COS210 - Theoretical Computer Science Context-Free Languages (Part 1)

Context-Free Languages

Context-free languages are a **superclass** of the regular languages:

The following non-regular language is an example of a **context-free** language:

$$L = \{0^n 1^n : n \ge 0\}$$

We have seen that regular languages can be described by finite automata We will now see that context-free languages can be described by **context-free grammars**

Context-Free Grammars

In practice, context-free grammars are used to define the syntax of **programming languages**

A context-free grammar is defined by a set of **substitution rules** used to generate a context-free language

Example set of rules:

- $\mathbf{2} A \rightarrow a$

Here, S, A, and B are **variables**. S is a special variable namely the **start variable**. Both A and B are **terminals**

Context-Free Grammars

Substitution rules can be used to **generate strings** over terminals

- $\mathbf{2} A \rightarrow a$
- $A \rightarrow aA$
- $B \to b$

How to use rules:

- I) Begin with an **initial string** equal to the start variable S
- II) Use a rule to **replace a variable** in the current string
- III) Repeat step II until the string consists of terminals only

Context-Free Grammars: Example

We assume given is the same grammar (set of rules) as before:

- $\mathbf{2} A \rightarrow a$
- $A \rightarrow aA$

Derive a string based on the rules:

$$S \implies AB$$
 (rule 1)
 $\implies aAB$ (rule 3)
 $\implies aAbB$ (rule 5)
 $\implies aaAbB$ (rule 3)
 $\implies aaAbb$ (rule 4)
 $\implies aaabb$ (rule 2)

Consequently, the string aaabb is an element of the context-free language defined by the context-free grammar above

Context-Free Grammars: Example

- $\mathbf{2} A \rightarrow a$

The language of a grammar is the set of all strings that

- can be derived from the start variable and
- only contain terminals

The language of the grammar above is:

$$L = \{a^m b^n : m \ge 1, n \ge 1\}$$

Context-Free Grammar: Formal Definition

Definition (Context-Free Grammar)

A context-free grammar is a **4-tuple** $G = (V, \Sigma, R, S)$, where

- V is a finite set, whose elements are called variables,
- Σ is a finite set, whose elements are called **terminals**, $V \cap \Sigma = \emptyset$ (sets of variables and terminals have no shared elements),
- R is a finite set, whose elements are called **substitution rules**. Each rule has the form $A \to w$, where $A \in V$ and $w \in (V \cup \Sigma)^*$,
- S is an element of V; it is called the **start variable**.

Context-Free Grammar: Formal Definition

Our earlier example can be formally defined as the context-free grammar $G = (V, \Sigma, R, S)$, where

•
$$V = \{S, A, B\}$$

•
$$\Sigma = \{a, b\}$$

•
$$R = \{S \rightarrow AB, A \rightarrow a, A \rightarrow aA, B \rightarrow b, B \rightarrow bB\}$$

and the following conditions hold:

- $V \cap \Sigma = \emptyset$
- $S \in V$ is the start variable

General form of a substitution rule is $A \rightarrow w$ where A is a variable and w is a string over variables and/or terminals

 $A \rightarrow w$ can be used to **make a derivation** from any string that contains A, i.e. a string of the form uAv where u and v are arbitrary sub strings

Given uAv, we can use the rule $A \rightarrow w$ to derive the new string uwv

General form of a substitution rule is $A \rightarrow w$ where A is a variable and w is a string over variables and/or terminals

A o w can be used to **make a derivation** from any string that contains A, i.e. a string of the form uAv where u and v are arbitrary sub strings Given uAv, we can use the rule A o w to derive the new string uwv

Definition (Derived-In-One-Step-From: ⇒)

Let $G = (V, \Sigma, R, S)$ be context-free grammar. Let A be a variable in V and let u, v, and w be strings in $(V \cup \Sigma)^*$ such that $A \to w$ is a rule in R. Then we say that the string uwv can be **derived in one step from** the string uAv, and write this as

$$uAv \implies uwv$$

In our example we have $aaAbb \implies aaaAbb$, since $A \rightarrow aA$ is a rule in R

We can extend the single-step derivation to **arbitrary many** derivation steps:

Definition (Derived-From: $\stackrel{*}{\Longrightarrow}$)

Let $G = (V, \Sigma, R, S)$ be context-free grammar. Let u and v be strings in $(V \cup \Sigma)^*$. Then we say that v can be **derived from** u, written as

$$u \stackrel{*}{\Longrightarrow} v$$

if one of the following two conditions holds:

- u = v (zero-step derivation) or
- there exists a sequence of strings u_1, u_2, \ldots, u_k with $k \geq 2$ such that
 - $u_1 = u$,
 - $u_k = v$, and
 - $u_1 \implies u_2 \implies \ldots \implies u_k$.

(single- or multi-step derivation)

 $u \stackrel{*}{\Longrightarrow} v$ means that by starting with string u and applying rules **zero or** more times, we obtain string v.

In our example we have that

$$aAbB \stackrel{*}{\Longrightarrow} aaAbb \ (aaAbb \ can be derived from $aAbB$)$$

since

$$aAbB \implies aaAbB \implies aaAbb$$
rule 3: $A \rightarrow aA$ rule 4: $B \rightarrow b$

Language of a Context-Free Grammar

Definition (Language of a Grammar)

Let $G = (V, \Sigma, R, S)$ be a context-free grammar. The **language** of G is defined as the set of all strings in Σ^* that can be **derived from** the start variable S:

$$L(G) = \{ w \in \Sigma^* : S \stackrel{*}{\Longrightarrow} w \}$$

Now we can also give a formal definition of a context-free language:

Definition (Context-Free Language)

A language L is called **context-free**, if there exists a context-free grammar G such that L(G) = L.

Context-Free Grammar: Shorthand Notation for Rules

Rules of a context-free grammar can be shortened from

$$R = \{\underbrace{S \to AB}, \quad \underbrace{A \to a}, \quad \underbrace{A \to aA}, \quad \underbrace{B \to b}, \quad \underbrace{B \to bB}\}$$
rule 1 rule 2 rule 3 rule 4 rule 5

to

$$R = \{\underbrace{S \to AB}, \quad \underbrace{A \to a|aA}, \quad \underbrace{B \to b|bB}\}$$
rules 2,3 rules 4,5

where is shorthand for or

For instance, the rule $A \rightarrow a|aA$ indicates that the variable A can be substituted by a or by aA.

Context-Free Grammar: Properly Nested Brackets Example

Consider the following context-free grammar $G = (V, \Sigma, R, S)$

- $V = \{S\}$
- $\bullet \ \Sigma = \{a, b\}$
- $R = \{S \rightarrow \underbrace{\epsilon}_{1} | \underbrace{aSb}_{2} | \underbrace{SS}_{3} \}$

For instance, we can derive:

$$S \implies aSb$$
 (2)
 $\implies aaSbb$ (2)
 $\implies aaSSbb$ (3)
 $\implies aaSaSbbb$ (2)
 $\implies aaaSbaSbbb$ (2)
 $\implies aaabaSbbb$ (1)
 $\implies aaababbb$ (1)

Now assume a = "(") is a **left-bracket** and b = ")" is a **right-bracket**

Context-Free Grammar: Properly Nested Brackets Example

The language L(G) consists of all strings of properly nested brackets. For example:

$$aaababbb = ((()()))$$

Any string of properly nested brackets is either

- **empty** (derived using rule $S \rightarrow \epsilon$),
- consists of a **left-bracket**, followed by an arbitrary string of **properly nested brackets**, followed by a **right-bracket** (derived using rule $S \rightarrow aSb$), or
- consists of an arbitrary string of **properly nested brackets**, followed by an arbitrary string of **properly nested brackets** (derived using rule $S \rightarrow SS$).

Consider the following language:

$$L_1 = \{0^n 1^n : n \ge 0\}$$

In a previous lecture we have proven that L_1 is non-regular

It is easy to show that L_1 is in fact **context-free**

Consider the following language:

$$L_1 = \{0^n 1^n : n \ge 0\}$$

In a previous lecture we have proven that L_1 is **non-regular** It is easy to show that L_1 is in fact **context-free**

Observation: each $w \in L_1$ either of the form

- $w = \epsilon$, or
- w consists of a 0, followed by an arbitrary $v \in L_1$, followed by a 1

Example:

$$w=0$$
 $\underbrace{0011}_{v}1\in L_{1}$ and $v\in L_{1}$

$$L_1 = \{0^n 1^n : n \ge 0\}$$

The following grammar takes these two cases into account:

- $G_1 = (V_1, \Sigma_1, R_1, S_1)$
- $V_1 = \{S_1\}$
- $\Sigma_1 = \{0,1\}$
- $R_1 = \{S_1 \to \epsilon | 0S_1 1\}$

$$L_1 = \{0^n 1^n : n \ge 0\}$$

The following grammar takes these two cases into account:

- $G_1 = (V_1, \Sigma_1, R_1, S_1)$
- $V_1 = \{S_1\}$
- $\Sigma_1 = \{0,1\}$
- $R_1 = \{S_1 \to \epsilon | 0S_1 1\}$

Exercise: Which grammar would define the following language?

•
$$L = \{0^n 1^n : n \ge 0\} \cup \{1^n 0^n : n \ge 0\}$$

Solution:

$$L = \underbrace{\{0^n 1^n : n \ge 0\}}_{L_1} \cup \underbrace{\{1^n 0^n : n \ge 0\}}_{L_2}$$

•
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

•
$$V_1 = \{S_1\}$$

•
$$\Sigma_1 = \{0, 1\}$$

•
$$R_1 = \{S_1 \to \epsilon | 0S_1 1\}$$

•
$$G_2 = (V_2, \Sigma_2, R_2, S_2)$$

•
$$V_2 = \{S_2\}$$

•
$$\Sigma_2 = \{0, 1\}$$

•
$$R_2 = \{S_2 \to \epsilon | 1S_2 0\}$$

•
$$G = (V, \Sigma, R, S)$$

•
$$V = \{S, S_1, S_2\}$$

•
$$\Sigma = \{0, 1\}$$

•
$$R = \{S \to S_1 | S_2, S_1 \to \epsilon | 0S_1 1, S_2 \to \epsilon | 1S_2 0\}$$