Elliptic Curves

Lectured by Prof Tom Fisher Typed by David Kurniadi Angdinata

Michaelmas 2020

Syllabus

Elliptic Curves Contents

Contents

1	Fermat's method of infinite descent	4
	1.1 Primitive triangles	4
	1.2 A variant for polynomials	5
2	Some remarks on algebraic curves	6
4	2.1 Rational curves	6
	2.2 Order of vanishing	6
		7
	2.3 Riemann Roch spaces	
	2.4 The degree of a morphism	8
3	Weierstrass equations	9
	3.1 The Weierstrass form	9
		10
	5.2 Distriminant and J invariant	10
4		11
	4.1 The Picard group law	11
	4.2 Explicit formulae for the group law	12
	4.3 Maps on an elliptic curve	13
		13
	•	
5		15
	5.1 Isogenies	15
	The degree quadratic form	16
6		10
o		19
		19
	6.2 The invariant differential	20
7	Elliptic curves over finite fields	22
•	1	22
		22
	7.2 Zeta functions	22
8	Formal groups	24
	8.1 Complete rings	24
	1 0	24
	•	26
	9	
9	1	28
	9.1 Integral Weierstrass equations	28
	9.2 A filtration of formal groups	28
	9.3 Reduction modulo π	29
	9.4 The subgroup of nonsingular reduction	30
	9.5 Unramified extensions of local fields	32
10		0.0
10	· · · · · · · · · · · · · · · · · · ·	33
	10.1 Primes of good and bad reduction	33
	10.2 Reduction modulo p	33
	10.3 The Lutz-Nagell theorem	34
11	Kummer theory	35
	11.1 The Kummer theorem	35
	11.2 Unramified Kummer extensions of number fields	36
	11.2 Official field the Cartesians of Humber fields	90

Elliptic Curves Contents

12	Elliptic curves over number fields II: the Mordell-Weil theorem 12.1 The weak Mordell-Weil theorem	
13	Heights 13.1 Naive heights	
14	Dual isogenies and the Weil pairing 14.1 Dual isogenies	
15	Galois cohomology 15.1 Group cohomology	$\frac{46}{47}$
16	Descent by cyclic isogeny 16.1 Descent by n-isogeny	
A	The Birch Swinnerton-Dyer conjecture	53

1 Fermat's method of infinite descent

The following are the books.

- J H Silverman, The arithmetic of elliptic curves, 1986
- J W S Cassels, Lectures on elliptic curves, 1991
- J H Silverman and J Tate, Rational points on elliptic curves, 1992
- J S Milne, Elliptic curves, 2006

1.1 Primitive triangles

Definition. Let $\Delta = \Delta(a, b, c)$ be a right triangle

so $a^2 + b^2 = c^2$ and the area of Δ is $\frac{1}{2}ab$. Then Δ is **rational** if $a, b, c \in \mathbb{Q}$, and Δ is **primitive** if $a, b, c \in \mathbb{Z}$ are coprime.

Lemma 1.1. Every primitive triangle is of the form $\Delta \left(u^2 - v^2, 2uv, u^2 + v^2\right)$ for some $u, v \in \mathbb{Z}$ such that u > v > 0.

Proof. Without loss of generality a is odd, b is even, and c is odd, so $(b/2)^2 = ((c+a)/2)((c-a)/2)$ is a product of coprime positive integers. By unique prime factorisation in \mathbb{Z} ,

$$\frac{c+a}{2} = u^2, \qquad \frac{c-a}{2} = v^2, \qquad u, v \in \mathbb{Z},$$

so $a = u^2 - v^2$, b = 2uv, and $c = u^2 + v^2$.

Definition. $D \in \mathbb{Q}_{>0}$ is a **congruent number** if there exists a rational triangle Δ with area D.

Note that it suffices to consider $D \in \mathbb{Z}_{>0}$ squarefree.

Example. D = 5,6 are congruent numbers.

Lemma 1.2. $D \in \mathbb{Q}_{>0}$ is congruent if and only if $Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}$ such that $y \neq 0$.

Proof. Lemma 1.1 shows D is congruent if and only if $Dw^2 = uv\left(u^2 - v^2\right)$ for some $u, v, w \in \mathbb{Q}$ such that $w \neq 0$. Put x = u/v and $y = w/v^2$.

Fermat showed that 1 is not a congruent number.

Theorem 1.3. There is no solution to

$$w^{2} = uv(u+v)(u-v), \qquad u, v, w \in \mathbb{Z}, \qquad w \neq 0.$$
(1)

Proof. Without loss of generality u and v are coprime, and u > 0 and w > 0. If v < 0 then replace (u, v, w) by (-v, u, w). If $u \equiv v \mod 2$ then replace (u, v, w) by ((u + v)/2, (u - v)/2, w/2). Then u, v, u + v, u - v are pairwise coprime positive integers whose product is a square. By unique factorisation in \mathbb{Z} ,

$$u = a^2$$
, $v = b^2$, $u + v = c^2$, $u - v = d^2$, $a, b, c, d \in \mathbb{Z}_{>0}$.

Since $u \neq v \mod 2$ both c and d are odd. Then $((c+d)/2)^2 + ((c-d)/2)^2 = (c^2+d^2)/2 = u = a^2$, so $\Delta((c+d)/2, (c-d)/2, a)$ is a primitive triangle. Its area is $(c^2-d^2)/8 = v/4 = (b/2)^2$. Let $w_1 = b/2$. By Lemma 1.1, $w_1^2 = u_1v_1(u_1^2 - v_1^2)$ for some $u_1, v_1 \in \mathbb{Z}$, that is we have a new solution to (1). But $4w_1^2 = b^2 = v \mid w^2$, so $w_1 \leq w/2$. So by Fermat's method of infinite descent, there is no solution to (1).

Lecture 1 Friday 09/10/20

1.2 A variant for polynomials

In this section, K is a field with ch $K \neq 2$ and algebraic closure \overline{K} .

Lemma 1.4. Let $u, v \in K[t]$ be coprime. If $\alpha u + \beta v$ is a square for four distinct $(\alpha : \beta) \in \mathbb{P}^1$ then $u, v \in K$.

Proof. Without loss of generality $K = \overline{K}$. Changing coordinates on \mathbb{P}^1 we may assume the ratios $(\alpha : \beta)$ are (1:0), (0:1), (1:-1), $(1:-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$. Then $u=a^2$ and $v=b^2$ for some $a,b \in K$ [t], so u-v=(a+b) (a-b) and $u-\lambda v=(a+\mu b)$ $(a-\mu b)$ for $\mu=\sqrt{\lambda}$. By unique factorisation in K [t], $a+b,a-b,a+\mu b,a-\mu b$ are squares. But max $(\deg a,\deg b)\leq \frac{1}{2}\max(\deg u,\deg v)$. So by Fermat's method of infinite descent $u,v\in K$.

Definition 1.5. An elliptic curve E/K is the projective closure of the plane affine curve $y^2 = f(x)$ where $f \in K[x]$ is a monic cubic polynomial with distinct roots in \overline{K} . For L/K any field extension

$$E(L) = \{(x, y) \in L^2 \mid y^2 = f(x)\} \cup \{\mathcal{O}\},\$$

where \mathcal{O} is the **point at infinity**.

Fact. E(L) is naturally an abelian group.

In this course we study E(L) for L a finite field, a local field $[L:\mathbb{Q}_p]<\infty$, or a number field $[L:\mathbb{Q}]<\infty$. By Lemma 1.2 and Theorem 1.3, if E is $y^2=x^3-x$ then $E(\mathbb{Q})=\{\mathcal{O},(0,0),(\pm 1,0)\}$.

Corollary 1.6. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality $K = \overline{K}$. By a change of coordinates we may assume E is

$$y^2 = x(x-1)(x-\lambda), \qquad \lambda \in K \setminus \{0,1\}.$$

Suppose $(x,y) \in E(K(t))$. Write x = u/v for $u,v \in K[t]$ coprime. Then $w^2 = uv(u-v)(u-\lambda v)$ for some $w \in K[t]$. By unique factorisation in K[t], $u,v,u-v,u-\lambda v$ are all squares. By Lemma 1.4, $u,v \in K$, so $x,y \in K$.

2 Some remarks on algebraic curves

Work over $K = \overline{K}$.

Lecture 2 Monday 12/10/20

2.1 Rational curves

Definition 2.1. A plane algebraic curve $C = \{f(x,y) = 0\} \subset \mathbb{A}^2$ for an irreducible polynomial f is **rational** if it has a **rational parameterisation**, that is there exists $\phi, \psi \in K(t)$ such that

$$\begin{array}{ccc} \mathbb{A}^{1} & \longrightarrow & \mathbb{A}^{2} \\ t & \longmapsto & (\phi\left(t\right), \psi\left(t\right)) \end{array}$$

is injective on \mathbb{A}^{1} minus a finite set, and $f(\phi(t), \psi(t)) = 0$.

Example 2.2.

• Any nonsingular plane conic is rational. For example, let $x^2 + y^2 = 1$. The line of slope t at (-1,0) is y = t(x+1). Their intersection is $x^2 + t^2(x+1)^2 = 1$, so $(x+1)(x-1+t^2(x+1)) = 0$. Thus x = -1 or $x = (1-t^2)/(1+t^2)$. The rational parameterisation is

$$(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right).$$

• Any singular plane cubic is rational. For example, let $y^2 = x^3$. The line of slope t at (0,0) is y = tx. The rational parameterisation is

$$(x,y) = \left(t^2, t^3\right).$$

• Corollary 1.6 shows that elliptic curves are not rational.

Remark 2.3. The genus $g(C) \in \mathbb{Z}_{>0}$ is an invariant of a smooth projective curve C.

- If $K = \mathbb{C}$ then g(C) is the genus of a Riemann surface.
- A smooth plane curve $C \subset \mathbb{P}^2$ of degree d has genus g(C) = (d-1)(d-2)/2.

Proposition 2.4. Still assuming $K = \overline{K}$, let C be a smooth projective curve.

- 1. C is rational as in Definition 2.1 if and only if g(C) = 0.
- 2. C is an elliptic curve as in Definition 1.5 if and only if g(C) = 1.

Proof.

- 1. Omitted.
- 2. For \implies , use Remark 2.3. For \iff , see later Theorem 3.1.

2.2 Order of vanishing

Let C be an algebraic curve, with function field K(C). Let $P \in C$ be a smooth point. Write ord_P f for the order of vanishing of $f \in K(C)$ at P, which is negative if f has a pole.

Fact. ord_P: $K(C)^* \to \mathbb{Z}$ is a **discrete valuation**, that is

$$\operatorname{ord}_{P}(f_{1}f_{2}) = \operatorname{ord}_{P}f_{1} + \operatorname{ord}_{P}f_{2}, \quad \operatorname{ord}_{P}(f_{1} + f_{2}) \geq \min(\operatorname{ord}_{P}f_{1}, \operatorname{ord}_{P}f_{2}).$$

Definition. $t \in K(C)^*$ is a **uniformiser** at the point P if $\operatorname{ord}_P t = 1$.

Example 2.5. Let $C = \{g = 0\} \subset \mathbb{A}^2$ for $g \in K[x,y]$ irreducible, so $K(C) = \operatorname{Frac}(K[x,y]/\langle g \rangle)$ for $g = g_0 + g_1(x,y) + \ldots$ where g_i is homogeneous of degree i. Suppose $P = (0,0) \in C$ is a smooth point, that is $g_0 = 0$ and $g_1(x,y) = \alpha x + \beta y$ such that α and β are not both zero. Let $\gamma, \delta \in K$. A fact is that

$$\gamma x + \delta y \in K(C)$$
 is a uniformiser at $p \iff \alpha \delta - \beta \gamma \neq 0$.

Example 2.6. By x = X/Z and y = Y/Z, the projective closure of $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2$ for $\lambda \neq 0, 1$ is

$$\{Y^2Z = X(X - Z)(X - \lambda Z)\} \subset \mathbb{P}^2.$$

Let P = (0:1:0). We compute ord_P x and ord_P y. Put t = X/Y and w = Z/Y. Then

$$w = t(t - w)(t - \lambda w). \tag{2}$$

Now P is the point (t, w) = (0, 0). This is a smooth point and $\operatorname{ord}_P t = \operatorname{ord}_P (t - w) = \operatorname{ord}_P (t - \lambda w) = 1$. By (2), $\operatorname{ord}_P w = 3$, so

$$\operatorname{ord}_P x = \operatorname{ord}_P \frac{X}{Z} = \operatorname{ord}_P \frac{t}{w} = 1 - 3 = -2, \qquad \operatorname{ord}_P y = \operatorname{ord}_P \frac{Y}{Z} = \operatorname{ord}_P \frac{1}{w} = -3.$$

Remark that the line $\{w=0\}$ meets E with multiplicity three at P, so P is a point of inflection.

2.3 Riemann Roch spaces

Definition. Let C be a smooth projective curve. A **divisor** is a formal sum of points on C, say

$$D = \sum_{P \in C} n_P(P), \qquad n_P \in \mathbb{Z},$$

with $n_P = 0$ for all but finitely many $P \in C$. The **degree** of D is

$$\deg D = \sum_{P \in C} n_P.$$

Then D is **effective**, written $D \ge 0$, if $n_P \ge 0$ for all $P \in C$. If $f \in K(C)^*$ then the **divisor of** f is

$$\operatorname{div} f = \sum_{P \in C} \left(\operatorname{ord}_{P} f \right) (P).$$

The **Riemann Roch space** of $D \in \text{Div } C$ is

$$\mathcal{L}(D) = \{ f \in K(C)^* \mid \text{div } f + D \ge 0 \} \cup \{ 0 \},$$

that is the K-vector space of rational functions on C with poles no worse than specified by D.

Riemann Roch for genus one states that

$$\dim \mathcal{L}(D) = \begin{cases} 0 & \deg D < 0 \\ 0 \text{ or } 1 & \deg D = 0 \\ \deg D & \deg D > 0 \end{cases}$$

Example. Revisiting Example 2.6, let P be the point at infinity of $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2$. Then $\operatorname{ord}_P x = -2$ and $\operatorname{ord}_P y = -3$. We deduce

$$\mathcal{L}(2(P)) = \langle 1, x \rangle, \qquad \mathcal{L}(3(P)) = \langle 1, x, y \rangle.$$

This motivates the proof of Theorem 3.1.

Assume $K = \overline{K}$ and $\operatorname{ch} K \neq 2$.

Lecture 3 Wednesday 14/10/20

Proposition 2.7. Let $C \subset \mathbb{P}^2$ be a smooth plane cubic and $P \in C$ a point of inflection. Then we may change coordinates such that C is

$$Y^{2} = X(X - Z)(X - \lambda Z), \qquad \lambda \neq 0, 1,$$

and P = (0:1:0).

Proof. We change coordinates such that P = (0:1:0) and $T_PC = \{Z = 0\}$. Let $C = \{F(X,Y,Z) = 0\}$. Since $P \in C$ is a point of inflection, F(t,1,0) is a constant times t^3 , that is no terms X^2Y, XY^2, Y^3 , so

$$F \in \langle Y^2Z, XYZ, YZ^2, X^3, X^2Z, XZ^2, Z^3 \rangle$$
.

The coefficient of Y^2Z is nonzero otherwise $P \in C$ is singular. The coefficient of X^3 is nonzero otherwise $\{Z=0\} \subset C$. We are free to rescale X,Y,Z,F. Without loss of generality C is defined by

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}$$

the Weierstrass form. Substituting Y by $Y - \frac{1}{2}a_1X - \frac{1}{2}a_3Z$ we may assume $a_1 = a_3 = 0$. Now C is $Y^2Z = Z^3f(X/Z)$ for f a monic cubic polynomial. Since C is smooth, f has distinct roots, without loss of generality $0, 1, \lambda$. Thus C is

$$Y^2 = X(X - Z)(X - \lambda Z),$$

the Legendre form.

Remark. It may be shown that the points of inflection on $C = \{F = 0\} \subset \mathbb{P}^2$ in coordinates $(X_1 : X_2 : X_3)$ are given by $F = \det H = 0$, where $H = \left(\frac{\partial^2 F}{\partial X_i \partial X_j}\right)$ is a 3×3 matrix.

2.4 The degree of a morphism

Definition. Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Let

$$\begin{array}{ccc} \phi^* & : & K\left(C_2\right) & \longrightarrow & K\left(C_1\right) \\ f & \longmapsto & f \circ \phi \end{array}.$$

The **degree** of ϕ is

$$\deg \phi = [K(C_1) : \phi^*K(C_2)],$$

and ϕ is **separable** if $K(C_1)/\phi^*K(C_2)$ is a separable field extension, which is automatic if $\operatorname{ch} K = 0$. Suppose

$$\phi : C_1 \longrightarrow C_2 \\
P \longmapsto Q.$$

Let $t \in K(C_2)$ be a uniformiser at Q. The **ramification index** of ϕ at P is

$$e_{\phi}(P) = \operatorname{ord}_{P} \phi^{*} t$$

which is always at least one, and independent of t.

Theorem 2.8. Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Then

$$\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P) = \deg \phi, \qquad Q \in C_2.$$

Moreover if ϕ is separable then $e_{\phi}(P) = 1$ for all but finitely many $P \in C_1$. In particular

- ϕ is surjective, noting that $K = \overline{K}$, and
- $\#\phi^{-1}(Q) \leq \deg \phi$, with equality for all but finitely many Q, assuming ϕ is separable.

Remark 2.9. Let C be an algebraic curve. A rational map is given by

$$\phi : C \longrightarrow \mathbb{P}^{n}$$

$$P \longmapsto (f_{0}(P):\cdots:f_{n}(P)),$$

where $f_0, \ldots, f_n \in K(C)$ are not all zero. A fact is if C is smooth then ϕ is a morphism.

3 Weierstrass equations

In this section K is a perfect field, with algebraic closure \overline{K} .

Definition. An elliptic curve E over K is a smooth projective curve of genus one defined over K with a specified K-rational point \mathcal{O}_E .

Example. $\{X^3 + pY^3 + p^2Z^3 = 0\} \subset \mathbb{P}^2$ for p prime is not an elliptic curve over \mathbb{Q} , since it has no \mathbb{Q} -points.

3.1 The Weierstrass form

Theorem 3.1. Every elliptic curve E is isomorphic over K to a curve in Weierstrass form, via an isomorphism taking \mathcal{O}_E to (0:1:0).

Remark. Proposition 2.7 treated the special case where E is a smooth plane cubic and \mathcal{O}_E is a point of inflection.

Fact. If $D \in \text{Div } E$ is defined over K, that is fixed by $\text{Gal }(\overline{K}/K)$, then $\mathcal{L}(D)$ has a basis in K(E), not just in $\overline{K}(E)$.

Proof. Pick bases $\langle 1, x \rangle = \mathcal{L}\left(2\left(\mathcal{O}_{E}\right)\right) \subset \mathcal{L}\left(3\left(\mathcal{O}_{E}\right)\right) = \langle 1, x, y \rangle$. Then $\operatorname{ord}_{\mathcal{O}_{E}} x = -2$ and $\operatorname{ord}_{\mathcal{O}_{E}} y = -3$. The seven elements $1, x, y, x^{2}, xy, x^{3}, y^{2}$ in the six-dimensional vector space $\mathcal{L}\left(6\left(\mathcal{O}_{E}\right)\right)$ must satisfy a dependence relation. Leaving out x^{3} or y^{2} gives a basis for $\mathcal{L}\left(6\left(\mathcal{O}_{E}\right)\right)$ since each term has a different order pole at \mathcal{O}_{E} , so the coefficients of x^{3} and y^{2} are nonzero. Rescaling x and y we get

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}, \quad a_{i} \in K.$$

Let E' be the curve defined by this equation, or rather its projective closure. There is a morphism

$$\begin{array}{cccc} \phi & : & E & \longrightarrow & E' \subset \mathbb{P}^2 \\ & P & \longmapsto & \left(x\left(P\right):y\left(P\right):1\right) = \left(\frac{x}{y}\left(P\right):1:\frac{1}{y}\left(P\right)\right) \ . \\ & \mathcal{O}_E & \longmapsto & \left(0:1:0\right) \end{array}$$

Then

$$\left[K\left(E\right):K\left(x\right)\right]=\deg\left(x:E\rightarrow\mathbb{P}^{1}\right)=\mathrm{ord}_{\mathcal{O}_{E}}\frac{1}{x}=2,\qquad\left[K\left(E\right):K\left(y\right)\right]=\deg\left(y:E\rightarrow\mathbb{P}^{1}\right)=\mathrm{ord}_{\mathcal{O}_{E}}\frac{1}{y}=3,$$

so

By the tower law, [K(E):K(x,y)]=1, so $\deg(\phi:E\to E')=1$, so ϕ is birational. If E' is singular then E and E' are rational, a contradiction. So E' is smooth and we may apply Remark 2.9 to ϕ^{-1} to see that ϕ^{-1} is a morphism, so ϕ is an isomorphism.

Lecture 4 Friday 16/10/20

Proposition 3.2. Let E and E' be elliptic curves over K in Weierstrass form. Then $E \cong E'$ over K if and only if the Weierstrass equations are related by a change of variables

$$x = u^2 x' + r,$$
 $y = u^3 y' + u^2 s x' + t,$ $u, r, s, t \in K,$ $u \neq 0.$

Proof. Let
$$\langle 1, x \rangle = \mathcal{L}(2(\mathcal{O}_E)) = \langle 1, x' \rangle$$
 and $\langle 1, x, y \rangle = \mathcal{L}(3(\mathcal{O}_E)) = \langle 1, x', y' \rangle$. Then

$$x = \lambda x' + r,$$
 $y = \mu y' + \sigma x' + t,$ $\lambda, r, \mu, \sigma, t \in K,$ $\lambda, \mu \neq 0.$

Looking at the coefficients of x^3 and y^2 , $\lambda^3 = \mu^2$, so $(\lambda, \mu) = (u^2, u^3)$ for some $u \in K^*$. Put $s = \sigma/u^2$.

3.2 Discriminant and j-invariant

A Weierstrass equation defines an elliptic curve if and only if it defines a smooth curve, if and only if $\Delta(a_1, \ldots, a_6) \neq 0$ where $\Delta \in \mathbb{Z}[a_1, \ldots, a_6]$ is a certain polynomial. If $\operatorname{ch} K \neq 2, 3$ then we can reduce to the case E is

$$y^2 = x^3 + ax + b,$$

with discriminant

$$\Delta = -16 \left(4a^3 + 27b^2 \right).$$

Corollary 3.3. Assume $\operatorname{ch} K \neq 2, 3$. Elliptic curves $E = \{y^2 = x^3 + ax + b\}$ and $E' = \{y^2 = x^3 + a'x + b'\}$ are isomorphic over K if and only if $a' = u^4a$ and $b' = u^6b$ for some $u \in K^*$.

Proof. E and E' are related as in Proposition 3.2 with r = s = t = 0.

Definition. The j-invariant is

$$j(E) = \frac{1728(4a^3)}{4a^3 + 27b^2}.$$

Corollary 3.4. If $E \cong E'$, then j(E) = j(E'), and the converse holds if $K = \overline{K}$.

Proof.

$$E \cong E' \quad \iff \quad \exists u \in K^*, \ \begin{cases} a' = u^4 a \\ b' = u^6 b \end{cases} \quad \implies \quad \left(a^3 : b^2\right) = \left(a'^3 : b'^2\right) \quad \iff \quad \mathbf{j}(E) = \mathbf{j}(E'),$$

and the converse holds if $K = \overline{K}$.

4 Group law

Let $E = E(\overline{K}) \subset \mathbb{P}^2$ be a smooth plane cubic, and let $\mathcal{O}_E \in E(K)$. Then E meets each line in three points counted with multiplicity.

4.1 The Picard group law

Let $P, Q \in E$, let S be the third point of intersection of PQ and E, and let R be the third point of intersection of \mathcal{O}_ES and E. We define

$$P \oplus Q = R$$
.

If P = Q then take $T_P E$ instead, etc. This is the chord and tangent process.

Theorem 4.1. (E, \oplus) is an abelian group.

Associativity is hard.

Definition. $D_1, D_2 \in \text{Div } E$ are **linearly equivalent**, written $D_1 \sim D_2$, if there exists $f \in \overline{K}(E)^*$ such that

$$\text{div } f = D_1 - D_2.$$

Let

$$[D] = \{ D' \mid D' \sim D \}.$$

The **Picard group** is

$$\operatorname{Pic} E = \operatorname{Div} E / \sim$$
.

If

$$\operatorname{Div}^0 E = \ker (\operatorname{deg} : \operatorname{Div} E \to \mathbb{Z})$$

is the degree zero divisors on E, let

$$\operatorname{Pic}^0 E = \operatorname{Div}^0 E / \sim$$
.

Note that $\operatorname{div} f q = \operatorname{div} f + \operatorname{div} q$.

Proposition 4.2. Let

$$\begin{array}{ccc} \psi & : & E & \longrightarrow & \operatorname{Pic}^0 E \\ & P & \longmapsto & [(P) - (\mathcal{O}_E)] \end{array}.$$

Then

1.
$$\psi(P \oplus Q) = \psi(P) + \psi(Q)$$
, and

2. ψ is a bijection.

Proof.

1. Let $P, Q \in E$, let S be the third point of intersection of PQ and E, and let R be the third point of intersection of $\mathcal{O}_E S$ and E. Let l = 0 be the line PQ and let m = 0 be the line $\mathcal{O}_E S$. Then

$$\operatorname{div} \frac{l}{m} = (P) + (S) + (Q) - (R) - (S) - (\mathcal{O}_E) = (P) + (Q) - (\mathcal{O}_E) - (P \oplus Q),$$

so
$$(P \oplus Q) + (\mathcal{O}_E) \sim (P) + (Q)$$
. Thus $(P \oplus Q) - (\mathcal{O}_E) \sim (P) - (\mathcal{O}_E) + (Q) - (\mathcal{O}_E)$, so $\psi(P \oplus Q) = \psi(P) + \psi(Q)$.

2. For injectivity, suppose $\psi(P) = \psi(Q)$ for $P \neq Q$. Then there exists $f \in \overline{K}(E)^*$ such that div f = (P) - (Q), and deg $(f : E \to \mathbb{P}^1) = \operatorname{ord}_P f = 1$, so $E \cong \mathbb{P}^1$, a contradiction. For surjectivity, let $[D] \in \operatorname{Pic}^0 E$. Then $D + (\mathcal{O}_E)$ has degree one. By Riemann Roch, dim $\mathcal{L}(D + (\mathcal{O}_E)) = 1$, so there exists $f \in \overline{K}(E)^*$ such that div $f + D + (\mathcal{O}_E) \geq 0$. Since div $f + D + (\mathcal{O}_E)$ has degree one, div $f + D + (\mathcal{O}_E) = (P)$ for some $P \in E$, so $(P) - (\mathcal{O}_E) \sim D$. Thus $\psi(P) = [D]$.

Proof of Theorem 4.1.

- $P \oplus Q = Q \oplus P$ is clear.
- \mathcal{O}_E is the identity. Let S be the third point of intersection of $\mathcal{O}_E P$ and E. Then P is the third point of intersection of $\mathcal{O}_E S$ and E, so $\mathcal{O}_E \oplus P = P$.
- Inverses. Let S be the third point of intersection of $T_{\mathcal{O}_E}E$ and E, and let Q be the third point of intersection of PS and E. Then S is the third point of intersection of PQ and E, and \mathcal{O}_E is the third point of intersection of \mathcal{O}_ES and E, so $P \oplus Q = \mathcal{O}_E$.
- By Proposition 4.2,

$$\psi\left(\left(P\oplus Q\right)\oplus R\right)=\psi\left(P\oplus Q\right)+\psi\left(R\right)=\psi\left(P\right)+\psi\left(Q\right)+\psi\left(R\right)=\psi\left(P\right)+\psi\left(Q\oplus R\right)=\psi\left(P\oplus \left(Q\oplus R\right)\right).$$

Since ψ is injective, $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$. We deduce that \oplus is associative, and

$$\psi: (E, \oplus) \xrightarrow{\sim} (\operatorname{Pic}^0 E, +)$$

is an isomorphism of groups. Note that we did not need ψ surjective for the proof that \oplus is associative.

4.2 Explicit formulae for the group law

We consider E in Weierstrass form

Lecture 5 Monday 19/10/20

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, (3)$$

and \mathcal{O}_E is the point at infinity.

Remark. \mathcal{O}_E is a point of inflection. So now $P_1 \oplus P_2 \oplus P_3 = \mathcal{O}_E$ if and only if P_1, P_2, P_3 are collinear.

Let $P_1 = (x_1, y_1)$ and $P_2 = (x_3, y_3)$, let P' = (x', y') be the third point of intersection of $P_1P_2 = \{y = \lambda x + \nu\}$ and E, and let $P_3 = (x_3, y_3)$ be the second point of intersection between x = x' and E, so $P_3 = P_1 \oplus P_2 = \ominus P'$. Thus

$$\ominus P_1 = (x_1, -(a_1x_1 + a_3) - y_1).$$

Substituting $y = \lambda x + \nu$ into (3) and looking at the coefficient of x^2 gives $\lambda^2 + a_1 \lambda - a_2 = x_1 + x_2 + x'$, so $x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2$, $y_3 = -(a_1 x' + a_3) - y' = -(a_1 x' + a_3) - (\lambda x' + \nu) = -(\lambda + a_1) x_3 - \nu - a_3$.

It remains to find formulae for λ and ν .

Case 1. $x_1 = x_2$ and $P_1 \neq P_2$. Then $P_1 \oplus P_2 = \mathcal{O}_E$.

Case 2. $x_1 \neq x_2$. Then

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}, \qquad \nu = y_1 - \lambda x_1 = \frac{y_1 (x_2 - x_1) - (y_2 - y_1) x_1}{x_2 - x_1} = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}.$$

Case 3. $x_1 = x_2$ and $P_1 = P_2$. Then

$$\lambda = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3}, \qquad \nu = \frac{-x_1^3 + a_4x_1 + 2a_6 - a_3y_1}{2y_1 + a_1x_1 + a_3}.$$

Corollary 4.3. E(K) is an abelian group.

Proof. It is a subgroup of $E = E(\overline{K})$.

- Identity is $\mathcal{O}_E \in E(K)$ by definition.
- Closure and inverses are by the formulae above.
- Associativity and commutativity are inherited.

4.3 Maps on an elliptic curve

Theorem 4.4. Elliptic curves are group varieties. That is,

are morphisms of algebraic varieties.

Proof. The above formulae show [-1] and + are rational maps. By Remark 2.9, $[-1]: E \to E$ is a morphism. The formulae also show, by case 2, that + is regular on

$$U = \{ (P, Q) \in E \times E \mid P, Q, P + Q, P - Q \neq \mathcal{O}_E \}.$$

For $P \in E$ let translation by P be

$$\begin{array}{cccc} \tau_P & : & E & \longrightarrow & E \\ & X & \longmapsto & P + X \end{array},$$

which is a rational map and therefore a morphism. Let $A, B \in E$. We factor + as

$$E\times E\xrightarrow{\tau_{-A}\times\tau_{-B}}E\times E\xrightarrow{+}E\xrightarrow{\tau_{A+B}}E.$$

Thus + is regular on $(\tau_A \times \tau_B)(U)$ for all $A, B \in E$, so + is regular on $E \times E$.

Definition. For $n \in \mathbb{Z}$ let

$$\begin{array}{cccc} [n] & : & E & \longrightarrow & E \\ & P & \longmapsto & \underbrace{P + \cdots + P}_{n} \ , \end{array}$$

and $[-n] = [-1] \circ [n]$. The *n*-torsion subgroup of *E* is

$$E[n] = \ker([n] : E \to E)$$
.

Lemma 4.5. Assume $\operatorname{ch} K \neq 2$. Let E be

$$y^2 = (x - e_1)(x - e_2)(x - e_3),$$

for $e_1, e_2, e_3 \in \overline{K}$ distinct. Then

$$E[2] = \{\mathcal{O}, (e_1, 0), (e_2, 0), (e_3, 0)\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$$

Proof. Let $P = (x, y) \in E$. Then [2] P = 0 if and only if P = -P, if any if P = -P, if any

4.4 Elliptic curves over $\mathbb C$ and other fields

Let $\Lambda = \{a\omega_1 + b\omega_2 \mid a, b \in \mathbb{Z}\}$ for ω_1 and ω_2 a basis for \mathbb{C} as an \mathbb{R} -vector space. Then

$$\left\{ \begin{array}{ll} \text{meromorphic functions on} \\ \text{Riemann surface } \mathbb{C}/\Lambda \end{array} \right\} \qquad \leftrightsquigarrow \qquad \left\{ \begin{array}{ll} \Lambda\text{-invariant meromorphic} \\ \text{functions on } \mathbb{C} \end{array} \right\}.$$

This field is generated by $\wp(z)$ and $\wp'(z)$ where

$$\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \lambda \in \Lambda} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right).$$

They satisfy

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

for some $g_2, g_3 \in \mathbb{C}$ depending on Λ . One shows that

$$\mathbb{C}/\Lambda \cong E(\mathbb{C})$$

is an isomorphism as Riemann surfaces and as groups, where E is the elliptic curve

$$y^2 = 4x^3 - g_2x - g_3.$$

Theorem 4.6 (Uniformisation theorem). Every elliptic curve over $\mathbb C$ arises in this way.

For elliptic curves E/\mathbb{C} we have

1.
$$E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$$
, and

2.
$$\deg[n] = n^2$$
.

We show 2 holds over any field K and 1 holds if $\operatorname{ch} K \nmid n$. The following will be a summary of the results.

1. If $K = \mathbb{C}$, then

$$E(\mathbb{C}) \cong \mathbb{C}/\Lambda \cong \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}.$$

2. If $K = \mathbb{R}$, then

$$E\left(\mathbb{R}\right)\cong \begin{cases} \mathbb{Z}/2\mathbb{Z}\times\mathbb{R}/\mathbb{Z} & \Delta>0\\ \mathbb{R}/\mathbb{Z} & \Delta<0 \end{cases}.$$

3. If $K = \mathbb{F}_q$, then Hasse's theorem states that

$$|\#E\left(\mathbb{F}_q\right) - (q+1)| \le 2\sqrt{q}.$$

- 4. If $[K:\mathbb{Q}_p]<\infty$ with ring of integers \mathcal{O}_K , then E(K) has a subgroup of finite index isomorphic to $(\mathcal{O}_K,+)$.
- 5. If $[K:\mathbb{Q}] < \infty$, then the Mordell-Weil theorem states that E(K) is a finitely generated abelian group. Note that the isomorphisms in 1, 2, and 4 respect the relevant topologies.

5 Isogenies

5.1 Isogenies

Definition. Let E_1 and E_2 be elliptic curves. An **isogeny** $\phi: E_1 \to E_2$ is a nonconstant morphism with $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$, which is if and only if it is surjective on \overline{K} -points, by Theorem 2.8. We say E_1 and E_2 are **isogenous**.

 $\begin{array}{c} \text{Lecture 6} \\ \text{Wednesday} \\ 21/10/20 \end{array}$

Let

$$\operatorname{Hom}(E_1, E_2) = \{ \text{isogenies } E_1 \to E_2 \} \cup \{0\}.$$

This is a group under $(\phi + \psi)(P) = \phi(P) + \psi(P)$. If $\phi : E_1 \to E_2$ and $\psi : E_2 \to E_3$ are isogenies then $\psi \circ \phi$ is an isogeny. By the tower law, $\deg(\psi \circ \phi) = \deg \phi \deg \psi$.

Lemma 5.1. If $0 \neq n \in \mathbb{Z}$ then $[n] : E \to E$ is an isogeny.

Proof. By Theorem 4.4, [n] is a morphism. We must show $[n] \neq 0$. Assume $\operatorname{ch} K \neq 2$.

n = 2. By Lemma 4.5, #E[2] = 4, so $[2] \neq 0$.

n odd. By Lemma 4.5, there exists $\mathcal{O} \neq T \in E[2]$. Then $nT = T \neq 0$, so $[n] \neq 0$.

Now use $[mn] = [m] \circ [n]$. If ch K = 2 then replace Lemma 4.5 with a lemma computing E[3].

A corollary is that $\operatorname{Hom}(E_1, E_2)$ is torsion free as a \mathbb{Z} -module.

Lemma 5.2. Let $\phi: E_1 \to E_2$ be an isogeny. Then

$$\phi(P+Q) = \phi(P) + \phi(Q), \qquad P, Q \in E_1.$$

Proof. ϕ induces a map

$$\phi_*$$
: $\operatorname{Div}^0 E_1 \longrightarrow \operatorname{Div}^0 E_2$
 $\sum_{P \in E} n_P(P) \longmapsto \sum_{P \in E} n_P(\phi(P))$.

Recall $\phi^*: K(E_2) \hookrightarrow K(E_1)$. A fact is that

$$\operatorname{div}\left(\mathrm{N}_{K(E_1)/K(E_2)}f\right) = \phi_*\left(\operatorname{div}f\right), \qquad f \in K(E_1)^*.$$

So ϕ_* takes principal divisors to principal divisors. Since $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$ the diagram

$$E_{1} \xrightarrow{\phi} E_{2}$$

$$P \mapsto [(P) - (\mathcal{O}_{E_{1}})] \downarrow \sim \qquad \sim \downarrow Q \mapsto [(Q) - (\mathcal{O}_{E_{2}})]$$

$$\operatorname{Pic}^{0} E_{1} \xrightarrow{\phi_{*}} \operatorname{Pic}^{0} E_{2}$$

commutes. Since ϕ_* is a group homomorphism, ϕ is group homomorphism.

Lemma 5.3. Let $\phi: E_1 \to E_2$ be an isogeny. Then there exists a morphism ξ making the diagram

$$E_1 \xrightarrow{\phi} E_2$$

$$x_1 \downarrow \qquad \qquad \downarrow x_2$$

$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

commute, where x_i is the x-coordinate on a Weierstrass equation for E_i . Moreover if $\xi(t) = r(t)/s(t)$ for $r, s \in K[t]$ coprime then $\deg \phi = \deg \xi = \max(\deg r, \deg s)$.

Proof. For $i = 1, 2, K(E_i)/K(x_i)$ is a degree two Galois extension with Galois group generated by $[-1]^*$. Since ϕ is a group homomorphism we have $\phi \circ [-1] = [-1] \circ \phi$. If $f \in K(x_2)$ then $[-1]^* f = f$ and $[-1]^* (\phi^* f) = \phi^* ([-1]^* f) = \phi^* f$, so $\phi^* f \in K(x_1)$. Taking $f = x_2$ gives $\phi^* x_2 = \xi(x_1)$ for some rational function ξ , so

By the tower law, $2 \deg \phi = 2 \deg \xi$, so $\deg \phi = \deg \xi$. Now

$$\phi^* : K(x_2) \longrightarrow K(x_1)$$

$$x_2 \longmapsto \xi(x_1) = \frac{r(x_1)}{s(x_1)},$$

for $r, s \in K[t]$ coprime. Claim that the minimal polynomial of x_1 over $K(x_2)$ is

$$f(t) = r(t) - s(t) x_2 \in K(x_2)[t].$$

Check that $f(x_1) = 0$ and f is irreducible in $K[x_2, t]$, since r and s are coprime. By Gauss' lemma, f is irreducible in $K(x_2)[t]$. Thus

$$\deg \phi = \deg \xi = [K(x_1) : K(x_2)] = \deg f = \max (\deg r, \deg s).$$

Lemma 5.4. deg[2] = 4.

Proof. Assuming ch $K \neq 2, 3$, let E be $y^2 = f(x) = x^3 + ax + b$. If P = (x, y) then

$$x(2P) = \left(\frac{3x^2 + a}{2y}\right)^2 - 2x = \frac{\left(3x^2 + a\right)^2 - 8xf(x)}{4f(x)} = \frac{x^4 + \dots}{4f(x)}$$

The numerator and denominator are coprime. Indeed otherwise there exists $\theta \in \overline{K}$ with $f(\theta) = f'(\theta) = 0$, so f has a multiple root, a contradiction. By Lemma 5.3, deg[2] = max(4,3) = 4.

5.2 The degree quadratic form

Definition. Let A be an abelian group. Then $q:A\to\mathbb{Z}$ is a quadratic form if

- 1. $q(nx) = n^2 q(x)$ for all $n \in \mathbb{Z}$ and all $x \in A$, and
- 2. $(x,y) \mapsto q(x+y) q(x) q(y)$ is \mathbb{Z} -bilinear.

Lemma 5.5. $q: A \to \mathbb{Z}$ is a quadratic form if and only if it satisfies the **parallelogram law**

$$q(x + y) + q(x - y) = 2q(x) + 2q(y), \quad x, y \in A.$$

Proof.

$$\implies \text{ Let } \langle x,y\rangle = q\left(x+y\right) - q\left(x\right) - q\left(y\right). \text{ Then } \langle x,x\rangle = q\left(2x\right) - 2q\left(x\right) = 2q\left(x\right) \text{ by 1 with } n = 2. \text{ But by 2,}$$

$$q\left(x+y\right) + q\left(x-y\right) = \frac{1}{2}\left\langle x+y,x+y\right\rangle + \frac{1}{2}\left\langle x-y,x-y\right\rangle = \left\langle x,x\right\rangle + \left\langle y,y\right\rangle = 2q\left(x\right) + 2q\left(y\right).$$

 \iff On example sheet 2.

Friday 23/10/20

Lecture 7

Theorem 5.6. deg : Hom $(E_1, E_2) \to \mathbb{Z}$ is a quadratic form.

Note that deg 0=0. For the proof we assume ch $K \neq 2,3$. We write E_2 as $y^2=x^3+ax+b$. Let $P,Q \in E_2$ with $P,Q,P+Q,P-Q \neq \mathcal{O}$. Let x_1,\ldots,x_4 be the x-coordinates of these four points.

Lemma 5.7. There exist $w_0, w_1, w_2 \in \mathbb{Z}[a, b][x_1, x_2]$ of degree at most two in x_1 and of degree at most two in x_2 such that $(1: x_3 + x_4: x_3x_4) = (w_0: w_1: w_2)$.

Proof. By direct calculation,

$$w_0 = (x_1 - x_2)^2$$
, $w_1 = 2(x_1x_2 + a)(x_1 + x_2) + 4b$, $w_2 = x_1^2x_2^2 - 2ax_1x_2 - 4b(x_1 + x_2) + a^2$.

Alternatively, let $y = \lambda x + \nu$ be the line through P and Q. Then

$$x^{3} + ax + b - (\lambda x + \nu)^{2} = (x - x_{1})(x - x_{2})(x - x_{3}) = x^{3} - s_{1}x^{2} + s_{2}x - s_{3}$$

where s_i is the *i*-th symmetric polynomial in x_1, x_2, x_3 . Comparing coefficients gives $\lambda^2 = s_1, -2\lambda\nu = s_2 - a$, and $\nu^2 = s_3 + b$. Eliminating λ and ν gives

$$F(x_1, x_2, x_3) = (s_2 - a)^2 - 4s_1(s_3 + b) = 0,$$

which has degree at most two in each x_i . Then x_3 is a root of the quadratic polynomial $w(t) = F(x_1, x_2, t)$. Repeating for the line through P and -Q shows that x_4 is the other root. Thus $w_0(t-x_3)(t-x_4) = w(t) = w_0t^2 - w_1t + w_2$, so $(1:x_3 + x_4:x_3x_4) = (w_0:w_1:w_2)$.

Proof of Theorem 5.6. We show that if $\phi, \psi \in \text{Hom}(E_1, E_2)$ then

$$\deg(\phi + \psi) + \deg(\phi - \psi) \le 2\deg\phi + 2\deg\psi.$$

We may assume $\phi, \psi, \phi + \psi, \phi - \psi \neq 0$, otherwise trivial, or use deg [2] = 4. Let

$$\phi: (x,y) \mapsto (\xi_1(x), \dots), \qquad \psi: (x,y) \mapsto (\xi_2(x), \dots),$$

$$\phi + \psi: (x,y) \mapsto (\xi_3(x), \dots), \qquad \phi - \psi: (x,y) \mapsto (\xi_4(x), \dots).$$

By Lemma 5.7,

$$(1:\xi_3(x)+\xi_4(x):\xi_3(x)\xi_4(x))=(w_0:w_1:w_2),$$

where w_0, w_1, w_2 are in terms of $\xi_1(x)$ and $\xi_2(x)$. Put $\xi_i = r_i/s_i$ for $r_i/s_i \in K[x]$ coprime. Then

$$(s_3(x) s_4(x) : r_3(x) s_4(x) + r_4(x) s_3(x) : r_3(x) r_4(x)) = (w_0 : w_1 : w_2),$$

where w_0, w_1, w_2 are in terms of $r_1(x), s_1(x), r_2(x), s_2(x)$, so

$$\begin{split} \deg\left(\phi+\psi\right) + \deg\left(\phi-\psi\right) &= \max\left(\deg r_3\left(x\right), \deg s_3\left(x\right)\right) + \max\left(\deg r_4\left(x\right), \deg s_4\left(x\right)\right) \\ &= \max\left(\deg s_3\left(x\right)s_4\left(x\right), \deg\left(r_3\left(x\right)s_4\left(x\right) + r_4\left(x\right)s_3\left(x\right)\right), \deg r_3\left(x\right)r_4\left(x\right)\right) \\ &\leq 2\max\left(\deg r_1\left(x\right), \deg s_1\left(x\right)\right) + 2\max\left(\deg r_2\left(x\right), \deg s_2\left(x\right)\right) \\ &= 2\deg\phi + 2\deg\psi, \end{split}$$

since $s_3(x) s_4(x)$, $r_3(x) s_4(x) + r_4(x) s_3(x)$, $r_3(x) r_4(x)$ are coprime. Now replace ϕ and ψ by $\phi + \psi$ and $\phi - \psi$ to get

$$\deg 2\phi + \deg 2\psi \le 2\deg (\phi + \psi) + 2\deg (\phi - \psi).$$

Since deg[2] = 4 we get

$$2 \operatorname{deg} \phi + 2 \operatorname{deg} \psi \leq \operatorname{deg} (\phi + \psi) + \operatorname{deg} (\phi - \psi)$$
.

Thus deg satisfies the parallelogram law, so deg is a quadratic form.

Corollary 5.8. deg $n\phi = n^2 \deg \phi$ for all $n \in \mathbb{Z}$ and $\phi \in \operatorname{Hom}(E_1, E_2)$. In particular deg $[n] = n^2$.

Example 5.9. Let E/K be an elliptic curve, and let $\mathcal{O} \neq T \in E(K)$ [2]. Suppose ch $K \neq 2$. Without loss of generality E is

$$y^2 = x(x^2 + ax + b),$$
 $a, b \in K,$ $b(a^2 - 4b) \neq 0,$

and T = (0,0). If P = (x,y) and P' = P + T = (x',y'), then

$$x' = \left(\frac{y}{x}\right)^2 - x - a = \frac{x^2 + ax + b}{x} - x - a = \frac{b}{x}, \qquad y' = -\left(\frac{y}{x}\right)x' = -\frac{by}{x^2}.$$

Let

$$\xi = x + x' + a = \frac{x^2 + ax + b}{x} = \left(\frac{y}{x}\right)^2, \qquad \eta = y + y' = \left(\frac{y}{x}\right)\left(x - \frac{b}{x}\right).$$

Then

$$\eta^{2} = \left(\frac{y}{x}\right)^{2} \left(\left(x + \frac{b}{x}\right)^{2} - 4b\right) = \xi\left((\xi - a)^{2} - 4b\right) = \xi\left(\xi^{2} - 2a\xi + a^{2} - 4b\right).$$

Let E' be

$$y^2 = x(x^2 + a'x + b'),$$
 $a' = -2a,$ $b' = a^2 - 4b.$

There is an isogeny

$$\phi : E \longrightarrow E'$$

$$(x,y) \longmapsto \left(\left(\frac{y}{x} \right)^2 : \frac{y(x^2 - b)}{x^2} : 1 \right) .$$

$$\mathcal{O}_E \longmapsto (0:1:0)$$

Then $(y/x)^2 = (x^2 + ax + b)/x$, which are coprime since $b \neq 0$. By Lemma 5.3, $\deg \phi = 2$. We say ϕ is a 2-isogeny.

6 The invariant differential

Let C be an algebraic curve over $K = \overline{K}$.

Lecture 8 Monday 26/10/20

6.1 Differentials

Definition. The space of **differentials** Ω_{C} is the K(C)-vector space generated by df for $f \in K(C)$ subject to the relations

- d(f+g) = df + dg,
- d(fg) = fdg + gdf, and
- da = 0 for all $a \in K$.

Fact. Ω_C is a one-dimensional K(C)-vector space.

Let $0 \neq \omega \in \Omega_C$. Let $P \in C$ be a smooth point and $t \in K(C)$ a uniformiser at P. Then $\omega = f dt$ for some $f \in K(C)^*$. We define

$$\operatorname{ord}_P \omega = \operatorname{ord}_P f$$
.

This is independent of the choice of t.

Fact. Suppose $f \in K(C)^*$ such that $\operatorname{ord}_P f = n \neq 0$. If $\operatorname{ch} K \nmid n$ then

$$\operatorname{ord}_{P}(\operatorname{d} f) = n - 1.$$

We now assume C is a smooth projective curve.

Definition. Let

$$\operatorname{div} \omega = \sum_{P \in C} (\operatorname{ord}_P \omega) P \in \operatorname{Div} C,$$

using here the fact that $\operatorname{ord}_P \omega = 0$ for all but finitely many $P \in C$.

Definition. The **genus** is

$$g(C) = \dim_K \{ \omega \in \Omega_C \mid \operatorname{div} \omega \ge 0 \},$$

the space of regular differentials.

As a consequence of Riemann Roch we have, if $0 \neq \omega \in \Omega_C$, then

$$\deg(\operatorname{div}\omega) = 2g(C) - 2.$$

Lemma 6.1. Assume $\operatorname{ch} K \neq 2$. Let E be $y^2 = (x - e_1)(x - e_2)(x - e_3)$ for e_1, e_2, e_3 distinct. Then $\omega = \operatorname{d} x/y$ is a differential on E with no zeros or poles, so $\operatorname{g}(E) = 1$. In particular the K-vector space of regular differentials on E is one-dimensional, spanned by ω .

Proof. Let $T_i = (e_i, 0)$, so $E[2] = \{\mathcal{O}, T_1, T_2, T_3\}$. Then

$$\operatorname{div} y = [T_1] + [T_2] + [T_3] - 3[\mathcal{O}]. \tag{4}$$

For $P \in E$, div $(x - x_P) = [P] + [-P] - 2[\mathcal{O}]$.

- If $P \in E \setminus E[2]$ then $\operatorname{ord}_P(x x_P) = 1$, so $\operatorname{ord}_P(dx) = 0$.
- If $P = T_i$ then $\operatorname{ord}_P(x x_P) = 2$, so $\operatorname{ord}_P(dx) = 1$.
- If $P = \mathcal{O}$ then $\operatorname{ord}_P x = -2$, so $\operatorname{ord}_P (dx) = -3$.

Then

$$\operatorname{div}(dx) = [T_1] + [T_2] + [T_3] - 3[\mathcal{O}]. \tag{5}$$

By (4) and (5),
$$\text{div}(dx/y) = 0$$
.

6.2 The invariant differential

Definition. If $\phi: C_1 \to C_2$ is a nonconstant morphism

$$\phi^* : \Omega_{C_2} \longrightarrow \Omega_{C_1}
f dg \longmapsto \phi^* f d (\phi^* g) .$$

Lemma 6.2. Let $P \in E$, let $\omega = dx/y$ as above, and let

$$\begin{array}{cccc} \tau_P & : & E & \longrightarrow & E \\ & X & \longmapsto & P + X \end{array}.$$

Then $\tau_P^*\omega = \omega$, so ω is called the **invariant differential**.

Proof. $\tau_P^*\omega$ is a regular differential on E, so $\tau_P^*\omega=\lambda_P\omega$ for some $\lambda_P\in K^*$. The map

$$\begin{array}{ccc} E & \longrightarrow & \mathbb{P}^1 \\ P & \longmapsto & \lambda_P \end{array}$$

is a morphism of smooth projective curves but not surjective, since it misses zero and ∞ , so it is constant, by Theorem 2.8, that is there exists $\lambda \in K^*$ such that $\tau_P^*\omega = \lambda \omega$ for all $P \in E$. Taking $P = \mathcal{O}_E$ shows $\lambda = 1$.

Remark. If $K = \mathbb{C}$, there is an isomorphism

$$\begin{array}{ccc} \mathbb{C}/\Lambda & \longrightarrow & E\left(\mathbb{C}\right) \\ z & \longmapsto & \left(\wp\left(z\right),\wp'\left(z\right)\right) \end{array},$$

so $dx/y = \wp'(z) dz/\wp'(z) = dz$, which is invariant under $z \mapsto z + c$.

Lemma 6.3. Let $\phi, \psi \in \text{Hom}(E_1, E_2)$, and let ω be the invariant differential on E_2 . Then

$$(\phi + \psi)^* \omega = \phi^* \omega + \psi^* \omega.$$

Proof. Write $E = E_2$. Let

$$\mu: E \times E \longrightarrow E$$
 $\pi_1: E \times E \longrightarrow E$ $\pi_2: E \times E \longrightarrow E$ $(P,Q) \longmapsto P$, $\pi_2: E \times E \longrightarrow E$ $(P,Q) \longmapsto Q$.

A fact is that $\Omega_{E\times E}$ is a two-dimensional $K(E\times E)$ -vector space with basis $\pi_1^*\omega$ and $\pi_2^*\omega$, so

$$\mu^* \omega = f \pi_1^* \omega + g \pi_2^* \omega, \qquad f, g \in K (E \times E). \tag{6}$$

For $Q \in E$ let

$$\begin{array}{cccc} \iota_Q & : & E & \longrightarrow & E \times E \\ & P & \longmapsto & (P,Q) \end{array}.$$

Applying ι_Q^* to (6) gives

$$\tau_{Q}^{*}\omega = (\mu \circ \iota_{Q})^{*}\omega = \iota_{Q}^{*}f(\pi_{1} \circ \iota_{Q})^{*}\omega + \iota_{Q}^{*}g(\pi_{2} \circ \iota_{Q})^{*}\omega = \iota_{Q}^{*}f\omega + 0,$$

which is ω by Lemma 6.2. Then $\iota_Q^* f = 1$ for all $Q \in E$, so f(P,Q) = 1 for all $P,Q \in E$. Similarly g(P,Q) = 1 for all $P,Q \in E$. By (6), $\mu^* \omega = \pi_1^* \omega + \pi_2^* \omega$. Now pull back by

$$\begin{array}{ccc} E & \longrightarrow & E \times E \\ P & \longmapsto & (\phi(P), \psi(P)) \end{array},$$

to get
$$(\phi + \psi)^* \omega = \phi^* \omega + \psi^* \omega$$
.

Lemma 6.4. Let $\phi: C_1 \to C_2$ be a nonconstant morphism. Then ϕ is separable if and only if $\phi^*: \Omega_{C_1} \to \Omega_{C_1}$ is nonzero.

Proof. Omitted. \Box

Example. Let $\mathbb{G}_m = \mathbb{A}^1 \setminus \{0\} = \mathbb{P}^1 \setminus \{0, \infty\}$ be the **multiplicative group** with group law

Lecture 9 Wednesday 28/10/20

$$\begin{array}{ccc} \mathbb{G}_{\mathrm{m}} \times \mathbb{G}_{\mathrm{m}} & \longrightarrow & \mathbb{G}_{\mathrm{m}} \\ (x,y) & \longmapsto & xy \end{array}.$$

Let $n \ge 1$ be an integer, and let

$$\begin{array}{cccc} \alpha & : & \mathbb{G}_{\mathrm{m}} & \longrightarrow & \mathbb{G}_{\mathrm{m}} \\ & x & \longmapsto & x^n \end{array}.$$

Then $\alpha^*(\mathrm{d}x) = \mathrm{d}(x^n) = nx^{n-1}\mathrm{d}x$. So if $\mathrm{ch}\,K \nmid n$ then α is separable. By Theorem 2.8, $\#\alpha^{-1}(Q) = \deg \alpha$ for all but finitely many $Q \in \mathbb{G}_{\mathrm{m}}$. Since α is a group homomorphism, $\#\alpha^{-1}(Q) = \#\ker \alpha$ for all $Q \in \mathbb{G}_{\mathrm{m}}$. Thus $\#\ker \alpha = \deg \alpha = n$, that is $K = \overline{K}$ contains exactly n distinct n-th roots of unity.

Theorem 6.5. If ch $K \nmid n$ then $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Proof. By Lemma 6.3 and induction, $[n]^* \omega = n\omega$. So if ch $K \nmid n$, then [n] is separable. By Theorem 2.8, $\#[n]^{-1} Q = \deg[n]$ for all but finitely many $Q \in E$. Since [n] is a group homomorphism, $\#[n]^{-1} Q = \#E[n]$ for all $Q \in E$, so $\#E[n] = \deg[n] = n^2$, by Corollary 5.8. By group theory,

$$E[n] \cong \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_t\mathbb{Z}, \qquad d_1 \mid \cdots \mid d_t \mid n,$$

and $\prod_{i=1}^t d_i = n^2$. If p is a prime with $p \mid d_1$ then $E[p] \cong (\mathbb{Z}/p\mathbb{Z})^t$. But $\#E[p] = p^2$, so t = 2. Then $d_1 \mid d_2 \mid n$ and $d_1d_2 = n^2$, so $d_1 = d_2 = n$.

Remark. Not to be used on example sheet. If ch K = p then [p] is inseparable. It can be shown that either $E[p^r] \cong \mathbb{Z}/p^r\mathbb{Z}$ for all $r \geq 1$, where E is **ordinary**, or E[p] = 0, where E is **supersingular**.

7 Elliptic curves over finite fields

7.1 Hasse's theorem

Recall $q(x) = \frac{1}{2} \langle x, x \rangle$.

Lemma 7.1. Let A be an abelian group and $q: A \to \mathbb{Z}$ a positive definite quadratic form. If $x, y \in A$ then

$$\left| \left\langle x, y \right\rangle \right| = \left| q\left(x + y \right) - q\left(x \right) - q\left(y \right) \right| \le 2\sqrt{q\left(x \right)q\left(y \right)}.$$

Proof. We may assume $x \neq 0$ otherwise the result is clear. Let $m, n \in \mathbb{Z}$. Then

$$0 \le q(mx + ny) = \frac{1}{2} \langle mx + ny, mx + ny \rangle = m^2 q(x) + mn \langle x, y \rangle + n^2 q(y)$$
$$= q(x) \left(m + \frac{\langle x, y \rangle}{2q(x)} n \right)^2 + n^2 \left(q(y) - \frac{\langle x, y \rangle^2}{4q(x)} \right).$$

Taking $m = \langle x, y \rangle$ and $n = -2q(x) \neq 0$ we deduce $\langle x, y \rangle^2 \leq 4q(x) q(y)$, so $|\langle x, y \rangle| \leq 2\sqrt{q(x) q(y)}$.

Let \mathbb{F}_q be the field with q elements, so $q = p^m$ and $\operatorname{ch} \mathbb{F}_q = p$. Then $\operatorname{Gal}(\mathbb{F}_{q^r}/\mathbb{F}_q)$ is cyclic of order r generated by the Frobenius map $x \mapsto x^q$.

Theorem 7.2 (Hasse). Let E/\mathbb{F}_q be an elliptic curve. Then

$$|\#E\left(\mathbb{F}_q\right) - (q+1)| \le 2\sqrt{q}.$$

Proof. Let E have a Weierstrass equation with coefficients $a_1, \ldots, a_6 \in \mathbb{F}_q$, so $a_i^q = a_i$. Define the Frobenius endomorphism

$$\phi : E \longrightarrow E (x,y) \longmapsto (x^q, y^q) ,$$

an isogeny of degree q. Then $E(\mathbb{F}_q) = \{P \in E \mid \phi(P) = P\} = \ker(1 - \phi)$, and

$$\phi^*\omega = \phi^*\left(\frac{\mathrm{d}x}{y}\right) = \frac{\mathrm{d}(x^q)}{y^q} = \frac{qx^{q-1}\mathrm{d}x}{y^q} = 0,$$

since $q \equiv 0 \mod p$. By Lemma 6.3, $(1-\phi)^*\omega = \omega - \phi^*\omega \neq 0$, so $1-\phi$ is separable. By Theorem 2.8 and the fact that $1-\phi$ is a group homomorphism, $\# \ker (1-\phi) = \deg (1-\phi)$, so $\# E(\mathbb{F}_q) = \deg (1-\phi)$. By Theorem 5.6, $\deg : \operatorname{End} E = \operatorname{Hom}(E,E) \to \mathbb{Z}$ is a positive definite quadratic form. By Lemma 7.1, $|\deg (1-\phi) - 1 - \deg \phi| \leq 2\sqrt{\deg \phi}$, so $|\# E(\mathbb{F}_q) - (q+1)| \leq 2\sqrt{q}$.

7.2 Zeta functions

For K a number field

$$\zeta_K(s) = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \frac{1}{(\mathrm{N}\mathfrak{a})^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_K, \ \mathfrak{p} \ \mathrm{prime}} \left(1 - \frac{1}{(\mathrm{N}\mathfrak{p})^s}\right)^{-1}.$$

For K a function field, that is $K = \mathbb{F}_q(C)$ where C/\mathbb{F}_q is a smooth projective curve,

$$\zeta_K(s) = \prod_{x \in |C|} \left(1 - \frac{1}{(Nx)^s} \right)^{-1},$$

where |C| are the **closed points** on C, the orbits for the action of $\operatorname{Gal}\left(\overline{\mathbb{F}_q}/\mathbb{F}_q\right)$ on $C\left(\overline{\mathbb{F}_q}\right)$, and $\operatorname{N} x = q^{\deg x}$ where $\deg x$ is the size of the orbit. We have $\zeta_K(s) = F(q^{-s})$ for some $F \in \mathbb{Q}[T]$, where

$$F(T) = \prod_{x \in |C|} \left(1 - T^{\deg x}\right)^{-1}.$$

By $-\log(1-x) = x + \frac{1}{2}x^2 + \dots,$

$$\log F(T) = \sum_{x \in |C|} \sum_{m=1}^{\infty} \frac{1}{m} T^{m \operatorname{deg} x}.$$

Then

$$T\frac{\mathrm{d}}{\mathrm{d}T}\log F\left(T\right) = \sum_{x\in |C|} \sum_{m=1}^{\infty} \left(\deg x\right) T^{m\deg x} = \sum_{n=1}^{\infty} \left(\sum_{x\in |C|, \deg x|n} \deg x\right) T^n = \sum_{n=1}^{\infty} \#C\left(\mathbb{F}_{q^n}\right) T^n,$$

so

$$F(T) = \exp \sum_{n=1}^{\infty} \frac{\#C(\mathbb{F}_{q^n})}{n} T^n.$$

For $\phi, \psi \in \text{Hom}(E_1, E_2)$ we put

$$\langle \phi, \psi \rangle = \deg(\phi + \psi) - \deg\phi - \deg\psi.$$

We define

$$\begin{array}{cccc} \operatorname{Tr} & : & \operatorname{End} E & \longrightarrow & \mathbb{Z} \\ & \psi & \longmapsto & \langle \psi, 1 \rangle \end{array}.$$

Lemma 7.3. If $\psi \in \operatorname{End} E$ then

$$\psi^2 - [\operatorname{Tr} \psi] \, \psi + [\operatorname{deg} \psi] = 0.$$

Proof. See example sheet 2.

Definition. The **zeta function** of a variety V/\mathbb{F}_q is

$$\mathbf{Z}_{V}(T) = \exp \sum_{n=1}^{\infty} \frac{\#V(\mathbb{F}_{q^{n}})}{n} T^{n}.$$

Lemma 7.4. Let E/\mathbb{F}_q be an elliptic curve such that $\#E(\mathbb{F}_q) = q+1-a$. Then

$$Z_E(T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}.$$

Proof. Let $\phi: E \to E$ be the q-power Frobenius map. By the proof of Hasse's theorem $\#E(\mathbb{F}_q) = \deg(1-\phi)$, so Tr $\phi = a$ and $\deg \phi = q$. By Lemma 7.3, $\phi^2 - a\phi + q = 0$, so $\phi^{n+2} - a\phi^{n+1} + q\phi^n = 0$ for all $n \ge 0$, so

$$\operatorname{Tr} \phi^{n+2} - a \operatorname{Tr} \phi^{n+1} + q \operatorname{Tr} \phi^n = 0.$$

This second order difference equation with initial conditions $\operatorname{Tr} 1 = 2$ and $\operatorname{Tr} \phi = a$ has solution $\operatorname{Tr} \phi^n = \alpha^n + \beta^n$ where $\alpha, \beta \in \mathbb{C}$ are the roots of $X^2 - aX + q = 0$, so

$$\#E(\mathbb{F}_{q^n}) = \deg(1 - \phi^n) = 1 + \deg\phi^n - \operatorname{Tr}\phi^n = 1 + q^n - \alpha^n - \beta^n.$$

Thus

$$Z_{E}(T) = \exp \sum_{n=1}^{\infty} \left(\frac{T^{n}}{n} + \frac{(qT)^{n}}{n} - \frac{(\alpha T)^{n}}{n} - \frac{(\beta T)^{n}}{n} \right) = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)} = \frac{1 - aT + qT^{2}}{(1 - T)(1 - qT)},$$

using
$$-\log(1-x) = \sum_{n=1}^{\infty} x^n/n$$
.

Remark. By Hasse's theorem, $|a| \leq 2\sqrt{q}$. Then $\alpha = \overline{\beta}$, so

$$|\alpha| = |\beta| = \sqrt{q}.\tag{7}$$

Let $K = \mathbb{F}_q(E)$. If $\zeta_K(s) = 0$, then $Z_E(q^{-s}) = 0$, so $q^s = \alpha, \beta$. Thus $\operatorname{Re} s = \frac{1}{2}$ by (7).

Lecture 10

Friday 30/10/20

8 Formal groups

8.1 Complete rings

Definition. Let R be a ring, and let $I \subset R$ an ideal. The I-adic topology is the topology on R with basis $\{r + I^n \mid r \in R, n \ge 1\}$.

Definition. A sequence (x_n) in R is **Cauchy** if for all k there exists N such that $x_m - x_n \in I^k$ for all $m, n \geq N$.

Definition. R is complete if

- $\bigcap_{n>0} I^n = \{0\}$, and
- every Cauchy sequence converges.

Remark. If $x \in I$ then 1/(1-x) = 1 + x + ..., so $1 - x \in R^{\times}$.

Example.

- $R = \mathbb{Z}_p$ and $I = p\mathbb{Z}_p$.
- $R = \mathbb{Z}[[t]]$ and $I = \langle t \rangle$.

Lemma 8.1 (Hensel's lemma). Let R be an integral domain, complete with respect to an ideal I. Let $F \in R[X]$ and $s \ge 1$. Suppose $a \in R$ satisfies $F(a) \equiv 0 \mod I^s$ and $F'(a) \in R^{\times}$. Then there exists a unique $b \in R$ such that F(b) = 0 and $b \equiv a \mod I^s$.

Proof. Let $u \in R^{\times}$ with $F'(a) \equiv u \mod I$, for example could take u = F'(a). Replacing F(X) by F(X + a)/u we may assume a = 0 and $F'(0) \equiv 1 \mod I$. We put $x_0 = 0$ and

$$x_{n+1} = x_n - F\left(x_n\right). \tag{8}$$

By easy induction,

$$x_n \equiv 0 \mod I^s. \tag{9}$$

Then

$$F(X) - F(Y) = (X - Y)(F'(0) + XG(X, Y) + YH(X, Y)), \qquad G, H \in R[X, Y]. \tag{10}$$

Claim that $x_{n+1} \equiv x_n \mod I^{n+s}$ for all $n \ge 0$. By induction on n.

n=0 Clear.

n > 0 Suppose $x_n \equiv x_{n-1} \mod I^{n+s-1}$. By (10), $F(x_n) - F(x_{n-1}) = (x_n - x_{n-1}) (1+c)$ for some $c \in I$, so $F(x_n) - F(x_{n-1}) \equiv x_n - x_{n-1} \mod I^{n+s}$. Then $x_n - F(x_n) \equiv x_{n-1} - F(x_{n-1}) \mod I^{n+s}$, so $x_{n+1} \equiv x_n \mod I^{n+s}$.

This proves the claim, so $(x_n)_{n\geq 0}$ is Cauchy. Since R is complete, $x_n \to b$ as $n \to \infty$, for some $b \in R$. Taking the limit as $n \to \infty$ in (8), b = b - F(b), so F(b) = 0. Taking the limit as $n \to \infty$ in (9), $b \equiv 0 \mod I^s$. Uniqueness is proved using (10) and the assumption R is an integral domain.

8.2 A nonstandard affine piece

Let E be

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}.$$

In the affine piece $Y \neq 0$, let t = -X/Y and w = -Z/Y. Then

$$w = f(t, w) = t^3 + a_1 t w + a_2 t^2 w + a_3 w^2 + a_4 t w^2 + a_6 w^3.$$

We apply Lemma 8.1 with

$$R = \mathbb{Z}[a_1, \dots, a_6][[t]], \qquad I = \langle t \rangle, \qquad F(X) = X - f(t, X) \in R[X], \qquad s = 3, \qquad a = 0.$$

Check that $F(0) = -f(t,0) = -t^3 \equiv 0 \mod I^3$ and $F'(0) = 1 - a_1t - a_2t^2 \in R^{\times}$. Thus there exists a unique $w(t) \in \mathbb{Z}[a_1, \ldots, a_6][[t]]$ such that w(t) = f(t, w(t)) and $w(t) \equiv 0 \mod t^3$. Following the proof of Lemma 8.1 with u = 1 gives

$$w(t) = \lim_{n \to \infty} w_n(t), \qquad \begin{cases} w_0(t) = 0 \\ w_{n+1}(t) = f(t, w_n(t)) \end{cases}$$

In fact $w(t) = t^3 (1 + A_1 t + A_2 t^2 + A_3 t^3 + A_4 t^4 + \dots)$, where

Lecture 11 Monday 02/11/20

$$A_1 = a_1,$$
 $A_2 = a_1^2 + a_2,$ $A_3 = a_1^3 + 2a_1a_2 + a_3,$ $A_4 = a_1^4 + 3a_1^2a_2 + 3a_1a_3 + a_2^2 + a_4,$

Lemma 8.2. Let R be an integral domain, complete with respect to an ideal I, let $a_1, \ldots, a_6 \in R$, and let $K = \operatorname{Frac} R$. Then

$$\widehat{E}(I) = \{(t, w) \in E(K) \mid t, w \in I\} = \{(t, w(t)) \in E(K) \mid t \in I\}$$

is a subgroup of E(K).

Proof. The two descriptions of $\widehat{E}(I)$ agree, since given $t \in I$, Hensel's lemma shows there exists a unique $w \in I$ such that $(t, w) \in I$. Taking (t, w) = (0, 0) shows $\mathcal{O}_E \in \widehat{E}(I)$. So it suffices to show that if $P_1, P_2 \in \widehat{E}(I)$ then $P_3 = -P_1 - P_2 \in \widehat{E}(I)$. Let $w = \lambda t + \nu$ be the line through $P_1 = (t_1, w_1), P_2 = (t_2, w_2)$, and $P_3 = (t_3, w_3)$. Then

$$w(t) = \sum_{n=2}^{\infty} A_{n-2}t^{n+1}, \qquad \lambda = \begin{cases} \frac{w(t_2) - w(t_1)}{t_2 - t_1} & t_1 \neq t_2 \\ w'(t_1) & t_1 = t_2 \end{cases}$$

where $A_0 = 1$. If $P_1, P_2 \in \widehat{E}\left(I\right)$, then $t_1, t_2 \in I$, so

$$\lambda = \sum_{n=2}^{\infty} A_{n-2} \left(t_1^n + t_1^{n-1} t_2 + \dots + t_1 t_2^{n-1} + t_2^n \right) \in I, \qquad \nu = w_1 - \lambda t_1 \in I.$$

Substituting $w = \lambda t + \nu$ into w = f(t, w) gives

$$\lambda t + \nu = t^3 + a_1 t (\lambda t + \nu) + a_2 t^2 (\lambda t + \nu) + a_3 (\lambda t + \nu)^2 + a_4 t (\lambda t + \nu)^2 + a_6 (\lambda t + \nu)^3$$
.

Let

$$A = 1 + a_2\lambda + a_4\lambda^2 + a_6\lambda^3$$

be the coefficient of t^3 , and let

$$B = a_1\lambda + a_2\nu + a_3\lambda^2 + 2a_4\lambda\nu + 3a_6\lambda^2\nu$$

be the coefficient of t^2 . We have $A \in \mathbb{R}^{\times}$ and $B \in I$, so $t_3 = -B/A - t_1 - t_2 \in I$ and $w_3 = \lambda t_3 + \nu \in I$. \square

Taking $R = \mathbb{Z}[a_1, \ldots, a_6][[t]]$ and $I = \langle t \rangle$, by Lemma 8.2, there exists $\iota \in \mathbb{Z}[a_1, \ldots, a_6][[t]]$ with $\iota(0) = 0$ such that

$$[-1](t, w(t)) = (\iota(t), w(\iota(t))).$$

Taking $R = \mathbb{Z}[a_1, \dots, a_6][[t_1, t_2]]$ and $I = \langle t_1, t_2 \rangle$ there exists $F \in \mathbb{Z}[a_1, \dots, a_6][[t_1, t_2]]$ with F(0, 0) = 0 such that

$$(t_1, w(t_1)) + (t_2, w(t_2)) = (F(t_1, t_2), w(F(t_1, t_2))).$$

In fact

$$\iota(X) = -X - a_1 X^2 - a_2 X^3 - \left(a_1^3 + a_3\right) X^4 + \dots, \qquad F(X, Y) = X + Y - a_1 XY - a_2 \left(X^2 Y + XY^2\right) + \dots$$

By properties of the group law we deduce

- 1. F(X,Y) = F(Y,X),
- 2. F(X,0) = X and F(0,Y) = Y,
- 3. F(X, F(Y, Z)) = F(F(X, Y), Z), and
- 4. $F(X, \iota(X)) = 0$.

8.3 Formal groups

Definition. Let R be a ring. A **formal group** over R is a power series $F(X,Y) \in R[[X,Y]]$ satisfying 1, 2, and 3.

Exercise. Show that for any formal group there exists a unique $\iota(X) = -X + \cdots \in R[[X]]$ such that $F(X, \iota(X)) = 0$.

Example.

- F(X,Y) = X + Y is $\widehat{\mathbb{G}}_a$.
- F(X,Y) = X + Y + XY = (1+X)(1+Y) 1 is $\widehat{\mathbb{G}}_{\mathrm{m}}$.
- F as above is \widehat{E} .

Definition. Let \mathcal{F} and \mathcal{G} be formal groups over R given by power series F and G.

- A morphism $f: \mathcal{F} \to \mathcal{G}$ is a power series $f \in R[[T]]$ such that f(0) = 0 satisfying f(F(X,Y)) = G(f(X), f(Y)).
- $\mathcal{F} \cong \mathcal{G}$ if there exist $f: \mathcal{F} \to \mathcal{G}$ and $g: \mathcal{G} \to \mathcal{F}$ morphisms such that f(g(X)) = g(f(X)) = X.

Theorem 8.3. If $\operatorname{ch} R = 0$ then any formal group \mathcal{F} over R is isomorphic to $\widehat{\mathbb{G}}_a$ over $R \otimes \mathbb{Q}$. More precisely

1. there is a unique power series

$$\log T = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots, \qquad a_i \in R,$$

such that

$$\log F(X,Y) = \log X + \log Y,\tag{11}$$

2. there is a unique power series

$$\exp T = T + \frac{b_2}{2!}T^2 + \frac{b_3}{3!}T^3 + \dots, \qquad b_i \in R,$$

such that $\exp \log T = \log \exp T = T$.

We use the following.

Lecture 12 Wednesday 04/11/20

Lemma 8.4. Let $f(T) = aT + \cdots \in R[[T]]$ with $a \in R^{\times}$. Then there exists a unique $g(T) = a^{-1}T + \cdots \in R[[T]]$ such that f(g(T)) = g(f(T)) = T.

Proof. We construct polynomials $g_n(T) \in R[T]$ such that

$$f(g_n(T)) \equiv T \mod T^{n+1}, \qquad g_{n+1}(T) \equiv g_n(T) \mod T^{n+1}.$$

Then $g(T) = \lim_{n \to \infty} g_n(T)$ satisfies f(g(T)) = T. To start the induction set $g_1(T) = a^{-1}T$. Now suppose $n \ge 2$ and $g_{n-1}(T)$ exists, so $f(g_{n-1}(T)) \equiv T + bT^n \mod T^{n+1}$. We put $g_n(T) = g_{n-1}(T) + \lambda T^n$ for $\lambda \in R$ to be chosen later. Then

$$f\left(g_{n}\left(T\right)\right) = f\left(g_{n-1}\left(T\right) + \lambda T^{n}\right) \equiv f\left(g_{n-1}\left(T\right)\right) + \lambda a T^{n} \equiv T + \left(b + \lambda a\right) T^{n} \mod T^{n+1}.$$

We take $\lambda = -b/a$, using again that $a \in R^{\times}$. We get $g(T) = a^{-1}T + \cdots \in R[[T]]$ such that f(g(T)) = T. Applying the same argument to g gives $h(T) = aT + \cdots \in R[[T]]$ such that g(h(T)) = T. Then f(T) = f(g(h(T))) = h(T).

Proof of Theorem 8.3.

1. The notation is $F_1(X,Y) = \frac{\partial F}{\partial X}(X,Y)$.

• Uniqueness. Let

$$p(T) = \frac{\mathrm{d}}{\mathrm{d}T} (\log T) = 1 + a_2 T + a_3 T^2 + \dots$$

Differentiating (11) with respect to X gives

$$p(F(X,Y)) F_1(X,Y) = p(X) + 0.$$

Putting X = 0 gives

$$p(Y) F_1(0, Y) = 1.$$

Then $p(Y) = F_1(0, Y)^{-1}$, so p, and hence log, is unique.

• Existence. Let $p(T) = F_1(0,T)^{-1} = 1 + a_2T + a_3T^2 + \dots$ for some $a_i \in R$. Let

$$\log T = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots$$

Differentiating F(F(X,Y),Z) = F(X,F(Y,Z)) with respect to X,

$$F_1(F(X,Y),Z) F_1(X,Y) = F_1(X,F(Y,Z)).$$

Putting X = 0,

$$F_1(Y, Z) F_1(0, Y) = F_1(0, F(Y, Z)).$$

Then $F_1(Y, Z) p(Y)^{-1} = p(F(Y, Z))^{-1}$, so $F_1(Y, Z) p(F(Y, Z)) = p(Y)$. Integrating with respect to Y,

$$\log F(Y, Z) = \log Y + h(Z),$$

for some power series h. By symmetry of Y and Z we see $h(Z) = \log Z$.

2. Theorem 8.3.2 now follows from Lemma 8.4, except for showing $b_n \in R$, not just in $R \otimes \mathbb{Q}$. See example sheet 2.

Notation. Let \mathcal{F} , such as $\widehat{\mathbb{G}}_{a}$, $\widehat{\mathbb{G}}_{m}$, \widehat{E} , be a formal group, given by $F \in R[[X,Y]]$. Suppose R is complete with respect to an ideal I. For $x,y \in I$ put $x \oplus_{\mathcal{F}} y = F(x,y) \in I$. Then $\mathcal{F}(I) = (I, \oplus_{\mathcal{F}})$ is an abelian group.

Example.

- $\widehat{\mathbb{G}}_{a}(I) = (I, +).$
- $\widehat{\mathbb{G}_{\mathrm{m}}}(I) = (1 + I, \times).$
- By Lemma 8.2 $\widehat{E}(I) \subset E(K)$, which explains the earlier notation.

Corollary 8.5. Let \mathcal{F} be a formal group over R, and $n \in \mathbb{Z}$. Suppose $n \in R^{\times}$. Then

- $[n]: \mathcal{F} \to \mathcal{F}$ is an isomorphism, and
- If R is complete with respect to an ideal I then $n: \mathcal{F}(I) \to \mathcal{F}(I)$ is an isomorphism.

In particular $\mathcal{F}(I)$ has no n-torsion.

Proof. We have [1](T) = T and [n](T) = F([n-1]T,T) for all $n \ge 2$. For n < 0 use $[-1](T) = \iota(T)$. By induction, $[n](T) = nT + \cdots \in R[[T]]$. Lemma 8.4 shows that if $n \in R^{\times}$ then [n] is an isomorphism.

9 Elliptic curves over local fields

Let K be a field, complete with respect to a discrete valuation $v: K^* \to \mathbb{Z}$. The valuation ring, or ring of integers, is

$$\mathcal{O}_K = \{ x \in K^* \mid v(x) \ge 0 \} \cup \{ 0 \}.$$

with unit group \mathcal{O}_K^{\times} where v(x) = 0 and maximal ideal $\pi \mathcal{O}_K$ where $v(\pi) = 1$. The residue field is $\kappa = \mathcal{O}_K/\pi \mathcal{O}_K$. We assume $\operatorname{ch} K = 0$ and $\operatorname{ch} \kappa = p$.

Example. $K = \mathbb{Q}_p$, $\mathcal{O}_K = \mathbb{Z}_p$, and $\kappa = \mathbb{F}_p$.

9.1 Integral Weierstrass equations

Let E/K be an elliptic curve.

Definition. A Weierstrass equation for E with coefficients $a_1, \ldots, a_6 \in K$ is **integral** if $a_1, \ldots, a_6 \in \mathcal{O}_K$, and **minimal** if $v(\Delta)$ is minimal among all integral Weierstrass equations for E.

Remark.

- Putting $x = u^2x'$ and $y = u^3y'$ gives $a_i = u^ia_i'$, so integral Weierstrass equations exist.
- If $a_1, \ldots, a_6 \in \mathcal{O}_K$, then $\Delta \in \mathcal{O}_K$, so $v(\Delta) \geq 0$, so minimal Weierstrass equations exist.
- If $\operatorname{ch} \kappa \neq 2,3$ then there exists a minimal Weierstrass equation of the form $y^2 = x^3 + ax + b$.

Lemma 9.1. Let E/K have an integral Weierstrass equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
.

Let $\mathcal{O} \neq P = (x, y) \in E(K)$. Then either $x, y \in \mathcal{O}_K$ or v(x) = -2s and v(y) = -3s for some $s \ge 1$.

Compare to example sheet 1, question 5.

Proof.

 $v(x) \geq 0$. If v(y) < 0 then v(LHS) < 0 and $v(RHS) \geq 0$, a contradiction, so $x, y \in \mathcal{O}_K$.

$$v\left(x\right)<0.$$
 $v\left(\text{LHS}\right)\geq\min\left(2v\left(y\right),v\left(x\right)+v\left(y\right),v\left(y\right)\right)$ and $v\left(\text{RHS}\right)=3v\left(x\right)$, so $v\left(y\right)< v\left(x\right)$. But $v\left(\text{LHS}\right)=2v\left(y\right)$. Thus $3v\left(x\right)=2v\left(y\right)$, so $v\left(x\right)=-2s$ and $v\left(y\right)=-3s$ for some $s\geq1$.

9.2 A filtration of formal groups

Since K complete, \mathcal{O}_K is complete with respect to the ideal $\pi^r \mathcal{O}_K$, for any $r \geq 1$. Fix a minimal Weierstrass equation for E/K, which gives a formal group \widehat{E} over \mathcal{O}_K . Taking $I = \pi^r \mathcal{O}_K$ in Lemma 8.2

$$\widehat{E}(\pi^r \mathcal{O}_K) = \left\{ (x, y) \in E(K) \middle| -\frac{x}{y}, -\frac{1}{y} \in \pi^r \mathcal{O}_K \right\} \cup \{\mathcal{O}\}$$

$$= \left\{ (x, y) \in E(K) \middle| v\left(\frac{x}{y}\right) \ge r, v\left(\frac{1}{y}\right) \ge r \right\} \cup \{\mathcal{O}\}$$

$$= \left\{ (x, y) \in E(K) \middle| \exists s \ge r, v(x) = -2s, v(y) = -3s \right\} \cup \{\mathcal{O}\}$$

$$= \left\{ (x, y) \in E(K) \middle| v(x) \le -2r, v(y) \le -3r \right\} \cup \{\mathcal{O}\},$$

using Lemma 9.1. By Lemma 8.2 this is a subgroup of E(K), say $E_r(K)$, so

$$\cdots \subset E_2(K) \subset E_1(K)$$
.

More generally for \mathcal{F} a formal group over \mathcal{O}_K

$$\cdots \subset \mathcal{F}\left(\pi^2 \mathcal{O}_K\right) \subset \mathcal{F}\left(\pi \mathcal{O}_K\right).$$

We show that $\mathcal{F}(\pi^r \mathcal{O}_K) \cong (\mathcal{O}_K, +)$ for r sufficiently large and $\mathcal{F}(\pi^r \mathcal{O}_K) / \mathcal{F}(\pi^{r+1} \mathcal{O}_K) \cong (\kappa, +)$ for all $r \geq 1$.

Lecture 13 Friday 06/11/20

Theorem 9.2. Let \mathcal{F} be a formal group over \mathcal{O}_K . Let e = v(p). If r > e/(p-1) then $\log : \mathcal{F}(\pi^r \mathcal{O}_K) \xrightarrow{\sim} \widehat{\mathbb{G}_a}(\pi^r \mathcal{O}_K)$ is an isomorphism with inverse $\exp : \widehat{\mathbb{G}_a}(\pi^r \mathcal{O}_K) \xrightarrow{\sim} \mathcal{F}(\pi^r \mathcal{O}_K)$.

Remark.
$$\widehat{\mathbb{G}}_{a}(\pi^{r}\mathcal{O}_{K}) = (\pi^{r}\mathcal{O}_{K}, +) \cong (\mathcal{O}_{K}, +).$$

Proof. For $x \in \pi^r \mathcal{O}_K$ we must check the power series $\exp x$ and $\log x$ converge. Recall $\exp T = T + (b_2/2!) T^2 + (b_3/3!) T^3 + \dots$ for $b_i \in \mathcal{O}_K$. Claim that $\operatorname{v}_p(n!) \leq (n-1)/(p-1)$, since

$$\mathbf{v}_{p}\left(n!\right) = \sum_{r=1}^{\infty} \left\lfloor \frac{n}{p^{r}} \right\rfloor < \sum_{r=1}^{\infty} \frac{n}{p^{r}} = n \left(\frac{\frac{1}{p}}{1 - \frac{1}{p}} \right) = \frac{n}{p - 1},$$

so $(p-1) v_p(n!) < n$, so $(p-1) v_p(n!) \le n-1$, since the left hand side is in \mathbb{Z} . Now

$$v\left(\frac{b_n x^n}{n!}\right) \ge nr - e\left(\frac{n-1}{p-1}\right) = (n-1)\left(r - \frac{e}{p-1}\right) + r.$$

This is always at least r and tends to infinity as $n \to \infty$, so $\exp x$ converges and belongs to $\pi^r \mathcal{O}_K$. The same method works for log.

Lemma 9.3. We have $\mathcal{F}(\pi^r \mathcal{O}_K) / \mathcal{F}(\pi^{r+1} \mathcal{O}_K) \cong (\kappa, +)$ for all $r \geq 1$.

Proof. By definition of formal groups F(X,Y) = X + Y + XY(...). So if $x,y \in \mathcal{O}_K$ then $F(\pi^r x, \pi^r y) \equiv \pi^r (x+y) \mod \pi^{r+1}$. Therefore

$$\begin{array}{ccc} \mathcal{F}\left(\pi^r \mathcal{O}_K\right) & \longrightarrow & (\kappa, +) \\ \pi^r x & \longmapsto & x \mod \pi \end{array}$$

is a surjective group homomorphism, with kernel $\mathcal{F}(\pi^{r+1}\mathcal{O}_K)$.

Thus for r > e/(p-1),

$$(\mathcal{O}_K,+)\cong \mathcal{F}\left(\pi^r\mathcal{O}_K\right)\subset\cdots\subset\mathcal{F}\left(\pi^2\mathcal{O}_K\right)\subset\mathcal{F}\left(\pi\mathcal{O}_K\right),$$

where the quotients are isomorphic to $(\kappa, +)$, so if $|\kappa| < \infty$ then $\mathcal{F}(\pi \mathcal{O}_K)$ has a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$.

9.3 Reduction modulo π

Notation. Reduction modulo π is

$$\begin{array}{ccc} \mathcal{O}_K & \longrightarrow & \mathcal{O}_K/\pi\mathcal{O}_K = \kappa \\ x & \longmapsto & \widetilde{x} \end{array}.$$

Proposition 9.4. Let E/K be an elliptic curve. The reduction modulo π of any two minimal Weierstrass equations for E define isomorphic curves over κ .

Proof. Say Weierstrass equations are related by [u; r, s, t] for $u \in K^*$ and $r, s, t \in K$. Then $\Delta_1 = u^{12}\Delta_2$. Since both equations are minimal, $v(\Delta_1) = v(\Delta_2)$, so $u \in \mathcal{O}_K^{\times}$. By the transformation formulae for a_i and b_i and since \mathcal{O}_K is integrally closed, $r, s, t \in \mathcal{O}_K$. The Weierstrass equations for the reduction modulo π are related by $[\widetilde{u}; \widetilde{r}, \widetilde{s}, \widetilde{t}]$ for $\widetilde{u} \in \kappa^*$ and $\widetilde{r}, \widetilde{s}, \widetilde{t} \in \kappa$.

Definition. The **reduction** \widetilde{E}/κ of E/K is defined by the reduction of a minimal Weierstrass equation. Then E has **good reduction** if \widetilde{E} is nonsingular, and so an elliptic curve, otherwise it has **bad reduction**.

For an integral Weierstrass equation

- if $v(\Delta) = 0$, then good reduction,
- if $0 < v(\Delta) < 12$, then bad reduction, and
- if $v(\Delta) \geq 12$, then beware the equation might not be minimal.

There is a well-defined map

$$\begin{array}{ccc} \mathbb{P}^2\left(K\right) & \longrightarrow & \mathbb{P}^2\left(\kappa\right) \\ \left(x:y:z\right) & \longmapsto & \left(\widetilde{x}:\widetilde{y}:\widetilde{z}\right) \end{array},$$

choosing the representative of (x:y:z) with $\min(v(x),v(y),v(z))=0$. We restrict to give

$$\begin{array}{ccc} E\left(K\right) & \longrightarrow & \widetilde{E}\left(\kappa\right) \\ P & \longmapsto & \widetilde{P} \end{array}.$$

If $P = (x, y) \in E(K)$ then by Lemma 9.1 either $x, y \in \mathcal{O}_K$, so $\widetilde{P} = (\widetilde{x}, \widetilde{y})$, or v(x) = -2s and v(y) = -3s, so $P = (\pi^{3s}x : \pi^{3s}y : \pi^{3s})$ and $\widetilde{P} = (0 : 1 : 0)$. Thus

$$\widehat{E}\left(\pi\mathcal{O}_{K}\right)=E_{1}\left(K\right)=\left\{ P\in E\left(K\right)\mid\widetilde{P}=\mathcal{O}\right\} ,$$

the kernel of reduction. Let

$$\widetilde{E}_{\rm ns} = \begin{cases} \widetilde{E} & E \text{ has good reduction} \\ \widetilde{E} \setminus \{\text{singular point}\} & E \text{ has bad reduction} \end{cases}$$

The chord and tangent process still defines a group law on $\widetilde{E}_{\rm ns}$. In cases of bad reduction

- $\widetilde{E}_{ns} \cong \mathbb{G}_a$, an additive reduction, or
- $\widetilde{E}_{ns} \cong \mathbb{G}_m$, a multiplicative reduction.

The isomorphism is over κ , or possibly a quadratic extension of κ . For simplicity suppose $\operatorname{ch} \kappa \neq 2$. Then \widetilde{E} is $y^2 = f(x)$ for $\operatorname{deg} f = 3$, so \widetilde{E} is singular if and only if f has a repeated root.

- A double root gives a curve $y^2 = x^2(x+1)$ with a **node**, which leads to multiplicative reduction. See example sheet 3.
- A triple root gives a curve $y^2 = x^3$ with a **cusp**, which leads to additive reduction. Let

$$\begin{array}{ccc}
\widetilde{E}_{\rm ns} & \longleftrightarrow & \mathbb{G}_{\rm a} \\
(x,y) & \longmapsto & \frac{x}{y} \\
\left(\frac{1}{t^2}, \frac{1}{t^3}\right) & \longleftrightarrow & t
\end{array}$$

We check this is a group homomorphism. Let P_1, P_2, P_3 lie on the line ax + by = 1. Write $P_i = (x_i, y_i)$ and $t_i = x_i/y_i$. Then $x_i^3 = y_i^2 = y_i^2 (ax_i + by_i)$, so t_1, t_2, t_3 are the roots of $X^3 - aX - b = 0$. Looking at the coefficient of X^2 gives $t_1 + t_2 + t_3 = 0$.

9.4 The subgroup of nonsingular reduction

Definition.

$$E_{0}\left(K\right)=\left\{ P\in E\left(K\right)\ \middle|\ \widetilde{P}\in\widetilde{E}_{\mathrm{ns}}\left(\kappa\right)\right\} .$$

Lecture 14 Monday 09/11/20

Proposition 9.5. $E_0(K)$ is a subgroup of E(K), and reduction modulo π is a surjective group homomorphism $E_0(K) \to \widetilde{E}_{ns}(\kappa)$.

Proof.

• A line l in \mathbb{P}^2 defined over K has equation aX + bY + cZ = 0 for $a, b, c \in K$. We may assume $\min\left(v\left(a\right), v\left(b\right), v\left(c\right)\right) = 0$. Reduction modulo π gives the line \widetilde{l} , $\widetilde{aX} + \widetilde{bY} + \widetilde{cZ} = 0$. If $P_1, P_2, P_3 \in E\left(K\right)$ with $P_1 + P_2 + P_3 = \mathcal{O}$ then these points lie on a line l, so $\widetilde{P_1}, \widetilde{P_2}, \widetilde{P_3} \in \widetilde{E}\left(\kappa\right)$ lie on the line \widetilde{l} . If $\widetilde{P_1}, \widetilde{P_2} \in \widetilde{E}_{\rm ns}\left(\kappa\right)$ then $\widetilde{P_3} \in \widetilde{E}_{\rm ns}\left(\kappa\right)$. So if $P_1, P_2 \in E_0\left(K\right)$ then $P_3 \in E_0\left(K\right)$ and $\widetilde{P_1} + \widetilde{P_2} + \widetilde{P_3} = \mathcal{O}$. Check this still works if $\#\left\{\widetilde{P_1}, \widetilde{P_2}, \widetilde{P_3}\right\} < 3$.

¹Exercise

• For surjectivity, let

$$f(x,y) = y^2 + a_1xy + a_3y - (x^3 + a_2x^2 + a_4x + a_6)$$
.

Let $\widetilde{P} \in \widetilde{E}_{ns}(\kappa) \setminus \{\mathcal{O}\}$ say $\widetilde{P} = (\widetilde{x_0}, \widetilde{y_0})$ for some $x_0, y_0 \in \mathcal{O}_K$. Since \widetilde{P} is nonsingular, either

- 1. $\frac{\partial f}{\partial x}(x_0, y_0) \not\equiv 0 \mod \pi$, or
- 2. $\frac{\partial f}{\partial y}(x_0, y_0) \not\equiv 0 \mod \pi$.

If 1 we put $g(t) = f(t, y_0) \in \mathcal{O}_K[t]$. Then $g(x_0) \equiv 0 \mod \pi$ and $g'(x_0) \in \mathcal{O}_K^{\times}$. By Hensel's lemma, there exists $b \in \mathcal{O}_K$ such that g(b) = 0 and $b \equiv x_0 \mod \pi$. Then $P = (b, y_0) \in E(K)$ has reduction \widetilde{P} . Case 2 is similar.

Recall for $r \geq 1$ we have

$$E_r(K) = \{(x, y) \in E(K) \mid v(x) \le -2r, \ v(y) \le -3r\} \cup \{\mathcal{O}\}.$$

If r > e/(p-1),

Lemma 9.6. If $|\kappa| < \infty$ then $E_0(K) \subset E(K)$ has finite index.

The proof is a compactness argument. See below.

Theorem 9.7. If $[K : \mathbb{Q}_p] < \infty$ then E(K) contains a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$.

Proof. $|\kappa| < \infty$, so this follows from the above.

Lemma 9.8. If $|\kappa| < \infty$ then $\mathbb{P}^n(K)$ is compact, with respect to the π -adic topology.

Proof. Since $|\kappa| < \infty$, $\mathcal{O}_K/\pi^r \mathcal{O}_K$ is finite for all $r \geq 1$, so

$$\mathcal{O}_K \xrightarrow{\sim} \varprojlim_r \mathcal{O}_K / \pi^r \mathcal{O}_K$$

is compact. Then $\mathbb{P}^n(K)$ is the union of compact sets

$$\{(a_0:\cdots:a_{i-1}:1:a_{i+1}:\cdots:a_n)\mid a_j\in\mathcal{O}_K\},\$$

and hence compact.

Proof of Lemma 9.6. $E(K) \subset \mathbb{P}^2(K)$ is closed subset, so (E(K), +) is a compact topological group. If \widetilde{E} has singular point $(\widetilde{x_0}, \widetilde{y_0})$ then

$$E(K) \setminus E_0(K) = \{(x,y) \in E(K) \mid v(x-x_0) \ge 1, \ v(y-y_0) \ge 1\}$$

is a closed subset of E(K), so $E_0(K)$ is an open subgroup of E(K). The cosets of $E_0(K)$ are an open cover of E(K), so $[E(K):E_0(K)]<\infty$.

The **Tamagawa number** is

$$c_K(E) = [E(K) : E_0(K)].$$

Remark.

- If good reduction, then $c_K(E) = 1$, but the converse is false.
- It can be shown that either $c_K(E) = v(\Delta)$ or $c_K(E) \le 4$. Essential we work with a minimal Weierstrass equation.

9.5 Unramified extensions of local fields

Let $[K:\mathbb{Q}_p]<\infty$ and let L/K be a finite extension with residue fields κ' and κ . Let $f=[\kappa':\kappa]$. Then

$$\begin{array}{ccc} K^* & \stackrel{\mathbf{v}_K}{---} & \mathbb{Z} \\ & & & \downarrow \cdot_e \cdot \\ L^* & \stackrel{\mathbf{v}_L}{---} & \mathbb{Z} \end{array}$$

Fact. [L:K] = ef. If L/K is Galois then there is a natural group homomorphism $\operatorname{Gal}(L/K) \to \operatorname{Gal}(\kappa'/\kappa)$. This map is surjective with kernel of order e.

Definition. L/K is unramified if e = 1.

Fact. For each integer $m \geq 1$

- κ has a unique extension of degree m, say κ_m , and
- K has a unique unramified extension of degree m, say K_m .

These extensions are Galois with cyclic Galois group.

Definition. The maximal unramified extension is

$$K^{\mathrm{ur}} = \bigcup_{m > 1} K_m \subset \overline{K}.$$

Notation.

- $[n]^{-1}P = \{Q \in E(\overline{K}) \mid nQ = P\}.$
- $K(\{P_1, \ldots, P_r\}) = K(x_1, \ldots, x_r, y_1, \ldots, y_r)$ with $P_i = (x_i, y_i)$.

Theorem 9.9. Let $[K : \mathbb{Q}_p] < \infty$. Suppose E/K has good reduction and $p \nmid n$. If $P \in E(K)$ then $K([n]^{-1}P)/K$ is unramified.

Proof. For each $m \ge 1$ there is a short exact sequence

$$0 \to E_1(K_m) \to E(K_m) \to \widetilde{E}(\kappa_m) \to 0.$$

Taking union over $m \geq 1$ gives a commutative diagram

$$0 \longrightarrow E_{1}(K^{\mathrm{ur}}) \longrightarrow E(K^{\mathrm{ur}}) \longrightarrow \widetilde{E}(\overline{\kappa}) \longrightarrow 0$$

$$\downarrow \cdot n \qquad \qquad \downarrow \cdot n \qquad \qquad \downarrow \cdot n$$

$$0 \longrightarrow E_{1}(K^{\mathrm{ur}}) \longrightarrow E(K^{\mathrm{ur}}) \longrightarrow \widetilde{E}(\overline{\kappa}) \longrightarrow 0$$

The left map is an isomorphism by Corollary 8.5, noting that $p \nmid n$, so $n \in \mathcal{O}_K^{\times}$. Since K^{ur} is not complete we must apply Corollary 8.5 over each K_m . The right map is surjective by Theorem 2.8 with kernel isomorphic to $(\mathbb{Z}/n\mathbb{Z})^2$ by Theorem 6.5, noting that $p \nmid n$. By the snake lemma,

$$E\left(K^{\mathrm{ur}}\right)\left[n\right] = \left(\mathbb{Z}/n\mathbb{Z}\right)^{2}, \qquad E\left(K^{\mathrm{ur}}\right)/nE\left(K^{\mathrm{ur}}\right) = 0.$$

So if $P \in E(K)$ then there exists $Q \in E(K^{ur})$ such that nQ = P and $[n]^{-1}P = \{Q + T \mid T \in E[n]\} \subset E(K^{ur})$, so $K([n]^{-1}P) \subset K^{ur}$. Thus $K([n]^{-1}P)/K$ is unramified.

Corollary 9.10. Let E/K be an elliptic curve with $[K : \mathbb{Q}_p] < \infty$. Then $E(K)_{\text{tors}}$ is finite.

Proof. In Theorem 9.7 we saw there exists a finite index subgroup $E_r(K) \subset E(K)$ with $E_r(K) \cong (\mathcal{O}_K, +)$. Since $E_r(K)$ is torsion free $E(K)_{\text{tors}} \hookrightarrow E(K) / E_r(K)$, which is finite.

Lecture 15 Wednesday 11/11/20

10 Elliptic curves over number fields I: the torsion subgroup

Let $[K:\mathbb{Q}]<\infty$, and let E/K be an elliptic curve.

10.1 Primes of good and bad reduction

Notation. If \mathfrak{p} is a prime of K, that is of \mathcal{O}_K , then $K_{\mathfrak{p}}$ is the \mathfrak{p} -adic completion of K and $\kappa_{\mathfrak{p}} = \mathcal{O}_K/\mathfrak{p}$.

Definition. \mathfrak{p} is a **prime of good reduction** for E/K if $E/K_{\mathfrak{p}}$ has good reduction.

Lemma 10.1. E/K has only finitely many primes of bad reduction.

Proof. Take a Weierstrass equation for E with $a_1, \ldots, a_6 \in \mathcal{O}_K$. Since E is nonsingular, $0 \neq \Delta \in \mathcal{O}_K$. Write $\langle \Delta \rangle = \mathfrak{p}_1^{\alpha_1} \ldots \mathfrak{p}_r^{\alpha_r}$, a factorisation into prime ideals. Let $S = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_r\}$. If $\mathfrak{p} \notin S$ then $v_{\mathfrak{p}}(\Delta) = 0$, so $E/K_{\mathfrak{p}}$ has good reduction. Thus the set of bad primes for E is in S.

Remark. If K has class number one, such as $K = \mathbb{Q}$, then we can always find a Weierstrass equation for E with $a_1, \ldots, a_6 \in \mathcal{O}_K$ which is minimal at all primes \mathfrak{p} .

Lemma 10.2. $E(K)_{tors}$ is finite.

Proof. Take any prime \mathfrak{p} . Then $K \subset K_{\mathfrak{p}}$, so $E(K)_{\text{tors}} \subset E(K_{\mathfrak{p}})_{\text{tors}}$, which is finite by Corollary 9.10.

10.2 Reduction modulo p

Lemma 10.3. Let \mathfrak{p} be a prime of good reduction with $\mathfrak{p} \nmid n$. Then reduction modulo \mathfrak{p} gives an injective group homomorphism $E(K)[n] \hookrightarrow \widetilde{E}(\kappa_{\mathfrak{p}})[n]$.

Proof. By Proposition 9.5, $E(K_{\mathfrak{p}}) \to \widetilde{E}(\kappa_{\mathfrak{p}})$ is a group homomorphism with kernel $E_1(K_{\mathfrak{p}})$. By Corollary 8.5 and $\mathfrak{p} \nmid n$, $E_1(K_{\mathfrak{p}})$ has no *n*-torsion.

Example. Let E/\mathbb{Q} be $y^2 + y = x^3 - x^2$. Then $\Delta = -11$, so E has good reduction at all $p \nmid 11$, and

By Lemma 10.3, $\#E(\mathbb{Q})_{\text{tors}} \mid 5 \cdot 2^a$ for some $a \geq 0$ and $\#E(\mathbb{Q})_{\text{tors}} \mid 5 \cdot 3^b$ for some $b \geq 0$, so $\#E(\mathbb{Q})_{\text{tors}} \mid 5$. Let $T = (0,0) \in E(\mathbb{Q})$. By calculation, $5T = \mathcal{O}$, so $E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/5\mathbb{Z}$.

Example. Let E/\mathbb{Q} be $y^2+y=x^3+x^2$. Then $\Delta=-43$, so E has good reduction at all $p\neq 43$, and

So $\#E\left(\mathbb{Q}\right)_{\mathrm{tors}} \mid 5 \cdot 2^{a}$ for some $a \geq 0$ and $\#E\left(\mathbb{Q}\right)_{\mathrm{tors}} \mid 9 \cdot 11^{b}$ for some $b \geq 0$, so $E\left(\mathbb{Q}\right)_{\mathrm{tors}} = \{\mathcal{O}\}$. Thus $P = (0,0) \in E\left(\mathbb{Q}\right)$ is a point of infinite order, so $\mathrm{rk}\,E\left(\mathbb{Q}\right) \geq 1$.

Example. Let E_D be $y^2 = x^3 - D^2x$ for $D \in \mathbb{Z}$ a squarefree integer. Then $\Delta = 2^6D^6$, and $E_D(\mathbb{Q})_{\text{tors}} \supset \{\mathcal{O}, (0,0), (\pm D,0)\} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Let $f(x) = x^3 - D^2x$. If $p \nmid 2D$ then

$$\#\widetilde{E_D}\left(\mathbb{F}_p\right) = 1 + \sum_{x \in \mathbb{F}_p} \left(\left(\frac{f\left(x\right)}{p}\right) + 1 \right).$$

If $p \equiv 3 \mod 4$ then since f(x) is an odd function

$$\left(\frac{f\left(-x\right)}{p}\right) = \left(\frac{-f\left(x\right)}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{f\left(x\right)}{p}\right) = -\left(\frac{f\left(x\right)}{p}\right),$$

so $\#E_D(\mathbb{F}_p) = p+1$. Let $m = \#E_D(\mathbb{Q})_{\mathrm{tors}}$. We have $4 \mid m \mid p+1$ for all sufficiently large primes p with $p \equiv 3 \mod 4$, where $p \nmid 2D$ and $p \nmid m$. Then m=4, since otherwise this contradicts Dirichlet's theorem on primes in arithmetic progressions, so $E_D(\mathbb{Q})_{\mathrm{tors}} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Thus $\mathrm{rk}\,E_D(\mathbb{Q}) \geq 1$ if and only if there exist $x,y \in \mathbb{Q}$ with $y \neq 0$ such that $y^2 = x^3 - D^2x$, if and only if D is a congruent number.

10.3 The Lutz-Nagell theorem

Lemma 10.4. Let E/\mathbb{Q} be given by a Weierstrass equation with $a_1, \ldots, a_6 \in \mathbb{Z}$. Suppose $\mathcal{O} \neq T = (x, y) \in E(\mathbb{Q})_{tors}$. Then

- 1. $4x, 8y \in \mathbb{Z}$, and
- 2. if $2 \mid a_1 \text{ or } 2T \neq \mathcal{O} \text{ then } x, y \in \mathbb{Z}$.

Proof.

1. The Weierstrass equation defines a formal group \widehat{E} over \mathbb{Z} . For $r \geq 1$ we have

$$\widehat{E}\left(p^{r}\mathbb{Z}_{p}\right) = \left\{\left(x,y\right) \in E\left(\mathbb{Q}_{p}\right) \mid \mathbf{v}_{p}\left(x\right) \leq -2r, \ \mathbf{v}_{p}\left(y\right) \leq -3r\right\} \cup \left\{\mathcal{O}\right\}.$$

By Theorem 9.2, $\widehat{E}(p^r\mathbb{Z}_p) \cong (\mathbb{Z}_p, +)$ if r > 1/(p-1), so $\widehat{E}(4\mathbb{Z}_2)$ and $\widehat{E}(p\mathbb{Z}_p)$ for p odd are torsion free. Since $\mathcal{O} \neq T \in E(\mathbb{Q})_{\text{tors}}$ it follows that $\mathbf{v}_2(x) \geq -2$ and $\mathbf{v}_2(y) \geq -3$, and $\mathbf{v}_p(x) \geq 0$ and $\mathbf{v}_p(y) \geq 0$ for all odd primes p. This proves 1.

2. Suppose $T \in \widehat{E}(2\mathbb{Z}_2)$, that is $v_2(x) = -2$ and $v_2(y) = -3$. Since $\widehat{E}(2\mathbb{Z}_2)/\widehat{E}(4\mathbb{Z}_2) \cong (\mathbb{F}_2, +)$ and $\widehat{E}(4\mathbb{Z}_2)$ is torsion free we get $2T = \mathcal{O}$. Also $(x,y) = T = -T = (x, -y - a_1x - a_3)$, so $2y + a_1x + a_3 = 0$, so $8y + 4xa_1 + 4a_3 = 0$. Then 8y is odd, 4x is odd, and $4a_3$ is even, so a_1 is odd. So if $2T \neq \mathcal{O}$ or a_1 is even then $T \notin \widehat{E}(2\mathbb{Z}_2)$, so $x, y \in \mathbb{Z}$.

Example. $y^2 + xy = x^3 + 4x + 1$ has $\left(-\frac{1}{4}, \frac{1}{8}\right) \in E(\mathbb{Q})[2]$.

Lecture 16 Friday 13/11/20

Theorem 10.5 (Lutz-Nagell). Let E/\mathbb{Q} be $y^2 = f(x) = x^3 + ax + b$ for $a, b \in \mathbb{Z}$. Suppose $\mathcal{O} \neq T = (x, y) \in E(\mathbb{Q})_{\text{tors}}$. Then $x, y \in \mathbb{Z}$ and either y = 0 or $y^2 \mid 4a^3 + 27b^2$.

Proof. By Lemma 10.4, $x, y \in \mathbb{Z}$. If $2T = \mathcal{O}$ then y = 0. Otherwise $\mathcal{O} \neq 2T = (x_2, y_2) \in E(\mathbb{Q})_{\text{tors}}$. By Lemma 10.4, $x_2, y_2 \in \mathbb{Z}$. But $x_2 = (f'(x)/2y)^2 - 2x$, so $y \mid f'(x)$. Since E is nonsingular, f(X) and f'(X) are coprime, so f(X) and $f'(X)^2$ are coprime. Then there exist $g, h \in \mathbb{Q}[X]$ such that $g(X) f(X) + h(X) f'(X)^2 = 1$. Doing this calculation and clearing denominators gives

$$(3X^{2} + 4a) f'(X)^{2} - 27 (X^{3} + aX - b) f(X) = 4a^{3} + 27b^{2}.$$

Since y | f'(x) and $y^2 = f(x)$ we get $y^2 | 4a^3 + 27b^2$.

Remark. Mazur showed that if E/\mathbb{Q} is an elliptic curve

$$E\left(\mathbb{Q}\right)_{\mathrm{tors}} \cong \begin{cases} \mathbb{Z}/n\mathbb{Z} & 1 \leq n \leq 12, \ n \neq 11 \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z} & 1 \leq n \leq 4 \end{cases}.$$

Moreover all fifteen possibilities occur.

Elliptic Curves 11 Kummer theory

11 Kummer theory

Let K be a field, and let ch $K \nmid n$. Assume $\mu_n \subset K$.

11.1 The Kummer theorem

Lemma 11.1. Let $\Delta \subset K^*/(K^*)^n$ be a finite subgroup. Let $L = K(\sqrt[n]{\Delta})$. Then L/K is Galois and

$$\operatorname{Gal}(L/K) \cong \operatorname{Hom}(\Delta, \mu_n)$$
.

Proof. L/K is Galois since $\mu_n \subset K$ and $\operatorname{ch} K \nmid n$. Define the **Kummer pairing**

$$\begin{array}{cccc} \langle,\rangle & : & \operatorname{Gal}\left(L/K\right) \times \Delta & \longrightarrow & \mu_n \\ & (\sigma,x) & \longmapsto & \frac{\sigma\left(\sqrt[n]{x}\right)}{\sqrt[n]{x}} \end{array}.$$

- Well-defined. If $\alpha, \beta \in L$ with $\alpha^n = \beta^n = x$, then $(\alpha/\beta)^n = 1$. Then $\alpha/\beta \in \mu_n \subset K$, so $\sigma(\alpha)/\alpha = \sigma(\beta)/\beta$.
- Bilinear, since

$$\left\langle \sigma\tau,x\right\rangle =\frac{\sigma\left(\tau\left(\sqrt[n]{x}\right)\right)\tau\left(\sqrt[n]{x}\right)}{\tau\left(\sqrt[n]{x}\right)\sqrt[n]{x}}=\left\langle \sigma,x\right\rangle \left\langle \tau,x\right\rangle ,\qquad \left\langle \sigma,xy\right\rangle =\frac{\sigma\left(\sqrt[n]{xy}\right)}{\sqrt[n]{xy}}=\frac{\sigma\left(\sqrt[n]{x}\right)\sigma\left(\sqrt[n]{y}\right)}{\sqrt[n]{x}\sqrt[n]{y}}=\left\langle \sigma,x\right\rangle \left\langle \sigma,y\right\rangle .$$

• Nondegenerate. Let $\sigma \in \operatorname{Gal}(L/K)$. If $\langle \sigma, x \rangle = 1$ for all $x \in \Delta$ then $\sigma(\sqrt[n]{x}) = \sqrt[n]{x}$ for all $x \in \Delta$, so σ fixes L pointwise, that is $\sigma = \operatorname{id}$. Let $x \in \Delta$. If $\langle \sigma, x \rangle = 1$ for all $\sigma \in \operatorname{Gal}(L/K)$ then $\sigma(\sqrt[n]{x}) = \sqrt[n]{x}$ for all $\sigma \in \operatorname{Gal}(L/K)$, so $\sqrt[n]{x} \in K^*$, so $x \in (K^*)^n$, that is $x(K^*)^n$ is trivial in Δ .

We get injective group homomorphisms

- 1. $\operatorname{Gal}(L/K) \hookrightarrow \operatorname{Hom}(\Delta, \mu_n)$, and
- 2. $\Delta \hookrightarrow \operatorname{Hom}\left(\operatorname{Gal}\left(L/K\right), \mu_r\right)$.

By 1, $\operatorname{Gal}(L/K)$ is abelian and of exponent dividing n, where the exponent is the least integer m such that $g^m = 1$ for all g. Note that if G is a finite abelian group of exponent dividing n then $\operatorname{Hom}(G, \mu_n) \cong G$, noncanonically. So $|\operatorname{Gal}(L/K)| \leq |\Delta| \leq |\operatorname{Gal}(L/K)|$ by 1 and 2, so 1 and 2 are isomorphisms.

Example. Gal $(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^3$.

Theorem 11.2. There is a bijection

Proof.

• Let L/K be a finite abelian extension of exponent dividing n. Let $\Delta = ((L^*)^n \cap K^*)/(K^*)^n$. Then $K\left(\sqrt[n]{\Delta}\right) \subset L$ and we aim to show equality. Let $G = \operatorname{Gal}(L/K)$. The Kummer pairing gives an injection $\Delta \hookrightarrow \operatorname{Hom}(G,\mu_n)$. Claim that this is a surjection. Given the claim $\Delta \cong \operatorname{Hom}(G,\mu_n)$, so by Lemma 11.1 $\left[K\left(\sqrt[n]{\Delta}\right):K\right] = |\Delta| = |G| = [L:K]$. But $K\left(\sqrt[n]{\Delta}\right) \subset L$, so $L = K\left(\sqrt[n]{\Delta}\right)$. To prove the claim, let $\chi:G \to \mu_n$ be a group homomorphism. Distinct automorphisms are linearly independent, so there exists $a \in L$ such that

$$y = \sum_{\tau \in G} \chi(\tau)^{-1} \tau(a) \neq 0.$$

Elliptic Curves 11 Kummer theory

Let $\sigma \in G$. Then

$$\sigma\left(y\right) = \sum_{\tau \in G} \chi\left(\tau\right)^{-1} \sigma\left(\tau\left(a\right)\right) = \sum_{\tau \in G} \chi\left(\sigma^{-1}\tau\right)^{-1} \tau\left(a\right) = \chi\left(\sigma\right) \sum_{\tau \in G} \chi\left(\tau\right)^{-1} \tau\left(a\right) = \chi\left(\sigma\right) y, \tag{12}$$

so $\sigma(y^n) = y^n$ for all $\sigma \in G$. Let $x = y^n$. Then $x \in K^* \cap (L^*)^n$, that is $x \in \Delta$. Also by (12), $\chi : \sigma \mapsto \sigma(y)/y = \sigma(\sqrt[n]{x})/\sqrt[n]{x}$, so

$$\begin{array}{ccc} \Delta & \longrightarrow & \operatorname{Hom}\left(G, \mu_n\right) \\ x & \longmapsto & \chi \end{array}.$$

This proves the claim.

• Let $\Delta \subset K^*/(K^*)^n$ be a finite subgroup. Let $L = K\left(\sqrt[n]{\Delta}\right)$ and $\Delta' = \left(\left(L^*\right)^n \cap K^*\right)/\left(K^*\right)^n$. We must show $\Delta' = \Delta$. Clearly $\Delta \subset \Delta'$, so $L = K\left(\sqrt[n]{\Delta}\right) \subset K\left(\sqrt[n]{\Delta'}\right) \subset L$. Then $K\left(\sqrt[n]{\Delta}\right) = K\left(\sqrt[n]{\Delta'}\right)$, so by Lemma 11.1, $|\Delta| = |\Delta'|$. Since $\Delta \subset \Delta'$ it follows that $\Delta = \Delta'$.

11.2 Unramified Kummer extensions of number fields

Lecture 17 Monday 16/11/20

Proposition 11.3. Let K be a number field such that $\mu_n \subset K$. Let S be a finite set of primes of K. There are only finitely many extensions L/K such that

- L/K is abelian of exponent dividing n, and
- L/K is unramified at all primes $\mathfrak{p} \notin S$.

Proof. By Theorem 11.2, $L = K\left(\sqrt[n]{\Delta}\right)$ for some $\Delta \subset K^*/\left(K^*\right)^n$ a finite subgroup. Let \mathfrak{p} be a prime of K such that $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \dots \mathfrak{P}_r^{e_r}$ for \mathfrak{P}_i a prime in \mathcal{O}_L . If $x \in K^*$ represents an element of Δ then $nv_{\mathfrak{P}_i}\left(\sqrt[n]{\chi}\right) = v_{\mathfrak{P}_i}\left(x\right) = e_iv_{\mathfrak{p}}\left(x\right)$. If $\mathfrak{p} \notin S$ then all $e_i = 1$, so $v_{\mathfrak{p}}\left(x\right) \equiv 0 \mod n$. Thus $\Delta \subset K\left(S,n\right)$ where

$$K(S, n) = \{x \in K^* / (K^*)^n \mid \forall \mathfrak{p} \notin S, \ v_{\mathfrak{p}}(x) \equiv 0 \mod n \},$$

and the proof is completed by Lemma 11.4.

Lemma 11.4. K(S, n) is finite.

Proof. The map

$$\begin{array}{ccc} K\left(S,n\right) & \longrightarrow & (\mathbb{Z}/n\mathbb{Z})^{|S|} \\ x & \longmapsto & (\mathrm{v}_{\mathfrak{p}}\left(x\right) \mod n)_{\mathfrak{p} \in S} \end{array}$$

is a group homomorphism with kernel $K(\emptyset, n)$. Since $|S| < \infty$, it suffices to prove Lemma 11.4 with $S = \emptyset$. If $x \in K^*$ represents an element of $K(\emptyset, n)$ then $\langle x \rangle = \mathfrak{a}^n$ for some ideal \mathfrak{a} . There is an exact sequence

$$0 \to \mathcal{O}_{K}^{\times} / \left(\mathcal{O}_{K}^{\times}\right)^{n} \to K\left(\emptyset, n\right) \xrightarrow{x(K^{*})^{n} \mapsto [\mathfrak{a}]} \mathrm{Cl}\left(K\right)[n] \to 0.$$

Since $|\operatorname{Cl}(K)| < \infty$ and \mathcal{O}_K^{\times} is finitely generated, by Dirichlet's unit theorem, $K(\emptyset, n)$ is finite.

12 Elliptic curves over number fields II: the Mordell-Weil theorem

12.1 The weak Mordell-Weil theorem

Lemma 12.1. Let E/K be an elliptic curve, and let L/K be a finite Galois extension. Then the map $E(K)/nE(K) \to E(L)/nE(L)$ has finite kernel.

Proof. For each element in the kernel we pick a coset representative $P \in E(K)$ and then $Q \in E(L)$ with nQ = P. Note that for any $\sigma \in \operatorname{Gal}(L/K)$, $n(\sigma(Q) - Q) = \sigma(P) - P = 0$. Since $\operatorname{Gal}(L/K)$ is finite and E[n] is finite, there are only finitely many possibilities for the map

$$\begin{array}{ccc} \operatorname{Gal}\left(L/K\right) & \longrightarrow & E\left[n\right] \\ \sigma & \longmapsto & \sigma\left(Q\right) - Q \end{array}.$$

But if $P_1, P_2 \in E(K)$ such that $P_i = nQ_i$ for $Q_1, Q_2 \in E(L)$ and $\sigma(Q_1) - Q_1 = \sigma(Q_2) - Q_2$ for all $\sigma \in \operatorname{Gal}(L/K)$, then $\sigma(Q_1 - Q_2) = Q_1 - Q_2$ for all $\sigma \in \operatorname{Gal}(L/K)$. Then $Q_1 - Q_2 \in E(K)$, so $P_1 - P_2 \in nE(K)$.

Theorem 12.2 (Weak Mordell-Weil). Let K be a number field, let E/K be an elliptic curve, and let $n \ge 2$ be an integer. Then E(K)/nE(K) is finite.

Proof. By Lemma 12.1, we may replace K by a finite Galois extension. So without loss of generality $\mu_n \subset K$ and $E[n] \subset E(K)$. Let

$$S = \{\mathfrak{p} \mid n\} \cup \{\text{primes of bad reduction for } E/K\} \,.$$

For each $P \in E(K)$ the extension $K([n]^{-1}P)/K$ is unramified outside S, by Theorem 9.9. Let $Q \in [n]^{-1}P$. Since $E[n] \subset E(K)$, $K(Q) = K([n]^{-1}P)$. This is a Galois extension of K. Let

$$\operatorname{Gal}\left(K\left(Q\right)/K\right) \quad \longrightarrow \quad E\left[n\right] \cong \left(\mathbb{Z}/n\mathbb{Z}\right)^{2} \ ,$$

$$\sigma \quad \longmapsto \quad \sigma\left(Q\right) - Q \qquad ,$$

which is

• a group homomorphism, since

$$\sigma\tau(Q) - Q = \sigma(\tau(Q) - Q) + \sigma(Q) - Q = \tau(Q) - Q + \sigma(Q) - Q,$$

• injective, since if $\sigma(Q) = Q$ then σ fixes K(Q) pointwise, that is $\sigma = \mathrm{id}$.

Then K(Q)/K is an abelian extension of exponent dividing n, unramified outside S. By Proposition 11.3, there are only finitely many possibilities for K(Q), as we vary $P \in E(K)$. Let L be the composite of all such extensions of K, that is for all $P \in E(K)$. Then L/K is finite, and Galois, and $E(K)/nE(K) \to E(L)/nE(L)$ is the zero map. By Lemma 12.1, $|E(K)/nE(K)| < \infty$.

Remark. If $K = \mathbb{R}, \mathbb{C}$ or $[K : \mathbb{Q}_p] < \infty$ then $|E(K)/nE(K)| < \infty$, yet E(K) is not finitely generated, indeed uncountable.

12.2 The Mordell-Weil theorem

Let E/K be an elliptic curve over a number field.

Fact. There exists a quadratic form, the canonical height, $\widehat{\mathbf{h}}: E(K) \to \mathbb{R}_{\geq 0}$ with the property that

$$\#\left\{P \in E\left(K\right) \mid \widehat{\mathbf{h}}\left(P\right) \le B\right\} < \infty, \qquad B \ge 0. \tag{13}$$

Theorem 12.3 (Mordell-Weil). Let K be a number field, and let E/K be an elliptic curve. Then E(K) is a finitely generated abelian group.

Proof. Fix any integer $n \geq 2$. By weak Mordell-Weil, $|E(K)/nE(K)| < \infty$. Pick coset representatives P_1, \ldots, P_m . Let

$$\Sigma = \left\{ P \in E(K) \mid \widehat{\mathbf{h}}(P) \le \max_{1 \le i \le m} \widehat{\mathbf{h}}(P_i) \right\}.$$

Claim that Σ generates E(K). If not there exists $P \in E(K) \setminus \{\text{subgroup generated by } \Sigma \}$ of minimal height, which exists by (13). Then $P = P_i + nQ$ for some $1 \leq i \leq m$ and $Q \in E(K)$. Note that $Q \in E(K) \setminus \{\text{subgroup generated by } \Sigma \}$. By the minimal choice of P,

$$4\widehat{\mathbf{h}}(P) \le 4\widehat{\mathbf{h}}(Q) \le n^2\widehat{\mathbf{h}}(Q) = \widehat{\mathbf{h}}(nQ) = \widehat{\mathbf{h}}(P - P_i) \le \widehat{\mathbf{h}}(P - P_i) + \widehat{\mathbf{h}}(P + P_i) = 2\widehat{\mathbf{h}}(P) + 2\widehat{\mathbf{h}}(P_i),$$

by the parallelogram law, so $\widehat{\mathbf{h}}(P) \leq \widehat{\mathbf{h}}(P_i)$. By definition of Σ , $P \in \Sigma$, a contradiction to the choice of P. This proves the claim. But by (13), Σ is finite.

Lecture 18 Wednesday 18/11/20

Remark. The structure theorem for finitely generated abelian groups shows

$$E(K) \cong E(K)_{\text{tors}} \times \mathbb{Z}^r, \qquad r \ge 0,$$

where r is called the **rank**. There is no known algorithm proven to compute $\operatorname{rk} E(K)$ in all cases.

13 Heights

For simplicity take $K = \mathbb{Q}$.

13.1 Naive heights

Write $P \in \mathbb{P}^n(\mathbb{Q})$ as $P = (a_0 : \cdots : a_n)$ where $a_0, \ldots, a_n \in \mathbb{Z}$ such that $\gcd(a_0, \ldots, a_n) = 1$.

Definition. The **height** is

$$H(P) = \max_{0 \le i \le n} |a_i|.$$

Lemma 13.1. Let $f_1, f_2 \in \mathbb{Q}[X_1, X_2]$ be coprime homogeneous polynomials of degree d. Let

$$F : \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$$

$$(x_{1}: x_{2}) \longmapsto (f_{1}(x_{1}, x_{2}): f_{2}(x_{1}, x_{2}))$$

Then there exist $c_1, c_2 > 0$ such that

$$c_1 \operatorname{H}(P)^d \leq \operatorname{H}(F(P)) \leq c_2 \operatorname{H}(P)^d$$
, $P \in \mathbb{P}^1(\mathbb{Q})$.

Proof. Without loss of generality $f_1, f_2 \in \mathbb{Z}[X_1, X_2]$.

• Upper bound. Write P = (a : b) for $a, b \in \mathbb{Z}$ coprime. Then

$$H(F(P)) \le \max (|f_1(a,b)|, |f_2(a,b)|) \le c_2 \max (|a|^d, |b|^d),$$

where c_2 is the maximum of the sum of absolute values of coefficients of f_1 and f_2 , so $H(F(P)) \le c_2 H(P)^d$.

• Lower bound. We claim there exist $g_{ij} \in \mathbb{Z}[X_1, X_2]$ homogeneous polynomials of degree d-1 and $\kappa \in \mathbb{Z}_{>0}$ such that

$$\sum_{i=1}^{2} g_{ij} f_j = \kappa X_i^{2d-1}, \qquad i = 1, 2.$$
 (14)

Indeed running Euclid's algorithm on $f_1(X,1)$ and $f_2(X,1)$ gives $r,s \in \mathbb{Q}[X]$ of degree less than d such that $r(X) f_1(X,1) + s(X) f_2(X,1) = 1$. Homogenising and clearing denominators gives (14) with i = 2. Likewise for i = 1. Write $P = (a_1 : a_2)$ for $a_1, a_2 \in \mathbb{Z}$ coprime. By (14),

$$\sum_{j=1}^{2} g_{ij}(a_1, a_2) f_j(a_1, a_2) = \kappa a_i^{2d-1}, \qquad i = 1, 2,$$

so $\gcd\left(f_1\left(a_1,a_2\right),f_2\left(a_1,a_2\right)\right)$ divides $\gcd\left(\kappa a_1^{2d-1},\kappa a_2^{2d-1}\right)=\kappa.$ But also

$$\left|\kappa a_i^{2d-1}\right| \le \max_{j=1,2} \left|f_j\left(a_1, a_2\right)\right| \sum_{j=1}^2 \left|g_{ij}\left(a_1, a_2\right)\right| \le \kappa H\left(F\left(P\right)\right) \gamma_i H\left(P\right)^{d-1},$$

where γ_i is the sum of absolute values of coefficients of g_{i1} and g_{i2} , so

$$\kappa |a_i|^{2d-1} \leq \gamma_i \kappa H(F(P)) H(P)^{d-1}, \quad i = 1, 2.$$

Thus

$$\mathrm{H}\left(P\right)^{2d-1} \leq \max\left(\gamma_{1}, \gamma_{2}\right) \mathrm{H}\left(F\left(P\right)\right) \mathrm{H}\left(P\right)^{d-1},$$

so

$$c_1 \operatorname{H}(P)^d = \frac{1}{\max(\gamma_1, \gamma_2)} \operatorname{H}(P)^d \le \operatorname{H}(F(P)).$$

Notation. For $x \in \mathbb{Q}$

$$\mathrm{H}\left(x\right)=\mathrm{H}\left(\left(x:1\right)\right)=\mathrm{max}\left(\left|u\right|,\left|v\right|\right),\qquad x=\dfrac{u}{v},\qquad u,v\in\mathbb{Z}\ \mathrm{coprime}.$$

Definition. The **height** is

$$\begin{array}{cccc} \mathbf{H} & : & E\left(\mathbb{Q}\right) & \longrightarrow & \mathbb{R}_{\geq 1} \\ & & & & \\ P & \longmapsto & \begin{cases} \mathbf{H}\left(x\right) & P = \left(x,y\right) \\ 1 & P = \mathcal{O}_{E} \end{cases} \end{array}.$$

The logarithmic height is

$$\begin{array}{ccc} \mathbf{h} & : & E\left(\mathbb{Q}\right) & \longrightarrow & \mathbb{R}_{\geq 0} \\ & P & \longmapsto & \log \mathbf{H}\left(P\right) \end{array}.$$

Lemma 13.2. Let E and E' be elliptic curves over \mathbb{Q} , and let $\phi: E \to E'$ be an isogeny defined over \mathbb{Q} . Then there exists c > 0 such that

$$|h(\phi(P)) - (\deg \phi) h(P)| \le c, \qquad P \in E(\mathbb{Q}).$$

Note that c depends on E, E', ϕ but not on P.

Proof. Recall, by Lemma 5.3,

$$E \xrightarrow{\phi} E'$$

$$x \downarrow \qquad \qquad \downarrow x,$$

$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

where deg $\phi = \deg \xi = d$, say. By Lemma 13.1, there exist $c_1, c_2 \geq 0$ such that

$$c_1 \operatorname{H}(P)^d \leq \operatorname{H}(\phi(P)) \leq c_2 \operatorname{H}(P)^d, \qquad P \in \mathbb{P}^1(\mathbb{Q}).$$

Taking logarithms gives

$$\left| h\left(\phi\left(P\right) \right) - dh\left(P\right) \right| \leq \max\left(\log c_2, -\log c_1 \right) = c.$$

Example. Let $\phi = [2]: E \to E$. Then there exists c > 0 such that

$$|h(2P) - 4h(P)| \le c, \qquad P \in E(\mathbb{Q}).$$
 (15)

13.2 The canonical height quadratic form

Definition. The canonical height is

$$\widehat{\mathbf{h}}(P) = \lim_{n \to \infty} \frac{1}{4^n} \mathbf{h}(2^n P).$$

We check convergence. Let $m \geq n$. Then

$$\left| \frac{1}{4^m} \mathbf{h} \left(2^m P \right) - \frac{1}{4^n} \mathbf{h} \left(2^n P \right) \right| \le \sum_{r=n}^{m-1} \left| \frac{1}{4^{r+1}} \mathbf{h} \left(2^{r+1} P \right) - \frac{1}{4^r} \mathbf{h} \left(2^r P \right) \right|$$

$$= \sum_{r=n}^{m-1} \frac{1}{4^{r+1}} |\mathbf{h} \left(2 \left(2^r P \right) \right) - 4 \mathbf{h} \left(2^r P \right) | \le c \sum_{r=n}^{\infty} \frac{1}{4^{r+1}}$$
 by (15)
$$= \frac{c}{4^{n+1}} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{c}{3 \cdot 4^n} \to 0, \qquad n \to \infty$$

So the sequence is Cauchy and $\hat{h}(P)$ exists.

Lemma 13.3. $\left| h(P) - \widehat{h}(P) \right|$ is bounded for $P \in E(\mathbb{Q})$.

Proof. Putting n=0 in the above calculation

$$\left| \frac{1}{4^m} h\left(2^m P\right) - h\left(P\right) \right| \le \frac{c}{3}.$$

Take the limit as $m \to \infty$.

Corollary 13.4. For any B > 0, $\# \{ P \in E(\mathbb{Q}) \mid \widehat{h}(P) \leq B \}$ is finite.

Proof. If $\widehat{\mathbf{h}}(P)$ is bounded, then by Lemma 13.3, $\mathbf{h}(P)$ is bounded, so there are only finitely many possibilities for x. Each x leaves at most two choices for y.

Lemma 13.5. Let $\phi: E \to E'$ be an isogeny over \mathbb{Q} . Then

$$\widehat{\mathbf{h}}(\phi(P)) = (\deg \phi) \widehat{\mathbf{h}}(P), \qquad P \in E(\mathbb{Q}).$$

Proof. By Lemma 13.2 there exists c > 0 such that $|h(\phi(P)) - (\deg \phi) h(P)| \le c$ for all $P \in E(\mathbb{Q})$. Replace P by $2^n P$, divide by 4^n , and take the limit as $n \to \infty$.

Lecture 19 Friday 20/11/20

Remark.

- H and h depend on a choice of Weierstrass equation, but Lemma 13.5, with deg $\phi = 1$, shows \hat{h} does not.
- Taking $\phi = [n] : E \to E$ shows $\widehat{\mathbf{h}}(nP) = n^2 \widehat{\mathbf{h}}(P)$ for all $n \in \mathbb{Z}$.

Lemma 13.6. Let E/\mathbb{Q} be an elliptic curve $y^2 = x^3 + ax + b$ for $a, b \in \mathbb{Z}$. Then there exists c > 0 such that

$$\operatorname{H}(P+Q)\operatorname{H}(P-Q) \leq c\operatorname{H}(P)^{2}\operatorname{H}(Q)^{2}, \qquad P,Q \in E(\mathbb{Q}), \qquad P,Q,P \pm Q \neq \mathcal{O}_{E}.$$

Proof. Let P, Q, P+Q, P-Q have x-coordinates x_1, \ldots, x_4 . By Lemma 5.7 there exist $w_1, w_2, w_3 \in \mathbb{Z}[x_1, x_2]$ of degree at most two in x_1 and of degree at most two in x_2 such that $(1:x_3+x_4:x_3x_4)=(w_0:w_1:w_2)$. Write $x_i=r_i/s_i$ for $r_i, s_i \in \mathbb{Z}$ coprime. Then

$$(s_3s_4:r_3s_4+r_4s_3:r_3r_4)=\left((r_1s_2-r_2s_1)^2:w_1(r_1,s_1,r_2,s_2):w_2(r_1,s_1,r_2,s_2)\right),$$

where $s_3s_4, r_3s_4 + r_4s_3, r_3r_4$ are coprime, so

$$\begin{split} \operatorname{H}\left(P+Q\right) \operatorname{H}\left(P-Q\right) &= \max \left(\left| r_{3} \right|, \left| s_{3} \right| \right) \max \left(\left| r_{4} \right|, \left| s_{4} \right| \right) \leq 2 \max \left(\left| s_{3}s_{4} \right|, \left| r_{3}s_{4} + r_{4}s_{3} \right|, \left| r_{3}r_{4} \right| \right) \\ &\leq 2 \max \left(\left| r_{1}s_{2} - r_{2}s_{1} \right|^{2}, \left| w_{1}\left(r_{1}, s_{1}, r_{2}, s_{2}\right) \right|, \left| w_{2}\left(r_{1}, s_{1}, r_{2}, s_{2}\right) \right| \right) \leq c \operatorname{H}\left(P\right)^{2} \operatorname{H}\left(Q\right)^{2}, \end{split}$$

where c depends on E, but not on P and Q.

Theorem 13.7. $\widehat{\mathbf{h}}: E(\mathbb{Q}) \to \mathbb{R}_{>0}$ is a quadratic form.

Proof. By Lemma 13.6 and since |h(2P) - 4h(P)| is bounded,

$$h(P+Q) + h(P-Q) \le 2h(P) + 2h(Q) + c, \qquad P, Q \in E(\mathbb{Q}).$$

Replacing P and Q by 2^nP and 2^nQ , dividing by 4^n , and taking the limit as $n\to\infty$ gives

$$\widehat{\mathbf{h}}\left(P+Q\right)+\widehat{\mathbf{h}}\left(P-Q\right)\leq 2\widehat{\mathbf{h}}\left(P\right)+2\widehat{\mathbf{h}}\left(Q\right).$$

Replacing P and Q by P+Q and P-Q and using $\hat{h}(2P)=4\hat{h}(P)$ gives the reverse inequality. Thus \hat{h} satisfies the parallelogram law, so \hat{h} is a quadratic form.

The **places** of a number field K are

- the finite places, or primes, $|x|_{\mathfrak{p}} = c^{-v_{\mathfrak{p}}(x)}$ for some fixed c > 1, and
- the **infinite places**, or real and complex embeddings, $\left|x\right|_{\sigma} = \left|\sigma\left(x\right)\right|^{d}$ for some fixed d > 0.

For each place v we may choose a normalisation $|\cdot|_v$, that is make a choice of c and d, such that

$$\prod_{v} |\lambda|_v = 1, \qquad \lambda \in K^*,$$

the product formula.

Remark. For K a number field let $P = (a_0 : \cdots : a_n) \in \mathbb{P}^n(K)$. Define

$$\mathrm{H}\left(P\right) = \prod_{v} \max_{0 \leq i \leq n} |a_i|_v.$$

This is well-defined by the product formula. All results in this section generalise from $\mathbb Q$ to K.

Remark. Let $\pi_i : E \times E \times E \to E$ be projection onto the *i*-th factor. Let $\pi_{ij} = \pi_i + \pi_j$ and $\pi_{123} = \pi_1 + \pi_2 + \pi_3$. The **theorem of the cube**, proof omitted, says that if $D \in \text{Div } E$ then

$$\pi_{123}^*D + \pi_1^*D + \pi_2^*D + \pi_3^*D \sim \pi_{12}^*D + \pi_{13}^*D + \pi_{23}^*D.$$

This can be used to give alternative proofs of Theorem 5.6 and Theorem 13.7.

14 Dual isogenies and the Weil pairing

Let K be a perfect field, and let E/K be an elliptic curve.

14.1 Dual isogenies

Proposition 14.1. Let $\Phi \subset E(\overline{K})$ be a finite $\operatorname{Gal}(\overline{K}/K)$ -stable subgroup. Then there exist an elliptic curve E'/K and a separable isogeny $\phi : E \to E'$ defined over K with kernel Φ such that every isogeny $\psi : E \to E''$ with $\Phi \subset \ker \psi$ factors uniquely in ϕ , so

Proof. Omitted. Silverman, Chapter III, Proposition 4.12.

Proposition 14.2. Let $\phi: E \to E'$ be an isogeny of degree n. Then there exists a unique isogeny $\widehat{\phi}: E' \to E$ such that $\widehat{\phi} \circ \phi = [n]$. Then $\widehat{\phi}$ is called the **dual isogeny**.

Proof.

- If ϕ is separable, then $|\ker \phi| = n$, so $\ker \phi \subset E[n]$. Apply Proposition 14.1 with $\psi = [n]$.
- The case ϕ is inseparable is omitted. See Silverman, Chapter III, Theorem 6.1. For uniqueness, if $\psi_1 \circ \phi = \psi_2 \circ \phi = [n]$, then $(\psi_1 \psi_2) \circ \phi = 0$. Since ϕ is nonconstant, so surjective on \overline{K} points, $\psi_1 \psi_2 = 0$, so $\psi_1 = \psi_2$.

Remark.

- Let $E_1 \sim E_2$ if and only if E_1 and E_2 are isogenous. Then \sim is an equivalence relation.
- $\deg[n] = n^2$, so $\deg \phi = \deg \widehat{\phi}$ and $\widehat{[n]} = [n]$.
- $\phi \circ \widehat{\phi} \circ \phi = \phi \circ [n]_E = [n]_{E'} \circ \phi$, so $\phi \circ \widehat{\phi} = [n]_{E'}$. In particular $\widehat{\widehat{\phi}} = \phi$.
- If $\psi: E_1 \to E_2$ and $\phi: E_2 \to E_3$ then $\widehat{\phi \circ \psi} = \widehat{\psi} \circ \widehat{\phi}$.
- If $\phi \in \text{End } E$ then by example sheet 2, $\phi^2 [\text{Tr } \phi] \phi + [\deg \phi] = 0$, so $([\text{Tr } \phi] \phi) \circ \phi = [\deg \phi]$. Thus $[\text{Tr } \phi] = \phi + \widehat{\phi}$.

Lemma 14.3. If $\phi, \psi \in \text{Hom}(E, E')$ then

$$\widehat{\phi + \psi} = \widehat{\phi} + \widehat{\psi}.$$

Proof.

- 1. If E = E' then this follows from $\operatorname{Tr}(\phi + \psi) = \operatorname{Tr}\phi + \operatorname{Tr}\psi$.
- 2. In general let $\alpha: E' \to E$ be any isogeny, such as $\widehat{\phi}$. By 1, $\alpha \circ \widehat{\phi + \alpha} \circ \psi = \widehat{\alpha \circ \phi} + \widehat{\alpha \circ \psi}$, so $\widehat{\alpha \circ (\phi + \psi)} = \widehat{\phi} \circ \widehat{\alpha} + \widehat{\psi} \circ \widehat{\alpha}$. Thus $\widehat{\phi + \psi} \circ \widehat{\alpha} = \left(\widehat{\phi} + \widehat{\psi}\right) \circ \widehat{\alpha}$, so $\widehat{\phi + \psi} = \widehat{\phi} + \widehat{\psi}$.

Remark. In Silverman's book he proves Lemma 14.3 first, and uses this to show deg : Hom $(E, E') \to \mathbb{Z}$ is a quadratic form.

14.2 The Weil pairing

Definition. The sum is

$$\operatorname{Sum} : \operatorname{Div} E \longrightarrow E \\ \sum_{P} n_{P}(P) \longmapsto \sum_{P} n_{P} P ,$$

Lecture 20 Monday 23/11/20

adding up a formal sum using the group law.

Recall there is an isomorphism

$$E \longrightarrow \operatorname{Pic}^{0} E$$

$$P \longmapsto [(P) - (\mathcal{O}_{E})]$$

$$\sum_{P} n_{P} P \longmapsto \left[\sum_{P} n_{P} (P) - \left(\sum_{P} n_{P}\right) (\mathcal{O}_{E})\right],$$

so Sum $D \mapsto [D]$ for all $D \in \text{Div}^0 E$.

Lemma 14.4. Let $D \in \text{Div } E$. Then $D \sim 0$ if and only if $\deg D = 0$ and $\operatorname{Sum} D = \mathcal{O}_E$.

Let $\phi: E \to E'$ be an isogeny of degree n with dual isogeny $\widehat{\phi}: E' \to E$. Assume $\operatorname{ch} K \nmid n$, so ϕ and $\widehat{\phi}$ are separable. We define the **Weil pairing**

$$e_{\phi}: E[\phi] \times E'[\widehat{\phi}] \to \mu_n.$$

Let $T \in E'\left[\widehat{\phi}\right]$. Then $nT = \mathcal{O}$. So there exists $f \in \overline{K}(E')^*$ such that

$$\operatorname{div} f = n(T) - n(\mathcal{O}).$$

Pick $T_0 \in E(K)$ with $\phi(T_0) = T$. Then

$$\phi^*(T) - \phi^*(\mathcal{O}) = \sum_{P \in E[\phi]} (P + T_0) - \sum_{P \in E[\phi]} (P)$$

has sum $nT_0 = \widehat{\phi}(\phi(T_0)) = \widehat{\phi}(T) = \mathcal{O}$. So there exists $g \in \overline{K}(E)^*$ such that

$$\operatorname{div} q = \phi^* (T) - \phi^* (\mathcal{O}).$$

Now

$$\operatorname{div}(\phi^* f) = \phi^* (\operatorname{div} f) = n (\phi^* (T) - \phi^* (\mathcal{O})) = \operatorname{div} q^n,$$

so $\phi^* f = cg^n$ for some $c \in \overline{K}^*$. Rescaling f, without loss of generality c = 1, that is $\phi^* f = g^n$. If $S \in E[\phi]$ then $\phi \circ \tau_S = \phi$, so $\tau_S^* \circ \phi^* = \phi^*$. Then τ_S^* (div g) = div g, so $\tau_S^* g = \zeta g$ for some $\zeta \in \overline{K}^*$. Thus

$$\zeta = \frac{g(X+S)}{g(X)}, \qquad X \in E(\overline{K}) \setminus \{\text{zeros and poles of } g\}.$$

Now

$$\zeta^{n} = \frac{g\left(X+S\right)^{n}}{g\left(X\right)^{n}} = \frac{f\left(\phi\left(X+S\right)\right)}{f\left(\phi\left(X\right)\right)} = 1,$$

since $S \in E[\phi]$, so $\zeta \in \mu_n$. We define

$$e_{\phi}(S,T) = \frac{g(X+S)}{g(X)}.$$

Proposition 14.5. e_{ϕ} is bilinear and nondegenerate.

Proof.

• Linearity in first argument, since

$$e_{\phi}(S_1 + S_2, T) = \frac{g(X + S_1 + S_2)}{g(X + S_2)} \cdot \frac{g(X + S_2)}{g(X)} = e_{\phi}(S_1, T) e_{\phi}(S_2, T).$$

• Linearity in second argument. Let $T_1,T_2\in E'\left[\widehat{\phi}\right],$ and let

$$\operatorname{div} f_1 = n(T_1) - n(\mathcal{O}), \quad \operatorname{div} f_2 = n(T_2) - n(\mathcal{O}), \quad \phi^* f_1 = g_1^n, \quad \phi^* f_2 = g_2^n.$$

There exists $h \in \overline{K}(E')^*$ such that

$$\operatorname{div} h = (T_1) + (T_2) - (T_1 + T_2) - (\mathcal{O}).$$

Then put $f = f_1 f_2 / h^n$ and $g = g_1 g_2 / \phi^* h$. Check that

div
$$f = n(T_1 + T_2) - n(\mathcal{O}),$$
 $\phi^* f = \frac{\phi^* f_1 \phi^* f_2}{(\phi^* h)^n} = \left(\frac{g_1 g_2}{\phi^* h}\right)^n = g^n,$

SO

$$e_{\phi}\left(S,T_{1}+T_{2}\right)=\frac{g\left(X+S\right)}{g\left(X\right)}=\frac{g_{1}\left(X+S\right)}{g_{1}\left(X\right)}\cdot\frac{g_{2}\left(X+S\right)}{g_{2}\left(X\right)}\cdot\frac{h\left(\phi\left(X\right)\right)}{h\left(\phi\left(X+S\right)\right)}=e_{\phi}\left(S,T_{1}\right)e_{\phi}\left(S,T_{2}\right),$$

since $S \in E[\phi]$.

• e_{ϕ} is nondegenerate. Fix $T \in E'\left[\widehat{\phi}\right]$. Suppose $e_{\phi}\left(S,T\right) = 1$ for all $S \in E\left[\phi\right]$, so $\tau_S^*g = g$ for all $S \in E\left[\phi\right]$. Then $\overline{K}\left(E\right)/\phi^*\left(\overline{K}\left(E'\right)\right)$ is a Galois extension with Galois group $E\left[\phi\right]$. Note that $S \in E\left[\phi\right]$ acts as τ_S^* . Then $g = \phi^*h$ for some $h \in \overline{K}\left(E'\right)$, so $\phi^*f = g^n = (\phi^*h)^n = \phi^*h^n$, so $f = h^n$, so $\operatorname{div} h = (T) - (\mathcal{O})$, so $T = \mathcal{O}$. We have shown the injection

$$E'\begin{bmatrix} \widehat{\phi} \end{bmatrix} \longrightarrow \operatorname{Hom}(E[\phi], \mu_n) T \longmapsto (S \mapsto e_{\phi}(S, T)).$$

This map is an isomorphism since $\#E\left[\phi\right]=\#E'\left[\widehat{\phi}\right]=n.$

Remark.

• If E, E', ϕ are defined over K then e_{ϕ} is Galois equivariant, that is

$$\mathbf{e}_{\phi}\left(\sigma\left(S\right),\sigma\left(T\right)\right)=\sigma\left(\mathbf{e}_{\phi}\left(S,T\right)\right),\qquad\sigma\in\mathrm{Gal}\left(\overline{K}/K\right),\qquad S\in E\left[\phi\right],\qquad T\in E'\left[\widehat{\phi}\right].$$

• Taking $\phi = [n]: E \to E$, so $\widehat{\phi} = [n]$, gives

$$e_n: E[n] \times E[n] \to \mu_n$$

since e_n is bilinear.

Corollary 14.6. If $E[n] \subset E(K)$ then $\mu_n \subset K$.

Proof. Since e_n is nondegenerate, there exist $S, T \in E[n]$ such that $e_n(S, T)$ is a primitive n-th root of unity, say ζ_n . To see this pick $T \in E[n]$ of order n. The group homomorphism

$$\begin{array}{ccc} E\left[n\right] & \longrightarrow & \mu_n \\ S & \longmapsto & \mathrm{e}_n\left(S,T\right) \end{array}$$

has image μ_d for some $d \mid n$. Then $e_n(S, dT) = 1$ for all $S \in E[n]$. Since e_n is nondegenerate, dT = 0, so d = n. Then

$$\sigma(\zeta_n) = e_n(\sigma(S), \sigma(T)) = e_n(S, T) = \zeta_n, \quad \sigma \in Gal(\overline{K}/K),$$

by Galois equivariance and since $S, T \in E(K)$. Thus $\zeta_n \in K$.

Example. There does not exist E/\mathbb{Q} such that $E(\mathbb{Q})_{\text{tors}} \cong (\mathbb{Z}/3\mathbb{Z})^2$.

Remark. In fact the Weil pairing e_n is **alternating**, that is $e_n(T,T) = 1$ for all $T \in E[n]$. In particular expanding $e_n(S+T,S+T)$, show $e_n(S,T) = e_n(T,S)^{-1}$.

15 Galois cohomology

15.1 Group cohomology

Let G be a group, and let A be a G-module, that is an abelian group with an action of G via group homomorphisms, or a $\mathbb{Z}[G]$ -module.

Lecture 21 Wednesday 25/11/20

Definition. The zeroth cohomology group is

$$H^{0}(G, A) = A^{G} = \{a \in A \mid \forall \sigma \in G, \ \sigma(a) = a\}.$$

The cochains

$$C^1(G, A) = \{ \text{maps } G \to A \}$$

contains the cocycles

$$Z^{1}(G, A) = \left\{ (a_{\sigma})_{\sigma \in G} \mid a_{\sigma \tau} = \sigma(a_{\tau}) + a_{\sigma} \right\},\,$$

which contains the coboundaries

$$B^{1}(G, A) = \left\{ (\sigma(b) - b)_{\sigma \in G} \mid b \in A \right\}.$$

The first cohomology group is

$$H^{1}(G, A) = Z^{1}(G, A) / B^{1}(G, A)$$
.

Remark. If G acts trivially on A then $H^1(G, A) = Hom(G, A)$.

Theorem 15.1. A short exact sequence of G-modules

$$0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$$

gives rise to a long exact sequence of abelian groups

$$0 \to A^G \xrightarrow{\phi} B^G \xrightarrow{\psi} C^G \xrightarrow{\delta} \mathrm{H}^1\left(G,A\right) \xrightarrow{\phi_*} \mathrm{H}^1\left(G,B\right) \xrightarrow{\psi_*} \mathrm{H}^1\left(G,C\right).$$

Proof. Omitted except the definition of δ . Let $c \in C^G$. There exists $b \in B$ such that $\psi(b) = c$. Then $\psi(\sigma(b) - b) = \sigma(c) - c = 0$ for all $\sigma \in G$, so $\sigma(b) - b = \phi(a_{\sigma})$ for some $a_{\sigma} \in A$. Then

$$\phi\left(a_{\sigma\tau} - \sigma\left(a_{\tau}\right) - a_{\sigma}\right) = \sigma\tau\left(b\right) - b - \sigma\left(\tau\left(b\right) - b\right) - (\sigma\left(b\right) - b) = 0,$$

so $a_{\sigma\tau} = \sigma(a_{\tau}) + a_{\sigma}$. Thus $(a_{\sigma})_{\sigma \in G} \in \mathbb{Z}^{1}(G, A)$. We define

$$\delta\left(c\right) = \left[\left(a_{\sigma}\right)_{\sigma \in G}\right] \in \mathrm{H}^{1}\left(G,A\right).$$

Theorem 15.2. Let A be a G-module and $H \triangleleft G$ a normal subgroup. There is an **inflation-restriction** exact sequence

$$0 \to \mathrm{H}^1\left(G/H,A^H\right) \xrightarrow{\mathrm{inf}} \mathrm{H}^1\left(G,A\right) \xrightarrow{\mathrm{res}} \mathrm{H}^1\left(H,A\right).$$

Proof. Omitted. \Box

15.2 Galois cohomology

Let K be a perfect field. Then $\operatorname{Gal}\left(\overline{K}/K\right)$ is a topological group with basis of open subgroups the $\operatorname{Gal}\left(\overline{K}/L\right)$ for $[L:K]<\infty$. If $G=\operatorname{Gal}\left(\overline{K}/K\right)$ we modify the definition of $\operatorname{H}^1\left(G,A\right)$ by insisting

- the stabiliser of each $a \in A$ is an open subgroup of G, and
- all cochains $G \to A$ are continuous where A is given the discrete topology.

Then

$$\mathrm{H}^{1}\left(\mathrm{Gal}\left(\overline{K}/K\right),A\right)=\varinjlim_{L/K\text{ finite Galois extension}}\mathrm{H}^{1}\left(\mathrm{Gal}\left(L/K\right),A^{\mathrm{Gal}\left(\overline{K}/L\right)}\right),$$

where the direct limit is with respect to inflation maps.

Theorem (Hilbert's theorem 90). Let L/K be a finite Galois extension. Then

$$H^{1}(Gal(L/K), L^{*}) = 0.$$

Proof. Let $G = \operatorname{Gal}(L/K)$. Let $(a_{\sigma})_{{\sigma} \in G} \in \operatorname{Z}^1(G, L^*)$. Distinct automorphisms are linearly independent, so there exists $y \in L$ such that

$$x = \sum_{\tau \in G} a_{\tau}^{-1} \tau \left(y \right) \neq 0.$$

For $\sigma \in G$, $a_{\sigma\tau} = \sigma\left(a_{\tau}\right)a_{\sigma}$, so $\sigma\left(a_{\tau}\right)^{-1} = a_{\sigma}a_{\sigma\tau}^{-1}$. Then

$$\sigma\left(x\right) = \sum_{\tau \in G} \sigma\left(a_{\tau}\right)^{-1} \sigma \tau\left(y\right) = a_{\sigma} \sum_{\tau \in G} a_{\sigma\tau}^{-1} \sigma \tau\left(y\right) = a_{\sigma} x,$$

so $a_{\sigma} = \sigma(x)/x$. Thus $(a_{\sigma})_{\sigma \in G} \in B^{1}(G, L^{*})$, so $H^{1}(G, L^{*}) = 0$.

A corollary is

$$\mathrm{H}^{1}\left(\mathrm{Gal}\left(\overline{K}/K\right),\overline{K}^{*}\right)=0.$$

15.3 Application to Kummer theory

Assume ch $K \nmid n$. There is an exact sequence of Gal (\overline{K}/K) -modules

$$0 \to \mu_n \to \overline{K}^* \xrightarrow{x \mapsto x^n} \overline{K}^* \to 0.$$

The long exact sequence is

$$K^* \xrightarrow{x \mapsto x^n} K^* \to \mathrm{H}^1\left(\mathrm{Gal}\left(\overline{K}/K\right), \mu_n\right) \to \mathrm{H}^1\left(\mathrm{Gal}\left(\overline{K}/K\right), \overline{K}^*\right) = 0,$$

by Hilbert 90, so

$$\mathrm{H}^{1}\left(\mathrm{Gal}\left(\overline{K}/K\right),\mu_{n}\right)\cong K^{*}/\left(K^{*}\right)^{n}.$$

If $\mu_n \subset K$ then

$$\operatorname{Hom}_{\operatorname{cts}}\left(\operatorname{Gal}\left(\overline{K}/K\right), \mu_{n}\right) \cong K^{*}/\left(K^{*}\right)^{n}. \tag{16}$$

If L/K is a finite Galois extension then $\pi : \operatorname{Gal}\left(\overline{K}/K\right) \twoheadrightarrow \operatorname{Gal}\left(L/K\right)$, so there is an injection

$$\begin{array}{ccc} \operatorname{Hom}\left(\operatorname{Gal}\left(L/K\right), \mu_{n}\right) & \longrightarrow & \operatorname{Hom}_{\operatorname{cts}}\left(\operatorname{Gal}\left(\overline{K}/K\right), \mu_{n}\right) \\ \chi & \longmapsto & \chi \circ \pi \end{array}.$$

We claim that every finite subgroup Ξ of $\operatorname{Hom}_{\operatorname{cts}}\left(\operatorname{Gal}\left(\overline{K}/K\right),\mu_n\right)$ arises uniquely in this way for L/K a finite abelian extension of exponent dividing n. So from (16) we recover Theorem 11.2. To prove the claim, consider the pairing

$$\operatorname{Gal}\left(\overline{K}/K\right) \times \Xi \longrightarrow \mu_n \\ (\sigma, \chi) \longmapsto \chi(\sigma) .$$

This is bilinear, has trivial right kernel, and left kernel is $\bigcap_{\chi \in \Xi} \ker \chi \subset \operatorname{Gal}(\overline{K}/K)$, an open normal subgroup, so $\bigcap_{\chi \in \Xi} \ker \chi = \operatorname{Gal}(\overline{K}/L)$ for some L/K finite Galois. We get a nondegenerate pairing

$$\operatorname{Gal}(L/K) \times \Xi \to \mu_n$$
.

In particular

$$\operatorname{Gal}(L/K) \hookrightarrow \operatorname{Hom}(\Xi, \mu_n)$$
,

so L/K is abelian of exponent dividing n, and

$$\Xi \hookrightarrow \operatorname{Hom}\left(\operatorname{Gal}\left(L/K\right), \mu_n\right).$$

This proves the claim.

Notation. $H^{1}(K, -)$ means $H^{1}(Gal(\overline{K}/K), -)$.

Lemma 15.3. Let $[K : \mathbb{Q}_p] < \infty$ with $p \nmid n$. Then

$$\ker (H^1(K, \mu_n) \to H^1(K^{\mathrm{ur}}, \mu_n)) \cong \mathcal{O}_K^{\times} / (\mathcal{O}_K^{\times})^n$$
.

Proof. By Hilbert 90 it suffices to show the sequence

$$0 \to \mathcal{O}_{K}^{\times} / \left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{\alpha} K^{*} / \left(K^{*}\right)^{n} \xrightarrow{\beta} \left(K^{\mathrm{ur}}\right)^{*} / \left(\left(K^{\mathrm{ur}}\right)^{*}\right)^{n}$$

is exact.

im $\alpha \subset \ker \beta$. Let $a \in \mathcal{O}_K^{\times}$. If $f(x) = x^n - a \in \mathcal{O}_K[x]$ then $\widetilde{f}(x) = x^n - \widetilde{a} \in \kappa[x]$ has distinct roots in $\overline{\kappa}$, using $p \nmid n$ here. Then $K(\sqrt[n]{a})/K$ is unramified, so $a \in ((K^{\mathrm{ur}})^*)^n$.

 $\ker \beta \subset \operatorname{im} \alpha$. Let $x\left(K^*\right)^n \in \ker \beta$. Write $x = u\pi^r$ with $u \in \mathcal{O}_K^{\times}$ and $r \in \mathbb{Z}$. Since the discrete valuation in K extends to K^{ur} we have $r \equiv 0 \mod n$, so $x\left(K^*\right)^n = u\left(K^*\right)^n$.

15.4 The Selmer and Tate-Shafarevich groups

Let $\phi: E \to E'$ be an isogeny of elliptic curves over K. There is a short exact sequence of Gal (\overline{K}/K) -modules

Lecture 22 Friday 27/11/20

$$0 \to E[\phi] \to E \xrightarrow{\phi} E' \to 0.$$

The long exact sequence is

$$E(K) \xrightarrow{\phi} E'(K) \xrightarrow{\delta} H^1(K, E[\phi]) \rightarrow H^1(K, E) \xrightarrow{\phi_*} H^1(K, E')$$
.

We get a short exact sequence

$$0 \to E'\left(K\right)/\phi\left(E\left(K\right)\right) \xrightarrow{\delta} \mathrm{H}^{1}\left(K, E\left[\phi\right]\right) \to \mathrm{H}^{1}\left(K, E\right)\left[\phi_{*}\right] \to 0.$$

Now take K a number field. For each place v fix an embedding $\overline{K} \subset \overline{K_v}$. Then $\operatorname{Gal}\left(\overline{K_v}/K_v\right) \subset \operatorname{Gal}\left(\overline{K}/K\right)$, so

$$0 \longrightarrow E'(K)/\phi(E(K)) \xrightarrow{\delta} H^{1}(K, E[\phi]) \longrightarrow H^{1}(K, E)[\phi_{*}] \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \text{res}_{v} \qquad \downarrow \text{res}_{v}$$

$$0 \longrightarrow \prod_{v} E'(K_{v})/\phi(E(K_{v})) \xrightarrow{\delta_{v}} \prod_{v} H^{1}(K_{v}, E[\phi]) \longrightarrow \prod_{v} H^{1}(K_{v}, E)[\phi_{*}] \longrightarrow 0$$

Definition. The ϕ -Selmer group is

$$S^{(\phi)}(E/K) = \ker \left(H^{1}(K, E[\phi]) \to \prod_{v} H^{1}(K_{v}, E) \right)$$
$$= \left\{ \alpha \in H^{1}(K, E[\phi]) \mid \forall v, \operatorname{res}_{v}(\alpha) \in \operatorname{im} \delta_{v} \right\}.$$

The Tate-Shafarevich group is

$$\mathrm{III}\left(E/K\right) = \ker\left(\mathrm{H}^{1}\left(K, E\right) \to \prod_{v} \mathrm{H}^{1}\left(K_{v}, E\right)\right).$$

We get a short exact sequence

$$0 \to E'\left(K\right)/\phi\left(E\left(K\right)\right) \to \mathcal{S}^{\left(\phi\right)}\left(E/K\right) \to \coprod \left(E/K\right)\left[\phi_*\right] \to 0.$$

Taking $\phi = [n]$ gives

$$0 \to E\left(K\right)/nE\left(K\right) \to \mathbf{S}^{(n)}\left(E/K\right) \to \mathbf{III}\left(E/K\right)[n] \to 0.$$

Re-organising the proof of weak Mordell-Weil gives the following.

Theorem 15.4. $S^{(n)}(E/K)$ is finite.

Proof. For L/K a finite Galois extension there is an exact sequence

$$0 \longrightarrow \mathrm{H}^{1}\left(\mathrm{Gal}\left(L/K\right), E\left(L\right)[n]\right) \stackrel{\mathrm{inf}}{\longrightarrow} \mathrm{H}^{1}\left(K, E\left[n\right]\right) \stackrel{\mathrm{res}}{\longrightarrow} \mathrm{H}^{1}\left(L, E\left[n\right]\right) \\ \cup \\ \mathrm{S}^{(n)}\left(E/K\right) \longrightarrow \mathrm{S}^{(n)}\left(E/L\right) \end{array},$$

where $H^1(Gal(L/K), E(L)[n])$ is finite. By extending our field we may assume $E[n] \subset E(K)$, and hence $\mu_n \subset K$, so $E[n] \cong \mu_n \times \mu_n$ as a Galois module. By Hilbert 90,

$$H^{1}(K, E[n]) \cong H^{1}(K, \mu_{n}) \times H^{1}(K, \mu_{n}) \cong K^{*}/(K^{*})^{n} \times K^{*}/(K^{*})^{n}$$
.

Let

$$S = \{ \text{primes of bad reduction for } E/K \} \cup \{ v \mid n\infty \}.$$

Note that this is a finite set of places. Define the subgroup of $H^1(K, A)$ unramified outside S by

$$\mathrm{H}^{1}\left(K,A;S\right)=\ker\left(\mathrm{H}^{1}\left(K,A\right)\to\prod_{v\notin S}\mathrm{H}^{1}\left(K_{v}^{\mathrm{ur}},A\right)\right).$$

There is a commutative diagram with exact rows

$$E\left(K_{v}\right) \xrightarrow{\cdot n} E\left(K_{v}\right) \xrightarrow{\delta_{v}} \mathrm{H}^{1}\left(K_{v}, E\left[n\right]\right)$$

$$\cap \qquad \qquad \qquad \downarrow^{\mathrm{res}} \qquad .$$

$$E\left(K_{v}^{\mathrm{ur}}\right) \xrightarrow{\cdot n} E\left(K_{v}^{\mathrm{ur}}\right) \xrightarrow{0} \mathrm{H}^{1}\left(K_{v}^{\mathrm{ur}}, E\left[n\right]\right)$$

The map $\cdot n: E\left(K_v^{\mathrm{ur}}\right) \to E\left(K_v^{\mathrm{ur}}\right)$ is surjective for all $v \notin S$, by the proof of Theorem 9.9, so im $\delta_v \subset \ker \operatorname{res}$. Then

$$S^{(n)}(E/K) = \left\{ \alpha \in H^{1}(K, E[n]) \mid \forall v, \operatorname{res}_{v}(\alpha) \in \operatorname{im} \delta_{v} \right\}$$

$$\subset H^{1}(K, E[n]; S) \cong H^{1}(K, \mu_{n}; S) \times H^{1}(K, \mu_{n}; S) \cong K(S, n) \times K(S, n),$$

by Lemma 15.3, noting that $\{v \mid n\} \subset S$. But K(S,n) is finite by Lemma 11.4, so $S^{(n)}(E/K)$ is finite. \square

Remark. $S^{(n)}(E/K)$ is finite and effectively computable. It is conjectured that $|\mathrm{III}(E/K)| < \infty$. This would imply that $\mathrm{rk}\,E(K)$ is effectively computable.

16 Descent by cyclic isogeny

16.1 Descent by *n*-isogeny

Let E and E' be elliptic curves over a number field K, and let $\phi: E \to E'$ be an isogeny of degree n. Suppose $E'\left[\widehat{\phi}\right] \cong \mathbb{Z}/n\mathbb{Z}$ is generated by $T \in E'\left(K\right)$. Then there is an isomorphism of Galois modules

$$\begin{array}{ccc}
E\left[\phi\right] & \longrightarrow & \mu_n \\
S & \longmapsto & \mathbf{e}_{\phi}\left(S,T\right)
\end{array}.$$

The short exact sequence of $\operatorname{Gal}(\overline{K}/K)$ -modules

$$0 \to \mu_n \to E \xrightarrow{\phi} E' \to 0$$

gives a long exact sequence

$$E\left(K\right) \longrightarrow E'\left(K\right) \xrightarrow{\delta} \mathrm{H}^{1}\left(K,\mu_{n}\right) \longrightarrow \mathrm{H}^{1}\left(K,E\right)$$

$$\sim \downarrow_{\mathrm{Hilbert 90}} .$$

$$K^{*}/\left(K^{*}\right)^{n}$$

Theorem 16.1. Let $f \in K(E')$ and $g \in K(E)$ with div $f = n(T) - n(\mathcal{O})$ and $\phi^* f = g^n$. Then

$$\alpha(P) = f(P) \mod (K^*)^n, \qquad P \in E'(K) \setminus \{\mathcal{O}, T\}.$$

Proof. Let $Q \in \phi^{-1}(P)$. Then $\delta(P)$ is represented by the cocycle $\sigma \mapsto \sigma(Q) - Q \in E[\phi] \cong \mu_n$. For any $X \in E$ not a zero or pole of g,

$$e_{\phi}\left(\sigma\left(Q\right)-Q,T\right)=\frac{g\left(\sigma\left(Q\right)-Q+X\right)}{g\left(X\right)}=\frac{g\left(\sigma\left(Q\right)\right)}{g\left(Q\right)}=\frac{\sigma\left(g\left(Q\right)\right)}{g\left(Q\right)}=\frac{\sigma\left(\sqrt[n]{f\left(P\right)}\right)}{\sqrt[n]{f\left(P\right)}},$$

taking X = Q, noting that $f(P) = g(Q)^n$, so $\delta(P)$ is represented by the cocycle $\sigma \mapsto \sigma\left(\sqrt[n]{f(P)}\right)/\sqrt[n]{f(P)}$. But there is an isomorphism

$$K^*/(K^*)^n \longrightarrow H^1(K, \mu_n)$$

 $x \longmapsto \left(\sigma \mapsto \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}}\right),$

so $\alpha(P) = f(P) \mod (K^*)^n$.

16.2 Descent by 2-isogeny

Let E be $y^2 = x(x^2 + ax + b)$ where $b(a^2 - 4b) \neq 0$, let E' be $y^2 = x(x^2 + a'x + b')$ where a' = -2a and $b' = a^2 - 4b$, and let

Lecture 23 Monday 30/11/20

$$\phi : E \longrightarrow E'
(x,y) \longmapsto \left(\left(\frac{y}{x} \right)^2, \frac{y(x^2 - b)}{x^2} \right) , \qquad \widehat{\phi} : E' \longrightarrow E
(x,y) \longmapsto \left(\frac{1}{4} \left(\frac{y}{x} \right)^2, \frac{y(x^2 - b')}{8x^2} \right) .$$

Then $E\left[\phi\right]=\left\{\mathcal{O},T\right\}$ where $T=\left(0,0\right)\in E\left(K\right)$ and $E'\left[\widehat{\phi}\right]=\left\{\mathcal{O},T'\right\}$ where $T'=\left(0,0\right)\in E'\left(K\right)$.

Proposition 16.2. There is a group homomorphism

$$E'(K) \longrightarrow K^*/(K^*)^2$$

 $(x,y) \longmapsto \begin{cases} x \mod (K^*)^2 & x \neq 0 \\ b' \mod (K^*)^2 & x = 0 \end{cases}$

with kernel $\phi(E(K))$.

Proof. Either apply Theorem 16.1 with $f = x \in K(E')$ and $g = y/x \in K(E)$, or direct calculation. See example sheet 4.

Let

$$\alpha_E : E(K)/\widehat{\phi}(E'(K)) \hookrightarrow K^*/(K^*)^2, \qquad \alpha_{E'} : E'(K)/\phi(E(K)) \hookrightarrow K^*/(K^*)^2.$$

Lemma 16.3.

$$2^{\operatorname{rk} E(K)} = \frac{|\operatorname{im} \alpha_E| \cdot |\operatorname{im} \alpha_{E'}|}{4}.$$

Proof. If $f:A\to B$ and $g:B\to C$ are homomorphisms of abelian groups then there is an exact sequence

$$0 \to \ker f \to \ker gf \xrightarrow{f} \ker g \to \operatorname{coker} f \xrightarrow{g} \operatorname{coker} gf \to \operatorname{coker} g \to 0.$$

Since $\widehat{\phi} \circ \phi = [2]_E$ we get an exact sequence

$$\mathbb{Z}/2\mathbb{Z}$$

$$\mathbb{Z}/2\mathbb{Z}$$

$$0 \longrightarrow E(K)[\phi] \longrightarrow E(K)[2] \xrightarrow{\phi} E'(K)[\widehat{\phi}]$$

$$\mathbb{Z}/2\mathbb{Z}$$

$$0 \longrightarrow E(K)[\phi] \longrightarrow E(K)[\widehat{\phi}] \longrightarrow$$

so $|E(K)/2E(K)|/|E(K)[2]| = |\operatorname{im} \alpha_E| \cdot |\operatorname{im} \alpha_{E'}|/2 \cdot 2$. By the Mordell-Weil theorem, $E(K) \cong \Delta \times \mathbb{Z}^r$ for Δ a finite group and $r = \operatorname{rk} E(K)$, so $E(K)/2E(K) \cong \Delta/2\Delta \times (\mathbb{Z}/2\mathbb{Z})^r$ and $E(K)[2] \cong \Delta[2]$. Then $\Delta/2\Delta$ and $\Delta[2]$ have the same order, since Δ is finite. Thus $|E(K)/2E(K)|/|E(K)[2]| = 2^r$. \square

Lemma 16.4. If K is a number field and $a,b \in \mathcal{O}_K$ then $\operatorname{im} \alpha_E \subset K(S,2)$ where $S = \{primes \ dividing \ b\}$.

Proof. Must show that if $x, y \in K$ such that $y^2 = x(x^2 + ax + b)$ and $v_{\mathfrak{p}}(b) = 0$ then $v_{\mathfrak{p}}(x) \equiv 0 \mod 2$.

 $v_{\mathfrak{p}}(x) < 0$. By Lemma 9.1, $v_{\mathfrak{p}}(x) = -2r$ and $v_{\mathfrak{p}}(y) = -3r$ for some $r \ge 1$.

$$v_{\mathfrak{p}}(x) > 0$$
. Since $v_{\mathfrak{p}}(x^2 + ax + b) = 0$, $v_{\mathfrak{p}}(x) = v_{\mathfrak{p}}(y^2) = 2v_{\mathfrak{p}}(y)$.

Lemma 16.5. If $b_1b_2 = b$ then $b_1(K^*)^2 \in \operatorname{im} \alpha_E$ if and only if

$$w^2 = b_1 u^4 + a u^2 v^2 + b_2 v^4 (17)$$

is soluble for $u, v, w \in K$ not all zero.

Proof. If $b_1 \in (K^*)^2$ or $b_2 \in (K^*)^2$ then both conditions are satisfied. So we may assume $b_1, b_2 \notin (K^*)^2$. Then $b_1(K^*)^2 \in \operatorname{im} \alpha_E$ if and only if there exists $(x,y) \in E(K)$ such that $x = b_1 t^2$ for some $t \in K^*$, so $y^2 = b_1 t^2 \left(\left(b_1 t^2 \right)^2 + a b_1 t^2 + b \right)$, so $(y/b_1 t)^2 = b_1 t^4 + a t^2 + b_2$. So (17) has a solution u = t, v = 1, and $w = y/b_1 t$. Conversely if (u, v, w) is a solution to (17) then $uv \neq 0$ and $\left(b_1(u/v)^2, b_1(uw/v^3) \right) \in E(K)$. \square

Now take $K = \mathbb{Q}$. Then

$$0 \longrightarrow E'\left(\mathbb{Q}\right)/\phi\left(E\left(\mathbb{Q}\right)\right) \xrightarrow{\delta} \mathbf{S}^{(\phi)}\left(E/\mathbb{Q}\right) \longrightarrow \mathrm{III}\left(E/\mathbb{Q}\right)\left[\phi_*\right] \longrightarrow 0$$

$$\uparrow \\ \mathbb{Q}^*/\left(\mathbb{Q}^*\right)^2$$

so

$$\operatorname{im} \alpha_{E'} = \left\{ b_1 \left(\mathbb{Q}^* \right)^2 \mid (17)' \text{ is soluble over } \mathbb{Q} \right\}$$

is contained in

$$\mathbf{S}^{(\phi)}\left(E/\mathbb{Q}\right) = \left\{b_1\left(\mathbb{Q}^*\right)^2 \;\middle|\; (17)' \text{ is soluble over } \mathbb{R} \text{ and over } \mathbb{Q}_p \text{ for all primes } p\right\},$$

where (17)' means (17) with a and b replaced by a' and b'.

Fact. If $a, b_1, b_2 \in \mathbb{Z}$ and $p \nmid 2b (a^2 - 4b)$ then (17) is soluble over \mathbb{Q}_p . Uses example sheet 3, question 9 and Hensel's lemma.

Example. Let E be $y^2 = x^3 - x$, so a = 0 and b = -1. Then $\operatorname{im} \alpha_E = \langle -1 \rangle \subset \mathbb{Q}^* / (\mathbb{Q}^*)^2$. Let E' be $y^2 = x^3 + 4x$. Then $\operatorname{im} \alpha_{E'} \subset \langle -1, 2 \rangle \subset \mathbb{Q}^* / (\mathbb{Q}^*)^2$.

- If $b_1 = -1$, then $w^2 = -u^4 4v^4$ is insoluble over \mathbb{R} .
- If $b_1 = 2$, then $w^2 = 2u^4 + 2v^4$ has solution (u, v, w) = (1, 1, 2).
- If $b_1 = -2$, then $w^2 = -2u^4 2v^4$ is insoluble over \mathbb{R} .

Thus im $\alpha_{E'} = \langle 2 \rangle \subset \mathbb{Q}^* / (\mathbb{Q}^*)^2$. Thus rk $E(\mathbb{Q}) = 0$, so 1 is not a congruent number.

Lecture 24 Wednesday 02/12/20

Example. Let E be $y^2=x^3+px$ for p prime such that $p\equiv 5 \mod 8$. If $b_1=-1$, then $w^2=-u^4-pv^4$ is insoluble over $\mathbb R$. Thus im $\alpha_E=\langle p\rangle\subset\mathbb Q^*/(\mathbb Q^*)^2$. Let E' be $y^2=x^3-4px$. Then im $\alpha_{E'}\subset\langle -1,2,p\rangle\subset\mathbb Q^*/(\mathbb Q^*)^2$. Note that $\alpha_{E'}(T')=-4p\left(\mathbb Q^*\right)^2=-p\left(\mathbb Q^*\right)^2$.

- If $b_1 = 2$, then $w^2 = 2u^4 2pv^4$. Suppose this is soluble. Without loss of generality $u, v, w \in \mathbb{Z}$ such that $\gcd(u, v) = 1$. If $p \mid u$ then $p \mid w$ and then $p \mid v$, a contradiction. Then $w^2 \equiv 2u^4 \not\equiv 0 \mod p$, so $\left(\frac{2}{p}\right) = 1$, a contradiction since $p \equiv 5 \mod 8$.
- If $b_1 = -2$, then $w^2 = -2u^4 + 2pv^4$. Likewise this has no solution since $\left(\frac{-2}{p}\right) = -1$.
- If $b_1 = p$, then $w^2 = pu^4 4v^4$.
 - This is soluble over \mathbb{Q}_p since $\left(\frac{-1}{p}\right) = 1$, so by Hensel's lemma $-1 \in \left(\mathbb{Z}_p^{\times}\right)^2$.
 - This is soluble over \mathbb{Q}_2 since $p-4\equiv 1\mod 8$, so by Hensel's lemma $p-4\in (\mathbb{Z}_2^\times)^2$.
 - This is soluble over \mathbb{R} since $\sqrt{p} \in \mathbb{R}$.

Over \mathbb{Q} ,

p	5	13	29	37	53	
\overline{u}	1	1	1	5	1	_
v	1	1	1	3	1	•
w	1	1 1 3	5	151	7	

Thus im $\alpha_{E'} \subset \langle -1, p \rangle \subset \mathbb{Q}^* / (\mathbb{Q}^*)^2$, and

$$\operatorname{rk} E\left(\mathbb{Q}\right) = \begin{cases} 0 & w^2 = pu^4 - 4v^4 \text{ is insoluble over } \mathbb{Q} \\ 1 & w^2 = pu^4 - 4v^4 \text{ is soluble over } \mathbb{Q} \end{cases}.$$

The conjecture is that $\operatorname{rk} E(\mathbb{Q}) = 1$ for all primes $p \equiv 5 \mod 8$.

Example (Lind). Let E be $y^2 = x^3 + 17x$. Then im $\alpha_E = \langle 17 \rangle \subset \mathbb{Q}^* / (\mathbb{Q}^*)^2$. Let E' be $y^2 = x^3 - 68x$. If $b_1 = 2$, then $w^2 = 2u^4 - 34v^2$. Replacing w by 2w and dividing by two, let C be $2w^2 = u^4 - 17v^4$. Denote

$$C(K) = \{(u, v, w) \in K^3 \setminus \{0\} \mid 2w^2 = u^4 - 17v^4\} / \sim,$$

where $(u, v, w) \sim (\lambda u, \lambda v, \lambda^2 w)$ for all $\lambda \in K^*$. Then

- $C(\mathbb{Q}_2) \neq \emptyset$ since $17 \in (\mathbb{Z}_2^{\times})^4$,
- $C(\mathbb{Q}_{17}) \neq \emptyset$ since $2 \in (\mathbb{Z}_{17}^{\times})^2$, and
- $C(\mathbb{R}) \neq \emptyset$ since $\sqrt{2} \in \mathbb{R}$,

so $C\left(\mathbb{Q}_v\right) \neq \emptyset$ for all places v of \mathbb{Q} . Suppose $(u,v,w) \in C\left(\mathbb{Q}\right)$, without loss of generality $u,v,w \in \mathbb{Z}$ such that $\gcd(u,v)=1$ and w>0. If $17\mid w$ then $17\mid u$ and then $17\mid v$, a contradiction. So if $p\mid w$ then $p\neq 17$ and $\left(\frac{17}{p}\right)=1$ if p is odd, so $\left(\frac{p}{17}\right)=\left(\frac{17}{p}\right)=1$, by quadratic reciprocity, but also $\left(\frac{2}{17}\right)=1$. Thus $\left(\frac{w}{17}\right)=1$. But $2w^2\equiv u^4\mod 17$, so $2\in (\mathbb{F}_{17}^*)^4=\{\pm 1,\pm 4\}$, a contradiction. Thus $C\left(\mathbb{Q}\right)=\emptyset$. That is, C is a counterexample to the Hasse principle. It represents a nontrivial element of $\mathrm{III}\left(E/\mathbb{Q}\right)$.

A The Birch Swinnerton-Dyer conjecture

Let E/\mathbb{Q} be an elliptic curve.

Definition. $L(E, s) = \prod_{p} L_{p}(E, s)$ where

$$\mathbf{L}_{p}\left(E,s\right) = \begin{cases} \left(1 - \mathbf{a}_{p}p^{-s} + p^{1-2s}\right)^{-1} & \text{good reduction} \\ \left(1 - p^{-s}\right)^{-1} & \text{split multiplicative reduction} \\ \left(1 + p^{-s}\right)^{-1} & \text{nonsplit multiplicative reduction} \\ 1 & \text{additive reduction} \end{cases},$$

and $\#\widetilde{E}(\mathbb{F}_p) = p + 1 - a_p$.

By Hasse's theorem, $|a_p| \le 2\sqrt{p}$, so L (E, s) converges for Re $s > \frac{3}{2}$.

Theorem A.1 (Wiles, Breuil, Conrad, Diamond, Taylor). L (E, s) is the L-function of a weight two modular form and hence has an analytic continuation to all of \mathbb{C} , and a functional equation that relates L (E, s) and L (E, 2 - s).

Theorem A.2 (Weak BSD).

$$\operatorname{ord}_{s=1} L(E, s) = \operatorname{rk} E(\mathbb{Q}).$$

Theorem A.3 (Strong BSD). If $r = \operatorname{rk} E(\mathbb{Q})$, then

$$\lim_{s \to 1} \frac{1}{(s-1)^r} L(E, s) = \frac{\Omega_E \cdot \operatorname{Reg} E(\mathbb{Q}) \cdot |\operatorname{III}(E/\mathbb{Q})| \cdot \prod_p c_p}{|E(\mathbb{Q})_{\text{tors}}|^2},$$

where

• the Tamagawa number of E/\mathbb{Q}_p is

$$\mathbf{c}_{n} = [E\left(\mathbb{Q}_{n}\right) : E_{0}\left(\mathbb{Q}_{n}\right)],$$

• if $E(\mathbb{Q})/E(\mathbb{Q})_{tors} \cong \langle P_1, \dots, P_r \rangle$ then the **regulator** of E/\mathbb{Q} is

$$\operatorname{Reg} E(\mathbb{Q}) = \det([P_i, P_j])_{i, i=1, \dots, r},$$

where
$$[P,Q] = \widehat{h}(P+Q) - \widehat{h}(P) - \widehat{h}(Q)$$
, and

• the **real period** of E/\mathbb{Q} is

$$\Omega_E = \int_{E(\mathbb{R})} \frac{1}{|2y + a_1 x + a_3|} \, \mathrm{d}x,$$

where a_i are the coefficients of a globally minimal Weierstrass equation.

Theorem A.4 (Kolyvagin). If $\operatorname{ord}_{s=1} L(E,s) = 0, 1$ then weak BSD holds and $|\operatorname{III}(E/\mathbb{Q})| < \infty$.