Theorem Let G be a graph and let T be a spanning tree in G. let $e \in E(G)$ such that $e \notin E(T)$.

- the graph T+e obtained by adding the edge e to T contains exactly one cycle C, which contains e
- for each $f \in E(C) \setminus \{e\}$ the graph (T + e) f is also a spanning tree of G.

Proof

Since T has no cycles, all cycles in T + e contain e. Let e = xy. By an earlier lema, there is exactly one path p in T from x to y. Hence C = P + e is the only cycle in T + e.

By our earlier theorem, ssince f is in the cycle C in T + e it is not a bridge of T + e. Thus (T + e) - f is connected.

But,
$$|V((T+e)-f)| = |V(T)|$$
 and $|E((T+e)-f)| = |E(T)| = |V(T)| - 1$

Thus, by yet another earlier theorem, T + e - f is a tree, hence a spanning tree of G.

Theorem Let G be a graph and let Y be a spanning tree in G. Let $e \in E(T)$. say e = xy. Then:

- ullet T-e has exactly two components, T_x containing x and T_y containing y
- for each edge f in the cut S in G induced by T_x , (T-e) + f is a spanning tree of G.

Proof

- \bullet Follows from our earlier lemma since e is a bridge of T (its removal leaves exactly components)
- Let f = uv be an edge of $S \setminus \{e\}$ where $u \in T_x$ and $v \in T_y$. Since $v \in T_y$, all vertices in T_y are joined by a path in T_y to v.

Each vertex in T_x is joined by a path P to v in (T-e)+f, where the last edge of P is uv.

Hence (T - e) + f is connected and spanning.

But |E(T-e+f)| = |E(T)| so T-e+f is a spanning tree of G.

Minimum Spanning Tree

Let G be a graph and let $w: E(G) \to \mathbb{R}$ be a weight function on E(G).

Definition A minimum spanning tree (MST) of G is a spanning tree T such that $w(T) = \sum_{e \in E(T)} w(e)$ is as small as possible (among all spanning trees).

Prim's Algorithm for MST

INPUT: Graph G and vertex $x \in V(G)$

OUTPUT: A MST of the component G_x containing x.

- 1. Set V(D) = x and $E(D) = \emptyset$
- 2. If the cut S in G induced by V(D) in nonempty:
 - let e = uv be an edge in S of smallest weight where $u \notin V(D)$ and $v \in V(D)$.
 - Set $V(D) = V(D) \cup \{u\}$
 - Set $E(D) = E(D) \cup \{e\}$
- 3. If $S = \emptyset$ STOP and OUTPUT D.

Theorem Prim's Algorithm finds a MST of G_x

Proof Since this is a special case of our spanning tree algorithm, we know it finds a spanning tree D of G_x .

Let D_i denote the current subgraph D at step i of the algorithm. So D_1 has $V(D_1) = \{x\}$ and $E(D_1) = \emptyset$

We will prove the following claim by induction on i.

Claim D_i is contained in some MST of G.

This will prove the theorem, since the final output (say D_k , where k is teh total number of steps taken) is contained in a MST of G, but it is a spanning tree of G and therefore must be an MST itself.