Exercise 5. Let S and S' be the following subsets of the plane:

$$S = \{(x,y) \mid y = x + 1 \text{ and } 0 < x < 2\}$$

$$S' = \{(x,y) \mid y - x \text{ is an integer}\}$$

- (a) Show that S' is an equivalence relation on the real line and $S' \supset S$. Describe the equivalence classes of S'.
- (b) Show that given any collection of equivalence relations on a set A, their intersection is an equivalence relation on A.
- (c) Describe the equivalence relation T on the real line that is the intersection of all equivalence relations on the real line that contain S. Describe the equivalence classes of T.

Proof.

(a) **reflexivity** $\forall x \in \mathbb{R}$, $x - x = 0 \in \mathbb{Z}$, so $\forall x \in \mathbb{R}$, xS'x

symmetry Let $x, y \in \mathbb{R}$ such that xS'y. Then $y - x = k \in \mathbb{Z}$, so $x - y = -k \in \mathbb{Z}$. Hence yS'x.

transitivity Let $x, y, z \in \mathbb{R}$ such that xS'y and yS'z. Then there exist $k, k' \in \mathbb{Z}$ such that y - x = k and z - y = k'. Adding these together we get $z - x = k + k' \in \mathbb{Z}$, so that xS'z.

S' being reflexive, symmetric and transitive on $\mathbb R$ is an equivalence relation on $\mathbb R$. Let $x \in \mathbb R$, and note $\dot x$ the equivalence class of x for S'. Let $x + \mathbb Z = \{x + k \text{ for all } k \in \mathbb Z\}$. Every $y \in x + \mathbb Z$ verifies yS'x, so $x + \mathbb Z \subset \dot x$. Conversely, let $y \in \dot x$, there exists $k \in \mathbb Z$ such that y - x = k, so that $y = x + k \in x + \mathbb Z$, so $\dot x \subset x + \mathbb Z$. From both, we conclude that $\forall x \in \mathbb R$, $\dot x = x + \mathbb Z$.

- (b) Let I be a set and $(R)_I$ be a family of equivalence relations on A, indexed by I. For each $i \in I$, $R_i \subset A \times A$, so $\cap_{i \in I} R_i \subset A \times A$, and therefore $R = \cap_{i \in I} R_i$ is a relation on A.
 - **reflexivity** $\forall x \in A$, $\forall i \in I$, xR_ix , from which we conclude $\forall x \in A, xRx$. In particular, R is not empty.
 - **symmetry** Let $x, y \in A$ such that xRy. Then $\forall i \in I$, xR_iy , from which we conclude $\forall i \in I, yR_ix$ by symmetry of all R_i . This last proposition implies that yRx, so that R is symmetric.
 - **transitivity** Let $x, y, z \in A$ such that xRy and yRz. Then $\forall i \in I$, xR_iy and yR_iz , so that $\forall i \in I, xR_iz$ by transitivity of all R_i . The last proposition implies that xRz, so that R is transitive.

From the above, R is an equivalence relation on A.

(c) Let R be an equivalence relation on \mathbb{R} that contains S. For all $x \in (0,2)$, we have xR(x+1), and by symmetry of R, (x+1)Rx. Also, for all $x \in (0,1)$, $x+1 \in (1,2)$, so (x+1)S(x+2) and therefore we must have (x+1)R(x+2). This implies by transitivity that xR(x+2). For all $x \in (1,2)$, $x-1 \in (0,1)$ so x-1 was already accounted for in the previous cases. The case x=1 gives only 1S2, from which we deduce 1R2 and 2R1. Finally, R being defined on all \mathbb{R} must be reflexive and thus $\forall x \in (-\infty,0] \cup [3,+\infty)$ we have xRx.

All the conditions above are necessary to any equivalence relation containing S; since R defined in this way is an equivalence relation, we deduce that T = R.

The equivalence classes for T are:

$$\overline{x} = \{x\} \text{ if } x \le 0 \text{ or } x \ge 3$$

$$\overline{x} = \{(x, x), (x, x + 1), (x, x + 2),$$

$$(x + 1, x), (x + 1, x + 1), (x + 1, x + 2),$$

$$(x + 2, x), (x + 2, x + 1), (x + 2, x + 2)\} \text{ for } x \in (0, 1)$$

$$\overline{x} = \overline{x - 1} \text{ if } x \in (1, 2)$$

$$\overline{x} = \overline{x - 2} \text{ if } x \in (2, 3)$$