

Exame Teórico de Recurso

Física Computacional — 2018/2019

9 de julho de 2019 Duração: 2h30

Justifique todas as suas respostas às perguntas. O uso de calculadora não é permitido.

 $1.^{[5.0 \text{ v.}]}$ Considere um problema de valores iniciais descrito pelo seguinte sistema de equações :

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + y,$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = (-2 + \mathrm{i})x + \mathrm{i}y$$

a)^[1.2 v.] Determine os valores próprios associados ao sistema. Note que uma das raízes quadradas de um número complexo a + bi é dada por

$$\frac{\sqrt{2}}{2}\left(\sqrt{\sqrt{a^2+b^2}+a}+\mathrm{i}\sqrt{\sqrt{a^2+b^2}-a}\right).$$

- b)^[1.1 v.] Se resolveu corretamente a alínea a), obteve $\lambda_1=2i$ e $\lambda_2=-1-i$. Discuta a estabilidade de cada um dos métodos da figura quando aplicado a este problema.
- c)^[1.1 v.] Qual é o valor máximo aproximado de h para o qual o método de Runge–Kutta de 4^a ordem é estável?
- d)^[1.6 v.] Escreva o ciclo **for** de um programa de MATLAB que, dadas as condições iniciais, resolveria numericamente o problema usando o método de Runge–Kutta com o seguinte quadro de Butcher:

$$\begin{array}{c|cccc}
0 & & & \\
\frac{1}{2} & \frac{1}{2} & & \\
\hline
& 0 & 1 & \\
\end{array}$$

 $2.^{[5.0\,\mathrm{v.}]}$ Considere o seguinte problema de difusão a uma dimensão:

$$\frac{\partial T(x,t)}{\partial t} = D \frac{\partial^2 T(x,t)}{\partial x^2},$$

com D=1. Na discretização do problema, usa-se $\Delta t=1$ e $\Delta x=1.$

a) $^{[1.4\,\mathrm{v.}]}$ Deduza as expressões para as aproximações da primeira e da segunda derivada por diferenças finitas centradas, mostrando qual é a ordem de cada uma delas.

b)^[0.8 v.] Mostre como se obtém, para os pontos internos, o seguinte conjunto de $(N_x - 2)$ ODE:

$$\frac{\mathrm{d}T(i,n)}{\mathrm{d}t} = D\frac{T(i-1,n) - 2T(i,n) + T(i+1,n)}{(\Delta x)^2}.$$

Descreva a discretização que foi feita.

c)^[1.3 v.] Considere a seguinte tabela de valores. Quais são as condições iniciais e as condições fronteira? Preencha os valores em falta da segunda coluna, ou seja, T(2, 2), T(3, 2) e T(4, 2), usando o método de Euler explícito.

0	0	0	
1			
1			
1			
4	4	4	

d)^[1.5 v.] Nas aulas práticas, para este tipo de problemas, usámos apenas o método de Euler explícito ou o método de Crank–Nicolson, mas há situações em que o método de Euler implícito dá melhores resultados. Continuando a usar a tabela de cima, escreva o sistema de equações que, ao ser resolvido, permitiria obter T(2,2), T(3,2) e T(4,2) usando o método de Euler implícito.

 ${\bf 3.^{[5.0\,v.]}}$ A equação de Burguer viscosa é usada na modelação de muitos sistemas físicos:

$$\frac{\partial u(x,t)}{\partial t} + \frac{1}{2} \frac{\partial}{\partial x} u(x,t)^2 = \varepsilon \frac{\partial^2 u(x,t)}{\partial x^2}.$$

Considere um domínio de $-x_0$ a $+x_0$ com as condições fronteira $u(-x_0,t)=u(x_0,t)=0$. O perfil no instante t=0 é $u_0(x)$.

a)[1.1 v.] Dada a seguinte forma para a transformada de Fourier F(k) de uma função f(x),

$$F(k) = \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx,$$

mostre que a transformada de Fourier G(k) da derivada de ordem $n, g(x) = f^{(n)}(x)$, da função f(x) é dada por

$$G(k) = (ik)^n F(k).$$

Qual é a condição a que tem que obedecer f(x) para se poder obter este resultado? Ela é satisfeita no problema que estamos a estudar?

- b) $^{[1.1\,v.]}$ Aplique a toda a equação a transformada de Fourier associada à variável x, transformando-a num sistema de equações diferenciais ordinárias (ODE).
- $c)^{[1.4\,v.]}$ Escreva o ciclo de Euler adequado à integração das ODE que obteve na alínea anterior.

d)^[1.4 v.] Sabe como abordar este problema sem usar transformadas de Fourier. Descreva como o faria. Note que podemos escrever a equação de Burguer viscosa na forma alternativa

$$\frac{\partial u(x,t)}{\partial t} + u(x,t)\frac{\partial u(x,t)}{\partial x} = \varepsilon \frac{\partial^2 u(x,t)}{\partial x^2}.$$

 ${f 4.^{[5.0\,{
m v.}]}}$ Num domínio quadrado, com condições fronteira de Dirichlet, a variável V(x,y) é a solução da equação de Poisson

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = f(x, y).$$

Discretizando o domínio de integração com o mesmo intervalo h segundo as direções x e y e usando a aproximação de diferenças finitas centradas para a segunda derivada, obtêm-se, para os pontos interiores, as seguintes equações algébricas:

$$-4V(i,j) + V(i+1,j) + V(i-1,j) + V(i,j+1) + V(i,j-1) = h^2 f(i,j).$$

- a)^[1.2 v.] Explique as diferenças entre os métodos de Jacobi, de Gauss–Seidel e de sobre-relaxação sucessiva.
- b)^[1.1 v.] Suponha que aplicou o método de sobre-relaxação sucessiva para resolver o problema e que o seu método usou um dado tempo de processador. Por que fator esperaria que aumentasse esse tempo se reduzisse o seu h para metade? Assuma que está a usar sempre o melhor valor do parâmetro α do método e que não alterou o critério de convergência.
- c)^[1.1 v.] Para obter uma solução numérica deste problema, pode usar um método de relaxação ou um método direto. Sem alterar a discretização, para um destes tipos de método pode-se tentar obter uma solução de melhor qualidade (usando mais tempo de processador), mas isso já não é verdade para o outro tipo. Explique porquê.
- d)^[1.6 v.] Considere que pretende usar um método direto para obter uma solução numérica deste problema, com $h = 10^{-1}$. Assuma ainda que f(x, y) = 2 para todos os pontos do domínio. O canto superior da tabela de condições fronteira e de incógnitas é o seguinte:

0	0	0	0	
1	$\phi(1)$	$\phi(2)$	$\phi(3)$	•••
2	φ(101)	φ(102)	φ(103)	
3	φ(201)	φ(202)	φ(203)	
÷	:	:	:	·.

O sistema de equações pode ser escrito na forma $A\phi = b$, onde ϕ é um vetor coluna de elementos $\phi(1), \phi(2), \dots$. Escreva b_1 e identifique os elementos $A_{1,k}$ da primeira linha da matriz que são diferentes de zero, indicando os seus valores. Escreva b_{102} e identifique os elementos $A_{102,k}$ da linha 102 da matriz que são diferentes de zero, indicando os seus valores. Quais são os índices do elemento V(i,j) que é igual a $\phi(1537)$?