1. 필요한 모듈 불러오기

```
In [1]: import pandas as pd import numpy as np
```

2. Case, PatientInfo, PatientRoute csv 파일 불러오기

Case.csv는 case / PatientInfo.csv는 patient_info / PatientRoute.csv는 patient_route로 저장해주세요

```
In [2]: case = pd.read_csv('COVID19/Case.csv')
    patient_info = pd.read_csv('COVID19/PatientInfo.csv')
    patient_route = pd.read_csv('COVID19/PatientRoute.csv')
```

3. 각 파일의 행과 열의 개수를 구해주는 함수를 아래와 같이 만들어주세요

```
In [2]: # 아래 셀에서 작성해주세요
check_shape(case)
check_shape(patient_info)
check_shape(patient_route)

해당 데이터는 81행 8 열입니다
해당 데이터는 2243행 18 열입니다
해당 데이터는 175행 7 열입니다

To [3]: def check_shape(data):
    print('해당 데이터는', len(data), '행', len(data.columns), '열 입니다.')

check_shape(case)
check_shape(patient_info)
check_shape(patient_route)

해당 데이터는 81 행 8 열 입니다.
해당 데이터는 2243 행 18 열 입니다.
해당 데이터는 175 행 7 열 입니다.
```

4. patient_info에서 birth_year를 이용하며 age column에 정확한 나이 숫자로 바꿔주세요

```
In [4]: patient_info.head()
```

Out[4]:

	patient_id	global_num	sex	birth_year	age	country	province	city	disease	infection_cas
0	1000000001	2.0	male	1964.0	50s	Korea	Seoul	Gangseo- gu	NaN	oversea inflo
1	1000000002	5.0	male	1987.0	30s	Korea	Seoul	Jungnang- gu	NaN	oversea inflo
2	1000000003	6.0	male	1964.0	50s	Korea	Seoul	Jongno-gu	NaN	contact wi patie
3	1000000004	7.0	male	1991.0	20s	Korea	Seoul	Mapo-gu	NaN	oversea inflo
4	1000000005	9.0	female	1992.0	20s	Korea	Seoul	Seongbuk- gu	NaN	contact wi patie

```
In [10]: import datetime
    def calculate_difference(difference):
        difference = 2020 - input_integer + 1
        return difference

def calculate_difference():
        print()
```

```
In [6]: patient_info["age"] = 2020 - patient_info["birth_year"] + 1
patient_info.head()
```

Out[6]:

infection_ca	disease	city	province	country	age	birth_year	sex	global_num	patient_id	
overse inflc	NaN	Gangseo- gu	Seoul	Korea	57.0	1964.0	male	2.0	1000000001	0
overse inflc	NaN	Jungnang- gu	Seoul	Korea	34.0	1987.0	male	5.0	1000000002	1
contact w patie	NaN	Jongno-gu	Seoul	Korea	57.0	1964.0	male	6.0	1000000003	2
overse inflc	NaN	Mapo-gu	Seoul	Korea	30.0	1991.0	male	7.0	1000000004	3
contact w patie	NaN	Seongbuk- gu	Seoul	Korea	29.0	1992.0	female	9.0	1000000005	4

5. 서울과 제주도의 확진환자 성별 평균 나이를 구해주세요

```
In [3]: # 아래 셀에서 작성해주세요 seoul_jeju_mean_age
```

Out[3]:

 province
 sex

 Jeju-do
 female
 36.000000

 male
 35.000000

 female
 45.400000

 male
 43.090278

age

In [9]: seoul_jeju_mean_age = patient_info.pivot_table(index = ['province', 'sex'], age
 seoul_jeju_mean_age

Out[9]:

age

province	sex	
Dugge	female	44.944444
Busan	male	39.680851
Charach a specific de	female	61.000000
Chungcheongbuk-do	male	40.250000
Churanaha an an ana ata	female	42.740741
Chungcheongnam-do	male	35.189189
Danasu	female	53.054054
Daegu	male	62.346154
Cangwan da	female	52.571429
Gangwon-do	male	58.200000
Curanasi da	female	45.726708
Gyeonggi-do	male	42.884892
Cura mara ana bula da	female	50.700935
Gyeongsangbuk-do	male	43.865672
Cucongoongnam do	female	46.238095
Gyeongsangnam-do	male	41.425000
Incheon	female	43.285714
Incheon	male	46.833333
loiu do	female	36.000000
Jeju-do	male	35.000000
Jeollabuk-do	female	53.666667
Jeollabuk-do	male	48.250000
Jeollanam-do	female	31.500000
Jeonanam-do	male	35.000000
Sejong	male	33.000000
Seoul	female	45.400000
Seoul	male	43.090278
Ulsan	female	44.529412
Olsali	male	40.615385

```
In [10]: seoul_jeju_mean_age.loc[['Jeju-do', 'Seoul']]
```

Out[10]:

		•
province	sex	
loiu do	female	36.000000
Jeju-do	male	35.000000
0	female	45.400000
Seoul	male	43.090278

age

6. patient_info에서 접촉자수(contact_number)와 나이(age)가 NaN 인 값은 지우기

```
In [12]: # 결측값 있는 행, 열 제거하기
# Delete row with NaN : df.dropna(axis = 0)
# Delete column with NaN : df.dropna(axis = 1)

patient_info.dropna(subset = ['contact_number', 'age'])
patient_info
```

Out[12]:

	patient_id	global_num	sex	birth_year	age	country	province	city	disease
0	1000000001	2.0	male	1964.0	57.0	Korea	Seoul	Gangseo- gu	NaN
1	1000000002	5.0	male	1987.0	34.0	Korea	Seoul	Jungnang- gu	NaN
2	1000000003	6.0	male	1964.0	57.0	Korea	Seoul	Jongno-gu	NaN
3	1000000004	7.0	male	1991.0	30.0	Korea	Seoul	Mapo-gu	NaN
4	100000005	9.0	female	1992.0	29.0	Korea	Seoul	Seongbuk- gu	NaN

2238	6100000085	NaN	male	1990.0	31.0	Korea	Gyeongsangnam- do	Changwon- si	NaN
2239	700000001	139.0	male	1998.0	23.0	Korea	Jeju-do	Jeju-do	NaN
2240	7000000002	222.0	female	1998.0	23.0	Korea	Jeju-do	Jeju-do	NaN
2241	700000003	4345.0	female	1972.0	49.0	Korea	Jeju-do	etc	NaN
2242	700000004	5534.0	male	1974.0	47.0	Korea	Jeju-do	Jeju-do	NaN

2243 rows × 18 columns

7. 위에서 NaN값을 제거한 데이터프레임에서 province와 city를 기준으로 contact_number와 age의 평균을 구해주세요

In [13]: patient_avg = patient_info.pivot_table(index = ['province', 'city'], aggfunc =
 patient_avg

contact number

Out[13]:

province	city		
	Buk-gu	32.000000	12.000000
	Busanjin-gu	56.727273	16.142857
Busan	Dongnae-gu	37.172414	46.586207
	Gangseo-gu	26.666667	14.000000
	Geumjeong-gu	32.500000	15.250000

139 rows × 2 columns

8. 7번의 결과 데이터 프레임에서 각 province별 평균 감염자수와 평균 나이를 column에 추가하기

In [4]: # 아래 셀에서 작성해주세요 patient_group

Out[4]:

		contact_number	age	province_mean_contact_number	province_mea
province	city				
	Buk-gu	12.000000	32.000000	26.038454	43.6
	Busanjin-gu	16.142857	51.000000	26.038454	43.6
	Dongnae-gu	46.586207	37.172414	26.038454	43.6
	Gangseo-gu	14.000000	26.666667	26.038454	43.6
	Geumjeong- gu	15.250000	32.500000	26.038454	43.6
Busan	Haeundae- gu	24.437500	43.062500	26.038454	43.6
Dusan	Nam-gu	148.500000	50.000000	26.038454	43.6
	Saha-gu	8.000000	38.714286	26.038454	43.6
	Sasang-gu	22.500000	42.000000	26.038454	43.6
	Sen-au	10 ৪৭৭৭৭৭	४० বরবরবর	26 N38 <u>4</u> 54	43.6

```
In [22]: patient avg col.columns = patient avg.loc['province mean age', 'province mean age', 
                                   patient avg col
                                                                                                                               recarn serre engine egec roc (rey)
                                               2898
                                                                                                                except KeyError:
                                   -> 2899
                                                                                                                               return self._engine.get_loc(self._maybe_cast_indexer(
                                   key))
                                               2900
                                                                                                 indexer = self.get indexer([key], method=method, tolerance=to
                                   lerance)
                                               2901
                                                                                                if indexer.ndim > 1 or indexer.size > 1:
                                   pandas/ libs/index.pyx in pandas. libs.index.IndexEngine.get loc()
                                   pandas/ libs/index.pyx in pandas. libs.index.IndexEngine.get loc()
                                   pandas/ libs/hashtable class helper.pxi in pandas. libs.hashtable.PyObjectHas
                                   hTable.get item()
                                   pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHas
                                   hTable.get item()
                                   KeyError: 'province mean age'
```

9. 경기도 시흥시의 contact number와 age를 추출해주세요

10. 7번의 결과 데이터프레임을 활용해서 province를 입력하면 contact_number가 가장 높은 5개의 city를 출력해주는 함수를 만들어주세요

```
In [5]: # 아래 셀에서 작성해주세요
        print_city('Seoul')
        1 번째 : Gangseo-gu
        2 번째 : Songpa-gu
        3 번째 : Jongno-gu
         4 번째 : Jungnang-gu
        5 번째 : Seodaemun-qu
In [6]: # 아래 셀에서 작성해주세요
        print city('Busan')
        1 번째 : Nam-gu
        2 번째 : Dongnae-gu
         3 번째 : Haeundae-gu
        4 번째 : Sasang-gu
        5 번째 : Busanjin-gu
In [27]: | patient_avg.sort_values(by = 'contact_number', ascending = False).loc['Seoul']
Out[27]: 'Songpa-gu'
```

```
In [29]: def city_output(city):
             for x in range(5):
                 city_name = patient_avg.sort_values(by = 'contact_number', ascending =
                 print("%d 번째 : %s" %(x + 1, city_name))
         1 번째 : Gangseo-gu
         2 번째 : Songpa-gu
         3 번째 : Jongno-gu
         4 번째 : Jungnang-gu
         5 번째 : Seodaemun-gu
In [33]: print('[Seoul]')
         city_output('Seoul')
         print('\n')
         print('[Busan]')
         city_output('Busan')
         [Seoul]
         1 번째 : Gangseo-gu
         2 번째 : Songpa-gu
         3 번째 : Jongno-gu
         4 번째 : Jungnang-gu
         5 번째 : Seodaemun-qu
         [Busan]
         1 번째 : Nam-gu
         2 번째 : Dongnae-gu
         3 번째 : Haeundae-gu
         4 번째 : Sasang-gu
         5 번째 : Busanjin-gu
```

11. patientInfo와 PatientRoute를 patient_id를 기준으로 inner join 해주세요

```
In [35]: pat_sort_info = patient_info.sort_values(by = 'patient_id')
    pat_sort_route = patient_route.sort_values(by = 'patient_id')
    patient_inner_id = pd.merge(pat_sort_info, pat_sort_route, how = 'inner')
    patient_inner_id
```

Out[35]:

	patient_id	global_num	sex	birth_year	age	country	province	city	disease	infection_c
	0 1000000002	5.0	male	1987.0	34.0	Korea	Seoul	Jungnang- gu	NaN	over: in
	1 1000000002	5.0	male	1987.0	34.0	Korea	Seoul	Jungnang- gu	NaN	over: in
	2 1000000002	5.0	male	1987.0	34.0	Korea	Seoul	Jungnang- gu	NaN	over: in
	3 1000000002	5.0	male	1987.0	34.0	Korea	Seoul	Jungnang- gu	NaN	over: in
	4 1000000003	6.0	male	1964.0	57.0	Korea	Seoul	Jongno- gu	NaN	contact pa
6	6 200000011	28.0	female	1989.0	32.0	China	Gyeonggi- do	Goyang-si	NaN	contact pa
6	7 5000000001	8.0	female	1958.0	63.0	Korea	Jeollabuk- do	Gunsan-si	NaN	over: in
6	3 5000000001	8.0	female	1958.0	63.0	Korea	Jeollabuk- do	Gunsan-si	NaN	over: in
6	9 5000000001	8.0	female	1958.0	63.0	Korea	Jeollabuk- do	Gunsan-si	NaN	over: in
7	5000000001	8.0	female	1958.0	63.0	Korea	Jeollabuk- do	Gunsan-si	NaN	over: in

71 rows × 21 columns

12. 위에서 merge한 파일에서 각 column마다 NaN의 개수와 비율을 구하기 위해 아래와 같은 data frame을 만들어주세요

In [7]: # 아래 셀에서 작성해주세요 Out[7]: patient_id global_num sex birth_year age country province city disease infection index column int64 float64 object float64 float64 object object object object type null 0 71 values(num) null 0 0 100 values(%) 4 rows × 21 columns In []: patient_inner_id

13. null values(%)가 100인 column은 제거해주세요

In []:

14.

- 1: patient_info에서 감염 경우가 contact with patient인 경우
- 2: case에서 group(집단 감염 여부)가 true인 경우
- 1,2번 두 csv파일을 province, city를 기준으로 inner join해서

sex(성별)을 기준으로 state(완치(released), 자가격리(isolated) 명수 파악