HOMEWORK

For this week, please answer the following questions from the text. I've copied the problem itself below and the question numbers for your convenience.

- (1) (3.17) The function $\pi(X)$ counts the number of primes between 2 and X.
 - (a) Compute the values of $\pi(20)$, $\pi(30)$, and $\pi(100)$.
 - (b) Write a program to compute $\pi(X)$ and use it to compute $\pi(X)$ and the ratio $\pi(X)/(X/\ln X)$ for X=100,1000,10000, and 100000. Does your list of ratios make the prime number theorem plausible?
- (2) (3.19) We noted in Sect. 3.4 that it really makes no sense to say that the number n has probability $1/\ln n$ of being prime. Any particular number that you choose either will be prime or will not be prime; there are no numbers that are 35 % prime and 65 % composite! In this exercise you will prove a result that gives a more sensible meaning to the statement that a number has a certain probability of being prime. You may use the prime number theorem (Theorem 3.21) for this problem.
 - (a) Fix a (large) number N and suppose that Bob chooses a random number n in the interval $N/2 \le n \le 3N/2$. If he repeats this process many times, prove that approximately $1/\ln N$ of his numbers will be prime. More precisely, define

$$P(N) := \frac{\text{number of primes between } N/2 \text{ and } 3N/2}{\text{number of integers between } N/2 \text{ and } 3N/2}$$
$$= \begin{bmatrix} \text{Probability that a random integer } n \text{ in the interval} \\ N/2 \le n \le 3N/2 \text{ is a prime number} \end{bmatrix}$$

and prove that

$$\lim_{N \to \infty} \frac{P(N)}{1/\ln N} = 1$$

(b) More generally, fix two numbers c_1 and c_2 satisfying $c_1 > c_2 > 0$. Bob chooses random numbers n in the interval $c_1 N \le n \le c_2 N$. Keeping c_1 and c_2 fixed, let

$$P(c_1, c_2; N) := \begin{bmatrix} \text{Probablity that an integer } n \text{ in the interval} \\ c_1 N \leq n \leq c_2 N \text{ is a prime number} \end{bmatrix}$$

In the following formula, fill in the gox with a simple function of N so that the statement is true.

$$\lim_{N \to \infty} \frac{P(c_1, c_2; N)}{\boxed{}} = 1.$$

- (3) (3.23) A prime of the form $2^n 1$ is called a Mersenne prime.
 - (a) Factor each of the numbers 2^n-1 for $n=2,3,\ldots,10$. Which ones are Mersenne primes?
 - (b) Find the first seven Mersenne primes. (You may need a computer.)
 - (c) If n is even and n > 2, prove that $2^n 1$ is not prime.
 - (d) If $3 \mid n$ and n > 3, prove that $2^n 1$ is not prime.
 - (e) More generally, prove that if n is a composite number, then $2^n 1$ is not prime. Thus all Mersenne primes have the form $2^p 1$ with p a prime number.

2 HOMEWORK

(f) What is the largest known Mersenne prime? Are there any larger primes known? (You can find out at the "Great Internet Mersenne Prime Search" web site www.mersenne.org/prime.htm.)