

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

P25124.P07

JRW

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Jihong ZHOU et al

Appln No. : 10/809,345 Group Art Unit: Unknown

Filed : March 26, 2004 Examiner: Not Yet Known

For : A Y- ZEOLITE- CONTATINING COMPOSITE MATERIAL
AND A PROCESS FOR PREPARING THE SAME

**SUPPLEMENTAL CLAIM OF PRIORITY
SUBMITTING CERTIFIED COPY**

Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Sir:

Further to the Claim of Priority filed March 26, 2004 and as required by 37 C.F.R. 1.55,
Applicant hereby submits a certified copy of the application upon which the right of priority is
granted pursuant to 35 U.S.C. §119, i.e., of Chinese Application No. 03121159.3, filed March 28,
2003 .

Respectfully submitted,
Jihong ZHOU et al

Hong J. Xu
Reg. No. 46,415

GREENBLUM & BERNSTEIN, P.L.C.
1950 Roland Clarke Place
Reston, VA 20191
(703) 716-1191

041602050

证 明

本证明之附件是向本局提交的下列专利申请副本

申 请 日： 2003. 03. 28

申 请 号： 03121159. 3

申 请 类 别： 发明

发明创造名称： 用高岭土合成的纳米级Y型沸石及其制备方法

申 请 人： 中国石油化工股份有限公司、中国石油化工股份有限公司石油化工科学研究院

发明人或设计人： 周继红、闵恩泽、杨海鹰、宗保宁

中华人民共和国
国家知识产权局局长

王景川

2004 年 4 月 2 日

权 利 要 求 书

1、一种由高岭土原粉晶化制得的纳米级 Y 型沸石，其 NaY 含量为 30~85 重%，所述沸石的一次颗粒为棒状结晶体、片状结晶体或块状结晶体，其中块状结晶体的直径为 50~500nm，片状结晶体的厚度为 50~200nm，棒状结晶体的直径为 50~200nm、长度为 100~600nm；二次颗粒由棒状结晶体或棒状结晶体与片状结晶体、块状结晶体共同构建的巢穴式球体，球体直径为 1000~3000nm。

2、按照权利要求 1 所述的沸石，其特征在于所述的巢穴式球体内有孔穴和巢道，所述孔穴的直径为 200~1000 nm，巢道的直径 50~500nm。

3、按照权利要求 1 所述的沸石，其特征在于其表观堆密度为 0.50~0.75 10 克/厘米³，表面积为 280~800 米²/克。

4、按照权利要求 1 所述的沸石，其特征在于所述的沸石用 BET 法测得的 17~3000Å 的中孔孔体积为 0.05~0.076 毫升/克，占总孔体积的 10~35%。

5、按照权利要求 1 所述的沸石，其特征在于所述的 NaY 沸石经离子交换转换成 HY 或 REY 或 REHY。

6、按照权利要求 1 所述的沸石，其特征在于所述的高岭土原粉选自硬高 15 岭土、软高岭土或煤矸石。

7、一种权利要求 1 所述沸石的制备方法，包括如下步骤：

(1) 将高岭土原粉在 500~690℃ 烘烧脱水转化成偏高岭土，再制成粒径 20 小于 230 微米的粉末，

(2) 在偏高岭土粉中加入硅酸钠、导向剂、氢氧化钠溶液和水，制成配比为 (1~2.5) Na₂O: Al₂O₃: (4~9) SiO₂: (40~100) H₂O 的反应原料，其中导向剂与偏高岭土的重量比为 0.1~1.0，

(3) 将 (2) 步制得的反应原料在 88~98℃ 搅拌下晶化，然后过滤并干燥。

8、按照权利要求 7 所述的方法，其特征在于 (2) 步所述的导向剂组成 25 为 (10-17) SiO₂: (0.7-1.3) Al₂O₃: (11-18) Na₂O: (200-350) H₂O，且在 4~20℃ 老化制得。

9、按照权利要求 7 所述的方法，其特征在于 (1) 步中高岭土的焙烧为 600~690℃。

10、按照权利要求 7 所述的方法，其特征在于 (3) 步晶化搅拌速度为 30 200~1000 转/分，晶化时间为 16~48 小时。

11、按照权利要求 7 所述的方法，其特征在于 (2) 步加入的氢氧化钠溶液浓度为 1~10 重%。

12、按照权利要求 7 所述的方法，其特征在于 (1) 步所述高岭土选自硬高岭土、软高岭土或煤矸石，其晶体含量大于 75 重%。

35 13、按照权利要求 7 所述的方法，其特征在于向 (2) 步原料中进一步加

入反应原料总量 0.1~2.5 重%的助剂，助剂选自十二烷基磺酸钠、十六烷基三甲基溴化铵、聚乙二醇、草酸、柠檬酸、酒石酸钠或乙二胺四乙酸。

说 明 书

用高岭土合成的纳米级 Y 型沸石及其制备方法

技术领域

本发明是一种通过高岭土晶化合成的 Y 型沸石及制备方法，具体地说，
是一种由高岭土原粉原位晶化制得的纳米级 Y 型沸石及其制备方法。

背景技术

自 1964 年 USP3, 119, 659 公布用高岭土为原料合成沸石以来，这方面的研究一直在不断地进行。早期的工作主要是致力于合成纯的沸石，如 US3, 574, 538 公开了一种用高岭土合成 Y 型沸石的方法，将高岭土焙烧变成无定型的偏高岭土，加入一定量的硅酸钠和氢氧化钠，使其氧化硅/氧化铝的摩尔比与欲合成沸石的接近，然后加入 0.1~10 重% 的导向剂，60~110℃ 晶化后制得纯度很高的 Y 沸石，其氧化硅/氧化铝的摩尔比为 4.5~5.95。

EP 0209332A₂ 公开了一种在搅拌条件将高岭土原料晶化制备 Y 型沸石的方法，该法将高岭土在 550~925℃ 焙烧制得偏高岭土，再加入钠源化合物和水，调节氧化硅：氧化铝摩尔比为 2.1~15:1，水：氧化钠的摩尔比为 15~70:1，在搅拌下使反应物晶化形成 Y 沸石，原料中可加入导向剂。合成的 Y 沸石为平均粒径 3 微米，NaY 纯度达到 97% 的呈分散状态的粉末。

高大维等采用多水高岭土制备 Y 沸石 [石油炼制，1983，(7)：12~16]，该方法将多水高岭土在 640~660℃ 较低的温度下焙烧制成偏高岭土，然后加入氢氧化钠、导向剂和水玻璃，50~60℃ 老化 1 小时，98~100℃ 下晶化 2~24 小时，干燥后制得的沸石 NaY 结晶度大于 80%，氧化硅/氧化铝的摩尔比大于 4.5。该沸石用稀土交换后表现出较好的水热稳定性。

CN1334142A 将一部分高岭土原粉在 940~1000℃ 焙烧成含尖晶石的高土，另一部分在 700~900℃ 焙烧成偏高岭土，然后将两种焙烧后的土按比例混合，再加入硅酸钠、导向剂、氢氧化钠和水，90~95℃ 晶化 16~36 小时，干燥后得到 NaY 含量为 40~90% 的分子筛。该法制备分子筛时高岭土的焙烧温度超过 700℃，耗能较多，且所得分子筛不是纳米级产品。

由于 Y 沸石为流化床催化裂化催化剂的活性组分，所以人们期望直接将高岭土制成微球，再将其原位晶化制成 Y 型沸石。USP4493902 即是将细颗粒的高岭土焙烧，再与水合高岭土混合制成浆液，喷雾干燥制成微球，再焙烧使水合高岭土转变成偏高岭土，再加入沸石合成原料和导向剂，搅拌加热晶化可得到 NaY 含量至少为 40% 的微球状沸石。该沸石中可含高岭土经高温焙烧而得的尖晶石，尖晶石的存在为沸石的生长提供了一个稳定的“骨架”。因此，可制得活性、选择性和水热稳定性好、耐磨和抗金属能力强的沸石。

CN1334318A 将高岭土和粘结剂混合后，喷雾干燥制成 20~111 微米的微球，将一部分微球在 940~1000℃焙烧制成高土，另一部分在 700~900℃焙烧制成偏土，将高土与偏土混合，加入硅酸钠、导向剂、氢氧化钠和水，98~100℃下晶化 16~36 小时，得到的沸石 NaY 含量较低，仅为 25~35%，氧化硅/氧化铝的摩尔比为 4.0~5.5。

近年来，随着石化产品结构和原油价格的变化，要求炼油工业向深度加工方向发展，重油催化裂化技术成为提高经济效益的重要途径。常规 Y 型沸石的晶粒一般在 0.8~1.2 微米，使直径大于 1.0nm 的渣油大分子很难进入孔径只有 0.8nm 左右的沸石孔道中，只能吸附在沸石的外表面，先裂化成较小的分子再进入孔道。由此可见，沸石外表面积的大小已成为影响渣油大分子裂解的重要因素，而增大沸石表面积，就意味着要制备小晶粒沸石。因此，制备小晶粒 Y 沸石提高晶内扩散速率逐渐成为人们研究的热点。

Rajagopal (Appl. Catal. 1986,23:69) 合成出 60nm 的沸石，再制成微球催化剂用于裂化原油，结果显示，小晶粒沸石产出更多的汽油和轻柴油，得到更少的干气和积炭。但沸石晶粒越小，其水热稳定性越差，另外，晶粒越小，表面能越大，越容易聚集成团，造成过滤越困难。因此，凝胶法合成小晶粒 NaY 的不足，成为其工业化应用的最大障碍。

发明内容

本发明的目的是提供一种高岭土原粉晶化制得的纳米级 Y 型沸石及制备方法。该沸石具有高的水热稳定性和抗积炭能力，且制备过程中得到的沸石容易过滤。

本发明将高岭土原粉在较低的温度下焙烧制得偏高岭土，在搅拌的条件下进行原位晶化合成纳米级的 Y 型沸石，合成的沸石具有特殊的巢穴式结构，晶粒小、分散好，做成催化剂后活性组分能被有效利用，因此，可降低催化剂中沸石的用量。另外，本发明沸石材料制备过程中高岭土在较低温度下焙烧，有效地节约了能源。

附图说明

图 1 为本发明沸石的 X-射线衍射谱图。

图 2 为本发明沸石放大 5000 倍的扫描电镜照片。

图 3 为本发明沸石放大 20000 倍的扫描电镜照片。

图 4 为本发明沸石放大 30000 倍的扫描电镜照片。

图 5 为本发明沸石放大 20000 倍的扫描电镜照片。

图 6 为高温焙烧高岭土制得的沸石的放大 15000 倍的扫描电镜照片。

具体实施方式

本发明提供的由高岭土原粉晶化制得的纳米级 Y 型沸石，其 NaY 含量为

30~85 重%，所述沸石的一次颗粒为棒状结晶体、片状结晶体或块状结晶体，其中块状结晶体的直径为 50~500nm，片状结晶体的厚度为 50~200nm，棒状结晶体的直径为 50~200nm、长度为 100~600nm；二次颗粒由棒状结晶体或棒状结晶体与片状结晶体、块状结晶体共同构建的巢穴式球体，球体直径为 1000 ~3000nm。
5

所述的巢穴式球体有大量孔穴和巢道，所述孔穴存在于球体的表面或内部，其直径为 200~1000 nm，巢道位于球体内部，其直径为 50~500nm。

本发明提供的沸石的二次结构为巢穴式球体，该球体由棒状结晶体、片状结晶体或块状结晶体交错堆积而成，存在有大量缝隙和孔穴，球体内部还有巢道。因此沸石的表观堆密度小，其数值仅为 0.50~0.75 克/厘米³。
10

由于本发明沸石具有特殊的结构，其中含有的中孔和大孔较多，用 BET 法测得的 17~3000Å 的中孔孔体积为 0.05~0.076 毫升/克，占总孔体积的 10~35%。

本发明沸石在中孔和大孔含量较高的情况下，仍具有较高的表面积，BET 法测得的表面积为 280~800 米²/克，优选 400~750 米²/克。沸石的氧化硅/氧化铝摩尔为 4.0~5.2。
15

上述 Y 型沸石中 NaY 可经过离子交换转变为氢型、稀土-Y (REY) 或 REHY。当所述的沸石用稀土交换时，稀土的含量以氧化物计为 0.1~15 重%，优选 8.0~12.0 重%。稀土交换后沸石的钠含量小于 0.3 重%，优选小于 0.2 重%。
20

本发明提供的沸石的制备方法，包括如下步骤：

(1) 将高岭土在 500~690℃焙烧脱水转化成偏高岭土，粉碎，再制成粒径小于 230 微米的粉末，
25

(2) 在偏高岭土粉中加入硅酸钠、导向剂、氢氧化钠溶液和水，制成配比为 (1~2.5) Na₂O: Al₂O₃: (4~9) SiO₂: (40~100) H₂O 的反应原料，其中导向剂与偏高岭土的重量比为 0.1~1.0，
30

(3) 将(2)步制得的反应原料在 88~98℃搅拌下晶化，然后过滤并干燥。

本方法将高岭土原粉在较低温度下焙烧制得偏高岭土，所用的高岭土选自硬高岭土、软高岭土或煤矸石，其平均粒径小于 4 微米，所以是未经成型处理的原土。所述高岭土的焙烧温度优选 600~690℃，更优选 640~680℃，焙烧时间为 1~10 小时，选用的高岭土中晶体含量应大于 75 重%，优选大于 85 重%。
35

焙烧后的偏高岭土，必须经过粉碎，使其全部粒径小于 230 微米，否则焙烧后的高岭土不经过粉碎，直接合成，产物中将有很坚硬的固体颗粒存在，且尺寸较大，不利于产品在催化过程中的应用。

上述方法中（2）步所用导向剂可按照常规的方法合成，如按照 USP3574538, 3639099, USP3671191, USP4166099, EUP0435625 的制备方法合成。导向剂的组成为：（10-17） SiO_2 : （0.7-1.3） Al_2O_3 : （11-18） Na_2O : （200-350） H_2O 。合成时原料在 4~35℃、优选 4~20℃下进行老化以得到导向剂。
5

合成沸石原料中，硅酸钠可为工业用水玻璃或其它含氧化硅的原料，铝酸钠为偏铝酸钠，所用氢氧化钠溶液的浓度为 1~10 重%，优选 4~6 重%。（2）步可加入占反应原料总量的 0.1~2.5% 的助剂，助剂选自十二烷基磺酸钠、十六烷基三甲基溴化铵、聚乙二醇、草酸、柠檬酸、酒石酸钠或乙二胺四乙酸（EDTA）。助剂优选在导向剂之后加入合成原料中。
10

本发明沸石是在搅拌下晶化得到的产品，（3）步中晶化搅拌速度为 200~1000 转/分，优选 400~600 转/分，时间为 16~48 小时，优选 24~32 小时。晶化后沸石的干燥温度为 100~120℃。

为使所述的沸石用于重油的催化裂化反应，应将钠型沸石转变为氢型或稀土离子交换的沸石。制备氢型沸石的方法是用可溶性铵盐溶液对沸石进行离子交换，然后干燥、焙烧。可溶性铵盐溶液选自氯化铵或硝酸铵的溶液，浓度为 4~10 重%，干燥后焙烧温度为 500~600℃。
15

本发明制备 REY 的方法为：将铵交换制得的氢型沸石用可溶性稀土化合物溶液交换一次，交换后干燥，500~600℃焙烧，然后再进行铵交换一至三次，然后干燥。可溶性稀土化合物优选氯化混合稀土，也可以是其它稀土元素的氯化物或硝酸盐。优选的稀土元素为镧、铈、镨、钕、铕或镱，钇的性质与稀土接近，也可用来进行离子交换。
20

本发明提供的沸石适用于各类固体酸的催化反应，特别适用作重油或渣油的流化催化裂化催化剂的活性组分。所述的沸石经稀土交换后，具有较高的水热稳定性和抗积炭能力。应用本发明沸石为催化剂进行重油或渣油裂化的适宜条件为 460~520℃，剂/油质量比为 1.0~5.0，原料质量空速为 16~45 时⁻¹。
25

下面通过实例详细说明本发明，但本发明并不限于此。

实例中沸石的 NaY 含量根据 RIPP146-90 标准方法测定的相对结晶度而得出，晶胞常数 a_0 根据 RIPP145-90 标准方法测定，REO 的含量根据 RIPP131-90 标准方法测定。
30

沸石硅铝比是先测定晶胞常数 a_0 ，再根据下式计算硅铝比：

$$\text{SiO}_2/\text{Al}_2\text{O}_3 \text{ (摩尔比)} = 2 \times (25.858 - a_0) / (a_0 - 24.191)$$

沸石比表面根据氮气吸附法（GB/T5816-1995）测定，孔体积根据氮气吸附法（RIPP151-90）测定，沸石崩塌温度根据差热分析（DTA）法测定。

35 所述 RIPP 测定方法见《石油化工分析方法（RIPP 试验方法）》，杨翠定

等编，科学出版社，1990 年出版。

5

实例 1

制备本发明纳米级 Y 型沸石。

(1) 导向剂的制备：取 250 克硅酸钠溶液（含 20.05 重% 的 SiO_2 、6.41 重% 的 Na_2O ），30℃快速搅拌下缓慢加入 120 克偏铝酸钠溶液（含 3.15 重% 的 Al_2O_3 ，21.1 重% 的 Na_2O ），搅拌 1 小时，20℃老化 48 小时，得到导向剂。
10 导向剂组成为 $16\text{Na}_2\text{O} : \text{Al}_2\text{O}_3 : 15\text{SiO}_2 : 320\text{H}_2\text{O}$ 。

(2) 制备沸石

将平均粒径为 $4\mu\text{m}$ 的高岭土（苏州，阳山牌，中国高岭土公司，晶体含量为 80 重%），在 660℃焙烧 3 小时，得到偏高岭土粉末，粉碎制成粒径小于 $230\mu\text{m}$ 的偏高岭土粉末。

15 取 500 克粉碎后的偏高岭土粉末，搅拌下加入 2000 克硅酸钠溶液（含 20.05 重% 的 SiO_2 ，6.41 重% 的 Na_2O ），300 克（1）步制备的导向剂，500 克浓度为 5 重% 的氢氧化钠溶液，使原料的配比为： $1.39\text{Na}_2\text{O} : \text{Al}_2\text{O}_3 : 5.38\text{SiO}_2 : 54.7\text{H}_2\text{O}$ 。升温至 90℃恒温搅拌晶化 28 小时，加料和晶化时搅拌转速为 1000 转/分。晶化结束后，将晶化罐急冷，过滤，水洗至洗液 pH 值小于 10。120℃
20 干燥 2 小时，得到沸石 Y-1。X-射线衍射测定 Y-1 中 NaY 含量为 35.4 重%，晶胞常数为 24.67。

25

实例 2

按实例 1 的方法制备沸石 Y-2，不同的是将原料高岭土在 680℃焙烧 4 小时，反应原料晶化时搅拌转速为 600 转/分。X-射线衍射测定 Y-2 中 NaY 含量为 52.4 重%，其物化性能见表 1，X-射线衍射谱图见图 1，不同放大倍数的场发射扫描电镜（SEM）照片见图 2~5。

30 从图 1 的 X-衍射谱图可看出，本发明沸石具有 NaY 的特征峰，从特征峰的高度可推算出 NaY 的含量。

从 Y-2 放大 5000 倍 SEM 图 2 中可清楚地看出，本发明沸石由直径小于 3000nm 的巢穴式球体组成。放大 20000 倍的 SEM 图 3 显示巢穴式球体由大量的棒状结晶体、片状结晶体或块状结晶体组成，棒状结晶体的直径为
35 50~200nm，长度为 100~600nm，片状结晶体的厚度小于 50~200nm，块状结晶

体直径为 100nm~500nm。放大 30000 倍的 SEM 图 4 显示棒状结晶体上含有大量直径小于 100nm 的颗粒，片状结晶体也含有大量直径小于 100nm 的颗粒。
5 放大 20000 倍的 SEM 图 5 为沸石的断面图，显示巢穴式球体的断截面类似于岩洞一样，巢穴式球体中棒状结晶体之间、棒状结晶体与片状结晶体、块状结
晶体之间是通过成键的形式结合的。图 4、图 5 还清晰地显示出本发明沸石中存在大量的孔隙和孔穴。

10

实例 3

按实例 1 的方法制备沸石 Y-3，不同的是加入的硅酸钠为 4000 克，使原料的配比为 2.2Na₂O: Al₂O₃: 8.4SiO₂: 80.2H₂O，制得的 Y-3 中 NaY 含量为 32.8 重%，晶胞常数为 24.68。

15

实例 4

按实例 1 的方法制备沸石 Y-4，不同的是加入偏高岭土粉末为 5 克，硅酸钠溶液为 20 克，导向剂为 2 克，加入的氢氧化钠溶液浓度为 10 重%，加入量 20 为 20 克，再加入 0.8 克 EDTA，使原料配比为 2.29Na₂O: Al₂O₃: 5.33SiO₂: 87.1H₂O，晶化时间为 29 小时。制得的 Y-4 中 NaY 含量为 79.6 重%，晶胞常数为 24.68，物化性质见表 1。

25

实例 5

按实例 1 的方法制备沸石 Y-5，不同的是向反应原料中加入 1.1 克酒石酸钠，升温到 90℃，搅拌晶化 30 小时，制得的 Y-5 中 NaY 含量为 86.6 重%，晶胞常数为 24.73，物化性质见表 1。

30

实例 6

按实例 1 的方法制备沸石 Y-6，不同的是加入偏高岭土粉末 5 克，硅酸钠溶液 20 克，导向剂 4 克，氢氧化钠溶液 15 克和 0.15 克十二烷基磺酸钠，使反应原料配比为 1.77Na₂O: Al₂O₃: 5.44SiO₂: 80.4H₂O，得到的 Y-6 中 NaY

含量为 82.5 重%，晶胞常数为 24.71，物化性质见表 1。

5

实例 7

按实例 1 的方法制备沸石 Y-7，不同的是加入偏高岭土粉末 5 克，硅酸钠溶液 15 克，导向剂 1.7 克，氢氧化钠溶液 15 克，使反应原料配比为 $1.32\text{Na}_2\text{O} : \text{Al}_2\text{O}_3 : 4.55\text{SiO}_2 : 67.7\text{H}_2\text{O}$ ，得到的 Y-7 中 NaY 含量为 63.3 重%，晶胞常数为 24.65。

10

15

实例 8

按实例 1 的方法制备沸石 Y-8，不同的是加入偏高岭土粉末 5 克，硅酸钠溶液 15 克，导向剂 3.0 克，氢氧化钠溶液 15 克，使反应原料配比为 $1.44\text{Na}_2\text{O} : \text{Al}_2\text{O}_3 : 4.63\text{SiO}_2 : 71.1\text{H}_2\text{O}$ ，得到的 Y-8 中 NaY 含量为 75.0 重%，晶胞常数为 24.68。

20

对比例

按 CN1334142A 的方法在 870℃焙烧高岭土 2 小时，然后按实例 1 的方法制备沸石 Y-9。Y-9 中 NaY 含量为 80 重%，其 SEM 照片见图 6，从图 6 可看出，沸石 Y-9 没有巢穴式结构。

25

实例 9~13

制备稀土交换的本发明沸石。

30

取本发明制备的 NaY 沸石 100 克，加入 100 克 NH_4Cl 和 1000 克去离子水，90℃搅拌 2 小时，洗涤、过滤，120℃干燥 2 小时，得到 NH_4Y 沸石。

35

取 100 克 NH_4Y 沸石，按 $\text{NH}_4\text{Y} : \text{REO} : \text{H}_2\text{O} = 1 : 0.1 : 10$ 的比例，加入去离子水，用稀盐酸调节溶液 pH 值为 4.5，再加入混合氯化稀土溶液，90℃搅拌交换进行离子交换 2 小时，洗涤、过滤后，将收集到的固体在 560℃焙烧 2 小时。再将焙烧料按 $\text{REY} : \text{NH}_4\text{Cl} : \text{H}_2\text{O} = 1 : 0.3 : 10$ 的比例投料，在 90℃下搅拌条件下进行铵交换 1 小时，洗涤、过滤，120℃干燥 2 小时，再按此条

件重复铵交换一次，得到氧化钠含量小于 0.3 重量% 的稀土交换的沸石 REY。各实例制得的 REY 稀土含量及对应编号，制备过程中使用的沸石编号见表 2。

5

实例 14

将本发明 REY 在 810℃ 用 100% 水蒸气老化 8 小时和 17 小时，然后干燥，用沸程为 239~351℃ 的轻油对其催化性能进行微反评价，结果见表 3。

由表 3 可知，本发明制备的沸石在经过较苛刻的老化处理后，仍具有较好的水热稳定性。表现为微反活性较高，这是由于本发明沸石为一种巢穴式结构，晶体之间不可能完全的堆积，存在许多的空隙和空间，这有利于热量的扩散和传递；同时由于沸石晶体生长在高岭土基质间，高岭土基质既可分散沸石晶体上的热量，又可稀释晶体上氧化钠的浓度，从而提高了热稳定性。

15

实例 15

本实例说明本发明沸石的重油微反催化性能。

以 REY-1、REY-3 和 REY-5 为催化剂，在 810℃ 下用 100% 水蒸气老化 17 小时，然后在重油微反装置上评价老化催化剂的催化性能，催化剂用量为 2 克，所用原料油性质见表 4，反应温度 500℃、剂油比 1.18，质量空速 43.71 时⁻¹，评价结果见表 5，其中汽油初馏点为 220℃，柴油初馏点为 330℃。

表 5 数据表明，本发明制备的沸石经极端苛刻的老化处理后，与对比剂 REY-5 相比，表现出较高的转化率，轻质油收率高，干气少，焦炭产率低，说明本发明制备的沸石的水热稳定性好，重油裂解能力强。

表 1

沸石编号	Y-2	Y-4	Y-5	Y-6
NaY 含量, 重%	52.4	79.6	86.6	70.0
氧化硅/氧化铝, 摩尔比	5.2	4.8	4.96	4.4
晶胞常数, Å	24.65	24.68	24.67	24.71
比表面积, m ² /g	470.5	558.3	750.3	623.0
BET 总孔体积, ml/g	0.22	0.25	0.37	0.34
17~3000Å 孔体积, ml/g	0.061	0.039	0.040	0.07
表观堆密度, g/cm ³	0.65	0.55	0.40	0.60
结构崩塌温度, °C	896	902	923	893.8

表 2

实例号	9	10	11	12	13
原料沸石编号	Y-2	Y-6	Y-7	Y-8	Y-9
REY 编号	REY-1	REY-2	REY-3	REY-4	REY-5
REY 组成, 重%	11.2	10.5	11.7	10.7	10.0
Na ₂ O	0.25	0.17	0.13	0.16	0.23
REO	9.5	10.7	10.0	10.0	10.0
SiO ₂	65	64	65	63	65
Al ₂ O ₃	25	24	24	23	24

5

表 3

处理条件	REY 编号	REY-1	REY-2	REY-3	REY-4	REY-5
810°C水蒸汽处理 8 小时		80	72	86	82	70
810°C水蒸汽处理 17 小时		75	66	79	72	61

表 4

20℃密度, g/c m ³	0.8916
粘度, mm ² /s	9.629 (80℃)
	6.312 (100℃)
凝固点, ℃	47
残炭, 重%	0.28
馏程, ℃	
初馏点	288
90%	518

表 5

催化剂编号	REY-3	REY-4	REY-5
物料平衡, 重量%			
干气	0.56	0.84	1.2
液化气	9.6	8.77	14.4
汽油	60.98	57.97	51.8
柴油	15.01	15.82	13.8
重油	12.56	15.67	17.0
焦炭	1.3	0.98	1.8
转化率; 重量%	72.43	68.51	69.0
轻质油, 重量%	75.99	73.79	65.6
轻质油+液化气, 重量%	85.59	82.56	80.0
焦炭/转化率	0.018	0.014	0.026

说 明 书 附 图

图 1

图 2

图 3

图 4

图 5

图 6