

AGENDA

Pitch deck title

1 BACKGROUND AND DATA 02 THEORY

7/1/20<mark>XX</mark>

BACKGROUND AND DATA

BACKGROUND

เนื่องจากการตรวจสอบความผิดปกติของการ ใช้บัตรเครดิตนั้นอาจจะต้องใช้เวลาในการตรวจสอบต่างๆ จากผู้ที่ตรวจสอบจากทางธนาคารและอาจจะผิดพลาด จากความผิดพลาดของมนุษย์ (Human error) เราประยุกต์การใช้ Deep learning ในการช่วย ค้นหาการใช้บัตรเครดิตที่มีความผิดปกติ

THEORY

THEORY

Autoencoder

Autoencoder เป็น Neural Network แบบหนึ่งที่รับ Input เข้ามา แล้ว Output ออกมาเป็นข้อมูลเดิม แต่ความพิเศษก็คือ ที่ตรงกลางของ Network โดยทั่วไปแล้วจะบีบอัดข้อมูล ให้มีขนาดเล็กลง โดยมีขั้นตอนดังนี้

- 1. ตรวจสอบ Data ก่อนว่า Data มีความเป็น Imbalance อยู่มากๆ ซึ่งส่วนใหญ่ Anomaly ก็จะมีคุณลักษณะนี้
- 2. นำ Data ที่ได้กรองเอา Data ที่เป็น Anomaly ออกให้หมด และนำไป Train ใน Network ของเราโดยใช้ mean squared error loss function (MSE)
- 3.หลังจาก Train เสร็จแล้วเราจะได้ Model ที่มีค่า MSE ที่ต่ำมาก ๆ เมื่อนำ Data ที่เป็น Anomaly เข้าไป Test จะได้ค่า MSE ที่สูงมาก ๆ 4. หลังจากนั้นเราจึงตั้ง Threshold ขึ้นเพื่อแยก Anomaly และ Normally ออกจากกัน

PROCESSING

PROCESSING

Data Understanding

การทำความเข้าใจข้อมูล และตัวแปรต่างๆ ที่จะนำมา วิเคราะห์

Pre-processing

การเตรียมข้อมูลเพื่อให้พร้อมที่จะ นำไปทำ การวิเคราะห์ต่อไปเพราะ หากข้อมูลที่นำไปไม่ถูกต้องหรือ ข้อมูลที่ไม่เป็นประโยชน์นั้นอาจจะ ส่งผลต่อการวิเคราะห์ได้

Modeling

การสร้างรูปแบบความสัมพันธ์
(Relational Pattern) และจะอยู่
ในรูปของแบบจำลองบนซอฟต์แวร์
(Computer Model) หรือ
สมการความสัมพันธ์

Evalulation

การวัดประสิทธิภาพในการ ทำงานของโมเดล

DATA UNDERSTANDING

Distribution of target variable

จากข้อมูลการใช้งานบัตรเครดิต ทั้งรูปแบบปกติ และ ข้อโกง โดยมีข้อมูลทั้งหมด 284,807 รายการ โดยมีสัดส่วนที่ใช้งานใน รูปแบบปกติอยู่ที่ 99.8 % และ ใช้งานในรูปแบบจ้อโกงอยู่ที่ 0.173 %

PRE-PROCESSING

Normalization

```
[ ] from sklearn import preprocessing
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import confusion_matrix , roc_auc_score, roc_curve

[ ] min_max_scaler = preprocessing.MinMaxScaler()
    df_cred_df_cred.drop("Time",axis=1)
    df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:,:-1])
    df_cred_normalized = pd.DataFrame(df_cred_scaled)

[ ] df_cred_normalized["Class"]=df_cred["Class"]

[ ] df_cred_normalized["Class"].value_counts()
```

PRE-PROCESSING

Splitting strategy

```
[ ] df_cred_normalized_test_part_1=df_cred_normalized_train.sample(frac=0.05)
    df_cred_normalized_train=df_cred_normalized_train.drop(df_cred_normalized_test_part_1.index)
    df_cred_normalized_test_part_2=df_cred_normalized_train.sample(frac=0.05)
    df_cred_normalized_train=df_cred_normalized_train.drop(df_cred_normalized_test_part_2.index)
```

Merging

```
[ ] df_cred_normalized_test_set=df_cred_normalized_test_part_1.append(df_cred_normalized_test_class_1)
df_cred_normalized_validation_set=df_cred_normalized_test_part_2.append(df_cred_normalized_validation_class_1)
```

PRE-PROCESSING

Splitting for train set and test set

```
X_train, X_test = train_test_split(df_cred_normalized_train, test_size=0.2, random_state=2020)
X_train = X_train[X_train.Class == 0]
X_train = X_train.drop(['Class'], axis=1)
y_test = X_test['Class']
X_test = X_test.drop(['Class'], axis=1)
X_train = X_train.values
X_test = X_test.values
X_train.shape
```

MODELING

Setting Encoder and Decoder

```
input_dim = X_train.shape[1]
encoding_dim = 20
input_layer = Input(shape=(input_dim, ))
encoder = Dense(encoding_dim*2, activation="sigmoid")(input_layer)
encoder = Dense(encoding_dim, activation="sigmoid")(input_layer)
encoder = Dense(8,activation="sigmoid")(encoder)
decoder = Dense(20, activation='sigmoid')(encoder)
decoder = Dense(40, activation='sigmoid')(encoder)
decoder = Dense(input_dim, activation='sigmoid')(decoder)
autoencoder = Model(inputs=input_layer, outputs=decoder)
```

MODELING

Setting Hyperparameters

MODELING

Using Mean square error: MSE

Using Mean square error: MSE

Using Mean square error: MSE

[]	normal_	_error_df.describe() ### non	fraud	cases
		reconstruction_error true_	class	
	count	14216.000000 14	216.0	
	mean	0.000249	0.0	
	std	0.000773	0.0	
	min	0.000018	0.0	
	25%	0.000092	0.0	
	50%	0.000148	0.0	
	75%	0.000248	0.0	
	max	0.051072	0.0	

Decided evaluation metrics over the threshold

```
error_df_test["predicted_class"]=[1 if x > 0.001 else 0 for x in error_df_test["reconstruction_error"]]
error df test["predicted class"]=[1 if x > 0.004 else 0 for
x in error df test["reconstruction error"]]
error df test["predicted class"]=[1 if x > 0.0039888 else 0 for
 x in error df test["reconstruction error"]]
error_df_test["predicted class"]=[1 if x > 0.003 else 0 for x in
 error df test["reconstruction error"]]
```

Final evaluation

```
[ ] error_df_test["predicted_class"]=[1 if x > 0.003 else 0 for x in error_df_test["reconstruction_error"]]
```

```
LABELS = ["Normal", "Fraud"]
y_pred = [1 if e > 0.00398888 else 0 for e in error_df_test.reconstruction_error.values]
conf_matrix = confusion_matrix(error_df_test.true_class,error_df_test.predicted_class)
plt.figure(figsize=(8, 8))
sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt="d");
plt.title("Confusion matrix")
plt.ylabel('True class')
plt.xlabel('Predicted class')
plt.show()
```


	precision	recall	f1-score	support
0 1	1.00 0.78	1.00 0.77	1.00 0.77	13505 246
accuracy macro avg weighted avg	0.89 0.99	0.88 0.99	0.99 0.88 0.99	13751 13751 13751

CONCLUSIONS

จากผลลัพธ์จากโปรแกรมจะเห็นว่าการทำนายความผิดปกติ ด้วย Autoencoder นั้นมีความแม่นยำอยู่ที่ 0.99 ซึ่งสูงมาก ดังนั้น ในการแบ่งประเภทของการใช้บัตรเครดิตครั้งถัด ๆไปขอธนาคารอาจจะใช้ Model นี้เข้ามาช่วยในการจำแนก ซึ่งในส่วนของที่ทำนายผิด 0.01 อาจจะต้องนำส่วนนี้มาพิจารณาเพิ่มเติมเนื่องจากหาก ผู้คนส่วนนี้ไม่ สามารถใช้บัตรเครดิตได้จากการทำนายที่ผิดของ model อาจจะทำให้ ธนาคารเสียชื่อเสียง รวมถึงอาจจะเสียลูกค้าได้ ซึ่งอาจจะแก้ไขโดยหาก การทำนายจาก model นั้นตกอยู่ในส่วนของผิดปกติ อาจจะส่งข้อมูลนี้ ไปให้ผู้วิเคราะห์อีกครั้งหนึ่งเพื่อพิจารณาระงับการใช้บัตรเครดิต