Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2015

Concours Mathématiques et Physique Correction de l'Epreuve de Mathématiques II

Partie I: Etude de $R(I_n)$.

- 1. $A\overline{A} = I_n$
- 2. (a) $M\overline{C_{\alpha}} = M(\overline{\alpha}\overline{M} + \alpha I_n) = \overline{\alpha}M\overline{M} + \alpha M = \alpha M + \overline{\alpha}I_n = C_{\alpha}$.
 - (b) $\det(C_{\alpha}) = \det\left(\alpha(M + \frac{\overline{\alpha}}{\alpha}I_n)\right) = \alpha^n \det(M + \exp(-2i\theta)I_n) = \alpha^n P_M(-\frac{\overline{\alpha}}{\alpha}).$
 - (c) Si on pose $\alpha = |\alpha| \exp(i\theta)$, alors $\frac{\overline{\alpha}}{\alpha} = \exp(-2i\theta)$. Comme P_M admet au plus n racines donc il existe $\theta_0 \in \mathbb{R}$ tel que $P_M(-\exp(-2i\theta_0)) \neq 0$, pour $\beta = \exp(i\theta_0)$ on a $\det(C_{\beta}) \neq 0$ c'est à dire C_{β} est inversible.
 - (d) $C_{\beta}\overline{C_{\beta}}^{-1} = M$.
- 3. "⊂" d'après 2). "⊃" d'après 1).
- 4. a) évident.
 - b) Si $P\overline{P}^{-1} = -I_n$, alors $\overline{P} = -P$ et par conséquent P = iQ avec $Q \in GL_n(\mathbb{R})$. La réciproque est évidente. D'ou $\{P \in GL_n(\mathbb{C}); P\overline{P}^{-1} = -I_n\} = iGL_n(\mathbb{R}) = \{iQ; Q \in \mathbb{C}\}$ $GL_n(\mathbb{R})$.

Partie II: Etude de R(0).

- A) (a) évident.
 - (b) Il suffit de remarquer que rg(M) est le nombre maximal de colonnes libres de M, donc d'après 1) rq(M) = rq(M)
- B) 1) $M\overline{M} = 0$ donne $Im\overline{M} \subset \ker M$.
 - 2) $rg(M) = rg(\overline{M}) \le \dim \ker M = n rg(M)$ d'où $rg(M) \le \frac{n}{2}$
 - 3) Si on note $B_r = (b_{ij})_{1 \leq i,j \leq n}$ alors on a $b_{l,n-r+l} = 1$ si $1 \le l \le r$ et $b_{i,j} = 0$ si non. On a $B_r^2 = \left(\sum_{k=1}^n b_{ik} b_{kj}\right)_{1 \le i,j \le n}$. si $b_{ik} \ne 0$, alors $1 \le i \le r$, k = n - r + i et $b_{i,n-r+i} = 1$. Dans ce cas $\sum_{k=1}^{n} b_{ik} b_{kj} = b_{i,n-r+i} b_{n-r+i,j} = b_{n-r+i,j}$. Or $i \ge 1$ donc $n-r+1 \le n-r+i$ ce qui donne $b_{n-r+i,j}=0$. D'où $B_r^2=0$.
 - 4) a) Il suffit de remarquer que $rg(\overline{M}) = rg(M) = r$.
 - b) Théorème de la base incomplète.
 - c) $\forall 1 \leq i \leq r$ $X_i \in Im(\overline{M})$ alors il existe Z_i tel que $X_i = \overline{M}Z_i$ pour tout $1 \le j \le r$ on pose $X_{n-r+j} = \overline{Z_j}$ pour tout on a $MX_{n-r+j} = M\overline{Z_j} = \overline{MZ_j}$ $\overline{X_j}$ pour tout $1 \le j \le r$.

- d) Soit $\alpha_1 \dots \alpha_n \in \mathbb{C}$ tel que $\sum_{i=1}^n \alpha_i X_i = 0$ on applique M on aurra $\sum_{i=n-r+1}^n \alpha_i M X_i = 0$ soit $\sum_{j=1}^r \alpha_{n-r+j} M X_{n-r+j} = 0$ ce qui donne $\sum_{j=1}^r \overline{\alpha}_{n-r+j} \overline{M} \overline{X}_{n-r+j} = 0$ d'où $\sum_{j=1}^r \overline{\alpha}_{n-r+j} X_j = 0$ d'après b) or $(X_1, \dots X_r)$ est libre donc $\overline{\alpha}_{n-r+j} = 0$ pour tout $1 \leq j \leq r$ et par suite $\alpha_i = 0$ pour tout $n-r+1 \leq i \leq n$ Revenons à l'équation de départ on a $\sum_{i=1}^{n-r} \alpha_i X_i = 0$ or $(X_1, \dots X_{n-r})$ est libre donc $\alpha_i = 0$ pour tout $1 \leq i \leq n-r$ ce qui donne $\alpha_i = 0$ pour tout $1 \leq i \leq n$ et donc $(X_1, \dots X_n)$ est libre. D'après A)1) $(\overline{X}_1, \dots \overline{X}_n)$ est une base et par conséquent la matrice P dont les colonnes sont $\overline{X}_1, \dots \overline{X}_n$ est inversible.
- e) Par définition de P, on a $Pe_i = \overline{X}_i$ o ù (e_1, \dots, e_n) désigne la base canonique de $\mathcal{M}_{n,1}(\mathbb{C})$. On a $\overline{P}e_i = X_i$ et donc $\overline{P}^{-1}X_i = e_i$. Alors $PB_r\overline{P}^{-1}X_i = PB_re_i$ pour $1 \leq i \leq n$. 1^{er} cas: si $1 \leq i \leq n-r$ on a $B_re_i = 0$ et par suite $PB_r\overline{P}^{-1}X_i = 0$. 2^{er} cas: si $n-r \leq i \leq n$ alors i=n-r+j avec $1 \leq j \leq r$ donc $PB_r\overline{P}^{-1}X_i = PB_re_i = PB_re_{n-r+j} = Pe_j = \overline{X}_j$. D'autre part comme $(X_1, \dots X_{n-r})$ est une base de ker M alors $MX_i = 0$ pour tout $1 \leq i \leq n-r$. si $n-r+1 \leq i \leq n$ on a $MX_i = MX_{n-r+j}$ avec $1 \leq j \leq r$ d'après 3) b) $MX_i = \overline{X}_j$ d'où M et $PB_r\overline{P}^{-1}$ co \widetilde{A} -ncident sur $(X_1, \dots X_n)$ qui est une base de $\mathcal{M}_{n,1}(\mathbb{C})$ c'est à dire $M = PB_r\overline{P}^{-1}$.
- 5) " \subset " évident.
 " \supset " soit $M = PB_r\overline{P}^{-1}$ alors $M\overline{M} = PB_r\overline{P}^{-1}\overline{P}B_rP^{-1} = PB_r^2P^{-1} = 0 \text{ (par } B)3)a)).$
- 6) Exemple: n=2 donne $0 \le r \le 1$. $\operatorname{si} r=0$ c'est à dire $B_0=0$ et donc M=0. $\operatorname{si} r=1$ alors $M=P\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \overline{P}^{-1}$ où $P=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec $ad-bc \ne 0$. Alors $P^{-1}=\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ par suite $M=P\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \overline{P}^{-1}=\frac{1}{\overline{ad-bc}}\begin{pmatrix} -a\overline{c} & |a|^2 \\ -|c|^2 & c\overline{a} \end{pmatrix} \text{Remarquons que si } M \in R(0) \text{ alors } M\overline{M}=0$ et donc pour tout $\alpha \in \mathbb{C}$ $(\alpha M)(\overline{\alpha M})=|\alpha|^2 M\overline{M}=0$ donc $\alpha M \in R(0)$ et donc si $\alpha \in \mathbb{C}^*$ on a $M \in R(0)$ si et seulement si $\alpha M \in R(0)$. donc $R(0)=\left\{\begin{pmatrix} -a\overline{c} & |a|^2 \\ -|c|^2 & c\overline{a} \end{pmatrix}, \ a,c\in\mathbb{C}\right\}$.

Partie III: Caractérisation des matrices co-diagonalisables.

A)
$$M = PD\overline{P}^{-1}$$
.

1)
$$M\overline{M} = PD\overline{P}^{-1} = \overline{P}\overline{D}P^{-1} = PD\overline{D}P^{-1}$$
 d'où
$$M\overline{M} = P\begin{pmatrix} |\lambda_1|^2 & 0 & \dots & 0 \\ 0 & |\lambda_2|^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & |\lambda_n|^2 \end{pmatrix} P^{-1}.$$

par suite $M\overline{M}$ est diagonalisable.

2) d'après la question préceèdente on a $sp(M\overline{M}) \subset \mathbb{R}_+$.

- 3) Comme $M = PD\overline{P}^{-1}$ donc la matrice M et D sont équivalentes donc $rq(M) = rq(D) = rq(D\overline{D}) = rq(P(D\overline{D})\overline{P}^{-1}) = rq(M\overline{M}).$
- B) 1) Comme $M\overline{M}$ est diagonalisable á valeurs propres positives, alors il existe Q inversible et $\lambda_1 > \lambda_2 > \dots > \lambda_k \ge 0$ tel que $M\overline{M} = QD_1Q^{-1}$, où

$$D_1 = \begin{pmatrix} \lambda_1 I_{n_1} & 0 & \dots & \dots & 0 \\ 0 & \lambda_2 I_{n_2} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \lambda_k I_{n_k} \end{pmatrix}$$

- 2) Posons que $B = Q^{-1}M\overline{\zeta}$
- a) $B\overline{B} = Q^{-1}M\overline{Q}\overline{Q}^{-1}\overline{M}Q = Q^{-1}M\overline{M}Q = Q^{-1}QD_1Q^{-1}Q = D_1.$

$$\overline{B}B = \overline{Q}^{-1} \overline{M}QQ^{-1}M\overline{Q} = \overline{Q}^{-1} \overline{M}M\overline{Q} = \overline{Q}^{-1} \overline{Q}D_1 \overline{Q}^{-1} \overline{Q} = \overline{D}_1 \text{ or } D_1 = \overline{D}_1 \text{ donc } B\overline{B} = \overline{B}B = D_1.$$

- b) $BD_1 = B(\overline{B}B) = (B\overline{B})B = (\overline{B}B)B = D_1B$
- c) Soit $B = (b_{ij})_{1 \le i,j \le n}$ $D_1 = (\lambda_1 I_{n_1}, \dots, \lambda_k I_{n_k}) = (d_{ij})_{1 \le i,j \le n}$ l'égalité $BD_1 = D_1 B$ donne $BD_1 = \left(\sum_{k=1}^n b_{ik} d_{kj}\right)_{1 \le i,j \le n} = (b_{ij} d_{jj})_{1 \le i,j \le n}$

$$D_1 B = \left(\sum_{k=1}^{n} d_{ik} b_{kj}\right)_{1 \le i, j \le n} = (b_{ij} d_{ii})_{1 \le i, j \le n}$$

 $BD_1 = D_1 B$ équivaut à $b_{ij}(d_{jj} - d_{ii}) = 0$ pour tout $1 \le i, j \le n$ équivaut à $b_{ij} = 0$ pour tout $1 \le i, j \le n$ et $d_{ii} \ne d_{jj}$ équivaut à $b_{ij} = 0$ pour tout

$$(i,j) \in [[1,n]]^2 \setminus \bigcup_{j=1}^k [[n_{j-1},n_j]]^2 \text{ avec } (n_0=0)$$

$$B = \begin{pmatrix} B_1 & 0 & \dots & \dots & 0 \\ 0 & B_2 & \ddots & & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & & & & \\ \end{pmatrix}$$

$$B = \begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & B_l \end{pmatrix}$$

d) d'après 2)a) on a $B\overline{B} = \overline{B}B = D_1$ c'est à dire (par 2)c)) $B_i\overline{B}_i = \lambda_i I_{n_i}$ pour tout $1 \le i \le k$.

Si
$$\lambda_k > 0$$
 alors pour tout $1 \le i \le k$, on a $\lambda_i > 0$ et par suite $\left(\frac{1}{\sqrt{\lambda_i}}B_i\right)\overline{\left(\frac{1}{\sqrt{\lambda_i}}B_i\right)} = I_{n_i}$ pour tout $1 \le i \le k$.

- e) Si $\lambda_k = 0$.
 - i) Pour tout $1 \le i \le k-1$, on a $\lambda_i > 0$ et par suite $\left(\frac{1}{\sqrt{\lambda_i}}B_i\right)\overline{\left(\frac{1}{\sqrt{\lambda_i}}B_i\right)} = I_{n_i}.$
 - ii) Pour i = k on a $B_k \overline{B_k} = 0$.

- iii) Montrons que $rg(B_k) = 0$ et par suite $B_k = 0$ on a $rg(B) = \sum_{i=1}^k rg(B_i) = rg(M) = rg(M\overline{M}) = rg(D_1) = \sum_{i=1}^{k-1} n_i$. D'autre part $\sum_{i=1}^k rg(B_i) = rg(B_k) + \sum_{i=1}^{k-1} rg(B_i) = rg(B_k) + \sum_{i=1}^{k-1} n_i = \sum_{i=1}^{k-1} n_i$ alors $rg(B_k) = 0$ et par suite $B_k = 0$.

aluste part
$$\sum_{i=1}^{r} rg(B_i) = rg(B_k) + \sum_{i=1}^{n} rg(B_i) = rg(B_k) + \sum_{i=1}^{k-1} n_i = \sum_{i=1}^{k-1} n_i$$
 alors $rg(B_k) = 0$ et par suite $B_k = 0$.

f) Si $\lambda_k > 0$, alors pour tout $1 \le i \le k$ on a $\left(\frac{1}{\sqrt{\lambda_i}}B_i\right)\overline{\left(\frac{1}{\sqrt{\lambda_i}}B_i\right)} = I_{n_i}$. En utilisant I),
$$\frac{1}{\sqrt{\lambda_i}}B_i = P_i\overline{P}_i^{-1} \text{ où } P_i \in Gl_{n_i}(\mathbb{C}) \text{ ou encore } B_i = P_i(\sqrt{\lambda_i}I_{n_i})\overline{P}_i^{-1} \text{ ce qui donne}$$

$$B = \begin{pmatrix} P_1(\sqrt{\lambda_1}I_{n_1})\overline{P}_1^{-1} & 0 & \dots & 0 \\ 0 & P_2(\sqrt{\lambda_2}I_{n_2})\overline{P}_2^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & P_k(\sqrt{\lambda_k}I_{n_k})\overline{P}_k^{-1} \end{pmatrix}$$

$$P = \begin{pmatrix} \sqrt{\lambda_1}I_{n_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2}I_{n_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots$$

$$P\begin{pmatrix} \sqrt{\lambda_1}I_{n_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2}I_{n_2} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & & \dots & 0 & \sqrt{\lambda_i}I_{n_k} \end{pmatrix} \overline{P}^{-1} \text{ où}$$

$$P = \begin{pmatrix} P_1 & 0 & \dots & 0 \\ 0 & P_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & P_k \end{pmatrix} \in Gl_n(\mathbb{C}) \text{ par suite } B = PD\overline{P}^{-1} \text{ avec}$$

$$D = \begin{pmatrix} \sqrt{\lambda_1} I_{n_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} I_{n_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \sqrt{\lambda_i} I_{n_k} \end{pmatrix}$$

Si $\lambda_k = 0$ alors $\lambda_1 > \lambda_2 > \cdots > \lambda_{k-1} > 0$ et par suite, (d'après ce qui précède) on a $B_i = P_i(\sqrt{\lambda_i}I_{n_i})\overline{P}_i^{-1}$ pour tout $1 \le i \le k-1$ et $B_k = 0 = I_{n_k}0\overline{I}_{n_k}^{-1}$. Ce qui donne

$$B = \begin{pmatrix} P_1(\sqrt{\lambda_1}I_{n_1})\overline{P}_1^{-1} & 0 & \dots & \dots & 0 \\ 0 & P_2(\sqrt{\lambda_2}I_{n_2})\overline{P}_2^{-1} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & P_{k-1}(\sqrt{\lambda_k}I_{n_{k-1}})\overline{P}_{k-1}^{-1} & 0 \\ 0 & & \dots & 0 & I_{n_k}0\overline{I}_{n_k}^{-1} \end{pmatrix}$$

$$\text{si on pose } P = \begin{pmatrix} P_1 & 0 & \dots & \dots & 0 \\ 0 & P_2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & P_{k-1} & 0 \\ 0 & \dots & \dots & 0 & I_{n_k} \end{pmatrix} \text{ et }$$

$$D = \begin{pmatrix} \lambda_1 I_{n_1} & 0 & \dots & \dots & 0 \\ 0 & \lambda_2 I_{n_2} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \lambda_{k-1} I_{n_{k-1}} & 0 \\ 0 & \dots & \dots & 0 & 0_{n_k} \end{pmatrix} \text{ on a bien } B = PD_2 \overline{P}^{-1}.$$

C) " \Rightarrow " conséquence de A).
" \Leftarrow " conséquence de B)
en effet si $M\overline{M}$ est diagonalisable, $sp(M\overline{M}) \subset \mathbb{R}_+$ et $rg(M\overline{M}) = rg(M)$ on a $B = PD_2\overline{P}^{-1} = Q^{-1}M\overline{Q} \Rightarrow M = (QP)D_2(\overline{QP})^{-1}$ signifie que M est co-diagonalisable.

Exemple

nalisable.

1) $A = \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}$ donc $A\overline{A} = 0$ on a $rg(A\overline{A}) = 0 \neq rg(A) = 1$ donc A n'est pas co-diagonalisable.

A est nilpotente non nulle donc non diago-

2) $A = \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}$ donc $A\overline{A} = I_2$ donc A est co-diagonalisable.

 $sp(A) = \{i\}$ et A n'est pas une homothétie donc A non diagonalisable.

3) $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ donc $A\overline{A} = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$ on a $sp(A) = \{2i, -2i\}$ donc A n'est pas codiagonalisable.

A admet deux valeurs propres distinctes donc A est diagonalisable.