NAME:	CAMPUS
STREAM:	
545/2	
CHEMISTRY	
PAPER 2	
JUNE, 2023	
2 HOURS	

PRE-MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY PAPER 2 2 HOURS

Instructions to candidates;

- Section A consists of 10 structured questions. Attempt all questions in this section.
 Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi-structured questions. Attempt any two questions from this section. Answers to the section must be written in the answer booklets provided. In both sections, all working must be shown clearly.

					FOR	EXA	MIN	ER'S	USE (ONLY	•			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

SECTION A: (50 MARKS)

1. (a) What is	(1 mark)		
•••••			
	one reason why alloys are prefer		(1 mark)
		-	, ,
	table below by stating the comp		
provided	table below by stating the comp	onents and one use of each	(3 marks)
Alloy	Composition	Use	
Brass			
Solder			
Soluci			
2 \ 1			
	ertain conditions a mixture of iro	n and sulphur can be conve	erted in a
compound P			
i) State the co	ondition(s) for reaction leading to	formation of P from the m	nixture (1 mark)
•••••			••••••
	equation for the reaction leading	to formation of compound	
mixture			(1½ marks)
	of compound P was shaken with		
i) State what	-	eneess unute surpriume uero	(1 mark)
•			,
ii) Write equa	ation for the reaction that took pla	ace in b (i).	(1 ½ marks)

3. a) Write equation for the reaction that would take place if each of the following was				
burnt separately in excess oxygen				
i) Magnesium	(1 ½ marks)			
ii) Phosphorus	(1 ½ marks)			
b) Each of the products from (a) was carefully collected, si				
resultant solution tested with litmus paper(s). State what w	as observed in the case of the			
solution of the product from;				
i) Burnt magnesium	(½ mark)			
ii) Burnt phosphorus	(½ mark)			
c) Name the type of reaction that would take place if the ac	queous solutions in (b) were			
mixed together.	(1 mark)			
4. When excess hydrogen was passed over 2.50g of a stror	ngly heated oxideof iron, Z,			
1.82g of solid residue remained				
(a) State a reason why there is decrease in mass	(1 mark)			
(b) . Calculate the empirical formula of Z. (O=16, Fe=56)	(4 marks)			

5. (a) Copper (II) carbonate was heated until there was no further change.	(1 1)
i) State what was observed.	(1 mark)
ii) Write equation for the reaction that took place.	(1½ marks)
b) Dilute sulphuric acid was added to the residue from (a) above and the n	
i) State what was obtained	(1 mark)
ii) Write an ionic equation for the reaction that took place.	(1 mark)
	•••••
6. a) Ethanol reacts with concentrated sulphuric acid to form ethene.	
I) state the conditions for the reaction	(1 mark)
ii) write the equation for the reaction leading to the formation of ethene from	om ethanol
	(1 mark)
b) i) Name one reagent that could be used to identify ethene.	(½ mark)
ii) State what would be observed if the reagent you have named in (b) (i) v	was used to test
for ethene.	(1 mark)
	••••••••••

c) Under appropriate conditions ethene molecules can react amongst themsel	lves to form a			
compound with a much larger molecular mass than ethene itself.				
i) State one word, which means conversion of a compound with a low molec	ular mass to			
one with a relatively larger molecular mass.	(½mark)			
ii) Name the compound with a much large molecular mass than ethene which	n is derived			
from ethene.	(½mark)			
iii) State on use of the compound that you have named in (b) (ii).	(½ mark)			
7. a) An acid R, with the formula $H_xC_yO_z$ contains 26.7% Carbon, 2.2% hydronic contains 26.7% contains 26				
71.1% Oxygen by mass.				
i) Calculate the empirical formular of anhydrous form of R. (2 mar	ks)			
(H=1, C=12, O=16)				
	••••••			
	•••••			
	•••••			
ii) Determine the values of X, Y and Z in the formula of R.	(2 marks)			
$(H_xC_yO_z = 90)$				
	•••••			
	•••••			

given that R is a dibasic acid	(3 marks)
8. a) The reaction between a given mass of calcium carbonate and d	ilute nitric acid gives a
high yield of carbon dioxide, but a similar reaction between the sam	e mass of calcium
carbonate and dilute sulphuric acid results into relatively lower yield	d of carbon dioxide
under identical conditions.	
i) Write equation for the reaction between calcium carbonate and dil	lute nitric acid.
	(1 ½ marks)
	higher yield of carbo
ii) Briefly explain why calcium carbonate/nitric acid mixture gives a	a migner yield of carbo
ii) Briefly explain why calcium carbonate/nitric acid mixture gives a dioxide compared to calcium carbonate/sulphuric acid mixture.	(2 marks)
ii) Briefly explain why calcium carbonate/nitric acid mixture gives a dioxide compared to calcium carbonate/sulphuric acid mixture.	
	(2 marks)

Calculate the maximum volume of carbon dioxide, measured at STP that would be given
off if 3.5g of sodium hydrogen carbonate was heated until there was no further change.
(H=1, C=12, O=16, Na=23, 1 mole of a gas occupies 22400cm ³ at s.t.p) (2 ½ marks)

9. The table below shows the number of electrons, neutrons and protons in particles A to F.

Particle	Electrons	Neutrons	Protons
P	19	20	19
Q	18	22	18
R	19	22	19
S	10	8	8
Т	10	14	13
U	2	2	2

a)	Identify	the	letters	that	present
----	----------	-----	---------	------	---------

i) a cation	(½ mark)
ii) an anion	(½ mark)
iii) a pair of isotopes	(½ mark)
iv) atoms of elements in the same group of the periodic table.	(1 mark)

b) Particle T combined with particle S to from a compound W. write what would be the				
most accurate formula of W.	(1 mark)			
10. a) State what would be observed if into aqueous potassium io	dide was;			
i) bubbled chlorine	(1 marks)			
ii) added 2-3 drops of lead(II)nitrate solution.	(½ marks)			
b) i) Give a reason for the reaction in (a) (i).	(1 mark)			
ii) Write an ionic equation for the reaction in (a) (ii).	(1 ½ mark)			
SECTION B (30 MARKS)				
Answer two questions from this section				
11. (a) Describe how a pure dry sample of carbon dioxide can be				
from calcium carbonate. (No diagram is required but illustrate	e your answer with an			
equation)	(5 marks)			
(b)Excess carbon was bubbled through a solution of sodium	hydroxide.			
(i) state what was observed.	(1 mark)			
(ii) Write equation(s) for the reaction(s) that took place.	(3 marks)			
(c)Burning magnesium ribbon was lowered into a jar of ca	arbon dioxide			
(i)state what was observed.	(1 ½ marks)			
(ii)Write an equation for the reaction that took place.	(1 ½ marks)			
c) (i)Briefly explain how carbon dioxide used in fire exting	guishers puts out a flame			
	(2 marks)			
(ii) State any other two uses of carbon dioxide	(1 mark)			

- 12. a) State the conditions under which Sulphur dioxide can be produced from
 - i) Sulphur
 - ii) Sodium sulphite;

write equations for the reaction leading to the formation of Sulphur dioxide in each case.

(4 marks)

b) State what would be observed, give a reason for your observation if Sulphur dioxide was bubbled through an acidified potassium dichromate (VI) solution.

(2 marks)

- c) write equations to show how Sulphur dioxide can be converted into sulphuric acid on industrial scale (4 ½ marks)
- d) Write an equation only, to show an example of a reaction in which sulphuric acid acts as;
- i) a dehydrating agent

(1 ½ marks)

ii) acid

(1 ½ marks)

iii) an oxidizing agent

(1 ½ marks)

13. a) Under suitable condition(s) a dry sample of ammonia can be prepared in the laboratory using ammonium chloride mixed with calcium hydroxide according to the following equation.

$$Ca (OH)_{2(s)} + 2NH_4Cl$$

$$colonized CaCl2(s) + 2NH3(g) + 2H2O(l)$$

- i) State;
 - the condition(s) for the reaction leading to the formation of ammonia.(1mark)
 - how ammonia is collected and give a reason for your answer .

(1 mark)

ii) Briefly explain why ammonia is not dried suing fused calcium chloride or concentrated sulphuric acid.(No equation is required).

(1 ½ marks)

- iii) Name the substance, which is usually used as a drying agent for ammonia. (½ mark)
- b) When some mass of ammonium chloride were used in the preparation of ammonia as shown by the equation in (a), 3.0g of pure and dry calcium chloride were obtained.

i) Determine the mass of ammonium chloride that produced the 3.0g of calcium chloride. $(2 \frac{1}{2} \text{ marks})$ (H=1.0, N=14.0, Cl=35.5, Ca=40.0). ii) Calculate the volume of dry ammonia, measured at room temperature that was collected. (2 marks) (1 mole of a gas occupies 24.0dm³ at room temperature) c) describe the reactions of dry ammonia with oxygen and write equation(s) for the reaction(s) that take(s) place. (5 marks) d) Write equation to show how ammonia reacts with chlorine. (1 ½ marks) 14. (a) what is meant by the term enthalpy of combustion? (1 mark) (b) draw and label the set-up of apparatus that can be used in an experiment to determine the enthalpy of combustion of Methanol (4 marks) (c) the enthalpy of combustion of methanol is -762KJmol⁻¹ (i) what does the negative sign show about the combustion of methanol (1 mark) (ii) state one use of methanol owing to its enthalpy of combustion (1 mark) (iii) write an equation for the complete combustion of methanol(CH₃OH) $(1 \frac{1}{2} \text{ marks})$ (iv) calculate the mass of methanol which on complete combustion will raise the

d) state any two ways in which enthalpy of combustion is important (2 marks)

temperature of 100cm³ of water by 17.5°c (C=12, H=1, O=16, specific heat capacity of

water is 4.2 and density of water is 1gcm⁻³

END

 $(4 \frac{1}{2} \text{ marks})$