Project 4 CPE202

Huffman Encoding

For this project, you will implement a program to encode text using <u>Huffman coding</u>. Huffman coding is a method of lossless (the original can be reconstructed perfectly) data compression. Each character is assigned a variable length *code* consisting of '0's and '1's. The length of the code is based on how frequently the character occurs; more frequent characters are assigned shorter codes.

The basic idea is to use a binary tree, where each **leaf node** represents a character and frequency count. The Huffman code of a character is then determined by the unique path from the root of the binary tree to that leaf node, where each 'left' accounts for a '0' and a 'right' accounts for a '1' as a bit. Since the number of bits needed to encode a character is the path length from the root to the character, a character occurring frequently should have a shorter path from the root to their node than an "infrequent" character, i.e. nodes representing frequent characters are positioned less deep in the tree than nodes for infrequent characters.

The key problem is therefore to construct such a binary tree based on the frequency of occurrence of characters. A detailed example of how to construct such a Huffman tree is provided here: Huffman Example.pdf

Notes:

- You must provide test cases for all functions (only test the specified functions, with the exact name provided)
- Use descriptive names for data structures and helper functions.

2 Functions

The following bullet points provide a guide to implement some of the data structures and individual functions of your program. Start by creating a file **huffman.py** and add functions and data definitions to this file, if not otherwise stated. You should develop incrementally, building test cases for each function as it is implemented.

2.1 Count Occurrences: cnt freq(filename)

• Implement a function called **cnt_freq(filename)** that opens a text file with a given file name (passed as a string) and counts the frequency of occurrences of all the characters within that file. Use the built-in Python List data structure of size 256 for counting the occurrences of characters. This will provide efficient access to a given position in the list. (In non-Python terminology you want an array.) You can assume that in the input text file there are **only 8-bit characters** resulting in a total of 256 possible character values. This function should return the 256 item list with the counts of occurrences. There can be issues with extra characters in some systems.

Numbers in positions of freq counts [97:104] = [2, 4, 8, 16, 0, 2, 0]

2.2 Data Definition for Huffman Tree

A Huffman Tree is a binary tree of HuffmanNodes.

• A HuffmanNode class represents either a leaf or an internal node (including the root node) of a Huffman tree. A HuffmanNode contains a character (stored as an ASCII value) an occurrence count for that character, as well as references to left and right Huffman subtrees, each of which is a binary tree of HuffmanNodes. The character value and occurrence count of an internal node are assigned as described below. You may add fields in your HuffmanNode definition if you feel it is necessary for your implementation. Do not change the names of the fields specified in the huffman.py starter file given to you.

1

2.3 Build a Huffman Tree

Since the code depends on the order of the left and right branches take in the path from the root to the leaf (character node), it is crucial to follow a specific convention about how the tree is constructed. To do this we need an ordering on the Huffman nodes.

- Start by defining a function **comes_before** (**a**, **b**) for Huffman trees that returns true if tree '**a**' comes before tree '**b**'. A Huffman tree '**a**' comes before Huffman tree '**b**' if the occurrence count of '**a**' is smaller than that of '**b**'. In case of equal occurrence counts, break the tie by using the ASCII value of the character to determine the order. For example, the characters 'd' and 'k' appear exactly the same number of times in your file, then 'd' comes before 'k', since the ASCII value of character 'd' is less than that of 'k'.
- Write a function that builds a Huffman tree from a list of the number of occurrences of characters returned by **cnt_freq()** and returns the root node of that tree. Call this function **create_huff_tree(freq_list)**.
 - Start by creating a sorted list (can be a Python list, and you can use built-in functions) of individual Huffman trees each consisting of single HuffmanNode node containing the character and its occurrence counts. Building the actual tree involves removing the two nodes with the lowest frequency count from the sorted list and connecting them to the left and right field of a new created Huffman Node as in the example provided. The node that comes before the other node should go in the left field.
 - Note that when connecting two HuffmanNodes to the left and right field of a new parent Node, that this new node is also a HuffmanNode, but does not contain an actual character to encode. Instead this new parent node should contain an occurrence count that is the sum of the left and right child occurrence counts as well as the **minimum** of the left and right character representation in order to resolve ties in the **comes before()** function.
 - Once a new parent node has been created from the two nodes with the lowest occurrence count as described above, that parent node is inserted into the list of sorted nodes.
 - This process of connecting nodes from the front of the sorted list is continued until there is a single node left in the list, which is the root node of the Huffman tree. create_huff_tree(freq_list) then returns this node.
 - If freq_list does not contain any non-zero counts (i.e. input file was empty), then create huff tree(freq list) should return None
 - If **freq_list** contains only one non-zero count (i.e. input file has only one unique character), then **create_huff_tree(freq_list)** should return just the one HuffmanNode containing the character and its occurrence count.

2.4 Build an Array for the Character Codes

- We have completed our Huffman tree, but we are still lacking a way to get our Huffman codes. Implement a function named **create_code(root_node)** that traverses the Huffman tree that was passed as an argument and returns an array (using a Phython list) of 256 strings. Use the character's respective integer ASCII representation as the index into the arrary, with the resulting Huffman code for that character stored at that location. Traverse the tree from the root to each leaf node and adding a '0' when we go 'left' and a '1' when we go 'right' constructing a string of 0's and 1's. You may want to:
 - use the built-in '+' operator to concatenate strings of '0's and '1's here.
 - You may want to initialize a Python list of strings that is initially consists of 256 empty strings in **create_code**. When **create_code** completes, this list will store for each character (using the character's respective integer ASCII representation as the index into the list) the resulting Huffman code for the character. The code will be represented by a sequence of '0's and '1's in a string. Note that many entries in this list may still be the empty string. Return this list.

2.5 Huffman Encoding

- Write a function called **huffman_encode(in_file, out_file)** (use that exact name) that reads an input text file and writes to an output file the following:
 - o A header (see below for format) on the first line in the file (should end with a newline)
 - o Using the Huffman code, the encoded text into an output file.
- Write a function called **create_header(freq_list)** that takes as parameter the list of freqs previously determined from cnt_freq(filename). The create_header function returns a string of the ASCII values and their associated frequencies from the input file text, separated by one space. For example, create header(freq_list) would return "97 3 98 4 99 2" for the text "aaabbbbcc"
- The **huffman_encode** function accepts two file names in that order: input file name and output file name, represented as strings. If the specified output file already exists, its old contents will be erased. See example files in the test cases provided to see the format.
- Note: Writing the generated code for each character into a file will actually enlarge the file size instead compress it. The explanation is simple: although we encoded our input text characters in sequences of '0's and '1's, representing actual single bits, we write them as individual '0' and '1' characters, i.e. 8 bits. To actually obtain a compressed the file you would write the '0' and '1' characters as individual bits.

3 Tests

- Write sufficient tests using unittest to ensure full functionality and correctness of your program. Start by using the supplied **huffman_tests.py**, and the various text files (e.g. **file1.txt** and **file1_soln.txt**) to begin testing your programs. You may want to initially comment out some of the tests, or ignore failures when testing functionality that hasn't been fully implemented.
- When testing, always consider *edge conditions* like the following cases:
 - If the input file consists of only one unique character, say "aaaaa", it should write just that character ASCII value followed by a space followed by the number of occurrences: "97 5"
 - In case of an *empty* input text file, your program should also produce an *empty* file.
 (Note: GitHub objects to uploading an empty file, so don't try that. Instead, if you have tests that reference an empty file, name that file empty_file.txt. When testing, I will copy an empty file of that name to the directory I use for testing your submission.)
 - If an input file does not exist, your program should raise a FileNotFoundError.

4 Some Notes

• When writing your own test files or using copy and paste from an editor, take into account that most text editors will add a newline character to the end of the file. If you end up having an additional newline character '\n' in your text file, that wasn't there before, then this '\n' character will also be added to the Huffman tree and will therefore appear in your generated string from the Huffman tree. In addition, an actual newline character is treated different, depending on your computer platform. Different operating systems have different codes for "newline". Windows uses '\r\n' = 0x0d 0x0a, while Unix and Mac use '\n' = 0x0a. This can be mitigated when opening files for write by including the newline input parameter in the function call:

```
open(out file, 'w', newline='')
```

This will result in only the 0x0a character being written for a newline, regardless of platform.

• It is always useful to use a hex editor to verify why certain files that appear identical in a regular text editor are actually not identical.

5 Submission

You must commit and push the following files:

- huffman.py, containing the functions specified and any helper functions necessary
 - o **cnt_freq(filename):** returns a Python list of 256 integers the frequencies of characters in file (indexed by ASCII value of characters)
 - o create_huff_tree(freq_list): returns the root node of a Huffman Tree, a Huffman node object
 - o **create_code(root_node):** returns a Python list of 256 strings representing the code for each character (indexed by ASCII value of the character). Note: Use an **empty string** to represent the code for ASCII characters that do not appear in the file being compressed.
 - o **create_header(freq_list):** returns a header for the output file with ASCII values and their associated counts space separated.
 - o huffman encode(in file, out file): encodes in file and writes the it to out file
- huffman_tests_parta.py, containing testcases used in developing your programs
- Any text files required for your tests (with exception of empty text file, as noted above)