Лабораторная работа №2

Итерационные методы решения СЛАУ.

Цель. Используя пакет **Octave** найти приближенное решение СЛАУ методом простой итерации и методом Зейделя. Сравнить методы по количеству итераций и величине невязки.

Задача 1.

Написать скрипт на встроенном в **Octave** языке программирования вычисляющий решение системы линейных алгебраических уравнений методом простых итераций с точностью до $\varepsilon = 10^{-4}$. Вычислить количество итераций, необходимых для достижения заданной точности. Вычислить невязку.

Задача 2.

Написать скрипт на встроенном в **Octave** языке программирования вычисляющий решение системы линейных алгебраических уравнений методом Зейделя с точностью до $\varepsilon = 10^{-4}$. Вычислить количество итераций, необходимых для достижения заданной точности. Вычислить невязку.

Решить систему линейных алгебраических уравнений с помощью встроенной функции с точностью до $\varepsilon = 10^{-4}$. Сравнить величину невязки во всех методах и сделать вывод о точности методов. На основании количества итераций сделать вывод о скорости сходимости методов.

Примечание. Использовать одинаковые начальные приближения для всех методов. В каждом методе должно быть не менее 3-х итераций.

Порядок выполнения работы.

Задача 1.

- 1. Решить систему Ax = b прямым делением x = b/A
- 2. С помощью перестановки строк, привести матрицу A системы к диагональному преобладанию. Получим систему $A_1x = b_1$
- 3. Проверить прямым делением, что решение системы $A_1x = b_1$ совпадает с решением системы Ax = b.
- 4. Написать скрипт реализующий метод простой итерации $x^{(k+1)} = Bx^{(k)} + c$ для СЛАУ. Результаты представить в виде таблицы.

No	$\mathcal{X}_1^{(k)}$	$x_2^{(k)}$	$x_{3}^{(k)}$	$ x^{(k)} - x^{(k-1)} $	$\frac{1-\ B\ }{\varepsilon}$
итерации				" "	$\ B\ $
1	$x_1^{(1)}$	$x_2^{(1)}$	$x_3^{(1)}$	$ x^{(1)} - x^{(0)} $	

- 5. Сравнивая две последние колонки таблицы определить номер итерации, на которой достигается заданная точность.
- 6. Выписать соответствующее найденному в предыдущем пункте номеру итерации решение системы x^* .
- 7. Вычислить для данного решения невязку $R = Ax^* b$.

Задача 2.

1. Написать скрипт реализующий метод Зейделя $x^{(k+1)} = (E - B_1)^{-1}B_2x^{(k)} + (E - B_1)^{-1}c$ для СЛАУ. Рзкльтаты представить в виде таблины.

№ итерации	$x_1^{(k)}$	$x_2^{(k)}$	$X_3^{(k)}$	$\left\ x^{(k)}-x^{(k-1)}\right\ $	$\frac{1 - \ B\ }{\ B_2\ } \varepsilon$
1	$x_1^{(1)}$	$x_2^{(1)}$	$x_3^{(1)}$	$ x^{(1)} - x^{(0)} $	

- 2. Сравнивая две последние колонки таблицы и определить номер итерации, на которой достигается заданная точность.
- 3. Выписать соответствующее найденному в предыдущем пункте номеру итерации решение системы x^* .
- 4. Вычислить для данного решения невязку $R = Ax^* b$.

Сравнить решения по точности (невязки) и скорости сходимости (количество итераций), сделать вывод.

Варианты заданий.

Варианты 1-5 и 16 - 20 - ℓ_1 норма

Варианты 6-10 – и 21 -25 - ℓ_{∞} норма

Варианты 11-15 и 25-30 - Эвклидова норма

№	A				b		№		A			b
1	3	12	-1	0		18	16	4	2	32	0	-19
	-5	2	0	32	-	-15		2	30	0	-4	39
	2	0	16	-3		0		36	0	4	-5	40
	12	3	0	0		21		0	0	11	40	31
2	4	20	1	0		24	17	4	-5	40	0	19
	16	2	0	-2		-13		10	-4	0	50	0
	-4	0	4	32		0		32	0	4	-4	34

	2	0	10	0	7		0	32	0	-9	-49
3	2	16	-3	0	9	18	9	40	2	0	81
	-8	5	0	40	98	10	12	-4	0	96	119
	25	0	-2	3	5		-4	0	64	8	-15
	0	-3	20	0	-7		36	0	0	9	7
4	5	-2	32	0	27	19	7	-5	64	0	18
'	4	25	0	-3	34		9	50	0	-4	0
	20	0	2	-7	-28		0	9	-7	80	128
	0	0	-9	40	5		40	11	0	0	-19
5	-7	2	40	0	21	20	11	64	-2	0	-34
	9	-5	0	50	-14		50	3	0	-12	0
	25	0	4	-1	13		0	13	-9	100	131
	0	32	0	9	21		17	0	80	0	85
6	8	40	-3	0	28	21	15	80	-4	0	93
	-7	5	0	50	0		64	7	0	-5	131
	8	0	64	-11	18		0	11	-8	128	-34
	32	0	0	5	12		0	37	100	0	125
7	-9	4	64	0	24	22	17	100	-9	0	0
	10	50	0	-4	-5		80	-7	0	-5	-79
	0	-14	7	80	14		0	21	128	-4	139
	40	9	0	0	29	20	0	0	19	256	-54
8	-8	64	5	0	37	23	4	-1	20	0	38
	50	-13	0	2	38		18	3	0	-2	-14
	0 -11	17 0	-9 80	100 0	0 115		0	10 4	1 0	-1 20	15 29
	-13	80	2	0	64	24		20	-2	0	41
9	-13 64	9	0	-5	29	24	3 5	-4	0	20	-19
	0	12	-9	128	0		0	5	32	-3	34
	0	27	100	0	231		12	0	0	3	29
10	-13	100	9	0	-128	25	4	25	-1	0	17
	80	10	0	-5	34		6	5	0	40	0
	0	-14	128	7	95		25	0	3	4	-34
	0	0	31	256	-69		0	-5	30	0	9
11	1	-2	16	0	31	26	9	-2	36	0	19
	10	-1	0	1	0		4	25	0	-3	-18
	0	12	1	-1	-28		40	0	5	-4	44
	0	2	0	16	29		0	0	11	40	21
12	2	20	-3	0	39	27	9	-2	40	0	78
	4	-2	0	24	0		11	-3	0	50	-114
	0	2	16	-1	-25		30	0	-4	5	-21
<u> </u>	12	0	0	3	18	20	0	32	0	8	40
13	2	16	-1	0	32	28	2	40	5	0	42
	3	-8	0	60	-64		4	-9	0	72	88
	4 12	0 3	24 0	-3 0	0 45		4 36	0	64 0	8 9	119 54
1 /	5	-2	40	0	39	29	_	-3		0	
14	3 4	-2 32	0	-6	0	²⁹	8 -7	-3 50	64 0	5	131 -84
	7	0	3	32	21		0	12	-9	80	-84 52
	20	0	4	0	-19		40	9	0	0	78
15	5	30	-3	0	17	30	7	64	-2	0	111
13	-8	5	0	40	31] 30	50	5	0	-8	98
	24	0	3	-4	39		0	18	5	112	219
	0	7	25	0	8		15	0	80	0	-31
	Ŭ	,		-		I			00		J.1