Project 1 - Milestone3

Title - Tesla Supercharging Stations Prediction

Author: Venkat Jagadeesh Jampani

Date: 04/01/2024

Data Exploration

```
In [1]:
         # Import required libraries for the project
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         import plotly.express as px
         import plotly.graph_objects as go
         from plotly.subplots import make_subplots
         import kaleido
         from sklearn.preprocessing import LabelEncoder
         from imblearn.over_sampling import SMOTE
         from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy_score
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import confusion_matrix as cm
         from sklearn.metrics import classification_report as cr
         from sklearn.datasets import make_classification
         from sklearn.metrics import plot_confusion_matrix
         from sklearn.svm import SVC
         from yellowbrick.classifier import ROCAUC
         from yellowbrick.classifier import ClassificationReport
         from sklearn.model_selection import cross_val_score
         from sklearn.model_selection import KFold
         from sklearn.metrics import confusion_matrix , accuracy_score ,classification_report
         from sklearn.inspection import permutation_importance
         import warnings
         warnings.filterwarnings('ignore')
         pd.options.display.max_columns = None
         import plotly.io as pio
         pio.renderers.default='notebook+pdf'
         from IPython.display import Image
```

```
## Read the input data and create dataframe
## Data is from 1.'Supercharge_Locations.csv' and create a data frame : tesla_sc_loc_df
```

tesla_sc_loc_df = pd.read_csv('Supercharge_Locations.csv', encoding = 'unicode_escape')

In [4]:

Check sample records from the created dataframe : tesla_sc_loc_df -- head()
tesla_sc_loc_df.head()

_			-	-	-		
٦.	1 1	+		7	- 1		
J	и	L		4	- 1	۰	

•		Supercharger	Street Address	City	State	Zip	Country	Stalls	kW	GPS
	0	Tokushima, Japan	?????????????? 186-1	Tokushima	???	NaN	Japan	8	120.0	34.200679, 134.624291
	1	Fujisawa City, Japan	??????????1?? 3-1	???	????	NaN	Japan	2	250.0	35.3376820682, 139.4454811676
	2	Lu?mierz, Poland	Lanowa 4	Lucmierz	?ód?	95- 100	Poland	8	250.0	51.887, 19.384297
	3	Norrköping, Sweden	Koppargatan 30	Norrköping	Östergötland	60223	Sweden	20	150.0	58.622192, 16.154991
	4	Linköping, Sweden	Norra Svedengatan	Linköping	Östergötland	582 73	Sweden	12	250.0	58.435448, 15.590902

In [5]:

Check sample records from the created dataframe : tesla_sc_loc_df -- tail()
tesla_sc_loc_df.tail()

Out[5]:

Osaka 2-40 Suehirocho - Suehiro-cho, Osaka NaN 530- Japan 4 120.0 Panasonic, Kita-ku	34.700941,	
Japan	135.51077	9
5872 Berlin (SC), Alexander- Germany Meißner Berlin NaN 12526 Germany 2 120.0	52.394056, 13.542307	44
Hamburg - Essener Valvo Park, Straße (SC), Germany Hamburg NaN 22419 Germany 2 120.0	53.668642, 9.995189	24
München- Feldkirchen Hohenlindner service center, Straße 48a Germany München- Feldkirchen NaN 85622 Germany 2 120.0	48.145652, 11.741631	527
5875 Nürburgring, Dorint Am Nürburgring, Nürburg NaN 53520 Germany 2 135.0 Hocheifel	50.3352, 6.949047	619

In [6]:

verify shape/size of the dataframe: tesla_sc_loc_df
tesla_sc_loc_df.shape

```
Out[6]: (5876, 11)
```

```
In [7]: ## check info of the dataframe: tesla_sc_loc_df
    tesla_sc_loc_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5876 entries, 0 to 5875
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	Supercharger	5876 non-null	object
1	Street Address	5876 non-null	object
2	City	5876 non-null	object
3	State	5754 non-null	object
4	Zip	3947 non-null	object
5	Country	5876 non-null	object
6	Stalls	5876 non-null	int64
7	kW	5870 non-null	float64
8	GPS	5876 non-null	object
9	Elev(m)	5876 non-null	int64
10	Open Date	5126 non-null	object
dtyp	es: float64(1),	int64(2), object	(8)

atypes: float64(1), int64(2), objec

memory usage: 505.1+ KB

Exploratory Data Analysis

```
## Remove the unwanted columns:"Supercharger", "Street Address", "GPS", "Open Date"

tesla_sc_loc_df.drop(columns=["Supercharger", "Street Address", "GPS", "Open Date"], inplace
tesla_sc_loc_df.shape
```

Out[8]: (5876, 7)

Filter out or restrict the dataset to USA i.e remove all the data other than USA
tesla_sc_loc_usa = tesla_sc_loc_df.loc[tesla_sc_loc_df['Country']=='USA']
tesla_sc_loc_usa.head()

```
Out[9]:
                    City State
                                  Zip Country Stalls
                                                       kW
                                                            Elev(m)
                               99669
                                          USA
                                                   4 250.0
         46
                Soldotna
                           ΑK
                                                                 61
         47
                           AK 99567
                                          USA
                                                   8 250.0
                                                                 96
                 Chugiak
         48
                 Auburn
                           AL 36832
                                          USA
                                                  12 250.0
                                                                186
         49
                 Auburn
                           AL 36830
                                          USA
                                                   6 150.0
                                                                222
         50
             Birmingham
                           AL 35203
                                          USA
                                                   8 150.0
                                                                182
```

```
In [10]: ## Print list of null values in each column from the data frame
    tesla_sc_loc_usa.isnull().sum()
```

```
Out[10]: City 0 State 0 Zip 1
```

```
Country
           0
Stalls
           0
           1
Elev(m)
           0
dtype: int64
```

```
In [11]:
```

```
## Analyze all the categorical variables in the dataframe
ctgl_cols=tesla_sc_loc_usa.select_dtypes(include=object).columns.tolist()
ctgl_df=pd.DataFrame(tesla_sc_loc_usa[ctgl_cols].melt(var_name='column', value_name='va
                                                                                                                                .value_counts()).rename(columns={0: 'count'}).sort_values(by=['columns={0: 'count'}).sort_values(by=['columns={0: 'count'}]).sort_values(by=['columns={0: 'count'
display(tesla_sc_loc_usa.select_dtypes(include=object).describe())
display(ctgl_df)
```

	City	State	Zip	Country
count	2264	2264	2263	2264
unique	1515	52	1959	1
top	San Diego	CA	94403	USA
freq	22	496	5	2264

count

column	value	
City	Abbott	1
	Las Cruces	1
	Lamar	1
	Lamont	1
	Lana'i City	1
•••		
Zip	94538	4
	92311	4
	92130	4
	95035	5
	94403	5

3527 rows × 1 columns

```
In [13]:
          ## Check counts grouping by State from USA df
          st_count = tesla_sc_loc_usa.value_counts(['State']).reset_index(name='count')
          st_count.sort_values(by=['State'], inplace=True, ascending=False)
          display(st_count)
```

	State	count
38	WY	11
36	WV	14
21	WI	33
10	WA	56
46	VT	6
4	VA	76
26	UT	24
2	TX	163
24	TN	28
39	SD	10
23	SC	28
42	RI	7
50	PR	3
6	PA	68
15	OR	42
43	OK	7
13	ОН	47
3	NY	92
14	NV	45
29	NM	20
5	NJ	74
34	NH	15
40	NE	9
45	ND	6
7	NC	68
30	MT	20
41	MS	9
25	МО	27
22	MN	31
20	MI	33
31	ME	20
8	MD	64
11	MA	54
28	LA	21

	State	count
37	KY	12
35	KS	15
18	IN	39
9	IL	57
44	ID	7
33	IA	17
48	НІ	5
12	GA	49
1	FL	170
27	DE	21
49	DC	4
19	СТ	33
16	CO	42
0	CA	496
17	AZ	40
47	AR	6
32	AL	18
51	AK	2

Data Visualization

```
In [15]: ## Plot histograms of the data from df
## Plot the features of interest
    features = ['Zip','Stalls','Elev(m)']
    xaxes = features
    yaxes = ['Counts', 'Counts']

plt.rcParams['figure.figsize'] = (20, 10)
    fig, axes = plt.subplots(nrows = 1, ncols = 3)

axes = axes.ravel()
    for idx, ax in enumerate(axes):
        ax.hist(tesla_sc_loc_usa[features[idx]].dropna(), bins=40, color='#765038')
        ax.set_xlabel(xaxes[idx], fontsize=20)
        ax.set_ylabel(yaxes[idx], fontsize=20)
        ax.tick_params(axis='both', labelsize=15)
    plt.show()
```



```
In [17]:
    features = ['State','City']
    fig = plt.figure()

    for i, col in enumerate(features):
        fig.add_subplot(1,2, i + 1)
        fig.set_figheight(10)
        fig.set_figwidth(20)
        title = col.upper()
        p = sns.countplot(tesla_sc_loc_usa[col])
        p.set_title(title, fontsize = 21)
        p.set_ylabel('Counts', fontsize = 18)
        p.set_xlabel(col, fontsize = 20)
        plot = plt.xticks(rotation = 30)
        fig.tight_layout()
```



```
In [18]: # Bar chart
fig=make_subplots(rows=1, cols=2,
```

```
subplot_titles=("", "Supercharge Loc by State"),
                  specs=[[{"type": "bar"}, {"type": "pie"}]])
# Bar chart
plot_df=tesla_sc_loc_usa['State'].value_counts(normalize=True)
plot_df=plot_df.mul(100).rename('Percent').reset_index().sort_values('Percent')
plot_df.rename(columns={'index':'State'}, inplace=True)
x=plot_df['State']
y=plot_df['Percent']
fig.add_trace(
   go.Bar(x=x, y=y, text=y,opacity=1,
           hovertemplate='State Count<br>%{x}: %{y:.3}%<extra></extra>',
           showlegend=False), row=1, col=1)
fig.update_traces(texttemplate='%{text:.3s}%', textposition='outside',
                  marker_line=dict(width=1, color='#1F0202'), marker_color=['#C02B34','
fig.update_yaxes(zeroline=True, zerolinewidth=2, zerolinecolor='gray')
fig.update_layout(yaxis_ticksuffix = '%')
# Pie chart
#plot_df2=tsla_sc_loc_usa[tsla_sc_loc_usa.State=='Yes']
plot_df2=tesla_sc_loc_usa['State'].value_counts(normalize=True)
plot_df2=plot_df2.mul(100).rename('Percent').reset_index().sort_values('Percent', ascen
plot_df2.rename(columns={'index':'State'}, inplace=True)
fig.add_trace(go.Pie(labels=plot_df2['State'], values=plot_df2['Percent'], opacity=1, h
                     hovertemplate='%{label}<br/>br>State Count: %{value:.3}%<extra></extra
                     marker_colors=['#587D65','#ADC4B2','#D1C9C2']), row=1, col=2)
fig.update_yaxes(tickmode = 'array', range=[0, 40], dtick=5)
fig.update_traces(textfont_size=14,textfont_color='black',marker=dict(line=dict(color='
fig.update_layout(title_text="State Count Statistics", font_color='#28221D',
                  paper_bgcolor='#F4F2F0', plot_bgcolor='#F4F2F0')
#fig.show()
image_bytes = fig.to_image(format='png', width=1800, height=500, scale=1)
Image(image_bytes)
```

Out[18]:


```
In [19]:
          # Bar & Pie chart
          fig=make_subplots(rows=1, cols=2,
                            subplot_titles=("", "Supercharge Loc by City"),
                            specs=[[{"type": "bar"}, {"type": "pie"}]])
          # Bar chart
          plot_df=tesla_sc_loc_usa['City'].value_counts(normalize=True)
          plot_df=plot_df.mul(100).rename('Percent').reset_index().sort_values('Percent')
          plot_df.rename(columns={'index':'City'}, inplace=True)
          x=plot_df['City']
          y=plot_df['Percent']
          fig.add_trace(
              go.Bar(x=x, y=y, text=y,opacity=1,
```

```
hovertemplate='City Count<br>%{x}: %{y:.3}%<extra></extra>',
                                            showlegend=False), row=1, col=1)
                     fig.update_traces(texttemplate='%{text:.3s}%', textposition='outside',
                                                           marker_line=dict(width=1, color='#1F0202'), marker_color=['#C02B34','
                     fig.update_yaxes(zeroline=True, zerolinewidth=2, zerolinecolor='gray')
                     fig.update_layout(yaxis_ticksuffix = '%')
                     # Pie chart
                     #plot_df2=tsla_sc_loc_usa[tsla_sc_loc_usa.City]
                     plot_df2=tesla_sc_loc_usa['City'].value_counts(normalize=True)
                     plot df2=plot_df2.mul(100).rename('Percent').reset_index().sort_values('Percent', ascen-
                     plot_df2.rename(columns={'index':'State'}, inplace=True)
                     fig.add_trace(go.Pie(labels=plot_df2['State'], values=plot_df2['Percent'], opacity=0.85
                                                                 hovertemplate='%{label}<br>City Count: %{value:.3}%<extra></extra>
                                                                 marker_colors=['#587D65','#ADC4B2','#D1C9C2']), row=1, col=2)
                     fig.update_yaxes(tickmode = 'array', range=[0, 40], dtick=5)
                     fig.update_traces(textfont_size=14,textfont_color='black',marker=dict(line=dict(color='black',marker=dict(line=dict(color='black',marker=dict(line=dict(color='black',marker=dict(line=dict(color='black',marker=dict(line=dict(color='black',marker=dict(line=dict(line=dict(color='black',marker=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(line=dict(
                     fig.update_layout(title_text="City Count Statistics", font_color='#28221D',
                                                           paper_bgcolor='#F4F2F0', plot_bgcolor='#F4F2F0')
                     #fig.show()
                     image_bytes = fig.to_image(format='png', width=1800, height=500, scale=1)
                     Image(image_bytes)
Out[19]:
                           City Count Statistics
In [20]:
                     ## Importing the Label Encoder library
                     from sklearn.preprocessing import LabelEncoder
                     le = LabelEncoder()
In [21]:
                     tesla_sc_loc_usa.info
                    <bound method DataFrame.info of</pre>
                                                                                                               City State
                                                                                                                                            Zip Country Stalls
                                                                                                                                                                                               kW El
Out[21]:
                    ev(m)
                   46
                                    Soldotna
                                                             AΚ
                                                                     99669
                                                                                          USA
                                                                                                               4 250.0
                                                                                                                                               61
                    47
                                      Chugiak
                                                             AK
                                                                     99567
                                                                                          USA
                                                                                                               8 250.0
                                                                                                                                              96
                   48
                                                                                                             12 250.0
                                        Auburn
                                                                                                                                            186
                                                             ΔI
                                                                     36832
                                                                                          USA
                   49
                                        Auburn
                                                             AL 36830
                                                                                          USA
                                                                                                               6 150.0
                                                                                                                                            222
                    50
                                Birmingham
                                                             ΑL
                                                                     35203
                                                                                          USA
                                                                                                               8 150.0
                                                                                                                                            182
                    . . .
                                               . . .
                                                                         . . .
                                                                                           . . .
                                                                                                                                             . . .
                    5453
                                    Gillette
                                                             WY
                                                                     82718
                                                                                          USA
                                                                                                               4 150.0
                                                                                                                                          1396
                                                                     82009
                                                                                          USA
                                                                                                               4 120.0
                                                                                                                                          1859
                    5454
                                    Cheyenne
                                                             WY
                    5455
                                      Laramie
                                                             WY
                                                                     82070
                                                                                          USA
                                                                                                               8 150.0
                                                                                                                                          2180
                    5456
                                      Rawlins
                                                             WY
                                                                     82301
                                                                                          USA
                                                                                                               8 150.0
                                                                                                                                          2042
                   5457 Evansville
                                                                                          USA
                                                                                                               8 250.0
                                                                                                                                          1570
                                                             WY 82636
                    [2264 \text{ rows x 7 columns}]
```

```
In [22]:
          ## Convert categorical variables into numerical using label encoder
          cat_cols = tesla_sc_loc_usa.select_dtypes('object').columns
          cat_cols
         Index(['City', 'State', 'Zip', 'Country'], dtype='object')
Out[22]:
In [23]:
          for col in cat cols:
              tesla_sc_loc_usa[col] = le.fit_transform(tesla_sc_loc_usa[col])
In [24]:
          tesla_sc_loc_usa.info
                                                City State
         <bound method DataFrame.info of</pre>
                                                              Zip Country Stalls
                                                                                        kW Elev(m)
Out[24]:
         46
                         0 1958
                                                4 250.0
               1253
                                        0
                                                                61
                235
                         0 1957
                                                 8 250.0
         47
                                         0
                                                                96
         48
                 50
                         1 662
                                        0
                                                12 250.0
                                                               186
         49
                 50
                         1 661
                                         0
                                                6 150.0
                                                               222
         50
                112
                         1
                             647
                                         0
                                                 8 150.0
                                                               182
                . . .
         . . .
                        . . .
                            . . .
                                       . . .
                                                      . . .
                                                               . . .
         5453
                496
                        51 1357
                                       0
                                                4 150.0
                                                              1396
                        51 1349
                                                4 120.0
         5454
                225
                                         0
                                                              1859
         5455
                701
                         51 1350
                                         0
                                                 8 150.0
                                                              2180
         5456 1100
                         51 1354
                                         0
                                                 8 150.0
                                                              2042
                                                 8 250.0
         5457
                416
                         51 1356
                                                              1570
         [2264 rows x 7 columns]>
In [26]:
          ## Correlation matrix
          corrmat = tesla_sc_loc_usa.corr()
          plt.figure(figsize=(20,12))
          sns.heatmap(corrmat, annot=True, cmap='coolwarm')
         <AxesSubplot:>
Out[26]:
```



```
In [27]: ## Split the dataset into features and target
    tesla_sc_loc_usa = tesla_sc_loc_usa.dropna()
    x = tesla_sc_loc_usa.drop('State' ,axis =1)
    y = tesla_sc_loc_usa['State']
    print(x.shape ,y.shape)

(2263, 6) (2263,)
```

Data Modeling

Method:1 - Logistic Regression

```
In [28]: ## Declare a list variable to store all the results
model_result = {}
## Split the dataframe in train and test
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.30, random_state
x_train.head()
```

Out[28]:		City	Zip	Country	Stalls	kW	Elev(m)
	1539	822	549	0	8	250.0	6
	794	240	1568	0	20	250.0	135
	657	1054	1829	0	12	150.0	578
	5207	1112	201	0	12	250.0	113
	5326	888	1946	0	12	250.0	329

```
In [29]:
          ## Print the shape of train and test dataset
          print("The shape of training dataset: {}".format(x_train.shape))
          print("The shape of test dataset: {}".format(x_test.shape))
         The shape of training dataset: (1584, 6)
         The shape of test dataset: (679, 6)
In [30]:
          ## Logistic Regression without Standard Scalar
          model = LogisticRegression()
          model.fit(x_train, y_train)
          y_pred = model.predict(x_test)
          acc = accuracy_score(y_test, y_pred)
          train_acc = accuracy_score(y_train, model.predict(x_train))
          print('Logistic Regression score for train data:', train_acc * 100)
          print('Logistic Regression score for test data:', acc * 100)
          print('Classification Report')
          print(cr(y_test, y_pred))
          print('Confusion Matrix')
          print(cm(y_test, y_pred))
          model_result['LR_WO_SS'] = "{:.4f}".format(acc)
          print('Printing Model Result Variable: {}'.format(model_result))
         Logistic Regression score for train data: 46.6540404040404
```

Logistic Regression score for test data: 45.06627393225332 Classification Report

асто	п керог с				
	precision	recall	f1-score	support	
1	1.00	0.33	0.50	3	
2	0.00	0.00	0.00	3	
3	0.00	0.00	0.00	13	
4	0.61	0.93	0.74	169	
5	0.53	0.83	0.65	12	
6	0.00	0.00	0.00	12	
7	0.25	1.00	0.40	1	
8	0.00	0.00	0.00	6	
9	0.52	0.95	0.67	43	
10	0.25	0.23	0.24	13	
12	0.00	0.00	0.00	6	
13	0.00	0.00	0.00	3	
14	0.00	0.00	0.00	19	
15	0.33	0.07	0.12	14	
16	0.00	0.00	0.00	4	
17	0.00	0.00	0.00	3	
18	0.00	0.00	0.00	9	
19	0.17	0.07	0.10	15	
20	0.46	0.43	0.44	14	
21	0.00	0.00	0.00	5	
22	0.00	0.00	0.00	11	
23	0.00	0.00	0.00	12	
24	0.00	0.00	0.00	8	
25	0.00	0.00	0.00	4	
26	0.20	0.25	0.22	4	
27	0.31	0.23	0.26	22	
28	0.00	0.00	0.00	2	
29	0.00	0.00	0.00	4	
30	0.00	0.00	0.00	2	
31	0.30	0.32	0.31	19	

```
32
                    0.00
                               0.00
                                          0.00
                                                        5
          33
                    0.07
                               0.17
                                          0.10
                                                       12
          34
                    0.78
                               0.81
                                          0.79
                                                       26
          35
                    0.15
                               0.40
                                          0.22
                                                       15
          37
                    0.00
                               0.00
                                          0.00
                                                       11
          38
                                                       20
                    0.76
                               0.65
                                          0.70
          39
                    0.00
                               0.00
                                          0.00
                                                        2
          40
                    0.00
                               0.00
                                          0.00
                                                        1
          41
                    0.00
                               0.00
                                          0.00
                                                       12
          42
                    0.25
                               0.33
                                          0.29
                                                        3
          43
                    0.00
                               0.00
                                          0.00
                                                        9
          44
                    0.22
                               0.39
                                          0.28
                                                       49
          45
                    0.50
                               0.12
                                          0.20
                                                        8
          46
                    0.25
                               0.50
                                          0.33
                                                       14
                                          0.17
          48
                    0.67
                               0.10
                                                       20
          49
                    0.00
                               0.00
                                          0.00
                                                        7
          50
                                                        5
                    0.00
                               0.00
                                          0.00
          51
                    0.00
                               0.00
                                          0.00
                                                        5
                                                      679
    accuracy
                                          0.45
                    0.18
                               0.19
                                          0.16
                                                      679
   macro avg
                    0.35
                               0.45
                                          0.37
weighted avg
                                                      679
Confusion Matrix
[[1 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
Printing Model Result Variable: {'LR_WO_SS': '0.4507'}
```

Method:2 - Decision Tree

```
In [31]:
          ## Decision Tree Classifier Algorithm
          from sklearn.tree import DecisionTreeClassifier
          classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
          classifier.fit(x_train, y_train)
          y_pred = classifier.predict(x_test)
          acc = accuracy_score(y_test, y_pred)
          train_acc = accuracy_score(y_train, classifier.predict(x_train))
          print(' Regression score for train data:', train_acc * 100)
          print('Logistic Regression score for test data:', acc * 100)
          print('Classification Report')
          print(cr(y_test, y_pred))
          print('Confusion Matrix')
          cm_result = cm(y_test, y_pred)
          print(cm(y_test, y_pred))
          model_result['DT_WO_SS'] = "{:.4f}".format(acc)
          print('Printing Model Result Variable: {}'.format(model_result))
          Regression score for train data: 100.0
         Logistic Regression score for test data: 90.72164948453609
         Classification Report
```

0.00

recall f1-score

0.00

support

0

precision

0.00

0

		1 10	ccti_i iiiai_cod	c_verikat baga
1	1.00	1.00	1.00	3
2	1.00	0.33	0.50	3
3	1.00	0.85	0.92	13
4	0.99	0.98	0.99	169
5	1.00	1.00	1.00	12
6	0.92	0.92	0.92	12
7	1.00	1.00	1.00	1
8	1.00	0.83	0.91	6
9	1.00	1.00	1.00	43
10	0.87	1.00	0.93	13
11	0.00	0.00	0.00	0
12	1.00	0.83	0.91	6
13	0.75	1.00	0.86	3
14	0.94	0.84	0.89	19
15	0.93	1.00	0.97	14
16	1.00	1.00	1.00	4
17	0.60	1.00	0.75	3
18	1.00	0.56	0.71	9
19	0.33	0.40	0.36	15
20	0.80	0.86	0.83	14
21	1.00	0.80	0.89	5
22	0.83	0.91	0.87	11
23	0.90	0.75	0.82	12
24	1.00	1.00	1.00	8
25	0.67	0.50	0.57	4
26	0.80	1.00	0.89	4
27	0.91	0.95	0.93	22
28	1.00	1.00	1.00	2
29	1.00	1.00	1.00	4
30	0.00	0.00	0.00	2
31	0.62	0.84	0.71	19
32	1.00	1.00	1.00	5
33	1.00	1.00	1.00	12
34	0.83	0.73	0.78	26
35	1.00	1.00	1.00	15
37	0.92	1.00	0.96	11
38	0.90	0.90	0.90	20
39	0.00	0.00	0.00	2
40	0.00	0.00	0.00	1
41	1.00	0.92	0.96	12
42	1.00	0.67	0.80	3
43	1.00	1.00	1.00	9
44	0.96	0.94	0.95	49
45	1.00	1.00	1.00	8
46	0.91	0.71	0.80	14
47	0.00	0.00	0.00	0
48	1.00	1.00	1.00	20
49	1.00	1.00	1.00	7
50	0.67	0.80	0.73	5
51	1.00	1.00	1.00	5
		2.00	2.00	
accuracy			0.91	679
macro avg	0.80	0.78	0.78	679
weighted avg	0.92	0.91	0.91	679
	0.52	0.51	0.51	0,3

Confusion Matrix

[[000...000] [0 3 0 ... 0 0 0]

[0 0 1 ... 0 0 0]

```
[0 0 0 ... 7 0 0]

[0 0 0 ... 0 4 0]

[0 0 0 ... 0 0 5]]

Printing Model Result Variable: {'LR_WO_SS': '0.4507', 'DT_WO_SS': '0.9072'}
```

Method:3 - Random Forest

```
In [32]:
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.metrics import confusion_matrix as cm
          from sklearn.metrics import classification report as cr
          classifier = RandomForestClassifier(n_estimators = 300, criterion = 'entropy', random_s'
          classifier.fit(x_train, y_train)
          y_pred = classifier.predict(x_test)
          acc = accuracy_score(y_test, y_pred)
          train_acc = accuracy_score(y_train, classifier.predict(x_train))
          print('Logistic Regression score for train data:', train_acc * 100)
          print('Logistic Regression score for test data:', acc * 100)
          print('Classification Report')
          print(cr(y_test, y_pred))
          print("Confusion Matrix")
          cm_result = cm(y_test, y_pred)
          print(cm(y_test, y_pred))
          model_result['RF_WO_SS'] = "{:.4f}".format(acc)
          print('Printing Model Result Variable: {}'.format(model_result))
```

Logistic Regression score for train data: 100.0 Logistic Regression score for test data: 86.00883652430045 Classification Report

	precision	recall	f1-score	support	
1	0.67	0.67	0.67	3	
2	1.00	0.33	0.50	3	
3	0.83	0.77	0.80	13	
4	0.97	0.99	0.98	169	
5	0.92	0.92	0.92	12	
6	1.00	0.92	0.96	12	
7	0.00	0.00	0.00	1	
8	0.86	1.00	0.92	6	
9	0.88	1.00	0.93	43	
10	0.92	0.92	0.92	13	
12	0.83	0.83	0.83	6	
13	0.67	0.67	0.67	3	
14	0.86	0.95	0.90	19	
15	0.75	0.86	0.80	14	
16	1.00	1.00	1.00	4	
17	0.50	0.33	0.40	3	
18	0.86	0.67	0.75	9	
19	0.50	0.33	0.40	15	
20	0.56	0.71	0.63	14	
21	1.00	0.20	0.33	5	
22	0.62	0.45	0.53	11	
23	1.00	0.83	0.91	12	
24	0.88	0.88	0.88	8	
25	1.00	0.25	0.40	4	
26	0.67	1.00	0.80	4	
27	0.86	0.82	0.84	22	
28	1.00	0.50	0.67	2	
29	1.00	1.00	1.00	4	

In [34]:

```
30
                               0.50
                                          0.50
                                                     0.50
                                                                   2
                     31
                               0.74
                                          0.74
                                                     0.74
                                                                  19
                     32
                               1.00
                                          1.00
                                                     1.00
                                                                   5
                     33
                               1.00
                                          1.00
                                                     1.00
                                                                  12
                     34
                               0.79
                                          0.88
                                                     0.84
                                                                  26
                     35
                                                                  15
                               0.79
                                          1.00
                                                     0.88
                     37
                                          0.82
                                                                  11
                               0.82
                                                     0.82
                     38
                               0.88
                                          0.75
                                                     0.81
                                                                  20
                     39
                               0.00
                                          0.00
                                                     0.00
                                                                   2
                     40
                               0.33
                                          1.00
                                                     0.50
                                                                   1
                     41
                               1.00
                                          0.75
                                                     0.86
                                                                  12
                     42
                               1.00
                                          1.00
                                                     1.00
                                                                   3
                     43
                               0.89
                                          0.89
                                                     0.89
                                                                   9
                     44
                                          0.98
                                                     0.92
                                                                  49
                               0.87
                     45
                               0.88
                                          0.88
                                                     0.88
                                                                   8
                     46
                               0.44
                                          0.57
                                                     0.50
                                                                  14
                     47
                               0.00
                                          0.00
                                                     0.00
                                                                   0
                     48
                               0.95
                                          0.90
                                                     0.92
                                                                  20
                                                                   7
                     49
                               0.86
                                          0.86
                                                     0.86
                                                                   5
                     50
                               1.00
                                          0.20
                                                     0.33
                     51
                               1.00
                                          0.60
                                                     0.75
                                                                   5
                                                                 679
                                                     0.86
              accuracy
             macro avg
                               0.78
                                          0.72
                                                     0.72
                                                                 679
                               0.86
                                          0.86
                                                     0.85
                                                                 679
          weighted avg
          Confusion Matrix
          [[ 2
                0 0 ...
                           0
                               0
                                  0]
                           0
           [ 0
                1 0 ...
                               0
                                  0]
                0 10 ...
                           0
                               0
           0
                0
                    0 ...
                           6
                               0
                                  0]
                    0 ...
                           0
                               1
           0
                0
                                  0]
                0 0 ...
                           0
                                  3]]
           [ 0
                               0
          Printing Model Result Variable: {'LR_WO_SS': '0.4507', 'DT_WO_SS': '0.9072', 'RF_WO_SS':
          '0.8601'}
In [33]:
           ## Apply standard Scalar (sc) to the dataset
           sc = StandardScaler()
           x_sc_train = pd.DataFrame(sc.fit_transform(x_train))
           x_sc_test = pd.DataFrame(sc.transform(x_test))
           x_sc_train.head()
Out[33]:
                    0
                              1
                                  2
                                            3
                                                      4
                                                                5
              0.172587 -0.765366
                                0.0 -0.510562
                                               0.667232 -0.621808
            -1.171714
                       1.006679 0.0
                                      1.389724
                                               0.667232 -0.324895
          2
              0.708460
                       1.460560 0.0
                                      0.122867 -1.027217
                                                         0.694737
          3
              0.842428
                       -1.370540 0.0
                                      0.122867
                                               0.667232 -0.375531
              0.325034
                       1.664023 0.0
                                      0.122867
                                               0.667232 0.121626
           ## Logistic Regression
           model = LogisticRegression()
```

model.fit(x_sc_train, y_train)

```
y_pred = model.predict(x_sc_test)
acc = accuracy_score(y_test, y_pred)
train_acc = accuracy_score(y_train, model.predict(x_sc_train))
print('Logistic Regression score for train data:', train_acc * 100)
print('Logistic Regression score for test data:', acc * 100)
print('Classification Report')
print(cr(y_test, y_pred))
print('Confusion Matrix')
print(cm(y_test, y_pred))
model_result['LR_SS'] = "{:.4f}".format(acc)
print('Printing Model Result Variable: {}'.format(model_result))
```

Logistic Regression score for train data: 49.74747474747475 Logistic Regression score for test data: 47.864506627393226 Classification Report

cation	Report				
р	recision	recall	f1-score	support	
1	0.00	0.00	0.00	3	
2	0.00	0.00	0.00	3	
3	0.00	0.00	0.00	13	
4	0.74	0.96	0.84	169	
5	0.50	0.75	0.60	12	
6	0.00	0.00	0.00	12	
7	0.00	0.00	0.00	1	
8	0.00	0.00	0.00	6	
9	0.43	1.00	0.60	43	
10	0.23	0.23	0.23	13	
12	0.00	0.00	0.00	6	
13	0.00	0.00	0.00	3	
14	0.00	0.00	0.00	19	
15	0.00	0.00	0.00	14	
16	0.00	0.00	0.00	4	
17	0.00	0.00	0.00	3	
18	0.00	0.00	0.00	9	
19	0.00	0.00	0.00	15	
20	0.40	0.29	0.33	14	
21	0.00	0.00	0.00	5	
22	0.17	0.18	0.17	11	
23	0.00	0.00	0.00	12	
24	0.00	0.00	0.00	8 4	
25 26	0.00 0.50	0.00	0.00 0.50	4	
27	0.33	0.50 0.09	0.14	22	
28	0.00	0.00	0.00	2	
29	0.00	0.00	0.00	4	
30	0.00	0.00	0.00	2	
31	0.32	0.58	0.42	19	
32	1.00	0.20	0.33	5	
33	0.15	0.25	0.19	12	
34	0.51	0.85	0.64	26	
35	0.33	0.40	0.36	15	
37	0.00	0.00	0.00	11	
38	0.48	0.50	0.49	20	
39	0.00	0.00	0.00	2	
40	0.00	0.00	0.00	1	
41	0.00	0.00	0.00	12	
42	1.00	0.33	0.50	3	
43	0.00	0.00	0.00	9	
44	0.31	0.71	0.43	49	
45	0.33	0.25	0.29	8	

```
Project1_Final_code_Venkat Jagadeesh Jampani
                             0.24
                                       0.43
                                                  0.31
                                                              14
                    46
                    48
                             0.00
                                       0.00
                                                  0.00
                                                              20
                    49
                             0.00
                                       0.00
                                                  0.00
                                                               7
                    50
                             0.00
                                       0.00
                                                  0.00
                                                               5
                    51
                             0.00
                                       0.00
                                                  0.00
                                                               5
                                                  0.48
                                                             679
             accuracy
             macro avg
                             0.17
                                       0.18
                                                  0.15
                                                             679
         weighted avg
                             0.34
                                       0.48
                                                  0.39
                                                             679
         Confusion Matrix
         [[0 0 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]]
         Printing Model Result Variable: {'LR_WO_SS': '0.4507', 'DT_WO_SS': '0.9072', 'RF_WO_SS':
          '0.8601', 'LR SS': '0.4786'}
In [35]:
          ## Decision Tree Classifier Algorithm
          from sklearn.tree import DecisionTreeClassifier
          classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
          classifier.fit(x sc train, y train)
          y_pred = classifier.predict(x_sc_test)
          acc = accuracy_score(y_test, y_pred)
          train_acc = accuracy_score(y_train, classifier.predict(x_sc_train))
          print('Logistic Regression score for train data:', train acc * 100)
          print('Logistic Regression score for test data:', acc * 100)
          print('Classification Report')
          print(cr(y_test, y_pred))
          print('Confusion Matrix')
          print(cm(y_test, y_pred))
          model_result['DT_SS'] = "{:.4f}".format(acc)
          print('Printing Model Result Variable: {}'.format(model_result))
         Logistic Regression score for train data: 100.0
         Logistic Regression score for test data: 90.42709867452136
         Classification Report
```

precision		recall	f1-score	support	
0	0.00	0.00	0.00	0	
1	1.00	1.00	1.00	3	
2	1.00	0.33	0.50	3	
3	1.00	0.85	0.92	13	
4	0.99	0.98	0.99	169	
5	1.00	1.00	1.00	12	
6	0.92	0.92	0.92	12	
7	1.00	1.00	1.00	1	
8	1.00	0.83	0.91	6	
9	1.00	1.00	1.00	43	
10	0.81	1.00	0.90	13	
11	0.00	0.00	0.00	0	
12	1.00	0.67	0.80	6	
13	0.60	1.00	0.75	3	
14	0.94	0.89	0.92	19	
15	0.93	1.00	0.97	14	

1.00

1.00

1.00

16

In [36]:

```
17
                    0.60
                               1.00
                                         0.75
                                                       3
          18
                    1.00
                               0.56
                                         0.71
                                                       9
          19
                    0.33
                               0.40
                                         0.36
                                                      15
          20
                    0.80
                               0.86
                                         0.83
                                                      14
                                                       5
          21
                    1.00
                               0.80
                                         0.89
          22
                    0.83
                               0.91
                                         0.87
                                                      11
          23
                    0.90
                               0.75
                                         0.82
                                                      12
          24
                    1.00
                               1.00
                                                       8
                                         1.00
          25
                    0.67
                               0.50
                                         0.57
                                                       4
          26
                    1.00
                               1.00
                                         1.00
                                                       4
          27
                    0.91
                               0.95
                                         0.93
                                                       22
          28
                    1.00
                               1.00
                                         1.00
                                                       2
          29
                                                       4
                    1.00
                               1.00
                                         1.00
                                                       2
          30
                    0.00
                               0.00
                                         0.00
          31
                    0.62
                               0.84
                                         0.71
                                                      19
                                                       5
          32
                    1.00
                               1.00
                                         1.00
          33
                    1.00
                               1.00
                                         1.00
                                                      12
          34
                    0.83
                               0.73
                                         0.78
                                                       26
          35
                    1.00
                               1.00
                                         1.00
                                                      15
          37
                    0.92
                               1.00
                                         0.96
                                                      11
          38
                    0.90
                               0.90
                                         0.90
                                                       20
          39
                                                       2
                    0.00
                               0.00
                                         0.00
          40
                    0.00
                               0.00
                                         0.00
                                                       1
          41
                                                      12
                    1.00
                               0.83
                                         0.91
                                                       3
          42
                    1.00
                               0.67
                                         0.80
          43
                    1.00
                               1.00
                                          1.00
                                                       9
                               0.94
                                                      49
          44
                    0.96
                                         0.95
          45
                    1.00
                               1.00
                                         1.00
                                                       8
                                                      14
          46
                    0.91
                               0.71
                                         0.80
          47
                    0.00
                               0.00
                                                       0
                                         0.00
          48
                    1.00
                               1.00
                                          1.00
                                                       20
          49
                    0.88
                                                       7
                               1.00
                                         0.93
          50
                               0.80
                                                       5
                    0.67
                                          0.73
                                                       5
          51
                    1.00
                               0.80
                                          0.89
                                          0.90
                                                     679
    accuracy
                    0.80
                               0.77
                                          0.78
                                                     679
   macro avg
weighted avg
                    0.92
                               0.90
                                          0.91
                                                     679
Confusion Matrix
[[0 0 0 ... 0 0 0]
 [0 3 0 ... 0 0 0]
 [0 0 1 ... 0 0 0]
 . . .
 [0 0 0 ... 7 0 0]
 [0 0 0 ... 0 4 0]
 [0 0 0 ... 0 0 4]]
Printing Model Result Variable: {'LR_WO_SS': '0.4507', 'DT_WO_SS': '0.9072', 'RF_WO_SS':
'0.8601', 'LR_SS': '0.4786', 'DT_SS': '0.9043'}
 ## Print the modeling results
 mapping = {'LR_WO_SS':'Logistic Regression without Standard Scalar',
            'DT_WO_SS': 'Decision Tree without Standard Scalar',
           'RF_WO_SS': 'Random Forest without Standard Scalar',
           'LR_SS': 'Logistic Regression with Standard Scalar',
            'DT_SS': 'Decision Tree Standard Scalar',
            'RF_SS': 'Random Forest Standard Scalar'
           }
```

```
for k, v in model_result.items():
    print("The score for {}: {}".format(mapping[k],v))
```

The score for Logistic Regression without Standard Scalar: 0.4507 The score for Decision Tree without Standard Scalar: 0.9072 The score for Random Forest without Standard Scalar: 0.8601 The score for Logistic Regression with Standard Scalar: 0.4786 The score for Decision Tree Standard Scalar: 0.9043

```
[0.4507, 0.9072, 0.8601, 0.4786, 0.9043]

['LR_WO_SS', 'DT_WO_SS', 'RF_WO_SS', 'LR_SS', 'DT_SS']

Text(0.5, 0, 'Accuracy')
```



```
In [ ]:
```