Algebrai elméletek és induktív típusok specifikációja típuselméleti szignatúrákkal

A Ph.D. disszertáció tézisei

Szerző:

Kovács András

Témavezető:

Kaposi Ambrus

Eötvös Loránd Tudományegyetem Informatika Doktori Iskola

Doktori iskola vezetője: Csuhaj-Varjú Erzsébet

Doktori program: Az informatika alapjai és módszertana

Programvezető: Horváth Zoltán

2022 március

1. Bevezető

A tézis fő célja az, hogy kidolgozza bizonyos típuselméletek használatát algebrai elméletek és induktív típusok leírásához. Minden ilyen típuselméletben a típuskörnyezeteket értelmezzük algebrai szignatúraként, ami felsorolja egy algebrai elmélet szortjait, műveleteit és egyenleteit.

A függő típuselméletek kifejezőereje nagyban elősegíti a tömör és általános specifikációkat, és lehetővé teszi, hogy a szigatúrák szemantikáját és meta-elméletét olyan eszközökkel viszgáljuk, amelyek korábbról ismertek a típuselméletben.

Három szignatúra-elméletet mutatunk be. Mindhárom esetben lehetőség van az elméletek kisebb változtatásaira.

A jelenlegi kutatás kiegészíti és általánosítja az induktív szignatúrák korábbi irodalmát a típuselmélet kontextusában. A kutatásunk egyik fontos motivációja az volt, hogy nagy kifejezőerejű induktív típusokat fejlesszünk jövőbeli tételbizonyítórendszerekhez. Ebből kifolyólag a szignatúráink szintaxisa és szemantikája közel van ahhoz, ami praktikus rendszerekben lenne szükséges. Ugyanakkor az eredményeink felhasználhatók általánosabb matematikai kontextusban, az algebrai elméletek kutatásában.

2. Eredmények

A fő eredményeket a következőkben foglaljuk össze.

1. Tézis

A harmadik fejezetben kifejtjük, hogy a kétszintű típuselmélet [ACKS19] hogyan használható metanyelvként az algebrai szignatúrák szemantikájához. Ez lehetővé teszi, hogy a szemantikát általánosan adjuk meg, internálisan tetszőleges strukturált kategóriákban, és ugyanakkor tömör típuselméleti nyelvben dolgozzunk. Például a természetes szám objektumok szignatúrája értelmezhető tetszőleges olyan kategóriában, ami rendelkezik véges szorzatokkal.

2. Tézis

A tézis negyedik fejezetében bemutatjuk a véges aritású kvóciens induktívinduktív (FQII, "finitary quotient inductive-inductive") szignatúrák szintaxisát és szemantikáját. Ezek a szignatúrák közel vannak kifejezőerő tekintetében Cartmell általánosított algebrai elméleteihez [Car86], viszont jelentős különbségek vannak a formalizációban és a szemantikai konstrukciókban és eredményekben.

- Az FQII szignatúrák képesek leírni szinte az összes típuselméletet, és
 így modell-elméletet kapunk hozzájuk, a szignatúrák szemantikáján keresztül.
- Az FQII szignatúrák elmélete tömören specifikált mint típuselmélet, és maga is algebrai elmélet.
- Minden szignatúrához egy véges limitekkel rendelkező kategóriát rendelünk, amelynek az objektumai algebrák. Ezt a kategóriát egy családos kategóriaként [CCD19] prezentáljuk, ami lehetővé teszi, hogy precízen kiszámoljuk az indukció fogalmát. Megmutatjuk, hogy az indukció ekvivalens az inicialitással minden szignatúra esetén.
- Megmutatjuk, hogy az iniciális algebrákat meg lehet konstruálni az FQII szignatúrák szintaxisából, egy term modell konstrukcióval. Továbbá megmutatjuk, hogy az FQII szignatúrák szintaxisának bizonyos töredékei megkonstruálhatók egyszerűbb típusokból.
- Megmutatjuk, hogy a szignatúrák közötti párhuzamos helyettesítésekre modell konstrukciókként lehet gondolni, mivel a szemantikában funktorok lesznek algebrák kategóriái között. Továbbá, feltéve hogy minden iniciális FQII-algebra létezik, minden ilyen funktor jobb adjungált.

3. Tézis

Az tézis ötödik fejezetében módosítjuk az FQII szignatúrákat úgy, hogy végtelenül elágazó fa struktúrákat is le tudjunk írni az iniciális algebrákban. Így kapjuk a végtelen aritású QII szignatúrák elméletét (IQII röviden, "infinitary quotient inductive-inductive").

Valós számok, szürreális számok, ordinálisok és a kumulatív halmazhierarchiák leírhatók IQII szignatúrák segítségével [Uni13], ami a véges aritású esetben nem volt lehetséges.

- Az FQII és IQII szignatúrák elméletei egyaránt leírhatók IQII szignatúrával.
 A IQII szignatúrák tehát a saját elméletüket is specifikálják, és ezt arra használjuk, hogy minimalizáljuk a szükséges feltételezéseket az IQII szignatúrák metaelméletének kidolgozásánál.
- A szignatúrák szemantikáját kibővítjük a izo-fibrálás tulajdonsággal a szignatúra-típusokban. Ez azt jelenti, hogy a szignatúrák elméletében minden konstrukció megőrzi a leírt algebrák izomorfizmusait.
- Adaptáljuk a term algebra konstrukciót és a bal adjungált funktorok konstrukcióját a végtelen aritású esetre.
- Megmutatjuk, hogy a szignatúrákat lehet szemantikusan értelmezni magában a szignatúrák elméletének szintaxisában is. Egy példát hozva, ez azt eredményezi, hogy minden szignatúrához megkapjuk az algebra-homomorfizmusok specifikációját is szignatúraként.

4. Tézis

A hatodik fejezetben leírjuk a magasabb induktív-induktív szignatúrákat. Ezek elsősorban a szemantikában különbözek a korábbi szignatúráktól: a metanyelv most a homotópia típuselmélet [Uni13]. Míg korábban kizárólag egydimenziós egyenleteket adhattunk szignatúrákhoz, most tetszőleges magasabbdimenziós utakat tudunk specifikálni, az iniciális algebrák pedig szabadon generált omega-groupoidokat adnak meg. A magasabb-dimenziós általánosítás jelentősen bonyolítja a szemantikát, ezért éppen csak annyi szemantikát adunk meg, amiből az iniciálitás és indukció fogalmai következnek (minden szignatúrához). Továbbá, az algebra-morfizmusok két változatát kezeljük: az első szigorúan őrzi meg a struktúrákat, azaz definícionális egyenletekkel, míg a másik gyengén, azaz a belső intenzionális egyenlőségekkel.

3. Publikációk

A fenti eredmények a következő publikációk tartalmára építenek, amelyek társszerzője a jelenlegi tézis szerzője.

1. A Syntax for Higher Inductive-Inductive Types [KK18].

- 2. Signatures and Induction Principles for Higher Inductive-Inductive Types [KK20a].
- 3. Constructing Quotient Inductive-Inductive Types [KKA19].
- 4. Large and Infinitary Quotient Inductive-Inductive Types [KK20b].
- 5. For Finitary Induction-Induction, Induction is Enough [KKL19].

Hivatkozások

- [ACKS19] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type theory and applications. *ArXiv e-prints*, may 2019. URL: http://arxiv.org/abs/1705.03307.
- [Car86] John Cartmell. Generalised algebraic theories and contextual categories. *Annals of Pure and Applied Logic*, 32:209–243, 1986.
- [CCD19] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped, simply typed, and dependently typed. CoRR, abs/1904.00827, 2019. URL: http://arxiv.org/abs/1904.00827, arXiv:1904.00827.
- [KK18] Ambrus Kaposi and András Kovács. A syntax for higher inductive-inductive types. In Hélène Kirchner, editor, 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018), volume 108 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1–20:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSCD.2018.20.
- [KK20a] Ambrus Kaposi and András Kovács. Signatures and induction principles for higher inductive-inductive types. *Log. Methods Comput. Sci.*, 16(1), 2020. doi:10.23638/LMCS-16(1:10)2020.
- [KK20b] András Kovács and Ambrus Kaposi. Large and infinitary quotient inductive-inductive types. In Holger Hermanns, Lijun Zhang,

- Naoki Kobayashi, and Dale Miller, editors, *LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020*, pages 648–661. ACM, 2020. doi:10.1145/3373718.3394770.
- [KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, 2019. doi:10.1145/3290315.
- [KKL19] Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary induction-induction, induction is enough. In Marc Bezem and Assia Mahboubi, editors, 25th International Conference on Types for Proofs and Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway, volume 175 of LIPIcs, pages 6:1-6:30. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.TYPES.2019.
 6.
- [Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https:// homotopytypetheory.org/book, Institute for Advanced Study, 2013.