Feuille d'exercices Suites et limites

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Suites

Exercice 1. Calculs de termes (\star)

Calculer les quatre premiers termes des suites suivantes.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3 \end{array} \qquad v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3n+1 \end{array}$$

Exercice 2. Des propriétés classiques (*)

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite réelle. On dit que :

- u est croissante si pour tous entiers $n \leq m$, on a $u_n \leq u_m$,
- u est décroissante si pour tous entiers $n \leq m$, on a $u_n \geq u_m$,
- u est minorée s'il existe $m \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \geq m$.
- u est majorée s'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \leq M$.
- u n'est pas minorée si pour tout $m \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n < m$.
- u n'est pas majorée si pour tout $M \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n > M$.
- 1. Donner un exemple de suite croissante.
- 2. Donner un exemple de suite majorée et un de suite non majorée.
- 3. Donner un exemple de suite non majorée et non croissante.
- 4. Mêmes questions en remplaçant croissante par décroissante et majorée par minorée.
- 5. Donner un exemple de suite qui n'est ni croissante, ni décroissante.
- 6. Dire si les suites suivantes sont croissantes/décroissantes, majorées ou non, minorées ou non :

^{1.} vadim.lebovici@ens.fr

2 Limites

Exercice 3. Quelques exemples (*)

1. Montrer que la suite suivante converge et donner sa limite.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3 \end{array}$$

2. Montrer que la suite suivante converge et donner sa limite. ²

$$v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & \frac{1}{n+1} \end{array}$$

3. Montrer que la suite suivante diverge.

$$w: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3n \end{array}$$

Exercice 4. Unicité de la limite (*)

Soit $u: \mathbb{N} \to \mathbb{R}$. On souhaite montrer que si u converge, sa limite est unique³, i.e:

pour tout
$$\ell \in \mathbb{R}$$
 et $\ell' \in \mathbb{R}$, si $u_n \xrightarrow[n \to +\infty]{} \ell$ et $u_n \xrightarrow[n \to +\infty]{} \ell'$, alors $\ell = \ell'$.

Soient $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$ deux réels tels que $u_n \xrightarrow[n \to +\infty]{} \ell$ et $u_n \xrightarrow[n \to +\infty]{} \ell'$. Supposons par l'absurde que $\ell \neq \ell'$.

- 1. Supposons dans un premier temps que $\ell < \ell'$.
 - (a) Montrer qu'il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, on a $u_n > (\ell + \ell')/2$ (un indice ⁴).
 - (b) Montrer qu'il existe $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, on a $u_n < (\ell + \ell')/2$.
 - (c) Conclure à une absurdité dans le cas où $\ell < \ell'$.
- 2. Conclure à une absurdité dans le cas où $\ell > \ell'$.
- 3. Conclure.

Exercice 5. Toute suite convergente est bornée. $(\star\star)$

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite convergente vers un réel $\ell \in \mathbb{R}$.

1. Montrer que u est majorée, i.e qu'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \leq M$. Voici un indice ⁵ pour vous aider.

^{2.} Notez que ce cas est légèrement plus simple que la preuve faite en cours.

^{3.} C'est d'ailleurs ce qui nous autorise à parler de la limite d'une suite u lorsqu'elle existe.

^{4.} Poser $\varepsilon = (\ell' - \ell)/2$ et appliquer la définition de la convergence vers ℓ' .

^{5.} Le maximum d'un ensemble fini non-vide de nombres réels est bien défini. Ainsi, pour un certain $N \in \mathbb{N}$, vous pouvez par exemple considérer le nombre $\max\{u_0,...,u_N\}$. C'est le plus petit nombre réel qui est plus grand que tous ceux de l'ensemble $\{u_0,...,u_N\}$.

- 2. En déduire ⁶ que u est minorée, i.e qu'il existe $m \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \geq m$.
- 3. Donner un exemple de suite bornée (i.e. majorée et minorée) qui ne converge pas.

Exercice 6. Suites convergentes d'entiers $(\star\star\star)$

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite telle que pour tout $n \in \mathbb{N}$, on a $u_n \in \mathbb{N}$. Montrer que :

u converge si, et seulement si⁷, u est stationnaire.

On dit qu'une suite est *stationnaire* si elle est constante à partir d'un certain rang, i.e s'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n = u_N$. Voici un indice ⁸ pour vous aider.

^{6.} Noter que si u converge, alors -u aussi et appliquer la question 1. Ne pas oublier que $x \leq y$ est équivalent à $-y \leq -x$.

^{7.} i.e si u converge alors u est stationnaire et réciproquement si u est stationnaire alors u converge.

^{8.} Vous pouvez admettre qu'il y a au plus un entier dans l'ensemble $E = \{x \in \mathbb{R} \mid \ell - 1/2 < x < \ell + 1/2\}$, i.e. si $k \in E$ et $l \in E$ sont entiers, alors k = l.