GÜÇ ELEKTRONİĞİ FİNAL SINAVI SORULARI

19 Haziran 2019 Süre 75 dakika

Her soru 20 puanlıktır. En iyi 5 cevabınız dikkate alınır.

- 1) Şekil 1'deki doğrultucu $\hat{V}_h = 380 \ V$ gerilim, $\alpha = 90^\circ$ ateşleme açısı ve 15A'lik tam süzülmüş akımla uzun bir süredir çalışmaktadır. Yıldız bağlı kaynağın faz başına 6mH kaçak endüktansı olup tristörler idealdir. f = 50 Hz
- a) Aktarım açısını(\ddot{u}) ve aktarım süresini bulunuz. (12puan)
- **b)** Aktarım çentiklerini **ihmal ederek** v_y dalgasını Şekil 6 üzerine çiziniz (en az $\omega t = 2\pi$ 'ye kadar). (8 puan)

$$\cos \alpha - \cos(\alpha + \ddot{u}) = \frac{2\omega L_k I_d}{\hat{V}_{akt}}$$

 $v_{CA} = \hat{V}_h \sin(\omega t - 240^\circ)$

Üç fazlı tam denetimli köprü doğrultucu (K6)

- 2) Şekil 2'deki DC/DC çeviricide $V_d = 40 \ V$, L = 4mH, $C = 330 \mu F$, $R_y = 8 \ \Omega$ 'dur. A anahtarı D = 0.3 görev oranı ($duty\ cycle$) ve $f_a = 2kHz$ frekansla anahtarlanırken çıkış gerilimi ve giriş akımı (i_d) ortalama değerleri ne olur? i_L 'yi sürekli bulursanız çıkış gerilimindeki dalgalılık oranını ($\Delta v_{\rm c}/V_{\rm c}$) da bulunuz.
- 3) Bir DC/DC çevirici Şekil 3'teki blok şemada gösterildiği gibi denetleniyor. Burada V_{ref} çıkışta istenen voltaj, V_c çıkıştaki gerçek voltaj, v_Δ istenen anahtarlama frekansında uygun genlikte bir üçgen dalga, K_I ise bir kazanç katsayısıdır. Sistemin çalışmasını grafikle ve anahtarlama işaretlerinin ne zaman hangi yönde (iletim/kesim?) uygulandığını belirterek anlatınız.

- 4) Üç fazlı eviricinin basitleştirilmiş hali Şekil 4'te gösterilmiştir. Evirici, üçgen dalga (v_{Δ}) ile PWM yöntemiyle Şekil 7'de gösterilen v_A^{ref} , v_B^{ref} , v_C^{ref} referans sinyallerine göre anahtarlanarak çalıştırılıyor. Şekil 7 üzerinde v_{AC} gerilimini çiziniz ve temel bileşenini üzerinde yaklaşık olarak gösteriniz.
- 5) Şekil 4'teki üç fazlı eviricinin anahtarlama seçenekleri Şekil 8'de $\alpha\beta$ düzleminde temel vektörlerle gösterilmiştir.
- a) Evirici uzay vektörlü PWM ile anahtarlanıyorsa referans vektörü VI. sektörde iken uygulanan temel vektör dizisini en az 15 adım için yazınız. (10 puan)
- b) Anahtarlardan A^+ , B^- , C^+ kapalı, diğerleri açık ise bu hangi temel vektörün uygulandığı anlamına gelir? Clarke dönüşümü: $\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = \begin{bmatrix} 2/3 & -1/3 & -1/3 \\ 0 & 1/\sqrt{3} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} v_A \\ v_B \\ v_C \end{bmatrix}$ dönüşümünü kullanarak gösteriniz. (10 puan)
- 6) Şekil 5'te, T_m tristörünün doğru akım altında çalıştırılırken kesime götürülmesi için, bir devre T_m'ye paralel bağlanmıştır. Bu devrenin çalışmasını bir periyot için anlatınız. (T_m'yi kesime götürmek için T_a tristörü tetiklenmektedir, T_b'nin hangi amaçla tetikleneceğini de siz belirtiniz.)

GÜÇ ELEKTRONİĞİ FİNAL CEVAP ANAHTARI 19 Haziran 2019

Sekil 7

Şekil 7	I,"	i, sürekliyse		i, kesikliyse	
Derste anlatılan devreler için formüller		V_c/V_d	$\Delta v_e / V_e$	$\Delta_{\tilde{1}}$	V_{c}/V_{d}
Alçaltıcı	$\frac{V_d T_s}{2L} D(1-D)$	D	$\frac{T_a^2(1-D)}{8LC}$	$\frac{2LI_c}{T_aV_dD}$	$\frac{D}{D+\Delta_1}$
Yükseltici		$\frac{1}{1-D}$	$\frac{DT_u}{R_yC}$		$\frac{D + \Delta_1}{\Delta_1}$
Alçaltıcı - Yükseltici		$\frac{D}{1-D}$	$\frac{DT_u}{R_vC}$		$\frac{D}{\Delta_1}$

 $\vec{V}_0: A^-, B^-, C^-$ iletimde demek

 $\vec{V}_7: A^+, B^+, C^+$ iletimde demek

 $\vec{V}_1,...,\vec{V}_6$ büyüklügü 2U/3

