Meccanica - (prof. Spurio/Margiotta) 07/01/2025

Esercizio A

Un satellite artificiale si trova inizialmente in un punto A, alla distanza $r_0 = 3.36 \times 10^4$ km dalla superficie della Terra, come in figura. Trascurando ogni attrito, calcolare (dati: G= 6.67 10^{-11} N m² kg⁻², massa e raggio della Terra: $M_T = 5.97 \times 10^{24}$ kg; $R_T = 6.37 \times 10^3$ km):

- 1) Il modulo della velocità minima v^* con cui dovrebbe essere lanciato dalla Terra qualsiasi oggetto che arrivi alla quota r_0 (trascurando ogni sorta di attrito);
- 2) Il periodo T di rivoluzione e modulo della velocità v_0 che il satellite deve avere per percorrere una orbita circolare che dista r_0 dalla superficie della Terra;

Se invece nel vertice A (distanza massima) il satellite avesse velocità inferiore, ossia $v_A=2/3v_0$, esso percorrerebbe l'orbita ellittica tratteggiata, come in figura.

- 3) Determinare la distanza r₁ del secondo vertice P dell'orbita dal centro della Terra
- 4) e determinare la velocità in tale punto P (distanza minima).
- 5) Cosa succederebbe al satellite se invece il modulo della velocità v_0 nel punto A aumentasse, $v_A > v_0$? Motivare sinteticamente la risposta.

Esercizio B

Una barra omogenea di lunghezza I_1 = 0.40 m, massa m_1 = 1.20 kg, è libera di muoversi su di un piano orizzontale senza attrito ed è inizialmente ferma. Le coordinate del piano siano y lungo la direzione della barra e x perpendicolare alla barra.

Una seconda barra omogenea di lunghezza I_2 = 0.70 m, massa m_2 = 0.30 kg, si muove senza attrito sullo stesso piano con velocità del suo centro di massa v_0 = 2.20 m/s diretta lungo l'asse delle x mantenendo la sua lunghezza nella direzione dell'asse delle y. Le barre si urtano toccandosi per un estremo. Il centro di massa della seconda barra si muove dopo l'urto con velocità v_2 = 1.70 m/s diretta lungo l'asse delle x. Calcolare:

- 1. la velocità del centro di massa del sistema delle due barre, prima e dopo l'urto;
- 2. la posizione del centro di massa del sistema al momento dell'urto;
- 3. l'impulso impresso alla prima barra nell'urto. Tale variazione di quantità di moto produce una variazione ΔL_1 di momento angolare che mette in rotazione la barra. Si determini:
- 4. la velocità angolare della barra 1 rispetto al suo centro di massa dopo l'urto;
- 5. l'energia meccanica dissipata dal sistema nell'urto.

Risposte Esercizio A

- 1) 10.3 km/s;
- 2) v0=3.15 km/s; T=7.96 10^4 s
- 3) r1=r0/3.5= 1.14 10^7 m
- 4) v1=7/3 v0=7.35 10³ m/s

Risposte Esercizio B

- 1) $v_x_{cdm} = 0.440 \text{ m/s}$; $v_y_{cdm} = 0$; La velocità del CM dopo l'urto è identica
- 2) $x_{cdm} = 0 \text{ m}$; $y_{cdm} = 0.110 \text{ m}$
- 3) J_1 = 0.150 N.s lungo l'asse delle x;
- 4) ω_1 = -1.88 rad/s lungo l'asse delle z (ossia, rotazione oraria)
- 5) $\Delta E = -0.143 J$