

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration

Conclusion

PARALUTION - a Library for Iterative Sparse Methods on CPU and GPU

Dimitar Lukarski

Division of Scientific Computing
Department of Information Technology
Uppsala Programming for Multicore Architectures Research Center
(UPMARC)
Uppsala University, Sweden

GPU-enabled Libraries Course Sept, 2013

Outline

Outline

Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration
Conclusion

Introduction and Motivation

PARALUTION Library

Solvers/Preconditioners

Integration with Application

Outline

Integration Conclusion

Intro and Motivation

PARALUTION Lib Solvers/Preconditioners

Introduction and Motivation

Multi/many-core systems are here

- ► CPUs, GPUs, Accelerators
- ► Trends more cores CPU(16), MIC(60), GPU(2496)
- ▶ High performance, better performance/watt ratio

Scientific computing is expected to be

- ► Fast use this new technology
- Scalable use many cores (parallel)
- Sustainable over years

What is the Problem?

Outline Intro and Motivation PARALUTION Lib

Solvers/Preconditioners

Integration

Conclusion

New algorithms

- ► High degree of parallelism
- Fine-grained parallelism
- ► Scalable = almost no communication

Software

- ► New programming models/languages
- Hardware-specific optimization techniques

Good Parallel Programming is HARD

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration

Methods are the MOST Important

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration

Goal

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration

Conclusion

Create a library for iterative methods (linear and non-linear systems)!

Math

- Linear operators (sparse/dense matrices, stencils)
- Vector routines
- Extendable

Software

- Current multi/many-core dev, new hardware
- ▶ Portable code

Introduction and Motivation

PARALUTION Library

Solvers/Preconditioners

Integration with Application

Conclusion

Solvers/Preconditioners Integration Conclusion

Intro and Motivation PARALUTION Lib

Outline

PARALUTION

Outline Intro and Motivation

PARALUTION Lib

I ANALO HON LIL

Solvers/Preconditioners

Integration

- Library for iterative sparse methods
- ▶ Targeting devices: CPUs + Accelerators (GPUs,...)
- ► Hardware abstraction
- ▶ No knowledge in OpenMP/CUDA/OpenCL required
- No special library/hardware required
- ▶ Portable results and code
- ► Run time type identification (RTTI)
- Easy to use
- Open source / GPL v3

Middle-ware

Outline

Intro and Motivation

PARALUTION Lib

Solvers/Preconditioners

Integration

Conclusion

C++ code FORTRAN OpenFOAM Deal II Scientific libraries/packages

#PARALUTION

Multi/many-core CPU

GPU

New up coming technology

Operators and Vectors

Outline Intro and Motivation

PARALUTION Lib

Solvers/Preconditioners Integration

Local Vectors

Outline Intro and Motivation

PARALUTION Lib

Solvers/Preconditioners

Integration

- ► Init, Clear
- Standard vector routines
 - Dot product
 - Vector updates
 - Norm
 - ...
- Permutations
- ► Copy (sub-)vector to (sub-)vector
- ► I/O file
- Raw access via pointers

Outline Intro and Motivation

PARALUTION Lib

Solvers/Preconditioners

Integration

Conclusion

Local Matrices

- Init, Clear
- ► Formats CSR, MCSR, COO, ELL, DIA, HYB, DENSE
- Conversion
- Matrix-vector multiplication
- Permutation
- Extract a sub-matrix
- ▶ I/O file
- ► Graph analyzer (CPU)
 - Multi-coloring
 - Maximal independent set
- Factorization
- ► Some wrapper to Intel/MKL

Operators and Vectors

Outline Intro and Motivation

PARALUTION Lib

Solvers/Preconditioners

Integration

Source Example

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration
Conclusion

```
LocalMatrix<ValueType> A;
LocalVector<ValueType> x, y;
A.ReadFileMTX("my_matrix.mtx");
x.Allocate("vector1", mat.get_nrow());
y.Allocate("vector2", mat.get_ncol());
// y = A x
A.Apply(x, &y);
// Print the dot product of x and y
std::cout << x.Dot(y) << std::endl;</pre>
```


Source Example

Intro and Motivation PARALUTION Lib

Outline

Solvers/Preconditioners Integration

A.ReadFileMTX("my_matrix.mtx"); x.Allocate("vector1", mat.get_nrow()); y.Allocate("vector2", mat.get_ncol()); Conclusion A.MoveToAccelerator(); x.MoveToAccelerator(); y.MoveToAccelerator();

A.Apply(x, &y);

LocalMatrix<ValueType> A; LocalVector<ValueType> x, y ;

std::cout << x.Dot(y) << std::endl;</pre>

Outline Intro and Motivation PARALUTION Lib Solvers/Preconditioners Integration Conclusion

Initialization/Shutdown

```
#include <paralution.hpp>
using namespace paralution;
int main(int argc, char* argv[]) {
  init_paralution();
  info_paralution();
 // ...
  stop_paralution();
```


Solvers

Outline Intro and Motivation

PARALUTION Lib

Solvers/Preconditioners Integration

integration

CG Solver

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration

Conclusion

```
CG<LocalMatrix<ValueType>, LocalVector<ValueType>
ValueType > ls;
ls.SetOperator(mat);
```

ls.Solve(rhs, &x);

Lukarski, GPU-enabled Libraries Course, Sept. 2013

CG Solver

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration

```
ls.MoveToAccelerator();
mat.MoveToAccelerator();
rhs.MoveToAccelerator();
x.MoveToAccelerator();
ls.Solve(rhs, &x);
```


PCG Solver

ls.Solve(rhs. &x):

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration
Conclusion

```
CG<LocalMatrix<ValueType>, LocalVector<ValueType>
ValueType > ls;
MultiColoredILU<LocalMatrix<ValueType>,
LocalVector<ValueType>, ValueType > p;

ls.SetOperator(mat);
ls.SetPreconditioner(p);

ls.Build();
```


PCG Solver (same procedure)

Outline Intro and Motivation PARALUTION Lib

Solvers/Preconditioners

Integration

Conclusion

```
ls.MoveToAccelerator();
mat.MoveToAccelerator();
rhs.MoveToAccelerator();
x.MoveToAccelerator();
ls.Solve(rhs, &x);
```

Lukarski, GPU-enabled Libraries Course, Sept. 2013

Outline Intro and Motivation

PARALUTION Lib

Solvers/Preconditioners Integration

Conclusion

Conclusio

Design and Concepts

Hardware decision

- At run time
- No template parameter

MoveToHost/Accelerator

- All objects (matrices, vectors, solvers, preconditioners, etc)
- Always a CPU implementation

Template

- ► ValueType float, double, int
- Solvers Operator/Vector type

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration
Conclusion

Design and Concepts

Functionality on the Accelerators

- Not all algorithms can be performed on the accelerator
- Ex: greedy multi-coloring, maximal independent set

The library has internal mechanism to check if a routine can be performed on the accelerator or not. If not the object is moved to the host and the routine is performed there.

- Always a CPU implementation
- Warning is printed if the object needs to be moved for the routine
- ▶ 100% portability of the code!

Introduction and Motivation

PARALUTION Library

Solvers/Preconditioners

Integration with Application

Conclusion

Outline
Intro and Motivation
PARALUTION Lib

Solvers/Preconditioners Integration

Iterative Linear Solvers

Outline Intro and Motivation PARALUTION Lib

Solvers/Preconditioners

Integration

- Preconditioner = a solver
- Flexible design

Solver as Preconditioner

Outline Intro and Motivation PARALUTION Lib

Solvers/Preconditioners
Integration

Conclusion

- Every solver can be used as a preconditioner
- Set a lower stopping criteria
- or/and Fixed number of iterations

Mostly used

- ► GS, SOR or SGS, SSOR
- ► GMG/AMG

PCG-AMG

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration
Conclusion

```
CG<LocalMatrix<ValueType>,
LocalVector<ValueType>, ValueType > ls;
AMG<LocalMatrix<ValueType>,
LocalVector<ValueType>, ValueType > p;
p.InitMaxIter(2);
ls.SetPreconditioner(p);
ls.SetOperator(mat);
ls.Build();
```


Geometric Multigrid

Outline
Intro and Motivation
PARALUTION Lib

Solvers/Preconditioners

Integration

Conclusion

Your application constructs

 Prolongation/Restriction operators or neighbor mapping vector

Pass it to PARALUTION and obtain

- Geometric Multigrid
- ► Interally constructed smoothers
- You can construct or pass the system matrices on all levels

Introduction and Motivation

PARALUTION Library

Solvers/Preconditioners

Integration with Application

Conclusion

Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration

Outline

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners

Integration Conclusion

Plug-ins

Deal.II

- Export/Import vector/matrices
- ► Call PARALUTION solvers

OpenFOAM

- Compile PARALUTION with your application
- Configure the linear solver (txt file)

FORTRAN

- ► Pass matrix, vector
- Select a solver
- Obtain the solution vector

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration
Conclusion

Advanced Integation

- ► Easy integration for any C++ code
- ► Can be hacked for everything (e.g. FORTRAN)

Avoid init times

- Do not init PARALUTION every time you call a solver
- Move the init in the beginning of your application

Raw data via pointers

- ► Create PARALUTION object via data pointers
- Obtain data via pointers from PARALUTION objs
- ► Host (OpenMP) and GPU (CUDA) backends
- No extra data copying

Introduction and Motivation

Outline
Intro and Motivation
PARALUTION Lib
Solvers / Presenditions

Solvers/Preconditioners Integration

Conclusion

PARALUTION Library

Solvers/Preconditioners

Integration with Application

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners

Integration

Conclusion

PARALUTION

Library for iterative sparse methods

- Various iterative solvers
- Various preconditioners

Backends

- OpenMP, CUDA, OpenCL
- Open for new hardware
- ► Portable results and code

General

- ▶ No special library/hardware required
- Easy to use
- ▶ Open source / GPL v3

Outline

Integration Conclusion

Intro and Motivation

PARALUTION Lib Solvers/Preconditioners

PARALUTION - Doc

User Manual

- Installation
- Design
- Usage
- Examples

Doxygen

- ► Function descriptions
- Structure of the classes

Thank You for Your Attention

Outline
Intro and Motivation
PARALUTION Lib
Solvers/Preconditioners
Integration

Conclusion

www.paralution.com