AD-A014 912

A STUDY OF THE EFFECTS OF BRAKING ON DRAG FORCE AND SINKAGE

J. L. Smith, ct al

Army Engineer Waterways Experiment Station

Prepared for:

Air Force Weapons Laboratory

August 1975

DISTRIBUTED BY:

A STUDY OF THE EFFECTS OF BRAKING ON DRAG FORCE & SINKAGE

J. L. Smith

G. W. Turnage

US Army Engineer Waterways Experiment Station Vicksburg, MS 39181

August 1975

C.". |

Approved for public release; distribution unlimited.

Repoduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Dispartment of Committee
Springfield VA 22151

AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland Air Force Base, MM 87117 This final report was prepared by the U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, under Project Order AFWL 73-'91, Job Order 683M4M16, with the Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico. Mr L. M. Womack (DEZ) was the Laboratory Project Engineer-in-Charge.

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurment operation, the Government thereby incurs no responsibilty nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

... M. WOMACK

Project Engineer

L. M. WOMACK

Chief, Aerospace Facilities

Division

KENNETH R. PORTER

Major, USAF

Commander, Civil Engineering Center

Operating Location

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

SECURITY CLASSIFICATION OF THIS PAGE (When Data entered)

REPORT DOCUMENTATION PAG	READ INSTRUCTIONS BEEGKE COMPLETING FORM						
1 REPORT NUMBER 2 GO	VT ACCESSION NO 3 PECIPIENT'S CATALOG NUMBER						
AFWL-TR-74-315							
4 TITLE (and Subtitle)	5 THE 32 REPORT & PERIOD COVERED						
A STUDY OF THE EFFECTS OF BRAKING ON	to becember 1200						
AND SINKAGE	6 PERFORMING ORG REPORT NUMBER						
7 AUTHOR(s)	8 CON RACTOR GRANT NUMBER(4)						
J. L. Smith and G. W. Turnage	Project Order 73-191						
9. PERFORMING ORGANIZATION NAME AND ADDRESS	16 TOCCHAMP, FMENT PROJECT, TASK						
U. S. Army Engineer Waterways Experiment Station Vicksburg, Mississippi 39181	63723F, 683M4M16						
11 CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE						
Air Force Weapons Laboratory	August 75						
Kirtland Air Force Base, NM 87117	13. NUMBER OF PAGES						
14 MONITORING AGENCY NAME & ADDRESS(II different from C	ontrolling Office) 15 SECURITY CLASS. (of this report						
	Unclassified						
	15a. DECLASSIFICATION DOWNGRADING SCHEDULF						
Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)							
18 SUPPLEMENTARY NOTES							
9 KEY WORDS (Continue or reverse side if necessary and identified Unsurfaced Aircraft Operations	Braking						
	Aircraft Ground Operations						
Wheel Drag Force							
ABS RACT (Continue on reverse side II necessary and identify	by block number)						
	g on drag force and sinkage and to deling the apparatus, braked wheel tests						

To determine the effect of braking on drag force and sinkage and to ascertain the feasibility of scale-modeling the apparatus, braked wheel tests were conducted at low forward speed in highly saturated, very plastic buckshot clay and in air-dry Yuma desert sand with two tires that were essentially 1:2 scale models of one another, a 4.00-7, 2-PR and a 9.00-14, 2-PR, each at 25 percent tire deflection. Test in both soils produced braked-wheel 3/2 values from 0 to 100 percent. Dimensionless numerics Cbd/W and $G_b(bd)^{3/2}/W$

used in previous studies to describe powered-wheel performance in clay and in sand, respectively, had to be revised to describe braked-wheel performance adequately.

For the range of test conditions in clay, drag/load (D/W) is closely related to $C^2 \mathrm{bd/W}(S)^{1/2}$ (S= slip) and sinkage/tire diameter (z/d^2) to $C \mathrm{bd/W}(S)^{1/10}$. The dimensional terms $C^2 \mathrm{bd/W}(S)^{1/2}$ and z/d^2 are thought to be part of dimensionless terms $C^2 \mathrm{bd/WpV}_c^2(S)^{1/2}$ and $z \mathrm{V}_c^2/d^2 \mathrm{g}$, respectively. Proofs of these bundtheses await future test in which variables V_c and p_c and variable V_c , respectively, take a range of values. For the sand tests, D/W is closely related to braked-wheel slip in the 20 to 100 percent range, but the data appear to separate by tire size (only) between 0 and 20 percent slip. In sand, braked-wheel z/d can be predicted from dimensionless numeric $[\mathrm{G}_b(\mathrm{bd})^{3/2}/\mathrm{W}]$. $(1-S^{1/2})$.

PREFACE

This investigation was conducted under the general supervision of Messrs. W. J. Turnbull and A. A. Maxwell, formerly Chief and Assisstant Chief, respectively, Soils Division (now Soils and Pavements Laboratory, SPL), and Messrs. W. G. Shockley and S. J. Knight, Chief and former Assisstant Chief, respectively, Mobility and Environmental Division (now Mobility and Environmental Systems Laboratory, MESL). The program was supervised directly by Dr. D. R. Freitag, former Chief, Mobility Research Branch (now Mobility Research and Methodology Branch, MRMB, of the Mobility Systems Division, MSD), and Mr. J. L. Smith, Chief, Data Handling Branch, MSD. The laboratory tests were conducted by personnel of the Mobility Investigations Branch, MSD. Resulting data were analyzed and this report was prepared by Messis. Smith and G. W. Turnage, MRMB.

CONTENTS

Sectio	<u>on</u>	Page
I	INTRODUCTION	1
	Background Purpose Scope	1 1 2
II	TEST PROGRAM	3
	Test Facility Soils and Their Preparation Test Tires Test Procedures	3 3 3 3
III	ANALYSIS OF TEST RESULTS	5
	Presentation of Data Tests in Clay Tests in Sand	5 6 9
IV	CONCLUSIONS AND RECOMMENDATIONS	12
	Conclusions Recommendations	12 13
	References	41

ILLUSTRATIONS

Figure		Page
1	WES Mobility Small-Scale-Testing Facility	27
2	Mechanical Analysis of Test Soils	28
3	Relation of Drag Ratio to Basic Clay Numeric, $^{\rm N}_{\rm cl}$, for Two Tires at 40 ± 5 Percent Slip	29
4	Relation of Drag Ratio to Clay Numeric, N $_{\rm c2}$, for Two Tires at 40±5 Percent Slip	30
5	Relation of Drag Ratio to Clay Numeric, $\rm N_{\rm c2}$, at Four Braked-Wheel Slip Levels	31
6	Logarithmic Relation of Drag Ratio to Percen. Slip a $N_{c2} = 200$ for Braked-Wheel Tests	32
7	Relation of Drag Ratio to Clay Numeric, N _{c3} , for Braked-Wheel Tests of Two Tires	33
8	Relation of Sinkage Ratio to Basic Clay Numeric, N _{cl} , for Two Tires at 40±5 Percent Braked-Wheel Slip	34
9	Relation of Revised Sinkage Ratio to Basic Clay Numeric, N _{cl} , for Two Tires at 40±5 Percent Braked-Wheel Slip	35
10	Relation of Revised Sinkage Ratio to Clay Numeric, $\rm N_{\rm c4}$ for Braked-Wheel Tests of Two Tires	36
11	Relation of Drag Ratio to Basic Sand Numeric, N s1, for Two Tires at Four Braked-Wheel Slip Levels	37
12	Relation of Drag Ratio to Percent Slip for Braked- Wheel Tests of Two Tires in Sand	38
13	Relation of Sinkage Ratio to Basic Sand Numeric, N _{S1} , for Two Tires at Four Braked-Wheel Slip Levels	39
14	Relation of Sinkage Ratio to Saud Numeric, N _{s2} , for Eraked-Wheel Tests of Two Tires	40

TABLES

Tables						Po-
I	First-Pass	Braked-Wheel	Tests	i,rı	Buckshot Clay	14
ΙΙ	First-Pass	Braked-Wheel	Tests	ín	Yuma Sand	18

ABBREVIATIONS AND SYMBOLS

- C Cone Index
- D Drag force
- G Cone index gradient
- L Characteristic linear dimension
- N Clay numeric*
- N_s Sand numeric*
- PR Ply rating
- S Braked-wheel slip
- V Velocity in fluid mechanics relations
- V Carriage forward speed
- V. Wheel peripheral speed
- W Wheel load
- b Tire section width
- d Tire diameter
- g Acceleration of gravity
- p Pressure
- z Tire sinkage
- . Mass density

^{*} Subscripts c1, c2, c3, c4, s1, and s2 indicate various forms of the numerics.

SECTION I

INTRODUCTION

1. BACKGROUND

Under present day concepts of warfare, it is essential that the military organization be able to airlift men and equipment quickly into any area of operations and to furnish support while they are there. Very often, airfields do not exist, are too few, or are not close enough to the battle area to be used for support operations. Normal construction of an airfield requires a great deal of time and money, as well as a considerable outlay of equipment, none of which may be available in a given situation. As an alternative, it has been suggested that cargo aircraft land on unsurfaced runways that have received only a minimum of preparation. This, of course, requires landing gear designed to withstand the drag force and wheel sinkage associated with soft soils.

Some of the parameters that affect drag force and sinkage are load, soil strength, tire size, tire deflection, velocity, and slip (braking). The effects of these parameters on drag force and sinkage have been determined, except for velocity and braking, from tests with powered and freely rolling model and prototype pneumatic tires in soft soils conducted over the past several years by the Mobility and Environmental Systems Laboratory (MESL), U. S. Army Engineer Waterways Experiment Station (WES) (reference 1). Through the use of dimensional analysis techniques, it has been shown that the parameters measured in model tests can be used to predict values for the prototype tires tested to date (reference 2). This suggests that the problem of determining the effect of braking on drag force and sinkage also would lend itself to model analysis. Therefore, a program of model tests using braked wheels was conducted as a joint effort between the MESL and the Soils and Pavements Laboratory at WES.

2. PURPOSE

The specific purposes of this study were to (a) determine the effect of braked-wheel slip on drag force and sinkage, and (b) ascertain

whether a scale model can be used to predict behavior of prototypes under conditions of high braked-wheel slip in a given soil.

3. SCOPE

Braked-wheel performance tests were conducted, some under conditions of constant braking (constant slip), and the remainder under conditions of programmed braking (slip progressing linearly from 0 to 100 percent). The analysis herein considers only first-pass wheel performance data. Tests were conducted on a fat clay and on a dry sand with the average initial strength of the soils (cone index) ranging from 20 to 60 in the 0- to 6-in. layer. Two tires were tested, a 4.00-7, 2-PR and a 9.00-14, 2-PR at one tire deflection, 25 percent.

SECTION 11

TEST PROGRAM

1. TEST FACILITY

The test program was conducted in the mobility small-scale-testing facility (figure 1) of the WES. A detailed description of this facility and the test techiques used can be found in reference la.

2. SOILS AND THEIR PREPARATION

The soils used in this study were classified as fat clay (CH) and fine sand (SP-SM), respectively, according to the Unified Soil Classification System. The clay was a Mississippi River alluvium obtained from the Long Lake area northwest of Vicksburg, Mississippi. The sand was obtained from dunes near Yuma, Arizona. Gradation and classification data for the two soils are shown in figure 2.

The clay was prepared to the desired consistency in a pug mill, which mixed soil and water at predetermined rates of flow. The prepared soil flowed from the pug mill into a test bin that was propelled slowly back and forth to allow uniform distribution of the soil. Next, the soil was compacted with a pneumatic-tired roller to a density corresponding to about 95 percent saturation, and then cured for approximately 11 days.

All the sand was air dried. To achieve different soil strengths, the density was varied by placing the sand in bins in uniform layers and screeding and vibrating it from the surface as required to achieve the desired strength (reference la).

3. TEST TIRES

The two test tires were the 4.00-7, 2.2R and the 9.00-14,2-PR, which were selected for use in this study primarily because they are essentially 1:2 scale models of one another.

4. TEST PROCEDURES

Three tests were conducted in each soil for each combination of tire size, soil strength, and wheel load used. Two of these were braked-wheel, constant-slip tests (40 and 80 percent); the third was a braked-wheel,

programmed-increasing-slip test (0 to 100 percent). The speed of advance of the carriage (V_c) was held constant at 5 fps and the peripheral speed of the wheel (V_w) was adjusted to obtain different slip values. The term "braked-wheel slip" as used herein is defined as $1-(V_w/V_c)$. By computing slip in this manner, a fully braked wheel is shown to be operating at 100 percent positive slip when $V_w = 0$. It should be noted that braked-wheel slip, as defined, is a dimensionless number.

Moisture and density of the soil were determined before and after 'raffic, and cone index was measured before, during, and after traffic. Measurements of drag force, sinkage, tire deflection, wheel load, and slip were recorded continuously during each pass of the wheel.

SECTION III

ANALYSIS OF TEST RESULTS

1. PRESENTATION OF DATA

The tire, soil, and performance data used in the analysis are listed in tables I and II. To determine whether tests with braked wheels would lend themselves to model theory, results obtained in an earlier dimensional analysis (reference 2) of the tire-soil system with powered wheels were used. Among other things, this dimensional analysis showed that both the ratio of drag force of a free-rolling wheel to wheel load (D/W), hereafter called the drag ratio, and the ratio of sinkage to tire diameter (z/d), hereafter called the sinkage ratio, are related to a dimensionless numeric in which variables of soil strength, load, and tire geometry are combined.

The basic numeric for clay is

$$N_{c1} = \frac{Cbd}{W} \tag{1}$$

where

C = cone index, psi

b = undeflected tire section width, in.

d = undeflected tire diameter, in.

W = wheel load, 1b

The basic numeric for sand is

$$N_{s1} = \frac{G_b(ba)^{3/2}}{W}$$
 (2)

where

 G_{b}^{-} = average cone index gradient over a depth equal to the sectional width of the tire

Tire sizes, wheel loads, and soil strengths for this test program were chosen mainly to meet the scaling requirements of dimensional analysis techniques. In this analysis, braked-wheel drag force and slip are plotted as positive numbers.

2. TESTS IN CLAY

The first step was to determine whether $N_{\rm cl}$ is applicable to the analysis of the braked-wheel performance of pneumatic tires operating in clay. If it is adequate to account for the effects of load, soil consistency, and tire size (circular-cross-section tires only), the relation between $N_{\rm cl}$ and each dependent performance parameter should be described by a single line.

a. Drag Ratio

The drag ratio (D/W) is plotted versus N_{c1} in figure 3 for tests with the 4.00-7 tire (open symbols) and the 9.00-14 tire (closed symbols) operating at approximately 40 percent braked-wheel slip. The data cannot be described by a single line, indicating that one or more of the variables in the basic numeric are not in the proper ratio. Therefore, N_{c1} does not adequately correlate with the drag ratio under conditions of braking. However, the data do suggest what the proper form of the numeric should be. For example, figure 3 shows that the data points group by cone index. The loads within each group are not equal, but are approximately proportional to the tire size. The fact that data from both sizes of tires plot together as long as the cone index is nearly constant indicates that the difference in the applied load is not the source of variation. Since all data were obtained at one braked-wheel slip, slip is not a factor in the analysis at this point.

The above results suggest that cone index is the variable that is not in proper scale. When the cone index value in equation 1 is squared, yielding

$$N_{c2} = \frac{c^2 bd}{W} \tag{3}$$

and $\rm N_{\rm c2}$ is plotted versus the drag ratio, a single relation results (figure 4). This implies that a change in cone index has a greater absolute effect on drag force in the braked-wheel condition than it does on pull in the powered-wheel condition (reference 2). However, $\rm N_{\rm c2}$ is not dimensionless, so additional variables are required to restore the dimensionless condition.

Other work in progress at the WES has shown that cone index is rate dependent. This rate dependency may explain the additional effect of cone index, and the term required to account for it could very well be the additional variable needed for dimensional balance. One of the classic dimensionless parameters of fluid mechanics is $\rho V^2/p$, where is mass density, V is velocity, and p is pressure. If cone index is substituted for pressure, and if it is assumed that velocity is the forward speed of the carriage (V_c) and that ρ is the mass density of the soil, and if the inverse of this dimensionless parameter is multiplied by N_{cl} , the result is the dimensionless term $C^2 b d/W_D V_c^2$. The degree of association between $C^2 b d/W_D V_c^2$ and drag ratio is essentially the same as between N_{c2} and drag ratio for the data of this test program because forward velocity V_c and soil mass density were nearly constant for all tests. A check on the effectiveness of $C^2 b d/W_D V_c^2$ in describing drag ratio must await future tests in which values of V_c and ρ are varied.

Equation 3 collapsed the drag ratio data for one value of braked-wheel slip; a family of curves (figure 5) defines this relation for four levels of slip. The data at N_{c2} = 200 are cross plotted in figure 6.

Since the slope of the line in figure 6 is 1:2 on a logarithmic plot, the separation between the curves in figure 5 is proportional to the square root of braked-wheel slip, i.e., $S^{1/2}$, another dimensionless number. Drag ratio data are plotted in figure 7 versus

$$N_{c3} = \frac{c^2 bd}{W(S)^{1/2}} \tag{4}$$

The data collapse along a single curve, indicating that $N_{\rm c3}$ adequately describes the effects of soil strength, load, tire geometry, and braked-wheel slip on changes in the drag ratio. However, to determine with certainty whether this or some other arangement of variables is correct, additional tests should be run in which each of the variables is studied over a range of values.

a. Drag Ratio

Drag ratio data from tests conducted with both the 4.00-7 (open symbols) and the 9.00-14 (closed symbols) tires at several values of braked-wheel slip are plotted versus $N_{\rm sl}$ in figure 11. From the relations shown, drag ratio appears to be independent of $N_{\rm sl}$, especially at 20 and 40 percent braked-wheel slip (figures 11b and 11c). The independence is not as apparent in the 12 and 80 percent data, but this is thought to be the result of data scatter associated with the extreme slip conditions. The reason for the apparent separation by tire sizes in figures 11a and 11b is not known. A stong dependence of drag force on braked-wheel slip can also be seen in figure 11.

To investigate these relations, drag ratio was plotted versus braked-wheel slip (figure 12) for all the tests in sand used in this study. Figure 12 shows that drag ratio is uniquely related to slip for all conditions tested, except possibly between 0 and 20 percent. It seems possible that at slips between 20 and 100 percent, the shoving action of the braked tire creates a mass of soil ahead of the wheel whose strength tends to be constant. This would effectively negate the effects of strength differences in the original soil. A considerable amount of scatter occurs at high braked-wheel slips in the data shown in figure 12, but there is a definite intermingling of data for all test conditions from 20 to 100 percent slip. The data in this range do not separate on the basis of tire size. The reason for the separation in the 0 to 20 percent slip range is not understood, and further studies are needed before an attempt is made to explain it. The data in figure 12 make it clear that, for the greater part of the braked-wheel slip range, the drag force depends primarily on load and slip in sand. This suggests that the drag force relation is almost entirely dependent on frictional resistance developed at the tire-soil interface.

b. Sinkage Racio

In figure ℓ the sinkage ratio (z/d) is plotted versus N_{cl} for both tires operating braked-wheel at approximately 40 percent slip. Data are from the same tests as those used in figure 3. The data in figure 8 tend to separate on the basis of tire size, particularly for large values of the sinkage ratio. As with the drag ratio, equation (1) is not adequate for developing a correlation with sinkage ratio under braking conditions. The tendency of the sinkage ratio data to separate by tire size indicates that a necessary linear dimension is missing. This is substantiated by the observation that the data collapse, particularly at high values of the sinkage ratio, much better if the sinkage ratio values for the 9.00-14 tire are divided by 2.

Since the linear scale of the model-prototype system is also 2, the data in figure 8 can be collapsed by dividing the sinkage ratio values by tire diameter, y'elding a revised ratio, z/d^2 . The data have been replotted using this revised ratio in figure 9. A much better correlation is attained between z/d^2 and N_{cl} in figure 9 than was present between z/d and N_{cl} in figure 8, particularly for large values of the ordinate terms.

It should be noted that a relation similar to the one shown in figure 9 would result if values of the sinkage ratio were divided by the tire width, or by some combination of tire width and diameter that would result in a unit of length. The proper combination to make such a relation valid for any tire size could not be ascertained from this limited test program. To determine this would require additional tests in which one of the parameters is varied while the others are held constant.

The introduction of an additional term in the sinkage ratio destroys the dimensionless character of the relation; therefore, other variables must be included to restore proper dimensional balance. Other work at the WES, discussed on page 7, has shown the properties of clay to be rate dependent: this rate dependency could very well be the source of the additional parameters necessary for dimensional balance. For example, dimensional balance would result if the Froude number V^2/Lg were used, where V is velocity, L is a characteristic linear dimension of the system,

and g is the acceleration of gravity. If the diameter d is substituted for L and forward carriage speed $V_{\rm C}$ for V in the Froude number, and if the resulting dimensionless parameter is multiplied by z/d, the result is $zV_{\rm C}^2/d^2g$. Carriage speed and acceleration of gravity were constant in this test program, so proof of this hypothesis requires that tests be conducted in which speed is a variable.

The revised sinkage ratio (z/d^2) collapsed the sinkage data for one value of braked-wheel slip. A procedure following that shown in figures 5 and 6 for drag was applied to sinkage, and it was established that, at any single value of $N_{\rm cl}$, the revised sinkage ratio is approximately proportional to the tenth root of braked-wheel slip, resulting in

$$N_{c4} = \frac{Cbd}{W(S)^{1/10}}$$
 (5)

The relations of the revised sinkage ratio versus N_{c4} are shown in figure 10. Although there is some scatter, especially at very low values of the revised sinkage ratio, all the data now can be described by a single curve, inducating that the revised sinkage ratio and N_{c4} can reasonably well describe changes in sinkage.

The scatter of low values of the revised sinkage ratio occurred partly because the sinkages were so small that they were difficult to measure accurately. Scatter at all values of the ratio is thought to result primarily from variation in the original sinkage measurements caused by nonuniformities in soil strength and from the tire continually picking up and depositing clay as it progressed down the traffic lane. Because of the variation in the original sinkage measurements, the accuracy of the exponent 1/10 in equation (5) is somewhat questionable.

3. TESTS IN SAND

The analysis of the data from braked-wheel tests in sand followed the same pattern as the analysis of data from tests in clay. The preliminary goal was to determine if the drag and sinkage ratios respond in a unique and predictable manner to changes in the basic sand numeric (N_{s1} , equation 2).

b. Sinkage Ratio

The relation of sinkage ratio values to N $_{\rm s1}$ at four levels of braked-wheel slip is described by a family of curves of similar shape in figure 13. To collapse these data to a single curve, the function $1-{\rm S}^{1/2}$ was used, yielding

$$N_{c2} = \frac{G_b (bd)^{3/2}}{W(1-S^{1/2})}$$
 (6)

The degree of collapse achieved with equation (6) is shown in figure 14. The good fit verifies that $\rm N_{\rm S2}$ describes tire sinkage performance quite well in the braked-wheel condition.

SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

Based on the analysis of data from the braked-wheel tests reported herein, the following conclusions are drawn:

- \underline{a} . The basic numerics N_{cl} and N_{sl} used to describe powered-wheel performance in clay and in sand, respectively, can be revised to predict braked-wheel tire sinkage if tire diameter is squared in the sinkage ratio (z/d^2) for clay, and if the appropriate functions of slip are included in the revised numerics (equation 5 for clay and equation 6 for sand).
- \underline{b} . For the range of conditions tested in clay, drag ratio (drag/load) is closely related to N_{c3}, a numeric different from N_{c1} in that N_{c3} includes a function of slip and C² (cone index squared) instead of C--see equation (4).
- <u>c</u>. For the sand tests, drag ratio is closely related to braked-wheel slip in the 20 to 100 percent range. Between 0 and 20 percent slip, the data appear to separate by tire size, but not by any other variable included in this test program (figure 12).
- <u>d</u>. Because the performance data of the two test tires (whose major dimensions differ by a ratio of approximately 1:2) can be collapsed using the revised dimensionless numerics (equations (4), (5), and (6) and figures 7, 10, and 14, respectively), there is a good possibility that results of scale-model tire tests can be used to predict prototype tire behavior under braked-wheel conditions both in clay and in sand.

2. RECOMMENDATIONS

To determine the final forms of the numerics that will accurately predict performance of tires operating under braking conditions, it is recommended that:

- <u>a</u>. Further brake i-wheel tests at a range of speeds be conducted in clay of different densities to determine the terms required to make the numeric for predicting drag/load dimensionless.
- \underline{b} . Data from these additional tests be analyzed to check the exponent of the slip term in the numeric for predicting sinkage/tire diameter (equation (5)).
- \underline{c} . Tests be conducted in sand to discover the significance of the separation of data by tire size in the relation between drag/load and braked-wheel slip below 20 percent.

TABLE I .-- FIRST-PASS BRAKED-WHEEL TESTS IN BUCKSHOT CLAY

	Carriage Speed			Tire		Tire	Wheel				Basic	Clav	Clav	Cla:
Test	, ,	Cone	Wid th b	Diam d	Sinkage z	Load	Drag D	Slip	Drag Ratio	Sinkage Ratio	Numeric	Numeric	Numeric	Numeric
No.	fps	ပ	in.	in.	in.	1b		S	M/Q	p/z	,c1	,c2	,c3,	10 to
36	76.4	56	4.19	14.12	90.0	186		0.372	0.448	0.004	9.55	767.4	438.4	10,18
37	5.03	35	4.19	14.12	0.22	191		0.799	0.634	0.016	9.91	317.1	354.7	10.13
38	76.4	31	4.22	14.14	1.38	377		0.773	0.774	960.0	4.91	152.2	173.2	5.04
39	89	17	4.19	14.12	1.96	185	186	0.78	1.026	0.139	5.44	92.5	104.4	5.57
04	4.97	17	4.19	14.12	1.47	185		0.351	936.0	0.104	77.5	92.5	156.3	6.03
41	5.04	17	4.19	14.12	1.14	181		0.034	0.337	0.081	5.56	4.50	513.6	7.80
	5.07	17	4.19	14.12	1.24	177		0.128	0.633	0.088	5.68	9.9 9.9	269.8	8.9
	₹. 1	17	4.19	14,12	1.37	187		0.193	0.722	0.097	5.38	91.5	208.4	6.34
	4.95	17	4.19	14.12	1.34	195		0,280	0.810	0.095	5.16	87.7	165.8	5.86
	5.00	17	4.19	14.12	1.03	178		0.348	0.809	0.073	5.65	8.1	162.9	6.28
	5.02	17	4.19	14.12	1.20	182		0.371	0.863	0.085	5.53	o. 7	154.4	6.10
	5.06	17	4.19	14.12	1.30	187		0.451	0.850	0.092	5.38	91.5	136.2	5.83
	5.06	17	4.19	14.12	1.34	184		0.521	0.929	0.095	5.46	95.8	128.5	5.83
	5.07	17	4.19	14.12	1.37	174		0.597	0.988	0.097	5.78	86.3	127.2	6. 08
	5.08	17	4.19	14.12	1.57	186		0.672	0.989	0.111	5.41	0.26	112.2	5.63
	5.11	17	4.19	14.12	1.51	186		0.745	0.946	0.107	5.41	92.0	106.6	5.57
	5.10	17	4.19	14.12	1.49	181		0.783	0.961	0.106	5.55	7.	106.7	5.69
	5.09	17	4.19	14.12	1.55	185		0.819	0.946	0.110	5.44	95.5	102.2	5.55
	5.09	17	4.19	14.12	1.56	183		0.889	296.0	0.110	5.49	93.3	6.86	5.56
42	4.70	53	4.19	14.12	0.24	197		0.058	0.147	0.017	8.71	252.6	1049	11.58
	4.73	53	4.19	14.12	0.27	200		0.153	0.380	0.019	8 FS	2:48.8	636.3	10.35
	4.71	50	4.19	14.12	0.31	18		0.240	0.439	0.022	8.75	253.8	518.0	10.09
	4.68	53	4.19	14.12	0.31	191		0.324	264.0	0.022	8.98	260.4	457.6	10.06
	4.70	53	4.19	14.12	64.0	192		0.381	0.521	0.035	₹. 8	259.3	420.3	9.85

* Equations 1, 3, 4, and 5, respectively.

(Continued)

TABLE I. (Continued)

	Carriago			Tire	1	Tire	Wheel				Basic			
Test	Speed	Cone Index	Width b	Diam d	Sinkage	Load	Drag D	Slip	Drag Ratio	Sinkage Ratio	Clay Numeric	Clay Numeric N *	Clay Numeric	Clay Numeric N *
No.	fps	O		in.		1p	1b	S	D/W	•	c1	25	63	,,c4
42	4.71	53		14.12		186	8	0.409	0.1184		9.23	267.7	418.3	10.10
	4.89	56		14.12		198	113	0.503	0.595		9.03	261.9	369.5	29.67
	2.98	53		14.12		193	105	0.585	0.544		8.89	257.8	337.1	9.38
	2.98	56		14.12		203	105	099.0	0.517		8.45	245.1	301.7	8.81
	4.98	56		14.12		167	98	0.730	0.443		8.8	256.4	300.2	9.12
	5.03	53		14.12		18	103	0.791	0.531		8.84	256.4	288.4	9.05
	5.08	53		14.12		191	117	0.864	0.612		8.98	260.4	280.3	9.15
	5.10	59		14.12		198	110	0.933	0.556		8.67	251.4	260.2	8.73
43	4.99	33		14.14		373	106	0.052	0.284		5.28	174.2	764.0	7.10
	4.99	33		14.14		378	158	0.139	0.418		5.21	171.9	461.1	6.35
	4.98	33		14.14		378	193	0.218	0.510		5.21	171.9	368.2	6.07
	5.00	33		14.14		387	222	0.302	0.574		5.09	168.0	305.5	5.74
	5.01	33		14.14		368	219	0.356	0.595		5.35	176.6	295.9	5.93
	5.01	33		14.14		373	236	0,383	0.633		5.28	174.2	281.5	5.81
	5.01	33		14.14		378	253	0.459	0.669		5.21	171.9	253.7	5.63
	5.01	33		14.14		375	273	0.535	0.728		5.25	173.3	236.9	5.59
	5.01	33		14.14		378	305	0.604	0.799		5.21	171.9	221.2	5.48
	5.04	33		14.14		379	312	7.674	0.823		5.19	171.3	208.8	5.40
	5.00	33		14.14		362	340	0.745	0.939		5.44	179.5	208.0	5.60
	5.00	33		14.14		385	355	0.784	0.922		5.11	168.6	190.6	5.54
	5.04	33		14.14		363	336	0.818	0.926		5.45	178.9	197.9	5.53
	5.06	33		14.14		378	341	2,898	0.905		5.21	171.9	181.4	5.27
777	4.93	39		14.14		386	238	0.335	0.616		6.03	235.2	7.90%	6.73
15-	:	;		:		:	1	1	:		:	1	:	i
**67														
							, ,	1						

(Continued)

** Tests 45-49 were conducted to determine relations not sought in this program.

	Carriage			Tire		Tire	Wheel	And Andrews			Rasic	;		
Test No.	Speed V C fps	Cone Index	Width b in.	Diam d in.	Sinkage z in.	Load W	Drag D	Slip	Drag Ratio D/W	Sinkage Ratio 7/d	Clay Numeric Na*	Clay Numeric N _C	Clay Numeric N _C 3	Clay Numeric Not
50	5.08	20		28.30		992	540	470.C	0.313	0.068	6.10	122.0	448.7	7.91
	5.06	50		28.30		750	368	0.154	0.491	0.078	6.23	124.6	317.7	7.52
	5.10	50		28.30		192	1,58	0.252	0.599	160.0	6.12	122.4	243.8	7.03
	5.06	50		28.30		750	248	0.327	0.731	960.0	6.23	124.6	218.0	6.97
	5.08	20		28.30		752	286	0.350	0.779	0.101	6.22	124.4	210.2	6.91
	5.12	50		28.30		758	650	0.411	0.858	0.106	6.17	123.4	192.4	47.9
	5.13	50		28.30		752	689	0.490	0.916	0.108	6.22	154.4	177.6	89.9
	5.14	50		28.30		192	705	0.564	0.923	0.117	6.12	122.4	163.0	84.9
	5.12	20		28.30		750	733	0.638	776.0	0.108	6.23	124.6	156.1	6.52
	5.16	50		28.30		260	669	902.0	0.920	0,116	6.15	123.0	146.4	6.37
	5.15	50		28.30		292	737	0.772	0.967	0.114	6.14	122.8	139.7	6.30
	5.16	20		28.30		750	740	0.785	0.987	0.114	6.23	124.8	140.7	6.38
	5.18	50		28.30		260	751	0.834	0.988	0.117	6.15	123.0	134.7	6.26
	5.18	50		28.30		741	750	0.900	1,012	0.128	6.31	126.2	133.0	6.37
21	4.97	30	8.26	28.30		200	188	990.0	0.238	0.018	8.88	7992	1037	11,65
	200	30		28.30		807	298	0.166	0.369	0.019	8.69	260.7	640.0	10,39
	5.02	30		28.30		162	328	0.261	0.413	0.014	8.83	564.9	518.6	10.10
	5.02	30		28.30		38	386	0.342	0.485	0.018	8.81	264.3	451.9	9.81
٠	5.00	30		28.30		200	330	0.376	\$4.0	0.015	8.88	7,992	434.3	9.79
	5.04	30		28.30		804	708	0.428	0.507	0.014	8.72	261.6	0.004	67.6
	5.06	30		28.30		788	777	0.507	0.563	0.014	8.90	267.0	375.0	9.53
	2.06	30		28.30		184	994	0.575	0.594	0.007	40.00	268.2	353.9	9.45
	5.08	20		28.30		707	500	9790	0.633	0.011	8.88	7.992	331.3	9.58
	5.08	30		28.30		782	200	0.722	0.639	0.008	8.97	269.1	316.6	9.27
	5.03	30		28.30		662	536	0.792	0.671	0.015	8.78	263.4	295.9	8.99
	5.14	30		28.30		812	260	0.872	0.690	00000	8.64	259.2	277.5	8.76
	5.10	30	8.26	28.30		786	510	0.934	649.0	0.011	8.92	567.6	277.0	8.98
								(Continued	(pa					

TABLE I. (Concluded)

	Clay	Net	8.16	7.01	6.68	97.9	6.41	6.33	6.30	6.19	6.18	₹°.5	6.02	5.85	5.87	7.12	6.55	11.71	10.39	5.64	6.38
	Clay	Ne3	1200	607.0	460.4	391.5	367.8	347.0	320.3	296.7	281.8	262.0	252.4	236.4	230.0	212.5	152.5	617.7	400.0	225.0	374.8
	Clay	Nc2*	221.2	217.0	218.5	218.5	219.6	219.3	222.3	221.9	957.6	221.9	223.4	218.9	221.5	128.8	134.2	383.0	355.3	198.	217.4
Basic	Clay	Nc2*	5.82	5.71	5.75	5.75	5.78	5.77	5.85	5.84	5.91	5.84	5.88	5.76	5.83	6.44	6.39	10.64	10.15	5.50	5.72
	Sinkage	z/d	0.082	0.083	0.082	0.104	0.105	0.106	0.106	0.106	0.119	0.125	0.129	0.127	0.108	0.079	0.130	0.005	00000	0.130	960.0
	Drag	D/W	0.231	0.338	0.406	0.516	0.552	0.582	2.627	0.671	0.747	0.763	0.755	0.756	0.714	0.854	0.958	0.434	0.499	0.783	0.567
		S	0.034	0.128	0.225	0.312	0.356	0.400	0,481	0.559	0.635	2.717	0.784	0.858	0.928	2.367	7.47	0.384	5.790	5.775	3.336
Wheel	Drag	a q	360	536	079	812	864	914	26	1040	1144	1184	1164	1188	1110	620	736	343	405	1222	gog gog
Tire	Load	16	1556	1585	1576	157^{14}	1566	1570	1548	1550	1532	1552	1542	1572	1554	126	768	791	806	1561	1583
	Sinkage	in.	2,35	2.38	2.35	2.98	3.01	3.03	3.03	3.03	3.39	3.58	3.69	3.64	3.10	2.24	3.67	0.14	00.00	3.71	°¥°2
Tire	Diam	in.	28.58	28.58	28.58	28.58	28.58	28.58	28.58	28.58	28.58	28.58	28.58	28.58	28.58	28.30	28.30	28.30	28.30	28.58	28.58
	Width	in.	8.34	8.34	8.34	8.34	8.34	8.34	8.34	8.34	8.34	8.34	8.34	8.34	8.34	8.26	8.26	8.26	8.26	8.34	8.34
	Cone	C	38	38	38	38	38	38	38	38	38	38	38	38	38	20	21	36	35	36	38
Carriage	Speed V	rps	58° †	7.88	36.4	2.00	76.4	%°-7	7.36	4.98	5.02	2.06	2.00	5.00	5.12	5.15	5.19	5.13	5.04	5.15	5.13
		.0.																55			

TABLE II. -- FIRST-PASS BRAKED-WHEEL TESTS IN YUMA SAND

1	1											
The second secon	7	Numeric N *	s2	22.99	7.24	:	10.73	11.58	1	38.02	32.78	27.41
-	Basic	Numeric N *	"s1	58.33	63.24	1	29.50	29.19	1	58.94	28.8	60.12
The second secon		Sinkage Ratio	p/z	0.0212	0,1003	1	2090.0	0.0913	:	0.0035	0.0064	0.0155
		Drag Ratio	D/W	0.605	0.959	1	0.611	0.569	;	090.0	0.344	0.543
			- 1	0.367								
	Wheel	Drag D	q	467	669	;	459	861	1	94	263	407
3 00 00 00 00 00 00 00 00 00 00 00 00 00	Tire	Load	q	772	729	1	751	1513	ŀ	197	194	449
		Sinkage 2	in.	09.0	2.84	1	1.72	2.61	ł	0.10	0.18	77.0
	Tire	Dism d	in.	28.30	28,30	:	28.30	28.58	:	28.30	28.30	28.30
	1	Width b										
	Cone	ent	مح	12.6	12.9	;	6.2	12.0	;	12.6	12.6	12.6
	Carriage	opeed N	fps	4.85	4.91	ł	5.10	4.95	ŀ	5.07	4.99	5.07
		Test	No.	н.	0	3**	7	7	**9	7		

(Continued)

* Equations 2 and 6, respectively.

Tests 3, 6, and 31 were constant-skid tests in each of which sinkage exceeded 4 in. It was determined that when sinkages of this magnitude were attained, the sand buildup interfered with the vertical load applied; therefore, all test data are omitted for which z 2 4 in. *

Tests 24-26 were conducted to determine relations not sought in this program.

(Sheet 1 of 9) cut reason for this dissimilarity is known. Data for this test are omitted so that trends established by all of the remaining tests will not be obscured. Test 27 produced results quite different from those obtained in all of the remaining tests; no clear-

TABLE II. (Continued)

	Carriage	Cone Index		, t		£	[1000]				Basic	
	Speed	Gradi-	Width	Diam	Sinkage	Load	Drag		Drag	Sinkage	Send	Sand
Test	ى >	ent	O,	ъ	23	X	<u>0</u>	Slip	Ratio	Ratio	Numeric	Numeric
No.	fps	50	in	in.	in.	1b	119	ω	M/Q	z/d	"s1	s2
7	5.13	12.6	8.26	28.30	09.0	741	450	0.378	0.607	0,0212	60.77	23.41
	5.13	12.6	8.26	28.30	0.64	753	760	0.390	0.611	0.0226	59.80	22.45
	5.13	12.6	8.26	28.30	0.70	741	794	0.416	. 0.630	0.0247	60.77	21.57
	5.13	12.6	8.26	28.30	0.82	741	485	0.453	0.654	0.0290	60.77	19.87
	5.15	12.6	8.26	28.30	1.10	737	207	0.520	0.688	0.0388	61,10	17.04
	5.17	12.6	8.26	28.30	1.47	733	557	0.589	0.760	0.0519	61.44	14.29
	5.13	12.6	8,26	28.30	1.72	730	585	0.648	0.801	0.0607	61.69	12.03
	5.17	12.6	8.26	28.30	2,16	726	637	0.712	0.877	0.0763	62.03	69.6
	5.17	12.6	8.26	28.30	2.58	722	699	0.778	0.926	0.0911	62.37	7.36
	5.17	12.6	8.26	28.30	2.70	718	999	0.796	0.926	0.0953	62.72	92.9
	5.19	12.6	8.26	28.30	2.76	714	682	0.818	0.955	0.0975	63.07	6.03
	5.21	12.6	8.26	28.30	2.86	722	680	0.838	0.922	0.1010	62.37	5.28
	5.17	12.6	8.26	28.30	3.16	718	718	0.896	1,000	0.1116	62.72	3.35
	5.21	12.6	8.26	28.30	3.32	718	67/2	0.938	1.043	0.1172	62.72	1.8
α	86-1	17.0	26	82	כיו נ	רפאו	822	836	(60	70	200	200
)		C • 1 +	• • •	00.00	1	1730		0.350	0.074	10.00 0.00	43.00	62011
0/	4.95	14.4	4.17	14.08	0.21	8	55	0.396	0.542	0.0149	67.48	25.02
10	5.16	13.9	4.17	14.08	0.89	104	80	0.799	0.769	0.0632	60.13	6.38
11	5.30	16.2	4.19	14.12	2.09	169	171	0.790	1.012	0.1482	43.62	4.85
12	5.18	15.8	4.19	14.12	0.89	186	115	0.373	0.618	0.0631	38.66	15.05
13	60.5	7.0	4.17	14.708		87		0.361	0.598	0.0526	36.20	14.45
					9	Continued	d)					

Send Numeric Na*	25.12 11.14 12.86 13.36	62.8 73.9 37.9 31.3 31.3
Basic Sand Numeric N *	33.33 34.53 34.53 33.35 33.35 56.55	76.53 85.32 81.57 90.53 83.41
Sinkage Ratio z/d	0.0270 0.0256 0.0277 0.0341 0.0376 0.0391 0.0518 0.0611 0.0695 0.0994 0.1065 0.1065	0.0000 0.0000 0.0000 0.0028 0.0050
Drag Ratio D/W	0.0250 0.3950 0.6836 0.6839 0.6839 0.9586 1.0047	0.0°2 0.448 0.505 0.585 0.584
Slip	0.049 0.135 0.336 0.330 0.330 0.550 0.550 0.762 0.791 0.939	0.032 0.122 0.213 0.298 0.373 0.390
Wheel Drag D 1b	\$\$13090000000000000000000000000000000000	
Hre Logd	9 2 93 5 3 8 3 8 3 8 3 8 3 8 8 8 8	97 90 87 91 82 89 (Continued
Sinkage z in.	00000000000000000000000000000000000000	000000000000000000000000000000000000000
Tire Diam d	44444444444444444444444444444444444444	14.08 14.08 14.08 14.08 10.08
Width b in.	17 17 17 17 17 17 17 17 17 17 17 17 17 1	4.17 4.17 4.17 4.17 4.17
Cone Index Gradi- ent G		16.5 16.5 16.5 16.5 16.5 16.5
Carriage Speed V C fps	44444444444444444444444444444444444444	5.12 5.13 5.14 5.15 5.15
Test No.	7.	15

TABLE II. (Continued)

Sand Numeric Ns*	31.37 29.69 26.26 22.30 14.73 11.78 10.50 9.37 7.41	22.71 19.82 17.34 14.66 14.12 13.19 12.40 10.69
Basic Sand Numeric Na*	88 88 88 83 88 83 34 88 83 34 88 88 33 4 88 88 88 88 88 88 88 88 88 88 88 88 8	35.28 36.66 37.28 36.66 37.28 37.07 37.07
Sinkage Ratio z/d	0.0000 0.0050 0.0128 0.0170 0.0426 0.0440 0.0469 0.0469	0.0057 0.0113 0.0199 0.0270 0.0362 0.0411
Drag Ratio D/W	0.595 0.619 0.630 0.649 0.785 0.840 0.914 0.780 0.936	0.374 0.428 0.508 0.561 0.582 0.584 0.624 0.688
Slip	0.416 0.441 0.509 0.568 0.643 0.765 0.784 0.806 0.910	0.127 0.211 0.286 0.360 0.415 0.413 0.511
Wheel Drag D 1b	3867486777777	70 90 101 103 104 111 121
Tire Load W	48888344488888888888888888888888888888	187 180 177 180 177 178 178 176
Sinkage z in.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.08 0.16 0.28 0.44 0.51 0.70
Tire Diam d	4.08 4.08 4.08 4.08 4.08 6.04 6.08 6.04 6.08 6.04 6.08 6.04 6.08 6.04 6.08 6.04 6.08 6.04 6.08 6.04 6.08	14.12 14.12 14.12 14.12 14.12 14.12 14.12 14.12
Width b	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Cone Index Gradi- ent G	16.55 16.55 16.55 16.55 16.55 16.55 16.55	44444444 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Carriage Speed V C fps	5.15 5.13 5.19 5.20 5.20 5.20 5.20 5.20 5.20	5.09 5.10 5.12 5.12 5.12 5.12 5.12
Test No.	15	91

(Continued)

	7 7 7 7 8 6 1 0 6 6 9 3 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6		
Basic Sand Numeric Na*	38.14 39.28 39.28 39.28 39.75 39.75	40.22 48.78 57.28 99.98	98.59 104.13 102.97 104.13 105.32 114.42 119.03
Sinkage Ratio	0.0766 0.0894 0.1007 0.1078 0.1191 0.1333	0.0959 0.0333 0.1043 0.0554 0.0085	0.0000 0.0000 0.0050 0.0043 0.0057 0.0156
Drag Ratio D/W	0.774 0.882 0.917 0.946 0.928 0.970 1.030	0.965 0.568 0.875 0.778	0.340 0.449 0.533 0.550 0.592 0.682
Slip	0.646 0.718 0.774 0.825 0.921 0.968	0.770 0.407 0.783 0.791	0.088 0.190 0.278 0.366 0.418 0.500
Wheel Drag D	134 159 159 161 171	82 112 147 70 52	
Tire Load W	168 168 168 168 166 166	194 88	94 89 89 88 81 85 78 Continued
" '	1.08		0.00
Tire Dism d	14.12 14.12 14.12 14.12 14.12 14.12	14.08 14.12 14.12 14.08	4.08 4.08 6.04 6.08 6.04 6.08 6.04
	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Cone Index Gradi- ent G	44444444 6666666666	7.6 21.5 21.3 20.0 20.0	00000000000000000000000000000000000000
Carriage Speed V C fps	5.14 5.15 5.16 5.17 5.19 5.19	5.18 5.04 1.92	86.00 86.00
Test No.	16	17 18 19 20 21	85

TABLE II. (Continued)

		ano.)										
	Carriage	Index		Tire		Tire	Wheel				Basic	200
Test	o Apeed	Gradi-	Width b	Diam d	Sinkage z	Load	Drag D	Slip	Drag Ratio	Sinkage Ratio	Numeric N *	Numeric N *
No.	fps	مر	in.	in.	in.	13	1b	S	D/W	p/z	.s.	. s2
22	5.08	20.6	4.17	14.08	0.50	75	26	0.652	0.747	0.0355	123.57	23.79
	5.10	50.6	4.17	14.08	0.62	78	75	0.726	0.820	0,0440	118.82	17.58
	5.12	20.6	4.17	14.08	0.70	8	99	0.764	0.825	1640°C	115.85	14.59
	5.12	50.6	4.17	14.08	0.73	₹	29	0.792	0.798	0.0518	110.33	12,14
	5.12	50.6	4.17	14.08	0.72	8	7	0.819	0.772	0.0511	100.74	9.57
	5.12	50.6	4.17	14.08	0.74	88	65	0.885	0.739	0.0526	105.32	6.24
	5.12	50.6	4.17	14.08	0.80	83	70	0.934	0.843	0.0568	111.66	3.75
23	5.28	20.9	4.19	14.12	0.01	194	15	0.014	0.077	0.0007	48.67	42.91
ř.	5.25	20.9	4.19	14.12	0.05	192	63	0.124	0.328	0.0035	49.18	31.86
	5.26	20.9	4.19	14.12	0.10	179	77	0.224	0.430	0.0071	52.75	27.78
	5.27	20.9	4.19	14.12	0.16	179	26	0.308	0.545	0.0113	52.75	23.47
	5.30	20.9	4.19	14.12	0.37	182	ま	0.362	0.516	0.0262	51.88	20,67
	5.27	20.9	4.19	14.12	0.36	182	104	0,401	0.571	0.0255	51.88	19.03
	5.28	20.9	4.19	14.12	0.39	180	105	0.410	0.583	0.0277	52.46	18,86
	5.23	20.9	4.19	14.12	0.50	177	112	0.452	0.633	0.0355	53.35	17.48
	5.25	20.9	4.19	14.12	0.73	175	116	0.524	0.663	0.0518	53.96	14.90
	5.54	20.9	4.19	14.12	0.00	173	133	0.595	0.769	0.0638	54.58	12,48
	5.54	20.9	4.19	14.12	1.18	167	128	0.672	0.766	0.0837	56.54	10.19
	5.23	20.9	4.19	14.12	1.50	160	132	0.744	0.825	0.1064	59.05	3,11
	5.26	20.9	4.19	14.12	1.62	176	149	0.762	0.847	0.1149	53.65	6.82
	5.26	20.9	4.19	14.12	1.68	170	162	0.791	0.953	0.1191	55.55	6.14
	5.54	20.9	4.19	14.12	1.68	189	188	0.820	2.66.0	0.1191	76.64	4.72
	5.24	20.9	4.19	14.12	1.81	171	155	0.886	906.0	0.1284	55.22	3.24
	5.24	20.9	4.19	14.12	1.81	175	169	0.928	996.0	0.1284	53.96	86.
					(con	(Continued)						

100 and 100 an	Numeric Ns*	ı	38. 14. 16. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
Basic	Numeric N * 1	1	7.85.85.85.85.85.85.85.85.85.85.85.85.85.
	Sinkage Ratio z/d	1	0.0067 0.0201 0.0279 0.0332 0.0345 0.0540 0.0727 0.035 0.1109 0.1137 0.1141
	Drag Ratio D/W	1	0.053 0.533 0.5622 0.661 0.983 0.983 0.995 0.995 0.995 0.995
	Sip	1	0.069 0.168 0.381 0.430 0.572 0.572 0.652 0.803 0.803 0.803
Wheel	Drag D 1b	ì	750 750 750 750 750 750 750 750 750 750
Tire	Load W	1	732 758 758 758 758 759 759 759 759
	Sinkage z in.	:	00000011000000000000000000000000000000
Tire	Dism d	:	&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&
	Width b in.	:	$\begin{matrix} \mathbf{a} & \mathbf{a} $
Cone	ent o	:	
Carriage	roads N SdJ	ŀ	8.6.8.9.9.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.
	Test No.	24 -	88

(Continued)

TABLE II. (Continued)

	Carriage	Cone		Tire		Tire	Wheel				Basic		
Test No.	speed W fps	oradi- ent G	Width b in.	Diam d in.	Sinkage z in.	Load W	Drag D lb	Slip	Drag Ratio D/W	Sinkage Ratio z/d	Sand Numeric N *	Numeric N _{s2} *	
59	5.05	18.0	8.34	28.58	0,18	1552	1 8	0.116	0.054	0.0063	42.68	28.14	
	4.97	18.0	8,34	28.58	0.35	1533	417	0.190	0.272	0.0122	43.21	24.38	
	5.12	18.0	8.34	28.58	0.80	1516	692	0.320	0.507	0.0280	43.69	19.98	
	5.20	18.0	8.34	28.58	1.06	1521	819	0.364	0.538	0.0371	43.55	17.28	
	5.16	18.0	8.34	28.58	1.22	1551	834	0.388	0.548	0.0427	43.55	16.42	
	5.16	18.0	8.34	28.58	1.32	1520	863	904.0	0.568	0.0462	43.58	15.81	
	5.20	18.0	8.34	28.58	1.71	1509	862	0.492	0.638	0.0598	43.90	13.11	
	5.17	18.0	8.34	28.58	2.24	1495	1050	0.570	0.702	0.0783	44.31	10.86	
	5.16	18.0	8.34	28.58	2.98	1485	1171	9490	0.788	0.1042	09. 44	8.75	
	5.19	18.0	8.34	28.58	3.75	1740	1302	0.719	0.886	0.1311	45.06	6.85	
30	まっ	19.0	8.26	28.30	00.00	792	12	0.102	0.015	0,000	85.74	58.36	
(6	4.88	19.0	8.26	28,30	10.0	780	285	0.191		0.0004	87.06	10.61	
	5.00	19.0	8.26	28.30	0.19	789	777	0.314		2,0067	86.06	37.84	
	5.02	19.0	8.26	28.30	0.20	772	450	0.380		0.0071	87.96	33.74	
	5.00	19.0	8.26	28.30	0.24	776	450	0.405		0.0085	87.51	31,82	
	5.00	19.0	8.26	28.30	0.30	468	459	0.432		0.0106	88.42	30.30	
	8.4	19.0	8.26	28.30	94.0	763	473	0.484		0.0162	89.00	27.08	
	5.00	19.0	8.26	28.30	0.74	755	501	0.571		0.0261	89.8	21.98	
	2.00	19.0	8.26	28,30	1.13	762	549	9,646		0.0399	89.11	17.49	
	5.00	19.0	8.26	28.30	1.40	747	247	0.722	0.735	\$ 50.0	91.27	13.72	
	7.3%	19.0	8.26	28.30	00.00	792	102	0.013		0,0000	85.74	75.96	
					2)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	_						
					307	(continued							

Basic Sand Sinkage Numberio	Ratio Numeric z/d s1	Ratio Na* z/d Ns1 0.0667 87.73	Ratio Na* z/d Ns* 0.0667 87.73 0.0664 88.19	Ratio Na* z/d s1 0.0667 87.73 0.0664 88.19 0.0678 90.06	Ratio Nu * 2/d s1	Ratio Nat z/d Nst 0.0667 87.73 0.0664 88.19 0.0678 90.06 0.0713 89.11 0.0734 89.35	Ratio Nul* z/d s1 0.0667 87.73 0.0664 88.19 0.0678 90.06 0.0734 89.35	Ratio Nai* Nai* Nai* Nai* Nai* Nai* Nai* Nai*
Drag Ratio D/W		0.854	0.854	0.854 0.831 0.829	0.854 0.831 0.829 0.874	0.854 0.831 0.829 0.874 0.872	0.854 0.831 0.829 0.874 0.872	0.854 0.831 0.829 0.874 0.872
		•						0.794 0.828 5.0.828 6.0.870 3.0.944
			-					774 661 770 640 754 625 762 666 760 663
• -	•		.*II					2.08
٠,					•	•		, 88.88.38 8.38.38 8.38.38 8.38.38 8.38 8
E	1	1	1	1	1	1		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Cone Index Gradi- ent G		19.0	19.0	19.0 19.0	19.0 19.0 19.0	19.0 19.0 19.0 19.0	19.0 19.0 19.0 19.0	19.0 19.0 19.0 19.0
Carriage Speed V S fps		5.05	5.05	5.05 5.04 5.04	5.05 5.09 5.00 5.00	7.7.7.7. 2.00 \$.50 2.00 \$.50	7.00 7.00 1.00 1.00 1.00	7.02 7.00 7.00 7.10
Test No.		98	30	30	30	30	30	30 31**

Figure 1. WES Mobility Small-Scale-Testing Facility

Figure 2. Mechanical Analysis of Test Soils

Figure 3. Relation of Drag Ratio to Basic Clay Numeric, $\rm N_{cl}$, for Two Tires at 40 \pm 5 Percent Slip

Figure 4. Relation of Drag Ratio to Clay Numeric, $\lambda_{\rm QP}$, for Two Tires at 40 \pm 5 Percent Slip

Figure 5. Relation of Drag Ratio to Clay Numeric, $\rm\,N_{\rm c\,2}$, at Four Braked-Wheel Slip Levels

Figure 6. Logarithmic Relation of Drag Ratio to Percent Slip at $N_{\rm C2}$ = 200 for Braked-Wheel Tests

Figure 7. Relation of Drag Ratio to Clay Numeric, $\rm\,N_{\rm c3}$, for Braked-Wheel Tests of Two Tires

Figure 8. Relation of Sinkage Ratio to Basic Clay Numeric, $\rm N_{cl}$, for Two Tires at 40 \pm 5 Percent Braked-Wheel Slip

Figure 9. Relation of Revised Sinkage Ratio to Basic Clay Numeric, $\rm\,^N_{cl}$, for Two Tires at 40 \pm 5 Percent Braked-Wheel Slip

Figure 10. Relation of Revised Sinkage Ratio to Clay Numeric, $\rm N_{e4}$, for Braked-Wheel Tests of Two Tires

Relation of Drag Matio to Basic Sand Numeric, $\,^{\rm M}_{\rm Sl}$, for Two Tires at Four Braked-Wheel Slip Levels Figure 11.

Figure 12. Relation of Drag Ratio to Percent Slip for Braked-Wheel Tests of Two Tires in Sand

Figure 13. Relation of Sinkage Ratio to Basic Sand Numeric, $\rm\,^N_{cl}$, for Two Tires at Four Braked-Wheel Slip Levels

Figure 14. Relation of Sinkage Ratio to Sand Numeric, $\rm\,N_{S2}$, for Braked-Wheel Tests of Two Tires

REFERENCES

- 1. U. S. Army Engineer Waterways Experiment Station, CE, Performance of Soils Under Tire Loads, Technical Report No. 3-666, Vicksburg, Miss.
 - a. Report No. 1, <u>Test Facilities and Techniques</u>, by J. L. McRae,
 C. J. Powell, and R. D. Wismer, January 1965.
 - b. Report No. 2, Analysis of Tests in Yuma Sand Through August 1962, by C. J. Powell and A. J. Green, Jr., August 1965.
 - c. Report No. 3, <u>Tests in Clay Through November 1962</u>, by R. D. Wismer, February 1966.
 - d. Report No. 4, Analysis of Tests in Sand From September 1962 Through
 November 1963, by G. W. Turnage and A. J. Green, Jr., February 1966.
- 2. , A Dimensional Analysis of the Performance of Pneumatic Tires on Soft Soils, by D. R. Freitag, Technical Report No. 3-688, Vicksburg, Miss., August 1965.