Why do we need Machine Learning?

- ML is a very exciting field !!!
- It's used in applications that cannot be explicitly programmed.

Robot Navigation

Work well with learning algorithms

Why do we need Machine Learning?

- ML has lots of applications in many areas:
 - Media
 - Biology
 - Data Bases
 - Economics
 - Internet/Social Networks
 - Robots
 - Games
 - ...

What is Learning?

- Learning is an essential human property
- Learning: Acquisition of knowledge, understanding, and ability with experience.
- Learning IS NOT learning by heart
- Any computer can learn by heart, the difficulty is to make a prediction – generalize a behavior to a novel situation.

Machine Learning

Study of algorithms that improve their performance at some task with experience

Experience: images of a handwritten "a".

Task: recognition of a handwritten letter "a" from its image.

Measure of Performance: recognition rate.

Application: Medical diagnostics

Application: Loan applications

objects (people)

	income	debt	married	age	approve	deny
John Smith	200,000	0	yes	80		K
Peter White	60,000	1,000	no	30	\	
Ann Clark	100,000	10,000	yes	40	√	
Susan Ho	0	20,000	no	25		V

classes

Application: Face Detection

Application: Text Classification

► All About The Company

Global Activities
Corporate Structure
TOTAL's Story
Upstream Strategy
Downstream Strategy
Chemicals Strategy
TOTAL Foundation
Homepage

all about the company

Our energy exploration, production, and distribution operations span the globe, with activities in more than 100 countries.

At TOTAL, we draw our greatest strength from our fast-growing oil and gas reserves. Our strategic emphasis on natural gas provides a strong position in a rapidly expanding market.

Our expanding refining and marketing operations in Asia and the Mediterranean Rim complement already solid positions in Europe, Africa, and the U.S.

Our growing specialty chemicals sector adds balance and profit to the core energy business.

Company homepage vs.
Personal homepage

Other Applications

- speech recognition, speaker recognition/verification
- security: face recognition, event detection in videos
- adaptive control: navigation of mobile robots...
- fraud detection: e.g. detection of "unusual" usage patterns for credit cards or calling cards
- spam filtering
- financial prediction (many people on Wall Street use machine learning)
- Many others

Types of Learning Problems

- Supervised learning: given a set of training inputs and corresponding outputs (correct answers), produce the "correct" outputs for the new inputs.
 - classification, regression

Housing Prices

Living area (feet 2)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	÷

feet²

Housing Prices

Housing Prices

Housing Prices

Tumor Classification

Malignant

Tumor size

Tumor Classification

Malignant

Tumor Classification

Malignant

Tumor Classification

Tumor Classification

Tumor Classification

Tumor size

Two kinds of Supervised Learning

 Regression: Learn a continuous input-output mapping from a limited number of examples.

 Classification: outputs are discrete variables (category labels). Learn a decision boundary that separates one class from the other.

Types of Learning Problems

- Supervised learning: given a set of training inputs and corresponding outputs, produce the "correct" outputs for new inputs.
 - classification, regression
- Unsupervised learning: given only inputs as training, find structure in the world: discover clusters, manifolds, characterize the areas of the space to which the observed inputs belong
 - clustering, density estimation, embedding

Unsupervised Learning

- Density Estimation. Find a function f such f(X) approximates the probability density of X, p(X), as well as possible.
- Clustering: discover "clumps" of points

 Embedding: discover lowdimensional manifold or surface near which the data lives.

Clustering Example

Cluster images of faces into two groups

Clustering Example

Cluster images of faces into two groups

Types of Learning Problems

- Supervised learning: given a set of training inputs and corresponding outputs, produce the "correct" outputs for new inputs.
 - classification, regression
- Unsupervised learning: given only inputs as training, find structure in the world: discover clusters, manifolds, characterize the areas of the space to which the observed inputs belong
 - clustering, density estimation, embedding
- Reinforcement learning, where we only get feedback in the form of how well we are doing (For example the outcome of the game).

I won't talk much about that in this course.

planning

Why Learning is Difficult?

 Given a finite amount of training data, you have to derive a relation for an infinite domain.

In fact, there is an infinite number of such

relations

Why Learning is Difficult?

 Given a finite amount of training data, you have to derive a relation for an infinite domain

In fact, there is an infinite number of such

relations

Which relation is more appropriate?

Why Learning is Difficult?

 Given a finite amount of training data, you have to derive a relation for an infinite domain

In fact, there is an infinite number of such

relations

... the hidden test points...

Occam's Razor's Principle

- Occam's Razor's Principle(14th century):
 - One should not increase, beyond what is necessary, the number of entities required to explain anything
- When many solutions are available for a given problem, we should select the simplest one.
- But what do we mean by simple?
- We will use prior knowledge of the problem to define what is a simple solution.

Example of a prior: smoothness

Generalization in Regression

 A classification problem: predict the grades for students taking this course.

- A classification problem: predict the grades for students taking this course.
- Key steps:
 - Data: what "past experience" can we rely on?

- A classification problem: predict the grades for students taking this course.
- Key steps:
 - Data: what "past experience" can we rely on?
 - Assumptions: what can we assume about the students or the course?

- A classification problem: predict the grades for students taking this course.
- Key steps:
 - Data: what "past experience" can we rely on?
 - Assumptions: what can we assume about the students or the course?
 - Representation: how do we "summarize" a student?

- A classification problem: predict the grades for students taking this course.
- Key steps:
 - Data: what "past experience" can we rely on?
 - Assumptions: what can we assume about the students or the course?
 - Representation: how do we "summarize" a student?
 - Estimation: how do we construct a map from students to grades?

- A classification problem: predict the grades for students taking this course.
- Key steps:
 - Data: what "past experience" can we rely on?
 - Assumptions: what can we assume about the students or the course?
 - Representation: how do we "summarize" a student?
 - Estimation: how do we construct a map from students to grades?
 - Evaluation: how well are we predicting?

- A classification problem: predict the grades for students taking this course.
- Key steps:
 - Data: what "past experience" can we rely on?
 - Assumptions: what can we assume about the students or the course?
 - Representation: how do we "summarize" a student?
 - Estimation: how do we construct a map from students to grades?
 - Evaluation: how well are we predicting?
 - Model selection: perhaps we can do even better?

Data

- The data we have available (in principle):
 - names and grades of students in past years ML courses
 - academic record of past and current students
- "training" data:

Student	ML	course1	course2	
Peter	A	В	A	•••
David	В	Α	Α	

"test" data:

Student	ML	course1	course2	
Jack	?	С	А	•••
Kate	?	Α	Α	

Anything else we could use?

Assumptions

- There are many assumptions we can make to facilitate predictions
 - 1. the course has remained roughly the same over the years
 - 2. each student performs independently from others

Presentation

- Academic records are rather diverse so we might limit the summaries to a select few courses
- For example, we can summarize the ith student (say Pete) with a vector

$$\mathbf{x}_i = [100 \ 60 \ 80]$$

The available data in this representation

Training		Test		
Student	ML grade	Student	ML grade	
X 1	100	X ' ₁	?	
X 2	80	X ' ₂	?	

Estimation

Given the training data
 we need to find a mapping
 from "input vectors" x to
 "labels" y encoding the
 grades for the ML course.

Student	ML grade	
x 1	100	
x2	80	

- Possible solution (nearest neighbor classifier):
 - 1. For any student x find the "closest" student X_i in the training set
 - 2. Predict y_i , the grade of the closest student

Evaluation

- How can we tell how good our predictions are?
 - we can wait till the end of this course...
 - we can try to assess the accuracy based on the data we already have (training data)
- Possible solution:
 - divide the training set further into training and validation sets;
 - evaluate the classifier constructed on the basis of only the smaller training set on the new validation set

Model Selection

- We can refine
 - the estimation algorithm (e.g., using a classifier other than the nearest neighbor classier)
 - the representation (e.g., base the summaries on a different set of courses)
 - the assumptions (e.g., perhaps students work in groups) etc.
- We have to rely on the method of evaluating the accuracy of our predictions to select among the possible refinements

Validation of Model

Cross Validation

Interpreting Results

=== Confusion Matrix ===

PREDICTED CLASS

a b <-- classified as

TP FN | a = Stress

FP TN | b = Baseline

Example:

=== Confusion Matrix ===

PREDICTED CLASS

a b <-- classified as

ACTUAI CLASS

266 63 | a = Stress

57 214 | b = Baseline

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

Sensitivity(Recall) =
$$\frac{TP}{TP + FN}$$
 Specificity = $\frac{TN}{TN + FP}$

Over-fitting

