Explore Problems(/problemset/all/)

5835. Maximum Matrix Sum

My Submissions (/contest/biweekly-contest-59/problems/maximum-matrix-sum/submissions/)

Back to Contest (/contest/biweekly-contest-59/)

You are given an n x n integer matrix. You can do the following operation any number of times:

• Choose any two adjacent elements of matrix and multiply each of them by −1.

Two elements are considered adjacent if and only if they share a border.

Your goal is to maximize the summation of the matrix's elements. Return the maximum sum of the matrix's elements using the operation mentioned above.

User Accepted:	1
User Tried:	1
Total Accepted:	1
Total Submissions:	1
Difficulty:	Medium

Example 1:

1	-1	-1	1	1	1
-1	1	-1	1	1	1

Input: matrix = [[1,-1],[-1,1]]

Output: 4

Explanation: We can follow the following steps to reach sum equals 4:

- Multiply the 2 elements in the first row by -1.
- Multiply the 2 elements in the first column by -1.

Example 2:

1	2	3		1	2	3
-1	- 2	-3	→	-1	2	3
1	2	3		1	2	3

Input: matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]

Output: 16

Explanation: We can follow the following step to reach sum equals 16:

- Multiply the 2 last elements in the second row by -1.

Constraints:

- n == matrix.length == matrix[i].length
- 2 <= n <= 250
- $-10^5 \le matrix[i][j] \le 10^5$

United States (/region)