

Predicting Sepsis Onset Using Recurrent Neural Networks and the MIMIC-III Database

(A Replication Project)

BANA650

Group AJA

Jessica Becerra, Ashley Cortez, Angelica Verduzco

Healthcare Problem & Objective

Problem:

Accurately predicting sepsis onset in ICU patients is a critical healthcare challenge due to its complex, heterogeneous, and subtle clinical presentation.

Objective:

- Assess the performance of the RNN in predicting sepsis onset at 3, 6, and 12 hours before diagnosis.
- Analyze the impact of varying look-back windows (5, 10, 15, and 20 hours) on model accuracy to determine how much historical data optimizes prediction performance.
- 3. Compare the RNN's performance to the InSight algorithm using evaluation metrics such as AUROC, sensitivity, and specificity.

Data Collection & Extraction

Calvert's Gold Standard

Criteria 1	Sepsis diagnosis during patient stay								
Criteria 2	Pt manifests SIRS for at least 5 hrs								

MIMIC-III Admissions

Minimum 2 SIRS Parameters:

- Temperature <36°C or >38°C
- Heart Rate > 90 BPM
- Respiratory rate > 20/min, or PaCO2 <32mmHg
- White Blood Cell Count $<4k/\mu$ L or $>12k/\mu$ L

Additional Parameters for Prediction:

- Systolic blood pressure
- Diastolic blood pressure
- pH value
- Blood Oxygen Saturation

Interpolations and Prediction Windows

- 6 different interpolations of the initial extraction (0/1/2/3/4/5)
- Apply 3 different prediction windows (3h/6h/12h)
- Result: 18 different versions

labeled_sepsis_data_interp_0_window_3.csv 🚉 labeled_sepsis_data_interp_0_window_6.csv == labeled sepsis data interp 0 window 12.csv 45 labeled sepsis data interp 1 window 3.csv 2. labeled sepsis data interp 1 window 6.csv 🚢 labeled sepsis data interp 1 window 12.csv === labeled sepsis data interp 2 window 3.csv 🚢 labeled sepsis data interp 2 window 6.csv 44 labeled sepsis data interp 2 window 12.csv 25

Example of data files for 18 different extractions

Normalization

Scaled all parameters into a range between 0 and 1 using Min-Max

Look-back Windows

Windows of 5, 10, 15 and 20 hours for impact on prediction accuracy

hadm_id	charttime	Oxygen Saturation (SO2)	CO2 Partial Pressure (PaCO2 -	Diastolic Blood Pressur	Heart Rate	Respiratory Rate	Systolic Blood Pressur	Temperature	White Blood Cell Count	pH Value	sepsis_label
101019	2/24/198:00	0.92		0.32	0.41	0.36	0.55	0.45			0
101019	2/24/198:30	1.00		0.17	0.42	0.36	0.48	0.45			0
101019	2/24/199:00	1.00		0.19	0.38	0.30	0.34	0.45			0
101019	2/24/199:30	1.00		0.35	0.37	0.21	0.56	0.45			0
101019	2/24/199:40	0.92		0.68	0.38	0.23	0.44	0.45			0
101019	2/24/199:45	1.00		0.68	0.37	0.26	0.20	0.45			0
101019	2/24/199:50	1.00		0.14	0.37	0.53	0.29	0.45			1
101019	2/24/199:55	1.00		0.08	0.35	0.47	0.30	0.45			1

Example of data file with normalized parameters

Additional Model Preparation

Stratified K-Fold Cross Validation

Stratified K-Fold Cross Validation (4 Folds)

- Ensures the proportion of each class label is preserved in every fold
- Training data split into training and validation as such:
- 9/16 training; 3/16 validation; 1/4 test

Synthetic Minority Oversampling Technique (SMOTE)

- Creates more balanced data based on existing data to boost underrepresented classes (i.e., sepsis onset vs no sepsis onset)
- Only applied to training data

Example of Patient Parameter Trends

Patient Parameters Against 3h Prediction Time and and Look Back Windows

- Lookback is the sequence used to predict sepsis onset
- Prediction time represents duration between sepsis onset and the last value of lookback
- 5h-SIRS-Interval displays that each parameter sustains SIRS levels for at least 5 hours from sepsis onset

Preprocessing Effects on Parameter

Model Methodology

RNN Model predict sepsis on onset using time-series ICU data

Input features

hourly vitals, lab values, SIRS parameters

Look back windows - (5/10/15/20) hours preceding prediction

Preprocessing

• missing values addressed with linear interpolation

Features normalized

min-max scaling

SMOTE

applied to handle class imbalance and improve sensitivity

Training process

- RNN model trained with 4 fold cross validation
- Optimized using binary cross entropy loss

Model Comparison & Results

AUROC for 5/10/15/20h look-back windows and 3/6/12h prediction time and 0 accepted interpolations

Conclusion & Learnings

Based on our model performance, we reconfirmed that RNNs are capable of effectively predict sepsis onset

Implications to Consider:

- This RNN is designed specifically for ICU Admissions
- Accuracy detection is affected by missing data imputation via interpolation
- May not perform well in cases that are diagnosed with sepsis but do not exhibit the right criteria for sepsis
 onset

Recommendation:

- Test performance against non-ICU admissions
- Fine tune RNN for specific environment use-cases

Overall Learnings:

- Complex preprocessing requires meticulous attention to detail
- Value of project deliverable timelines

Thank You!

