(ii) 
$$\exists z. \forall (you, n) \land (\exists n. \forall (n, you))$$

$$(i) = (ii) \neq (iii)$$



P(x,y) := x is a parent of y.C(x,y) := x and y are a comple.

Consider the following statements.

(i)  $\exists z P(\alpha, z) \Rightarrow \exists y C(\alpha, y)$ 

(ii)  $\neg (C(a,y) \Rightarrow \exists z P(a,z) \land P(y,z))$ 

In (i) free vars: 2c

bounded vars: 4,2

In (ii)

bounded vars: 2,4

bounded vars: 2

Ex. In the statement "for every integer n.

there is a prime number p

between n and 2n"

n is a bound variable and

p is a free variable.

Formally,

 $\forall n \exists p \left( Prime(p) \land (n \leq p) \land (p \leq 2n) \right)$ 

Ex. In the statement

 $a \rightarrow b$  ( $a=b^2$ )

a is free and b is bounded.

The statement  $\forall x. A(x)$ is not at all about x. e.g.  $\forall x. even(n) vodd(x)$ every natural number every or odd; is either even or odd; no reference to x.

## 41/2 Change of bound variables

(i)  $\forall x \ (\text{even}(x) \ v \ \text{odd}(x)) \equiv$  $\forall y \ (\text{even}(y) \ v \ \text{odd}(y))$ 

(ii)  $\forall y (x \leq y) \equiv \forall z (x \leq z)$ 

Vi z most be a fresh variable
e.s.

Yy (xxy) # \frac{1}{2}x.(xxx)

(iii) by (n ≤y) \# by (w ≤ y)

Statement
about n

about n

Pa)~>Pa)[u/n]=P(w)

! substitution
(i.e. change)
of a free variable
by a fresh
vorriable results
in different
formula.

### Binding Priorities

Earlier in the course, we learned about the birding priorities of propositions.

(i)  $\neg$  (ii)  $\wedge$   $\lor$  (iii)  $\Rightarrow$ 

Now, we add quantifier in between:

(i) ¬ (ii) √, ∧ (iii) ∧, ∨, (iv) ⇒

For instance, the expression  $\exists x. A(x) \land B(x)$  is parsed on  $(\exists x. A(x)) \land B(x)$ .

Example. Parse the following expressions by insuring brackets following the binding convention: 3x D(x) => Vy D(y)  $(\exists x D(x)) \Rightarrow (\forall y D(y))$ (0)which is different {rom  $\exists x (D(x) \Rightarrow \forall y D(y)) (2)$ (1) is true if the universe of discourse is empty whereon (2) is false in that case

How to prove a universally quantified statement

Recall that in order to prove that  $\sqrt{2}$  is not rational we used the Cemma To prove due latter we start by letting a, b to be arbitrary integers. Here is how the proof of irrationality of  $\sqrt{2}$  goes:

Let a and b be arbitrary integers. Suppose b≠0, and symptone  $a^2 = 2b^2$ Contradiction.

Here's the last proof presented in natural deduction.

$$\frac{1}{b \neq 0} = \frac{2}{a^2 = 2b^2}$$

$$\frac{1}{a^2 = 2b^2}$$

$$\frac{1}{b \neq 0} = \frac{2}{a^2 = 2b^2}$$



>>>> should not be free in any hypothesis which how not been concelled! e.g.

> Not allowed!

((n) √2. (u(n))

Clim rule for of Jn. A(x) ( Jelin) A(t) an arbitrary term ? Vn Fy y>n 3 y , y > y + 1 (x=y+1) truth is not preserved! what did we do wrong?

Example. We construct a natural deduction proof of

 $\forall x A(x) \Rightarrow \forall x B(x) \Rightarrow \forall y (A(y) \land B(y))$ 

 $\frac{1}{A(y)} (JE) \frac{1}{B(y)} (JE)$ √x A(x)

Aly A Bly) Yy (A/y) NB/y)

Vx B(x) -> Yy (A/y) NB/y)

VX A(X) -> VX B(X) -> Vy (A(Y) ~ 15(Y))

Ex. In a town there is a barber that shaves all and only the themselves. Men who do not shave themselves. Show that this is a contradiction.

Define S(x,y) = x shaves y.

$$\frac{3(6,6)}{3(6,6)} = \frac{3(6,6)}{3(6,6)} = \frac{3($$

Ex. Suppose E and O are
predicate) with one variable
predicate) with one variable
ranging over natural numbers.

Suppose also that

Suppose also

(i) In. (TE(n) => O(n))

Prove that In. O(n) VE(n)

 $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$   $\frac{\sqrt{n \cdot (n \in (n) \rightarrow O(n))}}{\sqrt{e(n)} \rightarrow O(n)} = \frac{1}{\sqrt{e(n)} \rightarrow O(n)}$ 

O(n) v E(n)

In. O(n) VE(n)

#### Intro rule for 3

NA quite Correct!

Caveat. The term t in A(H) Should not closh with bound variables in A.

Elim rule for  $(x)A \times E$ Note: y should not

be free in B.

Ex. Let's prove

#### 3x (A(x) vB(x)) => 3xA(x) v 3xB(x)

$$\frac{A(y)}{A(y)} \frac{B(y)}{B(x)}$$

$$\frac{3 \times A(x)}{3 \times A(x)} \frac{3 \times B(x)}{3 \times A(x)} \frac{3 \times B(x)}{3 \times A(x)} \frac{3 \times B(x)}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times A(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

$$\frac{3 \times A(x)}{3 \times B(x)} \frac{3 \times B(x)}{3 \times B(x)} \frac{2}{3 \times B(x)}$$

# What if the domain of quantitiation is empty?!

$$P(x)$$
: predicate with variable  $x = x$ 

$$\exists x. P(\alpha)$$
 is  $\bot$  (false)  $\forall x. P(\alpha)$  is  $\top$  (free)

Can me derive  $\forall x. \ A(x)$ 3 x. A(x) Aristotle thought we (an.
But what if the domain/universe of discourse of A is empty? We get non-Sense! Most likely, Aristotle most have excluded emply universes of discourse.

Let's prove
$$(\exists x P(x) \Rightarrow Q) \Leftrightarrow \forall x (P(x) \Rightarrow Q)$$

$$\frac{P(y)^{2}}{\exists y P(y)}$$

$$\frac{Q}{\exists x P(x) \Rightarrow Q} \Rightarrow Q$$

$$\frac{\overline{\forall \times (P \land) \Rightarrow \&}}{\overline{P ( \land) \Rightarrow \&}} \stackrel{7}{}$$

$$\frac{\overline{\exists \times P \land}}{\overline{Q}} \stackrel{7}{}$$

$$\frac{\overline{Q}}{\overline{Q}} \stackrel{(3)}{}$$

### Many Sorted Logic

So for, in each example we have considered our variables have considered our variables range over the same universe of variables.

discourse.

 $\forall x \exists y \quad x \leq y$  where n, y are integers.

 $\exists \times \forall y \quad \mathcal{O}(y,x)$  where x,y

ore humans.

Consider the following example from Endleden geondog. Syppose we want to say that for any two distinct points on the Euclidean plane there is a unique line which passes twough them. YPY9 YL YM (Point(P) , Point(q) , LineLL) , Live(M)  $n Or(p,L) \wedge Or(q,L) \wedge Or(p,M) \wedge Or(q,M)$  $\Rightarrow (p \neq q) \Rightarrow L=M$ 

This is very Tedious!

P M

Instead, we introduce Sorts. In the previous example, Instead of writing Point (p), Point(q), ... Line (L), Line(M), ... Simply introduce two soits Point and Line . When we write p: Point me mean Point (p) When we write L: Line vre mean Line (L).

YP yq YL YM

(Point(p) ∧ Point(q) ∧ Line(L) ∧ Line(M)

n On(p,L) ∧ On(q,L) ∧ On(p,M) ∧ On(q,M)

⇒ (p ≠ q) ⇒ L=M

Using equality in logic me Can express statements like (i) there are at least two elements x for which A(x) is true. ヨx.y (つ(ス=y) へA(れ) へA(y)) (ii) there are at most one element x for which A(n) is true.  $\forall x,y \ (AG) \land A(y) \Rightarrow x=y)$ Liii) there are at most n elements x for which A(x) is true.  $\sqrt{n_1, \ldots, n_{n+1}} (A(n_1) \wedge \ldots \wedge A(n_{n+1}) \Rightarrow$  $(x_1 = x_2) \vee \dots \vee (x_l = x_{n+1})$ V (2=23) V. - V (2= 2nf1)

#### notation for Special existence umque We denote the Statement that there is a unique on such that A(x) is true by 3!x A61). Note that 312 A(2) = $(\exists x \ A(x)) \ \wedge (\forall x \forall y (AG) \land A(y) \Rightarrow x = y))$

| Counterexamples                                                       |
|-----------------------------------------------------------------------|
| Given a formula of the form                                           |
| /x. A(x)                                                              |
| a counterexample is a term t                                          |
| such that $\neg A(+)$ .                                               |
| Example. Find counterexamples<br>to the statements                    |
| (i) Every prime integer is odd. (ii) Every integer has a prime factor |
| Lat nu bac is enten                                                   |

(iii) Every perfect number is even. 6=1+2+3

| of. | connter example is a proof  To X. A(x) became                                 |
|-----|-------------------------------------------------------------------------------|
| is  | - Jx. A(x) = Jx A(x) a tautology, Using the law of double negation.           |
|     | $\frac{1}{\sqrt{3}\times.\sqrt{A(x)}} = \frac{1}{\sqrt{3}\times.\sqrt{A(x)}}$ |

 $\frac{1}{\sqrt{3} \times .7A(x)} = \frac{1}{3} \times .7A(x)$   $\frac{1}{\sqrt{3} \times .A(x)} = \frac{1}{\sqrt{3} \times .7A(x)}$   $\frac{1}{\sqrt{3} \times .7A(x)} = \frac{1}{\sqrt{3} \times .7A(x)}$ 

 $\neg \forall x. A(x) \Rightarrow \exists x. \neg A(x)$ 

Conversely,

 $\frac{1}{3x. \neg A(x)} = \frac{1}{3x. \neg A(x)}$   $\frac{1}{3x. \neg A(x)} = \frac{1}{3x. \neg A(x)}$   $\frac{1}{3x. \neg A(x)} = \frac{1}{3x. \neg A(x)}$   $\frac{1}{3x. \neg A(x)} = \frac{1}{3x. \neg A(x)}$ 

Exercise. Prove the dual equivalence yourself.

$$\exists x (A(x) \Rightarrow B) \iff (\forall x A(x) \Rightarrow B)$$

(1) First, let's prove 
$$\exists x (A(x) \Rightarrow B) \Rightarrow (\forall x A(x)) \Rightarrow B$$

$$\frac{A(y) \Rightarrow B}{3} \frac{3}{A(y)}$$

$$\frac{B}{3} \frac{B}{A(x)}$$

$$\frac{B}{3} \frac{A(x) \Rightarrow B}{A(x)}$$

$$\frac{\sqrt{\gamma} A(x) \Rightarrow B}{\exists x (A(x) \Rightarrow B) \Rightarrow (\sqrt{\chi} A(x)) \Rightarrow B}$$