Date: 2023/06/08

Total: 120 points

Note: To get full points, you should write down the procedure in detail.

1. Find the Taylor series centered at x = a for the following function:

(a) (5 points)
$$f(x) = \frac{1}{1-x}$$
 at $a = 2$

(b) (5 points)
$$f(x) = 3^{x}$$
 at $a = 1$

2. A infinite geometric series

$$\sum_{n=2}^{\infty} (1+c)^{-n} = \frac{1}{(1+c)^2} + \frac{1}{(1+c)^3} + \dots + \frac{1}{(1+c)^n} + \dots$$

(a) (5 points) If this geometric series converges, what is the range of c?

(b) (5 points) If
$$\sum_{n=2}^{\infty} (1+c)^{-n} = 2$$
, what is the value of c ?

3. (10 points) Find the length of the parametric curve $x = 1 + 3t^2$, $y = 4 + 2t^3$, $0 \le t \le 1$.

4. (10 points) Find the area of the region common to the two regions bounded by the curves $r = -6\cos\theta$ and $r = 2 - 2\cos\theta$.

5. (10 points) Let
$$f(x,y) = \sqrt{x^2 + y^2}$$
. Find
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

6. (10 points) Evaluate the following integrals. (5 points for each) **Hint:** You can change the order of integration if necessary.

(a)
$$\int_0^{\ln 10} \int_{e^x}^{10} \frac{1}{\ln y} \, dy \, dx$$

(b)
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$

(Questions on both sides of the paper!)

7. (15 points) Find all the local maxima, local minima, and saddle point(s) of the function

$$f(x,y) = x^3 - 3x^2 + 6y^2 + 5$$

- 8. In order to find the absolute extreme value of $f(x,y) = x^2 + 3y^2 + 2y$ on the disk $x^2 + y^2 \le 1$, one can solve this problem by answering the following questions:
 - (a) (5 points) Find the extreme value located at the interior of the disk by finding the critical points of f(x,y) inside the disk.
 - (b) (10 points) Find the extreme value of f(x, y) on the circle $g(x, y) = x^2 + y^2 1 = 0$.
 - (c) (5 points) Based on the results of (a) and (b), find the absolute maximum and minimum of f(x,y) on the disk $x^2 + y^2 \le 1$.
- 9. (25 points) Let $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$. (5 points for each)
 - (a) Find the gradient of f.
 - (b) Find the directional derivative of f at the point A(1,1) in the direction toward the point B(3,3).
 - (c) Find the maximum increasing rate of change of f at the point A(1,1). Which is the direction of the maximum increasing rate of change?
 - (d) Find the tangent plane of z = f(x, y) at the point $(1, 1, \frac{1}{\sqrt{2}})$.
 - (e) Use linear approximation of f(x, y) at (1, 1) to estimate the value of f(1.01, 0.99).