UNIDAD III. ALGORITMOS Y DIAGRAMAS DE FLUJO

- 3.1 Reglas para elaborar algoritmos, pseudocódigo y diagramas de flujo.
 - 3.2 estructuras de control de selección
 - 3.3 estructuras de repetición
 - 3.4 contadores y acumuladores

3.1 Reglas para elaborar algoritmos, pseudocódigo y diagramas de flujo.

Saber:

- ▶ Identificar la simbología utilizada en el desarrollo de diagramas de flujo.
- ▶ Reconocer la sintaxis utilizada para el desarrollo de pseudocódigo.
- ▶ Describir el procedimiento para realizar una prueba de escritorio.

Saber Hacer:

- Plantear la solución de un problema empleando pseudocódigo y diagramas de flujo.
- ▶ Verificar la solución planteada a un problema a través de la prueba de escritorio.

Diagramas de flujo

- ▶ Un <u>diagrama de flujo</u> representa la esquematización gráfica de un algoritmo.
- La siguiente tabla presenta los símbolos que utilizaremos, los cuales satisfacen las recomendaciones de la "International Organization for Standarization" (ISO) y la "American National Standards Institute" (ANSI)

Símbolos utilizados en los diagramas de

flujo

Representación del Símbolo	Explicación del Símbolo
	Símbolo utilizado para marcar el inicio y el fin del diagrama de flujo.
SI NO	Simbolo utilizado para introducir los datos de entrada. Expresa lectura.
	Simbolo utilizado para representar un proceso. En su interior se expresan asignaciones, operaciones aritméticas, cambios de valor de celdas en memoria, etc. (Bloque de asignación Pag. 22)
	Símbolo utilizado para representar una decisión. En su interior se almacena una condición, y dependiendo del resultado de la evaluación de la misma se sigue por una de las ramas o caminos alternativos. Este símbolo se utiliza en la estructura selectiva si entonces que estudiaremos en el siguiente capítulo, y en las estructuras repetitivas repetir y mientras que analizaremos en el capítulo 3.
	Símbolo utilizado para representar la estructura selectiva doble si enton- ces/sino. En su interior se almacena una condición. Si el resultado es verdade- ro se continúa por el camino de la izquerda, y si es faiso por el camino de la de- recha.
	Símbolo utilizado para representar una decisión múltiple. En su interior se al- macena un selector, y dependiendo del valor de dicho selector se sigue por una de las ramas o caminos alternátivos. Este símbolo se utiliza en la estruc- tura selectiva si múltiple, que analizaremos en el siguiente capítulo.

Símbolos de los diagramas de flujo (continuación)

Etapas en la construcción de un diagrama de flujo

1. Todo diagrama de flujo debe tener un inicio y un fin.

 Las líneas utilizadas para indicar la dirección del flujo del diagrama deben ser rectas, verticales y horizontales.

 Todas las líneas utilizadas para indicar la dirección del flujo del diagrama deben estar conectadas. La conexión puede ser a un símbolo que exprese lectura, proceso, decisión, impresión, conexión o fin de diagrama.

- El diagrama de flujo debe ser construido de arriba hacia abajo (top-down) y de izquierda a derecha (right to left).
- La notación utilizada en el diagrama de flujo debe ser independiente del lenguaje de programación. La solución presentada en el diagrama puede escribirse posteriormente y fácilmente en diferentes lenguajes de programación.
- Es conveniente cuando realizamos una tarea compleja poner comentarios que expresen o ayuden a entender lo que hicimos.
- Si el diagrama de flujo requiriera más de una hoja para su construcción, debemos utilizar los conectores adecuados y enumerar las páginas convenientemente.
- 8. No puede llegar más de una línea a un símbolo.

Ejemplo 1

Elaborar un diagrama de flujo que represente el algoritmo que calcula e imprime el área de un triángulo

Ejemplo 2

Elaborar un diagrama de flujo que represente el algoritmo que calcula e imprime el área de un circulo

Ejemplo 3

Elaborar un diagrama de flujo que calcula e imprime la raíz cuadrada de un número

Ejercicio

Elaborar un diagrama de flujo que calcula el área de un triángulo dado que se conocen las medidas de sus lados

