Process for producing aqueous Ti(III) chloride solutions

Patent number:

DE3300865 1983-07-21

Publication date:

PUETTER HERMANN DIPL CHEM DR (DE); ROOS HANS DIPL CHEM DR (DE)

Inventor: Applicant:

BASF AG (DE)

Classification:

- international:

C25B1/00; C25B11/12; C25B1/00; C25B11/00; (IPC1-7): C25B1/00; C25B11/12

- european:

C25B1/00; C25B11/12

Application number: DE19833300865 19830113 Priority number(s): DE19833300865 19830113; DE19823201191 19820116

Report a data error here

Abstract of DE3300865

Aqueous titanium(III) chloride solutions are produced by cathodic reduction of titanium(IV) chloride solutions in cells in which the cathodyte and anolyte are separated from one another. The cathodes used are graphite electrodes whose surface is coated with borides, carbides, nitrides and/or oxides of titanium, tungsten, zirconium, tantalum, niobium and/or hafnium.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ₀₎ DE 3300865 A1

(6) Int. Cl. 3: C 25 B 1/00 C 25 B 11/12

DEUTSCHES PATENTAMT

P 33 00 865.5 ②1) Aktenzeichen: ② Anmeldetag: 13. 1.83

 Offenlegungstag: 21. 7.83

② Innere Priorität:

16.01.82 DE 32011911

(7) Anmelder:

BASF AG, 6700 Ludwigshafen, DE

② Erfinder:

Puetter, Hermann, Dipl.-Chem. Dr., 6730 Neustadt, DE; Roos, Hans, Dipl.-Chem. Dr., 6702 Bad Duerkheim, DE

Bendrusileigenti

(M) Verfahren zur Herstellung von wäßrigen Ti(III)-clorid-Lösungen

Wäßrige Titan(III)-chloridiösungen werden durch kathodische Reduktion von Titan(IV)-chloridiösungen in Zellen, in denen Katholyt und Anolyt voneinander getrennt sind, hergestellt. Als Kathoden setzt man Graphitelektroden ein, deren Oberfläche mit Boriden, Siliziden, Carbiden, Nitriden und/oder Oxiden des Titans, Wolframs, Zirkoniums, Tantals, Niobs und/ oder Hafniums beschichtet sind.

O.Z. 0050/35685

Patentansprüche

- 1. Verfahren zur Herstellung von wäßrigen Titan(III)-chlorid-Lösungen durch kathodische Reduktion von
 Titan(IV)-chlorid-Lösungen in Zellen in denen Anolyt und Katholyt voneinander getrennt sind, <u>dadurch</u>
 gekennzeichnet, daß man als Kathoden Graphitelektroden einsetzt, deren Oberfläche mit Boriden, Siliziden, Carbiden, Nitriden und/oder Oxiden des Titans,
 Wolframs, Zirkoniums, Tantals, Niobs und/oder Hafniums
 beschichtet sind.
- Verfahren nach Anspruch 1, <u>dadurch gekennzeichnet</u>, daß die Schichtdicken 10 bis 40 um betragen.
- Verfahren nach Ansprüchen 1 bis 2, <u>dadurch gekenn-zeichnet</u>, daß der wäßrige Katholyt 0,5 bis 37 Gew.% HCl und 0,5 bis 45 Gew.% TiCl₄ enthält und daß der salzsaure Anolyt ebenfalls TiCl₄ enthält, wobei das Verhältnis der Molaritäten an TiCl₄ im Anolyten und Katholyten 1:1,7 bis 1,7:1 beträgt.

25

5

10

15

0. Z. 0050/35685

Verfahren zur Herstellung von wäßrigen Ti(III)-chlorid-Lösungen

2

Nachdem in neuerer Zeit Titan(III)-Verbindungen, insbesondere Titan(III)-chlorid, verstärkt als Reduktions-5 mittel für verschiedene organische Verbindungen interessant geworden sind (Synthesis, 1979, 1-20), ist das Bedürfnis entstanden, Titan(III)-salzlösungen auf einfache und wirtschaftliche Weise herzustellen und die bei den verschiedenen Reduktionsprozessen anfallenden Lösungen, 10 die Titan in vierwertiger Form enthalten, zu Titan--(III)-salzlösungen zu regenerieren und in den Reduktionsprozeß zurückzuführen.

Als nachteilig erweist sich die geringe Löslichkeit, die Hydrolyseempfindlichkeit der Titansalzlösungen sowie die 15 geringe Lagerstabilität der reduzierten Form (Ti3+) - beispielsweise - wenn Sulfat das Gegenion darstellt. Am wenigsten problematisch sind Titanchloridlösungen in wäßriger Salzsäure. Abgesehen davon, daß sich hier für technische Zwecke ausreichend hohe Titansalzkonzentratio-20 nen herstellen lassen, kann die Hydrolyse zu TiO, in einem weiten Konzentrations- und Temperaturbereich unterdrückt werden. Außerdem ist bekannt, daß TiCla-Lösungen weniger luftempfindlich sind als Lösungen anderer Ti(III)-Salze. 25

über die Herstellung von Titan(III)-Lösungen bzw. die Regenerierung aus Ti(IV)-Salzlösungen ist bisher nur wenig bekannt geworden. Nach Gmelin 41, (1951), Seite 476 ist die Elektrolyse heute der gebräuchlichste Weg zur Darstellung von Ti(III)-Lösungen aus Ti(IV)-Salzlösungen. Als Anoden werden solche aus Platin eingesetzt, während die Kathoden aus Gold, Silberamalgam, Blei oder Zink bestehen. Goldelektroden sind teuer und sind, ebenso wie die Elek-

-2-3

0.2. 0050/35685

 $^{-}$ troden aus den anderen Metallen gegenüber dem TiCl $_{
m h}$ - und HCl-haltigen Elektrolyten nicht genügend korrosionsfest.

Zur Speicherung elektrischer Energie sind Sammler aus Kom-5 binationen von Lösungssystemen aus Titan(IV)-Salzen und Eisen(II)-Salzen bekannt geworden, bei denen u.a. als Elektroden Graphit eingesetzt werden (Kangro et al, Electrochim. Acta, (1962), 7, 435ff). Bei diesen Systemen handelt es sich jedoch um Systeme die lediglich anorganische Komponenten enthalten. Die Anwendung von Graphit-10 elektroden für die Reduktion und Regenerierung von TiCl,--Lösungen, die bei Reduktionsprozessen mit TiCl2-Lösungen anfallen und die häufig organische Verunreinigungen, z.B. Reste organischer Produkte oder Emulgatoren, die den Reduktionsprozeß mit der wäßrigen TiCla-Lösung beschleuni-15 gen, enthalten, führt zu unbefriedigenden Ergebnissen. Die Stromausbeuten sinken im Vergleich zu nicht kontaminierten Lösungen z.T. um mehr als die Hälfte ab. Außerdem ist oft in diesen Fällen - auch wenn der Effekt nicht so drastisch ist - die Reproduzierbarkeit von Stromausbeute und Zellen-20 spannung (und damit der Energieausbeute) zu gering. Graphit besitzt normalerweise eine relativ offene Struktur mit vielen Poren. Diese hat, neben dem Vorteil, daß sie dem Graphit eine große Oberfläche verleiht, aber auch den 25 Nachteil, daß sich dort der Elektroprozeß in einer an TiCl, veramten Lösung fortsetzt, was zu verstärkten Nebenreaktionen führen kann. Im Falle der Reduktion des TiCl, ist dieses u.a. durch ein Ansteigen der Wasserstoffbildung zu beöbachten.

30

35

Ein weiterer allgemeiner Nachteil bei der kathodischen Reduktion von währigen Lösungen von ${
m TiCl}_h$ liegt in dem Umstand, das Titanverluste aus dem Reduktionsraum (dem Katholyten der Elektrolysezelle) unvermeidbar sind. Auch wenn man statt Diaphragmen oder anderer poröser Trenn-

30

35

-8-4 0.z. 0050/35685

wände Ionenaustauschermembranen verwendet, können solche Verluste nicht vermieden werden. Neben dem Materialverlust treten noch weitere Effekte auf, die die Wirtschaftlichkeit des angestrebten Verfahrens vermindern, nämlich dadurch, daß Titansalze durch Hydrolyse ausfallen und sich 5 infolgedessen Beläge in der Zelle bilden. Hierdurch wird die Zellenspannung erhöht - schlimmstenfalls kann die Zelle verstopfen, muß demontiert und gereinigt werden. Durch entsprechende Einstellung der Säurekonzentration kann der Gefahr der Hydrolyse zwar begegnet werden, je 10 nach den Konzentrationsverhältnissen wird aber der osmotische Druck zwischen Katholyt und Anolyt so weit verändert, daß starke Verdünnungseffekte in einem der beiden Räume auftreten.

15 Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, bei einem Verfahren zur Herstellung von wäßrigen Titan(III)-chlorid-Lösungen durch kathodische Reduktion von Titan(IV)-chlorid-Lösungen in Zellen in denen Anolyt und Katholyt voneinander getrennt sind, diese Nachteile zu 20 beseitigen und ein reproduzierbares und störunanfälliges Herstell- bzw. Regenerierverfahren für TiCl3-Lösungen bereitzustellen.

Es wurde gefunden, daß diese Aufgabe dadurch gelöst wer-25 den kann, daß man als Kathoden Graphitelektroden einsetzt, deren Oberfläche mit Boriden, Siliziden, Carbiden, Nitriden und/oder Oxiden des Titans, Wolframs, Zirkoniums, Tantals, Niobs und/oder Hafniums beschichtet sind.

Die Beschichtung der Elektroden erfolgt zweckmäßig mit Hilfe eines thermischen Spritzverfahrens, vorzugsweise des Plasmaspritzverfahrens. Es ist auch denkbar, diese Aktivschichten auf chemischem Wege, z.B. durch Aufbringen einer geeigneten Lösung bzw. Suspension und anschließendes

- x - 5

0.2. 0050/35685

Einbrennen zu erzeugen. Als Materialien für die Kathodengrundkörper können handelsübliche Graphitsorten verwendet werden, vorzugsweise Sorten mit geringer Porosität. Es können auch Pyrolysegraphit und ebenso Abmischungen aus Graphit mit Kunststoffen (z.B. polypropylengefüllter Graphit) oder harzimprägnierter Graphit eingesetzt werden. Die Form der Graphitkörper ist nicht auf rechteckige Platten, der am meisten verwendeten Kathodenform, eingeschränkt; es können auch Graphitstäbe oder andere Formen beschichtet werden.

Bei Plasmaspritzverfahren sollte das Spritzpulver zweckmäßig eine Korngröße von 10 bis 200 um, vorzugsweise ∠150 um aufweisen. Für den Beschichtungsvorgang kann eine
∠150 um aufweisen. Für den Beschichtungsvorgang kann eine
∠150 um aufweisen.
∠150 u übliche Plasmaspritzanlage verwendet werden, wobei als Trägergas Argon, Helium und Stickstoff auch im Gemisch mit Wasserstoff eingesetzt werden können. Der Plasmabrenner wird mit einer Energie von 20 bis 60 KW, vorzugsweise 28 bis 45 KW, betrieben. Der Abstand zwischen Plasmaflamme 20 und dem zu beschichtenden Körper sollte zweckmäßig 5 bis 14 cm, vorzugsweise 7 bis 10 cm, betragen. Die Plasmaflamme wird von dem zu beschichtenden Körper so lange hin und her bewegt, bis die Spritzschicht die gewünschte Dicke erreicht hat. Vorteilhaft beträgt die Dicke der plasmagespritzten Schicht mindestens 10 um, vorzugsweise 10 bis 25 40 um, wobei höhere Schichtdicken zwar technisch nicht von Nachteil, aber aus wirtschaftlichen Gründen nicht unbedingt zweckmäßig sind.

Bei dem erfindungsgemäßen Einsatz der Elektroden treten 30 bei der Reduktion salzsaurer TiCl_{4} -Lösungen unerwünschte Nebenreaktionen, wie sie eingangs geschildert worden sind, nicht auf.

5

o.z. 0050/35685

Als Elektrolyt dienen - sowohl als Anolyt als auch als Katholyt - Lösungen mit einem Gehalt an freier HCl von 0,5 bis 37 Gew.%, vorzugsweise 5 bis 20 Gew.%. Zu Beginn der Elektrolyse kann der TiCl₁-Gehalt des Katholyten von 0,5 bis 45 Gew.%, vorzugsweise 5 bis 30 Gew.%, betragen.

-8-6

Als Anoden können ebenfalls Graphitelektroden eingesetzt werden.

- Gemäß einem weiteren Merkmal des erfindungsgemäßen Ver-10 fahrens enthält der Anolyt ebenfalls $ext{TiCl}_{ ext{h}}$, wodurch die Materialausbeuten an TiCl, im Kathodenraum erhöht werden. Bevorzugt wird ein Verhältnis der Molaritäten an TiCl, im Anolyten und Katholyten von 1:1,7 bis 1,7:1. Der Anolyt kann mehrfach wiederverwendet werden, wobei lediglich das 15 während der Elektrolyse an der Anode entwickelte Chlor durch kontinuierliche oder diskontinuierliche Zugabe von gasförmigem Chlorwasserstoff oder währiger Salzsäure ergänzt werden muß.
- 20 Die Temperatur im Elektrolyten kann bei 10 bis 70°C, vorzugsweise bei 40 bis 60°C liegen. Die Stromdichte beträgt 0,1 bis 25 A/dm², vorzugsweise 5 bis 15 A/dm².
- Die Elektrolyse wird in Zellen durchgeführt, in denen 25 Katholyt- und Anolyträume voneinander durch ein Diaphragma oder vorzugsweise durch eine Membran voneinander getrennt sind, z.B. Platten und Rahmenzellen, wobei diese auch mit mehreren monopolar oder bipolar geschalteten Elektroden, wie z.B. bei Filterpressenzellen, ausgerüstet sein können. 30 Als Membranen dienen bekannte Kationenaustauschermembranen wie sie z.B. auch bei der Chloralkali-Elektrolyse eingesetzt werden, z.B. sulfonsäuregruppenhaltige Perfluorethylencopolymere.

O. Z. 0050/35685

BASF Aktiengesellschaft

Der Umsatz im Katholyten bemißt sich nach den jeweiligen Erfordernissen der Verwendung der TiCl₃-Lösungen. Es ist möglich, den Umsatz auf 99 % zu treiben, ohne extreme Einbußen an Stromausbeute in Kauf nehmen zu müssen; bei der Herstellung von TiCl₃-Lösungen für präparative Zwecke (1-2 molar) werden beispielsweise bei Stromdichten von 5 A/dm² Stromausbeuten von 60 %, Umsätze zwischen 95 % und 99 % erreicht. Ist es dagegen nötig, bei optimaler Raumzeitausbeute möglichst hohe Stromausbeuten - z.B. 90 % - zu erreichen, können immerhin noch Umsätze von 80 % erzielt werden.

Das Verfahren gestattet in besonders vorteilhafter Weise, Anoden- und Kathodenprozeß aufeinander abzustimmen. Die Mengenverhältnisse sind in weiten Grenzen variabel. Die erfindungsgemäß hergestellten Kathoden sind unempfindlich gegen Wasserstoff (Ti-haltige Kathoden neigen normalerweise bekanntlich zum Verspröden).

Das Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden. Besonders vorteilhaft ist eine Arbeitsweise in der die Kathodenreaktion diskontinuierlich, die Anodenreaktion kontinuierlich betrieben wird. Diese Arbeitsweise bietet sich besonders dann an, wenn hohe Umsätze (>90 %) im Kathodenteil nötig sind.

Ein sofortiges Verwenden der TiCl₃-Lösungen ist nicht notwendig. Die nach dem erfindungsgemäßen Verfahren hergestellten TiCl₃-Lösungen für präparative Zwecke sind Lagerstabil, es hat sich sogar gezeigt, daß die Lösungen weitgehend unempfindlich sind gegenüber Luftsauerstoff.

30

10

o.z. 0050/35685

Beispiel 1

5

10

15

20

25

Für die elektrolytische Reduktion wird eine Platten-A) -Rahmenzelle verwendet, deren Kathode und Anode eine Fläche von jeweils 1 dm² aufweisen. Anoden- und Kathodenraum sind durch eine Membrane aus einem Perfluorethylen-[CF₂=CF(OCF₂-CF(CF₃)(CF₂-CF₂SO₃H)]-Copolymeren (Dicke 0,1 mm, Xquivalenzgewicht 1200) voneinander getrennt. Die Anodenplatte besteht aus Graphit während die Oberfläche der Kathodenplatte zusätzlich mit Titancarbid beschichtet ist (Schichtdicke 15 bis 20 um). Die Beschichtung wird wie folgt hergstellt:

> Auf einen mit 2 bar sandgestrahlten Elektrodengrundkörper aus Graphit mit einer Oberfläche von ca. 1 dm2 wird mit Hilfe eines Plasmabrenners TiC-Pulver mit einer Korngröße von 5 bis 45 um und einer Spritzenergie von 40 KW aufgebracht. Als Plasmaträgergas und Plasmapulvergas wird Argon im Mengenverhältnis 2:1 verwendet. Der Spritzabstand beträgt 90 mm; der Elektrodengrundkörper wird während der Beschichtung nicht gekühlt.

> Anolyt und Katholyt werden durch zwei Magnetkreiselpumpen umgepumpt. Der Anolyt- und Katholytkreislauf bestehen aus je einem 2-1-Vierhalskolben mit Innenthermometer und aufgesetztem Rückflußkühler; einem Glaswärmetauscher zum Thermostatisieren der Elektrolytflüssigkeit, auf den der Vierhalskolben über einen Bodenschliff aufgesetzt ist; einem Rotameter; der Pumpe und dem jeweiligen Zellenraum.

Der Elektrolyt besteht aus einer Mischung aus 500 g Salsaure (37 Gew.%), 1500 g H_2 0 und 1400 g $TiCl_{\mu}$ (7,37 Mol). Aus dieser Mischung werden 1550 g mit 1 1

5

10

15

O.Z. 0050/35665

HCl (37 Gew.%) versetzt und als Anolyt verwendet, 1538 g werden mit 250 g H₂O versetzt und als Katholyt eingesetzt. Das Molverhältnis TiCl₄ im Anolyten zu TiCl₄ im Katholyten beträgt 1:1,5 Mol/kg Elektrolyt.

Bei einer Stromstärke von 5 A und einer Elektrolysetemperatur von 29°C wird 22 h lang elektrolysiert. Umsatz: 98 %, Stromausbeute: 82 %, Austrag: 1857 g einer violetten Flüssigkeit, Gehalt: 1,7 Mol/kg TiCl₂, Materialausbeute: 94 %.

B) Als Katholyt wird eine Lösung eingesetzt, die durch Verdünnung von 1554 g der in Beispiel A) beschriebenen Mischung mit 250 g Wasser erhalten worden ist. Als Anolyt wird der gebrauchte Anolyt des Beispiels A) wieder eingesetzt. Die Molaritäten von TiCl₁₄ im Anolyten und Katholyten verhalten sich wie 1:1,35 (bedingt durch den Chlorverlust im Anolyten).

20 Unter den in Beispiel A) genannten Bedingungen werden folgende Ergebnisse erzielt:

Umsatz: 96 %

Stromausbeute: 82 %

Austrag: 1899 einer violetten Flüssigkeit

mit einem Gehalt von 1,7 Mol/kg

TiCl,

Materialausbeute: 95 %

30 C) Ähnliche Ergebnisse werden erzielt, wenn man anstelle einer mit Titancarbid beschichteten Graphitplatte eine solche einsetzt, die a) mit Titansilicid
(TiSi2) bzw.o) mit Wolframcarbid beschichtet ist.

Beispiel 2

5

10

20

Es wird wie in Beispiel 1 beschrieben verfahren, mit dem einzigen Unterschied, daß dem Katholyten 2 g einer 45 gew.%igen Lösung von Dimethyl-Benzyl-(C₁₃-C₁₅-Al-kyl)-ammoniumchlorid (Emulgator) zugesetzt wird. Nach 22stündiger Versuchsdauer erhält man folgende Ergebnisse:

Umsatz: 96 % Stromausbeute: 82 %

Austrag: 1812 g einer violetten Flüssigkeit mit

einem Gehalt von 1,7 Mol/kg TiCla

Materialausbeute: 92 %.

15 Vergleichsbeispiel

Bei einer Wiederholung der Beispiele 1 und 2 mit dem einzigen Unterschied, daß anstelle der Titancarbidbeschichteten Graphit-Kathode eine unbeschichtete Graphitplatte eingesetzt wird, erzielt man folgende Ergebnisse:

		a) analog Beispiel 1 (ohne Emulgator)	b) analog Beispiel2 (mit Emulga- tor)
. 25	Umsatz	90 %	31 %
	Stromausbeute	78 %	24 %
	Gehalt TiCl ₃	1,65 Mol/kg	0,55 Mol/kg
	Materialausbeute	90 %	30 %

Beispiel 3

In einer wie in Beispiel 1 beschriebenen Apparatur wird eine Kathode eingesetzt, die anstelle mit Titancarbid mit Titanborid beschichtet ist. Die Beschichtung wird wie folgt hergestellt:

0. Z. 0050/35685

Auf einen mit 2 bar sandgestrahlten Elektrodengrundkörper aus Graphit mit einer Oberfläche von ca. 1 dm2 wird mit Hilfe eines Plasmabrenners TiB,-Pulver mit einer Korngröße von 16 bis 90 um und einer Spritzenergie von 40 KW aufgebracht. Als Plasmaträgergas und Plasmapulvergas wird Argon im Mengenverhältnis 2:1 verwendet. Der Spritzabstand beträgt 90 mm; der Elektrodengrundkörper wird während der Beschichtung nicht gekühlt.

In dieser Zelle wird unter den in Beispiel 1 beschriebenen 10 Bedingungen eine $\mathrm{TiCl}_{\mathfrak{U}}$ -Lösung wieder regeneriert, die bei der Reduktion einer aromatischen Azoxyverbindung anfällt. Die für die Reduktion eingesetzte TiCl2-Lösung enthält pro kg 1,67 Mol TiCl3 sowie 1,8 g einer 80 gew.%igen Lösung von Dimethyl-(C12-C14-Alkyl)-benzyl-ammoniumchlorid 15 als Emulgator. Nach beendeter Reduktion wird das Reaktionsprodukt abgetrennt und die ${\tt TiCl}_{\tt II}$ -haltige Lösung ohne weitere Reinigung der Elektrolysezelle zugeführt. Lediglich die bei der Umsetzung verlorengegangenen Titansalzmengen werden durch Zugabe der in Beispiel 1 beschriebenen 20 Katholytlösung ergänzt. Dem Anolyten wird von Zeit zu Zeit konzentrierte Salzsäure zugesetzt, um die Chlorverluste auszugleichen. Die Molverhältnisse $TiCl_{\mu}$ im Anolyten [Mol/kg] und im Katholyten [Mol/kg] schwanken im Bereich 1:1,6 bis 1:1. 25

Es werden Folgende Ergebnisse erzielt:

Umsatz:

99,4 %

30 Stromausbeute: 62

Durchschnittl. TiCl3-Gehalt: 1,67 Mol/kg

Materialausbeute:

94 %

Diese Werte sind auch nach mehr als 40 Versuchen unver-35 ändert.

0.2. 0050/35685

Beispiel 4

10

15

Auf einen sandgestrahlten Graphitstab wird mit Hilfe eines Plasmabrenners ein Gemisch aus 95 Gew. % HfO3 und 5 Gew. % ZrO2 mit einer Korngröße von 5 bis 20 um bei einer Spritzenergie von 66 kW aufgebracht. Als Plasmaträgergas und Plasmapulvergas wird jeweils Argon im Mengenverhältnis 2:1 eingesetzt. Der Spritzabstand beträgt 80 mm, der Graphitgrundkörper wird nicht gekühlt. Die Dicke der Hf03/Zr02--Schicht beträgt 80 um, die Elektrodenoberfläche 0,42 dm2.

Diese Elektrode wird in einer gläsernen zylindrischen Zelle mit einem Fassungsvermögen von 1 1 als Kathode eingesetzt. Kathoden- und Anodenraum sind durch ein zylindrisches Tondiaphragma voneinander getrennt. Als Anode wird eine zylindrische Graphitplatte eingesetzt. Anolyt (200 g) und Katholyt (800 g) haben jeweils die folgende Zusammensetzung: 41,6 Gew.% TiCl, 5,4 Gew.% HCl und 53 Gew.% H₂O.

Bei einer Stromdichte von 5 A/dm² wird solange elektroly-20 siert, bis der Gehalt an TiCl3 im Katholyten bei 0,24 Mol/kg liegt. Das gleiche Ergebnis wird erzielt, wenn der Katholyt zusätzlich 1 g Dimethyl-Benzyl-C13-C15-Alkyl--Ammoniumchlorid enthält. 25

Beispiel 5

Wie in Beispiel 4 beschrieben, wird ein Graphitstab mit ZrN in einer Schichtdicke von 120 um beschichtet. Die Korngröße des ZrN beträgt 5 bis 36 um, die Spritzenergie beträgt 29 kW. Als Plasmaträgergas wird ein Gemisch von Stickstoff und Argon, als Plasmapulvergas Argon verwendet. Das Mengen(volumen)-Verhältnis N2-Plasmaträgergas:Ar--Plasmaträgergas: Ar-Plasmapulvergas beträgt 8:1:2, der

13 - 12 -

0. Z. 0050/35685

Spritzabstand 90 mm. Der Graphitgrundkörper wird nicht gekühlt.

- Diese Elektrode wird in der in Beispiel 4 beschriebenen

 Zelle als Kathode eingesetzt. Es wird bei einer Stromdichte von 10 A/dm² bis zu einem Gehalt an TiCl₃ im Katholyten von 0,44 Mol/kg (bestimmt durch Redoxtitration) elektrolysiert.
- Setzt man dem Katholyten 1 g Dimethyl-Benzyl-C₁₃-C₁₅-Alkyl-Ammoniumchlorid zu, erzielt man unter denselben Bedingungen eine TiCl₃-Konzentration von 0,45 Mol/kg.

15

20

25