Testing Peers' Volatility

Eduardo Cunha de Almeida^α, Gerson Sunyé^α, Yves Le Traon^β and Patrick Valduriez^γ http://peerunit.gforge.inria.fr/

P2P systems

- Resource sharing
- Volatility of peers
- No single point of failure

Super-peer¹

¹JXTA

Unstructured², Structured³

²Gnutella, ³Chord, Pastry

Problem

How to validate correctness in P2P systems?

- Volatile
- Spread across the net

Approaches

Assume a single peer represents the entire P2P system.

JUnit

Motivation

- Increasing number of P2P systems vs.
- Very few and inadequate approaches to test them⁴.

Deploy test cases to all the peers in the system.

GridUnit

Decompose/deploy actions and control volatility.

PeerUnit

Architecture

- Control peer's volatility
- Decompose test cases into actions
- Deploy and manage these actions across the P2P SUT.
- Define and use variables on-the-fly

Components

Tester

- execute actions
- control volatility

Coordinator

- coordinate the test sequence
- store variables
- control volatility

Results

- Evaluation of the overhead of our testing coordination algorithm
- Test of two open source P2P systems: FreePastry and OpenChord

Overhead evaluation

Insert/retrieve testing

⁴Theotokis et al. (2004)