Практика 13

Приведение решения матричной игры к решению задачи линейного программирования

Пусть игра $m \times n$ задана платёжной матрицей $P = (a_{ij})$, $i = \overline{1,m}$, $j = \overline{1,n}$. Игрок A применяет стратегии A_1 , A_2 ,..., A_m , а игрок B — стратегии B_1 , B_2 ,..., B_n .

Смешанными стратегиями игроков A и B называют векторы $P=(p_1,p_2,...,p_m)$ и $Q=(q_1,q_2,...,q_n)$, координаты которых равны вероятностям применения игроками своих чистых стратегий $A_1,\ A_2,...,\ A_m$ и $B_1,\ B_2,...,\ B_n$ соответственно.

События, состоящие в том, что игроки применяют какую-либо из своих чистых стратегий, образуют для каждого игрока *полную группу событий*. Следовательно, сумма координат векторов P и Q равна единице:

$$p_1 + p_2 + ... + p_m = 1;$$

 $q_1 + q_2 + ... + q_n = 1.$

Кроме того, по свойству вероятности, для координат смешанных стратегий выполняются неравенства:

$$0 \le p_i \le 1$$
, $i = \overline{1, m}$;
 $0 \le q_j \le 1$, $j = \overline{1, n}$.

Оптимальная стратегия P^* обеспечивает игроку A средний выигрыш, не меньший цены игры v, при любой стратегии игрока B и выигрыш, равный цене игры v, при оптимальной стратегии Q^* игрока B.

Полагаем далее, что v > 0. **Это условие соблюдается, если все элементы платежной матрицы положительны.** Если имеются отрицательные элементы, то матрица преобразуется путем увеличения всех ее элементов на число $\gamma = \left| \min_{i,j} a_{ij} \right| + 1$ (модуль минимального эле-

мента матрицы, увеличенный на единицу). Если все элементы платежной матрицы положительны, то можно считать $\gamma=0$ и решать задачу линейного программирования для исходной платежной матрицы.

Применяя оптимальную стратегию P^* против любой чистой стратегии B_j игрока B, игрок A получает средний выигрыш или математическое ожидание выигрыша

$$a_j = a_{1j}p_1 + a_{2j}p_2 + ... + a_{mj}p_m \ge v.$$

Таким образом, вычисляя средние выигрыши игрока A для каждой из чистых стратегий игрока B, получаем систему неравенств

$$\begin{cases} a_{11}p_1 + a_{21}p_2 + \dots + a_{m1}p_m \ge v, \\ a_{12}p_1 + a_{22}p_2 + \dots + a_{m2}p_m \ge v, \\ \dots \\ a_{1n}p_1 + a_{2n}p_2 + \dots + a_{mn}p_m \ge v. \end{cases}$$

Разделив каждое из неравенств на цену игры ν и вводя новые переменные

$$x_1 = \frac{p_1}{v}, \ x_2 = \frac{p_2}{v}, ..., \ x_m = \frac{p_m}{v},$$

получим систему

$$\begin{cases} a_{11}x_1 + a_{21}x_2 + \dots + a_{m1}x_m \ge 1, \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{m2}x_m \ge 1, \\ \dots \\ a_{1n}x_1 + a_{2n}x_2 + \dots + a_{mn}x_m \ge 1. \end{cases}$$

$$(1)$$

Целевую функцию для игрока *А* найдём, учитывая, что он стремится получить максимальный выигрыш в игре. Разделив равенство

$$p_1 + p_2 + ... + p_m = 1$$

на цену игры v, получим равенство

$$x_1 + x_2 + \dots + x_m = \frac{1}{v},$$

которое будет иметь наименьшее значение при достижении игроком A максимального выигрыша. Поэтому в качестве целевой функции можно взять функцию

$$F(X) = x_1 + x_2 + \dots + x_m,$$
 (2)

и задачу линейного программирования сформулировать следующим образом: определить значения переменных $x_i \ge 0$, $i = \overline{1,m}$, так, чтобы они удовлетворяли линейным ограничениям (1) и при этом целевая функция (2) имела минимальное значение.

Решая задачу (1)–(2), получаем оптимальную стратегию задачи линейного программирования $X^* = (x_1^*, x_2^*, ..., x_m^*)$, для которой значение целевой функции равно

$$F(X^*) = \min F(X).$$

Находим цену игры $v = \frac{1}{F(X^*)}$.

Вычисляем координаты смешанной оптимальной стратегии P^* игрока A:

$$p_i = vx_i, i = \overline{1,m}.$$

Чтобы найти оптимальную стратегию игрока B, составляем двойственную к (1)–(2) задачу и решаем ее. Получаем оптимальную стратегию $Y^* = (y_1^*, y_2^*, ..., y_n^*)$ и вычисляем координаты оптимальной смешанной стратегии Q^* игрока B:

$$q_j = vy_j, \ j = \overline{1,n}.$$

В ходе решения двойственной задачи определяется максимальное значение целевой функции $G(Y^*) = \max G(Y)$, и цена игры может быть определена из равенства $v = \frac{1}{G(Y^*)}$.

Таким образом, найдено оптимальное решение для игры.

При решении произвольной конечной игры размера $m \times n$ рекомендуется придерживаться следующей схемы:

- 1. Исключить из платежной матрицы заведомо невыгодные стратегии по сравнению с другими стратегиями. Такими стратегиями для игрока A (игрока B) являются те, которым соответствуют строки (столбцы) с элементами, заведомо меньшими (большими) по сравнению с элементами других строк (столбцов).
- 2. Определить верхнюю и нижнюю цены игры и проверить, имеет ли игра седловую точку. Если седловая точка есть, то соответствующие ей стратегии игроков будут оптимальными, а цена совпадает с верхней (нижней) ценой.
- 3. Если седловая точка отсутствует, то решение следует искать в смешанных стратегиях. Для игр размера $m \times n$ рекомендуется симплексный метод (или в программе Excel), для игр размера 2×2 , $2 \times n$, $n \times 2$ возможно геометрическое решение.

Пример. Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются следующей матрицей:

$$P = \begin{pmatrix} -1 & 1 & 6 \\ 5 & 2 & -3 \\ -2 & 4 & 5 \end{pmatrix}.$$

Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли — представленная игра может рассматриваться как игра двух игроков с нулевой суммой.

Решение.

Найдем α и β.

$$\alpha = \max(-1, -3, -2) = -1,$$

 $\beta = \min(5, 4, 6) = 4.$

Т.к. $\alpha \neq \beta$, то решение игры находим в области смешанных стратегий.

Рассмотрим игрока А.

Будем искать оптимальную смешанную стратегию игрока A: $P = (p_1, p_2, ..., p_m)$, где p_i — частота (вероятность) использования игроком A своей i-стратегии (i = 1,2,3). Обозначим цену игры (средний выигрыш) — v.

Чтобы свести матричную игру для игрока A к задаче линейного программирования преобразуем платежную матрицу так, чтобы все ее элементы были больше нуля — прибавим ко всем элементам матрицы

число
$$\gamma = \left| \min_{i,j} a_{ij} \right| + 1 = 3 + 1 = 4$$
. Получаем преобразованную платежную

матрицу:

$$P' = \begin{pmatrix} 3 & 5 & 10 \\ 9 & 6 & 1 \\ 2 & 8 & 9 \end{pmatrix}.$$

На основе полученной матрицы и используя (1)–(2) сформулируем задачу линейного программирования:

$$\begin{cases} 3x_1 + 9x_2 + 2x_3 \ge 1, \\ 5x_1 + 6x_2 + 8x_3 \ge 1, \\ 10x_1 + x_2 + 9x_3 \ge 1. \\ x_1, x_2, x_3 \ge 0. \end{cases}$$

$$F(X) = x_1 + x_2 + x_3 \rightarrow \min.$$
(3)

Решим задачу средствами MS Excel.

	Α	В	С	D	Е	F	G	
1	Ограниче	ния:						
2		3	9	2	1	×	1	
3		5	6	8	1	>=	1	
4		10	1	9	1	"	1	
5		x1	x2	х3				
6	F(X)=	1	1	1	0,1749			
7								
8	Решение	0,0787	0,0816	0,0146				

Получили решение

$$X^* = (0.0787, 0.0816, 0.0146), F(X^*) = 0.1749.$$

Следовательно,
$$v = \frac{1}{F(X^*)} = \frac{1}{0.1749} = 5.7167.$$

Т.к.
$$p_i = vx_i, i = \overline{1,3},$$
 получим

$$p_1 = 5.7167 \cdot 0.0787 = 0.45,$$

$$p_2 = 5.7167 \cdot 0.0816 = 0.47,$$

$$p_3 = 5.7167 \cdot 0.0146 = 0.08.$$

$$P^* = (0.45, 0.47, 0.08).$$

Это решение для игры, заданной матрицей B (преобразованной матрицы). Для матрицы A: компоненты смешанной стратегии не меняются, а цена игры меньше на число, которое прибавляли ко всем элементам матрицы A, т.е. на 4. Окончательный результат:

$$X^* = (0.0787, 0.0816, 0.0146), v = 1.7167 \cong 1.72.$$

Рассмотрим игрока В.

Запишем двойственную задачу к (3):

$$\begin{cases} 3y_1 + 5y_2 + 10y_3 \le 1, \\ 9y_1 + 6y_2 + y_3 \le 1, \\ 2y_1 + 8y_2 + 9y_3 \le 1. \\ y_1, y_2, y_3 \ge 0. \end{cases}$$

$$G(Y) = y_1 + y_2 + y_3 \rightarrow \max.$$

$$(4)$$

Решим задачу средствами MS Excel.

4	Α	В	С	D	E	F	G
1	Ограниче	ния:					
2		3	5	10	1	\underset	1
3		9	6	1	1	\underset	1
4		2	8	9	1	<=	1
		-)	١	1	,	_
5		y1	y2	у3		-	_
-	G(Y)=	y1 1		y3 1	0,1749	,-	
5	G(Y)=	у1 1		у3	0,1749	-	
5	G(Y)= Решение	1		1	0,1749	-	-1

Получили решение

$$Y^* = (0.0758, 0.0437, 0.0554), F(Y^*) = 0.1749.$$

Следовательно, $v = 5.7167 - 4 \cong 1.72$. Т.к. $q_j = vy_j$, $j = \overline{1,3}$, получим

$$q_1 = 5.7167 \cdot 0.0758 = 0.43,$$

$$q_2 = 5.7167 \cdot 0.0437 = 0.25$$
,

$$q_3 = 5.7167 \cdot 0.0554 = 0.32.$$

$$Q^* = (0.43, 0.25, 0.32).$$

Otbet: $P^* = (0.45, 0.47, 0.08), Q^* = (0.43, 0.25, 0.32), v = 1.72.$

Данный ответ *означает следующее*:

- если первая отрасль с вероятностью 0.45 будет применять первую стратегию (финансирование 10го объекта), с вероятностью 0.47— вторую и с вероятностью 0.08— третью, то при достаточно большом количестве игр с данной матрицей ее выигрыш (прибыль) в среднем составит не менее 1.72;
- если вторая отрасль с вероятностью 0.43 будет применять первую стратегию, с вероятностью 0.25 вторую и с вероятностью 0.32 третью, то при достаточно большом количестве игр с данной матрицей ее проигрыш (убыток) в среднем составит не более 1.72.

Для самостоятельного решения и домашнего задания

$$A = \begin{pmatrix} 2 & -3 & 2 \\ 4 & 6 & -5 \\ -4 & 5 & 2 \\ 2 & 3 & -1 \end{pmatrix} \quad A = \begin{pmatrix} 2 & 6 & -5 & 6 \\ -9 & 4 & 5 & -3 \\ 2 & -1 & 2 & -1 \end{pmatrix} \quad A = \begin{pmatrix} 4 & 6 & 9 & -1 \\ 5 & 3 & -1 & 2 \\ -3 & -1 & 2 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 8 & 5 & 6 \\ 10 & 6 & 7 \\ 6 & 12 & 9 \\ 7 & 5 & 5 \end{pmatrix} \quad A = \begin{pmatrix} 7 & 10 & 5 \\ 9 & 3 & 9 \\ 7 & 4 & 7 \\ 9 & 4 & 6 \end{pmatrix} \quad A = \begin{pmatrix} 1 & -2 & 0 \\ -1 & 3 & -1 \\ 0 & -2 & 1 \\ 7 & 2 & 5 \end{pmatrix} \quad A = \begin{pmatrix} -1 & 2 & 0 \\ 3 & 0 & -1 \\ 2 & -1 & 2 \\ 4 & 1 & 0 \end{pmatrix}$$