Math 220 - Final Exam - December 17, 2014

1. (6 points) Let $g(x) = x^2 + 1$. Using the limit definition of the derivative, find g'(3).

$$g'(3) = \lim_{h \to 0} \frac{g(3+h) - g(3)}{h} = \lim_{h \to 0} \frac{(3+h)^2 + 1) - (3^2 + 1)}{h}$$

$$= \lim_{h \to 0} \frac{(9+6h+h^2+1) - (9+1)}{h} = \lim_{h \to 0} \frac{6h+h^2}{h} = \lim_{h \to 0} \frac{(6+h)}{h}$$

$$= 6+0 = 6$$

- 2. (6 points) Using a linearization for $f(x) = \sqrt{x}$ at x = 1, estimate $\sqrt{1.02}$. $f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}.$ The linearization of f(x) at x = 1 is $L(x) = f(1) + f'(1)(x-1) = \sqrt{1 + \frac{1}{2\sqrt{1 + 2}}}(x-1) = 1 + \frac{1}{2}(x-1).$ Because 1.02 is close to 1, $\sqrt{1.02} = f(1.02) \approx L(1.02) = 1 + \frac{1}{2}(1.02-1) = 1 + \frac{1}{2}(.02) = 1.001$
- 3. (3 points) At time t minutes, Alice has a velocity of $v_A(t)$ ft/min, and Fred has a velocity of $v_F(t)$ ft/min. Describe the meaning of the integral $\int_2^5 (v_A(t) v_F(t)) dt.$ $\int_2^5 (v_A(t) v_F(t)) dt \int_2^5 v_A(t) dt \int_2^5 v_F(t) dt$ This is how much farther in feet Alice runs than Fred

From 2 minutes to 5 minutes

$$2x=x^2$$

$$0 = x^2 - 2x = x(x-2)$$

5. (6 points) Find the volume of the solid formed by rotating the region bounded by
$$y = 0$$
, $x = 1$, and $y = x^3$ around the x-axis.

= 4-8 = 4

Volume =
$$\int_{0}^{1} \pi(x^{3})^{2} dx = \int_{0}^{1} \pi x^{6} dx$$

= $\frac{\pi}{7}x^{7}\Big|_{0}^{1} = \frac{\pi}{7}(1) - \frac{\pi}{7}(0)^{7}$
= $\frac{\pi}{7}$

Area = $\int_{0}^{2} (2x - x^{3}) dx = (x^{2} - \frac{1}{3}x^{3})$

 $=(2^2-\frac{1}{2}(3^2)-(0^2-\frac{1}{2}\cdot(0^3))$

6. (6 points) Find
$$m(x)$$
 provided that $m''(x) = e^x$, $m'(0) = 2$, and $m(0) = 5$.

$$\int e^x dx = e^x + C \quad \text{so} \quad m'(x) = e^x + C \quad \text{for some constant } C.$$

$$2 = m'(0) = e^0 + C = 1 + C \quad \text{so} \quad C = 1, \quad \text{Hence, } m'(x) = e^x + 1.$$

$$\int (e^x + 1) dx = e^x + x + D \quad \text{so} \quad m(x) = e^x + x + D \quad \text{for some constant } D.$$

$$5 = m(0) = e^0 + 0 + D = 1 + D \quad \text{so} \quad D = 4. \quad \text{Therefore, } m(x) = e^x + x + 4.$$

7. (4 points each) Compute the following:

A.
$$\frac{d}{dx} \int_3^x t^5 \cos(t^3 + 42t) dt = \chi^5 \cos(\chi^3 + 42\chi)$$

B.
$$\frac{d}{dx} \left(\frac{e^{x^2}}{2x^5 + x} \right) = \frac{\left[\frac{d}{dx} e^{x^2} \right] \cdot (2x^5 + x) - e^{x^2} \cdot \left[\frac{d}{dx} (2x^5 + x) \right]}{(2x^5 + x)^2}$$
$$= \frac{e^{x^2} \cdot 2x \cdot (2x^5 + x) - e^{x^2} \cdot (10x^4 + 1)}{(2x^5 + x)^2}$$

C.
$$\frac{d}{dx}(\sin(x) \cdot \arctan(x)) = \cos(x) \cdot \arctan(x) + \sin(x) \cdot \frac{1}{1+x^2}$$

D.
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = \lim_{X\to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{X\to 2} (x+2) = 2+2=4$$

E.
$$\lim_{x \to \infty} \frac{7x^5 + 3x^2 + 3}{6x^5 + 4x^4 + 2x} = \lim_{x \to \infty} \frac{7x^5 + 3x^2 + 3}{\frac{x^5}{6x^5 + 4x^4 + 2x}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^3} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^4 + 2x}{x^5}} = \lim_{x \to \infty} \frac{7 + \frac{3}{x^5} + \frac{3}{x^5}}{\frac{6x^5 + 4x^5 + \frac{3}{x^5}}{\frac{6$$

8. (6 points each) Compute the following:

A.
$$\frac{dy}{dx}$$
 if $y^4 + xy = x^3 - x + 2$

$$\frac{d}{dx} \left(y^4 + xy \right) = \frac{d}{dx} \left(x^3 - x + 2 \right)$$

$$\frac{d}{dx} \left(y^4 + xy \right) = \frac{d}{dx} \left(x^3 - x + 2 \right)$$

$$\frac{d}{dx} \left(y^4 + xy \right) = \frac{d}{dx} \left(x^3 - x + 2 \right)$$

$$\frac{d}{dx} \left(y^4 + xy \right) = \frac{d}{dx} \left(x^3 - x + 2 \right)$$

$$\frac{d}{dx} \left(y^4 + xy \right) = \frac{d}{dx} \left(x^3 - x + 2 \right)$$

$$\frac{d}{dx} \left(y^4 + xy \right) = \frac{d}{dx} \left(x^3 - x + 2 \right)$$

$$\frac{d}{dx} \left(y^4 + xy \right) = \frac{d}{dx} \left(x^3 - x + 2 \right)$$

$$\frac{d}{dx} \left(y^4 + xy \right) = \frac{d}{dx} \left(x^3 - x + 2 \right)$$

$$\frac{d}{dx} \left(x^3 - x + 2$$

$$C. \int_{0}^{\pi/2} \sqrt{\sin(t)} \cos(t) dt = \int_{0}^{\pi/2} \sqrt{u} du = \frac{2}{3} u^{3/2} \Big|_{0}^{\pi/2} = \frac{2}{3} (1)^{3/2} - \frac{2}{3} (0)^{3/2} = \frac{2}{3}$$

$$u = \operatorname{Sm}(t) \qquad u(\frac{\pi}{2}) = \operatorname{Sm}(\frac{\pi}{2}) = 1$$

- **9.** (2 points each) Above is a graph of y = h''(x). Find:
 - A. Interval(s) where h(x) is concave up: (0,3) and $(5,\infty)$
 - B. Interval(s) where h(x) is concave down: $(-\infty, 0)$ and (3, 5)
 - C. x-coordinate(s) where h(x) has an inflection point: x = 0, 3, 5
- 10. (3 points) Let r(t) denote the rate in gallons per hour at which water is flowing into a tank t hours after noon. Describe the meaning of $\int_2^4 r(t) dt$.

 This represents the amount of water in gallons that flows into the tank between 2:00 PM and 4:00 PM.
- 11. (6 points) Find the absolute maximum and minimum of $w(x) = x^3 + 3x^2 9x + 1$ on [0, 2]. $w'(x) = 3x^2 + 6x 9 = 3(x^2 + 2x 3) = 3(x + 3)(x 1)$ is defined everywhere. w'(x) = 0 when x = 1 or x = -3. The only critical point in [0, 2] occurs when x = 2.

$$w(2) = 2^{3} + 3 \cdot (2)^{2} - 9(2) + 1 = 3$$

$$w(1) = 1^{3} + 3 \cdot (1)^{2} - 9 \cdot (1) + 1 = -4$$

$$w(0) = 0^{3} + 3 \cdot (0)^{2} - 9 \cdot (0) + 1 = 1$$

$$2 + 3 \cdot (0)^{2} - 9 \cdot (0) + 1 = 1$$

$$2 + 3 \cdot (0)^{2} - 9 \cdot (0) + 1 = 1$$

On [0,2], w(x) has an absolute max at (2,3) and an absolute minimum at (1,-4).

Very test and may has hilled thours after noon

$$y = distance Many has hilled thours after noon

 $z = distance between Many and Sally thours after noon

want: $\frac{dz}{dt}$ when $t = 2 hr$. Know: $\frac{dx}{dt} = 2 \frac{m}{hr}$, $\frac{dt}{dt} = \frac{m}{hr}$.

Sally

 $z^2 = x^2 + (y+1)^2 = 50 \frac{d}{dt} = \frac{2^2 - d}{dt} \left[x^2 + (y+1)^2 \right] = \frac{2x \frac{dx}{dt} + 2(y+1) \frac{dy}{dt}}{2z} = \frac{x \frac{dx}{dt} + 2(y+1) \frac{dx}{dt}}{2z} = \frac{x \frac{dx}{dt}}{2z} = \frac{x \frac{dx}{dt}}{2z} = \frac{x \frac{dx}{dt}}{2z} = \frac{x \frac{dx}{dt$$$$

13. (7 points) 6 ft² of material is available to make a rectangular box with an open top. The length of its base must be twice the width. Find the dimensions that maximize the volume of the box. (Justify why your answer is an absolute maximum)

Maximize
$$V=l \cdot w \cdot h=2w^2 \cdot h$$

$$6=w(2w)+2 \cdot h \cdot (2w)=2w^2+6hw$$

$$6-2w^2=6hw \quad \text{So} \quad h=\frac{6-2w^2}{6w}=\frac{1}{w}-\frac{1}{3}w.$$

Maximize $V(w)=2w^2(\frac{1}{w}-\frac{1}{3}w)=2w-\frac{2}{3}w^3$, on $(0,\infty)$

$$V'(w)=2-2w^2 \quad \text{is defined everywhere,}$$

$$V'(w)=0 \quad \text{when} \quad 2w^2=2, \quad w^2=1, \quad w=\pm 1.$$

The only critical point of $V(x)$ on $(0,\infty)$ occurs when $w=1$ ft. $V''(x)=-4w<0$ on $(0,\infty)$ so the volume has a max when $w=1$ ft, $l=2w=2$ ft, $h=\frac{6-2w^2}{6w}=\frac{4}{6}=\frac{2}{3}$ ft, and $V=1\cdot 2\cdot \frac{2}{3}=\frac{4}{3}$ ft.