Lista 9 – matlab

1. Dokonano pomiaru położenia w funkcji czasu (jednocześnie mierzono czas i odczytywano położenie). Otrzymane dane zebrano w tabeli:

czas (s)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
położenie (cm)	31	27	24	19	18.0	15	12.0	9	6	3	0.0

Pomiar czasu odbywał się z dokładnością 0.1 s, a pomiar położenia z dokładnością 1 cm. Narysuj wykres zależności położenia od czasu. Nanieś słupki błędów. Jakim ruchem poruszał się badany obiekt? Przybliż wykres funkcją jaka wg. Ciebie nadaje się do tego najbardziej i znajdź jej równanie (wyświetl na wykresie). Jaki parametr ruchu można w ten sposób znaleźć? Znajdź jego wartość. Wykres powinien wyglądać podobnie do załączonego poniżej.

Przydatne funkcje:

polyfit (x, y, n): dopasowanie wielomianu n-tego stopnia do danych w wektorach x i y; polyval (wsp, x)]: obliczenie wartości wielomianu o współczynnikach w tablicy wsp, dla argumentów w tablicy x;

errorbar(): rysuje na wykresie punkty wraz z zaznaczonymi błędami;

num2str (A, k): zamienia tablice A na tekst uwzględniając k liczb.

Rysunek 1: