1048

### STOPPING WATER POLLUTION AT ITS SOURCE



# ACUTE LETHALITY DATA FOR ONTARIO'S PETROLEUM REFINERY EFFLUENTS COVERING THE PERIOD FROM DECEMBER 1988 TO MAY 1989

**JUNE 1990** 





### MUNICIPAL/INDUSTRIAL STRATEGY FOR ABATEMENT (MISA)

ACUTE LETHALITY DATA FOR ONTARIO'S

PETROLEUM REFINERY EFFLUENTS COVERING

THE PERIOD FROM DECEMBER 1988 to MAY 1989

Report Prepared by:
Aquatic Toxicity Unit
Water Resources Branch
Ontario Ministry of the Environment

JUNE 1990



Copyright: Queen's Printer for Ontario, 1990
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 1048 LOG 90-2330-086



### Contents

| Esso Petroleum, Sarnia             |   |
|------------------------------------|---|
| trout                              |   |
| Daphnia                            | 7 |
| Dupinua                            | / |
| Petro-Canada Inc., Mississauga     |   |
| trout33                            | , |
| Daphnia45                          |   |
|                                    |   |
| Petro-Canada Inc., Oakville        |   |
| trout59                            | ) |
| Daphnia69                          |   |
|                                    |   |
| Petrosar Ltd., Sarnia              |   |
| trout                              | 1 |
| Daphnia87                          |   |
| 1                                  |   |
| Shell Canada Products Ltd., Sarnia |   |
| trout95                            |   |
| Daphnia11                          |   |
|                                    |   |
| Suncor Inc., Sarnia                |   |
| trout13                            | 1 |
| Daphnia15                          |   |
|                                    | 1 |
| Texaco Canada Inc., Nanticoke      |   |
| trout                              | 9 |
| Daphnia17                          | 9 |



### SUMMARY

Ontario's Regulation under the Environmental Protection Act requires Petroleum Refineries to monitor their discharge (both process and cooling water) to receiving waters for acute lethality to trout and to *Daphnia magna*. The timing of these samples was arranged to coincide with chemical characterization also required under the regulation. The frequency of these samples is monthly for both toxicity test procedures on process effluents with the exception that if tests over three consecutive months show insignificant mortalities with trout then in subsequent months a single concentration test may be used. For cooling waters the required frequency of sampling is quarterly. In both cases the Ministry's test protocols were followed by all laboratories. All toxicity tests required by the regulation were submitted to the Ministry. The following data report presents the toxicity test results of this monitoring along with the results of audit samples that were tested at the Ministry's lab in Rexdale. In addition, toxicity tests on some intake waters were also submitted and these have been included in this report.

Of the more than 50 samples that were tested, only the process effluent at the Petro Canada refinery in Oakville had samples that caused significant mortalities. The sample from March 21, 1989 was toxic to both *Daphnia* and trout. This is explained best by the fact that samples taken on the same day measured more than 27 mg/l zinc. This is clearly above lethal levels. Other contributors to toxicity on this day may have been hexavelant chromium at 0.1 mg/l and unionized ammonia. The sample from April 11 was only toxic to *Daphnia*. At the Rexdale laboratory, toxicity tests with hexavelant chromium were performed and a LC50 value of 0.1 mg/l was determined for *Daphnia*. Since *Daphnia* tend to be slightly more sensitive to hexavelant chromium than trout, a value of 0.26 mg/l may have been lethal to one without being lethal to the other. The third lethal sample collected on December 13, 1989 was only lethal to trout. The toxicants in this sample cannot be determined with certainty. Neither zinc or chromium were measured on this sampling date. However, the ammonia concentration was close to lethal level and may have contributed to the observed lethality. Generally, trout are more sensitive to ammonia than are *Daphnia*.

It is clear that for these organisms, at least, samples from the Petroleum Refineries during this period had little effect on acute lethality.

The chemical characterization for the Petro-Canada refinery in Oakville was also reviewed in terms of other potential impacts. Eliminating the substances that had measured concentrations at or below detection limits, there is left a small list of organic compounds, which some are chlorinated. None of these appear to be present at acute lethal levels or even at chronic effect levels. However, a number of them can transfer to other media by volatilization or sorption to sediment therefore the potential for bioaccumulation should be reviewed.

Common to many of the samples from the Petro-Canada Oakville refinery are

measurable levels of some of the smaller Polycyclic Aromatic Hydrocarbons (PAHs). These chemicals are known to be transformed enzymatically by many aquatic organisms to varying degrees. Fish, for example, are more able to do this than are clams. Clams, therefore, tend to bioaccumulate higher concentrations of PAHs in their tissues. The ability of the organism to metabolize PAHs will not only reduce the amount of PAHs within itself but also reduce the availability for accumulation up the food chain. Although the levels of PAHs may be reduced, the remaining metabolites however can be highly genotoxic. Best known are the 4 and 5 ring PAHs like Benzo-a-pyrene but other PAHs have some of this effect.

Also present are measurable concentrations of two chlorinated hydrocarbons; chloromethane and 1,2 dichloropropane. These are highly volatile and would transfer to the air rapidly and not bioaccumulate. 1,2 Dichloropropane is fairly stable and may distribute through long range transport.

Some of the samples contain measurable amounts of benzene, toluene, xylene, and styrene. These single ring aromatics are generally highly volatile and may also be soluble in water.

There are also some chlorinated aromatics including 2,4,5 trichlorotoluene, 1,2,3,4 tetrachlorobenzene, and octachlorodibenzo-p-dioxin. They do not bioaccumulate but may have other toxic effects. Of the substances found, 2,4,5 trichlortoluene and 1,2,3,4 tetrachlorobenzene represent the most potential hazard, The levels found, however, are considerably lower than known toxic levels. The dioxin found is the least toxic of the dioxins, having approximately 0.0001 times the toxicity of 2,3,7,8 TCDD. These substances may bioaccumulate and would be found primarily associated with particulates. The dioxin, while it has a high log Kow, it is also a large molecule and tends to be non-mobile in the environment.

Creosol, 2,4 dinitrophenol, 4 chloro 3 methyl phenol were found in measurable quantities. These are non-volatile and relatively soluble in water. Therefore their fate is determined primarily by dilution, dispersion, and reaction in the water. They would not be expected to bioaccumulate, but can be highly toxic.

In general, the reporting of toxicity data by the industries went smoothly. The quality of the toxicity results and presentation has been good. All problems have been minor ones which have now been resolved.

None of the audit samples caused significant mortalities to either species which was consistent with the results supplied by the industry. Unfortunately, it was not possible to have the audit samples collected at the same time as one of the industry reported samples. Other split samples with the same consultant labs have indicated that all labs involved are capable of producing comparable results.



COMPANY: Esso Petroleum Canada, Sarnia

(70102)

(now with Sarnia Refinery (Imperial Oil Ltd.))

SECTOR: Petroleum REGION: Southwest Petroleum Refining

### SUMMARY

The data for six trout bioassays, conducted on process effluent samples collected between December 1988 and May 1989 were provided by Esso Petroleum Canada. All six process effluent samples were determined to have been non-acutely lethal to test fish.

### intake water

### process effluent

05880001 sampled: 12/12/88 non-95% fid. limits: 0.0 - 0.0 % non-lethal

comments:

05890009 sampled: 01/23/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890010 sampled: 02/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890026 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890028 sampled: 04/03/89 non 95% fid. limits: 0.0 - 0.0 % non-lethal

comments:

05890033 sampled: 05/01/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

01890105 sampled: 05/30/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: MISA audit sample.

### Esso Petroleum Canada (continued)

CW-SEP. 11&12

05890017 sampled: 02/14/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

05890043 sampled: 05/23/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

CW-Sep.9

05890016 sampled: 02/14/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

05890042 sampled: 05/23/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

CW-Sep.3

05890015 sampled: 02/14/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

05890041 sampled: 05/23/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

EO-Sep.14 outlet

EO-Sep.10

EO-Sep.5

EO-tank area-ditch

EO-filter-Sep.11&12

EO-Sep.14 inlet

EO-impounding basin

|   | -  | , |
|---|----|---|
|   | ű  |   |
| i | ı  | _ |
| ŝ | į, |   |
|   | 7  | 7 |
| Ġ | ġ  | r |
| 1 | ε  |   |
| ä |    | í |
| ľ |    |   |
| ľ |    |   |
| á |    | ē |
| ì |    |   |
| Ġ | ú  |   |
| á |    | ĺ |
|   |    |   |
|   | ä  | r |

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890009

TOXICITY TEST REPORT

| Esso Petroleum Canada   Southwest   Sout |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Sample Number: 05890010  Sample Number: 05890010  CONG.  Delta Book Book Book Book Book Book Book Boo |
|-------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------|

TOXICITY TEST REPORT Sample: 05890026

| TEST CONDITIONS                          |                                |                                     |                                      |                                          |
|------------------------------------------|--------------------------------|-------------------------------------|--------------------------------------|------------------------------------------|
| Сопрапу                                  | : Esso<br>Sarn                 | Esso Petrole<br>Sarnia, ONI         | Esso Petroleum Canada<br>Sarnia, ONI |                                          |
| Region                                   | Sout                           | Southwest                           | Southwest<br>Petroleum Refining      |                                          |
| Control point                            | : proc                         | ess ef                              | process effluent, (300)              |                                          |
| Laboratory<br>Sampling Method            | : Pollu                        | Pollutech                           |                                      |                                          |
| Sampled By<br>Date Collected<br>Received | 03/0                           | C. Ferguson<br>03/06/89<br>03/06/89 | c                                    |                                          |
| Tested                                   |                                | 68/2                                | at: 1530                             |                                          |
| Type of Bioassay                         | : STATIC<br>(Protox<br>of liqu | Pig                                 | to determine the                     | the acute lethality<br>fish. OME, 1983). |
| Test Animal<br>Weight(gm)<br>Length(mm)  | Rain                           | Rainbow trout                       | out                                  |                                          |
| HORTALITY DATA                           |                                |                                     |                                      |                                          |
| CONC.                                    | SED                            | H -                                 | ш                                    | TOTAL<br>MORTALITY                       |
| x 00:00 20:00                            | 0 49:10                        | 68:00                               | 68:00 94:10                          | 34                                       |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 0000                           | 0000                                | 0000                                 | 0000                                     |

0.0

96 Hour LC50 95% fid. limits

Comments

: Non-lethal

SLOPE of Mortality Curve : LC50 Calculated By :

## TOXICITY TEST PARAMETERS

| Sample  | Sample Number: 05890026          | 890028                           |                    |                    |                      |                            |
|---------|----------------------------------|----------------------------------|--------------------|--------------------|----------------------|----------------------------|
| CONC.   | EL                               | A P S E                          | 20:00              |                    | 1 M E<br>49:10 68:00 | 01:36                      |
| 100     | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.0<br>7.8<br>600<br>600<br>15.0 | 9.0                | 7.4                | 15.0                 | 7.4<br>9.7<br>680<br>15.0  |
| 100     | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.0<br>7.6<br>600<br>15.0        | 9.2                | 7.5 9.6            | 10.0                 | 7.5<br>9.8<br>690<br>15.0  |
| Control | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.6<br>10.01<br>168<br>15.0      | 7.5<br>9.8<br>15.0 | 7.6                | 7.5                  | 7.7<br>10.2<br>178<br>15.0 |
| Control | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.6<br>9.9<br>178<br>15.0        | 9.6                | 7.6<br>9.8<br>15.0 | 10.2                 | 10.2                       |

| 3  |    |
|----|----|
| U  | 5  |
| ÷  | è  |
| Š. | Ĺ  |
|    |    |
| 7  | -  |
| =  | 5  |
| 17 | í  |
| -  | 1  |
| 7  | ξ  |
| ×  | 5  |
| 2  | -  |
| 11 | 1  |
| 2  | 4  |
| 4  | h  |
| å  | Ļ  |
| 7  | Ŀ. |

| TEST CONDITIONS                                                                     |                |                                  |                      |                                                 |                                          |
|-------------------------------------------------------------------------------------|----------------|----------------------------------|----------------------|-------------------------------------------------|------------------------------------------|
| Company                                                                             | ••             |                                  | Petro<br>B, ON<br>2) | Esso Petroleum Canada<br>Sarnia, ONÎ<br>(70102) |                                          |
| Region<br>Industry                                                                  | ** **          | Southwest                        | Leum                 | Southwest<br>Petroleum Refining                 |                                          |
| Control point                                                                       | **             |                                  | ss ef                | process effluent, (300)                         |                                          |
| Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received<br>Tested | ** ** ** ** ** |                                  | 0                    | n<br>at: 1400                                   |                                          |
| Type of Bioassay                                                                    |                | STATIC<br>(Protocol<br>of Liquid | rid<br>Lid           | to determine t                                  | the acute lethality<br>fish. OME, 1983). |
| Test Animal<br>Weight(gm)<br>Length(mm)                                             | ** ** **       | Raint                            | Rainbow trout        | out                                             |                                          |
| HORTALITY DATA                                                                      |                |                                  |                      |                                                 |                                          |
| CONC. E L A                                                                         | APSED          | E D                              | TIME                 | ш                                               | TOTAL<br>MORTALITY                       |
| 00:00 21:30 47:30 72:30 97:30                                                       | 1:30           | 47:30                            | 72:30                | 97:30                                           | *                                        |
| 100 0<br>100 0<br>Control 0<br>Control 0                                            | 0000           | 0000                             | 0000                 | 0000                                            | 0000                                     |
|                                                                                     |                |                                  |                      |                                                 |                                          |

0.0 -

0.0

95% fid. limits 96 Hour LC50

Comments

: Non-lethal

SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

Sample: 05890033

TOXICITY TEST REPORT

|                         | 97:30         | 7.2<br>9.6<br>650<br>15.0        | 7.2<br>9.5<br>650<br>15.0        | 7.3<br>10.1<br>172<br>15.0       | 7.3<br>10.0<br>170<br>15.0       |
|-------------------------|---------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                         | 72:30 97:30   | 9.0                              | 7.4<br>9.0                       | 7.6<br>9.8<br>15.0               | 7.5<br>9.9<br>15.0               |
|                         | 1 M E         | 7.4<br>8.6<br>15.0               | 7.4<br>8.6<br>15.0               | 7.6<br>9.3<br>15.0               | 7.6<br>9.4<br>15.0               |
|                         | D T 21:30     | 7.5<br>9.8<br>15.0               | 7.5<br>9.6<br>15.0               | 7.6<br>9.8<br>15.0               | 7.6<br>10.0<br>15.0              |
| 890033                  | A P S E       | 6.8<br>7.8<br>660<br>15.0        | 6.8<br>7.6<br>660<br>15.0        | 7.3<br>10.6<br>158<br>15.0       | 7.3<br>10.4<br>158<br>15.0       |
| Sample Number: 05890033 | E L           | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>O2 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>cond.<br>Temp(C) |
|                         | TEST<br>CONC. | 100                              | 100                              | Control                          | Control                          |

| Sample: 01890105     |
|----------------------|
| Sample:              |
| REPORT               |
| TEST                 |
| TOXICITY TEST REPORT |
|                      |

ELAPSED TIME Sample Number: 01890105 CONC. 0000000 : STATIC (Frotocol to determine the acute lethality of liquid effluents to fish. OME, 1983). TOTAL process effluent, (300) 00:00 02:10 24:00 48:10 75:30 98:10 Sarnia, ONI (70102) 0000000 930 Southwest Petroleum Refining HILE CAN CONTIN 0.0 #0E grab D. Hamilton 05/30/89 05/31/89 at: 0000000 : Rainbow trout TIME : Non-lethal 0.0 0000000 0000000 Seroling Method Seroleng Method Seroled By Date Collected Tested Type of Bicassay 95x fld. Hinite TEST CONDITIONS MODIALITY DATA 26 Ways 1050 Control point 0000000 Test Animal Weight (gm.) Length (rm.) Compact has Region (Same) TEST SAC:

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

00:00 02:10 24:00 48:10 75:30 98:10

|   | 100                              | 92                               | 07                               | 30                               | 50                               | 10                               | Control                    |
|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------|
|   | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>O2 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | OZ ppm<br>Cond.<br>Temp(C) |
|   | 7.0<br>8.7<br>510<br>14.0        |                                  |                                  |                                  |                                  |                                  |                            |
|   | 7.3                              | 7.4                              | 7.5                              | 7.5                              | 7.4                              | 7.4                              | 7.7                        |
|   | 10.2                             | 10.0                             | 10.0                             | 9.9                              | 9.8                              | 9.7                              | 9.7                        |
|   | 510                              | 445                              | 374                              | 335                              | 315                              | 285                              | 260                        |
|   | 14.0                             | 14.0                             | 14.0                             | 14.0                             | 14.0                             | 14.0                             | 14.0                       |
|   | 7.6                              | 7.6                              | 7.7                              | 7.6                              | 7.7                              | 7.6                              | 7.1                        |
|   | 9.5                              | 9.6                              | 9.7                              | 9.7                              | 9.6                              | 9.6                              | 9.8                        |
|   | 540                              | 450                              | 375                              | 345                              | 315                              | 280                              | 260                        |
|   | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                       |
|   | 7.5                              | 7.6                              | 7.6                              | 7.6                              | 7.5                              | 7.5                              | 7.4                        |
|   | 9.6                              | 9.7                              | 9.7                              | 9.7                              | 9.7                              | 9.6                              | 9.8                        |
|   | 560                              | 450                              | 370                              | 345                              | 315                              | 285                              | 260                        |
|   | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                       |
|   | 7.3                              | 6.7                              | 6.8                              | 8.1                              | 8.1                              | 8.1                              | 8.1                        |
|   | 9.6                              | 9.7                              | 9.7                              | 9.7                              | 9.8                              | 9.9                              | 9.7                        |
|   | 540                              | 460                              | 390                              | 330                              | 320                              | 280                              | 260                        |
|   | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                       |
|   | 7.2                              | 7.2                              | 7.3                              | 7.3                              | 7.3                              | 7.3                              | 7.3                        |
|   | 9.3                              | 9.4                              | 9.4                              | 9.5                              | 9.4                              | 9.4                              | 9.5                        |
|   | 525                              | 450                              | 350                              | 340                              | 280                              | 275                              | 260                        |
|   | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                             | 15.0                       |
| l |                                  |                                  |                                  |                                  |                                  |                                  |                            |

|  | TOXICITY TEST REPORT Sample: 05890017 | Esso Petroleum Canada | (70102)<br>Southwest<br>Petroleum Refining | CW-SEP. 11&12, (400) |  |  | 1315 | STATIC<br>(Protocol to determine the acute lethality<br>of limmid affilments to fish. DMF 1983) |  |  | TOTAL | 1 1 F E MORTALITY X 72:30 95:15 X |  | 0000 |  |  | 34<br>C |
|--|---------------------------------------|-----------------------|--------------------------------------------|----------------------|--|--|------|-------------------------------------------------------------------------------------------------|--|--|-------|-----------------------------------|--|------|--|--|---------|
|--|---------------------------------------|-----------------------|--------------------------------------------|----------------------|--|--|------|-------------------------------------------------------------------------------------------------|--|--|-------|-----------------------------------|--|------|--|--|---------|

|                               | TOXICITY TEST REPORT                                                                               | Sample: 05890043                         | TOXICI        | TOXICITY TEST PARAMETERS   | ETERS                         |       |              |        |      |
|-------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------|---------------|----------------------------|-------------------------------|-------|--------------|--------|------|
| CONDITIONS                    |                                                                                                    |                                          | Sample        | Number: 05890043           | 0043                          |       |              |        |      |
| Company                       | Sernia, ONI                                                                                        |                                          | TEST<br>CONC. |                            | ELAPSED                       | -     | E E          |        |      |
| Region                        | : Southwest<br>: Petroleum Refining                                                                |                                          | ×             |                            | 00:00 24:00 52:10 75:10 97:10 | 200 2 | 2:10 7:      | 2:10 % | 01:  |
| Control point                 | : CW-SEP. 11&12, (400)                                                                             |                                          | 100           | Hd                         | 8.2                           | 7.5   | 7.5          | 7.4    | 7.5  |
| Laboratory<br>Sampling Method | Pollutech<br>Grab<br>C.Ferguson                                                                    |                                          |               | 02 ppm<br>Cond.<br>Temp(C) | 9.0<br>178<br>15.0            |       | 15.0         |        | 187  |
| Collected                     | 05/23/89<br>05/23/89<br>05/24/89 at: 1230                                                          |                                          | 75            | pH<br>02 ppm               | 7.8                           | 7.5   | 7.5          | 4.6    | 7.5  |
| 3000                          |                                                                                                    |                                          |               | Cond.<br>Temp(C)           | 15.0                          | 15.0  | 15.0         | 15.0   | 187  |
| of Bioassay                   | . STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | the acute lethality<br>fish. OME, 1983). | 56            | pH<br>02 ppm               | 9.5                           | 7.4   | 7.5          | 7.4    | 9.6  |
| Test Animal                   |                                                                                                    |                                          |               | Temp(C)                    | 15.0                          | 15.0  | 15.0         | 15.0   | 15.0 |
|                               |                                                                                                    |                                          | 25            | pH<br>02 ppm               | 7.3                           | 7.3   | 7.4          | 7.3    | 7.4  |
| MORTALITY DATA                |                                                                                                    |                                          |               | Cond.<br>Temp(C)           | 15.0                          | 15.0  | 15.0         | 15.0   | 185  |
| ELAPS                         | ED TIME                                                                                            | TOTAL                                    | 10            | pH<br>02 ppm               | 9.9                           | 7.3   | 7.7<br>8.4   | 7.3    | 7.4  |
| 00:00 54:00                   | 00:00 24:00 52:10 75:10 97:10                                                                      | >6                                       |               | Temp(E)                    | 15.0                          |       | 15.0         | 15.0   | 15.0 |
|                               | 00                                                                                                 | 00                                       | -             | pH<br>02 ppm               | 7.5                           | 9.3   | 7.5          | 7.3    | 7.6  |
|                               | 000                                                                                                | 00                                       |               | Cond.<br>Temp(C)           | 15.0                          | 15.0  | 15.0         | 15.0   | 15.0 |
| 000                           | 000                                                                                                | 000                                      | Control       | of pH<br>02 pyon           | 7.0                           | 7.6   | 7.4          | 7.3    | 7.4  |
|                               | 00                                                                                                 | 0                                        |               | Cond.<br>Temp(C)           | 15.0                          | 15.0  | 15.0         | 15.0   | 15.0 |
| 96 Hour 1050                  | : Non-lethal                                                                                       |                                          | Control       |                            | 7.0                           | 7.3   | 7.3          | 7.3    | 7.3  |
| 95% fid. Ilmits               | : 0.0 - 0.0 x                                                                                      |                                          |               | Cond.<br>Temp(C)           | 15.0                          | 15.0  | 15.0         | 15.0   | 15.0 |
| Componits                     |                                                                                                    |                                          |               |                            | -                             |       | and the same |        | -    |

| TOXICITY TEST PARAMETERS  Sample Number: 05890016  TOMC.  100 DH PS E  COND.  COND.  TOMPIC.) 15:0  S6 DH B 17:5  COND.  COND.  Tempic.) 15:0  25 DH B 8.7  COND.  10 DH B 8.7  COND.  10 DH B 8.7  COND.  10 DH PS E  COND.  COND.  10 DH PS E  COND.  10 DH PS E | 1 1 0 0 51 0 51 0 51 0 51 0 51 0 51 0 5                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21:25 51:25 51:25 7.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

| 1050 Calculated By :   10x1CITY TEST PARAMETERS     Sample Number: 05890042     100 |
|-------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------|

| Second   S | × pooooo | Sample Number: 05890041  TEST E L A P S E D  TONC.  100 DH 97.7  Cond.  Tomp(C) 15.0  S6 DH 99 97.7  Cond.  Temp(C) 15.0  S6 DH 97.7  Temp(C) 15.0  S6 DH 97.7  Temp(C) 15.0  S6 DH 97.7  Temp(C) 15.0  S7.1  Temp(C) 15.0  Temp(C) 15.0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15.00 77 7.3 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 15.00 77 | 7.3<br>7.3<br>7.2<br>8.8<br>8.8<br>8.8<br>8.7<br>7.2<br>7.7<br>7.2<br>9.2<br>15.0<br>15.0<br>15.0<br>15.0 | 7:10<br>7:3<br>7:3<br>7:3<br>7:3<br>7:3<br>7:3<br>7:3<br>7:3 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| . Non-lethal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control  | Cond. 172<br>Cond. 15.0<br>DH 7.0<br>Cond. 174<br>Cond. 174                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 7.3<br>8.6<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.3<br>9.0<br>15.0                                                                                        | 178<br>15.0<br>7.3<br>9.6<br>178<br>15.0                     |



COMPANY: Esso Petroleum Canada, Sarnia

(70102)

(now with Sarnia Refinery (Imperial Oil Ltd.))

SECTOR: Petroleum REGION: Southwest Petroleum Refining

### SUMMARY

Data for six Daphnia magna acute lethality toxicity tests conducted on samples of Process Effluent collected between December 1988 and May 1989 were provided by Esso Petroleum Canada in Sarnia. All six of these samples were determined to be not acutely lethal to Daphnia.

Toxicity tests were also conducted on two samples from each of CW.-Sep 3, CW.-Sep 9, and CW.-Sep 11&12 sampling points. All six samples were not acutely lethal to

Daphnia magna.

### intake water

### process effluent

05880001 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890009 sampled: 01/23/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890010 sampled: 02/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890026 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890028 sampled: 04/03/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890033 sampled: 05/01/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

02890105 sampled: 05/30/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: MISA Audit

### Esso Petroleum Canada (continued)

CW-SEP, 11&12

05890017 sampled: 02/14/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890043 sampled: 05/23/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

CW-Sep.9

05890016 sampled: 02/14/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890042 sampled: 05/23/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

CW-Sep.3

05890015 sampled: 02/14/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890041 sampled: 05/23/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

EO-Sep.14 outlet

EO-Sep.10

EO-Sep.5

EO-tank area-ditch

EO-filter-Sep.11&12

EO-Sep.14 inlet

EO-impounding basin

| Sample Number: 05880001   TEST | 26 pH                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| at: 1100                                                                                                                               | STATIC (Daphnia magna Acute Lethality Toxicity Test Protocol. OME, 1988)  D. magna  Torac HORTALITY  Non-Lethal |

|                                            | TOXICITY TEST REPORT Sample: 05890009                                                         | TOXICI                  | TOXICITY TEST PARAMETERS                     | AMETERS                   |                            |
|--------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------|---------------------------|----------------------------|
| TEST CONDITIONS Company Region             | : Esso Petroleum Canada<br>Sarnia, ONT<br>(70102)<br>Southwest<br>: Petroleum Refining        | Sample<br>TEST<br>CONC. | Sample Number: 05890009 TEST ELAPS CONC. 00: | 9 0                       | D T I M E                  |
| Control point Laboratory Sampling Method   | : process effluent, (300) : Pollutech : Grab : T. Morsan                                      | 100                     | pH<br>02 ppm<br>cond.<br>Temp(C)             | 7.2<br>8.7<br>880<br>20.0 | 7.4<br>8.4<br>1000<br>20.0 |
| Received                                   |                                                                                               | 20                      | pH<br>02 ppm<br>cond.<br>Temp(C)             | 7.6<br>9.0<br>710<br>20.0 | 7.7<br>8.2<br>800<br>20.0  |
| Test Animal                                | SIATILE<br>(Daphila magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)<br>: D. magna | 56                      | pH<br>02 ppm<br>cond,<br>Temp(C)             | 7.8<br>9.2<br>650<br>20.0 | 7.8<br>8.4<br>700<br>20.0  |
| Merght(mm)<br>Length(mm)<br>MORIALITY DATA |                                                                                               | 13                      | pH<br>02 ppm<br>cond.<br>Temp(C)             | 8.0<br>9.2<br>600<br>20.0 | 7.8<br>8.6<br>650<br>20.0  |
| CONC. E L A P S                            | SED TIME TOTAL HORFALITY X                                                                    | 9                       | pH<br>02 ppm<br>Cond.<br>Temp(C)             | 8.0<br>9.3<br>600<br>20.0 | 7.9<br>8.4<br>650<br>20.0  |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    | 00000                                                                                         | Control                 | 02 ppm<br>Cond.<br>Temp(C)                   | 8.0<br>9.3<br>580<br>20.0 | 7.6<br>9.0<br>600<br>20.0  |
| 48 Hour LC50<br>95% fid. limits            | : Non-lethal<br>: 0.0 - 0.0 %                                                                 |                         |                                              |                           |                            |
| Comments                                   |                                                                                               |                         |                                              |                           |                            |

| TEST COMPITIONS   ESSO Petroleum Canada   Concerny      |                                 | TOXICITY TEST REPORT SA                                             | Sample: 05890010 | 10X1C11                 | TOXICITY TEST PARAMETERS         | METERS                        |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|------------------|-------------------------|----------------------------------|-------------------------------|---------------------------|
| thod : Green the condition of the condit | NDITIONS                        |                                                                     |                  | Sample<br>TEST<br>CONC. | Number: 058°                     | 90010<br>A P S E D<br>00:00 4 | T 1 H                     |
| ted : 02/06/89 at: 1735 co2 pcm 7.6 co2 pcm 8.0 co2 pc | of point<br>atory<br>ing Method |                                                                     |                  | 100                     | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.0<br>6.2<br>920<br>20.0     | 7.3<br>7.4<br>820<br>20.0 |
| STATIC   Copyright   STATIC   Copyright   STATIC   Copyright   C   | Sollected<br>Received<br>Fested | 8.6                                                                 |                  | 20                      | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.4<br>7.6<br>740<br>20.0     | 7.7 7.4 740 20.0          |
| 13 pH 8.0 cond. co | of Bioassay                     | STATIC<br>(Daphnia magna Acute Lethali<br>Test Protocol. DME, 1988) | ty Toxicity      | 92                      | pH<br>02 ppm<br>cond.            | 8.0                           | 7.9<br>7.8<br>700<br>20.0 |
| 47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47:35  47 | knimal<br>t(gm)<br>n(mm)        | magna                                                               |                  | 13                      | pH<br>02 ppm<br>cond.<br>Temp(C) | 8.0<br>8.2<br>620<br>20.0     | 8.0<br>7.9<br>640<br>20.0 |
| Control pH 8.0 0.2 ppm 8.0 | 4 P                             | E D T I M E                                                         |                  | 9                       | pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.0<br>8.6<br>600<br>20.0     | 8.0<br>8.4<br>620<br>20.0 |
| : Non-lethal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000000                          |                                                                     | p00000           | Contro                  |                                  | 8.0<br>8.6<br>540<br>20.0     | 8.1<br>620<br>20.0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 Mour LC50<br>95% fid. limits | Non-lethal                                                          |                  |                         |                                  |                               |                           |

| TEST COMDITIONS   Sample Number: 05890026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | TOXICITY TEST REPORT Sample: 05890026                                           | TOXICI | TOXICITY TEST PARAMETERS         | ETERS                     |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|--------|----------------------------------|---------------------------|---------------------------|
| Essape Petroleum Canada   ESST   ELAPSED TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TEST CONDITIONS                          |                                                                                 | Sample | Number: 0589                     | 9200                      |                           |
| thod : Cree guson  thod : Cree g | опрапу                                   |                                                                                 | TEST   | EL                               | PSE                       | TIM                       |
| thod : process effluent, (300)  thod : politutech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | egion<br>ndustry                         | : Southest<br>: Petroleum Refining                                              | 2      |                                  | 7 00:00                   | .7:30                     |
| thod : Pollutech  i. Grab  i.  | ontrol point                             |                                                                                 | 000    | 1                                |                           | 1.6                       |
| Solution    | aboratory<br>ampling Method<br>ampled By | : Pollutech<br>: Grab<br>: C. Feguson                                           | 200    | oz pom<br>cond.<br>Temp(C)       | 9.0<br>690<br>20.0        | 8.6<br>680<br>20.0        |
| Control pH   Con   | Received<br>Tested                       | : 03/06/89 at: 1400                                                             | 80     | pH<br>O2 ppm<br>Cond.<br>Temp(C) | 7.5<br>9.1<br>630<br>20.0 | 7.8<br>8.6<br>650<br>20.0 |
| ### 13 PH 8.0    13 PH 8.0   14 PK 8 E D T I H E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype of Bioassay                          | : STAIL<br>Claphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 26     | PH<br>02 ppm                     | 9.0                       | 7.9                       |
| 13 pH 8.0  14.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | est Animal<br>eight(gm)                  | : D. magna                                                                      |        | Temp(C)                          | 20.0                      | 20.0                      |
| APSED TIME TOTAL 6 PH 8.0 47:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ength(mm)                                |                                                                                 | 13     | DH<br>02 ppm<br>Cond.            | 8.0<br>9.0<br>600         | 8.0<br>9.2<br>610         |
| ELAPSED TIME   TOTAL   6 pH   8.0   0.2 pm   8.9   0.2 pm   0   | ORTALITY DATA                            |                                                                                 |        | Temp(C)                          | 20.0                      | 20.0                      |
| 00:00 47:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ELA                                      | SED TIME                                                                        | 9      | pH<br>02 ppm                     | 8.8                       | 9.0                       |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00:00                                    |                                                                                 |        | Temp(C)                          | 20.0                      | 20.0                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000                                   |                                                                                 | Contro |                                  | 8.1<br>9.1<br>600<br>20.0 | 8.0<br>9.4<br>610<br>20.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% fid. limits                          | % O.O - O.O :                                                                   |        |                                  |                           |                           |
| 0.0 - 0.0 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commonte                                 |                                                                                 |        |                                  |                           |                           |

| TOXICITY TEST REPORT Sample: 05890028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOXICII    | TOXICITY TEST PARAMETERS            | HETERS                    |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------|---------------------------|---------------------------|
| TEST COMDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample     | Sample Number: 05890028             | 90028                     |                           |
| Corcany : Esso Petroleum Canada<br>Sarnia, ONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST       | EL                                  | ELAPSED                   | )                         |
| Region : Southwest<br>Industry : PetroLeum Refining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>3</b> € |                                     | 00:00 49:30               | 9:30                      |
| Control point : process effluent, (300)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100        | Hd                                  | 6.9                       | 7.4                       |
| Laboratory : Pollutech : Grab comming Method : Grab comming Rethod : C. Ferguson : C. |            | 02 ppm<br>Cond.<br>Temp(C)          | 7.6<br>540<br>20.0        | 8.4<br>610<br>20.0        |
| are Collected : 04/03/89<br>Received : 04/03/89<br>Tested : 04/04/89 at: 1430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20         | pH<br>02 ppm<br>cond.<br>Temp(C)    | 7.3<br>8.3<br>540<br>20.0 | 7.7<br>8.9<br>600<br>20.0 |
| Type of Bioassay : STATIC (Daphnia magna Acute Lethality Toxicity lest Protocol. OME, 1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56         | pH<br>02 ppm<br>Cond.               | 7.7<br>8.7<br>520         | 7.8                       |
| Test Animal : D. magna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13         | Temp(C)                             | 7.9                       | 7.9                       |
| MODIALITY DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Temp(C)                             | 20.0                      | 20.0                      |
| - · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9          | pH<br>02 ppm<br>cond.<br>Temp(C)    | 8.0<br>8.8<br>520<br>20.0 | 7.9<br>9.0<br>550<br>20.0 |
| 13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Control    | of ph<br>02 ppm<br>Cond.<br>Temp(C) | 8.0<br>9.2<br>520<br>20.0 | 7.9<br>9.3<br>550<br>20.0 |
| 48 Mour LC50 : Non-lethal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                     |                           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                     |                           |                           |

SLOPE of Mortality Curve : LC50 Calculated By : none D TIME

| TEST CONDITIONS                                        |                                                                                |                                              |                           |
|--------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|---------------------------|
| Company :                                              |                                                                                | Sample Number: 05890033                      | r: 05890033               |
| Region :                                               | ognity<br>(70102)<br>Southwest<br>Petroleum Refining                           | CONC.                                        | 00:00                     |
| Control point :                                        | process effluent, (300)                                                        | 000                                          |                           |
| Laboratory Sampling Method Sampled By                  | Pollutech<br>Grab<br>C. Ferguson<br>Afritia                                    | 02 ppm<br>Cond.<br>Temp(C)                   | pm 8.6<br>700<br>(C) 20.0 |
| Received                                               | 05/01/89<br>05/03/89 at: 945                                                   | 50 pH<br>02 ppm<br>Cond.                     | 7.5 pm 9.4                |
| Type of Bioassay :                                     | STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 26 pH 02 ppm                                 |                           |
| Test Animal :: Weight(gm) :: Length(mm) ::             | D. magna                                                                       | 13 pH                                        |                           |
| MORTALITY DATA                                         |                                                                                | Cond.<br>Temp(C)                             | (c) 20.0                  |
| CONC.                                                  | ED TIME TOTAL MORFALITY                                                        | 6 pH 02 ppm                                  | 7.9<br>9.6                |
| \$ 00:00 40:00                                         | *                                                                              | Temp(C)                                      | 0                         |
| 100 0 0<br>50 0 0<br>26 0 0<br>13 0 0<br>6 control 0 0 | 00000                                                                          | Control pH pon<br>O2 ppm<br>Cond.<br>Temp(C) | 8.0<br>5.8<br>(C) 20.0    |
|                                                        | Non-lethal                                                                     |                                              |                           |
| Comments ::                                            | * D.O = D.O                                                                    |                                              |                           |

7.400. 7.000 7.000 80.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

| TEST CONDITIONS                                              |                                                                                        | o lama S      | Some Distriction 02800105                          |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|----------------------------------------------------|
| Company<br>Region<br>Industry                                | : Esso Petroleum Canada<br>Sarnia, ONI<br>(70102)<br>Southwest<br>: Petroleum Refining | TEST<br>CONC. | E L A P S E 00:00                                  |
| Control point<br>Laboratory<br>Sampling Method<br>Sampled By | : process effluent, (300) : HOE : 91-b : 0. Hamilton                                   | 100           | pH 7.5<br>02 ppm 9.2<br>Cond. 683<br>Temp(C) 20.0  |
| Date Collected<br>Received<br>Tested                         | : 05/30/89<br>: 05/31/89 at: 1000                                                      | 09            | pH<br>02 ppm 9.7<br>cond. 521<br>Temp(C) 20.0      |
| Type of Bioassay                                             | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. CME, 1988)       | 30            | DH 8.0                                             |
| Test Animal Weight(gm) Length(mm) WORTALITY DATA             | . D. magna                                                                             | 15            | Cond. 365<br>Temp(C) 20.0                          |
| TEST E L A P S<br>CONC. % 00:00 01:00                        | A P S E D T I M E MORTALITY 01:00 24:00 48:00 X                                        | ī.            | pH 8.2<br>02 pcm 9.7<br>cond. 328<br>Temp(C) 20.0  |
| 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | Control       | 1 pH 8.2<br>02 ppm 9.4<br>Cond. 31<br>Temp(C) 20.1 |
| 95% fid. limits<br>Comments                                  | : 0.0 - 0.0 %<br>: HISA Audit                                                          |               |                                                    |

8.3 8.6 326 20.0

20.02

20.02

20.0

20.02

8.8 8.6 359 20.0

20.02

20.02

8.1 9.8 362 20.0

8.0 8.5 652 20.0

7.5 9.2 683 20.0

20.02

20.02

00:00 01:00 24:00 48:00

PSED

none

SLOPE of Mortality Curve : LC50 Calculated By : 8.5 515 20.0

7.8 9.7 521 20.0

20.02

20.02

8.2 8.6 412 20.0

20.0

20.02

8.0 9.8 420 20.0

| 05890017    |
|-------------|
| Sample:     |
| TEST REPORT |
| TEST        |
| DXICITY     |

000000 : STATIC (Daphnia magna Acute Lethality Toxicity Test Protocol. OME, 1988) TOTAL MORTALITY : Esso Petroleum Canada Sarnia, ONI (70102) : Southwest : Petroleum Refining : CW-SEP. 11&12, (400) 1625 C. Ferguson 02/14/89 02/14/89 02/15/89 at: 1 0.0 ELAPSED TIME : Non-lethal Pollutech Grab D. magna 0.0 00:00 48:15 000000 Laboratory Sampling Method Sampled By Date Collected Received Tested Type of Bioassay 95% fid. limits TEST CONDITIONS MORTALITY DATA Control point 48 Hour LC50 Test Animal Weight(gm) Length(mm) Industry 6 Control Comments Company Region TEST CONC. 2820 ж

SLOPE of Mortality Curve : LC50 Calculated By : none

## TOXICITY TEST PARAMETERS

|                         | ш     |       |                                  |                                  |                                  |                                  |                                  |                                  |
|-------------------------|-------|-------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                         | I     |       |                                  |                                  |                                  |                                  |                                  |                                  |
|                         | D T 1 | 48:15 | 7.9<br>9.2<br>210<br>20.0        | 7.9<br>9.3<br>400<br>20.0        | 8.0<br>9.3<br>510<br>20.0        | 8.0<br>9.0<br>550<br>20.0        | 8.0<br>9.2<br>600<br>20.0        | 7.9<br>9.0<br>630<br>20.0        |
| 5890017                 | LAPSE | 00:00 | 8.8<br>208<br>20.0               | 8.6<br>410<br>20.0               | 8.6<br>500<br>20.0               | 8.8<br>490<br>20.0               | 8.0<br>8.8<br>600<br>20.0        | 8.0<br>9.0<br>640<br>20.0        |
| Sample Number: 05890017 | ш     |       | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>O2 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>cond.<br>Temp(C) |
| Sample                  | TEST  | æ     | 100                              | 20                               | 56                               | 13                               | 9                                | Control                          |

|                                                                   | TOXICITY TEST REPORT                                                                                 | Sample: 05890043      | TOXICIT                 | TOXICITY TEST PARAMETERS                          | ETERS                                      |                                          |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|---------------------------------------------------|--------------------------------------------|------------------------------------------|--|
| TEST CONDITIONS Company Region Industry                           | : Esso Petroleum Canada<br>Serris, ONI<br>(70102)<br>: Southwest<br>: Petroleum Refining             |                       | Sample<br>TEST<br>CONC. | Sample Number: 05890043 EEST E L A P S CONC. 00:0 | 0043<br>PSED T<br>00:00 50:10              | . T I M E                                |  |
| Laboratory Sample Method Sample By Date Collected Received Tested | : CW-SEP. 11£12, (400)<br>Pollutech<br>Grab<br>Grab<br>O5/23/89<br>: 05/23/89<br>: 05/26/89 at: 1030 |                       | 100                     | pH<br>Cornd.<br>Temp(C)<br>PH<br>OZ ppm<br>Cornd. | 8.0<br>10.2<br>20.0<br>20.0<br>8.0<br>10.0 | 7.9<br>20.0<br>20.0<br>8.0<br>35.5       |  |
| Type of Bioassay Test Animal Weight(gm)                           | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)<br>: D. magna       | a) ity Toxicity<br>3) | 26                      | Temp(C) PH O2 ppm Cond. Temp(C) PH O2 ppm         |                                            | 20.0<br>8.1<br>4.18<br>8.1<br>9.5<br>6.0 |  |
| FORTALITY DATA TEST E L A P S CONC. X 00:00 50:10                 | SED TIME                                                                                             | TOTAL<br>HORTALITY X  | •                       | Temp(C) PH O2 ppm Cond. Temp(C)                   |                                            | 20.0<br>8.1<br>9.6<br>459<br>20.0        |  |
| 705 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                           |                                                                                                      | 00000                 | Control                 | pH<br>02 ppm<br>Cond.<br>Temp(C)                  | 7.9<br>9.8<br>498<br>20.0                  | 8.1<br>9.4<br>455<br>20.0                |  |
| 48 Hour LC50<br>95x fid. Limits                                   | : Non-lethal<br>: 0.0 - 0.0 %                                                                        |                       |                         |                                                   |                                            |                                          |  |

LAPSED TIME

01:15 48:50

none

SLOPE of Mortality Curve : LC50 Calculated By :

| TEST CONDITIONS                                                      |                                                                                                |                                                               |                                           |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|
| Company<br>Region<br>Industry                                        | : Esso Petroleum Canada<br>Sarnia, ONI<br>(70102)<br>Southwest<br>Petroleum Refining           | Sample Number: 05890016 TEST E L A P S CONC. 7                | r: 05890016<br>E L A P S E<br>01:15       |
| Laboratory Sampling Hethod Sampled By Date Collected Received Tested |                                                                                                | 100 pH<br>Cond.<br>Temp(C)<br>50 pH                           |                                           |
| Type of Bioassay Test Animal Weight(gm)                              | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)<br>: D. magna | Cond.<br>Cond.<br>26 pH<br>02 ppm<br>Cond.<br>Temp(C)         | (c) 20.00 (c) 20.00 (c) 20.00 (c) 680 (c) |
| ATA<br>E L A P                                                       | :<br>SED TIME HONTALITY                                                                        | 13 pH<br>02 ppm<br>Cond<br>1 femp(C)                          |                                           |
| x 01:15 48:50<br>100 0 0<br>50 0 0<br>13 0 0<br>6 control 0 0        | ж 000000                                                                                       | OZ ppom<br>Cond.<br>Control pH<br>OZ ppom<br>Cond.<br>Temp(C) | (C) 20.0                                  |
| 48 Hour LC50<br>95% fid. limits<br>Comments                          | : Non-lethal<br>: 0.0 - 0.0 %                                                                  |                                                               |                                           |

8.7.8 80.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOXICITY TEST REPORT                                                             | Sample: 05890042      | TOXICI  | TOXICITY TEST PARAMETERS           | AMETERS                   |                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|---------|------------------------------------|---------------------------|---------------------------|--|
| TEST CONDITTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : Esso Petroleum Canada<br>Sarnis, ONI                                           |                       | Sample  | Sample Number: 05890042 TEST ELAPS | 05890042<br>E L A P S E D | TIME                      |  |
| Region<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : Southwest<br>: Petroleum Refining                                              | -                     | *       |                                    | 00:00 48:00               | 8:00                      |  |
| Control point<br>Leboratory<br>Sampling Method<br>Sampled By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : CW-Sep.9, (500)<br>: Pollutech<br>: Grab                                       |                       | 100     | pH<br>02 ppm<br>Cond.<br>Temp(C)   | 7.8<br>8.6<br>680<br>20.0 | 7.7<br>8.7<br>700<br>20.0 |  |
| Date Collected<br>Received<br>Tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 05/23/89<br>: 05/23/89 at: 1530                                                |                       | 20      | pH<br>O2 ppm<br>Cond.<br>Temp(C)   | 7.9<br>9.0<br>580<br>20.0 | 7.8<br>8.9<br>600<br>20.0 |  |
| Type of Bioassay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : STATIC<br>(Daphnie magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | hality Toxicity<br>8) | 56      | DH<br>02 ppm<br>Cond.              | 7.9                       | 7.9<br>9.2<br>530         |  |
| Test Animal<br>Weight(gm)<br>Length(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : D. magna                                                                       |                       | 13      | Temp(C) pH 02 ppm                  | 20.0                      | 20.0<br>7.9<br>9.4<br>505 |  |
| HORTALITY DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |                       |         | Temp(C)                            | 20.0                      | 20.02                     |  |
| CONC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SED TIME                                                                         | TOTAL<br>MORTALITY    | 9       | DH<br>02 ppm<br>cond.<br>Temp(C)   | 7.9<br>9.0<br>488<br>20.0 | 7.9<br>9.4<br>505<br>20.0 |  |
| on the contract of the contrac |                                                                                  | 800000                | Control |                                    | 7.9<br>9.4<br>478<br>20.0 | 7.9<br>9.4<br>489<br>20.0 |  |
| 48 Hour LC50<br>95% fid. limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : Non-lethal<br>: 0.0 · 0.0 ×                                                    |                       |         |                                    |                           |                           |  |
| Corrents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••                                                                               |                       |         |                                    |                           |                           |  |

|                                                               | TOXICITY TEST REPORT Sample: 05890015                                            | TOXICITY TEST PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
|---------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| TEST CONDITIONS                                               | ,                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| Company                                                       | : Esso Petroleum Canada<br>Sarnia, ONI                                           | e Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Region<br>Industry                                            | (70102)<br>: Southwest<br>: Petroleum Refining                                   | CONC. ELAPSED T CONC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7:25                      |
| Control point                                                 | : CM-Sep.3, (600)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected | : Pollutech<br>Greb<br>C. Ferguson<br>22.14/89                                   | 100 pH 7.6<br>02 ppm 10.4<br>Cond, 192<br>Temp(C) 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.7<br>9.5<br>210<br>20.0 |
| Tested                                                        | : 02/15/89 at: 1515                                                              | 50 pH 7.7<br>02 ppm 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.8                       |
| Type of Bioassay                                              | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.0                      |
| Test Animal<br>Weight(gm)<br>Length(mm)                       | : D. magna<br>:                                                                  | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0<br>20.0<br>7.9       |
| MORTALITY DATA                                                |                                                                                  | Cond. 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                      |
| CONC. E L A P S                                               | SED TIME TOTAL MORTALITY                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9                       |
| x 00:00 47:25                                                 | *                                                                                | CONTRACTOR | 600                       |
| 100 0 0 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0                       | 00000                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.9<br>9.4<br>650<br>20.0 |
| 48 Hour LC50                                                  | : Non-lethal                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 95% fid. limits                                               | % 0.0 - 0.0 :                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| Comments                                                      |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |

SLOPE of Mortality Curve : LC50 Calculated By :

| TEST COMDITIONS                                                                                    |                                                    |                                            |      |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|------|
| Company : Esso Petroleum Canada                                                                    | Sample Number: 05890041                            | 15890041                                   |      |
|                                                                                                    |                                                    | ELAPSED T                                  | TIME |
| Region : Southwest<br>Industry : Petroleum Refining                                                | 34                                                 | 00:00 48:00                                |      |
| Control point : CW-Sep.3, (600)                                                                    |                                                    |                                            |      |
| Laboratory : Pollutech Sampling Method : Grab Sampled By C. Ferguson Date Chilected : C. A. 27, 80 | 100 DH<br>OZ pom<br>Cond.<br>Temp(C)               | 7.8 7.6<br>9.4 8.8<br>188 202<br>20.0 20.0 |      |
| Received                                                                                           | 50 pH<br>02 ppm<br>Cond.,<br>Temp(C)               | 7.9 7.8<br>9.2 8.8<br>388 355<br>20.0 20.0 |      |
| Type of Bloassay (Shahnia magna Acute Lethality Toxicity Test Protocol. OME, 1988)                 | 26 pH 02 ppm                                       | 8.0 7.9                                    |      |
| Test Animal : D. magna                                                                             | Temp(C)                                            |                                            |      |
|                                                                                                    | 13 pH<br>02 ppm<br>Cond.                           | 8.0 7.9<br>9.2 9.4<br>440 462              |      |
| MORTALITY DATA                                                                                     | Temp(C)                                            |                                            |      |
| TEST ELAPSED TIME HORTALITY HORTALITY                                                              | 6 pH<br>02 ppm                                     | 9.1 9.4                                    |      |
| x 000:00 78:00                                                                                     | Temp(C)                                            |                                            |      |
| 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                            | Control py<br>O2 ppm<br>O2 ppm<br>Ocnd.<br>Temp(C) | 7.9 7.9<br>9.4 9.4<br>478 488<br>20.0 20.0 |      |
| 48 Mour LC50 : Mon-lethal                                                                          |                                                    |                                            |      |
| 95x fid. limits : 0.0 - 0.0 x                                                                      |                                                    |                                            |      |
| · · · · · · · · · · · · · · · · · · ·                                                              |                                                    |                                            |      |



COMPANY: Petro-Canada Inc., Mississauga

(130104)

(now with Clarkson Refinery)

SECTOR: Petroleum Refining

REGION: Petrole

### SUMMARY

The data for six trout bioassays, conducted on process effluent samples collected between December 1988 and May 1989, were provided by Petro-Canada Incorporated. All six process effluent samples were determined to have been non-acutely lethal to test fish. Trout bioassays conducted on cooling water samples collected in February and May 1989 indicate the samples were not acutely lethal. Bioassay data for one intake water sample collected in February indicate the sample was not acutely lethal to test fish.

### Process Effluent

06881219 sampled: 12/13/88 non-lethal 95% fid. limits: 0.0 - 0.0 % comments: no mortality or sublethal impairment observed

06890113 sampled: 01/17/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: 10 % mortality in full strength effluent

06890207 sampled: 02/07/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments: no mortality or sublethal impairment observed

06890334 sampled: 03/21/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments: no mort. or sublethal impairment observed

06890422 sampled: 04/11/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

06890508 sampled: 05/02/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or sublethal impairment observed

comments: no mortality or sublethal impairment observed

storm water

## Petro-Canada Inc. (continued)

## cooling water-trap 1

06890223 sampled: 02/27/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: no mortality or sublethal impairment observed

06890523 sampled: 05/09/89 LC50: >100 %

95% fid. limits: 0.0 - 0.0 %

comments: 40 % mort. in full strength effluent

## cooling water-trap 3

06890224 sampled: 02/27/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: no mortality or sublethal impairment observed

06890525 sampled: 05/09/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: no mortality or sublethal impairment observed

### intake water

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOXICITY TEST REPORT                                                                            | Sample: 06881219                     | TOXICIT        | TOXICITY TEST PARAMETERS         |                               |                      |                      |                      |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------|----------------|----------------------------------|-------------------------------|----------------------|----------------------|----------------------|---------------------------|
| TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                      |                | 0000                             | 0                             |                      |                      |                      |                           |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mississauga, ONI<br>(130104)                                                                    |                                      | Sampre<br>TEST | TEST E LAPS                      | ELAPSED                       | T I M E              | H.                   |                      |                           |
| Fesion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : Central<br>: Petroleum Refining                                                               |                                      | CONC.          |                                  | 00:00 24:00 48:00 72:00 96:00 | 87 00:5              | 1:00 72              | 36 00:               | 00:                       |
| Contro point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : Process Effluent, (100)                                                                       |                                      |                |                                  |                               |                      |                      |                      |                           |
| Sampling Wethod<br>Sampling Wethod<br>Sampled By<br>Date Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | grab<br>from Tubello<br>12/13/86                                                                |                                      | 100            | DH<br>OZ ppm<br>Cond.<br>Temp(C) | 7.2<br>8.0<br>584<br>15.0     | 8.0<br>8.8<br>15.0 1 | 8.0<br>8.6<br>15.0 1 | 7.9<br>8.3<br>15.0 1 | 8.1<br>9.2<br>574<br>15.0 |
| Tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : 12/13/88 at: 1400                                                                             |                                      | 20             | pH<br>02 pom                     | 7.4                           | 7.7                  | 7.9                  | 7.8                  | 7.9                       |
| Type of Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : STAILC<br>(Protocol to determine the scute lethality of liquid effluents to fish. OHE, 1983). | e acute lethality<br>sh. OME, 1983). | 30             | Cond.<br>Temp(C)                 | 15.0                          |                      | -                    |                      | 15.0                      |
| Test Animal<br>Weight (gm.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : Reinbow trout                                                                                 |                                      |                | 02 pom<br>Cond.<br>Temp(C)       | 431                           |                      |                      |                      | 418                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                      | 20             | DR ppm                           | 9.2                           | 9.6                  | 8.3                  | 8.9                  | 8.3                       |
| MUNICIPAL DELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                      |                | Temp(C)                          | 15.0                          | 15.0 1               | 15.0 1               | 15.0                 | 5.0                       |
| The Control of the Co | 3 H I I I I I I I I I I I I I I I I I I                                                         | MORTALITY *                          | 10             | DH<br>02 ppm                     | 7.6<br>8.8<br>4.05            | 9.6                  | 8.3                  | 9.3                  | 9.8                       |
| 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20:00 12:00                                                                                     | e                                    |                | Temp(C)                          | 15.0                          | 15.0 1               | 15.0 1               | 15.0                 | 15.0                      |
| 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000                                                                                            | 0000                                 | Control        |                                  | 2.0                           |                      |                      |                      | 9.9                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                                                                                             | 00                                   |                | Temp(C)                          | 15.0                          | 15.0 1               | 15.0                 | 15.0                 | 15.0                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                      |                |                                  |                               |                      |                      |                      |                           |
| 36 hour test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : Non-lethal                                                                                    |                                      |                |                                  |                               |                      |                      |                      |                           |
| 75x 11d. Linite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0.0 . 0.0 :                                                                                   |                                      |                |                                  |                               |                      |                      |                      |                           |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : no mortality or sublethal impairment observed                                                 | impairment observed                  |                |                                  |                               |                      |                      |                      |                           |

TOXICITY TEST PARAMETERS

Sample: 06890113

TOXICITY TEST REPORT

| TEST CONDITIONS                                              |                                                                                                                       | Sample N | Sample Number: 06890113          | 113                       |                               |            |                    |                           |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|---------------------------|-------------------------------|------------|--------------------|---------------------------|
| Сопрапу                                                      | : Petro-Canada Inc.<br>Mississauga, ONT<br>(130)0, 100, 100                                                           | TEST     | ELAPSE                           | SED                       | þm                            | 1 M E      |                    |                           |
| Region                                                       | : Central<br>: Petroleum Refining                                                                                     |          |                                  | 00:00                     | 00:00 24:00 48:00 72:00 96:00 | 3:00 72    | 26 00:             | 2:00                      |
| Control point<br>Laboratory<br>Sampling Method<br>Sampled By | : Process Effluent, (100) : Beak : grab : jom jubello                                                                 | 100      | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.6<br>7.6<br>679<br>15.0 | 7.8<br>8.0<br>15.0            | 7.9        | 7.7 7.4            | 7.7                       |
| Date Collected<br>Received<br>Tested                         | : 01/17/89: : 01/17/89 at: 1630                                                                                       | 20       | pH<br>O2 ppm<br>Cond.<br>Temp(C) | 7.7<br>8.2<br>533<br>15.0 | 7.8 7.4                       | 7.9        | 8.1                | 7.7                       |
| Type of Bioassay                                             | : STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983).<br>: Rainbow trout | 30       | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.8<br>7.8<br>466<br>15.0 | 8.8<br>8.8<br>15.0 1          | 8.0        | 7.9<br>8.2<br>15.0 | 8.1<br>8.4<br>474<br>15.0 |
| Weight(gm)<br>Length(mm)<br>HORTALITY DATA                   |                                                                                                                       | 50       | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.9<br>8.7<br>433<br>15.0 | 9.4                           | 8.1<br>8.5 | 9.8                | 8.2<br>442<br>15.0        |
| CONC. E L A P                                                | E L A P S E D T I M E HORTALITY X 00:00 24:00 48:00 72:00 96:00                                                       | 10       | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.8<br>8.9<br>399<br>15.0 | 7.8<br>8.0<br>15.0            | 9.3        | 8.1<br>8.8<br>15.0 | 8.1<br>9.6<br>391<br>15.0 |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                      | 100000000000000000000000000000000000000                                                                               | Control  | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.9<br>9.0<br>363<br>15.0 | 9.4                           | 9.8        | 9.8                | 8.0<br>9.6<br>357<br>15.0 |
| 96 Hour LC50<br>95% fid. limits                              | : Non-lethal<br>: 0.0 - 0.0 %                                                                                         |          |                                  |                           |                               |            |                    |                           |

TOXICITY TEST PARAMETERS

Sample: 06890207

TOXICITY TEST REPORT

|                                                                    |                                               |                                                                                                  |                             | Sample  | Sample Number: 06890207          | 390207                    |
|--------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|---------|----------------------------------|---------------------------|
| Company                                                            | : Petro-Canada I<br>Mississauga, C            | B Inc.                                                                                           |                             | TEST    | EL                               | ELAPSED                   |
| Region                                                             | (130164)<br>: Central<br>: Petroleum Refining | efining                                                                                          |                             |         |                                  | 00:00 54:                 |
| Control point                                                      | : Process Effl                                | Process Effluent, (100)                                                                          |                             | 100     | 吾                                | 7.4                       |
| Leboratory<br>Sampling Method<br>Sampled By                        | Beak<br>grab<br>Tom Tubello                   |                                                                                                  |                             |         | 02 ppm<br>Cond.<br>Temp(C)       | 8.2<br>845<br>15.0        |
| te Collected<br>Peceived<br>Tested                                 | 02/07/89                                      | et: 1230                                                                                         |                             | 20      | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.5<br>607<br>15.0        |
| Type of Bioassay                                                   | : STATIC<br>(Protocol to<br>of liquid et      | STAILC<br>(Enotocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | te lethality<br>OME, 1983). | 30      | pH<br>02 ppm<br>cond.            | 7.5<br>9.8<br>513         |
| Test Animal<br>Weight(gm)<br>Length(mm)                            | Rainbow trout                                 | T,                                                                                               |                             | 20      | Temp(C) pH 02 ppm                | 15.0                      |
| MOSTALITY DATA                                                     |                                               |                                                                                                  |                             |         | Cond.<br>Temp(C)                 | 15.0                      |
| E                                                                  | E 0                                           | E MOR                                                                                            | TOTAL<br>MORTALITY          | 10      | DH 02 ppm                        | 7.3<br>9.8<br>407         |
| x 00:00 54:00                                                      | 24:00 48:00 72:00 96:00                       | 00:96                                                                                            | ×                           |         | Temp(C)                          | 15.0                      |
| 250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250 | 000000                                        | 000000                                                                                           | 00000                       | Control | 02 ppm<br>Cond.<br>Temp(C)       | 7.4<br>9.8<br>382<br>15.0 |
| 96 Hour LC50                                                       | : Non-lethal                                  |                                                                                                  |                             |         |                                  |                           |
| 95x fid. Hnits                                                     | . 0.0 :                                       | 0.0 - 0.0 % on more alliever subjected impointment observed                                      | frment observed             |         |                                  |                           |
|                                                                    |                                               |                                                                                                  |                             |         |                                  |                           |

8.2 16.0 16.0 16.0 16.0 16.0 16.0 16.0

8.1

14.0 8.1 14.0 7.9 0.4 8.0

15.0

14.0 8.1 14.0 8.1 14.0 7.9

0:00 24:00 48:00 72:00 96:00

TIME

10.0

10.0 14.0 8.1 14.0

8.0

8.1

8.1

8.0 8.9 467 16.0

14.0

7.8 14.0

15.0

|                                         | TOXICITY TEST REPORT                                | Sample: 06890334                 | TOXICII                 | TOXICITY TEST PARAMETERS                             | ERS                           |        |         |        |                   |  |
|-----------------------------------------|-----------------------------------------------------|----------------------------------|-------------------------|------------------------------------------------------|-------------------------------|--------|---------|--------|-------------------|--|
| TEST CONDITIONS Company                 | : Petro-Canada Inc.<br>Mississauga, ONT<br>(130104) |                                  | Sample<br>TEST<br>CONC. | Sample Number: 06890334<br>TEST E L A P S E<br>CONC. | 34<br>S E D                   | ± -    | ш<br>ЭE |        |                   |  |
| Region<br>Industry                      | : Central<br>: Petroleum Refining                   |                                  | 34                      | 0                                                    | 00:00 24:00 48:00 72:00 96:00 | :00 48 | :00 72  | 96 00: | 00:               |  |
| Control point<br>Laboratory             | : Process Effluent, (100)<br>: Beak                 |                                  | 100                     | pH<br>02 pom                                         | 7.3                           | 7.8    | 8.0     | 8.3    | 8.4               |  |
| Sampling Method<br>Sampled By           | : grab<br>: Tom Tubello                             |                                  |                         | Cond.<br>Temp(C)                                     | 15.0 1                        |        |         |        | 14.0              |  |
| Received<br>Tested                      | . 03/21/89<br>: 03/22/89 at: 1130                   |                                  | 20                      | pH<br>02 ppm                                         | 7.6                           | 9.9    | 8.0     | 8.3    | 8.3               |  |
| Type of Bioassay                        | : STATIC                                            | the series letter                | 5                       | Temp(C)                                              |                               |        |         |        | 4.0               |  |
|                                         | of liquid effluents to fish. ONE, 1983).            | fish. OME, 1983).                | 8                       | 02 ppm                                               |                               | 10.4   | 8.9     | 10.0   | 8.87              |  |
| Test Animal                             | : Rainbow trout                                     |                                  |                         | Temp(C)                                              | 15.0 1                        | 14.0 1 | 15.0 1  | 15.0 1 | 14.0              |  |
| Length(mm)                              | ••                                                  |                                  | 50                      | DPH<br>02 ppm                                        | 9.8                           | 0.80   | 0.8     | 8.3    | 8.4               |  |
| HORTALITY DATA                          |                                                     |                                  |                         | Temp(C)                                              |                               | 14.0 1 | 15.0 1  | 15.0   | 14.0              |  |
| TEST ELAP                               | SED TIME                                            | TOTAL                            | 10                      | PH<br>02 ppm                                         | 7.6                           | 9.3    | 9.2     | 8.3    | 9.5               |  |
| x 00:00 54:0                            | 00:00 24:00 48:00 72:00 96:00                       | <b>&gt;</b> c                    |                         | Temp(C)                                              |                               | 14.0 1 | 15.0 1  | 15.0   | 14.0              |  |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000                                                | 0000                             | Control                 | pH<br>02 ppm<br>Cond.                                | 7.3<br>8.9<br>372             | 8.2    | 8.2     | 7.2    | 8.5<br>8.9<br>351 |  |
| trol 0                                  | 000                                                 | 000                              |                         |                                                      |                               |        |         |        |                   |  |
|                                         |                                                     |                                  |                         |                                                      |                               |        |         |        |                   |  |
| 96 Hour LC50                            | : Non-lethal                                        |                                  |                         |                                                      |                               |        |         |        |                   |  |
| 95% fid. limits                         | * 0.0 - 0.0 :                                       |                                  |                         |                                                      |                               |        |         |        |                   |  |
| Comments                                | i ladiother or citiether is                         | or sublethal impairment observed |                         |                                                      |                               |        |         |        |                   |  |

| 16890422  |
|-----------|
| Sample: 0 |
| REPORT    |
| TEST      |
| TOXICITY  |

moving average

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

| Sample Number: 06890422 TEST E L A P S CONC. 2 00:                                                    | 000                                                                                                                                                           | STATIC Temp(C) Temp(C) Of pom of liquid effluents to fish. OME, 1983). Rainbow trout  20 pH COnd. 20 pH COnd. 20 pH COnd. 20 pH CO. 20 pH CO. 20 pH CO. 20 pH CO. 20 pH | HORTALITY 10 pH OZ ppm C2 ppm C2 ppm C2 ppm C2 ppm C3 ppm C4 ppm C4 ppm C4 ppm C5 ppm C5 ppm C5 ppm C4 ppm C5 ppm | Control ph<br>0 02 ppm<br>0 0 cond.<br>0 0 Temp(C) | 0.0 - 0.0 % on mortality or sublethal impairment observed |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|
| IESI CONDITIONS : Petro-Canada Inc. Mississauga, ONI (130104) : Central Industry : Petroleum Refining | Control point : Process Effluent, (100) Leboratory : Beak sampled By : Tow Tubello bate Collected : 04/11/89   1621ed : 04/11/89   1621ed : 04/11/89 at: 1500 | Type of Bioassay : STATIC (Profocol to determ of Liquid effluents of Liquid effluents test Animal : Rainbow trout : Length (rm.) : MOSTALITY DATA                       | ELAPSED TIME<br>00:00 24:00 48:00 72:00 96:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Non-lethal                                         | 95% fid. (imits: 0.0 - 0.0 %                              |

|                                             | TOXICITY TEST REPORT                                                                  | REPORT                  | Sample: 06890508                                                                           | TOXICIT       | TOXICITY TEST PARAMETERS           | ETERS                     |             |                        |            |                           |
|---------------------------------------------|---------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------|---------------|------------------------------------|---------------------------|-------------|------------------------|------------|---------------------------|
| TEST CONDITIONS                             |                                                                                       |                         |                                                                                            | Sample        | Sample Number: 06890508            | 0508                      |             |                        |            |                           |
| Company<br>Region<br>Industry               | ** Petro-Canada Inc.<br>Mississauga, ONI<br>(130104)<br>Central<br>Petroleum Refining | ont<br>ont<br>fining    |                                                                                            | TEST<br>CONC. | ELA                                | E L A P S E D             | T 1 4:00 48 | T I M E<br>10 48:00 72 | 36 00:3    | 00:9                      |
| Control point                               | : Process Effluent, (100)                                                             | uent, (100)             |                                                                                            |               |                                    | ,                         |             |                        |            |                           |
| Laboratory<br>Sampling Method<br>Sampled By | Beak<br>grab<br>Karen Gregor                                                          | >                       |                                                                                            | 001           | pH<br>02 ppm<br>Cond.<br>Temp(C)   | 6.8<br>596<br>15.0        | 10.01       | 9.5                    | 8.7        | 591                       |
| Date Collected<br>Received<br>Tested        | 05/02/89<br>05/02/89<br>05/03/89 at:                                                  | 1200                    | ,                                                                                          | 99            | pH<br>02 ppm<br>Cond.              | 7.6                       | 9.1         | 9.6                    | 8.8        | 1511                      |
| Type of Bioassay                            | : STATIC<br>(Protocol to<br>of liquid ef                                              | determine<br>fluents to | STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | 20            | DH MODEL                           | 7.8                       |             |                        |            | 8.1                       |
| Test Animal<br>Weight(gm)                   | : Rainbow trout                                                                       | t .                     |                                                                                            | 20            | Temp(C)                            | 15.0                      |             |                        |            | 15.0                      |
| HORTALITY DATA                              | •                                                                                     |                         |                                                                                            | 3             | 02 ppm<br>Cond.<br>Temp(C)         | 7.4<br>425<br>15.0        | 9.6         | 14.0 1                 | 9.3        | 9.1<br>424<br>15.0        |
| CONC. E L A P                               | SED TIME                                                                              |                         | TOTAL                                                                                      | 20            | pH<br>02 ppm                       | 8.6                       | 8.8         | 8.2                    | 8.2        | 9.1                       |
| x 00:00 24:00                               | 00 48:00 72:00 96:00                                                                  | 00:90                   | 34                                                                                         |               | Temp(C)                            | 15.0                      | 15.0        | 14.0 1                 | 15.0       | 15.0                      |
| 50 00 00 00 00 00 00 00 00 00 00 00 00 0    | 00000                                                                                 | 00000                   | 00000                                                                                      | 10            | pH<br>O2 ppm<br>Cond.<br>Temp(C)   | 7.7<br>9.6<br>383<br>15.0 | 9.2         | 9.3                    | 9.5        | 7.7<br>8.8<br>373<br>15.0 |
| trol 0                                      |                                                                                       | 000                     | 000                                                                                        | Control       | 1 pH<br>02 ppm<br>cond.<br>Temp(C) | 7.6<br>9.4<br>358<br>15.0 | 7.9         | 7.8<br>8.2<br>14.0     | 8.3<br>9.5 | 8.0<br>9.2<br>349<br>15.0 |
| 96 Hour LC50                                | : Non-lethal                                                                          |                         |                                                                                            |               |                                    |                           |             |                        |            |                           |
| 95% fid. limits                             | . 0.0 :                                                                               | 0.0 %                   |                                                                                            |               |                                    |                           |             |                        |            |                           |
| Commente                                    | · no mortality                                                                        | vor subleth             | no mortality or sublethal impairment observed                                              |               |                                    |                           |             |                        |            |                           |

| TEST CONDITIONS                                                    |                                                                                              |               |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|
| Company                                                            | Petro-Canada Inc.<br>Mississauga, ONT                                                        | Sample N      |
| Region                                                             | (158) 10.6<br>  Central<br>  Petroleum Refining                                              | TEST<br>CONC. |
| Control point                                                      | : cooling water-trap 1, (300)                                                                |               |
| Laboratory<br>Sampled By<br>Sampled By<br>Sate Collected<br>Tested | 8 Beak<br>9 rab<br>1 7m lubello<br>10/27/89<br>02/27/89<br>02/27/89 at: 1500                 | 100           |
| Type of Bioassay :                                                 | : STATIC (Protocol to determine the scute lethality of liquid effluents to fish. OME, 1983). | 30            |
| Test Animal<br>Weight(gm)                                          | . Reinbow trout                                                                              | 2             |
| MORTALITY DATA                                                     |                                                                                              | 3             |
| CONC. ELAPS                                                        | ED TIME MORTALITY                                                                            | 10            |
| 2 00:00 54:00                                                      | 48:00 72:00 96:00 x                                                                          |               |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 000000                                                                                       | Control       |
| 36 Mour LC50                                                       | . Won-lethal                                                                                 |               |
| 95x fid. (imits ::                                                 | x 0.0 - 0.0 :                                                                                |               |
| Corrents                                                           | : no mortality or sublethal impairment observed                                              |               |

TOXICITY TEST PARAMETERS

Sample Number: 06890223

EST ELAPSED TIME ONC. 00:00 24:00 48:00 72:00 96:00

8.1 391 15.0 8.1 9.2 377 15.0 8.1 9.7 393 15.0 8.1 10.4 392 15.0 7.8 379 379 15.0 15.0 15.0 8.2 5.0 15.0 15.0 8.0 15.0 8.1 8.1 8.5 8.5 8.2 14.0 8.0 0.4 8.1 14.0 14.0 8.1 14.0 14.0 8.1 7.9 10.0 14.0 7.9 14.0 8.2 14.0 14.0 7.8 14.0 7.8 14.0 8.1 7.9 10.6 374 15.0 7.9 10.6 384 15.0 7.9 9.9 388 15.0 7.9 9.3 380 5.0 pH 02 ppm cond. Temp(C) pH 02 ppm cond, Temp(C) pH 02 ppm cond. Temp(C)

| 06890523    |
|-------------|
| Sample:     |
| TEST REPORT |
| TEST        |
| TOXICITY    |

probit

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

00:00 24:00 48:00 72:00 96:00 ELAPSED TIME 15.0 15.0 8.5 8.2 15.0 8.2 15.0 8.2 15.0 8.2 8.5 15.0 8.3 15.0 8.0 9.2 346 15.0 7.9 9.0 346 15.0 7.8 7.7 9.8 352 5.0 Sample Number: 06890523 pH 02 ppm Cond. (C) dual pH 02 ppm Cond. Temp(C) pH 02 ppm Cond. (D)dwa pH 02 ppm emp(C) pH 02 ppm Cond. (D)dwaj pH 02 ppm (C) dual pH 02 ppm cond. (D)duna Cond. Cond Control TEST CONC. 10 100 65 20 30 20 0000000 STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). TOTAL 40 % mort, in full strength effluent cooling water-trap 1, (300) Petroleum Refining Petro-Canada Inc. Mississauga, ONI (130104) 00:00 24:00 48:00 72:00 96:00 0.0 \*0--NOC Karen Gregory 05/09/89 05/09/89 05/09/89 at: at: Rainbow trout TIME Central >100% 0.0 Beak ELAPSED -000-00 Laboratory Sampling Method Sampled By Date Collected Received Tested 95% fid. limits Type of Bioassay TEST CONDITIONS MORTALITY DATA 96 Hour LC50 Control point 0000000 Weight(gm) Length(mm) Test Animal Comments 100 65 50 30 20 10 Control Industry Company Region TEST CONC. ×

8.2 8.5 374 15.0

80 80 15.

8.0 363 15.0

15.0 8.8 15.0

8.1 7.9 357 15.0

88.3

8.3

15.0 7.6 15.0

15.0 8.2

8.7 353 15.0

15.0

15.0

8.2 8.0 347 15.0

8.2 5.0 8.3 15.0 800

8.5 15.0 8.2

8.3

15.0

15.0 8.5

8.5 352 15.0

15.0 8.2

moving average SLOPE of Mortality Curve : LC50 Calculated By :

**TOXICITY TEST PARAMETERS** 

8.0 9.1 405 15.0 00:00 24:00 48:00 72:00 96:00 8.1 493 493 15.0 8.2 15.0 5.0 15.0 8.8 8.0 8.1 15.0 15.0 14.0 0.41 8.1 0.4 8.0 14.0 0.4 14.0 TIME 14.0 0.4 0.4 7.8 0.41 8.1 14.0 9.5 7.9 7.8 ELAPSED 8.2 413 5.0 8.0 410.6 15.0 pH 02 ppm Cond. Temp(C) pH 02 ppm cond. (C) dua J pH 02 ppm cond. Temp(C) Temp(C) pH 02 ppm cond.

| 06890525 |
|----------|
| Sample:  |
| REPORT   |
| TEST     |
| TOXICITY |

| Сощрапу                                                                                 |                                                                                              |                                      |                                         |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|
|                                                                                         | : Petro-Canada Inc.<br>Mississauga, ONT                                                      | TEST E L A P S                       | E LAPS                                  |
| Region<br>Industry                                                                      | : Central<br>: Petroleum Refining                                                            | )<br>,<br>,<br>,                     | 00:00                                   |
| Control point                                                                           | : cooling water-trap 3, (500)                                                                | 000                                  |                                         |
| Laboratory<br>Sampling Method<br>Sampled By                                             | Beak<br>grab<br>grab<br>Grand Gregory                                                        |                                      | 22 ppm 9.7<br>Cond. 400<br>Temp(C) 15.0 |
| Received                                                                                | : 05/09/89 at: 1630                                                                          | 65 pH<br>02 ppm<br>Cond.             | 8.4<br>yem 9.2                          |
| Type of Bioassay                                                                        | : STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | 50 pH<br>02 ppm                      |                                         |
| Test Anima(<br>Weight(gm)                                                               | : Rainbow trout                                                                              |                                      |                                         |
| Length(mm)<br>MORTALITY DATA                                                            |                                                                                              | 30 pH<br>02 ppm<br>Cond.<br>Temp(c.) | 8.0<br>ypm 8.7<br>1. 364<br>15.0        |
| d W                                                                                     | SED TIME TOTAL HORTALITY                                                                     | 20 pH 02 ppm                         |                                         |
| x 00:00 24:00                                                                           | 00:00 24:00 48:00 72:00 96:00                                                                | Temp(                                | 6                                       |
| 100<br>65<br>50<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 00000                                                                                        | 10 pH<br>02 ppm<br>Cond.<br>Temp(C)  | 7.8<br>ypm 10.0<br>1. 351<br>(C) 15.0   |
| itrol 0                                                                                 | 000                                                                                          | Control pH 02 ppm Cond. Temp(C)      | 7.7<br>pm 9.8<br>1. 352<br>1. 15.0      |
| 96 Hour LC50                                                                            | : Non-lethal                                                                                 |                                      |                                         |
| 95% fid. limits                                                                         | × 0.0 - 0.0 :                                                                                |                                      |                                         |

| 00:00 24:00<br>00:00 24:00<br>8.7 8.5<br>9.7 8.1<br>15.0 15.0                                            | 381<br>15.0 15.0 1<br>8.8 8.2<br>9.8 8.3<br>374<br>15.0 15.0 1<br>8.7 8.5 | 364.<br>15.0 15.0 1<br>7.8 8.1<br>8.7 8.2<br>359 15.0 1<br>10.0 8.3 | 7.7<br>ppm 9.8<br>dd. 352<br>mp(C) 15.0 1 |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|
| 24:00<br>8.5<br>8.1<br>8.1<br>8.1                                                                        | 15.0 1<br>8.2<br>8.3<br>15.0 1                                            | 15.0 1<br>8.1<br>15.0 1<br>15.0 1                                   | 88 21                                     |
|                                                                                                          | 1 0 5 m 0 - 2                                                             | 0 -2 0 -2                                                           | 15.0<br>8.2<br>8.3                        |
| 15. 99.                                                                                                  | ் 75 ஐஐ 75 ஐஐ                                                             |                                                                     |                                           |
| m 00 ki0 0 5 kg                                                                                          | 88.0<br>8.0<br>8.0<br>8.0<br>8.0                                          | 8.2<br>8.2<br>8.2<br>15.0<br>7.9                                    | 15.0<br>8.3<br>8.8<br>15.0                |
| 1 M E<br>48:00 72:00 96:00<br>8.3 8.3 8.2<br>9.0 8.8 8.4<br>15.0 15.0 15.0<br>8.8 8.3 8.7<br>8.8 8.3 8.7 | 8.1<br>8.2<br>8.2<br>15.0<br>9.0                                          | 15.0<br>7.9<br>7.9<br>15.0<br>15.0                                  | 15.0<br>8.3<br>8.3                        |
| 8.2<br>8.4<br>4.06<br>15.0<br>8.7                                                                        | 15.0<br>15.0<br>15.0<br>15.0<br>15.0                                      | 15.0<br>15.0<br>15.0<br>15.0<br>15.0                                | 377<br>15.0<br>8.2<br>8.5<br>374<br>15.0  |

Petro-Canada Inc., Mississauga COMPANY:

(130104)

(now with Clarkson Refinery)

Petroleum Refining SECTOR:

Central REGION:

### SUMMARY

Results of eleven Daphnia magna acute lethality toxicity tests conducted on samples collected between December 1988 and May 1989 were submitted by Petro-Canada Inc. in Mississauga. Five of the six Process Effluent samples were not acutely lethal to Daphnia. The sample collected in January was toxic to Daphnia with a 48 h LC50 value of 28.2% effluent.

One sample of Intake Water and two samples from each of Cooling Water Trap 1 and Cooling Water Trap 3 were all

not acutely lethal to Daphnia.

### Process Effluent

06881224 sampled: 12/13/88 non-95% fid. limits: 0.0 - 0.0 % non-lethal

comments: 20 % mortality in full strength effluent

06890116 sampled: 01/17/89 LC50: 28.2 %

95% fid. limits: 20.4 - 38.8 %

comments:

06890208 sampled: 02/07/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no immobility observed during testing

06890332 sampled: 03/21/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or immobility observed in 48 Hrs

06890423 sampled: 04/11/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or immobility observed

06890509 sampled: 05/02/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or immobility observed in 48 Hrs

## Petro-Canada Inc. (continued)

storm water

cooling water-trap 1

06890225 sampled: 02/27/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: 5 % circling at the end of exposure

06890524 sampled: 05/09/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or immobility observed in 48 Hrs

cooling water-trap 3

06890226 sampled: 02/27/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

95% fid. limits:

comments: 70 % of Daphnia floating at the end of expos.

06890526 sampled: 05/09/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: no mortality or immobility observed in 48 Hrs

intake water

06890209 sampled: 02/07/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: no immobility observed during testing

LAPSED TIME

00:00 24:00 48:00

20.0

20.02

| TOXIC                                                                               | TOXICITY TEST REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample: 06881224       | TOXICIT                   | TOXICITY TEST PARAMETERS                         | ETERS                                    |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|--------------------------------------------------|------------------------------------------|
| TEST CONDITIONS                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                           |                                                  |                                          |
| Company : Petr<br>Hiss<br>(130<br>Region : Cent<br>Industry : Petr                  | Petro-Canada Inc.<br>Hississauga, ONI<br>(130104)<br>Central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | Sample I<br>TEST<br>CONC. | Sample Number: 06881224 TEST E L A P S CONC. 7   | 06881224<br>ELAPSED<br>00:00 24:         |
| Control point : Proc                                                                | Process Effluent, (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                           |                                                  |                                          |
| Laboratory BEAK Sampling Method grab Sampled By Tom Date Collected 12/1 Tested 12/1 | 9rab<br>Tom Tubello<br>To/13/88<br>12/13/88<br>12/14/88 at: 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 100                       | pH<br>O2 ppm<br>Cond.<br>Temp(C)<br>PH<br>O2 ppm | 7.2<br>5.6<br>582<br>20.0<br>20.0<br>7.6 |
| Type of Bioassay : STATIC (Daphn Test P                                             | STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hality Toxicity<br>88) | 30                        | Cond.<br>Temp(C)                                 | 20.0 20                                  |
| Test Animal : D. m<br>Weight(gm) :<br>Length(mm) :                                  | magn.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 20                        | Cond.<br>Temp(C)                                 | 20.0 20<br>7.8                           |
| MOPTALITY DATA                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 2                         | Cond.                                            | 391                                      |
| TEST E L A P S E D COMC.                                                            | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL<br>MORTALITY X   | 10                        | pH<br>02 ppm<br>cond.                            |                                          |
| 000000                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000                  | Control                   |                                                  | 20.0 20<br>8.2<br>6.9<br>339<br>20.0 20  |
| 48 Mour LC50 : Were 75% fid. [imite : 0.                                            | Arresteched 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × | transit off turnt      |                           |                                                  |                                          |

20.02

20.02

20.02

20.02

| Petro-Canada Inc.   Hississaga, ONT   Hississa   | TEST CONDITIONS                             |                           | 1 4                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|-------------------------|
| thod : Process Effluent, (100)  : Beak thod : grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Company                                     |                           | TEST<br>CONC.           |
| thod : Beak though (100) 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   | Industry                                    |                           | ę                       |
| ted : grab   101/17/89   1500   101/17/89   1500   101/17/89   1500   101/17/89   1500   101/17/89   1500   101/17/89   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1 | Control point                               | : Process Effluent, (100) |                         |
| State   19717/89   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   1983   19   | Laboratory<br>Sampling Method<br>Sampled By |                           |                         |
| ### STATIC Graphic magna Acute Lethality Toxicity   30   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pare Collected<br>Received<br>Tested        |                           |                         |
| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type of Bioassay                            |                           |                         |
| APSED TIME TOTAL  24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test Animal<br>Weight(gm)<br>Length(mm)     |                           |                         |
| ELAPSED TIME HORTALITY X  00:00 24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MORTALITY DATA                              |                           | Cor                     |
| 00:00 24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E L                                         | SED TIME                  |                         |
| 100 Control Co |                                             |                           | 18                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trol 00                                     | D & W 4 1 0               | Control pH<br>02<br>Cor |

: 20.4 - 38.8

95% fid. limits Comments

moving average SLOPE of Mortality Curve : LC50 Calculated By :

|          | ш    | 0                 |
|----------|------|-------------------|
|          | I    | 0::               |
|          | 0-0  | 48                |
|          | -    | 00:00 24:00 48:00 |
|          | Q    | 54                |
|          | SE   | 0                 |
| 9        | S    | -                 |
| Ξ        | A    | ö                 |
| 06       | «    |                   |
| 06890116 | _    |                   |
|          | LLI  |                   |
| Number   |      |                   |
| Sample   | TEST | , K               |

| 7.9     | 8.1     | 8.1     | 8.1     | 8.2     | 8.2     |
|---------|---------|---------|---------|---------|---------|
| 8.3     | 8.5     | 8.4     | 8.4     | 8.6     | 8.7     |
| 735     | 583     | 518     | 486     | 450     | 432     |
| 20.0    | 20.0    | 20.0    | 20.0    | 20.0    | 20.0    |
| 20.02   | 20.02   | 20.02   | 20.0    | 20.0    | 20.0    |
| 7.3     | 7.6     | 7.8     | 7.9     | 8.0     | 8.1     |
| 9.1     | 9.1     | 9.2     | 9.2     | 9.3     | 9.2     |
| 709     | 552     | 493     | 451     | 419     | 385     |
| 20.0    | 20.0    | 20.0    | 20.0    | 20.0    | 20.0    |
| pH      | pH      | pH      | pH      | pH      | t pH    |
| O2 ppm  | 02 ppm  |
| Cond.   | Cond.   | Cond.   | Cond.   | Cond.   | Cond.   |
| Temp(C) | Temp(C) | Temp(C) | Temp(C) | Temp(C) | Temp(C) |
| 100     | 20      | 30      | 20      | 10      |         |

| LC50 Cal | TOXICITY             |
|----------|----------------------|
|          | ample: 06890332      |
|          | Sample:              |
|          | REPORT               |
|          | TEST                 |
| 4        | TOXICITY TEST REPORT |
|          |                      |

| ** ** ** ** *                                             |                                                                               |        |
|-----------------------------------------------------------|-------------------------------------------------------------------------------|--------|
| ** ** ** *                                                | Petro-Canada Inc.<br>Mississauga, ONT                                         |        |
|                                                           | Central<br>Petroleum Refining                                                 |        |
|                                                           | Process Effluent, (100)                                                       |        |
| Sampling Wethod Sampled By Date Collected Received Tested | Beak<br>grab<br>Tom Tubello<br>33/21/89<br>03/21/89 at: 1730                  |        |
| Type of Bioassay :                                        | STATIC<br>(Daphia magna Acùte Lethality Toxicity<br>Test Protocol. OME, 1988) | >-     |
| Test Animal ::<br>Weight(gm) ::<br>Length(mm) ::          | D. magna                                                                      |        |
| MORTALITY DATA                                            |                                                                               |        |
| TEST ELAPSE                                               | D TIME TOTAL MORTALITY                                                        |        |
| x 00:00 24:00 48:00                                       | 8:00                                                                          | ж      |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                   | 00000                                                                         | 000000 |
| 48 Hour LC50 :                                            | Non-lethal                                                                    |        |
| 95% fid. limits :                                         | × 0.0 - 0.0                                                                   |        |

: no mortality or immobility observed in 48 Hrs

Comments

SLOPE of Mortality Curve : LC50 Calculated By : moving average

|          | ш     | 0                 |
|----------|-------|-------------------|
|          | ×     | 3:                |
|          | (man) | 27                |
|          | -     | 00:00 24:00 48:00 |
|          |       |                   |
|          | 0     | 2                 |
|          | ш     | 9                 |
| 32       | S     | 9:                |
| 06890332 | APSE  | 0                 |
| 36       | ~     |                   |
| 8        | _     |                   |
|          | ш     |                   |
| -        |       |                   |
| ĕ        |       |                   |
| 5        |       |                   |
| 41       |       |                   |
| 100      |       | ,                 |
| E        | EST   | 28                |
| Š        | -     | 3                 |
|          |       |                   |

| 8.0<br>8.3<br>708<br>20.0 20.0 | 8.1<br>8.4<br>8.4<br>556<br>20.0 20.0 | 8.1<br>8.4<br>494<br>20.0 20.0 | 8.1<br>8.4<br>456<br>20.0 20.0 | 8.5<br>8.5<br>419<br>20.0 20.0 | 8.2<br>8.3<br>402<br>20.0 20.0 |
|--------------------------------|---------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| 7.3                            | 7.6                                   | 7.9                            | 8.0                            | 8.1                            | 8.2                            |
| 8.8                            | 8.9                                   | 9.0                            | 8.8                            | 8.9                            | 8.9                            |
| 712                            | 570                                   | 512                            | 479                            | 448                            | 418                            |
| 20.0 20                        | 20.0 20                               | 20.0                           | 20.0 20                        | 20.0 20                        | 20.0 20                        |
| pH                             | pH                                    | pH                             | pH                             | pH                             | pH                             |
| 02 ppm                         | 02 ppm                                | 02 ppm                         | 02 ppm                         | 02 ppm                         | 02 ppm                         |
| Cond.                          | Cond.                                 | Cond.                          | Cond.                          | Cond.                          | cond.                          |
| Temp(C)                        | Temp(C)                               | Temp(C)                        | Temp(C)                        | Temp(C)                        | Temp(C)                        |
| 100 pH<br>020<br>020<br>CC     | 50 pH<br>022<br>Cor                   | 30 pH<br>02<br>02<br>1eq       | 20 pH<br>02<br>02<br>Cor       | 10<br>10<br>10<br>10<br>10     |                                |

|                                                                                     | TOXICITY TEST REPORT                                                             | Sample: 06890423      | TOXICIT       |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|---------------|
| TEST CONDITIONS                                                                     |                                                                                  |                       | Sample        |
| Region<br>Industry                                                                  |                                                                                  |                       | TEST<br>CONC. |
| Control point                                                                       | : Process Effluent, (100)                                                        |                       |               |
| Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received<br>Tested | : Beak<br>: grab<br>: Gw Tubello<br>: G4/11/89<br>: G4/11/89                     |                       | 200           |
| Type of Bioassay                                                                    | : STATIC<br>(Dephnie magne Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | hality Toxicity<br>B) | 30            |
| Test Animal<br>Weight(gm)<br>Length(mm)                                             | . D. magna                                                                       |                       | 20            |
| MORTALITY DATA                                                                      |                                                                                  |                       |               |
| TEST ELAP<br>CONC.                                                                  | SEDTIME                                                                          | TOTAL                 | 10            |
| x 00:00 24:                                                                         | 24:00 48:00                                                                      | 340                   |               |
| 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2     | D00000                                                                           | 00000                 | Control       |
| 0521 JRON 87                                                                        | : Won-lethal                                                                     |                       |               |

moving average SLOPE of Mortality Curve : LC50 Calculated By :

Y TEST PARAMETERS

Number: 06890423

ELAPSED TIME 8.1 7.0 686 20.0 8.2 478 20.0 8.2 448 20.0 00:00 24:00 48:00 8.3 8.5 422 20.0 20.02 20.0 20.0 20.02 20.0 20.02 7.3 8.8 685 20.0 7.9 9.0 472 20.0 7.7 9.0 535 20.0 8.0 9.0 442 20.0 8.1 9.1 412 20.0 pH 02 ppm Cond. Temp(C) pH 02 ppm Cond. Temp(C)

: no mortality or immobility observed

0.0

0.0

95% fid. limite Corrents

| 06890509 |
|----------|
| Sample:  |
| REPORT   |
| TEST     |
| TOXICITY |
|          |
|          |

| Company                                                                   | Hississauga, ONT                                                                 |       |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------|
| Region<br>Industry                                                        | : Central<br>: Petroleum Refining                                                |       |
| Control point                                                             | : Process Effluent, (100)                                                        |       |
| Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received | Beak<br>grab<br>Karen Gregory<br>(5/102/89                                       |       |
| Tested                                                                    | : 05/02/89 at: 1305                                                              |       |
| Type of Bioassay                                                          | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | icity |
| Test Animal<br>Weight(gm)<br>Length(mm)                                   | : D. magna                                                                       |       |
| MORTALITY DATA                                                            |                                                                                  |       |
| TEST ELAPS                                                                | SED TIME TOTAL MORTALITY                                                         |       |
| x 00:00 24:00 48:00                                                       | 7 48:00                                                                          | ж     |
| 100 0 0<br>50 0 0<br>30 0 0                                               | 0000                                                                             | 0000  |
| o<br>o<br>o<br>o                                                          | 000                                                                              | 000   |

: no mortality or immobility observed in 48 Hrs

2 0.0 - 0.0

48 Hour LC50 95% fid. limits

Comments

: Non-lethal

SLOPE of Mortality Curve : LC50 Calculated By : moving average

|                | ш             | 00                |
|----------------|---------------|-------------------|
|                | TIME          | 3:6               |
|                | -             | 37                |
|                | -             | 00:00 24:00 48:00 |
|                | 0             | 24                |
|                | ш             | 00                |
| 6              | S             | 0:0               |
| 20             | ۵             | 0                 |
| 36             | ×             |                   |
| 06890509       | ELAPSED       |                   |
| _              | ш             |                   |
| Sample Number: |               |                   |
| Sample         | TEST<br>CONC. | 34                |
|                |               |                   |

| ì |         |         |         |         |         |         |
|---|---------|---------|---------|---------|---------|---------|
|   | 8.0     | 8.4     | 8.2     | 8.2     | 8.2     | 8.2     |
|   | 8.3     | 8.4     | 8.5     | 8.5     | 8.6     | 8.6     |
|   | 629     | 502     | 453     | 424     | 396     | 367     |
|   | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    |
|   | 20.0    | 20.0    | 20.0    | 20.0    | 20.0    | 20.0    |
|   | 7.4     | 7.8     | 8.0     | 8.1     | 8.2     | 8.2     |
|   | 8.5     | 8.8     | 8.9     | 8.9     | 8.9     | 8.9     |
|   | 590     | 468     | 418     | 394     | 367     | 343     |
|   | 20.0    | 20.0    | 20.0    | 20.0    | 20.0    | 20.0    |
|   | pH      | pH      | pH      | pH      | pH      | t pH    |
|   | 02 ppm  |
|   | cond.   | Cond.   | Cond.   | Cond.   | cond.   | Cond.   |
|   | Temp(C) | Temp(C) | Temp(C) | Temp(C) | Temp(C) | Temp(C) |
|   | 100     | 20      | 30      | 20      | 10      | Control |

| TEST CONDITIONS                                                                                     |                                                                     |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Company : Petro-Canada Inc.                                                                         |                                                                     |
| Region : Central<br>Industry : Petroleum Refinin                                                    | 54                                                                  |
| Control point : cooling water-trap                                                                  | ap 1, (300)                                                         |
| Laboratory : Beak Sampled By : Ton Lobelto Date Collected : 02/27/89 Peceived : 02/28/89 at: 11     | 1130                                                                |
| Type of Bioassay : STATIC<br>(Cognile magne Ac<br>Test Protocol. 0                                  | SIATIC COMPANDED Acute Lethality Toxicity lest Protocol. OME, 1983) |
| Test Animal : D. magna : Desight(gm) : Length(rm) :                                                 |                                                                     |
| MOSTALITY CATA                                                                                      |                                                                     |
| TEST ELAPSED TIME CONC.                                                                             | TOTAL                                                               |
| 2 00:00 24:00 48:00                                                                                 | ж                                                                   |
| 705<br>50<br>50<br>70<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 00000                                                               |
| 48 Four LCSO : Won-lethal                                                                           |                                                                     |
| 25% fid. limits : 0.0 - 0.0                                                                         | n                                                                   |
| corrects : 5% circling of t                                                                         | the end of exposure                                                 |
|                                                                                                     |                                                                     |

moving average SLOPE of Mortality Curve : LC50 Calculated By :

Sample: 06890225

TOXICITY TEST REPORT

TOXICITY TEST PARAMETERS

Sample Number: 06890225

8.0 8.7 376 21.0 ELAPSED TIME 00:00 24:00 48:00 8.0 8.6 371 21.0 8.0 8.7 371 21.0 8.0 8.9 373 21.0 8.0 8.5 374 21.0 20.02 20.02 20.02 20.0 20.02 0 20.0 7.9 9.4 350 20.0 8.1 9.0 350 20.0 7.9 9.5 350 20.0 7.9 9.5 352 20.0 7.9 9.6 353 20.0 pH 02 ppm Cond. Temp(C) Control TEST CONC. 100 50 30 20 10

| FOXICITY TEST REPORT |                     |
|----------------------|---------------------|
| OXICITY TEST R       |                     |
| OXICITY TEST R       | _                   |
| OXICITY TEST R       | or                  |
| OXICITY TEST R       | 0                   |
| OXICITY TEST R       | 0                   |
| OXICITY TEST R       | III                 |
| TOXICITY TEST        | $\overline{\alpha}$ |
| TOXICITY TEST        | _                   |
| TOXICITY TES         | _                   |
| TOXICITY TE          | in                  |
| TOXICITY T           | BUI                 |
| FOXICITY             | Ξ                   |
| FOXICITY             |                     |
| TOXICIT              | >                   |
| TOXICI               | -                   |
| TOX1C                | -                   |
| TOX1                 | c                   |
| ŏ                    | =                   |
| 9                    | $\times$            |
| -                    | 0                   |
|                      | ᆮ                   |

|                               | TOXICITY TEST REPORT Sample: 06890524   |
|-------------------------------|-----------------------------------------|
| TEST CONDITIONS               |                                         |
| Company                       | : Petro-Canada Inc.<br>Mississauga, ONT |
| Region<br>Industry            | : Central<br>: Petroleum Refining       |
| Control point                 | : cooling Water-trap 1, (300)           |
| Laboratory<br>Sampling Method | Beak<br>grab                            |
| Sampled By<br>Date Collected  | : Karen Gregory<br>: 05/09/89           |
| Received                      | : 05/09/89<br>: 05/09/89 at: 1400       |

| NOR I WELL        |
|-------------------|
| Ž.                |
|                   |
|                   |
| 0                 |
| 48:0              |
| 00:5              |
| 00:00 24:00 48:00 |
| z z               |
|                   |

| 000000                                 |              |                 | HLS                                           |
|----------------------------------------|--------------|-----------------|-----------------------------------------------|
|                                        |              |                 | 48                                            |
|                                        |              |                 | Ë                                             |
|                                        |              |                 | g                                             |
|                                        |              |                 | erv                                           |
|                                        |              |                 | sqo                                           |
|                                        |              |                 | ty                                            |
|                                        |              |                 | ij                                            |
|                                        |              | 34              | no mortality or immobility observed in 48 Hrs |
|                                        |              | 2 0.0 - 0.0 %   | 6                                             |
|                                        | - B          |                 | ity                                           |
|                                        | Non-lethal   | '               | tal                                           |
|                                        | -            | 0.              | TOF                                           |
| 000000                                 | 20           | 0               | 2                                             |
|                                        |              | **              | **                                            |
| 000000                                 |              |                 |                                               |
|                                        |              | 95% fid. limits |                                               |
| 000000                                 | 48 Hour LC50 | Lin             |                                               |
| _                                      | 1            | Ď.              | 1ts                                           |
| 100<br>50<br>30<br>20<br>10<br>Control | Hot          | 4               | Comments                                      |
| C 288200                               | 48           | 953             | S                                             |

|                         | 1 M E<br>48:00 | 8.0<br>8.4<br>314<br>20.0        | 8.3<br>8.3<br>309<br>20.0        | 8.3<br>8.4<br>311<br>20.0        | 8.3<br>322<br>20.0               | 8.2<br>8.1<br>311<br>20.0        | 8.1<br>8.0<br>304<br>20.0          |
|-------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|
|                         | D T 24:00      | 20.0                             | 20.0                             | 20.0                             | 20.02                            | 20.0                             | 20.0                               |
| 6890524                 | LAPSE 1        | 8.4<br>10.2<br>331<br>20.0       | 8.4<br>9.8<br>327<br>20.0        | 8.4<br>9.2<br>342<br>20.0        | 8.4<br>8.3<br>365<br>20.0        | 8.7<br>8.7<br>339<br>20.0        | 8.4<br>8.8<br>323<br>20.0          |
| Sample Number: 06890524 | ш              | pH<br>02 ppm<br>cond.<br>Temp(C) | l pH<br>O2 ppm<br>Cond.<br>Temp(C) |
| Sample                  | TEST<br>CONC.  | 100                              | 20                               | 30                               | 50                               | 10                               | Control                            |

| TEST COMPITIONS   Petro-Canada Inc.   Sample Number: 06890226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | TOXICITY TEST REPORT                            | Sample: 06890226                      | 10X1C11 | TOXICITY TEST PARAMETERS         | METERS     |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|---------------------------------------|---------|----------------------------------|------------|------------|
| Setto-Canada Inc.   Hississayae, ONI   Central   Eest   Central   Eest   E | TEST CONDITIONS                                               |                                                 |                                       |         |                                  |            |            |
| Service   Serv | Сотрану                                                       |                                                 |                                       | Sample  | Number: 068                      | 0          | # H        |
| 100 pH   8.3   100 pm   1 | Region                                                        |                                                 |                                       | CONC    | 3                                | 00:00 24:0 | 0 48:00    |
| 100 pH pm 8.3   190 pm 1,00  | Control point                                                 | cooling water-trap 3,                           | (00)                                  |         |                                  |            |            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leboratory<br>Sampling Method<br>Sampled By<br>Date Collected | : Beak<br>: grab<br>: Tom Tubello<br>: 02/27/89 |                                       | 100     | pH<br>02 ppm<br>Cond.<br>Temp(C) |            |            |
| STATIC   Companie magna Acute Lethelity Toxicity   30 pH   8.0 cond.   20.0 co.0 co.0 co.0 co.0 co.0 co.0 co.0 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Received                                                      |                                                 |                                       | 90      | DZ ppm                           | 9.3        | 8°0<br>8°8 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type of Bioassay                                              |                                                 | thality Toxicity<br>58)               | 30      | Temp(C)                          |            |            |
| 10   DH   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9   7.9    | Test Animal<br>Weight(gm)                                     |                                                 |                                       |         | Cond.<br>Temp(C)                 |            |            |
| A P S E D T I M E TOTAL 10 pH 7.9  24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Length(mm)                                                    | ••                                              |                                       | 20      | pH<br>02 ppm                     | 9.5        | 7.9        |
| ELAPSED TIME HORALITY X 10 pH 9.5 Cond. 374 Cond. 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MOSTALITY DATA                                                |                                                 |                                       |         | Cond.                            |            |            |
| Control   Cont | ELA                                                           | E D T I X                                       | TOTAL                                 | 10      | PH CO                            |            |            |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00:00                                                         | 00 48:00                                        | >₹                                    |         | Cond.                            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000000                                                        | 000000                                          | 00000                                 | Contro  |                                  |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35x fid. limits                                               | × 0.0 - 0.0 :                                   |                                       |         |                                  |            |            |
| . fid. limits : 0.0 - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Corporte                                                      | : 70 % of Daphnia floatin                       | Daphnia floating at the end of expos. |         |                                  |            |            |

| TOXICITY TEST REPORT                                                                                            |                    |                         |                                                        |                                       |                                             |                           |
|-----------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|--------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------|
|                                                                                                                 | Sample: 06890526   | TOXICI                  | TOXICITY TEST PARAMETERS                               | METERS                                |                                             |                           |
| Company : Petro-Canada Inc. Mississauga, ONI (150104.) Region : Central : Petroleum Refining                    |                    | Sample<br>TEST<br>CONC, | Sample Number: 06890526<br>TEST E L A P S<br>CONC. 00: | 06890526<br>E L A P S E D<br>00:00 24 | 526<br>P S E D T I M E<br>00:00 24:00 48:00 | 00 E                      |
| Control point : cooling water-trap 3, (500) Laboratory : Beak Sampling Method : grab Sampled By : Karen Gregory |                    | 100                     | pH<br>02 ppm<br>cond.<br>Temp(C)                       | 8.7<br>366<br>20.0                    | 20.0 20                                     | 8.1<br>8.5<br>366<br>20.0 |
|                                                                                                                 |                    | 20                      | pH<br>02 ppm<br>Cond.                                  | 8.6                                   | 888888888888888888888888888888888888888     | 8.0<br>8.4<br>339<br>20.0 |
| Type of Bioassay : STATIC<br>(Ophnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)                | ity Toxicity       | 30                      | 02 ppm                                                 | 88.5                                  |                                             | 88.3                      |
| Test Animal : D. magna<br>Weight(gm) :<br>Length(mm) :                                                          |                    | 20                      | Temp(C) DH OZ ppm                                      | 20.0<br>8.4<br>8.6                    |                                             | 20.0<br>8.0<br>8.3        |
| MORTALITY DATA<br>TEST ELAPSED TIME<br>CONC.                                                                    | TOTAL<br>HORTALITY | 10                      | Temp(C)<br>pH<br>02 ppm                                | 20.0                                  | 20.0 20                                     | 88.0                      |
| x 00:00 24:00 48:00                                                                                             | 35                 |                         | Cond.<br>Temp(C)                                       | 326                                   | 20.0 20                                     | 0.                        |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                         | 00000              | Control                 | DH OZ ppm<br>Cond.<br>Temp(C)                          | 20.0<br>20.0<br>20.0                  | 20.0 20                                     | 8.0<br>8.2<br>310<br>20.0 |
| 48 Hour LC50 : Non-lethal                                                                                       |                    |                         |                                                        |                                       |                                             |                           |
| 95% fid. limits : 0.0 - 0.0 %                                                                                   |                    |                         |                                                        |                                       |                                             |                           |

| Method  Hethod  Hethod | Petro-Canada Inc. (130102) (130102) Central Intake Water, (600) intake Water, (600) eask granubello 22/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 02/07/89 | Sample CONC. X |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| try try al point ing Method ed By ed | 5<br>te Lethality Toxicity<br>E, 1988)                                                                                                                                                                                                                                                                                                                          | Sampt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>fe Lethality Toxicity<br>E, 1988)                                                                                                                                                                                                                                                                                                                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ing Method ing Method ing Method ing Method ing Method ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>te Lethality Toxicity<br>E, 1988)                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of Bioassay :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ite Lethality Toxicity<br>E, 1988)                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MUDIALIIT DAIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TEST ELAPSED TIME COME.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| x 00:00 24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 500 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000                                                                                                                                                                                                                                                                                                                                                           | Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48 Wour LCSO : Non-lethal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gartant garage convents Williams texting                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

DXICITY TEST PARAMETERS

UAILIII IESI PARAMEIERS

Bmple Number: 06890209

EST ELAPSED TIME ONC. 00:00 24:00 48:00

| 8.1<br>7.4<br>334<br>20.0        | 8.1<br>8.0<br>341<br>20.0        | 8.1<br>8.2<br>349<br>20.0        | 8.0<br>8.5<br>350<br>20.0        | 8.0<br>8.5<br>356<br>20.0        | 8.0<br>8.4<br>355<br>20.0          |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|
| 20.02                            | 20.02                            | 20.02                            | 20°0                             | 20.0                             | 20.0                               |
| 8.0<br>9.8<br>332<br>20.0        | 8.1<br>9.7<br>340<br>20.0        | 8.1<br>9.0<br>347<br>20.0        | 8.7<br>349<br>20.0               | 8.7<br>8.7<br>353<br>20.0        | 8.0<br>8.6<br>351<br>20.0          |
| pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>O2 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | L pH<br>02 ppm<br>Cond.<br>Temp(C) |
| 100                              | 20                               | 30                               | 20                               | 10                               | ontrol                             |



COMPANY: Petro-Canada Inc., Oakville

(530006)

(now with Trafalgar Refinery)

SECTOR: Petroleum Refining

REGION: Central

### SUMMARY

The data for six trout bioassays, conducted on process effluent samples between December 1988 and May 1989, were provided by Petro-Canada Incorporated. Two of the process effluent samples were determined to have been acutely lethal to the test fish. Statistically, the percentage effluent required to kill 50 % of the test fish by the end of the four days exposure were 76.4 % (December) and 71.0 % (March). The other four samples were determined to have been non-acutely lethal.

## Process Effluent

06881223 sampled: 12/13/88 LC50: 76.4 % 95% fid. limits: 74.0 - 78.7 % comments:

06890112 sampled: 01/17/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

06890217 sampled: 02/21/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

06890335 sampled: 03/21/89 LC50: 71.0 % 95% fid. limits: 50.0 - 100.0 % comments: fish mort. occured within 24 Hrs of exposure

06890424 sampled: 04/11/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments: no mortality or sublethal impairment observed

01890072 sampled: 05/03/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments: MISA audit sample.

06890539 sampled: 05/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments: no mortality or sublethal impairment in 96Hrs

## Petro-Canada Inc. (continued)

EO-sheet pond intake water storm water

24

8.3 9.7 650 15.0

8.3 15.0 8.1

15.0

8.4 10.0 834 15.0

8.8 15.0 8.3 15.0 8.3 15.0 8.3 15.0 8.1 15.0

> 5.0 8.4

15.0

15.0

8.2 480 480

15.0

88.3

| TEST CONDITIONS                                             |                                                                                            |       |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------|
| Company :                                                   | : Petro-Canada Inc.<br>Oakville, ONI                                                       |       |
| Region                                                      |                                                                                            |       |
| Control point :                                             | Process Effluent, (100)                                                                    |       |
| Laboratory Sampling Method Sampled By Date Collected Tested | Beak<br>grab<br>1001/17/89<br>01/17/89<br>01/17/89 at: 1600                                |       |
| Type of Bioassay :                                          | STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). |       |
| Test Animal<br>Weight(gm)                                   | Rainbow trout                                                                              |       |
| MORTALITY DATA                                              |                                                                                            |       |
| TEST ELAPS<br>CONC.                                         | ED TIME TOTAL MORTALITY                                                                    |       |
| x 00:00 24:00                                               | 48:00 72:00 96:00 x                                                                        |       |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                     | 0-0000                                                                                     | 00000 |
| 96 Hour LC50                                                | : Non-lethal                                                                               |       |
| 95% fid. limits                                             | % 0°0 - 0°0 :                                                                              |       |
| Comments                                                    |                                                                                            |       |

# TOXICITY TEST PARAMETERS

Sample: 06890112

TOXICITY TEST REPORT

|          |      | 00:96             |
|----------|------|-------------------|
|          |      | 72:00 96:00       |
|          | ш    | 0                 |
|          | I    | 0::               |
|          | -    | 48                |
|          | -    | 00:00 24:00 48:00 |
|          | 0    | 24                |
|          | ш    | 0                 |
| 2        | S    | 0:                |
| =        | APSE | 00                |
| 069      | ~    |                   |
| 06890112 | _    |                   |
| 0        | LL.  |                   |
| Number   |      |                   |
| Sample   | TEST | *                 |
|          |      |                   |

| 100     | pH<br>02 ppm     | 9.0  | 4.8  | 9.4        | 9.2  | 8.0.5 |
|---------|------------------|------|------|------------|------|-------|
|         | Temp(C)          | 15.0 | 15.0 | 15.0       | 15.0 | 15.0  |
| 20      | pH<br>02 ppm     | 8.8  | 8.5  | 8.3        | 7.8  | 8.8   |
|         | Cond.<br>Temp(C) | 15.0 | 15.0 | 15.0       | 15.0 | 15.0  |
| 30      | pH<br>02 ppm     | 8.8  | 8.2  | 8.8        | 8.8  | 10.0  |
|         | Cond.<br>Temp(C) | 15.0 | 15.0 | 15.0       | 15.0 | 15.0  |
| 20      | pH<br>02 ppm     | 8.3  | 8.4  | 9.8        | 8.6  | 88.2  |
|         | Cond.<br>Temp(C) | 15.0 | 15.0 | 15.0       | 15.0 | 15.0  |
| 10      | pH<br>02 ppm     | 9.3  | 9.8  | 8.9<br>8.8 | 9.6  | 10.0  |
|         | Cond.<br>Temp(C) | 15.0 | 15.0 | 15.0       | 15.0 | 15.0  |
| Control | pH<br>02 ppm     | 9.0  | 9.4  | 9.8        | 9.8  | 9.6   |
|         | Cond.<br>Temp(C) | 15.0 | 15.0 | 15.0       | 15.0 | 15.0  |

|                                                                                                                       | TOXICITY TEST REPORT Sample: 06890217                                                      | TOXICITY TE                                            | TOXICITY TEST PARAMETERS                                                    |                                                         |                    |                               |                                             |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|--------------------|-------------------------------|---------------------------------------------|
| TEST COMDITIONS Company Region                                                                                        | Petro-Canada Inc.<br>Oakville, ONI<br>(530006)<br>Central                                  | Sample Numt TEST CONC.                                 | Sample Number: 06890217 FEST E L A P S E D CONC. 00:00 24                   | 217<br>P S E D T I M E<br>00:00 24:00 48:00 72:00 96:00 | M E                | 2:00 96:                      | 00                                          |
| Control point Leboratory Sampling Method Sampled By Date Collected Tested                                             | : Process Effluent, (100)  Beak 9 rab Ho 102/21/89 102/21/89 102/21/89 at: 1700            | 100<br>02 pg<br>02 pg<br>02 pg<br>0 pt<br>0 pt<br>0 pg | PH 7.9<br>Cond. 1887<br>Temp(C) 15.0<br>DH 7.7<br>OOZ ppm 8.4<br>Cond. 1182 | 8.0<br>8.6<br>15.0<br>8.1<br>8.9                        |                    |                               | 8.0<br>1785<br>1785<br>15.0<br>10.8<br>10.8 |
| Type of Bioassay                                                                                                      | STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | 30 pH<br>02<br>Cor                                     | DH 7.7<br>02 ppm 8.5<br>Cond, 884<br>Temp(C) 15.0                           | 7.8<br>8.8<br>15.0                                      | 8.1<br>9.5<br>14.0 | 14.0 15<br>10.3 10<br>14.0 15 | 15.0<br>10.8<br>1819<br>15.0                |
| Length(mm)                                                                                                            |                                                                                            | 20 pH<br>02<br>02<br>Cor                               | 02 ppm 8.8<br>cond. 720<br>Temp(C) 15.0                                     | 7.9<br>8.4<br>15.0                                      | 9.0                | 8.0 8<br>8.8 9                | 8.1<br>9.5<br>680<br>15.0                   |
| CONC. E L A P S X CONC. X 00:00 24:00                                                                                 | S E D 7 1 M E MORTALITY X 10 48:00 72:00 96:00 X                                           | 10 pH<br>02<br>02<br>Cor                               | DH 7.3<br>02 ppm 8.8<br>cond, 540<br>Temp(C) 15.0                           | 7.3                                                     | 9.8                | 8.1 8<br>9.9 10<br>5 14.0 15  | 8.1<br>10.3<br>531                          |
| 785<br>50<br>50<br>50<br>50<br>50<br>50<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | D00000                                                                                     | Control pH<br>02 ppr<br>cond.<br>TempCi                | pH 7.4<br>02 ppm 8.2<br>cond. 399<br>Temp(C) 15.0                           | 7.8<br>8.8<br>15.0                                      | 8.0                | 7.9 8<br>9.0 9<br>14.0 15     | 8.0<br>9.5<br>411<br>15.0                   |
| 96 wour LCSO<br>95% fid. Limite                                                                                       | : Non-tethal<br>: 0.0 - 0.0 x                                                              |                                                        |                                                                             |                                                         |                    |                               | I                                           |

| TEST CONDITIONS                                                                                      |                                                                                                    |                             |                                                                            |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|
| Company<br>Region<br>Industry                                                                        | Petro-Canada Inc.<br>Oakville, ONI<br>(53006)<br>Central<br>Petroleum Refining                     | Sample Num<br>TEST<br>CONC. | Sample Number: U6890335 FEST E L A P S E CONC. 00:00                       |
| Control point<br>Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received<br>Tested | : Process Effluent, (100) : Beak : grab : Steve Ho : 03/21/89 : 03/21/89 at: 1500                  | 100                         | PH 8.4<br>02 ppm 7.0<br>cond. 2110<br>Temp(c) 15.0<br>pH 8.6<br>Cond. 1233 |
| Type of Bioassay                                                                                     | : STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | 30 PH 02                    | DH 7.7<br>02 ppm 9.5<br>02 cond, 898                                       |
| Weight(gm)<br>Length(mm)<br>MORIALITY DATA                                                           |                                                                                                    | 20 PH 022                   |                                                                            |
| TEST E L A P :<br>CONC.                                                                              | E L A P S E D T I H E HORTALITY 00:00 24:00 48:00 72:00 96:00                                      | 10 02<br>002<br>002         | 02 ppm 9.2<br>Cond. 539<br>Temp(C) 15.0                                    |
| 100 0 10<br>50 0 0<br>30 0 0<br>20 0 0<br>10 0 0<br>Confrol 0 0                                      |                                                                                                    | Control pH                  | pH 7.3<br>02 ppm 8.5<br>cond. 372<br>Temp(C) 15.0                          |
| 96 Hour LC50<br>95% fid. limits<br>Comments                                                          | : 71.0 %<br>: 50.0 - 100.0 %<br>: fish mort, occured within 24 Hrs of exposure                     |                             |                                                                            |

SLOPE of Mortality Curve : LC50 Calculated By : moving average

# TOXICITY TEST PARAMETERS

| X.      |                  | 00:00 24:00 | 74:00 48:00 /Z:00 96:00 |      |      |       |
|---------|------------------|-------------|-------------------------|------|------|-------|
| 100     | PH<br>02 ppm     | 7.0         | 10.01                   |      |      |       |
|         | Temp(C)          | 15.0        | 14.0                    |      |      |       |
| 20      | pH<br>02 ppm     | 7.9         | 10.2                    | 8.1  | 8.3  | 9.0   |
|         | Temp(C)          | 15.0        | 14.0                    | 15.0 | 15.0 | 14.0  |
| 30      | PH<br>02 ppm     | 7.7         | 8.1                     | 9.2  | 8.2  | 8.0   |
|         | Temp(C)          | 15.0        | 14.0                    | 15.0 | 15.0 | 14.0  |
| 20      | pH<br>02 ppm     | 7.6         | 7.9                     | 8.6  | 7.9  | 9.5   |
|         | Cond.<br>Temp(C) | 15.0        | 14.0                    | 15.0 | 15.0 | 14.0  |
| 10      | pH<br>02 ppm     | 7.4         | 7.9                     | 8.7  | 88.8 | 4.0.0 |
|         | Temp(C)          | 15.0        | 14.0                    | 15.0 | 15.0 | 14.0  |
| Control | ph<br>02 ppm     | 7.3         | 7.9                     | 7.9  | 8.3  | 8.8   |
|         | Cond.<br>Temp(C) | 15.0        | 14.0                    | 15.0 | 15.0 | 351   |

|                                                                                 | TOXICITY TEST REPORT S                                                                                       | Sample: 06890424              | TOXICI                  | TOXICITY TEST PARAMETERS                          | ETERS                                 |                                  |                                  |                                  |                                           |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|---------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------|
| TECT COMPLITIONS                                                                |                                                                                                              |                               |                         |                                                   |                                       |                                  |                                  |                                  |                                           |
| Common V                                                                        | Petro-Canada Inc.<br>Oskville, DNI<br>(530006)<br>. Central<br>: Petroleum Refining                          |                               | Sample<br>TEST<br>CONC. | Sample Number: 06890424 TEST ELAPS CONC. 00:      | 06890424<br>E L A P S E D<br>00:00 24 |                                  | T I M E                          | % 00:                            | 00:                                       |
| Leboratory Leboratory Sampling Method Sampled By Date Collected Received Tested | Encess Effluent, (100)<br>Beak<br>Grah<br>5 Freen Ho<br>14/11/89<br>14/11/89 at: 1500                        |                               | 100                     | pH<br>Cond.<br>Temp(C)<br>PH<br>O2 ppm<br>Co2 ppm | 8.4<br>1910<br>15.0<br>15.0<br>1249   | 8.2<br>8.9<br>14.0<br>7.9<br>7.0 | 8.2<br>9.1<br>14.0<br>7.9<br>8.1 | 8.3<br>9.3<br>14.0<br>7.9<br>8.7 | 8.1<br>7.99<br>15.0<br>7.8<br>8.2<br>1182 |
| Type of Bicassay                                                                | : STAILC (Protocol to determine the acute lethality of Liquid effluents to fish. OME, 1983). : Reinbow trout | cute lethality<br>OME, 1983). | 30                      | pH<br>02 ppm<br>Cond.<br>Temp(C)                  | 8.0<br>9.2<br>874<br>15.0             |                                  |                                  |                                  | 8.0<br>9.0<br>15.0                        |
| Vergth(mm)                                                                      |                                                                                                              |                               | 20                      | pH<br>02 ppm<br>cond.<br>Temp(C)                  | 8.1<br>10.2<br>731<br>15.0            | 9.6                              | 9.6                              | 9.7                              | 8.2<br>9.4<br>705<br>15.0                 |
| TEST E L A P S<br>COMC.<br>X 00:00 24:00                                        | ED 71ME                                                                                                      | TOTAL MORTALITY X             | 10                      | pH<br>02 ppm<br>cond.<br>Temp(C)                  | 7.8<br>9.6<br>564<br>15.0             | 8.9                              | 8.2                              | 8.8                              | 8.1<br>8.9<br>554<br>15.0                 |
| 705<br>500<br>500<br>700<br>700<br>700<br>700<br>700<br>700<br>700              | D00000                                                                                                       | p00000                        | Control                 | pH<br>02 ppm<br>cond.<br>Temp(C)                  | 7.9<br>9.2<br>379<br>15.0             | 8.0                              | 7.8<br>8.6<br>14.0 1             | 8.0<br>8.8<br>14.0               | 7.9<br>366<br>15.0                        |
| 96 Moun LCSO<br>95% fid. Limite<br>Comments                                     | : Non-lethal<br>: 0.0 - 0.0 %<br>: no mortality or audiethal impairment observed                             | pairment observed             |                         |                                                   |                                       |                                  |                                  |                                  |                                           |

SLOPE of Mortality Curve LC50 Calculated By : 0:96

04:00 22:00 48:00 72:00

T 1 M E 50 01:00 02:00

00:30

8.4 7.0 1500 15.0

P S E 1

22000

| TEST CONDITIONS                                                                                                 |                                                                            |                                                                                            |               |         |                   |                   |        |                         |                                                                         |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------|---------|-------------------|-------------------|--------|-------------------------|-------------------------------------------------------------------------|
|                                                                                                                 | : Petro-Canada<br>Oakville, ONT<br>(53006)<br>: Central<br>: Petroleum Ref | Petro-Canada Inc.<br>Oakville, ONI<br>(530006)<br>Central                                  |               |         |                   |                   |        | Sample<br>TEST<br>CONC. | Sample Number: 01899<br>TEST E L A<br>CONC.                             |
| Control point<br>Laboratory<br>Sampling Method<br>Sampled By                                                    | HOE grab                                                                   | Process Effluent, (100) MOE grab grab R. Gibson                                            | (100)         |         |                   |                   |        | 100                     | pH<br>02 ppm<br>Cond.<br>Temp(C)                                        |
| Date Collected<br>Received<br>Tested                                                                            |                                                                            | Bt: 1100                                                                                   | 0             |         |                   |                   |        | 59                      | pH<br>02 ppm<br>Cond.<br>Temp(C)                                        |
| Type of Bioassay                                                                                                | : STATIC<br>(Protoco<br>of Liqui                                           | STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | mine<br>ts to | the ac  | ute le            | thalit)<br>1983). |        | 07                      | pH<br>02 ppm<br>cond.                                                   |
| Test Animal<br>Weight(gm)<br>Length(mm)<br>WORTALITY DATA                                                       | : Rainbow trout                                                            | trout                                                                                      |               |         |                   |                   |        | 30                      | Temp(C) pH 02 ppm Cond. Temp(C)                                         |
| TEST E L A P                                                                                                    | SED TI                                                                     | E E                                                                                        |               | 9       | TOTAL             | <u>_</u>          |        | 20                      | pH<br>02 ppm                                                            |
| x 00:00 00:30                                                                                                   | 01:00                                                                      | 02:00 04:00 5                                                                              | 22:00         | 48:00   | 48:00 72:00 96:00 | 00:96             | ×      |                         | Temp(C)                                                                 |
| 100<br>65<br>65<br>70<br>30<br>30<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 000000                                                                     | 000000                                                                                     | 000000        | 0000000 | 000000            | 000000            | 000000 | 10<br>Control           | pH<br>02 ppm<br>Cond.<br>Temp(C)<br>11 pH<br>02 ppm<br>Cond.<br>Temp(C) |
| 96 Hour LC50                                                                                                    | 2                                                                          |                                                                                            | 3             |         |                   |                   |        |                         |                                                                         |
| Comments                                                                                                        | . MISA BUC                                                                 | : MISA audit sample.                                                                       | ٠.            |         |                   |                   |        |                         |                                                                         |

88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 

| 06890539      |
|---------------|
| Sample:       |
| r TEST REPORT |
| TEST          |
| TOXICITY      |

| Company                                                                             |                                                   |                                    |                                          |
|-------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|------------------------------------------|
| Region                                                                              | : Petro-Cana<br>Oakville,                         | Petro-Canada Inc.<br>Oakville, ONI |                                          |
|                                                                                     | : Central : Petrole                               | Central<br>Petroleum Refining      |                                          |
| Control point                                                                       | : Process                                         | Process Effluent, (100)            |                                          |
| Leboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Peceived<br>Tested | Beak<br>grab<br>Steven Mo<br>05/16/89<br>05/16/89 | Mo<br>599<br>59 8t: 1130           |                                          |
| Type of Bioassay                                                                    | : STATIC<br>(Protocol<br>of Liquid                | of to determine id effluents to    | the acute lethality<br>fish. OME, 1983). |
|                                                                                     | Reinbo                                            | Reinbow trout                      |                                          |
| TEST ELAP                                                                           | SED                                               | Ш<br>Ж.                            | TOTAL                                    |
| x 003:00 24:00                                                                      | 00 48:00 72:00                                    | 2:00 96:00                         | *                                        |
| 25.200000                                                                           | bo-0006                                           | 00-0000                            | 000000                                   |

96 Mour LCSO : Mon-lethal 95% fid. limits : 0.0 - 0.0 % Cornerts : ro montality or sublethal impairment in 96Mrs

SLOPE of Mortality Curve : LC50 Calculated By : moving average

# TOXICITY TEST PARAMETERS

Sample Number: 06890539

| DH 71 9.0 9.1 8.2 Cond.  DH 71 9.0 9.1 8.2 Cond.  DH 72 9.8 3.3 8.1 8.2 Cond.  Temp(c) 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TEST<br>CONC. | E L A                            | P S E                     | D T 24:00          | 1 M E              | 72:00 96:00        | 0   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|---------------------------|--------------------|--------------------|--------------------|-----|
| DH 7.5 9.8 7.9 8.8 Cond.  DH 7.5 9.8 7.9 8.8 Cond.  DH 7.5 9.8 7.9 8.8 Cond.  DH 7.9 9.8 9.7 7.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100           | pH<br>02 ppm<br>Cond.            | 00 1-00 -                 | 9.0                | 9.1                | 80 80 1            | 8.8 |
| PH 7.9 8.3 8.2 8.1 Coord. 1009 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9             | ph<br>02 ppm<br>cond.            | 2000                      | 8.3                | 7.9                | 1 80 BD 1/1        |     |
| DH Cond.  7.8 8.2 8.0 8. Cond.  7.9 9.0 8.4 8.0 8.4 8.0 9.0 8.2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _             | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.9 7.9 1009 14.0         | 8.3<br>9.8<br>15.0 | 9.7                | 9.0                |     |
| DH 7.9 8.2 8.1 8. Cond. | 30            | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.8<br>7.9<br>713<br>14.0 | 80 5               | 8.0                | 8.6                |     |
| PBH 7.8 8.3 8.2 8. Cond. Cond. 14.0 15.0 15.0 15.0 15.0 0.0 pp. PBH 7.7 8.1 8.2 8.0 0.0 pp. Cond. 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15            | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.9<br>8.6<br>506<br>14.0 | 8.2 8.4            | 8.1<br>8.8<br>15.0 | 8.1<br>9.2<br>15.0 |     |
| 7.7 8.1 8.2 8. 9.9 9.6 9.0 9. 402 4.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5             | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.8<br>9.5<br>382<br>14.0 | 9.3                | 8.2<br>8.8<br>15.0 | 9.0                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | trol          | pH<br>02 pym<br>Cond.<br>Temp(C) | 7.7<br>9.9<br>402<br>14.0 |                    | 80 5               | 9. 9.              |     |



COMPANY: Petro-Canada Inc., Oakville

(530006)

(now with Trafalgar Refinery)

SECTOR: Petroleum Refining

REGION: Central

### SUMMARY

Results for six Daphnia magna acute lethality toxicity tests conducted on samples of Process Effluent collected between December 1988 and May 1989 were submitted by Petro-Canada Inc. in Oakville. Three of the six samples were not toxic to Daphnia. Two samples were toxic to Daphnia with 48 h LC50 values of 31% and 41% effluent. One sample was mildly toxic with a 48 h LC50 > 100% effluent.

## Process Effluent

06881218 sampled: 12/13/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

06890115 sampled: 01/17/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

06890218 sampled: 02/21/89 LC50: >100 %

comments: 20 % mortality in undiluted sample

06890333 sampled: 03/21/89 LC50: 41.0 % 95% fid. limits: 34.0 - 49.0 %

comments: most mort. occured within 24 Hrs of exposure

06890425 sampled: 04/11/89 LC50: 31.0 %

95% fid. limits: 27.0 - 36.0 % comments: 10% Daphnia floating in 20% conc. at 48 Hrs

02890072 sampled: 05/03/89 non-lethal

95% fid. limits: 0.0 - 0.0 % comments: MISA Audit

06890540 sampled: 05/16/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or immobility observed in 48 Hrs

Petro-Canada Inc. (continued)

E0-sheet pond
intake water
storm water

SLOPE of Mortality Curve (C50 Calculated By :

Sample, 06881218

DATE THE PERSON

TOXICLLY ILST PARAMETERS

FLAPSED TIME 00:00 24:00 48:00

| 7.9<br>1.2<br>1961<br>20.0                       | 8.0<br>7.5<br>1705<br>70.0            | 8 1<br>86.2<br>86.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1<br>6.3<br>701<br>20.0  | 2005<br>2015<br>2015             | May 6.                           |
|--------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------|
| 20.0                                             | 20.0                                  | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.0                       | 20.0                             | 20.0                             |
| # 5 7 5<br># # # # # # # # # # # # # # # # # # # | 8 1 0000 1000 0 0 0 0 0               | 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200 S                      | 8 0<br>7 1<br>489<br>70 0        | 2000 S                           |
| tott<br>tott<br>tott<br>tempt (C)                | patt<br>Oz. Igan<br>Cored<br>Femple C | pations parity of the standard | but Idan<br>Const<br>Const | pH<br>02 ppin<br>cond<br>Tenp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) |
| 100                                              | 90                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                         | 51                               | Control                          |

| TEST COMDITIONS   Petro-Canada Inc.   Company   Compan |                                       | TOXICITY TEST REPORT | Sample: 06890115 | TOXICIT | TOXICITY TEST PARAMETERS         | ETERS                      |       |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|------------------|---------|----------------------------------|----------------------------|-------|----------------------------|
| Service Consideration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ST CONDITIONS                         |                      |                  | Sample  | Number: 06890                    | 0115                       |       |                            |
| thod : Bear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | трапу                                 |                      |                  | TEST    | ELA                              | PSE                        |       |                            |
| thod : Beak thought, (100)  thod : Beak thought, (100)  thod : Grad thought, (100)  ted : On Tubello                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gion                                  |                      |                  |         |                                  | 00:00                      | 54:00 | 48:00                      |
| thod : Beak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntrol point                           |                      |                  | 100     | H                                | 8.5                        |       | 8.2                        |
| SSSBY   STATIC   Cond.   1285   1200   1285   1280   1285   1280   1285   1280   1285   1280   1285   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   1280   128 | boratory<br>mpling Method<br>mpled By |                      |                  |         | 02 ppm<br>Cond.<br>Temp(C)       | 8.9<br>2230<br>20.0        | 20.0  | 7.4<br>2240<br>20.0        |
| Second   S | Received<br>Tested                    | 01/17/89 at:         |                  | 20      | DH<br>02 ppm<br>Cond.<br>Temp(C) | 8.4<br>9.1<br>1285<br>20.0 | 20.0  | 8.1<br>8.0<br>1328<br>20.0 |
| ATA   TOTAL   TOTAL  | pe of Bioassay                        |                      | shality Toxicity | 30      | pH<br>O2 ppm<br>Cond.            | 932                        | 20 0  | 8.5                        |
| TOTAL   TOTA | ight(gm)                              |                      |                  | 50      | pH<br>02 ppm<br>Cond             | 9.2                        |       | 8.1                        |
| FLAPSED TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RTALITY DATA                          |                      |                  |         | Temp(C)                          | 20.0                       | 20.0  | 20.0                       |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | <b>x</b><br>⊷        |                  | 10      | pH<br>O2 ppm<br>Cond.<br>Temp(C) | 8.2<br>9.1<br>547<br>20.0  | 20.0  | 8.2<br>8.4<br>565<br>20.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trol 0000                             | 000000               | B00000           | Control |                                  | 8.2<br>9.1<br>407<br>20.0  | 20.0  | 8.1<br>432<br>20.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% fid. limits                       | × 0°0 - 0°0 :        |                  |         |                                  |                            |       |                            |

| 10                                                                 | TOXICITY TEST REPORT Sample: 06890218                                          | TOXICIT                 | TOXICITY TEST PARAMETERS                          | METERS                     |       |                            |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|---------------------------------------------------|----------------------------|-------|----------------------------|--|
| TEST CONDITIONS Company Region : 1                                 | Petro-Canada Inc.<br>Oskville ONT<br>Cantal<br>Petroleum Refining              | Sample<br>TEST<br>CONC. | Sample Number: 06890218 FEST E L A P S CONC. 00:: | 00:00 24                   | 3     | T I M E                    |  |
| ol point story ing Method                                          | Process Effluent, (100) Speek Sceve Mo                                         | 100                     | PH<br>O2 ppm<br>Cond.<br>Temp(C)                  | 8.0<br>6.0<br>1730<br>20.0 | 20.0  | 7.8<br>6.2<br>1924<br>21.0 |  |
|                                                                    | 02/21/89<br>02/21/89 at: 1500                                                  | 20                      | pH<br>02 ppm<br>cond.<br>Temp(C)                  | 8.0<br>8.0<br>1086<br>20.0 | 20.0  | 7.9<br>7.5<br>1163<br>21.0 |  |
| Type of Bioassay :                                                 | SIATIC<br>Coaphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 30                      | DH<br>02 ppm<br>Cond.                             | 7.9<br>8.0<br>775          |       | 8.0                        |  |
| Test Animal : (Weight(gm) : Length(mm) :                           | р. тад∩в                                                                       | 20                      | Temp(C) PH 02 ppm                                 | 7.9                        | 20.0  | 8.0<br>8.4<br>723          |  |
| MORTALITY DATA                                                     |                                                                                |                         | Temp(C)                                           | 20.0                       | 20.02 | 21.0                       |  |
| CONC. E L A P S E C                                                | D TIME MORTALITY X                                                             | 10                      | pH<br>02 ppm<br>cond.<br>Temp(C)                  | 8.0<br>8.1<br>544<br>20.0  | 20.0  | 8.0<br>8.7<br>537<br>21.0  |  |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 000000000000000000000000000000000000000                                        | Control                 | pH<br>02 ppm<br>Cond.<br>Temp(C)                  | 8.1<br>371<br>20.0         | 20.0  | 7.9<br>10.0<br>345<br>21.0 |  |
| 48 MOUT 1050 :                                                     | >100x<br>0.0 · 0.0 x                                                           |                         |                                                   |                            |       |                            |  |
| Competite                                                          | 20 % mortality in undiluted sample                                             |                         |                                                   |                            |       | 44 - 44 - 44 - 44          |  |

| Test Compilitions   Patro-Canada Inc.   Control Point   Patro-Canada   | : Petro-Canada Inc. (53006) : Carrell : Petroleum Refining : Process Effluent, (100) : Beak : Brab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . Number: 06890            |             |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|-------|--|
| Setro-Canada Inc.   Cook:    | Service on a consideration of the consideration of                                                                                                                                                                                                                                                                                                                                                      | E L A                      | 333         |       |  |
| Service   Serv | : Central : Petroleum Refining : Process Effluent, (100) : Beak : Steve Mo : 37,21/89 at: 1730 : 37,21/89 at: 1730 : 51ATIC (Daphnia magna Acute Lethality Toxicity Test Protocol. OME, 1988) : D. magna : D. magna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | PSED        | H E   |  |
| ## Beak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ### Beak                                                                                                                                                                                                                                                                                                                                                      |                            | 00:00 24:00 | 48:00 |  |
| Beak   Cord    | Steve Mo<br>Steve Mo<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89)<br>(37,21/89) | На                         | 8.5         | 7.7   |  |
| 13/21/89   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   1730   173 | : 03/21/89<br>: 03/21/89<br>: 03/21/89 at: 1730<br>: STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. CME, 1988)<br>: D. magna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02 ppm<br>Cond.<br>Temp(C) |             |       |  |
| ### STATIC (Daphnie magna Acute Lethelity Toxicity (Daphnie Magna Tremptice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | assay : STATIC (Daphnia magna Acute Lethality Toxicity Test Protocol. OME, 1988) : D. magna : D. magna : TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · pH<br>02 ppm<br>Cond.    |             |       |  |
| ### Total ### ### ############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : D. magna<br>:<br>ATA<br>ELAPSED TIME MODTALTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PH<br>02 ppm               |             |       |  |
| LITY DATA   Cond.    | LITY DATA  LITY DATA  LITY DATA  LOTAL  MODTALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp(C)                    |             |       |  |
| F L A P S E D T I M E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ELAPSED TIME TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cond.<br>Temp(C)           |             | N     |  |
| 00:00 24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pH<br>02 ppm<br>Cond.      |             |       |  |
| 10 10 10 8.2 90 0 0 1 1 1 9 8.2 90 0 0 1 1 1 0 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:00 24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp(C)                    |             |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |             |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% fid. limits : 34.0 - 49.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |             |       |  |

Sample: 06890425

TOXICITY TEST REPORT

SLOPE of Mortality Curve : LC50 Calculated By : Sperman-Karber

TOXICITY TEST PARAMETERS

| TEST CONDITIONS                             |                                                                                  | Sample        | Sample Number: 06890425          | 1425                      |        |                           |
|---------------------------------------------|----------------------------------------------------------------------------------|---------------|----------------------------------|---------------------------|--------|---------------------------|
| Сопрату                                     | : Petro-Canada Inc.<br>Cakville, ONI<br>(Samon)                                  | TEST<br>CONC. | ELA                              | APSED                     | -      | E E                       |
| Region<br>Industry                          | : Central : Petroleum Refining                                                   | ×             |                                  | 00:00 24:00 48:00         | 7 00:5 | 8:00                      |
| Control point                               | : Precess Effluent, (100)                                                        | 100           | HC                               | 2                         |        | 2.8                       |
| Laboratory<br>Sampling Method<br>Sampled By | Seek Seek No                                                                     |               | Cond.                            | 2030                      | 20.0   | 8.6<br>1936<br>20.0       |
| Peceived<br>Tested                          | : 04/11/89 at: 1530                                                              | 20            | pH<br>02 ppm<br>Cond.            | 7.2                       | 20.0   | 8.2<br>8.6<br>1168        |
| Type of Bioassay                            | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 30            | pH<br>02 ppm                     | 8.2                       |        | 8.6                       |
| Test Animal<br>Weight(gm)                   | : D. magna                                                                       |               | Temp(C)                          | 20.0                      | 20.02  | 20.0                      |
| Length(mm) MODIALITY DATA                   |                                                                                  | 50            | pH<br>02 ppm<br>cond.<br>Temp(C) | 8.52                      | 20.0   | 8.5<br>699<br>20.0        |
| TEST ELAP                                   | SED TIME TOTAL MORTALITY                                                         | 10            | pH<br>022 ppm                    | 8.8.2                     |        | 88.3                      |
| 2 00:00 54:00 48:00                         | 00 48:00                                                                         |               | Temp(C)                          | 20.02                     | 20.02  | 20.02                     |
| 20000                                       | 001                                                                              | ın            | pH<br>02 ppm<br>cond.<br>Temp(C) | 8.2<br>9.0<br>467<br>20.0 | 20.0   | 8.3<br>479<br>20.0        |
| 000                                         |                                                                                  | Control       | pH<br>O2 ppm<br>Cond.<br>Temp(C) | 8.2<br>9.0<br>382<br>20.0 | 20.0   | 8.2<br>8.4<br>391<br>20.0 |
| 48 MOUT LC50                                | 31.0 %                                                                           |               |                                  |                           |        |                           |
| 25x fid. limits                             | : 27.0 · 36.0 x                                                                  |               |                                  |                           |        |                           |
| Coments                                     | : 10% Dephnie floating in 20% conc. at 48 Mrs                                    |               |                                  |                           |        |                           |

E.

| Sample: 02890072     |
|----------------------|
| Sample:              |
| REPORT               |
| TEST                 |
| TOXICITY TEST REPORT |

| LESI CONDITIONS                         |                                                                                  |                    |
|-----------------------------------------|----------------------------------------------------------------------------------|--------------------|
| Company                                 | : Petro-Canada Inc.                                                              |                    |
|                                         | Oakville, ONT<br>(530006)                                                        |                    |
| Region                                  | : Central                                                                        |                    |
| Industry                                | : Petroleum Refining                                                             |                    |
| Control point                           | : Process Effluent, (100)                                                        |                    |
| Laboratory                              | . MOE                                                                            |                    |
| Sampled Ry                              |                                                                                  |                    |
| Date Collected                          |                                                                                  |                    |
|                                         |                                                                                  |                    |
| Tested                                  |                                                                                  |                    |
| Type of Bioassay                        | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | ity Toxicity       |
| Test Animal<br>Weight(gm)<br>Length(mm) | . D. magna                                                                       |                    |
| HORTALITY DATA                          |                                                                                  |                    |
| CONC.                                   | SED TIME                                                                         | TOTAL<br>MORTALITY |
| x 00:00 48:00 72:00                     | 00 72:00                                                                         | **                 |
| 100 0                                   | 00-0                                                                             | 0000               |
| ntrol                                   | 000                                                                              | 000                |

0.0

48 Hour LC50 95% fid. limits

: 0.0 -: MISA Audit

Comments

: Non-lethal

SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

|                         | I M E | 72:00             | 8.2<br>7.1<br>1840<br>20.0       | 8.1<br>8.0<br>1230<br>20.0       | 8.0<br>8.0<br>785<br>20.0        | 8.1<br>8.1<br>565<br>20.0        | 8.1<br>7.9<br>401<br>20.0        | 8.1<br>8.3<br>330<br>20.0        |
|-------------------------|-------|-------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                         | -     | 8:00 7            | 20.0                             | 20.0                             | 20.02                            | 20.02                            | 20.02                            | 20.0                             |
| 390072                  | APSED | 00:00 48:00 72:00 | 8.2<br>7.8<br>1840<br>20.0       | 8.2<br>8.9<br>1223<br>20.0       | 8.1<br>8.9<br>780<br>20.0        | 8.1<br>8.9<br>550<br>20.0        | 8.0<br>8.9<br>397<br>20.0        | 8.0<br>9.1<br>340<br>20.0        |
| Sample Number: 02890072 | EL    |                   | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>O2 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) |
| Sample                  | TEST  | , %               | 100                              | 09                               | 30                               | 15                               | ľ                                | Control                          |

| TOXICITY TEST REPORT                                                                                             | Sample: 06890540     | TOXICIT                 | TOXICITY TEST PARAMETERS                   | METERS                          |                                             |  |
|------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|--------------------------------------------|---------------------------------|---------------------------------------------|--|
| Corporty : Petro-Canada Inc. Corporty Cakville, ONT (55006, ONT (5500) : Central Industry : Petroleum Refining   |                      | Sample<br>TEST<br>CONC. | Sample Number: 06890540<br>CONC. E L A P S | 06890540<br>ELAPSED<br>00:00 24 | 540<br>P S E D T I M E<br>00:00 24:00 48:00 |  |
|                                                                                                                  |                      | 100                     | pH<br>02 ppm<br>cond.<br>Temp(C)           | 8.0<br>3.7<br>2160<br>21.0 2    | 8.1<br>6.9<br>2310<br>21.0 21.0             |  |
|                                                                                                                  |                      | 20                      | pH<br>O2 ppm<br>Cond.<br>Temp(C)           | 8.1<br>7.8<br>1326<br>21.0      | 8.2<br>8.0<br>1351<br>21.0 21.0             |  |
| Type of Bibassay : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1983)                | ity Toxicity         | 30                      | pH<br>02 ppm<br>Cond.                      | 7.6                             | 8.2<br>7.9<br>1002                          |  |
| Test Animal : D. magna Weight(gm) : Length(mm) :                                                                 |                      | 20                      | Temp(C) pH 02 ppm Cond. Temp(C)            |                                 | 21.0 21.0<br>8.2<br>8.0<br>795<br>21.0 21.0 |  |
| A P S E D 7 I M E 24:00 48:00                                                                                    | TOTAL<br>MORTALITY X | 10                      | pH<br>02 ppm<br>Cond.<br>Temp(C)           |                                 |                                             |  |
| ntrol                                                                                                            |                      | Control                 | pH<br>02 ppm<br>Cond.<br>Temp(C)           | 8.2<br>8.7<br>461<br>21.0       | 8.2<br>8.2<br>4.25<br>21.0 21.0             |  |
| 48 Moor LCSD : Non-lethal 95% fid. Limits : 0.0 . 0.0 % Comments : no montality or immobility observed in 48 Mrs | bserved in 48 Hrs    |                         |                                            |                                 |                                             |  |



COMPANY: Petrosar Limited, Sarnia

(480004)

(now with Corunna Mfg. Complex)

SECTOR: Petroleum Refining REGION: Southwest

### SUMMARY

The data for six trout bioassays, conducted on process effluent samples collected between December 1988 and May 1989, were provided by Petrosar Limited. All six process effluent samples were determined to have been non-acutely lethal to test fish.

## intake water

# Process Effluent

05880002 sampled: 12/12/88 LC50: >100 % 95% fid. limits: 0.0 - 0.0 %

comments:

05890001 sampled: 01/09/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments:

05890011 sampled: 02/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890022 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890031 sampled: 04/03/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments:

05890036 sampled: 05/01/89 non-lethal

95% fid. limits: 0.0 - 0.0%

comments:

# storm water

landfarm leachate

# Petrosar Limited (continued) emergency overflow

| TOXICITY                                                                                                               | TOXICITY TEST REPORT                                                                       | Sample: 05880002                | 30002       | TOXICI            | TOXICITY TEST PARAMETERS                           | METERS                                 |                                                                         |            |                     |                     |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|-------------|-------------------|----------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|------------|---------------------|---------------------|
| Company : Petrosar Lin Sannia, OHT Sannia, OHT Sannia, OHT Sannia, OHT Segion : Southwar Region : Southwar Petroleum R | Petrosar Limited<br>Sernia ONI<br>(480004)<br>Southwest                                    |                                 |             | Sample TEST CONC. | Sample Number: 05880002<br>TEST ELAPS<br>CONC. 00: | 05880002<br>E L A P S E D<br>00:00 02: | 002<br>P S E D T I H E<br>00:00 02:10 03:10 05:00 22:25 46:25 70:00 95: | 00 22:25 4 | 6:25 7              | 00:00               |
| Control point : Process E Leboratory : Pollutech Sezoling Wethod : Grab                                                | Process Effluent, (200) Pollutech Grab T Moran                                             |                                 |             | 100               | pH<br>02 ppm<br>cond.                              | 7.1                                    |                                                                         | 9.6        | 8.9                 | 7.5                 |
| Date Collected 12/12/88<br>Deceived 12/12/88<br>Tested 12/13/88                                                        | et: 1130                                                                                   |                                 |             | 52                | remp(C) PH 02 ppm Cond.                            | 7.1                                    |                                                                         | 2,5        | 7.6                 | 7.6                 |
| ×8888                                                                                                                  | STAILC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | he acute letha<br>ish. OME, 198 | lity<br>3). | 99                | pH<br>02 ppm<br>Cond.                              | 7.1                                    |                                                                         | 7.5        | 9.6                 | 7.6                 |
| Test Animal : Rainbow trout<br>Weight(gm) :<br>Length(cm) :                                                            | trout                                                                                      |                                 |             | 25                | Temp(C)                                            | 15.0                                   |                                                                         | 15.0       | 15.0<br>7.6<br>9.8  | 15.0                |
| MODIALITY DATA                                                                                                         | ω<br>*-                                                                                    | TOTAL                           |             | 10                | Cond.<br>Temp(C)                                   | 550<br>15.0<br>7.1                     |                                                                         | 15.0       | 15.0                | 15.0                |
| 00:00 02:10 03:10                                                                                                      | 05:00 22:25 46:25 7                                                                        | 70:00 95:10                     | ×           |                   | Cond.<br>Temp(C)                                   | 312                                    |                                                                         | 15.0       | 15.0                | 15.0                |
| D0000                                                                                                                  | D0000                                                                                      | DM-00                           | 00000       | -                 | pH<br>02 ppm<br>Cond.<br>Temp(C)                   | 10.4<br>180<br>15.0                    |                                                                         | 9.4        | 9.8                 | 7.6<br>10.1<br>15.0 |
|                                                                                                                        | 0000                                                                                       |                                 | 000         | Control           | ol pH<br>cond.<br>Temp(C)                          | 7.0<br>10.2<br>162<br>15.0             |                                                                         | 10.0       | 10.0                | 10.1                |
| 96 Mour 1050                                                                                                           | ٠.00 ٪                                                                                     |                                 |             | Control           | of pH<br>02 ppm<br>cond.<br>Temp(C)                | 7.1<br>10.3<br>162<br>15.0             |                                                                         | 7.6 9.9    | 7.6<br>10.1<br>15.0 | 7.6<br>10.2<br>15.0 |

95:10

| Sample Number: 05890001  Sample Number: 05890001  TEST CONG.  100 DH P S CONG.  Temp(C) 15 CONG.  1 PH P S CONG.  1 PH P S CONG.  1 CONG.  1 PH P S CONG.  1 CONG.  1 CONG.  1 CONG.  1 PH P S | Sample Number: 05890001  FEST  100 DH 7.3 7.6  100 DH 9.4 9.5  100 DH 9.4 9.5  100 DH 7.3 7.6  100 DH 7.3 7.6  100 DH 7.3 7.6  100 DH 7.5 7.7  100 DH 7.5 7.7  100 DH 7.5 7.7  100 DH 7.7 7  100 DH 7 7  100 | Number: 05890001  Number: 05890001  E L A P S E  Cond. 1990  Cond. 15.0  DH 9.4  Cond. 15.0  DH 9.4  Cond. 15.0  DH 7.5  Cond. 15.0  DH 7.7  Cond. 15.0 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| SNO THE PART OF TH | Petrosar Limited<br>Sarnis, Own<br>(480004)<br>Southwest<br>Petroleum Refining<br>Process Effluent, (200) |                                   |                           |                                                        |                                                                    |                    |                    |                    |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|--------------------------------------------------------|--------------------------------------------------------------------|--------------------|--------------------|--------------------|----------------------------|
| ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s Effluent, (200)                                                                                         |                                   | Sample 1<br>TEST<br>CONC. | Sample Number: 05890011<br>TEST E L A P S<br>CONC. 00: | 05890011<br>E L A P S E D T I M E<br>00:10 21:20 45:10 70:20 95:10 | T 1 H              | H E :10 70         | 50 02              | 0                          |
| Committee By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ech                                                                                                       |                                   | 100                       | pH<br>02 ppm<br>cond.<br>Temp(C)                       | 7.1<br>9.6<br>2000<br>15.0                                         | 7.5                | 7.5<br>9.8<br>15.0 | 7.5<br>9.4<br>15.0 | 7.5<br>9.3<br>2050<br>15.0 |
| £ &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02/06/89<br>02/06/89<br>02/07/89 at: 1620                                                                 |                                   | K                         | pH<br>02 ppm<br>Cond.<br>Temp(C)                       | 7.2<br>9.6<br>1600<br>15.0                                         | 7.6                | 9.4                | 9.3                | 7.5<br>9.5<br>1590<br>15.0 |
| Type of Bioassay : STATIC<br>(Frotom of Light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STATIC<br>(Frotocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983).          | acute lethality<br>h. OME, 1983). | 95                        | pH<br>02 ppm<br>cond.                                  | 7.3                                                                |                    | 4.6                | 9.3                | 7.5                        |
| Test Animal : Reimbo<br>weight(gm) :<br>Length(mm) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reinbow trout                                                                                             |                                   | 52                        | Temp(C) pH 02 ppm                                      | 15.0                                                               | 7.8                |                    |                    | 7.5                        |
| ATACLITY DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                   |                           | Temp(C)                                                | 15.0                                                               |                    | 15.0               |                    | 15.0                       |
| TEST ELAPSED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E E                                                                                                       | TOTAL                             | 10                        | pH<br>02 ppm<br>Cond.                                  | 10.4                                                               | 7.7                | 5.0                | 2.0                | 3,48                       |
| z 00:10 21:20 45:10 70:20 95:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70:20 95:10                                                                                               | æ¢                                |                           | Temp(C)                                                | 0.51                                                               | 0.0                | 7                  | 7.0                | 7.6                        |
| 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           | 0000                              | -                         | pH<br>02 ppm<br>Cond.<br>Temp(C)                       | 10.4                                                               | 9.8                | 9.5                | 9.8                | 9.2                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000                                                                                                      | 0000                              | Control                   | pH<br>02 ppm<br>cond.<br>Temp(C)                       | 7.3<br>10.8<br>162<br>15.0                                         | 9.8                | 9.9                | 7.6                | 7.6<br>9.7<br>172<br>15.0  |
| 95% fid. limite : 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mon-lethal                                                                                                |                                   | Control                   | pH<br>02 ppm<br>Cond,<br>Temp(C)                       | 7.3<br>11.0<br>162<br>15.0                                         | 7.6<br>9.8<br>15.0 | 7.4<br>9.8<br>15.0 | 9.9                | 7.6<br>17.7<br>15.0        |

| X           |
|-------------|
|             |
| 47          |
| -           |
| E           |
| -FI         |
| M-F1        |
| UM-FI       |
| EUM-F1      |
| DEUM-F19    |
| ROLEUM-F19  |
| TROLEUM-F19 |
| TROLEUM-F19 |

SLOPE of Mortality Curve : LC50 Calculated By : none

TOXICITY TEST PARAMETERS

Sample: 05890022

TOXICITY TEST REPORT

| TEST CONDITIONS                                              |                                                                                                  | o lower | Sample Mumber: 05890022            | 22000                      |                               |                    |                                         |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|------------------------------------|----------------------------|-------------------------------|--------------------|-----------------------------------------|
| Sarnia                                                       | Petrosar Limited                                                                                 | TEST    | E L A                              | ELAPSED                    | E                             | E                  |                                         |
| Region : South                                               | taoudus,<br>Vandust<br>Petroleum Refining                                                        | **      |                                    | 00:00                      | 00:00 20:10 49:20 68:10 95:10 | 3:20 68            | :10 9                                   |
|                                                              | Process Effluent, (200) Pollutech Grab. C. Ferguson                                              | 100     | pH<br>02 ppm<br>cond.<br>Temp(C)   | 7.2<br>8.4<br>2200<br>15.0 | 7.2<br>8.4<br>15.0            | 7.2<br>8.8<br>15.0 | 7.3 7.3<br>9.8 9.3<br>2220<br>15.0 15.0 |
| Date Collected : 03/06<br>Received : 03/06<br>Tested : 03/07 | 03/06/89<br>03/06/89 at: 1520                                                                    | 75      | pH<br>02 ppm<br>cond.              | 7.3 8.9 1770               | 6.4                           | 9.2                | 9.8                                     |
| assay                                                        | STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | 99      | pH<br>02 ppm<br>cond.              | 900                        |                               |                    | 7.5                                     |
| Test Animal : Rainb<br>Weight(gm) :<br>Length(mm) :          | Rainbow trout                                                                                    | 22      | Temp(C) pH 02 ppm                  | 7.5                        | 7.5                           | 7.4                | 7.6                                     |
| HORTALITY DATA                                               |                                                                                                  |         | Temp(C)                            | 15.0                       | 15.0                          | 15.0               | 15.0                                    |
| ELAPSED TIME<br>00:00 20:10 49:20 68:10 95:10                | T I H E TOTAL HORTALITY X 68:10 95:10 X                                                          | 10      | pH<br>02 ppm<br>cond.<br>Temp(C)   | 7.5<br>390<br>15.0         | 9.4                           | 7.3                | 7.6<br>9.8<br>15.0                      |
| 0000                                                         | 00000                                                                                            | -       | pH<br>02 ppm<br>Cond.<br>Temp(C)   | 7.5<br>9.7<br>189<br>15.0  | 7.6 9.4                       | 7.4                | 9.8                                     |
|                                                              |                                                                                                  | Control | L pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.6<br>10.0<br>168<br>15.0 | 7.5<br>9.8<br>15.0            | 10.1               | 7.5                                     |
| 96 Hour LC50 : Non-1<br>95% fid. Limits : 0.0                | Non-lethal<br>0,0 - 0.0 %                                                                        | Control | Cond.                              | 7.6<br>9.9<br>168<br>15.0  | 9.6                           | 9.8                | 7.6                                     |

Sample: 05890031

TOXICITY TEST REPORT

0000 STATIC (Pretacol to determine the acute lethality of liquid effluents to fish. OME, 1983). TOTAL HORTALITY Process Effluent, (200) at: 1330 Fetroleum Refining Petrosar Limited Sarnia (480004) Southwest 00:00 19:15 46:10 69:00 95:10 0000 Beinten trout Grab C. ferguson 04/03/89 04/03/89 at: 1 H E Non-lethal Pollutech ELAPSED Type of Bioassay Laboratory Sampling Method Sampled By Date Collected Received TEST CONDITIONS MODPTALITY DATA 96 KOUT LCSD Control point Weight (gm) Length (gm) Test Animal 100 100 Centrol A DESTRUCT ( ... J. .. ) Region TEST

SLOPE of Mortality Curve : LC50 Calculated By : none

TOXICITY TEST PARAMETERS

Sample Number: 05890031

TEST E LAPSED TIME CONC. X 00:00 19:15 46:10 69:00 95:10 9.3 7.6 9.4 1710 15.0 7.5 10:01 15.0 2.5 7.3 7.4 15.0 15.0 15.0 10.1 15.0 7.6 15.0 15.0 5.6 15.0 15.0 5.0 7.4 9.6 7.3 7.6 10.2 162 15.0 7.2 8.4 1710 15.0 7.6 pH 02 ppm Cond. Temp(C) pH 02 ppm Cond. Temp(C) pH 02 ppm cond. pH 02 ppm Cond. (a)dusa J Temp(C) Control Control 100 100

0.0

95x fid. limits

The second

|                                                               | TOXICITY TEST REPORT                                                       | PORT Sample: 05890036                                                                            | TOXICITY TEST PARAMETERS                                 |
|---------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| TEST CONDITIONS Company                                       | Servise ONI (480004)                                                       |                                                                                                  | ple Number: 05890                                        |
| y<br>point                                                    | : Petroleum Refining<br>: Process Effluent, (200)                          | ing<br>c, (200)                                                                                  |                                                          |
| Laboratory Sampling Method Sampled By Date Collected Received | Pollutech<br>Grab<br>C. Ferguson<br>05/01/89<br>05/01/89<br>05/02/89 at: 1 | 1400                                                                                             | 100 pH 7.1 Cond. 2100 Temp(C) 15.0 100 pH 7.1 02 pcm 8.8 |
| Type of Bioassay :                                            | : STATIC<br>(Protocol to det<br>of liquid efflue                           | STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | G E                                                      |
| Test Animal Weight(gm) Length(mm)                             | : Rainbow trout                                                            |                                                                                                  | O E                                                      |
| HORTALITY DATA                                                |                                                                            |                                                                                                  | Cond. 15.8<br>Temp(C) 15.0                               |
| TEST E L A P S CONC.                                          | ED TIME                                                                    | TOTAL<br>MORTALITY                                                                               |                                                          |
| x 00:00 21:30                                                 | 47:30 72:30 97:30                                                          | ж                                                                                                |                                                          |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       | 0000                                                                       | 0000                                                                                             |                                                          |
| 96 Hour LC50                                                  | : Non-lethal                                                               |                                                                                                  |                                                          |
| 95% fid. limits :                                             | 0.0 - 0.0                                                                  | **                                                                                               |                                                          |
| Comments :                                                    |                                                                            |                                                                                                  |                                                          |

7.1 29.4 15.0 15.0 15.0 17.0 17.0 17.0 15.0

7.1 8.9 7.1 7.1 7.6 7.6 9.8 9.8 15.0

7.6

7.5

7.2 9.2 15.0

15.0 7.1 8.6 15.0 7.6 9.3

15.0

00:00 21:30 47:30 72:30 97:30

TIME

none

COMPANY: Petrosar Limited, Sarnia

(480004)

(now with Corunna Mfg. Complex)

SECTOR: Petroleum REGION: Southwest Petroleum Refining

# SUMMARY

The data for six Daphnia magna toxicity tests conducted on samples of Process Effluent collected between December 1988 and May 1989 were supplied by Petrosar Ltd. in Sarnia. All six samples were not acutely lethal to Daphnia magna.

## intake water

## Process Effluent

05880002 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890001 sampled: 01/09/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890011 sampled: 02/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890022 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890031 sampled: 04/03/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890036 sampled: 05/01/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

storm water

landfarm leachate

# Petrosar Limited (continued) emergency overflow

| 05880002 |
|----------|
| Sample:  |
| REPORT   |
| TEST     |
| TOXICITY |

SLOPE of Mortality Curve : LC50 Calculated By :

| The state of the s |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

| CONDITIONS                                                                                                          |                                                                                  |             |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|
| Corperty                                                                                                            | Sarria ONT                                                                       |             |
| Fesion                                                                                                              | (*Southwest<br>: Petroleum Refining                                              |             |
| Control point                                                                                                       | : Process Effluent, (200)                                                        |             |
| Sampling Method<br>Sampling Method<br>Sampled By<br>Date Collected<br>Peceived                                      | Pollutech<br>Grab<br>1.Moren<br>12/12/88<br>12/12/88<br>12/13/88 at: 1150        |             |
| Type of Bioassay                                                                                                    | : STATIC<br>(Babhnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | <u>&gt;</u> |
| Test Animal<br>Weight(gm)<br>Length(mm)                                                                             | . D. magna                                                                       |             |
| ALAS TTELETA                                                                                                        |                                                                                  |             |
| m<br>A<br>P                                                                                                         | SED TIME HORTALITY                                                               |             |
| 00:00 48:00                                                                                                         |                                                                                  | 34          |
| 250<br>226<br>226<br>236<br>236<br>236<br>236<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237 |                                                                                  | 000000      |
|                                                                                                                     |                                                                                  |             |

|                     |          | I             |       |                                  |                                  |                                  |                                  |                                  |                                  |
|---------------------|----------|---------------|-------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                     |          | 1 1           | 48:00 | 7.5<br>9.1<br>1820<br>20.0       | 7.7<br>9.0<br>1200<br>20.0       | 8.0<br>9.0<br>930<br>20.0        | 8.1<br>9.2<br>780<br>20.0        | 8.0<br>9.2<br>690<br>20.0        | 8.1<br>9.0<br>600<br>20.0        |
| PARAMETERS          | 05880002 | P S E         | 00:00 | 7.4<br>9.1<br>1820<br>20.0       | 7.9<br>9.1<br>1060<br>20.0       | 8.0<br>9.1<br>940<br>20.0        | 8.1<br>9.1<br>780<br>20.0        | 8.1<br>9.1<br>680<br>20.0        | 8.2<br>9.0<br>600<br>20.0        |
| TOXICITY TEST PARAM | Number:  | ELA           |       | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(E) | pH<br>GZ ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) |
| TOXICI              | Sample   | TEST<br>CONC. | »e    | 100                              | 20                               | 56                               | 13                               | 40                               | Control                          |
|                     |          |               |       |                                  |                                  |                                  |                                  |                                  |                                  |
|                     |          |               |       |                                  |                                  |                                  |                                  |                                  |                                  |

0.0

95% fid. Umite 48 MOUT LCSD

Comment

Register | Ball 0.0

| TEST CONDITIONS                                                                     |                                                                                                    | Samole        | Sample Number: 0589000                |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------|---------------------------------------|
| Company<br>Region<br>Industry                                                       | : Petrosar Limited Sarnia, ONT (48004) Southwest : Petroleum Refining                              | TEST<br>CONC. | E L A P                               |
| Control point                                                                       |                                                                                                    | 100           | Hd                                    |
| Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received<br>Tested | Pollutech<br>1                                                                                     | 20            | Cond. Temp(C) PM 02 ppm Cond. Temp(C) |
| Type of Bioassay                                                                    | : STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | 56            | 02 ppm                                |
| Test Animal<br>Weight(gm)<br>Length(mm)                                             | : Rainbow trout<br>:                                                                               | 13            | Temp(C) 02 ppm Cond.                  |
| MORTALITY DATA                                                                      |                                                                                                    |               | Temp(C)                               |
| TEST ELAP                                                                           | SED TIME TOTAL HORFALITY                                                                           | 9             | DH<br>02 ppm<br>Cond.                 |
| x 00:00 47:30                                                                       | × 0                                                                                                |               | Temp(C)                               |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                             | 008000                                                                                             | Control       | of ph<br>O2 ppm<br>Cond.<br>Temp(C)   |
| 96 Hour LC50<br>95% fid. limits                                                     | : Non-lethal<br>: 0.0 - 0.0 %                                                                      |               |                                       |
| Comments                                                                            |                                                                                                    |               |                                       |

SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

|                | ш       |             |
|----------------|---------|-------------|
|                | H       |             |
|                | -       |             |
|                | ⊢       | .30         |
|                | ELAPSED | 02:27 00:00 |
|                | ш       | 9           |
| =              | S       | -           |
| 00             | ۵       | 0           |
| 36             | ~       |             |
| 05890001       | _       |             |
| 0              | ш       |             |
| Sample Number: |         |             |
| Sample         | TEST    | CONC.       |

|   | 100                              | 50 00                            | 26 00                            | £1                               | 9                                | Control                   |
|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------|
|   | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.     |
|   | 7.0<br>9.5<br>2290<br>20.0       | 7.5<br>9.5<br>1450<br>20.0       | 8.0<br>9.4<br>1030<br>20.0       | 8.1<br>9.5<br>800<br>20.0        | 8.1<br>9.5<br>700<br>20.0        | 8.2<br>9.4<br>590<br>20.0 |
|   | 7.5<br>8.2<br>2200<br>20.0       | 7.8<br>9.2<br>1400<br>20.0       | 7.9<br>9.5<br>1020<br>20.0       | 8.1<br>9.5<br>800<br>20.0        | 8.1<br>9.5<br>700<br>20.0        | 8.0<br>9.5<br>600<br>20.0 |
| ı |                                  |                                  |                                  |                                  |                                  |                           |

| 05890011 |
|----------|
| Sample:  |
| T REPORT |
| TEST     |
| TOXICITY |
|          |

SLOPE of Mortality Curve : LC50 Calculated By : none

| Corporary : Petrosar Limited (2002)  Region : Southwest : Southwes | Samp          |                                     |                             |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|-----------------------------|----------------------------|
| 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Sample Number: 05890011             | 90011                       |                            |
| SS 52 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEST<br>CONC. |                                     | ELAPSED T<br>01:20 46:25    | D T I M                    |
| S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                     |                             |                            |
| 25 s s s s s s s s s s s s s s s s s s s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 001           | DH<br>02 pom<br>Cond.<br>Temp(C)    | 9.2<br>2260<br>2260<br>20.0 | 2390                       |
| S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50            | pH<br>02 ppm<br>cond.<br>Temp(C)    | 7.7<br>9.2<br>1480<br>20.0  | 7.8<br>8.9<br>1510<br>20.0 |
| . D. magna<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56            | pH<br>02 ppm<br>Cond                | 9.0                         | 9.0                        |
| APSED TIME 46:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13            |                                     | 20.0                        | 8.0<br>9.0<br>890          |
| 01:20 46:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | Temp(C)                             | 20.0                        | 20.02                      |
| 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ж             | DH<br>O2 ppm<br>Cond.<br>Temp(C)    | 8.0<br>9.0<br>740<br>20.0   | 8.0<br>9.2<br>750<br>20.0  |
| ontrol 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control       | ol ph<br>Ol ppm<br>Cond.<br>Temp(C) | 8.0<br>9.2<br>620<br>20.0   | 7.9<br>9.2<br>650<br>20.0  |
| 48 Honor 1050 : Non-lethal 75% fid. Ilmits : 0.0 · 0.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1             |                                     |                             |                            |

SLOPE of Mortality Curve : LC50 Calculated By : none

| TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--------|
| : Kur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ited                                                                           | Sample  | Sample Number: 05890022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ш                          | 1 1                        | m<br>T |
| Region : Southwest<br>Industry : Petroleum Refining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fining                                                                         | CONC.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00:00 48:25                | 8:25                       |        |
| Control point : Process Effluent, (200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uent, (200)                                                                    | 4       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                          | 9                          |        |
| Sampling Method : Grab Sampling Method : Grab Sampled By : C. Ferguson Control of the Control of |                                                                                | 2       | oz pom<br>Cond.<br>Temp(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.6<br>2480<br>20.0        | 5.5<br>2500<br>20.0        |        |
| • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1130                                                                         | 20      | pH<br>02 ppm<br>cond.<br>Temp(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.8<br>8.5<br>1510<br>20.0 | 7.4<br>7.2<br>1600<br>20.0 |        |
| Type of Blogssay : SIAILC<br>(Daphnia magn<br>Test Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SIAILC<br>Opporing magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 26      | PH<br>02 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.6                        | 8.0                        |        |
| Test Animal : D. magna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |         | Temp(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.0                       | 20.02                      |        |
| Length(mm) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                | 13      | DH<br>02 ppm<br>Cond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.0<br>850<br>20.0         | 7.8<br>8.7<br>900<br>20.0  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |         | Conduction of the Conduction o |                            |                            |        |
| TEST ELAPSED TIME CONC. X 00:00 48:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL<br>MORTALITY X                                                           | 9       | pH<br>O2 ppm<br>Cond.<br>Temo(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.0<br>8.9<br>710<br>20.0  | 7.9<br>8.8<br>740<br>20.0  |        |
| ntrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000                                                                          | Control |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.1<br>9.1<br>50.0<br>20.0 | 7.9<br>9.2<br>610<br>20.0  |        |
| 48 Hour LC50 : Non-lethal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            |        |
| 95% fid. limits : 0.0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0°0 %                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            |        |

| TOXICITY TEST REPORT Sample: 05890031                                                             | TOXICITY TEST PARAMETERS                 | RAMETERS                                     |
|---------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|
| TEST COMDITIONS                                                                                   |                                          |                                              |
| Company : Petrosar Limited                                                                        | Sample Number: 05890031                  | 15890031                                     |
| Sania ONT<br>(480004)<br>Region : Southwest<br>Industry : Petroleum Refining                      | TEST<br>CONC.                            | ELAPSED T<br>00:00 49:10                     |
| Control point : Process Effluent, (200)                                                           |                                          |                                              |
| Lebonatory : Pollutech Sampling Method : Greb Sampled By : C. Ferguson Date Collected : 04/03/89  | 100 pH<br>02 ppm<br>Cond.<br>Temp(C)     | 7.3 7.6<br>8.8 8.8<br>1880 1910<br>20.0 20.0 |
| Received                                                                                          | 50 pH<br>02 ppm<br>cond                  | 7.6 7.8<br>9.0 8.9<br>1220 1260              |
| Type of Bioassay : STAILC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 26 pH 02 ppm                             |                                              |
| Test Animal : D. magna                                                                            | Cond.<br>Temp(C)                         | 20.0 20.0                                    |
| Length(rm) :                                                                                      | 13 pH<br>02 ppm<br>Cond.<br>Temp(C)      | 7.9 7.9<br>9.0 9.2<br>720 780<br>20.0 20.0   |
| TOTAL HORTALITY HE HORTALITY                                                                      | 6 pH<br>02 ppm                           |                                              |
| x 00:00 49:10                                                                                     | Cond.<br>Temp(C)                         |                                              |
| 1005<br>28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | Control pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.0 7.9<br>9.2 9.2<br>520 595<br>20.0 20.0   |
| 48 Mour (CSG : Won-lethal                                                                         |                                          |                                              |
|                                                                                                   |                                          |                                              |

| Sample: 05890036     |
|----------------------|
| Sample:              |
| REPORT               |
| TEST                 |
| TOXICITY TEST REPORT |
|                      |
|                      |

| Сопрапу                                     | : Petrosar Limited<br>Sarnia, ONT<br>(480004)                                    |              |
|---------------------------------------------|----------------------------------------------------------------------------------|--------------|
| Region                                      | : Southwest<br>: Petroleum Refining                                              |              |
| Control point                               | : Process Effluent, (200)                                                        |              |
| Laboratory<br>Sampling Method<br>Sampled By | : Pollutech<br>: Grab<br>: C. Ferguson                                           |              |
| Date Collected<br>Received<br>Tested        | : 05/01/89<br>: 05/01/89<br>: 05/03/89 at: 1020                                  |              |
| Type of Bioassay                            | : STATIC<br>(Oaphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) |              |
| Test Animal<br>Weight(gm)<br>Length(mm)     | . D. magna                                                                       |              |
| HORTALITY DATA                              |                                                                                  |              |
| CONC. E L A P                               | S E D T I M E HORTALITY                                                          |              |
| \$ 00:00 48:05                              | 35                                                                               | ж            |
| 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     |                                                                                  | <b>20000</b> |
| ontrol 0                                    |                                                                                  | 0            |

0.0

0.0

48 Hour LC50 95% fid. limits

Comments

SLOPE of Mortality Curve : LC50 Calculated By : none

# TOXICITY TEST PARAMETERS

|                         | T 1 M E                | 7.4<br>7.7<br>2400<br>20.0           | 7.7<br>7.8<br>1420<br>20.0           | 7.9<br>8.0<br>1010<br>20.0          | 8.0<br>8.2<br>790<br>20.0        | 8.0<br>8.7<br>620<br>20.0        | 8.1<br>9.2<br>510<br>20.0          |
|-------------------------|------------------------|--------------------------------------|--------------------------------------|-------------------------------------|----------------------------------|----------------------------------|------------------------------------|
| 890036                  | APSED T<br>00:00 48:05 | 7.3 7<br>9.6 7<br>2080 24<br>20.0 20 | 7.8 7<br>9.6 7<br>1220 14<br>20.0 20 | 7.9 7<br>9.6 8<br>940 10<br>20.0 20 | 8.0<br>9.6<br>700<br>700<br>20.0 | 8.0<br>9.4<br>9.4<br>540<br>50.0 | 8.0<br>9.8<br>9.8<br>490<br>20.0   |
| Sample Number: U5890U36 | A<br>L                 | pH<br>02 ppm<br>cond.<br>Temp(C)     | pH<br>02 ppm<br>cond.<br>Temp(C)     | pH<br>02 ppm<br>Cond.<br>Temp(C)    | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | l pH<br>02 ppm<br>Cond.<br>Temp(C) |
| Sample                  | TEST<br>CONC.          | 100                                  | 20                                   | 56                                  | 13                               | 40                               | Control                            |

COMPANY: Shell Canada Products Limited, Sarnia

(510107)

(now with Sarnia Mfg.)

SECTOR: Petroleum Refining REGION: Southwest

## SUMMARY

The data for six trout bioassays, conducted on process effluent samples collected between December 1988 and May 1989, were provided by Shell Canada Products Limited. All six process effluent samples were determined to have been non-acutely lethal to test fish. Data for bioassays conducted on three intake water samples collected in December 1988, January and May 1989 indicate they were not acutely lethal. Data for bioassays conducted on cooling water samples collected in January and May 1989 indicate they were not acutely lethal.

# intake water

05880007 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890007 sampled: 01/16/89 non-95% fid. limits: 0.0 - 0.0 % non-lethal

comments:

05890037 sampled: 05/08/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments:

### Process Effluent

05880006 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890008 sampled: 01/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890012 sampled: 02/06/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments:

05890027 sampled: 03/28/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

# Shell Canada Products Limited (continued)

05890032 sampled: 04/10/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

01890060 sampled: 04/26/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments: MISA audit sample.

05890040 sampled: 05/08/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

SW to Talford creek

CW to Talford Creek

05890004 sampled: 01/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

05890038 sampled: 05/08/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

CW from POW

05890005 sampled: 01/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

05890039 sampled: 05/08/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

EO from storm pond

SW to Baby creek

CW to POW

05890006 sampled: 01/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 % comments:

| 05880007    |
|-------------|
| Sample:     |
| TEST REPORT |
| TEST        |
| TOXICITY    |

00000000 (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). TOTAL 00:00 02:10 03:10 05:00 22:10 46:25 70:10 95:10 0000000 Shell Canada Products Limited Sarnia ONT (510107) Southwest 0000000 12/12/88 12/12/88 12/13/88 at: 1130 : intake water, (100) Petroleum Refining 0.0 00000000 Painbow trout TIME : Won-lethal Polititech Grab T.Moran : STATIC 0.0 ELAPSED 0000000 00000000 Sampling Method Sampling Method Sampled By Date Collected Peoples Type of Bioassay 75% fid. limits TEST CONDITIONS MOSTALITY DATA Control point 26 MOUT LC50 00000000 Test Animal Weight(gm) Length(mm) Region Control Company COMC 3-6

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Semple Number: 05880007
TEST ELAPSED TIME
COM. 00:00 02:10 03:10

00:00 02:10 03:10 05:00 22:10 46:25 70:10 95:10

| 7.8<br>10.0<br>212<br>15.0       | 7.8<br>9.9<br>202     | 198                              | 7.7<br>10.0<br>182<br>15.0       | 7.7<br>10.0<br>170<br>15.0       | 7.7<br>10.0<br>168<br>15.0       | 7.6<br>10.2<br>168<br>15.0         | 7.6<br>10.1<br>168<br>15.0 |
|----------------------------------|-----------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|----------------------------|
| 7.8                              | 7.8                   | 7.7                              | 7.7                              | 7.7                              | 7.7                              | 7.6<br>10.1<br>15.0                | 7.6<br>10.2<br>15.0        |
| 7.8<br>10.1<br>15.0              | 10.01                 |                                  | 10.1                             | 10.0                             | 9.7                              | 10.0                               | 10.1                       |
| 7.7<br>9.6<br>15.0               | 9.8                   |                                  | 9.9                              | 9.9                              | 9.8                              | 10.0                               | 7.6 9.9                    |
| 7.6<br>10.2<br>208<br>15.0       | 10.1                  | 7.4<br>10.0<br>188<br>15.0       | 7.2<br>10.1<br>172<br>15.0       | 7.3<br>9.9<br>165<br>15.0        | 7.2<br>9.8<br>160<br>15.0        | 7.0<br>10.2<br>162<br>15.0         | 7.1<br>10.3<br>162<br>15.0 |
| pH<br>02 ppm<br>Cond.<br>Temp(C) | DH<br>02 ppm<br>Cond. | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>cond.<br>Temp(C) | 1 pH<br>02 ppm<br>Cond.<br>Temp(C) | 02 ppm<br>Cond.<br>Temp(C) |
| 100                              | 23                    | 26                               | 52                               | 10                               | -                                | Control                            | Control                    |

| 05890007 |
|----------|
| Sample:  |
| REPORT   |
| TEST     |
| TOXICITY |
|          |

SLOPE of Mortality Curve : LC50 Calculated By : none

TOXICITY TEST PARAMETERS

| TEST CONDITIONS                          |                                                                                                   | Samuel of June 8       | Sample Number: 05890007   |                            |         |       |
|------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|---------------------------|----------------------------|---------|-------|
| Сопрапу                                  | : Shell Canada Products Limited<br>Sarnia ONT<br>(Sinnia)                                         | TEST                   | ELAPSED                   |                            | T I M E |       |
| Region<br>Industry                       | : Southwest<br>: Petroleum Refining                                                               | ×                      | 00:00                     | 00:00 22:10 46:00 70:00 95 | 76:00   | 70:00 |
| Control point<br>Laboratory              | : intake water, (100)<br>: Pollutech                                                              | 100 pH                 | PH 7.8                    | 10.01                      | 7.7     | 7.8   |
| Sampling Method<br>Sampled By            | grab<br>T. Moran                                                                                  | Temp(                  | ()                        | 15.0                       | 15.0    | 15.0  |
| Received<br>Tested                       | : 01/17/89 at: 1230                                                                               | 75 pH                  | 7.8<br>02 ppm 10.8        | 7.7                        | 7.7     | 7.8   |
|                                          |                                                                                                   | Cond.<br>Temp((        | 0                         | 15.0                       | 15.0    | 15.0  |
| Type of Bioassay                         | : SIATIC<br>Frotocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | 56 pH                  | pH<br>0.02 ppm 10.6       | 7.6                        | 7.7     | 7.8   |
| Test Animal                              | : Rainbow trout                                                                                   | Cond.<br>Temp(         | C                         | 15.0                       | 15.0    | 15.0  |
| Vergth(mm)                               |                                                                                                   | 25 pH 02               | 7.7<br>02 ppm 10.4        | 10.2                       | 7.6     | 7.8   |
| MORTALITY DATA                           |                                                                                                   | Cond.<br>Temp(         | ()                        | 15.0                       | 15.0    | 15.0  |
| TEST E L A P                             | SED TIME TOTAL HORFALITY                                                                          | 10 pH 02 pg            | 7.7 PPH 10.4              | 9.6                        | 10.0    | 10.01 |
| x 00:00 22:1                             | 00:00 22:10 46:00 70:00 95:10                                                                     | 169                    | 0                         | 15.0                       | 15.0    | 15.0  |
| 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                                                                   | 1 pH<br>02 ppm<br>Cond | 02 ppm 10.2<br>Cond. 178  | 9.9                        | 10.01   | 10.2  |
| 0000                                     |                                                                                                   | Control pH             |                           |                            |         | 7.8   |
|                                          | 00                                                                                                | Cond                   | Cond. 170<br>Temp(C) 15.0 | -                          | -       | 15.0  |
| 96 Hour LC50                             | Non-lethal                                                                                        | Control pH             | pH 7.6                    | 10.0                       | 10.01   | 7.8   |
| 95% fid. limits                          | % 0.0 - 0.0 :                                                                                     | Temp(                  | 6                         | 15.0                       | 15.0    | 15.0  |

7.7 190 15.0 15.0 10.0 185

7.8 10.2 205 15.0

7.8 10.1 15.0 15.0 7.8 10.2 210 15.0

00 95:10

7.8 10.2 182 15.0

7.7 10.2 182 15.0

7.7 10.2 182 15.0

Sample: 05890037

TOXICITY TEST REPORT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Number: 05890037 | TEST ELAPSED | x 00:00 19:00 44:10 69:15 97:1 | 100 DR 10.9 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 75 pH 7.4<br>02 pcm 10.4<br>cond. 202 | Temp(c)<br>56 pH<br>02 ppm | Cond. 198 (15.0 15.0 25 pH 7.5 7.5 | Cond. 18:0 7.3<br>Cond. 18:0 15:0 | 10 | x remp(c) 15.0 15.0     | 0 0 5 ppn 7.4 7.4 7.4 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Control pH 7.3 7.5 02 pcm 10.2 9.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.3 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|--------------------------------|-----------------------------------------------------|---------------------------------------|----------------------------|------------------------------------|-----------------------------------|----|-------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-----|
| TEST CONDITIONS Comment Region Leboratory Control point Leboratory Sampling Rethod Received Test Animal Lested Type of Bioassay |                         | Service Owl  |                                | ** ** **                                            |                                       |                            |                                    |                                   |    | 19:00 44:10 69:15 97:10 | 1,0000                                                      | 0000                                                                     |     |

|                   | DH<br>02 ppm<br>Cond.<br>Temp(C)   | pH<br>02 ppm<br>Cond.<br>Temp(C)  | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | Control pH<br>02 ppm<br>Cond.<br>Temp(C) | Control pH<br>02 ppm<br>Cond.<br>Temp(C) |
|-------------------|------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------|------------------------------------------|
| E L A P S E 00:00 | 7.7<br>10.8<br>10.8<br>214<br>15.0 | 7.4<br>10.4<br>202<br>202<br>15.0 | 7.4<br>10.3<br>198<br>15.0       | 7.5<br>10.0<br>182<br>15.0       | 7.5<br>10.0<br>176<br>176        | 10.1<br>170<br>170<br>15.0       | 7.3<br>10.2<br>168<br>15.0               | 7.3<br>10.2<br>168<br>15.0               |
| 19:00             | 7.5<br>9.4<br>15.0                 | 7.4 9.5 15.0                      | 7.4 9.5                          | 7.5 9.5                          | 7.5<br>9.8<br>15.0               | 10.01                            | 7.5<br>9.8<br>15.0                       | 7.5                                      |
| 1 H E             | 7.5<br>9.2<br>15.0                 | 7.4<br>9.6<br>15.0                | 7.5<br>9.6<br>15.0               | 9.6                              | 7.5 9.4                          | 7.6<br>9.4<br>15.0               | 7.2<br>9.4<br>15.0                       | 7.3                                      |
| 69:15             | 7.5 9.4                            | 7.4<br>9.2<br>15.0                | 7.4<br>9.3<br>15.0               | 7.4<br>9.2<br>15.0               | 7.5 9.4                          | 7.5<br>9.4<br>15.0               | 9.3                                      | 7.5                                      |
| 97:10             | 7.6<br>9.3<br>214<br>15.0          | 7.6<br>9.2<br>201<br>15.0         | 7.5<br>9.0<br>199<br>15.0        | 7.5<br>9.5<br>181<br>15.0        | 7.5<br>175<br>15.0               | 7.6<br>9.4<br>169<br>15.0        | 7.4<br>9.4<br>168<br>15.0                | 7.4<br>9.6<br>169<br>15.0                |

TOXICITY TEST REPORT

Sample: 05880006

| IEST CONDITIONS                                                         |                                                      |                                    |                  |                 |                                          |         |
|-------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|------------------|-----------------|------------------------------------------|---------|
| Сопрапу                                                                 | Shell Car<br>Sarnia                                  | Canada Products Limited            | fucts L          | imited          |                                          |         |
| Region                                                                  | Southwest<br>Petroleum                               | SouthWest<br>Petroleum Refining    | g.               |                 |                                          |         |
| Control point                                                           | : Process                                            | Process Effluent, (200)            | (200)            |                 |                                          |         |
| Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Tested | Pollutech<br>Grab<br>1.Noran<br>12/12/88<br>12/12/88 | ۵<br>ب                             | 1130             |                 |                                          |         |
| Type of Bioassay                                                        | : STATIC<br>(Protocol<br>of liquid                   | ol to determine<br>id effluents to | ermine<br>its to | the ac<br>fish. | the acute lethality<br>fish. OME, 1983). | >       |
| Test Animal<br>Weight(gm)<br>Length(rmn)                                | : Rainbow trout                                      | trout                              |                  |                 |                                          |         |
| E L A P                                                                 | SEDT                                                 | E                                  |                  | æ               | TOTAL                                    |         |
| \$ 00:00 02:10                                                          | 03:10                                                | 05:00 22:25                        | 46:10            | 70:00           | 95:10                                    | ж       |
| 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                | 0000000                                              | 0000000                            | 0000000          | 0000000         | 0000000                                  | 0000000 |
| 96 Hour LC50                                                            | : Non-lethal                                         | thal                               |                  |                 |                                          |         |
| 95% fid. limits                                                         | 0.0 :                                                | 0.0                                | 34               |                 |                                          |         |
|                                                                         |                                                      |                                    |                  |                 |                                          |         |

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample Number: 05880006

00:00 02:10 03:10 05:00 22:25 46:10 70:00 95:10

ELAPSED TIME

TEST CONC.

| 7.7                   | 15.0    | 7.7          | 15.0    | 10.01        | 15.0    | 10.01        | 15.0    | 10.1         | 15.0    | 10.2         | 15.0    | 10.2         | 15.0    | 10.1         | 15.0    |
|-----------------------|---------|--------------|---------|--------------|---------|--------------|---------|--------------|---------|--------------|---------|--------------|---------|--------------|---------|
| 7.6                   | 15.0    | 7.6          | 15.0    | 7.7          | 15.0    | 10.01        | 15.0    | 10.1         | 15.0    | 7.6          | 15.0    | 7.6          | 15.0    | 7.6          | 15.0    |
| 9.5                   | 15.0    | 7.6          | 15.0    | 7.5          | 15.0    | 9.1          | 15.0    | 7.7          | 15.0    | 9.6          | 15.0    | 10.01        | 15.0    | 10.1         | 15.0    |
| 7.6                   | 15.0    | 7.6          | 15.0    | 7.5          | 15.0    | 7.5          | 15.0    | 7.6          | 15.0    | 6.6          | 15.0    | 10.01        | 15.0    | 7.6          | 15.0    |
| 7.3                   | 15.0    | 7.2          | 15.0    | 7.1          | 15.0    | 9.1          | 15.0    | 7.1          | 15.0    | 0.0          | 15.0    | 10.2         | 15.0    | 10.3         | 15.0    |
| pH<br>02 ppm<br>cond. | Temp(C) | pH<br>02 ppm | Temp(C) | DH<br>02 ppm | Temp(C) | DH<br>02 ppm | Temp(C) |
|                       |         |              |         |              |         |              |         |              |         |              |         | Control      |         | Control      |         |

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890008

TOXICITY TEST REPORT

| Sarn Sarn                                                                                                      |                                                                                            | Cample Dien                        | Cample Dismon. 05800008                            |                               |        |                               |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------|-------------------------------|--------|-------------------------------|
| (510)                                                                                                          | Shell Canada Products Limited<br>Sarnia, ONT<br>(570107)                                   | TEST CONC.                         | ELAPSED                                            | D 1 I                         | TIME   |                               |
| Region : South                                                                                                 | Southwest<br>Petroleum Refining                                                            | 34                                 | 00:00                                              | 00:00 22:10 47:10 70:00 95:10 | 7:10 7 | 0:00                          |
| Control point : Proc                                                                                           | Process Effluent, (200)                                                                    | 100 рн                             | 4.7 Hq                                             | 7.6                           | 7.5    | 7.8                           |
|                                                                                                                | Grab<br>Grab<br>T. Moran                                                                   | 95<br>100<br>100                   | 02 ppm 8.8<br>Cond. 540<br>Temp(C) 15.0            |                               |        | 10.4 10.2<br>550<br>15.0 15.0 |
| Received : 01/11 Tested : 01/11                                                                                | 01/16/89<br>01/17/89 at: 1230                                                              | 75 PH 020                          | 02 ppm 9.4<br>cond. 464<br>Temp(C) 15.0            | 10.0                          | 9.9    | 10.0                          |
| Type of Bioassay : STATIC (Protoc                                                                              | STAILC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | 56 PP                              | pH 7.5<br>02 ppm 9.6<br>cond. 388                  |                               | 9.8    | 7.9                           |
| •••                                                                                                            | Rainbow trout                                                                              | Te                                 | 0                                                  | 15.0                          | 15.0   | 15.0                          |
| Length(mm) :                                                                                                   |                                                                                            | 25 PH 020                          | 02 ppm 10.2<br>Cond. 268                           | 10.0                          | 9.6    | 10.2                          |
| MODTALITY DATA                                                                                                 |                                                                                            | Te                                 | 0                                                  | 15.0                          | 15.0   | 15.0                          |
| TEST ELAPSED                                                                                                   | T I M E HORTALITY                                                                          | 10 PH 022                          | 7.7<br>02 ppm 10.4                                 | 7.4                           | 7.5    | 9.6                           |
| x 00:00 22:10 47:10                                                                                            | 22:10 47:10 70:00 95:10                                                                    | ie ie                              | G                                                  | 15.0                          | 15.0   | 15.0                          |
| 75<br>55<br>00<br>00<br>00<br>25<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 0000                                                                                       | 1 2003                             | pH 7.7<br>02 ppm 10.4<br>cond, 178<br>Temp(C) 15.0 | 7.6 9.6 15.0                  | 9.9    | 9.8                           |
| o 0 0 0 outrol 0 0 0 0 outrol 0 0                                                                              | 0000                                                                                       | Control pH<br>02<br>Co<br>Co<br>Te | DH 7.6<br>02 ppm 10.4<br>cond. 170<br>Temp(C) 15.0 | 9.9                           | 9.9    | 7.8<br>10.0<br>15.0           |
| 96 Hour LC50 : Hon                                                                                             | Mon-lethal                                                                                 | Control pH                         | 02 ppm 10.2                                        | 10.01                         | 10.01  | 7.8                           |
| 95x fid. limits : 0.                                                                                           | x 0.0 - 0.0                                                                                | 20 2                               | Cond. 170<br>Temp(C) 15.0                          | 15.0                          | 15.0   | 15.0                          |

Sample Number: 05890012

none

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890012

TOXICITY TEST REPORT

TEST CONDITIONS Company

| Jedo .                                      | Leady Day of the Control of the Cont | Sample  | Sample Number: 05890012          | 0012                          |         |         |        |                            |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|-------------------------------|---------|---------|--------|----------------------------|--|
| •                                           | NOT TOUCHES LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEST    | ELA                              | ELAPSED                       |         | TIME    |        |                            |  |
| Region : Southwest<br>Industry : Petroleum  | Southwest<br>Southwest<br>Petroleum Refining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***     |                                  | 00:00 21:15 45:05 70:15 95:05 | 1:15 4  | 5:05 70 | 1:15 9 | 50:05                      |  |
| Control point : Process E                   | Process Effluent, (200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000     |                                  | 1                             | 0       |         |        | 1 2                        |  |
| thod                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 001     | 02 ppm<br>Cond.                  | 7.2                           |         |         |        | 9.7                        |  |
| ** **                                       | los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Temp(C)                          | 15.0                          | 15.0    | 15.0    | 15.0   | 15.0                       |  |
| Received : 02/06/89<br>Tested : 02/07/89 at | at: 1625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75      | DH<br>02 ppm                     | 8.4                           | 9.0     | 7.5     | 7.7    | 7.7                        |  |
| Trans of Rinaccay                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Temp(C)                          | 15.0                          | 15.0    | 15.0    | 15.0   | 15.0                       |  |
| ٠                                           | (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28      | pH<br>02 ppm                     | 7.2                           | 7.7     | 7.6     | 7.8    | 7.7                        |  |
| Test Animal : Rainbow trout                 | trout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Temp(C)                          | 15.0                          | 15.0    | 15.0    | 15.0   | 5.0                        |  |
| Length(mm) ::                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52      | pH<br>02 ppm                     | 7.3                           | 7.7     | 7.5     | 7.7    | 9.6                        |  |
| HORTALITY DATA                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Cond.<br>Temp(C)                 | 15.0                          | 15.0    | 15.0 1  | 15.0   | 349                        |  |
| TEST ELAPSED TI                             | H E TOTAL HORTALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10      | DH<br>O2 ppm                     | 10.6                          | 7.9     | 9.6     | 7.7    | 7.7                        |  |
| x 00:00 21:15 45:05 70:15 95:05             | 15 95:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | Temp(C)                          | 15.0                          | 15.0    | 15.0 1  | 15.0   | 0.51                       |  |
| 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.3<br>10.6<br>170<br>15.0    | 7.8 9.8 | 7.5     | 7.6    | 7.7<br>10.1<br>182<br>15.0 |  |
| trol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.3<br>10.8<br>162<br>15.0    | 9.8     | 7.5     | 7.6    | 7.6<br>9.7<br>172<br>15.0  |  |
| 96 Hour LC50 : Non-lethal                   | last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control | F                                | 7.3                           | 7.6     | 7.4     | 7.5    | 7.6                        |  |
| 95% fid. limits : 0.0 -                     | × 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Cond.                            | 162                           |         |         |        | 172                        |  |
| Comments :                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | lenp(c)                          | 0.0                           |         |         |        | 0.0                        |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |                               |         |         |        |                            |  |

| 05890027    |
|-------------|
| Sample:     |
| TEST REPORT |
| TEST        |
| TOXICITY    |

0000 : STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). TOTAL : Shell Canada Products Limited Sarnia, ONI (510107) : Southwest : Petroleum Refining : Process Effluent, (200) 930 00:00 25:10 50:20 82:10 10:00 0000 : Rainbow trout Bt: TIME Grab 1.Moran 03/28/89 03/28/89 0000 ELAPSED 0000 0000 Leboratory Sampling Method Sampled By Date Collected Received Tested Type of Bioassay TEST CONDITIONS MORTALITY DATA Control point 0000 Test Animal Weight(gm) Length(mm) Region Control Company TEST CONC. ×

0.0 : Non-lethal 0.0 95% fid. limits 96 HOUR LC50 Sandar

SLOPE of Mortality Curve : LC50 Calculated By :

| Sample h      | Sample Number: 05890027          | 027                        |                    |                     |                            |  |
|---------------|----------------------------------|----------------------------|--------------------|---------------------|----------------------------|--|
| TEST<br>CONC. | ELA                              | E L A P S E D<br>00:00 2   | 5:1                | T I H E             | I M E<br>50:20 82:10 10:00 |  |
| 100           | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.7<br>7.7<br>660<br>15.0  | 7.6<br>9.8<br>15.0 | 7.6 9.8             | 7.6<br>9.8<br>610<br>15.0  |  |
| 100           | pH<br>02 ppm<br>Cond,<br>Temp(C) | 7.1<br>7.9<br>655<br>15.0  | 7.6<br>9.8<br>15.0 | 7.7<br>9.7<br>15.0  | 7.6<br>9.9<br>620<br>15.0  |  |
| Control       | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.4<br>10.6<br>155<br>15.0 | 7.5                | 7.5<br>10.2<br>15.0 | 7.5<br>10.1<br>168<br>15.0 |  |
| Control       | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.4<br>10.6<br>155<br>155  | 10.3               | 10.1                | 7.5<br>10.1<br>168<br>15.0 |  |

| 05890032   |  |
|------------|--|
| Sample:    |  |
| EST REPORT |  |
| TOXICITY T |  |
|            |  |

|                 | Limited                 |                                 | 0)                      |                                                                                     | to determine the scute lethality effluents to fish. OME, 1983). |                                                           | TOTAL<br>MORTALITY | 34                            | 8000                  |
|-----------------|-------------------------|---------------------------------|-------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|--------------------|-------------------------------|-----------------------|
|                 | Canada Products Limited | Southwest<br>Petroleum Refining | Process Effluent, (200) | ech<br>guson<br>39<br>39<br>81 1420                                                 | ol to determine                                                 | trout                                                     | ш<br>ж             | :20 96:10                     | 0000                  |
|                 | Sarnia (                | Southwest:<br>Petroleum         | : Process               | C. Ferguson<br>04/10/89<br>04/11/89<br>04/11/89                                     | : STATIC<br>(Protocol to                                        | : Rainbow trout                                           | SEDT               | 43:20 68                      | 0000                  |
| ITTONS          |                         |                                 | wint                    | atory<br>ing Method<br>ed By<br>Collected<br>Received<br>Tested                     | ioassay                                                         | DATA                                                      | ELAPS              | 00:00 19:10 43:20 68:20 96:10 | 0000                  |
| TEST CONDITIONS | Сопрапу                 | Region                          | Control point           | Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received<br>Tested | Type of Bioassay                                                | Test Animal<br>Weight(gm)<br>Length(mm)<br>MORTALITY DATA | TEST<br>CONC.      | ×                             | 100<br>100<br>Control |

26

: Non-lethal

96 Hour LC50 95% fid. limits

Comments

SLOPE of Mortality Curve : LC50 Calculated By : none

TOXICITY TEST PARAMETERS

Sample Number: 05890032
IEST ELAPSED TIME
CONC. 00:00 19:10 43:20 68:20 96:10

TEST CONDITIONS

Сопралу Region Control point

Industry

Test Animal Weight(gm) Length(mm)

MODTALITY DATA

TEST CONC.

TOTAL

5505000

0-000

0000000

96 Hour LC50

Corrects

SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

Sample: 01890060

|                         | 00:96          | 8.3<br>9.6<br>630<br>15.0        | 8.3<br>9.5<br>500<br>15.0        | 8.0<br>9.4<br>415<br>15.0        | 8.1<br>9.5<br>380<br>15.0        | 8.1<br>9.5<br>335<br>15.0        | 8.0<br>9.6<br>300<br>15.0        | 7.4<br>9.6<br>260<br>15.0          |
|-------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|
|                         | 72:00 96:00    | 7.9<br>9.8<br>650<br>15.0        | 7.9<br>9.8<br>495<br>15.0        | 8.1<br>9.7<br>410<br>15.0        | 8.0<br>9.7<br>370<br>15.0        | 7.8<br>9.7<br>335<br>15.0        | 7.7<br>9.8<br>295<br>15.0        | 7.6<br>9.7<br>260<br>15.0          |
|                         | 48:00          | 8.1<br>9.7<br>650<br>15.0        | 8.0<br>9.8<br>490<br>15.0        | 8.0<br>9.5<br>415<br>15.0        | 8.0<br>9.8<br>380<br>15.0        | 7.9<br>9.8<br>340<br>15.0        | 7.9<br>9.7<br>300<br>15.0        | 7.6<br>9.7<br>260<br>15.0          |
|                         | 1 M E<br>24:00 | 8.4<br>9.8<br>630<br>15.0        | 8.2<br>9.7<br>500<br>15.0        | 8.0<br>9.4<br>410<br>15.0        | 8.0<br>9.7<br>375<br>15.0        | 8.0<br>9.7<br>340<br>15.0        | 7.9<br>9.7<br>295<br>15.0        | 7.6<br>9.8<br>260<br>15.0          |
|                         | D T 00:30      | 7.5<br>8.5<br>665<br>15.0        | 7.8<br>9.1<br>515<br>15.0        | 7.8<br>9.3<br>420<br>15.0        | 7.7<br>9.4<br>385<br>15.0        | 7.7<br>9.3<br>345<br>15.0        | 7.6<br>9.6<br>305<br>15.0        | 7.7<br>9.5<br>270<br>15.0          |
| 1890060                 | LAPSE 1        | 7.5<br>8.5<br>665<br>15.0        |                                  |                                  |                                  |                                  |                                  |                                    |
| Sample Number: 01890060 | ш              | pH<br>02 ppm<br>cond.<br>Temp(C) | t pH<br>02 ppm<br>cond.<br>Temp(C) |
| Sample                  | TEST<br>CONC.  | 100                              | 9                                | 07                               | 30                               | 20                               | 9                                | Control                            |

TOXICITY TEST REPORT

EPORT Sample: 05890040

|                 | : Shell Canada Products Limited<br>Sarria ONI<br>(51010)<br>: Southwest | : Petroleum Refining | : Process Effluent, (200) | : Pollutech<br>Grab<br>1.Moran<br>05/08/89<br>05/08/89<br>05/09/89 at: 1430         | : STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | : Rainbow trout                         |
|-----------------|-------------------------------------------------------------------------|----------------------|---------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|
| TEST COMDITIONS | Company                                                                 | Industry             | Control point             | Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received<br>Tested | Type of Bioassay                                                                                   | Test Animal<br>Weight(gm)<br>Length(mm) |

SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

|                         |          | 97:10                         |
|-------------------------|----------|-------------------------------|
|                         |          | 00:00 19:00 44:10 69:15 97:10 |
|                         | ш        | 0                             |
|                         | <b>X</b> | **                            |
|                         | <b>X</b> | 75                            |
|                         | -        | 00:0                          |
|                         | 0        | 15                            |
|                         | 123      | 0                             |
| 0                       | 60       | 0:0                           |
| 000                     | ۵        | 00                            |
| 36                      | ELAPSE   |                               |
| 28                      |          |                               |
| 0                       | ш        |                               |
| Sample Number: 05890040 |          |                               |
| Sample                  | TEST     | **                            |

| 7.8        | 7.7     | 7.4                | 7.5                |
|------------|---------|--------------------|--------------------|
| 9.5        | 9.3     | 9.4                | 9.6                |
| 550        | 560     | 168                | 169                |
| 15.0       | 15.0    | 15.0               | 15.0               |
| 7.8        | 9.2     | 7.4                | 7.5                |
| 9.4        |         | 9.3                | 9.4                |
| 15.0       |         | 15.0               | 15.0               |
| 9.6        | 7.6     | 7.2                | 7.3                |
|            | 9.6     | 9.4                | 9.2                |
|            | 15.0    | 15.0               | 15.0               |
| 7.8<br>9.0 | 9.1     | 7.5<br>9.8<br>15.0 | 7.5<br>9.7<br>15.0 |
| 7.2        | 7.3     | 7.3                | 7.3                |
| 8.0        | 8.0     | 10.2               | 10.2               |
| 580        | 580     | 168                | 168                |
| 15.0       | 15.0    | 15.0               | 15.0               |
| pH         | pH      | pH                 | pH                 |
| 02 ppm     | 02 ppm  | 02 ppm             | 02 ppm             |
| Cond.      | Cond.   | Cond.              | cond.              |
| Temp(C)    | Temp(C) | Temp(C)            | Temp(C)            |
| 100        | 100     | Control            | Control            |

0000

0000

0000

0000

0000

0000

100 100 Control 0.0

0.0

96 Hour LC50 95% fid. limits

Comments

: Non-lethal

TOTAL

00:00 19:00 44:10 69:15 97:10

ELAPSED TIME

TEST CONC.

MORTALITY DATA

| Sample Number: 05890004  TEST CONG.  100 DH P S COND.  110 DH P S |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| 05890038    |
|-------------|
| Sample:     |
| TEST REPORT |
| TEST        |
| TOXICITY    |

SLOPE of Mortality Curve : LC50 Calculated By :

| 0.000030        | TEST E LAPSED TIME CONC. 00:00 19:00 44:10 69:15 97:10                                     | 1                          | Cond. 216 (*50 (*50 (*50 (*50 (*50 (*50 (*50 (*50 | 7.7 PH 7.7 7.6 022 ppm 9.3 9.5 | Temp(C)  7 56 pH 02 ppm                                                                          | Cond., 198<br>Temp(C) 15.0 15.0 | 25 pH 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 0 | 10 pH 7.5 7.5<br>C2 ppm 10.0 9.4 | 2 Temp(C) 15.0 15.0     | 1 pH 7.5 7.5 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Temp(C) | Control pH 7.3 7.5 02 ppm 10,2 9.8 | Cond.<br>Temp(C) | Control pH 7.3 7.5 02 ppm 10.2 9.7 |                 |
|-----------------|--------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|---|----------------------------------|-------------------------|---------------------------------------------------|---------|------------------------------------|------------------|------------------------------------|-----------------|
|                 | Shell Canada Products Limited<br>Sarnia ONI<br>(510107)<br>Southwest<br>Petroleum Refining | CW to Talford Creek, (400) | grab<br>T. Moran                                  | 05/08/89<br>05/08/89 at: 1430  | STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | Rainbow trout                   |                                               |   | E D T I M E HORTALITY            | 19:00 44:10 69:15 97:10 | 000                                               | 000     |                                    | 0                | ethal                              | × 0.0 - 0.0 :   |
| TEST CONDITIONS | Sarni<br>Sarni<br>South                                                                    |                            | Sampling Method : gre<br>Sampled By : T.M         |                                | Type of Bioassay :                                                                               |                                 |                                               |   | S A V                            | 00:00 19:00             | 000                                               | 000     | 000                                | 0                |                                    | 95% fid. limits |

TEST CONC

TOXICITY TEST REPORT Sample: 05890039

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

| TEST CONDITIONS                             |                                                                                                    | cume's  | Sample Number: 05890039 | 039                           |        |        |        |             |
|---------------------------------------------|----------------------------------------------------------------------------------------------------|---------|-------------------------|-------------------------------|--------|--------|--------|-------------|
| Сопрапу                                     | : Shell Cenada Products Limited<br>Sarnia, ONI                                                     | TEST    | ELAP                    | PSED                          | 1      | M H    |        |             |
| Region                                      | : Southwest<br>: Petroleum Refining                                                                | ×       |                         | 00:00 19:00 44:10 69:15 97:10 | 9:00:6 | 4:10 6 | 9:15 9 | 7:1         |
| Control point                               | : CW from POM, (500)                                                                               | 100     | HG.                     | 7.8                           | 7.7    | 7.5    | 7.6    | 20          |
| Laboratory<br>Sampling Method<br>Sampled By | Polutech<br>Grab<br>T.Moran                                                                        |         | Cond.<br>Temp(C)        | 218<br>15.0                   | 15.0   | 15.0   | 15.0   | 218<br>15.0 |
| Date Collected<br>Received<br>Tested        | : 05/08/89<br>: 05/08/89<br>: 05/09/89 at: 1430                                                    | 75      | pH<br>02 ppm            | 7.7                           | 7.7    | 9.6    | 9.6    | 7.6         |
|                                             |                                                                                                    |         | Temp(C)                 | 15.0                          | 15.0   | 15.0   | 15.0   | 15.         |
| Type of Bloassay                            | : STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | ,       | pH<br>02 ppm            | 9.6                           | 9.6    | 7.6    | 9.6    | 7.6         |
| Test Animal                                 | : Rainbow trout                                                                                    |         | Temp(C)                 | 15.0                          | 15.0   | 15.0   | 15.0   | 15.         |
| Weight(gm)<br>Length(mm)                    |                                                                                                    | 25      | pH<br>02 ppm            | 7.5                           | 7.6    | 9.6    | 9.6    | 7.6         |
| HORTALITY DATA                              |                                                                                                    |         | Cond.<br>Temp(C)        | 15.0                          | 15.0   | 15.0   | 15.0   | 15.         |
| CONC.                                       | SED TIME MORTALITY                                                                                 | 10      | pH<br>02 ppm            | 9.8                           | 7.6    | 7.6    | 7.6    | 7.5         |
| x 00:00 19:                                 | 00:00 19:00 44:10 69:15 97:10                                                                      | ×       | Temp(C)                 | 15.0                          | 15.0   | 15.0   | 15.0   | 15.         |
|                                             | 00                                                                                                 | 000     | pH<br>02 ppm            | 10.0                          | 7.5    | 9.6    | 9.6    | 7.5         |
| 001                                         | 001                                                                                                | 000     | Temp(C)                 | 15.0                          | 15.0   | 15.0   | 15.0   | 15.         |
| 10 0 0 0 Control 0 0                        |                                                                                                    | Control |                         | 10.2                          | 7.5    | 7.2    | 7.4    | 7.4         |
| 0                                           | 0 0                                                                                                | 0       | Cond.<br>Temp(C)        | 15.0                          | 15.0   | 15.0   | 15.0   | 15.         |
| 96 Hour LC50                                | ethal                                                                                              | Control |                         | 10.2                          | 7.5    | 7.3    | 7.5    | 7.6         |
| 95% fid. limits                             | × 0.0 · 0.0 :                                                                                      |         | Temp(C)                 | 15.0                          | 15.0   | 15.0   | 15.0   | 15.         |

| 90006850 |
|----------|
| Sample:  |
| REPORT   |
| TEST     |
| TOXICITY |

Sample Number: 05890006 00000000 : STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). HORTALITY Shell Canada Products Limited Sarnia, ONI (510107) at: 1230 : Southwest : Petroleum Refining 00:00 22:10 47:10 71:10 93:00 CW to POW, (800) 0.0 0000000 : Rainbow trout ELAPSED TIME : Non-lethal Grab 1. Horan 01/16/89 01/16/89 Pollutech 0.0 00000000 95% fid. limits Leboratory
Serpling Method
Serpled By
Date Collected
Received
Tested Type of Bioassay TEST CONDITIONS MOSTALITY DATA 96 HOUR 1050 Control point 00000000 Test Animal Weight(gm) Length(mm) Comments Region Control Company TEST CONC.

SLOPE of Mortality Curve : LC50 Calculated By : none

| 93:00         | 7.7<br>10.0<br>245<br>15.0       | 7.6<br>10.1<br>220<br>15.0       | 7.6<br>10.0<br>210<br>15.0       | 7.6<br>10.0<br>192<br>15.0       | 7.6<br>9.9<br>189<br>15.0        | 7.6<br>10.2<br>180<br>15.0       | 7.7<br>10.2<br>182<br>15.0          | 10.2                                |
|---------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|-------------------------------------|
| 71:10 93:00   | 7.8<br>10.0<br>15.0              | 7.8<br>10.0<br>15.0              | 7.8<br>10.0<br>15.0              | 7.8<br>10.0<br>15.0              | 9.9                              | 7.8<br>9.8<br>15.0               | 7.8<br>10.0<br>15.0                 | 7.8<br>10.2<br>15.0                 |
| I M E         | 7.6<br>9.8<br>15.0               | 7.6<br>9.8<br>15.0               | 7.6<br>9.9<br>15.0               | 7.6<br>9.7<br>15.0               | 7.5<br>9.8<br>15.0               | 7.6 9.9                          | 9.9                                 | 10.0                                |
| D T 22:10     | 7.8<br>9.6<br>15.0               | 10.01                            | 9.0                              | 10.2                             | 9.7                              | 10.1                             | 9.9                                 | 10.01                               |
| A P S E 00:00 | 7.8<br>9.6<br>238<br>15.0        | 7.8<br>9.8<br>212<br>15.0        | 7.7<br>10.0<br>206<br>15.0       | 190                              | 7.6<br>10.4<br>182<br>15.0       | 7.6<br>10.2<br>174<br>15.0       | 7.6<br>10.4<br>170<br>15.0          | 7.6<br>10.2<br>170<br>15.0          |
| П             | pH<br>02 ppm<br>cond.<br>Temp(C) | ot pH<br>02 ppm<br>cond.<br>Temp(C) | ol pH<br>O2 ppm<br>Cond.<br>Temp(C) |
| TEST<br>CONC. | 100                              | ĸ                                | 92                               | 52                               | 10                               | -                                | Control                             | Control                             |



Shell Canada Products Limited, Sarnia COMPANY:

(510107)

(now with Sarnia Mfg.)

Petroleum Refining SECTOR:

REGION: Southwest

### SUMMARY

Results from 14 Daphnia magna acute lethality toxicity tests on samples collected between December 1988 and May 1989 were submitted by Shell Canada Products Limited in Sarnia. Five of the six samples of Process Effluent were not acutely lethal to Daphnia. The sample collected and tested in December was only mildly toxic with a 48 h LC50> 100% effluent.

Toxicity test results submitted for three samples of Intake Water, two samples from CW. to Talford Creek, two samples of CW. from POW and one sample of CW. to Pow were all not acutely lethal to Daphnia magna.

## intake water

05880007 sampled: 12/12/88 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments:

05890007 sampled: 01/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890037 sampled: 05/08/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

## Process Effluent

05880006 sampled: 12/12/88 non-95% fid. limits: 0.0 - 0.0 % non-lethal

comments: Number of Floating Daphnia Observed

05890008 sampled: 01/16/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments:

05890012 sampled: 02/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890027 sampled: 03/28/89 non-lethal

95% fid. limits: 0.0 - 0.0%

comments:

## Shell Canada Products Limited (continued)

05890032 sampled: 04/10/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

02890060 sampled: 04/26/89 LC50: >100 %

95% fid. limits: 0.0 - 0.0%

comments: MISA Audit

05890040 sampled: 05/08/89 non-95% fid. limits: 0.0 - 0.0 % non-lethal

comments:

SW to Talford creek

CW to Talford Creek

05890004 sampled: 01/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890038 sampled: 05/08/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

CW from POW

05890005 sampled: 01/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890039 sampled: 05/08/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

EO from storm pond

SW to Baby creek

CW to POW

05890006 sampled: 01/16/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

| a     |
|-------|
| -     |
| 4     |
| 1     |
| al.   |
| 0     |
|       |
| 2     |
| 2     |
| w     |
| 75    |
| 8     |
| pare. |
| LLI   |
| er.   |
| 1     |
| 42    |

SLOPE of Mortality Curve : LC50 Calculated By :

Sample: 05880007

TOXICITY TEST REPORT

| TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                             |               |                                     |                           |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------|---------------|-------------------------------------|---------------------------|---------------------------|
| Corpeny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : Shell Canada Products Limited                                                  | Limited                     | Sample        | Sample Number: 05880007             | 280002                    |                           |
| Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sarnia, ONI<br>(510107)<br>: Southwest<br>: Petroleum Refining                   |                             | TEST<br>CONC. | E L                                 | ELAPSED T<br>00:00 47:00  | 7:00                      |
| Control point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : intake water, (100)                                                            |                             |               |                                     |                           |                           |
| Leboratory<br>Serpling Wethod<br>Sampled Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pollutech<br>Grab<br>T.Moran<br>12/12/88                                         |                             | 100           | pH<br>02 ppm<br>Cond.<br>Temp(C)    | 7.8<br>9.4<br>200<br>20.0 | 7.8<br>9.4<br>250<br>20.0 |
| Tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 12/12/88<br>: 12/14/88 at: 1200                                                |                             | 20            | DH OZ ppm                           | 4.00                      | 390                       |
| Type of Bioassay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : STATIC<br>(Depinis magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | Lethality Toxicity<br>1988) | 56            | pH<br>02 ppm                        | 8.9                       | 9.3                       |
| Test Animal<br>Weight(gm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . D. magne                                                                       |                             |               | Cond.<br>Temp(C)                    | 20.0                      | 20.0                      |
| Length(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                             | 13            | pH<br>02 ppm<br>cond.<br>Temp(C)    | 9.2<br>510<br>20.0        | 8.1<br>9.2<br>510<br>20.0 |
| TEST ELAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SED TIME                                                                         | TOTAL                       | 9             | pH<br>02 ppm                        | 8.7                       | 8.1                       |
| x 00:00 47:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                               | <b>3</b> 4                  |               | Cond.<br>Temp(C)                    | 20.0                      | 20.0                      |
| 23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55<br>23.55 |                                                                                  | x0000                       | Control       | of pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.1<br>9.4<br>560<br>20.0 | 8.1<br>9.4<br>570<br>20.0 |
| 48 Mour LC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : Non-lethal                                                                     |                             |               |                                     |                           |                           |
| Corrents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                             |               |                                     |                           |                           |

PEIKULEUM-DAPHNIA

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890007

TOXICITY TEST REPORT

| LESI CONDITIONS                         |                                                                                | Sample  | Sample Number: 05890007          | 20006                     |                           |
|-----------------------------------------|--------------------------------------------------------------------------------|---------|----------------------------------|---------------------------|---------------------------|
| Company                                 | Shell Canada Products Limited<br>Sarnia, ONT<br>(510107)                       | TEST    | EL                               | ELAPSED                   | ± -                       |
| Region :                                | Southwest<br>Petroleum Refining                                                | 2       |                                  | 00:00 47:10               | 7:10                      |
| 77                                      | : intake water, (100) Pollutech Grabu                                          | 100     | pH<br>02 ppm<br>Cond.            | 10.0                      | 7.8                       |
| Date Collected Received Tested          | 01/16/89<br>01/16/89<br>01/17/89 at: 1330                                      | 20      | pH<br>02 ppm<br>Cond.            | 7.9                       | 7.9                       |
| Type of Bioassay                        | STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1989) | 56      | pH<br>02 ppm                     | 8.0                       | 0.00                      |
| Test Animal Weight(gm) Length(mm)       | D. magna                                                                       | 13      | Temp(C) PH 02 ppm                | 20.0                      | 20.02<br>8.0<br>9.6       |
| MORTALITY DATA                          |                                                                                |         | Cond.<br>Temp(C)                 | 20.0                      | 20.02                     |
| CONC. E L A P S CONC. X 00:00 47:10     | ED TIME TOTAL MORTALITY X                                                      | 9       | pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.8<br>560<br>20.0        | 7.8<br>9.6<br>590<br>20.0 |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000                                                                          | Control |                                  | 8.0<br>9.0<br>580<br>20.0 | 8.0<br>9.6<br>600<br>20.0 |
| 48 Hour LC50 : 95% fid. limits :        | Non-lethal<br>0.0 - 0.0 %                                                      |         |                                  |                           |                           |

| TEST CONDITIONS                                                                                                                              |                                                                                                  | Sample Number: 058                     |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|
| Corpeny<br>Region<br>Industry                                                                                                                | : Shell Canada Products Limited<br>Sarnia, ONI<br>(51010)<br>: Southwest<br>: Petroleum Refining | TEST<br>CONC.                          |
| Control point                                                                                                                                | : intake water, (100)                                                                            | 100 pH                                 |
| Laboratory<br>Sampling Method<br>Sampled By                                                                                                  | : Pollutech                                                                                      | 02 ppm<br>Cond.<br>Temp(C)             |
| Date Collected<br>Received<br>Tested                                                                                                         | : 05/08/89<br>: 05/08/89 at: 1320                                                                | 50 pH O2 ppm Cond.                     |
| Type of Bioassay                                                                                                                             | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)                 | 26 pH 02 ppm Cond.                     |
| Test Animal<br>Weight(gm)<br>Length(gm)                                                                                                      | : D. megne                                                                                       | 13 PH<br>02 ppm<br>Cond.               |
| E L A                                                                                                                                        | PSED TIME TOTAL                                                                                  | Hq 9                                   |
| x 00:00 48:10                                                                                                                                |                                                                                                  | Cond.<br>Temp(C)                       |
| 25<br>26<br>26<br>27<br>26<br>26<br>27<br>26<br>26<br>27<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 0,0000                                                                                           | Control pH 02 ppm 02 ppm Cond. Temp(C) |
| 48 Mour 1C50                                                                                                                                 | : Non-lethal                                                                                     |                                        |
|                                                                                                                                              |                                                                                                  |                                        |

8.1 9.2 500 20.0

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05899037

TOXICITY TEST REPORT

APSED TIME 8.1 6.8 480 20.0 20.0 8.8 500 20.0 7.8 8.8 268 20.0 8.8 390 20.0 8.0 8.6 452 20.0 00:00 48:10 7.7 10.2 260 260 20.0 7.9 9.4 8.0 9.0 4.48 8.0 478 20.0 8.0 9.0 490 20.0 500 20.0 890037

TOXICITY TEST REPORT

Sample: 05880006

: STATIC (Daphnia magna Acute Lethality Toxicity Test Protocol. OME, 1988) TOTAL MORTALITY : Shell Canada Products Limited Process Effluent, (200) Sarnia ONT (510107) Southwest Petroleum Refining at: 1100 THE 12/12/88 12/12/88 12/14/88 Pollutech : D. magna T.Horan ELAPSED 00:00 47:30 Laboratory Sampling Method Sampled By Date Collected Received Tested Type of Bioassay TEST CONDITIONS MORTALITY DATA Control point 000000 Test Animal Weight(gm) Length(mm) Region 100 50 26 13 6 control Company TEST CONC. ×

SLOPE of Mortality Curve : >20% <=50% in 100% Concn. LC50 Calculated By :

## TOXICITY TEST PARAMETERS

TEST ELAPSED TIME CONC. 00:00 47:30

Sample Number: 05880006

| pH<br>02 ppm<br>cond.<br>Temp(C) | DH<br>02 ppm<br>Cond.<br>Temp(C | pH<br>02 ppm<br>cond.<br>Temp(C) | 02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | Control pH<br>02 ppm<br>Cond. |
|----------------------------------|---------------------------------|----------------------------------|----------------------------|----------------------------------|-------------------------------|
| 7.2<br>6.8<br>700<br>20.0        | 7.6<br>8.6<br>720<br>20.0       | 7.9<br>9.2<br>600<br>20.0        | 8.1<br>9.5<br>580<br>50.0  | 8.2<br>9.5<br>580<br>50.0        | 9.5                           |
| 7.3<br>7.2<br>720<br>20.0        | 7.9<br>8.6<br>620<br>20.0       | 7.9<br>9.2<br>610<br>20.0        | 8.0<br>9.3<br>605<br>20.0  | 8.1<br>9.3<br>600<br>20.0        | 8.1                           |

175

: Number of Floating Daphnie Observed

0.0 . 0.0

95% fid. limits

Comments

: Non-lethal

48 Hour LC50

| æ   |
|-----|
| -   |
| 22  |
| X   |
| a   |
| or. |
| 0   |
|     |
| X.  |
| =   |
| ш   |
| -   |
| 0   |
| ex  |
|     |
| 111 |
| EZ. |
|     |
| -   |

SLOPE of Mortality Curve : LC50 Calculated By : none

TOXICITY TEST PARAMETERS

Sample: 05890008

TOXICITY TEST REPORT

| KDITIONS                                                                                                        | -                                                                              | Sample        | Sample Number: 05890008            | 80006                     |                           |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|------------------------------------|---------------------------|---------------------------|
| Company : Shell Canada Products Limited Sarnia, DNT (5/10107) (5/10107) Southwest Industry : Petroleum Refining | oducts Limited                                                                 | TEST<br>CONC. | E L /                              | ELAPSED T<br>00:00 47:25  | T 1 M E                   |
| Control point : Process Effluent, (200) Laboratory : Pollutech Secoling Method : T. Moren                       | t, (200)                                                                       | 100           | pH<br>02 ppm<br>Cond.<br>Temp(C)   | 7.3<br>8.0<br>600<br>20.0 | 7.6<br>9.6<br>600<br>20.0 |
| 01/16/89<br>01/16/89<br>01/17/89 at:                                                                            | 1415                                                                           | 20            | pH<br>02 ppm<br>Cond.<br>Temp(C)   | 7.7<br>8.4<br>580<br>20.0 | 7.7<br>9.6<br>600<br>20.0 |
| ASSBY                                                                                                           | SIATIC<br>(Dachnia magna Acute Lethality Toxicity<br>Test Protocol. OHE, 1988) | 26            | pH<br>02 ppm<br>cond.<br>Temp(C)   | 7.9<br>8.6<br>580<br>20.0 | 7.9<br>9.5<br>595<br>20.0 |
| Test Animal : U. magna Length(mn) : Length(mn) :                                                                |                                                                                | 13            | pH<br>02 ppm<br>Cond.<br>Temp(C)   | 8.0<br>8.6<br>580<br>20.0 | 8.0<br>9.6<br>595<br>20.0 |
| TEST ELAPSED TIME                                                                                               | TOTAL<br>HORTALITY                                                             | ٠,            | pH<br>02 ppm<br>Cond.<br>Temp(C)   | 8.0<br>8.6<br>600<br>20.0 | 8.0<br>9.6<br>600<br>20.0 |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                         | 000000                                                                         | Control       | ( pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.0<br>9.0<br>580<br>80.0 | 7.9<br>9.6<br>605<br>20.0 |
| 48 Hour LC50 : Non-lethal                                                                                       | ж                                                                              |               |                                    |                           |                           |
| Comments                                                                                                        |                                                                                |               |                                    |                           |                           |

| 05890012    |
|-------------|
| Sample:     |
| TEST REPORT |
| TEST        |
| TOXICITY    |
|             |

| IEST CONDITIONS                               |                                                                                  |       |
|-----------------------------------------------|----------------------------------------------------------------------------------|-------|
| Сопрапу                                       | : Shell Canada Products Limited<br>Sarnia, ONI<br>(510107)                       |       |
| Region                                        |                                                                                  |       |
| Industry                                      | : Petroleum Refining                                                             |       |
| Control point                                 | : Process Effluent, (200)                                                        |       |
| Laboratory                                    | Pollutech                                                                        |       |
| moling Hethod                                 | C Formittee                                                                      |       |
| Sampled by                                    | 02/06/80                                                                         |       |
| Received                                      | 02/06/89                                                                         |       |
| Tested                                        | : 02/07/89 at: 1615                                                              |       |
| Type of Bioassay                              | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) |       |
| Test Animal<br>Weight(gm)<br>Length(mm)       | . D. magna                                                                       |       |
| HORTALITY DATA                                |                                                                                  |       |
| CONC.                                         | E D T I M E MORTALITY                                                            |       |
| x 01:25 46:25                                 |                                                                                  | ж     |
| 256<br>00<br>00<br>13<br>00<br>00<br>00<br>13 |                                                                                  | 00000 |
|                                               |                                                                                  | 00    |

0.0

0.0

95% fid. limits Comments

SLOPE of Mortality Curve : LC50 Calculated By : none

# TOXICITY TEST PARAMETERS

Sample Number: 05890012

| T I M E              | 8.8.90                                      | 25.500.                                    | 0000                                       | 8.0<br>9.3<br>700<br>20.0          | 8.0<br>9.4<br>660<br>20.0          | 8.0<br>9.4<br>650<br>20.0          |
|----------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| P S E D<br>01:25 46: | 7.2 7.5<br>7.0 7.8<br>980 1100<br>20.0 20.0 | 7.6 7.8<br>8.4 8.2<br>800 820<br>20.0 20.0 | 7.8 7.9<br>8.6 9.0<br>720 750<br>20.0 20.0 | 7.9 8<br>9.0 9<br>680 7<br>20.0 20 | 8.0 8<br>9.2 9<br>660 6<br>20.0 20 | 8.0 8<br>9.2 9<br>620 6<br>20.0 20 |
| ELA                  | pH<br>O2 ppm<br>Cond.<br>Temp(C)            | pH<br>02 ppm<br>cond.<br>Temp(C)           | pH<br>02 ppm<br>Cond.<br>Temp(C)           | pH<br>02 ppm<br>Cond.<br>Temp(C)   | pH<br>02 ppm<br>Cand.<br>Temp(C)   | U pH<br>02 ppm<br>Cond.<br>Temp(C) |
| TEST<br>CONC.        | 100                                         | 80                                         | 56                                         | 13                                 | 9                                  | Control                            |

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890027

TOXICITY TEST REPORT

I M E

| TEST CONDITIONS                                |                                                                                  | Sample        | Sample Number: 05890027          | 0027                       |                                   |
|------------------------------------------------|----------------------------------------------------------------------------------|---------------|----------------------------------|----------------------------|-----------------------------------|
| Compeny<br>Region<br>Industry                  | Spring ONT<br>Spring ONT<br>(51010)<br>Southwest<br>Petroleum Refining           | TEST<br>CONC. | E L A                            | ELAPSED T<br>00:00 48:00   | T<br>8:00                         |
| Control point<br>Leboratory<br>Sempling Method | : Process Effluent, (200) : Pollutech : Grab                                     | 100           | pH<br>O2 ppm<br>Cond.<br>Temp(C) | 7.3                        | 7.6<br>8.2<br>700<br>20.0         |
| ste Collected<br>Received<br>Tested            | : 03/28/89<br>: 03/28/89<br>: 03/28/89 at: 1400                                  | 20            | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.6<br>8.3<br>610<br>20.0  | 7.8<br>8.3<br>610<br>20.0         |
| Type of Bioassay                               | : STATIC<br>(Dephnia magna Acute Lethality Toxicity<br>Test Protocol. CME, 1988) | 56            | pH<br>02 ppm<br>cond.            | 7.8<br>8.9<br>595          | 2590                              |
| Test Animal Weight(gm) Length(gm)              | . D. magna                                                                       | 13            | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.9<br>9.2<br>580<br>20.0  | 8.0<br>8.7<br>570<br>20.0         |
| TEST E L A P S COM.C. X 00:00 48:00            | SED TIME HORTALITY X                                                             | •             | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.9<br>9.2<br>530<br>20.0  | 8.0<br>9.3<br>510<br>20.0         |
| heur Heur                                      | : Won-tethel                                                                     | Control       | 1 pH<br>Cond.<br>Temp(C)         | 7.8<br>9.6<br>20.0<br>20.0 | 8.0<br>9.5<br>500<br>20.0<br>20.0 |
| Corrents                                       |                                                                                  |               |                                  |                            |                                   |

TOXICITY TEST REPORT

Sample: 05890032

| EST CONDITIONS                                     |                                                                  |                                                                                |
|----------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Сопрапу                                            | : Shell Canada Products Limited<br>Sarnia, ONT<br>(510107)       | cts Limited                                                                    |
| Region                                             | : Southwest<br>: Petroleum Refining                              |                                                                                |
| Control point                                      |                                                                  | (200)                                                                          |
| Laboratory<br>Sampling Method                      | : Pollutech                                                      |                                                                                |
| Sampled By<br>Date Collected<br>Received<br>Tested | . C. Ferguson<br>: 04/10/89<br>: 04/10/89<br>: 04/10/89 at: 1540 | 0                                                                              |
| Type of Bioassay                                   | : STATIC<br>(Daphnia magna Act<br>Test Protocol. Of              | STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) |
| Test Animal<br>Weight(gm)<br>Length(mm)            | . D. magna                                                       |                                                                                |
| MORTALITY DATA                                     |                                                                  |                                                                                |
| CONC.                                              | SED TIME                                                         | TOTAL                                                                          |
| \$ 00:00 48:05                                     | :05                                                              | 34                                                                             |
| 250<br>260<br>13<br>60<br>60                       |                                                                  | 00000                                                                          |

0.0

95% fid. limits 48 Hour LCSO

Comments

: Non-lethal 0.0

SLOPE of Mortality Curve : LC50 Calculated By : none

|                         | ш             |                                  |                                  |                                  |                                  |                                  |                                  |
|-------------------------|---------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                         | T 1 M         | 7.7<br>8.6<br>550<br>20.0        | 7.9<br>8.6<br>550<br>20.0        | 7.9<br>8.9<br>520<br>20.0        | 8.0<br>9.2<br>472<br>20.0        | 8.0<br>9.3<br>498<br>20.0        | 8.0<br>9.4<br>505<br>20.0        |
| 90032                   | A P S E D T   | 7.4<br>8.4<br>500<br>20.0        | 7.9<br>8.8<br>495<br>20.0        | 8.0<br>8.9<br>490<br>20.0        | 8.1<br>9.3<br>500<br>20.0        | 8.1<br>9.5<br>505<br>20.0        | 8.0<br>9.5<br>500<br>20.0        |
| Sample Number: 05890032 | E L           | pH<br>02 ppm<br>Cond,<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) |
| Sample                  | TEST<br>CONC. | 100                              | 20                               | 56                               | 13                               | 9                                | Control                          |

TEST CONDITIONS

Сопрелу

| Shell Canada Products Limited Sample: 02890 Sarial ONI (\$1010) Southwest Percleum Refining Process Effluent, (200) Webe (\$1010) Suthwest Process Effluent, (200) Webe (\$1010) Suthwest Process Effluent, (200) Webe (\$1010) Suthwest Brock Hamilton (\$1010) Webe (\$1010) Web (\$1010) | Sample: 02890060 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|

Leboratory
Sampling Method
Sampled By
Date Collected
Received
Tested

Control point

Region Industry Type of Bioassay

00:00 24:00

66 30 33 15 50 Control

MORTALITY DATA

TEST COMC.

Test Animal Veight(gm) Length(mm) 95x fid. limits

Comments

0521 JUCH 87

| REPORT   |
|----------|
| TEST     |
| TOXICITY |
|          |

Sample: 05890040

|                                                                                         | Type of Bioassay : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| : 05/11/89 at:                                                                          |                                                                                                   |
| 1.Moran<br>: 05/08/89<br>: 05/11/89 at:                                                 | ** **                                                                                             |
| : Pollutech<br>Grab<br>(Grab<br>(9/08/89<br>(9/108/89<br>(05/11/89 at:                  |                                                                                                   |
| : Process Effluer<br>: Pollutech<br>: Grab<br>: I.Moran<br>: 05/08/89<br>: 05/11/89 at: |                                                                                                   |
| 00 00 00 00 00 00 00 00                                                                 |                                                                                                   |
| ** 00 00 00 00 00 00 00 00 00                                                           | ** ** ** ** ** ** **                                                                              |

| 34          | 00000                                 |              |
|-------------|---------------------------------------|--------------|
| 8:00        | 00000                                 | : Non-lethal |
| 00:00 48:00 | 000000                                | 1050         |
| 36          | 100<br>50<br>26<br>13<br>6<br>Control | 48 Hour LC50 |

0.0

0.0

95% fid. limits

Comments

TOTAL

TIME

ELAPSED

TEST CONC.

MORTALITY DATA

SLOPE of Mortality Curve : LC50 Calculated By :

|                         | ω<br><b>x</b> |                                  |                                  |                                  |                                  |                                  |                                    |
|-------------------------|---------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|
|                         | 0 T 1         | 7.6<br>8.6<br>650<br>20.0        | 7.8<br>8.7<br>590<br>20.0        | 7.9<br>8.7<br>550<br>20.0        | 7.9<br>9.4<br>510<br>20.0        | 7.9<br>9.3<br>510<br>20.0        | 7.9<br>9.2<br>510<br>20.0          |
| 890040                  | A P S E 00:00 | 7.4<br>8.8<br>580<br>20.0        | 7.7<br>8.8<br>540<br>20.0        | 7.9<br>8.8<br>520<br>20.0        | 7.9<br>8.8<br>500<br>20.0        | 8.8<br>8.8<br>500<br>20.0        | 8.0<br>8.8<br>500<br>20.0          |
| Sample Number: 05890040 | EL            | pH<br>02 ppm<br>Cond.<br>Temp(C) | L pH<br>02 ppm<br>Cond.<br>Temp(C) |
| Sample                  | TEST<br>CONC. | 100                              | 20                               | 56                               | 13                               | 9                                | Control                            |

| TOXICITY TEST REPORT Sample: 05890004                                                                                    | TOXICITY TEST PARAMETERS                                                  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| TEST CONDITIONS                                                                                                          |                                                                           |
| Compeny : Shell Canada Products Limited Sarnia, DNI (510107) (510107) (510107) (510107)                                  | Sample Number: 05890004  TEST ELAPSED TIME CONC. 000.1155                 |
| oint :                                                                                                                   |                                                                           |
| Laboratory : Pollutech Sampling Method : Grab Sampled By : 1. Moran Date Collected : 01/16/89 Tested : 01/16/89 at: 1645 | 8.0<br>250<br>250<br>20.0<br>8.1                                          |
| Type of Bioassay : STATIC (Daphnia magna Acute Lethality Toxicity Test Protocol. OME, 1988)                              | 20.0                                                                      |
| Test Animal : D. magna i edith(ms) : Perath(ms) : Perath(ms) : D. magna                                                  | Cond. 480<br>Temp(C) 20.0                                                 |
| <b>*</b>                                                                                                                 | 13 pH 8.2 8.2<br>02 ppm 9.6 8.9<br>cond. 520<br>Termo(C) 20.0             |
|                                                                                                                          | 10.0                                                                      |
| 200000 41555                                                                                                             |                                                                           |
| 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                   | Control pH 8.1 8.2<br>Copp. 9.8 9.1<br>Cond. 560 580<br>Temp(C) 20.0 20.0 |
| 48 Hour LC50 : Non-lethal                                                                                                |                                                                           |
| 75% fid. limits : 0.0 - 0.0 %                                                                                            |                                                                           |
| in a subdition                                                                                                           |                                                                           |

| _   |
|-----|
| =   |
| z   |
| X   |
| D.  |
| 0   |
| 0   |
| I   |
| H   |
|     |
| 0   |
| 200 |
| ш   |
| 0.  |
| -   |
| S   |
|     |

| TEST CONDITIONS                         |                                                                                  | Samole        | Sample Number: 058         |
|-----------------------------------------|----------------------------------------------------------------------------------|---------------|----------------------------|
| Сопрапу                                 | : Shell Canada Products Limited<br>Sarria ONI<br>(510107)                        | TEST<br>CONC. | EL                         |
| Region                                  | : Southwest<br>: Petroleum Refining                                              | ĸ             |                            |
| Control point                           | : CW to Talford Creek, (400)                                                     | 100           | 품                          |
| Laboratory                              | : Pollutech                                                                      |               | 02 ppm                     |
| Sampling Method                         |                                                                                  |               | Temp(C)                    |
| Date Collected                          | 05/08/89                                                                         | C L           | ne                         |
| Received                                | : 05/08/89<br>: 05/09/89 at: 1300                                                |               | Cond.                      |
|                                         |                                                                                  |               | lemp(C)                    |
| Type of Bioassay                        | : STAIT,<br>Claphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 56            | PH<br>02 ppm<br>Cond.      |
| Test Animal                             | : D. magna                                                                       |               | Temp(C)                    |
| Weight(gm)<br>Length(mm)                |                                                                                  | 13            | DH 02 ppm                  |
| MORTALITY DATA                          |                                                                                  |               | Temp(C)                    |
| CONC.                                   | SED TIME TOTAL HORFALITY                                                         | 9             | DH<br>02 ppm<br>Cond.      |
| x 00:00 48:10                           | 10 %                                                                             |               | Temp(C)                    |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000                                                                            | Control pH    | 02 ppm<br>Cond.<br>Temp(C) |
| Control                                 |                                                                                  |               |                            |

: Non-lethal 0.0

95% fid. limits 48 Hour LC50

Comments

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890038

TOXICITY TEST REPORT

| ш                     |             |
|-----------------------|-------------|
| I                     |             |
| -                     |             |
| Jess                  | 10          |
| 390038<br>A P S E D   | 00:00 48:10 |
| ш                     | 0           |
| ω v                   | 0:0         |
| 6                     | 0           |
| 90<br>A               |             |
| 05890038<br>E L A P S |             |
|                       |             |
| £ 5                   |             |
| Sample Number<br>TEST |             |

| 7.8     | 8.0     | 8.0     | 8.0     | 8.1     |
|---------|---------|---------|---------|---------|
| 8.6     | 8.6     | 8.6     | 8.6     | 8.6     |
| 262     | 392     | 420     | 480     | 490     |
| 20.0    | 20.0    | 20.0    | 20.0    | 20.0    |
| 7.8     | 7.9     | 8.0     | 8.0     | 8.0     |
| 9.2     | 8.8     | 8.8     | 8.8     | 8.8     |
| 254     | 382     | 440     | 472     | 486     |
| 20.0    | 20.0    | 20.0    | 20.0    | 20.0    |
| pH      | pH      | pH      | pH      | pH      |
| 02 ppm  | 02 ppm  | 02 ppm  | O2 ppm  | O2 ppm  |
| cond.   | cond.   | cond.   | Cond.   | Cond.   |
| Temp(C) | Temp(C) | Temp(C) | Temp(C) | Temp(C) |
| 100     | 20      | 56      | 13      | 9       |

| TEST CONDITIONS Compeny Region Industry Control point Leboratory Sampling Nethod Sampling Nethod Sampling Rethod Sampling Rethod Sampling Rethod Sampling Rethod Sampling Rethod Instead | : Shell Canada Products Limited (Saria, ONI (510101) : Southwest : Southwest : Petroleum Refining : Cw from Pow, (500) : Pollutech : Moren : Moren : Moren : Moren : 1, Moren : | 0 4                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Type of Bicassay Test Animal Weight(gm) Length(mm) MORTALITY DATA                                                                                                                        | : STATIC<br>(Dephnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)<br>: D. magna<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cond.  Temp(C) 20.0  PH 9.6  Cond.  Cond.  PH 9.6  Cond.  PH 9.6  Cond.  Cond.  Cond.  Cond.  Cond.  Cond.                   |
| 7,                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 ph 8.2 8.1<br>Cond. 520 560<br>Cond. 520 560<br>Control ph 8.1 8.1<br>Control pm 9.8 9.0<br>Cond. 560<br>Temp(C) 20.0 20.0 |
| 48 Mour LC50<br>95% fid. limits<br>Compenie                                                                                                                                              | : Mon-lethal<br>: 0.0 - 0.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              |

| 05890039 |
|----------|
| Sample:  |
| REPORT   |
| TEST     |
| TOXICITY |

|                                                  | Shell Canada Products Limited |
|--------------------------------------------------|-------------------------------|
|                                                  |                               |
|                                                  | efining                       |
| Laboratory : Pollutech<br>Sampling Method : Grab | , (500)                       |
| • • •                                            |                               |
|                                                  |                               |
| ate Collected : 05/08/89                         |                               |
|                                                  |                               |
| 68/60/50 :                                       | at: 1200                      |

| Toxicity                                                                         |                                         |                |
|----------------------------------------------------------------------------------|-----------------------------------------|----------------|
| Lethality<br>1988)                                                               |                                         |                |
| Acute<br>OME,                                                                    |                                         |                |
| : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | D. magna                                |                |
| ••                                                                               | ** ** **                                |                |
| Type of Bioassay                                                                 | Test Animal<br>Weight(gm)<br>Length(mm) | MORTALITY DATA |
|                                                                                  |                                         |                |

|        | 00:00 | 00:00 49:15 | × |
|--------|-------|-------------|---|
|        | 0     | 2           | 3 |
|        | 0 0   | 3 4         | 2 |
|        | 0     | 0           |   |
|        | 0     | 0           |   |
| 13     | 0     | 0           |   |
|        | 0     | .0          |   |
| ontrol |       |             | 0 |

TOTAL MORTALITY

TIME

ELAPSED

TEST CONC. Control pH 02 ppm Cond. Temp(C)

|                 | : Non-lethal  |     |   |
|-----------------|---------------|-----|---|
| 95% fid. limits | : 0.0 - 0.0 : | 0.0 | * |
|                 |               |     |   |

SLOPE of Mortality Curve : LC50 Calculated By :

|               | LLI    |             |
|---------------|--------|-------------|
|               | H H    |             |
|               | -      |             |
|               | -      | 00:00 49:15 |
|               | 0      | 67          |
|               | ш      | 0           |
| 0             | S      | 0:          |
| 0             | 4      | 00          |
| 360           | ~      |             |
| : 0589003     | ELAPSE |             |
| 0             | ш      |             |
| ample Number: |        |             |
| Sample        | TEST   | **          |

| 7.8<br>8.4<br>268<br>20.0        | 7.9<br>8.4<br>384<br>20.0        | 8.0<br>8.6<br>450<br>20.0        | 8.6<br>480<br>20.0               | 8.6<br>498<br>20.0               |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 7.9<br>9.2<br>254<br>20.0        | 8.0<br>9.0<br>372<br>20.0        | 8.0<br>8.8<br>440<br>20.0        | 8.8<br>460<br>20.0               | 8.8<br>480<br>20.0               |
| pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>G2 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) |
| 100                              | 20                               | 26                               | 13                               | 9                                |

| TOX                                                                              | TOXICITY TEST REPORT Sample: 05890006                                                       | TOXICITY TEST PARAMETERS        |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|
| TEST CONDITIONS                                                                  |                                                                                             |                                 |
| Corceny : Sh<br>Sa<br>Region : So<br>Industry : Pe                               | Shell Canada Products Limited<br>Sarnia, ONT<br>(510107)<br>Southwest<br>Petroleum Refining | Sample Number: 05890006  TEST   |
| Control point : CW                                                               | CW to POW, (800)                                                                            |                                 |
| Leboratory Sampling Method : Gr. Sampled By T. Date Collected : 01. Tested : 01. | Pollutech<br>Grab<br>17. Moren<br>01/16/89<br>01/17/89 at: 1330                             |                                 |
| Type of Bloassay : ST<br>(D)                                                     | SIATIC<br>(Dephnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)              | 430<br>20.0<br>8.0              |
| Test Animal : D.<br>Weight(gm) :<br>Length(mm) :                                 | тедпе                                                                                       | 20°0<br>20°0<br>8°0             |
| MODITALITY DATA                                                                  |                                                                                             | 02 ppm 8.8 9.6<br>Cond. 520 580 |
| COMC.                                                                            | T I H E HORTALITY                                                                           | 20.0                            |
| 2 00:00 76:00                                                                    | ×                                                                                           | Cond. 520 580                   |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 00000                                                                                       | 8.0<br>9.0<br>580<br>20.0       |
| 48 Hour LCS0 : No                                                                | Won-lethal                                                                                  |                                 |
| 95% fid. limits : (                                                              | × 0.0 - 0.0                                                                                 |                                 |
| · Company                                                                        |                                                                                             |                                 |



Suncor Inc., Sarnia COMPANY:

(490102)

(now with Sunoco Division)

SECTOR: Petroleum Refining
REGION: Southwest

### SUMMARY

The data for six trout bioassays, conducted on process effluent samples collected between December 1988 and May 1989, were provided by Suncor Incorporated. All six process effluent samples were determined to have been non-acutely lethal to test fish. Trout bioassays conducted on intake water samples collected during the same period were determined to have been non-acutely lethal. Data for one trout bioassay conducted on a cooling water sample collected in March 1989 indicate the sample was not acutely lethal.

### intake water

05880004 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890003 sampled: 01/09/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890014 sampled: 02/06/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments:

05890023 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890030 sampled: 04/03/89 non-lethal

95% fid. limits: 0.0 - 0.0%

comments:

05890035 sampled: 05/01/89 non-lethal

95% fid. limits: 0.0 -0.0 %

comments:

## Suncor Inc. (continued)

Process Effluent

05880003 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890002 sampled: 01/09/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890013 sampled: 02/06/89 non-95% fid. limits: 0.0 - 0.0 % non-lethal

comments:

05890024 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

01890032 sampled: 03/29/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: MISA audit sample

non-lethal 05890029 sampled: 04/03/89 95% fid. limits: 0.0 - 0.0 %

comments:

05890034 sampled: 05/01/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

cooling water

05880005 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890025 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

01890033 sampled: 03/29/89 non-lethal 95% fid. limits: 0.0 - 0.0%

comments: MISA audit sample

landfarm leachate

Suncor Inc. (continued)

| REPORT   |
|----------|
| TEST     |
| TOXICITY |

Sample: 05880004

| TEST CONDITIONS               |                                                |                                                                                            |
|-------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|
| Сопрапу                       | : Suncor Inc.<br>Sarnia, ONT<br>(490102)       |                                                                                            |
| Region<br>Industry            | : Southwest<br>: Petroleum Refining            | jing                                                                                       |
| Control point                 | : intake water, (100)                          | (100)                                                                                      |
| Laboratory<br>Sampling Method | : Pollutech<br>Grab                            |                                                                                            |
| ate Collected<br>Received     | 12/12/88                                       |                                                                                            |
| Tested                        | : 12/13/88 at:                                 | 1130                                                                                       |
| Type of Bioassay              | : STATIC<br>(Protocol to de<br>of liquid efflu | STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). |
| Test Animal<br>Weight(gm)     | Rainbow trout                                  |                                                                                            |

|                |                    | 34                                              | 0   | 0 | 0  | 0  | 0 |
|----------------|--------------------|-------------------------------------------------|-----|---|----|----|---|
|                | TOTAL<br>MORTALITY | 95:10                                           | 0   | 0 | 0  | 0  | < |
|                | 3                  | 00:00 02:10 03:10 05:00 22:10 46:25 70:25 95:10 | 0   | 0 | 0  | 0  | 0 |
|                |                    | 46:25                                           | 0   | 0 | 0  | 0  |   |
|                | ш                  | 22:10                                           | 0   | 0 | 0  | 0  | C |
|                | ¥                  | 02:00                                           | 0   | 0 | 0  | 0  | < |
|                | E D                | 03:10                                           | 0   | 0 | 0  | 0  | < |
|                | LAPS               | 02:10                                           | 0   | 0 | 0  | 0  | • |
| Y DATA         | 1                  | 00:00                                           | 0   | 0 | 0  | 0  | • |
| MORTALITY DATA | TEST<br>CONC.      | 34                                              | 100 | 2 | 26 | 25 |   |

| 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 22222              |                                   |
|-----------------------------------------------------------------------------------------|--------------------|-----------------------------------|
| Non-lethal                                                                              | 200000             |                                   |
| Non-lethal                                                                              |                    |                                   |
| Non-lethal                                                                              | 000000             |                                   |
| Non-lethal                                                                              | 000000             |                                   |
|                                                                                         | 000000             | 34                                |
|                                                                                         | 000000             | 0.0                               |
|                                                                                         | 000000             | ethal .                           |
| 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                | 000000             | Non-1                             |
| 56<br>25<br>10<br>10<br>Control<br>0<br>Control<br>0<br>96 Hour LC50<br>95x fid. limits |                    |                                   |
| 56<br>25<br>10<br>Control<br>Control<br>96 Hour LC50<br>95x fid. limits                 | 000000             |                                   |
| S6<br>25<br>10<br>10<br>Control<br>Control<br>96 Hour L<br>95% fid.                     | 000000             | .c50<br>limits                    |
|                                                                                         | Sontrol<br>Control | 96 Hour 1<br>95% fid.<br>Corrents |
|                                                                                         | 0110               |                                   |

SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

Sample Number: 05880004

| ×       |                  | 00:00 02:10 0 | 03:10 05:00 22:10 | 46:25 | 70:25 | 95:10 |
|---------|------------------|---------------|-------------------|-------|-------|-------|
| 100     | pH<br>02 ppm     | 7.6           | 7.6               | 7.7   | 7.7   | 7.7   |
|         | Cond.<br>Temp(C) | 315           | 15.0              | 15.0  | 15.0  | 15.   |
| 75      | pH<br>02 ppm     | 10.3          | 7.7               | 7.8   | 10.3  | 10.0  |
|         | Cond.<br>Temp(C) | 15.0          | 15.0              | 15.0  | 15.0  | 15.   |
| 95      | pH<br>02 ppm     | 7.3           | 7.7               | 10.0  | 7.8   | 10.0  |
|         | Cond.<br>Temp(C) | 15.0          | 15.0              | 15.0  | 15.0  | 15.   |
| 25      | pH<br>02 ppm     | 10.2          | 7.7               | 7.8   | 10.1  | 7.8   |
|         | Cond.<br>Temp(C) | 15.0          | 15.0              | 15.0  | 15.0  | 15.   |
| 10      | pH<br>02 ppm     | 10.01         | 7.6               | 9.8   | 10.1  | V-0.  |
|         | Cond.<br>Temp(C) | · 0           | 15.0              | 15.0  | 15.0  | 15.   |
| -       | pH<br>02 ppm     | 10.2          | 7.6               | 7.8   | 10.1  | 10.01 |
|         | Cond.<br>Temp(C) | 15.0          | 15.0              | 15.0  | 15.0  | 15    |
| Control |                  | 10.2          | 7.6               | 10.1  | 10.2  | 10.2  |
|         | Cond.<br>Temp(C) | 15.0          | 15.0              | 15.0  | 15.0  | -12   |
| Control |                  | 10.3          | 7.6               | 10.1  | 10.2  | 10.1  |
|         | Temp(C)          | 15.0          | 15.0              | 15.0  | 15.0  | -10   |

SLOPE of Mortality Curve : LC50 Calculated By : none

| -    |  |  |
|------|--|--|
| -    |  |  |
| ÇD.  |  |  |
| Penn |  |  |
| 44   |  |  |
| _    |  |  |
| 4    |  |  |
| -    |  |  |
| 5    |  |  |
| -    |  |  |
| ш    |  |  |
| -    |  |  |
| 0    |  |  |
| EX   |  |  |
| =    |  |  |
|      |  |  |
| w    |  |  |
| 0    |  |  |
| 0    |  |  |
| -    |  |  |
| 75   |  |  |
| S    |  |  |
|      |  |  |

SLOPE of Mortality Curve : LC50 Calculated By : none

TOXICITY TEST PARAMETERS

Sample: 05890014

TOXICITY TEST REPORT

| TEST CONDITIONS                          |                                                                                                    | N elome? | Sample Number: 05890014          | 014                           |                    |                    |                    |                            |
|------------------------------------------|----------------------------------------------------------------------------------------------------|----------|----------------------------------|-------------------------------|--------------------|--------------------|--------------------|----------------------------|
| Сомрапу                                  | : Suncor Inc.                                                                                      | TEST     | ELA                              | PSED                          | -                  | H E                |                    |                            |
| Region                                   | (490102)<br>: Southwest<br>: Petroleum Refining                                                    | CONC     |                                  | 00:00 26:10 50:00 75:10 96:00 | 6:10 50            | 2 00:0             | :10 9              | 9:00                       |
| Control point Laboratory Sampling Method | : intake water, (100) : Pol(utech : Grab                                                           | 100      | pH<br>02 ppm<br>Cond.            | 7.7<br>10.2<br>282<br>15.0    | 9.6                | 7.6                | 7.6                | 7.6<br>10.1<br>292<br>15.0 |
| Date Collected<br>Received<br>Fested     | 02/06/89<br>02/06/89<br>02/07/89 at: 1130                                                          | K        | pH<br>02 ppm<br>Cond.            | 7.6<br>10.4<br>252<br>15.0    |                    | 9.6                | 9.6                | 7.6<br>10.1<br>262<br>15.0 |
| Type of Bioassay                         | : STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | 26       | pH<br>02 ppm<br>cond.            | 7.6                           |                    | 7.6                | 7.6                | 7.6<br>10.1<br>242         |
| Test Animal<br>Weight(gm)<br>Length(mm)  | : Rainbow trout<br>:                                                                               | 25       | Temp(C) pH 02 ppm                | 7.5<br>10.2<br>194            | 7.7                | 7.6                | 7.6                | 7.6<br>9.8<br>205          |
| MORTALITY DATA                           |                                                                                                    |          | Temp(C)                          | 15.0                          | 15.0               | 15.0               | 15.0               | 15                         |
| CONC.                                    | ELAPSED TIME TOTAL MORTALITY MORTALITY X                                                           | 10       | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.5<br>10.2<br>168<br>15.0    | 7.6 9.4            | 9.4                | 9.6                | 7.6<br>9.8<br>190<br>15.0  |
|                                          | 0000                                                                                               | ***      | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.4<br>10.4<br>166<br>15.0    | 7.6<br>9.2<br>15.0 | 7.5<br>9.2<br>15.0 | 7.6                | 7.6<br>10.2<br>179<br>15.0 |
| trol 0 trol 0                            | 0000                                                                                               | Control  | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.3<br>10.0<br>178<br>15.0    | 7.4<br>9.9<br>15.0 | 7.5 9.9            | 7.3<br>9.8<br>15.0 | 7.5<br>10.2<br>178<br>15.0 |
| 96 Hour LC50<br>95% fid. limits          | : Non-lethal<br>: 0.0 - 0.0 %                                                                      | Control  | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.3<br>10.0<br>178<br>15.0    | 7.5<br>9.8<br>15.0 | 7.5<br>9.8<br>15.0 | 7.4 9.9            | 7.5<br>10.2<br>178<br>15.0 |

| MISA-PETROLEUM-FISH                                                |                                                                                                 |                                          | SLOPE o<br>LC50 Ca | SLOPE of Mortality Curve<br>LC50 Calculated By : |                            | none    |                                  |                                  |         |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|--------------------------------------------------|----------------------------|---------|----------------------------------|----------------------------------|---------|--|
|                                                                    | TOXICITY TEST REPORT                                                                            | Sample: 05890023                         | TOXICIT            | TOXICITY TEST PARAMETERS                         | ETERS                      |         |                                  |                                  |         |  |
| TEST CONDITIONS                                                    |                                                                                                 |                                          | Sample             | Sample Number: 05890023                          | 0023                       |         |                                  |                                  |         |  |
| Сопрапу                                                            | : Surcor Inc.<br>Sarnia, ONT<br>(490102)                                                        |                                          | TEST<br>CONC.      | ELA                                              | ELAPSED                    | THE     | ш                                |                                  |         |  |
| Region<br>Industry                                                 | : Southwest<br>: Petroleum Refining                                                             |                                          | 34                 |                                                  | 00:00                      | 1:00 49 | 00:00 20:00 49:10 68:00 94:10    | 00 94:                           | 0       |  |
| Control point                                                      | : intake water, (100)                                                                           |                                          | 100                | Hd                                               | 7.8                        | 7.8     | 7.7 7.6                          | 1                                | 7       |  |
| Leboratory<br>Sampling Method<br>Sampled By                        | : Pollutech<br>: Grab<br>: C. Ferguson                                                          |                                          |                    | 02 ppm<br>Cond.<br>Temp(C)                       | 10.5<br>15.0               |         |                                  | .2 9.9<br>315<br>.0 15.0         | Ф:M-О   |  |
| Date Collected<br>Received<br>Tested                               | : 03/06/89<br>: 03/06/89<br>: 03/07/89 at: 1530                                                 |                                          | 100                | pH<br>02 ppm<br>cond.<br>Temp(C)                 | 7.8<br>10.6<br>310<br>15.0 | 9.2     | 7.7 7.7<br>9.9 10.0<br>15.0 15.0 | 7.8<br>.0 10.1<br>315<br>.0 15.0 | 02+8    |  |
| Type of Bioassay                                                   | : STATIC<br>(Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | the acute lethality<br>fish. OME, 1983). | Control            |                                                  | 10.00                      | 9.8     | 7.6 7.5                          | 2. 10.2                          | V- C180 |  |
| Test Animal                                                        | : Rainbow trout                                                                                 |                                          |                    | Temp(C)                                          | 15.0                       | 15.0    | 15.0 15.                         | 15.0 15                          | 0       |  |
| Length(mm)                                                         |                                                                                                 |                                          | Control            | pH<br>02 ppm<br>Cond                             | 9.9                        | 9.6     | 7.6 7.9                          | 7.6 7.7<br>10.2 10.3<br>178      | ~ m @   |  |
| MORTALITY DATA                                                     |                                                                                                 |                                          |                    | Temp(C)                                          | 15.0                       | 15.0    | 15.0 15                          | 15.0 15                          | 0       |  |
| TEST ELAPS                                                         | SED TIME                                                                                        | TOTAL                                    |                    |                                                  |                            |         |                                  |                                  |         |  |
| x 00:00 20:00                                                      | 49:10 68:00 94:10                                                                               | 3-6                                      |                    |                                                  |                            |         |                                  |                                  |         |  |
| 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | -000                                                                                            | <u>0</u> 000                             |                    |                                                  |                            |         |                                  |                                  |         |  |
| 96 Hour LC50                                                       | : Non-lethal                                                                                    |                                          |                    |                                                  |                            |         |                                  |                                  |         |  |
| 35% fid. limits                                                    | : 0.0 - 0.0 :                                                                                   |                                          |                    |                                                  |                            |         |                                  |                                  |         |  |
| Comments                                                           |                                                                                                 |                                          |                    |                                                  |                            |         |                                  |                                  |         |  |
|                                                                    |                                                                                                 |                                          |                    |                                                  |                            |         |                                  |                                  |         |  |

| -        |
|----------|
| 10       |
| 0.1      |
| -        |
| -        |
| -        |
| 4        |
| -        |
| ш        |
| -        |
| 0        |
| DX.      |
| <b>-</b> |
| 11.2     |
| 0        |
|          |
| 4        |
| 60       |

| TEST CONDITIONS                                           |                                                                                              | Sample Number: 05890030                         | 90030                     |                                            |                                 |       |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------|--------------------------------------------|---------------------------------|-------|
| Company : 8                                               | Survior Inc.<br>Sarnia ONI<br>(490102)<br>Southwest<br>Petroleum Refining                    | TEST E L<br>CONC.                               | E L A P S E D<br>00:00 19 | PSED TIME<br>00:00 19:15 46:10 69:00 95:10 | e<br>0 69:00                    | 95:10 |
| oint<br>y                                                 | : intake water, (100)<br>: Pollutech                                                         | 100 pH<br>02 ppm                                | 7.6<br>10.2<br>310        |                                            |                                 | 7.6   |
| Sampling Method Sampled By Date Collected Received Tested | Grab<br>04/03/89<br>04/03/89<br>04/04/89 at: 1330                                            | Temp(C)<br>100 pH<br>02 ppm<br>Cond.<br>Temp(C) |                           | 7.4 7.4<br>9.2 9.7<br>15.0 15.0            | 7.4 7.5<br>9.7 9.6<br>15.0 15.0 |       |
| Type of Bioassay :                                        | : STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | Control pH<br>02 ppm<br>Cond.                   | 10.2                      | 7.3 7 9.2 10                               | 7.6 7.3                         | 10.0  |
| Test Animal ::<br>Weight(gm) ::<br>Length(mm) ::          | : Rainbow trout                                                                              | Control pH 02 ppm Cond.                         | 10.2                      |                                            |                                 |       |
| MORTALITY DATA                                            |                                                                                              | Coldinal                                        |                           |                                            |                                 |       |
| TEST ELAPSE<br>CONC.                                      | TOTAL<br>MORTALITY                                                                           |                                                 |                           |                                            |                                 |       |
| x 00:00 19:15 4                                           | 00:00 19:15 46:10 69:00 95:10                                                                |                                                 |                           |                                            |                                 |       |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                   | 0000                                                                                         |                                                 |                           |                                            |                                 |       |
| 96 Hour LC50 :                                            | Non-lethal                                                                                   |                                                 |                           |                                            |                                 |       |
| 95% fid. limits :                                         | % 0.0 - 0.0                                                                                  |                                                 |                           |                                            |                                 |       |
| Comments                                                  |                                                                                              |                                                 |                           |                                            |                                 |       |

none

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890030

TOXICITY TEST REPORT

|                                                                                                                                                                                                                                                                                                                                | TOXICITY TEST REPORT Sample: 05890035                                                                     | TOXICITY TEST PARAMETERS                                  | RS                                                          |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|
| TEST COMDITIONS Company Region Industry                                                                                                                                                                                                                                                                                        | Suncor Inc.<br>Saria, ONT<br>(490102)<br>Southwest<br>Petroleum Refining                                  | Semple Number: 05890035 TEST E L A P S E D CONC. 00:00 2' | 035<br>PSED TIME<br>00:00 21:30 47:30 72:30 97:30           | 7:30                                           |
| Leboratory Sampling Method Sampled Baye Date Collected Tested                                                                                                                                                                                                                                                                  | : intake water, (100) : Pollutech Grab C. Ferguson : 05/01/89 : 05/01/89 : 05/02/89 at: 1400              |                                                           | 3.7<br>8.8<br>8.8<br>7.0<br>7.0<br>8.9                      | 7.5<br>2.98<br>15.0<br>7.3<br>9.6<br>9.6<br>88 |
| yessey                                                                                                                                                                                                                                                                                                                         | STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983).  Rainbow trout | Control pH Control pH Cond Cond Temp(C) 1                 | 7.3 7.6 7.6 7.6 7.6 10.01 15.0 15.0 15.0 15.0 15.0 15.0 15. | 7.3<br>10.1<br>172<br>15.0                     |
| Metantigm) Meathlity DATA TEST TEST TOWC.  X 00:00 21:30 100 0 0 Control 0 0 0 | A P S E D T I M E MORTALITY 21.30 47:30 77:30 97:30  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  | Control pH cood. October 1 Cond. Temp(C) 1                | 7.3 7.6 7.6 7.9<br>10.4 10.0 9.4 9.9<br>15.0 15.0 15.0 15.0 | 15.0                                           |

TOXICITY TEST REPORT Sample: 05880003

| Succor Inc. (400102) (400102) (500104081) (500104081) (600104061) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401) (700401)  | (300)<br>0<br>maine<br>s to    | the acute lethality<br>fish. OME, 1983). | 3).         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------|-------------|
| Southwest Petroleum Process Ef Pollutech Grab 12/12/88 12/12/88 12/13/88 12/13/88 12/13/88 12/13/88 12/13/88 12/13/88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (300)                          | the acute letha<br>fish. OME, 198        | lity<br>3). |
| Process Ef<br>Cnab<br>17. Noran<br>12.12.18<br>12.12.18<br>12.13.88<br>12.13.88<br>12.13.88<br>12.13.88<br>12.13.88<br>12.13.88<br>12.13.88<br>12.13.88<br>12.13.88<br>12.13.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (300)<br>30<br>mine<br>ts to   | the acute Letha<br>fish. OME, 198        | 3).         |
| Hethod : Pollutech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130<br>determine<br>Luents to | the acute Letha<br>fish. OME, 198        | 3).         |
| ioassay : STATIC (Protocol of Liquid of 1 iquid of 1 iq | determine<br>Luents to         | the acute letha<br>fish. OME, 198        | lity<br>3). |
| Animal  th(gm)  th(mm)  ALITY DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ut                             |                                          |             |
| ELAPSED TIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ш                              | TOTAL                                    |             |
| x 00:00 02:10 03:10 05:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22:10 46:10 70:00 95:10        | 70:00 95:10                              | ж           |
| 755 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0000000                        | 0000000                                  | 0000000     |
| 96 Hour LC50 : Non-lethal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                          |             |
| 95% fid. limits : 0.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0 %                          |                                          |             |
| Comments :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                          |             |

SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

| CONC.   | A<br>L           | A P S E D<br>00:00 02 | T 1 M E:10 03:10 | 05:00 22:10 46:10 70:00 95:10 | 46:10 | 70:00 | 95:10 |
|---------|------------------|-----------------------|------------------|-------------------------------|-------|-------|-------|
| 100     | PH<br>02 ppm     | 7.2                   |                  | 7.5                           | 7.6   | 7.5   | 10.01 |
|         | Cond.<br>Temp(C) | 15.0                  |                  | 15.0                          | 15.0  | 15.0  | 1500  |
| 23      | pH<br>02 ppm     | 7.2                   |                  | 9.6                           | 7.6   | 7.6   | 10.0  |
|         | Cond.<br>Temp(C) | 15.0                  |                  | 15.0                          | 15.0  | 15.0  | 15.6  |
| 26      | pH<br>02 ppm     | 10.2                  |                  | 9.8                           | 7.7   | 7.6   | 10.0  |
|         | Cond.<br>Temp(C) | 15.0                  |                  | 15.0                          | 15.0  | 15.0  | 15.0  |
| 52      | pH<br>02 ppm     | 10.4                  |                  | 7.6                           | 7.7   | 10.01 | 10.01 |
|         | Cond.<br>Temp(C) | 15.0                  |                  | 15.0                          | 15.0  | 15.0  | 15.0  |
| 10      | pH<br>02 ppm     | 10.8                  |                  | 7.6                           | 7.7   | 10.1  | 10.0  |
|         | Cond.<br>Temp(C) | 15.0                  |                  | 15.0                          | 15.0  | 15.0  | 15.0  |
| -       | pH<br>02 ppm     | 10.8                  |                  | 9.8                           | 7.8   | 10.1  | 10.2  |
|         | Temp(C)          | 15.0                  |                  | 15.0                          | 15.0  | 15.0  | 15.0  |
| Control | pH<br>02 ppm     | 10.2                  |                  | 10.0                          | 10.01 | 10.1  | 7.6   |
|         | Cond.<br>Temp(C) | 15.0                  |                  | 15.0                          | 15.0  | 15.0  | 15.0  |
| Control | pH<br>02 ppm     | 10.3                  |                  | 7.6                           | 7.6   | 7.6   | 10.1  |
|         | Cond.            | 15.0                  |                  | 15.0                          | 15.0  | 15.0  | 15.0  |

|                                             | TOXICITY TEST REPORT                                   | Sample: 05890002                                                                           | TOXICIT | LUSU Calculated By : TOXICITY TEST PARAMETERS | ETERS                      |        |                               |        |                            |
|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|---------|-----------------------------------------------|----------------------------|--------|-------------------------------|--------|----------------------------|
| FEST CONDITIONS                             |                                                        |                                                                                            |         |                                               |                            |        |                               |        |                            |
| Сопрелу                                     | : Suncor Inc.                                          |                                                                                            | Sample  | Sample Number: 05890002                       | 05890002                   |        | 31<br>                        |        |                            |
| Region<br>Industry                          | (490102)<br>: Southwest<br>: Petroleum Refining        |                                                                                            | CONC    |                                               | 00:00                      | 3:00 4 | 00:00 23:00 47:10 71:10 96:10 | :10 96 | :10                        |
| Control point                               | : Process Effluent, (300)                              | 000                                                                                        |         |                                               | ,                          |        |                               |        | 1                          |
| Leboratory<br>Sampling Method<br>Sampled By | Grab<br>T. Moran                                       |                                                                                            | 001     | pH<br>02 ppm<br>Cond.<br>Temp(C)              | 6.6<br>9.8<br>1120<br>15.0 | 9.5    | 9.9                           | 9.7    | 6.7<br>9.8<br>1080<br>15.0 |
| Received                                    | : 01/09/89<br>: 01/12/89 at: 1130                      |                                                                                            | К       | pH<br>02 ppm<br>cond.                         | 9.9                        | 7.3    |                               |        | 9.8                        |
| Type of Bioassay                            | : STATIC<br>(Protocol to determine of liquid effluents | STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | 26      | pH<br>02 ppm                                  | 7.2                        | 7.5    | 7.4                           | 7.5    | 7.4                        |
| Test Animal                                 | : Rainbow trout                                        |                                                                                            |         | Cond.<br>Temp(C)                              | 15.0                       | 15.0   | 15.0 1                        | 15.0 1 | 2.0                        |
| Length (mm)                                 | . 40                                                   |                                                                                            | 25      | pH<br>02 ppm                                  | 7.6                        | 9.8    | 7.6                           | 9.9    | 10.0                       |
| MODIALITY DATA                              |                                                        |                                                                                            |         | Temp(C)                                       | 15.0                       | 15.0   | 15.0 1                        | 15.0 1 | 2.0                        |
| CONC. E L A P                               | SED TIME                                               | TOTAL<br>HORTALITY                                                                         | 10      | pH<br>02 ppm                                  | 10.4                       | 10.01  | 7.7                           | 7.7    | 7.7                        |
| x 00:00 23:0                                | 23:00 47:10 71:10 96:10                                | ж                                                                                          |         | Temp(C)                                       | 15.0                       | 15.0   | 15.0 1                        | 15.0 1 | 292                        |
|                                             | 000                                                    | 000                                                                                        | -       | pH<br>02 ppm                                  |                            | 7.7    | 7.8                           | 10.01  | 10.0                       |
| 000                                         | 000                                                    | 000                                                                                        |         | Temp(C)                                       | 15.0                       | 15.0   | 15.0 1                        | 15.0 1 | 15.0                       |
| Control                                     | 000                                                    | 000                                                                                        | Control |                                               | 10.6                       | 7.6    | 7.6                           | 7.8    | 7.7                        |
| 0                                           | 0                                                      | 0                                                                                          |         | Cond.<br>Temp(C)                              | 15.0                       | 15.0   | 15.0 1                        | 15.0 1 | 164                        |
| 96 HOUR LCSD                                | : Non-lethal                                           |                                                                                            | Control | pH<br>02                                      |                            | 7.6    | 7.6                           | 1.7.7  | 7.7                        |
| 95% fid. limits                             | : 0.0 - 0.0 :                                          |                                                                                            |         | Cond.                                         | 165                        |        |                               |        | 15.0                       |
| S. John S.                                  |                                                        |                                                                                            |         |                                               |                            |        |                               |        |                            |

|                                                                                                               | LC50 Calculated By : none                                                                     |                                                      |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------|
| TOXICITY TEST REPORT Sample: 05890013                                                                         | TOXICITY TEST PARAMETERS                                                                      |                                                      |
| : Summor Inc.<br>Sarnia, OM:<br>(400102)<br>: Southwest<br>: Petroleum Refining                               | Sample Number: 05890013<br>TEST E L A P S E D T I M E<br>COMC. 00:00 21:10 45:00 70:10 95:00  | E<br>0 70:10 95:0                                    |
| : Process Effluent, (300) : Pollutech : Grab : C. Ferguson                                                    | 100 pH 7.1 7.3 COND. 1000 15.0 15.0 15.0 15.0 15.0 15.0 15.                                   | 7.3 7.4 7.3<br>9.4 9.5 9.8<br>1050<br>15.0 15.0 15.0 |
|                                                                                                               | 75 pH 7.2 7.4 7 02 ppm 9.9 9.5 5 02 ppm 800 10 10 10 15.0 15.0 15.0 15.0 15.0 15.             | 7.4 7.4 7.4<br>9.2 9.5 9.8<br>860<br>15.0 15.0 15.0  |
| Type of Bioassay : STATIC (Protocol to determine the acute Lethality of Liquid effluents to fish. OME, 1983). | 7.3 7.5<br>10.4 9.5<br>650<br>15.0 15.0                                                       | 7.5 7.5 7.5<br>9.2 9.8 9.8<br>690<br>15.0 15.0 15.0  |
|                                                                                                               | 7.4 7.7<br>10.8 9.6<br>350<br>15.0 15.0                                                       | 7.5<br>9.6<br>15.0                                   |
| ELAPSED TIME TOTAL  HORTALITY  00:00 21:10 45:00 70:10 95:00 **                                               | 10 pH 7.5 7.6 7 7.6 7 7.6 7 7.6 7 7.6 7 7 7.6 7 7 7 7                                         | 7.5 7.4 7.4<br>9.4 9.4 9.2<br>260<br>15.0 15.0 15.0  |
|                                                                                                               | 1 pH 7.4 7.6 02 ppm 17.0 9.2 02 ppm 17.0 17.0 17.0 17.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15 | 7.4 7.3 7.3<br>9.2 9.8 9.2<br>225<br>15.0 15.0 15.0  |
| 0000                                                                                                          | Control pH 7.3 7.7 02 pm 10.8 9.8 6 0.0nd 16.8 16.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0   | 7.4 7.6 7.6<br>9.9 10.0 9.7<br>172<br>15.0 15.0 15.0 |
| 96 Hour LC50 : Non-tethal<br>95% fid. limits : 0.0 - 0.0 %                                                    | Control pH 7.3 7.6 7.9 7.6 7.9 7.6 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0                    | 7.5 7.5 7.6<br>9.8 9.9 9.7<br>172<br>15.0 15.0 15.0  |

| PORT Sample: 05890024 |                 |                            | ing                                 | it, (300)                 | 1530                                                                                | SIATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). |                                         |                | TOTAL<br>MORTALITY | ×                       | 0000           |
|-----------------------|-----------------|----------------------------|-------------------------------------|---------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|----------------|--------------------|-------------------------|----------------|
| TOXICITY TEST REPORT  |                 | Suncor Inc.<br>Sarnia, ONT | : Southwest<br>: Petroleum Refining | : Process Effluent, (300) | Pollutech<br>Greb<br>C. Ferguson<br>03/06/89<br>03/06/89                            | : STATIC<br>(Protocol to de<br>of liquid efflu                                             | : Rainbow trout                         |                | ED TIME            | 20:00 49:10 68:00 94:10 | 0000           |
|                       | DITIONS         |                            |                                     | point                     | atory<br>ing Method<br>ed By<br>Collected<br>Received<br>Tested                     | sioassay                                                                                   | 1200                                    | DATA           | ELAPSED            | 00:00 20:00             | 0000           |
|                       | TEST CONDITIONS | Сопрану                    | Region                              | Control point             | Leboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received<br>Tested | Type of Bioassay                                                                           | Test Animal<br>Weight(gm)<br>Length(gm) | MORTALITY DATA | TEST<br>CONC.      | 34                      | 190<br>Control |

none SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

Sample Number: 05890024

| 94:10                                        | 7.2<br>10.0<br>1160<br>15.0      | 7.2<br>10.1<br>1140<br>15.0      | 7.7<br>10.2<br>178<br>15.0 | 7.7<br>10.3<br>178<br>15.0 |
|----------------------------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|
| 68:00                                        | 7.3<br>10.2<br>15.0              | 10.0                             | 10.2                       | 7.4<br>10.2<br>15.0        |
| T I M E:00 49:10                             | 7.3<br>9.6<br>15.0               | 7.2<br>9.5<br>15.0               | 7.6<br>10.1<br>15.0        | 7.6<br>9.8<br>15.0         |
| D T                                          | 7.3<br>9.4<br>15.0               | 7.1<br>9.6<br>15.0               | 7.5<br>9.8<br>15.0         | 7.5                        |
| LAPSED TIME<br>00:00 20:00 49:10 68:00 94:10 | 7.0<br>9.0<br>1180<br>15.0       | 7.0<br>8.9<br>1180<br>15.0       | 7.6<br>10.0<br>168<br>15.0 | 7.6<br>9.9<br>15.0         |
| ш                                            | pH<br>02 ppm<br>Cond.<br>Temp(C) | pH<br>02 ppm<br>Cond.<br>Temp(C) | 02 ppm<br>Cond.<br>Temp(C) | 02 ppm<br>Cond.<br>Temp(C) |
| TEST<br>CONC.                                | 100                              | 100                              | Control                    | Control                    |

0.0

0.0

95% fid. Umits 95 MOUR LESO

Sandada.

: Won-lethal

| 32       |
|----------|
| 01890033 |
| Sample:  |
| REPORT   |
| TEST     |
| TOXICITY |

SLOPE of Mortality Curve LC50 Calculated By : PARAMETERS

OXICITY TEST

| TEST CONDITIONS                             |                                     |                                                                         |                    |                                                                                                  | Samole        | Sample Number: 018                       |
|---------------------------------------------|-------------------------------------|-------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------|---------------|------------------------------------------|
| Сопрапу                                     | Sarnia, ONT (490102)                | Inc.<br>ONT                                                             |                    |                                                                                                  | TEST<br>CONC. | E L                                      |
| Region                                      | Southwest<br>Petroleum              | Southwest<br>Petroleum Refining                                         | ing                |                                                                                                  | 34            |                                          |
| Control point                               | : Process                           | Process Effluent, (300)                                                 | t, (300)           |                                                                                                  | 000           | 7                                        |
| Laboratory<br>Sampling Method<br>Sampled By | grab<br>D. Hami                     | Iton                                                                    |                    |                                                                                                  | 2             | 02 ppm<br>cond.<br>Temp(C)               |
| Date Collected<br>Received<br>Tested        | 03/30/89<br>03/30/89<br>03/30/89    |                                                                         | 1500               |                                                                                                  | 99            | pH<br>02 ppm<br>Cond.<br>Temp(C)         |
| Type of Bioassay                            | : STATIC<br>(Protoc<br>of liqu      | STATIC<br>(Protocol to determine the ac<br>of liquid effluents to fish. | termine<br>ents to | STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | 70            | 02 ppm                                   |
| Test Animal                                 | : Rainbow trout                     | trout                                                                   |                    |                                                                                                  |               | Temp(C)                                  |
| Weight(gm)<br>Length(mm)                    |                                     |                                                                         |                    |                                                                                                  | 30            | pH<br>02 ppm<br>Cond.                    |
| MORTALITY DATA                              |                                     |                                                                         |                    |                                                                                                  |               | Temp(C)                                  |
| CONC.                                       | SEDT                                | æ<br>E                                                                  |                    | TOTAL<br>MORTALITY                                                                               | 20            | DH<br>02 ppm                             |
| x 00:00 00:3                                | 00:00 00:30 24:00 48:00 72:00 96:00 | 3:00 72:0                                                               | 00:96 0            | 34                                                                                               |               | Temp(C)                                  |
| 000000000000000000000000000000000000000     | 00000                               | 00000                                                                   | 00000              | 0000                                                                                             | 10            | pH<br>02 ppm<br>Cond.<br>Temp(C)         |
|                                             | 000                                 |                                                                         | 000                | 000                                                                                              | Contro        | Control pH<br>02 ppm<br>Cond.<br>Temp(C) |
| 96 Hour LC50                                | : Non-lethal                        | ethal                                                                   |                    |                                                                                                  |               |                                          |
| 95% fid. limits                             | 0.0                                 | 0.0                                                                     | 24                 |                                                                                                  |               |                                          |

7.7 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15

7.7

7.7 9.4 405 15.0

7.8

7.9 4.10 5.0 7.9 7.9 15.0 15.0

7.5

7.7 8875 8875 15.0 15.0 15.0 15.0 15.0

7.8 888 15.0 16.0 650 15.0 17.8 7.8 7.8 7.8

00:96

48:00 72:00

00:30 24:00

8.7 870 15.0

H ...

P S E D

890032

7.9

7.9

7.8 9.8 260 15.0

MISA audit sample

Comments

SLOPE of Mortality Curve : LC50 Calculated By : none

| Sample Number: 05890029  EEST  E L A P S E D T I H E  CONC.  00:00 19:15 46:10 69:00 95:10  100 DH |
|----------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------|

| 05890034    |
|-------------|
| Sample:     |
| TEST REPORT |
| TEST        |
| TOXICITY    |

|                                                                    |                                                                                                  | Sample Number: USBYUUS4    | 05890034                   |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|----------------------------|
| Company : Sunc                                                     | Sumoor Inc.<br>Sornia, ONI                                                                       | TEST E                     | LAPSE                      |
| Region : Sout                                                      | rannon<br>Southwest<br>Petroleum Refining                                                        | ×                          | 00:00                      |
| Control point : Proc                                               | Process Effluent, (300)                                                                          | 100 PH                     | 7.                         |
| Laboratory : Pollu<br>Sampling Method : Grab<br>Sampled By : C. Fe | Pollutech<br>Grab<br>C. Ferguson                                                                 | 02 ppm<br>Cond.<br>Temp(C) | 1100<br>15.0               |
|                                                                    | 05/01/89<br>05/02/89 at: 1400                                                                    | 100 pH<br>02 ppm<br>Cond.  | 7.1<br>8.5<br>1100<br>1100 |
| Type of Bioassay : STATIC (Protoco of Liqu                         | SIATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | Control pH<br>02 ppm       |                            |
| Test Animal : Rair<br>Weight(gm) :<br>Length(mm) :                 | Rainbow trout                                                                                    | Temp(C) Control pH 02 ppm  |                            |
| MORTALITY DATA                                                     |                                                                                                  | Temp(C)                    |                            |
| TEST ELAPSED CONC.                                                 | T I H E TOTAL HORTALITY                                                                          |                            |                            |
| x 00:00 21:30 47:30                                                | 0 72:30 97:30                                                                                    |                            |                            |
| 100<br>100<br>Control 0 0 0<br>Control 0 0 0                       | 0000                                                                                             |                            |                            |
| 96 Hour LC50 : Noi                                                 | Non-lethal                                                                                       |                            |                            |
| : st                                                               | × 0.0 - 0.0                                                                                      |                            |                            |
| Comments                                                           |                                                                                                  |                            |                            |

SLOPE of Mortality Curve : LC50 Calculated By : none

# TOXICITY TEST PARAMETERS

|        | 97:30       | 7.1       |
|--------|-------------|-----------|
|        | 72:30       | 9.1       |
| TIME   | 47:30       | 7.3       |
| Q      | 00:00 21:30 | 7.3       |
| ELAPSE | 00:00       | 7.1       |
| EL     |             | PH 02 ppm |
| TEST   | CONC.       | 100       |

| 100     | pH<br>02 ppm     | 7.1  | 7.3   | 7.3  | 7.2  | 7.1  |
|---------|------------------|------|-------|------|------|------|
|         | Cond.<br>Temp(C) | 15.0 | 15.0  | 15.0 | 15.0 | 15.0 |
| 100     | pH<br>02 ppm     | 7.1  | 7.2   | 7.2  | 7.2  | 9.6  |
|         | Cond.<br>Temp(C) | 15.0 | 15.0  | 15.0 | 15.0 | 15.0 |
| Control | pH<br>02 ppm     | 7.3  | 7.6   | 7.6  | 7.6  | 10.1 |
|         | Cond.<br>Temp(C) | 15.0 | 15.0  | 15.0 | 15.0 | 15.0 |
| Control | pH<br>02 ppm     | 7.3  | 10.01 | 7.6  | 7.5  | 10.0 |
|         | Cond.<br>Temp(C) | 15.0 | 15.0  | 15.0 | 15.0 | 15.0 |

| 05880005      |
|---------------|
| Sample:       |
| Y TEST REPORT |
| TEST          |
| TOXICITY      |

| 100 100 100 100 100 100 100 100 100 100                                                             |
|-----------------------------------------------------------------------------------------------------|
| 100<br>75<br>75<br>56<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| the that ity 56 10 10 10 10 10 10 10 10 10 10 10 10 10                                              |
| 25 25 10 10 0 Control                                                                               |
| × 0000000                                                                                           |
| * * 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                            |
| 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0    |
|                                                                                                     |

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

7.8 9.9 270 15.0 7.8 9.9 288 15.0 7.7 10.0 200 15.0 7.7 10.1 182 15.0 7.7 10.1 170 15.0 7.6 10.2 168 15.0 7.6 10.2 168 15.0 02:10 03:10 05:00 22:10 46:25 70:25 95:25 10.1 10.1 10.1 7.8 15.0 15.0 7.8 15.0 7.7 15.0 7.7 15.0 7.7 15.0 15.0 15.0 15.0 15.0 7.7 15.0 7.7 15.0 7.7 15.0 10.1 10.0 7.7 15.0 15.0 10.0 15.0 7.8 15.0 7.7 15.0 7.7 15.0 7.7 15.0 7.6 7.6 15.0 7.6 15.0 9.6 15.0 DITIME

| REPORT   |
|----------|
| TEST     |
| TOXICITY |
|          |

| TEST CONDITIONS                          |                                                   |                                                                                                  |                | 00000                            | 6                          |
|------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------------------------|----------------------------|
| Company                                  | Sarnia, ONT                                       |                                                                                                  | Sample<br>TEST | Sample Number: USB90025          | 025<br>P S E               |
| Region                                   | : Southwest<br>: Petroleum Refining               | gu                                                                                               | NO.            |                                  | 00:00                      |
| Control point                            | : cooling water, (400)                            | 400)                                                                                             |                |                                  | 1                          |
| Sampling Method<br>Sampled 89            | : Pollutech<br>: grab<br>: C. Ferguson            |                                                                                                  | 000            | pH<br>02 ppm<br>Cond.<br>Temp(C) | 9.8<br>318<br>15.0         |
| Received                                 |                                                   | 1520                                                                                             | 23             | pH<br>02 ppm<br>cond.            | 7.7                        |
| Type of Bioassay                         | : STATIC<br>(Protocol to dete<br>of liquid efflue | STATIC<br>(Protocol to determine the acute lethality<br>of liquid effluents to fish. OME, 1983). | 95             | pH<br>02 ppm                     | 7.7                        |
| Test Animal                              | : Rainbow trout                                   |                                                                                                  |                | Cond.<br>Temp(C)                 | 5.5                        |
| Length(mm)                               |                                                   |                                                                                                  | 52             | DH<br>O2 ppm<br>Cond.            | 7.6<br>9.6<br>202          |
| TEST ELAP                                | SED TIME                                          | TOTAL                                                                                            | 10             | pH<br>02 ppm                     | 7.                         |
|                                          | 00:00 20:10 49:20 68:10 95:10                     |                                                                                                  |                | Cond.<br>Temp(C)                 | 180                        |
| 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000                                             | 00000                                                                                            | -              | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.5<br>9.9<br>170<br>15.0  |
| itrol 0                                  | 0000                                              | 0000                                                                                             | Control        | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.6<br>10.0<br>168<br>15.0 |
| 96 Hour LC50                             | : Non-lethal                                      |                                                                                                  | Control        |                                  | 7                          |
| 95% fid. limits                          | 0.0 - 0.0 :                                       | 34                                                                                               |                | 02 ppm<br>Cond.<br>Temp(C)       | 15.0                       |

SLOPE of Mortality Curve : LC50 Calculated By :

## TOXICITY TEST PARAMETERS

Sample: 05890025

| CONC.            | 100                              | 75 PH 022 022 CO 1 FM            | 56 pH<br>02<br>02<br>1eq         | 25 PH 02 02 COI                  | 10<br>02<br>02<br>02<br>16       | 1<br>002<br>169                  | Control pH<br>02<br>02<br>00     | Control ph            |
|------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------|
|                  | pH<br>02 ppm<br>cond.<br>Temp(C) | pH<br>02 ppm<br>Cond. |
| 00:00            | 7.7<br>9.8<br>318<br>15.0        | 7.7<br>9.8<br>280<br>15.0        | 7.7<br>9.7<br>250<br>15.0        | 7.6<br>9.6<br>202<br>15.0        | 7.6<br>10.0<br>180<br>15.0       | 7.5<br>9.9<br>170<br>15.0        | 7.6<br>10.0<br>168<br>15.0       | 7.6                   |
| 20:10            | 7.8<br>9.6<br>15.0               | 7.8<br>9.4<br>15.0               | 7.8<br>9.4<br>15.0               | 7.7<br>9.4<br>15.0               | 9.2                              | 7.8<br>9.6<br>15.0               | 7.5<br>9.8<br>15.0               | 7.5                   |
| 49:20            | 9.8                              | 7.7 9.7                          | 7.7<br>9.7<br>15.0               | 7.7<br>9.6<br>15.0               | 9.9                              | 7.8<br>9.8<br>15.0               | 7.6<br>10.1<br>15.0              | 7.6                   |
| 9:20 68:10 95:10 | 10.2                             | 10.2                             | 10.0                             | 10.0                             | 7.6<br>9.8<br>15.0               | 10.2                             | 7.5                              | 7.6                   |
| 95:10            | 315.0                            | 7.7<br>9.8<br>280<br>15.0        | 7.7<br>10.1<br>252<br>15.0       | 7.7<br>9.8<br>208<br>15.0        | 7.7<br>9.5<br>188<br>15.0        | 7.7<br>9.8<br>182<br>15.0        | 7.7<br>10.2<br>178<br>15.0       | 10.3                  |

| Control pH   Control ity Curve   Control pH   Cond   Con | 1 1 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| L A P S E D T I H E  1890033  L A P S E D T I H E  1800033  L A P S E D T I H E  1800030  1800030003000300315  180003000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  18000300315  180003000300315  1800030030003000300030003000300030003000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L A P S E D T I H E  1890033  L A P S E D T I H E  19.00 00:30 24:00 48:00 72:0  7.8 18.1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 |
| 11 H E  10:30 24:00 48  18.1 7.8  18.1 7.8  15.0 15.0 15.0  15.0 15.0 15.0  15.0 15.0 15.0  15.0 15.0 15.0  15.0 15.0 15.0  15.0 15.0 15.0  15.0 15.0 15.0  15.0 15.0 15.0  15.0 15.0 15.0  15.0 15.0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 H E  10.30 24:00 48:00 72:0  18.1 7.8 7.8 7.8 7.8  10.0 33:5 33:5 33:5 33:5 33:5 33:5 33:5 33:                                |
| H E :: 00 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 227 00: 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                     |



COMPANY: Suncor Inc., Sarnia

(490102)

(now with Sunoco Division)

SECTOR: Petroleum Refining REGION: Southwest

### SUMMARY

Data for 14 Daphnia magna acute lethality toxicity tests conducted on samples collected between December 1988 and May 1989 were submitted by Suncor Inc. in Sarnia. Six samples of Process Effluent were not acutely lethal to Daphnia.

Seven samples of Intake Water and one sample of Cooling Water were all not acutely lethal to

Daphnia.

### intake water

05880004 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890003 sampled: 01/09/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890014 sampled: 02/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890023 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890030 sampled: 04/03/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890035 sampled: 05/01/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments:

### Process Effluent

05880003 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890002 sampled: 01/09/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

### Suncor Inc. (continued)

05890013 sampled: 02/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890024 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

02890032 sampled: 03/29/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: MISA Audit

05890029 sampled: 04/03/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890034 sampled: 05/01/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

cooling water

05880005 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

05890025 sampled: 03/06/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

02890033 sampled: 03/29/89 LC50: >100 % 95% fid. limits: 0.0 - 0.0 %

comments: MISA Audit

landfarm leachate

| SLOPE of Mortality Curve : LC50 Calculated By : LC50 Calculated By : TOXICITY TEST PARAMETERS |                                                                                | 100 pH 7.8 7.8 7.8 0.2 pm 10.4 9.3 0.3 yr 0. | 20.05<br>98.1<br>500<br>20.0<br>20.0<br>9.1<br>520                | 20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0                       |              |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|
| TOXICITY TEST REPORT                                                                          | : Suncer Inc.<br>Sarnia OMI<br>(490102)<br>: Southwest<br>: Petroleum Refining | : intake water, (100) : Pollutech : Grab : 12/12/88 : 12/12/88 : 12/14/88 at: 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : STATIC<br>(Despinia magna Ac<br>Test Protocol. G<br>: D. magna  | 30 T I I K E                                                               | . Non-tethal |
|                                                                                               | TEST COMDITIONS Company Region Industry                                        | Control point<br>Leboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Received<br>Tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type of Bioassay Test Animal Weight(gm) Length(mm) HOSTALITY DATA | TEST E L A P S CONC.  x 00:00 47:30 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1050         |

| 6                                                    | 500000000000000000000000000000000000000                                        | 10000000 or lower 2     | 2200    | TOVICITY TEST DADAMETEDS         | 200                       |                           |
|------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|---------|----------------------------------|---------------------------|---------------------------|
| 10.                                                  | TOXICITY TEST REPORT                                                           | Sample: USBYUUUS        | IOVICE  | II IESI PARAMEI                  | C L                       |                           |
| TEST CONDITIONS                                      |                                                                                |                         | Sample  | Sample Number: 05890003          | 003                       |                           |
| Company : St                                         | Surcor Inc.<br>Sarnia, ONT                                                     |                         | TEST    | ELAPSE                           | SED                       | TIME                      |
| Region : Sc<br>Industry : Pe                         | Southwest<br>Petroleum Refining                                                |                         | ×       | 0                                | 00:00 48:10               | 8:10                      |
| Control point : ir                                   | intake water, (100)                                                            |                         | 100     | Hd                               |                           | 7.8                       |
| Sampling Method : Gr<br>Sampled By                   | Grab<br>T. Moran                                                               |                         |         | 02 ppm<br>Cond.<br>Temp(C)       | 10.2<br>360<br>20.0       | 8.8<br>370<br>20.0        |
| ** ** **                                             | 01/09/89<br>01/09/89 at: 1530                                                  |                         | 20      | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.8<br>9.9<br>460<br>20.0 | 8.0<br>8.8<br>470<br>20.0 |
| Type of Bioassay : ST                                | STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | thality Toxicity<br>38) | 56      | pH<br>02 ppm<br>Cond.            | 8.0<br>9.8<br>520         | 8.8<br>520                |
| Test Animal : D.<br>Weight(gm) :<br>Length(mm) :     | D. magna                                                                       |                         | 13      | Temp(C)<br>pH<br>02 ppm          |                           | 20.0<br>8.1<br>8.8        |
| HORIALITY DATA                                       |                                                                                |                         |         | Cond.<br>Temp(C)                 | 570                       | 570<br>20.0               |
| CONC.                                                | DIIME                                                                          | TOTAL                   | 9       | pH<br>02 ppm<br>Cond.            | 8.1<br>9.6<br>590         | 8.9<br>590                |
| x 00:00 48:10                                        |                                                                                | 3-6                     |         | Temp(C)                          | 20.0                      | 20.0                      |
| 100 0 1<br>50 0 0<br>13 0 0 0<br>6 0 0 0<br>13 0 0 0 |                                                                                | 800080                  | Control | of phi<br>Cond.<br>Temp(C)       | 8.2<br>9.4<br>590<br>20.0 | 8.0<br>600<br>20.0<br>0   |
| 48 Hour LC50 :                                       | Non-lethal                                                                     |                         |         |                                  |                           |                           |
| 95% fid. limits :                                    | 2 0.0 - 0.0                                                                    |                         |         |                                  |                           |                           |
| Comments                                             |                                                                                |                         |         |                                  |                           |                           |

| _     |  |
|-------|--|
| -     |  |
|       |  |
| 101   |  |
| 1     |  |
| DAPHN |  |
| 0     |  |
|       |  |
| 2     |  |
|       |  |
| 111   |  |
| - 1   |  |
| 0     |  |
| 180   |  |
|       |  |
| LLI   |  |
| CA.   |  |
|       |  |
|       |  |
| Y-    |  |

none

SLOPE of Mortality Curve : LC50 Calculated By :

| TEST CONDITIONS                             |                                                                                  |                           |               |                                  |                           |                           |
|---------------------------------------------|----------------------------------------------------------------------------------|---------------------------|---------------|----------------------------------|---------------------------|---------------------------|
| Company                                     | : Suncor Inc.                                                                    |                           | Sample        | Sample Number: 05890014          | 190014                    |                           |
| Region                                      | Sarnia, ONT<br>(490102)<br>: Southwest                                           |                           | TEST<br>CONC. | F                                | ELAPSED T<br>00:00 47:15  | D TIME 47:15              |
| Industry                                    | retroleum Retining                                                               |                           |               |                                  |                           |                           |
| Leboratory<br>Sampling Method<br>Sempled By | Pollutech<br>Grab                                                                |                           | 100           | pH<br>02 ppm<br>Cond.<br>Temp(C) | 10.2<br>288<br>20.0       | 7.9<br>9.1<br>320<br>20.0 |
| Received<br>Tested                          | : 02/06/89<br>: 02/06/89 at: 1715                                                |                           | 20            | DH<br>02 ppm<br>Cond.            | 7.9<br>8.8<br>430         | 8.0<br>9.0<br>480         |
| Type of Bioassay                            | : STATIC<br>(Dephnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | ethality Toxicity<br>788) | 26            | Temp(C)                          | 8.0                       | 20.0<br>8.0<br>9.0        |
| Test Animal<br>Weight(gm)                   | . D. magna                                                                       |                           | ,             | Temp(C)                          | 20.0                      | 20.0                      |
| Lengin(mm)                                  |                                                                                  |                           | 13            | pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.0<br>8.0<br>520<br>20.0 | 8.0<br>9.0<br>580<br>20.0 |
| CONC.                                       | SED TIME                                                                         | TOTAL<br>MORTALITY        | 9             | DH 02 ppm                        | 8.0                       | 9.1                       |
| x 00:00 47:15                               | 2                                                                                | ж                         |               | Temp(C)                          | 20.0                      | 20.02                     |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     |                                                                                  | 000000                    | Control       | O2 pom<br>Cond,<br>Temp(C)       | 8.0<br>8.6<br>540<br>20.0 | 8.0<br>9.1<br>600<br>20.0 |
| 48 Hour 1050                                | : Non-lethal                                                                     |                           |               |                                  |                           |                           |
| 95% fid. limits                             | : 0.0 - 0.0 :                                                                    |                           |               |                                  |                           |                           |
| in a delication                             |                                                                                  |                           |               |                                  |                           |                           |

| TOXICITY TEST REPORT Sample: 05890023                                                             | TOXICITY TEST PARAMETERS                                          |                           |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|
| TEST CONDITIONS                                                                                   |                                                                   |                           |
| Company : Suncor Inc.                                                                             | e Number: 05890023                                                | - C                       |
| Region (%youthwest<br>Industry : Petroleum Refining                                               | CONC. 00:00 48:30                                                 | 48:30                     |
| Control point : intake water, (100)                                                               |                                                                   |                           |
| Laboratory : Pollutech Sampling Method : Grab Sampled By C. Ferguson Date Collected : 07.06.80    | 100 pH 7.9<br>02 ppm 9.8<br>Cond. 350<br>Temp(C) 20.0             | 7.8<br>9.4<br>355<br>20.0 |
| Received : 03/06/89<br>Tested : 03/07/89 at: 1100                                                 | 50 pH 8.0<br>02 ppm 9.4<br>cond. 452                              | 7.9                       |
| Type of Bioassay : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | G E                                                               |                           |
| Test Animal : D. magna<br>Weight(gm) :<br>Length(mm) :                                            |                                                                   | 550<br>20.0<br>8.0        |
| MORTALITY DATA                                                                                    | 02 ppm 9.2<br>Cond. 550<br>Temp(C) 20.0                           | 590                       |
| ELAPSED TIME TOTAL HORTALITY                                                                      | F                                                                 | 8.0                       |
| 00:00 48:30 %                                                                                     |                                                                   | 20.0                      |
| 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                            | Control pH 8.1<br>02 ppm 9.1<br>02 ppm 6.1<br>600<br>Temp(C) 20.0 | 8.0<br>9.4<br>610<br>20.0 |
| 48 Hour LC50 : Hon-lethal                                                                         |                                                                   |                           |
| 95% fid. limits : 0.0 - 0.0 %                                                                     |                                                                   |                           |
| Comments                                                                                          |                                                                   |                           |

| 44    |
|-------|
| 81110 |
| 20    |
| 323   |
| 0     |
| ax    |
| 0     |
| 6     |
| 190   |
| -     |
| 444   |
| -     |
| 8     |
| 8     |
| La.   |
| -     |
| ш     |
| o-    |
|       |

| Compeny :                                                                                                                              | Servicor Inc.<br>Servico ONI<br>(450102)<br>Southwest<br>Petroleum Refining    |                |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Control point :                                                                                                                        | intake water, (100)                                                            |                |
| Laboratory Sampling Method Sampling Method Sampling Method Sampling Method Forting Method Forting Method Forting Method Forting Method | Pollutech<br>Grab<br>04/03/89<br>04/04/89 at: 1515                             |                |
| Type of Bioassay ::                                                                                                                    | STATIC<br>(Daphnie magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) |                |
| Test Animal : [ Weight(gm) : Length(mm) :                                                                                              | D, magne                                                                       |                |
| MORTALITY DATA                                                                                                                         |                                                                                |                |
| TEST ELAPSE<br>CONC.                                                                                                                   | D TIME HORTALITY                                                               |                |
| x 00:00 48:20                                                                                                                          |                                                                                | ×              |
| 500<br>500<br>500<br>500<br>600<br>600<br>600<br>600<br>600<br>600                                                                     |                                                                                | <b>P</b> 00000 |
| 48 Mour LC50 :                                                                                                                         | Non-lethal                                                                     |                |
| 95% fid. limits :                                                                                                                      | × 0.0 - 0.0                                                                    |                |
| ""                                                                                                                                     |                                                                                |                |

none SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890030

TOXICITY TEST REPORT

ample Number: 05890030

ELAPSED TIME 00:00 48:20 EST ONC.

7.7 9.3 370 20.0 7.8 9.4 450 20.0 pH 02 ppm Cond. Temp(C)

7.8 9.4 420 20.0 pH 02 ppm Cond. Temp(C)

7.9 50.0 20.0 7.9 520 20.0 7.9 9.4 9.4 9.4 7.9 pH 02 ppm Cond. Temp(C)

8.8 500 20.0 pH 02 ppm Cond. Temp(C)

8.8 500 20.0 pH 02 ppm cond. Temp(C)

ntrol

8.0 9.2 520 20.0 pH O2 ppm Cond. Temp(C)

157

MISA-PETROLEUM-DAPHNIA

SLOPE of Mortality Curve : LC50 Calculated By : none

| Sample: 03890035 10XICITY 1ES. PARAMETERS | Sample Number: 05890035 | TEST<br>CONC.                                                                            | 100 pH<br>02 ppm<br>02 ppm<br>1 cmp(d,)                                                        | 50 pH<br>02 ppm<br>02 ppm<br>1 cmq(c)                                                   | STATIC 26 pH (Bachnia magna Acute Lethality Toxicity 02 ppm (Cachnia magna Acute Lethality Toxicity 0.2 ppm (Cachnia magna Acute Lethality Toxicity Cachnia magna Acute Lethality Toxicity 0.2 ppm (Cachnia magna Acute Lethality 1988) | 13 pH O2 pam O2 pam Cond. | TOTAL 6 PH OPH OPH COMPANY | X Temp(C)     | 0 Control ph<br>0 Dpm<br>0 Cond.<br>0 Temp(C) |
|-------------------------------------------|-------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|---------------|-----------------------------------------------|
| TOXICITY TEST REPORT                      | TEST COMDITIONS         | Company : Suncor Inc. Saria, ONT (49010) (49010) Southwest Industry : Petroleum Refining | Control point : intake water, (100) Laboratory : Pollutech Sampling Method : Grab commised Rev | Date Collected : 05/01/89<br>Received : 05/01/89 at: 1115<br>Tested : 05/03/89 at: 1115 | .sssay                                                                                                                                                                                                                                  | Length(mm) :              | TEST ELAPSED TIME          | x 00:00 48:20 | 100 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0       |

| TOXICITY TEST REPORT                                                                                                           | Sample: 05880003            | TOXICI                  | TOXICITY TEST PARAMETERS                     | HETERS                               | •                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|----------------------------------------------|--------------------------------------|-----------------------------------|--|
| TEST CONDITIONS                                                                                                                |                             |                         |                                              |                                      |                                   |  |
| Company : Suncor Inc. Sernia, ONT (400102) Region : Southwest Industry : Petroleum Refining                                    |                             | Sample<br>TEST<br>CONC. | Sample Number: 05880003 TEST ELAPS CONC. 01: | 05880003<br>ELAPSED T<br>01:00 46:25 | . TIME                            |  |
| Control point : Process Effluent, (300)                                                                                        | 0)                          |                         |                                              |                                      |                                   |  |
| Laboratory : Pollutech sampling Method : Grab Sampling Method : 1.Moran Date Collected : 12/12/88 Received : 12/13/88 at: 1245 |                             | 100                     | pH<br>02 ppm<br>Cond.<br>Temp(C)<br>pH       | 7.5<br>1480<br>20.0<br>7.9<br>8.9    | 7.6<br>8.8<br>1480<br>20.0<br>7.9 |  |
| Type of Bioassay : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)                              | Lethality Toxicity<br>1988) | 26                      | Temp(C)                                      | 20.0                                 | 1050<br>20.0<br>8.1               |  |
| Test Animal : D. magna : Height(gm) : Length(mm) :                                                                             |                             | 13                      | Cond.<br>Temp(C)                             | 820<br>20.0<br>8.1                   | 820<br>20.0<br>8.1                |  |
| MORTALITY DATA                                                                                                                 |                             |                         | Cond.                                        | 700                                  | 700                               |  |
| - 1                                                                                                                            | TOTAL                       | 9                       | pH<br>02 ppm                                 | 8.2                                  | 9.7                               |  |
| x 01:00 46:25                                                                                                                  | **                          |                         | Cond.                                        | 20.02                                | 650<br>20.0                       |  |
| 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | D00880                      | Control                 |                                              | 8.2<br>9.0<br>20.0                   | 8.1<br>9.2<br>600<br>20.0         |  |
| 48 Mour LC50 : Non-lethal                                                                                                      |                             |                         |                                              |                                      |                                   |  |
| 95% fid. limits : 0.0 - 0.0 %                                                                                                  |                             |                         |                                              |                                      |                                   |  |

TOXICITY TEST REPORT Sample: 05890002

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

| TEST CONDITIONS                               |                                 | Sample        | Sample Number: 05890002          | 90002                     |                           |
|-----------------------------------------------|---------------------------------|---------------|----------------------------------|---------------------------|---------------------------|
| Сопрану                                       | Suncer Inc. ONT (4911)2)        | TEST<br>CONC. | E L                              | APSED                     | -                         |
| Region<br>Industry                            | Southwest<br>Petroleum Refining | ×             |                                  | 00:00 47:15               | 7:15                      |
| Control point :                               | Process Effluent, (300)         | 100           | Hd                               | 6.7                       | 8.9                       |
| Laboratory<br>Sampling Method<br>Sampled By   | Pollutech<br>Crab<br>I Apren    |               | 02 ppm<br>Cond.<br>Temp(C)       | 9.8<br>1220<br>20.0       | 8.6<br>1250<br>20.0       |
| Date Collected ::<br>Received ::<br>Tested :: | 01/09/89<br>01/10/89 at: 1215   | 20            | pH<br>02 ppm<br>Cond.<br>Temp(C) | 7.7<br>9.9<br>920<br>20.0 | 7.7<br>8.7<br>910<br>20.0 |
| assay                                         |                                 | 56            | pH<br>02 ppm<br>Cond.            | 9.7                       | 7.9<br>8.8<br>780         |
| Test Animal Weight(gm) Length(mm)             | . D. magna                      | 13            | pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.0<br>9.9<br>700<br>20.0 | 7.9<br>9.3<br>680<br>20.0 |
|                                               | ED TIME TOTAL HORFALITY X       | 9             | pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.1<br>9.9<br>650<br>20.0 | 8.0<br>9.4<br>610<br>20.0 |
| ntrol                                         | <b>∞</b> ∞ ○ ○ ○                | Control       | pH<br>Cond.<br>Temp(C)           | 8.0<br>9.9<br>590<br>20.0 | 7.9<br>9.4<br>590<br>20.0 |
| 48 Hour LC50<br>95% fid. limits               | : Non-lethal                    |               |                                  |                           |                           |

| TOX                                      | TOXICITY TEST REPORT Sample: 05890013                                          | TOXICIT | TOXICITY TEST PARAMETERS         | METERS                    |                           |  |
|------------------------------------------|--------------------------------------------------------------------------------|---------|----------------------------------|---------------------------|---------------------------|--|
| TEST COMDITIONS : SUR                    | Suncor Inc.<br>Sernie, OM:                                                     | Sample  | Sample Number: 05890013          | 05890013<br>E L A P S E D | 1 H E                     |  |
| Region : Sou<br>Industry : Pet           | (490102)<br>Southwest<br>Petroleum Refining                                    | CONC.   |                                  | 00:10 48:10               | 8:10                      |  |
| Control point : Pro                      | Process Effluent, (300)                                                        | 100     | 70                               | 7 2                       | 7 7                       |  |
| Sampling Method : Gre<br>Sampled By : C. | Pollutech<br>Grab<br>C. Feguson                                                | 2       | Cond.                            | 7.8<br>1040<br>20.0       | 8.7<br>1120<br>20.0       |  |
|                                          | 02/06/89 at: 1745                                                              | 20      | pH<br>02 ppm<br>cond.            | 7.8                       | 7.8<br>8.6<br>860         |  |
| Type of Bioassay : STA                   | STATIC<br>(Dephnia magna Acute Lethality Toxicity<br>Test Protocol, OME, 1988) | 56      | pH<br>02 ppm                     |                           | 8.0<br>8.7<br>8.7         |  |
| Test Animal D. Weight (gm)               | : D. magna                                                                     | 13      | Temp(C)                          |                           | 20.0<br>8.0<br>8.7        |  |
| MORTALITY DATA                           |                                                                                |         | Temp(C)                          | 20.02                     | 20.0                      |  |
|                                          | TIME TOTAL HORIALITY                                                           | •       | pH<br>02 ppm<br>Cond.            | 8.0<br>600<br>600         | 8.1<br>8.7<br>620         |  |
| 7000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | , 000000                                                                       | Control | pH<br>02 ppm<br>cond.<br>Temp(C) | 8.0<br>8.6<br>540<br>20.0 | 8.1<br>8.7<br>600<br>20.0 |  |
|                                          |                                                                                |         |                                  |                           |                           |  |
| 25x 11d. Limits : 0                      | Non-lethal<br>0.0 - 0.0 x                                                      |         |                                  |                           |                           |  |
| · · · · · · · · · · · · · · · · · · ·    |                                                                                |         |                                  |                           |                           |  |

MISA-PETROLEUM-DAPHNIA

none

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 05890024

TOXICITY TEST REPORT

| LEST CONDITIONS                             |                                                                                  | -       | M. the area                               | 10000                     |                           |
|---------------------------------------------|----------------------------------------------------------------------------------|---------|-------------------------------------------|---------------------------|---------------------------|
| Company                                     | : Suncor Inc.                                                                    | Sample  | sample Number: 05890024                   | 2006                      |                           |
|                                             | Sarnia, ONT<br>(490102)                                                          | TEST    | EL                                        | APSE                      | D T I M                   |
| Region<br>Industry                          | : Southwest<br>: Petroleum Refining                                              | **      |                                           | 00:00 47:50               | 47:50                     |
| Control point                               | : Process Effluent, (300)                                                        | 000     | 7                                         | 7.0                       | 7 1                       |
| Laboratory<br>Sampling Method<br>Sampled By | Pollutech<br>Grab<br>C. Ferguson                                                 | 2       | 02 ppm<br>Cond.<br>Temp(C)                | 1100                      | 8.2<br>1220<br>20.0       |
| Received                                    | : 03/07/89 at: 1600                                                              | 20      | pH<br>02 ppm<br>Cond.<br>Temp(C)          | 7.7 9.0 880               | 7.6<br>8.6<br>950<br>20.0 |
| Type of Bioassay                            | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 56      | PH<br>02 ppm                              | 7.8                       | 8.78                      |
| Test Animal                                 | : D. magna                                                                       |         | Temp(C)                                   | 20.0                      | 20.0                      |
| Length(mm)                                  |                                                                                  | 13      | pH<br>02 ppm<br>Cond.                     | 9.0                       | 7.8<br>8.9<br>695         |
| HORTALITY DATA                              |                                                                                  |         | Temp(C)                                   | 20.0                      | 20.0                      |
| TEST E L A P                                | SED TIME TOTAL HORTALITY                                                         | 9       | PH 02 02 02 02 02 02 02 02 02 02 02 02 02 | 9.0                       | 9.0                       |
| x 00:00 47:50                               | **                                                                               |         | Temp(C)                                   | 20.0                      | 20.0                      |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     | 00000                                                                            | Control | t pH<br>02 ppm<br>Cond.<br>Temp(C)        | 8.0<br>9.4<br>580<br>20.0 | 8.0<br>9.4<br>610<br>20.0 |
| 48 Hour LC50                                | : Non-tethal                                                                     |         |                                           |                           |                           |
| 95% fid. limits                             | × 0.0 - 0.0 :                                                                    |         |                                           |                           |                           |
| Comments                                    |                                                                                  |         |                                           |                           |                           |

|                                                                                                                                  | TOXICITY TEST REPORT Sample: 02890032                                                      | TOXICIT                 | TOXICITY TEST PARAMETERS                                  | TERS                                                          |      |                                                         |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------|---------------------------------------------------------------|------|---------------------------------------------------------|--|
| TEST CONDITIONS Company Region Industry                                                                                          | Summor Inc.<br>Sernia, ONI<br>(490102)<br>Southwest<br>Petroleum Refining                  | Sample<br>TEST<br>CONC. | Sample Number: 02890032 TEST E L A P S COMC. 00:          | 02890032<br>ELAPSED TIME<br>00:00 24:00 48:00                 |      | T 1 M E                                                 |  |
| Laboratory<br>Sampling Method<br>Sampling Method<br>Sampled By<br>Sampled By<br>Sampling Method<br>Sampled By<br>Sampling Method | : Process Effluent, (300) : WOE : MOE : D. Flab. : D. Flab. : 03/29/89 : 03/30/89 at: 1536 | 100                     | pH<br>02 ppm<br>Cond.<br>Temp(C)<br>pH<br>02 ppm<br>Cond. | 7.5<br>8.9<br>1091<br>20.0<br>7.8<br>7.8<br>7.8<br>7.8<br>7.8 | 20.0 | 7.7<br>7.5<br>7.5<br>20.0<br>20.0<br>7.7<br>7.7<br>20.0 |  |
| Type of Bioassay                                                                                                                 | : STATIC. (Daphnie magna Acute Lethality Toxicity Test Protocol. OME, 1988) : D. magna     | 30                      | pH<br>02 ppm<br>cond.<br>Temp(C)                          |                                                               |      | 8.0<br>8.1<br>558<br>20.0                               |  |
| Weight(gm)<br>Length(mm)<br>WGFIRLITY DATA                                                                                       |                                                                                            | 15                      | pH<br>02 ppm<br>Cond.<br>Temp(C)                          | 8.8<br>443<br>20.0                                            | 20.0 | 8.1<br>8.2<br>439<br>20.0                               |  |
| COMC. ELAPSED X 00:00 24:00 48:00                                                                                                | SED TIME HORTALITY X                                                                       | so.                     | pH<br>02 ppm<br>Cond.<br>Temp(C)                          | 8.8<br>368<br>20.0                                            | 20.0 | 8.2<br>8.3<br>365<br>20.0                               |  |
| 700<br>60<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                          | 00000                                                                                      | Control                 | pH<br>02 ppm<br>Cond.<br>Temp(C)                          | 8.1<br>9.0<br>337<br>20.0                                     | 20.0 | 8.2<br>8.5<br>330<br>20.0                               |  |
| 48 Mour LCSO<br>95% fid. Limits<br>Comments                                                                                      | : Non-lethal : 0.0 - 0.0 % : Nish Audit                                                    |                         |                                                           |                                                               |      |                                                         |  |

| 05890029    |
|-------------|
| Sample:     |
| TEST REPORT |
| TEST        |
| TOXICITY    |

none

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

LAPSED TIME

5890029

00:00 48:30

7.6 9.2 1080 20.0 7.8 800 20.0 7.8 700 20.0

7.9 610 610 20.0 7.9 580 20.0 7.9 7.9 7.9 7.9 7.9 7.9

| Suppose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEST CONDITIONS                       | - James | Nimbons Of                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|----------------------------------|
| Southwest   Southwest   Southwest   Southwest   Southwest   Petroteum Refining   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1 |                                       | TEST    | Number: US                       |
| Process Effluent, (300)   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10 |                                       | sé.     |                                  |
| STATIC   Companies   Control   Con | ••                                    | 001     | = 0                              |
| STATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ** ** **                              | 2       | 02 ppm<br>Cond.<br>Temp(C)       |
| STATIC   S | : 04/04/89<br>: 04/04/89 at:          | 20      | pH<br>02 ppm<br>cond.<br>Temp(C) |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ••                                    | 56      | DE PPM                           |
| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ** **                                 | ;       | Temp(C)                          |
| ELAPSED TIME MORTALITY X  00:00 48:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATA                                   | 13      | pH<br>02 ppm<br>Cond.<br>Temp(C) |
| ## Control    0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELAPSED TIME                          | 9       | DA pom                           |
| 0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00:00 48:30                           |         | Temp(C)                          |
| : Non-tethal<br>: 0.0 - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Contro  |                                  |
| 0.0 - 0.0 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ••                                    |         |                                  |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 - 0.0 :                           |         |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments                              |         |                                  |

|                                                                         | TOXICITY TEST REPORT S                                                           | Sample: 05890034        | TOXICII       | TOXICITY TEST PARAMETERS         | TERS                     |                                    |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------|---------------|----------------------------------|--------------------------|------------------------------------|--|
| TEST CONDITIONS                                                         |                                                                                  |                         | Sample        | Sample Number: 05890034          | 1034                     |                                    |  |
| Region                                                                  | Sarria ONT<br>(490102)<br>Southwest<br>Petroleum Refining                        |                         | TEST<br>CONC. | E L A                            | ELAPSED T<br>00:00 48:10 | T 1 H E<br>8:10                    |  |
| Control point                                                           | : Process Effluent, (300)                                                        |                         |               |                                  |                          |                                    |  |
| Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected<br>Tested | Follutech<br>Grab<br>C. Ferguson<br>05/01/89<br>05/01/89<br>05/01/89             |                         | 100           | DR DOWN COND. Temp(C) PH O2 pom  | 7.3                      | 7.3<br>1250<br>20.0<br>7.7<br>88.4 |  |
| Type of Bioassay                                                        | : STATIC<br>(Daphnis magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | ty Toxicity             | 26            | Temp(C) pH 02 ppm                |                          | 20.0<br>7.9<br>8.5                 |  |
| Test Animal<br>Weight(gm)<br>Length(mm)                                 | . D. magna                                                                       |                         | 13            | Cond.<br>Temp(C)<br>PH<br>02 ppm |                          | 700<br>20.0<br>8.0<br>8.4          |  |
| MOPTALITY DATA                                                          |                                                                                  |                         |               | Cond.<br>Temp(C)                 | 520                      | 20.0                               |  |
| CONC. E L A P S                                                         | E D TIME                                                                         | TOTAL<br>HORTALITY<br>X | 9             | pH<br>02 ppm<br>Cond.            | 360                      | 8.0<br>8.9<br>550                  |  |
| o o o o o o o o o o o o o o o o o o o                                   |                                                                                  | <b>D</b> 00000          | Control       |                                  |                          | 8.0<br>8.0<br>5.10<br>20.0         |  |
| 48 Mour LC50<br>95% fid. Limits                                         | : Won-lethal<br>: 0.0 - 0.0 x                                                    |                         |               |                                  |                          |                                    |  |
|                                                                         |                                                                                  |                         |               |                                  |                          |                                    |  |

| 05880005 |
|----------|
| Sample:  |
| REPORT   |
| TEST     |
| TOXICITY |
|          |

| TEST CONDITIONS                           |          |                                                                                |
|-------------------------------------------|----------|--------------------------------------------------------------------------------|
| Сопрапу                                   | **       | Sarnia, ONT                                                                    |
| Region                                    | ** **    |                                                                                |
| Control point                             |          | cooling water, (400)                                                           |
| Laboratory                                | **       |                                                                                |
| Sampling Method                           | ••       | 9                                                                              |
|                                           | • •      |                                                                                |
| Date Collected                            |          |                                                                                |
| Tested                                    |          | 12/14/88 at: 1030                                                              |
| Type of Bioassay                          | **       | STATIC<br>(Daphnis magns Acute Lethality Toxicity<br>Test Protocol. OME, 1988) |
| Test Animal<br>Weight(gm)<br>Length(mm)   | ** ** ** | D. magna                                                                       |
| HORTALITY DATA                            |          |                                                                                |
| CONC. ELAP                                | 60       | E D T I M E MORTALITY                                                          |
| x 00:00 48:10                             | 10       | ×                                                                              |
| 250 0 0 0 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 |          | 000000                                                                         |

0.0 %

95% fid. limits

Comments

: Non-lethal

48 Hour LC50

SLOPE of Mortality Curve : LC50 Calculated By :

# TOXICITY TEST PARAMETERS

| TEST ELAPSED TIME | Sample Number: |   | 32 | 0588000 | ĕ | 2  |  |   |   |   |     |  |
|-------------------|----------------|---|----|---------|---|----|--|---|---|---|-----|--|
|                   | TEST           | ш | _  |         | 0 | 60 |  | - | - | X | 143 |  |

| 7.9     | 8.0     | 8.1     | 8.1     | 8.1     | 8.1     |
|---------|---------|---------|---------|---------|---------|
| 9.6     | 9.6     | 9.6     | 9.4     | 9.4     | 9.4     |
| 370     | 472     | 520     | 560     | 560     | 600     |
| 20.0    | 20.0    | 20.0    | 20.0    | 20.0    | 20.0    |
| 7.9     | 8.0     | 8.2     | 8.2     | 8.2     | 8.2     |
| 10.2    | 9.8     | 9.6     | 9.6     | 9.6     | 9.6     |
| 300     | 460     | 500     | 520     | 520     | 560     |
| 20.0    | 20.0    | 20.0    | 20.0    | 20.0    | 20.0    |
| pH      | pH      | pH      | pH      | pH      | pH      |
| 02 ppm  |
| Cond.   | cond.   | Cond.   | Cond.   | Cond.   | Cond.   |
| Temp(C) | Temp(C) | Temp(C) | Temp(C) | Temp(C) | Temp(C) |
| 100     | 50      | 56      | 13      | 9       | Control |

TOXICITY TEST REPORT

TEST CONDITIONS

Company Region

ELAPSED TIME

Sernia ONI (490102) Southwest Petroleum Refining

cooling water, (400)

Control point

Industry

00:00 48:10

none

SLOPE of Mortality Curve : LC50 Calculated By :

D. magna

Test Animal Weight(gm) Length(mm)

3

7.9 9.5 420 20.0

8.0 9.2 520 20.0

pH 02 ppm cond. Temp(C) pH 02 ppm Cond. Temp(C)

56

8.0 10.0 480 20.0

pH 02 ppm Cond. Temp(C)

20

1630

Pollutech Grab C. Ferguson 03/06/89 03/06/89

Leboratory
Sempling Method
Sempled By
Date Collected
Tested

Type of Bioassay

pH 02 ppm cond. emp(C)

00

8.0 9.4 600 20.0

8.0 9.0 540 20.0

8.0 9.4 610 20.0

pH 02 ppm Cond. Temp(C)

9

TOTAL

7 1 M E

ELAPSED

TEST CONC. H

MOSTALITY DATA

00:00 48:10

000000

100 266 13 50 13 50 60 113

pH 02 ppm cond. Temp(C)

0.0

0.0

95x fid. limits

Sament 8

USDI TURN 87

Non-lethel

167

| ۳. |  |  |
|----|--|--|
| -  |  |  |
|    |  |  |
|    |  |  |
| Ç. |  |  |
| 2  |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
| •  |  |  |
| 1  |  |  |
| 7  |  |  |
| 7  |  |  |
| 2  |  |  |
| c  |  |  |
|    |  |  |
|    |  |  |

SLOPE of Mortality Curve : LC50 Calculated By :

TOXICITY TEST PARAMETERS

Sample: 02890033

TOXICITY TEST REPORT

| TEST CONDITIONS                                               |                                                                                  | Sample Number: 02890033                                      |                                |
|---------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------|
| Сопралу                                                       | Suncor Inc.<br>Servia ONI<br>(490102)                                            | TEST ELAPSED                                                 | H                              |
| Region                                                        | : Southwest<br>: Petroleum Refining                                              | x 00:00 54:00 48:00                                          | :00 48:0                       |
| Control point                                                 | : cooling water, (400)                                                           |                                                              |                                |
| Laboratory<br>Sampling Method<br>Sampled By<br>Date Collected | : MOE<br>: grab<br>: D. Hamilton<br>: 37/20/89                                   | 100 ph m 8.1<br>02 ppm 10.1<br>cond. 382<br>Temp(C) 20.0 20  | 8.3<br>8.3<br>379<br>20.0 20.0 |
| Received                                                      | : 03/30/89 at: 1555                                                              | 60 pH 8.1<br>02 ppm 8.9<br>cond. 360<br>Temp(c) 2.0,0 20     | 8.2<br>8.3<br>351<br>20.0 20.0 |
| Type of Bloassay                                              | : STATIC<br>(Opphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) |                                                              | 80 80 1<br>50 80 1             |
| Test Animal                                                   | : D. magna                                                                       |                                                              | 20.0 20.                       |
| Length(mm)                                                    |                                                                                  | 15 pH 8.2<br>02 ppm 8.7<br>Cond 1338<br>Temp(c) 20.0 20      | 8.3<br>8.2<br>340<br>20.0 20.0 |
| TEST E L A P CONC.                                            | SED TIME TOTAL MORTALITY                                                         | 5 pH 8.2                                                     | 80 80                          |
| x 00:00 24:00 48:00                                           | X 0 78:00                                                                        |                                                              | 20.0 20.                       |
| 100 0 2<br>60 0 0<br>15 0 1<br>5 Control 0 0                  | 200000000000000000000000000000000000000                                          | Control pH 8.2<br>02 ppm 8.8<br>Cond, 330<br>Temp(C) 20.0 20 | 8.3<br>8.3<br>335<br>20.0 20.0 |
| 48 Hour LC50                                                  | : >100%                                                                          |                                                              |                                |
| 95% fid. limits                                               | % 0°0 - 0°0 :                                                                    |                                                              |                                |
| Comments                                                      | : MISA Audit                                                                     |                                                              |                                |

COMPANY: Texaco Canada Inc., Nanticoke

(520205)

(now with Nanticoke Refinery)

SECTOR: Petroleum Refining

REGION: West Central

### SUMMARY

The data for six trout bioassays, conducted on process effluent samples collected between December 1988 and May 1989, were provided by Texaco Canada Incorporated. All six process effluent samples were determined to have been non-acutely lethal to test fish.

### Process Effluent

06881220 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

06890126 sampled: 01/24/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

06890210 sampled: 02/06/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or sublethal impairment observed

06890308 sampled: 03/07/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or sublethal impairment observed

06890405 sampled: 04/04/89 non 95% fid. limits: 0.0 - 0.0 % non-lethal

comments: no mortality or sublethal impairment observed

06890529 sampled: 05/09/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or sublethal impairment observed

01890108 sampled: 05/31/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: MISA audit sample.

storm water

Texaco Canada Inc. (continued)

landfarm leachate

EO-leachate-creek

|                                                                                                   | TOXICITY TEST REPORT                                                                            | Sample: 06881220                       | TOXICIT                 | TOXICITY TEST PARAMETERS                                   | ERS                                                     |                                                       |                                    |                              |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------|------------------------------|
| TEST CONDITIONS                                                                                   |                                                                                                 |                                        |                         |                                                            |                                                         |                                                       |                                    |                              |
| Company<br>Region<br>Industry                                                                     | : Texaco Canada Inc.<br>Wenticoke, ONT<br>(520205)<br>West Central<br>: Petroleum Refining      |                                        | Sample<br>TEST<br>CONC. | Sample Number: 06881220<br>TEST E L A P S E<br>CONC. 00:00 | 220<br>P S E D T I M E<br>00:00 24:00 48:00 72:00 96:00 | T 1 M                                                 | E<br>0 72:00                       | 00:96                        |
| Control point                                                                                     | : Process Effluent, (200)                                                                       |                                        |                         |                                                            |                                                         |                                                       |                                    |                              |
| Leboratory<br>Sampling Method<br>Sampling Method<br>Sampling Method<br>Date Collected<br>Received | Beak<br>24hr. Comp<br>12/12/88<br>12/14/88 at: 1400                                             |                                        | 100                     | pH<br>02 ppm<br>Cond.<br>Temp(C)<br>pH<br>02 ppm           | 7.8 8<br>7.8 9<br>1301<br>15.0 15<br>7.8 8<br>8.2 9     | 8.3 8.3<br>9.8 9.2<br>15.0 15.0<br>8.3 8.3<br>9.2 9.9 | 3 8.4<br>0 15.0<br>0 15.0<br>9 9.8 | 1341<br>1341<br>15.0<br>18.3 |
| Type of Bioassay                                                                                  | : STATIC<br>(Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). | he acute lethality<br>ish. OME, 1983). | 30                      | Cond.<br>Temp(C)                                           |                                                         | 7.9 8.3                                               | 0 15.0                             | 15.0                         |
| Test Arima!<br>Weight(gm)<br>Length(mm)                                                           | . Rainbow trout                                                                                 |                                        | 50                      | Cond.<br>Temp(C)                                           | -                                                       | _                                                     |                                    | 15.0                         |
| HOPTALITY DATA                                                                                    |                                                                                                 |                                        |                         | 02 ppm<br>Cond.<br>Temp(C)                                 | 7.5 6<br>548<br>15.0 15                                 | 6.9 9.2                                               | 2 8.9                              | 9.6<br>550<br>15.0           |
| CONC.                                                                                             | SED TIME                                                                                        | TOTAL                                  | 10                      | PH<br>02 DOM                                               |                                                         |                                                       |                                    | 2.8                          |
| 2 00:00 54:00                                                                                     | 0 48:00 72:00 96:00                                                                             | **                                     |                         | Cond.                                                      | 15.0 15                                                 | -                                                     |                                    | 15.0                         |
| 280<br>280<br>280<br>280<br>280<br>280<br>280<br>280<br>280<br>280                                | 00000                                                                                           | 00000                                  | Control                 |                                                            |                                                         |                                                       |                                    | 8.0<br>360<br>15.0           |
| 26 Mour LCSO                                                                                      | : Won-lethal                                                                                    |                                        |                         |                                                            |                                                         |                                                       |                                    |                              |
| PSz fid. limits                                                                                   | : 0.0 - 0.0 x                                                                                   |                                        |                         |                                                            |                                                         |                                                       |                                    |                              |
| July Company                                                                                      |                                                                                                 |                                        |                         |                                                            |                                                         |                                                       |                                    |                              |

TOXICITY TEST REPORT

Sample: 06890126

000000 : STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). TOTAL : Process Effluent, (200) Beak grab Rob Burnelis 01/25/89 01/25/89 at: 1400 (520205) West Central Petroleum Refining Texaco Canada Inc. Nanticoke, ONI 00:00 24:00 48:00 72:00 96:00 000000 : Rainbow trout TIME 000000 ELAPSED 000000 000000 Laboratory Sampling Method Sampled By Date Collected Received Tested Type of Bioassay TEST CONDITIONS MORTALITY DATA Control point 000000 Test Animal Weight(gm) Length(mm) 100 50 30 20 10 Control Industry Company Region TEST CONC. 34

96 Hour LC50 : Non-lethal 95% fid. limits : 0.0 - 0.0 %

Comments

SLOPE of Mortality Curve : LC50 Calculated By : moving average

### TOXICITY TEST PARAMETERS

Sample Number: 06890126
TEST E L A P S E D T I M E
COMC. 00:00 24:00 48:00 72:00 96:00

| pH<br>02 ppm | emp(C) | pH<br>02 ppm | Temp(C) | pH<br>02 ppm | Temp(C) | ph<br>Dom | Temp(C) | pH<br>02 ppm | Temp(C) | pH<br>02 ppm | Long. |
|--------------|--------|--------------|---------|--------------|---------|-----------|---------|--------------|---------|--------------|-------|
| 88.3         | 15.0   | 80.0         | 0 0     | 8.0          | 15.0    | 8.00      | 15.0    | 7.8          | 15.0    | 7.7          | 15.0  |
| 8.5          | 15.0   | 8.0.8        | 15.0    | 8.9          | 15.0    | 8.0       | 15.0    | 8.8          | 15.0    | 9.2          | 15.0  |
| 9.6          | 15.0   | 8.9          | 15.0    | 9.5          | 15.0    | 8 8 8     | 15.0    | 9.5          | 15.0    | 9.0          | 15.0  |
| 9.5          | 15.0   | 8.8          | 15.0    | 9.7          | 15.0    | 8.9.3     | 15.0    | 9.0          | 15.0    | 9.1          | 15.0  |
| 8.8          |        | 8.5          | 16.0    | 200          | 16.0    | 8.4       | 16.0    | 200          | 16.0    | 6.0          | 14.50 |

TEST CONDITIONS

Company

TIME

ELAPSED

TEST CONC. 34

MUSTALITY DATA

Veight (gm) Length (gm)

15.0

15.0 7.8

0.4 7.9 0.4

14.0 7.8 0.41

> pH 02 ppm Cond. Temp(C)

000000

000000

000000

000000

000000

250 250 200 100 100 100

Non-lethal

0.0

95x fld. limits

Comments

26 MOUT 1050

Control

moving average SLOPE of Mortality Curve : LC50 Calculated By :

**FOXICITY TEST PARAMETERS** 

Sample Number: 06890210

8.2 9.2 2190 16.0 8.3 8.2 10.1 983 16.0 8.1 9.3 809 16.0 00:00 24:00 48:00 72:00 96:00 10.1 15.0 7.9 15.0 9.9 15.0 15.0 8.1 0.4 8.0 TIME 8.5 0.4 8.5 0.4 8.1 14.0 8.2 14.0 8.1 14.0 8.0 14.0 9.6 ELAPSED 3.0 7.7 7.6 9.8 876 14.0 7.6 9.8 718 15.0 7.5 9.8 554 15.0 pH 02 ppm Cond. Temp(C) DH O2 ppm Cond. Temp(C) pH 02 ppm Cond. (D)dwa pH 02 ppm Cond. (D)dwa DH 02 ppm Cond. emp(C) CONC. 2 00 20 30 20

at:

Type of Bicassay

Besk grab Rob Bunelis 02/06/89 02/07/89

Date Collected Leboratory Sampling Method

Sampled By

..

Control point

Region

| S    |      | 1 |
|------|------|---|
| Ç    | 1    | 1 |
| ï    |      | 1 |
| ١    | i    | Ĭ |
| 44.4 | 2    |   |
| g    | i    | p |
|      |      |   |
| ŝ    | 2000 |   |
| 4    | 2    | ¢ |
| i    |      | ū |
| ě    |      | L |
|      |      |   |
| î    | i    | ì |
| 1    |      |   |
|      |      |   |

| TEST CONDITIONS                                                                               |                                                                  |                                           |                                          |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|------------------------------------------|
| Company<br>Region<br>Industry                                                                 | Nanticoke, ONT<br>(520205)<br>West Central<br>Petroleum Refining | out Inc.                                  |                                          |
| Control point                                                                                 | : Process Eff                                                    | Effluent, (200)                           |                                          |
| Laboratory Sampling Method Sampled By Date Collected Received                                 | Beak<br>grab<br>Rob Bumelis<br>03/07/89<br>03/08/89              | s<br>at: 1500                             |                                          |
| Type of Bioassay                                                                              | (Protocol to                                                     | to determine the ac<br>effluents to fish. | the acute lethality<br>fish. OME, 1983). |
| Test Animal<br>Weight(gm)<br>Length(mm)                                                       | : Rainbow trout                                                  | ä                                         |                                          |
| MORTALITY DATA                                                                                |                                                                  |                                           |                                          |
| CONC.                                                                                         | E D T I H                                                        | ш                                         | TOTAL<br>MORTALITY                       |
| x 00:00 24:00                                                                                 | 48:00 72:00                                                      | 00:96                                     | **                                       |
| 100<br>50<br>33<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 000000                                                           | 00000                                     | 00000                                    |
| 96 Hour LC50                                                                                  | : Non-lethal                                                     |                                           |                                          |
| 95% fid. limits                                                                               | . 0.0 :                                                          | % 0.0                                     |                                          |
|                                                                                               |                                                                  |                                           |                                          |

7.7 8.6 565 15.0

7.8

10.0

15.0 7.8 15.0

14.0

pH 02 ppm Cond. Temp(C)

0

7.8 573 15.0 7.4 9.4 438 15.0

15.0

14.0 7.9

pH 02 ppm Cond. Temp(C)

Control

15.0 7.6 15.0

moving average SLOPE of Mortality Curve : LC50 Calculated By :

## TOXICITY TEST PARAMETERS

|                         |        | 00:96             | 7.9 | 2100  | 7.9          | 15.0             | 9.9          | 15.0             | 7.7          | 15.              |
|-------------------------|--------|-------------------|-----|-------|--------------|------------------|--------------|------------------|--------------|------------------|
|                         |        | 48:00 72:00 96:00 | 7.9 | 15.0  | 7.9          | 15.0             | 7.9          | 15.0             | 7.7          | 15.0             |
|                         | H E    | 48:00             | 8.0 | 15.0  | 10.4         | 15.0             | 10.3         | 15.0             | 10.4         | 15.0             |
|                         | 1 0    | 00:00 24:00       | 7.9 | 14.0  | 10.2         | 14.0             | 10.4         | 14.0             | 10.2         | 14.0             |
| 6890308                 | ELAPSE | 00:00             | 0.8 | 2200  | 10.2         | 15.0             | 10.4         | 15.0             | 10.2         | 15.0             |
| Sample Number: 06890308 | ш      |                   | Hd  | Cond. | pH<br>02 ppm | Cond.<br>Temp(C) | pH<br>02 ppm | Cond.<br>Temp(C) | pH<br>02 ppm | Cond.<br>Temp(C) |
| Sample                  | TEST   | CONC.             | 100 |       | 20           |                  | 30           |                  | 20           |                  |

| TOXICITY TEST REPORT Sample: 06890405                                                                         | TOXICITY TEST PARAMETERS                   |             |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------|
| TEST COMDITIONS  TEXEC Cenada Inc.                                                                            | Sample Number: 06890405                    |             |
| (50205): West Central: Petroleum Refining                                                                     | 00:00 54:0                                 | 72:00 96:00 |
| Control point : Process Effluent, (200)                                                                       | 100 pH 8.1 8.2 8.6                         | 4.8         |
| 70                                                                                                            | 9.2 8.3<br>1983<br>15.0 15.0 1             | -           |
| Collected : 04/04/89<br>Received : 04/05/89 at: 1400                                                          | 8.2 8.5                                    |             |
| Type of Bioassay : SIATIC (Protocol to determine the acute lethality of Liquid effluents to fish. OME, 1983). | Control pH 8.1 8.5 8.6 0.2 ppm 9.3 9.4 9.3 | 9.0         |
| : Reinbow trout                                                                                               |                                            | 14.0        |
| MORTH. ITY SATA                                                                                               | Cond. 363<br>Temp(C) 15.0 15.0 15.0        | 384         |
| ELAPSED TIME HORIALITY                                                                                        |                                            |             |
| 00:00 24:00 48:00 72:00 96:00                                                                                 |                                            |             |
| 0000                                                                                                          |                                            |             |
| Wour LC50 : Non-lethal                                                                                        |                                            |             |
| x 0.0 - 0.0 : simits : 0.0 - 0.0 x                                                                            |                                            |             |
| ; no mortality or sublethal impairment observed                                                               |                                            |             |

| SONDITIONS  Texaco Conada Inc.  Nanticoke, ONI  (202020)  Texaco Conada Inc.  Nanticoke, ONI  (202020)  Stry  Serioleum Refining  ol point : Process Effluent, (200)  Stry  Stry  Strop  Stry  Strop                                                                                                                                                                                                     | e Number:                                | TOXICITY TEST PARAMETERS  |                               |                           |                           |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|-------------------------------|---------------------------|---------------------------|---------------------------|
| Texaco Canada Inc. Natricoke, ONT (\$20205): User Central Perforeum Refining Process Effluent, (200) Beak Sob Bumelis (\$50,09,89 (\$5,09,89 (\$5,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,89 (\$7,10,8 | le Number: 0                             |                           |                               |                           |                           |                           |
| Systematics of the state of the                                                                                                                                                                                                   |                                          | ш                         | 0 1 1                         | 1 1 M E                   |                           |                           |
| Beak  grab                                                                                                                                                                                                     |                                          | 00:00                     | 00:00 24:00 48:00 72:00 96:00 | 18:00                     | 2:00 8                    | 00:9                      |
| Beak  grab Bunelis (05/10/89) (05/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10/10/89) (10                                                                                                                                                                                                   |                                          | 80                        | 1.8                           | 8.2                       | 8.2                       | 1.8                       |
| ted : 05/10/89 ed : 05/10/89 at: 1500 35/30/89 at: 1500 assay : SIATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983). : Rainbow trout : Hainbow trout : HORTALITY :00 24:00 48:00 72:00 96:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02 ppm<br>Cond.<br>Temp(C)               | 1239                      | 8.8<br>1218<br>15.0           | 8.5<br>1572<br>15.0       | 8.3<br>1580<br>15.0       | 9.3<br>1574<br>15.0       |
| SSSBY : STATIC (Protocol to determine the acute lethality of liquid effluents to fish. OME, 1983).  Rainbow trout  E L A P S E D T I M E HORTALITY  ***ROO 24:00 48:00 72:00 96:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 8.1                       | 8.3                           | 8.1                       | 7.5                       | 8.0<br>9.0                |
| : Rainbow trout<br>: 107AL<br>E L A P S E D T I M E HORTALITY 72:00 24:00 72:00 96:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 pH 02 ppm                             | 14.0<br>7.2<br>7.2        | 8.1                           | 8.2                       | 8.1                       | 8.0                       |
| :<br>ELAPSED TIME TOTAL<br>:00 24:00 48:00 72:00 96:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 14.0                      | 15.0                          | 15.0                      | 15.0                      | 15.0                      |
| APSED TIME HORTALITY 24:00 48:00 72:00 96:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 pH<br>02 ppm<br>cond.                 | 8.1<br>8.1<br>659         | 7.5<br>658                    | 8.0<br>8.0<br>625         | 8.7                       | 8.6<br>8.6<br>635         |
| ELAPSED TIME HORTALITY 00:00 24:00 48:00 72:00 96:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Temp(C)                                  | 14.0                      | 15.0                          | 15.0                      | 15.0                      | 15.0                      |
| 00:00 24:00 48:00 72:00 96:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 pH<br>02 ppm<br>cond.                 | 88<br>5.87<br>5.87        | 8.2                           | 581                       | 8.0                       | 8.0<br>4.0<br>4.0<br>8.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp(C)                                  | 14.0                      | 15.0                          | 15.0                      | 0.51                      | 15.0                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 pH<br>02 ppm<br>Cond.<br>Temp(C)      | 8.1<br>8.6<br>472<br>14.0 | 8.8<br>468<br>15.0            | 8.1<br>9.0<br>479<br>15.0 | 7.9<br>8.5<br>499<br>15.0 | 8.0<br>8.6<br>499<br>15.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Control pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.0<br>8.1<br>348<br>14.0 | 8.2<br>347<br>15.0            | 8.0<br>354<br>15.0        | 7.7<br>7.7<br>358<br>15.0 | 7.9<br>8.5<br>362<br>15.0 |
| 96 Hour LC50 : Non-lethal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                           |                               |                           |                           |                           |
| 95% fid. limits : 0.0 - 0.0 $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                           |                               |                           |                           |                           |

|                                             | TOXICITY TEST REPORT Sample: 01890108                                               | TOXICITY TEST PARAMETERS                                                                                      |
|---------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| TEST CONDITIONS Correny Region              | Texaco Canada Inc. Nanticoke, OMT (S20205) West Dentral                             | Sample Number: 01890108 TEST E L A P S E D T 1 M E CONC. 00:00 03:00 23:45 46:00 73:45 96:30                  |
| Control point                               |                                                                                     | 75 80 8.1 8.2                                                                                                 |
| Leboratory<br>Sampling Method<br>Sampled By | : MOE<br>grab<br>G. Perkons                                                         | Cond. 1800 1800 1590 1550 1550 1550 1550 1550 1550 15                                                         |
| Dete Collected<br>Received<br>Tested        | : 05/31/89<br>: 05/31/89 at: 1100                                                   | 65 pH 7.9 8.0 8.1 8.2 0.2 pcm 9.3 9.4 9.4 cond. 1180 1120 1120 1120 1120 1120 1120 1120                       |
| Type of Bioassay                            | (Protocol to determine the scute lethality of liquid effluents to fish. OME, 1983). |                                                                                                               |
| est Armet<br>Weight(gm)<br>Length(fm)       | . Peirbow trout                                                                     | 7.7 7.8 7.9 7.9 9.4 9.7 9.8 6.80 6.80 6.80 6.80 6.80 6.80 6.80 6.                                             |
| TEST ELAP                                   | SED TIME MORTALITY                                                                  | 7.8 7.8 7.9 7.9 7.9                                                                                           |
| 00:00                                       | 03:00 23:45 46:00 73:45 96:30 x                                                     | 15.0 15.0                                                                                                     |
| 0000                                        | 0000                                                                                | 10 pH 7.5 7.6 7.7 7.9 Cond. 390 380 380 380 Cond. 390 15.0 15.0 15.0 15.0 15.0 15.0                           |
| 000                                         | 000                                                                                 | Control DH 7.0 7.4 7.6 7.5 0.0 pm 0.2 ppm 2.6 9.6 9.8 9.7 Cond. 260 260 260 260 15.0 15.0 15.0 15.0 15.0 15.0 |
| 36 Hour 1050<br>25x fid. Units              | : Non-lethal<br>: 0.0 - 0.0 x                                                       |                                                                                                               |
| Comments                                    | : MISA audit sample.                                                                |                                                                                                               |



COMPANY: Texaco Canada Inc., Nanticoke

(520205)

(now with Nanticoke Refinery)

Petroleum Refining SECTOR:

West Central REGION:

### SUMMARY

Data for six Daphnia magna acute lethality toxicity tests conducted on samples of Process Effluent collected between December 1988 and May 1989 were submitted by Texaco Canada Inc. in Nanticoke. All six samples were not acutely lethal to Daphnia magna.

### Process Effluent

06881225 sampled: 12/12/88 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

06890127 sampled: 01/24/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments:

06890211 sampled: 02/06/89 non-95% fid. limits: 0.0 - 0.0 % non-lethal

comments: no immobilty observed during testing

06890309 sampled: 03/07/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: no mortality or immobility observed in 48 Hrs

06890406 sampled: 04/04/89 non 95% fid. limits: 0.0 - 0.0 % non-lethal

comments: no mortality or immobility observed in 48 Hrs

06890530 sampled: 05/09/89 non-lethal

95% fid. limits: 0.0 - 0.0 %

comments: no mortality or immobility observed

02890108 sampled: 05/31/89 non-lethal 95% fid. limits: 0.0 - 0.0 %

comments: MISA Audit

storm water

Texaco Canada Inc. (continued)

landfarm leachate

EO-leachate-creek

|                                                                                                                 | TOXICITY TEST REPORT Sample: 06881225                                      | TOXICIT       | TOXICITY TEST PARAMETERS                         | METERS                                |      |                            |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------|--------------------------------------------------|---------------------------------------|------|----------------------------|
| TEST COMPITIONS                                                                                                 |                                                                            |               |                                                  |                                       |      |                            |
| Company :                                                                                                       | Texaco Canasa Inc. Wanticke, OMI (\$20202) West Central Petroleum Refining | TEST<br>CONC. | Sample Number: U6881225 TEST E L A P S CONC. 00: | U6881225<br>E L A P S E D<br>00:00 24 | 0: 5 | T I M E                    |
| Control point :                                                                                                 | Process Effluent, (200)                                                    |               |                                                  |                                       |      |                            |
| Leboratory<br>Sampling Method<br>Sampled By                                                                     | BEAK<br>244n.<br>12/12/18                                                  | 100           | pH<br>02 ppm<br>Cond.<br>Temp(C)                 | 7.8<br>7.0<br>1308<br>20.0            | 20.0 | 8.1<br>6.1<br>1285<br>20.0 |
| Type of Bioassay                                                                                                |                                                                            | 20            | pH<br>02 ppm<br>Cond.<br>Temp(C)                 | 8.0<br>7.0<br>826<br>20.0             | 20.0 | 8.1<br>6.3<br>815<br>20.0  |
|                                                                                                                 | (Dagmins magna Acute Lethality Toxicity Test Protocol. OME, 1988) D. magna | 30            | pH<br>02 ppm<br>Cond.<br>Temp(C)                 | 8.0<br>7.1<br>633<br>20.0             | 20.0 | 8.1<br>6.5<br>648<br>20.0  |
| ALITY CATA                                                                                                      |                                                                            | 20            | pH<br>02 ppm<br>Cond.<br>Temp(C)                 | 8.0<br>7.2<br>534<br>20.0             | 20.0 | 8.1<br>6.7<br>550<br>20.0  |
| . 00:00 24:00                                                                                                   | ED TIME HORTALITY X 48:00                                                  | 10            | pH<br>02 ppm<br>cond.<br>Temp(C)                 | 8.0<br>6.1<br>435<br>20.0             | 20.0 | 8.0<br>5.7<br>362<br>20.0  |
| 700<br>50<br>50<br>50<br>70<br>10<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 00000                                                                      | Control       |                                                  | 8.2<br>6.9<br>339<br>20.0             | 20.0 | 7.6<br>6.5<br>335<br>20.0  |
| 48 Mour LCSO : 95% fid. limits : Comments :                                                                     | Non-lethal<br>0.0 - 0.0 %                                                  |               |                                                  |                                       |      |                            |

SLOPE of Mortality Curve : LC50 Calculated By : moving average

| TEST CONDITIONS                             |                                                                                  |         |                                    | 1                          |       |                           |
|---------------------------------------------|----------------------------------------------------------------------------------|---------|------------------------------------|----------------------------|-------|---------------------------|
| Сотрапу                                     | : Texaco Canada Inc.<br>Nanticoke, ONI                                           | Sample  | Sample Number: 06890127            | ш                          | 1     | Σ.                        |
| Region<br>Industry                          | (\$2005)<br>: West Central<br>: Petroleum Refining                               | CONC.   |                                    | 00:00 24:00 48:00          | 54:00 | 48:00                     |
| Control point                               | : Process Effluent, (200)                                                        | 000     | 1                                  |                            |       |                           |
| Laboratory<br>Sampling Method<br>Sampled By | : Beak<br>: grab<br>: Rob Bumelis<br>: 01/2/.Ro                                  | 00      | pH<br>02 ppm<br>Cond.<br>Temp(C)   | 3190<br>21.0               | 21.0  | 3240<br>3240<br>20.0      |
| Received                                    | : 01/25/89<br>: 01/25/89 at: 1600                                                | 20      | pH<br>02 ppm<br>cond.<br>Temp(C)   | 8.2<br>8.6<br>1855<br>21.0 | 21.0  | 8.5<br>1757<br>20.0       |
| Type of Bloassay                            | : SIATIO<br>(Osphina magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 30      | DH DOW                             | 8.2                        |       | 4.8                       |
| Test Animal                                 | . D. magna                                                                       |         | Temp(C)                            | 21.0                       | 21.0  | 20.0                      |
| Length(mm)                                  |                                                                                  | 20      | DH<br>O2 ppm<br>Cond.              | 8.8                        |       | 8.8.3                     |
| משושה שושה                                  |                                                                                  |         | (a)dual                            | 0.12                       | 0.12  | 20.1                      |
| TEST E L A P                                | SED TIME TOTAL MORTALITY                                                         | 10      | DH<br>02 ppm                       | 8.6                        |       | 8.8                       |
| x 00:00 24:00                               | 000 48:000                                                                       |         | Temp(C)                            | 21.0                       | 21.0  | 20.0                      |
| 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     | 000000                                                                           | Control | t pH<br>02 ppm<br>cond.<br>Temp(C) | 8.1<br>8.4<br>405<br>21.0  | 21.0  | 7.9<br>8.7<br>405<br>20.0 |
| 48 Hour LC50                                | : Non-lethal                                                                     |         |                                    |                            |       |                           |
| 95% fid. limits                             | % O.O - O.O :                                                                    |         |                                    |                            |       |                           |
| Comments                                    |                                                                                  |         |                                    |                            |       |                           |

|                   | moving average    |
|-------------------|-------------------|
| ty Curve :        | 3y :              |
| SLOPE of Mortalit | LC50 Calculated B |
|                   |                   |

TY TEST PARAMETERS

|                                             | TOXICITY TEST REPORT                            | Sample: 06890211 | TOXICIT |
|---------------------------------------------|-------------------------------------------------|------------------|---------|
| TEST CONDITIONS                             |                                                 |                  | o loma? |
| Corpery                                     | : Texaco Canada Inc.<br>Nanticoke, ONI          |                  | TEST    |
| Region<br>Industry                          | : West Central<br>: Petroleum Refining          |                  | **      |
| Control point                               | : Process Effluent, (200)                       |                  | 100     |
| Leboratory<br>Sampling Method<br>Sampled By | Beak<br>grab<br>Rob Burelis                     |                  |         |
| Date Collected<br>Received<br>Tested        | : 02/05/89<br>: 02/07/89<br>: 02/07/89 at: 1410 |                  | 20      |

8.2 8.6 1842 20.0

20.0

ELAPSED 11ME 00:00 24:00 48:00

Number: 06890211

| 100 pH 7.8<br>02 ppm 8.8<br>cond, 1831<br>Temp(C) 20.0 | 50 pH 8.0<br>02 ppm 8.7<br>cond, 1129<br>Temp(C) 20.0 | 30 pH 8.1<br>02 ppm 8.5<br>cond. 814<br>Temp(C) 20.0                                       | 20 pH 8.1<br>02 ppm 8.6<br>cond. 666<br>Temp(C) 20.0 | 10 pH 8.1<br>02 ppm 8.2<br>cond. 538<br>Temp(C) 20.0 | Control pH 8.0<br>02 ppm 8.6<br>Cond. 328<br>Temp(C) 20.0 |
|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|
| (002)                                                  | 01                                                    | SSATIC<br>(Dephria magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)<br>D. magna |                                                      | TOTAL HORTALITY X                                    | B0000C                                                    |
| Beak : grab : Rob Burnel is                            | : 02/06/89<br>: 02/07/89<br>: 02/07/89 at: 1410       | : STATIC<br>(Dephnia magna Act<br>Test Protocol. Of                                        | ** **                                                | SED TIME<br>00 48:00                                 | 00000                                                     |

Type of Bioassay

8.4 854 20.0

20.02

8.1 8.5 1140 20.0

20.02

8.4 8.4 679 20.0

20.02

8.0 8.4 335 20.0

20.02

8.2 8.3 540 20.0

20.0

E L A P S E D 00:00 24:00 48:00

MORTALITY DATA

TEST CONC.

Test Animal Weight(gm) Length(mm) 000000

000000

: no immobility observed during testing

: Non-tethal

95x fid. limits

Comments

0531 JEGN 87

| ORT Sample: |
|-------------|
| ORT         |
| REPOR       |
| TEST        |
| TOXICITY    |

| - Adecard                                |                                                                                  | Commo         | Commis Mimbers 0689070           | 00%00  |
|------------------------------------------|----------------------------------------------------------------------------------|---------------|----------------------------------|--------|
|                                          | TEMACO Canada Inc. Nanticoke, ONT (\$2005)5                                      | TEST<br>CONC. | E L A P                          | A P S  |
| <b>*</b>                                 | . Petroleum Refining                                                             |               |                                  |        |
| Control point :                          | : Process Effluent, (200)                                                        | 100           | Ha                               | , -    |
| 70                                       | Beak<br>grab<br>Rob Bunelis                                                      |               | 02 ppm<br>Cond.<br>Temp(C)       | 197    |
| Date Collected<br>Received<br>Tested     | 03/08/89 at: 1620                                                                | 20            | pH<br>02 ppm<br>cond.<br>Temp(C) | 115    |
| Type of Bioassay                         | : STATIC<br>(Daphnia magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988) | 30            | DH<br>02 ppm<br>Cond.            | × 88   |
| Test Animal<br>Weight(gm)<br>Length(mm)  | . D. magna                                                                       | 20            | Temp(C)                          | 2      |
| HORTALITY DATA                           |                                                                                  |               | Cond.<br>Temp(C)                 | 200    |
| TEST ELAPS<br>CONC.                      | ED TIME TOTAL HORFALITY                                                          | 10            | DA PPM                           | V-8010 |
| x 00:00 24:00 48:00                      | × 48:00                                                                          |               | Temp(C)                          | 2      |
| 100 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000                                                                           | Control       | of pen<br>Cond.<br>Temp(C)       | 203307 |
| 48 Hour LC50                             | . Non-lethal                                                                     |               |                                  |        |
| 95% fid. limits                          | 2 0.0 - 0.0 :                                                                    |               |                                  |        |

SLOPE of Mortality Curve : LC50 Calculated By : moving average

# TOXICITY TEST PARAMETERS

|         | LL     | 00                |
|---------|--------|-------------------|
|         | I      | 3:                |
|         | 0-0    | 35                |
|         | -      | 00:00 24:00 48:00 |
|         | 0      | 24                |
|         | ш      | 0                 |
| 6       | S      |                   |
| 30      | 0      | 0                 |
| 0689030 | LAPSED |                   |
| 39      |        |                   |
| 0       | ш      |                   |
| Number  |        |                   |
| Sample  | TEST   | . X               |

| 7.6<br>8.0<br>1990<br>20.0       | 7.8<br>8.1<br>1155<br>20.0       | 7.8<br>7.0<br>824<br>20.0        | 7.9<br>7.0<br>652<br>20.0        | 8.0<br>7.4<br>511<br>20.0        | 8.0<br>7.6<br>345<br>20.0 |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------|
| 20.0                             | 20.0                             | 20.02                            | 20.0                             | 20.0                             | 20.0                      |
| 7.8<br>9.1<br>1974<br>20.0       | 7.8<br>9.0<br>1152<br>20.0       | 7.8<br>8.6<br>819<br>20.0        | 7.8<br>8.5<br>645<br>20.0        | 7.8<br>8.7<br>510<br>20.0        | 7.7<br>9.0<br>341<br>20.0 |
| pH<br>02 ppm<br>Cond.<br>Temp(C) | Cond.                     |
| 100                              | 20                               | 30                               | 20                               | 10                               | Control                   |

| TOXICITY TEST REPORT Sample: 06890406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | TOXICITY TEST PARAMETERS                                  | TERS                                          |      |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------|-----------------------------------------------|------|----------------------------------------------------|
| TEST COMDITIONS  Texaco Canada Inc. Nanticoke, ONT (\$20205), (\$20205)  Region : West Central Industry : Petroleum Refining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample  | Sample Number: 06890406 TEST E L A P S COMC. 00:          | 06890406<br>ELAPSED TIME<br>00:00 24:00 48:00 |      | T I M E                                            |
| Control point : Process Effluent, (200) Leboratory : Beak Sempling Method : grab Sempling Method : grap : 1330 : grap : 1330 : grap : 1330 : grap : gra | 100     | pH<br>O2 ppm<br>Cond,<br>Temp(C)<br>PH<br>O2 ppm<br>Cond, | 8.0<br>9.4<br>2220<br>20.0<br>8.2<br>9.2      | 20.0 | 8.1<br>22220<br>2020<br>20.0<br>8.2<br>8.4<br>1299 |
| Type of Bioassay : STATIC (Daphnia magna Acute Lethality Toxicity Test Protocol. DME, 1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30      | Temp(C) PH O2 ppm Cond.                                   | 20.0<br>8.3<br>9.1<br>946<br>20.0             | 20.0 | 20.00<br>8.2<br>8.4<br>957<br>20.0                 |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20      | pH<br>02 ppm<br>Cond.<br>Temp(C)                          | 8.4<br>9.1<br>761<br>20.0                     | 20.0 | 8.2<br>8.7<br>771<br>20.0                          |
| APSED TIME TOTAL MORTALITY 24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %<br>0  | pH<br>02 ppm<br>cond.<br>Temp(C)                          | 8.5<br>9.4<br>568<br>20.0                     | 20.0 | 8.2<br>8.8<br>576<br>20.0                          |
| fred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control | ( pH<br>O2 ppm<br>Cond.<br>Temp(C)                        | 8.5<br>9.3<br>388<br>20.0                     | 20.0 | 8.2<br>393<br>20.0                                 |
| 48 Wour 1050 : Mon-lethel  MSX fid. limits : 0.0 - 0.0 %  Comments : no mortality or immobility observed in 48 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25      |                                                           |                                               |      |                                                    |

ving average

| TEST COMBITIONS   Texaco Canada Inc.   Horizola   Hor |                                                              | TOXICITY TEST REPORT Sample: 06890530 | TOXICI                  | TOXICITY TEST PARAMETERS         | AMETERS                    |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|-------------------------|----------------------------------|----------------------------|------------|
| thod : Beak thouse, (200)  thod : grab cone can be cone cone cond cond cond cond cond cond cond cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEST_CONDITIONS Company Region Industry                      |                                       | Sample<br>TEST<br>CONC. | Number: 06                       | 90 E                       | D T 025:00 |
| ted : 05/10/89 et: 1530  cd : 05/10/89 et: 1530  sassay : STATIC  so magna Acute Lethality Toxicity  cond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control point<br>Laboratory<br>Sampling Method<br>Sampled By |                                       | 100                     | pH<br>02 ppm<br>cond.<br>Temp(C) | 7.8<br>8.9<br>1484<br>21.0 | 21.0       |
| State   Stat | Date Collected<br>Received<br>Tested                         | **                                    | 20                      | pH<br>02 ppm<br>Cond.<br>Temp(C) | 8.0<br>8.4<br>903<br>21.0  | 21.0       |
| 1.0 Magna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type of Bioassay                                             |                                       | 30                      | pH<br>02 ppm<br>cond.            | 8.8                        |            |
| A P S E D T I M E TOTAL 10 PH H O2 Ppm Cond.  24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test Animal<br>Weight(gm)<br>Length(mm)                      |                                       | 20                      | pH<br>02 ppm<br>Cond.            | 8.2<br>8.5<br>8.5<br>554   | 0.12       |
| 00:00 24:00 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <                                                            | SED TIME                              | 10                      | pH<br>02 ppm                     | 8.2                        | 0.12       |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              | 48:00                                 |                         | Temp(C)                          | 21.0                       | 21.0       |
| : Non-lethal<br>: 0.0 · 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000                                                        | D00000                                | Contro                  |                                  | 7.3<br>8.5<br>327<br>21.0  | 21.0       |
| 0.0 - 0.0 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48 Hour LC50                                                 | Non-lethal                            |                         |                                  |                            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% fid. limits                                              | × 0.0 . 0.0 :                         |                         |                                  |                            |            |

| MISA-PETROLEUM-DAPHNIA                                                                                                                                         |                                                                                                | SLOPE of Mortality Curve<br>LC50 Calculated By :       | **                                    | none                                        |                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|--|
| TOXICITY TEST REPORT                                                                                                                                           | REPORT Sample: 02890108                                                                        | TOXICITY TEST PARAMETERS                               | ARAMETERS                             |                                             |                                             |  |
| TEST CONDITIONS: Texaco Canada Inc. Compeny Hanticoke, ONI (520205) Region: Mest Central Industry: Petroleum Refining                                          | Inc.<br>If                                                                                     | Sample Number: 02890108<br>TEST E L A P S<br>COMC. 00: | 02890108<br>E L A P S E D<br>00:00 01 | 108<br>PSED TIME<br>00:00 01:00 24:00 48:00 | E<br>00 48:00                               |  |
| Control point : Process Effluent, (200) Laboratory : MOE Sampling Method : grab Sample By : 1. G. Perkons Date Collected : 05/31/89 Tested : 05/31/89 at: 1210 | Jent, (200)                                                                                    | 100 pH Cond. Cond. Temp(C)                             | 20.03                                 | 20.0 20.0                                   | 8.4<br>1159<br>0.0 20.0<br>8.3<br>8.5       |  |
| Assay                                                                                                                                                          | : STATIC<br>(Dephnis magna Acute Lethality Toxicity<br>Test Protocol. OME, 1988)<br>: D. magna | 30 pH<br>02 ppm<br>Cond.<br>Temp(C)                    |                                       | 20.0 20                                     | 20.0 20.0<br>8.4<br>8.6<br>568<br>20.0 20.0 |  |
| Weight(gm) :<br>Length(mm) :<br>MORTALITY DAIA                                                                                                                 |                                                                                                | 15 pH<br>02 ppm<br>cond.<br>Temp(C)                    | 8.2<br>9.6<br>442<br>20.0             | 20.0 20                                     | 8.3<br>8.6<br>440<br>20.0 20.0              |  |
| TEST ELAPSED TIME COMC. x 00:00 01:00 24:00 48:00                                                                                                              | TOTAL<br>MORTALITY X                                                                           | 5 pH<br>02 ppm<br>cond.<br>Temp(C)                     | 8.2<br>9.6<br>351<br>20.0             | 20.0 20                                     | 8.3<br>8.4<br>350<br>20.0 20.0              |  |
| 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                        | 00000                                                                                          | Control pH<br>02 ppm<br>Cond.C)<br>Temp(C)             | 8.2<br>9.7<br>311<br>20.0             | 20.0 20                                     | 8.4<br>8.4<br>345<br>20.0 20.0              |  |
| 48 Mour LC50 : Non-lethal 95% fid. limits : 0.0 - 0 Comments : MISA Audit                                                                                      | × 0.0                                                                                          |                                                        |                                       |                                             |                                             |  |





