Page 1 of 3

Bonus problems — week 4

Let $\gamma > 0$, $g : \mathbb{R} \to \mathbb{R}$ such that

$$g(x) = |x|$$

for each $x \in \mathbb{R}$, and $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$f(x) = ||x||_1$$

for each $x \in \mathbb{R}^n$.

- 1. Compute the subdifferential ∂q .
- 2. Find $\operatorname{prox}_{\gamma g}$ (your answer is not allowed to contain any maximization or minimization). Hint: Use Fermat's rule.
- 3. Find $\operatorname{prox}_{\gamma f}$ (your answer is not allowed to contain any maximization or minimization).

Solution. 1. The subdifferential of a convex function $g:\mathbb{R}^n\to\mathbb{R}$ at a point x is defined as:

$$\partial g(x) = \{ s \in \mathbb{R}^n : g(y) \ge g(x) + s^{\top}(y - x) \ \forall y \in \mathbb{R}^n \}.$$

For g(x) = |x|, we have different behavior depending on whether x is positive, negative, or zero.

- 1. If x > 0: In this case, g(x) = x, so g is differentiable, and $\frac{d}{dx}x = 1$. Therefore, $\partial g(x) = \{1\}$ for x > 0.
- 2. If x < 0: In this case, g(x) = -x, so g is differentiable, and $\frac{d}{dx}(-x) = -1$. Therefore, $\partial g(x) = \{-1\}$ for x < 0.
- 3. If x = 0: At x = 0, g(x) = |x| is not differentiable, but by the definition of the subdifferential, we have:

$$\partial g(0) = \{ s \in \mathbb{R} : |y| \ge sy \text{ for all } y \in \mathbb{R} \}.$$

This holds for all $s \in [-1,1]$. Thus, $\partial g(0) = [-1,1]$, as can be seen in figure 1.

In summary, the subdifferential $\partial g(x)$ is given by:

$$\partial g(x) = \begin{cases} \{1\}, & \text{if } x > 0, \\ \{-1\}, & \text{if } x < 0, \\ [-1, 1], & \text{if } x = 0. \end{cases}$$

(a) Affine minorizers at x = 0.

(b) Illustration of the subdifferential of g(x) = |x|.

Figure 1: The subdifferential of g

2. The proximal operator is defined as:

$$\operatorname{prox}_{\gamma g}(z) = \arg\min_{x} \left(g(x) + \frac{1}{2\gamma} ||x - z||_{2}^{2} \right).$$

For $g: \mathbb{R} \to \mathbb{R}$ such that g(x) = |x| this becomes

$$\operatorname{prox}_{\gamma g}(z) = \arg\min_{x} \left(|x| + \frac{1}{2\gamma} (x - z)^{2} \right).$$

Recall that Fermat's rule gives that $x = \text{prox}_{\gamma f}(z)$ if and only if $0 \in \partial g(x) + \gamma^{-1}(x-z)$. Using this for the three separate cases we have:

- For x < 0, we have $\partial f(x) = \{-1\}$. Therefore, we get that $0 = -1 + \gamma^{-1}(x z)$ or $x = \gamma + z$. Note that $z < -\gamma$ implies the condition x < 0.
- For x > 0, we have $\partial f(x) = \{1\}$. Therefore, we get that $0 = 1 + \gamma^{-1}(x z)$ or $x = z \gamma$. Note that $z > \gamma$ implies the condition x > 0.
- For x = 0, we have $\partial f(x) = [-1, 1]$. Therefore, we get that $0 \in [-1, 1] \gamma^{-1}z$ or $z \in [-\gamma, \gamma]$.

Thus, we have

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma, & \text{if } z < -\gamma, \\ 0, & \text{if } |z| \le \gamma, \\ z - \gamma, & \text{if } z > \gamma. \end{cases}$$

FRTN50 Optimization for Learning Problem Week 4 Page 3 of 3

or more compact:

$$prox_{\gamma q}(z) = sign(z) \cdot max(|z| - \gamma, 0).$$

In the problem formulation it is stated that "your answer is not allowed to contain any maximization or minimization". I assume this concerns $\underset{x}{\operatorname{arg \, min}}$ and $\underset{x}{\operatorname{arg \, max}}$, but not the $\max(x,y)$ function. If it does concern the $\max(x,y)$ function then refer to

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma, & \text{if } z < -\gamma, \\ 0, & \text{if } |z| \le \gamma, \\ z - \gamma, & \text{if } z > \gamma. \end{cases}$$

3. Since $f(x) = ||x||_1 = \sum_{i=1}^n |x_i| = \sum_{i=1}^n g(x_i)$, this function is separable. In exercise 4.2 we saw that this implies

$$\operatorname{prox}_{\gamma f}(z) = \begin{bmatrix} \operatorname{prox}_{\gamma g}(z_1) \\ \vdots \\ \operatorname{prox}_{\gamma g}(z_n) \end{bmatrix} = \begin{bmatrix} \operatorname{sign}(z_1) \cdot \max(|z_1| - \gamma, 0) \\ \vdots \\ \operatorname{sign}(z_n) \cdot \max(|z_n| - \gamma, 0) \end{bmatrix}$$

for $z = (z_1, \ldots, z_n)$, since f is closed, proper and convex.