Online HW 3: Integers and the Fundamental Theorem

Bart Snapp and Brad Findell

December 14, 2018

Contents

Integers

Problems about integers.

Problem 1 Describe the set of integers. Give some relevant and revealing examples/nonexamples.

Problem 2 Use the definition of divides to decide whether the following statements are true or false. In each case, an explanation must be given justifying your claim.

```
(a) 5|30 (True/ False)
(b) 7|41 (True/ False)
(c) 0|3 (True/ False)
(d) 3|0 (True/ False)
(e) 6|(2² · 3⁴ · 5 · 7). (True/ False)
(f) 1000|(2<sup>7</sup> · 3<sup>9</sup> · 5<sup>11</sup> · 17<sup>8</sup>) (True/ False)
(g) 6000|(2<sup>21</sup> · 3<sup>17</sup> · 5<sup>89</sup> · 29<sup>20</sup>). (True/ False)
```

```
function isPrime(num) {
   for(var i = 2; i < num; i++)
      if(num % i === 0) return false;
   return num > 1;
}

function isPrimeFactorization(x,y) {
   var terms = x.split('*').map( function(t) { return parseInt(t) } );
   return terms.every( isPrime ) &&
   (terms.reduce( function(a,c) { return a*c; }, 1 )) == parseInt(y);
}
```

Author(s): Bart Snapp and Brad Findell

Problem 3 Factor the following integers. Enter the primes in increases order, use * for multiplication, and do not use exponents. If the number is prime, enter the number itself.

- (a) 15 3*5
- (b) 12 2 * 2 * 3
- (c) 111 ?
- (d) 1234 ?
- (e) 2345 ?
- (f) 4567 ?
- (g) 111111 ?

Problem 4 Find the greatest common divisors below:

- (a) $gcd(462, 1463) = \boxed{?}$
- (b) $gcd(541, 4669) = \boxed{?}$
- (c) $gcd(10000, 2^5 \cdot 3^{19} \cdot 5^7 \cdot 11^{13}) = \boxed{?}$
- (d) $\gcd(11111, 2^{14} \cdot 7^{21} \cdot 41^5 \cdot 101) = \boxed{?}$
- (e) $gcd(437^5, 8993^3) = \boxed{?}$

Problem 5 Consider the following:

$$20 \div 8 = 2$$
 remainder 4,
 $28 \div 12 = 2$ remainder 4.

Is it correct to say that $20 \div 8 = 28 \div 12?$ (Yes/No)

Explain your reasoning.

Problem 6 Give a formula for the nth even number: [?]

Integers

Problem	7	Give a formula for the nth odd number: ?.
Problem	8	Give a formula for the nth multiple of 3: ?
Problem	9	Give a formula for the n th multiple of -7 . $?$
Problem vided by 5		Give a formula for the n th number whose remainder when di-1.
If the first	suc	ch number is 1, the formula is ?.
If the first	suc	ch number is 6, the formula is ?.

Fundamental Theorem

Problems about unique factorization.

Problem 11 Explain what the GCD of two integers is. Give some relevant and revealing examples/nonexamples.

Problem 12 Explain what the LCM of two integers is. Give some relevant and revealing examples/nonexamples.

Problem 13 How many zeros are at the end of the following numbers:

- (a) $2^2 \cdot 5^8 \cdot 7^3 \cdot 11^5$. There are ? zeros.
- (b) 11!. There are ? zeros.
- (c) 27!. There are ? zeros.
- (d) 99!. There are ? zeros.
- (e) 1001!. There are ? zeros.

In each case, explain your reasoning.

Problem 14 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

- (a) 7|56. (True/False)
- (b) 55|11. (True/False)
- (c) 3|40. (True/False)
- (d) $100|(2^4 \cdot 3^{17} \cdot 5^2 \cdot 7)$ (True/False)
- (e) $5555|(5^{20} \cdot 7^9 \cdot 11^{11} \cdot 13^{23})$ (True/False)

Author(s): Bart Snapp and Brad Findell

(f)
$$3|(3+6+9+\cdots+300+303)$$
 (True/False)

Problem 15 Suppose that

$$(3^5 \cdot 7^9 \cdot 11^x \cdot 13^y) | (3^a \cdot 7^b \cdot 11^{19} \cdot 13^7)$$

What values of a, b, x and y, make true statements? Explain your reasoning.

- $a \ (\geqslant/=/\leqslant)$?
- $b \ (\geqslant/=/\leqslant)$?
- $x (\geqslant / = / \leqslant)$?
- $y (\geqslant/=/\leqslant)$?

Problem 16 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

- (a) If 7|13a, then 7|a. (True/False)
- (b) If 6|49a, then 6|a. (True/False)
- (c) If 10|65a, then 10|a. (True/False)
- (d) If 14|22a, then 14|a. (True/False)
- (e) 54|931²¹. (True/False)
- (f) 54|810³³. (True/False)

Problem 17 Joanna thinks she can see if a number is divisible by 24 by checking to see if it's divisible by 4 and divisible by 6. She claims that if the number is divisible by 4 and by 6, then it must be divisible by 24.

Lindsay has a similar divisibility test for 24: She claims that if a number is divisible by 3 and by 8, then it must be divisible by 24.

Are either correct? Explain your reasoning.

Joanna is (correct/incorrect). Lindsay is (correct/incorrect).

Problem 18 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

- (a) If $a^2|b^2$, then a|b. (True/False)
- (b) If $a|b^2$, then a|b. (True/False)
- (c) If a|b and gcd(a,b) = 1, then a = 1. (True/False)

Problem 19 Suppose x and y are integers. If $x^2 = 11 \cdot y$, what can you say about y? Explain your reasoning.

Problem 20 Suppose x and y are integers. If $x^2 = 25 \cdot y$, what can you say about y? Explain your reasoning.