# Simulaciones para un experimento de neutrinos de reactor con Skipper-CCD utilizando los códigos PHITS, MCNP6 y Geant4

P.Bellino<sup>1</sup>, B. Cervantes<sup>2</sup>, E. Depaoli<sup>3</sup>, J. Molina<sup>4</sup>, D. Rodrigues<sup>5</sup>, I. Sidelnik<sup>6</sup>

<sup>1</sup>Física Experimental de Reactores, Comisión Nacional de Energía Atómica (pbellino@cnea.gov.ar)

<sup>2</sup> Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

Departamento de Metrología de Radioisótopos, Comisión Nacional de Energía Atómica
 Facultad de Ingeniería, Universidad Nacional de Asunción
 Depto. Física, FCEyN (UBA) - IFIBA - CONICET

<sup>6</sup> Departamento de Física de Neutrones, CONICET, Centro Atómico Bariloche, CNEA

105° Reunión de la Asociación Física Argentina - Primera RAFA Webinar 24 de septiempbre de 2020

# Índice

- Introducción
- 2 Simulaciones
- Geant4
- MCNP/PHITS
- 6 Análisis
- 6 Conclusiones

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e<sup>-</sup>

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e<sup>-</sup>

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e<sup>-</sup>

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e<sup>-</sup>

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e<sup>-</sup>

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e<sup>-</sup>

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e<sup>-</sup>

- Experimento para medir neutrinos producidos en un reactor nuclear
- Propiedades determinadas a partir de interacciones neutrino-electron y neutrino-núcleo
- Es un esfuerzo colaborativo entre varias instituciones y países
- A corto plazo se instalará un experimento en la Central Nuclear Atucha II
- ullet De particular interés resulta la Dispersión Elástica Coherente neutrino-Núcleo (CEuNS)
- Se utilizarán sensores CCD con tecnología Skipper
- Estos detectores poseen umbrales de detección de 15 eV (4 e<sup>-</sup>) y ruido de lectura subelectrónico
- Detección de electrones individuales desde 0 a 100000 e<sup>-</sup>

#### Mecanismo de detección



## Factor de quenching

¿Qué fracción de energía del núcleo en retroceso se transfiere a electrones/huecos?



## Importancia de la determinación del factor de quenching

Si el quenching a baja energía de recoil no es tan bajo como estamos asumiendo, entonces el número de cargas ionizadas será mayor al esperado y eso significa más señal y por lo tanto más sensibilidad para todas las interacciones que se quieren estudiar





## Importancia de la reducción del fondo

Nivel de confianza para la observación de CE $\nu$ NS a 12 m del núcleo de Atucha II, 2000 MW, integrando hasta 275 eV de energía de recoil



(dru = differential rate unit = eventos por día por keV por kg)

## Objetivos de las simulaciones

#### I) Determinación del factor de quenching

- Modelar experimentos con Skippers-CCD con el mayor detalle posible
- Estimar el factor de quenching al comparar experimentos y simulación

#### II) Optimización del blindaje del experimento

- Reducir la radiación de fondo que le llegue al detector
- Limitación de tamaño y materiales debido a estar en una central nuclear
- Optimización de materiales para blindaje de campos mixtos

- Será necesario simular partículas con un amplio rango de energías (eV GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con Skippers-CCD con los programas Geant4, MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV MeV) donde estos programas suelen funcionar muy bien

- Será necesario simular partículas con un amplio rango de energías (eV GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con Skippers-CCD con los programas Geant4, MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV MeV) donde estos programas suelen funcionar muy bien

- Será necesario simular partículas con un amplio rango de energías (eV GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con Skippers-CCD con los programas Geant4, MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV MeV) donde estos programas suelen funcionar muy bien

- Será necesario simular partículas con un amplio rango de energías (eV GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con Skippers-CCD con los programas Geant4, MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV MeV) donde estos programas suelen funcionar muy bien

- Será necesario simular partículas con un amplio rango de energías (eV GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con Skippers-CCD con los programas Geant4, MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV MeV) donde estos programas suelen funcionar muy bien

 troducción
 Simulaciones
 Geant4
 MCNP/PHITS
 Análisis
 Conclusiones

 0000
 00 000
 0000
 0000000
 00
 0000

## Rangos de trabajo de los programas

#### Energías y partículas simulados por MCNP6



- Tanto PHITS como MCNP6 simulan fotones y electrones hasta 1keV (simulación actual).
- Con MCNP6 se puede bajar hasta 1eV (fotones) y 10eV (electrones).
- Geant4 puede utilizar al código PENELOPE para simular bajas energías.

#### Experimento realizado



- Detector de silicio (9cm  $\times$  3cm  $\times$  675 $\mu$ m)
- Dos bloques de cobre rodeando al detector, como blindaje (12" x 8" x 2")
- Dewar de acero inoxidable ( $\phi$ =10", e=0.7cm)

#### Experimento realizado



- Blindaje de plomo (3cm)
- Fuente de fisiones espontáneas de <sup>252</sup>Cf (1.2μCi) debajo del plomo
- Plomo como blindaje para los gammas producidos por la fuente

## Simulación del experimento







## Metodología

G4 simulation in CCD (root file)

Generation of fits files from 2 dimensional histos

Reconstruction or extraction as Normal data



#### Estudio del fondo



#### Estudio del fondo



## Simulación con la fuente de <sup>252</sup>Cf

Imagen simulada de los eventos producidos por gammas de la fuente sobre el detector



# Comparación PHITS/MCNP

#### Flujo de neutrones en el plomo



# Comparación PHITS/MCNP

#### Flujo de fotones en el plomo



## Flujo de neutrones



## Flujo de fotones



## Energía depositada en Si

Deposición de energía debido a distintas partículas obtenidas con PHITS



## Energía depositada en Si



## Comparación con el experimento





# Fotones emitidos por la fuente de <sup>252</sup>Cf

- Por cada fisión espontánea se emiten:  $\bar{\nu}_n = 3.7$  y  $\bar{\nu}_p = 8.3$
- Espectro de fisión (Watt) para neutrones ( $\bar{E} \approx 2 MeV$ )
- Se asume una fuente sin quemado



#### Algunas preguntas:

- ¿Cuánto influyen estos fotones en el detector?
- Por otro lado, los neutrones generan fotones al interactuar con el resto de los materiales
- ¿Qué contribución de fotones es más importante?

## Algunas respuestas

- Se hicieron dos simulaciones (con MCNP), con y sin los fotones de la fuente
- Se muestra la energía depositada en Si por los fotones



## Conclusiones preliminares

- Generación de imágenes sintéticas y posterior extracción de eventos en Geant4
- Simulación del espectro de fondo (gammas y muones) en Geant4
- Coincidencia entre las simulaciones con MCNP/PHITS del experimento
- Coincidencia con los datos experimentales a altas energías
- Análisis de la contribución de fotones provenientes de la fuente de californio

## Próximos pasos

- Agregar la contribución del fondo (altas energías) en MCNP y PHITS
- Incorporar la fuente de <sup>252</sup>Cf a la simulación de Geant4 (en progreso)
- Incorporar bibliotecas para modelar interacciones a bajas energías
- Realizar una simulación más detallada en MCNP
- Agregar fuente de fotones en PHITS
- Optimizar la paralelización en MCNP
- Prueba de geometrías y materiales para optimizar el blindaje

 Introducción
 Simulaciones
 Geant4
 MCNP/PHITS
 Análisis
 Conclusiones

 00000
 000000
 000000
 00
 00000
 00
 00000

## Próximas pasos





# Próximas pasos





# Muchas gracias