Project Report

on

Machine Learning Prepared By

Mr. Jaydeep Bhaskar Ashtekar PGPDSBA: Group 9

This report gives solution for given dataset.

- A. Predicting election poll results
 - 1. Exploratory Data Analysis of the dataset for exit poll
 - 2. Performance of different models which predicts an exit poll that will help in predicting overall win and seats covered by a particular party.
- B. Text analysis of the Speeches
 - 1. Identifying number of sentences, words, characters etc.
 - 2. Removing stopwords and forming worldcloud

Index

		Name of Topic	Page No.
Problem 1	1.Data	1.1 Read the dataset. Do the descriptive statistics and do null	4-5
	Ingestion	value condition check. Write an inference on it.	
		1.2. Perform Univariate and Bivariate Analysis. Do	6-21
		exploratory data analysis. Check for Outliers.	
	2. Data	2.1 Encode the data (having string values) for Modelling. Is	22
	Preparation	Scaling necessary here or not? Data Split: Split the data into	
		train and test (70:30).	
	3.Modelling	3.1 Apply Logistic Regression and LDA (linear discriminant	
		analysis).	
		3.2. Apply KNN Model, Naïve Bayes Model and support	23-27
		vector machine (SVM) model.	
		3.3 Model Tuning, Bagging and Boosting.	
		3.4 Performance Metrics:	
	4.Inference	4.1 Interpretation of model without tuning	28
		4.2 Interpretation of model with SMOTE	29
		4.3 Inference	29
Problem 2		1. Find the number of characters, words and sentences for the	30
		mentioned documents	
		2.Remove all the stopwords from all the three speeches.	31
		3. Which word occurs the most number of times in his	31
		inaugural address for each president? Mention the top three	
		words. (after removing the stopwords)	
		4. Plot the word cloud of each of the speeches of the variable.	31-32
		(after removing the stopwords)	

Problem 1:

You are hired by one of the leading news channel CNBE who wants to analyze recent elections. This survey was conducted on 1525 voters with 9 variables. You have to build a model, to predict which party a voter will vote for on the basis of the given information, to create an exit poll that will help in predicting overall win and seats covered by a particular party.

Dataset for Problem: Election_Data.xlsx

Data Ingestion: 12 marks

- 1. Read the dataset. Do the descriptive statistics and do null value condition check. Write an inference on it. (5 Marks)
- 2. Perform Univariate and Bivariate Analysis. Do exploratory data analysis. Check for Outliers. (7 Marks)

Data Preparation: 5 marks

1. Encode the data (having string values) for Modelling. Is Scaling necessary here or not? Data Split: Split the data into train and test (70:30). (5 Marks)

Modelling: 26 marks

1. Apply Logistic Regression and LDA (linear discriminant analysis). (5 marks)

- 2. Apply KNN Model, Naïve Bayes Model and support vector machine (SVM) model. Interpret the results. (7 marks)
- 3. Model Tuning, Bagging and Boosting. (7 marks)
- 4. Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Final Model: Compare the models and write inference which model is best/optimized. (7 marks)

Inference: 5 marks

- 1. Based on these predictions, what are the insights? (5 marks)
- 1.1. Read the dataset. Do the descriptive statistics and do null value condition check. Write an inference on it.

Ans:

- 1.df = pd.read_excel ('Election_Data.xlsx',sheet_name='Election_Dataset_Two Classes')
- 2.Data Description:
- a.Numeric Data:

	age	economic.cond.national	economic.cond.household	Blair	Hague	Europe	political.knowledge
count	1525	1525	1525	1525	1525	1525	1525
mean	54.182295	3.245902	3.140328	3.334426	2.746885	6.728525	1.542295
std	15.711209	0.880969	0.929951	1.174824	1.230703	3.297538	1.083315
min	24	1	1	1	1	1	0
25%	41	3	3	2	2	4	0
50%	53	3	3	4	2	6	2
75%	67	4	4	4	4	10	2
max	93	5	5	5	5	11	3

For age column, mean and 50% has almost same values, so age seems to be normally distributed. Also it will have less/no outliers.

Remaining all are ordinal data type.

economic.cond.national:1 to 5

economic.cond.household:1 to 5

Blair:1 to 5

Hauge:1 to 5

Europe:1 to 11

b.Categorical Data:

vote gender

count	1525	1525
unique	2	2
top	Labour	female
frea	1063	812

3.df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1525 entries, 0 to 1524
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	vote	1525 non-null	object
1	age	1525 non-null	int64
2	economic.cond.national	1525 non-null	int64
3	economic.cond.household	1525 non-null	int64
4	Blair	1525 non-null	int64
5	Hague	1525 non-null	int64
6	Europe	1525 non-null	int64
7	political.knowledge	1525 non-null	int64
8	gender	1525 non-null	object

dtypes: int64(7), object(2)
memory usage: 107.4+ KB

No null values in given data set.

4.df.isna().sum()

0

5.df.shape

(1525, 9)

Data set has 1525 rows and 9 columns

6.df.median()

age	53.0
economic.cond.national	3.0
economic.cond.household	3.0
Blair	4.0
Hague	2.0
Europe	6.0
political.knowledge	2.0
dtype: float64	

7.df.mode()

vote	age	economic.cond. national	economic.cond. household	Blair	Hague	Europe	political.kno wledge	gender
Labour	37	3	3	4	2	11	2	female

Mode is most frequently repeated value in column which is shown in above table.

8.df.var()

Variance:

age	246.842075
economic.cond.national	0.776107
economic.cond.household	0.864810
Blair	1.380212
Hague	1.514631
Europe	10.873759
political.knowledge	1.173571

1.2. Perform Univariate and Bivariate Analysis. Do exploratory data analysis. Check for Outliers. (7 Marks)

1. Univariate analysis:

1.boxplot

Few outliers in economi.condition.national and economi.condition.household

2.Countplot:

From following countplot:

- 1. More than 175 males and 150 females have 'Eurosceptic' sentiment (11 scale)
- 2. More than 300 males and females have moderate assessment of household economic conditions.
- 3. Most of males and females have assessment of household economic conditions in of 3 and 4.
- 4. Maximum males and females have done Assessment of the Conservative leader for 2 and 4 and very less for 3.
- 5. Maximum males and females have done Assessment of the Labour leader for 2 and 4 and zero for 3.
- 6. Proportion of female candidates is more than male candidates.

7. Maximum people have given 0 and 2 Knowledge level of parties' positions on European integration.

3. Frequency distribution with kde:

7.Political knowledge is multimodal with value 2 as maximum.

4.Line plot:

It gives count of each category in variable. Economic Household has maximum class 3.

5.Pie plot: Shows the concentration of each variable of feature. More the area more is concentration/weightage.

2.Bivariate Analysis:

1.Pairplot:

As data is mostly ordinal so no any correlation is seen in any of the variable and it is multimodal.

Diagonal shows Europe and age follows approximate normal distribution.

2.Line plot:

These graph gives the count of pair in each variable.

Example:In first graph of (1,5)

1: Political knowledge

5: Europe

12

More than 150 peoples have pair of (1,5)

3. Stripplot:

Stripplot gives all other variables vs vote. So for Europe has 11 categories. Those are distributed in vote. So, it can be concluded that, more points from Europe is for Labour. So category 1,2,3,4 and 5 has less count in Conservative.

If we see age vs vote, then Labor is having more points than conservative. So all age categories gave good votes to labours.

4. Pointplot of each variable vs Vote:

First point plot shows labour party is less Eurosceptic' sentiment. Similar is for Hauge and political knowledge.

In second plot shows less economic household condition. Similar is for Blair and economic national condition.

5. Violinplot:

Violin plot shows frequency distribution on vertical axis with vote.

Ex.First graph shows distribution of male and female on Europe score.On labour side maximum score is near to 6 and for conservative max score for male and female is near to 11.

For age, distribution is approximately normal for labour.

6.Correlation heat map

No correlation amongst variable.

7.bivariate counts:

	gender	female	male	All
vote	Blair			

Conservative	1	28	31	59
	2	142	100	242
	3	0	1	1
	4	88	69	157
	5	1	2	3
Labour	1	24	14	38
	2	116	80	196
	4	345	334	679
	5	68	82	150
All		812	713	1525

	gender	female	male	All
vote	Hague			
Conservative	1	6	5	11
	2	58	38	96
	3	6	3	9
	4	161	126	287
	5	28	31	59
Labour	1	106	116	222
	2	274	254	528
	3	18	10	28
	4	149	122	271
	5	6	8	14
All	·	812	713	1525

	gender	female	male	All
vote	economic.cond.national			
Conservative	1	12	9	21
	2	74	66	140
	3	117	83	200
	4	52	40	92
	5	4	5	9
Labour	1	11	5	16
	2	64	53	117
	3	224	183	407
	4	221	229	450
	5	33	40	73
All		812	713	1525

	gender	female	male	All
vote	economic.cond.household			
Conservative	1	14	14	28
	2	68	58	126
	3	118	80	198
	4	49	38	87
	5	10	13	23
Labour	1	23	14	37
	2	85	69	154
	3	232	218	450
	4	178	175	353
	5	35	34	69
All		812	713	1525

	gender	female	male	All
vote	Europe			
Conservative	1	4	1	5
	2	4	2	6
	3	7	7	14
	4	13	5	18
	5	8	12	20
	6	24	12	36
	7	21	11	32
	8	25	24	49
	9	25	31	56
	10	32	22	54
	11	96	76	172
Labour	1	46	58	104
	2	28	45	73
	3	51	64	115
	4	51	58	109
	5	54	50	104
	6	106	67	173
	7	32	22	54
	8	33	30	63
	9	28	27	55
	10	28	19	47
	11	96	70	166
All		812	713	1525

	gender	female	male	All
vote	political.knowledge			
Conservative	0	57	38	95
	1	5	6	11
	2	169	115	284
	3	28	44	72
Labour	0	225	135	360
	1	18	9	27
	2	253	245	498
	3	57	121	178
All		812	713	1525

2.Data Preparation: 5 marks

2.1 Encode the data (having string values) for Modelling. Is Scaling necessary here or not? Data Split: Split the data into train and test (70:30). (5 Marks)

Ans:

1.Encoding:

Gender has string values so encoded as dummy variable.

X_scaled=pd.get_dummies(X_scaled)

2.Scaling:

Here scaling is necessary because because age is continuous variable and has different unit.

Other variables are having scaling from 0 to 3,1 to 5 and 1 to 11.

So bring it to same unit we are using minmax scaler.

X=df.iloc[:,1:8]

y=df['vote']

 $X_scaled = X.apply(lambda x:(x-x.min()) / (x.max()-x.min()))$

		national_	household_ economic_	DI.		F	political_	gender_	Gend
	age	ecnomic_cond	cond	Blair	Hague	Europe	knowledge	female	er_male
0	0.275362	0.5	0.5	0.75	0	0.1	0.666667	1	0
1	0.173913	0.75	0.75	0.75	0.75	0.4	0.666667	0	1
2	0.15942	0.75	0.75	1	0.25	0.2	0.666667	0	1
3	0	0.75	0.25	0.25	0	0.3	0	1	0
4	0.246377	0.25	0.25	0	0	0.5	0.666667	0	1

3. Splitting data:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=1)

2.2Modelling:

Models and their performance is shown in following table;

Codes are available in same sequence in ipynb file attached.

1.LOGISTIC REGRESSION

	Acc	Conf matrix		precision	recall	f1	AUC
Train	0.836926	[[225 107]	conservative	0.77	0.68	0.72	0.89
		[67 668]]	labour	0.86	0.91	0.88	
Test	0.82096	[[84 46]	conservative	0.7	0.65	0.67	0.883
		[36 292]]	labour	0.86	0.89	0.88	

2.LDA

	Acc	Conf matrix		precision	recall	f1	AUC
Train	0.836926	[[233 99]	conservative	0.76	0.7	0.73	0.889
		[75 660]]	labour	0.87	0.9	0.88	
Test	0.81877	[[86 44]	conservative	0.69	0.66	0.67	0.884
		[39 289]]	labour	0.87	0.88	0.87	

3.KNN

	Acc	Conf matrix		precision	recall	f1	AUC
Train	0.865042	[[251 81]	conservative	0.8	0.76	0.78	0.935
		[63 672]]	labour	0.89	0.91	0.9	
Test	0.82532	[[95 35]	conservative	0.68	0.73	0.7	0.865
		[45 283]]	labour	0.89	0.86	0.88	

4.Naïve Bayes Model										
	Acc	Conf matrix		precision	recall	f1	AUC			
Train	0.829428	[[238 94]	conservative	0.73	0.72	0.72	0.886			
		[88 647]]	labour	0.87	0.88	0.88				
Test	0.816594	[[93 37]	conservative	0.66	0.72	0.69	0.882			
		[47 281]]	labour	0.88	0.86	0.87				

5.Support vector machine (SVM) model											
	Acc	Conf matrix		precision	recall	f1	AUC				
Train	0.852858	[[229 103]	conservative	0.81	0.69	0.74	0.913				
		[54 681]]	labour	0.87	0.93	0.9					
Test	0.820961	[[83 47]	conservative	0.7	0.64	0.67	0.899				
		[35 293]]	labour	0.86	0.89	0.88					

6.Random Forest with model tuning/GridSearch										
	Acc Conf matrix precision recall f1 AUC									
Train	0.845361	[[229 103]	conservative	0.79	0.69	0.74	0.914			
		[62 673]]	labour	0.87	0.92	0.89				
Test	0.818777	[[83 47]	conservative	0.7	0.64	0.67	0.893			
		[36 292]]	labour	0.86	0.89	0.88				

7.Random forest without tuning										
Acc Conf matrix precision recall f1 AUC										
Train	0.999063	[[331 1]	conservative	1	1	1	1			
		[0 735]]	labour	1	1	1				
Test	0.82314	[[89 41]	conservative	0.69	0.68	0.69	0.886			
		[40 288]]	labour	0.88	0.88	0.88				

	8.Logistic regression with SMOTE										
	Acc	Conf matrix		precision	recall	f1	AUC				
Train	0.817687	[[594 141]	conservative	0.82	0.81	0.82	0.889				
		[127 608]]	labour	0.81	0.83	0.82					
Test	0.79694	[[102 28]	conservative	0.61	0.78	0.69	0.882				
		[65 263]]	labour	0.9	0.8	0.85					
Score(max)	0.85034										
Score(min)	0.789116										
diff	0.061224										

		00 02 04 08 08	1.0 0.0 0.2 0.4	0.6 0.8 1.0							
9.LDA with SMOTE											
	Acc	Conf matrix		precision	recall	f1	AUC				
Train	0.817	[[593 142]	conservative	0.82	0.81	0.82	0.895				
		[127 608]]	labour	0.81	0.83	0.82					
Test	0.7925	[[102 28]	conservative	0.6	0.78	0.68	0.882				
		[67 261]]	labour	0.9	0.8	0.85					
Score(max)	0.843537										

Score(min) 0.789116 diff 0.054422

10.NB With SMOTE							
	Acc	Conf matrix		precision	recall	f1	AUC
Train	0.815	[[594 141]	conservative	0.82	0.81	0.81	0.894
		[131 604]]	labour	0.81	0.82	0.82	
Test	0.7817	[[104 26]	conservative	0.58	0.8	0.68	0.879
		[74 254]]	labour	0.91	0.77	0.84	
Score(max)	0.843537						
Score(min)	0.768707						
diff	0.07483						

11.XGBOOST WITH SMOTE							
	Acc Conf matrix precision recall f1 AU						AUC
Train	0.851	[[624 111]	conservative	0.85	0.85	0.85	0.921
		[108 627]]	labour	0.85	0.85	0.85	
Test	0.8122	[[104 26]	conservative	0.63	0.8	0.71	0.895
		[60 268]]	labour	0.91	0.82	0.86	
Score(max)	0.863946						
Score(min)	0.782313						
diff	0.081633						

		0.0 0.2 0.4 0.6 0.8	1.0 0.0 0.2 0.4	0.6 0.8 1.0			
		12.KNN	With SMC	TE			
	Acc	Conf matrix		precision	recall	f1	AUC
Train	0.8884	[[688 47]	conservative	0.85	0.94	0.89	0.966
		[117 618]]	labour	0.93	0.84	0.88	
Test	0.7664	[[106 24]	conservative	0.56	0.82	0.66	0.851
		[83 245]]	labour	0.91	0.75	0.82	
Score(max)	0.891156						
Score(min)	0.789116						
diff	0.102041						

13.SVM With SMOTE							
	Acc	Conf matrix		precision	recall	f1	AUC
Train	0.8619	[[641 94]	conservative	0.85	0.87	0.86	0.926
		[109 626]]	labour	0.87	0.85	0.86	
Test	0.8079	[[109 21]	conservative	0.62	0.84	0.71	0.899
		[67 261]]	labour	0.93	0.8	0.86	
Score(max)	0.870748		•				
Score(min)	0.816327						
diff	0.054422						

4.Inference: 5 marks

1. Based on these predictions, what are the insights? (5 marks)

The basic application of all these model is to predict correct result.

Ideal case is that my model should identify all predictions correctly in training and when the same is fitted on testing data it should identify all predictions in testing also.

But it is not the real case. Model performs good in training but doesn't perform well on testing data.

So first we will see which model performs well.

4.1. Interpretation of model without tuning

Model 1 to 7:

1.Accuracy: All models are having good accuracy (more than 0.82) on both train and test data. But accuracy is not the main criteria. Criteria is that whether model identified correct class or not.

Accuracy gives us whether model is over fitted or under fitted. When accuracy for training and testing data if same then model is not over fitted/under fitted.

But in actual 10% variation is allowed.

In our models Random forest model(no.7) is over fitted because it shows 99.92% accuracy in training but 82% for test data.

Remaining all models are more or less good fitted.

2. Confusion Matrix:

This matrix gives us the count of Actual Conservative/Predicted Conservative and Actual Labour/Predicted labour.

In this matrix ideally non diagonal elements should be zero means actual and predicted are same. But its not the case here.

Only Random forest model(no.7) training confusion matrix shows it has identified correct class.

3. Classification report:

Acc.=(TP+TN)/(TP+TN+FP+FN)

Recall=TP/(TP+FN)

Precision=TP/(TP+FP)

All models performed well for training data but could not perform well in testing data.

As per the classification report SVM without SMOTE is poor model which performed poor in prediction of conservative class.

From above table KNN model is better than others

4.2. Interpretation of model with SMOTE

Model 8 to 13

Model 8 to 13 are tuned using SMOTE (Synthetic Minority Oversampling Technique).

As we observe that models performed poor in conservative class in test data.

The reason being that the proportion of classes in target variable is not proper.

Labour 69.7049% Conservative 30.2951%

Already conservative has less proportions and after splitting it get reduced. So for model to learn conservative class some more data is required. So in SMOTE minority class is resampled and increased in proportion.

So all above models are tuned by resampling.

After resampling, it can be observed that recall is increased significantly but could not improve precision signicantly.

This means that, after SMOTE model 8 to 13 , prediction of conservative have increased but decreas ed the labor prediction. thus model has increased recall but reduced precision.

1.LOGISTIC REGRESSION

	Acc	Conf matrix		precision	recall	f1	AUC
Train	0.836926	[[225 107]	conservative	0.77	0.68	0.72	0.89
		[67 668]]	labour	0.86	0.91	0.88	
Test	0.82096	[[84 46]	conservative	0.7	0.65	0.67	0.883
		[36 292]]	labour	0.86	0.89	0.88	

8.Logistic regression with SMOTE							
	Acc Conf matrix precision recall f1 AUC						AUC
Train	0.817687	[[594 141]	conservative	0.82	0.81	0.82	0.889
		[127 608]]	labour	0.81	0.83	0.82	
Test	0.79694	[[102 28]	conservative	0.61	0.78	0.69	0.882
		[65 263]]	labour	0.9	0.8	0.85	

4.3 Inference

It's difficult to say optimized model but as per performance SVM with SMOTE is good model.

Moreover, proportions of both classes shold not be biased. This means biased data does not produce good model even after SMOTE.

Problem 2:

In this particular project, we are going to work on the inaugural corpora from the nltk in Python.

We will be looking at the following speeches of the Presidents of the United States of America:

President Franklin D. Roosevelt in 1941

President John F. Kennedy in 1961

President Richard Nixon in 1963

Find the number of characters, words and sentences for the mentioned documents. -3 Marks

Remove all the stopwords from all the three speeches. -3 Marks

Which word occurs the most number of times in his inaugural address for each president? Mention the top three words. (after removing the stopwords) -3 Marks

Plot the word cloud of each of the speeches of the variable. (after removing the stopwords) -3 Marks

1. Find the number of characters, words and sentences for the mentioned documents Ans:

Imported liabraries and text speeches.

import nltk

nltk.download('inaugural')

from nltk.corpus import inaugural

inaugural.fileids()

inaugural.raw('1941-Roosevelt.txt')

inaugural.raw('1961-Kennedy.txt')

inaugural.raw('1973-Nixon.txt') "

Speech	Sentence	Total words	Total Character
			S
Nixon	67*	1820	9922
Roosevelt	69	1361	7503
Kennedy	56	1390	7563

As split is done through ".", so first 4 columns in df_Nixon is merged in one sentence so it becomes 70-3=67

2.Remove all the stopwords from all the three speeches.

Ans:

*Before removing stop words - do consider to remove punctuation and digits.

After removing stopwords:

Speech	Sentence	Total words	Total Characters
Nixon	67*	833	5882
Roosevelt	69	627	4523
Kennedy	56	693	4719

3. Which word occurs the most number of times in his inaugural address for each president? Mention the top three words. (after removing the stopwords)

Ans:

In Nixon speech frequency of words is:

us 26 let 22 peace 19 dtype: int64

In Roosevelt speech frequency of words is:

nation 11
know 10
spirit 9
dtype: int64

In Kennedy speech frequency of words is:

let 16
us 12
world 8
dtype: int64

4. Plot the word cloud of each of the speeches of the variable. (after removing the stopwords)

Ans:

World cloud for Nixon Speech:

World cloud for Roosevelt Speech:

World cloud for Kennedy Speech:

