

به نام خدا دانشگاه تهران پردیس دانشکدههای فنی

دانشکده مهندسی برق و کامپیوتر

ریاضی مهندسی

تمرین کامپیوتری شماره۲

محمدمهدی عبدالحسینی 434 198 810 استاد: دکتر کریم محمدپوراقدم

💠 بخش اول: حل معادله لاپلاس

قدم اول: باز کردن پنجره pdeModeler

مطابق شكل در قسمت Command Window عبارت pdeModeler را وارد ميكنيم:

Command Window

 $f_{m{x}}>>$ pdeModeler

قدم دوم: مشخص كردن ناحيه حل مسئله

قدم سوم: تعیین شرایط مرزی و حل مسئله

بدلیل ارورهای پیش آمده، ابتدا قسمت Name در بخش قبل را به Rect_Ca2_810198434 تغییر نام دادم. سپس اعمال شرایط مرزی مطابق شکل زیر انجام شد:

💠 بخش دوم: حل معادله حرارت

قدم اول: تشكيل توابع Equation, Init, BC

t = 0, 5, 10 قدم دوم: رسم نمودار دمای میله در زمان های

```
x = 0.01:0.01:1;
t = 0:0.1:10;
sol = pdepe(0,@Equation,@Init,@BC,x,t);
for tn = 0:5:10
    u = sol(10*tn+1,:,1);
    p = plot(x,u);
    hold on;
    xlabel('x');
    ylabel('u');
    p(1).LineWidth = 1.5;
end
legend('t = 0','t = 5','t = 10');
```


همانطور که از نمودار بالا مشخص است با گذشت زمان (افزایش t) قسمت گذرای تابع حرارت کاهش و در $t=\infty$ به صفر میل میکند. بنابراین در این حالت ($t=\infty$) نمودار تبدیل به یک خط میشود.

قدم سوم: رسم دیاگرام تغییرات دمایی دو بعدی

```
x = 0.01:0.01:1;
t = 0:0.1:10;
sol = pdepe(0,@Equation,@Init,@BC,x,t);
u = sol(:,:,1);
colormap(cool);
imagesc(x,t,u);
xlabel('x');
ylabel('t');
colorbar;
```



```
x = 0.01:0.02:1;
t = 0:0.2:10;
sol = pdepe(0,@Equation,@Init,@BC,x,t);
u = sol(:,:,1);
colormap(cool);
imagesc(x,t,u);
xlabel('x');
ylabel('t');
colorbar;
```


مطابق نتایج بدست آمده، با تقسیم x و t به اجزای بیشتر، میتوان دقت نمودار را بالا برد.

قدم چهارم: رسم دیاگرام تغییرات دمایی سه بعد

```
x = 0.01:0.01:1;
t = 0:0.1:10;
sol = pdepe(0,@Equation,@Init,@BC,x,t);
colormap(cool);
surf(x,t,sol);
xlabel('x');
ylabel('t');
zlabel('u');
colorbar;
```

