

SEQUENCE LISTING

<110> Barnett, Susan
Zur Megede, Jan

<120> POLYNUCLEOTIDES ENCODING ANTIGENIC HIV TYPE C
POLYPEPTIDES, POLYPEPTIDES AND USES THEREOF

<130> PP01631.101

<140> 09/475,704
<141> 1999-12-30

<150> 09/610,313
<151> 2000-07-05

<160> 46

<170> PatentIn Ver. 2.0

<210> 1
<211> 60
<212> DNA
<213> Human immunodeficiency virus

<400> 1
gacatcaagc agggcccaa ggagccttc cgcgactacg tggaccgctt cttcaagacc 60

<210> 2
<211> 60
<212> DNA
<213> Human immunodeficiency virus

<400> 2
gacatccgcc agggcccaa ggagccttc cgcgactacg tggaccgctt cttcaagacc 60

<210> 3
<211> 1479
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic Gag
of HIV strain AF110965

<400> 3
atgggcgccc gcccagcat cctgcgcggc ggcaagctgg acgcctggga gcgcattccgc 60
ctgcgcggcg gcggcaagaa gtgtacatg atgaagcacc tgggtggc cagccgcgag 120
ctggagaagt tcgcccgtaa cccccggctg ctggagacca gcgagggctg caagcagatc 180
atccgcgcgc tgacccccgc cctgcagacc ggcagcgagg agctgaagag cctgttcaac 240
accgtggcca ccctgtactg cgtgcacgag aagatcgagg tccgcgacac caaggaggcc 300
ctggacaaga tcgaggagga gcagaacaag tgccagcaga agatccagca ggccgaggcc 360
gccgacaagg gcaagggtgag ccagaactac cccatcgtgc agaacctgca gggccagatg 420
gtgcaccagg ccatcagccc ccgcacctg aacgcctggg tgaagggtgat cgaggagaag 480
gccttcagcc ccgagggtgat cccatgttc accgcctgaa gcgaggggcgc caccggcc 540
gacctgaaca cgatgtgaa caccgtggc ggccaccagg cccatgca gatgctgaag 600
gacaccatca acgaggaggc cggcagtgac accccgtgca cgccggcccc 660

atcgcccccgc gccagatgcg cgagccccgc ggcagcgaca tcgcccggcac caccaggcacc 720
ctgcaggagc agatcgccctg gatgaccagc aaccccccga tccccgtggg cgacatctac 780
aagcggtgga tcatcctggg cctgaacaag atcgtgcggta tgtacagccc cgtgagcatc 840
ctggacatca agcagggccc caaggagccc ttccgcgact acgtggaccg cttcttcaag 900
accctgcgcg ccgagcagag caccaggag gtgaagaact ggatgaccga caccctgctg 960
gtgcagaacg ccaaccccgaa ctgcaagagacc atcctgcgcg ctctcgccccc cggcgccagc 1020
ctggaggaga tgatgaccgc ctgcccaggc gtggcgccccc ccagccacaa ggcccgcgtg 1080
ctggccgagg cgatgagcca ggcacacacc agcgtgatga tgcagaagag caacttcaag 1140
ggcccccggc gcatcgtaa gtgcttcaac tgcggcaagg agggccacat cgcccccaac 1200
tgccgcgccc cccgcaagaa ggctgctgg aagtgcggca aggagggcca ccagatgaag 1260
gactgcaccc agcgccaggc caacttcctg ggcaagatct ggcccagcca caagggccgc 1320
cccgcaact tcctgcagag ccgccccgag cccaccgccc ccccccggc gagcttccgc 1380
ttcgaggaga ccaccccccgg ccagaaggcag gagagcaagg accgcgagac cctgaccagc 1440
ctgaagagcc tgttcggcaa cgacccctg agccagtaa 1479

<210> 4
<211> 1509
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic Gag
of HIV strain AF110967

<400> 4
atgggcggcc gcgcacgcat cctgcgcggc gagaagctgg acaagtggga gaagatccgc 60
ctgcgcggcc gcgcaagaa gcactacatg ctgaagcacc tggtgtgggc cagccgcgag 120
ctggagggtc tcgcccctgaa ccccgccctg ctggagaccg cccggggctg caagcagatc 180
atgaagcagc tgcagccgc cctgcagacc ggcacccgagg agctgcgcag cctgtacaac 240
accgtggcca ccctgtactg cgtgcacgccc ggcacatcgagg tccgcgcacac caaggaggcc 300
ctggacaaga tcgaggagga gcagaacaag tcccagcaga agaccccgca ggcacaggag 360
gccgacggca aggtgagcca gaactacccc atcgtgcaga acctgcaggcc ctagatggtg 420
caccaggcca tcagcccccg caccctgaac gcctgggtga aggtgatcga ggagaaggcc 480
ttcagccccg aggtgatccc catgttcacc gccctgagcg agggcgccac ccccccaggac 540
ctgaacacga tggtaaacac cgtggcgcc caccaggccc ccatgcagat gctgaaggac 600
accatcaacg aggaggccgc cgagtggac cgcctgcacc cctgcaggcc cggccccgtg 660
gccccccggcc agatgcgcga ccccccggc acgcacatcg cccggccac cagcaccctg 720
caggagcaga tcgcctggat gaccagcaac ccccccgtgc ccgtggcgca catctacaag 780
cggtggatca tcctgggcct gaacaagatc gtgcggatgt acagccccgt ggcacccctg 840
gacatccgcg aggcccccaa ggagcccttc cgcgactacg tggaccgctt cttcaagacc 900
ctgcgcgcgc agcaggccac ccaggacgtg aagaacttggta tgaccgagac cctgctggtg 960
cagaacgcgc accccgactg caagaccatc ctgcgcgcctc tcggccccgg cgccacccctg 1020
gaggagatga tgaccgcctg ccaggcggtg ggcggccccg gccacaaggc cccgcgtctg 1080
gccgaggcgca tgagccaggc caacagcggtg aacatcatga tgcagaagag caacttcaag 1140
ggccccccggc gcaacgtcaa gtgcttcaac tgcggcaagg agggccacat cgccaaagaac 1200
tgccgcgcgc cccgcaagaa ggctgctgg aagtgcggca aggagggcca ccagatgaag 1260
gactgcaccc agcgccaggc caacttcctg ggcaagatct ggcccagcca caagggccgc 1320
cccgcaact tcctgcagaa ccgcagcgag cccgcgcggc ccaccgtgcc caccggcccc 1380
cccgccgaga gcttccgcctt cgaggagacc acccccccggc ccaaggcagga gcccacaggac 1440
cgcgagccct accgcgagcc cctgaccgcctc ctgcgcagcc tgttcggcag cggccccctg 1500
agccagtaa 1509

<210> 5
<211> 141
<212> DNA
<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Env common
 region of HIV strain AF110968

<400> 5
 accatcacca tcacacctggc catcaagcgat atcatcaaca tgtggcagaa ggtggccgc 60
 gccatgtacg cccccccat cgccggcaac ctgacacctgc agagcaacat caccggcctg 120
 ctgctgaccc gcgacggcgg c 141

<210> 6
 <211> 1431
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: synthetic
 gp120 coding region of HIV strain AF110968

<400> 6
 agcgtggtgg gcaacctgtg ggtgaccgtg tactacggcg tgcccgtgtg gaaggaggcc 60
 aagaccaccc tggctgcac cagcgacgcc aaggcctacg agaccgaggt gcacaacgtg 120
 tggccaccc acgcctgcgt gcccaccgc cccaaccccc aggagatcgt gctggagaac 180
 gtgaccgaga acttcaacat gtggaagaac gacatggtgg accagatgca cgaggacatc 240
 atcagcctgt gggaccagag cctgaagccc tgcgtgaagc tgaccccccgt gtcgtgacc 300
 ctgaagtgc gcaacgtgaa cgccaccaac aacatcaaca gcatgatgca caacagcaac 360
 aaggcgaga tgaagaactg cagttcaac gtgaccaccc agctgcgcga ccgcaagcag 420
 gaggtgcacg ccctgttcta ccgcctggac gtggtgcccc tgcaggcCAA caacagcaac 480
 gagtaccgcg tgcgttcta ccgcctggac gtggtgcccc tgcaggcCAA caacagcaac 540
 ttcgacccca tcccccattca ctactgcacc cccgcccgc acgcacatccgt gaagtgcac 600
 aaccagaccc tcaacggcac cgcccccgc aacaacgtgaa gcatgatgca gtgcgcac 660
 ggcataaggc ccgtggtag caccagctg ctgctgaaacg gcatgatgca acgcacatccgt 720
 atcatcatcc gcaaggcgagaa cctggccaaac aacgccaaga tcatcatcg gcatgatgca 780
 aagcccgta agatcggtg cgtgcgcaccc aacaacaaca cccgcaagag cgtgcgcac 840
 ggccccggcc agaccttcta ccgcctggc gagatcatcg gcatgatgca acgcacatccgt 900
 tgcatacatca acaagaccga gtggaacacg accctgcagg gcatgatgca acgcacatccgt 960
 gagacttca gcaagaaggc catcaagttc gagcccgac gcatgatgca acgcacatccgt 1020
 accacccaca gcttcaactg ccgcggcgag ttcttctact gcatgatgca acgcacatccgt 1080
 aacagcaccc acagccccag cttcaacggc accgagaaca gcatgatgca acgcacatccgt 1140
 atcacctgc gcatcaagca gatcatcaac atgtggcaga aggtggccgc gcatgatgca acgcacatccgt 1200
 gccccccca tcgcccggcaa cctgacacctgc gagagcaaca tcacccggcct gcatgatgca acgcacatccgt 1260
 cgcacggcg gcaagaccgg ccccaacgc accgagatct tccggcccccgg gcatgatgca acgcacatccgt 1320
 atgcgcgaca actggcgcaaa cggactgtac aagtacaagg tggtgagat gcatgatgca acgcacatccgt 1380
 ggcgtggccc ccaccggaggc caagcgccgc gtggtgagc gcatgatgca acgcacatccgt 1431

<210> 7
 <211> 1944
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: synthetic
 gp140 coding region of HIV strain AF110968

<400> 7
 agcgtggtgg gcaacctgtg ggtgaccgtg tactacggcg tgcccgtgtg gaaggaggcc 60
 aagaccaccc tggctgcac cagcgacgcc aaggcctacg agaccgaggt gcacaacgtg 120

tgggccaccc acgcctgcgt gcccaccgac cccaaccccc aggagatcgt gctggagaac 180
 gtgaccgaga acttcaacat gtggaagaac gacatggtg accagatgca cgaggacatc 240
 atcagcctgt gggaccagag cctgaagccc tgcgtgaagc tgaccccccgt gtcgtgacc 300
 ctgaagtgcc gcaacgtgaa cggcaccaac aacatcaaca gcatgatgca caacagcaac 360
 aagggcgaga tgaagaactg cagcttcaac gtgaccaccg agctgcgcga ccgcaagcag 420
 gaggtgcacg ccctgttcta cgcctggac gtggtcccc tgcaggcga caacagcaac 480
 gagtacctcc tcatcaactg caacaccgac gccatcaccc aggctgccc caaggtgagc 540
 ttcgacccca tccccatcca ctactgcacc cccgcggct acgccatcct gaagtgcaac 600
 aaccagaccc tcaacgcac cgccccctgc aacaacgtga gcagcgtgca gtgcgcac 660
 ggcataaggc ccgtggtag caccctgctg ctgctgaacg gcagcctggc caagggcgag 720
 atcatcatcc gcagcgagaa cctggccaac aacgccaaga tcatcatcgt gcagctgaaac 780
 aagcccgta agatcgtgtg cgtgcgcccc aacaacaaca cccgcaagag cgtgcgcac 840
 ggccccggcc agaccattcta cgcaccggc gagatcatcg gcgacatccg ccaggcctac 900
 tgcattatca acaagaccga gtggaacacgc accctgcagg gcgtgagcaa gaagctggag 960
 gagcaattca gcaagaaggc catcaagttc gagccagca gcggcggcga cctggagatc 1020
 accacccaca gcttcaactg ccgcggcga ttcttctact gcgacaccag ccagctgttc 1080
 aacagcaccc acagccccag ctcaacggc accgagaaca agctgaacgg caccatcacc 1140
 atcacctgcc gcatcaagca gatcatcaac atgtggcaga aggtgggccc gcgcattgtac 1200
 gccccccca tcgcccggaa cctgacctgc gagagcaaca tcaccggcct gtcgtgacc 1260
 cgcgcggcga gcaagaccgg ccccaacgcac accgagatct tccggccccc cggcggcga 1320
 atgcgcgaca actggcgcac cgagctgtac aagtacaagg ttgtggagat caagccctg 1380
 ggcgtggccc ccaccggaggc caagcgccgc gtggtggagc gcgagaagcg cgccgtggc 1440
 atcgccgcgg tggctctggg ctgcctggc gcccggca gcaccatggg cgccgcggc 1500
 atcaccctga ccgtgcaggc ccgcctgtc ctgagcggca tcgtgcagca gcagaacaac 1560
 ctgctgcgcg ccatcgaggc ccagcagcac ctgctgcagc tgaccgtgtg gggcatcaag 1620
 cagctgcaga cccgcattct gggcgtggag cgctacctga aggaccagca gtcgtggc 1680
 atctggggct gcagcgcaaa gctgatctgc accaccggc tgccctggaa cagcagctgg 1740
 agcaaccgca gccacgacga gatctgggac aacatgaccc ggatgcagtg ggaccggcag 1800
 atcaacaact acaccgacac catctaccgc ctgctggagg agagccagaa ccagcaggag 1860
 aagaacgaga aggacctgct gcccctggac agctggcaga acctgtggaa ctgggtcagc 1920
 atcaccact ggctgtggta catc 1944

<210> 8
 <211> 2466
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: synthetic
 gp160 coding region of HIV strain AF110968

<400> 8
 agctgtgttgg gcaaccctgtg ggtgaccgtg tactacggcg tgccctgtg gaaggaggcc 60
 aagaccaccc tggctctgcac cagcgacgc aaggctacg agaccgagggt gcacaacgtg 120
 tggccaccc acgcctgcgt gcccaccgac cccaaccccc aggagatcgt gctggagaac 180
 gtgaccgaga acttcaacat gtggaagaac gacatggtg accagatgca cgaggacatc 240
 atcagcctgt gggaccagag cctgaagccc tgcgtgaagc tgaccccccgt gtcgtgacc 300
 ctgaagtgcc gcaacgtgaa cggcaccaac aacatcaaca gcatgatgca caacagcaac 360
 aagggcgaga tgaagaactg cagcttcaac gtgaccaccg agctgcgcga ccgcaagcag 420
 gaggtgcacg ccctgttcta cgcctggac gtggtcccc tgcaggcga caacagcaac 480
 gagtacctcc tccccatcca ctactgcacc cccgcggct acgccatcct gaagtgcaac 540
 aaccagaccc tcaacgcac cgccccctgc aacaacgtga gcagcgtgca gtgcgcac 600
 ggcataaggc ccgtggtag caccctgctg ctgctgaacg gcagcctggc caagggcgag 660
 atcatcatcc gcagcgagaa cctggccaac aacgccaaga tcatcatcgt gcagctgaaac 720
 aagcccgta agatcgtgtg cgtgcgcccc aacaacaaca cccgcaagag cgtgcgcac 780
 ggccccggcc agaccattcta cgcaccggc gagatcatcg gcgacatccg ccaggcctac 900

tgcatcatca	acaagaccga	gtgaaacaggc	accctgcagg	gcgtgagcaa	gaagctggag	960
gagacttca	gcaagaaggc	catcaagtgc	gagcccgagca	gcggcggcga	cctggagatc	1020
accacccaca	gcttcaactg	ccgcggcgag	ttcttctact	gcgacaccag	ccagctgttc	1080
aacagcacct	acagccccag	cttcaacggc	accgagaaca	agctgaacgg	caccatcacc	1140
atcacctgcc	gcatcaagca	gatcatcaac	atgtggcaga	aggtgggccc	cgccatgtac	1200
gcccccccca	tcgcccggcaa	cctgacctgc	gagagcaaca	tcaccggct	gctgctgacc	1260
cgcgacggcg	gcaagaccgg	ccccaaacgac	accgagatct	tccgccccgg	cgccggcgcac	1320
atgcgcgaca	actggcgcaa	cgagctgtac	aagtacaagg	ttgtggagat	caagccccctg	1380
ggcgtggccc	ccaccggaggc	caagcggcgc	gtggtgagc	gcgagaagcg	cgccgtggc	1440
atccggcgccg	tgttcctggg	cttcctggc	gccgcccggca	gcaccatggg	cgccggccagc	1500
atcacccctga	ccgtgcaggc	ccgcctgctg	ctgagcggca	tcgtgcagca	gcagaacaac	1560
ctgctgcgcg	ccatcgaggc	ccagcagcac	ctgctgcagc	tgaccgtgt	ggccatcaag	1620
cagctgcaga	cccgcatcct	ggccgtggag	cgctacctga	aggaccagca	gctgctggc	1680
atctggggct	gcagcggcaa	gctgatctgc	accaccggc	tgcctggaa	cagcagctgg	1740
agcaaccgca	gccacgacga	gatctggac	aacatgacct	ggatgcagtg	ggaccgcgag	1800
atcaacaact	acaccgacac	catctaccgc	ctgctggagg	agagccagaa	ccagcaggag	1860
aagaacgaga	aggacctgct	ggccctggac	agctggcaga	acctgtggaa	ctgggtcagc	1920
atcaccaact	ggctgtggta	catcaagatc	ttcatcatga	tcgtggccgg	cctgatcggc	1980
ctgcgcata	tcttcggcgt	gctgagcatc	gtgaaccgcg	tgccgcaggg	ctacagcccc	2040
ctgcccattc	agaccctgac	ccccaaacccc	cgcgagcccg	accgcctggg	ccgcatcgag	2100
gaggagggcg	gcgagcagga	ccgcggccgc	agcatccgc	ttgtgagcgg	ttccctggcc	2160
ctggcctggg	acgacctgct	cagcctgtgc	ctgttcagct	accaccgcct	gcgcgacttc	2220
atccgtatcg	ccgcccgcgt	gctggagctg	ctggccagc	gcccgtggg	ggccctgaag	2280
tacctgggca	gcctggtgca	gtactggggc	ctggagctga	agaagagcgc	catcagcctg	2340
ctggacacca	tcgccatcgc	cgtggccgag	ggcaccgacc	gcatcatcga	gttcatccag	2400
cgcacatctg	gcgcacatccg	caacatcccc	cgccgcacatcc	gccaggcgtt	cgaggccgccc	2460
ctgcag						2466

<210> 9
<211> 2547
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
signal sequence and gp160 coding region of HIV
strain AF110968

<400> 9
atgcgcgtga tgggcacatcct gaagaactac cagcagtggt ggatgtgggg catcctggc 60
ttctggatgc tgatcatcag cagcgtggtg ggcaacctgt gggtgaccgt gtactacggc 120
gtgcccgtgt ggaaggaggc caagaccacc ctgttctgca ccagcgcacgc caaggcctac 180
gagaccgagg tgcacaacgt gtggccacc cacgcctgcg tgcccacca ccccaacccc 240
caggagatcg tgctggagaa cgtgaccgag aacttcaaca tgtgaaagaa cgacatggtg 300
gaccagatgc acgaggacat catcagcctg tgggaccaga gcctgaagcc ctgcgtgaag 360
ctgacccccc tgcgttgac cctgaagtgc cgcaacgtga acgcccaccaa caacatcaac 420
agcatgtatcg acaacagcaa caaggcgag atgaagaact gcagcttcaa cgtgaccacc 480
gagctgcgcg accgcaagca ggaggtgcac gccctgttct accgcctggc cgtggtgcgg 540
ctgcaggcga acaacagcaa cgagtaccgc ctgatcaact gcaacaccag cgccatcacc 600
caggcctgccc ccaagggtgag cttcgaccccc atccccatcc actactgcac ccccgccggc 660
tacccatcc tgaagtgc aaaccagacc ttcaacggca cccggccctg caacaacgtg 720
agcagcgtgc agtgcgccta cgcatcaag cccgtggtga gcacccagct gctgctgaac 780
ggcagcctgg ccaaggcgaa gatcatcatc cgcagcgaga acctggccaa caacgccaag 840
atcatcatcg tgcagctgaa caagccctgt aagatcgtgt gcgtgcgcgg caacaacaac 900
acccgcaaga gcgtgcgcata cggccccggc cagacccttct acgcaccagg cgagatcatc 960
ggcgcacatcc gccaggccta ctgcacatc aacaagaccg agtggaaacag caccctgcag 1020
ggcgtgagca agaagctgga ggagcacttc agcaagaagg ccatcaagtt cgagcccgagc 1080

agcggcggcg	acctggagat	caccacccac	agcttcaact	gccgcggcga	gttcttctac	1140
tgcacacca	gccagctgtt	caacagcacc	tacagcccc	gcttcaacgg	caccgagaac	1200
aagtgaacg	gcaccatcac	catcacctgc	cgcataaggc	agatcatcaa	catgtggcag	1260
aagtgggcc	gcccattgt	cgccccccc	atgcggcga	acctgacctg	cgagagcaac	1320
atcaccggcc	tgctgtgac	ccgcgacggc	ggcaagaccg	gccccaaacga	caccgagatc	1380
ttccggcccg	gcggcggcga	catgcgcgac	aactggcga	acgagctgt	caagtacaag	1440
gtgtggaga	tcaagccct	gggcgtggcc	cccaccgagg	ccaaggcggc	cgtggtgag	1500
cgcagaagc	gcgcgtggg	catcgccgc	gtttcctgg	gcttcctggg	cgccgcggc	1560
agcaccatgg	gcgcgcggc	catcacctg	accgtgcagg	cccgcctgt	gctgagcggc	1620
atcgctcagc	agcagaacaa	cctgctgcgc	gccatcgagg	cccagcagca	cctgctgcag	1680
ctgaccgtgt	ggggcatcaa	gcagctgcag	accgcaccc	tggccgtgga	gctgacccctg	1740
aaggaccaggc	agctgtggg	catctggggc	tgcagcggca	agctgatctg	caccacccgc	1800
gtgccctgga	acagcagctg	gagcaaccgc	agccacgcac	agatctggg	caacatgacc	1860
tggatgcagt	gggaccgcga	gatcaacaac	tacaccgaca	ccatctaccg	cctgctggag	1920
gagagccaga	accagcagga	gaagaaccgag	aaggacctgc	tggccctgga	cagctggcag	1980
aacctgtgga	actggttcag	catcaccaac	tggctgttgt	acatcaagat	tttcatcatg	2040
atcggtggcg	gcctgatcgg	cctgcgcatac	atttcgccg	tgctgagcat	cgtgaaccgc	2100
gtgcgcctagg	gctacagccc	cctgccttc	cagacccctga	cccccaaccc	ccgcgagccc	2160
gaccgcctgg	gcgcatcga	ggaggagggc	ggcgagcagg	accgcggccg	cagcatccgc	2220
ctgtgtgagcg	gcttcctggc	cctggcctgg	gacgacctgc	gcagcctgt	cctgttcagc	2280
taccaccgccc	tgcgcgactt	catcctgatc	gccgcggcgc	tgctggagct	gctggccag	2340
cgccgctggg	aggccctgaa	gtacctgggc	agcctggtc	agtaactgggg	cctggagctg	2400
aagaagagcg	ccatcagcct	gctggacacc	atgcacatcg	ccgtggccga	gggcacccgac	2460
cgcacatcatcg	agttcatcca	gcccacatcg	cgccatcc	gcaacatccc	ccgcgcacatc	2520
cgccaggggct	tgcaggccgc	cctgcag				2547

<210> 10
<211> 1035
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic a
gp41 coding region of HIV strain AF110968

<400> 10						
gcccgtggca	tcggcggccgt	gttcctgggc	ttcctggcg	ccgcggcag	caccatggc	60
gcccgcagca	tcaccctgac	cgtgcaggcc	cgcctgctgc	tgagcggcat	cgtgcagcag	120
cagaacaacc	tgctgcgcgc	catcgaggcc	cagcagcacc	tgctgcagct	gaccgtgtgg	180
ggcatcaagc	agctgcagac	ccgcacatctg	gccgtggagc	gctacctgaa	ggaccagcag	240
ctgtgtggca	tctgggctg	cagcggcaag	ctgatctgc	ccaccgcgt	gccctggAAC	300
agcagctgga	gcaaccgcag	ccacgcacgag	atctggaca	acatgacctg	gatgcagtgg	360
gaccgcgaga	tcaacaacta	caccgacacc	atctaccgc	tgctggagga	gagccagaac	420
cacaggaga	agaacgagaa	ggacctgtg	gccctggaca	gctggcagaa	cctgtggAAC	480
tggttcagca	tcaccaactg	gctgtggtac	atcaagatct	tcatcatgat	cgtggcggc	540
ctgatcgcc	tgcgcacat	cttcgcgt	ctgagacatcg	tgaaccgcgt	gcccaggggc	600
tacagccccc	tgcccttcca	gaccctgacc	cccaacccccc	gcgagcccg	ccgcctggc	660
cgcacatcgagg	aggaggcgg	cgacgcggac	cgcggccgc	gatccgcct	ggtgagcggc	720
ttcctggccc	ttggcctggg	cgacctgcgc	agcctgtgcc	tgttcagcta	ccaccgcctg	780
cgcacttca	tcctgatcgc	cgcgcgcgt	ctggagctgc	tggccagcg	cggctggag	840
gccctgaagt	acctggcag	cctgggtgcag	tactggggcc	tggagctgaa	gaagagcggc	900
atcagcctgc	tggacacccat	cgccatcgcc	gtggccgagg	gcaccgaccc	catcatcgag	960
ttcatccagc	gcatctgcgc	cgccatccgc	aacatcccc	gccgcacatcc	ccagggtttc	1020
gaggccgccc	tgcag					1035

<210> 11
<211> 144

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic Env
common region of HIV strain AF110975

<400> 11
agcatcatca ccctgcctg ccgcataaag cagatcatcg acatgtggca gaagggtggc 60
cgcgcattt acgccccccc catcgaggc aacatcacct gcagcagcag catcaccggc 120
ctgctgctgg cccgcgacgg cgcc 144

<210> 12
<211> 1437
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
gp120 coding region of HIV strain AF110975

<400> 12
agccgcctgg gcaacctgtg ggtgaccgtg tacgacggcg tgcccgtgtg gcgcgaggcc 60
agcaccaccc ttttcgcgc cagcgcacgc aaggcctacg agaaggaggt gcacaacgtg 120
tggccaccc acgcctgcgt gcccaccgc cccaaacccc aggagatcga gctggacaac 180
gtgaccgaga acttcaacat gtggaaaac gacatggtgg accagatcga cgaggacatc 240
atcagcctgt gggaccagag cctgaagccc cgcgtgaagc tgaccccccgtgtgcgtgacc 300
ctgaagtgc ccaactacag caccacactac agcaacacca tgaacgccac cagctacaac 360
aacaacacca ccgaggagat caagaactgc accttcaaca tgaccaccga gctgcgcgac 420
aagaagcagc aggtgtacgc cctgttctac aagctggaca tcgtgccttgaacac 480
agcagcagtg accgcctgtat caactgcac accagcgcca tcacccaggc ctgccccaaag 540
gtgagcttcg accccatcccc catccactac tgcgccttgc cccgctacgc catcctgaag 600
tgcaagaaca acaccagcaa cgccacccgc ccctggcaga acgtgagcac cgtgcagtgc 660
accacacggca tcaagcccgt ggtgagcacc cccctgtgc tgaacggcag cctggccgag 720
ggccgcgaga tcatcatccg cagcaagaac ctgagacaaca acgcctacac catcatcgtg 780
cactgaacg acagcgtgga gatcgtgtgc acccgccccca acaacaacac cccgcaaggcc 840
atccgcacatcg gccccggcca gaccttctac gccaccgaga acatcatcg cgacatccgc 900
cagccccact gcaacatcag cggccggcgag tggaaacaagg ccgtgcagcg cgtgagcgcc 960
aagctgcgcg agcacttccc caacaagacc atcgagttcc agcccgccagc cggccggcgac 1020
ctggagatca ccacccacag ctcaactgc cgcggcgagt tcttctactg caacaccagc 1080
aagctgttca acagcagcta caacggcacc agtaccgcg gcaccgagag caacagcagc 1140
atcatcaccc tggccctgcgc catcaagcag atcatcgaca tgtggcagaa ggtggccgc 1200
gccccatcg ccccccacat cgaggccaaat atcaccgtca gcagcagcat caccggcctg 1260
ctgctggccc gcgacggcg cctggacaac atcaccaccg agatcttccg ccccccaggcc 1320
ggcgcacatga aggacaactg ggcacacgag ctgtacaagt acaagggtggt ggagatcaag 1380
ccctggcg tggcccccac cgaggccaaag cggccgtgg tggagcgcga gaagcgc 1437

<210> 13
<211> 1950
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
gp140 coding region of HIV strain AF110975

<400> 13

agcggcctgg gcaacctgtg ggtgaccgtg tacgacggcg tgcccgtgtg gcgcgaggcc 60
 agcaccaccc ttttctgcgc cagcgcacgaa aaggccatcg agaaggaggt gcacaacgtg 120
 tggccaccc acgcctgcgt gcccaccgac cccaaccccc aggagatcg aactggacaac 180
 gtgaccgaga acttcaacat gtggaagaac gacatggtg accagatgca cgaggacatc 240
 atcagcctgt gggaccagag cctgaagccc cgctgtaaagc tgaccccccgt gtgcgtgacc 300
 ctgaagtgc acaactacag caccaactac agcaacacca tgaacgccac cagctacaac 360
 aacaacacca ccgaggagat caagaactgc accttcaaca tgaccaccgac gctgcgcac 420
 aagaagcagc aggtgtacgc cctgttctac aagctggaca tcgtgcccct gaacagcaac 480
 agcagcgagt accgcctgtat caactgcaac accagcgcc tcacccaggc ctgccccaaag 540
 gtgagcttcg accccatccc catccactac tgcgcggcc cccgctacgc catcctgaag 600
 tgcaagaaca acaccagcaa cgccaccggc ccctgcccaga acgtgagcac cgtcagtg 660
 acccacggca tcaagccgt ggtgagcacc cccctgctgc tgaacggcag cctggccgag 720
 ggccgcgaga tcatcatccg cagcaagaac ctgagcaaca acgcctacac catcatcg 780
 cactgaacg acagcgtgga gatcgtgtgc acccgccca acaacaacac ccgcaaggcc 840
 atccgcatcg gccccggcca gaccttctac gccaccgaga acatcatcg cgacatccgc 900
 cagccccact gcaacatcag cgccggcgag tggacaagg ccgtgcagcg cgtgagcgcc 960
 aagctgcgcg agcacttccc caacaagacc atcgagttcc agcccagcag cggccgcac 1020
 ctggagatca ccacccacag cttaactgc cgccggcgagt tcttctactg caacaccagc 1080
 aagctgttca acagcagcta caacggcacc agtaccgcg gcaccgagag caacagcagc 1140
 atcatcaccc tggccctgccc catcaagcag atcatcgaca tgtggcagaa ggtggccgc 1200
 gccatctacg ccccccattt cgaggcaac atcacctgca gcagcagcat caccggcctg 1260
 ctgtggccc gcgacggcg cctggacaac atcaccaccg agatcttccg ccccccaggcc 1320
 ggcacatga aggacaactg ggcacacgag ctgtacaagt acaagggtggt ggagatcaag 1380
 ccctggcg tggcccccac cgaggcaag cgccggcg tggagcgcga gaagcgcgc 1440
 gtggcatcg ggcgcgtat cttcggttcc ctggccggcc cccggcagcaa catggccgc 1500
 gccagcatca ccctgaccgc ccaggcccgc cagctgctga gccgcacatcg gcagcagcag 1560
 agcaacctgc tgcgcgcctt cgaggcccag cagcacatgc tgcagctgac cgtgtgggc 1620
 atcaagcagc tgcaggcccg ctgtctggcc atcgagcgct acctgaagga ccagcagctg 1680
 ctggcatct ggggctgcag cgcaagctg atctgcacca ccaccgtgcc ctggAACAGC 1740
 agctggagca acaagacca gggcagatc tggagaaca tgacctggat gcagtggac 1800
 aagagatca gcaactacac cgcatcatc taccgcctgc tggaggagag ccagaaccag 1860
 cagggcaga acgagaagga cctgctggcc ctggacagcc gcaacaacct gtggagctgg 1920
 ttcaacatca gcaactggct gtggatcatc 1950

<210> 14

<211> 2493

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
gp160 coding region of HIV strain AF110975

<400> 14

agcggcctgg gcaacctgtg ggtgaccgtg tacgacggcg tgcccgtgtg gcgcgaggcc 60
 agcaccaccc ttttctgcgc cagcgcacgaa aaggccatcg agaaggaggt gcacaacgtg 120
 tggccaccc acgcctgcgt gcccaccgac cccaaccccc aggagatcg aactggacaac 180
 gtgaccgaga acttcaacat gtggaagaac gacatggtg accagatgca cgaggacatc 240
 atcagcctgt gggaccagag cctgaagccc cgctgtaaagc tgaccccccgt gtgcgtgacc 300
 ctgaagtgc acaactacag caccaactac agcaacacca tgaacgccac cagctacaac 360
 aacaacacca ccgaggagat caagaactgc accttcaaca tgaccaccgac gctgcgcac 420
 aagaagcagc aggtgtacgc cctgttctac aagctggaca tcgtgcccct gaacagcaac 480
 agcagcgagt accgcctgtat caactgcaac accagcgcc tcacccaggc ctgccccaaag 540
 gtgagcttcg accccatccc catccactac tgcgcggcc cccgctacgc catcctgaag 600
 tgcaagaaca acaccagcaa cgccaccggc ccctgcccaga acgtgagcac cgtcagtg 660
 acccacggca tcaagccgt ggtgagcacc cccctgctgc tgaacggcag cctggccgag 720

ggccggcgaga tcatcatccg cagcaagaac ctgagcaaca acgcctacac catcatcgtg 780
 cacctgaacg acagcgtgga gatcgtgtgc acccgccccca acaacaacac ccgcaaggc 840
 atccgcacatcg gccccggcca gaccttctac gccaccgaga acatcatcg cgacatccgc 900
 caggcccact gcaacatcg cgccggcgag tggacaagg ccgtgcagcg cgtgagcgcc 960
 aagctgcgcg agcacttccc caacaagacc atcgagttcc agcccagcag cggccggcgac 1020
 ctggagatca ccacccacag ctcaactgc cgccggcgagt tcttctactg caacaccagc 1080
 aagctgttca acagcagcta caacggcacc agtaccgcg gcaccgagag caacagcagc 1140
 atcatcaccc tgccctgccc catcaagcag atcatcgaca tgtggcagaa ggtggccgc 1200
 gccatctacg cccccccat cgagggcaac atcacctgca gcagcagcat caccggcctg 1260
 ctgctggccc gcgacggcgg cctggacaac atcaccaccc agatcttccg ccccccaggc 1320
 ggcgacatga aggacaactg ggcgcaacgag ctgtacaagt acaagggtgt ggagatcaag 1380
 cccctggcgc tggcccccac cgagggcaag cgccgcgtgg tggagcgcga gaagcgcgcc 1440
 gtgggcatcg ggcgcgtgat ctccggcttc ctgggcgcgg cccggcagcaa catgggcgcc 1500
 gccagcatca ccctgaccgc ccaggccgcg cagctgctga gcggcatcg gcagcagcag 1560
 agcaacctgc tgcgcgccat cgaggcccag cagcacatgc tgcagctgac cgtgtgggc 1620
 atcaagcagc tgcaggcccg ctgcgtggcc atcgagcgtc acctgaagaga ccagcagctg 1680
 ctgggcatct ggggctgcag cgccaagctg atctgcacca ccaccgtgcc ctggAACAGC 1740
 agctggagca acaagaccca gggcgagatc tgggagaaca tgacctggat gcagtggac 1800
 aaggagatca gcaactacac cgccatcatc taccgcctgc tggaggagag ccagaaccag 1860
 cagggcaga acgagaagga cctgctggcc ctggacagcc gcaacaacct gtggagctgg 1920
 ttcaacatca gcaactggct gtgttacatc aagatcttca tcatgatcg gggcggcctg 1980
 atccgcctgc gcatcatctt cccgtgtcg agcatcgta acccgctgcg ccaggcgtac 2040
 agccccctga gcttccagac cctgacccca aaccccccgcg gcctggaccg cctggccgc 2100
 atcgaggagg agggcggcga gcaggaccgc gaccgcagca tccgcctggt gcaggcgttc 2160
 ctggccctgg cctggacga ctgcgcagc ctgtgcctgt ttagctacca ccgcctgcgc 2220
 gacctgatcc tggtgaccgc ccgcgtggtg gagctgtgg gccgcagcag ccccccggc 2280
 ctgcagcgcg gctgggaggc cctgaagtac ctggcagcc tggtgagta ctggggcctg 2340
 gagctgaaga agagcggcac cagcctgtg gacagcatcg ccatcgccgt ggccgaggc 2400
 accgaccgca tcatacgaggat gatccagcgc atctaccgcg cttctgcaa catccccgc 2460
 cgcgtgcgc agggcttcga gcccgcctg cag 2493

<210> 15
 <211> 2565

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: synthetic
 signal sequence and gp160 coding region of HIV
 strain AF110975

<400> 15

atgcgcgtgc gcggcatcct ggcgcgtgg cagcagtggt ggatctgggg catcctggc 60
 ttctggatct gcagcggcct gggcaacctg tgggtgaccg ttagtacgcgg cgtgcccgtg 120
 tggcgcgagg ccagcaccac cctgttctgc gccagcgacg ccaaggccta cgagaaggag 180
 gtgcacaacg tggggccac ccacgcctgc gtgcgcaccg accccaaacc ccaggagatc 240
 gagctggaca acgtgaccga gaacttcaac atgtggaaa acgacatggt ggaccagatg 300
 cacaggagaca tcatacgcc tggggaccag agcctgaagc cccgcgtgaa gctgacccca 360
 ctgtgcgtga ccctgaagtgc caccactac agcacaact acagcaacac catgaacgac 420
 accagctaca acaacaacac caccgaggag atcaagaact gcaccttcaa catgaccacc 480
 gagctgcgcg acaagaagca gcaggtgtac gccctgttct acaagctggc catcggtccc 540
 ctgaacagca acagcagcga gtaccgcctg atcaactgca acaccagcgc catcacccag 600
 gcctggccca aggtgagctt cgaccatccat cccatccact actgcgcggcc cgccggctac 660
 gccatcctga agtgcaagaa caacaccagc aacggcaccg gcccctgcca gaacgtgagc 720
 accgtgcagt gcacccacgg catcaagccc gtggtgagca ccccccgtct gctgaacggc 780
 agcctggccc agggcggcga gatcatcatc cgccagcaaga acctgagcaa caacgcctac 840

accatcatcg tgcacacctgaa cgacagcgtg gagatcgtgt gcacccgccc caacaacaac 900
acccgcaagg gcatccgcat cggccccggc cagaccctt acgccaccca gaacatcatc 960
ggcacatcc gccaggccca ctgcaacatc agcgccggcg agtggaaaca ggccgtgcag 1020
cgctgagcg ccaagctgctcg ctagacttc cccaacaaga ccatcgagtt ccagcccagc 1080
agccggcggcg acctggagat caccacccac agcttaact gccgcggcga gttcttctac 1140
tgcaacaccca gcaagctgtt caacagcagc tacaacggca ccagctaccg cggcaccgag 1200
agcaacagca gcatcatcac cctgcccctgc cgcataaggc agatcatcga catgtggcag 1260
aagtgggcc gcccacatcta cggccccccc atcgagggca acatcacctg cagcagcagc 1320
atcaccggcc tgctgtggc cggcagcggc ggcctggaca acatcaccac cgagatctc 1380
cgcccccagg gcggcagcat gaaggacaac tggcgaacg agctgtacaa gtacaagggtg 1440
gtggagatca agccctggg cgtggccccc accgaggcca agcgcgcgt ggtggagcgc 1500
gagaagcgcg cctgtggcat cggcgcgtg atcttcggct tcctggcgc cggcggcagc 1560
aacatgggcg cgcgcagcat caccctgacc gcccaggccc gccagctgct gaggcggcatc 1620
gtcagcagc agagcaaccc gctgcgcgcc atcgaggccc agcagcacat gctgcagctg 1680
accgtgtggg gcatcaagca gctgcaggcc cgcgtctgg ccatcgagcg ctacccatgaag 1740
gaccagcagc tgctggcat ctgggctgc agcggcaagc tgatctgcac caccaccgtg 1800
ccctggaaaca gcagctggag caacaagacc cagggcgaga tctgggagaa catgacctgg 1860
atcagtggtt acaaggagat cagcaactac accggcatca tctaccgcct gctggaggag 1920
agccagaacc agcaggagca gaacgagaag gacctgtgg ccctggacac cgcacaacaac 1980
ctgtggagct gttcaacat cagcaacttg ctgtgttaca tcaagatctt catcatgatc 2040
gtggcggcc tcgtccgcct ggcgcatttc ttgcgcgtc tgatcgatcgtt gatccgcgtg 2100
cgccagggtt acagccccct gagcttccag accctgaccc ccaacccccc cggcctggac 2160
cgctgggcc gcatcgagga ggaggcggc gagcaggacc ggcgcgcag catccgcctg 2220
gtcagggtt tcctggccct ggctgggac gacctgcgc ggcctgtgcct gttcagctac 2280
caccgcctgc ggcgcctgat cttgggtacc gcccgcgtgg tggagctgct gggccgcagc 2340
agcccccgcg gcctgcagcg cggctggag gcccctgaagt acctggcag cctgggtgcag 2400
tactggggcc tggagctgaa gaagagcgc accagcctgc tggacagcat cgcgcattgc 2460
gtggccgagg gcaccgcaccg catcatcgag gtatccagc gcatctaccg cgccttctgc 2520
aacatcccccc gccgcgtgcg ccaggccttc gaggccgccc tgtag 2565

<210> 16

<211> 1056

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic a gp41 coding region of HIV strain AF110975

<400> 16

gccgtggca tcggcgcgt gatcttcggc ttcctggcg cgcgcggcag caacatggc 60
gccgcgcagca tcaccctgac cggccaggcc cgcgcgtgc tgatcgatcgt cgtgcagcag 120
cagagcaacc tgctgcgcgc catcgaggcc cagcagcaca tgctgcagct gaccgtgtgg 180
ggcatcaagc agctgcagcc cgcgtgtgc gccatcgagc gctacctgaa ggaccaggcag 240
ctgtgggca tctgggctg cagcggcaag ctgatctgc ccaccaccgt gccctggAAC 300
agcagctgga gcaacaagac ccagggcgag atctggaga acatgacctg gatgcagtg 360
gacaaggaga tcagcaacta caccggcatc atctaccgc tgcgtggagga gagccagaac 420
cagcaggagc agaacgagaa ggacctgtgc gcccggaca ggcgcaccaa cctgtggagc 480
tggtaaca tcagcaactg gctgtgttac atcaagatct tcatcatgat cgtggcggc 540
ctgatcgcc tcgcgcatttc ttgcgcgtc ctgatcgatcgt tgcgcgcgt ggcgcaggc 600
tacagcccccc tgacttcca gaccctgacc cccaaacccc gcccggatc cccctgggc 660
cgcatcgagg aggaggcgg cgagcaggac cgcgcaccgc gcatccgcct ggtgcaggc 720
ttcctggccc tggcctggga cgcacgtgcg agcctgtgc tggatccatc ccaccgcctg 780
cgcgacctga tcctgggtac cggccgcgtg gtggagctgc tggcggcag cagccccccgc 840
ggcgcgcagc gcccggatc gcccctgaag tacctggca gcctggtgc gtaactggc 900
ctggagctga agaagagcgc caccagcgtc ctggacagca tcgcgcattgc cgtggcggag 960

ggcaccgacc gcatcatcga ggtgatccag cgcatctacc ggcgccttctg caacatcccc 1020
 cggcggtgc gccagggctt cgaggccgcc ctgcag 1056

<210> 17
 <211> 492
 <212> PRT
 <213> Human immunodeficiency virus

<400> 17
 Met Gly Ala Arg Ala Ser Ile Leu Arg Gly Gly Lys Leu Asp Ala Trp
 1 5 10 15

Glu Arg Ile Arg Leu Arg Pro Gly Gly Lys Lys Cys Tyr Met Met Lys
 20 25 30

His Leu Val Trp Ala Ser Arg Glu Leu Glu Lys Phe Ala Leu Asn Pro
 35 40 45

Gly Leu Leu Glu Thr Ser Glu Gly Cys Lys Gln Ile Ile Arg Gln Leu
 50 55 60

His Pro Ala Leu Gln Thr Gly Ser Glu Glu Leu Lys Ser Leu Phe Asn
 65 70 75 80

Thr Val Ala Thr Leu Tyr Cys Val His Glu Lys Ile Glu Val Arg Asp
 85 90 95

Thr Lys Glu Ala Leu Asp Lys Ile Glu Glu Glu Gln Asn Lys Cys Gln
 100 105 110

Gln Lys Ile Gln Gln Ala Glu Ala Ala Asp Lys Gly Lys Val Ser Gln
 115 120 125

Asn Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala
 130 135 140

Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Ile Glu Glu Lys
 145 150 155 160

Ala Phe Ser Pro Glu Val Ile Pro Met Phe Thr Ala Leu Ser Glu Gly
 165 170 175

Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly Gly His
 180 185 190

Gln Ala Ala Met Gln Met Leu Lys Asp Thr Ile Asn Glu Glu Ala Ala
 195 200 205

Glu Trp Asp Arg Val His Pro Val His Ala Gly Pro Ile Ala Pro Gly
 210 215 220

Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr Ser Thr
 225 230 235 240

Leu Gln Glu Gln Ile Ala Trp Met Thr Ser Asn Pro Pro Ile Pro Val
 245 250 255

Gly Asp Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile Val
260 265 270

Arg Met Tyr Ser Pro Val Ser Ile Leu Asp Ile Lys Gln Gly Pro Lys
275 280 285

Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Phe Lys Thr Leu Arg Ala
290 295 300

Glu Gln Ser Thr Gln Glu Val Lys Asn Trp Met Thr Asp Thr Leu Leu
305 310 315 320

Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Arg Ala Leu Gly
325 330 335

Pro Gly Ala Ser Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly
340 345 350

Gly Pro Ser His Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln Ala
355 360 365

Asn Thr Ser Val Met Met Gln Lys Ser Asn Phe Lys Gly Pro Arg Arg
370 375 380

Ile Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala Arg Asn
385 390 395 400

Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly
405 410 415

His Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn Phe Leu Gly Lys
420 425 430

Ile Trp Pro Ser His Lys Gly Arg Pro Gly Asn Phe Leu Gln Ser Arg
435 440 445

Pro Glu Pro Thr Ala Pro Pro Ala Glu Ser Phe Arg Phe Glu Glu Thr
450 455 460

Thr Pro Gly Gln Lys Gln Glu Ser Lys Asp Arg Glu Thr Leu Thr Ser
465 470 475 480

Leu Lys Ser Leu Phe Gly Asn Asp Pro Leu Ser Gln
485 490

<210> 18
<211> 81
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
signal sequence of HIV strain AF110968

<400> 18

atgcgcgtga tgggcattcct gaagaactac cagcagtggg gatatgtgggg catcctggc 60
ttctggatgc tcatcatcg c 81

<210> 19
<211> 72
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
signal sequence of HIV strain AF110975

<400> 19
atgcgcgtgc gcggcatcct gcgcagctgg cagcagtgg gatatctgggg catcctggc 60
ttctggatct gc 72

<210> 20
<211> 1479
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic Gag
coding sequence of HIV strain AF110965

<400> 20
atgggcgcgc gcccaggcat cctgcgcggc ggcaagctgg acgcctggg ggcgcattccgc 60
ctgcgcggc gcggcaagaa gtgtacatg atgaagcacc tgggtgtggc cagccgcgag 120
ctggagaagt tcgcctgaa ccccgccctg ctggagacca gcgagggctg caagcagatc 180
atccgcgcgc tgacccccgc cctgcagaccc ggcagcgagg agctgaagag cctgttcaac 240
accgtggcca ccctgtactg cgtgcacgag aagatcgagg tgcgacac caaggaggcc 300
ctgacaaga tcgaggagga gcagaacaag tgccagcaga agatccagca ggccgaggcc 360
gccgacaagg gcaaggtagag ccagaactac cccatctgc agaacctgca gggccagatg 420
gtgcaccagg ccatcagccc cccgaccctg aacgcctggg tgaaggtgat cgaggagaag 480
gccttcagcc ccgaggatgat cccatgttc accgcctgaa gcgagggccc caccggcc 540
gacctgaaca ccatctgaa caccgtggc ggccaccagg cccatgca gatgtgaag 600
gacaccatca acgaggaggc cccgagtg gaccgcgtgc accccgtgca cggccggcccc 660
atcgcccccgc gccagatgcg cggccggcgc ggcagcgaca tgcggccac caccacacc 720
ctgcaggagc agatcgccctg gatgaccagg aaccccccata tcccccgtggg cgacatctac 780
aaggcgttga tcatcctggg cctgaacaag atcgtgcgc tgcgtacagccc cgtgacatc 840
ctgacatca agcaggaggccc caaggaggccc ttccgcact acgtggaccg cttcttcaag 900
accctgcgcg cccgaggcagg gtaagaact ggatgaccga caccctgctg 960
gtcagaacgc ccaaccggc ctgcaagacc atcctgcgcg ccctggggcc cggccgcgc 1020
ctggaggaga tgcgtaccgc ctgcgcggc gtggccggcc ccagccacaa ggccgcgtg 1080
ctggccgagg ccatgagccca ggccaaacacc agcgtgatga tgcagaagag caacttcaag 1140
ggcccccgcgc gcatcgaa gtcgttcaac tgcggcaagg agggccacat cggccgcac 1200
tgcgcgcgc cccgcaagaa ggctgtgg aagtgcggca aggaggggccca ccagatgaag 1260
gactgcaccgc agcgcaggc caacttcctg ggcaagatct ggcccagccca caaggccgc 1320
ccggcaact tcctgcaggc cccggccggc cccaccggcc ccccccggc gagctccgc 1380
ttcgaggaga ccaccccccgg ccagaaggcag gagacaagg accgcgagac cctgaccaggc 1440
ctgaagagcc tgcgttcaac cggccaggcc agccagttaa 1479

<210> 21
<211> 1509
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic Gag
coding sequence of HIV strain AF110967

<400> 21

atgggcgccc gcgccagcat cctgcgcggc gagaagctgg acaagtggga gaagatccgc 60
ctgcgcggcg gcggcaagaa gcactacatg ctgaagcacc tgggtgtgggc cagccgcgag 120
ctggagggtc tcgcccgtaa ccccgccctg ctggagaccg cccgagggtctg caagcagatc 180
atgaagcagc tgcaagccgc cctgcagacc ggcaccgagg agctgcgcag cctgtacaac 240
accgtggcca ccctgtactg cgtgcacgac ggcacatcgagg tgcgcgacac caaggaggcc 300
ctggacaaga tcgaggagga gcagaacaag agccagcaga agacccagca gccaaggag 360
gccgacggca aggtgagcca gaactacccc atcgtgcaga acctgcagg ccagatggtg 420
caccaggcca tcagcccccg caccctgaac gcctgggtga aggtgatcga ggagaaggcc 480
ttcagccccg aggtgatccc catgttcacc gcctgagcg agggcgccac cccccaggac 540
ctgaacacca tgctgaacac cgtggcggc caccaggccg ccatgcagat gctgaaggac 600
accatcaacg aggaggccgc cgagtggac cgctgcacc ccgtgcaggc cggccccgtg 660
gccccccggcc agatgcgcga ccccccggc agcgacatcg ccggcgccac cagcacccctg 720
cagagcaga tcgcctggat gaccagcaac ccccccgtc ccgtgggca catctacaag 780
cgctggatca tcctgggcct gaacaagatc gtgcgcatgt acagccccgt gagcatcctg 840
gacatccgccc agggcccaa ggagccctc cgcgactacg tggaccgctt cttcaagacc 900
ctgcgcgccc agcaggccac ccaggacgtg aagaacttgg a t g a c c g a g a c c t g 960
cagaacgcga acccccgaactg caagaccatc ctgcgcgccc tggggcccg cgcacccctg 1020
gaggagatga tgaccgcctg ccagggcgtg ggcggcccg gccacaaggc cgcgtgctg 1080
gccgaggcca tgagccaggc caacagcgtg aacatcatga tgcagaagag caacttcaag 1140
ggccccccgccc gcaacgtgaa gtgcttcaac tgcggcaagg agggccacat cgccaagaac 1200
tgccgcgccc cccgcaagaa gggctgctgg aagtgcggca aggaggccca ccagatgaag 1260
gactgcaccg agcgccaggc caacttcctg ggcaagatct ggcccagcca caaggccgc 1320
cccgcaact tcctgcagaa ccgcagcgag cccgccc caccgtgcc caccgcccc 1380
cccgccgaga gcttccgctt cgaggagacc accccccc ccaagcagga gccaaggac 1440
cgcgagccct accgcgagcc cctgaccgccc ctgcgcagcc tgttcggcag cggccccctg 1500
agccagtaa 1509

<210> 22

<211> 502

<212> PRT

<213> Human immunodeficiency virus

<400> 22

Met Gly Ala Arg Ala Ser Ile Leu Arg Gly Glu Lys Leu Asp Lys Trp
1 5 10 15

Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys His Tyr Met Leu Lys
20 25 30

His Leu Val Trp Ala Ser Arg Glu Leu Glu Gly Phe Ala Leu Asn Pro
35 40 45

Gly Leu Leu Glu Thr Ala Glu Gly Cys Lys Gln Ile Met Lys Gln Leu
50 55 60

Gln Pro Ala Leu Gln Thr Gly Thr Glu Glu Leu Arg Ser Leu Tyr Asn
65 70 75 80

Thr Val Ala Thr Leu Tyr Cys Val His Ala Gly Ile Glu Val Arg Asp
85 90 95

Thr Lys Glu Ala Leu Asp Lys Ile Glu Glu Glu Gln Asn Lys Ser Gln
 100 105 110

 Gln Lys Thr Gln Gln Ala Lys Glu Ala Asp Gly Lys Val Ser Gln Asn
 115 120 125

 Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala Ile
 130 135 140

 Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Ile Glu Glu Lys Ala
 145 150 160

 Phe Ser Pro Glu Val Ile Pro Met Phe Thr Ala Leu Ser Glu Gly Ala
 165 170 175

 Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly Gly His Gln
 180 185 190

 Ala Ala Met Gln Met Leu Lys Asp Thr Ile Asn Glu Glu Ala Ala Glu
 195 200 205

 Trp Asp Arg Leu His Pro Val Gln Ala Gly Pro Val Ala Pro Gly Gln
 210 215 220

 Met Arg Asp Pro Arg Gly Ser Asp Ile Ala Gly Ala Thr Ser Thr Leu
 225 230 240

 Gln Glu Gln Ile Ala Trp Met Thr Ser Asn Pro Pro Val Pro Val Gly
 245 250 255

 Asp Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile Val Arg
 260 265 270

 Met Tyr Ser Pro Val Ser Ile Leu Asp Ile Arg Gln Gly Pro Lys Glu
 275 280 285

 Pro Phe Arg Asp Tyr Val Asp Arg Phe Phe Lys Thr Leu Arg Ala Glu
 290 295 300

 Gln Ala Thr Gln Asp Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val
 305 310 320

 Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Arg Ala Leu Gly Pro
 325 330 335

 Gly Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly
 340 345 350

 Pro Gly His Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln Ala Asn
 355 360 365

 Ser Val Asn Ile Met Met Gln Lys Ser Asn Phe Lys Gly Pro Arg Arg
 370 375 380

 Asn Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala Lys Asn
 385 390 400

Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly
405 410 415

His Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn Phe Leu Gly Lys
420 425 430

Ile Trp Pro Ser His Lys Gly Arg Pro Gly Asn Phe Leu Gln Asn Arg
435 440 445

Ser Glu Pro Ala Ala Pro Thr Val Pro Thr Ala Pro Pro Ala Glu Ser
450 455 460

Phe Arg Phe Glu Glu Thr Thr Pro Ala Pro Lys Gln Glu Pro Lys Asp
465 470 475 480

Arg Glu Pro Tyr Arg Glu Pro Leu Thr Ala Leu Arg Ser Leu Phe Gly
485 490 495

Ser Gly Pro Leu Ser Gln
500

<210> 23

<211> 849

<212> PRT

<213> Human immunodeficiency virus

<400> 23

Met Arg Val Met Gly Ile Leu Lys Asn Tyr Gln Gln Trp Trp Met Trp
1 5 10 15

Gly Ile Leu Gly Phe Trp Met Leu Ile Ile Ser Ser Val Val Gly Asn
20 25 30

Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala Lys
35 40 45

Thr Thr Leu Phe Cys Thr Ser Asp Ala Lys Ala Tyr Glu Thr Glu Val
50 55 60

His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro
65 70 75 80

Gln Glu Ile Val Leu Glu Asn Val Thr Glu Asn Phe Asn Met Trp Lys
85 90 95

Asn Asp Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp
100 105 110

Gln Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu
115 120 125

Lys Cys Arg Asn Val Asn Ala Thr Asn Asn Ile Asn Ser Met Ile Asp
130 135 140

Asn Ser Asn Lys Gly Glu Met Lys Asn Cys Ser Phe Asn Val Thr Thr

145	150	155	160
Glu Leu Arg Asp Arg Lys Gln Glu Val His Ala Leu Phe Tyr Arg Leu			
165	170	175	
Asp Val Val Pro Leu Gln Gly Asn Asn Ser Asn Glu Tyr Arg Leu Ile			
180	185	190	
Asn Cys Asn Thr Ser Ala Ile Thr Gln Ala Cys Pro Lys Val Ser Phe			
195	200	205	
Asp Pro Ile Pro Ile His Tyr Cys Thr Pro Ala Gly Tyr Ala Ile Leu			
210	215	220	
Lys Cys Asn Asn Gln Thr Phe Asn Gly Thr Gly Pro Cys Asn Asn Val			
225	230	235	240
Ser Ser Val Gln Cys Ala His Gly Ile Lys Pro Val Val Ser Thr Gln			
245	250	255	
Leu Leu Leu Asn Gly Ser Leu Ala Lys Gly Glu Ile Ile Ile Arg Ser			
260	265	270	
Glu Asn Leu Ala Asn Asn Ala Lys Ile Ile Ile Val Gln Leu Asn Lys			
275	280	285	
Pro Val Lys Ile Val Cys Val Arg Pro Asn Asn Asn Thr Arg Lys Ser			
290	295	300	
Val Arg Ile Gly Pro Gly Gln Thr Phe Tyr Ala Thr Gly Glu Ile Ile			
305	310	315	320
Gly Asp Ile Arg Gln Ala Tyr Cys Ile Ile Asn Lys Thr Glu Trp Asn			
325	330	335	
Ser Thr Leu Gln Gly Val Ser Lys Lys Leu Glu Glu His Phe Ser Lys			
340	345	350	
Lys Ala Ile Lys Phe Glu Pro Ser Ser Gly Gly Asp Leu Glu Ile Thr			
355	360	365	
Thr His Ser Phe Asn Cys Arg Gly Glu Phe Phe Tyr Cys Asp Thr Ser			
370	375	380	
Gln Leu Phe Asn Ser Thr Tyr Ser Pro Ser Phe Asn Gly Thr Glu Asn			
385	390	395	400
Lys Leu Asn Gly Thr Ile Thr Ile Cys Arg Ile Lys Gln Ile Ile			
405	410	415	
Asn Met Trp Gln Lys Val Gly Arg Ala Met Tyr Ala Pro Pro Ile Ala			
420	425	430	
Gly Asn Leu Thr Cys Glu Ser Asn Ile Thr Gly Leu Leu Leu Thr Arg			
435	440	445	
Asp Gly Gly Lys Thr Gly Pro Asn Asp Thr Glu Ile Phe Arg Pro Gly			

450	455	460
Gly Gly Asp Met Arg Asp Asn Trp Arg Asn Glu Leu Tyr Lys Tyr Lys		
465	470	475
Val Val Glu Ile Lys Pro Leu Gly Val Ala Pro Thr Glu Ala Lys Arg		
485	490	495
Arg Val Val Glu Arg Glu Lys Arg Ala Val Gly Ile Gly Ala Val Phe		
500	505	510
Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Ala Ser Ile		
515	520	525
Thr Leu Thr Val Gln Ala Arg Leu Leu Leu Ser Gly Ile Val Gln Gln		
530	535	540
Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Gln		
545	550	555
Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Thr Arg Ile Leu Ala Val		
565	570	575
Glu Arg Tyr Leu Lys Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys Ser		
580	585	590
Gly Lys Leu Ile Cys Thr Thr Ala Val Pro Trp Asn Ser Ser Trp Ser		
595	600	605
Asn Arg Ser His Asp Glu Ile Trp Asp Asn Met Thr Trp Met Gln Trp		
610	615	620
Asp Arg Glu Ile Asn Asn Tyr Thr Asp Thr Ile Tyr Arg Leu Leu Glu		
625	630	635
Glu Ser Gln Asn Gln Glu Lys Asn Glu Lys Asp Leu Leu Ala Leu		
645	650	655
Asp Ser Trp Gln Asn Leu Trp Asn Trp Phe Ser Ile Thr Asn Trp Leu		
660	665	670
Trp Tyr Ile Lys Ile Phe Ile Met Ile Val Gly Gly Leu Ile Gly Leu		
675	680	685
Arg Ile Ile Phe Ala Val Leu Ser Ile Val Asn Arg Val Arg Gln Gly		
690	695	700
Tyr Ser Pro Leu Pro Phe Gln Thr Leu Thr Pro Asn Pro Arg Glu Pro		
705	710	715
Asp Arg Leu Gly Arg Ile Glu Glu Gly Gly Glu Gln Asp Arg Gly		
725	730	735
Arg Ser Ile Arg Leu Val Ser Gly Phe Leu Ala Leu Ala Trp Asp Asp		
740	745	750

Leu Arg Ser Leu Cys Leu Phe Ser Tyr His Arg Leu Arg Asp Phe Ile
755 760 765

Leu Ile Ala Ala Arg Val Leu Glu Leu Leu Gly Gln Arg Gly Trp Glu
770 775 780

Ala Leu Lys Tyr Leu Gly Ser Leu Val Gln Tyr Trp Gly Leu Glu Leu
785 790 795 800

Lys Lys Ser Ala Ile Ser Leu Leu Asp Thr Ile Ala Ile Ala Val Ala
805 810 815

Glu Gly Thr Asp Arg Ile Ile Glu Phe Ile Gln Arg Ile Cys Arg Ala
820 825 830

Ile Arg Asn Ile Pro Arg Arg Ile Arg Gln Gly Phe Glu Ala Ala Leu
835 840 845

Gln

<210> 24

<211> 855

<212> PRT

<213> Human immunodeficiency virus

<400> 24

Met Arg Val Arg Gly Ile Leu Arg Ser Trp Gln Gln Trp Trp Ile Trp
1 5 10 15

Gly Ile Leu Gly Phe Trp Ile Cys Ser Gly Leu Gly Asn Leu Trp Val
20 25 30

Thr Val Tyr Asp Gly Val Pro Val Trp Arg Glu Ala Ser Thr Thr Leu
35 40 45

Phe Cys Ala Ser Asp Ala Lys Ala Tyr Glu Lys Glu Val His Asn Val
50 55 60

Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro Gln Glu Ile
65 70 75 80

Glu Leu Asp Asn Val Thr Glu Asn Phe Asn Met Trp Lys Asn Asp Met
85 90 95

Val Asp Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp Gln Ser Leu
100 105 110

Lys Pro Arg Val Lys Leu Thr Pro Leu Cys Val Thr Leu Lys Cys Thr
115 120 125

Asn Tyr Ser Thr Asn Tyr Ser Asn Thr Met Asn Ala Thr Ser Tyr Asn
130 135 140

Asn Asn Thr Thr Glu Glu Ile Lys Asn Cys Thr Phe Asn Met Thr Thr

145	150	155	160												
Glu	Leu	Arg	Asp	Lys	Lys	Gln	Gln	Val	Tyr	Ala	Leu	Phe	Tyr	Lys	Leu
				165				170						175	
Asp	Ile	Val	Pro	Leu	Asn	Ser	Asn	Ser	Ser	Glu	Tyr	Arg	Leu	Ile	Asn
	180					185						190			
Cys	Asn	Thr	Ser	Ala	Ile	Thr	Gln	Ala	Cys	Pro	Lys	Val	Ser	Phe	Asp
	195					200						205			
Pro	Ile	Pro	Ile	His	Tyr	Cys	Ala	Pro	Ala	Gly	Tyr	Ala	Ile	Leu	Lys
	210					215					220				
Cys	Lys	Asn	Asn	Thr	Ser	Asn	Gly	Thr	Gly	Pro	Cys	Gln	Asn	Val	Ser
	225					230			235				240		
Thr	Val	Gln	Cys	Thr	His	Gly	Ile	Lys	Pro	Val	Val	Ser	Thr	Pro	Leu
				245				250					255		
Leu	Leu	Asn	Gly	Ser	Leu	Ala	Glu	Gly	Gly	Glu	Ile	Ile	Ile	Arg	Ser
		260					265					270			
Lys	Asn	Leu	Ser	Asn	Asn	Ala	Tyr	Thr	Ile	Ile	Val	His	Leu	Asn	Asp
		275					280					285			
Ser	Val	Glu	Ile	Val	Cys	Thr	Arg	Pro	Asn	Asn	Asn	Thr	Arg	Lys	Gly
		290				295					300				
Ile	Arg	Ile	Gly	Pro	Gly	Gln	Thr	Phe	Tyr	Ala	Thr	Glu	Asn	Ile	Ile
	305				310				315				320		
Gly	Asp	Ile	Arg	Gln	Ala	His	Cys	Asn	Ile	Ser	Ala	Gly	Glu	Trp	Asn
				325				330					335		
Lys	Ala	Val	Gln	Arg	Val	Ser	Ala	Lys	Leu	Arg	Glu	His	Phe	Pro	Asn
				340				345					350		
Lys	Thr	Ile	Glu	Phe	Gln	Pro	Ser	Ser	Gly	Gly	Asp	Leu	Glu	Ile	Thr
				355			360					365			
Thr	His	Ser	Phe	Asn	Cys	Arg	Gly	Glu	Phe	Phe	Tyr	Cys	Asn	Thr	Ser
				370		375					380				
Lys	Leu	Phe	Asn	Ser	Ser	Tyr	Asn	Gly	Thr	Ser	Tyr	Arg	Gly	Thr	Glu
					385		390			395			400		
Ser	Asn	Ser	Ser	Ile	Ile	Thr	Leu	Pro	Cys	Arg	Ile	Lys	Gln	Ile	Ile
					405			410					415		
Asp	Met	Trp	Gln	Lys	Val	Gly	Arg	Ala	Ile	Tyr	Ala	Pro	Pro	Ile	Glu
				420			425					430			
Gly	Asn	Ile	Thr	Cys	Ser	Ser	Ile	Thr	Gly	Leu	Leu	Leu	Ala	Arg	
				435			440					445			
Asp	Gly	Gly	Leu	Asp	Asn	Ile	Thr	Thr	Glu	Ile	Phe	Arg	Pro	Gln	Gly

450	455	460
Gly Asp Met Lys Asp Asn Trp Arg Asn Glu Leu Tyr Lys Tyr Lys Val		
465	470	475
Val Glu Ile Lys Pro Leu Gly Val Ala Pro Thr Glu Ala Lys Arg Arg		
485	490	495
Val Val Glu Arg Glu Lys Arg Ala Val Gly Ile Gly Ala Val Ile Phe		
500	505	510
Gly Phe Leu Gly Ala Ala Gly Ser Asn Met Gly Ala Ala Ser Ile Thr		
515	520	525
Leu Thr Ala Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln Gln Gln		
530	535	540
Ser Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Met Leu Gln Leu		
545	550	555
Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Val Leu Ala Ile Glu		
565	570	575
Arg Tyr Leu Lys Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys Ser Gly		
580	585	590
Lys Leu Ile Cys Thr Thr Val Pro Trp Asn Ser Ser Trp Ser Asn		
595	600	605
Lys Thr Gln Gly Glu Ile Trp Glu Asn Met Thr Trp Met Gln Trp Asp		
610	615	620
Lys Glu Ile Ser Asn Tyr Thr Gly Ile Ile Tyr Arg Leu Leu Glu Glu		
625	630	635
Ser Gln Asn Gln Gln Glu Gln Asn Glu Lys Asp Leu Leu Ala Leu Asp		
645	650	655
Ser Arg Asn Asn Leu Trp Ser Trp Phe Asn Ile Ser Asn Trp Leu Trp		
660	665	670
Tyr Ile Lys Ile Phe Ile Met Ile Val Gly Gly Leu Ile Gly Leu Arg		
675	680	685
Ile Ile Phe Ala Val Leu Ser Ile Val Asn Arg Val Arg Gln Gly Tyr		
690	695	700
Ser Pro Leu Ser Phe Gln Thr Leu Thr Pro Asn Pro Arg Gly Leu Asp		
705	710	715
Arg Leu Gly Arg Ile Glu Glu Gly Gly Glu Gln Asp Arg Asp Arg		
725	730	735
Ser Ile Arg Leu Val Gln Gly Phe Leu Ala Leu Ala Trp Asp Asp Leu		
740	745	750

Arg Ser Leu Cys Leu Phe Ser Tyr His Arg Leu Arg Asp Leu Ile Leu
755 760 765

Val Thr Ala Arg Val Val Glu Leu Leu Gly Arg Ser Ser Pro Arg Gly
770 775 780

Leu Gln Arg Gly Trp Glu Ala Leu Lys Tyr Leu Gly Ser Leu Val Gln
785 790 795 800

Tyr Trp Gly Leu Glu Leu Lys Lys Ser Ala Thr Ser Leu Leu Asp Ser
805 810 815

Ile Ala Ile Ala Val Ala Glu Gly Thr Asp Arg Ile Ile Glu Val Ile
820 825 830

Gln Arg Ile Tyr Arg Ala Phe Cys Asn Ile Pro Arg Arg Val Arg Gln
835 840 845

Gly Phe Glu Ala Ala Leu Gln
850 855

<210> 25

<211> 20

<212> PRT

<213> Human immunodeficiency virus

<400> 25

Asp Ile Lys Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg
1 5 10 15

Phe Phe Lys Thr
20

<210> 26

<211> 60

<212> DNA

<213> Human immunodeficiency virus

<400> 26

gacataaaac aaggacaaaa agagcccttt agagactatg tagaccggtt ctttaaaacc 60

<210> 27

<211> 20

<212> PRT

<213> Human immunodeficiency virus

<400> 27

Asp Ile Arg Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg
1 5 10 15

Phe Phe Lys Thr
20

<210> 28
<211> 47
<212> PRT
<213> Human immunodeficiency virus

<400> 28
Thr Ile Thr Ile Thr Cys Arg Ile Lys Gln Ile Ile Asn Met Trp Gln
1 5 10 15

Lys Val Gly Arg Ala Met Tyr Ala Pro Pro Ile Ala Gly Asn Leu Thr
20 25 30

Cys Glu Ser Asn Ile Thr Gly Leu Leu Leu Thr Arg Asp Gly Gly
35 40 45

<210> 29
<211> 48
<212> PRT
<213> Human immunodeficiency virus

<400> 29
Ser Ile Ile Thr Leu Pro Cys Arg Ile Lys Gln Ile Ile Asp Met Trp
1 5 10 15

Gln Lys Val Gly Arg Ala Ile Tyr Ala Pro Pro Ile Glu Gly Asn Ile
20 25 30

Thr Cys Ser Ser Ser Ile Thr Gly Leu Leu Leu Ala Arg Asp Gly Gly
35 40 45

<210> 30
<211> 2469
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PR975(+)

<400> 30
gtcgacgcca ccatggccga ggccatgagc caggccacca ggcacaacat cctgatgcag 60
cgcaact tcaaggccc caagcgcata atcaagtct tcaactgcgg caaggaggc 120
cacatcgccc gcaactgcgg cgccccccgc aagaagggt gctgaaatg cggcaaggag 180
ggcaccaga tgaaggactg caccgagcgc caggccaaact tcttccgcga ggacctggcc 240
ttcccccagg gcaaggcccq cgagttcccc agcgagcaga accgcgccaa cagccccacc 300
agccgcgagc tgcagggtcg cgccgacaac ccccgccagcg aggccggcgc cgagcgcac 360
ggcacccctga acttccccca gatcacccctg tggcagcgc ccctggtag catcaaggtg 420
ggccggccaga tcaaggaggc cctgctggac accggcgccg acgacaccgt gctggaggag 480
atgagcctgc cccgcgactg gaagccccaa atgatcgccg gcatcgccg cttcatcaag 540
gtgcgcctgt acgaccagat cctgatcgag atctgcggca agaaggccat cggcaccgtg 600
ctgatcgcc ccaccccccgt gaacatcatc ggccgcaca tgctgaccca gctgggctgc 660
accctgaact tccccatcgag ccccatcgag accgtgcccgt tgaagctgaa gcccggcatg 720
gacggcccca aggtgaagca gtggccctg accgaggaga agatcaaggc cctgaccgccc 780
atctgcgagg agatggagaa ggaggggcaag atcaccaaga tcggcccccga gaacccttac 840
aacaccccccgt tggtcccat caagaagaag gacagcacca agtggcgcaa gctgggtggac 900
ttccgcgagc tgaacaagcg cacccaggac ttctggagg tgcagctggg catccccac 960

cccgcccggcc tgaagaagaa gaagagcgtg accgtgctgg acgtggcgaa cgcctacttc 1020
 agcgtcccc tggacgagga ctccgcgaag tacaccgcct tcaccatccc cagcatcaac 1080
 aacgagaccc ccggcatccg ctaccagtac aacgtgctgc cccaggcgtg gaagggcagc 1140
 cccagcatct tccagagcag catgaccaag atcctggagc cttccgcgc cgcacccccc 1200
 gagatcgtga tctaccagta catggacgac ctgtacgtgg gcagcgcacct ggagatcgac 1260
 cagcacccgc ccaagatcga ggagctgcgc aagcacctgc tgctggggg cttcaccacc 1320
 cccgacaaga agcaccagaa ggagcccccc ttctgttggaa tggctacgaa gctgcacccccc 1380
 gacaagtggaa ccgtgcagcc catcgacgtc cccgagaagg agagctggac cgtgaacgac 1440
 atccagaagc tggtggcaa gctgaactgg gccagccaga tctacccgg catcaagggtg 1500
 cgccagctgt gcaagctgct ggcggcgcc aaggccctga cgcacatgtt gcccctgacc 1560
 gagggggccg agctggagct ggccgagaac cgcgagatcc tgcgcgagcc cgtgcacccgc 1620
 gtgtactacg accccagcaa ggacctggtg gccgagatcc agaaggcagg ccacgaccag 1680
 tggacctacc agatctacca ggagcccttc aagaacctga agaccggcaa gtacgccaag 1740
 atgcgcaccc cccacaccaa cgacgtgaag cagctgaccg aggccgtgca gaagatcgcc 1800
 atggagagca tcgtgatctg gggcaagacc cccaagttcc gcctgcccatt ccagaaggag 1860
 acctgggaga cctggtgac cgactactgg caggccaccc ggatccccga gtgggagttc 1920
 gtgaacaccc ccccccgtt gaagctgtgg taccagctgg agaaggagcc catcatcgac 1980
 gcccggaccc tctacgtggaa cggcgccgc aaccgcgaga ccaagatcg caaggccggc 2040
 tacgtgaccg accggggccg gcagaagatc gtgagcctga ccgagaccac caaccagaag 2100
 accgagctgc aggccatcca gctggccctg caggacagcg gcagcggaggtaaacatcg 2160
 accgacagcc agtaccccgtt gggcatcatc caggcccgac ccgacaagag cgagacgag 2220
 ctgtgtaacc agatcatcga gcagctgatc aagaaggaga aggtgtaccc gagctgggtg 2280
 ccccccaca agggcatcgga cgcaacgacg cagatcgaca agctggtgag caagggcatc 2340
 cgcaagggtgc tttccctggaa cggcatcgat ggcggcatcg tgatctacca gtacatggac 2400
 gacctgtacg tggcagcgg cggcccttagg atcgattaaa agcttcccg ggcttagcacc 2460
 ggtgaattc 2469

<210> 31
 <211> 2463
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: PR975YM

<400> 31

gtcgacgcca ccatggccga ggccatgagc caggccacca ggcacccat cctgatgcag 60
 cgcagcaact tcaaggcccc caagcgcatc atcaagtgt tcaactgcgg caaggaggc 120
 cacatcgccc gcaactgcgg cggcccccgc aagaagggt gctggaaatg cggcaaggag 180
 ggcaccaga tgaaggactg caccgagcgc caggccaaact tcttccgcga ggacctggcc 240
 ttccccccagg gcaaggccccg cgagttcccc agcgagcaga accgcgcacca cagccccacc 300
 agccgcgagc tgcaggtgcg cggcacaac cccgcagcg aggccggcgc cgagcgcac 360
 ggcaccctga acttccccca gatcaccctg tggcagcgcc ccctggtag catcaagggt 420
 ggcggccaga tcaaggaggc cctgctggac accggcccg acgacaccgt gctggaggag 480
 atgagcctgc cccgcaagtg gaagcccaag atgatcgccg gcatcgccgg cttcatcaag 540
 gtgcgcactg acgaccagat cctgatcgat atctgcggca agaaggccat cggcaccgt 600
 ctgatcgcc cccatccccgtt gaacatcatc ggcgcacca tgctgacccca gctgggctgc 660
 accctgaact tccccatcag cccatcgag accgtgcccc tgaagctgaa gcccggcatg 720
 gacggccccca aggtgaagca gtggccctg accgaggaga agatcaaggc cctgaccgac 780
 atctgcgagg agatggagaa ggagggcaag atcacaaga tcggcccccga gaaccctac 840
 aacacccccc tttccctggaa caagaagaag gacagcacca agtggcgcaaa gctggtgac 900
 ttccgcgagc tgaacaagcg caccgcggat ttctggggagg tgcagctggg catccccac 960
 cccgcccggcc tgaagaagaa gaagagcgtg accgtgctgg acgtggcgaa cgcctacttc 1020
 agcgtcccc tggacgagga ctccgcgaag tacaccgcct tcaccatccc cagcatcaac 1080
 aacgagaccc ccggcatccg ctaccagtac aacgtgctgc cccaggcgtg gaagggcagc 1140
 cccagcatct tccagagcag catgaccaag atcctggagc cttccgcgc cgcacccccc 1200
 gagatcgtga tctaccagtg cccctgtac gtggcagcg acctggagat cggccagcac 1260

cgcgccaaga tcgaggagct gcgcaagcac ctgctgcgt ggggcttcac caccggac 1320
 aagaaggcacc agaaggagcc ccccttcctg tggatgggct acgagctgca ccccgacaag 1380
 tggaccgtgc agcccatcga gctgcccggag aaggagagct ggaccgtgaa cgacatccag 1440
 aagctggtgg gcaagctgaa ctggggcggc cagatctacc cccggatcaa ggtgcgcccag 1500
 ctgtgcaagc tgctgcggg cgccaaaggcc ctgaccgaca tcgtgcccct gaccgaggag 1560
 gccgagctgg agctggccga gaaccgcggag atcctgcgcg agcccgtgca cggcgtgtac 1620
 tacgacccca gcaaggacct ggtggccggag atccagaagc aggggccacga ccagtggacc 1680
 taccagatct accaggagcc cttaagaac ctgaagaccg gcaagtacgc caagatgcgc 1740
 accggccaca ccaacgacgt gaagcagctg accggaggccg tgcagaagat cgccatggag 1800
 agcatcgta tctgggcaaa gaccccaag ttccgcctgc ccatccagaa ggagacctgg 1860
 gagacctggt ggaccgacta ctggcaggcc acctggatcc ccgagtggga gttcgtgaac 1920
 accccccccc tggtaagct gtggattaccag ctggagaagg agcccatcat cggcgccgag 1980
 accttctacg tggacgcgcg cgccaaaccgc gagaccaaga tcggcaaggc cggctacgtg 2040
 accgaccggg gccggcagaa gatcggtgac ctgaccgaga ccaccaacca gaagaccgag 2100
 ctgcaggcca tccagctggc cctgcaggac agcggcagcg aggtgaacat cgtgaccgac 2160
 agccagtacg ccctggcat catccaggcc cagcccgaca agagcggagag cgagctggtg 2220
 aaccagatca tcgagcagct gatcaagaag gagaagggtgt acctgagctg ggtgcccggc 2280
 cacaaggcga tcggcggcaaa cgagcagatc gacaagctgg tgtagcaaggg catccgcaag 2340
 gtgctttcc tggacgcata cgatggcggc atcgatct accagtacat ggacgacctg 2400
 tacgtggca gccccggccc taggatcgat taaaagcttc ccggggctag caccgggtgaa 2460
 ttc 2463

<210> 32
 <211> 2457
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: PR975YMWM

<400> 32

gtgcacgcca ccatggccga ggcacatgagc caggccacca ggcaccaacat cctgatgcag 60
 cgcaccaact tcaaggccc caagcgcata atcaagtgt tcaactgcgg caaggaggc 120
 cacatcgccc gcaactgccc cgccccccgc aagaagggt gctggaaatg cggcaaggag 180
 ggcacccaga tgaaggactg caccgcgcg caggccaaact tcttcgcga ggacctggcc 240
 ttccccccagg gcaaggcccgg cgagttcccc acgcggcaga accgcgcacaa cagcccccacc 300
 agccgcgagc tgcagggtgcg cggcgcacaac cccgcgcg aggccggcgc cgagcgcac 360
 ggcaccccta acttccccca gatcacccctg tggcagcgc ccctggtag catcaagggt 420
 ggcggccaga tcaaggaggc cctgctggac accggcgcgg acgcacccgt gctggaggag 480
 atgagcctgc cccgcgaatg gaagcccaag atgatcgccg gcatcgccgg cttcatcaag 540
 gtgcgcctgt acgaccagat cctgatcgat atctgcggca agaaggccat cggcaccgtg 600
 ctgatcgcc ccaacccctgt gaacatcatc ggcgcacaaca tgctgacca gctggctgc 660
 accctgaact tccccatcag ccccatcgag accgtgcgg tgaagctgaa gccggcatg 720
 gacggcccca aggtgaagca gtggccctgt accggaggaga agatcaaggc cctgaccgac 780
 atctgcgagg agatggagaa ggagggcaag atcaccacaa tggccccca gAACCCCTAC 840
 aacacccccc tggtcccat caagaagaag gacagcacca agtggcgc gctggtgac 900
 ttccgcgagg tgaacaagcg caccaggac ttctggagg tgcagctgg catcccccac 960
 cccgcggcc tgaagaagaa gaagagctg accgtgcgtg acgtggcga cgcctacttc 1020
 agcgtgcggcc tggacgagga ctccgcacat tacaccgcct tcaccatccc cagcatcaac 1080
 aacgagaccc cccgcaccc ctaccgtac aacgtgcgtc cccagggtg gaagggcagc 1140
 cccagcatct tccagagcag catgaccaag atcctggagc cttccgcgc cgcacacccc 1200
 gagatcgta tctaccaggc cccctgtac gtggcgcgg acctggagat cggccac 1260
 cgcgccaaga tcgaggagct ggcacaccc ctgctgcgt ggggcttcac caccggac 1320
 aagaaggcacc agaaggagcc ccccttcctg cccatcgacg tgcacccca caagtggacc 1380
 gtgcagccca tcgagctgcc cgagaaggag agctggaccg tgaacgacat ccagaagctg 1440
 gtggcgaagc tgaactggc cagccagatc taccggca tcaaggtgcg ccagctgtgc 1500
 aagctgcgtc gccgcggccaa gcccctgacc gacatcgatc ccctgaccgaa ggaggccgag 1560

<210> 33
<211> 9781

<212> DNA
<213> Human immunodeficiency virus

<400> 33
tggaaagggtt aatttactcc aagaaaaggc aagaaatcct tgatttgtgg gtctatcaca 60
cacaaggctt ctcccgtat tggcaaaact acacaccggg gccagggtc agatatccac 120
tgaccttgg atggtgctac aagctagtgc cagttgaccc agggaggtg gaagaggcca 180
acggaggaga agacaactgt ttgctacacc ctatgagcca acatggagca gaggatgaag 240
atagagaagt attaaagtgg aagtttgaca gcctccttagc acgcagacac atggcccg 300
actacatcc ggagtattac aaagactgct gacacagaag ggactttccg cctgggactt 360
tccactgggg cggtccggga ggtgtggct gggcgggact tggagtggt caaccctcag 420
atgctgcata taagcagctg ctttcgcct gtactgggtc tcttcggtt gaccagatct 480
gagcctggga gcctctggc tatctaggga acccactgct taagctcaa taaagcttc 540
cttgagtgct ttaagtagtg tggcccatc tggtgtgtga ctctggtaac tagagatccc 600
tcagaccctt tgggttagtg tggaaaatct ctagcagtg cgcccaaca gggaccagaa 660
agtgaaagtg agaccagagg agatctctcg acgcaggact cggcttgctg aagtgcacac 720
ggcaagaggc gagaggggchg gctggtgagt acgccaatt tacttgacta gcggaggcta 780
gaaggagaga gatgggtgcg agagcgtcaa tattaagcgg cgaaaaatta gataaatggg 840
aaagaattag gttaaaggcca gggggaaaga aacattatat gttaaaacat ctagtatggg 900
caagcaggga gctggaaaga tttgcactta accctggcct gttagaaaca tcagaaggct 960
gtaaacaaat aataaaacag ctacaaccag ctcttcagac aggaacagag gaacttagat 1020
cattattcaa cacagtagca actctctatt gtgtacataa agggatagag gtacgagaca 1080
ccaaggaagc cttagacaag atagaggaag aacaaaacaa atgtcagcaa aaagcacaac 1140
aggcaaaagc agctgacgaa aaggtcagtc aaaattatcc tatagtacag aatgccccaaag 1200
ggcaaatggt acaccaagct atatcaccta gaacattgaa tgcattggata aaagtaatag 1260
agggaaaggc ttcaatcca gggaaatac ccatgtttac agcattatca gaaggagcca 1320
ccccacaaga ttaaacaca atgttaaata cagtgggggg acatcaagca gccatgcaaa 1380
tgtaaaaaga taccatcaat gaggaggctg cagaatggg taggacacat ccagtacatg 1440
cagggcctgt tgaccaggc cagatgagag aaccaagggg aagtgcacata gcaggaacta 1500
ctagtaccct tcaggaacaa atagcatgga tgacaagtaa tccacctatt ccagtagaaag 1560
acatctataa aagatggata attctgggt taaataaaat agtaagaatg tatagccctg 1620
ttagcatttt ggacataaaa caaggccaa aagaaccctt tagagactat gtagaccgg 1680
tcttaaaaac cttaaagagct gaacaagcta cacaagatgt aaagaattgg atgacagaca 1740
ccttgttggc cccaaatgct aacccagatt gtaagaccat ttaagagca ttaggaccag 1800
ggcctcatt agaagaaatg atgacagcat gtcagggagt gggaggacct agccataaaag 1860
caagagtgtt ggctgaggca atgagccaag caaacagtaa catactagtg cagagaagca 1920
atttaaagg ctctaacaga attattaaat gttcaactg tggcaaagta gggcacatag 1980
ccagaaattg cagggccctt agggaaaagg gctgttgaa atgtggacag gaaggacacc 2040
aatgaaaga ctgtactgag aggccaggcta attttttagg gaaaatttqg cttcccaaca 2100

agggaggccc agggaaatttc ctccagaaca gaccagagcc aacagccccca ccagcagaac 216
caacagcccc accagcagag agcttcagg tgcaggagac aaccccccgtg ccgaggaagg 2220
agaaaagagag ggaaccttta acttcctca aatcactttt tggcagcgac cccttgctc 2280
aataaaagta gagggccaga taaaggaggc tctcttagac acaggagcag atgatacagt 2340
attagaagaa atagatttgc cagggaaatg gaaaccaaaa atgatagggg gaattggagg 2400
ttttatcaa gtaagacagt atgatcaa atctatagaa atttggaa aaaaggctat 2460
aggtacagta tttagtagggc ctacaccagt caacataattt ggaagaaatc tgtaactca 2520
gcttggatgc acactaaattt ttccaatttgc tccttattgaa actgttaccag taaaattaaa 2580
accaggaatg gatggcccaa aggtcaaaca atggccattt acagaagaaa aaataaaagc 2640
attaacagca atttgtgagg aaatggagaa ggaaggaaaa attacaaaaaa ttgggcctga 2700
taatccatat aacactccag tatggccat aaaaaaagaag gacagtacta agtggagaaa 2760
atttagtagat tttagggaaac tcaataaaag aactcaagac ttttggaaat ttcaattttagg 2820
aataccacac ccagcaggat taaaagaa aaaatcagtg acagtgcgt atgtggggga 2880
tgcataat ttcagttcctt tagatgaaag cttcaggaaa tatactgc taccatacc 2940
tagtataaac aatgaaacac cagggattt atatcaat taatgtctgc cacaggatg 3000
gaaaggatca ccagcaatata tccagatg catgacaaaa atcttagagc cttcagagc 3060
aaaaaaatcca gacatagttt tctatcaata tatggatgac ttgtatgtat gatctgactt 3120
agaaaataggg caacatagag caaaaataga agagtttggg gaacatttt tgaaatgggg 3180
atttacaaca ccagacaaga aacatcaaaa agaacccca ttttttggg tgggtatga 3240
actccatcct gacaaatggg cagtacaacc tatactgc tccagaaaagg atagttggac 3300
tgtcaatgtat atacagaagt tagtggaaa attaaactgg gcaagtca gttaccagg 3360
gattaaagta aggcaactct gttaactcct cagggggggc aaagcactaa cagacatagt 3420
accactaact gaagaagcag aatttgcattt ggcagagaac agggaaattt taagagaacc 3480
agtacatgga gtatattatg atccatcaaaa agacttgata gctgaaatac agaaacaggg 3540
gcatgaacaa tggacatatac aaatttatca agaaccattt aaaaatctga aaacaggaa 3600
gtatgcaaaa atgaggacta cccacactaa tgatgtaaaa cagttacag aggcagtgc 3660
aaaaatagcc atggaaagca tagtaatatg gggaaagact cctaaattt gactaccat 3720
ccaaaaagaa acatgggaga catggggac agactattgg caagccaccc ggtatccctga 3780
gtgggagttt gttaataccctt ctcccttagt aaaattatgg taccactag aaaaagatcc 3840
catagcagga gttagaaactt tctatgtata tggagcaact aataggaaatg ctaaaatagg 3900
aaaagcaggg tatgttactg acagaggaag gcagaaaattt gttactctaa ctaacacaac 3960
aaatcagaag actgagttac aagcaattca gtagctctg caggattcag gatcagaagt 4020
aaacatagta acagactcac agtatgcattt aggaatcattt caagcacaac cagataagag 4080
tgactcagag atatttaacc aaataataga acagttata aacaaggaaa gatatctacct 4140
gtcatggta ccagcacata aaggaattgg gggaaatgaa caagtagata aatttagtaag 4200
taagggattt agaaaagtgt tgttctaga tggaaatagat aaagctcaag aagagcatga 4260
aaggtaccac agcaattggg gagcaatggc taatgagttt aatgtccac ccatagtagc 4320
aaaagaaata gtagctagct gtgataatg tcaatggaaa gggaaagcca tacatggaca 4380
agtcgactgt agtccaggaa tatggcaattt agattgtacc catttagagg gaaaatcat 4440
cctggtagca gtccatgtat ctatggcta catggaaagca gaggttatcc cagcagaaac 4500
aggacaagaa acagcatattt ttatattaaa attagcagga agatggccag tcaaagtaat 4560
acatacagac aatggcagta attttaccag tactgcagg aaggcagcc gttggtggc 4620
aggtatccaa caggaatttg gaattccctt caatccccaa agtcagggag tggtagaaatc 4680
catgaataaa gaattaaaga aaataatagg acaagtaaga gatcaagctg agcaccttaa 4740
gacagcagta caaatggcag tattcattca caatttaaa agaaaagggg gaattggggg 4800
gtacagtgc gggaaagaa taatagacat aatagcaaca gacataaaaaa ctaaaagaatt 4860
acaaaaaacaa attataagaa ttcaaaat tccgggtttt tacagagaca gcagagaccc 4920
tatttggaaa ggaccagccc aactactctg gaaaggtgaa ggggttagtag taatagaaga 4980
taaaggtgac ataaaaggtag tccaaggag gaaagcaaaa atcatttagag attatggaaa 5040
acagatggca ggtgctgatt gtgtggcagg tggacaggat gaagattaga gcatggaaata 5100
gtttagtaaa gcaccatattt tataatcaa ggagagctag tggatggtc tacagacatc 5160
attttggaaag cagacatcca aaagtaagtt cagaagtaca tatcccattt gggatgcta 5220
gatttagtaat aaaaacatattt tgggtttgc agacaggaga aagagattgg catttggc 5280
atggagtc catagaatgg agactgagag aatacagcac acaagtagac cctgacccctt 5340
cagaccagct aattcacatcg cattattttgc attgttttac agaatctgcc ataagacaag 5400
ccatatttagg acacatagttt tttccttagt gtgactatca agcaggacat aagaaggtag 5460
gatctctgca atacttggca ctgacagcat tgataaaaacc aaaaaaqaga aqccaccc 5520

tgccatgt tagaaaatta gtagaggata gatggAACGA cccccAGAAg accAGGGGCC 5580
 gcagAGGGAA ccatacaatg aatggacact agagattcta gaagaACTCA aGcAGGAAGC 5640
 tgcAGACAC ttccTAGAC catggCTCA tagCTTAGGA caatATATCT atgAAACCTA 5700
 tggggataCT tggACGGGAG ttGAAGCTAT aataAGAGTA ctGCAACAC tactGTTCAT 5760
 tcatttcAGA attggatGCC aacatAGCAG aatAGCAtC ttGCGACAGA gaAGAGCAAG 5820
 aaatggAGCC agtagatCCT aaactAAAGC cctggAACCA tccAGGAAGC caACCTAAA 5880
 cAGCTTGTAA taattGCTT tgcaAAACACT gtAGCTATCA ttGTCAGTT tgCTTCAGA 5940
 caaaAGGTTT aggCATTCC tatGGCAGGA agaAGCGGAG acAGCgACGA aGcGCTCCTC 6000
 caAGTGGTGA agatcatCAA aatCCTCTAT caaAGCAGTA agtACACATA gtagATGTA 6060
 tggtaAGTTT aagtTTATTt aaaggAGTAG attATAGATT aggAGTAGGA gcATTGATAG 6120
 tagcACTAAT catAGCAATA atAGTGTGGA ccatAGCATA tatAGAATAT aggAAATTGG 6180
 taagacAAAAA gaaaATAGAC tggTTAATTa aaAGAAATTAG ggAAAGAGCA gaAGACAGTG 6240
 gcaatgAGAG tgatGGGAC acAGAAGAAt tgtcaACAAt ggtGGATATg gggcatCTTA 6300
 ggcttCTGGA tgctaATGAT ttGTAACACG gaggACTGT gggTCACAGT ctACTATGGG 6360
 gtacCTGTGT ggAGAGAAgC AAAAActACT ctATTCTGT catCAGATGC taaAGCATAT 6420
 gagacAGAGAG tgcATAATGT ctGGGCTACA catGCTGTG tacCCACAGA ccccaACCCa 6480
 caagAAATAG ttttGGGAAA tGtaACAGAA aatttTAATA tGtGAAAaaa taACATGGCA 6540
 gatcAGATGc atGAGGATAT aatcAGTTA tGGATCAA GcCTAAAGCC atGtGTAAG 6600
 ttGACCCAC tctGTGTCAC ttAAACTGT acAGATAAA atGTTACAGG taATAGAACT 6660
 gttacAGGTA atacaAAATGA tACCAATATT gcaaATGCTA catATAAGTA tgaAGAAATG 6720
 AAAAAttGCT ctTTCAATGC aaccACAGAA ttaAGAGATA agAAACATAA agAGTATGCA 6780
 ctCTTTATA aactTGATAT agTACCACTT aatGAAAATA gtaACAACTT tacATATAGA 6840
 ttaataAAATT gcaATACCTC aaccATAACA caAGCCTGTC caaAGGTCTC tttGACCCG 6900
 attcCTATAc attACTGTGc tccAGCTGAT tatGCGATTc taaAGTGTAA taATAAGACA 6960
 ttcaATGGGA caggACCATG ttATAATGTC agcACAGTAC aatGtACACA tGGAATTAAg 7020
 ccAGTGGTAT caACTCAACT actGTTAAAT ggtAGTCTAG cAGAAGAAGG gataATAATT 7080
 agatCTGAAA attTGACAGA gaATAACAAA acaATAATAG tacATCTAA tGAATCTGTA 7140
 gagattaATT gtacaAGGCC caACAATAAT acaAGGAAAAA gTGTAAAGGAT aggACCAGGA 7200
 caAGCATTCT atGCAACAAA tgACGTAATA ggAAACATAA gacaAGCACA ttGTAACATT 7260
 agtACAGATA gatGGAAATAA aactTTACAA cAGGTAATGA AAAAAttAGG agAGCATTc 7320
 CCTAAATAAA CAATAAAATT tGAACCACAT GcAGGAGGG AtCTAGAAAT tacaATGcAT 7380
 agCTTAATT gtagAGGAGA ATTtTCTAT tgcaATACAT caAAACCTGT taATAGTACA 7440
 tactACCTA agaATGGTAC atACAATAAC aatGGTAATT caAGCTTACc catCACACTC 7500
 caATGCAAAA taaaACAAAT tGtACGCTAG tggCAAGGG tagGACAAGC aatGtATGCC 7560
 CCTCCCATTG caggAAACAT aacATGTAGA tcaaACATCA cAGGAATACT attGACACGT 7620
 gatGGGGAT ttaACAACAC aaACAACGAC acAGAGGAGA cATTcAGACC tggAGGAGGA 7680
 gatATGAGGg ataACTGGAG aagtGAATTt tataAAATATA aagtGGTGA aAtTAAGCCA 7740
 ttGGAATAG cacCCACTA gGCAAAAGA agAGTGGTGC agAGAAAAAA aAGAGCAGTG 7800
 ggaATAGGAG ctGTGTTcCT tggTTCTG ggAGCAGCAG gaAGCACTAT gggcgcAGCG 7860
 tcaataACGC tgacGGTACA gGCCAGACAA ctGTTGTCtG gtATAGTGCa acAGCAAAGC 7920
 aatttGCTGA aggCTATAGA ggcGCAACAG catATGTGc aactCACAGT ctGGGGCATT 7980
 aAGCAGCTCC aggCGAGAGT CCTGGCTATA gaaAGATAcc taaAGGATCA acAGCTCCTA 8040
 gggATTTGGG gctGCTCTGG aagACTCATC tgcACCACTG ctGTGCTTg gaACTCCAGT 8100
 tggAGTAATA aatCTGAAGC agatATTGG gataACATGA ctTGGATGCA gtGGGATAGA 8160
 gaaATTAATA attACACAGA aacaATATTc agGTTGCTTg aAGACTCGCA aaACCAGCAG 8220
 gaaaAGAATG AAAAAGATTt attAGAATTG gacaAGTGGa ataATCTGTG gaATTGGTT 8280
 gacATATCAA actGGCTGTG gtATATAAAA atATTcATAA tgATAGTAGG aggCTTgATA 8340
 ggttAAAGAA taattttGc tGtGCTCTCt atAGTGAATA gAGTGGAGCA gggATACTCA 8400
 CCTTTGTcAT ttcaGACCCt tACCCCAAGC ccGAGGGGAG tcGACAGGCT cggAGGAATC 8460
 gaAGAAGAAG gtGGAGAGCA agACAGAGAC agATCCATAC gATtGGTGAg cggATTCTG 8520
 tcGCTTGCCT gggACGATCT gcccAGCCTG tgcCTTCA gCTAccACCG ctTGAGAGAC 8580
 ttCATATTAA ttGcAGTGTAG gGcAGTGGAA ctTCTGGAC acAGCAGTCT cAGGGGACTA 8640
 cAGAGGGGT gggAGATCCT taAGTATCTG gGAAGTCTG tGcAGTATTG gggTCTAGAG 8700
 ctaaaaaAGA gTGCTATTAG tccGCTTGTAT accATAGCAa tagCAGTAGC tGAAGGAACA 8760
 gatAGGATTA tagAAATTGt acaaAGAAATT tGtAGAGCTA tcCTCAACAT acCTAGGAGA 8820
 ataAGACAGG gCTTTGAAGC agCTTGTcTA taaaATGGGA ggCAAGTGGT caAAACGcAG 8880
 catAGTGGA tggCCTGcAG taAGAGAAAG aatGAGAAGA actGAGCCAG cAGCAGAGGG 8940

agtaggagca gcgtctcaag acttagatag acatgggc a ttacaagca gcaacacacc 9000
 tgctactaat gaagcttgc cctggctgca agcacaagag gaggacggag atgtaggctt 9060
 tccagtca g ctcaggta cttaaagacc aatgacttat aagagtgcag tagatctca 9120
 cttctttta aaagaaaagg gggactgga agggttaatt tactcttagga aaaggcaaga 9180
 aatccttgc ttgtgggtct ataacacaca aggcttctc cctgattggc aaaactacac 9240
 atcggggcca ggggtccgat tcccactgac ctggatgg tgctcaagc tagtaccagt 9300
 tgacccaagg gaggtgaaag aggccatga aggagaagac aactgtttgc tacaccstat 9360
 gagccacat ggagcagagg atgaagatag agaagtatta aagtggaaat ttgacagcct 9420
 tctagcacac agacacatgg cccgcgagct acatccggag tattacaaag actgctgaca 9480
 cagaaggac ttccgcctg ggacttcca ctggcggtt ccgggagggtg tggctggc 9540
 gggacttggg agtggtcacc ctcagatgct gcatataagc agtgccttt cgctgtact 9600
 gggctctct cggtagacca gatctgagcc tggagctct ctggctatct agggAACCCA 9660
 ctgcttaggc ctcataaaag cttgccttga gtgctctaag tagtgtgtgc ccattgttg 9720
 tgtgactctg gtaactagag atccctcaga cccttgc tggatgtggaa aatctctagc 9780
 a 9781

<210> 34
 <211> 203
 <212> DNA
 <213> Human immunodeficiency virus

<400> 34
 gctgaggcaa tgagccaagc aaccagcgca aacatactga tgcagagaag caatttcaaa 60
 ggcctaaaaa gaattattaa atgtttcaac tgtggcaagg aagggcacat agctagaaat 120
 tgttagggccc ctagaaaaaa aggctgttgg aatgtggaa aggaaggaca ccaaattgaaa 180
 gactgtactg agaggcaggc taa 203

<210> 35
 <211> 2151
 <212> DNA
 <213> Human immunodeficiency virus

<400> 35
 ttttttaggg aagatttggc ctccccacaa gggaggc a gggatttcc ttca gaaacag 60
 aacagagcca acagccccac cagcagagag cttcaagttc gaggagacaa cccccgctcc 120
 gaagcaggag ccgaaagaca gggaaaccctt aattttccctc aaatcactct ttggcagcga 180
 ccccttgc tcaataaaatg agggtgtcaa ataaaggagg ctctcttgc cacaggagct 240
 gatgatacag tattagaaga aatgagtttgc ccaggaaaat gggaaacccaa aatgatagga 300
 ggaatttggag gttttatcaa agtaagacag tatgatcaaa tacttata gaaatgttgg 360
 aaaaaggcta taggtacagt attaataatg cttcacacctg tcaacataat tggaaaggaat 420
 atgttgactc agcttggatg cacactaaat tttccaaat gttccatttgc aactgtgcc 480
 gtaaaattaa agccagaat ggtggccca aaggttaaac aatggccatt gacagaagag 540
 aaaataaaatg cattaacacg aattttgtgaa gaaatggaga aagaaggaaa aattacaaa 600
 attgggcctg aaaatccata taacacttca gtatttgccca taaaaaaatgaa ggacagtact 660
 aagtggagaa agtttagtata tttcaggaa cttataaaaaa gaaatcaaga cttttggaa 720
 gttcaatttgc gaataaccaca cccagcagg tttaaaaatgaa aaaaatcagt gacagtactg 780
 gatgtggggg atgcataattt ttcagttcct ttagatgagg acttcaggaa atataactgca 840
 ttccacccata ctagtataaa caatgaaaca ccaggatata gatataatcaata taatgtgc 900
 ccacaggat gggaaaggatc accatcaata ttccagatgat gcatgacaaa aatcttagag 960
 ccctttagag caagaaatcc agaaatagtc atctatcaat atatggatgat gttgtatgt 1020
 ggtctgact tagaaatagg gcaacataga gcaaaaaatag aggatgttggaaaatctg 1080
 ttaaggtggg gatttaccac accggacaag aaacatcaga aagaacccccc atttttttgg 1140
 atggggatg aactccatcc tgacaaatgg acatgacgc ctatagatgtt gccagaaaag 1200
 gaaagctgga ctgtcaatga tatacagaag ttatgtggaa aattnaaatttggggcc 1260
 atttacccatg gattnaaatg aaggcaactt tgtaaaactcc tttagggggcc caaagcacta 1320
 acagatatacg taccactaac tgaagaagca gattnaaatg tggcagagaa caggaaattt 1380
 ctaagagaac cagtagatgg agtataattt gacccatcaa aagacttggt agctgaaata 1440

cagaaacagg ggcatgacca atggacatat caaatttacc aagaaccatt caaaaacctg 1500
aaaacaggga agtatgc aaaatgaggact gcccacacta atgatgtaaa acagttaca 1560
gaggcagtgc aaaaaatacg tatggaaagc atagtaatat ggggaaagac tcctaaattt 1620
agactaccca tccaaaaaga aacatgggag acatggtggc cagactattt gcaagccacc 1680
tggattcctg agtgggagtt ttataacc cctcccttag taaaattatg gtaccagcta 1740
gagaaagaac ccataatagg agcagaaact ttctatgttag atggagcagc taataggaa 1800
actaaaatag gaaaaggcagg gtatgttact gacagaggaa ggcagaaaat tgtttctcta 1860
acagaaacaa caaatcagaa gactgaatta caagcaattc agctagctt gcaagattca 1920
ggatcagaag taaacatagt aacagactca cagtatgcat taggaatcat tcaagcacaa 1980
ccagataaga gtgaatcaga gtttgtcaac caaataatag aacaattaat aaaaaaggaa 2040
aaggtctacc tgtcatgggt accagcacat aaaggaattt gaggaaatga acaaataatag 2100
aaattagtaa gtaagggaa caggaaagtg ctgtttcttag atgaaataga t 2151

<210> 36
<211> 54
<212> DNA
<213> Human immunodeficiency virus

<400> 36
ggccgcatcg tgcgttacca gtacatggac gacctgtacg tggcagcgg cgcc 54

<210> 37
<211> 18
<212> PRT
<213> Human immunodeficiency virus

<400> 37
Gly Gly Ile Val Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Gly Ser
1 5 10 15

Gly Gly

<210> 38
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
S1FCSactA

<400> 38
gtttcttgag ctctggaagg gttaatttac tccaaagaa 38

<210> 39
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
S1FTSacTA

<400> 39
gtttcttgag ctctggaagg gttaatttac tctaagaa 38

```

<210> 40
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
      S145RTSalTA

<400> 40
gtttcttgtc gacttgtcca tgtatggctt cccct 35

<210> 41
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
      S145RCSalTA

<400> 41
gtttcttgtc gacttgtcca tgcattggctt ccct 34

<210> 42
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
      S245FASalTA

<400> 42
gtttcttgtc gactgttagtc caggaatatg gcaattag 38

<210> 43
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
      S245FGSalTA

<400> 43
gtttcttgtc gactgttagtc caggatatg gcaattag 38

<210> 44
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
      S2FullNotTA

```

<400> 44
gttcttgcg gccgctgcta gagattttcc acactacca

39

<210> 45
<211> 9738
<212> DNA
<213> Human immunodeficiency virus

<400> 45
tggaaagggtt aatttactcc aggaaaaggc aagagatcct tgatttatgg gtctatcaca 60
cacaaggcta cttccctgat tggcaaaact acacaccggg accaggggtc agatatccac 120
tgacctttgg atgggtgttc aagctagtgc cagttgaccc aagggaagta gaagaggcca 180
acgaggaga agacaactgt ttgctacacc ctatgagcca gtatggaatg gatgatgaac 240
acaagaagaat gttacagtgg aagtttgaca gcagccttagc acgcagacac ctggcccg 300
agctacatcc ggattattac aaagactgct gacacagaag ggacttccg cctgggactt 360
tccactgggg cggttccaggg ggagtggct gggcgggact gggagtggcc agccctcaga 420
tgctgcataat aagcagcggc tttcgcctg tactgggtct ctctaggtag accagatccg 480
agctctggag ctctctgtct atctggggaa cccactgctt aggccctcaat aaagcttgcc 540
ttgagtgtct taagtagtgt gtgcccatct gttgtgtac tctggtaact ctggtaacta 600
gagatccctc agaccctttg tggtagtgt gaaaatctct agcagtggcg cccgaacagg 660
gacttggaaag cgaaaatgtg accagagaag atctctcgac gcaggactcg gcttgctgaa 720
gtgcactcgg caagaggcga gggggcgac tggtagtac gccaaaattt tttttgacta 780
gcggaggcta gaaggagaga gatgggtgcg agagcgtcaa tattaagagg gggaaaatta 840
gacaaatggg aaaaaattag gttacggcca gggggagaa aacactataat gctaaaacac 900
ctagtatggg caagcagaga gctggaaaga tttgcagttt accctggcct ttttagagaca 960
tcagacggat gtagacaat aataaaacag ctacaaccag ctcttcagac aggaacagag 1020
gaaatttagat cattatttaa cacagtagca actctctatt gtgtacataa agggatagat 1080
gtacgagaca ccaaggaagc cttagacaag atagaggagg aacaaaacaa atgtcagcaa 1140
aaaacacacgc aggcggaagc ggctgacaaa aaggtcagtc aaaattatcc tatagtgcag 1200
aacctccaag ggcaaatggt acaccaggcc atatcaccta gaaccttggaa tgcattggta 1260
aaagtaatag aggagaaggc ttttagccca gaggtataac ccatgtttac agcattatca 1320
gaaggagcca cccccacaaga tttaaacacc atgttaataa cagtgggggg acatcaagca 1380
gccatgcaaa tggtaaaaaga taccatcaat gaggaggctg cagaatggga tagttacat 1440
ccagtacatg cagggcctgt tgaccaggc cagatgagag aaccaagggg aagtgacata 1500
gcaggaacta ctagtaccct tcaagaacaa atagcatgga tgacaagtaa cccacctatc 1560
ccagtagggg acatctataa aaggtggata attctgggt taaataaaat agtaagaatg 1620
tacagccctg tcagcatttt agacataaaa caaggacca aggaaccctt tagagactat 1680
gtagaccggc tcttcaaaaac tttaagagct gaacaatcta cacaagaggt aaaaaattgg 1740
atgacagaca ccttgttagt cccaaatgcg aacccagatt gtaagaccat tttaagagca 1800
ttaggaccag gggcttcatt agaagaaatg atgacagcat gtcaggggagt gggaggacct 1860
agccacaaag caagagttt ggctgaggca atgagccaag caaacaatac aagtgtaatg 1920
atacagaaaaa gcaattttaa aggcctaga agagctgtt aatgtttcaa ctgtggcagg 1980
gaaggcaca tagccaggaa ttgcaggggc cctaggaaaa ggggctgtt gaaatgtgga 2040
aaggaaaggac accaaatgaa agactgtact gagaggcagg ctaattttt agggaaaatt 2100
tggccttccc acaagggag gccaggaaat ttccctcaga gcagaccaga gccaaacagcc 2160
ccaccactag aaccaacagc cccaccagca gagagctca agttcaaggaa gactccgaag 2220
cagagccga aagacaggga acctttaact tccctcaat cactcttgg cagcgacccc 2280
ttgtctcaat aaaagttagcg ggc当地acaa aggaggctt ttagataca ggagcagatg 2340
atacagtact agaagaaata aacttgcag gaaaatggaa accaaaaatg ataggaggaa 2400
tttgagggtt tatcaaagta agacagtatg atcaaataact tatagaatatt tggaaaaaaa 2460
ggctatagg tacagtatta gtaggaccta cacctgtcaa cataattggg agaaatctgt 2520
tgactcagct tggatgcaca ctaaattttc caatttagccc cattgaaact gtaccagtaa 2580
aattaaagcc aggaatggat ggcccaaagg ttaaacaatg gccattgaca gaagaaaaaaa 2640
taaaagcatt aacagaaaatt tggagggaa tggagaagga agggaaaatt aaaaaattg 2700
ggcctgaaaaa tccatataac actccagttt ttgcataaa gaagaaggac agtacaaatg 2760

ggagaaaatt agtagatttc aggaaactca ataaaagaac tcaagacttt tggaaagtcc 2820
 aatttagaat accacaccca gcagggttaa aaaagaaaaaa atcagtgaca gtactggatg 2880
 tggagatgc atattttca gtcctttag atgagagctt cagaaaatat actgcattca 2940
 ccatacctag tataaacaat gaaacaccag ggattagata tcaatataat gttctccac 3000
 aggatggaa aggatcacca gcaatattcc agagtagcat gacaagaatc ttagagccct 3060
 ttagaacaca aaacccagaa gtagttatct atcaatatat ggatgactt tatgtaggat 3120
 ctgacttaga aataggcaa catagagcaa aaatagagga gttaaagagga cacctattga 3180
 aatggggatt taccacacca gacaagaaac atcagaaaaga acccccattt ctttggatgg 3240
 ggtatgaact ccatcctgac aaatggacag tacagcctat acagctgccaa gaaaaggaga 3300
 gctggactgt caatgatata cagaagttag tggaaagtt aaactggca agtcagattt 3360
 acccaggat taaagtaagg caactgtgta aactccttag gggagccaa gcactaacag 3420
 acatagtgcc actgactgaa gaagcagaat tagaattggc tgagaacagg gaaattctaa 3480
 aagaaccagt acatggagta tattatgacc catcaaaaaga ttaatagct gaaatacaga 3540
 aacagggaa tgaccaatgg acatataaaa ttaccaaga accattaaa aatctgagaa 3600
 cagaaagta tgcaaaaatg aggactgccc acactaatga tgtgaaacag ttagcagagg 3660
 cagtcaaaa gataaccagg gaaagcatag taatatgggg aaaaactcct aaatttagac 3720
 taccatccc aaaagaaaaca tggagacat ggtggcaga ctattggcaa gccacctgga 3780
 ttcttgatg gtagttgtc aataccctc ccctagtaaa atttgtgtac cagctggaaa 3840
 aagaacccat agtagggca gaaacttct atgtagatgg agcagccat agggaaacta 3900
 aaataggaaa agcagggtat gtcactgaca aaggaaggca gaaagttgt tccttactg 3960
 aaacaacaaa tcagaagact gaattacaag caatttagt agctttgcag gattcaggc 4020
 cagaagtaaa catagtaaca gactcacagt atgcattagg aatcattcaa gcacaaccag 4080
 ataagagtga atcagaatta gtcagtcaaa taatagaaca gttgataaaa aaggaaaaag 4140
 tctacctatc atgggtacca gcacataaaag gaattggagg aaatgaacaa gtagacaaat 4200
 tagtaagtag tggaaatcaga aaagtactgt ttcttagatgg aatagataaa gctcaagaag 4260
 agcatgaaaa atatcacagc aattggagag caatggctag tgagtttaat ctgccaccca 4320
 tagtagcaaa ggaaatagta gccagctgtg ataaatgtca gctaaaaggga gaagccatgc 4380
 atgacaagt cgactgtat ccaggaatat ggcaattaga ctgtacacat tttagaaggaa 4440
 aaatcatcct agtagcagtc catgtgcca gtggctacat ggaaggcagag gttatcccag 4500
 cagaaacagg acaagaaaca gcatactta tactaaaatt agcaggaaga tggccagtca 4560
 aagtaataca tacagataat ggtagtaatt tcaccagtac cgcagttaaag gcagcctgtt 4620
 ggtggcaga tatccaacgg gaatttgaa ttccctacaa tccccaaagt caaggagtag 4680
 tagaatccat gaataaaagaa taaaagaaaa tcataggca agtaagagat caagctgagc 4740
 acctaagac agcagtacaa atggcgtat tcattcacaat tttaaaaga aaagggggg 4800
 ttgggggta cagtgcaggg gagagaataa tagacataat agcatcagac atacaaacta 4860
 aagaattaca aaaacaaatt ataaaaatttca aaaattttcg gtttattac agagacagca 4920
 gagaccctat ttggaaagga ccagccaaac tactctggaa aggtgaaggg gcagtagtaa 4980
 tacaagataa tagtgatata aaggttagtac caagaaggaa agcaaaaatc attaaggact 5040
 atgaaaaca gatggcaggt gctgattgtg tggcaggtag acaggatgaa gattagaaca 5100
 tggcacagtt tagtaaagca ccatatgtat gtttcgagga gagctgatgg atggttctac 5160
 agacatcatt atgaaagcag acacccaaaa gtaagttcg aagtacacat cccattagga 5220
 gatgccaggt tagtaataaa aacatattgg ggtctgcaga caggagaaag agcttggcat 5280
 ttgggtcacf gtagtccat agaatggaga ttgagaagat atagcacaca agtagaccct 5340
 gacctgacag accaactaat tcatacgat tattttgatt gtttgcaga atctgccata 5400
 agggaaagcca tactaggaca gatagttgc cctaagtgtg actatcaagc aggacataac 5460
 aaggttagat ctctacaata ctggcactg acagcattga taaaaccaaa aaagataaag 5520
 ccacctctgc ctagttagt gaaatttagta gaggatagat ggaacaagcc ccagaagacc 5580
 agggccgca gagggaaacca tacaatgaat ggacactaga gcttttagaa gaactcaagc 5640
 aggaagctgt cagacacttt cctagaccat ggctccatata cttaggacaa catatctatg 5700
 aaacctatgg agatacttgg acaggagttt aagcaataat aagaatcctg caacaattac 5760
 tgtttattca ttccagatt ggtgcacat atagcagaat aggcatggc cgacagagaa 5820
 gagcaagaaa tggagccat agatcctaacc ctagaaccct ggaaccatcc aggaagttag 5880
 cctaaaactg cttgtatgg gtgttactgt aaacgttgca gctatcattt tctagttgc 5940
 ttccagaaaa aaggcttagg catttactat ggcaggaaga agcggagaca gcgacgaagc 6000
 gctccctccaa gcaataaaaga tcatcaagat cctctaccaa agcagtaagt accgaatagt 6060
 atatgtaatg ttagattaa ctgcaagaat agattctaga ttaggaatag gacgattgtat 6120
 agtagcacta atcatagcaa taatagtgtg gaccatagta tatatagaat atagggaaatt 6180

ggttaaggcaa aggaaaatag actggtagt taaaaggatt agggaaagag cagaagacag 6240
 tggcaatgag agcgaggggg atactgaaga attatcgaca ctggtgata tggggcatct 6300
 tagctttt gatgctaatg atgtgtatg tgaaggcctt gtgggtcaca gtctactacg 6360
 gggtacctgt ggggagagaa gcaaaaacta ctctatttg tgcatcagat gctaaagcat 6420
 atgagaaaga agtgcataat gtctggcta cacatgcctg tgtaccacca gaccccaacc 6480
 cacaagaagt gattttggc aatgtaacag aaaattttaa catgtggaaa aatgacatgg 6540
 tggatcagat gcaggaagat ataatcagtt tatggatca aagccttaag ccatgtgtaa 6600
 aattgaccct actctgtgtc actttaaact gtacaatgc aactgttaac tacaataata 6660
 cctctaaaga catgaaaaat tgctcttct atgttaaccac agaattaaga gataagaaaa 6720
 agaaagaaaa tgcactttt tatagacttg atatagtacc acttaataat aggaagaatg 6780
 ggaatattaa caactataga ttaataaaatt gtaataccctc agccataaca caagcctgtc 6840
 caaaagtctc gtttgaccctt attcctatac attattgtgc tccagctgg tatgcgcctc 6900
 taaaatgtaa taataagaaa ttcaatggaa taggaccatg cgataatgtc agcacagtac 6960
 aatgtacaca tggaaattaag ccagtggtat caactcaatt actgttaat ggtagcctag 7020
 cagaagaaga gataataatt agatctgaaa atctgacaaa caatgtcaaa acaataatag 7080
 tacatcttaa tgaatctata gagattaaat gtacaagacc tggcaataat acaagaaaga 7140
 gtgtgagaat aggaccagga caagcattct atgcaacagg agacataataa ggagatataa 7200
 gacaaggcaca ttgtAACATT agaaaaatg aatggaaatac aactttacaa agggtaagtc 7260
 aaaaattaca agaactcttc cctaataatgta cagggataaa atttgcacca cactcaggag 7320
 gggacctaga aattactaca catagctta attgtggagg agaattttt tattgcaata 7380
 caacagacct gtttaatagt acatacagta atggatcatg cactaatggt acatgcatgt 7440
 ctaataatac agagcgcattc acactccaat gcagaataaa acaaattata aacatgtggc 7500
 aggaggtagg acgagcaatg tatgcccctc ccattgcagg aaacataaca tgttagatcaa 7560
 atattacagg actactatta acacgtatg gaggagataa taataactgaa acagagacat 7620
 tcagacctgg aggaggagac atgagggaca attggagaag tgaatttat aaatacaagg 7680
 tggtagaaat taaaccattt ggagttagcac ccactgctgc aaaaaggaga gtgggtggaga 7740
 gaaaaaaag agcagtagga ataggagctg tggccttgg gttcttggg gcagcaggaa 7800
 gcactatggg cgcaGcatca ataaacgctga cggtacaggc cagacaatta ttgtctggta 7860
 tagtgcaca gcaaaataat ttgtcgaggg ctatagaggc gcaacagcat atgttgcac 7920
 tcacggctcg gggcattaag cagctccagg caagagtctt ggctatagag agataacctac 7980
 agatcaaca gctccttagga ctgtggggct gctctggaaa actcatctgc accactaatg 8040
 tgctttggaa ctctagttgg agtaataaaa ctcaaaatgta tatttggat aacatgacct 8100
 ggtgcagtg ggataggaa attagtaatt acacaaacac aatatacagg ttgcttgaag 8160
 actcgcaag ccagcaggaa agaaatgaaa aagatttact agcattggac aggtggaaca 8220
 atctgtggaa ttgggtttagc ataacaaattt ggctgtggta tataaaaata ttcataatga 8280
 tagtaggagg ctgtataggt ttaagaataa ttttgctgt gctctctta gtaaatagag 8340
 ttaggcaggg atactcaccc ttgtcattgc agacccttat cccaaacccg aggggacccg 8400
 acaggctcgg aggaatcgaa gaagaagggtg gagagcaaga cagcagcaga tccattcgat 8460
 tagtgagcgg attcttgaca ctggccttgg acgacactacg aagcctgtgc ctcttctgt 8520
 accaccgatt gagagacttc atattaattt tagtgagacg agtggaaactt ctggacaca 8580
 gtagtctcg gggactgcag aggggggtggg gaacccttaa gtatttgggg agtctgtgc 8640
 aatattgggg tctagagttt aaaaagagtg ctattaatct gcttgataact atagcaatag 8700
 cagtagctga aggaacagat aggattctag aattcataca aaacctttt agaggtatcc 8760
 gcaacgtacc tagaagaata agacagggtc tcgaagcgc tttgcaataa aatggggggc 8820
 aagtggtaaa aaagcagtat aattggatgg cctgaagttt gagaagaat cagacgaact 8880
 aggtcagcag cagaggagt aggtcagcg tctcaagact tagagaaaca tggggcactt 8940
 acaaccagca acacagcccc caacaatgct gcttgcgcct ggctggaaagc gcaagaggag 9000
 gaaggagaag taggcttcc agtcagacct caggtacctt taagaccaat gacttataaa 9060
 gcagcaatag atctcagctt cttttaaaa gaaaaggggg gactggaaagg gttaatttac 9120
 tccaagaaaa ggcaagagat ctgtgatTT tgggttata acacacaagg cttctccct 9180
 gatggcaaa actacacacc gggaccaggc gtcagattc cactgacctt tggatggtag 9240
 ttcaagctag agccagtcga tccaaggggaa gttagaagagg ccaatgaagg agaaaaacaac 9300
 tggtagttt accctatgag ccagcatggc atggaggatg aagacagaga agtattaaga 9360
 tggtagttt acagtagctt agcacgcaga cacatggccc gcgagctaca tccggaggat 9420
 tacaagact gctgacacag aaggggacttt ccgctggac tttccactgg ggcgttccag 9480
 gaggtgttgt ctggcgggaa cagggagtg gtcagccctg agatgctgca tataagcagc 9540
 tgctttcgc ctgtacttggg tctctcttagg tagaccagat ctgagcccg gagctctctg 9600

gctatctagg gaacccactg cttaagcctc aataaagctt gccttgagtgc ttgtggtag 9660
tgtgtccccg tctgttgtgt gactctggta actagagatc ctcagaccca cttgtggtag 9720
tgtggaaaat ctctagca 9738

<210> 46
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: spacer

<400> 46
Gly Gly Gly Ser
1