Lista 7 [AD-UFPE-2019]

Antonio Fernandes 28 de maio de 2019

Conteúdo

Apresentação	1
Questão 1	2
a) Análise descritiva de todas as variáveis da base de dados	2
b) Modelo de regressão	9
Resultado da regressão	10
Capacidade explicativa do modelo	10
Ajuste do modelo	10
c) Modelo de regressão com mais de uma VI	13
Resultados do modelo	14
Capacidade explicativa do modelo	14
RMSE	14
Comparando o resultados dos modelos	14
Ajuste do modelo	15
d) Modelo de regressão com a VI War	17
Resultados do modelo	18
Capacidade explicativa do modelo	18
RMSE	18
Comparando o resultados dos modelos	19
Ajuste do modelo	20
Questão 2	22
Citação do artigo	22
Modelo	22

Apresentação

Este documento apresenta as respostas da lista de exercícios 7 da disciplina de Análise de dados.

O link está disponível no GitHub: https://github.com/alvesat/AD_7

A lista envolve a execução de diversos modelos de regressão linear envolvendo um banco de dados específicos.

Questão 1

O primeiro passo para responder a questão é abrir o banco de dados contendo as informações necessárias. É importante verificar que os dados estão no formato .dta, que é o formato relacionado ao software Stata. Devido a isso, teremos que abrir o pacote haven e executar o comando para abrir o banco.

```
library(haven)
```

```
fair <- read_dta("~/Dados/Listas/AD_7/DATA_L7/fair.dta")</pre>
```

a) Análise descritiva de todas as variáveis da base de dados

Vamos verificar o nome das variáveis presentes no banco

```
names(fair)
```

```
## [1] "YEAR" "VOTE" "PARTY" "PERSON" "DURATION" "WAR" ## [7] "GROWTH" "INFLATION" "GOODNEWS"
```

Podemos observar que o banco apresenta 9 variáveis: Year, Vote, Party, Person, Duration, War, Growth, Inflation e Good news.

Um outro passo envolvendo o processo de descrição das variáveis é identificar a estrutura de cada variável:

```
str(fair)
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                               32 obs. of 9 variables:
##
   $ YEAR
              : num 1880 1884 1888 1892 1896 ...
     ..- attr(*, "format.stata")= chr "%8.0g"
   $ VOTE
              : num 50.2 49.8 50.4 48.3 47.8 ...
##
    ..- attr(*, "format.stata")= chr "%9.0g"
##
              : num -1 -1 1 -1 1 -1 -1 -1 1 ...
##
   $ PARTY
##
     ..- attr(*, "format.stata")= chr "%8.0g"
##
   $ PERSON
             : num 0 0 1 1 0 1 0 0 1 1 ...
     ..- attr(*, "format.stata")= chr "%8.0g"
##
   $ DURATION : num 1.75 2 0 0 0 0 1 1.25 1.5 0 ...
##
    ..- attr(*, "format.stata")= chr "%9.0g"
##
              : num 00000000000...
##
    $ WAR
    ..- attr(*, "format.stata")= chr "%8.0g"
##
##
             : num 3.88 1.59 -5.55 2.76 -10.02 ...
   $ GROWTH
     ..- attr(*, "format.stata")= chr "%9.0g"
   $ INFLATION: num 1.974 1.055 0.604 2.274 3.41 ...
##
    ..- attr(*, "format.stata")= chr "%9.0g"
   $ GOODNEWS : num 9 2 3 7 6 7 5 8 8 3 ...
##
     ..- attr(*, "format.stata")= chr "%8.0g"
```

É possível identificar que todas as variáveis presentes no banco são númericas e que o banco possui 32 observações. Agora vamos fazer uma análise descritiva de cada variável:

Year

A variável ano apresenta os anos de cada observação. Por meio do comando fivenum, podemos obter um sumário da variável (valor minímo, 1° quartil, mediana, 3° quartil e valor máximo). No caso dessa variável, o importante é verificarmos o valor inicial e final.

fivenum(fair\$YEAR)

[1] 1880 1910 1942 1974 2004

Em relação a variável Year, percebemos que a primeira observação é em 1880 e a última é em 2004.

Vote

fivenum(fair\$VOTE)

[1] 36.1190 49.2720 52.0260 56.3815 62.4580

Em relação a variável vote, ela representa a porcentagem de votos recebidas pelo partido do incumbente. Observando os valores obtidos do comando fivenum, o valor mínimo da variável foi de 36.12, o 1° quartil é de 49.27, a mediana é de 52.03, o 3° quartil é de 56.38 e o valor máximo é de 62.46. Podemos analisar a variável vote por meio de um histograma:

hist(fair\$VOTE)

Histogram of fair\$VOTE

Com o histograma, verificamos que os valores estão mais concentrados entre 45 e 55, ou seja, no centro da distribuição.

Party

A variável party é dicotômica, apresentando como valores -1 e 1.

ftable(fair\$PARTY)

```
## -1 1
##
## 18 14
```

Com o comando ftable, podemos fazer uma tabela de frequência da variável party e identificar que das 32 observações do banco, 18 são do valor -1 e 14 são do valor 1.

Person

A variável person também é dicotômica, apresentando como valores 1 e 0.

ftable(fair\$PERSON)

```
## 0 1
##
## 13 19
```

O resultado mostra que 13 observações apresentam o valor 0 e 19 observações apresentam o valor 1.

Duration

A variável duration apresenta os valores de 2 a 0. Com o comando fivenum é possível obter uma análise descritiva da varivel:

fivenum(fair\$DURATION)

```
## [1] 0.00 0.00 1.00 1.25 2.00
```

O valor mínimo e do primeiro quartil é 0, a mediana é 1, o 3° quartil é 1.25 e o valor máximo da distribuiço é 2.

```
hist(fair$DURATION)
```

Histogram of fair\$DURATION

Pelo histograma, vemos que a maior parte das observções são 0 e 1 (25)

War

A variável war é uma variável dicotômica que é melhor observada por meio do comando ftable:

ftable(fair\$WAR)

```
## 0 1
##
## 29 3
```

é possível verificar que 29 casos possuem valor 0 e 3 casos apresentam valor 1

Growth

A variável growth contém informações acerca da variação de crescimento do PIB por ano:

fivenum(fair\$GROWTH)

```
## [1] -14.557 -1.923 2.245 4.095 11.677
```

mean(fair\$GROWTH)

[1] 0.628

A descrição por meio do comando fivenum mostra que o valor minimo da distribuição foi uma contração de 14.56 no PIB, enquanto que o 1º quartil apresenta um valor de -1.92, a mediana é de 2.24, o 3º quartil é 4.1 e o valor máximo da distribuição é de 11.68. Por meio de um histograma é possível uma melhor visualização da distribuição. A média de variação dO crescimento no período foi de 0.628

hist(fair\$GROWTH)

Histogram of fair\$GROWTH

Com o histograma, percebemos que boa parte da distribuição está localizada no centro, com casos entre -5 e 5. Com um box plot, podemos identificar a presença ou não de outliers na distribuição.

boxplot(fair\$GROWTH)

Por meio do Boxplot, podemos verificar que existem dois valores que são outliers: -14.55 e -11.46. Ambos resultados de crises econômicas (1920 e 1929)

Inflation

Vamos verificar a descrição da variável inflation:

fivenum(fair\$INFLATION)

[1] 0.0000 1.3545 2.1590 3.3715 7.9260

mean(fair\$INFLATION)

[1] 2.656812

O valor mínimo da distribuição é 0, o 1° quartil é 1.35, a mediana é de 2.16, o 3° quartil é de 3.38 e o valor máximo é de 7.93. A média no período foi uma inflação de 2.65.

boxplot(fair\$INFLATION)

O boxplot da variável mostram 3 outliers: 7.92 (em 1980), 7.58 (em 1976) e 7.16 (em 1932)

Goodnews

Abaixo vemos os cinco valores da variável goodnews, que representa a quantidade de boas notícias no campo da econonomia (no ano observado)

fivenum(fair\$GOODNEWS)

[1] 0.0 3.5 5.0 7.5 10.0

mean(fair\$GOODNEWS)

[1] 5.28125

O valor mínimo da variável é 0, o 1º quartil é 3.5, a mediana é 5, o 3º quartil é 7.5 e o valor máximo é 10. A média é de 5.28.

hist(fair\$GOODNEWS)

Histogram of fair\$GOODNEWS

O histograma mostra que a distribuição dos valores é bem balanceada.

b) Modelo de regressão

Para executar o modelo, com a variável Vote como VD e Growth como VI, vamos utilizar o seguinte comando:

```
Linear <- lm(VOTE ~ GROWTH, data = fair)
summary(Linear)</pre>
```

```
##
## Call:
## lm(formula = VOTE ~ GROWTH, data = fair)
##
## Residuals:
##
                1Q Median
                               3Q
                                      Max
## -8.2487 -3.3330 -0.4282 3.1425
                                   9.7286
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 51.8598
                           0.8817 58.821 < 2e-16 ***
## GROWTH
                 0.6536
                           0.1607
                                    4.068 0.000316 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.955 on 30 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3341
```

```
## F-statistic: 16.55 on 1 and 30 DF, p-value: 0.0003165
```

Resultado da regressão

Como é possível observar no resultado, a variação de uma unidade na VI (Growth) leva a um aumento de 0.65 na VD (Votes). Nesse caso, o modelo de regressão utilizado é bivariado, dado a presença de apenas duas variáveis no modelo.

Em relação aos resíduos do modelo, o valor mínimo é de -8.25, o 1° quartil é de -3.33, a mediana é de -0.423, o 3° quartil é de 3.14 e o valor máximo é de 9.72.

Quando a VI assume o valor de 0, espera-se que o valor da VD seja de 51.86 (Valor do intercepto). Já em relação a VI, além do valor do coeficiente, o erro padrão foi de 0.16 e o teste-f que testa a hipótese nula de que não há relação entre as variáveis apresentou um p-valor menor que 0.001. Ou seja, rejeita-se a hipótese nula de que não há relação entre as variáveis.

Capacidade explicativa do modelo

No que se refere a capacidade explicativa do modelo, o R² ajustado foi de 0.33, significando que o modelo consegue explicar 33% da variáncia da variável dependente. O erro padrão do resíduo foi de 4.955.

Ajuste do modelo

Já no tocante ao ajuste, podemos analisar alguns gráficos e verificar a adequabilidade do modelo:

```
library(ggplot2)
```

O gráfico abaixo apresenta o tamanho do resíduo por meio do tamanho do ponto e cor (quanto mais vermelho maior e quanto mais verde menor o resíduo). O tamanho do resíduo é a distancia entre o ponto e a linha de regressão.

```
fair$predicted <- predict(Linear)
fair$residuals <- residuals(Linear)
ggplot(fair, aes(x = GROWTH, y = VOTE)) +
    geom_smooth(method = "lm", se = FALSE, color = "lightgrey") +
    geom_segment(aes(xend = GROWTH, yend = predicted), alpha = .2) +
    geom_point(aes(color = abs(residuals), size = abs(residuals))) +
    scale_color_continuous(low = "green", high = "red") +
    guides(color = FALSE, size = FALSE) +
    geom_point(aes(y = predicted), shape = 1) +
    theme_bw()</pre>
```


Podemos por meio do gráfico observar a distribuição dos resíduos do modelo. Por meio do gráfico de resíduos, é possível verificar a adequabilidade dos dados. Dado que o resíduo é aquela parte do modelo que não é explicada, espera-se que este não possua nem um padrão. Em suma, a distribuição do resíduo deve ser aleatória.

```
plot(Linear, which=1, col=c("blue"))
```


Quando observamos o gráfico, é possível verificar uma certa concentração de observações na parte um pouco a direita do centro do gráfico, o que pode apresentar uma não normalidade dos dados. Por isso será executado um gráfico de quantis (Q-Q). Caso os resíduos sigam a linha de regressão, é uma boa indicação de uma distribuição normal.

plot(Linear, which=2, col=c("red"))

Observa-se que os resíduos seguem a linha da regressão de maneira bastante alinhada.

Com base nessas análises, é possível concluir que o modelo é adequado.

c) Modelo de regressão com mais de uma VI

Para executar o modelo de regressão com VOTES como VD e Growth e Goodnews como VI, executamos o seguinte comando:

```
Linear_2 <- lm(VOTE ~ GROWTH + GOODNEWS, data = fair)
summary(Linear_2)</pre>
```

```
##
## Call:
## lm(formula = VOTE ~ GROWTH + GOODNEWS, data = fair)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
##
   -8.3125 -3.9191 0.4876
                            3.0489
                                     9.6846
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
                48.1202
                             1.7476
                                     27.535
                                             < 2e-16 ***
  (Intercept)
## GROWTH
                 0.5730
                             0.1527
                                      3.752 0.000781 ***
## GOODNEWS
                 0.7177
                             0.2964
                                      2.421 0.021947 *
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.596 on 29 degrees of freedom
## Multiple R-squared: 0.4639, Adjusted R-squared: 0.4269
## F-statistic: 12.55 on 2 and 29 DF, p-value: 0.0001185
```

Resultados do modelo

A variável adicionada ao modelo é a de GoodNews, relacionada a quantidade de notícias boas na área econômica.

Ao análisar o modelo, percebemos que ambas as variáveis independentes apresentam um efeito na variável dependente. Entretanto, a variável Growth apresenta um P-valor menor que 0.001 enquanto que a váriavel Goodnews só apresenta um efeito significativo na VD quando consideramos um P-valor menor que 0.05. Mesmo assim, ambas as variáveis estão abaixo do patamar de 0.05, permitindo rejeitar a hipótese nula de que não há relação entre as variáveis. Observando o coeficiente da variável Growth, podemos interpretar que o aumento de 1% na variação do PIB leva a um aumento de 0.57 na VD (mantendo todo o resto constante). Já em relação a GOODNEWS, o aumento em 25% de notícias econômicas positivas, leva ao aumento de 0.71 na VD (mantendo todo o resto constante).

Os valores do resíduo mostram um resíduo mínimo de -8.3125, com o 1° quartil igual a -3.9191, Mediana de $0.4876, 3^{\circ}$ quartil de 3.05 e valor máximo de 9.68.

Capacidade explicativa do modelo

No que se refere a capacidade explicativa, o modelo apresenta um R^2 ajustado de 0.43, significando uma explicação de 43% de variação na VD. O erro padrão do resíduo foi de 4.596.

RMSE

Para analisar o RMSE (Raiz quadrada do erro médio) será necessário primeiro abrir o pacote sistats

```
library("sjstats")
```

Assim é possível verificar o valor da RMSE:

```
rmse(Linear_2)
```

```
## [1] 4.375343
```

O RMSE é calculado para mensurar a diferença entre os valores preditos pelo modelo e os valores observados. Também é conhecido como erro padrão do modelo e é calculado elevando ao quadrado cada erro do modelo, somando-os, dividindo pelo número de casos e obtendo a raiz quadrada. Nesse caso, o valor obtido foi de 4.37.O RMSE tem a mesma unidade que a VD e quanto menor, melhor.

Comparando o resultados dos modelos

Para poder comparar os resultados desse modelo com o anterior, é necessário padronizar os coeficientes de ambos os modelos. Para isso será utilizado o pacote lm.beta:

```
library('lm.beta')
lm.beta(Linear)
##
## Call:
## lm(formula = VOTE ~ GROWTH, data = fair)
## Standardized Coefficients::
  (Intercept)
                    GROWTH
     0.000000
                 0.5962706
##
lm.beta(Linear_2)
##
## Call:
## lm(formula = VOTE ~ GROWTH + GOODNEWS, data = fair)
##
## Standardized Coefficients::
##
  (Intercept)
                    GROWTH
                               GOODNEWS
     0.000000
##
                 0.5227285
                              0.3373268
```

Por meio dos coeficientes padronizados, é possível comparar os modelos. No primeiro modelo executado, verifica-se que para o aumento de 1 desvio padrão da VI Growth, espera-se o aumento de .60 desvio padrão na VD.

Já no segundo modelo, o aumento de 1 desvio padrão da VI Growth leva a um aumento de 0.52 desvio padrão na VD. Ou seja, houve uma redução no efeito da VI Growth do modelo 1 para o modelo 2.

```
confint(Linear_2)
```

```
## 2.5 % 97.5 %
## (Intercept) 44.5460566 51.6944312
## GROWTH 0.2606609 0.8852903
## GOODNEWS 0.1114819 1.3238397
```

Já o intervalo de confiança apresenta o intervalo para cada coeficiente do modelo. Na VI Growth, o valor mínimo é 0.26 e máx é 0.88, na VÍ Goodnews o valor vai de 0.11 a 1.32.

Ajuste do modelo

Para verificar o ajuste do modelo, os resíduos serão analisados graficamente.

```
plot(Linear_2, which=2, col=c("red"))
```


 ${\cal O}$ gáfico Q-Q mostra um ajuste adequado do modelo dado a tendência dos pontos em relação a linha de regressão.

```
plot(Linear_2, which=1, col=c("blue"))
```


Já o gráfico dos resíduos apresenta valores tanto acima quanto abaixo da linha, representando também um bom ajuste do modelo.

Por fim, o teste de Shapiro permite verificar a normalidade da distribuição:

```
res <- residuals(Linear_2)
shapiro.test(res)

##
## Shapiro-Wilk normality test
##
## data: res
## W = 0.97866, p-value = 0.7598

mean(res)</pre>
```

[1] 4.26742e-16

Os resultados do teste apontam um p-valor de 0.76, levando a não rejeitar a hipótese nula de que os dados testados não estão normalmente distribuídos. A média dos resíduos obtida foi de 4.27. Dado os gráficos analisados e teste realizado, é possível concluir que há homocedasticidade no modelo.

d) Modelo de regressão com a VI War

Para executar o modelo de regressão com VOTES como VD e com Growth, Goodnews e War como VI, executamos o seguinte comando:

```
Linear_3 <- lm(VOTE ~ GROWTH + GOODNEWS + WAR, data = fair)
summary(Linear_3)</pre>
```

```
##
## Call:
## lm(formula = VOTE ~ GROWTH + GOODNEWS + WAR, data = fair)
## Residuals:
##
      Min
                1Q
                   Median
                                3Q
                                       Max
                   0.5065
   -8.3043 -3.9080
                            3.0190
                                    9.7032
##
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                48.0479
                            2.3386
                                    20.545 < 2e-16 ***
## GROWTH
                            0.1554
                                     3.686 0.000969 ***
                 0.5729
## GOODNEWS
                 0.7284
                            0.3761
                                     1.937 0.062925 .
## WAR
                 0.1698
                            3.5622
                                     0.048 0.962322
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.677 on 28 degrees of freedom
## Multiple R-squared: 0.464, Adjusted R-squared: 0.4065
## F-statistic: 8.078 on 3 and 28 DF, p-value: 0.0004951
```

Resultados do modelo

A variável adicionada ao modelo é a de War, uma variável dicotômica que indica que se naquele ano o país estava em guerra ou não.

Ao análisar o modelo, percebemos que apenas a variável Growth tem efeito sobre a VD. Ao observar o P-valor dos coeficientes, o P-valor de Growth é menor que 0.001 enquanto que os coeficientes de Goodnews e War passam do limiar de 0.05, não sendo assim possível rejeitar a hipótese nula de que não existe relação entre as variáveis. Observando o coeficiente da variável Gwroth, podemos interpretar que, o aumento de 1% na variação do PIB leva a um aumento de 0.57 na VD (mantendo todo o resto constante). Os coeficientes da variável Goodnews e War são 0.73 e 0.17 respectivamente.

Os valores do resíduo mostram um resíduo mínimo de -8.3043, com o 1° quartil igual a -3.9080, Mediana de 0.5065, 3° quartil de 3.0190 e valor máximo de 9.70.

Capacidade explicativa do modelo

No que se refere a capacidade explicativa, o modelo apresenta um R^2 ajustado de 0.40, significando uma explicação de 40% de variação na VD. O erro padrão do resíduo foi de 4.677.

RMSE

```
rmse(Linear_3)
```

```
## [1] 4.375166
```

O RMSE é calculado para mensurar a diferença entre os valores preditos pelo modelo e os valores observados. Também é conhecido como erro padrão do modelo e é calculado elevando ao quadrado cada erro do modelo, somando-os, dividindo pelo número de casos e obtendo a raiz quadrada. Nesse caso, o valor obtido foi de 4.37.O RMSE tem a mesma unidade que a VD e quanto menor, melhor.

Comparando o resultados dos modelos

```
library('lm.beta')
lm.beta(Linear)
##
## Call:
## lm(formula = VOTE ~ GROWTH, data = fair)
##
## Standardized Coefficients::
## (Intercept)
                    GROWTH
     0.0000000
                 0.5962706
lm.beta(Linear_2)
##
## Call:
## lm(formula = VOTE ~ GROWTH + GOODNEWS, data = fair)
##
## Standardized Coefficients::
## (Intercept)
                    GROWTH
                              GOODNEWS
     0.0000000
                 0.5227285
                             0.3373268
lm.beta(Linear_3)
##
## Call:
## lm(formula = VOTE ~ GROWTH + GOODNEWS + WAR, data = fair)
##
## Standardized Coefficients::
## (Intercept)
                    GROWTH
                              GOODNEWS
                                                WAR
## 0.00000000 0.522617627 0.342359350 0.008281798
```

Por meio dos coeficientes padronizados, é possível comparar os modelos. No primeiro modelo executado, verifica-se que para o aumento de 1 desvio padrão da VI Growth, espera-se o aumento de .60 desvio padrão na VD.

Já no segundo modelo, o aumento de 1 desvio padrão da VI Growth leva a um aumento de 0.52 desvio padrão na VD. Ou seja, houve uma redução no efeito da VI Growth do modelo 1 para o modelo 2.

No terceiro modelo, o valor do coeficiente padronizado da VI Growth permanece o mesmo, enquanto que em relação a VI Goodnews, no terceiro modelo há um aumento de 0.01 no coeficiente. Entretanto, no terceiro modelo a VI Goodnews não possui um efeito significativo. Já a variável War apresenta um coeficiente padronizado menor que 0.

Comparando os três modelos, percebemos que a variável que mais explica a variação na VD é Growth.

confint(Linear_3)

```
## 2.5 % 97.5 %

## (Intercept) 43.25739623 52.8383197

## GROWTH 0.25448754 0.8912206

## GOODNEWS -0.04198698 1.4987219

## WAR -7.12709113 7.4666712
```

Já o intervalo de confiança apresenta o intervalo para cada coeficiente do modelo. Na VI Growth, o valor mínimo é 0.25 e máx é 0.89, na VÍ Goodnews o valor vai de -0.04 a 1.50 e na VI War os valores são -7.13 de mínimo e 7.47 de máximo.

Ajuste do modelo

Para verificar o ajuste do modelo, os resíduos serão analisados graficamente.

```
plot(Linear_3, which=2, col=c("red"))
```


O gáfico Q-Q mostra um ajuste adequado do modelo dado a tendência dos pontos em relação a linha de regressão.

```
plot(Linear_3, which=1, col=c("blue"))
```


Já o gráfico dos resíduos apresenta valores tanto acima quanto abaixo da linha, representando também um bom ajuste do modelo.

Por fim, o teste de Shapiro permite verificar a normalidade da distribuição:

```
res <- residuals(Linear_3)
shapiro.test(res)

##
## Shapiro-Wilk normality test
##
## data: res
## W = 0.97851, p-value = 0.7554

mean(res)</pre>
```

[1] 3.330669e-16

Os resultados do teste apontam um p-valor de 0.75, levando a não rejeitar a hipótese nula de que os dados testados não estão normalmente distribuídos. A média dos resíduos obtida foi de 3.30. Dado os gráficos analisados e o teste realizado, é possível concluir que há homocedasticidade no modelo.

Questão 2

Citação do artigo

BATISTA, Mariana. Who Gets What and How Does It Matter? Importance-Weighted Portfolio Allocation and Coalition Support in Brazil. *Journal of Politics in Latin America*, v. 10, n. 3, p. 99-134, 2018.

Modelo

A variável dependente do modelo é disciplina partidária. O que a autora busca analisar é como a alocação de ministérios importa para o apoio legislativo dos parceiros de coalização no sistema presidencialista brasieiro. Na tabela 4 do artigo, são apresentados 4 modelos de regressão linear tendo como VD a variável de displina partidária. O objetivo é verificar o efeito da alocação do ministério na disciplina partidária. Por meio do modelo, é possível verificar os fatores que levam a maior disciplina partidária e qual o papel que a alocação dos ministérios tem sobre a VD.

No modelo I, as VIs do modelo são: Distância Ideológica, Dimensão política do ministério, Segundo mandato, Tempo até a eleição e Popularidade. Ao verificar os resultados dos coeficientes, apenas os efeitos da VI de distância ideológica e Tempo até a eleição apresentam um P-valor meor que 0.01 enquanto que Segundo mandato e popularidade são significativos apenas com um P-valor menor que 0.1 e Dimensão Política do MIn. não apresenta um P-valor significativo.

Em relação aos coeficientes, o da VI Distância Ideológica é de -10.131 (aumento de 1 unidade leva a redução de -10.131 na VD), Dimensão política do ministério é 8.341 (aumento de 1 unidade leva a aumento de 8.341 na VD), Segundo mandato é 3.439 (aumento de 1 unidade leva a aumento de 3.439 na VD), Tempo ate a eleição 4.456 (aumento de 1 unidade leva a aumento de 4.456 na VD) e Popularidade 0.139 (aumento de 1 unidade leva a aumento de 65.685.

O R^2 do modelo é de 0.335. Ou seja, 33% da variação da VD é explicada pela VI e o erro padrão do resíduo é de 9.344.