Social Media Computing (CDS-6344) Final Assignment Rubric

1. Introduction

- This assignment carries 50% of your total Course Work marks for CDS6344 Computer Concepts & Applications which include 10% for presentation and 30% for Report and 10% source code on GitHub / COLAB repository.
- It is individual/group work that consists of a maximum of **3 students** (only by approval of the Tutor).
- Make sure that there is/are NO PASSENGER(S) IN THE GROUP.
- WARNING: Plagiarism will be given zero (0) mark without prior notice.
- (Hard & Soft copy) Report and power point presentation submission date: 12:00 pm 24/06/2025 submit in ebWise.

Presentation: Schedule will be announced by the Tutor.

(Students are advised to bring the hard copy of report at the time of presentation)

This project aims to develop an end-to-end Natural Language Processing (NLP) pipeline that leverages state-of-the-art techniques to extract, analyze, and visualize sentiments, opinions, and aspect-based sentiments from a large textual dataset. The system combines classical machine learning approaches with modern deep learning architectures, including transformer-based models, to deliver an actionable understanding of textual data.

Dataset

The selected dataset must offer rich, real-world textual data suitable for both document-level and aspect-level sentiment analysis.

Important topics:

- i. **Sentiment Analysis**: Classify sentiments into categories such as *positive*, *negative*, and *neutral* using machine learning classifiers (Logistic Regression, SVM, Random Forest) and deep learning models (LSTM, BERT, RoBERTa).
- ii. **Opinion Mining**: Extract explicit and implicit opinions from text using dependency parsing and opinion lexicons, and identify opinion targets.
- iii. **Aspect-Based Sentiment Analysis (ABSA)**: Decompose reviews to identify sentiments towards specific product aspects (e.g., "battery life", "screen quality"), using techniques like **spaCy-based noun phrase extraction** and fine-tuned transformer models like BERT-ABSA.
- iv. **Model Development and Evaluation**: Train, validate, and compare performance of traditional ML algorithms with advanced DL/Transformer models. Use metrics such as accuracy, F1-score, precision, recall, and confusion matrices.
- v. **Visualization and Insight Generation**: Create detailed visualizations including sentiment distributions, word clouds, aspect-wise sentiment maps, and opinion trend graphs using tools like Matplotlib, Seaborn, Plotly, and NLP-specific visualization tools like spaCy's displacy. Build interactive dashboards for end-user interpretability using Streamlit or Dash.

MSK - 1 -

Methodology

- Data Preprocessing: Text normalization, tokenization, stopword removal, lemmatization.
- **Feature Engineering: TF-IDF**, word embeddings (GloVe, Word2Vec), contextual embeddings (BERT embeddings).
- Modeling:
 - **Traditional ML Models:** Naïve Bayes, Logistic Regression, SVM.
 - Deep Learning Models: BiLSTM, CNN for text, GRU. (optional)
 - **Transformers: BERT**, DistilBERT, RoBERTa (fine-tuned for classification and ABSA tasks).
- Hyperparameter Tuning: Grid Search, Random Search, and Bayesian optimization using cross-validation. (optional)
- Evaluation: Use k-fold cross-validation and comprehensive benchmarking.

Tools & Technologies

- Languages: Python
- **Libraries/Frameworks:** NLTK, spaCy, scikit-learn, TensorFlow, PyTorch, Hugging Face Transformers
- Visualization: Matplotlib, Seaborn, Plotly, WordCloud, Streamlit
- Others: Jupyter Notebook, Google Colab, GitHub.

2. Objectives

- To train students on how to collect and organize raw datasets which can be obtained through the usage of Twitter or other resources (GitHub, Kaggle, etc).
- To develop a robust, scalable NLP pipeline capable of handling multiple sentiment and opinion analysis tasks..
- To inculcate a high teamwork spirit and to build strong communication skills among students.

3. Report Preparation

- Write the report using Microsoft Word 365.
- You can choose the titles & Dataset which have been approved by the instructor.
- General Outline:
 - o Font Times New Roman, 12pt, Black
 - **Alignment** Justify
 - \circ **Spacing** 1.5 lines
 - o **Header**: CDS6344 Social Media Computing
 - o Footer: Project Title, Page Number
 - o Margin: Left: 1.5 inch
 - : Right/Top/Bottom: 1.0 inch
 - : Minimum number of pages for the report is 10, excluding

Appendixes

MSK - 2 -

Acknowledgment

Any compliments or appreciation notes.

Table of Content (must include the following 10 subsections)

	- · · 	, , , , , , , , , , , , , , , , , , ,
Use proper sequence and numbering.	Example:	Allocated Marks(30)
1.: Introduction	pg 1	(3 marks)
1.1: Project Overview	pg 2	(1 mark)
2.: Problem Statement	pg 3	(2 marks)
3.: Literature Review	pg 4	(5 marks)
4.: Methodology	pg 7	(5 marks)
5.: Sentiment Analysis		(2 marks)
6.: Transformers / Deep Learning models		(5 marks)
7.: Result & Visualization		(2 marks)
8.: Discussion		(2 marks)
9.: Conclusion & Future Work		(2 marks)
10.: References		(1 mark)

Project Overview

A brief description of your project title and the objectives

Content

Explanations are simple and easily understood. Information is carefully selected, organized and presented with use of appropriate visualization tools.

Conclusion

Description of problems faced during the completion of the project and how you overcome them. Lessons learned and knowledge gained & Future directions.

References

List down the details of sources (links/websites/research papers) to obtain information. Make sure you use the latest ones (Any references published before the year 2000 are considered obsolete, unless it is a fundamental research) Use- Chicago Manual or IEEE Example: http://sun.com/marketing/statistics

1. Bill Daley, Computers Are Your Future 2006, Prentice Hall, 2006, pg. 20-30

Appendix

Other important data/pictures/photos that may not be suitable to fit into your report. Like the screenshot of dataset recourse location, etc..

4. Presentation (10 marks)

- Prepare the slides using desired tools of choice.
- Must be concise and easy to read.
- Duration of presentation is 15 minutes/ group.
- All group members must be present physically in Formal attire.
- In special case: Use any application to record your presentation. (needs prior approval)

5. GitHub/COLAB (10 marks)

- All the codes must be posted on a GitHub/COLAB repository to be analyzed and accessed by the instructor.
- Both Instructor and Tutor must be added as a collaborator for the repository.
- Add your data visualization screen shots
- Add a paragraph for future work.

MSK - 3 -

Front Cover

Cover page should be containing the following information, **CENTERED** and **BOLD**; font size is in the parenthesis:

- i. MULTIMEDIA UNIVERSITY (24pt)
- ii. FACULTY OF COMPUTING AND INFORMATICS
- iii. BACHLEOR IN (Your Course) (Eg. BIT) (20pt)
- iv. **SOCIAL MEDIA COMPUTING CDS6344** (18pt)
- v. **TRIMESTER**, **Session 2024/2025** (18pt)
- vi. **Project Title** (20pt)
- vii. By: Name and Student ID (12pt)

Instructor (affiliation):

Dr. Mohammad Shadab Khan, Assistant Professor, Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia.

Email: shadab.khan@mmu.edu.my
GitHub: Shadab-Khaan (Shadab)

Ms. Amirul Azuani Binti Romle, Lecturer, Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia. amirul.azuani@mmu.edu.my

MSK - 4 -