

FORMULACIÓ I NOMENCLATURA INORGÀNICA

Conceptes previs

Nombres d'oxidació/carrega

Els **nombres d'oxidació** (nombres romans) estan relacionats amb la **capacitat** d'un determinat **element** per **cedir** (núm oxidació **positiu**) o **captar electrons** (núm oxidació **negatiu**). En el cas dels **compostos iònics**, podem també utilitzar els **nombres de càrrega** (nombres aràbics seguits d'un signe).

Sequencia dels elements

Sistemes de nomenclatura IUPAC 2005

Composició

També anomenada **estequiomètrica**, els noms s'indiquen juntament amb els **prefixes** que donen l'**estequiometria** completa del **compost**.

NOMBRE D'ÀTOMS	PREFIX	NOMBRE D'ÀTOMS	PREFIX
1	mono	6	hexa (hexakis)
2	di (bis)	7	hepta (heptakis)
3	tri (tris)	8	octa (octakis)
4	tetra (tetrakis)	9	nona (nonakis)
5	penta (pentakis)	10	deca (decakis)

Exemples $O_3 \rightarrow$ trioxigen; NaCl \rightarrow clorur de sodi; PCl₃ \rightarrow triclorur de fòsfor.

Substitució

Molt emprada en **química orgànica**, a inorgànica s'empra per anomenar **derivats** d'**hidrurs** d'alguns **no metalls**.

Exemples $PH_3 \rightarrow fosfa$, $PH_2Cl \rightarrow clorofosfa$, $PHCl_2 \rightarrow diclorofosfa$.

Addició

Emprada sobre tot per nomenar **complexes**, tot i que també **oxoàcids**.

Exemples $PCl_5 \rightarrow pentaclorurfòsfor; HBrO = [BrOH] \rightarrow hidroxibrom.$

Hidrogen

Avantposant la paraula *hidrogen*, utilitzada per exemple per nomenar els **oxoàcids** de l'**Cr** i **Mn** o **sals àcids**.

Exemples $H_2Cr_2O_7 \rightarrow$ dihidrogen(heptaoxiddicromat); $NaHCO_3 \rightarrow$ hidrogencarbonat de sodi.

Altres nomenclatures

Nombres d'oxidació o de càrrega

Emprant **nombres d'oxidació** en **nombres romans** (i sense signe) o **nombres de càrrega** (compostos iònics) en **nombres aràbics** seguits d'un signe. Si només n'hi ha un, s'omet.

Exemples $PCl_5 \rightarrow clorur$ de fòsfor(V); $MnO_2 \rightarrow oxid$ de manganès(4+).

Noms tradicionals acceptats

Emprats (i recomenats) per exemple per nomenar oxoàcids i oxosals.

Exemples

- $H_2SO_4 \rightarrow \text{àcid sulfúric.}$
- $HNO_3 \rightarrow \text{àcid nítric.}$
- $H_2CO_3 \rightarrow \text{àcid carbònic.}$
- CuBrO₂ \rightarrow bromit de coure(1+).
- NaClO₄ \rightarrow perclorat de sodi.

FORMULACIÓ I NOMENCLATURA INORGÀNICA

Recomendacions de la IUPAC 2005

Rodrigo Alcaraz de la Osa. Traducció: Óscar Colomar (🛩 @ocolomar)

Composts binaris formats per un **metall** (M), amb num d'oxidació n, o **hidrogen(1+)**, units a l'**anió peròxid** O_2^{2-} .

Hidrurs EHn

Composts binaris formats per un **element** (E), amb num d'oxidació n, i **H**.

FÓRMULA	NOM COMPOSICIÓ ESTEQUIOMÈTRIC	NOM AMB NOMBRE D'OXIDACIÓ/CÀRREGA
LiH	monohidrur de liti	hidrur de liti
AlH_3	trihidrur d'alumini	hidrur d'alumini
HCl	clorur d'hidrogen	_
H_2S	sulfur de dihidrogen	_

Hidrurs progenitors

FÓRMULA	NOM	FÓRMULA	NOM	FÓRMULA	NOM
BH_3	borà	CH_4	metà	NH_3	azà (amoníac)
AlH_3	alumnà	SiH_4	silà	PH_3	fosfà
GaH_3	gal·là	GeH_4	germà	AsH_3	arsà
InH_3	indigà	SnH_4	estannà	SbH_3	estibà
$T1H_3$	tal·là	PbH_4	plumbà	BiH_3	bismutà
H_2O	oxidà (aigua)	H_2S	sulfà	HCl	clorà

Oxoàcids H_aX_bO_c

Composts ternaris formats per hidrogen(1+), un element central, X, i oxigen(2-). X pot ser un no metall o un metall en estat d'oxidació alt, com el crom(VI) o el manganès(VI) i el manganès(VII).

Àcids model

FÓRMULA	NUM OXIDACIÓ X	NOMBRE TRADICIONAL	TRANSFORMACIÓ
HClO ₄	VII	àcid perclòric	
$HClO_3$	V	àcid clòric	$C1 \times D_{\pi} I$
$HClO_2$	III	àcid clorós	$Cl \rightarrow Br, I$
HClO	I	àcid hipoclorós	
H_2SO_4	VI	àcid sulfúric	C C To
H_2SO_3	IV	àcid sulfurós	$S \rightarrow Se, Te$
HNO ₃	V	àcid nítric	
HNO ₂	III	àcid nitrós	
H_2CO_3	IV	àcid carbònic	

Àcids de Cr i Mn

FÓRMULA	NUM OXIDACIÓ X	NOM (HIDROGEN)
H_2CrO_4	VI	dihidrogen(tetraoxidcromat)
H_2MnO_4	VI	dihidrogen(tetraoxidmanganat)
$HMnO_4$	VII	hidrogen(tetraoxidmanganat)

Àcids meta i orto

ELEMENT	ÀCID META	$Acid+1H_2O$ P \rightarrow As, Sb	ÀCID ORTO (+2H ₂ O)
В	HBO ₂ (metabòric)	H ₃ BO ₃ (bòric)	_
Si	H ₂ SiO ₃ (metasilícic)	H_4SiO_4 (silícic)	_
P	HPO ₃ (metafosfòric)	H ₃ PO ₄ (fosfòric)	_
Te	_	_	H ₆ TeO ₆ (ortotel·lúric)
I	-	_	H ₅ IO ₆ (ortoperiòdic)

Àcids di, tri, etc. n molècules d'àcido poden condensar perdent n-1 d'aigua. $H_4P_2O_7 \rightarrow$ àc. difosfòric; $H_2Cr_2O_7 \rightarrow$ dihidrogen(heptaoxiddicromat).

Sals

Sals neutres binàries X_nY_m

Composts binaris formats per **dos elements qualsevol** (a excepció de H i O), X i Y, amb num de oxidació m i n, respectivament. L'element que es troba a la dreta, Y, el trobarem abans que X en la seqüència d'elements, i **acabarà en** *-ur* a l'anomenar-se.

FÓRMULA	NOM COMPOSICIÓ ESTEQUIOMÈTRIC	NOM AMB NOMBRE D'OXIDACIÓ/CÀRREGA
NaCl	monoclorur de sodi	clorur de sodi
MgF_2	difluorur de magnesi	fluorur de magnesi
FeS	monosulfur de ferro	sulfur de ferro(2+)
NBr_3	tribromur de nitrogen	bromur de nitrogen(III)

Sals neutres ternaries o oxosals $M_a(X_bO_c)_n$

Composts ternaris formats per un **metall**, M, amb num d'oxidació n, un **element central**, X, i **oxigen(2-)**. **Deriven d'oxoàcids** substituin tots els àtoms d'H per M i canviant els sufixes *ic* i *ós* per *at* i *it*, respectivament.

FÓRMULA	ÀCID	SAL
NaClO	HClO (àc. hipoclorós)	hipoclorit de sodi
$Fe_2(SO_4)_3$	H ₂ SO ₄ (àc. sulfúric)	sulfat de ferro(3+)
$Ca_3(PO_4)_2$	H_3PO_4 (àc. fosfòric)	fosfat de calci
$BaCO_3$	H ₂ CO ₃ (àc. carbònic)	carbonat de bari

Sals àcides $M_a(H_bX_cO_d)_n$

Composts quatenaris formats per un **metall**, M, amb num d'oxidació n, **hidrogen(1+)**, un **element central**, X, i **oxigen(2-)**. **Deriven d'oxoàcids** substituint part dels àtoms d'H per M. S'anomenen emprant la **nomenclatura d'hidrogen**, canviant sufixes *ic* i *òs* per *at* i *it*, respectivament.

FÓRMULA	ÀCID	SAL
$Fe(HSO_3)_2$	H ₂ SO ₃ (àc. sulfurós)	hidrogensulfit de ferro(2+)
$NH_4H_2PO_4$	H_3PO_4 (àc. fosfòric)	dihidrogenfosfat d'amoni
$NaHCO_3$	H_2CO_3 (àc. carbònic)	hidrogencarbonat de sodi
KH_2BO_3	H_3BO_3 (àc. bòric)	dihidrogenborat de potassi

lons

Cations Eⁿ⁺

H^+ hidrogen(1+) Cu^+ coure(1+) Cu^{2+} coure(2) Cr^{3+} crom(3+) H_3O^+ oxoni NH_4^+ amoni	FÓRMULA	NOM	FÓRMULA	NOM	FÓRMULA	NOM
Cr^{3+} crom(3+) H_2O^+ even NH_2^+ amoni	H^+	hidrogen(1+)	Cu ⁺	coure(1+)	Cu ²⁺	coure(2+)
$\frac{C_1}{C_1} = \frac{C_1}{C_1} = $	Cr ³⁺	crom(3+)	H_3O^+	oxoni	NH_4^+	amoni

Anions Eⁿ-

FÓRMULA	NOM	FÓRMULA	NOM	FÓRMULA	NOM
H ⁻	hidrur	$H_2PO_3^-$	dihidrogenfosfit	S ²⁻	sulfur
$ClO_4^ O^{2-}$	perclorat	HCO_3^-	hidrogencarbonat	NO_3^-	nitrat
O^{2-}	òxid		dihidrogenborat	SO_3^{2-}	sulfit
CrO_4^{2-}	cromat	$Cr_2O_7^{2-}$	dicromat	MnO_4^-	permangai