					3	3
		Tema	Nro pai Nro	pap res m	nail1 ı	nail2
1	Ancocallo Infa, Hilmar	Reconocimiento de manuscritos OCR	15	3	1	
2	Apaza Apaza, Karen	Modelo de sistema de robot movil pa	30	30	2	
3	Arapa Trelles, Ali David	Detección de fuego en secuencias de	9	9		2
4	Belizario Sucapuca, Eric	Reconocimiento de firmas en manus	4	4		0
5	Calcina Quispe, Jonathan	Clasificador automático de género m	14	0	1	
6	Calla Mamani, Roger	Ruta óptima para usuario en una rec	11	1	1.5	1
7	Cañazaca Mamani, Alan	Ingeniería Software - Mejora de proc	6	3		0
8	Cárdenas Soria, Rocio Patrici	5	4	2	2.5	
9	Choquegonza Rodriguez, Roy	12	3	2	2.5	
10	Condori Mamani, Arnold	Realidad Aumentada - reconstruccion	7	3	2.5	2
11	Diaz Velazco, Paul	Control Automático para juego de de	12	5	2	2.5
12	Herrera Muñoz, Piera Antone	11	6	2	2.5	
13	Holgado Huacho, Lizeth	Agente pedagógico virtual para el ap	23	8	2	2.5
14	Laura Pilco, Jhairo Octavio	Sistema de mejora del estado emoci	12	10	2	
15	Lope Cala, Ludwin	Casos de estudio para sistema de mo	5	0	2	
16	Mayhua Tijera, Christian	Composición musical basada en algo	9	0	1	1
17	Pucho Chuquicaña, José	Aplicación de algoritmos evolutivo. I	12	5		1
18	Quispe Barraza, Jhilver Eloy	Lógica rebatible para sistemas multia	15	12	2.5	2.5
19	Quispe Chipana, Lenin Faust	14	6	1		
20	Ripas Mamani, Roger Dante	Procesamiento y estrategia para una	13	10	1	2.5
21	Sisniegues Oblitas, Jorge	Incorporacion de psicología social en	2	2	2	
22	Soto Ninasivincha, Oliver	Estimación de medidas en el grano c	13	8	1	2.5
23	Torres Aguilar, Alison	Arquitecuras de Deep learning para	10	5	2.5	
	Ticona Larico, Jose Abel	Procesamiento de imágenes radiográ	10	2	1	
	Nuñez Huamani, Yuber	Diseño de una arquitectura multiplat	11	7	2.5	
	Begazo Barrios, Richard	Modelo neurodifuso para analizar rie	6	3		1
	Ampuero Cutty, Diego Alonso	Reconocimiento automática del habla	10	0		0
	Huallata Choquetaipe, Donny	Sistema multibiométrico usando sma	20	0		0
					3	3

2%	1%				3	5%					3%	3	3	3	
Oral1	Oral2				mail3	EXPO1				ASIST	Oral3	mail4	mail5	mail6	PROM Mails (
10	Р	1	Р	Р		10	Р	Р	P P	17.5	11	1.5			2.8 <mark>2</mark>
15	Р	Р	Р	F	2.5	14	Р	Р	P P	17.5	17	2	2.5	2.5	12.8
14	15 P	Р	Р	F	2	14	•	Τ	P	11.3	14		2		6.7
14	Р	1	Р	Р		14	Ρ.	Τ	P P	16.3			2		2.2 <mark>I</mark>
10			Τ	Р		12		Р	Р	8.8					1.1
10		Ρ	Т	Р		13	Р	Ρ.	ΤР	15.0	14	2.5	2	2	10.0 <mark>:</mark>
				F		0				0.0					0.0
12	13 P	Р	Р	Р	2.5	15	Т	Ρ.	ΤР	17.5	12		2		10.0
16	Р	1	Т	Р	2	16	Р	Р	P P	16.3	Е	2	2.5		12.2
11			Т	Р		13	Р	Р	P P	13.8		2.5			10.0
18	17 P	Р	Р	Р	2.5	16	Р	Р	Т	16.3	16	2	2		12.2
18	18	Р	Р	F		17			Ρ	7.5		2			7.2
15	Р	1	Р	Т	2	13	Т	Ρ.	ΤТ	12.5		2	2	2	13.9
11	10	Ρ	Т	Р		10		P	P	11.3					2.2
11	Р	1	Т	Р		12	Τ .	Τ	Т	10.0	12		2.5		5.0 <mark>2</mark>
10	Р	Р	Р	Р	2.5	14		Р	Ρ	15.0		2.5	2	2	12.2 <mark>:</mark>
16	Р	Р	Т	Р		12	Т			10.0				2	3.3
14	17 P	Р	Р	Р	2	18	Р		P P	17.5	15	2.5	2.5	2.5	16.1
12	16 P	1	Р	Р	2.5	15	Р	Р	P P	17.5		2	2.5	2	11.1
15	16 P	Р	Р	F	2	18	Р		P P	15.0	14		2.5		8.9
11	Р	Р	Т	Р	2	11	Р	Р	Ρ	16.3		2.5	2		9.4 💈
11	13 P	1	Р	Р	2	11	Ρ.	Τ	P T	15.0	10	2	2	2	12.8 <mark>:</mark>
13	15 P	Р	Р	Р	2	17	Р	Р	P T	18.8	15	2.5	2.5	2	12.8
	10	Р	Р	F	2	7	Р	Р	Ρ	12.5	11		2.5	2	8.3
16	Р	Р		F		0				5.0					2.8
11	Р	Р		F	2.5	0	•	Τ.	Τ	7.5	Е	2			6.1
	10	Р	Т	Т		15		•	ΤТ	7.5					0.0
	11	Р	Т	Т		11		•	ΤТ	7.5		2.5	2		5.0
20	20				3	20				20.0		3	3	3	20.0

	22014
EXPO FINAL	PROM
11	10.34
17	15.39
16	13.36
0	5.90
12	9.35
12	11.90
0	0.00
11	12.67
15	14.55
0	6.34
13	14.26
17	14.00
11	11.86
0	4.60
15	11.55
13	12.83
12.5	10.43
15	16.05
14	14.27
16	15.01
8	9.98
11	12.01
12	14.15
0	4.73
0	2.07
0	2.74
14	10.13
0	4.01
20	20.00
20	20.00