4팀

김수빈 조건우 김보현 이지원 조성우

CONTENTS

1. 데이터마이닝

2. 모델링

3. 과적합 방지법

1

데이터마이닝

데이터마이닝의 어원

관찰·측정을 통해 **수집**된 사실, 값, 문자

● MINING "광물을 캐다"라는 의미로 중요한 정보를 채굴한다는 의미

즉, 대량의 데이터로부터 유용한 정보와 패턴을 추출해내는 과정

데이터마이닝의 과정

Exploration

데이터를 분석 가능한 형태로 전처리

Pattern Identification

데이터로부터 <mark>패턴</mark>을 찾아냄

Deployment

추출해낸 패턴을 이용하여 목적에 맞게 활용하여 <mark>새로운 정보</mark> 발견

데이터마이닝의 간학문적 성격

데이터마이닝은 **여러 학문들의 경계**를 넘나들며 데이터 전처리, 모델링 학습, 평가 등을 진행

인공지능? 머신러닝? 딥러닝?

데이터마이닝의 간학문적 성격으로 인해

다른 개념과의 혼동 존재

인공지능? 머신러닝? 딥러닝?

인공지능(Artificial Intelligence)

컴퓨팅을 이용한 학습과정을 모두 포함하는 **포괄적인 개념**으로 머신러닝과 딥러닝을 모두 포함

인공지능? 머신러닝? 딥러닝?

머신러닝(Machine Learning)

사람의 개입이 최소화된 학습 수행 방법으로

적절한 모델을 선정하면 컴퓨터가 스스로 데이터를 학습 후 결과 도출

인공지능? 머신러닝? 딥러닝?

딥러닝(Deep Learning)

사람의 <mark>신경망과 유사</mark>한 학습 체계를 구축해 목적 달성을 위한 과정 수행 도출된 결과 해석이 어려워 '블랙박스 모델'이라 불림

한문철의 블랙박스 리투

데이터마이닝의 목표

데이터마이닝 vs ML/DL

머신러닝과 딥러닝이 "수행 과정" 에 초점을 둔다면

데이터마이닝은 이에 더해 "인사이트를 얻어내는 것"을 목표

데이터마이닝의 목표

데이터마이닝 vs ML/DL

데이터마이닝은 이에 더해 "인사이트를 얻어내는 것"을 목표

인사이트를 잘 얻어내기 위해선 어떻게 해야 할까

데이터마이닝의 목표

데이터마이닝 vs ML/DL

머신러닝과 딥러닝이 "수행 과정" 에 초점을 둔다면

데이터마이닝은 이에 더해 "인사이트를 얻어내는 것"을 목표

인사이트를 잘 얻어내기 위해선 어떻게 해야 할까

모델 선택이 적절했는가?

그 모델이 **목표**를 얼마나 잘 달성했는가? 선택한 모델의 **성능**을 높이는 방법은 무엇인가?

질문의 해답은…

통계학!

CRISP-DM 방법론

CRISP-DM이란

데이터마이닝의 대표적인 분석 과정으로 크게 6단계로 구성

CRISP-DM 방법론

1단계) 비즈니스 문제 이해

과제의 목적과 요구사항을 이해하는 과정으로 도메인 지식을 활용해 초기 프로젝트 계획을 수립하는 단계

→ 배경지식 조사 & 평가 기준 설정 필요

2단계) 데이터 이해(EDA)

각 변수들의 통계량 및 이상치, 결측치 확인을 통해

CRISP-DM 방법론

1단계) 비즈니스 문제 이해

도메인 지식을 활용해 초기 프로젝트 계획을 수립하는 단계

──── 배경지식 조사 & 평가 기준 설정 필요

2단계) 데이터 이해(EDA)

분석을 위해 데이터를 수집하고 이에 대한 직관적인 이해가 수반되는 단계

각 변수들의 통계량 및 <mark>이상치, 결측치</mark> 확인을 통해 변수 분포, 추이, 상관관계 등 시각화

CRISP-DM 방법론

3단계) 데이터 준비

수집한 데이터를 분석 목적에 맞게 데이터 전처리하는 단계

전처리에 따라 모델 성능이 달라지므로 상당히 중요

4단계) 분석 및 모델링

모델링 과정을 수행하고 파라미터를 **최적화**해 나가는 단계

CRISP-DM 방법론

3단계) 데이터 준비

수집한 데이터를 분석 목적에 맞게 데이터 전처리하는 단계

전처리에 따라 모델 성능이 달라지므로 상당히 중요

4단계) 분석 및 모델링

모델링 과정을 수행하고 파라미터를 **최적화**해 나가는 단계

CRISP-DM 방법론

5단계) 평가

모델링이 잘 되었는지 평가하는 단계로 모델에 따라, 목적에 따라 각기 다른 **평가지표**로 평가

과제 목적에 알맞은 평가 지표를 사용하는 것이 중요 -

ex) 분류문제 - F1 score / 회귀문제 - RMSE

6단계) 전개

분석한 결과를 적용하여 **유의미한 결론**을 이끌어내는 과정

분석 내용을 바탕으로 현실 사회의 문제에 해결책 제시

CRISP-DM 방법론

5단계) 평가

6단계) 전개

분석한 결과를 적용하여 유의미한 결론을 이끌어내는 과정

분석 내용을 바탕으로 현실 사회의 문제에 해결책 제시 💆

2

모델링

Train Data & Test Data

독립변수와 종속변수

~	독립변	수	1	종속변수
-				

Bedrooms	Sq. feet	Neighborhood	Sales Price
3	2000	Normaltown	\$250,000
2	800	Hipsterton	\$300,000
2	850	Normaltown	\$150,000
1	550	Normaltown	\$78,000
4	2000	Skid Row	\$150,000

독립변수, 종속변수로 이루어진 데이터를 바탕으로 **학습** 진행하여 학습된 모델들은 독립변수가 입력으로 들어오면 종속변수 **예측**하게끔 설계

Train Data & Test Data

Definition

DATASET

TRAIN

TEST

Train Data

Test Data

모델의 학습을 위한 데이터 종속변수 & 독립변수 모두 존재

목적 달성을 위한 데이터 종속변수 존재하지 않음

Train Data & Test Data

Ex. 주택 데이터

[Train data]

Bedrooms	Sq. feet	Neighborhood	Sales Price
3	2000	Normaltown	\$250,000
2	800	Hipsterton	\$300,000
2	850	Normaltown	\$150,000

[Test data]

Train Data를 통해 학습한 모델로 Test Data의 Sales Prices 예측

머신러닝의 종류

머신러닝은 **지도학습**과 **비지도학습**으로 나뉘며 이 중 지도학습은 목적에 따라 **분류**와 **회귀**로 나뉨

머신러닝의 종류

지도학습과 비지도학습은 데이터라벨(Y값) 존재 여부에 따라 구분

머신러닝의 종류

문제 수행 및 답 확인 가능

머신러닝의 종류

데이터의 구조를 묘사하고 관계를 해석하는 데 초점

연구자의 주관 개입 여지 큼

Ex) 클러스터링, 주성분 분석(PCA)

머신러닝의 종류

종속변수가 어떤 카테고리에 들어가는지 예측

머신러닝의 종류

연속적인 형태를 띈 종속변수의 값을 계산

머신러닝의 종류

학습 결과에 대한 보상을 최대화하고 패널티를 최소화

ex) AlphaGo

이런 수학적 모델은 실제 데이터의 관계를 완벽하게 설명하지 못하지만, 여러모델을 적용하여 실제 Y값에 근접한 추정치 \hat{Y} 을 주는 모델을 선택

$$Y = f(X) + \epsilon$$

보주형(Categorical) 분류(Classification) f(X) 양적(Quantitative) 회귀(Regression)

$$\left\{ Y = f(X) + \epsilon \right\}$$

우리의 목표는 실제 Y값에 가까운 예측을 하는 모델을 찾는 것

Hyperparameter Tuning!

지도학습 (Supervised learning)

Parameter

주어진 데이터에 대한 특성을 보여주는 모수를 의미

Hyperparameter

모델의 매개변수이며 어떤 값을 넣느냐에 따라 모델의 성능이 달라짐

Hyperparameter Tuning을 통해 최적의 모델 판단 필요

MSE decomposition

지도학습 (Supervised learning)

MSE decomposition

왜 MSE인가?

(실제값 - 추정값)을 사용할 경우 음수 값이 나올 수 있고 잔차의 합은 0이므로 오차의 제곱인 MSE 사용

지도학습 (Supervised learning)

MSE decomposition

MSE 줄이는 방법?

MSE Decomposition을 통해 알아보자

지도학습 (Supervised learning)

MSE decomposition

$$E\left[\left(y-\hat{f}\right)^{2}\right] = E\left[\left(f+\epsilon-\hat{f}\right)^{2}\right] = E\left[\left(f+\epsilon-\hat{f}+E[\hat{f}]-E[\hat{f}]\right)^{2}\right]$$

$$= E\left[\left(\left(E[\hat{f}]-\hat{f}\right)+\left(f-E[\hat{f}]\right)+\epsilon\right)^{2}\right]$$

$$= E\left[\left(f-E[(\hat{f})]\right)^{2}\right]+E[\epsilon^{2}]+E\left[\left(E[\hat{f}]-\hat{f}\right)^{2}\right]+2E\left[\left(f-E[\hat{f}]\right)\epsilon\right]$$

$$+2E\left[\epsilon\left(E[\hat{f}]-\hat{f}\right)\right]+2E\left[\left(E[\hat{f}]-\hat{f}\right)\left(f-E[\hat{f}]\right)\right]$$

$$= \left(f-E[(\hat{f})]\right)^{2}+E[\epsilon^{2}]+E\left[\left(E[\hat{f}]-\hat{f}\right)^{2}\right]$$

$$= \left(f-E[(\hat{f})]\right)^{2}+Var[\epsilon]+Var[\hat{f}]=Bias[(\hat{f})]^{2}+Var[\epsilon]+Var[\hat{f}]$$

$$= Bias[(\hat{f})]^{2}+\sigma^{2}+Var[\hat{f}]$$

지도학습 (Supervised learning)

MSE decomposition

$$E\left[\left(y-\hat{f}\right)^{2}\right]$$

$$= Bias\big[\widehat{(f)}\big]^2 + \sigma^2 + Var\big[\widehat{f}\big]$$

복잡한 유도과정은 너굴맨이 처리했으니 안심하라구~

지도학습 (Supervised learning)

MSE decomposition

$$E[(y - \hat{y})^2] = (Bias[\widehat{f})]^2 + var[\widehat{f}]) + \sigma^2$$

지도학습 (Supervised learning)

MSE decomposition

$$E[(y - \hat{y})^2] = (Bias[\widehat{f})]^2 + var[\widehat{f}]) + \sigma^2$$

Irreducible Error

표본 추출 과정 등 randomness에 의해 발생하는 오차

지도학습 (Supervised learning)

MSE decomposition

$$E[(y-\hat{y})^2] = (Bias[\widehat{f})]^2 + var[\widehat{f}]) + \sigma^2$$

Reducible Error

모델의 Bias와 모델의 Variance으로 이루어짐

지도학습 (Supervised learning)

MSE decomposition

$$E[(y - \hat{y})^2] = (Bias[\widehat{f})]^2 + var[\widehat{f}]) + \sigma^2$$

Bias

추정된 모델이 실제 모델을 얼마나 잘 설명하는지를 의미

Variance

추정된 모델이 다른 데이터셋을 적합했을 때 얼마나 달라지는지를 의미

지도학습 (Supervised learning)

Variance-Bias Tradeoff

그렇다면 통제가능한 Bias와 Variance를 같이 줄이면 최적의 모델을 만들 수 있지 않을까?

지도학습 (Supervised learning)

Variance-Bias Tradeoff

그렇다면 통제가능한 Bias와 Variance를 같이 줄이면 최적의 모델을 만들 수 있지 않을까?

그게 가능했으면 이미 그렇게 했겠죠?

지도학습 (Supervised learning)

Variance-Bias Trade-off

모델의 Bias와 Variance는 서로 반대 방향으로 움직이며 이를 **Trade-Off** 관계라 표현

지도학습 (Supervised learning)

Variance-Bias Trade-off

모델의 Bias가 높고 Variance가 낮은 경우, 과소적합(Underfitting) 발생

지도학습 (Supervised learning)

Variance-Bias Trade-off

모델의 Bias가 낮고 Variance가 높은 경우, 과대적합(Overfitting) 발생

지도학습 (Supervised learning)

Variance-Bias Trade-off

Bias와 Variance가 적당히 작아
MSE가 최소가 되는 model을 찾아내는 것이 관건

지도학습 (Supervised learning)

KNN(K-Nearest-Neighbor)

모수적 모델(parametric model) VS 비모수적 모델(nonparametric model)

지도학습 (Supervised learning)

KNN(K-Nearest-Neighbor)

모수적 모델(parametric model) VS <mark>비모수적 모델(nonparametric model)</mark>

지도학습 (Supervised learning)

KNN(K-Nearest-Neighbor)

모수적 모델(parametric model) VS <mark>비모수적 모델(nonparametric model)</mark>

모수를 추정하지 않고 다양한 알고리즘을 사용하는 모델 ex)KNN

지도학습 (Supervised learning)

KNN(K-Nearest-Neighbor)

KNN(K-Nearest-Neighbor)

대표적인 비모수적인 모델로 K개의 가까운 이웃데이터들 중 다수결로 예측

K: Hyperparameter

K의 값에 따라
Decision Boundary 변화

지도학습 (Supervised learning)

KNN(K-Nearest-Neighbor)

K가 작으면 적은 이웃을 반영하여 예측을 진행하기 때문에 Decision boundary가 복잡해짐

지도학습 (Supervised learning)

KNN(K-Nearest-Neighbor)

K의 값이 커질수록 Decision boundary가 **안정적**으로 변화

지도학습 (Supervised learning)

KNN(K-Nearest-Neighbor)

2

지도학습 (Supervised learning)

KNN(K-Nearest-NeigKNN Regression

K개의 근접이웃들의 Y값 평균을 활용하여 예측

3

과적합 방지법

과적합 (Overfitting)

Train data에 대해 설명력이 높아도 실제로 예측해야 하는 Test data에 대해 설명을 못하는 현상

과적합 (Overfitting)

Train data에 대해 설명력이 높아도 실제로 예측해야 하는 Test data에 대해 설명을 못하는 현상

Train MSE가 작아도 Test MSE가 높을 수 있음

과적합 (Overfitting)

Train data에 대해 설명력이 높아도 실제로 예측해야 하는 Test data에 대해 설명을 못하는 현상

3

과적한 자법 잠깐

과적합 (Overfitting)

"왜 Train MSE를 모델 평가 기준으로 삼을 수 없을까?"

모델복잡도가높아질수록가 작아도 Test MSE가 높을 수 있음 Train MSE는 하락함

교차 검증(Cross validation)

교차 검증이란?

교차 검증 (Cross Validation)

분석 과정에서 주어진 Train data를

다시 Train data와 Validation data로 나누어 모델의 적절성을 평가하는 방법

Why CV?

과대적합을 방지하고 모델의 성능 정확하게 판단 가능

교차 검증(Cross validation)

Hold-Out(Train-Test Split)

기존의 Train data를 둘로 쪼개는 방식으로 일반적으로 7:3 혹은 8:2 비율로 Train-Test Split 진행

교차 검증(Cross validation)

Hold-Out(Train-Test Split)

그렇다면 이미 Test data가 존재하는데

Validation data를 만들어야 하는 이유는 무엇일까?

기존의 Train data를 둘로 쪼개는 방식으로

일반적으로 7:3 혹은 8:2 비율로 Train-Test Split 진행

교차 검증(Cross validation)

Hold-Out(Train-Test Split)

그렇다면 이미 Test data가 존재하는데

Validation data를 만들어야 하는 이유는 무엇일까?

New Available Data Validation **Training** Testing Test data는 Y값이 존재하지 않음

기존의 Train data를 둘로 쪼개는 방식으로

일반적으로 7:3 혹은 8:2 비율로 Train-Test Split 진행

아니 없어요 그냥

교차 검증(Cross validation)

Hold-Out(Train-Test Split)

EX) A 와 B를 분류해주는 모델

Validation set이 데이터 전체의 경향성을 보여주지 못하거나 이상치들이 모여 있을 경우 **왜곡된 모델**을 설계한다는 한계점 존재

LOOCV, K-Fold CV 사용

교차검증(Cross Validation)

LOOCV(Leave-One-Out CV)

전체 n개의 학습 데이터에서 **한 개의 데이터를 검증 데이터**로, 나머지 **n-1개의 데이터를 학습데이터**로 사용하여 n번의 검증을 진행

교차검증(Cross Validation)

K-Fold CV

전체 데이터를 K개의 그룹으로 나눈 후, 하나의 그룹을 검증 데이터셋으로, 나머지 K-1개의 그룹은 **학습데이터셋**으로 사용하여 K번의 검증을 진행

→ K개의 그룹이 **각각 한 번씩** 검증 데이터셋이 되게끔 반복 💆

교차검증(Cross Validation)

K-Fold CV

장점

LOOCV보다 **컴퓨팅 파워**를 잡아먹지 않으며,

교차검증 과정에서 전체 데이터 활용 가능

→ 모델의 **과적합 여부**를 판단하는 과정에 <mark>많이 사용</mark>

한계점

여전히 검증 데이터셋이 **전체 데이터의 경향을 반영하지 못함**

교차검증(Cross Validation)

K-Fold CV

장점

LOOCV보데임터를 나눌때,지않으며,

전체 데이터의 분포를 고려하여 분배

→ 모델의 **과적합 여부**를 판단하는 과정에 **많이 사용**

한계점

66 Stratified K-Fold CV 여전히 검증 데이터셋이 전체 데이터의 경향을 반영하지 못함

교차검증(Cross Validation)

Stratified K-Fold CV

기존 K-Fold 이용 시 검증 데이터셋에 특정 클래스가 과하게 분포할 수 있음

예) 데이터셋에 빨강 1000개 파랑 10개

불균형한 분포를 지닌 클래스 데이터 집합을 위한 K-Fold 방식

교차검증(Cross Validation)

Stratified K-Fold CV

전체 데이터의 분포를 고려하여 학습 데이터셋과 검증 데이터셋을 분배하므로 물균형한 데이터를 사용하는 모델 성능을 측정하는데 용이함

교차검증(Cross Validation)

Time Series CV

시계열 데이터는 **전후 데이터 사이의 상관관계**가 존재하므로 기존 교차검증 방법 <mark>적용 불가</mark>

학습 데이터를 항상 검증 데이터 이전으로 할당

교차검증(Cross Validation)

Time Series CV

누귀가 쫑긋

차원의 저주(Curse of Dimensionality)

과적합의 발생 원인

독립 변수의 개수가 많은 경우 즉, **데이터의 차원이 높은 경우**에 과적합이 발생

차원의 저주(Curse of Dimensionality)란?

차원의 수가 늘어남으로써 **데이터 수 증가**, **데이터의 특징**이 너무 많아서 모델의 **성능이 저하 1**되는 현상

데이터셋이 고차원의 공간을 갖고 있다면 **데이터 간 거리가 멀어져** 비슷한 패턴을 찾기 어려워짐

차원의 저주(Curse of Dimensionality)

Ex) KNN을 활용한 Iris 데이터 분류 예측

차원의 저주(Curse of Dimensionality)

Ex) KNN을 활용한 Iris 데이터 분류 예측

Sepal Width 하나의 특성을 사용하면 <mark>근처 데이터</mark>들이 많아 분류하기 쉬움

차원의 저주(Curse of Dimensionality)

Ex) KNN을 활용한 Iris 데이터 분류 예측

그러나 Sepal Length 특성을 추가하여 분류하면 데이터 간 거리가 <mark>멀어짐</mark>

차원의 저주(Curse of Dimer inality)

Ex) KNN은 활용한 Iris 데이터 분류 예측 데이터가 너무 고차원이라 데이터 간 간격이 멀어질 경우 빈 공간에 대해 컴퓨터는 '관측값이 없다'고 인식하여 데이터셋이 전체 공간을 나타내지 못함 특정 부분만 학습되면서 그 부분에 대해 과적합 발생

그러나 Sepal Length 특성을 추가하여 분류하면 데이터 간 거리가 <mark>멀어짐</mark>

차원의 저주(Curse of Dimensionality)

예. KNN을 활용한 Iris 데이터 분림예측

<mark>大</mark>원 축소 그러나 Sepal Length 특성을 추가하여 분류하면

데이터 간 거리가 <mark>멀어짐</mark>

차원 축소

변수선택법

Feature Selection

데이터의 특성을 가장 잘 설명하는 변수를 <mark>추가</mark>하거나 <mark>제거</mark>해가며 모델을 적합시킴

변수추출법

Feature Extraction

데이터의 차원을 고차원에서 **저차원으로** <mark>변환</mark>함으로써 모델을 적합시킴

Forward Selection

Backward Elimination

Step-wise Selection

PCA(Principal Component Analysis)

차원 축소

변수선택법

Feature Selection

데이터의 특성을 가장 잘 설명하는 변수를 **추가**하거나 **제거**해가며 모델을 적합시킴

Forward Selection
Backward Elimination
Step-wise Selection

PCA(Principal Component Analysis)

차원 축소

변수선택법

Feature Selection

데이터의 특성을

가장 잘 설명하는 변수를

추가하거나 제거해가며

모델을 적합시킨

변수추출법

Feature Extraction

데이터의 차원을

고차원에서 <mark>저차원으로</mark>

변환함으로써

모델을 적합시킴

Forward Selection

Backward Elimination

Step-wise Selection

PCA(Principal Component Analysis)

차원 축소

Early Stopping

학습 관점에서의 과적합 방지법으로 학습 소요 시간에 제한을 두거나, 모델 성능이 일정 수준 이상이 되면 학습을 종료

과적합 방지 가능

