UNIVERSITY OF NEW ENGLAND

UNIT NAME: PMTH 213

PAPER TITLE: Linear Algebra

PAPER NUMBER: First and Only

DATE: Monday 17 November 2008 TIME: 9:30 AM TO 12:30 PM

TIME ALLOWED: Three (3) hours plus fifteen minutes reading time

NUMBER OF PAGES IN PAPER: THREE (3)

NUMBER OF QUESTIONS ON PAPER: FIVE (5)

NUMBER OF QUESTIONS TO BE ANSWERED: FIVE (5)

06 LEAF A4 BOOKS0ROUGH WORK BOOK112 LEAF A4 BOOKS0GRAPH PAPER SHEETS

OTHER AIDS REQUIRED: NIL

STATIONERY PER CANDIDATE:

POCKET CALCULATORS PERMITTED: YES (SILENT TYPE)

TEXTBOOKS OR NOTES PERMITTED: FIVE (5) A4 sheets of handwritten double sided notes (10 pages). No photocopies. No printed pages.

INSTRUCTIONS FOR CANDIDATES:

- Candidates may make notes on this examination question paper during the fifteen minutes reading time
- Answer all FIVE (5) questions
- Questions are not of equal value
- Candidates may retain this examination question paper

THE UNIVERSITY CONSIDERS IMPROPER CONDUCT IN EXAMINATIONS TO BE A SERIOUS OFFENCE. PENALTIES FOR CHEATING ARE EXCLUSION FROM THE UNIVERSITY FOR ONE YEAR AND/OR CANCELLATION OF ANY CREDIT RECEIVED IN THE EXAMINATION FOR THAT UNIT.

Question 1 [20 marks]

(a) Consider the linear transformation

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, \ (x, y, z) \longmapsto (x + y + z, x - z).$$

Find ker(T) and im(T).

(b) Find all linear transformations

$$S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, \ (x, y, z) \longmapsto (u, v)$$

which map the plane determined by the equation z = x in \mathbb{R}^3 onto the line v = u in \mathbb{R}^2 .

Question 2 [20 marks]

(a) A subset U of a vector space V over the field \mathbb{F} is a vector subspace of V if and only if

$$\lambda u + \mu v \in U \ \forall u, v \in U, \ \forall \lambda, \mu \in \mathbb{F}.$$

Let

$$U = \{A \mid A \text{ is a real } n \times n \text{ matrix satisfying } A^t = A\},$$

where A^t denotes the transpose of A. Use the above statement/definition to show that U is a vector subspace of the vector space of all real $n \times n$ matrices over the field \mathbb{R} .

- (b) Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis for the vector space V over the field of real numbers, and $T: V \to V$ a linear transformation.
 - (i) Show that if

$$f_1 = e_1, f_2 = e_1 + e_2, f_3 = e_1 + e_2 + e_3,$$

then $\{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ is also a basis for V.

(ii) Find the matrix, B, of T with respect to $\{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$, given that its matrix with respect to $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is the identity matrix.

Question 3 [20 marks]

Given the symmetric matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$, find

- (a) its eigenvalues,
- (b) bases for its eigenspaces,
- (c) an orthogonal matrix, P, which diagonalises A,
- (d) $P^{-1}AP$,
- (e) A^n for an arbitrary positive integer n.

Question 4 [20 marks]

(a) Let C([0,1]) be the real vector space of all continuous functions from [0,1] to \mathbb{R} . Show that

$$\langle p, q \rangle := \int_0^1 2p(t)q(t)dt$$

defines an inner product in C([0,1]).

(b) Let $A = [a_{ij}]_{n \times n}$ be a symmetric real $n \times n$ matrix. The real quadratic form

$$Q(x_1,...,x_n) := \sum_{i,j=1}^n a_{ij} x_i x_j = (x_1,...,x_n) A(x_1,...,x_n)^t$$

is positive definite if and only if all the eigenvalues of A are positive.

Use this statement or otherwise to determine whether

$$Q_0(x,y) = x^2 + 2y^2 + xy$$

is positive definite.

Question 5 [20 marks]

- (a) Find all 2×2 real matrices such that $A^2 = I$, where I stands for the 2×2 identity matrix.
- (b) Prove that a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism if and only if $\{T(\mathbf{e}_i) \mid j=1,...,n\}$ is a basis for \mathbb{R}^n whenever $\{\mathbf{e}_j \mid j=1,...,n\}$ is a basis for \mathbb{R}^n .