Improve Self-supervised Depth Estimation

Preliminaries

• Stereo Training

Preliminaries

• Monocular Training

• Unknown Scale

• Occlusion

• Textureless

• Local Minimum

• Dynamic Objects

• ill-posed Problem

• Unknown Scale

- Unknown Scale
 - Use IMU as supervision.

• Occlusion

- Occlusion
 - MPI (Multi-Plane Image) or LDI (Layered Depth Image)

Figure 1. Overview of our proposed method.

- Occlusion
 - Self-distillation

Self-distillation

- Self-distillation [Gonzalez et al. 2020]:
 - Solve occlusion effect

Occlusion only occurs on the left side of objects in the left view.

Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes

Self-distillation

- Self-distillation [Gonzalez et al. 2020]:
 - Solve occlusion effect

Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes

Self-distillation [Gonzalez et al. 2020]

• If we only input left views and find matchings in the right view, all artifacts caused by occlusion will appear at left of objects.

Self-distillation [Gonzalez et al. 2020]

• If we only input left views and find matchings in the right view, all artifacts caused by occlusion will appear at left of objects.

Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes

• Local Minimum

- Local Minimum
 - Depth Bins

• Dynamic Objects

- Dynamic Objects
 - Scene Flow

• ill-posed Problem

