Modern intro to Online Learning – Exercise Solutions

Ludovic Schwartz

Contents

1	What is online learning?	2
	Exercise 1	2
2	Online Subgradient Descent	4
	Exercise 1	4
	Exercise 2	4
	Exercise 3.	5

Chapter 1

What is online learning?

Exercise 1.1

Extend the previous algorithm and analysis to the case when the adversary selects a vector $y_t \in \mathbb{R}^d$ such that $\|y\|_2 \leq 1$, the algorithm guesses a vector $x_t \in \mathbb{R}^d$, and the loss function is $\|x_t - y_t\|_2^2$. Show an upper bound to the regret logarithmic in T and that does not depend on d. Among the other things, you will probably need the Cauchy-Schwarz inequality : $\langle x, y \rangle \leq \|x\|_2 \|y\|_2$.

Solution: The natural extension of the previous algorithm is to pick the x_t which minimizes the cumulated loss up to time t-1. We also define x_t^* the optimal comparator at times t:

$$x_t = x_{t-1}^* = \underset{x \in \mathbb{R}}{\operatorname{arg \, min}} \sum_{s=1}^{t-1} ||x - y_t||^2$$

We can once again explicitely compute the value of x_t . Indeed, if we define $F_t(x) := \sum_{s=1}^t \|x - y_t\|^2$, F_t is a strictly convex function and reaches its minimum where its gradient vanishes. A simple computation then gives $\nabla F_t(x) = 0 \leftrightarrow \sum_{s=1}^t 2(x - y_s) = 0 \leftrightarrow x = \frac{1}{t} \sum_{s=1}^t y_s$ In particular, we have again $x_t = \frac{1}{t-1} \sum_{s=1}^{t-1} y_s$ and we can notice that $\|x_t\| \le 1$ at all time.

Now, by lemma 1.2 with the loss $\ell_t(x) = ||x - y_t||^2$, we have :

$$\forall T, \sum_{t=1}^{T} \|x_T^* - y_t\|^2 \ge \sum_{s=1}^{T} \|x_t^* - y_t\|^2$$

We can now complete the proof:

$$R_{T} = \sum_{t=1}^{T} \|x_{t} - y_{t}\|^{2} - \min_{x \in \mathbb{R}} \sum_{t=1}^{T} \|x - y_{t}\|^{2}$$

$$= \sum_{t=1}^{T} \|x_{t-1}^{*} - y_{t}\|^{2} - \sum_{t=1}^{T} \|x_{T} - y_{t}\|^{2}$$

$$\leq \sum_{t=1}^{T} \|x_{t-1}^{*} - y_{t}\|^{2} - \sum_{t=1}^{T} \|x_{t}^{*} - y_{t}\|^{2}$$

$$= \sum_{t=1}^{T} \langle x_{t-1}^{*} + x_{t}^{*} - 2y_{t}, x_{t-1}^{*} - x_{t}^{*} \rangle$$

$$\stackrel{\text{(C.S)}}{\leq} \sum_{t=1}^{T} \|x_{t-1}^{*} + x_{t}^{*} - 2y_{t}\| \cdot \|x_{t-1}^{*} - x_{t}^{*}\|$$

$$\leq \sum_{t=1}^{T} 4 \|x_{t-1}^{*} - x_{t}^{*}\|$$

Where the first inequality uses lemma 1.2, the second one uses Cauchy-Schwarz and the third uses that $\forall t, \|x_t^*\| \leq 1$ and $\|y_t\| \leq 1$. Now we notice that

$$||x_{t-1}^* - x_t|| = \left\| \frac{1}{t-1} \sum_{s=1}^{t-1} y_s - \frac{1}{t} \sum_{s=1}^t y_s \right\|$$

$$= \left\| \frac{1}{t(t-1)} \sum_{s=1}^{t-1} y_s + \frac{1}{t} y_t \right\|$$

$$\leq \frac{1}{t(t-1)} \sum_{s=1}^{t-1} ||y_s|| + \frac{1}{t} ||y_t||$$

$$\leq \frac{2}{t}$$

Now we plug everything together:

$$R_T \le 4 \cdot \sum_{t=1}^{T} ||x_{t-1}^* - x_t^*|| \le 8 \cdot \sum_{t=1}^{T} \frac{1}{t} \le 8 + 8 \log T$$

Chapter 2

Online Subgradient Descent

Exercise 2.1

Prove that $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2\sqrt{T} - 1$

Solution: We have:

$$\sum_{t=1}^{T} \frac{1}{\sqrt{t}} = 1 + \sum_{t=2}^{T} \frac{1}{\sqrt{t}}$$

$$= 1 + \sum_{t=2}^{T} \int_{t-1}^{t} \frac{1}{\sqrt{t}} du$$

$$\leq 1 + \sum_{t=2}^{T} \int_{t-1}^{t} \frac{1}{\sqrt{u}} du$$

$$\leq 1 + \int_{1}^{T} \frac{1}{\sqrt{u}} du$$

$$= 1 + 2\sqrt{T} - 2 = 2\sqrt{T} - 1$$

Ŋ

Exercise 2.2

Using the inequality in the previous exercise, prove that a learning rate $\propto \frac{1}{\sqrt{t}}$ gives rise to a regret only a constant multiplicative factor worse than the one in $(2.1)(R_T \leq DL\sqrt{T})$.

Solution: We start at the result of theorem 2.13:

$$R_T \le \frac{D^2}{2\eta_T} + \sum_{t=1}^T \frac{\eta_t}{2} \|g_t\|^2$$

Then we bound for any t, $||g_t||^2 \le L^2$ and set $\eta_t = \alpha \frac{1}{\sqrt{t}}$ with $\alpha > 0$ to be determined later. We have

$$R_T \le \frac{D^2 \sqrt{T}}{2\alpha} + \sum_{t=1}^T \frac{\alpha}{2\sqrt{t}} L^2$$

$$= \frac{D^2 \sqrt{T}}{2\alpha} + \frac{\alpha L^2}{2} \sum_{t=1}^T \frac{1}{\sqrt{t}}$$

$$\le \frac{D^2 \sqrt{T}}{2\alpha} + \alpha L^2 \sqrt{T}$$

$$= \sqrt{T} \left(\frac{D^2}{2\alpha} + \alpha L^2\right)$$

$$= DL\sqrt{2T}$$

Where the third line uses the result of the previous exercise and the last lines uses the choice $\alpha = \sqrt{\frac{D^2}{2L^2}}$. We remark that we are only a factor $\sqrt{2}$ worse than the bound obtained with a fixed η .

Ŋ

Exercise 2.3

Calculate the subdifferential set of the ϵ -insensitive loss : $f(x) = \max(|x-y| - \epsilon, 0)$

Solution: We start by a drawing of the function:

Then the subdifferential is:

$$\partial f(x) = \begin{cases} \{0\} & \text{if } x \in]y - \epsilon, y + \epsilon[\\ \{-1\} & \text{if } x \in] - \infty, y - \epsilon[\\ \{1\} & \text{if } x \in]y + \epsilon, \infty[\\ [0, 1] & \text{if } x = y + \epsilon\\ [-1, 1] & \text{if } x = y - \epsilon \end{cases}$$

Ŋ