Convergence des suites et séries

le 21 septembre 2016

1 Critères de convergence et suites récurrentes

Exercice 1 (Encore la même suite)

On reprend la fonction définie par $\forall x \in \mathbb{R}, \ f(x) = \frac{x^2+1}{2}$ la suite (u_n) définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n),$

- **1.** Montrer que $\forall x \in [0; 1]$, on a $f(x) \in [0; 1]$.
- **2.** En déduire que $\forall n \in \mathbb{N}, \ 0 \leqslant u_n \leqslant 1$.
- **3.** Montrer que $\forall x \in [0;1]$, on a $f(x) \ge x$. En déduire les variations de (u_n) .
- **4.** En déduire que la suite (u_n) converge.
- 5. En résolvant l'équation du point fixe pour f, retrouver la limite de (u_n) .

Exercice 2 (Deux suites adjacentes)

On définit une suite (u_n) par : $u_1 = 1$ et $\forall n \ge 1$, $u_{n+1} = u_n + \frac{1}{(n+1)^2}$

1. Montrer que la suite (u_n) est croissante.

On définit la suite (v_n) par : $\forall n \geq 1, \ v_n = u_n + \frac{1}{n}$

- **2.** Montrer que la suite (v_n) est décroissante.
- **3.** Montrer que l'on a $\lim (v_n u_n) = 0$.
- **4.** Conclure sur les suites (u_n) et (v_n) .
- 5. En déduire que la série $\sum_{k\geqslant 1}\frac{1}{k^2}$ converge

Exercice 3 (Application du théorème des accroissements finis)

Soit $f \text{ tq} : \forall x > 0, \ f(x) = x - \ln(x) + 1, \text{ et } (u_n) \text{ tq } u_0 = 1 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$

- 1. Résoudre l'équation du point fixe pour f.
- 2. Étude de (u_n)
 - a) Montrer que $\forall x \in [1; e]$ on a $f(x) \in [1; e]$. En déduire que $\forall n \in \mathbb{N}$, on a $1 \leq u_n \leq e$.
 - b) Montrer que $\forall x \in [1; e]$, on a $f(x) \ge x$ et en déduire que le suite (u_n) est croissante.
- 3. Déduire de ce qui précède que la suite (u_n) converge vers e.
- 4. Étude de la vitesse de convergence
 - a) Montrer que $\forall x \in [1; e] \ 0 \leqslant f'(x) \leqslant 1 \frac{1}{e}$.
 - **b)** En appliquant le théorème des accroissements finis, montrer que $\forall x \in [1; e]$ on a $0 \le e f(x) \le \left(1 \frac{1}{e}\right)(e x)$.
 - c) En déduire $\forall n \in \mathbb{N}, |u_n e| \leq \left(1 \frac{1}{e}\right)^n |u_0 e|.$ (Que peut-on dire sur la vitesse de convergence de la suite (u_n) ?)

2 Les relations o et \sim , études de séries

Exercice 4 (Application des croissances comparées)

Trouver la limite des expressions suivantes quand $n \to \infty$.

$$a_n = \frac{\ln(n)}{n}$$

$$b_n = \frac{2^n}{n}$$

$$a_n = \frac{\ln(n)}{n}$$
 $b_n = \frac{2^n}{n}$ $c_n = \frac{\ln(n)n^3}{e^n}$ $d_n = \frac{n2^n}{4^n}$

$$d_n = \frac{n2^n}{4^n}$$

Exercice 5 (Reconnaître le terme prépondérant)

Trouver le terme prépondérant dans les expressions suivantes et en déduire un équivalent.

$$a_n = n + n^2 + \ln(n)$$
 $b_n = n + \frac{n}{2^n} + n\ln(n)$ $c_n = n3^n + n^32^{2n}$ $d_n = 3^n + 2^{n^2}$

Exercice 6 (Utilisation des séries de références)

Étudier la convergence des séries suivantes par comparaison avec une suite en $\frac{1}{n^a}$ ou q^n ,

$$A = \sum \ln(2n+1)2^n$$

$$B = \sum \frac{n^2}{3^n}$$

$$C = \sum \frac{\ln(n)^n}{n\sqrt{n}}$$

$$A = \sum \ln(2n+1)2^n \qquad B = \sum \frac{n^2}{3^n} \qquad C = \sum \frac{\ln(n)^n}{n\sqrt{n}} \qquad D = \sum \frac{\ln(1+n)}{n^2(1+3^{-n})}$$

Exercice 7 (Sommations télescopiques)

1. Calculer les fractions suivantes :

$$\frac{1}{2n-1} - \frac{1}{2n+1}, \quad \frac{1}{n} - \frac{1}{n+2}, \quad \frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}, \quad \frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)}.$$

2. Par sommation télescopique, calculer les sommes partielles et totales des séries :

$$\sum_{n\geqslant 1} \frac{1}{4n^2-1}$$

$$\sum_{n\geqslant 1} \frac{1}{n^2 + 2n}$$

$$\sum_{n \geqslant 1} \frac{1}{4n^2 - 1} \qquad \sum_{n \geqslant 1} \frac{1}{n^2 + 2n} \qquad \sum_{n \geqslant 1} \frac{1}{n(n+1)(n+2)}$$

3. Adapter aux intégrales $I_1 = \int_1^\infty \frac{dt}{4t^2-1}$, $I_2 = \int_1^\infty \frac{dt}{t^2+2t}$,

Exercice 8 (*Utilisation d'une intégrale* (la série de Leibniz $\sum_{n\geqslant 0} \frac{(-1)^n}{n+1}$)

1. Montrer que $\forall n \in \mathbb{N}, \ \frac{(-1)^n}{n+1} = \int_{-1}^0 t^n \, \mathrm{d}t$

2. En déduire que $\forall N \in \mathbb{N}, \ \sum_{n=1}^{N} \frac{(-1)^n}{n+1} = \int_{-1}^{0} \frac{1-t^{N+1}}{1-t} dt$

3. Montrer $\forall N \in \mathbb{N}$, $\left| \int_{-1}^{0} \frac{t^{N+1}}{1-t} dt \right| \leq \int_{-1}^{0} |t|^{N+1} dt$, et en déduire la limite quand $N \to +\infty$.

4. En déduire que la série $\sum_{n>0} \frac{(-1)^n}{n+1}$ converge et que sa somme vaut $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \int_{-1}^0 \frac{\mathrm{d}t}{1-t}$.