I numeri reali, le funzioni reali di variabile reale, le funzioni elementari

1.	Tra i seguenti enunciati si indichino quelli veri.
	$\sqrt{\ L'equazione\ x^2} = 2\ ha\ un'unica\ soluzione\ positiva\ x \in \mathbb{R} \setminus \mathbb{Q}$
	\square L'equazione $x^2=2$ ha un'unica soluzione positiva $x\in\mathbb{Q}$
	$\sqrt{\ L'equazione\ x^2} = 2$ ha due soluzioni in $\mathbb{R} \setminus \mathbb{Q}$
	\Box L'equazione $x^2 = 2$ ha come soluzione $x = 1.4142$
2.	Tra i seguenti enunciati si indichino quelli veri.
	\square Ogni numero razionale si rappresenta tramite un decimale di tipo limitato
	\surd Esistono numeri razionali la cui rappresentazione decimale è di tipo limitato
	\surd Ogni numero irrazionale si rappresenta tramite un decimale di tipo infinito e non periodico
	$\sqrt{\mbox{ Ogni numero razionale si rappresenta tramite un decimale di tipo limitato oppure periodico}$
3.	Condiderati gli insiemi $A=(-\infty,0),\ B=[0,+\infty),\ C=[1,2),$ si indichi quali dei seguenti enunciati risultano veri.
	$\sqrt{\{A,B\}}$ è una sezione di $\mathbb R$
	\checkmark $\it C$ è limitato sia inferiormente che superiormente
	\square B ammette estremo superiore in $\mathbb R$
	$\sqrt{ A }$ ammette estremo superiore in $\mathbb R$
4.	Se $A = [0,1) \cup [5,+\infty)$, si indichi quali dei seguenti enunciati risultano veri.
	$\sqrt{\ }$ Il minimo di A esiste ed è 0
	$\sqrt{}$ non esistono maggioranti di A
	\square 3 è un minorante di A
	☐ <i>A</i> ammette massimo
5.	Se $A = [0, +\infty) \cap (-\infty, 6)$, si indichi quali dei seguenti enunciati risultano veri.
	\sqrt{A} è limitato
	\square A ammette massimo
	\sqrt{A} ammette minimo
	\sqrt{A} é un intervallo

6.	Se A è un insieme limitato superiormente, si indichi quali dei seguenti enunciati risultano veri.
	\square A ammette un unico maggiorante
	\sqrt{A} ammette infiniti maggioranti
	\square A ammette sicuramente massimo
	$\square \sup A = +\infty$
7.	Se A è un insieme non limitato inferiormente, si indichi quali dei seguenti enunciati risultano veri.
	$\sqrt{\ L'insieme}$ dei minoranti di A è vuoto
	$\sqrt{\inf A} = -\infty$
	\sqrt{A} non ammette minimo
	\square L'insieme dei minoranti A ha un numero finito di elementi
8.	Se A è un sottoinsieme di $\mathbb R$ non vuoto e limitato inferiormente, si indichi quali dei seguenti enunciati risultano sicuramente veri.
	\checkmark A ammette minoranti
	\square A ammette minimo
	\sqrt{A} ammette estremo inferiore
	\square A ammette minimo e non ammette estremo inferiore
9.	Se $f:[0,+\infty)\to\mathbb{R}$ è la funzione definita ponendo $f(x)=\sqrt{x}$ e $g:\mathbb{R}\to\mathbb{R}$ è la funzione definita ponendo $g(x)=e^{x+2}+3x$, si completino correttamente i seguenti enunciati
	(a) $(g \circ f)(x) = \underline{e^{\sqrt{x}+2} + 3\sqrt{x}}$
	(b) il dominio di $g\circ f$ è $\underline{[0,+\infty)}$
	(c) $(g \circ f)(0) = \underline{\qquad e^2}$
	(d) $(g \circ f)(1) = \underline{e^3 + 3}$
10.	Se f^{-1} è la funzione inversa di una funzione f strettamente crescente, si indichi quali dei seguenti enunciati risultano veri.
	$\sqrt{\ f^{-1}}$ è strettamente crescente
	\square f^{-1} è strettamente decrescente
	$\sqrt{}$ La funzione inversa di f^{-1} è f
	$\sqrt{f^{-1}}$ è ingettiva

11.	Se f è una funzione strettamente decrescente, si indichi quali dei seguenti enunciat risultano veri.
	$\sqrt{\operatorname{Se} f(x)} \ge f(y)$ allora $x \le y$
	\square Se $f(x) \ge f(y)$ allora $x > y$
	\checkmark Se $f(x) = f(y)$ allora $x = y$
	$\sqrt{\operatorname{Se} x} = y \operatorname{allora} f(x) = f(y)$
12.	Si completino i seguenti enunciati indicando se le funzioni f sono pari, dispari o nè par nè dispari
	(a) $f(x) = \operatorname{sen} x \operatorname{cos} x$ <u>è dispari</u>
	(b) $f(x) = \operatorname{arctg} x + x^2 \operatorname{\underline{non}} e \operatorname{\underline{ne}} \operatorname{\underline{pari}} \operatorname{\underline{ne}} \operatorname{dispari}$
	(c) $f(x) = x^5 \operatorname{arctg} x$ <u>è pari</u>
	(d) $f(x) = x x + x^3 \cos x$ <u>è dispari</u>
13.	Dal grafico di $f(x)=e^{x-2}$, $x\in\mathbb{R}$, si deduca quali tra i seguenti enunciati sono veri.
	$\sqrt{ f }$ è limitata inferiormente
	\Box f ammette minimo
	\sqrt{f} è strettamente crescente
	\square Per ogni $\lambda \in \mathbb{R}$ l'equazione $f(x) = \lambda$ ammette una soluzione
14.	Dal grafico di $f(x) = \log x $, $x \in \mathbb{R} \setminus \{0\}$, si deduca quali tra i seguenti enunciati sono veri.
	\surd Per ogni $\lambda \in \mathbb{R}$ l'equazione $f(x) = \lambda$ ammette due soluzioni
	$\ \square \ f$ è limitata superiormente
	\Box f ammette minimo
	$\sqrt{\ L'immagine\ di\ f}$ è $\mathbb R$
15.	Dal grafico di $f(x) = \log x $, $x > 0$, si deduca quali tra i seguenti enunciati sono veri.
	\square f è strettamente monotona
	$\ \square$ f ammette minimo uguale ad 1
	$\sqrt{\ f}$ ha minimo uguale a 0 ed ha un unico punto di minimo uguale a 1

 \Box f è limitata

16. Se $f(x) = \sqrt{|x|}$, si deduca quali tra i seguenti enunciati sono veri. \square II dominio di f è $[0, +\infty)$ \square II dominio di $f \in \mathbb{R} \setminus \{0\}$ \sqrt{f} è strettamente decrescente in $(-\infty, 0)$ \sqrt{f} è pari 17. Se $f(x) = (x-2)^2$, si deduca quali tra i seguenti enunciati sono veri. \Box L'immagine di f è $[2, +\infty)$ $\sqrt{L'_{immagine}}$ di $f \in [0, +\infty)$ \Box f(-1) = 0 $\sqrt{}$ II dominio di f è $\mathbb R$ 18. Si indichi quali tra i seguenti enunciati sono veri. \square La disequazione |x-4|>1 è verificata da ogni x>1 $\sqrt{\ }$ La disequazione |x-4|>1 è verificata da ogni x>5 $\sqrt{\ }$ La disequazione |x-4|>1 è verificata da ogni x<3 \square La disequazione |x-4| > 1 è verificata da ogni 3 < x < 519. Si indichi quali dei seguenti enunciati risultano veri. $\sqrt{\text{Ogni funzione 3 periodica è anche 21-periodica.}}$ $\sqrt{\ }$ La funzione tangente è π -periodica. √ La funzione seno è limitata ☐ La funzione coseno non è limitata superiormente 20. Si indichi quali dei sequenti enunciati risultano veri. ☐ Il valore assoluto di un numero reale non è mai uguale a 0 $\sqrt{\,}$ Il valore assoluto di un numero reale non è mai strettamente minore di 0□ Il valore assoluto di un numero reale non è mai strettamente maggiore di 0

☐ Il valore assoluto di un numero reale non è mai diverso da 0