Введение. Выпуклые, аффинные, конические множества и их свойства. Семинар 1. 3 сентября 2019 г.

Семинарист: Данилова М.

Организационные вопросы

- 1. Семинар и лекция раз в неделю.
- 2. Большие контрольные работы на семинарах: промежуточная в середине семестра (midterm) и финальная в конце; мини контрольные в течение семестра.
- 3. 4(5) домашних задания в течение семестра.
- 4. Оценка за семестр ставится по результата Вашей работы на семинарах, в частности из оценок за контрольные и домашние задания.

Программа курса

- 1. Введение. Выпуклые, аффинные и конические множества.
- 2. Выпуклые функции
- 3. Выпуклые задачи оптимизации.
- 4. Векторное дифференцирование.
- 5. Условия оптимальности Каруша-Куна-Таккера.
- 6. Теория двойственности.
- 7. Субдифференциалы.
- 8. Сопряженные функции.
- 9. Проекция точки на выпуклое множество.
- 10. Отделимость выпуклых множеств.

Литература

- 1. Stephen Boyd, Lieven Vandenberghe. Convex Optimization.
- 2. Б.Т. Поляк. Введение в оптимизацию.
- 3. Ю.Е. Нестеров. Методы выпуклой оптимизации.
- 4. А.В. Гасников. Современные численные методы оптимизации.
- 5. В.Г. Жадан. Методы оптимизации.
- 6. А.Г. Сухарев. Курс методов оптимизаци.
- 7. Matrixcookbook.
- 8. Sébastien Bubeck. Convex Optimization: Algorithms and Complexity.

Введение

Постановка задачи оптимизации

Задачу оптимизации можно описать следующим образом:

$$\min_{x \in G} f(x) \tag{1}$$

- \bullet f(x) целевая функция
- \bullet G $\subseteq \mathbb{R}^n$ допустимое множество
- \bullet $x_* \in \mathbb{R}^n$ искомый вектор
- f_* оптимальное значение целевой функции $f_* = \min_{x_* \in G} f(x_*)$

Основные этапы использования методов оптимизации при решении реальных задач:

- 1. определение целевой функции f(x);
- 2. определение допустимого множества решений G;
- 3. постановка и анализ оптимизационной задачи;
- 4. выбор наилучшего алгоритма для решения поставленной задачи;
- 5. реализация алгоритма и проверка его корректности.

Классы экстремальных задач

- 1. Задача одномерной минимизации: G подмножество действительной прямой $\mathbb R$
- 2. Задача безусловной минимизации: $G = \mathbb{R}^n$, т.е допустимое множество совпадает со всем подпространством.
- 3. Задача условной минимизации: G собственное подмножество \mathbb{R}^n . (задачи математического, линейного, квадратичного, нелинейного программирования)
 - (a) задача математического программирования, если $G = \{x \mid f_i(x) \leq 0 \mid i=1,m; \ f_j(x)=0 \ j=m+1,l\}$
 - (b) задача линейного программирования, если $f_0(x), \ f_i(x), \ f_i(x)$ линейные функции
 - (c) задача квадратичного программирования, если $f_i(x)$, $f_i(x)$ линейные функции, а $f_0(x)$ квадратичная функция
 - (d) и.т.д.

Основные определения и замечания

- Точка $x_* \in G$ называется:
 - 1. точкой глобального минимума f на G, если $\forall x \in G$ $f(x_*) \leq f(x)$;
 - 2. точкой локального минимума f на G, если $\forall x \in G \cap U_{\epsilon}(x_{*}) \quad f(x_{*}) \leq f(x);$ где $U_{\epsilon}(x_{*}) = \{x \in \mathbb{R}^{n} \mid ||x x_{*}|| \leq \epsilon\};$
 - 3. точкой строгого глобального (локального) минимума, если неравенства в 1), 2) выполняются как строгие.
- Существование решения

Теорема 1. Теорема Вейерштрасса.

Пусть X - компакт, f - непрерывная функция на X Тогда точка глобального минимума функции f на X существует.

- Задача $f(x) \to \max$, $x \in G$ эквивалентна $-f(x) \to \min$, $x \in G$ в том смысле, что множества решений этих задач совпадают.
- \bullet Если множество X открытое или неограниченное, то задача может не иметь решения. В таком случае корректно рассматривать задачу

$$f_* = \inf_{x \in G} f(x).$$

• Когда функция f(x) не ограничена снизу на G, полагают

$$f_* = -\infty$$
.

_

Аффинное множество

Определение 1. Множество $X \subseteq \mathbb{R}^n$ - аффинное, если вместе с любой парой точек $x_1, x_2 \in X$ оно содержит все точки вида $x = \theta x_1 + (1 - \theta)x_2$ при $\theta \in \mathbb{R}^1$.

(т.е. вместе с каждой парой точек, во множестве содержится и вся прямая их соединяющая)

Примеры:

- все пространство \mathbb{R}^n
- прямая, гиперплоскость
- точка
- \bullet \varnothing пустое множество

Аффинные множества имеют простую структуру, они являются сдвигами линейных подпространств. Пусть X - произвольное аффинное множество и пусть $x_0 \in X$. Рассмотрим множество L = X - x_0 . Данное множество также является аффинным. Возьмем $x_1, x_2 \in L$, $\theta \in \mathbb{R}$. Имеем $x_1 = y_1 - x_0, x_2 = y_2 - x_0$, где $y_1, y_2 \in X$. Тогда

$$x_{\theta} = \theta x_1 + (1 - \theta)x_2 = \theta y_1 + (1 - \theta)y_2 - x_0 \in L$$

так как из-за аффинности множества X следует $\theta y_1 + (1 - \theta)y_2 \in X$. Множество L - линейное подпространство, параллельное аффинному множеству X. Оно определяется единственным образом (не зависит от выбора $x_0 \in X$).

Определение 2. Пусть $x_1,..,x_k\in G$, тогда при $\sum\limits_{i=1}^k \theta_i=1$ точка $\theta_1x_1+..+\theta_kx_k$ - аффинная комбинация точек $x_1,..,x_k$.

Определение 3. Множество всех аффинных комбинаций точек $\left\{\sum_{i=1}^k \theta_i x_i \mid x_i \in G, \sum_{i=1}^k \theta_i = 1\right\}$ - аффинная оболочка множества (aff(G)). Аффинная оболочка aff(G) - наименьшее аффинное множество, содержащее множество G.

Утверждение 1. Множество является аффинным *←*→, когда в него входят все аффинные комбинации его точек.

Утверждение 2. Пересечение (конечное или бесконечное) аффинных множеств - аффинное множество.

Упражнение 1. Покажите, что решение системы линейных уравнений $X = \{x \in \mathbb{R}^n \mid Ax = b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ - аффинное множество.

Решение. Пусть $x_1, x_2 \in X$, то есть $Ax_1 = b$, $Ax_2 = b$. Тогда для любого $\theta \in \mathbb{R}^1$ мы имеем $A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2 = \theta b + (1 - \theta)b = b$.

Утверждение 3. Любое аффинное множество можно представить в виде $X = \{x \in \mathbb{R}^n \mid Ax = b\}.$

Группа 778. Методы оптимизации. 5 семестр.

Относительная внутренность выпуклого множества

Определение 4. Внутренность множества X:

$$intX = \{x \in X \mid \exists \varepsilon > 0 : B(x, \varepsilon) \subseteq X\},\$$

где
$$B(x, \epsilon) = \{y \mid ||x - y|| \le \epsilon\}$$

Определение 5. Относительная внутренность множества X:

$$riX = \{x \in X \mid \exists \varepsilon > 0 : B(x, \varepsilon) \cap aff(X) \subseteq X\},\$$

Определение 6. Множество X - открытое (относительно открытое), если int X = X (riX = X)

Определение 7. Совокупность всех предельных точек множества X называется замыканием и обозначается clX или \bar{X} . (Точка $x \in \mathbb{R}^n$ - предельная точка множества X, если $\exists \{x_k\}$ из X, которая сходится к x)

Определение 8. Граница ∂X (относительная граница $r\partial X$) множества X - это $clX\setminus intX$ $(clX\setminus riX)$

Теорема 2 (**Теорема**). Любое непустое выпуклое множество $X\subseteq \mathbb{R}^n$ имеет непустую относительную внутренность riX

Зачем нужна концепция относительной внутренности? Часто оказывается, что внутренность выпуклого множества пуста. Например, если взять отрезок в двумерном пространстве, то все его точки не являются внутренними. Однако интуитивно понятно, что точки отличные от концевых точек отрезка, обладают определенными свойствами, присущими внутренней точке. Надо только погрузить данный отрезок в его аффинную оболочку, и забыть об остальных точках двумерного пространства \mathbb{R}^2 . Поэтому вводят понятие относительной внутренности.

Замечание 1. Если $X \subseteq \mathbb{R}^n$ лежит в пространстве меньшей размерности чем n, то каждая точка X - граничная.

Утверждение 4. Если X - аффинное, то либо $\operatorname{int} X = \emptyset$, либо $X = \mathbb{R}^n$.

Утверждение 5. Если $intX \neq \emptyset$, то riX = intX.

Утверждение 6. $riX \subseteq X \subseteq clX$

Упражнение 2. Найдем относительную внутренность следующих множеств:

1.
$$X = \{x \in \mathbb{R}^n \mid Ax = b\} \Rightarrow riX = X = \bar{X};$$

2.
$$\mathbf{X}=[a,b],\quad a,b\in\mathbb{R}^n$$
 - отрезок в $\mathbb{R}^n\quad\Rightarrow\quad\mathrm{riX}=(a,b)$ – интервал в \mathbb{R}^n ;

3.
$$X=\{x\in\mathbb{R}^n\mid a\leq x\leq b\},$$
 — параллеленинед в \mathbb{R}^n \Rightarrow
$$\mathrm{riX}=\mathrm{intX}=\{x\in\mathbb{R}^n\mid a< x< b\}$$
— открытый параллеленинед в $\mathbb{R}^n;$

4.
$$X=\{x\in\mathbb{R}^n\mid \sum\limits_{i=1}^n\alpha_ix_i^2\leq 1,\ \alpha_i>0,\ i=1,\ldots,n\}$$
 – эллипсоид в \mathbb{R}^n \Rightarrow

$$\mathrm{riX} = \mathrm{intX} = \{x \in \mathbb{R}^n \mid \sum_{i=1}^n \alpha_i x_i^2 < 1, \ \alpha_i > 0, \ i = 1, \dots, n\}$$
 – открытый эллипсоид в \mathbb{R}^n ;

5.
$$X = \{x \in \mathbb{R}^n \mid \sum_{i=1}^n \alpha_i x_i^2 = 1, \ \alpha_i > 0, \ i = 1, \dots, n\} \quad \Rightarrow \quad \text{riX} = \text{intX} = \varnothing;$$

6.
$$X = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid -1 \le x_1 \le 1, -1 \le x_2 \le 1, x_3 = 0\} \implies$$

$$int X = \emptyset, \quad ri X = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid -1 < x_1 < 1, -1 < x_2 < 1, x_3 = 0\};$$

7.
$$X = \{(x_1, x_2) \in \mathbb{R}^2 \mid -1 \le x_1 \le 1, -1 \le x_2 \le 1\} \implies$$

$$intX = riX = \{(x_1, x_2) \in \mathbb{R}^2 \mid -1 < x_1 < 1, -1 < x_2 < 1\}.$$

Сумма (разность) Минковского

Определение 9. Алгебраической суммой Минковского двух множеств A, B из \mathbb{R}^n называется множество вида

$$A + B = \{a + b \mid a \in A, b \in B\}$$

Определение 10. Алгебраической суммой Минковского двух множеств A, B из \mathbb{R}^n называется множество вида

$$A - B = \{ x \in \mathbb{R}^n \mid x + B \subset A \}$$

Упражнение 3. Определите сумму(разность) следующих множеств.

1.
$$A + B$$
, $A = \{x \in \mathbb{R}^2 \mid ||x||_{\infty} \le 1\}$, $B = \{x \in \mathbb{R}^2 \mid ||x||_2 \le \frac{1}{4}\}$

2.
$$A + B$$
, $A = \{x \in \mathbb{R}^2 \mid x_1 x_2 \le -1, x_1 < 0\}$, $B = \{x \in \mathbb{R}^2 \mid x_1 x_2 \ge 1, x_1 > 0\}$

3.
$$A - B$$
, $A = B_R(a) \subset \mathbb{R}^n$, $B = B_R(b) \subset \mathbb{R}^n$, $R > r$

4.
$$A - B$$
, $A = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \le 2\}$, $B = B_1(0) \subset \mathbb{R}^n$

Выпуклое множество

Определение 11. Множество $X \subseteq \mathbb{R}^n$ - **выпуклое**, если вместе с любой парой точек $x_1, x_2 \in X$ оно содержит все точки вида $x = \theta x_1 + (1 - \theta) x_2$ при $\theta \in [0, 1]$.

(т.е. вместе с каждой парой точек, во множестве содержится и весь отрезок их соединяющий)

Примеры:

- любое аффинное множество
- луч, отрезок
- гиперплоскость

$$\{x \in \mathbb{R}^n \mid a^\top x = b, \ a \in \mathbb{R}^n \setminus \{0_n\}, \ b \in \mathbb{R}\}$$

• полупространство

$$\{x \in \mathbb{R}^n \mid a^\top x \le b, \ a \in \mathbb{R}^n \setminus \{0_n\}, \ b \in \mathbb{R}\}$$

• полиэдр

$$\{x \in \mathbb{R}^n \mid Ax \leq b, \ Cx = d\},\$$

где $A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ C \in \mathbb{R}^{p \times n}, \ d \in \mathbb{R}^p,$ символ \preceq – поэлементное неравенство \leq (полиэдр представляет собой пересечение конечного числа полупространств и гиперплоскостей)

• стандартный симплекс (частный случай полиэдра)

$$\Delta_n = \left\{ x \in \mathbb{R}^n \mid x \succeq 0, \ \sum_{i=1}^n x_i = 1 \right\}$$

ullet шар в произвольной норме \mathbb{R}^n

$$B(r, x_c) = \{x \in \mathbb{R}^n \mid ||x - x_c|| \le r\}$$

• эллипсоид

$$\mathcal{E}(x_c, P) = \{ x \in \mathbb{R}^n \mid (x - x_c)^\top P^{-1} (x - x_c) \le 1 \},$$

где $P = P^\top \succ 0$ - симметричная и положительно определенная матрица

• решение системы линейных неравенств $\{x \mid Ax \leq b\}$, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

Определение 12. Пусть $x_1,..,x_k\in G$, тогда при $\sum\limits_{i=1}^k \theta_i=1,\; \theta_i\geq 0$ точка $\theta_1x_1+..+\theta_kx_k$ - выпуклая комбинация точек $x_1,..,x_k$.

Определение 13. Множество всех выпуклых комбинаций точек $\left\{\sum\limits_{i=1}^k \theta_i x_i \mid x_i \in G, \ \sum\limits_{i=1}^k \theta_i = 1, \ \theta_i \geq 0\right\}$ - выпуклая оболочка множества $(\mathbf{conv}(G))$.

Как установить выпуклость множества?

- по определению пусть $x_1, x_2 \in X, \ \theta \in [0, 1],$ тогда $x_\theta = \theta x_1 + (1 \theta) x_2 \in X$
- показать, что X получено из выпуклых множеств с помощью **операций, сохраняющих** выпуклость

Операции, сохраняющие выпуклость:

Пусть $X,Y\subseteq\mathbb{R}^n$ - выпуклые, тогда

- 1. $\alpha X = \{\alpha x, x \in X\}, \alpha \in \mathbb{R}^1$ выпукло
- 2. $X + Y = \{x + y \mid x \in X, y \in Y\}$ выпукло (сумма Минковского)
- 3. $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$ выпукло (Декартово произведение)
- 4. пересечение $\mathbf{X} = \bigcap_i \mathbf{X}_i$ любого конечного или бесконечного числа выпуклых множеств выпуклое множество
- 5. аффинное отображение
- 6. перспективное отображение
- 7. дробно-линейное отображение

Пример 1. Сумма Минковского

Рассмотрим два множества в пространстве \mathbb{R}^2 :

$$X_1 = \{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 1 \}$$

$$X_2 = \{x \in \mathbb{R}^2 \mid x_1, x_2 \in [-1, 1]\}$$

Их сумма $X = X_1 + X_2$ - выпукла как сумма выпуклых множеств. X - увеличенный прямоугольник с закругленными углами.

Пример 2. Декартово произведение

Рассмотрим цилиндр в пространстве \mathbb{R}^3

$$X = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 \le 1, \ x_3 \in [-1, 1]\},\$$

Х - выпукло как декартово произведение выпуклых множеств (единичного круга и отрезка).

Упражнение 4. Покажите, что пересечение любого числа выпуклых множеств - выпукло.

Доказательство. Пусть I - произвольное множество индексов, а $X = \bigcap_{i \in I} X_i$.

- $\mathbf{X}_i \subseteq \mathbb{R}^n$ выпуклое множество $\forall i \in \mathbf{I}$
- ullet если $X=\varnothing$, то X выпукло по определению

- ullet если $\mathbf{X}
 eq \emptyset$, тогда $\exists \ x_1, x_2 \in \mathbf{X} \ o \ x_1, x_2 \in \mathbf{X}_i \ \forall i \in \mathbf{I}$
- так как X_i выпуклое, то $\forall \theta \in [0,1]$

$$x_{\theta} = \theta x_1 + (1 - \theta) x_2 \in X_i \quad \forall i \in I$$

• $x_{\theta} \in X \rightarrow X$ – выпукло

Аффинное отображение

- Аффинная функция: f(x) = Ax + b, где $f: \mathbb{R}^n \to \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- Пусть $\mathbf{X} \subseteq \mathbb{R}^n$ выпуклое множество Образ $f(\mathbf{X}) = \{f(x) \mid x \in X\}$ - выпуклое множество
- Пусть $G \subseteq \mathbb{R}^m$ выпуклое множество Прообраз $f^{-1}(G) = \{x \in \mathbb{R}^n \mid f(x) \in G\}$ - выпуклое множество
- растяжение, проекция, перенос

Пример 3. Аффинное отображение

• Эллипсоид в \mathbb{R}^n

$$f(X) = \{Lx + a \mid x \in \mathbb{R}^n, \|x\|_2 \le 1\}$$

- \bullet L $\in \mathbb{R}^{n \times n}$ невырожденная матрица, $a \in \mathbb{R}^n$
- f(x) = Lx + a аффинная функция
- f(X) выпукло как образ выпуклого множества (единичного шара) при аффинном преобразовании f(x)

Перспективное отображение

• Перспективная функция

$$P(x,t) = \frac{x}{t}$$
$$P: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$$

• образ и прообраз - выпуклые множества

Линейно-дробное отображение

• Линейно-дробная функция

$$f(x) = \frac{\mathbf{A}x + b}{c^{\top}x + d}, \quad f(x) : \mathbb{R}^n \to \mathbb{R}^m$$
$$\operatorname{dom} f = \left\{ x \mid c^{\top}x + d > 0 \right\}$$

• образ и прообраз - выпуклые множества

Теорема 3. Теорема Каратеодори.

Пусть $X \subseteq \mathbb{R}^n$ - произвольное множество в \mathbb{R}^n . Тогда любую точку из $\mathbf{conv}(X)$ можно представить в виде выпуклой комбинации не более чем n+1 точек из X.

Упражнение 5. Покажите, что G - выпукло \iff , когда $G = \mathbf{conv}(G)$.

Упражнение 6. Шар по норме в \mathbb{R}^n : $\mathrm{B}(r,x_c)=\{x\mid \|x-x_c\|\leq r\}$ - выпуклое множество.

Решение. Покажем, что выпуклая комбинация точек множества принадлежит множеству: $x_{\theta} \in \mathrm{B}(x_c, r)$?

- пусть $x_1, x_2 \in B(x_c, r), \ \theta \in [0, 1]$
- $||x_{\theta} x_c|| = ||\theta x_1 + (1 \theta)x_2 x_c|| \le ||\theta(x_1 x_c) + (1 \theta)(x_2 x_c)|| \le \theta ||x_1 x_c|| + (1 \theta)||x_2 x_c|| \le r$
- $x_{\theta} \in \mathbf{B}(x_c, r) \rightarrow \mathbf{B}(x_c, r)$ выпукло

Замечание 2. Открытый шар $\{x \mid ||x - x_c|| < r\}$ также является выпуклым множеством.

Упражнение 7. Докажите по определению выпуклость следующих множеств:

- $M_1 = \{x \in \mathbb{R}^n \mid Ax \le b\}$
- $M_2 = \{x \in \mathbb{R}^n \mid Ax = b\}$
- $M_3 = \{x \in \mathbb{R}^n \mid A_1 x \le b_1, A_2 x \le b_2\}$
- $M_4 = \{x \in \mathbb{R}^2 \mid x_1^2 < x_2\}$
- $M_5 = \{x \in \mathbb{R}^n \mid x^T x \le 1\}$

Упражнение 8. Выполните следующие упражнения.

- Покажите, что множество выпукло тогда и только тогда, когда его пересечение с любой прямой выпукло.
- Покажите, что множество аффинно тогда и только тогда, когда его пересечение с любой прямой аффинно.

• Являются ли выпуклыми множества:

$$\{x \in \mathbb{R}^n | \min x_i = 1 \quad i = 1, ..., n\};$$

 $\{x \in \mathbb{R}^n | \min x_i \ge 1 \quad i = 1, ..., n\}?$

• Является ли выпуклым множество:

$$\{a \in \mathbb{R}^k \mid p(0) = 1, |p(t)| \le 1 \quad \forall t \in [\alpha, \beta]\},$$

если

$$p(t) = a_1 + a_2t + \dots + a_kt^{k-1}?$$

.

Упражнение 9. Являются ли следующие множества выпуклыми?

- 1. $\{x \in \mathbb{R}^n \mid \alpha \leq a^{\mathsf{T}} x \leq \beta\}$
- 2. $\{x \in \mathbb{R}^n \mid \alpha_i x_i \leq \beta_i, i = 1, \dots, n\}$
- 3. $\{x \in \mathbb{R}^n \mid a_1^\top x \le b_1, \ a_2^\top \le b_2\}$
- 4. $\{x \in \mathbb{R}^n \mid \|x x_0\|_2 \leq \|x y\|_2 \ \forall y \in S, \ S \subseteq \mathbb{R}^n \}$ множество точек, которые лежат ближе к точке x_0 , чем к множеству S
- 5. $\{x \in \mathbb{R}^n \mid \operatorname{dist}(x, \mathbf{S}) \leq \operatorname{dist}(x, \mathbf{T}), \ \mathbf{S}, \mathbf{T} \subseteq \mathbb{R}^n\},$ где $\operatorname{dist}(x, \mathbf{S}) = \inf\{\|x - z\|_2 \mid z \in \mathbf{S}\}$
- 6. $\{x \mid x + S_2 \subseteq S_1, \ S_1, S_2 \subseteq \mathbb{R}^n\},$ где S_1 – выпуклое множество

Упражнение 10. Пусть $S \subseteq \mathbb{R}^n, \|\cdot\|$ – норма в $\mathbb{R}^n, \ a \ge 0$, рассмотрим множество S_a :

$$S_a = \{x \mid \text{dist}(x, S) \le a\},\,$$

где dist $(x, S) = \inf_{y \in S} ||x - y||$.

Покажите, что если S – выпукло, то S_a также является выпуклым множеством.

Коническое множество (конус)

Определение 14. Множество $X \subseteq \mathbb{R}^n$ - конус, если вместе с любой точкой $x \in X$, оно содержит все точки вида θx , при $\theta \in \mathbb{R}_+$.

 $(\text{т.е. вместе с каждой точкой, во множестве содержится и луч из нуля в направлении <math>x)$.

Определение 15. Множество $X \subseteq \mathbb{R}^n$ - выпуклый конус, если вместе с любыми точками $x_1, x_2 \in X$, оно содержит все точки вида $\theta_1 x_1 + \theta_2 x_2$, при $\theta_1, \theta_2 \in \mathbb{R}_+$.

Определение 16. Пусть К – конус. Тогда множество

$$\mathbf{K}^* = \left\{ y \mid x^\top y \ge 0 \quad \forall x \in \mathbf{K} \right\}$$

называется двойственным конусом для К.

Определение 17. Конус К – называется proper cone, если

- К выпуклое,
- К замкнутое,
- К имеет непустую внутренность,
- К заостренный, что значит не содержит прямых.

Примеры:

- \mathbb{R}^n , 0, \varnothing , луч, линейные подпространства
- $\{(x,|x|) \in \mathbb{R}^2\}$ конус, но невыпуклый конус
- $\{(x,t) \mid ||x|| \le t\}$ нормальный конус

(в l_2 называется конусом второго порядка или Лоренцевым конусом)

- решение системы линейных неравенств $\mathbf{A}x \geq 0, \ x \in \mathbb{R}^n,$ если все компоненты матрицы A имеют один и тот же знак
- ullet пространство симметричных матриц (векторное пространство размерности n(n+1)/2)

$$\mathbb{S}^n = \left\{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} = \mathbf{X}^\top \right\}$$

• конус симметричных положительно полуопредленных матриц (в векторном пространстве размерности n(n+1)/2)

$$\mathbb{S}_{+}^{n} = \left\{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid X = \mathbf{X}^{\top}, \ \mathbf{X} \succeq 0 \right\}$$

• конус симметричных положительно опредленных матриц (в векторном пространстве размерности n(n+1)/2)

$$\mathbb{S}^n_{++} = \left\{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} = \mathbf{X}^\top, \ \mathbf{X} \succ \mathbf{0} \right\}$$

Конус симметричных положительно полуопредленных матриц в \mathbb{R}^3

$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{S}^2_+ \iff x, z \ge 0, \ xz \ge y^2$$

Группа 778. Методы оптимизации. 5 семестр.

Упражнение 11. В пространстве \mathbb{S}^n множество \mathbb{S}^n_+ - выпукло.

Решение. Покажем по определению.

- пусть $X_1, X_2 \in \mathbb{S}^n_+, \theta \in [0,1]$
- $\forall x \in \mathbb{R}^n$

$$x^{\top} X_{\theta} x = x^{\top} (\theta X_1 + (1 - \theta) X_2) x = \theta x^{\top} X_1 x + (1 - \theta) x^{\top} X_2 x \ge 0$$

•

$$\mathbf{X}_{\theta} \in \mathbb{S}^{n}_{+} \to \mathbb{S}^{n}_{+}$$
- выпукло

• (аналогично множество \mathbb{S}^n_{++} также является выпуклым)

Определение 18. Пусть $x_1,..,x_k\in G$, тогда при $\theta_i\geq 0$ точка $\theta_1x_1+..+\theta_kx_k$ - коническая (неотриц.) комбинация точек $x_1,..,x_k$.

Определение 19. Множество всех конических комбинаций точек $\left\{\sum\limits_{i=1}^k \theta_i x_i \mid x_i \in G, \; \theta_i \geq 0\right\}$ - коническая оболочка множества (cone(G)).

Утверждение 7. Покажите, что

- пересечение конусов конус;
- пересечене выпуклых конусов выпуклый конус.