Stats 101C Final Project

Prediction of U.S. Domestic Flights' Cancellation Status

Lecture 2 Group I:
Miko Farin (mikofarin12@gmail.com)
Jack Krupinski (krupinskij2@gmail.com)
Wonjae Lee (edd6dd@gmail.com)
Matt Turk (mturk96@gmail.com)

Overview

- 1. Background
- 2. Cleaning and Preparing the Data
- 3. Modeling the Response
- 4. Conclusion

Background

Goal

The Data:

- The U.S. Department of Transportation collected data about delays and cancellations on 69,225 flights from major airline carriers
- The data has 47 features per observation, such as origin and destination airports, flight duration, date, airline, number of passengers, etc.

Objective: Utilize the U.S. Department of Transportation data on 69,225 flights to develop a model that best predicts the cancellation status of a given flight

Cleaning and Preparing the Data

Data Exploration

- GGpairs illustrates correlations and relationships between predictors
- We also visualize the distributions of our predictors

Data Exploration

- Density plots give us a rough idea about how well a predictor can separate cancelled flights from uncancelled flights

Data Exploration

Many of the predictors were ineffective in separating the cancelled flights
 from uncancelled flights

Missing Values

Variable	Missing Value Percentage
share_white	97.46%
share_black	97.46%
share_native_american	97.46%
share_asian	97.46%
share_hispanic	97.46%
Median Income	97.46%
poverty_rate	97.46%
percent_completed_hs	97.46%

- -Variables with greater than 80% of their values missing were deleted
- -The remaining missing values after deletion were imputed with the "mice" package

Missing Values

Variable	Missing Value Percentage
AIR_SYSTEM_DELAY	85.02%
SECURITY_DELAY	85.02%
AIRLINE_DELAY	85.02%
LATE_AIRCRAFT_DELAY	85.02%
WEATHER_DELAY	85.02%
TAIL_NUMBER	9.40%
Aircraft.Movement	2.06%
Pass.Traffic	0.87%

- Note that most predictors with many missing values relate to flight delays or passenger demographics
- -The 31 features not listed had no missing values

Variable Creation

-We created new variables that expressed cancelations as a percentage of total flights by destination airport, origin airport, airline, destination city, and origin city

Variable Creation

-As expected, more cancelled flights occur at cities/airports with a higher cancellation **rate**

Determining the Best Predictors

-First, we used the "stepclass" function from the "klaR" package to find the best predictors

-We then used stepwise feature selection with BIC as our selection criterion

Scaling and Splitting Data

Scaling

-Although scaled variables are not necessary for every model we created, we did scale the numerical variables to make the data more "versatile"

Splitting

-For the purposes of testing potential models, we split the given training data into a testing subset (20%) and a training subset (80%) ______

Modeling the Response

Choosing an Appropriate Model

We needed a model that would:

- Be effective with a large data set (many predictors)
- Yield a high accuracy on both the training and testing sets
- Minimize bias and variance

Candidate Models: LDA, Random Forest, Boosting,

Neural Net

LDA

-The LDA model served as a relatively simple baseline; given its poor performance, we looked to build a model that could accommodate a more complex decision boundary

Confusion Matrix	NO	YES
NO	7923	2384
YES	1290	2248

Misclassification Rate = 26.54%

Accuracy = 73.46%

Boosting

- Boosting is a **slow learning method** that is designed to reduce bias and variance

Confusion Matrix	NO	YES
NO	8597	1047
YES	616	3585

Misclassification Rate = 12.01%

Accuracy = 87.99%

Neural Network

-A powerful classification tool that works best with large training sets and numerical features

Confusion Matrix	NO	YES
NO	8367	966
YES	783	3729

Misclassification Rate = 12.63%

Accuracy = 87.37%

Neural Network

- Minimizes the value of a loss function, similar to SLR
- Tends to be computationally expensive (depending on the complexity of the data, can take days to run)

Random Forest

-Although the random forest with 16 predictors had the greatest accuracy, we gain simplicity and lose little predictive power with just 8 predictors

Confusion Matrix (16 predictors)	NO	YES
NO	9182	11
YES	31	4621

Misclassification Rate = 0.30%

Accuracy = 99.70%

Random Forest

Variable Importance Plot:

random_forest_flight

DAY
SCHEDULED_ARRIVAL
MONTH
DAY OF WEEK
SCHEDULED_TIME
Org_airport_lat
Distance
Org_airport_long
Pass_Traffic
Aircraft_Movement
Dest_airport_lat
Dest_airport_long
cancelled_origin_frequency
origin_city_cancellation
cancelled_destination_frequency
destination_city_cancellation

DAY
SCHEDULED ARRIVAL
DAY_OF WEEK
cancelled_destination_frequency
MONTH
SCHEDULED_TIME
cancelled_origin_frequency
origin_city_cancellation
destination_city_cancellation
Org_airport_long
Distance
Org_airport_lat
Dest_airport_lat
Dest_airport_lat
Pass.Traffic
Aircraft.Movement

- How We Rank on Kaggle?

99.764 % accuracy on Public Leaderboard

- Advantage of Using Random Forest:

Recorded highest accuracy

Lower Risk of Overfitting

-Shortcoming Of Neural Network:

Blackbox nature

-Shortcoming of Random Forest:

Less Interpretable

Why was the random forest the best classification model? What were the most significant predictors?

How do we know the model is valid?

What, if anything, could we do to improve the model?

In what other situations would a model like ours be useful?