1 Higgs Bundle Arising from Geometric Variation of Hodge Structure

Now suppose that (V^o, ∇^o) is part of a polarized variation of Hodge structure. Let F^o be the Hodge filtration on V^o . Suppose the monodromy of ∇^o) is unipotent, then we can extend the filtration F^o to a filtration F on V_* by a theorem of Schmid:

$$F^pV_* = j_*(F^{op}V^o) \cap V_*$$

Let $E = \operatorname{Gr}_F V_*$, and $\theta = \operatorname{Gr}_F \nabla_*$, then (E, θ) is a Higgs bundle with wht following properties

- 1. The Chern classes of E, in rational cohomology, all vanish.
- 2. The Higgs bundle is semistable in the sense that $\mu(E') \le \mu(E) = 0$ for any proper coherent subsheaf stable under θ
- 3. The Higgs field θ is nilpotent. This follows from the Griffith transversality of ∇_*

If the monodromy of ∇^o is only quasi-unipotent, then we need an intermediate step to construct the extension of F^o . Let $\pi:Y\to X$ be the cyclic cover in section 2. The monodromy of $\pi^*\nabla^o$ is unipotent. Therefore, we can extend π^*F^o to a filtration $\bar F$ on $\bar V$. Let

$$\phi: (\pi_* \bar{V})^G \to V_*$$

be the isomorphism section 2. Then, we define

$$F^pV_* := \phi((\pi_*\bar{F})^G)$$

We will prove that

Lemm 1. $(E, \theta) = (Gr_F V_*, Gr_F \nabla_*)$ is a Higgs Bundle, i.e. $\theta \wedge \theta = 0$.

Lemm 2. The parabolic Chern classes of E is zero

Lemm 3. E is parabolic semistable.

Lemm 4. θ is nilpotent, i.e. ∇_* has Griffith transversality with respect to F.