Exponential Lower Bounds for Polytopes in Combinatorial Optimization

Vasilis Livanos and Manuel Torres

University of Illinois at Urbana-Champaign

May 2, 2018

Main Question

Main Question

• Let's prove P = NP!

Main Question

- Let's prove P = NP!
- Idea: Can we write a polynomial-size LP (Linear Program) for an NP-Complete problem (e.g. TSP)?

Necessary Background

Necessary Background

Definition (Extended Formulation)

Let $P = \{x : Ax \le b\}$ and $Q = \{(x, y) : Bx + Cy \le d\}$. Then Q is an extended formulation (EF) of P if and only if

$$P = \{x : \exists y, (x, y) \in Q\}$$

The size of an extended formulation is the number of facets (faces of maximal dimension) of Q.

Necessary Background

Definition (Extended Formulation)

Let $P = \{x : Ax \le b\}$ and $Q = \{(x, y) : Bx + Cy \le d\}$. Then Q is an extended formulation (EF) of P if and only if

$$P = \{x : \exists y, (x, y) \in Q\}$$

The size of an extended formulation is the number of facets (faces of maximal dimension) of Q.

Definition (Extension Complexity)

The extension complexity of P, denoted xc(P), is the minimum size EF of P.

Extended Formulations Can Help

Here we give the example of the permutahedron maybe mention work of EFs in combinatorial optimization

Prior Work

Prior Work

Theorem (Yannakakis, '91)

Every symmetric LP for TSP has extension complexity $2^{\Omega(n)}$. Thus, it also has an exponential number of inequalities.

Prior Work

Theorem (Yannakakis, '91)

Every symmetric LP for TSP has extension complexity $2^{\Omega(n)}$. Thus, it also has an exponential number of inequalities.

Corollary

No symmetric LP can be used to solve TSP in polynomial time.

More Technical Background

More Technical Background

Definition (Nonnegative Rank)

Let $M \in \mathbb{R}_+^{m \times n}$. The nonnegative rank of M is defined as $\operatorname{rank}_+(M) = \min\{r : M = TU, T \in \mathbb{R}_+^{m \times r}, U \in \mathbb{R}_+^{r \times n}\}$.

More Technical Background

Definition (Nonnegative Rank)

Let $M \in \mathbb{R}_+^{m \times n}$. The nonnegative rank of M is defined as $\operatorname{rank}_+(M) = \min\{r : M = TU, T \in \mathbb{R}_+^{m \times r}, U \in \mathbb{R}_+^{r \times n}\}$.

Definition (Slack Matrix)

Let $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$, and $V = \{v_1, \dots, v_n\} \subseteq \mathbb{R}^d$. Let $P = \{x \in \mathbb{R}^d : Ax \le b\} = \operatorname{conv}(V)$. Then $S \in \mathbb{R}_+^{m \times n}$, where each entry is defined as $S_{ij} = b_i - A_i v_j$ with $i \in [m]$, $j \in [n]$, is the *slack matrix* of P with respect to $Ax \le b$ and V.

Yannakakis's Factorization Theorem

Yannakakis's Factorization Theorem

Theorem (Factorization Theorem)

Let $P = \{x \in \mathbb{R}^d \mid Ax \leq b\} = \text{conv}(V)$ be a polytope, and S be its slack matrix with respect to $Ax \leq b$ and V. Then

$$xc(P) = rank_+(S)$$

Yannakakis's Factorization Theorem

Theorem (Factorization Theorem)

Let $P = \{x \in \mathbb{R}^d \mid Ax \leq b\} = \text{conv}(V)$ be a polytope, and S be its slack matrix with respect to $Ax \leq b$ and V. Then

$$xc(P) = rank_+(S)$$

• If we want to lower bound xc(P), it suffices to lower bound $rank_+(S)$.

Definition (Support Matrix)

The support matrix of a matrix M with nonnegative entries is

$$\mathsf{suppmat}(M)_{ij} = egin{cases} 0 & M_{ij} = 0 \ 1 & M_{ij}
eq 0 \end{cases}$$

Definition (Support Matrix)

The support matrix of a matrix M with nonnegative entries is

$$\mathsf{suppmat}(M)_{ij} = egin{cases} 0 & M_{ij} = 0 \ 1 & M_{ij}
eq 0 \end{cases}$$

Theorem

Let M be a matrix with nonnegative entries, and suppmat(M) its support matrix. Then, $rank_+(M)$ is lower bounded by the rectangle covering bound for suppmat(M).

Definition (Support Matrix)

The support matrix of a matrix M with nonnegative entries is

$$\mathsf{suppmat}(M)_{ij} = egin{cases} 0 & M_{ij} = 0 \ 1 & M_{ij}
eq 0 \end{cases}$$

Theorem

Let M be a matrix with nonnegative entries, and suppmat(M) its support matrix. Then, $rank_+(M)$ is lower bounded by the rectangle covering bound for suppmat(M).

 This provides a connection between xc(P) and communication complexity.

A Matrix of Exponential Nonnegative Rank

A Matrix of Exponential Nonnegative Rank

Definition

Let M be a $2^n \times 2^n$ matrix, where each row (resp. column) is indexed by a n-bit string a (resp. b), with

$$M_{ab} := \left(1 - a^T b\right)^2$$

Important Property of M

Important Property of M

Theorem (De Wolf, '03)

Every 1-monochromatic rectangle cover of suppmat(M) has size $2^{\Omega(n)}$.

$\mathsf{TSP}(n)$ Polytope

Definition of TSP Polytope

$\mathsf{TSP}(n)$ Polytope

Face lemma and lower bound Theorem

QUESTIONS?

