

COMPONENTE CURRICULAR:	Projeto Aplicado II	
	Amarilis Oliveira dos Reis	
NOME COMPLETO DO ALLINO:	Nicole Xavier do Nascimento	
NOME COMPLETO DO ALUNO:	Lourenço Netto Ribeiro Correa	
	Lucas José de Carvalho Anastacio	
	10443156	
RA:	10437680	
	10441018	
	10441680	

CLASSIFICAÇÃO DE ESPÉCIES DE FLORES COM BASE EM **CARACTERÍSTICAS FÍSICAS**

Sumário

1.	APRESENTAÇÃO DO GRUPO 3
2.	PREMISSAS DO PROJETO3
	2.1 Definição da organização3
	2.2 Área de atuação3
	2.3 Dados que serão utilizados 4
3.	OBJETIVOS E METAS 4
4.	CRONOGRAMA DE ATIVIDADES 5
5.	DEFINIÇÃO DOS PACOTES USADOS 5
6.	ANÁLISE EXPLORATÓRIA DA BASE DE DADOS E
	TRATAMENTO 6
	6.1 O QUE A CÉLULA ANTERIOR NOS INFORMA 7
	6.2 O QUE A CÉLULA ANTERIOR NOS INFORMA 8
7.	VISUALIZAÇÃO 8
	7.1 O QUE A CÉLULA ANTERIOR NOS INFORMA 9
	7.2 O QUE A CÉLULA ANTERIOR NOS INFORMA 10
	7.3 O QUE A CÉLULA ANTERIOR NOS INFORMA 11
8.	DEFINIÇÃO DAS BASES TEÓRICAS 12
9.	CÁLCULO DA ACURÁCIA14
	9.1 INTERPRETAÇÃO DA MATRIZ DE CONFUSÃO 15
	9.2 SOBRE A ACURÁCIA DE 100% 16
10	LINK DO GITHUB16

1. Apresentação do grupo

Somos um grupo de estudantes de Ciência de Dados, e estamos desenvolvendo este projeto como parte de nossa formação acadêmica, aplicando conceitos fundamentais da área em um estudo prático. Nosso objetivo é explorar técnicas de aprendizado de máquina para resolver um problema de classificação de espécies de flores do gênero "*Iris*", consolidando nosso conhecimento sobre análise de dados, modelagem preditiva e avaliação de modelos.

2. Premissas do projeto

Para contextualizar nossa solução, criamos a IrisScan, uma organização fictícia projetada para representar um cenário realista no qual nossa aplicação poderia ser implementada.

2.1 Definição da organização

A IrisScan é uma empresa fictícia dedicada ao desenvolvimento de soluções tecnológicas para a identificação e classificação de espécies vegetais. Seu foco é combinar ciência e inovação para facilitar o trabalho de pesquisadores e profissionais da botânica por meio do uso de inteligência artificial. A empresa busca oferecer ferramentas que automatizam a identificação de flores e plantas, tornando o processo mais rápido e preciso.

2.2 Área de atuação

A IrisScan atua no setor de tecnologia aplicada à botânica e agricultura. Suas soluções utilizam aprendizado de máquina e análise de dados para auxiliar pesquisadores, agrônomos e entusiastas na identificação e estudo de espécies vegetais. O objetivo é integrar a tecnologia ao conhecimento biológico, proporcionando ferramentas acessíveis para monitoramento, preservação ambiental e pesquisas científica

2.3 Dados que serão utilizados

Neste estudo, utilizamos o conjunto de dados Iris, um dos mais conhecidos na área de aprendizado de máquina. Ele contém informações sobre três espécies de flores (Iris setosa, Iris versicolor e Iris virginica), com quatro características numéricas:

- Comprimento da sépala
- Largura da sépala
- Comprimento da pétala
- Largura da pétala

O conjunto de dados conta com 150 amostras balanceadas, sendo 50 de cada espécie, e será utilizado para treinar um modelo capaz de classificar automaticamente a espécie de uma flor com base em suas características físicas.

3. Objetivos e metas

O principal objetivo deste projeto é desenvolver um modelo de aprendizado de máquina que consiga classificar corretamente a espécie de uma flor com base em seus atributos físicos.

Para isso, definimos as seguintes metas:

- Realizar uma análise exploratória do conjunto de dados para entender suas características e padrões.
- Aplicar técnicas de pré-processamento para garantir a qualidade dos dados.
- Treinar e avaliar diferentes modelos de classificação, como K-Nearest Neighbors (KNN), Regressão Logística e Árvores de Decisão, comparando seus desempenhos.
- Alcançar uma precisão mínima de 90% na classificação das espécies.
- Produzir visualizações e insights que ajudem a interpretar os resultados obtidos.

4. Cronograma de atividades

Para organizar o desenvolvimento do projeto, seguimos o seguinte cronograma de atividades:

Fase	Atividade	Período
Etapa 1	Definição do problema e pesquisa	03/03
	sobre o conjunto de dados.	
Etapa 2	Análise exploratória e pré	31/03
	processamento dos dados;	
	implementação e testes de modelos de	
	classificação; avaliação de	
	desempenho e ajustes nos modelos.	
Etapa 3	Apresentação de produtos e	28/04
	storytelling.	
Etapa 4	Elaboração do relatório final e	26/05
	apresentação do projeto.	

5. Definição dos pacotes usados

A linguagem de programação escolhida foi o Python, pois trabalharemos com o Scikit (comumente se referindo a Scikit-Learn) o qual é uma biblioteca de aprendizado de máquina de código aberto para Python. Ela fornece ferramentas simples e eficientes para mineração e análise de dados, construídas sobre NumPy, SciPy e Matplotlib. Ela inclui implementações de vários algoritmos de aprendizado de máquina para classificação, regressão, agrupamento, redução de dimensionalidade e muito mais.

6. Análise exploratória da base de dados e tratamento

O conjunto de dados Iris é um dos mais estudados em Machine Learning e já possui diversas análises exploratórias disponíveis. No entanto, nós realizamos nossa própria análise para entender melhor os padrões dos dados.

```
[1]: import sklearn
    print(sklearn.__version__) # Verificando a versão instalada

1.6.1
[2]: from sklearn import datasets

# Carregando o conjunto de dados
    iris = datasets.load_iris()
    print("Conjunto de dados carregado com sucesso!")
```

Conjunto de dados carregado com sucesso!

[3]: sepa	al length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

species

0 setosa

1 setosa

2 setosa

3 setosa

4 setosa

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	150 non-null	float64
1	sepal width (cm)	150 non-null	float64
2	petal length (cm)	150 non-null	float64
3	petal width (cm)	150 non-null	float64
4	species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

6.1 O que a célula anterior nos informa:

Número de linhas e colunas

Tipos de dados de cada coluna

Se há valores ausentes

[5]: df.describe()

		sepal length (cm)	sepal width (cm)	petal length (cm)	١
[5]:	count	150.000000	150.000000	150.000000	
	mean	5.843333	3.057333	3.758000	
	std	0.828066	0.435866	1.765298	
	min	4.300000	2.000000	1.000000	
	25%	5.100000	2.800000	1.600000	
	50%	5.800000	3.000000	4.350000	
	75%	6.400000	3.300000	5.100000	
	max	7 900000	4 400000	6 900000	

	petal	width	(cm)
count		150.00	00000
mean		1.19	9333
std		0.76	2238
min		0.10	00000
25%		0.30	00000
50%		1.30	00000
75%		1.80	00000
max		2.50	0000

6.2 O que a célula anterior nos informa:

Média, mínimo, máximo, desvio padrão para cada característica O intervalo de valores

A saída é 0 para todas as colunas porque o conjunto de dados Iris não contém valores ausentes.

```
[7]: df['species'].value_counts()

[7]: species
setosa 50
versicolor 50
virginica 50
Name: count, dtype: int64
```

Cada espécie (Setosa, Versicolor, Virginica) tem 50 amostras.

7. Visualização

Etapa 1: Importar bibliotecas necessárias

```
[8]: import matplotlib.pyplot as plt import seaborn as sns
```

Etapa 2: Pairplot – Relacionamentos gerais de recursos

```
[9]: sns.pairplot(df, hue="species", diag_kind="kde", markers=["o", "s", "D"])
plt.show()
```


7.1 O que a célula anterior nos informa:

Diagramas de dispersão comparando todas as características.

Cores diferentes representam espécies diferentes.

Diagramas diagonais mostram a distribuição de cada característica.

Etapa 3: Boxplots - Distribuições de recursos

```
[10]: plt.figure(figsize=(12, 6))
sns.boxplot(data=df, x="species", y="sepal length (cm)")
plt.title("Sepal Length Distribution by Species")
plt.show()
```


7.2 O que a célula anterior nos informa:

Como o comprimento da sépala varia entre as espécies.

Se alguma espécie tem uma extensão maior ou valores atípicos.

Etapa 4: Gráfico de violino – Distribuições de recursos com densidade

```
[11]: plt.figure(figsize=(12, 6))
    sns.violinplot(data=df, x="species", y="petal width (cm)", inner="quartile")
    plt.title("Petal Width Distribution by Species")
    plt.show()
```


Por que usar um gráfico de violino:

Combina um boxplot e um gráfico de densidade Mostra onde a maioria dos pontos de dados estão concentrados.

Etapa 5: Mapa de calor – Correlação entre recursos

7.3 O que a célula anterior nos informa:

Quais recursos são altamente correlacionados (por exemplo, comprimento da pétala e largura da pétala).

Ajuda a decidir quais recursos podem ser redundantes.

8. Definição das bases teóricas

Para realizar a classificação das flores de Íris a partir de imagens, utilizamos conceitos de Visão Computacional, Aprendizado de Máquina e Redes Neurais Convolucionais (CNNs).

Visão Computacional: a visão computacional é um campo da Inteligência Artificial que permite que máquinas "vejam" e processem imagens. No nosso projeto, usamos a biblioteca OpenCV para:

- Carregar e processar imagens (ajustar tamanho, normalizar pixels, etc.).
- Converter imagens para um formato adequado para redes neurais.
- Aplicar técnicas de aumento de dados (data augmentation), como espelhamento e rotação, para melhorar o aprendizado do modelo.

Redes Neurais Convolucionais (CNNs): Redes Neurais Convolucionais (Convolutional Neural Networks – CNNs) são um tipo de rede neural projetada para processar imagens. Diferente de redes neurais tradicionais, as CNNs utilizam camadas de convolução para detectar padrões visuais, como bordas, formas e texturas.

A arquitetura básica de uma CNN inclui:

Camadas de Convolução: Aplicam filtros para extrair características importantes da imagem.

Camadas de Pooling: Reduzem a dimensionalidade das imagens, mantendo as informações mais relevantes.

Camadas Fully Connected (Densas): Responsáveis pela classificação final.

Usaremos um modelo pré-treinado (Transfer Learning, como MobileNetV2 ou ResNet50) para evitar treinar um modelo do zero, o que economiza tempo e melhora o desempenho, principalmente se tivermos um conjunto de dados pequeno.

Transfer Learning (Aprendizado por Transferência)

O Transfer Learning consiste em reutilizar um modelo já treinado em grandes bases de imagens (como ImageNet) para resolver um novo problema. Em vez de treinar uma CNN do zero, ajustamos a camada final do modelo para classificar as três espécies de Íris.

Isso é útil porque:

- Modelos pré-treinados já aprenderam a identificar formas e padrões básicos.
- Funciona bem mesmo com poucas imagens.
- Reduz o tempo de treinamento e melhora a precisão.

Algoritmo de Otimização e Função de Perda

Nosso modelo será treinado usando:

- Função de perda: Categorical Crossentropy usada para problemas de classificação multiclasse.
- Otimização: Adam (Adaptive Moment Estimation) um dos otimizadores mais eficientes para ajustar os pesos da rede neural.

A equação da função de perda Crossentropy para 3 classes é:

Loss =
$$- \sum_{i=1}^{3} y_i \log (\hat{y}_i)$$

Onde: • y_i é o valor real da classe (1 para a classe correta, 0 para as demais).

\hat{y}_i é a probabilidade prevista pelo modelo.

9. Cálculo da acurácia

Etapa 1: Dividindo os Dados (Divisão de Treinamento-Teste)

Antes de treinar um modelo, dividimos o conjunto de dados em:

- Conjunto de treinamento (por exemplo, 80%) Usado para treinar o modelo
- Conjunto de teste (por exemplo, 20%) Usado para avaliar o desempenho do modelo

```
[13]: from sklearn.model_selection import train_test_split

# Definir caracteristicas (X) e alvo (y)

X = df.drop(columns=["species"]) # Caracteristicas
y = df["species"] # Alvo

# Dividir dados entre 80% treinamento e 20% teste

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, \_ \( \text{\capacitanterist} \) arandom_state=42)
```

Etapa 2: Treinando um modelo

Classificador simples (regressão logística):

Etapa 3: Fazendo previsões

Após o treinamento, usamos o modelo para prever espécies no conjunto de teste:

```
[15]: y_pred = model.predict(X_test)
```


Etapa 4: Calculando a pontuação de acurácia

Agora, calculamos a acurácia usando accuracy_score do Scikit-learn:

```
[16]: from sklearn.metrics import accuracy_score

# Calcular acurácia
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")
```

Model Accuracy: 1.00

Etapa 5: Implementando KNN (K-Nearest Neighbors)

```
[20]: # Importar o classificador KNN do sklearn
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix

# Inicializar o classificador KNN
knn = KNeighborsClassifier(n_neighbors=3)

# Treinar o modelo nos dados de treinamento
knn.fit(X_train, y_train)

# Fazer previsões sobre os dados de teste
y_pred = knn.predict(X_test)

# Calcular acurácia
```

```
accuracy = accuracy_score(y_test, y_pred)

# Print da acurácia
print(f"KNN Model Accuracy: {accuracy:.2f}")

# Matriz de confusão
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(cm)
```

```
KNN Model Accuracy: 1.00
Confusion Matrix:
[[10 0 0]
[ 0 9 0]
[ 0 0 11]]
```

9.1 Interpretação da Matriz de Confusão:

A primeira linha ([10, 0, 0]) significa que todas as 10 flores Setosa foram corretamente classificadas como Setosa.

A segunda linha ([0, 9, 0]) significa que todas as 9 flores Versicolor foram corretamente classificadas como Versicolor.

A terceira linha ([0, 0, 11]) significa que todas as 11 flores Virginica foram corretamente classificadas como Virginica.

Como não há classificações erradas (nenhum valor fora da diagonal), seu modelo previu perfeitamente todas as espécies.

9.2 Sobre a acurácia de 100%

O conjunto de dados Iris é frequentemente considerado um conjunto de dados "de brinquedo" ("toy dataset"), o que significa que é muito bem estruturado e separável com modelos simples. Como é um conjunto de dados pequeno e fácil de aprender, o modelo memorizou os exemplos de treinamento em vez de aprender padrões generalizáveis. Isso pode resultar em uma acurácia muito alta, como no caso deste modelo (100%).

10. Link do GitHub

https://github.com/iamni2001/IriScan