Question3_2

Hukai Luo

28 September 2018

Abstract

In this assignment, we use the probability density function to find the log-likelihood function and the method-of-moments estimator of θ . Then we will discuss the influence of different initial value when using Newton-Raphson method to estimate the Maximum Likelihood Estimation for θ .

1 Many local maxima

The probability density function with parameter θ :

$$f(x;\theta) = \frac{1 - \cos(x - \theta)}{2\pi}, \quad 0 \le x \le 2\pi, \quad \theta \in (-\pi, \pi).$$

And the random sample from the distribution is

 $x_i = 3.91, 4.85, 2.28, 4.06, 3.70, 4.04, 5.46, 3.53, 2.28, 1.96, 2.53, 3.88, 2.22, 3.47, 4.82, 2.46, 2.99, 2.54, 0.52$

- Find the the log-likelihood function of θ based on the sample and plot it between $-\pi$ and π .
- Find the method-of-moments estimator of θ . That is, the estimator θ_n is value of θ with

$$E(X \mid \theta) = \bar{X}_n,$$

where \bar{X}_n is the sample mean. This means you have to first find the expression for $E(X \mid \theta)$.

- Find the MLE for θ using the Newton-Raphson method initial value $\theta_0 = \theta_n$.
- What solutions do you find when you start at $\theta_0 = -2.7$ and $\theta_0 = 2.7$?
- Repeat the above using 200 equally spaced starting values between $-\pi$ and π . Partition the values into sets of attraction. That is, divide the set of starting values into separate groups, with each group corresponding to a separate unique outcome of the optimization.

2 Log-likelihood function

The log-likelihood function with parameter θ and x:

$$\ell(\theta) = \sum_{i=1}^{n} \ln(1 - \cos(x - \theta)) - n\ln 2\pi$$

then plot it between $-\pi$ and π :

3 Method-of-moments estimator

The expression for $E(X \mid \theta)$ is:

$$E(X|\theta) = \int_0^{2\pi} x \frac{1 - \cos(x - \theta)}{2\pi} dx$$

$$= \frac{1}{2\pi} \left[\int_0^{2\pi} x dx - \int_0^{2\pi} x \cos(x - \theta) dx \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{2} x^2 \Big|_0^{2\pi} - x \sin(x - \theta) \Big|_0^{2\pi} \right]$$

$$= \frac{1}{2\pi} \left(2\pi^2 + 2\pi \sin \theta \right)$$

$$= \pi + \sin \theta$$

And \bar{X}_n is 3.236842, so we can get θ :

```
\theta = \arcsin(mean(x) - \pi) \quad or \quad \pi - \arcsin(mean(x) - \pi)= 0.095394 \quad or \quad 3.046199
```

4 Newton–Raphson method

Find the MLE for θ using the Newton-Raphson method initial value $\theta_0 = \tilde{\theta}_n$. In this question, we will calculate $\ell'(\theta)$, $\ell''(\theta)$ as follow:

$$\ell'(\theta) = \sum_{i=1}^{n} \frac{-\sin(x-\theta)}{1 - \cos(x-\theta)}$$

$$\ell"(\theta) = \sum_{i=1}^{n} \frac{1}{\cos(x-\theta) - 1}$$

Newton-Raphson method:

```
library(pracma)
                                       #calculate the derivative of log likelihood function
derivative_1 <- function(x) {</pre>
  dev1 <- 0
  for (i in 1:length(X)){
    dev1 \leftarrow dev1-sin(X[i]-x)/(1-cos(X[i]-x))
  }
  dev1
derivative 2 <- function(x) { #calculate the second derivative of log likelihood function
 dev2 <- 0
  for (i in 1:length(X)){
    dev2 <- dev2+1/(cos(X[i]-x)-1)
 }
 dev2
x_{initial} < 0.095394
result1 <- newtonRaphson(derivative_1,x_initial,dfun = derivative_2)
x_initial <- 3.046199
result2 <- newtonRaphson(derivative_1,x_initial,dfun = derivative_2)</pre>
```

If we start with $\theta = 0.095394$ we will get root = 0.003118157, when we start with $\theta = 3.046199$ the root is 3.170715.

5 Solutions find using selected $\theta = \pm 2.7$

We can just change the initial vaule of θ to find the root:

```
x_initial <- 2.7
result3 <- newtonRaphson(derivative_1,x_initial,dfun = derivative_2)
x_initial <- -2.7
result4 <- newtonRaphson(derivative_1,x_initial,dfun = derivative_2)</pre>
```

If we start with $\theta = 2.7$ we will get root = 2.848415, when we start with $\theta = -2.7$ the root is -2.668857.

6 Solutions using θ between $-\pi$ and π

```
library("pander")
options(digits = 5)
x_initial <- seq(-pi,pi,length = 200)
result <- matrix(0,1,length(x_initial))
for (i in 1:length(x_initial)){
   result[i] <- newtonRaphson(derivative_1,x_initial[i],dfun = derivative_2)
}
plot(x_initial, result, title("Initial values and roots"))</pre>
```

Initial values and roots


```
table = rbind(x_initial,result)
set.caption("Initial values and roots")
pander(table,split.table = 100,style = 'rmarkdown')
```

Table 1: Initial values and roots (continued below)

x_initial	-3.1416	-3.11	-3.0784	-3.0469	-3.0153	-2.9837	-2.9521
\mathbf{result}	-3.1125	-3.1125	-3.1125	-3.1125	-3.1125	-3.1125	-3.1125

		Table	2: Table co	ontinues b	elow		
x_initial	-2.9206 -3.1125	-2.889 -3.1125	-2.8574 -3.1125	-2.8259 -3.1125	-2.7943 -2.7866	-2.7627 -2.7866	-2.7311 -2.6689
		Table	3: Table co	ontinues b	elow		
x_initial	-2.6996 -2.6689	-2.668 -2.6689	-2.6364 -2.6689	-2.6048 -2.6689	-2.5733 -2.5094	-2.5417 -2.5094	-2.5101 -2.5094
		Table -	4: Table co	ontinues b	elow		
x_initial		-2.447	-2.4154	-2.3838	-2.3522	-2.3207	-2.2891
result	-2.5094	-2.5094	-2.5094	-2.3883	-2.2979	-2.2979	-2.2979
		Table	5: Table co	ontinues b	elow		
x_initial		-2.226	-2.1944	-2.1628	-2.1312	-2.0997	-2.0681
result	-2.2979	-2.2322	-1.6627	-1.6627	-1.6627	-1.6627	-1.6627
		Table	6: Table co	ontinues b	elow		
x_initial result	-2.0365 -1.6627	-2.0049 -1.6627	-1.9734 -1.6627	-1.9418	-1.9102 -1.6627	-1.8786	-1.8471
	-1.0027	-1.0027	-1.0027	-1.6627	-1.0027	-1.6627	-1.6627
		Table	7: Table co	ontinues b	elow		
x_initial		-1.7839	-1.7523	-1.7208	-1.6892	-1.6576	-1.6261
result	-1.6627	-1.6627	-1.6627	-1.6627	-1.6627	-1.6627	-1.6627
		Table	8: Table co	ontinues b	elow		
x_initial	-1.5945	-1.5629	-1.5313	-1.4998	-1.4682	-1.4366	-1.405
result	-1.6627	-1.6627	-1.6627	-1.6627	-1.6627	-1.4475	-0.95441
		Table	9: Table co	ontinues b	elow		
		-1.3419	-1.3103	-1.2787	-1.2472	-1.2150	
esult -	0.95441 -	0.95441	-0.95441	-0.95441	-0.95441	-0.9544	1 -0.954
		Table 1	.0: Table c	ontinues l	oelow		
	1.1524	-1.1209	-1.0893	-1.0577	-1.0261	-0.9945	7 -0.96
esult -	0.95441 -	0.95441	-0.95441	-0.95441	-0.95441	-0.9544	1 -0.954

		Table 11:	Table conti	nues below		
x_initia result	1 -0.93143 -0.95441	-0.89985 -0.95441	-0.86828 -0.95441	-0.83671 -0.95441	-0.80513 0.0031182	-0.77356 0.0031182
		Table 12:	Table conti	nues below		
x_initial	-0.74198	-0.71041	-0.67884	-0.64726		-0.58412
result	0.0031182	0.0031182	0.0031182	0.003118	2 0.0031182	2 0.0031182
		Table 13:	Table conti	nues below		
x_initial	-0.55254	-0.52097	-0.48939	-0.45782		
result	0.0031182	0.0031182	0.0031182	0.003118	2 0.0031182	2 0.0031182
		Table 14:	Table conti	nues below		
x_initial result	-0.3631 0.0031182	-0.33152 0.0031182	-0.29995 0.0031182	-0.26838 0.003118		-0.20523 2 0.0031182
resuit	0.0031162	0.0031162	0.0031162	0.003116	2 0.0031102	2 0.0031162
			Table conti			
x_initial result	-0.17366 0.0031182	-0.14208 0.0031182	-0.11051 0.0031182	-0.078934 0.003118		
x_initial	0.015787	Table 16: 0.047361	Table conti	nues below 0.11051	0.14208	0.17366
result	0.0031182	0.0031182	0.0031182	0.003118	2 0.0031182	2 0.0031182
			Table conti			
x_initial result	0.20523 0.0031182	0.2368 0.0031182	0.26838 0.0031182	0.29995 0.003118		0.3631 0.0031182
	0.0001102	0.0001102	0.0001102	0.000110	2 0.0001102	0.0001102
		Table 18:	Table conti	nues below		
x_i initial		0.42625				
result	0.0031182		32 0.003113 Table conti		182 0.81264	4 0.81264
x_initial	0.58412			57884 0.71		
result	0.81264	0.81264 0	0.81264 0.8	81264 0.81	1264 0.8126	4 0.81264

		Table	20: Tab	le contin	ues be	elow		
x_initial result	0.80513 0.81264	0.83671 0.81264	0.8682 0.8126		985 264	0.93143 0.81264	0.963 0.81264	$0.99457 \\ 0.81264$
		Table	21: Tab	le contin	ues be	elow		
x_initial result	1.0261 0.81264	1.0577 0.81264	1.089 0.8120		209	1.1524 0.81264	1.184 0.81264	1.2156 0.81264
		Table	22: Tab	le contin	ues be	elow		
x_initial result	1.2472 0.81264	1.2787 0.81264	1.310 0.8126		419 .264	1.3735 0.81264	1.405 0.81264	1.4366 0.81264
		Table	23: Tab	le contin	ues be	elow		
x_initial result	1.4682 0.81264	1.4998 0.81264	1.531 0.8120		629 .264	1.5945 0.81264	1.6261 0.81264	1.6576 0.81264
		Table	24: Tab	le contin	ues be	elow		
x_initial result	1.6892 0.81264	1.7208 0.81264	1.752 0.8120		839	1.8155 0.81264	1.8471 0.81264	1.8786 0.81264
		Table	25: Tab	le contin	ues be	elow		
x_initial result	1.9102 0.81264	1.9418 0.81264	1.9734 2.0072	2.0049 2.0072	2.03 2.00			
		Table	26: Tab	le contin	ues be	elow		
x_initial result	2.1628 2.0072	2.1944 2.0072	2.226 2.237	2.2575 2.237	2.289 2.374			2.3838 2.3747
		Table	27: Tab	le contin	ues be	elow		
x_initial result	2.4154 2.3747		2.4785 2.4884	2.5101 2.4884	2.541 2.848			

Table 28: Table continues below								
x_initial result		2.6996 2.8484						

x_initial	2.9206	2.9521	2.9837	3.0153	3.0469	3.0784	3.11	3.1416
result	2.8484	2.8484	2.8484	3.1707	3.1707	3.1707	3.1707	3.1707

So we have get the table of initial value and root, we can see there are several groups of the results, they are

pander(table1)

Table 30: Table continues below

roots	-3.112	-2.787	-2.669	-2.509	-2.388	-2.298	-2.232
\mathbf{freq}	11	2	5	6	1	4	1

Table 31: Table continues below

roots	-1.663	-1.448	-0.9544	-0.003118	-0.8126	2.007	2.237
\mathbf{freq}	24	1	19	42	46	8	2

${f roots}$	2.375	2.488	2.848	3.171
\mathbf{freq}	6	2	15	5