Group homomorphisms

1. Group homomorphisms

Definition

Isomorphisms
Kernels and images

Definition

Definition 1

A function $\varphi: (G, \star) \to (H, \bullet)$ between groups is called a **group** homomorphism means for every $g_1, g_2 \in G$,

$$\varphi(g_1 \star g_2) = \varphi(g_1) \bullet \varphi(g_2).$$

In other words, a group homomorphism keeps the group operation consistent between the source and the target.

Exercise 1 (cf. Problem 62)

Which of the following are group homomorphisms? (What are the implied operations?)

- (a) $\phi_1: \mathbb{R} \to \mathbb{R}$ via $\phi_1: a \mapsto a^2$
- (b) $\phi_2:\mathbb{Q}\to\mathbb{Q}$ via $\phi_2:a\mapsto a+10$
- (c) $\phi_3: \mathbb{Z} \to \mathbb{Z}$ via $\phi_3: a \mapsto 6a$.
- (d) $\delta: \mathsf{GL}(2,\mathbb{R}) \to \mathbb{R}^{\times}$ via

$$\delta: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto ad - bc.$$

Isomorphisms

Recall, from Section ??, what it means for a function to be one-to-one (injective) or onto (surjective).

When a function is both injective and surjective, it is called **bijective**. We say there is a **one-to-one correspondence** between the source and the target.

Definition 2

A bijective homomorphism is called an **isomorphism**. The source and target are said to be **isomorphic**.

Exhibiting a group isomorphism demonstrates that the source and target are really the "same" group, with different names.

Example 1

Define the exponential function

$$E: (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot)$$
$$a \mapsto e^a,$$

where \mathbb{R}^+ denotes the set of positive real numbers and $e\approx 2.71928$ is the Euler number.

Claim. *E* gives a bijection between $(\mathbb{R}, +)$ and (\mathbb{R}^+, \cdot) . In other words, $(\mathbb{R}, +)$ and (\mathbb{R}^+, \cdot) are isomorphic as groups, and we write:

$$(\mathbb{R},+)\cong (\mathbb{R}^+,\cdot)$$

Proof: When exhibiting an isomorphism, make sure to verify it is well-defined – i.e., is $E : \mathbb{R} \to \mathbb{R}^+$ truly a group homomorphism?

Recall, from Precalculus courses, the exponential function is always
positive and passes the "vertical line test" (see the figure below). So
E is a function.

Exponential function drawn using https://www.desmos.com/calculator.

• Suppose $a, b \in \mathbb{R}$. Then $e^{a+b} = e^a \cdot e^b$ implies $E(a+b) = E(a) \cdot E(b)$, the requirement for E to be a group homomorphism.

Now we check E is one-to-one. Suppose there exist $a,b\in\mathbb{R}$ such that E(a)=E(b). Then

$$e^{a} = e^{b}$$

$$\implies \ln(e^{a}) = \ln(e^{b})$$

$$\implies a = b,$$

as required.

Finally, we must check E is onto; if $x \in \mathbb{R}^+$ then we must show there exists $a \in \mathbb{R}$ such that E(a) = x. One common technique is to define an **inverse** function for E. Define

$$L: \mathbb{R}^+ \to \mathbb{R}$$
$$x \mapsto \ln x.$$

If we put $a = \ln x$ for fixed $x \in \mathbb{R}^+$ then

$$E(a) = E(\ln x) = e^{\ln x} = x$$

and we are done – provided \boldsymbol{L} is well-defined.

Again, from Precalculus, we know the natural logarithm function is well-defined (see figure below); log algebra then shows for $x,y\in\mathbb{R}^+$, $\ln{(xy)}=\ln{x}+\ln{y}$, meaning L(xy)=L(x)+L(y) and hence L is a group homormorphism.

Natural logarithm function drawn using https://www.desmos.com/calculator.

Proposition 1

Let $\varphi: G \to H$ denote a group homomorphism where the identities of G and H, respectively, are 1_G and 1_H . Then $\varphi(1_G) = 1_H$.

Exercise 2

Verify Proposition 1 for Example 1.

Proposition 2

Let p and q be relatively prime numbers. Then

$$\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/pq\mathbb{Z}.$$

Exercise 3

Prove Proposition 2.

Exercise 4 (cf. Problem 64)

Prove $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \ncong \mathbb{Z}/8\mathbb{Z}$.

Kernels and images

One can show (see Exercise 5) that the image of a group homomorphism is a subgroup of the target. The source also has an important related subgroup.

Definition 3

Let $\varphi: G \to H$ denote a group homomorphism where 1_G and 1_H are the respective identity elements in G and H.

(a) The **kernel** of φ , denoted ker (φ) , is the set of all elements in G mapped to the identity in H:

$$\ker(\varphi) := \{ g \in G \mid \varphi(g) = 1_H \}$$

(b) The **image** of φ is the set of all elements in H of the form $\varphi(g)$ for some $g \in G$:

image
$$(\varphi) := \{ h \in H \mid h = \varphi(g) \text{ for some } g \in G \}.$$

Exercise 5 (cf. Problem 65)

Let $\varphi: {\it G} \to {\it H}$ denote a group homomorphism. Prove $\ker \varphi < {\it G}$ and image $\varphi < {\it H}.$

Example 2

This example motivates the content of Section ??. Define

$$\varphi: \mathbb{Z} \to \mathbb{Z}_n$$
$$m \mapsto m \pmod{n}$$

where $m \pmod{n}$ is the remainder of m upon division by n.

Question

Why is φ a well-defined function?

Claim. φ is a (group) homomorphism.

Proof: Suppose $m_1, m_2 \in \mathbb{Z}$. By the Division Algorithm, there exist unique integers q and r, with $0 \le r < n$, such that

$$(m_1 + m_2) = nq + r$$

$$\implies r = (m_1 + m_2) - nq$$

$$\equiv (m_1 + m_2) \pmod{n}$$

$$= \varphi(m_1 + m_2).$$

Apply the Division Algorithm to m_1, m_2 as well, so that there exist unique integers q_1, q_2 and r_1, r_2 , with $0 \le r_1, r_2 < n$, such that

$$m_1 = nq_1 + r_1$$
 $m_2 = nq_2 + r_2$ $\implies r_1 = m_1 - nq_1$ $\implies r_2 = m_2 - nq_2$ $\equiv m_1 \pmod{n}$ $\equiv m_2 \pmod{n}$ $= \varphi(m_1).$ $= \varphi(m_2).$

Now apply the Division Algorithm to get unique integers p, s, with $0 \le s < n$ such that

$$np + s = (\varphi(m_1) + \varphi(m_2)) \equiv s \pmod{n}$$

= $(m_1 - nq_1) + (m_2 - nq_2)$
= $(m_1 + m_2) - n(q_1 + q_2)$

by associativity. Rearranging,

$$m_1 + m_2 = s + n(p + q_1 + q_2).$$

The uniqueness condition of the Division Algorithm says that s=r, because $0 \le s < n$. Therefore

$$\varphi(m_1+m_2)=r=s\equiv s\ (\mathrm{mod}\ n)=\varphi(m_1)+\varphi(m_2).$$

Claim. φ is not injective.

Proof: We exhibit two distinct elements in \mathbb{Z} with the same image. Take $n-1 \in \mathbb{Z}$ and $(n-1)+n \in \mathbb{Z}$. Note, from Definition **??**, $n \neq 0$, so $n-1 \neq (n-1)+n$. Since n-1 < n, we have

$$\varphi(n-1) = n-1 \pmod{n} = n-1.$$

By the uniqueness condition in the Division Algorithm, we have

$$\varphi((n-1)-n) = (n-1) + n(-1)$$

$$= (n-1) \pmod{n}$$

$$= n-1.$$

Claim. φ is surjective.

Proof: $\mathbb{Z}/n\mathbb{Z}$ consists of non-negative integers strictly less than n, which are also in \mathbb{Z} . If $m \in \mathbb{Z}/n\mathbb{Z}$, then

$$m = m \pmod{n} = \varphi(m).$$

Question

What are ker (φ) and image (φ) ?