National Taipei University of Technology Computer Science and Information Engineering

Data Science Principles with Applications on Educational Data

Spring 2025
Semester Group Project Proposal

教育數據中的關鍵因素探索:以大學排名為例 Exploring Key Factors in Educational Data: A Case Study on University Rankings

Name: 張育丞, 張字青, 周姿好, 黄詳諺, Duong Van Nhat Quang

Sid: 113598043, 113598032, 113598090, 113598091, 113998411

Date: 04/16/2025

I. Introduction

♦ About Dataset

世界上有許多大學,對於如何進行排名是個重大的議題,因政治及多項因素進行干涉, 使得目前全世界有著數百種的排名,未統一性的衡量標準,也成為一大困擾,該資料集來 自於不同的三個地區或國家進行全球的大學排名,相關資料集依據將參考泰晤士高等教育 世界大學排名、世界大學學術排名、世界大學排名中心等,分別英國、中國及沙烏地阿拉 伯的統計,資料集擷取 2014~2015 年期間的排名依據,以求資料完整性。

♦ Motivation

近年來,全球大學排名的重要性日益增加,對高等教育政策、資源分配及院校策略產生了深遠影響。了解大學排名的依據,對於希望提升競爭力與社會影響力的學術機構而言至關重要。教育數據涵蓋學術產出、創新能力、校友成就等多項指標,為此類分析提供了豐富的資料基礎。本專案旨在探討不同教育指標如何共同影響大學排名,挖掘其中的關鍵模式,並提出具體可行的建議,促進未來教育發展。

♦ Objectives

本專案的主要目標包括以下內容:

- 1. 辨識並分析對全球大學排名影響最顯著的關鍵教育指標。
- 整合多項特徵(如引用量、專利數、發表數量),運用資料科學方法探討其綜合影響。
- 3. 視覺化指標之間的關聯性與模式,以提升資料的可解讀性。
- 4. 提供基於數據的分析基礎,協助理解大學的競爭力。

II. Project Plan and Deadlines

♦ Dataset Preview

本團隊選擇於 Kaggle 平台中的「World University Ranking」專案之資料集 [1] 進行專案的使用,原資料集用於探討現今世界大學排名系統公平應問題,然而本團隊將透過以下 共 14 個標頭 (Header) 進行相關的分析,進一步對於學術相關進行探討。

Header

No.	Header (English)	標頭(中文)
1	world_rank	世界排名
2	institution	大學名稱
3	country	國家
4	national_rank	國內排名
5	quality_of_education	教育品質
6	alumni_employment	校友就業
7	quality_of_faculty	師資品質
8	publications	發表數量
9	influence	影響力
10	citations	被引用次數
11	broad_impact	廣泛影響力
12	patents	專利數
13	score	綜合得分
14	year	年份

♦ Related Work

■ 預計探討議題與方法

題目	問題說明	方法
1. 論文引用量是否影響世界排名?	被引用越多,世界排名是否越前?	相關分析 + 線性回歸
2. 校友就業力是否推動得分?	有高就業力的學校,是否得分 (score)也高?	相關分析 + 回歸
3. 哪個指標最影響世界排名?	教育品質、師資、發表、專利,誰 最影響排名?	關係性分析 (關係權重)
4. 國家對排名的影響力?	特定國家(如美國、英國)是否在相同分數下排名更高?	群組分析 (GroupBy)
5. 高專利產出 vs 高學術影響力大 學比較	多專利的大學和多引用的大學,誰 的排名高?	分組比較
6. 學術 vs 創新型大學的分類	根據 citations、patents 將大學分類	分群 (Clustering)

■ Pre-process Dataset

- 清理遺漏或不一致的資料。
- 對特徵進行標準化,以確保可比性。
- 探索性資料分析(EDA)
 - 生成相關係數矩陣,以辨識特徵間的關聯。
 - 視覺化特徵分佈與交互關係。
- 特徵重要性分析
 - 應用決策樹與隨機森林,找出最具影響力的指標。
 - 使用主成分分析 (PCA) 掌握主要變異方向。
- 預測建模
 - 建立迴歸模型(如線性迴歸、決策樹迴歸),以關鍵指標預測大學得分或排名。
- 視覺化
 - 製作相關矩陣圖、特徵重要性圖與迴歸結果圖等視覺化呈現。

♦ Expected Results

- 分析影響大學排名最重要的關鍵因素。
- 建立能夠根據特定教育指標預測排名或得分的量化模型。
- 呈現多個教育指標間關係的視覺化洞見。
- 提出基於數據分析的建議,供學術機構參考。

III. Timeline

我們將從期中考後進行安排專案的進程,我們以每週為檢查點進行相關專案的探討與製作, 此外也將其繪製成甘特圖,展現專案工作的細節。

週數	工作內容
第 10 週	熟悉資料集、文獻回顧與初步資料清理。
第 11 週	進行探索性資料分析(EDA)與相關性矩陣視覺化。
第 12 週	特徵重要性分析(決策樹、隨機森林)
第 13 週	預測建模 (迴歸分析)
第 14 週	結果視覺化成果檢視。
第 15 週	專案回顧。
第 16 週	撰寫專案報告與簡報。
第 17 週	最終專案報告與成果展示。

IV. Reference

[1] Kaggle, World University Ranking, https://www.kaggle.com/datasets/mylesoneill/world-university-rankings/data