

Description

The VSM28N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 28A$ $R_{DS(ON)} < 18m\Omega @ V_{GS} = 10V (Typ: 14 m\Omega)$
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM28N10-T3	VSM28N10	TO-263	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	28	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	20	Α
Pulsed Drain Current	I _{DM}	160	Α
Maximum Power Dissipation	P _D	150	W
Derating factor	-	1	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	550	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$ C

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	2.4	°C/W	
---	------------------	-----	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics		•				
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3.2	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =16A	-	14	18	mΩ
Forward Transconductance	g Fs	V _{DS} =25V,I _D =16A	30	-	-	S
Dynamic Characteristics (Note4)	·	•				
Input Capacitance	C _{lss}	- V _{DS} =25V,V _{GS} =0V,	-	3700	-	PF
Output Capacitance	C _{oss}		-	630	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	330	-	PF
Switching Characteristics (Note 4)	·	•				
Turn-on Delay Time	t _{d(on)}		-	12	-	nS
Turn-on Rise Time	t _r	V_{DD} =50 V , I_{D} =16 A	-	55	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{GEN} =2.5 Ω	-	45	-	nS
Turn-Off Fall Time	t _f		-	47	-	nS
Total Gate Charge	Qg	N/ 001/1 40A	-	95	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=80V,I_{D}=16A,$ $V_{GS}=10V$	-	18	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	25	-	nC
Drain-Source Diode Characteristics	·	•				
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =16A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	57	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 16A	-	140	220	nS
Reverse Recovery Charge	se Recovery Charge Qrr di/dt = 100A/µs ^{(Note}		-	650	1000	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance