Tema 3 El Modelo de Datos Relacional

Parte 2/3

Grado en Ingeniería Informát<u>ica</u>

Bases de Datos

2020/21

Departamento de Tecnologías de la Información Universidad de Huelva

3.4 Lenguajes relacionales

3.4.1 Álgebra relacional

- El álgebra relacional es un **lenguaje procedimental**, es decir, hay que indicar en qué orden se tienen que ejecutar las operaciones para obtener el resultado esperado.
- Consiste en un conjunto de operadores de alto nivel que actúan sobre una o dos relaciones y producen como resultado una nueva relación.
- Los 9 operadores propuestos por Codd son:
 - Los tradicionales de la teoría de conjuntos: Unión, Intersección, Diferencia y Producto Cartesiano.
 - Operadores propiamente relacionales: Selección, Proyección, Concatenación, División y Renombrar.

Definiciones

- Los atributos de una relación pueden ser **referenciados** anteponiéndole el nombre de la relación y un punto: *R.A*₁, *R.A*₂, ..., *R.A*_n
- Dos relaciones R y S son **compatibles** a efectos de los operadores del álgebra relacional si ambas tienen el mismo grado y ambas están definidas sobre el mismo conjunto de dominios

Operaciones del Álgebra Relacional

Operación Renombrar

- Se puede definir un alias para una relación, para los nombres de sus atributos o para ambos:
 - $\rho_S(R)$: renombra la relación R como S
 - $\rho_{(B_1, B_2, ..., B_n)}(R)$: renombra los atributos de R por $B_1, B_2, ..., B_n$
 - ρ_{S (B₁, B₂, ..., B_n)} (R): renombra el nombre de la relación y los atributos
 - $\rho_{A_1, A_2, \dots, A_n \to B_1, B_2, \dots, B_n}(R)$: renombra los atributos A_1, A_2, \dots, A_n de R por B_1, B_2, \dots, B_n

Operación Selección

- Sea $R(A_1:D_1, A_2:D_2, ..., A_n:D_n)$ el esquema de una relación y f una fórmula o condición.

```
Se define la selección Z = \sigma_f(R)
con esquema Z(A_1:D_1, A_2:D_2, ..., A_n:D_n)
y tuplas z = \{ t \mid t \in R \land f(t) \}
```

- Se cumplen las siguientes propiedades:

grado(Z) = grado(R) y $cardinalidad(Z) \le cardinalidad(R)$

Operación Selección

Ejemplos

• Obtener una lista de las asignaturas de 4.5 créditos.

ASIG 4.5

idAsig	nombre	créditos	curso	cuat	esp	prof
A007	Análisis Numérico	4.5	3	1	SG	17
A008	98 Programación II		3	1	SG	25
A012	Arquitectura de Computadores I	4.5	1	2	S	07

• Obtener una lista de los alumnos nacidos en Huelva y que tengan más de 1 hermano.

nAl	dni	nombre	fechaNac	lugar	nH	ordenador
332	29.568.777	Pedro Martínez Alvarez	20/03/72	Huelva	2	Ord010

Operación Proyección

- Sea R (A_1 : D_1 , A_2 : D_2 , ..., A_n : D_n) el esquema de una relación y $B = (B_1, B_2, ..., B_m)$ un subconjunto de ($A_1, A_2, ..., A_n$)

Se define la proyección $Z = \pi_B(R)$ con esquema $Z(B_1:E_1, B_2:E_2, ..., B_m:E_m)$ y tuplas $z = \{ t(B) \mid B \subset A \}$

- Se cumplen las siguientes propiedades: $grado(Z) \le grado(R)$ y cardinalidad(Z) \le cardinalidad(R)

Ejemplos

Obtener los números de los despachos donde hay profesores

despacho
FC-7366
FC-7382
FC-7364
FC-7387
FC-7389

 Obtener los nombres de los profesores que en 2004 tuvieran más 3 años de antigüedad

nombre
José Manuel Ramos López
Lourdes Pérez Pulido
Francisco Moro Botella
Antonio Torres García
Dolores Toscano Barriga

Operación **Unión**

- La unión de dos relaciones compatibles A y B, denotado por A ∪ B, es otra relación que toma el esquema del primer operando (por convención) y que está constituida por las tuplas que pertenezcan a A o a B o a ambas.
- La unión es conmutativa y asociativa

PROFESORES

nombre	localidad
Martínez, P	Madrid
Suarez, L	Huelva
Delgado, J.C	Huelva
Díaz, M.A.	Sevilla
Izquierdo, S	Zamora
Segura, S	Sevilla
López, J.C	Huelva

PROFESORES ∪ CLAUSTRALES

nombre	localidad
Martínez, P	Madrid
Suarez, L	Huelva
Delgado, J.C	Huelva
Díaz, M.A.	Sevilla
Izquierdo, S	Zamora
Segura, S	Sevilla
López, J.C	Huelva
Sánchez, N	Cádiz
Santos, J.A	Huelva

CLAUSTRALES

nombre	localidad	
Martínez, P	Madrid	
Delgado, J.C	Huelva	
Sánchez, N	Cádiz	
Santos, J.A	Huelva	
López, J.C	Huelva	

Tema 3

El Modelo de Datos Relacional: Álgebra Relacional

Operación **Diferencia**

 La diferencia de dos relaciones compatibles A y B, denotado por A - B es otra relación que toma el esquema del primer operando (por convención) y que está constituida por las tuplas que pertenezcan a la relación A pero no a la relación B. La diferencia no es conmutativa

PROFESORES - CLAUSTRALES

Suarez, L	Huelva
Díaz, M.A.	Sevilla
Izquierdo, S	Zamora
Segura, S	Sevilla

Operación Intersección

 La intersección de dos relaciones compatibles A y B, denotado por A ∩ B es otra relación que toma el esquema del primer operando (por convención) y que está constituida por las tuplas que pertenezcan tanto a la relación A como a la relación B. La intersección es conmutativa y asociativa

PROFESORES ∩ CLAUSTRALES

nombre	localidad
Martínez, P	Madrid
Delgado, J.C	Huelva
López, J.C	Huelva

Tema 3

El Modelo de Datos Relacional: Álgebra Relacional

Operación **División**

- Sean A (A₁:D₁, A₂:D₂, ..., A_n:D_n, B₁:E₁, B₂:E₂, ..., B_m:E_m) y B (B₁:E₁, B₂:E₂, ..., B_m:E_m) los esquemas de dos relaciones

Se define la división $Z = A \div B$ con esquema $Z(A_1:D_1, A_2:D_2, ..., A_n:D_n)$ y tuplas $z = \{ t \mid \forall s \in B \Rightarrow \exists ts \in A \}$

- Esta operación se utiliza en consultas donde se desea conocer la relación que existe entre un elemento de un conjunto con **TODOS** los elementos de otro conjunto

Ejemplo

• Obtener el código de los alumnos matriculados en todas las asignaturas comunes de segundo curso

Operación **División**

=]	e	m	p	10	S

D1

<u> </u>	
Р	
P1	

D2

D3

Р
P1
P2
P3
P4
P5
P6

Operación Producto cartesiano

- Sean A ($A_1:D_1$, $A_2:D_2$, ..., $A_n:D_n$) y B ($B_1:E_1$, $B_2:E_2$, ..., $B_m:E_m$) los esquemas de dos relaciones con n_A y n_B tuplas respectivamente

Se define
$$Z = A \times B$$

con esquema $Z(A_1:D_1, A_2:D_2, ..., A_n:D_n, B_1:E_1, B_2:E_2, ..., B_m:E_m)$
y tuplas $z = \{ t \mid t = ab, a \in A \land b \in B \}$ con cardinalidad(Z)= $n_A * n_B$

Ejemplo

• Nombre de las asignaturas de segundo curso junto con el nombre del profesor responsable.

nomAsig	nombre
Sistemas Operativos I	José Manuel Ramos López
Bases de Datos I	Lourdes Pérez Pulido
Bases de Datos	Lourdes Pérez Pulido
Sistemas Operativos II	José Manuel Ramos López
Ingeniería del SW de Gestión I	Dolores Toscano Barriga
Arquitectura de Computadores II	Santiago Baroja López

Operación Concatenación

- También se denomina combinación o reunión y sirve para combinar tuplas relacionadas de dos relaciones en una sola tupla
- Sean A $(A_1:D_1, A_2:D_2, ..., A_n:D_n)$ y B $(B_1:E_1, B_2:E_2, ..., B_m:E_m)$ los esquemas de dos relaciones y Θ un predicado de la forma

```
<condición> ∧ <condición> ∧ ... ∧ <condición>
```

donde cada < condición > tiene la forma $A_i \theta B_i y \theta$ es un operador de comparación (> < = $\geq \leq \neq$)

- La ⊕-concatenación de las relaciones A y B bajo la condición ⊕

$$Z = A \bowtie_{\Theta} B$$

con esquema $Z (A_1:D_1, A_2:D_2, ..., A_n:D_n, B_1:E_1, B_2:E_2, ..., B_m:E_m)$
y tuplas $z = \{t \mid t = ab, a \in A \land b \in B, y \Theta \text{ es cierto en } t\}$

- Si los operadores de comparación θ son todos de igualdad, se denomina **equiconcatenación**

Operación Concatenación

- Cuando de la equiconcatenación se eliminan los atributos superfluos, se dice que el resultado es una **concatenación natural**, y se denota:

$$A \bowtie B$$

- La concatenación natural exige que cada par de *atributos de reunión* tenga el mismo nombre en las dos relaciones, por lo que puede ser necesario renombrarlos
- El grado (A ⋈ B) = grado(A) + grado(B) − nº de pares de atributos de reunión, ya que se realiza una proyección no redundante de atributos

Operación Concatenación

Ejemplos

 Número y nombre de los alumnos matriculados en el curso 2001/2002

 Listado del nombre de los alumnos junto con el lugar donde realizan las prácticas durante el año

nAl	nombre	
150	Samuel Toscano Villegas	
231	Luis Enrique Moreno López	
112	Francisco Gallego Macías	
220	Beatriz Rico Vázquez	

nombre	Lugar
Eva García Gil	Aula 7
Manuel López González	Aula 7
Francisco Gallego Macías	Aula 7
Mercedes Gómez Martín	Aula 8
Beatriz Rico Vázquez	Aula 8
Pablo Gómez Ruíz	Aula 8
Teresa Díaz Camacho	Aula 8
Antonio Resines Pérez	Aula 8
Luis Enrique Moreno López	Aula 8
Pedro Martínez Álvarez	Aula 8
Samuel Toscano Villegas	Aula 8

Operación Concatenación

 Nombres de los profesores junto con el nombre de las asignaturas que impartieron y el año, durante los años 2001 y 2002

nomProf	nombre	año
Lourdes Pérez Pulido	Bases de Datos I	2002
Luis Sánchez Santos	Arquitectura de Computadores I	2001
José Manuel Ramos López	Sistemas Operativos I	2001
Lourdes Pérez Pulido	Bases de Datos I	2001
Dolores Toscano Barriga	Ingeniería del SW de Gestión II	2001
Dolores Toscano Barriga	Ingeniería del SW de Gestión II	2002
Luis Sánchez Santos	Bases de Datos I	2002
Sandra Tena Martín	Algoritmos y Estructuras de Datos I	2002
Lourdes Pérez Pulido	Bases de Datos	2001
Lourdes Pérez Pulido	Bases de Datos	2002
Luis Sánchez Santos	Sistemas Operativos II	2001
Luis Sánchez Santos	Sistemas Operativos II	2002

Operación de agrupación y funciones de agregación

- Las **funciones de agregación** son funciones matemáticas y estadísticas que operan sobre conjuntos de valores de la base de datos y devuelven un solo valor
 - Ejemplos de funciones: suma, media, máximo, mínimo, cuenta
 - Cuando se aplica una función de agregación los duplicados no se eliminan
- Un tipo de solicitud habitual consiste en agrupar las tuplas de una relación según el valor de uno o varios de sus atributos para aplicarle una función de agregación independientemente a cada grupo

atributos_agrupación ${\cal G}$ funciones_agregación (TABLA)

Ejemplos

Obtener los créditos totales que se ofertan en cada uno de los cursos

curso	SUMA(créditos)
1	20.25
2	40.5
3	22.5

Operación de agrupación y funciones de agregación

Ejemplos

· Créditos totales entre todas las asignaturas

SUMA(créditos)	
83.25	

• Listado, para cada asignatura, de las nota más alta y más baja obtenidas durante el curso 2002-2003 en las convocatorias de Febrero y Junio.

nombre	max	min
Bases de Datos I	7	3
Bases de Datos	2	2
Ingeniería del Software II	4	4
Sistemas Operativos II	2	2

Operación concatenación externa

 El objetivo de esta función es el de impedir que se pierdan las tuplas "no relacionadas" que desaparecen al aplicar la operación de concatenación entre dos relaciones. Por ejemplo, queremos una consulta que nos proporcione la dirección de las tiendas junto con las existencias de productos en las distintas tiendas (haya o no haya productos en la tienda)

TIENDAS

	id	dirección	localidad
	T1	Paseo de Gracia, 1	Barcelona
	T2	Gran Via, 9	Bilbao
5	Т3	C/ Sagasta, 25	Madrid
	T4	Avda. República Argentina, 25	Sevilla
	T5	Paseo Recoletos, 3	Madrid
	T6	Avda. Italia, 46	Huelva

EXISTENCIAS

id	pid	cant
T1	P3	17
T1	P4	130
T2	P3	4
T2	P10	80
T2	P25	12
T4	P26	23
T5	P3	20
T5	P4	89

 Si realizamos una concatenación natural entre TIENDAS y EXISTENCIAS obtendremos la siguiente relación

TIENDAS MEXISTENCIAS

id	dirección	localidad	pid	cant
T1	Paseo de Gracia, 1	Barcelona	P3	17
T1	Paseo de Gracia, 1	Barcelona	P4	130
T2	Gran Via, 9	Bilbao	P3	4
T2	Gran Via, 9	Bilbao	P10	80
T2	Gran Via, 9	Bilbao	P25	12
T4	Avda. República Argentina, 25	Sevilla	P26	23
T5	Paseo Recoletos, 3	Madrid	P3	20
T5	Paseo Recoletos, 3	Madrid	P4	89

Operación concatenación externa

- Como se puede apreciar, no aparecen las direcciones de las tiendas T3 y T6, ya que en ese momento no tienen en existencias ningún producto
- Para poder asociar todas las tuplas, incluso las que no tienen correspondencia o el valor de combinación es nulo, usaremos la:

Concatenación externa izquierda

Concatenación externa derecha

Concatenación externa completa

 $\supset \sim$

- En nuestro ejemplo, si quisiéramos que se mostraran los valores correspondientes a las tiendas T3 y T6, deberíamos haber usado:

TIENDAS EXISTENCIAS

id	dirección	localidad	pid	cant
T1	Paseo de Gracia, 1	Barcelona	P3	17
T1	Paseo de Gracia, 1	Barcelona	P4	130
T2	Gran Via, 9	Bilbao	P3	4
T2	Gran Via, 9	Bilbao	P10	80
T2	Gran Via, 9	Bilbao	P25	12
Т3	C/ Sagasta, 25	Madrid		
T4	Avda. República Argentina, 25	Sevilla	P26	23
T5	Paseo Recoletos, 3	Madrid	P3	20
T5	Paseo Recoletos, 3	Madrid	P4	89
Т6	Avda. Italia, 46	Huelva		

Resumen de las operaciones

Resumen de las operaciones

