Day 2:

- Iterations
- Thura Aung

For loop

For loop

already know how many times (a sequence) you want to loop through something

Tips: range(start, stop, steps, end)

Print the following Patterns

*	***	1
**	***	12
***	**	123
***	*	1234

While loop

While loop

when we **don't know** how many times we want to loop through a problem beforehand

while <condition>:

<expression>

<expression>

print("Out of loop")

Fig: operation of while loop

Palindrome

- A string is a palindrome if it is identical forward and backward. For example "anna", "civic", "level" and "hannah" are all examples of palindromic words. Write a program that reads a string from the user and uses a loop to determines whether or not it is a palindrome. Display the result, including a meaningful output message.
- Multiple palindrome

Greatest common divisor

The greatest common divisor of two positive integers, n and m, is the largest number, d, which divides evenly into both n and m. There are several algorithms that can be used to solve this problem, including:

Initialize d to the smaller of m and n.

While d does not evenly divide m or d does not evenly divide n do.

Decrease the value of d by 1

Report d as the greatest common divisor of n and m

Write a program that reads two positive integers from the user and uses this algorithm to determine and report their greatest common divisor.

Example - binary number 1111100

128	64	32	16	8	4	2	1
0	1	1	1	1	1	0	0

Result -
$$(0 \times 128) + (1 \times 64) + (1 \times 32) + (1 \times 16) + (1 \times 8) + (1 \times 16) + (1 \times 16)$$

$$(1 \times 4) + (0 \times 2) + (0 \times 1) = 124$$

Place value	10,000	1,000	100	10	1
Value	0	0	1	2	4

This gives $(1 \times 100) + (2 \times 10) + (1 \times 4) = 124$

