(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年7 月28 日 (28.07.2005)

PCT

(10) 国際公開番号 WO 2005/068631 A1

(51) 国際特許分類⁷: C12N 15/11, 15/09, A01H 5/00, C12N 1/15, 1/19, 1/21, 5/00

(21) 国際出願番号: PCT/JP2005/000283

(22) 国際出願日: 2005年1月13日(13.01.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2004-008025 2004年1月15日(15.01.2004)

- (71) 出願人 (米国を除く全ての指定国について): 独立行政法人理化学研究所 (RIKEN) [JP/JP]; 〒3510198 埼玉県和光市広沢2番1号 Saitama (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 松井 南 (MATSUI, Minami) [JP/JP]; 〒2200054 神奈川県横浜市西区境之谷 3-1-6 0 2 Kanagawa (JP). 山本 義治 (YA-MAMOTO, Yoshiharu) [JP/JP]; 〒2310023 神奈川県横浜市中区山下町 3 0-2-2 0 2 Kanagawa (JP). 合田和史 (GOHDA, Kazuhito) [JP/JP]; 〒2300047 神奈川県横浜市鶴見区下野谷町 1-4 6-1 0 6 Kanagawa (JP). 鈴木 久美子 (SUZUKI, Kumiko) [JP/JP]; 〒2100015 神奈川県川崎市川崎区南町 7-1 1-3 0 4 Kanagawa

- (74) 代理人: 平木 祐輔、外(HIRAKI, Yusuke et al.); 〒 1050001 東京都港区虎ノ門4丁目3番20号 神谷町 MTビル19階 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- ─ 国際調査報告書
- 電子形式により別個に公開された明細書の配列表部分、請求に基づき国際事務局から入手可能

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: IRES FUNCTIONING IN PLANT

(54) 発明の名称: 植物体内で機能するIRES

(57) Abstract: It is intended to establish a polycistronic expression style in a host plant. A polynucleotide which comprises the following DNA (a) or (b) and functions as an IRES (internal ribosome entry site) in a plant: (a) a DNA comprising a base sequence represented by SEQ ID NO:1, 2, 3 or 4; and (b) a DNA comprising a base sequence derived from a base sequence represented by SEQ ID NO:1, 2, 3 or 4 by substitution, deletion, addition and insertion of one or more bases and having a function of positively regulating the translation of a gene located in the downstream along the translation direction in a plant.

(57) 要約: 植物を宿主としたときにポリシストロニックな発現様式を可能とする。 以下の(a)又は(b)のDNAからなり植物内でIRES (internal ribosome entry site) として機能するポリヌクレオチド。 (a)配列番号 1、2、3又は

(57) 要約: 植物を宿主としたときにポリシストロニックな発現様式を可能とする。 以下の(a)又は(b)のDNAか | らなり植物内でIRES(internal ribosome entry site)として機能するポリヌクレオチド。(a)配列番号1、2、3又は | 4に示す塩基配列からなるDNA (b)配列番号1、2、3又は4に示す塩基配列において1又は複数の塩基が置換、 | 欠失、付加及び挿入された塩基配列からなり、植物内で翻訳方向に向かって下流に配置された遺伝子の翻訳を正に | 調節する機能を有するDNA

WO 2005/068631 1 PCT/JP2005/000283

明細書

植物体内で機能するIRES

技術分野

[0001] 本発明は、植物内でIRES(Internal Ribosome Entry Site)として機能するポリヌクレオチド、発現ユニットに関し、当該発現ユニットを有する発現ベクター、また、当該発現ユニットを用いた植物内における遺伝子発現調節方法に関する。

背景技術

- [0002] 動物細胞等の真核細胞においては、モノシストロニックな発現様式が一般的ではあるが、ポリシストロニックな発現様式による複数の遺伝子の発現も知られている。ポリシストロニックな発現様式では、タンパク質をコードする領域を複数備え、隣接するコード領域の間にリボソームタンパク質が再結合する部位(IRES:Internal Ribosome Entry Site)を備えている。
- [0003] 動物細胞において見いだされたIRESについては、真核生物においてポリシストロニックな発現を可能とすることから、種々の動物細胞用発現ベクターに用いられている。例えば、ある動物細胞用発現ベクターにおいては、IRESの下流にマーカー遺伝子を挿入しており、当該マーカー遺伝子の発現を観察することで、IRESの上流に位置する遺伝子の発現を調べることができる。この動物細胞用発現ベクターによれば、発現解析対象のタンパク質とマーカータンパク質とを融合する必要がない。
- [0004] しかしながら植物細胞並びに植物体を宿主とした場合に、上述したようなIRES様の機能を有するベクターは、現在まで開発されていない。すなわち、植物細胞並びに植物体を宿主として、ポリシストロニックな発現を実現するような発現ベクターは知られていない。

非特許文献1: Chappell SA, Edelman GM, Mauro VP, A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. PNAS 97, 1536-1541. 非特許文献2: Urwin P, Yi L, Martin H, Atkinson H, Gilmartin PM, Functional characterization of the EMCV IRES in plants. Plant J. 24, 583-589

発明の開示

発明が解決しようとする課題

[0005] そこで、本発明は、上述したような実状に鑑み、植物を宿主としたときにポリシストロニックな発現様式を可能とするDNA、発現ユニット、発現ベクターを提供することを目的とする。

課題を解決するための手段

- [0006] 上述した目的を達成するため、本発明者が鋭意検討した結果、植物体内で機能する新規なIRESを見いだすことに成功し、本発明を完成するに至った。
- [0007] すなわち、本発明は以下を包含する。
- [0008] (1) 植物内でIRES (internal ribosome entry site) として機能する以下の(a)又は(b) のDNAを含むポリヌクレオチド。
- [0009] (a)配列番号1、2、3又は4に示す塩基配列からなるDNA
 - (b)配列番号1、2、3又は4に示す塩基配列において1又は複数の塩基が置換、欠失、付加及び挿入された塩基配列からなり、植物内で翻訳方向に向かって下流に配置された遺伝子の翻訳を正に調節する機能を有するDNA
 - (2) スペーサー配列を介して又はスペーサー配列を介さずに上記(a)又は(b)の DNAを繰り返して連結してなる(1)記載のポリヌクレオチド。
- [0010] (3) 上記(a)又は(b)のDNAの繰り返し回数が7~10回であることを特徴とする(2) 記載のポリヌクレオチド。
- [0011] (4) 少なくとも、遺伝子及び/又はプロモーターを更に含むことを特徴とする(1)乃至(3)いずれか一項記載のポリヌクレオチド。
- [0012] (5) (1) 乃至(4) いずれか一項記載のポリヌクレオチドを含むベクター。
- [0013] (6) (1) 乃至(4) いずれか一項記載のポリヌクレオチド又は(5) 記載のベクターにより形質転換された形質転換体。
- [0014] (7) (1) 乃至(4) いずれか一項記載のポリヌクレオチドをゲノムに組み込んでなる トランスジェニック植物。
- [0015] (8) (1) 乃至(4) いずれか一項記載のポリヌクレオチド又は(5) 記載のベクターを 構築する工程と、上記ポリヌクレオチド又は上記ベクターを植物由来宿主に形質転

換する工程とを備え、形質転換された植物由来宿主内で、上記(a)又は(b)のDNAの下流に位置する遺伝子の翻訳を正に制御することを特徴とする植物内における遺伝子発現調節方法。

発明の効果

- [0016] 本発明によれば、植物内でIRESとして機能する新規なDNAを含むポリヌクレオチドを提供することができる。本発明に係るポリヌクレオチドを使用することで、植物内でポリシストロニックな発現を実現することができる。
- [0017] 本明細書は本願の優先権の基礎である日本国特許出願2004-008025号の明細書および/または図面に記載される内容を包含する。

図面の簡単な説明

- [0018] [図1]各種生物における18S rDNAの所定の領域を含む塩基配列を比較した図である。
 - [図2]本発明を適用した発現ベクターの構成を示す図である。
 - [図3]実施例1で使用した発現ベクターの構成を示す図である。

[図4]実施例2で作出したトランスジェニック植物における、ウミシイタケ由来ルシフェラーゼ及び蛍由来ルシフェラーゼの蛍光量を測定した結果を示す図である。

発明を実施するための最良の形態

- [0019] 以下、本発明について図面を参照して詳細に説明する。
- [0020] 1-1. 本発明に係るポリヌクレオチド

先ず、本発明に係るポリヌクレオチドは、以下の(a)及び/又は(b)のDNAを含むものであり、当該DNAの下流に位置する遺伝子の翻訳を植物内で正に制御する機能を有する。

[0021] (a)配列番号1に示す塩基配列からなるDNA

(b)配列番号1に示す塩基配列において1又は複数の塩基が置換、欠失、付加及び 挿入された塩基配列からなり、翻訳方向に向かって下流に配置された遺伝子の翻訳 を正に調節する機能を有するDNA

言い換えると、本発明に係るポリヌクレオチドは、宿主の翻訳メカニズムの中心的役割を司るリボソームが結合することができ、宿主の翻訳メカニズムによって下流に位置

する遺伝子の翻訳を可能とする機能を有する。一般的にこのような機能を有する DNA領域をIRES(Internal Ribosome Entry Site)と呼ぶため、以下、本発明に係るポリ ヌクレオチドをIRESと称する。

- [0022] ここで、配列番号1に示す塩基配列は、シロイヌナズナの18S rDNAの所定の領域に対して逆向きの相補的として設計される配列である。また、下流とは、転写方向(すなわち、転写対象のDNA鎖における5'末端から3'末端に向かう方向)に対して後を意味する。また、翻訳を正に制御するとは、言い換えれば翻訳効率が向上することを意味し、リボゾームが結合して下流に位置するコード領域の翻訳を進行させることを意味する。なお、以下の説明において、翻訳を正に制御する機能のことを、単に「制御能」と呼ぶ。
- [0023] また、(b)のDNAにおける複数個とは、好ましくは、配列番号1に示す塩基配列における2~5個の塩基、より好ましくは2又は3個の塩基を意味する。さらに、配列番号1に示す塩基配列において、置換、欠失、付加及び挿入されうる位置としては、特に、第4番目~第10番目の塩基及び第12番目の塩基から選ばれることが好ましい。配列番号1において、第1番目のGはAに置換されてもよく、第3番目のCはT又はGに置換されてもよく、第4番目のAはG又はCに置換されてもよく、第5番目のGはC又はAに置換されてもよく、第6番目のCはG又はTに置換されてもよく、第7番目のGはA、C又はTに置換されてもよく、第8番目のGはAに置換されてもよく、第9番目のAはGに置換されてもよい。
- [0024] 配列番号1に示す塩基配列において1又は複数の塩基を置換した塩基配列としては、例えば、以下に示す塩基配列を挙げることができる(配列番号5~20)。

[0025] 配列番号5:GCCAGCGGAGTC

配列番号6:GCCAGCGGAGTC

配列番号7:GCCGGCGGAGTC

配列番号8:GCCGGCGGAGTC

配列番号9:GCCGGCGGAGTC

配列番号10:GCCGGCGAGTC

配列番号11:GCCAGCGGGTC

配列番号12:GCCGGCGGAGTC

配列番号13:GCTGGCGGAGTC

配列番号14:GCTGGCAGGGTC

配列番号15:ACGGCTCGGGTC

配列番号16:ACCGAGTGGGTC

配列番号17:GCCGAGCAAGTC

配列番号18:GCCCGGCGGTC

配列番号19:GCCCGGCGGTC

配列番号20:GCCCGGCGGTC

すなわち、これら配列番号5~20に示す塩基配列は上記(b)のDNAに含まれる。な お、配列番号5の塩基配列は、大豆の18S rDNAの所定の領域に対して逆向きの相 補鎖として設計される配列である。配列番号6の塩基配列は、ペチュニアの188 rDNAの所定の領域に対して逆向きの相補鎖として設計される配列である。配列番号 7の塩基配列は、トマトの18S rDNAの所定の領域に対して逆向きの相補鎖として設 計される配列である。配列番号8の塩基配列は、キンギョソウ(antirrhinum)の18S rDNAの所定の領域に対して逆向きの相補鎖として設計される配列である。配列番号 9の塩基配列は、タバコの18S rDNAの所定の領域に対して逆向きの相補鎖として設 計される配列である。配列番号10の塩基配列は、イネの18S rDNAの所定の領域に 対して逆向きの相補鎖として設計される配列である。配列番号11の塩基配列は、トウ モロコシの18S rDNAの所定の領域に対して逆向きの相補鎖として設計される配列で ある。配列番号12の塩基配列は、ウマゴヤシ(M. polymorpha)の18S rDNAの所定の 領域に対して逆向きの相補鎖として設計される配列である。 配列番号13の塩基配列 は、ヒメツリガネゴケ(Physcomitrella patens)の18S rDNAの所定の領域に対して逆向 きの相補鎖として設計される配列である。配列番号14の塩基配列は、クラミドモナス の18S rDNAの所定の領域に対して逆向きの相補鎖として設計される配列である。配 列番号15の塩基配列は、藍藻(Synechocystis)の18S rDNAの所定の領域に対して 逆向きの相補鎖として設計される配列である。配列番号16の塩基配列は、サッカロ マイセス・セレビシエの18S rDNAの所定の領域に対して逆向きの相補鎖として設計さ れる配列である。配列番号17の塩基配列は、シゾサッカロマイセス・ポンベの18S rDNAの所定の領域に対して逆向きの相補鎖として設計される配列である。配列番号18の塩基配列は、マウスの18S rDNAの所定の領域に対して逆向きの相補鎖として設計される配列である。配列番号19の塩基配列は、ラットの18S rDNAの所定の領域に対して逆向きの相補鎖として設計される配列である。配列番号20の塩基配列は、ヒトの18S rDNAの所定の領域に対して逆向きの相補鎖として設計される配列である。これら各種生物における18S rDNAの所定の領域を含む塩基配列を図1に示す。なお、図1において、配列番号1及び配列番号5乃至20の塩基配列を設計する際のもととなる所定の領域をRとして示した。

- [0026] 一方、上記(b)のDNAとしては、配列番号1に示す塩基配列に相補的な塩基配列 に対して、ストリンジェントな条件下でハイブリダイズする塩基配列からなるDNAが含 まれる。ストリンジェントな条件とは、いわゆる特異的なハイブリッドが形成される条件 をいう。より具体的には、ナトリウム濃度が15~300mM、好ましくは15~75mMであり、 温度が50~60℃、好ましくは55~60℃での条件をいう。
- 「0027」 一方、所定の塩基配列を有するDNAが制御能を有するか否かは、対象となるDNA の下流にレポーター遺伝子を組み込みんだベクターを構築し、ベクターを用いて植物体を形質転換し、得られたトランスジェニック植物におけるレポーター遺伝子の発現量を対照と比較することで判断することができる。レポーター遺伝子としては、如何なるものを使用しても良いが、例えば、β-グルクロニダーゼをコードするGUS遺伝子、ルシフェラーゼをコードするLuc遺伝子、グリーンフルオレセイントプロテインをコードするGFP遺伝子などを使用することができる。
- [0028] IRESは、配列番号1に基づいて化学合成することで得ることができる。なお、配列番号1に示す塩基配列において、1又は複数の塩基を置換、欠失、付加及び挿入するには、Kunkel法、Gapped duplex法等の公知の手法又はこれに準ずる方法を採用することができる。例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(TAKARA社製)やMutant-G(TAKARA社製))などを用いて、あるいは、TAKARA社のLA PCR in vitro Mutagenesis シリーズキットを用いて変異の導入が行われる。

[0029] 1-2. 本発明に係るポリヌクレオチド

本発明に係るポリヌクレオチドは、以下の(a)及び/又は(b)のDNAを含むものであり、 当該DNAの下流に位置する遺伝子の翻訳を植物体内で正に制御する機能を有する

[0030] (a)配列番号2又は3に示す塩基配列からなるDNA

(b)配列番号2又は3に示す塩基配列において1又は複数の塩基が置換、欠失、付加及び挿入された塩基配列からなり、植物内で翻訳方向に向かって下流に配置された遺伝子の翻訳を植物体内で正に調節する機能を有するDNA

上記(b)のDNAにおける複数個とは、好ましくは、配列番号2又は3に示す塩基配列における1~20個の塩基、より好ましくは1~5個の塩基を意味する。また、(b)のDNAとしては、配列番号2又は3に示す塩基配列に相補的な塩基配列に対して、ストリンジェントな条件下でハイブリダイズする塩基配列からなるDNAが含まれる。ストリンジェントな条件とは、いわゆる特異的なハイブリッドが形成される条件をいう。より具体的には、ナトリウム濃度が15~300mM、好ましくは15~75mMであり、温度が50~60℃、好ましくは55~60℃での条件をいう。

- [0031] 一方、所定の塩基配列を有するポリヌクレオチドが制御能を有するか否かは、対象となるポリヌクレオチドの下流にレポーター遺伝子を組み込みんだベクターを構築し、ベクターを用いて植物体を形質転換し、得られたトランスジェニック植物におけるレポーター遺伝子の発現量を対照と比較することで判断することができる。レポーター遺伝子としては、如何なるものを使用しても良いが、例えば、β-グルクロニダーゼをコードするGUS遺伝子、ルシフェラーゼをコードするLuc遺伝子、グリーンフルオレセイントプロテインをコードするGFP遺伝子などを使用することができる。
- [0032] IRESは、配列番号2又は3に基づいて化学合成することで得ることができる。または、IRESは、トバモウィルス(Tobamovirus)ゲノムのMP領域を鋳型としたPCRによって得ることもできる。なお、配列番号2又は3に示す塩基配列において、1又は複数の塩基を置換、欠失、付加及び挿入するには、Kunkel法、Gapped duplex法等の公知の手法又はこれに準ずる方法を採用することができる。例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(TAKARA社製)や

Mutant-G(TAKARA社製))などを用いて、あるいは、TAKARA社のLA PCR in vitro Mutagenesis シリーズキットを用いて変異の導入が行われる。

[0033] 1-3. 本発明に係るポリヌクレオチド

本発明に係るポリヌクレオチドは、以下の(a)及び/又は(b)のDNAを含むものであり、 当該DNAの下流に位置する遺伝子の翻訳を植物体内で正に制御する機能を有する。

[0034] (a)配列番号4に示す塩基配列からなるDNA

(b)配列番号4に示す塩基配列において1又は複数の塩基が置換、欠失、付加及び 挿入された塩基配列からなり、植物内で翻訳方向に向かって下流に配置された遺伝 子の翻訳を植物体内で正に調節する機能を有するDNA

上記(b)のDNAにおける複数個とは、好ましくは、配列番号4に示す塩基配列における1~20個の塩基、より好ましくは1~5個の塩基を意味する。また、(b)のDNAには、配列番号4に示す塩基配列に相補的な塩基配列に対して、ストリンジェントな条件下でハイブリダイズする塩基配列からなるDNAを含んでいる。ストリンジェントな条件とは、いわゆる特異的なハイブリッドが形成される条件をいう。より具体的には、ナトリウム濃度が15~300mM、好ましくは15~75mMであり、温度が50~60℃、好ましくは55~60℃での条件をいう。

- [0035] 一方、所定の塩基配列を有するポリヌクレオチドが制御能を有するか否かは、対象となるポリヌクレオチドの下流にレポーター遺伝子を組み込みんだベクターを構築し、ベクターを用いて植物体を形質転換し、得られたトランスジェニック植物におけるレポーター遺伝子の発現量を対照と比較することで判断することができる。レポーター遺伝子としては、如何なるものを使用しても良いが、例えば、β-グルクロニダーゼをコードするGUS遺伝子、ルシフェラーゼをコードするLuc遺伝子、グリーンフルオレセイントプロテインをコードするGFP遺伝子などを使用することができる。
- [0036] IRESは、配列番号4に基づいて化学合成することで得ることができる。または、IRES は、トバモウィルス(Tobamovirus)ゲノムのCP領域を鋳型としたPCRによって得ること もできる。なお、配列番号4に示す塩基配列において、1又は複数の塩基を置換、欠失、付加及び挿入するには、Kunkel法、Gapped duplex法等の公知の手法又はこれ

に準ずる方法を採用することができる。例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(TAKARA社製)やMutant-G(TAKARA社製))などを用いて、あるいは、TAKARA社のLA PCR in vitro Mutagenesis シリーズキットを用いて変異の導入が行われる。

[0037] 2. 発現ユニット

本発明に係るポリヌクレオチドは、上記「1-1~3. 本発明に係るポリヌクレオチド」で説明したIRESを有する発現ユニットの形で機能的に実現することができる。すなわち、発現ユニットは、上記「1-1~3. 本発明に係るポリヌクレオチド」で説明したIRESと、少なくともプロモーター及び/又は遺伝子とを含む構成とすることができる。

- [0038] 発現ユニットは、宿主の染色体に組み込まれたかたちのもの、ベクター等に組み込まれたもの、或いは、DNA断片のものを含む意味である。この発現ユニットは、宿主にてIRESの下流に位置する遺伝子を確実に翻訳させることができ、従来にない植物体内におけるポリシストロニック遺伝子発現系を構築することができる。
- [0039] 例えば、発現ユニットとしては、IRESと遺伝子とがこの順で配置されたDNA断片であってもよい。そして、発現ユニットとしては、IRESと遺伝子とがこの順で配置されたDNA断片を、例えばTiプラスミドのT領域に挿入してなるものであってもよいし、プラスミド等のベクターに挿入されていないDNA断片であってもよい。なおこの場合、発現ユニットは、IRESの上流にプロモーターを含む構成であってもよい。このように構成された発現ユニットは、宿主のゲノム中に組み込まれることによって、IRESの下流に位置する遺伝子の翻訳を正に制御することができる。
- [0040] また、発現ユニットとしては、遺伝子とIRESとがこの順で配置されたDNA断片であってもよい。この発現ユニットもまた、プラスミド等のベクターに組み込まれた構成であってもよいし、プラスミド等のベクターに挿入されていないDNA断片であってもよい。この場合、発現ユニットが宿主ゲノムに組み込まれることによって、IRESの下流に宿主ゲノム中の既存の遺伝子が位置することとなる。この状態でIRESはその下流に位置する遺伝子の翻訳を正に制御することができる。IRESの下流または上流に遺伝子(例えばレポーター遺伝子)が配置された発現ユニットは、具体的には例えば宿主が有する任意の遺伝子(以下、「目的遺伝子」)の発現状態の観察に用いられる。より具

体的には、相同組み換えの手法などを用いて、この発現ユニットを目的遺伝子のプロモーターにより発現されるように組み込むことにより、目的遺伝子とレポーター遺伝子とを同調的に発現させることができる。これにより、目的遺伝子の時間的・空間的な発現パターンの把握が可能となるという効果を奏する。

- [0041] また、発現ユニットとしては、プロモーター、遺伝子(例えばレポーター遺伝子)、IRESがこの順で配置されたDNA断片であってもよい。この発現ユニットを宿主のゲノムに組み込んだ場合には、IRESの下流に位置する遺伝子(遺伝子B)のプロモーターが発現ユニットのプロモーターで置換され、遺伝子Bの時間的・空間的な発現パターンが変化する。この場合、遺伝子Bの発現パターンの変化をレポーター遺伝子の発現側により把握しながら、この発現パターンの変化が表現形質に与える影響を観察することが可能となる。
- [0042] さらに、発現ユニットは、例えば、図2に示すように、プロモーター、遺伝子A、IRES 、遺伝子B及びターミネータがこの順で配置されたものを挙げることができる。この場合、宿主内でプロモーターから下流に向かって(図2中矢印で示す方向)ターミネータに至るまで転写が進行してmRNAが産生される。mRNAは宿主の翻訳メカニズムによって翻訳されることとなるが、この発現ユニットにおいては遺伝子A及び遺伝子Bともに翻訳されることとなる。
- [0043] 遺伝子A及び遺伝子Bとしては、特に限定されないが、例えば、二量体構造をとるタンパク質のサブユニットをコードする遺伝子を挙げることができる。これにより、ポリシストロニック遺伝子発現系を有しない宿主内で、二量体構造を有するタンパク質の発現系を確立することができる。また、遺伝子A又は遺伝子Bの一方をレポーター遺伝子とする場合には、このレポーター遺伝子の発現がある宿主のみを選択することで、他方の遺伝子が発現している形質転換細胞を効率的に選択することができる。さらには、遺伝子Bとターミネータとの間に(IRES+遺伝子)のユニットを一以上挿入することにより、三量体以上のタンパク質を宿主に産生させることも可能である。
- [0044] なお、発現ユニットに含まれるプロモーターとしては、特に限定されないが、例えば 組織特異的に発現制御するプロモーターや、何らかの刺激に応答して発現制御する プロモーターを使用することによって、組織特異的なポリシストロニック遺伝子発現系

WO 2005/068631 11 PCT/JP2005/000283

や、刺激応答性のポリシストロニック遺伝子発現系を構築することができる。

- [0045] 特に、発現ユニットに、上記「1-1. 本発明に係るDNA」で説明した(a)及び/又は(b) のDNAを用いる場合、これらDNAを複数繰り返して連結してIRESを構成することが好ましい。繰り返し回数としては、2~15回であることが好ましく、5~10回であることがより好ましく、7~10回であることが更に好ましい。
- [0046] 更に、上記「1-1. 本発明に係るDNA」で説明した(a)及び/又は(b)のDNAを複数繰り返して連結する場合、隣接する(a)及び/又は(b)のDNAの間にはスペーサー配列を挿入せずに、隣接する(a)及び/又は(b)のDNAを直接連結することが好ましい。発現ユニットにおいて隣接する(a)及び/又は(b)のDNAを直接連結したIRESを含む場合には、隣接する(a)及び/又は(b)のDNAの間にはスペーサー配列を挿入した場合と比較して、より優れた制御能を示すこととなる。
- [0047] なお、発現ユニットに、上記「1-2. 本発明に係るDNA」及び「1-3. 本発明に係るDNA」で説明した(a)及び/又は(b)のDNAを用いる場合、これらのDNA単独でIRESを構成することができる。
- [0048] なお、発現ユニットは、IRESとその下流に位置する遺伝子とを一組の単位とした場合、複数の単位を有するものであっても良い。この場合、各単位に含まれる遺伝子を発現させることができる。
- [0049] ここで、発現ユニットに含まれる遺伝子(例えば、図2における「遺伝子A」及び「遺伝子B」)としては、特に限定されないが、例えば、β-グルクロニダーゼをコードする GUS遺伝子、ルシフェラーゼをコードするLuc遺伝子、グリーンフルオレセイントプロテインをコードするGFP遺伝子、カナマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、光形態形成制御タンパク質をコードするhy5遺伝子、抗体をコードするIgG遺伝子等を挙げることができる。

[0050] 3. トランスジェニック植物

上記「2. 発現ユニット」で説明した発現ユニット、又は当該発現ユニットを含む組換えベクターを構築し、この発現ユニット又は組換えベクターを用いて植物細胞を形質転換し、形質転換植物細胞を定法に従って植物体に成長させることによって、トランスジェニック植物を作出することができる。

- [0051] 発現ユニット又は組換えベクターを用いた場合、形質転換細胞及びトランスジェニック植物において、IRES及びその下流に位置する遺伝子が挿入された遺伝子の読み枠がずれている場合であっても、IRESの下流に位置する遺伝子が翻訳されることとなる。したがって、本発明に係る発現ユニットを使用することによって、形質転換細胞及びトランスジェニック植物における遺伝子発現を効率よく調べることができる。
- [0052] 組換えベクターは、適当なベクターに発現ユニットを連結(挿入)することにより得ることができる。或いは、適当なベクターの好適な位置にて、上述した発現ユニットを構築することで組換えベクターを得ることができる。使用可能なベクターとしては、宿主中で複製可能なものであれば特に限定されず、例えば、プラスミドDNA、ファージDNA等が挙げられる。
- 「0053」 プラスミドDNAとしては、大腸菌由来のプラスミド(例えばpBR322、pBR325、pUC118、pUC119、pUC18、pUC19、pBluescript等)、枯草菌由来のプラスミド(例えば pUB110、pTP5等)、酵母由来のプラスミド(例えばYEp13、YCp50等)などが挙げられ、ファージDNAとしては λ ファージ (Charon4A、Charon21A、EMBL3、EMBL4、 λ gt10、 λ gt11、 λ ZAP等) が挙げられる。さらに、レトロウイルス又はワクシニアウイルスなど の動物ウイルス、バキュロウイルスなどの昆虫ウイルスベクターを用いることもできる。
- [0054] ベクターに発現ユニットを挿入するには、まず、発現ユニットを有する精製された DNAを適当な制限酵素で切断し、適当なベクターの制限酵素部位又はマルチクローニングサイトに挿入する方法などが採用される。なお、組換えベクターには、発現ユニットの他、所望によりプロモーター、エンハンサー等のシスエレメント、スプライシングシグナル、ポリA付加シグナル及び選択マーカー等を連結することができる。なお、選択マーカーとしては、例えばジヒドロ葉酸還元酵素遺伝子、アンピシリン耐性遺伝子、ネオマイシン耐性遺伝子等が挙げられる。
- [0055] 形質転換体は、上述した組換えベクターを、発現ユニットに含まれる遺伝子が発現 し得るように宿主中に導入することにより得ることができる。形質転換の対象となる植 物は、植物体全体、植物器官(例えば葉、花弁、茎、根、種子等)、植物組織(例えば 表皮、師部、柔組織、木部、維管束等)又は植物培養細胞のいずれをも意味するもの である。形質転換に用いられる植物としては、アブラナ科、イネ科、ナス科、マメ科等

に属する植物(下記参照)が挙げられるが、これらの植物に限定されるものではない。

[0056] ナス科:タバコ(Nicotiana tabacum)、ジャガイモ(Solanum tuberosum)

イネ科:トウモロコシ(Zea mays)、イネ(Oryza sativa)

アオイ科:ワタ(Gossypium hirsutum)、オクラ(Abelmoscus esculentum)

アブラナ科:シロイヌナズナ(Arabidopsis thaliana)、ナタネ(Brassica napus)

キク科:ヒマワリ(Helianthus annuus)、キク(Crysanthimum indicum)

ゴマ科:ゴマ(Sesame indica)、ヒマ(Ricinus communis)

モクセイ科:オリーブ(Olea europaea)、

フトモモ科:ユーカリ(Eucalyptus globulus)、グアバ(Psidium guava)

バラ科:バラ(Rosa sinnis)

ツバキ科:ツバキ(Camellia japonica)

マメ科:レンゲソウ(Astragalus sinicus)、ダイズ(Glycine max)

ヤシ科:ココナツ(Cocos nucifera)

アオギリ科:カカオ(Theobroma cacao)

アカネ科:コーヒーの木(Coffea arabica)

上記組換えベクターは、通常の形質転換方法、例えば電気穿孔法(エレクトロポレーション法)、アグロバクテリウム法、パーティクルガン法、PEG法等によって植物中に導入することができる。例えば、エレクトロポレーション法を用いる場合、パルスコントローラーを備えたエレクトロポレーション装置により、電圧500~600V、1000 μ F、20msecの条件で処理し、上記組換えベクターを宿主に導入する。アグロバクテリウム法を用いる場合は、構築した植物用発現ベクターを適当なアグロバクテリウム、例えばアグロバクテリウム・チュメファシエンス(Agrobacterium tumefaciens)に導入し、この株をバキュームインフィルトレーション法(Bechtold et al. (1993) C. R. Acad. Sci. Ser. III Sci. Vie, 316, 1194-1199)等に従って宿主の無菌培養葉片に感染させ、形質転換植物を得ることができる。また、パーティクルガン法を用いる場合は、植物体、植物器官、植物組織自体をそのまま使用してもよく、切片を調製した後に使用してもよく、プロトプラストを調製して使用してもよい。このように調製した試料を遺伝子導入装置(例えばBIOLISTIC POS 1000/He; BioRad等)を用いて処理することができる。処理条

件は植物又は試料により異なるが、通常は1000~1100psi程度の圧力、5~10cm程度の距離で行う。

[0057] 形質転換の結果得られる腫瘍組織やシュート、毛状根などは、そのまま細胞培養、 組織培養又は器官培養に用いることが可能であり、また従来知られている植物組織 培養法を用い、適当な濃度の植物ホルモン(オーキシン、サイトカイニン、ジベレリン 、アブシジン酸、エチレン、ブラシノライド等)の投与などにより植物体に再生させるこ とができる。

実施例

- [0058] 以下、実施例を用いて本発明を更に詳細に説明するが、本発明の技術範囲はこれ ら実施例に限定されるものではない。
- [0059] 〔実施例1〕

先ず、発現ユニットを有する発現ベクターを以下のように構築した。なお、本例で用いた発現ユニットを図3に模式的に示す。なお、図3中、「P35S」はCaMV 35Sプロモーターであり、「RLUC」はウミシイタケ由来のルシフェラーゼをコードする遺伝子であり、「LUC」は蛍由来のルシフェラーゼをコードする遺伝子であり、「T3A」はターミネータ配列である。

- [0060] また、本例では、IRESとして、配列番号1の塩基配列をスペーサー配列を介して10 回繰り返したものと、配列番号1の塩基配列をスペーサー配列を介さずに直接10回 繰り返したものと、配列番号2の塩基配列からなるものと、配列番号4の塩基配列からなるものとを準備した。なお、スペーサー配列は、配列番号1の塩基配列の上流に「CAT」、下流に「TTCTGA」とした。
- [0061] 植物内で遺伝子発現に用いるベクターはpPZP200を元に作製した。pPZP200は Hajdukiewicz, P.らによって発表 (Hajdukiewicz, P., Svab, Z. and Maliga, P. (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25, 989-994) された、アグロバクテリウムを介して植物 の染色体に遺伝子を組み替えることができるベクターである。pPZP200のマルチクローニングサイト内のHindlllサイトに「P35S」と「RLUC」を、次にKpnI、EcoRIサイトにカナマイシン耐性遺伝子とノパリン合成遺伝子のプロモーターとターミネータを、次に

BamHI、KpnIサイトに「LUC」「T3A」を、最後にSall、BamHIサイトにIRESとして活性を 有する配列を挿入した。ここで用いた「P35S」はJefferson, R.A.らによって発表(Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: β -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907)されたpBI221を鋳型にしてPCRすることで増幅できる配列で ある。「RLUC」はPromega社によって販売されているpRL-TKを鋳型にしてPCRするこ とで増幅できる配列である。カナマイシン耐性遺伝子とノパリン合成遺伝子のプロモ ーターとターミネータはDavid A. Frischらによって発表 (David A.F., Larry W.H., Nathaniel, T.Y., Terry, L.T., Susan, H.H. and Timothy, C.H. (1995) Complete Sequence of the binary vector Bin19. Plant Mol Biol 27, 405-409)されたBin19を鋳 型にしてPCRすることで増幅できる配列である。「LUC」、「T3A」はKimura, M.らによっ て発表(Kimura, M., Yoshizumi, T., Manabe, T., Yamamoto, Y.Y. and Matsui, M. (2001) Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways. Genes Cells, 6, 607-617)された yy211を鋳型にしてPCRすることで増幅できる配列である。IRESとして使った配列は SIGMA genosys社などによって化学合成したものを得ることができる。

[0062] なお、比較のためのIRESを有しない発現ベクターとして、CaMV 35Sプロモーターの下流に蛍由来のルシフェラーゼをコードする遺伝子及びターミネータ配列を連結したものと、CaMV 35Sプロモーターの下流にウミシイタケ由来のルシフェラーゼをコードする遺伝子、蛍由来のルシフェラーゼをコードする遺伝子及びターミネータ配列をこの順で連結したものとを準備した。また、比較のため、哺乳類細胞及びタバコにおいてIRESとして機能することが知られているECMV(Plant J. 24, 583-589 参照)を有する発現ベクターとして、CaMV 35Sプロモーターの下流にウミシイタケ由来のルシフェラーゼをコードする遺伝子、ECMV、蛍由来のルシフェラーゼをコードする遺伝子及びターミネータ配列をこの順で連結したものを準備した。

[0063] 〔実施例2〕

実施例1で調製した発現ベクターを用いて、以下のようにしてトランスジェニック植物 を作出した。

- [0064] 先ず、pPZP200を元に作成した上記の発現ベクターをアグロバクテリウム感染による Dipping法を参考に形質転換体を作製した。Dipping法はClough S.J.らによって紹介(Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacteriumu-mediated transformation of Arabidopisi thaliana. Plant J. 16(6) 735-743)された形質転換法である。
- [0065] ここで、感染に用いるアグロバクテリウム(C58C1Rif系統)にはpPZP200のベクターを 形質転換させた。なお、C58C1Rif系統は大隈が使用を報告(大隈照子(2001)アグロ バクテリウム直接注入法、「新版 モデル植物の実験プロトコール105-108」)してい る系統である。当日までにLB培養液200mlにOD が1.2~1.5程度になるまで増殖さ せた。室温で集菌し、以下のDipping用溶液300mlに懸濁した。
- [0066] 感染に用いるアラビドプシス(Col系統)は感染日が抽台後1週間程度になるように 栽培した。Col系統は、Sendai Arabidopsis Seed Stock Centerから入手可能である。
- [0067] 栽培したアラビドプシスの植物体を逆さまにして、Dipping溶液に花茎全体が接触するように浸漬した。30秒程度浸漬させた後、植物体を元通りにした。感染後、数日は袋で覆った状態を維持し、植物体の周囲の湿度を高く保った。その後、通常の環境で生育した。
- [0068] 約1月後、種を収穫した。収穫した種は、カナマイシン75 μ g/mlを含む寒天培地上で発芽させ、耐性個体のみを選択した。以上により図3の外来遺伝子を持つトランスジェニック植物が選択された。
- [0069] Dipping溶液(組成)
 - 0.044 μ M ベンジルアミノプリン
 - 5% Sucrose
 - 0.02% Silwet L-77
 - 1/2 X MS塩
 - 1/2 X Gamborg B5 ビタミン
 - 0.5g/1 MES

〔実施例3〕

実施例2で作出したトランスジェニック植物における、ウミシイタケ由来ルシフェラー

WO 2005/068631 17 PCT/JP2005/000283

ゼ及び蛍由来ルシフェラーゼの蛍光量を、以下のように測定した。

- [0070] すなわち、先ず、トランスジェニック植物の本葉1~2枚に4℃で冷やしたPromega社 のDual Luciferase Assay KitのPassive Lysis Bufferを1ml加えて緩やかに擂り潰した。 擂り潰した溶液を4℃、17800gの条件で30分間遠心分離し、得られた上清を計測に 用いた。
- [0071] すなわち、上清のうち、 20μ lをPromega社のDual Luciferase Assay KitのLuciferase Assay Reagent II 100μ lと混合した。ピペッティングによる混合後、Reagent溶液内に含まれる基質のルシフェリンとサンプル内の蛍由来のルシフェラーゼタンパク質の反応によって生じる発光をシンチレーションカウンターで速やかに計測した。計測後、混合サンプルに更にPromega社のDual Luciferase Assay KitのStop & Gloを 100μ l加えた。ボルテックスによる混合後、Reagent溶液内に含まれる基質のコエレンテラジンとサンプル内のウミシイタケ由来のルシフェラーゼタンパク質との反応によって生じる発光をシンチレーションカウンターで速やかに計測した。
- [0072] 実施例2で作出したトランスジェニック植物における、ウミシイタケ由来ルシフェラーゼ及び蛍由来ルシフェラーゼの蛍光量を測定した結果を図4に示す。なお、図4において、「18S NS-2」、「18S NS-15」、「18S NS-23」及び「18S NS-37」は、配列番号1の塩基配列をスペーサー配列を介さずに直接10回繰り返したものをIRESとした発現ベクターを用いて作出したトランスジェニック植物である。また、「18SS*7-5」、「18SS*7-15」、「18SS*7-20」及び「18SS*7-27」は、配列番号1の塩基配列をスペーサー配列を介して10回繰り返したものをIRESとした発現ベクターを用いて作出したトランスジェニック植物である。さらに、「MP3-T1a 30」及び「MP3-T1a 7」は、配列番号2の塩基配列をIRESとした発現ベクターを用いて作出したトランスジェニック植物である。さらにまた、「CP-1」、「CP-12」及び「CP-21」は、配列番号2の塩基配列をIRESとした発現ベクターを用いて作出したトランスジェニック植物である。さらにまた、「CP-1」、「CP-12」及び「CP-21」は、配列番号2の塩基配列をIRESとした発現ベクターを用いて作出したトランスジェニック植物である。
- [0073] 図4において、「Y289-3」は、比較例であり、CaMV 35Sプロモーターの下流にウミシ イタケ由来のルシフェラーゼをコードする遺伝子、蛍由来のルシフェラーゼをコード する遺伝子及びターミネータ配列をこの順で連結した発現ベクターを用いて作出し たトランスジェニック植物である。また、「y300-3」は、比較例であり、CaMV 35Sプロモ

ーターの下流に蛍由来のルシフェラーゼをコードする遺伝子及びターミネータ配列をこの順で連結した発現ベクターを用いて作出したトランスジェニック植物である。また、「ECMV-3」、「ECMV-20」、「ECMV-26」及び「ECMV-30」は、CaMV 35Sプロモーターの下流にウミシイタケ由来のルシフェラーゼをコードする遺伝子、ECMV、蛍由来のルシフェラーゼをコードする遺伝子及びターミネータ配列をこの順で連結した発現ベクターを用いて作出したトランスジェニック植物である。

- [0074] 図4に示すように、配列番号1の塩基配列をスペーサー配列を介さずに直接10回繰り返したDNAをIRESとして使用した場合、IRESの下流に存する蛍由来ルシフェラーゼの蛍光量が飛躍的に増大しており、蛍由来ルシフェラーゼの翻訳効率を正に制御できることが明らかになった。また、配列番号3の塩基配列からなるDNAをIRESとして使用した場合にも、IRESの下流に存する蛍由来ルシフェラーゼの蛍光量が飛躍的に増大しており、蛍由来ルシフェラーゼの翻訳効率を正に制御できることが明らかになった。
- [0075] 一方、配列番号1の塩基配列をスペーサー配列を介して10回繰り返したDNAを IRESとして使用した場合、及び配列番号2の塩基配列からなるDNAをIRESとして用いた場合には、IRESの下流に存する蛍由来ルシフェラーゼの蛍光量が僅かに増大して おり、蛍由来ルシフェラーゼ遺伝子の翻訳効率を僅かに正に制御できることを明らかとなった。
- [0076] これに対して、ECMVをIRESとして使用した場合、IRESの下流に存する蛍由来ルシフェラーゼの蛍光量を増大させることはできなかった。
- [0077] 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

請求の範囲

- [1] 植物内でIRES (internal ribosome entry site) として機能する以下の(a)又は(b)の DNAを含むポリヌクレオチド。
 - (a)配列番号1に示す塩基配列からなるDNA
 - (b)配列番号1に示す塩基配列において1又は複数の塩基が置換、欠失、付加及び 挿入された塩基配列からなり、植物内で翻訳方向に向かって下流に配置された遺伝 子の翻訳を正に調節する機能を有するDNA
- [2] 植物内でIRES (internal ribosome entry site) として機能する以下の(a)又は(b)の DNAを含むポリヌクレオチド。
 - (a)配列番号2又は3に示す塩基配列からなるDNA
 - (b)配列番号2又は3に示す塩基配列において1又は複数の塩基が置換、欠失、付加及び挿入された塩基配列からなり、植物内で翻訳方向に向かって下流に配置された遺伝子の翻訳を正に調節する機能を有するDNA
- [3] 植物内でIRES (internal ribosome entry site) として機能する以下の(a)又は(b)の DNAを含むポリヌクレオチド。
 - (a)配列番号4に示す塩基配列からなるDNA
 - (b)配列番号4に示す塩基配列において1又は複数の塩基が置換、欠失、付加及び 挿入された塩基配列からなり、植物内で翻訳方向に向かって下流に配置された遺伝 子の翻訳を正に調節する機能を有するDNA
- [4] スペーサー配列を介して又はスペーサー配列を介さずに上記(a)又は(b)のDNAを繰り返して連結してなる請求項1記載のポリヌクレオチド。
- [5] 上記(a)又は(b)のDNAの繰り返し回数が7~10回であることを特徴とする請求項4 記載のポリヌクレオチド。
- [6] 少なくとも、遺伝子及び/又はプロモーターを更に含むことを特徴とする請求項1乃 至5いずれか一項記載のポリヌクレオチド。
- 「7」 請求項1乃至6いずれか一項記載のポリヌクレオチドを含むベクター。
- [8] 請求項1乃至6いずれか一項記載のポリヌクレオチド又は請求項7記載のベクター により形質転換された形質転換体。

- [9] 請求項1乃至6いずれか一項記載のポリヌクレオチドをゲノムに組み込んでなるトランスジェニック植物。
- [10] 請求項1乃至6いずれか一項記載のポリヌクレオチド又は請求項7記載のベクター を構築する工程と、

上記ポリヌクレオチド又は上記ベクターを植物由来宿主に形質転換する工程とを備え、

形質転換された植物由来宿主内で、上記(a)又は(b)のDNAの下流に位置する遺伝子の翻訳を正に制御することを特徴とする植物内における遺伝子発現調節方法。

TCAAAGTCT TCAAAGTCT

T-ACGAGAAA
T-ACGAGAAA
C--CGGGAAA
C--CGGGAAA
C--CGGGAAA

TCGGC-ACCT CGGGCAGCTT CGGGCAGCTT CGGGCAGCTT

ATCGACTTGC CATGACCCGC CATGACCCGC

CATGACCCGC

CGTTAT-TCC

ATGCGGCGG

human 18s rRNA

CTAACGCGT

CCAAAGTCTI

[図1]

CAAAGTTT

I-ATGAGAAA

CAAAGTCT

CAAAGTT1

T-ATGAGAAA T-ATGAGAAA T-ATGAGAAA

CCGGC-ACCT CCGGC-ACCT CCGGC-ACCT CCGGC-ACCT CCGGC-ACCT CCGGC-ACCT CCGGC-ACCT

TAGGACTCCG

TAGGACTCCG
TAGGACTCCG
TAGGACCCCG
GATGACTCCG
GATGACTCCG

TCAAAGTCT

I-ATGAGAAA

TCAAAGTTT

CCATGAGAAA T-ATGAGAAA T-GAGAGAAA

CAAAGTCT

CAAAGTT1

TCAAAGTTT TCAGAGTCT

> CCAGC-ACCT GCCGT-GCC-TCGGT-ACCT

GATGACCCTG

ATCGACCCGA AATGACCCAC

CAAAGTCT

TAGGACTCCG TAGGACTCCG TAGGACTCCG

T-ATGAGAAA T-ATGAGAAA

TGTTGC-TTA IGTTGC-TTA FGTTAC-TAA TGTTGC-TTT CGTTAT-TCC CGTTAT-TCC GTTGC-TTT TGTTGC-TTT IGTTAA-TTT GTTCC-TTT CGTGGCTTGT GTTTT-TTT TGTTGC-TT IGTTGC-TT GTTAC-TT GTTTCATT GATCAGCGGA GATCAGCGGA GATCAGCGGA GATCGGCGGA GATCGGCGGA GATCGGCGGA GATCAGCGG-SATCGGCGGA GATTGGCAGG -ATCGGGTGG SATCGGGCAA GATGCGGCGG 3A TGCGGCGG GATCGGCGGA GATTGGCGGA Schizosaccharomyces pombe 18s rRNA Saccharomyces cerevisiae 18s rRNA Chlamydomonas 18s rRNA Synechocystis 16s rRNA M.polymorpha 18S rRNA Antirrhinum 18s rRNA arabidopsis 18s rRNA P.patens 18S rRNA soybean 18s rRNA petunia 18s rRNA tobacco 18s rRNA tomato 17s rRNA maize 17s rRNA mouse 18s rRNA rice 18s rRNA rat 18s rRNA

TAGGACTCCG CTGGC-ACCT

WO 2005/068631 PCT/JP2005/000283 2/3

[図2]

[図3]

[図4]

International application No.

PCT/JP2005/000283

A.	CLASSIFICATION OF SUBJECT MATTER					
	$\mathtt{Int.Cl}^7$	C12N15/11,	C12N15/09,	A01H5/00,	C12N1/15,	C12N1/19
		C12N1/21,	C12N5/00			

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C12N15/11, C12N15/09, A01H5/00, C12N1/15, C12N1/19,

C12N1/21, C12N5/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) SwissProt/PIR/Geneseq, Genbank/EMBL/DDBJ/Geneseq, PubMed, CA/MEDLINE/WPIDS/BIOSIS/REGISTRY(STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X A	R, Z, AKBERGENOV, et al., ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs., Nucleic.Acids. Res., 12 January, 2004 (12.01.04), Vol.32, No.1, pages 239 to 247	1,4-10 2,3
$\frac{X}{A}$	WO 02/101006 A2 (ICON GENETICS, INC.), 19 December, 2002 (19.12.02), & US 2003/0084482 A1 & JP 2004-535192 A	2,3,6-10 1,4,5
$\frac{X}{A}$	WO 02/083867 A2 (ICON GENETICS, INC.), 24 October, 2002 (24.10.02), & CA 2411649 A & US 2004/0014216 A1	2,3,6-10 1,4,5

Ľ	Further documents are listed in the continuation of Box C.	Ш	See patent family annex.
* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" "L"	earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"O"	cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means		document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination
"P"			being obvious to a person skilled in the art document member of the same patent family
Doto	of the cotycl completion of the intermetional goods	Dot	a of mailing of the intermetional groups were out
	of the actual completion of the international search 23 March, 2005 (23.03.05)	Date	e of mailing of the international search report 05 April, 2005 (05.04.05)
	e and mailing address of the ISA/ Japanese Patent Office	Aut	horized officer
Facsimile No.			phone No.

International application No.

PCT/JP2005/000283

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
$\frac{X}{A}$	WO 03/012035 A2 (ICON GENETICS, INC.), 13 February, 2003 (13.02.03), & US 2003/0084484 A1 & CA 2453178 A	2,3,6-10 1,4,5
$\frac{X}{A}$	JP 2003-070477 A (The Institute of Physical and Chemical Research), 11 March, 2003 (11.03.03), (Family: none)	3,6-10 1,2,4,5
A	Y. Y. YAMAMOTO, et al., Gene trapping of the Arabidopsis genome with a firefly luciferase reporter., Plant.J., (2003), Vol.35, pages 273 to 283	1-10
A	WO 02/29068 A2 (ICON GENETICS AG.), 04 November, 2002 (04.11.02), & CA 2421306 A & US 2004/0055037 A1	1-10
A	WO 02/068664 A1 (ICON GENETICS AG.), 06 September, 2002 (06.09.02), & DE 10109354 A & CA 2429501 A	1-10
A	P, A, IVANOV, et al., A Tobamovirus genome that contains an internal ribosome entry site functional in vitro., Virology (1997), Vol.232, pages 32 to 43	1-10
A	P, Urwin, et al., Functional characterization of the EMCV IRES in plants., Plant J. (2000), Vol.24, No.5, pages 583 to 589	1-10
A	WO 01/0059138 A2 (VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW), 16 August, 2001 (16.08.01), & AU 4236001 A & US 2003/0051261 A1	1-10
A	W. ZHOU, et al., Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells., Proc.Natl.Acad.Sci., USA, (2001), Vol.98, No.4, pages 1531 to 1536	1-10
А	W., ZHOU, et al., Isolation and identification of short nucleotide sequences that affect translation initiation in Saccharomyces cerevisiae., Proc.Natl.Acad.Sci.USA, (2003), Vol.100, No.8, pages 4457 to 4462	1-10
A	A, H, JHEON et al., Characterization of the 5'-flanking region of the rat AJ18 gene., Gene(2003), Vol.310, pages 203 to 213	1-10

International application No.

PCT/JP2005/000283

Box No.	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
. \square	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No.	III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
The represent represent separate separa	ernational Searching Authority found multiple inventions in this international application, as follows: e base sequence represented by SEQ ID NO:2 contains the base sequence resented by SEQ ID NO:3. Thus, it is recognized that the base sequence resented by SEQ ID NO:3 is a partial sequence of the base sequence represented repre
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP2005/000283

Continuation of Box No.III of continuation of first sheet(2)

represented by SEQ ID NO:4 and functioning as IRES in a plant is described in document 1 (WO 02/101006 A2 19 December, 2002 (19.12.02) & US 2003/0084482 A1 & JP 2004-535192 A), document 2 (WO 02/083867 A2 24 October, 2002 (24.10.02) & CA 2411649 A & US 2004/0014216 A1) and document 3 (WO 03/12035 A2 2003.02.13 & US 2003/0084484 A1 & CA 2453178 A). Thus, the above common matter falls within the category of prior art and it does not appear that "apolynucleotide functioning as an IRES (internal ribosome entry site) in a plant" is a special technical feature in the meaning within PCT Rule 13.2.

Α. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1⁷

C12N15/11, C12N15/09, A01H5/00, C12N1/15, C12N1/19, C12N1/21, C12N5/00

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl

C12N15/11, C12N15/09, A01H5/00, C12N1/15, C12N1/19, C12N1/21, C12N5/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

SwissProt/PIR/Geneseq, Genbank/EMBL/DDBJ/Geneseq, PubMed, CA/MEDLINE/WPIDS/BIOSIS/REGISTRY (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
<u>X</u> A	R, Z, AKBERGENOV, et. al., ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs., Nucleic Acids. Res. (2004.01.12), Vol. 32, No. 1, p. 239-247	$\frac{1,4-10}{2,3}$
$\frac{X}{A}$	WO 02/101006 A2 (ICON GENETICS, INC.) 2002.12.19 & US 2003/0084482 A1 & JP 2004-535192 A	$\frac{2,3,6-10}{1,4,5}$
$\frac{\mathbf{X}}{\mathbf{A}}$	WO 02/083867 A2 (ICON GENETICS, INC.) 2002.10.24 & CA 2411649 A & US 2004/0014216 A1	$\frac{2,3,6-10}{1,4,5}$

× C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファ ミリー文献

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

国際調査を完了した日 23.03.2005	国際調査報告の発送日 05.4.2005
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 高 美 葉 子
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3488

C (続き). 関連すると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
<u>X</u> A	WO 03/012035 A2 (ICON GENETICS, INC.) 2003.02.13 & US 2003/0084484 A1 & CA 2453178 A	2, 3, 6-10 1, 4, 5			
<u>X</u> A	JP 2003-070477 A(理化学研究所)2003.03.11 (ファミリーなし)	$\frac{3,6-10}{1,2,4,5}$			
A	Y, Y, YAMAMOTO, et. al., Gene trapping of the Arabidopsis genome with a firefly luciferase reporter., Plant J. (2003), Vol. 35, p. 273-283	1-10			
A	WO 02/29068 A2 (ICON GENETICS AG) 2002.11.04 & CA 2421306 A & US 2004/0055037 A1	1-10			
A	WO 02/068664 A1 (ICON GENETICS AG) 2002.09.06 & DE 10109354 A & CA 2429501 A	1-10			
A	P, A, IVANOV, et. al., A Tobamovirus genome that contains an internal ribosome entry site functional in vitro., Virology (1997), Vol. 232, p. 32-43	1-10			
Α	P, Urwin, et. al., Functional characterization of the EMCV IRES in plants., Plant J. (2000), Vol.24, No.5, p.583-589	1-10			
A	WO 01/0059138 A2 (VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW) 2001.08.16 & AU 4236001 A & US 2003/0051261 A1	1-10			
A	W, ZHOU, et. al., Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells., Proc. Natl. Acad. Sci. USA (2001), Vol. 98, No. 4, p. 1531-1536	1-10			
A	W, ZHOU, et. al., Isolation and identification of short nucleotide sequences that affect translation initiation in Saccharomyces cerevisiae., Proc. Natl. Acad. Sci. USA (2003), Vol. 100, No. 8, p. 4457-4462	1-10			
A	A, H, JHEON, et. al., Characterization of the 5'-flanking region of the rat AJ18 gene., Gene (2003), Vol.310, p.203-213	1-10			

第11欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)	
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について が成しなかった。	乍
1. □ 請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、	
2.	ı
3. □ 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。	
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)	
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 配列番号 2 に示される塩基配列は、配列番号 3 に示される塩基配列を含んでいることから、配列番号 3 に示される塩基配列は、配列番号 2 に示される塩基配列の部分配列であると認められる。	於
 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の約付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 	
追加調査手数料の異議の申立てに関する注意	