## 1 The Truncated Power Basis

## 1.1 Piecewise Polynomial Functions

Let  $\xi = \{\xi_1 < \xi_2 < \dots < \xi_{l+1}\}$  be a set of strictly increasing series of points, and let k be a positive integer. Further, let  $P_1, \dots, P_l$  denote a sequence of l polynomials of order k. Then the corresponding piecewise polynomial (pp) function of order k is defined as follows:

$$f(x) = P_i(x)$$
 if  $\xi_i < x < \xi_{i+1}$ 

for i = 1, ..., l.  $\{\xi\}$  are known as the breakpoints of f. At the interior breakpoints,  $\xi_2, ..., \xi_l$ , the function value is defined by specifying f to be right continuous; that is,

$$f(\xi_i) = f(\xi_i^+), \quad i = 2, \dots, l$$

However, in a sense, without this specification, the function has two values at any interior breakpoint: the value it gets from the polynomial piece to the left of the breakpoint,  $f(\xi_i^-) = P_{i-1}(\xi_i)$ , in addition to the value it gets from the polynomial piece to the right of the breakpoint,  $f(\xi_i^+) = P_i(\xi_i)$ . To properly define the function, one can specify f to be right-continuous:

$$f\left(\xi_{i}\right) \equiv f\left(\xi_{i}^{+}\right) \tag{1}$$

Denote the set of pp functions of order k with breakpoints  $\xi = \{\xi_1, \dots, \xi_{l+1}\}$  by

$$\mathcal{P}_{k,\xi}$$
.

 $\mathcal{P}_{k,\xi}$  is a linear space having dimension kl, as it consists of l polynomials, each having k polynomial coefficients. The  $j^{th}$  derivative of a pp f,

$$D^{j}f$$

is a pp function of order k-j having the same breakpoint sequence and constructed from the same  $j^{th}$  derivatives of the polynomial pieces from which f was constructed. This "definition" dodges much of the complicated discussion of the derivatives of a pp function at its breakpoints and thus must be treated with considerable care in context of the fundamental theorem of calculus.

**Proposition** pp function, f satisfies

$$f(x) - f(a) = \int_{a}^{x} (Df)(t) dt$$
 for all  $x$ 

if and only if f is a continuous function.

Consider a piecewise constant function f: by the previous definition, its first derivative is identically zero, and is therefore equal to the usual derivative of f if and only if f is constant.

This prerequisite information is merely for the ability to responsibly refer to the set of piecewise polynomial functions and have a shorthand way of doing so. These means enable us to introduce two sets of basis functions: first, the truncated power basis, followed by B-spline basis functions. We will see that both are closely related, with the former having some properties which leave them unattractive for function approximation and thus present the construction of B-splines and how to use them to construct a representation of  $\mathcal{P}_k$ . In practice, one typically is given some information about an unknown function, g, and the task is to construct a function  $f \in \mathcal{P}_{k,\xi}$  which satisfies conditions that g also satisfies, and in addition, has a certain number of continuous derivatives. These conditions define a subspace of  $\mathcal{P}_{k,\xi}$ ,  $\mathcal{P}_{k,\xi,\nu}$  for which we will need a corresponding basis.

For illustrative purposes, consider the task of smoothing a histogram using parabolic splines. Suppose we are given points

$$\tau_1 < \tau_2 < \cdots < \tau_{n+1}$$

and non-negative numbers  $h_1, h_2, \ldots, h_n$ , with  $h_i$  denoting the height of the histogram over the interval  $(\tau_i, \tau_{i+1})$ . The histogram is an approximate representation of some underlying density function, g. Letting  $\Delta \tau_i = \tau_{i+1} - \tau_i$ , one may interpret  $h_i \Delta \tau_i$  as (approximately) equal to the integral of g over  $[\tau_i, \tau_{i+1}]$ . One may impose the following interpolation conditions on our smooth function, f:

$$\int_{\tau_i}^{\tau_{i+1}} f(x) \, dx = h_i \Delta \tau_i$$

for i = 1, ..., n. Let f be a piecewise polynomial of order 3 having continuous first derivative:

$$f \in \mathcal{P}_{3,\xi} \cap \mathcal{C}^{(1)}$$

Choose the breakpoint sequence  $\xi$  to coincide with  $\tau = \{\tau_1, \dots, \tau_{n+1}\}$ . If g is smooth and vanishes outside its support,  $[\tau_1, \tau_{n+1}]$ , then

$$g^{(j)}(\tau_1) = g^{(j)}(\tau_{n+1}) = 0,$$

for j = 0, 1, ..., d, where d characterizes the extent of the smoothness of g, we may also wish to require f to obey two additional interpolation constraints:

$$f\left(\tau_{1}\right)=f\left(\tau_{n+1}\right)=0,$$

giving a total of n + 2 interpolation conditions. These, along with the 2(n - 1) continuity conditions yield a total 3n constraints on the 3n polynomial coefficients,

$$c_{ji} \equiv D^{j-1} f\left(\xi_i^+\right).$$

These conditions lead to the system of equations:

$$c_{11} = 0$$

$$c_{11} + \frac{c_{21}}{2!} \Delta \tau_1 + \frac{c_{31}}{3!} (\Delta \tau_1)^2 = h_1$$

$$c_{11} + c_{21} \Delta \tau_1 + \frac{c_{31}}{2!} (\Delta \tau_1)^2 - c_{12} = 0$$