Implementation Results in Classical Constructive Negation

Susana Muñoz-Hernández

Juan José Moreno-Navarro

Facultad de Informática
Universidad Politécnica de Madrid
28660 Madrid, Spain

susana@fi.upm.es
jjmoreno@fi.upm.es

Overview

- Motivation
- Constructive Negation
- Algorithm
- Implementation
- Examples
- Conclusions

Overview

- Motivation
- Constructive Negation
- Algorithm
- Implementation
- Examples
- Conclusions

Motivation

- The important role of Negation in Logic (¬)
- A lack of Negation implementation at Prolog

Motivation

- The important role of Negation in Logic (¬)
- A lack of Negation implementation at Prolog
- [REASON] Problems of the proposals:
 - Expressiveness
 - Semantics (soundness vs completeness)
 - Complexity

Motivation

- The important role of Negation in Logic (¬)
- A lack of Negation implementation at Prolog
- [REASON] Problems of the proposals:
 - Expressiveness
 - Semantics (soundness vs completeness)
 - Complexity
- [CONSECUENCE] Limited implementations:
 - Negation as failure (naf)
 - Delay technique

Negation as Failure

```
• SLDNF resolution  \left\{ \begin{array}{ll} naf(G): - & call(G), !, \\ & fail. \\ \\ naf(G). \end{array} \right.
```

• Execution:

```
?- naf(even(s(s(0)))).
no
?- naf(even(s(0))).
yes
```

naf(G) checks if G is true or false

Negation as Failure

• SLDNF resolution
$$\begin{cases} naf(G): - call(G), !, \\ naf(G). \end{cases}$$

• Execution:

```
?- naf(even(s(s(0)))).
                                    ?- naf(even(X)).
no
                                    no
?- naf(even(s(0))).
                                    ?- naf(even(s(Y))).
yes
                                    no
```

Problem: naf is incomplete

Interpretation of Quantifications

$$\operatorname{naf}(p(\overline{X})) \equiv \neg \exists \overline{X}. \ p(\overline{X})$$

• $naf(p(\overline{X})$ checks if $p(\overline{X})$ is "true" or "false" \Rightarrow No variable instantiation

Interpretation of Quantifications

$$\operatorname{naf}(p(\overline{X})) \equiv \neg \exists \overline{X}. \ p(\overline{X})$$

• $naf(p(\overline{X})$ checks if $p(\overline{X})$ is "true" or "false" \Rightarrow No variable instantiation

$$\operatorname{cneg}(p(\overline{X})) \equiv \exists \overline{X}. \neg p(\overline{X})$$

• $cneg(p(\overline{X}))$ provides the values of \overline{X} that make false $p(\overline{X}) \Rightarrow$ Constructive answer

Constructive Answers

```
?- null(X).

X = 0 ?;

no
```

```
?- cneg(null(X)). ?- cneg(null(X)). 

X = s(0) ?; X = /= 0 ?; 

X = s(s(0)) ?; no 

X = s(s(s(0))) ?;
```

Overview

- Motivation
- Constructive Negation
- Algorithm
- Implementation
- Examples
- Conclusions

Constructive Negation

- Papers about Semantical aspects
- Practical Chan's proposal (coroutining)
- Implementation problems (Eclipse)

Constructive Negation

- Papers about Semantical aspects
- Practical Chan's proposal (coroutining)
- Implementation problems (Eclipse)
- We provide:
 - A complete theoretical algorithm (refining and extending to the constructive negation method)
 - A discussion about implementation issues
 - A preliminary implementation

Semantics

Adequate for Prolog:

- Declarative Semantics: Clark's completion, CWA & CET [Clark78].
- Denotational Semantics: Kunen's 3-valued interpretation ($\{\underline{t}, \underline{f}, \underline{u}\}$) [Kun87].
- Procedural Semantics: Stuckey's Immediate consequence (Φ_P^A) in an admissible constraint structure, \mathcal{A} [Stu95].

(From [Stuckey95])

A frontier of a goal G is the disjunction of a finite set of nodes in the derivation tree such that every derivation of G is either finitely failed or passes through exactly one frontier node.

```
even(0).

even(s(s(X))):- even(X).
```



```
\operatorname{even}(0). \operatorname{even}(\operatorname{s}(\operatorname{s}(\operatorname{X}))):- \operatorname{even}(\operatorname{X}). \operatorname{\emph{Frontier}}(\operatorname{\emph{even}}(Y)) = C_1 \vee C_2 =
```

 $(Y = 0) \lor (\exists X. \ Y = s(s(X)) \land even(X))$

Negation of a Frontier

```
even(0).
                                           ?- cneq(even(Y)).
even(s(s(X))):-even(X).
Frontier(even(Y)) = C_1 \vee C_2 =
           (Y=0) \lor (\exists X.\ Y=s(s(X)) \land even(X))
\neg Frontier(even(Y)) = \neg C_1 \land \neg C_2 = [Y \neq 0] \land 
[(\forall X1.\ Y \neq s(s(X1))) \lor ((\exists X2.\ Y = s(s(X2)) \land \neg even(X2))]
```

Overview

- Motivation
- Constructive Negation
- Algorithm
- Implementation
- Examples
- Conclusions

Preparation

- Simplification of the conjunction
- Organization of the conjunction (GoalVars :- RelVars (ImpVars + ExpVars))

$$C_i \equiv \overline{I} \wedge \overline{D} \wedge \overline{R} \equiv \overline{I} \wedge \overline{D}_{imp} \wedge \overline{D}_{exp} \wedge \overline{R}_{imp} \wedge \overline{R}_{exp}$$

- Normalization of the conjunction
 - Elimination of redundant variables and equalities
 - Elimination of irrelevant disequalities

Negation of Subformulas

$$C_i \equiv \overline{I} \wedge \overline{D}_{imp} \wedge \overline{R}_{imp} \wedge \overline{D}_{exp} \wedge \overline{R}_{exp}$$

$$\neg C_i \equiv \neg \overline{I} \quad \lor$$

$$\overline{I} \wedge \neg \overline{D}_{imp} \quad \lor$$

$$\overline{I} \wedge \overline{D} \wedge \neg \overline{R}_{imp} \quad \lor$$

$$\overline{I} \wedge \overline{D} \wedge \overline{R}_{imp} \wedge \neg (\overline{D}_{exp} \wedge \overline{R}_{exp})$$

Negation of Subformulas(I)

• Negation of \overline{I}

$$\overline{I} \equiv I_1 \wedge \ldots \wedge I_{NI} \equiv$$

$$\underline{\exists \overline{Z}_1. X_1 = t_1 \wedge \ldots \wedge \underline{\exists \overline{Z}_{NI}. X_{NI} = t_{NI}}}_{I_{NI}}$$

$$\neg C_{i} \equiv \neg \overline{I} \equiv \bigvee_{i=1}^{NI} \forall \overline{Z}_{i}. X_{i} \neq t_{i} \equiv$$

$$\underbrace{\forall \overline{Z}_{1}. X_{1} \neq t_{1}}_{\neg I_{1}} \lor \ldots \lor \underbrace{\forall \overline{Z}_{NI}. X_{NI} \neq t_{NI}}_{\neg I_{NI}}$$

Negation of Subformulas(II)

• Negation of \overline{D}_{imp}

$$\overline{D}_{imp} \equiv D_1 \wedge \ldots \wedge D_{N_{D_{imp}}}$$

$$D_i \equiv \forall \overline{W}_i. \exists \overline{Z}_i. Y_i \neq s_i$$

$$\neg D_i \equiv \exists \overline{W}_i. Y_i = s_i$$

$$\neg C_i \equiv \overline{I} \wedge \neg D_1 \vee \overline{I} \wedge D_1 \wedge \neg D_2 \vee \overline{I} \wedge D_1 \wedge \neg D_2 \vee \overline{I} \wedge D_1 \wedge \neg D_2 \wedge \overline{I} \wedge D_1 \wedge \neg D_1 \wedge \neg D_{N_{D_{imp}}}$$

Negation of Subformulas(III)

• Negation of \overline{R}_{imp}

$$\overline{R}_{imp} \equiv R_1 \wedge \ldots \wedge R_{N_{R_{imp}}}$$

$$\neg C_{i} \equiv \overline{I} \wedge \overline{D}_{imp} \wedge \neg R_{1} \vee \\ \overline{I} \wedge \overline{D}_{imp} \wedge R_{1} \wedge \neg R_{2} \vee \\ \vdots \\ \overline{I} \wedge \overline{D}_{imp} \wedge R_{1} \wedge \dots \wedge R_{N_{R_{imp}}-1} \wedge \neg R_{N_{R_{imp}}}$$

Negation of Subformulas(IV)

• Negation of $\overline{D}_{exp} \wedge \overline{R}_{exp}$

$$\neg (\exists \overline{V}_{exp}.\overline{D}_{exp} \land \overline{R}_{exp}) \equiv \forall \overline{V}_{exp}.\neg (\overline{D}_{exp} \land \overline{R}_{exp})$$

$$\neg C_i \equiv \overline{I} \wedge \overline{D}_{imp} \wedge \overline{R}_{imp} \wedge \forall \overline{V}_{exp}. \neg (\overline{D}_{exp} \wedge \overline{R}_{exp})$$

Overview

- Motivation
- Constructive Negation
- Algorithm
- Implementation
- Examples
- Conclusions

Implementation Issues (I)

Code expansion

```
:- module(mod1,[even/1,p/1],[cneg]).
even(0).
even(s(s(X))) := even(X).
p(X) :- \ldots, cneg(even(X)), \ldots
stored clause(even(0),[]).
stored_clause(even(s(s(X))),[even(X)]).
```

Implementation Issues (II)

Disequality constraints (Attributed variables)
 Constraints Normal Form

$$\bigwedge_{i}(X_{i}=t_{i}) \qquad \land$$
 positive information

$$\left(\bigwedge_{j} \forall \overline{Z}_{j}^{1}. \left(Y_{j}^{1} \neq s_{j}^{1}\right) \vee \ldots \vee \bigwedge_{l} \forall \overline{Z_{l}}^{n}. \left(Y_{l}^{n} \neq s_{l}^{n}\right)\right)$$

negative information

Optimizations

- Compact information (disjunction of conjunction of disequalities)
- Pruning subgoals (equivalent to true / false)
- Constraint simplification

$$F \equiv \bigvee_{i} \bigwedge_{j} \forall \overline{Z}_{j}^{i} (Y_{j}^{i} \neq s_{j}^{i})$$

• Finite variant, cnegf, to negate goals that have a finite number of solutions. The last frontier is negated. $\neg G \equiv \neg (S_1 \lor S_2 \lor ... \lor S_n)$

Overview

- Motivation
- Constructive Negation
- Algorithm
- Implementation
- Examples
- Conclusions

Examples (I)

```
?- cneg(boole(X)).
boole(0).
                       X = / = 1, X = / = 0?;
boole(1).
                       no
                       ?- cneg(positive(X)).
                       X=/=s(fA(_A)), X=/=0?;
positive(0).
                       X = s(A),
positive(s(X)):-
                       A = /=s(fA(B)), A = /=0?;
      positive(X).
                       X = s(s(\underline{A})),
                       A=/=s(fA(B)), A=/=0?
                       yes
```

Examples (II)

```
?- cneg(greater(X,Y)).
                         Y = / = 0, Y = / = s(fA(A))?;
number(0).
                         Y=/=s(fA(A)),
number(s(X)):-
                         X = / = s(fA(B)) ?;
        number(X).
                         X = s(\underline{A}), Y = 0,
qreater(s(X), 0):-
                        A = /=s(fA(B)), A = /=0?;
        number(X).
greater(s(X), s(Y)):-
        greater(X,Y). X = s(s(A)), Y = 0,
                         _A = /=s(fA(_B)), _A = /=0?
                         yes
```

Overview

- Motivation
- Constructive Negation
- Algorithm
- Implementation
- Examples
- Conclusions

Experimental Results

goals	Goal	naf(Goal)	cneg(Goal)	ratio
boole(1)	2049	2099	2069	0.98
positive(s(s(s(s(s(0))))))	2079	1600	2159	1.3
greater(s(s(s(0))),s(0))	2110	2099	2100	1.00
average				1.06
positive(s ⁵⁰⁰⁰⁰⁰ (0))	2930	2949	41929	14.21
positive(s ¹⁰⁰⁰⁰⁰⁰ (0))	3820	3689	81840	22.18
greater(s ⁵⁰⁰⁰⁰⁰ (0),s ⁵⁰⁰⁰⁰⁰ (0))	3200	3339	22370	7.70
average				14.69
positive(X)	2020	-	7189	
greater(s(s(s(0))),X)	2099	-	6990	
queens(s(s(0)),Qs)	6939	-	9119	

Conclusion and Future Work

- Detailed description of the modified algorithm
- Complete and consistent implementation
- Experimental results
- Extensible to other LP systems (future work)
- Efficiency problem
 - Statical Analysis to improve the frontier
 - WAM level (future work)
 - Negation System for Prolog

Negation System for Prolog

Static phase + Dynamic phase

Implementation Results in Classical Constructive Negation

Susana Muñoz-Hernández

Juan José Moreno-Navarro

Facultad de Informática
Universidad Politécnica de Madrid
28660 Madrid, Spain

susana@fi.upm.es
jjmoreno@fi.upm.es