

GU,XINXUE(SUE) SUN,YANG WANG,BUFAN XIE,BINGHONG YANG,SIQIN ZHAO,ZIHAO

Team Member

Sue Gu Business Analyst

Peter Sun Business Analyst

Bufan Wang Business Analyst

Binghong Xie Business Analyst

Siqin Yang Business Analyst

Zihao Zhao Business Analyst

Objective and Executive Summary

Objective:

 Predicting credit card transaction fraud label and maximize Fraud Detection Rate (FDR). Choosing an FDR cutoff to maximize money savings.

Dataset:

- Source: real credit transaction data purchased from a US government organization.
- Shape: 96753 rows, 10 columns (1059 fraud records)
- Time: 2010-01-01 ~ 2010-12-31

Approach:

- Built 516 variables and selected 30 variables that have the highest predictive power.
- Attempted 6 machine learning algorithms and rigorously tuned the hyperparameters.
- Used k-fold cross-validation to address issues caused by small data size.

Result:

Fraud Detection Rate at 5%:

- 94.9% on training
- 92.69% on testing
- 59.22% on OOT
- Financial Savings \$185000 in 2 months

Agenda

Data Quality Report & Exploratory Data Analysis

Data Quality Summary

Datetime:

Categorical:

Numeric:

	Name	dtypes		#of Records	% popula	ted # NA		nique lues	Maxii	mum	Min	imum	Con	Most nmon ield	Most Common Field	Entropy
0	Date da	atetime64	[ns]	96753	100.0	0	3	65	2010-	12-31	2010	-01-01	0	.71	2010-02-28	8.21
	Name	dtyp		#of Records	% populated	# NA	# Unique Values	First_Valu	ıe	Second	_Value	Thi	rd_Value	% Most Common Field	Most Common Field	Entropy
1	Cardnur	n obje	ect	96753	100.0	0	1645	51421904	39	514218	33973	514	2131721	1.23	[5142148452]	9.73
2	Merchnu	m obje	ct	93378	96.51	3375	13091	5509006296	5254	610030	26333	45030	082993600	9.97	[930090121224] 10.41
3	Merch description	obje	ect !	96753	100.0	0	13126	FEDEX SH 12/23/09 <i>F</i>		SER\ MERCH/ #8	ANDISE	• • • • • • • • • • • • • • • • • • • •	CE DEPOT #191	1.74	['GSA-FSS-ADV'	11.19
4	Merch sta	ite obje	ct	95558	98.76	1195	227	TN		М	А		MD	12.59	[TN]	4.7
5	Merch z	p obje	ct	92097	95.19	4656	4567	38118		180	03	2	20706	12.27	[38118]	8.86
6	Transtyp	e obje	ct	96753	100.0	0	4	Р		Р			Р	99.63	[P]	0.04
7	Fraud	obje	ect	96753	100.0	0	2	0		0			0	98.91	[0]	0.09
	Name	dtypes	# o Reco		% oulated	# NA	# Zeros	Missing (NA+Zero)	% Miss		iques	Mean	Maximum	Minimu	n Standard Deviation	Entropy
0	Amount	float64	967	53 1	0.00	0	0	0	0.	.0 34	1909	427.89	3102045.53	0.01	10006.14	13.28

7	Fraud	obje	ect 967	53 100.0	0	2	0		0		0	98.91	[0]	0.09
	Name	dtypes	# of Records	% populated	# NA	# Zeros	Missing (NA+Zero)	% Missing	Uniques	Mean	Maximum	Minimum	Standard Deviation	Entropy
0	Amount	float64	96753	100.0	0	0	0	0.0	34909	427.89	3102045.53	0.01	10006.14	13.28

1500 - 12

Univariate:

Distibution of top 20 most common value in:

- Cardnum
- Merch Description
- Merchnum

2000 - 7N NA CA IL MO GA PA NJ TX NC WA DC CH NY MO FL MA MI CO OR TOP 20 Most Common Merch state

Univariate:

Distribution of top 20 most common value in:

- Date
- Merch state
- Merch zip

Univariate: Transtype

Univariate: Fraud

Univariate: Amount

Bivariate: Fraud by Month

Bivariate: Fraud by Week

Multivariate: Amount by Week & Fraud

Multivariate: Amount by Month & Fraud

Data Cleaning

Removing Outliers

Only one outlier:

		Recnum	Cardnum	Date	Merchnum	Merch description	Merch state	Merch zip	Transtype	Amount	Fraud
Ī	52714	52715	5142189135	2010-07-13	NaN	INTERMEXICO	NaN	NaN	Р	3102045.53	0

Solved by directly removing it from the dataset

Filling in Missing Values

Filling Logic:

Use the average or most common value of that field over a relevant subset of records

Most relevant field

Group into categories, replace the missing field with the average or most common value for its appropriate group

Values from previous row (Because values in those fields have a pattern)

Most relevant field > Second most relevant field > Values from previous row

Filling in Merchnum

First, use Merch description to fill in missing values:

2038 missing Merchnum values left

Then, use Cardnum to fill in missing values:

57 missing Merchnum values left

Last, use values from the previous row:

No missing value

Filling in Merch state

First, use Merch description to fill in missing values:

363 missing Merchnum values left

Then, use values from the previous row:

No missing value

Filling in Merch zip

First, use Merch description to fill in missing values:

2043 missing Merchnum values left

Then, use Cardnum to fill in missing values:

42 missing Merchnum values left

Last, use values from the previous row:

■■■ No missing value

Feature Engineering

Basic Ideas

- Looking for unusual entity's repetitive pattern.
- Looking for unusual transaction amount.
- Looking for unusual entity's frequency.

Create Entity

- Total 6 entities:
 - Cardnum
 - Merchnum
 - Cardnum + merch_description
 - Cardnum + merchnum
 - Cardnum + zip
 - Cardnum + State

Create Variables

Total 516 variables created

Feature Selection

Basic Ideas

Use univariate KS score, and FDR@3% to select top 80 variables out of 516 variables.

Use backward feature selection to select 30 variables out of 80 variables.

Backward Feature Selection

Use backward selection method.

Model: Logistic regression.

Scoring: FDR at 3%.

Selected 30 final variables.

Model Exploration

- Logistic Regression
- Neural Network
- Random Forest
- Gradient Boosting Classifier
- Extreme Gradient Boosting
- Light Gradient Boosting Machine

Deal with Small Data Size -- 15-time Random Split

- Dataset: 96,753 records.
- Conduct 15 times random split to improve model robustness.
 - One random split may be biased
- Implementation:
 - For each set of hyperparameters of each model
 - Randomly split the dataset into training and testing data 15 times
 - Take the average FDR at 3% as the evaluation metric

Logistic Regression

- A statistical model that uses a logistic function to model a binary dependent variable.
- Serves as a baseline.

Logistic Regression	penalty	Train	Test	ООТ
1	12	64.0%	64.0%	36.0%
2	None	64.0%	64.0%	36.0%

Neural Network

- Set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns.
- Use a simple multilayer perceptron (MLP) to identify fraud.

Neural Network	hidden_layer _sizes	activation	learning _rate	learning _rate_init	alpha	Train	Test	ООТ
1	(20,)	relu	constant	0.0001	1e-5	69.8%	69.8%	50.3%
2	(5,10)	tanh	invscaling	0.001	8e-4	74.7%	74.4%	58.7%
3	(10,5)	tanh	invscaling	0.001	8e-4	76.5%	74.9%	58.1%
4	(10,10)	tanh	invscaling	0.001	8e-4	76.4%	75.2%	58.7%
5	(10, 10)	relu	constant	0.001	1e-4	78.4%	77.3%	59.8%
6	(10,20)	relu	constant	0.001	1e-4	78.4%	76.3%	57.5%

Random Forest

 An ensemble learning method for classification that operate by constructing multitude of decision trees.

• Pros:

- Flexible, easy to use
- Higher accuracy than a single decision tree

Random Forest	n_estimators	max_leaf_nodes	criterion	Train	Test	ООТ
1	100	5	gini	68.7%	67.3%	44.5%
2	150	10	entropy	69.4%	68.3%	45.1%
3	200	5	entropy	67.8%	67.2%	44.2%
4	250	10	gini	70.2%	68.8%	47.6%
5	300	5	gini	67.8%	67.3%	44.4%
6	350	10	entropy	70.2%	68.8%	48.8%
7	400	5	entropy	67.9%	67.3%	44.2%

Gradient Boosting Classifier

 Machine learning technique that produces predictions via ensemble of weak prediction models.

Generally outperforms random forest.

Boosted tree
Each additional model makes the overall model slightly better

Gradient Boost	n_estimators	learning_rate	max_depth	min_samples_ split	Train	Test	ООТ
1	150	0.01	5	2	71%	63%	16.8%
2	150	0.025	5	2	83%	65%	17.9%
3	150	0.05	5	2	90%	57%	16.8%
4	200	0.025	5	2	87%	65%	17.3%
5	250	0.025	5	2	88%	67%	17.3%
6	250	0.025	5	4	88%	66%	17.3%
7	300	0.025	5	2	90%	66%	16.8%

Extreme Gradient Boosting

- Implementation of the Gradient Boosting method which uses more accurate approximations to find the best tree model.
- Compute second order gradients of loss function that provides more information about the direction of gradients and how to get to the minimum of loss function.
- More regularized form of Gradient Boosting. Uses advanced regularization, which improves model generalization capabilities.

XGBoost	n_estimators	min_child_weight	learning_rate	Train	Test	ООТ
1	100	20	0.1	85.6%	76.6%	44.7%
2	150	50	0.3	86.8%	76.8%	46.4%
3	200	40	0.4	89.6%	77.6%	45.8%
4	300	60	0.4	87.9%	75.5%	49.7%
5	300	80	0.3	82.8%	74.3%	49.2%
6	400	50	0.5	92.1%	75.8%	48.6%

Light Gradient Boosting Machine

 Leaf-wise tree instead of level-wise tree.
 Chooses the number of leaves that yield the largest decrease in loss.

Light GBM	n_estimators	learning_rate	max_depth	num_leaves	Train	Test	ООТ
1	200	0.05	3	6	75.4%	50.2%	32.5%
2	300	0.01	4	12	76.5%	65.2%	39.5%
3	400	0.01	4	12	80.7%	73.5%	39.8%
4	500	0.01	5	8	87.0%	82.3%	42.6%
5	600	0.01	5	30	93.5%	89.3%	39.3%
6	700	0.01	6	30	95.8%	87.7%	34.2%
7	800	0.05	4	18	96.5%	88.5%	37.1%

Final Model

Final Model

- Choose Light GBM as final choice of model; further tuning hyperparameters
- Train model on all modeling data (training + testing)

Final hyperparameters

Model	n_estimators	max_depth	num_leaves	learning_rate
Light GBM	900	3	12	0.01

Result Table

Final Model Result

Data	FDR @ 3%
Training	91.12%
Testing	88.85%
ООТ	50.28%

- 50.28% FDR@3% on OOT
- Low performance on OOT compared to Training and Testing

ООТ	#Rec	ords	#Go	# Goods # Bads Fraud Rate		# Bads		Fraud Rate					
	124	127	122	248		179	9 0.01440412						
		В	ins Statistic	s			Cumulati			ive Statistics			
Population bin %	#Record	#Goods	# Bads	% Goods	% Bads	Total # of records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR	
1	125	61	64	48.80%	51.20%	125	61	64	0.50%	35.75%	35.26	0.95	
2	125	101	24	80.80%	19.20%	250	162	88	1.32%	49.16%	47.84	1.84	
3	125	123	2	98.40%	1.60%	375	285	90	2.33%	50.28%	47.95	3.17	
4	125	117	8	93.60%	6.40%	500	402	98	3.28%	54.75%	51.47	4.10	
5	125	117	8	93.60%	6.40%	625	519	106	4.24%	59.22%	54.98	4.90	
6	125	121	4	96.80%	3.20%	750	640	110	5.23%	61.45%	56.23	5.82	
7	125	121	4	96.80%	3.20%	875	761	114	6.21%	63.69%	57.47	6.68	
8	125	123	2	98.40%	1.60%	1000	884	116	7.22%	64.80%	57.59	7.62	
9	125	123	2	98.40%	1.60%	1125	1007	118	8.22%	65.92%	57.70	8.53	
10	125	122	3	97.60%	2.40%	1250	1129	121	9.22%	67.60%	58.38	9.33	
11	125	122	3	97.60%	2.40%	1375	1251	124	10.21%	69.27%	59.06	10.09	
12	125	124	1	99.20%	0.80%	1500	1375	125	11.23%	69.83%	58.61	11.00	
13	125	121	4	96.80%	3.20%	1625	1496	129	12.21%	72.07%	59.85	11.60	
14	125	124	1	99.20%	0.80%	1750	1620	130	13.23%	72.63%	59.40	12.46	
15	125	121	4	96.80%	3.20%	1875	1741	134	14.21%	74.86%	60.65	12.99	
16	125	123	2	98.40%	1.60%	2000	1864	136	15.22%	75.98%	60.76	13.71	
17	125	124	1	99.20%	0.80%	2125	1988	137	16.23%	76.54%	60.31	14.51	
18	125	124	1	99.20%	0.80%	2250	2112	138	17.24%	77.09%	59.85	15.30	
19	125	120	5	96.00%	4.00%	2375	2232	143	18.22%	79.89%	61.66	15.61	
20	125	124	1	99.20%	0.80%	2500	2356	144	19.24%	80.45%	61.21	16.36	
21	125	125	0	100.00%	0.00%	2625	2481	144	20.26%	80.45%	60.19	17.23	
22	125	124	1	99.20%	0.80%	2750	2605	145	21.27%	81.01%	59.74	17.97	
23	125	125	0	100.00%	0.00%	2875	2730	145	22.29%	81.01%	58.72	18.83	
24	125	125	0	100.00%	0.00%	3000	2855	145	23.31%	81.01%	57.70	19.69	
25	125	125	0	100.00%	0.00%	3125	2980	145	24.33%	81.01%	56.68	20.55	

Investigate OOT dataset

$total_amount_over_3_for_cardnum_zip$	total_amount_over_14_for_cardnum_merchnum	$total_amount_over_7_for_cardnum_merch description$	Fraud	Probability
13.617107	12.371058	13.043785	1	0.985911
12.877993	11.696042	12.542589	1	0.980776
11.063131	10.038568	10.490091	1	0.978815
13.496833	12.261215	12.907763	1	0.978815
total_amount_over_3_for_cardnum_zip	total_amount_over_14_for_cardnum_merchnum	total_amount_over_7_for_cardnum_merchdescription	Fraud	Probability
total_amount_over_3_for_cardnum_zip 5.967984	total_amount_over_14_for_cardnum_merchnum 5.385283	total_amount_over_7_for_cardnum_merchdescription 6.741888	Fraud 0	Probability 0.985821
		·		
5.967984	5.385283	6.741888	0	0.985821
5.967984 4.600999	5.385283 4.136846	6.741888 5.195911	0	0.985821 0.983673

Fraud Score and Card Activities

Card Number = 5142199009

Before Dec 2020: Average 2 transactions per month

After Dec 2020: 45 transactions over the month

Fraud Score and Merchant Activities

Merchant Number = 4353000719908

NOV 2010:

- 90 transactions in total
- 32 transactions on 11/25 and 11/26

Fraud Score and Merchant Activities

Merchant Number = 4353000719908

DEC 2010:

- 103 transactions in total
- 3.3 transactions per day on average
- Daily merchant activities increase every few days

Fraud savings and score cutoff

We recommend a score cutoff at 5%

Assumptions:

- Saving on each fraud caught: \$2,000
- Loss for each false positive : \$50

Maximum overall savings > \$185,000 (5% - 8%)

Conclusion

Conclusion

Data Quality Check and Exploration Analysis

Detect missing values, outliers and fraud label imbalance

Data Cleaning

Fill missing values using the most common value of that field over a relevant subset of records; remove extreme outliers

3 Feature Engineering

Create 5 categories, in total 516 variables

Feature Selection

Use filter, average FDR and KS rank to select 80 variables
Use backward stepwise selection to select the top 30 variables

5 Model Exploration and Selection

Try 6 algorithms with different hyperparameters Select the one with the highest FDR@3% on testing data

Implement the Final Model

Fit the final model with all the data available Select FDR cut-off of 5% to maximize the financial benefits

FDR@5 %	Train	Test		Financial Saving *
Result	94.90%	92.69%	59.22%	\$185000

^{*} Financial saving estimate based on the last two months (OOT)

- Implement subsampling on the training data to have higher bad/good ratio (1/10)
- Build a model and then rebuild one after removing the goods with low fraud scores from the training data. Repeat for a few times.

plot, label not clear, amount plot should go beyong 2500

filling missing value --waterfall is good but no reason to use previous rows

should choose the model perform best on OOT

Neuron net is the best

LGB is a bit scary not so balanced

bufan's OOT investigation is nice

15 runs is good. more the better

as long as you demonstrate model is not overfitting, it is safe, need to consider OOT

