Bayesian Statistics Introduction

Peter Büchel

HSLU W

SA: Week 10

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

1 / 52

Peter Büchel (HSLU W)

avesian Statistics Introduction

SA: Week 10

2/5

Example

- Bayesian inference: Reallocation of credibility across possibilities
- Suppose we step outside one morning and notice that the sidewalk is wet, and wonder why
- We consider all possible causes of the wetness, including recent rain, recent garden irrigation, a newly erupted underground spring, a broken sewage pipe, a passerby who spilled a drink, and so on
- If all we know until this point is that some part of the sidewalk is wet, then all those possibilities will have some prior credibility based on previous knowledge
- For example, recent rain may have greater prior probability than a spilled drink from a passerby

Bayesian Statistics

• The focus of this module will be on Bayesian statistics

When the Facts Change, I Change My Mind. What Do You Do, Sir?

> John Maynard Keynes, Economist

- Bayesian statistics: Unified approach to statistics
- Much more natural approach of statistics for machine learning
- We have a model, collect data and "learn" from it using so-called Bayesian inference
- Very intuitive and is the mathematical version of how we think (usually)
- We look around and collect new information
- If we observe that the sidewalk is wet for as far as we can see, as are the trees and parked cars, then we re-allocate credibility to the hypothetical cause of recent rain
- The other possible causes, such as a passerby spilling a drink, would not account for the new information
- If instead we observed that the wetness was localised to a small area, and there was an empty drink cup a few feet away, then we would re-allocate credibility to the spilled-drink hypothesis, even though it had relatively low prior probability
- This sort of reallocation of credibility across possibilities is the essence of Bayesian inference

Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 3/52 Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 4/52

Example

- Suppose a murder has happened
- Four people A, B, C and D have made death threats against the murdered person
- Assume that one of the these suspect is the murderer and they didn't know each other, so it's not possible that, say, B and D committed the murder
- That is all we know

Peter Büchel (HSLU W)

time of the murder

- We assign credibilities to all suspects of having committed the murder
- If credibility of a suspect is zero: Suspect definitely not the murderer
- If credibility of a suspect is one: Suspect definitely the murderer

The island administration confirms that he was on the island at the

- Hence we can rule out suspect A as murderer
- Of course: Credibility of the other three suspects changes
- New credibilities of having committed the murder: 0.333 each (see Figure right)
- We call this the *posterior distribution*: Our knowledge about the suspects *after* we collected some data
- By collecting data, we have been able to reallocate the credibilities from the prior to the posterior distribution
- This idea lies at the heart of Bayesian inference

• Know nothing more about the suspects: Assign to each of them the credibility 0.25 of having committed the murder (see Figure left)

- We call this the *prior distribution*: Our knowledge about suspects *before* we are looking for evidence
- Now, we want to question suspect A, but realise that he has emigrated to a far away island

- We are not finished yet
- What about the other murder supects?
- Since suspect A is not a suspect anymore, we can concentrate on the other three suspects
- Use old posterior distribution as new prior distribution (Figure left)

Peter Büchel (HSLU W) Bayesian Statistics Introducti

SA: Week 10

SA: Week 10

5/52

7 / 52

Peter Büchel (HSLU W)

Rayesian Statistics Introduction

SA: Week 10

SA: Week 10

6/52

- We read in the newspaper that suspect *B* has died in a car accident before the murder and the coroner confirms this
- Reallocate credibilities again: New posterior distribution
- Credibilities for the suspects C and D are now 0.5 each
- Repeat process again:
 - ▶ Old posterior becomes new prior distribution
 - Collect data
 - ▶ Reallocate the credibilities: New posterior distribution

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10 9/52

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10 10/52

Bayes' Theorem: Prior, Likelihood, Posterior

- Already seen the Bayes' theorem before
- Recapitulate the Bayes' theorem and introduce a new interpretation

- Suspect *C* is in prison for an unrelated crime and the prison administration confirms this
- Therefore suspect *D* is the murderer
- Example completely idealised, but shows idea behind Bayesian inference quite nicely
- Data are noisy: Never have a completely deterministic process and hardly ever end up with certainty

Example

• Table: Proportions of combinations of hair colour and eye colour

	Hair color				
Eye color	Black	Brunette	Red	Blond	Marginal (eye color)
Brown	0.11	0.20	0.04	0.01	0.37
Blue	0.03	0.14	0.03	0.16	0.36
Hazel	0.03	0.09	0.02	0.02	0.16
Green	0.01	0.05	0.02	0.03	0.11
Marginal (hair color)	0.18	0.48	0.12	0.21	1

• The colored value 0.14 is probability

 $P(\mathsf{Blue} \cap \mathsf{Brunette})$

• Probability person has blue eyes and brunette hair

Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 11/52 Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 12/52

• The value 0.36 at the end of the second row:

$$P(Blue) = 0.36$$

- Probability that a person has blue eyes
- Consider only the second row:

		Hair color			
Eye color	Black	Brunette	Red	Blond	Marginal (eye color)
Blue	0.03/0.36	0.14 /0.36	0.03/0.36	0.16/0.36	0.36/0.36 = 1

- Determine probability that a person with blue eyes has brunette hair
- For this probability: Divide values in second row by P(Blue) = 0.36

• Denote probability that person with blue eyes has brunette hair with

Therefore

$$P(Brunette \mid Blue) = \frac{P(Blue \cap Brunette)}{P(Blue)} = \frac{0.14}{0.36} = 0.39$$

• Hence 39 % of the people with blue eyes have brunette hair

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

13 / 52

Peter Büchel (HSLU W)

Rayesian Statistics Introduction

SA: Week 10

14/5

• Add up all values in the second row of first table: *P*(Blue)

$$P(\mathsf{Blue}) = P(\mathsf{Blue} \cap \mathsf{Black}) + P(\mathsf{Blue} \cap \mathsf{Brunette}) + P(\mathsf{Blue} \cap \mathsf{Red}) + P(\mathsf{Blue} \cap \mathsf{Blond})$$

• With definition of conditional propbability, say, $P(Blue \cap Brunette)$:

$$P(\mathsf{Blue} \cap \mathsf{Brunette}) = P(\mathsf{Brunette} \mid \mathsf{Blue}) \cdot P(\mathsf{Blue})$$

• Rewrite *P*(Blue):

$$P(\mathsf{Blue}) = P(\mathsf{Black} \mid \mathsf{Blue}) \cdot P(\mathsf{Blue}) + P(\mathsf{Brunette} \mid \mathsf{Blue}) \cdot P(\mathsf{Blue}) + P(\mathsf{Red} \mid \mathsf{Blue}) \cdot P(\mathsf{Blue}) + P(\mathsf{Blond} \mid \mathsf{Blue}) \cdot P(\mathsf{Blue})$$

 \bullet Call the probability P(Blue) a marginal probability

In general

Table:

	Column		
Row	 С	• • •	Marginal
:	÷		
r	 $P(r \cap c) = P(r \mid c)P(c)$		$P(r) = \sum_{c^*} P(r \mid c^*) P(c^*)$
:	i :		
Marginal	P(c)		

• In general:

$$P(r \cap c) = P(r \mid c)P(c)$$

• But also:

$$P(r \cap c) = P(c \mid r)P(r)$$

• Therefore:

$$P(c \mid r)P(r) = P(r \mid c)P(c)$$

• Hence:

$$P(c \mid r) = \frac{P(r \mid c)P(c)}{P(r)}$$

- This is Bayes' theorem
- Describes P(c | r) in terms of P(r | c), P(c) and P(r)
- Rewrite the marginal probability P(r) for n columns

$$P(r) = P(r | c_1)P(c_1) + P(r | c_2)P(c_2) + \ldots + P(r | c_n)P(c_n)$$

• Pluggin the last expression into the Bayes' theorem we obtain the Bayes' theorem the way we will use it.

Bayes' theorem

$$P(c | r) = \frac{P(r | c)P(c)}{P(r | c_1)P(c_1) + P(r | c_2)P(c_2) + \ldots + P(r | c_n)P(c_n)}$$

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

17 / 52

Peter Büchel (HSLU W)

Rayesian Statistics Introduction

SA: Week 10

10 /

Likelihood, prior, posterior

• Introduction how to learn from data or information using Bayes' theorem

Example

- Malaria is a life-threatening disease
- It is characterised, among other things, by high, periodically occurring fever attacks in affected people
- Doctors measure parameters such as body temperature, blood counts, cardiograms or use medical tests
- OptiMAL is such a test to quickly detect malaria

Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 19/52 Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 20/52

- It cannot guarantee that it will be positive if a person has malaria
- Clinical trials have shown that the OptiMAL test has a probability of 0.917 (or 91.7%) of being positive in people infected with malaria
- This probability: Called the sensitivity or true positive rate of the test
- It is therefore the probability that the test will be positive, given the person has malaria
- This can be written as conditional probability:

$$P(+ \mid M) = 0.917$$

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

21 / 52

Peter Büchel (HSLU W

Bayesian Statistics Introduction

SA: Week 10

22 / 52

• So what we are looking for is the conditional probability:

$$P(M | +) = ?$$

• According to Bayes' theorem:

$$P(M|+) = \frac{P(+|M) \cdot P(M)}{P(+)} = \frac{P(+|M) \cdot P(M)}{P(+|M) \cdot P(M) + P(+|\overline{M}) \cdot P(\overline{M})}$$

- To determine the probability, need P(M), the probability that this person has malaria
- We don't know anything about the person and visit WHO's website
- About 3 %:

$$P(M) = 0.03$$

- Similarly, a medical test should react as negatively as possible if the person examined is not affected by the disease
- How well a test does this is indicated by the specificity (also true negative rate)
- Probability that a test will be negative, given the person is not ill
- In the OptiMAL test, the specificity (from clinical trials):

$$P(-|\overline{M}) = 0.935$$

- A doctor can use the OptiMAL test on a person
- Test is positive
- What is the probability that the patient has malaria?

• Hence:

$$P(M|+) = \frac{P(+|M) \cdot P(M)}{P(+|M) \cdot P(M) + P(+|\overline{M}) \cdot P(\overline{M})}$$

$$= \frac{0.917 \cdot 0.03}{0.917 \cdot 0.03 + 0.065 \cdot 0.97}$$

$$= 0.3037765$$

- Before the test was taken, P(M) for that person was 0.03
- After the test is positive (i.e., got additional information) the probability that this person has malaria is about 0.3 or 30 %
- Introduce the following terms:

P(M): Prior probability

 \triangleright P(M|+) : Posterior probability

 $ightharpoonup P(+ \mid M)$: Likelihood function

- Test is not particularly convincing, but additional information has resulted in a tenfold increase of probability that this person has malaria
- However, person is now still unsure and wants to know more precisely whether she has malaria or not
- Does the same test again (not recommended, see DoE)
- However: P(M) is no longer 0.03 but 0.304, since test has changed the probability
- Choose posterior-probability as new prior-probability
- All other variables remain the same (at least we assume so)

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

25 / 52

Peter Büchel (HSLU W)

• The person receives another positive test:

$$P(M|+) = \frac{P(+|M) \cdot P(M)}{P(+|M) \cdot P(M) + P(+|\overline{M}) \cdot P(\overline{M})}$$

$$= \frac{0.917 \cdot 0.304}{0.917 \cdot 0.304 + 0.065 \cdot 0.696}$$

$$= 0.86$$

- This person now has malaria with a probability of 0.86
- Of course, the person can take the test again
- In this case, we choose 0.86 as the new prior probability
- If test is positive again, the probability that this person has malaria increases to 0.99
- Seen in this example how new data or information (positive tests) using Bayes theorem results in an adjustment of one parameter namely the probability of having malaria

Coin tosses: Who cares?

- Following examples: Introduce mathematics in more detail
- Example: Coin tosses
- The fairness of a coin may be of great importance in high stakes games, but unimportant else
- So why bother studying the statistics of coin tosses?

- Because coin tosses are a substitute for countless other events in real life that matter to us
 - ► For a certain type of heart surgery, we can classify the patient's outcome as "survived" or "not survived" depending on whether or not they survived more than a year. We want to know how likely patients are to survive more than one year

SA: Week 10

- ► For a given type of drug, we can describe the outcome as "headache" or "no headache", where we want to quantify the probability of headache
- ► In a survey, the result could be "agree" or "disagree", and we want to know the probability of each answer
- ▶ What is the probability of two planes crashing in midair?
- Basically whenever there is a yes/no decision to a question, coin tosses can be used as a model

Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 27/52 Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 28/52

Example: Coin tosses

- Probability of flipping "head" H: θ
- Probability of flipping "tail" $T: 1 \theta$
- Consider a new one Swiss franc coin from the Swiss National Bank
- The question is now, how large is θ ?
- Because the coin comes from the reputable National Bank, is new and looks symmetrical, we may assume that the coin is fair, i.e., $\theta = 0.5$
- Now a real coin is never fair in the sense that θ is exactly 0.5, namely $\theta = 0.500\,000\,0...$

• It may be:

$$0.48 < \theta < 0.52$$

- Note that there are infinitely many values for θ , ranging from 0 to 1
- ullet Want to make a statement based on data about how large heta actually
- We now discuss two ways of doing this:
 - ▶ Either frequentistic (later): Flip the coin a lot of times and note how many times H has been flipped
 - ▶ Using Bayes' theorem

Peter Büchel (HSLU W)

SA: Week 10

29 / 52

- Flip the coin *once* and get H: Denote by y = 1
- \bullet Collected data about the coin and want to know about θ
- Are looking for the conditional probability:

$$P(\theta \mid y = 1)$$

• Apply Bayes' theorem:

$$P(\theta \mid y = 1) = \frac{P(y = 1 \mid \theta) \cdot P(\theta)}{P(y = 1)}$$

• On the right hand: Three unknown quantities:

$$P(y=1 \mid \theta), \qquad P(\theta) \qquad \text{und} \qquad P(y=1)$$

- Call:
 - \triangleright $P(\theta)$: Prior probability
 - ▶ $P(y = 1 | \theta)$: Likelihood function
 - P(y=1): Margin probability

Peter Büchel (HSLU W)

SA: Week 10

- Although θ can take infinitely many values, discretise θ for now
- Assume that θ can only take values of 0, 0.1, 0.2, ..., 0.9, 1
- Likelihood function $P(y = 1 \mid \theta)$ depends on θ :

$$P(y = 1 \mid \theta) = \theta$$

- If the probability of tossing H is θ (first θ), then with a probability of θ (second θ) H also appears
- For example, if $\theta = 0.8$, then

$$P(y = 1 \mid 0.8) = 0.8$$

• Probability of tossing head given probability of 0.8 is, of course, also 0.8

- For multiple θ 's, there are also multiple $P(y=1 \mid \theta)$'s
- The likelihood values for $P(y = 1 | \theta)$:

```
like <- seq(0, 1, 0.1)
like
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0</pre>
```

• Sketch:

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

33 / 52

• Define prior distribution $P(\theta)$, and there are many possibilities

- Have to define it before we collect data
- If we think of the coin as rather fair, but do not know for sure, we can *choose* a prior distribution:

ullet The prior values for the heta's are:

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

34 / 52

Remarks

• For $\theta=0$ and $\theta=1$: Probabilities are 0 in prior distribution, since we want to exclude that only H or only T can occur

•

Why not choose the following prior distribution?

• Later in more detail: The effect of different prior distributions on posterior distribution

• Calculate the marginal probability P(y = 1):

$$P(y=1) = P(y=1 \mid \theta = 0) \cdot P(\theta = 0) + \dots + P(y=1 \mid \theta = 1) \cdot P(\theta = 1)$$
$$= \sum_{i=0}^{10} P(y=1 \mid \theta_i) \cdot P(\theta_i)$$

• R:

margin <- sum(prior * like)
margin
[1] 0.5</pre>

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

35 / 52

Peter Büchel (HSLU W)

Rayesian Statistics Introduction

SA: Week 10

- Posterior probabilities for all θ 's, i.e., the posterior distribution
- For example:

$$P(0.8 \mid y = 1) = \frac{P(y = 1 \mid 0.8) \cdot P(0.8)}{P(y = 1)} = \frac{0.8 \cdot 0.08}{0.5} = 0.128$$

• R:

```
post = prior * like / margin
post
[1] 0.000 0.008 0.032 0.072 0.128 0.200 0.192 0.168 0.128 0.072 0.000
```

• Sketch:

Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 37/52 Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 38/52

- Prior distribution influences the posterior distribution "by a slightly different weighting" compared to the prior distribution
- The θ 's above 0.5 are weighted more heavily than those below 0.5
- \bullet Tossing H: Data gives indication for higher probabilities of tossing H
- Tossing T: Higher weighting for tossing probabilities below 0.5

Choice of prior distribution

- One or the critical point in example: Choice of prior distribution
- Seems to be something subjective, since we can choose it
- The (seemingly arbitrary) choice of prior distribution used to (and still does) lead to huge debates about whether Bayes statistics is applicable at all
- Well, success proves the Bayes approach right

Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 39/52 Peter Büchel (HSLU W) Bayesian Statistics Introduction SA: Week 10 40/52

- Although there is something subjective about the choice of the prior distribution, the choice is *not arbitrary*
- Different people will choose the prior distribution differently for a given problem
- However, this distribution should be similar
- Above all, the choice of prior distribution should be reasonable

Example

• Consider a coin that has an asymmetric cross-section:

- A symmetric prior distribution makes no sense because we already know beforehand that this kind of distribution cannot be correct
- In this case: Much more often T than H

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

41 / 52 Peter Büchel (HSLU W)

Savesian Statistics Introduction

SA: Week 10

42 / 5

• Choose a prior distribution that could be similar to:

- Choice of prior: Put into the prior distribution all available information
- This information will be uncertain, but it is the best we have
- Then apply Bayes' theorem

Frequentistic approach

• Frequentist approach: Repeat an experiment virtually endlessly

- Dividing the number of *H* observed by the number of trials
- ullet Expectation: Value increasingly approximates true probability heta
- Here: $\theta = 0.5$

Peter Büchel (HSLU W)

Rayesian Statistics Introduction

SA: Week 10

43 / 52

Peter Büchel (HSLU W)

Rayesian Statistics Introduction

SA: Week 10

lifetime • Realistic for coins to have a very large number of trials • Ideally, the device should have a lifetime of, let's say, over 10 years • But if coin is a model: In practice often not possible • Now, you want to sell the device today and not wait 10 years to see if the device will last that long • The frequentist approach would work here, but it is not practical Peter Büchel (HSLU W) SA: Week 10 45 / 52 Peter Büchel (HSLU W) SA: Week 10 Example Example • As civil engineers, you cannot build 100 000 bridges to check how • The history and future of the universe may be taken as a unique many have collapsed after 50 years experiment - parallel universes elude our observation • The frequentist approach is of no use here, but the Bayesian approach • Bayes statistics is particularly relevant in cosmology for this reason is helpful Peter Büchel (HSLU W) SA: Week 10 47 / 52 Peter Büchel (HSLU W) SA: Week 10 48 / 52

Example

• You are developing a measuring device and want to determine its

Example

- In the early days of aviation around 1955, an insurance company in the USA had wondered what the probability was that there would be a collision of two planes in the air
- Since there had been no serious collision of this kind up to that time, a prediction had to be made that was based on no experience
- Frequentistically: Probability was 0 at the time, simply because there had never been such a collision
- A statistician, L. H. Longley-Cook, took on this task

- Based on near misses and Bayes statistics, he concluded that despite the industry's safety record, there will be "between 0 and 4 collisions between aircraft in the next ten years"
- In sum, the company should prepare for a costly catastrophe by raising airline premium rates and buying reinsurance
- Two years later, his prediction proved correct
- A DC-7 and a Constellation collided over the Grand Canyon, killing 128 people in what was then the worst accident in commercial aviation
- Four years later, a DC-8 jet and a Constellation collided over New York City, killing 133 people in the planes and in the flats below

Peter Büchel (HSLU W)

Bayesian Statistics Introduction

SA: Week 10

49 / 52

Peter Büchel (HSLII)

esian Statistics Introduction

SA: Week 10

50 / 52

Example

- You are given a series of daily text-message counts from a user of your system
- Data, plotted over time

- You are curious to know if the user's text-messaging habits have changed over time, either gradually or suddenly
- How can you model this? (later)

- What are the prior's? (later)
- Posterior:

Peter Büchel (HSLU W)

Rayesian Statistics Introduction

SA: Week 10

51 / 52

Peter Büchel (HSLU W)

Ravesian Statistics Introduction

SA: Week 10