Chapter 1

Design Concepts

Contents

- Digital Design
- Design of Digital Hardware System
- Design Process
- Binary Number

OOO DIGITAL DESIGN

Digital Design

- 000
- Design of digital electronics circuits that are within digital hardware in many digital devices, including computer
- Circuits are often called Logics.
 - Why?
- What is Digital?

OOO Definition of the "Digital" OOO

- Digit:
 - A human finger or toe
 - ▶ 0, 1, 2, 3, ..., 9 in Arabic number system
- Digital:
 - countable by human fingers
 - We use the term "digital" synonymous to "discrete".

Analog signal

- An analog signal has continuous values.
 - e.g. sound, voice, video
- Most things that can be measured in nature appear in analog;
 - e.g. Temperature during a day

How to convert analog signal into digital signal

- 1st step: Sampling of an analog signal
 - makes a discrete-time signal

How to convert analog signal into digital signal

- ▶ 2nd step: Quantizing sampled data
 - Using a limited number of bits to describe the sampled data precision, a quantizing is a

Analog to digital conversion

000

- Sampling & Quantization
 - Digital representation of an analog data is possible through sampling & quantization

Sampling theorem

000

- The sampling theorem:
 - If a data is sampled

Nyquist rate $f_s \ge 2f_m$

- at regular intervals of time
- and at a rate higher than twice the highest data frequency,
- the samples contain all the information of the origin al data.
- Example
 - Human hearing: max frequency 20k Hertz
 - If sampled more than 40k Hertz, then the sample has all the information.
 - CD player: 44.1K Hertz sampling frequency.

Sampling theorem & Quantization Error

• If sample frequently enough, a perfect restoration of original analog data from the sequence is possible

CD: 44.1 kHz, 2 channels at 16 bits per channel or 2 × 16 bit per sample (1411.2 k bits/sec) Perfect restoration of the original sequence is not possible because of Quantization error

> MP3: 44.1 kHz, 128k bits per second, or 192k b/sec

OOO Examples of Audio Coding OOO

- cd (compact disc)
 - PCM (Pulse Coded Modulation): 16bit/44.1kHz (16bit/channel x 44.1 x 10^3 (1/sec) x 2 channel = 1411.2kbps)
 - CD ripping: waveform audio format (.wav)
 - ▶ 무손실압축: FLAC (free lossless audio coding), ALAC (apple lossless audio coding), (.ape)
 - ▶ 손실압축: MP3 (56kbps, 196kbps)
- sacd (super audio cd)
 - \triangleright 24bit/192kHz (24 x 192 x 10³ x 2 = 9213kbps = 9.213mbps)
- dsd (direct stream digital)
 - PDM (Pulse Density Modulation): 1bit 2.8224mHz (dsd64), 1bit 5.6448mHz (dsd128)
 - ightharpoonup 32bit/768kHz (32 x 768 x 10³ x 2 = 49152kbps = 49.152mbps)
 - ▶ 확장자:.dff,.dsf

Digital advantages

- 000
- Advantages of digital representation
 - Data Processing: more efficient
 - Data Transmission: more reliable
 - Data Storage: more compact
- ▶ A copy can be exactly the same as the original → Information sharing
- Digital, in our everyday life, is synonymous with "Sharing"
- This is how life has evolved.

DESIGN OF DIGITAL HARDWARE SYSTEM

Figure 1.5. A digital hardware system (Part a).

Figure 1.5. A digital hardware system (Part b).

OOO Digital Hardware System OOO

- Computer: Power supply, PCBs (printed circuit boards, mother board), storage units (Hard disk, Solid state disk, DVD, CD-ROM etc.)
- Mother board : CPU, storage (ROM/RAM), I/O interface, plugged-in slots
- Chip: sub-circuits (logic gates)

O Digital Hardware Components O O

- Standard Chip
 - Popular for building logic circuits until the early 1980s
 - Drawback: fixed functionality, inefficient space
- Programmable Logic Devices
 - FPGA (field-programmable gate array)
- Custom-Designed Chips
 - Custom or semi-custom design
 - ASIC (application specific integrated circuits)

O O O DESIGN PROCESS

BINARY NUMBER

Binary Number

♦
$$\mathbf{a}_{5}\mathbf{a}_{4}\mathbf{a}_{3}\mathbf{a}_{2}\mathbf{a}_{1}\mathbf{a}_{0}.\mathbf{a}_{-1}\mathbf{a}_{-2}\mathbf{a}_{-3}$$

$$= \mathbf{a}_{n}\mathbf{r}^{n} + \mathbf{a}_{n-1}\mathbf{r}^{n-1} + \dots + \mathbf{a}_{2}\mathbf{r}^{2} + \mathbf{a}_{1}\mathbf{r} + \mathbf{a}_{0} + \mathbf{a}_{-1}\mathbf{r}^{-1} + \mathbf{a}_{-2}\mathbf{r}^{-2} + \dots + \mathbf{a}_{-m}\mathbf{r}^{-m}$$

$$7392 = 7 \times 10^{3} + 3 \times 10^{2} + 9 \times 10^{1} + 2 \times 10^{0}$$

$$(11010.11)_{2} = 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= (26.75)_{10}$$

$$\mathbf{a}_{1} : \text{coefficient}$$

$$\mathbf{r} : \text{base}$$

Table 1-1
Powers of Two

2 ¹⁰ = 1Kilo	n		n		n	
$2^{10} = 1 \text{Kilo}$	0	1	8	256	16	65,536
2 ²⁰ = 1Mega	1	2	9	512	17	131,072
	2	4	10	1,024	18	262,144
2 ³⁰ = 1Giga	3	8	11	2,048	19	524,288
	4	16	12	4,096	20	1,048,576
	5	32	13	8,192	21	2,097,152
	6	64	14	16,384	22	4,194,304
	7	128	15	32,768	23	8,388,608

Number Base Conversions

◆ Ex 1-1) Convert decimal 41 to binary.

	Integer Quotient		Remainder	Coefficient
41/2 =	20	+	1/2	$a_0 = 1$
20/2 =	10	+	0	$a_1 = 0$
10/2 =	5	+	0	$a_2 = 0$
5/2 =	2	+	1/2	$a_3 = 1$
2/2 =	1	+	0	$a_4 = 0$
1/2 =	0	+	1/2	$a_5 = 1$

Integer Remainder 41 20 10 Answer

answer: $(41)_{10} = (a_5 a_4 a_3 a_2 a_1 a_0)_2 = (101001)_2$

=101001

Number Base Conversions

Ex 1-2) Convert decimal 153 to octal.

◆ Ex 1-3) Convert (0.6875)₁₀ to binary.

Integer Fraction Coefficient

1.3750=
$$0.6875 \times 2 = 1 + 0.3750$$
 $a_{-1} = 1$
 $0.3750 \times 2 = 0 + 0.7500$ $a_{-2} = 0$
 $0.7500 \times 2 = 1 + 0.5000$ $a_{-3} = 1$
 $0.5000 \times 2 = 1 + 0.0000$ $a_{-4} = 1$

Answer: $(0.6875)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4})_2 = (0.1011)_2$

Summary

- Jonnary
- The target scope of the digital design is the gate level design for a semiconductor chip.
- Analog to digital conversion (ADC) consists of the sampling and the quantizing process.
- The important process of design flow contains the functional simulation and the timing simulation.
- Digital system is based on the binary number system.