OR BEUMPH	ITER, SIKSHA 'O' ANUSANDHAN (Deemed to be University)				ASSIGN- MENT		
Branch	CSE & CSIT		Programme		B.Tech		
Course Name	Intermediate Discrete Mathematics		Semester			٧	
Course Code	CSE 2733		Year/Period		202	2023/Odd	
	Submit All Assignments Maximum Mar		ım Marks	s 10			
Learning	L1: Remembering	L3: Applying		L5: Eval	Evaluating		
Level (LL)	L2: Understanding	L4: Analysing		L6: Crea	eating		
No.	As	ssignment-2			COs	LL	
Q.1	 a) Find the generating function for the number of ways to select 10 candy bars from large supplies of six different kinds. b) Find the generating function for the number of ways to select, with repetitions allowed, r objects from a collection of n distinct objects. 				CO3	L2	
Q.2	For $n \in \mathbb{Z}^+$, find in $(1 + x + x^2)(1 + x)^n$ the coefficient of (a) x^7 ; (b) x^8 ; and (c) x^r for $0 \le r \le n + 2$, $r \in \mathbb{Z}$.				CO3	L3	
Q.3	Find the coefficient of x^{15} in each of the following. a) $x^3(1-2x)^{10}$ b) $(x^3-5x)/(1-x)^3$ c) $(1+x)^4/(1-x)^4$				соз	L2	
Q.4	In how many ways can two dozen identical robots be assigned to four assembly lines with (a) at least three robots assigned to each line? (b) at least three, but no more than nine, robots assigned to each line?			-	соз	L2	
Q.5	Show that $(1-4x)^{-1/2}$ generates the sequence $\binom{2n}{n}$, $n \in \mathbb{N}$.				CO3	L2	
Q.6	Paul invested the stock profits he received 15 years ago in an account that paid 8% interest compounded quarterly. If his account now has \$7218.27 in it, what was his initial investment?			i	CO3	L2	

Q.7	Solve the recurrence relation $a_{n+2} = a_{n+1}a_n, n \ge 0, a_0 = 1,$ $a_1 = 2.$	CO3	L2
Q.8	Solve the recurrence relation: $2a_{n+2} = 5a_n - 3a_{n+1}, \qquad n \ge 0, \ a_0 = 1, \ a_1 = 0$	CO3	L2
Q.9	Solve the recurrence relation: $a_{n+3}+2a_{n+2}-a_{n+1}-2a_n=0,$ $n\geq 0,\ a_0=1,\ a_1=0,\ a_2=-1$	CO3	L2
Q.10	Solve the recurrence relation: $a_{n+2}-4a_{n+1}+8a_n=0, \qquad n\geq 0, \ a_0=0, \ a_1=2$	CO3	L2

Note:

- 1. Marks distribution will be as per course instructor.
- 2. Assignments need to be submitted before due date.
- 3. The Assignments/Quiz in total carry weightage of 20 marks out of 100

Course Outcomes		Program Outcomes	
CO1	Able to understand the concept of languages and finite state machines as	PO1, PO2,	
	well as its various applications.		
CO2	Able to apply relations and its properties to analyze equivalence relations	PO1, PO2	
	and partial orderings.		
CO3	Able to understand the concepts of generating functions and recurrence	PO1, PO2	
	relations as well as apply generating functions to solve recurrence		
	relations.		
CO4	Able to understand and analyze the concepts of rings and modular	PO2,	
	arithmetic.		
CO5	Able to understand and apply the concepts of Boolean algebra and	PO2	
	switching functions.		
CO6	Able to understand and analyze the concepts of groups, coding theory and	PO2	
	finite fields.		