Math-M413 Exam 2

Drew Caldwell Indiana University - Kokomo

Take Home Exam 2

- 1. Supposed that $K \in \mathbb{R}$ is compact and $F \subseteq K$ is closed.
- (a) Prove that F is compact.

Proof. Given that K is in \mathbb{R} and is compact tells us that K is closed and bounded by Theorem 3.3.4.

The question tells us that $F \in K$ is closed. Since F is a subset of K and K is bounded, F is also bounded by K's bounds. So, since F is closed and bounded, by Theorem 3.3.4 it is compact.

(b) Use the previous answer to prove that $F \cap K$ is compact.

Proof. Given that $F \subseteq K$ is closed, that K is compact and F is closed, WTS that $F \cap K$ is compact. To do so, we will again use Theorem 3.3.4, and show that $K \cap F$ is closed and bounded.

We are given that F is closed and that K is compact which tells us that K is closed. Since these are both closed, we know that the intersection of two closed sets must also be closed by Theorem 3.2.14. Thus, $F \cap K$ is closed.

Given that $F \subseteq K$ where K is compact, we know that K bust be bounded by Theorem 3.3.4. So, all of the elements of $F \cap K$ must be contained within the bounds of the set K, telling us that $F \cap K$ is bounded.

Thus, since $F \cap K$ has been found to be closed and bounded, by Theorem 3.3.4, $F \cap K$ must be compact.

- 2. Prove the partial sums of an alternating series form a Cauchy sequence.
- 3. Prove that if $\sum |a_n|$ converges absolutely, then $\sum |(a_n)^2|$ also converges absolutely.

Given that the $\sum |a_n|$ converges, we WTS that $\sum |(a_n)^2|$ converges absolutely. The $\sum |a_n|$ converging tells us that as $n \to \infty$, $|a_n| \to 0$. Now since $|a_n| \to 0$ this implies that $(a_n)^2$ will approach 0 faster as it goes towards infinity.

So, since it appears that $|a_n| \geq |(a_n)^2 \forall n \in \mathbb{N}$, we will use the comparison test to prove that $\sum (a_n)^2$ converges absolutely. Given that the $\sum |a_n|$ converges

- 4. Define sets A, B as $A = \{(-1)^{n+1} + \frac{5}{n} : n \in \mathbb{N}\}, \text{ and } B = \{x \in \mathbb{Q} : 0 < x < 1\}$ answer the following:
- (a) What are the limit points?

The limit points of A are -1 and 1

The limit points of B are 0 and 1.

(b) Is the set open, closed, or neither?

The set A is neither.

The set B is neither.

(c) Does the set contain isolated points? Identify or describe them if yes.

All of the points in set A are isolated.

The set B does not have any isolated points.

(d) Find the closure of each set.

The closure of $A = \bar{A} \bigcup \{-1, 1\}$.

Since as $n \to \infty$, $\frac{5}{n} \to 0$ and $(-1)^{n+1}$ bounces between -1 and 1. The closure of B = [0, 1]

5. Provide a counterexample for the following claim: $(\bar{E})^c = (\bar{E^c})$

Consider the set $E = (-1,0) \cup (0,1)$, then $\bar{E} = [-1,1]$ and $(\bar{E})^c = (-\infty,1) \cup (1,\infty)$, and $(\bar{E}^c) = (-\infty,-1] \cup 0 \cup [1,\infty)$. Thus, $(\bar{E})^c \neq (\bar{E}^c)$.

- 6. Find an explicit cover for the set $\{1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$ that does not have a finite subcover. Conclude that this set is not compact.
- 7. Let A, B be nonempty subsets of \mathbb{R} . Show that if there exist disjoint open sets U, V with $A \subseteq U$ and $B \subseteq V$, then A, B are separated.

Proof. Given that $A \subseteq U$ and $B \subseteq V$ where $U \cap V = \emptyset$. We WTS that A and B are separated.

To show that A and B are separated we need to show that $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$. To start we will show that $A \cap \overline{B} = \emptyset$.

Let b be any point in B. Since B is a subset of $V, b \in V$. Consider the case where b is a point in B, that is also within \bar{A} . Since A is closed, every neighborhood of b will intersect A. Thus either b is in A or is a limit point of A.

But, since $A \subseteq U$ and U and V are disjoint open sets. Since $b \in V$, it cannot be in U, and cannot be a limit point of A. Thus, $b \notin \bar{A}$ because a point in B cannot be in \bar{A} while being in the disjoint open set V.

So, it must be true that $A \cap \bar{B} = \emptyset$.

WLOG, the argument is the same to show the other direction of $\bar{A} \cap B = \emptyset$. So, since $A \cap \bar{B} = \emptyset$ and $\bar{A} \cap B = \emptyset$ we know that by definition A and B are separated. So, if there exist disjoint open sets U, V with $A \subseteq U$ and $B \subseteq V$, then A, B are separated

8. Prove each limit statement

(a)
$$\lim_{x\to -1} (3x^2 + x - 4) = -2$$

The function $f(x) = 3x^2 + x - 4$ is continuous so we should be able to just plug in -1 for x and get our expected limit as $x \to -1$.

$$f(-1) = 3(-1)^{2} + (-1) - 4$$

$$f(-1) = 3(1) - 1 - 4$$

$$f(-1) = 3 - 1 - 4$$

$$f(-1) = 2$$

Thus the $\lim_{x\to -1} (3x^2 + x - 4) = -2$.

(b)
$$\lim_{x\to 2} \left(\frac{1}{x^2}\right) = 1/4$$

Again the function $g(x) = \frac{1}{x^2}$ is continuous. So,

$$g(2) = \frac{1}{(2)^2}$$
$$g(2) = \frac{1}{4}$$

So the $\lim_{x\to 2} \left(\frac{1}{x^2}\right) = 1/4$.

9. Consider the Cantor like set defined by removing the middle α from [0,1] where $\alpha = \frac{1}{k}$ for $k \geq 3$.

- (a) For $\alpha = \frac{1}{4}$, that is k = 4, compute the length of the Cantor like set.
- (b) Is this Cantor like set compact?
- (c) Consider the formal equation mC = [0, 2] where C is a Cantor like set and $m \in \mathbb{N}$. For the Cantor like set with k = 4, what is the value of m? Use this value of m to compute the dimension of this Cantor like set.
- 10. Give an example of each or state why the request is impossible/reference appropriate Theorems.
- (a) Two functions f, g neither one continuous at 0 but buth f(x)g(x) and f(x)+g(x) are continuous at 0. Note: you may only use two functions for this part. Let,

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0, \\ 0 & \text{if } x > 0. \end{cases} \tag{1}$$

and

$$g(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$
 (2)

Then,

Then, $f(x)g(x)=0, \forall n\in\mathbb{N}$. Also, $f(x)+g(x)=1, \forall n\in\mathbb{N}$. Both of these are continuous at 0.

- (b) Two functions f,g such that f is continuous at 0,g is not continuous at 0, but f(x)g(x) is continuous at 0.
- (c) A function f(x) that is not continuous at 0 such that $f(x) + \frac{1}{f(x)}$ is continuous at 0.