

SSM Z' at pp collider

Keping Xie & Qiang Li

School of Physics Peking University

July 17, 2014

Outline

- Introduction
 - Z' in Sequential Standard Model
 - Background Simulation
 - binned maximum likelihood
- 2 95% confidence level limit of SSM Z' mass
 - Z' mass limit at 8TeV pp collider
 - Z' mass limit at 14TeV pp collider
 - Z' mass limit at 100TeV pp collider
- Conclusion
- 4 Acknowledgement

Z' in Sequential Standard Model

SSM: SM + Z'(carbon copy of Z), with the same couplings constants Not gauge invariant, thus not realistic, but useful.

$$\Gamma_{Z'} \sim 0.03 M_{Z'};$$

$$Br(e^+e^-/\mu^+\mu^-) \sim 3.3\% \text{(same as } Z\text{)}$$

95% CL lower limits on Z_{SSM}^{\prime} mass at 8TeV pp collider[1]:

muon channel: 2770GeV

barrel-barrel electron channel: 2650GeV

combined muon and electron channels: 2960GeV

Background Simulation at 8TeV

```
Simulation Frame: MadrGraph5 + Pythia8 + Delphes3 (No PileUp) signal process: pp \to Z' \to \mu^+\mu^-; luminosity L=20.6/fb background and K-factor: Z/\gamma 1.3[2]; t\bar{t} 1.8[3]; single top 1.6[4]; diboson(WW 1.6,WZ 1.8,ZZ 1.6)[5]; Jets and cosmic ray(ignored)[1].
```

Table : Number of Events in different region of invariant mass (M_{ll}) when compared with the reference[1]

Process	resource	120 - 200 GeV	> 200 GeV	> 400 GeV
	Reference	78k	20k	1.7k
total	My result	68k	16k	1.4k
	Reference	72k	16k	1.5k
Z/γ	My result	63k	13k	1.2k
	Reference	4.5k	2.6k	0.2k
$tar{t}$	My result	4.0k	2.0k	0.1k
	Reference	1.7k	1.0k	0.1k
diboson+other	My result	1.3k	0.9k	0.1k

binned maximum likelihood[6]

Expectation value of n

$$E[n] = \mu s + b \tag{1}$$

likelihood function for μ

$$L(\mu) = \frac{(\mu s + b)^n}{n!} e^{-(\mu s + b)}$$
 (2)

likelihood ratio

$$\frac{1}{2}\chi^2 = \ln\frac{L(1)}{L(0)} = \ln\left[\frac{(s+b)^n}{n!}e^{-(s+b)}\right] - \ln\left[\frac{b^n}{n!}e^{-b}\right] = n\ln(1+\frac{s}{b}) - s$$
 (3)

significance

$$\chi = \sqrt{2[n\ln(1+s/b) - s]} \tag{4}$$

where n = b + s for $\mu = 1$.

To simplify, we use only 1 bin.

significance at 8 TeV pp collider

```
luminosity L=20.6/fb Limit of Z' mass in reference[1] M(Z')>2.77TeV formula of significance: \sqrt{2[(N_s+N_b)\ln(1+\frac{N_s}{N_b})-N_s]}
```

Table : Events in mass window $M(Z') \pm 10\%$ and significance(No PileUp)

M(Z')(TeV)	$signal(N_s)$	$background(N_b)$	significance
2.7	2.12884	0.0526865	3.46234
2.8	1.21273	0.0370911	2.52323
2.9	0.915892	0.0265108	2.21329
3.0	0.583065	0.019821	1.718
3.1	0.38848	0.0139417	1.38904

optimizing mass window

luminosity L = 20.6/fb

Table: significance in different mass window

M(Z')	±14%	±16%	±18%	±20%	$\pm 25\%$
2.7	3.68	3.67	3.66	3.62	3.50
2.8	2.67	2.73	2.71	2.76	2.67
2.9	2.34	2.38	2.37	2.32	2.21
3.0	1.89	1.90	1.92	1.89	1.78
3.1	1.51	1.56	1.57	1.54	1.45

the most sensitive mass window: $M(Z') \pm 18\%$

Z' mass limit: M(Z') > 3.00 TeV

Figure : statistical signifiance in mass window $M(Z') \pm 18\%$

pp collision at 14TeV

Luminosity: L = 300/fb, Snowmass PileUp=50

reference[7]: mass limit 6.44TeV for process $pp \to Z' \to e^+e^-$

reference[8]: mass limit 3.7TeV for process $pp \to Z' \to t\bar{t}$

My process: $pp \to Z' \to \mu^+\mu^-$

Table : Events and significance in mass window $M(Z') \pm 10\%$

	No PileUp		0PileUp	50 PileUp			
$M_{Z'}(TeV)$	N_s	N_b	signif	N_s	N_s	N_b	signif
5.0	1.93	0.068	3.10	9.43	9.28	0.16	7.64
5.3	0.987	0.045	2.12	4.98			
5.5	0.603	0.032	1.61	3.38	3.34	0.062	4.53
6.0	0.179	0.013	0.824		1.16	0.023	2.64
6.5	0.0626	0.0047	0.484	0.414	0.417	0.0076	1.60

Events when piling up are more than No PileUp

reason :Muon Efficiency when No PileUp(in default Delphes Card) different from Snowmass 50PileUp Card

Table: comparing of muon efficiency in two cards

$ \eta $ range	p_T/GeV range	default(No PU)	50 PileUp
	$p_T < 10$	0	0
n < 1.5	$10 < p_T < 1.0e3$	0.95	0.99
$ \eta < 1.5$	$p_T > 1.0e3$	$0.95 \exp(0.5 - \frac{p_T}{2.0e3})$	0.99
$1.5 < \eta < 2.4$	$10 < p_T < 1.0e3$	0.95	0.97
$ 1.5 < \eta < 2.4$	$p_T > 1.0e3$	$0.95 \exp(0.5 - \frac{p_T}{2.0e3})$	0.97
$ \eta > 2.4$		0	0

e.g. when $p_T=10 TeV$, efficiency=0.11 when No PileUp while 0.97 in snowmass 50PileUp card

Z' mass limit at 14TeV: M(Z') > 6.30TeV

Figure : statistical signifiance in mass window $M(Z') \pm 10\%$

100TeV

signal
$$p+p\to Z'\to \mu^++\mu^-$$
 at 100TeV Luminosity: $L=1000fb^{-1}$ PileUp=140

Table : Events in mass window $M(Z') \pm 10\%$

M(Z')(TeV)	N_s	N_b	signif
30	2.09021	0.0333	3.63
32	1.16936	0.02027	3.68
33	0.876628	0.01519	2.32
34	0.662394	0.01172	2.01
35	0.496358	0.00884	1.74

optimizing mass window

Table: significance in different mass window

M(Z')(TeV)	±5%	±8%	±9%	±10%	±11%	±15%
32	2.41	2.67	3.68	2.68	2.68	2.61
33	2.12	2.29	2.31	2.32	2.31	2.25
34	1.82	1.99	2.00	2.01	2.01	1.95
35	1.58	1.72	1.74	1.74	1.73	1.67

the best sensitive mass window is $M(Z')\pm 10\%$

Z' mass limit at 100TeV: M(Z') > 34.2TeV

Figure : statistical signifiance in mass window $M(Z')\pm 10\%$

Conclusion

```
\begin{split} \sqrt{s} &= 8 TeV, \mathcal{L} = 20.8 fb^{-1}, \text{ No PU, } 95\%\text{CL limit: } M(Z') > 3.0 TeV, \\ \text{Reference[1] Result: } 2.77\text{TeV} \\ \sqrt{s} &= 14 TeV, \mathcal{L} = 300 fb^{-1}, \text{ 50 PU, } 95\%\text{CL limit: } M(Z') > 6.3 TeV, \\ \text{Reference[7] Result: } 6.44\text{TeV} \\ \sqrt{s} &= 100 TeV, \mathcal{L} = 1000 fb^{-1}, \text{ } 140\text{PU, } 95\%\text{CL limit: } M(Z') > 34.3 TeV \end{split}
```

Acknowledgement

Thank Huilin Qu, Yiwen Wen, and Daneng Yang for helpful discussions.

Supported in part by the National Natural Science Foundation of China, under Grants No. 11205008, and National Fund for Fostering Talents in Basic Science, under Grant No. J1103206.

References

CMS collaboration, CMS PAS EXO-12-061(2013), G. Alverson et.

al. CMS AN 12-422(2014)

P. Mathews, V. Ravindran and K. Sridhar, JHEP 10, 031(2005)

M. Czakon, P. Fiedler and A. Mitov, arXiv:1303.6254[hep-ph]

N. Kidonakis, arXiv:1005.3330[hep-ph]

J. M. Campbell, R. K. Ellis and C. Williams, arXiv:1105.0020[hep-ph] The ATLAS Collaboration, CERN-OPEN-2008-020; J. -G. Bian, G.

-M. Chen, et al., Nucl. Phys. B 819, 201 (2009) [arXiv:0905.2336

[hep-ex]].

D. Hayden, C. Willis, and R. Brock, arXiv: 1308.5874[hep-ex]

A. Effron, J. Erdmann et. al. @ Snowmass Minnesota Meeting (2013)