4-valued coalgebraic modal logic

Tomáš Jakl

28 January 2015

4-valued coalgebraic modal logic

- 1. true
- 2. false
- 3. **4**.

- \perp = Not enough information
 - At the beginning of a computation.
 - Program hangs (example: trying to evaluate halting problem).

- 1. true
- 2. false
- 1aise
 ⊥
- **J**. ⊥
- 4.

- 1. true
- 2. false
- 3. ⊥
- 4. ⊤

- T = Inconsisten information
 - Obtained information from database don't make any sense.
 - Different threads returning contradicting results.

- 1. true
- 2. false
- 3. ⊥
- 4. ⊤

true \square false $= \top$ true \square false $= \bot$

4-valued coalgebraic modal logic 277 2

Modal logics

$$s \models \Box \varphi$$

Starting in the state s, the proposition φ is going to hold after one step of a computation.

What are coalgebras?

Simple answer:

They are just algebras in the opposite category.

What are coalgebras?

Simple answer:

They are just algebras in the opposite category.

More useful answer:

Any state based system is a coalgebra. For example

- streams of bytes, single thread computation,
- concurrent computation,
- complex inteligent networks (brain, internet, finantial systems),
- ▶ ...

Coalgebras

$$\sigma \colon S \to T(S)$$

▶ Printing coalgebra (T(S) = A):

$$\sigma \colon \mathcal{S} \longrightarrow \mathcal{A} \ \sigma \colon \mathcal{s} \in \mathcal{S} \longmapsto \sigma(\mathcal{s}) \in \mathcal{A}$$

Coalgebras

$$\sigma \colon S \to T(S)$$

▶ Printing coalgebra (T(S) = A):

$$\sigma \colon S \longrightarrow A$$
$$\sigma \colon s \in S \longmapsto \sigma(s) \in A$$

▶ Changing-states coalgebra (T(S) = S):

$$\sigma\colon S\longrightarrow S$$

► Choice:

$$\sigma \colon S \to T_1(S) \cup T_2(S)$$

► Choice:

$$\sigma\colon S\to T_1(S)\cup T_2(S)$$

Parallel composition:

$$\sigma\colon S\to T_1(S)\times T_2(S)$$

Choice:

$$\sigma \colon S \to T_1(S) \cup T_2(S)$$

Parallel composition:

$$\sigma \colon S \to T_1(S) \times T_2(S)$$

► Reading input:

$$\sigma\colon S\to T(S)^B$$

where

$$T(S)^B = \{f \mid f : B \to T(S)\}$$

► Choice:

$$\sigma \colon S \to T_1(S) \cup T_2(S)$$

► Parallel composition:

$$\sigma\colon S\to T_1(S)\times T_2(S)$$

Reading input:

$$\sigma\colon S\to T(S)^B$$

Nondeterminism:

$$\sigma \colon S \to \mathcal{P}(T(S)) = \{X \mid X \subseteq T(S)\}$$

An automaton is: $(S, \delta: S \times \Sigma \to S, F \subseteq S)$.

 $\widetilde{\delta}$: $s \in S \mapsto \lambda x$. $\delta(s, x)$

An automaton is: (S, $\delta \colon S \times \Sigma \to S$, $F \subseteq S$).

$$\bullet$$
 $\widetilde{\delta}: S \to S^{\Sigma}$

$$\rightarrow$$
 3

An automaton is: $(S, \delta: S \times \Sigma \rightarrow S, F \subseteq S)$.

In automatom is. (3,
$$\delta$$
. 3 $imes$ 2 $ightarrow$ 3, $F \subseteq S$)

$$f: S \to \{0,1\}$$

$$t: S \to \{0,1\}$$

An automaton is: $(S, \delta: S \times \Sigma \to S, F \subseteq S)$.

- $\bullet \ \widetilde{\delta} \colon S \to S^{\Sigma}$
- $f: S \to \{0, 1\}$

An automaton is: $(S, \delta: S \times \Sigma \to S, F \subseteq S)$.

- $\widetilde{\delta} \colon S \to S^{\Sigma}$
 - $f: S \rightarrow \{0, 1\}$

It is a coalgebra

$$\mathcal{S} o \{0,1\} imes \mathcal{S}^{oldsymbol{\Sigma}}.$$

An automaton is: $(S, \delta: S \times \Sigma \rightarrow S, F \subseteq S)$.

- \bullet $\widetilde{\delta}$: $S \to S^{\Sigma}$
- $f: S \to \{0, 1\}$

It is a coalgebra

$$S \to \{0,1\} \times S^{\Sigma}$$
.

Similarly, nondeterministic automata are coalgebras

$$S \to \{0,1\} \times (\mathcal{P}(S))^{\Sigma}$$
.

4-valued coalgebraic modal logic

= a suitable logic for systems!

Thank you V