Prova d'esame di Comunicazioni numeriche -17/07/08

Esercizio nr. 1

Facendo riferimento allo schema in Fig. 1, sia il segnale di ingresso $x(t) = B \operatorname{sinc}^2(Bt)$, l'intervallo di campionamento uguale a $T = \frac{1}{B}$, e i due interpolatori $p_1(t) = 2B \operatorname{sinc}\left[2B\left(t - \frac{T}{2}\right)\right]$ e $p_2(t) = 2B \operatorname{sinc}\left[2Bt\right]$. Calcolare e disegnare lo spettro $X_2(f)$ nei casi: a) $h_0(t) = \delta(t)$ e b) $h_0(t) = \delta\left(t - \frac{T}{2}\right)$

Calcolare inoltre l'espressione analitica di z(t) nei casi a) e b) e dire se ed in quali casi z(t) rappresenta una replica fedele di x(t). Calcolare infine l'energia della z(t) nei casi a) e b).

Fig. 1

Esercizio nr. 2

All'ingresso del sistema di trasmissione di Fig.2 viene applicato il segnale $x(t) = m_c(t) \cdot c(t) - m_s(t) \cdot s(t)$ $m_c(t) = \sum_i a_i \ g_T(t-iT), \ m_s(t) = \sum_i b_i \ g_T(t-iT)$ con a_i,b_i simboli equiprobabili indipendenti di valore ± 1 , $g_T(t) = \cos\left(\frac{\pi t}{T}\right) rect\left(\frac{t}{T}\right), \ c(t)$ rappresentato in Fig.3 con $T_0 << T$ e $s(t) = c(t-T_0/4)$. Il rumore w(t) è un rumore Gaussiano passa banda bianco con densità spettrale di potenza (d.s.p.) $S_W(f) = \frac{N_0}{2} \left[rect\left((f-f_0)/B\right) + rect\left((f+f_0)/B\right) \right]$ con B la banda dell'impulso $g_T(t)$ e $f_0 = 1/T_0$ La risposta impulsiva del filtro in ricezione è $g_R(t) = g_T(t)$. Si determini: 1) L'energia media del segnale x(t); 2) La funzione di autocorrelazione del rumore all'uscita dei filtri di ricezione $g_R(t)$; 3) La probabilità d'errore su simbolo $c_k = (a_k, b_k)$ nell'ipotesi che le zone di decisione dei simboli corrispondano ai quattro quadranti del piano di rappresentazione del campione complesso $z(k) = (z_c(k), z_s(k))$.

