COMP_SCI 214: Data Structures and Algorithms

Complexity and Big-O

PROF. SRUTI BHAGAVATULA

Announcements

- ► Homework 1 feedback is out
 - ▶ Got something wrong? Don't panic; resubmit!
 - ▶ Report tells you what went wrong
 - Larger mistakes? You still have things to learn!
 - ▶ And you should get credit for learning them!
- Homework 1 self-eval is out (due Thursday)
 - ► Goal: evaluate code beyond functional correctness
 - ▶ HW handout told you what to pay attention to
 - Read directions in eval carefully
 - Only based on your first submission (download original submission if needed)

Homework 2 advice

- Use SLL, stack array, ring buffer, and dynamic array for data representation inspiration
- Draw data representation and operations out before programming
 - ▶ When debugging, draw out what your program is doing and ensure invariants are satisfied!
- Watch "Supplementary videos", especially
 - ► "Common errors in DSSL2": aliasing (#0#) and other things
 - "Classes, objects, and interfaces in DSSL2"

Comparing data representations and programs

Array vs. Linked list

Getting value at position 5 in array.([i] operation)

- How long does it take to run?
 - ▶ 0.00081 seconds

Getting value at position 3 in linked list (get_ith() function)

- How long does it take to run?
 - ▶ 0.0034 seconds

Are these the answers we want?

What if I just ran the array operation on a faster computer?

Array vs. Linked list

► Get value at position pos in array

- Steps:
 - 1. array[position]

▶ Get value at position pos in linked list

- Steps:
 - 1. count = 0
 - 2. curr = head
 - 3. while curr is not None:
 - a. if count == position:
 - i. return curr.data
 - b. count = count + 1
 - c. curr = curr.next

Array vs. Linked list

Get value at position pos in array

► Get value at position pos in linked list

- Steps:
 - 1. array[pos Which s

Which seems like it would take longer?

not None:

- a. if count == position:
 - i. return curr.data
- b. count = count + 1
- c. curr = curr.next

What do we want in our answer to "how long"?

► General:

- Applicable to a large class of programs and algorithms
- Independent of particular hardware
- Applicable to many types of resources (time, space, etc.)

▶ Useful:

- Don't need to predict actual time
- ► Helps us select between various algorithms
- ► How long? ~ # steps

Getting value in array: number of steps

- ► Steps:
 - 1. array[position] = new val
- ► Total #steps:
 - Recall: array indexing is the same speed regardless of index

- Concrete examples:
 - \blacktriangleright [idx] on array with n = 5
 - ▶ # Steps: 1
 - \triangleright [idx] on array with n = 100
 - ▶ # Steps: 1

Getting value at idx in LL of size n: Number of steps

Steps

```
count = 0
curr = head
while curr is not None:
    if count == position:
        return curr.data
        count = count + 1
        curr = curr.next
```

Total #steps (assuming idx is at the end): 2+4n+

Getting value in linked list: number of steps

► Steps:

```
count = 0
curr = head
while curr is not None:
   if count == position:
      return curr.data
   count = count + 1
   curr = curr.next
```

Total #steps (assuming idx is at the end):

- Concrete examples:
 - get_ith on LL with n = 5
 - ► Steps: 23
 - ▶ get_ith on LL with n = 100
 - ▶ Steps: 403

What do steps represent?

- ▶ Time an operation takes
- Cost of an operation
- ▶ Whether and how time is related to DS size
 - \blacktriangleright E.g., If steps change with n or not

Complexity

[] and get_ith()

- Say f(n) = 1 (# steps for [] operation)
- ► Say g(n) = 4n + 3. (# steps for get_ith() function)
- ▶ Which operation would you say is less expensive?
 - ▶ f(n) is less expensive
- Formally: $f(n) \le g(n)$ for all n

More steps function comparisons

$$f(n) = 3n + 3$$

$$ightharpoonup g(n) = 3n^2 + 3$$

- ▶ Which is less expensive?
 - ▶ $f(n) \le g(n)$ for all n

More steps function comparisons

$$f(n) = 3n + 3$$

$$g(n) = n^2$$

▶ Which is less expensive?

▶
$$f(n) \le g(n)$$
 for all $n \ge n_0$

3x4 f(m) is less expensive

Asymptotic cost

- ► Comparison only matters when n gets large enough
 - ► Asymptotic cost is cost as n approaches ∞

Cost doesn't mean much for a small values of n since programs will

be "fast" regardless

Comparing more functions

$$f(n) = 3n + 3$$

$$ightharpoonup g(n) = 4n + 4$$

- ▶ Which is less expensive?
 - Seems like f(n) is less expensive by our definition
 - ▶ But both are linear functions
 - ► So is the difference meaningful?

Final definition for comparing costs

- Costs can be "equal" too
 - ▶ E.g., both linear, both quadratic
- $ightharpoonup f(n) \le c * g(n) \text{ for all } n \ge n_0$
 - Implies f(n) is as expensive or less expensive than g(n)
- $ightharpoonup f(n) \in O(g(n))$

Big-O

- $ightharpoonup f(n) \le c * g(n) \text{ for all } n \ge n_0$
- $ightharpoonup f(n) \in O(g(n))$
- \triangleright O(g(n)) = {f(n): where above definition is satisfied}
- ▶ Big-O is a set of functions that contains, in the worst case:
 - Less expensive functions
 - Equally expensive functions (according to inequality above, can differ by constant c)
- "Given a function f, O(f) is the set of functions that 'grow no faster than' f"

Big-O bound

- ▶ We often call a Big-O bound:
 - ► Complexity of a program ("Asymptotic complexity")
 - ▶ Run time of a program
 - Cost of a program

Another Big-O example

► How so?

▶ Let's visualize the definition

3nd $\theta(3n \pm 3) = 0(n)$ 3x4 * Tightest bound

5x4 * C**

(5x4)

$$N_{0}=\frac{7}{4}$$

Another Big-O example

- $ightharpoonup 3n + 3 \in O(n^2)$
 - ► How so?
 - From previous slide, $3n + 3 \in O(n)$

$$ightharpoonup 0$$
(n) $\subseteq 0$ (n²)

- \triangleright So 3n + 3 ∈ O(n²)
- ▶ But O(n) is the "tightest" bound

Always use the tightest Big-O bound

- ▶ Say a function belongs to O(n) and $O(n^2)$
 - \blacktriangleright We say it belongs to O(n) which is the smaller set of functions (tight)
 - ▶ 0(n²) would not be tight
- ▶ Say a function belongs to O(n) and O(5n + 8)
 - ▶ We say it belongs to O(n) which is the simpler formula (no coefficients and extra constants)
- ► Tight bound ignores most of the singular or standalone "unimportant" statements; focuses on the type of function growth

How to get the tightest bound

$$f(x) = 3n^{2} + 3n + 2$$

$$f(x) \in 0$$

- Ignore constant co-efficients and constant terms
- 2. Keep dominant term (with highest power)
- ► Try: f(x) = 6► $f(x) \in 0$

To summarize

- ▶ A program's cost is roughly described by the number of steps (not time units)
 - ► Cost can be independent of DS size
 - Cost can change based on DS size
 - ▶ Number of steps is reduced to count the most prominent and costly steps
- Cost is described in worst-case scenario using Big-O notation
- ▶ Informally, we say a program has complexity O(...) to say that the cost of the program scales at the rate of the function "..."
- ▶ Tight bound usually contains highest-order term and no constants (coefficients or terms)

Pause

- ► Any questions?
- ► Anything unclear?

Big-O exercises

1. An algorithm looks for duplicate names in an array with this approach: iterate through the array of names; for each name, iterate through all the other names in the array and see if there's a match. What is its tightest Big-O complexity?

```
for i1, name1 in names:

for i2, name2 in names:

if name1 == name2 and i1 != i2:

do something...
```

Big-O exercises

2. A function iterates through the elements of an array that are at even indices. What is its tightest Big-O complexity?

```
index = 0
while index < arr.len():
   do something...
   index = index + 2</pre>
```

Big-O exercises

3. Factorial of a number:

$$f(n) = n * (n-1) * (n-2) ... * 2 * 1$$

What is its tightest Big-O complexity?

Takeaways

- ► The "important steps" that form a tight Big-O bound usually represent:
 - ▶ The number of iterations (as a function of input size(s))
 - ► The number of recursive calls made before a base case is hit (as a function of input size(s))
 - Some combination of the above
- What about if a program contains two sequential loops, or recursive calls in which a loop is executed?
 - Count or do the math! Then reduce to tight bound

Common Big-O complexity classes

Complexity class	Common name for algorithms in class
O(1)	constant
O(log n)	logarithmic
O(n)	linear
O(n log n)	"n log n"
$O(n^2)$	quadratic
O(2 ⁿ)	exponential

$$O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O(n^2) \subseteq O(2^n)$$

A lot of algorithms will fall in one of these classes

Big-O equalities

- O(f(n) + c) = O(f(n))
 - ► Equivalently: $f(n) + c \in O(f(n))$
 - ► Adding constants doesn't matter
- O(c * f(n)) = O(f(n))
 - Multiplying by constants doesn't matter

Big-O equalities continued

- $O(\log_k f(n)) = O(\log_j f(n))$
 - Log bases don't matter
- $O(f(n) + g(n)) = O(f(n)) \text{ if } g \ll f$
 - ► Adding smaller things doesn't matter

Big-O beyond time

- ▶ Big-O notation can apply to all resources
 - ▶ Which was our goal
- Space complexity:
 - ▶ How does the amount of space needed scale with the size of DS?

In-class exercise (5 minutes)

- 1. An algorithm takes n^2 steps in total to operate on an array of size n. How many steps would the algorithm take if it were to operate on half the array of size n/2?
- 2. Has the complexity of the algorithm changed now that it is only operating only on a half?
 - ▶ If so, explain how and provide the old and new complexities (tightest bounds)
 - ▶ If not, explain why and provide the tightest complexity bound

Answer to 1 needs to be in terms of n.

Searching an array

Searching an array

- ▶ Function args: numbers array, target element you are looking for
- ▶ To return: True if it's found, False if not

```
def search (numbers, target):
...
```

What's the simplest and most straightforward way to do this?

Search attempt #1

- ▶ Look at each element one at a time
 - ▶ Once you encounter the element, return True
 - ▶ If you don't encounter the element by end of loop, return False

```
def search(numbers, target):
    for x in numbers:
        if x == target:
            return True
    return False
```

What's the worst case?

- Element is not in the array

important steps (iterations) in worst case?

What if the array is huge?

 Wish we could stop early if we knew there was no hope

What if the array was sorted?

return True

return False

```
numbers 2 4 8 11 12 90

def search(numbers, target): search(numbers, 5) should return False

for x in numbers:
    if x > target: # return early
        return False # if you know there's no hope

if x == target:
```

What if the array was sorted?

```
def search(numbers, target):
    for x in numbers:
        if x > target:
            return False
        if x == target:
            return True
    return False
```

iterations may reduce for previous worst case

Old worst case no longer applies

Worst case now?

 Target is or is higher than highest element (i.e., not in array)

iterations in worst case: still n

Linear search

- Search that takes linear time: 0(n)
- Same complexity on sorted and unsorted arrays
- \blacktriangleright Worst case is O(n)
 - Average and best cases may be cheaper
 - Usually care about worst case (but not always)
- Can sortedness get us a better worst case cost?

```
def linear_search(numbers, target):
    for x in numbers:
        if x > target:
            return False
        if x == target:
            return True
    return False
```

Game: Guessing a number

- ▶ Your job: Think of a number between [1, 20]
- My job: guess your number in 5 guesses or less

1 1 1 1 1 1 1 1 1 1 1 1 2 20

▶ # steps to guess: | + | + | + | + |

Game: Guessing a number (round 2)

- Your job: Think of a number between [1, 20]
- My job: guess your number in 5 guesses or less

20

steps to guess:

Binary search

- Type of divide-and-conquer algorithm (or decrease-and-conquer)
- Search space is reduced by half each time
- #steps for worst case:
 - ▶ I guess 10. You tell me too high (+1 step)
 - ▶ I guess 5. You tell me too low. (+1 step)
 - ▶ I guess 7. You tell me too low. (+1 step)
 - ▶ I guess 8. You say too low. (+1 step)
 - ▶ I guess 9. You say that's correct! (+1 step)
 - ▶ Total guesses = $5 \approx \log_2 20$ (#times 20 can divide by 2 before reaching 0)

Binary search pseudocode

- 1. State: start = 0 and end = length-1
- 2. Look for midpoint position in the array between start and end: (end+start) /2
- 3. Check if target is equal to, less than, or more than value at midpoint
 - a. If equal: we found it, return true
 - b. If less than: end = midpoint 1
 - c. If more than: start = midpoint + 1
 - d. If start > end: return false
- 4. Repeat steps 2-3

0	1	2	3	4
2	5	8	9	12

Binary search code

```
def binary search (numbers, target):
  # look for `target` between indices `low` and `high`
  def helper (low, high):
    # empty range -> not found
    if low > high: return False
    let mid = (low + high) // 2
    if numbers[mid] == target: return True
    elif numbers[mid] < target:</pre>
      return helper(mid+1, high)
    else: # numbers[mid] > target:
      return helper(low, mid-1)
  return helper (0, numbers.len()-1)
```

Binary search complexity

- ► Logarithmic worst-case complexity
 - $ightharpoonup O(\log n)$
- Constant best-case complexity
 - ▶ 0(1) (midpoint of the whole array is the target)
 - Not what matters (best case is rare)

Another example: Looking for a word in a dictionary

- Dictionary is sorted
- ► Say it 171,476 words

O(log n) is a big deal

Pre-condition for binary search

- Sorted array is a precondition for binary search
- ▶ We'll need a way to sort an array
 - ▶ Next time!