Diplomvorprüfung

Mathematik 3 für Physik

1. Aufgabe. Sei $\mathbf{a} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.

- 1. Sei $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ zweimal stetig differenzierbar. Die Funktion $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ werde durch $f(\mathbf{x}) := \varphi(\langle \mathbf{x}, \mathbf{a} \rangle)$ definiert.
 - (a) Man bestätige, dass $grad f(\mathbf{x}) = \varphi'(\langle \mathbf{x}, \mathbf{a} \rangle) \mathbf{a}$ gilt.
 - (b) Wie lauten alle möglichen φ , für die $div (grad f)(\mathbf{x}) = \|\mathbf{a}\|_2^2$ für alle $\mathbf{x} \in \mathbb{R}^n$ gilt?
- 2. Für die stetige Funktion $\psi : \mathbb{R} \longrightarrow \mathbb{R}$ werde das Vektorfeld $\mathbf{F} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ durch $\mathbf{F}(\mathbf{x}) := \psi(\langle \mathbf{x}, \mathbf{a} \rangle) \mathbf{a}$ definiert.
 - (a) Man zeige, dass F ein Gradientenfeld ist.
 - (b) Im Fall n = 3 bestimme man **rot** $\mathbf{F}(\mathbf{x})$.
 - (c) Sei ψ differenzierbar und $J_{\mathbf{F}}(\mathbf{x})$ die Jacobi-Matrix von \mathbf{F} an der Stelle \mathbf{x} . Man zeige für alle $\mathbf{x}, \mathbf{h} \in \mathbb{R}^n$:

$$J_{\mathbf{F}}(\mathbf{x}) \mathbf{h} = \psi'(\langle \mathbf{x}, \mathbf{a} \rangle) \langle \mathbf{a}, \mathbf{h} \rangle \mathbf{a}$$
.

3. Das Vektorfeld $\mathbf{G}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ sei definiert durch

$$\mathbf{G}(\mathbf{x}) := \frac{1}{1 + (\langle \mathbf{x}, \mathbf{a} \rangle)^2} \mathbf{a} .$$

- (a) Man bestimme das Potential $U: \mathbb{R}^n \longrightarrow \mathbb{R}$ von G mit $U(\mathbf{0}) = 0$ (U = -g, mit $grad g = \mathbf{G}$).
- (b) Warum liegt der Wert des Kurvenintegrals des Vektorfeldes **G** längs einer beliebigen stückweise stetig differenzierbaren Kurve $\gamma: [\alpha, \beta] \longrightarrow \mathbb{R}^n, \ \alpha, \beta \in \mathbb{R}$, stets im Intervall $]-\pi, \pi[?]$

[18 Punkte]

Bitte wenden

- **2. Aufgabe.** Es soll das Minimum der Funktion $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$, $f(x,y,z) := x^2 + y^2 + z^2$ unter der Nebenbedingung g = 0, $g: \mathbb{R}^3 \longrightarrow \mathbb{R}$, g(x,y,z) := 2z xy 2 ermittelt werden. Sei $\Phi(x,y,z,\lambda) := f(x,y,z) \lambda g(x,y,z)$ für $(x,y,z,\lambda) \in \mathbb{R}^4$.
 - 1. Man bestimme $grad \Phi (x, y, z, \lambda)$.
 - 2. Hat g stationäre Stellen?
 - 3. Man finde die einzige stationäre Stelle von Φ . Insbesondere ist also zu zeigen, dass Φ genau eine stationäre Stelle besitzt.
 - 4. Wie lautet der Lagrange-Multiplikator λ ?
 - 5. Offenbar hat das Problem nur ein Minimum. (Ein Beweis ist nicht verlangt!) Wie lautet das Minimum von f unter der Nebenbedingung g=0? Wo wird dieses Minimum angenommen?

[9 Punkte]

3. Aufgabe. Für $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f(t,y) := \cos(\pi(\sin y - \sin t))$, sei die Differentialgleichung

$$y' = f(t, y) \qquad (\star)$$

gegeben.

- 1. Man berechne $\partial_y f(t,y)$. Warum ist f bezüglich y lokal Lipschitz-stetig?
- 2. Warum ist f in $\mathbb{R} \times \mathbb{R}$ bezüglich y Lipschitz-stetig? Man finde eine Lipschitz-Konstante L.
- 3. Warum ist y = y(t) = t eine Lösung von (\star) ?
- 4. Man bestimme die Lösung $\varphi:I\longrightarrow\mathbb{R}$ von (\star) mit $\varphi(0)=0$ und maximalem Lösungsintervall I. Wie lautet I?
- 5. Warum gibt es genau eine Lösung $\psi : \mathbb{R} \longrightarrow \mathbb{R}$ von (\star) mit $\psi(0) = \pi/6$? Insbesondere ist zu beweisen, dass \mathbb{R} das Definitionsintervall von ψ ist. (Bemerkung: eine explizite Formel für $\psi(t)$ ist wohl kaum zu finden.)
 - (a) Man zeige $\psi(t) > t$ für alle $t \in \mathbb{R}$.
 - (b) Man berechne $\psi'(0)$ und $\psi''(0)$.
 - (c) Warum ist t=0 eine isolierte (strenge) lokale Minimalstelle von ψ ?

[17 Punkte]

Hinweis: Für das Bestehen der Prüfung sind 17 der 44 erreichbaren Punkte erforderlich. Ab 37 Punkten wird mit Note 1,0 bewertet.