電子工程師常用的13個電路基礎公式(收藏備用)

光電夜讀俠 光電讀書 2022-10-13 08:00 發表於湖北

歐姆定律計算

計算電阻電路中電流、電壓、電阻和功率之間的關係。

▶歐姆定律解釋:

歐姆定律解釋了電壓、電流和電阻之間的關係,即通過導體兩點間的電流與這兩點間的電勢 差成正比。

說明兩點間的電壓差、流經該兩點的電流和該電流路徑電阻之間關係的定律。該定律的數學 表達式為V=IR,其中V是電壓差,I是以安培為單位的電流,R是以歐姆為單位的電阻。若電 壓已知,則電阻越大,電流越小。

計算多個串聯或併聯連接的電阻的總阻值

计算总并联电阻

$$R_T = \frac{1}{(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + etc...)}$$

备注: 您可以增加多个串联或并联连接的电阻器。

计算总串联电阻

$$R_T = R_1 + R_2 + R_3 + etc...$$

备注: 您可以增加多个串联或并联连

接的申阻器。

計算多個串聯或併聯連接的電容器的總容值

串联电容公式

$$C_{total} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots}$$

并联电容公式

$$C_{total} = C_1 + C_2 + C_3 + \dots$$

電阻分壓計算

計算電阻分壓器電路的輸出電壓,以實現既定的阻值和電源電壓組合。

什麼是分壓器?

分壓器是一個無源線性電路,能產生一個是其輸入電壓(V1)一部分的輸出電壓(Vout)。分壓 器用於調整信號電平,實現有源器件和放大器偏置,以及用於測量電壓。

歐姆定律解釋了電壓、電流和電阻之間的關係,即通過兩點間導體的電流與這兩點間的電勢 差成正比。

這是一個說明兩點間的電壓差、流經該兩點的電流和該電流路徑電阻之間關係的定律。該定 律的數學表達式為V=IR,其中V是電壓差,I是以安培為單位的電流,R是以歐姆為單位的電 阻。若電壓已知,則電阻越大,電流越小。

電流分流器-電阻計算

計算連接到電流源的多至10個並聯電阻上流過的電流:

電抗計算

計算指定頻率下電感器或電容器的電抗或導納大小。

(1) 感抗/導納

(2) 容抗/導納

RC時間常數計算

計算電阻與電容的積,亦稱RC時間常數。該數值在描述電容通過電阻器進行充電或放電的方 程式中出現,表示在改變施加到電路的電壓後,電容器兩端的電壓達到其最終值約63%所需 的時間。同時該計算器也會計算電容器充電到指定電壓所存儲的總能量。

如何計算時間常數:

時間常數(T)可由電容(C)和負載電阻(R)的值確定。電容器(E)中存儲的能量(E)由兩個輸入確 定,即由電壓(V)和電容(C)決定。

LED串聯電阻器計算器

計算在指定電流水平下通過電壓源驅動一個或多個串聯LED所需的電阻。注意:當為此目的選 擇電阻器時,為避免電阻器溫度過高,請選擇額定功率是下方計算出的功率值的2至10倍之間 的電阻器。

LED Color	Typical Vf Range
Red	1.8 to 2.1
Amber	2 to 2.2
Orange	1.9 to 2.2
Yellow	1.9 to 2.2
Green	2 to 3.1
Blue	3 to 3.7
White	3 to 3.4

dBm轉W換算

"dBm"到"瓦特"的功率转换公式 $P(W) = 1W \times \frac{10^{\frac{P(dBm)}{10}}}{1000} = 10^{\frac{P(dBm) - 30}{10}}$

10

電感換算

picohenry (pH)	nanohenry (nH)	microhenry (μH)	
1	0.001	0.000001	
10	0.01	0.00001	
100	0.1	0.0001	
1000	1	0.001	
10000	10	0.01	
100000	100		
1000000	1000	1	
10000000	10000	10	
10000000	100000	100	

電容器換算表

換算包括pF、nF、μF、F在内的不同量級電容單位之間的電容測量值。

picofarad	nanofarad	micofarad	code	picofarad	nanofarad	micofarad	code
pF	nF	uF		pF	nF	uF	
10	0.01	0.00001	100	4700	4.7	0.0047	472
15	0.015	0.000015	150	5000	5	0.005	502
22	0.022	0.000022	220	5600	5.6	0.0056	562
33	0.033	0.000033	330	6800	6.8	0.0068	682
47	0.047	0.000047	470	10000	10	0.01	103
100	0.1	0.0001	101	15000	15	0.015	153
120	0.12	0.00012	121	22000	22	0.022	223
130	0.13	0.00013	131	33000	33	0.033	333
150	0.15	0.00015	151	47000	47	0.047	473
180	0.18	0.00018	181	68000	68	0.068	683
220	0.22	0.00022	221	10000	100	0.1	104
330	0.33	0.00033	331	150000	150	0.15	154
470	0.47	0.00047	471	200000	200	0.2	254
560	0.56	0.00056	561	220000	220	0.22	224
680	0.68	0.0068	681	330000	330	0.33	334
750	0.75	0.00075	751	470000	470	0.47	474

电子丁程师常用的13个电路基础公式(收藏备用)

820	0.82	0.00082	821	680000	680	0.68	684
1000	1	0.001	102	1000000	1000	1.0	105
1500	1.5	0.0015	152	1500000	1500	1.5	155
2000	2	0.002	202	2000000	2000	2.0	205
2200	2.2	0.0022	222	2200000	2200	2.2	225
3300	3.3	0.0033	332	3300000	3300	3.3	335

12

電池續航時間

電池續航時間計算公式:

電池續航時間=電池容量(mAh)/負載電流(mA)

根據電池的標稱容量和負載所消耗的平均電流來估算電池續航時間。電池容量通常以安培小 時(Ah)或毫安小時(mAh)為計量單位,儘管偶爾會使用瓦特小時(Wh)。

將瓦特小時除以電池的標稱電壓(V),就可以轉換為安培小時,公式如下:

Ah=Wh/V

安培小時(亦稱安時),是一種電荷度量單位,等於一段時間內的電流。一安時等於一個小 時的一安培連接電流。毫安小時或毫安時是一千分之一安培小時,因此1000mAh電池等於 1Ah電池。上述結果只是估算值,實際結果會受電池狀態、使用年限、溫度、放電速度和其

它因素的影響而發生變化。如果所用電池是全新的高質量電池,在室溫下工作且工作時間在1 小時到1年之間,則這種預估結果最貼近實際結果。

13

PCB印製線實度計算

使用IPC-2221標準提供的公式計算銅印刷電路板導體或承載給定電流所需"印製線"的寬度. 同時保持印製線的溫升低於規定的極限值。此外,如果印製線長度已知,還會計算總電阻、 電壓降和印製線電阻引起的功率損耗。由此求得的結果是估算值,實際結果會隨應用條件而 發生變化。我們還應注意,與電路板外表面上的印製線相比,電路板內層上的印製線所需的 寬度要大得多,請使用適合你情況的結果。

如何計算印製線實度?

首先,計算面積:

面積[mils^2]=(電流[Amps]/(k*(溫升[°C])^b))^(1/c)

然後,計算寬度:

寬度[mils]=面積[mils^2]/(厚度[oz]*1.378[mils/oz])

用於IPC-2221內層時: k=0.024、b=0.44、c=0.725

用於IPC-2221外層時: k=0.048、b=0.44、c=0.725

其中k、b和c是由對IPC-2221曲線進行曲線擬合得出的常數。

公值: 厚度 (1oz) 、環境溫度 (25℃) 、溫升 (10℃) 。

喜歡此內容的人還喜歡

電容的四大作用

信號完整性學習之路

電氣控制的一般功能原理

電氣工程及其自動化學習

22 種電子電路項目:電路圖+工作原理

電路一點誦

