MATH 544 Homework 6

Problem 1 Let $V = \left\{ \vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_2 > 0 \right\} \subset \mathbb{R}^2$. Suppose that we define two operations on V:

• For all
$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in V$, we have $\vec{u} \oplus \vec{v} = \begin{pmatrix} u_1 + v_1 \\ u_2 v_2 \end{pmatrix}$.

• For all
$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in V$$
 and for all $c \in \mathbb{R}$, we have $c \star \vec{v} = \begin{pmatrix} cv_1 \\ {v_2}^c \end{pmatrix}$.

Show that (V, \oplus, \star) is a real vector space by verifying that the ten vector space axioms hold.

Solution.

We have defined (V, \oplus, \star) as a vector space over a field F if it satisfies the following for all $\vec{u}, \vec{v}, \vec{w} \in V$ and for all $a, b \in F$:

- 1. $\vec{u} \oplus \vec{v} \in V$.
- 2. $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$.
- 3. There exists $\vec{0_V} \in V$ such that for all $\vec{v} \in V$, we have $\vec{0_V} \oplus \vec{v} = \vec{v} = \vec{v} \oplus \vec{0_V}$.
- 4. For all $\vec{v} \in V$, there exists $-\vec{v} \in V$ such that $\vec{v} \oplus -\vec{v} = \vec{0_V} = -\vec{v} \oplus \vec{v}$.
- 5. $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$.
- 6. $a \star \vec{v} \in V$.
- 7. $a \star (b \star \vec{v}) = (ab) \star \vec{v} = b \star (a \star \vec{v})$.
- 8. $a \star (\vec{u} \oplus \vec{v}) = (a \star \vec{u}) \oplus (a \star \vec{v}).$
- 9. $(a+b) \star \vec{u} = (a \star \vec{u}) \oplus (b \star \vec{u})$.
- 10. For all $\vec{v} \in V$, there exists $1_F \in F$ such that $1_F \star \vec{v} = \vec{v}$.

Let

$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \vec{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix},$$

where, $u_1, v_1, w_1 \in \mathbb{R}$ and $u_2, v_2, w_2 \in \mathbb{R}^+$. By definition, these vectors are in V. Let $a, b \in F$, where $F = \mathbb{R}$. We will prove that the axioms are satisfied.

1. We have $\vec{u} \oplus \vec{v} = \begin{pmatrix} u_1 + v_1 \\ u_2 v_2 \end{pmatrix}$. Since $u_1, v_1 \in \mathbb{R} \implies u_1 + v_1 \in \mathbb{R}$ and $u_2 > 0, v_2 > 0 \implies u_2 v_2 > 0$, we have $\vec{u} \oplus \vec{v} \in V$.

2. We have

$$(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \begin{pmatrix} u_1 + v_1 \\ u_2 v_2 \end{pmatrix} \oplus \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

$$= \begin{pmatrix} (u_1 + v_1) + w_1 \\ (u_2 v_2) w_2 \end{pmatrix}$$

$$= \begin{pmatrix} u_1 + (v_1 + w_1) \\ u_2 (v_2 w_2) \end{pmatrix}$$

$$= \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \oplus \begin{pmatrix} v_1 + w_1 \\ v_2 w_2 \end{pmatrix}$$

$$= \vec{u} \oplus (\vec{v} \oplus \vec{w}).$$
(associativity)

Nathan Bickel

3. Let $\vec{0_V} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, which is in V. Then, we have

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \oplus \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 + v_1 \\ 1(v_2) \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_1 + 0 \\ (v_2)1 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

so $\vec{0_V} \oplus \vec{v} = \vec{v} = \vec{v} + \vec{0_V}$.

4. Let $\vec{-v} = \begin{pmatrix} -v_1 \\ \frac{1}{v_2} \end{pmatrix}$ (which is well defined since $0 \notin \mathbb{R}^+$), and recall that we have established $\vec{0_V} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Then, we have

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \oplus \begin{pmatrix} -v_1 \\ \frac{1}{v_2} \end{pmatrix} = \begin{pmatrix} v_1 - v_1 \\ v_2 \begin{pmatrix} \frac{1}{v_2} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -v_1 + v_1 \\ \left(\frac{1}{v_2}\right) v_2 \end{pmatrix} = \begin{pmatrix} -v_1 \\ \frac{1}{v_2} \end{pmatrix} \oplus \begin{pmatrix} v_1 \\ v_2 \end{pmatrix},$$

so $\vec{v} \oplus \vec{-v} = \vec{0_V} = \vec{-v} \oplus \vec{v}$.

5. We have

$$\vec{u} \oplus \vec{v} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \oplus \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ u_2 v_2 \end{pmatrix} = \begin{pmatrix} v_1 + u_1 \\ v_2 u_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \oplus \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \vec{v} \oplus \vec{u}.$$

- 6. We have $a \star \vec{v} = \begin{pmatrix} av_1 \\ v_2{}^a \end{pmatrix}$. Since $a, v_1 \in \mathbb{R} \implies av_1 \in \mathbb{R}$ and $a \in \mathbb{R}, v_2 \in \mathbb{R}^+ \implies v_2{}^a \in \mathbb{R}^+$, we have $a \star \vec{v} \in V$.
- 7. First, we have

$$a \star \left(b \star \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = a \star \begin{pmatrix} bv_1 \\ v_2^b \end{pmatrix}$$

$$= \begin{pmatrix} a(bv_1) \\ (v_2^b)^a \end{pmatrix}$$

$$= \begin{pmatrix} (ab)v_1 \\ (v_2^b)^a \end{pmatrix}$$

$$= \begin{pmatrix} (ab)v_1 \\ (v_2^b)^a \end{pmatrix}$$
(exponent rule/commutativity)

$$= (ab) \star \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$

We also have

$$(ab) \star \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} (ab)v_1 \\ v_2{}^{ab} \end{pmatrix}$$

$$= \begin{pmatrix} b(av_1) \\ v_2{}^{ab} \end{pmatrix} \qquad \text{(commutativity/associativity)}$$

$$= \begin{pmatrix} b(av_1) \\ (v_2{}^a)^b \end{pmatrix} \qquad \text{(exponent rule)}$$

$$= b \star \begin{pmatrix} av_1 \\ v_2{}^a \end{pmatrix}$$

$$= b \star \begin{pmatrix} a \star \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \end{pmatrix}.$$

So $a \star (b \star \vec{v}) = (ab) \star \vec{v} = b \star (a \star \vec{v}).$

8. We have

$$a \star (\vec{u} \oplus \vec{v}) = a \star \left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \oplus \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right)$$

$$= a \star \begin{pmatrix} u_1 + v_1 \\ u_2 v_2 \end{pmatrix}$$

$$= \begin{pmatrix} a(u_1 + v_1) \\ (u_2 v_2)^a \end{pmatrix}$$

$$= \begin{pmatrix} au_1 + av_1 \\ u_2^a v_2^a \end{pmatrix} \qquad \text{(distributing coefficient/exponent)}$$

$$= \begin{pmatrix} au_1 \\ u_2^a \end{pmatrix} \oplus \begin{pmatrix} av_1 \\ v_2^a \end{pmatrix}$$

$$= \begin{pmatrix} a \star \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \end{pmatrix} \oplus \begin{pmatrix} a \star \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \end{pmatrix}$$

$$= (a \star \vec{u}) \oplus (a \star \vec{v}).$$

9. We have

$$(a+b) \star \vec{u} = (a+b) \star \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$= \begin{pmatrix} (a+b)u_1 \\ u_2^{a+b} \end{pmatrix}$$

$$= \begin{pmatrix} au_1 + bu_1 \\ u_2^{a}u_2^{b} \end{pmatrix}$$

$$= \begin{pmatrix} au_1 \\ u_2^{a} \end{pmatrix} \oplus \begin{pmatrix} bu_1 \\ u_2^{b} \end{pmatrix}$$
(distributivity/exponent rules)

$$= \left(a \star \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}\right) \oplus \left(b \star \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}\right)$$
$$= (a \star \vec{u}) \oplus (b \star \vec{u}).$$

10. Let $1_F = 1$. Then, we have

$$1_F \star \vec{v} = 1 \star \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1(v_1) \\ {v_2}^1 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \vec{v}.$$

If the reader has not passed away from boredom pages ago, we can see that (V, \oplus, \star) satisfies the axioms for $F = \mathbb{R}$, and therefore it is a real vector space.

Problem 2 Briefly explain why each of the following subsets W are not subspaces of the vector spaces V.

(a)
$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 \text{ is a rational number} \right\}, V = \mathbb{R}^2.$$

(b)
$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 - x_2 + x_3 = 0 \text{ or } x_2 - x_3 = 0 \right\}, V = \mathbb{R}^3.$$

(c)
$$W = \{p(x) \in \mathbb{R}_2(x) : p(1)p(3) = 0\}, V = \mathbb{R}_2[x].$$

Solution.

(a) Let $k = \pi, \vec{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Then, we have $\vec{u}, \vec{v} \in W$ because $0, 1 \in \mathbb{Q}$, but $k\vec{u} + \vec{v} = \begin{pmatrix} \pi \\ 0 \end{pmatrix} \notin W$ because $\pi \notin \mathbb{Q}$. So W cannot be a subspace of V.

(b) Let
$$k = 1, \vec{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. Then, we have $\vec{u} \in W$ because $1 - 1 + 0 = 0$ and $\vec{v} \in W$ because

1-1=0, but $k\vec{u}+\vec{v}=\begin{pmatrix}2\\2\\1\end{pmatrix}\not\in W$ because $2-2+1\neq 0$ and $2-1\neq 0$. So W cannot be a subspace of W.

(c) Let k=1, p(x)=x-1, q(x)=x-3. Then, we have $p(x) \in W$ because p(1)p(3)=(0)(2)=0 and $q(x) \in W$ because q(1)q(3) = (-2)(0) = 0, but $g(x) = p(x) + q(x) = 2x - 4 \notin W$ because g(1)g(3) = 0 $(-2)(2) = -4 \neq 0$. So W cannot be a subspace of W.

Problem 3 Let

$$W = \{ A \in \text{Mat}_{3\times3} : (A)_{11} + (A)_{22} + (A)_{33} = 0, \ (A)_{12} + (A)_{23} = 0, \ (A)_{21} + (A)_{32} = 0 \}.$$

- (a) Show that W is a subspace of $Mat_{3\times 3}$.
- (b) Find a set $S \subset W$ with |S| as small as possible such that $W = \operatorname{Span}(S)$.

Solution.

(a) First, we note that $O_{3\times 3} \in W$ because 0+0+0=0 and 0+0=0. Next, let

$$k \in \mathbb{R}, A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in W, B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \in W,$$

and consider

$$kA + B = \begin{pmatrix} ka_{11} + b_{11} & ka_{12} + b_{12} & ka_{13} + b_{13} \\ ka_{21} + b_{21} & ka_{22} + b_{22} & ka_{23} + b_{23} \\ ka_{31} + b_{31} & ka_{32} + b_{32} & ka_{33} + b_{33} \end{pmatrix}.$$

We have

$$0 = a_{11} + a_{22} + a_{33}$$

$$\Rightarrow 0 = ka_{11} + ka_{22} + ka_{33}$$

$$\Rightarrow 0 = (ka_{11} + ka_{22} + ka_{33}) + (b_{11} + b_{22} + b_{33})$$

$$\Rightarrow 0 = (ka_{11} + b_{11} + ka_{22} + b_{22} + ka_{33} + b_{33}$$

$$\Rightarrow 0 = (kA + B)_{11} + (kA + B)_{22} + (kA + B)_{33}.$$
(commutatitivity)
$$\Rightarrow 0 = (kA + B)_{11} + (kA + B)_{22} + (kA + B)_{33}.$$

By similar arguments,

$$(kA+B)_{12}+(kA+B)_{23}=0$$
 and $(kA+B)_{21}+(kA+B)_{32}=0$.

So W is a subspace of V.

(b) Let

$$S = \left\{ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right\}.$$

The first two matrices allow a_{13} and a_{31} to be anything. The next two matrices ensure the condition that $a_{12} + a_{23} = a_{21} + a_{32} = 0$. The last two matrices ensure that $a_{11} + a_{22} + a_{33} = 0$. Thus, Span(S) = W, and S cannot be smaller because then it would not ensure these conditions.

Problem 4 Let
$$W = \{p(x) \in \mathbb{R}_3[x] : p(1) = p(-1), \ p(2) = p(-2)\}.$$

- (a) Show that W is a subspace of $\mathbb{R}_3[x]$.
- (b) Find a set $S \subset W$ with |S| as small as possible such that $W = \operatorname{Span}(S)$.

Solution.

(a) First, we note that the zero function is in W, because the degree is $-\infty \le 3$, and because the value is equal everywhere (in particular, for $x \in \{1, -1, 2, -2\}$). Next, let

$$k \in \mathbb{R}$$
, $p(x) = p_3 x^3 + p_2 x^2 + p_1 x + p_0 \in W$, $q(x) = q_3 x^3 + q_2 x^2 + q_1 x + q_0 \in W$.

Since $p(x) \in W$, we have

$$p(1) = p(-1)$$

Nathan Bickel

Homework 6

MATH 544

$$\Rightarrow p_3(1)^3 + p_2(1)^2 + p_1(1) + p_0 = p_3(-1)^3 + p_2(-1)^2 + p_1(-1) + p_0$$

$$\Rightarrow p_3 + p_2 + p_1 + p_0 = -p_3 + p_2 - p_1 + p_0$$

$$\Rightarrow p_3 + p_1 = -p_3 - p_1$$

$$\Rightarrow p_3 + p_1 = 0.$$

$$p(2) = p(-2)$$

$$\Rightarrow p_3(2)^3 + p_2(2)^2 + p_1(2) + p_0 = p_3(-2)^3 + p_2(-2)^2 + p_1(-2) + p_0$$

$$\Rightarrow 8p_3 + 4p_2 + 2p_1 + p_0 = -8p_3 + 4p_2 - 2p_1 + p_0$$

$$\Rightarrow 4p_3 + p_1 = -4p_3 - p_1$$

$$\Rightarrow 4p_3 + p_1 = 0.$$

Using elimination, we find that $3p_3 = 0$, so $p_3 = p_1 = 0$ and $p(x) = p_2x^2 + p_0$. By the same argument, we have $q(x) = q_2x^2 + q_0$. So

$$kp(x) + q(x) = k(p_2x^2 + p_0) + (q_2x^2 + q_0) = (kp_2 + q_2)x^2 + (kp_0 + q_0).$$

Thus, we have

$$kp(1) + q(1) = (kp_2 + q_2)(1)^2 + (kp_0 + q_0) = (kp_2 + q_2)(-1)^2 + (kp_0 + q_0) = kp(-1) + q(-1)$$

and

$$kp(2) + q(2) = (kp_2 + q_2)(2)^2 + (kp_0 + q_0) = (kp_2 + q_2)(-2)^2 + (kp_0 + q_0) = kp(-2) + q(-2),$$

so $kp(x) + q(x) \in W$. Therefore, W is a subspace of $\mathbb{R}_3[x]$.

(b) Any polynomial in W has only a degree 2 term and a constant term. Thus, $S = \{x^2, 1\}$ is a subset of W (both polynomials have degree ≤ 3) and any polynomial in W can be expressed as a linear combination of elements in S. So $W = \operatorname{Span}(S)$.

Problem 5 Let $A \in \operatorname{Mat}_{m \times n}$, and let $V \in \mathbb{R}^n$ be a subspace of \mathbb{R}^n .

- (a) Show that $W = \{ \vec{y} \in \mathbb{R}^m : \exists \vec{x} \in V \text{ such that } \vec{y} = A\vec{x} \}$ is a subspace of \mathbb{R}^m .
- (b) Now, suppose that $V = \mathbb{R}^n$, and let W be as in part (a). Show that $W = \operatorname{Col}(A)$. When $V = \mathbb{R}^n$, the subspace W is sometimes called the **range** of A. This part of the problem shows that the range of A and the column space of A coincide.

Note: Suppose that we define a map $T: V \longrightarrow \mathbb{R}^m$ by $T(\vec{x}) = A\vec{x}$. The set W in the problem is the range of the map T. (The subspace V is the domain of T.) Therefore, this problem shows that the range of the map defined by multiplication with the matrix A is a subspace of \mathbb{R}^m . We will discuss maps of this type in Chapters 6 and 7.

Solution.

(a) Let $k \in \mathbb{R}$ and $\vec{y_1}, \vec{y_2} \in W$. Then, there exist $\vec{x_1}, \vec{x_2} \in V$ such that $\vec{y_1} = A\vec{x_1}$ and $\vec{y_2} = A\vec{x_2}$. So we have

$$k\vec{y_1} + \vec{y_2} = kA\vec{x_1} + A\vec{x_2}$$

$$= Ak\vec{x_1} + A\vec{x_2}$$

$$= A(k\vec{x_1} + \vec{x_2}).$$
(commutativity)
$$= A(k\vec{x_1} + \vec{x_2}).$$
(distributivity)

Homework 6 MATH 544

Since V is a vector space, we have $k\vec{x_1} + \vec{x_2} \in V$. Then by definition, $k\vec{y_1} + \vec{y_2} = A(k\vec{x_1} + \vec{x_2}) \in W$. So W is a subspace of \mathbb{R}^m .

(b) Let

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}.$$

Let $\vec{y} \in W$. So there exists $\vec{x} \in V$ such that $\vec{y} = A\vec{x}$. Let $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}$. Then, we have

$$A\vec{x} = \begin{pmatrix} x_1a_{11} + x_2a_{12} + x_3a_{13} + \dots + x_na_{1n} \\ x_1a_{21} + x_2a_{22} + x_3a_{23} + \dots + x_na_{2n} \\ x_1a_{31} + x_2a_{32} + x_3a_{33} + \dots + x_na_{3n} \\ \vdots \\ x_1a_{m1} + x_2a_{m2} + x_3a_{m3} + \dots + x_na_{mn} \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \\ \vdots \\ a_{m2} \end{pmatrix} + x_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \\ \vdots \\ a_{m3} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ a_{3n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Thus, we can write $\vec{y} = A\vec{x}$ as a linear combination of the columns of A, so $y \in \text{Col}(A)$. Therefore, $W \subseteq \text{Col}(A)$.

Next, let $\vec{y} \in \text{Col}(A)$. Then, there exist $x_1, x_2, x_3, \dots, x_n \in \mathbb{R}$ such that

$$\vec{y} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \\ \vdots \\ a_{m2} \end{pmatrix} + x_3 \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \\ \vdots \\ a_{m3} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ a_{3n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Distributing, we can write this as

$$\vec{y} = \begin{pmatrix} x_1 a_{11} + x_2 a_{12} + x_3 a_{13} + \dots + x_n a_{1n} \\ x_1 a_{21} + x_2 a_{22} + x_3 a_{23} + \dots + x_n a_{2n} \\ x_1 a_{31} + x_2 a_{32} + x_3 a_{33} + \dots + x_n a_{3n} \\ \vdots \\ x_1 a_{m1} + x_2 a_{m2} + x_3 a_{m3} + \dots + x_n a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = A\vec{x},$$

where
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}$$
. So by definition, $y \in W$, and therefore $\operatorname{Col}(A) \subseteq W$. So we have $W = \operatorname{Col}(A)$. \square

Problem 6 Let $A \in \text{Mat}_{n \times n}$. Verify that $W = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = 3\vec{x}\}$ is a subspace of \mathbb{R}^n .

Note: Suppose that there exists $\vec{x} \neq \vec{0}$ in W. Then we say that \vec{x} is an **eigenvector** for A with **eigenvalue** 3. The subspace W is the **eigenspace** of A associated to the eigenvector 3. We will discuss these objects in Chapter 9.

Solution.

Let $k \in \mathbb{R}$ and $\vec{u}, \vec{v} \in W$. So we have $A\vec{u} = 3\vec{u}$ and $A\vec{v} = 3\vec{v}$, and thus $\vec{u} = \frac{1}{3}A\vec{u}$ and $\vec{v} = \frac{1}{3}A\vec{v}$. Then,

$$k\vec{u} + \vec{v} = k\left(\frac{1}{3}A\vec{u}\right) + \frac{1}{3}A\vec{v}$$

$$= \frac{Ak\vec{u} + A\vec{v}}{3} \qquad \text{(commutativity of scalars)}$$

$$= \frac{A(k\vec{u} + \vec{v})}{3} \qquad \text{(distributivity)}$$

$$\implies 3(k\vec{u} + \vec{v}) = A(k\vec{u} + \vec{v})$$

So by definition, $k\vec{u} + \vec{v} \in W$ and therefore W is a subspace of \mathbb{R}^n .

Problem 9 Let W_1 and W_2 be subspaces of a real vector space, V. We showed that

$$W_1 + W_2 = \{\vec{w}_1 + \vec{w}_2 : \vec{w}_1 \in W_1 \text{ and } \vec{w}_2 \in W_2\}$$

and

$$W_1 \cap W_2 = \{ \vec{v} \in V : \vec{v} \in W_1 \text{ and } \vec{v} \in W_2 \}$$

are subspaces of V.

Suppose that $W_1 + W_2 = V$ and that $W_1 \cap W_2 = \{\vec{0}\}$. Prove, for every vector $\vec{v} \in V$, that there are unique vectors $\vec{w}_1 \in W_1$ and $\vec{w}_2 \in W_2$ such that $\vec{v} = \vec{w}_1 + \vec{w}_2$.

Note: We say that V is the **direct sum** of W_1 and W_2 , and we write $V = W_1 \bigoplus W_2$.

Solution.

Existence: Let $\vec{v} \in V$. Since $V = W_1 + W_2$, there must be some vectors $\vec{w_1} \in W_1$ and $\vec{w_2} \in W_2$ such that $\vec{v} = \vec{w_1} + \vec{w_2}$, or v would not be in $W_1 + W_2$, contradicting equality.

Uniqueness: Suppose we have $\vec{w_1}, \vec{w_1'} \in W_1$ and $\vec{w_2}, \vec{w_2'} \in W_2$ such that $\vec{v} = \vec{w_1} + \vec{w_2} = \vec{w_1'} + \vec{w_2'}$. Rearranging, we have $\vec{w_1} - \vec{w_1'} = \vec{w_2'} - \vec{w_2} = \vec{v'}$ for some $\vec{v'} \in V$. Because of closure, we must have $\vec{v'} \in W_1$ because it is the sum of vectors in W_1 , and $\vec{v'} \in W_2$ because it is the sum of vectors in W_2 . The only vector in both W_1 and W_2 is $\vec{0}$, so we have $\vec{v'} = \vec{0} = \vec{w_1} - \vec{w_1'} = \vec{w_2'} - \vec{w_2}$. This implies that $\vec{w_1} = \vec{w_1'}$ and $\vec{w_2} = \vec{w_2'}$.