语法分析

魏恒峰

hfwei@nju.edu.cn

2020年12月6日

只考虑无二义性的文法

这意味着,每个句子对应唯一的一棵语法分析树

今日份主题: LR 语法分析器

自底向上的、

不断归约的、

基于句柄识别自动机的、

适用于LR 文法的、

LR 语法分析器

自底向上构建语法分析树

根节点是文法的起始符号 S

每个中间非终结符节点表示使用它的某条产生式进行归约

叶节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

4/73

自顶向下的"推导"与自底向上的"归约"

$$E \Longrightarrow_{\operatorname{rm}} T \Longrightarrow_{\operatorname{rm}} T * F \Longrightarrow_{\operatorname{rm}} T * \operatorname{id} \Longrightarrow_{\operatorname{rm}} F * \operatorname{id} \Longrightarrow_{\operatorname{rm}} \operatorname{id} * \operatorname{id}$$

$$(1) E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

$$E \Leftarrow T \Leftarrow T * F \Leftarrow T * \mathrm{id} \Leftarrow F * \mathrm{id} \Leftarrow \mathrm{id} * \mathrm{id}$$

"推导"
$$(A \rightarrow \alpha)$$
 与 "归约" $(A \leftarrow \alpha)$

$$S \triangleq \gamma_0 \implies \dots \gamma_{i-1} \implies \gamma_i \implies \gamma_{r+1} \implies \dots \implies r_n = w$$
$$S \triangleq \gamma_0 \iff \dots \gamma_{i-1} \iff \gamma_i \iff \gamma_{r+1} \iff \dots \iff r_n = w$$

自底向上语法分析器为输入构造反向推导

LR 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R: 构建反向 (Reverse) 最右推导

"反向最右推导"与"从左到右扫描"相一致

LR 语法分析器的状态

在任意时刻, 语法分析树的上边缘与剩余的输入构成当前句型

 $E \Longleftarrow T \twoheadleftarrow T * F \Longleftarrow T * \mathbf{id} \Longleftarrow F * \mathbf{id} \Longleftarrow \mathbf{id} * \mathbf{id}$

LR 语法分析器使用<mark>栈</mark>存储语法分析树的**上边缘** 它包含了语法分析器目前所知的所有信息

板书演示"栈"上操作

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \to T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

两大操作: 移人输入符号 与 按产生式归约

直到栈中仅剩开始符号 S, 且输入已结束, 则成功停止

基于栈的 LR 语法分析器

 Q_1 : 何时归约? (何时移入?)

 Q_2 : 按哪条产生式进行归约?

基于栈的 LR 语法分析器

(1)
$$E \rightarrow E + T$$

- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow \mathbf{id}$

为什么第二个 F 以 T*F 整体被归约为 T?

这与<mark>栈</mark>的当前状态 "T*F" 相关

LR 分析表指导 LR 语法分析器

1177	状态		ACTION						GOTO		
L 1/			id	+	*	()	\$	E	T	F
	0		s5			s4			1	2	3
	1			s6				acc			[
Ì	2			r2	s7		r2	r2	ĺ		
	3			r4	r4		r4	r4			l
ĺ	4		s5			s4			8	2	3
1	5			r 6	r6		r6	r6			
	6		s5	v		s4			l	9	3
	7		s5			54					10
1	8			s6			s11		1		ļ
	9			r1	s7		r1	r1			
]]	10		}	r3	r3		r3	r3	1		
	11			r5	r5		_ r5	r5]

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

ACTION 表指明动作, GOTO 表仅用于归约时的状态转换

117-	状态		ACTION							GOTO		
1/1/			id	+	*	()	\$	E	T	F	
Ī	0		s 5			s 4			1	2	3	
	1			s6				acc				
1	2			r2	s7		r2	r2	ĺ			
	3			r4	r4		r4	r4	1			
ď	4		s5			s4			8	2	3	
	5			r 6	r6		r6	r6				
- 6	6		s5	v		s4			l	9	3	
1	7		s5			54					10	
- 8	8			s6			s11)		ļ	
	9			r1	s7		r1	r1				
1	0		}	r3	r3		r3	r3	1			
1	1			r5	r5		r5	r5				

sn	移入输入符号,并进入状态 n
rk	使用k 号产生式进行归约
gn	转换到状态 n
acc	成功接受, 结束
空白	错误

再次板书演示"栈"上操作:移入与归约

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \to T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

	状态		ACTION							GOTO		
			id	+	*	()	\$	E	T	F	
	0		s5			s4			1	2	3	
	1			s6				acc				
Ì	2			r2	s7		\mathbf{r}^2	r2	ĺ			
1	3			r4	r4		r4	r4	1			
ĺ	4		s5			s4			8	2	3	
1	5			r6	r6		r6	r6				
	6		s5	4.		s4			l	9	3	
	7		s5			s 4					10	
1	8			s6			s11		1			
	9			r1	s7		r1	r1	J			
	10		}	r3	r3		r3	r3	l			
	11			r5	r5		r5	r5				

 $w = \mathbf{id} * \mathbf{id}$ \$

栈中存储语法分析器的状态 (编号), "编码" 了语法分析树的上边缘

```
1: procedure LR()
                                                                 \triangleright 或 Push(S, \$_{s_0})
        PUSH(S, s_0)
 2:
        token \leftarrow NEXT-TOKEN()
 3:
        while (1) do
4:
 5:
            s \leftarrow \text{Top}(S)
            if ACTION[s, token] = s_i then
                                                                               ▷移入
6:
                                                           \triangleright 或 PUSH(S, token<sub>s:</sub>)
                PUSH(S, i)
 7:
                 token \leftarrow NEXT-TOKEN()
8:
            else if ACTION[s, token] = r_i then
                                                                 \triangleright 归约; i:A\to\alpha
9:
                 |\alpha| 次 Pop(S)
10:
                s \leftarrow \text{Top}(S)
11:
                 PUSH(S, GOTO[s, A]) > 转换状态; 或 PUSH(S, A_{GOTO[s, A]})
12:
            else if ACTION[s, token] = acc then
                                                                               > 接受
13:
14:
                 break
            else
15:
                 ERROR(...)
16:
```

行号	栈 =	一 符号	输入	动作
(1)	0	s	id * id \$	移入到 5
(2)	0.5	\$ id	* id \$	按照 $F \rightarrow id$ 归约
(3)	0.3	\$ <u>F</u>	* id \$	f 接照 $T \to F$ 归约
(4)	0 2	\$ T	* id \$	移入到 7
(5)	027	\$ <i>T</i> ∗ ∠	#⊍ id \$	移入到 5
(6)	0275	T * id	<u>*</u> \$	接照 $F \rightarrow id$ 归约
(7)	02710	T * F	\$	按照 $T \rightarrow T * F$ 归约
(8)	0 2	\$ T	\$	接照 $E \to T$ 归约
(9)	01	E_{\perp}	\$	接受

w = id * id\$ 的分析过程

如何构造 LR 分析表?

,H	状态		ACTION							GOTO		
_ 1^			id	+	*	()	\$	E	T	F	
	0		s5			s4			1	2	3	
	1			s6				acc				
Ì	2			r2	s7		r2	r2	ĺ			
	3			r4	r4		r4	r4	1			
	4		s5			s4	_		8	2	3	
1	5			ŗ6	r6		r6	r6				
	6		s5	v		s4			l	9	3	
	7		s5			54			ļ		10	
1	8			s6			s11)			
	9			r1	s7		r1	r1				
	10		}	r3	r3		r3	r3	1			
	11			r5	r5		_ r5	r5				

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

状态是什么?如何跟踪状态?

状态	T	ACTION						GOTO		
小心	id	+	*	()	\$	E	T_{\perp}	F	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2	ĺ			
3		r4	r4		r4	r4	1			
4	s5			s4			8	2	3	
5		ŗ6	r6		r6	r6	}			
6	s5	v		s4			l	9	3	
7	s5			s 4			ļ		10	
8		s6			s11)			
9		r1	s7		r1	r1)			
10	}	r3	r3		r3	r3				
11		r5	r5		r5	r5		_	_	

状态是语法分析树的上边缘, 存储在栈中

可以用自动机跟踪状态变化 (自动机中的路径 ⇔ 栈中符号/状态编号)

何时归约? 使用哪条产生式进行归约?

14	**	44·*		ACTION)
_ 1^	状态		id	+	*	()	\$	E	T	F
	0		s5			s 4			1	2	3
	1			s6				acc			[
Ì	2			r2	s7		r2	r2	ĺ		
1	3			r4	r4		r4	r4	1		l
ĺ	4		s5			s4			8	2	3
1	5			r 6	r6		r6	r6			
	6		s5	· ·		s4			l	9	3
	7		s5			54					10
1	8			s6			s11)		ļ
	9			r1	s7		r1	r1			
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		r5	r5 _]

必要条件: 当前状态中, 已观察到某个产生式的完整右部

对于 LR 文法, 这是当前唯一的选择

何时归约? 使用哪条产生式进行归约?

Definition (句柄 (Handle))

在输入串的 (唯一) 反向最右推导中, **如果**下一步是逆用产生式 $A \to \alpha$ 将 α 归约为 A, 则称 α 是当前句型的**句柄**。

最右句型	句柄	归约用的产生式
$id_1 * id_2$	id_1	$F o \mathrm{id}$
$F*id_2$	F	$T \to F$
$T * id_2$	\mathbf{id}_2	$F o \mathbf{id}$
T * F	T * F	$T \to T * F$
T	<i>T</i>	$E \rightarrow T$

LR 语法分析器的关键就是高效寻找每个归约步骤所使用的句柄。

句柄可能在哪里?

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

图 4-29 一个最右推导中两个连续步骤的两种情况

$$S \xrightarrow[\mathrm{rm}]{*} \alpha Az \xrightarrow[\mathrm{rm}]{*} \alpha \beta Byz \xrightarrow[\mathrm{rm}]{*} \alpha \beta \gamma yz \quad S \xrightarrow[\mathrm{rm}]{*} \alpha BxAz \xrightarrow[\mathrm{rm}]{*} \alpha Bxyz \xrightarrow[\mathrm{rm}]{*} \alpha \gamma xyz$$

可以用自动机跟踪状态变化

(自动机中的路径 ⇔ 栈中符号/状态编号)

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

希望能够在自动机的当前状态识别可能的句柄

LR(0) 句柄识别有穷状态自动机 (Handle-Finding Automaton)

状态是什么?

状态刻画了"当前观察到的针对所有产生式的右部的前缀"

Definition (LR(0) 项 (Item))

文法 G 的一个 LR(0) 项是 G 的某个产生式加上一个位于体部的点。

项指明了语法分析器已经观察到了某个产生式的某个前缀

$$A o XYZ$$

$$[A o \cdot XYZ]$$

$$[A o X \cdot YZ]$$

$$[A o XY \cdot Z]$$

$$[A o XYZ \cdot]$$

$$[A o XYZ \cdot]$$
 (产生式 $A o \epsilon$ 只有一个项 $[A o \cdot]$)

状态刻画了"当前观察到的针对所有产生式的右部的前缀"

Definition (项集)

项集就是若干**项**构成的集合。

因此, 句柄识别自动机的一个状态可以表示为一个项集

Definition (项集族)

项集族就是若干项集构成的集合。

因此, 句柄识别自动机的状态集可以表示为一个项集族

LR(0) 句柄识别自动机

项、项集、项集族

Definition (增广文法 (Augmented Grammar))

文法 G 的增广文法 G' 是在 G 中加入产生式 $S' \to S$ 得到的文法。

目的:告诉语法分析器何时停止分析并接受输入符号串

当语法分析器 \mathbf{n} \$且**要使用** $S' \to S$ 进行归约时,输入符号串被接受

LR(0) 句柄识别自动机

初始状态是什么?

点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号串

(0)
$$E' \to E$$

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

CLOSURE($\{[E' \rightarrow \cdot E]\}$)

LR(0) 句柄识别自动机

状态之间如何转移?

板书演示 LR(0) 句柄识别自动机的构造过程

状态编号约定

```
SetOfItems CLOSURE(I) {
      J=I;
      repeat
             for (J中的每个项 A \to \alpha \cdot B\beta)
                    for (G 的每个产生式B \to \gamma)
                          if (项 B \rightarrow \gamma 不在J中)
                                  将 B \rightarrow \gamma 加入 J中;
      until 在某一轮中没有新的项被加入到J中;
      return J;
```

$$J = \text{goto}(I, X) = \text{closure}\Big(\Big\{[A \to \alpha X \cdot \beta] \Big| [A \to \alpha \cdot X \beta] \in I\Big\}\Big)$$

$$(X \in N \cup T)$$

```
void items(G') {
C = \{CLOSURE(\{[S' \rightarrow \cdot S]\})\}; 初始状态
repeat
for (C \text{中的每个项集}I)
for (\text{每个文法符号}X)
if (\text{GOTO}(I,X) 非空且不在C \text{中})
下一个状态 将 GOTO(I,X) 加入C \text{中};
until 在某一轮中没有新的项集被加入到C \text{中};
}
```

图 4-33 规范 LR(0) 项集族的计算

接受状态: $F = \{I \in C \mid \exists k. \ [k : A \to \alpha \cdot] \in I\}$

红色框中的状态为 接受状态

点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号串

LR(0) 分析表

			ACT	ION				GOT	O
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r_5	r5	r5	r5			

GOTO 函数被拆分成 ACTION 表 (针对终结符) 与 GOTO 表 (针对非终结符)

(1) GOTO $(I_i, a) = I_i \land a \in T \implies \text{ACTION}[i, a] \leftarrow sj$

			ACT	ION				GOT	0
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r_3	r3	r3	r3	r3	r3			
11	r5	r5	r5	r5	r5	r5			

(2) $GOTO(I_i, A) = I_i \land A \in N \implies GOTO[i, A] \leftarrow gj$

 $\begin{array}{c}
I_{2} \\
E \to T \cdot \\
T \to T \cdot * F
\end{array}$

 $\frac{I_{10}}{T \to T * F}.$

			ACT	ION				GOT	0
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r_3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

(3) $[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in T \cup \{\$\}$. ACTION[i,t] = rk

			ACT	ION				GOT	O
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r_1	r1	s7, r1	r1	r1	r1			
10	r_3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

(4)
$$[S' \to S \cdot] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$$

LR(0) 分析表构造规则

(1)
$$\text{GOTO}(I_i, a) = I_j \land a \in T \implies \text{ACTION}[i, a] \leftarrow sj$$

(2)
$$\text{GOTO}(I_i, A) = I_j \land A \in N \implies \text{GOTO}[i, A] \leftarrow gj$$

(3)
$$[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in T \cup \{\$\}$$
. ACTION $[i,t] = rk$

(4)
$$[S' \to S \cdot] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$$

Definition (LR(0) 文法)

如果文法 G 的LR(0) 分析表是无冲突的,则 G 是 LR(0) 文法。

			ACT	ION			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r_4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r_3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

非 LR(0) 分析表/文法

LR(0) 分析表每一行(状态) 所选用的归约产生式是相同的

			ACT	ION				GOT	O
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

归约时不需要向前看, 这就是"0"的含义

LR(0) 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R: 构建反向 (Reverse) 最右推导

0: 归约时无需向前看

LR(0) 自动机与栈之间的互动关系

向前走 ⇔ 移入

回溯 ⇔ 归约

自动机才是本质, 栈是实现方式

(用栈记住"来时的路",以便回溯)

SLR(1) 分析表

	犬态			ACTION						GOTO		
_ 1	7/2/6/		id	+	*	()	\$	E	T	F	
	0		s5			s 4			1	2	3	
	1			s6				acc			- (
Ì	2			r2	s7		r2	r2	ĺ		J	
1	3			r4	r4		r4	r4			ĺ	
ĺ	4		s5			s4			8	2	3	
1	5		ļ	ŗ6	r6		r6	r6	}			
(6		s5	v		s4			l	9	3	
	7		s5			s 4			ļ		10	
1	8		ļ	s6			s11)			
	9			r1	s7		r1	r1			1	
	10		}	r3	r3		r3	r3	\			
	11			r5	r5		_ r5	r5]	

归约:

 $(3) \ [k:A\to\alpha\cdot]\in I_i\wedge A\neq S' \implies \forall t\in \operatorname{Follow}(A). \ \operatorname{action}[i,t]=rk$

Definition (SLR(1) 文法)

如果文法 G 的SLR(1) 分析表是无冲突的,则 G 是 SLR(1) 文法。

无冲突: ACTION 表中每个单元格最多只有一种动作

44	态			ACTION					GOTO		
- 1/	æ	id	+	*	()	\$	E	T	F	
Ī	0	s5			s4			1	2	3	
	1		s6				acc				
	2		r2	s7		r2	r2	ĺ			
	3		r4	r4		r4	r4				
	4	s5			s4			8	2	3	
	5		r6	r6		r6	r6	}			
	6	s5	4.		s4			l	9	3	
	7	s5			54			ļ		10	
	8		s6			s11		1			
	9		r1	s7		r1	r1)			
	10		r3	r3		r_3	r3	1			
L	11		r5	r5		r5	r5			_	

两类可能的冲突: "移入/归约"冲突、"归约/归约"冲突

非 SLR(1) 文法举例

$$S \rightarrow L = R \mid R$$

 $L \rightarrow * R \mid id$
 $R \rightarrow L$

$$I_0 \colon S' \to S \\ S \to L = R \\ S \to R \\ L \to *R \\ L \to *id \\ R \to L$$

$$I_6 \colon S \to L = R \\ R \to L \\ L \to *id \\ R \to L$$

$$I_7 \colon L \to *R \\ L \to *R \\ R \to L$$

$$I_8 \colon R \to L$$

$$I_9 \colon S \to L = R$$

$$I_8 \colon R \to L$$

$$I_9 \colon S \to L = R$$

$$I_8 \colon R \to L$$

$$I_9 \colon S \to L = R$$

$$I_8 \to L \to *R \\ R \to L \to *R \\ L \to *R \\ L \to *R \\ L \to *R \\ L \to *id$$

$$[S \to L \cdot = R] \in I_2 \implies \operatorname{ACTION}(I_2, =) \leftarrow s6$$

= $\in \operatorname{FOLLOW}(R) \implies \operatorname{ACTION}(I_2, =) \leftarrow r5$

即使考虑了 $= \in Follow(A)$,对该文法来说仍然不够因为,这仅仅说明在某个句型中,a可以跟在A后面

该文法没有 \mathbf{U} $R = \cdots$ 开头的最右句型

希望 LR 语法分析器的每个状态能**尽可能精确**地 指明**哪些输入符号可以跟在句柄** $A \rightarrow \alpha$ **的后面**

在 LR(0) 自动机中,某个项集 I_j 中包含 $[A \to \alpha \cdot]$ 则在之前的某个项集 I_i 中包含 $[B \to \beta \cdot A\gamma]$ 与 $[A \to \cdot \alpha]$

这表明只有 $a \in \text{First}(\gamma)$ 时, 才可以进行 $A \to \alpha$ 归约

但是, 对 I_i 求闭包时, 仅得到 $[A \rightarrow \cdot \alpha]$, 丢失了 $FIRST(\gamma)$ 信息

Definition (LR(1) 项 (Item))

$$[A \to \alpha \cdot \beta, {\color{red} a}] \qquad (a \in T \cup \{\$\})$$

此处, a 是**向前看符号**, 数量为 1.

思想: α 在栈顶, 且剩余输入中开头的是可以从 βa 推导出的符号串

$$[A \to \alpha \cdot, a]$$

只有下一个输入符号为 a 时, 才可以按照 $A \rightarrow \alpha$ 进行归约

LR(1)句柄识别自动机

```
[A \to \alpha \cdot B\beta, \mathbf{a}] \in I \qquad (a \in T \cup \{\$\})
SetOfItems CLOSURE(I) {
         repeat
                  for (I中的每个项 [A \rightarrow \alpha \cdot B\beta, a])
                            for (G'中的每个产生式B \to \gamma)
                                    \mathbf{for} ( \mathrm{FIRST}(eta a)中的每个终结符号 b ) 将 [B 
ightarrow \gamma, b] 加入到集合 I中;
         until 不能向I 中加入更多的项;
         return I;
                   \forall b \in \text{First}(\beta a). [B \to \gamma, b] \in I
```

LR(1)句柄识别自动机

```
SetOfItems GOTO(I,X) {
               将J初始化为空集;
               for (I \text{ 中的每个项} [A \to \alpha \cdot X\beta, a])
将项 [A \to \alpha X \cdot \beta, a]加入到集合 J中;
               return CLOSURE(J):
J = \text{GOTO}(I, X) = \text{CLOSURE}(\{[A \to \alpha X \cdot \beta] | [A \to \alpha \cdot X\beta] \in I\})
                                   (X \in N \cup T)
```

LR(1)句柄识别自动机

初始状态: CLOSURE($[S' \rightarrow \cdot S, \$]$)

板书演示: LR(1) 自动机的构造过程

	First	Follow
\overline{S}	$\{c,d\}$	\$
C	$\{c,d\}$	$\{c,d,\$\}$

LR(1) 分析表构造规则

(1)
$$\text{GOTO}(I_i, a) = I_j \land a \in T \implies \text{ACTION}[i, a] \leftarrow sj$$

(2)
$$\text{GOTO}(I_i, A) = I_j \land A \in T \implies \text{GOTO}[i, A] \leftarrow gj$$

$$(3) \ [k:A\to\alpha\cdot, {\color{red}a}]\in I_i\wedge A\neq S' \implies \text{Action}[i, {\color{red}a}]=rk$$

(4)
$$[S' \to S, \$] \in I_i \implies ACTION[i, \$] \leftarrow acc$$

Definition (LR(1) 文法)

如果文法 G 的LR(1) 分析表是无冲突的,则 G 是 LR(1) 文法。

LR(1) 通过**不同的向前看符号**, 区分了状态对 (3,6), (4,7) 与 (8,9)

w = ccdcd\$

$$L(G) = c^* dc^* d$$

总结: LR(0)、SLR(1)、LR(1) 的<mark>归约</mark>条件

$$[k:A\to\alpha\cdot]\in I_i\wedge A\neq S'\implies \forall t\in T\cup \{\$\}.\ \mathrm{ACTION}[i,t]=rk$$

$$[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in \overline{\text{Follow}(A)}. \text{ ACTION}[i,t] = rk$$

$$[k:A \to \alpha \cdot, \mathbf{a}] \in I_i \land A \neq S' \implies \text{ACTION}[i, \mathbf{a}] = rk$$

LR(1) 虽然强大, 但是生成的 LR(1) 分析表可能过大, 状态过多

LALR(1): 合并具有相同核心 LR(0)项的状态 (忽略不同的向前看符号)

w = ccdcd\$

$$S' \rightarrow S$$

$$S \rightarrow C C$$

$$C \rightarrow c C \mid d$$

$$L(G) = c^* dc^* d$$

Q: 合并 I_4 与 I_7 为 I_{47} ({[$C \rightarrow d \cdot , c/d/\$$]}), 会怎样?

Theorem

如果合并后的语法分析器无冲突,则它的行为与原分析器一致。

- (1) 接受原分析器所接受的句子, 且状态转移相同
- (2) **拒绝**原分析器所拒绝的句子,但可能多一些不必要的**归约**动作 ("实际上,这个错误会在移入任何新的输入符号之前就被发现")

$$w = ccd\$$$

继续合并 (I_8, I_9) 以及 (I_3, I_6)

 状态	A	СТЮ	N	GC	то
17.63	С	d	\$	S	\overline{C}
0	s3	s4		1	2
1			acc	ł	
2	s6	s7			5
3	s3	s4		ļ	8
4	r3	r3		l	
5			r1		
6	s6	s7			9
7	1		r3	İ	
8	r2	r2			
9			r2		

	状态	A	CTION		GC	GOTO		
	المال المال	C	d	\$	S	C		
	0	s36	s47		1	2		
	1			acc	}			
	2	s36	s47			5		
	36	s36	s47		ļ	89		
	47	r3	r3	r3	1			
İ.	5			r1				
	89	r2	r2	r2				

Q: GOTO 函数怎么办?

A: 可以合并的状态的 GOTO 目标 (状态) 一定也是可以合并的

Q: 对于 LR(1) 文法, 合并得到的 LALR(1) 分析表是否会引入冲突?

Theorem

LALR(1) 分析表不会引入移入/归约冲突。

反证法

假设合并后出现 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a\gamma, b]$

则在 LR(1) 自动机中,

存在某状态同时包含 $[A \rightarrow \alpha \cdot, a]$ 与 $[B \rightarrow \beta \cdot a \gamma, c]$

Q: 对于 LR(1) 文法, 合并得到的 LALR(1) 分析表是否会引入冲突?

Theorem

LALR(1) 分析表可能会引入归约/归约冲突。

$$L(G) = \{acd, ace, bcd, bce\}$$

$$S' \rightarrow S$$

$$S \rightarrow a \ A \ d \mid b \ B \ d \mid a \ B \ e \mid b \ A \ e$$

$$A \rightarrow c$$

$$B \rightarrow c$$

$$\{[A \rightarrow c \cdot, d], [B \rightarrow c \cdot, e]\}$$

$$\{[A \rightarrow c \cdot, e], [B \rightarrow c \cdot, d]\}$$

$$\{[A \rightarrow c \cdot, d/e], [B \rightarrow c \cdot, d/e]\}$$

LALR(1) 语法分析器的优点

状态数量与 SLR(1) 语法分析器的状态数量相同

对于 LR(1) 文法, 不会产生移入/归约冲突

好消息: 善用 LR 语法分析器, 处理二义性文法

表达式文法

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E
ightarrow E + T \mid T$$
 $T
ightarrow T * F \mid F$
 $F
ightarrow (E) \mid \mathbf{id}$

$$E o TE'$$
 $E' o + TE' \mid \epsilon$
 $T o FT'$
 $T' o * FT' \mid \epsilon$
 $F o (E) \mid \mathbf{id}$

表达式文法: 使用 SLR(1) 语法分析方法

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$I_{0}\colon E' \to E$$

$$E \to \cdot E + E$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to id$$

$$I_{1}\colon E' \to E.$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E \to E * E$$

$$E$$

$$\{+,*\}\subseteq \mathrm{Follow}(E)$$

考虑到结合性与优先级:

状态			ACT	иог			GOTO
小心	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
2 3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	

条件语句文法

stmt \rightarrow if expr then stmt $S' \rightarrow S$ | if expr then stmt else stmt | S \rightarrow i S \right

条件语句文法: 使用 SLR(1) 语法分析方法

$$S' \rightarrow S$$

$$S \rightarrow i S e S + i S + a$$

I_0 :	$S' \to \cdot S$ $S \to \cdot i SeS$	I_3 :	$S o a \cdot$
	$S \rightarrow iS$ $S \rightarrow a$	-4-	$S \rightarrow iS \cdot eS$ $S \rightarrow iS$
I_1 :	$S' \to S \cdot$	I_5 :	$S \rightarrow iSe \cdot S$ $S \rightarrow iSeS$ $S \rightarrow iS$
I_2 :	$S \rightarrow i \cdot SeS$ $S \rightarrow i \cdot S$		$S \rightarrow \cdot a$
	$S \rightarrow iSeS$ $S \rightarrow iS$ $S \rightarrow eg$	I_6 :	$S \rightarrow iSeS$
٠.	0		

 状态	ACTION			GOTO	
10.03	i	e	a	\$	S
0	s2		s3		1
1				ace	
2	s2		s3		4
$\frac{2}{3}$		r3		r3 r2	
4	1	s5		r2	Į
5	s2		s3		6
6		r1		rl_]

 $e \in \operatorname{Follow}(S)$

 $\arctan[4,e] = s5$

Thank You!

Office 926 hfwei@nju.edu.cn