U.C. & differentiability:

Recau: $f_n \rightarrow f \otimes f_n'(x_0)$ exists $\forall n \neq f'(x_0)$ exists.

Another extreme example:

Eg:
$$Su[p]$$
 pose $f_n(x) = \frac{\pi}{1+nx^2}$, $\pi \in \mathbb{R}$, $n \geq 1$.
 $\therefore \{f_n\} \subseteq \mathfrak{F}(\mathbb{R})$,

$$|f_{n}(x)| = \left|\frac{\pi}{1+n\pi^{2}}\right| \qquad |f_{n}(x)| = \left|\frac{\pi}{1+n\pi^{2}}\right| \qquad |f_{$$

= 1 2 × 2 + 0.

$$|f_n(n)| \leqslant \frac{1}{2\sqrt{n}} \cdot \forall n \geqslant 1, n \in \mathbb{R}.$$

$$C(:f_n(0) = 0 \neq n)$$

$$f_n \xrightarrow{u} f$$
, where $f \equiv 0$ on IR .

[Note that fn(0) = 0 + m z1]

Now:
$$f_n(n) = \frac{1}{(+nn^2)^2} \left[-x \times 2nn + (1+nn^2)\right]$$

$$= \frac{-n x^2 + 1}{(1 + n x^2)^2}$$

$$= \frac{(n + n x^2)^2}{(1 + n x^2)^$$

Where
$$F(n) = \begin{cases} 0 & \frac{n \neq 0}{n = 0} \end{cases}$$

In particular,
$$f'_n(0) = 1 + n$$

=) $\lim_{n \to \infty} f'_n(0) = 1 \neq f'(0) = 0$.

Then
$$\{f_n\}$$
 converges uniformly on $[a_1b]$ to a diff.
 $\{f_n, f \}$

$$f'(n) = \lim_{n \to \infty} f_n(n) \quad \forall n \in [a_1b].$$

Prof. Let EXO, 3 NEIN S.F.

$$\|f_n - f_m\| \left\langle \frac{\varepsilon}{2(b-a)} \right\} + m, n > N,$$

$$\int |f_n(x_0) - f_m(x_0)| \left\langle \frac{\varepsilon}{2} \right\rangle = \Re$$

Fix min > N ,

$$(f_n - f_m)(\alpha) - (f_n - f_m)(\alpha_0) = (f_n - f_m)'(\alpha) \times (\alpha - \alpha_0).$$

$$\Rightarrow f_n(x) - f_m(x) = \left(f_n(x_0) - f_m(x_0)\right) + \left(f_n'(y) - f_m'(y)\right) (n - x_0).$$

$$= \left| f_n(n) - f_m(n) \right| \leq \left| f_n(n_0) - f_m(n_0) \right| \cdot \left| f_n'(s) - f_m'(s) \right|$$

$$\Delta - ineq.$$

$$\frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2(b-a)} \times |\pi-n_0|$$

$$\langle \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \rangle$$
 $[n-n_0]$

$$\Rightarrow \left| f_n(x) - f_m(x) \right| \leq \underbrace{\qquad \qquad } \\ + \underset{\text{is towe anyway}}{\text{month }} \underbrace{\qquad \qquad } \\ \underbrace{\qquad \qquad } \underbrace{\qquad \qquad } \\ \underbrace{\qquad \qquad } \\ \underbrace{\qquad \qquad } \\ \underbrace{\qquad \qquad } \underbrace{\qquad \qquad } \\ \underbrace{\qquad \qquad }$$

i.e || fn - fm || < E + m, n > N.

Fix
$$\mathcal{R}(x)$$
:=
$$\begin{cases} f_n(x) - f_n(\tilde{x}) \\ x - \tilde{x} \end{cases}$$

$$f_n'(\tilde{x})$$

$$f_n'(\tilde{x})$$

$$f(x) = \begin{cases} f(x) - f(\tilde{x}) \\ x - \tilde{x} \end{cases}$$

$$f(x) = \begin{cases} f(x) - f(\tilde{x}) \\ x - \tilde{x} \end{cases}$$

Set
$$F_n(x) := \frac{f_n(x) - f_n(\widehat{x})}{x - \widehat{x}}$$

$$\lambda F(x) := \frac{f(x) - f(x)}{x - x}$$

i for is diff. on [a,b] + n, it follows that

$$\lim_{\chi \to \widetilde{\chi}} F_n(\chi) = f'_n(\widetilde{\chi}) \quad + n$$

Also, for each x + [a,b] \ fxi), by MVT, I g between n&x S.t. $\left(f_n - f_m\right)(n) - \left(f_n - f_m\right)(\widetilde{n}) = (n-\widetilde{n}) \times \left(f_n - f_m\right)(9)$

$$=) \qquad \oint_{\mathcal{H}} \left(F_{n}(x) - F_{m}(x) \right) = f_{n}'(y) - f_{m}'(y).$$

(Recau:
$$\|f_n'-f_m'\| < \frac{\varepsilon}{2(b-a)}$$
).

Fin(n) - Fin(n) | $<\frac{\varepsilon}{2(b-a)}$ + $| $<\frac{\varepsilon}{2(b-a)}$ + $|$$$

$$\lim_{n\to\infty}\lim_{n\to\infty}\lim_{n\to\infty}\frac{\int_{\mathbb{R}^n}(\pi)}{\int_{\mathbb{R}^n}(\pi)}=\lim_{n\to\infty}\lim_{n\to\infty}\frac{\int_{\mathbb{R}^n}(\pi)}{\int_{\mathbb{R}^n}(\pi)}$$

$$\lim_{n\to\infty}\lim_{n\to\infty}\frac{\int_{\mathbb{R}^n}(\pi)}{\int_{\mathbb{R}^n}(\pi)}=\lim_{n\to\infty}\frac{\int_{\mathbb{R}^n}(\pi)}{\int_{\mathbb{R}^n}(\pi)}$$

But $f_n \stackrel{u}{\longrightarrow} f \implies F_n(x) \rightarrow \frac{f(x) - f(x)}{x - x} = F(x)$

i.e.
$$\lim_{n\to\infty} F_n(x) = F(n)$$
. $\forall x \neq x$.

$$\lim_{n\to\infty}\lim_{n\to\infty}F_n(n)=\lim_{n\to\infty}F(n).$$

$$\vdots \quad \bigoplus \Rightarrow \lim_{n \to \infty} f'_n(\widetilde{x}) = \lim_{n \to \widetilde{x}} F(n). \quad -f$$

it follows that
$$\lim_{n\to\widetilde{n}} F(n) = F'(\widetilde{n})$$
 exists.

$$f'(\widetilde{x}) = \lim_{n \to \infty} f'_n(\widetilde{x}). \qquad \overline{\square}.$$

Another exotic example:

Styl be a diff. fn. of
$$f_n \to f$$
 unif.
Suppose f is also diff. Still, $f'_n \to f'$
in general []

$$\frac{eq}{J} = \frac{\sin mx}{m} \quad \pi \in [0, 1], \quad n \ge 1.$$

$$\begin{array}{c|c} \begin{array}{c|c} \cdot \cdot \cdot & \frac{\sin nx}{n} & \leq \frac{1}{n} & , & \forall n, & \text{it follows} \\ \hline \\ \text{that} & f_n & \rightarrow f & \text{unif. on } [0,1] & , & \text{where} \\ \hline \\ f \equiv 0 & . \end{array}$$

But $f'_n(x)$ does not converge for $x \in (0,1]$ $f'_n \not \to f'$. (even point

Series of functions.

Def. Let
$$\{f_n\} \subseteq \mathcal{F}(S)$$
. The formal sum of functions $f_1 + f_2 + \cdots := \sum_{n \ge 1} f_n$

is called a Servies of fris. .

$\forall x \in S$, by $\sum f_n(n)$, we understand the formal sum $f_1(n) + f_2(n) + \cdots$.

Given $\sum_{n=1}^{\infty} f_n$, $\forall n \in INT$, define the n-th paorbial sum of the series as:

$$\mathbf{S}_{n}(\mathbf{x}) = \sum_{K=1}^{n} f_{n}(\mathbf{x}). \quad (\forall x \in 3). \quad n \in \mathbb{N}.$$

(Finite sum: So good togo)

Sef: Let $f: S \rightarrow IR$ & of $f_n J_{n_{n_n}} \subset f(S)$. We say that

f is the pointwise limit of $Z f_n$ if $S_n \rightarrow f$ pointwise

on S. $Z f_n = f$, pointaise.

In this case, we write $S f S_n \cup f$ on S, then we say that $Z f_n = f$ uniformly

 $S_{n}(x) = [0,1], \quad f_{n}(n) = n^{n} \quad \forall \quad n, \quad n \in [0,1].$ $S_{n}(x) = \sum_{m=0}^{n-1} x^{m} \quad \Rightarrow \quad S_{n}(x) = \frac{1-x^{m}}{1-x} \quad \forall \quad x \in [0,1].$

 $\lim_{n\to\infty} s_n(x) = \frac{1}{1-x} + x \in [0,1].$

i.e. $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ pointwise on (0,1).

However,
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-n}$$
 is $n \circ t$ uniform en $[0,1)$.

Indeed: 1-x & B [0.1). However:

$$S_n \in \mathcal{B}[0,1]$$
 & $\lim_{n\to\infty} S_n(x) = \frac{1}{1-x}$.

Thm: (Cauchy Criterion) Let {fn} C Je(3). Then Ifn Governges uniformly on S (=> for E>0 7 NEIN S.E.

$$\left\|\sum_{k=m+1}^{n}f_{k}\right\|<\varepsilon$$
 $\forall n>mn>N$.

Proof: " Sn = Z fk, it follows that

$$S_n - S_m = \sum_{k=m+1}^{m} f_k \qquad \forall \quad n > m.$$

Then Ifn is u.c. (=> {Sn} is u.c. 2=> Cauchy
Criterian for Sey of fors.

Cor: If Ifn Converges uniformly on 3, then ||fn|| -> 0 as n->0.

Proof: : $f_n = S_{n+1} - S_n$ $\forall n$, this follows from the above theorem.

 \mathcal{L} Consider $0 < \mathcal{E} < 1 \leq \sum_{n=0}^{\infty} \mathcal{X}^n$. Let n > m, $x \in [-\mathcal{E}, \mathcal{E}]$

 $|S_n(x) - S_m(x)| = \frac{1}{11-x_1} \times |(1-x^n) - (1-x^m)|$

 $= \frac{|x^n - x^m|}{|1 - x|} \leq \frac{2|x|^m}{|1 - x|} \qquad (:n)_m$