${ m DS} \; { m N}^o 5 \; ({ m le} \; 20/12/2008)$

PROBLÈME 1:

I. Questions de cours

Question 1.

Les assertions suivantes, dans lesquelles $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ désignent deux séries numériques réelles, sontelles vraies, ou fausses? En cas de réponse affirmative, vous démontrerez le résultat, et en cas de réponse négative, vous donnerez un contre-exemple.

- 1°) (u_n) converge vers $0 \Rightarrow \sum_{n \ge 0} u_n$ converge.
- **2°)** $\sum_{n\geqslant 0} u_n$ converge $\Rightarrow (u_n)$ converge vers 0.
- 3°) $u_n \underset{+\infty}{\sim} v_n \Rightarrow \sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant 0} v_n$ sont de même nature.
- **4°)** $\sum_{n\geqslant 0} u_n$ converge $\Rightarrow \sum_{n\geqslant 0} |u_n|$ converge.

Question 2.

Étudier la convergence de la série $\sum_{n\geq 2} (-1)^n \frac{\ln n}{n}$.

II. Préliminaires:

Soit $(t_n)_{n\in\mathbb{N}}$ une suite de réels qui converge vers 0. Soit $\varepsilon > 0$: il existe donc $N \in \mathbb{N}$ tel que:

$$\forall n \in \mathbb{N}, \ n > N \Rightarrow |t_n| \le \varepsilon.$$

On pose, pour tout $n \in \mathbb{N}$, $T_n = \frac{1}{n+1} \sum_{k=0}^{n} t_k$.

1°) On écrit alors, pour tout $n \in \mathbb{N}^*$, n > N,

$$T_n = \frac{1}{n+1} \sum_{k=0}^{N} t_k + \frac{1}{n+1} \sum_{k=N+1}^{n} t_k.$$

- a) Prouver que : $\left|\sum_{k=N+1}^{n} t_k\right| \leq n\varepsilon$.
- **b)** En déduire que la suite (T_n) converge vers 0.
- **2°)** Prouver alors le cas général : "Si (t_n) converge vers T, alors (T_n) converge aussi vers T." On pourra par exemple utiliser la suite (v_n) définie par : $\forall n \in \mathbb{N}, \ v_n = t_n T$.
- **3°)** On prend dans cette question : $\forall n \in \mathbb{N}, t_n = \cos(n\theta), \theta \in]0, 2\pi[$, fixé.
 - a) Montrer que :

$$\forall n \in \mathbb{N}, \ T_n = \frac{1}{n+1} \cos\left(n\frac{\theta}{2}\right) \frac{\sin\left((n+1)\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}.$$

b) La suite (T_n) converge-t-elle?

c) On prend ici $\theta = \frac{\pi}{3}$. La suite (t_n) converge-t-elle?

d) Conclure.

III.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels telle que :

(i)
$$\lim_{n \to +\infty} na_n = 0.$$

 1°) Montrer qu'il existe un réel K tel que :

$$\forall n \in \mathbb{N}^*, |a_n| \le \frac{K}{n}.$$

2°) En déduire que la série $\sum_{n\geqslant 0} a_n x^n$ converge absolument pour tout $x\in [0,1[$.

On note alors
$$f(x)$$
 sa somme : $\forall x \in [0, 1[, f(x) = \sum_{n=0}^{+\infty} a_n x^n]$.

Désormais, on suppose de plus que :

(ii)
$$\lim_{x \to 1^{-}} \left(\sum_{n=0}^{+\infty} a_n x^n \right) = L \in \mathbb{R}.$$

3°) Pour tout $n \in \mathbb{N}$, on note $u_n = L - \sum_{k=0}^n a_k$.

Prouver que l'on peut écrire :

$$\forall n \in \mathbb{N}, \ \forall x \in [0,1[\,,\,u_n = L - f(x) + \sum_{k=0}^n a_k (x^k - 1) + \sum_{k=n+1}^{+\infty} a_k x^k.$$

4°) a) Justifier l'existence, pour tout entier naturel n, de $M_n = \sup_{k \geqslant n} (|ka_k|)$.

b) Prouver que la suite (M_n) converge. Quelle est sa limite?

5°) Déduire de ce qui précède que :

$$\forall n \in \mathbb{N}, \ \forall x \in [0, 1[, |u_n| \le |L - f(x)| + \sum_{k=0}^{n} |a_k| (x^k - 1) + \frac{1}{n(1-x)} M_n$$

puis que

$$\forall n \in \mathbb{N}, \ \forall x \in [0, 1[, |u_n| \le |L - f(x)| + (1 - x) \sum_{k=0}^{n} k |a_k| + \frac{1}{n(1 - x)} M_n.$$

6°) On prend $x = 1 - \frac{1}{n}$, $n \in \mathbb{N}^*$.

En utilisant tout ce qui précède, y compris les préliminaires, prouver alors que $\lim_{n\to+\infty}u_n=0$.

 7°) Conclure en énonçant clairement le résultat obtenu concernant la fonction f.

Début de E4A 2008

PROBLÈME 2:

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Si $n_0 \in \mathbb{N}$ et si $(u_n)_{n \geqslant n_0}$ est une suite d'éléments de \mathbb{K} , on note, pour $n \geqslant n_0$: $P_n = \prod_{k=n_0}^n u_k$.

Si la suite $(P_n)_{n\geqslant n_0}$ converge, on notera $P=\prod_{k=n_0}^{+\infty}u_k$ sa limite et on dira que le <u>produit infini</u>

$$\prod_{k=n_0}^{+\infty} u_k \text{ existe.}$$

Partie I : Étude d'exemples :

Dans cette partie $\mathbb{K} = \mathbb{R}$

$$\mathbf{1}^{\bullet}) \ \ \text{Calculer}: \prod_{n=2}^{+\infty} (1 - \frac{1}{n}) \ , \prod_{n=2}^{+\infty} (1 - \frac{1}{n^2}) \ , \prod_{n=2}^{+\infty} (1 - \frac{2}{n(n+1)}).$$

- 2°) a) Vérifier que pour tout $t \in \mathbb{R}^*$, $1 + \frac{1}{\operatorname{ch} t} = \frac{\operatorname{th} t}{\operatorname{th}(t/2)}$ et que, si l'on pose $u = \operatorname{th}(t/2)$, $\operatorname{ch} t = \frac{1 + u^2}{1 u^2}$.
 - **b)** Soit $x \in \mathbb{R}$, x > 1, et $(v_n)_{n \in \mathbb{N}^*}$, la suite définie par : $v_1 = x$, et, pour tout $n \ge 1$: $v_{n+1} = 2{v_n}^2 1$ Montrer l'existence et donner la valeur de $\prod_{n=1}^{+\infty} (1 + \frac{1}{v_n})$.

Partie II:

Dans cette partie encore, $\mathbb{K} = \mathbb{R}$

- 1°) a) Donner un exemple de suite $(u_n)_{n\in\mathbb{N}}$ pour laquelle la suite $(P_n)_{n\in\mathbb{N}}$ converge vers P=0.
 - **b)** Prouver que, si $(P_n)_{n\in\mathbb{N}}$ converge vers $P\neq 0$, alors $(u_n)_{n\in\mathbb{N}}$ converge vers 1.
 - c) On suppose ici que, pour tout $n \in \mathbb{N}$, $0 < u_n < 1$.

 Montrer que le produit infini $\prod_{k=0}^{+\infty} u_k$ existe.
 - d) On suppose ici que, pour tout $n \in \mathbb{N}$, $u_n > 0$.

 On suppose que la série $\sum \ln(u_n)$ converge. Montrer alors que le produit infini $\prod^{+\infty} u_n$ existe et

est non nul.

- Que peut-on dire si la série $\sum \ln(u_n)$ diverge vers $+\infty$ ou vers $-\infty$?
- **2°)** On suppose que pour tout $n \in \mathbb{N}$, $u_n \ge 0$. Montrer que $\prod_{n=0}^{+\infty} (1+u_n)$ existe si et seulement si la série $\sum u_n$ est convergente.
- **3°)** a) On suppose que pour tout $n \in \mathbb{N}$, $u_n > -1$ et que la série $\sum u_n$ converge. Montrer l'existence de $\prod_{n=0}^{+\infty} (1+u_n)$.

Donner une condition nécessaire et suffisante pour que $\prod_{n=0}^{+\infty} (1+u_n)$ soit non nul.

Indication: pour ces deux questions, on distinguera deux cas, selon que la série $\sum u_n^2$ est, ou non, convergente.

b) Exemple: Calculer
$$\prod_{n=2}^{+\infty} \left(1 + \frac{(-1)^{n+1}}{n}\right)$$
 et $\prod_{n=2}^{+\infty} \left(1 + \frac{(-1)^{n+1}}{\sqrt{n}}\right)$.

Partie III:

Dans cette partie encore, $\mathbb{K} = \mathbb{R}$

1°) Soit $(u_n)_{n\geqslant 1}$ la suite réelle définie par :

$$\forall n \geqslant 1 \ , \ u_{2n} = \frac{1}{\sqrt{n}} + \frac{1}{n} + \frac{1}{n\sqrt{n}} \quad \text{et} \quad u_{2n-1} = -\frac{1}{\sqrt{n}}$$

- a) Déterminer la nature des séries $\sum u_n$ et $\sum u_n^2$.
- **b)** Montrer l'existence et calculer la valeur de : $\prod_{k=3}^{+\infty} (1+u_k)$
- **2°)** On suppose que pour tout $n \in \mathbb{N}$, $u_n > -1$ et que $\prod_{k=0}^{+\infty} (1 + u_k)$ existe et est non nul.
 - a) Montrer que la série $\sum u_n$ est convergente si et seulement si la série $\sum u_n^2$ l'est.
 - b) Montrer que : $\lim_{n\to+\infty}\sum_{k=0}^n u_k=+\infty$ si et seulement si la série $\sum u_n^2$ est divergente.

Partie IV:

Dans cette partie encore, $\mathbb{K} = \mathbb{R}$

1°) On suppose que pour tout $n \in \mathbb{N}$, $u_n > -1$. On pose alors :

$$p_n = \prod_{k=0}^{n} (1 + u_k) , \ v_n = \frac{u_n}{p_n}$$

- a) Pour $n \ge 1$, exprimer v_n en fonction de $\frac{1}{p_n}$ et $\frac{1}{p_{n-1}}$.
- b) On suppose dans cette question que la série $\sum u_n^2$ est convergente.
 - i) Établir que la convergence de la série $\sum u_n$ implique la convergence de la série $\sum v_n$.
 - ii) La convergence de la série $\sum v_n$ implique-t-elle la convergence de la série $\sum u_n$? (justifier).
- c) Donner un exemple d'une suite (u_n) telle que la série $\sum u_n$ converge et la série $\sum v_n$ diverge.
- **2°)** Soit α un réel strictement positif, et, pour $n \ge 1$, $u_n = \sin\left(\frac{c}{n^{\alpha}}\right)$, où c est un nombre réel tel que, pour tout $n \ge 1$, u_n soit différent de -1.
 - a) Déterminer une condition nécessaire et suffisante portant sur α et c pour que $\prod_{n=1}^{+\infty} (1+u_n) = 0$.

b) On suppose ici que $\alpha = 1$. Étudier la convergence de la série $\sum p_n$.

Partie V:

Dans cette partie $\mathbb{K} = \mathbb{C}$.

- 1°) Montrer que $\prod_{n=1}^{+\infty} \left| 1 + \frac{i}{n} \right|$ existe.
- **2°)** Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe telle que : $\forall n\in\mathbb{N}$, $u_n\neq -1$. Montrer que, si $\prod_{n=0}^{+\infty} (1+u_n)$ existe et vaut 0, alors la série de terme général $\ln(|1+u_n|)$ est divergente.
- 3°) Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe telle que $\prod_{n=0}^{+\infty}(1+u_n)$ existe et soit non nul. Montrer que la suite (u_n) ne prend pas la valeur -1, et que la série de terme général $\ln(|1+u_n|)$ est convergente. Que peut-on en déduire pour $\lim_{n\to+\infty}u_n$?
- **4°)** Soit $n \in \mathbb{N}^*$. On considère n nombres complexes $z_1, \dots z_n$. Comparer $\left| \prod_{k=1}^n (1+z_k) 1 \right|$ et $\prod_{k=1}^n (1+|z_k|) 1$.
- 5°) Montrer que si pour tout $n \in \mathbb{N}$, $|u_n| < 1$ et si la série $\sum u_n$ est absolument convergente, $\prod_{n=0}^{+\infty} (1+u_n)$ existe.

 Indication: On pourra utiliser le critère de Cauchy et la question précédente.
- **6°)** On suppose que, pour tout $n \in \mathbb{N}$, $|u_n| = 1$ et $u_n \neq -1$. On pose :

$$\forall n \in \mathbb{N} , u_n = e^{i\theta_n} \quad (\text{avec } -\pi < \theta_n < +\pi).$$

Montrer que $\prod_{n=0}^{+\infty} u_n$ existe si et seulement si la série $\sum \theta_n$ converge.

7°) Le produit infini $\prod_{n=1}^{+\infty} \left(1 + \frac{i}{n}\right)$ existe-t-il?

D'après : CENTRALE TA 1981, ESTP/ENSAM PC 1997 et E4A 2003