Primeira Avaliação de Circuitos Elétricos II Aplicados — $1^{0}/2018$

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Nome:	Turma:
Matrícula:/	
Data:/	
Questão 1	
Questão 2	
Questão 3	
Questão 4	

Questão 1 – Dada H(s) a função de transferência de um circuito linear, determine sua resposta a x(t) = u(t).

$$H(s) = \frac{s^3 + 1}{(s+2)(s+3)(s+5)}$$

Questão 2 – Determine $v_o(t)$ no circuito apresentado à direita quando $v_s(t)$ corresponde a forma de onda temporal mostrada na figura à esquerda. C = 1F; $R = 4\Omega$.

Questão 3 – Para o circuito abaixo, apresenta um capacitor carregado em t = 0 quando é acionada a entrada. Resolva o circuito com condições iniciais não-nulas, determine a resposta $v_o(t)$ utilizando a transformada de Laplace.

Questão 4 – A figura a seguir mostra um circuito onde $V_s(t)$ é a fonte de sinal de entrada e $V_o(t)$ representa o sinal de tensão de saída. São dados os seguintes parâmetros do circuito: $R_1 = 1\Omega$; $R_2 = 2\Omega$; L = 2/3H; C = 1/2F; $g_m = 1/4$ A/V.

- a) Calcule a função de transferência no domínio da Transformada de Laplace que descreve o ganho de tensão H(s) = Vo(t)/Vs(t).
- b) Calcule a resposta impulsional h(t).

