Pontificia Universidad Católica Madre y Maestra (PUCMM)

Paralelización de Algoritmos y Análisis de Rendimiento

Integrantes:

José Jáquez

Vianny Cruz

Asignatura:

Programación Paralela y Concurrente

Profesor:

Prof. Freddy Peña

Santiago de los caballeros

16 de junio de 2024

Práctica #2

Actividades

Parte 1: Ley de Amdahl

Sea un programa con un tiempo de ejecución secuencial de 120 unidades de tiempo, y se sabe que el 85% de su código es paralelizable.

- 1. Calcula el tiempo de ejecución paralelo **Tp(n)**, el speedup **S(n)** y la eficiencia **E(n)** cuando se ejecuta n=1,3,6,9,12 procesadores.
- 2. Completa la siguiente tabla:

Procesadores n	Tp(n)	S(n)	E(n)
1	120	1	1
2	69	1.739	0.870
4	43.5	2.759	0.690
8	30.75	3.902	0.488
16	24.38	4.922	0.308

Parte 2: Programación

Implementación de Algoritmos Paralelos:

Usando Java 21 o superior realiza las siguientes tareas.

Algoritmo a paralelizar: Suma de un arreglo de 1,000,000 números enteros random comprendido entre 1 y 10,000.

- 1. Genera un archivo con 1,000,000 de registros comprendido entre 1 y 10,000, el cual deberá usar como base para los demás cálculos.
- 2. Escribe un programa secuencial que sume los elementos de un arreglo de un millón de enteros.
- 3. Modifica tu programa para que use múltiples hilos o procesos para realizar la suma en paralelo. Divide el arreglo en partes iguales para cada hilo/proceso.
- 4. Mide y compara el tiempo de ejecución del programa secuencial y del programa paralelo con 2, 4 y 8 hilos/procesos.
- 5. Completa la siguiente tabla con los tiempos medidos:

Número de Hilos/Procesos	Tiempo de Ejecución Secuencial (s)	Tiempo de Ejecución Paralelo (s)	Speedup	Eficiencia
1 (Secuencial)	0.2200433	0.2003148	1.1	1.1
2	0.2447075	0.1933828	1.27	0.64
4	0.2560918	0.2035741	1.25	0.31
8	0.2294286	0.3272187	0.70	0.09
16	0.245552	0.452763	0.54	0.03
32	0.2392466	0.6790839	0.35	0.01