知识精炼(二)

主讲人:邓哲也

给定一张无向图,你可以找到很多个生成树。

现在希望你能找出一个生成树,使得生成树中"最大边-最小边"的值最小。

n <= 100

我们不妨考虑,枚举生成树中的"最小边"e。

接下来只要删除所有边权小于 e 的边, 然后在剩下的图上

跑Kruskal算法,得到最小生成树之后,找出"最大边",

用"最大边"-"最小边"去更新答案。

正确性?

如果存在某个生成树的"最大边"比最小生成树中的"最大边"还小呢?

反证法,不存在。

因此我们的想法是正确的。

每次枚举最小边,然后把大于等于最小边权值的边保留,按照边权 从大到小排序,跑 Kruskal 算法。

因为边的数量是0(n^2)级别的,做一次Kruska1算法需要 0(n^2 log n)的时间复杂度。总时间复杂度为0(n^4 log n)。很悬。

很简单。只要一开始对所有边排一次序就可以了。 总时间复杂度为0(n⁴)。完美解决。

下节课再见