

Computer Architecture and Operating Systems Lecture 11: Memory and Caches

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Processor-Memory Performance Gap

- Computer performance depends on:
 - Processor performance
 - Memory performance

Memory Challenge

- Make memory appear as fast as processor
- •Ideal memory:
 - Fast
 - Cheap (inexpensive)
 - Large (capacity)

But can only choose two!

Memory Technology

- Static RAM (SRAM)
 - -0.5ns 2.5ns, \$2000 \$5000 per GB
- Dynamic RAM (DRAM)
 - 50ns 70ns, \$20 \$75 per GB
- Magnetic disk
 - ■5ms 20ms, \$0.20 \$2 per GB
- •Ideal memory
 - Access time of SRAM
 - Capacity and cost/GB of disk

Locality

No need for large memory to access it fast Just exploit locality

- Temporal Locality:
 - Locality in time
 - If data used recently, likely to use it again soon
 - How to exploit: keep recently accessed data in higher levels of memory hierarchy
- Spatial Locality:
 - Locality in space
 - If data used recently, likely to use nearby data soon
 - How to exploit: when access data, bring nearby data into higher levels of memory hierarchy too

Taking Advantage of Locality

- Memory hierarchy
- Store everything on disk
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - Cache memory attached to CPU

Memory Hierarchy

Personal mobile device

Laptop or desktop

mobile device

Server

How it works?

- Block (aka line): unit of copying
 - May be multiple words
- If accessed data is present in upper level
 - Hit: access satisfied by upper level
 - Hit ratio: hits/accesses
- If accessed data is absent
 - Miss: block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses = 1 hit ratio
 - Then accessed data supplied from upper level

Memory Performance

- Hit: data found in that level of memory hierarchy
- Miss: data not found (must go to next level)
 - Hit Rate = # hits / # memory accesses = 1 Miss Rate
 - Miss Rate = # misses / # memory accesses = 1 Hit Rate
- Average memory access time (AMAT): average time for processor to access data
 - AMAT = $t_{cache} + MR_{cache}[t_{MM} + MR_{MM}(t_{VM})]$

Any Questions?

```
__start: addi t1, zero, 0x18
    addi t2, zero, 0x21

cycle: beq t1, t2, done
    slt t0, t1, t2
    bne t0, zero, if_less
    nop
    sub t1, t1, t2
    j cycle
    nop

if_less: sub t2, t2, t1
    j cycle

done: add t3, t1, zero
```