Structural Determination & Analysis of Protein 6J17

Malvika Agarwal, Nikhila Butani, Bushra Haque, Harleen Sangha

A brief look at X-ray Crystallography

X-ray Crystallography Steps

X-ray Crystallography Steps

GROUP PROJECT

- 2. Crystallization
- 4. Phase Determination
- 3. Data Collection
- 5. Phase Improvement
- 6. Model Building
- 7. Model Refinement
- 8. Model Validation
- 9. Model Analysis

1. Pure Protein

Solving the Phase Problem

Solution: Molecular Replacement

Molecular Replacement

- Borrowing phase from a known, homologous protein model
- Homologous model is positioned within the unit cell of unknown target crystal

Image obtained from (CSIC, 2020)

Challenges with Molecular Replacement

Image created in Coot

Protein Model

Model Bias

Output from Phaser

Image created in Coot

Analyzing the Electron Density Map

Image created in Coot

Manual Refinement in Coot

Computational Refinement using Phenix

Coordinate Refinement

Atomic positions of proteins in the electron density mesh

ADP Refinement

How much atomic motion is at a position in the structure

Model Validation

Model Validation

Blue dots = angles avoiding steric collisions

Red dots = angles causing clashes between atoms

Image obtained from Coot

FINISHED Resolution:

R-work:

R-free:

RMS(bonds):

RMS(angles):

Clashscore:

Ramachandran favored:

Ramachandran outliers:

Rotamer outliers:

of reflections:

46.35 - 1.98

19173

0.2308

0.2623

0.0165

2.319 15.0

89.88

3.24

0.00

Crystallography Table

Crystal Statistics (PDB: 6J17)				
Data Collection				
Resolution range (Å)	46.35 - 1.98 (2.051 - 1.98)			
Space group	P 21 21 21			
Unit cell dimensions	53.363, 56.628, 93.532, 90, 90, 90			
Unique reflections	19109 (1552)			
Completeness (%)	93.70 (76.82)			
Wilson B-factor	30.38			

Crystal Statistics (PDB: 6J17)				
Refinement				
Reflections used in refinement	19079 (1534)			
Reflections used for R-free	1915 (156)			
R-work	0.2621 (0.3029)			
R-free	0.2631 (0.3002)			
Number of non-hydrogen atoms	2135			
macromolecules	1955			
ligands	32			
solvent	148			
Protein residues	254			
RMS(bonds)	0.08			
RMS(angles)	5.71			
Ramachandran favored (%)	90.16			
Ramachandran allowed (%)	4.92			
Ramachandran outliers (%)	4.92			
Rotamer outliers (%)	2.4			
Clashscore	53.33			
Average B factor	44.38			
macromolecules	44.68			
ligands	25.94			
solvent	44.38			

Table generated from Phenix

Sequence Homology

Score		Expect Method Identities Positives Gaps	
60.1 bi	ts(144)	1e-14 Compositional matrix adjust 75/266(28%) 116/266(43%) 27/266(10%)
Query	34	GPGSPGMAAPPVRLLPTNLAPHAVGELYRGPDQLVIGQREEDLAPVILDLAAN GPGS ++ LP + A+ E +++G D L IG+R E L PV + L +	86
Sbjct	1	GPGSHASLQRLPQRVELSAIVEHEAVHQGGDDLSIAFAIGERHE-LGPVPIKLRES	55
Query	87	PLLMVFGDARSGKTTLLRHIIRTVREHSTADRVAFTVLDRRLHLVDEPLFPDNEY P LM+ G GKTT L I V + + T++D + L + P + Y	141
Sbjct	56	PGLMILGRQGCGKTTALVAIGEAVMNRFSPQQAQLTLIDPKTAPHGLRDLHAPGY-VRAY	114
Query	142	TANIDRIIPAMLGLA-NLIEARRPPAGMSAAELSRWT-FAGHTHYLIIDDV-DQVPDSPA + D I + LA ++ R PP G+S EL + G H+++IDDV D P	198
Sbjct	115	AYDQDEIDEVITELAQQILLPRLPPKGLSQEELRALKPWEGPRHFVLIDDVQDLRPAQSY	174
Query	199	MTGPYIGQRPWTPLIGLLAQAGDLGLRVIVTGRATGSAHLLMTSPLLRRFNDLQATTLML P +G W L+ +A +GL V T + A + M P ++ + L +	258
Sbjct	175	PQKPPVGAALWKLMERARQVGLHVFSTRNSANWATMPM-DPWVKSQTSAKVAQLYM	229
Query	259	AGNPADSGKIRGERFARLPAGRAILL 284 +P + R R LP GR +L+	
Sbjct	230	DNDPQNRIN-RSVRAQTLPPGRGLLV 254	

Homologous Overlap using Pymol

Electrostatics

Amino acids responsible for ATPase function

Residues Important in Function

- Lys1113 is essential for ATP hydrolysis
- Arg1245 is required for the binding of ATP

Protein-Protein Interactions

- Protein binding pocket determined using electrostatics
- Interaction with other residues
 - E.g. Virulence factors
- Influence on ATPase activity
- Not highly conserved

Images created in PyMOL

ATPases

- Enzymes which catalyze ATP hydrolysis reactions
- Energy is released and used to drive other processes
- 3 components: V_0 , Stalk, and V_1
- E.g. H⁺-ATPase

ATPases as Drug Targets

Image from: (ATP—the Universal Energy Currency, n.d.)

EccC-ATPase₃ Function

- EccC-ATPase₃ found in *M.* tuberculosis
- Active transport to diffuse molecules across the bacterial cell envelope using ATP hydrolysis generated energy

Novel Drug Target

• *M. tuberculosis* is the causative agent of tuberculosis

Decreased efficacy of current drugs

ATPase₃ domain can serve as a novel drug target

PATHWAY TO DRUG DISCOVERY

Acknowledgments

Dr. Sara Andres, Assistant Professor

Lucas Koechlin, Teaching Assistant

Tim Klein, Teaching Assistant

References

- (1) Andres, S. Lecture 1: Introduction to Structural Biology and X-ray Crystallography. *Lecture*, 2020.
- (2) Andres, S. Lecture 3: Phase It Out. Lecture, 2020.
- (3) ATP—the Universal Energy Currency https://saylordotorg.github.io/text_the-basics-of-general-organic-and-biological-chemistry/s23-01-atp-the-universal-energy-curre. html (accessed Mar 31, 2020).
- (4) Brito, J. A.; Archer, M. Chapter 10 Structural Biology Techniques: X-Ray Crystallography, Cryo-Electron Microscopy, and Small-Angle X-Ray Scattering. In *Practical Approaches to Biological Inorganic Chemistry (Second Edition)*; Crichton, R. R., Louro, R. O., Eds.; Elsevier, 2020; pp 375–416. https://doi.org/10.1016/B978-0-444-64225-7.00010-9.
- (5) Champion, P. A. D., Champion, M. M., Manzanillo, P., & Cox, J. S. (2009). ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. *Molecular Microbiology*, *73*(5), 950–962. doi: 10.1111/j.1365-2958.2009.06821.x
- (6) Chène, P. ATPases as Drug Targets: Learning from Their Structure. *Nature Reviews Drug Discovery*. Nature Publishing Group September 2002, pp 665–673. https://doi.org/10.1038/nrd894.
- (7) CSIC. Crystallography Structural Resolution. Spanish National Research Council (Consejo Superior de Investigaciones Científicas) 2020.
- (8) Davidson, A. L.; Dassa, E.; Orelle, C.; Chen, J. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. *Microbiol. Mol. Biol. Rev.* 2008, *72* (2), 317–364. https://doi.org/10.1128/mmbr.00031-07.
- (9) Evans, P.; McCoy, A. An Introduction to Molecular Replacement. *Acta Crystallogr D Biol Crystallogr* **2008**, *64* (Pt 1), 1–10. https://doi.org/10.1107/S0907444907051554.

References Contd.

- (10) Houben, E. N. G.; Korotkov, K. V.; Bitter, W. Take Five Type VII Secretion Systems of Mycobacteria. *Biochimica et Biophysica Acta (BBA) Molecular Cell Research* **2014**, *1843* (8), 1707–1716. https://doi.org/10.1016/j.bbamcr.2013.11.003.
- (11) Mccoy, A. J. (2017). Acknowledging Errors: Advanced Molecular Replacement with Phaser. *Methods in Molecular Biology Protein Crystallography*, 421–453. doi: 10.1007/978-1-4939-7000-1_18
- (12) Protein BLAST: Align two or more sequences using BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=Bl astSearch&BLAST_SPEC=blast2seq&DATABASE=n/a&QUERY=&SUBJECTS= (accessed Mar 31, 2020).
- (13) Structure of DNA | BioNinja https://ib.bioninja.com.au/higher-level/topic-7-nucleic-acids/71-dna-structure-and-replic/structure-of-dna.html (accessed Mar 31, 2020).
- (14) Smyth, M. S.; Martin, J. H. J. X Ray Crystallography. *Mol Pathol* **2000**, *53* (1), 8–14.
- (15) Sun-Wada, G.-H.; Wada, Y. Role of Vacuolar-Type Proton ATPase in Signal Transduction. *Biochimica et Biophysica Acta* (*BBA*) *Bioenergetics* **2015**, *1847* (10), 1166–1172. https://doi.org/10.1016/j.bbabio.2015.06.010.
- (16) Walker Motifs an overview | ScienceDirect Topics https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/walker-motifs (accessed Mar 16, 2020).
- Wang, S.; Zhou, K.; Yang, X.; Zhang, B.; Zhao, Y.; Xiao, Y.; Yang, X.; Yang, H.; Guddat, L. W.; Li, J.; Rao, Z. Structural Insights into Substrate Recognition by the Type VII Secretion System. *Protein Cell* **2020**, *11* (2), 124–137. https://doi.org/10.1007/s13238-019-00671-z.
- (18) X-ray Crystallography
 https://www.creativebiomart.net/resource/principle-protocol-x-ray-crystallography-393.html (accessed Mar 31, 2020)