

About Me

Praneet Nigam

Trainee Data Scientist at Spectral Tech

- maneet.nigam@spectraltech.ai
- in linkedin.com/in/praneet460/
- y @praneetnigam
- Praneet460
- o praneetnigam

Small Exercise: Sales of CNG in India from 2012 to 2017

States : [Gujarat, Delhi, Rajasthan, Maharashtra, Andhra Pradesh / Telangana, Uttar Pradesh, Tripura, Madhya Pradesh, Haryana, West Bengal]

CNG Sales (TMT) - 2012-13: [441.8, 695.1, 0.8, 425.1, 24.7, 137.7, 4.3, 14.5, 73.2, 0.6]

CNG Sales (TMT) - 2013-14 : [463.5, 697.6, 1.6, 476, 24.6, 162.6, 6.8, 15.9, 78.2, 1.154]

CNG Sales (TMT) - 2014-15 : [475.9, 717.1, 2.6, 531.4, 25.8, 184.8, 9.5, 16.6, 72.3, 1.244]

CNG Sales (TMT) - 2015-16 : [503.05, 738.3, 3.68, 565.01, 27.45, 211.61, 11.19, 19.19, 74.59, 1.36]

CNG Sales (TMT) - 2016-17 : [546.31, 803.84, 4.27, 592.59, 28.53, 245.42, 12.3, 21.59, 109, 1.64]

Data Source:

https://community.data.gov.in/sale-of-cng-in-india-during-2012-13-to-2016-17/

Fact:

Our Brain process visual data 60,000 times faster than the text data, and 90 percent of the information transmitted to the brain is visual.

Source: http://www.t-sciences.com/news/humans-process-visual-data-better

Men's Vs Women's Jeans Pockets

On average, the pockets in women's jeans are 48% shorter and 6.5% narrower than men's pockets.

Source: https://pudding.cool/2018/08/pockets/

Visualization gives you answer to

questions you didn't know you had.

- Ben Schneiderman

When most people think about DataViz, they think about this.

One Year of Air Traffic / One Million Particles

Data Visualization

- ☐ The visual representation of data.
- Primary goal is to communicate information clearly and efficiently to users via the statistical graphics, plots, information graphics, tables, and charts selected.
- Visualizing the data help you find the hidden patterns inside the data.
- ☐ The purpose of visualization is insight, not pictures.
- ☐ Show data variation, not design variation.

Steps to make your visualization successful

Purpose

Why this visualization?

Content

What to visualize?

Structure

How to visualize it?

Formatting

Everything else like text-font, axis

Basics of DataViz Starts With

- ★ Scatter plot
- ★ Line plot
- ★ Bar plot
- ★ Histogram
- ★ Box plot
- ★ Kernel Density Estimation plot i.e. KDE
- ★ Violin plot

Know more about these plots with examples - http://bit.ly/edanalysis

One of the most popular machine learning model

for structured data.....

Decision Tree

IRIS Dataset

The Iris dataset is a classic and very easy multi-class classification dataset.

Classes	3
Samples per class	50
Samples total	150
Dimensionality	4
Features	Real, Positive

Code: IRIS Classification

```
from sklearn.datasets import *
from dtreeviz.trees import *
clas = tree.DecisionTreeClassifier(max_depth = 2)
iris = load iris()
X train = iris.data
y train = iris.target
viz = dtreeviz(clas, X train, y train, target name = 'price', feature names =
iris.feature names, class names = ['setosa', 'versicolor', 'virginica'])
viz
```

Boston Housing

Code: Boston Housing

```
from sklearn.datasets import *
from dtreeviz.trees import *
regr = tree.DecisionTreeRegressor(max_depth = 3)
boston = load boston()
X train = boston.data
y train = boston.target
viz = dtreeviz(regr, X train, y train, target name = 'price', feature names =
boston.feature names)
viz
```