

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине: «Вычислительная математика»

Студент	Абдулаев Баттал Халилович				
Группа	РК6-61Б				
Тип задания	лабораторная работа Нелинейная регрессия				
Тема лабораторной работы					
Студент		Абдулаев Б.Х.			
	подпись, дата	фамилия, и.о.			
Преподаватель		Соколов А.П.			
	подпись, дата	фамилия, и.о.			
Опенка					

Оглавление

З ад	цание на лабораторную работу	3
Це	ль выполнения лабораторной работы	5
Вы	полненные задачи	5
1.	Решения моделей экспоненциального роста и SIS – модели	6
2.	Формирование выборки данных из файла в формате csv	9
	Оценка коэффициента х. Вывод решения экспоненциальной модели и скретных данных.	10
	Оценка коэффициентов I∞ и I0. Вывод графика решения SIS-модели и скретных данных.	
5.	Погрешность полученной из нормального уравнения аппроксимации	13
6.	Критерий использования модели экспоненциального роста	14
7.	Анализ эпидемии	15
Зак	слючение	16
Сп	исок использованных источников	16

Задание на лабораторную работу

Дана модель экспоненциального роста:

$$\frac{d}{dt}I = (\beta - \gamma)I,\tag{1}$$

где I — количество инфицированных людей, β — среднее число контактов, приходящихся на человека в единицу времени, и γ — это среднее число выздоровевших, приходящихся на человека в единицу времени (т.е., средняя скорость иммунизации).

Также дана SIS модель:

$$\frac{d}{dt}I = (\beta - \gamma)I - \frac{\beta}{N}I^2 \tag{2}$$

 Γ де N — число людей в популяции (например, число жителей страны). Рассматриваемая страна — Австрия.

Требуется:

1. Найти решения экспоненциального роста и SIS-модели при условии, что $I(0) = I_0$ и продемонстрировать детальный вывод этого решения. После привести решение модели экспоненциального роста к форме:

$$I(t) = I_0 e^{\chi t},\tag{3}$$

где $\chi = \beta - \gamma$, и решение SIS-модели к форме:

$$I(t) = \frac{I_{\infty}}{1 + \left(\frac{I_{\infty}}{I_0} - 1\right)e^{-\chi t}},\tag{4}$$

где I_{∞} обозначает предельное значение I(t) при $t \to \infty$, т.е.

$$I_{\infty} = \lim_{t \to \infty} I(t).$$

- 2. Сформировать выборку данных зависимости числа, инфицированных от времени в данной стране.
- 3. Предполагая, что в первые недели распространения вируса в выбранной стране рост числа зараженных описывается экспоненциальной моделью, требуется оценить значение коэффициента $\chi = \beta \gamma$ с помощью нелинейной регрессии и нормального уравнения, взяв в качестве аппроксимирующей функции решение экспоненциальной модели и начального числа инфицированных $I_0 = 20...30$ и вывести на экран в логарифмической шкале полученное решение вместе с исходными дискретными данными о числе инфицированных. Требуется подробно описать формулировку задачи регрессии и явно указать выражения для отдельных векторов и матрицы, входящих в нормальное уравнение.
- 4. Подставив найденное значение коэффициента $\chi = \beta \gamma$ в решение SIS-модели, оценить значение коэффициента I_{∞} с помощью нелинейной регрессии и нормального уравнения, взяв в качестве аппроксимирующей функции решение SIS-модели и вывести на экран полученное решение вместе с исходными дискретными данными о числе инфицированных. Требуется подробно описать формулировку задачи регрессии и явно указать выражения для отдельных векторов и матрицы, входящих в нормальное уравнение.
- 5. Ответить на вопросы:
 - (a) Какова погрешность полученной аппроксимации (решения SIS-модели) относительно нормы L_{∞} ? Относительно нормы L_{2} ?
 - (b) Какой критерий использовался бы для определения максимального числа дней, в течение которых использование модели экспоненциального роста оправдано? Каково такое максимальное число дней в соответствии с критерием?

(c) Предсказать, сколько человек в соответствии с полученной аппроксимацией (решение SIS-модели) будут инфицированы в выбранной стране при $t \to \infty$ и через сколько дней после начала эпидемии наступит её окончание.

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы: с помощью модели экспоненциального роста и SIS-модели охарактеризовать и, по возможности, предсказать распространение инфекции COVID-19 на территории Австрии.

Выполненные задачи

- 1. Нахождение решений модели экспоненциального роста и SIS модели.
- 2. Загружена и отфильтрована выборка данных из csv файла по распространению CODIV-19.
- 3. Оценка коэффициента χ. Вывод решения экспоненциальной модели и дискретных данных.
- 4. Оценка коэффициентов I_{∞} и I_0 . Вывод графика решения SIS-модели и дискретных данных.
- 5. Рассчитана погрешность полученной из нормального уравнения аппроксимации.
- 6. Определён и выявлен критерий, определяющий максимальное число дней применения экспоненциальной модели.
- 7. Анализ эпидемии.

1. Решения моделей экспоненциального роста и SIS – модели.

Для того чтобы решить дифференциальное уравнение модели экспоненциального роста (1), используем метод разделения переменных. Вместо I(t) будет использована I, подразумевая, что численность I есть функция от времени.

$$\frac{dI}{(\beta - \gamma)I} = dt,$$

$$\frac{dI}{I} = (\beta - \gamma)dt$$

Возьмем интегралы от обеих частей дифференциального уравнения:

$$\int \frac{dI}{I} = \int (\beta - \gamma) dt$$

$$ln|I| = ((\beta - \gamma)t + C',$$

$$I = Ce^{(\beta - \gamma)t},$$

где
$$C = e^{C'}$$

Константу определим из начального условия $I(0) = I_0$. Следовательно, получаем, что $C = I_0$. Подставляем С в зависимость I(t) и производим замену $\chi = \beta - \gamma$, получаем решение, совпадающее с формулой (3):

$$I(t) = I_0 e^{\chi t}$$

Для решения дифференциального уравнения SIS- модели (2), воспользуемся заменами $I=\frac{1}{x}$.

$$\frac{d\left(\frac{1}{x}\right)}{dt} = \frac{(\beta - \gamma)}{x} - \frac{\beta}{N}(\frac{1}{x})^2,$$

Разделим переменные:

$$\frac{d\left(\frac{1}{x}\right)}{\frac{(\beta - \gamma)}{x} - \frac{\beta}{N}(\frac{1}{x})^2} = dt$$

$$\frac{-\left(\frac{1}{x^2}\right)dx}{\frac{(\beta-\gamma)}{x} - \frac{\beta}{N}(\frac{1}{x})^2} = dt$$

$$\frac{-dx}{(\beta - \gamma)x - \frac{\beta}{N}} = dt$$

$$\frac{dx}{\frac{\beta}{N} - (\beta - \gamma)x} = dt$$

Возьмем интеграл от обоих частей:

$$\int \frac{dx}{\frac{\beta}{N} - (\beta - \gamma)x} = \int dt$$
$$-\frac{1}{\beta - \gamma} \ln \left| \frac{\beta}{N} - (\beta - \gamma)x \right| = t + C$$

$$\ln\left|\frac{\beta}{N} - (\beta - \gamma)x\right| = -(\beta - \gamma)t + C$$

Совершаем обратную замену на переменную I:

$$\ln\left|\frac{\beta}{N} - \frac{(\beta - \gamma)}{I}\right| = -(\gamma - \beta)t + C$$

$$\frac{\beta}{N} - \frac{(\beta - \gamma)}{I} = e^{-(\beta - \gamma)(t + C)}$$

Получим зависимость I(t):

$$I(t) = \frac{\beta - \gamma}{\frac{\beta}{N} - e^{-(\beta - \gamma)(t + C)}}$$

Находим значение константы C исходя из условия $I(0) = I_0$:

$$C = -\frac{\ln\left(\frac{\beta}{N} - \frac{\beta - \gamma}{I_0}\right)}{\beta - \gamma}$$

Подставим С в зависимость I(t):

$$I(t) = \frac{\beta - \gamma}{\frac{\beta}{N} - \left(\frac{\beta}{N} - \frac{\beta - \gamma}{I_0}\right) e^{(\gamma - \beta)t}}$$

Выражение для I_{∞} :

$$I_{\infty} = \frac{N|\chi|}{\beta}$$

Умножим числитель и знаменатель в зависимости I(t) на $\frac{N}{\beta}$ и выполним замены χ и I_{∞} :

$$I(t) = \frac{I_{\infty}}{1 - \left(1 - \frac{I_{\infty}}{I_0}\right) e^{-\chi t}}$$

Для того чтобы привести полученную зависимость к виду (4), вынесем минус за скобки в знаменателе:

$$I(t) = \frac{I_{\infty}}{1 + \left(\frac{I_{\infty}}{I_0} - 1\right) e^{-\chi t}}$$

2. Формирование выборки данных из файла в формате csv

Были получены данные об эпидемиологической ситуации в Австрии. Первый случай заражения COVID-19 был выявлен 26 февраля 2020 года. Более подробные данные были представлены в таблице 1¹

Таблица 1: Статистика инфицированных в Австрии.

Дата	Число	Дата	Число	Дата	Число
	заболевших		заболевших		заболев
					ших
2020-02-26	2	2020-03-17	1016	2020-04-06	11983
2020-02-27	2	2020-03-18	1332	2020-04-07	12297
2020-02-28	5	2020-03-19	1646	2020-04-08	12640
2020-02-29	7	2020-03-20	2196	2020-04-09	12969
2020-03-01	10	2020-03-21	2649	2020-04-10	13248
2020-03-02	14	2020-03-22	3024	2020-04-11	13560
2020-03-03	18	2020-03-23	3631	2020-04-12	13807
2020-03-04	24	2020-03-24	4486	2020-04-13	13937
2020-03-05	29	2020-03-25	5282	2020-04-14	14043
2020-03-06	41	2020-03-26	5888	2020-04-15	14234
2020-03-07	74	2020-03-27	7029	2020-04-16	14370
2020-03-08	99	2020-03-28	7697	2020-04-17	14448
2020-03-09	102	2020-03-29	8291	2020-04-18	14603
2020-03-10	131	2020-03-30	8813	2020-04-19	14662
2020-03-11	182	2020-03-31	9618	2020-04-20	14710
2020-03-12	246	2020-04-01	10182	2020-04-21	14783
2020-03-13	361	2020-04-02	10711	2020-04-22	14833
2020-03-14	504	2020-04-03	11129	2020-04-23	14924
2020-03-15	655	2020-04-04	11525	2020-04-24	14985
2020-03-16	860	2020-04-05	11766	2020-04-25	15068

Данные таблицы выведены на рисунке 1.

9

 $^{^1}$ Таблица числа зараженных взята из электронного источника: https://ourworldindata.org/coronavirus- sourcedata

Рисунок 1 – Зависимость числа заражённых в Австрии.

3. Оценка коэффициента х. Вывод решения экспоненциальной модели и дискретных данных.

Для того чтобы отсечь начальный период пандемии, выберем начальное число инфицированных равным 10. Период, который описывает экспоненциальную зависимость, выберем 25 дней.

Для оценки коэффициента χ воспользуемся нормальным уравнением.

$$\chi = (X^T X)^{-1} X^T \tilde{y},\tag{5}$$

где

$$X = \begin{cases} t_1 \\ t_2 \\ \dots \\ t_n \end{cases} \tag{6}$$

В транспонированном виде:

$$X^{T} = \{t_1, t_2, \dots, t_n\} \tag{7}$$

Получим более удобную форму параметра χ с учетом (6), (7):

$$\chi = \left(\sum_{i=1}^{n} t_i^2\right)^{-1} \left(\sum_{i=1}^{n} t_i \tilde{y}_i\right) = \frac{\sum_{i=1}^{n} t_i \tilde{y}_i}{\sum_{i=1}^{n} t_i^2}$$
(8)

Так как параметр х входит в формулу (3) линейно, поэтому изменим вид уравнения взял логарифм от обеих частей выражения:

$$\ln(I(t)) = \ln(I_0) + \chi t \tag{9}$$

$$\ln\left(\frac{I(t)}{I_0}\right) = \chi t \tag{10}$$

Аппроксимирующая функция будет иметь вид:

$$\hat{I} = \chi t \tag{11}$$

Выборка данных о числе инфицированных имеет следующий вид:

$$Y = \{(y_i)\}_{i=1}^n \tag{12}$$

Чтобы оценить квадрат отклонения, необходимо преобразовать Y, к такому же виду, что и I:

$$\tilde{y} = \ln(Y) - \ln(I_0) \tag{13}$$

Таким образом метод наименьших квадратов будет иметь следующий вид:

$$\min_{\chi} \sum_{i=1}^{n} \left(\widetilde{y}_i - \hat{I}_i(\chi, t) \right)^2 \tag{14}$$

По формуле (8) было получено значение х равное 0.2939

Подставив коэффициент χ в решение для экспоненциальной модели (3), получим график зависимости аппроксимирующей функции, представленный на рисунке 2.

Рисунок 2 – Экспоненциальная модель эпидемии и исходные данные.

Как видно из рисунка 2, на рассматриваемом временном промежутке распространение вируса описывается экспоненциальной моделью.

4. Оценка коэффициентов I_{∞} и I_0 . Вывод графика решения SIS-модели и дискретных данных.

Для того чтобы получить решения SIS — модели (4), подставим найденное значение $\chi = 0.2939$. Чтобы найти оптимальные I_{∞} и I_0 используем библиотеку scipy. С помощью функции scipy.optimize.basinhopping() найдем такие коэффициенты, при которых SIS-модель наиболее точно аппроксимирует исходные данные.

Получены следующие значения:

$$I_0 = 9$$

$$I_{\infty} = 13226$$

Рисунок 3 – Решение SIS-модели с исходными данными.

По рис. 3 видно, что данная зависимость достаточно точно аппроксимирует исходную.

5. Погрешность полученной из нормального уравнения аппроксимации.

Для оценки погрешности аппроксимации найдем расстояния относительно нормы L_2 и L_∞ . Расстояние относительно нормы L_2 можно найти по следующей формуле:

$$||I(t) - y(t)||_2 = \left[\frac{1}{n} \sum_{t} (I(t) - y(t))^2\right]^{\frac{1}{2}}$$
(15)

Значение погрешности относительно нормы $L_2 = 809$

Погрешность решения SIS – модели относительно нормы L_{∞}

$$||I(t) - y(t)||_{\infty} = \max_{t} |I(t) - y(t)|$$
 (16)

Значение погрешности относительно нормы L_{∞} = 1911

6. Критерий использования модели экспоненциального роста

Для того чтобы сформулировать критерий, построим график зависимости прироста числа инфицированных от количества дней, прошедших с начала пандемии.

Рисунок 4 – Зависимость прироста заражённых от дней.

Из графика на рис. 4 видно, что в первые дни рост числа больных большой. В это период экспоненциальная модель может хорошо описать данные. Но дальше прирост падает, и данная модель уже не подходит, т.к. экспоненциальная модель хорошо описывает пандемию в период ее роста.

Это связано с тем, что данная модель не учитывает, что большинство инфицированных выздоравливают. Максимальное число дней применения экспоненциальной модели было выявлено на основании построенных графиков (рис. 2, рис. 3). В течение первых 25 дней экспоненциальная модель довольно хорошо аппроксимировала данные, чего нельзя сказать о следующем интервале времени. SIS-модель, напротив, начиная с 25 дня, очень точно аппроксимирует исходные данные (рис.3). Функция этой модели с этого дня практически лежит на функции числа заболевших, что говорит о больших возможностях прогнозирования. Таким образом, критерий был выбран из графического представления предложенных аппроксимаций.

7. Анализ эпидемии

В примечании было сказано считать, что эпидемия заканчивается, когда прирост общего числа заболевших за один день становится меньше 1% от общего числа заболевших за предыдущий день:

Листинг 1. Реализация поиска дня, когда эпидемия завершится.

```
def prognoz(I_0, I_inf):
    i = np.arange(1, 100)
    I_sis_inf = func_SIS(I_0,I_inf, chi,i)
    for i in range(len(I_sis_inf) - 1):
        if I_sis_inf[i] * 1.01 < I_sis_inf[i + 1]:
        end = i
    return end</pre>
```

Предельное количество человек, которые будут инфицированы в Австрии, определяется предельным значением I(t), которое достигает полученная аппроксимация при $t \to \infty$. Это значение равно оптимальному коэффициенту I_{∞} , величина которого была вычислена с помощью метода нелинейной регрессии: I_{∞} =13225.

Заключение

В процессе выполнения лабораторной работы на примере данных о распространении вируса COVID-19 в Австрии были исследованы модели распространения эпидемий: экспоненциальная модель и SIS-модель.

Было выяснено, что экспоненциальная модель, как правило, применяется для исследования эпидемии в самом её начале и позволяет получить довольно точную аппроксимацию. А SIS-модель применяется для изучения динамики эпидемии на любом её этапе, однако стоит отметить, что аппроксимация с помощью данной модели дает значительные погрешности. Объясняется это тем, что SIS- модель предназначена для оценки «естественного» развития эпидемии, в то время как карантин оказывает значительное влияние на ее ход.

Исследование полученных аппроксимаций показало, что пандемия в Австрии закончится через 34 дня после начала, это означает, что в настоящее время количество новых случаев заражения уменьшается с каждым днем. Также, решение SIS-модели предсказало, что максимальное число случаев заболевания будет равно 13225, что меньше, чем действительное число заболевших (к 25.04.2020) примерно на 1800.

Список использованных источников

- 1. **ПершинА.Ю.** Лекции по вычислительной математике. [Электронный ресурс] // МГТУ им. Н. Э. Баумана, 2020. 145с.
- 2. ПершинА.Ю. Семинар 4 по курсу «Вычислительная математика».

[Электронный ресурс] // МГТУ им. Н. Э. Баумана, 2020. – 43с.