МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа 3.2.5

Вынужденные колебания в электрическом контуре

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий**

1. Цель работы.

Исследование вынужденных колебаний и процессов их установления в колебательном контуре.

2. В работе используются.

Генератор звуковых частот, вольтметр, частотомер, конденсатор, катушка индуктивности, магазин сопротивлений, осциллограф, универсальный измеритель импеданса (*LCR*-метр).

3. Теоретические сведения.

В работе исследуются колебания, возникающие в параллельном электрическом контуре под действием внешней ЭДС, гармонически меняющейся во времени.

При подключении к контуру внешнего синусоидального источника в нём возникают колебания, которые можно представить как суперпозицию двух синусоид: первая — с частотой собственных колебаний контура и амплитудой, экспоненциально убывающей со временем; вторая — с частотой внешнего источника и постоянной амплитудой. Со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. Амплитуда этих колебаний максимальна при резонансе: совпадении или достаточной близости частоты внешнего сигнала и собственной частоты контура. Зависимость амплитуды установившихся колебаний от частоты внешнего сигнала называется резонансной кривой

А. Резонансная кривая колебательного контура.

Для экспериментального исследования резонансной кривой тока в параллельном колебательном контуре используется схема, представленная на рис. 1. Синусоидальный сигнал с генератора подаётся на параллельный колебательный контур через небольшую разделительную ёмкость C_1 . Напряжение с конденсатора контура C поступает на вертикальный вход электронного осциллографа (ЭО). Для регистрации резонансной кривой необходимо, чтобы модули импедансов возбуждающей $Z_{\text{ист}}$ и измеряющей $Z_{\text{изм}}$ цепей намного превосходили модуль импеданса самого контура вблизи резонанса $Z_{\text{рез}} \approx L/RC$.

Рис.1.Схема установки для исследования вынужденных колебаний

С этой целью разделительная ёмкость C_1 выбирается настолько малой, что в рабочем диапазоне частот модуль её импеданса $|Z_{C1}|=1/\omega C_1$ много больше модуля импеданса контура на частоте ω . Таким образом, амплитуда тока в цепи генератора определяется импедансом $|Z_{C1}|$. Эта амплитуда относительно мало меняется в пределах резонансной кривой колебательного контура, что, однако, приводит к некоторому искажению последней по сравнению со случаем, где в качестве генератора предполагается источник тока, обладающий большим и постоянным внутренним сопротивлением во всём исследуемом частотном диапазоне. Входное сопротивление осциллографа (измеряющей цепи) достаточно велико: $|Z_{\text{изм}}| \approx R_{\text{эо}} \sim 1$ МОм, поэтому его влиянием можно пренебречь. Указанные ограничения представляются в виде следующих соотношений:

$$|Z_{C1}| = \frac{1}{\omega C_1} \gg |Z|_{pes} = \frac{Q}{\omega_0 C} , \quad R_{90} \gg \frac{Q}{\omega_0 C}$$
 (1)

, где $\omega_0 = 1/\sqrt{LC}$ — собственная частота контура, а его добротность $Q < Q_m = 1/R * \sqrt{L/C}$.

По полученной в эксперименте резонансной кривой $I_c(\omega)$, представляющей отклик системы — параллельного колебательного контура — на внешнее воздействие, которым является ток генератора $I(\omega)$, можно определить его резонансную частоту $\omega_m \approx \omega_0$ и его добротность Q. При высокой добротности контура частота ω_0 будет практически совпадать с максимумом резонансной кривой, а добротность будет определяться её относительной шириной: $Q \approx \omega_0/\delta\omega$.

Для установления более точной аналитической связи воспользуемся методом комплексных амплитуд:

$$I_c(\omega) = I(\omega) \sqrt{\frac{1 + Q_m^2(\omega_0/\omega)^2}{1 + Q_m^2(\omega/\omega_0 - \omega_0/\omega)^2}}$$
(2)

Из соотношения (2) следует, что на собственной частоте $\omega 0$ ток в высокодобротном контуре почти в $Q\gg 1$ раз превосходит ток во внешней цепи. Именно по этой причине резонанс в параллельном контуре называется резонансом токов.

Как уже отмечено выше, резонанс, то есть максимальный отклик на внешнее воздействие, достигается в данной схеме на частоте ω_m , несколько отличной от собственной ω_0 , в чём можно убедиться при более детальном анализе подкоренного выражения в (2). Дополнительное смещение резонансной частоты и уменьшение добротности контура связаны с шунтирующим действием генератора, приводящим к зависимости амплитуды внешнего тока I от частоты ω , если его внутреннее сопротивление не достаточно велико. Указанные особенности при не очень большой добротности контура легко регистрируется в эксперименте.

Б. Процессы установления и затухания колебаний в контуре.

Добротность контура может быть определена и другими способами, например, по скорости нарастания амплитуды вынужденных колебаний при резонансе или по скорости затухания свободных колебаний.

Рис. 2. Нарастание и затухание вынужденных колебаний

Нарастание и затухание колебаний (рис. 2) можно наблюдать на экране осциллографа, если на контур подаются цуги — отрезки синусоиды, разделённые интервалами, в течение которых сигнал отсутствует.

Чем выше добротность Q, тем медленнее нарастают и медленнее затухают колебания в контуре. Получить значение Q можно, измерив логарифмический декремент затухания по скорости нарастания или затухания колебаний. В условиях резонанса огибающая затухающих колебаний — это «перевёрнутая» огибающая нарастающего участка. Она может быть использована для расчёта логарифмического декремента затухания.

4. Экспериментальная установка.

Схема установки для исследования вынужденных колебаний приведена на рис.3. Колебательный контур состоит из конденсатора с ёмкостью $C=0,1\,$ мк Φ , катушки с индуктивностью $L=100\,$ м Γ н и магазина сопротивлений R.

Синусоидальный сигнал от звукового генератора проходит через частотомер, позволяющий измерять рабочую частоту с высокой точностью. В корпус частотомера вмонтирован генератор цугов — электронное реле, разрезающее синусоиду на периодически повторяющиеся цуги — отрезки синусоиды, содержащие 32 или 40 периодов колебаний.

Рис. 3. Схема установки для исследования вынужденных колебаний

После частотомера результирующие сигналы — цуги или непрерывная синусоида — поступают по коаксиальному кабелю (по отдельным частям) через одинаковые небольшие ёмкости $C_1 \approx 600$ пкФ на клеммы «цуги» или «непр.», смонтированные на отдельной панели П. На панели смонтированы также клеммы «синхр.» - синхронизация и « \bot » - земля. При подключении контура к клеммам «непр.» и «земля» на контур подаётся непрерывный сигнал — синусоида; если контур подключен к клеммам «цуги» и «земля» - на контур поступают отрезки синусоиды.

Эффективное значение тока $I(\omega)$, текущего к контуру от генератора в режиме непрерывного сигнала, измеряется амперметром A, а соответствующее значение тока в контуре определяется по формуле $I_{\mathcal{C}}(\omega) = \omega \mathcal{C}U_{\mathcal{C}}(\omega)$, где $U_{\mathcal{C}}(\omega)$ — эффективное напряжение на конденсаторе, измеряемое вольтметром V.

Для визуального наблюдения за процессом колебаний напряжение с ёмкости контура *С* подаётся на вход электронного осциллографа. Чтобы картина на экране была устойчивой, частота развёртки осциллографа принудительно синхронизируется с частотой повторения цугов. Для этого на генератор развёртки ЭО подаются следующие с частотой повторения цугов управляющие импульсы, формируемые в блоке электронного реле, клемма «синхр.» которого смонтирована на панели «П».

Используя представленную схему в режиме непрерывного синусоидального сигнала, можно по показаниям приборов и известным параметрам элементов цепи измерить амплитудно-частотную характеристику (резонансную кривую) $I_c(\omega)$ в необходимом диапазоне частот. Сравнивая результат измерения с теоретической кривой (2), можно определить характеристики колебательного контура $\omega_m \approx \omega_0$ и Q.

5. Ход работы.

Рассчитаем собственную частоту контура, учитывая что C = 0.1 мк Φ , L = 1 м Γ н:

$$v_0 = \frac{1}{2\pi\sqrt{LC}} \approx 1592\,\Gamma q$$

Изменяя частоту генератора вблизи собственной найдем резонансную частоту и напряжение, наблюдая за картинкой осциллографа:

$$v_{\scriptscriptstyle m} pprox 1554\, \Gamma {\it q}$$
 ; $U_{\scriptscriptstyle m} = 10\, {\it дел}$

Меняя частоту генератора в обе стороны от резонансной, снимем зависимость показаний вольтметра U от показаний частотомера v, данные занесем в Таблицу 1:

Таблица 1.

U, дел	ν, Гц	U/U _m	ν/ν _m	σ(U/U _m)
10	1554	1	1	0,0141
9,4	1560	0,94	1,0039	0,0137
9,1	1568	0,91	1,009	0,0135
7,6	1578	0,76	1,0154	0,0126
7,2	1581	0,72	1,0174	0,0123
6,9	1582	0,69	1,018	0,0121
6,3	1586	0,63	1,0206	0,0118
5,8	1591	0,58	1,0238	0,0116
5	1597	0,5	1,0277	0,0112
4,4	1606	0,44	1,0335	0,0109
4	1613	0,4	1,038	0,0108
3,6	1620	0,36	1,0425	0,0106
3	1632	0,3	1,0502	0,0104
9,4	1567	0,94	1,0084	0,0137
7,1	1580	0,71	1,0167	0,0123
8	1575	0,8	1,0135	0,0128
9,5	1550	0,95	0,9974	0,0138
8,9	1545	0,89	0,9942	0,0134
8	1540	0,8	0,991	0,0128
7,4	1537	0,74	0,9891	0,0124
7	1535	0,7	0,9878	0,0122
6,6	1532	0,66	0,9858	0,012
5,4	1523	0,54	0,9801	0,0114
4,8	1518	0,48	0,9768	0,0111
3,7	1505	0,37	0,9685	0,0107

Таблица 2.

U, дел	ν, Гц	U/U _m	v/v _m	σ(U/U _m)
10	1557	1	1,0019	0,0141
9	1622	0,9	1,0438	0,0135
8,4	1640	0,84	1,0553	0,0131
7,6	1667	0,76	1,0727	0,0126
7,2	1682	0,72	1,0824	0,0123
7	1688	0,7	1,0862	0,0122
6,6	1702	0,66	1,0952	0,012
6,2	1724	0,62	1,1094	0,0118
5,6	1753	0,56	1,1281	0,0115
4,8	1840	0,48	1,184	0,0111
4	1890	0,4	1,2162	0,0108
9,4	1524	0,94	0,9807	0,0137
8,8	1507	0,88	0,9698	0,0133
8	1487	0,8	0,9569	0,0128
7,6	1478	0,76	0,9511	0,0126
7,2	1468	0,72	0,9447	0,0123
7	1463	0,7	0,9414	0,0122
6,8	1458	0,68	0,9382	0,0121
6	1436	0,6	0,9241	0,0117
5,2	1412	0,52	0,9086	0,0113
4,4	1386	0,44	0,8919	0,0109
3,6	1343	0,36	0,8642	0,0106

Оценим погрешность U/U_m , учитывая что $\sigma(U)=\sigma(U_m)=0,1$ дел, а погрешность для ν и ν_m мала:

$$\sigma(U/U_m) = \frac{U}{U_m} \sqrt{\frac{\sigma(U)^2}{U^2} + \frac{\sigma(U_m)^2}{U_m^2}}$$

Установим на магазине сопротивлений значений $R=100~{\rm Om}$ и повторим измерения, результаты занесем в Таблицу 2.

Построим на одном графике резонансные кривые в координатах $U/U_m = f(\nu/\nu_m)$

Рис.4.Зависимость $U/U_m(v/v_m)$

Определим добротность по формуле:

$$Q = \frac{v_0}{2\Delta v}$$

, где $\Delta v = v_2 - v_1$ — ширина резонансной кривой на уровне 0,707 (отмечен красной прямой на Рис.4.), данные Занесем в таблицу 3:

Таблица 3

R, Ом	100	0		
ν ₁ , Гц	1463	1535		
v ₂ , Гц Δv, Гц	1688	1580		
Δν, Γιι	225	45		
ν ₀ , Гц	1592	1592		
Q	3,2	17,7		

Рассчитаем погрешность для v_0 , учитывая что $\sigma(C)/C = 0.03$:

$$\sigma(v_0) = v_0 \frac{\sigma(C)}{C} \approx 47.8 \Gamma u$$

Рассчитаем погрешность для добротности Q:

$$\sigma(Q) = Q \frac{\sigma(v_0)}{v_0}$$

Окончательно получим:

$$Q_1 = 3,2 \pm 0,1$$
; $Q_2 = 17,7 \pm 0,5$

Подключим контур к клемме «цуги», установим резонансную частоту и переведем магазин сопротивлений в положение R=0.

Для расчета добротности по скорости нарастания амплитуды измерим амплитуды двух колебаний U_k и U_{k+n} , разделенных целым числом периодов n, и амплитуду установившихся колебаний U_0 . Проведем измерения для 4-5 пар амплитуд. Аналогичные измерения проведем для затухания, полученные данные занесем в Таблицу 4:

Таблица 4.

n	5	3	6	4	7	6
U _к , дел	3,8	3	5	4,4	5,6	3,4
U _{k+n} , дел	5	4,2	6	3	3	2

Рассчитаем логарифмический декремент, с учетом что $U_0 = 7$ дел, по формуле:

$$\Theta = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}$$

Тогда добротность можно будет рассчитать по формуле:

$$Q = \frac{\pi}{\Theta}$$

Оценим погрешности, учитывая что $\sigma(U_0) = \sigma(U_k) = \sigma(U_{k+n}) = 0,1$ дел $= \sigma(U)$:

$$\sigma(\Theta)^{2} = \frac{\sigma(U)^{2}}{n^{2}} \left(\frac{(U_{k+n} - U_{k})^{2}}{(U_{0} - U_{k})^{2}(U_{0} - U_{k+n})^{2}} + \frac{1}{(U_{0} - U_{k})^{2}} + \frac{1}{(U_{0} - U_{k+n})^{2}} \right)$$

$$\sigma(Q) = Q \frac{\sigma(\Theta)}{\Theta}$$

Данные занесем в Таблицу 5:

	Нарастание			Затухание		
Θ	0,094	0,119	0,115	0,108	0,150	0,055
Q	33,42	26,42	27,19	29,17	20,95	57,38
$\sigma(\Theta)$	0,012	0,015	0,020	0,012	0,013	0,006
σ(Q)	4,40	3,33	4,81	3,24	1,77	6,13

Тогда:

 $<\!Q_{\mbox{\scriptsize Hap}}\!> = 29,\!01$; $<\!Q_{\mbox{\tiny 3}}\!> = 35,\!83$ — средние значения добротности для нарастания и затухания соответственно.

Найдем погрешность для $<Q_{\text{нар}}>$, $<Q_3>$ по формуле:

$$\sigma(\langle Q \rangle) = \frac{1}{3} \sqrt{\sigma(Q_1)^2 + \sigma(Q_2)^2 + \sigma(Q_3)^2}$$

Окончательно получаем:

$$= 29,01 \pm 2,44$$

$$<$$
Q₃ $> = 35,83 \pm 2,39$

Рассчитаем теоретическое значения для добротности и оценим погрешность по формулам, учитывая что сопротивление катушки $R_L = 23~\mathrm{Om}$:

$$Q_{meop} = \frac{1}{R + R_{I}} \sqrt{\frac{L}{C}}$$

$$\sigma(Q_{\textit{meop}}) = Q_{\textit{meop}} \frac{\sigma(C)}{2C}$$

Сведём результаты определения Q в Таблицу 6:

		Q					
R, Ом	\mathbf{R}_{Σ}	Ширина рез. кривой	Нарастание	Затухание	f(RLC)		
0	23	$17,7 \pm 0,5$	$29,01 \pm 2,44$	$35,83 \pm 2,39$	$43,48 \pm 0,65$		
100	123	$3,2 \pm 0,1$			$8,13 \pm 0,12$		

6. Выводы.

1)Были исследованы вынужденные колебания и процессы их установления в колебательном контуре.

2)Были получены значения для добротности колебательного контура с разным значениям сопротивления разными способами. Все способы дали одинаковый по порядку величины результат.