Assignment for Applied Regression Analysis

朱强强 17064001 Applied Statistics

3.1

a. From the table below we can conclude that

$$y = -1.80837 + 0.00360x_2 + 0.19386x_7 - 0.00482x_8$$
.

But the coefficient of intercept is not significant.

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	-1.80837	7.90086	-0.23	0.8209				
x2	1	0.00360	0.00069500	5.18	<.0001				
x7	1	0.19396	0.08823	2.20	0.0378				
x8	1	-0.00482	0.00128	-3.77	0.0009				

b. We know that the $p_value < 0.05$, so the regression is reasonable.

Analysis of Variance								
Source	Sum of Squares		Mean Square	F Value	Pr > F			
Model	3	257.09428	85.69809	29.44	<.0001			
Error	24	69.87000	2.91125					
Corrected Total	27	326.96429						

c. The last column of the first table shows the results of hypothesis testing for regression coefficients. We know that x_2 contributes the most to the regression model, followed by x_8 , and finally x_7 .

$${\rm d.}\ R^2=0.7683, R^2_{Adj}=0.7596.$$

Root MSE	1.70624	R-Square	0.7863
Dependent Mean	6.96429	Adj R-Sq	0.7596
Coeff Var	24.49984		

e. From the table we can get the same conclusion as the t test for β_7 calculated in part c above.

	Summary of Stepwise Selection										
Step		Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F			
1	x8		1	0.5447	0.5447	27.1368	31.10	<.0001			
2	x2		2	0.1986	0.7433	6.8324	19.34	0.0002			
3	x7		3	0.0430	0.7863	4.0000	4.83	0.0378			

3.2

From the result computed by SAS, we know that square of the simple correlation coefficient between the observed values y_i and the fitted values \hat{y}_i is 0.7924, which very nearly equals R^2 (0.7863) calculated before.

Pearson Correlation Coefficients, N = 28 Prob > r under H0: Rho=0							
	у у_						
y	1.00000	0.05208 0.7924					
y_fit	0.05208 0.7924	1.00000					

3.3

a. From the result calculated by SAS we can know that a 95% CI on β_7 is [0.01186, 0.37607].

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits			
Intercept	1	-1.80837	7.90086	-0.23	0.8209	-18.11494	14.49820		
x2	1	0.00360	0.00069500	5.18	<.0001	0.00216	0.00503		
x7	1	0.19396	0.08823	2.20	0.0378	0.01186	0.37607		
x8	1	-0.00482	0.00128	-3.77	0.0009	-0.00745	-0.00218		

b. A 95% CI on the mean number of games won by a team when $x_2 = 2300, x_7 = 56.0, x_8 = 2100$ is [6.4362, 7.9966].

Output Statistics								
Obs	Dependent Variable		Std Error Mean Predict	95% CI	_ Mean	Residual		
1		7.2164	0.3780	6.4362	7.9966			

3.4

a. From the table below we can know that the p_value calculated < 0.05, so the regression is significant.

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	2	179.06619	89.53309	15.13	<.0001				
Error	25	147.89810	5.91592						
Corrected Total	27	326.96429							

b.
$$R^2 = 0.5477, R_{Adj}^2 = 0.5115.$$

Root MSE	2.43227	R-Square	0.5477
Dependent Mean	6.96429	Adj R-Sq	0.5115
Coeff Var	34.92486		

These two figures are both smaller that those calculated in Problem 3.1, which indicates that the regressor in Problem 3.1 is better. So x_2 can make a significant contribution to a better regression model.

c. From the result calculated by SAS we can know that a 95% CI on β_7 is [-0.19716, 0.29391].

Parameter Estimates									
Variable	DF	Parameter Estimate		t Value	Pr > t	95% Confidence Limits			
Intercept	1	17.94432	9.86248	1.82	0.0808	-2.36785	38.25649		
x7	1	0.04837	0.11922	0.41	0.6884	-0.19716	0.29391		
x8	1	-0.00654	0.00176	-3.72	0.0010	-0.01016	-0.00292		

A 95% CI on the mean number of games won by a team when $x_2 = 2300, x_7 = 56.0, x_8 = 2100$ is [5.8286, 8.0238].

	Output Statistics								
Obs	Dependent Variable		Std Error Mean Predict	95% CI	_ Mean	Residual			
1		6.9262	0.5329	5.8286	8.0238				

we know that

$$\mathbf{X} = egin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \ 1 & x_{21} & x_{22} & \cdots & x_{2k} \ dots & dots & dots & dots \ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}$$

$$\left(\mathbf{X}'\mathbf{X}
ight)^{-1} = rac{1}{S_{xx}}igg(rac{\sum x_i^2/n & -ar{x}}{-ar{x}} & 1igg)$$

SO

$$egin{aligned} h_{ii} &= (1 \quad x_i \,) \left[rac{1}{S_{xx}} inom{\sum x_i^2/n}{-ar{x}} - ar{x}}{-ar{x}} ig)
ight] inom{1}{x_i} \ &= \left[rac{1}{S_{xx}}
ight] igg[rac{\sum x_i^2}{n} - x_i ar{x} - x_i ar{x} + x_i^2 igg] \ &= \left[rac{1}{S_{xx}}
ight] igg[rac{\sum x_i^2}{n} + (x_i - ar{x})^2 - ar{x}^2 igg] \ &= \left[rac{1}{S_{xx}}
ight] igg[rac{\sum x_i^2 - n ar{x}^2}{n} + (x_i - ar{x})^2 igg] \ &= rac{1}{n} + rac{(x_i - ar{x})^2}{S_{xx}} \end{aligned}$$

and

$$egin{aligned} h_{ij} &= \left(1 - x_i
ight) \left[rac{1}{S_{xx}} \left(rac{\sum x_i^2/n}{-ar{x}} - ar{x}
ight)
ight] \left(rac{1}{x_j}
ight) \ &= \left[rac{1}{S_{xx}}
ight] \left[rac{\sum x_i^2}{n} - x_iar{x} - x_jar{x} + x_ix_j
ight] \ &= \left[rac{1}{S_{xx}}
ight] \left[rac{\sum x_i^2}{n} + \left(x_i - ar{x}
ight)\left(x_j - ar{x}
ight) - ar{x}^2
ight] \ &= \left[rac{1}{S_{xx}}
ight] \left[rac{\sum x_i^2 - nar{x}^2}{n} + \left(x_i - ar{x}
ight)\left(x_j - ar{x}
ight)
ight] \ &= rac{1}{n} + rac{\left(x_i - ar{x}
ight)\left(x_j - ar{x}
ight)}{S_{xx}} \end{aligned}$$

From the these expressions we can easily know that these quantities will increase as x_i moves farther from \bar{x} .

3.30

$$egin{aligned} \hat{eta} &= (X'X)^{-1}y = (X'X)^{-1}(Xeta + arepsilon) \ &= (X'X)^{-1}X^{'}Xeta + (X'X)^{-1}X^{'}arepsilon \ &= eta + Rarepsilon \ R = (X'X)^{-1}X^{'} \end{aligned}$$

$$egin{aligned} e &= (I-H)y \ &= (I-H)(Xeta + arepsilon) \ &= [I-X(X^{'}X)^{-1}X^{'}]Xeta + (I-H)arepsilon \ &= (I-H)arepsilon \end{aligned}$$

3.39

$$\mathbf{W}'\mathbf{W} = egin{bmatrix} 1 & r_{12} & r_{13} & \cdots & r_{1k} \ r_{12} & 1 & r_{23} & \cdots & r_{2k} \ r_{13} & r_{23} & 1 & \cdots & r_{3k} \ dots & dots & dots & dots \ r_{1k} & r_{2k} & r_{3k} & \cdots & 1 \ \end{bmatrix}$$

The j^{th} VIF is the j^{th} diagonal element of $(\mathbf{W}'\mathbf{W})^{-1}$.

$$(\mathbf{W}'\mathbf{W})^{-1} = rac{1}{1-R_i^2}$$