DPENCLASSROOMS

Parcours Data Scientist

Projet 8 : Déployez un modèle dans le Cloud

Etudiant: Eric Wendling Mentor: Julien Heiduk Date: 04/12/2020

Déploiement d'un modèle de classification d'images dans le Cloud

Contexte

Développement de systèmes innovants pour la préservation de la biodiversité des fruits

- Robots cueilleurs intelligents
- Application mobile pour la reconnaissance de fruits

Objectif

Développement d'un moteur de classification de fruits

- Augmentation rapide du volume de données
- Prototype architecture Big Data

Livrable

Notebook Jupyter

- PySpark
- Etapes de traitement des données

Données

Images de fruits

Propriétés

Dimensions (pixels): 100 X 100

• Profondeur: 24

Stockage

	fruits_360	
JEU DE TEST	Test	
131 répertoires (catégories)	Apricot	76_100.jpg
22 688 images	Carambula	
152 Mo	Strawberry	
JEU D'ENTRAINEMENT	Training	93_100.jpg
131 répertoires (catégories)	Apricot	
67 692 images	Carambula	
467 Mo	Strawberry	r_6_100.jpg

Label	Number of training images	Number of test images
Banana Lady Finger	450	152
Banana Red	490	166
Beetroot	450	150
Blueberry	462	154
Cactus fruit	490	166
Cantaloupe 1	492	164
Cantaloupe 2	492	164
Carambula	490	166
Cauliflower	702	234
Cherry 1	492	164
Cherry 2	738	246
Cherry Rainier	738	246
Cherry Wax Black	492	164
Cherry Wax Red	492	164
Cherry Wax Yellow	492	164
Chestnut	450	153
Clementine	490	166

Source: Horea Muresan, Mihai Oltean. Fruit recognition from images using deep learning.

Techniques de classification d'images

Réseaux de neurones convolutifs

➤ Identification auto des variables explicatives

Autres techniques d'apprentissage supervisé

> Détermination des variables explicatives

Modélisation

d

Variables explicatives

Points d'intérêts et descripteurs

OpenCV

SIFT, ORB, SURF

Descripteurs

Variables explicatives

Visual Words

- Clustering des descripteurs
 - Modèle K-Means
 - K clusters (centroïdes)

Variables

- Classification des descripteurs
 - Prédictions modèle K-Means
- Bag of Words
- Historisation
 - Variables = clusters (visual words)
 - Valeurs = nombre de cluster par image

Poids

Matrice des descripteurs

Jeu de données	Nombre d'images	Nombre de points d'intérêt par image	Nombre de descripteurs total	Poids d'un descripteur (octets)	Poids total (Gb)
Entraînement	67692	50	3384600	977	3,3
Test	22688	50	1134400	977	1,1

Architecture Big Data

Big Data

Important volume de données

- Scalabilité
 - Augmentation des ressources (serveurs, RAM...)
- Limites
 - Lorsque les solutions classiques de stockage, de gestion et de traitement sont insuffisantes

Les 3V du Big Data

- Volume
 - Stockage
- Vélocité
 - Traitement temps réel
- Variété
 - Données structurées / non structurées

Calcul distribué

- Clusters de calcul
- Passage à l'échelle horizontal
- Plus grande tolérance aux pannes
 - Transfert de tâches entre nœuds du cluster
 - Recréer l'état du nœud en échec

Architecture Big Data

MapReduce

Cadre générique pour le calcul distribué

- Diviser pour régner
 - Problème → Sous-problèmes → Résolutions → Combinaison des résultats
- Combinaison de 2 fonctions simples

Projet 8: Déployez un modèle dans le cloud

Hadoop 1.0 (Apache)

Infrastructure de référence pour MapReduce

- Socle technique
 - HDFS (Hadoop Distributed File System)
 - Framework MapReduce
- Architecture HDFS
 - Type maître / esclaves
 - Distribution des fichiers
 - Réplication des fichiers
 - · Colocalisation données/traitements
- Framework MapReduce
 - Type maître / esclaves
 - Ordonnancement traitements
 - Distribution de l'exécution
 - Localisation des fichiers

Fichier découpé en blocs

Parcours Data Scientist

Projet 8: Déployez un modèle dans le cloud

Eric Wendling 2020-12-04

Hadoop 2.0 (Apache)

Optimisation de l'architecture

- YARN
 - Yet Another Ressource Negociator
 - Exécution de tout type d'applications
- Hadoop Streaming
 - Utilisation d'autres langages que Java

Installation / Distributions

- Installation manuelle
 - Paquets
- Distribution intégrée
 - Services
- Cloud
 - Services

Limites

- Ecriture sur disque
 - Ecriture sur disque des données entre 2 étapes (Map Reduce)
 - Lenteur d'exécution
- Jeu d'instructions limité
 - Map et Reduce
 - Difficulté de réaliser des opérations complexes

Parcours Data Scientist

Projet 8: Déployez un modèle dans le cloud

Spark (Apache)

Description

Framework open source de calcul distribué

Avantages

- Données stockées en RAM
 - Rapidité d'exécution (X10 à X100 par rapport à Hadoop)
- Jeu d'instructions optimisé
 - Nombreuses opérations en mode distribué
 - Réduction automatique niveau Map / Reduce

Temps réel

Machine Learning

Langages de programmation

- Java
- Scala (natif)
- Python
 - > API PySpark

Spark (Apache)

Architecture

- Type Maître / Esclaves
- Gestion des fichiers: HDFS
- Hadoop Map Reduce

Distribution des calculs

- Classe SparkContext
 - > Configuration de l'application
 - Lecture des données
- Création d'un objet de type RDD (Resilient Distributed Dataset)
 - > Format permettant la distribution des calculs
 - Optimisé pour la tolérance aux pannes
 - > Type clé / valeur

Architecture Big Data

d

Spark (Apache)

RDD (Resilient Distributed Dataset)

- Types d'opérations
 - Transformation
 - Action
- DAG (Directed Acyclic Graph)
 - > Tolérance aux pannes
- Lazy evaluation
 - Evaluation des transformations au moment utile
 - Lors d'une action

Spark - Langage Python

Installation (LOCAL)

- Packages
 - Java
 - Python3
 - Jupyter Notebook
 - Spark / PySpark
- Variables d'environnement

```
export SPARK_HOME=/opt/spark
export PATH=$SPARK_HOME/bin:$PATH
export PYSPARK_PYTHON=python3
```


Console Spark - Python

eric@eric-VirtualBox:~/OC_DS_P8\$ spark-submit --master local[2] P8_01_spark.py True data/fruits_360...

Spark - Langage Python

Installation (LOCAL)

- Packages
 - Java
 - Python3
 - Jupyter Notebook
 - Spark / PySpark

Variables d'environnement

```
export SPARK_HOME=/opt/spark
export PATH=$SPARK_HOME/bin:$PATH
export PYSPARK_PYTHON=python3

export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS='notebook'
```

```
eric@eric-VirtualBox:~/OC_DS_P8$ pyspark
[I 18:32:22.066 NotebookApp] Serving notebooks from local directory: /home/eric/OC_DS_P8
[I 18:32:22.066 NotebookApp] The Jupyter Notebook is running at:
[I 18:32:22.067 NotebookApp] The Jupyter Notebook is running at:
[I 18:32:22.067 NotebookApp] or http://localhost:8888/?token=f7f0bcbe79395ca952b1d8a5e1339236d49d9f66a5199a23
[I 18:32:22.067 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 18:32:22.185 NotebookApp]

To access the notebook, open this file in a browser:
    file:///home/eric/.local/share/jupyter/runtime/nbserver-14058-open.html
Or copy and paste one of these URLs:
    http://localhost:8888/?token=f7f0bcbe79395ca952b1d8a5e1339236d49d9f66a5199a23
    or http://l27.0.0.1:8888/?token=f7f0bcbe79395ca952b1d8a5e1339236d49d9f66a5199a23
```


4 Conception

Déploiement d'un modèle dans le Cloud

Descripteurs

Visual Words

Bag of Words

Variables

Réduction de dimension

Classification

```
Identification des chemins d'accès aux répertoires d'images
Nombre d'images par catégorie (sous-répertoire):
    Catégorie Nombre d'images
        Corn
                           50
                                                                                     Calcul des descripteurs
   Raspberry
                                                                                     ______
      0range
                           50
Nombre total d'images: 150
                                   dataset path = data/fruits 360 v3b/Training/
                                                                                    Chargement des images (rdd images)
sdf images = spark.read.format("binaryFile") \
                                                                                    MapPartitionsRDD[4] at javaToPython
                .option("pathGlobFilter", "*.jpg") \
                .option("recursiveFileLookup", "true") \
                                                                                    Nombre de partitions: 5
                .load(dataset path) \
                                                                                    Dimension: 150
                .select("path","content")
rdd images = sdf images.rdd
                                                                                    Descripteurs (rdd desc)
rdd cat ima desc = rdd images.map(lambda img: get descriptors(img))
rdd cat ima desc f = rdd cat ima desc.filter(lambda x: x[2] is not None).cache()
                                                                                    PythonRDD[16] at RDD at PythonRDD.scala:53
rdd desc = rdd cat ima desc f.flatMap(lambda x: x[2])
                                                                                    Nombre de partitions: 5
                                                                                    Dimension: 11133
```

4 Conception

Déploiement d'un modèle dans le Cloud

Descripteurs Visual Words Bag of Words Variables Réduction de dimension Classification

PythonRDD[16] at RDD at PythonRDD.scala:53

Nombre de partitions: 5

Dimension: 11133

km model = KMeans.train(rdd desc, nb clusters, maxIterations=2000, initializationMode="random")

Classification non supervisée des descripteurs avec K-Means

Modèle K-Means (km_model)

<pyspark.mllib.clustering.KMeansModel object at 0x7fd9a5a06130>

Nombre de clusters: 30 ← Visual Words

Parcours Data Scientist

Projet 8: Déployez un modèle dans le cloud

Descripteurs Visual Words Bag of Words Variables Réduction de dimension Classification

```
rdd ima pred = sdf ima pred.rdd.map(lambda x:x)
 rdd km pred = km model.predict(rdd desc)
                                                                       rdd words = rdd ima pred.reduceByKey(lambda a,b: str(a) + ',' + str(b))
                                                                       Nombre de partitions: 2
                                                                       Dimension: 79
Prédictions des descripteurs avec K-Means
                                                                               (sdf ima pred)
                                                                                                                            (sdf words)
Prédictions (rdd km pred)
                                                                              +---+
                                                                                id|prediction|
                                                                                                                  |image id|
PythonRDD[226] at RDD at PythonRDD.scala:53
                                                                                            31
                                                                                                                        110 | [3, 21, 11, 27, 7...
                                                                              110
                                                                                                                        112 [3, 3, 3, 27, 11,...
                                                                              110
                                                                                           21
Nombre de partitions: 5
                                                                                                                        108 [19, 13, 27, 3, 7...
                                                                              110
                                                                                           11
Dimension: 11133
                                             Concaténation des identifiants
                                                                                                                        106 [3, 1, 3, 27, 27, ...
                                                                                           27
                                                                              110
                                                                                                  ReduceByKey
                                              des images (encodés) et des
                                                                                            7
                                                                                                                        114 [19, 3, 7, 3, 11,...
                                                                              110
Collecte des prédictions (list km pred)
                                              prédictions (clusters K-Means)
                                                                                                                        116 [21, 3, 7, 23, 21...
                                                                              110
                                                                                           11
                                                                              110
                                                                                           13
                                                                                                                        140 | [27, 3, 8, 15, 27...
                                                                                                                        124 | [13, 7, 0, 3, 3, ...
                                                                              110
                                                                                           11
[3, 21, 11, 27, 7, 11, 13, 11, 20, 1]
                                                                                                                        102 | [13, 3, 21, 27, 3...
                                                                                           20
                                                                              110
                                                                              110
                                                                                            1|
                                                                                                                        136 [3, 19, 27, 8, 27...
                                               sdf words = rdd words.map(lambda tupl words: (tupl words[0], str(tupl words[1]).split(','))) \
                                                                     .toDF(['image id','words'])
```


Descripteurs Visual Words Bag of Words Variables Réduction de dimension Classification

```
vectorizer = CountVectorizer(inputCol="words", outputCol="bag of words")
vectorizer transformer = vectorizer.fit(sdf words)
sdf bow = vectorizer transformer.transform(sdf words).select('image id', 'bag of words')
           (sdf words)
                                                                     Bag of words (sdf bow)
                                                                                    bag of words
|image id|
                                                                image id|
                                                                                                    image_id,bag_of_words
110,"[30,[0,],2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
25,26,27,28,29],[3.0,9.0,4.0,15.0,4.0,9.0,10.0,1.0,3.0,5.0,
      110 | [3, 21, 11, 27, 7...
                                                                      110 | (30, [0, 1, 2, 3, 4, 5, . . .
      112 | [3, 3, 3, 27, 11, . . .
                                                                      112 (30, [0, 1, 2, 3, 4, 5, ...
      108 [19, 13, 27, 3, 7...
                                                                      108 (30, [0, 1, 2, 3, 4, 5, . . .
                                       CountVectorizer
      106 [3, 1, 3, 27, 27, ...
                                                                      106 | (30, [0, 1, 2, 3, 4, 5, ...
      114 [19, 3, 7, 3, 11, ...
                                                                      114 | (30, [0, 1, 2, 3, 4, 5, ...
                                                                                                                                   DataFrame des
                                                                                                      transformation
      116 [21, 3, 7, 23, 21...
                                                                      116 | (30, [0, 1, 2, 3, 4, 5, ...
                                                                                                                               variables explicatives
      140 | [27, 3, 8, 15, 27...
                                                                      140 | (30, [0, 1, 2, 3, 4, 5, ...
      124 [13, 7, 0, 3, 3, ...
                                                                      124 (30, [0, 1, 2, 3, 4, 5, ...
      102 | [13, 3, 21, 27, 3...
                                                                      102 | (30, [0, 1, 2, 3, 4, 5, ...
      136 [3, 19, 27, 8, 27...
                                                                      136 | (30, [0, 1, 2, 3, 4, 5, ...
                                              Nombre de visuals
                                                                                      Raspberry 19 100.jpg
                                                                                                                Raspberry
                                                                                   1 Raspberry 14 100.jpg
                                                                                                                Raspberry
                                                                                                                             2.0
                                                                                                                                  8.0
                                             words uniques (30)
                                                                                      Raspberry 43 100.jpg
                                                                                                                Raspberry
                                                                                                                             2.0
                                                                                    3 Raspberry 45 100.jpg
                                                                                                                Raspberry
                                                                                                                             2.0
                                                                                                                                        18.0
                                                                                                                                                9.0
                                                                                                                                                      2.0
                                                                                                                                  7.0
                                                                                      Raspberry 20 100.jpg
                                                                                                                Raspberry 2.0
                                                                                                                   Dimensions du jeu de données: (150, 32)
```

Projet 8: Déployez un modèle dans le cloud

Conception

Descripteurs

Visual Words

Bag of Words

Variables

Réduction de dimension

Classification

```
pca dim = int(nb clusters-(nb clusters*0.3))
pca = PCA(k=pca_dim, inputCol="bag of words", outputCol="features")
model = pca.fit(sdf bow)
sdf features = model.transform(sdf bow).select("features")
```

PCA

Encodage de la variable catégories (sdf lab features)

root

```
|-- label: double (nullable = false)
|-- features: vector (nullable = true)
```

```
bag of words
110 | (30, [0, 1, 2, 3, 4, 5, ...
112 (30, [0, 1, 2, 3, 4, 5, ...
108 (30, [0, 1, 2, 3, 4, 5, . . .
106 | (30, [0, 1, 2, 3, 4, 5, ...
114 | (30, [0, 1, 2, 3, 4, 5, . . .
116 (30, [0, 1, 2, 3, 4, 5, . . .
140 | (30, [0, 1, 2, 3, 4, 5, . . .
124 (30, [0, 1, 2, 3, 4, 5, ...
102 | (30, [0, 1, 2, 3, 4, 5, ...
136 | (30, [0, 1, 2, 3, 4, 5, . . .
```

Bag of words (sdf bow)

```
1.0 [-1.9381004478848...
1.0 [-0.5822993253601...
1.0|[-1.3910691745482...
1.0 [-1.3747704461391...
2.0 | [26.6684862365683...
0.0 | [2.23326783378635...
0.0 [1.16132418870859...
0.0 | [3.17218229130792...
0.0 | [2.81897891583134...
1.0 [-0.8462483779417...
```

==	======	.=====				
	label	0	1	2	3	4
0	1.0	-1.938100	4.373330	7.230668	-6.354446	6.046578
1	1.0	-0.582299	3.418589	5.567492	-7.003518	3.878954
2	1.0	-1.391069	3.003477	5.123474	-6.696992	4.103136
3	1.0	-1.374770	3.939350	5.026782	-4.804279	1.135001
4	2.0	26.668486	7.078681	-0.799438	-4.180231	5.872323
5	0.0	2.233268	-2.347001	-2.344602	-3.261785	3.304597
6	0.0	1.161324	-1.819158	0.087453	-6.264102	5.091056
7	0.0	3.172182	0.122427	0.194158	-9.281862	8.285937
8	0.0	2.818979	-4.847871	-2.529770	-4.401651	4.233620

Bag of words après réduction de dimension (df lab features)

Dimensions du nouveau jeu de données avec les étiquettes (df lab features): (150, 22)

DPENCLASSROOMS

Parcours Data Scientist

Projet 8: Déployez un modèle dans le cloud

Eric Wendling 2020-12-04


```
Réduction de
                           Visual Words
                                                   Bag of Words
                                                                                                                           Classification
    Descripteurs
                                                                             Variables
                                                                                                    dimension
                                                    layers = [pca dim, pca dim, pca dim, nb cat]
label
                  features
                               Apprentissage
                                                    mlp = MultilayerPerceptronClassifier(layers=layers, seed=123)
  1.0 [-1.9381004478848...
                                                    mlp.setMaxIter(200)
  1.0 | [-0.5822993253601...
                                                    mlp.setBlockSize(128)
  1.0|[-1.3910691745482...
                                                    mlp model = mlp.fit(result ima 4)
  1.0|[-1.3747704461391...
                                                    mlp model.setFeaturesCol("features")
  2.0 | [26.6684862365683...
  0.0 | [2.23326783378635...
                                                    test pred results = mlp model.transform(result).select("features", "prediction")
                                    Test
  2.0 | [26.4668964038766...
  1.0 | [-0.4043484642786...
                                                                                 cat|label|prediction|
                                                                       imal
                                                                                                                   features
  2.0 | [28.6641195896339...
  0.0 | [5.18647680516223...
                                                     Raspberry 87 100.jpg Raspberry
                                                                                       2.01
                                                                                                   2.0 | [26.4668964038766...
  1.0 | [-0.0956747951576...
                                                         Orange 3 100. jpg|
                                                                              Orangel
                                                                                       1.0
                                                                                                   1.0 [-0.4043484642786...
  2.0 | [24.8632082783237...
                                                     Raspberry 82 100.jpg|Raspberry|
                                                                                       2.0
                                                                                                   2.0 | [28.6641195896339...
                                                           Corn 2 100. jpg
                                                                                Corni
                                                                                       0.01
                                                                                                   2.0 | [5.18647680516223...
                                                        Orange 43 100. jpg|
                                                                              Orange |
                                                                                       1.0
                                                                                                   1.0|[-0.0956747951576...
                                                     Raspberry 100 100... Raspberry
                                                                                                   2.0 | [24.8632082783237...
                                                                                       2.0
                                                     Raspberry 98 100.jpg|Raspberry|
                                                                                       2.01
                                                                                                   2.0 [25.6584718118259...]
                                                    prediction
                                                                 0.0
                                                                                2.0
                                                                         1.0
                                                    label
                                  Evaluation
                                                    0.0
                                                                 16.0
                                                                               28.0
                                                                        56.0
                                                    1.0
                                                                  0.0
                                                                       100.0
                                                                                0.0
                                                    2.0
                                                                  0.0
                                                                         0.0 100.0
                                                                                             Test set accuracy (MLP) = 0.72
```


4 Conception

Projet 8: Déployez un modèle dans le cloud

Plateforme pour le Big Data

Le Cloud

- Accès à des ressources distantes
 - Calcul (CPU, mémoire...)
 - Stockage (espace disque)
- Elasticité
 - Modification des capacités
- Gestion des coûts
 - Facturation à l'utilisation

Solutions

AWS (Amazon Web Service)

- Serveurs de calcul
 - Elastic Compute Cloud (EC2)
- Clusters
 - Elastic Map Reduce (EMR)
 - > Framework Hadoop hébergé
- Stockage
 - Simple Storage Service (S3)
 - Connecteur HDFS

Création d'un Cluster avec EMR

Parcours Data Scientist

Projet 8: Déployez un modèle dans le cloud

Création d'un Cluster avec EMR

Cluster: oc-ds-p8 En attente Cluster ready after last step completed.

Historique de l'application Matériel Configurations Récapitulatif Surveillance Événements Étapes Actions d'amorçage Récapitulatif Détails de configuration ID: j-HVWO2J54XAYC Étiquette de version : emr-5.31.0 Date de création : 28-11-2020 23:46 (UTC+1) Distribution Hadoop: Amazon Temps écoulé : 5 minutes Applications: Spark 2.4.6, Zeppelin 0.8.2 URI de connexion: s3://aws-logs-383023238722-eu-west-Résiliation automatique : Cluster waits 1/elasticmapreduce/ Protection de la résiliation : Désactivé Modification Vue cohérente EMRFS : Désactivé Balises: - Afficher tout/Modifier ID d'AMI personnalisée : -DNS public principal: ec2-54-247-18-29.eu-west-1.compute.amazonaws.com Connect to the Master Node Using SSH Application user interfaces Réseau et matériel Service d'historique : 2: Spark history server, YARN timeline server Zone de disponibilité: eu-west-1a

Connexions: : Not Enabled Activer la connexion Web

ID de sous-réseau (subnet) : subnet-42d7aa18

Maître: En cours d'exécution 1 m5.xlarge Principal: En cours d'exécution 2 m5.xlarge

Tâche: -

Cluster scaling: Not enabled

Parcours Data Scientist

Projet 8: Déployez un modèle dans le cloud

Eric Wendling 2020-12-04

Création d'un Cluster avec EMR

Cluster: oc-ds-p8 En attente Cluster ready after last step completed.

Cluster EMR

Accès au driver via SSH

Projet 8: Déployez un modèle dans le cloud

Cluster EMR

Connecter un notebook Jupyter

Notebook Jupyter (noyau spark)

Notebook Jupyter (noyau PySpark)

localhost

Déploiement d'un modèle dans le Cloud

Durée totale de traitement: 00 h 09 m 36 s

Durée des opérations

	Opération	Durée
0	Récupération des images	0.09
1	Extraction des descripteurs des images	186.44
2	Clustering K-Means	133.76
3	Prédiction K-Means	30.34
4	Création du bag of words	27.72
5	Réduction de dimension	82.06
6	Récupération des images - Test	0.08
7	Extraction des descripteurs des images - Test	61.59
8	Prédiction K-Means - Test	10.25
9	Création du bag of words - Test	10.35
10	Réduction de dimension - Test	33.51
11	Fin des traitements	0.00

Bag of words après réduction de dimension (df_lab_features)

	label	0	1	2	3	4	5
0	1.0	6.024672	-0.337976	-4.901770	-2.729916	-1.297712	-3.308183
1	1.0	6.371121	-0.153607	-2.852417	-3.309263	-3.896041	-2.565207
2	0.0	3.488277	3.316177	1.005654	0.826375	0.506713	-1.856883
3	1.0	19.223620	-4.594866	-1.225558	2.574097	-7.756241	-6.299376
4	0.0	19.091069	-2.171380	-0.814867	2.847041	-6.719943	-4.418533
5	1.0	15.015931	18.144498	-1.183434	0.501897	-3.000527	-6.548748
6	3.0	27.552906	0.646730	11.393523	-3.724111	1.212250	-7.387620
7	0.0	3.121793	2.597990	-0.193969	-7.074767	-6.144737	-9.125464
8	1.0	11.660417	17.784483	2.943873	0.971977	-6.908611	-5.676366

Dimensions du nouveau jeu de données avec les étiquettes (df_lab_features): (876, 36)

Résultats

comparatifs

	Catégorie	Nombre	d'images
0	Corn		450
1	Cauliflower		702
2	Raspberry		490
3	Orange		479
4	Pitahaya Red		490

Durée totale de traitement: 00 h 25 m 32 s

Durée des opérations

	Opération	Durée
0	Récupération des images	0.03
1	Extraction des descripteurs des images	70.93
2	Clustering K-Means	962.98
3	Prédiction K-Means	198.57
4	Création du bag of words	40.38
5	Réduction de dimension	96.95
6	Récupération des images - Test	0.02
7	Extraction des descripteurs des images - Test	20.79
8	Prédiction K-Means - Test	72.04
9	Création du bag of words - Test	15.43
10	Réduction de dimension - Test	54.81
11	Fin des traitements	0.00

Bag of words après réduction de dimension (df_lab_features)

	label	0	1	2	3	4	5
0	4.0	2.310509	1.823638	2.864982	-3.205206	-2.444131	0.527192
1	4.0	9.568033	3.034005	-1.136817	-2.721742	-3.005855	-3.177016
2	0.0	16.699686	-0.891379	0.004849	-11.215860	2.667583	-2.249117
3	0.0	27.952051	3.035560	10.499386	-1.128175	2.487680	-1.243211
4	4.0	3.990037	4.013742	0.944926	-2.764598	-1.226985	-2.875845
5	1.0	5.225382	0.385623	1.045589	-2.130795	2.702250	-2.184826
6	2.0	15.204800	15.778906	0.060568	-4.207583	-0.553880	1.574485
7	0.0	26.378407	3.498933	8.153155	0.605576	3.552638	-0.156810
8	0.0	20.058290	-0.906470	0.237750	-7.645144	-2.660374	-2.944669

Dimensions du nouveau jeu de données avec les étiquettes (df lab features): (876, 36)

Redimensionnement du Cluster EMR

Cluster: oc-ds-p8 En attente Cluster ready after last step completed.

Déploiement d'un modèle dans le Cloud

Durée totale de traitement: 00 h 09 m 36 s

2 instances (8 cœurs)

4 instances (16 cœurs)

Durée totale de traitement: 00 h 08 m 20 s

Durée des opérations

Opération Durée Récupération des images 0.08 Extraction des descripteurs des images 187.22 Clustering K-Means 83.63 Prédiction K-Means 16.96 Création du bag of words 30.09 Réduction de dimension 74.94 Récupération des images - Test 0.08 Extraction des descripteurs des images - Test 61.18 Prédiction K-Means - Test 5.99 Création du bag of words - Test 10.50 Réduction de dimension - Test 10 30.33 11 Fin des traitements 0.00

Bag of words après réduction de dimension (df_lab_features)

	label	0	1	2	3	4	5
0	2.0	25.386380	1.323169	11.145485	3.024961	-0.307836	-5.314542
1	2.0	15.018282	18.741854	7.108276	-4.578584	1.092393	-2.340866
2	2.0	-3.533843	3.123953	5.946621	-2.436330	3.546601	-6.404101
3	3.0	7.418447	1.077152	-3.034161	-1.225032	3.069555	-3.419146
4	0.0	22.732754	-1.599416	4.438273	-4.354162	0.923390	-1.317509
5	0.0	19.515657	-1.485339	1.508824	-5.699662	1.745299	-3.071305
6	2.0	21.782525	-1.878628	3.117757	-6.511164	-0.090578	-6.319000
7	0.0	-3.922658	2.620455	7.455179	-4.533826	-0.530551	-3.939859
8	1.0	13.567361	21.039295	3.744701	-5.634244	4.886197	-0.780661

Dimensions du nouveau jeu de données avec les étiquettes (df_lab_features): (876, 36)

Durée des opérations

	Opération	Durée
0	Récupération des images	0.09
1	Extraction des descripteurs des images	186.44
2	Clustering K-Means	133.76
3	Prédiction K-Means	30.34
4	Création du bag of words	27.72
5	Réduction de dimension	82.06
6	Récupération des images - Test	0.08
7	Extraction des descripteurs des images - Test	61.59
8	Prédiction K-Means - Test	10.25
9	Création du bag of words - Test	10.35
10	Réduction de dimension - Test	33.51
11	Fin des traitements	0.00

Bag of words après réduction de dimension (df_lab_features)

	label	0	1	2	3	4	5
0	1.0	6.024672	-0.337976	-4.901770	-2.729916	-1.297712	-3.308183
1	1.0	6.371121	-0.153607	-2.852417	-3.309263	-3.896041	-2.565207
2	0.0	3.488277	3.316177	1.005654	0.826375	0.506713	-1.856883
3	1.0	19.223620	-4.594866	-1.225558	2.574097	-7.756241	-6.299376
4	0.0	19.091069	-2.171380	-0.814867	2.847041	-6.719943	-4.418533
5	1.0	15.015931	18.144498	-1.183434	0.501897	-3.000527	-6.548748
6	3.0	27.552906	0.646730	11.393523	-3.724111	1.212250	-7.387620
7	0.0	3.121793	2.597990	-0.193969	-7.074767	-6.144737	-9.125464
8	1.0	11.660417	17.784483	2.943873	0.971977	-6.908611	-5.676366

Dimensions du nouveau jeu de données avec les étiquettes (df_lab_features): (876, 36)

DPENCLASSROOMS

Parcours Data Scientist

Projet 8: Déployez un modèle dans le cloud

Eric Wendling 2020-12-04

AWS S3 (Simple Storage Service)

Affichage console

Bag of words après réduction de dimension (df_lab_features)

	label	0	1	2	3	4	5
0	2.0	0.330376	-4.698919	-2.556379	-1.753178	-1.902630	1.298467
1	0.0	0.153717	-3.672065	0.463361	-1.445074	-0.231556	0.819848
2	2.0	3.441013	2.309796	-1.730758	-3.248047	-4.133691	-0.994865
3	1.0	34.514508	0.356139	7.945553	-5.846689	-5.059411	2.386031
4	0.0	4.573013	7.235424	0.762018	-5.468033	-1.932407	2.238392
5	2.0	-0.516230	-3.932645	-2.017393	-2.830665	-3.392697	0.640334
6	1.0	4.137105	0.086613	-2.316639	-5.521217	-4.984313	-0.406035
7	1.0	31.670925	-0.758153	-6.523613	-0.356006	-0.143185	0.033581
8	0.0	27.778097	-0.274003	-2.831368	2.885279	-8.110952	3.122179

Export fichier

df_lab_features_train.csv

1	Α	В	С	D	E	F	G	Н
1		label	0	1	2	3	4	5
2	0	2.0	0,330376	-4,698919	-2,556379	-1,753178	-1,902630	1,298467
3	1	0.0	0,153717	-3,672065	0,463361	-1,445074	-0,231556	0,819848
4	2	2.0	3,441013	2,309796	-1,730758	-3,248047	-4,133691	-0,994865
5	3	1.0	34,514508	0,356139	7,945553	-5,846689	-5,059411	2,386031
6	4	0.0	4,573013	7,235424	0,762018	-5,468033	-1,932407	2,238392
7	5	2.0	-0,516230	-3,932645	-2,017393	-2,830665	-3,392697	0,640334
8	6	1.0	4,137105	0,086613	-2,316639	-5,521217	-4,984313	-0,406035
9	7	1.0	31,670925	-0,758153	-6,523613	-0,356006	-0,143185	0,033581
10	8	0.0	27,778097	-0,274003	-2,831368	2,885279	-8,110952	3,122179

Dimensions du nouveau jeu de données avec les étiquettes (df_lab_features): (150, 22)

Processeur double cœur (4 processeurs logiques)

Spark Jobs (?)

User: eric

Total Uptime: 46 min Scheduling Mode: FIFO Completed Jobs: 380

▼ Event Timeline

Enable zooming

Enable zooming			
Executors Added Removed	Executor driver added		
Jobs Succeeded Failed Running			

- Completed Jobs (380)

Page: 1 2 3 4 >

Job Id ▼	Description
379	toPandas at <ipython-input-1-3d75f7cead2d>:793 toPandas at <ipython-input-1-3d75f7cead2d>:793</ipython-input-1-3d75f7cead2d></ipython-input-1-3d75f7cead2d>
378	showString at NativeMethodAccessorImpl.java:0 showString at NativeMethodAccessorImpl.java:0
377	collect at StringIndexer.scala:204 collect at StringIndexer.scala:204

..

4	takeSample at KMeans.scala:347 takeSample at KMeans.scala:347			
3	collect at <ipython-input-1-3d75f7cead2d>:332 collect at <ipython-input-1-3d75f7cead2d>:332</ipython-input-1-3d75f7cead2d></ipython-input-1-3d75f7cead2d>			
2	collect at <ipython-input-1-3d75f7cead2d>:327 collect at <ipython-input-1-3d75f7cead2d>:327</ipython-input-1-3d75f7cead2d></ipython-input-1-3d75f7cead2d>			
1	count at <ipython-input-1-3d75f7cead2d>:116 count at <ipython-input-1-3d75f7cead2d>:116</ipython-input-1-3d75f7cead2d></ipython-input-1-3d75f7cead2d>			
0	count at <ipython-input-1-3d75f7cead2d>:116 count at <ipython-input-1-3d75f7cead2d>:116</ipython-input-1-3d75f7cead2d></ipython-input-1-3d75f7cead2d>			

Parcours Data Scientist

Projet 8: Déployez un modèle dans le cloud

Eric Wendling 2020-12-04

6 Contrôle Web UI

localhost

Déploiement d'un modèle dans le Cloud

Processeur double cœur (4 processeurs logiques)

10.0.2.15

10.0.2.15

23

24

0

0

3

driver

driver

PROCESS LOCAL

PROCESS LOCAL

SUCCESS

SUCCESS

92.0 ms

52.0 ms

2020-12-03 20:23:46

2020-12-03 20:23:46

304.7 KiB / 10

217 KiB / 7

2 instances (8 processeurs logiques)

- Tasks (18)

Index *	ID	Attempt	Status	Locality Level	Executor ID	Host		Launch Time	Duration
17	70	0	SUCCESS	PROCESS_LOCAL	3	ip-172-31-10-90.eu-west-1.compute.internal	stdout stderr	2020/12/03 18:28:46	55 ms
16	69	0	SUCCESS	PROCESS_LOCAL	3	ip-172-31-10-90.eu-west-1.compute.internal	stdout stderr	2020/12/03 18:28:46	52 ms
15	68	0	SUCCESS	PROCESS_LOCAL	3	ip-172-31-10-90.eu-west-1.compute.internal	stdout	2020/12/03 18:28:46	58 ms

Optimisation du code

- Analyse des tâches
- Optimisation

Dimension de l'architecture

- Serveurs de calcul
 - Nombre de cores
 - Nombre de partitions
- Stockage
 - Croissance du volume des images
 - Dimension des images

Modèle de classification

- Choix d'un modèle
 - Performances

Configuration de l'architecture Big Data

Complexe

Ressources: Data Architect...

Services: AWS...

Programmation calcul distribué

- Plusieurs langages dont Python
 - Nouvelle syntaxe (PySpark)
- Optimisation
 - ➤ Liée à l'architecture

Le Big Data: plus que des big data

> Transformation des processus métiers

