למידת מכונה - תרגיל 1

אורי דאבוש

2 בנובמבר 2021

:1 שאלה

יהי $S\subseteq X$ סט דוגמאות ונסמן ב- $[a_1,a_2] imes[b_1,b_2] imes[a_1,a_2] imes[b_1,b_2]$ מלבן שחוסם אותו (ידוע שקיים כזה). תהיי $S:=\{a_1,a_2] imes[b_1,b_2] imes[a_1,a_2] imes[b_1,b_2] imes[a_1,a_2] ime$

$$a_1' = \min_{(x,y) \in S_1} x, a_2' \max_{(x,y) \in S_1} x, b_1' = \min_{(x,y) \in S_1} y, b_2' = \max_{(x,y) \in S_1} y$$

נוכיח עבור $a_1' \leq \min_{(x,y) \in S_1}$, אחרת היה קיים $a_1' \leq a_1' \leq a_1'$ שלא מתקיים $a_1' \leq a_1' \leq a_1'$ אחרת היה קיים $a_1' \leq a_1'$ שלא מוכיח עבור $a_1' \leq a_1'$

וסם את S חוסם את S. כעת נניח בשלילה ש- $a_1'<\min_{(x,y)\in S_1}x$, אזי המלבן $a_2'>(b_1',b_2')$ חוסם את $a_2'>(b_1',b_2')$ הוא מוכל ב- $a_2'>(b_1',b_2')$ והוא קטן יותר מ- $a_2'>(b_1',b_2')$ בסתירה לנכונות האלגוריתם $a_2'>(b_1',b_2')$

$$a_1' = \min_{(x,y) \in S_1} x$$
לכן

בעת, ביוון ש-R חוסם את S, מתקיים $y \leq b_2$ מתקיים לבל $a_1 \leq x \leq a_2, b_1 \leq y \leq b_2$, ובפרט מתקיים:

$$a_1 \le a_1' \le a_2' \le a_2, b_1 \le b_1' \le b_2' \le b_2$$

בלומר R' ב-R', וידוע ש-R' מביל את S_0 ממצאות מחוץ ל-R, ניתן להסיק שאין נקודות R' בR' ב-R', וידוע ש-R' מביל את R' ולכן הוא R' נכון לכל R, כלומר הוא אבן R

:2 שאלה

נשים לב שמתקיים

$$\mathbb{E}_{S \sim \mathcal{D}}\left[L_{S}\left(h\right)\right] = \mathbb{E}_{S \sim \mathcal{D}}\left[\frac{1}{m}\sum_{i=1}^{m}1_{\left[h\left(x_{i}\right)=f\left(x_{i}\right)\right]}\right] = \frac{1}{m}\sum_{i=1}^{m}\mathbb{E}_{S \sim \mathcal{D}}\left[1_{\left[h\left(x\right)=f\left(x\right)\right]}\right]$$

לפי לינאריות התוחלת. כעת כיוון ש- $S\sim\mathcal{D}$ האיברים בה הם מהתפלגות \mathcal{D} , ולכן מתקיים $[h\left(x
ight)=f\left(x
ight)]=\sum\limits_{x\sim\mathcal{D}}[h\left(x
ight)=f\left(x
ight)]$, ולכן

$$\mathbb{E}_{S \sim \mathcal{D}}\left[L_{S}\left(h\right)\right] = \frac{1}{m} \sum_{i=1}^{m} \mathbb{P}_{x \sim \mathcal{D}}\left[h\left(x\right) = f\left(x\right)\right] = \mathbb{P}_{x \sim \mathcal{D}}\left[h\left(x\right) = f\left(x\right)\right] = L_{\mathcal{D}}\left(h\right)$$

בנדרש.