Theoretical Foundation of Visualization

Your Name

Latex is so lame. Cite shit Author [2023]here.

1 Figure Ocean and Zones

Suppose we have a function $f: X_1 \times \cdots \times X_n \to Y$, we want to visualize its values but n is not small enough for us to visualize them in a gallery or an array.

Here we explain the method used in husky how to divide the visualization into zones.

An anchor a_i for X_i is either a specific point $x \in X_i$ or a generic (means having more than one element) part (called page in implementation) of X_i with a moored point x_0 . Basically an anchor is a subset of X_i with additional information. A sequence of anchors then represents a subset of the product space $X_1 \times X_n$.

The whole sequence of anchors (a_1, \ldots, a_n) is going to be rendered as an ocean of figures, divided into zones of figures, where a figure zone is determined by a pair $(i,j) \in [n] \times [n]$ with i <= j, such that it's equivalent to the visualization of $(a'_1, \ldots, a'_i, a_{i+1}, \ldots, a_j)$ where a'_l is the specific version of anchor a_l , where the moored point of the generic case is turned to the specific point.

References

Some Author. Some relevant paper title. Journal of Visualization, 2023.