13. Der Existenz- und Eindeutigkeitssatz von Picard - Lindelöf

EuE = Existenz und Eindeutigkeit

Definition

Sei $D \subseteq \mathbb{R}^2$ und $f: D \to \mathbb{R}$ eine Funktion.

f genügt auf D einer Lipschitzbedingung (LB) bzgl. $y:\iff$ $\exists \ \gamma \ge 0 : |f(x,y) - f(x,\overline{y})| \le \gamma |y - \overline{y}| \ \forall (x,y), (x,\overline{y}) \in D \quad (*)$

Vorbetrachtungen: Sei $I = [a,b], x_0 \in I, y_0 \in \mathbb{R}, S := I \times \mathbb{R}$ und $f \in C(S,\mathbb{R})$ genüge auf S einer LB bzgl. y mit $\gamma \geq 0$ wie in (*), $T: C(I) \rightarrow C(I)$ sei def. durch $T_y(x) =$ $y_0 + \int_{x_0}^x f(t, y(t)) dt \ (x \in I)$

Aus 12.1 folgt: das AWP
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

hat auf I genau eine Lösung $\iff T$ hat genau einen Fixpunkt.

Frage: ist T bzgl. $\|\cdot\|_{\infty}$ kontrahierend?

Seien
$$u, v \in C(I), x \in I : |T_u(x) - T_v(x)| = |\int_{x_0}^x f(t, u(t)) - f(t, v(t)) dt|$$

$$\leq \gamma |\int_x^{x_0} \underbrace{|u(t) - v(t)|}_{\infty} dt \leq \gamma ||u - v||_{\infty} |\int_{x_0}^x dt| = \gamma |x - x_0| ||u - v||_{\infty}$$

$$\leq ||u-v||_{\infty}$$

$$\leq \gamma(b-a) \|u-v\|_{\infty}$$

 $\implies ||T_u - T_v||$ ist nur dann kontrahierend, wenn $\gamma(b-a) < 1$.

Sei $\varphi(x) := e^{-2\gamma|x-x_0|}$ $(x \in I)$ Auf C(I) def. die folgende Norm:

 $||y|| := \max\{\varphi(x)|y(x)| : x \in I\} (= ||\varphi y||_{\infty})$

 $\alpha := \min\{\varphi(x) : x \in I\} \implies 0 < \alpha < \varphi < 1 \text{ auf } I$

 $\implies \alpha \|y\|_{\infty} \le \|y\| \le \|y\|_{\infty} \ \forall \ y \in C(I)$

Sei (y_n) eine Folge in C(I) und $y \in C(I)$

 $\alpha ||y_n - y||_{\infty} \le ||y_n - y|| \le ||y_n - y||_{\infty}$

Fazit: Konvergenz bzgl. $\|\cdot\| =$ Konvergenz bzgl $\|\cdot\|_{\infty} =$ gleichmäßige Konvergenz auf I. (y_n) ist CF bzgl. $\|\cdot\| \iff (y_n)$ ist CF bzgl. $\|\cdot\|_{\infty}$ $(C(I), \|\cdot\|)$ ist ein Banachraum.

Behauptung

T ist bzgl. $\|\cdot\|$ kontrahierend. Seien $u, v \in C(I), x \in I$.

$$|T_{u}(x) - T_{v}(x)| \stackrel{s.o.}{\leq} \gamma |\int_{x_{0}}^{x} |u(t) - v(t)| dt| = \gamma |\int_{x_{0}}^{x} \underbrace{|u(t) - v(t)|\varphi(t)}_{\leq |u-v|} \underbrace{\frac{1}{\varphi(t)}}_{\leq |u-v|} dt|$$

$$\leq \gamma ||u-v|| |\int_{x_{0}}^{x} e^{-2\gamma|t-x_{0}|} dt| = \gamma ||u-v|| \frac{1}{2\gamma} (e^{-2\gamma|x-x_{0}|} - 1) \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| + \frac{1}{2\gamma} ||u-v$$

$$\leq \gamma \|u - v\| \left| \int_{x_0}^x e^{-2\gamma |t - x_0|} dt \right| = \gamma \|u - v\| \frac{1}{2\gamma} (e^{-2\gamma |x - x_0|} - 1) \leq \frac{1}{2} \|u - v\| \frac{1}{\varphi(x)} \implies \varphi(x) |(T_u)(x) - T_v)(x)| \leq \frac{1}{2} \|u - v\| \ \forall x \in I$$

$$\implies ||T_u - T_v|| \le \frac{1}{2}||u - v||$$

Aus 11.2 und 12.1 folgt: 13.1

Satz 13.1 (EuE - Satz von Picard - Lindelöf (Version I))

 I, x_0, y_0, S und f seien wie in der Vorbetrachtung und f genüge auf S einer LB bzgl. y. Dann hat das AWP:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung. Sei $z_0 \in C(I)$ beliebig und $z_{n+1}(x) := y_0 + \int_{x_0}^x f(t, z_n(t)) dt \ (x \in I)$, (also $z_{n+1} = T_{z_n}$,) dann konvergiert die Folge der sukzessiven Approximationen (z_n) auf Igleichmäßig gegen die Lösung des AWPs.

Beispiel

Zeige (mit 13.1): das AWP: $\begin{cases} y' = 2x(1+y) \\ y(0) = 0 \end{cases}$ hat auf $\mathbb R$ genau eine Lösung. Berechne diese.

f(x,y) = 2x(1+y) Sei a > 0 und I = [-a,a] Für $(x,y), (x,\overline{y}) \in I \times \mathbb{R}$: $|f(x,y) - f(x,\overline{y})| = |2x| |y - \overline{y}| \le 2a|y - \overline{y}|$

13.1 \Longrightarrow das AWP hat auf I genau eine Lösung y. Sei $z_0(x) = 0$. $z_1(x) = \int_0^x 2t dt = x^2 \; ; \; z_2(x) = \int_0^x 2t (1+t^2) dt = x^2 + \frac{1}{2}x^4 \; ; \; z_3(x) = x^2 + \frac{1}{2}x^4 + \frac{1}{6}x^6$ Induktiv: $z_n(x) = x^2 + \frac{1}{2!}x^4 + \frac{1}{3!}x^6 + \ldots + \frac{1}{n!}x^{2n}$

Analysis I \implies (z_n) konvergiert auf I gleichmäßig gegen $e^{x^2} - 1$ 13.1 $\implies y(x) = e^{x^2} - 1$ auf Ia > 0 beliebig $\implies y(x) = e^{x^2} - 1$ ist die Lösung des AWPs auf \mathbb{R} .

Satz 13.2 (Der EuE-Satz von Picard-Lindelöf (Version II))

Sei $I = [a, b] \subseteq \mathbb{R}, \ x_0 \in I, \ y_0 \in \mathbb{R}, \ s > 0, \ R := I \times [y_0 - s, y_0 + s] \ \text{und} \ f \in C(R, \mathbb{R}). \ M := I \times [y_0 - s, y_0 + s]$ $\max\{|f(x,y)|:(x,y)\in R\}$. f genüge auf R einer LB bzgl. y. Dann hat das AWP

$$\begin{cases} y' &= f(x.y) \\ y(x_0) &= y_0 \end{cases}$$

genau eine Lösung auf $J:=I\cap [x_0-\frac{s}{M},x_0+\frac{s}{M}]$. Diese Lösung kann iterativ gewonnen werden (vgl. 13.1).

Beweis

Ähnlich wie 12.5 aus 12.4 gewonnen wurde.

Definition

Sei $D \subseteq \mathbb{R}^2$ offen und $f: D \to \mathbb{R}$ eine Funktion. f genügt auf D einer lokalen LB bzgl. $y:\iff \forall (x_0,y_0)\in D\;\exists\; \mathrm{Umgebung}\; U\; \mathrm{von}\; (x_0,y_0)\; \mathrm{mit}\; U\subseteq D\; \mathrm{und}\; f\; \mathrm{genügt}\; \mathrm{auf}\; U\; \mathrm{einer}\; \mathrm{LB}$ bzgl. y.

Satz 13.3 (Partielle Differenzierbarkeit und lokale Lipschitzbedingung)

D und f seien wie in obiger Definition. Ist f auf D partiell db nach y und ist $f_y \in C(D,\mathbb{R}) \implies f$ genügt auf D einer lokalen LB bzgl. y.

Beweis

Sei $(x_0, y_0) \in D$. D offen $\implies \exists \varepsilon > 0 : U := \overline{U_{\varepsilon}(x_0, y_0)} \subseteq D$. f_y ist stetig $\implies \exists \gamma := \max\{|f_y(x, y)| : (x, y) \in U\}$.

Seien
$$(x,y),(x,\overline{y})\in U:|f(x,y)-f(x,\overline{y})|\stackrel{\mathrm{MWS}}{=}\underbrace{|f_y(x,\xi)|}_{\leq \gamma}|(y-\overline{y})|\leq \gamma|y-\overline{y}|$$
 mit ξ zwischen y und $\overline{y}\ (\Longrightarrow\ (x,\xi)\in U).$

Bemerkung: Ist I = [a, b] und $R := I \times [c, d]$ $(S := I \times \mathbb{R})$ und $f : R \to \mathbb{R}$ $(f : S \to \mathbb{R})$ stetig und partiell db nach g auf g (g) und g ist beschränkt auf g (g). Wie im Beweis von 13.3 zeigen wir: g genügt auf g (g) einer LB bzgl. g.

Beispiel

 $R:=[0,1]\times[-1,1],\ f(x,y)=e^{x+y^2}.$ Zeige: das AWP $y'=f(x,y),\ y(0)=0$ hat auf $[0,\frac{1}{e^2}]$ genau eine Lösung.

Beweis

$$|f(x,y)| = e^x e^{y^2} \le e \cdot e = e^2, \ f(1,1) = e^2 \implies M = \max\{|f(x,y)| : (x,y) \in R\} = e^2.$$

$$|f_y(x,y)| = |2ye^{x+y^2}| = 2|y|e^{x+y^2} \le 2e^2 \ \forall (x,y) \in R \implies f$$
 genügt auf R einer LB bzgl. y .

13.2 \Longrightarrow das AWP hat auf $J=[0,1]\cap[-\frac{s}{M},\frac{s}{M}]\stackrel{s=1}{=}[0,1]\cap[-\frac{1}{e^2},\frac{1}{e^2}]=[0,\frac{1}{e^2}]$ genau eine Lösung.

Satz 13.4 (Der EuE-Satz von Picard-Lindelöf (Version III))

Es sei $D \subseteq \mathbb{R}^2$ offen, $(x_0, y_0) \in D$ und $f \in C(D, \mathbb{R})$ genüge auf D einer lokalen LB bzgl. y. Dann ist das AWP

$$\begin{cases} y' &= f(x,y) \\ y(x_0) &= y_0 \end{cases}$$

eindeutig lösbar. (zur Erinnerung d.h.: das AWP hat eine Lösung. $y: I \to \mathbb{R}$ (I ein Intervall) und für je zwei Lösungen $y_1: I_1 \to \mathbb{R}$, $y_2: I_2 \to \mathbb{R}$ (I_1, I_2 Intervalle) gilt: $y_1 \equiv y_2$ auf $I_1 \cap I_2$).

Beweis

12.6 \Longrightarrow das AWP hat eine Lösung. Seien $y_1:I_1\to\mathbb{R}$ und $y_2:I_2\to\mathbb{R}$ Lösungen des AWPs $(I_1,I_2 \text{ Intervalle})$.

Annahme: $\exists x_1 \in I_1 \cap I_2 : y_1(x_1) \neq y_2(x_1)$. Dann: $x_1 \neq x_0$, etwa $x_1 > x_0$, dann: $[x_0, x_1] \subseteq I_1 \cap I_2$. $M := \{x \in [x_0, x_1] : y_1(x) = y_2(x)\} \subseteq [x_0, x_1], x_0 \in M$. $\xi_0 := \sup M, y_1, y_2 \text{ stetig } \Longrightarrow y_1(\xi_0) = y_2(\xi_0) =: \eta_0$.

13. Der Existenz- und Eindeutigkeitssatz von Picard - Lindelöf

Es gilt: $y_1(x) \neq y_2(x) \ \forall x \in (\xi_0, x_1]$ (*)

Wähle r, s > 0, dass $\xi_0 + r < x_1$, $R := [\xi_0, \xi_0 + r] \times [\eta_0 - s, \eta_0 + s] \subseteq D$ und f genügt auf R einer LB bzgl. y.

Aus 13.2 folgt: $\exists \alpha \in (0,r)$: das AWP (+) $\begin{cases} y' = f(x,y) \\ y(\xi_0) = \eta_0 \end{cases}$ hat auf $[\xi_0,\xi_0+\alpha]$ genau eine Lösung. y_1 und y_2 sind Lösungen von (+) auf $[\xi_0,\xi_0+\alpha] \implies y_1 \equiv y_2$ auf $[\xi_0,\xi_0+\alpha]$, Widerspruch zu (*).