INTRODUCTION TO AUTOMATA THEORY

READING: CHAPTER I

WHAT IS AUTOMATA THEORY?

- Study of abstract computing devices, or "machines"
- Automaton = an abstract computing device
 - Note: A "device" need not even be a physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can do and cannot do
 - The theory of computation
- Computability vs. Complexity

THE CHOMSKY HIERACHY

A containment hierarchy of classes of formal languages

THE CENTRAL CONCEPTS OF AUTOMATA THEORY

ALPHABET

An alphabet is a finite, non-empty set of symbols

- We use the symbol ∑ (sigma) to denote an alphabet
- Examples:
 - Binary: $\sum = \{0, 1\}$
 - All lower case letters: $\sum = \{a,b,c,..z\}$
 - Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\sum = \{a,c,g,t\}$

STRINGS

- A string or word is a finite sequence of symbols chosen from \sum
- Empty string is ε (or "epsilon")
- Length of a string w, denoted by |w|, is equal to the number of (non- ε) characters in the string
 - E.g., x = 010100

$$|x| = 6$$

• $x = 01 \epsilon 0 \epsilon 1 \epsilon 00 \epsilon$ |x| = ?

$$|x| = ?$$

xy = concatenation of two strings x and y

POWERS OF AN ALPHABET

- Let \sum be an alphabet.
- \sum^{k} = the set of all strings of length k
- $\sum * = \sum^0 \bigcup \sum^1 \bigcup \sum^2 \bigcup ...$
- $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup ...$

Strings

- The set of all possible strings over Σ is denoted by Σ*.
- We define $\Sigma^0 = \{\epsilon\}$ and $\Sigma^n = \Sigma^{n-1} \cdot \Sigma$
 - with some abuse of the concatenation notation applying to sets of strings now
- So $\Sigma^n = \{\omega | \omega = xy \text{ and } x \in \Sigma^{n-1} \text{ and } y \in \Sigma\}$
- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots \Sigma^n \cup \cdots = \bigcup_0^\infty \Sigma^i$
 - Alternatively, $\Sigma^* = \{x_1x_2...x_n | n \ge 0 \text{ and } x_i \in \Sigma \text{ for all } i\}$
- Φ denotes the empty set of strings Φ = {},
 - but $\Phi^* = \{\epsilon\}$
- $\Sigma^{||} = \{ a, b, c \}$
- $\Sigma^2 = \{ aa, ab, ac, ba, bb, bc, ca, cb, cc \}$

 $\Sigma^0 = \varepsilon$ for any Σ

Strings

- Σ^* is a countably infinite set of finite length strings
- If x is a string, we write xⁿ for the string obtained by concatenating n copies of x.
 - $(aab)^3 = aabaabaab$
 - $(aab)^0 = \epsilon$

Languages

A language L over Σ is any subset of Σ*

L can be finite or (countably) infinite

LANGUAGES

L is a said to be a language over alphabet \sum , only if $L \subseteq \sum^*$

 \rightarrow this is because Σ^* is the set of all strings (of all possible length including 0) over the given alphabet Σ

Examples:

- Let L be the language of all strings consisting of n 0's followed by n 1's: $L = \{\epsilon, 01, 0011, 000111, ...\}$
- 2. Let L be the language of all strings of with equal number of 0's and 1's:

$$L = \{\varepsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, \ldots\}$$

11

Definition: \varnothing denotes the Empty language Let L = $\{\varepsilon\}$; Is L= \varnothing ?

Some Languages

- $L = \Sigma^*$ The mother of all languages!
- $L = \{a, ab, aab\} A$ fine finite language.
 - Description by enumeration
- $L = \{a^nb^n : n \ge 0\} = \{\epsilon, ab, aabb, aaabbb, \ldots\}$
- $L = \{\omega | n_a(\omega) \text{ is even} \}$
 - $n_x(\omega)$ denotes the number of occurrences of x in ω
 - all strings with even number of a's.
- $L = \{\omega | \omega = \omega^R\}$
 - All strings which are the same as their reverses palindromes.
- $L = \{\omega | \omega = xx\}$
 - All strings formed by duplicating some string once.
- $L = \{\omega | \omega \text{ is a syntactically correct Java program } \}$

Languages

- Since languages are sets, all usual set operations such as intersection and union, etc. are defined.
- Complementation is defined with respect to the universe $\Sigma^* : \overline{L} = \Sigma^* L$

Languages

- If L, L₁ and L₂ are languages:
 - $L_1 \cdot L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
 - $L^0 = \{\epsilon\}$ and $L^n = L^{n-1} \cdot L$
 - $L^* = \bigcup_{0}^{\infty} L^i$
 - $L^+ = \bigcup_{1}^{\infty} L^i$

THE MEMBERSHIP PROBLEM

Given a string $w \in \sum^*$ and a language L over \sum , decide whether or not $w \in L$.

Example:

Let w = 100011

Q) Is $w \in \text{the language of strings with equal number of 0s}$ and 1s?

FINITE AUTOMATA

Some Applications

- Software for designing and checking the behavior of digital circuits
- Lexical analyzer of a typical compiler
- Software for scanning large bodies of text (e.g., web pages) for pattern finding
- Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)

FINITE AUTOMATA: EXAMPLES

Push action State

Start on Push

On/Off switch

Modeling recognition of the word "then"

STRUCTURAL EXPRESSIONS

- Regular expressions
 - E.g., unix style to capture city names such as "Palo Alto CA":
 - [A-Z][a-z]*([][A-Z][a-z]*)*[][A-Z][A-Z]

Start with a letter

A string of other letters (possibly empty)

Should end w/ 2-letter state code

18

Other space delimited words (part of city name)

SUMMARY

- Automata theory & a historical perspective
- Chomsky hierarchy
- Finite automata
- Alphabets, strings/words/sentences, languages
- Membership problem
- Read chapter I for more examples and exercises