

Product Specification

SPECIFICATION FOR APPROVAL

()	Preliminary Specification	1
11		Final Specification	

TITLE	31.5" UHD TFT LCD					
BUYER		SUPPLIER	LG Display Co., Ltd.			
MODEL		MODEL	LM315WR7			
		SUFFIX	SSA1			

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE DATE
/	
Please return 1 copy for you with your signature and com	r confirmation ments.

Signed, 10/24
31 <u>91164, 10/24</u>
Signed, 10/24
Signed, 10/24
Signed, 10/24
Signed, 10/24
Signed, 10/24

Ver. 1.0 Oct. 24, 2024 1 / 37

Product Specification

Contents

No.	Item	Page
	Cover	1
	Contents	2
	Record of Revisions	3
1	General Description	4
2	Absolute Maximum Ratings	5
3	Electrical Specifications	6
3-1	Electrical Characteristics	6
3-2	Interface Connections	9
3-3	Signal Timing Specifications	16
3-4	Signal Timing Waveforms	17
3-5	Color Data Reference	18
3-6	Power Sequence	19
3-7	Power Dip Condition	20
4	Optical Specifications	21
5	Mechanical Characteristics	26
6	Reliability	29
7	International Standards	21
7-1	Safety	21
7-2	Environment	21
8	Packing	32
8-1	Designation of Lot Mark	32
8-2	Packing Form	33
9	Precautions	34
9-1	Mounting Precautions	34
9-2	Operating Precautions	34
9-3	Electrostatic Discharge Control	35
9-4	Precautions For Strong Light Exposure	35
9-5	Storage	35
9-6	Handling Precautions For Protection Film	35

Ver. 1.0 Oct. 24, 2024 2 / 37

Product Specification

Record of Revisions

Revision No	Revision Date	Page	Before	After	Application Date					
0.0	Jan. 03, 2024	-	-	First Draft(Preliminary)						
			Update Electrical Characteristics							
	6		Parameter Symbol Max Values Unit Notes	Parameter Symbol Min Typ Max Unit Notes						
0.1	May. 14, 2024		Update Timing table							
	2021	2024	2024	2024	2024	2024	16		Riem	
		27	Notes update							
		21	-	Update Color Coordinate						
0.2	Jun. 04, 2024	28	Drawing Update : Change Cover Shield	s exterior on the user CNT area						
			Drawing Update : Change Cover Shield	s exterior on the LED CNT area						
0.3	Jul. 23. 2024	28	#6 #1 #1 #6	#1 #6 #1 #6						
		4,26	Weight update: 3245g(TBD) → 3295g							
0.4	Aug. 28. 2024	27,28	Drawing update : Delete "TBD" word							
	2021	36,37	Update LCM Test Result for Operating	HDR Function						
	Oct. 24.	28	Drawing Update : Add bead step height	t spec.(Max 0.3)						
1.0	2024	-	Final CAS Released							

Ver. 1.0 Oct. 24, 2024 3 / 37

Product Specification

1. General Description

LM315WR7 is a color active matrix liquid crystal display with a Light Emitting Diode(LED) backlight assembly without LED driver. The matrix employs a-Si thin film transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 31.5 inch diagonally measured active display area with UHD resolution(3840 horizontal by 2160 vertical pixel array). Each pixel is divided into red, green and blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 10-bit gray scale signal for each dot, thus, presenting a palette of more than 1.07 Billion colors with A-FRC (Advanced Frame Rate Control). It has been designed to apply eDP(HBR2, 5.4Gbps) interface. It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

General Features

FIG.1 Block Diagram

-	TIOIZ BIOCK BIOGRAM
Active Screen Size	31.5 inches(80.0051cm) (Aspect ratio 16:9)
Outline Dimension	709.40 (H) x 405.95(V) x 14.30(D) mm(Typ.)
Pixel Pitch	0.18159(H)mm x 0.18159(V)mm
Pixel Format	3840(H) x 2160(V) Pixels. RGB stripes arrangement.
Color Depth	1.07 Billion colors, 10 Bit(8 Bit + A-FRC)
Luminance, White	450 cd/m ² (Center 1Point, Typ.), Peak 750 cd/m ² (Center 1Point, Typ.)
Viewing Angle(CR>10)	R/L 178° (Typ.), U/D 178° (Typ.)
Color Gamut (CIE 1976)	99%(Typ.)
Contrast Ratio	3000 (Typ.)
Response Time (Gray to Gray)	14ms (Typ.)
Interface	eDP, 8Lane (HBR2, 5.4Gbps)
Power Consumption	Total 31.43W Watt (Typ.) (5.4 Watt@ Mosaic $_{V_{LCD}}$, 60Hz, 26.03 Watt@ Is = 102 mA)
ES8.0/ErP Lot5/CEL	Total 18.77W @200nit (EE: 5.4W @ES pattern, 60Hz, BLU: 13.37W (for ES8.0)
Power Consumption	Total 14.80W @150nit (EE: 5.4W @ES pattern, 60Hz, BLU: 9.40W (for ErP Lot5)
·	Logic Power: 5.4W @CEL Pattern, 60Hz (for CEL)
Frame rate	60Hz (Typ.), 120Hz (Max.)
Weight	3,295g (Typ.)
Display Operating Mode	Transmissive mode, Normally black
Panel type	Reverse type
Surface Treatment	Anti-Glare Low Reflection treatment of the front polarizer(Haze35%, 3H)
Compliance	RoHS(Cd, Pb, Hg, Cr6+ free), TCO 9.0, ES 8.0, Halogen Free
Low Blue Light Panel	The ratio of light in the range from 415nm - 455nm compared to 400nm - 500nm shall be less than 35%
	Situal be less than 35.70

* In case of Compliance, this module supports TCO and ES related on LCM.

Product Specification

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 2-1. Absolute Maximum Ratings

Darameter	Cymbol	Val	ues	Units	Notos	
Parameter	Symbol	Min	Max	UTIILS	Notes	
Power Supply Input Voltage	V_{LCD}	-0.3	+12.0	V_{DC}	At 25°C	
Operating Temperature	T _{OP}	0	50	°C		
Storage Temperature	T _{ST}	-20	60	°C	1 2 2	
Operating Ambient Humidity	H _{OP}	10	90	%RH	1,2,3	
Storage Humidity	H _{ST}	10	90	%RH		
LCM Surface Temperature(Operation)	T _{surface}	0	65	°C	1,4	

Notes:

- 1) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39°C Max, and no condensation of water.
- 2) Storage condition is guaranteed under packing condition.
- 3) LCM surface temperature should be measured under the condition of V_{LCD} = Typ, f_V = 60Hz, T_a = 25°C, no humidity and typical LED string current.
 - ** Surface temperature of the Component on PCB should be controlled under Tj 125°C (D-IC : Ts 110°C). If not, problems such as IC damage or decrease of lifetime could occur.
- * f_V = Frame frequency * T = Ambient tempora
- * T_a = Ambient temperature

FIG.2 Temperature And Relative Humidity

Ver. 1.0 Oct. 24, 2024 5 / 37

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.

Table 3-1. Electrical Characteristics

Developed	Complete al		Values		11	N	
Parameter	Symbol	Min	Тур	Max	Unit	Notes	
Module:							
Power Supply Input voltage	V _{LCD}	9.5	10.0	10.5	Vdc	4	
Permissive Power Input Ripple	VRIPPLE	-		400	mVp-p	1	
	ILCD Typ.	-	540	675	mA		
Power Supply Input Current	ILCD Max.	-	1390	1738	mA		
	ILCD White.		560	700	mA	2	
	PLCD Typ.	-	5.40	6.75	W	(fv=60Hz)	
	PLCD Max.		13.90	17.38	W		
Power Consumption	PLCD White.		5.60	7.00	W		
	PLCD Max.	-	24.0	30.0	W	2 (fv=120Hz)	
Rush Current	Irush	-	-	4.0	Α	3	

Notes:

- 1) Permissive power ripple should be measured under the condition of V_{LCD} = Typ, 25±2°C, f_V = Max. Refer to page 7 for the pattern and more information.
- 2) The specified current and power consumption can be measured under the V_{LCD} = Typ, 25±2°C, f_V = 60Hz and the pattern should be changed according to the typical or maximum power condition. The max. current can be measured only with the maximum power pattern. See the page 7 for details.
- 3) Maximum condition of inrush current:
- The duration of rush current is about 5ms and rising time of power input is 500us $\pm 20\%$.(Min). 4) V_{LCD} level must be measured between two points on PCB of LCM V_{LCD} (test point) ~ LCM Ground. (Test condition: Maximum power pattern, 25°C, $f_V = 60$ Hz)

^{*} f_V = Frame frequency

Product Specification

• **Permissive Power Input Ripple**($V_{LCD} = Typ$, 25°C, $f_V(frame frequency) = Max condition)$

Maximum power pattern (1dot)

For the exact ripple measurement, the condition of Max 20MHz is recommended in the bandwidth configuration of oscilloscope.

• **Power Consumption**($V_{LCD} = Typ$, 25°C, $f_V(frame frequency) = 60Hz condition)$

Typical Power Pattern

Maximum power pattern (1dot)

White Power Pattern

FIG.3-1 Pattern For Power Consumption Measurement

Ver. 1.0 Oct. 24, 2024 7 / 37

Product Specification

Table 3-2. LED Bar Electrical Characteristics

Parameter	Cymbol		Values	Lloit	Notes		
Parameter	Symbol	Min	Тур	Max	Unit	Notes	
LED String Current	Is	-	102	107	mA	1,2	
LED String Voltage	Vs	29.7	31.9	34.1	V	1,3	
Power Consumption	PBar	-	26.03	27.83	Watt	2,5	
LED Life Time	LED_LT	30,000	-	-	Hrs	4	

Note: The LED consists of 88 LED packages, 8 strings(parallel) x 11 packages(serial)

Notes:

- 1) The specified values are for single LED bar.
- 2) The specified current is defined as the input current for single LED string with 100% duty cycle.
- 3) The specified voltage is the input LED string voltage at typical current 100% duty cycle.
 4) The LED life time is defined as the when brightness of LED itself reach to the 50% of initial value under the conditions at $T_a = 25\pm2^{\circ}\text{C}$ and typical LED string current. 5) The power consumption shown above does not include the loss of external LED driver.
- The typical power consumption is calculated as $P_{bar} = V_s(Typ.) \times I_s(Typ.) \times No.$ of strings. The maximum power consumption is calculated as $PBar = Vs(Max.) \times Is(Typ.) \times No.$ of strings.

Product Specification

3-2. Interface Connections

3-2-1. LCD Module

- LCD Connector(Receptacle): 20525-060E-01(Manufactured by I-PEX)
- Mating Connector(Plug): 20523-060T(Manufactured by I-PEX)

Table 3-3. Module Connector(CN1) Pin Configuration

No	Symbol	Description	No	Symbol	Description
1	GND	Ground	31	DP0_L1_N	Master Component Signal for Main Link 1
2	V _{LCD}	Power Supply +10.0V	32	GND	Ground
3	V_{LCD}	Power Supply +10.0V	33	DP0_L2_P	Master True Signal for Main Link 2
4	V_{LCD}	Power Supply +10.0V	34	DP0_L2_N	Master Component Signal for Main Link 2
5	V_{LCD}	Power Supply +10.0V	35	GND	Ground
6	V_{LCD}	Power Supply +10.0V	36	DP0_L3_P	Master True Signal for Main Link 3
7	V_{LCD}	Power Supply +10.0V	37	DP0_L3_N	Master Component Signal for Main Link 3
8	V_{LCD}	Power Supply +10.0V	38	GND	Ground
9	V_{LCD}	Power Supply +10.0V	39	DP1_L0_P	Slave True Signal for Main Link 0
10	GND	Ground	40	DP1_L0_N	Slave Component Signal for Main Link 0
11	GND	Ground	41	GND	Ground
12	GND	Ground	42	DP1_L1_P	Slave True Signal for Main Link 1
13	GND	Ground	43	DP1_L1_N	Slave Component Signal for Main Link 1
14	GND	Ground	44	GND	Ground
15	GND	Ground	45	DP1_L2_P	Slave True Signal for Main Link 2
16	GND	Ground	46	DP1_L2_N	Slave Component Signal for Main Link 2
17	BIST	L(GND): Black, H(3.3V): Rotational Pattern	47	GND	Ground
18	GND	Ground	48	DP1_L3_P	Slave True Signal for Main Link 3
19	NC	No Connection(I2C serial interface for LCM)	49	DP1_L3_N	Slave Component Signal for Main Link 3
20	NC	No Connection(I2C serial interface for LCM)	50	GND	Ground
21	DP0_HPD	Master Hot Plug Detect Signal	51	DP1_AUX_P	Slave True Signal for Auxiliary Channel
22	DP1_HPD	Slave Hot Plug Detect Signal	52	DP1_AUX_N	Slave Component Signal for Auxiliary Channel
23	GND	Ground	53	GND	Ground
24	DP0_AUX_P	Master True Signal for Auxiliary Channel	54	NC	No Connection(I2C serial interface for LCM)
25	DP0_AUX_N	Master Component Signal for Auxiliary Channel	55	NC	No Connection(I2C serial interface for LCM)
26	GND	Ground	56	NC	No Connection
27	DP0_L0_P	Master True Signal for Main Link 0	57	GND	Ground
28	DP0_L0_N	Master Component Signal for Main Link 0	58	NC	No Connection
29	GND	Ground	59	GND	Ground
30	DP0_L1_P	Master True Signal for Main Link 1	60	NC	No Connection

Notes:

- All GND(ground) pins should be connected together to the LCD module's metal frame.
 All V_{LCD}(power input) pins should be connected together.
 BIST(Build In Self Test): If BIST pin is tied to "High(3.3V)", T-con generates rotational pattern. Time to stay at every pattern is about 2sec.

Rear view of LCM

Ver. 1.0 Oct. 24, 2024 9 / 37

Product Specification

3-2-2. eDP Signal Specifications

1. eDP Main Link Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval for High Bit Rate (5.4Gbps / Lane)	UI_HBR2	-	185	-	ps	
Link Clask Davin Carandina	Amplitude	0	-	0.5	%	
Link Clock Down Spreading	Frequency	30	2	33	kHz	
Maximum Output Voltage Level at Source Side Connector	V _{TX-DIFFp-p-Max}	1.	-	1.38	V	6
Differential Peak to peak Voltage at Sink Side Connector	V _{RX-DIFFp-p}	0.09	-	-	V	7
EYE width at Sink Side Connector	T _{RX-EYE-CONN}	0.38	-	-	UI	6,7
Lane Intra-pair Skew	L _{Rx-SKEW-} INTRA_PAIR	-	-	50	ps	
Master Tx to Slave Tx Skew	Tx-to- Tx_skew	-	-	± 0.25	DE	8
AC Coupling Capacitor	C _{SOURCE} ML	75	-	200	nF	Source side

Notes:

- 1) In cabled embedded system, it is recommended the system designer ensure that EYE width and voltage are met at the sink side connector pins.
- 2) Mismatched common mode voltage will occur abnormal display.
- 3) All eDP electrical spec is measured at sink connector side.

Product Specification

Note 6) Definition of Differential Voltage

Note 7) Main Link EYE Diagram

Point	High Bit Rate 2 @ TP3 EQ	
POILIC	Time(UI)	Voltage(V)
1	Any UI location (x) where the eye width is open from x to $x + 0.38UI$	0.000
2	Any passing UI location between 0.375UI - 0.625UI	0.045
3	Point 1 + 0.38UI	0.000
4	Same as Point 2	-0.045

[EYE Mask Vertices at embedded DP Sink Connector Pins]

Product Specification

Note 8) Master Tx to Slave Tx Skew Margin Case

(1) +0.25 DE Skew Case

(2) -0.25 DE Skew Case

Ver. 1.0 Oct. 24, 2024 12 / 37

Product Specification

2. eDP AUX Channel Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
AUX Unit Interval	UI	0.4	-	0.6	us	
AUX Jitter at Rx IC Package Pins	T _{jitter}	-	-	0.05	UI	Equal to 30ns
AUX Peak-to-peak Voltage at Connector Pins of Receiving		0.32	-	1.36	V	
AUX Peak-to-peak Voltage at Connector Pins of Transmitting	V _{AUX-DIFFp-p}	0.39	-	1.38	V	
AUX EYE width at Connector Pins of Tx and Rx		0.98	-	-	UI	
AUX AC Coupling Capacitor	C _{SOURCE-AUX}	75	-	200	nF	Source side

Notes:

1) V_{AUX-DIFFp-p} = 2 * | V_{AUXP} - V_{AUXN} |
2) Termination resistor should be 50ohm ± 5% at source side to AUX level.
3) Mismatched common mode voltage will occur abnormal display.

Product Specification

3. eDP HDP Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
HPD Voltage		2.25	-	3.6	V	Sink side Driving
Hot Plug Detection Threshold	HPD	2.0	1	-	V	Course side Detection
Hot Unplug Detection Threshold		(-)		0.8	V	Source side Detecting
HPD_IRQ Pulse Width	HPD_IRQ	0.5	-	1.0	ms	
HPD_TimeOut		2.0	-	-	ms	HPD Unplug Event

Notes:

- 1) HPD IRQ: Sink device wants to notify the Source device that Sink's status has changed so it toggles HPD line, forcing the Source device to read its Link / Sink Receiver DPCD field via the AUX-CH.
- 2) HPD Unplug: The Sink device is no longer attached to the Source device and the Source device may then disable its Main Link as a power saving mode.
- 3) Plug / Re-plug: The Sink device is now attached to the Source device, forcing the Source device to read its Receiver capabilities and Link / Sink status Receiver DPCD fields via the AUX-CH.

Ver. 1.0 Oct. 24, 2024 14 / 37

Product Specification

3-2-3. Backlight Connector Pin Configuration

The LED interface connector is 10035WS-H06D(HF)_Manufactured by YEONHO.

The mating connector is a 10035HS-H06G(HF) or SHJP-06V-S(HF).

The pin configuration for the connector is shown in the table below.

Table 3-4. LED Connector Pin Configuration

Pin	Symbol	Pin-description (CN2)	Remark
#1	FB1	Channel 1 current feedback	
#2	FB2	Channel 2 current feedback	
#3	V LED	LED power supply	Left side
#4	V LED	(common anode)	in front view
#5	FB3	Channel 3 current feedback	
#6	FB4	Channel 4 current feedback	

Pin	Symbol	Pin-description (CN3)	Remark
#1	FB1	Channel 1 current feedback	
#2	FB2	Channel 2 current feedback	
#3	V LED	LED power supply	Right side
#4	V LED	(common anode)	in front view
#5	FB3	Channel 3 current feedback	
#6	FB4	Channel 4 current feedback	

FIG.3-2 Backlight Connector View

Ver. 1.0 Oct. 24, 2024 15 / 37

Product Specification

3-3. Signal Timing Specifications

This is the signal timing requirement from the signal transmitter. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Table 3-5. Timing Table

Item	Symbol	Symbol	Min	Тур	Max	Unit	Notes
DCLK	Period	tCLK	1.86	3.75	4.79	ns	Pixel frequency
DCLK	Frequency	fCLK	208.68	266.40	547.00	MHz	(Typ. 532.80 MHz)
	Period	tHP	2000	2000	2400	tCLK	
	Horizontal Valid	tHV	1920	1920	1920	tCLK	124
Hsync	Horizontal Blank	tHB	80	80	480	tCLK	1,3,4
	Frequency	fH	106.56	133.20	273.50	kHz	
	Period	tVP	2220	2220	5825	tHP	
	Vertical Valid	tVV	2160	2160	2160	tHP	2.4
Vsync	Vertical Blank	tVB	60	60	3665	tHP	2,4
	Frequency	fV	47	60	121	Hz	

Notes:

- 1) The value of Hsync Period, Hsync Width and Hsync valid should be even number times of tCLK. If the value is odd number times of tCLK, it can make asynchronous signal timing and cause abnormal display.
- 2) The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 3) The value of Hsync Period, Hsync Width, and Horizontal Back Porch should be divided by 4 without a remainder.
- 4) The polarity of Hsync, Vsync is not restricted.

Global LCD Panel Exchange Center

LM315WR7 Liquid Crystal Display

Product Specification

3-4. Signal Timing Waveforms

Ver. 1.0 Oct. 24, 2024 17 / 37

Product Specification

3-5. Color Data Reference

The Brightness of each primary color(Red,Green,Blue) is based on the 10-bit gray scale data input for the color; the higher the binary input, the brighter the color.

The table below provides a reference for color versus data input.

Table 3-6. Color Data Reference

														In	out	Co	olor	Da	ata												
	Color					RE	D								(GRI	ΞEΝ	1								BL	UE				
		M S	SB							LS	SB	MS	SB							L	SB	M:	SB							LS	SB
	I	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	В7	В6	B5	B4	ВЗ	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED						٠.,																									
	RED (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
GREEN																															
	GREEN (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE (0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																															
	BLUE (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
		1										_										_									

Ver. 1.0 Oct. 24, 2024 18 / 37

Product Specification

3-6. Power Sequence

Table 3-7. Power Sequence

Timeina	Required	Lin	nits	Lluita	Notes
Timing	Ву	Min	Max	Units	Notes
T ₁	Source	0.5	10	ms	
T ₂	Sink	10	200	ms	
T ₃	Sink	15	200	ms	
T ₄	Source	-	-	ms	5
T ₅	Source	-	- 🔷	ms	5
T ₆	Source		100	ms	6
T ₈	Source	350	-	ms	
T ₉	Source	200	-	ms	4

Timina	Required	Lin	nits	Units	Notes
Timing	Ву	Min	Max	UTILS	notes
T ₁₀	Source	0	500	ms	
T ₁₂	Source	1000	-	ms	
T ₁₃	Source	20	-	ms	

Notes:

- 1) Power sequence should be kept all the time including below cases for normal operation.
 - AC/DC Power On/Off
- AC/DC Power On/On
 Mode change (resolution, frequency, timing, sleep mode, color depth change, etc.)
 The violation of power sequence can cause a significant trouble in display and reliability.

 2) Please avoid floating state of interface signal during signal invalid period.

 3) When the interface signal is invalid, be sure to pull down the V_{LCD}.(0V)

 4) Please turn off the power supply for LED when the level of V_{LCD} changes to prevent noise issue.

- 5) Link training duration is dependent on the customer's system.
- 6) It includes Source Frame Synchronization time.
- Source Frame Synchronization: Time to prepare before Tx(Source) sends valid data(Invalid period).

Ver. 1.0 Oct. 24, 2024 19 / 37

Product Specification

3-7. Power Dip Condition

FIG.3-3 Power Dip Condition

For proper operation, stable power supply of V_{LCD} is necessary and power dip is allowed only in below condition. Except this condition, power on/off should follow power sequence specification exactly.

1) Dip Condition
$$8V \leq V_{LCD} < \ 9.5V \ , \ \ t_d \leq 20ms \label{eq:lcd}$$

Product Specification

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at 25±2°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0° and aperture 1 degree. FIG.4-1 presents additional information concerning the measurement equipment and method.

FIG.4-1 Optical Characteristic Measurement Equipment And Method

Table 4-1. Optical Characteristics

(T_a=25 °C, V_{LCD} =Typ, f_{V} =60 Hz, DCLK=Typ, I_{S} =Typ)

	- Characteristics		(Ia-	25 C, V _{LCD} -	1 yp, 1 _V =00	nz, DCLK=Ty	γ, _{1S} – 1 γγ)
Рамам	a atau	Cumhal		Values		Lleite	Notes
Param	ieter	Symbol	Min.	Тур.	Max.	Units	Notes
Contrast Ratio		CR	2400	3000	-		1
Surface Luminance,	L _{WH}	360	450	-	cd/m ²	2	
Luminance Variation	<u> </u>		75	80	-	%	3
Response Time	Gray to Gray	T _{GTG_AVR}	-	14	25	ms	4
Color Gamut (CIE 1	931)	sRGB	96	100	-	0/	
Color Gamut (CIE 1	976)	DCI-P3	96	99	-	%	5
	Dod	Rx		0.681			
	Red	Ry		0.312			
		Gx	_	0.253			
Color Coordinates	Green	Gy	Тур	0.699	Typ +0.025		
[CIE 1931] (By PR650)	Dive	Bx	-0.025	0.143			
(2) 1 11000)	Blue	Ву		0.046			
	\A/la:t-a	Wx		0.313			
	White	Wy		0.329			
Color Temperature		-	-	6500	-	K	
Viewing Angle	Horizontal	θ_{H}	170	178	-	Dograc	6
(CR>10, General)	Vertical	$\theta_{\sf V}$	170	178	-	Degree	6
Gray Scale		-	Typ. -0.2	2.2	Typ. +0.2		7

Ver. 1.0 Oct. 24, 2024 21 / 37

Product Specification

4-1. Characteristics of Peak Luminance

Table 4-1-1. Absolute Maximum Value of LED Bar and Peak Luminance

Parameter	Symbol	Values	Unit	Notes
Peak LED String Current	Is	175	mA	a,b,c
Peak Luminance	Lp	750 600 (Min.)	nit	a,b,c

Notes:

- a) Peak LED string voltage at peak current with 100% duty cycle is $34.2\pm2.2\,\text{V}$ at $T_a=25\pm2\,^\circ\text{C}$. b) Table 4-1-1 is reference data only for HDR Function usage, refer to the appendix of LCM temperature at peak current.
- c) Peak luminance 750nit is achieved at 175mA, while the specifications for guarantee remains under the normal operating condition specified in Table 3-2. Specifications and condition for evaluation test and mass production shall be applied with conditions specified in Table 3-2.

Ver. 1.0 Oct. 24, 2024 22 / 37

Product Specification

Notes:

1) **Contrast Ratio(CR)** is defined mathematically as: **(By PR880)** It is measured at center point(1)

- 2) **Surface Luminance(LwH)** is the luminance value at center 1 point(1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG.4-1. *(By PR880)*
- 3) The Variation in Surface Luminance , δ _{WHITE} is defined as: **(By PR880)**

$$\delta_{\text{WHITE}} = \frac{\text{Minimum(LP1,LP2,, LP9)}}{\text{Maximum(LP1,LP2,, LP9)}} \times 100(\%)$$

Where L1 to L9 are the luminance with all pixels displaying white at 9 locations. For more information see FIG.4-2.

<Measuring Point For Luminance Variation>

@ H,V: Active Area

FIG.4-2 Measure Point for Luminance

Product Specification

Notes:

- 4) The Gray To Gray Response Time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray ". (By RD805)
 - Gray step: 5 Step
 - T_{GTG_AVR} is the total average time at rising time and falling time for "Gray To Gray ". For the GTG measurement, the sampling rate of oscilloscope is 500k/s.

Table 4-2. GTG Gray

Cray to C	Gray to Gray			Rising Time									
Gray to G	Iay	G1023	G767	G511	G255	G0							
	G1023												
	G767				1								
Falling Time	G511												
	G255												
	G0												

Response Time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

FIG.4-3 Response Time

5) **sRGB color gamut**, which is more than or equal to typ. 99.5%, is stated as 100%

Product Specification

Notes:

6) **Viewing Angle** is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.4-4. **(By PR880)**

FIG.4-4 Viewing Angle

7) **Gamma Value** is approximately 2.2. For more information see below table.

Table 4-3. Gray Scale Specification

Gray Level	Relative Luminance [%](Typ)
0	0.03
63	0.25
127	1.08
191	2.5
255	4.72
319	7.7
383	11.49
447	16.2
511	21.66
575	28.2
639	35.45
703	43.8
767	53.0
831	63.3
895	74.48
959	86.8
1023	100

Ver. 1.0 Oct. 24, 2024 25 / 37

Product Specification

5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	709.40mm		
Outline Dimension	Vertical	405.95 mm		
	Thickness(top/bottom)	10.10mm / 14.30mm		
Bezel size (A/A ~ Module outline)	Up / Down / Left / Right	5.78mm / 7.93mm / 6.05mm / 6.05mm		
Ashive Display Aves	Horizontal	697.3056mm		
Active Display Area	Vertical	392.2344 mm		
Weight	Typ: 3,295g , Max: 3,460g	1		
Surface Treatment	Anti-Glare treatment of the	e front polarizer(Haze35%, 3H)		
BLU type (LED bar quantity/position)	Horizontal 1bar(Down)			

Note: Please refer to a mechanical drawing in terms of tolerance at the next page.

 Outline dimensions (horizontal, vertical and outside depth) are measured by using vernier calipers.
 The inside depth dimensions are measured by using height gauge, when LCM is put face down onto a flat surface.

Product Specification

Product Specification

Ver. 1.0 Oct. 24, 2024 28 / 37

Product Specification

6. Reliability

Environment test condition

No	Test Item	Condition	Notes
1	High temperature storage test	T _a = 60°C, 240h	1
2	Low temperature storage test	T _a = -20°C, 240h	1
3	Humidity condition storage	T _a = 40°C, 90%RH	1
4	High temperature operation test	T _a = 50°C, 50%RH, 240h	1
5	Low temperature operation test	T _a = 0°C, 240h	1
6	Humidity condition operation	T _a = 40°C, 90%RH	1
7	Altitude Operating Storage / Shipment	0 - 10,000 feet (3,048m) 0 - 40,000 feet (12,192m)	
8	Maximum storage humidity for 4 corner light leakage Mura	Max 70%RH, T _a = 40°C	
9	Power On/ Off test	On(5Sec.)/ Off (5Sec.), 30,000 Cycle	
10	Panel Push test	No panel crack under 5kgf	2
11	Vibration test (non-operating)	Waveform: Random Vibration level: 1.0Grms Bandwidth: 10-300Hz Duration: X,Y,Z, 10min One time each direction	
12	Shock test (non-operating)	Shock level : 100G Waveform : Half sine wave, 2ms Direction : ±X, ±Y, ±Z One time each direction	
13	Thermal shock test	$T_a = -20$ °C/30min \sim 60°C/30min, 100cycle (Cooling time at least 4h)	1
14	ESD (Electro Static Discharge)	Contact Discharge : ± 8kV,150pF(330Ω), 1sec	3
14	ESD (Electro Static Discharge)	Air Discharge : \pm 15kV, 150pF(330 Ω), 1sec	3

Note 1) Result Evaluation Criteria:

TFT-LCD panels test should take place after cooling enough at room temperature.

In the standard condition, there should be no particular problems that may affect the display function. Storage condition is guaranteed under packing condition

* T_a= Ambient Temperature

Ver. 1.0 Oct. 24, 2024 29 / 37

^{*} Guarantee 30Khrs on static office circumstances (Room Temp. & Room Humidity) only for the Panel peel off at tilt (-35°~+80°) and pivot (-180°~+180°) usage.

Product Specification

6. Reliability

Note2) Measurement Criteria of Panel Push Test

1 Environment : Room Condition, Non-Operating

2 Test Criteria

1) Push Gauge: Contact Area Size - Φ 10mm

2) Push Holding Time: 5sec 3) Test Speed: 20mm/min 4) Range 1~10kgf

5) Test Point: Front 5points

■ Front Point (5 Point)

Note 3) 1. ESD Class B

- Certain performance degradation allowed No data lost/ Self-recoverable/ No hardware failures.
- 2. Operation Test (Discharge location / Test time)
- 1) Contact (Top Case): 5times for each point
- Top Case (LCM front view : Up/Down/Left/ Right 2points of Top Case)
 2) Air (Panel) : 5times for each point
- LCM front view: Up/Down (6Points), Left/Right (5Points), Corner (4Points)
- Top case (Top case adjacent part), No Top case (LCM Up/Down/Left/ Right edge)
- 3. Non-operation Test (Discharge location / Test time):5times for each point C/Bottom : IC Location (ASIC, P-IC, OP Amp, Source & Gate IC)

Product Specification

7. International Standards

7-1. Safety

- a) IEC 62368-1, The International Electro-technical Commission(IEC).

 Audio/video, Information and Communication Technology Equipment Safety Safety Requirements.
- b) EN 62368-1, European Committee for Electro-technical Standardization (CENELEC) Audio/video, Information and Communication Technology Equipment - Safety Requirements
- c) UL 62368-1, UL LLC.
 Audio/video, Information and Communication Technology Equipment Safety Requirements
- d) CAN/CSA C22.2 No.62368-1, Canadian Standards Association (CSA).

 Audio/video, Information and Communication Technology Equipment Safety Requirements
- e) IEC 60950-1, The International Electro technical Commission (IEC).
 Information Technology Equipment Safety Part 1 : General Requirements

7-2. Environment

a) RoHS, Commission Delegated Directive (EU) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council

Ver. 1.0 Oct. 24, 2024 31 / 37

Product Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

А	ВС	D E	F G	н І	J	K	L	М
---	----	-----	-----	-----	---	---	---	---

A,B,C: Size(Inch)

E: Month

D: Year

F ∼ M: Serial No.

Notes:

1) Year

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	С	D	Е	F	G	Н	J	K

2) Month

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module.

This is subject to change without prior notice.

Product Specification

8-2. Packing Form

ITEM	Quantity	Dimension	Weight
Packing (BOX)	8ea	827(L)*370(W)*529(H)	29kg
Pallet after Packing	24ea	1140(L)*910(W)*718.5(H)	112Kg
Box Per Pallet	3ea	-	-
Box stack layer in Pallet	3*1*1 Pattern	-	-

* LCM Direction(Insert to Bottom Packing): COF UP

No.	Description	Material		
(a)	LCM	-		
(b)	AL-Bag	AL		
©	Packing, Top	EPS		
d	Packing, Bottom	EPS		
(e)	Вох	Paper(SW)		
9	Wrap	LDPE		
h	Pallet	Plywood		
0	Label	YUPO		
0	Pallet cushion	EPE		
®	Angle Post	Paper		

Ver. 1.0 Oct. 24, 2024 33 / 37

Product Specification

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- 1) You must mount a module using holes arranged in rear side.
- 2) You should consider the mounting structure so that uneven force(ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- 3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- 4) You should adopt radiation structure to satisfy the temperature specification.
- 5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- 6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.

 (Some cosmetics are detrimental to the polarizer.)
- 7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- 8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- 9) Do not open the case because inside circuits do not have sufficient strength.
- 10) System frame should not have an interference with panel which can cause LC Leakage/Panel Crack due to the contraction of system frame at low temperature condition or panel damage by any other circumstances.

9-2. Operating Precautions

- 1) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- 2) Brightness depends on the temperature.(In higher temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- 3) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- 4) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- 5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- 6) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- 7) A screw which is fastened up the steels should be a machine screw.(if not, it causes metallic foreign material and deal LCM a fatal blow)
- 8) Please do not set LCD on its edge.
- 9) When LCMs are used for public display, defects such as Yogore & image sticking can not be guaranteed.
- 10) LCMs cannot support "Interlaced Scan Method"
- 11) When this reverse model is used as a forward-type model (PCB on top side) or a Portrait-type mode at storage and operation, LGD can not guarantee any defects of LCM.
- 12) Please conduct image sticking test after 2-hour aging with Rolling Pattern at normal temperature.(25~40°C)

Product Specification

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions For Strong Light and Hazardous Materials Exposure

Strong light exposure causes degradation of polarizer and color filter.

The LCM should be avoided direct contact with hazardous materials such as sulfur, acetic acid, chlorine, etc. These materials may cause chemical reaction such as sulfurization, corrosion, discoloration, etc.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- 1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- 2) The LCM storage period is 6 months, which is the storage period under the packaging conditions provided.
- 3) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. Handling Precautions For Protection Film

- The protection film is attached to the bezel with a small masking tape. When the protection film
 is peeled off, static electricity is generated between the film and polarizer. This should be peeled
 off slowly and carefully by people who are electrically grounded and with well ion-blown
 equipment or in such a condition, etc.
- 2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- 3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Product Specification

APPENDIX

■ LCM Test Result for Operating HDR Function

1) It is recommended that thermal sensor in system should be placed on the surface of C/Bottom near the LED with high temperature when measured by IR camera.

<Measured by IR Camera>

<Thermal Data Acquisition Position>

2) Measurement of temperature by time. When the temperature is over 61.7°C on C/Bottom, defects are founded due to thermal effect.

Table 1: Temperature data at typical luminance(102mA), ambient temperature(50°C)

102mA (Typ.)	Measure Point Temp. (Ambi. 50°C)					
Time(min.)	C/Bottom(°C)	LED Ts(°C)	LED Ts - C/Bottom(°C)			
30	60.1	68.3	8.2			
60	61.5	69.7	8.2			
90	61.7	69.9	8.2			
120	61.7	69.9	8.2			

Table 2: Temperature data at 700nit luminance(162mA), ambient temperature(25°C)

Tubic 2. Tempera	ture data at 7001	inc farminance(1	ozina), ambient tempera	ituic(25 C)	
162mA	Measu	re Point Temp.	(Ambi. 25°C)	Re	emark.
Time(sec)	C/Bottom(°C)	LED Ts(°C)	LED Ts - C/Bottom(°C)	Interval	LED Current
Base	38.7	46.9	8.2	2hrs	102mA(Typ.)
30	38.9	52.3	13.4		
60	39.4	53.4	14.0		
90	39.5	53.9	14.4	0.5min	
120	40.0	54.2	14.2	0.511111	
150	40.3	54.6	14.3		
180	40.5	54.8	14.3		
240	40.9	55.4	14.5		
300	41.4	55.8	14.4		
360	41.7	56.2	14.5		162mA
420	41.8	56.5	14.7	1min	
480	42.2	56.8	14.6		
540	42.5	57.0	14.5		
600	42.7	57.3	14.6		
900	43.5	58.2	14.7		
1200	44.1	58.8	14.7	5min	
1500	44.5	59.1	14.6	3111111	
1800	44.7	59.3	14.6		

Ver. 1.0 Oct. 24, 2024 36 / 37

Product Specification

APPENDIX

■ LCM Test Result for Operating HDR Function

Table 3: Temperature data at peak luminance(175mA), ambient temperature(25°C)

Table 5. Tempera	itare data at pear	Clairinance(17.	oning, ambient temperat	uic(23 C)	
175mA(Peak.)	Measu	ire Point Temp.	(Ambi. 25°C)	Re	emark.
Time(sec)	C/Bottom(°C)	LED Ts(°C)	LED Ts - C/Bottom(°C)	Interval	LED Current
Base	38.7	46.9	8.2	2hrs	102mA(Typ.)
30	38.7	53.1	14.4		
60	39.3	54.5	15.2		
90	39.6	55.2	15.6	0.5min	
120	40.1	55.7	15.6	0.511111	
150	40.3	56.1	15.8		
180	40.6	56.5	15.9		
240	41.2	57.2	16.0		
300	41.6	57.8	16.2		17Em A
360	42.2	58.2	16.0		175mA (Peak.)
420	42.5	58.7	16.2	1min	(i cak.)
480	42.8	59.1	16.3		
540	43.3	59.4	16.1		
600	43.4	59.7	16.3		
900	44.7	60.8	16.1		
1200	45.2	61.5	16.3	5min	
1500	45.8	62.0	16.2	Jillill	
1800	46.2	62.3	16.1		

Circuit	Cus	tom one-chip of m uit.	icroprocessor LSI			
Channels	T1,	T2, T3, T4, T1-T2.	22 - (1)			
Sensor ty	Typ PT	ype X thermocouple probe. ype J/T/E/k/S thermocouple probe. T 100 ohm probe Cooperate with an 0.00385 alpha coefficient, meet DIN IEC 751.				
Resolutio	n 0.1	C/1C, 0.1 F/1 F.				
Type K						
Sensor	Resolution	Range	Accuracy			
Type K	0.1 °C	-50.1 to -100.0 °C	± (0.4%+1°C)			
		-50.0 to 999.9 °C	± (0.4% + 0.5°C)			
	1 °C	1000 to 1300 °C	± (0.4%+1°C)			
	0.1 F	-58.1 to -148.0 T	± (0.4% + 1.8 F			
	0.000-000	-58.0 to 999.9 T	± (0.4%+1F)			
	1 F	1000 to 2372 'F	± (0.4%+2F)			

LED Ts

C/Bottom

Temperature Meter (Lutron TM-947SD / 4ch)

Luminance(nit)	LED String Current(mA)	LED String Voltage(V) (Tolerance: ± 2.2V)
450	102	31.9
700	162	33.9
750	175	34.2

Ver. 1.0 Oct. 24, 2024 37 / 37

Product Specification

APPENDIX

■ ID Label of LCM

Digit	Description
1	Inch (8.9" = 089, 10.1" = 101, 21.5" = 215)
2	Year (2010=0, 2011=A, 2012=B)
3	Month (Jan.~Sep.:1~9, Oct.=A, Nov.=B, Dec.=C)
4	Module Factory
5	Serial No. (0000001~ZZZZZZZZ)

■ Box Label

LM315WF7		SSA1		
P78JX		ZB		
8 PCS	LOT/MM-DD			
MADE IN CHINA		RoHS Verified		

■ Pallet Label

LM315WR7		SSA1		
P78JX		ZB		
24 PCS	LOT/MM-DD			
MADE IN CHINA		RoHS Verified		

Ver. 1.0 Oct. 24, 2024 38 / 37