f(x)	$= c \cdot a^{x}$
loga(f(x))	= loga (c·ax)
lı .	= loga(c) + loga(x)
Į1	= loga(c) + x
luge(f(x))	= × + C ₂
	ung clieser Funktion wird 1 and eine lineare Funktion schniesst:
mx + 9	mit m = 1 md q = loga(c)
f(x)	$= C \cdot X^2$
log (f(x))	= log(c.x2)
	$= \log(c) + \log(x^*)$
	$= \log(c) + a\log(x)$
	= c ₂ + a log (x)
log (f(x))	= c ₂ + at
Graph:	mx + 9 m = a , x = t , q = log(c)

(i) \(\(\times \) =		Der g-Achsen abschnitt ist quand die Steigung ist m
	5 · (2x1) 3	
f(x) =	5 (2x2) 3	4
$\log(f(x)) =$	log (5 · (2x2)	3) -3)
9	log(5) + log((2	
	109(5) - 310	
	log(5) - 3 log(
	log(5) - 3 · (log (
	log(5) - \frac{1}{3} log(2)	
- W	log(5) - 3 log(2	1) - 3 log(x)
		2
	109(5) - 3109(
105(f(x)) =	109(32) -	
mx + 9	$M = -\frac{2}{3}$, x	= t, q = log(32)

(11)
$$g(x) = 10^{5} \cdot (2e)$$
 | logarithmus Basis $2e$ | log $(g(x)) = \log(10^{5}) + \log(2e)$ | log $(2e)$ | log $(10^{5}) + \log(2e)$ | log $(2e)$ | log $($

$$| (111) | h(x) | = \left(\frac{10^{2x}}{2^{5x}}\right)^{2}$$

$$| h(x) | = \frac{10^{4x}}{2^{10x}}$$

$$| h(x) | = 10^{4x} \cdot 2^{-10x}$$

$$| h(x) | = | \log(10^{4x}) + | \log(2^{-10x})$$

$$| \log(h(x)) | = | 4x \cdot \log(10) - | 10x \cdot \log(2)$$

$$| \log(h(x)) | = | x \cdot | (4 \log(10) - 10 \log(2))$$

$$| m | = | 4 \log(10) - | 10 \log(2)$$

$$| q | = 0$$

$$| x | = x$$