Numerical Methods I

Root finding 2

Graziano Giuliani

/afs/ictp/public/g/ggiulian/WORLD

Newton-Raphson method

- First described in the work of Sir Isaac Newton as a method for finding the root of polynomial
- * Generalized by Thomas Simpson (1740) as an iterative method for solving nonlinear equations using calculus

Newton method: when

When does it work?

- · We have a first estimate of the root
- We can evaluate BOTH the function f and its first derivative at generic points in an interval of the x axis where the root is expected to be

Newton method: how

How does it work?

• Start with initial estimate of x₀ such that

$$y = f(x_0)$$
$$y' = f'(x_0)$$

• Compute the new estimate x₁ as

$$x_1 = x_0 - \frac{y}{y'}$$

• Iterate until the distance between x_0 and x_1 is less than ε

Newton algorithm

Given:

- The function f and derivative f'
- The initial estimate x₀
- The error tolerance $\varepsilon > 0$

3) Compute
$$x_1 = x_0 - f(x_0)/f'(x_0)$$

4) If $abs(x_1-x_0) < \varepsilon$, accept x_1 as the solution, else iterate with $x_0=x_1$

Pros and Cons

The advantage of this method is that

- * We need only a single estimate x_0
- * Fast convergence nearby the root.

However, there are also some disadvantages which are

- It requires the analytical form of both f, f'
- We must place initial estimate near the expected root
- The derivative cannot be zero near the root

Pathological cases

