Экзамен по матлогике (Билет 13)

Владимир Латыпов

 $donrumata 03 @\,gmail.com$

Содержание

1 Противоречивости	3
2 Первая теорема Гёделя	4
3 Форма Россера	4
4 Синтаксическая и семантическая неполнота арифметики.	5
5 Ослабленные варианты ФА: арифметика Пресбургера, система Робинсона	6
5.1 Система Робинсона	6
5.2 Арифметика Пресбургера	6
6 Залачка	6

Условие 1:

- Непротиворечивость (эквивалентные определения, доказательство эквивалентности), ω -непротиворечивость.
- Первая теорема Гёделя о неполноте арифметики.
- Формулировка первой теоремы Гёделя о неполноте арифметики в форме Россера.
- Синтаксическая и семантическая неполнота арифметики.
- \cdot Ослабленные варианты Φ А: арифметика Пресбургера, система Робинсона.

1 Противоречивости

Определение 1.1 (Противоречивая теория): Для некоторой формулы α :

$$\vdash_{\tau} \alpha \& \neg \alpha$$

Определение 1.2 (Противоречивая теория): Для некоторой формулы α :

$$\vdash_{\mathcal{T}} \alpha$$
 и $\vdash_{\mathcal{T}} \neg \alpha$

Определение 1.3 (Противоречивая теория):

$$\vdash_{\tau} A \& \neg A$$

Определение 1.4 (Противоречивая теория): Любая формула доказуема в ${\mathcal T}$

Теорема 1: Определения эквивалентны

Доказательство:

 $(1) \Rightarrow (2)$: удаление конъюнкции

 $(2) \Rightarrow (1)$: добавление конъюнкции

 $(2)\Rightarrow (3,4)$: По 10 и: lpha o
eg lpha o eta, где eta — требуемое.

- $(3) \Rightarrow (1)$: Положим $\alpha = A$.
- $(4) \Rightarrow (*)$: положим β нужной формулой. Она доказуема.

Определение 1.5 (ω -непротиворечивая теория): Если для формулы $\varphi(x)$ при $\vdash \varphi(\overline{x})$ для всех $x \in \mathbb{N}_0$ будет:

$$\not\vdash \exists x. \neg \varphi(x)$$

2 Первая теорема Гёделя

Формула $\omega_1(\xi,p)$: предтавление в ФА рекурсивного отношения, в которое входят пары, т.ч. второй элемент — гёделев номер доказательства самоприменимости первого $\vdash \xi(\ulcorner \xi \urcorner)$. $\sigma(x) \equiv \forall p. \ \neg \omega_1(x,p) \ - \ \text{никто не доказывает самоприменимость} \ x.$

Теорема 1:

- 1. Если Φ А непротиворечива, то $\not\vdash \sigma(\overline{\ulcorner \sigma \urcorner})$
- 2. Если ФА ω -непротиворечива, то ${\not \vdash} \neg \sigma(\overline{\ulcorner \sigma \urcorner})$

Доказательство:

- Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Возьмём p ГН этого доказательства. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$ (такое уловие представимости отношение в ФА). По сх. акс. 12: $\vdash \exists p.\, \omega_1(\lceil \overline{\sigma} \rceil, p)$. А это отрицание $\sigma(\lceil \overline{\sigma} \rceil)$, которое доказуемо. Тогда получится, что ФА противоречива, а мы предположили, что нет. $\ref{eq:constraint}$
- Пусть $\vdash \neg \sigma(\overline{\lceil \sigma \rceil}). \Rightarrow \vdash \exists p. \omega_1(\overline{\lceil \sigma \rceil}, p).$
 - · Покажем, что из метатеории можно вытащить конкретный p, который «существует» (т.ч. $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$).
 - Пусть не так. Тогда для всех доказуемо отрицание, а по ω -непротиворечивости вносим квантор \exists в формулу из метатеории: $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \sigma \urcorner, p)$, но оно доказуемо по предположению.

Тогда это p — ГН доказаетельство самоприменения σ , но тогда доказуемо одновременно $\sigma(\overline{\ \ \ \ \ \ \ \ })$ и $\neg \sigma(\overline{\ \ \ \ \ \ \ })$.

3 Форма Россера

Избавимся от предположения [ω -]непортиворечивости.

Определение 3.1: ω_2 — как первый, только теперь доказательство само**не**применимости.

Теорема 1: $\rho(x) = \forall p.\, \omega_1(x,p) \to \exists q.\, q \leq p\&\omega_2(x,q)$. (т.е. если самоприменимость и доказиема, то номер доказательства само**не**применимости — меньше).

Тогда

$$\not\vdash \rho(\overline{\lceil \rho \rceil}) \\ \not\vdash \neg \rho(\overline{\lceil \rho \rceil})$$

4 Синтаксическая и семантическая неполнота арифметики.

Определение 4.1 (Синтаксическая полнота теории): Для любой формулы доказуемо хотя бы что-то из её самой и её отрицания

Определение 4.2 (Семантическая полнота теории): Любая общезначимая формула доказуема (полнота в привычном понимании)

Теорема 1: ФА семантически неполна с моделью как для исчисления предикатов с арифметикой Пеано.

Доказательство: Предъявим верную, но недоказуемую формулу: $\sigma(\lceil \sigma \rceil)$.

- \cdot Недоказуемо по т. Гёделя. (непротиворечивость $\Phi A-$ из \mathcal{S}_{∞} или формы Россера)
- · Верность: Раз недоказуемо, то не существует номера доказательства. Тогда $[\![\forall p.\,\neg\omega_1(\lceil\overline{\sigma}\rceil)]\!]=\mathrm{I\!I}.$

5 Ослабленные варианты ФА: арифметика Пресбургера, система Робинсона.

5.1 Система Робинсона

Взяли те утверждения, которые получены и требуются для доказательства теоремы Гёделя. Довольно слабая штука (даже нет индукции), но достаточно для неполноты.

Оставили $0, (+), (\cdot), (=)$.

Нет схем, количество аксиом конечно.

Аксиомы: https://en.wikipedia.org/wiki/Robinson_arithmetic

5.2 Арифметика Пресбургера

Ещё ослабили, теорема Гёделя недоказуема.

Оставили 0, 1, (+), (=).

Но она совсем слабая, нет даже умножения.

Зато разрешима и полна в обоих смыслах.

Аксиомы: https://en.wikipedia.org/wiki/Presburger_arithmetic

6 Задачка

Алгебра Линденбаума: множество высказываний, факторизована по равнодоказуемости в ИИВ.

Условие 2: Введём топологию на алгебре Линденбаума: открытые множества — те, для которых вместе с элементом $[\alpha]_{\mathcal{L}}$ содержатся все большие его, то есть $\alpha \vdash \beta$ (как топология на деревьях, но это будет не дерево, а DAG).

Компактно ли это топологическое пространство?

Замечание: Если берём все меньшие, то в каждом просто будет элемент $A \& \neg A$, оставим только одно множество, оно покрывает всё.

Теорема 1: Да. компактно

Доказательство : Чтобы было покрытие всех формул, в каком-то множестве должно содержаться $A\& \neg A$. Возьмём только его. Это будет подпокрытие из одного элемента.

Из множества можно выделить «сильные и задающие» — такие, которые не следуют ни из каких других элементов множества (то есть минимальные) — назовём корнями. В худшем случае — во множестве только один корень.

Покрытие такими множествами: любая формула содержится в каком-то элементе покрытия, то есть

Гливенко: α доказуемо в ИИВ $\leftrightarrow \neg \neg \alpha$ — в КИВ. Лемма перед Гливенко: если доказывать в предположении, что верны дизъюнкции $A_i \vee \neg A_i$.

Идея: Попробуем залить бесконечной таблицей истинности ($A_1 \& A_2 \& ...$).

Рассмотрим все формулы вида $\varphi_I = \bigvee \left\{ [\neg] A_i \right\}_{i=1}^n \sim \bigvee \left\{ (A_i \vee \neg A_i) \wedge [\neg] A_i \right\}_{i=1}^n$. (Индексируя A, будем получать все валидные символы для пропозициональных переменных).

Лемма 6.2: Ни одна из другой не следует

Какие таблицы истинности следуют из каких? Дизъюнкция следует из конъюнкции. Мы хотим, чтобы не так много следовало.

Доказательство:

Пусть сначала одинаковые множества переменных:

- $\alpha(\{A_i\}) \vdash \beta(\{A_i\})$, если для всех клеток, где верно A, верно и B, то есть сила убывает по множеству единиц.
- Если клетки все кроме одной единицы, то из неё следует только штука с такой же таблицей истинности.

Есть разные множества формул — таблица распространяется на 0 и 1 аналогично. Возьмём множество переменных

Возмём span каждой, то есть то, что следует из неё.

- получим все высказывания, так как для каждого $\neg\neg\alpha$ имеет таблицу истинности, а значит, доказуем для какого-то значения, тогда доказуем и α в ИИВ.
- \cdot Если возьмём конечное подпокрытие, то по лемме будет и конечное количество формул \to будут имена переменных, которые там вообще не упоминаются, пусть такова X, тогда X не покрыли \to это гарантированно не будет подпокрытием.