DIC L1: Introduction (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Course

- Digital Integrated Circuits, Fall 2019
 - Instructor: Sung-Min Hong

Resources

- Lecture PPT files (Converted to PDF format)
 - GitHub repository is found as

https://github.com/hi2ska2/dic2019f

- YouTube channel
 - Sorry, limited availability in this semester

https://www.youtube.com/channel/UCSmzU9aDVgIa4bo_R47mI2Q?v iew_as=subscriber

- Textbook
 - Supplementary materials are available at:

http://pages.hmc.edu/harris/cmosvlsi/4e/index.html

1.3. MOS transistors (1)

- Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)
 - Four terminals: Gate, source, drain, and body(/substrate)
 - NMOSFET & PMOSFET

1.3. MOS transistors (2)

- Usually, $V_D > V_S$.
 - When we have an electron between the source/drain regions, it is drifted toward the drain. (Current conduction)

- The key is to control the number of electrons.
- (# of electrons) ≠ (# of negatively charged particles)

1.3. MOS transistors (3)

- MOS capacitor
 - It is a "nonlinear" capacitor.

Gate voltage (V)

1.3. MOS transistors (4)

- Body is tied to ground (GND).
- When $V_{GS} \equiv V_G V_S$ is low, (BTW, "low" means what?)
 - No current flows.
 - The transistor is said to be OFF.

GIST Lecture on September 10, 2019

1.3. MOS transistors (5)

- When $V_{GS} \equiv V_G V_S$ is high, (Again, "high" means what?)
 - Current can flow from the source thorugh the channel to the drain.
 - The transistor is said to be ON.

