

Caractéristiques générales

UNIX est:

- Complet efficace
- Disponible sur la plupart des ordinateur du PC au super calculateur
- Architecture ouverte
- Très diffusé dans les centres de recherches et les universités
- Très utilisé en informatique scientifique et pour les serveurs réseaux
- Un système de relative complexité d'utilisation qui l'écarte des applications grand public

But du cours :

- Donner un aperçu du fonctionnement du système UNIX
- Se familiariser avec ses commandes de bases

Historique

Diffusion

- Bien UNIX ait été développé par des programmeurs pour des programmeurs, il fournit un environnement si puissant et flexible qu'on l'utilise dans les affaires, les sciences, la recherche et l'industrie.
- Beaucoup de commutateurs de télécommunications et de systèmes de transmission sont gérés par des systèmes d'administration et de maintenance basé sur UNIX

Système Linux

- Linux est un « UNIXoïde »
- Version libre d'UNIX (le code source du système est disponible gratuitement et redistribuable)
- Connait actuellement un grand succès, tant chez les utilisateurs particuliers (en tant qu'alternative à Windows notamment pour les smartphones et ordinateurs format carte de crédit) que pour les serveurs Internet/Intranet
- Linux est diffusé par différentes sociétés ou organisation sous forme de distribution qui utilise le même noyau (ou presque) et organisent de divers façons le système (packages, mise à jour, etc)
- Les distributions les plus répandues sont Red Hat, Suse, Caldera, Debian, Slackware, Ubuntu, Fedora et s'adressent chacune à différents type d'utilisateurs.

Architecture

SE multitâches et multiutilisateurs préemptif

Rq: évite tout risque de blocage du système

La cohabitation simultanée de plusieurs utilisateurs est rendue possible par un mécanisme de droit d'accès (UGO) s'appliquant à toutes les ressources gérées par le système (processus, fichiers, périphériques, etc...)

Noyau UNIX

- Le noyau est un programme qui assure :
 - La gestion de la mémoire
 - Le partage du processeur entre les différentes tâches à exécuter
- Lancé au démarrage du système (boot) et s 'exécute jusqu'à son arrêt
- Programme petit, chargé en mémoire principale
- Rôle principal : assurer une bonne répartition des ressources de l'ordinateur (mémoire, processeur(s), espace disque, imprimante(s), accès réseaux) sans intervention des utilisateurs

Mode noyau

- Exécution en mode superviseur (accès à toutes les fonctionnalités de la machine, à toute la mémoire, et à tous les disques connectés, manipulations des interruptions, etc...)
- Les autres programmes fonctionnent en mode utilisateur (pas d'accès direct au matériel et pas d'utilisation de certaines instructions). Accès limité à une certaine partie de la mémoire principale, et il lui est impossible de lire ou écrire les zones mémoires attribuées aux autres programmes.
- Quand l'un de ces programmes désire accéder à une ressource gérée par le noyau, il exécute un appel système. Le noyau exécute alors la fonction correspondante, après avoir vérifié que le programme appelant est autorisé à la réaliser.

Processus

- Multitâches : plusieurs programmes peuvent s'exécuter en même temps sur la machine. En général, un seul processeur → à un instant donné, un seul programme peut s'exécuter
- Le noyau découpe le temps en tranches (quantum de temps de quelques millièmes de secondes) et attribue chaque tranche à un programme (système à temps partagé)

Processus

- Du point de vue des programmes, tout se passe comme si l'on avait une exécution réellement en parallèle (pseudo-parallélisme)
- L'utilisateur voit s'exécuter ses programmes en même temps, mais d'autant plus lentement qu'ils sont nombreux
- On appelle processus un programme en cours d'exécution

Etats d'un processus

Processus

- Un processus se trouve toujours dans un des états de base
 - SLEEP processus prêt pour l'exécution
 - RUN processus en état d'exécution sur un CPU
 - WAIT processus en attente d'événement (clavier, disque, etc...)
 - Ex d'affichage sous UNIX :

```
$ ps
PID TTY STAT TIME COMMAND

104 1 S 0:00 -bash
105 2 S 0:00 -bash
118 1 S 0:00 vi sys/p
182 2 T 0:00 cat processus running).

206 1 S 0:00 ps
$
```

Gestion mémoire

- Fonctionne en mémoire virtuelle paginée :
 - Possibilité de faire fonctionner des processus demandant une quantité d'espace mémoire supérieure à la mémoire physique disponible
- Si un processus demande l'allocation d'une page de mémoire et qu'il n'y en a pas de disponible en mémoire centrale, le noyau génère un défaut de page (pagedefault)
- Il choisit alors une page qui n'a pas été utilisé depuis longtemps et l'écrit sur une partition spéciale du disque dur (swap). La place libérée est attribuée au processus demandeur

Gestion mémoire

- Ce mécanisme demande la réservation d'une (ou plusieurs) partition spéciale sur l'un des disques durs, nommée partition de swap.
- La mémoire disponible pour les processus est donnée par la somme de la taille de mémoire physique (RAM) et des partitions de swap.
- Les performances du système se dégradent lorsque la fréquence des défauts de page augmente. Dans ce cas, il faut augmenter la mémoire physique
- Sur un système typique, la partition de swap est deux à trois fois plus grande que la mémoire centrale

utilitaires

- Ces programmes sont surtout orientés vers le traitement de fichiers et le développement de logiciels
 - Tout système UNIX inclut normalement un compilateur C
- Les utilitaires les plus importants sont :
 - Interpréteur de commandes (shell) permettant l'accès d'un utilisateur au système. Ce sont de véritables langages de programmation interprétés
 - Commandes de manipulation de fichiers
 - Commandes de gestion de processus
 - Editeurs de texte (vi, vim, nano, kwrite...)
 - Outils de développement : compilateur, débogueurs,

...

L'accès au système

- Tout utilisateur possède un compte protégé par un mot de passe identifié par un nom et un mot de passe
- Nom : attribué un fois pour toute à un utilisateur par l'administrateur du site
- Mot de passe : initialisé par l'administrateur et modifiable par l'utilisateur
- La procédure d'entrée dans le système s'appelle : login
- La sortie : logout
- Après vérification du mot de passe, le système lance un interpréteur de commande (shell)

L'accès au système

- Chaque utilisateur dispose de ses propres fichiers dont il peut autoriser ou non l'accès aux autres utilisateurs
- Il dispose d'un certain nombre de droits (accès à certains périphériques, etc...)
- Il peut lancer l'exécution de processus (le nombre maximal de processus par utilisateur peut être limité sur certains sites)
- Les processus lancés par un utilisateur ont les droits d'accès que lui

Structure du système

UTILITAIRES

SHELL

NOYAU

MATERIEL