Sasha Sax

☑ sax@berkeley.edu∰ alexsax.github.io

Education	Ph.D. Electrical Engineering and Computer Science University of California, Berkeley; Berkeley, CA	2023 (expected) Advisors: Jitendra Malik & Amir Zamir	
	M.S. Computer Science [Distinction in Research, GPA		
	Stanford University; Stanford, CA	Advisor: Silvio Savarese	
	B.S. Mathematics [GPA maj. 3.8] Stanford University; Stanford, CA	2018	
	Miscellaneous: AMS Math in Moscow (Independent University of Moscow/HSE), Sensory		
	Ecology (Lund University, Sweden), Concurrent enrolln	ment (University of Maryland 2011-12)	
Awards	Best Paper Award Nomination, CVPR Robust Learning Through Cross-Task Con sistency	2020	
	Best Paper Award, CVPR	2018	
	Taskonomy: Disentangling Task Transfer Learning		
	NVIDIA Pioneering Research Award	2018	
	Embodied Real-World Active Perception NVIDIA Graduate Fellowship (Honorable Mention)	2021-2022	
	Mid-Level Representations for Robotic Perception		
	Stanford University Distinction in Research	2018	
	Computational Evidence for Structure in the Space of		
	Winner of CVPR 2019 Habitat Embodied Agents Chall Mid-Level Visual Representations Improve Generalization		
	Outstanding Reviewer, CVPR 2020	2020	
Recent Experience	FAIR, Research Intern; San Francisco, CA	2022-2023	
necent Experience	Multi-view and transform-consistent representations		
	FAIR, Research Intern; Menlo Park, CA	2017-2018	
	Mid-level visual representations for indoor navigatio		
	Stanford University, Research Assistant; Stanford, CA	2016-2017	
	Visual task relatedness (Taskonomy), Gibson enviror	nment. (Silvio Savarese group)	
Teaching	Machine Learning (TA): Berkeley CS 189/289A	2020	
	Representation Learning (Head TA): Stanford CS 331B		
	Mathematical Foundations of Computing (TA): Stanfor	d CS 103 2015	
Selected Papers	Taskonomy: Disentangling Task Transfer Learning [Best Paper Award, Oral] Amir Zamir, Alexander Sax*, William B. Shen*, Leonidas Guibas, Jitendra Malik, Silvio Savarese. CVPR, 2018.		
	Robust Learning Through Cross-Task Consistency [Best Paper Award Nominee, Oral] Amir Zamir*, Alexander Sax*, Teresa Yeo, Oguzhan Fatih Kar, Nikhil Cheerla, Rohan Suri, Zhangjie Cao, Jitendra Malik, Leonidas Guibas. CVPR, 2020.		

Sasha Sax

Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Visuomotor Policies [Oral BayLearn]

Alexander Sax, Jeffrey O. Zhang, Bradley Emi, Amir Zamir, Leonidas Guibas, Silvio Savarese Jitendra Malik. *CoRL*, 2019. *BayLearn*, 2019.

Gibson Env: Real-World Perception for Embodied Agents [Spotlight]

Fei Xia*, Zhiyang He*, Amir Zamir*, Alexander Sax, Silvio Savarese. CVPR, 2018.

Invited Talks

Learning-Based Computational Models of Visual Behavior (Poster), Lund, SE Sep-Oct 2022 This sensory ecology seminar was simply delightful—more embodied AI people should go!! You need to <u>apply early!</u> It's a 2-week lecture series for 40 PhD/postdocs, taught by the world's leading sensory ecologists every 2 years. And you will learn how animals sense and

Mid-Level Visual Representations, CS 280 (guest lecture), Berkeley, CA 2021 Visual Biases in Embodied Agents, Facebook Al Research, Menlo Park, CA Apr. 2019

represent their environment, and that the line between sensing and thinking is a blurry one.

Service

Graduate Mentor: BAIR Undergraduate Mentoring	2019-Present
Reviewer: (CVPR ECCV ICCV ICRA CoRL NeurIPS ICML TPAMI)	2018-Present
Graduate Admissions: Student Committee	2019, 2021
Student Organizer: 3DV Conference	2016
Junior Class President: Stanford Class of 2016	2014-2015
K-5 Math Tutor: East Palo Alto Tutoring and Tennis	2013-2014

Demos

Robust Cross-Task Consistency, ECCV 2020, Glasgow.

2020

Older Experience

Microsoft Corporation, Mountain View, CA

Software Engineering Intern, 2016

Powerpoint Designer: improved response time through parallelization (C#), and prototyped a logo detector, one of the first internal ML elements in Designer (TF ResNet backbone).

Stanford University, Stanford, CA

Research Assistant, 2015

Fast square-finding in graphs and fast finding of low-cost replacement paths in present of edge failures (Virginia Williams group)

RTI International, Washington, DC

Software Engineering Intern, 2014

Created STATA package to automate statistical analysis and survey ingestion for Early Grade Reading + Math (EGRMA) evaluations in developing countries. Correctly handles reweighing + variance adjustments for multi-level stratified cluster samples. Later used by government orgs in Kenya, Ghana, and Zambia.

Blackboard Inc., San Francisco, CA

Software Engineering Intern, 2013

Created an early-warning analytics system to monitor app API traffic, health metrics in real-time. The system used NodeJS, MongoDB, and Hadoop.

RTI International, Washington, DC

Software Engineering Intern, 2010-2012

Sasha Sax

Using STATA, developed an automated data-cleaning process that reduced turnaround from 2 months to 1 week and freed PhD statisticians to work on other problems.

Publications

- [9] Omnidata: A Scalable Pipeline for Multi-Task Mid-Level Vision Datasets from 3D Scans Ainaz Eftekhar*, Alexander Sax*, Roman Bachmann, Jitendra Malik, Amir Zamir. ICCV, 2021.
- [8] Robustness via Cross-Domain Ensembles [Oral]

Teresa Yeo*, Oğuzhan Fatih Kar*, Alexander Sax, Amir Zamir. ICCV 2021.

- [7] Robust Learning Through Cross-Task Consistency [Best Paper Award Nominee, Oral] Amir Zamir*, Alexander Sax*, Teresa Yeo, Oguzhan Fatih Kar, Nikhil Cheerla, Rohan Suri, Zhangjie Cao, Jitendra Malik, Leonidas Guibas. CVPR, 2020.
- [6] Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks [Spotlight]

 Jeffrey O. Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, Jitendra Malik. ECCV, 2020.
- [5] Learning to Navigate via Mid-Level Visual Priors

Alexander Sax, Jeffrey O. Zhang, Bradley Emi, Amir Zamir, Leonidas Guibas, Silvio Savarese Jitendra Malik. *CoRL*, 2019.

[4] Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Visuomotor Policies [Oral]

Alexander Sax, Jeffrey O. Zhang, Bradley Emi, Amir Zamir, Leonidas Guibas, Silvio Savarese Jitendra Malik. *Arxiv* 2018. *BayLearn*, 2019. (Oral)

- [3] Taskonomy: Disentangling Task Transfer Learning [Best Paper Award, Oral]
 Amir Zamir, Alexander Sax*, William B. Shen*, Leonidas Guibas, Jitendra Malik, Silvio Savarese. CVPR, 2018.
- [2] Embodied Real-World Active Perception [Spotlight]
 Fei Xia*, Zhiyang He*, Amir Zamir*, Alexander Sax, Silvio Savarese. CVPR, 2018. (Spotlight)
- [1] Joint 2D-3D-Semantic Data for Indoor Scene Understanding

Iro Armeni*, Alexander Sax*, Amir Zamir*, Silvio Savarese. Arxiv (preprint), 2016.