

Clustering-Based Activity Detection Algorithms for Grant-Free Random Access in Cell-Free Massive MIMO

Unnikrishnan Kunnath Ganesan, Emil Björnson, and Erik G. Larsson

Presentation by Fatemeh Jalili
Wireless Communication | Prof. Maryam Sabbagian

09 July, 2024

Agenda

01

Introduction

05

Clustering Based Activity Detection

02

Problem Formulation

06

Parallel
Architecture of
Algorithms

03

Device Activity Detection

07

Simulation Results

04

Dominant AP-Based Activity
Detection

08

Conclusion

Introduction

- eMBB / mMTC / URLLC
- Conventional Grant-Based Massive Random Access
- Cell-Free Massive MIMO
- Cluster-Based Detection Algorithm

Fig1: Cell-Free Network Model for mMTC-

Problem Formulation

$$g_{mnk} = \beta_{mk}^{\frac{1}{2}} h_{mnk}$$

$$\mathbf{y}_{mn} = \sum_{k=1}^{K} a_k \rho_k^{\frac{1}{2}} g_{mnk} \mathbf{s}_k + \mathbf{w}_{mn}$$

$$= \mathbf{SD_a} \mathbf{D}_{\boldsymbol{\rho}}^{\frac{1}{2}} \mathbf{g}_{mn} + \mathbf{w}_{mn},$$

$$\mathbf{Y}_m = \mathbf{S}\mathbf{D}_{\mathbf{a}}\mathbf{D}_{\boldsymbol{\rho}}^{\frac{1}{2}}\mathbf{G}_m + \mathbf{W}_m,$$

$$\begin{split} \mathbf{Y} &= \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_M \end{bmatrix} = \begin{bmatrix} \mathbf{S} \mathbf{D}_\mathbf{a} \mathbf{D}_{\boldsymbol{\rho}}^{\frac{1}{2}} \mathbf{G}_1 \\ \mathbf{S} \mathbf{D}_\mathbf{a} \mathbf{D}_{\boldsymbol{\rho}}^{\frac{1}{2}} \mathbf{G}_2 \\ \vdots \\ \mathbf{S} \mathbf{D}_\mathbf{a} \mathbf{D}_{\boldsymbol{\rho}}^{\frac{1}{2}} \mathbf{G}_M \end{bmatrix} + \mathbf{W} \qquad \mathbf{Y}(:,i) \ \sim \ \mathcal{CN}(\mathbf{0}_{LM},\mathbf{Q}), \\ &= \begin{bmatrix} \mathbf{S} \ \mathbf{0} \ \dots \ \mathbf{0} \\ \mathbf{0} \ \mathbf{S} \dots \ \mathbf{0} \\ \vdots \ \vdots \ \ddots \ \vdots \\ \mathbf{0} \ \mathbf{0} \dots \ \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{D}_\mathbf{a} \mathbf{D}_{\boldsymbol{\rho}}^{\frac{1}{2}} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_\mathbf{a} \mathbf{D}_{\boldsymbol{\rho}}^{\frac{1}{2}} \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots \ \mathbf{D}_\mathbf{a} \mathbf{D}_{\boldsymbol{\rho}}^{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{G}_2 \\ \vdots \\ \mathbf{G}_M \end{bmatrix} + \mathbf{W}, \\ &\mathbf{Q} = \begin{bmatrix} \mathbf{S} \mathbf{D}_{\boldsymbol{\gamma}} \mathbf{D}_{\boldsymbol{\beta}_1} \mathbf{S}^{\mathsf{H}} & \mathbf{0}_L & \dots & \mathbf{0}_L \\ \mathbf{0}_L & \mathbf{S} \mathbf{D}_{\boldsymbol{\gamma}} \mathbf{D}_{\boldsymbol{\beta}_2} \mathbf{S}^{\mathsf{H}} & \dots & \mathbf{0}_L \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_L & \mathbf{0}_L & \dots & \mathbf{S} \mathbf{D}_{\boldsymbol{\gamma}} \mathbf{D}_{\boldsymbol{\beta}_M} \mathbf{S}^{\mathsf{H}} \end{bmatrix} + \sigma^2 \mathbf{I}_{LM}, \end{split}$$

$$p(\mathbf{Y}|\boldsymbol{\gamma}) = \prod_{m=1}^{M} \prod_{n=1}^{N} \frac{1}{|\pi \mathbf{Q}_m|} \exp\left(-\mathbf{y}_{mn}^{\mathbf{H}} \mathbf{Q}_m^{-1} \mathbf{y}_{mn}\right)$$
$$= \prod_{m=1}^{M} \frac{1}{|\pi \mathbf{Q}_m|^N} \exp\left(-\operatorname{Tr}(\mathbf{Q}_m^{-1} \mathbf{Y}_m \mathbf{Y}_m^{\mathbf{H}})\right),$$

$$oldsymbol{\gamma}^* = rg \min_{oldsymbol{\gamma}} \sum_{m=1}^M \log |\mathbf{Q}_m| + \mathrm{Tr} \left(\mathbf{Q}_m^{-1} rac{\mathbf{Y}_m \mathbf{Y}_m^{\mathrm{H}}}{N}
ight)$$
 subject to $oldsymbol{\gamma} \geq \mathbf{0}_K$.

Device Activity Detection

$$f(\gamma) = \sum_{m=1}^{M} \log |\mathbf{Q}_m| + \operatorname{Tr}\left(\mathbf{Q}_m^{-1} \frac{\mathbf{Y}_m \mathbf{Y}_m^{\mathrm{H}}}{N}\right)$$

$$f^{m}(\gamma) = \log |\mathbf{Q}_{m}| + \operatorname{Tr}\left(\mathbf{Q}_{m}^{-1} \frac{\mathbf{Y}_{m} \mathbf{Y}_{m}^{\mathrm{H}}}{N}\right)$$

$$f_{k}^{m}(d) = f^{m}(\gamma + d\mathbf{e}_{k}),$$

$$f_{k}^{m}(d) = f^{m}(\gamma + d\mathbf{e}_{k}),$$

$$\mathbf{Q}_{m}(\boldsymbol{\gamma}) = \mathbf{S} \mathbf{D}_{\boldsymbol{\gamma}} \mathbf{D}_{\boldsymbol{\beta}_{m}} \mathbf{S}^{H} + \sigma^{2} \mathbf{I}_{L}$$
$$= \sum_{k=1}^{K} \gamma_{k} \beta_{mk} \mathbf{s}_{k} \mathbf{s}_{k}^{H} + \sigma^{2} \mathbf{I}_{L},$$

$$\left(\mathbf{Q}_m + d\beta_{mk}\mathbf{s}_k\mathbf{s}_k^{\mathrm{H}}\right)^{-1} = \mathbf{Q}_m^{-1} - d\beta_{mk}\frac{\mathbf{Q}_m^{-1}\mathbf{s}_k\mathbf{s}_k^{\mathrm{H}}\mathbf{Q}_m^{-1}}{1 + d\beta_{mk}\mathbf{s}_k^{\mathrm{H}}\mathbf{Q}_m^{-1}\mathbf{s}_k}.$$
 Sherman-Morrison rank-1

$$f_k^m(d) = f^m(\gamma + d\mathbf{e}_k),$$

$$|\mathbf{Q}_m + d\beta_{mk}\mathbf{s}_k\mathbf{s}_k^{\mathrm{H}}| = (1 + d\beta_{mk}\mathbf{s}_k^{\mathrm{H}}\mathbf{Q}_m^{-1}\mathbf{s}_k)|\mathbf{Q}_m|.$$

$$f_k(d) = c + \sum_{m=1}^{M} \left(\log(1 + d\beta_{mk} \mathbf{s}_k^{\mathsf{H}} \mathbf{Q}_m^{-1} \mathbf{s}_k) - d\beta_{mk} \frac{\mathbf{s}_k^{\mathsf{H}} \mathbf{Q}_m^{-1} \mathbf{Q}_{\mathbf{Y}_m} \mathbf{Q}_m^{-1} \mathbf{s}_k}{1 + d\beta_{mk} \mathbf{s}_k^{\mathsf{H}} \mathbf{Q}_m^{-1} \mathbf{s}_k} \right),$$

Dominant AP-Based Activity Detection

$$\begin{split} m' &= \underset{m}{\operatorname{argmax}} \{\beta_{mk}\} \\ f_{k,m'}(d) &= \log(1 + d\beta_{m'k} \mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k}) \\ &- d\beta_{m'k} \frac{\mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{Q}_{\mathbf{Y}_{m'}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k}}{1 + d\beta_{m'k} \mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k}}. \\ d^{*} &= \frac{\mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{Q}_{\mathbf{Y}_{m'}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k} - \mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k}}{\beta_{m'k} (\mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k})^{2}}. \end{split}$$

preserve the non-negativity \longrightarrow $\max\{d^*, -\gamma_k\}$

 $1, 2, \dots M, k = 1, 2, \dots K$ Initialize: $\mathbf{Q}_{m}^{-1} = \sigma^{-2} \mathbf{I}_{L}, \forall m = 1, 2, ... M, \, \hat{\gamma}^{0} = \mathbf{0}_{K}$ 1: Compute $\mathbf{Q}_{\mathbf{Y}_m} = \frac{1}{N} \mathbf{Y}_m \mathbf{Y}_m^{\mathsf{H}}, \forall m = 1, 2, \dots M$ 2: **for** i = 1, 2, ..., I **do** 3: Select an index set K from the random permutation of set $\{1, 2, ..., K\}$ 4: **for** $k \in \mathcal{K}$ **do** Find the strongest link or AP for device k, i.e., $m' = \operatorname{argmax}\{\beta_{mk}\}\$ 6: $\delta = \max \left\{ \frac{\mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{Q}_{\mathbf{Y}_{m'}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k} - \mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k}}{\beta_{m'k} (\mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m'}^{-1} \mathbf{s}_{k})^{2}}, -\hat{\gamma}_{k} \right\}$ $\hat{\gamma}_k^i = \hat{\gamma}_k^{i-1} + \delta$ 8: **for** m = 1, 2, ..., M **do** 9: $\mathbf{Q}_m^{-1} \leftarrow \mathbf{Q}_m^{-1} - \delta \frac{\beta_{mk} \mathbf{Q}_m^{-1} \mathbf{s}_k \mathbf{s}_k^{\mathsf{H}} \mathbf{Q}_m^{-1}}{1 + \delta \beta_{mk} \mathbf{s}_k^{\mathsf{H}} \mathbf{Q}_m^{-1} \mathbf{s}_k}$ 11: end for 12: **if** $f(\hat{\gamma}^i) \geq f(\hat{\gamma}^{i-1})$ **then** 13: $\hat{\gamma} = \hat{\gamma}^{i-1}$ break end if 16: $\hat{\gamma} = \hat{\gamma}^i$ 17: end for 18: **return** $\hat{\gamma}$

Algorithm 1 Coordinate Descend Algorithm for Estimating γ

Input: Observations $\mathbf{Y}_m, \forall m = 1, 2, \dots M, \beta_{mk}, \forall m =$

Clustering Based Activity Detection

- Algorithm 1 uses data from one dominant AP per device
- optimal method would be using all APs

$$\mathcal{M}_{k} = \operatorname{indmax}_{m,T} \left\{ \beta_{mk} \right\},$$

$$a_{m} = \beta_{mk} \mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m}^{-1} \mathbf{s}_{k}$$

$$b_{m} = \beta_{mk} \mathbf{s}_{k}^{\mathsf{H}} \mathbf{Q}_{m}^{-1} \mathbf{Q}_{Y_{m}} \mathbf{Q}_{m}^{-1} \mathbf{s}_{k}.$$

$$f_{k,T}(d) = \sum_{m \in \mathcal{M}_{k}} \left(\log(1 + da_{m}) - \frac{db_{m}}{1 + da_{m}} \right)$$

$$\sum_{m \in \mathcal{M}_{k}} \left(((a_{m} + b_{m}) + a_{m}^{2} d) \prod_{m' \in \mathcal{M}_{k} \setminus \{m\}} (1 + 2a_{m'} d + a_{m'}^{2} d^{2}) \right)$$

$$= 0$$

$$\mathcal{D} = \left\{ d : f'_{k,T}(d) = 0, \Im(d) = 0, \Re(d) \geq -\gamma_{k} \right\} \cup \left\{ -\gamma_{k} \right\},$$

Parallel Architecture of Algorithms

- Update each user sequentially irrespective of whether the user is active or not
- sub-covariance matrices in Algorithm 2 do not change much

$$\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}_2 \cup \cdots \cup \mathcal{K}_G$$
.

Simulation Results

Fig2: Algorithm1 Performance-

Fig3: Algorithm2 Performance-

Simulation Results

Fig4: Algorithm3 Performance-

Conclusion