Appendix

Appendix A: Parameters used in model

	Category	Description	References
Risks/Probabilities	Death from other causes	Nonparametric	UK Lifetables. [1]
	Sensitivity and Specificity of TTE in	Jointly estimated from Dirichlet distribution	Table 2 of Providencia et al 2012 [2]
	detecting ABN	(FN, TP, TN, FP) =	
		(5, 87, 83, 159)	
	Proportion of patients with ABN	Beta(2.5, 22.5) for CHADS ₂	Table 2 of Providencia et al 2012 [2]
		Beta(0.5, 11.5) for CHA ₂ DS ₂ -VASc	
		(Both with prior of 0.5 added to both cell counts.)	
	Annual stroke risk by CHADS₂ score	Annual risks (95% Credible intervals) by CHADS ₂	Friberg 2012[3]
		were reported as follows:	
		0.6% (0.5% to 0.7%) for CHADS ₂ =0	
		3.0% (2.9% to 3.2%) for CHADS ₂ =1	
		4.2% (4.0% to 4.4%) for CHADS ₂ =2	
		7.1% (6.7% to 7.5%) for CHADS ₂ =3	
		11.1% (10.4% to 11.8%) for CHADS ₂ =4	
	Annual stroke risk in those with ABN	In the initial study four out of 50 patients with	Stroke Prevention 1988 [4]
		identified ABN had a stroke. This was used to	
		produce a mean stroke rate of 8.0% and	
		bootstrapped 95% CrIs of 7.2% to 8.2%	

 D 1 (DD)		L
Relative risk (RR) of stroke in patients	Indirect comparison simulation approach. One	Lip et al 2006 for RR of warfarin compared
receiving dabigatran.	thousand simulated values from a lognormal	with placebo [5]
	distribution representing the RR of warfarin	Eikelboom et al 2011 for RR of dabigatran
	compared with placebo were multiplied by 1000	compared with warfarin[6]
	simulated values from a lognormal distribution	
	comparing dabigatran with warfarin, to produce	
	1000 estimates of the RR of dabigatran compared	
	with placebo. Mean RRs and 95% CIs/CrIs are	
	shown below:	
	Reported RR warfarin vs. placebo: 0.33 (0.24 to	
	0.45)	
	Reported RR dabigatran vs. warfarin: 0.66 (0.53 to	
	0.82)	
	Derived RR dabigatran vs. placebo: 0.22 (0.15 to	
	0.32)	
Annual major bleeding risk for patients	Stratified by age. Credible interval calculated	Eikelboom et al 2011 [6]
receiving dabigatran	using simulation approach. Annual risk reported	
	separately for people under 75 years, and people	
	aged 75 years or older. Credible intervals were	
	calculated by assuming sample sizes of 3618 for	
	people aged under 75 years and 2419 for people	
	aged 75 years or older, then sampling repeatedly	
	and taking the values 2.5% and 97.5% of the way	
	along the distributions. The central estimates	

Γ			,
		(95% Crls) are as follows:	
		Under 75: 2.1% (1.7 to 2.6%)	
		75 and older: 5.1% (4.2% to 6.0%)	
	Relative risk (RR) of stroke in patients	Reported RR warfarin vs. placebo: 0.33 (0.24 to	Lip et al 2006 [5]
	receiving warfarin	0.45)	
	Annual major bleeding risk for patients	Stratified by age. Credible interval calculated	Eikelboom et al 2011 [6]
	receiving warfarin	using simulation approach. Annual risk reported	
		separately for people under 75 years, and people	
		aged 75 years or older. Credible intervals were	
		calculated by assuming sample sizes of 3618 for	
		people aged under 75 years and 2419 for people	
		aged 75 years or older, then sampling repeatedly	
		and taking the values 2.5% and 97.5% of the way	
		along the distributions. The central estimates	
		(95% Crls) are as follows:	
		Under 75: 3.4% (2.5 to 3.6%)	
		75 and older: 4.4% (3.6% to 5.2%)	
	Relative risk (RR) of stroke in patients	Indirect comparison simulation approach. One	Lip et al 2006 for RR of warfarin compared
	receiving rivaroxaban	thousand simulated values from a lognormal	with placebo [5]
		distribution representing the RR of warfarin	Patel et al 2011 for RR of rivaroxaban
		compared with placebo were multiplied by 1000	compared with warfarin [7]
		simulated values from a lognormal distribution	
		comparing dabigatran with warfarin, to produce	
		1000 estimates of the RR of dabigatran compared	

T			
		with placebo. Mean RRs and 95% CIs/CrIs are	
		shown below:	
		Reported RR warfarin vs. placebo: 0.33 (0.24 to	
		0.45)	
		Reported RR Rivaroxaban vs. warfarin: 0.88 (0.74	
		to 1.03)	
		Derived RR Rivaroxaban vs. placebo: 0.30 (0.20 to	
		0.41)	
	Annual major bleeding risk for patients	The annual risk of bleeding given rivaroxaban was	Eikelboom et al 2011 [6]
	receiving rivaroxaban	estimated indirectly by combining estimates of	Patel et al 2011 [7]
		the risk of bleed given warfarin compared with	
		placebo with estimates of the risk of bleed given	
		rivaroxiban compared with warfarin. The central	
		estimates (95% Crls) were estimated to be as	
		follows:	
		Under 75: 3.2% (2.5% to 4.0%)	
		75 or older: 4.6% (3.6% to 5.7%)	
	Outcome following stroke	Simulation & mapping based approach described	Method described in report using results
		in an upcoming report.	published in Rivero-Arias et al 2010 [8]
		The proportion dying of a stroke (95% CrI) was	
		estimated to be 0.25 (0.23 to 0.27); the	
		proportion in an independent state was	
		estimated to be 0.56 (0.52 to 0.59); and the	
		proportion in an dependent state following a	

		stroke was estimated to be 0.19 (0.16 to 0.23).	
	Outcome following a major bleeding event	Previous estimates	Simpson et al 2010 [9]
Utilities	Baseline utilities by age and gender	Regression based approach, described in full in the reference. HRQoL is estimated as a function of age and gender, using the equation for the general population.	Ara et al 2010 [10]
	Utility multiplier following stroke, utility multiplier following major non-fatal intracranial bleed	Simulation & mapping based approach described in an upcoming report. Utility multipliers (95% Crls) were estimated to be 0.822 (0.819 to 0.824) for an independent state following a stroke, and 0.482 (0.477 to 0.487) for a dependent state following a stroke.	Method described in report results published in Rivero-Arias et al 2010 [8]
Costs	Annual cost of dabigatran Annual cost of rivaroxaban Annual cost of warfarin	£920. A fixed cost was assumed. £767. A fixed cost was assumed. £252 to £259 including monitoring costs. A	NICE FAD, 2011 [11] London New Drugs Group [12] BNF [13]
	Cost of TTE Cost of death due to stroke Costs in stroke survivors	uniform distribution was assumed. £66 £7,019 (95% Crl £6,975 to £7,064) Various. Differing according to dependent and independent states. Subdivided into one-off and continuing costs. Estimates (95% Crls) are as follows:	NHS Reference Costs [14] Sandercock et al 2002 [15] NHS Reference Costs [14] NHS Stroke Strategy Impact Assessment [16] Unit Costs of Health and Social Care 2010 [17]

 	Dependent stroke, one-off costs: £2830 (£2708 to	
	£2952)	
	Dependent stroke, continuing annual cost: £6386	
	(£5749 to £7023)	
	Independent stroke, one-off costs: £542 (£513 to	
	£571)	
	Independent stroke, continuing annual cost:	
	£3195 (£2871 to £3518)	
Costs of fatal bleed	Assumed identical to costs of death due to stroke	I
Costs of nonfatal bleed	Major bleeds subdivided into gastrointestinal (GI)	NHS Reference Costs [14]
	and intracranial (IC). GI bleeds were assumed to	
	incur a one-off cost but no continuing costs. The	
	one-off cost (95% Crl) was £1261 (£1212 to	
	£1310).	
	For IC bleeds, the costs depended on the Glasgow	
	Outcome Scale (GOS) level of disability that they	
	cause, from GOS 2 (most severe) to GOS 5 (least	
	severe).	
	The one-off costs (95% Crls) used were as follows:	
	GOS 2: £46785 (£40895 to £53250)	
	GOS 3: £10096 (£8849 to £11363)	
	GOS 4: £27419 (£22582 to £32964)	
	GOS 5: £1261 (£1211 to £1309)	
	,	

GOS 4 and GOS 5 states were assumed not to
have ongoing costs. The ongoing annual costs
(95% Crls) of the other states were as follows:
GOS 2: £50047 (£49645 to £50343)
GOS 3: £33949 (£33843 to £33969)

Table 1 Parameters used in model

References

- ONS. Interim Life Tables. 2011;**2012**.http://www.ons.gov.uk/ons/taxonomy/index.html?nscl=Interim+Life+Tables
- Providencia R, Botelho A, Trigo J, et al. Possible refinement of clinical thromboembolism assessment in patients with atrial fibrillation using echocardiographic parameters. *Europace* 2012;**14**:36–45.
- Friberg L, Rosenqvist M, Lip GYH. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. *European heart journal* Published Online First: 13 January 2012. doi:10.1093/eurheartj/ehr488
- 4 Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. The Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. *Ann Intern Med* 1998;**128**:639–47.
- Lip GYH, Edwards SJ. Stroke prevention with aspirin, warfarin and ximelagatran in patients with non-valvular atrial fibrillation: a systematic review and meta-analysis. *Thrombosis research* 2006;**118**:321–33.
- Eikelboom JW, Wallentin L, Connolly SJ, et al. Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the randomized evaluation of long-term anticoagulant therapy (RE-LY) trial. *Circulation* 2011;**123**:2363–72.
- Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation. *New England Journal of Medicine* 2011;**365**:883–91.

- Rivero-Arias O, Ouellet M, Gray A, *et al.* Mapping the Modified Rankin Scale (mRS) Measurement into the Generic EuroQol (EQ-5D) Health Outcome. *Medical Decision Making* 2010;**30**:341–54.
- 9 Simpson EL, Stevenson MD, Rawdin A, et al. Thrombophilia testing in people with venous thromboembolism: systematic review and cost-effectiveness analysis. Health Technology Assessment 2009;13. doi:10.3310/hta13020
- Ara R, Brazier JE. Populating an economic model with health state utility values: moving toward better practice. *Value in health: the journal of the International Society for Pharmacoeconomics and Outcomes Research* 2010;**13**:509–18.
- NICE. Dabigatran etexilate for the prevention of stroke and systemic embolism in atrial fibrillation: Final appraisal determination. 2011;**2012**.http://www.nice.org.uk/nicemedia/live/12225/56899/56899.pdf
- Group LND. A briefing paper on Dabigatran and Rivaroxaban: What we know so far... 2012;**2012**.http://www.nelm.nhs.uk/en/NeLM-Area/Evidence/Drug-Specific-Reviews/A-briefing-paper-on-dabigatran-and-rivaroxaban/
- 13 BNF. Warfarin. 2011;**2012**.https://mail.google.com/mail/u/1/#inbox/134f06255f3f63de
- DoH. NHS Reference Costs 2009-2010. 2011;**2012**.http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_123459
- Sandercock P, Berge E, Dennis M, *et al.* A systematic review of the effectiveness, cost-effectiveness and barriers to implementation of thrombolytic and neuroprotective therapy for acute ischaemic stroke in the NHS. *Health Technology Assessment* 2002;**6**.
- NHS. National Stroke Strategy Impact Assessment. 2007;**2012**.http://www.dh.gov.uk/prod_consum_dh/groups/dh_digitalassets/documents/digitalasset/dh_081054.pdf
- 17 Curtis L. Unit Costs of Health and Social Care 2010. Kent: 2010.

Appendix B: Sensitivity and Specificity tables

W_	_50						Spec	ificity				
0_M		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	0	D	D	D	D	D	D	D	D	D	D	8
	0.1	D	D	D	D	D	D	D	D	D	D	8.4
	0.2	D	D	D	D	D	D	D	D	D	D	5.7
	0.3	D	D	D	D	D	D	D	D	D	70.7	4.9
vity	0.4	D	D	D	D	D	D	D	D	D	26.2	4.4
Sensitivity	0.5	D	D	D	D	D	D	D	D	>99	17.1	4.2
Ser	0.6	D	D	D	D	D	D	D	D	65.6	13.1	4.0
	0.7	D	D	D	D	D	D	D	D	35.0	10.9	3.8
	0.8	D	D	D	D	D	D	D	>99	24.5	9.5	3.8
	0.9	D	D	D	D	D	D	D	63.9	19.2	8.5	3.7
	1	D	D	D	D	D	D	>99	40.2	16.0	7.8	3.6
				•	•	a) V	V 50 C) M				

W_	_65		Specificity											
0_	M	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
	0	D	D	D	D	D	D	D	D	D	D	8		
	0.1	D	D	D	D	D	D	D	D	D	D	8.9		
	0.2	D	D	D	D	D	D	D	D	D	29.8	4.9		
	0.3	D	D	D	D	D	D	D	D	62.8	13.9	3.6		
vity	0.4	D	D	D	D	D	D	D	>99	25.0	9.3	2.9		
Sensitivity	0.5	D	D	D	D	D	D	>99	38.8	15.9	7.1	2.5		
Sen	0.6	D	D	D	D	D	>99	56.6	23.4	11.8	5.8	2.3		
	0.7	D	D	D	D	D	80.4	32.1	16.9	9.4	5.0	2.1		
	0.8	D	D	D	D	>99	42.3	22.6	13.3	7.9	4.4	1.9		
	0.9	D	D	D	>99	54.5	28.9	17.5	11.0	6.9	4.0	1.8		
	1	D	D	>99	69.3	36.1	22.1	14.4	9.5	6.1	3.6	1.7		

b) W_65_0_M

	W_	_65					Sı	oecifici	ty					
	0_F		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
			D	D	D	D	D	D	D	D	D	D	8	
		0.1	D	D	D	D	D	D	D	D	D	>99	8.1	
		0.2	D	D	D	D	D	D	D	D	>99	24.4	4.6	
		0.3	D	D	D	D	D	D	D	>99	39.8	12.9	3.4	
	vity	0.4	D	D	D	D	D	D	>99	54.5	21.0	9.0	2.8	
	Sensitivity	0.5	D	D	D	D	D	>99	68.6	28.8	14.4	7.0	2.5	
	Sen	0.6	D	D	D	D	>99	82.0	36.5	19.8	11.1	5.8	2.3	
		0.7	D	D	D	>99	94.7	44.1	25.1	15.2	9.1	5.0	2.1	
		0.8	D	D	>99	>99	51.4	30.3	19.2	12.4	7.8	4.5	2.0	
		0.9	D	>99	>99	58.4	35.4	23.2	15.7	10.6	6.9	4.1	1.9	
		1	>99	>99	65.4	40.4	27.1	18.9	13.3	9.2	6.1	3.7	1.8	
							c) W	_65_0_	F					

R_	50		Sensitivity												
0_M		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1			
	0	D	D	D	D	D	D	D	D	D	D	∞			
	0.1	D	D	D	D	D	D	D	D	D	D	7.5			
	0.2	D	D	D	D	D	D	D	D	D	D	5.1			
	0.3	D	D	D	D	D	D	D	D	D	38.2	4.3			
city	0.4	D	D	D	D	D	D	D	D	D	19.0	3.9			
Specificity	0.5	D	D	D	D	D	D	D	D	82.0	13.3	3.6			
Spe	0.6	D	D	D	D	D	D	D	D	35.4	10.5	3.5			
	0.7	D	D	D	D	D	D	D	>99	23.2	8.9	3.3			
	0.8	D	D	D	D	D	D	D	54.8	17.7	7.8	3.2			
	0.9	D	D	D	D	<u>D</u>	D	>99	34.4	14.5	7.1	3.2			
	1	D	D	D	D	<u>D</u>	D	78.5	25.5	12.4	6.5	3.1			

R_50							Sens	sitivity				
0	0_F		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	0	D	D	D	D	D	D	D	D	D	D	~
	0.1	D	D	D	D	D	D	D	D	D	D	7.5
	0.2	D	D	D	D	D	D	D	D	D	D	5.2
	0.3	D	D	D	D	D	D	D	D	D	35.2	4.4
city	0.4	D	D	D	D	D	D	D	D	D	19.1	4.0
Specificity	0.5	D	D	D	D	D	D	D	D	63.0	13.7	3.8
Spe	0.6	D	D	D	D	D	D	D	D	32.9	11.0	3.7
	0.7	D	D	D	D	D	D	D	90.7	22.9	9.4	3.6
	0.8	D	D	D	D	D	D	D	46.8	17.9	8.3	3.5
	0.9	D	D	D	<u>D</u>	D	D	>99	32.2	14.9	7.5	3.4
	1	D	D	D	<u>D</u>	<u>D</u>	D	60.7	24.8	12.9	6.9	3.4

e) R_50_0_F

								<u> </u>	· · - · - ·													
	R_65						Se	ensitivit	ty													
	0_M		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1									
	Specificity	0	D	D	D	D	D	D	D	D	D	D	8									
		0.1	D	D	D	D	D	D	D	D	D	>99	8.0									
		0.2	D	D	D	D	D	D	D	D	>99	20.4	4.4									
		0.3	D	D	D	D	D	D	D	>99	31.5	10.8	3.1									
		0.4	D	D	D	D	D	D	>99	41.5	16.9	7.5	2.5									
		0.5	D	D	D	D	D	>99	50.7	22.7	11.7	5.8	2.2									
		0.6	D	D	D	D	>99	59.1	28.2	15.7	9.0	4.8	1.9									
		0.7	D	D	D	>99	66.7	59.1 28.2 15.7 33.4 19.6 12.1	7.4	4.1	1.7											
		0.8	D	D	>99	73.8	38.4	23.4	15.2	9.9	6.3	3.6	1.6									
		0.9	D	>99	80.3	43.2	<u>27.1</u>	18.1	12.4	8.4	5.5	3.3	1.5									
		1	>99	86.3	47.7	<u>30.6</u>	<u>21.0</u>	14.8	10.5	7.3	4.9	3.0	1.4									
							1	f) R_6	55_0_M													

R_	65	Sensitivity												
0_	F	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
	0	D	D	D	D	D	D	D	D	D	D	∞		
-	0.1	D	D	D	D	D	D	D	D	D	77.	0 7.3		
-	0.2	D	D	D	D	D	D	D	D	65.3	3 17.	4 4.1		
=	0.3	D	D	D	D	D	D	>99	61.4	+	-			
ity	0.4	D	D	D	D	D	>99	59.5	_	-	_	_		
zific	0.5	D	D	D	D	>99	58.3		-	-	_			
Specificity	0.6	D	D	>99	>99	57.5	34.2	+	-	-	-			
,	0.7	D	>99	>99	57.0	36.3	24.4			+				
-	0.8	>99	93.2	56.6	37.9	26.6	19.0		+	6.3				
-	0.9	87.0	56.2	39.3	28.5	21.1			_	5.6	_			
-	1	56.0	40.4	30.1	22.9	17.5			-	5.0	-			
		30.0	10.1	30.1				55_0_F	7.5		3.1			
D_(65					Se	nsitivit	у						
0_	M	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
	0	D	D	D	D	D	D	D	D	D	D	∞		
	0.1	D	D	D	D	D	D	D	D	D	44.1	6.8		
	0.2	D	D	D	D	D	D	D	>99	36.0	12.8	3.6		
	0.3	D	D	D	D	D	>99	84.7	33.4	16.2	7.6	2.5		
city	0.4	D	D	D	D	>99	62.0	32.0	18.3	10.5	5.5	1.9		
Specificity	0.5	D	D	>99	>99	52.3	31.2	19.8	12.7	7.9	4.3	1.6		
Spe	0.6	>99	>99	79.3	46.9	30.7	20.9	14.4	9.8	6.3	3.6	1.4		
	0.7	>99	66.5	43.5	30.3	21.8	15.8	11.4	8.0	5.3	3.1	1.2		
	8.0	58.8	41.1	30.0	22.4	16.9	12.7	9.4	6.7	4.5	2.7	1.1		
	0.9	39.3	29.8	22.9	<u>17.8</u>	<u>13.8</u>	10.6	8.0	5.8	4.0	2.4	1.0		
	1	29.6	23.4	18.6	<u>14.8</u>	<u>11.7</u>	9.2	7.0	5.2	3.6	2.2	1.0		
) D_6					1		
D_ (1	1	1		nsitivit		1		ı			
0_		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1		
	0	D	D	D	D	D	D	D	D	D	D	∞		
	0.1	D	D	D	D	D	D	D	D	>99	28.3	6.2		
ļ	0.2	D	D	D	D	D	>99	>99	46.8	23.8	11.2	3.3		
_	0.3	D	D	>99	>99	99.6	57.0	35.4	22.2	13.4	7.1	2.4		
ficit,	0.4	>99	>99	97.7	63.5	43.6	30.6	21.5	14.7	9.5	5.3	1.9		
Specificity	0.5	96.6	67.9	49.8	37.2	28.0	21.0	15.5	11.0	7.4	4.3	1.6		
Sp	0.6	54.5	42.5	33.5	26.4	20.7	16.1	12.2	8.9	6.1	3.6	1.4		
·	0.7	38.1	31.0	25.3	20.5	16.5	13.0	10.1	7.5	5.2	3.1	1.3		
	0.8	29.3	24.5	20.4	16.8	13.7	11.0	8.6	6.4	4.5	2.8	1.2		
- -	0.9	23.9	20.2 17.3	17.1 14.7	<u>14.3</u> <u>12.4</u>	11.8 10.3	9.5 8.4	7.5 6.7	5.7 5.1	3.6	2.5	1.1		

i) D_65_0_F

Table 2 Effect of assumed sensitivity and specificity of device on estimated cost effectiveness. D: dabigatran; W: Warfarin; R: rivaroxaban; M: Male; F: Female; 65: 65 years old; 50: 50 years old

Appendix C: Simulated clinical outcomes

				Caus	se of Deatl	ı (%)	,	i		
OAC	Patient population ¹	Strategy	Life	Stroke	Bleed	Other	Dependent	Independent	ICH	NICH
			Years				Strokes	Strokes		
	Male, 50 years old	Without TTE	28.840	11.7	1.3	87.1	0.120	0.242	0.010	0.075
	iviale, 50 years old	With TTE	28.928	10.8	1.8	87.4	0.111	0.223	0.014	0.112
	Female, 50 years old	Without TTE	31.633	13.5	1.6	84.9	0.139	0.278	0.012	0.091
Warfarin	remaie, 30 years old	With TTE	31.734	12.6	2.1	85.2	0.130	0.259	0.017	0.130
vvarianni	Male, 65 years old	Without TTE	17.131	9.0	0.9	90.2	0.087	0.192	0.007	0.052
	maic, os years ora	With TTE	17.204	8.0	1.3	90.7	0.078	0.172	0.010	0.079
	Female, 65 years old	Without TTE	19.447	10.6	1.1	88.3	0.105	0.225	0.009	0.065
		With TTE	19.531	9.6	1.6	88.8	0.096	0.205	0.012	0.095
	Male, 50 years old	Without TTE	28.861	11.5	1.3	87.2	0.117	0.239	0.010	0.075
	maic, so years ora	With TTE	28.963	10.5	1.8	87.6	0.108	0.219	0.014	0.113
	Female, 50 years old	Without TTE	31.657	13.3	1.6	85.1	0.136	0.275	0.012	0.091
Rivaroxaban	, c.maio, co youro ciu	With TTE	31.772	12.4	2.1	85.5	0.127	0.255	0.017	0.130
Mivaroxaban	Male, 65 years old	Without TTE	17.141	8.8	0.9	90.3	0.085	0.190	0.007	0.052
	maic, or years ora	With TTE	17.221	7.8	1.3	90.9	0.076	0.169	0.010	0.080
	Female, 65 years old	Without TTE	19.460	10.5	1.1	88.4	0.103	0.223	0.009	0.066
	. cinale, os years old	With TTE	19.554	9.4	1.6	89.0	0.093	0.201	0.012	0.096
Dabigatran	Male, 65 years old	Without TTE	17.158	8.6	0.9	90.5	0.081	0.188	0.007	0.053
	Female, 65 years old	With TTE	17.251	7.5	1.3	91.2	0.072	0.163	0.010	0.081

¹ All populations had initial CHADS₂ scores of 0

Appendix D: Scatterplots of estimated difference in costs and health outcomes from probabilistic sensitivity analysis

Table 3 Scatterplots of estimated differences in health outcomes (in QALYs) and cost between the TTE and no TTE strategy for the ten populations simulated. QALY: Quality-adjusted life years. TTE: transthoracic echocardiography

Appendix E: Summary of cost-effectiveness results of TTE compared with no TTE strategies for the 10 patient populations under consideration

OAC	Patient	Strategy	Mean Cost	Mean	ICER (95% Crl), £/QALY	TTE	
	Population		(£)	QALY		dominated?	
Warfarin	Male,	No TTE	2459	13.60	-26 489	Yes	
	Aged 50	TTE	4712	13.51	(-26 552 to -26 408)		
	Female,	No TTE	2815	14.27	-34 078	Yes	
	Aged 50	TTE	5405	14.19	(-34 175 to -33 952)		
	Male,	No TTE	1527	9.12	66 793	No	
	Aged 65	TTE	2467	9.13	(66 217 to 67 599)		
	Female,	No TTE	1974	9.94	39 485	No	
	Aged 65	TTE	3106	9.97	(39 291 to 39 754)		
Rivaroxaban	Male,	No TTE	2449	13.61	-34 060	Yes	
	Aged 50	TTE	4614	13.54	(-34 170 to -33 910)		
	Female,	No TTE	2779	14.27	-47 535	Yes	
	Aged 50	TTE	5315	14.22	(-47 773 to -47 271)		
	Male,	No TTE	1510	9.12	30 310	No	
	Aged 65	TTE	2393	9.15	(30 179 to 30 487)		
	Female,	No TTE	1955	9.95	22 751	No	
	Aged 65	TTE	3039	9.99	(22 681 to 22 844)		
Dabigatran	Male, No TTE		1487	9.13	14 728	No	
	Aged 65	TTE	2321	9.18	(14 693 to 14 782)		
	Female,	No TTE	1942	9.95	12 314	No	
	Aged 65	TTE	2946	10.01	(12 290 to 12 348)		

Table 4 Summary of cost effectivness results. ICER: Incremental cost effectivness ratio. TTE: transthoracic echocardiography; QALY: Quality-adjusted life year. Dominated: the strategy is both more expensive and less effective than the strategy to which it is compared