Logic : conditional statement (Syllogism, Aristotelian)

Statement: If p, then qOR $p \rightarrow q$

Contrapositive: If $\neg q$, then $\neg p$ OR

Inverse: If $\neg p$, then $\neg q$ OR $\neg p \rightarrow \neg q$

OR $q \rightarrow p$ Converse: If q, then p

Logic : conditional statement (Syllogism, Aristotelian)

Statement: If Wings, then Bird

Contrapositive: If NOT Bird, then NOT Wings

If NOT Wings, then NOT Bird Inverse:

Converse: If Bird, then Wings Logic : conditional statement (Syllogism, Aristotelian)

Statement: If Fish, then Swim

then NOT Fish Contrapositive: If NOT Swim,

If NOT Fish, then NOT Swim Inverse:

Converse: If Swim, then Fish Logic: conditional statement (Python aka English way)

Statement: Swim if Fish (If Fish, then Swim)

Contrapositive: Not Fish if Not Swim (If NOT Swim, then NOT Fish)

Inverse: Not Swim if Not Fish (If NOT Fish, then NOT Swim)

Converse: Fish if Swim (If Swim, then Fish)

Other Logic Rules

And: $(p \land q) \land r \equiv p \land (q \land r)$ short-hand as $p \land q \land r$ (intersection) Or : $(p \lor q) \lor r \equiv p \lor (q \lor r)$ short-hand as $p \lor q \lor r$ (union)

Negation:
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

Distributive law:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

more restrictive, relates to intersection And : Λ like multiply \otimes

Or : V like adding \oplus more inclusive, relates to union

False is typically treated as 0

True is typically treated as 1

Does logic rules coincide with the algebraic rules on numbers that we expect?

Let's check...

Let's check...

False
$$\longleftrightarrow 0 \mid \text{True} \longleftrightarrow 1 \mid \text{And} \longleftrightarrow \wedge \longleftrightarrow \otimes \mid \text{Or} \longleftrightarrow \vee \longleftrightarrow \bigoplus$$

$$F \lor F \equiv F \mid 0 \oplus 0 = 0$$

$$F \lor T \equiv T \mid 0 \oplus 1 = 1$$

T
$$\forall$$
 T \equiv T | 1 \oplus 1 = 2 ?? It's okay. Anything > 0 usually considered True

$$F \wedge F \equiv F \mid 0 \otimes 0 = 0 \quad \checkmark$$

$$F \wedge T \equiv F \mid 0 \otimes 1 = 0$$

$$T \wedge T \equiv T \mid 1 \otimes 1 = 1$$

continue...

F V F
$$\equiv$$
 F | 0 \oplus 0 $=$ 0
, Or : $(p \lor q) \lor r \equiv p \lor (q \lor r)$ short-hand as $p \lor q \lor r$ (union)

Negation:
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

Distributive law:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Let's check...

Or	F	Т
F	F	Т
Т	Т	Т

Ф	0	1
0	0	
- 1	I	2 (ok)

And	F	Т
F	F	F
Т	F	Т

8	0	1
0	0	0 🗸
1	0	1

Let's check distributive laws...

(1)
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

(2)
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

(1)
$$p \otimes (q \oplus r) \equiv (p \otimes q) \oplus (p \otimes r)$$

(2)
$$p \oplus (q \otimes r) \equiv (p \oplus q) \otimes (p \oplus r)$$
 ?????????

The second distributive law is not familiar to us in regular algebra. It is only true for Boolean algebra.