SRGGE Project

Base code

- Loads PLY models (http://paulbourke.net/dataformats/ply/)
- Render + Camera (Navigation)

Models

 Armadillo (345K), Happy (1M), Bunny (1.3MB), Dragon (7M), Lucy (28M), ...

6 Lab sessions. Each can have:

- Basic functionality
- Advanced functionality
- Max grade requires: all basic + 3 advanced

Basic

- Compute framerate & display
- Draw multiple copies of the same object
 - Numerical keys:
 - '1' → 1 copy
 - '2' → 2x2 copies
 - '3' \rightarrow 3x3 copies
 - •

Basic

- Basic museum
 - Tile-based
 - >= 3 rooms

Advanced **F**

Complex floorplan (>= 10 rooms)

Basic

- Compute simplified versions of the loaded model
 - Vertex clustering on a regular grid
 - Representative vertex per cluster: mean
 - 4 LODs (choose sizes)

Advanced

Use an octree to generate all simplified models simultaneously

Basic

- Compute vertex representative using QEM
 - Quadric error metrics
 - Eigen matrix library (http://eigen.tuxfamily.org/) or others

Advanced

- Preservation of thin features
 - Normal clustering (Willmott 2011)

Basic

- Time-critical rendering
 - Compute TPS (triangles/second)
 - MaxCost = TPS / FPS
 - Benefit = 1 d / (2^L·D)
 - L ≡ Clustering level
 - D ≡ Distance between object and viewpoint
 - d ≡ Diagonal of the object's bounding box
 - Max. TotalBenefit, while ensuring that TotalCost < MaxCost

Advanced

Hysteresis transition

Basic

- Precompute cell-to-cell visibility
 - Random visibility sampling
 - Separate non-OpenGL app
 - Store in a file, use during museum visualization

Advanced

- Preprocess but can be optimized via:
 - Octree ray traversal
 - Supercover Bresenham