Intro Activity

- Have shoutill piz up as they walkin.
- Ask for theories.
- Show subsequent pres and ask for Fer revisions

Theories

At So K A Sornie

- · Make observations in the natural world
- · Generale theories/models.
- · Evaluate the consistency between the model and the data
- a Gather more data revise theres
- " Iterate in

Regression: the control statistical model

- " Express one variable of wheest (response) as a function of some other variables (productors) 1 = f(X, Xz, Xz, Xz, ...)
- P(Y 1 X, X2. X.)

Examples from NYT

Activity
Lit's build a model to predict
someones retual age.
Our only predictor for now: a
quess based on a photograph.

Week 2 Day 1: Describing dishibutions - Taxonony of Date What variables do we have date on? What tige of data to each? eut pseudo-code for the subsetting operator they de mean photo. Taxonomy of Data categoried Emphical Descriptus IL Nugureal Dreirighees Categorial center: mean, mebron, rode fictured Effective Standard deviation, universe Tak probabily berplet (tuble (netgets) shape: forindal/binolal Numerical Boxplot weight weight o must be aggregated by bin-is (hist) - Shows nedran Q1 Q3 and outlines. or smoothing (desity) - good for side-by- side · bowere of binwidth, bandwidth selection! COMPOLIZENS

Two Viriables Numerial supports (2 non)

- · shape · hucor, quadratic
- · diccolor: positivelnes, construce
- "Sire of how try clustocal?" correlation coefficient of

O-reiphizal

Scatterplot

- time often on x
 bewore of overplotty
- response oftenony

Week 4A Simple Linear Regression For Weds: Read 2.1-2.4

Notation

A random variable X takes particular values of particular probs.

1×	P/X-X)	13/2 42/30	0	
1	11,6	eq 2.	Let X b	e the # of heads in 3 fam
2	1/6		con St	
3	1/6	ннн	×	P(X=x)
4	1/16	HTT HHT	6	1/8
5	16	TTT	1	3/8
6/	11/6	+++	2	3/8
		THH	3	1/8

Let X be the height of a randomly selected female college student, X is continuous between 4' and 7', normally distributed, W/ mean 5'3" and variance q".

Expected Val.	ve'·			200
E(X) =		(x=	453 E(X)=	$\int_{\infty}^{\infty} x f(x) dx = \mu$
×	P(X=x)			
0	118			
1	3/8	3/8		
2	318	6/3		
3	18	3/8		
		12/8=1.5		

Varione and Var(X) = Z (X-p) P(X=X) = and 3. Va(X) = \((x-p)^2 \) \((x) \) dx Describe the relationship Shape: Strength: What you're describing is E(Y Xx) a conditional Mean Simple Linear Peaperium E(Y X=x) = B + B x an mean function intercept slope Y. = E(Y X=x) + e. = B + B x + e. andon error E(e Y > or Varionized distance from (x, y) to line residual: The options Ominimize distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual: 2 Animized distance from (x, y) to line residual:	
Describe the relationship Shape: Direction: Strength: What you're describing is E(Y Xx)a conditional mean. Simple Linear Regression - E(Y X=x) = B + B x a near function idenced slope Y = E(Y X=x) + e = P + R x + e; a - det greening forction and error idenced so wireless in the condition of the conditions of th	Variance
Shape: Direction: Stream th: What you're describing is E(Y Xx)a conditional Mean Simple Linear Regression - E(Y X=x) = B + B x a mean fraction intercept slope Y = E(Y X=x) + e = B + B x + e: a - determination fraction (andone error E(E(X)=0 Vic(a X)=0 Vic(a X)=0 Two optims Ominimize distance from (x, y) to line residual: e:= y, -y, minimize the sun of squared residuals	eg2 Var(x) = \(\frac{\times}{\pi}(x-\mu)^2 P(X=\times) \(\frac{\times}{\times} \eq. 3. \large (x) = \int (x-\mu)^2 f(x) dx
Shape: Direction: Stream th: What you're describing is E(Y Xx)a conditional Mean Simple Linear Regression - E(Y X=x) = B + B x a mean fraction intercept slope Y = E(Y X=x) + e = B + B x + e: a - determination fraction (andone error E(E(X)=0 Vic(a X)=0 Vic(a X)=0 Two optims Ominimize distance from (x, y) to line residual: e:= y, -y, minimize the sun of squared residuals	
Direction: Strength: What you're describing is $E(Y X;x)$ a conditional Mean Simple linear Regression $Y = E(Y X;x) = B + B, x$ ar near function intercept slope $Y = E(Y X;x) + e = B + B, x + e : a - date greating function E(e X) = 0 Vir(e X) = 32 United line? Two options Ominimize distance from (x, y) to line residual: e = Y_1 - \hat{Y}_2 minimize the sun of equited residuals$	Describe the relationship
Strength: What you're describing is $E(Y X;y)$ a conditional Mean Simple Linear Reagasian - $E(Y X=x) = B + B, x$ a- near function intercept alope V. = $E(Y X=x) + e$; e - A -	shape:
What you're describing is $E(Y X;x)$ a conditional Mean. Simple linear Regression - $E(Y X=x) = \beta + \beta \cdot x$ a mean function intercept alope $Y_i = E(Y X=x) + e_i = \beta + \beta \cdot x + e_i$ and a fine function $E(e X) = 0$ Which $ X=x ^2$ Which $ X=x ^2$ Two options Ominine distance from (x_i, y_i) to line residual; $e_i = y_i - y_i$ minine the sun of equived residuals	
Simple Linear Regression - E(Y X=x) = B + B x a mean forether intercept slope Y. = E(Y X=x) + e. = B + B x + e. a - data generating forether tandon error E(e X) = 0 Vec(e X) = 0 Vec(e X) = x ² Which line ? two optims () minimize distance from (x, y,) to line residual: e. = y, - y minimize the sun of equated residuals	strength:
Which line? Two options (2) Ninimize distance from (x, y,) to line (2) Ninimize distance from (x, y,) to line (1) Sinimize the sun of squared restricts	
Which line? Two optims (2) Ninimize distance from (x, y,) to line residual: ê; = y; -ŷ; minimize the sun of squared restricts	
indescept slope V = E(Y X=x) + e := B + B x + e : random error E(e X) = 0 Var(a X) = 0 Unitable line ? two options (2) minimize distance from (x, y,) to line residual: e:= y; - y minimize the sun of squared residuals	 Simple Linear Regression
indescept slope V = E(Y X=x) + e := B + B x + e : random error E(e X) = 0 Var(a X) = 0 Unitable line ? two options (2) minimize distance from (x, y,) to line residual: e:= y; - y minimize the sun of squared residuals	
intercept slope V. = E(Y X=X) + e: = B + B x + e: random error E(e X) = 0 Ver(e X) = 0 ² Which line ² . two optims (2) minimize distance from (x, y,) to line residual: e: = y; - y. minimize the sun of squared residuals	= E(Y)X=x)= B + Bx = mean function
Tandom error E(e x) = 0 Var(e x) = 52 Which line? Two options () minimize distance from (x, y) to line (2) Ninimize distance from (y) to line residual: ê; = y; - y; minimize the sun of squared residuals	intercept slope
Which line? Two optims () minimize distance from (x, y) to line (2) Ninimize distance from (y) to line residual: ê:= y:- y: minimize the sun of squared residuals	randon error
two options () minimize distance from (x, y) to line (2) minimize distance from (y) to line residual: ê:= y; - ŷ; minimize the sum of squared residuals	 Vue(c1x) = 52
two options () minimize distance from (x, y) to line (2) minimize distance from (y) to line residual: ê:= y; - ŷ; minimize the sum of squared residuals	
() minimize distance from (x, y) to line (2) Ninimize distance from (y) to line residual: ê:= y; - ŷ; minimize the sun of squared residuals	
residual: ê = Y: -Y: minimize the sum of squared residuals	
minimize the sum of squared residuals	
minimize the sum of squared residuals	
The state of the s	
	 The state of the s
	1-1 land hor

Filling the Least Squares Line

RSS = \hat{\hat{2}} \hat{\hat{e}} = \hat{\hat{\hat{E}}} (\bar{\gamma} - \hat{\hat{\hat{B}}} - \hat{\hat{\hat{B}}} \times \hat{\hat{\hat{E}}})^2 Since we have data for x and y we can treat as constant and view the RSS as a Function of Bo and B. To find the values that minimize RSS, we can take the derivative and DRSS - 22 (4.- \$-\$, x.)=0 DRSS - 2 = x(Y: - B - B.x.) = 0 rearrange: $\hat{Z}_{y_1} - \hat{Z}_{\beta_0} - \hat{Z}_{\beta_1} \hat{Z}_{x_1} = 0$ \(\hat{\Sigma} \times \frac{\Sigma}{\Sigma} Solve for B. Zy. - B. Zy. B= Y-B. X Exy = (7-B, x) Ex + B, Ex = 72x - B, x2x + B, 2x2 $\sum_{xy} - ny\bar{x} = B_1 \left(\sum_{x}^2 - n\bar{x}^2 \right)$ B = E(x-x)(y-y) Z(x-x)2

A measure of molel fit: R2+. Adjusted R2 Recall R.; Pearsons Corr. Coof: measures strength of linear relationship. RE[-1,1] P2: the proportion it the total variability in the 1's explained by the agression R2 = SSres 1 - RSS SST = 1 - RSS Total Variation in the y SST = \(\hat{2}(\gamma-\gamma)^2: Sorey: Total Viviation explaned by & = Z(q.-q) RSS . Total unexplained variation = 2 (y.- 4) 55T = 55 reg +R55 No linear treat RSS: big SSiis small => R2 NIAT O Strong linear trend RSS: small, SSry by => R2 near 1 Caution Adding complexity (i.e. additional terms) to our model will

always incheose 2 even if the term was bogue

Solution: Use adjusted P

$$\mathbb{R}_{ab_{i}}^{2} = 1 - \frac{\text{RSS}(n-p-i)}{\text{SST}(n-i)} \qquad \text{n. sample size}$$

$$\mathbb{R}_{ab_{i}}^{2} = 1 - \frac{\text{RSS}(n-p-i)}{\text{SST}(n-i)} \qquad \text{n. sample size}$$

Now new terms have to decrease RSS by month the penalty to increase Ridi.

Model Fitting: a Metaphor Date of the sold of the manufactures delementary of the manufacture

w/ studine

Key pents

- · Your fited model is a way to sepenate size. I for 1130.
- " A good model will leave behind residuals
- · be way of building a model that considers everything to be signal.
 This is outsitting and will damage prediction

Ockanis fazor the "hard of Porsinony"

"Plurality should not be posited who necessity",

complexity

aka: Arong similar explanations, the simple is better" + usoful houristre in model building.

Wednesday Oct. 22

- Bending S. 3. 5. Z. Linear Algebra. - Proposite due Sidnisday.

- Analysis of Conordance

ML QUESTIONS

- Write out the ega for the line.

- Is volume a significant predictor?

- How much of the variation in weight is explained by the model containing volume?

ANCOVA Independent

- Simple Linear Regression: y= Boilix

- Parrollel Lines i = Po + B, x, + B3 x2

XI controus (volume)

/tsl Xz: categorical (1041) For paperbacks: $\hat{y} = \hat{B}_{1} \hat{B}_{1} \times \hat{B}_{2} \times \hat{B}_{3} \times$

9 = (B, + B) + B, x;

For Handbudes: $\hat{y} = \hat{b}_0 + \hat{b}_1 \times + \hat{b}_2 \times \hat{z}$ is 0 7: B. + B. X.

Sime slope different intercept

.. Parallel

- Two wherepts two clopes

Matrix Multiplication - a review
$$\frac{AB}{AB} = \begin{bmatrix} 25.1 \\ -43.3 \end{bmatrix} \begin{bmatrix} 20 \\ 11 \\ 04 \end{bmatrix} = \begin{bmatrix} 2.7.5.1 \times (-1).0 \\ -10.2.3.1 \times (-3)0 \end{bmatrix} \begin{bmatrix} 9.17 \\ -10.13.1 \times (-3)4 \end{bmatrix} = \begin{bmatrix}$$

- · You can only multiply natrices we the same inner dimension.
- · The resulting matrix takes its dimensions From the outer dimensions.
- · Each entry in the resulting matrix is a dol product of the corresponding row of the 1st matrix and the column of the 2st.

OYO What is BAZ

Def: Transpose: A'= [2 4] The transpose of a matrix is

a matrix of Hipped din where

the row, col idices have been

Apped

EX3 What is B'A' Z

$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 1 & 4 \end{bmatrix}$$

$$BA = (AB)$$

Det Symmetric: a matrix is symmetric it a: = a; (mod be square)

$$S = \begin{bmatrix} 1 & 3 & 6 \\ 3 & 2 & 1 \\ 6 & 1 & 0 \end{bmatrix} = S'$$

Det Diogonal: a matrix is diagonal if a; = 0 for ifj.

Def. Identity matrix: a diagonal matrix with a ;= 1 for i=1 I3 = [00]

Recall from algebra

a.1 = a * 1 is the ideality operator

$$AI = \begin{bmatrix} 2 & 5 & -1 \\ 4 & 3 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 & -1 \\ 4 & 3 & -3 \end{bmatrix} = A$$

a. = 1

Def. Inverse the inverse of matrix yields I when multiplied.

AA' = I + A most be sque ! A

* Not all materies can be murted

Matrix Notation = X; B = B.1 + B. X; + B. X; + B. X; + B. X; P = V.

Wednesday October 29th

Y; X; B; C; \hat{C} = $Y \cdot X\hat{D}$ $(X \cdot X) \cdot (X \cdot X) \cdot$

$$X = \begin{bmatrix} 1 & \times 1 \\ 1 & \times 1 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\ 1 & \times 1 \end{cases}$$

$$\Rightarrow \begin{cases} 1 & \times 1 \\$$

Vor(e,) Vor(e,) Monday 11/3/14 Properties of Least Squares Estimates

V = XB + e , Vi(e) = 8"I = 100 = Are our estimates unbiased? · E(cY) = c E(Y) i.e., do the reach the true B in expectation? E(B|X) = E(XX) XY = (xx)'xE(YIX) -> E(YIX)=E(XB)+E(eIX) = (xx)'xxB I the least-squared estimates are unbiased What is their variance? $Var(\hat{\beta}|x) = Var[(x'x)'x'y]$ = (x'x)'x Var(Y|x) x(x'x)' = (x'x)'x Var(Y|x) x(x'x)'= (x'x) x' b2 I x (x'x) -1 f symetre / (AB) = B'A' = 62 (x'x) -1 x'x (x'x) -1 Va(B,) Va(Be) (31(B-B)) estimate w/ 5= ASS 1 1-P-1 & & Gauss. Markou Theorem IF Vor(e) = 62 I the least squares astructes are Biest Lincor.

Uinbrased

E : stimutes

Wednesday November 5th

- Special seninar + lunch

- Proposals due midnight

- BMI Paper

- Diagnosties I

Leverage

det: the extent to which I; is attracted by Y:

X(XX)X is known as the "hot notice since it puts a hat on Y.

The leverages are the diagonal elements of the hat motion.

* Rule of thumb: an obs has high leverage it its greater than twice the avg. lev.

hii > 2 (P+1)

courage leverage

Properties of Residuals

1. Var (CY) = CVW (Y) C 1. His idempotent. HH = X (XX) XX (XX) X = X(XX) Y = H

Expected value

Wadnesday Nov 1912

- · Hack Ebola
- · Presentation Schedule
- · Exam parameters
- · Searching the Model Space

1 2 3 4 *Predictors

Backwards Edinnation

- DFit the fill model and calculate criteria of choice.
- 2) Remove predictor ul largest p-val and calculate new priterion.
- 3) Stop iteration when the criterion is no larger improving

Forward Selection

-) Fit the simple model who the production what the smallest production of the smallest productions.
- 2) Fit new model w/ that
 predictor + new predictor, compute
 critician.
- is no longer improved