Elliptical Reflections (prob11)

The Problem

An ellipse has the interesting property that if one emits a signal from one of its foci, it will bounce off of a point on the ellipse and the signal is reflected through the other focus. See the figure below. For this problem, you will be given a focus F_1 , a point P on the ellipse, and the other focus F_2 . You are to determine the next point Q, on the ellipse, that will be hit when a signal is emitted from the first focus F_1 , it bounces off the ellipse at P and then passes through F_2 .

Recall, if P is a point on an ellipse having foci F_1 and F_2 , then $|PF_1| + |PF_2| = 2a$, $|F_1F_2| = 2c$ and the equation of the ellipse having center (h, k) is

$$(a^2 - c^2)(x - h)^2 + a^2(y - k)^2 = a^2(a^2 - c^2)$$

if the major axis, the line through F_1 and F_2 , is horizontal.

Input

The input for each case will be on a line by itself. It will consist of six numbers x_1 , y_1 , x_0 , y_0 , x_2 , y_2 where $P = (x_0, y_0)$, $F_1 = (x_1, y_1)$, and $F_2 = (x_2, y_2)$. The input will be terminated by a line of input where $F_1 = F_2$ = the origin. The last line is not to be processed. You may assume for all the other lines of input that $F_1 \neq F_2$, that the major axis of the ellipsis is either vertical or horizontal, and that P is not on the segment F_1F_2 . Also, the absolute value of any coordinate will not exceed 100.

Output

For each line of output, output the coordinates of the point Q rounded to four decimal places.

Sample Input

```
-5 0 19 5 5 0

-5 0 -17.800166 -8.142916 5 0

5 0 -19 5 -5 0

5 0 17.800166 -8.142916 -5 0

-3 4 21 9 7 4

0 -5 5 19 0 5

4 -3 9 21 4 7

0 0 0 0 0 0
```

Sample Output

```
-17.8002 -8.1429
19.0000 5.0000
17.8002 -8.1429
-19.0000 5.0000
-15.8002 -4.1429
-8.1429 -17.8002
-4.1429 -15.8002
```