逆向工程

有限状态机

第22讲 记忆元件与 射序 电路分析

- 一、领存器与触发器(难点)
- 二、肘序电路分析
- 习题: 3、4、6

锁存器与触发器

● 内容

SR和D锁存器,主从式边沿D触发器

●目标

根据输入序列,求出锁存器的输出序列,写出它的特征方程。描述主从式边沿触发器的工作过程。解释锁存器与触发器的"透明"性,并合理选用它们。

4.3 存储元件 - 锁存器 (1/4)

- ●SR锁存器
 - 財序特性(功能表)
 - ●特征方程

$$Q^{n+1} = S + \overline{R}Q^n$$

$$S \bullet R = 0$$

Time	R	S	Q^{n+1}	$\overline{Q^{n+1}}$	Comment	
	0	0	?	?	Stored state unknown	—
	0	1	1	0	"Set" to 1	—
	0	0	1	0	Now "remembers" 1	-
	1	0	0	1	"Reset" to 0	-
	O	_0_	_0_	1	Now "remembers" 0	—
	1	1	0	0	Both go low	—
•	0	0	?		Unstable!	—

4.3 存储元件 -锁存器 (2/4)

- ●带控制端的SR领存器
 - ●C可以是肘钟或其它控制信号
 - ●当C=1时,其特性与一般SR锁存器的特性相同

Logic diagram

●特征方程? CQn+ C(Sk+S

$$Q^{n+1} = C(S + \overline{R}Q^n) + \overline{C}Q^n$$
$$S \bullet R = 0$$

●状态图?

	·
R	Next state
Χ	No change
0	No change
1	0, Reset State
0	1, Set State
1	Undefined
	X 0 1

4.3 存储元件-锁存器 (3/4) 避免同时为。

- ●带控制端的D锁存器
 - ●肘序特性
 - ●没有不确定状态!
 - ●特征方程?

$$Q^{n+1} = CD + \overline{C}Q^n$$

●状态图?

	C D	Next state
→	0 X 1 0 1 1	No change 0 , Reset State 1 , Set State

4.3 存储元件 - 锁存器 (4/4)

- ●锁存器可用来快速捕获外部随机输入
- ●锁存器"透明",会使电路的状态或输出不稳定!
- ●考虑下面的电路控制信号有数,输出一轮入
 - ●设Y的初值为0
 - **当**C=1 时, Y?
 - ●振荡,不可预测!

●请画出锁存器输出Y的波形

4.3 存储元件-触发器 (1/2)

●锁存器的"透明"性带来不便

- 触发器的输出仅在控制信号 上升或下降后的瞬间发生变 化,不透明
- ●D触发器
 - ●主从式边沿触发D触发器

主从式下降沿触发的D触发器

主从式上升沿触发的D触发器

4.3 存储元件-触发器 (2/2)

●画出下图中触发器输出Y的波形, 设Y的初值为0

- 国党 無點黑 ●触发器适合用来定时捕获外部信号 开名 锁衣器
- ●锁存器或触发器的直接输入

肘序电路分析

- 内容财序电路分析
- 目标化活计长温以大量

能通过求得状态表和状态图,对时序 电路进行功能分析。

4.4 财序电路分析 -为什么? (1/1)

- ●什么是分析? 为什么要分析? 获得电路另外一种恰当的表示。逆向工程、芯片维权。
- ●对于右边的电路

Input: X(t)

Output: Y(t)

State: (A(t), B(t))

求输出函数和触发器激励函数

- \bullet 输出函数 Y = (A+B)X
- ●触发器输入方程(激励方 程,下一状态函数)

$$D_A = AX + BX,$$

$$D_B = \overline{A}X$$

4.4 财序电路分析 -例子1 (1/2)

例22.1 分析下面的时序电路。

4.4 时序电路分析 -例子1 (2/2)

$$Q0* = D0 = Q0 \cdot EN' + Q0' \cdot EN$$

 $Q1^* = D1 = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$

 $MAX = Q1 \cdot Q0 \cdot EN$

	<u> </u>	* n */			
P. S. Q1 Q0	N. S./Output				
<i>Q</i> 1 <i>Q</i> 0	EN = 0	EN = 1			
$ \begin{array}{cccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} $	00/0 01/0 10/0	01/0 10/0 11/0			
1 1	11/0	00/1			

EN = 0(MAX = 0)00 01 EN = 1 EN = 1(MAX = 1)(MAX = 0)EN = 1(MAX = 0)EN = 0EN = 0(MAX = 0) (MAX = 0)

Next-state Logic F

这是个什么东东?

4.4 肘序电路分析 -例子2 (1/2)

例22.2 对下面的同步时序逻辑电路进行分析,要求:

- ●写出输出与触发器激励方程
- ●画出状态表和状态图
- ●对功能进行描述

4.4 肘序电路分析 -例子2 (2/2)

这是个什么东东?1101序列识别器。

小结

- ●记忆元件
 - ●锁存器,透明,常用来即时捕获外部随机输入
 - ●触发器,不透明,常用来周期性地存储外部输入
- ●肘序电路分析
 - ●逆向工程
 - ●输出与状态方程
 - ●状态表与状态图
 - ●功能描述
 - ●分析 实例
- ●测验