

Kundendienstanleitung Repair service instructions Instructions pour le Service Instruzioni di servizio

Netzanschluß:

220 V 50 Hz (14 W max.)

Sicherungen:

Netz: T 160 mA

Betriebsspannung: + 5 V: T 1,2 A Betriebsspannung: + 29 V: T 400 mA

Lämpchen:

2 x 7 V/1 W

Bestückung (einschl. LED):

21 Transistoren 39 Dioden 10 IC's 2 Gleichrichter

19 LED's 5 LED-Displays

Funktionstasten:

MONO, AFC, MUTING, CHANNEL

Bereichstasten:

LW, MW, FM

Allgemeine Angaben

Wellenbereiche: FM:

87,5-104,5 MHz MW. 510 - 1630 kHz 145 - 365 kHz IW:

Zwischenfrequenz:

Besonderheiten:

10,7 MHz AM: 455 kHz

Kreise:

FM: 8 + 1 2 - fach Keramik-Filter 4 - fach Keramik-Filter.

 $AM \cdot 3 + 1$

9 kHz-Filter 5 - stellige quarzstabilisierte digitale Frequenz-

anzeige für alle Wellenbereiche

Automatische Umschaltung von kHz auf MHz mit LED-anzeige

LED-Anzeigefeld für Feldstärke- und Sender-Mitten-Anzeige

Technische Daten:

FM-Teil

Empfindlichkeit:

Stereo:

1 (< 1,5) μV für 26 dB S/N 5 (< 10) μV für 26 dB S/N

Rauschzahl:

< 7,5 dB 180 (> 150) kHz

Bandbreite: Nachbarkanalselektion:

65 (> 60) dB

HiFi-Stereo-Tuner T 100

Type 39810

Spiegelselektion:

70 (> 66) dB

Übertragungsbereich:

25 - 14000 Hz ± 3 dB

Unterschiede im Übertragungsmaß der beiden Stereokanäle:

< 0.8 dB

Ausgangsspannung am Decoder:

700 mV (± 1 dB) bei 40 kHz Hub 0,2 (< 0,5)% bei 1 kHz/40 kHz Hub

Übersprechdämpfung: von 250 bis 6300 H

bei U_{Ant.} = 1 mV > 40 dB > 26 dB

von 6300 bis 12500 Hz: Geräuschspannungs-

Mono 65 (>-60) dB Stereo 60 (> 57) dB

abstand: Pilottonunterdrückung:

Klirrfaktor:

bei 19 kHz: bei 38 kHz:

< 53 dB > 63 dB

AM-Unterdrückung: Begrenzungseinsatz: > 42 dB

Mutingeinsatz:

 $< 1 \mu V$ < 1,5 µV

Stereoeinsatz: gleitend

20 μV f. 25 dB Übersprechen (± 3 dB)

AFC-Fangbereich:

 $> \pm 150 \text{ kHz}$

AM-Teil

Empfindlichkeit: an Antennenbuchse 60/75 Ohm

für Ua = 250 mV (10 dB Rauschabstand) MW: 8 (< 15) μ LW: 15 (< 20) μ

8 (< 15) μV 15 (< 20) μV

>4,5 kHz (-3 dB)

Bandbreite:

> 62 dB \pm 9 kHz

Nachbarkanalselektion:

11 dB/kHz

Flankensteilheit Durchlaßkurve:

Spiegelselektion: MW: LW:

ZF-Sicherheit: MW: LW:

Klirrfaktor:

Fremdspannungsabstand:

< 0.5% bei U_{Ant} : = 10 mV, m = 30% 50 (> 46) dB bei U_{Ant}: = 10 mV, m = 30%

Abgleich und Einstellanweisung

1. Justieren des Skalenzeigers

Abstimmung auf linken Anschlag drehen. Zeiger auf Anschlagmarke einstellen.

2. Einstellen der Abstimmspannung (SE – ST/B 11063)
Tuner einschalten. Meßinstrument an Schleifer des Abstimmpotentiometers und an Masse anschließen. FM-Taste drücken. Abstimmung zum rechten Skalenende drehen und mit R 4015 FM-Abstimmung zum Inken Skalenende derben und mit R 4011 FM-Fußpunktspannung = 3,5 V einstellen. MW-Taste drücken. Abstimmung wieder nach rechts dreher und mit R 4020 AM-Oberspannung = 15 V einstellen. Abstimmung nach links drehen und mit R 4013 AM-Fußpunktspannung = 1 V einstellen.

3. Abgleich der FM-Schalteinheit (FM - ZF/ST 11065) mit Stereo-Abgleich

Von einem Abgleich des Zwischenfrequenzverstärkers ist normalerweise abzusehen, da selten Verstimmungen auftreten. Sollte ein Nachgleich erforderlich sein, so ist er wie folgt durchzuführen:
Wobbelabgleich (AFC und Mutingtaste nicht gedrückt)
Hinweis: Ein einwandfreier Abgleich der Durchlaß- und Diskriminatorkurve ist nur mit einem gleichspannungsverstärkenden Sichtgerät möglich.

	Einspeisung des Signals	Frequenze Wobbler	einstellung Empfänger	Bereich	Abgleichpunkt	Abgleich	
a) FM-ZF Kreise Mischteil	Wobbler an Antennen- eingang (ca. 2 μV HF-Spannung) senderfreie Stelle auf Skala suchen	ca. 103 MHz	ca. 103 MHz ~	FM	L 105 L 106	Kurve auf optimale Höhe und Symmetrie abgleichen	Sichtgerät an Mp. A
b) Demodu- lator- Kreise	Wobbler wie unter a)	103 MHz	103 MHz	FM	L 302	Kurve auf Symmetrie bringen	≥ 180 kHz Sichtgerät an Mp. F Null- instrument an
					L 303	Diskriminator- kurve linearisieren	Mp. B Mp. E + anschließen
					R 3026	Nulldurchgang auf ± OV einstellen	
c) Muting- Schalt- fenster	Wobbler wie unter a) Brücke @ entfernen	103 MHz	103 M Hz	FM	L 302 und R 3026	symmetrischen Schalteinsatz einstellen	
					mit R 3026	Nulldurchgang kontrollieren ± OV	Darstellen bei U _e ca. 10-20 μ\
					L 301·	ist fest auf 22 µH einge- stellt und braucht nicht abgeglichen werden	

Die ZF-Frequenz wird vom Keramik-Resonator F 3118 bestimmt und liegt bei:

_	Gruppe	Kennzeichnung	Zf	
	D: B: A: C:	schwarz blau rot orange	10,640 10,670 10,700 10,730	jeweils ± 30 kHz

d) HF-Abgleich		Meßsende	r	Abstimm	spannung	Empfänger 1	Abgleichp.	Abgleich auf	Bemerkung/Meßart
FM-Osz.	5 % V	40 kHz Hub	88 MHz 103 MHz		,6 V ,1 V	88 MHz 103 MHz	L 104 C 147	äuß. Max. Maximum	Voltmeter an Mp A und Masse
Vorkreis 1. Zwischenkr. 2. Zwischenkr.			88 MHz	3	3,6 V		L 101 L 102 L 103	Maximum	Abgleich wechselweise wiederholen, bis keine Verbesserung mehr
Vorkreis 1. Zwischenkr. 2. Zwischenkr.			103 MHz	15	,1 V	103 MHz	C 127 C 132 C 133	Maximum	möglich ist R 3010 in Mittenstellung
e) NF-Pegel	1 mV	40 kHz Hub	100 MHz	1,21		100 MHz	R 3027	700 mV	NF-Voltmeter am NF-Ausgang P 16 P 18
		Stereosend	er			Empfänger		<u> </u>	
f) PLL- Abgleich	1 mV	40 kHz Hub 1 kHz Mod.	ohne Pilot	R+L	100 MHz	100 MHz	R 3060	228 kHz	an R 3056 mit Zähler einstellen
g) Klirrfaktor- abgleich			9 % Pilot				R 3070 R 3069	Klirrf. Min. Klirrf. Min.	NF-Ausgang P 16 NF-Ausgang P 18
h) Stereo-Über- sprech- dämpfung				L			R 3046	Übersprech- minimum	NF-Ausgang P 16 abgleichen
				R				Übersprech- minimum	NF-Ausgang P 18
i) Automatische Übersprech- dämpfung	۷µ00						R 3043	Übersprech- dämpfung 30 dB	NF-Ausgang P 18

^{4.} Abgleic n der AM-Schalteinheit (AM-HF 11044)

a) Bereich e: MW: 510-1630 kHz \ jeweils Anschlag des Abstimmpot.

HF-Sparnung an Antenneneingang.
NF-Röhrenvoltmeter an NF-Ausgang.
Abstimmpspannung: 1 V – L-Ende, 15V – C-Ende.
b) Abgleic in und Einspeisung siehe folgende Tabelle
Wichtig! Eingangsspannung immer der Abgleichoperation anpassen.

c) Abgleichtabelle:

Abgleich	Einspeisung des Signals	Modu- lation	Meßsender	Empfänger	Bereichs- taste	Abgleich- element	Abgleich auf:	Meß- art	Bemerkungen
ZF-Kreis	Ant. 75 Ohm		*850 kHz	*850 kHz	MW	L 2032	Max.	Α	
MW-Osz.	Ant. 75 Ohm		510 kHz 1630 kHz	Anschl. L-Ende Anschl. C-Ende	MW	L 2030 C 2121	Max. Max.	Α	wiederholen bis optimal
MW-Ferrit- spule	Ant. 75 Ohm	AM 30%	560 kHz 1580 kHz	560 kHz 1580 kHz	MW	L 2027 C 2085	Max. Max.	Α	wiederholen bis optimal
LW-Osz.	Ant. 75 Ohm		145 kHz 365 kHz	Anschl. L-Ende Anschl. C-Ende	LW	L 2029 C 2123	Max. Max.	Α	wiederholen bis optimal
LW-Ferrit- spule	Ant. 75 Ohm		200 kHz 330 kHz	200 kHz 330 kHz	LW	L 2028 C 2088	Max. Max.	Α	wiederholen bis optimal
9 kHz-Kreis	üb. 0,1 μF an Punkt 6 TDA 1046		9 kHz (250 mV)	beliebig	MW	L 2033	Min.	A	

^{*}Die Zwischenfrequenz ist vom Keramik-Resonator bestimmt, Es muß daher über die Eingangsfrequenz (1 MHz) mit Wobbelsender abgeglichen werden. A) mV-Meter (NF) an Tuner-NF-Ausgang

d) NF-Pegeleinstellung: Eingangsspannung U_e = 1 mV/30% mod. an Antennenbuchse. Mit Regler R 3049 am NF-Ausgang Punkt 16 und 18 (auf SE 11065) 700 mV einstellen.

5. Abgleich der ANZEIGE-Schalteinheit (ANZ 1 11071 + ANZ 2 11072)

Um Temperaturfehler auszuschalten, sollte dieser Abgleich erst nach 10-minütiger Betriebszeit gemacht werden.
Frequenzzähler über Tastkopf (C-arm) an Pin 18 von IC SAA 1070 anschließen. Mit C 6054 4,00 MHz einstellen.
Achtung: C-Last geht auf den Abgleich mit – 4 Hz/pf ein.
Beispiel: Tastenkopf = 10 pf, Korrektur = + 40 Hz Abgleich auf 3,999960 MHz (± 5 Hz)
Wurde ein AM- oder FM-Keramik-Resonator gewechselt, muß die ANZ-Schalteinheit neu codiert werden. Hierfür muß die genaue ZF-Frequenz (3 Stellen nach dem Komma bei FM, bei AM 1 kHz genau) ermittelt werden (Mit Frequenzzähler am Mischerausgang bzw. Zf-Eingang),
Frequenz mit nachstehender Codierungstabelle vergleichen und die angegebenen Codierungsbrücken schließen (siehe Abb. Anz-II-Platine).

Genauigkeit der Frequenzanzeige $=\pm$ 1 Digit \pm Genauigkeit der Zeitbasis

FM-Zf	(MHz)	Codi	erung			AM-Zf	(KHz)	Со			rücken
Gruppe 0	Gruppe 2/3	schließen			Gruppe	schließen)					
10,6000 10,6125 10,6250 10,6375 10,6500 10,6625 10,6750 10,6875 10,7000 10,7125 10,7250 10,7375 10,7500	10,7125 10,6125 10,6250 10,6375 10,6500 10,6625 10,6750 10,6875 10,7000 10,7125 10,7250 10,7375 10,7500 10,7625 10,7750 10,7875	a a a a a a	b b b b b b		0 0 0 0 0 0	450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465	e e e e e	f f f f f	9 9 9 9 9 9	h h h h h h h	R 21 R 21 R 21 R 21 R 21 R 21 R 21 R 21

6. Einstellung der Feldstärkeanzeige

FM: Bei einer Antenneneingangsspannung von 5 u V mit R 4009 so einstellen, daß die unterste rote LED aufleuchtet.

AM: Bei einer Antenneneingangsspannung von 15

V mit R 4028 wie oben einstellen.

7. Einstellung der Mittenanzeige (Meßpunkte \Box und \Box kurzschließen). Mit R 6034 (SE 11072) FM-Mittenanzeige so einstellen, daß bei $U_e = 10 \,\mu\text{V}$ die grüne LED leuchtet.

Für Servicezwecke ist die FM-ZF-ST-Platine nach oben ausklappbar. Lösen Sie dazu die beiden Blechschrauben des vorderen und hinteren Halterahmens dieser Platine am Chassis (eine Umdrehung). Die Platine kann jetzt nach oben geschwenkt werden und die darunter befindlichen Platinen werden gut zugänglich.

The FM-ZF-ST printed circuit board can be hinged upwards to facilitate

serving.

To do so undo the two self-tapping screws in the front and rear mounting frames of the printed circuit board on the chassis (one turn).

The circuit board can now be swung upwards so that the circuit boards below it are readily accessible.

Pour les besoins de maintenance, la platine FM-MF-St est basculable vers le haut. Dévisser à cet effet (d'un tour) les deux vis Parker des cadres avant et arrière fixant cette platine au châssis. La platine peut alors ête basculée vers le haut et les autres platines situées au-dessous sont facilement accessibles.

AD 1-03325/4

St - B - Platine, Best.- Nr. 11063 VN 40...

AD 1-03337/3

AM-Hf-Zf-Platine, Best.-Nr. 11044 VN 2...

AD 2-04164/2

AD 2-04181/1

Anz II-Platine, Best.-Nr. 11072 VN 60 ...

AD 2-04182/4

Anz III - Platine, Best.- Nr. 11073

AD 4-18994

UK-Platine, Best.-Nr. 11064

•

Achtung

Spannungen und Ströme ohne Signal, in Stellung UKW, mit Instrument 50 kOhm/V oder Röhrenvoltmeter gemessen. Bestickungspläne mit Sicht auf die Leiterseite gezeichnet. Die Nummer nach der Bezeichnung "VN" ist den jeweiligen auf den Bestückungsplänen voranzusetzen, um eine Übereinstimmung mit dem Schaltbild zu erzielen. Best.-Nr. — Bestellnummer für die jeweilige Platine.

Voltages and currents measured with a 50 kOhm/V instrument or vaccum-tube voltmeter, with no signal, VHF selected. Component arrangement diagrams drawn as viewed from the conductor side. For cross-reference with the circuit diagram, the number after the designation vNPw must be prefixed to the appropriate position number on the component arrangement diagrams. Best.-Nr. --- Order number for the appropriate printed circuit board.

Attenuation

Mesures des tensions et courants par un instrument à 50 kOhm/V ou par voltmètre électronique, sans signal, sur position Ondes ultra-courtes. Les plans d'équipement en composants sont dessinés avec vue sur côté circuit imprimé. Le noméro après le repère »VN» es à faire concider avec le numéro correspondant chaque fois sur le schéma de câblage en vue de concordance. Le N° de Cde (Best.-Nr.) est le N° de commande de la platine correspondante.

Attenzione

Attenzione
Tensioni e correnti misurate con strumento da 50 kOhm/V, oppure con voltmetro a valvola, senza segnale, in posizione UKW (FM).
Schema di montaggio illustrato dalla parte dei collegamenti (lato rame).
Il numero che segue i indicazione "VN" è da anteporre al corrispondenti numeri sullo schema di montaggio, per ottenere una corrispondenza
con lo schema elettrico.
Best.-Nr. — Numero di catalogo del corrispondente modulo.

General data:

Power supply (with max. pow consumption:

Fuses:

220 V 50 Hz 14 W

Mains: T 160 mA (slow-blow) Supply voltage + 5 V: T 1.2 A (slow-blow) Supply voltage + 29 V: T 400 mA (slow-blow)

Lamps:

2 x 7 V/1 W 21 Transistors

Complement (incl. LED)

39 Diodes 10 IC 2 Rectifiers 19 LED 5 LED displays

Function buttons:

Mono, AFC, Muting, Channel

Frequency range buttons:

LW, MW, FM

Wavebands:

FM: 87.5-104.5 MHz MW: 510 -1630 kHz LW: 145 -365 kHz

Intermediate frequency:

FM: 10.7 MHz AM: 470 kHz

Tuned circuits:

FM: 8 + 1, x 2 ceramic filter AM: 3 + 1, x 4 ceramic filter 9 kHz filter

Special features:

5-digit quartz-stabilized digital frequency indicator for all frequency ranges

Automatic switch-over from kHz to MHz

with LED indicator

LED indicator panel for field strength and station zero indication

Technical data:

FM Section

Sensitivity: Mono: Stereo:

1 (< 1.5) μV for 26 dB S/N ratio 5 (< 10) μV for 26 dB S/N ratio

Noise coefficient:

< 7.5 dB 180 (> 150) kHz

Adjacent channel rejection:

65 (> 60) dB

Image rejection: 70 (> 66) dB 25-14000 Hz ±3 dB Transmission range:

Difference in propagation ratio of both stereo channels:

< 0.8 dB

Output voltage at decoder: 700 mV (± 1 dB) at 40 kHz deviation

Distortion factor: 0.2 (< 0.5)% at 1 kHz/40 kHz deviation

Cross-talk attenuation: from 250 to 6300 Hz: at $U_{ant} = 1 \text{ mV}$ > 40 dB from 6300 to 12500 Hz: > 26 dB

Mono 65 (> 60) dB Stereo 60 (> 57) dB Weighted signal-to-noise

Pilot tone suppression: at 19 kHz:

> 53 dBat 38 kHz: > 63 dB AM suppression: > 42 dB Limiting threshold: $< 1\,\mu V$ Muting threshold: $< 1.5 \,\mu V$

Stereo threshold: sliding 20 μV for 25 dB cross-talk (± 3 dB)

AFC pull-in range: > + 150 kHz Oscillator constant: 3.5 kHz/o_v

AM section

at antenna socket 60/75 Ohm

Sensitivity: for $U_d = 0$ mV (10 dB S/N ratio) MW: **΄** 8 (< 15) μV 15 (< 20) μV > 4.5 kHz (- 3 dB) Bandwidth:

Adjacent channel rejection: > 62 dB \pm 9 kHz

Flank gradient transmission characteristic: 11 dB/kHz

Image rejection:

> 40 dBLW: > 30 dB

IF security:

 $>46 \, dB$ > 50 dB

Distortion factor: < 0.5% at $U_{ant} = 10$ mV, m = 30%

Unweighted signal-to-noise

 $50 (> 46) dB at U_{ant} = 10 mV, m = 30\%$

Balancing and setting instructions

1. Tuning scale indicator calibration

Rotate tuning capacitor to the left stop. Adjust the indicator to the left endstop marking.

2. Adjusting the tuning voltage (SE – ST/B 11063)
Switch on the tuner. Connect a measuring instrument to the wiper of the tuning potentiometer and to mass. Press the FM button. Rotate the tuning capacitor to the righthand end of the scale and, using R 4015, set and upper FM tuning voltage of 17.5 V. Rotate the tuning capacitor to the lefthand end of the scale and, using R 4011, adjust the FM low-end voltage to 3.5 V. Press the MW button. Again turn the tuning capacitor to the righthand stop and, using R 4020, set the AM upper voltage to 15 V. Turn the tuner to the left and use R 4013 to set the AM low-end voltage to 1 V.

3. Alignment of the FM switching unit (FM-ZF/ST 11063) with stereo balancing.

Since it very rarely goes off tune, there is normally no requirement to align the intermediate frequency amplifier. However, if re-trimming should become necessary, it must be carried out as follows:

Sweep alignment (AFC and muting button not pressed)

Note: Perfect balancing of the transmission and discriminator curves is only possible with the aid of a DC amplifying oscilloscope.

	Signal input	Frequenc Wobbulator	cy setting Receiver	Frequency range	Balance point	Adjust	
a) FM-IF circuit mixer section	Wobbulator on antenna input (approx. 2 µ V RF voltage) Locate transmission free position on scale	approx. 103 MHz	approx. 103 MHz	FM	L 105 L 106	Trim curve for optimum height and symmetry	Connect oscilloscope to Neutr. (Mp) A Bandwidth ≥ 180 kHz
b) Demodulator circuit	Wobbulator as a) above	103 MHz	103 MHz	FM	L 302	Adjust curve to symmetry	Oscilloscope to Neutr. (Mp) F
					L 303	Linearize discrimi- nator curve	Connect null indicator on Neutr. (Mp) B + Neutr. (Mp)
					R 3026	Adjust zero-axis crossing to ± OV	
c) Muting switching 'window'	Wobbulator as a) above Remove bridge ©	103 MHz	103 MHz	FM	L 302 and R 3026	Set symmetrical switching threshold	Display at U _e approx. 10- 20 µL V
					with R 3026	Cornfirm zero-axis crossing ± OV	·

The IF frequency is determined by the ceramic resonator F 3118 and lies at:

•		
Identification	IF	
black blue red orange	10.640 10.670 10.700 10.730	 ea;н• ± 30 kHz
	black blue red	black 10.640 blue 10.670 red 10.700

Replace bridge G Balancing of the mixer section is not intended since this component is supplied ready-aligned. Information only is provided for repairs which may become necessary.

d) RF balance		Signal gener	ator	tuning	yoltage	Receiver	Т	T	ich may become necessar
FM-osc.	5μV	40 kHz	88 MHz		3.6 V	88 MHz	Balance point		Remarks/Method of measurement
	↓ .	deviation	103 MHz		5,1 V	103 MHz	L 104 C 147	ext. max. Maximum	Voltmeter to Neutr. Mp A and mass
RF circuit 1st inter. circuit 2nd inter. circuit			88 MHz	(3,6 V	88 MHz	L 101 L 102 L 103	Maximum	Repeat alternate
RF circuit 1st inter. circuit 2nd inter. circuit			103 MHz	15	5,1 V	103 MHz	C 127 C 132	Maximum	improvement can be obtained. R 3010 to mid-position
e) AF level	1 mV	40 kHz	100 MHz	approx. 11	.2 V	100 MI	C 133		, promon
		deviation			,	100 MHz	R 3027	700 mV	AF-voltmeter on AF output P 16 P 18
		Stereo transm	nitter	Modulation		Receiver		·	
f) PLL- Balance	1 mV	40 kHz deviation 1 kHz modul	without pilot	R+L	100 MHz	100 MHz	R 3060	228 kHz	R 3056 balance
g) Distortion factor balance			9 % pilot				R 3070 R 3069	Dist. fact. min. Dist. fact. min.	AF output P 16
h) Stereo cross- talk attenuation				L			R 3046	Cross-talk minimum	AF output P 18 AF output P 16 balance
:\				R				Cross-talk minimum	AF-output P 18
i) Automatic crosstalk attenuation k) Noise suppressic Tune to a transm	30μ∨						R 3043	30 dB crosstalk attenuation	AF output P 18

4. Alignment of the AM switching unit (AM-HF 11044).

Alignment of the AM switching unit (AM-HF 11044).

a) Ranges: MW: 510-1630 kHz LW: 145-365 kHz pot. stop

RF voltage on antenna input.

AF thermionic valve voltmeter on AF output.

Tuning voltage: 1 V – L-end, 15 V C-end

b) Balancing and input, see following table Important! Allways adjust the input voltage to suit the balancing operation.

c) Balancing table:

Balance	Signal input	Modu- lation	Transmitter	Receiver	Freq. Band button	Balance on:	Adjust to:	Method of measure-	Remarks
IF circuit	Ant. 75 Ohm		*850 kHz	*850 kHz	MW	1.0000		ment	
MW Osc.	Ant. 75 Ohm	-1			IVIVV	L 2032	Max.	Α	
1404/4		_	510 kHz 1630 kHz	connect. L-end connect. C-end	MW	L 2030 C 2121	Max. Max.	Α	Repeat until
MW ferrite coil	Ant. 75 Ohm	AM 30%	560 kHz 1580 kHz	560 kHz 1580 kHz	MW	L 2027	Max.	Α	optimum Repeat until
LW Osc.	Ant. 75 Ohm	7	145 kHz		-	C 2085	Max.		optimum
		_	365 kHz	connect. L-end connect. C-end	LW	L 2029 C 2123	Max. Max.	Α	Repeat until
LW ferrite coil	Ant. 75 Ohm		200 kHz 330 kHz	200 kHz	LW	L 2028	Max.	A	optimum Repeat until
9 kHz	through 0.1 µF			330 kHz		C 2088	Max.		optimum
circuits	on Point 6 TDA 1046		9 kHz (250 mV)	optional	MW	L 2033	Min.	Α	

*The intermediate frequency is determined by the ceramic resonator. It must therefore be trimmed via the input frequency (1 MHz) with the wobbulator. A) mV-Range voltmeter (AF) on tuner AF output.

d) AF Level adjustment: Input voltage $U_{\rm e}=1$ mV/30% modulation on antenna socket. Using regulator R 3049, set 700 mV at the AF output Point 16 and 18 (on SE 11065).

5. Alignment of the INDICATOR switching unit (ANZ 1 11071 + ANZ 2 11072), see table.

Alignment of the INDICATOR switching unit (ANZ unit). Connect the frequency counter via the probe (low C) to pin 18 of IC SAA 1070. Set 4.00 MHz with C 6054. Caution: Probe capacitive load (– 4 Hz/pF) is to be taken into account when aligning.

Example: Probe = 10 pF, correction = + 40 Hz. Align to 3.999960 MHz (± 5 Hz).

If an FM or AM ceramic resonator is exchanged, then the ANZ switching unit must be recoded. The exact IF frequency must be determined – to 3 decimal places on FM, 1 kHz exactly on AM (With frequency counter on the mixer output or the IF input).

Compare the frequency with the following coding table and connect the indicated coding bridges (see Illustration of Anz-II PC-board).

Coding table (SAA 1070, Group 2)

FM-IF (MHz)	Cor	nnect brid	coding ges	AM-IF (kHz)		С	onne bri	ct co	
10,7125 10,6125 10,6250 10,6375 10,6500 10,6625 10,6750 10,6875	a a a	b b	C C C	450 451 452 453 454 455 456 457	e e e	f f	g g g	h h h h h	R 21

FM-IF (MHz)	Connect coding bridges		AM-IF (kHz)		C	onnect brid	coding		
10,7000 10,7125 10,7250 10,7375 10,7500 10,7625 10,7750 10,7875	a a a	b b	C C C	9999999	458 459 460 461 462 463 464 465	e e e	f f	g g g	R 21 R 21 R 21 R 21 R 21 R 21 R 21

6. Setting the field strength indicator FM: With an antenna input voltage of 5 μ V, adjust on R 4009 until the lowest red LED illuminates. AM: With an antenna input voltage of 10 μ V, adjust on R 4028 as above. 7. Setting of the zero indicator (short circuit test points \Box and \Box) With R 6034 (SE 11072) adjust the FM zero indicator so that the green LED illuminates at U_e = 10 μ V.

Informations générales:

Branchement secteur (avec consommation max. de puisssance):

220 V 50 Hz 14 W

Secteur: T 160 mA Fusibles:

Secteur: 1 100 mA Tension de service: +5V: T 1,2 A Tension de service: +29V: T 400 mA

Ampoules:

3 x 7 V/1 W

Equipement (y compris les LEDs):

21 transistors

39 diodes 10 circuits intégrés 2 redresseurs 19 LED's

5 affichages LED Mono, CAF, Silencieux d'accord, Canal

Touches de fonctions: Touches de gammes d'ondes:

Gammes d'ondes:

GO PO FM

FM: 87,5- 104,5 MHz PO: 510 -1630 kHz GO: 145 - 365 kHz

Moyenne Fréquence:

FM: 10,7 MHz AM: 460 MHz

Nombre de circuits:

Particularités:

FM: 8 + 1 filtre céramique 2 x AM: 3 + 1 filtre céramique 4 x filtre 9 kHz

Pour toutes les gammes d'ondes, indicateur digital de fréquence stabilisé par quartz. Commutation automatique des kHz aux MHz avec affichage LED. Tableau indicateur LED pour affichage

de l'intensité de champ et de

Caractéristiques techniques:

Partie FM

Sensibilité:

Mono: Stéréo:

 $\begin{array}{l} 1~(<1.5)~\mu\textrm{V pour 26 dB S/N} \\ 5~(<10)~\mu\textrm{V pour 26 dB S/N} \\ <7.5~\textrm{dB} \end{array}$

Souffle: Largeur de bande:

180 (> 150) kHz

Protection contre la

diaphonie:

353344

65 (> 60) dB

Sélection de fréquence-image:

70 (> 66) dB 25-14000 Hz ± 3 dB Bande passante:

Différence de niveau de transmission dans les 2 canaux stéréo:

Tension de sortie au decodeur:

700 mV (± 1 dB) pour 40 kHz d'excursion 0,2 (< 0,5)% pour 1 kHz/40 kHz d'excursion

Taux de distorsion: Amortissement

 $\begin{array}{l} pour~U_{ant.}=1~mV\\ >40~dB\\ >26~dB \end{array}$

< 0,8 dB

d'interférence: entre 250 et 6300 Hz: entre 6300 et 12500 Hz:

Rapport signal/bruit:

Mono 65 (> 60) dB Stéréo 60 (> 57) dB

Suppression du son-pilote: à 19 kHz:

> 53 dB > 63 dB à 38 kHz: > 42 dB Suppression AM: $< 1 \,\mu V$ Seuil de limitation:

Seuil du silencieux

 $< 1,5 \,\mu\text{V}$ d'accord:

Seuil stéréo à décalage:

20 μ V f, 25 dB diaphonie (± 3 dB)

Plage d'efficacité CAF: $\,>\pm\,$ 150 kHz

Constance d'oscillateur:

3.5 kHz/oz

Partie AM

pour U_d = 0 mV (10 dB de rapport signal/bruit) sur la prise d'antenne 60/75 ohms

GÖ:

Largeur de bande: > 4,5 kHz (-3 dB)

Protection contre la diaphonie:

> 62 dB \pm 9 kHz

Pente de la courbe de bande passante:

11 dB/kHz

Sélection de fréquence-

image:

> 40 dB > 30 dB

GÖ: Fiabilité MF:

> 46 dB > 50 dB < 0,5% pour U_{ant} : = 10 mV, m=30%

PO: GO: Taux de distorsion:

Bande passante de protection contre la diaphonie:

50 (> 46) dB pour U_{ant} : = 10 mV, m = 30 %

Instructions d'alignement et de réglage

1. Alignement de l'aiguille du cadran
Tourner le réglage d'accord sur butée gauche. Amener l'aiguille sur le repère de butée.

2. Réglage de la tension d'alignement (SE – ST/B 11063).
Brancher le tuner. Raccorder l'instrument de mesure au curseur du potentiomètre d'alignement et à la masse. Enfoncer la touche FM. Tourner le réglage d'accord vers la butée droite du cadran, et à l'aide de R 4015, régler la tension supérieure d'alignement FM à 17,5 V.
vers la butée droite du cadran, et à l'aide de R 4011, régler la tension inférieure d'alignement FM à 3,5 V. Enfoncer la touche PO. Tourner le réglage d'accord vers la butée droite et à l'aide de R 4020, régler la tension supérieure d'alignement AM à 15 V. Tourner le réglage d'accord vers la butée droite et à l'aide de R 4020, régler la tension supérieure d'alignement AM à 15 V. Tourner le réglage d'accord à gauche, et à l'aide de R 4013, régler la tension inférieure d'alignement AM à 1 V.

3. Alignement du module de commutation FM (FM – ZF/ST 11063)

Avec alignement sièred.

Il n'y a pas lieu normalement de procéder à un alignement de l'ampli de fréquence intermédiaire, car il est rare que des désaccords y apparaissent. Si un réalignement devait être nécessaire, il faut procéder comme suit:

Alignement par wobbulation (touches CAF et Réglage silencieux (muting) non efoncées). Remarque: Un alignement impeccable des courbes de bande passante et de discriminateur n'est possible qu'avec un instrument de visualisation à ampli courant continu.

	Injection du signal	Réglage de Wobbulateur	fréquence Récepteur	Gamme d'onde	Point d'alignement	Alignement	
a) Circuits FM-FI Etage changeur	Wobbulateur sur entrée d'antenne (env. 2 µV de tension HF) Rechercher sur le cadran un point sans émission.	env. 103 MHz	env. 103 MHz	FM	L 105	Aligner la courbe à une hauteur optimale et sur symétrie	Instrument de visualisation sur point A Largeur de bande ≥ 180 kHZ
b) Circuits de démodulation	Wobbulateur comme sous a)	103 MHz	103 MHz	FM	L 302	Aligner la courbe sur symétrie	Instrument de visualisation sur point
					L 103	Rendre la courbe de discriminateur linéaire	Instrument à zéro central sur point B + point E
					R 3026	Ajuster le passage par O à ± OV	point E
c) Fenêtre d'accord	Wobbulateur comme sous a)	103 MHz	103 MHz	FM	L 302 et R 3026	Ajuster la symétrie de l'équipage	
silencieux	Couper le pont G				à l'aide de R 3026	Contrôler le passage par O ± OV	A effectuer avec env. U _e = 10-20 μV

La fréquence intermédiaire ZF est déterminée par le résonateur céramique F 3118 et se situe autour de

Groupe	Repère	Fr. Int. ZF	
D:	noir	10,640	toujours ± 30 kHz
B:	bleu	10,670	
A:	rouge	10,700	
C:	orange	10,730	

Remettre en place le pont G Un réalignement de l'étage changeur n'est pas prévu, étant donné que ce composant est livre à l'état aligné. Seules sont donnés des indications pour réparations nécessaires.

d) Alignement HF		Emetteur de m	esure	Tension o	l'alignement	Récepteur	Point de régl.	Alignom	Remarque/Mode do
Oscillat. FM	۷µ5	excursion 40 kHz	88 MHz 103 MHz	3	3,6 V 5,1 V	88 MHz 103 MHz	L 104 C 147	Alignem. sur Max. extr. Max.	Remarque/Mode de mesure Voltmètre sur point A et à la masse.
Circuit d' entrée 1. Circ. interm. 2. Circ. interm.			88 MHz	3	3,6 V		L 101 L 102 L 103	Max.	Répéter l'alignement alternativement, jusqu'a
Circuit d'entrée 1. Circ. interm. 2. Circ. interm.			103 MHz	15,1 V		103 MHz	C 127 C 132 C 133	Max.	impossibilité d'amélioration. R 3010 en position milieu
e) Niveau BF	1 mV	excurs. 40 kHz	100 MHz	env. 11	,2 V	100 MHz	R 3027 700 mV	700 mV	Voltmètre BF sur sortie BF P 16, P 18
		Emetteur sté	réo	Modulation		Récepteur			
f) Alignement PLL	1 mV	excurs. 40 kHz modul. 1 kHz	sans Pilote	R+L	100 MHz	100 MHz	R 3060	228 kHz	ajuster à R 3056
g) Réglagedutaux de distorsion			Pilote 9 %				R 3070 R 3069	Min. de distor. Min. de distor.	Sortie BF, P 16 Sortie BF, P 18
h) Amortissement de diaphonie				L			R 3046	Minimum de diaphonie	Sortie BF, P 16 à aligner
				R				Minimum de diaphonie	Sortie BF, P 18
i) Taux de distorsion automatique	30μ∨						R 3043	30 dB de diaphonie	Sortie BF, P 18

4. Alignement du module de commutation AM (AM-HF 11044).

dans chaque cas, potentiomètre de réglage en butée.

a) Gammes: PO: 510-1630 kHz } dans
GO: 145- 365 kHz } de ré
Tension HF sur la prise d'antenne.
Voltmètre électronique BF sur la sortie BF.
Tension d'alignement: 1 V côté L, 15 V côté C.

b) Pour l'alignement et l'injection du signal, voir le tableau suivant. Important! Adapter toujours la tension d'entrée à l'opération d'alignement.

c) Tableau d'alignement:

Alignement	Injection du signal	Modu- lation	Réglage Emetteur	fréquence Récepteur	Touche de gamme d'onde	Elément de réglage	Alignement sur:	Mode de mesure	Remarques
Circuit FI	Ant. 75 Ohm		*850 kHz	*850 kHz	PO	L 2032	Max	A	
Oscillat. PO	Ant. 75 Ohm		510 kHz 1630 kHz	Butée L Butée C	PO	L 2030 C 2121	Max. Max.	A	à répéter jusqu'à réglage optimal
Bobine PO ferrite	Ant. 75 Ohm	AM 30%	560 kHz 1580 kHz	560 kHz 1580 kHz	PO	L 2027 C 2085	Max. Max.	Α	à répéter jusqu'à réglage optimal
Oscillat. GO	Ant. 75 Ohm		145 kHz 365 kHz	Butée L Butée C	GO	L 2029 C 2123	Max. Max.	Α	à répéter jusqu'à réglage optimal
Bobine GO ferrite	Ant. 75 Ohm		200 kHz 330 kHz	200 kHz 330 kHz	GO	L 2028 C 2088	Max. Max.	A	à répéter jusqu'à réglage optimal
Circuit 9 kHz	à travers 0,1 μV au point 6 TDA 1046		9 kHz (250 mV)	au choix	PO	L 2033	Min.	A	

^{*}La fréquence intermédiaire FI est déterminée par le résonateur céramique. Il convient donc d'effectuer l'alignement par la fréquence d'entrée (1 MHz) avec émetteur-wobbulateur.

A) Le milli-voltmètre (BF) étant branché sur la sortie BF du tuner.

d) **Réglage du niveau BF:**Tension d'entrée U_e = 1 mV/30% mod. sur prise d'antenne.
Avec le potentiomètre R 3049 sur la sortie BF, régler
700 mV au point 16 et 18 (sur SE 11065).

5. Alignement du module de commutation Indicateurs (ANZ 1 11071 + ANZ 2 11072) Voir tableau.

Raccorder le fréquencemètre par l'intermédiaire du palpeur (bras C) sur Pin 18 du Cl SAA 1070. Ajuster à 4,00 MHz à l'aide de C 6054.

Attention: La charge C intervient sur l'alignement pour – 4 Hz/pF. Exemple: Palpeur = 10 pF, correction = + 40 Hz. Alignement sur 3,999960 MHz (± 5 Hz) Si un résonateur AM ou FM a été remplacé, il faudra coder à nouveau le module de commutation ANZ. A cet effet, il y a lieu de déterminer avec précision la fréquence il tentrée daire Zf (avec 3 chiffres derrière la virgule en FM, et à 1 kHz près en AM) à l'aide du frequencemètre branché sur la sortie de l'étage changeur, ou respect. sur l'entrée FI. Comparer la fréquence avec le tableau de codage ci-après, et fermer les ponts de codage indiqués (voir fig. platine Anz-II)

F. int. FM (MHz)			le pont dage	F. int. A (kHz)	F. int. AM (kHz)		erme de co		
10,7125 10,6125 10,6250 10,6375 10,6500 10,6625 10,6750 10,6875	a a a	b b	C C C	450 451 452 453 454 455 456 457	e e e	f f	g g g	h h h h h	R2

F. int. FM	Fermer le pont			F. int. A	Fermer le pont				
(MHz)	de codage			(kHz)	de codage				
10,7000 10,7125 10,7250 10,7375 10,7500 10,7625 10,7750 10,7875	a a a	b b	c c c	d d d d d d d	458 459 460 461 462 463 464 465	e e e	f f	g g g	R 21 R 21 R 21 R 21 R 21 R 21 R 21

6. Réglage de l'indicateur d'intensité de champ.
FM: Pour une tension d'entrée de l'antenne de 5 μV, effectuer le réglage à l'aide de R 4009 de telle façon, que la diode LED rouge inférieure s'allume.
AM: Pour une tension d'entrée de l'antenne de 10 μV, effectuer le réglage comme ci-dessus à l'aide de R 4028.

7. Réglage de l'indicateur à zéro central. (court-circuiter les points de mesure B et E).

A l'aide de R 6034 (SE 11072) effectuer le réglage FM au centre, de telle façon que pour U_e = 10 μV, la diode LED verte s'allume.

Generalita:

Alimentazione rete (con assorbimento max) 220 V 50 Hz 14 W

Fusibili:

Rete: T 150 mA

Tensione di esercizio + 5 V: T 1,2 A Tensione di esercizio + 29 V: T 400 mA

2 x 7 V/1 W

Lampadine:

Componenti (compresi LED)

21 transistori

39 diodi 10 C.I. 2 raddrizzatori 19 LED 5 LED-Displays

Tastifunzioni: Tasti gamme d'onda Mono, AFC, Muting, Channel OL. OM. FM

Gamme d'onda:

FM: 87,5- 104,5 MHz OM: 510 -1630 kHZ OL: 145 - 365 kHz

FI:

FM: 10,7 MHz AM: 460 kHz

Circuiti

FM: 8 + 1 2 x filtro ceramico AM: 3 + 1 4 x filtro ceramico

filtro da 9 kHz.

Particolaritá:

indicatore digital delle frequenze a 5 cifre, stabilizzato al quarzo, per tutte le

gamme d'onda.

Commutazione automatica da kHz a MHz con indicatore LED. Indicatore LED dell'intensitá di campo e indicatore centraggio stazioni FM.

Caratteristiche Tecniche:

Sezione FM

Sensibilitá: Mono: Stereo:

1 (< 1,5) μ V per 26 dB S/N 5 (< 10) μ V per 26 dB S/N

Indice fruscio:

 $< 7.5 \, dB$

Larghezza di banda:

180 (> 150) kHz

Selezione canale contiguo:

65 (> 60) dB 70 (> 66) dB Selezione speculare: 25-40000 Hz ± 3 dB Risposta alla frequenza:

< 0,8 dB

 $\begin{array}{l} a \, u_{Ant.} = 1 \; mV \\ > 40 \, dB \\ > 26 \, dB \end{array}$

> 53 dB > 63 dB

> 42 dB

 $< 1 \mu V$ $< 1,5 \,\mu\text{V}$

± 150 kHz

60/75 Ohm

8 (< 15) μV 15 (< 20 μV

4,5 kHz (- 3 dB)

62 dB + 9 kHz 11 dB/kHz

> 40 dB > 30 dB

Mono 65 (> 60) dB Stereo 60 (> 57) dB

 $20 \mu V f$, 25 dB diafonia (± 3 dB)

Differenze di risposta nei

due canali stereo:

Tensione di uscita al Decoder à 40 Hz.:

Distorsione:

700 mV (± 1 dB) 0,2 (< 0,5)% a 1 kHz/40 kHz Hub

Attenuazione diafonica: da 250 à 6300 Hz: da 6300 à 12500 Hz:

Rapporto segnale/fruscio:

Soppressione pilota: à 19 kHz:

à 38 kHz:

Sopressione AM: Limite segnale ingresso:

Impiego Muting:

Impiege stereo: flessibile

Campo azione AFC:

Costanza oscillatore

3,5 kHz/o_k

Sezione AM

Sensibilitá alla presa d'antenna (10 dB rapporto

fruscio)

OM: ŎĽ:

Larghezza di banda:

Selezione canale contiguo:

Picco d. curva passante:

Selezione speculare: OM: OL:

Sicurezza FI: OM:

OL:

> 46 dB > 50 dB

Distorsione:

<0.5% à $U_{Ant}=10~mV,\,m=30\%$

Rapporto tensione indotta:

 $50 (> 46) dB à U_{Ant} = 10 mV, m = 30\%$

Istruzioni di allineamento e di registrazione

1 Allineamento della lancetta della scala Girare la sintonia su margine sinistro. Porre la lancetta sulla tacca del margine.

2. Allineamento della tensione die sintonizzazione (SE-ST/B 11063)

Accendere il Tuner. Allacciare lo strumento di misura al cursore del potenziometro della sintonia ed a massa. Schiacciare il tasto MF.

Girare la sintonia al margine destro della scala e regolare per mezzo di R 4015 la tensione superiore di sintonia sul valore di 17,5 V.

Girare la sintonia al margine sinistro della scala e registrare su 3,5 V la tensione del punto di base MF per mezzo di R 4011. Schiacciare il tasto MW (onde medie).

Girare la sintonia di nuovo verso destra e regolare la tensione superiore delle medie su 15 V per mezzo di R 4020. Girare la sintonia verso sinistra e registrare su 1 V la tensione di base delle onde medie per mezzo di R 4013.

3. Allineamento del gruppo di comando delle MF (FM-ZF/ST 11063)
con equalizzatore stereo. Vedere la tabella.

Normalmente bisogna evitare l'allineamento dell'amplificatore di frequenza intermedia in quanto esso non esce quasi mai di sintonia. Se però dovesse veramente essere necessario un allineamento, procedere in questo modo:
Allineamento di vobulazione (tasti AFC e Muting non schiacciati)
Nota: un allineamento perfetto della risposta di frequenza e della curva del discriminatore è possibile solo per mezzo di un display ad amplificazione di continuo.

	Alimentazione segnale	Registrazior Vobulatore	le frequenza Riceritore	Gamma	Punto di allineamento	Allineamento	
a) Circuiti MF-FI miscelatore	Vobulatore allo ingresso dell'antenna (ca. 2 µV tensione HF) cercare sulla scala una posizione dove non vi siano stazioni transmittenti	ca. 103 MHz	ca. 103 MHz	MF	L 105 L 106	allineare la curva cercando l'altezza e la simmetria ottimale	Display al punto di misura A Larghezza di banda ≥ 180 kHz
b) circuiti del demodula- tore	Vobulatore come per a)	103 MHz	103 MHz	MF	L 302	simmetrizzare la curva	Allacciare il display al punto di
					L 303	linearizzare la curva del discriminatore	misura F Allacciare lo strumento di azzeramento al punto di misura B +
					R 3026	Registrare il passaggio dallo 0 su ± 0 V	punto die misura E
c) Finestra comando Muting	Vobulatore come per a) staccare il ponte G	103 MHz	103 MHz	MF	L 302 e R 3026	simmetrizzare il punto di comando	Rappresen- tazione a Ue = ca. 10-20 μV
					con R 3026	controllare il passaggio dallo zero ± 0 V	·

La frequenza intermedia viene determinata dal risonatore in ceramica F 3118 ed è di

gruppo	colore di identificazione	FI	
D: B: A: C:	nero blù rosso arancio	10,640 10,670 10,700 10,730	 rispettivamente ± 30 kHz

Inserire nuovamente il ponte 🗟 L'allineamento del miscelatore non a previsto in quanto il componente viene fornito già allineato. Per riparaziono eventualmente necessarie vengono date solo

d) Allineamento HF	Trasm	nittente di Tensi	one misura	di sinton	izzazione	Ricevente	Punto di allineam.	Allineamento	Osservazioni/metodo di
Osscillatore MF	۷µ5	40 kHz deviazione	88 MHz 103 MHz	3,6 V 15,1 V		88 MHz 103 MHz	L 104 C 147	max. esterno	Voltmetroal punto di mi- sura A e a massa
Prestadio 1. stadio int. 2. stadio int.			88 MHz	3,6 V		88 MHz	L 101 L 102 L 103	massimo	Ripetere l'all ineamento alternativamente fino a quando non è più pos-
Prestadio 1. stadio int. 2. stadio int.			103 MHz	15	,1 V	103 MHz	C 127 C 132 C 133	massimo	sibile un miglioramento R 3010 in posizione centrale
e) Livello bassa frequenza	1 mV	40 kHz deviazione	100 MHz	ca. 11,2 V		100 MHz	R 3027	700 mV	Voltmetrobasse frequenze alluscita basse frequenzeP 16, P 18
		Trasmettitore s	tereo	Modul	azione	Ricevitore			
f) Allineamento PLL	1 mV	40 kHz deviazione 1 kHz modulazione	senza pilota	D + S	100 MHz	100 MHz	R 3060	228 kHz	Registrareal R 3056
g) Allineam. del fattore di distor.			9 % pilota				R 3070 R 3069	Fatt. dist. min. Fatt. dist. min.	Uscita base frequ. P16 Uscita base frequ. P18
h) Attenuazione diafonia stereo				S			R 3060 (oscil. 19 kHz) R 3046	Minimo diafonia	Allineare aternativamente uscia basse frequenze 16
				D				Minimo diafonia	Uscita base frequenze
i) Attenuazione diafonia automatica	۷بر30						R 3043	Attenuazione diafonia 30 dB	Uscita base frequenze P 18

k) Registrazione dell'attenuazione del ronzio con il tasto muting con schiacciato. Cercare una posizione esente da stazioni trasmittenti, lasciar liben 1 *ingresso dell'atenna e registrare con R 3022 su ca. 100 mV (connessione bassa frequenza P 16 + P 18).

4. Allineamento del gruppo di comando della MA (AM-HF 11044) Vedere la tabella.

a) Gamme: Onde medie: 510-1630 kHz Onde lunghe: 145- 365 kHz Onde lung

b) Allineamento ed alimentazione, vedere la tabella che segue
Attenzione! Adattare sempre la tensione d'ingresso all'operazione da eseguire.

c) Tabella di allineamento

Alline- amento	Punto alimentazione segnale	Modu- la- zione	Registraz. Trasmittente	Frequenza Ricevitore	Tasto gamma	Elemento allineamento	Allinea- mento su	Metodo misura	Osservazioni
circuito FI	Ant. 75 Ohm	MA (mo-	*850 kHz	*850 kHz	M (onde medie)	L 2032	max.	Α	
Oscillatore onde medie	Ant 75 Ohm	dula- zione am-	510 kHz 1630 kHz	Allac, terminale L Allac, terminale C	M (onde medie)	L 2030 L 2121	max. max.	А	Ripetere fino all'ottimalizza- zione
Bobina ferrite onde medie	Ant. 75 Ohm	piez- za) 30%	560 kHz 1580 kHz	560 kHz 1580 kHz	M (onde medie)	L 2027 C 2085	max. max.	Α	Ripetere fino all'ottimalizza- zione
Oscillatore onde lunghe	Ant. 75 Ohm		145 kHz 365 kHz	Allac. terminale L Allac. terminale C	L (onde lunghe)	L 2029 C 2123	max. max.	А	Ripetere fino all'ottimalizza- zione
Bobina ferrite onde lunghe	Ant. 75 Ohm		200 kHz 330 kHz	200 kHz 330 kHz	L (onde lunghe)	L 2028 C 2088	max. max.	А	Ripetere fino all'ottimalizza- zione
Circuito 9 kHz	via 0,1 uF al punto 6 TDA 1046		9 kHz (250 mV)	a piacere	M (onde medie)	L 2033	Min.	А	

^{*}La frequenza intermedia è determinata dal risonatore in ceramica. Quindi l'allineamento deve essere eseguito sulla frequenza d'ingresso (1 MHz) con un generatore

A) mV-metro (basse frequenze) all'uscita del Tuner di bassa frequenza.

d) Regolazione del livello della bassa frequenza: Tensione d'ingresso al connettore dell'antenna: $U_{\rm e}=1~{\rm mV/30\%}~{\rm mod.}$ Con la resistenza di registrazione porre 700 mV sui punti 16 e 18 dell'uscita della bassa frequenza (su SE 11065).

5. Allineamento del gruppo di comando dell'indicatore (ANZ 1 11071 + ANZ 2 11072)
Vedere la tabella.
Allacciare il contatore della frequenza per mezzo di una testina a sonda (a bassa capacità) al Pin 18 dell'IC SAA 1070. Registrare su 4,00 MHz con C 6054.
Attenzione: il carico capacitivo influisce sull'allineamento con –4 Hz/PF
Esempio: testina a sonda: 10 PF, correzione = + 40 Hz allineamento su 3,999960 MHz (± 5 Hz)
Se è stato sostituito un risuonatore in ceramica per la MA e la MF, è necessario codificare nuovamente il circuito di comando dell'indicatore ANZ.
Per questo è necessario determinare esattamente la frequenza intermedia (con una precisione di 3 cifre decimali per la MF, e di 1 KHz per la MA).
(Per mezzo di un contatore di frequenza all'uscita del miscelatore ovvero all'ingresso della frequenza intermedia).
Comparare la frequenza con la tabella di codificazione che segue ed allacciare i ponti di codificazione indicati (vedere la figura della piattina ANZ-II).

Tabella di codificazione (SAA 1070, gruppo 2)

FI-MF (MHz)			onticelli azione	FI-MF (kHz)			e i po ificaz		
10,7125 10,6125 10,6250 10,6375 10,6500 10,6625 10,6750 10,6875	a a a	b b	c c c	450 451 452 453 454 455 456 457	e e e	f f	g g g	h h h h h	R 21

FI-MA	allacciare i ponticelli				FI-MA	*	ponticelli		
(MHz)	di codificazione				(kHz)		azione		
10,7000 10,7125 10,7250 10,7375 10,7500 10,7625 10,7750 10,7875	a a a	b b	c c c	d d d d d d d	458 459 460 461 462 463 464 465	e e e	f f	g g g	R 21 R 21 R 21 R 21 R 21 R 21 R 21

6. Allineamento dell'indicatore del campo
MF: Registrare per mezzo di R 4009 in modo che con una tensione di ingresso di antenna di 5 μV il diodo luminoso rosso inferiore si illumini.
MA: Registrare per mezzo di R 4028 come sopra con una tensione di ingresso d'antenna di 10 μV.
7. Registrazione dell'indicatore di centro (mettre in corto i punti di misura 📵 ed 📋)
Registrare con R 6034 (SE 11072) l'indicatore di centro della MF, in modo che con Ue = 10 μ si accende il diodo luminoso verde.