Blockchain & Cybersecurity

Enhancing security through decentralization

What is Blockchain?

Blockchain is a special kind of Database

Centralized

Decentralized

Distributed Ledgers

Permissionless

Blockchain is a Distributed Ledger

Centralized

Decentralized

Distributed Ledgers

Permissionless

- Peer to Peer
- Each node has direct connections to other nodes
- Trustless No central authority
 - No worry about manipulation
 - No transaction cuts
 - Privacy

- Data Integrity
- Disclaimer: Blockchain ensures data integrity of database, not data input
- Entire network maintains same data across different nodes
 - Stores hash of file instead of actual file
 - Each file results in a different hash → exact representation
- If I hack into one and change the data \rightarrow Rest of network reject the anomaly
- Depending on consensus algorithm, can tolerate <50% compromised systems.
 - Previously, single point of failure → Just need to hack into 1

How is a Blockchain Fraud-proof?

- Each Block has a hash called the Block hash
 - This hash is defined by the data inside that block
- Each Block hash is determined by the previous Block hash
- This forms a chain of blocks, all linked together
- Changed data from existing blocks will be rejected by the rest of the nodes
- Demo

- Transparency and Auditability
- Data on the blockchain is available to everyone
 - Permissioned: Only nodes in the blockchain
 - Permissionless: Anyone, even those not in the blockchain
- Data is transparent and easily auditable
- Hard to cheat participants when everything is auditable
- Data Privacy → Zero Knowledge proofs

- High Availability
- As long as one node is online, the system continues to work
 - Nodes will be reconnected to this node when back online
- Even if all nodes are offline, data is not lost
 - Each node still retains copy of data
- Previously, DDoS single point of failure, now Attacker needs to DDoS all nodes
 - Much more difficult

- Faster and Cheaper than traditional processes (Using Smart Contracts)
- Smart contracts require Blockchain for Fraud-proof attributes
 - We don't want contract to be manipulated after activated
- Can streamline verification, reconciliation, clearance and other business processes

Cybersecurity Impacts

Data Security

- Data integrity for sensitive information
- "Our <u>goal</u> is to provide every Soldier...Marine the <u>confidence</u> that they can rely on the <u>information</u> they see and the equipment they operate <u>without fear</u> that it has been <u>manipulated</u> by an outside force,"

IoT

- Currently, IoT data requests are aggregated into a single point of trust
 - The calling device is inherently trusted
 - Single point of Failure
- Blockchain allows IoT devices to form group consensus of normality
 - Each IoT device has a record of each other's activity
 - Trust is distributed to all devices
 - Able to quarantine IoT devices that behave abnormally

Authentication Protocols

- Decentralised Certificate Authorities
 - Centralised CAs run risk of compromise, internal misuse or mistakes
 - Decentralising the certificate signing process with multiple parties reduce risk
- Storing PKI Certificates on Blockchain
 - SSL keys on devices directly authenticate with validated certificates
 - Fake certificates will not be verified due to auditability and immutability of Blockchain

Pentesting

Smart Contracts

- With database secured, viable attack vector → Input of data
 - Injections
 - Social Engineering
 - Logic Manipulation
- Smart Contracts execute automatically
 - If compromised, Attacker will directly receive the reward
 - · Due to Blockchain, once reward is sent, it cannot be reversed
- Smart Contracts → Future?
 - Pentesting and Code Audits become more important than ever

Blockchain Network

- Nodes are reliant on incoming communication from other nodes
 - Bitcoin has 8 connections, Ethereum has 13
- If communication from nodes are malicious, can influence data recorded
- If executed on large enough scale, can partition entire networks
 - Requires hijacking of Autonomous Systems (AS) or Border Gateway Protocol (BGP)
 - AS contains the information sent out
 - BGP determines the routing of information

If you are interested to learn more...

- HITB GSEC 2018
- 31 August, 4.30pm 5.00pm
- Blockchain & Smart Contract Attack Vectors
- InterContinental[®] Singapore

Food for thought

- Countries and Companies have invested in Blockchain solutions
- Smart Contracts looks set to streamline various industries
- Singapore has already started using Blockchain (PSA, IMDA, SQ etc)

- Can we afford to ignore this? What would happen to the adopters and industries?
- Can we secure our future? Or will we be reliant on others?