Assignment 9

Chirag Mehta - AI20BTECH11006

Download all python codes from

https://github.com/cmapsi/AI1103-Probability-and -random-variables/tree/main/Assignment-9/ codes

and latex-tikz codes from

https://github.com/cmapsi/AI1103-Probability-and -random-variables/blob/main/Assignment-9/ main.tex

1 Problem

(CSIR UGC NET EXAM (Dec 2015), Q.109)

 $\begin{pmatrix} X \\ Y \end{pmatrix}$ is a random vector such that the Suppose marginal distribution of X and the marginal distribution of Y are the same and each is normally distributed with mean 0 and variance 1. Then, which of the following conditions imply independence of X and Y?

- 1) Cov(X, Y) = 0
- 2) aX + bY is normally distributed with mean 0 and variance $a^2 + b^2$ for all real a and b
- 3) $\Pr(X \le 0, Y \le 0) = \frac{1}{4}$ 4) $E\left[e^{itX+isY}\right] = E\left[e^{itX}\right]E\left[e^{isY}\right]$ for all real s and t

2 SOLUTION

An important property of dirac delta function that will be used at multiple ocassions in this solution is

$$\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$$
 (2.0.1)

Given $X \sim N(0, 1), Y \sim N(0, 1)$ 1)

$$Cov(X, Y) = 0$$
 (2.0.2)

$$E[XY] - E[X]E[Y] = 0$$
 (2.0.3)

$$E[XY] = 0$$
 (2.0.4)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y) dx dy = 0$$
 (2.0.5)

This doesn't imply independence. Counter example given below

Lets consider a case where X and Y are dependent based on the following relation

$$X = KY \tag{2.0.6}$$

PMF for K is given as

$$p_K(k) = \begin{cases} \frac{1}{2} & k = 1\\ \frac{1}{2} & k = -1\\ 0 & \text{otherwise} \end{cases}$$
 (2.0.7)

A simulation is given below, Y is gaussian, then X also follows gaussian

Fig. 1: X and Y, if Y is normal

The joint probability distribution is therefore

$$f_{XY}(x, y) = f_{X|Y}(x|y)f_X(x)$$

$$= f_X(x)\frac{1}{2}(\delta(x+y) + \delta(x-y))$$
(2.0.8)

The marginal probability distribution function for X is given as

$$\int_{-\infty}^{\infty} f_X(x) \frac{1}{2} (\delta(x+y) + \delta(x-y)) dy \qquad (2.0.9)$$

Using (2.0.1), we get

$$\int_{-\infty}^{\infty} f_X(x) \frac{1}{2} (\delta(x+y) + \delta(x-y)) dy = f_X(x)$$
(2.0.10)

We know that $X \sim N(0, 1)$, $f_X(x)$ represents gaussian probability distribution function.

Futher, using symmetry of (2.0.6), we can establish that marginal distribution of Y is gaussian

$$Cov(X, Y) = E[XY] - E[X]E[Y] = E[XY]$$
(2.0.11)

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y) dy dx \qquad (2.0.12)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_X(x) \frac{1}{2} (\delta(x+y) + \delta(x-y)) dy dx$$
(2.0.13)

$$= \int_{-\infty}^{\infty} x f_X(x) \int_{-\infty}^{\infty} y \frac{1}{2} (\delta(x+y) + \delta(x-y)) dy dx$$
(2.0.14)

Using (2.0.1)

$$E[XY] = \int_{-\infty}^{\infty} x f_X(x) \frac{1}{2} (x - x) dx = 0 \quad (2.0.15)$$

2) Defining the following matrices/vectors Given

vector/matrix	expression
Z	$\begin{pmatrix} X & Y \end{pmatrix}^{T}$
C	$\begin{pmatrix} a & b \end{pmatrix}^{T}$
μ	$\begin{pmatrix} 0 & 0 \end{pmatrix}^{T}$
Σ	$\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$

TABLE 2: vectors/matrices and their expressions

$$\boldsymbol{C}^{\mathsf{T}} \mathbf{Z} \sim N \left(0, a^2 + b^2 \right) \tag{2.0.16}$$

Since this is true for all a and b, it is equivalent

to X and Y being jointly gaussian

$$\mathbf{Z} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 (2.0.17)

For correlated random variables X and Y in bivariate normal distribution, we have

$$\sigma_Z^2 = \sum_{i,j} \Sigma_{ij} \tag{2.0.18}$$

$$a^2 + b^2 = a^2 + b^2 + 2\rho ab \tag{2.0.19}$$

$$\therefore \rho = 0 \qquad (2.0.20)$$

The joint distribution is given as

$$f_{\mathbf{Z}}(x,y) = \frac{\exp\left(-\frac{1}{2}(z-\mu)^{\top} \mathbf{\Sigma}^{-1}(z-\mu)\right)}{\sqrt{(2\pi)^{2}|\mathbf{\Sigma}|}}$$
(2.0.21)
$$f_{\mathbf{Z}}(x,y) = \frac{\exp\left(-\frac{1}{2}(x-y)I_{2}(x-y)^{\top}\right)}{\sqrt{(2\pi)^{2}}}$$
(2.0.22)

Where I_2 is the identity matrix of order 2

$$f_{\mathbf{Z}}(x,y) = \frac{\exp\left(-\frac{1}{2}\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x & y \end{pmatrix}^{\mathsf{T}}\right)}{\sqrt{(2\pi)^2}}$$
(2.0.23)

$$f_{\mathbf{Z}}(x,y) = \frac{\exp\left(-\frac{1}{2}\left(x^2 + y^2\right)\right)}{\sqrt{(2\pi)^2}} = f_X(x)f_Y(y)$$
(2.0.24)

.. Option(2) is correct, A simulation for bivariate gaussian is given below

Fig. 2: bivariate gaussian while 0 mean vector and identity covariance matrix

3) The counter example is (2.0.8), the joint probability function is symmetric across all 4 quadrants

$$\therefore \Pr(X \le 0, Y \le 0) = \frac{1}{4}$$
 (2.0.25)

Alternatively, here is proof

$$\Pr(X \le 0) = F_X(0) = \frac{1}{2}$$
 (2.0.26)

Using (2.0.6)

$$\Pr(Y \le 0 | X \le 0) = \frac{1}{2}$$
 (2.0.27)

Using (2.0.26) and (2.0.27)

$$\Pr(X \le 0, Y \le 0) = \frac{1}{4} \tag{2.0.28}$$

4)

$$E\left[e^{itX+isY}\right] = E\left[e^{itX}\right]E\left[e^{isY}\right] \qquad (2.0.29)$$

$$E\left[e^{itX+isY}\right] = \varphi_X(t)\varphi_Y(s) \qquad (2.0.30)$$

The inverse is given as

$$f_{XY}(x,y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-itX - isY} E\left[e^{itX + isY}\right] ds dt$$
(2.0.31)

Using (2.0.30)

$$f_{XY}(x,y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-itX - isY} \varphi_X(t) \varphi_Y(s) ds dt$$
(2.0.32)

$$f_{XY}(x, y) = f_X(x)f_Y(y)$$
 (2.0.33)

: Option(4) is correct