# Milestone 2: Data Summary/Visualization

# Kaarthik Sundaramoorthy, Sahil Shah and Vidhi Shah

6/23/2020

The dataset used in the project is based on "online shoppers purchasing intention" available on UCI Machine Learning dataset.

 $\label{eq:url:loss} \begin{tabular}{ll} URL: https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset (and the property of the p$ 

## Importing Libraries

This are the important libraries that are to be installed for the execution of the file.

```
library(gpplot2)
library(tidyverse)
library(gmodels)
library(dplyr)
library(ggmosaic)
library(corrplot)
library(rpart)
library(rpart)
library(rpart.plot)
library(fpc)
library(data.table)
library(knitr)
library(kableExtra)
```

# Importing the Dataset

The read.csv() command is used to import the dataset.

```
dataset <- read.csv("online_shoppers_intention.csv", header = TRUE)
attach(dataset)</pre>
```

Checking the number of columns and rows of the dataset.

```
ncol(dataset)
## [1] 18
nrow(dataset)
## [1] 12330
```

Looking at the dataset data structure.

#### str(dataset)

```
12330 obs. of 18 variables:
## 'data.frame':
   $ Administrative
                          : int 000000100...
## $ Administrative_Duration: num 0 0 0 0 0 0 0 0 0 0 ...
   $ Informational
                           : int
                                  0 0 0 0 0 0 0 0 0 0 ...
##
  $ Informational_Duration : num 0 0 0 0 0 0 0 0 0 0 ...
  $ ProductRelated
                          : int
                                  1 2 1 2 10 19 1 0 2 3 ...
##
   $ ProductRelated_Duration: num
                                  0 64 0 2.67 627.5 ...
##
   $ BounceRates
                           : num
                                  0.2 0 0.2 0.05 0.02 ...
## $ ExitRates
                           : num
                                  0.2 0.1 0.2 0.14 0.05 ...
## $ PageValues
                           : num 0000000000...
## $ SpecialDay
                           : num 0 0 0 0 0 0 0.4 0 0.8 0.4 ...
## $ Month
                           : Factor w/ 10 levels "Aug", "Dec", "Feb", ...: 3 3 3 3 3 3 3 3 3 3 ...
## $ OperatingSystems
                           : int
                                 1 2 4 3 3 2 2 1 2 2 ...
## $ Browser
                           : int 1 2 1 2 3 2 4 2 2 4 ...
   $ Region
##
                           : int 1 1 9 2 1 1 3 1 2 1 ...
## $ TrafficType
                           : int 1 2 3 4 4 3 3 5 3 2 ...
  $ VisitorType
                           : Factor w/ 3 levels "New_Visitor",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ Weekend
                           : logi FALSE FALSE FALSE TRUE FALSE ...
## $ Revenue
                           : logi FALSE FALSE FALSE FALSE FALSE ...
```

#### summary(dataset)

```
Administrative_Duration Informational
   Administrative
##
   Min. : 0.000
                               0.00
                                            Min. : 0.0000
                    Min.
                          :
                               0.00
   1st Qu.: 0.000
                    1st Qu.:
                                            1st Qu.: 0.0000
## Median : 1.000
                    Median :
                               7.50
                                            Median: 0.0000
         : 2.315
                          : 80.82
                                            Mean : 0.5036
##
   Mean
                    Mean
##
   3rd Qu.: 4.000
                    3rd Qu.:
                              93.26
                                            3rd Qu.: 0.0000
##
          :27.000
                    Max.
                           :3398.75
                                           Max.
                                                  :24.0000
##
##
   Informational Duration ProductRelated ProductRelated Duration
              0.00
                          Min. : 0.00
                                         \mathtt{Min.} :
                                                       0.0
##
  Min. :
              0.00
   1st Qu.:
                          1st Qu.: 7.00
                                           1st Qu.: 184.1
  Median :
              0.00
                          Median : 18.00
                                           Median: 598.9
##
         : 34.47
##
   Mean
                          Mean : 31.73
                                           Mean
                                                  : 1194.8
##
   3rd Qu.:
              0.00
                          3rd Qu.: 38.00
                                           3rd Qu.: 1464.2
##
   Max.
          :2549.38
                          Max.
                                 :705.00
                                           Max.
                                                  :63973.5
##
##
    BounceRates
                        ExitRates
                                          PageValues
                                                           SpecialDay
##
  Min.
          :0.000000
                      Min.
                             :0.00000
                                       Min. : 0.000
                                                         Min.
                                                                :0.00000
   1st Qu.:0.000000
                      1st Qu.:0.01429
                                        1st Qu.: 0.000
                                                         1st Qu.:0.00000
##
   Median :0.003112
                      Median :0.02516
                                        Median : 0.000
                                                         Median :0.00000
                                              : 5.889
##
  Mean
          :0.022191
                      Mean
                             :0.04307
                                        Mean
                                                         Mean
                                                                :0.06143
   3rd Qu.:0.016813
                      3rd Qu.:0.05000
                                        3rd Qu.: 0.000
                                                         3rd Qu.:0.00000
          :0.200000
                             :0.20000
##
   Max.
                      Max.
                                        Max.
                                               :361.764
                                                         Max.
                                                                :1.00000
##
##
       Month
                  OperatingSystems
                                      Browser
                                                       Region
                  Min. :1.000
                                   Min. : 1.000
                                                         :1.000
##
   May
          :3364
                                                   Min.
          :2998
                  1st Qu.:2.000
                                   1st Qu.: 2.000
                                                    1st Qu.:1.000
##
   Nov
```

```
##
    Mar
           :1907
                    Median :2.000
                                      Median : 2.000
                                                        Median :3.000
                           :2.124
##
    Dec
           :1727
                    Mean
                                             : 2.357
                                                        Mean
                                                                :3.147
                                      Mean
           : 549
##
    Oct
                    3rd Qu.:3.000
                                      3rd Qu.: 2.000
                                                        3rd Qu.:4.000
           : 448
                           :8.000
                                             :13.000
                                                                :9.000
##
    Sep
                    Max.
                                      Max.
                                                        Max.
##
    (Other):1337
     TrafficType
                                VisitorType
                                                                   Revenue
##
                                                 Weekend
##
    Min.
           : 1.00
                     New_Visitor
                                       : 1694
                                                 Mode :logical
                                                                  Mode :logical
    1st Qu.: 2.00
                     Other
                                                 FALSE: 9462
                                                                  FALSE: 10422
##
                                       :
                                           85
##
    Median: 2.00
                     Returning_Visitor:10551
                                                 TRUE :2868
                                                                  TRUE :1908
           : 4.07
##
    Mean
##
    3rd Qu.: 4.00
##
    Max.
           :20.00
##
```

The purchasing intention model is designed as a classification problem which measures the purchasers' commitment to finalize purchase intent. Hence we have the session data of the users which has two categories: users who purchased the item and who didn't. The dataset consists of both numerical data and categorical data, and thus the target value is categorical. Table 1 refers to the numerical features and Table 2 refers to the categorical features used in the prediction model respectively. There are a total of 12,330 rows where each row represents session data of one particular user.

```
tab1 <- read.csv("table1.csv", header = TRUE)
kable(tab1) %>%
  kable_styling(full_width = T)
```

| ïFeature.Name   | Description               | Minvalue | Maxvalue | SD          |
|-----------------|---------------------------|----------|----------|-------------|
| Administrative  | Number of pages           | 0        | 27.0     | 3.322e+00   |
|                 | visited by the            |          |          |             |
|                 | visitor about             |          |          |             |
|                 | account                   |          |          |             |
|                 | management                |          |          |             |
| Administrative  | Total amount of           | 0        | 3399.0   | 1.768e + 02 |
| duration        | time (in seconds)         |          |          |             |
| auruon          | spent by the              |          |          |             |
|                 | visitor on account        |          |          |             |
|                 | management                |          |          |             |
|                 | related pages             |          |          |             |
| Informational   | Number of pages           | 0        | 24.0     | 1.270e + 00 |
|                 | visited by the            | · ·      | 21.0     | 1.2,00,00   |
|                 | visitor about Web         |          |          |             |
|                 | site,                     |          |          |             |
|                 | *                         |          |          |             |
|                 | communication and address |          |          |             |
|                 |                           |          |          |             |
|                 | information of the        |          |          |             |
| Informational   | shopping site             | 0        | 25.40.4  | 1 407- + 00 |
|                 | Total amount of           | 0        | 2549.4   | 1.407e + 02 |
| duration        | time (in seconds)         |          |          |             |
|                 | spent by the              |          |          |             |
|                 | visitor on                |          |          |             |
|                 | informational             |          |          |             |
| D 1 . 1 . 1     | pages                     |          | <b>—</b> | 4.44001     |
| Product related | Number of pages           | 0        | 705.0    | 4.448e + 01 |
|                 | visited by visitor        |          |          |             |
|                 | about product             |          |          |             |
|                 | related pages             |          |          |             |
| Product related | Total amount of           | 0        | 63974.0  | 1.914e + 03 |
| duration        | time (in seconds)         |          |          |             |
|                 | spent by the              |          |          |             |
|                 | visitor on product        |          |          |             |
|                 | related pages             |          |          |             |
| Bounce rates    | Average bounce            | 0        | 0.2      | 4.849e-02   |
|                 | rate value of the         |          |          |             |
|                 | pages visited by          |          |          |             |
|                 | the visitor               |          |          |             |
| Exit rate       | Average exit rate         | 0        | 0.2      | 4.860e-02   |
|                 | value of the pages        |          |          |             |
|                 | visited by the            |          |          |             |
|                 | visitor                   |          |          |             |
| Page value      | Average page              | 0        | 361.8    | 1.857e + 01 |
|                 | value of the pages        |          |          |             |
|                 | visited by the            |          |          |             |
|                 | visitor                   |          |          |             |
| Special day     | Closeness of the          | 0        | 1.0      | 1.989e-01   |
|                 | site visiting time        |          |          |             |
|                 | to a special day          |          |          |             |

```
tab2 <- read.csv("table2.csv", header = TRUE)
kable(tab2) %>%
  kable_styling(full_width = T)
```

| ïName            | Description                       | Values |
|------------------|-----------------------------------|--------|
| OperatingSystems | Operating system of the visitor   | 8      |
| Browser          | Browser of the visitor            | 13     |
| Region           | Geographic region from which      | 9      |
|                  | the session has been started by   |        |
|                  | the visitor                       |        |
| TrafficType      | Traffic source by which the       | 20     |
|                  | visitor has arrived at the Web    |        |
|                  | site (e.g., banner, SMS, direct)  |        |
| VisitorType      | Visitor type as New Visitor,      | 3      |
|                  | Returning Visitor, and Other      |        |
| Weekend          | Boolean value indicating          | 2      |
|                  | whether the date of the visit is  |        |
|                  | weekend                           |        |
| Month            | Month value of the visit date     | 10     |
| Revenue          | Class label indicating whether    | 2      |
|                  | the visit has been finalized with |        |
|                  | a transaction                     |        |

Taking the look at the **REVENUE** column which is the target column. The datatype of the REVENUE column is Logical which holds the value **TRUE** and **FALSE**.

```
library(gmodels)
summary(dataset$Revenue)

## Mode FALSE TRUE
## logical 10422 1908

CrossTable(dataset$Revenue)
```

```
##
##
##
      Cell Contents
##
##
##
            N / Table Total |
##
##
##
##
   Total Observations in Table: 12330
##
##
##
                  FALSE |
                               TRUE |
##
                   10422 |
                               1908 |
##
                   0.845 |
                              0.155 |
##
##
             |-----|
##
##
##
##
```

Adding the new *Revenue\_binary* column by using Logical Data of Shopper's Revenue into binary dependent variable that will helpful for potential regression models. The data will be converted with values 0 and 1, i.e. If it is false the value is 0 and if true it will be 1.

```
dataset <- dataset %>%
  mutate(Revenue_binary = ifelse(dataset$Revenue == "TRUE", 1, 0))
```

Checking the dataset if it has any missing values.

```
colSums(is.na(dataset))
```

| ## | Administrative         | Administrative_Duration | Informational           |
|----|------------------------|-------------------------|-------------------------|
| ## | 0                      | 0                       | 0                       |
| ## | Informational_Duration | ${\tt ProductRelated}$  | ProductRelated_Duration |
| ## | 0                      | 0                       | 0                       |
| ## | BounceRates            | ExitRates               | PageValues              |
| ## | 0                      | 0                       | 0                       |
| ## | SpecialDay             | Month                   | OperatingSystems        |
| ## | 0                      | 0                       | 0                       |
| ## | Browser                | Region                  | ${	t Traffic Type}$     |
| ## | 0                      | 0                       | 0                       |
| ## | VisitorType            | Weekend                 | Revenue                 |
| ## | 0                      | 0                       | 0                       |
| ## | Revenue_binary         |                         |                         |
| ## | 0                      |                         |                         |

# ${\bf Visualizations}$

```
dataset %>%
  ggplot() +
  aes(x = Month, Revenue = ..count../nrow(dataset), fill = Revenue) +
  geom_bar() +
  ylab("Frequency")
```



## Month

The plot describes the frequency of the revenue generated over the months.

```
table_month = table(dataset$Month, dataset$Revenue)
tab_mon = as.data.frame(prop.table(table_month,2))
colnames(tab_mon) = c("Month", "Revenue", "perc")
ggplot(data = tab_mon, aes(x = Month, y = perc, fill = Revenue)) +
   geom_bar(stat = 'identity', position = 'dodge', alpha = 2/3) +
   xlab("Month")+
   ylab("Percent")
```



The plot portrays the high shopping rates in the months September, October and November with respect to the customers not buying the products. These months are comparatively considered as the *Holiday Season Months*. Also, there is high hits on the website with positive revenue in the month of may.

```
dataset %>%
   ggplot() +
   geom_mosaic(aes(x = product(Revenue, VisitorType), fill = Revenue)) +
   mosaic_theme +
   xlab("Visitor Type") +
   ylab(NULL)
```



## Visitor

The comparison of the VisitorType which are New\_Visitors, Returning\_Visitor and Others with Revenue generated. There are many returning visitors in the contrast to less new visitors. Although, the new visitors have high probablity of purchasing the product and help the revenue than the returning visitors.

```
CrossTable(dataset$Weekend, dataset$Revenue)
```

# Weekend

```
##
##
##
      Cell Contents
##
                            N I
##
##
    Chi-square contribution |
##
               N / Row Total |
##
               N / Col Total |
##
             N / Table Total |
##
##
##
## Total Observations in Table: 12330
##
##
```

```
| dataset$Revenue
##
## dataset$Weekend | FALSE | TRUE | Row Total |
## -----|-----|
        FALSE |
                 8053 |
                          1409 |
##
                0.381 | 2.080 | |
0.851 | 0.149 | 0.767 |
##
          - 1
##
            - 1
##
            - 1
                 0.773 |
                         0.738 |
                       0.114 |
##
                 0.653 |
        ##
##
                       0.040 |
##
                 0.192 |
##
                        1908 |
    Column Total |
               10422 |
##
                                  12330 |
##
                 0.845 |
                         0.155 |
            ##
```

##

```
dataset %%
ggplot() +
mosaic_theme +
geom_mosaic(aes(x = product(Revenue, Weekend), fill = Revenue)) +
xlab("Weekend") +
ylab(NULL)
```



The **Weekend** analysis shows that more than 70% of visitors are visiting the site on weekdays, with 15% chance of actually buying the products. The rest 30% visit on the weekend and there is 17% speculation of buying.

# Appendix—Code

```
knitr::opts_chunk$set(echo= TRUE, warning=FALSE, message=FALSE)
library(ggplot2)
library(tidyverse)
library(gmodels)
library(dplyr)
library(ggmosaic)
library(corrplot)
library(caret)
library(rpart)
library(rpart.plot)
library(cluster)
library(fpc)
library(data.table)
library(knitr)
library(kableExtra)
dataset <- read.csv("online_shoppers_intention.csv", header = TRUE)</pre>
attach(dataset)
ncol(dataset)
```

```
nrow(dataset)
str(dataset)
summary(dataset)
tab1 <- read.csv("table1.csv", header = TRUE)
kable(tab1) %>%
  kable_styling(full_width = T)
tab2 <- read.csv("table2.csv", header = TRUE)</pre>
kable(tab2) %>%
  kable_styling(full_width = T)
library(gmodels)
summary(dataset$Revenue)
CrossTable(dataset$Revenue)
dataset <- dataset %>%
  mutate(Revenue_binary = ifelse(dataset$Revenue == "TRUE", 1, 0))
colSums(is.na(dataset))
dataset %>%
  ggplot() +
  aes(x = Month, Revenue = ..count../nrow(dataset), fill = Revenue) +
  geom_bar() +
  ylab("Frequency")
table_month = table(dataset$Month, dataset$Revenue)
tab_mon = as.data.frame(prop.table(table_month,2))
colnames(tab_mon) = c("Month", "Revenue", "perc")
ggplot(data = tab_mon, aes(x = Month, y = perc, fill = Revenue)) +
  geom_bar(stat = 'identity', position = 'dodge', alpha = 2/3) +
  xlab("Month")+
  ylab("Percent")
theme_set(theme_bw())
## setting default parameters for mosaic plots
mosaic_theme = theme(axis.text.x = element_text(angle = 90,
                                                 hjust = 1,
                                                 vjust = 0.5),
                     axis.text.y = element_blank(),
                     axis.ticks.y = element_blank())
dataset %>%
  ggplot() +
  geom_mosaic(aes(x = product(Revenue, VisitorType), fill = Revenue)) +
  mosaic_theme +
  xlab("Visitor Type") +
  ylab(NULL)
CrossTable(dataset$Weekend, dataset$Revenue)
dataset %>%
  ggplot() +
  mosaic_theme +
  geom_mosaic(aes(x = product(Revenue, Weekend), fill = Revenue)) +
  xlab("Weekend") +
  ylab(NULL)
```