CSE2023 Discrete Computational Structures

Lecture 12

4.1 Divisibility and modular arithmetic

- **Number theory**: the branch of mathematics involves integers and their properties
- If a and b are integers with a≠0, we say that a divides b if there is an integer c s.t. b=ac
- When a divides b we say that a is a factor of b and that b is a multiple of a
- The notation a | b denotes a divides b. We write a ∤ b when does not divide b

Example

- Let n and d be positive integers. How many positive integers not exceeding n are divisible by d?
- The positive integers divisible by d are all integers of them form dk, where k is a positive integer
- Thus, there are \[\left[n/d \right] \] positive integers not exceeding n that are divisible by d

Theorem and corollary

- Theorem: Let a, b, and c be integers, then
 - If a | b and a | c, then a | (b+c)
 - If a | b, and a | bc for all integers c
 - If a | b and b | c, then a | c
- Corollary: If a, b, and c are integers s.t. a | b and a | c, then a | mb+nc whenever m and n are integers

The division algorithm

- Let a be integer and d be a positive integer. Then there are unique integers q and r with 0 ≤ r < d, s.t. a=dq+r
- In the equality, q is the quotient, r is the remainder q = a div d, r = a mod d
- · -11 divided by 3
- -11=3(-4)+1, -4=-11 div 3, 1=-11 mod 3
- -11=3(-3)-2, but remainder cannot be negative

Modular arithmetic

- If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a-b
- We use the notation a≡b (mod m) to indicate that a is congruent to b modulo m
- Let a and b be integers, m be a positive integer.
 Then a≡b (mod m) if and only if a mod m = b mod m

Example

- Determine whether <u>17 is congruent to 5</u> <u>modulo 6</u>, and whether 24 and 14 are not congruent modulo 6
 - 17-5=12, we see 17≡5 (mod 6)
 - -24-14=10, and thus $24 \not\equiv 14 \pmod{6}$

Theorem

- Karl Friedrich Gauss developed the concept of congruences at the end of 18th century
- Let m be a positive integer. The integer a and b are congruent modulo m if and only if there is an integer k such that a=b+km
 - (→) If a=b+km, then km=a-b, and thus m divides a-b and so a≡b (mod m)
 - (←) if a≡b (mod m), then m | a-b. Thus, a-b=km, and so a=b+km

Theorem

- Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then a+c=b+d (mod m) and ac ≡ bd (mod m)
 - Since a = b (mod m) and c = d (mod m), there are integers s.t. b=a+sm and d=c+tm
 - Hence, b+d=(a+c)+m(s+t),
 bd=(a+sm)(c+tm)=ac+m(at+cs+stm)
 - Hence $a+c \equiv b+d \pmod{m}$, and $ac \equiv bd \pmod{m}$

Example

- $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, so
 - $-18=7+11 \equiv 2+1=3 \pmod{5}$
 - $-77=7\cdot11\equiv2\cdot1=2 \pmod{5}$

4.2 Integer representations and algorithms

- Base **b** expansion of n
- For instance, (245)₈=2*8²+4*8+5=165
- Hexadecimal expansion of (2AE0B)16
 (2AE0B)₁₆=2*16⁴+10*16³+14*16²+0*16+11=175627
- Constructing base b expansion

Base conversion

- Constructing the base b expansion n=bq₀+a₀, 0 ≤a₀<b/li>
- The remainder a₀, is the rightmost digit in the base b expansion of n
- Next, divide q_0 by b to obtain $q_0=bq_1+a_1$, $0 \le a_1 < b$
- We see a₁ is the second digit from the right in the base b expansion of n
- Continue this process, successively dividing the quotients by b, until the quotient is zero

Example

- Find the octal base of (12345)₁₀
- First, 12345=8*1543+1
- Successively dividing quotients by 8 gives 1543=8*192+7 192=8*24+0 24=8*3+0 3=8*0+3
- $(12345)_{10} = (30071)_8$

Modular exponentiation

- Need to find **b**ⁿ **mod m** efficiently in cryptography
- Impractical to compute bⁿ and then mod m
- Instead, find binary expansion of n first, e.g., n=(a_{k-1} ... a_1 a_0) $b^n = b^{a_{k-1}2^{k-1}+\cdots+a_1 \cdot 2+a_0} = b^{a_{k-1}2^{k-1}}b^{a_{k-2}2^{k-2}}...b^{a_1\cdot 2}b^{a_0}$
- To compute bⁿ, first find the values of b, b², ..., (b⁴)²=b⁸, ...
- Next multiple the $b^{2^{j}}$ where $a_{i}=1$

Example

- To compute 3¹¹
- 11=(1011)₂, So 3¹¹=3⁸ 3² 3¹. First compute 3²=9, and then 3⁴=9²=81, and 3⁸=(3⁴)²=(81)²=6561, So 3¹¹=6561*9*3=177147
- The algorithm successively finds b mod m, b² mod m, b⁴ mod m, ..., b^{2^{k-1}} mod m, and multiply together those terms

Algorithm

- procedure modular exponentiation (b:integer, $n=(a_{k-1}a_{k-2}...a_1a_0,...,a_n)_2$, m:positive integer)
 - x := 1

power:=b mod m

for i:=0 to k-1

if $a_i = 1$ then x:=(x· power) mod m

power:=(power·power) mod m

end

{x equals bⁿ mod m}

• It uses O((log m)² long n) bit operations

- 17

Example

- Compute 3⁶⁴⁴ mod 645
 - First note that 644=(1010000100)₂
 - At the beginning, x=1, power=3 mod 645 = 3
 - i=0, a₀=0, x=1, power=32 mod 645=9
 - i=1, a₁=0, x=1, power=9² mod 645=81
 - i=2, a₂=1, x=(1*81) mod 645=81, power=81² mod 645=6561 mod 645=111
 - i=3, a₃=0, x=81, power=111² mod 645=12321 mod 645=66
 - i=4, a₄=0, x=81, power=66² mod 645=4356 mod 645=486
 - i=5, a₅=0, x=81, power=486² mod 645=236196 mod 645=126
 - i=6, a₆=0, x=81, power=126² mod 645=15876 mod 645=396
 - -~ i=7, $\rm a_7$ =1, x=(81*396) mod 645=471, power=396² mod 645=156816 mod 645=81
 - i=8, a₈=0, x=471, power=81² mod 645=6561mod 645=111
 - i=9, a₉=1, x=(471*111) mod 645=36
- 3⁶⁴⁴ mod 645=36

4.3 Primes and greatest common divisions

- Prime: a positive integer p greater than 1 if the only positive factors of p are 1 and p
- A positive integer greater than 1 that is not prime is called composite
- Fundamental theorem of arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes when the prime factors are written in order of non-decreasing size

Example

- · Prime factorizations of integers
 - $-100=2\cdot 2\cdot 5\cdot 5=2^2\cdot 5^2$
 - 641=641
 - $-999=3\cdot3\cdot3\cdot37=3^3\cdot37$
 - $-1024=2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2=2^{10}$

Theorem

- Theorem: If $\bf n$ is a composite integer, then $\bf n$ has a prime division less than or equal to \sqrt{n}
- As n is composite, n has a factor 1<a<n, and thus n=ab
- We show that $a \le \sqrt{n}$ or $b \le \sqrt{n}$ (by contraposition)
- Thus n has a divisor not exceeding \sqrt{n}
- This divisor is either prime or by the fundamental theorem of arithmetic, has a prime divisor less than itself, and thus a prime divisor less than less than \sqrt{n}
- In either case, n has a prime divisor $b \le \sqrt{n}$

21

Example

- Show that 101 is prime
- The only primes not exceeding $\sqrt{101}$ are 2, 3, 5, 7
- As 101 is not divisible by 2, 3, 5, 7, it follows that 101 is prime

Procedure for prime factorization

- Begin by diving **n** by successive primes, starting with **2**
- If ${\bf n}$ has a prime factor, we would find a prime factor not exceeding \sqrt{n}
- If no prime factor is found, then **n** is prime
- Otherwise, if a prime factor \boldsymbol{p} is found, continue by factoring $\boldsymbol{n}/\boldsymbol{p}$
- Note that n/p has no prime factors less than p
- If n/p has no prime factor greater than or equal to p and not exceeding its square root, then it is prime
- Otherwise, if it has a prime factor q, continue by factoring n/(pq)
- Continue until factorization has been reduced to a prime

23

Example

- Find the prime factorization of 7007
- Start with 2, 3, 5, and then 7, 7007/7=1001
- Then, divide 1001 by successive primes, beginning with 7, and find 1001/7=143
- Continue by dividing 143 by successive primes, starting with 7, and find 143/11=13
- As 13 is prime, the procedure stops
- $7007=7\cdot7\cdot11\cdot13=7^2\cdot11\cdot13$