Отчёт по лабораторной работе №3 Определение ширины запрещенной зоны полупроводников по спектральной зависимости собственной проводимости

Плюскова Наталия

17 января 2024 г.

1. Теоретические данные

При воздействии на полупроводник излучения с энергией кванта $h\nu$, превышающей ширину запрещённой зоны E_g в зоне проводимости, и соотвественно в валентной зоне возникают неравновесные электроны и дырки. Их появление связано с переходами электронов из валентной зоны проводимости. В результате увеличивается проводимость кристалла. Это явление называется собственной фотопроводимостью.

В непрямозонных полупроводниках типа германия и кремния минимум зоны проводимости и максимум валентной зоны расположены в различных точках зоны Бриллюэна. В этом случае оптический переход электрона из вершины валентной зоны в минимум зоны проводимости возможен лишь при участии третьей частицы — фонона. В соответствии с законом сохранения импульса квазиимпульс такого фонона $q_{\Phi} \approx \hbar k_{\rm B}$, а энергия $\hbar \omega$ должна удовлетворять закону сохранения энергии:

$$h\nu = E_g \pm \hbar\omega_q + \hbar^2 (k_n - k_c)^2 / 2m_n + \hbar^2 k_p^2 / 2m_p$$
 (1)

где k_n и k_p — начальные волновые числа электрона и дырки, а k_c — конечное волновое число электрона.

Таким образом, край основной полосы поглощения в полупроводниках типа кремния и германия определяется непрямыми оптическими переходами, сопровождающимися поглощением и испусканием фононов. При этом для разрешённых переходов, которые доминируют в полупроводниках такого типа, коэффициент поглощения:

$$K = C \left[\frac{(h\nu - E_g + \hbar\omega_q)^2}{\exp\frac{\hbar\omega_q}{kT} - 1} + \frac{(h\nu - E_g - \hbar\omega_q)^2}{1 - \exp-\frac{\hbar\omega_q}{kT}} \right]$$
(2)

При больших энергиях квантов $h\nu > (E_g + \hbar\omega_q)$ начинают преобладать переходы с эмиссией фононов и зависимость $K^{1/2}$ от $h\nu$ должна аппроксимироваться прямой, пересекающей ось энергии в точке $h\nu_1 = E_q + \hbar\omega_q$.

При рассмотрении случая сильного поглощения излечения в образце (оптически толстый образец), то есть при d/K << 1, где d — толщина образца, скорость генерации электронно-дырочных пар экспоненциально уменьшается от поверхности вглубь образца:

$$g(x) \approx K(1 - R)N_0 \exp{-Kx} \tag{3}$$

где R – коэффициент отражения света, а N_0 – поток квантов на единицу поверхности.

Неоднородная германия электронов и дырок в направлении освещения приводит к появлению диффузионно-дрейфовых потоков носителей заряда: быстро диффундирующие носители (электроны) опережают медленные (дырки), что приводит к возникновению электрического поля, ускоряющего медленные носители и замедляющего быстрые и к появлению дрейфовых составляющих потоков. При этом изменение проводимости $\Delta\Sigma$ существенным образом зависит от граничных условий на поверхности образца:

$$\Delta \Sigma \sim N_0 \left(1 + \frac{S}{D} \frac{1}{K} \right) \tag{4}$$

где S — скорость поверхностной рекомбинации, D — коэффициент амбиполярной диффузии.

2. Экспериментальная часть

Для изменения фотоответа полупроводника $\Delta\Sigma$ образец включается последовательно с нагрузочным сопротивлением и источником постоянного напряжения. При освещении проводимость образца возрастает, происходит перераспределение напряжение между образцом

и нагрузкой. В результате падение напряжения U на образце при малом относительном увеличении проводимости уменьшается на величину

$$\Delta U = \varepsilon \frac{R_H \cdot R_0^2}{(R_H + R_0)^2} \Delta \Sigma \tag{5}$$

где ε — постоянное напряжение, R_H и R_0 — сопротивление нагрузки и образца, Σ — проводимость.

Для повышения чувствительности измерения обычно проводят при периодическом прерывании светового потока. При этом соотношение (5) характеризует амплитуду отрицательных импульсов напряжения на концах образца. Для исследования интересующих нас зависимостей $\Delta\Sigma/N_0$ от энергии кванта $h\nu$ наряду с ΔU необходимо знать спектральное распределение интенсивности источника излучения $N_0(h\nu)$.

Рис. 1: Схема экспериментальной установки. 1 – осветитель, 2 – блок питания осветителя, 3 – линзы, 4 – механический модулятор излучения, 5 – монохроматор, 6 – блок питания образца, 7 – схема включения образца, 8 – усилитель

3. Результаты эксперимента и обработка данных

3.1. Кремний

Включаем лампу накаливания и фокусируем излучение монохроматора на образец Si. Подаём постоянное смещение U на образец от источника напряжения. Вращая барабан длин волн, снимаем зависимость сигнала фотопроводимости U от длины волны излучения. С помощью градуировочной кривой переводим деления барабана в энергии кванта E. Получаем зависимость $\frac{U}{N}(E)$ (рис. 2), после чего строим зависимость $\sqrt{\frac{U}{N}}(E)$ (рис. 3).

Рис. 2: Зависимость $\frac{U}{N}(E)$

Рис. 3: Зависимость $\sqrt{\frac{U}{N}}(E)$

Аппроксимируя линейный участок графика до оси энергии, получаем величину $E_g+\hbar\omega_{ph}$ как точку пересечения прямой с осью. Учитывая энергию фонона $\hbar\omega_{ph}=50$ мэВ, находим ширину запрещённой зоны кремния $E_g=1094.41$ мэВ.

3.1 Селенид кадмия

Аналогично для образца CdSe. Получаем зависимость $\frac{U}{N}(E)$ (рис. 4), после чего строим график зависимости $(\frac{U}{N})^2(E)$ (рис. 5).

Рис. 4: Зависимость $\frac{U}{N}(E)$

Рис. 5: Зависимость $\sqrt{\frac{U}{N}}(E)$

Аппроксимируя линейный участок графика до оси энергии, получаем величину $E_g+\hbar\omega_{ph}$ как точку пересечения прямой с осью. Учитывая энергию фонона $\hbar\omega_{ph}=50$ мэВ, находим ширину запрещённой зоны кремния $E_g=1661.84$ мэВ.

4. Выводы

- 1. Изучили принципы собственной фотопроводимости в полупроводниках
- 2. При проведении работы нашли ширину запрещённой зоны кремния и селенида кадмия: 1094.41 мэВ и 1661.84 мэВ соотвественно.

5. Приложение

Рис. 6: Зависимость $\sqrt{\frac{U}{N}}(E)$ для кремниевого образца с кремниевым фильтром

6. Вопросы

1. Что такое скорость оптической генерации? Её размерность?

Скоростью оптической генерации называют количество пар электронов и дырок, появляющихся в единице объёма за единицу времени. Таким образом размерность скорости оптической генерации – $[g] = c^{-1} \cdot {}^{-3}$.

2. Разъяснить понятие «оптически тонкий образец»

В случае, когда скорость оптической генерации слабо изменяется в направлении освещения, говорят, что образец является оптически тонким. Это утверждение аналогично тому, что поглощение света в образце очень слабое. Математическое утверждение выглядит следующим образом: $g \sim e^{-Kx}$, где К – коэффициент поглощения. Отсюда следует, что образец называется оптически тонким при выполнении условия $Kd \ll 1$

3. Получить выражение для скорости оптической генерации в случае, когда образец можно считать оптически тонким.

$$g(x) = \beta \frac{KN_0(1-R)}{1-R^2e^{-2Kd}} (e^{-Kx} + Re^{-K(2d-x)})$$

При малой оптической толщине kd << 1. Для $\beta \approxeq 1$

$$g(x) \approx \frac{KN_0(1-R)}{1-R^2(1-2Kd)}((1-Kx)+R(1-2Kd+Kx))$$
$$g(x) \approx \frac{KN_0(1-R)}{(1-R)^2}(1+R) = KN_0$$

- 4. Как зависит фотопроводимость от коэффициента поглощения при энергиях света, когда образец можно считать оптически тонким? Оптически толстым?
 - (а) Опт. тонкий

Из $\Delta n = \Delta p$ - условие электронейтральности вытекает $\tau_n = \tau_p = \tau$:

$$\Delta \Sigma = \frac{e(\mu_n + \mu_p)\omega}{l} K(h\nu) N_0 \tau$$
$$\Delta \Sigma \sim K N_0 \tau$$

(b) Опт. толстый

При
$$g \cong K(1-R)N_0e^{-Kx}$$

$$\Delta\Sigma \sim \frac{N_0}{\tau}$$

5. Рассчитать коэффициент пропорциональности между энергией кванта света в эВ и соответствующей длиной волны в мкм.

$$E = h\nu = h\frac{c}{\lambda} \longrightarrow \lambda E = hc = const \Longrightarrow 1 \text{ 9B} \Leftrightarrow 1.240 \text{ MKM}.$$

6. Ширина зоны прямозонного полупроводника 0,8 эВ. При какой длине волны (в мкм) на фоторезисторе из такого материала можно наблюдать собственную фотопроводимость?

$$\lambda E = hc = 1.240 \; (\text{мкм эВ}) \longrightarrow \lambda = 1.5 \; \text{мкм}$$

7. Темновое сопротивление фоторезистора составляет 40 кОм. Как и какое нагрузочное сопротивление надо припаять в схему для регистрации фотопроводимости, чтобы получить максимальный сигнал?

$$\Delta u = \varepsilon \frac{R_n R_o}{(R_n + R_o)} \frac{\Delta \Sigma}{\Sigma_o}$$

$$\Delta u = \varepsilon \frac{R_o^2}{(R_n + R_o)^2} \Delta \Sigma R_n \to \frac{\partial \Delta u}{\partial R_n} = 0$$

$$R_n = R_o = 40 \text{ } k\Omega$$

- 8. На какое расстояние успеют продиффудировать избыточные электроны в Si, если время жизни носителей составляет 10-4 с?
- 9. На рис.7 показаны спектральные зависимости фотопроводимости CdS и CdSe. Пунктирные и сплошные линии соответствуют разным температурам. Какие линии каким температурам соответствуют?

- 10. Нарисуйте качественно зависимость сигнала фотопроводимости кремниевого фоторезистора от энергии кванта. Энергия фонона 50 мэВ.
- 11. Как зависит фотопроводимость U/N при Kd1 от $h\nu$ в прямозонных полупроводниках?
- 12. На рис.8 приведены результаты измерения сигнала U фотопроводимости ($\Phi\Pi$) образца CdSe в зависимости от энергии $h\nu$ падающего на образец света. Этот $\Pi\Pi$ прямозонный.

Спектральная зависимость сигнала фотопроводимости

Рис. 8:

Из графика зависимости коэффициента полгощения от энергии фотонов для кремния $K(h\nu)$ видно изменение оптических свойств, соответсвующее переходу из оптически тонкого состояни я в оптически толстое $(kd\sim1)$. При $K\approxeq110~cm^{-1}$, те $d\approx91$ мкм.

- 13. Рассчитать удельное сопротивление кремния, данные в таблице в конце описания работы.
- 14. По спектрам поглощения (см методичку) показать область прямых и непрямых переходов в Si и Ge