

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

COURSE: BASIC ELECTRONICS (MCQ)

COURSE CODE: EC1001-1

		UNIT-1	
1. The voltage at which	ch forward current thr	ough the diode starts inc	creasing rapidly is called as
a) Cut in voltage	o) Breakdown voltage	c) Saturation voltage	d) Cut off voltage
2. Smaller the ripple f	actor, the output will	have higher components	s of
a) DC b) AC	c) spike d) pulse		
3. The efficiency of fu	all wave rectifier is ab	out	
a) 81.2 b) 0.	46 c) 1.21 d) 40	0.6	
4. In a bipolar junctio	n transistor the collec	tor current is controlled	by
a) Base current	b) Collector voltage	c) Collector resistance	d) None
5. If a 2 mV input sign	nal produces a 2V out	put signal, what is the v	oltage gain?
a) 1000	b) 0.004	c) 100	d) 0.001
6. Total emitter curren	nt in BJT is		
a) $I_B + I_C$	b) $I_C + I_{CBO}$	c) I_C + I_E d) I_B –	I_{C}
7. Which is not a MO	SFET terminal?		
a) Base	b) Drain	c) Source d)	Gate
8. When the p-n junct	ion diode is forward b	piased, it offers	
a) low resistance b)	high resistance c) le	ow voltage d) high vol	tage
9. Zener diode is main	aly used as		
a) Voltage regulator	b) Comparator c)	Oscillator d) Amplif	ïer
10. The efficiency of	half wave rectifier is a	about	

a) 81.2% b) 46 %	c) 1.21% d) 4	40.6 %			
11. What is the collect 30 μ A?	tor current for a C	C-E configura	ation with a be	ta of 100 a	nd a base current of
a) 3 mA	b) 3μA		c) 30 µA		d) 30 mA
12. In a CE amplifier	circuit, the outpu	t signal gene	rates a phase s	hift of	
a) 180 ⁰	b) 90 ⁰		c) 0^0	d) 270^0	
13. For a BJT, the foll	owing statement	is true			
$\mathbf{a)} \; \mathbf{I}_{\mathbf{E}} = \mathbf{I}_{\mathbf{C}} \qquad \qquad \mathbf{b)} \; \mathbf{I}_{\mathbf{B}} =$	$= I_{\rm C}$	c) $I_B = I_E$		d) $I_B = \alpha I_E$	
14. Which transistor e	element is used in	n CMOS logi	c?		
a) MOSFET	b) JFET	c) BJT	d) Die	ode	
15. When the p-n junc	tion diode is reve	erse biased, i	toffers		
a) high resistance b)) low resistance	c) low volta	ge d) high v	oltage	
16. Higher the ripple f	actor, the output	will have hig	gher componer	nts of	
a) AC b) DC	c) spike d) p	ulse			
17. The r.m.s value of	load current in a	full wave re	ctifier is		
a) 0.707 I _m b) 0.5	5π c) 0.5 $I_{\rm m}$	d) 0.318	3 I _m		
18. The signal voltage	gain of an ampli	ifier, A _V , is d	efined as	·	
$\mathbf{a}) A_V = \frac{V_{out}}{V_{in}} \mathbf{b}) A$	$A_{V} = I_{C} * R_{C}$	$c) A_V = \frac{v_i}{v_{oi}}$	$\frac{n}{ut}$ d) A_V	$= \frac{V_{BE}}{V_{CC}}$	
19. A transistor has a locollector current is	beta of 200 and a	base current	of 40 μA in C	E configur	ation. Then the
a) 8 mA	b) 8μA		c) 80 µA		d) 80 mA
20. The amount of ripp	ples present at the	e output of h	alf wave rectif	ier is	
a) 1.21 b) 0.81 c)	0.46 d) 0.50				
21. Higher the ripple f	actor, the output	will have sm	aller compone	ents of	
a) DC b) AC	c) spike d) p	ulse			
22. When forward bias	sed, a p-n junctio	on diode			
a) Conducts current	b) Blocks curr	rent c) has	high resistance	e d) low v	oltage

23. A transistor lemitter current is		base current of 40 μA i	n CE configuration. Then the
a) 8.04 mA	b) 80μA	c) 80.04 µ	A d) 80 mA
24. BJT is made	to work as an amplifier	when it is operated in	region
a) Active	b) Cut off	c) Saturation	d) Inverted mode
25. A transistor l	has $I_B = 0.08 \text{ mA}$ and I_E	$_{2} = 9.60 \text{ mA}$. The value	of β is
a) 119	b) 129	c) 960	d) 100
26. The enhance	ment type MOSFET wo	orks only with	-
a) large positive	e gate voltage b) larg	e negative gate voltage	2
c) large positive	source voltage d) larg	ge negative drain voltag	ge
27. The amount	of ripples present at the	output of a full wave i	rectifier is
a) 48% b) 81%	6 c) 42% d) 52%		
28. The r.m.s val	lue of load current in a l	half wave rectifier is	
a) 0.5 I _m b) 0	0.5π c) $0.707 I_{\rm m}$	d) 0.3183 I _m	
29. Zener diode	regulates output voltage	only when it is conne	cted in
a) Reverse bias	b) Forward bias c) Short d) Open	
30. A transistor l	has $I_B = 0.06 \text{ mA}$ and I_E	a = 9.00 mA. The value	of β is
a) 149	b) 129	c) 960	d) 100
31. In CE config	uration of BJT, output o	characteristics is plotte	d by taking
a) VCE verses IC	for constant I _B	b) V _{CE} verses I _C f	or constant I _E
c) V _{CE} verses I _C	for constant V_{CB}	d) V _{CE} verse I _E fo	r constant I _C
32. A highly stab	ble biasing network used	d in CE-RC coupled ar	mplifier is
a) Voltage divid	der biasing circuit	o) Collector feedback b	vias circuit
c) Base bias circ	uit	d) Emitter bias circuit	i
33. The MOSFE	T stands for		

a) Metal oxide semiconductor FET b) Metal oxide surface FET	
c) Metal oxidized selenium FET d) Metal of surface FET	
34. A silicon diode is connected in series to a dc supply of 2 volts and resistanc current in the circuit is	e of 13 Ω , the
a) 0.10A b) 0.55 A c) 0.45 A d) 1.5A	
35. The DC load current of a half wave rectifier is	
a) Im/ π b) 2Im/ π c) 2Idc/ π d) 1.414/ π	
36. A sinusoidal voltage of peak value 40V is applied to a half wave rectifier wi R_f = 8 Ω . The peak value of the current is	th $R_L = 800 \Omega$ and
a) 49.5 mA b) 4.95 mA c) 0.495 mA d) 4.95 A	
37. A transistor has $I_B=0.06\ mA$ and $I_E=9.00\ mA$. The value of α is	
a) 0.99	
38. When the transistor operates as an amplifier, the operating point is located	
a) In the center of active region b) In the cut-off region	
c) In the Saturation region d) In the Ohmic region	
39. When BJT operates as a switch, it is operated alternately in	-
a) Cut-off and Saturation region b) Active and cut-off region	
c) Saturation and active region d) Active and saturation region	
40. MOSFET has greatest application in digital circuit due to	
a) Low power consumption b) Less noise	
c) Small amount of space it takes on a chip d) None	
41. A silicon diode is connected in series to a dc supply of 5 Volts and resistant current in the circuit is	the of 1.5 k Ω , the
a) 2.86 mA b) 3.86 mA c) 0.38 mA d) 1.5mA	
42. Average DC load voltage of a full wave Bridge rectifier is	
a) $2Vm/\pi$ b) $2Im/\pi$ c) $Im/0.707$ d) $Im/0.5$	

43. What is the state of an ideal diode in the region of non-conduction?			
a) Open circuit	b) Short circuit	c) Unpredictable	d) Undefined
44. A transistor has	$I_B = 0.08 \text{ mA} \text{ and } I_E = 9$	0.60 mA. The value	of α is
a) 0.99	b) 9.9	c) 990	d) 100
45. The collector to	base current gain β in to	erms of α is defined	as
$\mathbf{a})\frac{\alpha}{1-\alpha}$			
b) $\frac{\alpha}{1+\alpha}$			
c) $\frac{\beta}{1+\alpha}$			
d) $\frac{\beta}{1+\beta}$			
46. The collector to	emitter current gain α in	n terms of β is defin	ned as
a) $\frac{\beta}{1+\beta}$			
b) $\frac{\alpha}{1-\alpha}$			
c) $\frac{\beta}{1+\alpha}$			
d) $\frac{\alpha}{1+\alpha}$			
47. A germanium di current in the circuit		es to a dc supply of	² 4volts and resistance of 2 kΩ, the
a) 1.85 mA	b) 1.45mA	c) 0.185 mA	d) 18.5 mA
48. What is the resis	tance of an ideal diode	in the region of con	duction?
a) 0 Ω b) 5 1	kΩ c) Unpredic	table d) Infi	nity
49. A zener diode of	10V is connected to a	supply of 20V throu	igh a series resistance of 200
ohms. With no load,	current through the zer	ner is	
a) 50 mA b) 500 s	mA c) 5 A d) 400 a	mA	

50. The leakage current in a transistor is due to:			
a) Minority charge carriers b)) Majority charge carriers		
c) Zener effect d)	Breakdown		
51. A bipolar junction transistor is a			
a) Current controlled device	b) Voltage controlled device		
c) Resistance controlled device	d) Junction controlled device		
52. The range of collector to emitter cur	rrent gain α is		
a) 0.96 to 0.99 b) 20 to 200 c) 0.76	to 0.96 d) 0.50 to 1		
53. A germanium diode is connected in $k\Omega$, the current in the circuit is	series to a dc supply of 7.5 volts and resistance of 1.3		
a) 5.53 mA b) 5.53 A	c) 5.35 mA d) 1.53 mA		
54. A Zener diode is a heavily doped se	miconductor device that is designed to operate in		
a) Reverse direction b) Forward direction	ction c) Both forward and reverse d) None		
55. The range of collector to base curren	nt gain β is		
a) 20 to 200 b) 20 to 100 c) 5	50 to 100 d) 10 to 50		
56. The value of β for a silicon transisto 25 μA is	or given the collector current as 1 mA and base current as		
a) 40 b) 4 c) 400	d) 4000		
57. The value of α for a silicon transist as 25 μA is	tor, given the collector current as 1 mA and base current		
a) 0.9756 b) 0.9276	c) 0.9376 d) 0.9176		
58. A silicon and a germanium diodes a resistance of 2.5 k Ω , the current in the c	re connected in series to a dc supply of 8 volts and circuit is		
a) 2.8 mA b) 28 mA	c) 0.28 mA d) 2.8 A		
59. In the breakdown region, zener diode behaves like a source of			
a) Constant voltage b) Constant cu	arrent c) Constant resistance d) Constant power		
60. A resistance is connected in series w	with zener diode in a voltage regulator to		

a) Protect the zener b) Properly reverse bias the zener			
c) Properly forward bias the zener d) switch off the zener			
61. The value of β for a silicon transistor given the collector current as 1 mA and base current as 10 μA is			
a) 100 b) 10 c) 0.1 d) 1000			
62. The value of α for a silicon transistor, given the collector current as 1 mA and base current as 10 μA is			
a) 0.9900 b) 0.9276 c) 0.9376 d) 0.9176			
63. In CE-RC coupled amplifier, an emitter bypass capacitor is connected in parallel with emitter resistance $R_{\rm E}$ to			
a) To provide a low reactance path to the amplified ac signal			
b) Increase the noise in the circuit			
c) To support the resistance R _E			
d) To block the dc voltage			
64. In which one of the following rectifiers the efficiency is low?			
a) Half-wave b) Full-wave c) Bridge d) None of these			
65. Ripple factor for a full wave bridge rectifier with capacitor filter is			
a) $\frac{1}{4\sqrt{3}fCR_L}$ b) $\frac{1}{2\sqrt{3}fCR_L}$ c) $\frac{1}{2fCR_L}$ d) $\frac{1}{4fCR_L}$			
66. If an emitter current is changed by 4mA, the collector current changes by 3.5mA. The value of β will be:			
a) 7 b) 0.875 c) 0.5 d) 3.5			
67. Which of the following statement is correct?			
a) Rectification efficiency of a half wave rectifier is equal to that of the Full wave rectifier			
b) All of the given options			
c) Rectification efficiency of a half wave rectifier is lower than that of the Full wave rectifier			

d) Rectification efficiency of a half wave rectifier is higher than that of the Full wave rectifier
68. A MOSFET is a
a) Current controlled device
b) Voltage controlled device
c) Resistance controlled device
d) Junction controlled device
69. In a Full wave bridge rectifier, the number of diodes conducting at a time during one half cycle of the input signal is
a) 2
70. The doping level in a zener diode is that of a PN diode.
a) the same as
b) less than
c) more than
d) none of the above
71. A MOSFET has terminals.
a) two b) five c) four d) three
72. The number of depletion layers in a transistor is
a) four b) three c) one d) two
73. The base of a transistor is doped
a) heavily
b) moderately
c) lightly
d) none of the above
74. The emitter of a transistor is
a) lightly

lt	b)	heavily
C	2)	moderately
Ċ	1)	none of the above
75. 7	Γh	e value of α of a transistor is
a	a)	more than 1
b	b)	less than 1
C	2)	1
d	d)	none of the above
76. T	Γh	e value of β for a transistor is generally
a	a)	1
b	0)	less than 1
C	2)	between 20 and 500
d	d)	above 500
77. I	[ft]	he value of α is 0.9, then value of β is
a	a)	9
b)	0.9
C	2)	900
d	(l:	90
78. I	ln a	a transistor, signal is transferred from a circuit
a	a)	high resistance to low resistance
b	b)	low resistance to high resistance
C	2)	high resistance to high resistance
d	d)	low resistance to low resistance
79. V	Wi	th the E-MOSFET, when gate input voltage is zero, drain current is
a	a)	at saturation
b	b)	zero
C	2)	IDSS

(1)	widening the channel
80. I	MC	OSFET has a thin layer of silicon dioxide, which act as:
ć	a)	Resistance
1)	Inductor
(2)	Semiconductor
(d)	Capacitor
		UNIT-II
1. W	/hi	ch of the following electrical characteristics is not exhibited by an ideal op-amp?
a) Ir	ıfiı	nite output resistance b) Infinite bandwidth
c) In	fir	tite voltage gain d) Infinite slew rate
2. A	n i	ntegrator circuit using an Op Amp hasin its feedback path
a) C	ap	acitor b) Resistor c) inductor d) Diode
3. T	he	representation 555 for IC 555 timer is mainly because
a) I	t h	as a series of three $5k$ Ω resistors in the internal circuitry
b) I	t h	as voltage levels of 5V in the internal circuitry
c) I	t ha	as five Op Amp comparators internally
d) N	Vor	ne of these
4. IC	5.	55 timer working as a free running oscillator is a
a) I	C	to AC converter b) AC to DC converter
d) I	OC	to DC converter d) DC to DC inverter
5. In	C	olpitts' oscillator, the components used in the feedback network are
a) 2	C a	and 1L b) 2L and 1C c) 2R and 2C d) 2L and 2C

oscillations generated is 5 kHz. The value of the capacitor C is
a) 0.0129 μF b) 0.129 μF c) 0.0219 μF d) 129 μF
7. Gain with negative feedback is given by $A_f = \frac{A}{1+A\beta}$. The feedback factor is
a) β b) A c) A _f d) None
8. An amplifier has an open loop voltage gain of 1000. If 10% negative voltage series feedback is used, then the closed loop gain is
a) 9.9 b) 99.9 c) 0.9 d) 990
9. Find the output voltage of an ideal op-amp if V_1 and V_2 are the two input voltages a) $V_0 = A(V_1 - V_2)$ b) $V_0 = V_1 - V_2$ c) $V_0 = A(V_1 + V_2)$ d) $V_0 = V_1 \times V_2$
10. A differentiator circuit using an Op Amp hasin its feedback path
a) Resistor b) Capacitor c) Inductor d) Diode
11. The voltage levels fixed at one of the terminals of two comparators in the internal circuitry of
IC 555 timer are
a) $\frac{1}{3}V_{cc} \& \frac{2}{3}V_{cc}$
b) $V_{cc} \& \frac{2}{5} V_{cc}$
c) $\frac{1}{5}V_{cc} \& \frac{2}{5}V_{cc}$
d) $0V \& \frac{2}{5}V_{cc}$
12. A sine wave of 0.5 V peak voltage is applied as an input to an inverting amplifier with R_1 = 10 $k\Omega$ and R_f = 50 $k\Omega$ The output voltage Vo is
a) -2.5 V peak b) 5.2 V peak c) -10 V peak d) -2.5 V peak-peak

13. In Hartley oscillator, the components used in the feedback network are

6. With a resistance value of $R=1k\Omega$ in a feedback network of RC oscillator, frequency of

- a) 2L and 1C
- b) 2L and 2C
- c) 2R and 2C
- d) 1L and 2C

14. For an amplifier with negative feedback, the closed loop gain is given by

$$\mathbf{a)} A_f = \frac{A}{1 + A\beta}$$

b)
$$A_f = \frac{A}{1 - A\beta}$$

c)
$$A_f = \frac{A}{1-\beta}$$

d)
$$A_f = \frac{A}{1 - V\beta}$$

15. In a practical oscillator circuit, to start oscillations, the loop gain Aβ must be

- b) Equal to 1 c) Less than 1 d) Not equal to 1 a) Greater than 1
- 16. An amplifier has an open loop voltage gain of 2000. If 40% negative voltage series feedback is used, then the closed loop gain is
- a) 2.49
- b) 24.9
- c) 0.249
- d) 249

17. The output voltage obtained for an ideal op-amp is by

- a) Amplifying the difference between the two input voltages
- b) Amplifying individual input voltages
- c) Amplifying products of two input voltage
- d) None of the mentioned
- 18. The output voltage V_0 of an Op Amp integrator is given by

a)
$$V_0 = -\frac{1}{R_1 C_f} \int_0^t V_{in} dt$$
 b) $V_0 = -\frac{1}{C_f} \int_0^t V_{in} dt$

b)
$$V_0 = -\frac{1}{C_f} \int_0^t V_{in} dt$$

c)
$$V_0 = -\frac{1}{R_1 C_f} \int_{-\infty}^t V_{in} dt$$
 d) $V_0 = -\frac{1}{R_f C_1} \int_0^t V_{in} dt$

d)
$$V_0 = -\frac{1}{R_f C_1} \int_0^t V_{in} dt$$

- 19. The outputs of two comparators are connected to a in the internal circuitry of IC 555 timer
- a) S-R Flip Flop b) D-type Flip Flop c) J-K Flip Flop d) T-Type Flip Flop

- 20. A sine wave of 0.5 V peak voltage is applied as an input to a non- inverting amplifier with R_1 = 10 k Ω and R_f = 50 k Ω The output voltage Vo is **a)** 3 V peak
 b) 2.5 V peak
 c) -3 V peak
 d) 3 V peak-peak

 21. In an amplifier, positive feedback leads to
- a) Oscillations b) Amplification c) Breakdown d) None of these
- 22. For an amplifier with positive feedback, the closed loop gain is given by

$$\mathbf{a}) A_f = \frac{A}{1 - A\beta}$$

b)
$$A_f = \frac{A}{1+A\beta}$$

c)
$$A_f = \frac{A}{1-\beta}$$

d)
$$A_f = \frac{A}{1 - V\beta}$$

- 23. What is an oscillator?
- a) A rectifier b) A generator c) **An amplifier with positive feedback** d) An amplifier with positive feedback
- 24. An amplifier has an open loop voltage gain of 100,000. If the negative voltage series feedback factor is 0.01, then the closed loop gain is
- **a) 99.9** b) 9.9 c) 0.9 d) 990
- 25. Which is not the ideal characteristic of an op-amp?
- a) Input Resistance is zero
- b) Output impedance is zero
- c) Bandwidth is infinity
- d) Open loop voltage gain is infinity
- 26. The output voltage V_0 of an Op Amp differentiator is given by

a)
$$V_0 = -R_f C \frac{dV_{in}}{dt}$$
 b) $V_0 = -\frac{1}{C_f} \int_0^t V_{in} dt$

$$\mathbf{c}) V_0 = -\frac{1}{R_f C} \frac{dV_{in}}{dt}$$

c)
$$V_0 = -\frac{1}{R_f C} \frac{dV_{in}}{dt}$$
 d) $V_0 = -\frac{1}{R_f} \int_0^t V_{in} dt$

27. The charging time or ON time of the capacitor in Astable mode of operation using IC 555 timer is

a)
$$T_{ON} = 0.693(R_1 + R_2)C$$
 b) $T_{ON} = 0.693(R_2)C$

b)
$$T_{ON} = 0.693(R_2)C$$

c)
$$T_{ON} = 0.693(R_1)C$$
 d) $T_{ON} = 0.693(F)C$

$$d)T_{ON} = 0.693(F)C$$

28. A sine wave of 0.5 V peak voltage is applied as an input to a non-inverting amplifier with R₁ = 12 k Ω and R_f = 24 k Ω The output voltage Vo is

- a) 1.5 V peak
- b) -2.5 V peak c) 10 V peak d) -5 V peak

29. In an amplifier with positive feedback, open loop gain A is 20 with feedback factor β as 0.04. Then the gain of the amplifier with feedback is

- a) 100
- b) 50
- c) 200
- d) Infinity

30. The feedback factor of Colpitt's oscillator is given by

$$\mathbf{a})\,\beta = \frac{c_2}{c_4}$$

b)
$$\beta = \frac{c_1}{c_2}$$

c)
$$\beta = \frac{A}{A_f}$$

d)
$$\beta = \frac{A_f}{A}$$

31. Which of the following is not the advantages of negative feedback amplifier?

a) Unstable gain b) Higher input impedance c) Reduction in noise d) Lower output impedance

32. An amplifier has an open loop voltage gain of 10,000. If the negative voltage series feedback factor is 0.01, then the closed loop gain is

- a) 99
- b) 9.9
- c) 0.9
- d) 990

33. Which factor determines the output voltage of an op-amp?
a) Both positive and negative saturation voltage b) Negative saturation
c) Positive saturation d) Supply voltage
34. The output voltage swing of a comparator for an applied input voltage depends on
a) Dual power supply voltages b) Regulated power supply voltages
c) AC signals applied at the terminals of the Op Amp d) DC signals applied at the terminals of the Op Amp
35. The two Op Amps used in the internal circuit of IC 555 timer function as
a) Comparators b) voltage followers c) Differentiators d) Amplifiers
36. A sine wave of 0.5 V peak voltage is applied as an input to an inverting amplifier with $R_1=12$ $k\Omega$ and $R_f=24$ $k\Omega$ The output voltage Vo is
a) -1.0 V peak b) -2.5 V peak c) -1 V peak-peak d) -5 V peak
37. In an amplifier with negative feedback, open loop gain A is 20 with feedback factor β as 0.04. Then the gain of the amplifier with feedback is
a) 11.11 b) 100 c) 200 d) Infinity
38. The feedback factor of Hartley oscillator is given by
a) $\beta = \frac{L_1}{L_2}$
$\mathbf{b}) \beta = \frac{L_2}{L_1}$
c) $\beta = \frac{A}{A_f}$
d) $\beta = \frac{A_f}{A}$
39. Which among the following parameters acts as an initiator for the operation of an oscillator
in the absence of input signal?
a) Noise voltage b) Noise power c) Noise current d) Noise temperature

40. In which type of oscillator circuit capacitor split representation can be seen in tank circuit?
a) Colpitts b) RC phase shift c) Hartley d) Weinbridge
41. A non-inverting closed loop op amp circuit generally has a gain factor
a) Greater than one b) Less than one c) Zero d) Equal to one
42. An inverting amplifier using Op Amp with R_1 and R_f as the resistors provide an output voltage equal to one of them as
a) $V_0 = -\left(\frac{R_f}{R_1}\right) V_{in}$
b) $V_0 = -\left(1 + \frac{R_f}{R_1}\right) V_{in}$
$c)V_0 = \left(1 + \frac{R_f}{R_1}\right)V_{in}$
d) $V_0 = \left(\frac{R_f}{R_1}\right) V_{in}$
43. The duty cycle 'D' of IC 555 timer in a stable mode in terms of its time period is defined by
13. The daty eyele B of the 355 times in ababic mode in terms of its time period is defined by
a) $\frac{T_{ON}}{T_{ON} + T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None
a) $\frac{T_{ON}}{T_{ON} + T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None
a) $\frac{T_{ON}}{T_{ON}+T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None 44. A sine wave of 0.5 V peak voltage is applied as an input to a non-inverting amplifier with R ₁
a) $\frac{T_{ON}}{T_{ON}+T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None 44. A sine wave of 0.5 V peak voltage is applied as an input to a non-inverting amplifier with R_1 = 6 k Ω and R_f = 24 k Ω The output voltage Vo is
a) $\frac{T_{ON}}{T_{ON} + T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None 44. A sine wave of 0.5 V peak voltage is applied as an input to a non- inverting amplifier with R ₁ = 6 k Ω and R _f = 24 k Ω The output voltage Vo is a) 2.5 V peak b) -2.5 V peak c) 10 V peak d) 2.5 V peak-peak
a) $\frac{T_{ON}}{T_{ON}+T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None 44. A sine wave of 0.5 V peak voltage is applied as an input to a non- inverting amplifier with R ₁ = 6 k Ω and R _f = 24 k Ω The output voltage Vo is a) 2.5 V peak b) -2.5 V peak c) 10 V peak d) 2.5 V peak-peak 45. In an RC phase shift oscillator, the resistances in the feedback network are 4.7 k Ω and capacitor
a) $\frac{T_{ON}}{T_{ON}+T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None 44. A sine wave of 0.5 V peak voltage is applied as an input to a non- inverting amplifier with R ₁ = 6 k Ω and R _f = 24 k Ω The output voltage Vo is a) 2.5 V peak b) -2.5 V peak c) 10 V peak d) 2.5 V peak-peak 45. In an RC phase shift oscillator, the resistances in the feedback network are 4.7 k Ω and capacitor values are C = 0.47 μ F. The frequency of oscillations is
a) $\frac{T_{ON}}{T_{ON}+T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None 44. A sine wave of 0.5 V peak voltage is applied as an input to a non- inverting amplifier with R ₁ = 6 k Ω and R _f = 24 k Ω The output voltage Vo is a) 2.5 V peak b) -2.5 V peak c) 10 V peak d) 2.5 V peak-peak 45. In an RC phase shift oscillator, the resistances in the feedback network are 4.7 k Ω and capacitor values are C = 0.47 μ F. The frequency of oscillations is a) 29.413 Hz b) 294.13 Hz c) 2941.3 Hz d) None of these
a) $\frac{T_{ON}}{T_{ON}+T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None 44. A sine wave of 0.5 V peak voltage is applied as an input to a non- inverting amplifier with R ₁ = 6 k Ω and R _f = 24 k Ω The output voltage Vo is a) 2.5 V peak b) -2.5 V peak c) 10 V peak d) 2.5 V peak-peak 45. In an RC phase shift oscillator, the resistances in the feedback network are 4.7 k Ω and capacitor values are C = 0.47 μ F. The frequency of oscillations is a) 29.413 Hz b) 294.13 Hz c) 2941.3 Hz d) None of these
a) $\frac{T_{ON}}{T_{ON}+T_{OFF}}$ b) $\frac{T_{ON}}{T_{OFF}}$ c) $\frac{T}{T_{OFF}}$ d) None 44. A sine wave of 0.5 V peak voltage is applied as an input to a non- inverting amplifier with R ₁ = 6 k Ω and R _f = 24 k Ω The output voltage Vo is a) 2.5 V peak b) -2.5 V peak c) 10 V peak d) 2.5 V peak-peak 45. In an RC phase shift oscillator, the resistances in the feedback network are 4.7 k Ω and capacitor values are C = 0.47 μ F. The frequency of oscillations is a) 29.413 Hz b) 294.13 Hz c) 2941.3 Hz d) None of these 46. Negative feedback amplifier a) Reduces gain b) Increases gain c) Increases noise d) Reduces phase shift

d) 1

48. In which type of oscillator circuit inductor split representation can be seen in tank circuit?

a) Hartley b) RC phase shift

c) Colpitts d) Wein bridge

49. An ideal OP-AMP has following characteristics

a) $R_i = infinity$, A = infinity, $R_0 = infinity$

b) Ri = 0, A=infinity Ro = zero

c) Ri = infinity, A = 0, Ro = infinity

d) Ri = 0, A = infinity, Ro = infinity

50. A non-inverting amplifier using Op Amp with R1 and Rf as the resistors provide an output voltage equal to one of them as

a)
$$V_0 = \left(1 + \frac{R_f}{R_1}\right) V_{in}$$

b)
$$V_0 = -\left(\frac{R_f}{R_1}\right) V_{in}$$

c)
$$V_0 = -\left(1 + \frac{R_f}{R_1}\right) V_{in}$$

d)
$$V_0 = \left(\frac{R_f}{R_1}\right) V_{in}$$

51. The duty cycle 'D' of IC 555 timer in a stable mode in terms of resistors used in the external circuit is defined by

a)
$$\frac{R_1 + R_2}{R_1 + 2R_2}$$

b)
$$\frac{R_1 + 2R_2}{R_1 + R_2}$$

c)
$$\frac{R_1 - R_2}{R_1 - 2R_2}$$

d)
$$\frac{R_1 + R_2}{R_1 - 2R_2}$$

52. A non-inverting Op-Amp has a gain of 61 with R1 = 1 k Ω . The resistor in the feedback path must have a value of

a) 60 kΩ	b) 59 kΩ	c) 61 kΩ	d) 62 kΩ	
53. An RC network in an RC phase shift oscillator has $C=0.1~\mu F$. The frequency of oscillations is 1 kHz. The value of R used in the feedback network is				
a) 650 Ω	b) 500 Ω	c) 600 Ω	d) 1 kΩ	
54. RC phase shi	ft oscillator is a			
a) Low frequency oscillator b) High frequency oscillator c) Stable frequency oscillator d) Relaxation oscillator 55. In a Hartley oscillator, if L1 = 5 mH, L2 = 10 mH and C = 0.01μ F, the value of the feedback factor β is				
a) 0.5 b) 0.05	c) 50 d) 500			
56. The frequency of oscillations generated by RC phase shift oscillator is				
$\mathbf{a})\frac{1}{2\pi\sqrt{6}RC}$	b) $\frac{1}{2\pi RC}$ c) $\frac{1}{2\pi\sqrt{6R}}$	$\frac{1}{\overline{C}}$ d) $\frac{1}{2\pi 6RC}$		
57. For an Op-Amp having differential gain A _d and Common mode gain Ac, CMRR is				
a) A _d /Ac	b) $A_d + Ac$	c) $1+(A_d/Ac)$	d) Ac/A _d	
58 A voltage foll	lower using Op Amp i	s also known as		
a) Buffer ampli	fier b) Non inverting	amplifier c) Inver	ting amplifier d) Switch	
59. The pin num	ber 7 in IC 555 timer	is assigned as		
a) Discharge pi	n b) Threshold pin	c) output pin d) No	ne of these	
60. A non-invert		in of 61 with $R1 = 2$	$k\Omega$. The resistor in the feedback pat	ih
a) 120 kΩ	b) 121 kΩ	c) 61 kΩ	d) 62 k Ω	
61. An RC network in an RC phase shift oscillator has $C=0.2~\mu F$. The frequency of oscillations is 1 kHz. The value of R used in the feedback network is				
a) 325 Ω	b) 500 Ω	c) 600 Ω	d) 1 kΩ	

62. Hartley oscillator is a
a) High frequency oscillator b) Stable frequency oscillator
c) Low frequency oscillator d) Relaxation oscillator
63. In a Hartley oscillator, if $L1=7$ mH, $L2=10$ mH and $C=0.01\mu F$, the value of the feedback
factor β is
a) 0.7 b) 0.07 c) 70 d) 700
64. The frequency of oscillations generated by Colpitts oscillator is
a) $\frac{1}{2\pi\sqrt{LC_{eq}}}$ b) $\frac{1}{2\pi\sqrt{L_{eq}C}}$ c) $\frac{1}{2\pi\sqrt{LC}}$ d) $\frac{1}{2\pi LC}$
65. A simple application of an Op-Amp that can be used to generate a gain of unity is
a) Voltage follower b) Differentiator c) Integrator d) Comparattor
66. Op Amp Comparator is a circuit whose output voltage switches between
a) $+V_{sat}$, $-V_{sat}$ b) $+V_{in}$, $-V_{in}$ c) $+V_o$, $-V_o$ d) None
67. The discharge pin in IC 555 timer is connected to of the transistor.
a) Collector terminal b) Emitter terminal c) Base terminal d) None of these
68. An inverting Op-Amp has a gain of - 61 with R1 = 1 k Ω . The resistor in the feedback path must have a value of
a) 61 k Ω b) 59 k Ω c) 60 k Ω d) 62 k Ω
69. The components in the feedback network of LC oscillators are
a) L & C components b) R & C components c) Only L Component d) None of these
70. What is an angle of phase shift for each designed RC network in the Phase Shift Oscillator circuit?
a) 60^{0} b) 45^{0} c) 30^{0} d) 90^{0}
71. In a Hartley oscillator, if L1 = 2 mH, L2 = 8 mH and C = $0.01\mu F$, the value of the feedback factor β is

a) 0.25	b) 0.025	c) 250	d) 25

72. The frequency of oscillations generated by Hartley oscillator is

a)
$$\frac{1}{2\pi\sqrt{LeqC}}$$
 b) $\frac{1}{2\pi\sqrt{LC_{eq}}}$ c) $\frac{1}{2\pi\sqrt{LC}}$ d) $\frac{1}{2\pi LC}$

73. For an ideal op-amp, which of the following is false?

a) The current from output terminal is zero

- b) The current into the input terminals is zero
- c) The differential voltage between the input terminals is zero
- d) The output resistance is zero

74. With reference to the output voltage of an inverting Op Amp summer $V_0 = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$, if $R_f = R_1 = R_2 = R_3 = R$, then

$$\mathbf{a}) V_0 = -(V_1 + V_2 + V_3)$$

b)
$$V_0 = -V_1 + V_2 + V_3$$

c)
$$V_0 = V_1 + V_2 + V_3$$

- d) None of these
- 75. The duty cycle D in a stable mode using IC 555 is obtained using
- a) External resistors b) Internally connected resistors
- c) Comparators d) RS Flip flop

76. An inverting Op-Amp has a gain of - 61 with R1 = 1 k Ω . The resistor in the feedback path must have a value of

- a) 162kΩ b) 82 kΩ c) 182 kΩ d) 62 kΩ
- 77. In an RC-Phase shift oscillator, the components used in the feedback network are
- a) 3R and 3C b) 1R and 1C c) 4R and 4C d) 2R and 2L
- 78. Gain with negative feedback is given by $A_f = \frac{A}{1 A\beta}$. The feedback factor is

a) β	b) A	c) A _f	d) None	
79. In a Colpitts of factor β is	oscillator, if C1 = 10	00 pF, C2 = 60 pF	and $L = 0.422$ H, the va	alue of the feedback
a) 0.6	b) 0.06	c) 60	d) 600	
80. The criterion	that determines mat	hematical conditi	on to generate sustained	d oscillations is
a) Barkhausen	b) Shockley c)	Pinch off d) 7	Threshold	
		UNIT-III		
1. The unit used f	for measuring Mess	age or information	n is	
(a) bits per secon	nd (b) Hertz (c) Oh	ms (d) meter per	second	
2. The initial mob		systems for publi	c safety in United states	s used the following
•				
3. Actuators are u	ised to			
a) Make a m	echanical moveme	ent		
b) Sense an o	bject			
c) Activate a	chemical			
d) All of the a	lbove			
4. The function of	f a sensor is to			
a) Detect ever	nts within specifie	d environment		
b) Separate pl	nysical parameters			
c) Only Track	the data			
d) None				
5. Fibre optic cab	le is a ty	pe of channel.		
(a) Wired chann	el (b) Free space ch	annel (c) Radio c	hannel (d) Wireless cha	nnel

6. The	mechanism of usi	ng the same frequency band	l within a geographical	area in a Cellular or
mobile	e communication s	ystem is referred to as,		
a)	Frequency reuse			
b)	Efficiency			
c)	Reliability			
d)	Bandwidth coordi	nation		
7. A m	nicrocontroller at-le	east should consist of:		
a) (CPU, RAM, ROM	I, I/O ports and timers		
b) l	RAM, ROM, I/O p	orts and timers		
c) (CPU, RAM, I/O po	rts and timers		
d) (CPU, ROM, I/O po	orts and timers		
8. Wh	ich of the following	g is true about microprocess	ors?	
a) l	It contains ALU, (CU, and registers		
b) l	It has an internal m	emory		
c) I	t has interfacing ci	rcuits		
d) l	It uses Harvard arc	hitecture		
9 mediu		ormation into signal suitable	to be transmitted over	the communication
(b) Tr	ansmitter	(b) Transmission line	(c) Receiver	(d) Channel
10. W	hich of the following	ng is not an example of a Sm	nall-Scale Embedded S	ystems?
a)	Cell Phone			
b)	Electronic Barbie	doll		
c)	Simple Calculator			
d)	Electronic Toy Car	r		
10. In	a communication s	ystem, the noise can be gen	erated at the	
(a) tra	nsmitter, channel	, receiver (b) channel, rec	ceiver	
(c) tra	nsmitter, channel ((d) only in the channel		

11. A fixed station in a mobile radio system used for radio communication with the mobile stations is
a) Base station b) Cellular station c) Switching center d) Public switching station
12. Which of the following is true about optocouplers?
a) Optocoupler can be used in both input and output circuitry
b) Optocoupler acts as an input device only
c) Optocoupler acts as an output device only
d) None of these
13. Which of the following is example for the input subsystem of an embedded system?
a) Optocoupler
b) LED
c) Seven Segment
d) None of these
14. Best example for natural noise is
(a) Rain (b) Traffic noise (c) Industrial noise (d) Sound pollution
15. The radio channel used for transmission of information from a base station to a mobile station
is called,
a) Forward channel
b) Reverse channel
c) Control channel
d) Mobile channel
16. Which one of the following offers external chips for memory and peripheral interface circuits?
a) Microprocessor
b) Microcontroller
c) Embedded system
d) Peripheral System
17. Best example for man-made noise is
(a) Traffic noise (b) Rain (c) Radiations from sun, stars (d) Reflections from earth

18. The process of transferring a mobile station from one base station to another base station is called
 a) Hand-off b) Channel efficiency c) Frequency reuse d) Frequency Division Duplexing
19. The speech signal frequency range is
(a) 300 Hz to 3.4 kHz (b) 20 Hz to 20 kHz (c) 30 to 34 kHz (d) 10 to 10 kHz
20. In a cellular radio system, the connects the cellular base stations and
mobile stations to the Public Switched Telephone Networks.
a) Mobile Switching Center (MSO)
b) Base station'(BS)
c) Forward Control Channel (FCC)
d) Time Division Multiple Access (TDMA)
21. ASIC stands for?
a) Application Specific Integrated Circuit
b) Avionics Subsystem Interface Contractor
c) Aviation Security Identification Card
d)Application-Specific introduction code
22. The audio frequency range is
(a) 20 Hz to 20 kHz (b) 30 to 34 kHz (c) 300 Hz to 3.4 kHz (d) 10 to 10 kHz
23. Which of the following is true about Embedded System?
a) All of them
b) An embedded system usually performs a specialized operation and does the same repeatedly
c) It must have a memory, as its software usually embeds in ROM
d) It must have connected peripherals to connect input and output devices.
24. The loss in the transmission is minimum for the following type of wire
(a) Fiber optic cable (b) Coaxial cable (c) Flat cable (d) Copper wire
25. The following frequency band is utilized in cellular or mobile communication system,

	a)	Radio frequency
	b) .	Audio frequency
	c) A	Audible frequency
	d)	Unlicensed frequency
26.	On	which component modulation is performed?
	a)	Transmitter
	b)	Signal
	c)	Jammer
	d)	None of the above
27.	Wl	nat kind of modulation is used in television for sound signal?
	a)	Amplitude modulation
	b)	Frequency modulation
	c)	Phase modulation
	d)	Both a and b
28.	WI	nat is modulated signal?
	a)	It is the product of modulating signal and carrier signal
	b)	It is the product of modulating signal and information signal
	c)	It is an input signal
	d)	None of the above
29.	Αı	microprocessor with 8-bit can process bits of data at a time.
	a)	4
	b)	8
	c)	12
	d)	16
30.	Wł	nat is the primary difference between a microcontroller and a microprocessor?
a) I	Mic	rocontrollers have higher clock speeds than microprocessors.
b) I	Mic	crocontrollers have built-in memory and peripherals.

- c) Microprocessors have built-in ADCs and DACs.
- d) Microprocessors are smaller in size.