南京航空航天大学

第1页 (共6页)

二〇二一~ 二〇二二 学年 第 1 学期《高等数学 II(1)期中》考试试题

考试日期: 2021 年 11 月 20 日

试卷类型: A

试卷代号: 080010

	班号			学号		姓名				
题号	-	=	三	四	五	六	七	八	总分	
得分										

本题分数	24		
得 分			

一、填空(每空3分)

1.
$$\lim_{n\to\infty} \left(\frac{1}{n+\sqrt{1}} + \frac{1}{n+\sqrt{2}} + \dots + \frac{1}{n+\sqrt{n}} \right) = \underline{\hspace{1cm}}$$

2.
$$\lim_{x \to 1} (1-x) \sec \frac{\pi x}{2} = \underline{\hspace{1cm}}$$

3. 己知
$$f'(x_0) = -\frac{1}{2}$$
,则 $\lim_{x\to 0} \frac{x}{f(x_0-2x)-f(x_0-x)} = _______$ 。

5. 在
$$x\to 0$$
时, $\sin 3x + ax + bx^3$ 是 x^3 高阶无穷小,则 $a=$ _____, $b=$ _____。

6. 设函数
$$y = \frac{3-x}{x+3}$$
, 则 $y^{(n)}(0) = ___(n \ge 1)$ 。

7. 函数
$$f(x) = \sin^2 x$$
 的麦克劳林展开式中 x^{2n} 项的系数是____

二、选择题 (每题 3 分)

1.设
$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 则在点 $x = 0$ 处 ()

B.连续但不可导

A. 不连续

B.连续但不可导

C.可导但导数不连续

D.可导且导数连续

- 2. 设f(x)满足关系式 $xf''(x)+3x[f'(x)]^2=1-e^{-x}$, 且 $f'(c)=0(c\neq 0)$,则()
- A. f(c)是f(x)的极小值
- B. f(c)是f(x)的极大值
- C. 点(c, f(c))是曲线 f(x)的拐点
- D. f(c)不是f(x)的极值; (c, f(c))也不是曲线 f(x)的拐点

3. 曲线
$$y = e^{x + \frac{1}{x}} \arctan \frac{x^2 + x + 1}{(x - 1)(x - 2)}$$
的渐近线条数是 ()

A. 1 C. 3 D. 4

本题分数	30		
得 分			

三、计算题 (每题 6 分, 共 30 分)

$$1. \lim_{x \to 0} \left(\frac{1 + 2^x + 4^x}{3} \right)^{\frac{1}{x}}$$

$$2. \lim_{x \to 1} \frac{\ln \cos(x-1)}{1-\sin \frac{\pi}{2} x}$$

本题:	分数	8		
得	分			

四、求函数 $f(x) = \lim_{n \to \infty} \frac{xn^x - n^{-x}}{n^x + xn^{-x}}$ 的间断点,并指出其具体类型。

4.设函数 y=y(x)由 $y-xe^y=1$ 确定, 求 y'(0), y''(0)。

3.设 $y = (1+x^2)^{\sin x}$, 求 $\frac{dy}{dx}$ 。

本题分数

分

得

8 五、求常数 a 使得 $f(x) = \begin{cases} \ln(1+3x) - 7e^x, & x > 0 \\ 5 \arctan \frac{2x}{1-x} + a(x+1)^2, & x \le 0 \end{cases}$ 在 x=0 处连续。此时,f(x) 在 x=0 处是否可导?若可导,求 f'(0) 。

5.求曲线 $\begin{cases} x - e^x \sin t + 1 = 0 \\ y = t^3 + 2t \end{cases}$ 在 t = 0 处的切线方程。

本题分数 得 分

得 分

六、求函数 $f(x)=3-x-\frac{4}{(x+2)^2}$ 在区间[-1,2]上的极值和最 值。

七、已知f(x)在x=0处二阶可导,f(0)=f'(0)=0,f''(0)=1, 本题分数

八、设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 本题分数 f(0)=0, f(1)=1., 证明: 分 得 (1) 至少存在一点 $\xi \in (0,1)$, 使得 $f(\xi) = 1 - \xi$;

(2)存在两个不同的点 $η, \zeta \in (0,1)$, 使得 $f'(η)f'(\zeta)=1$ 。

南京航空航天大学

第1页 (共3页)

二〇二一 ~ 二〇二二 学年 第 一 学期

课程名称:《高等数学 II(1)期中》参考答案及评分标准

命题教师:

试卷类型: A 试卷代号:

1. 1 2.
$$\frac{2}{\pi}$$
 3. 2 4. $\frac{1}{2}\cot x dx$ 5. $a=-3$, $b=\frac{9}{2}$

4.
$$\frac{1}{2}\cot x dx$$

5.
$$a=-3$$
, $b=\frac{9}{2}$

6.
$$(-1)^n \frac{6n!}{3^{n+1}}$$
或 $(-1)^n \frac{2n!}{3^n}$ 7. $\frac{(-1)^{n-1} 2^{2n-1}}{(2n)!}$ $\frac{2n!}{2n!}$

7.
$$\frac{(-1)^{n-1} 2^{2n-1}}{(2n)!}$$

$$= . 选择$$
1C 2A 3B $(-1)^{n-1} \times \left[\frac{1}{(2n-1)!} + \frac{1}{3!(2n-3)!} + \frac{1}{5!(2n-3)!} + \cdots + \frac{1}{(2n-3)!} + \cdots \right]$

$$\frac{5!(2n-5)!}{+\frac{1}{(2n-1)!}}$$

$$= (1) \lim_{x \to 0} (\frac{1+2^{x}+4^{x}}{3})^{\frac{1}{x}} = \lim_{x \to 0} [1+(\frac{1+2^{x}+4^{x}}{3})]^{\frac{3}{2^{x}+4^{x}-2}} = \lim_{x \to 0} (\frac{1+2^{x}+4^{x}-2}{3})^{\frac{1}{2^{x}+4^{x}-2}} = \ln 2$$

$$= \lim_{x \to 0} \frac{2^{x}+4^{x}-2}{3x} = \lim_{x \to 0} \frac{2^{x} \ln 2+4^{x} \ln 4}{3} = \ln 2$$

$$= \lim_{x \to 0} \frac{4^{x} \ln 2}{3^{x}} = \lim_{x \to 0} \frac{4^{x} \ln 2}{3^{x}}$$

所以
$$\lim_{x \to \infty} \frac{1+2^x+4^x}{3} = e^{\lim_{x \to \infty} \frac{2^x+4^x-2}{3x}} = 2$$

$$= e^{\lim_{x \to \infty} \frac{2^x+4^x-2}{3x}} + \lim_{x \to \infty} \frac{4^x-1}{3x} = e^{\lim_{x \to \infty} \frac{2^x-1}{3x}} + \lim_{x \to \infty} \frac{4^x-1}{3x} = e^{\lim_{x \to \infty} \frac{2^x-1}{3x}} = e^{\lim_$$

(2)
$$\lim_{x \to 1} \frac{\ln \cos(x-1)}{1-\sin \frac{\pi}{2}x} = \lim_{x \to 1} \frac{-\tan(x-1)}{-\frac{\pi}{2}\cos \frac{\pi}{2}x}$$
 \cdots \cdots

$$= \frac{2}{\pi} \lim_{x \to 1} \frac{x - 1}{\cos \frac{\pi}{2}}$$

$$= \frac{2}{\pi} \lim_{x \to 1} \frac{1}{-\frac{\pi}{2} \sin \frac{\pi}{2} x} = -\frac{4}{\pi^2}$$

四、解: 当 x>0 时, $\lim_{n\to\infty}\frac{xn^x-n^{-x}}{n^x+xn^{-x}}=\lim_{n\to\infty}\frac{x-n^{-2x}}{1+xn^{-2x}}=x$ 。。。。。。 2

当 x=0 时, $\lim_{n\to\infty}\frac{xn^x-n^{-x}}{n^x+xn^{-x}}=-1$ 。。。。。。。。。 4

当 x<0 时, $\lim_{n\to\infty}\frac{xn^x-n^{-x}}{n^x+xn^{-x}}=\lim_{n\to\infty}\frac{xn^{2x}-1}{n^{2x}+x}=-\frac{1}{x}$ 。。。。。 6

间断点为 x=0,
当 x=0 时,左极限不存在,为第二类间断点。。。。。。。。 8

五、解: 由 f(x)在点 x=0 处连续,可得 $\lim_{x\to 0^-} \left[5 \arctan \frac{2x}{1-x} + a(x+1)^2 \right] = a = f(0)$ $\lim_{x\to 0^-} \left[\ln(1+3x) - 7e^x \right] = -7 = f(0) = a$

由此得 a=-7.。。。。。。。。。。。。。。。。。。。。

当
$$x=0$$
 时, $f_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 \arctan \frac{2x}{1 - x} - 7(x + 1)^{2} + 7}{x} = -4$ 。。。。。。。。。。。

$$f_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\ln(1 + 3x) - 7e^{x} + 7}{x} = 3 - 7 = -4$$

因为 $f_{+}(0) = f_{-}(0)$, 所以f(x)在0处可导,

导数 f'(0) = -4 。。。。。。。。。。。。。8

六.解:由于
$$f'(x) = -1 + \frac{8}{(x+2)^3} = 0$$
,可知 $x=0$ 为驻点。。。。。。。。。。2

又
$$f''(0) = -\frac{24}{(x+2)^4}|_{x=0} = -\frac{3}{2} < 0$$
,则 $x=0$ 为极大值点。。。。。。。。。

计算得f(0)=2, f(-1)=0, f(2)=3/4,6

比较得f(x)在区间[-1,2]上的极大值为f(0)=2,

最大值为f(0)=2,最小值为f(-1)=0。。。。。。。。8

则极限
$$\lim_{x\to 0} \left(1+\frac{f(x)}{x}\right)^{\frac{1}{x}}$$
 为 1^{∞} ,因此

$$\lim_{x \to 0} \left(1 + \frac{f(x)}{x} \right)^{\frac{1}{x}} = \exp\left\{ \lim_{x \to 0} \frac{1}{x} \left(1 + \frac{f(x)}{x} - 1 \right) \right\} = \exp\left\{ \lim_{x \to 0} \frac{f(x)}{x^2} \right\}$$

$$\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{f'(x)}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \frac{1}{2} f''(0) = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{f'(x)}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \frac{1}{2} f''(0) = \frac{1}{2}$$

八.证明:

(1) 令 F(x)=f(x)-1+x,则 F(x)在[0,1]上连续,且

$$F(0) = -1 < 0$$
, $F(1) = 1 > 0$,

由零点定理,至少存在一点 $\xi \in (0,1)$,使得 $F(\xi) = 0$,即 $f(\xi) = 1 - \xi$...。2

(2) 在区间[0, ξ],[ξ ,1]上分别使用拉格朗日中值定理得

$$\begin{cases} \frac{f(\xi) - f(0)}{\xi - 0} = f'(\eta), & \eta \in (0, \xi) \subset (0, 1) \\ \frac{f(1) - f(\xi)}{1 - \xi} = f'(\zeta), & \zeta \in (\xi, 1) \subset (0, 1) \text{ so so so so } 5 \end{cases}$$

$$\mathbb{R} \frac{f(\xi)}{\xi} = f'(\eta), & \frac{1 - f(\xi)}{1 - \xi} = f'(\zeta), \text{ Min}$$

$$f'(\eta) f'(\zeta) = \frac{f(\xi)}{\xi} \frac{1 - f(\xi)}{1 - \xi} = 1 \text{ so so so } 7$$