Условна вероятност

Дефиниция: (условна вероятност): Нека $(\Omega, \mathcal{A}, \mathbb{P})$ е вероятностно пространство и $A \in \mathcal{A}$ е такова, че $\mathbb{P}(A) > 0$. Тогава може да дефинираме нова вероятност върху $(A, \mathcal{A} \cap A, \mathbb{P}_A)$ чрез

$$\mathbb{P}_A(B) = \mathbb{P}(B|A) = rac{\mathbb{P}(A\cap B)}{\mathbb{P}(A)}$$

за всяко $B \in \mathcal{A}$

Дефиниция: (независимост): Две събития A,B се наричат независими, ако $\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B)$ и пишем $A \bot\!\!\!\bot B$

ullet Ако $\mathbb{P}(A)>0$ и $A {\perp\!\!\!\perp} B$, то $\mathbb{P}(B|A)=\mathbb{P}(B)$

Дефиниция: (независимост в съвкупност): Нека имаме вероятностно пространство и A_1, \dots, A_n са събития в него. Казваме, че A_1, \dots, A_n са независими в съвкпупност, ако за всяко $I \subseteq \{1, \dots, n\}$, такова, че $|I| \geq 2$, е изпълнено:

$$\mathbb{P}(igcap_{i\in I}A_i)=\prod_{i\in I}\mathbb{P}(A_i)$$

Теорема: Нека имаме вероятностно пространство и A_1,\dots,A_n са събития в него, за които е изпълнено, че $\mathbb{P}(\bigcap_{i=1}^n A_i)>0$. Тогава е вярно, че

$$\mathbb{P}igg(igcap_{i=1}^n A_iigg) = \mathbb{P}igg(A_nigg|igcap_{i=1}^{n-1} A_iigg)\cdot \mathbb{P}igg(A_{n-1}igg|igcap_{i=1}^{n-2} A_iigg) \cdots \mathbb{P}(A_2|A_1)\cdot \mathbb{P}(A_1)$$

• Доказателство по индукция

Теорема: Нека имаме вероятностно пространство и A_1, \dots, A_n са независими събития в него. Тогава е вярно, че A_1^C, \dots, A_n^C също са независими събития

• Доказателство по индукция

Дефиниция: (пълна група от събития): Групата от множества H_1, H_2, \dots, H_n се нарича пълна група от събития, ако за всеки различни $1 \leq i < j \leq n$ е изпълнено, че $H_i \cap H_j = \emptyset$ и $\bigcup_{i=1}^n H_i = \Omega$

Теорема: (формула за пълната вероятност): Нека H_1,\dots,H_n са пълна група от събития в Ω и $A\in\mathcal{A}$. Тогава

$$\mathbb{P}(A) = \sum_{i=1}^n \mathbb{P}(A|H_i) \cdot \mathbb{P}(H_i)$$

• Доказателство:

Имаме, че

$$A=A\cap\Omega=A\capigcup_{i=1}^n H_i=igcup_{i=1}^n (A\cap H_i)$$

Тогава

$$\mathbb{P}(A) = \mathbb{P}igg(igcup_{i=1}^n (A\cap H_i)igg) = \sum_{i=1}^n \mathbb{P}(A\cap H_i) = \sum_{i=1}^n \mathbb{P}(A|H_i)\cdot \mathbb{P}(H_i)$$

Теорема: (формула на Бейс): Нека H_1,\ldots,H_n са пълна група от събития в Ω и $A\in\mathcal{A}$, като $\mathbb{P}(A)>0$. Тогава за всяко $1\leq k\leq n$ е изпълнено, че

$$\mathbb{P}(H_k|A) = rac{\mathbb{P}(A|H_k)\mathbb{P}(H_k)}{\mathbb{P}(A)}$$

• Доказателство:

Имаме, че $\mathbb{P}(A\cap H_k)=\mathbb{P}(A|H_k)\cdot\mathbb{P}(H_k)$ и $\mathbb{P}(A\cap H_k)=\mathbb{P}(H_k|A)\cdot\mathbb{P}(A)$ Тогава имаме,че

$$\mathbb{P}(H_k|A) = rac{\mathbb{P}(H_k\cap A)}{\mathbb{P}(A)} = rac{\mathbb{P}(A|H_k)\mathbb{P}(H_k)}{\mathbb{P}(A)}$$