CLASS-1

Saturday, August 02, 2025 6:13 PM

3 Approaches to probability: I)Classical Approach:

P(E)= <u>number of favourable outcomes to E</u>

Total number of possible outcomes

Why it sucks??

Let's suppose scenario 1:

We throw two dice, what's the probability for (3,4)

It's 1/36 (because here it's equally likely) Because there are 6^* 6 possible outcomes and 3,4 is one of them

P(sum=7)??
According to classical approach::Possible sums are 2,3,4,5,6,7,8,9,10,11,12

∴ probability is 1/11 but it's wrong

So something is wrong here?? What is it?

	Red Die						
		1	2	3	4	5	6
G r e e n	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
D i e	3	4	5	6	7	8	9
ė	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Issues:- things are not equally likely to happen, as we assume it to be

II)Frequency approach:-Perform experiment n times

 \therefore P(E)= <u>nE</u> (number of times e occurs)

Ν

Well, we are assuming something inherently tha are likely to occur which is not at all true (refer above image for clarity) Now time to find out its flaws:-

i)Event may never occur even tho it has a chance

Eg)let's say we threw a coin 4 times to check out its probability of getting head, but we get TTTT

∴ heads occurred 0 times, hence P(head)=0, which is not at all true

So harshit, let's try this experiment tending to infinity times to ensure all outcomes, Hmm Interesting idea, now ^F

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

Now this also has issues:

i) How tf, someone performs experiment infinite times.

And how can we guarantee that the P(e) converges to what we usually expected

Eg)We rolled a die and we get probabilities like this

Let's simulate fair random die rolls:						
Trial n	Outcome	Count of 6s $n(6)$	Frequency $P(6)=rac{n(6)}{n}$			
1	2	0	0.000			
2	3	0	0.000			
3	1	0	0.000			
4	4	0	0.000			
5	5	0	0.000			
6	3	0	0.000			
7	4	0	0.000			
8	2	0	0.000			
9	5	0	0.000			
10	1	0	0.000			

You roll the die 10 times, and by bad luck, you neve (\(\psi \); a 6.

Even tho it is supposed to be 1/6, how tf can we guarantee it will converge to 1/6 at infinity, because now it is 0....

(but for Intuition: we can say that it will converge at a constant)

III)Axiomatic approach:-

Axioms:

Probability space is a tuple consisting of these three things:-

Sample space, event space, probability law

And event space is a subset of sample space

8/10/25, 1:42 PM OneNote

Now time for SET THEORY:-

$$A \setminus B = \{x \in A \mid x \notin B\}$$
 (\longrightarrow)
 $A \cup B = \{x \in A \text{ or } x \in B\}$ (\longrightarrow)

So analogically (idk if it is the correct word or not),

Like 4-3+3=4

∴ (A\B)UB=A (it's wrong bro, it is only true when B is in A)
Correct ans is, (A\B)UB=AUB

(Revise set theory bro or you are cooked)

Reference: Sk mappa (chapter-1)

--> Countably infinite set:-(has bijection with natural numbers)

We can say a particular set is countably infinite if its elements can be listed like this: $S=(x_1,x_2,x_3...x_n.)$ [indexing in accordance with natural numbers)

Ex: Q∩[0,1] is countably infinite

Proof:- $Q \cap [0,1] = \{p/q \in Q \mid 0 \le p \le q, gcd(p,q) = 1, p,q \in N\}$

We build a list like this:

When **q** = 1: \rightarrow 0/1, 1/1

When **q = 2**: \rightarrow 0/2, 1/2, 2/2

When $\mathbf{q} = \mathbf{3}: \rightarrow 0/3, 1/3, 2/3, 3/3$

When $\mathbf{q} = \mathbf{4}$: $\rightarrow 0/4$, 1/4, 2/4, 3/4, 4/4

And so on...

For each q, list all p from 0 to q, and only include the fraction p/q if gcd(p, q) = 1.

Now arrange all such reduced fractions in a list like:

0/1, 1/1, 1/2, 1/3, 2/3, 1/4, 3/4, ...

This is a sequence — each item has a specific position (1st, 2nd, 3rd, etc.)., I.e we can index it with natural numbers

Hence, it is countably infinite

(kind of informally written proof but it works)

-->Uncountably infinite set:-

⇒ Uncountably infinite

(∄ a bijection b/w $\mathbb{N} \Rightarrow S$ and cardinality of $S > Cardinality of <math>\mathbb{N}$)

OR

 \exists injection from $\mathbb{N} \to \mathbb{S}$

Exercise: Prove that $(0,1)^{\infty}$ is uncountably infinite

(Cantor's Diagonalizable Argument)

s = 10111010011...

Assume: this set is countably infinite:-

- → Now, take **one digit from each string**, going diagonally (like first digit from first string, second digit from second string, and so on).
- → Flip each of these digits (i.e., take their complement
- change 0 to 1 or 1 to 0).
- → This gives a **new string** that is **different from every** string in the original list, because it differs by at least one digit (the diagonal one) from each.

Hence, by contradiction we have proved.

De Morgan's Law and Infinite Unions

De Morgan's Law

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$$

De Morgan's Law (see its proof) ✓ Where: $A_i \in \mathbb{N}$, i.e., A_1, A_2, \ldots

Infinite Union of Sets

$$\bigcup_{i=1}^{\infty} A_i = \{x : x \in A_i \text{ for some } i \in \mathbb{N}\}$$
$$\bigcap_{i=1}^{\infty} A_i = \{x : x \in A_i \text{ for all } i \in \mathbb{N}\}$$

$$\bigcap_{i=1}^{\infty} A_i = \{x : x \in A_i \text{ for all } i \in \mathbb{N}\}$$

Example

Let

$$A_n = \left(0, 2 - \frac{1}{n}\right), \quad n \in \mathbb{N}$$

Example:1

8/10/25, 1:42 PM OneNote

$$\bigcup_{n=1}^{\infty} A_n = (0,2)$$

Find n such that $2 - \varepsilon \in A_n$ for sufficiently small $\varepsilon > 0$. (I mean I forgot RA shit but it doesnt matter in later classes so, ignore this pls)

Example 2:

$$\bigcap_{n=1}^{\infty}A_n=(0,2)$$

$$2.0001\notin\bigcap_{n=1}^{\infty}A_n$$

$$\left(\bigcup_{n=1}^{\infty}A_n\right)^c\subseteq\bigcap_{n=1}^{\infty}A_n^c$$
 (Can use induction to prove, or basic logic?) \longrightarrow Will do Notice (Can use induction to prove)

Define the sets:

$$B_n = \{n, n+1, n+2, \ldots\}, \text{ for } n \in \mathbb{N}$$

Now consider the infinite intersection:

$$\bigcap_{n=1}^{\infty} B_n$$

We ask: Is this set non-empty?