Sistema de riego automatizado y distribuido con control web

AUTOR: FRANCISCO JAVIER SOLÍS FRANCO

TUTOR: ÁNGEL FRANCISCO JIMÉNEZ FERNÁNDEZ

COTUTORA: ELENA CEREZUELA ESCUDERO

GRADO EN INGENIERÍA INFORMÁTICA-INGENIERÍA DE COMPUTADORES

Contenido

- 1- Introducción y Objetivos.
- 2- Arquitectura.
- 3- Diseño Hardware.
- 4- Implementación Firmware.
- 5- Software.
- 6- Planificación y Costes.
- 7- Conclusiones.
- 8- Trabajo Futuro.

Introducción:

- •Agricultores con riegos automáticos pero con programación manual.
- •Impacto medio ambiental por los consumos no controlados y los desplazamientos.
- •Sequías por el cambio climático y pozos.
- •Riego innecesario en caso de lluvia o humedad de la tierra suficiente.
- •Entrada al IoT dotando de conectividad el sistema de riego.

Objetivos primarios:

- ·Sistema empotrado y distribuido de riego automático.
- •Obtención de datos (Temperatura, Humedad, consumo de agua, etc...).
- Estadísticas
- •Uso de plataformas libres.

Objetivos secundarios:

- •Controlador de riego con Raspberry pi.
- •Firmware para Arduino para la comunicación con Rpi.
- ·Base de datos.
- Control mediante Web.

Tecnología usada:

- Arduino
- •Raspberry Pi.
- Sensores y actuadores.
- •Python.
- •MySQL.
- •CodeIgniter.
- Apache.

- •Raspbian.
- •Eclipse.
- •MySQL WorkBench.

2- Arquitectura

Cliente-Servidor

2- Arquitectura

Sistema completo

3- Diseño Hardware

Raspberry Pi

3- Diseño Hardware

Arduino

Sensores y Actuadores

3- Diseño Hardware

FC-37

Sensores y Actuadores

3- Diseño Hardware

FC-28

3- Diseño Hardware

Relay

3- Diseño Hardware

Sensores y Actuadores

YF-S201

Sensores y Actuadores

3- Diseño Hardware

DHT-11

4- Implementación Firmware

Protocolo Arduino

4- Implementación Firmware

Protocolo Raspberry (Configuración) Comando Consulta Hora Actual Prog. Identificación, Envío comandos Prog. 24H

4- Implementación Firmware

Protocolo Raspberry (Inserción de datos)

Python:

API:

Interfaz de usuario:

© copyright 2017 - TFG realizado por Francisco Javier Solís Franco, todos los derechos reservados.

BootStrap, JS, PHP

Interfaz de usuario:

HIGHCHARTS

Apache:

- Configuración Puerto
- •PHP 5.0
- Web y API en htdocs (Codelgniter)

Arduino:

6- Planificación y Costes

Tareas:

- •Definición del sistema.
- •Tecnología a usar.
- •UML.
- •Programación BBDD.
- •Testeo y errores BBDD.
- Programación y testeo individual del hardware.
- Programación conjunta.

- •Testeo programación conjunta.
- •Web.
- Comunicaciones.
- •Integración con Hardware.
- Pruebas unitarias.
- Pruebas de campo.
- ·Corrección de errores.
- •Documentación.
- Prototipo.

6- Planificación y Costes

Gantt: Planificador del proyecto

Resaltado del períod 1	-	Plan	

	PLAN	PLAN	REAL	REAL	PORCENTAJE												
ACTIVIDAD	INICIO	DURACIÓN	INICIO	DURACIÓN	COMPLETADO	PE	RÍOD	os									
							1	2	3	4 5	6	7	8	9	10	11	12
Definición del sist.	1	2	1	2	100%												
Tecnología a usar	2	2	2	3	100%												
UML	2	2	2	1	100%												
Prog. BBDD	4	2	3	2	100%												
Testeo y errores BBDD	4	2	3	2	100%												
Prog. Y Testeo ind. (HW)	4	2	5	1	100%												
Prog. Conjunta	5	3	6	3	100%												
Testeo prog. Conjunta	5	3	6	3	100%												
Web	5	2	5	4	90%												
Comunicaciones	5	1	5	2	100%												
Integración con Hardw.	6	1	7	1	100%												
Pruebas unitarias	6	2	7	2	100%												
Pruebas de campo	6	2	7	2	100%												
Corrección de errores	6	3	7	3	100%												
Documentación	3	7	3	8	100%												
Prototipo	4	6	5	6	90%				1								

300H

6- Planificación y Costes

Costes:

Coste Prototipo completo

Coste con beneficio y amortización

7- Conclusiones

- •Suplir las carencias de riegos baratos frente a fallos.
- Control remoto.
- •Uso de tecnologías y plataformas de código abierto y libre.
- •Control de los periodos de lluvia.
- •Tecnología inalámbrica.
- •Red de nodos.
- •Retrasos en la planificación al usar distribuidores Asiáticos.

8- Trabajo Futuro

- Registro de Iluvias.
- ORed de nodos.
- Control por usuario.
- OApp (Smartphone) y BOT.
- OMejora de las estadísticas.(Interfaz)

DEMOSTRACIÓN y PREGUNTAS.