Name: Aniruddh Kulkarni

Roll No: 1081

Subject: Statistical Methods

Tutorial: Tutorial 8

Multivariate regression

QI.

$$z' = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$$

$$z^2z = 5 10$$
 $10 30$

$$(Z'Z)^{-1} = \begin{bmatrix} 0.6 & -0.2 \\ -0.2 & 0.1 \end{bmatrix}$$

$$z'Y = \begin{bmatrix} 25 \\ 70 \end{bmatrix}$$

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = \begin{bmatrix} z'z \\ -0.2 \end{bmatrix} \begin{bmatrix} 25 \\ -0.2 \end{bmatrix} \begin{bmatrix} 25 \\ 70 \end{bmatrix}$$

$$\hat{\beta} = \begin{bmatrix} \hat{\beta_0} \\ \hat{\beta_1} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Fitted equation: $\hat{Y} = 1 + 2z_1$

			_	-
$\hat{Y} = z\hat{B} =$	10	1 _	1	
	1 1	2	3	
	12		5	
	1 3		7	
	14		9	

For z1 = 5;

E' = Y-9 =	1		1	0.4	0	
	4	_	3		1	
	3		5		-2	
	8		7	90	0 1=	
	9		9		0	

$$S^2 = SSE$$

$$3SE = Y'Y - \hat{B}Z'Y$$
= 171 - 165

$$\sigma^2 = \frac{6}{5 - 1 - 1} = 2$$

Residual sum of square is
$$\hat{\xi}' \cdot \hat{\xi} = 0^2 + 1^2 + (-2)^2 + (1)^2 + (0)^2$$

= 6

$$Var\left(\hat{\beta}\right) = \sigma^2 \left(z^2\right)^{-1}$$

$$= \begin{bmatrix} 1.2 & -0.4 \\ -0.4 & 0.2 \end{bmatrix}$$

$$Var (E) = (I-P) \sigma^2$$

$$= 2 \begin{bmatrix} 0.4 & -0.4 & -0.2 & 0 & 0.2 \\ -0.4 & 0.7 & -0.2 & 0.1 & 0 \\ -0.2 & -0.2 & 0.8 & -0.2 & -0.2 \\ 0 & -0.1 & 0.2 & 0.7 & -0.4 \\ 0.2 & 0 & -0.2 & -0.4 & 0.4 \end{bmatrix}$$

CIASSMATE Date: Page:

-							
	Van (e) -	0.8	-0-8	-0.4	Ð	0.4	7
		-0.8	1.4	-0.4	-0.2	0	
		-0.4	-0.4	1.6	-0.4	-0.4	
		0	-0.2	-0.4		-0.8	
		0.4	0	-0.4	- 0.8	0.8	

92.

X1 0 1 2 Y 6 0 0

$$x'x = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}$$

$$(x^{2}x)^{-1} = \begin{bmatrix} 0.833 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = (\chi' \chi)^{-1} \cdot \chi' \gamma = \begin{bmatrix} 4.998 \\ -3 \end{bmatrix}$$

$$\hat{Y} = X\hat{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4.998 \\ -3 \end{bmatrix} = \begin{bmatrix} 4.998 \\ 1.998 \\ -1.002 \end{bmatrix}$$

$$E' = Y - \hat{Y} = 1.002$$
 -1.998
 1.002

SSE =
$$\frac{1}{4}$$
 - $\frac{1}{6}$ x' Y
= $\frac{36}{4}$ - $\frac{29.988}{4}$
= $\frac{6.012}{4}$

$$\sigma^2 = SSE = 6.012 = 6.012 \% 6$$

Residual sum of squares =
$$(1.002)^2 + (-1.998)^2 + (1.002)^2$$

= $6.000012 \% 6$

$$Var(\hat{\beta}) = \sigma^2 (x^2 x)^{-1}$$

$$P = \chi (\chi' \chi)^{-1} \chi'$$

CIASSMATE

$$P = \begin{bmatrix} 5/6 & 1/3 & -1/6 \\ 1/3 & 1/3 & 1/3 \\ -1/6 & 1/3 & 5/6 \end{bmatrix}$$

$$Van(\hat{Y}) = P\sigma^{2}$$

$$= \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

$$= 6 \begin{bmatrix} 1/6 & -1/3 & 1/6 \\ -1/3 & 2/3 & -1/3 \\ 1/6 & -1/3 & 1/6 \end{bmatrix}$$

03.

Z₁ 2 4 6 Y 3 6 7

$$Z' = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 6 \end{bmatrix}$$

$$Z'Z = \begin{bmatrix} 3 & 12 \\ 12 & 56 \end{bmatrix}; (Z'Z)^{-1} = \begin{bmatrix} 7/3 & -1/2 \\ -1/2 & 1/8 \end{bmatrix}$$

$$Z^{2}Y = 16$$

$$72$$

$$\hat{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = (z'z)^{-1} \cdot z'y = \begin{bmatrix} 7/3 & -1/2 \\ -1/2 & 1/8 \end{bmatrix} \cdot \begin{bmatrix} 16 \\ 72 \end{bmatrix}$$

Fitted Eqn $\Rightarrow \hat{Y} = 1.28 + Z_1$

For
$$z = 2.5$$
, $\hat{Y} = 3.78$

For
$$z = 7$$
, $\hat{y} = 8.28$

$$y = zB =$$

$\hat{Y} = Z\hat{B} =$	1	2		1.28	-	3.28	T
	1	4	•	1		5.28	T
	1	6.	N. Y	0.7		7.28	

$$E' = Y - \hat{Y} = 3$$
 3.28 -0.28
 $6 - 5.28 = 0.72$
 $7 - 7.28$ -0.28

Residual sum of squares is:

$$= (-0.28)^{2} + (0.72)^{2} + (-0.28)^{2}$$
$$= 0.6752$$

SSE =
$$\frac{9}{9} - \frac{6}{8} \frac{2}{9} \frac{7}{9}$$

= $\frac{94}{9} - \frac{92}{48}$
= $\frac{1.52}{3-1-1}$

$$\sigma^2 = 1.52 = 1.52$$

$$= \begin{bmatrix} 3.55 & -0.76 \\ -0.76 & 0.19 \end{bmatrix}$$

P=	Z	(z'z)	-1 z)

$$= \begin{bmatrix} 1.2616 & 0.5016 & -0.2584 \\ 0.5016 & 0.5016 & 0.5016 \\ -0.2584 & 0.5016 & 1.2616 \end{bmatrix}$$

$$Var(e) = (I-P)\sigma^2$$