word representations umumnya vector

(Distributed Word Representations) Word Embeddings

Alfan F. Wicaksono
Information Retrieval Lab.
Faculty of Computer Science
Universitas Indonesia

How to more robustly match a user's intent?

Query: "motel di depok"

Sistem diharapkan tidak hanya mengembalikan dokumen tentang "motel di depok"; tetapi juga "hotel di depok", "penginapan di depok", dsb.

Expansion Using Query Logs

Context-Free Query Expansion

- Misal, dari analisis query logs didapatkan bahwa "wet ground" = "wet earth".
- Oleh karena itu, jika kedepannya ada query term "ground", perlu di-expand dengan term "earth".

Problem: "ground coffee" -> "earth coffee" ??

Thesaurus-based Approach

setiap kata ada hierarki

Contoh: Path-based similarity

Two terms are similar if they are near each other in the thesaurus hierarchy.

$$simpath(c_1, c_2) = \frac{1}{pathlen(c_1, c_2)}$$

$$wordsim(w_1, w_2) = \max_{c_1 \in senses(w_1), c_2 \in senses(w_2)} sim(c_1, c_2)$$

$$simpath(nickel,coin) = 1/2 = .5$$

$$simpath(fund,budget) = 1/2 = .5$$

$$simpath(nickel,currency) = 1/4 = .25$$

Thesaurus-based Approach

Problems...

We don't have a thesaurus for every language

- For Indonesian, our WordNet is not complete
 - Many words are missing
 - Connections between senses are missing

— ...

Pada konsep VSM standar, setiap term menjadi basis/axis di vector space.

Query: "hotel"

kalau pakai tf idf aja gak mungkin cocok

Document: "motel motel motel"

$$q = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, ..., 0]$$

$$d = [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, ..., 0]$$

$$sim(q,d) = q.d^T = 0$$

Pada konsep VSM standar, setiap term menjadi basis/axis di vector space.

$$sim(q,d) = q.d^{T}$$

q = "hotel di depok"

$$\begin{bmatrix}
1,0,1,1 \\
\downarrow \\
\text{hotel}
\end{bmatrix} \times \begin{bmatrix}
0 \\
1 \\
1 \\
1
\end{bmatrix} = 2.0$$
Make Sense?

d = "motel di depok"

Query Translation Model (Berger & Lafferty, 99)

Tambahkan **trainable parameter W** untuk menangkap **similarity** atau **translasi** antar kata.

	hotel	motel	di	depok
hotel	[1.0	0.8 1.0 0.0	0.0	[0.0]
motel	8.0	1.0	0.0	0.0
di	0.0	0.0	1.0	0.0
depok	0.0	0.0	0.0	1.0

W = V * V

ini adalah W (trainable parameter)

Query Translation Model (Berger & Lafferty, 99)

Tambahkan parameter **W** untuk menangkap similarity antar kata.

$$sim(q,d) = q.W.d^T$$

q = "hotel di depok"

$$\begin{bmatrix}
1,0,1,1] \times \\
0.8 & 1.0 & 0.0 & 0.0 \\
0.8 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0
\end{bmatrix} \times \begin{bmatrix}
0 \\
1 \\
1 \\
1
\end{bmatrix} = 2.8$$

Better!

$$= 2.8$$

d = "motel di depok"

Distributional-based Approach

• Can we learn a **dense low-dimensional** representation of a word such that dot products $u.v^T$ express word similarity?

• Masih mungkin juga menyisipkan "translation" matrix antar vocab (misal, cross-language): $u.W.v^T$

Distributional-based Approach

- Based on the idea that contextual information alone constitutes a viable representation of linguistic items.
- As opposed to formal linguistics and the Chomsky tradition.

lihat context based on surrounding terms

- Zellig Haris (1954): "...if A and B have almost identical environments, we say that they are synonyms..."
- J. R. Firth (1957): "You shall know a word by the company it keeps"

Distributional-based Approach

gogos

Ada yang tahu apa itu gogos?

Distributional-based

Makan **gogos** dengan sambal sungguh nikmat. Beras ketan diperlukan untuk membuat **gogos**. Teman-teman menikmati **gogos** hangat di kantin. Menikmati makanan **gogos**, lemper dari makasar.

- From context words humans can guess gogos means
 - A traditional food
- Intuition for algorithm:
 - Two words are similar if they have similar word contexts

Latent Semantic Analysis

Alin Revisited: Rank

Let C be an $M \times N$ matrix. The rank of a matrix is the number of linearly independent rows (or columns) in it; thus, rank(C) $\leq \min\{M, N\}$.

$$C = \begin{bmatrix} 2 & 4 & 8 \\ 1 & 2 & 4 \end{bmatrix}, \quad rank(C) = 1$$

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad rank(C) = 3$$

Alin Revisited: Rank

Let C be an $M \times N$ matrix. The **rank** of a matrix is the number of **linearly independent rows** (or columns) in it; thus, $rank(C) \le min\{M, N\}$.

Secara umum, ubah dahulu ke bentuk Row-Echelon Form; lalu hitung ada berapa baris yang non-zero.

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -2 \\ 0 & -6 & -4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1 \qquad R_3 \rightarrow R_3 - 2R_2$$

 $R_3 \rightarrow R_3 - 3R_1$

Rank(C) = 2

Alin Revisited: Eigenvector

For a square M × M matrix C and a non-zero vector **x**, the values of λ satisfying

$$Cx = \lambda x$$
eigen vector

are called the **eigenvalues** of C.

x disebut eigenvetor.

Banyaknya non-zero eigenvalues dari C adalah paling banyak Rank(C).

$$C = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$

$$x_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \quad \lambda_1 = 6$$

$$x_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix} \quad \lambda_2 = -7$$

$$x_2 = \begin{vmatrix} -3 \\ 1 \end{vmatrix}$$
 $\lambda_2 = -7$

Alin Revisited: Eigenvector

Singkat cerita, eigenvector tidak akan berubah arah ketika ditransformasi (hanya memanjang atau memendek).

"ditransformasi" = "dikali matriks"

https://www.mathsisfun.com/algebra/eigenvalue.html

Alin Revisited: Eigenvector

Sekedar istilah

Right-eigenvector of C

$$Cx = \lambda x$$

$$C = \begin{bmatrix} -6 & 3\\ 4 & 5 \end{bmatrix}$$

$$C = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \qquad x = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \lambda = 6$$

Left-eigenvector of C

$$y^T C = \lambda y^T$$

$$C = \begin{bmatrix} -6 & 3\\ 4 & 5 \end{bmatrix}$$

$$y^T = [? ?] \lambda =?$$

Latihan: cari sebuah left-eigenvector dari C!

Term-Document Matrix

Each cell is the count of word t in document d (bisa juga TF-IDF)

	D1	D2	D3	D4	D5
ekonomi	0	1	40	38	1
pusing	4	5	1	3	30
keuangan	1	2	30	25	2
sakit	4	6	0	4	25
inflasi	8	1	15	14	1

document embeeding

Vector of D2 =
$$[1, 5, 2, 6, 1]$$

Term-Document Matrix

Each cell is the count of word t in document d (bisa juga TF-IDF)

	D1	D2	D3	D4	D5
ekonomi	0	1	40	38	1
pusing	4	5	1	3	30
keuangan	1	2	30	25	2
sakit	4	6	0	4	25
inflasi	8	1	15	14	1

Two documents are similar if they have similar vector!

D3 = [40, 1, 30, 0, 15]

D4 = [38, 3, 25, 4, 14]

Term-Document Matrix

Each cell is the count of word t in document d (bisa juga TF-IDF)

	D1	D2	D3	D4	D5
ekonomi	0	1	40	38	1
pusing	4	5	1	3	30
keuangan	1	2	30	25	2
sakit	4	6	0	4	25
inflasi	8	1	15	14	1

Vector of word "sakit" = [4, 6, 0, 4, 25]

Term-Document Matrix

Each cell is the count of word t in document d (bisa juga TF-IDF)

	D1	D2	D3	D4	D5
ekonomi	0	1	40	38	1
pusing	4	5	1	3	30
keuangan	1	2	30	25	2
sakit	4	6	0	4	25
inflasi	8	1	15	14	1

Two words are similar if they have similar vector!

Jika C adalah term-document matrix,

contoh C = term ada 3, document ada 4 jadi 3x4. Nah hasilnya bakal 3x3 dimana setiap elemen itu menandakan kemiripan antar term (term_1 dengan term_2)

 $C.C^T$ mengandung dot products (similarity) dari semua pasangan **term vectors**; dan ^{1. matrixsnya persegi 2. matriksnya simetrik}

kebalikannya, ini menandakan kemiripan antar document

 C^T . C mengandung dot products (similarity) dari semua pasangan **document vectors**.

Dekomposisi Term-Document Matrix!

Misal, C adalah term-document matrix. C didekomposisi menjadi perkalian 3 matrix (Singular Value Decomposition).

$$C = U \times \Sigma \times V^T$$

$$C \in \mathbb{R}^{M \times N}$$

Jika M > N

Cell selain titik = 0

Σ

Jika M < N

Cara menghitung U, ∑, dan V^T

Kolom-kolom pada U adalah orthogonal eigenvector dari C.C^T Baris-baris pada V^T adalah orthogonal eigenvector dari C^T.C

Singular Values (Akar kuadrat dari Eigenvalues) dari C^T.C atau C. C^T (sama saja).

Interpretasi Truncated SVD

Misal, C adalah term-document matrix. C didekomposisi menjadi perkalian 3 matrix. Kolom yang di U, maksudnya topic 1, adalah eigen vector dari C * C^T

ortogonal

$$C = U \times \Sigma \times V^T$$

document terbaru Misal document baris term embeeding dokumen 1 barisnya itu term kolom: latent topic yang jadi context bagi term kolom itu document (menjadi context) terhadap topic 1 Word Assignment seberapa penting latent topic Term Document Matrix **Topic Distribution** to Topics Topic Importance **Across Documents** Topic-1 Topic-2 Doc-1 Doc-2 Doc-3 Doc-4 Term-1 Term-1 Topic-1 Topic-2 Doc-1 Doc-2 Doc-3 Doc-4 Topic-1 Topic-1 Term-2 Term-2 Topic-2 Topic-2 Term-3 Term-3 ini matriks ortogonal SIGMA (matriks diagonal) juga Term-4 Term-4

topic: campuran dokumen-dokumen

kolomnya itu C^T * C

V^T:

- kolom: embeeding

U (Matriks ortogonal)

kita melakukan

diagonalisasi terhadap matriks covariant untuk menghilangkan regularisasi (situasi dimana fitur X korelasinya tinggi dengan fitur Y)

Gambar: https://www.datacamp.com/tutorial/discovering-hidden-topics-python

	D1	D2	D3	D4	D5
Cancer	6	0	10	1	7
Flower	2	8	1	9	0
Tumor	6	2	7	0	8
Rose	1	6	0	7	1

word embeeding kata cancer yang lama

C

U ini ortogonal kalau dihitung L2 Norm hasilnya 1 (artinya setiap term itu tegak lurus

diurutin sesuai kepentingan. Lihat deh besarnya signifikan. Artinya ada 2 latent topic yang signifikan

	18.93	0	0	0
$\boldsymbol{\Sigma}$	0	14.49	0	0
L	0	0	2.60	0
	0	0	0	0.86

	1	2	3	4
Cancer	0.66	0.33	0.64	0.18
Flower	0.33	-0.71	0.18	-0.57
Tumor	0.61	0.25	-0.72	-0.19
Rose	0.24	-0.55	-0.18	0.77

	D1	D2	D3	D4	D5
1	0.45	0.28	0.59	0.28	0.51
2	0.10	-0.59	0.30	-0.69	0.26
3	-0.11	-0.41	0.59	0.38	-0.56
4	-0.51	-0.42	-0.12	0.44	0.58
5	-0.70	0.46	0.42	-0.30	0.04

U * S: word embeeding kata yang baru

S * V^T = document embeedng yang baru

 V^T

di V^T setiap dokumen-dokumennya ini ortogonal

Kalau dihitung L2 Norm itu nilainya 1

import numpy as np; u, s, vt = np.linalg.svd(C, full_matrices = True)

LSA: Low-rank approximation of C

Truncating U, Σ , V^T to K dimensions produces best possible K rank approximation of original matrix C.

Buang (jadikan nol) L - K singular values paling kecil di ∑!

C_k = rank-k approximation of C

Truncating U, \sum , V^T to K dimensions produces best possible K rank approximation of original matrix C.

Jadikan NOL L - K singular values paling kecil di ∑!

	D1	D2	D3	D4	D5
Cancer	6	0	10	1	7
Flower	2	8	1	9	0
Tumor	6	2	7	0	8
Rose	1	6	0	7	1

(_

	18.93	0	0	0
$\mathbf{\Sigma}$	0	14.49	0	0
4	0	0	2.60	0
	0	0	0	0.86

	1	2	3	4
Cancer	0.66	0.33	0.64	0.18
Flower	0.33	-0.71	0.18	-0.57
Tumor	0.61	0.25	-0.72	-0.19
Rose	0.24	-0.55	-0.18	0.77

	D1	D2	D3	D4	D5
1	0.45	0.28	0.59	0.28	0.51
2	0.10	-0.59	0.30	-0.69	0.26
3	-0.11	-0.41	0.59	0.38	-0.56
4	-0.51	-0.42	-0.12	0.44	0.58
5	-0.70	0.46	0.42	-0.30	0.04

 V^{7}

import numpy as np; u, s, vt = np.linalg.svd(C, full_matrices = True)

	D1	D2	D3	D4	D5
Cancer	6.27	0.76	9.03	0.29	7.85
Flower	1.80	7.99	0.65	9.04	0.57
Tumor	5.70	1.15	8.09	0.79	7.03
Rose	1.29	6.08	0.38	6.89	0.33

Contoh: rank-2	
approximation of C	

 C_2

	18.93	0	
\sum_{a}	0	14.49	
42			

	1	2
Cancer	0.66	0.33
Flower	0.33	-0.71
Tumor	0.61	0.25
Rose	0.24	-0.55

	D1	D2	D3	D4	D5
1	0.45	0.28	0.59	0.28	0.51
2	0.10	-0.59	0.30	-0.69	0.26

 U_2

 V_2^{7}

import numpy as np; u, s, vt = np.linalg.svd(C, full_matrices = True)

Jadi mengapa LSA/SVD berhasil menangkap "similarity" antar kata?

Padahal "bunga" dan "mawar" secara semantic "dekat"

Jadi mengapa LSA/SVD berhasil menangkap "similarity" antar kata?

Jadi mengapa LSA/SVD berhasil menangkap "similarity" antar kata?

Dimanakah Document Vector?

Jika ingin mendapatkan rank-k vector representation dari sebuah dokumen di original vector space:

=> Vektor kolom pada C_k

Dari Contoh sebelumnya:

	D1	D2	D3	D4	D5	
Cancer	6.27	0.76	9.03	0.29	7.85	
Flower	1.80	7.99	0.65	9.04	0.57	C_{12}
Tumor	5.70	1.15	8.09	0.79	7.03	UZ
Rose	1.29	6.08	0.38	6.89	0.33	

Rank-2 Document Embedding dari D3 = [9.03, 0.65, 8.09, 0.38]

Dimanakah Document Vector?

Jika ingin mendapatkan rank-k vector representation dari sebuah dokumen di vector space baru (rank-k subspace):

=> Vektor kolom pada
$$\Sigma_k \times V_k^T$$

Dari Contoh sebelumnya:

2-Dimensional Document Embedding dari D3 adalah

	18.93	0		m	D3	D3
Σ_2	10.55	14.49	×	V_2^T	0.59	11.17
	0	14.43			0.30	4.35

Dimanakah *Term Vector (Word Embedding)*?

Jika ingin mendapatkan rank-k vector representation dari sebuah kata di vector space baru (rank-k subspace):

=> Vektor baris pada $U_k \times \Sigma_k$

Dari Contoh sebelumnya:

2-Dimensional Document Embedding dari "Cancer" adalah

Cancer	0.66	0.33

$\mathbf{\nabla}$	18.9
42	

Cancer	12.49
--------	-------

Jika ada Query, bagaimana hitung sim(Q, D)?

Vektor **Query** yang masih berada di dimensi awal perlu dipetakan ke **LSA** (**Semantic**) **Space** yang berukuran **K** dengan cara:

$$q_k = U_k^T \times q$$

Proof?

$$sim(q,d) = sim(q_k,d_k)$$

Vektor kolom pada $\Sigma_k \times V_k^T$ yang terasosiasi dengan **d**.

Uji Pemahaman Terhadap LSA

Refleksi

- Apa arti "distributional" pada "distributional word representations"?
- Apa itu "sparse word representations"? Apa contohnya?
- Apa itu "dense word representations"? Apa kelebihannya?
- Apa itu term-document matrix? Apa saja yang dapat digunakan untuk mengisi setiap cell pada matrix tersebut?

Refleksi

Misal, kita melakukan **Singular Value Decomposition** terhadap term-document matrix C (berukuran M x N):

$$C = U \times \Sigma \times V^T$$

- Informasi apa yang ada pada U?
- Informasi apa yang ada pada Σ? Apa makna singular values?
- Informasi apa yang ada pada V^T?
- Bagaimana menghitung U, Σ , dan V^T ?
- Dimanakah vector representation of words berada?
- Bagaimana caranya mendapatkan low-dimensional vector of words (dense) berukuran K (< min(M, N))?
- Bagaimana caranya mendapatkan low-dimensional vector of documents (dense) berukuran K (< min(M, N))?

Refleksi

Perhatikan Term-Document matrix berikut (setiap cell berisi informasi TF):

	D1	D2	D3	D4	D5
Cancer	6	0	10	1	7
Flower	2	8	1	9	0
Tumor	6	2	7	0	8
Rose	1	6	0	7	1

Sebenarnya apa sih yang dilakukan LSA?

When forced to squeeze the terms/documents down to a k-dimensional space, the SVD should bring to- gether terms with similar co-occurrences.

Refleksi

Perhatikan Term-Document matrix berikut (setiap cell berisi informasi TF): Kira-ki

Kira-kira ada berapa latent topics yang penting di sini?

	D1	D3	D5	D2	D4
Cancer	6	10	7	0	1
Tumor	6	7	8	2	0
Flower	2	1	0	8	9
Rose	1	0	1	6	7

LSA akan memindahkan term (baris) dan dokumen (kolom) sehingga vektor-vektor yang mirip akan berdekatan (ter-cluster).

Setelah ter-cluster, LSA kemudian bisa menemukan, kira-kira ada berapa "latent topics penting" yang ada pada koleksi dokumen tersebut.

	D1	D2	D3	D4	D5
Cancer	6	0	10	1	7
Flower	2	8	1	9	0
Tumor	6	2	7	0	8
Rose	1	6	0	7	1

Itulah mengapa hanya ada 2 singular values yang sangat besar dibandingkan 2 yang terkecil.

18.93	0	0	0
0	14.49	0	0
0	0	2.60	0
0	0	0	0.86

	1	2	3	4
Cancer	0.66	0.33	0.64	0.18
Flower	0.33	-0.71	0.18	-0.57
Tumor	0.61	0.25	-0.72	-0.19
Rose	0.24	-0.55	-0.18	0.77

	D1	D2	D3	D4	D5
1	0.45	0.28	0.59	0.28	0.51
2	0.10	-0.59	0.30	-0.69	0.26
3	-0.11	-0.41	0.59	0.38	-0.56
4	-0.51	-0.42	-0.12	0.44	0.58
5	-0.70	0.46	0.42	-0.30	0.04

import numpy as np; u, s, vt = np.linalg.svd(C, full_matrices = True)

Simple Explanation of LSA

Misal, kita mempunyai term-document matrix berikut (bobot TF):

$$C = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$
D1

Misal, kita mempunyai term-document matrix berikut (bobot TF):

$$C = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$

Misal, kita lakukan SVD:

$$U = \begin{bmatrix} 0.71 & -0.71 \\ 0.71 & 0.71 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1.7 & 0 \end{bmatrix}$$

$$V^{T} = \begin{bmatrix} 0.42 & 0.57 & 0.71 \\ -0.41 & 0.82 & -0.41 \\ -0.81 & -0.11 & 0.8 \end{bmatrix}$$

Misal, kita mempunyai term-document matrix berikut (bobot TF):

$$C = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$
D1

Rank-1 approximation dari C:

Rank-1 approximation dari C:

$$\Sigma_1 = \begin{bmatrix} 5 & 0 & 0 \\ 0 & \mathbf{0} & 0 \end{bmatrix}$$

$$V^T = \begin{bmatrix} 0.42 & 0.57 & 0.71 \\ -0.41 & 0.82 & -0.41 \\ -0.81 & -0.11 & 0.8 \end{bmatrix}$$

 $U = \begin{bmatrix} 0.71 & -0.71 \\ 0.71 & 0.71 \end{bmatrix}$

$$C_1 = U \times \Sigma_1 \times V^T = \begin{bmatrix} 1.5 & 2 & 2.5 \\ 1.5 & 2 & 2.5 \end{bmatrix}$$

berikut (bobot TF):

We move the points to the smallest squared distance.

$$C = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$

Rank-1 approximation dari C (Rank-1 Document Vector):

$$U = \begin{bmatrix} 0.71 & -0.71 \\ 0.71 & 0.71 \end{bmatrix}$$

$$\Sigma_{1} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & \mathbf{0} & 0 \end{bmatrix}$$

$$V^{T} = \begin{bmatrix} 0.42 & 0.57 & 0.71 \\ -0.41 & 0.82 & -0.41 \\ -0.81 & -0.11 & 0.8 \end{bmatrix}$$

$$C_1 = U \times \Sigma_1 \times V^T = \begin{bmatrix} 1.5 & 2 & 2.5 \\ 1.5 & 2 & 2.5 \end{bmatrix}$$

berikut (bobot TF):

kut (bobot TF):
$$y = \frac{3.53}{3.53}x = x$$

$$C = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$

Vektor Kata:

$$U \times \Sigma_1 = \begin{bmatrix} 3.53 & 0 & 0 \\ 3.53 & 0 & 0 \end{bmatrix}$$

$$C_1 = U \times \Sigma_1 \times V^T = \begin{bmatrix} 1.5 & 2 & 2.5 \\ 1.5 & 2 & 2.5 \end{bmatrix}$$

berikut (bobot TF):

$$y = \frac{3.53}{3.53}x = x$$

Vektor Dokumen di Space Dim = 1:

$$\Sigma_1 \times V^T = \begin{bmatrix} 2.1 & 2.8 & 3.5 \\ 0 & 0 & 0 \end{bmatrix}$$

$$C_1 = U \times \Sigma_1 \times V^T = \begin{bmatrix} 1.5 & 2 & 2.5 \\ 1.5 & 2 & 2.5 \end{bmatrix}$$

berikut (bobot TF):

$$y = \frac{3.53}{3.53}x = x$$

Vektor Dokumen di Space Dim = 1:

$$\Sigma_1 \times V^T = \begin{bmatrix} 2.1 & 2.8 & 3.5 \\ 0 & 0 & 0 \end{bmatrix}$$

$$C_{1} = U \times \Sigma_{1} \times V^{T} = \begin{bmatrix} 1.5 & 2 & 2.5 \\ 1.5 & 2 & 2.5 \end{bmatrix}$$

Dimensi 1

Neural Embeddings

Why Word Embeddings?

Can capture the rich relational structure of the lexicon

https://www.tensorflow.org/tutorials/word2vec

Word Embeddings

- Any technique that maps a word (or phrase) from it's original high-dimensional sparse input space to a lower-dimensional dense vector space.
- Vectors whose relative similarities correlate with semantic similarity
- Such vectors are used both as an end in itself (for computing similarities between terms), and as a representational basis for downstream NLP tasks, such as POS tagging, NER, text classification, etc.

Continuous Representation of Words

The Differences:

- In information retrieval, LSA and topic models use documents as contexts.
 - Capture semantic relatedness ("boat" and "water")

- Distributional semantic models use words as contexts (more natural in linguistic perspective)
 - Capture semantic similarity ("boat" and "ship")

DSMs or Word Embeddings

- Count-based model
 - first collecting context vectors and then reweighting these vectors based on various criteria
- Predictive-based model (neural network)
 - vector weights are directly set to optimally predict the contexts in which the corresponding words tend to appear
 - Similar words occur in similar contexts, the system naturally learns to assign similar vectors to similar words.

Distributional Semantic Models

Other classification based on (Baroni et al., ACL 2014)

- Count-based models
 - Simple VSMs
 - Singular Value Decomposition (Golub & VanLoan, 1996)
 - Non-negative Matrix Factorization (Lee & Seung, 2000)
- Predictive-based models (neural network)
 - Self Organizing Map
 - Bengio et al's Word Embedding (2003)
 - Mikolov et al's Word2Vec (2013)

Word Analogy Task

- Father is to Mother as King is to _____?
- Good is to Best as Smart is to _____?
- Indonesia is to Jakarta as Malaysia is to _____?

 It turns out that the previous Word-Context based vector model is good for such analogy task.

$$V_{king} - V_{father} + V_{mother} = V_{queen}$$

Word2Vec (Mikolov et al., 2013)

Word2Vec

- One of the most popular Word Embedding models nowadays!
- There are two types of models:
 - Skip-Gram Model
 - Continuous Bag of Words Model (CBOW)

- N-Gram language model only looks at previous words as a context for predictions.
- This model tries to maximize classification of a word based on another word in the same sentence.
- Use each current word as an input to a log-linear classifier with continuous projection layer, and predict words within a certain range before and after the current word.

 We seek a model for $P(w_{t+j} \mid w_t)$

INPUT PROJECTION OUTPUT w(t-2)w(t-1) w(t) w(t+1)w(t+2)

Feed-Forward Process

Output Layer

$$P(w_{t+j} \mid w_t) = \frac{\exp(y_{w_{t+j}})}{\sum_{i \in V} \exp(y_i)}$$

Projection Layer

Par: W
$$y_{w_t} = W.x$$

Input Layer

 W_t

$$x = C(w_t)$$

Total Parameters:

$$\theta = \{W, C\}$$

$$C \in R^{|V| \times m}$$

$$W \in R^{m \times |V|}$$

Sudut Pandang Lain

Sebuah kata **t** terasosiasi dengan dua buah vector:

- Vector ketika t berperan sebagai center word (baris pada matriks C)
- Vector ketika \mathbf{t} berperan sebagai context word (kolom pada matriks \mathbf{W})

Sudut Pandang Lain

Misal Vocab = [cancer, tumor, flower, rose]

Dengan kata lain, Skip-Gram juga bisa dinyatakan dengan:

$$P(w_{t+j}|w_t) = \frac{exp(s(w_{t+j}, w_t))}{\sum_{i \in V} exp(s(w_i, w_t))}$$

$$s(w_i, w_t) = center(w_t)^T.context(w_i)$$

Baris di matriks C

Kolom di matriks W

Where are the Word Embeddings?

- The previous model actually aims at building the language model.
 - So, where is the Word Embedding model that we need?

 The answer is: If you just need the Word Embedding model, you just need the matrix C

Where are the Word Embeddings?

After all parameters (including **C**) are optimized, then we can use **C** to map a word into its vector!

A Word
$$\mathbf{w}$$

$$w \in V$$

$$V = \begin{bmatrix} 0.2 \\ 0.31 \\ \vdots \\ 0.76 \end{bmatrix}$$

$$C(w) = \begin{bmatrix} 0.2 \\ 0.31 \\ \vdots \\ 0.76 \end{bmatrix}$$

$$C(w) \in \mathbb{R}^m$$

 $P(w_{t+i} \mid w_t)$ Output Layer

 W_t

Training is achieved by looking θ that maximizes the following Cost Function:

Given training data $W_1, W_2, W_3, ..., W_{T-1}, W_T$

Projection Layer

 $J(w_1...w_T;\theta)$

$$= \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log P(w_{t+j} \mid w_t) + R(\theta)$$

Input Layer |V| Par: C

Regularization Terms

c is the maximum distance of the words, or WINDOW size

Training

Training is achieved by looking θ that maximizes the following Cost Function:

Given training data $W_1, W_2, W_3, ..., W_{T-1}, W_T$

$$J(w_1...w_T; \theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log P(w_{t+j} \mid w_t) + R(\theta)$$

Proses optimasi (memaksimalkan) fungsi J = menggunakan Categorical Cross Entropy sebagai loss function pada ujung softmax layer.

Reference: https://www.tensorflow.org/tutorials/word2vec

Skip-Gram

How to develop dataset?

For example, let's consider the following dataset:

the quick brown fox jumped over the lazy dog

Using c = 1 (or window = 1), we then have dataset:

```
([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...
```

Therefore, our (input, output) dataset becomes:

For example,
$$P(w_{t+1} = brown \mid w_t = quick)$$

Use this dataset to learn
$$P(w_{t+j} | w_t)$$

Use this dataset to learn
$$P(w_{t+j} \mid w_t)$$

$$J(w_1...w_T; \theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log P(w_{t+j} \mid w_t)$$

So that, the cost function is optimized!

Skip-Gram

 W_t

Projection Layer

Training

Actually, if we use **vanilla softmax**, then the computational complexity **per instance** (**Q**) is still costly.

$$Q = D \times (m + m \times |V|)$$

D is the maximum distance of the words

To solve this problem, they use Hierarchical Softmax layer. This layer uses a binary tree representation of the output layer with |V| units.

$$Q = D \times (m + m \times \log_2 |V|)$$

(Morin & Bengio, 2005)

- A multi-layer binary tree
- The probability of a word is calculated through the product of probabilities on each edge on the path to that node.
- It is O(log n), compared to O(n) for vanilla softmax.

- Misal, diberikan sebuah kata input "kernel" sebagai center, kita ingin memprediksi sebuah kata konteks w.
- Melakukan traversal Huffman Tree menggunakan kode binary yang diassign ke kata w.
- Perhitungan probability hanya melibatkan sekumpulan kecil node pada jalur root ke kata w.

Huffman Tree

Meminimalkan expected search length

Gabung dua buah kata dengan frekuensi paling kecil; dan proses ini dilakukan terus.

kadal, 21

mutex, 15

os, 13

kernel, 20

Huffman Tree

Gabung dua buah kata dengan frekuensi paling kecil; dan proses ini dilakukan terus.

Huffman Tree

Gabung dua buah kata dengan frekuensi paling kecil; dan proses ini dilakukan terus.

Huffman Tree

Assign kode biner ke setiap kata di vocabulary

Gabung dua buah kata dengan frekuensi paling kecil; dan proses ini dilakukan terus.

$$\begin{split} P(kadal|c) &= P_{n_1}(right|c) \times P_{n_3}(left|c) \\ &= (1 - P_{n_1}(left|c)) \times P_{n_3}(left|c) \end{split}$$

$$P_n(left|c) = \sigma(v_n^T.center(c))$$

Trainable vector for node n

Hidden layer representation of the center c

- Mikolov's CBOW looks at n words before and after the target words.
 - Non-linear hidden layer is also removed.
 - All word vectors get projected into the same position (their vectors are averaged)
- "Bag-of-Words" is because the order of words in the history does not influence the projection.

We seek a model for $P(w_t \mid w_{t-n}...w_{t-1}w_{t+1}...w_{t+n})$

 $W_{t-n} \ldots W_{t-1} \qquad W_{t+1} \cdots W_{t+n}$

Training is achieved by looking θ that maximizes

Given training data $W_1, W_2, W_3, ..., W_{T-1}, W_T$

$$J(w_1...w_T;\theta) = \frac{1}{T} \sum_{t=1}^{T} \log P(w_t \mid w_{t-n}...w_{t-1}w_{t+1}...w_{t+n}) + R(\theta)$$

Regularization terms

Training

Actually, if we use **vanilla softmax**, then the computational complexity per instance (**Q**) is still costly.

$$Q = N \times m + m \times |V|$$

To solve this problem, they use Hierarchical Softmax layer. This layer uses a binary tree representation of the output layer with |V| units.

$$Q = N \times m + m \times \log_2 |V|$$

(Morin & Bengio, 2005)

FastText (Bojanowski et al., TACL)

 Ekstensi dari Word2Vec -> bisa handle rare words atau kata yang out-of-vocabulary

- Perbedaannya adalah setiap kata tidak langsung diproyeksikan ke sebuah vector.
- Pada FastText, setiap kata "dipecah" dahulu menjadi "subwords", dan setiap subword diproyeksikan ke vector.

• **w**₊ = where

- Subwords dengan window = 3
 - < wh
 - whe
 - her
 - ere
 - re>
 - where

FastText – Skip-Gram Model

Given a word, what is the probability of its context word?

$$P(w_c|w_t) = softmax(s(w_c, w_t)) = \frac{\exp(s(w_c, w_t))}{\sum_{j=1}^{|Vocab|} \exp(s(w_j, w_t))}$$

Ingat bahwa, untuk kasus Word2Vec Skip-Gram biasa:

$$s(w_c, w_t) = center(w_t)^T \cdot context(w_c)$$

Untuk FastText, vektor kata adalah KOMBINASI dari vector Subwords!

Center embedding dari subword "<wh"

Subwords dengan window = 3

$$- < wh$$
 $- > z_{q1} = [0.3, 0.1, ...]$

- whe
$$\rightarrow z_{g2} = [0.1, 0.4, ...]$$

- her
$$-> z_{a3} = [0.5, 0.9, ...]$$

- ere
$$-> z_{a4} = [0.5, 0.5, ...]$$

$$- \text{ re} > - z_{a5} = [0.3, 0.1, ...]$$

- where
$$\rightarrow z_{g6} = [0.1, 0.3, ...]$$

Representasi vector sebuah kata merupakan "sum" dari semua vector subwords.

Subwords dengan window = 3

Kata asli itu sendiri diikutsertakan ke dalam set of ngrams