KNN solver with hardware acceleration

IOB-KNN User Guide, V0.1, Build 73dc5e9

January 3, 2021

Contents

1	Intro	oduction	5
2	Sym	nbol	5
3	Feat	tures	5
4	Ben	efits	6
5	Deli	verables	6
6	Bloc	ck Diagram and Description	7
7	Syn	thesis Parameters	8
8	Inte	rface Signals	8
9	Reg	isters	9
10	FPG	A Results	10
11	KNN	I core operation	10
12	Acc	eleration Results	10
Li	st d	of Tables	
	1	Block descriptions	7
	2	General Interface Signals	8
	3	CPU Native Slave Interface Signals	8
	4	CPU AXI4 Lite Slave Interface Signals	9
	5	Software accessible registers	9
	6	Implementation Resources for Xilinx Kintex Ultrascale Devices	10
	7	Accelereration results	10

KNN solver with hardware acceleration

IOB-KNN USER GUIDE, V0.1, BUILD 73DC5E9

List of Figures

1	IP Core Symbol	5
2	High-level block diagram	7

1 Introduction

The IObundle KNN core is an hardware KNN algorithm solver that attributes the lables to a maximum of 10 lables. It is written in Verilog and includes a C software driver. The IP is currently supported for use only in FPGAs.

2 Symbol

Figure 1: IP Core Symbol

3 Features

- Verilog KNN solver accelerator (16 bit operands);
- · C software driver;
- · Reset, enable and time read functions;
- IOb-SoC native CPU interface.

4 Benefits

- · Compact hardware implementation;
- · Can fit many instances in low cost FPGAs;
- Low power consumption;
- · Quick resolution of KNN algorithm;
- · Parallel design.

5 Deliverables

- · Verilog source code;
- · User documentation for easy system integration;
- Example integration in IOb-SoC;
- FPGA synthesis and implementation scripts.

6 Block Diagram and Description

A high-level block diagram of the IOB-KNN core is presented in Figure 6 and a brief explanation of each block is given in Table 1.

Figure 2: High-level block diagram

Block	Description
Register File	Configuration, control and status registers accessible by the sofware
KNN	

Table 1: Block descriptions.

7 Synthesis Parameters

The KNN module is independent of the number of point, labels (maximum of 10) and neighbors (max of 10) and therefore the synthesis of the module is constant.

8 Interface Signals

The interface signals of the I²S/TDM transceiver core are described in the following tables.

Name	Direction	Width	Description			
clk	input	1	System clock input			
rst	input	1	System reset asynchronous and active high			

Table 2: General Interface Signals

Name	Direction	Width	Description
valid	input	1	Native CPU interface valid signal
address	input	ADDR_W	Native CPU interface address signal
wdata	input	WDATA_W	Native CPU interface data write signal
wstrb	input	DATA_W/8	Native CPU interface write strobe signal
rdata	output	DATA_W	Native CPU interface read data signal
ready	output	1	Native CPU interface ready signal

Table 3: CPU Native Slave Interface Signals

Name	Direction	Width	Description
s_axil_awaddr	input	ADDR_W	Address write channel address
s_axil_awcache	input	4	Address write channel memory type. Transactions set with
			Normal Non-cacheable Modifiable and Bufferable (0011).
s_axil_awprot	input	3	Address write channel protection type. Transactions set with
			Normal Secure and Data attributes (000).
s_axil_awvalid	input	1	Address write channel valid
s_axil_awready	output	1	Address write channel ready
s_axil_wdata	input	DATA_W	Write channel data
s_axil_wstrb	input	DATA_W/8	Write channel write strobe
s_axil_wvalid	input	1	Write channel valid
s_axil_wready	output	1	Write channel ready
s_axil_bresp	output	2	Write response channel response
s_axil_bvalid	output	1	Write response channel valid
s_axil_bready	input	1	Write response channel ready
s_axil_araddr	input	ADDR_W	Address read channel address
s_axil_arcache	input	4	Address read channel memory type. Transactions set with
			Normal Non-cacheable Modifiable and Bufferable (0011).
s_axil_arprot	input	3	Address read channel protection type. Transactions set with
			Normal Secure and Data attributes (000).
s_axil_arvalid	input	1	Address read channel valid
s_axil_arready	output	1	Address read channel ready
s_axil_rdata	output	DATA_W	Read channel data
s_axil_rresp	output	2	Read channel response
s_axil_rvalid	output	1	Read channel valid
s_axil_rready	input	1	Read channel ready

Table 4: CPU AXI4 Lite Slave Interface Signals

9 Registers

The software accessible registers of the KNN core are described in Table 5. The table gives information on the name, read/write capability, word aligned addresses, used word bits and a textual description.

Name	R/W	Addr	Bits	Initial	Description
				Value	
NK	W	0x00	7:0	0	number of neighbors
XX	W	0x04	WDATA_W-1:0	0	x coordenate for point being studied
YY	W	0x08	WDATA_W-1:0	0	y coordenate for point being studied
DATA_X	W	0x0c	WDATA_W-1:0	0	x coordenate for data point
DATA_Y	W	0x10	WDATA_W-1:0	0	y coordenate for data point
DATA_LABEL	W	0x14	7:0	0	data label
CONTROL	W	0x18	3:0	0	KNN reset and control (LSB reset the others con-
					trol)
XLABEL	R	0x1c	31:0	0	label of the studied point

Table 5: Software accessible registers.

10 FPGA Results

The following are FPGA implementation results for two FPGA device families.

Resource	Used
LUTs	1212
Registers	490 Registers
490	
DSPs	2
BRAM	0

Table 6: Implementation Resources for Xilinx Kintex Ultrascale Devices

11 KNN core operation

Given a new point without label for KNN algorithm application, first set control to "0001" to reset then to "0001" to standby. Next the coordinates of the point must be given as well as the coordinates for every dataset point and it's label (for every dataset point the distance must be computed by setting control to "0010" and then to "0000"). Once all the distance were computed the KNN core is ready to classify the point and that is done by setting control to "0100" and lastly to "0000". The label of the studied point can be read from the respective register.

12 Acceleration Results

In tabel 7 is possible to compare the time needed to solve 2 different KNN problems with and without the KNN hardware core. Its also possible to calculate a maximum acceleration of 13 times.

Data Points	Neighbours	Labels	N. to classify	Time w/o. ACC (us)	Time w. ACC (us)	Acceleration
100	10	10	10	9153	702	13.0385
100	10	10	100	91525	7012	13.0526

Table 7: Accelereration results