SEMIFINAL

Math 237 – Linear Algebra

Version 1

Fall 2017

П

Choose up to 6 problems to work. Work each problem on one of the attached pages; write the standard in the upper left corner. Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 1 & 5 \\ 3 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix}$$

E2. Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 2 & 3 & -2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & -1 \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

E3. Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = -1$$
$$3x_1 + 6x_3 + x_4 = 5$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = -7$$

Solution: Let $A = \begin{bmatrix} 2 & -2 & 6 & -1 & | & -1 \\ 3 & 0 & 6 & 1 & | & 5 \\ -4 & 1 & -9 & 2 & | & -7 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & -1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -1 \end{bmatrix}$. It follows that the

solution set is given by $\begin{bmatrix} 2-2a \\ 3+a \\ a \end{bmatrix}$ for all real numbers a.

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$

Solution:

RREF
$$\left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -1 & 1 & 1 \\ 2 & -3 & -2 & 0 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & \frac{5}{7} & \frac{3}{7} \\ 0 & 1 & \frac{8}{7} & \frac{2}{7} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} -\frac{5}{7}a - \frac{3}{7}b \\ -\frac{8}{7}a - \frac{2}{7}b \\ a \\ b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

So a basis for the solution set is $\left\{ \begin{bmatrix} -\frac{5}{7} \\ -\frac{8}{7} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{3}{7} \\ -\frac{2}{7} \\ 0 \\ 1 \end{bmatrix} \right\}$, or $\left\{ \begin{bmatrix} 5 \\ 8 \\ -7 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 0 \\ -7 \end{bmatrix} \right\}$.

V1. Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x, y \in V$ and $c \in \mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that scalar multiplication is associative: $a \odot (b \odot x) = (ab) \odot x$.
- (b) Determine if V is a vector space or not. Justify your answer

Solution: Let $x, y \in V$, $c, d \in \mathbb{R}$. To show associativity:

$$c \odot (d \odot x) = c \odot (dx - 3(d - 1))$$

$$= c (dx - 3(d - 1)) - 3(c - 1)$$

$$= cdx - 3(cd - 1)$$

$$= (cd) \odot x$$

We verify the remaining 7 properties to see that V is a vector space.

- 1) Real addition is associative, so \oplus is associative.
- 2) $x \oplus 3 = x + 3 3 = x$, so 3 is the additive identity.
- 3) $x \oplus (6-x) = x + (6-x) 3 = 3$, so 6-x is the additive inverse of x.
- 4) Real addition is commutative, so \oplus is commutative.
- 5) Associativity shown above
- 6) $1 \odot x = x 3(1 1) = x$

$$c \odot (x \oplus y) = c \odot (x + y - 3)$$

$$= c(x + y - 3) - 3(c - 1)$$

$$= cx - 3(c - 1) + cy - 3(c - 1) - 3$$

$$= (c \odot x) \oplus (c \odot y)$$

8)

$$(c+d) \odot x = (c+d)x - 3(c+d-1)$$

= $cx - 3(c-1) + dx - 3(c-1) - 3$
= $(c \odot x) \oplus (d \odot x)$

Therefore V is a vector space.

V2. Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} -1 & 1 & | & 0 \\ -9 & 5 & | & 0 \\ 15 & -5 & | & 2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$

Since this system has no solution, $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ cannot be written as a linear combination of the vectors $\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$ and

 $\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}.$

V3. Determine if the vectors $\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, so the set is linearly dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

V4. Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

Solution: This set is closed under addition, but not under scalar multiplication so it is not a subspace.

 \Box

Solution:

RREF
$$\left(\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

This has a non pivot column, therefore the set is linearly dependent.

S2. Determine if the set $\{2x^2 - x + 3, 2x^2 + 2, -x^2 + 4x + 1\}$ is a basis of \mathcal{P}^2 .

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 2 & -1 \\ -1 & 0 & 4 \\ 3 & 2 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

S3. Let W be the subspace of \mathcal{P}^2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\left\{-3x^2 - 8x, x^2 + 2x + 2\right\}$ is a basis for W.

S4. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

A1. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 7x \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Solution:

$$\begin{bmatrix} 3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \\ 7 & 0 & 0 \end{bmatrix}$$

A2. Determine if the map $T: \mathcal{P}^6 \to \mathcal{P}^6$ given by T(f) = f(x) - f(0) is a linear transformation or not.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^4$ given by the standard matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the standard matrix $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 7 & -1 & 5 \end{bmatrix}$

Solution:

(a) $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$. Since each column is a pivot column, S is injective. Since there a no zero row, S is not surjective.

(b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

$$RREF\left(\begin{bmatrix} 2 & 3 & -1 & 1\\ -1 & 1 & 1 & 1\\ 4 & 7 & -1 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 2\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Since there is not a zero row, T is surjective.

A4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 8x - 3y - z \\ y + 3z \\ -7x + 3y + 2z \end{bmatrix}$. Compute a basis for the kernel and a basis for the image of T.

Solution:

RREF
$$\left(\begin{bmatrix} 8 & -3 & -1 \\ 0 & 1 & 3 \\ -7 & 3 & 2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus $\left\{ \begin{bmatrix} 8 \\ 0 \\ -7 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 3 \end{bmatrix} \right\}$ is a basis for the image, and $\left\{ \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix} \right\}$ is a basis for the kernel.

M1. Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: BC is the only one that can be computed, and

$$BC = \begin{bmatrix} 0 & -3 & 7 & -8 \\ 8 & 4 & -4 & 8 \\ 5 & -2 & 8 & -7 \end{bmatrix}$$

M2. Determine if the matrix $\begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & 0 \\ -1 & -1 & 5 \end{bmatrix}$ is invertible.

Solution:

RREF
$$\begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & 0 \\ -1 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Since it is not equivalent to the identity matrix, it is not invertible.

M3. Find the inverse of the matrix $\begin{bmatrix} 2 & -1 & -3 \\ -14 & 9 & 24 \\ 3 & -2 & -5 \end{bmatrix}$.

Solution: $\begin{bmatrix} 2 & -1 & -3 & 1 & 0 & 0 \\ -14 & 9 & 24 & 0 & 1 & 0 \\ 3 & -2 & -5 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 & 1 & 3 \\ 0 & 1 & 0 & 2 & -1 & -6 \\ 0 & 0 & 1 & 1 & 1 & 4 \end{bmatrix}.$ Thus the inverse is $\begin{bmatrix} 3 & 1 & 3 \\ 2 & -1 & -6 \\ 1 & 1 & 4 \end{bmatrix}.$

G1. Compute the determinant of the matrix $\begin{bmatrix} 3 & -1 & 0 & 7 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$

Solution: 2

G2. Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 8 & -3 & 2 \\ 23 & -9 & 5 \\ -7 & 2 & -3 \end{bmatrix}$.

Solution: The eigenvalues are 0 with multiplicity 1 and -2, with algebraic multiplicity 2.

G3. Find the eigenspace associated to the eigenvalue 2 in the matrix $A = \begin{bmatrix} 0 & -2 & -1 & 0 \\ -4 & -2 & -2 & 0 \\ 14 & 12 & 10 & 2 \\ -13 & -10 & -8 & -1 \end{bmatrix}$.

Solution: The eigenspace is spanned by $\begin{bmatrix} -1\\ \frac{1}{2}\\ 1\\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1\\ 1\\ 0\\ 1 \end{bmatrix}$.

- **G4.** Compute the geometric multiplicity of the eigenvalue 1 in the matrix $A = \begin{bmatrix} 8 & -3 & -1 \\ 21 & -8 & -3 \\ -7 & 3 & 2 \end{bmatrix}$
- **Solution:** The eigenspace is spanned by $\begin{bmatrix} \frac{3}{7} \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{7} \\ 0 \\ 1 \end{bmatrix}$, so the geometric multiplicity is 2.

Standard:	

Standard:	