TD 2 graphes : connexité et parcours

I. Graphe complet sans circuit

- 1. Donnez un exemple de graphe orienté complet à 5 sommets sans circuit.
- 2. Soit G = (X, U) un graphe orienté complet et sans circuit. G est-il réflexif ? anti-symétrique ? transitif ? Comment peut-on qualifier la relation binaire R sur X dont G est le graphe ?
- 3. Démontrer que pour tout $(x, y) \in X$ tel que $x \neq y$
 - (a) $d^+(x) > d^+(y) \Leftrightarrow (x, y) \in U$ (b) $d^+(x) \neq d^+(y)$

II. Parcours en profondeur d'un graphe

Soit G = (X, U) un graphe orienté.

Pour tout $(x, y) \in X$, $x \ne y$, y est descendant de x dans G si et seulement s'il existe un chemin [x, y] dans G. L'ensemble de tous les descendants de x dans G est noté $D_G(x)$. Par convention, $x \in D_G(x)$ même en l'absence de circuit passant par x.

L'algorithme suivant détecte tous les descendants dans G d'un sommet donné x0 ; il utilise une pile (munie des opérations : "pile_vide", "empiler", "dépiler", "tête" et "vide ?").

Algorithme: Recherche en profondeur des descendants d'un sommet

Données : G = (X, U) est un graphe et $x_0 \in X$ début

```
\begin{array}{|c|c|c|} \textbf{pour } x \in X \textbf{ faire } IP(x) \leftarrow 0 \ ; \\ k \leftarrow 1; \ IP(x_0) \leftarrow 1; \ D \leftarrow \{x_0\}; \ V \leftarrow \emptyset; \ P \leftarrow empiler(x_0, pile\_vide) \ ; \\ \textbf{tant que } non(vide?(P)) \textbf{ faire} \\ \hline & z \leftarrow \text{tête}(P) \ ; \\ \textbf{si } il \ existe \ y \in \Gamma^+(z) \ tel \ que \ IP(y) = 0 \ \textbf{alors} \\ \hline & IP(y) \leftarrow k+1 \ ; \\ k \leftarrow k+1 \ ; \\ P \leftarrow \text{empiler}(y,P) \ ; \\ D \leftarrow D \cup \{y\} \ ; \\ V \leftarrow V \cup \{(z,y)\} \ ; \\ \textbf{sinon} \\ \hline & P \leftarrow \text{dépiler}(P) \ ; \\ /* \ D = D_G(x_0)^*/ \\ \textbf{fin} \end{array}
```

Remarque 1 : À la fin de l'algorithme, $\forall x \in X : IP(x) \in \mathbb{N}^* \Leftrightarrow x \in D_G(x0)$, IP(x) est le numéro de marquage de x, appelé indice en profondeur de x. Cet ordre de marquage des sommets de $D_G(x0)$ ne dépend que des ordres des listes $\Gamma^+(x)$.

Remarque 2 : À la fin de l'algorithme, le graphe $H = (D_G(x0), V)$ est un graphe sans cycle, admettant x0 pour racine : c'est l'arborescence du parcours en profondeur effectué.

1. Appliquez cet algorithme pour trouver les descendants du sommet x1 dans le graphe dont le dictionnaire est le suivant et donner l'arborescence H obtenue :

- 1.	x_i	x_1	_		x_4	x_5	x_6	x_7	x_8
	$\Gamma^{+}(x)$	x_3, x_5, x_6	x_1, x_4, x_7	x_2, x_7		x_2	x_3	x_4, x_6	x_2, x_4, x_5

- 2. Proposez un algorithme utilisant une file effectuant un parcours et un marquage en largeur des descendants d'un sommets d'un graphe. Appliquez-le au graphe G.
- 3. Application à la recherche des composantes connexes d'un graphe G = (X, U) orienté ou non. On désigne par G1 = (X, U1) le graphe orienté obtenu à partir de G en remplaçant chaque arc (respectivement chaque arête) par deux arcs de sens opposés.

Pour tout sommet x, si $C_G(x)$ est la composante connexe de G contenant x, et si $D_{G1}(x)$ est l'ensemble des descendants de x dans G1, on vérifie sans difficulté l'équivalence suivante pour tout $(x,y) \in X$:

$$y \in C_G(x) \Leftrightarrow y \in D_{G1}(x)$$

Exploiter cette équivalence et l'algorithme de recherche en profondeur des descendants d'un sommet dans G1, pour proposer un algorithme de recherche des composantes connexes de G.

III. Composantes fortement connexes et graphe réduit

On considère le graphe orienté G = (X, U), X = [1, 15], défini comme suit :

X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\Gamma^{+}(x)$	2	3	4	1	8	5	9	7	8	11	7	11	14	12	6
		13	14	5	12	7			10		8	13			12
					14	13					9				13
					15	14									14

- 1. Rappeler la définition des composantes fortement connexes d'un graphe. Décomposer G en ses composantes fortement connexes en utilisant la fermeture transitive.
- 2. Démontrer que le graphe réduit d'un graphe est sans circuit. Calculer les niveaux des sommets du graphe réduit Gr de G et représenter Gr .
- 3. G n'est pas fortement connexe (le justifier). Construire un graphe G' fortement connexe, contenant G comme graphe partiel, par adjonction d'un nombre minimum d'arcs, sans toucher l'orientation des arcs de U. Justifier.
- 4. Déduire de G un graphe G'' = (X, U'') fortement connexe, uniquement par modification de certains arcs de U. Justifier.

IV. Inondation

Voici une vue aérienne de champs de riz, les traits représentent des digues de terre entourant ces champs. Les digues extérieures sont entourées d'eau. Combien de digues faut-il ouvrir au minimum pour inonder tous les champs ? Lesquelles par exemple ?

