Prob Distribution

- Bernoulli
 - Single Trial
 - Success/Failure
- Binomial Distribution
 - Outcome of multiple Bernoulli
 - Probability of accumulated Bernoulli trials
- Normal Distribution
 - Middle Section: 68%
 - Wide Section: 95%
 - A Common Distribution
- Poisson
 - Prob of number of events occurring over time/space

Vocabulary

- Null Hypothesis
 - No statistical significant result (Usually in the form of difference in means)
 - Baseline
- Alternative Hypothesis
 - Has statistical significant result
- Continuous variable
 - Numeric, float
 - Variable that could technically be infinitely specific
 - Ex:
 - 0.000001
 - 12.00024
 - 5.33333332 seconds
- Discrete variable
 - A "countable" set of values
 - Numeric, usually integers, can be float
 - Basically categorical
 - Ex:
 - From 1 to 10
 - Coins, 1 or 0
 - Money, how many cents
- Categorical variable
 - Group of values
 - String
 - Ex:
 - ["dessert", "main course", "appetizer"]
 - ["Mac", "windows", "linux"] ["a", "b", "c", "d", "e"]
- Independent populations
 - 2 populations that are not connected by any variable
 - Can't be 100% sure but can make assumptions
 - - Sales of burgers is independent from sales of iPhones

Stat Tests

- T-tests
 - One-sample
 - Compare mean of sample to reference mean
 - Assumptions:
 - Continuous dependent (outcome) variable
 - Dependent variable is normally distributed
 - Sample is random
 - Degree of Freedom:
 - (Size of sample 1)
 - Two-sample
 - Compare mean of sample between 2 continuous dependent populations with same categorical independent variable
 - Assumptions:
 - Continuous dependent (outcome) variable
 - Dependent variable is normally distributed
 - Random sampling
 - Populations are independent
 - Degree of Freedom:
 - (2 * Size of sample 2)
 - Paired sample
 - Compare mean of 2 samples from the same population to measure change
 - Assumptions:
 - Continuous dependent (outcome) variable
 - Differences between pair samples are normally distributed
 - Random sampling
 - Degree of Freedom:
 - (Size of sample 1)
- Z-tests
 - MUST HAVE MORE THAN 30 SAMPLES AND KNOW TRUE POPULATION STANDARD DEVIATION FOR ALL POPULATIONS IN USE
 - One-sample
 - Compare mean of sample to reference mean
 - Assumptions:
 - Continuous dependent (outcome) variable
 - Dependent variable is normally distributed
 - Sample is random
 - Two-sample
 - Compare mean of sample between 2 continuous dependent populations with same categorical independent variable
 - Assumptions:
 - Continuous dependent (outcome) variable
 - Dependent variable is normally distributed
 - Random sampling
 - Populations are independent
 - Paired sample
 - Compare mean of 2 samples from the same population to measure change
 - Assumptions:
 - Continuous dependent (outcome) variable
 - Differences between pair samples are normally distributed
 - Random sampling

- ANOVA tests

- One-way
 - Categorical independent variable (with more than 2 categories/levels) and continuous dependent variable
 - Like 2-sample t-tests but with more than 2 populations
 - Assumptions:
 - Continuous dependent (outcome) variable

- Dependent variable is normally distributed
- Random sampling
- Populations are independent
- Variance across groups is same
- Degree of Freedom:
 - (Size of sample 1)
 - DF "between groups" and "within groups" can be referred to as "treatment" and "error"
- Two-way
 - Multiple categorical independent variables (with different categories/levels in each) and continuous dependent variable
 - Used to measure impact of different categories from different independent variables on outcome and of potential interactions between 2 categorical variables
 - Hypotheses:
 - No statistically significant difference in means across levels of variable [A, B]
 - No statistically significant interaction between variables A and B
 - Is statistically significant difference in means across levels of variable [A, B]
 - Is statistically significant interaction between variables A and B
 - Assumptions:
 - Continuous dependent (outcome) variable
 - Dependent variable is normally distributed
 - Random sampling
 - Populations are independent
 - Variance across groups is same
 - Equal sample size
 - Degree of Freedom:
 - (Size of sample 1)
 - More frames of references for DFs like between, within, across independent variables

P-value and Confidence Interval

- p value
 - Probability of result being due to random chance
 - Usually compared to predetermined significance level
 - Fv
 - p > 0.05 or p < 0.05
 - p > predetermined level means cannot reject null hypothesis
 - p < predetermined level means reject null hypothesis
- Confidence Interval
 - Range expected to contain true population mean
 - Ex:
 - (0.5, 2.6) does not cover 0
 - (-1.5, 0.8) does cover 0
 - CI covers 0 means cannot reject null hypothesis
 - CI does not cover 0 means reject null hypothesis

These metrics are all about chance and do not necessarily mean certainty.