What is claimed is:

3

1	1. A deep trench self-alignment process for an active
2	area of a partial vertical cell, comprising:
3	providing a semiconductor substrate having two deep
4	trenches;
5	forming a deep trench capacitor in each deep trench, lower
6	than the top surface of the semiconductor substrate;
7	forming an isolating layer covering each deep trench
8	capacitor;
9	filling a mask layer in each deep trench;
LO	forming a photoresist layer covering the semiconductor
11	substrate between the deep trenches, wherein the
L2	mask layer surface is partially covered by the
L3	photoresist layer;
L4	etching the semiconductor substrate using the photoresist
L5	layer and the mask layers as etching masks to below
L6	the isolating layer; and
L 7	removing the photoresist layer and the mask layers,
L8	wherein the pillared semiconductor substrate
19	between the deep trenches act as an active area.
1	The does two self alignment proged for an active
1	2. The deep trench self-alignment process for an active
2	area of a partial vertical cell of claim 1, wherein a ring-shaped
3	insulating layer is formed on a top sidewall of each deep trench.
1	3. The deep trench self-alignment process for an active
2	area of a partial vertical cell of claim 2, wherein the

ring-shape insulating layer is a collar oxide layer.

The deep trench self-alignment process for an active 1 4. area of a partial vertical cell of claim 1, wherein the isolating 2 layer is an oxide layer. 3 5. The deep trench self-alignment process for an active 1 area of a partial vertical cell of claim 1, wherein the mask 2 layer is an anti-reflection coating layer. 3 The deep trench self-alignment process for an active 6. 1 area of a partial vertical cell of claim 1, wherein the etching 2 is carried out using a gas mixture containing HBr and oxygen. 3 The deep trench self-alignment process for an active 7. 1 area of a partial vertical cell of claim 1, wherein the etching 2 is anisotropic. 3 The deep trench self-alignment process for an active 8. 1 area of a partial vertical cell of claim 8, wherein the 2 anisotropic etching is plasma or reactive ion etching. 3 A deep trench self-alignment process for an active 1 9. area of a partial vertical cell, comprising: providing a semiconductor substrate, wherein a pad layer 3 is formed covering the semiconductor substrate; 4 forming two deep trenches in the semiconductor substrate 5 separated by a predetermined distance; 6 forming a deep trench capacitor in each deep trench, 7 wherein the deep trench capacitors are below the 8

9

10

11

sidewall of each deep trench;

top surface of the semiconductor substrate, and a

ring-shaped insulating layer is formed on a top

12	conformally forming an isolating layer covering the
13	semiconductor substrate and the deep trenches;
14	removing the isolating layer from the sidewall of the
15	deep trench to leave the isolating layer on the deep
16	trench capacitor;
17	forming a mask layer covering the semiconductor
18	substrate, wherein the deep trench is filled with
19	the mask layer;
20	planarizing the mask layer until the semiconductor
21	substrate is exposed to leave the mask layer in the
22	deep trenches;
23	forming a photoresist layer covering the semiconductor
24	substrate between the deep trenches, wherein the
25	mask layer is partially covered by the photoresist
26	layer;
27	etching the semiconductor substrate to a predetermined
28	depth using the photoresist layer and the mask layer
29	as etching masks; and
30	removing the photoresist layer and the mask layer, wherein
31	a pillared semiconductor substrate between the deep
32	trenches act as an active area.
1	10 The deep trough self alignment program for an extinct
2	10. The deep trench self-alignment process for an active
	area of a partial vertical cell of claim 9, wherein the pad
3	layer is a pad oxide layer or a pad nitride layer.
1	11. The deep trench self-alignment process for an active
2	area of a partial vertical cell of claim 9, wherein the
3	predetermined distance between the deep trenches is about 1200
4	to 1400Å.

1

2

3

1

2

3

1

2

3

1

2

3

1

3

- 1 12. The deep trench self-alignment process for an active 2 area of a partial vertical cell of claim 9, wherein the 3 ring-shape insulating layer is a collar oxide layer.
 - 13. The deep trench self-alignment process for an active area of a partial vertical cell of claim 9, wherein the isolating layer is an oxide layer.
 - 14. The deep trench self-alignment process for an active area of a partial vertical cell of claim 9, wherein removal uses anisotropic etching.
 - 15. The deep trench self-alignment process for an active area of a partial vertical cell of claim 9, wherein the mask layer is an anti-reflection coating layer.
 - 16. The deep trench self-alignment process for an active area of a partial vertical cell of claim 9, wherein planarization uses chemical mechanical polishing or etching.
 - 17. The deep trench self-alignment process for an active area of a partial vertical cell of claim 9, wherein the etching is carried out using a gas mixture containing HBr and oxygen.
- 1 18. The deep trench self-alignment process for an active 2 area of a partial vertical cell of claim 9, wherein the etching 3 is anisotropic.
- 19. The deep trench self-alignment process for an active area of a partial vertical cell of claim 18, wherein the anisotropic etching is plasma etching or reactive ion etching.

Client's ref.:91273 File:0548-9647-US/final/Claire/Kevin

1 20. The deep trench self-alignment process for an active 2 area of a partial vertical cell of claim 9, where the 3 predetermined depth is about 2600 to 3000Å.