Stochastic Processes: Homework 5

Martín Prado

April 30, 2024 Universidad de los Andes — Bogotá Colombia

Exercise 1

Consider the following transition matrix

$$\Pi = \begin{pmatrix} 0 & \frac{1}{3} & 0 & 0 & \frac{2}{3} \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\ 0 & \frac{2}{3} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{2}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & 0 & 0 & \frac{2}{3} & 0 \end{pmatrix}$$

- (a) Build the random dynamical system that parametrizes this Markov Chain.
- (b) Why does a unique invariant distribution exist?
- (c) Calculate the invariant distribution π and verify it is reversible.
- (d) Verify that it is strongly irreducible. Which is the exponent m?
- (e) The random walk on \mathbb{Z} with independent increments $\frac{2}{3}\delta_{-1} + \frac{1}{3}\delta_1$ is not strongly irreducible. Explain the difference between this case and the case of Π
- (f) Determine the time $\mathbf{E}[T_i^r]$ for $i = 0, \dots, 4$.
- (g) Calculate the convergence rate

$$\mu\Pi^n \to \pi, \qquad n \to \infty$$

Solution Part (a)

$$f(i,\theta) = (i+1) \bmod 5 \cdot \mathbb{1}_{\left[0,\frac{1}{3}\right)}(\theta) + (i-1) \bmod 5 \cdot \mathbb{1}_{\left[\frac{1}{3},1\right]}(\theta).$$

Solution Part (b)

The ergodic theorem for Markov Chains states that a strongly irreducible Markov chain has only one invariant distribution π . (See item (d))

Solution Part (c)

We must find π that satisfies

$$\pi\Pi = \pi,$$

$$\sum_{i=0}^{4} \pi_i = 1$$

The symmetry of the graph that is spanned by this matrix hints that all the entries of π must be equal to $\frac{1}{5}$. In fact, after calculating the left eigenvectors of Π we find that the only one with eigenvalue 1 is

$$\pi = \left[\frac{1}{5}, \, \frac{1}{5}, \, \frac{1}{5}, \, \frac{1}{5}, \, \frac{1}{5} \right].$$

Solution Part (d)

$$\Pi^2 = \begin{bmatrix} \frac{4}{9} & 0 & \frac{1}{9} & \frac{4}{9} & 0\\ 0 & \frac{4}{9} & 0 & \frac{1}{9} & \frac{4}{9}\\ \frac{4}{9} & 0 & \frac{4}{9} & 0 & \frac{1}{9}\\ \frac{1}{9} & \frac{4}{9} & 0 & \frac{4}{9} & 0\\ 0 & \frac{1}{9} & \frac{4}{9} & 0 & \frac{4}{9} \end{bmatrix},$$

$$\Pi^{3} = \begin{bmatrix} 0 & \frac{2}{9} & \frac{8}{27} & \frac{1}{27} & \frac{4}{9} \\ \frac{4}{9} & 0 & \frac{2}{9} & \frac{8}{27} & \frac{1}{27} \\ \frac{1}{27} & \frac{4}{9} & 0 & \frac{2}{9} & \frac{8}{27} \\ \frac{8}{27} & \frac{1}{27} & \frac{4}{9} & 0 & \frac{2}{9} \\ \frac{2}{9} & \frac{8}{27} & \frac{1}{27} & \frac{4}{9} & 0 \end{bmatrix}$$

$$\Pi^4 \begin{bmatrix} \frac{8}{27} & \frac{16}{81} & \frac{8}{81} & \frac{32}{81} & \frac{1}{81} \\ \frac{1}{81} & \frac{8}{27} & \frac{16}{81} & \frac{8}{81} & \frac{32}{81} \\ \frac{32}{81} & \frac{1}{81} & \frac{8}{27} & \frac{16}{81} & \frac{8}{8} \\ \frac{8}{81} & \frac{32}{81} & \frac{1}{81} & \frac{8}{27} & \frac{16}{81} \\ \frac{8}{81} & \frac{8}{81} & \frac{32}{81} & \frac{1}{81} & \frac{8}{27} \end{bmatrix}$$

The exponent is m=4.

Solution Part (e)

Let S_n be the sum of n increments of this random walk. Note that if n is odd, then S_n is too and viceversa. Therefore,

$$S_n \equiv n \mod 2$$
,

and thus, odd states are not accesible from even n's and viceversa. On the other hand, since $2\mathbb{Z}_5 \simeq \mathbb{Z}_5$, one can access both even and odd states from odd n's and viceversa. From the previous part is also easy to see that for n=4 one can for any $i, j \in S$ from i to j in 4 steps with probability greater than 0.

Solution Part (f)

Theorem 3.83 states that if π is the only invariant distribution, then

$$\pi(i) = \frac{1}{\mathbf{E}\left[T_i^r\right]}$$

Therefore, $\mathbf{E}\left[T_i^r\right] = 5$ for every $i \in S$.

Solution Part (g)

Let X_n^{μ} be the random variable associated with $\mu\Pi^n$ theorem 3.68 states that for

$$\alpha = \sum_{j \in S} \min_{i \in S} \Pi^m(i, j) = \frac{1}{81} + \frac{1}{81} + \frac{1}{81} + \frac{1}{81} + \frac{1}{81} = \frac{5}{81},$$

we have

$$\sup_{A \subset S} |P\{X_n^{\mu} \in A\} - \pi(A)| \le (1 - \alpha)^{\left\lfloor \frac{n}{m} \right\rfloor} = \left(\frac{76}{81}\right)^{\left\lfloor \frac{n}{4} \right\rfloor}.$$

Thus, X_n^{μ} converges in distribution to π at an exponential rate.