Universidad Nacional Experimental del Táchira

DEPARTAMENTO DE MATEMÁTICA Y FÍSICA

ASIGNATURA: MATEMÁTICA I LAPSO 2013-1

DERIVADAS

(I) En los ejercicios 1 a 5 obtenga la ecuación de la recta tangente a la gráfica de la función en el punto indicado.

(1)
$$f(x) = 2x - x^3$$
; (-2,4). Resp. $y = -10x - 16$.

(2)
$$f(x) = \frac{4}{x^2}$$
; $(4, -4)$. Resp. $8y = -x - 28$.

(3)
$$f(x) = 4x - x^2$$
; (1,3). Resp. $y = 2x + 1$.

(4)
$$f(x) = 4x^2 - 2x^3$$
; (1,2). Resp. $y = 2x$.

(5)
$$f(x) = \sqrt{x}$$
; (1,1). Resp. $2y = x + 1$.

(II) En los ejercicios 6 a 11, empleando la definición de derivada, calcule la derivada en el número indicado x_0 .

(6)
$$f(x) = 1 + x - 2x^2$$
; $x_0 = -1$. Resp. 5.

(7)
$$f(x) = \frac{x}{2x-1}$$
; $x_0 = 0$. Resp. -1.

(8)
$$f(x) = \frac{2}{\sqrt{3-x}}$$
; $x_0 = 1$. Resp. $\sqrt{2}/4$

(9)
$$f(x) = \frac{x}{\sqrt{x+1}}$$
; $x_0 = 4$. Resp. $3\sqrt{5}/25$.

(10)
$$f(x) = x\sqrt{x^2 + 1}$$
; $x_0 = 1$. Resp. $3\sqrt{2}/2$.

(11)
$$f(x) = x\cos(x); \quad x_0 = \pi.$$
 Resp. -1.

(III) En los ejercicios 12 a 19, empleando la definición de derivada determine la derivada de la función. Deduzca el dominio de diferenciabilidad.

(12)
$$f(x) = 5x + 3$$
. Resp. $f'(x) = 5$; $dom(f') = \mathbb{R}$.

(13)
$$f(x) = 18$$
. Resp. $f'(x) = 0$; $dom(f') = \mathbb{R}$.

(14)
$$f(x) = x^3 - x^2 + 2x$$
. Resp. $f'(x) = 3x^2 - 2x + 2$; $dom(f') = \mathbb{R}$.
(15) $f(x) = \sqrt{6-x}$. Resp. $f'(x) = \frac{-1}{2\sqrt{6-x}}$; $dom(f') = (-\infty, -6)$.
(16) $f(x) = \sqrt{1+2x}$. Resp. $f'(x) = \frac{1}{\sqrt{1+2x}}$; $dom(f') = (-1/2, \infty)$.
(17) $f(x) = \frac{x+1}{x-1}$. Resp. $f'(x) = \frac{-2}{(x-1)^2}$; $dom(f') = \mathbb{R} - \{1\}$.
(18) $f(x) = \frac{4-3x}{2+x}$. Resp. $f'(x) = -10(x+2)^{-2}$; $dom(f') = \mathbb{R} - \{-2\}$.
(19) $f(x) = \frac{1}{\sqrt{x-1}}$. Resp. $f'(x) = -(x-1)^{-3/2}$; $dom(f') = (1, \infty)$.

(IV) En los ejercicios 20 a 29, realice lo siguiente: (a) Determine si la función es continua en
$$x_0$$
.
(b) Calcule las derivadas laterales $f'_{-}(x_0)$ y $f'_{+}(x_0)$ si existen. (c) Determine si $f'(x_0)$ existe, de existir cual es el valor.

$$(20) \quad f(x) = \begin{cases} x+2 & \text{si } x \leq -4; \\ -x-6 & \text{si } x > -4. \end{cases} \quad x_0 = -4. \quad \text{Resp. } Si; \ f'_-(-4) = 1; \ f'_+(-4) = -1; f'(-4) \not\equiv . \end{cases}$$

$$(21) \quad f(x) = \begin{cases} -1 & \text{si } x < 0; \\ x-1 & \text{si } x \geq 0. \end{cases} \quad x_0 = 0. \quad \text{Resp. } Si; \ f'_-(0) = 0; \ f'_+(0) = 1; f'(0) \not\equiv . \end{cases}$$

$$(22) \quad f(x) = \begin{cases} x^2 & \text{si } x \leq 0; \\ -x^2 & \text{si } x > 0. \end{cases} \quad x_0 = 0. \quad \text{Resp. } Si; \ f'_-(0) = f'_+(0) = 0 = f'(0). \end{cases}$$

$$(23) \quad f(x) = \begin{cases} 5-6x & \text{si } x \leq 3; \\ -4-x^2 & \text{si } x > 3. \end{cases} \quad \text{Resp. } Si; \ f'_-(3) = -6; \ f'_+(3) = 6; f'(3) \not\equiv . \end{cases}$$

$$(24) \quad f(x) = \begin{cases} x-2 & \text{si } x < 0; \\ x^2 & \text{si } x \geq 0. \end{cases} \quad \text{Resp. } No; \ f'_-(0) = \infty; \ f'_+(0) = 0; f'(0) \not\equiv . \end{cases}$$

$$(25) \quad f(x) = \begin{cases} \frac{1}{x} & \text{si } 0 < x < 2; \\ 1-\frac{x}{4} & \text{si } x \geq 2. \end{cases} \quad \text{Resp. } Si; \ f'_-(2) = f'_+(2) = -1/4 = f'(-4).$$

$$(26) \quad f(x) = \frac{1}{(x-2)^2}; \ x_0 = 2. \quad \text{Resp. } No; \ f'_-(2), \ f'_+(2), f'(2) \not\equiv .$$

$$(27) \quad f(x) = |1-x^2|; \ x_0 = \pm 1. \quad \text{Resp. } Si; \ f'_-(1) = -2; \ f'_+(-1) = 2; f'(-1) \not\equiv .$$

$$\text{Resp. } Si; \ f'_-(3) = -1; \ f'_+(3) = 1; f'(3) \not\equiv .$$

(V) En los ejercicios 30 a 34, determine si la función dada es derivable en el intervalo indicado.

(29) $f(x) = sign(x); \ x_0 = 0.$ Resp. $No; \ f'_{-}(0) = \infty; \ f'_{+}(0) = \infty; \ f'(0) \not\equiv 0.$

30)
$$f(x) = \sqrt{x}$$
, [0,1]; Resp. No.

$$31) \ f(x) = \frac{1-x}{x+2}, \quad [-3,0];$$
 Resp. No.
$$32) \ g(x) = \frac{1}{\sqrt{x-1}}, \quad [2,3];$$
 Resp. Si.
$$33) \ h(x) = \begin{cases} 1/x & \text{si } 0 < x < 2 \\ 1-x/4 & \text{si } x \ge 2. \end{cases} ; \quad (0,3];$$
 Resp. Si.
$$34) \ g(x) = |x+1|, \quad [-2,-1]; \quad [-2,0]; \quad [-1,0].$$
 Resp. Si, No, Si.

(VI) En los ejercicios 35 a 40, se presentan las gráficas de una función. Determine: $f'_{-}(-1)$; $f'_{+}(-1)$; $f'_{-}(0)$; $f'_{+}(0)$; $f'_{-}(1)$; ¿En qué números la función no es diferenciable?. (Las gráficas se presentan en la siguiente página)

Resp.
$$(35)\ 2;1;1;-1;-1;1.$$
 no es diferenciable en: $-1;0;1.$ $(36)\ 0;2;-\infty;\infty;-1;2.$ no es diferenciable en: $-1;0;1.$ $(37)\ 1/2;-1/3;-\infty;\infty;1/3;1.$ no es diferenciable en: $-1;0;1.$ $(38)\ -2;1;-\infty;-1;-1;\infty.$ no es diferenciable en: $-1;0;1.$ $(39)\ -2;-2;0;0;-2;1.$ no es diferenciable en: $1.$ $(40)\ 2;2;0;0;3;\infty.$ no es diferenciable en: $1.$

- (41) Suponga que a los t minutos, r(t) metros es el radio del flujo circular de petróleo que se derrama por una fisura de un tanque, dado por $r(t) = \begin{cases} 4t^2 + 20 & \text{si} \quad 0 \le t \le 2, \\ 16t + 4 & \text{si} \quad t > 2. \end{cases}$ Determine si la función r(t) es diferenciable en t = 2. De ser así, cuál es el valor de f'(2).
- (42) Determine el valor de a y b tales que la función f sea diferenciable en x_0 .

(a)
$$f(x) = \begin{cases} x^2 & \text{si } x < 1; \\ ax + b & \text{si } x \ge 1; \end{cases}$$
 $x_0 = 1.$ (b) $f(x) = \begin{cases} ax + b & \text{si } x < 2; \\ 2x^2 - 1 & \text{si } x \ge 2; \end{cases}$ $x_0 = 2.$

(43) ¿Es posible que una función sea <u>diferenciable</u> en un número y <u>no</u> sea continua en ese número?. Si la respuesta es si dé un ejemplo. Si es no, establezca la(s) razón(es).

(39)

- (44) ¿Es posible que una función sea <u>continua</u> en un número y <u>no</u> sea diferenciable en ese número?. Si la respuesta es si dé un ejemplo. Si es no, establezca la(s) razón(es).
- (45) ¿Para que valores de x la función f(x) = x|x| es diferenciable?. Deduzca una fórmula de f'(x).
- (46) ¿Para que valores de x la función f(x) = [x] es diferenciable?. Deduzca una fórmula de f'(x).
- (47) Determine si f'(0) existe o no.

(i)
$$f(x) = \begin{cases} x \operatorname{sen}(1/x) & \text{si } x \neq 0; \\ 0 & \text{si } x = 0; \end{cases}$$
 (b) $f(x) = \begin{cases} x^2 \operatorname{sen}(1/x) & \text{si } x \neq 0; \\ 0 & \text{si } x = 0; \end{cases}$

(VII) Determine si la función dada es derivable en el intervalo indicado.

48)
$$f(x) = \sqrt{x}$$
, $[0,1]$; 49) $g(x) = \frac{1-x}{x+2}$, $[-3,0]$;

49)
$$h(x) = \frac{1}{\sqrt{x-1}}$$
, [2,3]; 50) $f(x) = |x+1|$, [-2,-1], [-2,0], (-1,0].

51)
$$f(x) = \begin{cases} 1/x, & \text{si } 0 < x < 2, \\ 1 - x/4, & \text{si } x \ge 2; \end{cases}$$
 [0,3];

(VIII) Halle la derivada de las siguientes funciones. Las letras $a,\,b,\,c$ y d son constantes.

(52)
$$y = 4x^2 - 6x + 1.$$
 (53) $y = 1 - \frac{x}{3} + \frac{x^6}{6}.$

(54)
$$y = 0, 5x^4 - 0, 3x^2 + 2, 5x.$$
 (55) $u = v^{10} - \frac{3v^8}{4} + 0, 4v^3 + 0, 1.$

(56)
$$s = 2t^{-5} + \frac{t^3}{3} - 0, 3t^{-2}.$$
 (57) $z = 2 + \frac{1}{3y} - \frac{3}{y^2}.$

(58)
$$f(x) = 3x^{\frac{5}{6}} - 10 - 4x^{-\frac{2}{3}}$$
. (59) $g(x) = ax^5 - bx^{-4} + d + cx^{\frac{3}{2}}$.

(60)
$$y = \frac{-2x^6}{3a}$$
. (61) $z = \frac{x^3}{a+b} + \frac{x^5}{a-b} - x$.

(62)
$$z = \frac{t^3 - bt^2 - 3}{6}$$
. (63) $y = 4\sqrt{x} + \sqrt{3} - \frac{3}{2x^2}$.

(64)
$$z = \sqrt[3]{t} - \frac{1}{\sqrt[3]{t}}$$
. (65) $u = \frac{\sqrt{3}}{2\sqrt{x}} + \sqrt[3]{3} - \frac{5}{3\sqrt[3]{x^2}}$.

(66)
$$y = (5x^4 - 4x^5)(3x^2 + 2x^3).$$
 (67) $y = x^3 e^x.$

 $y = \sqrt{x} e^x$.

(68)

$$(70) \quad y = (x-1)(x-2)(x-3) \qquad (71) \quad y = \frac{1}{2}(2x^3-1)(3x^2-2)(6x-5)$$

(69) $y = x^e + e^x$.

(70)
$$y = (x-1)(x-2)(x-3)$$
. (71) $y = \frac{1}{3}(2x^3-1)(3x^2-2)(6x-5)$.

(72)
$$z = \sqrt{t}(t^4 - 1)(t^6 - 2)$$
. (73) $y = (\sqrt{x} - 1)(\sqrt{x} + 1)$

(74)
$$u = 2\sqrt{x}\left(\sqrt{5} - \sqrt{x} + x^2\right)$$
. (75) $y = (\sqrt{x} - 3)\left(\frac{2}{x} - 1\right)$

(76)
$$y = \frac{3}{x-9}$$
. (77) $y = \frac{x}{x-8}$

(78)
$$y = \frac{x+3}{x-3}$$
. $(79) \quad z = \frac{t}{t^2+1}$

(80)
$$u = \frac{2t^3 + 1}{t - 1}$$
. (81) $y = \frac{x^3 - 2x}{x^2 + x + 1}$

(82)
$$y = \frac{ax^2 + bx + c}{x}$$
. (83) $y = \frac{ax^2 + bx + c}{\sqrt{x}}$

(84)
$$y = \frac{ax^2 + b}{\sqrt{a^2 + b^2}}$$
 (85) $y = \frac{x^2 + 1}{x^2 - 1} - (x - 1)(x^2 - 1)$

(86)
$$y = \frac{1}{(x-1)(x-3)}$$
. (87) $y = \frac{1-\sqrt{x}}{1+2\sqrt{x}}$

(88)
$$y = \frac{1 - \sqrt[3]{x}}{1 + \sqrt[3]{x}}$$
 (89) $y = \frac{e^x - 1}{e^x + 1}$

$$(90) f(x) = 5 \operatorname{sen}(x) + 2 \cos(x). (91) g(\theta) = \theta \cot(\theta)$$

(92)
$$y = tg(\alpha) \operatorname{sen}(\alpha)$$
. (93) $y = tg(x) - \cot(x)$

(94)
$$h(t) = \frac{sen(t)}{1 + cos(t)}$$
. (95) $f(x) = \frac{tg(x)}{x}$

(96)
$$g(x) = \frac{1 - \cos(x)}{1 + \cos(x)}$$
. (97) $y = \frac{\sin(t) + \cos(t)}{\sin(t) - \cos(t)}$

(98)
$$y = \frac{tg(x) - 1}{sec(x)}$$
. (99) $y = \left(\frac{1}{2}\right)^x$

(100)
$$y = x^2 2^x$$
. (101) $y = x^2 e^{-x}$.

(102)
$$y = e^x \ln(x)$$
. (103) $y = 2^x \log_2(x)$

(104)
$$y = \frac{\ln(x)}{e^x}$$
. (105) $y = \frac{\log_2(x)}{2^x}$.

(106)
$$y = \frac{1 + \ln(x)}{1 - \ln(x)}$$
. (107) $y = (x^2 - 3x + 5)^3$.

$$(108) \quad f(x) = (15 - 8x)^4. \tag{109} \quad q(t) = (2t^3 - 1)^{-3}$$

(110)
$$z = \frac{1}{(5x^5 - x^4)^8}$$
. (111) $y = (3x^2 - 8)^3 (-4x^2 + 1)^4$

(112)
$$f(u) = \frac{2u^3 + 1}{u^2 - 1}$$
.

(114)
$$g(t) = \left(\frac{3t^2 + 2}{2t^3 - 1}\right)^2$$
.

$$(116) \quad u = \sqrt{1 + t - 2t^2 - 8t^3}.$$

(118)
$$g(x) = \frac{x}{\sqrt{x^2 + 1}}$$
.

(120)
$$z = (1 - 3x^2)^2 (\sqrt{x} + 1)^{-2}$$
.

$$(122) \quad z = \sqrt[3]{\frac{1}{1+t^2}}.$$

(124)
$$f(x) = \frac{x}{b^2 \sqrt{b^2 + x^2}}$$
.

(126)
$$y = \sqrt[3]{x + \sqrt{x}}$$
.

$$(128) \quad y = tg(4x)$$

(130)
$$u = \cos(x^3)$$

(132)
$$y = tg(x^4) + tg^4(x)$$

$$(134) \quad u = \sqrt{\cos(x)}$$

(136)
$$y = \sqrt[3]{tg(3x)}$$

$$(138) \quad y = \frac{4}{\sqrt{sec(x)}}$$

$$(140) \quad y = sen^3 \left(\frac{1 - \sqrt{x}}{1 + \sqrt{x}} \right)$$

$$(142) \quad y = \sqrt{\frac{1 + sen(x)}{1 - sen(x)}}$$

(144)
$$y = \frac{\cot\left(\frac{x}{2}\right)}{\sqrt{1 - \cot^2\left(\frac{x}{2}\right)}}$$

$$(146) \quad y = \cos\left(\cos(x)\right)$$

$$(148) \quad y = sen^2 \left(\cos(4x) \right)$$

$$(150) \quad y = \cos^2\left(\cos(x)\right) + \sin^2\left(\sin(x)\right)$$

(152)
$$y = sen\left(tg\left(\sqrt{sen(x)}\right)\right)$$

$$(113) \quad y = \left(\frac{x-1}{x+3}\right)^2$$

$$(115) \quad y = \sqrt{1 - 2x}$$

(117)
$$h(x) = x^2 \sqrt{x^4 - 1}$$

$$(119) \quad y = \sqrt{3x^2 - 1} \sqrt[3]{2x + 1}$$

(121)
$$h(t) = \frac{1+t}{\sqrt{1-t}}$$

(123)
$$z = \sqrt[3]{b + ax^3}$$
.

$$(125) \quad y = \frac{1 - \sqrt{1 + x}}{1 + \sqrt{1 + x}}$$

$$(127) \quad \sqrt{x + \sqrt{x + \sqrt{x}}} \ .$$

$$(129) \quad y = 2\cot\left(\frac{x}{2}\right)$$

$$(131) \quad v = \cos^3(x)$$

$$(133) \quad z = \cos\sqrt{x}$$

$$(135) \quad y = \sqrt{\cos(\sqrt{x})}$$

(137)
$$y = \cot \sqrt[3]{1 + x^2}$$

$$(139) \quad y = csc\left(\frac{1}{x^2}\right)$$

$$(141) \quad y = \frac{tg(x)}{\sqrt{1 + sec^2(x)}}$$

$$(143) \quad y = \sqrt{1 + \cot\left(x + \frac{1}{x}\right)}$$

(145)
$$y = \sqrt{a \operatorname{sen}^{2}(x) + b \cos^{2}(x)}$$

$$(147) \quad y = sen\left(cos(x^2)\right)$$

$$(149) \quad y = sen\left(sen\left(sen(x)\right)\right).$$

(151)
$$y = tg(sen^2(x))$$
.

$$(153) \quad y = e^{-3x^2 + 1}$$

$$(155) \quad y = x^n a^{-x^2}$$

$$(157) \quad y = 2^{3^{sen^2(x)}}$$

$$(159) \quad y = \ln\left(\frac{x}{e^x}\right)$$

(161)
$$y = ln\left(\frac{e^{4x} - 1}{e^{4x} + 1}\right)$$

$$(163) \quad y = \ln\left(\frac{x+1}{\sqrt{x-2}}\right)$$

$$(165) \quad y = \ln\left(x^3 \operatorname{sen}(x)\right)$$

$$(167) \quad y = \arccos\left(\frac{1-x}{\sqrt{2}}\right)$$

(169)
$$y = arctg\left(\frac{senx + cos(x)}{sen(x) - cos(x)}\right)$$

(171)
$$y = arctg\sqrt{x^2 - 1} - \frac{ln(x)}{\sqrt{x^2 - 1}}$$

(154)
$$y = 2^{\sqrt{x}}$$

(156)
$$y = 3^{\cot(1/t)}$$

$$(158) \quad y = \sqrt{\log_5(x)}$$

(160)
$$y = \frac{ln(t)}{e^{2t}}$$
.

$$(162) \quad y = e^{x \ln(x)}$$

$$(164) \quad y = \ln\left(\frac{x+1}{x-1}\right)^{\frac{3}{5}}$$

$$(166) \quad y = \ln \left[\cos \left(\frac{x-1}{x} \right) \right]$$

(168)
$$y = x \operatorname{arcsen} \sqrt{\frac{x}{1+x}} + \operatorname{arctg} \sqrt{x} - \sqrt{x}$$

$$(170) \quad y = \ln\left(\arccos\left(\frac{1}{\sqrt{x}}\right)\right)$$

$$(172) \quad y = arctg\left(\frac{x}{1 + \sqrt{1 - x^2}}\right)$$

(173)
$$y = \operatorname{arccot}\left(\frac{a-2x}{2\sqrt{ax-x^2}}\right)$$
, $(a>0)$.

Resp. VIII)

$$(52) \ y' = 8x - 6.$$

$$(53) \ y' = x^5 - \frac{1}{3}.$$

$$(54) \ y' = 2x^3 - \frac{3}{5}x + \frac{5}{2}.$$

(55)
$$u' = 10v^9 - 6v^7 + \frac{6}{5}v^2$$
.

$$(56) \ s' = \frac{-10}{t^6} + t^2 + \frac{3}{5t^3}.$$

$$(57) \ z' = \frac{6}{y^3} - \frac{1}{3y^2}.$$

(58)
$$f'(x) = \frac{5}{2\sqrt[6]{x}} + \frac{8}{3x\sqrt[3]{x^2}}$$
.

(59)
$$g'(x) = 5ax^4 + \frac{4b}{x^5} + \frac{3}{2}\sqrt{x}$$
.

(60)
$$y' = -\frac{4x^5}{a}$$
.

(61)
$$z' = \frac{3x^2}{a+b} + \frac{5x^4}{a-b} - 1.$$

(62)
$$z' = \frac{3t^2 - 2bt}{6}$$

(63)
$$y' = \frac{2}{\sqrt{x}} + \frac{3}{x^3}$$
.

(64)
$$z' = \frac{1}{3} \left[\frac{1}{\sqrt[3]{t^2}} + \frac{1}{t\sqrt[3]{t}} \right].$$

(65)
$$u' = \frac{1}{x} \left[\frac{10}{9\sqrt[3]{x^2}} - \frac{\sqrt{3}}{4\sqrt{x}} \right].$$

(66)
$$y' = -64x^7 - 14x^6 + 90x^5$$
.

(67)
$$y' = x^2 e^x (3+x)$$
.

(68)
$$y' = \sqrt{x}e^x \left[\frac{2x+1}{2x}\right]$$
.

(69)
$$y' = ex^{e-1} + e^x$$
.

$$(70) \ y' = 3x^2 - 12x + 11.$$

$$(71) \ y' = 72x^5 - 50x^4 - 32x^3 + 2x^2 + 10x + 4.$$

(72)
$$z' = \sqrt{t} \left[\frac{21t^9}{2} - \frac{13t^5}{2} - 9t^3 + \frac{1}{t} \right].$$

(73)
$$y' = 1$$
.

(74)
$$u' = \frac{\sqrt{5}}{\sqrt{x}} + 5x\sqrt{x} - 2.$$

(75)
$$y' = \frac{6}{x^2} - \frac{1}{x\sqrt{x}} - \frac{1}{2\sqrt{x}}$$
.

(76)
$$y' = \frac{-3}{(x-9)^2}$$
.

$$(77) \ y' = \frac{-8}{(x-8)^2}.$$

(78)
$$y' = \frac{-6}{(x-3)^2}$$
.

$$(79) \ z' = \frac{1-t^2}{(t^2+1)^2}.$$

(80)
$$u' = \frac{4t^3 - 6t^2 - 1}{(t-1)^2}$$
.

(81)
$$y' = \frac{x^4 + 2x^3 + 5x^2 - 2}{(x^2 + x + 1)^2}$$
.

(82)
$$y' = a - \frac{c}{r^2}$$
.

(83)
$$y' = \frac{1}{2\sqrt{x}} \left[3ax + b - \frac{c}{x} \right].$$

(84)
$$y' = \frac{2ax}{\sqrt{a^2 + b^2}}$$
.

(85)
$$y' = \frac{-4x}{(x^2-1)^2} - (3x^2 - 2x - 1).$$

(86)
$$y' = \frac{2}{(x-1)^2(x-3)^2}$$
.

(87)
$$y' = \frac{-3}{2\sqrt{x}(1+2\sqrt{x})^2}$$
.

(88)
$$y' = \frac{-2}{3\sqrt[3]{x^2}(1+\sqrt[3]{x})^2}$$
.

(89)
$$y' = \frac{2e^x}{(e^x+1)^2}$$
.

(90)
$$f'(x) = 5\cos(x) - 2sen(x)$$
.

(91)
$$g'(\theta) = \cot x - \theta \csc^2 \theta$$
.

$$(92) y' = sen\alpha[sen^2\alpha + 1].$$

(93)
$$y' = \sec^2 x + \csc^2 x$$
.

(94)
$$h'(t) = \frac{1}{1+\cos t}$$
.

(95)
$$f'(x) = \frac{x \sec^2 x - \tan x}{x^2}$$
.

(96)
$$g'(x) = \frac{2senx}{[1+\cos x]^2}$$
.

(97)
$$y' = \frac{-2}{(sent - \cos t)^2}$$
.

$$(98) y' = \sec x - \frac{\sec^2 x}{\cos x} + \sec x.$$

(99)
$$y' = -\ln 2\left(\frac{1}{2}\right)^x$$
.

(100)
$$y' = x2^x(2 + x \ln 2)$$
.

(101)
$$y' = \frac{-x(x-2)}{e^x}$$
.

(102)
$$y' = e^x \left[\ln x + \frac{1}{x} \right].$$

(103)
$$y' = 2^x \left[\ln x + \frac{1}{x \ln 2} \right].$$

(104)
$$y' = \frac{1 - \ln(x^x)}{xe^x}$$
.

(105)
$$y' = \frac{1 - \ln(2x) \ln x}{\ln 2x}$$
.

(106)
$$y' = \frac{2}{x[1-\ln x]^2}$$
.

$$(107) \ y' = 3(x^2 - 3x + 5)^2(2x - 3).$$

$$(108) f'(x) = -32(15 - 8x)^3.$$

(109)
$$g'(t) = \frac{-18t^2}{(2t^3-1)^4}$$

(110)
$$z' = \frac{-8x^3(25x-4)}{(5x^5-x^4)^9}$$

(111)
$$y' = 2x(3x^2 - 8)^2(-4x^2 + 1)^3(137 - 84x^2).$$

(112)
$$f'(u) = \frac{2u(u^3 - 3u - 1)}{(u^2 - 1)^2}$$
.

(113)
$$y' = \frac{8(x-1)}{(x+3)^3}$$
.

(114)
$$g'(t) = \frac{-12t(3t^2+2)(t^3+2t+1)}{(2t^3-1)^3}$$
.

(115)
$$y' = \frac{-1}{\sqrt{1-2x}}$$
.

$$(116) \ w' = \frac{1 - 4t - 24t^2}{2\sqrt{1 + t - 2t^2 - 8t^3}}.$$

(117)
$$h'(x) = \frac{2x(2x^3-1)}{\sqrt{x^4-1}}$$
.

(118)
$$g'(x) = \frac{1}{(x^2+1)^{3/2}}$$
.

(119)
$$y' = \frac{3x\sqrt[3]{2x+1}}{\sqrt{3x^2-1}} + \frac{2\sqrt{3x^2-1}}{3\sqrt[3]{(2x^2+1)^2}}.$$

(120)
$$z' = -12x(1 - 3x^2)(\sqrt{x} + 1)^{-2} - \frac{(1 - 3x^2)(\sqrt{x} + 1)^{-3}}{\sqrt{x}}$$
.

(121)
$$h'(t) = \frac{3-t}{2(1-t)^{3/2}}$$
.

(122)
$$z' = \frac{-2t}{(1+t^2)\sqrt[3]{1+t^2}}$$
.

(123)
$$z' = \frac{ax^2}{\sqrt[3]{(b+ax^3)^2}}$$
.

(124)
$$f'(x) = \frac{1}{(b^2 + x^2)^{3/2}}$$

(125)
$$y' = \frac{-1}{\sqrt{1+x}(1+\sqrt{1+x})^2}$$
.

(126)
$$y' = \frac{1}{3\sqrt[3]{(x+\sqrt{x})^2}} \left(1 + \frac{1}{2\sqrt{x}}\right)$$
.

(127)
$$y' = \frac{4\sqrt{x}\sqrt{x+\sqrt{x}} + 2\sqrt{x} + 1}{8\sqrt{x}\sqrt{x+\sqrt{x}}\sqrt{x+\sqrt{x}}\sqrt{x+\sqrt{x}}}$$

(128)
$$y' = 4 \sec^2(4x)$$
.

(129)
$$y' = -\csc^2(\frac{x}{2}).$$

(130)
$$u' = -3x^2 sen x^3$$
.

(131)
$$v' = -3\cos^2 x sen x$$
.

(132)
$$y' = 4x^3 \sec^2(x^4) + 4tg^3 x \sec^2 x$$
.

$$(133) \ z' = \frac{-sen\sqrt{x}}{2\sqrt{x}}.$$

(134)
$$u' = -\frac{-senx}{2\sqrt{\cos x}}$$
.

$$(135) \ y' = \frac{-sen\sqrt{x}}{4\sqrt{x}\sqrt{\cos\sqrt{x}}}$$

(136)
$$y' = \frac{\sec^2 3x}{\sqrt[3]{tg^3x}}$$
.

(137)
$$y' = \frac{-2x\csc^2(\sqrt[3]{1+x^2})}{3\sqrt[3]{(1+x^2)^2}}$$
.

(138)
$$y' = \frac{-2tgx}{\sqrt{\sec x}}$$
.

(139)
$$y' = \frac{2}{x^3} \csc\left(\frac{1}{x^2}\right) \cot\left(\frac{1}{x^2}\right)$$
.

(140)
$$y' = \frac{-3}{\sqrt{x}(1+\sqrt{x})^2} \sin^2\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)$$

(141)
$$y' = \frac{2\sec^2 x}{(1+\sec^2 x)^{3/2}}$$
.

(142)
$$y' = \frac{1}{1-senx}$$

(143)
$$y' = \frac{\csc^2(x + \frac{1}{x})[1 - x^2]}{2x^2\sqrt{1 + \cot(x + \frac{1}{x})}}.$$

(144)
$$y' = \frac{-\csc^2(x/2)}{2[1-\cot^2(x/2)]^{3/2}}$$

(145)
$$y' = \frac{(1-b)sen2x}{2\sqrt{asen^2x + b\cos^2x}}$$
.

(146)
$$y' = senxsen\cos x$$
.

(147)
$$y' = -2xsen(x^2)\cos(\cos x^2)$$
.

(148)
$$y' = -4sen4xsen(2\cos 4x)$$
.

(149)
$$y' = \cos(sensenx)\cos(senx)\cos x$$
.

(150)
$$y' = senxsen(2\cos x) + \cos x sen(2senx)$$
. (172) $y' = \frac{1}{2\sqrt{1-x^2}}$.

(151)
$$y' = sen2x \sec^2(sen^2x)$$
. (1

(152)
$$y' = \frac{\cos(tg\sqrt{senx})\sec^2(\sqrt{senx})\cos x}{2\sqrt{senx}}$$

$$(153) \ y' = -6xe^{-3x^2+1}.$$

(154)
$$y' = \frac{\ln(2)2^{\sqrt{x}}}{2\sqrt{x}}$$
.

(155)
$$y' = x^{n-1}a^{-x^2}[n-2\ln(a)x^2].$$

(156)
$$y' = \frac{\csc^2(1/t)3^{\cot(1/t)}}{t^2}$$
.

$$(157) \ y' = sen(2x)2^{3^{sen^2x}}.$$

(158)
$$y' = \frac{1}{10x\sqrt{\log_5 x}}$$
.

(159)
$$y' = \frac{1}{x} - 1$$
.

(160)
$$y' = \frac{1 - \ln(t^{2t})}{te^{2t}}$$
.

(161)
$$y' = \frac{8e^{4x}}{e^{8x}-1}$$
.

(162)
$$y' = [1 + \ln x]e^{x \ln x}$$
.

(163)
$$y' = \frac{x-5}{2(x+1)(x-2)}$$
.

(164)
$$y' = \frac{-6}{5(x^2-1)}$$
.

(165)
$$y' = \frac{3}{x} + \cot x$$
.

$$(166) y' = \frac{-tg\left(\frac{x-1}{x}\right)}{x^2}.$$

(167)
$$y' = \frac{1}{\sqrt{1+2x-x^2}}$$

(168)
$$y' = arcsen\sqrt{\frac{x}{1+x}}$$
.

$$(169) y' = -1.$$

$$(170) \ y' = \frac{1}{2x\sqrt{x-1}\arccos\left(\frac{1}{\sqrt{x}}\right)}.$$

$$(171) \ y' = \frac{x \ln x}{(x^2 - 1)^{3/2}}.$$

$$(172) \ y' = \frac{1}{2\sqrt{1-x^2}}.$$

(173)
$$y' = \frac{1}{\sqrt{ax-x^2}}$$
.

(IX) En las siguientes funciones halle los valores de x para los cuales f'(x) = 0 ó f'(x) no existe.

(174)
$$f(x) = \sqrt[3]{x^2 - 2x}$$
.

(175)
$$f(x) = \frac{x^3}{3} - 4x^2 + 12x + 3$$

(176)
$$f(x) = 3 - \sqrt[3]{(x-3)^2}$$
.

(177)
$$f(x) = x + \frac{1}{x}$$

(178)
$$f(x) = 9x e^{-x}$$
.

(179)
$$f(x) = 4x^3e^{-x}$$

(180)
$$y = \frac{1}{x-1}$$
.

(181)
$$y = \frac{3x}{1-x}$$

(182)
$$f(x) = 2sen(x) - sen(2x)$$
.

Resp. IX):

$$(174)$$
 $x_1 = 0, x_2 = 1, x_3 = 2.$

$$(178) \ x = 1.$$

$$(175) \ x_1 = 2, x_2 = 6.$$

$$(179) \ x_1 = 0, x_2 = 3.$$

$$(176) \ x = 3.$$

$$(180) \ x = 1.$$

(177)
$$x_1 = 0, x_2 = -1, x_3 = 1.$$

$$(181) \ x = 1.$$

(182)
$$\left\{ x_1 \ y \ x_2 \in \mathbb{R} : x_1 = 2n\pi \ y \ x_2 = (6n \pm 2) \frac{\pi}{3}, n \in \mathbb{Z} \right\}.$$

(X) En los siguientes problemas encuentre $\frac{d^3 y}{dx^3}$.

(183)
$$y = x^3 + 2x^2 + 6x$$
. (184) $y = x^5 + x^4$

(184)
$$y = x^5 + x^4$$

(185)
$$y = (3x+5)^3$$
. (186) $y = (3-5x)^5$

$$(186) \quad y = (3 - 5x)^5$$

(187)
$$y = sen(7x)$$
.

$$(188) \quad y = sen(x^3)$$

(189)
$$y = \frac{1}{x-1}$$
. (190) $y = \frac{3x}{1-x}$

$$(190) \quad y = \frac{3x}{1 - x}$$

(191)
$$y = e^{3x}$$
.

(192)
$$y = arctg(x)$$
.

Resp. X):

$$(183) \ \frac{d^3y}{dx^3} = 6.$$

$$(187) \ \frac{d^3y}{dx^3} = -343\cos(7x).$$

$$(184) \ \frac{d^3y}{dx^3} = 60x^2 + 24x.$$

$$(188) \frac{d^3y}{dx^3} = -27x^4 \cos(x^3) - 54x^3 sen(x^3) + 6\cos(x^3).$$

$$(185) \ \frac{d^3y}{dx^3} = 48.$$

$$(189) \ \frac{d^3y}{dx^3} = \frac{-6}{(x-1)^4}.$$

$$(186) \ \frac{d^3y}{dx^3} = -7500(3 - 5x)^2.$$

$$(190) \ \frac{d^3y}{dx^3} = 18(1-x)^{-4}. \tag{192} \ \frac{d^3y}{dx^3} = \frac{7x^2-1}{(1+x^2)^3}.$$

$$(191) \ \frac{d^3y}{dx^3} = 27e^{3x}.$$

(XI) En los siguientes problemas determine f''(2).

(193)
$$f(x) = x^2 + 1;$$
 (194) $f(x) = 5x^3 + 2x^2 + x;$ (195) $f(t) = 2/t;$

(196)
$$f(u) = \frac{2u^2}{5-u};$$
 (197) $f(\theta) = \left(\cos(\pi\theta)\right)^{-2};$ (198) $f(t) = tsen(\pi/t);$

(199)
$$f(s) = s(1 - s^2)^3;$$
 (200) $f(x) = \frac{(x+1)^2}{x-1}.$

Resp. XI):

(193)
$$f''(2) = 2$$
. (197) $f''(2) = 2\pi^2$.

(194)
$$f''(2) = 64$$
. (198) $f''(2) = \frac{-\pi^2}{8}$.

(195)
$$f''(2) = \frac{1}{2}$$
. (199) $f''(2) = -684$.

(196)
$$f''(2) = \frac{100}{27}$$
. (200) $f''(2) = 200$.

(201) Determine una fórmula para $D_x^n(a_{n-1}x^{n-1}+\cdots+a_1x+a_0)$. Sin realizar cálculo alguno encuentre la derivada $D_x^4(3x^3+2x-19)$ y $D_x^{11}((x^2-3)^5)$.

Resp. (201): $D_x^n f = a_{n-1}(n-1)(n-2)\cdots(n-n)x^{n-(n+1)} + \ldots = 0$

a)
$$D_x^4(3x^3 + 2x - 19) = 0$$
.

b)
$$D_x^{11}(x^2-3)^5=0.$$

(202) Encuentre una fórmula para: (a) $y^{(n)}$ cuando $y = e^{ax}$. (b) $D_x^n \left(\frac{1}{x}\right)$.

Resp. (202):

(a)
$$y^{(n)} = a^n e^{ax}$$
. (b) $D_x^n(\frac{1}{x}) = \frac{(-1)^{n+2} n!}{x^{n+1}}$

(XII) Determine la derivada indicada en cada función.

(203)
$$y^{(10)}$$
 si $y = sen(x)$; (204) $y^{(4)}$ si $y = x^2 \ln(x)$;

(205)
$$y^{(5)}$$
 si $y = \ln(x+1)$; (206) $y^{(4)}$ si $y = e^x \cos(x)$;

(207)
$$y^{(4)}$$
 si $y = \cos(3x)$; (208) $y^{(5)}$ si $y = \frac{\ln(x)}{x}$.

Resp. XII):

$$(203) \ y^{(10)} = -sen(x).$$

$$(206) \ y^{(4)} = -4e^x \cos(x).$$

$$(204) \ \ y^{(4)} = -2x^{-2}.$$

$$(207) \ y^{(4)} = 81\cos(3x).$$

$$(205) \ y^{(5)} = 24(x+1)^{-5}.$$

$$(208) \ y^{(5)} = \frac{274 - 120 \ln(x)}{x^6}.$$

(XIII) Obtenga la derivada de la función, siguiendo las indicaciones. (a) Obteniendo primero explícitamente la función y = f(x) y derivando directamente. (b) derivando implícitamente la expresión dada.

(209)
$$3x + 8y - xy = 1;$$
 (210) $xe^{2y+1} + 1 - x = 0;$

$$(210) \quad xe^{2y+1} + 1 - x = 0$$

(211)
$$tg(xy) + x = 2;$$

(211)
$$tg(xy) + x = 2;$$
 (212) $xsen(y) + 3 - x^2 = 0.$

Resp. XIII):

(209)
$$y' = \frac{-23}{(8-x)^2}$$
.

(211)
$$y' = \frac{-1}{x \sec^2(tg^{-1}(2-x))} - \frac{tg^{-1}(2-x)}{x^2}$$
.

$$(210) \ y' = \frac{1}{2(x-1)}.$$

(212)
$$y' = \frac{x^2+3}{x^2 \cos\left(sen^{-1}(\frac{x^2-3}{x})\right)}$$
.

(XIV) Suponiendo que en los siguientes ejercicios cada ecuación define una función derivable de x. Encuentre $D_x y$ por medio de la derivación implícita.

$$(213) \quad y^2 - x^2 = 1;$$

(214)
$$9x^2 + 4y^2 = 36;$$
 (215) $x^3 + y^3 = 8xy;$

$$(215) \quad x^3 + y^3 = 8xy;$$

(216)
$$x^2 + y^2 = 7xy;$$
 (217) $\frac{1}{x} + \frac{1}{y} = 1;$ (218) $\frac{3}{x} - \frac{3}{y} = 2x;$

$$(217) \quad \frac{1}{x} + \frac{1}{y} = 1;$$

$$(218) \quad \frac{}{x} - \frac{}{y} = 2x;$$

(219)
$$\sqrt{5xy} + 2y = y^2 + xy^3$$
; (220) $x\sqrt{y+1} = xy+1$; (221) $xy + sen(xy) = 1$;

(220)
$$x\sqrt{y+1} = xy + 1;$$

$$(221) \quad xy + sen(xy) = 1;$$

$$(222) \quad \cos(xy^2) = y^2 + x^2$$

(222)
$$\cos(xy^2) = y^2 + x;$$
 (223) $\sec^2(x) + \csc^2(y) = 4;$ (224) $\cot g(xy) + xy = 0;$

$$(224) \quad ctg(xy) + xy = 0;$$

(225)
$$xsen(y) + y\cos(x) = 1;$$
 (226) $\cos(x+y) = ysen(x);$ (227) $e^{xy} + x^2 - y^2 = 1;$

$$(226) \quad \cos(x+y) = ysen(x);$$

$$(227) \quad e^{xy} + x^2 - y^2 = 1;$$

(228)
$$\ln(1+\sqrt{x^2+y^2})-x+y=0.$$

Resp. XIV):

(213)
$$y' = \frac{x}{y}$$
.

$$(215) \ y' = \frac{3x^2 - 8y}{8x - 3y^2}.$$

(214)
$$y' = \frac{-9}{4y}$$
.

$$(216) \ y' = \frac{2x - 7y}{7x - 2y}.$$

(217)
$$y' = \frac{-y^2}{x^2}$$
.

(223)
$$y' = \frac{sen(x)sen^3(y)}{\cos(y)\cos^3(x)}$$
.

(218)
$$y' = \frac{y^2}{x^2}$$
.

(224)
$$y' = \frac{y(\csc^2(xy)-1)}{x(1-\csc^2(xy))}$$

(219)
$$y' = \frac{y^3 - 5y}{5x + 2\sqrt{5xy} - 2y\sqrt{5xy} - 3xy^2\sqrt{5xy}}$$
.

$$(225) y' = \frac{y \operatorname{sen}(x) - \operatorname{sen}(y)}{x \cos(y) + \cos(x)}.$$

(220)
$$y' = \frac{2\sqrt{y+1}(y-\sqrt{y+1})}{x-2x\sqrt{y+1}}$$
.

(226)
$$y' = \frac{-sen(x+y) - y\cos(x)}{sen(x) + sen(x+y)}$$
.

(221)
$$y' = \frac{-y}{x}$$
.

$$(227) \ y' = \frac{-ye^{xy}-2x}{xe^{xy}-2y}$$

(222)
$$y' = \frac{-(1+y^2sen(xy^2))}{2y(xsen(xy^2)+1)}$$
.

(228)
$$y' = \frac{\sqrt{x^2+y^2}+x^2+y^2-x}{\sqrt{x^2+y^2}+y+x^2+y^2}.$$

(XV) Encuentre la derivada en el punto indicado.

$$(229) \quad x^3y + y^3x = 30, \qquad (1,3);$$

(230)
$$sen(xy) = y, (\pi/2, 1);$$

(231)
$$y + \cos(xy^2) + 3x^2 = 4$$
, (1,0); (232) $\arg \operatorname{tg}(x+y) + y = \pi/4$, (1,0);

(232)
$$\operatorname{arctg}(x+y) + y = \pi/4$$
, (1,0):

(233)
$$arctg(x - y) + x + y = \pi/4,$$
 (1,0).

Resp. XV):

$$(229) \ y'(1,3) = \frac{-9}{7}.$$

(232)
$$y'(1,0) = \frac{-1}{3}$$
.

(230)
$$y'(\pi/2, 1) = 0.$$

$$(233) \ y'(1,0) = -3.$$

$$(231) \ y'(1,0) = -6.$$

(234) Suponga que $xy + y^3 = 2$. Derivando implícitamente dos veces respecto de x se obtiene:

(a)
$$xy' + y + 3y^2y' = 0$$
.

(b)
$$xy'' + 2y' + 3y^2y'' + 6y(y')^2 = 0.$$

Despeje y' de (a) y sustituya en (b), finalmente despeje y''.

(235) Determine
$$y''$$
 si $x^3 - 4y^2 + 3 = 0$.

(236) Determine
$$y''$$
 en el punto $(2,1)$ si $2x^2y - 4y^3 = 4$.

(237) Determine
$$y''$$
 en el punto (3,4) si $x^2 + y^2 = 25$.

Resp.

(234)
$$y'' = \frac{2y(x+3y^2)-6y^3}{(x+3y^2)^3}$$
. (236) $y''(2,1) = -15$

(235)
$$y'' = \frac{48xy^2 - 9x^4}{64y^3}$$
. (237) $y''(3,4) = \frac{-25}{64}$.

(XVI) En los siguientes problemas encontrar dy/dx por medio de la derivación logarítmica.

(238)
$$y = \frac{x+11}{\sqrt{x^3-4}};$$
 (239) $y = (x^2+3x)(x-2)(x^2+1);$

(240)
$$y = \frac{\sqrt{x+13}}{(x-4)\sqrt[3]{2x+1}};$$
 (241) $y = \frac{(x^2+3)^{2/3}(3x+2)^2}{\sqrt{x+1}};$

(242)
$$y = (2x+1)^5(x^4-3)^6;$$
 (243) $y = \sqrt{x} e^{x^2}(x^2+1)^{10};$

(244)
$$y = \frac{\operatorname{sen}^2(x) t g^4(x)}{(x^2 + 1)^2};$$
 (245) $y = \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}};$

(246)
$$y = x^x$$
; $(247) \quad y = x^{\cos(x)}$; $(248) \quad y = x^{\sin(x)}$;

(249)
$$y = (\sqrt{x})^x$$
; (250) $y = \cos^x(x)$; (251) $y = (sen(x))^{\ln(x)}$;

(252)
$$y = (tg(x))^{1/x}$$
; (253) $y = (\ln(x))^{\cos(x)}$.

Resp. XVI):

(238)
$$y' = \left(\frac{1}{x+11} - \frac{3x^2}{2(x^3-4)}\right) \frac{x+11}{\sqrt{x^3-4}}$$
.

(239)
$$y' = \left(\frac{2x+3}{x^2+3x} + \frac{1}{x-2} + \frac{2x}{x^2+1}\right)(x^2+3x)(x-2)(x^2+1).$$

$$(240) \ y' = \left(\frac{1}{2(x+13)} - \frac{1}{x-4} - \frac{2}{3(2x+1)}\right) \frac{\sqrt{x+13}}{(x-4)\sqrt[3]{2x+1}}$$

$$(241) \ y' = \left(\frac{4x}{3(x^2+3)} + \frac{6}{3x+2} - \frac{1}{2(x+1)}\right) \frac{(x^2+3)^{2/3}(3x+2)^2}{\sqrt{x+1}}.$$

$$(242) \ y' = \left(\frac{10}{2x+1} + \frac{24x^3}{x^4-3}\right) (2x+1)^5 (x^4-3)^6$$

(243)
$$y' = \left(\frac{4x^2 + 4x^4 + 1}{2x(x^2 + 1)}\right) \sqrt{x}e^{x^2}(x^2 + 1)^{10}$$

$$(244) \ y' = \left(2\cot(x) - 4\sec x \csc x - \frac{4x}{x^2+1}\right) \frac{\sin^2 x \tan^4 x}{(x^2+1)^2}$$

$$(245) \ y' = \frac{1}{4} \left(\frac{-4x}{(x^2+1)(x^2-1)} \right) \sqrt[4]{\frac{x^2+1}{x^2-1}}.$$

$$(246) \ y' = (1 + \ln x)x^x.$$

$$(247) \ y' = \left(\frac{\cos x}{x} - sen(x)\ln(x)\right) x^{\cos(x)}.$$

$$(248) \ y' = \left(\frac{sen(x)}{x} + \cos(x)\ln(x)\right) x^{sen(x)}.$$

(249)
$$y' = \frac{1}{2}(1 + \ln(x))\sqrt{x}^x$$
.

(250)
$$y' = (-xtg(x) + \ln(\cos(x)))\cos^x x$$
.

(251)
$$y' = \left(\ln(x)\cot(x) + \frac{\ln sen(x)}{x}\right)(senx)^{\ln x}.$$

(252)
$$y' = \left(\frac{2}{xsen(2x)} - \frac{\ln tgx}{x^2}\right) (tgx)^{1/x}.$$

(253)
$$y' = \left(\frac{\cos x}{x \ln x} - \operatorname{senx}(\ln(\ln x))\right) (\ln x)^{\cos x}.$$

BIBLIOGRAFIA

- (1) Demidovich B. P., "5000 Problemas de Análisis Matemático", Paraninfo, S.A, Madrid.
- (2) Leithold L., "El Cálculo", 7ma Edición, Oxford University Press.
- (3) Purcell E. J., Varberg D., Rigdon S. E., "Cálculo", 9na Edición, Pearson-Educación.
- (4) Saenz J., "Cálculo Diferencial con Funciones Trascendentes Tempranas para Ciencia e Ingeniería", 2da Edición, Hipotenusa, Barquisimeto-Lara-Venezuela.
- (5) Stewart J., "Calculus", Sexta Edición, Thompson Brooks/Cole.

Universidad Nacional Experimental del Táchira Decanato de Docencia - Dpto. de Matemática y Física Matemática I Lapso 2013-1

REGLAS DE DERIVACIÓN

(A) Regla para la Suma. Si f, g son funciones derivables entonces f + g es derivable y

$$\left| \left[f(x) + g(x) \right]' = f'(x) + g'(x) \right|$$

De manera general, si f_1, f_2, \dots, f_n son funciones derivables entonces $f_1 + f_2 + \dots + f_n$ es derivable y $\left[f_1(x) + f_2(x) + \dots + f_n(x) \right]' = f'_1(x) + f'_2(x) + \dots + f'_n(x)$.

(B) Regla para el Producto. Si f, g son funciones derivables entonces $f \cdot g$ es derivable y

$$\left| \left[f(x) \cdot g(x) \right]' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \right|$$

De esta regla obtenemos que si $\alpha \in \mathbb{R}$ y f es una función derivable, entonces $\alpha \cdot f$ es derivable y $\left[\alpha f(x)\right]' = \alpha \cdot f'(x)$.

(C) Regla para el Cociente. Si f,g son funciones derivables y $g \neq 0$ entonces f/g es derivable y

$$\boxed{ \left[\frac{f(x)}{g(x)} \right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x) \right]^2} }$$

(D) Regla de la Cadena. Si f, g son funciones derivables entonces $f \circ g$ es derivable y

$$\boxed{\left[\left(f\circ g\right)(x)\right]'=\left[f\left(g(x)\right)\right]'=f'\left(g(x)\right)\cdot g'(x)}$$

Tablas de Derivadas

	f(x)	f'(x)		f(x)	f'(x)
1)	$\alpha, \ \alpha \in \mathbb{R}$	0	10)	ctg(x)	$-csc^2(x)$
2)	$x^n, n \in \mathbb{R}$	nx^{n-1}	11)	sec(x)	sec(x)tg(x)
3)	e^x	e^x	12)	csc(x)	-csc(x)ctg(x)
4)	$a^x, a > 0$	$a^x \ln(a)$	13)	arcsen(x)	$\frac{1}{\sqrt{1-x^2}}$
5)	$\ln(x)$	$\frac{1}{x}$	14)	arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
6)	$\lg_a(x), \ a > 0, a \neq 1$	$\frac{1}{x \ln(a)}$	15)	arctg(x)	$\frac{1}{1+x^2}$
7)	sen(x)	cos(x)	16)	arcctg(x)	$\frac{-1}{1+x^2}$
8)	cos(x)	-sen(x)	17)	arcsec(x)	$\frac{1}{x\sqrt{x^2-1}}$
9)	tg(x)	$sec^2(x)$	18)	arccsc(x)	$\frac{-1}{x\sqrt{x^2-1}}$

Tablas de Derivadas - Funciones Compuestas

	$h(x) = (g \circ f)(x)$	h'(x)		$h(x) = (g \circ f)(x)$	h'(x)
1)	$\alpha, \ \alpha \in \mathbb{R}$	0	10)	ctg(f(x))	$-csc^2(f(x))f'(x)$
2)	$(f(x))^n, n \in \mathbb{R}$	$n(f(x))^{n-1}f'(x)$	11)	sec(f(x))	sec(f(x))tg(f(x))f'(x)
3)	$e^{f(x)}$	$e^{f(x)}f'(x)$	12)	csc(f(x))	-csc(f(x))ctg(f(x))f'(x)
4)	$a^{f(x)}, \ a > 0$	$a^{f(x)}\ln(a)f'(x)$	13)	arcsen(f(x))	$\frac{f'(x)}{\sqrt{1-(f(x))^2}}$
5)	$\ln(f(x))$	$\frac{f'(x)}{f(x)}$	14)	arccos(f(x))	$\frac{-f'(x)}{\sqrt{1-(f(x))^2}}$
6)	$\lg_a(f(x)), \ a > 0, a \neq 1$	$\frac{f'(x)}{f(x)\ln(a)}$	15)	arctg(f(x))	$\frac{f'(x)}{1 + (f(x))^2}$
7)	sen(f(x))	cos(f(x))f'(x)	16)	arcctg(f(x))	$\frac{-f'(x)}{1+(f(x))^2}$
8)	cos(f(x))	-sen(f(x))f'(x)	17)	arcsec(f(x))	$\frac{f'(x)}{f(x)\sqrt{(f(x))^2 - 1}}$
9)	tg(f(x))	$sec^2(f(x))f'(x)$	18)	arccsc(f(x))	$\frac{-f'(x)}{f(x)\sqrt{(f(x))^2 - 1}}$