

# **CS 247 – Scientific Visualization Lecture 6: Scalar Fields, Pt. 2**

Markus Hadwiger, KAUST

# Reading Assignment #3 (until Feb 14)



#### Read (required):

- Data Visualization book, finish Chapter 3 (read starting with 3.6)
- Data Visualization book, Chapter 5 until 5.3 (inclusive)

# **Scalar Fields**

#### Contours



Set of points where the scalar field f(x) has a given value c

$$S(c) := f^{-1}(c)$$
  $S(c) := \{x \in \mathbb{R}^n : f(x) = c\}$ 

#### Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

# bilinear interpolation

#### Implicit methods

- Point-on-contour test
- Isosurface ray-casting



#### Contours



Set of points where the scalar field f(x) has a given value c

$$S(c) := f^{-1}(c)$$
  $S(c) := \{x \in \mathbb{R}^2 : f(x) = c\}$ 

#### Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

# bilinear interpolation

#### Implicit methods

- Point-on-contour test
- Isosurface ray-casting



#### Contours



Set of points where the scalar field f(x) has a given value c

$$S(c) := f^{-1}(c)$$
  $S(c) := \{x \in \mathbb{R}^3 : f(x) = c\}$ 

#### Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

# bilinear interpolation

#### Implicit methods

- Point-on-contour test
- · Isosurface ray-casting



#### What are contours?

Set of points where the scalar field f has a given value c

$$S(c) := \{ x \in \mathbb{R}^n \colon f(x) = c \}$$

#### Examples in 2D:

- height contours on maps
- isobars on weather maps

#### Contouring algorithm:

- find intersection with grid edges
- connect points in each cell

#### Example



#### contour levels

---4 ---4? ---6- $\varepsilon$  ---8+ $\varepsilon$ 

2 types of degeneracies:

- isolated points (*c*=6)
- flat regions (*c*=8)

#### Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours

#### "Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as  $x_0, x_1, x_2, x_3$
- compute at each node  $\mathbf{x}_i$  the reduced field  $\tilde{f}(x_i) = f(x_i) (c \varepsilon)$  (which is forced to be nonzero)
- take its sign as the i<sup>th</sup> bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:



• 
$$\tilde{f}(x_i) < 0$$
  
•  $\tilde{f}(x_i) > 0$ 

$$\circ \quad \tilde{f}(x_i) > 0$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.



• 
$$f(x_i) < c$$
  
•  $f(x_i) \ge c$ 

o 
$$f(x_i) \ge c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.



$$\bullet \quad f(x_i) \le c$$

o 
$$f(x_i) > c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

# Orientability (1-manifold embedded in 2D)



#### Orientability of 1-manifold:

Possible to assign consistent left/right orientation

#### **Iso-contours**

- Consistent side for scalar values...
  - greater than iso-value (e.g, *left* side)
  - less than iso-value (e.g., *right* side)
- Use consistent ordering of vertices (e.g., larger vertex index is "tip" of arrow; if (0,1) points "up", "left" is left, ...)





not orientable



Moebius strip (only one side!)

$$\bullet \ \tilde{f}(x_i) < 0$$

• 
$$\tilde{f}(x_i) < 0$$
  
•  $\tilde{f}(x_i) > 0$ 

### Orientability (2-manifold embedded in 3D)



#### Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

not orientable



Moebius strip (only one side!)

#### Triangle meshes

- Edges
  - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)
- Triangles
  - Consistent front side vs. back side
  - Normal vector; or ordering of vertices (CCW/CW)
  - See also: "right-hand rule"



#### Topological consistency

To avoid degeneracies, use symbolic perturbations:

If level c is found as a node value, set the level to c- $\varepsilon$  where  $\varepsilon$  is a symbolic infinitesimal.

#### Then:

- contours intersect edges at some (possibly infinitesimal) distance from end points
- flat regions can be visualized by pair of contours at c- $\varepsilon$  and c+ $\varepsilon$
- contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

(except where the boundary is hit)

#### Ambiguities of contours

What is the correct contour of c=4?

Two possibilities, both are orientable:

- connect high values ————
- connect low values



Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

### Linear Interpolation / Convex Combinations



Linear interpolation in 1D:

$$f(\alpha) = (1 - \alpha)v_1 + \alpha v_2$$



Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

$$f(\alpha_1, \alpha_2) = \alpha_1 v_1 + \alpha_2 v_2$$
  $f(\alpha) = v_1 + \alpha(v_2 - v_1)$   $\alpha_1 + \alpha_2 = 1$   $\alpha = \alpha_2$ 

$$f(\alpha) = v_1 + \alpha(v_2 - v_1)$$
$$\alpha = \alpha_2$$

Line segment:

$$\alpha_1, \alpha_2 \geq 0$$

 $\alpha_1, \alpha_2 \ge 0$  ( $\rightarrow$  convex combination)

Compare to line parameterization with parameter t:

$$v(t) = v_1 + t(v_2 - v_1)$$

#### Contours in triangle/tetrahedral cells

Linear interpolation of cells implies piece-wise linear contours.

Contours are unambiguous, making "marching triangles" even simpler than "marching squares".

Question: Why not split quadrangles into two triangles (and hexahedra into five or six tetrahedra) and use marching triangles (tetrahedra)?

Answer: This can introduce periodic artifacts!

#### Contours in triangle/tetrahedral cells

Illustrative example: Find contour at level *c*=40.0 !



original quad grid, yielding vertices ■ and contour
 triangulated grid, yielding vertices ● and contour

# Thank you.

#### Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama