SISTEMA TESTE IEEE DE 63 BARRAS

Esse sistema foi construído a partir da união do sistema de 30 barras IEEE com o sistema radial de 32 barras proposto por Baran e Wu (1989). Essa parte de distribuição foi adicionada na barra 8 do sistema de 30 barras, assim como ilustra a Figura 1. Um transformador de 2 enrolamentos abaixa a tensão de 132 kV para 13,8 kV. Ao todo existem 6 transformadores e 66 linhas nessa rede. Os dados para análise de curto-circuito foram adaptados de (CHRISTIE, 1993) e (BARAN; WU, 1989), como mostra o Adendo A.

Figura 1: Diagrama unifilar para a rede teste de 63 barras.

Fonte: Do autor.

Adendo A - Dados da Rede Teste IEEE de 63 barras

Os dados para estudo de curto-circuito são mostrados para o sistema teste IEEE de 63 barras. Os dados são divididos em dados das barras, das linhas, dos transformadores e dos geradores. Todos os valores por unidade (p.u.) estão referenciados nos valores base de 100 MVA e na tensão nominal em cada ponto do sistema.

A-1 Dados de Barra

Tabela 1: Dados das barras da rede teste IEEE de 63 barras.

#	Tipo	Bshunt (pu)	Vbase (kV)		
1	2	0,000	132,0		
2	1	0,000	132,0		
3	0	0,000	132,0		
4	0	0,000	132,0		
5	1	0,000	132,0		
6	0	0,000	132,0		
7	0	0,000	132,0		
8	1	0,000	132,0		
9	0	0,000	1,0		
10	0	0,190	33,0		
11	1	0,000	11,0		
12	0	0,000	33,0		
13	1	0,000	11,0		
14	0	0,000	33,0		
15	0	0,000	33,0		
16	0	0,000	33,0		
17	0	0,000	33,0		
18	0	0,000	33,0		
19	0	0,000	33,0		
20	0	0,000	33,0		
21	0	0,000	33,0		
22	0	0,000	33,0		
23	0	0,000	33,0		
		continua			

	continuação							
#	Tipo	Bshunt (pu)	Vbase (kV)					
24	0	0,043	33,0					
25	0	0,000	33,0					
26	0	0,000	33,0					
27	0	0,000	33,0					
28	0	0,000	132,0					
29	0	0,000	33,0					
30	0	0,000	33,0					
31	0	0,000	13,8					
32	0	0,000	13,8					
33	0	0,000	13,8					
34	0	0,000	13,8					
35	0	0,000	13,8					
36	0	0,000	13,8					
37	0	0,000	13,8					
38	0	0,000	13,8					
39	0	0,000	13,8					
40	0	0,000	13,8					
41	0	0,000	13,8					
42	0	0,000	13,8					
43	0	0,000	13,8					
44	0	0,000	13,8					
45	0	0,000	13,8					
46	0	0,000	13,8					
47	0	0,000	13,8					
48	0	0,000	13,8					
49	0	0,000	13,8					
50	0	0,000	13,8					
51	0	0,000	13,8					
52	0	0,000	13,8					
53	0	0,000	13,8					
54	0	0,000	13,8					
55	0	0,000	13,8					
56	0	0,000	13,8					
57	0	0,000	13,8					
58	0	0,000	13,8					
59	0	0,000	13,8					
60	0	0,000	13,8					
61	0	0,000	13,8					
62	0	0,000	13,8					
63	0	0,000	13,8					

Fonte: Do autor.

Descrição dos dados:

- #: número da barra;
- Tipo: tipo da barra, onde:
 - o 2: barra de oscilação ($V\theta$);
 - o 1: barra de tensão controlada (PV);
 - o 0: barra de carga (PQ).
- Bshunt: valor da susceptância shunt total em derivação na barra em p.u.;
- Vbase: valor da tensão base na barra em kV.

Observação:

• A barra 9 é uma barra fictícia que representa o ponto do meio do transformador de 3 enrolamentos no modelo Y (KINDERMANN, 1997, p. 26).

A-2 Dados das Linhas

Tabela 2: Dados das linhas da rede teste IEEE de 63 barras.

ou) Bshl (pu) R0 (pu) X0 (pu)					
500 0,052800 0,067200 0,201250					
200 0,040800 0,158200 0,578200					
700 0,036800 0,199500 0,607950					
900 0,008400 0,046200 0,132650					
300 0,041800 0,165200 0,694050					
300 0,037400 0,203350 0,617050					
400 0,009000 0,041650 0,144900					
000 0,020400 0,161000 0,406000					
000 0,017000 0,093450 0,287000					
000 0,009000 0,042000 0,147000					
000 0,000000 0,000000 0,728000					
000 0,000000 0,000000 1,946000					
000 0,000000 0,000000 0,728000					
000 0,000000 0,000000 0,385000					
4 12 0,000000 0,256000 0,000000 0,000000 0,896000					

			contin	uação						
De										
12	13	0,000000	0,140000	0,000000	0,000000	0,490000				
12	14	0,123100	0,255900	0,000000	0,430850	0,895650				
12	15	0,066200	0,130400	0,000000	0,231700	0,456400				
12	16	0,094500	0,198700	0,000000	0,330750	0,695450				
14	15	0,221000	0,199700	0,000000	0,773500	0,698950				
16	17	0,052400	0,192300	0,000000	0,183400	0,673050				
15	18	0,107300	0,218500	0,000000	0,375550	0,764750				
18	19	0,063900	0,129200	0,000000	0,223650	0,452200				
19	20	0,034000	0,068000	0,000000	0,119000	0,238000				
10	20	0,093600	0,209000	0,000000	0,327600	0,731500				
10	17	0,032400	0,084500	0,000000	0,113400	0,295750				
10	21	0,034800	0,074900	0,000000	0,121800	0,262150				
10	22	0,072700	0,149900	0,000000	0,254450	0,524650				
21	22	0,011600	0,023600	0,000000	0,040600	0,082600				
15	23	0,100000	0,202000	0,000000	0,350000	0,707000				
22	24	0,115000	0,179000	0,000000	0,402500	0,626500				
23	24	0,132000	0,270000	0,000000	0,462000	0,945000				
24	25	0,188500	0,329200	0,000000	0,659750	1,152200				
25	26	0,254400	0,380000	0,000000 0,890		1,330000				
25	27	0,109300	0,208700	0,000000	0,382550	0,730450				
28	27	0,000000	0,396000	0,000000	0,000000	1,386000				
27	29	0,219800	0,415300	0,000000	0,769300	1,453550				
27	30	0,320200	0,602700	0,000000	1,120700	2,109450				
29	30	0,239900	0,453300	0,000000	0,839650	1,586550				
8	28	0,063600	0,200000	0,042800	0,222600	0,700000				
6	28	0,016900	0,059900	0,013000	0,059150	0,209650				
8	31	0,000000	0,090000	0,000000	0,000000	0,315000				
31	32	0,048414	0,024680	0,000000	0,169449	0,086380				
32	33	0,258900	0,131900	0,000000	0,906150	0,461650				
33	34	0,192200	0,097900	0,000000	0,672700	0,342650				
34	35	0,200100	0,101900	0,000000	0,700350	0,356650				
35	36	0,430100	0,371200	0,000000	1,505350	1,299200				
36	37	0,098300	0,324900	0,000000	0,344050	1,137150				
37	38	0,373600	0,123500	0,000000	1,307600	0,432250				
38	39	0,540900	0,388600	0,000000	1,893150	1,360100				
39	40	0,548200	0,388600	0,000000	1,918700	1,360100				
40	41	0,103200	0,034100	0,000000	0,361200	0,119350				
41	42	0,196600	0,065000	0,000000	0,688100	0,227500				
42	43	0,770800	0,606500	0,000000	2,697800	2,122750				
43	44	0,284400	0,374300	0,000000	0,995400	1,310050				

continua

continuação									
De	Para	R1 (pu)	X1 (pu)	Bshl (pu)	R0 (pu)	X0 (pu)			
44	45	0,310300	0,276200	0,000000	1,086050	0,966700			
45	46	0,391900	0,286400	0,000000	1,371650	1,002400			
46	47	0,676900	0,903700	0,000000	2,369150	3,162950			
47	48	0,384400	0,301400	0,000000	1,345400	1,054900			
32	49	0,086100	0,082200	0,000000	0,301350	0,287700			
49	50	0,789900	0,711700	0,000000	2,764650	2,490950			
50	51	0,215000	0,251200	0,000000	0,752500	0,879200			
51	52	0,372200	0,492200	0,000000	1,302700	1,722700			
33	53	0,236900	0,161900	0,000000	0,829150	0,566650			
53	54	0,471500	0,372300	0,000000	1,650250	1,303050			
54	55	0,470500	0,368100	0,000000	1,646750	1,288350			
36	56	0,106600	0,054300	0,000000	0,373100	0,190050			
56	57	0,149200	0,076000	0,000000	0,522200	0,266000			
57	58	0,556100	0,490300	0,000000	1,946350	1,716050			
58	59	0,422300	0,367900	0,000000	1,478050	1,287650			
59	60	0,266500	0,135700	0,000000	0,932750	0,474950			
60	61	0,511700	0,505700	0,000000	1,790950	1,769950			
61	62	0,163000	0,190000	0,000000	0,570500	0,665000			
62	63	0,179100	0,278400	0,000000	0,626850	0,974400			

Fonte: Do autor.

Descrição dos dados:

- De: número da barra onde se inicia o trecho;
- Para: número da barra onde termina o trecho;
- R1: valor da resistência de sequência positiva da linha em p.u.;
- X1: valor da reatância indutiva de sequência positiva da linha em p.u.;
- Bshl: valor da susceptância shunt da linha em p.u.;
- R0: valor da resistência de sequência zero da linha em p.u.;
- X0: valor da reatância indutiva de sequência zero da linha em p.u..

Observação:

• As linhas foram consideradas todas do tipo aérea, portanto $Z0 = Z1 \times 3,5$ (STEVENSON, 1986, p. 315).

A-3 Dados dos Geradores

Tabela 3: Dados dos geradores da rede teste IEEE de 63 barras.

#	Conexão	R1 (pu)	X1 (pu)	R2 (pu)	X2 (pu)	R0 (pu)	X0 (pu)	Xn (pu)
1	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
2	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
5	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
8	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
11	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
13	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000

Fonte: Do autor.

Descrição dos dados:

- #: número da barra onde o gerador está conectado;
- Conexão: tipo do fechamento da conexão das 3 fases, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- R1: valor da resistência equivalente de sequência positiva do gerador em p.u.;
- X1: valor da reatância equivalente de sequência positiva em p.u. (reatância subtransitória);
- R2: valor da resistência equivalente de sequência negativa do gerador em p.u.;
- X2: valor da reatância equivalente de sequência negativa do gerador em p.u.;
- R0: valor da resistência equivalente de sequência zero do gerador em p.u.;
- X0: valor da reatância equivalente de sequência zero do gerador em p.u.;
- Xn: valor da reatância entre o neutro do gerador e a terra em p.u..

Observação:

Os dados dos geradores foram baseados em (STEVENSON, 1986, p. 450).

A-4 Dados dos Transformadores

Tabela 4: Dados dos transformadores da rede teste IEEE de 63 barras.

De	Para	Conexão De	Conexão Para	Rt (pu)	Xt (pu)	Rm (pu)	Xm (pu)	Rn (pu)	Xn (pu)
6	9	3	2	0,0000	0,2080	999999,0000	999999,0000	0,0000	0,0000
6	10	3	2	0,0000	0,5560	999999,0000	999999,0000	0,0000	0,0000
9	11	3	2	0,0000	0,2080	999999,0000	999999,0000	0,0000	0,0000
9	10	3	2	0,0000	0,1100	999999,0000	999999,0000	0,0000	0,0000
4	12	3	2	0,0000	0,2560	999999,0000	999999,0000	0,0000	0,0000
12	13	3	2	0,0000	0,1400	999999,0000	999999,0000	0,0000	0,0000
28	27	3	2	0,0000	0,3960	999999,0000	999999,0000	0,0000	0,0000
8	31	3	2	0,0000	0,0900	999999,0000	999999,0000	0,0000	0,0000

Fonte: Do autor.

Descrição dos dados:

- De: número da barra onde está conectado um lado do transformador;
- Para: número da barra onde está conectado a outra terminação do transformador;
- Conexão De: tipo do fechamento entre as 3 fases no lado De, onde:
 - 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - 3: conexão do tipo triângulo.
- Conexão Para: tipo do fechamento entre as 3 fases no lado Para, onde:
 - o 1: conexão do tipo estrela;
 - 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- Rt: valor da resistência equivalente do transformador em p.u.;
- Xt: valor da reatância equivalente do transformador em p.u.;
- Rm: valor da resistência entre o neutro do transformador e a terra no lado De em p.u.;
- Xm: valor da reatância entre o neutro do transformador e a terra no lado De em p.u.;

- Rn: valor da resistência entre o neutro do transformador e a terra no lado Para em p.u.;
- Xn: valor da reatância entre o neutro do transformador e a terra no lado Para em p.u..

Observação:

• O valor 999999 representa um valor muito alto, um circuito aberto.

REFERÊNCIAS¹

BARAN, M. E.; WU, F. F. Network reconfiguration in distribution systems for loss reduction and load balancing. **IEEE Transactions on Power Delivery**, v. 4, n. 2, p. 1401-1407, 1989.

CHRISTIE, R. **Power Systems Test Case Archive**. Aug. 1993. Disponível em: http://www.ee.washington.edu/research/pstca/>. Acesso em: 20 janeiro 2017.

KINDERMANN, G. Curto-Circuito. 2. ed. Porto Alegre, RS: Sagra Luzzatto, 1997. 214 p.

STEVENSON, W. D. **Elementos de análise de sistemas de potência.** 2. ed. São Paulo, SP: MCGraw-Hill, 1986. 458 p.

_

¹ Baseadas na norma NBR 6023, de 2002, da Associação Brasileira de Normas Técnicas (ABNT).