Exercice 1 : Quelques dérivées simples...

Déterminer les dérivées des fonctions f suivantes :

1)
$$f(x) = 12x^4 - 3x^3 + 6x - 5$$

2)
$$f(x) = \frac{2}{5}x^6 - \frac{3x^2}{4} + \frac{x}{5} - \frac{7}{3}$$

3)
$$f(x) = -2x^3 + 5x + 1$$

4)
$$f(x) = (3x^2 + 4)(2x - 5)$$
 $I =]-\infty;1,5[$

5)
$$f(x) = \sqrt{x^2 + x + 1}$$

6)
$$f(x) = \frac{3x-1}{-2x+3}$$

7)
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
 $I =]0; +\infty[$

8)
$$f(x) = \frac{x-1}{x^2 + x + 4}$$
 I= R

Exercice 2 : Déterminer les dérivées des fonctions f suivantes définies sur I.

a)
$$f(x) = \sqrt{6x+5}$$
 $I = \left] -\frac{5}{6}; +\infty \right[$

b)
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
 I= \mathbb{R}

c)
$$f(x) = \ln(x + \sqrt{x^2 - 1})$$
 $I =]1; +\infty[$

$$I =]1;+\infty[$$

d)
$$f(x) = \ln \frac{1-x}{x^2+1}$$
 $I =]-\infty;-1[$

e)
$$f(x) = \frac{2x+1}{e^x}$$
 I= \mathbb{R}

f)
$$f(x) = x \frac{1}{e^{2x+1}}$$
 I=**R**

g)
$$f(x) = \cos x + x \sin x$$
 $I=\mathbb{R}$

g)
$$f(x) = 3\sin^2\left(2x + \frac{\pi}{6}\right)$$
 $I=\mathbb{R}$

h)
$$f(t) = Ae^{-\alpha t} \sin(\omega t + \gamma)$$
, $A, \alpha, \omega, \gamma$, réels donnés

$$I=\mathbb{R}$$

Le déplacement du piston dans un système bielle manivelle est donnée par la fonction :

$$x: t \mapsto r \left[\cos \omega t + m \left(1 - \frac{\sin^2(\omega t)}{m^2}\right)^{\frac{1}{2}}\right], m, \omega, r \text{ constantes données.}$$

Calculer la vitesse $\frac{dx}{dt}$ du piston.

Exercice 4:

Calculer les dérivées successives jusqu'à l'ordre trois des fonctions suivantes :

a)
$$f(x) = 5x^4 + x^3 - 9x^2 + 5$$

b)
$$f(x) = \frac{1}{x - a}$$
 $I =]a; +\infty[$

$$I =]a; +\infty[$$

Exercice 5 : Déterminer les dérivées des fonctions f suivantes définies sur I.

$$\overline{\mathbf{a}) \ f(x) = x \arccos x \quad I =]-1;1[$$

b)
$$f(x) = x \arcsin x$$
 $I = -1;1$

c)
$$f(x) = \arctan 2x$$
 I= \mathbb{R}

d)
$$f(x) = ch \frac{x}{10}$$
 I=R e) $f(x) = sh2x$

e)
$$f(x) = sh2x$$

Exercice 6 : Etudier le signe des fonctions suivantes sur I.

a)
$$g(t) = 1 + \ln t$$
, $I =]0; +\infty[$

b)
$$g(t) = 3e^{-t} - 1$$
, $I = \mathbb{R}$

a)
$$g(t) = 1 + \ln t$$
, $I =]0; +\infty[$ b) $g(t) = 3e^{-t} - 1$, $I = \mathbb{R}$ c) $g(t) = \cos(t + \frac{\pi}{4})$ $I = [0; 2\pi]$

Dérivation et étude de fonctions (2/3)

Exercice 7 : Quelques fonctions simples à étudier...

Etudier les variations des fonctions suivantes (dérivée, tableau de variation, limites aux bornes de l'intervalle d'étude)

1)
$$f(x) = 4x^2 - 3x + 2$$

$$I=\mathbb{R}$$

$$2) f(x) = \frac{x-1}{x-2}$$

$$I=\mathbb{R}\backslash\{2\}$$

2)
$$f(x) = \sqrt{x^2 + x + 1}$$
 $I = \mathbb{R}$

$$I=\mathbb{R}$$

$$4) f(x) = \frac{x}{x^2 + 1}$$

$$I=\mathbb{R}$$

Exercice 8:

La courbe ci-contre est la courbe représentative sur l'intervalle 0;4

de la fonction f définie sur \mathbb{R} par : $f(x) = ax^3 + bx^2 + cx + d$; a, b, c, d réels.

- 1) Déterminer les réels pour que les conditions suivantes soient vérifiées : La courbe passe par les points A et B et admet en chacun de ces points une Tangente parallèle à l'axe des abscisses.
- 2) Montrer que le point I(2;2) est centre de symétrie de la courbe.

$$Utiliser \overrightarrow{OM} = \overrightarrow{OI} + \overrightarrow{IM}$$

Exercice 9:

Soit la fonction définie sur
$$\mathbb{R}$$
 par : $f(x) = \frac{3x^2 + ax + b}{x^2 + 1}$

- 1) Déterminer les réels a et b pour que la courbe représentative de f dans un repère orthogonal soit tangente au point I(0,3) à la droite (T) d'équation y = 4x + 3.
- 2) Etudier la position de la courbe par rapport à la droite (T) au voisinage du point I. illustrer graphiquement cette situation.

Exercice 10:

On considère la fonction f définie sur \mathbb{R} par : $f(x) = e^{2x} - 4e^x + 3$

- 1) Etudier les variations de la fonction f. on précisera les limites de f en $-\infty$ et en $+\infty$.
- 2) En utilisant les résultats précédents, déterminer selon les valeurs du réel a le nombre de solutions de l'équation f(x) = a.

Exercice 11:

Soit la fonction g définie sur l'intervalle $I =]0; +\infty[$ par : $g(x) = x - 1 + \frac{1}{2} \ln x$

Etudier les variations de g; calculer g(1); en déduire le signe de g(x) sur I.

II Soit la fonction
$$f$$
 définie sur I par : $f(x) = \frac{2x - \ln x}{2\sqrt{x}}$.

Le plan est rapporté à un repère orthonormal d'unité graphique 2cm. On appelle C la courbe représentative de f et C₀ la courbe représentative de la fonction $x \mapsto \sqrt{x}$.

- 1) Déterminer les limites de f en 0 et en $+\infty$.
- 2) Déterminer la dérivée f' de f. Vérifier que, pour tout réel x de $f'(x) = \frac{g(x)}{2x \sqrt{x}}$.
- 3) Dresser le tableau de variations de f.
- 4) Déterminer $\lim_{x \to +\infty} (f(x) \sqrt{x})$.
- 5) Préciser les positions relatives de C et C₀. Tracer C et C₀.

Dérivation et étude de fonctions (3/3)

Exercice 12:

On considère un circuit dans lequel E et r sont des constantes et R est variable (R>0).

La puissance p dissipée dans le résistor de résistance R est : $P = \frac{RE^2}{(R+r)^2}$

Déterminer, en fonction de E et r, la valeur de R pour laquelle la puissance est maximale, ainsi que cette puissance maximale.

Exercice 13:

Soit $f(t) = at^2 + bt + c$. Déterminer a,b,c sachant que C_f a pour sommet S(1;5) et passe par B(3;1).

Exercice 14: Soit $f(t) = Ae^x + 2e^{-x+B}$. Déterminer A et B sachant que f(1) = 0 et f'(1) = 2.

Exercice 15: Etudier la fonction
$$f(x) = x + \frac{4}{x} \operatorname{sur} \left[\frac{1}{2}; 5 \right]$$

Exercice 16:

Partie A: Etude d'une fonction auxiliaire.

Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = e^x(x+3) - 1$$

- 1) Déterminer la limite de g en $+\infty$ et la limite de g en $-\infty$.
- 2) Déterminer, à l'aide de la dérivée g', le sens de variation de g. En déduire le tableau de variation de g.
- 3) Montrer que l'équation g(x) = 0 admet une solution unique α qui appartient à l'intervalle -4.0[.
- 4) Déduire des questions précédentes le signe de g(x) en fonction des valeurs de x.

Partie B : Etude d'une fonction et tracé de sa courbe représentative.

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = -x + e^x(x+2)$$

On note \mathscr{C}_f sa courbe représentative de f dans le plan rapporté à un repère orthogonal $(O; \vec{i}, \vec{j})$. (Unités graphiques : 2 cm sur l'axe des abscisses et 3 cm sur l'axe des ordonnées.)

1) .

- a) Déterminer la limite de f en $-\infty$.
- b) Montrer que la droite \mathcal{D} d'équation y = -x est asymptote à \mathscr{C}_f en $-\infty$
- c) Etudier, en fonction des valeurs de x les positions de \mathcal{D} et \mathcal{C}_f .
- 2) En remarquant que f(x) peut s'écrire : $f(x) = e^x \left[\frac{-x}{e^x} + (x+2) \right]$, déterminer la limite de f en $+\infty$.
- 3) Vérifier que pour tout x réel, on a f'(x) = g(x).
- 4) Dresser le tableau de variation de f.
- 5) Déterminer une équation de la tangente T à \mathscr{C}_f en son point A d'abscisse 0.
- 6) Déterminer, à l'aide de la calculatrice, une valeur approchée de α à 10^{-2} près, puis une valeur approchée de $f(\alpha)$ à 10^{-2} près.
- 7) Tracer dans le repère $(O; \vec{i}, \vec{j})$, \mathcal{C}_f , la tangente T et l'asymptote \mathcal{D} .

Fonctions à valeurs complexes

Exercice 17 : Calculer les dérivées des fonctions

a)
$$t \mapsto (t+i)e^{it}$$
 b) $t \mapsto \frac{1}{t+a}$; $a = \alpha + i\beta$, α, β deux réels avec $\beta \neq 0$ c) $t \mapsto (2t-i)e^{it}$