Теория автоматов и формальных языков Регулярные языки

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

20 сентября 2016г.

В предыдущей серии

Конечный автомат — $\langle Q, \Sigma, \delta, q_0, F \rangle$

- ullet $Q
 eq \emptyset$ конечное множество состояний
- Σ Конечный входной алфавит
- \bullet δ функция переходов
 - lacktriangle Детерминированный КА: отображение типа $Q imes \Sigma o Q$
 - lacktriangle Недетерминированный КА: отображение типа $Q imes \Sigma o 2^Q$
- ullet $q_0 \in Q$ начальное состояние
- ullet $F\subseteq Q$ множество конечных состояний

В предыдущей серии: ДКА

В предыдущей серии: распознание слова ДКА

В предыдущей серии: распознание слова ДКА

В предыдущей серии: распознание слова ДКА

Слово распознается за O(n)

В предыдущей серии: распознание слова НКА

Слово распознается за ...

В предыдущей серии: детерминизация

В предыдущей серии: минимизация

Произведение автоматов

$$A_1=\langle \Sigma_1,Q_1,q_{1_0},\delta_1,F_1
angle$$
 и $A_2=\langle \Sigma_2,Q_2,q_{2_0},\delta_2,F_2
angle$ — КА Произведением автоматов назовем $A=\langle \Sigma,Q,q_0,\delta,F
angle$, где

- $\bullet \; \; \Sigma = \Sigma_1 \cup \Sigma_2$
- $Q = Q_1 \times Q_2$
- $q_0 = (q_{1_0}, q_{2_0})$
- F ⊆ Q
 - ▶ $F = F_1 \times F_2$ распознает **произведение** языков
 - ullet $F = (F_1 imes Q_2) \cup (Q_1 imes F_2)$ распознает **объединение** языков
 - $ightharpoonup F = F_1 imes (Q_2 \setminus F_2)$ распознает **разность** языков
- $\delta((q_1, q_2), c) = (\delta_1(q_1, c), \delta_2(q_2, c))$

Интуиция: ищем пути в двух автоматах одновременно

Произведение автоматов: пример

Пересечение языков

Объединение языков

Разность языков

Замкнутость автоматных языков относительно операций

Автоматные языки замкнуты относительно операций

- Объединения
- Пересечения
- Разности
- Дополнения

Регулярное множество (регулярный язык)

Регулярное множество в алфавите Σ определяется итеративно:

- ullet \mathcal{O} регулярное множество в алфавите Σ
- ullet $\{a\}$ регулярное множество в алфавите Σ для каждого $a\in \Sigma$
- ullet $\{arepsilon\}$ регулярное множество в алфавите Σ
- ullet Если P и Q регулярные множества в алфавите Σ , то регулярны
 - P ∪ Q (объединение)
 - ▶ PQ (конкатенация, $\{pq|p\in P, q\in Q\}$)
 - ▶ P^* (итерация: $P^* = \{\varepsilon\} \cup P \cup PP \cup PPP \cup \ldots$)
- ullet Ничто другое не является регулярным множеством в алфавите Σ
- ullet Множество всех регулярных языков обозначим ${\mathbb R}$

Примеры регулярных языков

- Все конечные языки
 - ► {-2147483648, -2147483647,..., 2147483647} все 32-разрядные целые числа
- $\bullet L_a = \{a^k \mid k odd\}$
- $L_b = \{b^I | I even\}$
- $L_{ab} = \{a^k b^l \mid k odd, l even\} = L_a L_b$
- $L = \{a^*\} = L_a^*$

Регулярное выражение

Регулярное выражение — способ записи регулярного множества

- Ø обозначает Ø
- a обозначает {a}
- ullet ε обозначает $\{arepsilon\}$
- ullet Если p и q обозначают P и Q, то:
 - ▶ p|q обозначает $P \cup Q$
 - pq обозначает PQ
 - р* обозначает Р*

Примеры регулярных выражений

- ullet 2147483648| 2147483647| . . . |2147483647 все 32-разрядные целые числа
- $a(aa)^* : L_a = \{a^k \mid k odd\}$
- $(bb)^*$: $L_b = \{b^l | l even\}$
- $a(aa)^*(bb)^*: L_{ab} = \{a^k b^l | k odd, l even\} = L_a L_b$
- $a^*: L = \{a^*\} = L_a^*$

Замкнутость регулярных языков относительно операций

Регулярные языки замкнуты ($A \in \mathbb{R}, B \in \mathbb{R} \Rightarrow A \diamond B \in \mathbb{R}$) относительно операций:

- ullet Конкатенации (L_1L_2) , объединения $(L_1\cup L_2)$, итерации (L^*)
- ullet Пересечения $(L_1\cap L_2)$, дополнения $(\lnot L)$, разности $(L_1\setminus L_2)$
- ullet Обращения $(L_{rev} = \{a_m, a_{m-1}, \dots a_1 \mid a_1, a_2, \dots, a_m \in L\})$
- ullet Гомоморфизма цепочек (операция сохраняющая arepsilon и конкатенацию)
- Обратного гомоморфизма цепочек

Теорема Клини

Теорема

Классы автоматных и регулярных языков эквивалентны

НКА с ε -переходами: почему бы и нет?

$$\delta: Q \times (\Sigma \cup \varepsilon) \rightarrow 2^Q$$

Ничего не поломалось?

Эквивалентность HKA с ε -переходами и HKA без ε -переходов

- ullet НКА без arepsilon-переходов частный случай НКА с arepsilon-переходами
- ullet В обратную сторону можно построить arepsilon-замыкание
 - ▶ Транзитивное замыкание: для каждого подграфа, состоящего только из ε -переходов, делаем ε -замыкание
 - ▶ Добавление терминальных состояний: для ε -перехода из состояния u в v, где v терминальное, добавляем u в терминальные
 - ▶ Добавление ребер: $\forall u, v, c, w.\delta(u, \varepsilon) = v, \delta(v, c) = w$, добавим переход $\delta(u, c) = w$
 - ightharpoonup Устранение arepsilon-переходов

ε -замыкание

Теорема Клини: доказательство ←

Теорема

Классы автоматных и регулярных языков эквивалентны

Доказательство.

 \Leftarrow : Построим по регулярному выражению КА (НКА с ε -переходами)

Построение KA по PB: ε

Построение КА по РВ: символ

Построение KA по PB: объединение p|q

Построение КА по РВ: конкатенация ра

Построение KA по PB: итерация p^*

Теорема Клини: доказательство \Rightarrow

Теорема

Классы автоматных и регулярных языков эквивалентны

Доказательство.

⇒: Построим регулярное выражение по конечному автомату методом исключения состояний

Идея: на ребрах пишем регулярные выражения, соответсвующие путям между вершинами, последовательно исключаем состояния

Исключение состояния *s*

Исключение состояния s: удаление ребер и вершины

Исключение состояний: последний шаг

 $(R^*|SU^*T)^*SU^*$

Исключение состояний: последний шаг

 R^*

Исключение состояний: пример

1*0(00)*1(11)*

Свойства регулярных выражений

- \bullet a|a=a
- $a|\varnothing=a$
- \bullet a|b=b|a
- a|(b|c) = (a|b)|c
- a(bc) = (ab)c
- $\{\varepsilon\}a = a\{\varepsilon\} = \{\varepsilon\}$
- $\varnothing a = a\varnothing = \varnothing$
- a(b|c) = ab|ac
- (a|b)c = ac|bc
- $\{\varepsilon\}|aa^* \subseteq a^*$
- $\{\varepsilon\}|a^*a\subseteq a^*$
- $ab \subseteq b \Rightarrow a^*b \subseteq b$
- $ab \subseteq a \Rightarrow ab^* \subseteq a$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Теорема

Пусть L — формальный язык.

 $\exists G_r - праволинейная грамматика, т.ч. <math>L = L(G_r) \Leftrightarrow \exists G_l - n$ леволинейная грамматика, т.ч. $= L(G_l)$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Теорема

Пусть L — формальный язык.

 $\exists G_r - праволинейная грамматика, т.ч. <math>L = L(G_r) \Leftrightarrow \exists G_l - n$ леволинейная грамматика, т.ч. $= L(G_l)$

Регулярная грамматика — праволинейная или леволинейная грамматика

Эквивалентность регулярной грамматики и НКА

Алгоритм построения НКА $\langle Q, \Sigma, q_0, \delta, F \rangle$ по праволинейной грамматике $\langle V_T, V_N, P, S \rangle$

- $Q = V_N \cup \{q_f\}$
- $\forall (A \rightarrow aB) \in P.\delta(A, a) = B$
- $\forall (A \rightarrow a) \in P.\delta(A, a) = q_f$
- $q_0 = S$
- $\forall (B \to \varepsilon) \in P.B \in F$

Пример построения НКА по регулярной грамматике

$$S \rightarrow aS|aA|\varepsilon$$

 $A \rightarrow b|bA$

Эквивалентность регулярной грамматики и НКА

Алгоритм построения праволинейной грамматики $\langle V_T, V_N, P, S \rangle$ по НКА $\langle Q, \Sigma, q_0, \delta, F \rangle$

- $V_N = Q$
- $V_T = \Sigma$
- $\forall \delta(A, a) = B.(A \rightarrow aB) \in P$
- $\forall B \in F.(B \to \varepsilon) \in P$
- $S = q_0$
- ullet Опционально: удалить arepsilon-правила и бесполезные символы

Пример построения НКА по регулярной грамматике

$$S \rightarrow aS|aB$$

 $B \rightarrow bB|aF$
 $F \rightarrow \varepsilon$

Пример построения НКА по регулярной грамматике

$$S \rightarrow aS|aB$$

 $B \rightarrow bB|a$

Лемма о разрастании (о накачке)

Теорема

 L — регулярный язык над $\Sigma \Rightarrow \exists \mathsf{n}. orall \omega \in \mathsf{L}, |\omega| > \mathsf{n}$

$$\exists x, y, z \in \Sigma^*$$
. $xyz = \omega, y \neq \varepsilon, |xy| \leq n$,

 $\forall k \geq 0. xy^k z \in L$

Доказательство.

Строим автомат, распознающий L.

Обозначаем за n число состояний автомата.

Слово длины большей, чем n, обязано при разборе пройти через одно состояние дважды — получили цикл.

Метка цикла — искомое y, по циклу можно пройти сколько угодно раз.

Использование леммы о накачке

- $L = \{ (k)^k | k \ge 0 \}$
- Предполагаем, что L регулярный язык
- Берем n из леммы, рассматриваем слово $\binom{n}{n}$
- ullet Его можно разбить на $xyz, y
 eq arepsilon, |xy| \le n$
- $|xy| \le n \Rightarrow y = (b, b > 0)$
- ullet Берем k=2. $xy^kz=(^{n+b})^n$, что не принадлежит L
- ullet Получили противоречие $\Rightarrow L$ не регулярен

Резюме

- ДКА, НКА, НКА с ε -переходами, регулярные выражения, регулярные грамматики все эти формализмы задают один класс (регулярных) языков и эквивалентны друг другу
- Проверка принадлежности слова регулярному языку осуществляется за O(n) и не требует дополнительной памяти
- Класс регулярных языков обладает хорошими свойствами, прост и нагляден
- С помощью леммы о накачке можно доказать нерегулярность языка