Connectivity under vertex failure, logic and algorithm

Alexandre Vigny

With: Michał Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz and Szymon Toruńczyk

March 22, 2024

Outline

Introduction: Graphs, Algorithms, Logic

Connectivity under vertex failure

Logics between FO and MSO

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

 \rightarrow Is G planar?

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?
- \rightarrow Is G connected?

Goal: Efficient algorithms ...

... at least for restricted graph classes and/or simple properties.

Logic

First-order (FO) logic

 \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \ldots \exists x_k \ \bigwedge (x_i \neq x_i \land \neg E(x_i, x_i))$

→ Cannot express : connectivity, planarity, 2-colorability, ...

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \ldots \exists x_k \bigwedge_{i < i} (x_i \neq x_j \land \neg E(x_i, x_j))$
- → Cannot express : connectivity, planarity, 2-colorability, ...

Monadic second-order (MSO) logic

- \rightarrow More general than FO
- → Can express : 3-colorability: $\exists X_1 \exists X_2 \exists X_3 \ (\forall x \bigvee_{i < 3} x \in X_i) \land (\forall x \forall y \ E(x, y) \rightarrow \bigwedge_{i < 3} (x \notin X_i \lor y \notin X_i))$

Logic & Meta theorems

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem: Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $\mathcal{O}(f(\varphi) \cdot |G|^c)$

Logic & Meta theorems

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem: Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $\mathcal{O}(f(\varphi) \cdot |G|^c)$

Courcelle's Theorem (1990):

for $\varphi \in \mathrm{MSO}$ and treewidth $(G) \leq k$, in time $\mathcal{O}(f(\varphi, k) \cdot |G|)$

→ Generalize many known results, ex: Arnborg, Proskurowski 1989: independent sets, dominating sets, graph coloring, Hamiltonian, ... are linear on partial k-tree. GENERALITY

GENERALITY

Monotone graph classes

Connectivity under vertex failure

Input: A graph G, and k vertices v_1, \ldots, v_k

- \rightarrow 1st precomputation.
- \rightarrow 2nd Given x, y: are they connected in $G \setminus \{z_1, \dots, z_k\}$?
- → 3rd Update vertices z₁,...,z_k
 Be ready for 2nd as soon as possible.

Computational complexity

	precomputation	query	update
Naive	$\mathcal{O}(1)$	$\mathcal{O}(\ G\)$	$\mathcal{O}(1)$
Naive	$\mathcal{O}(\ G\)$	$\mathcal{O}(1)$	$\mathcal{O}(\ G\)$

Computational complexity

	precomputation	query	update
Naive	$\mathcal{O}(1)$	$\mathcal{O}(\ G\)$	$\mathcal{O}(1)$
Naive	$\mathcal{O}(\ G\)$	$\mathcal{O}(1)$	$\mathcal{O}(\ G\)$
Duan, Pettie '20	$\mathcal{O}(G \ G\ \cdot\log G)$	$\mathcal{O}(k)$	$\mathcal{O}(k^3 \log^3 G)$
Brand Saranurak '19 (randomized)	$\mathcal{O}(G ^\omega)$	$\mathcal{O}(k^2)$	$\mathcal{O}(k^\omega)$
contribution 1	$2^{2^{\mathcal{O}(k)}} \cdot G ^2 \cdot G $	$2^{2^{\mathcal{O}(k)}}$	$2^{2^{\mathcal{O}(k)}}$
contribution 2	$2^{\mathcal{O}(k \log k)} \cdot G ^{\mathcal{O}(1)}$	$k^{\mathcal{O}(1)}$	$k^{\mathcal{O}(1)}$

Def: A graph
$$G$$
 is $k+1$ connected if for any z_1,\ldots,z_k
$$G\setminus\{z_1,\ldots,z_k\} \text{ is connected}$$

 \rightarrow Answering is trivial!

Well connected graphs

Def: A graph G is k+1 connected if for any z_1, \ldots, z_k $G \setminus \{z_1, \ldots, z_k\}$ is connected

- \rightarrow Answering is trivial!
- \rightarrow Most graphs are not trees or k-connected

Unbreakable graphs

Def: A graph G is (q, k)-unbreakable if for all sets S with $|S| \le k$:

for all separations A, B of $G \setminus S$ either $|A| \leq q$ or $|B| \leq q$

Intuition: If C is the biggest connected component (in $G \setminus S$)

Then $|G \setminus C| \leq q$

Unbreakable graphs

Def: A graph G is (q, k)-unbreakable if for all sets S with $|S| \le k$:

for all separations A, B of $G \setminus S$ either $|A| \leq q$ or $|B| \leq q$

Intuition: If C is the biggest connected component (in $G \setminus S$)

Then
$$|G \setminus C| \leq q$$

if
$$k = 4$$
 then $q \ge 5$

Unbreakable graphs

Def: A graph G is (q, k)-unbreakable if for all sets S with $|S| \le k$:

for all separations A, B of $G \setminus S$ either $|A| \leq q$ or $|B| \leq q$

Intuition: If C is the biggest connected component (in $G \setminus S$)

Then
$$|G \setminus C| \leq q$$

if k = 4 then $q \ge 5$ In general, if k < n then q = ?

tinyurl.com/short-polls

What we do with $conn_k$ and unbreakability

If G is (q, k)-unbreakable, then $conn_k()$ solvable in time $\mathcal{O}(q + k)$.

Take x, y, z_1, \ldots, z_k :

- \rightarrow Depth-first search in $G \setminus \{z_1, \dots, z_k\}$ around x:
 - \rightarrow Stop after q+1 new vertices.
 - **1**. Found *y*?
 - 2. Explored the whole component of x?
 - 3. Then *x* is in "The big component".

What we do with $conn_k$ and unbreakability

If G is (q, k)-unbreakable, then $conn_k()$ solvable in time $\mathcal{O}(q + k)$.

- \rightarrow Depth-first search in $G \setminus \{z_1, \dots, z_k\}$ around y:
 - \rightarrow Stop after q+1 new vertices.
 - 1. Found *x*?
 - 2. Explored the whole component of y?
 - 3. Then y is in "The big component".
- \rightarrow We can conclude conn_k (x, y, z_1, \dots, z_k)

Tree-width

Tree-width

Tree-width

Tree-width

Cygan, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh '19:

For every k, G there is a tree decomposition of G such that:

- \rightarrow Every bag is (k, q)-unbreakable.
- $\rightarrow q \in 2^{\mathcal{O}(k^2)}$.
- \rightarrow Adjacent bags have intersection of size q.
- \rightarrow Computable in time $2^{\mathcal{O}(k^2)}|G|\|G\|$.

Then perform dynamic programming on the tree decomposition.

Examples of decompositions

Examples of decompositions

Back to the case of trees!

Adding Connectivity to FO

Schirrmacher, Siebertz, Vigny '21 and Bojanczyk '21

Syntax

 \rightarrow Uses : FO and $\operatorname{conn}_k(x, y, z_1, \dots, z_k)$

Meaning

 $\rightarrow x$ and y are connected after the deletion of z_1, \ldots, z_k .

Expressive power of FO + conn

→ connectivity

$$\forall x \forall y \text{ conn}_0(x, y)$$

→ cycle

$$\varphi_{cycle} := \exists x \exists y \exists z \big(E(x,y) \land E(y,z) \land z \neq x \land \operatorname{conn}_1(z,x,y) \big)$$

→ Not expressible planarity, bipartiteness, Hamiltonicity, . . .

Main result

Theorem: Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny

- \rightarrow Model-checking for properties in FO + conn over graph classes excluding a topological minor is solvable in time FPT.
- → Model-checking is not FPT for more general graph classes. Under complexity assumptions

Monotone graph classes

More logics: disjoint-paths logic (FO + DP)

Syntax

 \rightarrow Uses : FO and **disjoint-paths**_k $(x_1, y_1, \dots, x_k, y_k)$

Meaning

 $\rightarrow x_i$ and y_i are connected by internally vertex-disjoint paths.

Expressive power of disjoint-paths logic (FO + DP)

→ connectivity

$$\forall x \forall y \text{ disjoint-paths}_1(x, y)$$

→ cycle

$$\exists x \exists y \exists z \text{ disjoint-paths}_3((x, y), (y, z), (z, x))$$

ightarrow connectivity operators

$$\operatorname{conn}_k(x,y,z_1,\ldots,z_k) := \operatorname{disjoint-paths}_{k+1}[(x,y),(z_1,z_1),\ldots,(z_k,z_k)]$$

Disjoint-paths logic (FO + DP)

Expressible

- → connectivity
- → (topological) minors,
- → planarity, ...

Not expressible

→ bipartiteness

strict hierarchy

 \rightarrow FO + DP₁ \subsetneq FO + DP₂ \subsetneq ...

Model checking?

- → For planar graphs?
- → For excluded minor?

New results

Theorem: Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny

- \rightarrow Model-checking for properties in FO + DP over graph classes excluding a topological minor is solvable in time FPT.
- → Model-checking is not FPT for more general graph classes. Under complexity assumptions

Thank you very much for your attention!