Math 574: Homework 1

Peter Kagey

Monday, September 23, 2019

Problem 1. Let V be a vector space over F of dimension n, with V_1 and V_2 subspaces of V.

- (a) Prove that $V_1 + V_2$ is a subspace.
- (b) Prove that $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 \dim(V_1 \cap V_2)$.

Proof.

(a) It is enough to show that $V_1 + V_2$ is closed under vector addition and scalar multiplication, because the other vector space properties are inherited from V. Closure with respect to addition follows from the commutativity of addition:

$$\underbrace{(v_1 + v_2)}_{V_1 + V_2} + \underbrace{(v_1' + v_2')}_{V_1 + V_2} = \underbrace{(v_1 + v_1')}_{V_1} \underbrace{(v_2 + v_2')}_{V_2},$$

and closure with respect to scalar multiplication follows from distributivity:

$$\underbrace{a(v_1+v_2)}_{V_1+V_2} = \underbrace{av_1}_{V_1} + \underbrace{av_2}_{V_2}.$$

(b) The dimension of $V_1 + V_2$ is the cardinality of its basis. If V_1 has basis $\{u_i\}$, V_2 has basis $\{w_i\}$, and $V_1 \cap V_2$ has basis $\{v_i\}$ then each v_i can be written as both $v_i = \sum_k a_k u_k$ and $v_i = \sum_k b_k w_k$, where at least one a_k and at least one b_k are nonzero. Then solving for one such b_k in terms of the other a_i s and b_i s allows for b_k to be removed from the basis. This can be done inductively with each element the basis $\{v_i\}$ of $V_1 \cap V_2$ removing one element of the spanning set, ultimately resulting in a set of linearly independent vectors, so

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$$

as desired.

Problem 2.

- (a) Prove that $V = V_1 \oplus V_2$ if and only if $n = n_1 + n_2$ and $V_1 \cap V_2 = 0$.
- (b) Prove that $V = V_1 \oplus V_2$ if and only if each $v \in V$ can be written uniquely as $v_1 + v_2$.

Proof.

(a) (\Longrightarrow) Assume $V = V_1 \oplus V_2$. Then by definition, $V = V_1 + V_2$ and $V_1 \cap V_2 = 0$. So by Problem 1 (b),

$$\underline{\dim(V)}_n = \underline{\dim(V_1)}_{n_1} + \underline{\dim(V_2)}_{n_2} + \underline{\dim(V_1 \cap V_2)}_{0}.$$

(\iff) Assume $n = n_1 + n_2$ and $V_1 \cap V_2 = 0$. Then any basis of V_1 and any basis of V_2 are disjoint, call them $\{u_i\}$ and $\{w_i\}$ respectively, and their (disjoint) union forms a basis for $V: \{u_i\} \cup \{w_i\}$. Since any vector $v \in V$ can be written in terms of its basis elements,

$$v = \underbrace{\sum_{i} a_i u_i}_{V_1} + \underbrace{\sum_{i} b_i w_i}_{V_2}.$$

(b) (\Longrightarrow) Assume $V = V_1 \oplus V_2$. Then by definition, $V = V_1 + V_2$ so each v can be written as $v_1 + v_2$. Moreover, this sum is unique because if $v = v_1' + v_2'$, since $V_1 \cap V_2 = 0$, $v_1' - v_1 = 0$ and $v_2' - v_2 = 0$.

(\Leftarrow) Assume that each $v \in V$ can be uniquely written as v_1+v_2 , then $V \subseteq V_1+V_2$ and $V_1+V_2 \subseteq V$ (since they are subspaces). Next, arguing by contrapositive, suppose that there exists a nonzero $v \in V_1 \cap V_2$, then

$$\underbrace{(v_1-u)}_{V_1} + \underbrace{(v_2+u)}_{V_2} = v,$$

so the choice of vectors are not unique.

Problem 3. Let $T: V \to V$ be a linear transformation with dim V = n.

(a) Prove that $\operatorname{rank}(T) = \operatorname{rank}(T^2)$ if and only if $V = T(V) \oplus \ker(T)$.

(b)

Proof. The rank of T is dim T(V).

(a) (\Longrightarrow) Assume rank $(T) = \operatorname{rank}(T^2)$. Let $\{u_i\}$ be a basis for T(V). By the hypothesis, $\{T(u_i)\}$ has the same dimension and is also a basis for T(V). Since all basis elements of $\ker(T)$ are sent to 0 under T, $\ker(T) \cap T(V) = 0$ and moreover, every vector can be written as $v_1 + v_2$ with v_1 in the kernel and v_2 in the image.

 (\Leftarrow) Assume $V = T(V) \oplus \ker(T)$. Let $\{u_i\}$ be a basis for the image of T and $\{w_i\}$ be a basis for the kernel of T, so that for each $v \in V$

$$v = \sum_{i=1}^{m} a_i u_i + \sum_{i=1}^{n-m} b_i w_i$$

then

$$T(v) = T(\sum_{i=1}^{m} a_i u_i + \sum_{i=1}^{n-m} b_i w_i) = \sum_{i=1}^{n} a_i T(u_i) + \sum_{i=1}^{n} b_i T(w_i).$$

Since $T(V) \cap \ker(T) = 0$, $\sum a_i u_i$ is in $\ker(T)$ if and only if $a_1 = \ldots = a_m = 0$. Therefore $\{T(u_i)\}$ forms a basis for T(V) and

$$\operatorname{rank}(T) = \dim \{u_1, \dots, u_m\} = \dim \{T(u_1), \dots, T(u_m)\} = \operatorname{rank}(T^2).$$

(b) If $T^2 = T$, then clearly $\operatorname{rank}(T) = \operatorname{rank}(T^2)$, so $V = \ker(T) \oplus T(V)$. Furthermore, every element in the image is fixed under a successive transformation, so $T(V) = \{v \in V \mid T(v) = v\}$.

Problem 4. Let V be the space of complex valued C^{∞} functions on \mathbb{R} , and let $D: V \to V$ be differentiation.

- (a) Find all eigenvalues and eigenvectors for D.
- (b) Find $ker(D^n)$.

Proof.

- (a) This is equivalent to solving the differential equation D(f(x)) = af(x). By the existence and uniqueness of ODEs, the only solution to this equation is $b \exp(ax)$, and $D(b \exp(ax)) = ab \exp(ax)$, which has eigenvalue a.
- (b) Firstly, note that the only functions f such that Df = 0 are the constant functions, $f(x) = c_1$. By induction with the hypothesis that $\ker(D^n)$ consists of polynomials of degree n-1. Certainly $\ker(D^1)$ consists of 0-degree polynomials, so assuming that $\ker(D^{n-1}) = \{a_n x^{n-1} + a_{n-1} x^{n-2} + \dots a_2 x + a_1\}$, and integrating,

$$\ker(D^n) = \left\{ \frac{a_n}{n} x^n + \frac{a_{n-1}}{n-1} x^{n-1} + \dots + \frac{a_2}{2} x^2 + a_1 x + a_0 \mid a_i \in \mathbb{C} \right\}$$
$$= \left\{ b_n x^n + b_{n-1} x^{n-1} + \dots + b_2 x^2 + b_1 x + b_0 \mid b_i \in \mathbb{C} \right\}$$

gives the set of polynomials of degree n.

Problem 5.

Proof.

(a) (\Longrightarrow) Arguing by contrapositive, assume that A_1 has a nonzero kernel (that is, A_1 is not invertible), and let $u \in \ker(A_1)$ be a nonzero vector. Then

$$(A_1 \otimes A_2)(u \otimes v) = (\underbrace{A_1(u)}_0 \otimes A_2(v)) = 0,$$

so $A_1 \otimes A_2$ has a nonzero kernel and therefore is not invertible.

 (\Leftarrow) Assume A_1 and A_2 are invertible. Then

$$(A_1^{-1} \otimes A_2^{-1})(A_1 \otimes A_2)(u \otimes v) = (A_1^{-1} \otimes A_2^{-1})(A_1(u) \otimes A_2(v))$$
$$= (A_1^{-1}(A_1(u)) \otimes A_2^{-1}(A_2(v)))$$
$$= (u, v),$$

so
$$(A_1 \otimes A_2)^{-1} = (A_1^{-1} \otimes A_2^{-1}).$$

(b) This follows almost directly by looking at the Kronecker product. Suppose that a_{ii} gives the *i*th entry on the main diagonal of A_1 . Then reading down the main diagonal of the Knocker product gives

$$\operatorname{trace}(A_1 \otimes A_2) = a_{11} \operatorname{trace}(A_2) + a_{22} \operatorname{trace}(A_2) + \ldots + a_{nn} \operatorname{trace}(A_2)$$

= $(a_{11} + a_{22} + \ldots + a_{nn}) \operatorname{trace}(A_2)$
= $\operatorname{trace}(A_1) \operatorname{trace}(A_2)$,

as desired.