Chapitre 21

Polynômes

Sommaire.

1	Polynômes à travers leurs coefficients.	1
	1.1 Combinaisons linéaires et produits de polynômes formels	1
	1.2 Évaluation d'un polynôme	2
	1.3 Structure d'anneau de $\mathbb{K}[X]$	
	1.4 Composition	
	1.5 Degré	
	1.6 Dérivation dans $\mathbb{K}[X]$	5
2	Racines et factorisation d'un polynôme.	6
	2.1 Divisibilité et division euclidienne dans $\mathbb{K}[X]$	6
	2.2 Racines et divisibilité	
	2.3 Racines et rigidité des polynômes	8
	2.4 Multiplicité d'une racine.	9
	2.5 Existence de racines : théorème d'Alembert-Gauss	10
	2.6 Décomposition en facteurs irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$	10
3	Compléments.	12
	3.1 Relations coefficients-racines pour un polynôme scindé	12
	3.2 Interpolation de Lagrange	
4	Exercices. *	14

Les propositions marquées de \star sont au programme de colles.

1 Polynômes à travers leurs coefficients.

1.1 Combinaisons linéaires et produits de polynômes formels.

Définition 1

On appelle **polynôme** à coefficients dans \mathbb{K} une suite d'éléments de \mathbb{K} nulla à.p.d.c.r.

L'ensemble des polynômes à coefficients dans \mathbb{K} est noté $\mathbb{K}[X]$.

- La suite nulle est un polynôme. Il est appelé **polynôme nul** et noté 0, ou $0_{\mathbb{K}[X]}$.
- \bullet La suite $(1,0,0,\ldots)$ est un polynôme. Il est appelé polynôme constant égal à 1 et noté 1.
- La suite (0, 1, 0, ...) est un polynôme. Il est noté X et appelé **indéterminée**.
- Soit $n \in \mathbb{N}$. La suite dont tous les termes sont nuls sauf celui de rang n qui vaut 1 est un polynôme qu'on notera X^n . On l'appelle **monôme** d'ordre n.

Définition 2

Soient $P = (a_k)_{k \in \mathbb{N}}$ et $Q = (b_k)_{k \in \mathbb{N}}$ deux polynômes de $\mathbb{K}[X]$. Soit $\lambda \in \mathbb{K}$. La suite $(a_k + b_k)_{k \in \mathbb{N}}$ est un polynôme de $\mathbb{K}[X]$, qui sera noté P + Q. La suite $(\lambda a_k)_{k \in \mathbb{N}}$ est un polynôme de $\mathbb{K}[X]$, qui sera noté λP .

Corrolaire 3

Soit $P=(a_k)_{k\in\mathbb{N}}$ un polynome de $\mathbb{K}[X]$ et m un entier tel que $\forall k>m,\ a_k=0.$ Alors

$$P = \sum_{k=0}^{m} a_k X^k$$

Notation

Un polynôme $P=(a_k)_{k\in\mathbb{N}}$ de $\mathbb{K}[X]$ sera désormais noté

$$P = \sum a_k X^k.$$

Il s'agit juste d'une notation, qui permet d'oublier que les polynômes, formellement, sont des suites (on n'a pas besoin de savoir cela dans la pratique).

Corrolaire 4

Soient $P = \sum a_k X^k$ et $Q = \sum b_k X^k$ deux polynômes de $\mathbb{K}[X]$ et λ, μ deux scalaires de \mathbb{K} . Alors

$$\lambda P + \mu Q = \sum (\lambda a_k + \mu b_k) X^k.$$

Définition 5

Soient $P = \sum a_k X^k$ et $Q = \sum b_k X^k$ deux polynômes de $\mathbb{K}[X]$. Soit $(c_k)_{k>0}$ la suite définie pour tout $k \in \mathbb{N}$ par

$$c_k = \sum_{i=0}^k a_i b_{k-i}.$$

La suite c est un polynôme : on l'appelle ${\bf produit}$ de P et Q et on le note PQ :

$$\left(\sum a_k X^k\right) \left(\sum b_k X^k\right) = \sum \left(\sum_{i=0}^k a_i b_{k-i}\right) X^k.$$

1.2 Évaluation d'un polynôme.

Définition 6: où l'on retrouve les fonctions polynomiales.

Soit $P = \sum a_k X^k$ un polynôme de $\mathbb{K}[X]$.

Pour $\alpha \in \mathbb{K}$, on appelle **évaluation** de P en α , et on note $P(\alpha)$ le nombre

$$P(\alpha) = \sum_{k=0}^{+\infty} a_k \alpha^k \quad (P \in \mathbb{K}[X] \text{ et } P(\alpha) \in \mathbb{K});$$

La somme précédente est finie puisque la suite (a_n) est par définition nulle apdcr. On parlera de $\widetilde{P}: x \mapsto P(x)$ comme de la **fonction polynomiale associée** à P.

Exemple 7

- 1. Soit $P = X^3 3X + 4$. Évaluer P en 2 et -1.
- 2. Quelle est la fonction polynomiale associée à $P = X^2 1$? à Q = X ?

Solution:

- 1. P(2) = 6 et P(-1) = 6.
- $\boxed{2. \ \widetilde{P}: x \mapsto x^2 1, \quad \widetilde{Q}: x \mapsto x.}$

Proposition 8: opérations et évaluations.

Soient $P, Q \in \mathbb{K}[X], x \in \mathbb{K}$ et $(\lambda, \mu) \in \mathbb{K}^2$.

$$(\lambda P + \mu Q)(x) = \lambda P(x) + \mu Q(x),$$
 et $(PQ)(x) = P(x)Q(x).$

Exemple 9: Méthode de Horner.

Soit $n \in \mathbb{N}$ et $a_0, ..., a_n \in \mathbb{K}$, et $P = \sum a_k X^k$. Soit $\alpha \in \mathbb{K}$. On peut calculer $P(\alpha)$ ainsi :

$$P(\alpha) = ((...((a_n\alpha + a_{n-1})\alpha + a_{n-2})\alpha + ...)\alpha + a_1)\alpha + a_0.$$

Le nombre d'opérations à effectuer est en O(n).

Définition 10

Soit $P \in \mathbb{K}[X]$. Une racine de P dans \mathbb{K} est un nombre $\alpha \in \mathbb{K}$ tel que $P(\alpha) = 0$.

Exemple 11

Donner une racine réelle de $P = X^5 - X^4 + X^3 - X^2 + X - 1$.

Donner les racines de $X^5 - 1$ dans \mathbb{C} .

Solution:

- On a P(1) = 0.
- \bullet L'ensemble des racines est \mathbb{U}_5

1.3 Structure d'anneau de $\mathbb{K}[X]$.

Théorème 12

 $(\mathbb{K}[X],+,\times)$ est un anneau commutatif.

Preuve:

Preuve hors-programme. Écrite dans l'autre poly.

Proposition 13: Cohérence de la notation X^n

Pour tout $n \in \mathbb{N}$, le polynôme X^n est bien le nème itéré de X.

Exemple 14

Dans la pratique, on calcule en se ramenant à faire des produits de monômes X^k comme on le faisait avec les fonctions polynomiales.

- Développer $(X^3 + 3)(X^4 5X^2 + X)$.
- À l'aide d'identités remarquables, factoriser $1 + X^4 + X^8$.

Solution:

- C'est $X^7 5X^5 + 4X^4 15X^2 + 3X$.
- $1 + X^4 + X^8 = 1 + 2X^4 + X^8 X^4 = (1 + X^4)^2 X^4 = (X^4 + 1 X^2)(X^4 + 1 + X^2).$

Exemple 15: Formule de Vandermonde. 🛨

Soient $(p,q,n) \in \mathbb{N}^3$. En considérant $(X+1)^p(X+1)^q$, montrer que

$$\sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k} = \binom{p+q}{n}.$$

Solution:

On a $(X+1)^p(X+1)^q = (X+1)^{p+q} = \sum_{k=0}^{p+q} \binom{p+q}{k} X^k$ d'une part. D'autre part :

$$(X+1)^p(X+1)^q = \left(\sum_{i=0}^p \binom{p}{i}X^i\right)\left(\sum_{i=0}^q \binom{q}{i}X^i\right) = \sum_{n\in\mathbb{N}}\sum_{i=0}^n \binom{p}{i}\binom{q}{n-i}X^n.$$

Par unicité, on a
$$\binom{p+q}{n} = \sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k}$$
.

1.4 Composition.

Définition 16: Composition.

Soient deux polynômes $P = \sum a_k X^k$ et Q. Leur **composée** $P \circ Q$ est définie par

$$P \circ Q = \sum_{k \in \mathbb{N}} a_k Q^k.$$

Remarques.

- 1. On vérifiera que $X \circ P = P \circ X = X$, ce qui explique que l'on écrit parfois P(X) au lieu de P.
- 2. De la même façon, on écrira $P(X^2)$, ou P(Q(X)) pour désigne $P \circ X^2$ et $P \circ Q$.
- 3. L'écriture P(X+1) peut être trompeuse : il s'agit de $P \circ (X+1)$, et non de $P \times (X+1)$. Pour le produit, on écrira (X+1)P.

1.5 Degré.

Définition 17

Soit $P = \sum a_k X^k$ un polynôme de $\mathbb{K}[X]$, non nul.

On appelle **degré** de P, et on note deg(P) l'indice du dernier coefficient non nul de P:

$$\deg(P) = \max\{k \in \mathbb{N} \ : \ a_k \neq 0\}.$$

Par ailleurs, on pose $deg(0_{\mathbb{K}[X]}) = -\infty$.

Définition 18

Soit $P = \sum a_k X^k$ et $d \in \mathbb{N}$.

$$\deg(P) = d \iff \left(P = a_d X^d + \sum_{k=0}^{d-1} a_k X^k \text{ et } a_d \neq 0\right).$$

Si P est un polynôme non nul de degré $d \in \mathbb{N}$, alors a_d est appelé **coefficient dominant** de P.

Si ce coefficient vaut 1, le polynôme P est dit **unitaire.**

Notation locale du coefficient dominant de P : cd(P).

Exemple 19

Soit $n \in \mathbb{N}^*$ et $P = (X+2)^n - (X+1)^n$. Calculer le degré de P et son coefficient dominant.

Solution:

On a:

$$\begin{split} P &= \sum_{k=0}^{n} \binom{n}{k} X^k 2^{n-k} - \sum_{k=0}^{n} \binom{n}{k} X^l = \sum_{k=0}^{n} \binom{n}{k} X^k (2^{n-k} - 1) \\ &= (2^{n-n+1} - 1) X^{n-1} + \sum_{k=0}^{n-2} \binom{n}{k} X^k (2^{n-k} - 1) = n X^{n-1} + \dots \end{split}$$

Donc deg(P) = n - 1 et cd(P) = n.

Proposition 20: *

Soient $P,Q \in \mathbb{K}[X]$ deux polynômes. On a les résultats suivants :

- 1. $\deg(P+Q) \leq \max(\deg(P), \deg(Q))$, avec égalité si $\deg(P) \neq \deg(Q)$.
- 2. $\forall \lambda \in \mathbb{K}, \ \deg(\lambda P) \leq \deg(P)$ avec égalité si $\lambda \neq 0$.
- 3. $\deg(PQ) = \deg(P) + \deg(Q)$

Preuve:

- 1. Soient $P = \sum a_k X^k$ et $Q = \sum b_k X^k$.
- Si l'un est nul (supposons P), alors P + Q = Q donc $\deg(P + Q) = \deg(Q) = \max(\deg(P), \deg(Q))$.
- Si $P \neq 0$ et $Q \neq 0$. On note $p = \deg(p)$ et $q = \deg(Q)$.

Alors $P + Q = \sum_{k=0}^{m} (a_k + b_k) X^k$ où $m = \max(p, q)$ donc $\deg(P + Q) \le m = \max(p, q)$.

- Supposons $p \neq q$.
- Si p < q, alors $P + Q = b_q X^q + \dots$ donc $\deg(P + Q) = q$.
- Si p > q, alors $P + Q = a_p X^p + \dots$ donc $\deg(P + Q) = p$.
- 2. Trivial.
- \bigstar Soient $P = \sum a_k X^k$ et $Q = \sum b_k X^k$.

 $\overline{\text{1er}}$ cas. P=0 ou Q=0 (supposons Q=0 SPDG).

D'une part, $deg(PQ) = deg(0) = -\infty$.

D'autre part, $\deg(P) + \deg(Q) = \deg(P) + (-\infty) = -\infty$.

2e cas. $P \neq 0$ et $Q \neq 0$. Notons $p = \deg(P)$ et $q = \deg(Q)$.

Alors $PQ = a_p b_q X^{p+q} + ...$, donc $\deg(PQ) = p + q = \deg(P) + \deg(Q)$.

Bonus : cd(PQ) = cd(P)cd(Q).

Complément. $deg(P \circ Q) = deg(P) \times deg(Q)$ (avec $Q \neq 0$).

Exemple 21: Polynômes de Tchebychev. 🛨

Soit $(T_n)_{n\in\mathbb{N}}$ une suite de polynômes définie par

$$T_0 = 1$$
, $T_1 = X$, $\forall n \in \mathbb{N}$, $T_{n+2} = 2XT_{n+1} - T_n$.

- 1. Calculer T_2, T_3, T_4 et T_5 .
- 2. Donner pour tout entier n le degré et le coefficient dominant de T_n .
- 3. Démontrer que pour tout $n \in \mathbb{N}$ et tout $\theta \in \mathbb{R}$, $\cos(n\theta) = T_n(\cos(\theta))$.

Solution:

1.
$$T_2 = 2X^2 - 1$$
, $T_3 = 4X^3 - 3X$, $T_4 = 8X^4 - 8X^2 + 1$, $T_5 = 16X^5 - 20X^3 + 5X$.

2. Conjectures: pour $n \in \mathbb{N}$, $\deg(T_n) = n$ et $\operatorname{cd}(T_n) = 2^{n-1}$. Par récurrence sur n:

Initialisation. Faux au rang 0, mais vrai aux rangs 1 et 2.

Hérédité. Soit $n \in \mathbb{N}^*$ tel que les conjectures sont vraies aux rangs n et n + 1.

$$T_{n+2} = 2XT_{n+1} - T_n$$
 donc $\deg(T_{n+2}) \le \max(\deg(2XT_{n+1}), \deg(-T_n)) = \max(n+2, n) = n+2.$

Il y a égalité car $n+2 \neq n$ donc $\deg(T_{n+2}) = n+2$. La première conjecture est vérifiée.

De plus, $\exists Q_n \in \mathbb{K}[X] \mid T_{n+1} = 2^n X^{n+1} + Q_n$ et $\deg(Q_n) \leq n$.

Or $T_{n+2} = 2X(2^nX^{n+1} + Q_n) - T_n = 2^{n+1}X^{n+2} + (2XQ_n - T_n)$ on a bien $cd(T_{n+2}) = 2^{n+1} = 2^{n+2-1}$. Par récurrence, on conclut.

3. Soit $\theta \in \mathbb{R}$ fixé. Pour $n \in \mathbb{N}$, on pose $\mathcal{P}_n : \ll \cos(n\theta) = T_n \cos(\theta) \gg$.

Initialisation. On a $T_0(\cos(\theta)) = 1 = \cos(0)$; $T_1(\cos(\theta)) = \cos(\theta)$ donc \mathcal{P}_0 et \mathcal{P}_1 sont vérifiées.

Hérédité. Soit $n \in \mathbb{N}$ tel que \mathcal{P}_n et \mathcal{P}_{n+1} .

On rappelle que $2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b)$ et que cos est paire.

$$T_{n+2}(\cos\theta) = (2XT_{n+1} - T_n)(\cos\theta) = 2\cos\theta T_{n+1}(\cos\theta) - T_n(\cos\theta)$$
$$= 2\cos\theta\cos((n+1)\theta) - \cos(n\theta) = \cos((n+2)\theta) + \cos(-n\theta) - \cos(n\theta)$$
$$= \cos((n+2)\theta).$$

Donc \mathcal{P}_{n+2} est vraie. Par récurrence, on conclut.

Corrolaire 22

Pour $n \in \mathbb{N}$, on notera $\mathbb{K}_n[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} , de degré inférieur ou égal à n. Cet ensemble contient le polynôme nul et est stable par combinaisons linéaires.

Preuve:

Soit $n \in \mathbb{N}$.

- $\deg(0_{\mathbb{K}[X]}) \le n \operatorname{donc} 0_{\mathbb{K}[X]} \in \mathbb{K}_n(X).$
- Soient $P, Q \in \mathbb{K}_n[X]$ et $\lambda, \mu \in \mathbb{K}$: $\deg(\lambda P + \mu Q) \leq \max(\deg(P), \deg(Q)) \leq n$.

Corrolaire 23

L'anneau $\mathbb{K}[X]$ est intègre : il est commutatif, et sans diviseurs de zéro ;

$$\forall P, Q \in \mathbb{K}[X], PQ = 0 \Longrightarrow (P = 0 \text{ ou } Q = 0).$$

Ainsi, pouvouns-nous « simplifier » par un polynôme non nul :

$$\forall A, B, C \in \mathbb{K}[X], (AB = AC \text{ et } A \neq 0) \Longrightarrow B = C.$$

Preuve:

Soient $P, Q \in \mathbb{K}[X]$ tels que PQ = 0. Alors $\deg(P) + \deg(Q) = -\infty$ alors $\deg(P) = -\infty$ ou $\deg(Q) = -\infty$ alors P = 0 ou Q = 0.

Soient $A, B, C \in \mathbb{K}[X]$ tels que AB = AC et $A \neq 0$. Alors A(B - C) = 0 donc B - C = 0 donc B = C.

Corrolaire 24: Les inversibles de l'anneau des polynômes sont ceux constants non nuls.

$$U(\mathbb{K}[X]) = \mathbb{K}_0[X] \setminus \{0_{\mathbb{K}[X]}\}.$$

Preuve:

Soit $P \in U(\mathbb{K}[X])$: $\exists Q \in \mathbb{K}[X] \mid PQ = 1_{\mathbb{K}[X]}$.

Alors $\deg(P) + \deg(Q) = \deg(1_{\mathbb{K}[X]}) = 0$, alors $\deg(P) = \deg(Q) = 0$ donc $\exists a \in \mathbb{K} \mid P = a1_{\mathbb{K}[X]}$.

1.6 Dérivation dans $\mathbb{K}[X]$.

Définition 25

Soit $P = \sum a_k X^k$ un polynôme de $\mathbb{K}[X]$. Le polynôme

$$P' = \sum_{k \in \mathbb{N}} (k+1)a_{k+1}X^k$$

est appelé **polynôme dérivé** de P.

Proposition 26

Soit $P \in \mathbb{R}[X]$. La fonction polynomiale associée au polynôme dérivé P' est la dérivée de la fonction polynomiale associée à P.

Preuve:

Soit
$$P \in \mathbb{R}[X] \mid P = \sum_{k=0}^{n} a_k X^k$$
, on pose $\widetilde{P} : x \mapsto \sum_{k=0}^{n} a_k x^k$ dérivable $: \widetilde{P}' : x \mapsto \sum_{k=0}^{n-1} (k+1) a_{k+1} x^k$.

Donc pour $x \in \mathbb{R}$, $P'(x) = \widetilde{P}'(x)$.

Proposition 27

$$\forall P \in \mathbb{K}[X], \operatorname{deg}(P) \text{ est constant } \iff P' = 0_{\mathbb{K}[X]}.$$

Preuve:

Soit $P = \sum a_k X^k$.

$$P \text{ est constant } \iff \forall k \geq 1, \ a_k = 0 \iff \forall k \geq 0, \ a_{k+1} = 0 \\ \iff \forall k \geq 0, \ (k+1)a_{k+1} = 0 \iff P' = 0_{\mathbb{K}[X]}.$$

Proposition 28: Degré du polynôme dérivé.

$$\forall P \in \mathbb{K}[X], \ \deg(P') = \begin{cases} \deg(P) - 1 & \text{si P n'est pas constant.} \\ -\infty & \text{si P est constant.} \end{cases}$$

Preuve:

Soit $P = \sum a_k X^k$. On suppose $P \neq 0$. On note $n = \deg(P)$. On a $P = a_n X^n + \dots$ donc $P' = na_n X^{n-1} + \dots$

- Si $n \ge 1$, $na_n \ge 0$ donc $\deg(P') = n 1 = \deg(P) 1$.
- Si n = 0, $P = a_0$ donc $P' = 0_{\mathbb{K}[X]}$ donc $\deg(P') = -\infty$.

Proposition 29: Dérivation et opérations.

Soient $P, Q \in \mathbb{K}[X]$ et $\lambda, \mu \in \mathbb{K}$.

$$(\lambda P + \mu Q)' = \lambda P' + \mu Q'$$
 et $(PQ)' = P'Q + PQ'$.
 $\forall n \in \mathbb{N}, (P^n)' = nP'P^{n-1}$ et $(P \circ Q)' = Q' \cdot P' \circ Q$.

Définition 30

Soit $P \in \mathbb{K}[X]$ et $k \in \mathbb{N}$. On définit la **dérivée** k-eme de P, que l'on note $P^{(k)}$, en posant

$$P^{(0)} = P$$
 et $\forall k \in \mathbb{N}, \ P^{(k+1)} = (P^{(k)})'.$

Exemple 31

$$\forall n, k \in \mathbb{N}, \ \forall a \in \mathbb{K}, \ ((X-a)^n)^{(k)} = \begin{cases} \frac{n!}{(n-k)!} (X-a)^{n-k} & \text{si } 0 \le k \le n \\ 0 & \text{si } k > n \end{cases}$$

Solution:

Soient $n, k \in \mathbb{N}$ et $a \in \mathbb{K}$.

On a $((X-a)^n)^{(1)} = n(X-a)^{n-1}$, $((X-a)^n)^{(2)} = n(n-1)(X-a)^{n-2}$.

En itérant: $((X-a)^n)^{(k)} = n(n-1)...(n-(k-1))(X-a)^{n-k}$. Si k > n, alors $((X-a)^n)^{(k)} = 0$, sinon $((X-a)^n)^{(k)} = \frac{n!}{(n-k)!}(X-a)^{n-k}$.

Proposition 32: Linéarité de la dérivée nème et formule de Leibniz (admis).

$$\forall (P,Q) \in \mathbb{K}[X], \ \forall (\lambda,\mu) \in \mathbb{K}^2, \ \forall n \in \mathbb{N}, \ (\lambda P + \mu Q)^{(n)} = \lambda P^{(n)} + \mu Q^{(n)}.$$
$$\forall (P,Q) \in \mathbb{K}[X], \ \forall n \in \mathbb{N}, \ (PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}.$$

Proposition 33: Formule de Taylor pour les polynômes

Soit $n \in \mathbb{N}$, $P \in \mathbb{K}_n[X]$ et $a \in \mathbb{K}$. Alors:

$$P = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}$$

Preuve:

Initialisation. $\frac{P^{(0)}(a)}{0!}(X-a)^0 = P(a)$ avec $P \in \mathbb{K}_0[X]$, or P constant donc P = P(a). Vrai. Hérédité. Soit $n \in \mathbb{N}$ tel que la propriété soit vraie. Soit $P \in \mathbb{K}_{n+1}[X]$, alors $P' \in \mathbb{K}_n[X]$:

$$P' = \sum_{k=0}^{n} \frac{P^{(k+1)}(a)}{k!} (X - a)^{k}.$$

On pose $Q = \sum_{k=0}^{n+1} \frac{P^{(k)}(a)}{k!} (X-a)^k$ donc $(P-Q)' = \dots = 0$ donc $\exists c \in \mathbb{K} \mid P-Q=c$. Or $Q(a) = \dots = P(a)$ donc c=0 donc P=Q donc la propriété est vraie au rang n+1. Par récurrence, la propriété est vraie pour tout $n \in \mathbb{N}$.

Racines et factorisation d'un polynôme. $\mathbf{2}$

Divisibilité et division euclidienne dans $\mathbb{K}[X]$.

Soit $(A, B) \in \mathbb{K}[X]^2$. On dit que B **divise** A s'il existe un polynôme $Q \in \mathbb{K}[X]$ tel que A = BQ. On note alors $B \mid A$.

Exemple 35

Tous les polynômes divisent le polynôme nul.

Pour $n \in \mathbb{N}^*$, X - 1 divise $X^n - 1$:

$$X^{n} - 1 = (X - 1) \sum_{k=0}^{n-1} X^{k}$$
, notamment $X^{3} - 1 = (X - 1)(X^{2} + X + 1)$.

Proposition 36

Soient deux polynômes A et B de $\mathbb{K}[X]$, A étant non nul. Si B divise A, alors $\deg(B) \leq \deg(A)$.

Preuve:

Supposons $B \mid A \text{ et } A \neq 0 : \exists Q \in \mathbb{K}[X] \mid A = BQ$.

Donc $\deg(A) = \deg(BQ) = \deg(B) + \deg(Q)$ donc $\deg(A) - \deg(B) = \deg(Q) \ge 0$ car $Q \ne 0$.

On a bien $deg(B) \le deg(A)$.

Définition 37

La relation divise sur $\mathbb{K}[X]$ est réflexive et transitive, mais elle n'est pas antisymétrique :

$$(A \mid B \text{ et } B \mid A) \iff \exists \lambda \in \mathbb{K}^* : A = \lambda B.$$

On dit alors que A et B sont **associés**.

Théorème 38: 🛨

Soit $(A, B) \in \mathbb{K}[X]^2$ avec $B \neq 0$. Il existe un unique couple $(Q, R) \in \mathbb{K}[X]^2$ tel que

$$A = BQ + R$$
 et $\deg(R) < \deg(B)$.

Preuve:

Unicité. Soient (Q_1, R_1) et (Q_2, R_2) dans $\mathbb{K}[X]^2$ tels que ...

On a $BQ_1 + R_1 = BQ_2 + R_2$ donc $B(Q_1 - Q_2) = R_2 - R_1 : \deg(B) + \deg(Q_1 - Q_2) = \deg(R_2 - R_1)$.

Or $\deg(R_2 - R_1) \le \max(\deg(R_2), \deg(R_1)) \le \deg(B)$ donc $\deg(B) + \deg(Q_1 - Q_2) < \deg(B)$.

Donc $deg(Q_1 - Q_2) < 0$ donc $Q_1 - Q_2 = 0$, puis $R_1 - R_2 = 0$: $(Q_1, R_1) = (Q_2, R_2)$.

Exemple 39

Poser la division de $A = X^5 + 3X^3 - 2X^2 + 1$ par $B = X^2 - 2X - 1$.

Solution:

$$X^{5} + 2X^{2} + 8X + 16 = (X^{2} - 2X - 1)(X^{2} + 2X^{2} + 8X + 16) + 40X + 16.$$

Corrolaire 40

Soit $(A, B) \in \mathbb{K}[X]^2$, avec $B \neq 0$.

On a que B divise A ssi le reste dans la division euclidienne de A par B est le polynôme nul.

Preuve:

← Trivial.

 $\exists \Rightarrow$ Si $B \mid A$, alors $\exists Q \in \mathbb{K}[X] \mid A = BQ$ donc A = BQ + 0. Par unicité de la division euclidienne, le reste est nul.

Exemple 41

Soit $\theta \in \mathbb{R}$ et n > 2.

Déterminer le reste dans la division euclidienne de $P = (\sin \theta X + \cos \theta)^n$ par $X^2 + 1$.

Prouver qu'il n'existe aucune valeur de θ ni de n pour lesquelles $X^2 + 1$ divise $(\sin \theta X + \cos \theta)^n$.

Solution:

On a $X^2 + 1 \neq 0$ donc $\exists ! (Q, R) \in \mathbb{K}[X]^2 \mid P = (X^2 + 1)Q + R$ et $\deg(R) < 2$, donc $\exists a, b \in \mathbb{K} \mid R = aX + b$.

Alors $(\sin \theta X + \cos \theta)^n = (X^2 + 1)Q + aX + b$, et en évaluant en $i : e^{in\theta} = ai + b$.

Par unicité, $a = \sin(n\theta)$ et $b = \cos(n\theta)$, donc $R = \sin(n\theta)X + \cos(\theta)$.

Ainsi, $R = 0 \iff \sin(n\theta) = \cos(n\theta) = 0$, impossible car $\cos^2(n\theta) + \sin^2(n\theta) = 1$. Donc $R \neq 0$.

2.2 Racines et divisibilité.

Définition 42: bis.

Soit $P \in \mathbb{K}[X]$. Une racine (ou un zéro) de P dans \mathbb{K} est un nombre $\alpha \in \mathbb{K}$ tel que $P(\alpha) = 0$.

Théorème 43: Racine et divisibilité par un polynôme de degré 1. **

Soit $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$.

$$P(\alpha) = 0 \iff X - \alpha \mid P$$
.

Preuve:

 \Longrightarrow Supposons $P(\alpha) = 0$. On a $\exists ! (Q, R) \in \mathbb{K}[X]^2 \mid P = (X - \alpha)Q + R$ et $\deg(R) < \deg(X - a)$.

Donc R est constant : $\exists \lambda \in \mathbb{K} \mid R = \lambda \cdot 1_{\mathbb{K}[X]}$ donc $P = (X - \alpha)Q + \lambda$.

Évaluons en $\alpha: P(\alpha) = \lambda = 0$ donc $\lambda = 0$ donc R = 0 et $(X - \alpha) \mid P$.

 \sqsubseteq Supposons que $X - \alpha \mid P : \exists Q \in \mathbb{K}[X] \mid P = (X - \alpha)Q$. Alors $P(\alpha) = (\alpha - \alpha)Q(\alpha) = 0$.

Proposition 44

Soit $P \in \mathbb{K}[X]$ et $p \in \mathbb{N}^*$ et $\alpha_1, ..., \alpha_p \in \mathbb{K}$ deux-à-deux distincts.

$$\alpha_1, ..., \alpha_p$$
 sont racines de $P \iff \exists Q \in \mathbb{K}[X] \mid P = Q \prod_{k=1}^p (X - \alpha_k)$.

Preuve:

← Trivial.

 \longrightarrow Supposons que $\alpha_1, ..., \alpha_p$ sont racines de P.

En particulier, α_1 est racine de P donc $X - \alpha_i \mid P$ donc $\exists Q_1 \in \mathbb{K}[X] \mid P = (X - \alpha_1)Q_1$.

Évaluons en $\alpha_2: P(\alpha_2) = (\alpha_2 - \alpha_1)Q_1(\alpha_2) = 0$ or $\alpha_2 \neq a_1$ donc $Q_1(\alpha_2) = 0$ donc $X - \alpha_2 \mid Q$.

Ainsi, $\exists Q_2 \in \mathbb{K}[X] \mid Q_1 = (X - \alpha_2)Q_2$, puis $P = (X - \alpha_1)(X - \alpha_2)Q_2$, on itère...

On a alors $\exists Q_p \in \mathbb{K}[X] \mid P = (X - \alpha_1)(X - \alpha_2)...(X - \alpha_p)Q_p$.

Exemple 45

Soit $(p,q,r) \in \mathbb{N}^3$. Justifier qu'il existe $Q \in \mathbb{C}[X]$ tel que $P = X^{3p+2} + X^{3q+1} + X^{3r} = (X^2 + X + 1)Q$.

Solution:

On sait que $X^2 + X + 1 = (X - j)(X - \overline{j})$. Vérifions que j, \overline{j} sont racines de P.

On a $P(\bar{j}) = j^{3p+2} + j^{3q+1} + j^{3r} = j^2 + j + 1 = 0; P(\bar{j}) = \bar{j}^{3p+2} + \bar{j}^{3q+1} + \bar{j}^{3r} = \bar{j}^{3p+2} + j^{3q+1} + j^{3r} = \bar{0} = 0.$

Donc j, \overline{j} sont racines distinctes de P, donc $(X - j)(X - \overline{j}) \mid P$ dans $\mathbb{C}[X]$.

Donc $\exists Q \in \mathbb{C}[X] \mid P = (X^2 + X + 1)Q$.

Définition 46

Soit $P \in \mathbb{K}[X]$. On dit que P est **scindé** sur \mathbb{K} s'il s'écrit comme produit de polynômes de degré 1.

Corrolaire 47

Soit $P \in \mathbb{K}[X]$ un polynôme de degré $n \in \mathbb{N}^*$.

Si P possède n racines distinctes $\alpha_1, ..., \alpha_n \in \mathbb{K}$, alors P est scindé sur \mathbb{K} .

$$\exists \lambda \in \mathbb{K}^* \mid P = \lambda \prod_{i=1}^n (X - \alpha_i), \quad (\lambda = \operatorname{cd}(P)).$$

Preuve :

On a $\exists Q \in \mathbb{K}[X] \mid P = Q \prod_{i=1}^{n} (X - \alpha_i)$.

Ainsi, $\deg(P) = \deg(Q) + n$ donc $\deg(Q) = 0$ donc $\exists \lambda \in \mathbb{K}^* \mid Q = \lambda \cdot 1_{\mathbb{K}[X]}$.

2.3 Racines et rigidité des polynômes.

Théorème 48

Soient $P \in \mathbb{K}[X]$ et $n \in \mathbb{N}$.

- 1. Si $P \neq 0$ et $P \in \mathbb{K}_n[X]$, alors P admet au plus n racines distinctes.
- 2. Si $P \in \mathbb{K}_n[X]$ et P admet au moins n+1 racines distinctes, alors P=0.
- 3. Si P admet une infinité de racines, alors P=0.

Preuve:

1. Supposons $P \neq 0$ et possède p racines $\alpha_1, ..., \alpha_p$ distinctes.

Alors $\exists Q \in \mathbb{K}[X] \mid P = Q \prod_{i=1}^{p} (X - \alpha_i)$. Or $P \neq 0$ donc $\deg(\prod (X - \alpha_i)) \leq \deg(P)$ donc $p \leq \deg(P)$.

2. Contraposée.

3. Conséquence de 2.

Corrolaire 49: Montrer que P=Q en prouvant que P-Q a "trop" de racines.

Si P et Q sont de degré inférieur à n et que P-Q possède n+1 racines, alors P=Q.

Notamment, si P et Q coïncident sur une infinité de valeurs de \mathbb{K} , alors P = Q.

En particulier, lorsque les fonctions polynomiales associées à P et Q sont égales, P = Q.

Preuve:

On a $P-Q \in \mathbb{K}[X]$. D'après le théorème, si P-Q a n+1 racines, alors P-Q=0.

Exemple 50

Trouver tous les polynômes P de $\mathbb{R}[X]$ tels que $\forall n \in \mathbb{N}, \ P(n) = n^{666}$.

Solution:

Soit $P \in \mathbb{R}[X] \mid \forall n \in \mathbb{N}, \ P(n) = n^{666}$. Alors $\forall n \in \mathbb{N}, \ (P - X^{666})(n) = 0$.

Ainsi, $P - X^{666}$ a une infinité de racines, dont $P = X^{666}$.

Exemple 51: Factorisation des polynômes de Tchebychev.

Reprenons la suite $(T_n)_{n\in\mathbb{N}}$ définie par $T_0=1,\,T_1=X$ et $\forall n\in\mathbb{N},\,T_{n+2}=2XT_{n+1}-T_n$.

Nous avons démontré que pour tout $n \in \mathbb{N}^*$, T_n est de degré n, de coefficient dominant 2^{n-1} et que pour tout θ réel, $T_n(\cos\theta) = \cos(n\theta)$.

- 1. Démontrer que T_n est l'unique polynôme de $\mathbb{R}[X]$ tel que $\forall \theta \in \mathbb{R}, T_n(\cos \theta) = \cos(n\theta)$.
- 2. Démontrer que pour tout $n \in \mathbb{N}^*$,

$$T_n = 2^{n-1} \prod_{k=0}^{n-1} \left(X - \cos\left(\frac{(2k+1)\pi}{2n}\right) \right)$$

Solution:

1. Soit $n \in \mathbb{N}$. Soit $\widetilde{T}_n \in \mathbb{R}[X] \mid \forall \theta \in \mathbb{R}, \ \widetilde{T}_n(\cos(\theta)) = \cos(n\theta)$.

 $\overline{\text{Alors}} \ \forall \theta \in \mathbb{R}, \ (T_n - \widetilde{T}_n)(\cos \theta) = 0. \ \text{donc} \ T_n - \widetilde{T}_n \ \text{possède une infinité de racines d'où } T_n = T_n.$

2. Soient $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$.

$$\cos(n\theta) = 0 \iff n\theta \equiv \frac{\pi}{2}[\pi] \iff \exists k \in \mathbb{Z} \mid n\theta = \frac{\pi}{2} + k\pi.$$

Donc pour $k \in \mathbb{Z}$, $\theta_k = \frac{\pi}{2n} + \frac{k\pi}{n}$ et $\forall k \in \mathbb{Z}$, $T_n(\cos(\theta_k)) = 0$.

On a que les nombres $\cos \theta_k$ avec $k \in [0, n-1]$ sont distincts par stricte décroissance de cos sur $[0, \pi]$.

On a donc n racines donc T_n est scindé et :

$$T_n = 2^{n-1} \prod_{k=0}^{n-1} \left(X - \cos\left(\frac{\pi}{2n} + \frac{k\pi}{2n}\right) \right)$$

Multiplicité d'une racine. 2.4

Définition 52

Soit $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$ une racine de P. On dit que la racine α est de **multiplicité** $m \in \mathbb{N}$ si

 $(X-\alpha)^m$ divise P et $(X-\alpha)^{m+1}$ ne divise par P.

On dira que α est de multiplicité **au moins** égale à $k \in \mathbb{N}$ si $(X - \alpha)^k$ divise P.

Une racine de multiplicité 1 est dite **simple**. Une racine qui n'est pas simple est dite **multiple**.

Proposition 53: *

Soient $P \in \mathbb{K}[X]$, $\alpha \in \mathbb{K}$ et $m \in \mathbb{N}$. Il y a équivalence entre les deux assertions suivantes.

- 1. α est racine de P de multiplicité m.
- 2. $\exists Q \in \mathbb{K}[X] \mid P = (X \alpha)^m Q \text{ et } Q(\alpha) \neq 0.$

Preuve:

 \implies Supposons que $(X-\alpha)^m \mid P$ et $(X-\alpha)^{m+1} \not \mid P: \exists Q \in \mathbb{K}[X] \mid P=(X-\alpha)^m Q$.

Par l'absurde, on suppose que $Q(\alpha) = 0$. Alors $X - \alpha \mid Q$ donc $\exists \widetilde{Q} \in \mathbb{K}[X] \mid Q = (X - \alpha)\widetilde{Q}$ donc $P = (X - \alpha)^{m+1}\widetilde{Q}$.

C'est absurde, donc $Q(\alpha) \neq 0$.

 \sqsubseteq Supposons que $\exists Q \in \mathbb{K}[X] \mid P = (X - \alpha)^m Q$ et $Q(\alpha) \neq 0$.

Supposons que $(X - \alpha)^{m+1}$ divise $P : \exists \widetilde{Q} \in \mathbb{K}[X] \mid P = (X - \alpha)^{m+1} \widetilde{Q}$.

Alors $(X - \alpha)^m Q = (X - \alpha)^{m+1} Q$ donc $Q = (X - \alpha) Q$ par intégrité de $\mathbb{K}[X]$.

On évalue en $\alpha: Q(\alpha) = 0$, absurde donc $(X - \alpha)^{m+1}/P$.

Lemme 54

Soient $P \in \mathbb{K}[X]$, $\alpha \in \mathbb{K}$ et $k \in \mathbb{N}^*$.

Si $(X - \alpha)^k \mid P$, alors $(X - \alpha)^{k-1} \mid P'$.

Preuve:

Supposons que $(X - \alpha)^k \mid P : \exists Q \in \mathbb{K}[X] \mid P = (X - \alpha)^k Q$.

Alors $P' = k(X - \alpha)^{k-1}Q + (X - \alpha)^k Q' = (X - \alpha)^{k-1}(kQ + (X - \alpha)Q').$

Théorème 55: Caractérisation de la multiplicité.

Soit $P \in \mathbb{K}[X]$, $\alpha \in \mathbb{K}$ et $m \in \mathbb{N}^*$. On a (1) \iff (2) et (3) \iff (4).

- 1. α est une racine de P de multiplicité au moins m.
- 2. $P(\alpha) = P'(\alpha) = P''(\alpha) = \dots = P^{(m-1)}(\alpha) = 0$.
- 3. α est une racine de P de multiplicité m.
- 4. $P(\alpha) = P'(\alpha) = P''(\alpha) = \dots = P^{(m-1)}(\alpha) = 0$ et $P^{(m)}(\alpha) \neq 0$.

Preuve:

• Supposons α de multiplicité au moins m.

Alors $(X - \alpha)^m \mid P \text{ donc } (X - \alpha)^{m-1} \mid P', ..., (X - \alpha)^1 \mid P^{(m-1)}$.

• Supposons $P(\alpha) = P'(\alpha) = ... = P^{(m-1)}(\alpha) = 0.$

Taylor : $P = \dots = (X - \alpha)^m \sum_{k=m}^n \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^{k-m}$. Alors $(X - \alpha)^m \mid P \text{ donc } (3) \iff (4)$.

 \bullet Notons p la multiplicité de α :

$$p = m \iff p \ge m \text{ et } \neg (p \ge m + 1)$$

$$\iff P(\alpha) = P'(\alpha) = \dots = P^{(m-1)}(\alpha) = 0 \text{ et } \neg (P(\alpha) = P'(\alpha) = \dots = P^{(m)}(\alpha) = 0)$$

$$\iff P(\alpha) = P'(\alpha) = \dots = P^{(m-1)}(\alpha) = 0 \text{ et } P^{(m)}(\alpha) \neq 0$$

Donc $(1) \iff (2)$.

Exemple 56

En nous appuyant sur une racine multiple "facile", factorisons $P = X^4 + X^3 - 7X^2 - 13X - 6$.

Solution:

On a P(-1) = 0, $P' = 4X^3 + 3X^2 - 14X - 13$ et P'(-1) = 0, $P'' = 12X^2 + 6X - 14$ et P''(-1) = -8.

Alors -1 est racine de multiplicité 2 par théorème.

Donc $P = (X+1)^2(X^2 - X - 6) = (X+1^2)(X+2)(X-3)$.

Corrolaire 57

Soit $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$.

 α est racine simple de $P \iff P(\alpha) = 0$ et $P'(\alpha) \neq 0$.

Proposition 58

Soit $P \in \mathbb{K}[X]$ et $\alpha_1, ..., \alpha_p$ p racines de P distinctes deux-à-deux, de multiplicités respectives au moins égales à $k_1, ..., k_p$. Alors, $\prod_{i=1}^p (X - \alpha_i)^k$, divise P.

Corrolaire 59

Soient $P \in \mathbb{K}[X]$ et $n \in \mathbb{N}$.

- 1. Si $P \neq 0$ et $P \in \mathbb{K}_n[X]$, alors P admet au plus n racines comptées avec leurs multiplicité.
- 2. Si $P \in \mathbb{K}_n[X]$ et P admet au moins n+1 racines comptées avec leur mulitplicité, alors P=0.

Corrolaire 60: Cas d'un degré égal au nombre de racines, comptées avec leur multiplicité.

Soit $P \in \mathbb{K}[X]$ un polynôme de degré $n \in \mathbb{N}^*$.

Si P possède p racines $\alpha_1, ..., \alpha_p$ dans \mathbb{K} , de multiplicités $m_1, ..., m_p$ et si $m_1 + ... + m_p = n$, alors P est scindé sur \mathbb{K} .

2.5 Existence de racines : théorème d'Alembert-Gauss.

Théorème 61: de d'Alembert-Gauss, ou théorème fondamental de l'algèbre (admis).

Tout polynôme non constant de $\mathbb{C}[X]$ admet au moins une racine dans \mathbb{C} .

Exemple 62

Soit $P \in \mathbb{K}[X] \setminus \mathbb{K}_0[X]$. Montrer que $\widetilde{P}: z \mapsto P(z)$, application de \mathbb{C} vers \mathbb{C} est surjective.

Solution:

Soit $\omega \in \mathbb{C}$. D'après d'Alembert-Gaus, $P - \omega$ admet une racine complexe, donc $\exists \alpha \in \mathbb{C} \mid P(\alpha) = \omega$.

Proposition 63: une racine réelle.

Un polynôme de $\mathbb{R}[X]$ de degré impair possède au moins une racine réelle.

Preuve:

On a $\widetilde{P}: x \mapsto P(x)$ est continue et change de signe donc $\exists c \in \mathbb{R} \mid \widetilde{P}(c) = 0$ par TVI.

2.6 Décomposition en facteurs irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$.

Proposition 64

Soit $P \in \mathbb{K}[X]$ non constant.

Il est irréductible dans $\mathbb{K}[X]$ si ses seuls diviseurs sont constants ou associés à P.

Proposition 65

Un polynôme P est irréductible ssi ses diviseurs sont de degré 0 ou deg P et que P est non constant.

Preuve:

Soit $P \in \mathbb{K}[X] \setminus \mathbb{K}_0[X]$.

- \Longrightarrow Supposons P irréductible. Soit Q un diviseur de P.
- $\overline{-}$ Si Q est constant, alors deg(Q) = 0.
- Si $\exists \lambda \in \mathbb{K}^* \mid Q = \lambda P$, alors $\deg(Q) = \deg(P)$.
- \sqsubseteq Supposons que les diviseurs de P sont de degré 0 ou deg P. Soit Q un diviseur de P.
- Si $\deg Q = 0$, alors Q est constant non nul.
- Si deg $Q = \deg P$, alors $\exists \widetilde{Q} \in \mathbb{K}_0[X] \mid P = Q\widetilde{Q}$.

Donc $\exists \lambda \in \mathbb{K}^* \mid Q = \lambda \cdot 1_{\mathbb{K}[X]} \text{ donc } P = \lambda Q.$

Proposition 66

Les irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.

Preuve:

 \Longrightarrow Soit $P \in \mathbb{C}[X]$ de degré 1. Ses diviseurs sont de degré 0 ou $1 = \deg(P)$ donc P irréductible.

 \Longrightarrow Supposons P irréductible et non constant. Alors il admet une racine $\alpha \in \mathbb{C}$ et $(X - \alpha) \mid P$.

Or P est irréductible donc $deg(P) = deg(X - \alpha) = 1$.

Proposition 67: Factorisation en produit d'irréductibles à coeff. dans C.

Tout polynôme non constant de $\mathbb{C}[X]$ est scindé dans $\mathbb{C}[X]$.

Plus précisément, pour tout $P \in \mathbb{C}[X]$, il existe $\lambda \in \mathbb{C}$, $p \in \mathbb{N}^*$, $\alpha_1, ..., \alpha_p \in \mathbb{C}$ deux-à-deux distincts et $m_1, ..., m_p \in \mathbb{N}^*$ tels que

$$P = \lambda \prod_{k=1}^{p} (X - \alpha_k)^{m_k}.$$

Preuve:

Soit $P \in \mathbb{C}[X]$. D'après d'Alembert-Gauss, P a une racine α_1 dont on note m_1 la multiplicité.

Alors $\exists Q \in \mathbb{C}[X] \mid P = (X - \alpha_1)^{m_1}Q \text{ et } Q(\alpha_1) \neq 0.$

Si Q est constant, on s'arrête, sinon Q a une racine $\alpha_2 \neq \alpha_1...$

Lemme 68

Soit $P \in \mathbb{R}[X]$, $\alpha \in \mathbb{C} \setminus \mathbb{R}$, et $m \in \mathbb{N}^*$. Si α est racine de P, alors $\overline{\alpha}$ l'est aussi et

$$B_{\alpha} = (X - \alpha)(X - \overline{\alpha}) = (X^2 - 2\operatorname{Re}(\alpha)X + |\alpha|^2)$$

divise P dans $\mathbb{R}[X]$.

Si α a pour multiplicité m, alors \overline{a} aussi et B^m_{α} divise P dans $\mathbb{R}[X]$.

Preuve:

Notons $P \sum_{k=0}^{n} a_k X^k$ où $n \in \mathbb{N}$ et $a_0, ..., a_n \in \mathbb{R}$. Supposons $P(\alpha) = 0$.

$$P(\overline{\alpha}) = \sum_{k=0}^{n} a_k \overline{\alpha}^k = \sum_{k=0}^{n} \overline{a_k \alpha^k} = \overline{P(\alpha)} = 0.$$

Puisque $\alpha \notin \mathbb{R}$, $(X - \alpha)(X - \overline{\alpha}) \mid P$ dans $\mathbb{C}[X] : \exists Q \in \mathbb{C}[X] \mid P = (X - \alpha)(X - \widetilde{\alpha})Q$. On note $B_{\alpha} = (X - \alpha)(X - \overline{\alpha}) = X^2 - (\alpha + \overline{\alpha})X + \alpha\overline{\alpha} = X^2 + 2\operatorname{Re}(\alpha)X + |\alpha|^2$. Donc $P = B_{\alpha}Q$.

On a $B_{\alpha} \neq 0$. Donc $\exists ! (\widetilde{Q}, R) \in \mathbb{R}[X]^2 \mid P = B_{\alpha}\widetilde{Q} + R$ et $\deg(R) < \deg(B_{\alpha})$.

C'est aussi la division euclidienne de P par B_{α} sur $\mathbb{C}[X]$, mais $P = B_{\alpha}Q + 0$ avec $\deg(0) < \deg(B_{\alpha})$.

Par unicité de la division euclidienne, R=0 et Q=Q.

Proposition 69

Les polynômes irréductibles de $\mathbb{R}[X]$ sont

- Les polynômes de degré 1,
- Les polynômes de degré 2, n'ayant pas de racines réelles.

Preuve:

 \subseteq Soit $P \in \mathbb{R}_2[X]$.

- Si P de degré 1, alors irréductible.
- Si P de degré 2 sans racines réelles, on prend Q diviseur de P, alors $\deg(Q) \leq 2$.

On a $deg(Q) \neq 1$ car sinon Q a une racine réelle, donc deg(Q) = 0 ou deg(P) donc P irréductible.

- \Longrightarrow Supposons P irréductible non constant. On a $P \in \mathbb{C}[X]$ donc il admet une racine $\alpha \in \mathbb{C}$.
- Si $\alpha \in \mathbb{R}$, alors $X \alpha \mid P$ donc P est irréductible car $\deg(P) = \deg(X \alpha) = 1$.
- Si $\alpha \notin \mathbb{R}$, alors $\overline{\alpha}$ est racine de P dont $B_{\alpha} = (X \alpha)(X \overline{\alpha}) \in \mathbb{R}[X]$ divise P

Or P est irréductible donc $deg(B_{\alpha}) = deg(P) = 2$. P est sans racine réelle, il aurait sinon un diviseur de degré 1.

Proposition 70: Factorisation en produit d'irréductibles à coeff. dans \mathbb{R} .

Tout polynôme de $\mathbb{R}[X]$ s'écrit comme produit de polynômes irréductibles de $\mathbb{R}[X]$.

Méthode : Factorisation d'un polynôme en produit d'irréductibles.

- Renseignements utiles : le degré de P et son coefficient dominant.
- On cherche les racines complexes de P en posant l'équation P(z)=0 avec $z\in\mathbb{C}$, ainsi que la multiplicité de ces racines. On obtient une factorisation dans $\mathbb{C}[X]$.
- Les racines réelles donnent des facteurs de degré 1. Les racines non réelles sont "couplées" avec leur conjuguées pour obtenir des polynômes de degré 2 sans racines réelles, comme dans le lemme 68. On obtient une factorisation dans $\mathbb{R}[X]$.

Exemple 71: *

Factorisation de $X^6 - 1$ en produit d'irréductibles de $\mathbb{R}[X]$.

Solution:

On a

$$X^{6} - 1 = (X+1)(X-1)(X-j)(X-j^{2})(X+j)(X+j^{2})$$
$$= (X-1)(X+1)(X^{2} - X + 1)(X^{2} + X + 1)$$

3 Compléments.

3.1 Relations coefficients-racines pour un polynôme scindé.

Définition 72

Soient $x_1,...,x_n \in \mathbb{K}$. On appelle fonctions symétriques élémentaires de $x_1,...,x_n$ les nombres définis par

$$\forall k \in [\![1,n]\!], \ \sigma_k = \sum_{i_1 < i_2 < \ldots < i_k} x_{i_1} x_{i_2} \ldots x_{i_k}.$$

On a notamment

$$\sigma_1 = \sum_{i=1}^n x_i, \quad \sigma_n = \prod_{i=1}^n x_i, \quad \sigma_2 = \sum_{i < j} x_i x_j.$$

Exemple 73

Soient x, y, z trois scalaires de \mathbb{K} et $\sigma_1, \sigma_2, \sigma_3$ les fonctions symétriques élémentaires associées. Démontrer

$$x^{2} + y^{2} + z^{2} = \sigma_{1}^{2} - 2\sigma_{2}$$
$$x^{3} + y^{3} + z^{3} = \sigma_{1}^{3} + 3\sigma_{3} - 3\sigma_{1}\sigma_{2}$$

Solution:

On a:

$$\sigma_1^2 - 2\sigma_2 = x^2 + xy + xz + yx + y^2 + yz + zx + zy + z^2 - 2xy - 2xz - 2yz = x^2 + y^2 + z^2.$$

Proposition 74: Relations coefficients-racines : formules de Viète. *

Soit P un polynôme de degré $n \in \mathbb{N}^*,$ scindé sur \mathbb{K} : il s'écrit donc

$$P = \sum_{k=0}^{n} a_k X^k$$
 et $P = a_n \prod_{k=1}^{n} (X - \alpha_k),$

où $a_0,...,a_n$ sont ses coefficients et $\alpha_1,...,\alpha_n$ ses racines, répétées avec leur multiplicité. On a

$$P = a_n \left(X^n - \sigma_1 X^{n-1} + \sigma_2 X^{n-2} - \dots + (-1)^k \sigma_k X^{n-k} + \dots + (-1)^n \sigma_n \right)$$

avec $\sigma_1, ..., \sigma_n$ les fonctions symétriques élémentaires des racines $\alpha_1, ..., \alpha_n$.

Ces nombres s'expriment donc en fonction des coefficients de P:

$$\forall k \in [1, n], \ \sigma_k = (-1)^k \frac{a_{n-k}}{a_n}.$$

En particulier, pour la somme des racines σ_1 et le produit des racines σ_n ,

$$\sigma_1 = -\frac{a_{n-1}}{a_n}$$
 et $\sigma_n = (-1)^n \frac{a_0}{a_n}$.

Preuve :

En colle : savoir énoncer la proposition, et la prouver dans le cas n=3.

Soit $P = \lambda(X - \alpha_1)(X - \alpha_2)(X - \alpha_3)$ avec $\lambda \in \mathbb{K}$. On a:

$$P = \lambda (X^{3} + (-\alpha_{1} - \alpha_{2} - \alpha_{3})X^{2} + (\alpha_{1}\alpha_{2} + \alpha_{1}\alpha_{3} + \alpha_{2}\alpha_{3})X - \alpha_{1}\alpha_{2}\alpha_{3})$$

= $\lambda (X^{3} - \sigma_{1}X^{2} + \sigma_{2}X - \sigma_{3}).$

Exemple 75

Trouver tous les triplets $(x, y, z) \in \mathbb{R}^3$ tels que

$$x + y + z = 2;$$
 $x^2 + y^2 + z^2 = 14;$ $x^3 + y^3 + z^3 = 20.$

Solution:

On a:

$$(x, y, z) \text{ solution } \iff \begin{cases} \sigma_1 = 2\\ \sigma_1^2 - 2\sigma_2 = 14\\ \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3 = 20 \end{cases} \iff \begin{cases} \sigma_1 = 2\\ \sigma_2 = -5\\ \sigma_3 = -6 \end{cases}$$
$$\iff (X^3 - 2X^2 + (-5)X - (-6)) \text{ a pour racines } x, y, z$$
$$\iff (X^2 - X - 6)(X - 1) \text{ a pour racines } x, y, z$$
$$\iff (x, y, z) \text{ est une permutation de } (1, -2, 3).$$

3.2 Interpolation de Lagrange.

Définition 76

Soit $n \in \mathbb{N}^*$ et $(x_1, ..., x_n) \in \mathbb{K}^n$, où les x_i sont deux-à-deux distincts. On pose

$$\forall i \in [1, n], \ L_i = \prod_{k=1}^n \frac{X - x_k}{x_i - x_k}$$

Les polynômes $(L_1,...,L_n)$ sont appelés **polynômes de Lagrange** associés à $(x_1,...,x_n)$.

Exemple 77

Écrire la famille des quatre polynômes de Lagrage associés à (-1,0,1,2).

Proposition 78

Soit $n \in \mathbb{N}^*$ et $(L_1, ..., L_n)$ la famille de polynômes de Lagrange associés à un n-uplet $(x_1, ..., x_n)$ de scalaires deux-à-deux distincts.

Tous les polynômes L_i sont de degré n-1. De plus, $\forall (i,j) \in [1,n]^2$, $L_i(x_j) = \delta_{i,j}$.

Théorème 79: ★

Soit $n \in \mathbb{N}^*$, $(x_1, ..., x_n) \in \mathbb{K}^n$ deux-à-deux distincts et $(y_1, ..., y_n) \in \mathbb{K}^n$.

$$\exists ! P \in \mathbb{K}_{n-1}[X], \ \forall i \in [1, n], \ P(x_i) = y_i.$$

En notant $(L_1,...,L_n)$ la famille de polynômes de Lagrange associés à $(x_1,...,x_n)$, on a

$$P = \sum_{i=1}^{n} y_i L_i.$$

Preuve:

Existence. Soit $P \sum_{i=1}^{n} y_i L_i$. On a deg $(P) \le n-1$ car les $L_i \in \mathbb{K}_{n-1}[X]$ sont stables par combinaisons linéaires. Soit $k \in [1, n]$. $P(x_k) = \sum_{i=1}^{n} y_i L_i(x_k) = y_k L_k(x_k) = y_k$.

Unicité. Soient $P, Q \in \mathbb{K}_{n-1}[X]$ tels que $\forall i \in [1, n], \ P(x_i) = y_i = Q(x_i)$.

Alors P - Q a *n* racines, donc P - Q = 0 donc P = Q.

Corrolaire 80: L'ensemble des polynômes interpolateurs.

Soit $n \in \mathbb{N}^*$, $(x_1, ..., x_n) \in \mathbb{K}^n$ (scalaires deux-à-deux distincts) et $(y_1, ..., y_n) \in \mathbb{K}^n$. Soit P l'unique polynôme de $\mathbb{K}_{n-1}[X]$ tel que $\forall i \in [1, n], \ P(x_i) = y_i$.

Les polynômes $Q \in \mathbb{K}[X]$ tels que $\forall i \in [1, n], \ Q(x_i) = y_i$ sont ceux de la forme

Typionnes $Q \in \mathbb{Z}[X]$ tels que $\forall i \in [1, h], \ Q(x_i) = g_i$ sont ceux de la forme

$$Q = P + A \prod_{i=1}^{n} (X - x_i), \quad \text{où } A \in \mathbb{K}[X].$$

Preuve:

On a:

$$\forall i \in [1, n], \ Q(x_i) = y_i = P(x_i) \iff Q - P \text{ a } x_1, ..., x_n \text{ pour racines}$$

$$\iff \prod_{i=1}^n (X - x_i) \mid Q - P$$

$$\iff \exists A \in \mathbb{K}[X], \ Q = P + A \prod^n (X - x_i)$$

4 Exercices. *

Polynômes à travers leurs coefficients / L'anneau $\mathbb{K}[X]$.

Exercice 1: ♦♦♦ ★

On note $I =] - \frac{\pi}{2}, \frac{\pi}{2}[.$

1. Montrer que pour tout $n \in \mathbb{N}$, il existe un polynome $P_n \in \mathbb{R}[X]$ tel que

$$\forall x \in I, \ \tan^{(n)}(x) = P_n(\tan(x)).$$

- 2. Montrer qu'un tel polynôme P_n est unique.
- 3. Donner pour tout entier n le degré et le coefficient dominant de P_n .
- 4. Démontrer que pour tout entier naturel n, les coefficients de P_n sont des entiers.

Solution:

Soit $x \in I$. Pour $n \in \mathbb{N}$, on note l'énoncé H_n . Montrons le par récurrence.

Initialisation. C'est vrai pour n = 0: $\forall x \in I$, $\tan(x) = X(\tan(x))$.

Hérédité. Soit $n \in \mathbb{N}$ tel que H_n . On a $\tan^{(n+1)}(x) = (1 + \tan^2(x))P'_n(\tan(x))$ donc $P_{n+1} = (1 + X^2)P'_n$

Alors H_{n+1} est vraie et $\forall n \in \mathbb{N}, H_n$ par récurrence.

2. Supposons qu'il en existe un autre, Q_n , on a $\forall x \in I$, $P_n(\tan x) - Q_n(\tan x) = 0$ donc $P_n = Q_n$.

3. Pour $n \in \mathbb{N}$, on note H_n : «deg $(P_n) = n + 1$, cd $(P_n) = n!$ ».

Initialisation. Triviale.

Hérédité. Soit $n \in \mathbb{N}$ tel que H_n .

On a $P_{n+1} = (1 + X^2)P'_n$ donc $\deg(P_{n+1}) = \deg(P_n) - 1 + 2 = n + 1$ car $\deg(P_n) \ge 0$.

On a $cd(P_{n+1}) = cd(P'_n) = (n+1) \cdot cd(P_n) = (n+1)!$

Alors H_{n+1} est vraie et $\forall n \in \mathbb{N}, H_n$ par récurrence.

4. Pour $n \in \mathbb{N}$, on note l'énoncé H_n .

Initialisation. Triviale.

Hérédité. Soit $n \in \mathbb{N}$ tel que H_n . On note $(\alpha_k)_{k \in \mathbb{N}}$ les coefficients de P_n , entiers.

$$P_{n+1} = (1+X^2)P_n' = (1+X^2)\sum_{k=0}^{n}(k+1)\alpha_{k+1}X^k = \sum_{k=0}^{n}(k+1)\alpha_{k+1}X^k + \sum_{k=2}^{n+2}(k-1)\alpha_{k-1}X^k$$

Les coefficients de P_{n+1} sont donc des sommes et produits d'entiers, donc sont des entiers.

Par récurrence, $\forall n \in \mathbb{N}, H_n$ est vrai.

Exercice 2: ♦♦♦

En calculant de deux façons différentes le coefficient devant X^n dans l'écriture de $(1-X^2)^n$, obtenir une identité sur les coefficients binomiaux.

Solution:

D'une part

$$(1 - X^{2})^{n} = (1 - X)^{n} (1 + X)^{n} = \sum_{i=0}^{n} \binom{n}{i} (-1)^{i} X^{i} \sum_{j=0}^{n} \binom{n}{j} X^{j}$$
$$= \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \binom{n}{j} (-1)^{i} X^{i+j}$$

Donc le coefficient devant X^n est $\sum_{i=0}^n \binom{n}{i} \binom{n}{n-i} (-1)^i$.

D'autre part, $(1-X^2)^n = \sum_{i=0}^n {n \choose i} (-1)^i X^{2i}$. Donc si n est impair, le coefficient devant X^n est nul. Si n est pair, il est ${n \choose n/2} (-1)^{n/2}$.

On en déduit l'identité:

$$\sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i} (-1)^i = \binom{n}{n/2} (-1)^{n/2}$$

Exercice 3: ♦♦◊

Trouver tous les polynômes P de $\mathbb{R}[X]$ tels que $4P = (P')^2$.

Solution:

Soit P un tel polynôme on suppose P non constant.

On a $\deg(P) = 2 \cdot (\deg(P) - 1)$ donc $\deg(P) = 2 \deg(P) - 2$ donc $\deg(P) = 2$.

Alors $\exists (a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2 \mid P = aX^2 + bX + c$.

Donc $4a^2X^2 + 4abX + b^2 = 4aX^2 + 4bX + 4c$ donc $4a^2 = 4a$, ab = b et $b^2 = 4c$.

Alors $a = 1, b \in \mathbb{R}$ et $c = \frac{b^2}{4}$.

Les solutions sont donc dans $\{0\} \cup \{X^2 + bX + \frac{b^2}{4} \mid b \in \mathbb{R}\}.$

Exercice 4: ♦♦◊

Trouver tous les polynômes P dans $\mathbb{R}[X]$ qui satisfont P(X+1)=XP'.

Solution:

Soit $P \neq 0$ un tel polynôme. On pose $n = \deg(P)$. On note $P = \sum a_k X^k$.

Analyse. On a $P(X+1) = \sum_{k=0}^{n} a_k (X+1)^{k} \text{ hyp. } \sum_{k=0}^{n-1} (k+1) a_{k+1}^{n-1} X^{k+1} = \sum_{k=1}^{n} k a_k X^k$.

Donc $a_n = na_n$ donc n = 0 ou n = 1 car $a_n \neq 0$.

On vérifie facilement que les polynômes constants ne sont pas solution, donc n=1.

Notons P = aX + b. On a aX + a + b = aX donc a + b = 0.

Synthèse. Soit un polynôme P = aX + b tels que a + b = 0. Alors P(X + 1) = aX + a + b = aX = XP'.

Exercice 5: ♦♦♦

Soit Q un polynôme de $\mathbb{K}[X]$.

Démontrer que l'équation P - P' = Q possède une unique solution dans $\mathbb{K}[X]$.

Solution:

Soient A, B deux solutions de l'équation. On a A - A' = B - B' = Q.

Alors A - B = A' - B' donc (A - B) = (A - B)' donc $\deg(A - B) = \deg(A - B) - 1$.

Cela est uniquement possible si A - B = 0. Donc A = B.

Racines et factorisation d'un polynôme.

Exercice 6: $\Diamond \Diamond \Diamond$ Approximation de π par $\frac{22}{7}$.

- 1. Poser la division euclidienne de $X^4(1-X)^4$ par X^2+1 .
- 2. Démontrer l'égalité $\int_0^1 \frac{x^4(1-x)^4}{1+x^2} dx = \frac{22}{7} \pi$. 3. Prouver l'inégalité $\frac{1}{1260} \le \frac{22}{7} \pi \le \frac{1}{630}$.

1. On a $X^4(1-X)^4 = (X-X^2)^4 = X^8 - 4X^7 + 6X^6 - 4X^5 + X^4$. Alors $X^4(1-X)^4 = (X^2+1)(X^6-4X^5+5X^4-4X^2+4)-4$.

$$\int_0^1 \frac{x^4 (1-x)^4}{1+x^2} dx = \int_0^1 (x^6 - 4x^5 + 5x^4 - 4x^2 + 4) dx - 4 \int_0^1 \frac{1}{x^2 + 1} dx$$

$$= \left[\frac{x^7}{7} - \frac{4x^6}{6} + x^5 - \frac{4x^3}{3} + 4x \right]_0^1 - 4 \left[\arctan(x) \right]_0^1$$

$$= \frac{1}{7} - \frac{4}{6} + 1 - \frac{4}{3} + 4 - \pi = \frac{22}{7} - \pi.$$

3. $\forall x \in [0,1], \ \frac{1}{2} \le \frac{1}{x^2+1} \le 1$. De plus, $\frac{1}{2} \int_0^1 x^4 (1-x)^4 dx = \frac{1}{1260}$ et $\int_0^1 x^4 (1-x) dx = \frac{1}{630}$. Donc $\frac{1}{1260} \le \frac{22}{7} - \pi \le \frac{1}{630}$.

Exercice 7: ♦♦◊

Donner le reste dans la division euclidienne de $X^{2023} + X^3 + 1$ par

a) $X^2 - 1$, b) $(X - 1)^2$.

Solution:

a) $\exists Q \in \mathbb{C}[X] \mid X^{2023} + X^3 + 1 = (X^2 - 1)Q + aX + b \text{ avec } a, b \in \mathbb{C}.$

 $\overline{\text{En}}$ évaluant en 1 et -1:3=a+b et -1=b-a donc (a,b)=(2,1). Le reste est 2X+1.

b) $\exists Q \in \mathbb{C}[X] \mid X^{2023} + X^3 + 1 = (X - 1)^2 Q + aX + b \text{ avec } a, b \in \mathbb{C}.$

La racine 1 est de multiplicité 2, c'est une racine du polynôme dérivé.

Ce polynôme dérivé est : $2023X^{2022} + 3X^2 = 2(X-1)Q + (X-1)^2Q' + a$.

On évalue en 1 les deux polynômes: a+b=3 et 2026=a donc (a,b)=(2026,-2023). Le reste est 2026X-2023.

Exercice 8: $\Diamond \Diamond \Diamond$

Soient $(A, B, P) \in \mathbb{K}[X]^3$ tels que P est non constant et $A \circ P \mid B \circ P$. Montrer que $A \mid B$.

Solution:

On a $\exists (Q, R) \in \mathbb{C}[X] \mid B = AQ + R \text{ donc } B \circ P = (A \circ P)(Q \circ P) + R \circ P.$

Or $A \circ P \mid B \circ P$ donc $R \circ P = 0$ car $\deg(R \circ P) < \deg(A \circ P)$. Or $\deg P > 0$ donc R = 0.

Ainsi, B = AQ donc $A \mid B$.

Exercice 9: $\Diamond \Diamond \Diamond$

Trouver tous les polynômes de $\mathbb{R}[X]$ tels que (X+4)P(X)=XP(X+1).

Solution:

Soit $P \in \mathbb{R}[X]$ tel que (X+4)P(X) = XP(X+1).

On évalue en 0: 4P(0) = 0 donc 0 est racine. On en déduit que -3, -2, -1, 0 sont racines.

Alors P = X(X+1)(X+2)(X+3)P avec $P \in \mathbb{R}[X]$.

Ainsi, X(X+1)(X+2)(X+3)(X+4)P(X) = X(X+2)(X+3)(X+4)(X+5)P(X+1).

Donc $(X+1)\tilde{P}(X) = (X+5)\tilde{P}(X+1)$ donc $\tilde{P}(1) = 0$ donc P(1) = 0.

À partir de là, on peut montrer que tout entier naturel est racine de P. Donc P=0.

Il n'y a que le polynôme nul qui est solution.

Exercice 10: $\Diamond \Diamond \Diamond$

Démontrer qu'il n'existe pas de polynôme P dans $\mathbb{R}[X]$ tel que

$$\forall n \in \mathbb{N}, \ P(n) = n^{666} + (-1)^n.$$

Solution:

Soit $P \in \mathbb{R}[X]$. On suppose que $\forall n \in \mathbb{N}, \ P(n) = n^{666} + (-1)^n$. Soit $n \in \mathbb{N}$.

On a $(P - X^{666})(n) = (-1)^n$ donc $P - X^{666}$ change de signe une infinité de fois.

Il a donc un nombre infini de racines par TVI, et donc c'est le polynôme nul. Ainsi $P = X^{666}$.

C'est absurde car $X^{666}(n) \neq n^{666} + (-1)^n$. Donc il n'existe pas de tel polynôme.

Exercice 11: $\Diamond \Diamond \Diamond$

Montrer, que pour tout $n \in \mathbb{N}^*$, le polynôme $P = \sum_{k=0}^n \frac{X^k}{k!}$ n'a que des racines simples dans \mathbb{C} .

Solution:

Soit α racine de P. On a $\alpha \neq 0$ car P(0) = 1.

On a
$$P' = \sum_{k=1}^{n} \frac{kX^{k-1}}{k!} = \sum_{k=0}^{n-1} \frac{X^k}{k!}$$
 donc $P'(\alpha) = P(\alpha) - \frac{\alpha^n}{n!} = -\frac{\alpha^n}{n!} \neq 0$ car $\alpha \neq 0$.

C'est donc une racine simple.

Exercice 12: $\Diamond \Diamond \Diamond$

Soit $n \in \mathbb{N}^*$. Montrer que $(X-1)^3$ divise $P_n = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$.

Solution:

Montrons que 1 est racine triple de P_n .

- On a $P_n(1) = n n 2 + n + 2 n = 0$.
- On a $P'_n(1) = n(n+2) (n+1)(n+2) + (n+2) = 0.$
- On a $P_n''(1) = n(n+1)(n+2) n(n+1)(n+2) = 0$.

C'est bien une racine de multiplicité 3, donc $(X-1)^3 \mid P_n$.

Factorisation de polynômes.

Exercice 13: ♦♦♦

Factoriser $X^6 + X^3 + 1$ en produit d'irréductibles de $\mathbb{R}[X]$.

Solution

On a $X^6 + X^3 + 1 = (X^3)^2 + X^3 + 1$ donc z est solution ssi $z^3 \in \{j, j^2\}$.

- $\bullet \text{ Si } z^3=j, \text{ alors } z^3/\left(e^{\frac{2i\pi}{9}}\right)^3=1 \text{ donc } z\in \{e^{\frac{2i\pi}{9}}, je^{\frac{2i\pi}{9}}, j^2e^{\frac{2i\pi}{9}}\}=\{e^{\frac{2i\pi}{9}}, e^{\frac{8i\pi}{9}}, e^{\frac{14i\pi}{9}}\}.$
- Si $z^3 = j^2 = \overline{j}$, alors $z \in \{e^{-\frac{2i\pi}{9}}, e^{-\frac{8i\pi}{9}}, e^{-\frac{14i\pi}{9}}\}$. On va noter α, β, γ ces valeurs.

Alors $X^6 + X^3 + 1 = (X^2 - 2\operatorname{Re}(\alpha) + |\alpha|^2)(X^2 - 2\operatorname{Re}(\beta) + |\beta|^2)(X^2 - 2\operatorname{Re}(\gamma) + |\gamma|^2).$

Exercice 14: ♦♦♦

Soit $n \geq 2$. Factoriser $(X+i)^n - (X-i)^n$ en produit d'irréductibles de $\mathbb{C}[X]$.

Solution:

On a:

$$P_{n} = \sum_{k=0}^{n} \binom{n}{k} X^{n-k} i^{k} - \sum_{k=0}^{n} \binom{n}{k} X^{n-k} (-i)^{k} = \sum_{k=0}^{n} \binom{n}{k} X^{n-k} \left(i^{k} - -(i)^{k} \right)$$
$$= \sum_{k=1}^{n} \binom{n}{k} X^{n-k} \left(i^{k} - (-i)^{k} \right)$$

Soit $z \in \mathbb{C}$, on a

$$(z+i)^n = (z-i)^n \text{ et } z \neq \pm i \iff \left(\frac{z+i}{z-i}\right)^n = 1$$

$$\iff \exists k \in \llbracket 1, n-1 \rrbracket, \ \frac{z+i}{z-i} = e^{\frac{2ik\pi}{n}}$$

$$\iff \exists k \in \llbracket 1, n-1 \rrbracket, \ z+i = e^{\frac{2ik\pi}{n}}(z-i)$$

$$\iff \exists k \in \llbracket 1, n-1 \rrbracket, \ z = -i \times \frac{1+e^{\frac{2ik\pi}{n}}}{1-e^{\frac{2ik\pi}{n}}} = -i \times \frac{e^{\frac{ik\pi}{n}} + e^{-\frac{ik\pi}{n}}}{e^{\frac{ik\pi}{n}} - e^{-\frac{ik\pi}{n}}}$$

$$\iff \exists k \in \llbracket 1, n-1 \rrbracket, \ z = -\cot \ln\left(\frac{k\pi}{n}\right)$$

Or P_n est de degré n-1 et a n-1 racines distinctes et $\operatorname{cd}(P_n)=2ni$, donc:

$$P_n = 2ni \prod_{i=1}^{n-1} \left(X + \cot \left(\frac{k\pi}{n} \right) \right)$$

Exercice 15: ♦♦♦

Soit $n \in \mathbb{N}^*$. Factoriser $\sum_{k=0}^{n-1} X^k$ dans $\mathbb{C}[X]$. En déduire $\prod_{k=1}^n \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}$.

Solution:

On a:

$$\sum_{k=0}^{n-1} X^k = \frac{X^n - 1}{X - 1} = \prod_{k=1}^{n-1} \left(X - e^{\frac{2ik\pi}{n}} \right)$$

On évalue en 1.

$$\sum_{k=0}^{n-1} 1^k = n = \prod_{k=1}^{n-1} \left(1 - e^{\frac{2ik\pi}{n}} \right) = \prod_{k=1}^{n-1} -e^{\frac{ik\pi}{n}} \prod_{k=1}^{n-1} 2i \sin\left(\frac{k\pi}{n}\right)$$

$$= 2^{n-1} i^{n-1} (-1)^{n-1} \exp\left(\frac{i\pi}{n-1} \sum_{k=1}^{n-1} k\right) \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$$

$$= 2^{n-1} \exp\left(2(n-1)i\pi\right) \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$$

$$= 2^{n-1} \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$$

Donc
$$\prod_{k=1}^{n} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}.$$

Divers.

Exercice 16: $\Diamond \Diamond \Diamond$

Soit P un polynôme de $\mathbb{R}[X]$ de degré $n \geq 2$ scindé dans $\mathbb{R}[X]$ à racines simples.

- 1. Montrer que P' est scindé à racines simples.
- 2. Prouver que la moyenne arithmétique des racines de P et celle des racines de P' sont égales.

Solution:

On note $P = \sum_{k=0}^{n} a_k X^k$.

1. Soient $(\alpha_1, ..., \alpha_n) \in \mathbb{R}^n$ les racines de P, ordonnées par ordre croissant.

On applique le théorème de Rolle sur les intervalles $[\alpha_i, \alpha_{i+1}]$ pour $i \in [1, n-1]$.

On obtient qu'il existe $\beta_i \in]\alpha_i, \alpha_{i+1}[$ racine de P' pour tout $i \in [1, n-1]]$.

Alors P' est scindé à racines simples car les intervalles sont distincts.

2. On a $\sum_{i=1}^{n} \alpha_n = -\frac{a_{n-1}}{a_n}$ donc la moyenne des α_i vaut $-\frac{a_{n-1}}{na_n}$.

De plus, $P' = \sum_{k=1}^{n} k a_k X^{k-1}$ donc $\sum_{i=1}^{n-1} \beta_i = -\frac{(n-1)a_{n-1}}{na_n}$ donc la moyenne des β_i vaut $-\frac{a_{n-1}}{na_n}$.

Les moyennes arithmétiques sont égales.

Exercice 17: ♦♦◊

Démontrer qu'il existe un nombre fini de polynômes unitaires de $\mathbb{Z}[X]$ ayant un degré égal à n et des racines complexes de module inférieur à 1.

Solution:

Soit $n \in \mathbb{N}$. Notons \mathcal{E}_n l'ensemble de ces polynômes. Soit $P \in \mathcal{E}_n$ de racines $\omega_1, ..., \omega_n \in \mathbb{C}$.

$$P = \left(X^{n} + \sum_{k=1}^{n} (-1)^{n} \sigma_{k} X^{n-k}\right) = \prod_{k=1}^{n} (X - \omega_{k})$$

On a que
$$\forall k \in \llbracket 1, n \rrbracket, \ |\sigma_k| = \left| \sum_{I \in \mathcal{P}_k(\llbracket 1, n \rrbracket)} \prod_{i \in I} \omega_i \right| \leq \sum_{I \in \mathcal{P}_k(\llbracket 1, n \rrbracket)} \prod_{i \in I} 1 = \binom{n}{k}.$$

Donc $|\mathcal{E}| \le \sum_{k=1}^{n} |\sigma_k| \le \sum_{k=1}^{n} \binom{n}{k} \le 2^n - 1$. C'est un ensemble fini.

Exercice 18: ♦♦◊

Soit $n \in \mathbb{N}^*$ et $P = nX^n - \sum_{k=0}^{n-1} X^k$.

- 1. Prouver que 1 est racine simple de P.
- 2. (*) En vous intéressant à (X-1)P, démontrer que toutes les racines complexes de P sont simples.
- 3. Donner la somme et le produit des racines.

Solution:

- 1. P(1) = n n = 0. $P'(1) = n^2 \frac{n(n-1)}{2} = \frac{n(n-1)}{2} \neq 0$.
- 2. Soit $\omega \in \mathbb{C}$ racine de P. On a P(0) = -1 donc on peut supposer $\omega \notin \{0, 1\}$.

$$(X-1)P = (X-1)(nX^n - \sum_{k=0}^{n-1} X^k) = \dots = nX^{n+1} - (n+1)X^n + 1.$$

Donc $(X-1)P' = n(n+1)(X^n - X^{n-1})$ et $(\omega - 1)P'(\omega) = \omega^{n-1}n(n+1)(\omega - 1) \neq 0$ car $\omega \notin \{0, 1\}$.

Donc $P'(\omega) \neq 0$ par intégrité de $\mathbb{C}[X]$, donc ω est racine simple de P.

3. La somme des racines est $\frac{1}{n}$, le produit est $\frac{(-1)^n}{n}$

Exercice 19: ♦♦♦

Soit $n \in \mathbb{N}$.

- 1. Exprimer de deux façons différentes l'unique polynôme P de degré n tel que $\forall i \in [0, n], \ P(i) = i^n$.
- 2. En considérant son coefficient dominant, démontrer l'identité

$$\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} i^n = n!$$

Solution:

1. Le polynôme X^n est évident.

On pose L_j les polynômes de Lagrange associés à (0,...,n). On a $P = \sum_{i=0}^n i^n L_i$.

$$P = \sum_{i=0}^{n} i^{n} \prod_{\substack{j=0\\j\neq i}}^{n} \frac{X-j}{i-j} = \sum_{i=0}^{n} i^{n} (-1)^{n-i} \prod_{j=0}^{i-1} \frac{1}{i-k} \prod_{j=i+1}^{n} \frac{1}{k-i} \prod_{k\neq i} (X-k)$$

2. Le coefficient dominant est 1. Ainsi:

$$\sum_{i=0}^{n} i^{n} (-1)^{n-i} \frac{1}{i!} \cdot \frac{1}{(n-i)!} = 1.$$

On multiplie par n! des deux côtés :

$$\sum_{i=0}^{n} (-1)^{n-i} \frac{n!}{i!(n-i)!} i^n = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{k} i^n = n!$$