Heaps

- Heaps and Properties
- Deletion, Insertion
- Priority Queue ADT using a Heap
- Bottom-up heap construction
- Implementation of a Heap
- An application of heaps: HeapSort

Heaps (Min-heap)

Complete binary tree that stores a collection of keys (or key-element pairs) at its internal nodes and that satisfies the additional property:

Max-heap

$key(parent) \ge key(child)$

We do not need to add dummy leaves.

Height of a Heap

Theorem: A heap storing n keys has height $\theta(\log n)$

Proof:

- Let h be the height of a heap storing n keys. We know $n \le 2^{h+1}-1$.
- Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1^{\frac{1}{2}} 2^h$
- Thus, $2^h \le n < 2^{h+1}$, i.e., $h \le \log n < h+1$. Therefore, $h = floor(\log n)$

Notice that

- We could use a heap to implement a priority queue
- We store a (key, element) item at each node

removeMin():

- → Remove the root
- → Re-arrange the heap!

Removal From a Heap

- The removal of the top key leaves a hole
- We need to fix the heap
- First, replace the hole with the last key in the heap
- Then, begin Downheap

Note example uses dummy leaves (this is optional)

Downheap

 Downheap compares the parent with the smallest child. If the child is smaller, it switches the two.

Downheap Continues

Downheap Continues

End of Downheap

 Downheap terminates when the key is greater than the keys of both its children or the bottom of the heap is reached.

(total #swaps) \leq (h - 1), which is $O(\log n)_{11}$

Heap Insertion

The key to insert is 6

Heap Insertion

Add the key in the **next available position** in the heap.

Upheap

· Swap parent-child keys out of order

Upheap Continues

End of Upheap

- · Upheap terminates when new key is greater than the key of its parent or the top of the heap is reached
- (total #swaps) ≤ (h 1), which is O(log n)
 (note: h swaps if not using dummy leaves)

removeMin()

```
64
       public Entry<K,V> removeMin() {
         if (heap.isEmpty()) return null;
65
         Entry<K,V> answer = heap.get(0);
66
         swap(0, heap.size() - 1);
67
         heap.remove(heap.size() -1);
68
         downheap(0);
69
70
         return answer:
71
                                     protected void downheap(int j) {
                               31
                               32
                                       while (hasLeft(j)) {
                                                                              continue to bottom (or brea
                               33
                                         int leftIndex = left(i);
                               34
                                         int smallChildIndex = leftIndex;
                                                                                       although right may
                               35
                                         if (hasRight(j)) {
                                             int rightIndex = right(j);
                               36
                                             if (compare(heap.get(leftIndex), heap.get(rightIndex)) > 0)
                               37
                               38
                                               smallChildIndex = rightIndex;
                                                                                    // right child is small
                               39
                               40
                                         if (compare(heap.get(smallChildIndex), heap.get(j)) \geq 0)
                               41
                                           break:
                                                                                     // heap property has
                               42
                                         swap(i, smallChildIndex);
                               43
                                         j = smallChildIndex;
                                                                                       continue at position
                               44
                               45
                                                                                                     17
```

Excerpt from the texbook Java code pages 378-379.

Insert(key, value)

```
55
      /** Inserts a key-value pair and returns the entry created. */
      public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
56
57
        checkKey(key); // auxiliary key-checking method (could throw exception)
        Entry < K, V > newest = new PQEntry <> (key, value);
58
59
        heap.add(newest);
                                                       // add to the end of the list
        upheap(heap.size() -1);
                                                       // upheap newly added entry
60
61
        return newest;
62
            /** Moves the entry at index j higher, if necessary, to restore the heap property. */
     21
     22
            protected void upheap(int j) {
              while (i > 0) {
                                         // continue until reaching root (or break statement)
     23
     24
               int p = parent(i);
     25
               if (compare(heap.get(j), heap.get(p)) >= 0) break; // heap property verified
               swap(j, p);
     26
                                                      // continue from the parent's location
     27
               j = p;
     28
     29
```

Implementation of a Priority Queue ADT with a Heap

(upheap)

(remove root + downheap)

Heap Construction

We could insert the items one at the time with a sequence of Heap Insertions:

$$\sum_{k=1}^{n} \log k = O(n \log n)$$

But we can do better
We will show how to build a heap in O(n).

Bottom-up Heap Construction

 We can construct a heap storing n given keys using a bottom-up construction

Construction of a Heap

Idea: Recursively re-arrange each sub-tree in the heap starting with the leaves

Example 1 (Max-Heap)

--- keys already in the tree ---

I am not drawing the leaves anymore here

23

Example 1

 $\underline{4} \leftrightarrow 9$

This is not a heap!

 $\underline{4} \leftrightarrow 7$

Example 1

Finally: $\underline{2} \leftrightarrow 10$

 $\underline{2} \leftrightarrow 8$

Example 2 Min-Heap {14,9,8,25,5,11,27,16,15,4,12,6,7,23,20}

32

Example 2 Min-Heap {14,9,8,25,5,11,27,16,15,4,12,6,7,23,20}

33

Example 2 Min-Heap {14,9,8,25,5,11,27,16,15,4,12,6,7,23,20}

Example 2 Min-Heap {14,9,8,25,5,11,27,16,15,4,12,6,7,23,20}

Final min heap: {4,5,6,15,9,7,20,16,25,14,12,11,8,23,27}

Analysis of Heap Construction

?

$$\sum 2^{-j} = 1/2 + 1/4 + 1/8 + 1/16 + \cdots \le 1$$

Analysis of Heap Construction

(let us not consider the dummy leaves)

Number of swaps

at most

0 swaps ----- 1 9 6 ----- level 3

h is the max level

h = 3

level i ----- h - i swaps

Analysis of Heap Construction

Number of swaps

At level i the number of swaps is

At level i there are <2 i nodes

Total number of swaps $\leq \sum_{i=0}^{\infty} (h-i)\cdot 2^{i}$

Let j = h-i, then i = h-j and

$$\sum_{i=0}^{h} (h - i) \cdot 2^{i} = \sum_{j=0}^{h} j \cdot 2^{h-j} = 2^{h} \sum_{j=0}^{h} j \cdot 2^{-j}$$

Consider $\sum_{j} 2^{-j}$:

$$\Sigma \mathbf{j} \ 2^{-\mathbf{j}} = 1/2 + 2 \ 1/4 + 3 \ 1/8 + 4 \ 1/16 + \cdots$$

$$= 1/2 + 1/4 + 1/8 + 1/16 + \cdots <= 1$$

$$+ 1/4 + 1/8 + 1/16 + \cdots <= 1/2$$

$$+ 1/8 + 1/16 + \cdots <= 1/4$$

$$\Sigma \mathbf{j} \ 2^{-\mathbf{j}} \qquad \qquad \leftarrow = \underline{\cdots}$$

$$<= \underline{2}$$

So
$$2^{h} \sum_{j} 2^{-j} <= 2 \cdot 2^{h} = 2 \cdot n$$
 is $O(n)$

$$2^{h} \sum_{j=1}^{h} j/2^{j} \leq 2^{h+1}$$

Where h is O(log n)

So, the number of swaps is O(n)

IMPORTANT:

the Bottom Up Heap Construction takes time O(n)

Implementing a Heap with an Array

A heap can be nicely represented by an array list (array-based),

where the node at rank i has

- left child at rank 2i+1

and

- right child at rank 2i + 2

Example (with indexes 1..N)

Reminder if using indices 1 to n:

Left child of T[i]	T[2i]	if	$2i \le n$
Right child of T[i]	T[2i+1]	if	$2i + 1 \le n$
Parent of T[i]	T[i div 2]	if	i > 1
The Root	T[1]	if	n>0
Leaf? T[i]	TRUE	if	2i > n

Reminder if using indices 0 to n-1:

Left child of T[i]	T[2i+1]	if	2i +1 ≤ n-1
Right child of T[i]	T[2i+2]	if	$2i + 2 \le n-1$
Parent of T[i]	T[(i-1) div 2]	if	i > 0
The Root	T[0]	if	N>0
Leaf? T[i]	TRUE	if	2i+1 > n-1

Implementation of a Heap with a linked binary tree

Application: Sorting Heapsort

PriorityQueueSort where the PQ is implemented with a HEAP

```
Algorithm PriorityQueueSort(S, P):
       Input: A sequence S storing n elements, on which a
               total order relation is defined, and a Priority
            Queue P that compares keys with the same relation
       Output: The Sequence S sorted by the total
                       order relation
       while - S.isEmpty() do
                                          Build Heap
               e ← S.removeFirst()
               P.insert(e, e)
       while - P.isEmpty() do
               e ← P.removeMin()
                                         Remove from heap
               S.insertLast(e)
```

Application: Sorting Heapsort

	Construct initial k	neap O(n)
n times	remove root re-arrange remove root re-arrange	O(1) O(log n) O(1) O(log (n-1)) :
		•

When there are i nodes left in the PQ: Llog i

HeapSort in Place

Instead of using a secondary data structure P to sort a sequence S, We can execute heapsort « in place » by dividing S in two parts, one representing the heap, and the other representing the sequence. The algorithm is executed in two phases:

- ✓ Phase 1: We build a max-heap so to occupy the whole structure.
- ✓ Phase 2: We start with the part « sequence » empty and we grow it by removing at each step i (i=1..n) the max value from the heap and by adding it to the part « sequence », always maintaining the heap properties for the part « heap ».

Now the part heap is smaller, the part Sequence contains a single element.

Not a heap anymore!

Not a heap anymore!

Not a heap anymore!

Now it is a heap again!

Restructure 3 5 4 1 9 20 22

Pseudocode for in-place HEAPSORT

(based on wikipedia pseudocode)

```
procedure heapsort(A,n) {
 input: an unordered array A of length n
  heapify(A,n); // in O(n) with bottom-up heap construction
// Loop Invariant: A[0:end] is a heap; A[end+1:n-1] is sorted
  end \leftarrow n – 1;
  while end > 0 do
     swap(A[end], A[0]);
     end \leftarrow end -1;
     downHeap(A, 0, end);
```

```
Procedure downHeap(A, start, end) {
  root \leftarrow start
  while root * 2 + 1 \le end do (While the root has at least one child)
     child \leftarrow root * 2 + 1 (Left child)
                    (Keeps track of child to swap with)
     swap \leftarrow root
     if A[swap] < A[child]
        swap ← child
     (If there is a right child and that child is greater)
     if child+1 \le end and A[swap] < A[child+1]
        swap \leftarrow child + 1
     if swap = root
        (case in which we are done with downHeap)
        return
     else
        swap(A[root], A[swap])
        root ← swap (repeat to continue downHeap the child now)
```

```
procedure \frac{\text{heapify}}{\text{heapify}}(A, n)
  //start is assigned the index in 'A' of the last parent node
  //the last element in a 0-based array is at index n-1;
  // find the parent of that element)
   start \leftarrow floor ((n-2)/2)
   while start \geq 0 do
     //downHeap the node at index 'start' to the proper place
     downHeap(A, start, n - 1)
     //go to the next parent node
      start \leftarrow start - 1
// after this loop array A is a heap
```

Exercise: HeapSort in Place

Try to continue example of page 63 simulating the previous algorithm directly on the array.

Heap part: unsorted Sequence part: sorted

13 10 11 4 7 8 1 2 3 5 14 15 19 20 22