Supervised Learning

Technische Hochschule Rosenheim

Exercises

Machine Learning - Basics

1. Recall from the lecture notes the following figure. It depicts abstractly a typical machine learning system and it illustrates how the system is linked to the real world. Answer the following questions:

2. You are given a dataset of different kinds of beer from a beer tasting jury. Each row represents one data object.

ID	REGION	PRICE	AWARD
0	Lower Bavaria	18.70	bronze
1	Upper Bavaria	19.90	silver
2	Upper Franconia	7.20	silver
3	Lower Bavaria	16.50	gold
4	Lower Franconia	11.80	bronze
5	Lower Bavaria	17.40	gold
6	Upper Bavaria	24.50	silver
7	Lower Bavaria	13.90	bronze

(a) Specify the type of the attributes $\mathit{ID}, \mathit{PRICE}$ and AWARD according to the four attribute types introduced in the lecture.

ID:

PRICE :

AWARD :

(b) Calculate the mode of the attribute REGION.

Mode:

(c) Calculate the sample mean \bar{x}_{price} of attribute *PRICE*. Show your workings and round the result to two decimal places.

 $\bar{x}_{price} \approx$

3. We use Simple Linear Regression to model the relationship between a dog's weight x and its running speed y. Below, you are given the definition of a Simple Linear Regression model with the sum of squares (SSE) as error measure and n=4 samples of dogs' running speeds. The **parameters** of the model **are given** as: $\beta_0=3.00$ and $\beta_1=1.82$.

$$f(x) = \beta_0 + \beta_1 \cdot x$$
$$SSE(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Dog	1	2	3	4
Weight (kg)	16	2	10	18
Running Speed (km/h)	37	5	21	30

(a) Use the given parameters to calculate the four predicted values $f(x_i)$ and the SSE of this model. Round the results to two decimal places.

$$f(x_1) = \boxed{}$$

$$f(x_2) =$$

$$f(x_3) =$$

$$f(x_4) = \boxed{}$$

$$SSE(3.00, 1.82) =$$

(b) The parameter β_1 is correct. The parameter β_0 is **incorrect**. Derive the correct value of β_0 from the SSE error measure by using the method of least squares. Show your workings and round the result to two decimal places.

 $\beta_0 \approx$

4. Given the following illustration of a feature space with four data points - each from a different class. Draw the decision boundary of a 1-nearest neighbour classifier that uses euclidean distance.

5. Suppose you are given a training data set $D = \{(\mathbf{x}, y)_i\}_{i=1}^N$ consisting of N training examples (\mathbf{x}, y) and you want to implement the k-NN classifier in its original (naive) form.

(a) Describe the training process and the memory requirement of such a classifier.

(b) How many distance evaluations are necessary during prediction for a single test example?

(c) Describe how the hyper-parameter k affects the generalization capability of the k-NN classifier.

Machine Learning - Evaluation

6. In a multiclass classification problem with three classes $Y = \{1, 2, 3\}$, the figure below shows a confusion matrix for a classifier $\hat{y} = h(\mathbf{x})$ evaluated on some dataset $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$.

		Pre	edicte	$\mathbf{ed} \; \hat{y}$
		1	2	3
y	1	4	3	3
rue	2	1	9	0
Ţ	3	80	10	10

(a) How many examples are in each of the three classes (according to D)?

$$N_1 =$$

$$N_2 =$$

$$N_3 =$$

(b) What is the probability that a random classifier would predict class 1, 2 or 3?

$$P(C=1) = \boxed{}$$

$$P(C=2) = \boxed{}$$

$$P(C=3) =$$

(c) For class 2, determine the number of $True\ Positives\ TP_2$, $False\ Positives\ FP_2$, $False\ Negatives\ FN_2$ and $True\ Negatives\ TN_2$.

$$TP_2 =$$

$$FP_2 =$$

$$FN_2 =$$

$$TN_2 =$$

(d) Calculate the macro-averaged precision over all classes. Show your workings and round the result to two decimal places.

$\pi_{macro} \approx$	

													H
													H
			_										L
													L
													L
													Γ
													T
													t
			_										H
													H
													L
													L

7.	aliza	oss-validation is a general model evaluation principle with the purpose of estimating the generation capability of a predictor. Given a dataset D , check whether the following statements are e or false.
	(a)	Holdout validation estimates the error on all samples in D . \Box Yes \Box No \Box Don't know
	(b)	In .632-Bootstrapping, in each iteration the training set is formed by drawing samples from D with replacement. \Box Yes \Box No \Box Don't know
	(c)	In .632-Bootstrapping, in each iteration there is a small chance that a sample is both in the training set and the test set. \Box Yes \Box No \Box Don't know
	(d)	For k -fold cross-validation, we have to specify also the size of the training set and the size of the test set a-priori. \Box Yes \Box No \Box Don't know
	(e)	The above-mentioned validation principles are applicable to both classification and regression problems. \Box Yes \Box No \Box Don't know

Decision Trees

8. Given the following dataset with categorical attributes A, B and the class attribute C. Someone started running the **ID3-algorithm** with *misclassification-impurity* on this dataset. Unfortunately, the algorithm is not finished yet. We have to calculate the impurity reduction for one split manually.

\mathbf{A}	В	\mathbf{C} lass
2	1	1
3	1	1
1	1	2
2	1	2
2	1	3
1	1	3
1	1	3
1	1	3
2	2	4
2	2	4
1	2	4
3	2	4

(a) The figure below illustrates the current state of the tree after attribute B was selected in the root node (Node 1). Complete the figure by filling in the corresponding statistics (relative frequencies) in the empty boxes.

(b) Calculate the misclassification-impurities of nodes 2, 3, 4 and 5. NOTE: $D_{A=a,B=b}$ denotes the set of samples which have values A=a and B=b.

$$\iota_{mis}(D_{B=1}) =$$

$$\iota_{mis}(D_{A=1,B=1}) =$$

$$\iota_{mis}(D_{A=2,B=1}) =$$

$$\iota_{mis}(D_{A=3,B=1}) =$$

(c) Calculate the impurity reduction $\Delta \iota_{mis}(D_{B=1}, \{D_{A=1,B=1}, D_{A=2,B=1}, D_{A=3,B=1}\})$, when **node 2** splits on attribute A. Show your workings.

$$\Delta \iota_{mis}(D_{B=1}, \{D_{A=1,B=1}, D_{A=2,B=1}, D_{A=3,B=1}\}) =$$

c_2 :					c_3	•				c_4	•						c_{ξ}	5 •				
		tly ne or NO									red	uct	ion	for	noc	de	2 a	ıt t	his	sta	age?	Ar
																	+					
																						_
Ans			ould	the	tro	200.1	lict	for	cam	anlo	wi	tha	voli	105	4 -	2	and		3 —	- 97	γ Αν	o e wr
Whi	ch cl	: ass we class											valı	ies	A =	: 2	and	d E	3 =	= 2?	' Ar	nsw
Whi	ch cl	ass w											valı	ies	A =	: 2	anc	dl <i>B</i>	3 =	: 2?	' Aı	nsw
Whi	ch cl	ass w											valı	ies	A =	: 2	anc	dl E	3 =	: 2?	' Aı	nsw
Whi	ch cl	ass w											valı	ues	A =	: 2	and	dl E	3 =	: 2?	' Aı	nsw
Whi	ch cl	ass w											valı	nes	A =	: 2	and	d E	3 =	: 2?	' Aı	nsw
Whi	ch cl	ass w											valı	ues	A =	: 2	and	d E	3 =	: 2?	' Ar	nsw
Whi	ch cl	ass w											valı	les	A =	: 2	and	d E	3 =	: 2?	' Aı	nsw
Whi	ch cl	ass w											valu	les	A =	: 2	and	d E	3 =	= 2?	' Aı	nsw
Whi	ch cl	ass w											valı	les	A =	2	and	d E	3 =	= 2?	' Ar	nsw
Whi	ch cl	ass w											valı	les	A =	: 2	and	d E	3 =	= 2?	Y Ar	nsw
Whi	ch cl	ass w											valu	nes		: 2	and	d E	3 =	: 2?	' Ar	nswe
Whi	ch cl	ass w											valı	ues	A =	: 2	and	d E	3 =	= 2?	Y An	nsw
Whi	ch cl	ass w											valu	nes		: 2	and	d E	3 =	= 2?	' Aı	nsw
Whi	ch cl	ass w											valı	ues		: 2	and	d E	3 =	: 2?	Y An	nsw
Whi	ch cl	ass w											valu	nes		: 2	and	d E	3 =	= 2?	' Aı	nsw

Neural Networks

- 9. Given the following dataset with attributes x_1 , x_2 and associated class labels $y(\mathbf{x})$, we want to learn the weights of a perceptron such that the perceptron classifies the four samples correctly.
 - threshold function is the heaviside step function $\varphi(x) = \max(sign(x), 0)$
 - learning rate is $\eta = 0.4$
 - weights are initialized as $\mathbf{w} = (0.5, -1, 1)$

x_1	x_2	$y(\mathbf{x})$
1	0	0
0	0	0
1	1	0
0	1	1

Apply the *perceptron training algorithm* on the four samples in the given order. Iterate over the samples only once and **fill in the following table** with intermediate results of the algorithm.

NOTE: For notational convenience, we added a dummy attribute $x_0 = 1$ to the dataset. The vector $\mathbf{x} = (x_0, x_1, x_2)$ denotes a sample of the dataset and the vector $\mathbf{w} = (w_0, w_1, w_2)$ denotes the weights of the perceptron. i is the iteration counter and the last column contains the new weights after applying a weight update.

i	x_0	x_1	x_2	$y(\mathbf{x})$	$\mathbf{w}^T\mathbf{x}$	$\varphi(\mathbf{w}^T\mathbf{x})$	err	Δw_0	Δw_1	Δw_2	w_0	w_1	w_2
0		_		_	_	_	_		_		0.5	-1.0	1.0
1	1	1	0	0									
2	1	0	0	0									
3	1	1	1	0									
4	1	0	1	1									

10.	Answer the following questions
	 (a) In the perceptron training algorithm, the error induced by a sample is proportional to the distance of that sample to the hyperplane defined by parameters w. □ Yes □ No □ Don't know
	(b) If two classes are linearly separable, the perceptron training algorithm will converge. \Box Yes \Box No \Box Don't know
	(c) If two classes are not linearly separable, the perceptron training algorithm will alternate between exactly two states of the weight vector. □ Yes □ No □ Don't know
	(d) Gradient descent-based optimization algorithms are used for training neural networks because they find the global optimum independent of the network's architecture. □ Yes □ No □ Don't know
	 (e) The mini-batch gradient descent algorithm sums the weight adaptations over a small subset of samples before applying an update. ☐ Yes ☐ No ☐ Don't know

11. Describe the steps involved in training a multi-layer perceptron for binary classification. Assume that the network is trained for a single epoch using stochastic gradient descent with mini-batches. Give a conceptual description of the process, name the relevant quantities to be computed and use adequate terminology.

Boosting - Adaboost

12. You are given the following data set together with a set of decision tree stumps. Apply the Adaboost algorithm for two rounds to determine the ensemble classifier $H(\mathbf{x})$. Write down the weights of all training examples and the error rates of all decision stumps in each round.

Remarks:

- The data set consists of five points (A, B, C, D, E). Data points B and E belong to the positive class (+). Data points A, C, D belong to the negative class (-).
- Decision tree stumps are to be interpreted in the following way: A stump, such as $x_2 < 1$, means that this stump classifies all data points with an x_2 -value smaller than 1 as (+) and all other points as (-). Another stump, such as $x_1 > 3$, classifies all data points with an x_1 -value larger than 3 as (+) and all other points as (-).
- To determine the best classifier, choose the one whose error rate ϵ^t is furthest from 0.5. I.e. the one that maximizes $|\epsilon^t 0.5|$.
- As a tie breaker when determining the best classifier, use the topmost classifier (ordered as below).
- The voting power of the chosen classifier is calculated as: $\alpha^t = \frac{1}{2} \ln(\frac{1-\epsilon^t}{\epsilon^t})$

