$12n_{0667} (K12n_{0667})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -3u^{20} - 26u^{19} + \dots + 7b + 97, \ -83u^{20} - 325u^{19} + \dots + 63a + 558, \ u^{21} + 5u^{20} + \dots - 72u - 9 \rangle \\ I_2^u &= \langle -3u^{14}a + 5u^{14} + \dots + a + 24, \ -u^{14}a + 2u^{13}a + \dots + 3a + 4, \ u^{15} - 2u^{14} + \dots - 4u + 1 \rangle \\ I_3^u &= \langle -u^6 - 2u^5 - 5u^4 - 6u^3 - 6u^2 + b - 4u - 1, \ u^8 + 2u^7 + 7u^6 + 10u^5 + 15u^4 + 14u^3 + 9u^2 + a + 5u - 1, \ u^9 + 2u^8 + 7u^7 + 10u^6 + 16u^5 + 16u^4 + 13u^3 + 9u^2 + 2u + 1 \rangle \\ I_4^u &= \langle b + 1, \ 2u^2a + a^2 - 2au + 3a + u - 1, \ u^3 - u^2 + 2u - 1 \rangle \end{split}$$

 $I_1^v = \langle a, b+1, v+1 \rangle$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 67 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{20} - 26u^{19} + \dots + 7b + 97, -83u^{20} - 325u^{19} + \dots + 63a + 558, u^{21} + 5u^{20} + \dots - 72u - 9 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{83}{63}u^{20} + \frac{325}{63}u^{19} + \dots - 66u - \frac{62}{7} \\ \frac{3}{7}u^{20} + \frac{26}{7}u^{19} + \dots - 95u - \frac{97}{7} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{110}{63}u^{20} + \frac{559}{63}u^{19} + \dots - 161u - \frac{159}{7} \\ \frac{3}{7}u^{20} + \frac{26}{7}u^{19} + \dots - 95u - \frac{97}{7} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{83}{63}u^{20} + \frac{325}{63}u^{19} + \dots - 86u - \frac{90}{7} \\ \frac{5}{7}u^{20} + \frac{20}{7}u^{19} + \dots - 52u - \frac{52}{7} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{97}{63}u^{20} - \frac{458}{63}u^{19} + \dots + 111u + \frac{111}{7} \\ \frac{7}{7}u^{20} - \frac{10}{7}u^{19} + \dots + 103u + \frac{110}{7} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{52}{63}u^{20} - \frac{215}{63}u^{19} + \dots + 39u + \frac{38}{7} \\ \frac{7}{7}u^{20} + \frac{1}{7}u^{19} + \dots + 36u + \frac{38}{7} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{4}{7}u^{20} + \frac{51}{7}u^{19} + \cdots 324u \frac{456}{7}$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^{21} + 2u^{20} + \dots + 8u + 1$
c_2	$u^{21} + 15u^{20} + \dots + 63u + 9$
c_4, c_9	$u^{21} - 2u^{20} + \dots - 11u^2 + 1$
c_5, c_8	$u^{21} - u^{20} + \dots - u - 1$
c_6, c_7, c_{11}	$u^{21} + 5u^{20} + \dots - 72u - 9$
c_{10}, c_{12}	$u^{21} - 5u^{20} + \dots - 2988u - 1413$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{21} + 30y^{20} + \dots + 6y - 1$
c_2	$y^{21} - 13y^{20} + \dots - 1377y - 81$
c_4, c_9	$y^{21} - 22y^{20} + \dots + 22y - 1$
c_5, c_8	$y^{21} - 11y^{20} + \dots + 21y - 1$
c_6, c_7, c_{11}	$y^{21} + 23y^{20} + \dots + 324y - 81$
c_{10}, c_{12}	$y^{21} + 19y^{20} + \dots - 3839724y - 1996569$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.834623 + 0.573705I		
a = 1.005930 + 0.264258I	6.40877 + 10.26430I	-4.52348 - 6.93928I
b = 0.62121 - 1.82385I		
u = -0.834623 - 0.573705I		
a = 1.005930 - 0.264258I	6.40877 - 10.26430I	-4.52348 + 6.93928I
b = 0.62121 + 1.82385I		
u = -0.847213 + 0.586710I		
a = -0.922945 + 0.173773I	6.42391 - 4.68256I	-3.99466 + 2.17560I
b = 0.16137 + 1.79856I		
u = -0.847213 - 0.586710I		
a = -0.922945 - 0.173773I	6.42391 + 4.68256I	-3.99466 - 2.17560I
b = 0.16137 - 1.79856I		
u = 0.825151		
a = -0.722716	-5.68389	-17.0230
b = -0.926404		
u = -0.150569 + 1.281090I		
a = 0.434742 - 0.402686I	3.22602 + 2.41816I	-3.53897 - 1.93549I
b = 0.074569 + 0.138439I		
u = -0.150569 - 1.281090I		
a = 0.434742 + 0.402686I	3.22602 - 2.41816I	-3.53897 + 1.93549I
b = 0.074569 - 0.138439I		
u = -0.323088 + 0.617615I		
a = 0.358624 - 0.512504I	0.52795 + 2.17494I	-5.93194 - 4.33334I
b = -0.096498 + 0.850760I		
u = -0.323088 - 0.617615I		
a = 0.358624 + 0.512504I	0.52795 - 2.17494I	-5.93194 + 4.33334I
b = -0.096498 - 0.850760I		
u = 0.373837 + 1.314800I		
a = 0.363936 + 0.564961I	-1.57111 - 4.30895I	-11.00324 + 1.55396I
b = -0.998750 + 0.204857I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.373837 - 1.314800I		
a = 0.363936 - 0.564961I	-1.57111 + 4.30895I	-11.00324 - 1.55396I
b = -0.998750 - 0.204857I		
u = -0.027283 + 1.412760I		
a = 0.78061 + 1.55576I	3.18953 + 0.20531I	-5.89178 + 0.57061I
b = -1.109230 - 0.677694I		
u = -0.027283 - 1.412760I		
a = 0.78061 - 1.55576I	3.18953 - 0.20531I	-5.89178 - 0.57061I
b = -1.109230 + 0.677694I		
u = -0.437416 + 0.103332I		
a = 0.929988 - 0.551312I	-0.974855 + 0.275619I	-10.86571 - 2.54923I
b = -0.189823 + 0.028334I		
u = -0.437416 - 0.103332I		
a = 0.929988 + 0.551312I	-0.974855 - 0.275619I	-10.86571 + 2.54923I
b = -0.189823 - 0.028334I		
u = -0.09149 + 1.57120I		
a = -0.26719 - 1.73552I	7.94844 + 3.68537I	-6.18348 + 2.45338I
b = 0.33826 + 1.86261I		
u = -0.09149 - 1.57120I		
a = -0.26719 + 1.73552I	7.94844 - 3.68537I	-6.18348 - 2.45338I
b = 0.33826 - 1.86261I		
u = -0.28888 + 1.56597I		
a = 0.45254 + 2.00394I	13.4087 + 14.4061I	-2.12525 - 6.98840I
b = 1.01317 - 2.01561I		
u = -0.28888 - 1.56597I		
a = 0.45254 - 2.00394I	13.4087 - 14.4061I	-2.12525 + 6.98840I
b = 1.01317 + 2.01561I		
u = -0.28585 + 1.59217I		
a = -0.77487 - 1.52631I	13.60260 - 0.45994I	-1.43013 + 1.46856I
b = -0.35107 + 2.01142I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.28585 - 1.59217I		
a = -0.77487 + 1.52631I	13.60260 + 0.45994I	-1.43013 - 1.46856I
b = -0.35107 - 2.01142I		

$$\text{II. } I_2^u = \langle -3u^{14}a + 5u^{14} + \dots + a + 24, \ -u^{14}a + 2u^{13}a + \dots + 3a + 4, \ u^{15} - 2u^{14} + \dots - 4u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{3}{14}u^{14}a - \frac{5}{14}u^{14} + \dots - \frac{1}{14}a - \frac{12}{7} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.214286au^{14} - 0.357143u^{14} + \dots + 0.928571a - 1.71429 \\ \frac{3}{14}u^{14}a - \frac{5}{14}u^{14} + \dots - \frac{1}{14}a - \frac{12}{7} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{10}{5}u^{14}a + \frac{9}{7}u^{14} + \dots - \frac{8}{7}a - \frac{10}{7} \\ \frac{5}{14}u^{14}a + \frac{1}{14}u^{14} + \dots - \frac{25}{14}a - \frac{6}{7} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{14}u^{14}a - \frac{5}{7}u^{14} + \dots + \frac{6}{7}a + \frac{1}{14} \\ -0.142857au^{14} - 0.928571u^{14} + \dots + 0.214286a - 0.357143 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{5}{14}u^{14}a - \frac{3}{7}u^{14} + \dots + \frac{17}{7}a + \frac{9}{14} \\ 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$11u^{14} - 16u^{13} + 97u^{12} - 120u^{11} + 326u^{10} - 337u^9 + 511u^8 - 400u^7 + 342u^6 - 95u^5 + 10u^4 + 150u^3 - 84u^2 + 55u - 19$$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^{30} - 7u^{29} + \dots - 676u - 329$
c_2	$(u^{15} - 7u^{14} + \dots + 28u - 8)^2$
c_4, c_9	$u^{30} - 14u^{28} + \dots - 641u + 151$
c_5,c_8	$u^{30} + 9u^{26} + \dots - u - 1$
c_6, c_7, c_{11}	$(u^{15} - 2u^{14} + \dots - 4u + 1)^2$
c_{10}, c_{12}	$(u^{15} + 2u^{14} + \dots - 16u + 5)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{30} + 33y^{29} + \dots + 1028130y + 108241$
c_2	$(y^{15} - 7y^{14} + \dots + 528y - 64)^2$
c_4, c_9	$y^{30} - 28y^{29} + \dots + 125773y + 22801$
c_{5}, c_{8}	$y^{30} + 18y^{28} + \dots - 35y + 1$
c_6, c_7, c_{11}	$(y^{15} + 16y^{14} + \dots - 4y - 1)^2$
c_{10}, c_{12}	$(y^{15} + 16y^{14} + \dots - 344y - 25)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.783022 + 0.548748I		
a = -0.815000 - 0.070479I	7.57107 - 2.60312I	-2.84235 + 2.92184I
b = 0.23196 - 1.72434I		
u = 0.783022 + 0.548748I		
a = 1.150630 - 0.405666I	7.57107 - 2.60312I	-2.84235 + 2.92184I
b = 0.61243 + 1.61879I		
u = 0.783022 - 0.548748I		
a = -0.815000 + 0.070479I	7.57107 + 2.60312I	-2.84235 - 2.92184I
b = 0.23196 + 1.72434I		
u = 0.783022 - 0.548748I		
a = 1.150630 + 0.405666I	7.57107 + 2.60312I	-2.84235 - 2.92184I
b = 0.61243 - 1.61879I		
u = -0.216855 + 1.221530I		
a = 0.741221 - 0.405618I	1.58567 + 3.38986I	-3.26125 - 8.75376I
b = -0.661072 + 0.460812I		
u = -0.216855 + 1.221530I		
a = 0.660981 + 1.010040I	1.58567 + 3.38986I	-3.26125 - 8.75376I
b = 0.913612 + 0.021844I		
u = -0.216855 - 1.221530I		
a = 0.741221 + 0.405618I	1.58567 - 3.38986I	-3.26125 + 8.75376I
b = -0.661072 - 0.460812I		
u = -0.216855 - 1.221530I		
a = 0.660981 - 1.010040I	1.58567 - 3.38986I	-3.26125 + 8.75376I
b = 0.913612 - 0.021844I		
u = -0.699136		
a = 0.498930	-2.08475	-3.31340
b = -0.445090		
u = -0.699136		
a = 1.87307	-2.08475	-3.31340
b = 0.972659		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.061637 + 0.608365I		
a = 0.934694 + 0.293027I	1.61379 + 2.57496I	-1.10179 - 1.01110I
b = 0.986562 + 0.556921I		
u = 0.061637 + 0.608365I		
a = 0.94855 - 1.35297I	1.61379 + 2.57496I	-1.10179 - 1.01110I
b = -0.329324 + 1.042070I		
u = 0.061637 - 0.608365I		
a = 0.934694 - 0.293027I	1.61379 - 2.57496I	-1.10179 + 1.01110I
b = 0.986562 - 0.556921I		
u = 0.061637 - 0.608365I		
a = 0.94855 + 1.35297I	1.61379 - 2.57496I	-1.10179 + 1.01110I
b = -0.329324 - 1.042070I		
u = 0.09920 + 1.46553I		
a = -0.395823 - 0.646191I	6.22877 - 5.97807I	-2.99155 + 7.20850I
b = -0.609648 + 0.043969I		
u = 0.09920 + 1.46553I		
a = -0.26994 + 2.77190I	6.22877 - 5.97807I	-2.99155 + 7.20850I
b = -0.31360 - 2.40695I		
u = 0.09920 - 1.46553I		
a = -0.395823 + 0.646191I	6.22877 + 5.97807I	-2.99155 - 7.20850I
b = -0.609648 - 0.043969I		
u = 0.09920 - 1.46553I		
a = -0.26994 - 2.77190I	6.22877 + 5.97807I	-2.99155 - 7.20850I
b = -0.31360 + 2.40695I		
u = -0.01760 + 1.52899I		
a = -1.250130 - 0.500701I	8.69622 + 2.65996I	1.50438 - 2.01476I
b = 2.00715 + 0.63605I		
u = -0.01760 + 1.52899I		
a = 0.23286 - 2.06811I	8.69622 + 2.65996I	1.50438 - 2.01476I
b = -0.18397 + 1.61289I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.01760 - 1.52899I		
a = -1.250130 + 0.500701I	8.69622 - 2.65996I	1.50438 + 2.01476I
b = 2.00715 - 0.63605I		
u = -0.01760 - 1.52899I		
a = 0.23286 + 2.06811I	8.69622 - 2.65996I	1.50438 + 2.01476I
b = -0.18397 - 1.61289I		
u = 0.367791 + 0.287869I		
a = -1.078570 + 0.747772I	0.39798 - 4.38767I	-9.5578 + 11.0682I
b = -0.34613 - 1.55473I		
u = 0.367791 + 0.287869I		
a = -1.52156 - 2.49296I	0.39798 - 4.38767I	-9.5578 + 11.0682I
b = -0.006820 - 0.312135I		
u = 0.367791 - 0.287869I		
a = -1.078570 - 0.747772I	0.39798 + 4.38767I	-9.5578 - 11.0682I
b = -0.34613 + 1.55473I		
u = 0.367791 - 0.287869I		
a = -1.52156 + 2.49296I	0.39798 + 4.38767I	-9.5578 - 11.0682I
b = -0.006820 + 0.312135I		
u = 0.27238 + 1.54795I		
a = -0.97464 + 1.65279I	14.4273 - 6.4879I	-0.59296 + 3.62205I
b = -0.05742 - 2.01595I		
u = 0.27238 + 1.54795I		
a = 0.45074 - 1.92343I	14.4273 - 6.4879I	-0.59296 + 3.62205I
b = 0.99248 + 1.70658I		
u = 0.27238 - 1.54795I		
a = -0.97464 - 1.65279I	14.4273 + 6.4879I	-0.59296 - 3.62205I
b = -0.05742 + 2.01595I		
u = 0.27238 - 1.54795I		
a = 0.45074 + 1.92343I	14.4273 + 6.4879I	-0.59296 - 3.62205I
b = 0.99248 - 1.70658I		

III.
$$I_3^u = \langle -u^6 - 2u^5 - 5u^4 - 6u^3 - 6u^2 + b - 4u - 1, \ u^8 + 2u^7 + \dots + a - 1, \ u^9 + 2u^8 + \dots + 2u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{8} - 2u^{7} - 7u^{6} - 10u^{5} - 15u^{4} - 14u^{3} - 9u^{2} - 5u + 1 \\ u^{6} + 2u^{5} + 5u^{4} + 6u^{3} + 6u^{2} + 4u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{8} - 2u^{7} - 6u^{6} - 8u^{5} - 10u^{4} - 8u^{3} - 3u^{2} - u + 2 \\ u^{6} + 2u^{5} + 5u^{4} + 6u^{3} + 6u^{2} + 4u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{7} - 2u^{6} - 6u^{5} - 8u^{4} - 10u^{3} - 9u^{2} - 4u - 3 \\ -u^{8} - 2u^{7} - 6u^{6} - 8u^{5} - 11u^{4} - 9u^{3} - 6u^{2} - 3u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{8} - 2u^{7} - 7u^{6} - 9u^{5} - 14u^{4} - 11u^{3} - 7u^{2} - 3u + 2 \\ u^{7} + 2u^{6} + 6u^{5} + 8u^{4} + 10u^{3} + 8u^{2} + 4u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{8} - 2u^{7} - 6u^{6} - 10u^{5} - 13u^{4} - 16u^{3} - 11u^{2} - 9u - 3 \\ -u^{7} - u^{6} - 4u^{5} - 3u^{4} - 4u^{3} - 2u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^8 4u^6 13u^5 32u^4 38u^3 40u^2 24u 8u^4 40u^2 -$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^9 + 3u^8 + 9u^7 + 14u^6 + 18u^5 + 18u^4 + 13u^3 + 8u^2 + 4u + 1$
c_2	$u^9 + 12u^8 + \dots + 401u + 89$
c_4, c_9	$u^9 - u^8 - u^7 + 2u^6 + 2u^5 - 2u^4 - u^3 + 2u^2 - 1$
c_5, c_8	$u^9 - 2u^7 - u^6 + 2u^5 + 2u^4 - 2u^3 - u^2 + u + 1$
c_{6}, c_{7}	$u^9 + 2u^8 + 7u^7 + 10u^6 + 16u^5 + 16u^4 + 13u^3 + 9u^2 + 2u + 1$
c_{10}, c_{12}	$u^9 + 2u^8 + 3u^7 + u^6 - 18u^5 - 20u^4 - 4u^3 - 11u^2 - 1$
c_{11}	$u^9 - 2u^8 + 7u^7 - 10u^6 + 16u^5 - 16u^4 + 13u^3 - 9u^2 + 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^9 + 9y^8 + 33y^7 + 46y^6 + 14y^5 - 14y^4 - 3y^3 + 4y^2 - 1$
c_2	$y^9 - 6y^8 + \dots + 8789y - 7921$
c_4, c_9	$y^9 - 3y^8 + 9y^7 - 14y^6 + 18y^5 - 18y^4 + 13y^3 - 8y^2 + 4y - 1$
c_5, c_8	$y^9 - 4y^8 + 8y^7 - 13y^6 + 18y^5 - 18y^4 + 14y^3 - 9y^2 + 3y - 1$
c_6, c_7, c_{11}	$y^9 + 10y^8 + 41y^7 + 86y^6 + 86y^5 + 4y^4 - 75y^3 - 61y^2 - 14y - 1$
c_{10}, c_{12}	$y^9 + 2y^8 - 31y^7 - 37y^6 + 384y^5 - 230y^4 - 422y^3 - 161y^2 - 22y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.942156		
a = 0.835924	-4.78668	-6.85480
b = 0.693833		
u = 0.025437 + 1.219490I		
a = -0.848257 + 0.499627I	3.87432 - 3.77454I	-1.17699 + 5.61151I
b = -0.174357 - 0.757557I		
u = 0.025437 - 1.219490I		
a = -0.848257 - 0.499627I	3.87432 + 3.77454I	-1.17699 - 5.61151I
b = -0.174357 + 0.757557I		
u = -0.465053 + 1.257920I		
a = 0.128314 + 0.500319I	-0.89563 + 5.00672I	-5.11040 - 6.89072I
b = 0.628101 + 0.278164I		
u = -0.465053 - 1.257920I		
a = 0.128314 - 0.500319I	-0.89563 - 5.00672I	-5.11040 + 6.89072I
b = 0.628101 - 0.278164I		
u = -0.05596 + 1.56008I		
a = -0.27494 - 1.81410I	8.14041 + 4.21823I	-1.16365 - 10.14642I
b = 0.58625 + 1.89814I		
u = -0.05596 - 1.56008I		
a = -0.27494 + 1.81410I	8.14041 - 4.21823I	-1.16365 + 10.14642I
b = 0.58625 - 1.89814I		
u = -0.033345 + 0.402052I		
a = 2.07693 - 1.08799I	1.14384 + 3.68908I	-2.12153 - 6.55211I
b = 0.113094 + 1.126000I		
u = -0.033345 - 0.402052I		
a = 2.07693 + 1.08799I	1.14384 - 3.68908I	-2.12153 + 6.55211I
b = 0.113094 - 1.126000I		

IV.
$$I_4^u = \langle b+1, \ 2u^2a + a^2 - 2au + 3a + u - 1, \ u^3 - u^2 + 2u - 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a - 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{2}a - au + 2a + u + 1 \\ u^{2}a - au + u^{2} + a + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + u - 2 \\ -au - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a - 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -5u^2 16$

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^{6}$
c_2	u^6
$c_4, c_5, c_8 \ c_9$	$u^6 + u^5 - 3u^4 - 3u^3 + 3u^2 + u - 1$
c_{6}, c_{7}	$(u^3 - u^2 + 2u - 1)^2$
c_{10}, c_{12}	$(u^3 - u^2 + 1)^2$
c_{11}	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y-1)^6$
c_2	y^6
c_4, c_5, c_8 c_9	$y^6 - 7y^5 + 21y^4 - 31y^3 + 21y^2 - 7y + 1$
c_6, c_7, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c_{10}, c_{12}	$(y^3 - y^2 + 2y - 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = 1.153780 + 0.265134I	1.37919 - 2.82812I	-7.68821 - 2.81140I
b = -1.00000		
u = 0.215080 + 1.307140I		
a = -0.398899 + 1.224590I	1.37919 - 2.82812I	-7.68821 - 2.81140I
b = -1.00000		
u = 0.215080 - 1.307140I		
a = 1.153780 - 0.265134I	1.37919 + 2.82812I	-7.68821 + 2.81140I
b = -1.00000		
u = 0.215080 - 1.307140I		
a = -0.398899 - 1.224590I	1.37919 + 2.82812I	-7.68821 + 2.81140I
b = -1.00000		
u = 0.569840		
a = 0.161059	-2.75839	-17.6240
b = -1.00000		
u = 0.569840		
a = -2.67081	-2.75839	-17.6240
b = -1.00000		

V.
$$I_1^v = \langle a, b+1, v+1 \rangle$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_4 \ c_5, c_8, c_9$	u+1
$c_2, c_6, c_7 \\ c_{10}, c_{11}, c_{12}$	u

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_8, c_9	y-1
c_2, c_6, c_7 c_{10}, c_{11}, c_{12}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-1.64493	-6.00000
b = -1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^{6}(u+1)$ $\cdot (u^{9} + 3u^{8} + 9u^{7} + 14u^{6} + 18u^{5} + 18u^{4} + 13u^{3} + 8u^{2} + 4u + 1)$ $\cdot (u^{21} + 2u^{20} + \dots + 8u + 1)(u^{30} - 7u^{29} + \dots - 676u - 329)$
c_2	$u^{7}(u^{9} + 12u^{8} + \dots + 401u + 89)(u^{15} - 7u^{14} + \dots + 28u - 8)^{2} $ $\cdot (u^{21} + 15u^{20} + \dots + 63u + 9)$
c_4, c_9	$(u+1)(u^{6} + u^{5} - 3u^{4} - 3u^{3} + 3u^{2} + u - 1)$ $\cdot (u^{9} - u^{8} - u^{7} + 2u^{6} + 2u^{5} - 2u^{4} - u^{3} + 2u^{2} - 1)$ $\cdot (u^{21} - 2u^{20} + \dots - 11u^{2} + 1)(u^{30} - 14u^{28} + \dots - 641u + 151)$
c_5, c_8	$(u+1)(u^{6} + u^{5} - 3u^{4} - 3u^{3} + 3u^{2} + u - 1)$ $\cdot (u^{9} - 2u^{7} + \dots + u + 1)(u^{21} - u^{20} + \dots - u - 1)$ $\cdot (u^{30} + 9u^{26} + \dots - u - 1)$
c_6, c_7	$u(u^{3} - u^{2} + 2u - 1)^{2}$ $\cdot (u^{9} + 2u^{8} + 7u^{7} + 10u^{6} + 16u^{5} + 16u^{4} + 13u^{3} + 9u^{2} + 2u + 1)$ $\cdot ((u^{15} - 2u^{14} + \dots - 4u + 1)^{2})(u^{21} + 5u^{20} + \dots - 72u - 9)$
c_{10}, c_{12}	$u(u^{3} - u^{2} + 1)^{2}(u^{9} + 2u^{8} + 3u^{7} + u^{6} - 18u^{5} - 20u^{4} - 4u^{3} - 11u^{2} - 1)$ $\cdot ((u^{15} + 2u^{14} + \dots - 16u + 5)^{2})(u^{21} - 5u^{20} + \dots - 2988u - 1413)$
c_{11}	$ u(u^{3} + u^{2} + 2u + 1)^{2} $ $ \cdot (u^{9} - 2u^{8} + 7u^{7} - 10u^{6} + 16u^{5} - 16u^{4} + 13u^{3} - 9u^{2} + 2u - 1) $ $ \cdot ((u^{15} - 2u^{14} + \dots - 4u + 1)^{2})(u^{21} + 5u^{20} + \dots - 72u - 9) $

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y-1)^{7}(y^{9} + 9y^{8} + 33y^{7} + 46y^{6} + 14y^{5} - 14y^{4} - 3y^{3} + 4y^{2} - 1)$ $\cdot (y^{21} + 30y^{20} + \dots + 6y - 1)(y^{30} + 33y^{29} + \dots + 1028130y + 108241)$
c_2	$y^{7}(y^{9} - 6y^{8} + \dots + 8789y - 7921)(y^{15} - 7y^{14} + \dots + 528y - 64)^{2}$ $\cdot (y^{21} - 13y^{20} + \dots - 1377y - 81)$
c_4, c_9	$(y-1)(y^{6}-7y^{5}+21y^{4}-31y^{3}+21y^{2}-7y+1)$ $\cdot (y^{9}-3y^{8}+9y^{7}-14y^{6}+18y^{5}-18y^{4}+13y^{3}-8y^{2}+4y-1)$ $\cdot (y^{21}-22y^{20}+\cdots+22y-1)(y^{30}-28y^{29}+\cdots+125773y+22801)$
c_5, c_8	$(y-1)(y^{6}-7y^{5}+21y^{4}-31y^{3}+21y^{2}-7y+1)$ $\cdot (y^{9}-4y^{8}+8y^{7}-13y^{6}+18y^{5}-18y^{4}+14y^{3}-9y^{2}+3y-1)$ $\cdot (y^{21}-11y^{20}+\cdots+21y-1)(y^{30}+18y^{28}+\cdots-35y+1)$
c_6, c_7, c_{11}	$y(y^{3} + 3y^{2} + 2y - 1)^{2}$ $\cdot (y^{9} + 10y^{8} + 41y^{7} + 86y^{6} + 86y^{5} + 4y^{4} - 75y^{3} - 61y^{2} - 14y - 1)$ $\cdot ((y^{15} + 16y^{14} + \dots - 4y - 1)^{2})(y^{21} + 23y^{20} + \dots + 324y - 81)$
c_{10}, c_{12}	$y(y^{3} - y^{2} + 2y - 1)^{2}$ $\cdot (y^{9} + 2y^{8} - 31y^{7} - 37y^{6} + 384y^{5} - 230y^{4} - 422y^{3} - 161y^{2} - 22y - 1)$ $\cdot (y^{15} + 16y^{14} + \dots - 344y - 25)^{2}$ $\cdot (y^{21} + 19y^{20} + \dots - 3839724y - 1996569)$