Part I (3 points each)

1.	Which	value	of Le	gendre	symbol	or.	Jacoby	symbo	l is	correct?
----	-------	-------	-------	--------	--------	-----	--------	-------	------	----------

A.
$$\left(\frac{13}{53}\right) = -1$$
 B. $\left(\frac{15}{55}\right) = -1$

$$B. \left(\frac{15}{55}\right) = -1$$

C.
$$\left(\frac{17}{57}\right) = -1$$

D.
$$\left(\frac{19}{59}\right) = -1$$

E. None of the above

Denote h as a hash function, k as a key, m as a message, p_1 and p_2 as padding strings. Which is the value of $HMAC_k(m)$?

A.
$$h(k \parallel m)$$

B.
$$h(m || k)$$

C.
$$h(k || p || m || k)$$

D.
$$h(k || p_1 || h(k || p_2 || m))$$

E. None of the above

Whose size of the key space is approximately equal to the complexity of finding a collision of SHA-224?

A. 192-bit AES

B. 256-bit AES

C. 2-key Triple-DES

D. 3-key Triple-DES

E. None of the above

Which hash function is simply a truncated version of SHA-512, computed with different initial values?

A. SHA-384

B. SHA-256

C. MD5

D. RIPEMD-160

E. None of the above

In which operation of AES, each set of four bytes in a state is treated as a degree-3 polynomial over F_{256} ?

A. ByteSub

B. MixColumn

C. AddRoundKey

D. ShiftRow

E. None of the above

By which mode of operation, a block cipher can be used to construct a self-synchronizing stream cipher?

A. ECB

B. CBC

C. OFB

D. CFB

E. None of the above

Which value of Euler ϕ -function is NOT equal to 40?

A. $\phi(41)$ B. $\phi(75)$ C. $\phi(88)$ D. $\phi(132)$ E. None of the above

- In a Feistel cipher, every encryption round consists of $L_i = R_{i-1}$ and
 - A. $R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$
- B. $R_i = L_{i-1} \oplus f(L_{i-1}, k_i)$
- C. $R_i = R_{i-1} \oplus f(L_{i-1}, k_i)$ D. $R_i = R_{i-1} \oplus f(R_{i-1}, k_i)$
- E. None of the above
- 9. Which is true about the symmetric group S_5 ?
 - A. $|S_5| = 60$
- B. <(1, 2, 3, 4, 5)> is a normal subgroup
- C. $(S_5: S_4) = 10$ D. $(S_5: <(1, 2, 3), (1, 2) >) = 30$
- E. None of the above
- 10. Which statement is FALSE about the eSTREAM project?
 - A. The goal is to identify new stream ciphers that might become suitable for widespread adoption
 - B. Profile 1 contains submissions of stream ciphers for hardware applications with high throughput requirements
 - C. Profile 2 contains submissions of stream ciphers for hardware applications with restricted resources such as limited storage, gate count, or power consumption
 - D. Profile 1A or 2A contains stream ciphers satisfying Profile 1 or 2 with an associated authentication method respectively
 - E. None of the above

Part II (3 points each)

- Consider the elliptic curve group defined by $y^2 = x^3 + x$ over F_{23} . There are 23 points satisfying the equation as the graph below. Let P = (1, 5) and Q = (9, 18).
 - The order of the elliptic curve group is
 - P + Q = 12
 - -Q = 13
 - 2P =
 - 4P =15
 - 2007P =

- Since $P(x) = x^5 + 2x + 1$ is irreducible over F_3 , the quotient ring $K = F_3[x]/(P(x))$ is a finite field. Let $Q(x) = x^2 + 2x + 1$.
 - The number of elements in K is $|K| = \boxed{17}$.
 - $Q(x)^{1213} = 2x^3 + 18 in K.$
 - $Q(x)^{-1} = x^4 + 19 \text{ in } K.$
 - To prove that P(x) is primitive, it is sufficient to show $x^m \ne 1$ and $x^n \ne 1$ in K where m, n > 0. We have min(m, n) = 20.
- Consider the integer values of x satisfying

$$x \equiv 11 \pmod{27}$$
 and $x \equiv \underline{10 \pmod{29}}$.

- The smallest positive solution is x = 21.
- The largest negative solution is x = 22.
- For a set G, we denote (G, +) as an additive group and (G, \times) as a multiplicative group respectively. Consider the homomorphism

$$h: (\mathbf{Z}, +) \to (\mathbf{Z}_{31}^*, \times)$$
 defined by $h(x) = 4^x \mod 31$.

- **(Z/Ker**(h), +) is isomorphic to (\mathbb{Z}_n , +) where $n = \boxed{23}$.
- The index $((\mathbf{Z}_{31}^*, \times) : (\text{Im}(h), \times)) = \boxed{24}$.
- Apparently 4 is not a generator of the cyclic group $(\mathbf{Z}_{31}^*, \times)$. The smallest positive integer generating $(\mathbf{Z}_{31}^*, \times)$ is $\boxed{25}$.
- Assume the periodic sequence 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, ... of period 7 is generated by an LFSR (Linear Feedback Shift Register).
 - If the connection polynomial is primitive, it is 26.
 - The *linear complexity* of the sequence is 27.
- Determine the period of the sequence generated by LFSR of register length 8 with non-zero initial state and connection polynomial C(x).
 - $C(x) = x^8 + x^5 + x^3 + x^2 + 1$ (primitive), then the period is 28.
 - $C(x) = x^8 + x^5 + x^4 + x^3 + 1$ (irreducible but not primitive), then the period is 29. (Hint: Less than 30)
 - $C(x) = x^8 + x^5 + x^3 + 1$ (reducible), then the maximal possible period is 30.

Part III (Write down all details of your work)

31 (2 points)

Sketch the flow chart of CBC-MAC.

32 (3 points)

Sketch the flow chart of OFB mode (Output Feedback), including both encryption and decryption.

- A cryptographic hash function should satisfy these three assumptions:
 - (A) Pre-image Resistant
 - Given y, hard to find x such that h(x) = y
 - (B) Collision Resistant
 - Hard to find any $x \neq x'$ such that h(x) = h(x')
 - (C) Second Pre-image Resistant
 - Given h(x), hard to find $x' \neq x$ with h(x) = h(x')

Denote "M > N" as "M is a stronger assumption than N".

33 (2 points)

Order the strength of the assumptions (A), (B), and (C).

That is, answer in the form of "L > M > N".

34 (3 points)

Prove your claim of the relation between (A) and (B).

Cryptography

Midterm Exam I 2007/04/16

Name: _____

Student ID number: _____

1	2	3	4	5	6	7	8	9	10	
11		12		13		14		15		
1	16		17		18		19		20	
21		22		23		24		25		
26		27		28		29		30		

Solution

1	2	3	4	5	6	7	8	9	10	
C	D	C	A	В	D	Е	A	Е	В	
11		12		13		14		15		
2	24		(16, 8)		(9, 5)		(0, 0)		O (Infinity)	
16		17		18		19		20		
(1,18)		243 (35)		$x^2 + 2x + 1$		$x^3 + 2x + 1$		22		
21		22		23		24		25		
416		-367		5		6		3		
26		27		28		29		30		
$x^3 + x^2 + 1$		3	3	25	55	17		30		

33 B > C > A Similar but not identical to the proof of Lemma 9.1

