ZTEST - Numerical Data

A **Z-test** is a statistical test used to determine whether there is a significant difference between the **sample mean** of a column and the **population mean** of a column or between the means of **two columns** when the population variance is known, and the sample size is large.

Types	One-Sample	Two-Sample	Paired Samples
Definition	Tests whether the sample mean of a column is significantly different from a known or claimed population mean of the same column.	Used to compare the means of two independent columns, assuming equal population variances and large column sizes.	Compares means of two related groups of a column (before-after or matched pairs)
Example	Is the average 'shipping_cost' in the DataFrame different from \$10?	Is there a difference in average 'revenue' between orders shipped via 'Express' and 'Standard'?	Is there a significant change in sales after implementing discount rates?
Sample Size	> 30	> 30	> 30
Standard Deviation	Known	Known	Known

Z Proportion TEST - Categorical Data

A **z-proportion test** is used when we want to compare **proportions** instead of means. It helps determine whether the proportion of success in a **single column** or between **two columns in a dataframe** is significantly different from a specific value or each other

Types	One-sample one-	One-sample two-	Two-sample one-	Two-sample two-
	tailed (Left-tailed &	tailed	tailed (Left-tailed &	tailed
	Right-tailed)		Right-tailed)	
Definition	This test checks if the	This test checks if the	This test checks if the	This test checks if the
	proportion in a single	proportion in a column	proportion in one group	proportions between
	column of a DataFrame	is significantly different	(one row of a grouped	two filtered groups in a
	is significantly less	(either lower or higher)	DataFrame) is	DataFrame are
	than or greater than a	from a specific	significantly greater or	significantly different.
	given threshold.	reference value.	lesser than another.	
Example	A hospital claims that	You want to test if the	You grouped your	Compare the proportion
	30% of patients in the	percentage of 'Positive'	DataFrame by 'gender',	of positive reviews
	'diabetes' column have	entries in the	and now want to check	between two
	the condition. You want	'Sentimental Analysis'	if the proportion of	'shipping_mode'
	to check if the actual	column is different from	'diabetes' cases in	categories in your
	percentage from your	60%.	'Male' rows is higher	DataFrame to check if
	DataFrame is less than		than in 'Female' rows.	they differ.
	30% (left-tailed) or			
	greater than 30% (right-			
	tailed).			
Sample	> 30	> 30	> 30	> 30
Size				
Standard Deviation	Known	Known	Known	Known