

Coherifying quantum states and channels

Kamil Korzekwa

Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney NSW 2006, Australia

Team

Karol Życzkowski

Jagiellonian University, Kraków

Polish Academy of Sciences, Warsaw

Zbigniew Puchała

Jagiellonian University, Kraków

Polish Academy of Sciences, Gliwice

Stanisław Czachórski Jagiellonian University, Kraków

Outline

- 1. Motivating examples
- 2. What does it mean to coherify a state or a channel?
- 3. How coherent can a quantum channel be?
- 4. How well can we distinguish classically indistinguishable states and channels?
- 5. Outlook

Motivating examples

Quantum state ρ

What \boldsymbol{p} tells us about ρ ?

$$\boldsymbol{p} = [1, 0]$$

$$p = [1, 0]$$
 $p = [3/4, 1/4]$

Quantum channel Φ

$$k \rangle \langle k | \longrightarrow \boxed{} \longrightarrow \boxed{} \longrightarrow T_{jk} = \langle j | \Phi(|k \rangle \langle k|) | j \rangle$$

What T tells us about Φ ?

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \qquad \Phi(\cdot) = \frac{1}{2}$$

Motivating examples

Quantum state ρ

$$\rho \longrightarrow \boxed{} \qquad p_j = \langle j | \rho | j \rangle$$

What \boldsymbol{p} tells us about ρ ?

$$\boldsymbol{p} = [1, 0]$$

$$p = [1, 0]$$
 $p = [3/4, 1/4]$

Quantum channel Φ

$$|k\rangle\langle k|$$
 \longrightarrow $\boxed{ }$ $\boxed{ }$

What T tells us about Φ ?

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \qquad \Phi(\cdot) = H(\cdot)H^{\dagger} \qquad H = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Outline

- 1. Motivating examples
- 2. What does it mean to coherify a state or a channel?
- 3. How coherent can a quantum channel be?
- 4. How well can we distinguish classically indistinguishable states and channels?
- 5. Outlook

Coherence of quantum states

Given a fixed basis $\{|j\rangle\}$ with $j \in \{1, \ldots, d\}$:

 $\langle j|\rho|j\rangle$: occupations p_j $\langle j|\rho|k\rangle$: coherences c_{jk}

Less coherent

More coherent

$$\rho_1 = \begin{bmatrix} \frac{3}{4} & 0\\ 0 & \frac{1}{4} \end{bmatrix}$$

$$\rho_2 = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

$$\rho_1 = \begin{bmatrix} \frac{3}{4} & 0 \\ 0 & \frac{1}{4} \end{bmatrix} \qquad \rho_2 = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \qquad \rho_3 = \begin{bmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{bmatrix}$$

Decohering channel \mathcal{D} :

$$\mathcal{D}(\rho) = \sum_{j} \langle j | \rho | j \rangle | j \rangle \langle j |$$

$$c_{jk} \to 0, \quad p_j \to p_j$$

$$\mathcal{D}(\rho_3) = \mathcal{D}(\rho_2) = \mathcal{D}(\rho_1) = \rho_1$$

Coherence of quantum states

Incoherent (classical) state ρ identified with probability distribution \boldsymbol{p} :

$$\rho = \mathcal{D}(\rho) = \sum_{j} p_j |j\rangle\langle j|$$

Classical state space

probability simplex

Coherence measures (distance from incoherent states):

$$C_{e}(\rho) := S(\rho||\mathcal{D}(\rho)) = S(\boldsymbol{p}) - S(\boldsymbol{\lambda}(\rho))$$

 $C_2(\rho) := ||\rho - \mathcal{D}(\rho)||_2 = \boldsymbol{\lambda}(\rho) \cdot \boldsymbol{\lambda}(\rho) - \boldsymbol{p} \cdot \boldsymbol{p}$

with $\lambda(\rho)$ denoting the eigenvalues of ρ

Coherifying quantum states

Decohering channel \mathcal{D} :

$$\rho \text{ with } \langle j|\rho|j\rangle = p_j \xrightarrow{\mathcal{D}} \rho^{\mathcal{D}} = \operatorname{diag}(\boldsymbol{p})$$

Coherification \mathcal{C} is a formal (not unique!) inverse of \mathcal{D} :

$$\rho = \operatorname{diag}(\boldsymbol{p}) \xrightarrow{\mathcal{C}} \rho^{\mathcal{C}} \text{ with } \langle j | \rho | j \rangle = p_j$$

diag
$$(\boldsymbol{p}) \stackrel{\mathcal{C}}{\longrightarrow} |\psi\rangle\langle\psi|$$
 with $|\psi\rangle = \sum_{i} \sqrt{p_{j}} e^{i\phi_{j}} |j\rangle$

$$C_{\rm e}(|\psi\rangle\langle\psi|) = S(\boldsymbol{p})$$
 $C_{2}(|\psi\rangle\langle\psi|) = 1 - \boldsymbol{p} \cdot \boldsymbol{p}$

How many distinct ways to coherify?

Coherence of quantum channels

Given a fixed basis $\{|j\rangle\}$ with $j \in \{1, \dots, d\}$:

Choi-Jamiołkowski isomorphism (channel $\Phi \leftrightarrow$ bipartite state J_{Φ}):

CPTP conditions are translated into:

Relation between J_{Φ} and T:

Vectorising classical action:

 $\langle j|\Phi(|k\rangle\langle k|)|j\rangle$: classical action T_{jk}

 $\langle j|\Phi(|m\rangle\langle n|)|k\rangle$: action involving coherences

$$J_{\Phi} = \frac{1}{d} (\Phi \otimes \mathcal{I}) |\Omega\rangle\langle\Omega|, \quad |\Omega\rangle = \sum_{j} |jj\rangle$$

$$J_{\Phi} \geq 0$$
, $\operatorname{Tr}_{1}(J_{\Phi}) = \frac{1}{d}$

$$\langle jk|J_{\Phi}|jk\rangle = \frac{1}{d}T_{jk}$$

$$\operatorname{diag}(J_{\Phi}) = \frac{1}{d}|T\rangle\rangle, \quad |T\rangle\rangle = T \otimes \mathbb{1}|\Omega\rangle$$

E.g.
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \rangle = [1, 2, 3, 4, 5, 6, 7, 8, 9]^{\top}$$

Coherence of quantum channels

Classical channels defined as channels with incoherent (classical) Jamiołkowski state.

Effect of a classical channel with classical action T:

$$\rho \implies \mathcal{D}(\rho) = \sum_{j} p_{j} |j\rangle\langle j| \implies \sigma = \sum_{j} q_{j} |j\rangle\langle j| \text{ with } \boldsymbol{q} = T\boldsymbol{p}$$

Define coherence measures of Φ through coherence measures of J_{Φ} :

$$C_{\rm e}(\Phi) = S(\frac{1}{d}|T\rangle\rangle) - S(\boldsymbol{\lambda}(J_{\Phi})), \quad C_2(\Phi) = \boldsymbol{\lambda}(J_{\Phi}) \cdot \boldsymbol{\lambda}(J_{\Phi}) - \frac{1}{d^2}\langle\langle T|T\rangle\rangle$$

Cf.
$$C_{e}(\rho) = S(\mathbf{p}) - S(\lambda(\rho)),$$
 $C_{2}(\rho) = \lambda(\rho) \cdot \lambda(\rho) - \mathbf{p} \cdot \mathbf{p}$

Optimising coherence of Φ with fixed $T \iff$ optimising $\lambda(J_{\Phi})$

Coherifying quantum channels

Decohering operation \mathcal{D} :

$$\Phi$$
 with diag $(J_{\Phi}) = \frac{1}{d}|T\rangle\rangle \xrightarrow{\mathcal{D}} \Phi^{\mathcal{D}}$ with $J_{\Phi^{\mathcal{D}}} = \mathcal{D}(J_{\Phi}) = \frac{1}{d}\text{diag}(|T\rangle\rangle)$

Coherification \mathcal{C} is a formal (not unique!) inverse of \mathcal{D} :

$$\Phi$$
 with $J_{\Phi} = \mathcal{D}(J_{\Phi}) = \frac{1}{d} \operatorname{diag}(|T\rangle\rangle) \xrightarrow{\mathcal{C}} \Phi^{\mathcal{C}}$ with $\operatorname{diag}(J_{\Phi^{\mathcal{C}}}) = \frac{1}{d} |T\rangle\rangle$

Can one always optimally coherify a classical map T?

$$\frac{1}{d}|T\rangle\rangle \stackrel{\mathcal{C}}{\longrightarrow} |\psi\rangle\langle\psi| \text{ with } |\psi\rangle = \frac{1}{\sqrt{d}} \sum_{j,k} \sqrt{T_{jk}} e^{i\phi_{jk}} |jk\rangle$$

No! TP condition requires $\operatorname{Tr}_1(|\psi\rangle\langle\psi|) = \frac{1}{d}$

$$T = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
E.g. $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$

$$\operatorname{Tr}_{1}(|\psi\rangle\langle\psi|) = |+\rangle\langle+|$$

Outline

- 1. Motivating examples
- 2. What does it mean to coherify a state or a channel?
- 3. How coherent can a quantum channel be?
- 4. How well can we distinguish classically indistinguishable states and channels?
- 5. Outlook

Categories of classical actions

Example of $T \in \mathcal{B}_d$ and $T \notin \mathcal{U}_d$:

$$T = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}, \qquad U = \begin{bmatrix} 0 & \frac{e^{i\theta_{12}}}{\sqrt{2}} & \frac{e^{i\theta_{13}}}{\sqrt{2}} \\ \frac{e^{i\theta_{21}}}{\sqrt{2}} & 0 & \frac{e^{i\theta_{23}}}{\sqrt{2}} \\ \frac{e^{i\theta_{31}}}{\sqrt{2}} & \frac{e^{i\theta_{32}}}{\sqrt{2}} & 0 \end{bmatrix}$$

Not a unitary!

Hadamard product:

$$(A \circ B)_{jk} = A_{jk}B_{jk}$$

Kraus decomposition and classical action:

$$\Phi(\cdot) = \sum_{j} K_{j}(\cdot)K_{j}^{\dagger}, \qquad \sum_{j} K_{j} \circ \bar{K}_{j} = T$$

 Φ can be completely coherified $\iff T$ is unistochastic

Coherification upper-bound

Majorisation partial order:

$$\boldsymbol{p} \succ \boldsymbol{q} \iff \forall k : \sum_{j=1}^k p_j^{\downarrow} \ge \sum_{j=1}^k q_j^{\downarrow}$$

Important because:

$$p \succ q \implies S(p) \leq S(q) \text{ and } p \cdot p \geq q \cdot q$$

Look for $\mu^{\succ}(T)$ such that:

$$\forall \Phi \text{ with } \operatorname{diag}(J_{\Phi}) = \frac{1}{d} |T\rangle\rangle : \boldsymbol{\mu}^{\succ}(T) \succ \boldsymbol{\lambda}(J_{\Phi})$$

Cf.
$$C_{\rm e}(\Phi) = S(\frac{1}{d}|T\rangle\rangle) - S(\boldsymbol{\lambda}(J_{\Phi})), \quad C_2(\Phi) = \boldsymbol{\lambda}(J_{\Phi}) \cdot \boldsymbol{\lambda}(J_{\Phi}) - \frac{1}{d^2}\langle\langle T|T\rangle\rangle$$

Procedure to obtain upper-bounding $\mu^{\succ}(T)$:

$$T = \begin{bmatrix} 0.7 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.4 \\ 0.2 & 0.2 & 0 \end{bmatrix} \xrightarrow{\text{Sum over}} \begin{bmatrix} 1.5 \\ 1.1 \\ 0.4 \end{bmatrix} \xrightarrow{\text{Distribute}} \begin{bmatrix} 1 & 0.5 & 0 \\ 1 & 0.1 & 0 \\ 0.4 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Sum over}} \begin{bmatrix} 0.8 \\ 0.2 \\ 0 \end{bmatrix}^{\top} = \boldsymbol{\mu}^{\succ}(T)$$

Coherification lower-bound

Explicit construction of nonoptimally coherified channel:

$$\Phi^{\mathcal{C}}(\cdot) = \sum_{j} K_{j}(\cdot) K_{j}^{\dagger},$$

$$\Phi^{\mathcal{C}}(\cdot) = \sum_{j} K_{j}(\cdot)K_{j}^{\dagger}, \qquad T = \begin{bmatrix} 0.7 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.4 \\ 0.2 & 0.2 & 0 \end{bmatrix}$$

$$K_1 = \begin{bmatrix} \sqrt{0.7} & 0 & 0 \\ 0 & \sqrt{0.6} & 0 \\ 0 & \sqrt{0.2} & 0 \end{bmatrix},$$

$$K_1 = \begin{bmatrix} \sqrt{0.7} & 0 & 0 \\ 0 & \sqrt{0.6} & 0 \\ 0 & \sqrt{0.2} & 0 \end{bmatrix}, \quad K_2 = \begin{bmatrix} 0 & 0 & \sqrt{0.6} \\ 0 & 0 & \sqrt{0.4} \\ \sqrt{0.2} & 0 & 0 \end{bmatrix}, \quad K_3 = \begin{bmatrix} 0 & \sqrt{0.2} & 0 \\ \sqrt{0.1} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

the 2nd largest entry in each row

Leave only the square root of Leave only the square root of the 3rd largest entry in each row

Procedure to obtain lower-bounding $\mu^{\prec}(T)$:

$$T = \begin{bmatrix} 0.7 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.4 \\ 0.2 & 0.2 & 0 \end{bmatrix} \xrightarrow{\text{Order within}} \begin{bmatrix} 0.7 & 0.6 & 0.2 \\ 0.6 & 0.4 & 0.1 \\ 0.2 & 0.2 & 0 \end{bmatrix} \xrightarrow{\text{Sum over rows and normalise}} \begin{bmatrix} 0.5 \\ 0.4 \\ 0.1 \end{bmatrix} = \boldsymbol{\mu}^{\prec}(T)$$

Sydney, 13/06/2018 16/24

Optimal coherification of qubit channels

Classical action of a qubit channel:

$$T = \begin{bmatrix} a & 1-b \\ 1-a & b \end{bmatrix} =: \begin{bmatrix} a & \tilde{b} \\ \tilde{a} & b \end{bmatrix}$$

Optimally coherified channel:

$$\Phi^{\mathcal{C}}(\cdot) = \Psi(U(\cdot)U^{\dagger})$$

- •Extremal
- •Min output entropy=0

with unitary:

$$U = \frac{1}{\sqrt{a+\tilde{b}}} \begin{bmatrix} \sqrt{a} & -\sqrt{\tilde{b}} \\ \sqrt{\tilde{b}} & \sqrt{a} \end{bmatrix},$$

and $\Psi(\cdot) = L_1(\cdot)L_1^{\dagger} + L_2(\cdot)L_2^{\dagger}$ with:

$$T = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{2}{3} & \frac{5}{6} \end{bmatrix} \qquad L_1 = \begin{bmatrix} \sqrt{a+\tilde{b}} & 0 \\ 0 & 1 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 0 & 0 \\ \sqrt{b-a} & 0 \end{bmatrix}.$$

Bistochastic classical action

For bistochastic T majorisation upper-bound becomes trivial:

$$[1,0,\ldots,0]^{\top} = \boldsymbol{\mu}^{\succ}(T) \succ \boldsymbol{\lambda}(J_{\Phi})$$

Any non-trivial bound describes the unistochastic-bistochastic boundary (known to be complex: characterised so far only for d < 4)

Developed a family of bounds based on polygon constraints.

Coherence and classical randomness

Evolution of a pure quantum state $|\psi\rangle$ under the action of a channel Φ ,

$$\Phi(|\psi\rangle\langle\psi|) = \sum_{j} K_{j} |\psi\rangle\langle\psi| K_{j}^{\dagger}$$

can be interpreted as incoherent mixture of pure state transformations:

$$|\psi\rangle \xrightarrow{\Phi} \frac{1}{\sqrt{q_j}} K_j |\psi\rangle$$
 with probability q_j , $q_j = \text{Tr}\left(K_j |\psi\rangle\langle\psi| K_j^{\dagger}\right)$

Path probability averaged over all pure states, $\langle \cdot \rangle_{\psi} = \int d\psi(\cdot)$,

$$\langle q_j \rangle_{\psi} = \operatorname{Tr}\left(K_j \langle |\psi\rangle \langle \psi| \rangle_{\psi} K_j^{\dagger}\right) = \operatorname{Tr}\left(K_j K_j^{\dagger}\right) = \lambda_j(J_{\Phi})$$

Also note a bound on unitarity: $u(\Phi) \leq \frac{d^2}{d^2 - 1} \left[\boldsymbol{\lambda}(J_{\Phi}) \cdot \boldsymbol{\lambda}(J_{\Phi}) - \frac{1}{d^2} \right]$

Outline

- 1. Motivating examples
- 2. What does it mean to coherify a state or a channel?
- 3. How coherent can a quantum channel be?
- 4. How well can we distinguish classically indistinguishable states and channels?
- 5. Outlook

Perfectly distinguishable state coherifications

One can always optimally coherify a classical state p:

diag
$$(\boldsymbol{p}) \stackrel{\mathcal{C}}{\longrightarrow} |\psi_j\rangle\langle\psi_j|$$
 with $|\psi_j\rangle = \sum_k \sqrt{p_k} e^{i\phi_{jk}} |k\rangle$

Classical versions of such states $|\psi_i\rangle$ are the same and thus indistinguishable. However, $|\psi_i\rangle$ may be distinguished by measurements in different bases.

Question:

How many perfectly distinguishable states with classical version \boldsymbol{p} are there?

$$p = [3/4, 1/4]$$

$$p = [1/2, 1/2]$$

Sydney, 13/06/2018 21/24

Necessary condition for N-distinguishability

$$N \text{ perfectly distinguishable states } \{\rho^{(j)}\} \iff N \text{ orthogonal states } \{|\psi_j\rangle\}$$
 with $\langle k|\rho^{(j)}|k\rangle = p_k$ with $|\langle k|\psi_j\rangle|^2 = p_k$
$$\forall k: \ p_k \leq \frac{1}{N}$$

Orthogonal $\{|\psi_i\rangle\}$ could form columns — Corresponding unistochastic matrix: of a unitary matrix:

$$U = \begin{bmatrix} \sqrt{p_1}e^{i\phi_{11}} & \dots & \sqrt{p_1}e^{i\phi_{1N}} & \dots \\ \sqrt{p_2}e^{i\phi_{21}} & \dots & \sqrt{p_2}e^{i\phi_{2N}} & \dots \\ \vdots & \ddots & \vdots & & \vdots \\ \sqrt{p_d}e^{i\phi_{N1}} & \dots & \sqrt{p_d}e^{i\phi_{dN}} & \dots \end{bmatrix} \quad U \circ \bar{U} = \begin{bmatrix} p_1 & \dots & p_1 & \dots \\ p_2 & \dots & p_2 & \dots \\ \vdots & \ddots & \vdots & \dots \\ p_d & \dots & p_d & \dots \end{bmatrix} \quad \text{But rows} \quad \text{must sum} \quad \text{to 1!}$$

Sydney, 13/06/2018 22/24

(In)sufficiency of the condition

$$N=2:$$
 $\langle \psi_1 | \psi_2 \rangle = \sum_j p_j e^{i\phi_j} = 0 \iff \exists \text{ polygon with sides of length } \{p_j\}$ $\forall k: p_k \leq \frac{1}{2}$ Triangle inequality

N=d: Choose d vectors from the unbiased basis (connected via Fourier matrix)

$$N = 3$$
:

For d = 4 necessary condition means that:

$$\boldsymbol{p} = \lambda_1[0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}] + \lambda_1[\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}] + \lambda_1[\frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3}] + \lambda_1[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0]$$

with
$$\lambda_j \geq 0$$
 and $\sum_j \lambda_j = 1$

(In)sufficiency of the condition

$$N=2:$$
 $\langle \psi_1|\psi_2\rangle=\sum_j p_j e^{i\phi_j}=0$ \iff \exists polygon with sides of length $\{p_j\}$ $\forall k:\ p_k\leq rac{1}{2}$ Triangle inequality

N=d: Choose d vectors from the unbiased basis (connected via Fourier matrix)

Distinguishing channel coherifications

Channels $\{\Phi^{(j)}\}\$ with fixed classical action T are perfectly distinguishable iff:

 $\exists \rho_{AB} \colon \{\Phi^{(j)} \otimes \mathcal{I}(\rho_{AB})\}\$ are perfectly distinguishable

If $\exists \rho \colon \{\Phi^{(j)}(\rho)\}\$ are perfectly distinguishable then no entanglement needed

Type of classical action	Number of perfectly distinguishable channels	Requires entanglement
Unistochastic	$\geq d$	Yes for $> d$
Circulant	d	Yes
Bistochastic	2	Yes
Such that $\exists j, k : T_{jk} \leq \frac{1}{2}$	2	No

Outlook

- Are optimally coherified channels extremal? Have vanishing minimum output entropy? Other special properties?
- Stronger links between coherifications and channel irreversibility? Random walks?
- Formal relation between the number of perfectly distinguishable states and information loss due to decoherence? Energy-time uncertainty?
- Applications in cryptographic protocols? Usefulness in the presence of SSR?

New J. Phys. **20**, 043028 (2018) [arXiv:1710.04228]

Thank you!