Experimental Setup, Model Selection, Overfitting, Regularization

Explaining concepts with a polynomial fitting example

Outline

Learning Goals

Experimental setup and model selection

Overfitting and regularization

Metrics

Summary

Learning Goals

Explain how to design your experiment

Introduce how to select your model

• Introduce the concepts of *over-fitting*, *under-fitting*, and *model generalization*.

• Introduce the concept of *regularization* for reducing model *over-fitting*.

Hands-on Tutorial

https://github.com/rmsouza01/ENEL645-F2024

• Tutorial: Model selection, overfitting, regularization

 Based on the example presented in chapter 1 of the book: Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Experiment Design: Train, Validation and Test

Experiment Design: Train, Validation and Test

- Train set: learn parameters of your models
- Validation set: model selection
- **Test set**: verify generalizability to unseen data

Experiment Design: k-fold cross validation

- Performs k iterations on the data
- Stratified k-fold: maintain the proportions of each class into folds (unbalance data)

Some brown spots: 6

• What is an apple?

- 1 Short stem
- 2 Round
- 3 Bright and red
- 4 Yellow-green blush
- 5 Seed
- 6 Some brown spots

• What is an apple?

- 1 Short stem
- 2 Round
- 3 Bright and red
- 4 Yellow-green blush
- 5 Seed
- 6 Some brown spots

• What is an apple?

1 - Short stem

2 Round

3 – Bright and red or green or yellow

4 – Yellow-green blush

5 Seed

6 Some brown spots

What is an apple?

1 - Short stem

2 Round

3 – Bright and red or green or yellow

4 – Yellow-green blush

5 Seed

6 Some brown spots

- Under-fitting: too inflexible; captures no pattern
 - fitting a linear model to non-linear data
- Over-fitting: too flexible; fits to noise in the data
 - model is excessively complex (#features>>#samples or #parameters too high)
 - decision boundary does not generalize-> poor results for new samples

Techniques to Avoid Over-fitting

- More data
- Reduce model complexity (i.e., number of trainable parameters)
- Regularization
 - Dropout
 - L1 & L2 regularization
- Data augmentation

Dropout

Learn redundant paths -> gain robustness

(a) Standard Neural Net

(b) After applying dropout.

Dropout

Learn redundant paths -> gain robustness

3.1415926535897

Supervised Data = Images + labels

JPEG compressed

Reference

Supervised Data = Images + labels

Data augmentation illustration (regression)

2nd epoch

Supervised Data = Images + labels

Supervised Data = Images + labels

Data augmentation illustration (segmentation)

L1 & L2 Regularization

L1 regularization (Lasso)

The idea of the regularization is to penalize your model by decreasing its complexity.

L1 regularization can be seen as a feature selection because by zeroing some of the weights it can tell us what features are not important

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$
Quickly to zero

1 - Short stem

2 Round

3 – Bright and red or green or yellow

4 – Yellow-green blush

5 Seed

6 Some brown spots

L1 & L2 Regularization

L2 regularization (Weight Decay)

L2 regularization is commonly known as weight decay because it shrinks the weight according to the regularize factor

L2 Regularization

Cost = $\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2$ Become smaller (Not necessarily zero)

- 1 Short stem x 0.1
- $2 Round \times 0.9$
- 3 Bright and red or green or yellow x 0.9
- 4 Yellow-green blush x 0.8
- $5 \text{Seed } \times 0.3$
- 6 Some brown spots x 0.01

Metrics - Classification

Confusion matrix

Accuracy =	TP+TN		
Accuracy –	$\overline{TP+TN+FP+FN}$		

	A ⁱ	icted 0 predi	cted 1	icted 2 predi	icted 3	icted ^A predi	cted 5	icted 6	icted 7 predi	icted 8	cted
	$b_{l_{G_O}}$, blea	, blea	, blea	, bleo	, blea	, bleo	, blea	, blea	, blea	
actual 0	954	0	0	7	1	10	6	3	7	3	
actual 1	0	1031	4	3	1	4	1	2	16	2	
actual 2	12	21	852	18	11	8	14	20	29	5	
actual 3	2	5	9	899	1	71	0	12	23	7	
actual 4	2	8	2	2	861	7	7	1	4	89	
actual 5	7	5	9	24	3	833	12	8	12	2	
actual 6	11	6	2	0	6	31	902	0	8	1	
actual 7	3	10	5	3	7	7	1	1041	0	14	
actual 8	2	28	4	29	2	31	1	9	882	21	
actual 9	7	3	1	7	10	11	1	44	4	873	

Source: Adapted from https://ml4a.github.io/demos/confusion_mnist/

Metrics - Classification

Receiver operating characteristic (ROC) curve

$$Sensitivity = TP / P$$

 $Specificity = TN / N$

Metrics - Regression

Structural Similarity (SSIM)

$$ext{SSIM}(x,y) = rac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

Luminance, Contrast, and Structure

Metrics - Regression

Normalized Root Mean Squared Error (NRMSE)

$$ext{RMSD}(\hat{ heta}) = \sqrt{ ext{MSE}(\hat{ heta})} = \sqrt{ ext{E}((\hat{ heta} - heta)^2)}.$$

$$ext{NRMSD} = \frac{ ext{RMSD}}{y_{ ext{max}} - y_{ ext{min}}}$$

E = target – prediction
E =
$$0.5 - 1.0$$

E = -0.5
 $E^2 = 0.25$
E = 0.5

Metrics - Regression

Peak Signal to Noise Ratio (PSNR)

$$egin{aligned} \mathit{MSE} &= rac{1}{m \, n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2 \ &PSNR = 10 \cdot \log_{10} \left(rac{\mathit{MAX}_I^2}{\mathit{MSE}}
ight) \ &= 20 \cdot \log_{10} \left(rac{\mathit{MAX}_I}{\sqrt{\mathit{MSE}}}
ight) \ &= 20 \cdot \log_{10} (\mathit{MAX}_I) - 10 \cdot \log_{10} (\mathit{MSE}) \end{aligned}$$

$$E = target - prediction$$

 $E = 0.5 - 1.0$
 $E = -0.5$

$$MAX = 255$$

PSNR = 20 x log10 (255) - 10 x log(0.25)
PSNR = 48.1

Summary

• For large datasets, a single train/val/test split is often sufficient

The validation set is used for model selection

Overfitting makes your model less generalizable to new datasets

 Model overfitting can be mitigated by employing techniques, such as regularization

Thank you!

