UNIVERSITY OF TORONTO

Faculty of Applied Science and Engineering

Term Test II

First Year — Program 5

MAT1855 — Linear Algebra

Examiners: J W Lorimer & G M T D'Eleuterio

8 March 2011

Student Name:			
	Last Name	First Names	
Student Number:		Tutorial Section:	

Instructions:

- 1. Attempt all questions.
- 2. The value of each question is indicated at the end of the space provided for its solution; a summary is given in the table opposite.
- **3.** Write the final answers *only* in the boxed space provided for each question.
- 4. No aid is permitted.
- **5.** The duration of this test is 90 minutes.
- **6.** There are 9 pages and 5 questions in this test paper.

For Markers Only					
Question	Value	Mark			
	Α				
1	10				
	В				
2	10				
	С				
3	10				
4	10				
5	10				
Total	50				

A. Definitions and Statements

Fill in the blanks.

1(a).	State the Fundamental Theorem of Linear Algebra.	
		-
		/2
1(b).	A <i>basis</i> of a finite-dimensional vector space $\mathcal V$ is defined as	
		/2
1(c).	The $rank$ of $\mathbf{A} \in {}^m\mathbb{R}^n$ is defined as	
		/2
1(d).	Given that $\{m{v}_1\dotsm{v}_n\}\subset \mathcal{V}$ is linearly independent and $m{v}\in \mathcal{V}$, the $\{m{v},m{v}_1\dotsm{v}_n\}$ is linearly independent if and only if	hen
		-
		/2
1(e).	The relationship between $C(\mathbf{A}) = \operatorname{col} \mathbf{A}$ and $C(\mathbf{AB}) = \operatorname{col} \mathbf{AB}$, where $\mathbf{A} \in {}^m$ and $\mathbf{B} \in {}^n\mathbb{R}^n$, is	\mathbb{R}^n
		-
		-
		/2

B. True or False

Determine if the following statements are true or false and indicate by "T" (for true) and "F" (for false) in the box beside the question. The value of each question is 2 marks.

2(a). If the dimension of $\mathcal V$ is 100, then any set of 99 vectors from $\mathcal V$ is linearly independent.	
2(b) . Let $\boldsymbol{\theta}$ be the zero of a vector space \mathcal{V} . Then $\{\boldsymbol{\theta}\}=\operatorname{span}\{\boldsymbol{\theta}\}$.	
2(c) . If S is a subspace of V then any basis for V contains a basis for S .	
2(d). The dimension of the row space of A^T is equal to the dimension of the column space of A .	
2(e). The dimension of the null (solution) space of a 5×19 matrix must be less than or equal to 13.	

C. Problems

3	. If $\{m{u},m{v},m{w}\}$ is a basis for $\mathcal V$, show that $\{m{u}+m{v},m{w}+m{u},m{v}+m{w}\}$ is also a basis for	\mathcal{V} .
		., 1
	con	a

3cont'd	
	/10

4. Consider the subspace of \mathbb{P}_4 ,
$\mathcal{W} = \{ p \in \mathbb{P}_4 \mid p(1) + p(-1) = 0 \text{ and } p(2) + p(-2) = 0 \}$
where \mathbb{P}_4 is the vector space of polynomials of degree 4 or less. Determine the dimension of \mathcal{W} .

...cont'd

4 cont'd	
	/6

	There exists nd	$\mathbf{b}_0 \in {}^m\mathbb{R}$ su	ich that Ax	$\mathbf{b} = \mathbf{b}_0$ has a	unique solu	ution for x ($\bar{\epsilon}^n \mathbb{R}$
(ii) T		$\mathbf{c}_0 \in {}^n\mathbb{R} \mathbf{s}$	uch that A	$^{T}\mathbf{x}=\mathbf{c}_{0}$ ha	as a unique	solution for	r x ∈

5cont'd	
	/10