Beyond the Offer: A Beginner's Guide to Career Progression in Tech

By Fatima Taj

About Me

- Senior Software Engineer at Yelp
- Graduate from the University of Waterloo, Canada
- Masters in Data Science

Disclaimer: I am *not* representing any opinions/views held at Yelp. These are my personal opinions.

The Pragmatic Engineer

The Software Engineer's Guidebook

Gergely Orosz

Navigating senior, tech lead, and staff engineer positions at tech companies and startups

Why Should You Care

- You need to act fast once you've started in your full-time role
- ☐ Failure to understand expectations can lead to being put on a PIP (performance improvement plan), or worse, being let go
- ☐ Impacts opportunities within the organization
- Impacts future opportunities
- Compensation

Outline

- What is an IC Individual Contributor
- Typical Engineering Track for a SWE
- 3. Why Do Promotions Matter?
- 4. What is a Terminal Level?
- 5. The Process
- Key Players Involved
- 7. Key Competencies
 - a. New Grad
 - b. Mid Level
 - c. Senior
 - d. Staff
- When Things Don't Go As Planned

What is an IC Individual Contributor

According to ChatGPT, "An IC is an employee who primarily focuses on executing tasks, projects, or responsibilities related to their specialized area of expertise."

What is an IC - Individual Contributor

The term IC is often used in contrast to roles that involve people management responsibilities, such as a manager.

☐ ICs may hold titles such as software engineer (SWE), data scientist, hardware engineer, designer, or any other specialized role within the technology field.

Typical Engineering Track for a SWE

From 'The Staff Engineer', by Will Larson

Every company does promotions/levelling differently.

Typical Engineering Track for a SWE

x Apple	x Uber	x Google	X Facebook	x Microsoft
ICT2 Junior Software Engineer ICT3 Software Engineer	Software Engineer I	L3 sweii	E3	SDE 59
				60
	Software Engineer II	L4 SWEIII	E4	SDE II
				62
ICT4 Senior Software Engineer	Senior Software Engineer	L5 Senior SWE	E5	Senior SDE
				64
ICT5	Senior Software Engineer II		E6	Principal SDE 65
	Staff Software Engineer	L6 Staff SWE		66
		L7 Senior Staff SWE	E7	67 Partner
ICT6	Senior Staff Software Engineer 7	L8 Principal Engineer	E8	68 69
Distinguished Engineer	Principal Engineer	L9 Distinguished Engineer	E9	70 Distinguished Engineer
enior Distinguished Engineer Engineering Fellow		L10 Google Fellow		80 Technical Fellow

Typical Engineering Track for a SWE

- The levels build on top of each other.
 - An IC3 must fulfill the requirements of an IC2.
- Minimum number of years is not a hard requirement but time is a very important factor in determining impact.
- Promotions are backward looking
 - You have to be performing at the next level for a certain period of time.
 - The official promotion confirms that you've done so.

Why Do Promotions Matter?

- Opportunity for greater impact
- Changes to compensation
 - Base salary, equity refreshers and promotion bonuses
 - A promotion moves compensation to the bottom of the next band
 - A top performing employee at a lower level could make more than an average employee at the next level (mostly because of equity grants and bonuses for top performers)

What is a Terminal Level?

- This is a level that you overtime have to get promoted to.
 - If you don't or are unable to within an acceptable time frame, you maybe put on a PIP (performance improvement plan), or worse, let go.
- ☐ This is usually the senior level at most companies.

What is a Terminal Level?

- At this level, engineers are fully autonomous.
- Terminal levels also exist to manage expectations
 - Levels beyond this usually need budget allocation so there's no guarantee you can go beyond this.

The Process

There's variations of the performance review process:

- Unstructured
- Manager-only input and feedback
- A peer feedback-based process
- Hybrid models:
 - At some companies, promotions upto the senior level are decided by a manager only committee.
 - For staff and above, company wide committee.

Key Players Involved

Your manager's/skip-level manager's role

- Your manager is your biggest ally make sure you're on the same page as them.
- Make sure you're highlighting your wins and they're being acknowledged.
- Your manager's standing in the org matters.
 - ☐ Their tenure, their influence matters.
 - The greater the tenure and influence, the more they can push for the desired calibrations.

Key Competencies

- 1. Technical contributions and expertise
- 2. Design and architecture
- 3. Collaboration and communication
- 4. Team building and mentorship

New Grad

Typical Experience:

☐ Typically a person's first full-time engineering job.

Scope & Impact:

☐ Develops features with supervision and support.

New Grad

Technical Contributions:

- With supervision, implements code that is clear, concise, and tested.
- ☐ Is learning one or more technical areas.
- Learning tools and other best practices at their company.
- □ Capable of taking well-defined *sub-tasks* and completing these tasks

New Grad

Design & Architecture:

With supervision, participates in engineering design for features and bug fixes.

Ownership:

Is responsible for development and testing of their code.

Collaboration:

Collaborates within their team seeking support as needed.

Mid Level

Typical Experience:

2 years of relevant industry or academic experience.

Scope & Impact:

Designs, develops, ships, and maintains features with support.

Mid Level

Technical Contributions:

- With support, implements code that is clear, concise, and tested.
- Is proficient in one or more technical areas.
- Makes steady progress on tasks; knows when to ask for help in order to get themselves unblocked
- An engineer will enter this level capable of taking **well-defined tasks** and completing them in a way that is considered by the team to be **high-quality** with supervision from more senior team members.

Mid Level

Design & Architecture:

- With support, contributes to engineering design for features and bug fixes.
- Provides meaningful feedback on other engineers' code.

Ownership:

Is responsible for *development*, *testing*, *rollout*, *and maintenance* of their code.

Collaboration:

Collaborates within their team seeking support as needed.

Typical Experience:

5 years of relevant industry or academic experience.

Scope & Impact:

Designs, develops, ships and maintains medium-sized features independently.

Technical Contributions:

- Independently implements code that is clear, concise, and tested.
- Is highly proficient in one or more technical areas.
- ☐ Team level impact

Design & Architecture:

- Creates or co-creates engineering designs.
- Provides meaningful feedback on other engineers' designs and code.

Ownership:

- Is responsible for the successful delivery of their projects, including planning, risk management, design, development, testing, rollout, and maintenance.
- Is responsible for improving the health and quality of code they are working on.

Collaboration:

Collaborates within their team and with adjacent teams.

Team building:

Assists and teaches engineers on an individual basis.

Typical Experience:

8 years of relevant industry or academic experience.

Scope & Impact:

Leads *medium-to-large features, multi-person efforts that usually cross engineering team* boundaries.

Technical Contributions:

- Makes high quality, impactful technical contributions.
- □ Analyzes and resolves technical obstacles for their team.
- Is an expert in one or more technical areas.
- Company wide impact

Design & Architecture:

- ☐ *Leads* engineering designs, soliciting feedback and building consensus.
- Provides meaningful feedback and guides other engineers to resolve open questions in their designs and code.

Ownership:

- ☐ Is responsible for the successful delivery of their projects, including coordination, planning, risk management, design, development, testing, rollout, and maintenance.
- ☐ Is responsible for the long term health and quality of their team's codebase and systems.

Collaboration:

- Drives collaboration with their teammates, partners and stakeholders to advance team goals.
- Fosters an environment of collaboration and knowledge sharing within their team.

Team building:

- Lifts the skills and expertise of those around them.
- Cultivates learning and growth within their team.

Tips and Tricks

- Promotions = Impact + Visibility
 - ☐ Doing the right kind of work
 - Making sure it's been seen by the right people
- ☐ 'Braq document' Julia Evans
 - Most performance reviews suffer from recency bias: you and your manager will most easily remember the most recent wins
 - ☐ Helps with manager transitions
- You won't get far if you're only watching out for your interests
 - ☐ You have to be a team player
 - ☐ Helping and unblocking your fellow team members
 - Mentoring younger engineers
 - Volunteer

Pacing Yourself

The Pragmatic Engineer:

- Pace yourself
- An average swe's career lasts 40 years
- Stretching, Executing and Coasting Model

Stretching

- ☐ Going out of your comfort zone
- ☐ Learning a new language/framework
- ☐ Joining a new company

Executing

- 'Normal' way of working
- ☐ This is where you're using the skills and experience that you have to get things done.
- ☐ For example, coding in a familiar technology

Coasting

- Taking a temporary, short term breather after a particularly tough project
- ☐ For example, there's some pending documentation you need to catch up on

Ensuring Longevity

You should mix up stretching, executing and a little coasting to ensure longevity of your career.

- The importance of being realistic in this process
- □ At most of big tech, about 30-40% of promotion cases for senior levels are rejected

Pros and cons of changing companies to get promoted:

- More risk with changing jobs with greater seniority
- Could be a red flag if you're jumping ship often.
- ☐ Tenure is important in senior roles (stay at least 2-3 years)

In more senior roles

- You need time to build relationships with your coworkers
- Building trust with stakeholders
- Understanding the ins and outs of the organization and who's involved in the decision making process

Switching jobs is usually an either/or situation

- You either get a fancier title or more compensation, but usually not both
- Interview performance can be a big reason for down levelling
- Titles and expectations aren't consistent across companies

According to the 'The Pragmatic Engineer',

- Performance reviews are just a snapshot of a point in time, not a permanent reflection of your performance
- \Box As a rule of thumb,
 - 20% of people get above average reviews,
 - ☐ 60-70% get average ones,
 - ☐ 10-15% get below average
- Don't be too dependant on the outcome, don't start planning out your performance bonuses

Biases are real

- Recency bias
- Strictness/leniency bias
- □ Halo bias: for people who 'saved' a project
- ☐ Similarity bias: people similar to them are reviewed positively
- Central tendency bias: manager rates everyone similarly because it feels fairer than to differentiate

Resources

- The Pragmatic Engineer
- The Staff Engineer
- Levels and Expectations at Block:

https://assets.ctfassets.net/1wryd5vd9xez/3gb7ZSi95ipFegjuM

WupGo/bcboddo253297bff48a4ado83b28d924/-Public-_Block_

Engineering_Career_Ladder.pdf

Thank you for attending my session!

