## Document made available under **Patent Cooperation Treaty (PCT)**

International application number: PCT/FR05/000093

International filing date:

14 January 2005 (14.01.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: FR

Number:

0400366

Filing date:

15 January 2004 (15:01.2004)

Date of receipt at the International Bureau: 30 March 2005 (30.03.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)





## BREVET D'INVENTION

## CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

### **COPIE OFFICIELLE**

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

> Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

> > Martine PLANCHE

INSTITUT National de La propriete Industrielle SIEGE
26 bis, rue de Saint-Petersbourg
75800 PARIS cedex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpl.fr



### **BREVET D'INVENTION** CERTIFICAT D'UTILITÉ



Code de la propriété intellectuelle - Livre VI

NATIONAL DE LA PROPRIETE
LA PROPRIETE
10 STATE LA PROPRIETE
26 bis, rue de Saint Pétersbourg
75800 París Cedex 08
Téléphone: 01 53 04 53 04 Télécopie: 01 42 94 86 54

REQUÊTE EN DÉLIVRANCE 1/2

| Réservé à l'INPI                                                                                                                                                 |                                                              |                                  | Cet imprimé est à remplir lisiblement à l'encre noire DB 540 W / 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| REMISE DES PIÈCES DATE LIEU 15 JAN 2004 75 INPI PARIS 26Bis SP N° D'ENREGISTREMENT NATIONAL ATTRIBUÈ PAR L'INPI DATE DE DÉPÔT ATTRIBUÈE PAR L'INPI 1 5 JAN. 2004 |                                                              |                                  | NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE<br>À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                  |                                                              |                                  | GROSSET-FOURNIER & DEMACHY 54, rue Saint-Lazare F-75009 Paris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Vos référence<br>(facultatif)                                                                                                                                    | s pour ce dossier<br>IFB 03 DH INR ORI                       | US                               | <b>I</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Confirmation                                                                                                                                                     | d'un dépôt par télécopie                                     | ☐ N° attribué par                | l'INPI à la télécopie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| NATURE DE LA DEMANDE                                                                                                                                             |                                                              | }                                | 4 cases suivantes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Demande de brevet                                                                                                                                                |                                                              | ×                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Demande d                                                                                                                                                        | e certificat d'utilité                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Demande d                                                                                                                                                        | ivisionnaire                                                 |                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                  | Demande de brevet initiale                                   | N°                               | Date / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| ou der                                                                                                                                                           | nande de certificat d'utilité initiale                       | N <sub>o</sub>                   | Date / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                  | on d'une demande de<br>éen <i>Demande de brevet initiale</i> | N°                               | 200 / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                  | 'INVENTION (200 caractères ou                                |                                  | Date / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| FN DÉCLADATI                                                                                                                                                     |                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE                                                                                                                |                                                              | Pays ou organisation<br>Date / / | N°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| LA DATE DE                                                                                                                                                       | DÉPÔT D'UNE                                                  | Pays ou organisation Date / /    | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| DEMANDE ANTÉRIEURE FRANÇAISE                                                                                                                                     |                                                              | Pays ou organisation Date ' / /  | N°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 5 PEMANDEL                                                                                                                                                       | IR ·                                                         |                                  | es priorités, cochez la case et utilisez l'imprimé «Suite»                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                  | mination sociale                                             | S'il y a d'autr                  | es demandeurs, cochez la case et utilisez l'imprimé «Suite»                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                  |                                                              | INSTITUT NATIO                   | ONAL DE LA RECHERCHE AGRONOMIQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Prénoms                                                                                                                                                          |                                                              |                                  | TOYOU MONOMIQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Forme juridiq                                                                                                                                                    | ue                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Code APE-NAF                                                                                                                                                     |                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 0000711 2-11771                                                                                                                                                  | <u> </u>                                                     | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Adresse                                                                                                                                                          | Rue                                                          | 147, rue de l'Uni                | versité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Code postal et ville                                                                                                                                             |                                                              | F-75338 PARI                     | TO CHANGE IN COLUMN TO THE COLUMN THE COLUMN TO THE COLUMN TO THE COLUMN TO THE COLUMN TO THE COLUMN |  |  |  |
| Nationalité                                                                                                                                                      |                                                              | FRANCE FRANCE                    | S CEDEX 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| N° de téléphone (facultatif)                                                                                                                                     |                                                              | FRANCAISE                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N° de télécopie (facultatif)                                                                                                                                     |                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Adresse électronique (facultatif)                                                                                                                                |                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |



Réservé à l'INPI

### BREVET D'INVENTION CERTIFICAT D'UTILITÉ



N

| REMISE DES PIECES DATE 15 JAN 2004 LIEU 75 INPI PARIS 26Bis SP N° D'ENREGISTREMENT 0400366                                   | DB 540 W / 190600                                                                                                                                                                                                                                                |  |  |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Vos références pour ce dossier : (facultatif)                                                                                | IFB 03 DH INR ORUS                                                                                                                                                                                                                                               |  |  |
| MANDATAIRE  Nom  Prénom  Cabinet ou Société  N °de pouvoir permanent et/ou de lien contractuel                               | DEMACHY Charles GROSSET-FOURNIER & DEMACHY                                                                                                                                                                                                                       |  |  |
| Adresse  Code postal et ville  N° de téléphone (facultalif)  N° de télécopie (facultatif)  Adresse électronique (facultatif) | 54, rue Saint-Lazare<br>75009   PARIS<br>01.42.81.09.58<br>01.42.81.08.71                                                                                                                                                                                        |  |  |
| M INVENTEUR (S)                                                                                                              |                                                                                                                                                                                                                                                                  |  |  |
| Les inventeurs sont les demandeurs                                                                                           | ☐ Oui ☑ Non Dans ce cas fournir une désignation d'inventeur(s) séparée                                                                                                                                                                                           |  |  |
| RAPPORT DE RECHERCHE                                                                                                         | Uniquement pour une demande de brevet (y compris division et transformation)                                                                                                                                                                                     |  |  |
| Établissement immédiat<br>ou établissement différé                                                                           | , <del></del>                                                                                                                                                                                                                                                    |  |  |
| Paiement échelonné de la redevance                                                                                           | Paiement en deux versements, uniquement pour les personnes physiques ☐ Oui ☐ Non                                                                                                                                                                                 |  |  |
| RÉDUCTION DU TAUX     DES REDEVANCES                                                                                         | Uniquement pour les personnes physiques  Requise pour la première fois pour cette invention (joindre un avis de non-imposition)  Requise antérieurement à ce dépôt (joindre une copie de la décision d'admission pour cette invention ou indiquer sa référence): |  |  |
| Si vous avez utilisé l'imprimé «Suite»,<br>indiquez le nombre de pages jointes                                               |                                                                                                                                                                                                                                                                  |  |  |
| 1 OO SO WANDERSTONED                                                                                                         | es B-EMACHY OU de l'impi                                                                                                                                                                                                                                         |  |  |

# PROCEDE DE SURPRODUCTION D'UNE PROTEINE RECOMBINANTE DETERMINEE PAR DES SOUCHES MONOCARYOTIQUES DE P. CINNABARINUS

5

La présente invention concerne l'utilisation de souches monocaryotiques de champignons filamenteux de l'espèce *Pycnoporus* du groupe basidiomycète, pour la mise en oeuvre d'un procédé de préparation d'une protéine recombinante déterminée, ledit procédé étant effectué par surexpression du gène codant pour cette protéine dans la souche monocaryotique susmentionnée de *Pycnoporus*.

10

A l'heure actuelle, deux modèles fongiques sont utilisés préférentiellement par les grands groupes industriels dans le cadre de la production d'enzymes intervenant dans les biotransformations végétales, telles que les métalloenzymes. Il s'agit d'*Aspergillus*, et de *Trichoderma*, qui appartiennent au groupe des deutéromycètes. Toutefois, les rendements de production à l'aide de ces modèles, notamment en production de laccases, n'excèdent pas les 150 mg/l.

15

20

La présente invention découle de la mise en évidence par les Inventeurs du fait que la transformation de souches monocaryotiques de P. cinnabarinus déficientes pour l'activité laccase à l'aide de vecteurs contenant le gène codant pour cette laccase et dont l'expression est sous le contrôle d'un promoteur identique au promoteur pLac endogène de la laccase de P. cinnabarinus, conduit à une production équivalente de laccase que lors de la mise en œuvre d'un procédé de surproduction de laccase par induction du promoteur endogène de cette laccase par action de l'éthanol sur des souches monocaryotiques de P. cinnabarinus non déficientes pour l'activité laccase, et qui égale le g/l.

25

Des résultats similaires ont été obtenus par les Inventeurs en utilisant le promoteur gpd, et le promoteur sc3 de Schizophyllum commune, en lieu et place du promoteur pLac susmentionné.

30

La présente invention a pour objet un procédé de préparation d'une protéine recombinante déterminée, ledit procédé étant effectué par surempression du gène codant pour cette protéine, déterminée dans une souche monocaryorique de champignons of anyment le a captor d'a magnetic de groupe à unidiementes, et a magnetique.

contenant le gène codant pour la protéine recombinante déterminée, dont l'expression est placée sous le contrôle d'un promoteur correspondant à un promoteur endogène des champignons susmentionnés, ou d'un promoteur différent (encore désigné promoteur exogène), ledit promoteur étant constitutif ou inductible,

- le cas échéant une étape d'induction du promoteur susmentionné, lorsque celui-ci est inductible,
- la récupération, et, le cas échéant, la purification de la protéine recombinante déterminée, produite dans le milieu de culture.

L'invention a plus particulièrement pour objet un procédé tel que décrit ci-dessus, caractérisé en ce que la souche monocaryotique de *Pycnoporus* utilisée pour la surexpression du gène codant pour la protéine recombinante déterminée, est telle qu'obtenue par mise en culture de la souche dicaryotique d'origine à 30°C dans le noir pendant 15 jours, suivie d'une étape d'exposition au jour 2 à 3 semaines à température ambiante jusqu'à la formation d'organes de fructification correspondant à des hyphes différenciées appelées basides, au sein desquels a alors lieu la caryogamie (fusion des noyaux), suivie de la méiose qui conduit à la formation de quatre spores sexuées, ou basidiospores haploïdes génétiquement différentes, qui, après germination, engendre un mycélium monocaryotique.

Avantageusement, la souche monocaryotique de *Pycnoporus* utilisée dans le procédé susmentionné de l'invention, est une souche de *Pycnoporus cinnabarinus*.

in

Les protéines recombinantes déterminées surexprimées dans le cadre de la mise en oeuvre du procédé selon l'invention, correspondent soit à des protéines endogènes de *Pycnoporus*, soit à des protéines exogènes différentes des protéines endogènes de *Pycnoporus*. Notamment ces protéines exogènes correspondent à des protéines endogènes de basidiomycètes autres que *Pycnoporus*, telles que les enzymes basidiomycètes intervenant dans les biotransformations végétales.

L'invention a plus particulièrement pour objet un procédé tel que décrit ci-dessus, caractérisé en ce que les protéines les protéines recombinantes déterminées correspondent aux protéines endogènes de *Pycnoporus* suivantes :

- les métalloenzymes, telles que la laccase, ou la tyrosinase,
- ou la cellobiose déshydrogénase, la xylanase, la  $\beta$ -glycosidase, l'invertase, ou l' $\alpha$ -amylase.

Avantageusement, dans le cas de la préparation de protéines recombinantes déterminées correspondant aux protéines endogènes de *Pycnoporus*, la souche

10

5

15

20

25

monocaryotique de *Pycnoporus* utilisée est déficiente pour le gène codant pour la protéine endogène à laquelle correspond la protéine recombinante déterminée, afin de ne pas avoir à séparer la protéine recombinante déterminée de la protéine endogène à laquelle elle correspond lors de la purification de ladite protéine recombinante.

5

En variante, toujours dans le cas de la préparation de protéines recombinantes déterminées correspondant aux protéines endogènes de *Pycnoporus*, la souche monocaryotique de *Pycnoporus* utilisée peut ne pas être déficiente pour le gène codant pour la protéine endogène à laquelle correspond la protéine recombinante déterminée, ladite souche étant alors transformée à l'aide d'un vecteur d'expression contenant le gène codant pour la protéine recombinante déterminée marquée afin de la distinguer de la protéine endogène lors de l'étape de purification. A titre d'illustration, la protéine recombinante déterminée peut être marquée par une étiquette histidine (His-tag).

10

A ce titre, l'invention a plus particulièrement pour objet un procédé de préparation de laccases recombinantes correspondant aux laccases endogènes de *Pycnoporus*, caractérisé en ce qu'il comprend :

15

-'une étape de mise en culture d'une souche monocaryotique de *Pycnoporus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de Pycnoporus, transformée à l'aide d'un vecteur d'expression contenant le gène codant pour une laccase de *Pycnoporus*, le cas échéant marquée, et dont l'expression est placée sous le contrôle d'un promoteur correspondant au promoteur endogène de cette laccase,

20

- une étape d'induction du promoteur susmentionné, notamment par addition d'éthanol, ou de sous-produits agricoles contenant de la lignocellulose comme la paille de blé, les sons de maïs et la pulpe de betterave, ou des composés à cycle aromatique comme la 2,5-xylidine, l'acide vératrylique, le guaïcol, l'alcool vératrylique, la syringaldazine, l'acide férulique, l'acide caféique et les lignosulfonates,

25

- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, correspondant à la laccase endogène de *Pycnoporus* susmentionnée produite dans le milieu de culture, notamment selon la méthode décrite dans Sigoillot J.C., Herpoel I., Frasse P., Mouldha S., Lesage-Meessen L., Asther M. 1999: Laccase production by a monoltaryotic strain *Pycnoporus chuncharinus* derived from a dilutyotic strain: Viorid Journal of Microbiology and Eletechnology 15, 401-402.

Pycnoporus cinnabarinus représentée par SEQ ID NO : 2, caractérisé en ce qu'il comprend :

- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus cinnabarinus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus cinnabarinus*, transformée à l'aide d'un vecteur d'expression contenant la séquence nucléotidique SEQ ID NO: 1 codant pour la laccase recombinante représentée par SEQ ID NO: 2, le cas échéant marquée, notamment par une étiquette His-tag, et dont l'expression est placée sous le contrôle du promoteur *pLac* correspondant au promoteur endogène de la laccase susmentionnée, la séquence dudit promoteur *pLac* étant représentée par SEQ ID NO: 3,
  - une étape d'induction par l'éthanol du promoteur pLac susmentionné,
- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, représentée par SEQ ID NO : 2 produite dans le milieu de culture, notamment selon la méthode décrite dans Sigoillot J.C., et al. (1999) susmentionné.

L'invention a plus particulièrement pour objet un procédé de préparation de laccases recombinantes correspondant aux laccases endogènes de *Pycnoporus*, caractérisé en ce qu'il comprend :

g.,

- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus*, transformée à l'aide d'un vecteur d'expression contenant le gène codant pour une laccase de *Pycnoporus* dont l'expression est placée sous le contrôle d'un promoteur exogène choisi parmi :
- \* le promoteur *gpd* de l'expression du gène codant pour la glycéraldéhyde 3-phosphate déhydrogénase de *Schizophyllum commune*, dont la séquence nucléotidique est représentée par SEQ ID NO : 4,
- \* ou le promoteur sc3 de l'expression du gène codant pour l'hydrophobine de Schizophyllum commune, dont la séquence nucléotidique est représentée par SEQ ID NO : 5,
- la récupération, et, le cas échéant, la purification de la laccase recombinante correspondant à la laccase endogène de *Pycnoporus* susmentionnée produite dans le milieu de culture, notamment selon la méthode décrite dans Sigoillot J.C., et al. (1999) susmentionné.

.

15

10

5

20.

25

L'invention concerne plus particulièrement un procédé tel que défini ci-dessus, de préparation de la laccase correspondant à la laccase endogène de *Pycnoporus cinnabarinus* représentée par SEQ ID NO : 2, caractérisé en ce qu'il comprend :

- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus cinnabarinus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus cinnabarinus*, transformée à l'aide d'un vecteur d'expression contenant la séquence nucléotidique SEQ ID NO: 1 codant pour la laccase recombinante représentée par SEQ ID NO: 2, le cas échéant marquée, notamment par une étiquette His-tag, dont l'expression est placée sous le contrôle du promoteur exogène gpd ou sc3,

- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, représentée par SEQ ID NO : 2 produite dans le milieu de culture, notamment selon la méthode décrite dans Sigoillot J.C., et al. (1999) susmentionné.

L'invention a également pour objet la séquence nucléotidique codant pour le promoteur pLac de la laccase endogène de Pycnoporus cinnabarinus, et correspondant à la séquence SEQ ID NO: 3, ou toute séquence dérivée de ce promoteur par substitution, addition ou suppression d'un ou plusieurs nucléotides et conservant la propriété d'être un promoteur de l'expression de séquences.

L'invention concerne également tout vecteur d'expression, tel que le plasmide pELP, caractérisé en ce qu'il comprend la séquence SEQ ID NO : 3 du promoteur *pLac* susmentionné, ou une séquence dérivée telle que définie ci-dessus.

L'invention a plus particulièrement pour objet tout vecteur d'expression tel que défini ci-dessus, caractérisé en ce qu'il comprend un gène codant pour une protéine recombinante déterminée, et dont l'expression est placée sous le contrôle du promoteur pLac susmentionné, ou d'une séquence dérivée telle que définie ci-dessus.

L'invention concerne plus particulièrement tout vecteur d'expression tel que défini ci-dessus, caractérisé en ce que la protéine recombinante déterminée est une protéine correspondant à une protéine endogène de *Pycnoporus* choisie parmi les suivantes :

- les métalloenzymes, telles que la laccase, ou la tyrosinase,
- ou la cellobiose déshydrogénase, la xylanase, la  $\beta$ -glycosidase, l'invertase, ou l'ex-amylase.

L'invention concerns également touts callule hôte transformée à l'aide d'un matteur d'appression de che a ministrature.

10

5

15

20

25

L'invention a plus particulièrement pour objet toute cellule hôte susmentionnée, correspondant à des cellules monocaryotiques de souches de *Pycnoporus*, telles que les souches de *Pycnoporus cinnabarinus*.

L'invention a également pour objet l'utilisation de vecteurs d'expression tels que définis ci-dessus, ou de cellules hôtes susmentionnées, pour la mise en oeuvre d'un procédé de surproduction d'une protéine recombinante déterminée telle que définie ci-dessus.

5

10

15

20

25

30

L'invention sera davantage illustrée à l'aide de la description détaillée qui suit du SEPC: Système d'Expression *Pycnoporus cinnabarinus*, à savoir du développement d'un modèle d'expression fongique performant permettant de s'affranchir des modèles industriels utilisés actuellement par les grands groupes européens (*Aspergillus* et *Trichoderma*).

En résumé, il s'agit d'un système d'expression eucaryote et plus spécifiquement de champignon filamenteux du groupe basidiomycète, *Pycnoporus cinnabarinus*, qui a été développé par les Inventeurs pour la surexpression de protéines d'intérêt industriel. Ce travail a été fait dans le cadre de l'étude de métalloenzymes, telles que les laccases, et en particulier a permis de cloner les gènes impliqués pour leur surexpression, et de surproduction des laccases en grande quantité à l'aide de fermenteurs, ceci afin de les utiliser dans des applications industrielles à usage alimentaire (panification, préparation de boissons afin de moduler la couleur du thé, aider à la clarification des jus de fruits et des boissons alcoolisées, formation d'agropolymères) et non alimentaire (traitement des « jeans », dégradation de polluants aromatiques dans les sols, bioblanchiment des fibres lignocellulosiques dans le domaine des pâtes à papier).

. . '

Α.

## I) Obtention de lignées monocaryotiques de *Pycnoporus cinnabarinus* pour la transformation du champignon et la surproduction de gènes d'intérêt.

Cette étape a pour but d'isoler puis de sélectionner des lignées cellulaires haploïdes issues des spores sexuées d'un champignon filamenteux, *Pycnoporus* cinnabarinus, qui seront utilisées en temps qu'hôte pour l'expression des gènes d'intérêt. *P. cinnabarinus* est un champignon hétérothallique qui se trouve à l'état sauvage sous forme dicaryotique (deux noyaux non appariés par cellule) à partir duquel des lignées monocaryotiques sont sélectionnées (un noyau par cellule), potentiellement plus stable et donc utilisable pour la transformation génétique. Dans le cadre de cette

étude les Inventeurs se sont attachés à sélectionner de lignées monocaryotiques déficientes pour l'activité laccase (lac'). A l'état dicaryotique, le champignon peut se multiplier par voie végétative (Fig. 1). Mais, sous l'influence de conditions environnementales particulières, on peut induire, en laboratoire, la formation d'organes de fructification. Au sein d'hyphes différenciées appelées basides, a alors lieu la caryogamie (fusion des noyaux), suivie de la méiose qui conduit à la formation de quatre spores sexuées, ou basidiospores haploïdes génétiquement différentes. Après germination, chaque basidiospore engendre un mycélium monocaryotique. Un simple test colorimétrique permet ensuite de ne sélectionner que les souches dépourvues d'activité laccase.

### 1) Isolement des souches monocaryotiques

5

10

15

20

25

30

Le milieu de fructification est composé d'extrait de malt 2% (P/V) et de l'agar (1,6% P/V). Les cultures sont ensemencées dans des boites de Pétri et gardées à 30°C dans le noir pendant 15 jours avant de les exposer au jour 2 à 3 semaines à température ambiante. Le corps de fructification apparaît orange-rouge. Les monospores sont alors récoltées avec de l'eau stérile sur le couvercle de la boite de Pétri. La suspension est diluée et mise en culture dans des boites de Pétri contenant un milieu MA2 (malt'2% P/V et agar 2% P/V) dans le but d'isoler des colonies. Des cultures pures isolées sont piquées et gardées dans du milieu MA2 à 30°C pendant 5 jours et stockées à 4°C.

Dans ces conditions, une souche monocaryotique déficiente pour l'activité laccase a été sélectionnée pour la transformation avec le vecteur d'expression dans le but de surexprimer le gène de la laccase. Une étude en Southern blot a été effectuée et a permis de démontrer que cette souche est déficiente pour le gène codant pour la laccase chez P. cinnabarinus.

### 2) Test rapide de détection de l'activité laccase des colonies monospores

Un morceau de mycélium est déposé dans une boite de Petri et recouvert d'une goutte de syringaldazine 0,1% (P/V) en solution éthanolique; Après 15 minutes, un changement de couleur est observé. Le 2,2-azino-bis-[3-ethylthiazoline-6-sulfonate] (ADTE) peut-êure utilisé égatement comme substrat pour révéler une activité luccase.

### 3) Conditions de cultures pour produire la laccase

5

10

15

20

25

30

Un inoculum est prélevé des précultures qui ont poussé 10 jours à 30°C dans des fioles de Roux contenant 200 mL d'un milieu synthétique avec la composition suivante pour 1L: maltose (20 g), tartrate de diammonium (1,84 g), tartrate de disodium (2,3 g), KH<sub>2</sub>PO<sub>4</sub> (1,33 g), CaCl<sub>2</sub>, H<sub>2</sub>O (0,1 g), MgSO<sub>4</sub>, 7H<sub>2</sub>O (0,5 g), FeSO<sub>4</sub>,7H<sub>2</sub>O (0,07 g), ZnSO<sub>4</sub>,7H<sub>2</sub>O (0,046 g), MnSO<sub>4</sub>,H<sub>2</sub>O (0,035 g), CuSO<sub>4</sub>,5H<sub>2</sub>O (0,1 g), extrait de levure (1 g), solution de vitamines (1 mL/L) selon Tatum et al. (Biochemical mutant strains of Neurospora produced by physical and chemical treatment. American Journal of Botany, 37: 38-46, 1950). Le mycélium de deux fioles est collecté, mélangé à 100 mL d'eau stérile et broyés au mixeur Ultraturax 60 sec. Pour produire de la laccase, le milieu synthétique est inoculé par 1 mL de la suspension de mycélium. Le milieu (100 mL) est ensuite incubé à 30°C dans des fioles erlenmeyer bafflées de 250 mL sous agitation (120 rpm).°

## II) Clonage du gène codant pour la laccase de *Pycnoporus cinnabarinus* et de son promoteur en vue de la construction d'un vecteur d'expression

Il s'agit d'un système d'expression eucaryote et plus particulièrement de champignon filamenteux, *Pycnoporus cinnabarinus*, du groupe basidiomycète pour la surproduction de protéines recombinantes déterminées. Le modèle d'étude sélectionné est celui de la laccase de *P. cinnabarinus*. A l'heure actuelle, deux modèles fongiques sont utilisés préférentiellement par les grands groupes industriels. Il s'agit d'*Aspergillus* et de *Trichoderma* qui appartiennent au groupe des Deutéromycètes. Ce système d'expression est donc tout à fait original et devrait comblen la lacune concernant le développement de système d'expression basidiomycète compatible avec les exigences des industriels (possibilité de production à grande échelle de protéines sécrétées dans le milieu extra-cellulaire et culture du champignon producteur en fermenteur).

## 1) Clonage de gène de la laccase de Pycnoporus cinnabarinus et de son promoteur

Dans une première étape, les Inventeurs ont amplifié un fragment du gène codant pour la laccase à l'aide d'amorces nucléotidiques dégénérées (Fig. 2). Les amorces dégénérées amont F2 (SEQ ID NO: 6; CAYTGGCAYGGRTTCTTCC) et aval R8 (SEQ ID NO: 7; GAGRTGGAAGTCRATGTGRC) ont été déduites, respectivement,

5

10

15

20

25

30

des régions de liaison au cuivre I et IV des laccases d'organismes voisins et utilisées, dans une réaction de PCR (Polymerase Chain Reaction) en utilisant l'ADN génomique de *P. cinnabarinus* I-937. A 10 μl de mélange réactionnel sont ajoutés : 100 ng d'ADN génomique; 0.2 mM de dATP, dCTP, dTTP, and dGTP; 25 pmol de chaque amorce nucléotidique; 0.1 volume de tampon 10X *Pfu* polymerase (100 mM Tris-HCl, 15mM MgCl<sub>2</sub>, 500 mM KCl, pH 8,3) and 1 U de polymerase *Pfu*. Le mélange est chauffé à 94°C pendant 5 min avant d'ajouter la polymérase. Les conditions de la réaction sont les suivantes : 5 cycles de 94 °C, 5 min; 55 °C, 30 s; et 72 °C, 4 min; puis 25 cycles of 94 °C, 30 s; 55 °C, 30 s, et 72 °C, 3 min. Une étape de 10 min à 72°C est effectuée afin de finir la réaction. Une bande de 1,64 kpb a été obtenue correspondant à la partie centrale du gène de la laccase. La séquence ADN a été clonée dans pGEM-T afin de séquencer cette partie du gène.

Par une technique de Southern blot (Fig. 3), nous avons défini les sites de restriction appropriés afin d'obtenir un fragment d'ADN minimum, pouvant contenir l'intégralité de gène de la laccase, et qui sont susceptibles de servir à amplifier les extrémités 5' et 3' manquantes. Un Southern blot a été effectué avec l'ADN génomique de P. cinnabarinus avec les enzymes, BamHI, EcoRI, PstI, PvuII, SacI, SmaI and Xba I et a permis de sélectionner PstI qui donne une bande de 3.5 kpb par digestion de l'ADN génomique. Afin d'amplifier les parties manquantes du gène, une technique de PCR inverse a été utilisée avec un mélange de PCR contenant des amorces nucléotidiques spécifiques de la partie centrale précédemment isolée et de l'ADN génomique de P. cinnabarinus. La réaction de PCR est effectuée avec 150 ng d'ADN coupé par PstI et recircularisé sur lui-même par ligation et les amorces nucléotidiques Fex (SEQ ID NO: 8; GGATAACTACTGGATCCGCG) et Rex (SEQ ID NO: 9; CGCAGTATTGCGTGGAGAG). Les conditions de la réaction sont les suivantes : 5 cycles de 94 °C, 5 min; 55 °C, 30 s; et 72 °C, 5 min; puis 25 cycles of 94 °C, 30 s; 55 °C, 30 s, et 72 °C, 4 min avec une étape finale de 10 min à 72 °C. Le fragment d'ADN amplifié correspond à une bande de 2,7 kpb qui a été cloné dans pGEM-T et séquencé.

L'intégralité du gène codant pour la laccase a été ensuite définie en combinant la partie contrais et les parties 5° et 3° amplifises. Lim és vérifier cette depuence.

e pregnance du desse a lue arspiréé (1.394 Luis, Fig. ), des lus minares invectoriés acti

P. cinnabarinus. Ce gène a été également cloné à partir de l'ADN génomique de P. cinnabarinus ss3 et s'est avéré être identique à celui isolé chez P. cinnabarinus I-937.

5

2) Construction du vecteur d'expression utilisant le promoteur du gène de la laccase

promoteur de ce gène en utilisant la même stratégie employée précédemment pour l'isolement du gène, c'est-à-dire avec une technique de PCR inverse sur un fragment

A partir de la séquence du gène de la laccase, les Inventeurs ont cloné le

10

d'ADN génomique (3,5 kpb) coupé cette fois-ci par l'enzyme de restriction BgIII (Fig.

5). Deux mille cinq cent vingt sept kpb en avant du gène de la laccase ont été ainsi cloné par PCR inverse et séquencé. Ce promoteur a été placé dans un vecteur une résistance à

l'ampicilline pour son sous-clonage dans la bactérie et une résistance à la phléomycine

utilisé comme marqueur de sélection dans le champignon. Un terminateur du gène codant pour l'hydrophobine sc3 de Schizophyllum commune a été placé en aval afin de

terminer l'étape de transcription. Ce vecteur appelé pELP sera utilisé pour l'expression

homologue de la laccase (Fig. 6). Deux autres promoteurs hétérologues ont été utilisés dans cette étude. Ce sont les promoteurs des gènes codant pour la glycéraldéhyde 3-

- 20

15

25

30

III) Transformation de la souche monocaryotique avec les vecteurs d'expression (modèle d'étude : la laccase de Pycnoporus cinnabarinus)

phosphate déshydrogénase (gpd) et l'hydrophobine (sc3) de Schizophyllum commune (Fig. 6), constituant respectivement les vecteurs d'expression pEGT et pESC.

L'intégralité des séquences nucléotidiques de vecteurs pEGT (SEQ ID NO: 12), pESC. (SEQ ID NO: 13), et pELP (SEQ ID NO: 14), se trouvent dans les figures 7, 8 et 9

1) Préparation du mycélium pour l'obtention de protoplastes

avec les positions du promoteur, du marqueur de sélection et du terminateur.

Un quart d'une colonie cultivée en milieu solide (10 jours) est homogénéisé avec un mixeur (type Ultraturax, vitesse lente) pendant une minute dans 50 ml de milieu YM (par litre: glucose 10 g, peptone 5 g, extrait de levure 3 g, extrait de malt 3 g). Le broyat est transféré dans un erlenmeyer de 250 ml stérile où l'on rajoute50 ml de milieu YM, puis incubé à 30°C et sous agitation (225 rpm) pendant 20 heures. La culture est une nouvelle fois homogénéisée pendant 1 min (vitesse lente) et on rajoute 100 ml de

milieu YM. Le broyat est transféré dans un erlenmeyer de 500 ml et mis en culture pendant une nuit à 30°C.

### 2) Préparation des protoplastes

5

10

15

20

25

30

La culture de champignon est centrifugée pendant 10 min à 2000 rpm dans un rotor oscillant (tube de 50 ml). Seize g (poids humide) sont lavés dans 40 ml d'une solution de MgSO<sub>4</sub> 0,5 M ou de saccharose 0,5 M. Dans le cas de l'utilisation du saccharose, l'enzyme lytique utilisée pour digérer les parois est diluée dans le saccharose. Le mycélium est ensuite centrifugé 10 min à 2000 rpm et le surnageant éliminé. Concernant la lyse des parois fongiques, on ajoute au mycélium provenant de 50 ml de culture, 10 ml d'enzyme lytique (Glucanex, Sigma) dilué à 1 mg/ml dans une solution de MgSO<sub>4</sub> 0,5 M . La digestion se fait dans un erlenmeyer de 500 ml à 30°C sous faible agitation pendant 3 à 4 heures. Pendant cette incubation, l'apparition des protoplastes est contrôlée au microscope. Dix ml d'eau stérile sont rajoutés, puis mélangés délicatement. Les protoplastes sont laissés 10 min, le temps que l'équilibre avec l'eau se fasse (les protoplastes vont flotter à la surface). Ils sont ensuite centrifugés 10 min à 2000 rpm dans un rotor oscillant. Le surnageant contenant les protoplastes est transféré délicatement dans un nouveau de 50 ml. Le culot restant peut-être re-incubé avec 25 ml d'une solution de MgSO<sub>4</sub> 0,5M pour récupérer le maximum de protoplastes (on répète alors l'étape de centrifugation). Un volume de sorbitol 1 M, égal à celui de la préparation des protoplastes, lui est rajouté. Pendant 10 min, on laisse les protoplastes relarguer l'eau. Cette préparation est ensuite centrifugée 10 min à 2000 rpm. Le surnageant est éliminé, tout en laissant un peu de sorbitol. Les protoplastes sont transférés dans un nouveau tube. Le précédent tube est rincé ayec la solution de sorbitol 1M et les protoplastes récupérés, ajoutés dans le nouveau tube. Les protoplastes sont comptés et centrifugés 10 min à 2000 rpm. Ils sont ensuite dilués à une concentration de 2. 10<sup>7</sup> protoplastes par ml dans la solution de sorbitol 1M. Une solution de CaCl2 à 0,5 M (1/10) est rajoutée aux protoplastes.

### 3) Transformation des protoplastes

Four to transformation, 100 µl de protoclastes sont transformés avec 5 à 10 µg se traiteur de continue turniment de con par extende mai sentin de con mille sons aless actues de la finite sons de continue que continue de co

Deux et demi ml de milieu de régénération (pour 100 ml : glucose 2 g, MgSO<sub>4</sub>,7H<sub>2</sub>O 12,5 g, KH<sub>2</sub>PO<sub>4</sub> 0,046 g, K<sub>2</sub>HPO<sub>4</sub> 0,1 g, bacto peptone 0,2 g, extrait de levure 0,2 g) sont rajoutés aux protoplastes qui sont incubés une nuit à 30°C. Des boites de sélection (milieu YM contenant de la phléomycine à 7 μg/ml, boites carrées) sont préchauffées à 37°C. Sept et demi ml d'un mélange de top agar (Low Melting Point agarose 1% dilué dans un milieu YM contenant de la phléomycine 7 à 10 μg/ml) sont ajoutés au milieu de régénération contenant les protoplastes et sont versés sur les boites de sélection préchauffées. Quand la solution de top agar s'est solidifiée, les boites sont incubées à 30°C pendant 4 jours. Les transformants sont alors transférés sur de nouvelles boites de sélection.

### 4) Ciblage des transformants

A partir de 16 g de mycélium, on obtient généralement de l'ordre de 1 à 2.10<sup>7</sup> protoplastes. Le pourcentage de régénération est de 10 %. Concernant le vecteur pESC, les monokaryons ont été transformés avec le vecteur contenant le cDNA (BRFM 472, 473 et 474) ou le gène codant pour la laccase de *P. cinnabarinus* (BRFM 470 et 471) (Fig. 10). En parallèle, d'autres monokaryons ont été transformés avec les promoteurs pEGT (GPD11, 12 et 13) ou avec le vecteur pELP (12.3, 12.7 et 12.8) contenant le gène codant pour la laccase (Fig. 10). Au vu des résultats deux transformants se dégagent du lot avec des activités équivalentes, les transformants 12.7 et GPD14. L'activité au cours du temps a été suivie pour les transformants GPD14 et12.7 (Fig. 11). L'activité est détectable à partir de 3-4 jours et augmentent jusqu'à 12 jours pour atteindre approximativement 1200 nkatal/ml soit 72000 U/l avec ajout d'éthanol dans le milieu de culture.

25

30

20

5

10

15

### Légende des figures

Figure 1 : Isolement de souche monocaryotique déficiente pour l'activité laccase.

Figure 2 : Isolement du gène codant pour la laccase de *Pycnoporus cinnabarinus* laccase.

Figure 3 : Etude en Southern blot du gène codant pour la laccase de Pycnoporus cinnabarinus.



Figure 5 : Séquence de la séquence promotrice pLac du gène codant pour la laccase de *Pycnoporus cinnabarinus* (jusqu'à l'ATG codant pour la méthionine de la laccase).

Figure 6: Carte physique des trois vecteurs d'expression pEGT, pESC, pELP, utilisés pour la production de la laccase chez *Pycnoporus cinnabarinus*.

10

5

Figure 7: Séquence nucléotidique du vecteur pEGT, contenant le promoteur du gène gpd (4480-5112), un marqueur de résistance à la phléomycine (507-1822) et le terminateur du gène sc3 (71-507).

15

Figure 8: Séquence nucléotidique du vecteur pESC, contenant le promoteur du gène sc3 (1-1033), un marqueur de résistance à la phléomycine (1540-2855) et le terminateur du gène sc3 (1104-1540).

20

Figure 9 : Séquence nucléotidique du vecteur pELP, contenant le promoteur du gène laccase (4457-6983), un marqueur de résistance à la phléomycine (507-1822) et le terminateur du gène sc3 (71-507)

Figure 10 : Résultats de production des transformants présentant les activités les plus importantes. La culture a été effectuée avec ou sans (témoin) éthanol.

25

Figure 11: Suivi des activités laccase des transformants GPD 14 et 12.7 en fonction du temps avec ou (témoin) sans éthanol.

5

10

15

20

25.

C0

#### REVENDICATIONS

- 1. Procédé de préparation d'une protéine recombinante déterminée, ledit procédé étant effectué par surexpression du gène codant pour cette protéine déterminée dans une souche monocaryotique de champignons filamenteux de l'espèce *Pycnoporus* du groupe basidiomycète, et comprend :
- une étape de mise en culture de la souche monocaryotique de *Pycnoporus* susmentionnée, ladite souche étant transformée à l'aide d'un vecteur d'expression contenant le gène codant pour la protéine recombinante déterminée, dont l'expression est placée sous le contrôle d'un promoteur correspondant à un promoteur endogène des champignons susmentionnés, ou d'un promoteur différent (encore désigné promoteur exogène), ledit promoteur étant constitutif ou inductible,
- le cas échéant une étape d'induction du promoteur susmentionné, lorsque celui-ci est inductible,
- la récupération, et, le cas échéant, la purification de la protéine recombinante déterminée, produite dans le milieu de culture.
- 2. Procédé selon la revendication 1, caractérisé en ce que la souche monocaryotique de *Pycnoporus* utilisée pour la surexpression du gène codant pour la protéine recombinante déterminée est telle qu'obtenue par mise en culture de la souche dicaryotique d'origine à 30°C dans le noir pendant 15 jours, suivie d'une étape d'exposition au jour 2 à 3 semaines à température ambiante jusqu'à la formation d'organes de fructification correspondant à des hyphes différenciées appelées basides, au sein desquels a alors lieu la caryogamie, suivie de la méiose qui conduit à la formation de quatre spores sexuées, ou basidiospores haploïdes génétiquement différentes, qui, après germination, engendre un mycélium monocaryotique.
- 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la souche monocaryotique de *Pycnoporus* utilisée est une souche de *Pycnoporus cimabarinus*.

|                | 10 00m a 1 mad | Les demandid | mena lu da aler | .co <del>ccius .w</del> a e. | 7 FFT IN COUNT | ··· ·· · |
|----------------|----------------|--------------|-----------------|------------------------------|----------------|----------|
|                |                |              |                 |                              |                | : ::;    |
| - : <u>-</u> : | · · ·          | ~            |                 |                              |                | : -      |

correspondant à des protéines endogènes de basidiomycètes autres que *Pycnoporus*, telles que les enzymes basidiomycètes intervenant dans les biotransformations végétales.

5

10

15

20

25

- 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les protéines recombinantes déterminées correspondent aux protéines endogènes de *Pycnoporus* suivantes :
  - les métalloenzymes, telles que la laccase, ou la tyrosinase,
- ou la cellobiose déshydrogénase, la xylanase, la  $\beta$ -glycosidase, l'invertase, ou l' $\alpha$ -amylase.
- 6. Procédé selon l'une des revendications 1 à 5, de préparation de protéines recombinantes déterminées correspondant aux protéines endogènes de *Pycnoporus*, caractérisé en ce que la souche monocaryotique de *Pycnoporus* utilisée est déficiente pour le gène codant pour la protéine endogène à laquelle correspond la protéine recombinante déterminée.
- 7. Procédé selon l'une des revendications 1 à 6, de préparation de protéines recombinantes déterminées correspondant aux protéines endogènes de *Pycnoporus*, caractérisé en ce que la souche monocaryotique de *Pycnoporus* utilisée est transformée à l'aide d'un vecteur d'expression contenant le gène codant pour la protéine recombinante déterminée marquée, notamment par un marqueur histidine.
- 8. Procédé selon l'une des revendications 1 à 7, de préparation de laccases recombinantes correspondant aux laccases endogènes de *Pycnoporus*, caractérisé en ce qu'il comprend :
- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus*, transformée à l'aide d'un vecteur d'expression contenant le gène codant pour une laccase de *Pycnoporus*, le cas échéant marquée, et dont l'expression est placée sous le contrôle d'un promoteur correspondant au promoteur endogène de cette laccase,
- une étape d'induction du promoteur susmentionné, notamment par addition d'éthanol, ou de sous-produits agricoles contenant de la lignocellulose comme la paille de blé, les sons de maïs et la pulpe de betterave, ou des composés à cycle aromatique

correspondant à des protéines endogènes de basidiomycètes autres que *Pycnoporus*, telles que les enzymes basidiomycètes intervenant dans les biotransformations végétales.

5

10

15

- 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les protéines recombinantes déterminées correspondent aux protéines endogènes de *Pycnoporus* suivantes :
  - les métalloenzymes, telles que la laccase, ou la tyrosinase,
- ou la cellobiose déshydrogénase, la xylanase, la  $\beta$ -glycosidase, l'invertase, ou l' $\alpha$ -amylase.
- 6. Procédé selon l'une des revendications 1 à 5, de préparation de protéines recombinantes déterminées correspondant aux protéines endogènes de *Pycnoporus*, caractérisé en ce que la souche monocaryotique de *Pycnoporus* utilisée est déficiente pour le gène codant pour la protéine endogène à laquelle correspond la protéine recombinante déterminée.
- 7. Procédé selon l'une des revendications 1 à 6, de préparation de protéines recombinantes déterminées correspondant aux protéines endogènes de *Pycnoporus*, caractérisé en ce que la souche monocaryotique de *Pycnoporus* utilisée est transformée à l'aide d'un vecteur d'expression contenant le gène codant pour la protéine recombinante déterminée marquée, notamment par un marqueur histidine.
- 25
- 8. Procédé selon l'une des revendications 1 à 7, de préparation de laccases recombinantes correspondant aux laccases endogènes de *Pycnoporus*, caractérisé en ce qu'il comprend :
- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus*, transformée à l'aide d'un vecteur d'expression contanant le gène codant pour une laccase de *Pycnoporus*. Le cas échéant marquée, et dont l'expression est placée sous le contrôle d'un primiseur correspondant au promotion ende gane de cone le contrôle.
- 30
- MAD UNITED DESCRIPTION OF PROTECTION OF PROTECTION OF A CONTINUE OF THE ALIGNMENT OF A CONTINUE OF THE ACTION OF THE ACT

comme la 2,5-xylidine, l'acide vératrylique, le guaïcol, l'alcool vératrylique, la syringaldazine, l'acide férulique, l'acide caféique et les lignosulfonates,

- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, correspondant à la laccase endogène de *Pycnoporus* susmentionnée produite dans le milieu de culture.

5

10

15

20

25

- 9. Procédé selon la revendication 8, de préparation de la laccase recombinante correspondant à la laccase endogène de *Pycnoporus cinnabarinus* représentée par SEQ ID NO : 2, caractérisé en ce qu'il comprend :
- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus cinnabarinus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus cinnabarinus*, transformée à l'aide d'un vecteur d'expression contenant la séquence nucléotidique SEQ ID NO: 1 codant pour la laccase recombinante représentée par SEQ ID NO: 2, le cas échéant marquée, et dont l'expression est placée sous le contrôle du promoteur *pLac* correspondant au promoteur endogène de la laccase susmentionnée, la séquence dudit promoteur *pLac* étant représentée par SEQ ID NO: 3,
  - une étape d'induction par l'éthanol du promoteur pLac susmentionné,
- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, représentée par SEQ ID NO : 2 produite dans le milieu de culture.
- 8. Procédé de préparation de laccases recombinantes correspondant aux laccases endogènes de *Pycnoporus* selon la revendication 5, caractérisé en ce qu'il comprend :
- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus*, transformée à l'aide d'un vecteur d'expression contenant le gène codant pour une laccase de *Pycnoporus*, le cas échéant marquée, et dont l'expression est placée sous le contrôle d'un promoteur exogène choisi parmi :
- \* le promoteur *gpd* de l'expression du gène codant pour la glycéraldéhyde 3-phosphate déhydrogénase de *Schizophyllum commune*, dont la séquence nucléotidique est représentée par SEQ ID NO : 4,
- \* ou le promoteur sc3 de l'expression du gène codant pour l'hydrophobine de Schizophyllum commune, dont la séquence nucléotidique est représentée par SEQ ID NO : 5,

comme la 2,5-xylidine, l'acide vératrylique, le guaïcol, l'alcool vératrylique, la syringaldazine, l'acide férulique, l'acide caféique et les lignosulfonates,

- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, correspondant à la laccase endogène de *Pycnoporus* susmentionnée produite dans le milieu de culture.
- 9. Procédé selon la revendication 8, de préparation de la laccase recombinante correspondant à la laccase endogène de *Pycnoporus cinnabarinus* représentée par SEQ ID NO : 2, caractérisé en ce qu'il comprend :
- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus* cinnabarinus, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus cinnabarinus*, transformée à l'aide d'un vecteur d'expression contenant la séquence nucléotidique SEQ ID NO: 1 codant pour la laccase recombinante représentée par SEQ ID NO: 2, le cas échéant marquée, et dont l'expression est placée sous le contrôle du promoteur *pLac* correspondant au promoteur endogène de la laccase susmentionnée, la séquence dudit promoteur *pLac* étant représentée par SEQ ID NO: 3,
  - une étape d'induction par l'éthanol du promoteur pLac susmentionné,
- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, représentée par SEQ ID NO : 2 produite dans le milieu de culture.
- 10. Procédé selon l'une des revendications 1 à 7, de préparation de laccases recombinantes correspondant aux laccases endogènes de *Pycnoporus*, caractérisé en ce qu'il comprend :
- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de *Pycnoporus*, transformée à l'aide d'un vecteur d'expression contenant le gène codant pour une laccase de *Pycnoporus*, le cas échéant marquée, et dont l'expression est placée sous le contrôle d'un promoteur exogène choisi parmi :
- \* le promoteur *gpd* de l'expression du gène codent pour la glycéraldéhyde 3-phosphete déhydrogénace de *Schizophyllum commune*, dont la cliquence moleculaisure set representée par SEG/IE/16/13.
  - n o la la material de la la contraction de la la contraction de de grande de designe frances de la contraction En la contraction de la la contraction de la contraction de la contraction de la contraction de la contraction

10

5

15

20

25

3ô

- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, correspondant à la laccase endogène de *Pycnoporus* susmentionnée produite dans le milieu de culture.

5

9. Procédé selon la revendication 8, de préparation de la laccase recombinante correspondant à la laccase endogène de *Pycnoporus cinnabarinus* représentée par SEQ ID NO : 2, caractérisé en ce qu'il comprend :

10

- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus cinnabarinus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de Pycnoporus, transformée à l'aide d'un vecteur d'expression contenant la séquence nucléotidique SEQ ID NO : 1 codant pour la laccase recombinante représentée par SEQ ID NO : 2 le cas échéant marquée, et dont l'expression est placée sous le contrôle du promoteur exogène gpd ou sc3,

15

- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, représentée par SEQ ID NO : 2 produite dans le milieu de culture.

20

10. Séquence nucléotidique codant pour le promoteur *pLac* de la laccase endogène de *Pycnoporus cinnabarinus*, et correspondant à la séquence SEQ ID NO : 3, ou toute séquence dérivée de ce promoteur par substitution, addition ou suppression d'un ou plusieurs nucléotides et conservant la propriété d'être un promoteur de l'expression de séquences.

11. Vecteur d'expression, tel que le plasmide pELP, caractérisé en ce qu'il comprend la séquence SEQ ID NO : 3 du promoteur pLac selon la revendication 10.

25

12. Vecteur d'expression selon la revendication 11, caractérisé en ce qu'il comprend un gène codant pour une protéine recombinante déterminée, et dont l'expression est placée sous le contrôle du promoteur pLac selon la revendication 11.

- 13. Vecteur d'expression selon la revendication 11 ou 12, caractérisé en ce que la protéine recombinante déterminée est une protéine correspondant à une protéine endogène de *Pycnoporus* choisie parmi les suivantes :
  - les métalloenzymes, telles que la laccase, ou la tyrosinase,

- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, correspondant à la laccase endogène de *Pycnoporus* susmentionnée produite dans le milieu de culture.

5

11. Procédé selon la revendication 10, de préparation de la laccase recombinante correspondant à la laccase endogène de *Pycnoporus cinnabarinus* représentée par SEQ ID NO : 2, caractérisé en ce qu'il comprend :

10

- une étape de mise en culture d'une souche monocaryotique de *Pycnoporus cinnabarinus*, le cas échéant déficiente pour le gène codant pour la laccase endogène de Pycnoporus, transformée à l'aide d'un vecteur d'expression contenant la séquence nucléotidique SEQ ID NO: 1 codant pour la laccase recombinante représentée par SEQ ID NO: 2 le cas échéant marquée, et dont l'expression est placée sous le contrôle du promoteur exogène gpd ou sc3,

15

- la récupération, et, le cas échéant, la purification de la laccase recombinante, le cas échéant marquée, représentée par SEQ ID NO : 2 produite dans le milieu de culture.

20

12. Vecteur d'expression, tel que le plasmide pELP, caractérisé en ce qu'il comprend la séquence SEQ ID NO : 3 du promoteur pLac de la laccase endogène de Pycnoporus cinnabarinus, et correspondant à la séquence SEQ ID NO : 3, ou toute séquence dérivée de ce promoteur par substitution, addition ou suppression d'un ou plusieurs nucléotides et conservant la propriété d'être un promoteur de l'expression de séquences.

25

13. Vecteur d'expression selon la revendication 12, caractérisé en ce qu'il comprend un gène codant pour une protéine recombinante déterminée, et dont l'expression est placée sous le contrôle du promoteur pLac.

30

14. Vecteur d'expression selon la revendication 12 ou 13, caractérisé en ce que la protéine recombinante déterminée est une protéine correspondant à une proteine endogène de Prenoporus choisie parmi les suivantes :

- No metallocarymes, letter que la taccase, ou la tarocinase.

- A Marili Assil (Alexa Aselemáte gamese), la terimese a la 6-percentació (lemanese de la la la la la la la la La latituda

- 15. Cellule hôte transformée à l'aide d'un vecteur d'expression selon l'une des revendications 12 à 14.
- 16. Cellule hôte selon la revendication 15, correspondant à des cellules monocaryotiques de souches de *Pycnoporus*, telles que les souches de *Pycnoporus* cinnabarinus.

5

10

17. Utilisation de vecteurs d'expression selon l'une des revendications 12 à 14, ou de cellules hôtes selon la revendication 15 ou 16, pour la mise en oeuvre d'un procédé de surproduction d'une protéine recombinante déterminée selon l'une des revendications 1 à 9.



Figure 1 : Isolement de souche monocaryotique déficiente pour l'activité laccase

2/12



Tomes le l'accessions du game ablantis paux le legages de Tomes person Tomes le librarios de la care

EcoRI XbaI SmaI



Figure 3 : Etude en Southern blot du gène codant pour la laccase de *Pynoporus cinnabarinus* 

| ctgcagacatctggagcgcctgtctttcccctag <u>tataaa</u> tgatgtctgtcggcaggtccttgaagaccgctcgagtcccacttgagttttaggtagg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 100  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| CTGTCCACCAAACCCCTCTTCTGATCATGTCGAGGTTCCAGTCCCTCTTCTTCTTCTTCGTCTCCCTCACCGCTGTGGCCAACGCAGCCATAGGGC N S R F Q S L P F F V L V S L T A V A N A A I G P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25       | 200  |
| CTGTGGCGGACCTGACCCTTACCAATGCCCAGGTCAGCCCCGATGGCTTCGCTCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 300  |
| V A D L T L T N A Q V S P D G F A R E A V V V N G I T P A P L I T AGGCAATAAGGtatgtatatgtatatgtcatcatcagagctacatacatctgatccacaatcgtttagGGCGATCGATCCACCTCAATGTCATCGACCAG G N K G D R F Q L N V I D Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58<br>72 | 400  |
| F2 TTGACAAATCATACCATGTTGAAAACATCTAGTATTgtaagggttcagtttttcccqactaccatgttattgaccatcaccactcgtag CATTGGCACGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 500  |
| L T N H T M L K T S S I  H W H G  (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88       | 500  |
| CTTCTTCCAGCAAGGCACGAACTGGGCCGATGGTCCCGCTTCGTGAACCAGTGTCCCATCGTTCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121      | 600  |
| GACCAAGCAGgtacgaattccgtacacgtttcattgcgtcgcaactaaacctcctcttactagGGACTTTCTGGTACCATAGCCATCTCTCCACGCAATA DQAG (II)  (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137      | 700  |
| CTGCGATGGTTTGATGAGGGGGCCTTTCGTCGTCTACGACCCCAACGATCCTCACGCTAGCCTGTATGACATTGATAACGgtgagcagatcatggtatcgcaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 800  |
| C D G L R G P F V V Y D P N D P H A S L Y D I D N D tattgcgtccattatgcttcctggcatccagACGCCCTCCCtdac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163      | 900  |
| D T V I T L A D W Y H V A A K L G P R F P gtgtcaaatgtctacgagagattcacatagactagacta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 184      | 1000 |
| F G S D S T L I N G L G R T CCACTGGCATAGCACCGTCCGACTTATCAAGGTCACGCAGGGCAAGCGGtaagtatggatggtcatcactgcacattggctctgatacattggc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 198      | 1100 |
| T G I A P S D L A V I K V T Q G K R Cttgttccacagcatcactacactacatcactacactaca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 216      | 1200 |
| Y R F R L V S L S C D P N H T F S I D N H T M T I I E A D CTCGATCAACACTCATCATCATCATCAATCAATTTTGCCGCGCAGCGCTACTCCTTCGTGGtagg tegtaggetectgteateaagtttg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 245      | 1300 |
| S I N T O P L E V D S I O I F A A O R Y S T V A ACCEGATACTACTGCATACCTGCCTTCGGAAACACAGGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 268      | •    |
| LDASQPVDNYNIRANPAPGNTGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 291      | 1400 |
| TTGCTGGTGGATCAATTCTGCCATCCTGCGTTATGATGGCGCACCCGAGATCGACCTACGTCTGTCCAGACTACTCCTACGAAGCCTCTGAACGAGGT A G G I N S A I L R Y D G A P E I E P T S V Q T T P T K P L N E V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 324      | 1500 |
| ${\tt CGACTTGCATCCTCTCTCGCCTATGCCTGTGgtacgtgtctcaaaagaacctcgatcactactatgtgcatgtcaactcatatggtgcatgacagCCTGGCAGC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 1600 |
| D L H P L S P M P V  CCCGGAGCCCGGAGGTGTCGACATGGACTTGGTCTTCAACTTCgtgagtactggcgcgcttccgtagcacacgttcgaacaaagcctgabaccat P E P G G V D K P L N L V F N F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1700 |
| ${\tt gcagaaaccaaccaacctaacctaaccaacctttctcccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 353      | 1800 |
| N G T N F F I N D H T F V P P S V P V L L Q I L S G A Q A A Q D CTGGTCCCGAGGGGGGGGGGGGGGGGTTCGTTCGTCCAGGAACTCGTCCATTGAGATATCCTT CCCTGCCACTGCCATGCCCATGGGATTCCCCCATCCGTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 385      | 1900 |
| L V P E G S V F V L P S N S S I E I S F P A T A N A P G F P H P F H (III)  ACTTGCACGGTgtacgtctgccttcccctcgtctaaaggcggagtcgatatctgactcccatcacagCACGCCTTCGCTGTCGCCGCAGCGCC GGGAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 419      |      |
| L H G (III) (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 433      | 2000 |
| AGGGTCTACAACTACGACAAACCCGGACGTCTCGGGACGTCGTCAGCACCAGCCCGGCGACA ACGTCACGATTCGCTTCGAGACCAATAACCCAGGCC S V Y N Y D N P I F R D V V S T G Q P G D N V T I R F E T N N P G P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 467      | 2100 |
| R8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      |
| CSTGGTTCCTCCACTGCCACTGCACGCTCGACGCAGGCTTTGCTGTAGTCATGGCCGAGGACACTCCGGACACCAAGGCCGGAACCCTGTTCC W E L H C H I D F H L D A G F A V V M A E D T P D T K A A N P V P  (IV) (IV) (IV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500      | 2200 |
| TCAGGCGTGGTCGGACTTGTGCCCCATCTATGATGCACTTGACCCCAGCGACCTCTGAGCGGGATTGTTACTGTGACCTGGT GTGGGGGGAACATGTCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 2300 |
| Q A W S D L C P I Y D A L D P S D L . GGGCTTCATCGATCAGGGACTTCAAGGTTGGCATAATATACCTCACGGCCTGGATGACTCGGACAGCGTGTGGGCGTGGGGTGTAACTCTGCTTGATGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 518      | 2400 |
| ${\tt TGAAAAAGGATTTTATGTAGAACAATTTATGAGCAATCAGCAATCAAT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 2500 |
| TGCGAGAAATGGGTCCATGATACACATCATTGAGCTCTCAATACCAAGAAGGATTACCCATGTCAATACCCAAGATCATGTCTTCGCTGTCCGCAATGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 2600 |
| TCTCATGTTGCGTTGAGCAGATCGCAGTACGTTGAAAAGCGATTAGTAT TACATGCAACATGCAACATTTGGAAGGGGGCATGCAGAGGTTCAGCTCGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 2700 |
| TCAGTCGGCCAAGTAGCGACCTTTGCCGCACTGCCTGTTAACCTGAACGTATGCTTCAGAACTCCGTCGGTATCGAGAGCGATCGTGTACGTTCCGGGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 2800 |
| AGATCCATTGATCCCCGCTCTGGTCGGCGCGTGCGATGGCCCCGAGCGTCACCGGCAGCTTCGCGATCGCGCTTTTCCTAGGGGCGAGGCCGTGTACCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 2900 |
| CGTGTACGAGACGAGCTGCTTGTTCGGGTGGGGCGAAGGCCCGAAGGAGGCCACTCACGAAGAGCAATGCGACGTAATCCGAGGTAGCCTTGCCCGTGTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 3000 |
| GTC ACACGCACGGAGAACGTGTCGAGCGGCGCGAGGAGGGAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 3100 |
| GTUCTUCRARGTCCGTGRCGTTGGTCGCATCGGCCGCCGCGCGCGCGCGCCCRMGRGRARTCGRRGGTGRAGTGCRARGTCCRARGCCRARTTCGTN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 3200 |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 3200 |
| We are a good conference of the conference of th |          | 3001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |

Tigura 4 va iguarda du gâne da burra para la licence al

AGATCTCCGAACCAGAAATGCGATTGCGTTCAGGCCCCAATTAAGAATAAAGCTGCGTCAGGGCAGCGACGTA CGGCGATGAAACGTTTCCCACCATTGGGAAGAAACGTCTGCGGCCCATCATCCCTTCACCGGATGACAAGGC GGCGTCGCGCCTTTGCCGCAGAGGCCGGCGGCGACATGCACAGCGAAGGTCCGTTGCGGATGGGAAGCAGG CAATCAGTGGGTGTCCTACGCCGCCACGATGGTCGGGGAGCGTAGGCGCCCTCCCATAAGGCGGCAAGCATC ATGATGCTCTCCGATTCGGGAAGCCTGGTGCGATGCTGGAGAGACTCTCTCCGAGAGACCAGTGTGCGCAAC GTTCCTGGCCTGGAAGACTTTAAAGTGAGTGTAGAAGGGCGAGCAGGAGGACGATCATCGGATTGCAGGAACC  ${\tt ATCGGCATCCTCAGCCTGGGAAGGATGGCTCTTGGTAGACATTCGCGGAAGGTGTCCTAGATGTGAGCGGGCC}$ TTCTTGGATGATCATGTCGTAACTTTTTCTGACCTCGTCGGTGGTACGCATGGCAGGATTGAGCATTACGGT ATGCCTCCCATTCATAAACGATAACCCCTTCCTTCAGGTTGGTCATCTCCATAGAGCGGCACGCTCTCAAGG CCTAGGCTATTCACACCTCCTTCGCAACATCCCTATTCACGGTGTCTGTAAGGAACGACTTGTCATGGGATC A CATGAAGTGCAGCATACTGTTCGCCGGTCTCGCAGTACAGACGCTAGTACGGGAAGTCGACATCCAAGCGTTCAGTCACCACATGGCAAAAAAGCTGCACCATACTCTTTATGGTGAGTTGTTCGTGAGTGGTATACAGTCAT  ${\tt TCATGAGGGAATGCCCACCGGATAGGGTGTGGCGCCGCAATATTCATCGCCTGGCAATAGTCGATGTGCGT}$ CCTTGTTCAATGAATATCATGGGTCACATGTGGAGACGGTTAAACAGCGTTGACTGTGAATCCCTGGTGTGT GTTGGGCCGÄACAGGTACGTTGCAGGAACACCAATATCTCTTCGGCAGCCCAGTTCTTTGCGAGCGGCACAG GCAGGCATCGCGCAACAGATCCCAGCCATCCGGCCTCTGACATTCGGGATACCTGAAGCCCTTCAGGTACGG AGCGAAGAGGTGGGCTCTCTGCAGCGATTGGCGGACGGATAGCTGTATTTCCTCTCTCACCATTGGGAAGAT TGGACAAGGCCGAGCTATGATAGCTTGCTCCCGAAGTTGGTAAGTCCCGCAATCTGCGGTTCAGGCAACAGT CTCGGAAAAATAAGAAGAATATTGTAGGTGCGTGTAGGCGTATCGCCCAAATGCGCACACACGGAGGCTTTA CATCATGTCTCGGCGCAAACTTTACCCTCTATTGACCAACTCCACGAGAAAGCAGGAACAGCTTCCTTGTCT  $\tt CTCATGACGTCCGCAATCCAGACCCTTAGCCGGTTCGTTACTCATCGTTATCCCTGCCGCCATGGTAGTGGA$ GTCAGCCTGGCCAGTGCGTAGTCCCGTCTCTTGCTGCACTAGAGAAGCCCCATGAGACAGCGTTTTTTGC TTTATTTCTGCTGTTTCTATAGACACCATAGGGGCAAACGATCCTGCACGCCCAGAGGTATTGGGCTCGTCA GATTCCCAGTTTTTCTCCTCGGTCTGAATCGGCTGCACGGCAGATAAATCGGCCGGAAATGCTATAGCCCTT CTTCGCGCGACAGCCGCCTTTCAGGGCAAGATAGATCCTCCCATCATCCCCTACTGCGCTCAGCGCCGGTAC CGAACAATTGACTTACCGACATCCTCCGGGACGCCCAAATGCTGTTCGACGGAACGTAATCCTCTTCGTCCC GCCTCTTTTCGCTCTCACGCATTCCGTGTGGTTCGCGCGACGGCCGCTCATCAGGACCAGACCAGTCTCAAT GTCTGGTACCGGCACAATGGTGACACTGCGGCAACTGAGTAGGTCTGGTCACTCTGGTGCACCGTCGCTTAC GATCATG

Figure 5 : Séquence de la séquence promotrice du gène codant pour la laccase de *Pycnoporus cinnabarinus* (jusqu'à l'ATG codant pour la méthionine de la laccase)



Figure 6: Carte physique des trois vecteurs d'expression utilisés pour la production de la laccase chez *Pycnoporus* cinnebarinus

CATGGGATATCGCATGCCTGCAGAGCTCTAGAGTCGACGGGCCCGGTACCGCGGCCGCCTTAAGACGCGTGGATCCGCAGGTGAAC GCGCCTATCGGTGGGATATTCGGGCGACGGGAGCCTCGGCAATCTGAGCCTCGTTACTGCCTAGCAAATTCGGAATCCCTTCGATGT CATAGGGTCGCGGACAAGTGATCGTCTTGCTACATACTCCAAGGTGTTGACTCATTCCCTCGATAATGAACATTGTTGTTGTTTTT TTCTCTATCCGCTCAGTCACGCGACCCCACACGTGCATGGTTGAACTTCGCCACGCAACAACCGCATGACGACATGGCGAACCTAAG GGGGGTACAAAAGGAGGGTGAAAGGTGGACGTTTTCTTACCATCCTTCCACCTCCCAGACCACCATGCCGGGAATTCCCAGCTTGCT CAAAAAGGTTCTGCCCGTACGCCCGCGAAATTCCTTCGAGGTGGCCCCTATCGCATACATGCACGACTTCAAAACATCCATTCTATC GTACAAGCGTCCAAAGGATCAGGCACTTAGAGCGCGCCGTCTTGCTTCGCCGCCTTAGAGCGCGCCGTCCTGCTTCGCCGCGTAGACG AGCAGGTCGCAGACACGGCGGGGAGTAGCCCCACTCGTTGTCGTACCAGGCAATGAGCTTCACGAAGCTCTTGCTGATCGCGATGCCG GGGATCGATCCACGCGTCTTAAGGCGGCCGCGGTACCCCCTCGGACCCGTCGGGCCGCGTCGGACCGGCGGTGTTGGTCGGCGTCGG CTCGGTCATGGCCGGCCCGGAGGCCTCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCAC CCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGC CCCCTCGAGGGCGACGCTCTATTCTATCCATGCGCGCAATTGCAGGTGCGCGGTCGAAGAACAGTCCTTCGCAGTCCTTCTCGCACC TGGGCTGCGACCCTGTCTACCTCTCATCCTAACCCCTCCGCGGCTTCGCAGTACAGTTACTAATCTCACACCGAAGAGGCTCTCGCGC CACCCTCCGATCCCGAGCACGTTCCTTACATGCCACAGCGTCAGAATTGAACACAATGCACGTCARATCAGATCCCCGGGAATTCGT! AATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAG CCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCT GCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCC GTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAA CATGTGAGCAAAAAGGCCAGCAAAAAGGCCAGGAACCGTAAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACG AGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCC CTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTC ACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCGGTTCAGCCCGACCGCTGCGCC TTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCACTGGTAACAGGATTAGCAGA GCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCT GCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAA AACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAA TCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTC ATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCG AGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAG TGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATT GGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGA TCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAAATGCCGCAAAAAAAGGGAATAAGGGCGAC ACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTG AATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCA TGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGC AGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGG TGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTA AGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTA CGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGAC GCGGCCCCGCCGCCCCGTCGGGCGAGCGGGTGTATCTACGAACGGAACTGGGAGGCGACTCGGAAGAGTTTGGTTAGAAAGGG GAACACCATCGCGGACGGCCCAGTGCTCTGGDCAGCTGAGCGTGCATTGTGTTCAATTCTGACCTGTGGCATGTAAGGAACGTGCTC GGGATCGGAGGGTGGCGCGAGAGCCTCTTCGGTGTGAGATTAGTAACTGTACTGCGAAGCCGCGGAGGGGTTAGGATGAGAGGTAG ACAGGGTCGCAGCCCAGGTGCGAGAAGGACTGCGAAGGACTGTTCTTCGACCGCGCACCTGCAATTGCGCGCATGGATAGAATAGA CTTTCTCCAGCACTCCCATCCAGAGCACTTCCCTCTCCCATCGCATCCCATCACACAATAATGCCCATCAC

Figure 7: Séquence nucléotidique du vecteur pEGT, contenant le promoteur du gène gpd (4480-5122), un marqueur de résistance à la phléomycine (507-1822) et le terminateur du gène sc3 (71-507).

AGCTTCTCCGGCCCCGAATCGAACGGCAGGATGTGTGGGCGTGTCCAATATTGCCATGAAAATCTGTCAGAAGTGAGCCCTCTCGTCAC CCTGTACAGCTTCGCTGAGTTGAAAAGCAGGGTTCATCTTGGGCTCACTGATGCACTGAGCTCGACCGGAGAACTAAATGACCAGCCGG AGTGTTCACTAACTTAACGCCGGGTATTCAGGGCAGCTTCTCTATGTTGCGCCTACGACGTAGATCACCGCCCATGAACGGGGGAAACG GGGAGGGTGCGTTTGGTACGTCTTTACGTCTGGCTATGTTGTATTGACCAGCGTCTGCAGAAGATGGGCACGACGATGCGCCGAGCCG AGGGGCTTAGATGGAGAGTGACACGTCTGAGCTCCCCAACACGCCTTCGCCGAGGGTGCGTCTCCGCGGACATTCACCTCAGTTCATTG TTCTGACCTGCCTAATTGTATAGACCGGCCAACAACCTTGCTGACGCCCATCATAACAGTGCCCTGCACAGAGCCTTCCCACTCAGTCGG CGCCTCCCTCAATCAATCCCACTAACTCGCCGGCTCTGCCCCTTCGCCGCTCGACACGTCGCTTGGAAGAGCCCGGGCACGGGCGTCCGC AACGCGCGGGAAGAAATAATTTACGGGAGCCTCCCCAGGTATAAAAGCCCCTCACCCGCTCACTCTTTCTCCAGTCGAACACCCCAGT TCAACTACCCAGCCCTTCCTTCCCTTCGCTATCCTTCYTTACAACCTGCTCGCCATGGGATATCGCATGCCTGCAGAGCTCTAGAGTCGAC GGGCCCGGTACCGCGCCCTTAAGACGCGTGGATCCGCAGGTGAACGCGCCTATCGGTGGGATATTCGGGCGACGGGAGCCTCGGC AATCTGAGCCTCGTTACTGCCTAGCAAATTCGGAATCCCTTCGATGTCATAGGGTCGCGGACAAGTGATCGTCTTGCTACATACTCCAAG TTCGCCACGCAACAACCGCATGACGACATGGCGAACCTAAGTAAAGGCTGAGTCGTGGACTAAAGCACTCCACTTTACGGCGAGGATGG CAGTCTACGTCATGAATGAAGCCTCAGGTCCCGAAGTAAGGGGGGTACAAAAGGAGGGTGAAAGGTGGACGTTTTCTTACCATCCTTCCA CCTCCCAGACCACCATGCCGGGAATTCCCAGCTTGCTCAAAAAGGTTCTGCCCGTACGCCCGCGAAATTCCTTCGAGGTGGCCCCTATCG CATACATGCACGACTTCAAAACATCCATTCTATCATTTTGGGATCGTACAATTATTAGACATGTTGTACAACGTTACATTCCTTTCTT TTACTCTCCGGCCCAGTCTATOTAGAGGTAAAGTACAAGCGTCCAAAGGATCAGGCACTTAGAGCGCGCCGTCTTGCTTCGCCGCTTAG AGCGCGCCGTCCTGCTTCGCCGCGTAGACGAGCAGGTCGCAGACACGGCGGGAGTAGCCCCACTCGTTGTCGTACCAGGCAATGAGCTT CACGAAGCTCTTGCTGATCGCGATGCCGGGGATCGATCCACGCGTCTTAAGGCGGCCGCGGTACCCCCTCGGACCCGTCGGGCCGCGTC GCCCTGGTCGAGTCCCCCTCGAGGGCGACGCTCTATTCTATCCATGCGCGCAATTGCAGGTGCGCGGTCGAAGAACAGTCCTTCGCAGT CCTTCTCGCACCTGGGCTGCGACCCTGTCTACCTCTCATCCTAACCCCTCCGCGGCTTCGCAGTACAGTTACTAATCTCACACCGAAGAG GCTCTCGCGCCACCCTCCGATCCCGAGCACGTTCCTTACATGCCACAGCGTCAGAATTGAACACAATGCACGTCARATCAGATCCCCGG TAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCA GCTGCATTAATGAATCGGCCAACGCGCGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC GGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAAC ATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGC ATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCCTGGAAGCTCCCTCGTG CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTA GGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTA ACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTA GGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTT CGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTT TTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTC GTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTT GGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTG GTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTC CTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGT AAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAAT ACGGGATAATACCGCGCCACATAGCAGAACTITAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTAC CGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAA AAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTTTTCAATATTATTGA AGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCC CGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGC GCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGAC CATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGA AGGGCGATCGGTGCGGGCCTCTTCGCTA'ITACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGT THTCCCAGTCACGACGTTGTAAAAAGAACGACGGCCAGTGCCA

Figure 8 : Eéguseus mucléadique du recteur pESC, contenant le promocram du pène not l'i-1900, un marcuseum de rémonance le promocram du pène not l'i-1900, un marcuseum de rémocrame.

CATGGGATATCGCATGCCTGCAGAGCTCTAGAGTCGACGGGCCCGGTACCGCGGCCCCTTAAGACGCGTGGATCCGCAGGTGAACGCGC CTATCGGTGGGATATTCGGGCGACGGGAGCCTCGGCAATCTGAGCCTCGTTACTGCCTAGCAAATTCGGAATCCCTTCGATGTCATAGGGT TCAGTCACGCGACCCCACACGTGCATGGTTGAACTTCGCCACGCAACAACCGCATGACGACATGGCGAACCTAAGTAAAGGCTGAGTCGT GTGAAAGGTGGACGTTTTCTTACCATCCTTCCACCTCCCAGACCACCATGCCGGGAATTCCCAGCTTGCTCAAAAAGGTTCTGCCCGTACG CCCGCGAAATTCCTTCGAGGTGGCCCCTATCGCATACATGCACGACTTCAAAACATCCATTCTATCATTTTGGGATCGTACAATTATTAGA CATGTTGTACAACGTTACATTCCTTTCTTTTACTCTCCGGCCCAGTCTATGTAGAGGTAAAGTACAAGCGTCCAAAGGATCAGGCACTT AGAGCGCGCCGTCTTGCTTCGCCGCTTAGAGCGCGCCGTCCTGCTTCGCCGCGTAGACGAGCAGGTCGCAGACACGGCGGGAGTAGCCCC ACCCCTCGGACCCGTCGGGCCGCGTCGGACCGGCGTGTTGGTCGGCGTCGGTCAGTCCTCGGCCACGAAGTGCACGCAGTTG GACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGG CCGTCGGGCGCCACCACCAGCCCTGGTCGAGTCCCCCTCGAGGGCGACGCTCTATTCTATCCATGCGCGCAATTGCAGGTGCGCGGTCGA AGAACAGTCCTTCGCAGTCCTTCTCGCACCTGGGCTGCGACCCTGTCTACCTCATCCTAACCCCTCCGCGGCTTCGCAGTACAGTTACTA ATCTCACACCGAAGAGGCTCTCGCGCCACCCTCCGATCCCGAGCACGTTCCTTACATGCCACAGCGTCAGAATTGAACACAATGCACGTC ARATCAGATCCCCGGGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCC AACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTCACTG CAGGAAAGAACATGTGAGCAAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCC CCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAG CTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCT CACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCCACTGGTAACAGGATTAGCAGAGCGAG GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAG TTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGA AACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCG TCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATT GGGAAGCTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTTTGG TATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCT CCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAA GATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACG GGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCT GTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACA GGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTTCCTTTTTCAATATTATTGAAGCATT TATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAG TGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGG TGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCA GGGCGCGTCAGCGGGTGTTGGCGGGGCTGCCGCATCAGGCGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTG TGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGT GCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACG ACGTTGTAAAACGACGGCCAGTGCCAAGCTTAGATCTCCGAACCAGAAATGCGATTGCGTTCAGGCCCAATTAAGAATAAAGCTGCGTCA CGGCGTGCGCCATTGAGGTACATGAGCGGGGGGAAAGTCCGCCATTGGTAGCCCTGTCGTGGACGCGCGGCGATGAAACGTTTCCCACCA TTGGGAAGAACGTCTGCGGCCCATCATCCCTTCACCGGATGACAAGGCGGCGTCGCGCCTTTGCCGCAGAGGCCGGCGGCGACATGCA

Figure 9 : Séquence nucléotidique du vecteur pELP, contenant le promoteur du gène laccase (4457-6983), un marqueur de résistance à la phléomycine (507-1822) et le terminateur du gène sc3 (71-507) (suite de la séquence, page suivante)

CAGCGAAGGTCCGTTGCGGATGGGAAGCAGGCAATCAGTGGGTGTCCTACGCCGCCACGATGGTCGGGGAGCGTAGGCGCCCTCCCA TAAGGCGGCAAGCATCATGATGCTCTCCGATTCGGGAAGCCTGGTGCGATGCTGGAGAGACTCTCTCCGAGAGACCAGTGTGCGCAAC GTTCCTGGCCTGGAAGACTTTAAAGTGAGTGTAGAAGGGCGAGCAGAGGACGATCATCGGATTGCAGGAACCATCGGCATCCTCAGC CTGGGAAGGATGGCTCTTGGTAGACATTCGCGGAAGGTGTCCTAGATGTGAGCGGGCTTCTTGGATGATCATGTCGTAACTTTTTCTGA CATAGAGCGCCACGCTCTCAAGGCCTAGGCTATTCACACCTCCTTCGCAACATCCCTATTCACGGTGTCTGTAAGGAACGACTTGTCAT GGGATCACATGAAGTGCAGCATACTGTTCGCCGGTCTCGCAGTACAGACGCTAGTACGGGAAGTCGACATCCAAGCGTTCAGTCACCA GTGTGGCGGCCGCAATATTCATCGCCTGGCAATAGTCGATGTGCGTCCTTGTTCAATGAATATCATGGGTCACATGTGGAGACGGTTAA ACAGCGTTGACTGTGAATCCCTGGTGTGTGTGGGCCGAACAGGTACGTTGCAGGAACACCAATATCTCTTCGGCAGCCCAGTTCTTTG CGAGCGCACAGGCAGCATCGCGCAACAGATCCCAGCCATCCGGCCTCTGACATTCGGGATACCTGAAGCCCTTCAGGTACGGAGC GAAGAGGTGGGCTCTCTGCAGCGATTGGCGGACGGATAGCTGTATTTCCTCTCTCACCATTGGGAAGATGTGAAAGGCTCCATCATAT GTTGGTAAGTCCCGCAATCTGCGGTTCAGGCAACAGTCTCGGAAAAATAAGAAGAATATTGTAGGTGCGTGTAGGCGTATCGCCCAAA CCCAGCATCATGTCTCGGCGCAAACTTTACCCTCTATTGACCAACTCCACGAGAAAGCAGGAACAGCTTCCTTGTCTCTCATGACGTCC GCAATCCAGACCCTTAGCCGGTTCGTTACTCATCGTTATCCCTGCCGCCATCGTAGTGGAGTCAGCCTGGCCAGTGCGTAGTCCCGTCT CTCTTGCTGCACTAGAGAAGCCCCATGAGACAGCGTTTTTTGCTTTATTTCTGCTGTTTCTATAGACACCATAGGGGCAAACGATCCTG CACGCCCAGAGGTATTGGGCTCGTCAGATTCCCAGTTTTTCTCCTCGGTCTGAATCGGCTGCACGGCAGATAAATCGGCCGGAAATGCT CGACAGCCGCCTTTCAGGGCAAGATAGATCCTCCCATCATCCCCCTACTGCGCTCAGCGCCGGTACCGAACAATTGACTTACCGACATC CTCCGGGACGCGCAAATGCTGTTCGACGGAACGTAATCCTCTTCGTCCCGCCTCTTTTCGCTCTCACGCATTCCGTGTGGTTCGCGCGA CGGCCGCTCATCAGGACCAGACCAGTCTCAATGTCTGGTACCGGCACAATGGTGACACTGCGGCAACTGAGTAGGTCTGGTCACTCTG 

Figure 9: Séquence nucléotidique du vecteur pELP (suite), contenant le promoteur du gène laccase (4457-6983), un marqueur de résistance à la phléomycine (507-1822) et le terminateur du gène sc3 (71-507)



Figure 10: Résultats de production des transformants présentant les activités les plus importantes. La culture a été effectuée avec ou sans (témoin) éthanol





Figina II : Swiri des actividés inconse des transformants (FFC 14 et 21.7 en l'enchon du comps avec en cémeint cano féhansi

| • |               |                                         |            |            |             |             |      |
|---|---------------|-----------------------------------------|------------|------------|-------------|-------------|------|
|   | ctccttcgtg    | gtaggtcgta                              | ggctcctgtc | atcaagtttg | cagacattct  | tagatacacc  | 1320 |
|   | tttttcaatg    | cagctggatg                              | ctagccagcc | ggtggataac | tactggatcc  | gcgcaaaccc  | 1380 |
|   | tgccttcgga    | aacacaggtt                              | ttgctggtgg | aatcaattct | gccatcctgc  | gttatgatgg  | 1440 |
|   | cgcacccgag    | atcgagccta                              | cgtctgtcca | gactactcct | acgaagcctc  | tgaacgaggt  | 1500 |
|   | cgacttgcat    | cctctctcgc                              | ctatgcctgt | ggtacgtgtc | tcaaagaacc  | tcgatcacta  | 1560 |
|   | agtgcatgtc    | aactcatatg                              | gtgcatgaca | gcctggcagc | cccgagcccg  | gaggtgtcga  | 1620 |
|   | caagcctctg    | aacttggtct                              | tcaacttcgt | gagtactggc | gcgcttccgt  | agcacacgtt  | 1680 |
|   | cgaacaaagc    | ctgataccat                              | gcagaacggc | accaacttct | tcatcaacga  | ccacaccttt  | 1740 |
|   | gtcccgccgt    | ctgtcccagt                              | cttgctacaa | atcctcagtg | gggcgcaggc  | ggctcaggac  | 1800 |
|   | ctggtcccgg    | agggcagcgt                              | gttcgttctt | cccagcaact | cgtccattga  | gatateette  | 1860 |
|   | cctgccactg    | ccaatgcccc                              | tggattcccc | catccgttcc | acttgcacgg  | tgtacgtctg  | 1920 |
|   | ccttcccctc    | gtctaaaggc                              | ggagtcgata | tctgactccc | atcacagcac  | gccttcgctg  | 1980 |
|   | tcgtccggag    | cgccgggagc                              | agcgtctaca | actacgacaa | cccgatcttc  | cgcgacgtcg  | 2040 |
|   | tcagcaccgg    | ccagcccggc                              | gacaacgtca | cgattcgctt | cgagaccaat  | aacccaggcc  | 2100 |
|   | cgtggttcct    | ccactgccac                              | attgacttcc | acctcgacgc | aggctttgct  | gtagtcatgg  | 2160 |
|   | ccgaggacac    | tccggacacc                              | aaggccgcga | accctgttcc | tcaggcgtgg  | teggaettgt  | 2220 |
|   | gccccatcta    | tgatgcactt                              | gaccccagcg | acctctgagc | gggattgtta  | ctgtgacctg  | 2280 |
|   | gtgtggggg     | aacatgtcga                              | gggctttcat | cgatcaggga | ctttcaaggt  | tggcataata  | 2340 |
|   | tacctcacgg    | cctggatgac                              | tcggacagcg | tgtgggcgtg | ggtgtaactc  | tgcttgatgt  | 2400 |
|   | tgaaaaaagg    | attttatgta                              | gaacaattta | tgagcaatca | gcaatcaata  | ggattgtgtc  | 2460 |
|   | ggtttcgacg    | aaatgtcttg                              | tetecetgae | attacttttg | gtgcgagaaa  | tgggtccatg  | 2520 |
|   | atacacatca    | ttgagctctc                              | aataccaaga | aggattaccc | atgtcaatac  | ccaagatcat  | 2580 |
|   | gtcttcgctg    | tccgcaatgg                              | tctcatgttg | cgttgagcag | atcgcagtac  | gttgaaaagc  | 2640 |
|   | gattagtatt    | acatgcaaca                              | tgcaacattt | ggaagggggc | atgcagaggt  | tcagctcgcg  | 2700 |
|   | tcagtcggcc    | aagtagcgac                              | ctttgccgca | ctgcctgtta | acctgaacgt  | atgcttcaga  | 2760 |
|   | actccgtcgg    | tatcgagagc                              | gategtgtae | gttccgggat | agatccattg  | atccccgctc  | 2820 |
|   | tggtcggcgc    | gtgcgatggc                              | cccgagcgtc | accggcagct | tegegatege  | gcttttccta  | 2880 |
|   | ñóđácásáác    | catgtacecg                              | cqtqtacqaq | acgagetget | tattcgaata  | agacdaaaadc | 2940 |
|   | . podpadadose | cactocorca                              | aascostgog | acqtastccy | regeagratt  | uccadaqtta  | 2005 |
|   |               | ligeneessa                              |            |            | , gadamaşşa |             |      |
|   | ·             | . ::::::::::::::::::::::::::::::::::::: | 2772       |            |             |             |      |

the state of the second section of

Ala Lys Leu Gly Pro Arg Phe Pro Phe Gly Ser Asp Ser Thr Leu Ile 185 180 Asn Gly Leu Gly Arg Thr Thr Gly Ile Ala Pro Ser Asp Leu Ala Val 195 Ile Lys Val Thr Gln Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu 215 210 Ser Cys Asp Pro Asn His Thr Phe Ser Ile Asp Asn His Thr Met Thr 230 235 225 Ile Ile Glu Ala Asp Ser Ile Asn Thr Gln Pro Leu Glu Val Asp Ser 245 The Gln Ile Phe Ala Ala Gln Arg Tyr Ser Phe Val Leu Asp Ala Ser 265. 260 Gln Pro Val Asp Asn Tyr Trp Ile Arg Ala Asn Pro Ala Phe Gly Asn 280 275 Thr Gly Phe Ala Gly Gly Ile Asn Ser Ala Ile Leu Arg Tyr Asp Gly 290 295 Ala Pro Glu Ile Glu Pro Thr Ser Val Gln Thr Thr Pro Thr Lys Pro 305 310 Leu Asn Glu Val Asp Leu His Pro Leu Ser Pro Met Pro Val Pro Gly 330 Ser Pro Glu Pro Gly Gly Val Asp Lys Pro Leu Asn Leu Val Phe Asn 345 340 Phe Asn Gly Thr Asn Phe Phe Ile Asn Asp His Thr Phe Val Pro Pro 360 355 Ser Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala Gln Ala Ala Gln 370 Asp Leu Val Pro Glu Gly Ser Val Phe Val Leu Pro Ser Asn Ser Ser The Grantin terribe Crowle Who Blacks Ash Die Pro Gly The Spo His

Pro Phe His Leu His Gly His Ala Phe Ala Val Val Arg Ser Ala Gly 420 425 430

Ser Ser Val Tyr Asn Tyr Asp Asn Pro Ile Phe Arg Asp Val Val Ser 435 440 445

Thr Gly Gln Pro Gly Asp Asn Val Thr Ile Arg Phe Glu Thr Asn Asn 450 455 460

Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu Asp Ala 470 475 475

Gly Phe Ala Val Val Met Ala Glu Asp Thr Pro Asp Thr Lys Ala Ala 485 490 495

Asn Pro Val Pro Gln Ala Trp Ser Asp Leu Cys Pro Ile Tyr Asp Ala 500 505 510

Leu Asp Pro Ser Asp Leu 515

<210> 3 <211> 2527

<212> ADN

<213> Pycnoporus cinnabarinus

<400> 3

agateteega accagaaatg egattgegtt caggeecaat taagaataaa getgegteag . 60 ggcagcgacg tatcttgatc catcattgac tcaccggcat cggcgtcaac accaaagcaa 120 getegtecea eccataggeg tgcaceggee ggegtgegee attgaggtae atgagegggg 180 cgaaagtccg ccattggtag ccctgtcgtg gacgcgcggc gatgaaacgt ttcccaccat 240 tgggaagaaa cgtctgcggc ccatcatccc ttcaccggat gacaaggcgg cgtcgcgcct 300 ttgccgcaga ggccggcggg cgacatgcac agcgaaggtc cgttgcggat gggaagcagg 360 caatcagtgg gtgtcctacg ccgccacgat ggtcggggag cgtaggcgcc ctcccataag 420 gcggcaagca tcatgatgct ctccgattcg ggaagcctgg tgcgatgctg gagagactct 480 ctccgagaga ccagtgtgcg caacgttcct ggcctggaag actttaaagt gagtgtagaa 540 gggcgagcag aggacgatca tcggattgca ggaaccatcg gcatcctcag cctgggaagg 600 atggetettg gtagacatte geggaaggtg teetagatgt gagegggett ettggatgat 660 catgtcgtaa cttttctga cctcgtcggt ggtacgcatg gcaggattga gcattacggt 720 atgeeteeca tteataaaeg ataaceeett cetteaggtt ggteatetee atagagegge 780 acgeteteaa ggeetagget atteacacet cettegeaac atceetatte acggtgtetg 840

| taaggaacga | cttgtcatgg   | gatcacatga   | agtgcagcat   | actgttcgcc   | ggtctcgcag   | 900    |
|------------|--------------|--------------|--------------|--------------|--------------|--------|
| tacagacgct | agtacgggaa   | gtcgacatcc   | aagcgttcag   | tcaccacatg   | gcaaaaaagc   | 960    |
| tgcaccatac | tctttatggt   | gagttgttcg   | tgagtggtat   | acagtcattc   | atgagggaat   | 1020   |
| gcccaccgga | tagggtgtgg   | cggccgcaat   | attcatcgcc   | tggcaatagt   | cgatgtgcgt   | 1080   |
| ccttgttcaa | tgaatatcat   | gggtcacatg   | tggagacggt   | taaacagcgt   | tgactgtgaa   | 1140   |
| tccctggtgt | gtgttgggcc   | gaacaggtac   | gttgcaggaa   | caccaatatc   | tcttcggcag   | 1200   |
| cccagttctt | tgcgagcggc   | acaggcaggc   | atcgcgcaac   | agatcccagc   | catccggcct   | 1260   |
| ctgacattcg | ggatacctga   | agcccttcag   | gtacggagcg   | aagaggtggg   | ctctctgcag   | 1320   |
| cgattggcgg | acggatagct   | gtatttcctc   | tctcaccatt   | gggaagatgt   | gaaaggctcc   | 1380   |
| atcatatago | ggctcaactc   | tacctcgaat   | gtccaaacac   | ggcgggaata   | cttatttatg   | . 1440 |
| tggacaaggc | cgagctatga   | tagcttgctc   | ccgaagttgg   | taagtcccgc   | aatctgcggt   | 1500   |
| tcaggcaaca | gtctcggaaa   | aataagaaga   | atattgtagg   | tgcgtgtagg   | cgtatcgccc   | 1560   |
| aaatgcgcac | acacggaggc   | tttaggagat   | gaagegeeeg   | tgagcggtaa   | gggagttggt   | 1620   |
| tcaccgccgc | ceegaeegae   | tctctctt     | tcccagcatc   | atgtctcggc   | gcaaacttta   | 1680   |
| ccctctattç | accaactcca   | cgagaaagca   | ggaacagctt   | ccttgtctct   | catgacgtcc   | 1740   |
| gcaatccaga | cccttagccg   | gttcgttact   | catcgttatc   | cctgccgcca   | tggtagtgga   | 1800   |
| gtcagcctg  | ccagtgcgta   | gtcccgtctc   | tcttgctgca   | ctagagaagc   | cccatgagac   | 1860   |
| agcgttttt  | gctttatttc   | tgctgtttct   | atagacacca   | taggggcaaa   | cgatcctgca   | 1920   |
| cgcccagagg | , tattgggctc | gtcagattcc   | cagtttttct   | cctcggtctg   | aatcggctgc   | 1980   |
| acggcagata | a aatcggccgg | aaatgctata   | gcccttcata   | gcccgctatg   | agagtcgcaa   | 2040   |
| aaggcttgto | c agtcaggtcg | gtcgagtggc   | tctcacgaag   | agcgtcaact   |              | 2100   |
| geogeettt  | c agggcaagat | agatectece   | atcateceet   | actgcgctca   | gcgccggtac   | 2160   |
| cgaacaatt  | g acttaccgac | : atcctccggg | acgegeaaat   | gctgttcgac   | ggaacgtaat   | 2220   |
| cctcttcgt  | c cégeetettt | tegeteteae   | gcattccgtg   | tggttcgcgc   | gacggccgct   | 2280   |
| catcaggac  | c agaccagtct | : caatgtctgg | r taccggcaca | atggtgacac   | : tgcggcaact | 2340   |
| gagtaggto  | t ggtcactctg | gtgcaccgtc   | gettaegetg   | accttcggga   | tactgtcctg   | 2400   |
| cagacatot  | g gagegeetgt | ctttccccta   | gtataaatga   | tgtctgtccc   | caggteettg   | 2460   |
| aadaccoct  | e sagtoeesat | ; tqaqttttaq | ı gtaagaaati | r tecaccaaac | : costetteet | 2520   |
| / TELENE   |              |              |              |              |              | 7527   |

gctatgttgt attgaccage gtctgcagaa gatgggcacg acgatgcgcc gagccggcca 360 gtgtcgtcgg atgtccactg ttgaggccat ccttttgcta gacagacgga agagctttgg 420 480 aggtgcgatt cctctacgaa tgggaagggg cttagatgga gagtgacacg tctgagctcc ccaacacqcc tteqccqaqq qtqcqtctcc gcggacattc acctcagttc attgttctga 540 cctgcctaat tgtatagacc ggccaacaac cttgctgacg cccatcataa cagtgccctg 600 cacagageet teccaeteag teggegeete ceteaateaa teccaetaac tegeeggete 660 tgccccttcg ccgctcgaca cgtcgcttgg aagagcccgg gcacgggcgt ccgctccccc 720 cttccctccg cgtcgtcatg cacgcagegt taatgttgct gcaggcgagc cgtaagtata 780 ttcaaaggcg tagcgaatga atagcaggcg cgcggggacc tggcacgcgc ggcatgaaca 840 tgcagacttg ggtgacgata acttgaactc agacgcggcg aatgaatatc caaacgcgcg 900 960 ggaagaaaat aatttacggg agcctcccca ggtataaaaag cccctcaccc gctcactctt tctccagtcg aacaccccag ttcaactacc cagcccttcc ttccttcgct atccttcytt 1020 acaacctgct cgc 1033 <210> 6 <211> 19 <212> .ADN <213> SÚquence artificielle <220> <223> Amorce PCR <400> 6 19 caytggcayg grttcttcc <210> <211> 20 <212> DNA <213> SÚquence artificielle <220> <223> Amorce PCR <400> 7 20 gagrtggaag tcratgtgrc <210> 8 <2110 20 <2123

1135 Suquence artificielle

Augus 1977

mangaran laga semana

```
<210>
   <211>
          19
   <212>
          ADN
   <213>
          SÚquence artificielle
   <220>
   <223> Amorce PCR
   <400> 9
   cgcagtattg cgtggagag
                                                                         19
  <210>
         10
  <211>
         19
  <212> ADN
  <213> SÚquence artificielle
  <220>
  <223> Amorce PCR
  <400> 10
  gacatctgga gcgcctgtc
                                                                        19
  <210> 11
  <211> 27
  <212> ADN
 <213> SÚquence artificielle
 <220>
 <223> Amorce PCR
 <400> 11
 ategaaggtt eegatgactg acatgae
                                                                       27
 <210>
        12
 <211>
        5122
 <212> ADN
 <213> Súquence artificielle
 <220>
       SÚquence du vecteur pEGT
 <223>
<400> 12
catgggatat cgcatgcctg cagagctcta gagtcgacgg gcccggtacc gcggccgcct
                                                                      60
taagacgcgt ggatccgcag gtgaacgcgc ctatcggtgg gatattcggg cgacgggagc
                                                                     120
ctcggcaatc tgagcctcgt tactgcctag caaattcgga atcccttcga tgtcataggg
                                                                     180
tegeggacaa gtgategtet tgetacatae teeaaggtgt tgacteatte eetegataat
                                                                     240
gaacattgtt gttgttgttt gttctctatc cgctcagtca cgcgacccca cacgtgcatg
                                                                     300
gttgaacttc gccacgcaac aaccgcatga cgacatggcg aacctaagta aaggctgagt
                                                                     360
cgtggactaa agcactccac tttacggcga ggatgccagt ctacgtcatg aatgaagcct
                                                                     420
```

| 480            | cttaccatcc                              | tggacgtttt | gggtgaaagg                   | tacaaaagga | agtaaggggg               | caggtcccga        |
|----------------|-----------------------------------------|------------|------------------------------|------------|--------------------------|-------------------|
| 540            | ttctgcccgt                              | ctcaaaaagg | tcccagcttg                   | tgccgggaat | cagaccacca               | ttccacctcc        |
| 600            | tcaaaacatc                              | atgcacgact | tatcgcatac                   | aggtggcccc | aattccttcg               | acgcccgcga        |
| 660            | acattccttt                              | gtacaacgtt | tagacatgtt                   | gtacaattat | ttttgggatc               | cattctatca        |
| 720            | aaaggatcag                              | acaagcgtcc | gaggtaaagt                   | agtctatgta | tctccggccc               | cttcttttac        |
| 780            | ttcgccgcgt                              | gccgtcctgc | cttagagcgc                   | tgcttcgccg | cgcgccgtct               | gcacttagag        |
| 840            | caggcaatga                              | gttgtcgtac | agccccactc                   | cggcgggagt | gtcgcagaca               | agacgagcag        |
| 900            | ttaaggcggc                              | tccacgcgtc | cggggatcga                   | ategegatge | gctcttgctg               | gcttcacgaa        |
| 960            | cggcgtcggt                              | cggtgttggt | gtcggaccgg                   | gtcgggccgc | cctcggaccc               | cgcggtaccc        |
| 1020           | cagggcgaac                              | ccgggtcgcg | cagttgccgg                   | gaagtgcacg | cctcggccac               | cagtcctgct        |
| 1080           | gtcccggaag                              | gcccggaggc | gtcatggccg                   | gccgatctcg | acggctgctc               | tcccgcccc         |
| 1140           | cacccacacc                              | ccaggccgcg | tacagctcgt                   | ccactcggcg | cgacctccga               | ttcgtggaca        |
| 1200           | cagggtcacg                              | cgctgatgaa | tcctggaccg                   | caccacctgg | tgttgtccgg               | caggccaggg        |
| 1260           | cccgagccgg                              | cccgggagaa | tccacgaagt                   | gaagtcgtcc | ccacaccggc               | tcgtcccgga        |
| 1320           | aacggcactg                              | tgagcaccgg | tegegegegg                   | tccggcgacg | actcgaccgc               | teggteeaga        |
| 1380           | gggagaggga                              | gggatgcgat | tatgtgtgat                   | tgatgggcat | ccatgcatgg               | gtcaacttgg        |
| 1440           | ccttttatac                              | gggcggcgcg | gggagacggc                   | tggagaaaga | atgggagtgc               | agtgctctgg        |
| 1500           | gcggcggcct                              | gaacacatcg | aaaacgggat                   | cgatactgac | aagatccgat               | ccacgcccga        |
| 1560           | ccagccctgg                              | ggcgccacca | agtcccgtcg                   | atgcccagcc | ccatctgcaa               | ggactgcgcg        |
| 1620           | aggtgcgcgg                              | gčgcaattgc | ctatccatgc                   | acgctctatt | ctcgagggcg               | tcgagtcccc        |
| 1680           | ctacctctca                              | gcgaccctgt | cacctgggct                   | gtccttctcg | gtccttcgca               | tcgaagaaca        |
| 1740           | aggetetege                              | cacaccgaag | ttactaatct                   | cgcagtacag | tccgcggctt               | tcctaacccc        |
| 1800           | gaacacaatg                              | cgtcagaatt | catgccacag                   | acgttcctta | gatcccgagc               | gccaccctcc        |
| 1860           | ctgtgtgaaa                              | tagctgtttc | atcatggtca                   | ggaattcgta | cagatccccg               | cacgtcarat        |
| 1920           | gtaaagcctg                              | agcataaagt | acgagccgga                   | cacacaacat | ctcacaattc               | ttgttatccg        |
| 1980           | ccgctttcca                              | cgctcactgc | aattgcgttg                   | aactcacatt | tgagtgagct               | gggtgcctaa        |
| 2040           | ggagaggcgg                              | caacgcgcgg | atgaatcggc                   | agctgcatta | ctgtcgtgcc               | gtcgggsaac        |
| 3100           | cggtcgttcg                              | tegetgeget | gctcactgac                   | cogetteete | gggcgatatt               | tttgoatatt        |
| 3 ( 7. )       | រពទ្ធនេយបនទុទ្ធ                         | cogressess | ajişçimata                   | ctosstoses | nadápazozá               | , अवश्वर क्ष्यकृद |
|                | 1057773333                              | This itii  | . 79 <b>7777</b> 00 <b>8</b> | 1.01070111 | .grsasass.               | 777121122         |
| - <del>-</del> | . : 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |            | :                            | issiir     | . tova s <del>ta</del> t | 1                 |
|                |                                         |            |                              |            |                          |                   |

| acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttcccc  | c 2340 |
|-------------------------------------------------------------------|--------|
| tggaagetee etegtgeget eteetgttee gaceetgeeg ettaceggat acetgteeg  | c 2400 |
| ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagtt  | c 2460 |
| ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgacc  | g 2520 |
| ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgc  | 2580   |
| actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga | 2640   |
| gttettgaag tggtggeeta actaeggeta eactagaagg acagtatttg gtatetgege | 2700   |
| tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac | 2760   |
| caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg | 2820   |
| atotoaagaa gatootttga tottttotao ggggtotgao gotoagtgga acgaaaacto | 2880   |
| acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa | 2940   |
| ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta | 3000   |
| ccaatgetta atcagtgagg cacctatete agegatetgt ctatttegtt catecatagt | 3060   |
| tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat ctggccccag | 3120   |
| tgctgcaatg ataccgcgag acccacgetc accggctcca gatttatcag caataaacca | 3180   |
| gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc | 3240   |
| tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt | 3300   |
| tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag | 3360 ; |
| ctccggttcc caacgatcaa ggcgagttac atgatccccc atgttgtgca aaaaagcggt | 3420   |
| tageteette ggteeteega tegttgteag aagtaagttg geegeagtgt tateacteat | 3480   |
| ggttatggca gcactgcata attotottac tgtcatgcca tccgtaagat gcttttctgt | 3540   |
| gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac cgagttgctc | 3600   |
| ttgcccggcg tcaatacggg ataataccgc gccacatagc agaactttaa aagtgctcat | 3660   |
| cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt tgagatccag | 3720   |
| ttcgatgtaa cccactcgtg cacccaactg atcttcagca tcttttactt tcaccagcgt | 3780   |
| ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg | 3840   |
| gaaatgttga atactcatac tcttcctttt tcaatattat tgaagcattt atcagggtta | 3900   |
| ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc | 3960   |
| gegeacattt cecegaaaag tgecacetga egtetaagaa accattatta teatgacatt | 4020   |
| aacctataaa aataggcgta tcacgaggcc ctttcgtctc gcgcgtttcg gtgatgacgg | 4080   |
| J J-Jacquegg                                                      | 4 00 U |

| tgaaaacctc tgacacatgc agctcccgga gacggtcaca gcttgtctgt aagcggatgc                                              | 4140 |
|----------------------------------------------------------------------------------------------------------------|------|
| cgggagcaga caagcccgtc agggcgcgtc agcgggtgtt ggcgggtgtc ggggctggct                                              | 4200 |
| taactatgcg gcatcagagc agattgtact gagagtgcac catatgcggt gtgaaatacc                                              | 4260 |
| gcacagatgc gtaaggagaa aataccgcat caggcgccat tcgccattca ggctgcgcaa                                              | 4320 |
| ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg cgaaaggggg                                              | 4380 |
| atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac gacgttgtaa                                              | 4440 |
| aacgacggcc agtgccaagc ttgcatgcct gcaggtcgac gaccgagcgc gcgccaccca                                              | 4500 |
| gcctatcccg cgcgggtcgg gacccaaaat aagcgggccc cgccgcgccc cgtcgggcga                                              | 4560 |
| gcgggtgtat ctacgaacgg aactgggagg cgactcggaa gagtttggtt agaaagggga                                              | 4620 |
| acaccatege ggaeggeeca gtgetetggd eagetgageg tgeattgtgt teaattetga                                              | 4680 |
| cctgtggcat gtaaggaacg tgctcgggat cggagggtgg cgcgagagcc tcttcggtgt                                              | 4740 |
| gagattagta actgtactgc gaagccgcgg aggggttagg atgagaggta gacagggtcg                                              | 4800 |
| cageceaggt gegagaagga etgegaagga etgttetteg aeegegeaee tgeaattgeg                                              | 4860 |
| cgcatggata gaatagageg tegecetega gggggaeteg accagggetg gtggtggege                                              | 4920 |
| ccgacgggac tggctgggca tttgcagatg gcgcgcagtc caggccgccg ccgatgtgtt                                              | 4980 |
| catcccgttt tgtcagtatc gatcggatct ttcgggcgtg ggtataaaag cgcgccgccc                                              | 5040 |
| geogtetece tettteteca geacteceat ecagageaet tecetetece ategeatece                                              | 5100 |
| atcacacaat aatgeecate ac                                                                                       | 5122 |
| <210> 13<br><211> 5490<br><212> ADN<br><213> SÚquence artificielle                                             |      |
| <223> SÚquence du vecteur pESC                                                                                 |      |
| <400> 13 agcttctccg gccccgaatc gaacggcagg atgtgtgggc gtgtccaata ttgccatgaa                                     | 60   |
| aatctgtcag aagtgagccc tetegtcace etgtacaget tegetgagtt gaaaagcagg                                              | 120  |
| gttcatcttg ggctcactga tgcactgagc tcgaccggag.aactaaatga.ccagccggag                                              | 180  |
| tgttcactaa cttaacgccg ggtattcagg gcagcttctc tatgttgcgc ctacgacgta                                              | 240  |
| gatoasogoo catgaacggg ggaaacgggg aggggtgogt tiggtacgto bitacgtotg                                              | 300  |
| γου εξήστικο σου σου έξε στην και προσφορία το μετροφορία και σου στο συστροφορία και σου συστροφορία και συντ | 239  |
| e simpsenny madadaaban luuranginnin sebaadgaas. Usabbaabaa asababase<br>                                       | .:   |

| •           |            |             |                                         |            |              |                   |
|-------------|------------|-------------|-----------------------------------------|------------|--------------|-------------------|
| gaacccgagc  | cggtcggtcc | agaactcgac  | cgctccggcg                              | acgtcgcgcg | cggtgagcac   | 2340              |
| cggaacggca  | ctggtcaact | tggccatgca  | tggtgatggg                              | cattatgtgt | gatgggatgc   | 2400              |
| gatgggagag  | ggaagtgctc | tggatgggag  | tgctggagaa                              | agagggagac | ggcgggcggc   | 2460              |
| gcgcctttta  | tacccacgcc | cgaaagatcc  | gatcgatact                              | gacaaaacgg | gatgaacaca   | 2520              |
| tcggcggcgg  | cctggactgc | gcgccatctg  | caaatgccca                              | gccagtcccg | tcgggcgcca   | 2580 <sup>°</sup> |
| ccaccagccc  | tggtcgagtc | cccctcgagg  | gcgacgctct                              | attctatcca | tgcgcgcaat   | 2640              |
| tgcaggtgcg  | cggtcgaaga | acagteette  | gcagtccttc                              | tcgcacctgg | gctgcgaccc   | 2700              |
| tgtctacctc  | tcatcctaac | ccctccgcgg  | cttcgcagta                              | cagttactaa | tctcacaccg   | 2760              |
| aagaggctct  | cgcgccaccc | tccgatcccg  | agcacgttcc                              | ttacatgcca | cagcgtcaga   | 2820              |
| attgaacaca  | atgcacgtca | ratcagatcc  | ccgggaattc                              | gtaatcatgg | tcatagctgt   | 2880              |
| ttoctgtgtg  | aaattgttat | ccgctcacaa  | ttccacacaa                              | catacgagcc | ggaagcataa   | 2940              |
| agtgtaaagc  | ctggggtgcc | taatgagtga  | gctaactcac                              | attaattgcg | ttgcgctcac   | 3000              |
| tgcccgcttt  | ccagtcggga | aacctgtcgt  | gccagctgca                              | ttaatgaatc | ggccaacgcg   | 3060              |
| cggggagagg  | cggtttgcgt | attgggcgct  | cttccgcttc                              | ctcgctcact | gactcgctgc   | 3120              |
| gctcggtcgt  | teggetgegg | cgagcggtat  | cagctcactc                              | aaaggcggta | atacggttat   | 3180              |
| ccacagaatc  | aggggataac | gcaggaaaga  | acatgtgagc                              | aaaaggccag | caaaaggcca   | 3240              |
| ggaaccgtaa  | aaaggccgcg | ttgctggcgt  | ttttccatag                              | gctccgcccc | cctgacgagc   | 3300              |
| atcacaaaaa  | tegaegetea | agtcagaggt  | ggcgaaaccc                              | gacaggacta | taaagatacc   | 3360              |
| aggcgtttcc  | ccctggaagc | tccctcgtgc  | gctctcctgt                              | teegaeeetg | ccgcttaccg   | 3420              |
| gatacctgtc  | cgcctttctc | ccttcgggaa  | gcgtggcgct                              | ttctcatagc | tcacgctgta   | 3480              |
| ggtatctcag  | ttcggtgtag | gtcgttcgct  | ccaagctggg                              | ctgtgtgcac | gaaccccccg   | 3540              |
| ttcagcccga  | cegetgegee | ttatccggta  | actategtet                              | tgagtccaac | ccggtaagac   | 3600              |
| acgacttatc  | gccactggca | gcagccactg  | gtaacaggat                              | tagcagagcg | aggtatgtag   | 3660              |
| geggtgetae  | agagttettg | aagtggtggc  | ctaactacgg                              | ctacactaga | aggacagtat   | 3720              |
| ttggtatctg  | cgctctgctg | aagccagtta  | ccttcggaaa                              | aagagttggt | agctcttgat   | 3780              |
| eeggeaaaca  | aaccaccgct | ggtagcggtg  | gttttttgt                               | ttgcaagcag | _cagattacgc  | 3840              |
| gcagaaaaaa  | aggatctcaa | gaagatcctt  | tgatcttttc                              | tacggggtct | gacgctcagt   | 3900              |
| üdaacdaaaa  | ctcacqttaa | aggattttgg  | tcatgagatt                              | atczasasąg | atcttsacct   | 3900              |
| . 020000000 | aaactaaaa  | thenotifice | aatolotots                              | asctatatet | maatiesitt   | 2.100             |
|             | *:10003777 | 77222277    |                                         | - 10141911 | ೯೮೮ ತರವರದರ ೦ | . • !             |
|             |            |             | ::::::::::::::::::::::::::::::::::::::: |            |              |                   |

THE PROPERTY OF THE PROPERTY O

| catctggccc cagtgctgca atgataccgc gagacccacg ctcaccggct ccagattta  |            |
|-------------------------------------------------------------------|------------|
| cagcaataaa ccagccagcc ggaagggccg agcgcagaag tggtcctgca actttatcc  | g 4260     |
| cctccatcca gtctattaat tgttgccggg aagctagagt aagtagttcg ccagttaat  | a 4320     |
| gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt gtcacgctcg tcgtttggt  |            |
| tggcttcatt cagctccggt tcccaacgat caaggcgagt tacatgatcc cccatgttg  |            |
| gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt cagaagtaag ttggccgca  |            |
| tgttatcact catggttatg gcagcactgc ataattctct tactgtcatg ccatccgtaa |            |
| gatgcttttc tgtgactggt gagtactcaa ccaagtcatt ctgagaatag tgtatgcgg  |            |
|                                                                   |            |
| gaccgagttg ctcttgcccg gcgtcaatac gggataatac cgcgccacat agcagaactt |            |
| taaaagtgct catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc |            |
| tgttgagatc cagttcgatg taacccactc gtgcacccaa ctgatcttca gcatctttta | 4800       |
| ctttcaccag cgtttctggg tgagcaaaaa caggaaggca aaatgccgca aaaaagggaa | 4860       |
| taagggcgac acggaaatgt tgaatactca tactcttcct ttttcaatat tattgaagca |            |
| tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaac | .;<br>4980 |
| aaataggggt teegegeaca ttteecegaa aagtgeeace tgaegtetaa gaaaceatta | 5040       |
| ttatcatgac attaacctat aaaaataggc gtatcacgag gccctttcgt ctcgcgcgtt | 5100       |
| teggtgatga eggtgaaaac etetgacaca tgeageteec ggagaeggte acagettgte | ¥.         |
| tgtaagegga tgeegggage agacaageee gteagggege gteagegggt gttggegggt | 5160       |
| gtcggggctg gcttaactat gcggcatcag aggarathau                       | 5220<br>:  |
| gtcggggctg gcttaactat gcggcatcag agcagattgt actgagagtg caccatatgc | 5280       |
| ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg catcaggcgc cattcgccat | 5340       |
| tcaggctgcg caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc | 5400       |
| tggcgaaagg gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt | 5460       |
| cacgacgttg taaaacgacg gccagtgcca                                  | 5490       |
|                                                                   | 2430       |

2.



(facultatif)

### BREVET D'INVENTION

## CERTIFICAT D'UTILITÉ





Code de la propriete menostació

#### DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08

Téléphone : 01 53 04 53 04 Télécopie : 01 42 94 86 54

N° D'ENREGISTREMENT NATIONAL

Vos références pour ce dossier

DÉSIGNATION D'INVENTEUR(S) Page Nº 1../2.

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

Cet imprimé est à remplir lisiblement à l'encre noire DB 113 W /260899

IFB 03 DH INR ORUS

TITRE DE L'INVENTION (200 caractères ou espaces maximum)

PROCEDE DE SURPRODUCTION D'UNE PROTEINE RECOMBINANTE DETERMINEE PAR DES SOUCHES MONOCARYOTIQUES DE P. CINNABARINUS

LE(S) DEMANDEUR(S):

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE

147, rue de l'Université, 75338 PARIS CEDEX 07, FRANCE

UNIVERSITE DE PROVENCE

w w manu lu a<del>mazi</del>.

3, Place Victor Hugo, F-13331 MARSEILLE CEDEX 3, FRANCE

BIOMADE TECHNOLOGY FOUNDATION

Nijenborgh 4, NL-9747 AG GRONINGEN, PAYS-BAS

DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs, utilisez un formulaire identique et numérotez chaque page en indiquant le nombre total de pages).

| Nom                                                                  |                       | ALVES     |                                       |  |  |
|----------------------------------------------------------------------|-----------------------|-----------|---------------------------------------|--|--|
| Prénoms                                                              |                       | Alexand   | Alexandra                             |  |  |
| Adresse                                                              | Rue                   | Hemster   | huislaan 30,                          |  |  |
|                                                                      | Code postal et ville  | 9752      | NE HAREN - Pays Bas                   |  |  |
| Société d'appar                                                      | rtenance (facultatif) |           |                                       |  |  |
| Nom                                                                  |                       | RECORI    |                                       |  |  |
| Prénoms                                                              |                       | Eric      |                                       |  |  |
| Adresse                                                              | Rue                   | La Chlor  | La Chloris, D, 13, boulevard du Redon |  |  |
|                                                                      | Code postal et ville  | 13009     | MARSEILLE                             |  |  |
| Société d'appa                                                       | rtenance (facultatif) |           |                                       |  |  |
| Nom                                                                  |                       | LOMASCOLO |                                       |  |  |
| Prénoms                                                              |                       | Anne      |                                       |  |  |
| Adresse                                                              | Rue                   | Le Clos   | de la Bastide, B, 42, traverse le Mée |  |  |
|                                                                      | Code postal et ville  | 13008     | MARSEILLE                             |  |  |
| Société d'appartenance (fundiair)                                    |                       |           |                                       |  |  |
| DATE ET SIGNATURE(S)<br>AU (TES) DELIALIDEMA(S)<br>LO CO LA MADAMACE |                       | Paris, Is | 45 FA1 FATER 2004                     |  |  |



# BREVET D'INVENTION

## CERTIFICAT D'UTILITÉ





### DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 Téléphone: 01 53 04 53 04 Télécopie: 01 42 94 86 54 DÉSIGNATION D'INVENTEUR(S) Page Nº 2./2.

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

| Vos références pour ce dossier (facultatif) | IFB 03 DH INR ORUS | DB 113 W /26089 |
|---------------------------------------------|--------------------|-----------------|
| N° D'ENREGISTREMENT NATIONAL                | 0400366            |                 |
| TITRE DE L'INVENTION (200 caractères ou es  | paces maximum)     |                 |

PROCEDE DE SURPRODUCTION D'UNE PROTEINE RECOMBINANTE DETERMINEE PAR DES SOUCHES MONOCARYOTIQUES DE P. CINNABARINUS

### LE(S) DEMANDEUR(S):

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE

147, rue de l'Université, 75338 PARIS CEDEX 07, FRANCE

UNIVERSITE DE PROVENCE

3, Place Victor Hugo, F-13331 MARSEILLE CEDEX 3, FRANCE

BIOMADE TECHNOLOGY FOUNDATION

Nijenborgh 4, NL-9747 AG GRONINGEN, PAYS-BAS

DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs,

| N-                                                                                                 | amulaire identique et nur | rérotez chaque page en indiquant le nombre total de pages).        |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------|--|--|
| Nom                                                                                                |                           | SIGOILLOT                                                          |  |  |
| Prénoms                                                                                            |                           | Jean-Claude                                                        |  |  |
| Adresse                                                                                            | Rue                       | Résidence Anémones Floralies, 500, avenue Joseph Raynaud           |  |  |
|                                                                                                    | Code postal et ville      | 83140 SIX FOURS LES PLAGES                                         |  |  |
| Société d'appa                                                                                     | rtenance (facultatif)     | TOTAL OCK DESTENDES                                                |  |  |
| Nom                                                                                                |                           | ASTHER                                                             |  |  |
| Prénoms                                                                                            |                           | Marcel                                                             |  |  |
| Adresse                                                                                            | Rue                       | 28, avenue Peymian                                                 |  |  |
|                                                                                                    | Code postal et ville      | 13600 LA CIOTAT                                                    |  |  |
| Société d'appartenance (facultatif)                                                                |                           | LA CIOTAT                                                          |  |  |
| Nom                                                                                                |                           | WÖSTEN<br>Han A.B.                                                 |  |  |
| Prénoms                                                                                            |                           |                                                                    |  |  |
| Adresse Rue                                                                                        |                           | C. Huygenslaan 19                                                  |  |  |
|                                                                                                    | Code postal et ville      | 3705 SN ZEIST Paus - Prot                                          |  |  |
| Société d'appar                                                                                    | tenance (facultatif)      | 3705 SN ZEIST - Pays-Bas                                           |  |  |
| DATE ET SIGNATURE(S)<br>DU (DES) DEMANDEUR(S)<br>DU DU MANDATAIRE<br>Nom et qualité du signataire) |                           | Paris, le 15 JANVIER 2004  Charles DEMACHY, Mandataire 422.5/PP170 |  |  |

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.