Health Insurance Premium Charges in US

By Nate Talampas

Model Used: Box-Cox and Gamma

# Why health insurance?





I am fascinated by the intersection of health care, insurance, and technology. With technological innovations like AI and Blockchain making revolutionary changes in the industry, I wanted to base my project on understanding insurance companies evaluate risks associated with patients.

#### Data Overview

| age | sex    | bmi    | children | smoker | region    | charges  |
|-----|--------|--------|----------|--------|-----------|----------|
| 19  | female | 27.9   | 0        | yes    | southwest | 16884.92 |
| 18  | male   | 33.77  | 1        | no     | southeast | 1725.552 |
| 28  | male   | 33     | 3        | no     | southeast | 4449.462 |
| 33  | male   | 22.705 | 0        | no     | northwest | 21984.47 |
| 32  | male   | 28.88  | 0        | no     | northwest | 3866.855 |
| 31  | female | 25.74  | 0        | no     | southeast | 3756.622 |
| 46  | female | 33.44  | 1        | no     | southeast | 8240.59  |
| 37  | female | 27.74  | 3        | no     | northwest | 7281.506 |
| 37  | male   | 29.83  | 2        | no     | northeast | 6406.411 |
| 60  | female | 25.84  | 0        | no     | northwest | 28923.14 |
| 25  | male   | 26.22  | 0        | no     | northeast | 2721.321 |
| 62  | female | 26.29  | 0        | yes    | southeast | 27808.73 |
| 23  | male   | 34.4   | 0        | no     | southwest | 1826.843 |
| 56  | female | 39.82  | 0        | no     | southeast | 11090.72 |
| 27  | male   | 42.13  | 0        | yes    | southeast | 39611.76 |
| 19  | male   | 24.6   | 1        | no     | southwest | 1837.237 |
| 52  | female | 30.78  | 1        | no     | northeast | 10797.34 |
| 23  | male   | 23.845 | 0        | no     | northeast | 2395.172 |
| 56  | male   | 40.3   | 0        | no     | southwest | 10602.39 |
| 30  | male   | 35.3   | 0        | yes    | southwest | 36837.47 |
| 60  | female | 36.005 | 0        | no     | northeast | 13228.85 |
| 30  | female | 32.4   | 1        | no     | southwest | 4149.736 |
| 18  | male   | 34.1   | 0        | no     | southeast | 1137.011 |
| 34  | female | 31.92  | 1        | yes    | northeast | 37701.88 |

The dataset contains 100 observations with the following attributes: Age, Sex, BMI, Number of Children, Smoker, Residential Region, and Individual Medical Costs Billed By Health Insurance.

#### Box-Cox Regression R Code

```
df = read.csv("insurance.csv")
sex.rel = relevel(as.factor(dfSsex), ref="female")
smoker.rel = relevel(as.factor(df\smoker), ref="no")
region.rel = relevel(as.factor(df$region), ref="southeast")
chargesK = dfScharges/1000
library(rcompanion)
plotNormalHistogram(chargesK)
shapiro.test(chargesK)
library(MASS)
BoxCox.fit = boxcox(chargesK - age + sex.rel + bmi + children + smoker.rel +
region.rel.
data=df, lambda=seg(-3.3.1/4).interp = FALSE)
BoxCox.data<- data.frame(BoxCox.fit$x, BoxCox.fit$y)
ordered.data - BoxCox.data[with(BoxCox.data, order(-BoxCox.fit.y)).]
ordered.data[1,]
  applying Box-cox transformation with lambda=0.5
tr.chargesK = 2 * (sqrt((chargesK)) - 1)
```

```
#running normality check of transformed response
plotNormalHistogram(tr.chargesK)
shapiro.test(tr.chargesK)

# running general linear model on transformed response
summary(fitted.model<- glm(tr.chargesK ~ age + sex.rel + bmi + children +
smoker.rel + region.rel, data=df, family=gaussian(link=identity)))
cat("Sigma:",sigma(fitted.model))

# checking goodness of fit
null.model = glm(tr.chargesK ~ 1, data=df, family=gaussian(link=identity))
deviance = -2*(logLik(null.model) - logLik(fitted.model))
pvalue = pchisq(deviance, df=8, lower.tail=F)
cat("Deviance:", deviance, "\npvalue:", pvalue)</pre>
```

## Box-Cox Regression SAS Code

```
proc import datafile="C:/Users/ntlmp/Desktop/STAT410 Regression Analysis/STAT410 Project/insurance.csv"
out=healthinsurance
dbms=csv
replace;
run;
/* creating dummy variables for levels for categorical variables*/
data healthingurance:
set healthinsurance;
male=(sex="male");
female=(sex="female");
smokerno=(smoker="no");
smokeryes=(smoker="yes");
northwest=(region="northwest");
northeast=(region="northeast");
southwest=(region="southwest");
southeast=(region="southeast");
chargesK = charges/1000;
run:
/* running normality check of response variable */
proc univariate;
var chargesK:
histogram/normal;
rung
/* finding optimal lambda for Box-Cox transformation*/
proc transreg;
model BoxCox(chargesK) =
    identity(age male female bmi children smokerno smokeryes northwest northeast southwest southeast);
run;
/* applying Box-Cox transformation with lambda=0.5*/
/* square root transformation */
data healthinsurance;
set healthinsurance;
tr chargesK = 2 * (sqrt(chargesK) - 1);
run:
```

```
/* running normality check of transformed response*/
proc univariate;
var tr chargesK;
histogram/normal;
run:
/* fitting general linear model to transformed response */
proc genmod;
class sex(ref="female") smoker(ref="no") region(ref="southeast");
model tr chargesK = age sex bmi children smoker region
    / dist=normal link=identity;
/* Log Likelihood: -164,1056 */
/* checking model fit */
proc genmod;
model tr chargesK = / dist=normal link=identity;
* Log Likelihood: -261.6025:
data deviance test:
deviance = -2*(-261.6025 - (-164.1056));
pvalue = 1 - probchi(deviance, 8);
proc print noobs;
run:
```

#### Gamma Regression Code

```
df = read.csv("insurance.csv")

* creating dummy variables
sex.rel = relevel(as.factor(df$sex), ref="female")
smoker.rel = relevel(as.factor(df$smoker), ref="no")
region.rel = relevel(as.factor(df$region), ref="southeast")

* rescaling costs
chargesK = df$charges/1000

* fitting gamma regression model
summary(fitted.model <- glm(chargesK ~ age + sex.rel + bmi + children +
smoker.rel + region.rel, data=df, family=Gamma(link=log)))

* checking goodness of fit
null.model = glm(chargesK ~ 1, data=df, family=Gamma(link=log))
deviance = -2*(logLik(null.model) - logLik(fitted.model))
p.value = pchisq(deviance, df=8, lower.tail=F)
cat("Deviance:", deviance, "\npvalue:", p.value)</pre>
```

```
proc import datafile "C:/Users/ntlmp/Desktop/STAT410 Regression Analysis/STAT410 Project/insurance.csv"
out=healthingurance
dbms=cav
replace;
run;
data healthingurance;
set healthinsurance;
chargesK = charges/1000; * rescaling costs;
proc germod:
class sex(ref="female") smoker(ref="no") region(ref="southeast");
model chargesK = age sex bmi children smoker region /
    dist=gamma link=log:
/* Log Likelihood: -275.9746 */
/* checking goodness of fit */
proc genmod;
model chargesK = / dist=gamma link=log;
/* Log Likelihood: -366.4021 */
data deviance test:
deviance = -2*(-366.4021 - (-275.9746));
pvalue = 1 - probchi(deviance, 8);
run:
proc print noobs;
run:
```

# Box-Cox Regression R Output











## Box-Cox Regression SAS Output











#### Gamma Regression Output

```
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     -0.222636
                                                    0.5033
                                0.003370
                                          10.238
                                                    <2e-16 ***
sex.relmale
                                0.101152
                                            1.182
                                                    0.2404
                                0.008804
                     0.017294
                                            1.964
                                                    0.0525 .
children
                     0.052041
                                0.039615
                                            1.314
                                                    0.1923
smoker, relves
                     1.693780
                                           14.587
region.relnortheast 0.009332
                                                    0.9478
                                0.142067
                                            0.066
region.relnorthwest
                     0.267412
                                0.136806
                                            1.955
                                                    0.0537 .
region, relsouthwest
                                            0.566
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.2368081)
    Null deviance: 88.863 on 99 degrees of freedom
Residual deviance: 16.254 on 91 degrees of freedom
AIC: 571.98
Number of Fisher Scoring iterations: 7
Deviance: 181.6523
pvalue: 4.630293e-35
```

|           |           |         | Analysis C | of Maximum        | n Likelihood Paran | neter Estima | ites            |            |
|-----------|-----------|---------|------------|-------------------|--------------------|--------------|-----------------|------------|
| Parameter |           | DF      | Estimate   | Standard<br>Error |                    |              | Wald Chi-Square | Pr > ChiSq |
| Intercept | 1         | -0.2226 | 0.2860     | -0.7832 0.3379    |                    | 0.61         | 0.4363          |            |
| age       |           | 1       | 0.0345     | 0.0029            | 0.0289             | 0.0401       | 143.52          | <.0001     |
| sex       | male      | 1       | 0.1195     | 0.0838            | -0.0447            | 0.2838       | 2.03            | 0.1538     |
| sex       | female    | 0       | 0.0000     | 0.0000            | 0.0000             | 0.0000       |                 |            |
| bmi       |           | 1       | 0.0173     | 0.0076            | 0.0025             | 0.0321       | 5.22            | 0.0223     |
| children  |           | 1       | 0.0520     | 0.0322            | -0.0111            | 0.1152       | 2.61            | 0.1062     |
| smoker    | yes       | 1       | 1.6938     | 0.1011            | 1.4957             | 1.8919       | 280.87          | <.0001     |
| smoker    | no        | 0       | 0.0000     | 0.0000            | 0.0000             | 0.0000       |                 |            |
| region    | northeast | 1       | 0.0093     | 0.1170            | -0.2199            | 0.2386       | 0.01            | 0.9364     |
| region    | northwest | 1       | 0.2674     | 0.1153            | 0.0413             | 0.4935       | 5.37            | 0.0204     |
| region    | southwest | 1       | 0.0782     | 0.1127            | -0.1427            | 0.2991       | 0.48            | 0.4880     |
| region    | southeast | 0       | 0.0000     | 0.0000            | 0.0000             | 0.0000       |                 |            |
| Scale     |           | 1       | 6.3145     | 0.8704            | 4.8195             | 8.2732       |                 |            |

| deviance | pvalue |
|----------|--------|
| 180.855  | 0      |

#### Fitted Model

The Gamma regression fitted model can be written as:

$$\hat{E}(charges) =$$

 $exp(-0.2226 + 0.0345 \cdot age + 0.1195 \cdot male + 0.0173 \cdot bmi + 0.0520 \cdot children + 1.6938 \cdot smoker + 0.0093 \cdot northeast + 0.2674 \cdot northwest + 0.0782 \cdot southwest)$ 

#### Interpretation of Significant Predictors

Significant predictors at the 5% level include age, BMI, smoker, and region northwest.

- As age increases by one year, the estimated mean amount of premiums increases by 3.51%.
- As BMI increases by one point, the estimated mean amount of premiums increases by 1.745%.
- The estimated mean amount of premiums for smokers is 5.44% of that for nonsmokers.
- The estimated mean amount of premiums for people living in the northwest is 1.3066% of that for people living in the southeast.

#### Fitted Model Prediction

I am a 22 year old male with a BMI of 23.3. I have no children, do not smoke, and I live in the southwest. What would my predicted health insurance costs be?

The Gamma fitted model value can be calculated as:

$$\exp\left(-0.2226 + 0.0345(22) + 0.1195 + 0.0173(23.3) + 0.0782\right) \cdot 1000 = 3117.994$$

#### Gamma Fitted Model Code and Output

```
data prediction;
input age sex$ 4-7 bmi children smoker$ 16-17 region$ 19-27;
cards:
                                                                                                   pred charges
22 male 23.3 0 no southwest
                                                                                                           3117.30
data healthinsurance:
set healthinsurance prediction;
                                                                                                                                    0 E >
run;
                                                                      pred_gam = predict(fitted.model, data.frame(age=22, sex.rel="male",bmi=23.3.
                                                                      children=0, smoker.rel="no", region.rel="southwest"), type="response")
proc genmod;
                                                                      print(pred_gam*1000)
class sex(ref="female") smoker(ref="no") region(ref="southeast");
model chargesK = age sex bmi children smoker region
/dist=gamma link=log;
output out=outdata p=pchargesK;
run:
data outdata:
set outdata:
pred charges= 1000*pchargesK;
run:
proc print data=outdata(firstobs=101) noobs;
var pred charges;
run:
```

# Thank you, Dr. Olga and my fellow classmates!

I appreciate all of your time and attention. Good luck with the rest of your finals and have a fantastic break!