

Domanda 1 Si consideri un sistema lineare e tempo invariante con la seguente risposta all'impulso.

$$h(t) = e^t.$$

Si dica quale delle seguenti alternative è CORRETTA.	
$\hfill \Box$ Se viene applicato un input $u(t)$ limitato, la risposta non è limitata perché il sistema non BIBO-stabile	è
La risposta diverge per ogni scelta dell'input	
La risposta non diverge perché il sistema non è strettamente causale	
La risposta non diverge se l'input è limitato	
Nessuna delle alternative proposte	

Domanda 2 Si consideri un sistema lineare e tempo invariante con la seguente risposta all'impulso.

$$h(t) = -\mathbf{1}(t)t^3 e^{-|t|}.$$

Si dica quale delle seguenti alternative è CORRETTA.

Nessuna delle alternative proposte
La risposta è collegata a un sistema causale e BIBO stabile
La risposta è collegata a un sistema non causale e BIBO in-stabile
La risposta è collegata a un sistema non causale e BIBO stabile
La risposta è collegata a un sistema causale e BIBO in-stabile

Domanda 3 Si consideri un sistema lineare e tempo invariante con la seguente risposta all'impulso.

$$h(t) = -\mathbf{1}(t)t^3 e^{|t|}.$$

Si dica quale delle seguenti alternative è CORRETTA.

La risposta è collegata a un sistema causale e BIBO instabile
La risposta è collegata a un sistema non causale e BIBO stabile
La risposta è collegata a un sistema non causale e BIBO in-stabile
Nessuna delle alternative proposte
La risposta è collegata a un sistema causale e BIBO stabile

Domanda 4 Si consideri un sistema lineare e tempo invariante con la seguente risposta all'impulso.

$$h(t) = t^3 e^{-|t|}.$$

Si dica quale delle seguenti alternative è CORRETTA.

La risposta è collegata a un sistema causale e BIBO instabile	
La risposta è collegata a un sistema non causale e BIBO stabile	
La risposta è collegata a un sistema causale e BIBO stabile	
Nessuna delle alternative proposte	
La risposta è collegata a un sistema non causale e BIBO in-stabil	le

Domanda 5 Si consideri il sistema Tempo Continuo lineare tempo invariante descritto dalla seguente risposta all'impulso:

$$h(t) = \mathbf{1}(t)2te^{-3t}$$

e consideriamo l'ingresso:

$$u(t) = \mathbf{1}(t).$$

Si dica quale delle seguenti alternative relative all'uscita y(t) del sistema è quella CORRETTA.

- $y(t) = \mathbf{1}(t)\frac{2}{9}(1 e^{-3t}(3t 1))$
- $y(t) = \mathbf{1}(t)\frac{2}{9}(1 e^{-3t}(3t+1))$
- $y(t) = \mathbf{1}(t)\frac{2}{9}(1 e^{-3t}(1 3t))$
- Nessuna delle scelte elencate
- Il sistema è non-lineare quindi non si può calcolare l'uscita a partire dalla risposta impulsiva.

Domanda 6 Si consideri il sistema Tempo Continuo lineare tempo invariante descritto dalla seguente risposta all'impulso:

$$h(t) = \mathbf{1}(t)2te^{+3t}$$

e consideriamo l'ingresso:

$$u(t) = \mathbf{1}(t).$$

Si dica quale delle seguenti alternative relative all'uscita y(t) del sistema è quella CORRETTA.

Il sistema è non BIBO stabile, quindi la risposta è infinita.

- $y(t) = \mathbf{1}(t)\frac{2}{9}(e^{3t}(3t+1)+1)$
- $y(t) = \mathbf{1}(t)\frac{2}{9}(e^{3t}(3t-1)-1)$
- $y(t) = \mathbf{1}(t)\frac{2}{9}(e^{3t}(3t-1)+1)$
- Nessuna delle scelte elencate

Domanda 7 Si consideri il sistema Tempo Continuo lineare tempo invariante descritto dalla seguente risposta all'impulso:

$$h(t) = \mathbf{1}(t)e^{-2t}$$

e consideriamo l'ingresso:

$$u(t) = \mathbf{1}(t)t.$$

Si dica quale delle seguenti alternative relative all'uscita y(t) del sistema è quella CORRETTA.

- $y(t) = \frac{1}{4}(2t + e^{-2t} 1)$
- Nessuna delle scelte elencate
- $y(t) = \frac{1}{4}(2t e^{2t} 1)$
- $y(t) = \frac{1}{4}(2t + e^{-2t} + 1)$
- $y(t) = \frac{1}{4}(2t e^{-2t} 1)$

Domanda 8 Si consideri il sistema Tempo Continuo lineare tempo invariante descritto dalla seguente risposta all'impulso:

$$h(t) = \mathbf{1}(t)e^{-2t}$$

e consideriamo l'ingresso:

$$u(t) = \mathbf{1}(t)t.$$

Si dica quale delle seguenti alternative relative all'uscita y(t) del sistema è quella CORRETTA.

- $y(t) = \mathbf{1}(t)\frac{1}{4}(2t e^{2t} 1)$
- Nessuna delle scelte elencate
- $y(t) = \mathbf{1}(t)\frac{1}{4}(2t + e^{-2t} + 1)$
- $y(t) = \mathbf{1}(t)\frac{1}{4}(2t e^{-2t} 1)$
- $y(t) = \mathbf{1}(t)\frac{1}{4}(2t + e^{-2t} 1)$

Domanda 9 Si consideri il sistema Tempo Continuo lineare tempo invariante descritto dalla seguente risposta all'impulso:

$$h(t) = \mathbf{1}(t)e^{-2t}$$

e consideriamo l'ingresso:

$$u(t) = \begin{cases} 1 & t \in [0, 1] \\ 2 & \text{otherwise} \end{cases}$$

Si dica quale delle seguenti alternative relative all'uscita y(t) del sistema è quella CORRETTA.

Nessuna delle scelte elencate

Il sistema è non-lineare quindi non si può calcolare l'uscita a partire dalla risposta impulsiva.

 $y(t) = \begin{cases} \frac{1}{2} - \frac{e^{-2t}}{2} & t \in [0, +\infty] \\ 0 & t < 0 \end{cases}$

 $y(t) = \begin{cases} \frac{1}{2} - \frac{e^{-2t}}{2} & t \in [0, 1] \\ 0 & t < 0 \\ \frac{1}{2} - \frac{e^{-2}}{2} + 1 - e^{-2t} & t \ge 1 \end{cases}$

 $y(t) = \begin{cases} \frac{1}{2} - \frac{e^{-2t}}{2} & t \in [0, 1] \\ 0 & t < 0 \\ \frac{1}{2} - \frac{e^{-2t}}{2} + 1 - e^{-2t} & t \ge 1 \end{cases}$

Domanda 10 Si considerino due sistemi tempo continui con risposte rispettivamente date da:

$$h_1(t) = \mathbf{1}(t)2e^{-2t}$$

$$h_2(t) = \mathbf{1}(t)t^2e^{-3t}$$

Si supponga di connetterli in **serie**. Si dica quale delle seguenti è la risposta all'impulso h(t) per $t \ge 0$ dell'interconnessione CORRETTA.

- Nessuna delle alternative proposte.
- $-4e^{-2t} + 2e^{-3t}(-t^2 2t 2)$

+0/11/50+

2 Soluzioni esercizi sul capitolo 3

- 1. Nessuna delle alternative proposte
- 2. La risposta è collegata a un sistema causale e BIBO stabile
- 3. La risposta è collegata a un sistema causale e BIBO instabile
- 4. La risposta è collegata a un sistema non causale e BIBO stabile

5.
$$y(t) = \mathbf{1}(t)\frac{2}{9}(1 - e^{-3t}(3t+1))$$

6.
$$y(t) = \mathbf{1}(t)\frac{2}{9}(e^{3t}(3t-1)+1)$$

7. Nessuna delle scelte elencate

8.
$$y(t) = \mathbf{1}(t)\frac{1}{4}(2t + e^{-2t} - 1)$$

9.

$$y(t) = \begin{cases} \frac{1}{2} - \frac{e^{-2t}}{2} & t \in [0, 1] \\ 0 & t < 0 \\ 1 - \frac{e^{-2t}}{2} - \frac{e^{-2(t-1)}}{2} & t \in [1, +\infty] \end{cases}$$

10.
$$-4e^{-2t} + 2e^{-3t}(-t^2 - 2t - 2)$$