P1 Chapter 1: Inequalities

Chapter Practice

Key Points

- 1 Linear simultaneous equations can be solved using elimination or substitution.
- 2 Simultaneous equations with one linear and one quadratic equation can have up to two pairs of solutions. You need to make sure the solutions are paired correctly.
- **3** The solutions of a pair of simultaneous equations represent the points of intersection of their graphs.
- **4** For a pair of simultaneous equations that produce a quadratic equation of the form $ax^2 + bx + c = 0$:
 - $b^2 4ac > 0$ two real solutions
 - $b^2 4ac = 0$ one real solution
 - $b^2 4ac < 0$ no real solutions
- **5** The solution of an inequality is the set of all real numbers *x* that make the inequality true.
- **6** To solve a quadratic inequality:
 - Rearrange so that the right-hand side of the inequality is 0
 - Solve the corresponding quadratic equation to find the critical values
 - Sketch the graph of the quadratic function
 - · Use your sketch to find the required set of values.

Key Points

- 7 The values of x for which the curve y = f(x) is **below** the curve y = g(x) satisfy the inequality f(x) < g(x).
 - The values of x for which the curve y = f(x) is **above** the curve y = g(x) satisfy the inequality f(x) > g(x).
- **8** y < f(x) represents the points on the coordinate grid below the curve y = f(x). y > f(x) represents the points on the coordinate grid above the curve y = f(x).
- **9** If y > f(x) or y < f(x) then the curve y = f(x) is not included in the region and is represented by a dotted line.
 - If $y \ge f(x)$ or $y \le f(x)$ then the curve y = f(x) is included in the region and is represented by a solid line.

1 2kx - y = 4

$$4kx + 3y = -2$$

are two simultaneous equations, where k is a constant.

- a Show that y = -2. (3 marks)
- **b** Find an expression for x in terms of the constant k. (1 mark)
- **2** Solve the simultaneous equations:

$$x + 2y = 3$$

$$x^2 - 4y^2 = -33$$

(7 marks)

3 Given the simultaneous equations

$$x - 2y = 1$$
$$3xy - y^2 = 8$$

a Show that $5y^2 + 3y - 8 = 0$.

- (2 marks)
- **b** Hence find the pairs (x, y) for which the simultaneous equations are satisfied.
- (5 marks)

4 a By eliminating y from the equations

$$x + y = 2$$

$$x^2 + xy - y^2 = -1$$

show that $x^2 - 6x + 3 = 0$.

(2 marks)

b Hence, or otherwise solve the simultaneous equations

$$x + y = 2$$

$$x^2 + xy - y^2 = -1$$

giving x and y in the form $a \pm b\sqrt{6}$, where a and b are integers.

(5 marks)

5 a Given that $3^x = 9^{y-1}$, show that x = 2y - 2.

(1 mark)

b Solve the simultaneous equations:

$$x = 2y - 2$$
$$x^2 = y^2 + 7$$

(6 marks)

6 Solve the simultaneous equations:

$$x + 2y = 3$$

$$x^2 - 2y + 4y^2 = 18$$

(7 marks)

7 The curve and the line given by the equations

$$kx^2 - xy + (k+1)x = 1$$

$$-\frac{k}{2}x + y = 1$$

where k is a non-zero constant, intersect at a single point.

a Find the value of k.

(5 marks)

b Give the coordinates of the point of intersection of the line and the curve.

(3 marks)

8 A person throws a ball in a sports hall. The height of the ball, *h* m, can be modelled in relation to the horizontal distance from the point it was thrown from by the quadratic equation:

$$h = -\frac{3}{10}x^2 + \frac{5}{2}x + \frac{3}{2}$$

The hall has a sloping ceiling which can be modelled with equation

$$h = \frac{15}{2} - \frac{1}{5}x.$$

Determine whether the model predicts that the ball will hit the ceiling.

(5 marks)

- 9 Give your answers in set notation.
 - a Solve the inequality 3x 8 > x + 13. (2 marks)
 - **b** Solve the inequality $x^2 5x 14 > 0$. (4 marks)
- 10 Find the set of values of x for which (x-1)(x-4) < 2(x-4). (6 marks)
- 11 a Use algebra to solve (x 1)(x + 2) = 18. (2 marks)
 - b Hence, or otherwise, find the set of values of x for which (x 1)(x + 2) > 18. Give your answer in set notation. (2 marks)
- 12 Find the set of values of x for which:
 - **a** 6x 7 < 2x + 3 (2 marks)
 - **b** $2x^2 11x + 5 < 0$ (4 marks)
 - $c = 5 < \frac{20}{x}$ (4 marks)
 - **d** both 6x 7 < 2x + 3 and $2x^2 11x + 5 < 0$. (2 marks)
- 13 Find the set of values of x that satisfy $\frac{8}{x^2} + 1 \le \frac{9}{x}$, $x \ne 0$ (5 marks)
- 14 Find the values of k for which $kx^2 + 8x + 5 = 0$ has real roots. (3 marks)
- 15 The equation $2x^2 + 4kx 5k = 0$, where k is a constant, has no real roots. Prove that k satisfies the inequality $-\frac{5}{2} < k < 0$. (3 marks)

- 16 a Sketch the graphs of $y = f(x) = x^2 + 2x 15$ and g(x) = 6 2x on the same axes. (4 marks)
 - **b** Find the coordinates of any points of intersection. (3 marks)
 - c Write down the set of values of x for which f(x) > g(x). (1 mark)
- 17 Find the set of values of x for which the curve with equation $y = 2x^2 + 3x 15$ is below the line with equation y = 8 + 2x. (5 marks)
- 18 On a coordinate grid, shade the region that satisfies the inequalities:

$$y > x^2 + 4x - 12$$
 and $y < 4 - x^2$. (5 marks)

19 a On a coordinate grid, shade the region that satisfies the inequalities

$$y + x < 6, y < 2x + 9, y > 3$$
and $x > 0.$ (6 marks)

b Work out the area of the shaded region. (2 marks)

Challenge

- **1** Find the possible values of k for the quadratic equation $2kx^2 + 5kx + 5k 3 = 0$ to have real roots.
- **2** A straight line has equation y = 2x k and a parabola has equation $y = 3x^2 + 2kx + 5$ where k is a constant. Find the range of values of k for which the line and the parabola do not intersect.

Chapter Answers

1 a
$$4kx - 2y = 8$$

 $4kx + 3y = -2$
 $-5y = 10$
 $y = -2$

b
$$x = \frac{1}{k}$$

2
$$x = -4, y = 3\frac{1}{2}$$

3 a Substitute
$$x = 1 + 2y$$
 into $3xy - y^2 = 8$

b (3, 1) and
$$\left(-\frac{11}{5}, -\frac{8}{5}\right)$$

4 a Substitute
$$y = 2 - x$$
 into $x^2 + xy - y^2 = 0$

b
$$x = 3 \pm \sqrt{6}, y = -1 \pm \sqrt{6}$$

5 **a**
$$3^x = (3^2)^{y-1} = 3^{2y-2} \Rightarrow x = 2y-2$$

b
$$x = 4$$
, $y = 3$ and $x = -2\frac{2}{3}$, $y = -\frac{1}{3}$

6
$$x = -1\frac{1}{2}$$
, $y = 2\frac{1}{4}$ and $x = 4$, $y = -\frac{1}{2}$

7 **a**
$$k = -2$$
 b $(-1, 2)$

8 Yes, the ball will hit the ceiling

9 **a**
$$\{x: x > 10\frac{1}{2}\}$$

b
$$\{x: x < -2\} \cup \{x: x > 7\}$$

10
$$3 < x < 4$$

11 a
$$x = -5, x = 4$$

b
$$\{x: x < -5\} \cup \{x: x > 4\}$$

12 a
$$x < 2\frac{1}{2}$$

b
$$\frac{1}{2} < x < 5$$

c
$$0 < x < 4$$

d
$$\frac{1}{2} < x < 2\frac{1}{2}$$

13
$$1 \le x \le 8$$

14
$$k \le 3\frac{1}{5}$$

15
$$b^2 < 4ac$$
 so $16k^2 < -40k$
 $8k(2k+5) < 0$ so $-\frac{5}{2} < k < 0$

Chapter Answers

16 a

c
$$x < -7, x > 3$$

17
$$\frac{1}{4}(-1 - \sqrt{185}) < x < \frac{1}{4}(-1 + \sqrt{185})$$

18

b
$$\frac{9}{2}$$

Challenge

1
$$0 < x < 1.6$$

2
$$-2 < k < 7$$