalze wie Mangan-, Kupfer-, Zink-, Eisen-, Calcium-, Magnesium- und Bariumsalze können aus den Natriumsalzen in üblicher Weise hergestellt werden, ebenso Ammonium- und Phosphoniumsalze mittels Ammoniak, Phosphonium-, Sulfonium- oder Sulfoxoniumhydroxiden.

Die Verbindungen des Typs II können z.B. aus den entsprechenden Cyclohexan-1,3-dionen der Formel IV

in der

15

20

25

40

45

Y Wasserstoff oder Methoxycarbonyl bedeutet nach bekannten Methoden (Tetrahedron Lett., 2491 (1975)) hergestellt werden.

Es ist auch möglich, die Verbindungen der Formel II über die Zwischenstufe der Enolester herzustellen, die bei der Umsetzung von Verbindungen der Formel IV mit Säurechloriden in Gegenwart von Basen anfallen und anschließend mit bestimmten Imidazol- oder Pyridinderivaten umgelagert werden (JP-OS 79/063 052).

Zu den Verbindungen der Formel IV gelangt man über eine Reihe bekannter Verfahrensschritte ausgehend von bekannten Vorprodukten.

Die Synthese der Hydroxylamine III erfolgt gemäß dem nachstehenden Reaktionsschema:

Y = Abgangsgruppe, z.B. Halogen wie Chlor, Brom, Jod oder CH₃SO₂-O-.

10

30

55

Die zur Synthese der neuen Hydroxylamine der Formel III b nötigten Alkylierungsmittel sind nach literaturbekannten Methoden herstellbar [vgl. DE-A 3 437 919; Tetrahedron Lett. 28, 2639 (1979); Org. Synth., Coll. Vol. 1, 436 (1944); DE-A 2 654 646; DE-A 2 714 561; J. Org. Chem. 52, 3587 (1987); DE-A 948 871; DE-A 948 872; J. Med. Chem. 26, 1570 (1983), Synthesis, 675 (1983) und J. Org. Chem. 48, 4970 (1983)]

VII wird mit einem cyclischen Hydroxyimid V gekoppelt und das erhaltene geschützte Hydroxylaminderivat VI z.B. mit 2-Aminoethanol zum freien Hydroxylamin III gespalten.

In den cyclischen Hydroxyimiden V steht D z.B. für C₂-C₃-Alkylen, C₂-Alkenylen oder einen mit bis zu 3 Doppelbindungen und gegebenenfalls 1 Stickstoffatom enthaltenden 5- oder 6-Ring, z.B. für Phenylen, Pyridinylen, Cyclopentylen, Cyclopexylen oder Cyclopexenylen. Beispielsweise kommen folgende Substanzen in Betracht:

Die Umsetzung der Verbindungen VII mit den Hydroxyimiden V wird zweckmäßigerweise in Gegenwart einer Base ausgeführt. Geeignet sind prinzipiell alle Basen, die in der Lage sind, die Hydroxyimide V zu deprotonieren ohne das Imidsystem anzugreifen. Dies sind insbesondere die sogenannten nichtnucleophilen Basen. Beispielsweise genannt seien Mineralbasen wie Alkalimetall- und Erdalkalimetallcarbonate, Alkalimetall- und Erdalkalimetallhydrogencarbonate, organische Basen wie aliphatische, cycloaliphatische und aromatische tertiäre Amine. Es können auch Gemische dieser Basen verwendet werden.

Als Einzelverbindungen seien folgende Basen beispielhaft aufgeführt: Natriumcarbonat, Kaliumcarbonat, Magnesiumcarbonat, Calciumcarbonat, Bariumcarbonat, die Hydrogencarbonate dieser Metalle, Trimethylamin, Triethylamin, Tributylamin, Ethyldiisopropylamin, N,N-Dimethylanilin, 4-N,N-Dimethylaminopyridin, Diazabicyclooctan, Diazabicycloundecan, N-Methylpiperidin, 1,4-Dimethylpiperazin, Pyridin, Chinolin, Bipyridin, Phenanthrolin. Bevorzugt sind die preiswerten Basen Natrium- und Kaliumcarbonat.

Die Base wird im allgemeinen in äquivalenten Mengen bis zu einem Überschuß von 5 Äquivalenten, bezogen auf das Hydroxyimid, zugegeben. Ein höherer Überschuß ist möglich, entbehrt aber zusätzliche Vorteile. Die Verwendung einer geringen Basenmenge ist ebenfalls möglich. Bevorzugt wird jedoch eine Basenmenge von 1 bis 3, insbesondere von 1 bis 2 Äquivalenten, bezogen auf das Hydroxyimid V eingesetzt.

Die Verwendung von nucleophilen Basen, z.B. Alkalimetall- und Erdalkalimetallhydroxiden, insbesondere Natrium- und Kaliumhydroxid, ist ebenfalls möglich. In diesem Falle ist es vorteilhaft, die Base in äquivalenten Mengen bezüglich des Hydroxyimids V einzusetzen, um einem nucleophilen Angriff der Hydroxylionen auf die Carbonylfunktion der Imidgruppierung vorzubeugen.

Zweckmäßigerweise setzt man die Ausgangsverbindungen VII mit den Hydroxyimiden V in einem Lösungsmittel um, das sich unter den Reaktionsbedingungen inert verhält. Vorteilhafte Lösungsmittel sind z.B. polareaprotische Lösungsmittel wie Dimethylformamid, N-Methylpyrrolidon, Dimethylsulfoxid, Sulfolan und cyclische Harnstoffe. Die Lösungsmittelmenge ist im allgemeinen nicht kritisch.

Die Umsetzung der Ausgangsverbindungen VII mit den Hydroxyimiden V kann auch unter Anwendung der Phasentransfer-Katalyse ausgeführt werden. In diesem Falle werden mit Wasser zwei Phasen bildende Lösungsmittel, bevorzugt Chlorkohlenwasserstoffe, eingesetzt. Als Phasentransferkatalysatoren eignen sich

die üblicherweise zu solchen Zwecken verwendeten quartären Ammonium- und Phosphoniumsalze, Polyethylenglykole, Polyethylenglykolether und Kronenether, wie sie z.B. in Dehmlow et al., Phase Transfer Catalysis, S. 37 - 45 und S. 86 - 93, Verlag Chemie, Weinheim 1980, beschrieben sind. Die Phasentransferkatalysatoren werden zweckmäßigerweise in Mengen von 1 bis 10 Vol%, bevorzugt in Mengen von 3 bis 5 Vol%, bezogen auf das Volumen der Reaktionsmischung, eingesetzt.

Die Umsetzung der Ausgangsverbindungen VII mit den Hydroxyimiden V wird im allgemeinen im Temperaturbereich zwischen 0 und 140°C, bevorzugt zwischen 20 und 100°C, insbesondere zwischen 40 und 80°C, durchgeführt. Zweckmäßigerweise wird dabei so vorgegangen, daß man das Hydroxyimid V zusammen mit der Base im Lösungsmittel vorlegt und das Ausgangsmaterial VII zu dieser Lösung dosiert. Dabei kann es sich als günstig erweisen, wenn das Hydroxyimid bei einer tieferen Temperatur, bespielsweise bei 0 bis 50°C, zugegeben und die Reaktionsmischung erst nach dieser Zugabe auf die eigentliche Reaktionstemperatur erhitzt wird.

Nach beendeter Reaktion wird die abgekühlte Reaktionsmischung zweckmäßigerweise mit Wasser versetzt, wobei sich die gebildeten Hydroxylaminderivate VI als kristalline Festkörper oder als Öle abscheiden. Die auf diese Weise erhaltenen Hydroxylaminderivate können, falls gewünscht, durch Umkristallisation oder durch Extraktion weiter gereinigt werden.

Die Hydroxylaminderivate VI können zwischengelagert werden oder sogleich in die Hydroxylaminderivate III mit freier Aminogruppe umgewandelt werden. Diese Umwandlung kann nach an sich bekannten Verfahren durchgeführt werden, wie sie beispielsweise in DE-A 36 15 973 und den darin zitierten Schriften beschrieben sind. Bevorzugt wird das Verfahren gemäß DE-A 36 15 973 angewandt, nach dem die Hydroxylaminderivate III mittels Ethanolamin freigesetzt werden. Die Freisetzung der Hydroxylaminderivate III mit Hilfe anderer Basen wie wäßrigen Mineralbasen, mit Aminen, Hydrazinen, Hydroxylaminen oder mittels wäßriger Säuren ist ebenfalls möglich.

Aus den nach diesen Verfahren erhaltenen Reaktionsgemischen können die Hydroxylaminderivate III mittels üblicher Aufarbeitungsmethoden isoliert werden, beispielsweise durch Extraktion oder durch Kristallisation. Zur Erhöhung der Kristallisationstendenz dieser Hydroxylaminderivate kann es oftmals förderlich sein, diese in ihre Salze mit Mineralsäuren oder organischen Säuren überzuführen. Dazu werden im allgemeinen verdünnte Lösungen dieser Säuren mit den Hydroxylaminderivaten umgesetzt, und zwar zweckmäßigerweise in äquivalenten Mengen. Die erhaltenen Hydroxylammoniumsalze können wie die Hydroxylaminderivate mit freier Aminogruppe direkt zu den Herbiziden der Formel I weiterverarbeitet werden oder auch, falls gewünscht, gelagert werden.

Im Hinblick auf die biologische Wirksamkeit werden Cyclohexenone der Formel I bevorzugt, in denen die Substituenten folgende Bedeutung haben:

35

- Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, insbesondere Ethyl und Propyl;
- Alkylen oder Alkenylen, in dem eine Methylengruppe durch ein Sauerstoff-, ein Schwefelatom, Α 40 eine Sulfoxid-, eine Sulfongruppe oder -N(Ra)- ersetzt ist, wie 3-Oxapropylen, 3-Azapropylen, 3-Thiapropylen, 3-Thiapropylen-3-oxid, 3-Thiapropylen-3,3-dioxid, 3-Oxabutylen, 3-Azabutylen, 3-Thiabutylen, 3-Thiabutylen-3-oxid, 3-Thiabutylen-3,3-dioxid, 4-Oxabutylen, 4-Azabutylen, 4-Thiabutylen, 4-Thiabutylen-4-oxid, 4-Thiabutylen-4,4-dioxid, 4-Oxabut-2enylen, 4-Azabut-2-enylen, 4-Thiabut-2-enylen, 3-Oxapentylen, 3-Azapentylen, 3-Thiapentylen, 3-Thiapentylen-3-oxid, 3-Thiapentylen-3,3-dioxid, 4-Oxapentylen, 4-Azapentylen, 4-Thiapentylen, 4-45 Thiapentylen-4-oxid, 4-Thiapentylen-4,4-dioxid, 5-Oxapentylen, 5-Azapentylen, 5-Thiapentylen, 5-Thiapentylen-5-oxid, 5-Thiapentylen-5,5-dioxid, 5-Oxapent-3-enylen, 5-Azapent-3-enylen, Thiapent-3-enylen, 3-Oxahexylen, 3-Azahexylen, 3-Thiahexylen, 3-Thiahexylen-3-oxid, Thiahexylen-3,3-dioxid, 4-Oxahexylen, 4-Azahexylen, 4-Thiahexylen, 4-Thiahexylen-4-oxid, 4-50 Thiahexylen-4,4-dioxid, 5-Oxahexylen, 5-Azahexylen, 5-Thiahexylen, 5-Thiahexylen-5-oxid, 5-Thiahexylen-5,5-dioxid, 6-Oxahexylen, 6-Azahexylen, 6-Thiahexylen, 6-Thiahexylen-6-oxid, 6-Thiahexylen-6,6-dioxid, 6-Oxahex-4-enylen, 6-Azahex-4-enylen, 6-Thiahex-4-enylen. Besonders bevorzugt sind 3-Oxapropylen, 3-Oxabutylen und 4-Oxabutylen.
 - Ra Wasserstoff;
 Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1Dimethylethyl, insbesondere Methyl und Ethyl;
 Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pente-

nyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-3-pentenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-2-butenyl, 2,2-Dimethyl-3-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 1,12-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl und 2-Butenyl, 2-Methyl-3-butinyl, 1-Methyl-3-butinyl, 1-Methyl-3-butinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 2-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Ethyl-3-butinyl, 1-Ethyl

nyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, insbesondere 2-Propinyl und 2-Butinyl. Z Phenyl,

5

10

15

20

25

30

35

40

45

50

55

5-gliedriges Heteroaryl wie Furanyl, Pyrrolyl, Thienyl, Imidazolyl, Pyrazolyl, Isoxazolyl, Oxazolyl, Isothiazolyl, Thiazolyl, Oxadiazolyl, Thiadiazolyl, Triazolyl, insbesondere Furanyl und Thienyl, 6-gliedriges Heteroaryl wie Pyridyl, Pyridazyl, Pyrimidyl, Pyrazyl, Triazyl, Tetrazyl, insbesondere Pyridyl und Pyrimidyl;

X Nitro, Cyano,

Halogen wie Fluor, Chlor, Brom und lod, insbesondere Fluor und Chlor;

Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, insbesondere Methyl und 1,1-Dimethylethyl,

Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy, insbesondere Methoxy, Ethoxy, 1-Methylethoxy und 1,1-Dimethylethoxy,

Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio, insbesondere Methylthio und Ethylthio,

Halogenalkyl wie Fluormethyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2-Trichlorethyl und Pentafluorethyl, insbesondere Difluormethyl, Trifluormethyl, 2,2,2-Trifluorethyl und Pentafluorethyl,

Halogenalkoxy wie Difluormethoxy, Trifluormethoxy, Chlor-difluormethoxy, Dichlorfluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, insbesondere Trifluormethoxy, Carboxyl,

Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methylethoxycarbonyl, nsbesondere Methoxycarbonyl, Ethoxycarbonyl und 1,1-Dimethylethoxycarbonyl, insbesondere Methoxycarbonyl sowie

Benzyloxycarbonyl und Phenyl, wobei die aromatischen Reste ihrerseits ein bis drei der folgenden Reste tragen können: Nitro, Cyano, Carboxyl, Benzyloxycarbonyl, Halogen wie im allgemeinen und im besonderen bei X genannt; Alkyl wie bei R¹ genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl; Halogenalkoxy wie vorstehend genannt, insbesondere Difluormethoxy und Trifluormethoxy und/oder Alkoxycarbonyl wie vorstehend genannt, insbesondere Methoxycarbonyl und Ethoxycarbonyl.

Eine Aminogruppe -NR^aR^b:

R^a Wasserstoff, Alkyl, Alkenyl und Alkinyl wie bei A im allgemeinen und im besonderen genannt; R^b Wasserstoff, Alkyl, Alkenyl und Alkinyl wie bei R^a im allgemeinen und im besonderen genannt; Acylgruppen wie Acetyl, Propionyl, Butyryl, 2-Methylpropionyl, Pentanoyl, 2-Methylbutyryl, 3-Methylbutyryl, 2,2-Dimethylpropionyl, Hexanoyl, 2-Methylpentanoyl, 3-Methylpentanoyl, 4-Methylpentanoyl, 2,2-Dimethylbutyryl, 2,3-Dimethylbutyryl, 3,3-Dimethylbutyryl und 2-Ethylbutyryl, insbesondere Acetyl und Propionyl;

oder ein Benzoylrest, wobei der aromatische Rest in bis drei der folgenden Reste tragen kann: Nitro, Cyano, Carboxyl, Benzyloxycarbonyl, Halogen wie im allgemeinen und im besonderen bei X

genannt; Alkyl wie bei R¹ genannt, insbesondere Methyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl; Halogenalkoxy wie vorstehend genannt, insbesondere Difluromethoxy und Trifluormethoxy und/oder Alkoxycarbonyl wie vorstehend genannt insbesondere Methoxycarbonyl und Ethoxycarbonyl.

0, 1, 2 oder 3, insbesondere 0, 1 und 2, im Fall daß Z Halogen bedeutet auch 1 bis 5. Bevorzugt steht n für 0, 1 oder 2. Bei mehreren Resten X können die Substituenten gleich oder verschieden sein.

Alkyl wie unter X genannt, sowie Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, welche mit einer der unter X genannten Alkoxy- oder Alkylthiogruppen bevorzugt in 1-, 2- oder 3-Position substituiert sind, insbesondere 2-Ethylthiopropyl;

5-gliedriges Heterocycloalkyl wie Tetrahydrofuranyl, Tetrahydrothienyl, Dioxolanyl, Dithiolanyl und Oxathiolanyl, insbesondere Tetrahydrofuranyl, Tetrahydrothienyl und Dioxolanyl, wobei diese Ringe ein bis drei der bereits unter X genannten C₁-C₄-Alkylgruppen, C₁-C₄-Alkoxygruppen, C₁-C₄-Alkylthiogruppen und/oder C₁-C₄-Halogenalkylgruppen tragen können,

5-gliedriges Heteroaryl wie Pyrrolyl, Pyrazolyl, Imidazolyl, Isoxazolyl, Oxazolyl, Isothiazolyl, Thiazolyl, Furanyl und Thienyl, insbesondere Isoxazolyl und Furanyl,

ein 6- oder 7-gliedriger Heterocyclus wie Tetrahydropyran-3-yl, Dihydropyran-3-yl, Tetrahydropyran-4-yl, Dihydropyran-4-yl, Tetrahydrothiopyran-3-yl, Dihydrothiopyran-3-yl, Tetrahydrothiopyran-4-yl und Dioxepan-5-yl, insbesondere Tetrahydropyran-3-yl, Tetrahydropyran-4-yl und Tetrahydrothiopyran-3-yl,

ein Phenyl- oder ein Pyridylrest,

5

10

15

20

25

30

35

40

45

50

55

 \mathbb{R}^2

wobei die cyclischen Reste ein bis drei der unter X genannten Alkylgruppen, Alkoxygruppen, Alkylthiogruppen und/oder Halogenalkylgruppen tragen können.

Die 5-gliedrigen Heteroaromaten in der Bedeutung R² können als Substituenten folgende Reste tragen:

Halogenatom wie unter X genannt, insbesondere Fluor und Chlor, Alkoxyalkyl wie Methoxymethyl, 2-Methoxypropyl, 3-Methoxypropyl, 2-Methoxy-1-methylethyl, Ethoxymethyl, 2-Ethoxypropyl, 3-Ethoxypropyl, 2-Ethoxy-1-methylethyl und 1-Ethoxy-1-methylethyl, insbesondere Methoxyethyl und Ethoxyethyl,

Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-1-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2pentenyi, 2-Methyl-2-pentenyi, 3-Methyl-2-pentenyi, 4-Methyl-2-pentenyi, 1-Methyl-3-pentenyi, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2methyl-2-propenyl, insbesondere 1-Methylethenyl bzw. entsprechendes Alkenyloxy und/oder Halogenalkenyl.

Die 6- und 7-gliedrigen Heterocyclen können neben den vorstehend genannten Substituenten auch Hydroxygruppen tragen.

Bei den Phenyl- und Pyridylresten kommen als Substituenten neben den obengenannten Gruppen auch folgende Reste in Betracht:

Alkenyloxy wie-2-Propenyloxy, 2-Butenyloxy, 3-Butenyloxy, 1-Methyl-2-propenyloxy, 2-Methyl-2-propenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy, 1-Methyl-2-butenyloxy, 2-Methyl-2-butenyloxy, 3-Methyl-2-butenyloxy, 3-Methyl-3-butenyloxy, 3-Methyl-

tenyloxy, 1,1-Dimethyl-2-propenyloxy, 1,2-Dimethyl-2-propenyloxy, 1-Ethyl-2-propenyloxy, 2-Hexenyloxy, 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-2-pentenyloxy, 2-Methyl-2-pentenyloxy, 3-Methyl-2-pentenyloxy, 4-Methyl-3-pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-3-pentenyloxy, 1-Dimethyl-2-butenyloxy, 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4-pentenyloxy, 1,1-Dimethyl-2-butenyloxy, 1,1-Dimethyl-3-butenyloxy, 1,2-Dimethyl-2-butenyloxy, 1,2-Dimethyl-3-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 2,3-Dimethyl-3-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 2,3-Dimethyl-3-butenyloxy, 1-Ethyl-3-butenyloxy, 2-Ethyl-3-butenyloxy, 1,1,2-Trimethyl-2-propenyloxy, 1-Ethyl-1-methyl-2-propenyloxy und 1-Ethyl-2-methyl-2-propenyloxy, insbesondere 2-Propenyloxy und 2-Butenyloxy;

Alkinyloxy wie 2-Propinyloxy, 2-Butinyloxy, 3-Butinyloxy, 1-Methyl-2-propinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy, 1-Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy, 1-Methyl-2-butinyloxy, 1.1-Dimethyl-2-propinyloxy, 1-Methyl-2-pentinyloxy, 2-Hexinyloxy, 3-Hexinyloxy, 4-Hexinyloxy, 5-Hexinyloxy, 1-Methyl-2-pentinyloxy, 1-Methyl-3-pentinyloxy, 1-Methyl-4-pentinyloxy, 2-Methyl-4-pentinyloxy, 3-Methyl-4-pentinyloxy, 4-Methyl-2-pentinyloxy, 1,1-Dimethyl-2-butinyloxy, 1,1-Dimethyl-3-butinyloxy, 1,2-Dimethyl-3-butinyloxy, 2,2-Dimethyl-3-butinyloxy, 1-Ethyl-3-butinyloxy, 2-Ethyl-3-butinyloxy und 1-Ethyl-1-methyl-2-propinyloxy, insbesondere 2-Propinyloxy und 2-Butinyloxy;

-NR^aR^b wie bei X im allgemeinen und im besonderen genannt;

20 Inbesondere bevorzugte Cyclohexenonoximether der Formel I sind in den folgenden Tabellen zusammengefaßt:

Tabelle 1

5	OH NO-A-(X) n
	→ NO-A
	_s
	0

R1	A	X	n
CH ₂ CH ₃	CH ₂ CH ₂ O	-	0
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	-	0
CH ₂ CH ₃	CH ₂ CH ₂ O	2-01	1
(CH ₂) ₂ CH ₃	CH 2CH 2O	2-01	1
CH ₂ CH ₃	CH ₂ CH ₂ O	3-c1	1
(CH ₂) ₂ CH ₃	CH2CH2O	3-c1	1
CH ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
CH ₂ CH ₃	CH2CH2O	2-F	1
(CH ₂) ₂ CH ₃	CH2CH2O	2-F	1
CH ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3 - F	1
CH ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
CH ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
CH ₂ CH ₃	CH2CH2CH2O	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2O	-	0
CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ O	4-c1	1
(CH ₂) ₂ CH ₃	CH2CH2CH2O	4-c1	1
CH ₂ CH ₃	CH2CH2CH2O	4-F	1
(CH ₂) ₂ CH ₃	CH2CH2CH2O	4-F	1

Tabelle 1 (Fort.)

R1	Α	X	n
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	2-F	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	2-F	1
CH ₂ CH ₃	CH2CH2OCH2	3-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	3-F	1
CH ₂ CH ₃	CH2CH2OCH2	4-F	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-F	1
CH ₂ CH ₃	CH2CH2OCH2	4-C1	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-C1	1
CH ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	3-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	3-CH ₃	1
CH ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-tC ₄ H ₉	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-tC ₄ H ₉	1
CH ₂ CH ₃	CH2CH2SCH2	-	0
(CH ₂) ₂ CH ₃	CH2CH2SCH2	-	0
CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-C1	1
(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-C1	1
CH ₂ CH ₃	CH2CH2SCH2	4-F	1
(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-F	1
CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	-	0
CH ₂ CH ₃	CH2CH2CH2CH2O	4-C1	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-C1	1
CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1

Tabelle 1 (Fort.)

	R1	Α	X	n	·
5	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0	
	CH ₂ CH ₃	CH2CH2CH2CH2CH2O	4-C1	1	
10	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	4-C1	1	
	CH ₂ CH ₃	CH2CH2CH2CH2CH2O	4-F	1	
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	4-F	1	

Tabelle 2

	OH NO-A-XX (X)n
5	,NO-A-(×
	_s
	Õ

R1	Α	X	n
CH ₂ CH ₃	CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
CH ₂ CH ₃	CH2CH2OCH2	5-C1	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CI	1
CH ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
CH ₂ CH ₃	CH2CH2OCH2	5-C 2H5	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0 .
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-c1	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-c1	1
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-C 2H5	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	ı
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	-	0
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-C1	ı
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-c1	1
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-C 2H5	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C 2H5	1

Tabelle 2 (Fort.)

	R1	Α	X	n	
5	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	~	0	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C1	1	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5~C1	1	
10	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1	
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1	
15	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1	

Tabelle 3

5	он(^(X) п
	S—S—OH NO-A—OX (X)n
	—S→ → R¹ 0

10	R1	Α	x	n
	CH ₂ CH ₃	CH2CH2OCH2	~	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
15	CH ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
20	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	_	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ CH ₂ OCH ₂	_	0
	CH ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
25	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
20	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C 2H5	1
•	CH₂CH₃	CH2CH2CH2OCH2CH2	-	0
30	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH3	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH3	1
35	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	ı
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	i
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
40	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
40	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C 2H5	1
45	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-C ₂ H ₅	1

50

Tabelle 4

10	R1	A	X	n
	CH 2CH 3	CH2CH2O	-	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	-	0
15	CH 2CH3	CH ₂ CH ₂ O	2-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2O	2-c1	1
	CH 2CH 3	CH 2CH 2O	3-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2O	3-C1	1
20	CH 2CH 3	CH ₂ CH ₂ O	4-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-c1	1
	CH 2CH 3	CH ₂ CH ₂ O	2-F	1
	(CH ₂) ₂ CH ₃	CH2CH2O	2-F	1
25	CH 2CH 3	CH ₂ CH ₂ O	3-F	1
	(CH ₂) ₂ CH ₃	CH 2CH 2O	3-F	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
30	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
	CH ₂ CH ₃	CH 2CH 2O	3-CF ₃	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
35	CH 2CH 3	CH 2CH 2CH 2O	-	0
00	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	_	0
	CH 2CH 3	CH2CH2CH2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ CH ₂ O	4- c 1	1
40	CH ₂ CH ₃	CH 2CH 2CH 2O	4-F	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2O	4-F	1

Tabelle 4 (Fort.)

	R1	A	x	n
5	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2		0
	CH ₂ CH ₃	CH2CH2OCH2	2-F	1
10	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	2-F	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	3 - F	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	3-F	1
	CH ₂ CH ₃	CH2CH2OCH2	4-F	1
15	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-F	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-C1	1
20	CH ₂ CH ₃	CH 2CH 2OCH 2	2-CH ₃	1
20	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	2-CH ₃	1
	CH 2CH 3	CH 2CH 2OCH 2	3-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	3-CH ₃	1
25	CH 2CH 3	CH 2CH 2OCH 2	4-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-tC ₄ H ₉	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-tC4H9	1
30	O. O.	ou ou sou	_	0
	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂		0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-c1	1
	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-C1	1
35	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-F	1
	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-r	1
40	CH ₂ CH ₃	CH2CH2CH2CH2O	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	-	0
	CH ₂ CH ₃	CH2CH2CH2CH2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-C1	1
45	CH ₂ CH ₃	CH2CH2CH2CH2O	4-F	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-F	1

50

Tabelle 4 (Fort.)

5	R1	Α	X	n	
	CH ₂ CH ₃	CH2CH2CH2CH2CH2O	-	0	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-C1	1	
10	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-C1	1	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1	

Tabelle 5

5	OH NO-A-S (X)n
	ò

10	RI	A	X	h
	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
.0	CH ₂ CH ₃	CH 2CH 2OCH 2	5 - C1	1
15	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-c1	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	5-CH3	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-CH3	1
20	CH ₂ CH ₃	CH2CH2OCH2	5-C2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
25	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0
25	CH2CH3	CH 2CH 2CH 2OCH 2	5-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-c1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
30	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	i
	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
o.c	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	~	0
35	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-c1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C1	1
40	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	CH2CH3	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-C ₂ H ₅	1
45				

50

Tabelle 5 (Fort.)

R1	Α	X	n
CH ₂ CH ₃	CH2CH2CH2CH2	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	-	0
CH ₂ CH ₃	CH2CH2CH2CH2	5-C1	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-c1	1
CH ₂ CH ₃	CH2CH2CH2CH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C 2H5	1

Tabelle 6

5 OH NO-A-(X),

R1	A	X	n
CH ₂ CH ₃	CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
CH 2CH 3	CH ₂ CH ₂ OCH ₂	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
CH 2CH 3	CH2CH2CH2OCH2CH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	-	0
CH ₂ CH ₃	CH2CH2CH2CH2CH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-CH ₃	1
CH 2CH 3	CH 2CH 2CH 2OCH 2CH 2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	_	0
CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C2H5	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1

50

Tabelle 7

OH NO-A-(X)n

10	R1	Α	X	n
	CH ₂ CH ₃	CH2CH2O	-	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	-	0
15	CH ₂ CH ₃	CH2CH2O	2-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-C1	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	3-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-C1	1
20	CH ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	2-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-F	1 .
25	CH ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
30	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
30	CH ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
	(CH ₂) ₂ CH ₃	GH ₂ CH ₂ O	3-CF ₃	1
	CH2CH3	CH2CH2CH2O	-	0
35	(CH _Z) ₂ CH ₃	CH 2CH 2CH 2O	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2O	4-c1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	4-C1	1
10	CH ₂ CH ₃	CH 2CH 2CH 2O	4-F	1
40	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	4-F	1 .

Tabelle 7 (Fort.)

	<u>R1</u>	A	X	n
5	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	-	0
	CH2CH3	CH2CH2OCH2	2 - F	1
10	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	2-F	1
	CH ₂ CH ₃	CH2CH2OCH2	3-F	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	3-F	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-F	1
15	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-F	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-Cl	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	2-CH ₃	1
20	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	2-CH3	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	3-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	3-CH ₃	1
25	CH2CH3	CH 2CH 2OCH 2	4-CH ₃	1
23	(CH ₂) ₂ CH ₃	CH 2CH 2OCH Z	4-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-tC ₄ H ₉	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-tC ₄ H ₉	1
30	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	-	0
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	-	0
	CH ₂ CH ₃	CH2CH2SCH2	4-c1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2SCH 2	4-C1	ı
35	CH ₂ CH ₃	CH 2CH 2SCH 2	4-F	ı
	(CH _Z) _Z CH ₃	CH ₂ CH ₂ SCH ₂	4-F	1
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	-	0
40	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-C1	1
45	CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1
45	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1

50

Tab lle 7 (Fort.)

	R1	A	X	<u>n</u>
5	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-Cl	1
10	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-Cl	1
10	CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1

Tabelle 8

5 OH NO-A

0	R1	Α	<u> </u>	n
	CH ₂ CH ₃	CH 2CH 2OCH 2	-	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
5	CH ₂ CH ₃	CH2CH2OCH2	5-c1	1
,	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-c1	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
,	CH ₂ CH ₃	CH 2CH 2OCH 2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-C 2H5	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
;	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0 .
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-c1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-c1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
,	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
i	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-c1	1
	(CH ₂) ₂ CH _{3.}	CH2CH2CH2OCH2CH2	5-01	1
,	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	CH2CH3	CH2CH2CH2OCH2CH2	5-C 2H5	1
	(CH _Z) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C 2H5	1
5				

50

Tabelle 8 (Fort.)

RI		Α	<u> </u>		
CH.	1 ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂	-	0	
	1 ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0	
	1 ₂ CH ₃	CH2CH2CH2CH2	5-c1	1	
	120113 12) 2CH 3	CH2CH2CH2CH2	5-c1	1	
	_	CH2CH2CH2CH2OCH2	5-CH3	1	
	H ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1	
	H ₂) ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂	5-C 2H5	1	
	H ₂ CH ₃ H ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C 2H5	1	

Tabelle 9

5	OH NO-A-(X) _n
	% "°

10	R1	Α	x	n
	CH ₂ CH ₃	CH2CH2OCH2	_	0
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	-	0
4.5	CH ₂ CH ₃	CH2CH2OCH2	5-CH3	1
15	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
20	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	_	0
	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-cH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
25	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C 2H5	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
30	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH3	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
25	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
35	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
40	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C 2H5	1
45	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1

Tabelle 10

H ₃ C OH NO-A (X) _n
1130

	R1	Α	X	n
10	CH ₂ CH ₃	CH ₂ CH ₂ O	_	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	-	0
	CH2CH3	CH ₂ CH ₂ O	2-C1	1
15	(CH ₂) ₂ CH ₃	CH 2CH 2O	2-C1	1
	CH2CH3	CH ₂ CH ₂ O	3-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-01	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
20	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-01	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	2-F	I
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-F	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
25	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
	cH2CH3	CH ₂ CH ₂ O	4-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
30	CH ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
	CH ₂ CH ₃	CH2CH2CH2O	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2O	-	0
35	CH2CH3	CH2CH2CH2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH20	4-Cl	1
	CH2CH3	CH2CH2CH2O	4-F	1
40	(CH ₂) ₂ CH ₃	CH2CH2CH2O	4-F	1

Tab lle 10 (Fort.)

5	R1	A	x	п
Ū	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
	CH ₂ CH ₃	CH2CH2OCH2	2-F	1
10	(CH ₂) ₂ CH ₃	CH2CH2OCH2	2-F	1
	CH ₂ CH ₃	. CH2CH2OCH2	3-F	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	3-F	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-F	1
15	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-F	1
	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 20CH 2	4-C1	1
20	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	2-CH ₃	1
20	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	2-CH ₃	1
	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	3-CH ₃	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	3-CH ₃	1
25	CH ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-CH ₃	1
	CH ₂ CH ₃	CH2CH2OCH2	4-tC4H9	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-tC ₄ H ₉	1
30	CH ₂ CH ₃	CH2CH2SCH2	_	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	_	0
	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-C1	1
35	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-F	1
	(61.27 261.3	0.720.172	7.	•
40	CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-C1	1
45	CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-F	1

Tabelle 10 (Fort.)

5	<u>R1</u>	A	X	n	
Ū	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0	
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	-	0	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-c1	1	
10	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-c1	1	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1	

Tabelle 11

5	H ₃ C OH NO-A (X) _n
	H ₃ C O R ¹ S

10	R1	A	X	п
	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
	CH2CH3	CH2CH2OCH2	5-c1	1
15	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-c1	1
	CH ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	. 5-CH ₃	1
20	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0
25	CH ₂ CH ₃	CH2CH2CH2OCH2	5-c1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-c1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
30	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C 2H5	1
	. (CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
35	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	CH ₂ CH ₃	ch2ch2ch2ch2ch2	5-c1	1
	(CH ₂) ₂ CH _{3.}	CH2CH2CH2OCH2CH2	5-C1	1
40	CH ₂ CH ₃	CH2CH2CH2CH2CH2	5-CH ₃	1
· -	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1 ,
	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1

Tabelle Il (Fort.)

5	R1	A	X	n
ŭ	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C1	1
10	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5- c 1	1
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C 2H5	1
15	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C 2H5	1

Tabelle 12

 $\begin{array}{c} H_3C & OH \\ NO-A & O \\ R_1 & O \end{array}$

R1	Α	X	n
CH ₂ CH ₃	CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
CH ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-C 2H5	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	-	0
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-C 2H5	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH2CH2CH2CH2	5-CH3	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH3	1
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C 2H5	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1

Tabelle 13

5	(x) _n
•	OH NO-A-
	H ₃ C OH NO-A (X) n
	13 1-0' \ R1
	H-C Ö

10	R1	A	X	n
	CH ₂ CH ₃	CH2CH2O	-	0
	(CH ₂) ₂ CH ₃	CH2CH2O	-	0
	CH ₂ CH ₃	CH ₂ CH ₂ O	2-C1	1
15	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-c1	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	3-c1	1
	(CH ₂) ₂ CH ₃	CH₂CH₂O	3-C1	1
20	CH ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
	CH ₂ CH ₃	CH2CH2O	2-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-F	1
25	CH ₂ CH ₃	CH2CH2O	3-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
	CH ₂ CH ₃	CH 2CH 20	4-F	1
	(CH ₂) ₂ CH ₃	CH 2CH 2O	4-F	1
30	CH ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
	CH ₂ CH ₃	CH 2CH 2CH 2O	-	0
35	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	4-C1	1
	CH ₂ CH ₃	CH 2CH 2CH 2O	4-F	1
40	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	4-F	1

Tabelle 13 (Fort.)

	R1	Α	x	n
5	CH ₂ CH ₃	CH2CH2OCH2	_	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2OCH2	2-F	1
10	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	2-F	1
,,	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	3-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	3-F	ı
	сн ₂ сн ₃	CH2CH2OCH2	4-F	1
15	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-F	ı
	CH ₂ CH ₃	CH2CH2OCH2	4-c1	ı
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-C1	ı
	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	2-CH ₃	1
20	(CH ₂) ₂ CH ₃	cH2CH2OCH2	2-CH ₃	1
	CH2CH3	CH2CH2OCH2	3-CH ₃	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	3-CH ₃	1
	CH ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
25	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
	CH ₂ CH ₃	CH2CH2OCH2	4-tC ₄ Hg	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-tC4H9	1
30	CH ₂ CH ₃	CH2CH2SCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	-	0
	CH ₂ CH ₃	CH2CH2SCH2	4-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-C1	1
35	CH ₂ CH ₃	CH2CH2SCH2	4-F	1
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-F	1
	CH ₂ CH ₃	CH2CH2CH2CH2O	-	0
40	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	-	0
	CH ₂ CH ₃	CH2CH2CH2CH2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-c1	1
	CH ₂ CH ₃	CH2CH2CH2CH2O	4-F	1
45	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-F	1

Tabelle 13 (Fort.)

	R1	Α	X	n	
5	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4- c 1	1	
10	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-c1	1	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1	
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	4-F	1	

Tabelle 14

5 H₃C O OH NO-A (X)_n

Ω	R I	A	x	n
10	CH ₂ CH ₃	CH 2CH 2OCH 2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH 2CH 2OCH 2	5-C1	1
15	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-c1	1
	CH ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2OCH2	5-C2H5	I
20	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0
25	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
30	CH2CH3	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
35	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2	_	0
	CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂	5-c1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-c1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
40	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1

50

45

Tabelle 14 (Fort.)

	RI	Α	X	n	
5	CH 2CH 3	CH2CH2CH2CH2OCH2	-	0	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	-	0	
	CH 2CH 3	CH2CH2CH2CH2	5 - c1	1	
10	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C1	1	
	CH 2CH 3	CH2CH2CH2CH2	5-CH ₃	1	
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-CH ₃	1	
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1	
15	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-C2H5	1	

Tabelle 15

5	он (X) _п
	H ₃ C OH NO-A (X) _n
	H ₃ C O RI O

10	R1	A	x	n
	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
15	CH ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH3	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C ₂ H ₅	1
20	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH3	1
25	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-C 2H5	1
30	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
30	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-cH₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-CH ₃	1
35	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C 2H5	1
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
40	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	-	0
40	CH2CH3	CH2CH2CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
	CH2CH3	CH2CH2CH2CH2	5-C 2H5	1
45	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1

50

Tabelle 16

S NO-A-(X)n

10	R1	A	X	n
	CH ₂ CH ₃	CH ₂ CH ₂ O	-	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	-	o
	CH ₂ CH ₃	CH2CH2O	2-C1	1
15	(CH ₂) ₂ CH ₃	CH2CH2O	2-C1	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	3-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-c1	1
20	CH ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
20	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
	CH ₂ CH ₃	CH2CH2O	2-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-F	1
25	CH ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
30	CH ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
	сн 2сн 3	CH2CH2CH2O	-	0
35	(CH ₂) ₂ CH ₃	CH2CH2CH2O	-	0
	CH2CH3	CH2CH2CH2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2O	4-C1	1
	CH ₂ CH ₃	CH2CH2CH2O	4-F	1
40	(CH ₂) ₂ CH ₃	CH2CH2CH2O	4-F	1

Tabelle 16 (Fort.)

CH2CH3	_	RI	Α	x	n
CH2CH3	5	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	_	0
C				_	
C		CH ₂ CH ₃	CH 2CH 2OCH 2	2-F	1
CH2CH3 CH2CH2OCH2 3-F 1 (CH2) 2CH3 CH2CH2OCH2 3-F 1 CH2CH3 CH2CH2OCH2 4-F 1 (CH2) 2CH3 CH2CH2OCH2 4-F 1 (CH2) 2CH3 CH2CH2OCH2 4-C1 1 (CH2) 2CH3 CH2CH2OCH2 4-C1 1 (CH2) 2CH3 CH2CH2OCH2 2-CH3 1 (CH2) 2CH3 CH2CH2OCH2 2-CH3 1 (CH2) 2CH3 CH2CH2OCH2 3-CH3 1 (CH2) 2CH3 CH2CH2OCH2 3-CH3 1 (CH2) 2CH3 CH2CH2OCH2 4-CH3 1 (CH2) 2CH3 CH2CH2OCH2 4-CH3 1 (CH2) 2CH3 CH2CH2OCH2 4-CH49 1 30 CH2CH3 CH2CH2OCH2 4-C449 1 30 CH2CH3 CH2CH2SCH2 - 0 (CH2) 2CH3 CH2CH2SCH2 - 0 (CH2) 2CH3 CH2CH2SCH2 4-C1 1 40 CH2CH3 CH2CH2SCH2 4-C1 1 (CH2) 2CH3 CH2CH2SCH2<	10	(CH ₂) ₂ CH ₃		2-F	1
CH2CH3			CH 2CH 2OCH 2	3 - F	1
15		(CH ₂) ₂ CH ₃	CH2CH2OCH2	3-F	1
CH2CH3 CH2CH2CH2 CH2CH3 CH2CH2CH2 (CH2) 2CH3 CH2CH2CH2 CH2CH3 CH2CH2CH2 (CH2) 2CH3 CH2CH2CH2CH2 (CH2) 2CH3 CH2CH2CH2 (CH2) 2CH3 CH2CH2 (CH2) 2CH3 CH2CH2 (CH2) 2CH3 CH2 (CH		CH ₂ CH ₃	CH2CH2OCH2	4-F	1
CH2CH3	15	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-F	1
CH2CH3 CH2CH2OCH2 2-CH3 1 (CH2) 2CH3 CH2CH2OCH2 2-CH3 1 CH2CH3 CH2CH2OCH2 3-CH3 1 (CH2) 2CH3 CH2CH2OCH2 3-CH3 1 (CH2) 2CH3 CH2CH2OCH2 3-CH3 1 25 CH2CH3 CH2CH2OCH2 4-CH3 1 (CH2) 2CH3 CH2CH2OCH2 4-CH49 1 (CH2) 2CH3 CH2CH2OCH2 4-CH49 1 30 CH2CH3 CH2CH2OCH2 - 0 (CH2CH3 CH2CH2SCH2 - 0 (CH2CH3 CH2CH2SCH2 4-C1 1 35 CH2CH3 CH2CH2SCH2 4-C1 1 36 CH2CH3 CH2CH2SCH2 4-C1 1 37 CH2CH3 CH2CH2SCH2 4-C1 1 38 CH2CH2SCH2 4-C1 1 (CH2) 2CH3 CH2CH2SCH2 4-C1 1 CH2CH3 CH2CH2SCH2 4-C1 1 CH2CH3 CH2CH2SCH2 4-C1 1 CH2CH3 CH2CH2SCH2 4-C1 1 CH2CH3 CH2CH2SCH2 4-F 1 (CH2) 2CH3 CH2CH2SCH2 4-F 1 CH2CH3 CH2CH2SCH2 4-F 1		CH ₂ CH ₃	CH 2CH 2OCH 2	4-C1	1
CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 2-CH ₃ 1 CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 3-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 3-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 3-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 (CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 (CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 (CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 (CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 (CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂ CH ₃ CH ₂		(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-C1	1
CH2CH3 CH2CH2CCH2 2-CH3 1 CH2CH3 CH2CH2CCH2 3-CH3 1 (CH2)2CH3 CH2CH2CCH2 3-CH3 1 (CH2)2CH3 CH2CH2CCH2 3-CH3 1 (CH2)2CH3 CH2CH2CCH2 4-CH3 1 (CH2)2CH3 CH2CH2CCH2 4-CH3 1 (CH2)2CH3 CH2CH2CCH2 4-CH3 1 (CH2)2CH3 CH2CH2CCH2 4-CC4H9 1 (CH2)2CH3 CH2CH2CCH2 4-CC4H9 1 (CH2)2CH3 CH2CH2CCH2 - 0 (CH2)2CH3 CH2CH2CCH2 - 0 (CH2)2CH3 CH2CH2CCH2 4-C1 1 (CH2)2CH3 CH2CH2CCH2 4-F 1 (CH2)2CH3 CH2CH2CCH2 4-F 1 (CH2)2CH3 CH2CH2CCH2 4-F 1 (CH2)2CH3 CH2CH2CCH2C 4-F 1		CH ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 3-CH ₃ 1 CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-CH ₃ 1 CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ - 0 (CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 (CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂	20	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	2-CH ₃	1
CH2CH3		CH ₂ CH ₃	CH2CH2OCH2	3-CH ₃	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-CH ₃ 1 CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 30 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 35 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂		(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	3-CH ₃	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-CH ₃ 1 CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 4-tC ₄ H ₉ 1 30 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 35 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 0 (CH ₂ CH ₃ CH ₂	25	CH ₂ CH ₃	CH 2CH 2OCH 2	4-CH ₃	1
30 CH2CH3 CH2CH2OCH2 4-tC4Hg 1 30 CH2CH3 CH2CH2SCH2 - 0 (CH2) 2CH3 CH2CH2SCH2 - 0 CH2CH3 CH2CH2SCH2 4-C1 1 35 (CH2) 2CH3 CH2CH2SCH2 4-C1 1 CH2CH3 CH2CH2SCH2 4-F 1 (CH2) 2CH3 CH2CH2SCH2 4-F 1 40 CH2CH3 CH2CH2CH2CH2O - 0 (CH2) 2CH3 CH2CH2CH2CH2O - 0		(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-CH ₃	1
30		CH ₂ CH ₃	CH 2CH 2OCH 2		1
CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ - 0 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂		(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-tC ₄ Hg	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ - 0 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂	30	cu cu.	CH CH CON		0
CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-C1 1 CH ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH (CH ₂) ₂ CH ₃ CH ₂ CH (CH ₂) ₂ CH ₃ CH ₂ CH (CH ₂) ₂ CH ₂ CH (CH ₂) ₂ C				**	
35				4.01	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ SCH ₂ 4-F 1 CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ O - 0 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ O - 0	35				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ O - 0		(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-+	1
$(CH_2)_2CH_3$ $CH_2CH_2CH_2CH_2O$ - 0	40	CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ O	**	0
011 011 011 011 011 0	40	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	-	0
CH2CH3 CH2CH2CH2CH2C 4-C1 1		CH2CH3	CH2CH2CH2CH2O	4-01	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ O 4-C1 1		(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-c1	1
45 CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ O 4-F 1	45	CH2CH3	CH2CH2CH2CH2O	4-F	1
$(CH_2)_2CH_3$ $CH_2CH_2CH_2CH_2O$ 4-F 1		(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-F	1

50

Tabelle 16 (Fort.)

R1	Α	X	n
CH ₂ CH ₃	CH2CH2CH2CH2CH2O	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	-	0
CH ₂ CH ₃	CH2CH2CH2CH2CH2O	4-C1	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	4-C1	1
CH ₂ CH ₃	CH2CH2CH2CH2CH2O	4-F	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1

Tabelle 17

5	$ \begin{array}{c} S \\ S \\ R_1 \end{array} $ $ \begin{array}{c} (X)_{\Pi} \\ S \end{array} $
	U

R1	A	X	п
CH ₂ CH ₃	CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
CH ₂ CH ₃	CH2CH2OCH2	5-C1	1
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C ₂ H ₅	1
CH 2CH 3	ch2ch2ch2och2	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0
CH ₂ CH ₃	CH2CH2CH2OCH2	5-C1	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-c1	1
CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
CH ₂ CH ₃	CH2CH2CH2OCH2	5-C 2H5	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C1	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2	5-C1	1
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
CH 2CH 3	CH 2CH 2CH 2OCH 2CH 2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-C 2H5	1

50

Tabelle 17 (Fort.)

	R1	Α	<u> </u>	n	
5	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0	
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-c1	1	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-01	1	
10	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	- 5-CH ₃	1	
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1	
15	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-C 2H5	1	

Tab lle 18

5 SHO-A-O

R1	A	<u> </u>	n
CH ₂ CH ₃	CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-C 2H5	i
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
CH ₂ CH ₃	CH2CH2CH2OCH2	5-C 2H5	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
CH ₂ CH ₃	CH2CH2CH2CH2CH2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C 2H5	1
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
CH ₂ CH ₃	CH2CH2CH2CH2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C 2H5	1

50

Tabelle 19

OH NO-A-(X)_n

	R1	A	X	n
10	011 011	CU CU O		
	CH ₂ CH ₃	CH ₂ CH ₂ O	~	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	•	0
	CH ₂ CH ₃	CH 2CH 2O	2-C1	1
15	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-C1	1
	CH 2CH 3	CH ₂ CH ₂ O	3-C1	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-C1	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
20	(CH ₂) ₂ CH ₃	CH 2CH 2O	4-01	1.
	CH ₂ CH ₃	CH 2CH 2O	2-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O .	2-F	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
25	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
	CH ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
30	CH ₂ CH ₃	CH 2CH 2O	3-CF ₃	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
	CH ₂ CH ₃	CH2CH2CH2O	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	-	0
35	CH 2CH 3	CH2CH2CH2O	4-C1	I
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	4-C1	1
	CH ₂ CH ₃	CH2CH2CH2O	4-F	1
40	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	4~F	1

Tabelle 19 (Fort.)

	R1	<u> </u>	x	n
5	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	_	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2OCH2	2-F	1
10	(CH ₂) ₂ CH ₃	CH2CH2OCH2	2-F	1
	CH ₂ CH ₃	CH2CH2OCH2	3-F	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	3-F	1
	CH ₂ CH ₃	CH2CH2OCH2	4-F	1
15	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-F	1
	CH ₂ CH ₃	CH2CH2OCH2	4-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-C1	1
	CH ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
20	(CH ₂) ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
	CH₂CH₃	CH2CH2OCH2	3-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	3-CH ₃	1
25	CH ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
20	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
	CH ₂ CH ₃	CH2CH2OCH2	4-tC4H9	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-tC4H9	1
30	CH ₂ CH ₃	CH2CH2SCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	-	0
	CH ₂ CH ₃	CH2CH2SCH2	4-C1	1
05	(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-C1	1
35	CH ₂ CH ₃	CH2CH2SCH2	4-F	1
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-F	1
	CH ₂ CH ₃	CH2CH2CH2CH2O	-	0
40	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	-	0
	CH ₂ CH ₃	CH2CH2CH2CH2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-C1	1
45	CH ₂ CH ₃	CH2CH2CH2CH2O	4-F	1
70	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-F	1

50

Tabelle 19 (Fort.)

R1	Α	<u> </u>	n
CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0
CH ₂ CH ₃	CH2CH2CH2CH2CH2O	4-C1	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	4-C1	1
CH ₂ CH ₃	CH2CH2CH2CH2CH2O	4-F	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	4-F	1

Tabelle 20

10	R1	A	X	n
	CH 2CH 3	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	-	0
15	CH ₂ CH ₃	CH2CH2OCH2	5-c1 ·	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-c1	1
	CH ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
20	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
25	(CH2)2CH3	CH2CH2CH2OCH2	-	0 .
	CH 2CH 3	CH 2CH 2CH 2OCH 2	5-c1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C1	1
	CH 2CH 3	CH2CH2CH2OCH2	5-CH ₃	1
30	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
35	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2		0
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-c1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-c1	1
40	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C2H5	1
45				

Tabelle 20 (Fort.)

	R1	A	X	n
5	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5 - C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-C1	1
10	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
	-	CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂	5-C ₂ H ₅	1
15	CH ₂ CH ₃ (CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1

Tabelle 21

5 OH NO-A-(X)

10	R1	Α	X	n
	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
15	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2OCH2	5-C2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C ₂ H ₅	1
20	CH 2CH 3	CH2CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
25	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	CH2CH3	CH2CH2CH2CH2CH2	-	0
30	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
35	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C2H5	ī
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
40	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1
45	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1

50

Tabelle 22

5 OH NO-A-(X) n

R1	A	X	n
CH ₂ CH ₃	CH ₂ CH ₂ O	-	0
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	-	0
CH ₂ CH ₃	CH ₂ CH ₂ O	2-C1	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ O	3-C1	1
(CH ₂) ₂ CH ₃	CH₂CH₂O	3-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ O	4-C1	1
(CH ₂) ₂ CH ₃	CH2CH2O	4-C1	1
CH 2CH 3	CH ₂ CH ₂ O	2-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-F	1
CH 2CH 3	CH ₂ CH ₂ O	3-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
CH 2CH 3	CH ₂ CH ₂ O	4-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
CH 2CH 3	CH ₂ CH ₂ O	3-CF ₃	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
CH ₂ CH ₃	CH2CH2CH20	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2O	- ,	0
CH ₂ CH ₃	СН ₂СН ₂СН ₂О	4-C1	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	4-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ O	4-F	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	4-F	1

45

50

Tabelle 22 (Fort.)

RI	Α	X	n
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	_	0
(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
CH ₂ CH ₃	CH2CH2OCH2	2-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	2-F	1
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	3-F	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	3-F	1
CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-F	1
CH ₂ CH ₃	CH2CH2OCH2	4-C1	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-C1	1
CH ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	2-CH ₃	1
CH ₂ CH ₃	CH2CH2OCH2	3-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	3-CH ₃	1
CH ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
CH ₂ CH ₃	CH2CH2OCH2	4-tC ₄ Hg	1
(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-tC ₄ H ₉	1
CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	-	0
(CH ₂) ₂ CH ₃	CH2CH2SCH2	-	0
CH ₂ CH ₃	CH2CH2SCH2	4-C1	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-F	1
(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-F	1
CH ₂ CH ₃	CH2CH2CH2CH2O	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	-	0
CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-c1	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-c1	1
CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1

Tabelle 22 (Fort.)

5	R1	Α	X	л	
J	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	~	0	
10	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-01	1	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-C1	1	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1	

Tabelle 23

10 R1 A X	n
CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ -	0
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ -	0
	1
15 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 5-C1	1
CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 5-CH ₃	1
(CH2)2CH3 $CH2CH2OCH2$ 5-CH ₃	1
CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 5-C ₂ H ₅	1
/ m	1
CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ -	0
	0
CH ₂ CH ₃ CH ₂ CH ₂ CCH ₂ 5-C1	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CCH ₂ 5-C1	1
CH ₂ CH ₃ CH ₂ CH ₂ OCH ₂ 5-CH ₃	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ 5-CH ₃	1
	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ 5-C ₂ H ₅	1
	0
CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CCH ₂ CH ₂ -	0
CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ 5-C1	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ 5-C1	1
CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ 5-CH ₃	1
	1
CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ 5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ 5-C ₂ H ₅	1

Tabelle 23 (Fort.)

R1	A	X	<u>n</u>
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	~	0
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-c1	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-c1	1
	CH2CH2CH2CH2OCH2	5-CH ₃	1
	CH2CH2CH2CH2OCH2	5-CH ₃	1
	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-C ₂ H ₅	1
	CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃	CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂	CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ - (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ - CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ 5-C1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ 5-C1 CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ 5-CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ 5-CH ₃ CH ₂ CH ₃ CH ₂

Tabelle 24

5	OH NO-A-O (X)n

10	R1	A	X	п
	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
15	CH ₂ CH ₃	CH2CH2OCH2	5-CH3	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
	CH 2CH 3	CH2CH2OCH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C ₂ H ₅	1
20	CH ₂ CH ₃	CH2CH2CH2OCH2	•	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	~	0
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH3	1
25	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH3	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
30	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
30	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH3	1
35	CH ZCH 3	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
	CH 2CH 3	CH2CH2CH2CH2	-	0
40	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2CH2CH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2CH2	5-C 2H5	1
45	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-C ₂ H ₅	1

Tabelle 25

5 OH NO-A (X) n

R1	Α	X	n
CH ₂ CH ₃	CH ₂ CH ₂ O		0
	CH ₂ CH ₂ O	-	0
	CH ₂ CH ₂ O	2- c 1	1
	CH ₂ CH ₂ O	2-c1	1
CH ₂ CH ₃	CH ₂ CH ₂ O	3 - c1	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ O	4- c 1	1
(CH ₂) ₂ CH ₃	CH2CH2O	4-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ O	2-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-F	1
CH ₂ CH ₃	CH2CH20	3-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	3-F	1
CH2CH3	CH ₂ CH ₂ O	4-F	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	4-F	1
CH ₂ CH ₃	CH ₂ CH ₂ O	3-CF ₃	1
(CH ₂) ₂ CH ₃	CH2CH2O	3-CF ₃	1
CH ₂ CH ₃	CH2CH2CH2O	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2O	-	0
CH ₂ CH ₃	CH2CH2CH2O	4-C1	1 .
(CH ₂) ₂ CH ₃	CH2CH2CH2O	4-C1	1
CH ₂ CH ₃	CH2CH2CH2O	4-F	1
(CH ₂) ₂ CH ₃	CH2CH2CH2O	4-F	1
	CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃	CH2CH3	CH2CH3

45

50

Tab 11e 25 (Fort.)

	R1	Α	X	n
5	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	-	0
	CH ₂ CH ₃	CH 2CH 2OCH 2	2-F	1
10	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	2-F	1
10	CH ₂ CH ₃	CH 2CH 2OCH 2	3-F	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	3-F	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-F	1
15	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-F	1
	CH2CH3	CH 2CH 2OCH 2	4-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-C1	1
	CH ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
20	(CH ₂) ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
	CH ₂ CH ₃	CH2CH2OCH2	3-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	3-CH ₃	1
	CH ₂ CH ₃	CH2CH2OCH2	4-CH3	1
25	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-CH ₃	1
	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-tC4H9	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-tC ₄ H ₉	1
30	CH ₂ CH ₃	CH2CH2SCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	-	0
	CH ₂ CH ₃	CH2CH2SCH2	4-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-C1	1
35	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-F	1
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	4-F	1
	CH ₂ CH ₃	CH2CH2CH2CH2O	-	0
40	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	-	0
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-C1	1
	CH ₂ CH ₃	CH2CH2CH2CH2O	4-F	1
45	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2O	4-F	1

Tabelle 26 (Fort.)

5	R1	A	X	n	
	CH ₂ CH ₃	CH2CH2CH2CH2CH2O	-	0	
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	-	0	
40	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4- c 1	1	
10	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-C1	1	
	CH ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-F	1	
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	· 4-F	1	

Tabelle 26

	R1	Α	X	n
10	CH ₂ CH ₃	CH2CH2OCH2	~	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2OCH2	5-c1	1
15	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-c1	1
	CH ₂ CH ₃	CH2CH2OCH2	5-CH3	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH3	1
	CH ₂ CH ₃	CH2CH2OCH2	5-C2H5	1
20	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	1
25	CH ₂ CH ₃	CH2CH2CH2OCH2	5-c1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
30	CH2CH3	CH2CH2CH2OCH2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
35	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-c1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH3	1
40	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	CH2CH3	CH2CH2CH2OCH2CH2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C 2H5	1

Tabelle 26 (Fort.)

	R1	A :	X	n
5	CH ₂ CH ₃	CH2CH2CH2CH2	-	0
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2		0
	CH ₂ CH ₃	CH2CH2CH2CH2	5-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-c1	1
10	CH 2CH 3	CH2CH2CH2CH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1
15	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-C ₂ H ₅	1

Tabelle 27

5	OH NO-A-(X)n
	•

CH2CH3 CH2CH2OCH2 CH2CH3 CH2CH2CH2OCH2 CH2CH3 CH2CH2CH2OCH2CH2 CH2CH3 CH2CH2CH2OCH2CH2 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH2CH2CH2CH2 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH2CH2CH2CH3 CH2CH3 CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3	R1	Α	X	n
CH2CH3 CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2OCH2 5-C2H5 1 (CH2) 2CH3 CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2 - 0 CH2CH3 CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2CH2 - 0 CH2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 <td>сн₂сн₃</td> <td>CH2CH2OCH2</td> <td></td> <td>0</td>	сн₂сн₃	CH2CH2OCH2		0
(CH2) 2CH3 CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2OCH2 5-C2H5 1 (CH2) 2CH3 CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2 - 0 CH2CH3 CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2OCH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 5-C4H3 1 CH2CH3 CH	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
CH2CH3 CH2CH2OCH2 5-C2H5 1 (CH2) 2CH3 CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2 - 0 CH2CH3 CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 C	CH ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
(CH2) 2CH3 CH2CH2OCH2 5-C 2H5 1 CH2CH3 CH2CH2CH2CH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2 - 0 CH2CH3 CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2CH2 5-CH3 1 CH2CH3 CH2	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-CH ₃	1
CH2CH3	CH ₂ CH ₃	CH2CH2OCH2	5-C2H5	1
(CH2) 2CH3 CH2CH2CH2CCH2 - 0 CH2CH3 CH2CH2CH2CCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CCH2 5-CH3 1 CH2CH3 CH2CH2CH2CCH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2CCH2 - 0 (CH2) 2CH3 CH2CH2CH2CCH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 <td< td=""><td>(CH₂)₂CH₃</td><td>CH2CH2OCH2</td><td>5-C₂H₅</td><td>1</td></td<>	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH3	CH2CH2CH2OCH2	-	0
(CH2) 2CH3 CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2OCH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2CH2 - 0 CH2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2OCH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2OCH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2OCH2 - 0 CH2CH3 CH2CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2OCH2 5-CH3 1 (CH2CH3 CH2CH2CH2CH2CH2OCH2 5-CH3 1	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0
CH2CH3	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
(CH2) 2CH3 CH2CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2OCH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2OCH2CH2 - 0 CH2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2OCH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2CH2OCH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2OCH2 - 0 CH2CH3 CH2CH2CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2CH2OCH2 5-CH3 1	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH3	1
CH2CH3	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C 2H5	1
(CH2) 2CH3 CH2CH2CH2OCH2CH2 - 0 CH2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2OCH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2CH2CH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2CH2CH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2CH2CH2 - 0 CH2CH3 CH2CH2CH2CH2CH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2CH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2CH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2CH2CH2 5-C 2H5 1	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ 5-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ 5-CH ₃ 1 CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ 5-C ₂ H ₅ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CCH ₂ CH ₂ 5-C ₂ H ₅ 1 CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CCH ₂ CCH ₂ - 0 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CCH ₂ - 0 CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CCH ₂ 5-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CCH ₂ 5-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CCH ₂ 5-CH ₃ 1 CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CCH ₂ 5-CC ₃ 1	CH2CH3	CH2CH2CH2OCH2CH2	-	0
(CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 1 CH2CH3 CH2CH2CH2OCH2CH2 5-C2H5 1 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2OCH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2OCH2 - 0 CH2CH3 CH2CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2OCH2 5-C 2H5 1	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH3	1
(CH2) 2CH3 CH2CH2CH2OCH2CH2 5-C2H5 1 CH2CH3 CH2CH2CH2CH2OCH2 - 0 (CH2) 2CH3 CH2CH2CH2CH2OCH2 - 0 CH2CH3 CH2CH2CH2CH2OCH2 5-CH3 1 (CH2) 2CH3 CH2CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2OCH2 5-CH3 1 CH2CH3 CH2CH2CH2CH2OCH2 5-C 2H5 1	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-CH3	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ 5-CH ₃ 1 (CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ 5-CH ₃ 1 CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ 5-C ₂ H ₅ 1	CH2CH3	CH2CH2CH2CH2OCH2	-	0
$(CH_2)_2CH_3$ $CH_2CH_2CH_2CCH_2$ 5-CH ₃ 1 CH_2CH_3 $CH_2CH_2CH_2CCH_2$ 5-C ₂ H ₅ 1	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	_	0
CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ 5-C ₂ H ₅ 1	CH2CH3	CH2CH2CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-CH ₃	1
(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ 5-C ₂ H ₅ 1	CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C ₂ H ₅	1

50

Tabelle 28

5 Br OH NO-A-(X)n

R1	Α	X	n
CH ₂ CH ₃	CH ₂ CH ₂ O	-	0
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	-	0
CH ₂ CH ₃	CH ₂ CH ₂ O	2-C1	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ O	2-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ O	3-C1	1
(CH ₂) ₂ CH ₃	CH 2CH 2O	3-C1	1
CH ₂ CH ₃	CH 2CH 2O	4-c1	1
(CH ₂) ₂ CH ₃	CH 2CH 2O	4-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ O	2 - F	1
(CH ₂) ₂ CH ₃	CH 2CH 2O	2-F	1
CH ₂ CH ₃	CH 2CH 2O	3-F	1
(CH ₂) ₂ CH ₃	CH 2CH 2O	3-F	1
CH ₂ CH ₃	сн ₂ сн ₂ о	4-F	1
(CH ₂) ₂ CH ₃	CH₂CH₂O	4-F	1
CH ₂ CH ₃	CH 2CH 2O	3-CF ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2O	3-CF ₃	1
	on chick-o	_	0
CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ O	_	0
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ CH ₂ O	4-C1	1
CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ O	4-C1	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ CH ₂ O	4-F	1
CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ O	4-F	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2O	⊸ -1	-

45

50

Tabelle 28 (Fort.)

5	R1	A	x	n
	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2OCH2	2-F	1
10	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	2-F	1
	CH ₂ CH ₃	CH2CH2OCH2	3-F	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	3-F	1
••	CH ₂ CH ₃	CH2CH2OCH2	4-F	1
15	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-F	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-C1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	4-C1	1
20	CH2CH3	CH2CH2OCH2	2-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	2-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	3-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	3-CH ₃	1
25	CH ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	4-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	4-tC4H9	1
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	4-tC4H9	1
30	011 011	SH SH SSH		•
	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	-	0
	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-c1	0
05	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂		1
35	(CH ₂) ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-C1	1
	CH ₂ CH ₃	CH ₂ CH ₂ SCH ₂	4-F	1
	(CH ₂) ₂ CH ₃	CH2CH2SCH2	4 - F	ı
40	CH ₂ CH ₃	CH2CH2CH2CH2O	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	-	0
	CH ₂ CH ₃	CH2CH2CH2CH2O	4-c1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-C1	1
45	CH ₂ CH ₃	CH2CH2CH2CH2O	4-F	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2O	4-F	1

Tabelle 28 (Fort.)

R1	A	X	n
CH ₂ CH ₃	CH2CH2CH2CH2CH2O	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	-	0
CH ₂ CH ₃	CH2CH2CH2CH2CH2O	4-C1	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2CH 2O	4-C1	1
CH ₂ CH ₃	CH2CH2CH2CH2CH2O	4-F	1
(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2O	4-F	1
	•		
		•	

Tabelle 29

5	Br OH NO-A-(X)n
	o

!	R1	Α	X	n
	CH ₂ CH ₃	CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2OCH2	5-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C1	1
	CH ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
	CH ₂ CH ₃	CH 2CH 2OCH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2OCH2	5-C 2H5	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	-	0
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-c1	1
	(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-C1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-C 2H5	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
	CH2CH3	CH2CH2CH2OCH2CH2	-	0
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	_	0
	CH2CH3	CH2CH2CH2OCH2CH2	5-C1	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C1	1
	CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-CH ₃	1
	CH 2CH 3	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2CH2	5-C ₂ H ₅	1

Tabelle 29 (Fort.)

_	RI	A	X	n	
5	CH ₂ CH ₃	CH2CH2CH2CH2	-	0	
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0	
	CH ₂ CH ₃	CH2CH2CH2CH2OCH2	5-C1	1	
10	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-c1	1	
	CH ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1	
	(CH ₂) ₂ CH ₃	CH2CH2CH2CH2	5-CH ₃	1	
15	CH ₂ CH ₃	CH2CH2CH2CH2	5-C 2H5	1	
15	(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1	

Tabelle 30

CH ₂ CH ₃ (CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	_	
(CH ₂) ₂ CH ₃			0
	CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH ₂ CH ₂ OCH ₂	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH 2CH 2OCH 2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-CH ₃	1
CH ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	-	0
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	~	0
CH ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2OCH 2CH 2	5-CH3	1
CH ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH2CH2CH2OCH2CH2	5-C ₂ H ₅	1
CH ₂ CH ₃	CH2CH2CH2CH2OCH2	-	0
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	-	0
CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-CH ₃	1
CH ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1
(CH ₂) ₂ CH ₃	CH 2CH 2CH 2CH 2OCH 2	5-C ₂ H ₅	1
	(CH ₂) ₂ CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ CH ₂ CH ₃	(CH2) 2CH3 CH2CH2OCH2 CH2CH3 CH2CH2OCH2 (CH2) 2CH3 CH2CH2OCH2 CH2CH3 CH2CH2CH2OCH2 CH2CH3 CH2CH2CH2OCH2 (CH2) 2CH3 CH2CH2CH2OCH2 (CH2) 2CH3 CH2CH2CH2OCH2 (CH2) 2CH3 CH2CH2CH2OCH2 (CH2) 2CH3 CH2CH2CH2OCH2CH2 (CH2) 2CH3 CH2CH2CH2CH2OCH2CH2 (CH2) 2CH3 CH2CH2CH2CH2CH2OCH2 (CH2) 2CH3 CH2CH2CH2CH2CH2OCH2	(CH2) 2CH3 CH2CH2OCH2 5-CH3 CH2CH3 CH2CH2OCH2 5-C2H5 (CH2) 2CH3 CH2CH2OCH2 5-C2H5 CH2CH3 CH2CH2CH2OCH2 - (CH2) 2CH3 CH2CH2CH2OCH2 - CH2CH3 CH2CH2CH2OCH2 5-CH3 (CH2) 2CH3 CH2CH2CH2OCH2 5-CH3 (CH2) 2CH3 CH2CH2CH2OCH2 5-C2H5 (CH2) 2CH3 CH2CH2CH2OCH2 5-C2H5 CH2CH3 CH2CH2CH2OCH2CH2 - (CH2) 2CH3 CH2CH2CH2OCH2CH2 - (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-CH3 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-C2H5 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-C2H5 (CH2) 2CH3 CH2CH2CH2OCH2CH2 5-C2H5 (CH2) 2CH3 CH2CH2CH2CH2OCH2 - (CH2CH3 CH2CH2CH2CH2OCH2 5-CH3 (CH2CH3 CH2CH2CH2CH2OCH2 5-CH3 (CH2CH3 CH2CH2CH2CH2OCH2 5-CH3 (CH2CH3 CH2CH2CH2CH2CH2OCH2 5-CH3 (CH2CH3 CH2CH2CH

Cyclohexenonoximether I, wobei Z die Phenylgruppe bedeutet, sind ganz besonders bevorzugt. Die Cyclohexenonoximether I eignen sich als Herbizide, insbesondere zur Bekämpfung von Pflanzenarten aus der Familie der Gramineen (Gräser).

Die Cyclohexenonoximether I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anw ndungformen richten sich nach den Verwendungszwecken; sie sollt n in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen I eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen. Als inerte Zusatzstoffe kommen Mineralölfraktionen von mittlerem bis

hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin-und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren. Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach GC-/HPLC- oder NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen I können beispielsweise wie folgt formuliert werden:

35

40

45

50

- I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 7.21 mit 10 Gewichtsteilen N-Methyl- α -pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.
- II. 20 Gewichtsteile der Verbindung Nr. 7.23 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol. 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- III. 20 Gewichtsteile der Verbindung Nr. 7.21 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- IV. 20 Gewichtsteile des Wirkstoffs Nr. 7.23 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Sledepunkt 210 bis 280 °C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- V. 20 Gewichtsteile des Wirkstoffs Nr. 7.23 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.
- VI. 3 Gewichtstelle des Wirkstoffs Nr. 7.15 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt21Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

VII. 30 Gewichtsteile des Wirkstoffs Nr. 7.21 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigk it.

VIII. 20 Gewichtsteile des Wirkstoffs Nr. 7.23 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation der Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können auch Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff betragen je nach Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3 kg/ha, vorzugsweise 0,01 bis 2,0 kg/ha.

In Anbetracht des erfaßbaren Wirkungsspektrums zur Unkrautbekämpfung, der Verträglichkeit für Kulturpflanzen oder der erwünschten Beeinflussung des Wachstums derselben sowie angesichts der Vielfalt der Applikationsmethoden können die erfindungsgemäßen Verbindungen in einer großen Zahl von Kulturpflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

	Botanischer Name	Deutscher Name
	Allium cepa	Küchenzwiebel
25	Ananas comosus	Ananas
	Arachis hypogaea	Erdnuβ
	Asparagus officinalis	Spargel
	Avena sativa	Hafer
30	Beta vulgaris spp. altissima	Zuckerrübe
	Beta vulgaris spp. rapa	Futterrübe
	Beta vulgaris spp. esculenta	Rote Rübe
	Brassica napus var. napus	Raps
35	Brassica napus var. napobrassica	Kohlrübe
	Brassica napus var. rapa	Weiße Rübe
	Brassica rapa var. silvestris	Rübsen
	Camellia sinensis	Teestrauch
40	Carthamus tinctorius	Saflor - Färberdistel
	Carya illinoinensis	Pekannuβbaum
	Citrus limon	Zitrone
	Citrus maxima	Pampelmuse
45	Citrus reticulata	Mandarine
	Citrus sinensis	Apfelsine, Orange
	Coffea arabica (Coffea canephora, Coffea liberica)	Kaffee
50	Cucumis melo	Melone
	Cucumis sativus	Gurke

	Botanischer Name	Deutscher Name
	Cynodon dactylon	Bermudagras
	Daucus car ta	Möhre
5	Elaeis guineensis	Ölpalme
	Fragaria vesca	Erdbeere
	Glycine max	Sojabohne
	Gossypium hirsutum (Gossypium arboreum,	8aumwolle
10	Gossypium herbaceum, Gossypium vitifoliu	ım)
	Helianthus annuus	Sonnenblume
	Helianthus tuberosus	Topinambur
	Hevea brasiliensis	Parakautschukbaum
15	Hordeum vulgare	Gerste
	Humulus lupulus	Hopfen
	Ipomoea batatas	Süβkartoffeln
	Juglans regia	Walnuβbaum
	Lactuca sativa	Kopfsalat
20	Lens culinaris	Linse
	Linum usitatissimum	Faserlein
	Lycopersicon lycopersicum	Tomate
	Malus spp.	Apfel
25	Manihot esculenta	Maniok
	Medicago sativa	Luzerne
	Mentha piperita	Pfefferminze
	Musa spp.	Obst- und Mehlbanane
30	Nicotiana tabacum (N. rustica)	Tabak
	Olea europaea	Ölbaum
	Oryza sativa	Reis
	Panicum miliaceum	Rispenhirse
35	Phaseolus lunatus	Mondbohne
••	Phaseolus mungo	Erdbohne
	Phaseolus vulgaris	Buschbohnen
	Pennisetum glaucum	Perl- oder Rohrkolbenhirse
40	Petroselinum crispum spp. tuberosum	Wurzelpetersilie
40	Picea abies	Rotfichte
	Abies alba	Weißtanne ,
	Pinus spp.	Kiefer
	Pisum sativum	Gartenerbse
45	Prunus avium	Süßkirsche
	Prunus domestica	Pflaume
	Prunus dulcis	Mandelbaum
	Prunus persica	Pfirsich
50	Pyrus communis	Birne
	Ribes sylvestre	Rote Johannisbeere

	Botanischer Name	Deutscher Name
	Ribes uva-crispa	Stachelbeere
	Ricinus communis	Rizinus
5	Saccharum officinarum	Zuckerrohr
	Secale cereale	Roggen
	Sesamum indicum	Sesam
	Solanum tuberosum	Kartoffel
10	Sorghum bicolor (s. vulgare)	Mohrenhirse
	Sorghum dochna	Zuckerhirse
	Spinacia oleracea	Spinat
	Theobroma cacao	Kakaobaum
15	Trifolium pratense	Rotklee
	Triticum aestivum	Weizen
	Triticum durum	Hartweizen
	Vaccinium corymbosum	Kulturheidelbeere
20	Vaccinium vitis-idaea	Preißelbeere
	Vicia faba	Pferdebohnen
	vigna sinensis (v. unguiculata)	Kuhbohne
	Vitis vinifera	Weinrebe
25	Zea mays	Mais

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Cyclohexenonderivate der Formel I sowohl untereinander als auch mit Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Chinolincarbonsäuren, Sulfonylharnstoffderivate, Cyclohexenone, (Hetero)-aryloxypropionsäuren, deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Cyclohexenonderivate der Formel 1 bzw. sie enthaltende herbide Mittel allein oder in Kombination mit anderen Herbiziden oder auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Die in den nachstehenden Synthesebeispielen wiedergegebene Vorschrift wurde unter entsprechender Abwandlung der Ausgangsverbindung zur Gewinnung weiterer Hydroxylamine der Formel III und Cyclohexenonoximether der Formel I benutzt; die erhaltenen Verbindungen sind in den nachfolgenden Tabellen mit physikalischen Angaben aufgeführt.

Synthesebeispiele zur Herstellung der Hydroxylamine III

N-[2-(2-Fluorbenzyloxy)ethoxy]phthalimid

Zu einer Mischung aus 165 g (0,71 mol) 1-Brom-2-(2-fluorbenzyloxy)ethan, 116 g (0,7 mol) N-Hydroxyphthalimid und 710 ml N-Methyl-2-pyrrolidinon tropfte man bei 20-25 °C innerhalb 1 h 108 ml Triethylamin. Nach 5 g bei 60 °C goß man die kalte Reaktionsmischung in 2000 ml Eiswasser, saugte den Niederschlag ab, wusch mit Wasser und Isopropanol und trocknete i. Vak. über Phosphorpentoxid 185 g (82 %) Phthalimidether, Fp. 62-64 °C - $^{\text{t}}$ H-NMR (250 MHZ, d₆-DMSO): δ = 3.85 (m,2H), 4.35 (m,2H), 4,54 (s,2H), 7, 10-7, 40 (m,4H), 7,88 (s,4H).

O-[2-(2-Fluorbenzyloxy)ethyl]hydroxylamin

184 g (0,58 mol) des oben hergestellten Phthalimidethers wurden portionsweise in 270 ml Ethanolamin eingetragen. Nach 3 h bei 60° C goß man die kalte Reaktionsmischung in 1000 ml Eiswasser. Das Hydrolysat wurde dreimal mit je 800 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit 200 ml ges. Kochsalz-Lösung gewaschen, über Magnesiumsulfat getrocknet und i. Vak. eingeengt. 98 g (91 %) Hydroxylamin. 1 H-NMR (250 MHZ, CDCl₃): δ = 3,70 (dd,2H), 3,85 (dd,2H), 4,54 (s,2H), 5,50 (bs,2H), 7,00-7,50 (m,4H).

Synthesebeispiel zur Herstellung der Cyclohexenonoximether I

o 2-[1-[[2-(2-Fluorbenzyloxy)ethoxy]imino]butyl]-3-hydroxy-5-(2H-tetrahydropyran-4-yl)-2-cyclohexen-1-on

Eine Mischung aus 4,0 g (10 mmol) 2-Butyryl-3-hydroxy-5-(2H-tetrahydropyran-4-yl)-2-cyclohexen-1-on und 2,6 g (14 mmol) O-[2-(2-Fluorbenzyloxy)ethyl]hydroxylamin in 100 ml Methanol wurde 24 h gerührt. Man engte i. Vak. ein und chromatographierte das Rohprodukt an 100 g Kieselgel/Säule 30 x 4 cm. (Laufmittel: Ether). 3,5 g (54 %) Cyclohexenonoximether. - 1 H-NMR (300 MHZ, CDCl₃): δ = 0,93 (t,3H), 1,20-1,77 (m,7H), 1,90 (m,1H), 2,23 (m,2H), 2,58 (m,2H), 2,92 (m,2H), 3,38 (t,2H), 3,80 (m,2H), 4,03 (m,2H), 4,25 (m,2H), 4,68 (s,2H), 6,93-7,50 (m,4H), 14,30 (s,1H).

5														1H)							
10			in ppm]	н)		Î				(H				6.83 (d, 1H), 7.15 (dd, 1H), 7.85 (d, 1H)		Ŧ					Ŧ
15		111	/ 1H-NMR [6	, 7,27 (m, 2	(H\$,	, 7,25 (m, 1Н)	(H)			, 7.25 (m, 2				, 7.15 (dd,		2н), 8.20 (d, 2н)				, 5H)	, 7.40 (m, 2н)
20			phys. Daten / 1H-NMR [ø in ppm]	6.90 (m, 3H), 7,27 (m, 2H)	6.85-7.15 (m, 4	6.70 (m, 3H)	6.80-7.00 (m,			6.85 (m, 2H), 7.25 (m, 2H)				6.83 (d, 1н),	7.30 (s, 2H)	7.00 (d, 2H),				7.17-7.43 (m, 5H)	7.00 (m, 2H),
25		H ₂ N-0-A-2-X _Π	c	6			_	_	_	4				~	m		0	_		0	
30		H ₂ N	×	i	2-F	3-F	4-F	2-C1	3-61	4-C1	2-CF3	3-CF3	4-CF3	2,4-C1 ₂	2,4,6-013	4-NO2	1	4-F	12-4		4-F
35																					
40			7	Phenyl	Pheny l	Pheny l	Pheny 1	Phenyl	Phenyl	Pheny l	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pheny l	Pheny l	Pheny l	Phenyl
45	ď		Æ	CH ₂ CH ₂ 0	CH ₂ CH ₂ O	CH ₂ CH ₂ 0	CH ₂ CH ₂ O	CH ₂ CH ₂ 0	CH ₂ CH ₂ O	CH ₂ CH ₂ 0	CH ₂ CH ₂ 0	CH ₂ CH ₂ 0	CH ₂ CH ₂ O	CH ₂ CH ₂ O	CH ₂ CH ₂ O	CH ₂ CH ₂ 0	сн2сн(сн3)0	сн ₂ сн(сн ₃)о	СН2СН(СН3)0	CH ₂ CH ₂ S	CH2CH2S
50	Tabelle A		N.	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18

		1																		
5					-					35 (m, 1H)	т, 1н)								d, 1H)	
10		5 in ppm]			(d, 2H)	2н)		1H)) (m, 1H), 7.	(m, 2H), 7.20 (m, 1H)	2H)	2H)		2H)		1H)		14), 7.23 (2H)
15		phys. Daten / 1H-NMR [& in ppm]	(m, 4H)	Ŧ	, 33	н), 7.27 (m, 2н)	(m, 4H)	н), 7.25 (m, 1н)	(m, 4H)		.95	н), 7.20 (т, 2н)	н), 8.15 (d,	Ŧ	H), 7.40 (m, 2H)	(m, 4H)	7.17 (m, 3H), 7.30 (m, 1H)	Œ	7.03 (dd, 1H), 7.20 (d, 1H), 7.23 (d, 1H)	7.15 (t, 1H), 7.33 (d, 2H)
20		phys. Date	7.06-7.40 (m, 4H)	7.30 (m, 4H)	7.15 (t, 1	6.90 (m, 3H), 7	6.80-7.15	6.70 (m, 3H),	6.80-7.00 (m, 4H)	6.80-7.00	6.80 (m, 1H),	6.80 (m, 2	7.00 (d, 2	7.15-7.40	7.00 (m, 2H), 7	7.07-7.40 (m,	7.17 (m, 3	7.25 (m, 4	7.03 (dd,	7.15 (t, 1
25		٠	-	-	2	0	1	-	-	-	-	-	_	0		-	-		2	2
30		×	2-c1	4-01	2,6-c1 ₂	1	2-F	3-F	4-F	2-01	3-01	13-7	4-NO ₂	t	4-6	2-c1	3-01	10-7	2,5-012	2,6-012
35		2	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl.	Phenyl	Phenyl	Pheny l	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pheny 1
40	Tabelle A (Fort.)	A	CH ₂ CH ₂ S	CH2CH2S	CH2CH2S	CH2CH2CH20	CH2CH2CH20	CH2CH2CH20	CH2CH2CH20	CH2CH2CH20	CH2CH2CH20	CH2CH2CH20	CH2CH2CH20	CH2CH2CH2S	CH2CH2CH2S	CH2CH2CH2S	CH2CH2CH2S	CH2CH2CH2S	CH2CH2CH2S	CH2CH2CH2S
45	Tabelle	Nr.	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36
50																				

5				2н),			2H),	-7, 40 (m, 2н)			2н),			2н),	(m, 4H)	2н),	(m, 4H)	2н),	(m, 4H)
10		[a in ppm]		3,85 (dd,2H), 4,54 (s,2H),	50 (m, 4H)		3,66 (dd,2H), 3,88 (dd,2H), 4,54 (s,2H),	5,50 (bs,2H), 7,00-7,10 (m,2H), 7,20-7,40 (m,2H)			3,65 (dd,2H), 3,84 (dd,2H), 4,54 (s,2H),	10 (m, 4H)		2,35 (s,3H), 3,65 (dd,2H), 3,87 (dd,2H),	(H), 7,00-7,30 (m,4H)	3,64 (dd,2H), 3,84 (dd,2H),	5,50 (bs,2H), 7,10-7,30 (m,4H)	(s, 9H), 3,65 (dd, 2H), 3,89 (dd, 2H),	(s,2H), 5,50 (bs,2H), 7,20-7,50 (m,4H)
15		/ 1H-NMR		, 3,85 (do	, 7,00-7,		, 3,88 (dc	, 7,00-7,1			, 3,84 (dc	(bs, 2H), 7, 20-7, 40 (m, 4H)		3,65 (dd,	5,50 (bs,2H),		5,50 (bs,	3,65 (dd,	5,50 (bs,
20		phys. Daten / lH-NMR [d in ppm]	7.25 (m, 5H)	3,70 (dd,2H),	5,50 (bs,2H), 7,00-7,50 (m,4H)		3,66 (dd,2H)	5,50 (bs,2H),			3,65 (dd,2H)	5,50 (bs,2H)		2,35 (s,3H),	4,54 (s,2H),	2,35 (s,3H),	4,53 (s,2H),	1,33 (s,9H),	4,55 (s,2H),
25		=	0	-		-	-		-	-			-	-		1			
30		×	ı	2-F		3-F	4-F		2-C1	3-c1	4-C1		2-CH ₃	3-CH ₃		4-CH3		4-tC4H9	
35																_		_	
40		Z	Phenyl	Phenyl		Pheny l	Phenyl		Pheny l	Phenyl	Pheny 1		Pheny	Phenyl		Pheny l		Phenyl	
45	Tabelle A (Fort.)	A	CH2CH2OCH2	CH ₂ CH ₂ OCH ₂		CH2CH2OCH2	CH ₂ CH ₂ OCH ₂	1	CH 2CH 20CH 2	CH ₂ CH ₂ OCH ₂	CH ₂ CH ₂ OCH ₂		CH 2CH 20CH 2	CH ₂ CH ₂ OCH ₂		CH 2CH 2OCH 2	•	сн,сн,осн,	1 4 8
	Tabelle		1.37	1.38		1.39	1.40		1.41	1.42	1.43		1.44	1.45		1.46		1.47	
50																			

x n phys. Da - 0 2,66 (t, 7,20-7,5 4-F 1 7.00 (m, 4-C1 1 2,65 (t, 5,40 (bs			2,6-c1 ₂ 2 6.9 - 0	4-F 1 6.9	4-c1 1	0	4-F 1	4-c1 1
	6.80-		6.9	6.9				
00 Da (t, 7, 5 (t, (t, (t, (bs			ഹ	33				
phys. Daten / IH-NMR [6 in ppm] 2,66 (t,2H), 3,70-3,85 (m,4H), 7,20-7,50 (m,5H) 7.00 (m, 2H), 7.25 (m, 2H) 2,65 (t,2H), 3,72 (s,2H), 3,78 5,40 (bs,2H), 7,28 (s,4H)	6.80-7.00 (т, 4н)	6.80 (m, 2H), 7.20 (m,	6.95 (t, 1H), 7,30 (d,	6.93 (т, 2н), 7.13 (т, 2н)				
phys. Daten / 1H-NMR [& in ppm] 2, 66 (t,2H), 3,70-3,85 (m,4H), 5,40 (bs,2H), 7,20-7,50 (m,5H) 7,00 (m, 2H), 7.25 (m, 2H) 2,65 (t,2H), 3,72 (s,2H), 5,40 (bs,2H), 7,28 (s,4H)			d, 2H)	п, 2Н)				•

5		Fp. [°C]		2н),	_											2H)				
10	= Phenyl)	~ 1	42- 45	3,90 (m,2H), 4,20 (t,2H), 4,40 (m,2H),	o,6u-7,0u (m,5n), 7,15-7,57 (m,2n) 106-107	72- 73	- 55	92	76- 78	77 - 27	121-125	103-107	- 86	81-85	62- 68	t, 2H), 4,40 (m,2H)	a, 107,	103-109	73- 79	m, 2H) n, 1H)
15	(A = -CH ₂ CH ₂ O-; Z	Daten / 1H-NM	42	(m, 2H), 4, 20 (, ,00 (m, 5h), , 106	72	-25	6	9/	72	121	103	82-	81	62	(m, 2H), 4, 20 (t, 2H),		103	73	4,20 (t,2H), 4,40 (m,2H) 6,70 (m,3H), 7,25 (m,1H)
20	* Y	phys.		3,90	0, 80-1											3,90 (2,0			4, 20 (6, 70 (
	_	х	1	ı	ı	ı	ı	1	2-F	2-F	2-F	2-F	2-F	2-F	3-F	3-F	•	3-6	3-F	3-5
25	**)			•															
30	NO-CH,CH,O-	R1					3-y1	3-y1					3-y1	3-y1						3-y1
35	¥		Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3~y`	Tetrahydrothiopyran-3-y	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	٠	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl
40		R2	Tetrahyd	Tetrahydi	Tetrahydi	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahydı	Tetrahyd	Tetrahydı	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd		Tetrahyd	Tetrahyd	Tetrahyd
45	œ	<u>e</u>	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethy 1	Propyl	Ethyl	Propyl	Ethyl	Propyl		Ethyl	Propyl	Ethyl
50	Tabelle	ŗ.	2.01	2.02	2.03	7.04	2.05	7.06	2.07	7.08	5.09	2.10	2.11	2.12	2.13	2.14		2.15	2.16	2.17

5		pm], Fp. [°C]										4,47 (m,2H),											4,43 (m,2H),		4,43 (m,2H),	
10		H-NMR [ð in p		64- 67	70- 72	101-103	107-109	105-108	82-84	74- 80	67- 71		7, 37 (4, 1H)	68- 72	74- 78	72-78							(m, 2H), 4, 20 (t, 2H), 4,	, 25 (m, 2н)		(m, 2H), 7,25 (m,2H)
15		phys. Daten / 1H-NMR [å in ppm], Fp.										(m, 2H),	(t, 1H),			•							3,93 (m,2H), 4,	,90 (m, 2H), 7	3,93 (m,2H), 4,	, 90 (ш, 2н), 7
		x _n ph	3-F	4-F	4-F	4-F	4-F	4-F	4-F	2-c1	2-c1	2-c1 4,	7,	2-c1	2-c1	2-c1	3-01	3-c1	3-01	3-01	3-01	3-01	4-c1 3'	9	4-c1 3'	9
25																										
30			yran-3-yl	-3-y1	-3-y1	-4-y1	-4-yl	yran-3-yl	yran-3-yl	-3-yl	-3-yl	-4-y1		-4-y1	yran-3-yl	yran-3-yl	-3-y1	-3-y1	-4-y1	-4-y1	yran-3-yl	yran-3-yl	-3-y1		I-3-y1	
35			Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-y	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-y	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl		Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-y	Tetrahydrothiopyran—3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl		Tetrahydropyran-3-yl	
40	etzung)	R 2	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Teti		Teti	Teti	Teti	Teti	Teti	Teti	Teti	Teti	Teti	Teti		Tet	
45	Fabelle B (Fortsetze	R1	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl		Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl		Propyl	
50	Tabe 1	Ä.	2.18	2.19	2.20	2.21	2.22	2.23	2.24	2.25	2.26	2.17		2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.37		2.38	

5		phys. Daten / 1H-NMR [6 in ppm], Fp. [°C]	116-118	104-106	74- 77	86-88													72 - 77	, 4,27 (t,2H), 4,47 (m,2H)	7,00 (d, 2H), 7,55 (d,2H)		76 -06	73- 79	, 4,47 (m,2H), 7,00 (d,2H)	73- 75
15		phys. Dater																		3, 90 (m, 2H)	7,00 (д, żн)				4,27 (t,2H), 7,55 (d,2H)	
20		их	12-7	10-4	10-4	10-4	2-CF3	2-CF3	2-CF3	2-CF3	2-CF3	2-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	4-CF3	4-CF3		4-CF3	4-CF3	4-CF3	4-CF3	2, 4-C1 ₂
25																										
30			/ran-4-y1	/ran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	ran-3-yl	ran-3-yl	/ran-4-y1	ran-4-yl	letrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	ran-3-yl	ran-3-yl	ran-4-y1	/ran-4-y1	Tetrahydrothiopyran-3-yl	letrahydrothiopyran-3-yl	ran-3-yl	ran-3-yl		ran-4-yl	ran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	an-3-yl
35		R2	Tetrahydropyran-4-y	Tetrahydropyran-4-yl	Tetrahydroth	Tetrahydroth	Tetrahydropyran-3-y	Tetrahydropyran-3-y	Tetrahydropyran-4-y	Tetrahydropyran-4-yl	Tetrahydroth	Tetrahydroth	Tetrahydropyran-3-y	Tetrahydropyran-3-y	Tetrahydropyran-4-yl	Tetrahydropyran-4-y	Tetrahydroth	Tetrahydroth	Tetrahydropyran-3-y	Tetrahydropyran-3-yl		Tetrahydropyran-4-y	Tetrahydropyran-4-yl	Tetrahydroth	Tetrahydroth	Tetrahydropyran-3-yl
40	tsetzung)			_		_		_		_		_		_		_		_					_			
45	le B (Forts	R1	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl		Ethyl	Propy l	Ethy]	Propyl	Ethyl
50	Tabelle B	Nr.	2.39	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49	2.50	2.51	2.52	2.53	2.54	2.55	2.56		2.57	2.58	2.59	2.60	2.61

5], Fp. (°C]		4,45 (t,2H)		7,37 (d,1H) 6,87 (d,1H)	6,87 (d,1н)	-			,45 (m,2H),			7,82 (s,2H) 4,50 (m,2H)		4,50 (m,2H)			7,00 (d,2H),	00 (4,2н)
10	NMR [6 in ppm	69- 73	4,25 (t,2H), 4 7.17 (d.1H), 7	(t, 2H),	/,1/ (d,1H), / 4,45 (t,2H), 6 7 37 (d 1H)	(t, 2H), (d, 1H)		83- 87	79- 82	4,27 (t,2H), 4,45 (m,2H),	9		7 (HZ'E) C4'5		(m, 2H),	126-129	138-141	4,50 (m,2H), 7,	4,50 (m,2H), 7,00 (d,2H)
15	phys. Daten / ^I H-NMR [ð in ppm], Fp. [°C]		4,00 (m,2H), 4 6.87 (d.1H). 7	(m, 2H),	6,8/ (d,1H), / 4,25 (t,2H), 4 7 17 (d 1H) 7	(t, 2H), (d, 1H).				(m, 2H),	7,32 (s,2H)		3.90 (m,2H), 4	(d, 2H),	(m, 2H),	7	-	4,32 (m,2H), 4 8,20 (d,2H)	(m, 2H), (d, 2H)
20	χ _n phys		2, 4-Cl ₂ ²	2,4-012	2,4-C12	2, 4-C1 ₂	2, 4, 6-013	2, 4, 6-c1 ₃	2, 4, 6-Cl ₃	2,4,6-c13 4			2,4,0-C13 4 4-N0,		4-NO ₂	4-N0 ₂	4-NO ₂		4-NO ₂ 4
25																			•
30		-3-y1	-4-y1	-4-y1	yran-3-yl	yran-3-yl	-3-y1	-3-y1	-4-y1	-4-y1	1	yrail-3-yr	yran-2-yr -3-yl	•	-3-yl	-4-y1	-4-y1	yran-3-yl	yran-3-yl
35	R 2	[etrahydropyran-3-y]	Tetrahydropyran−4-y∣	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Total depth description	etrangdrothrop strokudzetkier	letrahydropyran-3-yl Tetrahydropyran-3-yl		Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl
40 (punz		-	}	1	-	-	_	-	<u> </u>	-	-	- +	- - -		-	1	1	-	-
capelle B (Fortsetzung)	R1	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propy1	Ethyl	Propyl	C+bu1	E tuly I	Fropy: Ethyl	•	Propyl	Ethyl	Propyl	Ethyl	Propyl
50	R.	2.62	2.63	2.64	2.65	2.66	2.67	2.68	2.69	2.70	ני	11.2	2.73		2.74	2.75	2.76	2.77	2.78

. 55

			2	[
5		ā	i], Fp. [ºC]																						
10		0-; Z = Phenyl)	phys. Daten / ¹ H-NMR [ð in ppm], Fp.															4,05-4,30 (m,2H),	6,80-7,40 (m,4H)	4,05-4,30 (m,2H),	6,80-7,40 (m,4H)	4,05-4,25 (m,2H),		4,05-4,30 (m,2H),	6,80-7,40 (m,4H)
15		(A = CH ₂ CH(CH ₃)-0-;	/s. Daten / 1/															(m, 3H),	(m, 1H),	(m, 3H),	(m, 1H),	(m, 3H),	(m, 1H),	(ш, ЗН),	_
20		<u> </u>	phy															1,35	4,60	1,35	4,60	1,35	7, 60	1,35	4,
25	, x	NO-CH ₂ CH-O-CN R1 CH ₃	х		ľ	ı	ı	,		4-F	4-F	4-F	J-4	4-F	4-4	4-C1	4-C1	12-7		4-61		12-7		4-C1	
30	=	SS CH																							
35	Č			Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl		Tetrahydropyran-4-yl		Tetrahydrothiopyran-3-yl		Tetrahydrothiopyran-3-yl	
40			R2	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr		Tetrahydr		Tetrahydr		Tetrahydr	
45	O T		R1	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl		Propyl		Ethy l		Propy 3	
50	Tabelle		N.	3.01	3.02	3.03	3.04	3.05	3.06	3.07	3.08	3.09	3.10	3.11	3.12	3.13	3.14	3.15		3.16		3.17		3.18	

5		phys. Daten / ¹ H-NMR [å in ppm], Fp. [°C]	3,90 (m,2H), 4,23 (t,2H), 7,17-7,43 (m,5H) 65	4,23 (t,2H), 7,17-7,43 (m,5H) 4,23 (t,2H), 7,17-7,43 (m,5H)) 00 (m, 2H),	00 (m, 2H),	00 (m, 2H),	00 (m, 2H),	40 (m, 2H), 40 (m, 2H),
10	Z = Phenyl)	-NMR (oin p	3 (t,2H), 7, 65	3 (t,2H), 7, 3 (t,2H), 7,	7, 17-7, 43 (m, 5H)	7,17-7,43 (m,5H) 4,17 (t,2H), 7,00 (m,2H),	4,17 (t,2H), 7,00 (m,2H),	4,17 (t,2H), 7,00 (m,2H),	4,17 (t,2H), 7,00 (m,2H),	7,00 (m,2H), 7,40 (m,2H), 7,00 (m,2H), 7,40 (m,2H), 71- 75
15	(A = -CH ₂ CH ₂ -S-;	. Daten / 1H	(т, 2н), 4, 2	(m, 2H), (m, 2H),	(t, 2H),	(t, 2H), (m, 2H), (m, 2H)	(m, 2H), (m, 2H)	(m, 2H), (m, 2H)	(m, 2H), (m, 2H)	(t, 2H), (t, 2H),
20	. = v) I	phys	3, 90	3,97	4, 23	4, 23 3, 90 7, 40	3,90	4,00	4,00	4,17
25	х х т-S-Zн	х	1 1		ı	1 4 F-F	4-6	4-F	4-F	4-F 4-F 4-C1
30	OH NO-CH 2CH 2-S-				-y1	- ۲				-y1 -y1
35	\rangle 2		Tetrahydropyran-3-yl Tetrahydropyran-3-yl	Tetrahydropyran-4-yl Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl Tetrahydrothiopyran-3-yl Tetrahydropyran-3-yl
40		R 2	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr Tetrahydr Tetrahydr
45	O 9	R1	Ethyl Propyl	Ethyl Propyl	Ethyl	Propyl Ethyl	Propyl	Ethyl	Propyl	Ethyl Propyl Ethyl
50	Tabelle D	, L	4.01	4.03	4.05	4.06	4.08	60.4	4.10	4.11 4.12 4.13

5		phys. Daten / 1H-NMR [ø in ppm], Fp. [°C]	9	, 7,30 (m,4н)	, 7,30 (m,4н)											(H4)	, 4H)	7,20 (t,1H)		7,20 (t,1H)			7,20 (t,1H)		7,40 (d,2H)	7,40 (d,2H)	
10		/ 1H-NMR [0	63- 65	4,20 (t,2H),		7, 30 (m, 4H)	7, 30 (m, 4H)	4, 25 (t, 2H),	, 4н)	4,25 (t,2H),	(H)	4,25 (t,2H),	(H)	4,25 (t,2H),	(H)	(t,2H) 7,10-7,50 (m,4H)	(t, 2H) 7, 10-7, 50 (m, 4H)	(m, 2H) 4, 20 (t, 2H), 7, 20 (t, 1H)		(m, 2H) 4, 20 (t, 2H), 7, 20 (t, 1H)		61- 64	(m, 2H) 4, 20 (t, 2H), 7, 20 (t, 1H)		(t,2H) 7,20 (t,2H), 7,40 (d,2H)	(t,2H) 7,20 (t,2H), 7,40 (d,2H)	
15		phys. Daten		4,00 (m,2H),	4,00 (m,2H),	4,20 (t,2H),	4,20 (t,2H),	3,90 (m,2H), 4,25	7,10-7,50 (m,4H)	3,90 (m,2H), 4,25	7,10-7,50 (m,4H)	4,00 (m,2H), 4,25	7,10-7,50 (m,4H)	4,00 (m,2H), 4,25	7,10-7,50 (m,4H)	4,25 (t,2H)	4,25 (t,2H)	3,90 (m,2H)		3,90 (m,2H)	7,40 (d,2H)		4,00 (m,2H)	7,40 (d,2H)	4,20 (t,2H)	4,20 (t,2H)	
20									•																		
25		х	12-h	4-C1	12-4	1)- 1	4-c1	2-c1		2-C1		2-C1		2-c1		2-C1	2-c1	2,6-012		2, 6-C1 ₂		2,6-C1 ₂	2, 6-012		2,6-C1 ₂	2,6-012	
30			yl	y.	, k	n-3-y1	n-3-y1	الإ		y.]		y.		yl		n-3-y1	n-3-y1	yl		y1		yl	y.		n-3-y1	n-3-y1	
35	(Bu	7	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl		Tetrahydropyran-3-yl		Tetrahydropyran-4-yl		Tetrahydropyran-4-yl		Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	•	Tetrahydropyran-3-yl	•	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl		Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	
40	rtsetzung)	R 2																									
45	Tabelle D (Fortset	R1	Propyl	Ethy1	Prop	Ethy	Prop	Ethyl		Propy		Ethy1		Propyl		Ethyl	Propyl	Ethyl	•	Propyl	•	Ethyl	Propyl	•	Ethy	Propyl	
	Tabel	N.	4.14	4.15	4.16	4.17	4.18	4.19		4.20		4.21		4.22		4.23	4.24	4.25		4.26		4.27	4.28		4.29	4.30	
50																											

5		= Phenyl)	i, fp. [°C]	4,23 (t,2H),	4, 23 (t, 2H),		(t, 2H),	(t, 2H),		6,90 (m,3H),	(m, 3H),	1110	(c, zh),	(t,2H),	(t, 2H),	
10		7	phys. Daten / 1H-NMR [å in ppm], Fp.	(t, 2H),	(m, 2H) (t, 2H),	(m, 2H))3 (t, 2H), 4, 23 7 (m 2H)		(m, 2H)	(t, 2H),	4,23 (t,2H), 6,90 (m,3H),	F6 / (116 +) 0	5, 80 – 7, 15 (m, 4H)	3,90 (m,2H), 4,10 (t,2H), 4,27 (t,2H), 6 80-7 15 (m,4u)	5,50 /,12 (m,th) 4,00 (m,2h), 4,10 (t,2h), 4,27 (t,2h), 6.80-7.15 (m,4h)	76- 80
15		(A = -CH ₂ CH ₂ -CH ₂ 0-;	ıys. Daten / 14	(m, 2H),	(m, 3H), (m, 2H),		3, 97 (m, 2H), 4, 03 6, 90 (m, 3H), 7, 27	(m, 2H),	(m, 3H),	4, U3 (E, ZH), 4, Z3 7, 27 (m, ZH)	(t, 2H),	27 (m, 2H) 90 (m, 2H)	5, 30 (m, 2n), 4, 1 6, 80-7, 15 (m, 4H)	90 (m, 2H), 4, 1 80-7 15 (m, 44)	00 (m, 2H), 4, 1 80-7, 15 (m, 4H)	
20		.	dg.	ຕັ	<u> </u>	6,	ന് ഗ്	'n	, 6,	, L	4	۲ ، ه	າ ຜິ	ัติเ	2 4 6	•
25	>	yo−ch 2ch 2ch 2−0 ← x x x x x x x x x x x x x x x x x x	u _X	ı	1			ı		ı	•	ш 1		2-F	2-F	2-F
30		F I							7	16-0	.3-y1					
35		R ² 1		Tetrahydropyran-3-yl	Tetrahydropyran-3-yl		Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	1	ופרו מוואתו טרוו וסף או מווי זיין ז	Tetrahydrothiopyran-3-yl	Totrahydronyran-3-v]	ינ יייינק>	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
40			R2	Tetrahydı	Tetrahydr	,	Tetrahydı	Tetrahyd	, T	le cranyu	Tetrahydr	Tetrahudr		Tetrahydr	Tetrahydr	Tetrahydr
45	u 		R1	Ethyl	Propyl			Propyl	1	Eculys	Propyl	F+hv1		Propyl	Ethyl	Propyl
50	Tabelle E		Nr.	5.01	5.02	6	5.03	5.04	9	6.5	5.06	5 07		5.08	5.09	5.10

		m), f	6,80-7,15(m,4H),	6,80-7,15(m,4H),	4,27 (t,2H),		4,27 (t,2H),						7 (m, 3H)		7 (m, 3H)		7 (t,2H),		4,27 (t,2H),				_	
10		phys. Daten / 1H-NMR [ø in ppm], Fp. [ºC]	(t, 2H),	(t, 2H),	(t, 2H),	(m, 1H)	(t, 2H),						7 (t,2H), 6,67 (m,3H)		4,27 (t,2H), 6,67 (m,3H)		4,03 (t,2H), 4,27 (t,2H),	(ш, 2 н)	(t,2H),	(m, 2H)	4,23 (t,2H),	(m, 2H)	3,90-4,06 (m,4H), 4,28 (t,2H),	(m, 2H)
15		s. Daten / 1H	(t,2H), 4,27	(t, 2H),	(m, 2H),	(m, 3H),	(m, 2H), 4,05	(m, 3H), 7,23	3, 90-4, 10 (m, 4H),	6,67 (m,3H), 7,23	(H) (H) (H)	(a, 3H),	(t, 2H), 4,27	: (m, 1H)	(t, 2H),	(m, 1H)	(m, 2H),	(m, 2H),	(m, 2H), 4,03	6, 90 (m, 2H), 7,00	3, 90-4, 06 (m, 4H),	6, 90 (m, 2H), 7,00	-4,06 (m,4H),	(m, 2H), 7,00
20		skhq	4,10	4, 10	3, 90	6,67	3, 90	6,67	08.'E	6,67	3, 90 19, 90 19, 90	6,67	4, 05	7, 23	4,05	7, 23	3, 90	06′9	3, 90	9 (9	3, 90	6, 90	3, 90	9 (9
25		хn	2-F	2-F	3-F		3-ғ	i C	J-F	i	- F	•	3-F		3-F		4-F		4-F		4-4		4-F	
30																								
35			etrahydrothlopyran-3-yl	etrahydrothiopyran-3-yl	letrahydropyran−3-yl		etrahydropyran-3-yl		erranydropyran-4-yl		erranyuropyran-4-yı		Tetrahydrothiopyran-3-yl		Tetrahydrothiopyran-3-yl		Tetrahydropyran-3-yl		Tetrahydropyran-3-yl		etrahydropyran-4-yl		etrahydropyran-4-yl	
40	tzung)	R2	Tetrahydr	Tetrahydr	Tetrahydr		Tetrahydr	40404	letranydr	4 4 4	letranyar		Tetrahydr		Tetrahydr		Tetrahydr		Tetrahydr		Tetrahydr		Tetrahydr	
45	Tabelle E (Fortsetzu	R.	Ethyl	Propyl	Ethyl		Propyl	4	erny I		rropyı		Ethyl		Propyl		Ethyl		Propyl		Ethyl		Propyl	
50	Tabell	χ.	5.11	5.12	5.13		5.14	4	0.10	21. 3	2.10		5.17		5.18		5.19		5.20		5.21		5.22	

5		phys. Daten / ¹ H-NMR [¢ in ppm], Fp. [°C]	, 90 (m, 2н),	, 90 (м, 2Н),							4,27 (t,2H),		4,27 (t,2H),		H),	, 17 (m, 1н)		7, 17 (m, 1H)	6,77 (m,1H),	
10		1H-NMR [d in	(t,2H), 4,27 (t,2H), 6,90 (m,2H), (m,2H)	4,27 (t,2H), 6,90 (m,2H),							4,06 (t,2H), 4,	(m, 2H),	(t, 2H),	(m, 2H),		,90 (m,2H), 7,17		(m, 2H),	(t, 2H),	(m, 1H)
15		ys. Daten /	4,03 (t,2H), 4 7,00 (m,2H)	(t, 2H), (m, 2H)							3,90 (m,2H), 4	6,77 (m,1H), 6	(m, 2H),	6,77 (m,1H), 6,90	3, 90-4, 10 (m, 4H),	6,77 (m,1H), 6,90	3,90-4,10 (m,4H),	(m, 1H),	4,06 (t,2H), 4	6,90 (m,2H), 7
20		đ	7,	7,							ě,	9	e,	9	3,	9	3,	9	4	6,
25		n N	4-F	4-4	2-C1	2-C1	2-C1	2-C1	2-C1	2-C1	3-c1		3-C1		3-61		3-C1		3-c1	
30			ո-3-y 1	n-3-y l	7	7.	7.6	ر ل	n-3-y1	n-3-y1	y!		۳,		yl		ارم		n-3-y1	
35			Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-y	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-y	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl		Tetrahydropyran-3-yl		Tetrahydropyran-4-yl		Tetrahydropyran-4-yl		Tetrahydrothlopyran-3-yl	
40	setzung)	R2	Tetrah	Tetrah	Tetrah				•				Tetral		Tetral		Tetra		Tetra	
45	Tabelle E (Fortsetzung)	R1	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl		Propyl		Ethyl		Propyl		Ethyl	
50	Tabel	N.	5.23	5.24	5.25	5.26	5.27	5.28	5.29	5.30	5.31	•	5.32		5.33		5.34		5.35	

5		1], Fp. (°C	6,77 (m,1H),	4,23 (t,2H),	4, 23 (±, 2H)				3	o, 80 (m, 2H),	6,80 (m,2H),		(t, 2H),		4, 28 (t, 2H),		4, 28 (t, 2H),	
10		phys. Daten / ¹ H-NMR [ð in ppm], Fp. [°C]	(t,2H),	(m, 1H) (t, 2H),	(m, 2H) (t, 2H)	(m, 2H)	1, 4,23 (t,2H),	!О (m, 2H) , 4, 23 (t, 2H),	(m, 2H)	(c, 2H),	4,23 (t,2H), 6,80		4,20 (t,2H), 4,28 (t,2H),	0 (d, H)	(t,2H),	(d, 2H)	(t, 2H),	0 (d, 2H)
15		s. Daten / 1	(t, 2H),	(m, 2H), (m, 2H),) (m, 2H), 7, 20) (m, 2H), 4, 03	(m, 2H),	3,90-4,09 (m,4H),	5,80 (m,2H), 7,20 3,90-4,09 (m,4H),	(m, 2H),	(m, 2H)	(t, 2H),	(m, 2H)	(m, 2H),	(d, 2H),	(m, 2H), 4, 20	(d, 2H),	(m, 2H),	(d, 2H), 8, 20
20		phys	7, 06	6, 90 3, 90	6,80	6,80	96.°	6, 80 3, 90	6, 80	7, 20	4,03	7, 20	3, 90	6,93	3, 90	6, 93	4, 00	6, 93
25		хn	3-c1	10-7	10-4	5	10-4	4-C1	10-1	5	4-C1		4-NO ₂		4-NO ₂		7 - NO 5	
30			_			•												
35			Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	(n -) - s a s a s a c a c a c a c a c a c a c a	וברו מוואתו סףאו מנובר או	Tetrahydropyran-4-yl	Tetrabydrothiopyran-3-v]		Tetrahydrothiopyran-3-yl		Tetrahydropyran-3-yl		Tetrahydropyran-3-yl	, ,	letranydropyran-4-yl	
40	tzung)	R2	Tetrahydr	Tetrahydr	Tetrahydr	Totrahudr	וברו מוואמו	Tetrahydr	Tetrabydr		Tetrahydr		Tetrahydr		Tetrahydr		erranyar	
45	Tabelle E (Fortsetzung)	R1	Propyl	Ethyl	Propyl	n+#		Propyl	Ethyl	•	Propyl		Ethyl		Propy!	n++ n	erny i	
50	Tabell	ž.	5.36	5.37	5.38	5,39		5.40	5.41		5.42		5.43	;	5.44	7 Y	7.0	

		[00]		•						,	<u>``</u>
5		, Fp.	(t, 2H)	(d, 2H)	(d, 2H)	(t, 2H)	(t, 2H)			(а, 2н	(d, 2H
		[mdd u	4, 28	6, 93	6, 93	4,27	4, 27	t, 2H),	t, 2н),	6,80	6,80
10		i 6) 1	:, 2H),	(¢, ½H), 6, 93 (d, 2H),	., 2н),	:, 2H),	2H),	, 27 († 1. 2H)	, 27 (1 , 2H)	t, 2H),	t, 2H),
		1H-NM	4,20 (t,2H), 4,28 (t,2H),	0, 20 (1 4, 28 (1	4,28 (t,2H), 6,93 (d,2H),	4,00 (t,2H), 4,27 (t,2H),	4,00 (t,2H), 4,27 (t,2H), 7.37 (4.2H)	4H), 4	4H), 4 7,37 (c	4,27 (t,2H), 6,80 (d,2H),	4, 27 (
15		phys. Daten / ¹ H-NMR [ð in ppm], Fp. [°C]	2H), t		(t, 2H), t (d, 2H), t	ZH), (3, 90 (m, 2H), 4, 00 (t, 2H), 4, 27 (t 6, 80 (d, 2H), 7, 37 (d, 2H)	0 (m,	0 (m, 2H).	4,00 (t,2H), 7 37 (d 2H)	(t,2H), 4,27 (t,2H), 6,80 (d,2H), (d,2H)
		ıys. De	4, 00 (m, 2H),	0, 33 (4, 4, 20 (t, 8, 30 (d,	6, 20 (4, 4, 20 (t, 8, 20 (d,) E) 08	90 (m,) 80 (d,	90-4, 1 80 (d.	90-4, 1 80 (d.	4,00 (t,2H)	4,00 (t,2H 7,37 (d,2H)
20		ď.	77 9	0 4 0) 4 œ	ີ ຕີ ຜ	ີ ຕັ ຜ	`ຕັນ ^ວ	ີ ຕັນ ວ	, 4, 1	, 4, 1,
25		_	4-N02	4-N02	4-N02	4-Br	4-Br	4-8r	4-Br	4-Br	4-8r
		х	77	-47	-4	-7	4	-4	-4	-4	-4
30		:									
			~	-3-y1	-3-y1	_	_		_	-4-y]	-4-y l
35			Fetrahydropyran-4-y≀	Tetrahydrothiopyran−3-yl	retrahydrothiopyran-3∼yl	fetrahydropyran−3-yl	retrahydropyran-3-yl	etrahydropyran-4-yl	Tetrahydropyran-4-y∣	Tetrahydrothiopyran-4-yl	etrahydrothiopyran-4-yl
			dropyr	drothi	drothi	dropyr	dropyr	dropyr	dropyr	drothi	drothi
40	ng)	R 2	etrahy	etrahy	etrahy	etrahy	etrahy	etrahy	etrahy	etrahy	etrahy
•	tsetzu	~	,-	۲	-	 	_	-	,	-	-
45	E (For	R1	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl
	Tabelle E (Fortsetzung)		5.46	4.7	5.48	5.49	20	51	52	53	5.54
50	Tal	N.	5.	5.47	'n	, č	5.50	5.51	5.52	5,53	ທີ

Tabelle F Tabelle F Nr. R1 R2 Nn phys. Daten / 14-NMR [e in ppm], Fp. [°C] Nn phys. Daten / 14-NMR [e in ppm], Fp. [°C] Nn phys. Daten / 14-NMR [e in ppm], Fp. [°C] E.01 Ethyl Tetrahydropyran-4-yl - 3,90 (m,2H), 4,17 (t,2H), 7,10-7,40 (m,5H) E.02 Propyl Tetrahydropyran-4-yl - 4,00 (m,2H), 4,17 (t,2H), 7,10-7,40 (m,5H) E.03 Ethyl Tetrahydropyran-3-yl - 4,00 (m,2H), 4,17 (t,2H), 7,10-7,40 (m,5H) E.04 Ethyl Tetrahydropyran-3-yl - 4,00 (m,2H), 4,17 (t,2H), 7,0-7,40 (m,5H) E.05 Ethyl Tetrahydropyran-3-yl - 4-F 3,90 (m,2H), 4,17 (t,2H), 7,00 (t,2H), E.07 Ethyl Tetrahydropyran-4-yl - 4-F 3,90 (m,2H), 4,17 (t,2H), 7,00 (t,2H), E.08 Propyl Tetrahydropyran-4-yl 4-F 3,90 (m,2H), 4,17 (t,2H), 7,00 (t,2H), E.09 Ethyl Tetrahydropyran-4-yl 4-F 7,33 (m,2H) E.09 Ethyl Tetrahydropyran-4-yl 4-F 7,33 (m,2H) E.09 Ethyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.01 Ethyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.02 Ethyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.03 Ethyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.04 Propyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.05 Ethyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.07 Ethyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.08 Propyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.09 (m,2H), 1 (t,2H), 7,00 (t,2H), 7,33 (m,2H) E.09 (m,2H), 1 (t,2H), 7,00 (t,2H), 7,33 (m,2H) E.00 (m,2H), 1 (t,2H), 7,00 (t,2H), 7,33 (m,2H) E.01 Ethyl Tetrahydropyran-3-yl 4-F 7,33 (m,2H) E.02 (m,2H), 1 (t,2H), 7,33 (m,2H) E.03 (m,2H), 1 (t,2H), 7,33 (m,2H) E.04 (m,2H), 1 (t,2H), 7,33 (m,2H) E.05 (m,2H), 1 (t,2H), 7,00 (t,2H), 7,33 (m,2H) E.07 (m,2H), 1 (t,2H), 7,33 (m,2H) E.08 (m,2H), 1 (t,2H), 7,33 (m,2H) E.09 (m,2H), 1 (t	5	Pheny1)	om], Fp. [°C]	7,10-7,40 (m,5H) 7,10-7,40 (m,5H) 7,10-7,40 (m,5H) 7,10-7,40 (m,5H) 5H) 5H) 7,00 (t,2H), 7,00 (t,2H), 7,00 (t,2H), 7,00 (t,2H), 7,33 (m,2H) 7,33 (m,2H) 7,27 (s,4H) 7,27 (s,4H)
F F F F F F F F F F	10	= 7	NMR [ø in p	(t, 2H), 7, (t, 2H), 7, (t, 2H), 7, (t, 2H), 7, -7,40 (m, 5H (t, 2H), 7, (t, 2H), 7,
Ri R2 Ethyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-4-yl Ethyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-4-yl Propyl Tetrahydropyran-4-yl Propyl Tetrahydropyran-4-yl Ethyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl Propyl Tetrahydropyran-3-yl	15	= -CH ₂ CH ₂ CH	Daten / 1H-	
le F Ri R2 Ethyl Tetrahydropyran-3-yl Fropyl Tetrahydropyran-4-yl Ethyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-4-yl Ethyl Tetrahydropyran-3-yl Ethyl Tetrahydrothiopyran-3-yl Ethyl Tetrahydrothiopyran-3-yl Ethyl Tetrahydrothiopyran-3-yl Ethyl Tetrahydrothiopyran-3-yl Ethyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-4-yl Ethyl Tetrahydrothiopyran-3-yl Fethyl Tetrahydrothiopyran-3-yl	20	I (A	phys.	
R1 R2 Ethyl Tetrahydropyran-3-yl Fropyl Tetrahydropyran-4-yl Fropyl Tetrahydropyran-4-yl Fropyl Tetrahydropyran-4-yl Fropyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-3-yl Fropyl Tetrahydropyran-3-yl Ethyl Tetrahydropyran-3-yl Fropyl Tetrahydropyran-4-yl Fropyl Tetrahydropyran-4-yl Fropyl Tetrahydropyran-4-yl Fropyl Tetrahydropyran-3-yl Fropyl Tetrahydropyran-3-yl Fropyl Tetrahydropyran-3-yl Fropyl Tetrahydropyran-3-yl Fropyl Tetrahydropyran-3-yl	25	ж.н.2сн.2—S—(хn	
Ethyl Propyl Propyl Ethyl Propyl Ethyl Propyl Ethyl Propyl	30	OH NO-CH 2C		
Ethyl Propyl Propyl Ethyl Propyl Ethyl Propyl Ethyl Propyl	35			opyran-3-yl opyran-4-yl opyran-4-yl othiopyran-4-yl othiopyran-3-y opyran-3-yl opyran-4-yl opyran-4-yl opyran-3-yl opyran-4-yl
9 L	40		R 2	Tetrahydr Tetrahydr Tetrahydr Tetrahydr Tetrahydr Tetrahydr Tetrahydr Tetrahydr Tetrahydr Tetrahydr
6.01 6.02 6.03 6.04 6.05 6.06 6.06 6.07 6.09 6.11 6.11 6.13	45	LL.	1	Ethyl Propyl Ethyl Propyl Ethyl Propyl Ethyl Propyl Ethyl Propyl Ethyl
	50	Tabelle	ř.	6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.09 6.11 6.11 6.13

ahydropyrar ahydropyrar ahydropyrar ahydropyran ahydropyran ahydropyran ahydropyran ahydropyran ahydropyran	5 10 15 20 25 30		X _n phys. Daten / lμ-NMR [đ in ppm], Fp. [°C]	1-4-y] 4-C1 4,00 (m,2H), 4,17 (t,2H), 7,27 (s,4H)	4-C1 4,00 (m,2H), 4,17 (t,2H),	4-C1 4,17 (t,2H), 7,27 (s,4H)	4-C1 4,17 (t,2H), 7,27	_	3,90 (m,2H), 4,20 (t,2H), 7,07-7,40	2-C1 4,00 (m,2H), 4,20	2-C1 4,00 (m,2H), 4,20 (t,2H), 7,07-7,40	2-c1 4, 20 (t, 2H),	2-c1 4, 20	3-C1 3,90 (m, 2H),	(m, 1H)	3,90	(m, 1H)	3-61	///
				etrahydropyran-4-yl	ſetrahydropyran-4-yl	etrahydrothiopyran-3-yl	Fetrahydrothiopyran-3-yl	etrahydropyran-3-yl	etrahydropyran-3-yl	ſetrahydropyran−4-yl	etrahydropyran-4-yl	etrahydrothiopyran-3-yl	etrahydrothiopyran-3-yl	etrahydropyran-3-yl		etrahydropyran-3-yl		etrahydropyran-4-yl	
	50	Tabelle F (Fortsetzung)	'n.	6.15	6.16	6.17	6.18	6.19	6.20	6.21	6.22	6.23	6.24	6.25		6.26		6.27	

_	[0,0]		_	<u>`</u> `		<u>,</u>		÷,		_ ,		~		=					
5	phys. Daten / 1H-NMR [ø in ppm], Fp. [°C]	7, 30 (m, 1H)	7,30 (m,1H)	(dd, 1H),		7,07 (dd,1H),		7,07 (dd,1H),		7,07 (dd,1H),		7,07 (dd,1H), 7,20 (d,1H)		7,07 (dd,1H), 7,20 (d,1H)		4,20 (t,2H), 7,20 (t,1H)		(m, 2H), 4, 20 (t, 2H), 7, 20 (t, 1H)	
.1.	[mdd u									7,07		, 7,20		, 7,20		7, 20		7, 20	
10	R [0 1	m, 3H),	m, 3H),	t, 2H),	(HI,	4,20 (t,2H),	, 1H)	t, 2H),	(HI,	4, 20 (t, 2H),	(Hľ	dd, 1H)		dd, 1H)		t, 2H),		t, 2H),	
	1 H-NM	7,17 () 11'(4, 20 (, 30 (d	4, 20 (30 (d	4, 20 (90 (d	t, 20 (30 (d	, 07 (, 07 (t, 20 (, 20 (
15	aten /	(t,2H), 7,17 (m,3H),	2H),	(m, 2H), 4, 20 (t, 2H),	(4,14) 7,30 (4,14)	(m, 2H),	(d, 1H) 7, 30 (d, 1H)	(m, 2H), 4, 20 (t, 2H),	(d, 1H) 7, 30 (d, 1H)	(m, 2H), 1	(d, 1H) 7, 30 (d, 1H)	(t,2H),	(d, 1H)	(t,2H),	(d, 1H)	(m, 2H), 4	(d, 2H)	2H), 1	(d, 2H)
	ıys. Da	4, 20 (t,	4, 20 (t,	3,90 (m,	7, 20 (d,	3,90 (m,	7, 20 (d,	4,00 (m,	7, 20 (d,	4,00 (m,	7,20 (d,	4,20 (t,	7,30 (d,	4,20 (t,	7,30 (d,	3,90 (m,	7,40 (d,	3,90 (m,	40 (d,
20	hd	*	*	3,	7,	'n	7,	4,	7,	4,	7,	*	7,	4	7,	ω,	~	ຕັ	7,
25		.	=	2,5-612		2,5-012		2,5-012		2,5-012		2,5-012		2,5-612		2,6-C1 ₂		2, 6-C1 ₂	
	X	3-61	3-c1	2,5		2,5		2,5		2,5		2,5		2,5		2,6		2,6	
30																			
		3-y1	3-y1									3-y1		3-y1					
35		etrahydrothiopyran-3-yl	etrahydrothiopyran-3-yl	n-3-y1		n-3-y l		1-4-n		1-4-y		Tetrahydrothiopyran-3-yl		Tetrahydrothiopyran-3-yl		1-3-y1		1-3-y1	
	i	othio	othio	etrahydropyran-3-y		etrahydropyran-3-yl		etrahydropyran-4-yl		Tetrahydropyran-4-yl		othio		othio		Tetrahydropyran-3-yl		Tetrahydropyran-3-yl	
40		rahydr	rahydr	rahydr		rahydr		rahydr		rahydr		rahydr		rahydr		rahydr		rahydr	
	etzung R2	Tet	Tet	Tet		Tet		Tet		Tet		Tet		Tet		Tet		Tet	
4 5	Tabelle F (Fortsetzung) Nr. Rl R ²	Ethyl	Propyl	Ethyl		Propyl		Ethyl		Propyl		Ethyl		Propyl		Ethyl		Propy 1	
	le F (ā	7	끏		P.		ŭ		P		ä		P		ä		P.	
50	Tabel Nr.	6.29	6.30	6.31		6.32		6.33		6.34		6.35		6.36		6.37		6.38	

10		phys. Daten / 1H-NMR [ø in ppm], Fp. [°C]	4,00 (m,2H), 4,20 (t,2H), 7,20 (t,1H) 7,40 (d,2H)	4,20 (t,2H), 7,20 (t,1H)	(t,2H), 7,20 (t,1H), 7,40 (d,2H) (t,2H), 7,20 (t,1H), 7,40 (d,2H)	
15		. Daten /	(m, 2H), 4 (d, 2H)	(m, 2H), (d, 2H)	(t,2H), 7 (t,2H), 7	
20		phys	4,00	4,00	4, 20	
25		u _X	2, 6-c1 ₂	2, 6-c1 ₂	2, 6-c1 ₂ 2, 6-c1 ₂	
30					,	
35			Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl Tetrahydrothiopyran-3-yl)
40	(Bunz:	R.2	Tetrahyd	Tetrahyd	Tetrahyd Tetrahyd	•
45	Tabelle F (Fortsetzung)	R1	Ethyl	Propyl	Ethyl Propyl	1
50	Tabelle	N.	6.39	07.9	6.41	!

5	7 × Obenil		pnys. Daten / 4M-NMK [d in ppm], Fp. ["C]	4,25 (t,2H), 4,58 (s,2H),	4,25 (t,2H), 4,58 (s,2H),	4,33 (m,2H), 4,60 (s,2H),	4,33 (m,2H), 4,60 (s,2H),	7,35 (s,5H)	7,35	4,67 (s,2H),	4,67 (s,2H),	(m, 2H), 4,63 (s,2H),	4,63 (s,2H),
10		12-0-cm2 /	TH-NMK [0 1	,, 25 (t, 2H),	,, 25 (t, 2H),	, 33 (m, 2H),	, 33 (м, 2н),	4,57 (s,2H),		, 27 (m, 2H), H)	., 27 (m, 2H), H)		,27 (m,2H), H)
15			pnys. Daten /	(m, 2H), (s, 5H)		(m, 2H), (s, 5H)	(m, 2H), (s, 5H)	(m, 2H),	(m, 2H),	3,93 (m,2H), 4,27 6,93-7,50 (m,4H)	3,93 (m,2H), 4,27 (m,2H), 4,67 (s,2H), 6,93-7,50 (m,4H)	4,03 (m,2H), 4,27 6,97-7,50 (m,4H)	4,03 (m,2H), 4,27 (m,2H), 4,63 (s,2H), 6,97-7,50 (m,4H)
20	-	•		•									
25	x x 300 75 75 75 75 75 75 75 75 75 75 75 75 75	7 12 12 12 12 12 12 12 12 12 12 12 12 12	Уn	ı	1	ı	1	ı		2-F	2-F	2-F	2-f
30	₩.	Ÿ		.¥1	·y.	.y.l	۲۷	เก-3-y ใ	ın-3-y1	Į.	.y.l	الإ	.yl
35		R 2-		Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran−4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
40		â	*	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr
45	g	ā	±	Ethyl	Propyl	Ethyl	Propyl	Ethy]	Propy 1	Ethyl	Propyl	Ethyl	Propy1
	Tabelle	<u> </u>	Nr.	7.01	7.02	7.03	7.04	7.05	90'.	7.07	7.08	7.09	7.10
50													

5		ո], Fp. [ºC]			7 (s, 2H), n. 1H)	7 (s, 2H), n, 1H)) (s, 2H), n, 1H)) (s, 2H), n, 1H)	п, 1н)	a, 1H)	4, 53 (s, 2H),	4,53 (s,2H),) (s, 2H),
10		phys. Daten / ¹H-NMR [ð in ppm], Fp. [°C]	7 (s, 2н),	7 (s, 2H),	7 (m, 2H), 4, 57 (s, 2H), 7, 23-7, 40 (m, 1H)						(m, 2H), (m, 2H)	(m, 2H), (m, 2H)		4,23 (m,2H), 4,53 (s,2H), 7,30 (m,2H)
15		s. Daten / 1H	4,27 (m,2H), 4,67 6,97-7,50 (m,4H)	4,27 (m,2H), 4,67 6,97-7,50 (m,4H)	3,93 (m,2H), 4,27 6,90-7,15 (m,3H),	3,93 (m,2H), 4,27 6,90-7,15 (m,3H),	4,03 (m,2H), 4,25 6,90-7,18 (m,3H),	4,03 (m,2H), 4,25 6,90-7,18 (m,3H),	4, 27 (m, 2H), 4, 60 6, 90-7, 15 (m, 3H),	4, 27 (m, 2H), 4, 60 6, 90-7, 15 (m, 3H),	13 (m, 2H), 4, 23 10 (m, 2H), 7, 30	(m, 2H), (m, 2H),		4,00 (m,2H), 4,2 7,03 (m,2H), 7,3
20		bhy	4,2	4,2	6, E 6, 8	6'9 6'8	0'4 6'9	0,4	4,2	4,2	3, 93	3,93		4, 0 7, 0
25		χn	. 2-F	2-F	3-F	3-F	3-F	3-F	3-F	3-F	4-F	4-F	4-4	4-4
30			ın-3-y l	ın-3-y l	Į v.	-y.	اړ-	Įķ.	an-3-yl	an-3-y l	-y l	۲۰ کر	-y]	ľų-
35			Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-y	Tetrahydropyran-4-y∣	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
40	setzung)	R2	Tetra		Tetra		Tetra		Tetra		Tetra		Tetr	,
45	Tabelle G (Fortsetzung)	R1	Ethyl	Propyl	Ethyl	Propyl	Ethy1	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl
50	Tabel	Nr.	7.11	7.12	7.13	7.14	7.15	7.16	7.17	7.18	7.19	7.20	7.21	7.22

20		phys. Daten / ¹H-NMR [ø in ppm], Fp.	4, 27 (m, 2H), 7, 30 (m, 2H)														3,93 (m,2H), 7 28 (m 4H)	3, 93 (m, 2H),	7,28 (m,4H)		4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H),
25		γn	j-+	4 - F	2-C1	2-C1	2-C1	2-C1	2-01	2-C1	3-01	3-61	3-61	3-c1	3-c1	3-c1	4-C1	12-4		4-C1	4-C1
30																					
35			rahydrothiopyran-3-yl	rahydrothiopyran-3-yl	oyran-3-yl	oyran-3-yl	rahydropyran-4-yl	rahydropyran-4-yl	Tetrahydrothiopyran-3-yl	rahydrothiopyran-3-yl	rahydropyran-3-yl	rahydropyran-3-yl	pyran-4-yl	rahydropyran-4-yl	rahydrothiopyran-3-yl	rahydrothiopyran-3-yl	rahydropyran-3-yl	rahydropyran-3-yl		rahydropyran-4-yl	pyran-4-yl
40	(gunz	R 2	Tetrahydrot	Tetrahydrot	Tetrahydropyran-3-y	Tetrahydropyran-3-yl	Tetrahydrop	Tetrahydrop	Tetrahydrot	Tetrahydrot	Tetrahydrop	Tetrahydrop	Tetrahydropyran-4-yl	Tetrahydrop	Tetrahydro	Tetrahydro	Tetrahydro	Tetrahydro		Tetrahydro	Tetrahydropyran-4-yl
45	Tabelle G (Fortsetzung)	R ₁	Ethyl	Propy1	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Pronvi		Ethyl	Propyl
50	rabelle	N.	7.23	7.24	7.25	7.26	7.27	7.28	7.29	7.30	7.31	7.32	7.33	7.34	7.35	7.36	7.37	7 38	}	7,39	7.40

5	ppm], Fp. [°C]	7,28 (m,4H) 7,28 (m,4H)	4,57 (s,2H),	(m,2H), 4,57 (s,2H),	(m,2H), 4,57 (s,2H),	(m,2H), 4,57 (s,2H),			(m, 2H), 4,57 (s,2H),	,57 (s,2н),	(m,2H), 4,57 (s,2H),	.57 (s, 2H),
10	LH-NMR [0 in	(s, 2H), (s, 2H),	(m, 2H),				,57 (s,2H), 4)	,57 (s,2H), 1)		.25 (m,2H), 4,57 H)	. 27 (m, 2H), 4,	27 (m, 2H), 4, 1)
15	phys. Daten / 1H-NMR [ð in ppm], Fp.	4,27 (m,2H), 4,53 4,27 (m,2H), 4,53	3,93 (m,2H), 4,23 7,09-7,33 (m,4H)	3,93 (m,2H), 4,23 7,09-7,33 (m,4H)	4,00 (m,2H), 4,23 7,09-7,33 (m,4H)	4,00 (m,2H), 4,23 7,09-7,33 (m,4H)	4,23 (m,2H), 4,57 7,09-7,33 (m,4H)	4,23 (m,2H), 4,57 7,09-7,33 (m,4H)	3,93 (m,2H), 4,25 7,00-7,32 (m,4H)	3,93 (m,2H), 4,25 (7,00-7,32 (m,4H)	4,00 (m,2H), 4,27 7,00-7,32 (m,4H)	4,00 (m,2H), 4,27 (m,2H), 4,57 (s,2H), 7,00-7,32 (m,4H)
20	ď	ਤੰਤ	щ. Г.	3,7	46	4 7	4 1	4 1	Б. Г.	8,7	4 1	4 1
25	u ×	10-7	2-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃					
30		an-3-yl an-3-yl	۲۰	-y 1	ر ر-	-۴	an-3-y1	an-3-y l	-4 ا	<u>~</u>	-۴	-y1
35	(Tetrahydrothiopyran-3-yl Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-y]	Tetrahydropyran-3-yl	Tetrahydropyran−4-yl	Tetrahydropyran−4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran−4-y]	Tetrahydropyran-4-y∣
40	etzung R²	Tet Tet	Tet	Tet	Tet	Tet						
45	Tabelle G (Fortsetzung) Nr. R ¹ R ²	Ethyl Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethy 1	Propyl
	Tabello	7.41	7.43	7.44	7.45	7.46	7.47	7.48	7.49	7.50	7.51	7.52
50												

5		рм], Fp. [°С]			(m,2H), 4,53 (s,2H),	53 (s, 2н),	(m, 2H), 4,57 (s,2H),	(m, 2H), 4,57 (s,2H),			(т,2Н), 4,53 (s,2Н),	53 (s, 2н),	53 (s, 2н),
10		1H-NMR [ð in p	,60 (s,2H),	н) , 60 (s, 2н),		,20 (m,2H), 4,53 (s,2H),			4) .57 (s, 2H),	.57 (s, 2H),	., 23 (m, 2H), 4, 1)	23 (m, 2H), 4,53	, 23 (m, 2H), 4, 1)
15		phys. Daten / 1H-NMR [ð in ppm], Fp. [°C]	4,27 (m,2H), 4,60 (s,2H),	7,00-7,32 (m,4H) 4,27 (m,2H), 4,60	7,00-7,32 (m,4H) 3,93 (m,2H), 4,20 7.07-7.30 (m,4H)	3,93 (m,2H), 4,20	7,07-7,30 (m,4H) 4,00 (m,2H), 4,23 7,03-7,27 (m,4H)	4,00 (m,2H), 4,23	7,03-7,27 (m,4H) 4,23 (m,2H), 4,57 7,03-7 30 (m,4H)	4, 28 (m, 2H), 4, 57	3, 93 (m, 2H), 4, 23 7, 20-7, 40 (m, 4H)	3,93 (m, 2H), 4,23	4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)
20		ď	- 	~ * 1	. e r	· 10	r 4 r	- 4	r 4 r	· 4 · r	. m . ~	` m` 1~	4 6
25		Хn	3-CH ₃	3-сн ₃	4-CH ₃	4-CH ₃	4-CH ₃	4-CH ₃	4-CH ₃	4-CH ₃	4-tertC4Hg	4-tertC ₄ H ₉	4-tertC ₄ H9
30			1						_				
35			Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothìopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl
40	(Bunz:	R2	Tetra	Tetra	Tetra	Tetra	Tetra	Tetra	Tetra	Tetra	Tetra	Tetra	Tetra
45	Tabelle G (Fortsetzung)	R1	Ethyl	Propyl	Ethyl	Propy 1	Ethy1	Propy1	Ethyl	Propy1	Ethy1	Propyl	Ethy1
	Tabell	'n.	7.53	7.54	7.55	7.56	7.57	7.58	7.59	7.60	7.61	7.62	7.63
50													

5 10 15		phys. Daten / 1H-NMR [ð in ppm], Fp. [°C]	4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)	4,23 (m,2H), 4,53 (s,2H), 7 20-7 40 (m 4H)	7,20-7,40 (m,4H) 7,20-7,40 (m,4H)
25			4-tertC ₄ Hg	4-tertC ₄ Hg	4-tertC ₄ H ₉
30		их	-7	- 4	
35			yran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran—3-yl
	tzung)	R 2	Tetrahydropyran-4-yl	Tetrahydrot	Tetrahydrot
45	Tabelle G (Fortsetzung)	R1	Propyl	Ethyl	Propyl
50	Tabello	Nr.	7.64	7.65	7.66

5 10 15	I (A = -CH ₂ CH ₂ -S-CH ₂ -; Z = Phenyl	phys. Daten / 1H-NMR [0 in ppm], Fp. [°C]	3,73 (s,2H), 3,90 (m,2H), 4,17 (t,2H), 7,28 (s,5H)	3,73 (s,2H), 3,90 (m,2H), 4,17 (t,2H), 7,28 (s,5H)			(s, 2H), 4, 13 (t, 2H),	3,80 (s,2H), 4,13 (t,2H), 7,28 (s,5H) 3,72 (s,2H), 3,90 (m,2H), 4,13 (t,2H)	(m, 2H), 7, 30 (m, 2H)	(s, 2H), 3, 90 (m, 2H), 7, 30	63- 65	3,73 (s,2H), 4,00 (m,2H), 4,13 (t,2H), 7,00 (m,2H), 7,30 (m,2H)
25	NO-CH ₂ CH ₂ SCH ₂ X N R ₁	х	1	1	ι	•	•	J-77		4-F	J-7	t - F
30	R 2 OH NOCE		-3-y}	-3-y l	-4-y1	-4-y1	ran-3-yl	ran-3-y -3-v		.3-y1	.4-y1	-4-yl
35		R2	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-y∣	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl Tetrahydropyran-3-yl		Tetrahydropyran-3-yl	Tetrahydropyran-4-y	Tetrahydropyran-4-y∣
45	±	R1	Ethy1	Propyl	Ethyl	Propyl	Ethyl	Propyl Ethvl		Propyl	Ethyl	Propyl
***	Tabelle H	Nr.	8.01	8.02	8.03	8.04	8.05	8.06		8.08	8.09	8.10
50				•								

5		in ppml, Fp. ["C]	4,13 (t,2H), 7,00 (m,2H),	4,13 (t,2H), 7,00 (m,2H),	3,93 (m,2H), 4,13 (t,2H),	3,93 (m,2H), 4,13 (t,2H),	4,00 (m,2H), 4,17 (t,2H),	4,00 (m,2H), 4,17 (t,2H),	4,13 (m,2H), 7,30 (s,4H) 4,13 (m,2H), 7,30 (s,4H)	-
10	11. And 11.	pnys. Daten / iH-NMR [å in ppm], Fp.	(s, 2H), 4,13 (t, 2H) (m, 2H)	(s, 2H), 4, 13 (t, 2H) (m, 2H)	(s,2H), 3,93 (m,2H) (s,4H)	(s,2H), 3,93 (m,2H) (s,4H)	(s, 2H), 4,00 (m,2H) (s,4H)	(s,2H), 4,00 (m,2H) (s,4H)		
20	,	n skud			3, 77 (s 7, 30 (s	3, 77 (s 7, 30 (s	3, 73 (s 7,30 (s	3, 73 (s 7,30 (s	3, 73 (s 3, 73 (s	
25	>	Yu .	L 7	f-f	t-c1	10-4	10-4	4-C1	10-7 1-01	
30			yran-3-yl	ıyran-3-yl	1-3-y l	I-3-y1	1-4-y1	1-4-y l	yran-3-yl yran-3-yl	
40	tzung) o 2	2	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-y∣	Tetrahydropyran-4-y	Tetrahydrothiopyran-3-y] Tetrahydrothiopyran-3-y]	
45	Tabelle H (Fortsetzung)	*				Propyl	Ethyl	Propyl	Ethyl Propyl	
50	Tabell	. L	8.13	8.12	8.13	8.14	8.15	8.16	8.17	

5	Z = Phenyl)	phys. Daten / 1H-NMR [đ in ppm], fp. [°C]	Эн),	3н),	зн),	эн),	, 6,90 (m,3H)	, 6,90 (m,3H)	, (н)	ίн),		5 (m, 4н)
10	(A = -CH2CH2CH2CH2-0-;	' 1H-NMR [å in	3,70-4,20 (m,6H), 6,90 (m,3H), 7,30 (m,2H)	3,70-4,20 (m,6H), 6,90 (m,3H), 7,30 (m,2H)	7,30 (m,2H), 6,90 (m,3H), 7.30 (m,2H)	3,83-4,23 (m,6H), 6,90 (m,3H), 7,30 (m,2H)	(bs, 2H), 4,13 (bs, 2H), 6,90 (m,3H) (m,2H)	(bs, 2H), 4,13 (bs, 2H), 6,90 (m,3H) (m,2H)	3,93 (m,2H), 4,00-4,20 (m,4H), 6,80-7,15 (m,4H)	3,93 (m,2H), 4,00-4,20 (m,4H), 6,80-7,15 (m,4H)	68- 72	3,90-4,20 (m,бн), 6,80-7,15 (m,4н)
15	(A = -CH ₂ C	phys. Daten /	3,70-4,20 (m,7,30 (m,2H)	3, 70-4, 20 (m, 7, 30 (m, 2H)	3,83-4,23 (m, 7,30 (m,2H)	3,83-4,23 (m, 7,30 (m,2H)	4,00 (bs,2H), 7,30 (m,2H)	4,00 (bs,2H), 7,30 (m,2H)	3,93 (m,2H), 6,80-7,15 (m,	3, 93 (m, 2H), 4, 0 6, 80-7, 15 (m, 4H)		3,90-4,20 (m,
20	×,											
25	NO-CH ₂ CH ₂ CH ₂ CH ₂ -O	их	1	ı	1	ı	ı	1	2-F	2-F	2-F	2-F
36	R2 N	o.	an-3-yl	an-3-yl	an-4-yl	an-4-yl	opyran-3-yl	opyran-3-yl	an-3-yl	an-3-yl	an-4-yl	an-4-yl
40	α	R 2	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
45		R1	Ethy l	Propyl	Ethyl	Propy1	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propy1
	Tabelle I	ř.	9.01	9.02	9.03	9.04	9.05	9.06	9.07	80.6	60.6	9.10
50												

5		phys. Daten / ¹ H-NMR [ø in ppm], fp. [°C]	i (m, 4H)	(m, 4H)							(m, 4H)	(m, 4H)	(m, 4H)	(m, 4H)	(m, 4H)	(m, tH)	,(H		н),		H),		H),	
10		1H-NMR [đ in	4,00-4,20 (m,4H), 6,80-7,15 (m,4H)	4,00-4,20 (m,4H), 6,80-7,15 (m,4H)							5H), 6,75-7,05 (m,4H)			(m, 6H), 6,75-7,05	(m, 4H), 6,75-7,05		5H), 6,80 (m,2H),		3,80-4,20 (m,6H), 6,80 (m,2H),		ы), 6,80 (т,2н),		3,90-4,20 (m,6H), 6,80 (m,2H),	
15		phys. Daten /	4,00-4,20 (m,	4,00-4,20 (m,1							3,80-4,20 (m,6H),	3,80-4,20 (m,6	3,90-4,20 (m,6	3,90-4,20 (m,6	3,90-4,20 (m,4	3,90-4,20 (m,4H),	3,80-4,20 (m,6H),	7, 20 (m, 2H)	3,80-4,20 (m,E	7, 20 (m, 2H)	3,90-4,20 (m,6H),	7, 20 (m, 2H)	3,90-4,20 (m,6	7, 20 (m, 2H)
20					•	•			•						,							•		
25		их	2-F	2-F	3-F	3-F	3-F	3-5	3-F	3-F	4-4	4-4	4-F	4-4	4-F	4-6	4-C1		1) -4		4~C1		4-C1	
30			an-3-y1	an-3-y l	-yl	-y l	-y 1	-y 1	an-3-y1	an-3-y1	-y.l	-y 1	-y 1	-y l	an-3-y l	an-3-y1	-y]		-y l		-y l		-y l	
35			Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	[etrahydropyran−3-y]	Tetrahydropyran-3-yl	Tetrahydropyran−4-yl	Tetrahydropyran−4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	letrahydropyran−3-yl	Tetrahydropyran—3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl		Tetrahydropyran-3-y]		Tetrahydropyran-4-y		Tetrahydropyran-4-yl	
40	rtsetzung)	R2	Tetr	Tetr	Tetr		•	•	•		•	•	•	•	•						Tetr		Tet	
45	I (Fort	rg.	Ethyl	Propyl	Ethyl	Propyl	Ethy1	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethyl	Propyl	Ethy l		Propyl		Ethyl		Propyl	
	Tabelle I (For	r	9.11	9.12	9.13	9.14	9.15	9.16	9.17	9.18	9.19	9.20	9.21	9.25	9.23	9.54	9.25		9.56		9.27		9.28	
50																								

5		ppm], Fp. [°C]	ун),	гн),	н),	н),	н),	н),	н),	н),
10		phys. Daten / 1H-NMR [ð in ppm], Fp. [°C]	3,90-4,20 (m,4H), 6,80 (m,2H), 7,20 (m,2H)	3,90-4,20 (m,4H), 6,80 (m,2H),	3,93 (m,2H), 4,00-4,25 (m,4H), 7,00 (t,1H), 7,30 (d,2H)	3,93 (m,2H), 4,00-4,25 (m,4H), 7,00 (t,1H), 7,30 (d,2H)	3,90-4,25 (m,6H), 7,00 (t,1H), 7.30 (d,2H)	3,90-4,25 (m,6H), 7,00 (t,1H), 7.30 (4,2H)	4,00-4,20 (m,4H), 7,00 (t,1H), 7.30 (d,2H)	4,00-4,20 (m,4H), 7,00 (t,1H), 7,30 (d,2H)
15		phys. Daten	3,90-4,20 (m 7,20 (m,2H)	3,90-4,20 (m 7,20 (m,2H)	3, 93 (m, 2H), 7, 00 (t, 1H),	3,93 (m,2H), 7,00 (t,1H),	3,90-4,25 (m 7,30 (d.2H)	3,90-4,25 (m 7,30 (d,2H)	4,00-4,20 (m 7,30 (d,2H)	4,00-4,20 (m 7,30 (d,2H)
20					~	~	~	~	~	~
25		ν	13-4	4-C1	2,6-012	2,6-C1 ₂	2,6-012	2,6-012	2, 6-Cl ₂	2,6-012
30			yran-3-yl	yran-3-yl	-3-y1	-3-y1	-4-yl	-4-y1	yran-3-yl	yran-3-yl
35	(6)	~	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-y]	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-y	Tetrahydrothiopyran-3-y
40	Tabelle I (Fortsetzung)	R 2								
45	le I (Fc	ж 1	Ethyl	Propyl	Ethyl	Prop1	Ethyl	Propyl	Ethyl	Propyl
	Tabel	N.	9.29	9.30	9.31	9.32	9.33	9.34	9.35	9.36
50										

5		Z = Phenyl)	phys. Daten / 1H-NMR [d in ppm], Fp. [°C]	, 7,25 (м,5н)						, 6,93 (m,2H),	(H2 m) H3				, 7,13 (m,2H)		7,13	, 7,13 (m,4H)				
10		= -CH ₂ CH ₂ -0-CH ₂ CH ₂ -;	/ TH-NMR [a	4,20 (m,2H),	4, 20			7,25	7, 25	, 4,17 (m,2H),	(H2 m) 21 7				, 6,93 (m,2H),		4, 17				7,13 (m,4H)	7,13
15		(A = -CH ₂ CF	phys. Daten	3, 90 (m, 2H),	3, 90 (m, 2H), 4			4,20 (m,2H),	4,20 (m,2H),	3,90 (m,2H), 7 13 (m,2H)					4,17 (m,2H),	4,17 (m,2H),	3, 90 (m, 2H),	3, 90 (m, 2H),			4,17 (m,2H),	4,17 (m,2H),
20		ı x																				
25		NO-CH2CH2-O-CH2CH2- R1	ux		ι	ı	1	1	ı	4-4	4-4		J-4	4-F	4-F	4-4	13- 1	10-4	10-h	t-C1	10- 1	10-4
30		OH NO-CH ₂ CI		-3-y1	-3-y1	-4-y]	-4-y1	yran-3-yl	yran-3-yl	-3-y1	-3-6]	<u>;</u>	-4-y1	-4-y1	yran-3-yl	yran-3-yl	-3-y1	-3-y1	-4-y1	1 f-4-	yran-3-yl	yran-3-yl
35		→		Tetrahydropyran-3-y	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahvdronvran-3-v]		Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-y	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl
40			R 2				·						-							•		
	. 3		F8	Ethyl	Propy	Ethy 1	Propy	Ethy 1	Propy	Ethy 1	Orony		Ethyl	Propy	Ethy 1	Propy	Ethy 1	Propy	Ethy l	Propy	Ethyl	Propyl
45	Tabelle J		Nr.	10.01	10.02	10.03	10.04	10.05	10.06	10.07	10.08		10.09	10.10	10.11	10.12	10.13	10.14	10.15	10.16	10.17	10.18
50																						

			5	ıΞ	(H2	(H)	(H)					Œ	Œ			=	=	Œ	Œ	Ŧ	Œ			
5		= Phenyl)	ppm], Fp. [°(1), 7,27 (m,2H)	7,27	1), 7,27 (m,211)	7,27	(m, 3H		.90 (m, 3H),		70-7,03 (m, 4	(t, 2H), 6, 70-7, 03 (m, 4H)	(m, 4H)	(m, 4H)	(t, 2H) 6, 70-7, 03 (m, 4H)	(t, 2H) 6, 70-7, 03 (m, 4H)	I), 7,20 (d,2H)	7,20		7, 20		80 (d, 2H)	
10) 3CH 2-0-; Z	H-NMR [0 in), 6,90 (m,3H),), 6,90 (m,3H),), 6,90 (m,3H),				4,07 (t,2H), 6,90 (m,3H),		4,03 (t,2H), 6,70-7,03 (m,4H))3 (t,2H), б,							6,80	6,80	61	4,07 (t,2H), 6,80 (d,2H)	
15		(A = -CH ₂ (CH ₂) ₃ CH ₂ -0-;	phys. Daten / ¹H-NMR [ø in ppm], Fp. [°C]	3,80-4,17 (m,6H),	3,80-4,17 (m,6H),	3, 90-4, 17 (m, 6H),	3,90-4,17 (m,6H),	3,97 (t,2H), 4,07	(m, 2H)	(t, 2H),	(m, 2H)	(m, 4H),	(m, 4H),	3,83-4,13 (m,6H),	, 83-4, 13 (m, 6н)	3,90 (t,2H), 4,03	3,90 (t,2H), 4,03	3,80-4,10 (m,6H),	3,80-4,10 (m,6H),		,87-4,10 (m,6H),	75	,90 (t,2H), 4,0	7, 20 (d, 2H)
20		, X n	Δ.	3	m	en'	ED.	ะค	7	en'	7	en'	m	m	e,	m	e,	ຕັ	e,	e,	e,		e,	7,
25		"VO-СИ2СИ2СИ2СИ2СИ2—О—	х	t	1	1		•		1		4-F	4-F	4-F	4-F	4-F	4-F	1) -4	13-4	12- †	4-C1	10- 4	12-4	
30		≻сн₂сн						_		_						_	_						_	
35		P O HO		Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl		Tetrahydrothiopyran-3-yl		Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Fetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	ſetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	
40			R2	Tetrah	Tetrah	Tetrah	Tetrah	Tetrah		Tetrah		Tetrah	Tetrah	Tetrah	Tetrah	Tetrah	Tetrah	Tetrah	Tetrah	Tetrah	Tetrah	Tetrah	Tetrah	
45	¥		R1	Ethyl	Propyl	Ethyl	Propyl	Ethyl		Propyl		Ethyl	Propyl	Ethyl	Propy1	Ethyl	Propy1	Ethyl	Propyl	Ethyl	Propyl	Ethy1	Propyl	
	Tabelle		N.	11.01	11.02	11.03	11.04	11.05		11.06		11.07	11.08	11.09	11.10	11.11	11.12	11.13	11.14	11.15	11.16	11.17	11.18	

Anwendungsbeispiele

50

. Die herbizide Wirkung der Cyclohexenoximether der Formel I ließ sich durch Gewächshausversuche seigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanz n wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach

Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zwecke der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bei einer Wuchshöhe von 3 bis 15 cm mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,25 kg/ha a.S.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10-25°C bzw. 20-35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

15

	Lateinischer Name	Deutscher Name	Englischer Name
20	Oryza sativa	Reis	rice
20	Setaria italica	Kolbenhirs <u>e</u>	foxtail millet
	Setaria viridis	Grüne Borstenhirse	green foxtail

Mit 0,25 kg/ha a.S. im Nachauflaufverfahren eingesetzt, lassen sich mit den Beispielen 7.21 und 7.23 unerwünschte grasartige Pflanzen sehr gut bekämpfen, bei gleichzeitiger Verträglichkeit an der Beispielkultur Reis.

Patentansprüche

30

35

45

50

55

1. Cyclohexenonoximether der allgemeinen Formel I

$$R^{2} \xrightarrow{OH}_{R^{1}}^{N-O-A-Z-X_{n}}$$
 (I)

in der die Variablen folgende Bedeutung haben:

R¹ eine C₁-C₆-Alkylgruppe;

A eine ggf. C₁-C₃-Alkyl-substituierte C₃-C₆-Alkylen- oder C₄-C₆-Alkenylenkette, in der eine Methylengruppe durch ein Sauerstoff-, ein Schwefelatom, eine Sulfoxid-, eine Sulfongruppe oder -N(R^a)-, worin

 \mathbb{R}^a Wasserstoff, eine C_1 - C_4 -Alkylgruppe, eine C_3 - C_6 -Alkenylgruppe oder eine C_3 - C_6 -Alkinylgruppe bedeutet,

ersetzt ist.

Z Phenyl, ein 5-gliedriger Heteroaromat mit ein bis drei Heteroatomen, ausgewählt aus einer Gruppe bestehend aus drei Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, ein 6-gliedriger Heteroaromat mit ein bis vier Stickstoffatomen;

X eine Aminogruppe -NRaRb, worin

Ra Wasserstoff, eine C1-C4-Alkylgruppe, eine C3-C6-Alkenylgruppe oder eine C3-C6-Alkinyl-

gruppe und

R^b Wasserstoff, eine C₁-C₄-Alkylgruppe, eine C₃-C₆-Alkenylgruppe, eine C₃-C₆-Alkinylgruppe, eine C₁-C₆-Acylgruppe oder ein Benzoylrest, wobei der aromatische Ring einen bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe bestehend aus Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkylthio und C₁-C₄-Halogenalkyl bedeuten oder Nitro, Cyano, Halogen, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-

C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, Carboxyl, C₁-C₄-Alkoxycarbonyl, Benzyloxycarbonyl, Phenyl, wobei die aromatischen Reste zusätzlich einen bis drei der folgenden Substituenten tragen können:

Nitro, Cyano, Halogen, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, Carboxyl, C₁-C₄-Alkoxycarbonyl, Benzyloxycarbonyl;

o bis 3 oder 1 bis 5 für den Fall, daß Z Halogen bedeutet;

R² eine C₁-C₄-Alkoxy-C₁-C₆-alkyl- oder C₁-C₄-Alkylthio-C₁-C₆-alkylgruppe;

eine C_3 - C_7 -Cycloalkylgruppe oder eine C_5 - C_7 -Cycloalkenylgruppe, wobei diese Gruppen ein bis drei Substituenten tragen können, ausgewählt aus einer Gruppe bestehend aus C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio, partiell oder vollständig halogeniertes C_1 - C_4 -Alkyl, Hydroxy und Halogen;

ein 5-gliedriger gesättigter Heterocyclus der ein oder zwei Heteroatome enthält, ausgewählt aus einer Gruppe bestehend aus Sauerstoff und Schwefel, wobei der Heterocyclus noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe bestehend aus C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und partiell oder vollständig halogeniertem C₁-C₄-Alkyl;

ein 6- oder 7-gliedriger gesättigter, ein- oder zweifach ungesättigter Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus einer Gruppe bestehend aus Sauerstoff und Schwefel, wobei der Heterocyclus noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe bestehend aus Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und partiell oder vollständig halogeniertem C₁-C₄-Alkyl;

ein 5-gliedriger Heteroaromat, enthaltend ein bis drei Heteroatome, ausgewählt aus einer Gruppe bestehend aus zwei Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, wobei dieser Ring noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe bestehend aus Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, partiell oder vollständig halogeniertem C_1 - C_4 -Alkyl, C_2 - C_5 -Alkenyl, C_2 - C_5 -Alkenyl und C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl;

die Phenylgruppe oder die Pyridylgruppe, wobei diese Gruppen noch einen bis drei Reste tragen können, ausgewählt aus einer Gruppe bestehend aus Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertem C₁-C₄-Alkyl, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy und -NR^aR^b, worin R^a und R^b die oben genannte Bedeutung haben,

bedeuten, sowie ihre landwirtschaftlich nutzbaren Salze und Ester von C_1 - C_{10} -Carbonsäuren und anorganischen Säuren.

2. Cyclohexenoximether der Formel I nach Anspruch 1, wobei Z die Phenylgruppe bedeutet.

3. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein entsprechendes Cyclohexenon der Formel II

in an sich bekannter Weise in einem inerten organischen Lösungsmittel mit einem Hydroxylamin der Formel III

H₂N-O-A-Z-X_n III,

5

10

15

20

25

30

35

40

45

50

55

oder einem Salz des entsprechenden Hydroxylamins umsetzt, und die Verfahrensprodukte gewünschtenfalls in ihre landwirtschaftlich nutzbaren Salze oder Ester von C₁-C₁₀-Carbonsäuren oder anorganischen Säuren überführt.

 Herbizides Mittel, enthaltend inerte Zusatzstoffe und eine herbizid wirksame Menge mindestens einer Verbindung der Formel I gemäß Anspruch 1. 5. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man die unerwünschten Pflanzen und/oder ihren Lebensraum mit einer herbizid wirksamen Menge eines Cyclohexenonderivates der Formel I gemäß Anspruch 1 behandelt.

5 Patentansprüche für folgenden Vertragsstaat: ES

1. Verfahren zur Herstellung von Cyclohexenonoximethern der allgemeinen Formel I

 $R^{2} \longrightarrow \begin{pmatrix} OH \\ N-O-A-Z-X_{n} \\ R^{1} \end{pmatrix}$ (1)

15

20

25

30

35

40

45

50

55

10

in der die Variablen folgende Bedeutung haben:

R¹ eine C₁-C₆-Alkylgruppe;

A eine ggf. C₁-C₃-Alkyl-substituierte C₃-C₆-Alkylen- oder C₄-C₆-Alkenylenkette, in der eine Methylengruppe durch ein Sauerstoff-, ein Schwefelatom, eine Sulfoxid-, eine Sulfongruppe oder -N(R^a)-, worin

 R^a Wasserstoff, eine C_1 - C_4 -Alkylgruppe, eine C_3 - C_6 -Alkenylgruppe oder eine C_3 - C_6 -Alkinylgruppe bedeutet,

ersetzt ist.

Z Phenyl, ein 5-gliedriger Heteroaromat mit ein bis drei Heteroatomen, ausgewählt aus einer Gruppe bestehend aus drei Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, ein 6-gliedriger Heteroaromat mit ein bis vier Stickstoffatomen;

X eine Aminogruppe -NRªRb, worin

 R^a Wasserstoff, eine C_1 - C_4 -Alkylgruppe, eine C_3 - C_6 -Alkenylgruppe oder eine C_3 - C_6 -Alkinylgruppe und

R^b Wasserstoff, eine C₁-C₄-Alkylgruppe, eine C₃-C₅-Alkenylgruppe, eine C₃-C₆-Alkinylgruppe, eine C₁-C₆-Acylgruppe oder ein Benzoylrest, wobei der aromatische Ring einen bis drei Substituenten tragen kann, ausgewählt aus einer Gruppe bestehend aus Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und C₁-C₄-Halogenalkyl bedeuten oder

Nitro, Cyano, Halogen, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy, Carboxyl, C₁-C₄-Alkoxycarbonyl, Benzyloxycarbonyl, Phenyl, wobei die aromatischen Reste zusätzlich einen bis drei der folgenden Substituenten tragen können:

Nitro, Cyano, Halogen, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, Carboxyl, C₁-C₄-Alkoxycarbonyl, Benzyloxycarbonyl;

n 0 bis 3 oder 1 bis 5 für den Fall, daß Z Halogen bedeutet;

. R² eine C₁-C₄-Alkoxy-C₁-C₆-alkyl- oder C₁-C₄-Alkylthio-C₁-C₆-alkylgruppe;

eine C_3 - C_7 -Cycloalkylgruppe oder eine C_5 - C_7 -Cycloalkenylgruppe, wobei diese Gruppen ein bis drei Substituenten tragen können, ausgewählt aus einer Gruppe bestehend aus C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio, partiell oder vollständig halogeniertes C_1 - C_4 -Alkyl, Hydroxy und Halogen;

ein 5-gliedriger gesättigter Heterocyclus der ein oder zwei Heteroatome enthält, ausgewählt aus einer Gruppe bestehend aus Sauerstoff und Schwefel, wobei der Heterocyclus noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe bestehend aus C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio und partiell oder vollständig halogeniertem C_1 - C_4 -Alkyl;

ein 6- oder 7-gliedriger gesättigter, ein- oder zweifach ungesättigter Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus einer Gruppe bestehend aus Sauerstoff und Schwefel, wobei der Heterocyclus noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe bestehend aus Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und partiell oder vollständig halogeniertem C₁-C₄-Alkyl;

ein 5-gliedriger Heteroaromat, enthaltend ein bis drei Heteroatome, ausgewählt aus einer Gruppe bestehend aus zwei Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, wobei dieser Ring noch einen bis drei Reste tragen kann, ausgewählt aus einer Gruppe

bestehend aus Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio, partiell oder vollständig halogeniertem C_1 - C_4 -Alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkenyloxy, partiell oder vollständig halogeniertem C_2 - C_6 -Alkenyl und C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl;

di Phenylgruppe oder die Pyridylgruppe, wobei diese Gruppen noch einen bis drei Reste tragen können, ausgewählt aus einer Gruppe bestehend aus Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, partiell oder vollständig halogeniertem C_1 - C_4 -Alkyl, C_3 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyloxy und -NR a R b , worin R a und R b die oben genannte Bedeutung haben,

bedeuten, sowie ihren landwirtschaftlich nutzbaren Salzen und Estern von C₁-C₁₀-Carbonsäuren und anorganischen Säuren,

dadurch gekennzeichnet, daß man ein entsprechendes Cyclohexenon der Formel II

in einem inerten organischen Lösungsmittel mit einem Hydroxylamin der Formel III

H₂N-O-A-Z-X_n III.

oder einem Salz des entsprechenden Hydroxylamins umsetzt, und die Verfahrensprodukte gewünschtenfalls in ihre landwirtschaftlich nutzbaren Salze oder Ester von C₁-C₁₀-Carbonsäuren oder anorganischen Säuren überführt.

- 2. Verfahren zur Herstellung von Cyclohexenonoximethern der Formel I nach Anspruch 1, wobei Z die Phenylgruppe bedeutet.
- 3. Herbizides Mittel, enthaltend inerte Zusatzstoffe und eine herbizid wirksame Menge mindestens eines Cyclohexenonoximethers der Formel I gemäß Anspruch 1.
- 4. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man die unerwünschten Pflanzen und/oder ihren Lebensraum mit einer herbizid wirksamen Menge eines Cyclohexenonoximethers der Formel I gemäß Anspruch 1 behandelt.

40

5

10

15

25

30

45

50

EUROPÄISCHER RECHERCHENBERICHT

EP 91 10 7095

	EINSCHLÄGI					
Kategorie		s mit Angabe, soweit erforderlich, eblichen Telle	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CI.5)		
Α	EP-A-0 332 076 (BASF) * Ansprüche 1,3 *		1,4	C 07 C 215/50 C 07 C 251/54 C 07 C 323/29		
Α	EP-A-0 238 021 (BASF) * Ansprüche 1,3 *		1,4	C 07 C 323/47 C 07 D 307/42 C 07 D 307/14		
Α	EP-A-0 172 551 (BAYER) * Ansprüche 1,5 *		1,4	C 07 D 309/20 C 07 D 333/16 C 07 D 317/28		
A,P	EP-A-0 368 227 (BASF) * Ansprüche 1,3 *		1,4	C 07 D 409/12 C 07 D 407/12 // C 07 D 339/06		
D,A	EP-A-0 177 913 (BASF) * Ansprüche 1,6 *		1,4	A 01 N 43/90 A 01 N 43/02 A 01 N 33/24		
				RECHERCHIERTE SACHGEBIETE (Int. Cl.5)		
				C 07 C 251/50 C 07 C 251/54 C 07 C 251/58 C 07 C 323/29		
				C 07 C 323/47 A 01 N 43/90 A 01 N 43/02		
				A 01 N 33/24 C 07 D 307/42 C 07 D 307/14 C 07 D 309/20 C 07 D 333/16		
				C 07 D 317/28 C 07 D 409/12 C 07 D 407/12 C 07 D 339/06		
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt						
Recherchenort		Abschlußdatum der Recherche				
	Berlin	12 August 91		KAPTEYN H G		

- KATEGORIE DER GENANNTEN DOKUMENTE

 - Y: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung

 - P: Zwischenliteratur
 - T: der Erfindung zugrunde liegende Theorien oder Grundsätze
- E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist
- D: in der Anmeldung angeführtes Dokument
 L: aus anderen Gründen angeführtes Dokument
- &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

					•
					•
	9				
•			(*)		