

MODEL FOR HOME PRICING

A FREE POWERPOINT TEMPLATE

• The Real Estate Market is a complicated venture for many people and requires a professional Real Estate Agent to Navigate. However, determining a house's worth ultimately falls under a person perception rather than objective evidence.

• The goal of this project is to see if a model could be built that could accurately determine a good price for a property given information about the properties features which would allow anybody to determine housing prices without the need of a professional.

ABOUT THE DATA

- The data contained information about real estate sold between August 9th 2021 September 1st 2021. The data contained the following features:
 - Number of Baths
 - Number of Beds
 - City property was sold in
 - Number of Garages
 - List Price
 - Sold Price
 - Date Sold
 - Sqft
 - Lot Sqft
 - Stories
 - Year Built
 - Type
 - Sub-Type

DATA WRANGLING

Feature Analysis

- Which features did not provide much information?
 - Sub-Type could easily be replaced with Type
 - Utilized Total Number of Baths rather than the number of individual type of baths available

Row Analysis

- Interesting or weird observations
 - Data with the "land" type was removed due to lack of domain knowledge
 - 0 baths were removed due to lack of domain knowledge

EDA

MODELING

Sold Price

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
gbr	Gradient Boosting Regressor	199452.1343	126807453611.7003	350583.1489	0.7657	0.3149	0.2590	0.0200
lightgbm	Light Gradient Boosting Machine	212754.0115	140476135581.3947	369102.1896	0.7392	0.3428	0.2646	0.0140
et	Extra Trees Regressor	207905.0983	144481421966.1154	376155.7301	0.7299	0.3253	0.2533	0.0630
rf	Random Forest Regressor	206299.9497	145827374083.7755	375144.7572	0.7297	0.3310	0.2723	0.0720
ridge	Ridge Regression	249142.8156	168812668518.4000	401267.2000	0.6927	0.5267	0.4100	0.0070
lasso	Lasso Regression	251951.3828	169169197465.6000	401998.8156	0.6901	0.5697	0.4278	0.2590
llar	Lasso Least Angle Regression	251945.6944	169188297995.0217	402025.4545	0.6901	0.5699	0.4277	0.0040
lar	Least Angle Regression	251981.0144	169208813220.3622	402052.7337	0.6900	0.5696	0.4279	0.0040
Ir	Linear Regression	252527.6922	169211602534.4000	402163.5625	0.6898	0.6341	0.4298	0.4430
knn	K Neighbors Regressor	233496.9281	186775002316.8000	422312.2812	0.6629	0.3667	0.2911	0.0060
dt	Decision Tree Regressor	267540.9220	234022815112.0876	478300.6810	0.5320	0.4269	0.3371	0.0060
omp	Orthogonal Matching Pursuit	360398.0634	268536290760.1895	512671.6652	0.4943	0.6361	0.6209	0.0040
huber	Huber Regressor	276654.4569	301751898049.8934	540454.6355	0.4498	0.4178	0.3237	0.0060
ada	AdaBoost Regressor	458923.1988	321042559071.3930	562889.0060	0.3835	0.7467	1.0623	0.0220
en	Elastic Net	447974.7719	458750699110.4000	671757.5062	0.1438	0.7038	0.8569	0.0040
par	Passive Aggressive Regressor	411800.7948	498787347261.8597	701132.6026	0.0656	0.6248	0.5619	0.0190
br	Bayesian Ridge	496629.5856	533822100357.9896	725943.5915	-0.0032	0.7671	0.9726	0.0040
dummy	Dummy Regressor	496629.5844	533822101913.6000	725943.5938	-0.0032	0.7671	0.9726	0.0040

Log Sold Price

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
gbr	Gradient Boosting Regressor	0.2104	0.0865	0.2922	0.8328	0.0205	0.0157	0.0240
lightgbm	Light Gradient Boosting Machine	0.2176	0.0956	0.3065	0.8167	0.0215	0.0162	0.0160
rf	Random Forest Regressor	0.2206	0.0993	0.3122	0.8096	0.0220	0.0165	0.0840
et	Extra Trees Regressor	0.2239	0.1026	0.3164	0.8036	0.0222	0.0167	0.0620
ridge	Ridge Regression	0.2405	0.1192	0.3405	0.7702	0.0235	0.0179	0.0080
huber	Huber Regressor	0.2243	0.1284	0.3446	0.7528	0.0233	0.0166	0.0100
br	Bayesian Ridge	0.2350	0.1302	0.3488	0.7499	0.0237	0.0175	0.0070
knn	K Neighbors Regressor	0.2560	0.1318	0.3595	0.7470	0.0252	0.0191	0.0070
dt	Decision Tree Regressor	0.2946	0.1762	0.4173	0.6621	0.0292	0.0220	0.0060
ada	AdaBoost Regressor	0.3815	0.2278	0.4768	0.5549	0.0333	0.0286	0.0260
par	Passive Aggressive Regressor	0.4422	0.3284	0.5593	0.3371	0.0386	0.0329	0.0050
omp	Orthogonal Matching Pursuit	0.4681	0.3856	0.6172	0.2559	0.0430	0.0353	0.0040
lasso	Lasso Regression	0.5640	0.5259	0.7235	-0.0157	0.0506	0.0423	0.4560
en	Elastic Net	0.5640	0.5259	0.7235	-0.0157	0.0506	0.0423	0.0050
llar	Lasso Least Angle Regression	0.5640	0.5259	0.7235	-0.0157	0.0506	0.0423	0.0050
dummy	Dummy Regressor	0.5640	0.5259	0.7235	-0.0157	0.0506	0.0423	0.0090
lar	Least Angle Regression	0.6294	133.1679	3.9647	-292.8231	0.0572	0.0479	0.0050
Ir	Linear Regression	0.6294	133.1705	3.9647	-292.8287	0.0572	0.0479	0.5150

POTENTIAL IMPROVEMENTS

- Get more domain knowledge of real estate
- Utilize the API better and call it every few weeks to import more data over time. Due to fear of getting charged I only used the API call once which reduced my data to only 2000 observations
- Understand PyCaret and how to use it
- Improve readability of EDA and cleaning modules

