loT comunitaria

partecipa alla rete

Merge-IT Torino 24/03/2018 Nino Ciurleo

ninux.org

Che cos'é?

i partecipanti sono proprietari solamente di una piccola parte dell'infrastruttura, non c'è un unico ente giuridico che è proprietario della rete.

Principi

- la libertà di comunicazione
- la community
- la rete come bene comune
- la libertà di partecipazione
- la decentralizzazione
- il volontariato
- la cooperazione
- la condivisione

ninux.org

community aperta

 Community Based: le politiche di sviluppo sono decise dai partecipanti della comunità in modo democratico e/o basandosi sul consenso.

ninux.org

community aperta

- nessuna autenticazione richiesta
- nessuna crittografia sul segnale radio
- chiunque può collegarsi liberamente, nessuna discriminazione, nessun canone da pagare per accedere alla rete interna della community

Perche' IoT con ninux.org

- Infrastruttura di rete autogestita bene comune
- Dati condivisi e pubblici
- Distribuzione dei gateway sul territorio
- La comunita' veicola e spinge i progetti di interesse comune
- Esperienza di networking di lunga data
- Esperienza di DIY (accrocco oggetti e li metto sul tetto)

Dati aperti

- Accessibilità
- Formato aperto e longevo
- Struttura dati libera per evoluzione
- Granularità per rendere i dati più maneggiabili e universali

Applicazioni

- Sensori ambientali
- Domotica attuatori
 - Controllo remoto
- Smart cities partecipate
 - Cerca il tuo cane
 - Sensori di traffico
 - Tracciamento rifiuti
 - Parcheggi
- Voi che ci fareste??

Technolog y	Lora	LoraWAN	Wifi	ZigBee 3.0 IEEE802.15.4	Sigfox	LTE-M/NB-IoT	6LowPAN (RFC6282)
Frequency	868MHz 915MHz 2.4GHz	868MHz 915MHz 2.4GHz	2.4GHz	2.4GHz	900MHz	varie	2.4GHz or ZigBee or low-power RF (sub-1GHz)
Range	2-5km urban, 15km suburban	2-5km urban, 15km suburban	100m-1km	10m-100m	3-10km urban, 30-50km rural	30km	100m-10km
Data Rates	0.3-50 kbps	0.3-50 kbps	10-100Mbps	250kbps	10-1000bps	200kbps/1Mbps	250kbps
Energy	very-low	Very low 10 anni	medium	low	low	medium	medium
DIY	yes	yes	yes	yes	no	no	yes
Topology	p2p	star	p2p, star,mesh	star,mesh	star	star	p2p,star,mesh

iniziamo dal ninux day 2016 a Firenze...

- @claudyus presenta lo stato dell'arte della tecnologia LoraWAN
- Estate 2017 abbiamo cominciato a lavorare in tre a Roma
- Inizio 2018 accesi i primi due gateway

LORAWAN

• LoRaWAN - 16 June 2015 version 1.0

SENSORI

- RN2483 UART
- RFM95 SPI https://github.com/matthijskooijman/arduino-lmic

GATEWAYS

http://cpham.perso.univ-pau.fr/LORA/RPIgateway.html

https://github.com/Lora-net/packet_forwarder

Architettura LoraWAN - un' ipotesi concreta

Internet a banda larga con contratto su misura per la communità rurale (vendita all'ingrosso)

LoraWAN 1.1: join server - possibili sviluppi futuri

Network Reference Model ((LPWAN))

(*) https://www.lora-alliance.org/Contact/Request-Specification-Form Interface currently out-of LoRa Alliance scope

Primissima sperimentazione a Roma

- LoraWAN
- 2 gateway Raspberry + concentratore iC880A + packet_forwarder
- Nodi:
 - Arduino + Libreria LMIC
 - Lopy
- Network server: loraserver
- Software: mosquitto, influxdb
- Sensori: igrometro, termometro, barometro, anemometro
- Next steps: ciabatte remotizzate, sensori auto alimentati, Test 6LowPAN + RPL
- Primi test: Anemometro, Single channel gateway, GPS tracker

Anemometro

- Adafruit
- Micro 32u4
- Radio RFM95
- Arduino + LMIC
- Anemometro autocostruito
 - hall sensor
 - o stampa 3D

Single channel GW

- Pycom Lopy
- Pycom expansion board
- Codice di esempio su Github
- Wi-Fi + Lora
- Semplice implementazione

GPS tracker

- Pycom Lopy
- Pycom Pytrack
- Utile per test di portata
- Node-red MAP
- Test result:
 - Urbano ~ 2Km NLOS
 - Da provare in ambiente rurale

DHT22: Igrometro, Termometro

Il primo gateway finalmente sul tetto...

References

LoraWAN: https://www.lora-alliance.org/lorawan-for-developers

Loraserver: https://www.loraserver.io

Lora packet forwarder (gateway): https://github.com/Lora-net/packet_forwarder

Libreria Arduino-LMIC: https://github.com/matthijskooijman/arduino-lmic

Anemometro: https://www.thingiverse.com/thing:2559929

End

Domande?

Scaletta

- Perche' ninux (bene comune)
- Dati aperti longevi, granulari, etc
 - o progettazione (dati non aggregati e difficili da maneggiare)
- Struttura aperta come evoluzione continua dell'architettura (perche' non inibisce le funzioni) es. Database con schema fisso
- Standard
- Applicazioni
- Architetture possibili
- Una primissima sperimentazione a Roma