# Our compositional theory of factored transformations allows understanding merge-and-shrink in terms of the properties of its components.

- ► almost entirely new theory
- define desirable properties of transformations
- heuristic properties induced by transformation properties
- complete characterization of the conditions under which transformations have properties
- first theory on pruning
- first full formal account of factored mappings
- complete characterization of merge-and-shrink transformations



Merge-and-Shrink: A Compositional Theory of Transformations of Factored Transition Systems Silvan Sievers and Malte Helmert University of Basel, Switzerland



# **Example of Transformations**



(a) Original transition system.





(b) Arbitrary transformation (not an abstraction).

(c) Abstraction (not induced).





(d) Induced abstraction (not exact).

(e) Exact transformation.

## **Shrinking: Properties**

- ► abstraction (conservative + induced)
- ▶ local heuristics are preserved if h-preserving
- exact (abstraction + refinable) iff based on bisimulation

## Merging: Properties

exact

### **Label Reduction: Properties**

- conservative but not induced or refinable in general
- exact iff induced/refinable
- coNP-complete to determine if label reduction is induced/refinable
- $\triangleright$  atomic label reduction exact iff based on  $\Theta$ -combinabilty

### **Pruning: Properties**

- leads to inadmissible heuristics in general
- exact if keeping exactly the backward-reachable states
- forward-admissible/forward-perfect heuristics if keeping exactly the forward-reachable or alive states