IFT-2002 Informatique Théorique

H14 - cours 9

Julien Marcil - julien.marcil@ift.ulaval.ca

Aujourd'hui

- Deux modèles calculatoires simples
 - Les programmes répéter
 - Les programmes TANTQUE
- La fonction d'Ackermann

Les programmes RÉPÉTER

Les programmes répéter

- Un nombre arbitrairement grand de registres est disponible: $r_0, r_1, ...$
- Chaque registre contient un entier positif ou nul
- les registres sont implicitement initialisés à 0 avant utilisation

Les instructions d'un programmes répéter

- l'instruction $r_i \leftarrow r_j$ remplace le contenu du registre r_i par celui de r_j
- l'instruction $inc(r_i)$ incrémente de 1 le registre r_i
- l'instruction répéter r_i fois [$\langle BLOC \rangle$] répète l'éxécution d'un bloc d'instructions r_i fois
 - le nombre d'exécution de $\langle BLOC \rangle$ est fixe une fois pour toutes avant l'entrée dans la boucle, que r_i y soit modifié ou non

Les programmes répéter

Un programme RÉPÉTER implante une fonction

$$f: \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N} \to \mathbb{N}$$
$$(r_1, r_2, \dots, r_k) \mapsto r_0$$

Au debut de l'exécution, les registres r_1 à r_k contiennent les arguments de f, et à la fin, r_0 contient $f(r_1, \ldots, r_k)$.

Grammaire

```
S \rightarrow \langle \text{INCRÉMENTATION} \rangle S \mid \lambda \mid
\langle \text{AFFECTATION} \rangle S \mid \langle \text{RÉPÉTER} \rangle S
\langle \text{INCRÉMENTATION} \rangle \rightarrow \text{inc}(V)
\langle \text{AFFECTATION} \rangle \rightarrow V \leftarrow V
\langle \text{RÉPÉTER} \rangle \rightarrow \text{répéter } V \text{ fois } [S]
V \rightarrow r_N
N \rightarrow C \mid CN
C \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
```

Opérations Arithmétiques

Il est assez facile de faire des programmes répéter pour des opérations arithmétiques simples.

Addition

```
\begin{aligned} \text{PLUS}(r_1, r_2) &= r_1 + r_2 \\ r_0 &\leftarrow r_1 \\ \text{répéter } r_2 \text{ fois [} \\ &\text{inc}(r_0) \\ \end{bmatrix} \end{aligned}
```

Multiplication

```
	ext{MULT}(r_1, r_2) = r_1 	imes r_2
	ext{répéter } r_1 	ext{ fois [}
	ext{répéter } r_2 	ext{ fois [}
	ext{inc}(r_0)
	ext{]}
```

Exponentiation

```
EXP(r_1, r_2) = r_1^{r_2}
inc(r_0)
répéter r_2 fois [
   r_3 \leftarrow r_4
   répéter r_0 fois [
       répéter r_1 fois [
          inc(r_3)
   r_0 \leftarrow r_3
```

Sucre syntaxique

L'instruction $r_i \leftarrow \text{PROC}(r_{j_1}, \dots, r_{j_k})$ signifie que l'on doit substituer à cette ligne un bloc d'instructions qui a pour effet de remplacer le contenu du registre r_i par la valeur calculee par $\text{PROC}(r_{j_1}, \dots, r_{j_k})$, en renommant au besoin les variables qui apparaissent dans le code de la procédure PROC.

Les appels recursifs ne sont pas permis.

Sucre syntaxique

L'instruction $r_i \leftarrow k$ signifie que l'on doit substituer à cette ligne k incrémentations, ce qui aura pour effet d'affecter la constante k au registre r_i

Partout, on peut mettre une constante k au lieu d'utiliser une variable auxiliaire qu'on aurait incrémentée k fois.

Exponentiation

```
\begin{aligned} & \text{EXP}(r_1, r_2) = r_1^{r_2} \\ & r_0 \leftarrow 1 \\ & \text{répéter } r_2 \text{ fois [} \\ & r_0 \leftarrow \text{MULT}(r_0, r_1) \\ & \end{bmatrix} \end{aligned}
```

Opérations Arithmétiques

Est-il possible de faire n'importequel opérations arithmétiques avec des programmes RÉPÉTER?

Décrémentation

```
\begin{aligned} \text{DEC}(r_1) &= \max(0, r_1 - 1) \\ \text{répéter } r_1 \text{ fois } [\\ r_0 &\leftarrow r_2 \\ \text{inc}(r_2) \\ \end{bmatrix} \end{aligned}
```

Soustraction

```
	ext{MOINS}(r_1, r_2) = \max(0, r_1 - r_2)
r_0 \leftarrow r_1
	ext{répéter } r_2 	ext{ fois [}
	ext{} r_0 \leftarrow 	ext{DEC}(r_0)
]
```

Factorielle

```
\begin{aligned} & \text{FACT}(r_1) = r_1! \\ & r_0 \leftarrow 1 \\ & \text{répéter } r_1 \text{ fois [} \\ & \text{inc}(r_2) \\ & r_0 \leftarrow \text{MULT}(r_0, r_2) \\ & \end{bmatrix} \end{aligned}
```

Variables Booléennes

Nous adoptons les conventions syntaxiques suivantes :

- vrai pour la constante 1
- faux pour la constante 0

Pour évaluer (BLOC) conditionnellement à la valeur booléennes r_i on répète (BLOC) r_i fois.

L'instruction si r_i alors [$\langle BLOC \rangle$] sera mise pour répéter r_i fois [$\langle BLOC \rangle$].

Et

$$ET(r_1, r_2) = r_1 \wedge r_2$$

$$r_0 \leftarrow \text{MULT}(r_1, r_2)$$

Negation

 $NEG(r_1) = \neg r_1$

 $r_0 \leftarrow \texttt{MOINS}(1, r_1)$

Ou

```
\begin{aligned}
&\text{OU}(r_1, r_2) = r_1 \lor r_2 = \neg(\neg r_1 \land \neg r_2) \\
&r_1 \leftarrow \text{NEG}(r_1) \\
&r_2 \leftarrow \text{NEG}(r_2) \\
&r_0 \leftarrow \text{ET}(r_1, r_2) \\
&r_0 \leftarrow \text{NEG}(r_0)
\end{aligned}
```

Plus grand que

```
\begin{aligned} & \text{PG?}(r_1, r_2) = (r_1 > r_2) \\ & r_3 \leftarrow \text{MOINS}(r_1, r_2) \\ & \text{répéter } r_3 \text{ fois [} \\ & r_0 \leftarrow \text{vrai} \\ & \end{bmatrix} \end{aligned}
```

Opérations Arithmétiques

Regardons d'autres opérations arithmétiques plus complèxes.

Division

```
DIV(r_1, r_2) = \left\lfloor \frac{r_1}{r_2} \right\rfloor
```

```
répéter r_1 fois [
r_3 \leftarrow \text{PLUS}(r_3, r_2)
r_4 \leftarrow \text{PG?}(r_3, r_1)
r_4 \leftarrow \text{NEG}(r_4)
\text{si } r_4 \text{ alors [}
\text{inc}(r_0)
]
```

Modulo

```
MOD(r_1, r_2) = r_1 \bmod r_2
```

```
r_0 \leftarrow \text{DIV}(r_1, r_2)
```

$$r_0 \leftarrow \text{MULT}(r_0, r_2)$$

$$r_0 \leftarrow \texttt{MOINS}(r_1, r_0)$$

Test de primalité

PREMIER? $(r_1) = (r_1 \in \mathbb{P})$

```
r_0 \leftarrow \text{faux}
r_5 \leftarrow \text{PG?}(r_1, 1)
\text{si } r_5 \text{ alors } [
r_0 \leftarrow \text{vrai}
r_3 \leftarrow 1
r_2 \leftarrow \text{MOINS}(r_1, 2)
\text{répéter } r_2 \text{ fois } [
\text{inc}(r_3)
r_4 \leftarrow \text{MOD}(r_1, r_3)
r_5 \leftarrow \text{PG?}(1, r_4)
\text{si } r_5 \text{ alors } [r_0 \leftarrow \text{faux}]
]
```

Prochain nombre premier

PREMIERSUIV (r_1) = le plus petit nombre premier plus grand que r_1

```
r_2 \leftarrow \text{PLUS}(r_1, 1)
r_2 \leftarrow \text{MULT}(r_2, 2)
r_3 \leftarrow \text{vrai}
\text{répéter } r_2 \text{ fois [}
\text{inc}(r_1)
r_4 \leftarrow \text{PREMIER?}(r_1)
r_4 \leftarrow \text{ET}(r_3, r_4)
\text{si } r_4 \text{ alors [}
r_0 \leftarrow r_1
r_3 \leftarrow \text{faux}
\text{]}
```

k-ème nombre premier

```
PREMIERK(r_1) = le r_1-ème nombre premier répéter r_1 fois [ r_0 \leftarrow \texttt{PREMIERSUIV}(r_0)]
```

tableau

Un tableau d'entiers est un k-tuple $(a_1, a_2, ..., a_k)$ que nous stockons dans un registre r_j .

Codage de Gödel

Il est possible d'encoder le k-tuple $(a_1, a_2, ..., a_k)$ où $a_i \in \mathbb{N}$ dans un entier.

Soit p_n le n-ième nombre premier. Le k-tuple $(a_1, a_2, ..., a_k)$ est représenté sant ambiguïté par l'entier

$$p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$$

Exemples

$$(1,1,1) = 2^1 3^1 5^1 = 30$$

 $(2,1,1,1) = 2^2 3^1 5^1 7^1 = 420$
 $(2,0,4,3,0,3) = 2^2 3^0 5^4 7^3 11^0 13^3 = 1883927500$

Extraction d'un élément d'un tableau

TABLVAL $(r_1, r_2) = le r_2$ -ème élément du tableau r_1

```
r_3 \leftarrow \text{PREMIERK}(r_2)
r_4 \leftarrow r_3
répéter r_1 fois [
r_5 \leftarrow \text{MOD}(r_1, r_4)
r_5 \leftarrow \text{PG?}(1, r_5)
si r_5 alors [
inc(r_0)
r_4 \leftarrow \text{MULT}(r_3, r_4)
]
```

Assignation d'un élément dans un tableau

TABLASS (r_1, r_2, r_3) = le tableau r_1 où r_2 -ème élément est remplacé par r_3

```
r_4 \leftarrow \text{TABLVAL}(r_1, r_2)

r_5 \leftarrow \text{PREMIERK}(r_2)

r_6 \leftarrow \text{EXP}(r_5, r_4)

r_0 \leftarrow \text{DIV}(r_1, r_6)

r_7 \leftarrow \text{EXP}(r_5, r_3)

r_0 \leftarrow \text{MULT}(r_0, r_7)
```

Puissance des programmes RÉPÉTER

Il semble que les programmes répéter peuvent calculer des fonctions complexes.

Peut-on calculer toutes les fonctions à valeurs entières avec un programme RÉPÉTER?

Primitives Récursives

Définition: Les fonctions calculables par un programme RÉPÉTER sont appelées **primitives récursives**.

Notation

Pour une fonction $f: \mathbb{N} \to \mathbb{N}$, et un entier n, on note :

$$f^{\langle 0 \rangle}(x) = x$$

$$f^{\langle 1 \rangle}(x) = f(x)$$

$$f^{\langle 2 \rangle}(x) = f(f(x))$$

$$\vdots$$

$$f^{\langle n \rangle}(x) = \underbrace{f(f(\dots f(x) \dots))}_{n \text{ fois}}$$

Remarque

Soit $k, n \in \mathbb{N}$ et $k \le n$

$$f^{\langle n \rangle}(x) = f^{\langle n-k \rangle} \left(f^{\langle k \rangle}(x) \right)$$

Remarque

Soit $n, u \in \mathbb{N}$.

$$\left(f^{\langle n\rangle}\right)^{\langle u\rangle}(x) = f^{\langle nu\rangle}(x)$$

Boucles imbriquées

Définition: Soit la fonction $B_i : \mathbb{N} \to \mathbb{N}$ pour $i \geq 0$

$$B_{i}(x) = \begin{cases} 1 & \text{si } i = 0, x = 0 \\ 2 & \text{si } i = 0, x = 1 \\ x + 2 & \text{si } i = 0, x > 1 \\ B_{i-1} \langle x \rangle (1) & \text{si } i > 0 \end{cases}$$

Exemples

$$B_0(x) = x + 2 \qquad \text{si } x > 1$$

$$B_1(x) = 2x \qquad \text{si } x > 0$$

$$B_2(x) = 2^x \qquad \text{si } x \ge 0$$

$$B_3(x) = \underbrace{2^{2^{2^{-\cdots}}}}_{n \text{ fois}} \qquad \text{si } x > 0$$

Remarques

Il est clair que plus i est grand, plus B_i est une fonction qui croît rapidement.

- La valeur de $B_3(5)$ compte 19729 chiffres.
- La valeur de $B_3(6)$ compte plus de chiffres que le nombre d'atomes dans l'univers.
- La fonction B_3 croît très rapidement, mais ce n'est rien si on la compare à B_4 .
- Le taux de croissance de la fonction B_{100} dépasse l'entendement...

Lemme

Pour tout i > 0, B_i est calculables par un programme RÉPÉTER.

Preuve

```
B[0](r_1) = B_0(r_1)
r_0 \leftarrow PLUS(r_1, 1)
r_2 \leftarrow PG?(r_0, 2)
si r_2 alors [
inc(r_0)
]
```

Preuve (suite)

Pour un i > 0 fixé, $B[i](r_1) = B_i(r_1)$

```
\operatorname{inc}(r_0)
\operatorname{répéter} r_1 \operatorname{fois} [
r_0 \leftarrow \operatorname{B}[\mathrm{i} - 1](r_0)
]
```

Remarques

On remarque que le programme B[i] compte exactement i boucles répéter et la profondeur d'imbrication est aussi i.

Théorème

Propriétés de la famille des fonctions B_i

- 1. $B_i^{\langle k \rangle}(x)$ est croissant en i, x et k.
- 2. $B_i(2x) \leq B_i^{\langle 2 \rangle}(x)$ pour i > 0, $x \geq 0$.
- 3. $B_0^{\langle \lceil \frac{y}{2} \rceil + 1 \rangle}(x) \ge y + x$ pour $i, x, y \ge 0$.
- 4. $B_i^{\langle y \rangle}(x) \le B_{i+1}(y+x)$ pour $i, x, y \ge 0$.

Preuve: Tous les énoncés du théorème peuvent être facilement prouvés par induction sur *i*.

Nombre maximal d'imbrications

Définition: Pour tout programme RÉPÉTER, $\mathcal{B}(P)$ est le nombre maximal d'imbrications des boucles de P.

Valeur maximale des registres

Définition: On note $\mathcal{M}(P, r_1, ..., r_k)$ la valeur maximale des registres $r_1, ..., r_k$ après l'exécution de P.

Théorème

Pour tout programme répéter, si $\mathcal{B}(P)=i$, alors il existe un entier s tel que

$$\forall_{r_1,\ldots,r_k\in\mathbb{N}} \mathcal{M}(P,r_1,\ldots,r_k) \leq B_i^{\langle s \rangle} \left(\max(r_1,\ldots,r_k) \right)$$

Corollaire

Pour tout $i \ge 0$ il existe une fonction qui n'est pas calculable par un programme répéter avec une profondeur de boucle i, mais qui est calculable par un programme avec une profondeur de boucle i + 1.

La fonction d'Ackermann

Définition: En 1926, Wilhelm Ackermann définit la fonction à deux variables suivante

$$A(i,x) = \begin{cases} 1 & \text{si } x = 0 \\ 2 & \text{si } i = 0, x = 1 \\ x+2 & \text{si } i = 0, x > 1 \\ A(i-1, A(i, x-1)) & \text{si } i > 0, x > 0 \end{cases}$$

Lemme

$$\forall_{i \in \mathbb{N}} \ \forall_{x \in \mathbb{N}} \ A(i, x) = B_i(x)$$

Preuve. Le lemme sera prouvé par induction d'abord sur i et en suite sur x.

Théorème

La fonction d'Ackermann n'est pas calculable par un programme RÉPÉTER.

Donc Ackermann n'est pas primitive récursive.

Remarque

La fonction F(x) = A(x,x) croît plus rapidement que n'importe quelle des fonctions $B_i(x)$.

Remarque

Un programme RÉPÉTER ne peut pas entrer dans une boucle infinie, son execution se termine toujours.

Les programmes TANTQUE

Les programmes TANTQUE

Les programmes tantque sont semblables aux programmes répéter

- Un nombre arbitrairement grand de registres est disponible: $r_0, r_1, ...$
- Chaque registre contient un entier positif ou nul
- les régistres sont implicitement initialisés à 0 avant utilisation
- l'instruction $r_i \leftarrow r_j$ remplace le contenu du registre r_i par celui de r_j
- l'instruction $inc(r_i)$ incrémente de 1 le registre r_i

Les instructions d'un programmes TANTQUE

Les programmes TANTQUE sont semblables aux programmes RÉPÉTER, mais les boucles sont differentes:

- l'instruction tant que $r_i \neq r_j$ faire [$\langle BLOC \rangle$] répète l'éxécution d'un bloc d'instructions tant que les valeurs des registres r_i et r_j diffèrent
 - l'inegalité est réévaluée à chaque itération et les valeurs de r_i et r_j peuvent changer

Les programmes TANTQUE

Un programme TANTQUE implante une fonction

$$f: \mathbb{N} \times \mathbb{N} \times \dots \times \mathbb{N} \to \mathbb{N} \cup \{\uparrow\}$$

$$(r_1, r_2, \dots, r_k) \mapsto \begin{cases} r_0 & \text{si le programme s'arrête} \\ \uparrow & \text{si le programme boucle a l'infini} \end{cases}$$

Au debut de l'exécution, les registres r_1 à r_k contiennent les arguments de f, et à la fin, r_0 contient $f(r_1, \ldots, r_k)$.