Script Files and Round-off Errors

Tae Eun Kim, Ph.D.

Wednesday, January 9, 2019

2.2 Script Files

Script M-file

The simplest type of MATLAB program is called a **script**:

- a file with a ".m" extension that contains multiple lines of MATLAB commands and statements.
- m-file names may consist of letter, numbers, and underscores.
- useful when you need to type/execute a series of multiple statements.

Basic actions:

- Create a new script: click the **New Script** icon on the **Home** tab.
- Run a script: type its name (without ".m") at the command line or click on the Run icon on the Editor tab.

Example: cone.m

Pay attention to how inputs and outputs are handled in the example code.

Inputs:

```
rad_cone = input(' radius of cone = ');
hgt_cone = input(' height of cone = ');
hgt_water = input(' height of water in cone = ');
```

Outputs:

2.4 Round-off Errors

Accuracy of Results and Error Analysis

- In numerical analysis, we use an **algorithm** to *approximate* some quantity of interest.
- We estimate of the accuracy of the computed value via an absolute error or a relative error:

$$e_{
m abs} = A_{
m approx} - A_{
m exact}$$
 (absolute error) $e_{
m rel} = rac{A_{
m approx} - A_{
m exact}}{A_{
m exact}} = rac{A_{
m approx}}{A_{
m exact}} - 1$, (relative error)

where $A_{\rm exact}$ is the exact, analytical answer and $A_{\rm approx}$ is the approximate, numerical answer.

ullet If $e_{
m abs}$ or $e_{
m rel}$ is small, we say that the approximate answer is **accurate**.

Example: Stirling's Formula

Stirling's formula provides a "good" approximation to n! for large n:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 (*)

- Assume that the exact value of n! is found by factorial.
- Estimate n! using (\star) .
- ullet Show the accuracy of this approximation for various values of n.

As an example:

Floating-Point Numbers

A digital computer cannot represent all real numbers. So for all operations involving real numbers, it uses a subset of $\mathbb R$ called the **floating-point numbers**.

• MATLAB, by default, uses *double precision* floating-point numbers, stored in memory in 64 bits (or 8 bytes):

$$\pm\underbrace{1.\mathsf{xxxxxxxx}\cdots\mathsf{xxxxxxx}_2}_{\mathsf{mantissa (base 2): 52+1 bits}} \times 2^{\underbrace{\mathsf{xxxx}\cdots\mathsf{xxxx}_2 - 1023}_{\mathsf{exponent: 11 bits}}}.$$

- Predefined variables:
 - ullet eps = the distance from 1.0 to the next largest double-precision number
 - realmin = the smallest positive floating-point number that is stroed to full accuracy; the actual smallest is realmin/2^52.
 - realmax = the largest positive floating-point number

Round-off Errors

Computers cannot usually add, subtract, multiply, or divide correctly!!

MATLAB calculates all its results to 15–16 digits of accuracy. First, type format long. Then see what you get:

- 1.2345678901234567890
- 12345678901234567890
- (1 + eps) 1
- (1 + .5 * eps) 1
- \bullet (1 + .51*eps) 1
- $n = input(' n = '); (n^(1/3))^3 n$

Catastrophic Cancellation

Subtracting two nearly equal numbers has a *catastrophic* effect that the number of accurate (significant) digits in the result is reduced unacceptably.

Simple example. Consider two real numbers stored with 10 digits of precision beyond the decimal point:

e = 2.7182818284,b = 2.7182818272.

- ullet Suppose the actual numbers e and b have additional digits that are not stored.
- The stored numbers are good approximations of the true values.
- \bullet However, if we compute e-b based on the stored numbers, we obtain 0.0000000012, a number with only two significant digits.
- In finite precision storage, two numbers that are close to each other are indistinguishable.

Example 1: Cancellation for Large Values of x

Example 1

```
Compute f(x) = e^x(\cosh x - \sinh x) at x = 1, 10, 100, and 1000.
```

Numerically:

```
format long
x = input(' x = ');
y = exp(x) * ( cosh(x) - sinh(x) );
disp([x, y])
```

Example 2: Cancellation for Small Values of x

Example 2

Compute
$$f(x) = \frac{\sqrt{1+x}-1}{x}$$
 at $x = 10^{-12}$.

Numerically:

To Avoid Such Cancellations . . .

- Unfortunately, there is no universal way to avoid loss of precision.
- One way to avoid catastrophic cancellation is to remove the source of cancellation by simplifying the given expression before computing numerically.
- For Example 1, rewrite the given expression recalling that

$$\cosh x = (e^x + e^{-x})/2 \qquad \sinh x = (e^x - e^{-x})/2.$$

ullet For Example 2, try again after rewriting f(x) as

$$f(x) = \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} = \frac{1}{\sqrt{1+x}+1}.$$

• Do you now have an improved accuracy?