ODE – Boundary Value Problems

IPCST Seoul National University

Boundary Value Problem

with the boundary conditions

$$y(t_0) = y_0$$
$$y(t_f) = y_f$$

- 1. Shooting method
- 2. Finite difference method
- 3. Collocation method

Shooting Method

- Essence: BVP \rightarrow IVP by guessing \dot{y}_0
- Procedure
 - $\ddot{y} = f(t,y)$ with $y(t_0) = y_0$ and $y(t_f) = y_f$
 - 1. Find $y(\dot{y}_0; t = t_f)$ for a guess \dot{y}_0
 - $y(\dot{y}_0;t_f)$ can be obtained by solving an IVP with given \dot{y}_0
 - 2. Adjust \dot{y}_0 to find the right \dot{y}^*_0 by the condition $y(\dot{y}^*_0;t_f)=y_f$.
- 1 Linear shooting
- 2 Non-linear shooting

General problem

$$y''(t) = u(t) + v(t)y(t) + w(t)y'(t),$$

$$y(t_0) = \alpha, y(t_f) = \beta$$

– Guess two initial $y'(t_0)$ values: any guesses can be OK (later we'll check out); here we choose $y'(t_0) = 0$ or 1

– Solutions: \bar{y} for $y'(t_0) = 0$ and \tilde{y} for $y'(t_0) = 1$

$$\bar{y}''(t) = u(t) + v(t)\bar{y}(t) + w(t)\bar{y}'(t), \qquad \bar{y}(t_0) = \alpha, \bar{y}'(t_0) = 0$$

$$\tilde{y}''(t) = u(t) + v(t)\tilde{y}(t) + w(t)\tilde{y}'(t), \qquad \bar{y}(t_0) = \alpha, \tilde{y}'(t_0) = 1$$

- − Wen Shen pp. 218~221
- General problem
 - Assume both equations can be solved on the entire interval $[t_0, t_f]$ and $\bar{y}(t_f) \neq \tilde{y}(t_f)$.
 - Now let $y(t) = \lambda \cdot \overline{y}(t) + (1 \lambda) \cdot \widetilde{y}(t)$
 - λ: constant to be determined
 - -y(x) is a solution of the ODE
 - Not considering the boundary conditions

$$y''(t) = \lambda \cdot \overline{y}''(t) + (1 - \lambda) \cdot \widetilde{y}''(t)$$

$$= \lambda(u + v\overline{y} + w\overline{y}') + (1 - \lambda)(u + v\overline{y} + w\overline{y}')$$

$$= u + v[\lambda \overline{y} + (1 - \lambda)\widetilde{y}] + w[\lambda \overline{y}' + (1 - \lambda)\widetilde{y}']$$

$$= u + vy + wy'$$

$$\checkmark y'' = u + vy + wy'$$
 for any λ

- Wen Shen pp. 218~221
- General problem
 - Checking boundary conditions:
 - At $t=t_0$, $y(t_0)=\lambda\cdot \bar{y}(t_0)+(1-\lambda)\cdot \tilde{y}(t_0)=\lambda\cdot \alpha+(1-\lambda)\cdot \alpha=\alpha$ for any λ
 - At $t = t_f$, $y(t_f) = \lambda \cdot \overline{y}(t_f) + (1 \lambda) \cdot \widetilde{y}(t_f)$
 - which depends on λ

General problem

– Now $y(t_f) = \beta$ gives an equation to find λ

$$\lambda \cdot \bar{y}(t_f) + (1 - \lambda) \cdot \tilde{y}(t_f) = \beta \implies \lambda = \frac{\beta - \tilde{y}(t_f)}{\bar{y}(t_f) - \tilde{y}(t_f)}$$

> Conclusion

$$y(t) = \lambda \cdot \overline{y}(t) + (1 - \lambda) \cdot \widetilde{y}(t)$$
 where $\lambda = \frac{\beta - \widetilde{y}(t_f)}{\overline{y}(t_f) - \widetilde{y}(t_f)}$ is the solution of $y'' = u + vy + wy'$, $y(t_0) = \alpha, y(t_f) = \beta$

- Wen Shen pp. 218~221
- Practical issues
 - Solve for $\bar{y} \& \tilde{y}$ simultaneously
 - → system of first order ODEs

$$y_{1} = \overline{y}, \quad y_{2} = \overline{y}', \quad y_{3} = \widetilde{y}, \quad y_{4} = \widetilde{y}',$$

$$\begin{pmatrix} y'_{1} \\ y'_{2} \\ y'_{3} \\ y'_{4} \end{pmatrix} = \begin{pmatrix} y_{2} \\ u + vy_{1} + wy_{2} \\ y_{4} \\ u + vy_{3} + wy_{4} \end{pmatrix}, \quad \text{I. C.:} \begin{pmatrix} y_{1}(t_{0}) \\ y_{2}(t_{0}) \\ y_{3}(t_{0}) \\ y_{4}(t_{0}) \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \\ \alpha \\ 1 \end{pmatrix}.$$

 $ightharpoonup \overline{y}(t_f)$ from y_1 , $\widetilde{y}(t_f)$ from y_3

Do It Yourself

$$y'' = y' + 2y + \cos t$$
, $y(0) = -0.3$, $y(\frac{\pi}{2}) = -0.1$

on a uniform grid, if an IVP solver is given.

- Wen Shen 10.4-1
- [After this class]: Make and run your code and check the error of your result.
 - Exact solution: $y(t) = -(\sin t + 3\cos t)/10$.

Plot your solution with the exact solution.

- Wen Shen pp. 218~221
- Extensions

Case 1:
$$y''(t) = u(t) + v(t)y(t) + w(t)y'(t)$$
, $y(t_0) = \alpha, y'(t_f) = \beta$

- A similar shooting method can be designed:

$$y(t) = \lambda \cdot \overline{y}(t) + (1 - \lambda) \cdot \widetilde{y}(t)$$

$$\lambda \cdot \bar{y}'(t_f) + (1 - \lambda) \cdot \tilde{y}'(t_f) = \beta \implies \lambda = \frac{\beta - \tilde{y}'(t_f)}{\bar{y}'(t_f) - \tilde{y}'(t_f)}$$

− Wen Shen pp. 218~221

Extensions

- Case 2:
$$y''' = f(t, y, y', y'')$$
 (affine function in y, y', y''), $y(t_0) = \alpha$, $y(t_f) = \beta$, $y'(t_0) = \gamma$

• Two solutions $\bar{y} \ \& \ \tilde{y}$ with two initial $y''(t_0)$ values

$$\bar{y}(t_0) = \alpha, \qquad \bar{y}'(t_0) = \gamma, \qquad \bar{y}''(t_0) = 0
\tilde{y}(t_0) = \alpha, \qquad \tilde{y}'(t_0) = \gamma, \qquad \tilde{y}''(t_0) = 1
y(t) = \lambda \cdot \bar{y}(t) + (1 - \lambda) \cdot \tilde{y}(t)$$

$$\checkmark y'' = u + vy + wy' \text{ and } y(t_0) = \alpha, y'(t_0) = \gamma$$

$$\lambda \cdot \overline{y}(t_f) + (1 - \lambda) \cdot \widetilde{y}(t_f) = \beta \implies \lambda = \frac{\beta - \widetilde{y}(t_f)}{\overline{y}(t_f) - \widetilde{y}(t_f)}$$

Wen Shen pp. 218~221

Extensions

- Case 3:
$$y''' = f(t, y, y', y'')$$
 (affine function in y, y', y''), $y(t_0) = \beta$, $y(t_f) = \alpha$, $y'(t_f) = \gamma$

- Backward in time $\rightarrow t_f$ becomes the initial time, and t_0 , the final time
- Two solutions $\bar{y} \& \tilde{y}$ with two initial $y''(t_f)$ values

$$\bar{y}(t_f) = \alpha, \qquad \bar{y}'(t_f) = \gamma, \qquad \bar{y}''(t_f) = 0$$
 $\tilde{y}(t_f) = \alpha, \qquad \tilde{y}'(t_f) = \gamma, \qquad \tilde{y}''(t_f) = 1$

Extensions

- Case 3:
$$y''' = f(t, y, y', y'')$$
 (affine function in y, y', y''), $y(t_0) = \beta$, $y(t_f) = \alpha$, $y'(t_f) = \gamma$

$$y(t) = \lambda \cdot \bar{y}(t) + (1 - \lambda) \cdot \tilde{y}(t)$$

$$\checkmark y'' = u + vy + wy' \text{ and } y(t_f) = \alpha, y'(t_f) = \gamma$$

The last boundary condition

$$y(t_0) = \lambda \cdot \overline{y}(t_0) + (1 - \lambda) \cdot \widetilde{y}(t_0) = \beta \implies \lambda = \frac{\beta - \widetilde{y}(t_0)}{\overline{y}(t_0) - \widetilde{y}(t_0)}$$

- $\ddot{y} = f(t,y)$ with $y(t_0) = y_0$ and $y(t_f) = y_f$
- 1. Define a function $g(\dot{y}_0) = y(\dot{y}_0; t = t_f) y_f$
- 2. Find the right \dot{y}^*_{o} by the condition $g(\dot{y}^*_{o}) = y(\dot{y}^*_{o};t_f) y_f = 0$.
 - \rightarrow $y(\dot{y}_0;t_f)$ can be obtained by solving an IVP with given \dot{y}_0
 - \triangleright An iterative method can find the right \dot{y}^*_{0}

Iterative methods

- Newton method
 - The original version is used. $x_{n+1} = x_n \frac{g(x_n)}{g'(x_n)}$
 - $g(\dot{y}_{o};t_{f}) = y(\dot{y}_{o};t_{f}) y_{f}$
 - $g'(\dot{y}_0;t_f) = dy(\dot{y}_0;t_f)/d\dot{y}_0$ can be obtained by using a small perturbation
- 2. Secant method (Wen Shen p. 222)
 - Two initial \dot{y}_0 guesses: x_1 , x_2
 - Secant step: $f_n = f(x_n) = y(\dot{y}_0 = x_n; t_f)$ $x_{n+1} = x_n + (y_f - f_n) \cdot \frac{x_n - x_{n-1}}{f_n - f_{n-1}}$
- 3. Etc.

Do It Yourself

• [After this class]: Wen Shen 10.4-2

Make your code to solve

$$y'' = (y')^2 - y + \log t$$
, $y(1) = 0, y(2) = \log 2$

on a uniform grid.

Exact solution: $y(t) = \log t$.

Check the error of your result.

Plot your solution with the exact solution.

- Multiple shooting
 - In the single shooting method,
 - Convergence strongly depends on the initial guess.
 Bad initial guesses may lead to divergence or slow convergence.
 - The derived IVP can be ill-conditioned even if the BVP is well-conditioned.
 - Main idea of the multiple shooting method
 - Dividing the time interval
 - Shooting on every subinterval
 - Forcing continuity

1. Dividing the time interval $[t_0, t_f]$ into N small subintervals

$$t_0 < t_1 < \dots < t_{N-1} < t_N = t_f$$

Introduce an artificial initial condition for every subinterval

$$y_k(t_k) = a_k$$
 where $k = 0, 1, ..., N-1$

3. Solve the ODE for each subinterval

$$\dot{y}_k = f(t, y_k)$$
 with $y_k(t_k) = a_k$ $(t_k \le t \le t_{k+1})$

4. Change a_k 's to satisfy the continuity of the solution y

$$y_k(t_{k+1}) - a_{k+1} = 0$$

- Multiple shooting
 - The last step (a system of continuity equations) needs an iterative method such as Newton method. Since this is a matrix equation, it needs a Jacobian matrix.

$$Y_k = \partial y_k(t_{k+1}; a_k) / \partial a_k$$

$$C_i = \partial b(y_0, y_f) / \partial y_0$$

$$C_f = \partial b(y_0, y_f) / \partial y_f$$

 $b(y_0, y_f)$: a function to express boundary conditions. o for exact boundary conditions.

- Multiple shooting
 - Nearly same time cost as single shooting per iteration
 - Easy to be parallelized
 - Ref.) M. Kiehl, "Parallel multiple shooting for the solution of initial value problems", Parallel Comput. 20, 275-295 (1994).
 - Initial guess for artificial initial conditions
 - Use linear interpolation

- Multiple shooting
 - $Ex.) \ddot{y} = 5 \sinh(5y) \text{ with } y(0) = 0 \& y(1) = 1$

Figures from M. Diehl

- General procedure
 - 1. Discretization: uniform grid
 - 2. ODE + Finite difference → Discrete equation
 → System of linear equations (tridiagonal matrix)
- Boundary conditions
 - Dirichlet B. C.: $y(t_0) = C$ or $y(t_f) = C$
 - Neumann B. C.: $\dot{y}(t_0) = C \text{ or } \dot{y}(t_f) = C$
 - Robin B. C.: $ay(t_0) + b\dot{y}(t_0) = C$ or $ay(t_f) + b\dot{y}(t_f) = C$ $a \neq 0 \& b \neq 0$

- 1-D Poisson eq. u''(x) = f(x)Dirichlet B. C.: u(a) = u(b) = 0
 - A uniform grid by dividing the x-axis line

$$x_0 = a < x_1 < ... < x_{N-1} < x_N = b$$

 $x_i = x_0 + ih,$ $0 \le i \le N$
 $u(x_0) = u(x_N) = 0$

– Applying the central 3-point second derivative finite difference to u'',

$$u(x_{i-1}) - 2 u(x_i) + u(x_{i+1}) = h^2 \cdot f(x_i)$$

- 1-D Poisson eq. u''(x) = f(x)
 - After applying the boundary condition, one can obtain a matrix for $u(x_1)$, $u(x_2)$, ..., $u(x_{N-1})$

$$h^{2}u'' = \begin{pmatrix} -2 & 1 & 0 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 1 & -2 & 1 \\ 0 & \cdots & 0 & 0 & 1 & -2 \end{pmatrix}$$

$$\mathbf{f} = (f(x_{1}), f(x_{2}), \dots, f(x_{N-1}))^{T}$$

$$u'' = f \rightarrow \mathbf{A}\mathbf{u} = h^{2} \cdot \mathbf{f} \quad (\mathbf{A} = h^{2}u'')$$

Do It Yourself

$$\frac{d^2u}{dx^2} = 1 - x^2, \qquad u(-1) = 0, u(1) = 0$$

on a uniform grid.

Assume you can use library (module) of linear algebra.

 [After this class]: Make and run your code and plot your solution

- Süli pp. 66~67
- Consider the BVP for a 2nd order linear ODE

$$\ddot{y} + p(t)\dot{y} + q(t)y = f(t)$$

$$a_0 y(t_0) + b_0 \dot{y}(t_0) = c_0$$

$$a_1 y(t_f) + b_1 \dot{y}(t_f) = c_1$$

A uniform grid by dividing the time interval

$$t_0 < t_1 < \dots < t_{N-1} < t_N = t_f$$

 $t_i = t_0 + ih,$ $0 \le i \le N$

- General linear boundary value problem
 - Süli pp. 66~67
 - Applying finite differences

$$\ddot{y}(t_i) = \frac{y(t_{i+1}) - 2y(t_i) + y(t_{i-1})}{h^2} + O(h^2)$$

$$\dot{y}(t_i) = \frac{y(t_{i+1}) - y(t_{i-1})}{2h} + O(h^2)$$

$$\dot{y}(t_0) = \frac{-3y(t_0) + 4y(t_1) - y(t_2)}{2h} + O(h^2)$$

$$\dot{y}(t_N) = \frac{y(t_{N-2}) - 4y(t_{N-1}) + 3y(t_N)}{2h} + O(h^2)$$

• t_i : central, t_0 : forward, t_N : backward

- General linear boundary value problem
 - Süli pp. 66~67
 - Then the BVP (let $y_i = y(t_i)$)

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + p(t_i) \frac{y_{i+1} - y_{i-1}}{2h} + q(t_i)y_i = f(t_i), \quad 1 \le i \le N-1$$

$$a_0 y_0 + b_0 \frac{-3y_0 + 4y_1 - y_2}{2h} = c_0$$

$$a_1 y_N + b_1 \frac{y_{N-2} - 4y_{N-1} - 3y_N}{2h} = c_1$$

– Rearranging these for y_i 's

General linear boundary value problem

$$\left(a_0 - \frac{3b_0}{2h}\right) y_0 + \frac{2b_0}{h} y_1 - \frac{b_0}{2h} y_2 = c_0$$

$$\left(\frac{1}{h^2} - \frac{p(t_i)}{2h}\right) y_{i-1} - \left(\frac{2}{h^2} - q(t_i)\right) y_i + \left(\frac{1}{h^2} + \frac{p(t_i)}{2h}\right) y_{i+1} = f(t_i),$$

$$\frac{b_1}{2h} y_{N-2} - \frac{2b_1}{h} y_{N-1} + \left(a_1 + \frac{3b_1}{2h}\right) y_N = c_1$$

– of the form

$$A_0 y_0 + B_0 y_1 + C_0 y_2 = c_0,$$

$$A_i y_{i-1} + B_i y_i + C_i y_{i+1} = f_i,$$

$$A_N y_{N-2} + B_N y_{N-1} + C_N y_N = c_1$$

System of linear equations

- General linear boundary value problem
 - The matrix M can be reduced by manipulating the boundary conditions.

•
$$A_0 y_0 + B_0 y_1 + C_0 y_2 = c_0 \rightarrow y_0 = (c_0 - B_0 y_1 - C_0 y_2)/A_0$$

 $A_1 y_0 + B_1 y_1 + C_1 y_2 = f_1 \rightarrow \tilde{B}_1 y_1 + \tilde{C}_1 y_2 = \tilde{f}_1$
 $\tilde{B}_1 = B_1 - \frac{A_1 B_0}{A_0}, \tilde{C}_1 = C_1 - \frac{A_1 C_0}{A_0}, \tilde{f}_1 = f_1 - \frac{A_1 c_0}{A_0}$

• In case of Dirichlet B. C.: $b_0 = 0 \to A_0 = a_0$, $B_0 = C_0 = 0$ $\tilde{B}_1 = B_1$, $\tilde{C}_1 = C_1$, $\tilde{f}_1 = f_1 - \frac{A_1 c_0}{a_0}$

- General linear boundary value problem
 - The matrix M can be reduced by manipulating the boundary conditions.

•
$$A_N y_{N-2} + B_N y_{N-1} + C_N y_N = c_1 \rightarrow y_N = \frac{c_1 - A_N y_{N-2} - B_N y_{N-1}}{c_N}$$

 $A_{N-1} y_{N-2} + B_{N-1} y_{N-1} + C_{N-1} y_N = f_{N-1}$

• In case of Dirichlet B. C.: $b_1 = 0 \rightarrow A_N = B_N = 0, C_N = a_1$ $\tilde{A}_{N-1} = A_{N-1}, \tilde{B}_{N-1} = B_{N-1}, \tilde{f}_{N-1} = f_{N-1} - \frac{C_{N-1}c_1}{a_1}$

- General linear boundary value problem
 - The matrix M can be reduced by manipulating the boundary conditions.

$$\mathbf{M} = \begin{pmatrix} \tilde{B}_1 & \tilde{C}_1 & 0 & 0 & \cdots & 0 \\ A_2 & B_2 & C_2 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & A_{N-2} & B_{N-2} & C_{N-2} \\ 0 & \cdots & 0 & 0 & \tilde{A}_{N-1} & \tilde{B}_{N-1} \end{pmatrix}$$

$$\mathbf{y} = (y_1, y_2, ..., y_{N-1})^T, \qquad \mathbf{f} = (\tilde{f}_1, f_2, f_3, ..., f_{N-2}, \tilde{f}_{N-1})^T$$

- General linear boundary value problem
 - The matrix M can be reduced by manipulating the boundary conditions.
 - In case of Dirichlet B. C.

$$\mathbf{M} = \begin{pmatrix} B_1 & C_1 & 0 & 0 & \cdots & 0 \\ A_2 & B_2 & C_2 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & A_{N-2} & B_{N-2} & C_{N-2} \\ 0 & \cdots & 0 & 0 & A_{N-1} & B_{N-1} \end{pmatrix}$$

$$\mathbf{y} = (y_1, y_2, ..., y_{N-1})^T, \qquad \mathbf{f} = (\tilde{f}_1, f_2, f_3, ..., f_{N-2}, \tilde{f}_{N-1})^T$$

✓ The matrix **M** is strictly diagonally dominant if $|B_i| > |A_i| + |C_i| \rightarrow |2 - h^2 q(t_i)| > |1 - hp(t_i)/2| + |1 + hp(t_i)/2|$

• Ex.)
$$d^2y/dx^2 + 4y = 4x$$
, $y(0) = 0$, $y(1) = 2$

• Exact solution: $y(x) = (1/\sin 2)\sin 2x + x$

$$A_{i} = C_{i} = \frac{1}{h^{2}}, B_{i} = 4 - \frac{2}{h^{2}}$$

$$\mathbf{M} = \frac{1}{h^{2}} \begin{pmatrix} 4h^{2} - 2 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 4h^{2} - 2 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 1 & 4h^{2} - 2 & 1 \\ 0 & \cdots & 0 & 0 & 1 & 4h^{2} - 2 \end{pmatrix}$$

$$\mathbf{y} = (y_1, y_2, ..., y_{N-1})^T,$$

$$\mathbf{f} = (4x_1, 4x_2, 4x_3, ..., 4x_{N-2}, 4x_{N-1} - 2/h^2)^T$$

Wen Shen Example 10.1

• Ex.)
$$d^2y/dx^2 + 4y = 4x$$
, $y(0) = 0$, $y(1) = 2$

circle: numerical solution (N = 10), curve: exact solution

Wen Shen Example 10.1

• Ex.)
$$d^2y/dx^2 + 4y = 4x$$
, $y(0) = 0$, $y(1) = 2$

 \bullet Errors (N = 5, 10, 20, 40, 80)

Figure from Wen Shen

Wen Shen Example 10.1

• Ex.)
$$d^2y/dx^2 + 4y = 4x$$
, $y(0) = 0$, $y(1) = 2$

Figure from Wen Shen

- Another approach to boundary conditions
 - Ghost boundary (for Neumann or Robin B.C.)

$$a_0 y(t_0) + b_0 \dot{y}(t_0) = c_0 \rightarrow a_0 y_0 + b_0 \frac{y_1 - y_{-1}}{2h} = c_0$$

$$y_{-1} = y_1 + 2h \frac{a_0 y_0 - c_0}{b_0}$$

•
$$A_i y_{i-1} + B_i y_i + C_i y_{i+1} = f(t_i)$$
 with $i = 0$

$$\left(\frac{1}{h^2} - \frac{p(t_0)}{2h}\right) y_{-1} - \left(\frac{2}{h^2} - q(t_0)\right) y_0 + \left(\frac{1}{h^2} + \frac{p(t_0)}{2h}\right) y_1 = f(t_0)$$

$$\Rightarrow \left(q(t_0) - \frac{a_0 p(t_0)}{b_0} + \frac{2a_0}{hb_0} - \frac{2}{h^2} \right) y_0 + \frac{2}{h^2} y_1 = f(t_0) + \frac{2c_0}{hb_0} - \frac{c_0 p(t_0)}{b_0}$$

• Similar way for i = N

参考:

参考: Finite Difference Method

- Non-linear boundary value problem
 - Süli pp. 69~70

$$\ddot{y} = f(t, y, \dot{y})$$

$$a_0 y(t_0) + b_0 \dot{y}(t_0) = c_0$$

$$a_1 y(t_f) + b_1 \dot{y}(t_f) = c_1$$

Applying finite differences

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} = f\left(t_i, y_i, \frac{y_{i+1} - y_{i-1}}{2h}\right), \quad 1 \le i \le N-1$$

$$a_0 y_0 + b_0 \frac{-3y_0 + 4y_1 - y_2}{2h} = c_0$$

$$a_1 y_N + b_1 \frac{y_{N-2} - 4y_{N-1} - 3y_N}{2h} = c_1$$

- Non-linear boundary value problem
 - After rearrangement

$$\left(a_0 - \frac{3b_0}{2h}\right) y_0 + \frac{2b_0}{h} y_1 - \frac{b_0}{2h} y_2 = c_0$$

$$\frac{1}{h^2} y_{i-1} - \frac{2}{h^2} y_i + \frac{1}{h^2} y_{i+1} = f\left(t_i, y_i, \frac{y_{i+1} - y_{i-1}}{2h}\right)$$

$$\frac{b_1}{2h} y_{N-2} - \frac{2b_1}{h} y_{N-1} + \left(a_1 + \frac{3b_1}{2h}\right) y_N = c_1$$

$$A_0 y_0 + B_0 y_1 + C_0 y_2 = c_0,$$

$$A_i y_{i-1} + B_i y_i + C_i y_{i+1} = f_i,$$

$$A_N y_{N-2} + B_N y_{N-1} + C_N y_N = c_1$$

$$My = f(y) \rightarrow G(y) \equiv My - f(y) = 0$$

- Solve this by an iterative method
- Newton method for example

$$J(y^{(n)})(y^{(n+1)} - y^{(n)}) = -G(y^{(n)})$$

- J: Jacobian matrix of **G**
- The initial guess should be based on the boundary values.

References

- Wen Shen,
 An Introduction to Numerical Computation
- K. Atkinson et al.,
 Numerical Solution of Ordinary Differential Equations
- E. Süli, "Numerical Solution of Ordinary Differential Equations"

References

- I. Faragó, "Numerical Methods for Ordinary Differential Equations"
- M. Diehl, "Solution of Boundary Value Problems"

Investigation

- Gauss-Newton method
 - For non-linear least squares
- About the Bogacki-Shampine (RK23)
 Method

About differential algebraic equations

Investigation

About Runge-Kutta-Nyström methods

About a collocation method for ODE