

목차 INDEX

 1 단계
 2 단계
 3 단계
 4 단계
 5 단계
 6 단계

 개요
 데이터 수집
 모델
 기술 설명
 시연
 기대효과

 일반인 측면 약재 유통 측면 한의학 전공자 측면
 데이터 수집 과정 Augmentation
 모델 적용 설명가능한 딥러닝
 기술 스택
 현장 시연
 확장 가능성 한약재 정보의 디지털화

1. 프로젝트 개요

Toxic

독성 약재 감별은 전문가만이 가능한 영역이었으며, 현재의 약재 검증은 전문가가 manual로 직접 평가하는 시스템

독성(毒性) 주의 한약재 복용 70대<u>남성 사망</u>

[2019년 06월 06일 16시 34분

일반인 측면

[데일리메디 박정연 기자] 대한한의사협회(회장 최혁용)는 최근 70대 남성이 '초오(草烏)'를 넣어 끓인 국을 먹 고 목숨을 잃은 사건과 관련, 독성(毒性)이 강한 한약재 복용시 한의사 진단과 처방에 따를 것을 당부.

'초오'는 미나리아재비과의 놋젓가락나물, 이삭바꽃 또는 세잎될 우 강하기 때문에 '독성 주의 한약재'로 관리되고 있는 실정, 4 초오는 독성을 가진 아코니틴(aconitine)을 포함하고 있는 것으로 이상과 호흡곤란, 경련, 쇼크를 유발하고 2mg정도의 소량으로되

통증 완화하려고...사약 재료 '초오' 달여 먹다 80대 사망

장면제 동아닷컴 기자

입력 2019-08-19 13:19 수정 2019-08-19 15:40

지금도 독초 먹고 숨지는 사고가 터진다니

여균수 주필

입력: 2019. 08.21(수) 18:33

여균수 기자 dangsannamu1@gwangnam.co.kr

|초를 섭취해 숨지는 사고가 잇따르고 있다.

면, 지난 17일 오후 7시께 광주 서구 한 아파트에서 A 초오(草烏)를 달여 먹었다가 구토 등 중독 증상을 보여 유겼지만 치료 중 숨을 거뒀다.

ŀ은 A 씨는 후유증으로 통증에 시달리다 가족 몰래 초오.

∥신을 유족에게 인도한 뒤 내사 종결할 예정이다.

으로 독초인 초오(草烏)를 달여먹던 A씨(81)가 숨졌다.

중독 증상을 보인 A씨의 모습을 보고 가족들이 황급히 병원으로 옮겼지만, 치료를 받던 도중 사망했다.

지난 6월 초에도 광주 서구에서 초오를 명탯국에 넣어 끓여 먹은 B씨(75)가 서구 자신의 집에서 초오를 명탯국에 넣어 끓여 먹은 B 숨졌다.

색'에 "놀랍다" 반응 등 대대적 압수수색

약재 유통 측면

독성 약재 혼용으로 인한 법적 소송이 매년 반복

한의학 전공자 측면

Akebiae Caulis

Aristolochiae Manshuriensis Caulis

Sinomeniu m acutum

茯苓	Hoelen	잔나비결상과	친균	복령	Poria cocos	菌核	
猪苓(1)	Polyporus	잔나비결상과	친권	猪苓	Polyporus umbellatus	菌核	
澤瀉(2)	Alismatis Rhizoma	택사과	多年生 沼澤植物	질경이택사	Alisma plantago-aquatica	塊莖	
薏苡仁	Coicis Semen	벼과	-年生또는 多年生 草本	율무	Coix lachyma-jobi	種仁	
冬瓜皮	Benincasae Pericarpium	박과	一年生 草本	동아호박	Benincasa hispida	果皮	
赤小豆	Phaseoli Angularis Semen	콩과	一年生 草本	핕	Phaseolus angularis	種子	
玉米鬚	Maydis Stigma	벼과	一年生 草本	Zea mays	花柱		
6장. 이수?	남습약-제 2절 이수통림약	'		-		<u>'</u>	
車前子(1)	Plantaginis Semen	질경이과	多年生 草本	질경이	Plantago asiatica	種子	
木通(2)	Akebiae Caulia	으름덩굴과	낙엽성 관목	으름덩굴 소목통 삼엽목통	[] [출기		
滑石(1)	Talcum	귀산염류 광물	-	-	Mg3(Si4010)(OH)2		
通草(2)	Tetrapanacis Medulla	두쁩나무과	관목	등달목(通脫木)	Tetrapanax papyriferus	並離	
海金沙	Lygodii Spora	실고사리과	-	실고사리	Lygodium japonicum	胞子	
石韋	Pyrrosiae Folium	고란초과	多年生 草本	석위 세뿔석위	Pyrrosia lingua P. tricuspis	業	
萆薢	Torko Rhizoma	마과	-	도꼬로마	Dioscorea tokoro	根莖	
地膚子	Kochiae Fructus	영아주과	一年生 草本	됍싸리	Kochia scoparia	采實	
篇蓄	Polygoni Avicularis Herba	마디풀과	一年生 草本	마디풀	Polygonum aviculare	全草	
瞿麥	Dianthi Herba	석죽과	多年生 草本	술패랭이꽃 패랭이꽃	Dianthus superbus D.chinensis	全草	
冬葵子	Malvae Semen	아옥과	一年生 草本	아육	Malva verticillata	種子	
燈心草	Junci Međulla	골풀과	多年生 草本	골풀	Juncus effusus	根髓	
三白草(1)	Saururi Herba seu Rhizoma	삼백초과	多年生 草本	삼백초	Saururus chinensis	根, 全草	
茵蔯蒿(1)	Artemisiae Capillaris Herba	국화과	多年生 草本	사철쑥(白萬) 비쑥(濱萬) 더위지기	Artemisia capillaris Artemisia scoparia Artemisia iwayomogi	_ 全草	
金錢草	Lysimachiae Herba	맹초과	多年生 草本	過路黃 廣金級草	Lysimachia christinae Desmodium styracifolium	全草	

효능, 이명, 학명 등 암기는 그만, 약재 인식 및 정보 시스템이 필요

한의학 X 딥러닝

딥러닝을 활용한 독성 약재 감별 정보 시스템

2. 데이터 수집

어떤 약재가, 독성 약재와 닮아 있는지 알 수 없다.

1. 단면异:關木通,木通,青風藤,粉防己,大黃,肉蓯蓉

2. 줄기 : 甘遂, 大戟, 巴戟

3. 刈父异: 牽牛子, 蘿蔔子, 決明子, 枸杞子, 補骨脂, 杏仁, 桃仁

약초 도감을 공부하여 유사 약재(독성, 비독성) 리스트를 작성

직접 선별한 유사 약재 리스트에 대하여 연구기관의 검수 요청 및 인증

수집한 약재 DB에 대하여 연구기관의 검수 요청 및 인증

독성 약재는 이미지 데이터를 구할 수 없다.

연구 기관의 도움으로 독성 약초를 중국에서 공수. 약재 시장에서 직접 약재 구입하여 약재 이미지를 데이터화함.

Augmentation

3. 모델

모델 적용

MobileNet-v2

MobileNet-v1, ResNet50, VGG16, VGG19, LeafNet, DenseNet201

모델 적용

				Model Information								Used Dataset Information						
	Accuracy (%)	Auucracy (count)	Result Analysis (Summary)	Base Model =	Pre-trained	Batch_	Epochs =	Learnir Rate		Optimizer =	Loss(criterion) =	Training_Loss =	Validation_Loss =	Data =	Train =	Test =	Validation =	Tester
pure_vgg16	33	40/120		VGG16	FALSE		4	1	0.001	Adam	Cross_entropy		-	줄기	480	120	0	Jinhyo Shi
pre_vgg16	95	114/120	- Pre-trained의 성능이 출중하다. [Testset Augmentation에 따른 결과	VGG16	TRUE		4	1	0.001	Adam	Cross_entropy	0.066	-	줄기	480	120	0	Jinhyo Shi
fixed_vgg16	34	41/120	 General purpose pre-trained weights should be updated for specific dataset. 	VGG16	TRUE		4	1	0.001	Adam	Cross_entropy	0.11	_	줄기	480	120	0	Jinhyo Shi
resnet_pre-trained-5epochs	90		-	ResNet50	TRUE		4	5	0.001	Adam	Cross_entropy	0.065	-	씨앗A	800	198	0	Jinhyo Shi
pre_resnet18	95	119/120	- Pre-trained의 성능이 출중하다.	ResNet18	TRUE		4	5	0.001	Adam	Cross_entropy	0.053	-	줄기	480	120	0	Jongik Par
fixed_resnet18	98	118/120	- fixed임에도 불구하고 resnet은 good	ResNet18	FALSE		4	5	0.001	Adam	Cross_entropy	0.096	-	줄기	480	120	0	Jongik Par
fixed vgg16	92	184/200	- fixed임에도 불구하고 단면은 good	VGG16	FALSE		4	5	0.001	Adam	Cross entropy		_	단면A	800	200	0	Jongik Par
pre resnet18	98	626/638	-	ResNet18	TRUE		4	5	0.001	Adam	Cross entropy	0.009	-	Total	2560	638		Jongik Par
MobileNet-v2	87	820/938	- 모바일에서도 연동 가능한 모델 사용	MobileNet-v2	TRUE	1	10 1	0	0.0005	Adam	Cross entropy	0.009	-	Total	2560	638	0	Jongik Par
pre_resnet18	91	851/938	test_aug 4036/5550 (73%) train_aug 17373/21038 (83%)	ResNet18	TRUE	1	16 1	0	0.001	Adam	Cross_entropy	0.014	-	Total	3780	938	0	Seungmin
pre_DenseNet201	93	870/938	Test set(Aug): Accuracy: 3838/5550 (69%) Test set(Web): Accuracy: 19/191 (10%)	DenseNet201	TRUE		4 1	0	0.001	Adam	Cross_entropy	0.259	-	Total	3780	938	0) Jinhyo Shi
mobileNet-v2	63	3470/5550	augmentation 할 때 total-train 데이터는 안 넣었고 test 할 때에는	mobileNet-v2	TRUE	12	28 1	0	0.0005	Adam	Cross_entropy	0.064	-	Aug	21038	4979	0	Yujeong L
pre_DenseNet201_train(Aug)	94	5240/5550	10 epoch에서 실수로 더 돌려서 13에폭됨. 10 에폭도 저장해놓음	DenseNet201	TRUE	3	32 1:	3	0.001	Adam	Cross_entropy	0.038	-	Aug	21038	5550	0	Jinhyo Shi
mobileNet-v2_early	88	312/352	총 20에폭. 10에폭 저장하고 다시 10에폭 돌림	MobileNet-v2	TRUE	3	32 2	0	0.0005	Adam	Cross_entropy	0.08158	0.35017	total2	3780	380	378	Yujeong Le
pre_DenseNet201_train(Aug)	None		test 아직 안돌려봄	DenseNet201	TRUE	3	32 10	0	0.001	Adam	Cross_entropy	0.038		Aug	21038	5550	0	Jinhyo Shi
vgg16_early_stopping	89	314/352	감수가 6/18 로 33% ㅠㅠ	VGG16_bn	TRUE	3	32 1	0	0.0005	Adam	Cross_entropy	0.10971	0.25816	total2	3780	380	378	Jongik Par
resnet50_early_stopping	88	312/352	도인이 10/18 로 55% ㅠㅠ	ResNet50	TRUE	3	20 -> 14! early stop		0.0005	Adam	Cross_entropy	0.019	0.2244	total2	3780	380	378	Jongik Par
Dense201_early_stopping	90	332/368	육종용이 8/20 로 40% ㅠㅠ	DenseNet201	TRUE	1	20 -> 15! early stop		0.0005	Adam	Cross_entropy	0.11745	0.3853	total2	3780	380	378	Jongik Pai
Mobilenetv2 (Keras)	80.5	306/380	over fitting 있는 듯함 totalA - test	MobileNet-v2	TRUE	1	16 2	0	0.0001	RMSProp	Cross_entropy	0.0076	1.0023	TotalA	9030	380	1134	Yujeong Le
			위에랑 같은 모델인데															

설명 가능한 딥러닝

Feature map Grad Cam Lime

| The state of th

의료 분야에서의 딥러닝 적용시 법적 이슈가 있으므로, 설명 가능한 딥러닝을 지향함.

4. 기술 설명

독약한방 -

딥러닝 프레임워크

백엔드 프레임워크

분석환경 및 형상관리

5. 시연

6. 기대 효과

돌 독약한방

한약재 정보의 디지털화

Global 일반인용 전 세계의 산지에서 일어날 수 있는 독성 약재의 약화사고 방지

전문가 양성 기관 약대, 한의학과, 한약학과, 산악회 등의 교육자료로 활용된다.

식약처 등 공공기관, 연구기관 전문가 보조 어플리케이션

