7 класс

- 1. Катя и Серёжа учатся в МЭИ. Обычно они встречаются на станции метро «Авиамоторная» и идут пешком на занятия в Главный учебный корпус, но по средам, когда первой парой у них физкультура, они едут до станции «Лефортово», потому что от неё до стадиона «Энергия» идти всего три минуты. В среду Серёжа сел в поезд метро на станции «Первомайская» и проехал $N_{\rm C}=5$ остановок, одна из которых была с пересадкой, но после одной из станций поезд ненадолго останавливался в туннеле. Катя села в свой поезд на станции «Улица Дмитриевского» одновременно с Серёжей и проехала без пересадок $N_{\rm K}=7$ остановок. На станцию «Лефортово» они приехали одновременно. Какое время t поезд Серёжи стоял в туннеле? Средняя скорость поездов метро между остановками v=50 км/час, среднее расстояние между остановками s=50 км/час, среднее время остановки s=50 км, время пересадки s=50 кми.
- 2. В плотине Угличской ГЭС на Волге для прохода кораблей устроен шлюз длиной 290 м и шириной 30 м (см. фото 1). При пропускании кораблей уровень воды в шлюзе опускается на 12 м. Схема шлюзования представлена на рис. 1. В один из дней через шлюз прошли 12 кораблей вниз по течению и 16 вверх по течению. При этом проход осуществляется попеременно так, что первыми начинают шлюзование корабли, идущие вниз по течению. В шлюз каждый раз заходят по 2 корабля. Определите, во сколько раз средний суточный расход воды через шлюз меньше расхода через гидротурбины Угличской ГЭС, который в этот день составлял 800 м³/с. Водоизмещением кораблей пренебречь. Ответ округлить до целых.

Фото 1. Вид на шлюз в плотине Угличской ГЭС с кораблями, идущими вниз по течению.

Рис. 1 Схема шлюзования при проходе корабля вверх по течению.

8 класс

3. Горизонтальный стол с идеально гладкой поверхностью имеет размеры 182×387 см. Стол со всех сторон огорожен вертикальными идеально упругими бортиками. По столу могут прямолинейно и равномерно двигаться шайбы диаметром 2 см. Первая шайба в начальный момент времени располагается в положении A (касаясь двух бортиков стола одновременно) и начинает движение со скоростью 5 м/c под углом 45° к бортику (см. рис). Вторая шайба стартует из того же положения A через 1 с в том же направлении. Определите минимальную скорость второй шайбы, при которой она успеет догнать первую шайбу до того момента, когда первая шайба коснется двух бортиков одновременно. Считать, что столкновения шайб с бортиками происходят по принципу «угол падения равен углу отражения», а модуль скорости при этом не изменяется.

9 класс

- 4. Ребята плавали по широкой реке на лодке, и захотели измерить скорость течения. У них был с собой смартфон с GPS модулем. Однако ветер был такой сильный, что лодку при поднятых вёслах сносило относительно течения. Тогда они решили использовать футбольный мяч: плавая в реке, он приобретает скорость течения и практически не сносится ветром. Предварительно добившись равномерного хода лодки, они опускали мяч за борт, и смотрели, в каком направлении мяч сносится течением. Сначала лодка плыла точно на восток со скоростью 8 км/ч, при этом мяч сносило на северо-запад. Когда они сами поплыли на северо-запад со скоростью 5 км/ч, мяч сносило в направлении северовостока. Все скорости и направления определялись по GPS и не менялись во время замеров. Определите скорость реки, считая, что в местах проведения измерений река текла с одной и той же скоростью в одном и том же направлении.
- 5. Потребление энергии из электрической сети всегда выше в так называемые пиковые часы утром и вечером, а в остальное время значительно снижается. Поэтому мощность электрогенераторов необходимо изменять. На ГЭС применяют специальные поворотные лопатки (см. рис.), которые направляют водяной поток на колесо гидротурбины. Определите, во сколько раз изменится мощность гидрогенератора, если площадь сечения отверстий между поворотными лопатками уменьшится на 20%. Можно считать, что поток в обоих случаях полностью попадает на лопатки колеса гидротурбины и мощность

генератора не зависит от угла падения потока воды на гидротурбину. КПД гидрогенератора и уровень воды в водохранилище считать постоянным.

10 класс

6. Герметичный сосуд представляет собой куб со стороной a (см. рисунок, на котором показано сечение сосуда вертикальной плоскостью). Внутри сосуда находится «газ» из одной молекулы массой m. В начальный момент времени молекула имеет скорость v, направленную под углом α к горизонтали, вектор скорости лежит в вертикальной плоскости. Столкновения молекулы со стенками абсолютно упругие. Найдите «давление» на правую вертикальную стенку.

<u>Указание:</u> Не учитывайте возможность удара молекулы точно в ребро куба.

7. В отличие от теплового двигателя (тепловой машины прямого цикла), преобразующего тепловую энергию в механическую, холодильник или кондиционер работают по обратному термодинамическому циклу. При этом тепловая энергия забирается у холодной части тепловой машины (часто называется "испаритель", размещен в морозилке), а механическая энергия из внешнего источника расходуется на то, чтобы перегнать рабочее вещество (фреон) на горячую часть тепловой машины (так называемый "конденсатор", расположенный на задней стенке). Рассмотрим холодильник, работающий по идеальному циклу, в котором отношение количества теплоты, отведенного от радиатора горячей части холодильника, к количеству теплоты, переданному от содержимого морозильной камеры в испаритель, равно отношению абсолютных температур конденсатора и испарителя.

Определите, сколько времени потребуется для заморозки воды объемом V=50 л, от момента появления первой изморози внутри камеры холодильника, до момента, когда вся вода превратится в лед, если механическая мощность электродвигателя холодильника P=550 Вт, а температура горячего радиатора составила 27,3 °C.

Справочные данные: удельная теплоемкость воды $c_{\rm B} = 4200~{\rm Дж/(кг \cdot град)},$ удельная теплоемкость льда $c_{\rm L} = 2000~{\rm Дж/(кг \cdot град)},$ удельная теплота плавления льда $\lambda = 330~{\rm k}{\rm Дж/кг},$ плотность воды $\rho = 1~{\rm r/cm}^3$.

8. Массивная гладкая стенка, изогнутая в виде двухгранного угла ABC движется поступательно равномерно и прямолинейно по гладкому столу со скоростью \boldsymbol{u} (см. рис.). Угол ABC — прямой, при этом $2 \cdot AB = BC$, линия AC перпендикулярна вектору \boldsymbol{u} и перпендикулярна линии BD. Лёгкий шарик движется навстречу стороне AB со скоростью \boldsymbol{v} под углом $\alpha = 60^{\circ}$ к BD. После столкновений со стенками AB и BC шарик приобретает скорость \boldsymbol{v}' . Найдите модуль скорости \boldsymbol{v}' , если модуль $\boldsymbol{u} = 2v$. Удары о стенку абсолютно упругие.

9. В одном сосуде находится сухой воздух. В другом таком же сосуде находится влажный воздух с относительной влажностью $\varphi = 50\%$. На сколько процентов отличаются плотности сухого и влажного воздуха в сосудах, если их температуры и давления одинаковы? Молярная масса воздуха $M_{\rm B} = 29$ г/моль, молярная масса водяного пара $M_{\rm \Pi} = 18$ г/моль. Давление насыщенных паров при данной температуре определяется формулой $p_{\rm hac} = 0, 2p$, где p — давление влажного воздуха. Постройте качественно график зависимости плотности воздуха от его относительной влажности $\varphi(\varphi)$.

11 класс

10. Маленький шарик радиусом R=1 см изготовлен из меди (плотность $\rho=8,96$ г/см³) и покрыт тонким слоем материала, полностью поглощающего электромагнитное излучение. Он вращается вокруг Солнца по почти круговой орбите радиусом $r=15\cdot10^7$ км со скоростью $v=30\,$ км/с. Поглощая электромагнитные волны, шарик полностью переизлучает их в пространство так, что не нагревается. Определите тангенциальное ускорение торможения шарика. Считайте, что интенсивность излучения Солнца («солнечная постоянная») на орбите шарика составляет $J=1,36\,$ кВт/м². Влиянием других тел, любым излучением (кроме электромагнитного), магнитным полем Солнца и т. д. пренебречь. Температура во всех точках шарика одинакова и не меняется со временем. Скорость света $c=3\cdot10^8\,$ м/с.