GLM-4.5V and GLM-4.1V-Thinking: Towards

Versatile Multimodal Reasoning with Scalable Reinforcement Learning

GLM-V Team
Zhipu Al & Tsinghua University

Paper Review

2025. 8. 22. Fri.중앙대학교 첨단영상대학원 메타버스융합학과 FoV LABHongseok Cho

>> Contents

1 Introduction

2 Proposed Models: GLM-4.5V and GLM-4.1V-Thinking

3 Methodology

4 Experimental Results

5 Conclusion

>> Overview

✓ GLM-4.5V&GLM-4.1V-Thinking

- This paper proposes GLM-4.5V, a multimodal model capable of complex reasoning, along with a smaller variant, GLM-4.1V-Thinking
- Using a reinforcement learning technique called RLCS, the models are trained efficiently by selecting data matched to their current capabilities
- Despite its smaller size, GLM-4.1V-Thinking outperforms existing SOTA models across multiple benchmarks

□ Background

✓ VLM

□ Background

✓ VLM training pipelines

□ Background

✓ VLM training pipelines

- **□** Background
 - ✓ VLM training pipelines

□ Background

✓ VLM training pipelines

□ Background

✓ VLM - Architecture

□ Background

✓ VLM - Architecture

☐ Motivation&Research goals

- Focus on efficient training and strong reasoning
- Support complex, real-world multimodal tasks

reason over complex, diverse inputs

>> Overview and Architecture

✓ Model Overview

- **☐** Training Pipeline Summary
- √ 3-stage pipeline:
 - 1. Pre-training
 - 2. Supervised Fine-tuning(SFT)
 - 3. Reinforcement Learning with Curriculum Sampling(RLCS)

- ☐ Pre-training
- ✓ Data Sources

Data Type	Description		
image-Caption	10B+ pairs, CLIP filter, concept balancing, recaptioning		
Interleaved(text+image fusion)	Web (MINT/MMC4), 100M+ books (STEM) , noise filtered		
■ OCR	220M doc images, natural scene text, arXiv parsing		
	LAION, GLIPv2, GUI screenshots → 140M QA pairs		
% Video	Academic + web + proprietary video, annotated		
Instruction	Task-diverse tuning set, contamination filtering		

- □ Training Recipe
- Two sequential stages:
 - ✓ Multimodal Pre-training Configuration

Model	Parallelism	Seq. Len	Batch	Steps
GLM-4.1V-Thinking	Tensor = 2	8,192	1,536	120,000
GLM-4.5V	Expert = 8, Pipeline = 4	8,192	1,536	120,000

- Lossless routing & scalable setup
- General-purpose multimodal capability building

✓ Long-Context Extension Phase

- After base training, expand to longer inputs & higher complexity
- Settings:
 - Seq Length → 32,768, Context Parallel = 4
 - +10,000 steps on high-res images, videos, long texts

□ Supervised Fine-tuning(SFT)

✓ Data Curation Strategy

- High-quality, long CoT examples focused on verifiable tasks
- Standardized output formatting required
- Iterative improvement: RL-sampled examples added to initial dataset to improve quality and difficulty

✓ Training Configuration

Setting	Value		
Full fine-tuning	All parameters		
Sequence length	32,768 tokens		
Global batch size	32		
Data types	Multimodal + Long-form Text		

- GLM-4.5V supports both "thinking" and "non-thinking" modes
- Language understanding is retained through long-form text exposure

☐ Reinforcement Learning: What Is Challenging and What Works

Combined Approaches

- RLHF(Human Feedback)
 +
 RLVR (Verifiable Rewards)
- Applied across diverse multimodal tasks

Reward System Design

Domain-specific verifiers for robust reward computation (STEM, Chart QA, OCR, Grounding, GUI agents, Video QA)

Training Enhancements via RLCS

- Curriculum-based dynamic Sampling (ratio EMA)
- Improves stability and sample efficiency

Infrastructure Optimization

Developing high-performance, stable RL infrastructure for large-scale RL training

>> Experimental Results

□ Comprehensive Evaluation

- GLM-4.5V
 - Outperforms most open-source models of similar scale
 - Competitive with closed-source **Gemini-2.5-Flash** on several tasks
- GLM-4.1V-Thinking (9B)
 - Outperforms Qwen2.5-VL-72B on 29 benchmarks
 - Achieves SOTA on 23/28 benchmarks among models ≤10B

© Cross-Domain Effects

- RL in one domain → improves performance in others
- Mix-all RL → boosts performance across multiple tasks

>> Experimental Results

- GLM-4.5V was directly compared with competing models across various multimo dal tasks, including VQA, STEM, OCR, Visual Grounding, GUI Agents, and Video QA
- The thinking mode of GLM-4.5V demonstrates superior performance on nearly all benchmarks, with a clear advantage observed in OCR, STEM, WebQA, and Codin

Task	Benchmark	GLM-4.1V	GLM-4.5V	GLM-4.5V	Step-3	Qwen2.5-VL	Kimi-VL-2506	Gemma-3
Size		9B	106B (A12B)	106B (A12B)	321B (A38B)	72B	16B (A3B)	27B
Mode		thinking	non-thinking	thinking	thinking	non-thinking	thinking	non-thinking
General VQA	MMBench V1.1	85.8	86.7	88.2	81.1*	88.0	84.4	80.1*
	MMBench V1.1 (CN)	84.7	86.5	88.3	81.5*	86.7*	80.7*	84.8*
	MMStar	72.9	73.4	75.3	69.0*	70.8	70.4	60.0*
	BLINK (Val)	65.1	63.7	65.3	62.7*	58.0*	53.5*	52.9*
	MUIRBENCH	74.7	71.1	75.3	75.0*	62.9*	63.8*	50.3*
	HallusionBench	63.2	59.1	65.4	64.2	56.8*	59.8*	45.8*
	ZeroBench (sub)	19.2	21.9	23.4	23.0	19.5*	16.2*	17.7*
	$GeoBench^1$	76.0	78.4	79.7	72.9*	74.3*	48.0*	57.5*
	MMMU (Val)	68.0	68.4	75.4	74.2	70.2	64.0	62.0*
	MMMU Pro	57.1	59.8	65.2	58.6	51.1	46.3	37.4*
STEM	MathVista	80.7	78.2	84.6	79.2*	74.8	80.1	64.3*
	MathVision	54.4	52.5	65.6	64.8	38.1	54.4*	39.8*
	MathVerse	68.4	65.4	72.1	62.7*	47.8*	54.6*	34.0*
	DynaMath	42.5	44.1	53.9	50.1	36.1*	28.1*	28.5*
	LogicVista	60.4	54.8	62.4	60.2*	56.2*	51.4*	47.3*
	AI2D	87.9	86.6	88.1	83.7*	87.6*	81.9*	80.2*
	WeMath	63.8	58.9	68.8	59.8	46.0*	42.0*	37.9*

Long Document, OCR & Chart	MMLongBench-Doc	42.4	41.1	44.7	31.8*	35.2*	42.1	28.4*
	OCRBench	84.2	87.2	86.5	83.7*	85.1*	86.9	75.9*
	ChartQAPro	59.5	54.2	64.0	56.4*	46.7*	23.7*	37.6*
	ChartMuseum	48.8	47.1	55.3	40.0*	39.6*	33.6*	23.9*
	RefCOCO-avg (val)	85.3	91.5	91.3	20.2*	90.3	33.6*	2.4*
Visual Grounding	TreeBench	37.5	47.9	50.1	41.3*	42.3	41.5*	33.8*
	Ref-L4-test	86.8	89.5	89.5	12.2*	80.8*	51.3*	2.5*
	OmniSpatial	47.7	49.6	51.0	47.0*	47.9	37.3*	40.8*
Spatial Reco &	CV-Bench	85.0	86.5	87.3	80.9*	82.0*	79.1*	74.6*
Reasoning	ERQA	45.8	46.5	50.0	44.5*	44.8*	36.0*	37.5*
	All-Angles Bench	52.7	54.3	56.9	52.4*	54.4*	48.9*	48.2*
	OSWorld ²	14.9	31.8	35.8	-	8.8	8.2	6.2*
	AndroidWorld	41.7	57.0	57.0	-	35.0	-	4.4*
GUI Agents	WebVoyager ²	69.0	75.9	84.4	-	40.4*	-	34.8*
	Webquest-SingleQA	72.1	73.3	76.9	58.7*	60.5*	35.6*	31.2*
	Webquest-MultiQA	54.7	53.8	60.6	52.8*	52.1*	11.1*	36.5*
Coding	Design2Code	64.7	84.5	82.2	34.1*	41.9*	38.8*	16.1*
	Flame-React-Eval	72.5	78.8	82.5	63.8*	46.3*	36.3*	27.5*
	VideoMME (w/o sub)	68.2	74.3	74.6	-	73.3	67.8	58.9*
	VideoMME (w/sub)	73.6	80.0	80.7	-	79.1	71.9	68.4*
Video Understanding	MMVU	59.4	64.8	68.7	-	62.9	57.5	57.7*
video Olideistanding	VideoMMMU	61.0	67.5	72.4	-	60.2	65.2	54.5*
	LVBench	44.0	56.2	53.8	-	47.3	47.6*	45.9*
	MotionBench	59.0	61.8	62.4	-	56.1*	54.3*	47.8*
	MVBench	68.4	73.4	73.0	-	70.4	59.7*	43.5*

>> Discussion

Strengths

- Achieves SOTA-level performance even with small-scale models
- Enhances general reasoning ability across diverse domains
- Enables efficient and stable training with RLCS

Limitations

- Correct answers may still include errors in reasoning process
- Training stability is sensitive in RL settings
- Weakness in handling complex visual conditions (occlusion, ambiguity)

>> Conclusion & Future Work

Conclusion

- GLM-4.1V-Thinking and GLM-4.5V → Successfully enhanced multimodal reasoning
- Demonstrated the effectiveness of curriculum-based reinforcement learning (RLCS)

Future Work

- Develop evaluation metrics for intermediate reasoning processes
- Improve training stability
- Strengthen robustness under complex visual conditions

감사합니다

