Maximum Probability

Problem Description: Given an urn consisting of 8 balls: 4 red, 2 blue and 2 green. We have to calculate the probability of drawing out n number of balls from the urn, out of which exactly x balls should be red.

Solution Description:

The problem can be broken into two pieces:

- a. Number of ways to draw n balls from the urn of total 8 balls.
- b. Number of ways to draw x red balls from a total of 4 red balls.

Probability =

(number of ways to draw x red balls)*(number of ways to draw (n-x) non red balls)

(number of ways to draw n balls)

a. Number of ways to draw n balls:

Since n number of balls are drawn together, the order doesn't matter. So, to select n balls from a total of 8 balls, we shall use combination. Number of ways= ${}^{8}C_{n}$.

b. Number of ways to select x red balls out of 4

Again, the order is not important, hence we will use combinations. Number of ways to draw x red balls= 4C_x For the remaining n-x balls out of 4 non red balls:

Number of ways for non red balls= ${}^4C_{n-x}$

Probability= Favourable outcome/ total number of outcomes

$$= {}^{4}C_{x} * {}^{4}C_{n-x} / {}^{8}C_{n}$$

Pseudo-Code:

Method: probability:

Input: Two integers n and x

favourable_outcome= ncr(4,x)*ncr(4,n-x)

total_outcomes= ncr(8,n)

answer= (favourable_outcome/total_outcomes)*100

return ans

Method: ncr

Input: Two integers n and r

Initialize nfact, rfact, nrfact with 1

for i from 1 to n
nfact=nfact*i;
for i from 1 to r
rfact=rfact*i;
for i from 1 to n-r
nrfact=nrfact*i
ans= nfact/(rfact*nrfact)
return (integer) (ans*100)

For example:

n=3 and x=1 Total number of ways to draw 3 balls= 8C_3 =56 Desired outcome= 4C_1 * 4C_2 = 4*6=24 (number of ways to draw 1 red ball and 2 non red balls)

Probability=24/56=0.428 Answer=(4/56)*100=42.8

Integer value of 42.8 = 42 (ans)