

Are precipitation-based IDF curves appropriate for cost effective and resilient infrastructure design in snow-dominated regions? Next-generation curves with inclusion of rain-on-snow events

HONGXIANG YAN, NING SUN, MARK WIGMOSTA, ZHANGSHUAN HOU Hydrology Technical Group, Pacific Northwest National Laboratory (PNNL), Richland, WA

Limitations of Current IDF Curve Design Procedure (1)

Current IDF curve construction?

- ▶ In the U.S., IDF curves are typically constructed based on only the precipitation frequency and duration. Snowmelt and rain-on-snow (ROS) events are generally neglected.
- Assume: extreme precipitation intensity > snowmelt and ROS intensity.
- Surface water design manuals for many cities and counties suggest/require the use of precipitation IDF-based hydrologic design; even in snowdominated environments.

Limitations of Current IDF Curve Design Procedure (2)

Proudly Operated by Battelle Since 1965

Why snowmelt is important?

- According to the year 2000 population map, approximately 1/6 of the world's population lives in snowmelt-dominated regions.
- Based on U.S. Department of Transportation, over 70% of the nation's roads are located in snowy regions.
- Snowmelt, especially ROS events can cause lifethreatening flooding events and severe landslides in these regions.

ROS resulted in the largest flood event in Oregon in 1990s. Property damage: > \$500 million

Inclusion of Snow Process in IDF Curve Design

Why snowmelt process should be included?

- Current precipitation-based IDF design implicitly assumes precipitation is in the form of rainfall that is immediately subject to "rainfall-runoff" processes.
- In snow-dominated regions, much of the precipitation is stored as snowpack and may not be immediately available for the "rainfall-runoff" processes.
- ▶ It is necessary to estimate the actual amount of water reaching the land surface (rainfall/snowmelt/ROS)

What are the possible consequences?

- If actual water available for runoff intensity < precipitation intensity, the infrastructure may be <u>over-designed</u>, leading to unnecessary cost.
- ▶ If actual water available for runoff intensity > precipitation intensity, the infrastructure may be <u>under-designed</u>, leading to significant underestimates of flood risk.

Next-generation IDF (NG-IDF) Curves (1)

What is the next-generation IDF (NG-IDF) curve?

- ► The NG-IDF curves quantify the actual available amount of water for "rainfall-runoff" process through mass balance: <u>P \(\Delta \)SWE</u>
- The NG-IDF curves include all melt events (snowmelt and ROS), plus rainfall on snow-free ground.
- The NG-IDF curves can characterize the actual maximum extreme events.

So, what does the NG-IDF curve look like?

Next-generation IDF (NG-IDF) Curves (2)

Proudly Operated by Battelle Since 1965

Traditional precipitation-based IDF (rainfall + snowfall)

Next-generation IDF (NG-IDF) Curves (2)

Proudly Operated by Battelle Since 1965

Quantify the actual water reaching the land surface including all combinations of melt/ROS/rainfall

Assessment of NG-IDF Curves in Infrastructure Design

a). Over-design

if the precipitation IDF value > NG-IDF value

b). Under-design

if the NG-IDF value > precipitation IDF value

c). Proper design

if the differences between the precipitation IDF and NG-IDF values are trivial (< 10%)

Study Area, Data Sources, and Quality Control

Proudly Operated by Battelle Since 1965

SNOTEL Elevations (m) < 499 499 - 969 969 - 1433

1433 - 1901

1901 - 2523

2523 - 4372

- Snowmelt is responsible for 70% of the total runoff in the western U.S.
- Long-term meteorological and snowpack observations are acquired from USDA-NRCS SNOTEL stations across the western U.S.
- After a rigorous QAQC procedure, a total of 376 out of 785 SNOTEL stations are selected that have at least 30 years of record.

RAINFALL VS. MELT

Snowmelt, ROS, and Actual Water for Runoff based on Daily SNOTEL

VS. MELT

Melt only (M_o)
 No precipitation with a decrease in SWE

All melt events + ROS (M_ros)
 Decrease in SWE with/without precipitation

Importance of Rain-on-Snow (ROS) Events

- ROS events are more frequent in the PNW and Sierra Nevada.
- The ratios between all melt events (M_ros) and melt only (M_o) are greater than 1.1 for the 10- and 100-year events at 197 and 210 of the 376 stations, respectively.
- On average, when ROS events are included, the 10- and 100-year events increased by 26% and 35%, respectively.

Percentage of rain-on-snow events

10-year event ratio: M_ros/M_o

100-year event ratio: M ros/M o

NG-IDF for Infrastructure Design in Western U.S.

Proudly Operated by Battelle Since 1965

100-year event

- Under-design: at 45% and 43% stations for the 24-h, 10- and 100-year events. NG-IDF values exceed precipitation IDF values by 10-75% for the 10-year event and 10-125% for the 100-year event.
- Over-design: at 9% (10-year) and 20% (100-year) stations. Precipitation IDF overestimate by 10-34% (10-year) and 10-75% (100-year).
- Proper design: at 36% stations for both 10- and 100-year events.

Future Study (ongoing)

To update traditional precipitation IDF curves:

Grid cell (800m) based NG-IDF curves over the western U.S.

Future Study (ongoing)

To update traditional precipitation IDF curves:

Grid cell (800m) based NG-IDF curves over the western U.S.

The presented work is under revision by WRR: "Next-Generation Intensity-Duration Frequency Curves for Hydrologic Design in Snow-Dominated Environments"

This research is funded by the U.S. Department of Defense SERDP Project RC-2546 to the Pacific Northwest National Laboratory (PNNL).

Questions?