ECE 214 — Exam #2

Estimated time for completion: ≤ 1.25 hour 24 April 2018

Rules of the Exam

- Rule 1: The examination period begins at 11:00 am on Tuesday, 24 April 2018 and ends at 12:15 pm on Tuesday, 24 April 2018.
- Rule 2: The exam is worth 15 points.
- Rule 3: There are three problems, and each problem is worth 6 points. The maximum score is 18 out of 15.
- Rule 4: The exam is closed book and closed notes. You may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.
- Rule 5: To receive credit for an answer include the units along with the numerical answer.
- Rule 6: Show all work answers without supporting work will not receive credit.
- Rule 7: Do not leave the room until you have completed the exam.

Answer Key Name **Problem 1:** In the circuit below, switch S has been closed for a long time and then opens at t=0.

Complete the table on page 3, and derive the equation describing $V_C(t)$ for $t \ge 0$.

	$t = 0^{-}$	$t = 0^+$	$t = \infty$	
$I_{\mathbf{S}}$	20 MA -	-> 20 mA	0	
$ m V_L$	0	-18.32V	0	
V_{R}	0	18.32V	0	
V_{C}	10 V -	> 10 V	10V	

What is the equation for
$$V_{0}(t)$$
 for $t \ge 0$? $V_{c}(t) = 24.9 e^{-cat}$
 $d = \frac{R}{2L} = \frac{916}{4 \times 10^{-3}} = 229.0 \text{ v} \text{ rod } 15$
 $W_{0} \ge (LC)^{\frac{1}{2}} = 250,000 \text{ rod } 15$
 $w_{0} \ge (LC)^{\frac{1}{2}} = 250,000 \text{ rod } 15$
 $w_{0} \ge (W_{0}^{2} - x^{2})^{\frac{1}{2}} = 100,249 \text{ rod } 15$
 $V_{c}(t) = A_{1} e^{-cat} \cos(w_{d}t) + A_{1} e^{-cat} \sin(w_{d}t) + V_{c}(w_{0}t)$
 $V_{c}(t) = A_{2} e^{-cat} \cos(w_{d}t) + A_{3} e^{-cat} \sin(w_{d}t) + V_{c}(w_{0}t)$
 $V_{c}(t) = A_{2} e^{-cat} \sin(w_{d}t) + 10V$
 $V_{c}(t) = A_{2} e^{-cat} \sin(w_{d}t) + 10V$
 $V_{c}(t) = A_{3} e^{-cat} \sin(w_{d}t) + 10V$
 $V_{c}(t) = A_{4} e^{-cat} \sin(w_{d}t) + 10V$
 $V_{c}(t) = A_{5} e^{-cat} \sin(w_{d}t) + 10V$
 $V_{c}(t) = A_{7} e^{-cat} \sin(w_{d}t) + 10V$
 V_{c}

Problem 2: Consider the circuit below:

 a) Draw the Thévenin equivalent circuit representing terminals A and B.

b) Draw the Thévenin equivalent circuit representing terminals A and C.

c) Draw the Thévenin equivalent circuit representing terminals B and C.

Problem 3: Consider the circuit below:

Part A: When $R_E = 0 \Omega$, $R_S = R_{\pi} = R_L = 10 \Omega$, and $\beta = 99$, what is the equivalent resistance between terminals A and B?

201

Part B: When $R_S = 0 \Omega$, $R_E = R_\pi = R_L = 10 \Omega$ and $\beta = 99$, what is the equivalent resistance between terminals A and B?

1010 R

Part B: V

When $R_E = R_S = R_\pi = R_L = 10 \Omega$ and $\beta = 99$, what is the equivalent resistance between terminals A and B?

10201

Rim = Vteri = Rs+Rii+ (HR) RE

Blank page for calculations.		Name:	
	 ×	*S	3

Blank page for calculations.	Name:					
a ====================================	* *	.g.		Ŷ		