Wybrane wzory i stałe fizykochemiczne na egzamin maturalny z biologii, chemii i fizyki

Spis treści

1.	Zasady azotowe	1
2.	Wybrane kwasy organiczne	1
3.	Kod genetyczny	1
4.	Potencjał wody w komórce roślinnej	1
5.	Równanie Hardy'ego-Weinberga	1
6.	Wybrane aminokwasy białkowe	2
7.	Rozpuszczalność soli i wodorotlenków w wodzie w temperaturze 25 °C	3
8.	Stałe dysocjacji wybranych kwasów w roztworach wodnych w temperaturze 25 °C	4
9.	Stałe dysocjacji wybranych zasad w roztworach wodnych w temperaturze 25 °C	4
10.	Szereg elektrochemiczny wybranych metali	4
11.	Układ okresowy pierwiastków	5
12.	Kinematyka	6
13.	Dynamika	6
14.	Siła ciężkości, siła sprężystości i siła tarcia	6
15.	Drgania i fale	6
16.	Optyka	7
17.	Termodynamika	7
18.	Pole magnetyczne	7
19.	Fizyka współczesna	7
20.	Elektrostatyka	8
21.	Prąd elektryczny	8
22.	Logarytmy	8
23.	Równania kwadratowe	8
24.	Przedrostki	8
25.	Stałe i jednostki fizyczne i chemiczne	9
26.	Wybrane zagadnienia z trygonometrii i wartości logarytmów dziesiętnych	10

Zasady azotowe							
	pirymidynowe						
NH ₂	H ₃ C	O NH NH					
cytozyna (C)	tymir	na (T)	uracyl (U)				
	pury	nowe					
NH NH	NH ₂	NH NH	NH NH ₂				
adeni	na (A)	guani	na (G)				

Potencjał wody w komórce roślinnej

$$\Psi_{_{W}}\!=\!\Psi_{_{S}}\!+\!\Psi_{_{P}}$$

 $\Psi_{\rm W}$ – potencjał wody

 $\Psi_{_{S}}-potencjał\ osmotyczny$

 Ψ_{P} – potencjał ciśnienia

Równanie Hardy'ego-Weinberga

$$p + q = 1$$

$$(p+q)^2 = p^2 + 2pq + q^2 = 1$$

gdzie:

p – częstość allelu dominującego w populacji,

q – częstość allelu recesywnego w populacji.

Wybrane kwasy organiczne							
CH ₃ -CH-COOH OH	CH ₃ -C-COOH O	HO—CH—COOH CH ₂ —COOH	CH ₂ - COOH HO - C - COOH CH ₂ - COOH				
kwas mlekowy	kwas pirogronowy	kwas jabłkowy	kwas cytrynowy				

Kod genetyczny									
Pierwszy	Drugi nukleotyd								
nukleotyd	U	C A		G	nukleotyd				
	UUU fenyloalanina	UCU seryna	UAU tyrozyna	UGU cysteina	U				
T T	UUC fenyloalanina	UCC seryna	UAC tyrozyna	UGC cysteina	C				
U	UUA leucyna	UCA seryna	UAA STOP	UGA STOP	A				
	UUG leucyna	UCG seryna	UAG STOP	UGG tryptofan	G				
	CUU leucyna	CCU prolina	CAU histydyna	CGU arginina	U				
C	CUC leucyna	CCC prolina	CAC histydyna	CGC arginina	C				
	CUA leucyna	CCA prolina	CAA glutamina	CGA arginina	A				
	CUG leucyna	CCG prolina	CAG glutamina	CGG arginina	G				
	AUU izoleucyna	ACU treonina	AAU asparagina	AGU seryna	U				
	AUC izoleucyna	ACC treonina	AAC asparagina	AGC seryna	$\ddot{\mathbf{C}}$				
A	AUA izoleucyna	ACA treonina	AAA lizyna	AGA arginina	A				
	AUG metionina, START	ACG treonina	AAG lizyna	AGG arginina	G				
	GUU walina	GCU alanina	GAU kw. asparaginowy	GGU glicyna	U				
	GUC walina GUC walina	GCC alanina	GAC kw. asparaginowy	GGC glicyna	$\begin{bmatrix} \mathbf{c} \\ \mathbf{c} \end{bmatrix}$				
G	GUA walina	GCA alanina	GAA kw. glutaminowy	GGA glicyna	A				
	GUG walina	GCG alanina	GAG kw. glutaminowy	GGG glicyna	G				

-1

Wybrane aminokwasy białkowe					
Nazwa aminokwasu	Wzór	Kod	pI		
Glicyna	H ₂ N-CH ₂ -COOH	Gly	6,06		
Alanina	H ₂ N-CH-COOH CH ₃	Ala	6,11		
Cysteina	H ₂ N—CH—COOH CH ₂ SH	Cys	5,05		
Seryna	H ₂ N—CH—COOH CH ₂ OH	Ser	5,68		
Walina	H ₂ N-CH-COOH CH CH ₃ CH ₃	Val	6,00		
Fenyloalanina	H ₂ N-CH-COOH CH ₂	Phe	5,48		
Kwas asparaginowy	H ₂ N—CH—COOH CH ₂ COOH	Asp	2,85		
Kwas glutaminowy	H ₂ N—CH—COOH CH ₂ CH ₂ CH ₂ COOH	Glu	3,15		

Nazwa aminokwasu	Wzór	Kod	pI
Lizyna	H ₂ N-CH-COOH CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	Lys	9,60
Tyrozyna	H ₂ N-CH-COOH CH ₂ OH	Tyr	5,64
Glutamina	H ₂ N—CH—COOH CH ₂ CH ₂ CH ₂ CONH ₂	Gln	5,65
Asparagina	H ₂ N—CH—COOH CH ₂ CONH ₂	Asn	5,51
Leucyna	H ₂ N—CH—COOH CH ₂ CH CH ₃ CH ₃	Leu	6,01
Izoleucyna	H ₂ N-CH-COOH CH-CH ₃ C ₂ H ₅	Ile	6,05

Nazwa aminokwasu	Wzór	Kod	pI
Metionina	H ₂ N—CH—COOH CH ₂ CH ₂ CH ₂ S—CH ₃	Met	5,74
Treonina	H ₂ N—CH—COOH CH—OH CH ₃	Thr	5,60
Prolina	НМ—СООН	Pro	6,30
Histydyna	H ₂ N-CH-COOH CH ₂ HN N	His	7,60
Tryptofan	H ₂ N-CH-COOH CH ₂	Trp	5,89
Arginina	H ₂ N—CH—COOH CH ₂ CH ₂ CH ₂ CH ₂ NH NH—C—NH ₂	Arg	10,76

Źródło: W. Mizerski, Tablice chemiczne, Warszawa 2004.

	Rozpuszczalność soli i wodorotlenków w wodzie w temperaturze 25 °C												
	СГ	Br ⁻	Γ	NO_3^-	CH ₃ COO	S^{2-}	SO_3^{2-}	SO_4^{2-}	\mathbf{CO}_{3}^{2-}	SiO ₃ ²⁻	CrO ₄ ²⁻	PO ₄ ³⁻	ОН
Na ⁺	R	R	R	R	R	R	R	R	R	R	R	R	R
K ⁺	R	R	R	R	R	R	R	R	R	R	R	R	R
NH ₄ ⁺	R	R	R	R	R	R	R	R	R	_	R	R	R
Cu ²⁺	R	R	_	R	R	N	N	R	_	N	N	N	N
$\mathbf{A}\mathbf{g}^{\scriptscriptstyle{+}}$	N	N	N	R	R	N	N	Т	N	N	N	N	_
Mg ²⁺	R	R	R	R	R	R	R	R	N	N	R	N	N
Ca ²⁺	R	R	R	R	R	Т	N	Т	N	N	Т	N	Т
Ba ²⁺	R	R	R	R	R	R	N	N	N	N	N	N	R
Zn ²⁺	R	R	R	R	R	N	Т	R	N	N	Т	N	N
Al ³⁺	R	R	R	R	R	_	_	R	_	N	N	N	N
Sn ²⁺	R	R	R	R	R	N	_	R	_	N	N	N	N
Pb ²⁺	Т	Т	N	R	R	N	N	N	N	N	N	N	N
Mn ²⁺	R	R	R	R	R	N	N	R	N	N	N	N	N
Fe ²⁺	R	R	R	R	R	N	N	R	N	N	_	N	N
Fe ³⁺	R	R	_	R	R	N	_	R	_	N	N	N	N

 $[{]f R}$ – substancja rozpuszczalna; ${f T}$ – substancja trudno rozpuszczalna (strąca się ze stęż. roztworów); ${f N}$ – substancja nierozpuszczalna; — oznacza, że dana substancja albo rozkłada się w wodzie, albo nie została otrzymana

Stałe dysocjacji wybranych kwasów w roztworach wodnych w temperaturze 25 °C*				
Kwas nieorganiczny	Stała dysocjacji K_a lub K_{a1}			
HF	6,3 · 10 ⁻⁴			
HCl	$1,0 \cdot 10^{7}$			
HBr	3,0 · 10 ⁹			
HI	$1,0\cdot 10^{10}$			
H ₂ S	1,0 · 10 ⁻⁷			
H ₂ Se	1,9 · 10 ⁻⁴			
H_2 Te	$2,5 \cdot 10^{-3}$			
HClO	5,0 · 10 ⁻⁸			
HClO ₂	1,1 · 10 ⁻²			
HClO ₃	$5,0 \cdot 10^{2}$			
HNO ₂	$5,1\cdot 10^{-4}$			
HNO ₃	27,5			
H ₂ SO ₃	$1,5 \cdot 10^{-2}$			
H_3BO_3	$5.8 \cdot 10^{-10}$			
H ₃ AsO ₃	$5.9 \cdot 10^{-10}$			
H_3 AsO $_4$	$6.5 \cdot 10^{-3}$			
H_3PO_4	$6.9 \cdot 10^{-3}$			
H_4SiO_4	$3,2\cdot 10^{-10}$			
H ₂ CO ₃	$4.5 \cdot 10^{-7}$			
Kwas organiczny	Stała dysocjacji K _a			
НСООН	$1.8 \cdot 10^{-4}$ $(t = 20 ^{\circ}\text{C})$			
CH ₃ COOH	1,8 · 10 ⁻⁵			
CH ₃ CH ₂ COOH	$1,4\cdot 10^{-5}$			
C ₆ H ₅ COOH	$6.5 \cdot 10^{-5}$			
C ₆ H ₅ OH	$1.3 \cdot 10^{-10}$ $(t = 20 ^{\circ}\text{C})$			

Źródło: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2010.

Stałe dysocjacji wybranych zasad w roztworach wodnych w temperaturze 25 °C				
Zasada Stała dysocjacji K _b				
NH ₃	1,8 · 10 ⁻⁵			
CH ₃ NH ₂	$4,3 \cdot 10^{-4}$			
CH ₃ CH ₂ NH ₂	$5.0 \cdot 10^{-4}$			
CH ₃ CH ₂ CH ₂ NH ₂	$4.0 \cdot 10^{-4}$			
(CH ₃) ₂ NH	$7,4\cdot 10^{-4}$			
(CH ₃) ₃ N	7,4 · 10-5			
C ₆ H ₅ NH ₂	$4,3\cdot 10^{-10}$			

Źródło: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2010.

Szereg elektrochemiczny wybranych metali						
Półogniwo	E°, V	Półogniwo	E°, V			
Li/Li ⁺	-3,04	Ni/Ni ²⁺	-0,26			
Ca/Ca ²⁺	-2,84	Sn/Sn ²⁺	-0,14			
Mg/Mg ²⁺	-2,36	Pb/Pb ²⁺	-0,13			
Al/Al³+	-1,68	Fe/Fe ³⁺	-0,04			
Mn/Mn ²⁺	-1,18	H ₂ /2H ⁺	0,00			
Zn/Zn ²⁺	-0,76	Bi/Bi ³⁺	+0,31			
Cr/Cr ³⁺	-0,74	Cu/Cu ²⁺	+0,34			
Fe/Fe ²⁺	-0,44	Ag/Ag ⁺	+0,80			
Cd/Cd ²⁺	-0,40	Hg/Hg ²⁺	+0,85			
Co/Co ²⁺	-0,28	Au/Au ³⁺	+1,50			

Źródło: A. Bielański, *Podstawy chemii nieorganicznej*, Warszawa 2010.

J. Sawicka, A. Janich-Kilian, W. Cejner-Mania, G. Urbańczyk, Tablice chemiczne, Gdańsk 2001.

^{*} jeśli w tabeli nie zaznaczono inaczej

J. Sawicka, A. Janich-Kilian, W. Cejner-Mania, G. Urbańczyk, Tablice chemiczne, Gdańsk 2001.

J. Sawicka, A. Janich-Kilian, W. Cejner-Mania, G. Urbańczyk, *Tablice chemiczne*, Gdańsk 2001.

Układ okresowy pierwiastków

1	_						_										18
₁ H				liczba ato	omowa	1H-	symbol	chemiczny	pierwiastk	<u>a</u>							₂ He
Wodór 1,01						Wodór	masa a	tomowa, u				13	14	15	16	17	Hel 4,00
2,1 3Li	2 4Be]				1,01— 2,1 _		ujemność				₅ B	₆ C	7N	8O	9F	₁₀ Ne
Lit	Beryl					2,1						Bor	Węgiel	Azot	Tlen	Fluor	Neon
6,94	9,01											10,81	12,01	14,01	16,00	19,00	20,18
1,0	1,5											2,0	2,5	3,0	3,5	4,0	_
11Na Sód	₁₂ Mg											₁₃ Al Glin	₁₄ Si Krzem	15P Fosfor	₁₆ S Siarka	17Cl Chlor	₁₈ Ar
23,00	Magnez 24,31	2	4	_	(7	0	0	10	11	10	26,98	28,09	30,97	32,07	35,45	Argon 39,95
0,9	1,2	3	4	5	6	7	8	9	10	11	12	1,5	1,8	2,1	2,5	3,0	·
19 K	₂₀ Ca	21Sc	₂₂ Ti	23V	$_{24}Cr$	₂₅ Mn	₂₆ Fe	27Co	₂₈ Ni	29Cu	$_{30}$ Zn	31Ga	32Ge	33As	34Se	35Br	36Kr
Potas 39,10	Wapń 40,08	Skand 44,96	Tytan 47,87	Wanad 50,94	Chrom 52,00	Mangan 54,94	Żelazo 55,85	Kobalt 58,93	Nikiel 58,69	Miedź 63,55	Cynk 65,39	Gal 69,72	German 72,61	Arsen 74,92	Selen 78,96	Brom 79,90	Krypton 83,80
0,9	1,0	1,3	1,5	1,7	1,9	1,7	1,9	2,0	2,0	1,9	1,6	1,6	1,8	2,0	2,4	2,8	83,80
₃₇ Rb	₃₈ Sr	39Y	$_{40}$ Zr	41Nb	₄₂ Mo	₄₃ Tc	44Ru	₄₅ Rh	₄₆ Pd	47Ag	₄₈ Cd	₄₉ In	₅₀ Sn	₅₁ Sb	₅₂ Te	₅₃ I	₅₄ Xe
Rubid	Stront	Itr	Cyrkon	Niob	Molibden	Technet	Ruten	Rod	Pallad	Srebro	Kadm	Ind	Cyna	Antymon	Tellur	Jod	Ksenon
85,47 0,8	87,62 1,0	88,91 1,3	91,22 1,4	92,91 1,6	95,94 2,0	97,91 1,9	101,07 2,2	102,91 2,2	106,42 2,2	107,87 1,9	112,41 1,7	114,82 1,7	118,71 1,8	121,76 1,9	127,60 2,1	126,90 2,5	131,29
55Cs	₅₆ Ba	57La*	72Hf	73Ta	$\frac{2,0}{74}$ W	75Re	76Os	77Ir	78Pt	₇₉ Au	₈₀ Hg	81T1	82Pb	83Bi	84Po	85At	₈₆ Rn
Cez	Bar	Lantan	Hafn	Tantal	Wolfram	Ren	Osm	Iryd	Platyna	Złoto	Rtęć	Tal	Ołów	Bizmut	Polon	Astat	Radon
132,91	137,33	138,91	178,49	180,95	183,84	186,21	190,23	192,22	195,08	196,97	200,59	204,38	207,20	208,98	208,98	209,99	222,02
0,7	0,9	1,1	1,3	1,5	2,0	1,9	2,2	2,2	2,2	2,4	1,9	1,8	1,8	1,9	2,0	2,2	T T
87Fr Frans	88Ra Rad	89Ac** Aktyn	104Rf Rutherford	₁₀₅ Db Dubn	106Sg Seaborg	₁₀₇ Bh Bohr	₁₀₈ Hs _{Has}	109Mt Meitner	110Ds Darmstadt	111 Uuu Ununun	112Uub Ununbi	113 Uut Ununtri	114Uuq Ununkwad	115 Uup Ununpent	116Uuh Ununheks	117Uus Ununsept	118Uuo Ununokt
223,02	226,03	227,03	261,11	263,11	265,12	264,10	269,10	268,10	281,10	280	285	284	289	288	292	Onunsept	294
0,7	0,9			·	•	·											
		*)	Ca	D _m	NIJ	Desc	Cere	Ex	Ci	Th	Des	Ша	Γ.,	Test	37L	Ι.,,	7
		*)	₅₈ Ce	59Pr Prazeodym	60Nd Neodym	61Pm Promet	62Sm Samar	63Eu Europ	64 Gd Gadolin	65Tb Terb	66Dy Dysproz	67Ho Holm	₆₈ Er Erb	69Tm Tul	70Yb Iterb	71Lu Lutet	
			140,12	140,91	144,24	144,91	150,36	151,96	157,25	158,93	162,50	164,93	167,26	168,93	173,04	174,97	
		**/															
		**)	₉₀ Th	91 P a	$_{92}U$	93Np	₉₄ Pu	₉₅ Am	₉₆ Cm	$_{97}$ Bk	₉₈ Cf	99Es	$_{100}$ Fm	₁₀₁ Md	₁₀₂ No	₁₀₃ Lr	
			Tor 232,04	Protaktyn 231,04	Uran 238,03	Neptun 237,05	Pluton 244,06	Ameryk 243,06	Kiur 247,07	Berkel 247,07	Kaliforn 251,08	Einstein 252,09	Ferm 257,10	Mendelew 258,10	Nobel 259,10	Lorens 262,11	
			232,01	231,01	250,05	257,05	211,00	213,00	217,07	217,07	251,00	202,07	207,10	230,10	237,10	202,11	

Źródło: W. Mizerski, *Tablice chemiczne*, Warszawa 2004. Masy atomowe podano z dokładnością do dwóch miejsc po przecinku.

Kinemat	yka
prędkość	$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$
przyspieszenie	$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$
prędkość kątowa	$\omega = \frac{\Delta \alpha}{\Delta t} = \frac{2\pi}{T}$
prędkość w ruchu po okręgu	$v = \omega \cdot r$
przyspieszenie dośrodkowe	$a_{\rm d} = \frac{v^2}{r} = \omega^2 \cdot r$
przyspieszenie kątowe	$\varepsilon = \frac{\Delta\omega}{\Delta t}$ $a_{\rm st} = \varepsilon \cdot r$
przyspieszenie styczne	$a_{\rm st} = \varepsilon \cdot r$
prędkość w prostoliniowym ruchu jednostajnie zmiennym	$v = v_0 + a \cdot t$
droga w prostoliniowym ruchu jednostajnie zmiennym	$s = v_0 \cdot t + \frac{1}{2} a \cdot t^2$

]	Drgania i fale									
ruch harmoniczny	$x(t) = A \cdot \sin(\omega t + \varphi)$ $v(t) = A \cdot \omega \cdot \cos(\omega t + \varphi)$ $a(t) = -A \cdot \omega^{2} \cdot \sin(\omega t + \varphi)$									
okres drgań masy na sprężynie i wahadła matematycznego	$T = 2\pi \sqrt{\frac{m}{k}}; T = 2\pi \sqrt{\frac{l}{g}}$									
częstotliwość i długość fali	$f = \frac{1}{T} ; \lambda = v \cdot T$									
załamanie fali	$\frac{\sin\alpha}{\sin\beta} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$									
siatka dyfrakcyjna	$n \cdot \lambda = d \cdot \sin \alpha$									
efekt Dopplera	$f = f_{\acute{z}r} \frac{v}{v \pm u_{\acute{z}r}}$									

Dynamika									
pęd	$\vec{p} = m \cdot \vec{v}$								
II zasada dynamiki	$\frac{\Delta \vec{p}}{\Delta t} = \vec{F} ; \vec{a} = \frac{\vec{F}}{m}$								
moment siły	$M = F \cdot r \cdot \sin \sphericalangle (\overrightarrow{r}; \overrightarrow{F})$								
moment bezwładności	$I = \sum_{i=1}^{n} m_i \cdot r_i^2$								
moment pędu punktu materialnego	$J = m \cdot v \cdot r \cdot \sin \sphericalangle (\vec{r}; \vec{v})$								
moment pędu bryły sztywnej	$J = I \cdot \omega$								
II zasada dynamiki ruchu obrotowego	$\frac{\Delta J}{\Delta t} = M ; \varepsilon = \frac{M}{I}$								
praca	$W = F \cdot \Delta x \cdot \cos \ll (\vec{F}, \Delta \vec{x})$								
moc	$P = \frac{W}{\Delta t}$								
energia kinetyczna	$E_{\rm kin} = \frac{1}{2} m \cdot v^2$								
energia kinetyczna ruchu obrotowego bryły sztywnej	$E_{\rm kin} = \frac{1}{2} I \cdot \omega^2$								

Siła ciężkości, siła sprężystości i siła tarcia									
prawo powszechnego ciążenia	$F_g = G \frac{m_1 \cdot m_2}{r^2}$								
natężenie pola grawitacyjnego	$\vec{\gamma} = rac{ec{F}_g}{m}$								
energia potencjalna grawitacji	$E_p = -G \frac{m_1 \cdot m_2}{r}$								
zmiana energii potencjalnej grawitacji na małych wysokościach	$\Delta E_p = m \cdot g \cdot \Delta h$								
prędkości kosmiczne (dla Ziemi)	$v_{\rm I} = \sqrt{\frac{G \cdot M_{\rm Z}}{R_{\rm Z}}} = 7,9 \frac{\rm km}{\rm s}$ $v_{\rm II} = \sqrt{\frac{2 \cdot G \cdot M_{\rm Z}}{R_{\rm Z}}} = 11,2 \frac{\rm km}{\rm s}$								
III prawo Keplera	$\frac{T_1^2}{R_1^3} = \frac{T_2^2}{R_2^3} = const$								
siła sprężystości	$\vec{F}_s = -k \cdot \vec{x}$								
energia potencjalna sprężystości	$E_{\rm pot} = \frac{1}{2} k \cdot x^2$								
siła tarcia kinetycznego	$T_{ m k} = \mu_{ m k} \cdot F_{ m N}$								
siła tarcia statycznego	$T_{\rm s} \leqslant \mu_{\rm s} \cdot F_{ m N}$								

Optyka									
kąt graniczny	$\sin \alpha_{\rm gr} = \frac{1}{n}$								
kąt Brewstera	$tg \alpha_B = n$								
równanie soczewki, zwierciadła	$\frac{1}{f} = \frac{1}{x} + \frac{1}{y}$								
soczewka	$\frac{1}{f} = \left(\frac{n_{socz}}{n_{otocz}} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$								
zwierciadło kuliste	$f = \frac{R}{2}$								

Fizyka współczesna									
równoważność masy-energii	$E = m \cdot c^2$								
energia fotonu	$E = h \cdot f = \frac{h \cdot c}{\lambda}$								
zjawisko fotoelektryczne	$h \cdot f = W + E_{k \max}$								
długość fali de Broglie'a	$\lambda = \frac{h}{m \cdot v}$								
poziomy energetyczne atomu wodoru	$E_n = -\frac{13.6 \text{ eV}}{n^2}$								
prawo Hubble'a	$v = H \cdot r$								

Termodynamika									
gęstość	$ \rho = \frac{m}{V} $								
ciśnienie	$p = \frac{F}{S}$								
zmiana ciśnienia hydrostatycznego	$\Delta p = \rho \cdot g \cdot \Delta h$								
I zasada termodynamiki	$\Delta U = Q + W$								
praca siły parcia	$W = -p \cdot \Delta V$								
ciepło właściwe	$c_{_{W}} = \frac{Q}{m \cdot \Delta T}$								
ciepło molowe	$C = \frac{Q}{n \cdot \Delta T}$								
ciepło przemiany fazowej	$Q = m \cdot L$								
średnia energia kinetyczna ruchu postępowego cząsteczek	$E_{\dot{s}r} = \frac{3}{2} k_B \cdot T$								
równanie stanu gazu doskonałego (Clapeyrona)	$p \cdot V = n \cdot R \cdot T$								
ciepła molowe gazu doskonałego	$C_p = C_V + R$								
sprawność silnika cieplnego	$\eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1}$								

Pole magnetyczne								
siła Lorentza	$F = q \cdot v \cdot B \cdot \sin \sphericalangle (\overrightarrow{v}; \overrightarrow{B})$							
siła elektrodynamiczna	$F = I \cdot l \cdot B \cdot \sin \sphericalangle (\vec{l}; \vec{B})$							
pole przewodnika prostoliniowego	$B = \frac{\mu_0 \mu_r \cdot I}{2\pi \cdot r}$							
pole pętli (w jej środku)	$B = \frac{\mu_0 \mu_r \cdot I}{2 \cdot r}$							
pole długiego solenoidu (zwojnicy)	$B = \mu_0 \mu_r \frac{n \cdot I}{l}$							
strumień pola magnetycznego	$\Phi = B \cdot S \cdot \cos \sphericalangle (\vec{B}; \vec{S})$							
SEM indukcji	$\mathcal{E} = -\frac{\Delta \Phi}{\Delta t}$							
SEM samoindukcji	$\mathcal{E} = -L \frac{\Delta I}{\Delta t}$							
SEM prądnicy	$\mathcal{E} = n \cdot B \cdot S \cdot \omega \cdot \sin(\omega t + \varphi)$							
wartości skuteczne prądu przemiennego	$U_{sk} = \frac{U_{\text{max}}}{\sqrt{2}}; I_{sk} = \frac{I_{\text{max}}}{\sqrt{2}}$							
transformator	$\frac{U_1}{U_2} = \frac{n_1}{n_2} = \frac{I_2}{I_1}$							

E	Elektrostatyka									
prawo Coulomba	$F = k \frac{q_1 \cdot q_2}{r^2} ; k = \frac{1}{4\pi \cdot \varepsilon_0}$									
natężenie pola	$ec{E}=rac{ec{F}}{q}$									
napięcie	$U = \frac{W}{q}$									
pole jednorodne	$U = E \cdot d$									
pojemność (pojemność kondensatora płaskiego)	$C = \frac{Q}{U} \left(C = \varepsilon_r \varepsilon_0 \cdot \frac{S}{d} \right)$									
energia kondensatora	$W = \frac{1}{2}Q \cdot U = \frac{1}{2}C \cdot U^2$									

Pr	ad elektryczny
natężenie prądu	$I = \frac{\Delta Q}{\Delta t}$
moc prądu	$P = U \cdot I$
opór przewodnika	$R = \rho \cdot \frac{l}{S}$
prawo Ohma	$I = \frac{U}{R}$
napięcie ogniwa	$U = \mathcal{E} - I \cdot R_w$
łączenie oporników	szeregowe równoległe $R_Z = \sum_{i=1}^{n} R_i$ $\frac{1}{R_Z} = \sum_{i=1}^{n} \frac{1}{R_i}$

Logarytmem $\log_a c$ dodatniej liczby c przy podstawie a (a > 0 i $a \ne 1$) nazywamy wykładnik b potęgi, do której należy podnieść podstawę a, aby otrzymać liczbę c:

 $\log_a c = b$ wtedy i tylko wtedy, gdy $a^b = c$ $\log x$ oraz $\lg x$ oznacza $\log_{10} x$

Dla x>0, y>0 i a>0 i $a\ne 1$ prawdziwa jest równość:

$$\log_a(x \cdot y) = \log_a x + \log_a y$$

Równanie kwadratowe $ax^2 + bx + c = 0$, gdzie $a \neq 0$, ma rozwiązania rzeczywiste wtedy i tylko wtedy, gdy $\Delta = b^2 - 4ac \ge 0$. Rozwiązania te wyrażają się wzorami:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

	Przedrostki											
mnożnik	10 ¹²	109	10 ⁶	10^3	10^2	10 ¹	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²
przedrostek	tera	giga	mega	kilo	hekto	deka	decy	centy	mili	mikro	nano	piko
oznaczenie	Т	G	M	k	h	da	d	С	m	μ	n	p

Stałe i jednostki fizyczne i chemiczne									
przyspieszenie ziemskie	$g = 9.81 \frac{\mathrm{m}}{\mathrm{s}^2}$	przenikalność magnetyczna próżni	$\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}$						
masa Ziemi	$M_Z = 5.98 \cdot 10^{24} \text{ kg}$	prędkość światła w próżni	$c = 3,00 \cdot 10^8 \frac{\mathrm{m}}{\mathrm{s}}$						
średni promień Ziemi	$R_{\rm Z} = 6370 \; \rm km$	stała Plancka	$h = 6,63 \cdot 10^{-34} \text{J} \cdot \text{s}$						
stała grawitacji	$G = 6,67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$	ładunek elementarny	$e = 1,60 \cdot 10^{-19} \text{ C}$						
liczba Avogadro	$N_{\rm A} = 6,02 \cdot 10^{23} \frac{1}{\text{mol}}$	masa elektronu	$m = 9,110 \cdot 10^{-31} \text{ kg}$						
objętość 1 mola gazu doskonałego	t = 0 °C oraz $p = 1013,25$ hPa	masa protonu	$m = 1,673 \cdot 10^{-27} \text{ kg}$						
w warunkach normalnych	$V = 22,41 \frac{\mathrm{dm}^3}{\mathrm{mol}}$	masa neutronu	$m = 1,675 \cdot 10^{-27} \text{ kg}$						
uniwersalna stała gazowa	$R = 8.31 \frac{J}{\text{mol} \cdot K}$	jednostka masy atomowej	1 u'=1,663·10 ⁻²⁷ kg						
stała Boltzmanna	$k_{\rm B} = 1.38 \cdot 10^{-23} \frac{\rm J}{\rm K}$	elektronowolt	$1 \text{ eV} = 1,60 \cdot 10^{-19} \text{ J}$						
przenikalność elektryczna próżni	$\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\text{C}^2}{\text{N} \cdot \text{m}^2}$	stała Hubble'a	$H \approx 75 \frac{\text{km}}{\text{s-Mpc}}$						
stała elektryczna	$k = \frac{1}{4\pi \cdot \varepsilon_0} = 8,99 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$	parsek	$1 \text{ pc} = 3,09 \cdot 10^{16} \text{ m}$						

α	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°
sinα cosβ	0,0000	0,0872	0,1736	0,2588	0,3420	0,4226	0,5000	0,5736	0,6428	0,7071	0,7660	0,8192	0,8660	0,9063	0,9397	0,9659	0,9848	0,9962	1,000
β	90°	85°	80°	75°	70°	65°	60°	55°	50°	45°	40°	35°	30°	25°	20°	15°	10°	5°	0°

$$\sin \alpha = \frac{a}{c} \qquad \sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos \alpha = \frac{b}{c} \qquad \tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\tan \alpha = \frac{a}{c} \qquad \tan^2 \alpha + \cos^2 \alpha = 1$$

$$\tan^2 \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\cos(90^{\circ} - \alpha) = \sin\alpha$$

$$\sin\alpha = \frac{a}{c} \quad \sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin(90^{\circ} - \alpha) = \cos\alpha$$

$$\sin((90^{\circ} - \alpha)) = \cos\alpha$$

$$\sin((\alpha + \beta)) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\cos((\alpha + \beta)) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos((\alpha - \beta)) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\cos((\alpha - \beta)) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\sin((\alpha - \beta)) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\sin((\alpha - \beta)) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\sin((\alpha - \beta)) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\sin((\alpha - \beta)) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\sin((\alpha - \beta)) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\sin((\alpha - \beta)) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

	0°	30°	45°	60°	90°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sinα	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_

x	logx	x	logx	x	logx	x	logx
0,01	-2,000	0,26	-0,585	0,51	-0,292	0,76	-0,119
0,02	-1,699	0,27	-0,569	0,52	-0,284	0,77	-0,114
0,03	-1,523	0,28	-0,553	0,53	-0,276	0,78	-0,108
0,04	-1,398	0,29	-0,538	0,54	-0,268	0,79	-0,102
0,05	-1,301	0,30	-0,523	0,55	-0,260	0,80	-0,097
0,06	-1,222	0,31	-0,509	0,56	-0,252	0,81	-0,092
0,07	-1,155	0,32	-0,495	0,57	-0,244	0,82	-0,086
0,08	-1,097	0,33	-0,481	0,58	-0,237	0,83	-0,081
0,09	-1,046	0,34	-0,469	0,59	-0,229	0,84	-0,076
0,10	-1,000	0,35	-0,456	0,60	-0,222	0,85	-0,071
0,11	-0,959	0,36	-0,444	0,61	-0,215	0,86	-0,066
0,12	-0,921	0,37	-0,432	0,62	-0,208	0,87	-0,060
0,13	-0,886	0,38	-0,420	0,63	-0,201	0,88	-0,056
0,14	-0,854	0,39	-0,409	0,64	-0,194	0,89	-0,051
0,15	-0,824	0,40	-0,398	0,65	-0,187	0,90	-0,046
0,16	-0,796	0,41	-0,387	0,66	-0,180	0,91	-0,041
0,17	-0,770	0,42	-0,377	0,67	-0,174	0,92	-0,036
0,18	-0,745	0,43	-0,367	0,68	-0,167	0,93	-0,032
0,19	-0,721	0,44	-0,357	0,69	-0,161	0,94	-0,027
0,20	-0,699	0,45	-0,347	0,70	-0,155	0,95	-0,022
0,21	-0,678	0,46	-0,337	0,71	-0,149	0,96	-0,018
0,22	-0,658	0,47	-0,328	0,72	-0,143	0,97	-0,013
0,23	-0,638	0,48	-0,319	0,73	-0,137	0,98	-0,009
0,24	-0,620	0,49	-0,310	0,74	-0,131	0,99	-0,004
0,25	-0,602	0,50	-0,301	0,75	-0,125	1,00	0,000

Centralna Komisja Egzaminacyjna ul. Józefa Lewartowskiego 6, 00-190 Warszawa tel. (22) 53-66-500, fax (22) 53-66-504 www.cke.edu.pl, e-mail: ckesekr@cke.edu.pl

Okręgowa Komisja Egzaminacyjna w Gdańsku ul. Na Stoku 49, 80-874 Gdańsk tel. (58) 32-05-590, fax (58) 32-05-591 www.oke.gda.pl, e-mail: komisja@oke.gda.pl

Okręgowa Komisja Egzaminacyjna w Łodzi ul. Praussa 4, 94-203 Łódź tel. (42) 63-49-133, fax (42) 63-49-154 www.oke.lodz.pl, e-mail: komisja@komisja.pl

Okręgowa Komisja Egzaminacyjna w Jaworznie ul. Adama Mickiewicza 4, 43-600 Jaworzno tel. (32) 78-41-615, fax (32) 78-41-608 www.oke.jaw.pl, e-mail: oke@oke.jaw.pl

Okręgowa Komisja Egzaminacyjna w Poznaniu ul. Gronowa 22, 61-655 Poznań tel. (61) 85-40-160, fax (61) 85-21-441 www.oke.poznan.pl, e-mail: sekretariat@oke.poznan.pl

Okręgowa Komisja Egzaminacyjna w Krakowie os. Szkolne 37, 31-978 Kraków tel. (12) 68-32-101, fax (12) 68-32-100 www.oke.krakow.pl, e-mail: oke@oke.krakow.pl

Okręgowa Komisja Egzaminacyjna w Warszawie Plac Europejski 3, 00-844 Warszawa tel. (22) 45-70-335, fax (22) 45-70-345 www.oke.waw.pl, e-mail: info@oke.waw.pl

Okręgowa Komisja Egzaminacyjna w Łomży Al. Legionów 9, 18-400 Łomża tel. (86) 47-37-120, fax (86) 47-36-817 www.oke.lomza.pl, e-mail: sekretariat@oke.lomza.pl

Okręgowa Komisja Egzaminacyjna we Wrocławiu ul. Zielińskiego 57, 53-533 Wrocław tel. (71) 78-51-894, fax (71) 78-51-866 www.oke.wroc.pl, e-mail: sekretariat@oke.wroc.pl

Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja jest dystrybuowana bezpłatnie.