Test nº 3: correction

Exercice 1 (Probabilités).

- 1. Énoncer les formules des probabilités totales et de Bayes associées à un système complet d'événements $(A_i)_{1 \leqslant i \leqslant n}$ et pour un événement quelconque B.
- 2. On considère n urnes numérotées. L'urne k contient k boules rouges et 2k boules vertes. On tire une boule de l'une de ces urnes choisie au hasard : elle est rouge. Quelle est la probabilité d'avoir choisi l'urne k (pour $k \in [\![1,n]\!]$)? On commencera par définir les événements liés à cette expérience et on justifiera soigneusement son résultat.

Solution.

1.
$$P(B) = \sum_{i=1}^{n} P(A_i) P_{A_i}(B)$$
 et $\forall k \in [1, n], P_B(A_k) = \frac{P(A_k) P_{A_k}(B)}{\sum_{i=1}^{n} P(A_i) P_{A_i}(B)}$.

2. On définit les événements U_k : "on choisit l'urne k" et R : "la boule tirée est rouge". D'après l'énoncé, on a

$$P(U_k) = \frac{1}{n}$$
 et $P_{U_k}(R) = \frac{\text{nb cas favorables}}{\text{nb cas total}} = \frac{k}{k+2k} = \frac{1}{3}$.

De plus, $(U_k)_{1\leqslant k\leqslant n}$ est un système complet d'événements donc d'après la formule de Bayes

$$P_R(U_k) = \frac{\frac{1}{n} \times \frac{1}{3}}{\sum_{i=1}^{n} \frac{1}{n} \times \frac{1}{3}} = \frac{1}{n}.$$

Exercice 2 (Géométrie). Dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ du plan, on considère la courbe \mathcal{C} représentative de la fonction $x \mapsto 1/x$ définie sur \mathbb{R}^* . On considère trois points A, B, C de \mathcal{C} , d'abscisses respectives a, b, c non-nulles.

Rappel: dans un triangle ABC non-plat, les hauteurs sont concourantes. Leur intersection s'appelle l'orthocentre.

- 1. Montrer qu'aucune droite du plan ne coupe C en strictement plus de deux points. Que peut-on en déduire sur les points A, B et C?
- 2. Tracer la courbe \mathcal{C} puis placer les points A, B, C pour les valeurs $a = -1, b = \frac{1}{3}$ et c = 3. Construire l'orthocentre du triangle ABC.

Dans la suite a, b et c sont de nouveau quelconques.

- 3. Déterminer les équations des droites suivantes :
 - (a) la droite passant par A et orthogonale à (BC);
 - (b) la droite passant par B et orthogonale à (AC).
- 4. Montrer que l'orthocentre du triangle ABC appartient à C.

Solution.

1. Une droite verticale d'équation $x = \alpha$ où $\alpha \in \mathbb{R}$ intersecte \mathcal{C} en exactement un point si $\alpha \neq 0$ (c'est le point de coordonnées $(\alpha, \frac{1}{\alpha})$) et zéro point si $\alpha = 0$. Considérons à présent une droite \mathcal{D} non-verticale. Elle possède une équation cartésienne de la forme

$$\mathcal{D}$$
: $y = \alpha x + \beta$

où $\alpha, \beta \in \mathbb{R}$. Les coordonnées des points d'intersection de \mathcal{C} et \mathcal{D} sont donc les solutions du système suivant.

$$\begin{cases} y = \frac{1}{x} \\ y = \alpha x + \beta \end{cases} \iff \begin{cases} y = \frac{1}{x} \\ \alpha x^2 + \beta x - 1 = 0 \end{cases}$$

La deuxième équation étant polynomiale de degré 2, elle admet au maximum deux solutions. D'où le résultat.

On en déduit que les points A, B, C de \mathcal{C} ne sont pas alignés.

2.

3. (a) Soit \mathcal{D}_1 la droite passant par $A(a, \frac{1}{a})$ de vecteur normal $\overrightarrow{BC} \begin{pmatrix} c-b \\ \frac{1}{c} - \frac{1}{b} \end{pmatrix}$. On a

$$\mathcal{D}_1 : (c-b)(x-a) + (\frac{1}{c} - \frac{1}{b})(y - \frac{1}{a}) = 0 \iff bcx - y = abc - \frac{1}{a}$$

- (b) De même (on échange les rôles de a et b), \mathcal{D}_2 : $acx y = abc \frac{1}{b}$.
- 4. L'orthocentre H(x,y) est à l'intersection de \mathcal{D}_1 et \mathcal{D}_2 donc ses coordonnées vérifient $y = bcx abc + \frac{1}{a}$ et

$$acx - bcx + abc - \frac{1}{a} = abc - \frac{1}{b} \iff x = -\frac{1}{abc}$$

On constate alors que $y = bcx - abc + \frac{1}{a} = -abc$ donc $H \in \mathcal{C}$.

Exercice 3 (Algèbre linéaire).

Partie I: un cas particulier

Dans cette partie, on se place dans l'espace vectoriel \mathbb{R}^3 et on considère l'application de \mathbb{R}^3 dans \mathbb{R} définie, pour tout $(x,y,z)\in\mathbb{R}^3$, par $\varphi(x,y,z)=x+y+z$.

- 1. Montrer que φ est linéaire.
- 2. Déterminer une base de $Ker(\varphi)$. L'application est-elle injective?
- 3. Déterminer $\operatorname{Im}(\varphi)$. L'application est-elle surjective?
- 4. Justifier que $V = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$ est un sous-espace vectoriel de \mathbb{R}^3 .
- 5. Montrer que $\mathbb{R}^3 = V \oplus \operatorname{Ker}(\varphi)$.

Partie II: cas général

On se place désormais dans un \mathbb{K} -espace vectoriel E quelconque et on considère une forme linéaire f sur E non-nulle. On fixe alors un vecteur $u \in E$ tel que $f(u) \neq 0$.

- 6. Justifier que l'image de f est \mathbb{K} .
- 7. Montrer que $E = \text{Vect}(u) \oplus \text{Ker}(f)$.

Solution.

1. Soient u=(x,y,z) et v=(x',y',z') deux vecteurs de \mathbb{R}^3 et $\lambda\in\mathbb{R}$. Alors,

$$\varphi(u + \lambda v) = x + \lambda x' + y + \lambda y' + z + \lambda z' = x + y + z + \lambda (x' + y' + z') = \varphi(u) + \lambda \varphi(v)$$

donc φ est linéaire.

2. Soit
$$(x, y, z) \in \mathbb{R}$$
. Alors, $\varphi(x, y, z) = 0 \iff \exists \lambda, \mu \in \mathbb{R}$,
$$\begin{cases} x = \lambda \\ y = \mu \\ z = -\lambda - \mu \end{cases}$$

donc $\text{Ker}(\varphi) = \text{Vect}((1,0,-1),(0,1,-1))$. La famille ((1,0,-1),(0,1,-1)) est ainsi génératrice de $\text{Ker}(\varphi)$ et puisqu'il s'agit de deux vecteurs non-colinéaires, c'est même une base de $\text{Ker}(\varphi)$. Le noyau n'étant pas réduit à $0_{\mathbb{R}^3}$, l'application φ n'est pas injective.

3. Pour tout $\lambda \in \mathbb{R}$, $\varphi(\lambda, 0, 0) = \lambda$ donc $Im(\varphi) = \mathbb{R}$ et φ est surjective.

Remarque : on pouvait aussi utiliser le théorème du rang pour remarquer que rang $(\varphi) = 3 - 2 = 1 = \dim \mathbb{R}$.

- 4. $V \subset \mathbb{R}^3$ par définition.
 - $(0,0,0) \in V$.
 - Soient $(x, y, z), (x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$. On a x = y = z et x' = y' = z' donc

$$x + \lambda x' = y + \lambda y' = z + \lambda z'.$$

Ainsi, $(x, y, z) + \lambda(x', y', z') \in V$ et V est stable par combinaison linéaire.

5. On a
$$(x, y, z) \in V \iff \exists \lambda \in \mathbb{R}, \begin{cases} x = \lambda \\ y = \lambda \\ z = \lambda \end{cases}$$

donc V = Vect((1, 1, 1)) et dim $V + \dim \text{Ker}(\varphi) = 1 + 2 = 3 = \dim \mathbb{R}^3$.

Montrons à présent que V et $\operatorname{Ker}(\varphi)$ sont en somme directe. Soit $(x,y,z) \in V \cap \operatorname{Ker}(\varphi)$. Alors x=y=z et 0=x+y+z=3x donc (x,y,z)=(0,0,0). Ainsi, $V \cap \operatorname{Ker}(\varphi)=\{(0,0,0)\}$ et on a bien montré que les deux sous-espaces sont supplémentaires.

6. f est une forme linéaire. Cela signifie que f est à valeurs dans \mathbb{K} et donc Im(f) est un sous-espace vectoriel de \mathbb{K} (qui, on le rappelle, est un espace vectoriel de dimension 1). Ainsi, soit $\text{Im}(f) = \{0_E\}$ soit $\text{Im}(f) = \mathbb{K}$. Or, ici on suppose f non-nulle donc le premier cas est exclu. D'où le résultat.

Autre méthode : on pose $\alpha = f(u) \neq 0$, alors pour tout $\lambda \in \mathbb{K}$, on a $f(\frac{\lambda}{\alpha}u) = \lambda$ donc $\text{Im}(\varphi) = \mathbb{K}$.

7. Soit $x \in E$. Montrons par analyse-synthèse qu'il existe un unique couple $(\lambda, v) \in \mathbb{K} \times \text{Ker}(f)$ tel que $x = \lambda u + v$.

 $\frac{\text{Analyse}}{\text{Puisque}}: \text{soit } (\lambda, v) \in \mathbb{K} \times \text{Ker}(f) \text{ tel que } x = \lambda u + v. \text{ Par linéarité}, f(x) = \lambda f(u) + f(v) = \lambda f(u) \text{ car } v \in \text{Ker}(f).$ Puisque f(u) est un scalaire non-nul, on a $\lambda = \frac{f(x)}{f(u)}$ et donc $v = x - \frac{f(x)}{f(u)}u$.

Synthèse: posons $\lambda = \frac{f(x)}{f(u)}$ et $v = x - \frac{f(x)}{f(u)}u$. Alors on a bien

- $\lambda \in \mathbb{K}$:
- $f(v) = f(x) \frac{f(x)}{f(u)}f(u) = 0$ i.e. $v \in \text{Ker}(f)$;
- $\bullet \ \lambda u + v = x.$

D'où $E = \text{Vect}(u) \oplus \text{Ker}(f)$.