中间表示: 到达定义分析

编译原理

华保健

bjhua@ustc.edu.cn

4

数据流方程

对任何一条定义:

```
[d: x = ...]
```

给出两个集合:

```
gen[d: x= ...] = {d}
kill[d: x= ...] = defs[x]-{d}
```

```
1: y = 3
```

$$2: z = 4$$

$$3: x = 5$$

$$4: y = 6$$

$$5: y = 7$$

$$6: z = 8$$

$$7: a = y$$

4

数据流方程

对任何一条定义:

```
[d: x = ...]
```

给出两个集合:

```
gen[d: x= ...] = {d}
kill[d: x= ...] = defs[x]-{d}
```

数据流方程:

```
in[s_i] = out[s_{i-1}]

out[s_i] = gen[s_i] \cup (in[s_i]-kill[s_i])
```

```
1: y = 3
```

$$2: z = 4$$

$$3: x = 5$$

$$4: y = 6$$

$$5: y = 7$$

$$6: z = 8$$

$$7: a = y$$

从数据流方程到算法

```
// 算法: 对一个基本块的到达定义算法
// 输入:基本块中所有的语句
// 输出:对每个语句计算in和out两个集合
List_t stms; // 一个基本块中的所有语句
              // 临时变量,记录当前语句s的in集合
set = {};
reaching_definition ()
 foreach (s \in stms)
   in[s] = set;
   out[s] = gen[s] \cup (in[s]-kill[s])
   set = out[s]
```

示例

	1	2	3	4	5	6	7
in	{}	{1}	{1,2}				
out	{1}	{1,2}	{1,2,3}				

```
in[s_i] = out[s_{i-1}]

out[s_i] = gen[s_i] \cup (in[s_i]-kill[s_i])
```

1:
$$y = 3$$

$$2: z = 4$$

$$3: x = 5$$

$$4: y = 6$$

$$5: y = 7$$

$$6: z = 8$$

$$7: a = y$$

语句	1	2	3	4	5	6	7
gen	{1}	{2}	{3}	{4}	{5}	{6}	{7}
kill	{4,5}	{6}	{}	{1,5}	{1,4}	{2}	{}

对于一般的控制流图

■ 前向数据流方程:

```
in[s] = U_p \in pred(s) out[p]
out[s] = gen[s] U (in[s]-kill[s])
```


从数据流方程到不动点算法

```
// 算法: 对所有基本块的到达定义算法
// 输入:基本块中所有的语句
// 输出:对每个语句计算in和out两个集合
List_t stms; // 所有基本块中的所有语句
             // 临时变量,记录当前语句s的in集合
set = {};
reaching definition ()
 while (some set in[] or out[] is still changing)
   foreach (s \in stms)
     foreach (predecessor p of s)
       set U = out[p];
     in[s] = set;
     out[s] = gen[s] \cup (in[s]-kill[s]);
```

示例

$$in[s] = U_{p \in pred(s)} out[p]$$

out[s] = gen[s] U (in[s]-kill[s])

	in/out	in/out	in/out	in/out
1	{} {}	{} {1}		
2	{} {}	{1} {1,2}		
3	{} {}	{1,2} {1,2,3}		
4	{} {}	{1,2,3} {2,3,4}		
5	{} {}	{2,3,4} {2,3,4}		
6	{} {}	{2,3,4} {2,3,4}		

语句	1	2	3	4	5	6	7
gen	{1}						
kill	{4}						

