Chapitre III

Fonctions polynômes

Dans ce chapitre, K désigne \mathbb{Q} , \mathbb{R} ou \mathbb{C} (plus généralement K est un corps).

1 Introduction

1.1 Définitions

On appelle fonction polynôme à coefficients dans K toute fonction P qui s'écrit sous la forme $P(x) = a_n x^n + \ldots + a_1 x + a_0$.

- Pour tout $m \in \mathbb{N}$, a_m s'appelle **coefficient** du terme de degré m.
- si $a_n \neq 0$, n s'appelle **degré** de P, a_n **coefficient dominant** de P et $a_n x^n$ monôme de plus haut degré de P.
- Si le coefficient dominant vaut 1 $(a_n = 1)$, on dit que P est un fonction polynôme unitaire.
- La fonction polynôme dont tous les coefficients sont nuls est appelée fonction polynôme nulle, notée 0, et par convention, son degré est -∞.
- On note K[X] l'ensemble des fonctions polynômes à coefficients dans K.

Remarques:

- 1) Une fonction polynôme de degré $-\infty$ est la fonction nulle.
- 2) Une fonction polynôme de degré 0 est une fonction constante non nulle.
- 3) Une fonction polynôme de degré inférieur à 1 est une fonction affine.
- 4) Une fonction polynôme de degré 2 est appelée fonction quadratique.
- 5) Une fonction polynôme de degré 3 est appelée fonction cubique.

Propriété

Si une fonction polynôme s'écrit sous la forme $P(x) = a_n x^n + \ldots + a_0$ alors $\deg(P) \leq n$ (en généralisant l'inégalité à $-\infty$).

Remarque importante

Soient A et B des fonctions polynômes, pour l'instant, il nous faut distinguer deux propriétés :

- 1) A et B ont les mêmes coefficients, c'est-à-dire A et B admettent une écriture identique $a_n x^n + \ldots + a_0$.
- 2) A et B sont des fonctions égales, c'est-à-dire A(x) = B(x) pour tout x dans l'ensemble de départ de A et B.

Il est évident que $(1) \Rightarrow (2)$.

(2) \Rightarrow (1) n'est pas évident. Nous montrerons dans la section 3.3 que si deux fonctions polynômes A(x) et B(x) sont égales sur \mathbb{Q} , \mathbb{R} ou \mathbb{C} , alors elles ont les mêmes coefficients.

Dans la suite de ce cours, nous écrirons, à propos de deux fonctions polynômes, A=B pour dire que A et B ont les mêmes coefficients.

1.2 Opérations

Propriétés

Soient A et B des fonctions polynômes.

- 1) La somme $A + B : x \mapsto A(x) + B(x)$ des fonctions polynômes A et B est aussi une fonction polynôme.
- 2) Le produit $A.B: x \mapsto A(x).B(x)$ des fonctions polynômes A et B est aussi une fonction polynôme.
- 3) La composée $A \circ B : x \mapsto A(B(x))$ des fonctions polynômes A et B est aussi une fonction polynôme.

On a en particulier les propriétés suivantes :

- A + 0 = A, autrement dit A + 0 admet la même écriture que A.
- A.0 = 0, autrement dit A.0 a tous ses coefficients nuls.

1.3 Règles sur les degrés

Propriétés

Soient A et B des fonctions polynômes.

- 1) $\deg(A+B) \leq \max(\deg(A), \deg(B))$ en généralisant l'inégalité de manière naturelle à $-\infty$.
- 2) deg(AB) = deg(A) + deg(B)en généralisant l'addition de manière naturelle à $-\infty$.
- 3) Si A et B sont non nulles, $deg(A \circ B) = deg(A) \cdot deg(B)$

Démonstration: On note $A(x) = a_n x^n + \ldots + a_0$ et $B(x) = b_m x^m + \ldots + b_0$.

1) Addition

Si A et B ont tous leurs coefficients de même degré deux à deux opposés, alors A+B a tous ses coefficients nuls, $\deg(A+B)=-\infty$ et le résultat est toujours vrai (en généralisant l'inégalité à $-\infty$).

Sinon A et B n'ont pas tous leurs coefficients de même degré deux à deux opposés, par conséquent l'un des deux au moins n'a pas tous ses coefficients nuls, c.a.d. que son degré est supérieur ou égal à 0 et donc $\max(\deg(A), \deg(B)) \ge 0$.

Supposons par ailleurs que $\deg(A) \geqslant \deg(B)$. On a $\deg(A) = \max(\deg(A), \deg(B)) \geqslant 0$ et on peut écrire $A(x) = a_n x^n + \ldots + a_0$ avec $n = \deg(A)$ et $B(x) = b_n x^n + \ldots + b_0$ (avec $b_n = b_{n-1} = \cdots = b_{m+1} = 0$).

Comme $(A + B)(x) = (a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \dots + a_0 + b_0$ on en déduit $\deg(A + B) \leq n = \max(\deg(A), \deg(B))$.

2) Multiplication

On a $(AB)(x) = a_n b_m x^{n+m} + (a_n b_{m-1} + a_{n-1} b_m) x^{n+m-1} + \dots + a_0 b_0$

Supposons que $\deg(A) = -\infty$ ou $\deg(B) = -\infty$, c.a.d. que A ou B ait tous ses coefficients nuls, alors AB aussi et $\deg(AB) = -\infty = \deg(A) + \deg(B)$ (en généralisant l'addition).

Sinon, $\deg(A) \ge 0$ et $\deg(B) \ge 0$, on peut choisir dans l'écriture de A et B que $n = \deg(A)$ et $m = \deg(B)$, c'est-à-dire que a_n et b_m soient non nuls. Alors on a $a_n b_m \ne 0$ et par conséquent $\deg(AB) = n + m = \deg(A) + \deg(B)$.

3) Composition

A et B sont non nuls, donc on peut supposer que $n = \deg A$ et $m = \deg B$.

On a
$$(A \circ B)(x) = a_n(B(x))^n + ... + a_1B(x) + a_0$$
.

Or pour tout entier $k \ge 0$, le même monôme de plus haut degré de $(B(x))^k = (b_m x^m + \ldots + b_0)^k$ est $(b_m x^m)^k = b_m^k x^{m \cdot k}$.

Donc le monôme de plus haut degré de $(A \circ B)(x)$ est $b_m^n x^{m.n}$

On en conclut que $\deg(A \circ B) = n.m = \deg(A).\deg(B)$.

Corollaire 1 : Produit nul

Soient A et B des fonctions polynômes, $AB = 0 \Rightarrow A = 0$ ou B = 0, autrement dit, si tous les coefficients de AB sont nuls, alors A ou B a tous ses coefficients nuls.

$D\'{e}monstration:$

On montre la contraposée : supposons que $A \neq 0$ et $B \neq 0$ alors $\deg(A) \geqslant 0$ et $\deg(B) \geqslant 0$ donc $\deg(AB) = \deg(A) + \deg(B) \geqslant 0$ autrement dit $AB \neq 0$.

Corollaire 2 : Simplification dans un produit

Soit P une fonction polynôme non nulle.

Si A et B sont des fonctions polynômes tels que PA = PB alors A = B.

Démonstration :

Soit P une fonction polynôme non nulle et A et B sont des fonctions polynômes tels que PA = PB. On en déduit que P(A - B) = 0. D'après le corollaire 1, il suit que P = 0 ou A - B = 0. Comme par hypothèse $P \neq 0$, nécessairement A - B = 0 donc A et -B ont leur coefficients deux à deux opposés c'est-à-dire A = B.

2 Divisibilité

2.1 Définition

Soient $A, B \in K[X]$ des fonctions polynômes, on dit que B divise A dans K[X] (ou encore A est divisible par B) si et seulement si il existe une fonction polynôme $Q \in K[X]$ telle que A = BQ.

Propriétés

- Toute fonction polynôme divise la fonction polynôme nulle.
- La fonction polynôme nulle ne divise qu'elle-même.
- Les fonctions polynômes constantes non nulles divisent toutes les fonctions polynômes.

Démonstration :

- Soit P une fonction polynôme, on a 0.P = 0 donc par définition, P divise la fonction polynôme nulle.
- Supposons que la fonction polynôme nulle divise P, alors il existe Q tel que P=0.Q. Comme 0.Q=0 on en déduit que P est nulle.
- Soit $A(x) = a_0$ une fonction polynôme constante non nulle $(a_0 \neq 0)$. Pour tout polynôme P, on a $P(x) = a_0 \cdot \frac{P(x)}{a_0} = A(x) \cdot \frac{P(x)}{a_0}$ donc A divise P.

2.2 Divisibilité et degrés

Propriété

Soit A une fonction polynôme non nulle. Si B divise A alors $0 \le \deg B \le \deg A$.

$D\'{e}monstration:$

Soient A une fonction polynôme non nulle et B qui divise A. $B \neq 0$, sinon on aurait A = 0, donc deg $B \geqslant 0$.

De plus, il existe une fonction polynôme Q tel que A=BQ. De même que pour B, deg $Q\geqslant 0$.

D'après les propriétés sur les degrés, on en déduit deg $A = \deg B + \deg Q \geqslant \deg B$.

Remarque : que se passe-t-il si A = 0?

2.3 Division euclidienne

Théorème

Soient A et B des fonctions polynômes. Si B est non nulle alors il existe des fonctions polynômes Q et B uniques tels que

$$\left\{ \begin{array}{ll} A = BQ + R \\ \deg R < \deg B \end{array} \right. \qquad en \ g\'{e}n\'{e}ralisant \ l'in\'{e}galit\'{e} \ \grave{a} - \infty.$$

Q et R s'appellent le quotient et le reste de la division euclidienne de A par B.

Sans démonstration

Corollaire immédiat

B non nulle divise $A \Leftrightarrow$ le reste de la division euclidienne de A par B est nul.

Méthode de calcul sur un exemple

Effectuer la division euclidienne de $A(x) = 2x^5 + 3x^4 + x + 1$ par $B(x) = x^3 + 2x + 1$.

Le quotient est $Q(x) = 2x^2 + 3x - 4$ et le reste $R(x) = -8x^2 + 6x + 5$.

2.4 Plus Grand Commun Diviseur

Propriété et définition

Si A et B sont des fonctions polynômes dont l'une des deux au moins est non nulle, alors il existe une unique fonction polynôme unitaire de plus grand degré qui divise A et B, appelée plus grand commun diviseur de A et B, noté $\operatorname{pgcd}(A,B)$.

Sans démonstration

Remarque : le PGCD peut se calculer par l'algorithme d'Euclide de la même façon que pour les nombres entiers.

3 Racines d'une fonction polynôme

3.1 Racines et divisibilité

Lemme

Soit P une fonction polynôme à coefficients dans K. Pour tout $a \in K$, le reste de la division euclidienne de P par x-a est le polynôme constant P(a).

$D\'{e}monstration$

Soient Q et R le quotient et le reste de la division euclidienne de P par x-a. On a P(x)=(x-a)Q(x)+R(x) donc P(a)=R(a).

Si R est la fonction polynôme nulle, alors P(a) = R(a) = 0 donc on a bien R constante égale à P(a).

Si R n'est pas la fonction polynôme nulle, alors par définition du reste, $\deg R < \deg(x-a) = 1$ donc $\deg R = 0$ c'est-à-dire R est une fonction polynôme constante non nulle égale à R(a) = P(a).

Propriété

Soit P une fonction polynôme à coefficients dans K.

Pour tout $a \in K$, $P(a) = 0 \Leftrightarrow (x - a)$ divise P.

On dit que a est une racine de P.

$D\'{e}monstration$

D'après le lemme, P(a) = 0 équivaut à (le reste de la division euclidienne de P par x - a est nul) qui équivaut à (x - a divise P).

3.2 Ordre de multiplicité

Définition

Soit P une fonction polynôme à coefficients dans K et $a \in K$. On dit que a est une racine de P d'ordre de multiplicité m $(m \ge 1)$ si et seulement si $(x-a)^m$ divise P et $(x-a)^{m+1}$ ne divise pas P.

Théorème

Si P est non nulle et de degré n, la somme des ordres de multiplicité des racines de P est au plus n. Par conséquent, P a au plus n racines distinctes.

Démonstration

On note s le nombre de racines distinctes de P, α_1 , α_2 ... α_s ces racines et m_1 , m_2 ... m_s leurs ordres de multiplicité.

 $(x-\alpha_1)^{m_1}$ divise P donc il existe une fonction polynôme Q_1 telle que $P(x) = (x-\alpha_1)^{m_1}Q_1(x)$. $(x-\alpha_2)^{m_2}$ divise P et $(x-\alpha_2)^{m_2}$ est **premier** avec $(x-\alpha_1)^{m_1}$ donc, d'après le théorème de

Gauss, $(x - \alpha_2)^{m_2}$ divise Q_1 , d'où il existe Q_2 telle que $P(x) = (x - \alpha_1)^{m_1}(x - \alpha_2)^{m_2}Q_2(x)$. Ainsi de suite pour les s racines distinctes.

Il existe finalement un polynôme Q_s tel que $P(x) = (x - \alpha_1)^{m_1} \dots (x - \alpha_s)^{m_s} Q_s(x)$.

Pour tout $a \in K$ et $m \in \mathbb{N}$, $\deg(x-a)^m = m$ et Q_s est non nulle, donc

 $n = \deg(P) = m_1 + \ldots + m_s + \deg(Q_s) \geqslant m_1 + \ldots + m_s$ car le degré d'un produit est égal à la somme des degrés.

Corollaire 1

Si $P(x) = a_n x^n + \ldots + a_1 x + a_0$ (c.a.d. deg $P \leq n$) admet au moins n+1 racines distinctes, alors P est la fonction polynôme nulle.

Démonstration

C'est la contraposée de $(P \text{ non nulle } \Rightarrow P \text{ admet au plus } n \text{ racines distinctes})$ qui est une conséquence directe du théorème précédent car $\deg(P) \leqslant n$.

Corollaire 2

Soient A et B des fonctions polynômes qui s'écrivent sous la forme $A(x) = a_n x^n + \ldots + a_0$ et $B(x) = b_n x^n + \ldots + b_0$ (c.a.d. deg $A \le n$ et deg $B \le n$).

Si A et B ont la même valeur en n+1 points distincts alors A=B.

Démonstration : on applique le corollaire précédent à P=A-B.

Dans la pratique, ce résultat est plus intéressant pour des démonstrations abstraites que pour les calculs.

3.3 Égalité de deux fonctions polynômes

On rappelle que K désigne \mathbb{Q} , \mathbb{R} ou \mathbb{C} .

Théorème 1

Soit P une fonction polynôme, P(x) = 0 pour tout $x \in K$ si et seulement si P a tous ses coefficients nuls.

Démonstration

Il est évident que $RHS \Rightarrow LHS$.

Montrons la réciproque $LHS \Rightarrow RHS$ par contraposée.

Supposons que P n'est pas le polynôme nul, alors $p = \deg(P) \ge 0$ et P a au plus p racines distinctes. Or K est de cardinal infini (K est \mathbb{Q} , \mathbb{R} ou \mathbb{C}) donc il existe $x \in K$ tel que $P(x) \ne 0$.

Théorème 2

Soient A et B des fonctions polynômes, A(x) = B(x) pour tout $x \in K$ si et seulement si A et B ont tous leurs coefficients égaux deux à deux.

On dit que l'on peut identifier les coefficients de deux fonctions polynômes égales sur K.

Démonstration : c'est une conséquence du théorème précédent pour P = A - B.

3.4 Polynôme dérivé

Définition

Soit $A(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ une fonction polynôme, la fonction polynôme dérivée de A est $A'(x) = a_n n x^{n-1} + a_{n-1} (n-1) x^{n-2} + \ldots + a_1$. On définit par récurrence la dérivée m-ième de $A: A^{(m)} = (A^{(m-1)})'$

Remarque : cette définition généralise aux fonctions polynômes complexes la notion de dérivée que vous connaissez pour les fonctions à variable réelle.

Règles de dérivation

Soient A et B des fonctions polynômes :

- 1) (A+B)' = A' + B'.
- 2) (A.B)' = A'.B + A.B'.
- 3) $(A \circ B)' = B' \cdot (A' \circ B)$.

Pour le démontrer, il faut reprendre l'écriture de A + B, A.B et $A \circ B$.

3.5 Racines et fonctions polynômes dérivés

Théorème

 α est une racine d'ordre m de $P \iff P(\alpha) = P'(\alpha) = \ldots = P^{(m-1)}(\alpha) = 0$ et $P^{(m)}(\alpha) \neq 0$

Démonstration pour une racine simple :

 α est une racine simple de $P \Leftrightarrow P(\alpha) = 0$ et $P'(\alpha) \neq 0$

- $LHS \Rightarrow RHS$. Si α est une racine simple de P, alors $P(\alpha) = 0$ et il existe une fonction polynôme Q vérifiant $P(x) = (x \alpha)Q(x)$ et $x \alpha$ ne divise pas Q. D'après la dérivée d'un produit, $P'(x) = (x \alpha)Q'(x) + Q(x)$ donc $P'(\alpha) = Q(\alpha)$. Enfin α n'est pas racine de Q car $x \alpha$ ne divise pas Q donc $P'(\alpha) \neq 0$.
- $LHS \Leftarrow RHS$. Si $P(\alpha) = 0$ et $P'(\alpha) \neq 0$, alors α est une racine de P donc il existe une fonction polynôme Q vérifiant $P(x) = (x \alpha)Q(x)$. D'après la dérivée d'un produit, $P'(x) = (x \alpha)Q'(x) + Q(x)$ donc $Q(\alpha) = P'(\alpha)$. Or $P'(\alpha) \neq 0$ donc $Q(\alpha) \neq 0$ c'est-à-dire $x \alpha$ ne divise pas Q, il suit que α est une racine simple de P.

4 Fonctions polynômes irréductibles et factorisations

4.1 Fonctions polynômes inversibles

Définition

Une fonction polynôme $A \in K[X]$ est inversible dans K[X] si et seulement si il existe $B \in K[X]$ tel que A.B = B.A = 1.

Théorème

Une fonction polynôme est inversible si et seulement si elle est de degré 0 (constante non nulle).

Démonstration

- $LHS \Rightarrow RHS$. Soit $A \in K[X]$ inversible alors il existe $B \in K[X]$ tel que A.B = 1. Comme le polynôme constant 1 est de degré 0, il suit que deg $A + \deg B = 0$. A et B ne peuvent être nulles car sinon leur produit ne serait pas 1. deg A et deg B sont donc deux entiers positifs dont la somme est nulle, nécessairement ils sont tous deux nuls. Finalement deg A = 0.
- $LHS \Leftarrow RHS$. Soit $A \in K[X]$ de degré 0, A s'écrit donc $A = a_0$ avec $a_0 \neq 0$. Posons $B(x) = \frac{1}{a_0}$. On a $A(x).B(x) = a_0 \frac{1}{a_0} = 1$ donc A est bien inversible.

4.2 Fonctions polynômes irréductibles

Définition

Une fonction polynôme est irréductible dans K[X] si et seulement si elle est non inversible et que ses seuls diviseurs dans K[X] sont de la forme λ ou λP avec $\lambda \neq 0 \in K$, autrement dit de la forme U ou U.P avec U inversible dans K[X].

<u>Théorème</u>

Soit $P \in K[X]$ de degré $n \geqslant 1$.

P est irréductible si et seulement si tous ses diviseurs sont de degré 0 ou n.

$D\'{e}monstration$

- $LHS \Rightarrow RHS$. Si P est irréductible, ses diviseurs sont les polynômes constants non nul, donc de degré 0 et les polynômes de la forme λP où $\lambda \in K^*$. Or $\deg(\lambda P) = \deg \lambda + \deg P = \deg P$ car $\lambda \neq 0$.
- $LHS \Leftarrow RHS$. Supposons que les diviseurs de P sont tous de degré 0 ou n et considérons un diviseur quelconque noté D. On a deg D=0 ou deg $D=\deg P$. Si deg D=0 alors D est un polynôme constant non nul. Si deg $D=\deg P$ alors en notant Q le quotient de la division de P par D, deg $P=\deg D+\deg Q$ donc deg Q=0, c.a.d. $Q(x)=q_0$ avec $q_0\neq 0$.

Il suit que $P = q_0 D$ donc $D = q_0^{-1} P$. D est bien de la forme λP avec $\lambda \in K^*$. Conclusion : P est non inversible car de degré $n \ge 1$ et ses seuls diviseurs sont de la forme λ ou λP avec $\lambda \ne 0 \in K$, c'est la définition de P est irréductible.

4.3 Fonctions polynômes de degré 1

Théorème

Les fonctions polynômes de degré 1 sont irréductibles.

$D\'{e}monstration$

Soit P un polynôme de degré 1. Ses diviseurs sont de degré 0 ou $1 = \deg P$ donc d'après le théorème précédent P est irréductible.

4.4 Fonctions polynômes de degré supérieur à 2

Théorème

Soit P une fonction polynôme de degré $n \ge 2$.

Si P admet une racine dans K alors P n'est pas irréductible dans K[X].

Démonstration

Soit α une racine de P, $x-\alpha$ divise P et $\deg(x-\alpha)=1$ est différent de 0 et de $\deg P\geqslant 2$ donc P n'est pas irréductible.

4.5 Factorisation d'une fonction polynôme

Factoriser une fonction polynôme dans K[X], c'est l'écrire sous la forme d'un produit de fonctions polynômes irréductibles de K[X].

Théorème

Toute fonction polynôme non constante est factorisable et sa factorisation est unique (à l'ordre des facteurs près).

Idée de la démonstration pour l'existence d'une factorisation.

Deux cas : P est irréductible ou P est non irréductible. Dans ce dernier cas, il s'écrit P=AB avec $\deg A$ et $\deg B$ strictement inférieur au degré de P. On peut donc raisonner par récurrence sur le degré de P. On peut démarrer la récurrence car les fonctions polynômes de degré 1 sont irréductibles.

4.6 Polynômes irréductibles de $\mathbb{C}[X]$

Théorème de d'Alembert-Gauss

Toute fonction polynôme non constante à coefficients complexes a au moins une racine dans \mathbb{C} .

Admis

Théorème

Les seules fonctions polynômes irréductibles de $\mathbb{C}[X]$ sont celles de degré 1.

Démonstration

On sait que les fonctions polynômes de degré 1 sont irréductibles. On montre de plus que ce sont les seuls.

Les fonctions polynômes de degré < 1 sont constantes donc ne sont pas irréductibles par définition.

Soit P une fonction polynôme de degré > 1. P est non constante donc d'après le théorème de d'Alembert Gauss, P admet au moins une racine α . Comme P est de degré au moins P n'est pas irréductible.

4.7 Factorisation dans $\mathbb{C}[X]$

Théorème

Soit P une fonction polynôme à coefficients dans \mathbb{C} , on note $(\alpha_i)_{1 \leq i \leq r}$ les racines distinctes de P, $(m_i)_{1 \leq i \leq r}$ leurs ordres de multiplicité et λ le coefficient dominant de P.

On a :
$$P(x) = \lambda \prod_{i=1}^{r} (x - \alpha_i)^{m_i}$$
.

Exemple:

Factoriser la fonction polynôme $P(x) = 2x^4 - (4+2i)x^3 + (4+6i)x^2 - 6ix - 2 + 2i$ dans $\mathbb{C}[X]$ après avoir montré que i est une racine.

Résultat :
$$P(x) = 2(x - 1 + i)(x - 1)(x - i)^2$$

Explication

Comme les fonctions polynômes irréductibles de $\mathbb{C}[X]$ sont les fonctions polynômes de degré 1, la factorisation de P dans $\mathbb{C}[X]$ s'écrit :

$$P(x) = \lambda \prod_{i=1}^{m} (x - a_i)$$
 où $\lambda, a_1, \dots a_m$ sont dans \mathbb{C} .

Le degré d'un produit est la somme des degrés donc m = n.

 a_1, \ldots, a_n sont les racines de P. En rassemblant celles qui sont égales, on peut les renommer $\alpha_1, \ldots, \alpha_r$. De plus, l'ordre de multiplicité m_i d'une racine α_i est le nombre de fois où $x - \alpha_i$ apparait dans la factorisation de P.

Conclusion : la factorisation de
$$P$$
 s'écrit : $P(x) = \lambda \prod_{i=1}^{r} (x - \alpha_i)^{m_i}$.

Corollaire

Soit P une fonction polynôme non nulle à coefficients complexes et de degré n, la somme des ordres de multiplicité des racines complexes de P est exactement n.

Conséquence immédiate car le degré d'un produit est la somme des degrés.

4.8 Polynômes irréductibles de $\mathbb{R}[X]$

Lemme

Soit P une fonction polynôme à coefficients dans \mathbb{R} , pour tout $z \in \mathbb{C}$, $\overline{P(z)} = P(\overline{z})$.

Démonstration

On note
$$\underline{P(x)} = a_n x^n + \ldots + a_1 x + a_0$$
. Les coefficients de P sont réels donc : $\forall z \in \mathbb{C}, \overline{P(z)} = \overline{a_n z^n} + \ldots + \overline{a_1 z} + \overline{a_0} = \overline{a_n} \overline{z^n} + \ldots + \overline{a_1} \overline{z} + \overline{a_0} = a_n \overline{z}^n + \ldots + a_1 \overline{z} + a_0 = P(\overline{z})$

Propriété

Soit P une fonction polynôme à coefficients dans \mathbb{R} , les racines complexes non réelles de P sont conjugués deux à deux.

$D\'{e}monstration$

Soit $z \in \mathbb{C}$ quelconque.

D'après le lemme $P(\overline{z}) = \overline{P(z)}$ donc $P(z) = 0 \implies P(\overline{z}) = 0$.

Donc si z est une racine non réelle de P alors \overline{z} est aussi une racine non réelle de P.

Théorème

Les fonctions polynômes irréductibles de $\mathbb{R}[X]$ sont les fonctions polynômes de degré 1 et les fonctions polynômes de degré 2 sans racines réelles (c'est-à-dire dont le discriminant est strictement négatif).

Démonstration

Les fonctions polynômes de degré 1 et les fonctions polynômes de degré 2 sans racines réelles sont irréductibles dans $\mathbb{R}[X]$. On ne l'a pas démontré pour le degré 2 mais c'est assez clair.

On montre de plus que ce sont les seuls. Soit P une fonction polynôme irréductible de $\mathbb{R}[X]$. Par définition P est non constante et d'après le théorème de d'Alembert Gauss, P admet au moins une racine α .

Cas 1 : α est réel, $x - \alpha$ est dans $\mathbb{R}[X]$, divise P et est non constante donc, par définition de P irréductible, $x - \alpha$ est de la forme λP avec λ non nul.

Conclusion cas 1 : P est de degré 1.

Cas 2 : α est non réel, $\overline{\alpha}$ est aussi racine. $(x - \alpha)(x - \overline{\alpha}) = x^2 - 2\operatorname{Re}(\alpha)x + |\alpha|^2$ est dans $\mathbb{R}[X]$, divise P et est non constante donc, par définition de P irréductible,

 $x^2 - 2\operatorname{Re}(\alpha)x + |\alpha|^2$ est de la forme λP avec λ non nul.

Conclusion cas 2 : P est de degré 2.

4.9 Factorisation dans $\mathbb{R}[X]$

Propriété

Soit P une fonction polynôme à coefficients dans \mathbb{R} , les racines complexes conjuguées de P ont le même ordre de multiplicité.

$D\'{e}monstration$

Soit z une racine complexe de P d'ordre de multiplicité m.

On a
$$P(z) = P'(z) = \dots = P^{(m-1)}(z) = 0$$
 et $P^{(m)}(z) \neq 0$.

Or les dérivées de P sont toutes à coefficients réels donc on a aussi

$$P(\overline{z}) = P'(\overline{z}) = \ldots = P^{(m-1)}(\overline{z}) = 0 \text{ et } P^{(m)}(\overline{z}) \neq 0.$$

On en conclut que \overline{z} une racine complexe de P d'ordre de multiplicité m.

Théorème

Soit P une fonction polynôme à coefficients dans \mathbb{R} .

On note $(\alpha_i)_{1 \leq i \leq r}$ les racines réelles distinctes de P et $(m_i)_{1 \leq i \leq r}$ leurs ordres de multiplicité.

On note $(\beta_i, \overline{\beta_i})_{1 \leq i \leq r'}$ les racines complexes conjuguées de P et $(m'_i)_{1 \leq i \leq r'}$ leurs ordres de multiplicité.

On note λ le coefficient dominant de P.

On a
$$P(x) = \lambda \prod_{i=1}^{r} (x - \alpha_i)^{m_i} \prod_{i=1}^{r'} (x^2 - 2 \operatorname{Re}(\beta_i) x + |\beta_i|^2)^{m'_i}$$
.

Exemple:

Factoriser la fonction polynôme $P(x) = 2x^4 + 8x^3 + 16x^2 + 32x + 32$ dans $\mathbb{R}[X]$ après avoir montré que 2i est une racine.

Résultat :
$$P(x) = 2(x+2)^2(x^2+4)$$

Explication

La factorisation de P dans $\mathbb{C}[X]$ est :

$$P(x) = \lambda \prod_{i=1}^{r} (x - \alpha_i)^{m_i} \prod_{i=1}^{r'} (x - \beta_i)^{m'_i} (x - \overline{\beta_i})^{m'_i}.$$

Or $(x - \beta_i)(x - \overline{\beta_i}) = x^2 - 2 \operatorname{Re}(\beta_i)x + |\beta_i|^2$ est une fonction polynôme à coefficients réels sans racines réelles donc irréductibles dans $\mathbb{R}[X]$.

La formule de l'énoncé est bien la factorisation de P dans $\mathbb{R}[X]$.