Conditional probability

Tan Do

Vietnamese-German University

Lecture 3

In this lecture

Conditional probability

Definition

Definition Let A and B be events. The conditional probability of event A conditional on event B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

for P(B)>0. This measures the probability that A occurs when it is known that B occurs.

Some special cases are:

lacksquare A and B are mutually exclusive, i.e., $A \cap B = \emptyset$. Then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{P(B)} = 0.$$

 $B \subset A$. Then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1.$$

Consider the following example.

We have

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.26}{0.56} = 0.464.$$

$$P(A|B') = \frac{P(A \cap B')}{P(B')} = \frac{0.01}{0.44} = 0.023.$$

$$P(A'|B) = \frac{P(A' \cap B)}{P(B)} = \frac{0.3}{0.56} = 0.536.$$

Note that P(A|B) + P(A'|B) = 1 (similar to P(A) + P(A') = 1).

Examples

Example (Defective computer chips) Consider the example of defective chips. Recall that we define A the event that a box has no more than 5 defective chips, which is also called the *correct event*. We calculated before that P(A)=0.71.

If the company guarantees that a box has no more than 5 defective chips, then the customers can be classified as either satisfied or unsatisfied, depending on whether the guarantee is met.

What is the probability that a satisfied customer purchased a box with no defective chips?

Intuitively, this conditional probability should be larger than the unconditional probability P(0 defectives) = 0.02.

$$P(0 \; \mathsf{defectives}|A) = \frac{P(0 \; \mathsf{defectives} \cap A)}{P(A)} = \frac{P(0 \; \mathsf{defectives})}{P(A)} = \frac{0.02}{0.71} = 0.028.$$

S 0 defectives 0.02 1 defective 0.11 2 defectives 0.16 3 defectives 0.21 4 defectives 0.13 5 defectives 0.08 correct 6 defectives

500 defectives

Example (Power plant operation) Recall that we denote A to be the event that plant X is idle. Note that P(A)=0.32.

If it is known that at least 2 out of the 3 plants are generating electricity (event B), then how does this change the probability that plant X is idle?

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.18}{0.7} = 0.257.$$

Therefore, whereas plant X is idle 32% of the time, it is idle only about 25% of the time when at least 2 plants are generating electricity.

We have

Games of chance

Die rolling

If a fair die is rolled, then $P(\{6\}) = \frac{1}{6}$. If someone rolls a die without showing you but announces that the result is *even*, then the chance that a 6 is obtained should be $\frac{1}{3}$. This is justified by

$$P(\{6\}|\mathsf{even}) = \frac{P(\{6\}\cap\mathsf{even})}{P(\mathsf{even})} = \frac{P(\{6\})}{P(\mathsf{even})} = \frac{1/6}{1/6 + 1/6 + 1/6} = \frac{1}{3}.$$

■ Suppose a red die and a blue die are thrown with 36 equally likely outcomes. Let A be the event that a red die scores a 6. Then $P(A) = \frac{6}{36} = \frac{1}{6}$. Let B be the event that at least one 6 is obtained on the 2 dice. Then $P(B) = \frac{11}{36}$. Suppose someone rolls the 2 dice without showing you but announces that at least one 6 has been scored. Then what is the probability that the red die scored a 6?

Answer The question asks for P(A|B):

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} = \frac{1/6}{11/36} = \frac{6}{11}.$$

P(A|B)

P(A|C)

Let C be the event that exactly one 6 has been scored.

Then

$$P(A|C) = \frac{P(A \cap C)}{P(C)} = \frac{5/36}{10/36} = \frac{1}{2}.$$

Conditional probability

Card playing If a card is drawn from a pack of cards, let A be the event that a card from the heart suit is obtained.

Also let B be the event that a picture card is drawn.

Recall that
$$P(A)=\frac{13}{52}=\frac{1}{4}$$
 and $P(B)=\frac{12}{52}=\frac{3}{13}$.

 $A\cap B$ represents the event that a picture card is drawn from the heart suit with $P(A\cap B)=rac{3}{52}$.

A© ^C	2♡ 1/52	3♥ 1/52	4♥ 1/52	5♥ 1/52	6♥ 1/52	7♡ 1/52	8♥ 1/52	9♥ 1/52	10♥ 1/52	J ♡ 1/52	Q♡ 1/52	A K♡ 1/52
A.	2.	3♣	4.	5♣	6♣	7♣	8.	9♣	104	J.	Q.	K.
1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52
A♦	20	3♦	40	50	60	70	8\$	9\$	10♦	J\diamondsuit	Q♦	$K \diamondsuit$
1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52
A	2.	3.	4.	5.	6.	7.	8.	9.	10.	J	Q.	K
1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52

Now suppose that someone draws a card and announces that it is from the heart suit. What is the probability that it is a picture card?

We have

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{3/52}{1/4} = \frac{3}{13}.$$

Note that in this case, P(B) = P(B|A) as the proportion of picture cards in the heart suit is identical to the proportion of picture cards in the whole pack. So that we say A and B are independent event. This notion will be discussed later.

A♡ ^C 1/52	2♡ 1/52	3♡ 1/52	4♥ 1/52	5♡ 1/52	6♥ 1/52	7♡ 1/52	8♥ 1/52	9♡ 1/52	10♥ 1/52	J ♡ 1/52	Q♡ 1/52	A K♡ 1/52
A.	2.	3.	4.	54	64	7♣	84	9♣	104	J.	Q.	K.
1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52
A♦	20	3\$	40	5\$	6\$	7\$	8\$	9\$	10\$	J\diamondsuit	Q♦	K♦
1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52
A.	2	3.	4.	5.	6.	7.	8.	9	10	J	Q	K.
1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52	1/52

Next let C be the event that the $A\heartsuit$ is chosen. Then $P(C)=\frac{1}{52}$.

If it is known that a card from the heart suit is obtained, then intuitively the conditional probability of the card being $A \heartsuit$ is 1/13, as there are 13 equally likely cards in the heart suit.

The intuition is confirmed by

$$P(C|A) = \frac{P(C \cap A)}{P(A)} = \frac{P(C)}{P(A)} = \frac{1/52}{1/4} = \frac{1}{13}.$$