How to Build an Artificial Coder? –

Einführung in die automatisierte Inhaltsanalyse mit Machine Learning

11.02.2021 – NapoKo-Methodenworkshop – Jahrestagung DGPuK PolKomm

Dozentin: anke.stoll@hhu.de

Dank an: <u>napoko.de</u>

Illustration: weneedtotalk.ai

#AI #MachineLearning #DeepLearning #NeuralNetworks

What do these buzzwords even mean? Machine Learning; Deep Learning; Neural Networks (NN)...?

Ziel der Al-Forschung:

Den Computer Aufgaben lösen lassen, die "Intelligenz" erfordern.

(Was genau Intelligenz ist, fragen sich eher die Social Sciences oder die Philosophie.)

\bigcirc

Was gilt *nicht* als intelligent?

- Sich Dinge merken
 - Sich erinnern
- Auswendig lernen
 - Kopfrechnen
 - Texte (ab-)lesen
- Fremdwörter nachschlagen

Was gilt als intelligent?

- Schach spielen
 - Autofahren
- Katzen und Hunde erkennen
- Sich unterhalten oder chatten
- Nett, lustig und empathisch sein
 - Texte "verstehen"
 - Sprache sinnvoll übersetzen

\bigcirc

Algorithmen: Wie lernen "intelligente" Maschinen?

Algorithmen:

Wie lernen "intelligente" Maschinen?

Deep Learning (DL)

• "Selbstlernend" bedeutet also nicht autonom ...

... sondern "ohne Anleitung"!

Deep Learning mit Neuronalen Netzen

- NN ist die Bezeichnung für eine Algorithmusart, die im DL eingesetzt wird, bzw. DL ermöglicht.
- "Deep" bezieht sich auf den mehrstufigen Aufbau (Layer) dieser Algorithmen.

 NN erinnern hinsichtlich Aufbau und Funktionalität an Nervenzellen im Gehirn – daher ihr Name.

Das Forschungsgebiet AI gibt es schon lange, aber etwas ist diesmal anders

2000

Technologischer Fortschritt

Bessere Hard Ware zum Speichern und Verarbeiten von großen Datenmengen.

Das Internet

Gefühlt endlose Menge digitaler Beispieldaten zum Lernen!

Despite their impressive progress and success, today's AI is narrow. Its tasks are often classification and need a lot of data and a lot of energy.

I am aware of myself, I think, feel, desire.
I love New girl for instance, even though the plot repeats itself after the third season... Also, I don't exist.

No AI can represent causal relationships or integrate abstract knowledge, e.g., what objects are, what they are for, and how they are typically used.

Algorithmen: Wie funktioniert Machine Learning?

Algorithmen:

Wie lernen "intelligente" Maschinen?

Machine Learning (ML)

- nachvollziehbar
- weniger ressourcenintensiv
- sehr viele Daten nötig
- leistungsschwächer

Deep Learning (DL)

- kaum nachvollziehbar
- sehr ressourcenintensiv
- sehr, sehr viele Daten nötig
- leistungsstärker

Wenn wir von **KI** sprechen, ist damit heutzutage **DL** gemeint.

Algorithmen:

Wie lernen "intelligente" Maschinen?

Supervised Machine Learning (ML)

 Die Ausprägung einer abhängigen Variable vorhersagen, mit Hilfe von unabhängigen Variablen.

ML- und DL-Algorithmen sind **Schätzfunktionen.**

Algorithmen: **Maschine Learning**

	Geschlecht	Alter	Wohnort (State)	Wahlentscheidung
Person 1	f	39	New York	Trump
Person 2	m	29	Oklahoma	Biden
Person 3	f	41	South Dakota	Trump
Person 4	m	19	Kalifornien	Biden
Person 5	f	53	Florida	Biden

Social Scientist

I run a logistic regression and found small but significant effects of Sex, Age and State on "Wahlentscheidung".

I trained a logistic regression model on the [data set name] that achieved 80 % accuracy in classifying "Wahlentscheidung.

Computer Scientist

\bigcirc

Algorithmen: **Maschine Learning**

Features = Unabhängige Variablen

Label = Category = Class

kategoriale/nominale/dichotome abhängige Variable.

Classification = eine kategoriale/nominale/dichotome abhängige Variable vorhersagen (schätzen)

Algorithmen: **Maschine Learning**

	Feature x1	Feature x2	Feature x3	Text-Kategorie
Text 1	?			Hate
Text 2		?		No Hate
Text 3			?	Hate
Text 4		?		Hate
Text 5	?			No Hate

Automatisierte Inhaltsanalyse mit Machine Learning

ML in der Automatisierten Inhaltsanalyse

AIA & Maschine Learning Document Classification

	Feature x1	Feature x2	Feature x3	Text-Kategorie
Text 1	?			Hate
Text 2		?		No Hate
Text 3			?	Hate
Text 4		?		Hate
Text 5	?			No Hate

AIA & Maschine Learning Document Classification

document-term-matrix

	I	love	hate	you	Text-Kategorie
Text 1	1	1	0	1	No Hate
Text 2	1	0	1	1	Hate

AIA & Maschine Learning Document Classification

Bag of words-Ansatz:

Wörter und Worthäufigkeiten als Features

Unigrams, Bigrams & N-grams:

Einzelwörter, Kombinationen aus zwei bzw.

Kombinationen aus *N* **Wörtern** und Worthäufigkeiten als Features.

How to? & How to start?

Learning by Doing

- Python Programmier-Style kennenlernen (Packages einlesen und Funktionen aufrufen, Googlen und Dokumentation nachlesen, ...)
- Üben: Datensatz einlesen und inspizieren

Learning by Doing

 Texte in Unigram und N-Gram-Features transformieren mit sklearn CountVectorizer

05 an Artificial Coder (Classifier) Step by Step

Make a Classifier Step by Step

Classification function:

Schätzfunktion für eine **kategoriale**/nominal/dichotome abhängige Variable.

...und **sehr viele Fälle**.

...und sehr viele Features (unabhängige Variablen) (evtl. sogar mehr Features als Fälle)

Make a Classifier Step by Step

ocep by oc	• I	
Text	Text- Kategorie	
This is a hateful text	Hate	
This is a natural text	No Hate	_ Train
[]		Set
This is another hateful Text	Hate	
This is a natural text	No Hate	
[]		_ Test Set
This is another hateful Text	Hate	
	This is a hateful text This is a natural text [] This is another hateful Text This is a natural text []	Text Text-Kategorie This is a hateful text Hate This is a natural text No Hate [] This is another hateful Text Hate This is a natural text No Hate []

Learning by Doing

- Classifier aussuchen
- Train Test Split
- Trainieren (fitten)

06War ich gut? Ergebnisse und Evaluation

Make a Classifier Evaluationsmetriken

	Text	Text- Kategorie	Text-Kategorie predicted
Text 1	This is a hateful text	Hate	Hate
Text 2	This is a neutal text	No Hate	No Hate
Text 3	This is a hateful text	Hate	No Hate

Agree???

Make a Classifier Evaluationsmetriken

Für eine Kategorie (Ausprägung):

- precision
- recall
- (micro) f1 score

Insgesamt:

- Accuracy = percentage agreement
- macro f1 score

Text-	Text-Kategorie
Kategorie	predicted
Hate	Hate
No Hate	No Hate
Hate	No Hate

Agree???

Recall

Anteil der Fälle in einer Kategorie (Ausprägung), die durch den Classifier erkannt wurden.

Recall_{Hate} = 0.70 heißt, 70% der Tweets mit Hate Speech (laut manueller Codierung) wurden durch den Classifer als Hate Speech erkannt.

Precision

Anteil der Fälle in einer Kategorie (Ausprägung), die durch den Classifier richtig(!) erkannt wurden.

Precision_{NoHate} = 0.40 heißt, 40% der als No Hate klassifizierten Tweets enthalten tatsächlich keine Hate Speech (laut manueller Codierung).

(micro) F1-Score

Harmonisches Mittel zwischen Recall und Precision. Beliebtes Maß für das Abschneiden eines Classifiers in einer Kategorie (Ausprägung).

Learning by Doing

- Mit dem Classifier auf den Testdaten predicten
- Evaluieren und Interpretieren mit den Evaluationsmaßen
- Bonus: Den Classifer auf ganz neuen Daten anwenden

AIA & Maschine Learning Feature Engineering

Was könnten weitere wichtige Features (UVs) sein?

AIA & Maschine Learning Pre-Processing

What you want:

I love you

What you get:

I looove you!!;) <3 @Brithney #tbt

Overfitting

A model learns features, that are predictive in the training data, but not on other data.

Underfitting

A model misses features in the training data, that are actually good features on other data.

Getting Started: Welche Programmiersprache?

Python

- Populärer, größere Community
- Packages f
 ür ML zu erst in Python
- Kommunikation interdisziplinär (Informatik)

R

- In der Kowi (in den Sozialwissenschaften) beliebt
- Evtl. bereits Erfahrung?
- Für Statistik und Lehre evtl. benötigt

Python ist die Lingua franca der MLund **AI**-Forschung (aktuell).

WHERE TO GO FROM HERE?

- 1. Make high quality training data! Requires strong knowledge of content analysis.
- 2. Do **feature engineering!** Requires knowledge about your data base and creative programming skills.
- 3. Develop **state of the art** in the black box with **Deep Learning!** Requires good programming skills, some tech skills, and knowledge about the basics of machine learning.

WHERE TO READ FROM HERE?

What to **read** to learn more about **machine learning** and **text classification** in particular:

Müller, A. C., & Guido, S. (2016). *Introduction to machine learning with Python: a guide for data scientists*. "O'Reilly Media, Inc.". (chapters 2 and 5 (and maybe 7))

Raschka, S., & Mirjalili, V. (2017). *Python machine learning*. Packt Publishing Ltd.

(chapters 3, 4, 6, and 8)

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.

(chapter 1 pp. 23-32 and chapter 4)