CS & IT

Batch: English

Digital Logic Combinational Circuit

DPP-04

[MCQ]

- 1. What are basic gates required to implement a full adder
 - (a) 1 EX-OR gate, 1 AND gate
 - (b) 2 EX-OR gate, 1 OR gate
 - (c) 2 EX-OR gate, 2 AND gate, 1 OR gate
 - (d) 1 EX-OR gate, 2 AND gate, 2 OR gate

[NAT]

2. How many half adders are required to implement the following expressions.

$$D = \overline{A}BC + A\overline{B}C$$
, $E = A \oplus B \oplus C$

$$F = \overline{A}C + AB\overline{C} + \overline{B}C$$

[MCQ]

3. The following multiplexer circuit is equivalent to

- (a) Implementation of sum equation of full adder
- (b) Implementation of carry equation of full adder
- (c) Implementation of borrow equation of full subtractor
- (d) All the above

[MCQ]

4. A 3 line to 8 line decoder with three inputs A, B, C and two outputs y_1 and y_2 , is configured as shown below. The minimized expression of outputs will be

(a)
$$y_1 = \overline{A}\overline{B} + AB\overline{C}$$
; $y_2 = \overline{A \oplus B}$

(b)
$$y_1 = AB + \overline{AB}C$$
; $y_2 = A \oplus B$

(c)
$$y_1 = \overline{AB} + A\overline{C}; y_2 = AB + AC$$

(d)
$$y_1 = A\overline{B} + \overline{A}C$$
; $y_2 = \overline{A}B + \overline{B}C$

[MCQ]

5. A demultiplexer of size 1×8 with active low outputs, is programmed as shown below. The circuit has three inputs x, y, z and generates two outputs y_1 , y_2 .

What is this circuit?

- (a) Half subtracter
- (b) Full subtractor
- (c) Half adder
- (d) Full adder

[MCQ]

The logic diagram of a 3×8 decoder with active low outputs is shown below. What is state of outputs Q_7 , Q_0 for the set of inputs $E_3 = E_1 = 1$, $E_2 = 0$, $A_2 = A_1 = 1$ and $A_0 = 0$?

- (a) 1111 1111
- (b) 1011 1111
- (c) 1111 0111
- (d) 0000 0000

[MCQ]

7. A 3 line to 8 line decoder with active low outputs, is used to realize Boolean function involving three variables *x*, *y* and *z*(*x* is MSB and *z* is LSB) as shown below.

The minimized Boolean function f(x, y, z) in POS format, will be

(a)
$$(\overline{x} + \overline{y} + \overline{z})(x + y + z)(x + \overline{y} + \overline{z})(\overline{x} + y + \overline{z})$$

(b)
$$(\overline{x} + \overline{y} + z)(\overline{x} + y + z)(x + \overline{y} + z)(x + y + \overline{z})$$

(c)
$$(x+z)(y+z)(\bar{x}+\bar{y}+\bar{z})$$

(d)
$$(\overline{x} + \overline{z})(\overline{y} + \overline{z})(x + y + z)$$

[MCQ]

% Two 2 × 4 decoders one with active low outputs and another with active high output are interconnected as shown below. The output function $f_2(x_3, x_2, x_1)$ will be

- (a) $f_2 = (x_1 \bigoplus x_2) \odot x_3$
- (b) $f_2 = (x_1 \odot x_2) \odot x_3$
- (c) $f_2 = (x_1 \bigoplus x_2) \bigoplus x_3$
- (d) $f_2 = (x_1 \bigoplus x_2) \bigoplus x_3$

[MCQ]

9. Three half adders HA₁, HA₂ and HA₃ are intercoupled as shown below. The four output functions y₁, y₂, y₃ and y₄ are expressed in terms of inputs a, b and c. Which one of the following output expressions, is correct?

- (a) $y_1 = (a \oplus b)c$
- (b) $y_2 = (a \oplus b) \oplus c$
- (c) $y_3 = ab \oplus c$
- (d) $y_4 = a(b \oplus c)$

[MCQ]

10. Determine the outputs for the circuit shown below.

(a)
$$\Sigma' = 1$$
, $C'_{out} = 1$

(b)
$$\Sigma' = 0$$
, $C'_{out} = 0$

(c)
$$\Sigma' = 0$$
, $C'_{out} = 1$

(d)
$$\Sigma' = 1$$
, $C'_{out} = 0$

[MCQ]

- **11.** How many half adders, will be required to add two *k* bit numbers?
 - (a) 2k + 1
- (b) 2k-1
- (c) 2k
- (d) 2(k+1)

[NAT]

12. Eight 1-bit full adders are cascaded. Each 1-bit full adder generates carry out bit in 10 ns and sum bit in 30 ns. The number of addition performed per second, will be $____ \times 10^7$.

Answer Key

- 1. c
- 2. 3
- 3. a
- 4. a
- 5. d
- 6. a
- 7. c
- 8. a
- 9. c
- 10. c
- 11. b
- 12. 1

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{for more questions, kindly visit the library section: Link for web: } \frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

