Defu: Random Sample Size If X1, X2, X3,, XN are mutually independent
Sample
It X1, X2, X3,, XN) are mutually independent
all of marginal dist for marginal pMF/PDF
Plutter
then we say there Is one a random sample from f.
from f
Denote: Xn 2 7. I ident.
m indep
Denote: Xn iid f. and ident. dist.
Notation:
Notation: $X = (X_1, \dots, X_N)$ random. $X = (X_1, \dots, X_N)$ or multivariate RV
Notation: Notation: Nect. Nect. or multivariate RV
Notation: $X = (X_1,, X_N) \text{ or multivariate } RV$ $X = (X_1,, X_N) \in \mathbb{R}^N$
$\chi = (\chi_1, \ldots, \chi_N) \in \mathbb{R}^N$
$\chi = (\chi_1, \dots, \chi_N) \in \mathbb{R}^N$ Joint dist. of a RS (rand. sample)
$\chi = (\chi_1, \dots, \chi_N) \in \mathbb{R}^N$ Joint dist. of a RS (rand. sample)
$\chi = (\chi_1, \dots, \chi_N) \in \mathbb{R}^N$ Joint dist. of a RS (rand. sample)
$\chi = (\chi_1, \dots, \chi_N) \in \mathbb{R}^N$ Joint dist. of a RS (rand. sample)
 $\chi = (\chi_1, \ldots, \chi_N) \in \mathbb{R}^N$

Lecture Notes Page 1

$$\frac{\mathcal{E}_{X_{1}}}{\mathcal{E}_{X_{1}}} = \frac{\mathcal{E}_{X_{1}}}{\mathcal{E}_{X_{1}}} = \frac{\mathcal{E}_{X_{1}}}{\mathcal{E}_{X_{1}}$$

=
$$\lambda$$
 (Te- λx_n) (T $\mu(x_n > 0)$) $\mu(x) = \mu(x_n + 1)$

$$= \lambda e$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{fa } x > 0 \\ 0 & \text{fa } x \leq 0 \end{cases}$$

$$= \lambda e^{-\lambda x} 1(x>0)$$

$$= \frac{1}{100} \frac{$$

$$= \lambda e$$

$$= \lambda e$$

$$= \lambda e$$

$$= 1 \text{ (all } x_n > 0)$$

Defu: Statistic Given a RS Xn iid f sample size and a function

T:
$$\mathbb{R} \to \mathbb{R}^{n}$$
 typically $d \in \mathbb{N}$ (typically $d = \mathbb{N}$)

then $T(X)$ is a statistic.

$$e_{X_i}$$
 Anthretic mean: $(d=1)$

$$T(X) = \frac{1}{N} \sum_{n=1}^{N} \chi_n = \overline{\chi}_N$$

Sample Variences

$$S_{N-1}^{2} = \frac{1}{N-1} \sum_{n=1}^{N} (X_{n} - X_{N})^{2}$$

Sample SD:

$$S_{N-1} = \sqrt{S_{N-1}}$$

$$Max.$$
 $X_{(N)} = Max X_h$

Order Statistics: X(r) = rth smallest omong X1, -, XN

Defn! Samply Distribution

The sampling dist. of a steet. T = T(X) is just the dist. of T.

Ex What is the dist of X(1)?

let Xn int (where f cts)

I want the PDF of X(1).

 $P(X_{(1)} \ge t) = P(X_1 \ge t, X_2 \ge t, ..., X_N \ge t)$ $= T P(X_1 \ge t) \quad [by independence]$ $= P(X_1 \ge t)$ $= (I - F(t)) \quad OF of X_1$

 $F_{X(n)}(t) = P(X_{(n)} \leq t) = 1 - P(X_{(n)} \geq t)$ $= 1 - (1 - F(t))^{N}$

$$f_{\chi_{(I)}}(t) = \frac{dF_{\chi_{(I)}}}{dt} = N(I-F(t))^{N-I}f(t)$$

Play Simular genne fer X(N): look of P(X(N) = t)

and get

$$f_{\chi_{(N)}}(t) = N F(t) f(t)$$

General formula for order starts!

$$f_{X(r)}(t) = \frac{N!}{(r-1)!(N-r)!}F(t)(1-F(t))f(t)$$

Famous result from Intro Steet.

Facts: Sums of RVs

(a)
$$g: R \rightarrow R$$
 and $X_n \rightarrow f$

(b) $E[\sum_{n=1}^{N}g(X_n)] = N E[g(X_n)]$ only of them

Pf.

 $E[\sum_{n=1}^{N}g(X_n)] = \sum_{n=1}^{N}E[g(X_n)]$ all thus same

 $= N E[g(X_n)]$

2 $Var(\sum_{n=1}^{N}g(X_n)) = N Var(g(X_n))$

Pf. basically same as above

(NEEDS INPENPENCE)

Theorem: If $X_n \rightarrow f$ and

 $E[X_n] = M$ and $Var[X_n] = G^2$

then $O[E[X_n]] = M$

lage

Lecture Notes Page 6

 $2) Var(\bar{X}_N) = 6^2/N$

Small N

$$3 \mathbb{E}\left[S_{N-1}^{2}\right] = 6^{2}$$

$$E\left(\overline{X}_{N}\right) = E\left(\frac{1}{N}\sum_{n=1}^{N}X_{n}\right) = \frac{1}{N}E\left(\sum_{n}X_{n}\right) = \frac{1}{N}NM$$

$$=\mathcal{M}$$

$$\frac{2}{2} \operatorname{Var}(\overline{X}_{N}) = \operatorname{Var}(\overline{X}_{N} \overline{X}_{N})$$

$$= \frac{1}{N^{2}} \operatorname{Var}(\overline{X}_{N})$$

$$= \frac{1}{N^{2}} \operatorname{N6}^{2} = 0$$

$$= \frac{1}{N^{2}} \operatorname{N6}^{2} = 0$$

$$(3) \mathbb{E} \left[S_{N-1} \right]$$

$$= \mathbb{E} \left[\frac{1}{N-1} \sum_{n} (X_{n} - \overline{X})^{2} \right]$$

$$= N-1 \mathbb{E} \left[\frac{1}{N-1} \sum_{n} (X_{n} - \overline{X})^{2} \right]$$

$$E[S_{N-1}]$$

$$= E[\frac{1}{N-1}\sum(X_{n}-X)^{2}]$$

$$= E[\frac{1}{N-1}\sum(X_{n}-X)^{2}]$$

$$= Var(X) = E[X]$$

$$= Var(X) + E[X]$$

$$= \frac{1}{N-1} \mathbb{E} \left[\sum_{n=1}^{N-1} X_{n}^{2} - N \overline{X}_{n}^{2} \right]$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$

$$= \frac{1}{N-1} \left(\sum_{n=1}^{N-1} X_{n}^{2} - N \mathbb{E} \left[\overline{X}_{n}^{2} \right] \right)$$