Tecniche di analisi degli algoritmi

Moreno Marzolla, Lorenzo Donatiello

Dipartimento di Infromatica, Università di Bologna

29 ottobre 2017

Copyright ©2009, 2010 Moreno Marzolla, Università di Bologna

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Modello di calcolo

Consideriamo un modello di calcolo costituito da una macchina a registri così composta:

- Esiste un dispositivo di input e un dispositivo di output;
- La macchina ha *N* locazioni di memoria, con indirizzo da 1 a *N*; ciascuna locazione può contenere un valore (intero, reale...);
- l'accesso in lettura o scrittura ad una qualsiasi locazione richiede tempo costante;
- La macchina dispone di un set di registri per mantenere i parametri necessari alle operazioni elementari e per il puntatore all'istruzione corrente;
- La macchina ha un programma composto da un insieme finito di istruzioni

Costo computazionale

Definizione

Indichiamo con f(n) la quantità di risorse (tempo di esecuzione, oppure occupazione di memoria) richiesta da un algoritmo su input di dimensione n, operante su una macchina a registri.

Siamo interessati a studiare l'*ordine di grandezza* di f(n) ignorando le costanti moltiplicative e termini di ordine inferiore.

Misura del costo computazionale

Utilizzare il tempo effettivo di esecuzione di un programma come costo computazionale presenta numerosi svantaggi:

- Implementare un dato algoritmo può essere laborioso;
- Il tempo è legato alla specifica implementazione (linguaggio di programmazione usato, caratteristiche della macchina usata per effettuare le misure, ...);
- Potremmo essere interessati a stimare il costo computazionale usando input troppo grandi per le caratteristiche della macchina su cui effettuiamo le misure;
- Determinare l'ordine di grandezza a partire da misure empiriche non è sempre possibile;

Costo computazionale Esempio

Consideriamo due algoritmi A e B che risolvono lo stesso problema.

- Sia $f_A(n) = 10^3 n$ il costo computazionale di A;
- Sia $f_B(n) = 10^{-3}n^2$ il costo computazionale di B.

Quale dei due è preferibile?

La notazione asintotica O(f(n))

Definizione

Data una funzione costo f(n), definiamo l'insieme O(f(n)) come l'insieme delle funzioni g(n) per le quali esistono costanti c > 0 e $n_0 \ge 0$ per cui vale:

$$\forall n \geq n_0 : g(n) \leq cf(n)$$

In maniera piú sintetica:

$$O(f(n)) = \{g(n) : \exists c > 0, n_0 \ge 0 \text{ tali che } \forall n \ge n_0 : g(n) \le cf(n)\}$$

Nota: si utilizza la notazione (sebbene non formalmente corretta) g(n) = O(f(n)) per indicare $g(n) \in O(f(n))$.

Rappresentazione grafica

$$g(n) = O(f(n))$$

Esempio

Sia $g(n) = 3n^2 + 2n$ e $f(n) = n^2$. Dimostriamo che g(n) = O(f(n)).

Dobbiamo trovare due costanti c > 0, $n_0 \ge 0$ tali che $g(n) \le cf(n)$ per ogni $n \ge n_0$, ossia:

$$3n^2 + 2n \le cn^2 \tag{1}$$

$$c \geq \frac{3n^2 + 2n}{n^2} = 3 + \frac{2}{n}$$

se ad esempio scegliamo $n_0 = 10$ e c = 4, si ha che la relazione (1) è verificata.

La notazione asintotica $\Omega(f(n))$

Definizione

Data una funzione costo f(n), definiamo l'insieme $\Omega(f(n))$ come l'insieme delle funzioni g(n) per le quali esistono costanti c > 0 e $n_0 \ge 0$ per cui vale:

$$\forall n \geq n_0 : g(n) \geq cf(n)$$

In maniera piú sintetica:

$$\Omega(f(n)) = \{g(n) : \exists c > 0, n_0 \ge 0 \text{ tali che } \forall n \ge n_0 : g(n) \ge cf(n)\}$$

Nota: si utilizza la notazione $g(n) = \Omega(f(n))$ per indicare $g(n) \in \Omega(f(n))$.

Rappresentazione grafica

$$g(n) = \Omega(f(n))$$

Esempio

Sia $g(n) = n^3 + 2n^2$ e $f(n) = n^2$, e dimostriamo che $g(n) = \Omega(f(n))$.

Dobbiamo trovare due costanti c > 0, $n_0 \ge 0$ tali che per ogni $n \ge n_0$ sia $g(n) \ge cf(n)$, ossia:

$$n^3 + 2n^2 \ge cn^2 \tag{2}$$

$$c \leq \frac{n^3 + 2n^2}{n^2} = n + 2$$

se ad esempio scegliamo $n_0 = 0$ e c = 1, si ha che la relazione (2) è verificata.

La notazione asintotica $\Theta(f(n))$

Definizione

Data una funzione costo f(n), definiamo l'insieme $\Theta(f(n))$ come l'insieme delle funzioni g(n) per le quali esistono costanti $c_1 > 0$, $c_2 > 0$ e $n_0 \ge 0$ per cui vale:

$$\forall n \geq n_0 : c_1 f(n) \leq g(n) \leq c_2 f(n)$$

In maniera piú sintetica:

$$\Theta(f(n)) = \{g(n) : \exists c_1 > 0, c_2 > 0, n_0 \ge 0 \text{ tali che}$$

 $\forall n \ge n_0 : c_1 f(n) \le g(n) \le c_2 f(n) \}$

Nota: si utilizza la notazione $g(n) = \Theta(f(n))$ per indicare $g(n) \in \Theta(f(n))$.

Rappresentazione grafica

$$g(n) = \Theta(f(n))$$

Spiegazione intuitiva

- Se g(n) = O(f(n)) significa che l'ordine di grandezza di g(n) è "minore o uguale" a quello di f(n);
- Se $g(n) = \Theta(f(n))$ significa che g(n) e f(n) hanno lo stesso ordine di grandezza;
- Se $g(n) = \Omega(f(n))$ significa che l'ordine di grandezza di g(n) è "maggiore o uguale" a quello di f(n).

Alcune proprietà delle notazioni asintotica

Simmetria

$$g(n) = \Theta(f(n))$$
 se e solo se $f(n) = \Theta(g(n))$

Simmetria Trasposta

$$g(n) = O(f(n))$$
 se e solo se $f(n) = \Omega(g(n))$

Transitività

Se
$$g(n) = O(f(n))$$
 e $f(n) = O(h(n))$, allora $g(n) = O(h(n))$.
Lo stesso vale per Ω e Θ .

Ordini di grandezza

In ordine di costo crescente:

	Ordine	Esempio
O(1)	costante	Determinare se un numero è pari
$O(\log n)$	logaritmico	Ricerca di un elemento in un array ordinato
O(n)	lineare	Ricerca di un elemento in un array disordinato
$O(n \log n)$	pseudolineare	Ordinamento mediante Merge Sort
$O(n^2)$	quadratico	Ordinamento mediante Bubble Sort
$O(n^3)$	cubico	Prodotto di due matrixi $n \times n$ con l'algoritmo "intuitivo"
$O(c^n)$	esponenziale, base $c>1$	
O(n!)	fattoriale	Calcolare il determinante di una matrice mediante espansione dei minori
$O(n^n)$	esponenziale, base <i>n</i>	

In generale:

- $O(n^k)$ con k > 0 è ordine polinomiale
- $O(c^n)$ con c > 1 è ordine esponenziale

Confronto grafico tra gli ordini di grandezza

Nota: scala y logaritmica; le linee orizzontali segnano il numero di secondi in un'ora, in un anno e in un secolo (rispettivamente, dal basso verso l'alto)

Confronto grafico tra gli ordini di grandezza

Nota: scala y logaritmica!

Confronto grafico tra gli ordini di grandezza

$$\begin{array}{cccc}
n^2 & & \\
& & \\
n & & \\
& & \\
\log n & & \\
\end{array}$$

Vero o falso?

$$6n^2 = \Omega(n^3)$$
 ?

Applicando la definizione, dobbiamo dimostrare se

$$\exists c>0, n_0\geq 0 \ : \ \forall n\geq n_0 \quad 6n^2\geq cn^3$$

Cioè $c \le 6/n$.

Fissato c è sempre possibile scegliere un valore di n sufficientemente grande tale che 6/n < c, per cui l'affermazione è falsa.

Vero o falso?

$$10n^3 + 2n^2 + 7 = O(n^3)$$
 ?

Applicando la definizione, dobbiamo dimostrare se

$$\exists c > 0, n_0 \ge 0 : \forall n \ge n_0 \quad 10n^3 + 2n^2 + 7 \le cn^3$$

Possiamo scrivere:

$$10n^3 + 2n^2 + 7 \le 10n^3 + 2n^3 + 7n^3$$
 (se $n \ge 1$)
= $19n^3$

Quindi la disuguaglianza è verificata ponendo $n_0 = 1$ e c = 19.

Risultato

In generale possiamo provare che

$$a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} \cdots + a_1 n + a_0 = O(n^k)$$

Possiamo scrivere:

$$n^3 + 100n + 200 = O(n^3)$$

 $20n^3 + n^5 + 100nO(n^5)$
 $3n^7 + n^5 = O(n^7)$

Relazioni

In generale possiamo provare che per

$$\forall (a > 0, b > 0, k > 0), (logn^b)^a = O(n^k)$$

 $\forall k > 0, a > 1, n^k = O(a^n)$

$$3log(n^2)^3 = O(n)$$

$$n^{10}=O(2^n)$$

Domande

- Dimostrare che $\log_2 n = O(n)$;
- Cosa cambia se il logaritmo di cui sopra non è in base 2?
- Dimostrare che $n \log n = O(n^2)$;
- Dimostrare che, per ogni $\alpha > 0$, log $n = O(n^{\alpha})$ (suggerimento: da quanto visto sopra si può affermare che log $n^{\alpha} = O(n^{\alpha})$, quindi...)
- Dove collochereste $O(\sqrt{n})$ nella tabella degli ordini di grandezza? Perché?

Costo di esecuzione

Definizione

Un algoritmo A ha costo di esecuzione O(f(n)) su istanze di ingresso di dimensione n rispetto ad una certa risorsa di calcolo se la quantità r(n) di risorsa sufficiente per eseguire A su una qualunque istanza di dimensione n verifica la relazione r(n) = O(f(n)).

Nota Risorsa di calcolo per noi significa tempo di esecuzione oppure occupazione di memoria.

Complessità dei problemi

Definizione

Un problema \mathcal{P} ha complessità O(f(n)) rispetto ad una data risorsa di calcolo se esiste un algoritmo che risolve \mathcal{P} il cui costo di esecuzione rispetto a quella risorsa è O(f(n)).

Alcune regole utili

Somma

Se
$$g_1(n) = O(f_1(n))$$
 e $g_2(n) = O(f_2(n))$, allora $g_1(n) + g_2(n) = O(f_1(n) + f_2(n))$

Prodotto

Se
$$g_1(n) = O(f_1(n))$$
 e $g_2(n) = O(f_2(n))$, allora $g_1(n) \cdot g_2(n) = O(f_1(n) \cdot f_2(n))$

Eliminazione costanti

Se g(n) = O(f(n)), allora $a \cdot g(n) = O(f(n))$ per ogni costante a > 0

Osservazione

Utilizzando gli ordini di grandezza, ogni operazione elementare ha costo O(1); un contributo diverso viene dalle istruzioni condizionali e

iterative.

```
if ( F_test ) {
  F_true
} else {
  F_false
```

Supponendo:

$$\blacksquare$$
 F_test = $O(f(n))$

■
$$F_{true} = O(g(n))$$

$$\blacksquare$$
 F_false = $O(h(n))$

Allora il costo di esecuzione del blocco if-then-else è

$$O(\max\{f(n),g(n),h(n)\})$$

Analisi nel caso ottimo, pessimo e medio

Sia \mathcal{I}_n l'insieme di tutte le possibili *istanze di input* di lunghezza n. Sia T(I) il tempo di esecuzione dell'algoritmo sull'istanza $I \in \mathcal{I}_n$.

■ Il costo nel caso pessimo (worst case) è definito come

$$T_{\text{worst}}(n) = \max_{I \in \mathcal{I}_n} T(I)$$

Il costo nel caso ottimo (best case) è definito come

$$T_{\text{best}}(n) = \min_{I \in \mathcal{I}_n} T(I)$$

■ Il costo nel caso medio (average case) è definita come

$$T_{\text{avg}}(n) = \sum_{I \in \mathcal{I}_n} T(I)P(I)$$

dove P(I) è la probabilità che l'istanza I si presenti.

la complessità T(n) di un algoritmo A è $O(n^2)$, vuol dire che A non richiede mai tempo superiore a cn^2 , per produrre il suo output in corrispondenza ad un qualsivoglia input di ampiezza n, per valore di c opportuno e n sufficientemente grande.

NON si intende che A impiega tempo cn^2 per ogni input di ampiezza n. NON esistono input per cui l'algoritmo richiede tempo $> cn^2$.

la complessità T(n) di un algoritmo A è $\Omega(n^2)$, vuol dire che A richiede almeno tempo cn^2 , per produrre il suo output nel caso peggiore, per valore di c opportuno e n sufficientemente grande.

ESISTE almeno un input di ampiezza n (n suff. grande) su cui A richiede tempo cn^2


```
if n pari the return 0 else for i = 1 to n do x = x+10 return x
```

la complessità dell'algoritmo è $\Theta(n)$.

for
$$i = 1$$
 to $2n$ do
$$x = x + 10$$
la complessità dell'algoritmo è $\Theta(n)$.
for $i = 1$ to $2n$ do
$$for j = 1 \text{ to } n \text{ do}$$

$$x = x + 10$$

la complessità dell'algoritmo è $\Theta(n^2)$.

for
$$i = 1$$
 to $2n$ do

for $j = 1$ to n do

for $k = 1$ to j
 $k = x + 10$

la complessità dell'algoritmo è $\Theta(n^3)$.

i=n

while
$$i \ge 1$$
 do $\{x = x+1, i = i/2\}$

la complessità dell'algoritmo è $\Theta(\log n)$.

i=n

while
$$i \ge 1$$
 do
for $j=1$ to $n \{x=x+1\}$
 $i=i/2$

la complessità dell'algoritmo è $\Theta(nlogn)$.

```
algoritmo Esercizio(A[1..n] di float)
     for i = 1 to n do
           B[i] = A[i]
     for i = 1 to n do {
4.
           j=n
5.
          while j>1 do{
6.
           B[i] = B[i] + A[i], j = j-1
     for i = 1 to n do
8.
          t = t + B[i]
Analisi:
Le linee 1. e 2. caratterizzate da tempo \Theta(n).
Le linee da 3. a 6. caratterizzate da tempo \Theta(n^2).
Le linee 7. e 8. caratterizzate da tempo \Theta(n).
In totale, la complessità dell'algoritmo èT(n) = \Theta(n) + \Theta(n^2) + \Theta(n) = \rightarrow (n^2)
```

```
algoritmo Esercizio(A[1..n] di float)
     for i = 1 to n do
          B[i] = A[i]
     for i = 1 to n do {
          j=n-i+1
4.
5.
          while j>1 do{
6.
          B[i] = B[i] + A[i], j = j-1
     for i = 1 to n do
8.
          t = t + B[i]
Analisi:
Le linee 1. e 2. caratterizzate da tempo \Theta(n).
Le linee da 3. a 6. caratterizzate da tempo .....??????.
Le linee 7. e 8. caratterizzate da tempo \Theta(n).
In totale, la complessità dell'algoritmo èT(n) = \Theta(n) + ????? + \Theta(n) = ??????
```

```
Procedura (A[1..n] float, k integer)

s=0

for i = 1 to k do

s= s+ A[i]

s= s/k

Main (AA[1..m])

i=m

while i >= 1 do Procedura (A[1..m],i)

i = i-2

Costo computazionale ?
```

Ricerca il valore minimo contenuto in un array non vuoto

```
// Restituisce la posizione dell'elemento minimo in
algoritmo Minimo( A[1..n] di float ) -> int
  int m:=1; // Posizione dell'elemento minimo
  for i:=2 to n do
    if ( A[i] < A[m] ) then
        m = i;
    endif
  endfor
  return m;
}</pre>
```

Analisi

- Sia *n* la lunghezza del vettore *v*.
- Il corpo del ciclo viene eseguito n-1 volte;
- Ogni iterazione ha costo O(1)
- Il costo di esecuzione della funzione Minimo rispetto al tempo è quindi O(n) (o meglio, $\Theta(n)$: perché?).

Ricerca sequenziale

Caso ottimo e pessimo

```
Restituisce la posizione della prima occorrenza del
valore ''val'' nell'array A[1..n]. Ritorna -1 se
il valore non e' presente
Trova( array A[1..n] di int, int val ) -> int
  for i:=1 to n do
    if ( A[i]==val ) then
      return i;
  endif
endfor
return -1;
```

- Nel caso ottimo l'elemento è all'inizio della lista, e viene trovato alla prima iterazione. Quindi $T_{\text{best}}(n) = O(1)$
- Nel caso pessimo l'elemento non è presente nella lista (oppure è presente nell'ultima posizione), quindi si itera su tutti gli elementi. Quindi $T_{\text{worst}}(n) = \Theta(n)$
- F nel caso medio?

Ricerca sequenziale

Analisi del caso medio

Non avendo informazioni sulla probabilità con cui si presentano i valori nella lista, dobbiamo fare delle ipotesi semplificative.

Assumiamo che, dato un vettore di n elementi, la probabilità P_i che l'elemento cercato si trovi in posizione i (i = 1, 2, ... n) sia $P_i = 1/n$, per ogni i (assumiamo che l'elemento sia sempre presente).

Il tempo T(i) necessario per individuare l'elemento nella posizione i-esima è T(i) = i.

Quindi possiamo concludere che:

$$T_{\text{avg}}(n) = \sum_{i=1}^{n} P_i T(i) = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n-1)}{2} = \Theta(n)$$

Esempio

Un algoritmo iterativo di ordinamento

```
selectionSort(ITEM[] A, integer n)

for integer i <--1 to n do
  integer j<-- min(A,i,n)
A[i]<--> A[j]

integer min(ITEM A, integer k, integer n)
  integer min <-- k

for integer h <--k+1 to n do
  if ( A[h] < A[min] ) then min <-- h
  return min</pre>
```


Analisi dell'algoritmo di ordinamento

- La chiamata min(A,i,n) individua l'elemento minimo nell'array $A[i], A[i+1], \dots A[n]$. Il tempo richiesto è proporzionale a n-i, $i=1,2,\dots n$ (perché?);
- L'operazione di scambio ha costo *O*(1) in termini di tempo di esecuzione;
- Il corpo del ciclo for viene eseguito *n* volte.

Il costo di esecuzione rispetto al tempo dell'intera funzione Selectiosort è:

$$\sum_{i=0}^{n-1} (n-i) = n^2 - \sum_{i=0}^{n-1} i = n^2 - \frac{n(n-1)}{2} = \frac{n^2 + n}{2}$$

che è $\Theta(n^2)$.

derivazione delle relazioni di ricorrenza

Per derivare le relazioni di ricorrenza che descrivono il tempo di esecuzione T(n) di un algoritmo occorre:

- 1) Determinare la dimensione dell'input *n*;
- 2) Determinare quale valore n_0 di n è usato per la base della ricorsione (generalmente, ma non sempre, $n_0 = 1$).
- 3) Determinare il valore di $T(n_0)$, in genere avremo che $T(n_0) = c$ per qualche costante c.
- T(n) sarà generalmente uguale ad una somma:
- $T(n) = T(m_1) + ... + T(m_a)$ (per le chiamate ricorsive), più la somma di eventuale altra computazione g(n). Spesso le a chiamate ricorsive saranno effettuate tutte su sottoproblemi di dimensione uguale a f(n), dando un termine aT(f(n)) nella relazione di ricorrenza.

Analisi di algoritmi ricorsivi Tipica equazione di Ricorrenza

$$T(n) = egin{cases} c & ext{se } n = n_0 \ aT(f(n) + g(n)) & ext{altrimenti} \end{cases}$$

 n_0 è la base della ricorsione, c tempo di esecuzione nel caso base; a numero di volte che le chiamate ricorsive vengono effettuate; f(n) dimensione dei problemi risolti nelle chiamate ricorsive; g(n) costo computazionale non incluso nelle chiamate ricorsive.


```
procedure uno (int, n)
if n = 1 then x = 1
else
    uno (n-1);
    uno (n-2);
    for i= 1 to n do x= x+i
end.
```

$$T(n) = egin{cases} c & ext{se } n = 1 \ T(n-1) + T(n-2) + cn \end{cases}$$
 altrimenti


```
procedure due (int, n)
if n = 1 or n= 2 then x = 1
else
    due (n-1);
    for i= 1 to n do {x= x+25};
    due(n-1);
end.
```

$$T(n) = egin{cases} c & ext{se } n \leq 2 \\ 2T(n-1) + cn & ext{altrimenti} \end{cases}$$


```
procedure tre (int, n)
if n = 1 then x = 1
else if n = 2 the x= 2
else
    for i= 1 to n do
        {tre (n-1); x = x+21}
end.
```

$$T(n) = egin{cases} c & ext{se } n \leq 2 \\ nT(n-1) + cn & ext{altrimenti} \end{cases}$$

$$T(n) = \begin{cases} c & \text{se } n = 1\\ \sum_{i=1}^{n} T(i) + cn & \text{altrimenti} \end{cases}$$

Analisi di algoritmi ricorsivi Ricerca di un elemento in un array ordinato

```
ITEM binarySearch(ITEM[] A, ITEM v, integer i, integer j)
  if i>j then
     return 0
  else
     integer m <-- (i+j)/2
     if A[m] = v then
         return m
      else if A[m] <v then
         return binarySearch(A, v, m+1, j)
       else return binarySearch(A, v, i, m-1)
```


Analisi dell'algoritmo di ricerca binaria

Sia T(n) il tempo di esecuzione della funzione binarySearch su un vettore di n = j - i + 1 elementi.

In generale T(n) dipende non solo dal numero di elementi su cui fare la ricerca, ma anche dalla posizione dell'elemento cercato (oppure dal fatto che l'elemento non sia presente).

- Nell'ipotesi più favorevole (caso ottimo) l'elemento cercato è proprio quello che occupa posizione centrale; in tal caso T(n) = O(1).
- Nel caso meno favorevole (caso pessimo) l'elemento cercato non esiste. Quanto vale T(n) in tale situazione?

Analisi dell'algoritmo di ricerca binaria

Possiamo definire T(n) per ricorrenza, come segue.

$$T(n) = egin{cases} c_1 & ext{se } n = 0 \ T(\lfloor n/2 \rfloor) + c_2 & ext{se } n > 0 \end{cases}$$

Il metodo dell'iterazione consiste nello sviluppare l'equazione di ricorrenza, per intuirne la soluzione:

$$T(n) = T(n/2) + c_2 = T(n/4) + 2c_2 = T(n/8) + 3c_2 = \dots = T(n/2^i) + i \times c_2$$

Supponendo che n sia una potenza di 2, ci fermiamo quando $n/2^i=1$, ossia $i=\log n$. Alla fine abbiamo

$$T(n) = c_1 + c_2 \log n = O(\log n)$$

Teorema fondamentale della ricorrenza

Master Theorem

Teorema

La relazione di ricorrenza:

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{se } n > 1\\ 1 & \text{se } n = 1 \end{cases}$$
(3)

ha soluzione:

1
$$T(n) = \Theta(n^{\log_b a})$$
 se $f(n) = O(n^{\log_b a - \epsilon})$ per $\epsilon > 0$;

3
$$T(n) = \Theta(f(n))$$
 se $f(n) = \Omega(n^{\log_b a + \epsilon})$ per $\epsilon > 0$ e af $(n/b) \le cf(n)$ per $c < 1$ e n sufficientemente grande.

Applicare il Master Theorem:

- a) CALCOLARE a, b, f(n)
- b) CALCOLARE $n^{log}b^a$
- c) CONFRONTARE Asintoticamente f(n) con n^{log} b^a
- d) Applicare opportunamente il MT

$$T(n) = 2T(n/2) + n$$
 Caso?

$$T(n) = 9T(n/3) + n$$
 Caso?

$$T(n) = 3T(n/4) + nlog(n)$$
 Caso?

$$T(n) = egin{cases} aT(n/b) + f(n) & ext{se } n > 1 \\ 1 & ext{se } n = 1 \end{cases}$$

- Nel caso della ricerca binaria, abbiamo T(n) = T(n/2) + O(1). Da cui a = 1, b = 2, f(n) = O(1); siamo nel secondo caso del teorema, da cui $T(n) = \Theta(\log n)$.
- Consideriamo T(n) = 9T(n/3) + n; in questo caso a = 9, b = 3 e f(n) = O(n). Siamo nel primo caso, $f(n) = O(n^{\log_b a \epsilon})$ con $\epsilon = 1$, da cui $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.

Teorema delle ricorrenze lineari di ordine costante

Teorema

Siano

$$a_1, a_2 \ldots, a_h$$

costanti intere non negative, c, d e β costanti reali tale che: c > 0, d > 0 e $\beta \ge 0$:

$$T(n) = \begin{cases} d & \text{se } n \leq m \leq h \\ \sum_{i=1}^{h} a_i T(n-i) + c(n)^{\beta} & \text{se } n > m \end{cases}$$
(4)

posto:
$$a = \sum_{i=1}^{h} a_i$$

1
$$T(n) = O(n^{\beta+1})$$
 se $a = 1$;

2
$$T(n) = O(n^{\beta}a^{n})$$
 se $a \ge 2$;

Teorema delle ricorrenze lineari con partizioni bilanciate

Teorema

Siano: $a \ge 1$ e $b \ge 2$ interi; c, d e β costanti reali tale che: c > 0, $d \ge 0$ e $\beta \ge 0$:

$$T(n) = \begin{cases} aT(n/b) + c(n^{\beta}) & \text{se } n > 1\\ d & \text{se } n = 1 \end{cases}$$
 (5)

posto: $\alpha = loga/logb$

1
$$T(n) = O(n^{\alpha})$$
 se $\alpha > \beta$;

2
$$T(n) = O(n^{\alpha} \log n)$$
 se $\alpha = \beta$;

3
$$T(n) = O(n^{\beta})$$
 se $\alpha < \beta$.

$$T(n) = egin{cases} aT(n/b) + f(n) & ext{se } n > 1 \\ 1 & ext{se } n = 1 \end{cases}$$

- Nel caso della ricerca binaria, abbiamo T(n) = T(n/2) + O(1). Da cui a = 1, b = 2, f(n) = O(1); siamo nel secondo caso del teorema, da cui $T(n) = \Theta(\log n)$.
- Consideriamo T(n) = 9T(n/3) + n; in questo caso a = 9, b = 3 e f(n) = O(n). Siamo nel primo caso, $f(n) = O(n^{\log_b a \epsilon})$ con $\epsilon = 1$, da cui $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.

Numeri di Fibonacci

Ricordiamo la definizione della sequenza di Fibonacci:

$$F_n = \begin{cases} 1 & \text{se } n = 1, 2 \\ F_{n-1} + F_{n-2} & \text{se } n > 2 \end{cases}$$

Consideriamo nuovamente il tempo di esecuzione dell'algoritmo ricorsivo banale per calcolare F_n , il cui tempo di esecuzione T(n) soddisfa la relazione di ricorrenza

$$T(n) = egin{cases} c_1 & ext{se } n = 1, \ 2 \ T(n-1) + T(n-2) + c_2 & ext{se } n > 2 \end{cases}$$

Vogliamo produrre un limite inferiore e superiore a T(n)

Analisi di algoritmi ricorsivi Numeri di Fibonacci-limite superiore

Limite superiore. Sfruttiamo il fatto che T(n) è una funzione non decrescente:

$$T(n) = T(n-1) + T(n-2) + c_2$$

$$\leq 2T(n-1) + c_2$$

$$\leq 4T(n-2) + 2c_2 + c_2$$

$$\leq 8T(n-3) + 2^2c_2 + 2c_2 + c_2$$

$$\leq \dots$$

$$\leq 2^kT(n-k) + c_2 \sum_{i=0}^{k-1} 2^i$$

$$\leq \dots$$

$$\leq 2^{n-1}c_3$$

per una opportuna costante c_3 . Quindi $T(n) = O(2^n)$.

Analisi di algoritmi ricorsivi Numeri di Fibonacci-limite inferiore

Limite inferiore. Sfruttiamo ancora il fatto che T(n) è una funzione non decrescente:

$$T(n) = T(n-1) + T(n-2) + c_2$$
 $\geq 2T(n-2) + c_2$
 $\geq 4T(n-4) + 2c_2 + c_2$
 $\geq 8T(n-6) + 2^2c_2 + 2c_2 + c_2$
 $\geq \dots$
 $\geq 2^kT(n-2k) + c_2\sum_{i=0}^{k-1} 2^i$
 $\geq \dots$
 $\geq 2^{\lfloor n/2 \rfloor}c_4$

per una opportuna costante c_4 . Quindi $T(n) = \Omega(2^{\lfloor n/2 \rfloor})$.

