#linear_algebra

defintion

DEFINITION

If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ and is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v}_1, \ldots, \mathbf{v}_p$. That is, Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p$$

with c_1, \ldots, c_p scalars.

Asking whether a vector **b** is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ amounts to asking whether the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{b}$$

has a solution, or, equivalently, asking whether the linear system with augmented matrix $[\mathbf{v}_1 \ \cdots \ \mathbf{v}_p \ \mathbf{b}]$ has a solution.

Note that Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ contains every scalar multiple of \mathbf{v}_1 (for example), since $c\mathbf{v}_1 = c\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_p$. In particular, the zero vector must be in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

A geometric description of span{v}and Span{u,v}

Let v be a nonzero vector in \mathbb{R}^3 . Then Span $\{v\}$ is the set of all scalar multiples of v, which is the set of points on the line in \mathbb{R}^3 through v and v. See Fig. 10.

If \mathbf{u} and \mathbf{v} are nonzero vectors in \mathbb{R}^3 , with \mathbf{v} not a multiple of \mathbf{u} , then Span $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^3 that contains \mathbf{u} , \mathbf{v} , and $\mathbf{0}$. In particular, Span $\{\mathbf{u}, \mathbf{v}\}$ contains the line in \mathbb{R}^3 through \mathbf{u} and $\mathbf{0}$ and the line through \mathbf{v} and $\mathbf{0}$. See Fig. 11.

FIGURE 10 Span $\{v\}$ as a line through the origin.

FIGURE 11 Span $\{u, v\}$ as a plane through the origin.