CS W186 Introduction to Database Systems Spring 2020 Josh Hug, Michael Ball

DIS 10

1 ER Diagrams

We want to store sports teams and their players in our database. Draw an ER diagram corresponding to data given below:

- Every Team in our database will have a unique team_name and a stadium where they play their games.
- · Fach Coach has a name
- · Each Player will have a player id, name and their average score.
- Our database will contain who Plays_For which team and also the "position" that the player plays in. We also need to store who Captains a team, and who Coaches a team.
- · Every Team needs players, and needs exactly one captain.
- Each Player can be on at most one team, but may currently be a free agent and not on any
 team.
- · Each team needs coaches and may have many.
- A Coach is uniquely identified by which team they coach.

CS W186, Spring 2020, DIS 10

- (d) BC+ BCD
- (e) BD+ BD
- (f) CD+ CD
- (g) BCD+ BCD
- 4. Consider again the set F of functional dependencies from Question 3. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.
 - (a) A candidate key
 - (b) B, C, D neither
 - (c) AB, AC, AD superkey
 - (d) BC neither
 - (e) BD neither
 - (f) CD neither
 - (g) BCD neither

3 Normal Forms

1. Decompose R = ABCDEFG into BCNF, given the functional dependency set: F = AB \to CD, C \to EF, G \to A, G \to F, CE \to F.

 $\begin{array}{l} AB \!\!\to\!\! CD \Rightarrow decompose \ ABCDEFG \ into \ ABCD, \ ABEFG \\ G \!\!\to\!\! A \Rightarrow decompose \ ABEFG \ into \ AG, \ BEFG \\ G \!\!\to\!\! F \Rightarrow decompose \ BEFG \ into \ FG, \ BEG \\ Final \ relations: \ ABCD, \ AG, \ FG, \ BEG. \end{array}$

2. Does the above decomposition preserve dependencies? Why/why not?

No, $C\to EF$ and $CE\to F$ are not represented in the closure of the union of each subrelation's dependencies.s

CS W186, Spring 2020, DIS 10

2 Functional Dependencies

- 1. When there's a lot of symbols floating around, it's best to keep track of the "type" of the various symbols and expressions. Consider a set of functional dependencies $F = \{X > Y, Y > Z\}$. For each of the following symbols or expressions, indicate whether it is (a) an attribute, (b) a set of attributes, (c), a set of sets of attributes, (d) a functional dependency, (e) a set of functional dependencies, or (f) none of the above.
 - (a) X (b) a set of attributes
 - (b) XY (b) a set of attributes

(f) X+ (b) a set of attributes

- (c) X -> Y (d) a functional dependency
- (d) F (e) a set of functional dependencies
- (e) F+ (e) a set of functional dependencies
- (g) Armstrong's reflexivity axiom (f) an axiom
- 2. Consider a relation R(x, y, z) and the list of functional dependencies $X \rightarrow Y$, $XY \rightarrow YZ$, and $Y \rightarrow X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

- 1. None
- 2. XY -> YZ
- 3. X -> Y. XY -> YZ
- 4. X -> Y, XY -> YZ, Y -> X
- Consider the set F = {A -> B, AB -> AC, BC -> BD, DA -> C} of functional dependencies. Compute the following attribute closures.
 - (a) A+ ABCD
 - (b) B+, C+, D+ B, C, D; B, C, and D do not appear alone on the left of any functional dependency, so nothing is in their attribute closures besides themselves.
 - (c) AB+, AC+, AD+ ABCD; A+ = ABCD, so AX = ABCD for any X.

CS W186, Spring 2020, DIS 10 2