

COMSATS University Islamabad Department of Computer Science Course Description Form (CDF)

Course Information

Course Code: **CSC102** Course Title: **Discrete Structures**

Credit Hours: **3(3,0)**Lab Hours/Week: **0**Lecture Hours/Week: **3**Pre-Requisites: **None**

Catalogue Description:

This course introduces mathematical structures necessary for the development of program logic. It covers the following topics: Set Theory; Propositional & First Order Logic; Rules of Inference; Mathematical Proofs; Counting & Probability; Graphs & Tree Structures; and Discrete Probability.

Unit wise Major Topics:

Unit	Aajor Topics: Topic	No of teaching hours
1.	Propositional Logic: Logical Connectives, Truth Tables, Normal Forms, Negation, Notions of Implication, Converse, Inverse, Contrapositive, Tautology & Contradiction, Valid & Invalid Arguments, Predicate Logic, Translation of English Sentences into Logical Expressions, Applications, and Limitations.	10.5
2.	Rules of Inference: Propositional and Building Arguments.	3
3.	Sets & Relations: Venn Diagram, Union, Intersection, Complement, Cartesian Product, Product Sets, Cardinality of Finite Sets; Relations: Reflexivity, Symmetry, Transitivity, Equivalence Relations, Partial Orders; Functions: Surjections, Injections, Bijection, Inverses, Composition; Sequence: Arithmetic & Geometric Progressions, Fibonacci Series, and Solving Recursive Relations.	12
4.	Proofs: Structure, Direct Proofs, Proof by Counter Example, Proof by Contradiction, Mathematical & Structural Induction, Weak & Strong Induction, Recursive Mathematical Definitions, and Well Ordering.	4.5
5.	Counting & Probability: Counting Arguments, Sum & Product Rule, Inclusion-Exclusion Principle, Pigeonhole Principle, Permutations & Combinations, Pascal's Identity, Binomial Theorem, Finite Probability Space, Axioms of Probability, Probability Measure, Events, Conditional Probability, Independence, and Expectation.	7.5
6.	Graphs: Models, Terminology, Representation, Isomorphism, Euler & Hamilton Paths, Complete Graphs, Bipartite Graphs,	7.5

45

Mapping of CLOs and SOs

Sr.#	Unit #	Course Learning Outcomes	Blooms Taxonomy Learning Level	so
CLO-1	1	Model real life problems using symbolic logic.	Applying	1,2
CLO-2	2	Apply rules of inference to build logical arguments.	Applying	1,2
CLO-3	3	Perform the operations associated with sets, functions, and relations.	Applying	1
CLO-4	O-4 Apply appropriate proof techniques to construct a sound argument.		Applying	2
CLO-5	5	Use probabilistic concepts to solve a particular problem. Applying		1,2
CLO-6	6	Model a real world problem using graphs and trees.	Applying	1,2,3

CLO Assessment Mechanism

Assessment Tools	CLO-1	CLO-2	CLO-3	CLO-4	CLO-5	CLO-6
Quizzes	Quiz 1	Quiz 2	Quiz 3	Quiz 3	Quiz 4	-
Assignments	Assignment 1	Assignment 1	Assignment 2	Assignment 3	Assignment 4	Assignment 4
Midterm Exam	Mid Term Exam	Mid Term Exam	Mid Term Exam	-	-	-
Final Term Exam	Final Term Exam					

Text and Reference Books

Text Book:

1. Discrete Mathematics and Its Applications, Rosen, K. H., McGraw Hill, 2018.

Reference Books:

- 1. Discrete Mathematics with Applications, Susanna S.E., Cengage Learning, 2019.
- 2. Discrete Mathematics, John, D., Pearson, 2017.