

Busan science high school

2023 Ocean ICT Festival **2023 BOIF**

Youtube 영상 QR

위치별 해양열 에너지변환 효율 지도

해양밥도둑: 2515이윤석, 2520홍재민

팀원 소개

부산과학고의 용호상박?

작품 개요

주제선정 동기: 현재 주로 사용되는 에너지원인 화석 연료는 빠른 속도로 고갈되고있어 수 십년 안에 완전히 사라질 것이라 예상됨. 거대한 에너지저장고이자 발전 가능성이 무궁무진 한 바다를 이용한 해양 온도차 발전의 필요성이 강조된다.

이론적 배경: 해양 온도차 발전의 원리: 태양에 의한 해수면 가열. 태양상수 등을 이용 한 지구에 도달하는 태양에너지 계산 비열을 통해 에너지 계산 어떤 물질의 온도를 올리는 데 필요한 열량은 물질의 특성 과 물질의 양에 따라 다르다.

작품 설명

1. 작품 제작에 필요한 데이터수집: 우리나라 영해의 수온, 효율적인 해양온도차 발전 선정

2. Closed Cycle 해양온도차 발전의 발전량 계산 공식 만들기

```
def 해양온도차 발전량(표층수온, 심층수온, 열교환면적, 변환효율):
   # 상수값
   비열 = 4186 J/(kg°C)
   #온도차 계산
   온도차 = 표층수온 - 심층수온 #(4도씨로 일정)
   #전력량 계산
   전력 = 면적 * 온도차 * 비열 * 변환효율 #변환효율: 실험에 따라 결정되는 실험값
   return 전력
# 인풋인풋
표층수온 = float(input("표층 수온을 입력하세요 (°C): "))
심층수온 = float(input("심층 수온을 입력하세요 (°C): "))
면적 = float(input("열교환 면적을 입력하세요 (m²): "))
변환효율 = float(input("변환 효율을 입력하세요 (0-1 사이의 값): "))
# 전력량 계산 후 나타내기
power_generated = 해양온도차 발전량(표층수온, 심층수온, 열교환면적, 변환효율)
print(f"발전량: {power_generated} W")
```

발전량은 표층수온과 심층수온의 온도차, 열교환면적, 그리고 변환효율이라는 값을 통해 정의하였다. 해양온도차 발전은 당연히 해양온도차에 발전량이 비례할 것이고 변환효율은 실험

값으로서 공식의 현실감을 위해 추가했다.

3. Closed Cycle 해양온도차 발전의 발전량 계산 공식에 지난 한달간의 데이터를 대입하기

4. 계산된 값을 지도에 나타내기

10.1

보완할점: 데이터 제공에 한계가 있어 한달간의 전력량밖에 계산하지 못했고 대한민국 주 변의 바다만 고려했다는 점이 아쉽다. 더욱 긴 시간과 다양한 장소의 데이터를 구해 계산 하여 더욱 구체적인 에너지 지도를 그릴 수 있으면 좋겠다.

이용효과: 해양온도차 발전과 같은 애너지 생산은 앞으로 더욱 필요해질 것이다. 가장 많 은 에너지를 생산할 수 있는 곳에 발전소를 설치하여 최대 효과를 내기 위해서는 우리가

제작한 에너지 전환 지도 등을 참고하여 발전장소를 선정해야한다.