```
import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
         # Import the requests library.
         import requests
         import time
In [2]:
         # Import the datetime module from the datetime library.
         from datetime import datetime
         # Import the API key and lat-lon to City Name CitiPy
         import sys
         sys.path.append("../")
         from config import weather_api_key
         from citipy import citipy
         # Import linear regression from the SciPy stats module.
         from scipy.stats import linregress
         # Starting URL for Weather Map API Call.
In [3]:
         #setting value for number of calls, (to check code with smaller set and avoid hitting API limitations)
         NUM_CALLS=2000
         params = {"units": "Imperial",
             "APPID": weather_api_key,
             "q": "Boston"} #q is city
         #params
         #base_url = "https://jsonplaceholder.typicode.com/" #Dummy placeholder, exceeded limit for a 60 calls a minute
         base url = "http://api.openweathermap.org/data/2.5/weather"
         # Create a set of random latitude and longitude combinations.
In [4]:
         lats = np.random.uniform(low=-90.000, high=90.000, size=NUM CALLS)
         lngs = np.random.uniform(low=-180.000, high=180.000, size=NUM CALLS)
         lat_lngs = zip(lats, lngs)
         lat lngs
Out[4]: <zip at 0x1a466ff7448>
       Latitude and longitude
In [5]:
         # Add the latitudes and longitudes to a list.
         coordinates = list(lat lngs)
         #coordinates
         # Create a list for holding the cities.
         cities = []
         failed_cities = []
```

Import the dependencies.

In [1]:

```
# Identify the nearest city for each latitude and longitude combination.
         for coordinate in coordinates:
             city = citipy.nearest city(coordinate[0], coordinate[1]).city name
             # If the city is unique, then we will add it to the cities list.
             if city not in cities:
                 cities.append(city)
         # Print the city count to confirm sufficient count.
         len(cities)
Out[5]: 743
In [6]:
         # Create an empty list to hold the weather data.
         city data = []
         skipped cities = []
         # Print the beginning of the logging.
         print("Beginning Data Retrieval
         print("-----")
         # Create counters.
         record count = 1
         set_count = 1
        Beginning Data Retrieval
In [7]:
         # Loop through all the cities in the list.
         for i, city in enumerate(cities):
             if (i == 0):
                 print(f"Processing Record {record_count} of Set {set_count} | {city}")
             # Group cities in sets of 50 for logging purposes.
             if (i \% 50 == 0 \text{ and } i >= 50):
                 set count += 1
                 record count = 1
                 print(f"Processing Record {record count} of Set {set count} | {city}")
                 time.sleep(30) #Need to sleep a few seconds (60?) so API calls don't stop
             # Create endpoint URL with each city.
             #city url = base url + "&q=" + city.replace(" ","+") needing + is deprecated, using dictionary of params
             params['q'] = city
             # Log the URL, record, and set numbers and the city.
             #print(f"Processing Record {record count} of Set {set count} | {city}")
```

Add 1 to the record count.

Run an API request for each of the cities.

Parse the JSON and retrieve data.

city_lat = city_weather["coord"]["lat"]

Parse out the needed data.

city weather = requests.get(base url, params).json()

record_count += 1

try:

```
city lng = city weather["coord"]["lon"]
         city max temp = city weather["main"]["temp max"]
         city humidity = city weather["main"]["humidity"]
         city clouds = city weather["clouds"]["all"]
         city_wind = city_weather["wind"]["speed"]
         city_country = city_weather["sys"]["country"]
         # Convert the date to ISO standard.
         city date = datetime.utcfromtimestamp(city weather["dt"]).strftime('%Y-%m-%d %H:%M:%S')
         #Concatenate Description as comma separated it can contain 7 or more Descriptions https://openweathermap.org/weather-conditions
         weather desc = ""
        for weather in city weather["weather"]:
            if len(weather desc) > 0:
                weather desc = concatante + ", " + weather["description"]
            else:
                weather desc = weather["description"]
        # Append the city information into city data list.
         city data.append({"City": city.title(),
             "Lat": city lat,
            "Lng": city lng,
            "Max Temp": city max temp,
            "Humidity": city humidity,
            "Cloudiness": city clouds,
            "Wind Speed": city wind,
            "Country": city country,
            "Current Description": weather desc,
            "Date": city date})
    # If an error is experienced, skip the city.
    except:
        #print(f"{city.title()} not found. Skipping...")
        skipped_cities.append({"City": city.title(),
            "Coords": coordinates[(set count-1)*10+record count-1]})
         pass #We are catching errors, commenting out pass!
    # Indicate that Data Loading is complete.
    # print("-----
    # print("Data Retrieval Complete
    # print("----")
Processing Record 1 of Set 1 | kalmunai
Processing Record 1 of Set 2 | sorland
Processing Record 1 of Set 3 | caravelas
Processing Record 1 of Set 4 | alice springs
Processing Record 1 of Set 5 | erdenet
Processing Record 1 of Set 6 | sur
Processing Record 1 of Set 7 | sukhumi
Processing Record 1 of Set 8 | mossendjo
Processing Record 1 of Set 9 | karratha
Processing Record 1 of Set 10 | chimore
Processing Record 1 of Set 11 | shrewsbury
Processing Record 1 of Set 12
                               aswan
```

Processing Record 1 of Set 13 | williston

In [13]: # Convert the array of dictionaries to a Pandas DataFrame.
 city_data_df = pd.DataFrame(city_data)
 city_data_df.head(10)

Out[13]:		City	Lat	Lng	Max Temp	Humidity	Cloudiness	Wind Speed	Country	Current Description	Date
	0	Kalmunai	7.4167	81.8167	77.18	79	93	4.92	LK	overcast clouds	2021-03-28 22:48:13
	1	Talnakh	69.4865	88.3972	-14.22	99	59	4.16	RU	broken clouds	2021-03-28 22:48:14
	2	Snasa	64.2457	12.3778	35.67	98	100	3.18	NO	light rain	2021-03-28 22:48:14
	3	Ushuaia	-54.8000	-68.3000	46.40	61	75	14.97	AR	broken clouds	2021-03-28 22:48:14
	4	Bredasdorp	-34.5322	20.0403	60.80	88	100	11.50	ZA	overcast clouds	2021-03-28 22:48:14
	5	Hilo	19.7297	-155.0900	71.60	78	90	4.61	US	overcast clouds	2021-03-28 22:48:14
	6	Chiredzi	-21.0500	31.6667	64.63	84	5	5.19	ZW	clear sky	2021-03-28 22:48:15
	7	Sampit	-2.5333	112.9500	74.10	97	100	0.72	ID	moderate rain	2021-03-28 22:48:15
	8	Victoria	22.2855	114.1577	75.99	87	23	6.98	НК	few clouds	2021-03-28 22:48:09
	9	Carnarvon	-24.8667	113.6333	71.60	94	40	5.75	AU	scattered clouds	2021-03-28 22:48:15

Out[14]:		City	Country	Lat	Lng	Max Temp	Humidity	Cloudiness	Wind Speed	Current Description	Date
	0	Kalmunai	LK	7.4167	81.8167	77.18	79	93	4.92	overcast clouds	2021-03-28 22:48:13
	1	Talnakh	RU	69.4865	88.3972	-14.22	99	59	4.16	broken clouds	2021-03-28 22:48:14
	2	Snasa	NO	64.2457	12.3778	35.67	98	100	3.18	light rain	2021-03-28 22:48:14
	3	Ushuaia	AR	-54.8000	-68.3000	46.40	61	75	14.97	broken clouds	2021-03-28 22:48:14
	4	Bredasdorp	ZA	-34.5322	20.0403	60.80	88	100	11.50	overcast clouds	2021-03-28 22:48:14
	•••										
	663	Key Largo	US	25.0865	-80.4473	81.00	74	1	5.01	clear sky	2021-03-28 22:57:37
	664	Kashi	CN	39.4547	75.9797	53.60	43	40	8.95	scattered clouds	2021-03-28 22:57:37
	665	Geraldton	AU	-28.7667	114.6000	66.20	77	14	4.61	few clouds	2021-03-28 22:57:38
	666	San Cristobal	VE	7.7669	-72.2250	78.80	73	40	9.22	scattered clouds	2021-03-28 22:57:38

	City	Country	Lat	Lng	Max Temp	Humidity	Cloudiness	Wind Speed	Current Description	Date
667	Terrace	CA	54.5163	-128.6035	41.00	48	75	11.50	light snow	2021-03-28 22:57:38

668 rows × 10 columns

```
In [17]: # Create the output file (CSV).
    output_data_file = "WeatherPy_Database.csv"
    # Export the City_Data into a CSV.
    city_data_df.to_csv(output_data_file, index_label="City_ID")
In [18]: #write error's out here
```

```
In [18]: #write error's out here
output_data_file = "WeatherPy_DB_skipped.csv"
skipped_cities_df = pd.DataFrame(skipped_cities)
# Export the City_Data into a CSV.
skipped_cities_df.to_csv(output_data_file, index_label="City_ID")
```