University of Copenhagen

Union-Find

Author: William Henrich Due

1 Theory

Definition 1.1 (Reachability). A node v is reachable from a node u in a directed graph G = (V, E) if there exists a sequence of directed edges $e_1, e_2, \ldots, e_m \in E$ where $m \ge 1$ and $e_i = (v_{i-1}, v_i)$ for $1 \le i \le m$, such that $v_0 = u$ and $v_m = v$. We denote this by $u \leadsto v$.

Definition 1.2 (Cycle). A cycle in a directed graph G = (V, E) has a cycle if there exists $v \in V$ such that $v \leadsto v$.

Definition 1.3 (Forest). A forest is a directed graph F = (V, E) where V is a set of vertices and $E \subseteq V \times V$ is a set of directed edges such that:

- 1. There are no cycles $v \not\rightsquigarrow v$ for all $v \in V$, and
- 2. each node has at most one parent i.e. for all $(u, v_1), (u, v_2) \in E$ it holds that $v_1 = v_2$.

Definition 1.4 (Root). A node $v \in V$ in a forest F = (V, E) is a root if it has no parent. This is defined as the predicate:

$$\mathcal{R}_F(v): v \not\rightsquigarrow u \text{ for all } u \in V$$

Definition 1.5 (Tree). A tree is a forest T = (V, E) where there exists a unique root $r \in V$ such that $v \leadsto r$ for all $v \in V \setminus \{r\}$.

Proposition 1.1 (Forest Root Count). A forest F = (V, E) where |V| = n and |E| = n - k has k roots.

Proof. Let F = (V, E) be a forest where |V| = n and |E| = n - k. By the second property of a forest then n - k vertices must have a parent. Since there are n vertices in total it follows that there are exactly k vertices $r_1, r_2, \ldots, r_k \in V$ that has no parent. Hence there are exactly k roots in F.

Proposition 1.2 (Roots Path Exist). In a forest F = (V, E) for each element $v \in V$ there exists at least one root $r \in V$ such that $\mathcal{R}_F(r)$ and either $v \leadsto r$ or v = r.

Proof. Let F = (V, E) be a forest and let $v \in V$ be an arbitrary element in V. By proposition 1.1 there exists at least one root $r \in V$ such that $\mathcal{R}_F(r)$. This can be shown by structural induction on a vertex $v \in V$ that any $(v, p) \in E$ then either p = r or p has a path to some root $r \in V$.

- If p = r then p is a root and v has a path to a root r by $(v, r) \in E$.
- By induction hypothesis p has a path to a root $r \in V$ such that $\mathcal{R}_F(r)$. Since $(v, p) \in E$ it follows that $v \leadsto p \leadsto r$ so.

Proposition 1.3 (Forest Edge Limit). A forest F = (V, E) where |V| = n and |E| > n - 1 is not a forest.

Proof. Let F = (V, E) be a forest where |V| = n and |E| > n - 1. By proposition 1.1 a forest with n - 1 has exactly one root, so it is a tree. By adding one more edge to the tree it must make one vertex have two parents. Or since every vertex $v \in V$ has a path to the root $r \in V$ it must create a cycle $v \leadsto v$ for some $v \in V$. In both cases it contradicts the properties of a forest.

Definition 1.6 (Representative). The representative of an element $v \in V$ in a forest F = (V, E) is the root $r \in V$ such that there is a path from v to r. This is defined as the function:

$$\rho_F(v) := r$$
 where $r \in V$ such that $\mathcal{R}_F(r) \wedge (v \leadsto r \vee v = r)$

Proposition 1.4 (Unique Representative). In a forest F = (V, E) each element $v \in V$ has a unique representative $\rho_F(v)$.

Proof. Let F = (V, E) be a union-find structure and let $v \in V$ be an arbitrary element in V. By proposition 1.2 there exists at least one root $r \in V$ such that $\mathcal{R}_F(r)$ and $v \leadsto r$. Now assume that there exists another root $r' \in V$ such that $\mathcal{R}_F(r')$ and $v \leadsto r'$. Since F is a forest it follows by the second property of a forest that r = r' hence the representative is unique.

Definition 1.7 (Tree Set). The set of vertices of the same tree $\mathcal{E}_F(v)$ in a forest F = (V, E) is defined as:

$$\mathcal{E}_F(v) := \{u : u \in V \text{ where } \rho_F(u) = \rho_F(v)\}$$

Definition 1.8 (Partition). The set $P \subseteq \mathbb{P}(S)$ is a partition of a set S if:

- 1. $a \neq \emptyset$ for all $a \in P$
- 2. $a \cap b = \emptyset$ for all $a, b \in P$ where $a \neq b$
- 3. $\bigcup_{a \in P} a = S$

Proposition 1.5 (Forest Partition). A forest F = (V, E) is a partition of V for the following set:

$$\{\mathcal{E}_F(v):v\in V\}$$

Proof. Let F = (V, E) be a forest. We will show that the set in the proposition is a partition of V by showing that it satisfies the three properties in definition 1.8.

- 1. By definition of $\mathcal{E}_F(v)$ it can not be empty since for $\mathcal{E}_F(v)$ then $\rho_F(v) = \rho_F(v)$. Hence $\mathcal{E}_F(v) \neq \emptyset$ for all $v \in V$.
- 2. Let a and b be two arbitrary elements in the set such that $a \neq b$. By definition of a and b there exists $v_1, v_2 \in V$ such that $a = \{u : u \in V \land \rho_F(u) = \rho_F(v_1)\}$ and $b = \{u : u \in V \land \rho_F(u) = \rho_F(v_2)\}$. Since $a \neq b$ it follows that $\rho_F(v_1) \neq \rho_F(v_2)$ since otherwise a = b, hence $a \cap b = \emptyset$.
- 3. Let v be an arbitrary element in V. By proposition 1.2 there exists a root $r \in V$ such that $\mathcal{R}_F(r)$ and $v \leadsto r$ or v = r. By definition of the representative it follows that $\rho_F(v) = r$. Now let $a = \{u : u \in V \land \rho_F(u) = \rho_F(v)\}$. By definition of a it follows that $v \in a$. Since v was arbitrary it follows that $\bigcup_{a \in P} a = V$.

Definition 1.9 (Same Tree Relation). The relation \sim_F on a forest F is defined as:

$$u \sim_F v : \iff u \in \mathcal{E}_F(v)$$

Corollary 1.1 (Same Tree Relation is an Equivalence Relation). The relation \sim_F on a forest F is an equivalence relation due to $\{\mathcal{E}_F(v):v\in V\}$ being a partition of V. by proposition 1.5.

Definition 1.10 (Forests with Equivalent Tree Sets). Two forests F = (V, E) and F' = (V', E') have equivalent tree sets $F \cong F'$ if:

- Vertices are the same V = V'.
- The tree sets are equivalent $\mathcal{E}_F(v) = \mathcal{E}'_F(v)$ for all $v \in V$.

Definition 1.11 (Tree Union). The tree union of two elements v and u for a forest F = (V, E) is such that $v \sim_{F'} u$ in a new forest F' = (V', E') and F' satisfy the following properties:

- 1. $\mathcal{E}_{F'}(v) = \mathcal{E}_{F'}(u) = \mathcal{E}_{F}(v) \cup \mathcal{E}_{F}(u)$ and
- 2. $\mathcal{E}_{F'}(w) = \mathcal{E}_F(w)$ for all $w \in V \setminus (\mathcal{E}_F(v) \cup \mathcal{E}_F(u))$.

Proposition 1.6 (Tree Union). Let forest F = (V, E), $p = \rho_F(u)$ be the representative of u and let $q = \rho_F(v)$ be the representative of v where $q \neq p$. Then defined F' as:

$$F' := (V, E \cup \{(q, p)\})$$

Then $u \sim_{F'} v$ in F' and F' will satisfy the properties of a tree union.

Proof. Let F = (V, E), $p = \rho_F(u)$ be the representative of u and let $q = \rho_F(v)$ be the representative of v. By definition q will have parent p in F' and since q is a root it has no parent then F' is a forest. Now for all $w \in \mathcal{E}_F(q)$ it holds that $w \leadsto q$ or q = w and since $q \leadsto p$ it follows that $w \leadsto p$. Hence $w \in \mathcal{E}_{F'}(p)$ for all $w \in \mathcal{E}_F(q)$ and trivially $w \in \mathcal{E}_{F'}(p)$ for all $w \in \mathcal{E}_F(p)$ so it follows that $\mathcal{E}_{F'}(v) = \mathcal{E}_{F'}(u) = \mathcal{E}_F(v) \cup \mathcal{E}_F(u)$. Now let $w \in V \setminus (\mathcal{E}_F(v) \cup \mathcal{E}_F(u))$ be an arbitrary element. Since $w \not\leadsto p$, $w \not\leadsto p$, $w \not\leadsto q$, and $w \not\vDash q$ it follows that w has the same representative in F' as in F hence $\mathcal{E}_{F'}(w) = \mathcal{E}_F(w)$. \square

Definition 1.12 (Conflict-free Set). Let F be a forest, $X \subseteq \{(\rho_F(v), \rho_F(u)) : (v, u) \in V \times V\}$ be a set of root pairs. Then X is a conflict-free set in F if (V, Y) is a forest.

Proposition 1.7 (Conflict-free Forest Union). Let forest F = (V, E) be a forest and let $X \subseteq V \times V$ be a conflict-free set in F where |X| = n. Then defining the following forests:

$$F_0 := F$$

 $F_i := (V, E_{i-1} \cup \{(v_i, u_i)\}) \text{ for } (v_i, u_i) \in X \text{ and } 1 \le i \le n$

Then F_n is a forest.

Proof. Let forest F = (V, E) be a forest, $X \subseteq V \times V$ be a conflict-free set in F. We will show that F_n is a forest by induction on i.

- Base case: If i = 0 then $F_i = F_0 = F$ which is a forest.
- Induction hypothesis: Assume that F_{i-1} is a forest for all $1 \leq i < n$. Let $(v_i, u_i) \in X$, we know that $v_i \neq v_j$ for all $(v_j, u_j) \in Y \setminus \{(v_i, u_i)\}$ since otherwise (V, X) would not be a forest and X would not be a conflict-free set in F. So v_i will only have one parent in F_i since it only appears once as a child in (V, X). By definition all of the edges in X consists of roots in F, and since (V, X) is a forest there are no cycles $y \not\rightsquigarrow y$ for all $y \in V$ in F_i . Hence F_i is a forest.

Thus by induction F_n is a forest.

Proposition 1.8 (Conflict-free Set Equivalence). Let forest F be a forest and let $X \subseteq V \times V$ be a conflict-free set in F where |X| = n. Then defining the following forests:

$$\begin{split} F_0 &:= F \\ F_i &:= (V, E_{i-1} \cup \{(v_i, u_i)\}) \text{ for } (v_i, u_i) \in X \text{ and } 1 \leq i \leq n \\ G_0 &:= F \\ G_j &:= (V, E_{i-1} \cup \{(\rho_{G_{j-1}}(v_j), \rho_{G_{j-1}}(u_j))\}) \text{ for } (v_j, u_j) \in X \text{ and } 1 \leq j \leq n \end{split}$$

Then $F_n \cong G_n$.

Proof. Let forest F be a forest, $X \subseteq V \times V$ be a conflict-free set in F. We will show that $F_n \cong G_n$. We know that for some $(v_i, u_i) \in X$ then $v_i \neq y$ for all $(y, w) \in X \setminus \{(v_i, u_i)\}$ since otherwise (V, X) would not be a forest and X would not be a conflict-free set in F. So all edge set unions will only give a root v_i a new parent u_i once. So $\rho_{F_n}(v_i) = \rho_{F_n}(u_i)$ and $\rho_{G_n}(u_i) = \rho_{G_n}(v_i)$ hence v_i remains in the same tree in both F_n and G_n . Since this holds for all $(v_i, u_i) \in X$ it follows that all elements in V remains in the same tree in both F_n and G_n . Hence $F_n \cong G_n$.

Algorithm 1.1 (Conflict-free Tree Union). Let forest F be a tree and let $Z \subseteq V \times V$ be a set of pairs of elements in V that will be unioned in parallel. The conflict-free tree union algorithm is defined as:

$$\begin{aligned} &\text{while } Z \neq \emptyset \text{ do} \\ &E \leftarrow \pi_2(F) \\ &\text{split } Z \text{ into } X, Z' \\ &\text{parfor } (u,v) \in X \text{ do} \\ &E \leftarrow E \cup \{(u,v)\} \\ &F \leftarrow (V,E) \\ &Z \leftarrow Z' \end{aligned}$$

Definition 1.13 (Isolated Vertex). An *isolated vertex* in a directed graph G = (V, E) is a $v \in V$ such that $(u, v) \notin E$ and $(u, v) \notin E$ for some $u \in V$.

Proposition 1.9 (Edge Vertex Cover). Let G = (V, E) be a directed graph without isolated vertices then:

$$\{v:(v,u)\in E\}\cup \{u:(v,u)\in E\}=V$$

Proof. Let G = (V, E) without any isolated vertices. Let $v \in V$ be an arbitrary element in V. Since v is not an isolated vertex it follows that there exists some $u \in V$ such that either $(v, u) \in E$ or $(u, v) \in E$. In the first case it follows that $v \in \{v : (v, u) \in E\}$ and in the second case it follows that $v \in \{u : (v, u) \in E\}$. Since v was arbitrary it follows that $\{v : (v, u) \in E\} \cup \{u : (v, u) \in E\} = V$.

Proposition 1.10 (Ordered Edges Implies Acyclicity). Let G = (V, E) be a directed graph where for all $(v, u) \in E$ it holds that v < u for some total order (V, <). Then G has no cycles.

Proof. Let G = (V, E) be a directed graph where for all $(u, v) \in E$ it holds that u < v for some total order (V, <). Let edges $e_1, e_2, \ldots, e_m \in E$ where $m \ge 1$ and $e_i = (v_{i-1}, v_i)$ for $1 \le i \le m$ be some path in G. Since the edges are ordered it follows that:

$$v_0 < v_1 < v_2 < \dots < v_{m-1} < v_m$$

Hence by transitivity of the total order it follows that $v_0 < v_m$. So $v_0 \neq v_m$ hence there are no cycles in G.

Proposition 1.11 (Inverted Acyclic Graph is Acyclic). Let G = (V, E) be a directed acyclic graph. Then the inverted graph G' = (V, E') where $E' = \{(u, v) : (v, u) \in E\}$ is also acyclic.

Proof. Let G = (V, E) be a directed acyclic graph and G' = (V, E') where $E' = \{(u, v) : (v, u) \in E\}$ is the inverted graph. Let edges $e_1, e_2, \ldots, e_m \in E'$ where $m \geq 1$ and $e_i = (v_{i-1}, v_i)$ for $1 \leq i \leq m$ be some path in G'. By definition of E' it follows that there exists edges $e'_1, e'_2, \ldots, e'_m \in E$ where $e'_i = (v_i, v_{i-1})$ for $1 \leq i \leq m$. If there was a cycle in G' then it would hold that $v_0 = v_m$. But since G is acyclic it follows that $v_0 \neq v_m$. Hence there are no cycles in G'.

Algorithm 1.2 (Left Maximal Union). Let forest F = (V, E) be a forest and let $Z \subseteq \{(\rho_F(v), \rho_F(u)) : (v, u) \in V \times V\}$ be a set of root pairs F and (V, Z) is an acyclic directed graph. The left maximal conflict-free set algorithm is defined as:

LeftMaximalUnion(F, Z)

- 1. $(V, E) \leftarrow F$
- 2. Let $X \subseteq Z$ where $\{v : (v, u) \in X\} = \{v : (v, u) \in Z\}$ and $|X| = |\{v : (v, u) \in Z\}|$
- 3. $E \leftarrow E \cup X$
- 4. return $((V, E), Z \setminus X)$

Proposition 1.12 (Left Maximal Union Correctness). Let forest F = (V, E) be a forest and let $Z \subseteq \{(\rho_F(v), \rho_F(u)) : (v, u) \in V \times V\}$ be a set of root pairs F and (V, Z) is an acyclic directed graph. Then the left maximal conflict-free set algorithm returns a forest F' = (V, E') and a conflict-free set $X \subseteq Z$ in F.

Proof. Let forest F = (V, E) be a forest and let $Z \subseteq \{(\rho_F(v), \rho_F(u)) : (v, u) \in V \times V\}$ be a set of root pairs F and (V, Z) is an acyclic directed graph. Since X is defined such that $\{v : (v, u) \in X\} = \{v : (v, u) \in Z\}$ and $|X| = |\{v : (v, u) \in Z\}|$ it follows that X is a conflict-free set in F since no vertex v appears more than once as a child in X i.e. (V, X) is a forest. By adding the edges in X to E it follows by proposition 1.7 that F' = (V, E') is a forest where $E' = E \cup X$.

Algorithm 1.3 (Parallel Tree Union). Let forest F = (V, E) be a tree and let $A \subseteq V \times V$ be a set of pairs of elements in V that will be unioned in parallel. The parallel tree union algorithm is defined as:

- 1. $Z' \leftarrow \{(\rho_F(v), \rho_F(u)) : (v, u) \in A \land \rho_F(v) \neq \rho_F(u)\}$
- 2. $Z'' \leftarrow \{(\min\{v, u\}, \max\{v, u\}) : (v, u) \in Z'\}$
- 3. $(F_1, Z_1) \leftarrow LeftMaximalUnion(F, Z'')$
- 4. $Z'_1 \leftarrow \{(\rho_{F_1}(u), \rho_{F_1}(v)) : (v, u) \in Z_1 \land \rho_{F_1}(v) \neq \rho_{F_1}(u)\}$
- 5. $(F_2, Z_2) \leftarrow LeftMaximalUnion(F_1, Z_1')$
- 6. return F_2

Proposition 1.13 (Parallel Tree Union Correctness). Let forest F = (V, E) be a tree and let $A \subseteq V \times V$ be a set of pairs of elements in V that will be unioned in parallel. Then the parallel tree union algorithm returns a forest F' = (V, E') where for all $(v, u) \in A$ it holds that $v \sim_{F'} u$.

Definition 1.14 (Union-Find Structure). The union-find structure U is a forest U = (V, E) where the vertices V = S for some set of elements S. The edges $E \subseteq V \times V$ represent parent relations between elements in S such that $(u, v) \in E$ means that u has parent v.