ESERCIZI DI MATEMATCA DISCRETA

Informatica - Corso B - A. A. 2018-2019 8 Novembre 2018 $^{\scriptscriptstyle 1}$

Esercizio 1. Si definisca sull'insieme \mathbb{Z} la seguente operazione $*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, tale che

$$\forall x, y \in \mathbb{Z}$$
 $x * y = xy + x$.

- (1) Stabilire se l'operazione è associativa, commutativa.
- (2) Determinare l'eventuale elemento neutro.
- (3) Se esiste l'elemento neutro, determinare gli elementi che ammettono inverso.
- (4) Stabilire se $(\mathbb{Z}, *)$ è un monoide o no.

Esercizio 2. Si definisca sull'insieme \mathbb{Z} la seguente operazione $*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, tale che

$$\forall x, y \in \mathbb{Z}$$
 $x * y = 2xy + x + y$.

- (1) Stabilire se l'operazione è associativa, commutativa.
- (2) Determinare l'eventuale elemento neutro.
- (3) Se esiste l'elemento neutro, determinare gli elementi che ammettono inverso.
- (4) Stabilire se $(\mathbb{Z}, *)$ è un monoide o no.

Esercizio 3. Sia assegnata sull'insieme \mathbb{Z} la seguente operazione $*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, tale che

$$\forall x, y \in \mathbb{Z} \qquad x * y = 4xy - 5x.$$

- (1) Stabilire se l'operazione è associativa, commutativa.
- (2) Determinare, se esiste, l'elemento neutro.

Esercizio 4. Sia assegnata sull'insieme $A = \mathbb{R} \times \mathbb{R}$, la seguente operazione $+: A \times A \to A$, tale che

$$\forall (x,y), (z,t) \in A$$
 $(x,y) + (z,t) = (x+z, y+t).$

Mostrare che (A, +) è un monoide commutativo.

Esercizio 5. Sia assegnata sull'insieme $A = \mathbb{R} \times \mathbb{R}$, la seguente operazione $\cdot : A \times A \to A$, tale che

$$\forall (x,y), (z,t) \in A \qquad (x,y) \cdot (z,t) = (xz,yt).$$

- (1) Determinare se esiste l'elemento neutro.
- (2) Determinare se (A, \cdot) è un monoide commutativo.
- (3) Determinare gli elementri invertibili in (A, \cdot) .

Esercizio 6. Sia assegnata sull'insieme $A = \mathbb{Z} \times \mathbb{Z}$, la seguente operazione $*: A \times A \rightarrow A$, tale che

$$\forall (x,y), (z,t) \in A$$
 $(x,y)*(z,t) = (x+z,yt).$

- (1) Determinare se l'operazione * verifica la proprietà associativa e commutativa.
- (2) Determinare, se esiste, l'elemento neutro.
- (3) Determinare gli elementi invertibili.

¹Nonostante l'impegno, errori, sviste imprecisioni sono sempre possibili, la loro segnalazione è molto apprezzata. Tra questi esercizi, alcuni sono stati presi da alcuni testi, o da esami passati. L'aggiunta di evenutali errori è opera mia.

Esercizio 7. Sia assegnata sull'insieme $A = \mathbb{Q}^* \times \mathbb{Q}^*$, la seguente legge $*: A \times A \to A$, tale che

$$\forall (x,y), (z,t) \in A$$
 $(x,y)*(z,t) = (x+z,yt).$

- (1) Stabilire se è una operazione
- (2) Se è una operazione, stabilire se è associativa, commutativa.
- (3) Determinare, se esiste, l'elemento neutro.
- (4) Determinare gli elementi invertibili.

(Ricordiamo che $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$).

Esercizio 8. Sia assegnata sull'insieme \mathbb{Z} , la seguente operazione $*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, tale che

$$\forall a, b \in \mathbb{Z}$$
 $a * b = ab - a - b + 3.$

- (1) Stabilire se l'operazione è associativa, commutativa.
- (2) Determinare, se esiste, l'elemento neutro.

Esercizio 9. Sia assegnata sull'insieme $A = \mathbb{R} \setminus \{-1\}$, la seguente operazione $*: A \times A \to A$, tale che

$$\forall x, z \in A \qquad x * z = x + z + xz.$$

- (1) Stabilire se l'operazione è associativa, commutativa.
- (2) Determinare, se esiste, l'elemento neutro.
- (3) Determinare gli elementi invertibili e il loro inverso.

Esercizio 10. Sia assegnata sull'insieme $A = \mathbb{R} \times \mathbb{R}$, la seguente operazione $*: A \times A \to A$, tale che

$$\forall (a,b), (c,d) \in A \qquad (a,b)*(c,d) = (ac-bd,ad+bc).$$

- (1) Stabilire se l'operazione è associativa, commutativa.
- (2) Determinare, se esiste, l'elemento neutro.
- (3) Determinare gli elementi invertibili e il loro inverso.