Lógica Digital

Circuitos Secuenciales

Organización del Computador I Departamento de Computación - FCEyN UBA

11 de Abril del 2018

Menú

- Repaso de Circuitos Secuenciales
- Ejercicios (x4)
- Intervalo
- 4 Componentes de 3 estados
- 5 Armar un Banco de Registros :D

¿Qué deberíamos saber hasta ahora?

- Operadores y funciones booleanas.
- Reducciones utilizando identidades.
- Dada una tabla de verdad poder escribir su función booleana.
- Graficar circuitos lógicos.
- Circuitos combinatorios.

Introducción

Circuitos Combinacionales

La salida esta determinada únicamente por la entrada del circuito

Circuitos Secuenciales

La salida esta determinada por la entrada y el *estado* del circuito

Circuitos Secuenciales

- Las entradas del circuito combinacional son las entradas (E) junto con las salidas de la memoria (Q_n)
- El bloque combinacional genera la salida del circuito (S) y el nuevo estado del mismo (Q_{n+1})

Implementar un registro contador de dos *bits* que siga los siguientes estados y que cada cambio se produzca al apretar un pulsador. Usando flip-flops D y compuertas básicas a elección. Nos piden además que el componente a desarrollar cuente con una entrada de Reset.

En este caso, dado un estado t definido por el valor de Q_1 y Q_0 podemos ver cuáles serán los próximos valores a almacenar:

$Q_1(t)$	$Q_0(t)$	$Q_1(t+1)$	$Q_0(t+1)$
0	1	0	0
0	0	1	0
1	0	1	1
1	1	0	0

¿qué valores deberían tener D_1 y D_0 para obtener los valores deseados en el tiempo t+1, es decir, de $Q_1(t+1)$ y $Q_0(t+1)$?

Usando que el flip-flop D define su próximo valor en referencia a lo que tiene en la entrada D, vemos que la suma de productos nos define los valores de D:

$$D_0 = (Q_1.\bar{Q}_0) D_1 = (\bar{Q}_1.\bar{Q}_0) + (Q_1.\bar{Q}_0) = (\bar{Q}_1 + Q_1).\bar{Q}_0 = 1.\bar{Q}_0 = \bar{Q}_0$$

Así se obtiene el siguiente circuito:

Implementar un registro contador de dos *bits* que siga los siguientes estados y que cada cambio se produzca al apretar un pulsador.

Realizando un análisis análogo al del ejercicio anterior se obtiene:

$Q_1(t)$	$Q_0(t)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	1
0	1	?	?
1	0	-	-
1	1	0	1

Lo cual no parece funcionar, ya que para el 01 no se puede determinar si es 11 ó 00 y para 10 no hay definido un próximo estado.

Q_1	$Q_0 ightarrow o_1$	00
0	$0 \rightarrow 0$	0
0	$1 \ \to \ 0$	1
1	$0 \ \to \ 1$	1
1	$1 \ \to \ 0$	1

Con lo cual podemos decir que:

$$o_0 = Q_1 + Q_0$$
 por producto de sumas $o_1 = Q_1$. $ar{Q}_0$ por suma de productos

Ejercicio 2- bis

Implementar un registro contador de dos *bits* que siga los siguientes estados y que cada cambio se produzca al apretar un pulsador. Con el agregado de que tenga una entrada llamada NEG que genera los siguientes comportamientos:

Analizar los estados del siguiente componente:

Solución:

$Q_1(t)$	$Q_0(t)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Componentes de Tres Estados

Símbolo

Tabla de Verdad

Hi-Z significa "alta impedancia", es decir, que tiene una resistencia alta al pasaje de corriente. Como consecuencia de esto, podemos considerar al pin C como desconectado del circuito.

IMPORTANTE: Sólo deben ser usados a la salida de componentes para permitirles conectarse a un medio compartido (bus).

Componentes de Tres Estados

IMPORTANTE: Sólo deben ser usados a la salida de componentes para permitirles conectarse a un medio compartido (bus).

- a) Diseñar un registro de 3 *bits*. El mismo debe contar con 3 entradas e_0, \ldots, e_2 para ingresar el dato a almacenar, 3 salidas s_0, \ldots, s_2 para ver el dato almacenado y las señales de control RESET y WRITEENABLE.
- b) Modificar el diseño anterior agregándole componentes de 3 estados para que sólo cuando se active la señal de control ENABLEOUT muestre el dato almacenado.
- c) Modificar nuevamente el diseño para que e_i y s_i estén conectadas entre sí al mismo tiempo teniendo en lugar de 3 entradas y 3 salidas, 3 entrada-salidas

- a) Realizar el esquema de interconexión de n registros como el diseñado
- b) Dar una secuencia de valores de las señales de control para que se copie el dato del R1 al R0

Señales de control:

R0	R1	 Rn
WriteEnable-0	WriteEnable-1	 WriteEnable-n
reset-0	reset-1	 reset-n
EnableOut-0	EnableOut-1	 EnableOut-n

Inician todas las señales en 0. Luego se sigue la siguiente secuencia:

- EnableOut-1 \leftarrow 1
- WriteEnable-0 \leftarrow 1
- WriteEnable-0 \leftarrow 0
- EnableOut-1 \leftarrow 0

¿Cómo seguimos?

- Con lo que vimos hoy ya pueden terminar toda la práctica 2 (parte A y B)
- Pueden profundizar más sobre estos temas en The Essential of Computer Organization (L. Null) - Capítulo 3