(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 February 2002 (07.02.2002)

PCT

(10) International Publication Number WO 02/10378 A2

- (51) International Patent Classification⁷: C12N 15/11, A61K 31/713
- (21) International Application Number: PCT/US01/23874
- (22) International Filing Date: 30 July 2001 (30.07.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

09/629,644 31 July 2000 (31.07.2000) US

- (71) Applicant (for all designated States except US): ISIS PHARMACEUTICALS, INC. [US/US]; Carlsbad Research Center, 2292 Faraday Avenue, Carlsbad, CA 92008 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): COWSERT, Lex, M. [US/US]; 3008 Newshire Street, Carlsbad, CA 92008 (US). WYATT, Jacqueline [US/US]; 1065 Hymettus Avenue, Encinitas, CA (US). FREIER, Susan, M. [US/US]; 2946 Renault Street, San Diego, CA 92112 (US). MONIA, Brett, P. [US/US]; 7605 Nueva Castille Way, La Costa, CA 92009 (US). BUTLER, Madeline, M. [US/US]; 15951 Avenida Calma, Rancho Santa Fe, CA 92091 (US). MCKAY, Robert [US/US]; 277 Caminito Pescado #73, San Diego, CA 92116 (US).

- (74) Agents: BAK, Mary, E. et al.; Howson and Howson, Spring House Corporate Center, Box 457, Spring House, PA 19477 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(57) Abstract: Compounds, compositions and methods are provided for modulating the expression of PTP1B. The compositions comprise antisense compounds, particularly antisense oligonucleotides, targeted to nucleic acids encoding PTP1B. Methods of using these compounds for modulation of PTP1B expression and for treatment of diseases associated with expression of PTP1B are provided.

ANTISENSE MODULATION OF PTP1B EXPRESSION

FIELD OF THE INVENTION

5

10

15

20

25

The present invention provides compositions and methods for modulating the expression of PTP1B. In particular, this invention relates to compounds, particularly antisense oligonucleotides, specifically hybridizable with nucleic acids encoding PTP1B. Such oligonucleotides have been shown to modulate the expression of PTP1B.

BACKGROUND OF THE INVENTION

The process of phosphorylation, defined as the attachment of a phosphate moiety to a biological molecule through the action of enzymes called kinases, represents one course by which intracellular signals are propagated resulting finally in a cellular response. Within the cell, proteins can be phosphorylated on serine, threonine or tyrosine residues and the extent of phosphorylation is regulated by the opposing action of phosphatases, which remove the phosphate moieties. While the majority of protein phosphorylation within the cell is on serine and threonine residues, tyrosine phosphorylation is modulated to the greatest extent during oncogenic transformation and growth factor stimulation (Zhang, Crit. Rev. Biochem. Mol. Biol., 1998, 33, 1-52).

Because phosphorylation is such a ubiquitous process within cells and because cellular phenotypes are largely influenced by the activity of these pathways, it is currently believed that a number of disease states and/or disorders are a result of either aberrant activation of, or functional mutations in, kinases and phosphatases.

Consequently, considerable attention has been devoted recently to the characterization of tyrosine kinases and tyrosine phosphatases.

PTP1B (also known as protein phosphatase 1B and PTPN1) is an endoplasmic reticulum (ER)-associated enzyme originally isolated as the major protein tyrosine phosphatase of the human placenta (Tonks et al., *J. Biol. Chem.*, **1988**, *263*, 6731-6737; Tonks et al., *J. Biol. Chem.*, **1988**, *263*, 6722-6730).

An essential regulatory role in signaling mediated by the insulin receptor has been established for PTP1B. PTP1B interacts with and dephosphorylates the activated insulin receptor both in vitro and in intact cells resulting in the downregulation of the

5

10

15

20

25

signaling pathway (Goldstein et al., *Mol. Cell. Biochem.*, **1998**, *182*, 91-99; Seely et al., *Diabetes*, **1996**, *45*, 1379-1385). In addition, PTP1B modulates the mitogenic actions of insulin (Goldstein et al., *Mol. Cell. Biochem.*, **1998**, *182*, 91-99). In rat adipose cells overexpressing PTP1B, the translocation of the GLUT4 glucose transporter was inhibited, implicating PTP1B as a negative regulator of glucose transport as well (Chen et al., *J. Biol. Chem.*, **1997**, *272*, 8026-8031).

Mouse knockout models lacking the PTP1B gene also point toward the negative regulation of insulin signaling by PTP1B. Mice harboring a disrupted PTP1B gene showed increased insulin sensitivity, increased phosphorylation of the insulin receptor and when placed on a high-fat diet, PTP1B -/- mice were resistant to weight gain and remained insulin sensitive (Elchebly et al., *Science*, 1999, 283, 1544-1548). These studies clearly establish PTP1B as a therapeutic target in the treatment of diabetes and obesity.

PTP1B, which is differentially regulated during the cell cycle (Schievella et al., Cell. Growth Differ., 1993, 4, 239-246), is expressed in insulin sensitive tissues as two different isoforms that arise from alternate splicing of the pre-mRNA (Shifrin and Neel, J. Biol. Chem., 1993, 268, 25376-25384). It was recently demonstrated that the ratio of the alternatively spliced products is affected by growth factors such as insulin and differs in various tissues examined (Sell and Reese, Mol. Genet. Metab., 1999, 66, 189-192). In these studies it was also found that the levels of the variants correlated with the plasma insulin concentration and percentage body fat and may therefore be used as a biomarker for patients with chronic hyperinsulinemia or type 2 diabetes.

Liu and Chernoff have shown that PTP1B binds to and serves as a substrate for the epidermal growth factor receptor (EGFR) (Liu and Chernoff, *Biochem. J.*, 1997, 327, 139-145). Furthermore, in A431 human epidermoid carcinoma cells, PT1B was found to be inactivated by the presence of H₂O₂ generated by the addition of EGF. These studies indicate that PTP1B can be negatively regulated by the oxidation state of the cell, which is often deregulated during tumorigenesis (Lee et al., *J. Biol. Chem.*, 1998, 273, 15366-15372).

5

10

15

20

25

30

Overexpression of PTP1B has been demonstrated in malignant ovarian cancers and this correlation was accompanied by a concomitant increase in the expression of the associated growth factor receptor (Wiener et al., Am. J. Obstet. Gynecol., 1994, 170, 1177-1183).

PTP1B has been shown to suppress transformation in NIH3T3 cells induced by the neu oncogene (Brown-Shimer et al., Cancer Res., 1992, 52, 478-482), as well as in rat 3Y1 fibroblasts induced by v-srk, v-src, and v-ras (Liu et al., Mol. Cell. Biol., 1998, 18, 250-259) and rat-1 fibroblasts induced by bcr-abl (LaMontagne et al., Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 14094-14099). It has also been shown that PTP1B promotes differentiation of K562 cells, a chronic myelogenous leukemia cell line, in a similar manner as does an inhibitor of the bcr-abl oncoprotein. These studies describe the possible role of PTP1B in controlling the pathogenesis of chronic myeloid leukemia (LaMontagne et al., Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 14094-14099).

PTP1B negatively regulates integrin signaling by interacting with one or more adhesion-dependent signaling components and repressing integrin-mediated MAP kinase activation (Liu et al., *Curr. Biol.*, **1998**, *8*, 173-176). Other studies designed to study integrin signaling, using a catalytically inactive form of PTP1B, have shown that PTP1B regulates cadherin-mediated cell adhesion (Balsamo et al., *J. Cell. Biol.*, **1998**, *143*, 523-532) as well as cell spreading, focal adhesion and stress fiber formation and tyrosine phosphorylation (Arregui et al., *J. Cell. Biol.*, **1998**, *143*, 861-873).

Currently, therapeutic agents designed to inhibit the synthesis or action of PTP1B include small molecules (Ham et al., Bioorg. Med. Chem. Lett., 1999, 9, 185-186; Skorey et al., J. Biol. Chem., 1997, 272, 22472-22480; Taing et al., Biochemistry, 1999, 38, 3793-3803; Taylor et al., Bioorg. Med. Chem., 1998, 6, 1457-1468; Wang et al., Bioorg. Med. Chem. Lett., 1998, 8, 345-350; Wang et al., Biochem. Pharmacol., 1997, 54, 703-711; Yao et al., Bioorg. Med. Chem., 1998, 6, 1799-1810) and peptides (Chen et al., Biochemistry, 1999, 38, 384-389; Desmarais et al., Arch. Biochem. Biophys., 1998, 354, 225-231; Roller et al., Bioorg. Med. Chem. Lett., 1998, 8, 2149-2150). In addition, disclosed in the PCT publication WO 97/32595 are phosphopeptides and antibodies that inhibit the association of PTP1B with the activated

- 4 -

insulin receptor for the treatment of disorders associated with insulin resistance.

Antisense nucleotides against PTP1B are also generally disclosed (Olefsky, 1997).

There remains a long felt need for additional agents capable of effectively inhibiting PTP1B function and antisense technology is emerging as an effective means for reducing the expression of specific gene products. This technology may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of PTP1B expression.

The present invention, therefore, provides compositions and methods for modulating PTP1B expression, including modulation of the alternatively spliced form of PTP1B.

SUMMARY OF THE INVENTION

5

10

15

20

25

The present invention is directed to antisense compounds, particularly oligonucleotides, which are targeted to a nucleic acid encoding PTP1B, and which modulate the expression of PTP1B. Pharmaceutical and other compositions comprising the antisense compounds of the invention are also provided. Further provided are methods of modulating the expression of PTP1B in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of PTP1B by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric antisense compounds, particularly oligonucleotides, for use in modulating the function of nucleic acid molecules encoding PTP1B, ultimately modulating the amount of PTP1B produced. This is accomplished by providing antisense compounds which specifically hybridize with one or more nucleic acids encoding PTP1B. As used herein, the terms "target nucleic acid" and

- 5 -

5

10

15

20

25

30

"nucleic acid encoding PTP1B" encompass DNA encoding PTP1B, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation of function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as "antisense". The functions of DNA to be interfered with include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of PTP1B. In the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of gene expression and mRNA is a preferred target.

It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is a nucleic acid molecule encoding PTP1B. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start

- 6 -

5

10

15

20

25

30

codon". A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding PTP1B, regardless of the sequence(s) of such codons.

It is also known in the art that a translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon region" and "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from

- 7 -

5

10

15

20

25

30

the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

In the context of this invention, "hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. "Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position. The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding

- 8 -

5

10

15

20

25

30

positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotides have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as

- 9 -

5

10

15

20

25

30

oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 50 nucleobases (i.e. from about 8 to about 50 linked nucleosides). Particularly preferred antisense compounds are antisense oligonucleotides, even more preferably those comprising from about 12 to about 30 nucleobases. As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a

phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

5

10

15

20

25

Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S.: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts.

- 11 -

5

10

15

20

25

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S.: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., *Science*, 1991, 254, 1497-1500.

Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH₃)-O-CH₂- [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-, -CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂- [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the above referenced U.S. patent 5,489,677, and the amide backbones of the above referenced U.S. patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. patent 5,034,506.

5

10

15

20

25

30

Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-Oalkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C₁ to C₁₀ alkyl or C₂ to C₁₀ alkenyl and alkynyl. Particularly preferred are O[(CH₂)_nO]_mCH₃, $O(CH_2)_nOCH_3$, $O(CH_2)_nNH_2$, $O(CH_2)_nCH_3$, $O(CH_2)_nONH_2$, and $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position: C_1 to C_{10} lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH₂)₂ON(CH₃)₂ group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O-CH₂-O-CH₂-N(CH₂)₂, also described in examples hereinbelow.

Other preferred modifications include 2'-methoxy (2'-O-CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂NH₂) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S.: 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786;

5

10

15

20

25

5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3deazaadenine. Further nucleobases include those disclosed in United States Patent No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B., ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines. 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press,

5

10

Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. 3,687,808, as well as U.S.: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and United States patent 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et 15 al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg, Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl 20 residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecylrac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a 25 polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety 30 (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937.

- 15 -

5

10

15

20

25

30

Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides

- 16 -

5

. 10

15

20

25

30

hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S.: 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized in vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules.

The compounds of the invention may also be admixed, encapsulated, conjugated or

otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S.: 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804;

- 17 -

5

10

15

20

25

30

5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published December 9, 1993 or in WO 94/26764 to Imbach et al.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," *J. of Pharma Sci.*, 1977, 66, 1-19). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt

- 18 -

5

10

15

20

25

form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are the hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfoic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

- 19 -

5

10

15

20

25

30

For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.

The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of PTP1B is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation or tumor formation, for example.

The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding PTP1B, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding PTP1B can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of PTP1B in a sample may also be prepared.

The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The

5

10

15

20

25

30

pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.

Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques

- 21 -

include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.

20 Emulsions

5

10

15

25

The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogenous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 µm in diameter. (Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi *et al.*, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co., Easton,

- 22 -

5

10

15

20

25

30

PA, 1985, p. 301). Emulsions are often biphasic systems comprising of two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be either water-in-oil (w/o) or of the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous provides an o/w/o emulsion.

Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature

5

10

15

20

25

30

(Rieger, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (Rieger, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).

Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.

A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), **1988**, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), **1988**, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for

5

10

15

20

25

30

example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.

Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.

The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), **1988**, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of reasons of ease of formulation, efficacy from an absorption and bioavailability standpoint. (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), **1988**, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), **1988**, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.

In one embodiment of the present invention, the compositions of oligonucleotides and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (Rosoff, in *Pharmaceutical*

- 25 -

5

10

15

20

25

30

Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, *in:* Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 271).

The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.

Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DAO750), alone or in

- 26 -

5

10

15

20

25

30

combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.

Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides or oligonucleotides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of

oligonucleotides and nucleic acids within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.

Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories - surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee *et al.*, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p. 92). Each of these classes has been discussed above.

Liposomes

5

10

15

20

25

There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term "liposome" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.

Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages *in vivo*.

In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.

Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide

5

10

15

20

25

30

range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), **1988**, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes. As the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analysics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.

Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang *et al.*, *Biochem. Biophys. Res. Commun.*, 1987, 147, 980-985).

Liposomes which are pH-sensitive or negatively-charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion

5

10

15

20

25

rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou *et al.*, *Journal of Controlled Release*, 1992, 19, 269-274).

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g. as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising NovasomeTM I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and NovasomeTM II (glyceryl distearate/ cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic

5

10

15

20

25

30

liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P.Pharma. Sci., 1994, 4, 6, 466).

Liposomes also include "sterically stabilized" liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside G_{M1} , or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen *et al.*, *FEBS Letters*, *1987*, *223*, 42; Wu *et al.*, *Cancer Research*, *1993*, *53*, 3765).

Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos *et al.* (*Ann. N.Y. Acad. Sci.*, **1987**, *507*, 64) reported the ability of monosialoganglioside G_{M1}, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon *et al.* (*Proc. Natl. Acad. Sci. U.S.A.*, **1988**, *85*, 6949). U.S. Patent No. 4,837,028 and WO 88/04924, both to Allen *et al.*, disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside G_{M1} or a galactocerebroside sulfate ester. U.S. Patent No. 5,543,152 (Webb *et al.*) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-*sn*-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim *et al.*).

Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto *et al.* (*Bull. Chem. Soc. Jpn.*, **1980**, *53*, 2778) described liposomes comprising a nonionic detergent, 2C₁₂15G, that contains a PEG moiety. Illum *et al.* (*FEBS Lett.*, **1984**, *167*, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols

5

10

15

20

25

30

results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Patent Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearcylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Patent Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Patent No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Patent No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEGmodified ceramide lipids are described in WO 96/10391 (Choi et al.). U.S. Patent Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.

A limited number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry *et al.* discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Patent No. 5,264,221 to Tagawa *et al.* discloses protein-bonded liposomes and asserts that the contents of such liposomes may include an antisense RNA. U.S. Patent No. 5,665,710 to Rahman *et al.* describes certain methods of encapsulating oligodeoxynucleotides in liposomes. WO 97/04787 to Love *et al.* discloses liposomes comprising antisense oligonucleotides targeted to the raf gene.

Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily

5

10

15

20

25

30

able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g. they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersomemediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the "head") provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, 1988, p. 285).

If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates.

- 33 -

The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.

The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, **1988**, p. 285).

Penetration Enhancers

5

10

15

20

25

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

Penetration enhancers may be classified as belonging to one of five broad categories, *i.e.*, surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee *et al.*, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, p.92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

Surfactants: In connection with the present invention, surfactants (or "surface-active agents") are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous

5

10

15

20

25

30

solution and another liquid, with the result that absorption of oligonucleotides through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).

Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C₁₋₁₀ alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and monoand di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).

Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (Brunton, Chapter 38 in: Goodman & Gilman's *The Pharmacological Basis of Therapeutics*, 9th Ed., Hardman *et al.* Eds., McGraw-Hill, New York, **1996**, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term "bile salts" includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. The bile salts of the invention include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholate), ursodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (Lee *et al.*, *Critical*

5

10

15

20

25

Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, PA, 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).

Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of oligonucleotides through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, *J. Chromatogr.*, 1993, 618, 315-339). Chelating agents of the invention include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), *N*-acyl derivatives of collagen, laureth-9 and *N*-amino acyl derivatives of beta-diketones (enamines)(Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., *J. Control Rel.*, 1990, 14, 43-51).

Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1990, 7, 1-33). This class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee *et al.*, *Critical Reviews in Therapeutic Drug Carrier Systems*, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita *et al.*, *J. Pharm. Pharmacol.*, 1987, 39, 621-626).

Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi *et al*, U.S. Patent No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo *et al.*, PCT Application WO 97/30731), are also known to enhance the cellular uptake of oligonucleotides.

Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.

10 Carriers

5

15

20

25

Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, "carrier compound" or "carrier" can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4'isothiocyano-stilbene-2,2'-disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5, 115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev., 1996, 6, 177-183).

Excipients

In contrast to a carrier compound, a "pharmaceutical carrier" or "excipient" is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically

5

10

15

20

25

inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc.).

Pharmaceutically acceptable organic or inorganic excipient suitable for nonparenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.

Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

- 38 -

Other Components

5

10

15

20

25

30

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

Aqueous suspensions may contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include, but are not limited to, anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES). See, generally, *The Merck Manual of Diagnosis and Therapy*, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 1206-1228). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and

- 39 -

5

10

15

20

25

30

ganciclovir, may also be combined in compositions of the invention. See, generally, *The Merck Manual of Diagnosis and Therapy*, 15th Ed., Berkow et al., eds., **1987**, Rahway, N.J., pages 2499-2506 and 46-49, respectively). Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC₅₀s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 100 g per kg of body weight, once or more daily, to once every 20 years.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

- 40 -

EXAMPLES

Example 1

5

10

15

20

25

Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial sources (e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling VA). Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides was utilized, except the wait step after pulse delivery of tetrazole and base was increased to 360 seconds.

Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) nucleotides were synthesized according to published methods [Sanghvi, et. al., *Nucleic Acids Research*, **1993**, *21*, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

2'-Fluoro amidites

2'-Fluorodeoxyadenosine amidites

2'-fluoro oligonucleotides were synthesized as described previously [Kawasaki, et. al., *J. Med. Chem.*, **1993**, *36*, 831-841] and United States patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-fluoroadenosine was synthesized utilizing commercially available 9-beta-D-arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S_N2-displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine was selectively protected in moderate yield as the 3',5'-ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodologies and standard methods were used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-phosphoramidite intermediates.

- 41 -

2'-Fluorodeoxyguanosine

The synthesis of 2'-deoxy-2'-fluoroguanosine was accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisobutyryl-arabinofuranosylguanosine. Deprotection of the TPDS group was followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacylation and triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

2'-Fluorouridine

Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2,2'-anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-Fluorodeoxycytidine

2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-O-(2-Methoxyethyl) modified amidites

2'-O-Methoxyethyl-substituted nucleoside amidites are prepared as follows, or alternatively, as per the methods of Martin, P., *Helvetica Chimica Acta*, **1995**, *78*, 486-504.

5

10

15

20

- 42 -

2,2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-methyluridine]

5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 h) to give a solid that was crushed to a light tan powder (57 g, 85% crude yield). The NMR spectrum was consistent with the structure, contaminated with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid, mp 222-4°C).

2'-O-Methoxyethyl-5-methyluridine

5

10

15

20

25

2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2-methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) was dissolved in CH₃CN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH₂Cl₂/acetone/MeOH (20:5:3) containing 0.5% Et₃NH. The residue was dissolved in CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the packing solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

- 43 -

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

5

10

15

20

25

2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the reaction stirred for an additional one hour. Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 70% product. The solvent was evaporated and triturated with CH₃CN (200 mL). The residue was dissolved in CHCl₃ (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase was dried over Na₂SO₄, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/hexane/acetone (5:5:1) containing 0.5% Et₃NH. The pure fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%).

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at room temperature for 24 hours. The reaction was monitored by TLC by first quenching the TLC sample with the addition of MeOH. Upon completion of the reaction, as judged by TLC, MeOH (50 mL) was added and the mixture evaporated at 35°C. The residue was dissolved in CHCl₃ (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl₃. The combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/hexane(4:1). Pure product fractions were evaporated to yield 96 g (84%). An additional 1.5 g was recovered from later fractions.

- 44 -

5

10

15

20

25

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine

A first solution was prepared by dissolving 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 h using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution was added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas was added and the vessel heated to 100°C for 2 hours (TLC showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with

5

10

15

20

25

stirring. After stirring for 3 hours, TLC showed the reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHCl₃ (700 mL) and extracted with saturated NaHCO₃ (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO₄ and evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica column using EtOAc/hexane (1:1) containing 0.5% Et₃NH as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine-3'-amidite

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (74 g, 0.10 M) was dissolved in CH₂Cl₂ (1 L). Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra(isopropyl)phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (TLC showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO₃ (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were back-extracted with CH₂Cl₂ (300 mL), and the extracts were combined, dried over MgSO₄ and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column using EtOAc/hexane (3:1) as the eluting solvent. The pure fractions were combined to give 90.6 g (87%) of the title compound.

2'-O-(Aminooxyethyl) nucleoside amidites and 2'-O-(dimethylaminooxyethyl) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites [also known in the art as 2'-O-(dimethylaminooxyethyl) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-methyluridine) except the exocyclic amines are

protected with a benzoyl moiety in the case of adenosine and cytidine and with isobutyryl in the case of guanosine.

5'-O-tert-Butyldiphenylsilyl-O²-2'-anhydro-5-methyluridine

5

10

15

20

25

O²-2'-anhydro-5-methyluridine (Pro. Bio. Sint., Varese, Italy, 100.0g, 0.416 mmol), dimethylaminopyridine (0.66g, 0.013eq, 0.0054mmol) were dissolved in dry pyridine (500 ml) at ambient temperature under an argon atmosphere and with mechanical stirring. *tert*-Butyldiphenylchlorosilane (125.8g, 119.0mL, 1.1eq, 0.458mmol) was added in one portion. The reaction was stirred for 16 h at ambient temperature. TLC (Rf 0.22, ethyl acetate) indicated a complete reaction. The solution was concentrated under reduced pressure to a thick oil. This was partitioned between dichloromethane (1 L) and saturated sodium bicarbonate (2x1 L) and brine (1 L). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to a thick oil. The oil was dissolved in a 1:1 mixture of ethyl acetate and ethyl ether (600mL) and the solution was cooled to -10°C. The resulting crystalline product was collected by filtration, washed with ethyl ether (3x200 mL) and dried (40°C, 1mm Hg, 24 h) to 149g (74.8%) of white solid. TLC and NMR were consistent with pure product.

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine

In a 2 L stainless steel, unstirred pressure reactor was added borane in tetrahydrofuran (1.0 M, 2.0 eq, 622 mL). In the fume hood and with manual stirring, ethylene glycol (350 mL, excess) was added cautiously at first until the evolution of hydrogen gas subsided. 5'-O-tert-Butyldiphenylsilyl-O²-2'-anhydro-5-methyluridine (149 g, 0.311 mol) and sodium bicarbonate (0.074 g, 0.003 eq) were added with manual stirring. The reactor was sealed and heated in an oil bath until an internal temperature of 160 °C was reached and then maintained for 16 h (pressure < 100 psig). The reaction vessel was cooled to ambient and opened. TLC (Rf 0.67 for desired product and Rf 0.82 for ara-T side product, ethyl acetate) indicated about 70% conversion to the product. In order to avoid additional side product formation, the

- 47 -

5

10

15

20

25

reaction was stopped, concentrated under reduced pressure (10 to 1mm Hg) in a warm water bath (40-100°C) with the more extreme conditions used to remove the ethylene glycol. [Alternatively, once the low boiling solvent is gone, the remaining solution can be partitioned between ethyl acetate and water. The product will be in the organic phase.] The residue was purified by column chromatography (2kg silica gel, ethyl acetate-hexanes gradient 1:1 to 4:1). The appropriate fractions were combined, stripped and dried to product as a white crisp foam (84g, 50%), contaminated starting material (17.4g) and pure reusable starting material 20g. The yield based on starting material less pure recovered starting material was 58%. TLC and NMR were consistent with 99% pure product.

2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine (20g, 36.98mmol) was mixed with triphenylphosphine (11.63g, 44.36mmol) and N-hydroxyphthalimide (7.24g, 44.36mmol). It was then dried over P₂O₅ under high vacuum for two days at 40°C. The reaction mixture was flushed with argon and dry THF (369.8mL, Aldrich, sure seal bottle) was added to get a clear solution. Diethylazodicarboxylate (6.98mL, 44.36mmol) was added dropwise to the reaction mixture. The rate of addition is maintained such that resulting deep red coloration is just discharged before adding the next drop. After the addition was complete, the reaction was stirred for 4 hrs. By that time TLC showed the completion of the reaction (ethylacetate:hexane, 60:40). The solvent was evaporated in vacuum. Residue obtained was placed on a flash column and eluted with ethyl acetate:hexane (60:40), to get 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine as white foam (21.819 g, 86%).

5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy)ethyl]-5-methyluridine

2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine (3.1g, 4.5mmol) was dissolved in dry CH₂Cl₂ (4.5mL) and methylhydrazine (300mL, 4.64mmol) was added dropwise at -10°C to 0°C. After 1 h the mixture was filtered,

- 48 -

the filtrate was washed with ice cold CH₂Cl₂ and the combined organic phase was washed with water, brine and dried over anhydrous Na₂SO₄. The solution was concentrated to get 2'-O-(aminooxyethyl) thymidine, which was then dissolved in MeOH (67.5mL). To this formaldehyde (20% aqueous solution, w/w, 1.1 eq.) was added and the resulting mixture was strirred for 1 h. Solvent was removed under vacuum; residue chromatographed to get 5'-O-*tert*-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy) ethyl]-5-methyluridine as white foam (1.95 g, 78%).

5

10

15

20

25

5'-O-tert-Butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine

5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy)ethyl]-5-methyluridine (1.77g, 3.12mmol) was dissolved in a solution of 1M pyridinium p-toluenesulfonate (PPTS) in dry MeOH (30.6mL). Sodium cyanoborohydride (0.39g, 6.13mmol) was added to this solution at 10°C under inert atmosphere. The reaction mixture was stirred for 10 minutes at 10°C. After that the reaction vessel was removed from the ice bath and stirred at room temperature for 2 h, the reaction monitored by TLC (5% MeOH in CH₂Cl₂). Aqueous NaHCO₃ solution (5%, 10mL) was added and extracted with ethyl acetate (2x20mL). Ethyl acetate phase was dried over anhydrous Na₂SO₄, evaporated to dryness. Residue was dissolved in a solution of 1M PPTS in MeOH (30.6mL). Formaldehyde (20% w/w, 30mL, 3.37mmol) was added and the reaction mixture was stirred at room temperature for 10 minutes. Reaction mixture cooled to 10°C in an ice bath, sodium cyanoborohydride (0.39g, 6.13mmol) was added and reaction mixture stirred at 10°C for 10 minutes. After 10 minutes, the reaction mixture was removed from the ice bath and stirred at room temperature for 2 hrs. To the reaction mixture 5% NaHCO₃ (25mL) solution was added and extracted with ethyl acetate (2x25mL). Ethyl acetate layer was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue obtained was purified by flash column chromatography and eluted with 5% MeOH in CH₂Cl₂ to get 5'-O-tertbutyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine as a white foam (14.6g, 80%).

- 49 -

2'-O-(dimethylaminooxyethyl)-5-methyluridine

5

10

15

20

25

Triethylamine trihydrofluoride (3.91mL, 24.0mmol) was dissolved in dry THF and triethylamine (1.67mL, 12mmol, dry, kept over KOH). This mixture of triethylamine-2HF was then added to 5'-O-*tert*-butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine (1.40g, 2.4mmol) and stirred at room temperature for 24 hrs. Reaction was monitored by TLC (5% MeOH in CH₂Cl₂). Solvent was removed under vacuum and the residue placed on a flash column and eluted with 10% MeOH in CH₂Cl₂ to get 2'-O-(dimethylaminooxyethyl)-5-methyluridine (766mg, 92.5%).

5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine

2'-O-(dimethylaminooxyethyl)-5-methyluridine (750mg, 2.17mmol) was dried over P_2O_5 under high vacuum overnight at 40° C. It was then co-evaporated with anhydrous pyridine (20mL). The residue obtained was dissolved in pyridine (11mL) under argon atmosphere. 4-dimethylaminopyridine (26.5mg, 2.60mmol), 4,4'-dimethoxytrityl chloride (880mg, 2.60mmol) was added to the mixture and the reaction mixture was stirred at room temperature until all of the starting material disappeared. Pyridine was removed under vacuum and the residue chromatographed and eluted with 10% MeOH in CH_2Cl_2 (containing a few drops of pyridine) to get 5'-O-DMT-2'-O-(dimethylamino-oxyethyl)-5-methyluridine (1.13g, 80%).

5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine (1.08g, 1.67mmol) was co-evaporated with toluene (20mL). To the residue N,N-diisopropylamine tetrazonide (0.29g, 1.67mmol) was added and dried over P₂O₅ under high vacuum overnight at 40°C. Then the reaction mixture was dissolved in anhydrous acetonitrile (8.4mL) and 2-cyanoethyl-N,N,N¹,N¹-tetraisopropylphosphoramidite (2.12mL, 6.08mmol) was added. The reaction mixture was stirred at ambient temperature for 4 hrs under inert atmosphere. The progress of the reaction was monitored by TLC

- 50 -

(hexane:ethyl acetate 1:1). The solvent was evaporated, then the residue was dissolved in ethyl acetate (70mL) and washed with 5% aqueous NaHCO₃ (40mL). Ethyl acetate layer was dried over anhydrous Na₂SO₄ and concentrated. Residue obtained was chromatographed (ethyl acetate as eluent) to get 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam (1.04g, 74.9%).

2'-(Aminooxyethoxy) nucleoside amidites

5

10

15

20

25

2'-(Aminooxyethoxy) nucleoside amidites [also known in the art as 2'-O(aminooxyethyl) nucleoside amidites] are prepared as described in the following
paragraphs. Adenosine, cytidine and thymidine nucleoside amidites are prepared
similarly.

N2-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

The 2'-O-aminooxyethyl guanosine analog may be obtained by selective 2'-O-alkylation of diaminopurine riboside. Multigram quantities of diaminopurine riboside may be purchased from Schering AG (Berlin) to provide 2'-O-(2-ethylacetyl) diaminopurine riboside along with a minor amount of the 3'-O-isomer. 2'-O-(2-ethylacetyl) diaminopurine riboside may be resolved and converted to 2'-O-(2-ethylacetyl)guanosine by treatment with adenosine deaminase. (McGee, D. P. C., Cook, P. D., Guinosso, C. J., WO 94/02501 A1 940203.) Standard protection procedures should afford 2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine and 2-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine which may be reduced to provide 2-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine. As before the hydroxyl group may be displaced by N-hydroxyphthalimide via a Mitsunobu reaction, and the protected nucleoside may phosphitylated as usual to yield 2-N-

- 51 -

isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite].

2'-dimethylaminoethoxyethoxy (2'-DMAEOE) nucleoside amidites

2'-dimethylaminoethoxyethoxy nucleoside amidites (also known in the art as 2'-O-dimethylaminoethoxyethyl, i.e., 2'-O-CH₂-O-CH₂-N(CH₂)₂, or 2'-DMAEOE nucleoside amidites) are prepared as follows. Other nucleoside amidites are prepared similarly.

2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine

5

10

15

20

25

2[2-(Dimethylamino)ethoxy]ethanol (Aldrich, 6.66 g, 50 mmol) is slowly added to a solution of borane in tetrahydrofuran (1 M, 10 mL, 10 mmol) with stirring in a 100 mL bomb. Hydrogen gas evolves as the solid dissolves. O²-,2'-anhydro-5-methyluridine (1.2 g, 5 mmol), and sodium bicarbonate (2.5 mg) are added and the bomb is sealed, placed in an oil bath and heated to 155°C for 26 hours. The bomb is cooled to room temperature and opened. The crude solution is concentrated and the residue partitioned between water (200 mL) and hexanes (200 mL). The excess phenol is extracted into the hexane layer. The aqueous layer is extracted with ethyl acetate (3x200 mL) and the combined organic layers are washed once with water, dried over anhydrous sodium sulfate and concentrated. The residue is columned on silica gel using methanol/methylene chloride 1:20 (which has 2% triethylamine) as the eluent. As the column fractions are concentrated a colorless solid forms which is collected to give the title compound as a white solid.

5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy) ethyl)]-5-methyl uridine

To 0.5 g (1.3 mmol) of 2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyl uridine in anhydrous pyridine (8 mL), triethylamine (0.36 mL) and dimethoxytrityl chloride (DMT-Cl, 0.87 g, 2 eq.) are added and stirred for 1 hour. The reaction mixture is poured into water (200 mL) and extracted with CH₂Cl₂ (2x200 mL). The

combined CH₂Cl₂ layers are washed with saturated NaHCO₃ solution, followed by saturated NaCl solution and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica gel chromatography using MeOH:CH₂Cl₂:Et₃N (20:1, v/v, with 1% triethylamine) gives the title compound.

5'-O-Dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyl uridine-3'-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite

Diisopropylaminotetrazolide (0.6 g) and 2-cyanoethoxy-N,N-diisopropyl phosphoramidite (1.1 mL, 2 eq.) are added to a solution of 5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyluridine (2.17 g, 3 mmol) dissolved in CH₂Cl₂ (20 mL) under an atmosphere of argon. The reaction mixture is stirred overnight and the solvent evaporated. The resulting residue is purified by silica gel flash column chromatography with ethyl acetate as the eluent to give the title compound.

Example 2

5

10

15

20

25

Oligonucleotide synthesis

Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.

Phosphorothioates (P=S) are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation wait step was increased to 68 sec and was followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 h), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution. Phosphinate oligonucleotides are prepared as described in U.S. Patent 5,508,270, herein incorporated by reference.

Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878, herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

Example 3

5

10

}

15

20

25

Oligonucleoside Synthesis

Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=O or P=S linkages are prepared as described in U.S. Patents 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

- 54 -

Example 4

5

10

15

20

25

PNA Synthesis

Peptide nucleic acids (PNAs) are prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, *Bioorganic & Medicinal Chemistry*, **1996**, *4*, 5-23. They may also be prepared in accordance with U.S. Patents 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.

Example 5

Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

[2'-O-Me]--[2'-deoxy]--[2'-O-Me] Chimeric Phosphorothioate Oligonucleotides

Chimeric oligonucleotides having 2'-O-alkyl phosphorothioate and 2'-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrityl-3'-O-phosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-O-methyl-3'-O-phosphoramidite for 5' and 3' wings. The standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2'-O-methyl. The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 ammonia/ethanol at room temperature overnight then lyophilized to dryness.

5

10

15

20

25

Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. The pellet is resuspended in 1M TBAF in THF for 24 hrs at room temperature to deprotect the 2' positions. The reaction is then quenched with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[2'-O-(2-Methoxyethyl)]--[2'-deoxy]--[2'-O-(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides

[2'-O-(2-methoxyethyl)]--[2'-deoxy]--[-2'-O-(methoxyethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites.

[2'-O-(2-Methoxyethyl)Phosphodiester]--[2'-deoxy Phosphorothioate]--[2'-O-(2-Methoxyethyl) Phosphodiester] Chimeric Oligonucleotides

[2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothioate]--[2'-O-(methoxyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.

Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to United States patent 5,623,065, herein incorporated by reference.

- 56 -

Example 6

5

10

15

20

25

Oligonucleotide Isolation

After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis were periodically checked by ³¹P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., *J. Biol. Chem.* **1991**, *266*, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

Example 7

Oligonucleotide Synthesis - 96 Well Plate Format

Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per known literature or patented methods. They are utilized as base protected beta-cyanoethyldiisopropyl phosphoramidites.

Oligonucleotides were cleaved from support and deprotected with concentrated NH₄OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford

- 57 -

a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

Example 8

5

10

15

20

25

Oligonucleotide Analysis - 96 Well Plate Format

The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACETM MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACETM 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.

Example 9

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following 5 cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, Ribonuclease protection assays, or RT-PCR.

T-24 cells:

The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells were routinely cultured in complete McCoy's 5A basal media (Gibco/Life Technologies,

Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

10 A549 cells:

5

15

20

The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells were routinely cultured in DMEM basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence.

NHDF cells:

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville MD). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville MD) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

HEK cells:

25 Human embryonic keratinocytes (HEK) were obtained from the Clonetics
Corporation (Walkersville MD). HEKs were routinely maintained in Keratinocyte
Growth Medium (Clonetics Corporation, Walkersville MD) formulated as

- 59 -

recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

PC-12 cells:

5

10

15

20

25

The rat neuronal cell line PC-12 was obtained from the American Type Culure Collection (Manassas, VA). PC-12 cells were routinely cultured in DMEM, high glucose (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% horse serum + 5% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 20000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Treatment with antisense compounds:

When cells reached 80% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells were washed once with 200 μL OPTI-MEMTM-1 reduced-serum medium (Gibco BRL) and then treated with 130 μL of OPTI-MEMTM-1 containing 3.75 μg/mL LIPOFECTINTM (Gibco BRL) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium was replaced with fresh medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is ISIS 13920,

TCCGTCATCGCTCCTCAGGG, SEQ ID NO: 1, a 2'-O-methoxyethyl gapmer (2'-O-methoxyethyls shown in bold) with a phosphorothioate backbone which is targeted to human H-ras. For mouse or rat cells the positive control oligonucleotide is ISIS

- 60 -

15770, ATGCATTCTGCCCCCAAGGA, SEQ ID NO: 2, a 2'-O-methoxyethyl gapmer (2'-O-methoxyethyls shown in bold) with a phosphorothioate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-Ha-ras (for ISIS 13920) or c-raf (for ISIS 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of H-ras or c-raf mRNA is then utilized as the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments.

Example 10

5

10

15

20

25

Analysis of oligonucleotide inhibition of PTP1B expression

Antisense modulation of PTP1B expression can be assayed in a variety of ways known in the art. For example, PTP1B mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISMTM 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions. Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single

- 61 -

5

10

15

20

25

sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only ("single-plexing"), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed as multiplexable. Other methods of PCR are also known in the art.

Protein levels of PTP1B can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to PTP1B can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

- 62 -

Example 11

5

10

15

25

Poly(A)+ mRNA isolation

Poly(A)+ mRNA was isolated according to Miura et al., *Clin. Chem.*, 1996, 42, 1758-1764. Other methods for poly(A)+ mRNA isolation are taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 60 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μL of lysate was transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C was added to each well, the plate was incubated on a 90°C hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate.

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

20 **Example 12**

Total RNA Isolation

Total mRNA was isolated using an RNEASY 96TM kit and buffers purchased from Qiagen Inc. (Valencia CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 100 μL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 100 μL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96TM well plate attached to a QIAVACTM manifold fitted with a waste collection tray and

- 63 -

attached to a vacuum source. Vacuum was applied for 15 seconds. 1 mL of Buffer RW1 was added to each well of the RNEASY 96TM plate and the vacuum again applied for 15 seconds. 1 mL of Buffer RPE was then added to each well of the RNEASY 96TM plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 10 minutes. The plate was then removed from the QIAVACTM manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVACTM manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 60 μL water into each well, incubating 1 minute, and then applying the vacuum for 30 seconds. The elution step was repeated with an additional 60 μL water.

The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia CA). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

15 **Example 13**

5

10

20

25

Real-time Quantitative PCR Analysis of PTP1B mRNA Levels

Quantitation of PTP1B mRNA levels was determined by real-time quantitative PCR using the ABI PRISMTM 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE, FAM, or VIC, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster

- 64 -

5

10

15

20

25

30

City, CA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISMTM 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

PCR reagents were obtained from PE-Applied Biosystems, Foster City, CA. RT-PCR reactions were carried out by adding 25 μL PCR cocktail (1x TAQMANTM buffer A, 5.5 mM MgCl₂, 300 μM each of dATP, dCTP and dGTP, 600 μM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLDTM, and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 μL poly(A) mRNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the AMPLITAQ GOLDTM, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

Probes and primers to human PTP1B were designed to hybridize to a human PTP1B sequence, using published sequence information (GenBank accession number M31724, incorporated herein as SEQ ID NO:3). For human PTP1B the PCR primers were:

forward primer: GGAGTTCGAGCAGATCGACAA (SEQ ID NO: 4) reverse primer: GGCCACTCTACATGGGAAGTC (SEQ ID NO: 5) and the PCR probe was: FAM-AGCTGGGCGGCCATTTACCAGGAT-TAMRA

- 65 -

(SEQ ID NO: 6) where FAM (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye. For human GAPDH the PCR primers were: forward primer: GAAGGTGAAGGTCGGAGTC (SEQ ID NO: 7) reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO: 8) and the PCR probe was: 5' JOE-CAAGCTTCCCGTTCTCAGCC- TAMRA 3' (SEQ ID NO: 9) where JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

Probes and primers to rat PTP1B were designed to hybridize to a rat PTP1B sequence, using published sequence information (GenBank accession number M33962, 10 incorporated herein as SEQ ID NO:10). For rat PTP1B the PCR primers were: forward primer: CGAGGGTGCAAAGTTCATCAT (SEQ ID NO:11) reverse primer: CCAGGTCTTCATGGGAAAGCT (SEQ ID NO: 12) and the PCR probe was: FAM-CGACTCGTCAGTGCAGGATCAGTGGA-TAMRA 15 (SEQ ID NO: 13) where FAM (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye. For rat GAPDH the PCR primers were: forward primer: TGTTCTAGAGACAGCCGCATCTT (SEQ ID NO: 14) reverse primer: CACCGACCTTCACCATCTTGT (SEQ ID NO: 15) and the PCR 20 probe was: 5' JOE-TTGTGCAGTGCCAGCCTCGTCTCA- TAMRA 3' (SEQ ID NO: 16) where JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

Example 14

25

5

Northern blot analysis of PTP1B mRNA levels

Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOLTM (TEL-TEST "B" Inc., Friendswood, TX). Total RNA was prepared following manufacturer's recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO,

Inc. Solon, OH). RNA was transferred from the gel to HYBONDTM-N+ nylon membranes (Amersham Pharmacia Biotech, Piscataway, NJ) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, TX). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKERTM UV Crosslinker 2400 (Stratagene, Inc, La Jolla, CA) and then robed using QUICKHYBTM hybridization solution (Stratagene, La Jolla, CA) using manufacturer's recommendations for stringent conditions.

To detect human PTP1B, a human PTP1B specific probe was prepared by PCR using the forward primer GGAGTTCGAGCAGATCGACAA (SEQ ID NO: 4) and the reverse primer GGCCACTCTACATGGGAAGTC (SEQ ID NO: 5). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).

To detect rat PTP1B, a rat PTP1B specific probe was prepared by PCR using the forward primer CGAGGGTGCAAAGTTCATCAT (SEQ ID NO:11) and the reverse primer CCAGGTCTTCATGGGAAAGCT (SEQ ID NO: 12). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).

Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGER™ and IMAGEQUANT™ Software V3.3 (Molecular Dynamics, Sunnyvale, CA). Data was normalized to GAPDH levels in untreated controls.

25 **Example 15**

5

10

15

20

Antisense inhibition of human PTP1B expression by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human PTP1B RNA, using published

- 67 -

sequences (GenBank accession number M31724, incorporated herein as SEQ ID NO: 3). The oligonucleotides are shown in Table 1. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 1 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on human PTP1B mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from two experiments. If present, "N.D." indicates "no data".

Table 1

Inhibition of human PTP1B mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap

	ISIS#	REGION	TARGET	TARGET	SEQUENCE	%	SEQ
			SEQ ID	SITE		INHIB	ID
			NO				NO
	107769	5' UTR	3	1	cttagcccgaggcccgccc	0	17
	107770	5' UTR	3	41	ctcggcccactgcgccgtct	58	18
	107771	Start	3	74	catgacgggccagggcggct	60	19
		Codon					
	107772	Coding	3	113	cccggacttgtcgatctgct	95	20
	107773	Coding	3	154	ctggcttcatgtcggatatc	88	21
	107774	Coding	3	178	ttggccactctacatgggaa	77	22
l	107775	Coding	3	223	ggactgacgtctctgtacct	75	23
	107776	Coding	3	252	gatgtagtttaatccgacta	82	24
	107777	Coding	3	280	ctagcgttgatatagtcatt	29	25
	107778	Coding	3	324	gggtaagaatgtaactcctt	86	26
	107779	Coding	3	352	tgaccgcatgtgttaggcaa	75	27
	107780	Coding	3	381	ttttctgctcccacaccatc	30	28
ı	107781	Coding	3	408	ctctgttgagcatgacgaca	78	29
	107782	Coding	3	436	gcgcattttaacgaaccttt	83	30
	107783	Coding	3	490	aaatttgtgtcttcaaagat	0	31
	107784	Coding	3	519	tgatatetteagagateaat	57	32
	107785	Coding	3	547	tctagctgtcgcactgtata	74	33

20

5

10

15

25

30

	107786	Coding	3	575	agtttcttgggttgtaaggt	33	34
	107787	Coding	3	604	gtggtatagtggaaatgtaa	51	35
	107788	Coding	3	632	tgattcagggactccaaagt	55	36
	107789	Coding	3	661	ttgaaaagaaagttcaagaa	17	37
5	107790	Coding	3	688	gggctgagtgaccctgactc	61	38
Ü	107791	Coding	3	716	gcagtgcaccacaacgggcc	81	39
	107792	Coding	3	744	aggttccagacctgccgatg	81	40
	107793	Coding	3	772	agcaggaggcaggtatcagc	2	41
	107794	Coding	3	799	gaagaagggtettteetett	53	42
10	107795	Coding	3	826	tctaacagcactttcttgat	18	43
_ `	107796	Coding	3	853	atcaaccccatccgaaactt	0	44
	107797	Coding	3	880	gagaagegeagetggtegge	82	45
	107798	Coding	3	908	tttggcaccttcgatcacag	62	46
	107799	Coding	3	952	ageteetteeactgateetg	70	47
15	107800	Coding	3	1024	tccaggattcgtttgggtgg	72	48
	107801	Coding	3	1052	gaactcctgcatttcccat	68	49
	107802	Coding	3	1079	tteetteacceaetggtgat	40	50
	107803	Coding	3	1148	gtagggtgcggcatttaagg	0	51
	107804	Coding	3	1176	cagtgtcttgactcatgctt	75	52
20	107805	Coding	3	1222	gcctgggcacctcgaagact	67	53
	107806	Coding	3	1268	ctcgtccttctcgggcagtg	37	54
	107807	Coding	3	1295	gggcttccagtaactcagtg	73	55
	107808	Coding	3	1323	ccgtagccacgcacatgttg	80	56
	107809	Coding	3 .	1351	tagcagaggtaagcgccggc	72	57
25	107810	Stop	3	1379	ctatgtgttgctgttgaaca	85	58
		Codon					
	107811	3' UTR	3	1404	ggaggtggagtggaggaggg	51	59
	107812	3' UTR	3	1433	ggctctgcgggcagaggcgg	81	60
	107813	3' UTR	3	1460	ccgcggcatgcctgctagtc	84	61
	107814	3' UTR	3	1489	tetetaegeggteeggegge	84	62
30	107815	3' UTR	3	1533	aagatgggttttagtgcaga	65	63
	107816	3' UTR	3	1634	gtactctctttcactctcct	69	64
	107817	3' UTR	3	1662	ggcccttccctctgcgccg	59	65
	107818	3' UTR	3	1707	ctccaggaggagccctggg	57	66
	107819	3' UTR	3	1735	gggctgttggcgtgcgccgc	54	67
35	107820	3' UTR	3	1783	tttaaataaatatggagtgg	0	68
	107821	3' UTR	3	1831	gttcaagaaaatgctagtgc	69	69
	107822	3' UTR	3	1884	ttgataaagcccttgatgca	74	70
	107823	3' UTR	3	1936	atggcaaagccttccattcc	26	71
	107824	3' UTR	3	1973	gtcctccttcccagtactgg	60	72
40	107825	3' UTR	3	2011	ttacccacaatatcactaaa	39	73
	107826	3' UTR	3	2045	attatatattatagcattgt	24	74
	107827	3' UTR	3	2080	teacateatgtttettatta	48	75
	107828	3' UTR	3	2115	ataacagggaggagaataag	0	76
	107829	3' UTR	3	2170	ttacatgcattctaatacac	21	77
45	107830	3' UTR	3	2223	gatcaaagtttetcatttea	81	78
	107831	3' UTR	3	2274	ggtcatgcacaggcaggttg	82	79
	107832	3' UTR	3	2309	caacaggcttaggaaccaca	65	80

_	69	_

5

10

15

20

25

30

107833	3' UTR	3	2344	aactgcaccctattgctgag	61	81
107834	3' UTR	3	2380	gtcatgccaggaattagcaa	0	82
107835	3' UTR	3	2413	acaggetgggcetcaccagg	58	83
107836	3' UTR	3	2443	tgagttacagcaagaccctg	44	84
107837	3' UTR	3	2473	gaatatggcttcccataccc	0	85
107838	3' UTR	3	2502	ccctaaatcatgtccagagc	87	86
107839	3' UTR	3	2558	gacttggaatggcggaggct	74	87
107840	3' UTR	3	2587	caaatcacggtctgctcaag	31	88
107841	3' UTR	3	2618	gaagtgtggtttccagcagg	56	89
107842	3' UTR	3	2648	cctaaaggaccgtcacccag	42	90
107843	3' UTR	3	2678	gtgaaccgggacagagacgg	25	91
107844	3' UTR	3	2724		53	92
107845	3' UTR	3	2755		75	93
107846	3' UTR	3	2785		79	94
107847	3' UTR	3	2844		86	95
107848	3' UTR	3	2970	tcagaatgcttacagcctgg	61	96
	107834 107835 107836 107837 107838 107840 107841 107842 107843 107844 107845 107846	107834 3' UTR 107835 3' UTR 107836 3' UTR 107837 3' UTR 107838 3' UTR 107839 3' UTR 107840 3' UTR 107841 3' UTR 107842 3' UTR 107843 3' UTR 107844 3' UTR 107844 3' UTR 107845 3' UTR 107846 3' UTR 107847 3' UTR	107834 3' UTR 107835 3' UTR 107836 3' UTR 107837 3' UTR 107838 3' UTR 107839 3' UTR 107840 3' UTR 107841 3' UTR 107842 3' UTR 107843 3' UTR 107844 3' UTR 107845 3' UTR 107846 3' UTR 107847 3' UTR 3 107847 3' UTR 3	107834 3' UTR 3 2380 107835 3' UTR 3 2413 107836 3' UTR 3 2443 107837 3' UTR 3 2473 107838 3' UTR 3 2502 107839 3' UTR 3 2587 107840 3' UTR 3 2618 107841 3' UTR 3 2648 107842 3' UTR 3 2678 107843 3' UTR 3 2724 107845 3' UTR 3 2755 107846 3' UTR 3 2785 107847 3' UTR 3 2844	107834 3' UTR 3 2380 gtcatgccaggaattagcaa 107835 3' UTR 3 2413 acaggctgggcctcaccagg 107836 3' UTR 3 2443 tgagttacagcaagaccctg 107837 3' UTR 3 2473 gaatatggcttcccataccc 107838 3' UTR 3 2502 ccctaaatcatgtccagagc 107839 3' UTR 3 2558 gacttggaatggcggagggt 107840 3' UTR 3 2587 caaatcacggtctgctcaag 107841 3' UTR 3 2618 gaagtgtggtttccagcagg 107842 3' UTR 3 2648 cctaaaggaccgtcacccag 107843 3' UTR 3 2678 gtgaaccgggacagagacgg 107844 3' UTR 3 2724 gccccacagggtttgaggt 107845 3' UTR 3 2755 cctttgcaggaagatcgtg 107846 3' UTR 3 2785 aaagccacttaatgtggag 107847 3' UTR 3 2844 gtgaaaatgctgggcaagaga </td <td>107834 3' UTR 3 2380 gtcatgccaggaattagcaa 0 107835 3' UTR 3 2413 acaggctgggcctcaccagg 58 107836 3' UTR 3 2443 tgagttacagcaagaccctg 44 107837 3' UTR 3 2473 gaatatggcttcccataccc 0 107838 3' UTR 3 2502 ccctaaatcatgtccagagc 87 107839 3' UTR 3 2558 gacttggaatggcggaggct 74 107840 3' UTR 3 2587 caaatcacggtctgctcaag 31 107841 3' UTR 3 2618 gaagtgtggtttccagcagg 56 107842 3' UTR 3 2648 cctaaaggaccgtcaccagg 25 107843 3' UTR 3 2678 gtgaaccgggacagagagcg 25 107844 3' UTR 3 2724 gcccacagggtttgaggt 53 107845 3' UTR 3 2785 aaagccacttaatgtggag 75 107846 3' UTR</td>	107834 3' UTR 3 2380 gtcatgccaggaattagcaa 0 107835 3' UTR 3 2413 acaggctgggcctcaccagg 58 107836 3' UTR 3 2443 tgagttacagcaagaccctg 44 107837 3' UTR 3 2473 gaatatggcttcccataccc 0 107838 3' UTR 3 2502 ccctaaatcatgtccagagc 87 107839 3' UTR 3 2558 gacttggaatggcggaggct 74 107840 3' UTR 3 2587 caaatcacggtctgctcaag 31 107841 3' UTR 3 2618 gaagtgtggtttccagcagg 56 107842 3' UTR 3 2648 cctaaaggaccgtcaccagg 25 107843 3' UTR 3 2678 gtgaaccgggacagagagcg 25 107844 3' UTR 3 2724 gcccacagggtttgaggt 53 107845 3' UTR 3 2785 aaagccacttaatgtggag 75 107846 3' UTR

As shown in Table 1, SEQ ID NOs 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 40, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 75, 78, 79, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 94, 95, and 96 demonstrated at least 35% inhibition of human PTP1B expression in this assay and are therefore preferred.

Example 16 Antisense inhibition of rat PTP1B expression by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap.

In accordance with the present invention, a second series of oligonucleotides were designed to target different regions of the rat PTP1B RNA, using published sequences (GenBank accession number M33962, incorporated herein as SEQ ID NO: 10). The oligonucleotides are shown in Table 2. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 2 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the

- 70 -

oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on rat PTP1B mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from two experiments. If present, "N.D." indicates "no data".

Table 2

Inhibition of rat PTP1B mRNA levels by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

5

j	ISIS#	REGION	TARGET	TARGET	SEQUENCE	%	SEQ ID
			SEQ ID	SITE		INHIB	NO
			NO				
	111549	5' UTR	10	1	caacctcccagcagcggct	32	97
10	111550	5' UTR	10	33	tegaggecegtegecegeca	27	98
	111551	5' UTR	10	73	cctcggccgtccgcgcgct	34	99
	111552	Coding	10	132	tegatetgetegaatteett	49	100
	113669	Coding	10	164	cctggtaaatagccgcccag	36	101
	113670	Coding	10	174	tgtcgaatatcctggtaaat	63	102
15	113671	Coding	10	184	actggcttcatgtcgaatat	58	103
	113672	Coding	10	189	aagtcactggcttcatgtcg	40	104
	111553	Coding	10	190	gaagtcactggcttcatgtc	27	105
	113673	Coding	10	191	ggaagtcactggcttcatgt	54	106
	113674	Coding	10	192	gggaagtcactggcttcatg	41	107
20	113675	Coding	10	193	tgggaagtcactggcttcat	56	108
	113676	Coding	10	194	atgggaagtcactggcttca	31	109
	113677	Coding	10	195	catgggaagtcactggcttc	59	110
	113678	Coding	10	225	tttttgttcttaggaagttt	24	111
	111554	Coding	10	228	cggtttttgttcttaggaag	45	112
25	111555	Coding	10	269	tccgactgtggtcaaaaggg	39	113
	113679	Coding	10	273	ttaatccgactgtggtcaaa	45	114
	113680	Coding	10	298	atagtcattatcttcctgat	49	115
	111556	Coding	10	303	ttgatatagtcattatcttc	29	116
	113681	Coding	10	330	getteeteeatttttateaa	67	117
30	111557	Coding	10	359	ggccctgggtgaggatatag	20	118
	113682	Coding	10	399	cacaccatctcccagaagtg	29	119
	111558	Coding	10	405	tgeteceaeaceatetecea	48	120
	113683	Coding	10	406	ctgctcccacaccatctccc	51	121
	113684	Coding	10	407	tctgctcccacaccatctcc	37	122
35	113685	Coding	10	408	ttctgctcccacaccatctc	54	123
	113686	Coding	10	417	ccctgctcttctgctccca	60	124
	111559	Coding	10	438	atgeggttgageatgaceae	15	125
	113687	Coding	10	459	tttaacgagcctttctccat	33	126

	113688	Coding	10	492	ttttcttctttctgtggcca	54	127
	113689	Coding	10	502	gaccatetetttttett	58	128
	111560	Coding	10	540	tcagagatcagtgtcagctt	21	129
	113690	Coding	10	550	cttgacatcttcagagatca	64	130
5	113691	Coding	10	558	taatatgacttgacatcttc	46	131
J	111561	Coding	10	579	aactccaactgccgtactgt	14	132
	111562	Coding	10	611	tetetegageeteetgggta	38	133
	113692	Coding	10	648	ccaaagtcaggccaggtggt	63	134
	111563	Coding	10	654	gggactccaaagtcaggcca	31	135
10	113693	Coding	10	655	agggactccaaagtcaggcc	50	136
10	113694	Coding	10	656	cagggactccaaagtcaggc	45	137
	113695	Coding	10	657	tcagggactccaaagtcagg	49	138
	113696	Coding	10	663	ggtgactcagggactccaaa	34	139
	111564	Coding	10	705	cctgactctcggactttgaa	53	140
15	113697	Coding	10	715	gctgagtgagcctgactctc	57	141
10	113698	Coding	10	726	ccgtgctctgggctgagtga	48	142
	111565	Coding	10	774	aaggtccctgacctgccaat	28	143
	111566	Coding	10	819	tettteetettgteeateag	34	144
	113699	Coding	10	820	gtctttcctcttgtccatca	41	145
20	113700	Coding	10	821	ggtctttcctcttgtccatc	66	146
	113701	Coding	10	822	gggtctttcctcttgtccat	71	147
	113702	Coding	10	852	aacagcactttcttgatgtc	39	148
	111567	Coding	10	869	ggaacctgcgcatctccaac	0	149
	111568	Coding	10	897	tggtcggccgtctggatgag	29	150
25	113703	Coding	10	909	gagaagcgcagttggtcggc	48	151
	113704	Coding	10	915	aggtaggagaagcgcagttg	31	152
	113705	Coding	10	918	gccaggtaggagaagcgcag	41	153
	111569	Coding	10	919	agccaggtaggagaagcgca	56	154
	113706	Coding	10	920	cagccaggtaggagaagcgc	58	155
30	113707	Coding	10	921	acagccaggtaggagaagcg	43	156
	113708	Coding	10	922	cacagccaggtaggagaagc	49	157
	113709	Coding	10	923	tcacagccaggtaggagaag	47	158
	111570	Coding	10	924	atcacagccaggtaggagaa	51	159
	113710	Coding	10	925	gatcacagccaggtaggaga	51	160
35	113711	Coding	10	926	cgatcacagccaggtaggag	63	161
	113712	Coding	10	927	tcgatcacagccaggtagga	71	162
	113713	Coding	10	932	caccetegateacagecagg	75	163
	113714	Coding	10	978	teetteeaetgateetgeae	97	164
	111571	Coding	10	979	ctccttccactgatcctgca	89	165
40	113715	Coding	10 .	980	geteetteeactgateetge	99	166
	107799	Coding	10	981	agctccttccactgatcctg	99	167
	113716	Coding	10	982	aageteetteeaetgateet	97	168
	113717	Coding	10	983	aaageteetteeaetgatee	95	169
	113718	Coding	10	984	gaaagctccttccactgatc	95	170
45	113719	Coding	10	985	ggaaageteetteeaetgat	95	171
	111572	Coding	10	986	gggaaageteetteeaetga	89	172
	113720	Coding	10	987	tgggaaageteetteeaetg	97	173
	113721	Coding	10	1036	tggccggggaggtgggggca	20	174

	111573	Coding	10	1040	tgggtggccggggaggtggg	20	175
	113722	Coding	10	1046	tgcgtttgggtggccgggga	18	176
	111574	Coding	10	1073	tgcacttgccattgtgaggc	38	177
	113723	Coding	10	1206	acttcagtgtcttgactcat	67	178
5	113724	Coding	10	1207	aacttcagtgtcttgactca	60	179
	111575	Coding	10	1208	taacttcagtgtcttgactc	50	180
	113725	Coding	10	1209	ctaacttcagtgtcttgact	53	181
	111576	Coding	10	1255	gacagatgcctgagcacttt	32	182
	106409	Coding	10	1333	gaccaggaagggcttccagt	32	183
10	113726	Coding	10	1334	tgaccaggaagggcttccag	39	184
	111577	Coding	10	1335	ttgaccaggaagggcttcca	32	185
	113727	Coding	10	1336	gttgaccaggaagggcttcc	41	186
	113728	Coding	10	1342	gcacacgttgaccaggaagg	59	187
	111578	Coding	10	1375	gaggtacgcgccagtcgcca	45	188
15	111579	Coding	10	1387	tacceggtaacagaggtacg	32	189
	111580	Coding	10	1397	agtgaaaacatacccggtaa	30	190
	111581	3' UTR	10	1456	caaatcctaacctgggcagt	31	191
	111582	3' UTR	10	1519	ttccagttccaccacaggct	24	192
	111583	3' UTR	10	1552	ccagtgcacagatgcccctc	47	193
20	111584	3' UTR	10	1609	acaggttaaggccctgagat	29	194
	111585	3' UTR	10	1783	geetageatettttgtttte	43	195
	111586	3' UTR	10	1890	aagccagcaggaactttaca	36	196
	111587	3' UTR	10	2002	gggacacctgagggaagcag	16	197
	111588	3' UTR	10	2048	ggtcatctgcaagatggcgg	40	198
25	111589	3' UTR	10	2118	gccaacctctgatgaccctg	25	199
	111590	3' UTR	10	2143	tggaagccccagctctaagc	25	200
	111591	3' UTR	10	2165	tagtaatgactttccaatca	44	201
	111592	3' UTR	10	2208	tgagtcttgctttacacctc	41	202
	111593	3' UTR	10	2252	cctgcgcgcggagtgacttc	22	203
30	111594	3' UTR	10	2299	aggacgtcactgcagcagga	43	204
	111595	3' UTR	10	2346	tcaggacaagtcttggcagt	32	205
	111596	3' UTR	10	2405	gaggetgeacagtaageget	34	206
	111597	3' UTR	10	2422	tcagccaaccagcatcagag	20	207
	111598	3' UTR	10	2449	acccacagtgtccacctccc	30	208
35	111599	3' UTR	10.	2502	agtgcgggctgtgctgctgg	30	209
	111600	3' UTR	10	2553	cagetegetetggeggeete	8	210
	111601	3' UTR	10	2608	aggaagggagctgcacgtcc	32	211
	111602	3' UTR	10	2664	ccctcacgattgctcgtggg	24	212
	111603	3' UTR	10	2756	cagtggagcggctcctctgg	18	213
40	111604	3' UTR	10	·2830	caggetgacacettacaegg	30	214
	111605	3' UTR	10	2883	gtcctacctcaaccctagga	37	215
	111606	3' UTR	10	2917	ctgcccagcaccagccaca	12	216
	111607	3' UTR	10	2946	attgettetaagacceteag	33	217
	111608	3' UTR	10	2978	ttacatgtcaccactgttgt	28	218
45	111609	3' UTR	10	3007	tacacatgtcatcagtagcc	37	219
	111610	3' UTR	10	3080	ttttctaactcacagggaaa	30	220
	111611	3' UTR	10	3153	gtgcccgccagtgagcaggc	23	221
	111612	3' UTR	10	3206	cggcctcggcactggacagc	27	222

- 73 -

	111613	3' UTR	10	3277	gtggaatgtctgagatccag	31	223
	111614	3' UTR	10	3322	agggcgggcctgcttgccca	23	224
	111615	3' UTR	10	3384	cggtcctggcctgctccaga	31	225
	111616	3' UTR	10	3428	tacactgttcccaggagggt	42	226
5	111617	3' UTR	10	3471	tggtgccagcagcgctagca	10	227
	111618	3' UTR	10	3516	cagtetetteageeteaaga	43	228
	113729	3' UTR	10	3537	aagagtcatgagcaccatca	56	229
	111619	3' UTR	10	3560	tgaaggtcaagttcccctca	40	230
	111620	3' UTR	10	3622	ctggcaagaggcagactgga	30	231
10	111621	3' UTR	10	3666	ggctctgtgctggcttctct	52	232
	111622	3' UTR	10	3711	gccatctcctcagcctgtgc	39	233
	111623	3' UTR	10	3787	agegeetgetetgaggeece	16	234
	111624	3' UTR	10	3854	tgctgagtaagtattgactt	35	235
	111625	3' UTR	10	3927	ctatggccatttagagagag	36	236
15	113730	3' UTR	10	3936	tggtttattctatggccatt	59	237
	111626	3' UTR	10	3994	cgctcctgcaaaggtgctat	11	238
	111627	3' UTR	10	4053	gttggaaacggtgcagtcgg	39	239
	111628	3' UTR	10	4095	atttattgttgcaactaatg	33	240

As shown in Table 2, SEQ ID NOs 97, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 117, 120, 121, 122, 123, 124, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 193, 195, 196, 198, 201, 202, 204, 205, 206, 211, 215, 217, 219, 223, 225, 226, 228, 229, 230, 232, 233, 235, 236, 237, 239 and 240 demonstrated at least 30% inhibition of rat PTP1B expression in this experiment and are therefore preferred.

Example 17 Western blot analysis of PTP1B protein levels

20

25

30

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to PTP1B is used, with a radiolabelled or fluorescently labeled secondary antibody directed against

- 74 -

the primary antibody species. Bands are visualized using a PHOSPHORIMAGER™ (Molecular Dynamics, Sunnyvale CA).

Example 18

5

10

15

20

25

Effects of antisense inhibition of PTP1B (ISIS 113715) on blood glucose levels

db/db mice are used as a model of Type 2 diabetes. These mice are hyperglycemic, obese, hyperlipidemic, and insulin resistant. The db/db phenotype is due to a mutation in the leptin receptor on a C57BLKS background. However, a mutation in the leptin gene on a different mouse background can produce obesity without diabetes (ob/ob mice). Leptin is a hormone produced by fat that regulates appetite and animals or humans with leptin deficiencies become obese. Heterozygous db/wt mice (known as lean littermates) do not display the hyperglycemia/hyperlipidemia or obesity phenotype and are used as controls.

Male db/db mice and lean (heterozygous, i.e., db/wt) littermates (age 9 weeks at time 0) were divided into matched groups (n=6) with the same average blood glucose levels and treated by intraperitoneal injection once a week with saline, ISIS 29848 (the control oligonucleotide) or ISIS 113715. db/db mice were treated at a dose of 10, 25 or 50 mg/kg of ISIS 113715 or 50 mg/kg of ISIS 29848 while lean littermates were treated at a dose of 50 or 100 mg/kg of ISIS 113715 or 100 mg/kg of ISIS 29848.

Treatment was continued for 4 weeks with blood glucose levels being measured on day 0, 7, 14, 21 and 28.

By day 28 in db/db mice, blood glucose levels were reduced at all doses from a starting level of 300 mg/dL to 225 mg/dL for the 10 mg/kg dose, 175 mg/dL for the 25 mg/kg dose and 125 mg/dL for the 50 mg/kg dose. These final levels are within normal range for wild-type mice (170 mg/dL). The mismatch control and saline treated levels levels were 320 mg/dL and 370 mg/dL at day 28, respectively.

In lean littermates, blood glucose levels remained constant throughout the study for all treatment groups (average 120 mg/dL). These results indicate that treatment with ISIS 113715 reduces blood glucose in db/db mice and that there is no hypoglycemia induced in the db/db or the lean littermate mice as a result of the oligonucleotide treatment.

In a similar experiment, ob/ob mice and their lean littermates (heterozygous, i.e., ob/wt) were dosed twice a week at 50 mg/kg with ISIS 113715, ISIS 29848 or saline control and blood glucose levels were measured at the end of day 7, 14 and 21. Treatment of ob/ob mice with ISIS 113715 resulted in the largest decrease in blood glucose over time going from 225 mg/dL at day 7 to 95 mg/dL at day 21. Ob/ob mice displayed an increase in plasma glucose over time from 300 mg/dL to 325 mg/dL while treatment with the control oligonucleotide reduced plasma glucose from an average of 280 mg/dL to 130 mg/dL. In the lean littermates plasma glucose levels remained unchanged in all treatment groups (average level 100 mg/dL).

Example 19

5

10

15

20

25

Effects of antisense inhibition of PTP1B (ISIS 113715) on mRNA expression in liver

Male db/db mice and lean littermates (age 9 weeks at time 0) were divided into matched groups (n=6) with the same average blood glucose levels and treated by intraperitoneal injection once a week with saline, ISIS 29848 (the control oligonucleotide) or ISIS 113715. db/db mice were treated at a dose of 10, 25 or 50 mg/kg of ISIS 113715 or 50 mg/kg of ISIS 29848 while lean littermates were treated

at a dose of 50 or 100 mg/kg of ISIS 113715 or 100 mg/kg of ISIS 29848. Treatment was continued for 4 weeks after which the mice were sacrificed and tissues collected for mRNA analysis. RNA values were normalized and are expressed as a percentage of saline treated control.

ISIS 113715 successfully reduced PTP1B mRNA levels in the livers of db/db mice at all doses examined (60% reduction of PTP1B mRNA), whereas the control oligonucleotide treated animals showed no reduction in PTP1B mRNA, remaining at the level of the saline treated control. Treatment of lean littermates with ISIS 113715 also reduced mRNA levels to 45% of control at the 50 mg/kg dose and 25% of control at the 100 mg/kg dose. The control oligonucleotide (ISIS 29848) failed to show any reduction in mRNA levels.

Example 20

5

10

15

20

25

Effects of antisense inhibition of PTP1B (ISIS 113715) on body weight

Male db/db mice and lean littermates (age 9 weeks at time 0) were divided into matched groups (n=6) with the same average blood glucose levels and treated by intraperitoneal injection once a week with saline, ISIS 29848 (the control oligonucleotide) or ISIS 113715. db/db mice were treated at a dose of 10, 25 or 50 mg/kg of ISIS 113715 or 50 mg/kg of ISIS 29848 while lean littermates were treated at a dose of 50 or 100 mg/kg of ISIS 113715 or 100 mg/kg of ISIS 29848. Treatment was continued for 4 weeks. At day 28 mice were sacrificed and final body weights were measured.

Treatment of ob/ob mice with ISIS 113715 resulted in an increase in body weight which was constant over the dose range with animals gaining an average of 11.0 grams while saline treated controls gained 5.5 grams. Animals treated with the control oligonucleotide gained an average of 7.8 grams of body weight.

Lean littermate animals treated with 50 or 100 mg/kg of ISIS 113715 gained 3.8 grams of body weight compared to a gain of 3.0 grams for the saline controls.

- 77 -

In a similar experiment, ob/ob mice and their lean littermates were dosed twice a week at 50 mg/kg with ISIS 113715, ISIS 29848 or saline control and body weights were measured at the end of day 7, 14 and 21.

Treatment of the ob/ob mice with ISIS 113715, ISIS 29848 or saline control all resulted in a similar increase in body weight across the 21-day timecourse. At the end of day 7 all ob/ob treatment groups had an average weight of 42 grams. By day 21, animals treated with ISIS 113715 had an average body weight of 48 grams, while those in the ISIS 29848 (control oligonucleotide) and saline control group each had an average body weight of 52 grams. All of the lean littermates had an average body weight of 25 grams at the beginning of the timecourse and all lean littermate treatment groups showed an increase in body weight, to 28 grams, by day 21.

Example 21

5

10

15

20

25

Effects of antisense inhibition of PTP1B (ISIS 113715) on plasma insulin levels

Male db/db mice (age 9 weeks at time 0) were divided into matched groups (n=6) with the same average blood glucose levels and treated by intraperitoneal injection twice a week with saline, ISIS 29848 (the control oligonucleotide) or ISIS 113715 at a dose of 50 mg/kg. Treatment was continued for 3 weeks with plasma insulin levels being measured on day 7, 14, and 21.

Mice treated with ISIS 113715 showed a decrease in plasma insulin levels from 15 ng/mL at day 7 to 7.5 ng/mL on day 21. Saline treated animals has plasma insulin levels of 37 ng/mL at day 7 which dropped to 25 ng/mL on day 14 but rose again to 33 ng/mL by day 21. Mice treated with the control oligonucleotide also showed a decrease in plasma insulin levels across the timecourse of the study from 25 ng/mL at day 7 to 10 ng/mL on day 21. However, ISIS 113715 was the most effective at reducing plasma insulin over time.

- 78 -

What is claimed is:

- 1. A compound 8 to 50 nucleobases in length targeted to a nucleic acid molecule encoding PTP1B, wherein said compound specifically hybridizes with and inhibits the expression of PTP1B.
 - 2. The compound of claim 1 which is an antisense oligonucleotide.
- 3. The compound of claim 2 wherein the antisense oligonucleotide has a sequence comprising SEQ ID NO: 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 40, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 75, 78, 79, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 117, 120, 121, 122, 123, 124, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 193, 195, 196, 198, 201, 202, 204, 205, 206, 211, 215, 217, 219, 223, 225, 226, 228, 229, 230, 232, 233, 235, 236, 237, 239 or 240.
- 4. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
- 5. The compound of claim 4 wherein the modified internucleoside linkage is a phosphorothicate linkage.
- 6. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.

- 79 -

- 7. The compound of claim 6 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.
- 8. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
- 9. The compound of claim 8 wherein the modified nucleobase is a 5-methylcytosine.
- 10. The compound of claim 2 wherein the antisense oligonucleotide is a chimeric oligonucleotide.
- 11. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 12. The composition of claim 11 further comprising a colloidal dispersion system.
- 13. The composition of claim 11 wherein the compound is an antisense oligonucleotide.
- 14. A compound 8 to 50 nucleobases in length which specifically hybridizes with at least an 8-nucleobase portion of an active site on a nucleic acid molecule encoding PTP1B.
- 15. A method of inhibiting the expression of PTP1B in cells or tissues comprising contacting said cells or tissues with the compound of claim 1 so that expression of PTP1B is inhibited.

- 80 -

- 16. The method of claim 15 wherein the cells or tissues are human cells or tissues.
- 17. The method of claim 15 wherein the cells or tissues are rodent cells or tissues.
- 18. The method of claim 17 wherein the rodent cells or tissues are mouse cells or tissues.
- 19. The method of claim 17 wherein the rodent cells or tissues are rat cells or tissues.
- 20. The method of claim 15 wherein the cells or tissues are liver, kidney or adipose cells or tissues.
- 21. A method of treating an animal having or suspected of having a disease or condition associated with PTP1B comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 1 so that expression of PTP1B is inhibited.
 - 22. The method of claim 21 wherein the animal is a human.
- 23. The method of claim 21 wherein the disease or condition is a metabolic disease or condition.
 - 24. The method of claim 21 wherein the disease or condition is diabetes.
- 25. The method of claim 21 wherein the disease or condition is Type 2 diabetes.

- 81 -

- 26. The method of claim 21 wherein the disease or condition is obesity.
- 27. The method of claim 21 wherein the disease or condition is a hyperproliferative condition.
- 28. The method of claim 27 wherein the hyperproliferative condition is cancer.
- 29. A method of decreasing blood glucose levels in an animal comprising administering to said animal the compound of claim 1.
 - 30. The method of claim 29 wherein the animal is a human or a rodent.
- 31. The method of claim 29 wherein the blood glucose levels are plasma glucose levels or serum glucose levels.
 - 32. The method of claim 29 wherein the animal is a diabetic animal.
- 33. A method of preventing or delaying the onset of a disease or condition associated with PTP1B in an animal comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 1.
 - 34. The method of claim 33 wherein the animal is a human.
- 35. The method of claim 33 wherein the disease or condition is a metabolic disease or condition.
 - 36. The method of claim 33 wherein the disease or condition is diabetes.

- 82 -

- 37. The method of claim 33 wherein the disease or condition is Type 2 diabetes.
 - 38. The method of claim 33 wherein the disease or condition is obesity.
- 39. The method of claim 33 wherein the disease or condition is a hyperproliferative condition.
- 40. The method of claim 39 wherein the hyperproliferative condition is cancer.
- 41. A method of preventing or delaying the onset of an increase in blood glucose levels in an animal comprising administering to said animal the compound of claim 1.
 - 42. The method of claim 41 wherein the animal is a human or a rodent.
- 43. The method of claim 41 wherein the blood glucose levels are plasma glucose levels or serum glucose levels.
 - 44. The method of claim 41 wherein the animal is a diabetic animal.

SEQUENCE LISTING

<110> Lex M. Cowsert Jacqueline Wyatt Susan M. Freier Brett P. Monia Madeline M. Butler Robert McKay	
<120> ANTISENSE MODULATION OF PTPLB EXPRESSION	
<130> ISPH-0478	
<140> US 09/629,644 <141> 2000-07-31	
<150> US 09/487,368 <151> 2000-01-18	
<160> 242	
<210> 1 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 1 teegteateg eteeteaggg	20
<210> 2 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 2 atgcattctg ccccaagga	20
<210> 3 <211> 3247 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (91)(1398)	
<400> 3 gggcgggcct cggggctaag agcgcgacgc ctagagcggc agacggcgca gtgggccgag	60
aaggaggcgc agcagccgcc ctggcccgtc atg gag atg gaa aag gag ttc gag Met Glu Met Glu Lys Glu Phe Glu	114

1 5

cag Gln	atc Ile 10	Asp	aag Lys	tcc Ser	GJÀ 333	agc Ser 15	tgg Trp	gcg Ala	gcc Ala	att Ile	tac Tyr 20	cag Gln	gat Asp	atc Ile	cga Arg	. 162
cat His '25	gaa Glu	gcc Ala	agt Ser	gac Asp	ttc Phe 30	cca Pro	tgt Cys	aga Arg	gtg Val	gcc Ala 35	aag Lys	ctt Leu	cct Pro	aag Lys	aac Asn 40	210
aaa Lys	aac Asn	cga Arg	aat Asn	agg Arg 45	tac Tyr	aga Arg	gac Asp	gtc Val	agt Ser 50	ccc Pro	ttt Phe	gac Asp	cat His	agt Ser 55	cgg Arg	258
			cat His 60													306
aaa Lys	atg Met	gaa Glu 75	gaa Glu	gcc Ala	caa Gln	agg Arg	agt Ser 80	tac Tyr	att Ile	ctt Leu	acc Thr	cag Gln 85	ggc Gly	cct Pro	ttg Leu	. 354
cct Pro	aac Asn 90	aca Thr	tgc Cys	ggt Gly	cac His	ttt Phe 95	tgg Trp	gag Glu	atg Met	gtg Val	tgg Trp 100	gag Glu	cag Gln	aaa Lys	agc Ser	402
agg Arg 105	ggt Gly	gtc Val	gtc Val	atg Met	ctc Leu 110	aac Asn	aga Arg	gtg Val	atg Met	gag Glu 115	aaa Lys	ggt Gly	tcg Ser	tta Leu	aaa Lys 120	450
			tac Tyr													498
gac Asp	aca Thr	aat Asn	ttg Leu 140	aaa Lys	tta Leu	aca Thr	ttg Leu	atc Ile 145	tct Ser	gaa Glu	gat Asp	atc Ile	aag Lys 150	tca Ser	tat Tyr	546
tat Tyr	aca Thr	gtg Val 155	cga Arg	cag Gln	cta Leu	gaa Glu	ttg Leu 160	gaa Glu	aac Asn	ctt Leu	aca Thr	acc Thr 165	caa Gln	gaa Glu	act Thr	594
cga Arg	gag Glu 170	atc Ile	tta Leu	cat His	ttc Phe	cac His 175	tat Tyr	acc Thr	aca Thr	tgg Trp	cct Pro 180	gac Asp	ttt Phe	gga Gly	gtc Val	642
cct Pro 185	gaa Glu	tca Ser	cca Pro	gcc Ala	tca Ser 190	ttc Phe	ttg Leu	aac Asn	ttt Phe	ctt Leu 195	ttc Phe	aaa Lys	gtc Val	cga Arg	gag Glu 200	690
tca Ser	ej aaa	tca Ser	ctc Leu	agc Ser 205	ccg Pro	gag Glu	cac His	61 y 999	ccc Pro 210	gtt Val	gtg Val	gtg Val	cac His	tgc Cys 215	agt Ser	738
gca Ala	gly ggc	atc Ile	ggc Gly 220	agg Arg	tct Ser	gga Gly	acc Thr	ttc Phe 225	tgt Cys	ctg Leu	gct Ala	gat Asp	acc Thr 230	tgc Cys	ctc Leu	786
ctg	ctg	atg	gac	aag	agg	aaa	gac	cct	tct	tcc	gtt	gat	atc	aag	aaa	834

Leu.	Leu	Met 235	Asp	Lys	Arg	Lys	Asp 240	Pro	Ser	Ser	Val	Asp 245	Ile	Lys	Lys	
gtg Val	ctg Leu 250	tta Leu	gaa Glu	atg Met	agg Arg	aag Lys 255	ttt Phe	cgg Arg	atg Met	Gly aaa	ttg Leu 260	atc Ile	cag Gln	aca Thr	gcc Ala	882
gac Asp 265	cag Gln	ctg Leu	cgc Arg	ttc Phe	tcc Ser 270	tac Tyr	ctg Leu	gct Ala	gtg Val	atc Ile 275	gaa Glu	ggt Gly	gcc Ala	aaa Lys	ttc Phe 280	930
atc Ile	atg Met	gly aaa	gac Asp	tct Ser 285	tcc Ser	gtg Val	cag Gln	gat Asp	cag Gln 290	tgg Trp	aag Lys	gag Glu	ctt Leu	tcc Ser 295	cac His	978
gag Glu	gac Asp	ctg Leu	gag Glu 300	ccc Pro	cca Pro	ccc Pro	gag Glu	cat His 305	atc Ile	ccc Pro	cca Pro	cct Pro	ccc Pro 310	cgg Arg	cca Pro	1026
ccc Pro	aaa Lys	cga Arg 315	atc Ile	ctg Leu	gag Glu	cca Pro	cac His 320	aat Asn	Gly 999	aaa Lys	cys Cys	agg Arg 325	gag Glu	ttc Phe	ttc Phe	1074
cca Pro	aat Asn 330	cac His	cag Gln	tgg Trp	gtg Val	aag Lys 335	gaa Glu	gag Glu	acc Thr	cag Gln	gag Glu 340	gat Asp	aaa Lys	gac Asp	tgc Cys	1122
ccc Pro 345	atc Ile	aag Lys	gaa Glu	gaa Glu	aaa Lys 350	gga Gly	agc Ser	ccc Pro	tta Leu	aat Asn 355	gcc Ala	gca Ala	ccc	tac Tyr	ggc Gly 360	1170
atc Ile	gaa Glu	agc Ser	atg Met	agt Ser 365	caa Gln	gac Asp	act Thr	gaa Glu	gtt Val 370	Arg	agt Ser	cgg Arg	gtc Val	gtg Val 375	gly aaa	1218
gga Gly	agt Ser	ctt Leu	cga Arg 380	Gly	gcc Ala	cag Gln	gct Ala	gcc Ala 385	tcc Ser	cca Pro	gcc Ala	aaa Lys	390 Gly 393	Gru	ccg Pro	1266
tca Ser	ctg Leu	ccc Pro 395	Glu	aag Lys	gac Asp	gag Glu	gac Asp 400	His	gca Ala	ctg Leu	agt Ser	tac Tyr 405	tgg Trp	aag Lys	Pro	1314
ttc Phe	ctg Leu 410	gtc Val	aac Asn	atg Met	tgc Cys	gtg Val 415	Ala	acg Thr	gtc Val	ьеи	acg Thr 420	ALA	ggc Gly	gct Ala	tac Tyr	1362
ctc Leu 425	Cys	tac Tyr	agg Arg	ttc Phe	ctg Leu 430	Phe	aac Asn	agc Ser	aac Asn	aca Thr 435		cct	gacc	ctc		1408
cto	cact	cca	cctc	cacc	ca c	tgto	cgcc	t ct	gccc	gcag	ago	ccac	gcc	cgac	tagcag	1468
gca	tgcc	gcg	gtag	gtaa	igg g	ccgc	cgga	.c cg	cgta	ıgaga	gec	gggc	ccc	ggac	ggacgt	1528
tgg	ttct	gca	ctaa	aacc	ca t	cttc	cccc	g at	gtgt	gtct:	: cac	ccct	cat	cctt	ttactt	1588
tggttctgca ctaaaaccca tcttccccgg atgtgtgtct cacccctcat ccttttactt											1648					

agtaccatgc	tggcggcgca	gagggaaggg	gcctacaccc	gtcttggggc	tegececace	1708 .	
cagggctccc	tcctgġagca	tcccaggcgg	cgcacgccaa	cagcccccc	cttgaatctg	1768	
cagggagcaa	ctctccactc	catatttatt	taaacaattt	tttccccaaa	ggcatccata	1828	
gtgcactagc	attttcttga	accaataatg	tattaaaatt	ttttgatgtc	agccttgcat	1888	
caagggcttt	atcaaaaagt	acaataataa	atcctcaggt	agtactggga	atggaaggct	1948	
ttgccatggg	cctgctgcgt	cagaccagta	ctgggaagga	ggacggttgt	aagcagttgt	2008	
tatttagtga	tattgtgggt	aacgtgagaa	gatagaacaa	tgctataata	tataatgaac	2068	
acgtgggtat	ttaataagaa	acatgatgtģ	agattacttt	gtcccgctta	ttctcctccc	2128	
tgttatctgc	tagatctagt	tctcaatcac	tgctcccccg	tgtgtattag	aatgcatgta	2188	
aggtcttctt	gtgtcctgat	gaaaaatatg	tgcttgaaat	gagaaacttt	gatctctgct	2248	
tactaatgtg	ccccatgtcc	aagtccaacc	tgcctgtgca	tgacctgatc	attacatggc	2308	
tgtggttcct	aagcctgttg	ctgaagtcat	tgtcgctcag	caatagggtg	cagttttcca	2368	
ggaataggca	tttgctaatt	cctggcatga	cactctagtg	acttcctggt	gaggcccagc	2428	
ctgtcctggt	acagcagggt	cttgctgtaa	ctcagacatt	ccaagggtat	gggaagccat	2488	
attcacacct	cacgctctgg	acatgattta	gggaagcagg	gacacccccc	geececcace	2548	
tttgggatca	gcctccgcca	ttccaagtca	acactcttct	tgagcagacc	gtgatttgga	2608	
agagaggcac	ctgctggaaa	ccacacttct	tgaaacagcc	tgggtgacgg	tcctttaggc	2668	
agcctgccgc	cgtctctgtc	ccggttcacc	ttgccgagag	aggcgcgtct	gccccaccct	2728	
caaaccctgt	ggggcctgat	ggtgctcacg	actcttcctg	caaagggaac	tgaagacctc	2788	
cacattaagt	ggctttttaa	catgaaaaac	acggcagctg	tagctcccga	gctactctct	2848	
tgccagcatt	ttcacatttt	gcctttctcg	tggtagaagc	cagtacagag	aaattctgtg `	2908	
gtgggaacat	tcgaggtgtc	accctgcaga	gctatggtga	ggtgtggata	aggcttaggt	2968	
gccaggctgt	aagcattctg	agctggcttg	ttgtttttaa	gtcctgtata	tgtatgtagt	3028	
agtttgggtg	tgtatatata	gtagcatttc	aaaatggacg	tactggttta	acctcctatc	3088	
	agctggctct					3148	
tctgctatat	gccttaagcc	aatatttact	catcaggtca	ttattttta	caatggccat	3208	
ggaataaacc	atttttacaa	aaataaaaac	aaaaaaagc			3247	

<210> 4

<211> 21 <212> DNA <213> Artificial Sequence

garage.	
<220> <223> PCR Primer	
<400> 4 ggagttcgag cagatcgaca a	21
<210> 5 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 5 ggccactcta catgggaagt c	21
<210> 6 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Probe	
<400> 6 agctgggcgg ccatttacca ggat	24
<210> 7. <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 7 gaaggtgaag gtcggagtc	19
<210> 8 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 8 gaagatggtg atgggatttc	20
<210> 9 <211> 20 <212> DNA <213> Artificial Sequence	

<220> <223> PCR Probe										
<400> 9 caagetteee gtteteagee	20									
<210> 10 <211> 4127 <212> DNA <213> Rattus norvegicus										
<220> <221> CDS <222> (120)(1418)										
<400> 10 agccgctgct ggggaggttg gggctgaggt ggtggcgggc gacgggcctc gagacgcgga	60									
gegaegegge etagegegge ggaeggeega gggaactegg geagtegtee egteeegee	119									
atg gaa atg gag aag gaa ttc gag cag atc gat aag gct ggg aac tgg Met Glu Met Glu Lys Glu Phe Glu Gln Ile Asp Lys Ala Gly Asn Trp 1 5 10 15	167									
gcg gct att tac cag gat att cga cat gaa gcc agt gac ttc cca tgc Ala Ala Ile Tyr Gln Asp Ile Arg His Glu Ala Ser Asp Phe Pro Cys 20 25 30	215									
aga ata gcg aaa ctt cct aag aac aaa aac cgg aac agg tac cga gat Arg Ile Ala Lys Leu Pro Lys Asn Lys Asn Arg Asn Arg Tyr Arg Asp 35 40 45	263									
gtc agc cct ttt gac cac agt cgg att aaa ttg cat cag gaa gat aat Val Ser Pro Phe Asp His Ser Arg Ile Lys Leu His Gln Glu Asp Asn 50 55 60	311									
gac tat atc aat gcc agc ttg ata aaa atg gag gaa gcc cag agg agc Asp Tyr Ile Asn Ala Ser Leu Ile Lys Met Glu Glu Ala Gln Arg Ser 65 70 75 80	359									
tat atc ctc acc cag ggc cct tta cca aac acg tgc ggg cac ttc tgg Tyr Ile Leu Thr Gln Gly Pro Leu Pro Asn Thr Cys Gly His Phe Trp 85 90 95	407									
gag atg gtg tgg gag cag aag agc agg ggc gtg gtc atg ctc aac cgc Glu Met Val Trp Glu Gln Lys Ser Arg Gly Val Val Met Leu Asn Arg 100 105 110	455									
atc atg gag aaa ggc tcg tta aaa tgt gcc cag tat tgg cca cag aaa Ile Met Glu Lys Gly Ser Leu Lys Cys Ala Gln Tyr Trp Pro Gln Lys 115 120 125	503									
gaa gaa aaa gag atg gtc ttc gat gac acc aat ttg aag ctg aca ctg Glu Glu Lys Glu Met Val Phe Asp Asp Thr Asn Leu Lys Leu Thr Leu 130 135 140	551									

atc Ile 145	tct	gaa Glu	gat Asp	gtc Val	aag Lys 150	tca Ser	tat Tyr	tac Tyr	aca Thr	gta Val 155	cgg Arg	cag Gln	ttg Leu	gag Glu	ttg Leu 160	599
gag Glu	aac Asn	ctg Leu	gct Ala	acc Thr 165	cag Gln	gag Glu	gct Ala	cga Arg	gag Glu 170	atc Ile	ctg Leu	cat His	ttc Phe	cac His 175	tac Tyr	647
acc Thr	acc Thr	tgg Trp	cct Pro 180	gac Asp	ttt Phe	gga Gly	gtc Val	cct Pro 185	gag Glu	t.ca Ser	cct Pro	gcc Ala	tct Ser 190	ttc Phe	ctc Leu	695
aat Asn	ttc Phe	cta Leu 195	ttc Phe	aaa Lys	gtc Val	cga Arg	gag Glu 200	tca Ser	ggc Gly	tca Ser	ctc Leu	agc Ser 205	cca Pro	gag Glu	cac His	743
ggc	ccc Pro 210	att Ile	gtg Val	gtc Val	cac His	tgc Cys 215	agt Ser	gct Ala	ggc Gly	att Ile	ggc Gly 220	agg Arg	tca Ser	gjå aaa	acc Thr	791
ttc Phe 225	tgc Cys	ctg Leu	gct Ala	gac, Asp	acc Thr 230	tgc Cys	ctc Leu	tta Leu	ctg Leu	atg Met 235	gac Asp	aag Lys	agg Arg	aaa Lys	gac Asp 240	839
ccg Pro	tcc Ser	tct Ser	gtg Val	gac Asp 245	atc Ile	aag Lys	aaa Lys	gtg Val	ctg Leu 250	ttg Leu	gag Glu	atg Met	cgc Arg	agg Arg 255	ttc Phe	887
cgc Arg	atg Met	ely aaa	ctc Leu 260	atc Ile	cag Gln	acg Thr	gcc Ala	gac Asp 265	caa Gln	ctg Leu	cgc Arg	ttc Phe	tcc Ser 270	tac Tyr	ctg Leu	935
gct Ala	gtg Val	atc Ile 275	gag Glu	ggt Gly	gca Ala	aag Lys	ttc Phe 280	atc Ile	atg Met	ggc Gly	gac Asp	tcg Ser 285	tca Ser	gtg Val	cag Gln	983
gat Asp	cag Gln 290	tgg Trp	aag Lys	gag Glu	ctt Leu	tcc Ser 295	cat His	gaa Glu	gac Asp	ctg Leu	gag Glu 300	cct Pro	ccc Pro	cct Pro	gag Glu	1031
cac His 305	gtg Val	ccc Pro	cca Pro	cct Pro	ccc Pro 310	cgg Arg	cca Pro	ccc Pro	aaa Lys	cgc Arg 315	aca Thr	ttg Leu	gag Glu	cct Pro	cac His 320	1079
aat Asn	ggc Gly	aag Lys	tgc Cys	aag Lys 325	gag Glu	ctc Leu	ttc Phe	tcc Ser	aac Asn 330	cac His	cag Gln	tgg Trp	gtg Val	agc Ser 335	gag Glu	1127
gag Glu	agc Ser	tgt Cys	gag Glu 340	gat Asp	gag Glu	gac Asp	atc Ile	ctg Leu 345	gcc Ala	aga Arg	gag Glu	gaa Glu	agc Ser 350	aga Arg	gcc Ala	1175
ccc Pro	tca Ser	att Ile 355	Ala	gtg Val	cac His	agc Ser	atg Met 360	Ser	agt Ser	atg Met	agt Ser	caa Gln 365	gac Asp	act Thr	gaa Glu	1223
gtt Val	agg Arg 370	aaa Lys	cgg Arg	atg Met	gtg Val	ggt Gly 375	Gly	ggt	ctt Leu	caa Gln	agt Ser 380	Ala	cag Gln	gca Ala	tct Ser	1271
									•	7						
															•	

gtc ccc act gag gaa gag ctg tcc cca acc gag gag gaa caa aag gca Val Pro Thr Glu Glu Glu Leu Ser Pro Thr Glu Glu Glu Gln Lys Ala 385 390 395 400	1319
cac agg cca gtt cac tgg aag ccc ttc ctg gtc aac gtg tgc atg gcc His Arg Pro Val His Trp Lys Pro Phe Leu Val Asn Val Cys Met Ala 405 410 415	1367
acg gcc ctg gcg act ggc gcg tac ctc tgt tac cgg gta tgt ttt cac Thr Ala Leu Ala Thr Gly Ala Tyr Leu Cys Tyr Arg Val Cys Phe His 420 425 430	1415
tga cagactgctg tgaggcatga gcgtggtggg cgctgccact gcccaggtta	1468
ggatttggtc tgcggcgtct aacctggtgt agaagaaaca acagcttaca agcctgtggt	1528
ggaactggaa gggccagccc caggaggggc atctgtgcac tgggctttga aggagcccct	1588
ggtcccaaga acagagtcta atctcagggc cttaacctgt tcaggagaag tagaggaaat	1648
gccaaatact cttcttgctc tcacctcact cctccccttt ctctggttcg tttgtttttg	1708
gaaaaaaaa aaaaagaatt acaacacatt gttgttttta acatttataa aggcaggttt	1768
ttgttatttt tagagaaaac aaaagatget aggeaetggt gagattetet tgtgeeettt	1828
ggcatgtgat cagattcacg atttacgttt atttccgggg gagggtccca cctgtcagga	1888
ctgtaaagtt cetgetgget tggtcageee eeccaeeeee eeaceeegag ettgeaggtg	1948
ccctgctgtg aggagagcag cagcagaggc tgcccctgga cagaagccca gctctgcttc	2008
cctcaggtgt ccctgcgttt ccatcctcct tctttgtgac cgccatcttg cagatgaccc	2068
agtecteage accecacece tgeagatggg ttteteegag ggeetgeete agggteatea	2128
gaggttggct gccagcttag agctggggct tccatttgat tggaaagtca ttactattct	2188
atgtagaagc cactccactg aggtgtaaag caagactcat aaaggaggag ccttggtgtc	2248
atggaagtca ctccgcgcgc aggacctgta acaacctctg aaacactcag tcctgctgca	2308
gtgacgtcct tgaaggcatc agacagatga tttgcagact gccaagactt gtcctgagcc	2368
gtgattttta gagtctggac tcatgaaaca ccgccgagcg cttactgtgc agcctctgat	2428
getggttgge tgaggetgeg gggaggtgga caetgtgggt geatecagtg cagttgettt	2488
tgtgcagttg ggtccagcag cacagcccgc actccagcct cagctgcagg ccacagtggc	2548
catggaggcc gccagagcga gctggggtgg atgcttgttc acttggagca gccttcccag	2608
gacgtgcagc tcccttcctg ctttgtcctt ctgcttcctt ccctggagta gcaagcccac	2668
gagcaatcgt gaggggtgtg agggagetge agaggeatca gagtggeetg cageggegtg	2728
aggeceette eceteegaca ececeeteea gaggageege tecaetgita titatteaet	2788

ttgcccacag	acacccctga	gtgagcacac	cctgaaactg	accgtgtaag	gtgtcagcct	2848
gcacccagga	ccgtcaggtg	cagcaccggg	tcagtcctag	ggttgaggta	ggactgacac	2908
agccactgtg	tggctggtgc	tggggcaggg	gcaggagctg	agggtcttag	aagcaatctt	2968
caggaacaga	caacagtggt	gacatgtaaa	gtccctgtgg	ctactgatga	catgtgtagg	3028
atgaaggetg	gcctttctcc	catgactttc	tagatcccgt	teceegtetg	ctttccctgt	3088
gagttagaaa	acacacaggc	tcctgtcctg	gtggtgccgt	gtgcttgaca	tgggaaactt	3148
agatgcctgc	tcactggcgg	gcacctcggc	atcgccacca	ctcagagtga	gagcagtgct	3208
gtccagtgcc	gaggccgcct	gactcccggc	aggactcttc	aggetetgge	ctgccccagc	3268
acaccccgct	ggatctcaga	cattccacac	ccacacctca	ttccctggac	acttgggcaa	3328
gcaggcccgc	ccttccacct	ctggggtcag	cccctccatt	ccgagttcac	actgctctgg	3388
agcaggccag	gaccggaagc	aaggcagctg	gtgaggagca	ccctcctggg	aacagtgtag	3448
gtgacagtcc	tgagagtcag	cttgctagcg	ctgctggcac	cagtcacctt	gctcagaagt	3508
gtgtggctct	tgaggctgaa	gagactgatg	atggtgctca	tgactcttct	gtgaggggaa	3568
cttgaccttc	acattgggtg	gctttttttta	aaataagcga	aggcagctgg	aactccagtc	3628
tgcctcttgc	cagcacttca	cattttgcct	ttcacccaga	gaagccagca	cagagccact	3688
ggggaaggcg	atggccttgc	ctgcacaggc	tgaggagatg	gctcagccgg	cgtccaggct	3748
gtgtctggag	cagggggtgc	acagcagcct	cacaggtggg	ggcctcagag	caggcgctgc	3808
cctgtcccct	gccccgctgg	aggcagcaaa	gctgctgcat	gccttaagtc	aatacttact	3868
cagcagggcg	ctctcgttct	ctctctctct	ctctctctct	ctctctctct	ctctctctct	3928
ctctctaaat	ggccatagaa	taaaccattt	tacaaaaata	aaagccaaca	acaaagtgct	3988
ctggaatagc	acctttgcag	gagcgggggg	tgtctcaggg	tettetgtga	cctcaccgaa	4048
ctgtccgact	gcaccgtttc	caacttgtgt	ctcactaatg	ggtctgcatt	agttgcaaca	4108
ataaatgttt	ttaaagaac					4127

<210> 11 <211> 21 <212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 11 cgagggtgca aagttcatca t

<210> 12 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 12 ccaggtcttc atgggaaagc t	21
<pre> <210> 13 <211> 26 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> PCR Probe	
<400> 13 cgactcgtca gtgcaggatc agtgga	26
<210> 14 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 14 tgttctagag acagccgcat ctt	23
<210> 15 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 15 caccgacctt caccatcttg t	21
<210> 16 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Probe	
<400> 16 ttgtgcagtg ccagcctcgt ctca	24

<210><211><211><212><212><213>	20 .		
<220> <223>	Antisense Oligonucleotide		
<400> cttage	17 ccccg aggcccgccc		20
<210><211><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> ctcgg	18 cccac tgcgccgtct		20
<210><211><212><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> catga	19 cgggc cagggcggct		20
<210><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> cccgg	20 acttg tcgatctgct		20
<210><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> ctggc	21 Ettcat gtcggatatc		20

<210> 22 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 22 ttggccactc tacatgggaa	20
<210> 23 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	-
<400> 23 ggactgacgt ctctgtacct	20
<210> 24 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 24 gatgtagttt aatccgacta	20
<210> 25 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 25 ctagcgttga tatagtcatt	20
<210> 26 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 26 gggtaagaat gtaactcctt	20

<210> 27 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	ч
<400> 27 tgaccgcatg tgttaggcaa	20
<210> 28 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 28 ttttctgctc ccacaccatc	20
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 29 ctctgttgag catgacgaca	20
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 30 gcgcatttta acgaaccttt	20
<210> 31 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 31 aaatttgtgt cttcaaagat	- 20

<210> 32 <211> 20 <212> DNZ <213> Art		
<220> <223> An	tisense Oligonucleotide	
<400> 32 tgatatct	tc agagatcaat	20
<210> 33 <211> 20 <212> DN <213> Ar		
<220> <223> An	ntisense Oligonucleotide	
<400> 33 tctagctg	gtc gcactgtata	20
<210> 34 <211> 20 <212> DN <213> Ar)	
<220> <223> An	ntisense Oligonucleotide	
<400> 34 agtttctt	1 tgg gttgtaaggt	20
<210> 35 <211> 20 <212> DN <213> Ar	0	
<220> <223> An	ntisense Oligonucleotide	
<400> 35 gtggtata	5 agt ggaaatgtaa	20
<210> 36 <211> 20 <212> DN <213> Ar	0	
<220> <223> An	ntisense Oligonucleotide	
<400> 36	6 ggg actccaaagt	20

<210> 37 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 37 ttgaaaagaa agttcaagaa	20
<210> 38 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 38 gggctgagtg accetgaete	20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 39 gcagtgcacc acaacgggcc	20
<210> 40 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 40 aggttccaga cctgccgatg	20
<210> 41 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 41 agcaggaggc aggtatcagc	20

<210> 4 <211> 3 <212> 1 <213> 3	20			
<220> <223> 1	Antisense Oligonucleotide	٠.		
<400> 4	42 gggt ctttcctctt		:	20
<210> < <211> < <212> < <212> < <213> < <	20			
<220> <223>	Antisense Oligonucleotide			
<400> tctaac	43 agca ctttcttgat			20
<210><211><212><213>	20			
<220> <223>	Antisense Oligonucleotide			
<400> atcaac	44 ecca teegaaaett			20
<210><211><211><212><213>	20			
<220> <223>	Antisense Oligonucleotide			
<400> gagaag	45 gegea getggtegge			20
<210><211><212><213>	20 ·			
<220> <223>	Antisense Oligonucleotide			
<400>	46 cacct tegateacag			20

<210> 47 <211> 20 <212> DNA <213> Artificial Sequence		,
<220> <223> Antisense Oligonucleotide	•	
<400> 47 ageteettee actgateetg		20
<210> 48 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 48 tccaggattc gtttgggtgg		20
<210> 49 <211> 20 <212> DNA <213> Artificial Sequence		•
<220> <223> Antisense Oligonucleotide		
<400> 49 gaactccctg catttcccat		20
<210> 50 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 50 ttccttcacc cactggtgat		20
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence		
<220> · <223> Antisense Oligonucleotide		
<400> 51 gtagggtgcg gcatttaagg		20

<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> cagtgt	52 tettg acteatgett	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gcctg	53 ggcac ctcgaagact	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ctcgt	54 cette tegggeagtg	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gggct	55 tccag taactcagtg	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ccgta	56 gecae geacatgttg	20

<210> 57 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 57 tagcagaggt aagcgccggc	20
<210> 58 <211> 20 <212> DNA <213> Artificial Sequence ,	
<220> <223> Antisense Oligonucleotide	
<400> 58 ctatgtgttg ctgttgaaca	20
<210> 59 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 59 ggaggtggag tggaggaggg	20
<210> 60 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 60 ggctctgcgg gcagaggcgg	20
<210> 61 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 61 ccgcggcatg cctgctagtc	20

<210> 62 <211> 20 <212> DNA <213> Artificial Sequenc	e		
<220> <223> Antisense Oligonuc	leotide		
<400> 62 tetetaegeg gteeggegge			20
<210> 63 <211> 20 <212> DNA <213> Artificial Sequenc	e		ī
<220> <223> Antisense Oligonuc	leotide		
<400> 63 aagatgggtt ttagtgcaga			· 20
<210> 64 <211> 20 <212> DNA <213> Artificial Sequence	re		
<220> <223> Antisense Oligonuo	leotide		
<400> 64 gtactetett teaeteteet			20
<210> 65 <211> 20 <212> DNA <213> Artificial Sequence	ee		
<220> <223> Antisense Oligonuo	:leotide		
<400> 65 ggcccettcc ctctgcgccg		- 20	20
<210> 66 <211> 20 <212> DNA <213> Artificial Sequence	ce		
<220> <223> Antisense Oligonuo	:leotide		
<400> 66 ctccaggagg gagccctggg			20

<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gggctg	67 gttgg cgtgcgccgc	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tttaaa	68 ataaa tatggagtgg	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gttca	69 agaaa atgctagtgc	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ttgat	70 aaagc ccttgatgca	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> atggc	71 aaagc cttccattcc	20

<210> 72	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 72	2.0
gtcctccttc ccagtactgg	20
•	
<210> 73	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 73	•
ttacccacaa tatcactaaa	20
	•
<210> 74	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 74	20
attatatatt atagcattgt	20
<210> 75	
<211> 20	
<212> DNA	•
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 75	20
tcacatcatg tttcttatta	
<210> 76	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 76	20
ataacaggga ggagaataag	

<210> '<211> 2<212> I	20	
<220>	Antisense Oligonucleotide	
<400> ttacate	77 gcat tctaatacac	20
<210 > 1 <211 > 1 <212 > 1 <213 > 1	20	
<220> <223>	Antisense Oligonucleotide	
<400> gatcaa	78 agtt tctcatttca	20
<210> <211> <212> <213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ggtcat	79 gcac aggcaggttg	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> caacag	80 ggctt aggaaccaca	20
<210><211><211><212><213>	20 DNA Artificial Sequence	
<220> <223>	Antisense Oligonucleotide	
<400> aactgo	81 caccc tattgctgag	20

<210> 82 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisensė Oligonucleotide	
<400> 82 gtcatgccag gaattagcaa	20
<210> 83 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 83 acaggetggg ceteaceagg	20
<210> 84 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 84 tgagttacag caagaccctg	20
<210> 85 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 85 gaatatggct tcccataccc	20
<210> 86 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 86	20

<210> 87 <211> 20 <212> DNA <213> Artific	cial Sequence		
<220> <223> Antiser	nse Oligonucleotide		
<400> 87 gacttggaat gg	geggagget		20
<210> 88 <211> 20 <212> DNA <213> Artific	cial Sequence		
<220> <223> Antise	nse Oligonucleotide		
<400> 88 caaatcacgg to	ctgctcaag		20
<210> 89 <211> 20 <212> DNA <213> Artific	cial Sequence		
<220> <223> Antise	nse Oligonucleotide		
<400> 89 gaagtgtggt t	tccagcagg		20
<210> 90 <211> 20 <212> DNA <213> Artifi	cial Sequence		
<220> <223> Antise	nse Oligonucleotide		
<400> 90 cctaaaggac c	gtcacccag		20
<210> 91 <211> 20 <212> DNA <213> Artifi	cial Sequence		
<220> <223> Antise	nse Oligonucleotide		
<400> 91 gtgaaccggg a	cagagacgg		20

<210> 92 <211> 20 <212> DNA <213> Artificial Sequence	ce	
<220> <223> Antisense Oligonuo	cleotide	
<400> 92 gcccacagg gtttgagggt		20
<210> 93 <211> 20 <212> DNA <213> Artificial Sequence	ce	
<220> <223> Antisense Oligonuo	cleotide	-40
<400> 93 cctttgcagg aagagtcgtg		20
<210> 94 <211> 20 <212> DNA <213> Artificial Sequen	ce	
<220> <223> Antisense Oligonu	cleotide	
<400> 94 aaagccactt aatgtggagg		20
<210> 95 <211> 20 <212> DNA <213> Artificial Sequen	ce	
<220> <223> Antisense Oligonu	cleotide	
<400> 95 gtgaaaatgc tggcaagaga		20
<210> 96 <211> 20 <212> DNA <213> Artificial Sequen	ce	
<220> <223> Antisense Oligonu	cleotide	
<400> 96 tcagaatgct tacagcctgg	•	20

<210> 97 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 97 caacetecec ageageget	20
<210> 98 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 98 tegaggeeg tegeeegeea	20
<210> 99 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 99 ceteggeegt eegeegeget	<u>2</u> 0
<210> 100 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 100 tcgatctgct cgaattcctt	20
<210> 101 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 101 cctggtaaat agccgcccag	20

<210><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tgtcg	102 aatat cctggtaaat	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> actgg	103 cttca tgtcgaatat	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> aagto	· 104 eactgg cttcatgtcg	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gaagt	105 cactg gcttcatgtc	20
<210><211><211><212><213>	20	
<220>	Antisense Oligonucleotide	
<400> ggaag	> 106 gtcact ggcttcatgt	20

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Antisense Oligonucleotide	
1220-		
<400>	107	
	tcac tggcttcatg	20
<210>		
<211.>		
<212>		
<213>	Artificial Sequence	
.220-		
<220>	Antisense Oligonucleotide	
<443 <i>></i>	Aliciaciae origonaerostae	
<400>	108	
	agtca ctggcttcat	20
	.500 115,500	
<210>	109	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>	autimento Oligopualochida	
<223>	Antisense Oligonucleotide	
<400>	109	
	magtc actggcttca	20
~~555		
<210>	110	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>	and the second section	
<223>	Antisense Oligonucleotide	
400.	110	
<400>	gaagt cactggcttc	20
catggg	gaage caceggeeee	
<210>	111	
<211>		
<212>		
	Artificial Sequence	
<22,0>		
<223>	Antisense Oligonucleotide	
<400>		20
ccctt	gttct taggaagttt	

<210> 3 <211> 3 <212> 3 <213> 4	20	
<220> <223>	Antisense Oligonucleotide	
<400>	112 ttgt tcttaggaag	20
<210> (211>) (211>) (212>) (213>)	20	
<220> <223>	Antisense Oligonucleotide	
<400> tccgac	113 tgtg gtcaaaaggg	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ttaatc	114 egac tgtggtcaaa	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> atagtc	115 eatta tottootgat	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ttgata	116 stagt cattatcttc	20

<210> 117 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 117 getteeteea titttateaa	20
<210> 118 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 118 ggccctgggt gaggatatag	20
<210> 119 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 119 cacaccatct cccagaagtg	20
<210> 120 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 120 tgctcccaca ccatctccca	20
<210> 121 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 121 ctgctccac accatctccc	20

<210> 122 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 122 tetgetecca caccatetec	20
<210> 123 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 123 ttctgctccc acaccatctc	20
<210> 124 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 124 cccctgctct tctgctccca	20
<210> 125 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 125 atgcggttga gcatgaccac	20
<210> 126 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 126 tttaacgagc ctttctccat	20

<210> 127 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 127 ttttcttctt tctgtggcca	20
<210> 128 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 128 gaccatctct ttttcttctt	20
<210> 129 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 129 tcagagatca gtgtcagctt	20
<210> 130 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 130 cttgacatct tcagagatca	20
<210> 131 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 131 taatatgact tgacatette	20

<210> <211> <212> <213>	20	
<220> <223>	Antisense Oligonucleotide	
<400>	132 caact geogtaetgt	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tctct	133 cgagc ctcctgggta	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ccaaa	. 134 .gtcag gccaggtggt	20
<210><211><211><212><213>	20	
<220>	Antisense Oligonucleotide	
<400> gggac	> 135 ctccaa agtcaggcca	20
<210 > <211 > <212 > <212 > <213 > <	> 20	
<220 <223	Antisense Oligonucleotide	
<400: aggga	> 136 actcca aagtcaggcc	20

<210> 137 <211> 20 <212> DNA <213> Arti	ificial Sequence	
<220> <223> Anti	isense Oligonucleotide	
<400> 137 cagggactco	c aaagtcaggc 2	0
<210> 138 <211> 20 <212> DNA <213> Art:	ificial Sequence	
<220> <223> Ant:	isense Oligonucleotide	
<400> 138 tcagggacte	c caaagtcagg 2	0
<210> 139 <211> 20 <212> DNA <213> Art		
<220> <223> Ant	isense Oligonucleotide .	
<400> 139 ggtgactca	g ggactccaaa 2	20
<210 > 140 <211 > 20 <212 > DNA <213 > Art		
<220> <223> Ant	cisense Oligonucleotide	
<400> 140 cctgactct	oc ggactttgaa	20
<210 > 141 <211 > 20 <212 > DNA <213 > Art		
<220> <223> Ant	tisense Oligonucleotide	
<400> 141 gctgagtga	l ag cetgaetete	20

	20		
<220> <223>	Antisense Oligonucleotide		
<400> ccgtgo	142 ctctg ggctgagtga		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> aaggt	143 ccctg acctgccaat		20
<210><211><212><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> tcttt	· 144 cctct tgtccatcag		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> gtctt	> 145 Etcctc ttgtccatca		20
<210><211><211><212><213>	> 20	1	
<220>	> > Antisense Oligonucleotide	•	
<400> ggtct	> 146 tttcct cttgtccatc		20

<210> 147 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 147 gggtctttcc tcttgtccat		20
<210> 148 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 148 aacagcactt tcttgatgtc		20
<210> 149 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 149 ggaacctgcg catctccaac	,	20
<210> 150 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 150 tggtcggccg tctggatgag		20
<210> 151 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 151 gagaagcgca gttggtcggc		20

<210> 152

<211> 20 <211> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 152 aggtaggaga agcgcagttg	20
<210> 153 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 153 gccaggtagg agaagcgcag	20
<210> 154 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 154 agccaggtag gagaagcgca	20
<210> 155 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 155 cagccaggta ggagaagcgc	20
<210> 156 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 156 acagccaggt aggagaagcg	20

<210> 157 <211> 20 <212> DNA <213> Artificial Sequence	¥.
<220> <223> Antisense Oligonucleotide	
<400> 157 cacagccagg taggagaagc	20
<210> 158 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 158 tcacagccag gtaggagaag	20
<210> 159 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 159 atcacagcca ggtaggagaa	20
<210 > 160 <211 > 20 <212 > DNA <213 > Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 160 gatcacagoo aggtaggaga	20
<210> 161 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 161 cgatcacagc caggtaggag	20

<210> 162 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 162 tegateacag ceaggtagga	20
<210> 163 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 163 caccctcgat cacagccagg	20
<210> 164 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 164 tccttccact gatcctgcac	20
<210> 165 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 165 ctccttccac tgatcctgca	20
<210> 166 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 166 gctccttcca ctgatcctgc	20

<210> 167 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 167 agctccttcc actgatcctg	20
<210> 168 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 168 aagctccttc cactgatcct	20
<210> 169 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 169 aaageteett ecactgatec	20
<210> 170 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 170. gaaagctcct tccactgatc	20
<210> 171 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 171 ggaaagctcc ttccactgat	20

<210><211><212><212><213>	20 .	
<220> <223>	Antisense Oligonucleotide	
<400> gggaaa	172 agctc cttccactga	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tggga	173 aagct ccttccactg	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tggcc	174 gggga ggtggggga	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tgggt	ggccg gggaggtggg	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tgcgt	· 176 Ettggg tggccggga	20

<210> 177 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 177 tgcacttgcc attgtgaggc	20
<210> 178 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 178 acttcagtgt cttgactcat	20
<210> 179 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 179 aacttcagtg tcttgactca	20
<210> 180 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 180 taacttcagt gtcttgactc	20
<210> 181 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 181 ctaacttcag tgtcttgact	20

<210> 3	20 .	
<212> 1 <213> 2	DNA Artificial Sequence	
<220> <223> i	Antisense Oligonucleotide	
<400> 3	182 tgcc tgagcacttt	20
<210> (211> (211> (212> (212> (213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gaccag	183 gaag ggcttccagt	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tgacca	184 aggaa gggcttccag	20
<210><211><211><212><213>	20 .	
<220> <223>	Antisense Oligonucleotide	
<400> ttgacc	185 cagga agggetteca	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gttgac	186 ccagg aagggcttcc	20

<210> 187 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 187 gcacacgttg accaggaagg	20
<210> 188 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 188 gaggtacgcg ccagtcgcca	20
<210> 189 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 189 tacccggtaa cagaggtacg	20
<210> 190 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 190 agtgaaaaca tacccggtaa	20
<210> 191 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 191 caaatcctaa cctgggcagt	20

<210> 192 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 192 ttccagttcc accacaggct	20
<210> 193 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 193 ccagtgcaca gatgcccctc	20
<210> 194 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 194 acaggttaag gccctgagat	20
<210> 195 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 195 . gcctagcatc ttttgttttc	20
<210> 196 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 196 aagccaqcaq gaactttaca	20

<210><211><212>	20 DNA	
<213>	Artificial Sequence	
<220> <223>	Antisense Oligonucleotide	
<400> gggaca	197 acctg agggaagcag	. 20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ggtca	198 tctgc aagatggcgg	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gccaa	199 .cctet gatgaccctg	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tggaa	200 geece agetetaage	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tagta	201 Latgac tttccaatca	20

<210> 202 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 202 tgagtcttgc tttacacctc	20
<210> 203 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 203 cetgegegeg gagtgaette	20
<210> 204 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 204 aggacgtcac tgcagcagga	20
<210> 205 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 205 tcaggacaag tcttggcagt	20
<210> 206 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 206 gaggetgeae agtaageget	20

<210> 207 <211> 20		
<212> DNA	ificial Sequence	
<220> <223> Ant:	isense Oligonucleotide	
<400> 207 tcagccaac	e agcatcagag 2	0
<210> 208 <211> 20 <212> DNA <213> Art	ificial Sequence	
<220> <223> Ant:	isense Oligonucleotide	
<400> 208 acccacagt	g tocacctocc 2	0
<210> 209 <211> 20 <212> DNA <213> Art	ificial Sequence	
<220> <223> Ant	isense Oligonucleotide	
<400> 209 agtgcgggc	t gtgctgctgg	0
<210 > 210 <211 > 20 <212 > DNA <213 > Art	ificial Sequence	
<220> <223> Ant	isense Oligonucleotide	
<400> 210 cagctcgct	c tggcggcctc 2	0
<210> 211 <211> 20 <212> DNA <213> Art	ificial Sequence	
<220> <223> Ant	isense Oligonucleotide	
<400> 211	g ctgcacgtcc 2	20

<210> 212 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 212 ccctcacgat tgctcgtggg	20
<210> 213 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 213 cagtggagcg gctcctctgg	20
<210> 214 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 214 caggetgaca cettacaegg	20
<210> 215 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 215 gtcctacctc aaccctagga	20
<210> 216 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 216 ctgccccagc accagccaca	20

<210> 217 <211> 20 <212> DNA <213> Artificial Sequence	•	
<220> <223> Antisense Oligonucleotide		
<400> 217 attgcttcta agaccctcag		20
<210> 218 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 218 ttacatgtca ccactgttgt		20
<210> 219 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 219 tacacatgtc atcagtagcc		20
<210> 220 <211> 20 <212> DNA <213> Artificial Sequence		
<220> ' <223> Antisense Oligonucleotide		
<400> 220 ttttctaact cacagggaaa		20
<210> 221 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 221 gtgcccgcca gtgagcaggc		20

<210> 222 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 222 cggcctcggc actggacagc	20
<210> 223 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400>.223 gtggaatgtc tgagatccag	20
<210> 224 <211> 20 <212> DNA <213> Artificial Sequence	`
<220> <223> Antisense Oligonucleotide	
<400> 224 agggcgggcc tgcttgccca	20
<210> 225 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 225 cggtcctggc ctgctccaga	20
<210> 226 <211> 20 <212> DNA <213> Artificial Sequence	- 4
<220> <223> Antisense Oligonucleotide	
<400> 226 tacactgttc ccaggagggt	20

<210> 227 <211> 20 <212> DNA <213> Artificial Se	quence	
<220> <223> Antisense Oli	gonucleotide	
<400> 227 tggtgccagc agcgctag	rca	20
<210> 228 <211> 20 <212> DNA <213> Artificial Se	quence	
<220> <223> Antisense Oli	gonucleotide	
<400> 228 cagtctcttc agcctcaa	ga	20
<210> 229 <211> 20 <212> DNA <213> Artificial Se	equence	
<220> <223> Antisense Oli	gonucleotide	
<400> 229 aagagtcatg agcaccat	cca	20
<210> 230 <211> 20 <212> DNA <213> Artificial Se	equence	
<220> <223> Antisense Oli	gonucleotide.	
<400> 230 tgaaggtcaa gttcccct	ca	20
<210> 231 <211> 20 <212> DNA <213> Artificial Se	equence	
<220> <223> Antisense Oli	gonucleotide	
<400> 231 ctggcaagag gcagactg	gga	20

<210> 232 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 232 ggctctgtgc tggcttctct	20
<210> 233 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 233 gccatctcct cagcctgtgc	20
<210> 234 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 234 agegeetget etgaggeece	20
<210> 235 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 235 tgctgagtaa gtattgactt	20
<210> 236 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 236 ctatggccat ttagagagag	20

z)

```
<210> 237
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 237
                                                                       20
tggtttattc tatggccatt
<210> 238
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 238
                                                                       20
cgctcctgca aaggtgctat
<210> 239
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 239
                                                                       20
gttggaaacg gtgcagtcgg
<210> 240
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 240
                                                                       20
atttattgtt gcaactaatg
<210> 241
<211> 2346
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (710)...(2008)
<400> 241
gaattoggga toottttgca cattootagt tagcagtgca tactoatcag actggagatg 60
```

tttaatgaca tcagggaacc aaacggacaa cccatagtac ccgaagacag ggtgaaccag 120 acaatcgtaa gcttgatggt gttttccctg actgggtagt tgaagcatct catgaatgtc 180 agccaaatte egtacagtte ggtgeggate egaacgaaac accteetgta ccaggtteec 240 gtgtcgctct caatttcaat cagctcatct atttgtttgg gagtcttgat tttatttacc 300 gtgaagacct tctctggctg gccccgggct ctcatgttgg tgtcatgaat taacttcaga 360 atéatccagg cttcatcatg ttttcccacc tccagcaaga accgaggget ttctggcatg 420 aaggtgagag ccaccacaga ggagacgcat gggagcgcac agacgatgac gaagacgcgc 480 cacgtgtgga actggtaggc tgaacccatg ctgaagctcc acccgtagtg gggaatgatg 540 gcccaggcat ggcggaggct agatgccgcc aatcatccag aacatgcaga agccgctgct 600 ggggagcttg gggctgcggt ggtggcgggt gacgggcttc gggacgcgga gcgacgcggc 660 ctagegegge ggaeggeegt gggaactegg geageegaee egteeegee atg gag atg 718 Met Glu Met

1

gag aag gag ttc gag gag atc gac aag gct ggg aac tgg gcg gct att Glu Lys Glu Phe Glu Glu Ile Asp Lys Ala Gly Asn Trp Ala Ala Ile 5

tac cag gac att cga cat gaa gcc agc gac ttc cca tgc aaa gtc gcg 814 Tyr Gln Asp Ile Arg His Glu Ala Ser Asp Phe Pro Cys Lys Val Ala 35 30 20 25

aag ctt cct aag aac aaa aac cgg aac agg tac cga gat gtc agc cct 862 Lys Leu Pro Lys Asn Lys Asn Arg Asn Arg Tyr Arg Asp Val Ser Pro 45 40

ttt gac cac agt cgg att aaa ttg cac cag gaa gat aat gac tat atc Phe Asp His Ser Arg Ile Lys Leu His Gln Glu Asp Asn Asp Tyr Ile 60

958 aat gcc agc ttg ata aaa atg gaa gaa gcc cag agg agc tat att ctc. Asn Ala Ser Leu Ile Lys Met Glu Glu Ala Gln Arg Ser Tyr Ile Leu 70

1006 acc cag ggc cct tta cca aac aca tgt ggg cac ttc tgg gag atg gtg

m1	~7	~7	D	~	D	70	m1	G	~7	TT-i C	Dho	Trans	G] 11	Mot	T=17	
Thr		GTA	Pro	ьеu	PLO		Thr	Cys	GIĀ	nis		TTD	GIU	Met	Val	
	85					90					95					
														•		
														atg		1054
${\tt Trp}$	Glu	Gln	Lys	Ser	Arg	Gly	Val	Val	Met	Leu	Asn	Arg	Ile	Met	Glu	
100					105					110					115	
aaa	ggc	tcg	tta	aaa	tgt	gcc	cag	tat	tgg	cca	cag	caa	gaa	gaa	aag	1102
Lys	Gly	Ser	Leu	Lys	Cys	Ala	Gln	Tyr	Trp	Pro	Gln	Gln	Glu	Glu	Lys	
				120					125					130		
aaa	atq	atc	ttt	gat	qac	aca	ggt	ttg	aag	ttg	aca	cta	atc	tct	gaa	1150
														Ser		
01. u		,	135					140	_				145			
			100													
				+ o +	+	202	at a	aaa	a a a	tta	aaa	tta	gaa	aac	cta	1198
-	-	_														2
Asp	vaı		ser	туr	Tyr	THE		Arg	GTII	пеп	Gru		GIU	Asn	سات	
		150					155					160				
																7046
														aca		1246
Thr	Thr	Lys	Glu	Thr	Arg	Glu	Ile	Leu	His	Phe	His	Tyr	Thr	Thr	Trp	
	165					170					175					
cct	gac	ttt	gga	gtc	CCC	gag	tca	ccg	gct	tct	ttc	ctc	aat	ttc	ctt	1294
Pro	Asp	Phe	Gly	Val	Pro	Glu	Ser	Pro	Ala	Ser	Phe	Leu	Asn	Phe	Leu	
180					185					190					195	
ttc	aaa	gtc	cga	gag	tca	ggc	tca	ctc	agc	ctg	gag	cat	ggc	CCC	att	1342
														Pro		
	•		-	200					205					210		
ata	ata	cac	tac	agc	acc	aac	atc	aaa	agg	tca	aaa	acc	ttc	tgt	ctg	1390
														Cys		
var	AGT	TITE		Der	AT.C.	Y		220	9		1		225	- 4		
			215					220								
							- *						~~-	+ ~+	taa	1438
_														tct		7420
Ala	Asp	Thr	Cys	Leu	Leu	Leu	Met	Asp	Lys	Arg	ГЛЗ		Pro	Ser	ser	
		230					235					240				

			gta Val						GJÀ ∂ 333	1486
			gac Asp 265							1534
_			atc Ile							1582
			gag Glu							1630
			ccc Pro							1678
_	_		tcc Ser							1726
			ctg Leu 345							1774
-			agc Ser			Asp				1822
			ggt Gly						acc Thr	1870
								His	cca Pro	1918

agt cac tgg aag ecc ttc ctg gtc aat gtg tgc atg gcc acg ctc ctg 1966
Ser His Trp Lys Pro Phe Leu Val Asn Val Cys Met Ala Thr Leu Leu
405 410 415

gcc acc ggc gcg tac ttg tgc tac cgg gtg tgt ttt cac tga 2008
Ala Thr Gly Ala Tyr Leu Cys Tyr Arg Val Cys Phe His *
420 430

<210> 242

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<221> unsure

<222> (1)..(20)

<223> Antisense Oligonucleotide

<400> 242

nnnnnnnn nnnnnnnn

20