线

书

盟

財

4

题 竺

科学 技 术 大 中 2010 - 2011 学年第二学期《线性代数》期终考试试卷

题号	-	=	三	四	Ŧi.	六	总分
得分	}						
复评	人						

得分	评卷人

填空题(本大题共9小题,共42分)

- (1) 给定空间直角坐标系中点A(0,1,1), B(1,2,3), C(1,1,3)及D(1,3,5), 则(a) 经过点A, B, C的平面的一般方程为 ; (b) 四 面体ABCD的体积为。
- (2) 设三阶方阵 $A = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$, $B = (2\mathbf{a}_3, 3\mathbf{a}_2, 4\mathbf{a}_1)$,其中 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ 是三维列 向量。若 $\det(A) = 2$,则 $\det(B) = _____$ 。
- (4) 设A为正交矩阵,A*为A的伴随矩阵。则 $det(A^*) =$
- (5) 已知矩阵 $A = \begin{pmatrix} x & 1 & 2 \\ -10 & 6 & 7 \\ y & -2 & -1 \end{pmatrix}$ 的特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 2$.
- (7) 已知 \mathbb{R} 上四维列向量 \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{b}_1 , \mathbf{b}_2 , \cdots , \mathbf{b}_9 。 若 \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 线性无 关, \mathbf{b}_i $(i=1,2,\cdots,9)$ 非零且与 \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 均正交,则 $\mathrm{rank}(\mathbf{b}_1,\mathbf{b}_2,\cdots,\mathbf{b}_9)$
- (8) 设ℙ₃[x]为次数小于等于3的实系数多项式全体构成的线性空间。定 义 $\mathbb{P}_3[x]$ 上的线性变换 $\mathcal{A}: \mathcal{A}(p(x)) = (x+1)\frac{\mathrm{d}}{\mathrm{d}x}p(x)$,则 \mathcal{A} 在基1,x, x^2 , x^3 下

的矩阵	为

(9) 在线性空间 $M_n(\mathbb{R})$ 中(运算为矩阵的加法和数乘),记 V_1 为所有对称矩阵构成的子空间, V_2 为所有反对称矩阵构成的子空间。则 $\dim V_1 = ______$, $\dim V_2 = ______$ 。

得分	评卷人

二、(本题15分)

已知线性方程组

$$\begin{cases} x_1 & +x_2 & +x_3 & +x_4 & +x_5 & = & a \\ 3x_1 & +2x_2 & +x_3 & +x_4 & -3x_5 & = & 0 \\ x_2 & +2x_3 & +2x_4 & +6x_5 & = & b \\ 5x_1 & +4x_2 & +3x_3 & +3x_4 & -x_5 & = & 2 \end{cases}$$

- (1) 当a, b为何值时,方程组有解。
- (2) 当方程组有解时,求出对应的齐次方程组的一组基础解系。
- (3) 当方程组有解时,求出方程组的全部解。

得分	评卷人

三、(本题12分)

在线性空间
$$M_2(\mathbb{R})$$
中,设 $\alpha_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 和 $\beta_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \beta_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \beta_4 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 分别为 $M_2(\mathbb{R})$ 的两组基。

- (1) 求 α_1 , α_2 , α_3 , α_4 到 β_1 , β_2 , β_3 , β_4 的过渡矩阵T。
- (2) 设 $A \in M_2(\mathbb{R})$ 在 β_1 , β_2 , β_3 , β_4 下的坐标为 $(1, -2, 3, 0)^T$,求A在 α_1 , α_2 , α_3 , α_4 下的坐标。

得分评卷人

四、(本题8分)

考虑分块矩阵 $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$,其中A为n阶可逆方阵。证明: $\mathrm{rank}(M) = n + \mathrm{rank}(D - CA^{-1}B)$ 。

得分	评卷人

五、(本题15分)

已知二次型 $Q(x_1, x_2, x_3) = 3x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_3$ 。

- (1) 写出二次型 $Q(x_1, x_2, x_3)$ 对应的矩阵A,和 $Q(x_1, x_2, x_3)$ 的矩阵式。
- (2) 求正交变换P,使 $\mathbf{x} = P\mathbf{y}$ 把 $Q(x_1, x_2, x_3)$ 化为标准形。
- (3) 二次型是正定的、负定的还是不定的,为什么?
- (4) 指出 $Q(x_1, x_2, x_3) = 1$ 的几何意义。

得分	评卷人

六、(本题8分)

设V是欧氏空间, $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n$ 是V中一组两两正交的非零向量,

$$\beta_i = \sum_{k=1}^n a_{ki} \mathbf{b}_k \ (i = 1, 2, \cdots, m), \ A = (a_{ij})_{n \times m}$$
 证明:

- (1) $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n$ 线性无关。
- (2) $\dim \langle \beta_1, \beta_2, \cdots, \beta_m \rangle = \operatorname{rank}(A)$.

2010-2011学年第二学期《线性代数》期终考试答案

一、填空题(本大题共42分)

(1) (a)
$$2x - z + 1 = 0$$
; (b) $\frac{1}{3} | (AB \times AC) \cdot AD | = \frac{1}{3}$.

(2) $\det(B) = -48$.

(3)
$$A^{-1} = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- (4) $A^* = \pm 1$
- (5) x = -1, y = 4.
- (6) 0 < t < 2.
- (7) 1.

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 3
\end{pmatrix}.$$

(9)
$$\dim V_1 = \frac{n(n+1)}{2}$$
, $\dim V_2 = \frac{n(n-1)}{2}$.

二、(本题15分)

$$\overline{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & a \\ 3 & 2 & 1 & 1 & -3 & 0 \\ 0 & 1 & 2 & 2 & 6 & b \\ 5 & 4 & 3 & 3 & -1 & 2 \end{pmatrix} \xrightarrow{\text{初等变换}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & a \\ 0 & 1 & 2 & 2 & 6 & 3a \\ 0 & 0 & 0 & 0 & b - 3a \\ 0 & 0 & 0 & 0 & 0 & 2 - 2a \end{pmatrix} = B$$

(1)
$$\begin{cases} b - 3a = 0 \\ 2 - 2a = 0 \end{cases}$$
, 即 $a = 1$, $b = 3$ 时原方程有解.

(2) <math> <math>

所以同原方程组导出组同解的方程组为:

$$\begin{cases} x_1 = x_3 + x_4 + 5x_5 \\ x_2 = -2x_3 - 2x_4 - 6x_5 \end{cases}$$

取
$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
分别为 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, 得基础解系: $\xi_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\xi_3 = \begin{pmatrix} 5 \\ -6 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

(3) 由(2)知与原方程组同解的方程组为:

$$\begin{cases} x_1 = x_3 + x_4 + 5x_5 - 2 \\ x_2 = -2x_3 - 2x_4 - 6x_5 + 3 \end{cases}$$

令
$$x_3 = x_4 = x_5 = 0$$
, 得一特解: $\eta_0 = \begin{pmatrix} -2\\3\\0\\0\\0 \end{pmatrix}$.

故原方程的通解为: $\eta_0 + c_1\xi_1 + c_2\xi_2 + c_3\xi_3$ (c_i 为任意常数).

三、(本题12分)

$$\beta_{1} = -\alpha_{1} + \alpha_{4}$$

$$\beta_{2} = \alpha_{1} - \alpha_{2} + \alpha_{4}$$

$$\beta_{3} = \alpha_{2} - \alpha_{3} + \alpha_{4}$$

$$\beta_{4} = \alpha_{3}$$

$$\Rightarrow (\beta_{1} \beta_{2} \beta_{3} \beta_{4}) = (\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4})$$

$$(\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4})$$

$$(\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4})$$

$$(\alpha_{2} \alpha_{3} \alpha_{4})$$

$$(\alpha_{3} \alpha_{4} \alpha_{5} \alpha_{5} \alpha_{4})$$

$$(\alpha_{3} \alpha_{5} \alpha_{5} \alpha_{5} \alpha_{5} \alpha_{5})$$

$$(\alpha_{3} \alpha_{5} \alpha_{5} \alpha_{5} \alpha_{5} \alpha_{5})$$

$$(\alpha_{3} \alpha_{5} \alpha_{5} \alpha_{5} \alpha_{5} \alpha_{5})$$

$$(\alpha_{5} \alpha_{5})$$

所以过渡矩阵
$$T = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
.

$$(2) \ A = (\beta_1 \ \beta_2 \ \beta_3 \ \beta_4) \begin{pmatrix} 1 \\ -2 \\ 3 \\ 0 \end{pmatrix} = (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4) \ T \begin{pmatrix} 1 \\ -2 \\ 3 \\ 0 \end{pmatrix} = (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

曲坐标的唯一性:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = T \begin{pmatrix} 1 \\ -2 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 5 \\ -3 \\ 2 \end{pmatrix}.$$

四、(本题8分)

因为
$$\begin{pmatrix} I & 0 \\ -CA^{-1} & I \end{pmatrix}$$
 M $\begin{pmatrix} I & -A^{-1}B \\ 0 & I \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & D-CA^{-1}B \end{pmatrix}$, 注意相抵的方阵秩相同. 所以 $\operatorname{rank}(M) = \operatorname{rank}\begin{pmatrix} A & 0 \\ 0 & D-CA^{-1}B \end{pmatrix} = \operatorname{rank}(A) + \operatorname{rank}(D-CA^{-1}B)$
$$= n + \operatorname{rank}(D-CA^{-1}B).$$

五、(本题15分)

(1)
$$Q(x_1, x_2, x_3) = \mathbf{x}^T A \mathbf{x}$$
, $\sharp \oplus A = \begin{pmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

(2) 因为 $|\lambda I - A| = (\lambda - 4)(\lambda - 2)^2$, 所以A的特征值为 $\lambda_1 = 4$, $\lambda_2 = \lambda_3 = 2$.

- (3) Q是正定的,因为正惯性指数r = n = 3.
- (4) $Q(x_1, x_2, x_3) = 1$ 表示椭球面.

五、(本题8分)

(2) 依题知:
$$(\beta_1, \beta_2, \dots, \beta_n) = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) \begin{pmatrix} a_{11} & \dots & a_{nn} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
.

设 $\operatorname{rank}(A) = r$, 不妨设 A 的前r列线性无关, 则 A 的第 j 列($\operatorname{j} > r$)都可由前 r 列线性表示.

因为
$$\beta_j = \sum_{k=1}^n a_{kj} \mathbf{b}_k \Rightarrow \beta_j = (\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n) \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} \ (j > r).$$

所以 β_i (j > r)是 β_1 , β_2 , ..., β_r 的线性组合. 下面只要说明 β_1 , β_2 , ..., β_r 线性无关即可.

设
$$\lambda_1 \beta_1 + \lambda_2 \beta_2 + \dots + \lambda_r \beta_r = (\beta_1, \beta_2, \dots, \beta_r) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = 0,$$

$$\Rightarrow (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) \begin{pmatrix} a_{11} & \dots & a_{1r} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nr} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = 0.$$
因为 $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ 线性无关,所以
$$\begin{pmatrix} a_{11} & \dots & a_{1r} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nr} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = 0.$$

又因为系数阵是列满秩的,所以 $\lambda_1 = \lambda_2 = \cdots = \lambda_r = 0$.

 $\Rightarrow \beta_1, \beta_2, \cdots, \beta_r$ 是线性无关的.

故dim $\langle \beta_1, \beta_2, \cdots \beta_m \rangle = \operatorname{rank}(A) = r.$

(或者利用 $PAQ = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ (相抵标准形), 其中P, Q可逆, 也可以类似地证明.)