

DESCRIPTION:

With high ability to withstand the shock loading of large current, BT155K-1200T series of silicon controlled rectifiers provide high dv/dt rate with strong resistance to electromagnetic interference. They are especially recommended for use on solid state relay, motorcycle, power charger, T-tools etc.

MAIN FEATURES

Symbol	Value	Unit
I _{T(RMS)}	75	Α
V _{DRM} /V _{RRM}	1200	V
I _{GT}	≤70	mA

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40-150	$^{\circ}$ C
Operating junction temperature range		Tj	-40-125	$^{\circ}$
Repetitive peak off-state voltage(T _j =25℃)		V _{DRM}	1200	V
Repetitive peak reverse voltage(T _j =25℃)		V _{RRM}	1200	V
Non repetitive surge peak Off-state voltage		V _{DSM}	V _{DRM} +100	V
Non repetitive peak reverse voltage		V _{RSM}	V _{RRM} +100	V
RMS on-state current	TO-247S/ TO-247/ ITO-247(Ins) (Tc=70°C) TO-3P(Ins) (Tc=60°C)	I _{T(RMS)}	75	А

Non repetitive surge peak on-state current (tp=10ms)	I _{TSM}	800	А
I ² t value for fusing (tp=10ms)	l²t	3200	A ² s
Critical rate of rise of on-state current $(I_G=2\times I_{GT})$	dl/dt	150	A/µs
Peak gate current	I _{GM}	4	Α
Average gate power dissipation	P _{G(AV)}	1	W
Peak gate power	P _{GM}	5	W

ELECTRICAL CHARACTERISTICS (T_j=25°C unless otherwise specified)

Symbol	Toot Condition	Value			I I to i 4
	Test Condition	MIN.	TYP.	MAX.	Unit
I _{GT}	V_D =12V R _L =33 Ω	-	-	70	mA
V _{GT}		-	-	1.3	V
V _{GD}	$V_D=V_{DRM}T_j=125^{\circ}C$ RL=3.3K Ω	0.2	-	-	V
IL	I _G =1.2I _{GT}	-	-	150	mA
lн	I _T =1Α	-	-	120	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃	700	-	-	V/µs

STATIC CHARACTERISTICS

Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{TM} =100A tp=380μs	Tj=25℃	1.5	V
IDRM	VD=VDRM VR=VRRM	Tj=25℃	50	μA
I _{RRM}		Tj=125℃	10	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th(j-c)}	junction to case(AC)	TO-247J/ ITO-247(Ins)	0.53	
		TO-3P(Ins)	0.60	°C/W
		TO-247S	0.52	

FIG.1: Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<10ms, and corresponging value of I²t (dI/dt < 150A/µs)

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

Shenzhen VSEEI Semiconductor Co., Ltd