O PyTorch Tutorial

Outline

- Introduction
- Training a Model in Pytorch
 - 1. Create a Model
 - 2. Load Data
 - 3. Iterate Over Data and Train Model
- Test the Trained Model in PyTorch

Introduction

What is PyTorch?

- It's a Python-based scientific computing package targeted at two sets of audiences ¹:
- A replacement for NumPy to use the power of GPUs
- A deep learning research platform that provides maximum flexibility and speed

What is Deep Learning?

Figure 1.1 Deep learning exchanges the need to handcraft features for an increase in data and computational requirements.

An overview of how PyTorch supports deep learning projects

Figure 1.2 Basic, high-level structure of a PyTorch project, with data loading, training, and deployment to production

What is Tensor in PyTorch?

- A PyTorch Tensor is basically the same as a numpy array: it does not know anything about deep learning or computational graphs or gradients, and is just a generic n-dimensional array to be used for arbitrary numeric computation ¹.
- The biggest difference between a numpy array and a PyTorch Tensor is that a PyTorch Tensor can run on either CPU or GPU. To run operations on the GPU, just cast the Tensor to a cuda datatype
 ¹.

What is Tensor in PyTorch?

Figure 3.2 Tensors are the building blocks for representing data in PyTorch.

Training a Model in PyTorch

Load Required Classes and Modules

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

Data Preprocessing: normalization

- In general, in order to handle noise in data, data can be transformed globally to change the scale or range of data (normalize).¹
- In Convolutional Neural Network if we don't scale (normalize) the values, the range of different features (e.g. image channels) will be different.²
- Since the values are multiplied by learning rate, the features that have larger scale might be overcompensated and features with smaller scale might be under-compensated.²
- 1. https://www.coursera.org/lecture/data-genes-medicine/data-normalization-jGN7k
- 2. https://stats.stackexchange.com/questions/185853/why-do-we-need-to-normalize-the-images-before-we-put-them-into-cnn

More Data Preprocessing

- In addition to the mentioned data preprocessing, there are some transformation that are used mainly for data augmentation:
 - transforms.RandomHorizontalFlip()
 - transforms.RandomResizedCrop(224)
- Data augmentation is a strategy that enables practitioners to significantly increase the diversity of data available for training models, without actually collecting new data.¹

Mini Batch and Epoch

- Batch: Number of images which is propagated to a model iteration.
- Epoch: An epoch refers to one cycle through the full training dataset.¹

```
batch_size = 4
num_epochs = 30
```

- Example:
 - Number of Images = 1024
 - ❖ Batch Size = 4
 - Number of Iterations in Every Epoch: 256
- 1. https://deepai.org/machine-learning-glossary-and-terms/epoch

Load Data and Set Device

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

Sample Network

Here is an example of a PyTorch model

```
class Sample_Network(nn.Module):
    def init (self):
        super(Sample_Network, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
                                                Define the layers of model (1)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
                                                     Forward function is called during
        x = F.relu(self.fc1(x))
                                                     forward pass (2)
        x = F.relu(self.fc2(x))
        x = self_fc3(x)
        return x
```

Code Reference:

https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/neural_networks

Visualization of Sample Network

Layers which have been declared in model initialization (1) conv1 pool conv2 fc1 fc2 fc3

Before Start Training

- For starting the training process we need to
 - Initialize an instance from the model which we have already defined
 - Specify the criterion (loss) for evaluation of model
 - 3. Specify the setting of optimizer
 - Specify the way learning rate changes during training

```
model = Sample_Network()

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
```

Save the Best Model Parameter

- We need to train the network for the specified number of epochs.
- Before training process, we save the initial weight as the best model weight and set the best accuracy as zero.
- In every epoch and after finishing the training process, we use the trained model to select the model which has best performance on the validation set.

```
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
```

Iterate Over Train and Validation Sets in every Epoch

- In every epoch we either train the model or just use it for evaluation.
- For training, we need to set the model to **train** mode and for test we need to set to **eval** mode.

```
for phase in ['train', 'val']:
    if phase == 'train':
        model.train()
    else:
        model.eval()
```

Iterate Over every Minibatch

- We use the data loader which we have created in previous slides to go thorough the data.
- What we get from data loader are tensors for images (inputs) and labels and we need to transfer them to the device which we have created before.
- Note: Phase here is 'train' and 'test'

```
for inputs, labels in dataloaders[phase]:
        inputs = inputs.to(device)
        labels = labels.to(device)
```

Prediction and Back Propagation

```
Zero the gradient before start of a new mini batch
optimizer.zero_grad()
                                    Apply Forward Function and get logit
outputs = model(inputs)
                                             Get the highest logic as prediction
_, preds = torch.max(outputs, 1)
                                          — Compute the loss based on predicted value
loss = criterion(outputs, labels)
if phase == 'train':
         loss.backward()
                                              Back propagate if we are in train phase
        optimizer.step()
                                                          Sum the loss of batch with
running_loss += loss.item() * inputs.size(0)
                                                                all loss values
running_corrects += torch.sum(preds == labels.data)
                                                          Sum correctly predicted values
                                                            in batch with all loss values
```

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html21

Finish Iterating over Data in One Epoch

 When iteration over all data finished then we need to compute the loss and save the best model.

```
Scheduler setting (e.g. learning rate) needs to be updates
                                     Loss and accuracy needs to be computed at the
                                     end of epoch
if phase == 'train':
    scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
if phase == 'val' and epoch_acc > best_acc:
    best_acc = epoch_acc
    best_model_wts = copy.deepcopy(model.state_dict())
                                                                    Save the best model
    torch.save(best_model_wts , 'best_model_weight.pth')
```

Code Reference: https://pytorch.org/tutorials/beginner/transfer-learning-tutorial.html 22

Test on the Best Model Weight

Load Data for Test

Transform the test images

Load the data and get the dataset size

Test the Loaded Data

```
Set the model in evaluation mode
model.eval()
phase = 'test'
for inputs, labels in dataloaders[phase]:
        inputs = inputs.to(device)
        labels = labels.to(device)
                                                                  Iterate over test
                                                                  data and compute
        outputs = model(inputs)
                                                                  loss and correctly
        _, preds = torch.max(outputs, 1)
                                                                  predicted values
        loss = criterion(outputs, labels)
        running_loss += loss.item() * inputs.size(0)
        running_corrects += torch.sum(preds == labels.data)
test_loss = running_loss / dataset_sizes[phase]
                                                                   Compute the loss and
test_acc = running_corrects.double() / dataset_sizes[phase]
                                                                   Accuracy over all data
```