Algorithmen und Datenstrukturen (Master) WiSe 19/20

Benedikt Lüken-Winkels

February 8, 2020

Contents

1	Union-Find	2
2	Hashing	5
3	Amortisierte Analye	7
4	Planare Graphen	8

1 Union-Find

Beschreiben Sie jeweils eine Lösung für das Union-Find-Problem mit Laufzeit

- 1. $O(\log n)$ (amortisiert) für UNION und O(1) für FIND
- 2. O(1) für UNION und $O(\log n)$ für FIND

wobei n die Anzahl der Elemente ist. Begründen Sie in beiden Fällen die entsprechenden Laufzeiten.

Lösung 1.)

Union in $O(\log n)$, Find in O(1). **Idee:** Relable the smaller half, sodass jedes Element nur maximal $\log n$ geändert wird:

Datenstruktur

```
name[x]: Name des Blocks, der x enthält
size[A]: Größe des Blocks A (Init 1)
list[A]: Liste der Elemente in Block A
```

Algorithmus 1: Initialisierung

```
\begin{array}{c|c} \mathbf{foreach} \ x \in N \ \mathbf{do} \\ & \mathrm{name}[\mathbf{x}] \leftarrow \mathbf{x}; \\ & \mathrm{size}[\mathbf{x}] \leftarrow 1; \\ & \mathrm{list}[\mathbf{x}] \leftarrow \{\mathbf{x}\}; \\ \mathbf{end} \end{array}
```

Algorithmus 2: Find(x)

return name[x];

Algorithmus 3: Union(A,B)

Laufzeit

Find: O(1). Lookup im Array.

Union: $O(\log n)$. Jedes x kann maximal $\log n$ mal seinen Namen ändern, da es sich nach jeder Namensänderung in einer doppelt so großen Liste befindet.

Lösung 2.)

Union in O(1) und Find in $O(\log n)$. **Idee:** Bei Union Anhängen des kleineren Teilbaums an den Größeren.

Das ergibt die Abschätzung size[x] $\geq 2^{h\ddot{o}he(x)}$, bzw $\log_2(\text{size}[x]) \geq h\ddot{o}he(x)$, also wird der Baum nie tiefer, als $\log n$

Datenstruktur

```
name[x]: Name des Blocks mit Wurzel x (nur, wenn x eine Wurzel relevant)
size[x]: Anzahl der Knoten im Unterbaum mit Wurzel x
wurzel[x]: Wurzel des Blocks mit Namen x
vater[x]: Vaterknoten des Knotens x. 0, wenn x Wurzel
```

Algorithmus 4: Initialisierung

```
\begin{array}{l} \textbf{foreach} \ x \in N \ \textbf{do} \\ & \text{name}[\mathbf{x}] \leftarrow \mathbf{x}; \\ & \text{size}[\mathbf{x}] \leftarrow 1; \\ & \text{wurzel}[\mathbf{x}] \leftarrow \mathbf{x}; \\ & \text{vater}[\mathbf{x}] \leftarrow 0; \\ & \textbf{end} \end{array}
```

Algorithmus 5 : Find(x) while $vater[x] \neq 0$ do | $x \leftarrow vater[x]$; end return name[x];

Algorithmus 6: Union(A, B, C)

```
\begin{array}{l} a \leftarrow wurzel[A]; \\ b \leftarrow wurzel[B]; \\ \textbf{if } size[a] \geq size[b] \textbf{ then} \\ | vater[b] \leftarrow a; \\ | name[a] \leftarrow C; \\ | wurzel[C] \leftarrow a; \\ | size[a] \leftarrow size[a] + size[b]; \\ \textbf{else} \\ | analog; \\ \textbf{end} \end{array}
```

Laufzeit

Find: $O(\log n)$. Höhe des Baums bleibt maximal $\log n$, da der kleinere Teilbaum immer an die Wurzel des Größeren gehangen wird und sich die Tiefe des Baums durch seine Größe abschätzen lässt.

Union: O(1). Lediglich die Wurzel muss umgeschrieben werden.

2 Hashing

Entwickeln Sie eine Datenstruktur zur Speicherung von n Schlüsseln aus dem Universum $\{1, ..., N\}$ (wobei n << N), die eine Zugriffszeit von O(1) garantiert. Sie dürfen dabei $O(n^2)$ Speicherplatz verwenden.

(Perfektes Hashing) Verbessern Sie die Datenstruktur aus Aufgabe ??, so dass nur noch Speicherplatz O(n) benutzt wird. Hashig durch Verkettung und mit offener Adressierung (Linear Probing: Wie funktioniert Delete())

Lösung

Hashing mit Verkettung Idee: keine Auflösung von Konflikten, sondern mehrere Schlüssel an gleicher Stelle speichern. Tafel T mit m Buckets, Hashfunktion h und Belegungsfaktor $B = \frac{m}{n}$.

Verdopplungsstrategie: Wenn B > 2 verdopple m und rehashe alle n mit neuem h.

Lookup(x): Lineare Suche in einer kurzen Liste T[h(x)] in O(1), da durch die Verdopplungsstrategie garantiert wird, dass es genug Platz gibt, um jedes Element in eine eigene Liste zu legen.

Insert(x): Füge x an erste freie Stelle in T[h(x)] ein.

Delete(x): Entferne x aus T[h(x)]. Bei $B \leq \frac{1}{2}$ kann nach m Delete halbiert werden.

Hashing mit offener Adressierung Idee: Linear Probing. Ausprobieren einer Reihe von Hashfunktionen h_i . Startpunkt ist f(x), g(x) verschiebt beim Probing. Eine Beispielfunktion wäre (mit $n \leq m$, damit $B \leq 1$):

$$h_i(x) = (xmodm + i)modm$$

status[1,...,m]: Status des Feldes (belegt, frei oder gelöscht)

Lookup(x): Probiere $h_0, h_1, h_2, ...$ bis freie Stelle oder x gefunden wurde:

Insert(x): Probiere $h_0, h_1, h_2, ...$ bis freie oder gelöschte Stelle gefunden wurde:

Delete(x): Probiere $h_0, h_1, h_2, ...$ bis freie Stelle oder x gefunden wurde. Entferne x und markiere status[Postition(x)] als gelöscht.

Perfektes Hashing Ziel Speicherplatz O(n) ohne Kollisionen. Idee: 2-Stufen-Hashing

1.Stufe Wähle eine Hashfunktion h_k so dass die Summe der Bucketgrößen in der Tafel T mit s=n Elementen < 3n ist, also:

$$(1) \sum_{i=0}^{n-1} |w_i^k|^2 < 3n$$

 h_k muss in diesem Schritt noch nicht injektiv sein. Sei p eine Primzahl mit p > N, dann wähle zufällig Kandidaten k aus $\{1, ..., p-1\}$, bis (1) erfüllt ist. Wir wissen, dass mindestens die Hälfte aller möglichen k geeignet sind.

- \Rightarrow Wahrscheinlichkeit $\frac{1}{2}$ und Erwartungswert für Versuche, um k zu finden = 2 (Münzwurf).
 - $\Rightarrow O(2n)$ Tests, bis k gefunden wird.
- **2.Stufe** Für nicht-leere Buckets jeweils eine Tafel s_i mit $2|w_i^k|^2$ Platz und Wahl von k_i so, dass h_{k_i} injektiv auf w_i^k . (Wieder Münzwurf). Platzbedarf:

(2)
$$\sum_{i=0}^{n-1} 2|w_i^k|^2 = 2\sum_{i=0}^{n-1} |w_i^k|^2 < 10n$$

 \Rightarrow Gesamtplatzbedarf: $(1) + (2) \rightarrow O(13n)$

3 Amortisierte Analye

Beschreiben Sie die Technik der amortisierten Analyse einer Folge von Operationen auf einer Datenstruktur D. Demonstrieren Sie diese Technik am Beispiel einer Folge von Increment-Operationen auf einem binären Zähler.

Lösung

Potentialmethode Idee: Bilde den Ablauf eines Algorithmus als Zustände und deren Übergänge ab.

Zustände D', D'', \dots in der Datenstruktur

 $pot: D \to \mathbb{R}$, Methode zur Bestimmung des Potentialwertes eine Zustandes

 $op:D\to D',$ Operation die einen Zustand in den nächsten überführt

 $T_{Tats}(op)$, Tatsächliche Laufzeit einer Operation

 $T_{Amort}(op) = T_{Tats}(op) + pot(D'') - pot(D') = T_{Tats}(op) + \Delta pot$, Amortisierte Laufzeit einer Operation

Beim Binärzähler für die Increment Operation stellt pot die Anzahl der Einsen k dar.

$$T_{Tats}(incr) = 1 + k$$

 $\Delta pot = 1 - k$, da die Einsen zu 0 geflippt werden.

$$T_{Amort}(incr) = 1 + k + (1 - k) = 2$$

 \Rightarrow Ein Increment kostet O(1)

4 Planare Graphen

Sei G ein planarer Graph mit n Knoten und m Kanten. Folgern Sie aus dem Satz von Euler, dass $m \leq 3n-6$ und dass G einen Knoten vom Grad ≤ 5 besitzt.

Lösung

Eulerformel:

$$n - m + f = 2$$

Proof. m < 3n - 6

Ein maximler planarer Graph hat eine Einbettung, in der jedes Face ein Dreieck ist (Triangulierung). Jede Kante liegt damit am Rande von 2 Faces und jedes Face hat 3 Kanten:

$$3f = 2m$$

Eingesetzt in die Eulerformel:

$$n - m + \frac{2}{3}m = 2$$
$$\Rightarrow m = 3n - 6$$

Für allgemeine planare Graphen gilt daher:

$$m \le 3n - 6$$

Proof. G hat einen Knoten v mit $deg(v) \leq 5$ Annahme, dass $\forall v \in V : deg(v) \geq 6$. Dann wäre

$$m = \sum_{v \in V} \frac{deg(v)}{2} \ge \frac{6n}{2} = 3n$$

 $\Rightarrow m \leq 3n - 6$ ist nicht mehr erfüllt

Zusatz: Zeigen Sie, dass für bipartite planare Graphen $m \leq 2n-4$ gilt.

Lösung

Proof. $m \leq 2n - 4$ für bipartite planare Graphen.

Da pipartite Graphen keine ungeraden Zyklen haben, ist das kleinste Face ein Viereck:

$$2f = m$$

Eingesetzt in die Eulerformel:

$$n - m + \frac{1}{2}m = 2$$
$$\Rightarrow m = 2n - 4$$