العلامة		/ • En . • • • • • • • • • • • • • • • • • •
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		الجزء الأول (13 نقطة)
0,5		<u>التمرين الأول</u> : (06 نقاط)
0,3	0,5	النشاط الإشعاعي التلقائي: هو تحول طبيعي تلقائي وعشوائي في الأنوية غير المستقرة لتعطي $-1-I$
		eta أنوية أكثر استقرار بإصدار جسيمات eta .
		2- أنماط التحولات الموضحة في المعادلة:
01	0,5	$\binom{4}{2}He$)، وهو عبارة عن أنوية الهيليوم (α)، وهو
	0,5	$\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$ ، وهو عبارة عن إلكترونات (β^-)
	0,25	$^{238}_{92}U \rightarrow ^{206}_{82}\mathrm{Pd} + x_2^4He + y_{-1}^0e$ (*) الدينا $y \in X$ من $x \in X$ تحديد قيمتي كل من $x \in X$
0,5	0,25	238 = 206 + 4x ، $92 = 82 + 2x - y$ حسب قانونا الإنحفاظ فإن
		y = 6 , $x = 8$
		$N = \frac{A}{\lambda} = \frac{t_{1/2}}{\ln 2}.A$ ومنه $A = \lambda.N$ العينة: لدينا $A = \lambda.N$
0,5	0,25	$N = \frac{4.47 \times 10^9 \times 365 \times 24 \times 3600}{\ln 2} \times 2.35 \times 10^5 = 4.78 \times 10^{22} noyeaux$
	0,25	
	0,25	$\frac{N}{N_A} = \frac{m}{M}$ نسبة اليورانيوم (238) في العينة الصخرية: لدينا كتلة اليورانيوم في العينة -5
1,25		$p = \frac{m}{m_0} \times 100 = \frac{18.9}{47000} \times 100 = 0.04\%$ ومنه $m = \frac{N.M}{N_A} = \frac{4.78 \times 10^{22} \times 238.05}{6.02 \times 10^{23}} = 18.9 \; g$
	0,75	
	0,25	$p{>}0,01\%$ نعم المنجم مازال قابل للاستغلال لأن
0,5	0,25	$E_{lib} = \left E_l(initial) - E_l(final) ight $ الطاقة المحررة من نواة اليورانيوم: لدينا -1 -1
0,5	0,25	$E = 7.590 \times 235 - (8.290 \times 140 + 8.593 \times 94) = 184.7 Mev$ نجد:
	0,25	$E_T = P \times t \times 100/85$ الطاقة المستهلكة الكلية خلال شهر: لدينا (100/85) الطاقة المستهلكة الكلية ال
	0,5	$E_{T} = 25.10^{6}.30.24.3600 \times 100 / 85 = 7.62 \times 10^{13} \ jouls = 4.76 \times 10^{26} \ Mev$ ومنه
		ب) حساب مقدار الكتلة m :
1,75	0,5	$N = \frac{4.76 \times 10^{26}}{184.7} = 2.57 \times 10^{24}$ ومنه $N = \frac{E_T}{E_{lib}}$ عدد الأنوية المستهلكة خلال شهر: $N = \frac{184.7}{184.7}$
	0,5	$m = \frac{N.M}{N_A} = \frac{2.57 \times 10^{24} \times 235.04}{6.02.10^{23}} = 1003 \ g$ ومنه الكتلة المستهلكة

العلامة		/ 1 Ext - 1 1 Not 11-
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
01	0,25	$\stackrel{E}{\longrightarrow}$ $\stackrel{u_R}{\longleftarrow}$ (07 نقاط) (07 نقاط)
	0,25	
	0,25	1 توضيح الجهة الاصطلاحية للتيار والتوترات: K 1 توضيح الجهة الاصطلاحية للتيار والتوترات:
	0,25	
	0,25	المعادلة التفاضلية للشحنة q :
0,75	0,25	$i=rac{dq}{dt}$ حيث $R.i+rac{1}{C}q=E$ ومنه $u_R+u_C=E$
	0,25	$\frac{dq}{dt} + \frac{1}{R.C} q - \frac{E}{R} = 0$ نجد
	0,25	بالمطابقة نجد خبارة b ، A : نشتق الحل نجد عبارة $\frac{dq}{dt} = Abe^{-bt}$
0.75	0,25	$Abe^{-bt} + \frac{A}{R.C} - \frac{A}{R.C}e^{-bt} = \frac{E}{R}$
	0,25	$\left(\begin{array}{cccc} b=rac{1}{ au} & A=Q_{ ext{max}} \end{array} ight) b=rac{1}{RC} , A=E.C $ نخلص إلى
0,25	0,25	$i(t) = \frac{E}{R}e^{-\frac{t}{R.C}}$ عبارة شدة التيار: لدينا $i = \frac{dq}{dt}$ بالاشتقاق نجد -4
	0,25	$u_R=R.i=E$ ومنه $u_C=0$ عند اللحظة $t=0$ يكون $u_C=0$ ومنه عند الأومي:
01	0,25	$R = \frac{E}{i_0} = \frac{6}{4.8 \times 10^{-3}} = 1250 \ \Omega$ نجد
01	0,25	ب) إثبات قيمة سعة المكثفة: من المماس عند $t=0$ نجد $ au=R.C$ من البيان
	0,25	$C = \frac{\tau}{R} = \frac{2.5 \times 10^{-3}}{1250} = 2\mu F$
	0,25	$u_C + L \frac{di}{dt} = 0$ ومنه $u_C + u_L = 0$ حيث ومنه التفاضلية: لدينا $u_C + u_L = 0$
	0,25	$\frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$ بالاشتقاق والتعويض نجد $i = \frac{dq}{dt} = C\frac{du_C}{dt}$
	0,25 0,25	$dt^2 = L.C$ dt dt dt dt dt dt dt dt
03,25	0,25	ب) التعليل: المعادلة التفاضلية حلها جيبي والوشيعة مثالية (لا تحتوي مقاومة داخلية) حيث لا
	0, 5	تستهلك الطاقة ومنه لا يحدث تخامد في الاهتزازات (ثبات في السعة)
	0,25	$T_0 = 2\pi\sqrt{L.C}$ = بالعلاقة: $T_0 = 2\pi\sqrt{L.C}$ = بالعلاقة: $T_0 = 2\pi\sqrt{L.C}$
	0,25	$L=rac{{T_0}^2}{{(2\pi)}^2 imes C}=0.1H$ ومن المنحنى البياني $S=2.8 imes 10^{-3}S$ بالمطابقة نجد
L		

العلامة		/ 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0,25	$E(C) = \frac{1}{2} C. u_C^2$: المكثفة (عند المكثفة) عساب الطاقة المخزنة في المكثفة
	0,25	$E(C) = 3.6 \times 10^{-5}$ joules غند $t = 0s$
	0,25	$E(C) = 3,0 \times 10^{-5}$ نجد $t = \frac{T}{4}s$ عند $t = \frac{T}{4}s$
	0,5	ه) التفسير: خلال ربع الدور يتناقص التوتر بين طرفي المكثفة من قيمته الأعظمية (6V) إلى
		الصفر بسب انتقال الطاقة من المكثفة إلى الوشيعة دون ضياع.
		الجزء الثاني: (07 نقاط)
0,25		التمرين التجريبي: (07 نقاط)
	0,25	I-I الفائدة من إضافة قطرات من حمض الكبريت هو تسريع التفاعل
0,25	0,25	2- تحديد الوظيفة الكيميائية لـ(A): وظيفة أسترية
0,25	0,25	3- يسمى التفاعل إماهة أستر.
0,25	0,25	4- تحديد الوظيفة الكيميائية لـ(C): وظيفة كحولية.
0,75	0,75	$CH_3COOC_3H_7(I) + H_2O(I) = CH_3COOH(I) + C_3H_7OH(I)$ المعادلة $n \ (mol)$ $n \ (mol)$ $x \ 0.02 \ 0.02 \ 0$ $x \ 0.02 - x \ 0.02 - x$ $x \ 0.02 - x \ 0.02 - x$ $x \ 0.02 - x \ 0.02 - x$ $x \ 0.02 - x \ 0.02 - x$ $x \ 0.02 - x \ 0.02 - x$
0,5	0,5	1-II - رسم التجهيز التجريبي للمعايرة: 1: حامل 2: سحاحة مدرجة تحتوي على المحلول الأساسي 3: بيشر يحتوي على المحلول الحمضي 4: مخلاط مغناطيسي
0,5	0,5	-2 معادلة تفاعل المعايرة: $-CH_3COOH(l) + OH^-(aq) = CH_3COO^-(aq) + H_2O(l)$

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	
0,5	0,25	$n_A=C_B.V_{BE}$ ومنه عند التعديل يتحقق $n_A=C_B.V_{BE}$ ومنه
0,5	0,25	$n_A = 0.08 \ mol$
		$\rho = \frac{n_f}{n} \times 100 = \frac{0.008}{0.02} \times 100 = 40\%$ Levil Levil According to -4
0,75	0,5	0.02 بما ان مردود الإماهة 40% والمزيج الابتدائي متساوي المولات فإن الكحول ثانوي
	0,25	
		5- تركيب المزيج بالمول عند التوازن:
	0,25	£
1.5	0,25	كحول حمض ماء أستر مماء ماء استر
1,5	0,25	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0,25	$K = \frac{[CH_3COOH]_f . [C_3H_7OH]_f}{[CH_3COOC_3H_7]_f . [H_2O]_f} = 0.4$ Luzi : Luzi : Luzi - Luzi
	0,5	
	0,25	6- تسمية المركبين <i>C ، A:</i>
0,5	0,25	المركب $A:$ إيثانوات $1-$ مثيل أيثيل المركب $C:$ بروبان C أول
		1-III تفسير ما يحدث: يتغير لون المزيج من الأحمر البنفسجي إلى عديم اللون بسبب انزياح
	0,25	تفاعل الإماهة من جديد نحو نقطة توازن جديدة يتشكل عندها كمية جديدة من الحمض تجعل الوسط
0,5	0,25	حامضي فيكون عديم اللون بوجود
		كاشف الفينول فتالين.
	0.05	2- نتوقع زيادة في مردود التفاعل بسبب زيادة كمية الحمض والكحول ونقصان الأستر والماء.
	0,25	نستنتج أن إضافة قاعدة قوية إلى تفاعل الأماهة يؤدي إلى زيادة مردودها.
	0,25	
0,5		

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الجزء الأول (13 نقطة)
		التمرين الأول: (06 نقاط)
		-1
	0,25	أ- الظاهرة الكهربائية : شحن المكثفة
		i
		C T Uc
1,75	0,75	
	0,73	UR
	0,5	
		$\frac{dU_{C}}{dt} + \frac{1}{RC}U_{C} = \frac{E}{RC}$ جـ) المعادلة التفاضلية:
	0,25	dt RC RC RC $u_c(t)=E(1-e^{-(t/RC)}$ (د $u_c(t)=E(1-e^{-(t/RC)}$ هو حل للمعادلة التفاضلية
		-2اً - المعادلة التفاضلية التي تحققها شدة التيار:
	0,5	
		$\frac{di(t)}{dt} + \frac{R}{L}i(t) = \frac{E}{L}$
		Bب - ایجاد عبارة کل من: A و R
	0,25	$i(t) = Ae^{-\frac{R}{L}t} + B$
1,5		$\frac{di(t)}{dt} = -\frac{AR}{L}e^{-\frac{R}{L}t}$
		$-\frac{AR}{L}e^{-\frac{R}{L}t} + \frac{R}{L}(Ae^{-\frac{R}{L}t} + B) = \frac{E}{L}$
	0.4.	L
	0,25	$\frac{RB}{L} = \frac{E}{L} \Rightarrow B = \frac{E}{R}$
	0,25 0,25	$i(0) = A + B = 0 \Longrightarrow A = -\frac{E}{R}$
	0,23	

العلامة		/ *1 *** 1 ~ * *1\ ** 1 * >1 * -
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		-3 أ) ارفاق كل منحنى بالوضع المناسب للبادلة شدة التيار في الوشيعة تتزايد مع مرور الزمن بينما
	0,5	في المكثفة تتناقص و بالتالي البيان (a) يوافق البادلة في الوضع (2) و البيان (b) يوافق البادلة في
		$u_c(t)$ و هو (1) و الوضع
		E,R,C,L ب $-$ قيم المقادير
	0,25	u_{cmax} $= E = 6 \ V : (b)$ من البيان
	0,25	$R = \frac{E}{I_{max}}$ من البيان (a):
2,75	0,25	$R = 500 \Omega$
	0,25	من البيان (b): $ au_b = 10ms$
	0,25	$C = \frac{\tau_b}{R}$
	0,25	$C = 2 \times 10^{-5} F$
	0,25	$ au_a = 1ms$
	0,25	$ au_a = rac{L}{R}$ هن البيان (a) عن البيان
	·	L = 500mH = 0.5H
	0,25	التمرين الثاني: (07 نقاط)
1	0,25	$Mg=Mg^{2+}+2e^{-}$ المعادلتين النصفيتين -1 $2H_3O^++2e^-=H_2+2H_2O$
	0,25	$Mg^{2+}\!/\!Mg)$, $(H_3O^+\!/\!H_2)$ -
	0,23	$n_0(Mg)$ = (m/M) = $(2/24)=8,33.10^{-2}mol$ انتقدم -2
		$n_0(H_3O^+) = (C_0.V) = (10^{-2}.50.10^{-3}) = 5.10^{-4} \text{mol}$
		Mg $+$ $2H_3O^+=Mg^{2+}+H_2$ $+2H_2O$
		كميات المادة (mol) التقدم الحالة
	0,75	ا بوفرة 0 8,33. 10 ⁻² 5 10 ⁻⁴ 0 حالة ابتدائية
		x $= \frac{8,33. \ 10^{-2}}{x(t)}$ $= \frac{8,33. \ 10^{-2}}{x(t)}$ $= \frac{10^{-4}-2x(t)}{x(t)}$ $= \frac{10^{-4}-2x(t)}{x(t)}$
		جالة نهائية x_{max} $8,33$ 10^{-2} - 5.10^{-4} - $2x_{max}$ x_{max} x_{max}
	0.25	ب- نبين ان المغنيزيوم موجود بالزيادة نعين المتفاعل المحد
	0,25	$8,33.10^{-2}-x_{max}=0$ $x_{max}=8,33.10^{-2}mol$ إذا كان معدن المغنزيوم هو المتفاعل المحد $x_{max}=0$ $x_{max}=0$ $x_{max}=0$ او شوارد الهيدرونيوم هي المتفاعل المحد $x_{max}=0$
	0,25	ومنه شوارد الهيدرونيوم متفاعل محد وعليه المغنيزيوم موجود بالزيادة $\chi_{max} = 0$

العلامة		/ *15*1 *1\ ** 1 . \ 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		$x(t)=(5.10^{-4})/2-n(H_3O^+)/2$ من جدول التقدم $\left[Mg^{2+}\right]=\left(x(t)/V\right)$ ج
	0,75	$[Mg^{2+}] = 0.5 \ (10^{-2} - [\ H_3O^+])$ و منه
		اكمال الجدول
		t(min) 0 2 4 6 8 10 12 14 PH 2,00 2,12 2,2 2,44 2,66 2,95 3,41 4,36
	1	7
		3 7
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		$[Mg^{2+}]=f(t)$ $[H_3O^+]=g(t)$ رسم البيانين $-$ 2
		10 ⁻³ mol/L
	0,5	8 [Mg ²⁺]
5		
	0,5	4
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		Mg^{2+} ه السرعة الحجمية لتشكل
	0.25	$v_{ u}(Mg^{2+}) = (d[Mg^{2+}]/dt) = 0,54.10^{-3} mol.l^{-1}.min^{-1}$ (تقبل القيم القريبة)
	0,25	ا لسرعة الحجمية H_3O^+ الحجمية الختفاء
		ومنه [Mg^{2+} J = $0.5 (10^{-2}$ - $[H_3O^+]$)
	0,25	$(d[Mg^{2+}]/dt)=d(0.5(10^{-2}-[H_3O^+])/dt)=-0.5d[H_3O^+]/dt)$
	0,25	$v_{\nu}(H_3O^+) = 2.v_{\nu}(Mg^{2+}) = 2.\ 0.54.10^{-3} = 1.08.10^{-3} \text{mol.}l^{-1}.\text{min}^{-1}$
		و - التأكد من قيمة $v_{ u}(H_3O^+)$ برسم المماس للمنحنى $g(t)=[H_3O^+]$ نجد و
	0,25	$v_{v}(H_{3}O^{+}) = -d[H_{3}O^{+}]/dt = 1.08 \ 10^{-3} \ mol.L^{-1}.min^{-1}$

العلامة		/ *1****
مجموع	مجزأة	عناصر الإجابـة (الموضوع الثاني)
	0,25	x_f تعريف زمن نصف التفاعل $x(t)$ قيمة التقدم $x(t)$ نصف قيمته النهائية $t_{1/2}$
1	0,25	$[H_3O^+](t_{1/2}) = \frac{0,0005 - \frac{2x_{max}}{2}}{V} = 5. 10^{-3} \text{ mol/L}$
	0,25	$[Mg^{2+}](t_{1/2}) = \frac{x_{max}}{2V} = 2.5 \ 10^{-3} \ mol/L$
	0,25	ر بیانیا نجد t _{1/2} =4.4min
		الجزء الثاني(07 نقطة)
		التمرين التجريبي: (07 نقاط)
	0,5	1 – أ – التمثيل (3) لأن موجهة نحو الأسفل.
	0,25	$\sum \overrightarrow{F}_{ext} = m \overrightarrow{a}_G$: بتطبيق القانون الثاني لنيوتن في معلم غاليلي: (1)
	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G \implies \vec{P} + \vec{\pi} + \vec{f} = m\vec{a}$
		بالإسقاط على محور الحركة نجد : $P - \pi - f = ma \implies mg - \rho vg - f = m \frac{dv}{dt}$
	0,25	$P - \pi - f = ma \implies mg - \rho vg - f = m \frac{1}{dt}$
0.2	0,25	$\frac{dv}{dt} + \frac{k}{m}v = g(1 - \frac{\rho V}{m})$
03	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G \implies \vec{P} + \vec{f} = m\vec{a}$: (2) الحالة
	0,25	$\frac{dv}{dt} + \frac{k}{m}v = g$
	0,5	v=0 يكون $t=0$ عند $t=0$
	0,5	$a_0 = g(1 - \frac{\rho v}{m})$:(1) الحالة (1)
		$a_0 = g \qquad \qquad (2)$
01	0,5 0,5	$a_0 = 8 \ m/s^2 t{=}0$ عند $a_0 = 8 \ m/s^2$. $a_0 = 8 \ m/s^2$. $a_0 < g \leftarrow$. $a_0 < g \leftarrow$
0,25	0,25	$V_L=6\ m/s$: من المنحنى -3
		$rac{dv}{dt} = 0$ يكون $v = v_L$ - عندما $v = v_L$ عندما
01	0,5	$\Rightarrow g(1-\frac{\rho V}{m}) = \frac{k}{m} v_L \Rightarrow v_{L=} \frac{mg}{k} \left(1-\frac{\rho V}{m}\right)$
01	0,25	$k=rac{m}{V_c}rac{mv}{(l-rac{ ho v}{m})}$ قيمة ثابت الإحتكاك : $k:$
	0,25	$N-V_L$ ($1-m$) $N-V_L$ ($1-m$) تطبیق عدد $2:k=3,48.10^{-3}$ kg/s

العلامة		/ *1***
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	tالحظة t الكرية في اللحظة على الكرية في اللحظة t الكرية في اللحظة t الكرية في اللحظة t الكرية في اللحظة t الكرية في الكرية في اللحظة t الكرية في الكرية في اللحظة t الكرية في الكرية في الكرية في الكرية في اللحظة t الكرية في ا
	0,25	$F{=}ma$: طريقة $a{=}~\Delta v/\Delta t$
	0,25	$a = 1.07 \text{m/s}^2$
1,75	0,25	$F=2.8.10^{-3}N$
	0,25	$\Sigma \overrightarrow{F}_{ext} = m \overrightarrow{a}$:2 طریقة
	0,25	بالاسقاط على oz المناط على E
	0,25	$F = p - f - \pi \rightarrow F = mg - kv - \rho_{air} \cdot Vg \rightarrow F = 2.8 \cdot 10^{-3} N$