# CH9. 예측

# 최소 평균제곱오차 예측

- 평균제곱 오차 (mean square error : MSE)
  - X의 함수 g(X)를 이용하여 Y를 예측
  - $MSE = E\left\{\left(Y g(X)\right)^2\right\}$
- 최소 평균제곱 오차 (minimum MSE : MMSE) 예측
  - $\hat{Y} = argmin_{g(X)}MSE = argmin_{g(X)}E\left\{\left(Y g(X)\right)^2\right\}$
  - Fact :  $\hat{Y} = E(Y|X)$

### 시계열에서의 예측

#### ■ 시계열에서의 예측

- 과거 관측값  $Z_n, Z_{n-1}, ...$ 을 이용하여 관측되지 않은 미래의  $Z_{n+l}$  (l>0) 예측
- 예측값
  - 표기 :  $Z_n(l)$
  - 시점 n: 예측을 시작하는 원점 (origin)
  - 시차 *l* : 선행시차 (lead time)
- 예측오차 (forecast error)
  - $e_n(l) = Z_{n+l} Z_n(l)$
  - 예측오차가 작을수록 좋은 예측 모형임
  - MSE, MAPE, MAE 등의 측도를 최소로 하는 예측모형이 방법을 선택함
- MMSE 예측값 :  $Z_n(l) = E(Z_{n+l}|Z_n, Z_{n-1}, ...)$

# 예측값과 예측구간

#### ■ MMSE 예측과 예측오차

- 예측값 :  $Z_n(l)$
- 예측오차 :  $e_n(l) = Z_{n+l} Z_n(l)$

$$E(e_n(l)) = 0, Var(e_n(l))$$

-  $100(1-\alpha)$ % 예측구간 (정규분포 가정하에서)

$$Z_n(l) \pm z_{\alpha/2} \sqrt{Var(e_n(l))}$$

# 추정된 예측값과 추정된 예측구간

#### ■ 추정된 예측값

- $\hat{Z}_n(l)$
- $Z_n(l)$ 에 포함되어 있는 모수들을 추정값으로 대체

#### ■ 추정된 예측오차

- $\hat{e}_n(l) = Z_{n+l} \hat{Z}_n(l)$
- $100(1-\alpha)$ % 예측구간 :

$$Z_n(l) \pm z_{\alpha/2} \sqrt{\widehat{Var}(e_n(l))}$$

- $Z_t \mu = \phi(Z_{t-1} \mu) + \varepsilon_t$ ,  $\varepsilon_t \sim WN(0, \sigma^2)$ ,  $\varepsilon_t \perp \{Z_t, k < t\}$
- 조건부 기대값

• 
$$E(Z_{n+1}|Z_n, Z_{n-1}, ...) = E(\mu + \phi(Z_n - \mu) + \varepsilon_{n+1}|Z_n, Z_{n-1}, ...)$$
  
=  $\mu + \phi(Z_n - \mu)$ 

• 
$$E(Z_{n+2}|Z_n, Z_{n-1}, ...) = E(\mu + \phi(Z_{n+1} - \mu) + \varepsilon_{n+2}|Z_n, Z_{n-1}, ...)$$
  
 $= E(\mu + \phi^2(Z_n - \mu) + \phi\varepsilon_{n+1} + \varepsilon_{n+2}|Z_n, Z_{n-1}, ...)$   
 $= \mu + \phi^2(Z_n - \mu)$ 

- $E(Z_{n+l}|Z_n, Z_{n-1}, ...) = \mu + \phi^l(Z_n \mu)$
- MMSE 예측값 :  $Z_n(l) = \mu + \phi^l(Z_n \mu)$

- MMSE 예측값 :  $Z_n(l) = \mu + \phi^l(Z_n \mu)$
- 예측 오차
  - $e_n(l) = Z_{n+l} Z_n(l) = Z_{n+l} \{\mu + \phi^l(Z_n \mu)\}$ =  $\varepsilon_{n+l} + \phi \varepsilon_{n+l-1} + \dots + \phi^{l-1} \varepsilon_{n+1}$
  - $E(e_n(l)) = 0$
  - $Var(e_n(l)) = (1 + \phi^2 + \dots + \phi^{2(l-1)})\sigma^2 = \frac{\sigma^2(1-\phi^{2l})}{1-\phi^2} \le \frac{\sigma^2}{1-\phi^2} = Var(Z_n)$

- 추정된 MMSE :  $\hat{Z}_n(l) = \hat{\mu} + \hat{\phi}^l (Z_n \hat{\mu})$
- 추정된 예측 오차

$$\hat{e}_n(l) = Z_{n+l} - \hat{Z}_n(l) = \varepsilon_{n+l} + \hat{\phi}\varepsilon_{n+l-1} + \dots + \hat{\phi}^{l-1}\varepsilon_{n+1}$$

- $\widehat{Var}(e_n(l)) = \frac{\widehat{\sigma}^2(1-\widehat{\phi}^{2l})}{1-\widehat{\phi}^2}$
- $100(1-\alpha)\%$  예측구간

$$\hat{Z}_n(l) \pm z_{\alpha/2} \hat{\sigma} \sqrt{\frac{1 - \hat{\phi}^{2l}}{1 - \hat{\phi}^2}}$$

- 예)  $\hat{\phi} = -0.68$ ,  $\hat{\mu} = 19.83$ ,  $\hat{\sigma} = 2.99$ , n = 100
- 추정된 예측 오차
  - $\hat{Z}_n(l) = \hat{\mu} + \hat{\phi}^l(Z_n \hat{\mu}), \widehat{Var}(e_n(l)) = \frac{\hat{\sigma}^2(1 \hat{\phi}^{2l})}{1 \hat{\phi}^2}$
  - $\hat{Z}_{100}(1) =$
  - $\hat{Z}_{100}(2) =$
  - $\widehat{Var}(e_n(1)) =$
  - $\widehat{Var}(e_n(2)) =$
  - 98% 예측구간 :  $\hat{Z}_n(l) \pm z_{\alpha/2} \hat{\sigma} \sqrt{\frac{1-\hat{\phi}^{2l}}{1-\hat{\phi}^2}}$

- 예) 
$$\hat{\phi} = -0.68$$
,  $\hat{\mu} = 19.83$ ,  $\hat{\sigma} = 2.99$ ,  $n = 100$ 

| l  | $\hat{Z}_n(l)$ | upper_95 | lower_95 |
|----|----------------|----------|----------|
| 1  | 20.824         | 26.642   | 15.005   |
| 2  | 19.153         | 26.179   | 12.128   |
| 3  | 20.284         | 27.798   | 12.770   |
| 4  | 19.519         | 27.246   | 11.792   |
| 5  | 20.036         | 27.859   | 12.214   |
| 6  | 19.686         | 27.552   | 11.820   |
| 7  | 19.923         | 27.809   | 12.037   |
| 8  | 19.763         | 27.658   | 11.868   |
| 9  | 19.871         | 27.771   | 11.972   |
| 10 | 19.798         | 27.699   | 11.897   |
| 11 | 19.848         | 27.750   | 11.945   |
| 12 | 19.814         | 27.717   | 11.911   |
| 13 | 19.837         | 27.739   | 11.934   |
| 14 | 19.821         | 27.724   | 11.918   |
| 15 | 19.832         | 27.735   | 11.929   |
| 16 | 19.825         | 27.728   | 11.922   |
| 17 | 19.829         | 27.732   | 11.927   |
| 18 | 19.826         | 27.729   | 11.923   |
| 19 | 19.828         | 27.731   | 11.926   |
| 20 | 19.827         | 27.730   | 11.924   |
| 21 | 19.828         | 27.731   | 11.925   |
| 22 | 19.827         | 27.730   | 11.924   |
| 23 | 19.828         | 27.731   | 11.925   |
| 24 | 19.827         | 27.730   | 11.925   |
| 25 | 19.828         | 27.731   | 11.925   |



- $Z_t \mu = \varepsilon_t \theta \varepsilon_{t-1}$ ,  $\varepsilon_t \sim WN(0, \sigma^2)$ ,  $|\theta| < 1$
- 조건부 기대값
  - $E(Z_{n+1}|Z_n, Z_{n-1}, ...) = E(\mu + \varepsilon_{n+1} \theta \varepsilon_n | Z_n, Z_{n-1}, ...)$  $= \mu - \theta E(\varepsilon_n | Z_n, Z_{n-1}, ...) = \mu - \theta \varepsilon_n$
  - $E(Z_{n+2}|Z_n, Z_{n-1}, ...) = E(\mu + \varepsilon_{n+2} \theta \varepsilon_{n+1}|Z_n, Z_{n-1} ...) = \mu$
  - $E(Z_{n+l}|Z_n,Z_{n-1},...) = \mu$

- MMSE 예측값 : 
$$Z_n(l) = egin{cases} \mu - \theta \varepsilon_n, & l = 1 \\ \mu, & l > 1 \end{cases}$$

- MMSE 예측값 : 
$$Z_n(l) = egin{cases} \mu - \theta \varepsilon_n, & l = 1 \\ \mu, & l > 1 \end{cases}$$

- 예측 오차
  - $e_n(l) = Z_{n+l} Z_n(l) = Z_{n+l} \mu \theta \varepsilon_n = \varepsilon_{n+1}$ , l = 1
  - $e_n(l) = Z_{n+l} \mu = \varepsilon_{n+l} \theta \varepsilon_{n+l-1}, l > 1$
  - $E(e_n(l)) = 0$
  - $Var(e_n(l)) = \begin{cases} \sigma^2, & l = 1\\ (1+\theta^2)\sigma^2, l > 1 \end{cases}$

- 추정된 MMSE :  $\hat{Z}_n(l) = \begin{cases} \hat{\mu} \hat{\theta} \hat{\varepsilon}_n, \ l = 1 \\ \hat{\mu} \end{cases}$  ,  $l \geq 2$
- 예측 오차
  - $\widehat{Var}(e_n(l)) = \begin{cases} \widehat{\sigma}^2 & , l = 1\\ (1 + \widehat{\theta}^2)\widehat{\sigma}^2, l \ge 2 \end{cases}$
  - $100(1-\alpha)\%$  예측구간

$$\hat{Z}_n(l) \pm z_{\alpha/2} \sqrt{\widehat{Var}(e_n(l))}$$

# End of Document