USA Census shapefile tests (in R)

The object here is to see if we can download and use census shapefiles.

- First, let's install the tigris libraries and load them up. Then have commented out code to do a
 quick plot of the states to see if things are working as they should be. Look up the codes for a
 county next.
- Then we'll learn how to extract some census tracts and plot these, along with the test location
- Finally, we will run a couple of tests to see if we can correctly identify whether the test location is inside the test regions.

In [14]:

```
#devtools::install_github('walkerke/tigris')
library(tigris)
library(magrittr)
#states() %>% plot()
lookup_code("Colorado", "Boulder County")
```

Out[14]:

"The code for Colorado is '08' and the code for Boulder County is '013'."

Now that we have the appropriate state and county codes, we can fetch the data by supplying the state FIPS code for Colorado and an appropriate vector of county codes. We also can supply the argument (was formerly called "detailed") cb = FALSE to return a simplified (and faster to download) dataset which is suitable for mapping.

Census Tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity that are updated by local participants prior to each decennial census as part of the Census Bureau's Participant Statistical Areas Program. The Census Bureau delineates census tracts in situations where no local participant existed or where state, local, or tribal governments declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of statistical data.

Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. A census tract usually covers a contiguous area; however, the spatial size of census tracts varies widely depending on the density of settlement. Census tract boundaries are delineated with the intention of being maintained over a long time so that statistical comparisons can be made from census to census. Census tracts occasionally are split due to population growth or merged as a result of substantial population decline.

Census tract boundaries generally follow visible and identifiable features. They may follow nonvisible legal boundaries, such as minor civil division (MCD) or incorporated place boundaries in some states and situations, to allow for census-tract-to-governmental-unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy.

In [15]:

```
dfw <- tracts(state = '08', county = c('013'), cb = FALSE)</pre>
```

In [16]:

plot(dfw)

Tried to install extra software from https://github.com/ellisonbg/ipyleaflet (https://github.com/ellisonbg/ipyleaflet) to run leaflet in Jupyter, but it was not needed. The following works OK.

In [17]:

```
library(leaflet)
require(maptools)
test_latitude <- 39.9205775
test_longitude <- -105.1634785
m <- leaflet(dfw) %>%
   addTiles() %>% # Add default OpenStreetMap map tiles
   addMarkers(lng=test_longitude, lat=test_latitude, popup="Test Location") %>%
   addPolygons(weight = 1)
tf = 'myfigure.html'
htmlwidgets::saveWidget(m, file = tf, selfcontained = F)
IRdisplay::display_html(paste("<iframe src=' ", tf, " ' ","/>"))
```


In [18]:

```
head(fips_codes)
str(fips_codes)
```

Out[18]:

	state	state_code	state_name	county_code	county
1	AL	01	Alabama	001	Autauga County
2	AL	01	Alabama	003	Baldwin County
3	AL	01	Alabama	005	Barbour County
4	AL	01	Alabama	007	Bibb County
5	AL	01	Alabama	009	Blount County
6	AL	01	Alabama	011	Bullock County

```
'data.frame': 3235 obs. of 5 variables:
$ state : chr "AL" "AL" "AL" "AL" ...
$ state_code : chr "01" "01" "01" "01" ...
$ state_name : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
$ county_code: chr "001" "003" "005" "007" ...
$ county : chr "Autauga County" "Baldwin County" "Barbour County" "Bibb County" ...
```

In [19]:

head(dfw)							
STATEFP	COUNTYFP	TRACTCE	GEOID	NAME		NZ	AMELSA
D MTFCC							
70 08	013	013503	08013013503	135.03	Census	Tract	135.0
3 G5020							
76 08	013	012102	08013012102	121.02	Census	Tract	121.0
2 G5020							
77 08	013	012104	08013012104	121.04	Census	Tract	121.0
4 G5020							
78 08	013	012105	08013012105	121.05	Census	Tract	121.0
5 G5020							
79 08	013	012101	08013012101	121.01	Census	Tract	121.0
1 G5020							
81 08	013	012202	08013012202	122.02	Census	Tract	122.0
2 G5020							
FUNCSTAT	' AT ₁ AND	AWATER	INTPTLAT	דחתד	PTLON		
	1950396		+40.1812420 -				
	2882031	_	+40.0299035 -				
	2700872	•	+40.0293033 +40.0507733 -				
	3 2475518		+40.0507733 -				
	24/3310		-40.0302062 -		72091		

In [20]:

#080130614001017

```
test region <- dfw[dfw@data$GEOID == '08013061400',]
str(test region)
Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slo
+s
  ..@ data
               :'data.frame': 1 obs. of 12 variables:
  .. ..$ STATEFP : chr "08"
  .. .. $ COUNTYFP: chr "013"
  .. ..$ TRACTCE : chr "061400"
               : chr "08013061400"
  .. ..$ GEOID
               : chr "614"
  .. ..$ NAME
  .. .. $ NAMELSAD: chr "Census Tract 614"
  ...$ MTFCC
              : chr "G5020"
  .. ..$ FUNCSTAT: chr "S"
               : num 2579580
  .. ..$ ALAND
  ...$ AWATER : num 8890
  .. ..$ INTPTLAT: chr "+39.9209698"
  .. ..$ INTPTLON: chr "-105.1567997"
  ..@ polygons
              :List of 1
  .. .. $: Formal class 'Polygons' [package "sp"] with 5 slots
  .. .. .. .. @ Polygons :List of 1
  ..... :Formal class 'Polygon' [package "sp"] with 5 s
lots
  ..... labpt : num [1:2] -105.2 39.9
  .. .. .. .. .. ..@ area
                           : num 0.000273
  .. .. .. .. .. .. .. .. .. hole
                           : logi FALSE
  .... int 1
  -105 -105 ...
  .. .. .. @ plotOrder: int 1
                     : num [1:2] -105.2 39.9
  .. .. ..@ labpt
  .. .. ..@ ID
                      : chr "1124"
  .. .. ..@ area
                     : num 0.000273
  ..@ plotOrder : int 1
               : num [1:2, 1:2] -105.2 39.9 -105.1 39.9
  .. ..- attr(*, "dimnames")=List of 2
  ....$ : chr [1:2] "x" "y"
  .. .. ..$ : chr [1:2] "min" "max"
  ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
  .. .. .. @ projargs: chr "+proj=longlat +datum=NAD83 +no defs +e
```

llps=GRS80 +towqs84=0,0,0"

In [21]:

```
m <- leaflet(test_region) %>%
   addTiles() %>%  # Add default OpenStreetMap map tiles
   addMarkers(lng=test_longitude, lat=test_latitude, popup="Test Location") %>%
   addPolygons(weight=1)
tf = 'myfigure.html'
htmlwidgets::saveWidget(m, file = tf, selfcontained = F)
IRdisplay::display_html(paste("<iframe src=' ", tf, " ' ","/>"))
```


Test to see if the test location is inside the selected region

Valid case

If it is, then we will see TRUE printed below

```
In [22]:
```

```
library(rgeos)
library(sp)
library(rgdal)
```

In [23]:

```
point <- data.frame(lon=test_longitude, lat=test_latitude)
sp2 <- SpatialPoints(point,proj4string=CRS(proj4string(test_region)))
gContains(test_region,sp2)</pre>
```

Out[23]:

TRUE

Invalid case

In [24]:

```
test_region <- dfw[dfw@data$GEOID == '08013012105',]
m <- leaflet(test_region) %>%
    addTiles() %>% # Add default OpenStreetMap map tiles
    addMarkers(lng=test_longitude, lat=test_latitude, popup="Test Location") %>%
    addPolygons(weight=1)

tf = 'myfigure.html'
htmlwidgets::saveWidget(m, file = tf, selfcontained = F)
IRdisplay::display_html(paste("<iframe src=' ", tf, " ' ","/>"))
point <- data.frame(lon=test_longitude, lat=test_latitude)
sp2    <- SpatialPoints(point,proj4string=CRS(proj4string(test_region)))
gContains(test_region,sp2)</pre>
```


Out[24]:

FALSE

OK, we are able to test correctly if a region falls within a given shapefile.

Additional Tests with the Tigris Library

In [25]:

#places("Maine")
list_counties("Colorado")

Out[25]:

	county	county_code
1	Adams	001
2	Alamosa	003
3	Arapahoe	005
4	Archuleta	007
5	Baca	009
6	Bent	011
7	Boulder	013
8	Broomfield	014
9	Chaffee	015
10	Cheyenne	017
11	Clear Creek	019
12	Conejos	021
13	Costilla	023
14	Crowley	025
15	Custer	027
16	Delta	029
17	Denver	031
18	Dolores	033
19	Douglas	035
20	Eagle	037
21	Elbert	039
22	El Paso	041
23	Fremont	043
24	Garfield	045
25	Gilpin	047
26	Grand	049
27	Gunnison	051
28	Hinsdale	053

29	Huerfano	055
30	Jackson	057
:	:	:
35	La Plata	067
36	Larimer	069
37	Las Animas	071
38	Lincoln	073
39	Logan	075
40	Mesa	077
41	Mineral	079
42	Moffat	081
43	Montezuma	083
44	Montrose	085
45	Morgan	087
46	Otero	089
47	Ouray	091
48	Park	093
49	Phillips	095
50	Pitkin	097
51	Prowers	099
52	Pueblo	101
53	Rio Blanco	103
54	Rio Grande	105
55	Routt	107
56	Saguache	109
57	San Juan	111
58	San Miguel	113
59	Sedgwick	115
60	Summit	117
61	Teller	119
62	Washington	121
63	Weld	123
64	Yuma	125

In [26]:

print(dfw\$GEOID)

[1] "08013013503" "08013012102" "08013012104" "08013012105" "080 13012101" [6] "08013012202" "08013012204" "08013012300" "08013012203" "080 13012505" [11] "08013012507" "08013012501" "08013012701" "08013012603" "080 13012511" [16] "08013012509" "08013012508" "08013012903" "08013012705" "080 13012708"

[21] "08013012709" "08013012905" "08013012907" "08013012904" "080 13013003"

[26] "08013060900" "08013013004" "08013013207" "08013013005" "080 13013205"

[31] "08013013006" "08013013202" "08013012510" "08013012401" "080 13013305"

[36] "08013013307" "08013013302" "08013013210" "08013013211" "080 13013308"

[41] "08013013208" "08013013401" "08013013402" "08013013701" "080 13012103"

[46] "08013013702" "08013012710" "08013012707" "08013012201" "080 13013201"

[51] "08013013601" "08013012800" "08013060700" "08013013602" "080 13013306"

[56] "08013012605" "08013060600" "08013013213" "08013060800" "080 13012607"

[61] "08013013505" "08013012608" "08013013506" "08013061400" "080 13013508"

[66] "08013013507" "08013061300" "08013013212"

In []: