第二节 数据的误差来源和分类

知识点

地理空间数据源误差

数据转换和处理的误差

应用分析产生的误差

误差来源---空间现象自身的不稳定性

空间现象自身存在的不稳定性包括空间特性和过程在空间、专题、时间和内容上的不确定性。

误差来源---空间现象的表达

数据源误差

概念理解的不一致性导致数据 测量误差。

测量

测量仪器本身有一定的设计精度。

表达方式

图形的表达不同会产生不同的误差。

物理介质的变化

误差的表现

时域误差数据采集周期不一致。

逻辑不一致性误差要素之间空间冲突。

数据不完整性误差同一目标的分割。

道路采集周期:1年 建筑物采集周期:3年

对更新后变化要素进行修改

对同一要素进行合并

质量控制---对数据源选择和处理

选择满足系统和应用要求的数据源

数据源的误差至少 不能大于系统对数 据误差的要求。

逐步减少或取消不必要的数据处理中间环节

让用户根据具体 的应用进行相应 的数据处理

质量控制---属性误差的检测与表达

确定抽样方法

●系统分区随机抽样:对整个区域内等面积分区,并在区内随机布点。

确定抽样数

● 使用其他方法确定每个样本的属性做为参考数据。

建立误差矩阵

参考数据

被检测数据

X_{11}	X_{12}	 X_{1N}	R_{1N}	
X_{21}	X_{22}	 X_{2N}	$\begin{bmatrix} R_{1N} \\ R_{2N} \end{bmatrix}$	
		 	·	
X_{N1}	X_{N2}	 X_{NN}	R_{NN}	
C_{N1}	C_{N2}	 C_{NN}	$\begin{bmatrix} \\ R_{NN} \\ T_{NN} \end{bmatrix}$	

行
翠
加

误差矩阵举例					
	盐碱地	非盐碱地	水体	综合	
盐碱地	28993	1830	375	31198	
非盐碱地	609	118220	1131	119960	
水体	13	1960	182275	184248	
综合	29615	122010	183781	335406	

列累加

质量控制---属性误差的检测与表达

计算误差的常用指标

数据源误差

总准确度

对角线样点 数之和除以 总样点数

生产者 准确度

每个属性值 的正确样点 数除以该属 性值总的验 证样点数

使用者 准确度

每个属性值 的正确样点 数除以该属 性值的总数

遗漏 误差

生产者 准确度 (列合计)

错判 误差

使用者 准确度 (行合计)

误差矩阵

计算例子:

(176+127+277+129)/756

176/202 26/202

176/197 21/197

Data	农田	建筑 用地	草地	林地	总计
农田	176	21	0	0	197
建筑用地	26	127	0	0	153
草地	0	0	277	0	277
林地	0	0	0	129	129
总计	202	148	277	129	756

数字化中的误差

图数转换处理

中

的

误

差

误差类型

• 数字化方式

● 数字化操作人员

数字化要素对象

分辨率

技能和经验

纸张变形

误差原因

采样点的方 式和密度

定点误差 重复误差

数字化过程中的数据质量控制

数据 预处理工作

● 原始地图、表格的整理和重新清绘。

Shape *	NAME _	Shape Leng	RATE 4M LC	HATL 4M 1
Polyline	津津技	229655 720022	47	1729
Polyline	石原跡	36659. 378996	48	1904
Polyline	津港街	116262 523626	49	1683
Polyline		178849.416924	50	1630
Foltline	52.23	323842 814597	81	1693
Polyline	放进建	46432, 912636	52	1826
Polyline	油液线	3174, 037601	62	1471
Polyline	沈海神	217194.173296	63	1472
Polyline	津津線	162904.891196	64	1502
Polyline	油油排	185174, 309275	69.	1501

数字化设备 的选用

● 手扶数字化仪、扫描仪的分辨率挑选。

误

差

地理空间数据误差的来源与分类

数字化过程中的数据质量控制

数字化 对点精度

数字化时数据采集点与 原始点重合的程度。

数字化 限差

采点精度、采点密度、 边误差、接合距离

数据的 精度检查

输出图与原始图之间的点 位误差

数据转换的误差

● 数据结构转换

● 数据计算变换

● 数据格式转换

W 用分 析产 生 的 误差

数据使用中的误差来源

● 对数据的解释过程

比例尺理解不正确

地图符号理解不正确

● 缺少文档

地理坐标系 编码

精度说明

应用分析的误差来源

● 数据层叠加时的冗余多边形

B₁₂

B₁₀

B₁₀

B₁₀

B₁₁

B₁

B₁

B₁

B₁

B₂

B₃

B₄

B₃

A₄

B₈

B

应用分析产生的

误差

● 由应用模型引进的误差

CA模型的不确定性 引进的误差

误差控制

应用分析产生的误差

● 地图符号的解释

对地图添加图 例和说明文档

● 删除叠加后的冗余多边形

删除无意义多边形

● 采用多种模型对比验证

模拟退火和粒子群算法

谢谢大家!

