

Master's Degree in Computer Engineering Computer Architecture

A parallel approach to edge detection

Students:

Taulant Arapi Antonio Ciociola Francesco Scarrone

Academic Year 2024/2025

Edge detection

Gaussian Blur

Larger σ results in stronger blurring

Optimal filter dimension is **k×k**, **k=2×σ+1**

Difference of Gaussians

The difference operation results in a pass-band filter

Edge Detection CPU

System specifications

Hardware (CPU)		
Name	Intel Core i7-8750H	
Power	45 W	
Launch	2018	
Architecture	Coffee Lake	
Process Size	14 nm	
Clock	2.2 - 4.1 GHz	
Frequency		
Cores	6	
Threads	12	
L1I cache	32 kB per core	
L1D cache	32 kB per core	
L2 cache	256 kB per core	
L3 cache	9 MB shared	

Software	
OS	Ubuntu 25.04
Kernel	Linux 6.14.0
Compiler	g++ 14.2.0
Profiler	Intel VTune 2025.3

Testing methodology

Parameters of the experiments:

- Resolution: 144p, 480p, 720p, 1080p
- Number of frames: 60
- Gaussian blur kernels: $\sigma_1 = 3$, $\sigma_2 = 6$
- Kernel size: 13x13

For each experiment, the mean of 10 independent runs is taken.

Goal: 30 FPS @ 1080p

Version 0 "Naïve"

Version 0 "Naïve"

Focus on dog

Compiler flags

Compilation flags matter! We used:

- -O3: Turn on most optimizations
- -flto: Optimize at link time, optimize all code together
- -ffast-math: Aggressive floating-point optimizations

Version 0 with flags

Where to improve?

The time complexity is $O(H \cdot W \cdot k^2)$

We can't reduce the filter size further It's required for quality and accuracy

So... where can we optimize?

Solution: Separate the filter

The Gaussian blur is a separable filter: 2D blur → two 1D blurs

Reduces the number of operations from $O(H\cdot W\cdot k^2)$ to $O(H\cdot W\cdot (k+k))$

Compare after optimization

After optimization is 7 times faster @1080p

Multithread

The task is **easy to parallelize:**

we have many independent pixels, no synchronization needed

⇒ assign some rows of the image to each thread

Multithread

Effective Physical Core Utilization 9: 90.5% (5.432 out of 6)

Effective Logical Core Utilization ©: 89.9% (10.793 out of 12)

⊙ Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

Simultaneously Utilized Logical CPUs

Multithread

Final results

Final results

Edge Detection **GPU**

System specifications

Hardware (GPU)		
Name	RTX 2060 Mobile	
Power	90 W	
Launch	2019	
Architecture	Turing	
Process Size	12 nm	
VRAM	6 GB GDDR6	
CUDA cores	1920	
Streaming Multiprocessors	30	
Warp size	32	
L1 cache	64 kB per SM	
L2 cache	3 MB	

Software	
OS	Ubuntu 25.04
Kernel	Linux 6.14.0
CUDA toolkit	12.9
Profiler	Nsight Compute 2025.2

Testing methodology

The experiments are performed on a **4K video** from a dashcam (and 1080p for comparison with CPU benchmark).

For each experiment, the mean of 10 independent runs is taken.

Timer starts after the video is loaded in memory

Goal: 180 FPS @ 4K

Version 1 performance

Where to improve?

- The main issue right now are global accesses to the input image
- We do a horizontal and a vertical pass for each Gaussian filter

For a total of 4 passes

Each time the image must be loaded from global memory

```
Source

| For (int i = -half; i <= half; ++i){
| int ix = clamp(x + i, 0, WIDTH - 1);
| sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half];
| Sum += input[y * WIDTH + ix] * c_kernel1[i + half] * c
```


Solution: Data reuse

- We convolve by both kernels in the same function
- In the horizontal pass the number of reads is halved
- In the vertical pass accessing a matrix of float2 is faster

Gains in vertical pass after using float2

V2 (float2) vs V1 performance

Where to improve?

- A lot of time is spent by copying the image from host to device and then from device to host
- For each frame 2 memcpy are needed, each of them adds overhead

```
Time(%)
            Time
                     Calls
                                 Avg
                                          Min
                                                    Max
                                                         Name
29.76%
        97.212ms
                       250 388.85us 319.24us 453.01us
                                                        [CUDA memcpy DtoH]
                                                         [CUDA memcpy HtoD]
27.82%
        90.875ms
                           356.37us
                                         511ns
                                              1.7548ms
                       255
25.47% 83.213ms
                       250 332.85us 325.96us 348.14us blur horizontal(unsigned char const *, float2*)
16.95% 55.366ms
                       250 221.47us 216.46us 233.00us blur vertical(float2 const *, unsigned char*)
```


Solution: Multiple Streams

- Multiple frames are passed in a single function call
- Multiple streams and cudaMemcpyAsync make it so computation and memory transfer of different images can overlap

```
for (int i = 0; i < batchSize; ++i)
{
   int offset = i * img_size;

   cudaMemcpyAsync(&d_input[offset], &input[offset], img_size, cudaMemcpyHostToDevice, streams[i]);

   blur_horizontal<<<qri>d, block, 0, streams[i]>>>(&d_input[offset], &d_temp[offset]);

   blur_vertical<<<qrid, block, 0, streams[i]>>>(&d_temp[offset], &d_output[offset]);

   cudaMemcpyAsync(&output[offset], &d_output[offset], img_size, cudaMemcpyDeviceToHost, streams[i]);
}
```


Results with Multi-Stream

Final Results

Gpu v3 is 16 times faster than Cpu v4 in 1080p

Thanks for the attention

Master's Degree in Computer Engineering Academic Year 2024/2025

