Extreme Value in Financial Statistics

Killian Martin-Horgassan

Ecole Polytechnique Fédérale de Lausanne killian.martin-horgassan@epfl.ch

Friday 26th June 2015

Table of contents

- Introduction
- 2 The two extremal problems
- Looking into financial data
- Statistics of extremes & financial data

Introduction

What we have Data about past events e.g. the record of the prices of a stock over time.

What we want to know Values taken at <u>future extreme events</u> e.g. maximum price between T and $T + \Delta T$.

Settings

```
Observations (X_n)_{n\geq 0} i.i.d. rvs \sim F_X.

Maxima (M_n)_{n\geq 0}=(\max_{0\leq i\leq n}(X_i))_{n\geq 0}

Standardized maxima (M_n^*)_{n\geq 0}=(\frac{M_n-b_n}{a_n})_{n\geq 0},\ a_n>0,\ b_n\in\mathbb{R}
```

Convergence in distribution of $(M_n^*)_{n\geq 0}$?

- Possible limits ?
 - ⇒ extremal limit pb
- Under what conditions ?
 - → domain of attraction pb

Fisher-Tippett-Gnedenko Theorem

Theorem (Fisher-Tippett-Gnedenko)

If the sequence of standardized maxima converges to a non-degenerate distribution, then this distribution is either a Gumbel, a Frechet or a Weibull distribution.

Extreme value distributions

- Fréchet $\Phi_{\alpha}(x) = \exp(-x^{\alpha})$
- Weibull $\Psi_{\alpha}(x) = \exp(-|x|^{\alpha})$
- **Gumbel** $\Delta(x) = \exp(-\exp(-x))$

Domain of attraction

- Domain of attraction of an EV distribution \implies set of F_X such that the standardized maxima converge to this EV distribution.
 - Notation : $\mathcal{D}(\cdot)$ where $\cdot = \Phi_{\alpha}$, Ψ_{α} or Δ .
- Hazard function

$$r(x) = \frac{f_X(x)}{1 - F_X(x)}$$

Von Mises' Theorem

Theorem (Von Mises' Theorem)

- If $x^+ = +\infty$ and $xr(x) \xrightarrow[x \to +\infty]{} \alpha > 0$, then $F_X \in \mathcal{D}(\Phi_\alpha)$.
- If $x^+ < +\infty$ and $(x^+ x)r(x) \xrightarrow[x \to x^+]{} \alpha > 0$, then $F_X \in \mathcal{D}(\Psi_\alpha)$.
- If \exists neighbourhood of x^+ where $r(x) \ge 0$, differentiable and $\frac{\mathrm{d}r}{\mathrm{d}x}(x) \xrightarrow{} 0$, then $F_X \in \mathcal{D}(\Delta)$.

Looking into financial data

Our starting point : 5 stocks listed on the Paris Stock Exchange. Stock price data over 15 years.

The Black-Scholes model for stock prices

The price increment at time t should be proportional to the price at time t. **SDE** :

$$\begin{cases} dS_t = \mu S_t dt + \sigma S_t dB_t \\ S(0) = s_0 \end{cases}$$

Solution: Geometric Brownian Motion

$$S_t = s_0 \exp((\mu - \frac{\sigma^2}{2})t + \sigma B_t)$$

Simulation using a GBM

Simulation using a GBM - observations

- The simulation may overestimate wrt to the actual prices.
- ullet On the whole \Longrightarrow rather satisfactory...
- ... except for the LVMH and even worse the Total stocks.
- sudden & large variations

 model performs very poorly.

Statistics of extremes & financial data (I)

Making the junction

References include

Jan Beirlant, Yuri Goegebeur, Johan Segers & Jozef Teugels Statistics of Extremes - Theory and Applications

Ruey S. Tsay

Analysis of Financial Time Series

Thanks for your attention !