RMQクエリ処理

北海道大学大学院情報科学研究科博士1年 井上 祐馬

RMQ

- · RMQ: Range Minimum Query (区間最小値)
 - · 列 A[1:n] 上の区間 [l, r] に対するクエリ RMQ(l,r)
 - A[l:r] 中での最小値 A[i] を返す
 - ・基本的に最大値クエリも同様に処理できる

RMQ

- · RMQ: Range Minimum Query (区間最小値)
 - · 列 A[1:n] 上の区間 [l, r] に対するクエリ RMQ(l,r)
 - A[l:r] 中での最小値 A[i] を返す
 - ・基本的に最大値クエリも同様に処理できる

		l			r		
			—				
id	1	2	3	4	5	6	
A[id]	1	8	2	6	3	5	

RMQ

- · RMQ: Range Minimum Query (区間最小値)
 - · 列 A[1:n] 上の区間 [l, r] に対するクエリ RMQ(l,r)
 - A[l:r] 中での最小値 A[i] を返す
 - ・基本的に最大値クエリも同様に処理できる

			r					
			◀					
id	1	2	3	4	5	6		
A[id]	1	8	2	6	3	5		

RMQを処理するアルゴリズム

- ・クエリ処理アルゴリズムの計算量:
 - · 前処理時間
 - 1つのクエリの処理時間

RMQアルゴリズム

· 平方分割

Segment Tree

RMQアルゴリズム

· 平方分割

Segment Tree

バケット分割

- · 長さ n の列を長さ s のバケットに分割
 - ・バケットの数 B = n/s
 - · 各バケットの最小値を O(n) で前計算
- · 全体の RMQ クエリは、以下のクエリに分割される
 - ・バケットの区間に対する RMQ クエリ1回
 - ・バケット内部に対する RMQ クエリ2回

平方分割

- 長さ n の列を長さ √n のバケットに分割
 - ・バケットの数 B = n/√n = √n
- · 全体の RMQ クエリは、以下のクエリに分割される
 - ・バケットの区間に対する RMQ クエリ1回
 - √n個の最小値インデックスを比較 <mark>○(√n)</mark>
 - バケット内部に対する RMQ クエリ2回
 - √n個の最小値インデックスを比較 O(√n)
 - · 全体でも O(√n)

平方分割の実装 (構築)

```
class Backet{
  //sqrtN: backet size, B: the number of backet
  int n, sqrtN, B;
  vector<int> val, backet;
public:
  Backet(vector<int> a):val(a){
    n = a.size(); sqrtN = ceil(sqrt(n));
    B = (n + sqrtN - 1) / sqrtN;
    backet.resize(B,INF);
    for(int i=0;i<B;i++){
      for(int j=sqrtN*i;j<sqrtN*(i+1);j++){</pre>
        if(j>=n)break;
        backet[i] = min(backet[i], val[j]);
```

平方分割の実装(クエリ)

```
int RMQ(int 1, int r){
  //index in backet
  int L = (l + sqrtN - 1) / sqrtN + 1, R = r / sqrtN;
  int res = INF;
  if(L<=R){
    for(int i=1;i<sqrtN*L;i++)res = min(res, val[i]);</pre>
    for(int i=L;i<R;i++)res = min(res, backet[i]);</pre>
    for(int i=sqrtN*R;i<r;i++)res = min(res, val[i]);</pre>
  }else{
    //interval is included in one backet
    for(int i=1;i<r;i++)res = min(res, val[i]);</pre>
  return res;
```

RMQアルゴリズム

· 平方分割

Segment Tree

- ・列を2分木の葉に割り当てる
- ・各節点は2つの子のうち最小値を保持
- · 一見 O(nlogn) 空間に見えて、実は 2n-1 節点

- ・列を2分木の葉に割り当てる
- ・各節点は2つの子のうち最小値を保持
- ・構築:葉の方から順に、2つの子の最小値を計算 O(n)

- ・列を2分木の葉に割り当てる
- ・各節点は2つの子のうち最小値を保持
- ・クエリ:クエリ区間を節点に対応するように分割し、 その中の最小値を返す O(log n)

- ・列を2分木の葉に割り当てる
- ・各節点は2つの子のうち最小値を保持
- ・クエリ:クエリ区間を節点に対応するように分割し、 その中の最小値を返す O(log n)

- ・列を2分木の葉に割り当てる
- ・各節点は2つの子のうち最小値を保持
- ・クエリ:クエリ区間を節点に対応するように分割し、 その中の最小値を返す O(log n)

- ・列を2分木の葉に割り当てる
- ・各節点は2つの子のうち最小値を保持
- ・クエリ:クエリ区間を節点に対応するように分割し、 その中の最小値を返す O(log n)

- ・列を2分木の葉に割り当てる
- ・各節点は2つの子のうち最小値を保持
- ・クエリ:クエリ区間を節点に対応するように分割し、 その中の最小値を返す O(log n)

- ・クエリ:クエリ区間を節点に対応するように分割し、 その中の最小値を返す O(log n)
- ·最初の分割後の下降において、2つの子のうち片方は必ず 区間一致、もしくは範囲外となり、それ以上降りない
 - = 高々 O(logn) 回の節点参照

Segment Tree の実装 (構築)

```
class SegmentTree{
  int n;
  //represent tree as array
  //parent of k : (k-1)/2, child of k : 2*k+1, 2*k+2
  vector<int> node;
public:
  SegmentTree(vector<int> a){
    int n = a.size();
    //round to power of 2
    n=1;
    while(n < n) n *= 2;
    //initialize tree
    node.resize(2*n-1, INF);
    //fill data into tree
    for(int i=0;i< n ;i++)node[n-1+i] = a[i];
    for(int i=n-2;i>=0;i--)node[i] = min(node[2*i+1], node[2*i+2]);
```

Segment Tree の実装 (クエリ)

RMQアルゴリズム

· 平方分割

Segment Tree

- ・i 番目から長さ2kの区間の最小値をそれぞれ記憶した O(n logn)のテーブルを持つ
- · 構築: O(n logn)
 - $S[i][k+1] = min(S[i][k], S[i+2^k][k])$

i	1	2	3	4	5	6	7	8
A[i]	2	1	8	3	7	2	5	6
S[i][0]	2	1	8	3	7	2	5	6
S[i][1]	1	1	3	3	2	2	5	-
s[i][2]		1	2	2	5	-	-	-
S[i][3]		~	-	-	-	_	-	-
	—			-	—			—
	←		24					-

- ・i 番目から長さ2kの区間の最小値をそれぞれ記憶した O(n logn)のテーブルを持つ
- · クエリ: O(1)
 - $\cdot RMQ(i, j) = min(S[i][k], S[j-2^k+1][k])$
 - · k = floor(log(j-i)) ← O(1)で求められると仮定

i	1	2	3	4	5	6	7	8
A[i]	2	1	8	3	7	2	5	6
S[i][0]	2	1	8	3	7	2	5	6
S[i][1]	1	1	3	3	2	2	5	-
s[i][2]	1		2	2	5	-	-	-
S[i][3]	1	-	-	-	-	-	-	-
		lacksquare			→			
			25	+				

Sparse Table の実装

```
class SparseTable{
  vector< vector<int> > table;
public:
  SparseTable(vector<int> a) {
    int n = a.size(), logn = 31 - builtin clz(n);
    //initialize table
    table.resize(n, vector < int > (logn + 1, INF));
    for(int i=0;i<n;i++)table[i][0] = a[i];</pre>
    //construct table
    for(int j=0;j<logn;j++){</pre>
      for(int i=0;i<n;i++){</pre>
        table[i][j+1] = min(table[i][j], (i+(1<<j)<n)?table[i+(1<<j)][j]:INF);
  //return the minimum value in [1, r)
  int RMQ(int 1, int r){
    int ln = 31 - builtin clz(r-1);
    return min(table[l][ln], table[r-(1<<ln)][ln]);</pre>
```

RMQのアルゴリズム

	空間	前処理	クエリ	動的
平方分割	O(n)	O(n)	O(√n)	(O(√n))
Segment Tree	O(n)	O(n)	O(logn)	(O(logn))
Sparse Table	O(n logn)	O(n logn)	O(1)	× (O(n))

動的クエリ処理

- 値変更クエリ
 - ・セグメント木:葉の値の変更を親に伝える O(logn)
 - · 平方分割:バケット最小値を更新 O(√n)
- ・値挿入クエリ
 - ・セグメント木:クエリの先読みができれば先に∞などで確保しておく
 - ・平方分割:バケットに追加、サイズが大きくなり すぎたら分割 O(√n)

Segment Tree の実装 (更新)

```
void update(int k, int v){
    k += n-1;
    node[k] = v;
    //traverse from leaf to root
    while(k>0){
        k = (k-1)/2;
        node[k] = min(node[k*2+1],node[k*2+2]);
    }
}
```

平方分割の実装 (更新)

```
void update(int k, int v){
  //update of array
  val[k] = v;
  //update of backet
  int X = k/sqrtN;
  backet[X] = INF;
  for(int i=sqrtN*X;i<sqrtN*(X+1);i++){</pre>
    if(i>=n)break;
    backet[X] = min(backet[X], val[i]);
```

その他クエリ処理

- ・セグメント木 (平方分割) は他にも様々な問題に利用可能
 - · 区間和/積、区間GCD/LCM、etc...
 - ・結合則が成り立つ演算なら基本的にOK
- ・区間和に対するクエリに特化した BIT (Binary Index Tree
 - = Fenwick Tree) という構造もある (そのうち紹介)
- · 1次元 (列) を多次元に拡張することもできる (そのうち紹介)

遅延更新というテクニックで、さらに幅広いクエリを処理できる (そのうち紹介)

まとめ

- · RMQ を処理する典型的アルゴリズムの紹介
 - · 平方分割
 - セグメント木
 - · Sparse Table
- ・(一部は)動的なデータの変更にも対応できる
- · これらのアルゴリズム (データ構造) は他の問題に も幅広く応用される