STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Jan 18

Lecturer: Xianyang Zhang

1 Different notions of convergence for a sequence of random variables

A sequence of random variables $\{X_n\}$ is said to converge to X

(i) in probability (i.p.) if $\forall \epsilon > 0$,

$$P(|X_n - X| > \epsilon) \to 0.$$

This is denoted by $X_n \stackrel{p}{\to} X$.

(ii) almost surely (a.s.) if

$$P\big(\lim_{n\to\infty} X_n = X\big) = 1.$$

This is denoted by $X_n \stackrel{a.s.}{\to} X$.

(iii) in L_p if

$$||X_n - X||_p = \left[\mathbb{E}|X_n - X|^p \right]^{1/p} \to 0.$$

This is denoted by $X_n \stackrel{L_p}{\to} X$.

(iv) in distribution if

$$F_n(x) = P(X_n \le x) \to F(x) = P(X \le x),$$

for all $x \in \mathcal{C}(F)$, where $\mathcal{C}(F)$ is the set of all continuity points of F. This is denoted by $X_n \stackrel{d}{\to} X$. In this case, X_n and X need not be defined on the same probability space. Each X_n may be in a different probability space.

2 Cramer-Wald device

Suppose $\{X_n\}$ is a sequence of k dimensional random vectors and X is a k dimensional random vectors. Then $X_n \stackrel{d}{\to} X$ iff $\alpha^\top X_n \stackrel{d}{\to} \alpha^\top X$ for all $\alpha \in \mathbb{R}^k$.

3 Continuous mapping theorem

Let X_n, X be random variables defined on a metric space S. Suppose $g: S \to S'$ has the set of discontinuous points D_g such that $P(X \in D_g) = 0$. Then

$$X_n \to^d X \quad \Rightarrow \quad g(X_n) \to^d g(X);$$

 $X_n \to^p X \quad \Rightarrow \quad g(X_n) \to^p g(X);$
 $X_n \to^{a.s} X \quad \Rightarrow \quad g(X_n) \to^{a.s} g(X).$

4 Slutsky's theorem

Let $\{X_n\}$ and $\{Y_n\}$ be two sequences of random variables. If $\{X_n\}$ converges in distribution to a random variable X and $\{Y_n\}$ converges in probability to a constant c, then

$$\begin{bmatrix} X_n \\ Y_n \end{bmatrix} \stackrel{d}{\to} \begin{bmatrix} X \\ c \end{bmatrix}.$$

Applying continuous mapping theorem, we also have

- $X_n + Y_n \stackrel{d}{\to} X + c$
- $X_n Y_n \stackrel{d}{\to} cX$
- $\frac{X_n}{Y_n} \stackrel{d}{\to} \frac{X}{c}$ if $c \neq 0$

5 Uniform integrability

A sequence of random variables $\{X_n\}$ is defined to be uniform integrable (u.i.) if $\sup_n \mathbb{E}|X_n|\mathbf{1}\{|X_n|>M\}\to 0$ as $M\to\infty$.

Recall from STAT 614 that $X_n \stackrel{p}{\to} X$ and X_n is u.i. together implies that $X_n \stackrel{L_1}{\to} X$.

6 Law of Large Numbers

Suppose, X_1, X_2, \dots, X_n are i.i.d random vectors with $\mathbb{E}X_1 = \mu$. Then

• The Weak Law of Large Numbers states that

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{p}{\to} \mu.$$

• The Strong Law of Large Numbers states that

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{a.s.}{\to} \mu.$$

7 Central Limit Theorem

Let X_i be a sequence of independent random variables defined on the same probability space. Suppose $\mu_i = E[X_i]$ and $\sigma_i^2 = \text{var}(X_i)$ exist and let $s_n^2 = \sum_{i=1}^n \sigma_i^2$. If Lindeberg's condition holds:

$$\frac{1}{s_n^2} \sum_{i=1}^n E[(X_i - \mu_i)^2 \mathbf{1}\{|X_i - \mu_i| > \epsilon s_n\}] \to 0$$

for all $\epsilon > 0$, then we have

$$\frac{\sum_{i=1}^{n} (X_i - \mu_i)}{s_n} \to^d N(0, 1).$$

8 Portmanteau Theorem

For any random vectors X_1, X_2, \dots, X_n and X, the following statements are equivalent:

- 1. $P(X_n \le x) \to P(X \le x)$ for all continuous points x of $P(X \le x)$.
- 2. $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all bounded and continuous functions f.
- 3. $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all bounded and Lipschitz functions f.
- 4. $\liminf_n P(X_n \in G) \ge P(X \in G)$ for all open set G.
- 5. $\limsup_{n} P(X_n \in F) \leq P(X \in F)$ for all closed set F.
- 6. $\lim_n P(X_n \in B) = P(X \in B)$ for all Borel sets B with $P(X \in \partial B) = 0$, where ∂B denotes the boundary of the set B.