SDSC3002 Market Basket Analysis: Frequent Pattern Mining

Yu Yang yuyang@cityu.edu.hk

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms

Challenges

Apriori Algorithm

Pattern Growth Algorithm

Accelerations

Advanced FPM

Conclusion

What is Frequent Pattern Mining?

- Data Mining: extracting patterns from massive data
 - Pattern: a set of items, subsequences, or substructures that occur together frequently in a data set
- ► Motivation: uncovering inherent regularities in data

Frequently bought together

- ▼ This item: Huggies Natural Care Fragrance-Free Baby Wipes, Refill Pack, 1056 Count CDN\$ 19.97 (CDN\$ 0.02 / count)
- ✓ Playtex Diaper Genie Diaper Pail System Refills, 3 pack CDN\$ 22.93 (CDN\$ 7.64 / ring)

What is Frequent Pattern Mining?

- Data Mining: extracting patterns from massive data
 - Pattern: a set of items, subsequences, or substructures that occur together frequently in a data set
- ► Motivation: uncovering inherent regularities in data

Common Patterns in Code: likely specifications and properties

Violation of Patterns: maybe bugs

Mining Sequetial Patterns to Detect Copy-and-Paste Bugs

Why Frequent Patterns are Important?

Fruitful applications

- ► Basket data analysis, cross-marketing, catalog design, sale campaign analysis, web log (click stream) analysis, ...
- ► Fundamental step of many data mining tasks
 - Association, correlation, causality analysis
 - ► Time-series analysis (sequential patterns)
 - Graph mining, Graph similarity/kernel (sub-graph patterns)
 - Classification (discriminative patterns)
 - **.**..

Frequent Patterns in Transaction/Set Data

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- ► Pattern/Itemset: a set of items
 - The most fundamental type of patterns
- k-itemset $I = \{i_1, ..., i_k\}$: a set of k items
 - ▶ {Beer, Diaper} is a 2-itemset
- ► Support of *I*: #transactions containing all items in *I*
 - Frequency/Relative Support: $Freq(I) = \frac{Sup(I)}{|TBD|}$
 - ► $I = \{Beer, Diaper\}, Sup(I) = 3, Freq(I) = 0.6$

Frequent Patterns in Transaction/Set Data

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- ► Minimum support *min_sup*
 - Defined by users of FPM
- ▶ *I* is a frequent itemset if $Sup(I) \ge min_sup$
 - min_sup = 3, {Beer, Diaper} is frequent, {Nuts, Diaper} is not
- Frequent Pattern/Itemset Mining
 - ► Input: a transaction DB, min_sup
 - Output: all frequent itemsets

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms

Challenges

Apriori Algorithm

Pattern Growth Algorithm

Accelerations

Advanced FPM

Conclusion

Market-Basket Analysis: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- If one buys diapers, what else is she likely to buy?
- ▶ Association rule X → Y
 - ► Confidence: $Conf(X \to Y) = \frac{Sup(X \cup Y)}{Sup(X)} \ge min_conf$
 - ▶ Support: $Sup(X \cup Y) \ge min_sup$ (the harder part)
- ightharpoonup min_conf = 50%, min_sup = 3
 - ► Frequent itemsets: ({Beer},3), ({Nuts},3), ({Diaper},4), ({Egg},3), ({Beer,Diaper},3)
 - Association Rules: $\{Beer\} \rightarrow \{Diaper\} (100\%,3), \{Diaper\} \rightarrow \{Beer\} (75\%,3)$

Sub-Market Extraction: Bipartite Clique Analysis

- Sponsored Search: displaying ads when relevant queries are issued
- ▶ Bipartite graph $G = (A \cup Q, E)$
 - ► A is the set of advertisers
 - Q is the set of queries
 - (a, q) is an edge if the advertiser a is willing to spend money on the query q
- \triangleright (n, m) Sub-Market
 - n advertisers and m queries that are fully connected
 - ► An (n, m) sub-market is a frequent m-itemset with min_sup = n

 $\begin{aligned} \{a_1,a_4,a_5\} &\cup \{q_4,q_6\} \text{ is a sub-market} \\ a_1,a_4,a_5 \text{ are competitors} \\ q_4 \text{ and } q_6 \text{ may summarize important} \\ \text{features} \text{ of products of } a_1,a_4,a_5 \end{aligned}$

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms

Challenges

Apriori Algorithm

Pattern Growth Algorithm

Accelerations

Advanced FPM

Conclusion

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms Challenges

Apriori Algorithm
Pattern Growth Algorithm
Accelerations

Conclusion

Challenges

- ▶ Challenge 1: #candidate_Itemsets
 - ► A naive idea: generate all possible itemsets and test supports
 - ▶ **Assume** we have 200 items: $2^{200} 1 \approx 1.6 \times 10^{60}$ candidates
 - ▶ Age of universe≈ 4.3×10^{17} s, IBM Summit: 2×10^{17} Flops, 4.3×10^{17} s × 2×10^{17} ≪ 1.6×10^{60}
 - ► Reality: Amazon.com has more than 17,000 books (items) relevant to data mining
- ▶ Challenge 2: counting supports of a huge number of itemsets
 - Walmart has more than 20 million transactions per day
 - ► I/O is costly
- ► Efficiency is a real demand!

How to Get an Efficient Method?

Building Block 1

Reducing #candidate_itemsets that need to be checked

Building Block 2

Counting supports of itemsets efficiently

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms

Challenges

Apriori Algorithm

Pattern Growth Algorithm Accelerations

Conclusion

Anti-Monotonicity of Itemsets

- ▶ Given two itemsets l_1 and l_2 , if $l_1 \subseteq l_2$
 - \blacktriangleright Any transaction containing I_2 must contains I_1
 - A transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - ightharpoonup $Sup(I_2) \leq Sup(I_1)$
- Any superset of an infrequent itemset must also be infrequent
 - ▶ {beer,diaper} is infrequent ⇒ {beer,diaper,nuts} is infrequent
 - No superset of infrequent itemset should be generated
 - Many item combinations can be pruned!

How Apriori Works

- Level-wise, candidate generation and test
 - First mine frequent 1-itemsets, then frequent 2-itemsets, ...
- ▶ $L_1 = \{frequent items\}$, scan TDB once to compute
- ▶ Level $k \ge 2$
 - $ightharpoonup C_k = \{ \text{candidate itemsets of size } k \}$
 - ▶ L_k ={frequent itemsets of size k}
- ▶ Stops if $L_i = \emptyset$ at a level i

Pseudo Code of Apriori

Algorithm 1 Apriori

Input: a transaction DB and min_sup

Output: all frequent itemsets

- 1: $L_1 \leftarrow \{frequent \ items\}$
- 2: **for** k = 2; $L_{k-1} \neq \emptyset$; $k \leftarrow k + 1$ **do**
 - 3: $C_k \leftarrow \text{candidates generated based on } L_{k-1}$ (Candidate Generation)
- 4: Scan Transaction DB to count supports of itemsets in C_k (Counting Supports)
- 5: $L_k \leftarrow \text{candidates in } C_k \text{ with } \min_\text{sup}$
- 6: end for
- 7: **return** $\bigcup_k L_k$

Pseudo Code of Apriori

Algorithm 2 Apriori

Input: a transaction DB and min_sup

Output: all frequent itemsets

- 1: $L_1 \leftarrow \{ frequent items \}$
- 2: **for** k = 2; $L_{k-1} \neq \emptyset$; $k \leftarrow k + 1$ **do**
- 3: $C_k \leftarrow \text{candidates generated based on } L_{k-1} \text{ (Candidate Generation)}$
- 4: Scan Transaction DB to count supports of itemsets in C_k (Counting Supports)
- 5: $L_k \leftarrow \text{candidates in } C_k \text{ with } \min_\text{sup}$
- 6: end for
- 7: **return** $\bigcup_k L_k$

Candidate Generation in Apriori

- $ightharpoonup C_k$ is generated based on L_{k-1}
 - ightharpoonup Candidates should be extensions of itemsets in L_{k-1}
- ▶ Step 1: Self-joining L_{k-1}
 - ldea: use two (k-1)-itemsets in L_{k-1} to make a possibly frequent k-itemset
 - Every itemset is a string in alphabetical order (e.g. items are a < b < ... < z, $\{a, d, c, b\} = abcd$)
 - ▶ If $I_1[1:k-2] = I_2[1:k-2]$, and $I_1[k-1] < I_2[k-1]$, add $I_3 = I_1 \cup I_2$ to C_k (Prove the completeness by yourself)
- Step 2: Pruning candidates that are supersets of infrequent (k-1)-itemsets
 - ► The anti-monotonicity property of itemsets
 - ▶ Check every (k-1)-subset of a candidate

An Example of Generating C_k

- $ightharpoonup L_3 = \{abc, abd, acd, ace, bcd\}$
- ▶ Self-Joining: $L_3 \times L_3$
 - ightharpoonup $abcd \leftarrow abc \times abd$
 - ightharpoonup acde \leftarrow acd \times ace
- Pruning candidates
 - ► All 3-subsets of abcd are in L₃
 - acde should be pruned since it contains ade which is infrequent
- $ightharpoonup C_4 = \{abcd\}$

Bounding #Candidates

- Suppose #frequent_items= $|L_1| = n$ and #frequent_itemsets= $|\cup_{k=1} L_k| = M$
- ▶ #Candidates= $| \cup_{k=2} C_k | \le nM$
- ► $M = poly(n) \Rightarrow \#Candidates = poly(n)$
 - Output sensitive
 - Much better than O(2ⁿ) candidates!
- #frequent_itemsets is sensitive to min_sup
 - Challenge: Given min_sup, computing #frequent_itemsets is #P-hard

Bounding #Candidates

- Suppose #frequent_items= $|L_1| = n$ and #frequent_itemsets= $|\cup_{k=1} L_k| = M$
- ▶ #Candidates= $| \cup_{k=2} C_k | \le nM$
- ► $M = poly(n) \Rightarrow \#Candidates = poly(n)$
 - Output sensitive
 - Much better than O(2ⁿ) candidates!
- #frequent_itemsets is sensitive to min_sup
 - Challenge: Given min_sup, computing #frequent_itemsets is #P-hard

Proof:
$$I \in L_{k-1}$$
, $|\{I' \mid I' \in C_k, I' \supseteq I\}| \le n \Rightarrow |C_k| \le n|L_{k-1}| \Rightarrow |\cup_{k=2} C_k| = \sum_{k=2} |C_k| \le \sum_{k=2} n|L_k - 1| = n|\cup_{k=1} L_k| = nM$

min_sup=2

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

	min_	sup
Database TDR		•

Items
A, C, D
В, С, Е
A, B, C, E
B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

2

3

3

3

Pseudo Code of Apriori

Algorithm 3 Apriori

Input: a transaction DB and min_sup

Output: all frequent itemsets

- 1: $L_1 \leftarrow \{frequent \ items\}$
- 2: **for** k = 2; $L_{k-1} \neq \emptyset$; $k \leftarrow k + 1$ **do**
 - 3: $C_k \leftarrow \text{candidates generated based on } L_{k-1} \text{ (Candidate Generation)}$
- 4: Scan Transaction DB to count supports of itemsets in C_k (Counting Supports)
- 5: $L_k \leftarrow \text{candidates in } C_k \text{ with } \min_\text{sup}$
- 6: end for
- 7: **return** $\bigcup_k L_k$

Counting Supports of Candidate Itemsets

- Scan the transaction DB once to count supports of itemsets in C_k
- Method
 - A hash table (candidates as keys, supports as values)
 - For each transaction, enumerate its k-subsets and increment supports of corresponding itemsets
 - ▶ Ignore transactions without any frequent (k-1)-itemsets

 $C_3 = \{abc, abd, acd, ace, bcd\}$

Key	Value
abc	1
abd	3
acd	5
ace	2
bcd	1

3-subsets of trans. acde: acd, ace, ade, cde

Enumerating k-Subsets of a Transaction

► A simple DFS

Figure: 3-subsets of the transaction acde

Early Stops Using Prefix Tree (Trie)

- Store all candidates in a prefix tree
- ► c+de, ad+e are pruned

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms

Challenges

Apriori Algorithm

Pattern Growth Algorithm

Accelerations

Advanced FPM

Conclusion

Can We Mine Patterns without Candidate Generation?

- Apriori still may generate too many candidate patterns
 - Reason: Apriori is BFS (breadth-first search)
 - $O(n^k)$ candidates for size-k patterns, where n is the number of frequent items
 - Apriori also needs to scan the DB many times
- Solution
 - Switch to DFS (depth-first search)
 - Compress the DB to reduce the #scan

Apriori as BFS

FP-Tree

- Constructing Frequent Pattern Tree (FP-Tree)
 - Scan the DB once and find frequent single items
 - Sort frequent items in frequency descending order, f-list
 - Scan the DB again to store trans in a trie
- ► The size of an FP-tree is typically smaller than the size of the uncompressed DB because many trans often share a few items in common
 - ▶ Best case: all trans have the same set of items, and the FP-tree contains only a single branch of nodes.
 - Worst case: every tran has a unique set of items. As none of the transactions have any items in common, the size of the FP-tree is effectively the same as the size of the DB.

Example of FP-Tree

a:8,b:7,c:6,d:5,e:3

□ FP-tree with item descending ordering

□ FP-tree with item ascending ordering

FP-Growth Algorithm

- ► For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree
- Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern
- ► FP-Growth is more efficient compared to Apriori especially when the DB cannot fit in the memory but the FP-Tree can

Find Patterns Having p From p-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of *transformed prefix paths* of item *p* to form p's conditional pattern base

Conditional pattern bases

item	cond. pattern base
c	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

DFS Decomposition of DB

Decomposition of DB

Decomposition of DB: FP-Tree Perspective

DFS of FP-Growth

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms

Challenges

Apriori Algorithm

Pattern Growth Algorithm

Accelerations

Advanced FPM

Accelerating Apriori: Partition

- ▶ A. Savasere et al., An Efficient Algorithm for Mining Association Rules in Large Databases. VLDB'95
- ► Motivation: reducing #scans of transaction DB
 - Scan 1: partition transaction DB and find local frequent itemsets (relative min. support θ)
 - ► Scan 2: calculate global frequent itemsets
- ► Correctness: Frequent itemsets must be frequent in at least one partition

Accelerating Apriori: Hashing and Pruning

- ▶ J. Park *et al.*, An effective hash-based algorithm for mining association rules. *SIGMOD'95*
- ► Motivation: reducing #candidates
- Method:
 - At level k-1, make a hash table to group different k-itemsets (drew from transactions) in the same bucket
 - ▶ #buckets≪#candidates
 - When generating C_k based on L_{k-1} , if I is in an infrequent bucket, remove it from C_k
- Especially effective for reducing C₂

Hashing and Pruning: An Example

Accelerating FPM: Sampling

- M. Riondato et al., Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees, ECML PKDD'12
- ► Only sample $O(\frac{1}{\epsilon^2}(D + \log \frac{1}{\delta}))$ transactions
 - ightharpoonup E[Freq(I;S)] = Freq(I)
 - $L = \{I \mid Freq(I; S) \geq T \frac{\epsilon}{2}\} \ (T = \frac{min.sup}{|TBD|})$
 - D is decided by the transaction DB, usually very small
 - ► If TDB does not have many long transactions
 - ► Sample size is a constant to #transactions
 - ► All sampled transactions can fit into main memory!
- ▶ Tolerable errors of L (with high probability 1δ)
 - ► All real frequent patterns can be found
 - ▶ If *I* is not frequent, $Freq(I) \ge T \epsilon$

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms

Challenges

Apriori Algorithm

Pattern Growth Algorithm

Accelerations

Advanced FPM

Advanced Frequent Pattern Mining

- ► FPM in stream Transaction DB
 - Transactions are arriving continuously
 - ► Incrementally maintain FP in the full/recent TDB
- Complex types of patterns: sequential patterns, subgraph patterns, ...
 - The idea of Apriori still works
- Reference: "Frequent Pattern Mining", Aggarwal, Charu C., Han, Jiawei

Outline

Frequent Patterns: Basic Concepts

Frequent Itemset/Pattern Mining in Real Applications

Frequent Itemset/Pattern Mining Algorithms

Challenges

Apriori Algorithm

Pattern Growth Algorithm

Accelerations

Advanced FPM

- Frequent Pattern Mining
 - Basic concepts and why it is important
- Examples of Frequent Itemsets Mining
 - Association rules market-basket analysis
 - Sub-market finding in Sponsored Search
- FPM Algorithms
 - Apriori: effective pruning based on anti-monotonicity
 - Pattern Growth: DFS without candidate generation
 - Accelerations
- Readings
 - ► Chapter 6 of "Data Mining: Concepts and Techniques"
 - Chapter 6 of "Mining of Massive Datasets"