个人收入决定因素研究:基于CFPS数据的实证分析

好的,这是本研究的摘要与引言:

摘要

本研究旨在探究中国个体税后工资性收入的主要决定因素。基于中国家庭追踪调查(CFPS)2022年数据,采用扩展的明瑟方程,并通过加权最小二乘法(WLS)控制省份固定效应进行分析。研究发现,受教育年限、工作经验(年龄)、性别及城乡属性均对个人收入有显著影响。教育回报率约为8.5%,经验呈现倒U型,且存在显著的性别与城乡收入差距。本研究为理解当前中国收入分配格局提供了实证依据。

引言

个体收入差异及其决定因素是社会经济研究的核心议题。在中国经济转型背景下,理解工资性收入的形成机制对制定有效的收入分配政策至关重要。本研究利用CFPS2022截面数据,构建计量模型,重点考察教育、经验、性别及城乡等因素对个人税后工资性收入的影响。研究旨在揭示人力资本与结构性因素在塑造收入不平等中的作用,为促进社会公平提供参考。

研究计划

核心研究问题:本研究旨在探究中国个体收入的主要决定因素,特别是教育、工作经验(以年龄代理)、性别及城乡属性对个人税后工资性收入的量化影响。

计量经济模型:主要采用扩展的明瑟收入方程,通过普通最小二乘法 (OLS) 进行估计。因变量(工资性收入)将进行对数转换,以缓解数据偏度并使系数易于解释为半弹性。模型将包含年龄的线性项和平方项,以捕捉工作经验收益的非线性特征。

关键变量定义与角色:

i. 因变量: emp_income (过去12个月税后工资性收入),取对数后使用。选择此变量因为它直接衡量了个人的劳动市场回报。

ii. 核心自变量:

- cfps2022eduy_im (受教育年限): 人力资本理论核心变量,预期对收入有显著正向影响。
- age (年龄): 及其平方项,作为工作经验的代理,预期呈现先上升后下降的倒U型关系。
- gender (性别):用于检验性别工资差异。
- urban22 (城乡分类): 预期城镇居民收入显著高于农村居民。

iii. 控制变量:

- qea0 (婚姻状况):不同婚姻状态可能影响收入。
- party (是否党员): 政治资本可能影响收入。
- qp201 (健康状况):健康是重要的人力资本组成部分。
- qq2 (雇主性质): 控制不同部门间的收入差异。
- qg6 (周工作小时):控制工作强度的影响。
- qa301 (户口状况): 户籍制度对就业和收入有重要影响。
- provcd22 (省份代码): 用于构建省份固定效应,控制地区不随时间变化的异质性。
- qv102 (父亲教育程度) 和 qv202 (母亲教育程度): 控制家庭背景因素。
- 研究将使用 employ (当前工作状态) 筛选在业样本,并考虑使用 rswt_natcs22n (横截面权重) 进行加权估计以提高样本代表性。

识别策略:主要依赖OLS模型的控制变量法来缓解遗漏变量偏误。通过纳入省份固定效应控制地区层面的不可观测因素。将使用稳健标准误来处理潜在的异方差问题。教育的内生性是本研究的一个潜在挑战,未来可考虑工具变量法。

回归结果

WLS Regression Results						
Dep. Variable:	======== log_emp_i	======= ncome R-	======= squared:	=======	 0.429	:
Model:		WLS Ad	j. R-squared:		0.350)
Method:	Least Sq	uares F-	statistic:	341.6 2.09e-276		
Date:	Thu, 29 May	2025 Pr	ob (F-statist			
Time:	13:	14:08 Lo	g-Likelihood:		-610.80)
No. Observations:		421 AI	c:		1326.	
Df Residuals:		369 BI	c:		1536.	
Df Model:		51				
Covariance Type:		HC1				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	7.2221	1.190	6.071	0.000	4.883	9.561
C(qea0)[T.2.0]	0.3553	0.176	2.016	0.045	0.009	0.702
C(qea0)[T.3.0]	0.4250	0.337	1.261	0.208	-0.238	1.088
C(qea0)[T.4.0]	0.1027	0.274	0.375	0.708	-0.435	0.641
C(qea0)[T.5.0]	-1.0119	0.362	-2.794	0.005	-1.724	-0.300
C(qg2)[T.2.0]	-0.5665	0.393	-1.442	0.150	-1.339	0.206
C(qg2)[T.3.0]	0.0675	0.314	0.215	0.830	-0.550	0.685
C(qg2)[T.4.0]	-0.1602	0.299	-0.536	0.592	-0.748	0.427
C(qg2)[T.5.0]	-0.6179	0.419	-1.475	0.141	-1.442	0.206
C(qg2)[T.6.0]	-0.6357	0.350	-1.816	0.070	-1.324	0.053
C(qg2)[T.7.0]	-0.3810	0.365	-1.044	0.297	-1.099	0.337
C(qg2)[T.8.0]	-0.7827	0.405	-1.931	0.054	-1.580	0.014
C(qa301)[T.3.0]	-0.0077	0.186	-0.042	0.967	-0.373	0.357
C(qa301)[T.7.0]	0.1702	0.209	0.814	0.416	-0.241	0.581
C(provcd22)[T.12.0]	-0.8030	1.088	-0.738	0.461	-2.942	1.336
C(provcd22)[T.13.0]	-0.5336	0.905	-0.590	0.556	-2.313	1.246
C(provcd22)[T.14.0]	0.1889	0.922	0.205	0.838	-1.624	2.001
C(provcd22)[T.21.0]	0.0020	0.854	0.002	0.998	-1.677	1.681

C(provcd22)[T.22.0]	0.2698	0.884	0.305	0.760	-1.469	2.009
C(provcd22)[T.23.0]	-0.9532	1.061	-0.898	0.370	-3.040	1.134
C(provcd22)[T.31.0]	0.5277	0.876	0.603	0.547	-1.194	2.249
C(provcd22)[T.32.0]	0.1886	0.959	0.197	0.844	-1.698	2.075
C(provcd22)[T.33.0]	0.3749	0.906	0.414	0.679	-1.406	2.156
C(provcd22)[T.34.0]	0.3135	0.902	0.348	0.728	-1.459	2.086
C(provcd22)[T.35.0]	0.4056	0.891	0.455	0.649	-1.347	2.158
C(provcd22)[T.36.0]	0.2587	0.937	0.276	0.783	-1.583	2.101
C(provcd22)[T.37.0]	0.1996	0.914	0.218	0.827	-1.598	1.997
C(provcd22)[T.41.0]	-0.4198	0.919	-0.457	0.648	-2.227	1.387
C(provcd22)[T.42.0]	-0.6810	0.999	-0.682	0.496	-2.645	1.283
C(provcd22)[T.43.0]	0.1512	0.871	0.174	0.862	-1.561	1.864
C(provcd22)[T.44.0]	0.3713	0.872	0.426	0.670	-1.343	2.085
C(provcd22)[T.45.0]	-0.1491	0.903	-0.165	0.869	-1.925	1.626
C(provcd22)[T.50.0]	-0.7229	1.153	-0.627	0.531	-2.991	1.545
C(provcd22)[T.51.0]	-0.0931	0.916	-0.102	0.919	-1.894	1.708
C(provcd22)[T.52.0]	-0.1298	0.901	-0.144	0.886	-1.902	1.643
C(provcd22)[T.53.0]	0.4166	0.894	0.466	0.642	-1.341	2.175
C(provcd22)[T.54.0]	1.0799	0.882	1.224	0.222	-0.655	2.815
C(provcd22)[T.61.0]	-0.4541	0.939	-0.484	0.629	-2.300	1.392
C(provcd22)[T.62.0]	-0.6103	0.924	-0.660	0.510	-2.428	1.207
C(provcd22)[T.63.0]	-0.8140	1.247	-0.653	0.514	-3.265	1.637
C(provcd22)[T.64.0]	0.6853	0.899	0.762	0.446	-1.082	2.453
C(provcd22)[T.65.0]	-0.3076	1.006	-0.306	0.760	-2.285	1.670
cfps2022eduy_im	0.0850	0.021	3.960	0.000	0.043	0.127
age	0.0594	0.034	1.731	0.084	-0.008	0.127
age_sq	-0.0008	0.000	-1.998	0.046	-0.002	-1.27e-05
gender	0.5759	0.115	5.009	0.000	0.350	0.802
urban22	0.2812	0.135	2.083	0.038	0.016	0.547
party	0.1700	0.226	0.752	0.453	-0.275	0.615
qp201	0.1220	0.052	2.328	0.020	0.019	0.225
qg6	0.0086	0.005	1.836	0.067	-0.001	0.018
qv102	0.0090	0.012	0.771	0.441	-0.014	0.032
qv202	0.0104	0.003	3.311	0.001	0.004	0.017

Omnibus:	192.693	Durbin-Watson:	2.114
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1457.420
Skew:	-1.793	<pre>Prob(JB):</pre>	0.00
Kurtosis:	11.380	Cond. No.	7.80e+04

Notes:

- [1] Standard Errors are heteroscedasticity robust (HC1)
- [2] The condition number is large, 7.8e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Notes:

- 1. Standard errors are robust to heteroskedasticity (HC1 type).
- 2. The model was estimated using Weighted Least Squares (WLS) with 'rswt_natcs22n' as weights.
- 3. Categorical variables (qea0, qg2, qa301, provcd22) are included as dummy variables (fixed effects for provcd22).

The reference category for each C() variable is its lowest valid numerical code after cleaning.

结果解读

好的,作为一名计量经济学家,我对这份研究进行解读。

- 1. **各主要自变量对因变量的经济含义解释**(因变量为对数化的"过去12个月所有工作(主要工作+一般工作)的税后工资性收入"emp_income):
 - 。 "**受教育年限" (** cfps2022eduy_im): 系数为0.0850 (p<0.001),意味着在其他条件不变时,受教育年限每增加一年,个人税后工资性收入平均提高约8.5%。这体现了教育作为人力资本投资的正向回报。
 - 。 **"年龄"**(age)**与年龄平方**(age_sq): 年龄的线性项系数为0.0594 (p=0.084),平方项系数为-0.0008 (p=0.046)。这共同表明工资性收入随年龄(作为工作经验的代理)的增加而增加,但其增长速度随年龄递减,呈现倒U型关系,符合人力资本理论中经验积累的边际效用递减规律。
 - 。 **"受访者性别" (** gender): 系数为0.5759 (p<0.001),以女性为参照组(编码0为女,1为男),表明男性的税后工资性收入平均比女性高出约57.6%,显示存在显著的性别工资差距。
 - 。 **"城乡分类" (urban22)**: 系数为0.2812 (p=0.038),以乡村为参照组(编码0为乡村,1为城镇),表明城镇居民的税后工资性收入平均比乡村居民高出约28.1%,反映了城乡二元结构下的收入差异。
 - 其他显著控制变量如"当前婚姻状态"(qea0)中,"在婚(有配偶)"者(相对未婚)收入高35.5%,"丧偶"者收入低约63.6%(1-exp(-1.0119));"健康状况"(qp201)每差一级(数值越大越不健康),收入反而高12.2%;"每周工作时间"(qg6)每增加一小时,收入提高0.86%;"母亲教育程度"(qv202)每提高一单位,子女收入增加1.04%。

2. 研究发现总结

本研究基于扩展的明瑟方程,采用加权最小二乘法(WLS)并控制省份固定效应,探讨了中国个体税后工资性收入(对数化)的决定因素。模型整体解释力尚可(调整后R²为0.350),F统计量显著。

核心发现如下:

- 1. **教育回报显著**: "受教育年限"对收入有显著的正向影响,每多接受一年教育,收入平均提高8.5%,证实了教育的人力资本价值。
- 2. **经验效应呈倒U型**: "年龄"及其平方项的系数表明,收入随工作经验的积累先上升后下降,符合生命周期理论。
- 3. **性别与城乡差异**:存在显著的性别工资溢价,男性收入远高于女性。同时,城镇居民收入显著高于乡村居民,反映了持续存在的结构性不平等。

此外,控制变量分析显示: "当前婚姻状态"对收入有重要影响,"在婚"状态与较高收入相关,而"丧偶"则与较低收入相关。"母亲教育程度"对子女收入有正向的代际影响。"每周工作时间"作为劳动投入的衡量,其增加能带来更高的收入。值得注意的是,"健康状况"变量显示健康状况越差收入越高的反常现象(系数0.1220,p=0.020),这可能源于未观测到的共同因素(如从事高风险高收入行业)、变量测量方式或样本选择偏误,需谨慎解读并作进一步研究。模型提示存在潜在的多重共线性问题(条件数较大),提示未来研究可关注此点。研究已使用稳健标准误应对异方差。