Term Deposit Prediction & Marketing Analysis

Targeting Customers that are likely to opt into a Term Deposit service

Uche Kalu

4/9/2022

The goal of this analysis is to determine which features in the bank data relates to the bank's marketing campaign goal of having customers opt-into a TERM DEPOSIT (financial product)

Executive Summary

- Duration since last contact and success of prior enrollments are correlated to success of Term Deposit opt-in
- A strategy targeting customers that haven't been contacted in 319 days and have those with prior enrollments yields 32% positive outcomes (enrollments) vs 4.3% otherwise.

Analyzing and Investigating the Data

```
<- "bank_term_deposit_marketing_analysis.xlsx"</pre>
sheets <- excel_sheets(path) # displays all d sheet names in d workbook
sheets
    [1] "PROCEDURE"
                                        "DATA DESCRIPTION"
##
    [3] "Step 1 - Collect Information" "CLIENT_INFO"
##
##
    [5] "LOAN_HISTORY"
                                        "MARKETING HISTORY"
    [7] "SUBSCRIPTION HISTORY"
                                        "Step 2 - Merge Information"
                                        "Step 3 - Marketing Analysis"
    [9] "CLIENT_MERGE"
## [11] "DAILY RANGE"
                                        "JOB ANALYSIS"
```

Our dataset parameters are in sheets 4 to 7 so we select only 4th to 7th sheets and combine all their data into one sheet.

```
data_joined_tbl <- sheets[4:7] %>%
  map(~ read_excel(path = path, sheet = .)) %>%
  reduce(left_join)

## Joining, by = "ID"

## Joining, by = "ID"

## Joining, by = "ID"

data_joined_tbl %>% glimpse()
```

```
## Rows: 45,211
## Columns: 18
                                                                                           <chr> "2836", "2837", "2838", "2839", "2840", "2841", "2842", "~
## $ ID
                                                                                           <dbl> 58, 44, 33, 47, 33, 35, 28, 42, 58, 43, 41, 29, 53, 58, 5~
## $ AGE
                                                                                           <chr> "management", "technician", "entrepreneur", "blue-collar"~
## $ JOB
## $ MARITAL
                                                                                           <chr> "married", "single", "married", "married", "single", "mar~
## $ EDUCATION
                                                                                           <chr> "tertiary", "secondary", "secondary", "unknown", "unknown~
                                                                                           <chr> "no", "no", "no", "no", "no", "no", "no", "yes", "no", "n~
## $ DEFAULT
                                                                                           <dbl> 2143, 29, 2, 1506, 1, 231, 447, 2, 121, 593, 270, 390, 6,~
## $ BALANCE
                                                                                           <chr> "yes", "yes", "yes", "no", "yes", "yes
## $ HOUSING
## $ LOAN
                                                                                           <chr> "no", "no", "yes", "no", "no", "no", "yes", "no", "no", "~
## $ CONTACT
                                                                                           <chr> "unknown", "unknown", "unknown", "unknown", "u~
                                                                                           ## $ DAY
## $ MONTH
                                                                                          <chr> "may", "may", "may", "may", "may", "may", "may", "may", "ay", "ay", "ay", "may", "may",
## $ DURATION
                                                                                           <dbl> 261, 151, 76, 92, 198, 139, 217, 380, 50, 55, 222, 137, 5~
## $ CAMPAIGN
                                                                                           ## $ PDAYS
                                                                                           ## $ PREVIOUS
                                                                                           ## $ POUTCOME
                                                                                           <chr> "unknown", "unknown", "unknown", "unknown", "u~
## $ TERM_DEPOSIT <chr> "no", "no",
```

Analyze and Prepare the Data using recipe package

Modeling and Machine learning often involves a response feature (Enrolled in TERM_DEPOSIT, yes/no) and many predictor features (AGE, JOB, MARITAL, etc). We are going to determine which predictors are related to the response variable. We do this using Binary Correlation Analysis

```
recipe_obj <- recipe(~ ., data = data_joined_tbl) %>%
  step_rm(ID) %>%
  step_discretize(all_numeric(), options = list(min_unique = 1)) %>%
  step_dummy(all_nominal(), one_hot = TRUE, naming = partial(dummy_names, sep = "__")) %>%
  prep()

data_transformed_tbl <- data_joined_tbl %>%
  bake(recipe_obj, new_data = .)
```

```
data_transformed_tbl %>% glimpse()
```

```
## Rows: 45,211
## Columns: 74
## $ AGE__bin_missing
                      ## $ AGE__bin1
                      <dbl> 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, ~
## $ AGE bin2
                      <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ AGE__bin3
                      <dbl> 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, ~
## $ AGE bin4
                      <dbl> 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ~
## $ JOB admin.
                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, ~
## $ JOB__blue.collar
                      <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ JOB__entrepreneur
                      <dbl> 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ~
## $ JOB_housemaid
                      ## $ JOB__management
                      <dbl> 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ JOB__retired
                      <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, ~
```

```
## $ JOB self.employed
               ## $ JOB__services
               ## $ JOB student
               ## $ JOB__technician
               <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, ~
## $ JOB unemployed
               ## $ JOB unknown
               <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
               <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0. ~
## $ MARITAL divorced
## $ MARITAL married
               <dbl> 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, ~
## $ MARITAL_single
               <dbl> 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, ~
## $ EDUCATION__primary
               <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, ~
## $ EDUCATION__secondary
               <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, ~
## $ EDUCATION__tertiary
               <dbl> 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
## $ EDUCATION_unknown
               <dbl> 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, ~
## $ DEFAULT__no
               <dbl> 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, ~
## $ DEFAULT__yes
               <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ~
## $ BALANCE__bin_missing
               ## $ BALANCE__bin1
               <dbl> 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, ~
## $ BALANCE bin2
               <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, ~
## $ BALANCE__bin3
               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, ~
## $ BALANCE bin4
               <dbl> 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
## $ HOUSING__no
               <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ HOUSING yes
               <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
               <dbl> 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ LOAN__no
               <dbl> 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ LOAN yes
## $ CONTACT cellular
               ## $ CONTACT telephone
               ## $ CONTACT__unknown
               ## $ DAY__bin_missing
               ## $ DAY__bin1
               ## $ DAY bin2
               ## $ DAY__bin3
               ## $ DAY__bin4
               ## $ MONTH_apr
               ## $ MONTH__aug
               ## $ MONTH dec
               ## $ MONTH__feb
               ## $ MONTH jan
               ## $ MONTH__jul
               ## $ MONTH__jun
               ## $ MONTH__mar
               ## $ MONTH may
               ## $ MONTH nov
               ## $ MONTH__oct
               ## $ MONTH__sep
## $ DURATION__bin1
               <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, ~
## $ DURATION__bin2
               <dbl> 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, ~
## $ DURATION__bin3
               <dbl> 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, ~
## $ DURATION__bin4
               <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, ~
## $ CAMPAIGN__bin1
               ## $ CAMPAIGN_bin2
               ## $ CAMPAIGN bin3
               ## $ PDAYS bin missing
```

```
## $ PDAYS bin1
      ## $ PREVIOUS bin1
      ## $ POUTCOME__failure
      ## $ POUTCOME__other
      ## $ POUTCOME__success
      ## $ POUTCOME unknown
      ## $ TERM DEPOSIT no
      ## $ TERM_DEPOSIT__yes
```

Correlation of various features to Term Deposit enrollment.

We perform a correlation analysis between the response variable (TERM_DEPOSIT_yes) and the rest of the features.

```
correlation_tbl <- data_transformed_tbl %>%
  cor(y = data_transformed_tbl$TERM_DEPOSIT__yes) %>%
  as_tibble(rownames = "feature") %>%
  rename(TERM_DEPOSIT__yes = V1) %>%
  separate(feature, into = c("feature", "bin"), sep = "__") %>%
  filter(!is.na(TERM_DEPOSIT__yes)) %>%  # removes all NA values
  filter(!str_detect(feature, "TERM_DEP")) %>%
  arrange(abs(TERM_DEPOSIT__yes) %>% desc()) %>%
  mutate(feature = as_factor(feature) %>% fct_rev())
```

```
## # A tibble: 63 x 3
                       TERM_DEPOSIT__yes
##
     feature bin
      <fct>
              <chr>
                                   <dbl>
## 1 DURATION bin4
                                   0.318
##
   2 POUTCOME success
                                   0.307
## 3 DURATION bin1
                                  -0.191
## 4 POUTCOME unknown
                                  -0.167
## 5 CONTACT unknown
                                  -0.151
## 6 HOUSING no
                                   0.139
## 7 HOUSING yes
                                  -0.139
## 8 CONTACT cellular
                                   0.136
## 9 MONTH
                                   0.129
              mar
## 10 MONTH
              oct
                                   0.129
## # ... with 53 more rows
```

Visualize the Correlations Funnel using Scatterplot

Examining the result chart, we deduce that Duration since last contact and success of prior enrollments are correlated to success of Term Deposit opt-in.

```
correlation_tbl %>%
  ggplot(aes(TERM_DEPOSIT__yes, y = feature, text = bin)) +
  geom_vline(xintercept = 0, linetype = 2, color = "red") +
  geom_point(color = "#2c3e50") + # creates datapoints in d charts
  geom_text_repel(aes(label = bin), size = 3, color = "#2c3e50") +
```

Bank Marketing Analysis

Lets Interpret the Correlations

We have bins as values for Duration, Balance, Campaign, Day and Age in the chart and we need to know what values are in them bins?

```
recipe_obj %>% tidy()
## # A tibble: 3 x 6
    number operation type
                                 trained skip id
##
##
      <int> <chr>
                      <chr>
                                 <lgl>
                                         <lgl> <chr>
                                 TRUE
                                         FALSE rm iitTS
## 1
          1 step
## 2
          2 step
                      discretize TRUE
                                         FALSE discretize_J6imL
## 3
          3 step
                      dummy
                                 TRUE
                                         FALSE dummy_eAE30
bins_tbl <- recipe_obj %>% tidy(2)
bins_tbl
```

```
## # A tibble: 28 x 3
     terms value id
##
##
     <chr> <dbl> <chr>
## 1 AGE
            -Inf discretize_J6imL
             33 discretize_J6imL
## 2 AGE
## 3 AGE
   2 AGE
              39 discretize J6imL
## 4 AGE
              48 discretize J6imL
## 5 AGE Inf discretize J6imL
## 6 BALANCE -Inf discretize_J6imL
## 7 BALANCE 72 discretize_J6imL
## 8 BALANCE 448 discretize_J6imL
## 9 BALANCE 1428 discretize_J6imL
## 10 BALANCE Inf discretize_J6imL
## # ... with 18 more rows
View(bins_tbl)
bins_tbl %>% filter(terms == "DURATION")
## # A tibble: 5 x 3
##
   terms value id
    <chr> <dbl> <chr>
## 1 DURATION -Inf discretize_J6imL
## 2 DURATION 103 discretize_J6imL
## 3 DURATION 180 discretize_J6imL
## 4 DURATION 319 discretize J6imL
## 5 DURATION Inf discretize_J6imL
```

STRATEGY

A strategy targeting customers that haven't been contacted in 319 days and have those with prior enrollments yields 32% positive outcomes (enrollments) vs 4.3% otherwise.

We focus on value - BIN4 in DURATION column and value - success in POUTCOME column since they are the top columns that affects Term Deposit enrollment and their stated values are the only values at far RHS

```
strategy_tbl
```

```
## # A tibble: 4 x 5
```

```
##
    POTENTIAL
                  TERM_DEPOSIT n prop label_text
##
    <chr>
                   <chr> <int> <dbl> <glue>
## 1 High Potential no
                               8364 0.683 n: 8364
## prop: 68%
## 2 High Potential yes
                               3887 0.317 n: 3887
## prop: 32%
## 3 Normal
                               31558 0.957 n: 31558
                  no
## prop: 96%
## 4 Normal
                  yes
                                1402 0.0425 n: 1402
## prop: 4%
```

REPORT RESULTS using a stacked Bar chart

```
strategy_tbl %>%
  ggplot(aes(POTENTIAL, prop, fill = TERM_DEPOSIT)) +
  geom_col() +
  geom_label(aes(label = label_text), fill = "white", color = "#2c3e50") +
  scale_fill_tq() +
                                         # changes d color of d stacked bars
  scale_y_continuous(labels = scales::percent_format()) +
  theme_tq() +
  labs(title = "Bank Marketing Strategy",
      subtitle = str_glue("Targeting customers that haven't been contacted in 319 days or those with p
```

Bank Marketing Strategy

