Lecture 2 - Statistical Mechanics

Aims

Aims to relate the macroscopic thermodynamic properties of a system to the microscopic / atomistic constituents & degrees of freedom.

- Macrostate: as defined by state variables & functions
- ullet Microstate: single/many particle eigenstates of the Hamiltonian of the system. $H\psi_i=E_i\psi_i$

Fundamental assumption of statistical mechanics:

At fixed N, V, E a system is equally likely to be found in any microstate of energy $E_i=E$.

Boltzmann Entropy

$$S(N,V,E) = k_B \ln \Omega(N,V,E)$$

where $\Omega(N,V,E)$ is the number of microstates with energy $E_i=E$.

Entropy is maximised in equilibrium (2nd law of thermodynamics).

Assume the full system is closed and let $E=E_1+E_2$ be constant. The subsystems are weakly interacting, such that $\Omega_i\equiv\Omega_i(E_i)$.

Derivation

How can we express the total number of microstates?

$$\Omega = \Omega_1(E_1) \cdot \Omega_2(E_2) = \Omega_1(E_1)\Omega_2(E-E_1)$$

In equilibrium, Entropy (S) is maximised, which means $\boldsymbol{\Omega}$ is maximised.

Therefore, $\frac{d\Omega}{dE_1}=0$.

Using the chain rule:

$$egin{aligned} rac{d\Omega}{dE_1} &= rac{d\Omega_1}{dE_1}\Omega_2 + \Omega_1rac{d\Omega_2}{dE_1}\ &= rac{d\Omega_1}{dE_1}\Omega_2 - \Omega_1rac{d\Omega_2}{dE_2} = 0 \end{aligned}$$

This leads to:

$$\frac{1}{\Omega_1} \frac{d\Omega_1}{dE_1} = \frac{1}{\Omega_2} \frac{d\Omega_2}{dE_2}$$

Which can be rewritten as:

$$rac{d}{dE_1} \ln \Omega_1 = rac{d}{dE_2} \ln \Omega_2$$

Let's define a quantity $eta=rac{d}{dE}\ln\Omega$. This quantity must be equal between systems in equilibrium.

From thermodynamics, we know the Maxwell relation:

$$dS=rac{1}{T}dU+rac{p}{T}dV \ (rac{\partial S}{\partial E})_{N,V}=rac{1}{T}$$
 (with $dE=dU$)

Connecting this to our definition of β :

$$eta = rac{d}{dE} \ln \Omega = rac{1}{k_B} rac{dS}{dE} \ \Longrightarrow eta = rac{1}{k_BT}$$

Summary and Boltzmann Distribution

- 1. β is equal between systems in thermal equilibrium.
- 2 . $\beta=rac{1}{k_BT}$, giving a microscopic understanding of entropy and temperature.

Now, consider a small subsystem (1) in contact with a very large heat reservoir (subsystem 2).

Let $E=E_i+E_R$ be the total constant energy, where E_i is the energy of the subsystem in state i, and E_R is the reservoir energy.

The total number of states is $\Omega = \sum_i \Omega_R(E-E_i)$. We sum over individual states, not energy levels.

The probability, p(i), of observing the subsystem in a specific state i with energy E_i is:

$$p(i) = rac{\Omega_R(E-E_i)}{\sum_i \Omega_R(E-E_j)}$$

Assuming the reservoir is infinitely large ($E_i \ll E$), we can do a Taylor expansion of

$$\ln \Omega_R(E-E_i)$$
:

$$\ln \Omega_R(E-E_i) pprox \ln \Omega_R(E) - rac{\partial \ln \Omega_R(E)}{\partial E} E_i$$

$$\ln\Omega_R(E-E_i)pprox \ln\Omega_R(E)-eta E_i$$

Exponentiating this gives:

$$\Omega_R(E-E_i)pprox\Omega_R(E)e^{-eta E_i}pprox C\cdot e^{-eta E_i}$$

Substituting this back into the probability equation, we get the **Boltzmann Distribution**:

$$p(i) = rac{e^{-eta E_i}}{\sum_{j} e^{-eta E_j}}$$

Observables and the Partition Function

For any observable quantity A, its average value is:

$$\langle A
angle = \sum_i p_i A_i = rac{1}{Z} \sum_i A_i e^{-eta E_i}$$

where Z is the **Partition Function**:

$$Z = \sum_i e^{-eta E_i}$$

Summary

- Statistical mechanics connects microstates to the macro state.
- It gives a microscopic connection to entropy and temperature.
- Important concepts:
 - Boltzmann distribution
 - Partition function