تمرین سوم رباتیک

پاییز ۱۴۰۲

تحویل ۱۹ آبان روی سامانه درسافزار

شکل زیر ربات کروی را نشان میدهد که از ترکیب RRP برای تعیین موقعیت عملگر نهایی استفاده میکند. مقادیر پارامترهای مورد نیاز ربات در شکل مشخص شده اند:

۱. مدل این ربات را در نرم افزار Simmechanic بسازید. مقادیر زوایای مفصلی را مطابق جدول زیر به مدل خود اعمال کرده و موقعیت دستگاه عملگر نهایی در دستگاه صفر را از نرم افزار خوانده و در جدول زیر وارد کنید.

$\theta_1(\deg)$	130	30	90
$\theta_2(\text{deg})$	10	50	20
d(mm)	20	80	250
X (mm)			
Y (mm)			
Z(mm)			

۲. در نرم افزار متلب تابعی بسازید که حل سینماتیک معکوس این ربات را انجام دهد. ورودی این تابع مختصات نقطه انتهایی لینک سه و خروجی آن متغییرهای سه گانه مفاصل (مطابق تعریف قسمت ۱) خواهد بود. مقادیر بدست آمده برای مختصات عملگر نهایی را از بخش ۱ به این تابع ارسال کرده و مقادیر متغییرهای مفاصل را گزارش کنید. تابع خود را با مقادیر جدول زیر نیز امتحان کنید:

$\theta_1(\deg)$			
$\theta_2(\text{deg})$			
d(mm)			
X (mm)	68.4	298.5	184.9
Y (mm)	12.0	-250.5	139.3
Z(mm)	703.9	535	86.3

