Analisando o Resultado de Uma Campanha de Marketing - Versão 3

Data Science Academy
03 de Agosto, 2018

I. Problema de Negócio

A Agência de Viagens Borboleta Feliz possui os dados de todos os clientes que receberam campanhas de Marketing da empresa, mas que não comparam um pacote de férias.

Problema de negócio: Devemos continuar investindo nesses clientes (retarget)?

```
abandoned data$Test <- NA
abandoned_data$Test[abandoned_data$Test_Control == "test"] <- 1
abandoned_data$Test[abandoned_data$Test_Control == "control"] <- 0
summary(abandoned_data$Test)
      Min. 1st Qu. Median
                              Mean 3rd Qu.
   0.0000 0.0000 1.0000 0.5053 1.0000 1.0000
Standard Deviation = 0.5000012
q5 = 0
q95 = 1
abandoned_data$Has_State <- 0
abandoned_data$Has_State[abandoned_data$Address != ""] <- 1
summary(abandoned_data$Test[abandoned_data$Has_State == 1])
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
   0.0000 0.0000 1.0000 0.5134 1.0000 1.0000
Standard Deviation = 0.4998865
q5 = 0
q95 = 1
      II. Data Matching
abandoned_data[abandoned_data == ""] <- NA
reservation_data[reservation_data == ""] <- NA
# Email Matches
Email_Matches_Abandoned <- ifelse(!is.na(abandoned_data$Email),abandoned_data$Email %in% reservation_da
# Contact Phone Matches
ContactPhone_Matches_Abandoned <- ifelse(!is.na(abandoned_data$Contact_Phone),abandoned_data$Contact_Phone
# Last Name, Incoming Phone Matches
LastName_Incoming_Matches_Abandoned <- ifelse(!is.na(abandoned_data$Last_Name) & !is.na(abandoned_data$
# First Name, Last Name, Zip Matches
Names_Zip_Matches_Abandoned <- ifelse((!is.na(abandoned_data$First_Name) & !is.na(abandoned_data$Last_N
# Combine all Matches
```

```
All_Matches_Abandoned = Email_Matches_Abandoned | ContactPhone_Matches_Abandoned | LastName_Incoming_Ma
abandoned_data_matches <- abandoned_data[All_Matches_Abandoned,]
# Remove Duplicates based on the keys
abandoned_data_matches <- abandoned_data_matches[!duplicated(abandoned_data_matches[,c("Email")],incomp
abandoned_data_matches <- abandoned_data_matches[!duplicated(abandoned_data_matches[,c("Contact_Phone")
abandoned_incoming_dup <- duplicated(abandoned_data_matches[,c("Incoming_Phone")],incomparables = NA)
abandoned lastname dup <- duplicated(abandoned data matches[,c("Last Name")],incomparables = NA)
abandoned_firstname_dup <- duplicated(abandoned_data_matches[,c("First_Name")],incomparables = NA)
abandoned_zipcode_dup <- duplicated(abandoned_data_matches[,c("Zipcode")],incomparables = NA)
abandoned_data_matches <- abandoned_data_matches[!(abandoned_incoming_dup & abandoned_lastname_dup),]
abandoned_data_matches <- abandoned_data_matches[!(abandoned_firstname_dup & abandoned_lastname_dup & a
# Store Outcome in original dataset
abandoned_data$Outcome <- 0
abandoned_data$Outcome[as.numeric(row.names(abandoned_data_matches))] <- 1
library(knitr)
treatments <- nrow(abandoned_data[abandoned_data$Test == 1,])</pre>
controls <- nrow(abandoned_data[abandoned_data$Test == 0,])</pre>
treatment_buy <- length(abandoned_data$Outcome[abandoned_data$Outcome == 1 & abandoned_data$Test == 1])
treatment_nobuy <- length(abandoned_data$Outcome[abandoned_data$Outcome == 0 & abandoned_data$Test == 1
control_buy <- length(abandoned_data$Outcome[abandoned_data$Outcome == 1 & abandoned_data$Test == 0])
control_nobuy <- length(abandoned_data$Outcome[abandoned_data$Outcome == 0 & abandoned_data$Test == 0])
conv_rate_treatment <- treatment_buy/treatments*100</pre>
conv_rate_control <- control_buy/controls*100</pre>
cross_tab <- data.frame(treatment_buy,treatment_nobuy,control_buy,control_nobuy)</pre>
kable(cross tab)
```

treatment_buy treatment_nobuy control_buy control_nobuy

181 4085 42 4134

Conversion Rate for Treatment Group is 4.2428504 %. Conversion Rate for Control Group is 1.0057471 %.

State: New York

#NY

treatment_buy_NY <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test == treatment_nobuy_NY <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test == control_buy_NY <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test == 0 control_nobuy_NY <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test == cross_tab_NY <- data.frame(treatment_buy_NY,treatment_nobuy_NY,control_buy_NY,control_nobuy_NY) kable(cross_tab_NY)

treatment_buy_NY	treatment_nobuy_NY	control_buy_NY	control_nobuy_NY
64	2285	16	2341

State: Ohio

#NH

treatment_buy_OH <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test ==
treatment_nobuy_OH <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test ==
control_buy_OH <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test == 0
control_nobuy_OH <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test == 0
cross_tab_OH <- data.frame(treatment_buy_OH, treatment_nobuy_OH, control_buy_OH, control_nobuy_OH)
kable(cross_tab_OH)</pre>

treatment_buy_OH	$treatment_nobuy_OH$	control_buy_OH	control_nobuy_OH
64	2295	15	2345

State: Arizona

#A7.

treatment_buy_AZ <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test == treatment_nobuy_AZ <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test == control_buy_AZ <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test == 0 control_nobuy_AZ <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test == cross_tab_AZ <- data.frame(treatment_buy_AZ,treatment_nobuy_AZ,control_buy_AZ,control_nobuy_AZ) kable(cross_tab_AZ)

treatment_buy_AZ	treatment_nobuy_AZ	control_buy_AZ	control_nobuy_AZ
63	2300	16	2349

State: Illinois

#IL

treatment_buy_IL <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test ==
treatment_nobuy_IL <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test ==
control_buy_IL <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test == 0
control_nobuy_IL <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test == 0
cross_tab_IL <- data.frame(treatment_buy_IL,treatment_nobuy_IL,control_buy_IL,control_nobuy_IL)
kable(cross_tab_IL)</pre>

treatment_buy_IL	$treatment_nobuy_IL$	$control_buy_IL$	control_nobuy_IL
62	2284	15	2353

State: California

#CA

treatment_buy_CA <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test == treatment_nobuy_CA <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test == control_buy_CA <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 1 & abandoned_data\$Test == 0 control_nobuy_CA <- length(abandoned_data\$Outcome[abandoned_data\$Outcome == 0 & abandoned_data\$Test == cross_tab_CA <- data.frame(treatment_buy_CA, treatment_nobuy_CA, control_buy_CA, control_nobuy_CA) kable(cross_tab_CA)

treatment_buy_CA	treatment_nobuy_CA	control_buy_CA	control_nobuy_CA
64	2293	15	2343

III. Data Cleaning

```
reservation_email_matches <- match(abandoned_data_matches$Email, reservation_data$Email, nomatch = 0, in reservation_phone_matches <- match(abandoned_data_matches$Contact_Phone, reservation_data$Contact_Phone reservation_name_incoming_matches <- ifelse(!is.na(abandoned_data_matches$Last_Name) & !is.na(abandoned_reservation_name_zip_matches <- ifelse(!is.na(abandoned_data_matches$First_Name) & !is.na(abandoned_data_reservation_all_matches <- reservation_email_matches
reservation_all_matches <- ifelse(reservation_all_matches == 0, reservation_all_matches+reservation_phoned_reservation_all_matches <- ifelse(reservation_all_matches == 0, reservation_all_matches+reservation_name_reservation_all_matches <- ifelse(reservation_all_matches == 0, reservation_all_matches+reservation_name_reservation_all_matches <- ifelse(reservation_all_matches == 0, reservation_all_matches+reservation_name_abandoned_all_matches <- as.numeric(row.names(abandoned_data_matches))

abandoned_data$Days_in_between <- 200
abandoned_data$Days_in_between [abandoned_data$Outcome == 1] <- as.numeric(as.Date(reservation_data$Sess_cleaned_abandoned_data <- data.frame(c(1:nrow(abandoned_data)), abandoned_data$Test, abandoned_data$Outcome_colnames(cleaned_abandoned_data) <- c("Customer_ID", "Test_Variable", "Outcome", "Days_in_Between", "State"

write.csv(cleaned_abandoned_data, file = "cleaned_abandoned_data.csv")
```

IV. Statistical Analysis

Model-1: Outcome = alpha + beta * Test Variable + error*

lmodel1 <- lm(cleaned_abandoned_data\$Outcome ~ cleaned_abandoned_data\$Test_Variable)
kable(summary(lmodel1)\$coef, digits=3)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.010	0.002	4.073	0
$cleaned_abandoned_data\$Test_Variable$	0.032	0.003	9.319	0

```
Outcome = 0.01 + 0.032 * Test_Variable + 0.002
Adjusted R-squared = 0.0100679
abandoned_data$Has_Email <- 0
abandoned_data$Has_Email[!is.na(abandoned_data$Email)] <- 1
```

Model-2: Outcome = alpha + beta1 * Test Variable + beta2 * Has Email * beta3 * Has_State + error*

lmodel2 <- lm(cleaned_abandoned_data\$Outcome ~ cleaned_abandoned_data\$Test_Variable + abandoned_data\$Ha
kable(summary(lmodel2)\$coef, digits = 3)</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-0.002	0.003	-0.635	0.525
$cleaned_abandoned_data\$Test_Variable$	0.031	0.003	9.034	0.000
abandoned_data\$Has_Email	0.049	0.005	8.997	0.000
abandoned_data\$Has_State	0.015	0.004	4.092	0.000

Outcome = -0.001 + 0.031 * Test Variable + 0.048 * Has Email * 0.014 * Has_State + 0.002 Adjusted R-squared = 0.0237249

The adjusted R-squared has increased to 0.023 after using the dummy variables - Has Email and Has State. Hence compared to the output from the first model, this fits better.

Model-3: Outcome = alpha + beta1 * Test Variable * Has Email * beta2 * Has State + error*

lmodel3 <- lm(cleaned_abandoned_data\$Outcome ~ cleaned_abandoned_data\$Test_Variable*abandoned_data\$Has_kable(summary(lmodel3)\$coef)</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.0021784	0.0029693	0.7336306	0.4631943
cleaned_abandoned_data\$Test_Variable	0.0231258	0.0036729	6.2963398	0.0000000
abandoned_data\$Has_Email	0.0126783	0.0078555	1.6139451	0.1065767
abandoned_data\$Has_State	0.0145458	0.0035473	4.1004965	0.0000416
cleaned_abandoned_data $Test_{V}ariable:abandoned_data\\ Has_Email$	0.0665159	0.0105552	6.3017373	0.0000000

v. Statistical Analysis: Response Times

Model-4: Outcome = alpha + beta * Days in Between * Test Variable + error

lmodel4 <- lm(cleaned_abandoned_data\$Dutcome ~ cleaned_abandoned_data\$Days_in_Between*cleaned_abandoned
kable(summary(lmodel4)\$coef)</pre>

	Estimate	Std. Error	t value
(Intercept)	1.2790587	0.0032580	392.593735
cleaned_abandoned_data\$Days_in_Between	-0.0063948	0.0000164	-390.696164
cleaned_abandoned_data\$Test_Variable	0.0316088	0.0036339	8.698344
${\tt cleaned_abandoned_data} Days_i n_Between: cleaned_abandoned_data {\tt Test_Variable}$	-0.0001563	0.0000183	-8.537275

^{**} This is the best linear regression model for this dataset**