IOB-ILA, a RISC-V ILA

User Guide, V0.1, Build c06b7d8

June 11, 2021

Contents

1	Intr	oduction	5
2	Syn	nbol	5
3	Fea	tures	5
4	Ber	nefits	6
5	Deli	iverables	6
6	Blo	ck Diagram and Description	6
7	Inte	erface Signals	7
8	Reg	jisters	9
9	FPC	GA Results	9
Li	ist (of Tables	
	1	Block descriptions	7
	2	General Interface Signals	7
	3	CPU Native Slave Interface Signals	8
	4	CPU AXI4 Lite Slave Interface Signals	8
	5	RS232 Interface Signals	8
	6	Software accessible registers	9
	7	FPGA results for Kintex Ultrascale (left) and Cyclone V GT (right)	9
Li	ist (of Figures	
	1	IP Core Symbol	5
	2	High-level block diagram	7
©	2020	IObundle Lda. All rights reserved www.iobundle.com Confidential	3

Introduction 1

The IObundle ILA is a RISC-V-based Peripheral written in Verilog, which users can download for free, modify, simulate and implement in FPGA or ASIC. It is written in Verilog and includes a C software driver. The IObundle ILA is a very compact IP that works at high clock rates if needed. It supports full-duplex operation and a configurable baud rate. The IObundle ILA has a fixed configuration for the Start and Stop bits. More flexible licensable commercial versions are available upon request.

Symbol

Figure 1: IP Core Symbol

3 **Features**

- Supported in IObundle's RISC-V IOb-SoC open-source and free of charge template.
- IObundle's IOb-SoC native CPU interface.
- Verilog basic ILA implementation.
- Soft reset and enable functions.
- Runtime configurable
- C software driver at the bare-metal level.
- Simple Verilog testbench for the IP's nucleus.
- System-level Verilog testbench available when simulating the IP embedded in IOb-SoC.
- Simulation Makefile for the open-source and free of charge Icarus Verilog simulator.
- FPGA synthesis and implementation scripts for two FPGA families from two FPGA vendors.

www.iobundle.com

Automated creation of FPGA netlists

- Automated production of documentation using the open-source and free Latex framework.
- IP data automatically extracted from FPGA tool logs to include in documents.
- Makefile tree for full automation of simulation, FPGA implementation and document production.

4 Benefits

- Easy hardware and software integration
- Compact hardware implementation
- Can fit many instances in low cost FPGAs
- Can fit many instances in small ASICs
- Low power consumption

5 Deliverables

- ASIC or FPGA synthesized netlist or Verilog source code
- · ASIC or FPGA synthesis and implementation scripts or
- · ASIC or FPGA verification environment
- Software driver and example user software
- User documentation for easy system integration
- Example integration in IOb-SoC (optional)

6 Block Diagram and Description

A high-level block diagram of the IOB-ILA core is presented in Figure 6 and a brief explanation of each block is given in Table 1.

Figure 2: High-level block diagram

Block	Description
	Holds the current configuration of the ILA as well as internal parameters. Data to be sent or that has been received is stored here temporarily.
	, ,

Table 1: Block descriptions.

7 Interface Signals

The interface signals of the ILA core are described in the following tables.

Name	Direction	Width	Description	
clk	input	1	System clock input	
rst	input	1	System reset asynchronous and active high	

Table 2: General Interface Signals

Name Direction Width		Width	Description	
valid	input	1	Native CPU interface valid signal	
address	input	ADDR_W	Native CPU interface address signal	
wdata	input	WDATA_W	Native CPU interface data write signal	
wstrb	input	DATA_W/8	Native CPU interface write strobe signal	
rdata	output	DATA_W	Native CPU interface read data signal	
ready	output	1	Native CPU interface ready signal	

Table 3: CPU Native Slave Interface Signals

Name	Direction	Width	Description	
s_axil_awaddr	input	ADDR_W	Address write channel address	
s_axil_awcache input 'AX		'AXI_CACHE_W	Address write channel memory type. Transactions set wi	
			Normal Non-cacheable Modifiable and Bufferable (0011).	
s_axil_awprot	input	'AXI_PROT_W	Address write channel protection type. Transactions set with	
			Normal Secure and Data attributes (000).	
s_axil_awvalid	input	1	Address write channel valid	
s_axil_awready	output	1	Address write channel ready	
s_axil_wdata	input	DATA_W	Write channel data	
s_axil_wstrb	input	Data_W/8	Write channel write strobe	
s_axil_wvalid	input	1	Write channel valid	
s_axil_wready	output	1	Write channel ready	
s_axil_bresp	output	'AXI_RESP_W	Write response channel response	
s_axil_bvalid	output	1	Write response channel valid	
s_axil_bready	input	1	Write response channel ready	
s_axil_araddr	input	$ADDR_{L}W$	Address read channel address	
s_axil_arcache	input	'AXI_CACHE_W	Address read channel memory type. Transactions set with	
			Normal Non-cacheable Modifiable and Bufferable (0011).	
s_axil_arprot	input	'AXI_PROT_W	Address read channel protection type. Transactions set with	
			Normal Secure and Data attributes (000).	
s_axil_arvalid	input	1	Address read channel valid	
s_axil_arready	output	1	Address read channel ready	
s_axil_rdata	output	DATA_W	Read channel data	
s_axil_rresp	output	'AXI_RESP_W	Read channel response	
s_axil_rvalid	output	1	Read channel valid	
s_axil_rready	input	1	Read channel ready	

Table 4: CPU AXI4 Lite Slave Interface Signals

Name	Direction	Width	Description
signal	input	DATA_W	
trigger	input	1	
sampling_clk	input	1	

Table 5: RS232 Interface Signals

Registers

The software accessible registers of the ILA core are described in Table 6. The table gives information on the name, read/write capability, word aligned addresses, used word bits, and a textual description.

Name	R/W	Addr	Bits	Initial	Description
				Value	
ILA_SOFTRESET	W	0x00	0:0	0	
ILA_TRIGGER_TYPE	W	0x04	0:0	0	
ILA_ENABLED	W	0x08	0:0	1	Starts enabled
ILA_INDEX	W	0x0c	'ILA_MAX_SAMPLES_W-1:0	0	Since it is a debug core samples are accessed by first setting the index and then reading the value of ILA_DATA
ILA_SAMPLES	R	0x10	'ILA_MAX_SAMPLES_W-1:0	0	
ILA_DATA	R	0x14	'ILA_RDATA_W-1:0	0	

Table 6: Software accessible registers.

FPGA Results

The following are FPGA implementation results for two FPGA device families.

Resource	Used
LUTs	43
Registers	27
DSPs	0
BRAM	4

Resource	Used
ALM	28
FF	27
DSP	0
BRAM blocks	16
BRAM bits	131,072

Table 7: FPGA results for Kintex Ultrascale (left) and Cyclone V GT (right)

www.iobundle.com