Ferienkurs Experimentalphysik 3

Probeklausur

Qi Li, Bernhard Loitsch, Hannes Schmeiduch

Freitag, 09.03.2012x

1 Gravitationsrotverschiebung

• a) Wie großist die relative Frequenzverschiebung $\frac{\Delta \nu}{\nu}$ eines Photons, dass sich im Gravitationsfeld der Erde um die Strecke s=5m senkrecht zur Erdoberfläche nach oben bewegt?

Lösung:

Die potentielle Energie eines Photons in der Nähe der Erdoberfläche ist $U_P = mgs$, wobei $g = 9,81\frac{m}{s^2}$ die Gravitationskonstante ist und die Masse über $mc^2 = h\nu$ berechnet werden kann. Es gilt

$$h\nu_s = h\nu - mgs = h\nu \left(1 - \frac{\nu gs}{c^2}\right)$$

daraus folgt:

$$\frac{\Delta \nu}{\nu} = -\frac{gs}{c^2} = 5,45 \cdot 10^{-15}$$

- $\bullet\,$ b) Ist die Verschiebung beobachtbar für:
 - 1. für Photonen aus einem atomaren Übergang des Natriums ($\lambda=589,6nm,\tau=16,4ns)$
 - 2. für $\gamma\text{-Quanten}$ von einem Kernübergang von Z
n $(E_{\gamma}=93,32keV,\,\tau=14,6\mu s)$
- Hinweis: Es gilt die Unschärferelation $\Delta E \cdot \tau = h$. Die Verschiebung ist beobachtbar falls $\frac{\Delta E}{E} \leq \frac{\Delta \nu}{\nu}$

Lösung:

Durch Umformen erhalten wir:

$$\frac{\Delta E}{E} \approx \frac{h}{\tau h \nu} = \frac{\lambda}{\tau c}$$

Für den Natriumübergang erhalten wir $1, 2 \cdot 10^{-7}$. Da diese viel breiter als die spektrale Halbwertsbreite ist, kann man die Rotverschiebung nicht erkennen. Für den Kernübergang erhalten wir allerdings $3, 4 \cdot 10^{-15}$, was in der Größenordnung von der spektralen Halbwertsbreite liegt. Die Roverschiebung ist hier also beobachtbar.

2 Radius-Brennweiten-Beziehung

Eine Glaskörper hat eine konvex gewölbte Oberfläche mit Radius R.

Skizzieren sie den Verlauf eines Strahls der erst im Abstand h
 parallel zur optischen Achse verläuft, die Grenzfläche im Winkel α trifft, im Winkel β wieder verlässt und die optische Achse am Brennpunkt (innerhalb des Glaskörpers) im Winkel γ kreuzt. Benutzen sie das Snelliussche Gesetz:

$$n_1 sin \alpha = n_2 sin \beta$$

sowie den Strahlensatz und die Kleinwinkelnäherung um einen Ausdruck für die Brennweite in Abhängigkeit des Radiuses und den Brechungsindices zu finden.

Lösung:

Aus der Abbildung lässt sich ablesen, das gilt:

$$h = R \cdot \sin \alpha = f \cdot \tan \gamma$$

aus der Dreiecksgleichung folgt $\gamma = \alpha - \beta$, also gilt für die Brennweite:

$$f = \frac{R \cdot sin\alpha}{tan(\alpha - \beta)}$$

mit der Kleinwinkelnäherung folgt:

$$f = \frac{R \cdot \alpha}{\alpha - \beta}$$

und über Snellius

$$f = \frac{R \cdot \alpha}{\alpha - \left(\frac{n_1}{n_2}\right)\alpha}$$

also

$$f = \frac{R \cdot n_2}{n_2 - n_1}$$

3 Dicke Linse

Eine dicke Linse besteht aus einen Material mit einem Brechungsindex n=1,5. Sie sei 2mm dick, und habe auf der Vorder- bzw. Rückseite die Brennweite 20mm und -30mm. Berechnen sie die Brennweite der gesamten Linse. Ist die Brennweite gleich, egal warum wierum man sie dreht?

Lösung:

Für die Brennweite einer dicken Linse gilt:

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)d}{n \cdot R_1 \cdot R_2}\right)$$

mit $f_1 = 20mm$ und $f_2 = -30mm$, d = 2mm und n = 1, 5 findet man

$$f=12,3mm$$

vertuscht man dagegen f_1 und f_2 erhält man:

$$f = -52,9mm$$

also wirkt die Linse in der einen als Sammel, in der anderen als Streulinse.

4 Reflektierende Oberflächen

Betrachten sie eine Plexiglasplatte mit Brechungsinde
x $n_{Plexiglas}=1,49$ unter senkrechten Lichteinfall. Im folgenden soll
 Licht der Wellenlänge $\lambda=528nm$ verwendet werden.

• a) Nun wird eine dünne Öl-Schicht mit Brechungsindex $n_l = 1,29$ aufgetragen. Wie dick muss die Schicht sein, dass nahezu die gesamte Intensität durch den Ölfilm transmittiert wird?

Lösung: Damit nahezu die gesamte Intensität transmittiert wird, muss der reflektierte Strahl destruktiv interferieren. Die Bedingung, dass das erfüllt wird ist:

$$\Delta s = \frac{\lambda}{2} = 2n_l d$$

Daraus folgt die Dicke der Schicht zu:

$$d = \frac{\lambda}{4n_l}$$

Anmerkung: Die Airy-Formel (10.24a) aus Demtröder Experimentalphysik II kann hier nicht verwendet werden, da sie einen Phasensprung von π beinhaltet, der nur bei der Reflexion an der oberen Grenzfläche auftritt. In dieser Aufgabe tritt ein Phasensprung von π an beiden Grenzflächen auf

• b) Trägt man auf die Platte nun abwechselnd dünne Schichten von zwei verschiedenen Polymeren mit Brechungsindizes n_1 und n_2 auf. Wie muss man die Dicken den beiden Schichten wählen, dass man maximale Reflexion bekommt?

Lösung: Maximale Reflexion bedeutet, dass der Gangunterschied zwischen zwei Teilstrahlen ein Vielfaches von λ ist. Da die Brechungsindices abwechseln, findet bei jeder zweiten Reflexion ein Phasensprung von $\frac{\lambda}{2}$ statt. Für konstruktive Interferenz muss der zusätzliche Gangunterschied dies wieder kompensieren. So muss der optische Weg durch eine dünne Schicht (hin und zurück) gerade $\frac{\lambda}{2}$ sein

$$\frac{\lambda}{2} = 2n_1d_1 = 2n_2d_2 \Rightarrow n_1d_1 = n_2d_2 = \frac{\lambda}{4}$$

5 Beugungsgitter

Auf ein Beugungsgitter mit 1000 Spalten pro m
m fällt ein paralleles Lichtbündel mit $\lambda=480nm$ unter dem Einfallswinke
l $\alpha=30^\circ$ gegen die Gitternormale.

 $\bullet\,$ a) Unter welchem Winkel β erscheint die erste Beugungsordnung? Gibt es eine zweite Ordnung?

Lösung: Gittergleichung: $d \cdot (sin\alpha + sin\beta) = m\lambda$ mit m = 1 und $\alpha = 30^{\circ}$

$$sin\beta = \frac{\lambda}{d} - sin\alpha = -0,02 \rightarrow \beta = -1,3^{\circ}$$

Bezogen auf den Einfallswinkel, liegt der Beugungswinkel auf der anderen Seite der Gitternormalen. Der Winkel des geneigten Strahls gegen den einfallenden Strahl ist:

$$\Delta \phi = \alpha - \beta = 31,3^{\circ}$$

Wegen

$$sin\beta_2 = 2\frac{\lambda}{d} - sin\alpha = 0,96 - 0,5 = 0,46 < 1$$

gibt es auch eine zweite Ordnung.

• b) Was ist der Winkelunterschied $\Delta\beta$ für zwei Wellenlänge $\lambda_1=480nm$ und $\lambda_2=481nm$?

Lösung: Der Winkelunterschied $\Delta\beta$ berechnet sich aus $sin\beta_1 - sin\beta_2 = \frac{\lambda_1 - \lambda_2}{d} = 10^{-3}$. Für $\beta_1 = -1, 3^{\circ}$ folgt $\beta_2 = -1, 241^{\circ}$

6 Schwarzer Körper

Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer Wellenlänge von $\lambda=465nm$

 \bullet a) Betrachten Sie die Sonne näherungsweise als schwarzen Strahler und bestimmen Sie die Oberflächentemperatur T_S der Sonne.

Lösung:

Mit dem Wienschen Verschiebungsgesetz erhält man sofort die Lösung für die gesuchte Temperatur:

$$\lambda_{max} = \frac{b}{T}$$

$$\to T = \frac{b}{\lambda_{max}} = 6237K$$

• b) Die vom Merkur ausgesandte Schwarzkörperstrahlung entspricht einer Temperatur von $_{TM}=442.5K$. Bestimmen Sie den Abstand r des Merkurs von der Sonne unter der Annahme thermischen Gleichgewichts und eines kreisförmigen Orbits. Der Radius der Sonne beträgt $R_S=6.96\cdot 10^5 km$, der des Merkurs ist $R_S=2439,7$. (Nehmen Sie an, dass die Oberfläche des Merkurs nicht reflektierend ist!)

Lösung:

Die abgestrahlte Leistung der Sonne beträgt nach dem Stefan-Boltzmann-Gesetz

$$P_S = 4\pi \cdot R_S^2 \cdot \sigma \cdot T_S^4$$

mit σ als Stefan-Boltzmann-Konstante. Damit nun Gleichgewicht vorherrscht, muss die vom Merkus absorbierte Strahlungsleistung gleich seiner emittierten sein:

$$P_{abs} = P_S \cdot \frac{\pi R_M^2}{4\pi r^2} \stackrel{!}{=} 4\pi \cdot R_M^2 \cdot \sigma \cdot T_M^4 = P_{em}$$

Setzt man nun noch die Strahlungsleistung P_S der Sonne ein, muss nur noch nach r aufgelöst werden:

$$\frac{4\pi R_S^2 \sigma T_S^4 \pi R_M^2}{4\pi r^2} = 4\pi R_M^2 \sigma T_M^4$$

$$\rightarrow r^2 = \frac{T_S^4}{T_M^4} \frac{R_S^2}{4}$$

$$r = 6,914 \cdot 10^{10} m$$