

## TP #3-4 Introducción al diseño de circuitos lógicos combinacionales y al álgebra de Boole

Institución: Instituto Superior Politécnico de Córdoba

Módulo: Electrónica Microcontrolada.

Autor: Mayrene Colmenares.

Tutor: Gonzalo Vera.

## TRABAJO PRÁCTICO #3-4

## **Ejercicios a resolver:**

**1.- Implementación de una función lógica:** Diseñar un circuito combinacional que implemente la función lógica F(A, B, C) = A'B + AC.



## Tabla de la verdad:

| Α | В | С | A' | A'B | AC | F(A, B,<br>C) |
|---|---|---|----|-----|----|---------------|
| 0 | 0 | 0 | 1  | 0   | 0  | 0             |
| 0 | 0 | 1 | 1  | 0   | 0  | 0             |
| 0 | 1 | 0 | 1  | 1   | 0  | 1             |
| 0 | 1 | 1 | 1  | 1   | 0  | 1             |
| 1 | 0 | 0 | 0  | 0   | 0  | 0             |
| 1 | 0 | 1 | 0  | 0   | 1  | 1             |
| 1 | 1 | 0 | 0  | 0   | 0  | 0             |
| 1 | 1 | 1 | 0  | 0   | 1  | 1             |

2.- Simplificación de una expresión lógica: Simplificar la expresión lógica F(A, B, C, D) = ABC + AB'D + ACD' utilizando álgebra de Boole y mapas de Karnaugh.

**Distributiva:** Primero, aplicamos la ley distributiva para expandir la expresión. Esto nos da:

$$F(A,B,C,D)=AB(C+D')+ACD'$$

**Absorción:** Luego, aplicamos la ley de absorción, que dice que A + AB = A. Esto simplifica la expresión a:

Por lo tanto, la expresión lógica simplificada es F(A, B, C, D) = AB + ACD'.

Los mapas de Karnaugh quedarían de la siguiente manera:

| Α | В | С | D | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 |

| AB\CD | 0 | 1 | 11 | 10 |
|-------|---|---|----|----|
| 0     | 0 | 0 | 0  | 1  |
| 1     | 0 | 1 | 0  | 1  |
| 11    | 1 | 1 | 0  | 1  |
| 10    | 0 | 1 | 0  | 1  |

**3.- Multiplexor:** Diseñar un circuito combinacional que implemente un multiplexor 4:1 utilizando compuertas lógicas.



**4.- Comparador de números de 2 bits:** Diseñar un circuito combinacional que compare dos números de 2 bits A y B, y produzca una salida de 1 si A > B, 0 si A = B, y -1 si A < B.

Se avanzará con la salida de 1 si A>B:

| 0 | <b>A1</b> | X | В0 | B1 | Υ | S |
|---|-----------|---|----|----|---|---|
| 0 | 0         | 0 | 0  | 0  | 0 | 0 |
| 0 | 1         | 1 | 0  | 0  | 0 | 1 |
| 1 | 0         | 2 | 0  | 0  | 0 | 1 |
| 1 | 1         | 3 | 0  | 0  | 0 | 1 |
| 0 | 0         | 0 | 0  | 1  | 1 | 0 |
| 0 | 1         | 1 | 0  | 1  | 1 | 0 |
| 1 | 0         | 2 | 0  | 1  | 1 | 1 |
| 1 | 1         | 3 | 0  | 1  | 1 | 1 |
| 0 | 0         | 0 | 1  | 0  | 2 | 0 |
| 0 | 1         | 1 | 1  | 0  | 2 | 0 |
| 1 | 0         | 2 | 1  | 0  | 2 | 0 |
| 1 | 1         | 3 | 1  | 0  | 2 | 1 |
| 0 | 0         | 0 | 1  | 1  | 3 | 0 |
| 0 | 1         | 1 | 1  | 1  | 3 | 0 |
| 1 | 0         | 2 | 1  | 1  | 3 | 0 |
| 1 | 1         | 3 | 1  | 1  | 3 | 0 |

|    | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 |    |    |    |    |
| 01 | 1  |    |    |    |
| 11 | 1  | 1  |    | 1  |
| 10 | 1  | 1  |    |    |



**5. Codificador:** Diseñar un circuito combinacional que implemente un codificador 4:2 utilizando compuertas lógicas:

| Α | <b>A1</b> | A0 | Y3 | Y2 | Y1 | Y0 |
|---|-----------|----|----|----|----|----|
| 0 | 0         | 0  | 0  | 0  | 0  | 1  |
| 1 | 0         | 1  | 0  | 0  | 1  | 0  |
| 2 | 1         | 0  | 0  | 1  | 0  | 0  |
| 3 | 1         | 1  | 1  | 0  | 0  | 0  |

