Pneumonia Detection using Deep Transfer Learning

Avinash Shekar(A20447945) Haripriya Aravapalli(A20445663)

Background

- Radiological images continue to grow at a significant rate compared to the number of trained radiologists/readers available.
- It is estimated that in some cases, an average radiologist must interpret one image every 3– 4 seconds in an 8-hour workday to meet workload demands.
- Al-driven radiological image analysis has the potential to increase efficiency & reduce errors by providing trained radiologists with, in some cases, superior detection capabilities.

Research paper

- Efficient Pneumonia Detection in Chest Xray
 Images Using Deep Transfer Learning.
- Predictions from all transfer learning models are given optimized weights to give the final prediction.
- We have used CNN, ResNet50, DenseNet121 and Inceptionv3

Methodology

- Transform data to python readable format.
- Dataset is already divided into train and test.
- Use 80-20 split for train and validation.
- Perform the Exploratory Data Analysis.
- Preprocess the data and Implement Data Augmentation.
- Try out CNN model.
- Compare with ResNet18, DenseNet121, and InceptionV3 pre-trained neural networks.
- Implement Weighted Classifier for all the models and obtain the classified output.

Model	Accuracy
CNN	91.02
ResNet50	93.58
DenseNet121	95.35
InceptionV3	87.82
Weighted Classifier	93.75

Confusion Matrix for weighted classifier

