

Intro to Machine Learning

By: Farisology

Intro

What is Artificial Intelligence?

How does a machine learn to recognize objects?

How do we humans learn?

How did you learn to recognize blue color?

How did you recognize cars/dogs/cats?

How does a machine learn to recognize objects?

Sources:

Frost & Sullivan "Artificial Intelligence- R8D and Applications Road Map" (Dec 2016), Harvard Business Review- The competitive landscape for Machine Intelligence (Nov 2016). Shivon Zilis and James Chan 'The State of Machine Intelligence, 2016 (2018), Sanford University. 'Artificial Intelligence and Life in 2030' (2016), https://ex.wispedia.org/wikid/inficial_intelligence (2017)

Machine defeating human in Alphago

Artificial Intelligence

If-else, search theory, reasoning, fuzzy logic,

Preface

Agenda

Introduction:

- Definition of Machine Learning.
- The concept of learning.
- Types of learning.
- Using data to make informed decisions.
- Machine learning workflow: from data to deployment.

Real world data:

- Data Collection.
- Pre-processing for modelling.
- Using data visualization.

Machine Learning Definition

Arthur 1959: The subfield of computer science that gives computers the ability to learn without being explicitly programmed.

Mitchel 1997: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

Types of Learning

Supervised Learning

Unsupervised Learning

Different cluster analysis results on "mouse" data set:

The difference between ML and Sequential logic

Machine learning Paradigm

Input

Training

Output

Input: the training data, features the represent an entity in our real world.

Output: the target that we want predict/detect. Basically we want to train the machine to figure out this part on it own.

Based on any model the training is the process of autonomously recognize the patterns and the relationship that connects the input to the output. Mathematically, figuring out the coefficients of an equation.

This model is a trained algorithm to perform certain type of tasks in its own without being explicitly programmed.

New input

New data coming from our business (user profiles)

The trained model will predict the type of the input value.

Output

Classification of the new user profiles.

Supervised Learning

Classification

Predicting Categories

Types of an entity

- Bad Good Medium
- Sick not sick
- Hot dog- not hot dog
- Sad happy surprised angry

Regression

Predicting values

Continuous values

- Sales
- Coordinates
- Time
- Age
- Power
- pressure

Drive Impact Create Value

XX% sales increase XX% ROI growth

Applications of Machine Learning

FinTech

- Credit Risk Scoring
- Fraud Detection and Prevention
- Marketing, Customer Retention, and Loyalty Programs
- Asset management

Health Care

- Improving diagnostic accuracy and efficiency
- Drug discovery
- Using Wearable devices to monitor and prevent health problems
- Optimizing clinic performance through actionable insights

Business

- Intelligent Marketing
- Customer Segmentation
- Enhanced Decision Making
- Churn prediction
- Predicting Customer lifetime value

Machine Learning Workflow

Machine Learning workflow

ML Algorithms

Tree Based Algorithms

Bio-inspired Algorithms

Genetic Algorithms

Probabilistic

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Data

"It is a capital mistake to theorize before one has data."

Sherlock Holmes

Information, especially facts or numbers, collected to be examined and considered and used to help decision-making, or information in an electronic form that can be stored and used by a computer:

Types of Data

Quantitative Data

Continuous: Discreet:

Age The number of people in the room.

Weight How many cars you have.

Time

We can divide it to much smaller units. We cannot say there is 10.5 people in the room, or I have 2.9 cars.

Categorical Data

Ordinal:

- Good/medium/bad
- V. High/high/low/V.Low
- Positive/Neutral/Negative

Nominal:

- Persian/Siamese/British Shorthair
- Husky/Pug/Bulldog/Chihuahua
- Kampung/D24/Musang King/Udang Merah

Types that has a hierarchy

Types that has no natural order

Raw Data

le											
			Table "default" - Rows: 13:	2258	Spec - Columns: 7	Prope	erties	Flow Variables			
Row ID	S Remote host	S Ren	note logname S Remote user	Re	equest time	SR	equest		Status	L Size of respons	
Row0	65.55.147.227		-	15.00	t.2009 02:00:24.000	GET /	index.h	itml HTTP/1.1	200	21878	
Row1	65.55.86.34	-	- T	15.00	t.2009 02:00:58.000	GET /	index.h	itml HTTP/1.1	200	1416	
Row2	148.188.55.88	+	-	15.00	t.2009 02:01:41.000	GET /	faq.htm	nl HTTP/1.1	200	10946	
Row3	72.30.57.238	-	-	15.00	t.2009 02:01:59.000	GET /	contrib	ute.txt HTTP/1.0	200	39943	
Row4	66.249.139.233	12	_	15.00	t.2009 02:02:09.000	GET /	faq.htm	I HTTP/1.1	200	17247	
Row5	72.30.50.248	_	-	15.00	t.2009 02:02:13.000	GET /	index.h	itml HTTP/1.0	200	7883	
Row6	216.129.13.4	2	(28)	15.00	t.2009 02:02:37.000	GET /	contrib	ute.txt HTTP/1.0	200	18119	
Row7	66.249.61.232	_	-	15.00	t.2009 02:02:39.000	GET /	contrib	ute.txt HTTP/1.1	200	10946	
Row8	65.55.80.97		-	15.00	t.2009 02:02:51.000	GET /	index.h	itml HTTP/1.1	200	1416	
Row9	65.55.161.41	-	- 0	15.00	t.2009 02:02:54.000	GET /	index.h	itml HTTP/1.1	200	37122	
Row10	65.55.119.204	+	-	15.00	t.2009 02:02:55.000	GET /	faq.htm	nl HTTP/1.1	200	64380	
Row11	65.55.58.168	-	-	15.00	t.2009 02:02:56.000	GET /	index.h	itml HTTP/1.1	200	1202	
Row12	65.55.35.29	_	-	15.00	t.2009 02:02:55.000	GET /	faq.htm	I HTTP/1.1	200	269198	
Row13	67.195.22.10	2	_	15.00	t.2009 02:03:02.000	GET /	contrib	ute.txt HTTP/1.0	200	16563	
Row14	65.55.34.249	_	(20)	15.00	t.2009 02:03:18.000	GET /	index.h	itml HTTP/1.1	200	6775	
Row15	99.249.165.88	-	-	15.00	t.2009 02:03:25.000	GET /	contrib	ute.txt HTTP/1.1	200	31419	
Row16	99.249.191.8		-	15.00	t.2009 02:03:26.000	GET /	faq.htm	I HTTP/1.1	200	788	
Row17	99.249.180.68	-	-	15.00	t.2009 02:03:26.000	GET /	faq.htm	I HTTP/1.1	200	205	
Row18	99.249.141.16	+	-	15.00	t.2009 02:03:26.000	GET /	somefil	e.zip HTTP/1.1	200	740	
Row19	99.249.82.166	-	-	15.00	t.2009 02:03:26.000	GET /	index.h	itml HTTP/1.1	200	671	
Row20	99.249.139.155	-	-	15.00	t.2009 02:03:26.000	GET /	faq.htm	I HTTP/1.1	200	757	
Row21	99.249.91.194	_	-	15.00	t.2009 02:03:26.000	GET /	index.h	itml HTTP/1.1	200	935	
Row22	99.249.180.43	2	(20)	15.00	t.2009 02:03:26.000	GET /	contrib	ute.txt HTTP/1.1	200	10020	
Row23	99.249.91.98	-	-	15.00	t.2009 02:03:26.000	GET /	contrib	ute.txt HTTP/1.1	200	1127	
Row24	99.249.103.13	7	-	15.00	t.2009 02:03:26.000	GET /	somefil	e.zip HTTP/1.1	200	1057	
Row25	99.249.110.78	-	(- 8	15.00	t.2009 02:03:26.000	GET /	contrib	ute.txt HTTP/1.1	200	615	
Row26	65.55.153.28	-	(m)	15.00	t.2009 02:03:39.000	GET /	index.h	itml HTTP/1.1	200	1416	
Row27	65.55.52.44	-	-	15.00	t.2009 02:03:39.000	GET /	somefil	e.zip HTTP/1.1	200	37122	
Row28	65.55.107.149	2	=	15.00	t.2009 02:03:40.000	GET /	faq.htm	nl HTTP/1.1	200	64380	
Row29	65.55.247.6	2	20	15.00	t.2009 02:03:41.000	GET /	index.h	itml HTTP/1.1	200	1202	
Pow20	65 55 144 40		27	15.00	+ 2000 02-03-40 000	CET	contribu	uto tot MTTD/1 1	200	260108	

Cooked Data

Date	Successful Sales	No. of Customers	Value	Rejected Sales
1/7/2018	4543	254	54123	20
2/7/2018	10432	341	23432	33
3/7/2018	2234	543	65321	43
4/7/2018	4123	432	394532	11
5/7/2018	5321	123	20987	23
6/7/2018	543	123	55754	22

Summary of events.

Performance of business

Real World Data Facts

Real world data are generally

- Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
- Noisy: containing errors or outliers
- Inconsistent: containing discrepancies in codes or names.

Tasks in data preprocessing

- Data integration: using multiple databases, data cubes, or files.
- Data cleaning: fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies.
- Data transformation: normalization and aggregation.
- Data reduction: reducing the volume but producing the same or similar analytical results.
- Data discretization: part of data reduction, replacing numerical attributes with nominal ones.

Data Integration

- 1. Handling missing values
- Identify outliers and smooth out noise.
- 3. Eliminate inconsistency.

Fill-in with statistical values. (mean/median...etc).

Binning: sort out all values and categorise into 4 bins.

Use domain knowledge to detect inconsistency.

Data Transformation

- Normalization.
- 2. Aggregation.
- 3. Generalization.
- 4. Attribute Construction.

Scaling values to fall within a specific range. Or scaling by recentering values using the statistical mean and std.

Moving up the concept hierarchy on numeric/nominal attributes.

Re-constructing an attribute based on An old attribute.

Aggregation / Generalization

Data Reduction

Data reduction is the transformation of numerical or alphabetical digital information derived empirically or experimentally into a corrected, ordered, and simplified form. It can be performed in several ways:

- Reduce the number of attributes (features).
- Reduce the number of attribute values.
- Statistical sampling.

Principal Component Analysis (PCA)

- 1. Handling missing values
- Identify outliers and smooth out noise.
- 3. Eliminate inconsistency.

Fill-in with statistical values. (mean/median...etc).

Binning: sort out all values and categorise into 4 bins.

Use domain knowledge to detect inconsistency.

Descriptive Statistics

We use statistics to describe data.

Categorical data is analyzed and described in the aspect of counts and distribution. Measuring the number of people falling into each category.

Quantitative data is measured and analyzed using four aspects:

- 1. Measures of Center
- Measures of Spread
- 3. The Shape of the data.
- 4. Outliers

Measure of Center

Mean Median Mode Mean is the average value or the expected value in mathematics. Mean is calculated by summing up the values and divide them by the number of the available values.

Median is exactly the center value or the value that is located in the middle of an ordered set of values. What about median of even values?

Mode is the most frequent value in the set.

Measure of Spread

Range Interquartile Range Standard Deviation Variance Range is simply the difference between the min and max value.

Five Number summary:

- Minimum: The smallest number in the dataset.
- 2. **Q**1: The value such that 25% of the data fall below.
- 3. **Q**2: The value such that 50% of the data fall below.
- 4. **Q**3: The value such that 75% of the data fall below.
- 5. **Maximum:** The largest value in the dataset.

The interquartile range is calculated as the difference between **Q3** and **Q1**.

Data Visualization

Data visualization is a general term that describes any effort to help people understand the significance of data by placing it in a visual context. Patterns, trends and correlations that might go undetected in text-based data can be exposed and recognized easier with data visualization software.

Traditional Vs. Visualization

TRADITIONAL STATISTICS

66% of B2B marketers rank LinkedIn as the most effective social media platform for their business. Other effective platforms include Twitter (55%), followed by YouTube (51%), SlideShare (41%) and Facebook with the smallest percent of marketer's selecting the platform for the most effective platform. (30%)

VISUALIZATION STATISTICS

B2B marketer's first choice for most effective social media platforms.

Sales KPI Performance - Sales Summary

Ask me questions?