Лабораторная работа №13

Задание для самостоятельного выполнения

Хватов М. Г.

Содержание

1	Пост	тановка задачи	4
2	Вып	олнение лабораторной работы	5
	2.1	Схема модели	5
	2.2	Анализ сети Петри	7
	2.3	Реализация модели в CPN Tools	8
3	Выв	од	15

Список иллюстраций

2.1	Сеть для выполнения домашнего задания	7
2.2	Дерево достижимости	8
2.3	Модель задачи в CPN Tools	9
2.4	Задание деклараций	10
2.5	Граф состояний	11

1 Постановка задачи

- 1. Используя теоретические методы анализа сетей Петри, провести анализ сети (с помощью построения дерева достижимости). Определить, является ли сеть безопасной, ограниченной, сохраняющей, имеются ли тупики.
- 2. Промоделировать сеть Петри с помощью CPNTools.
- 3. Вычислить пространство состояний. Сформировать отчёт о пространстве состояний и проанализировать его. Построить граф пространства состояний.

2 Выполнение лабораторной работы

2.1 Схема модели

Заявка (команды программы, операнды) поступает в оперативную память (ОП), затем передается на прибор (центральный процессор, ЦП) для обработки. После этого заявка может равновероятно обратиться к оперативной памяти или к одному из двух внешних запоминающих устройств (В1 и В2). Прежде чем записать информацию на внешний накопитель, необходимо вторично обратиться к центральному процессору, определяющему состояние накопителя и выдающему необходимую управляющую информацию. Накопители (В1 и В2) могут работать в 3-х режимах:

```
1) B1 — занят, B2 — свободен;
```

```
2) B2 — свободен, B1 — занят;
```

```
3) B1 — занят, B2 — занят.
```

Сеть Петри моделируемой системы представлена на рис. 2.1.

Множество позиций:

```
P1 - состояние оперативной памяти (свободна / занята);
```

- P2 состояние внешнего запоминающего устройства B1 (свободно / занято);
- P3 состояние внешнего запоминающего устройства B2 (свободно / занято);
- Р4 работа на ОП и В1 закончена;
- P5 работа на ОП и В2 закончена;
- P6 работа на ОП, В1 и В2 закончена;

Множество переходов:

- T1 ЦП работает только с RAM и B1;
- T2 обрабатываются данные из RAM и с B1 переходят на устройство вывода;
- Т3 CPU работает только с RAM и B2;
- T4 обрабатываются данные из RAM и с B2 переходят на устройство вывода;
- T5 CPU работает только с RAM и с B1, B2;
- T6 обрабатываются данные из RAM, B1, B2 и переходят на устройство вывода.

Функционирование сети Петри можно расматривать как срабатывание переходов, в ходе которого происходит перемещение маркеров по позициям:

- работа CPU с RAM и B1 отображается запуском перехода T1 (удаление маркеров из P1, P2 и появление в P1, P4), что влечет за собой срабатывание перехода T2, т.е. передачу данных с RAM и B1 на устройство вывода;
- работа CPU с RAM и B2 отображается запуском перехода Т3 (удаление маркеров из P1 и P3 и появление в P1 и P5), что влечет за собой срабатывание перехода Т4, т.е. передачу данных с RAM и B2 на устройство вывода;
- работа CPU с RAM, B1 и B2 отображается запуском перехода Т5 (удаление маркеров из P4 и P5 и появление в P6), далее срабатывание перехода Т6, и данные из RAM, B1 и B2 передаются на устройство вывода;
- состояние устройств восстанавливается при срабатывании: RAM переходов T1 или T2; B1 переходов T2 или T6; B2 переходов T4 или T6.

Рис. 2.1: Сеть для выполнения домашнего задания

2.2 Анализ сети Петри

Построим дерево достижимости (рис. 2.2).

Рис. 2.2: Дерево достижимости

Можем увидеть, что представленная сеть:

- безопасна, поскольку в каждой позиции количество фишек не превышает
 1;
- ограничена, так как существует такое целое k, что число фишек в каждой позиции не может превысить k (в данном случае k=1);
- сеть не имеет тупиков;
- сеть не является сохраняющей, так как при переходах t5 и t6 количество фишек меняется.

2.3 Реализация модели в CPN Tools

Реализуем описанную ранее модель в CPN Tools. С помощью контекстного меню создаем новую сеть, далее нам понадобятся 6 позиций и 6 блоков переходов, затем их нужно соединить, а также задать параметры и начальные значения. Получаем готовую модель (рис. 2.3).

Рис. 2.3: Модель задачи в CPN Tools

Также зададим нужные декларации (рис. 2.4).

```
► Help
► Options
▼<u>New net.cpn</u>
   Step: 0
   Time: 0
  ▶ Options
  ► History
  ▼ Declarations
    ► Standard priorities
    ▶ Standard declarations
    ▼colset drive2 = unit with B2;
    ▼colset drive1 = unit with B1;
    ▼var b1:drive1;
    ▶ colset op memory
    var OM
    ▼var b2:drive2;
    ▼colset b1b2 = product drive1*drive2;
  ▶ Monitors
   New Page
```

Рис. 2.4: Задание деклараций

Запустив модель, можно посмотреть, как она работает (рис. 2.5).

Рис. 2.5: Граф состояний

CPN Tools state space report for:

<unsaved net>

Report generated: Thu May 1 11:12:14 2025

Statistics

State Space

Nodes: 5

Arcs: 10

Secs: 0

Status: Full

Scc Graph

Nodes: 1
Arcs: 0

Secs: 0

Boundedness Properties

Best Integer Bounds

	Upper	Lower
New_Page'P1 1	1	1
New_Page'P2 1	1	0
New_Page'P3 1	1	0
New_Page'P4 1	1	0
New_Page'P5 1	1	0
New_Page'P6 1	1	0

Best Upper Multi-set Bounds

New_Page'P1	1	1`ram
New_Page'P2	1	1`B1
New_Page'P3	1	1`B2
New_Page'P4	1	1`B1
New_Page'P5	1	1`B2
New_Page'P6	1	1`(B1,B2)

Best Lower Multi-set Bounds

New_Page'P1 1 1`ram
New_Page'P2 1 empty

	New_Page'P3 1	empty			
	New_Page'P4 1	empty			
	New_Page'P5 1	empty			
	New_Page'P6 1	empty			
Home	e Properties				
Hon	ne Markings				
	All				
Live	eness Properties				
Dea	ad Markings				
	None				
Dea	Dead Transition Instances				
	None				
Liv	/e Transition Ins	tances			
	All				
Fair	rness Properties				

```
---
```

Impartial Transition Instances

None

Fair Transition Instances

New_Page'T6 1

Just Transition Instances

New_Page'T5 1

Transition Instances with No Fairness

New_Page'T1 1

New_Page'T2 1

New_Page'T3 1

New_Page'T4 1

3 Вывод

Сеть Петри, 1-дезопасна (ограничена по одному маркеру в местах), живая(все переходы могут быть выполнены), обратима (любое состояние достижимо из любого другого), сильно связана. Отстствуют тупиковые состояния и мертвые переходы, однако только преход Т6 является справедливым, Т5 - обоснованный, а остальные не обладают свойствами справедлиовсти, что может повлиять на их регулярное исполнение без внешнего управления.