COMUNICAÇÃO DE DADOS

Introdução à Comunicação Eletrônica

TÓPICOS

O Significado da Comunicação Humana;

Sistemas de Comunicação;

Tipos de Comunicação Eletrônica;

Modulação e Multiplexação;

TÓPICOS

O Espectro Eletromagnético;

Largura de Banda;

 Um Panorama de Aplicações nas Redes de Computadores.

SIGNIFICADO DA COMUNICAÇÃO HUMANA

- A comunicação consiste no processo de troca de informação.
- As barreiras principais são a linguagem e a distância.
- Atualmente, a ênfase da sociedade contemporânea é o acúmulo, o acondicionamento e o domínio dos meios e métodos para troca de informação.

SIGNIFICADO DA COMUNICAÇÃO HUMANA

- Métodos de comunicação:
 - 1.Frente a frente;
 - 2.Sinais;
 - 3.Palavras escritas (cartas);
 - 4. Inovações elétricas
 - Telégrafo;
 - Telefone;
 - Rádio;
 - Televisão;
 - Internet (rede de computadores).

Ouando?	Quem ou onde?	O quê?
1837	Samuel Morse	Invenção do telégrafo (patenteado em 1844).
1843	Alexander Bain	Invenção do fac-símile (ou fax).
1866	Estados Unidos e Inglaterra	O primeiro cabo telegráfico transatlântico previsto.
1876	Alexander Bell	Invenção do telefone.
1877	Thomas Edison	Invenção do fonógrafo.
1879	George Eastman	Invenção da fotografia.
1887	Heinrich Hertz (alemão)	Descoberta das ondas de rádio.
1887	Guglielmo Marconi (italiano)	Demonstração das comunicações sem fio (wireless) por ondas de rádio.
1901	Marconi (italiano)	Primeiro contato transatlântico feito via rádio.
1903	John Fleming	Invenção do retificador de dois eletrodos de tubo a vácuo (válvula termiônica).
1906	Reginald Fessenden	Invenção da modulação em amplitude; primeira comunicação eletrônica de voz demonstrada.
1906	Lee de Forest	Invenção da válvula de três eletrodos (triodo).
1914	Hiram P. Maxim	Fundação da liga americana de radioamadores (American Radio Relay League – ARRL), a primeira organização de radioamadores.
1920	KDKA Pittsburg	Primeira transmissão de rádio.
1923	Vladimir Zworykin	Invenção e demonstração da televisão.
1933-1939	Edwin Armstrong	Invenção do receptor super-heterodino e da modulação de frequência.
1939	Estados Unidos	Primeiro uso de uma comunicação bidirecional (walkie-talkies).
1940-1945	Britain, Estados Unidos	Invenção e aperfeiçoamento do radar (Segunda Guerra Mundial).
1948	John von Neumann e outros	Criação do primeiro programa armazenado em um computador digital eletrônico.
1948	Laboratórios Bell	Invenção do transistor.
1953	RCA/NBC	Primeira transmissão de TV a cores.
1958-1959	Jack Kilby (Texas Instruments) e Robert Noyce (Fairchild)	Invenção do circuito integrado.
1958-1962	Estados Unidos	Primeiro satélite de comunicação testado.
1961	Estados Unidos	Primeiro uso da faixa de rádio do cidadão.
1975	Estados Unidos	Primeiros computadores pessoais.
1977	Estados Unidos	Primeira utilização de um cabo de fibra óptica.
1983	Estados Unidos	Redes de telefonia móvel.
1990s	Estados Unidos	Adoção e crescimento das redes de computadores, incluindo redes locais (LANs – Local Area Networks). Sistema de posicionamento global (GPS – Global Positioning System) por satélite para navegação. A Internet e a World Wide Web (rede de computadores interligados pela linha telefônica no mundo inteiro).
2000-presente	Global	Terceira geração de telefones celulares digitais, redes locais sem fio, transmissão de rádio digital e comunicação por fibra óptica de 40 Gbps.

- Canal de Comunicação Componentes básicos:
 - Transmissor;
 - Canal ou meio;
 - Receptor.
- O ruído degrada ou interfere na informação transmitida.

Modelo Geral de um Canal de Comunicação.

Transmissor

- O transmissor é uma coleção de componentes eletrônicos e circuitos que converte o sinal elétrico em um sinal apropriado para a transmissão através de um certo meio.
- Transmissores são feitos de osciladores, amplificadores, circuitos sintonizados e filtros, moduladores, misturadores de frequência, sintetizadores de frequência e outros circuitos.

Meio de Comunicação

- O meio de comunicação é a via através da qual o sinal eletromagnético é enviado de um lugar para outro.
- Os tipos de meios incluem:
 - Condutores elétricos;
 - Meios ópticos;
 - Espaço livre;
 - Meios específicos para o sistema (por exemplo, a água é o meio para o sonar).

Receptores

- Um receptor é uma coleção de componentes eletrônicos e circuitos que recebe a mensagem transmitida pelo canal e a converte de volta em uma forma compreensível por humanos.
- Receptores contêm amplificadores, osciladores, circuitos sintonizados e filtros e um demodulador, ou detector, que recupera o sinal da informação original a partir da portadora modulada.

Transceptores

- Um transceptor é uma unidade eletro-eletrônica composta por circuitos que tanto enviam quanto recebem sinais.
- Exemplos:
 - Telefones;
 - Máquinas de fax;
 - · Rádios portáteis para a faixa do cidadão;
 - Telefones celulares;
 - Modemsde computadores.

<u>Atenuação</u>

– A atenuação do sinal, ou degradação, existe em todos os meios de transmissão sem fio. É proporcional ao quadrado da distância entre o transmissor e o receptor.

Ruído

–O ruído é uma energia aleatória e indesejável que entra no sistema de comunicação através do meio de comunicação e interfere com a mensagem transmitida.

 As comunicações eletrônicas são classificadas de duas formas:

- 1)Transmissões <u>Unidirecionais</u> (*simplex*) **OU** <u>Bidirecionais</u> (*full duplex* ou *half duplex*);
- 2) Sinais <u>Analógicos</u> **OU** Digitais.

Simplex

- Consiste no método mais simples de comunicação eletrônica.
- Esse tipo de comunicação é unidirecional.
- Exemplos:
 - Rádio;
 - TV analógica.

Full Duplex

 A maior parte da comunicação eletrônica é bidirecional e é chamada de duplex

 Quando as pessoas podem falar e ouvir simultaneamente, chama-se full duplex. O telefone é um exemplo desse tipo de

comunicação.

Half Duplex

- A forma de comunicação bidirecional na qual apenas um lado transmite de cada vez é conhecido como half duplex.
- Exemplos:
 - Transmissões de rádio da polícia, uso militar;
 - Faixa do cidadão (CB citizen band);
 - Rádio FRS (family radio service);
 - · Rádio amador.

Sinais Analógicos

 Um sinal analógico é uma tensão ou corrente que varia de forma suave e contínua.

- Exemplos:
 - Onda senoidal;
 - Voz;
 - Vídeo RCA.

Sinais Analógicos:

- (a) Onda senoidal, "tom";
- (b) Voz humana;
- (c) Sinal de vídeo (TV).

Sinais Digitais

- Sinais digitais variam em degraus ou em incrementos discretos.
- A maioria dos sinais digitais usa códigos binários, ou de dois estados.
- Exemplos:
 - Telégrafo (código Morse);
 - Código de onda contínua (CW continuous wave);
 - Código binário serial (usado nos computadores digitais).

Sinais Digitais:

- (a) Telégrafo (código Morse).
- (b) Código de onda contínua (CW);
- (c) Código binário serial.

Sinais Digitais

- A maioria das transmissões são de sinais que se originam na forma digital mas devem ser convertidos para forma analógica para se adequarem ao meio de transmissão de dados.
- Sinais analógicos são primeiramente digitalizados com um conversor analógico-digital (A/D). Então, os dados podem ser transmitidos e processados por computadores e outros circuitos digitais.

- Modulação e Multiplexação são técnicas eletrônicas para transmitir informação eficientemente de um lugar para outro.
- A Modulação torna o sinal da informação mais compatível com o meio.
- A Multiplexação permite que mais de um sinal seja transmitido simultaneamente por um único meio.

Transmissão em Banda Base

- A informação em **Banda Base** pode ser enviada diretamente e sem modificações através do meio ou pode ser usada para modular uma portadora para a transmissão através do meio:
 - Em sistemas de telefonia ou intercomunicação, a voz é passada eletricamente pra os fios e transmitida.
 - Em algumas redes de computadores, os sinais digitais são aplicados diretamente em cabos coaxiais ou par trançado para a transmissão de dados.

Transmissão em Banda Larga

- Uma Portadora é um sinal de alta frequência que é modulado por um sinal em banda básica.
- Uma Onda de Radiofrequência (RF)
 é um sinal eletromagnético que é capaz
 de percorrer grandes distâncias por
 não-guiados.

Transmissão Analógica em Banda Larga

- Uma transmissão em banda larga ocorre quando o sinal de uma portadora é modulado, amplificado e enviado à antena para a transmissão.
- Os dois métodos mais comuns de modulação são:
 - Modulação em Amplitude
 (AM amplitude modulation)
 - Modulação em Frequência
 (<u>FM</u> frequence modulation)
- Outro método é denominado Modulação em Fase (PM phase modulation), no qual o ângulo de fase da onda senoidal é variado.

Modulação no Transmissor.

Expressão Matemática Comum para um Sinal de Tensão Senoidal

```
v=V_p \operatorname{sen} (2\pi f t + \theta) ou v=V_p \operatorname{sen} (\omega t + \theta)
onde v=\operatorname{valor} instantâneo da tensão da onda senoidal V_p=\operatorname{valor} de pico da onda senoidal f=\operatorname{frequência}, Hz \omega=\operatorname{velocidade} angular =2\pi f t=\operatorname{tempo}, s
```

 $\omega t = 2\pi f t = \text{angulo, rad } (360^\circ = 2\pi \text{ rad})$

 θ = angulo de fase

Tipos de Modulação Analógica:

- (a) Modulação em Amplitude AM;
- (b) Modulação em Frequência FM.

Transmissão Digital em Banda Larga

- O Chaveamento de Frequência (FSK Frequency Shift Keying) ocorre quando os dados DIGITAIS são convertidos para tons com FREQUÊNCIA variável.
- O Chaveamento de Fase (<u>PSK</u> <u>Phase Shift Keying</u>) ocorre quando os dados DIGITAIS são convertidos para tons com FASE variável.
- Dispositivos denominados "MODEM"
 (MOdulador-DEModulador) traduzem os dados da portadora para banda básica e vice-versa.
 - A **Demodulação** ou detecção ocorre no receptor quando o sinal de banda base original é extraído.

Modulação Digital Básica:

- (a) FSK;
- (b) PSK.

<u>Multiplexação</u>

- Multiplexação é o processo de permitir dois ou mais sinais compartilharem o mesmo meio ou canal.
- Os três tipos básicos de multiplexação em comunicação de dados são:
 - Divisão de Frequência;
 - Divisão de Tempo;
 - Divisão de Código.

Multiplexação no Transmissor

O ESPECTRO ELETROMAGNÉTICO

 Toda a variedade de sinais eletromagnéticos abrangendo todas as frequências é denominado de espectro eletromagnético:

 O espectro é dividido em segmentos (faixas) de frequências.

O ESPECTRO ELETROMAGNÉTICO

O Espectro Eletromagnético

Frequência:

- Um sinal está localizado no espectro de frequências de acordo com sua frequência (f) e comprimento de onda (λ, lambda).
- A frequência é o número de ciclos de uma onda repetitiva que ocorre em certo período de tempo.
- Um ciclo consiste em duas alternâncias seguidas nas oscilações do campo eletromagnético.
- A frequência é medida em ciclos por segundo (cps).
- A unidade de frequência é o Hertz (Hz).

Comprimento de Onda:

- O comprimento de onda é a distância ocupada por um ciclo de uma onda e geralmente é expresso em metros.
- O comprimento de onda também é a distância percorrida por uma onda eletromagnética durante o tempo de duração de 1 ciclo.

Frequência e Comprimento de Onda:

- (a) 1 ciclo;
- (b) 1 comprimento de onda.

Nome	Frequência	Comprimento de onda			
Frequências extremamente baixas (ELFs – extremely low frequencies) Frequências de voz (VFs – voice frequencies) Frequências muito baixas (VLFs – very low frequencies) Frequências baixas (LFs – low frequencies) Frequências médias (MFs – medium frequencies) Frequências altas (HFs – high frequencies) Frequências muito altas (VHFs – very high frequencies) Frequências ultra-altas (UHFs – ultra high frequencies) Frequências superaltas (SHFs – super high frequencies) Frequências extremamente altas (EHFs – extremely high frequencies) Infravermelho Espectro visível (luz)	30–300 Hz 300–3000 Hz 3–30 kHz 30–300 kHz 300 kHz–3 MHz 3–30 MHz 30–300 MHz 30–300 GHz 30–300 GHz	$10^{5}-10^{4} \text{ m}$ $10^{4}-10^{3} \text{ m}$ $10^{3}-10^{2} \text{ m}$ $10^{2}-10^{1} \text{ m}$ $10^{1}-1 \text{ m}$ $1-10^{-1} \text{ m}$ $10^{-1}-10^{-2} \text{ m}$			
Unidades de medida e abreviações: $kHz = 1.000 \ Hz$ $MHz = 1.000 \ kHz = 1 \times 10^6 = 1.000.000 \ Hz$ $GHz = 1.000 \ MHz = 1 \times 10^6 = 1.000.000 \ kHz$ $= 1 \times 10^9 = 1.000.000.000 \ Hz$ $m = metro$ $\mu m = micrômetro (mícron) = \frac{1}{1.000.000} \ m = 1 \times 10^{-6} \ m$					

Frequência e Comprimento de Onda:

Comprimento de onda (λ) = velocidade da luz ÷ frequência Velocidade da luz = 3 × 10 8 metros/segundo Portanto: λ = 3 × 10 8 / f

Exemplo 1:

Qual é o comprimento de onda eletromagnética se a frequência for 4.000.000Hz?

$$\lambda = 3 \times 10^8 / 4 \times 10^6$$

= 75 metros

Exercícios

- 1) Determine os comprimentos de onda de um sinal de: (a) 150MHz (b) 430MHz (c) 8MHz (d) 750KHz.
- 2) Qual a frequência de um sinal eletromagnético com comprimento de onda de 1,5m?
- 3) Um sinal percorre a distância de 75 pés no intervalo de tempo em que completa um ciclo. Qual a faixa de frequência do sinal?
- **4)** Os picos máximos de uma onda eletromagnética estão separados por um distância de 8 polegadas. Qual a frequência em GHz dessa onda?

Frequências de 30 Hz a 300 GHz

Frequências Extremamente Baixas (ELF)	30 - 300Hz (rede elétrica; baixa audição humana)
Frequências de Voz (VF)	300 - 3000Hz
Frequências Muito Baixas (VLF)	3 - 30KHz (alta audição humana, até 20.000Hz)
Frequências Baixas (LF)	30 - 300KHz (subportadoras)
Frequências Médias (MF)	300 - 3000KHz (rádio AM)

Frequências de 30 Hz a 300 GHz

	_	-	-	
LKOO	IIIAA			
			\rightarrow	114
Freq	M C I I	JIGS		

HF

High Frequencies

3 - 30MHz

(rádio ondas curtas; comunicação governamental e militar; rádio amador, faixa do cidadão).

Frequências Muito Altas

VHF

Very High Frequencies

<u>30 - 300MHz</u>

(rádio FM, canais de TV)

Frequências Ultra-Altas

UHF

Ultra High Frequencies

<u>300 - 3000MHz</u>

(canais de TV, telefonia celular, comunicação militar)

Frequências de 30 Hz a 300 GHz

Frequências Superaltas

SHF

Super High Frequencies

3 - 30GHz

(comunicação satelital, radar civil e militar, WLAN)

Frequências Extremamente Altas

EHF

Extremely High Frequencies

<u>30 - 300GHz</u>

(telefonia satelital, dados de computador, radares especializados)

Espectro Óptico

- O espectro óptico está diretamente acima da região de ondas milimétricas.
- Três tipos de ondas luminosas são:
 - Infravermelho;
 - Espectro visível;
 - Ultravioleta.

Infravermelho

- A radiação infravermelha é produzida por qualquer corpo físico que gere calor, incluindo nossos próprios corpos.
- O infravermelho é usado:
 - Na astronomia, para detectar estrelas e outros corpos físicos no universo;
 - Para orientação em sistemas de armas, nos quais o calo irradiado por aviões ou mísseis pode ser detectado e usado para guiar mísseis até alvos;
 - Na maioria das novas unidades de controle remoto de TV, nas quais sinais codificados especiais são transmitidos por um LED infravermelho até o receptor da TV para trocar canais, ajustar o volume e desempenhar outras funções;
 - Em algumas das novas WLANse em toda a comunicação por **FIBRA ÓPTICA**.

O Espectro Visível

- Logo acima da região do infravermelho está o espectro visível que nós chamamos de luz;
- O vermelho é a luz de baixa frequência ou alto comprimento de onda;
- O violeta é a luz de alta frequência ou curto comprimento de onda;

<u>Ultravioleta</u>

- O ultravioleta não é usado para comunicação de dados;
- Seu principal uso é na área de saúde.

- Largura de Banda (BW) é a porção do espectro eletromagnético ocupada por um sinal.
- A Largura de Banda do Canal (CBW) se refere à faixa de frequências necessárias para transmitir a informação desejada.

Exemplo 2:

Uma faixa de frequência específica começa em 902MHz e vai até 928MHz. Qual a largura de banda dessa faixa?

- $f_1 = 902MHz$; $f_2 = 928MHz$
- BW = $f_2 f_1 = 928 902 = 26MHz$

Exercício:

5) Um sinal de televisão ocupa uma largura de banda de 6MHz. Se o limite de frequência inferior do canal 2 for 54MHz, qual será o limite de frequência superior?

Mais Espaço na Faixa Superior

- Praticamente todo o espectro de frequências situado nas faixas de 30 KHz e 300 MHz encontra-se ocupado.
- Há uma competição enorme por essas frequências, entre companhias, indivíduos e governos das diversas nações do mundo.
- O espectro eletromagnético é um dos nossos recursos naturais mais preciosos.

Mais Espaço na Faixa Superior

- Muitos esforços são aplicados em desenvolver técnicas de comunicação que minimizem a largura de banda necessária para transmitir certa informação e, assim, conservar o espaço do espectro.
- Isso fornece mais espaço para canais de comunicação adicionais fornecendo a outros serviços ou usuários uma oportunidade de aproveitá-los.

Gestão do Espectro e Padrões

- A Gestão do Espectro é fornecida por agências estabelecidas pelos países para controlar o uso do espectro:
 - Nos EUA:
 - Comissão Federal de Comunicações
 (FCC Federal Communications Commission)
 - Administração Nacional de Telecomunicações e Informação
 - (NTIA National Telecommunications and Information Administration)

Gestão do Espectro e Padrões

No <u>Brasil</u>:

Agência Nacional de Telecomunicações - ANATEL.
É uma autarquia especial criada pela Lei Geral de
Telecomunicações (1997), administrativamente
independente, financeiramente autônoma e sem
subordinação hierárquica a nenhum órgão de
governo. Sua missão é promover o
desenvolvimento das telecomunicações dotando
o país de uma moderna e eficiente infra-estrutura
de telecomunicações, capaz de oferecer à
sociedade serviços adequados, diversificados e a
preços justos, em todo o território nacional.

Gestão do Espectro e Padrões

 Os Padrões são especificações e diretrizes necessárias para assegurar a compatibilidade entre os equipamentos transceptores: interoperabilidade.

PANORAMA ATUAL DAS APLICAÇÕES EM COMUNICAÇÃO DE DADOS

Simplex

- Transmissão AM;
- Transmissão FM;
- Rádio Digital;
- Transmissão de TV;
- Televisão Digital (DTv);
- Televisão a Cabo;
- Controle Remoto;

- Serviços GPS e radiogoniometria;
- Telemetria;
- Radioastronomia;
- Vigilância;
- Serviços de música;
- Rádio e TV via
 Internet.

PANORAMA ATUAL DAS APLICAÇÕES EM COMUNICAÇÃO DE DADOS

<u>Duplex</u>

- Telefones;
- Rádio Bidirecional;
- Radar;
- Sonar;
- Rádio Amador;
- Rádio do Cidadão;

- FRS (Family Radio Service)
- A Internet
- Redes de Longa
 Distância (WANs)
- RedesMetropolitanas(MANs)
- Redes Locais (LANs)

