Answer to Problem Set 3

- 1. In Week 3, we introduced numerical identity, denoted with '='. We assumed the principle of substitution for numerical identity. What is the principle of substitution and why is it legitimate?
- 2. In your own words, explain the relationship between **rational numbers** and **real numbers**. Use examples in your explanation.
- 3. Provide a proof that -22 is an **even number**.
- 4. Let the domain be the domain of integers \mathbb{Z} , and let Ox be \mathbf{x} is an odd number. Now consider the following statement:

$$\forall x \forall y ((Ox \land Oy) \to O(x+y)) \tag{1}$$

Is this statement true or false? If true, then provide a proof. If false, then provide a dis-proof (a proof that there exists a counterexample).

5. Let the domain be the set of integers \mathbb{Z} . Do there exist n and d such that:

$$n\;div\;d=q,\quad n\;mod\;d=r,\quad \text{and}\;q=r \tag{2}$$

If not, then why not? If so, then find values for n and d such that q = r.

- 1. The POS is just the principle which states that we may switch one thing for another if they are **identical**. If they are identical then *they are one and the same thing*. This is why the POS is legitimate.
- 2. A rational number is a real number that can be represented as the quotient $\frac{n}{m}$ of two integers n,m such that $m\neq 0$. All rational numbers are real numbers, not all real numbers are rational numbers. The non-rational real numbers are irrational numbers.

Set Theory

*Recap W1: The Language of Sets

definition

(*Wikipedia*) In mathematics, a set is a collection of different things; these things are called **elements** or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets.

- If S is a set, the notation $x \in S$ means that x is an element of S.
- The notation $x \notin S$ means that x is not an element of S.

notations

- Set-Roster Notation: $\{1, 2, 3\}, \{1, 2, 3, \dots, 100\}, \{1, 2, 3, \dots\}.$
- Set-Builder Notation: $\{x \in S \mid P(x)\}.$

the axiom of extension

A set is completely determined by *what its elements are* — not the order in which they might be listed or the fact that some elements might be listed more than once.

Sets A and B are equal if, and only if, they have exactly the same elements.

relation - subset

 $A \subseteq B$: $\forall x \ (x \in A \rightarrow x \in B)$. (What is the negation?)

* Let A and B be sets. A is a **proper subset** of B if, and only if, every element of A is in B but there is at least one element of B that is not in A.

Definition

Given sets A_1, A_2, \ldots, A_n , the **Cartesian product** of A_1, A_2, \ldots, A_n , denoted $A_1 \times A_2 \times \cdots \times A_n$, is the set of all ordered n-tuples (a_1, a_2, \ldots, a_n) where $a_1 \in A_1$, $a_2 \in A_2, \ldots, a_n \in A_n$.

Symbolically:

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}.$$

In particular,

$$A_1 \times A_2 = \{(a_1, a_2) \mid a_1 \in A_1 \text{ and } a_2 \in A_2\}$$

is the Cartesian product of A_1 and A_2 .

Element Proof

Element Argument: The Basic Method for Proving That One Set Is a Subset of Another

Let sets X and Y be given. To prove that $X \subseteq Y$,

- 1. **suppose** that *x* is a particular but arbitrarily chosen element of *X*,
- 2. **show** that x is an element of Y.

Exercise 1 Define sets A and B as follows:

- $A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}$
- $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}.$
- 1. Outline a proof that $A \subseteq B$.
- 2. Proof that $A \subseteq B$.
- 3. Disprove that $B \subseteq A$.

Set Equality $A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A$.

Basic Method for Proving That Sets Are Equal

Let sets X and Y be given. To prove that X = Y:

- 1. Prove that $X \subset Y$.
- 2. Prove that $Y \subset X$.

Exercise 2 Define sets A and B as follows:

- $A = \{m \in \mathbb{Z} \mid m = 2a \text{ for some integer } a\}$
- $B = \{n \in \mathbb{Z} \mid n = 2b 2 \text{ for some integer } b\}.$

Is A = B?

Operations on Sets

(*Textbook*) Most mathematical discussions are carried on within some context. For example, in a certain situation *all sets being considered* might be sets of real numbers. In such a situation, the set of real numbers would be called a **universal set** or a universe of discourse for the discussion.

Definition

Let A and B be subsets of a universal set U.

- 1. The **union** of A and B, denoted $A \cup B$, is the set of all elements that are in at least one of A or B.
- 2. The **intersection** of *A* and *B*, denoted $A \cap B$, is the set of all elements that are common to both *A* and *B*.
- 3. The **difference** of B minus A (or **relative complement** of A in B), denoted B A, is the set of all elements that are in B and not A.
- 4. The **complement** of A, denoted A^c , is the set of all elements in U that are not in A. Symbolically:

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

$$B - A = \{x \in U \mid x \in B \text{ and } x \notin A\}$$

$$A^{c} = \{x \in U \mid x \notin A\}.$$

*Interval Notation

There is a convenient notation for subsets of real numbers that are intervals.

Interval Notation

Given real numbers a and b with $a \le b$:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$
 $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$ $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$ $[a, b) = \{x \in \mathbf{R} \mid a \le x \le b\}.$

The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:

$$(a, \infty) = \{x \in \mathbf{R} \mid x > a\} \quad [a, \infty) = \{x \in \mathbf{R} \mid x \ge a\}$$
$$(-\infty, b) = \{x \in \mathbf{R} \mid x < b\} \quad (-\infty, b] = \{x \in \mathbf{R} \mid x \le b\}.$$

Exercise 3 Let the universal set be \mathbb{R} , the set of all real numbers, and let

$$A=(-1,0] \text{ and } B=[0,1)$$
 Find $A\cup B$, $A\cap B$, $B-A$, and A^c .

relation - disjoint

A and B are disjoint $\Leftrightarrow A \cap B = \emptyset$.

*Sets A_1,A_2,A_3,\ldots are **mutually disjoint** (or pairwise disjoint or nonoverlapping) if, and only if, no two sets A_i and A_j with distinct subscripts have any elements in common. More precisely, for all integers i and $j=1,2,3,\ldots A_i\cap A_j=\emptyset$ whenever $i\neq j$.

A finite or infinite collection of nonempty sets $\{A_1,A_2,A_3,\ldots\}$ is a **partition** of a set A if, and only if,

- 1. A is the union of all the A_i ;
- 2. the sets A_1, A_2, A_3, \ldots are mutually disjoint.

***Exercise 4** Let \mathbb{Z} be the set of all integers and let

- $T_0 = \{n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k\},\$
- $T_1 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\}$, and
- $T_2 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k\}.$

Properties of Sets

Translation between set language and logic language

Procedural Versions of Set Definitions

Let X and Y be subsets of a universal set U and suppose x and y are elements of U.

- 1. $x \in X \cup Y \iff x \in X \text{ or } x \in Y$
- 2. $x \in X \cap Y \iff x \in X \text{ and } x \in Y$
- 3. $x \in X Y \iff x \in X \text{ and } x \notin Y$
- 4. $x \in X^c \iff x \notin X$
- 5. $(x, y) \in X \times Y \iff x \in X \text{ and } y \in Y$

Some Relation

Theorem 6.2.1 Some Subset Relations

- 1. *Inclusion of Intersection:* For all sets *A* and *B*,
 - (a) $A \cap B \subseteq A$ and (b) $A \cap B \subseteq B$.
- 2. *Inclusion in Union:* For all sets *A* and *B*,
 - (a) $A \subseteq A \cup B$ and (b) $B \subseteq A \cup B$.
- 3. Transitive Property of Subsets: For all sets A, B, and C,

if
$$A \subseteq B$$
 and $B \subseteq C$, then $A \subseteq C$.

Exercise 5 (*Inclusion of Intersection*) For all sets A and B, $A \cap B \subseteq A$.

Set Identities

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set *U*.

1. *Commutative Laws:* For all sets *A* and *B*,

(a)
$$A \cup B = B \cup A$$
 and (b) $A \cap B = B \cap A$.

2. Associative Laws: For all sets A, B, and C,

(a)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 and

(b)
$$(A \cap B) \cap C = A \cap (B \cap C)$$
.

3. Distributive Laws: For all sets A, B, and C,

(a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 and

(b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

4. *Identity Laws:* For every set *A*,

(a)
$$A \cup \emptyset = A$$
 and (b) $A \cap U = A$.

5. *Complement Laws:* For every set *A*,

(a)
$$A \cup A^c = U$$
 and (b) $A \cap A^c = \emptyset$.

6. Double Complement Law: For every set A,

$$(A^c)^c = A$$
.

7. *Idempotent Laws:* For every set *A*,

(a)
$$A \cup A = A$$
 and (b) $A \cap A = A$.

8. *Universal Bound Laws:* For every set *A*,

(a)
$$A \cup U = U$$
 and (b) $A \cap \emptyset = \emptyset$.

9. *De Morgan's Laws:* For all sets *A* and *B*,

(a)
$$(A \cup B)^c = A^c \cap B^c$$
 and (b) $(A \cap B)^c = A^c \cup B^c$.

10. *Absorption Laws:* For all sets *A* and *B*,

(a)
$$A \cup (A \cap B) = A$$
 and (b) $A \cap (A \cup B) = A$.

11. Complements of U and \emptyset :

(a)
$$U^c = \emptyset$$
 and (b) $\emptyset^c = U$.

12. Set Difference Law: For all sets A and B,

$$A-B=A\cap B^c$$
.

***Exercise 6** (Distributive law) For all sets A, B, and C, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Figure:

Suppose A, B, and C are sets.

```
\begin{array}{l} \operatorname{Show} A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C). \\ \operatorname{Suppose} x \in A \cup (B \cap C). \\ \vdots \\ \operatorname{Thus} x \in (A \cup B) \cap (A \cup C). \\ \operatorname{Hence} A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C). \end{array}
```

```
Show (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).
Suppose x \in (A \cup B) \cap (A \cup C).

:
Thus x \in A \cup (B \cap C).
Hence (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).
```

Thus $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Details: Suppose $x \in A \cup (B \cap C)$

Case 1: Since $x \in A$, then both statements $x \in A \cup B$ and $x \in A \cup C$ are true by definition of \cup . Hence $x \in (A \cup B) \cap (A \cup C)$ by definition of \cap .

Case 2: Since $x \in B \cap C$, then $x \in B$ and $x \in C$ by definition of \cap .

- Case 2.1: Since $x \in B$, then $x \in A \cup B$ by definition of \cup .
- Case 2.2: Since $x \in C$, similarly, then $x \in A \cup C$ by definition of \cup .

Hence $x \in (A \cup B) \cap (A \cup C)$ by definition of \cup .

The Power Set

Given a set A, the **power set** of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

Exercise 7

- 1. Find the power set of the set $\{x,y\}$. That is, find $\mathcal{P}(\{x,y\})$.
- 2. Suppose there are k elements in set A. How many elements in $\mathcal{P}(A)$?

The Empty Set

If E is a set with no elements and A is any set, then $E \subseteq A$. (How to prove?)

Exercise 8.1 (*Uniqueness of the Empty Set*) There is only one set with no elements.

Element Method for Proving a Set Equals the Empty Set

To prove that a set X is equal to the empty set \emptyset , prove that X has no elements. To do this, suppose X has an element and derive a contradiction.

***Exercise 8.2** (*Universal Bound Law*) For any set $A, A \cap \emptyset = \emptyset$.

Boolean Logic

*Boolean Algebra

Definition and Axioms for a Boolean Algebra

Definition and Axioms for a Boolean Algebra

A **Boolean algebra** is a set B together with two operations, generally denoted + and \cdot , such that for all a and b in B both a+b and $a \cdot b$ are in B and the following axioms are assumed to hold:

1. *Commutative Laws:* For all a and b in B,

(a)
$$a+b=b+a$$
 and (b) $a \cdot b = b \cdot a$.

2. Associative Laws: For all a, b, and c in B,

(a)
$$(a+b)+c=a+(b+c)$$
 and (b) $(a \cdot b) \cdot c=a \cdot (b \cdot c)$.

3. Distributive Laws: For all a, b, and c in B,

(a)
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
 and (b) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.

4. *Identity Laws:* There exist distinct elements 0 and 1 in B such that for each a in B,

(a)
$$a + 0 = a$$
 and (b) $a \cdot 1 = a$.

5. Complement Laws: For each a in B, there exists an element in B, denoted \overline{a} and called the **complement** or **negation** of a, such that

(a)
$$a + \overline{a} = 1$$
 and (b) $a \cdot \overline{a} = 0$.

We can prove that a Boolean Algebra holds the following **properties**.

Theorem 6.4.1 Properties of a Boolean Algebra

Let B be any Boolean algebra.

- 1. Uniqueness of the Complement Laws: For all a and x in B, if a+x=1 and $a \cdot x = 0$ then $x = \overline{a}$.
- 2. Uniqueness of 0 and 1: If there exists x in B such that a + x = a for every a in B, then x = 0, and if there exists y in B such that $a \cdot y = a$ for every a in B, then y = 1.
- 3. Double Complement Law: For every $a \in B$, $\overline{(a)} = a$.
- 4. *Idempotent Laws:* For every $a \in B$,

(a)
$$a + a = a$$
 and (b) $a \cdot a = a$.

5. *Universal Bound Laws:* For every $a \in B$,

(a)
$$a + 1 = 1$$
 and (b) $a \cdot 0 = 0$.

6. De Morgan's Laws: For all a and $b \in B$,

(a)
$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
 and (b) $\overline{a \cdot b} = \overline{a} + \overline{b}$.

7. Absorption Laws: For all a and $b \in B$,

(a)
$$(a+b) \cdot a = a$$
 and (b) $(a \cdot b) + a = a$.

8. Complements of 0 and 1:

(a)
$$\overline{0} = 1$$
 and (b) $\overline{1} = 0$.

***Exercise 9** (Uniqueness of the Complement Law) For all a and x in B, if a+x=1 and $a\cdot x=0$ then $x=\bar{a}$.

Boolean Function

(*Wikipedia*) In mathematics, a **Boolean function** is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}).

Alternative names are *switching function*, used especially in older computer science literature, and *truth function* (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory.

A Boolean function takes the form $f:\{0,1\}^k \to \{0,1\}$ (or f^k), where $\{0,1\}$ is known as the **Boolean domain** $\mathbb B$ and k is a non-negative integer called the **arity** of the function.

Exercise 10

- 1. What is the Boolean function of \sim , \vee , \wedge , \rightarrow ?
- 2. Let $f^3=F(W,X,Y)=W+XY$. The output here would be 1 when W = 1 or XY = 1 or when both of these are 1.

Draw the truth table of f^3 .

3. *How many different Boolean functions with k arguments?