Chain Rule

David Robinson

Chain Rule for One Independent Variable

Suppose that x = g(t) and y = h(t) are differentiable functions of t and z = f(x, y) is a differentiable function of x and y. Then z = f(x(t), y(t)) is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

Chain Rule for Two Independent Variables

Suppose that x = g(u, v) and y = h(u, v) are differentiable functions of u and v, and z = f(x, y) is a differentiable function of x and y. Then z = f(x(u, b), y(u, b)) is a differentiable function of u and v, and

$$\frac{dz}{du} = \frac{\partial z}{\partial x} \cdot \frac{dx}{du} + \frac{\partial z}{\partial y} \cdot \frac{dy}{du} \quad \text{and} \quad \frac{dz}{dv} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dv} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dv}$$

Generalized Chain Rule

Let $w = f(x_1, x_2, ..., x_m)$ be a differentiable function of m independent variables, and for each $i \in \{1, ..., m\}$, let $x_i = x_i(t_1, t_2, ..., t_n)$ be a differentiable function of n independent variables. Then

$$\frac{\partial w}{\partial t_j} = \frac{\partial w}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial w}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \dots + \frac{\partial w}{\partial x_m} \frac{\partial x_m}{\partial t_j}$$

Implicit Differentiation of a Function of Two or More Variables

Suppose the function z = f(x, y) defines y implicitly as a function y = g(x) of x via the equation f(x, y) = 0. Then

$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$
 if $f_y(x,y) \neq 0$

If the equation f(x, y, z) = 0 defines z implicitly as a differentiable function of x and y, then

$$\frac{\partial z}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial z}$$
 and $\frac{\partial z}{\partial y} = -\frac{\partial f/\partial y}{\partial f/\partial z}$ if $f_z(x, y, z) \neq 0$

1