Anomaly Detection

Adapted from slides by Jing Gao SUNY Buffalo

Definition of Anomalies

- Anomaly is a pattern in the data that does not conform to the expected behavior
- Also referred to as outliers, exceptions, peculiarities, surprise, etc.
- Anomalies translate to significant (often critical) real life entities
 - Cyber intrusions
 - Credit card fraud

Real World Anomalies

- Credit Card Fraud
 - An abnormally high purchase made on a credit card

- Cyber Intrusions
 - Computer virus spread over Internet

Simple Example

- N₁ and N₂ are regions of normal behavior
- Points o₁ and o₂ are anomalies
- Points in region O₃
 are anomalies

Related problems

- Rare Class Mining
- Chance discovery
- Novelty Detection
- Exception Mining
- Noise Removal

Key Challenges

- Defining a representative normal region is challenging
- The boundary between normal and outlying behavior is often not precise
- The exact notion of an outlier is different for different application domains
- Limited availability of labeled data for training/validation
- Malicious adversaries
- Data might contain noise
- Normal behaviour keeps evolving

Aspects of Anomaly Detection Problem

- Nature of input data
- Availability of supervision
- Type of anomaly: point, contextual, structural
- Output of anomaly detection
- Evaluation of anomaly detection techniques

Data Labels

Supervised Anomaly Detection

- Labels available for both normal data and anomalies
- Similar to skewed (imbalanced) classification

Semi-supervised Anomaly Detection

- Limited amount of labeled data
- Combine supervised and unsupervised techniques

Unsupervised Anomaly Detection

- No labels assumed
- Based on the assumption that anomalies are very rare compared to normal data

Type of Anomalies

- Point Anomalies
- Contextual Anomalies
- Collective Anomalies

Point Anomalies

An individual data instance is anomalous w.r.t.
 the data

Contextual Anomalies

- An individual data instance is anomalous within a context
- Requires a notion of context
- Also referred to as conditional anomalies

Collective Anomalies

- A collection of related data instances is anomalous
- Requires a relationship among data instances
 - Sequential Data
 - Spatial Data
 - Graph Data

 The individual instances within a collective anomaly are not anomalous by themselves

Output of Anomaly Detection

Label

- Each test instance is given a normal or anomaly label
- This is especially true of classification-based approaches

Score

- Each test instance is assigned an anomaly score
 - Allows the output to be ranked
 - Requires an additional threshold parameter

Metrics for Performance Evaluation

	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	a (TP)	b (FN)
	-	c (FP)	d (TN)

Measure used in classification:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Anomaly detection
 - Number of negative examples = 9990
 - Number of positive examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any positive examples

Cost Matrix

	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	C(+ +)	C(- +)
	-	C(+ -)	C(- -)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
		1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	-	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r)=
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

Weighted Accuracy=
$$\frac{w_1 a + w_2 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

ROC (Receiver Operating Characteristic)

 ROC curve plots TPR (Recall) on the y-axis against FPR (FP/#N) on the x-axis

- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(TPR, FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- Comparing two models
 - M₁ is better for small FPR
 - M₂ is better for large
 FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	Score	Label
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+

	PREDICTED CLASS			
ACTUAL CLASS			+	-
		+	a (TP)	b (FN)
		-	c (FP)	d (TN)

- Calculate the outlier scores of the given instances
- •Sort the instances according to the scores in decreasing order
- Apply threshold at each unique value of the score
- Count the number of TP, FP,
 TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

Area under ROC curve = prob. that a randomly sample positive example will score higher than a randomly sampled negative example

Applications of Anomaly Detection

- Network intrusion detection
- Insurance / Credit card fraud detection
- Healthcare Informatics / Medical diagnostics
- Image Processing / Video surveillance

• ...

Anomaly Detection Schemes

General Steps

- Build a profile of the "normal" behavior
 - Profile can be patterns or summary statistics for the overall population
- Use the "normal" profile to detect anomalies
 - Anomalies are observations whose characteristics differ significantly from the normal profile

Methods

- Statistical-based
- Distance-based
- Model-based

Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)

Limitations of Statistical Approaches

- Most of the tests are for a single attribute
- In many cases, data distribution may not be known

 For high dimensional data, it may be difficult to estimate the true distribution

Distance-based Approaches

- Data is represented as a vector of features
- Three major approaches
 - Nearest-neighbor based
 - Density based
 - Clustering based

Nearest-Neighbor Based Approach

Approach:

- Compute the distance between every pair of data points
- There are various ways to define outliers:
 - Data points for which there are fewer than p neighboring points within a distance D
 - The top n data points whose distance to the k-th nearest neighbor is greatest
 - The top n data points whose average distance to the k nearest neighbors is greatest

Distance-Based Outlier Detection

- For each object o, examine the # of other objects in the r-neighborhood of o, where r is a user-specified distance
 threshold
- An object o is an outlier if most (taking π as a fraction threshold) of the objects in D are far away from o, i.e., not in the r-neighborhood of o
- An object o is a DB(r, π) outlier if $\frac{\|\{o'|dist(o,o') \leq r\}\|}{\|D\|} \leq \pi$
- Equivalently, one can check the distance between o and its k-th nearest neighbor o_k , where $k = \lceil \pi ||D|| \rceil$. o is an outlier if dist $(o, o_k) > r$

Density-based Approach

- For each point, compute the density of its local neighborhood
- Points whose local density is significantly lower than its nearest neighbor's local density are consider outliers

Example:

In the *NN* approach, p_2 is not considered as outlier, while a density based approach may find both p_1 and p_2 as outliers

Clustering-Based

Basic idea:

- Cluster the data into groups of different density
- Choose points in small cluster as candidate outliers
- Compute the distance between candidate points and non-candidate clusters.
 - If candidate points are far from all other noncandidate points, they are outliers

Classification-Based Methods

- Idea: Train a classification model that can distinguish "normal" data from outliers
- Consider a training set that contains samples labeled as "normal" and others labeled as "outlier"
 - But, the training set is typically heavily biased: # of "normal" samples likely far exceeds # of outlier samples
- Handle the imbalanced distribution
 - Oversampling positives and/or undersampling negatives
 - Alter decision threshold
 - Cost-sensitive learning

One-Class Model

- One-class model: A classifier is built to describe only the normal class
 - Learn the decision boundary of the normal class using classification methods such as SVM
 - Any samples that do not belong to the normal class (not within the decision boundary) are declared as outliers
 - Adv: can detect new outliers that may not appear close to any outlier objects in the training set

Take-away Message

- Definition of outlier detection
- Applications of outlier detection
- Evaluation of outlier detection techniques
- Unsupervised approaches (statistical, distance, density-based)