List is chronological (better start with 3. and continue with Thomas Kipf slides)

1. DeepWalk: Online Learning of Social Representations, Bryan Perozzi, Rami Al-Rfou, Steven Skiena, https://arxiv.org/abs/1403.6652

Steven Skiena talk https://www.youtube.com/watch?v=aZNtHJwflVg
Bryan Perozzi talk https://www.youtube.com/watch?v=n12HS-24CtA (original KDD presentation)

Highly influential, simple word2vec inspired approach.

2. Current graph neural nets SOTA (convolutions)

SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS, Thomas Kipf, Max Welling https://arxiv.org/pdf/1609.02907.pdf

Thomas Kipf presentation slides http://tkipf.github.io/misc/SlidesCambridge.pdf
Max Welling presentation video https://www.youtube.com/watch?v=0_O8PdZBc5s
ICLR2017 reviews https://openreview.net/forum?id=SJU4ayYgl

Simple idea, original paper explained how it could be derived from spectral graph theory point of view.

- 3. Jure Leskovec tutorial on graph embeddings and graph convolutions http://snap.stanford.edu/proj/embeddings-www/ (Good start point)
- 4. Inductive Representation Learning on Large Graphs, William L. Hamilton, Rex Yin, Jure Leskovec, GraphSage https://arxiv.org/pdf/1706.02216.pdf

This to the best of my knowledge the latest paper on scalable graph convolutions, multiple applications, efficient realisation. This will be our last subject. Lectures on 19th and 26th will be for projects defence.