Instrumentación y Sensores Amplificadores de instrumentación

Introducción

El control automático y la instrumentación juegan un papel importante en el desarrollo de la ciencia y la ingeniería, y han servido como base para el desarrollo de la industria en la automatización de procesos.

DIAGRAMA DE BLOQUES CORRESPONDIENTE AL SISTEMA DE REGULACION AUTOMATICA

Criterios para la selección del bloque de realimentación

TEMPERATURE SENSOR COMPARISON CHART							
Characteristic	Pt RTD, Film	Pt RTD, WW	Thermistor	Thermocouple	Silicon		
Active Material	Platinum thin film	Platinum, wire wound	Metal oxide ceramic	Two dissimilar metals	Silicon transistor cascade		
Relative Sensor Cost	Moderate to Low	Moderate	Low to Moderate	Low	Low		
Relative System Cost	Moderate	Moderate	Low to Moderate	High	Low		
Temp Range	-200°C to 750°C (560°C max. typ.)	-200°C to 850°C (600°C max. typ.)	-100°C to 500°C (125°C max. typ.)	-270°C to 1800°C	-40°C to 125°C		
Changing Parameter	Resistance	Resistance	Resistance	Voltage	Voltage		
Base Value	100 Ω ΤΟ 2000 Ω	100 Ω	1 k Ω to 1 M Ω	<10 μV at 25 °C	750mV at 25		
Interchangeability	±0.1%, ±0.3°C	±0.06%, ±0.2°C	±10%, ±2°C typ.	±0.5% , ±2°C	±1%, ±3°C		
Stability	Excellent	Excellent	Moderate	Poor	Moderate		
Sensitivity	0.39% /°C	0.39% /°C	- 4% /°C	40 μV /°C	10 mV /°C		
Relative Sensitivity	Moderate	Moderate	Highest	Low	Moderate		
Linearity	Excellent	Excellent	Logarithmic, Poor	Moderate	Moderate		
Slope	Positive	Positive	Negative	Positive	Positive		
Noise Susceptibility	Low	Low	Low	High	Low		
Lead Resistance Errors	Low	Low	Low	High	Low		
Minimum Size (in.)	.050 x .065	0.5 x .060 ф	.016 x .120	.025 х .016 ф	SO-53		
Minimum Probe Diameter	.080	.080	.065	.025	.080		
Special Requirements		Lead compensation	Linearization	Reference junction			

Cuando se requiere emplear amplificadores de Instrumentación ?

- Alta ganancia diferencial
- Alta CMRR
- Minimizar los efectos de la carga implementado una alta R(i).
- Maximizar la sensibilidad del sistema
- Realizar ajuste de la ganancia mediante el cambio de un parámetro de circuito.

Amplificador de Instrumentación

El parámetro R es suministrado por el fabricante.

El ajuste de ganancia se realiza ajustando el valor de la resistencia RG

Características de los Amplificadores de Instrumentación :

TABLE 6.3 Typical Parameter Values for Several Types of Op Amps

Part Number	μΑ741	LM324	LF411	AD549K	OPA690
Description	General purpose	Low-power quad	Low-offset, low- drift JFET input	Ultralow input bias current	Wideband video frequency op amp
Open loop gain A	$2 \times 10^5 \text{ V/V}$	10 ⁵ V/V	$2 \times 10^5 \text{ V/V}$	10 ⁶ V/V	2800 V/V
Input resistance	$2 M\Omega$	1/4	1 ΤΩ	10 ΤΩ	190 kΩ
Output resistance	75 Ω	*	~1 Ω	~15 Ω	*
Input bias current	80 nA	45 nA	50 pA	75 fA	$3 \mu A$
Input offset voltage	1.0 mV	2.0 mV	0.8 mV	0.150 mV	±1.0 mV
CMRR	90 dB	85 dB	100 dB	100 dB	65 dB
Slew rate	0.5 V/μs	1/4	15 V/μs	3 V/μs	1800 V/μs
PSpice Model	1	1	/		

^{*} Not provided by manufacturer.

[✓] Indicates that a PSpice model is included in Orcad Capture CIS Lite Edition 16.3.

Amplificadores operacionales

- ✓ La ganancia se puede fijar con una sola resistencia (R_G) sin afectar al CMRR total.
- ✓ Las impedancias de entrada y salida son las correspondientes a los amplificadores operacionales.
- Para conseguir un CMRR alto se debe cumplir que CMRR_{AO1}=CMRR_{AO2}, que las resistencias presenten un alto grado de apareamiento y que CMRR_{AO3} sea alto. El valor del CMRR total aumenta con la ganancia.

Relación Ganancia de voltaje, ancho de banda del OPAMP

Consideraciones de diseño con amplificador:

- Considere siempre que un problema de diseño puede tener mas de una respuesta verdadera.
- Defina las relaciones entrada salida según los requerimientos funcionales de diseño.
- Trate de conservar las características de alta impedancia de entrada y baja impedancia de salida en sus diferentes etapas.

Aplicaciones de circuitos con amplificadores Operacionales en instrumentación:

- 1. Amplificadores inversores realimentados.
- 2. Sumadores inversores, no inversores y amplificadores diferenciales.
- 3. Conversores de corriente a voltaje y voltaje a corriente.
- 1. Integradores y diferenciadores.
- 1. Filtros activos analógicos.

Amplificadores operacionales

Circuito Amplificador y conversor de corriente a voltaje

ě.,

Amplificador operacional con entrada por fuente de corriente

A ...

Amplificadores operacionales

Amplificador de instrumentación con salida diferencial $\frac{\kappa_o}{\kappa_o}$
