DL8 - Thermodynamique

Exercice 1 – Comparaison entre deux transformations

On considère un système composé d'une quantité de matière n de gaz parfait diatomique enfermée dans une enceinte. Cette enceinte est fermée par un piston de surface S et dont on négligera la masse, pouvant coulisser sans frottement. L'ensemble est situé dans l'atmosphère, dont on note T_0 et P_0 la température et la pression. On note I l'état initial.

L'objectif est de comparer deux transformations du système : l'une brutale et l'autre lente. Donnée : constante des gaz parfaits $R=8,314\,\mathrm{J\cdot mol^{-1}\cdot K^{-1}}$; capacité thermique à volume constant d'un gaz diatomique $C_v=5nR/2$.

Transformation brutale

Commençons par la transformation brutale : on lâche brusquement une masse M sur le piston, qui se stabilise en un état intermédiaire 1.

- 1. Le meilleur modèle pour la transformation est-il isotherme ou adiabatique? Peut-on en déduire un résultat sur la température T_1 ?
- 2. Déterminer la pression P_1 .
- 3. Établir le bilan énergétique de la transformation en explicitant chacun des termes.
- 4. En déduire les caractéristiques T_1 , P_1 , V_1 de l'état 1.

On observe qu'en fait l'état 1 n'est pas un réel état d'équilibre : le piston continue de bouger, mais beaucoup plus lentement, jusqu'à atteindre l'état 2 qui est l'état final.

- 5. Quel phénomène, négligé précédemment, est responsable de cette nouvelle transformation du système?
- **6.** Déterminer les caractéristiques T_2 , P_2 , V_2 de l'état 2.
- 7. Déterminer le travail reçu par le système, puis sa variation d'énergie interne et en déduire le transfert thermique reçu au cours de la transformation $1 \to 2$. En déduire le travail total et le transfert thermique total reçus au cours de la transformation brusque.

Transformation lente

Comparons maintenant à une transformation lente : la même masse M est lâchée très progressivement sur le piston, par exemple en ajoutant du sable « grain à grain ».

- 8. Comment qualifie-t-on une telle transformation? Que peut-on en déduire sur la température du système au cours de la transformation?
- 9. Déterminer la pression dans l'état final et en déduire le volume. Commenter.
- 10. Établir le bilan énergétique de la transformation en explicitant chaque terme. Comparer à la transformation brutale. Commenter.

Exercice 2 - Étude d'une pompe à vide à piston - CCP PSI 2002

On envisage le dispositif dont le schéma est donné dans la figure 1. Une enceinte de volume V (à gauche de KK') est reliée par un raccord (entre KK' et LL') de volume v_m à une pompe à piston (à droite de LL'). Le volume total maximum du corps de la pompe avec son raccord est V_M (entre KK' et NN'). Le piston de la pompe et le raccord sont munis de clapets anti-retour (CR en KK' et CP en MM') qui ne laissent passer le gaz que de la gauche vers la droite. Ces clapets, parfaitement étanches lorsqu'ils sont fermés, s'ouvrent dès que la pression à leur gauche est plus élevée qu'à leur droite, ils se ferment dès que les pressions sont plus faibles du côté gauche. Au niveau de la partie droite de la pompe (en NN'), le passage de la tige du piston n'est pas étanche et de ce fait, la pression à droite du piston est toujours égale à la pression atmosphérique P_0 . Avec cette disposition de clapets, cette pompe permet d'abaisser la pression dans l'enceinte. On suppose évidemment que le contact entre le piston et le corps de la pompe est parfaitement étanche. On admettra que l'air de l'atmosphère peut être considéré comme un gaz parfait isotherme et que même si les pressions changent dans l'enceinte et dans la pompe, la température du gaz reste constante et égale à celle de l'air ambiant.

FIGURE 1 – Schéma de principe de la pompe à piston raccordée à l'enceinte. Attention, sur ce schéma, les proportions ne sont pas respectées.

- 1. Au départ, l'enceinte est à la pression atmosphérique P_0 et on donne un premier coup de pompe (un aller-retour avec le piston $LL' \to NN'$ puis $NN' \to LL'$). Au début, lorsque le piston est en LL', les deux clapets sont ouverts et la pression dans le raccord est aussi P_0 ; le clapet CP se ferme dès que le piston se déplace vers NN', tandis que le clapet CR reste ouvert puisque la pression diminue dans le compartiment de droite. Expliquer le fonctionnement des clapets lorsqu'on inverse le mouvement du piston une fois arrivé en NN'.
- 2. Donner la valeur P_1 de la nouvelle pression dans l'enceinte après ce premier coup de pompe.
- 3. Soit P_L la pression la plus faible que l'on peut théoriquement obtenir dans la pompe seule munie de son raccord (on la suppose obturée en KK'). Montrer que l'expression de P_L

est

$$P_L = P_0 \frac{v_m}{V_M}$$

et donner sa valeur.

4. On introduit des rapports volumétriques

$$a = \frac{V_M}{V + V_M}$$
 et $b = 1 - a = \frac{V}{V + V_M}$,

Exprimer alors P_1 en fonction de P_0 , P_L , a et b.

- 5. On donne un deuxième coup de pompe, la nouvelle pression dans l'enceinte est alors P_2 ; préciser quand le clapet CR s'ouvre et exprimer P_2 en fonction de P_1 , P_L , a et b. En déduire l'expression de P_2 en fonction de P_0 , P_L , a, et b.
- 6. Donner en définitive la pression P_q dans l'enceinte après q coups de pompe en fonction de q, P_0 , P_L , a, et b.
- 7. En utilisant la formule

$$\sum_{i=0}^{n} b^{i} = \frac{1 - b^{n+1}}{1 - b}$$

donner P_q en fonction de q, P_0 , P_L et b.

- 8. De l'expression donnant P_q , déduire le nombre de coups de pompe q, nécessaires pour que le rapport $(P_q P_L)/(P_0 P_L)$ prenne les valeurs 10^{-1} , 10^{-2} et 10^{-3} .
- 9. La pression dans l'enceinte a maintenant une valeur P comprise entre P_0 et P_L et après avoir donné un seul coup de pompe, la nouvelle pression est $(P+\Delta P)$; exprimer le rapport $\Delta P/(P-P_L)$ en fonction des données volumétriques qui conviennent.
- 10. Exprimer la quantité de matière n dans l'enceinte en fonction de n_0 la quantité initiale de gaz, de P et P_0 . En déduire la quantité de gaz Δn extraite par un coup pompe en fonction de ΔP , P_0 et n_0 . Exprimer la quantité $\Delta n = \frac{\mathrm{d}n_-}{\mathrm{d}q}$ extraite par coup de pompe, au moyen de l'expression établie à la question 9, en fonction de a, n_0 , P, P_0 et P_L . Comment varie $\frac{\mathrm{d}n_-}{\mathrm{d}q}$ au fur et à mesure que la pression dans l'enceinte se rapproche de P_L ?
- 11. On suppose maintenant que, par suite d'un défaut d'étanchéité, du gaz pénètre dans l'enceinte avec un débit faible mais constant $\frac{\mathrm{d}n_+}{\mathrm{d}t}$. Simultanément, la pompe est actionnée par un moteur lui faisant faire $\frac{\mathrm{d}q}{\mathrm{d}t}$ coups par unité de temps. Donner alors l'expression de la nouvelle pression limite P'_L qui s'établit dans l'enceinte en fonction de P_0 , n_0 , $\frac{\mathrm{d}n_+}{\mathrm{d}q}$ et des caractéristiques volumétriques de la pompe et de l'enceinte.