## (1) Задача<sup>1</sup>

Имеется статистика расходов на питание (Y) и общих расходов (X) 55 индийских семей, проживающих в сельской местности (начало 2000 годов). График разброса и выдержка из корреляционной матрицы показателей изображены на Рис. 1.

- 1. Видна ли на графике линейная взаимосвязь между расходами на питание и общими расходами? Подтверждается ли взаимосвязь коэффициентом корреляции?
- 2. Построена модель линейной регрессии Y = β0 + β1·X. Проанализируйте отчёт Gretl №1. Запишите модель в явном виде. Проверьте значимость параметров. Сколько процентов разброса зависимой переменной объясняет модель? На сколько в среднем отклоняются модельные значения от фактических?



Рис. 1. График разброса Y и X

## Отчёт 1. Отчёт Gretl по модели парной линейной регрессии

Модель 1: МНК, использованы наблюдения 1-55

Зависимая переменная: Ү

|              | -          |                   |      |                |      |                   |
|--------------|------------|-------------------|------|----------------|------|-------------------|
|              | Коэффициен | г Ст. оши         | бка  | t-статистика   | P-3  | начение           |
| const        | 94,2088    | 50 <b>,</b> 8563  |      | 1,852          | 0,   | 0695              |
| X            | 0,436809   | 0,0783            | 226  | 5 <b>,</b> 577 | 8,   | 45e-07            |
| Среднее зав. | перемен    | 373 <b>,</b> 3455 | Ст.  | откл. зав. пер | емен | 83,43510          |
| Сумма кв. ос | татков     | 236893,6          | Ст.  | ошибка модели  |      | 66 <b>,</b> 85575 |
| R-квадрат    |            | 0,369824          | Исп  | р. R-квадрат   |      | 0,357934          |
| F(1, 53)     |            | 31,10345          | P-3  | начение (F)    |      | 8,45e-07          |
| Пот правлоп  | олобие     | -308.1625         | Къич | т Акаике       |      | 620.3251          |

<sup>1</sup> Gujarati: Basic Econometrics, Fourth Edition. The McGraw-Hill Companies, 2004.

## (2) Задача 3.3<sup>2</sup>

Предположим, что у нас есть набор данных с пятью предикторами:  $X_I$  – средний балл за школьные предметы (GPA),  $X_2$  – коэффициент IQ,  $X_3$  – пол (1 для женщин и 0 для мужчин),  $X_4$  – взаимодействие между GPA и IQ, и  $X_5$  – взаимодействие между GPA и полом. Зависимой переменной является начальная заработная плата после окончания университета (тыс. долларов). Представьте, что мы используем метод наименьших квадратов для подгонки модели и получаем  $\hat{\beta}_0 = 50$ ,  $\hat{\beta}_1 = 20$ ,  $\hat{\beta}_2 = 0.07$ ,  $\hat{\beta}_3 = 35$ ,  $\hat{\beta}_4 = 0.01$  и  $\hat{\beta}_5 = -10$ .

- а) Какой из приведённых ниже ответов правильный и почему?
  - 1. При фиксированных значениях IQ и GPA мужчины в среднем зарабатывают больше женщин.
  - 2. При фиксированных значениях IQ и GPA женщины в среднем зарабатывают больше мужчин.
  - 3. При фиксированных значениях IQ и GPA мужчины в среднем зарабатывают больше женщин при условии, что GPA достаточно высок.
  - 4. При фиксированных значениях IQ и GPA женщины в среднем зарабатывают больше мужчин при условии, что GPA достаточно высок.
- b) Дайте прогнозную оценку заработной платы женщины с IQ = 111 и GPA = 4.0.
- с) Верно ли следующее утверждение: поскольку коэффициент для взаимодействия между GPA и IQ очень небольшой, то у нас есть мало оснований сделать вывод о наличии эффекта взаимодействия. Объясните свой ответ.

 $<sup>^2</sup>$  Задачи с нумерацией X.Y — из книги «Введение в статистическое обучение с примерами на языке R». X — номер главы, Y — номер задания из раздела теоретических упражнений.