Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 по дисциплине «Методы машинного обучения» на тему

«Изучение библиотек обработки данных»

Выполнил: студент группы ИУ5-22М Вей Пхьоу Ту

1. Цель лабораторной работы

Изучить библиотеки обработки данных Pandas и PandaSQL.

2. Задание

Задание состоит из двух частей

2.1. Часть 1

Требуется выполнить первое демонстрационное задание под названием «Exploratory data analysis with Pandas» со страницы курса mlcourse.ai.

In []:	im	port	pandas as p	od												
In []:	pd	.set	_option("di	splay.wi	dth",70)											
In [5]:			d.read_csv(ead()	'adult.d	ata.csv')											
Out[5]:		age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital-	hours- per-week	native- country	salary
	0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=50K
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
	3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
	4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
	4															ı
(_	sex"].value	_counts()											
Out[6]:	Fe	male	21790 10771 sex, dtype:	int64												
In [7]:	da	ta[d	ata["sex"] :	== "Fema	le"]["age"].mean()										
Out[7]:	36.85823043357163															
In [8]:	pr	int("{0:%}".for	mat(data	[data["nat	ive-country	"] == "Germa	ny"].shape[0]	/ data.sha	pe[0]))					
	0.	4207	49%													
In [9]:	ag pr	es2 int(["salary 0} ± {1}	"] == ">50 years".fo	K"]["age"] ormat(ages1.	mean(), ages mean(), ages									
			= 36.783737 = 44.249846													

```
Out[14]: False
In [11]: data.groupby(["race", "sex"])["age"].describe()
Out[11]:
                                                                        min 25% 50% 75% max
           race
                                sex
                                                 37.117647 | 13.114991 | 17.0 | 27.0 | 36.0 | 46.00 | 80.0
                                Female 119.0
            Amer-Indian-Eskimo
                                 Male
                                         192.0
                                                  37.208333
                                                             12.049563
                                                                        17.0 28.0 35.0 45.00 82.0
                                         346.0
                                                  35.089595
                                                             12.300845 17.0 25.0 33.0 43.75 75.0
                                 Female
           Asian-Pac-Islander
                                                             12.883944 18.0 29.0 37.0 46.00 90.0
                                 Male
                                         693.0
                                                  39.073593
                                         1555.0
                                                  37.854019
                                                             12.637197 17.0 28.0 37.0 46.00 90.0
                                 Female
           Black
                                                             12.882612 17.0 27.0 36.0 46.00 90.0
                                 Male
                                         1569.0
                                                  37.682600
                                 Female
                                         109.0
                                                  31.678899
                                                             11.631599
                                                                        17.0 23.0 29.0
                                                                                        39.00
                                                                                               74.0
            Other
                                 Male
                                         162.0
                                                  34.654321
                                                             11.355531
                                                                        17.0 26.0 32.0
                                                                                        42.00
                                                                                               77.0
                                                  36.811618 14.329093 17.0 25.0 35.0
                                                                                        46.00
                                                                                               90.0
                                 Female
                                         8642.0
           White
                                 Male
                                         19174.0 39.652498 13.436029 17.0 29.0 38.0 49.00 90.0
In [12]: data[(data["race"] == "Amer-Indian-Eskimo")
& (data["sex"] == "Male")]["age"].max()
Out[12]: 82
In [15]: def is_married(m):
          uer is_married(m):
    return m.startswith("Married")
data["married"] = data["marital-status"].map(is_married)
(data[(data["sex"] == "Male") & (data["salary"] == ">50K")]
    ["married"].value_counts())
Out[15]: True
                  5965
           False
                     697
           Name: married, dtype: int64
```

```
In [16]: m = data["hours-per-week"].max()
    print("Maximum is {} hours/week.".format(m))
    people = data[data["hours-per-week"] == m]
    c = people.shape[0]
    print("{} people work this time at week.".format(c))
    s = people[people["salary"] == ">50K"].shape[0]
    print("{0:%} get >50K salary.".format(s / c))
                            Maximum is 99 hours/week.
85 people work this time at week.
29.411765% get >50K salary.
In [17]: p = pd.crosstab(data["native-country"], data["salary"],
values=data['hours-per-week'], aggfunc="mean")
                            р
 Out[17]:
```

salary	<=50K	>50K
native-country		
?	40.164760	45.547945
Cambodia	41.416667	40.000000
Canada	37.914634	45.641026
China	37.381818	38.900000
Columbia	38.684211	50.000000
Cuba	37.985714	42.440000
Dominican-Republic	42.338235	47.000000
Ecuador	38.041667	48.750000
El-Salvador	36.030928	45.000000
England	40.483333	44.533333
France	41.058824	50.750000
Germany	39.139785	44.977273
Greece	41.809524	50.625000
Guatemala	39.360656	36.666667
Haiti	36.325000	42.750000
Holand-Netherlands	40.000000	NaN
Honduras	34.333333	60.000000
Hong	39.142857	45.000000

```
In [18]: p.loc["Japan"]
Out[18]: salary
<=56K 41.000000
>56K 47.958333
Name: Japan, dtype: float64
In [19]: p.loc["China"]
Out[19]: salary
<=50K 37.381818
>50K 38.90000
Name: China, dtype: float64
```

2.2. Часть 2

Требуется выполнить следующие запросы с использованием двух различных библиотек — Pandas и PandaSQL:

- один произвольный запрос на соединение двух наборов данных,
- один произвольный запрос на группировку набора данных с использованием функций агрегирования.

Также требуется сравнить время выполнения каждого запроса в Pandas и PandaSQL.

```
Requirement already satisfied: tensorflow in /usr/local/lib/python3.7/dist-packages (2.4.1)

Downloading https://files.pythonhosted.org/packages/6b/c4/ee4096ffa2eeeca0c749b26f037ibd26aa5c8b611c43de99a4f86d3de0a7/pandasql-0.7.3.t ar.gz

Requirement already satisfied: flatbuffers~~1.12.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.12)
Requirement already satisfied: gast—0.3.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.3.3)

Requirement already satisfied: https://local/lib/python3.7/dist-packages (from tensorflow) (1.10.0)

Requirement already satisfied: saturparse~-1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.10.0)

Requirement already satisfied: saturparse~-1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.10.0)

Requirement already satisfied: saturparse~-1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.15.0)

Requirement already satisfied: saturparse~-1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.15.0)

Requirement already satisfied: saturparse~-1.1.1.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.15.0)

Requirement already satisfied: whele=0.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.3.2.0)

Requirement already satisfied: typing=extensions~a.3.7.4 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (3.3.0)

Requirement already satisfied: tensorboard~2.4 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (3.2.0)

Requirement already satisfied: tensorboard~2.4 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.2.0)

Requirement already satisfied: tensorboard~2.4 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.2.0)

Requirement already satisfied: pardas in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.2.0)

Requirement already satisfied: pardas in /usr/local/lib/python3.7/dist-packages (from tensorflow) (0.2.0)

Requirement already satisfied: pardas in /usr/local/lib/python3.7/dist-packages (fr
```

```
In [26]: from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())
In [27]: wind = (pd.read_csv('wind speed.csv', header=None, names=["row", "UNIX", "date", "time", "speed", "text"])
          damp("fext", axis=1))
temp = (pd.read_csv('temperature.csv', header=None, names=["row", "UNIX", "date", "time", "temperature", "text"])
          .drop("text", axis=1))
In [28]: wind.head()
Out[28]: row UNIX
                             date
                                        time
                                                 speed
          0 1
                 1475315718 2016-09-30 23:55:18
                                                 7.87
          1 2
                 1475315423 2016-09-30 23:50:23 7.87
          2 3
                 1475315124 2016-09-30 23:45:24 9.00
          3 4
                 1475314821 2016-09-30 23:40:21 13.50
          4 5
                 1475314522 2016-09-30 23:35:22 15.75
In [29]: wind.dtypes
Out[29]: row
                     int64
          HINTY
                    int64
object
          date
                   object
float64
          time
          speed
          dtype: object
In [30]: temp.head()
Out[30]: row UNIX
                             date
                                        time
                                                 temperature
          0 1
                 1475315718 2016-09-30 23:55:18 48
          1 2
                 1475315423 2016-09-30 23:50:23 48
          2 3
                 1475315124
                             2016-09-30 23:45:24 48
          3 4
                 1475314821 2016-09-30 23:40:21 48
          4 5
                 1475314522 2016-09-30 23:35:22 48
 In [31]: temp.dtypes
Out[31]: row
UNIX
                           int64
                           int64
          date
                          object
          time
                          object
          temperature
                           int64
          dtype: object
 In [32]: wind.merge(temp[["UNIX", "temperature"]], on="UNIX").head()
Out[32]: row UNIX
                              date
                                         time
                                                  speed temperature
          0 1
                  1475315718 2016-09-30 23:55:18 7.87
                                                         48
          1 2
                  1475315423 2016-09-30 23:50:23
                                                 7.87
                                                         48
          2 3
                 1475315124 2016-09-30 23:45:24
                                                 9.00
                                                         48
          3 4
                  1475314821 2016-09-30 23:40:21
                                                  13.50
                                                        48
                  1475314522 2016-09-30 23:35:22 15.75
           4 5
                                                        48
 In [36]: %%timeit
           wind.merge(temp[["UNIX", "temperature"]], on="UNIX")
          100 loops, best of 5: 8.51 ms per loop
 In [37]: pysqldf("""SELECT w.row, w.UNIX, w.date, w.time,
           w.speed, t.temperature
          FROM wind AS w JOIN temp AS t
ON w.UNIX = t.UNIX
""").head()
Out[37]: row UNIX
                              date
                                         time
                                                  speed temperature
          0 1
                  1475315718 2016-09-30 23:55:18 7.87
                                                         48
           1 2
                  1475315423 2016-09-30 23:50:23
                                                  7.87
                                                         48
                  1475315124 2016-09-30 23:45:24
           2 3
                                                  9.00
                                                         48
          3 4
                  1475314821 2016-09-30 23:40:21
                                                  13.50
                                                        48
          4 5
                  1475314522 2016-09-30 23:35:22 15.75 48
```

```
In [38]: %%timeit
          pysqldf("""SELECT w.row, w.UNIX, w.date, w.time,
          w.speed, t.temperature
FROM wind AS w JOIN temp AS t
          ON w.UNIX = t.UNIX
          1 loop, best of 5: 616 ms per loop
In [39]: wind.groupby("date")["speed"].mean().head()
Out[39]: date
          2016-09-01
                         6.396560
          2016-09-02
                         5.804086
          2016-09-03
                         4.960248
          2016-09-04
                       5.184571
5.830676
          2016-09-05
          Name: speed, dtype: float64
In [40]: %%timeit
          wind.groupby("date")["speed"].mean()
          100 loops, best of 5: 2.7 ms per loop
In [41]: pysqldf("""SELECT date, AVG(speed)
FROM wind GROUP BY date """).head()
Out[41]: date
                        AVG(speed)
          0 2016-09-01 6.396560
          1 2016-09-02 5.804086
          2 2016-09-03 4.960248
          3 2016-09-04 5.184571
          4 2016-09-05 5.830676
          pysqldf("""SELECT date, AVG(speed)
FROM wind
In [42]: %%timeit
          GROUP BY date
          1 loop, best of 5: 234 ms per loop
```

Список литературы

[1] Гапанюк Ю. Е. Лабораторная работа «Изучение библиотек обработки данных»

[Электронный ресурс] // GitHub. — 2019. — Режим доступа:

https://github.com/

ugapanyuk/ml_course/wiki/LAB_PANDAS (дата обращения: 20.02.2019).

[2] pandas 0.24.1 documentation [Electronic resource] // PyData. — 2019. — Access mode:

http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).

[3] You are my Sunshine [Electronic resource] // Space Apps Challenge. — 2017.

Access mode: https://2017.spaceappschallenge.org/challenges/earth-and-us/you-are-my-sunshine/details (online; accessed: 22.02.2019).

[4] yhat/pandasql: sqldf for pandas [Electronic resource] // GitHub. — 2017. — Access mode:

https://github.com/yhat/pandasql (online; accessed: 22.02.2019).

[5] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] $/\!/$

Read the Docs. — 2019. — Access mode: https://ipython.readthedocs.io/en/stable/ (online; accessed: 20.02.2019).