

SCOPE is a classical **SVAT** (Soil-Vegetation-Atmosphere Transfer scheme combined with **Radiative transfer models** for leaf and canopy

It simulates:

- Photosynthesis
- The surface energy balance
- Reflectance spectra and ratiation emission between 0.4 and 50 µm

UNIVERSITY OF TWENTE.

THE SCOPE OF SCOPE

UNIVERSITY OF TWENTE.

	Simulation of observations - optical - thermal - fluorescence	Simulation of processes - hydrological - physiological - meteorological
Leaf level	FLUSPECT	Biochemical model
Canopy level	Radiative transfer models (SAIL family)	Energy balance model

 $I^f =$

Differential equations to resolve for each layer:

Extinction of direct light

$$\frac{\mathrm{d}E_s}{(L\mathrm{d}x)} = kE_s$$

Leaf Area index increment in the vertical X=0 at the top of canopy, x=-1 at the soil

Upward diffuse flux

$$\frac{dE^{-}}{Ldx} = SE_{s} + aE^{-} - oE^{+}$$
Scattering coefficients

Downward diffuse flux

$$\frac{\mathrm{d}E^{+}}{L\mathrm{d}x} = sE_{s} + \sigma E^{-} - aE^{+}$$

Flux in observation direction

$$\frac{\mathrm{d}E_o}{L\mathrm{d}x} = wE_s + vE^- + v'E^+ - KE_o$$

The coefficients k, s, s, a, σ , v, v, w, and w are calculated from the leaf inclination distribution

The equations are solved as followed:

Solar flux with depth Es(x) is solved (1st DE)
$$E_s(x) = \exp(kLx)$$

- $E_s(x)$ is inserted into DE for E^- and E^+ .
- E⁻ and E⁺ solved analytically
- Diffuse incoming irradiance E_{sky} is top boundary condition
- *E*_{skv} is calculated from extraterrestiral radiation and MODTRAN5 outputs
- E_o at the top of canopy (E_o(0)) is calculated by inserting the solutions for E_s,
 E⁻ and E⁺ into the DE of E_o.

Simulated spectra of E- and E+ at different levels in the canopy

UNIVERSITY OF TWENTE.

Net radiation

$$R_{n,dif}(x) = (1 - \rho - \tau)(E^{+}(x + 0.5dx) + E^{-}(x + 0.5dx))$$

 $R_{n,dir}(x)$: Geometrical calculation depending on solar angle and leaf inclinations

Estimating LIDF with 'leafangles.m'

Probability density function (PDF) of leaf zenith angle

Cumulative PFD of leaf zenith angle

Data: Shibayama (2004), Plant Prod Sci 7(4), 297-405

Leaf Zenith Angle (LZA)

Model the Cumulative PFD of leaf zenith angle:

(1) The diagonal: all leaf inclinations are equally probable (LIDFa = 0; LIDFb=0

(2) The diagonal is the 'x-axis'. Now add a sinus on this axis. The amplitude of this sinus is LIDFa. Modify the value of LIDFa to obtain a good fit.

(3) Add a second sinus with 2x smaller period. The amplitude of this sine is LIDFb. Modify the value of LIDFb to obtain a good fit.

-> Now we have a mathematical expression for the leaf inclination distribution.

In SCOPE: leafangles.m

SCOPE simulations of radiance

Objectives

- To describe a 'classic' photosynthesis and stomatal condutance model
- To describe the main quenching mechanisms of excitons
- To be able to estimate electron transport from acive fluorescence measurements of Ft, Fm, and Fm'
- To describe the relation between steady state fluorescence yield and electron transport yield

Measurement systems:

- (1) Leaf gas exchange: CO₂ (and H₂O) exchange
- (2) Pulse-Ampitude Fluoremetry: electron transport

Most important parameters:

- Initial slope of light response curve
- Curvature of the light response
- Caboxylation capacity: highly variable

UNIVERSITY OF TWENTE.

De-excitation pathways

Pulse-Amplitude-Modulation: make use of the fact that k_P responds almost immediately, but k_N slowly And get to know all k's at a specific light intensity

Feedback from dark reactions

The question is, how can we handle the two unknowns, k_P and k_N Pragmatic solution to this problem, is to find empirically:

$$k_N = f(\Phi_p)$$

Or:

$$k_N = f(x)$$

$$x = 1 - \frac{\Phi_p}{\Phi_{p \text{ max}}} = 1 - \frac{ETR_{actual}}{ETR_{potential}}$$

Degree of light saturation [0,1

Alternative solutions: find a mechanistic model for k_N

Coupled with a 'traditional' photosynthesis and gas exchange model, this links steady state fluorescence yield to photosynthesis

Journal of Geophysical Research: Biogeosciences

Volume 119, Issue 12, pages 2312-2327, 26 DEC 2014 DOI: 10.1002/2014JG002713 http://onlinelibrary.wiley.com/doi/10.1002/2014JG002713/full#jgrg20312-fig-0011

Example 1

 Multi-directional observations (left) and model simulations (right) of brightness temperatures (Duffour et al., 2015, AFM, in press)

Example 2

 Comparison of measured (symbols) and modelled (lines) diurnal cycles of fluxes and temperature (Punalekar et al., sumbitted to AFM)

Example 2, continued

Example 3.

 Vertical profiles of temperature in the canopy (Punalekar et al., submitted to AFM)

Example 4.

 Modelled and measured canopy reflectance spectra (Punalekar et al., submitted to AFM)

Example 5.

 Measured (left) and modelled (right) responses of GPP and Chlorophyll fluorescence to irradiance. Diurnal cycles of Chlorophyll fluorescence (Van der Tol et al, in prep)

