Notes

Week 4

Module 2 Week 4A

Hypothesis Testing II

Hypothesis testing with two samples

- E.g.:
 - We are often interested in making comparison between groups.
 - Is there a difference in average salary between male and female lawyers?
 - Is there a difference in the proportion of times students are late to class between public and private colleges?
 - Is there a difference in the average price of a 4-star hotel room between
 Washington DC and Baltimore?
 - Is there a difference in the proportion of households with Internet access between those living in the North versus those living in the South?
- We will almost always calculate a difference using random samples, what
 we want to know is whether this is a true difference or simply due to random chance.
- The two groups can be *independent* or *matched pairs*
 - **Independent groups** consist of two samples from two independent populations (e.g. population 1 is female and population 2 is male)
 - **Matched pairs** are two samples that are *dependent* (e.g. completion time before training and completion time after training).
- All that is really changing compared to hypothesis testing with one mean is the type of question being asked. The approach to the test will be the same.
 - Set up hypothesis, determine distribution, calculate test statistic and p-value, make decision.

Difference in Two Means

- We know, thanks to the *CLT*, that the distribution of a mean is normal. It is also true that the distribution of *differences* in means is normal.
- ullet For **differences in means** the *standard error* is estimated by: $SE=\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$

- o Another alternative: SE using Pooled Variances, but assumes equal population variances, which is unlikely and difficult to verify => stick with the SE above.
- The t-stat is still the difference between our estimate and the value being tested (i.e. the value specified in H_0) divided by the standard error.
 - \circ If H_0 is true (which is assumed) how many *standard deviations* is our estimate from the mean?

o
$$t$$
-stat $=rac{(ar{X}_1-ar{X}_2)-(\mu_1-\mu_2)}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$

$$\text{o} \quad \text{t-stat} = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$\text{o} \quad \text{Degrees of freedom} = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{1}{n_1 - 1})(\frac{s_1^2}{n_1})^2 + (\frac{1}{n_1 - 1})(\frac{s_2^2}{n_2})^2}$$

- E.g. Is there a difference in the average price of a 4-star hotel room between Washington DC and Baltimore?
 - Denote Washington DC group 1 and Baltimore group 2
 - Suppose we have the following sample statistics:

$$ullet$$
 $ar{X}_1=290$, $ar{X}_2=270$, $n_1=30$, $n_2=22$, $s_1=40$, $s_2=32$

$$\blacksquare$$
 H_o : $\mu_1 - \mu_2 = 0$

$$\blacksquare H_a: \mu_1 - \mu_2 \neq 0$$

$$H_a: \mu_1 - \mu_2 \neq 0$$

$$t\text{-}stat = \frac{(290 - 270) - (0)}{\sqrt{\frac{1600}{30} + \frac{1024}{22}}} = \frac{20}{\sqrt{99.88}} = 2 \text{, i.e. the observed difference in means is 2 SD's away}$$
 from the Null value of 0.

$$ullet$$
 $DOF=49.57pprox49$ <- round DOWN to be safer!

• p-value =
$$0.051$$

• 0.051 > 0.05 => fail to reject H_0 , there is not a statistically significant difference between Washington DC and Baltimore in the average price of a hotel room. Note: finding a statistically significant difference or effect does NOT mean we found an IMPORTANT difference or effect.

Difference in Two Proportions (Independent Samples)

- A similar approach is used for testing differences in population proportions.
 - o Assume: two independent random samples with at least 5 "successes" and 5 "failures" in each sample.
 - Literature shows: the population should be at least 10-20 larger than the sample => prevents oversampling
 - Differences in proportions follow a normal distribution.
 - A "pooled proportion" is used to conduct the test.
 - $lacksquare p_c = rac{x_a + x_b}{n_a + n_b}$; where $x_a = ext{number of successes in 1st group and}$ $x_b = \text{number of successes in 2nd group}$

$$ullet$$
 $(p_a'-p_b')\sim N(Mean=0, Var=p_c(1-p_c)(rac{1}{n_a}+rac{1}{n_b})$ (under the H_0)

$$\begin{array}{l} \bullet \quad (p_a'-p_b') \sim N(Mean=0, Var=p_c(1-p_c)(\frac{1}{n_a}+\frac{1}{n_b}) \text{ (under the H_0)} \\ \bullet \quad \text{z-stat} = \frac{(p_a'-p_b')-(p_a-p_b)}{\sqrt{p_c(1-p_c)(\frac{1}{n_a}+\frac{1}{n_b})}} \text{ where } SE = \sqrt{p_c(1-p_c)(\frac{1}{n_a}+\frac{1}{n_b})} \end{array}$$

- E.g. Is there a difference in the proportion of households with Internet access between those living in the North versus the South?
 - \circ Denote North group a and South group b
 - Suppose we have the following sample statistics:

•
$$p_a'=0.74, p_b'=0.68, n_a=42, n_b=38, p_c=rac{31+26}{42+38}=0.71$$

- $\blacksquare H_0: p_a p_b = 0$
- H_a : $p_a p_b \neq 0$
- $= \text{ z-stat} = \frac{(0.74 0.68) (0)}{\sqrt{(0.71)(1 0.71)(\frac{1}{42} + \frac{1}{38})}} = \frac{0.06}{\sqrt{0.0103}} = 0.59 \text{, i.e. observed difference in}$

proportions is 0.59 SD's away from the H_{0} value of no difference

- p-value = $0.556 (= 0.278 \times 2)$
- 0.556 > 0.05 => fail to reject H_0 , there is not a statistically significant difference between the proportion of households with Internet access in the North versus the South.

Difference in Two Proportions (Matched samples)

• E.g. Does a new production process increase output produced, on average?

Employee	Output using old production process	Output using new production process	Difference
Α	54	58	4
В	56	57	1
С	62	62	0
D	58	60	2
E	48	49	1
F	53	52	-1
G	63	65	2
Н	66	66	0

- Assume: Matched pairs; have differences that come from a Normal population OR the sample is large enough to make the distribution approximately normal
- $\circ~$ The average difference $=ar{X}_d=1.125$
- $\circ~$ The standard deviation of the difference $=s_d=1.55$
- \circ This test is conducted using a Student's t-distribution with (n-1) Degrees of Freedom
 - H_0 : $\mu_d = 0$
 - $H_a: \mu_d > 0$
 - t-stat = $\frac{\bar{X}_d \mu_d}{s_d / \sqrt{n}} = \frac{1.125 0}{1.55 / \sqrt{8}} = 2.05$
 - One Tailed: p-value $=0.0398 < 0.05 \Rightarrow \text{reject } H_0$, the new production process increases output produced.