Semantic Theory Week 6 – Event semantics

Noortje Venhuizen Harm Brouwer

Universität des Saarlandes

Summer 2019

A problem with verbs and adjuncts

(1) The gardener killed the baron

- $\rightarrow kill_1(g',b')$ $kill_1::\langle e,\langle e,t\rangle \rangle$
- (2) The gardener killed the baron in the park $\mapsto \text{kill}_2(g',b',p')$ $\text{kill}_2::\langle e,\langle e,\langle e,t\rangle\rangle$
- (3) The gardener killed the baron at midnight $\mapsto \text{kill}_3(g',b',m')$ kill₃ :: $\langle e,\langle e,\langle e,t\rangle \rangle$
- (4) The gardener killed the baron at midnight in the park → kill₄(g',b',m',p') kill₄ ::
- (5) The gardener killed the baron in the park at midnight → kill₅(g',b',p',m') kill₅ ::

Q: How to explain the systematic logical entailment relations between the different uses of "kill"?

Davidson's solution: verbs introduce events.

Verbs expressing events have an additional event argument, which is not realised at linguistic surface:

• kill $\mapsto \lambda y \lambda x \lambda e(kill'(e,x,y)) :: \langle e,\langle e,\langle e,t \rangle \rangle \rangle$ arity = n+1

Sentences denote sets of events:

• $\lambda y \lambda x \lambda e(kill'(e,x,y))(b')(g') \Rightarrow^{\beta} \lambda e(kill'(e,g',b')) :: \langle e,t \rangle$

Existential closure turns sets of events into truth conditions

- $\lambda P \exists e(P(e)) :: \langle \langle e, t \rangle, t \rangle$
- $\lambda P \exists e(P(e))(\lambda e(kill'(e,g',b'))) \Rightarrow^{\beta} \exists e(kill'(e,g',b')) :: t$

Davisonian events and adjuncts

Adjuncts express two-place relations between events and the respective "circumstantial information": time, location, ...

- at midnight $\mapsto \lambda P \lambda e(P(e) \land time(e,m')) :: \langle \langle e,t \rangle, \langle e,t \rangle \rangle$
- in the park $\mapsto \lambda P \lambda e(P(e) \land Iocation(e,p')) :: \langle \langle e,t \rangle, \langle e,t \rangle \rangle$

The gardener killed the baron at midnight in the park

```
\Rightarrow \exists e \; (kill(e, g', b') \land time(e, m) \land location(e, p')) \} \vDash \exists e \; (kill(e, g', b') \land time(e, m')) \\ \Leftrightarrow \exists e \; (kill(e, g', b') \land location(e, p) \land time(e, m')) \} \vDash \exists e \; (kill(e, g', b') \land location(e, p')) \\ \vDash \exists e \; (kill(e, g', b') \land location(e, p')) \}
```

Compositional derivation of event-semantic representations

the gardener killed the baron

```
\lambda x_e \lambda y_e \lambda e_e [\text{ kill(e, y, x) ](b')(g')} \Rightarrow^{\beta} \lambda e [\text{ kill(e, g', b') ]}
... at midnight
```

 $\lambda F_{\langle e,t\rangle} \lambda e_e$ [F(e) \wedge time(e, m')](λe_1 [kill(e₁, g', b')]) $\Rightarrow^{\beta} \lambda e$ [kill(e, g, b) \wedge time(e, m')]

... in the park

```
\lambda F_{\langle e,t\rangle} \lambda e_e [F(e) \wedge location(e, p')] (\lambda e_2 [kill(e<sub>2</sub>, g', b')\wedgetime(e<sub>2</sub>, m')]) \Rightarrow^{\beta} \lambda e [kill(e, g', b') \wedge time(e, m') \wedge location(e, p')]
```

Existential closure

 $\lambda P_{(e,t)} \exists e(P(e))(\lambda e'(K \land T \land L) \Rightarrow \beta \exists e [kill(e, g', b') \land time(e, m') \land location(e, p')]$

Model structures with events

To interpret events, we need enriched ontological information

Ontology: The area of philosophy identifying and describing the basic "categories of being" and their relations.

A model structure with events is a triple $M = \langle U, E, V \rangle$, where

- U is a set of "standard individuals" or "objects"
- E is a set of events
- U \cap E = \emptyset ,
- V is an interpretation function like in first order logic

Sorted (first-order) logic

A variable assignment g assigns individuals (of the correct sortspecific domain) to variables:

- $g(x) \in U$ for $x \in VAR_U$ $VAR_U = \{x, y, z, ..., x_1, x_2, ...\}$ (Object variables)
- $g(e) \in E$ for $e \in VAR_E$ $VAR_E = \{ e, e', e'', ..., e_1, e_2, ... \}$ (Event variables)

Quantification ranges over sort-specific domains:

- $[\![\exists x \Phi]\!]^{M,g} = 1$ iff there is an $a \in U$ such that $[\![\Phi]\!]^{M,g[x/a]} = 1$
- $[\exists e \ \Phi]^{M,g} = 1$ iff there is an $a \in E$ such that $[\![\Phi]^{M,g[e/a]} = 1$
- (universal quantification analogous)

Interpreting events

Advantages of Davidsonian events

- ☑ Intuitive representation and semantic construction for adjuncts
- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Uniform treatment of verb complements

(1) Bill saw an elephant

$$\rightarrow$$
 3e 3x (see(e, b', x) \land elephant(x))

see ::
$$\langle e, \langle e, \langle e, t \rangle \rangle$$

(2) Bill saw an accident

see ::
$$\langle e, \langle e, \langle e, t \rangle \rangle$$

(3) Bill saw the children play

$$\rightarrow \exists e \exists e' (see(e, b, e') \land play(e', the-children))$$

see ::
$$\langle e, \langle e, \langle e, t \rangle \rangle$$

Uniform treatment of adjuncts and post-nominal modifiers

Treatment of adjuncts as predicate modifiers, analogous to attributive adjectives:

- red $\mapsto \lambda F \lambda x [F(x) \land red^*(x)]$ $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$
- in the park $\mapsto \lambda F \lambda e [F(e) \land location(e, park)] \langle \langle e, t \rangle, \langle e, t \rangle \rangle$
- (1) The murder in the park...
- $\rightarrow \lambda F\lambda e[F(e) \land location(e, park)] (\lambda e_1 [murder(e_1)])$
- (2) The fountain in the park
- $\rightarrow \lambda F \lambda x [F(x) \land location(x, park)] (\lambda y [fountain(y)])$

Advantages of Davidsonian events

- ☑ Intuitive representation and semantic construction for adjuncts
- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Classical Tense Logic

John walks walk(john)

John walked P(walk(john))

John will walk F(walk(john))

Syntax like in first-order logic, plus

Φ has always been the case

Φ is always going to be the case

 if Φ is a well-formed formula, then PΦ, FΦ, HΦ, GΦ are also well-formed formulae.

Φ happened in the past

Φ will happen in the future

Classical Tense Logic (cont.)

Tense model structures are quadruples $M = \langle U, T, \langle V \rangle$ where

- U is a non-empty set of individuals (the "universe")
- T is a non-empty sets of points in time
- $U \cap T = \emptyset$
- < is a linear order on T
- V is a value assignment function, which assigns to every non-logical constant α a function from T to appropriate denotations of α

 $[P\Phi]^{M, t, g} = 1$ iff there is a t' < t such that $[\Phi]^{M, t', g} = 1$

 $\llbracket F\Phi \rrbracket^{M, t, g} = 1$ iff there is a t' > t such that $\llbracket \Phi \rrbracket^{M, t', g} = 1$

Temporal Relations and Events

- (1) The door opened, and Mary entered the room.
- (2) John arrived. Then Mary left.
- (3) Mary left, before John arrived.
- (4) John arrived. Mary had left already.

Q: How to formalize temporal relations between events?

Temporal Event Structure

A model structure with events and temporal precedence is defined as $M = \langle U, E, \langle e_u, V \rangle$, where

- Un $E = \emptyset$,
- < ⊆ E×E is an asymmetric relation (temporal precedence)
- $e_u \in E$ is the utterance event
- V is an interpretation function like in standard FOL
- · Overlapping events: e · e' iff neither e < e' nor e' < e

Tense in Semantic Construction

We can represent inflection as an abstract tense operator reflecting the temporal location of the reported event relative to the utterance event.

PAST
$$\mapsto \lambda P.\exists e [P(e) \land e < e_u] : \langle\langle e, t \rangle, t \rangle$$

PRES
$$\mapsto \lambda P. \exists e [P(e) \land e \cdot e_u] : \langle \langle e, t \rangle, t \rangle$$

Tense in Semantic Construction

Standard function application results in integration of temporal information and binding of the event variable (i.e., replacing E-CLOS):

- walk $\mapsto \lambda x \lambda e$ [walk(e, x)]
- Bill walk $\mapsto \lambda x \lambda e$ [walk(e, x)](b') $\Rightarrow^{\beta} \lambda e$ [walk(e, b')]
- Bill walk PAST

 → λΕ ∃e [E(e) ∧ e < e_u](λe' [walk(e', b)])

 ⇒β ∃e [λe' [walk(e', b)](e) ∧ e < e_u]

 ⇒β ∃e [walk(e, b) ∧ e < e_u]

Event Structure

Observation: Events are generally constructs that consist of various (temporally ordered) sub-events

• E.g., "scripts": visit a restaurant or shopping in the supermarket

Idea: Induce structure into events universe

Lattices and Semi-lattices

A **partial order** is a structure $\langle A, \leq \rangle$ where \leq is a reflexive, transitive, and antisymmetric relation over A.

- The **join** of a and $b \in A$ (Notation: $a \sqcup b$) is the lowest upper bound for a and b.
- The **meet** of a and $b \in A$ (Notation: $a \sqcap b$) is the highest lower bound for a and b.

A **lattice** is a partial order $\langle A, \leq \rangle$ that is closed under meet and join.

A join semi-lattice is a partial order $\langle A, \leq \rangle$ that is closed under join

Model Structure with Sub-Events

We can change the structure of the events universe to represent sub-event relations: $M = \langle U, \langle E, \leq_e \rangle, \langle e_u, V \rangle$, where:

- U \cap E = \emptyset ,
- < ⊆ E×E is an asymmetric relation (temporal precedence)
- $e_u \in E$ is the utterance event
- ⟨E, ≤e⟩ is a join semi-lattice
- V is an interpretation function

Model Structure with Sub-Events (cont.)

The model structure $M = \langle U, \langle E, \leq_e \rangle, <, e_u, V \rangle$ must observe some additional constraints on < and \leq_e , for instance:

- If $e_1 < e_2$ and $e_1' \le_e e_1$ and $e_2' \le_e e_2$, then $e_1' < e_2'$
- If $e_1' \circ e_2'$ and $e_1' \leq_e e_1$ and $e_2' \leq_e e_2$, then $e_1 \circ e_2$

Sidenote: We could introduce a similar structuring of the universe of entities in order to capture *plurality* and other *composite entities*

Advantages of Davidsonian events

- ☑ Intuitive representation and semantic construction for adjuncts
- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Links

- Overview paper: Lasersohn (2012) Event-Based Semantics: https://semanticsarchive.net/Archive/jFhNWM2M/ eventbasedsemantics.pdf
- PropBank: http://propbank.github.io/
- FrameNet: https://framenet.icsi.berkeley.edu/fndrupal/