STEP 0: RICONOSCI IL SETUP (SEMPRE UGUALE)

- n Bernoulli i.i.d. con parametro p
- $S = \sum X_i$ (somma)
- Trova $N = min\{k \in \mathbb{N} : P(S \le k) \ge \alpha\}$ (soglia α)

NUMERI MAGICI - MEMORIZZA E BASTA:

- E[S] = n·p
- $Var(S) = n \cdot p \cdot (1-p)$
- S ~ Poisson(λ) con λ = n·p (approssimazione)
- S ~ Normal(μ , σ^2) con μ = n·p, σ^2 = n·p·(1-p) (approssimazione)

PUNTO (a): CHEBYSHEV - ALGORITMO ROBOT

STEP 1: Calcola μ e σ^2

- µ = n·p
- $\sigma^2 = n \cdot p \cdot (1-p)$

STEP 2: Applica Chebyshev meccanicamente

$$P(S \le m) = 1 - P(S > m) \ge 1 - P(|S - \mu| \ge m+1 - \mu)$$

STEP 3: Se m+1 > μ (caso tipico):

 $P(|S - \mu| \ge m+1 - \mu) \le \sigma^2/(m+1 - \mu)^2$

STEP 4: Risolvi

 $P(S \le m) \ge 1 - \sigma^2/(m+1 - \mu)^2$

Vuoi: $1 - \sigma^2/(m+1 - \mu)^2 \ge \alpha$ **Cioè**: $\sigma^2/(m+1 - \mu)^2 \le 1 - \alpha$ **Cioè**: $(m+1 - \mu)^2 \ge \sigma^2/(1 - \alpha)$ **Cioè**: $m+1 \ge \mu + \sigma/\sqrt{(1 - \alpha)}$ **Cioè**: $m \ge \mu + \sigma/\sqrt{(1 - \alpha)}$ - 1

STEP 5: FORMULA ROBOT

 $N \ge \left[\mu + \sqrt{(\sigma^2/(1-\alpha))} - 1\right]$

PUNTO (b): POISSON - ALGORITMO ROBOT

STEP 1: Parametro Poisson

 $\lambda = n \cdot p$

STEP 2: S ~ Poisson(λ)

 $P(S = k) = e^{(-\lambda)} \lambda^{k}/k!$

STEP 3: Trova N usando tavole

 $P(S \le N) = \sum_{k=0}^{N} e^{\Lambda}(-\lambda) \lambda^{k}/k! \ge \alpha$

STEP 4: USA LE TAVOLE POISSON

- Cerca λ nella tavola
- Trova il più piccolo N tale che F(N) ≥ α

PUNTO (c): NORMALE - ALGORITMO ROBOT

STEP 1: Parametri Normale

- µ = n·p
- $\sigma^2 = n \cdot p \cdot (1-p)$
- $\sigma = \sqrt{(n \cdot p \cdot (1-p))}$

STEP 2: Standardizza con correzione di continuità

 $P(S \le m) = P(S \le m + 0.5) \approx \Phi((m + 0.5 - \mu)/\sigma)$

STEP 3: Risolvi

Vuoi: $\Phi((N + 0.5 - \mu)/\sigma) \ge \alpha$ **Cioè**: $(N + 0.5 - \mu)/\sigma \ge \Phi^{-1}(\alpha)$ **Cioè**: $N \ge \mu + \sigma \cdot \Phi^{-1}(\alpha) - 0.5$

STEP 4: FORMULA ROBOT

 $N = [\mu + \sigma \cdot z_a - 0.5]$ dove $z_a = \Phi^{-1}(\alpha)$ (dalla tavola normale)

VALORI STANDARD DA TAVOLE:

• $\alpha = 0.95 \rightarrow z_{0.95} = 1.645$

•
$$\alpha = 0.96 \rightarrow z_{0.96} = 1.75$$

•
$$\alpha = 0.98 \rightarrow z_{0.98} = 2.054$$

•
$$\alpha = 0.99 \rightarrow z_{0.99} = 2.326$$

TRUCCO PER BINOMIALI:

Se $X_i \sim Bin(k, p)$ invece di Bernoulli:

- E[S] = n·k·p
- $Var(S) = n \cdot k \cdot p \cdot (1-p)$
- $\lambda = n \cdot k \cdot p$ (per Poisson)
- Applica tutto uguale!

SCHEMA MECCANICO FINALE:

- 1. Leggi n, p, α dal testo
- 2. Calcola $\mu = n \cdot p$, $\sigma^2 = n \cdot p \cdot (1-p)$
- 3. **CHEBYSHEV:** N ≥ μ + $\sqrt{(\sigma^2/(1-\alpha))}$ 1
- 4. **POISSON:** Usa tavole con $\lambda = n \cdot p$
- 5. **NORMALE:** $N = \mu + \sigma \cdot z_a 0.5$
- 6. FINE. NON PENSARE.