Supplementary material for "Going Offline: An Evaluation of the Offline Phase in Stream Clustering"

Philipp Jahn^{1,2} (\omega), Walid Durani^{1,2}, Collin Leiber³, Anna Beer⁴, and Thomas Seidl^{1,2}

- LMU Munich, Munich, Germany. {jahn,durani,seidl}@dbs.ifi.lmu.de
 Munich Center for Machine Learning (MCML), Munich, Germany.
 - ³ Aalto University, Espoo, Finland collin.leiber@aalto.fi
 - ⁴ University of Vienna, Vienna, Austria. anna.beer@univie.ac.at

This appendix expands upon the paper "Going Offline: An Evaluation of the Offline Phase in Stream Clustering". It includes an expansion on related work in Appendix A, a more formalized description of the different CluStream variants in Appendix B, and an expansion on the experiments in Appendix C.

A Expanded Related Work

The offline phases proposed for online-offline stream clustering methods are usually part of a small selection of traditional offline clustering algorithms, a specific technique building upon one of those, or some summary-specific post-processing. In Table 1, we describe the offline processing methods for various methods that directly derive from CluStream [2]. The proposed summarization processing techniques of various stream clustering approaches are listed in Table 2. Here, EHCF refers to Exponential Histogram of Cluster Features [79]. The majority of the listed approaches use k-Means [48], DBSCAN [26] or DPC [65]. While some approaches use offline clustering techniques that fall outside these three, these typically are approaches that aim to bring these offline clustering techniques into the stream setting.

Table 1: Micro-Cluster Processing of selected variants of CluStream

Name	Micro-Cluster Processing
CluStream (2003) [2]	(weighted) k-Means [48]
Spark-CluStream (2016) [12]	(Fake weighted) k -Means [48, 12]
CluStream-OMRk (2016) [10]	Ordered Multiple Runs of k-Means [58]
CluStream-BkM (2016) [10]	Bisecting k-Means [70]
Clustream-hybrid (2017) [42]	k-Means++ [11]
INB-CluStream (2019) [72]	(weighted) k -Means [48]
CluStream-GT (2019) [32]	k-Means [48]
Online CluStream (in River (2021) [56])	Incremental k-Means [67]
DynamicCluStream (2023) [4]	Merging of overlapping micro-clusters

Table 2: Properties of selected Stream Clustering methods that utilize processing of summaries to produce clusters

or summaries to produce cluster		Cl. 4 : D :
Name	Summary Type	Clustering Processing
STREAM (2000) [33]	Prototype	k-Median [45]
STREAMLSEARCH (2002) [60]	Prototype	k-Median [45]
STREAMKmeans (2002) [60]	Prototype	k-Means [48]
CluStream (2003) [2]	Micro-Cluster	(weighted) k -Means [48]
SWClustering (2005) [79]	EHCF [79]	k-Means [48]
DenStream (2006) [18]	Micro-Cluster	DBSCAN [26]
D-Stream (2007) [23]	Density Grid	Combination of neighboring dense grids
SDStream (2009) [64]	EHCF [79]	DBSCAN [26]
ClusTree (2011) [40]	Micro-Cluster	Variable
LiarTree (2011) [41]	Micro-Cluster	Variable
DGClust (2011) [30]	Distributed Grid	k-Means [48]
StreamKM++ (2012) [1]	Coreset Tree	k-Means++ [11]
PreDeConStream (2012) [35]	Micro-Cluster	PreDeCon [15]
LeaDen-Stream (2015) [8]	Micro-Cluster	DBSCAN [26]
HDC-Stream (2014) [7]	Density Grid	modified DBSCAN [7]
StreamXM (2015) [9]	Coreset [52]	X-Means [62, 52]
MuDiStream (2016) [6]	Micro-Cluster & Density Grid	adapted DBSCAN (M-DBSCAN [6])
DBSTREAM (2016) [34]	Micro-Cluster	Thresholding of Connectivity Graph
EDDS (2017) [5]	Surface Core-Points	DBSCAN [26]/EDBSCAN [5]
MicroGRID (2018) [73]	Micro-Cluster & Density Grid	Combination of neighboring dense grids
DFPS-Clustering (2019) [77]	Data Chunk [53]	FPS-Clustering [75]
CVD-Stream (2020) [57]	Micro-Cluster	DBCAP [57]
GeoDenStream (2020) [44]	Micro-Cluster	DBSCAN [26]
DGStream (2020) [3]	Density Grid	DBSCAN [26]
DWDP-Stream (2022) [22]	Micro-Cluster	modified DPC [22]
ARD-Stream (2023) [27]	Micro-Cluster	Connected MCs in graph
EMCStream (2023) [81]	UMAP Embedding [55]	k-Means [48]
MCMSTStream (2024) [25]	Micro-Cluster	Minmum Spanning Tree [31]
OCEAN (2024) [28]	Density Grid	Grid-based DPC [28]
GB-FuzzyStream (2024) [76]	Fuzzy Granular/Micro-Balls	DPC [65]

B Formalization of CluStream Variants

Let mc_i^t be a micro-cluster at timestep t with identifier i, mean μ_i^t , weight w_i^t , and assignment radius $r_i^{+,t}$, which corresponds to the radius (here, average deviation) r times a maximum boundary factor mbf. The collection of all m microclusters for a stream dataset D at time step t is denoted as $MC(D^t)$. Here, let μ^t , w^t , and $r^{+,t}$ be the collections of means, weights, and assignment radii for the microclusters in $MC(D^t)$, respectively. Let \mathcal{L} be the set of cluster labels (typically numbers). The identifiers of the micro-clusters are also from the same space. The clustering produced by $\mathbf{CluStream-O}$ for the stream data D at timestep t can then be defined as $C_o(D^t): D^t \to \mathcal{L}, d \mapsto iNN(d, \mu^t)$, where $iNN(d, \mu^t)$ is the identifier i of the micro-cluster with the closest mean μ_i^t to the data point

d. That means the clustering of CluStream-O assigns each data point in D^t to its closest micro-cluster and considers its identifier i as its cluster label.

The clustering of **CluStream-C** for the stream data D at timestep t is $C_c(D^t, \psi)$: $D^t \to \mathcal{L}, d \mapsto C_{\text{Offline}}(\mu^t, \psi)(\mu^t_{iNN(d,\mu^t)})$, where $iNN(d, \mu^t)$ is the identifier i of the micro-cluster with the closest mean μ^t_i to the data point d and $C_{\text{Offline}}(Z, \psi)$ is an offline clustering performed on the dataset Z given parameters ψ . That means the clustering of CluStream-C assigns each data point in D^t to the cluster of its closest micro-cluster, where the clusters are determined by a separate offline clustering algorithm applied to the means of the micro-clusters. A special case is Wk-Means, which also incorporates the weights w^t into C_{Offline} .

For CluStream-W, the clustering for the stream data D at timestep t corresponds to $C_w(D^t, Z, \psi): D^t \to \mathcal{L}, d \mapsto C_{\mathrm{Offline}}(Z, \psi)(NN(d, Z))$ with $Z = ms(w^t, \mu^t)$. Here, $ms((w_1^t, ..., w_m^t), (\mu_1^t, ..., \mu_m^t))$ is a function that replicates the instances of μ_i^t according to the corresponding weight w_i^t . Furthermore, NN(d, Z) returns the data point within a dataset Z that is closest to the data point d, and $C_{\mathrm{Offline}}(Z, \psi)$ is an offline clustering performed on the dataset Z given parameters ψ . Ultimately, this translates to the approach of CluStream-W being similar to CluStream-C, but using a set that contains a number of instances of the means of the micro-clusters corresponding to the weight of those micro-clusters as input for the offline clustering algorithm.

DG(Cen, Rad, Wht, n) is a data generator that generates data around m centroids $Cen = (cen_1, ..., cen_m)$ within the respective radii $Rad = (rad_1, ..., rad_m)$. The weights $Wht = (wht_1, ..., wht_m)$ scale the number of instances per centroid to reach an overall number of data points that is approximately n.

In the case of **CluStream-S**, the clustering for the stream data D at timestep t can be described as $C_s(D^t, Z, \psi,): D^t \to \mathcal{L}, d \mapsto C_{\mathrm{Offline}}(Z, \psi)(NN(d, Z))$ with $Z = DG(Cen = \mu^t, Rad = \overrightarrow{0}, Wht = w^t, n)$. Once again, NN(d, Z) returns the data point within a dataset Z that is closest to the data point d, and $C_{\mathrm{Offline}}(Z, \psi)$ is an offline clustering performed on the dataset Z given parameters ψ . This formalization is similar to CluStream-W; however, the overall number of instances of the means of the micro-clusters used for offline clustering in CluStream-S is approximately n, rather than $\sum w^t$.

Finally, for Clustream-G the clustering for the stream data D at timestep t is defined as $C_g(D^t,Z,\psi):D^t\to \mathcal{L}, d\mapsto C_{\mathrm{Offline}}(Z,\psi)(NN(d,Z))$ with a $Z=DG(Cen=\mu^t,Rad=r^{+,t},Wht=w^t,n).$ As before, NN(d,Z) returns the data point within a dataset Z that is closest to the data point d, and $C_{\mathrm{Offline}}(Z,\psi)$ is an offline clustering performed on the dataset X given parameters ψ . As with CluStream-S, the number of instances for offline clustering is approximately n, though the instances are generated within the micro-cluster assignment radius rather than just at the position of the means of the micro-cluster.

C Expanded Experiments

C.1 Experiment Setup

The usage of AutoML techniques for stream clustering has been touched upon before in other work [19]. The typical state-of-the-art methods were not perfectly suited to a practical application as they need to be applied in a prequential and offline manner. While there are AutoML approaches for the stream setting that allow for dynamic tuning of the parameters on the stream [20], the used implementations of the stream clustering algorithms do not allow for this. Instead, we apply the SOTA hyperparameter optimization strategy SMAC3 [46]⁵ on a subset of the datasets for all evaluated algorithms. Previous research has shown that performing AutoML on downsampled data rather than the full dataset does not harm the selection process and can even improve full dataset performance [80]. As described in the paper, we use uniform random subsampling to get the subsampled datasets. The settings and dataset properties are in Table 3. Since we operate in a clustering setting rather than classification, we did not perform k-fold cross-validation and instead used the full dataset for subsampling and final evaluation. We still used five different subsampled sets as a stand-in. Per the described pipeline, we used the subset to preselect the most promising candidate for each subset and then applied it to the full dataset. For scoring, we used the sum of adjusted rand index (ARI) [38] and adjusted mutual information (AMI) [59], which we also used to determine the best-performing runs. Corresponding to the setup in [68], we set a five-hour limit to the parameter optimization process per subset. For the online-offline CluStream variants, we used 20% of the time to select parameters for the online phase (based on offline evaluation of default CluStream with weighted k-Means). Then, we used the micro-clusters for the subset produced with the best parameter settings as the basis for the offline optimization for the remaining 80% of the time budget. We do not optimize the parameters for the offline clustering for each offline phase but instead maintain one set of parameters for all offline phases of a run. For fairness, we repeated the data point generation for each parameter run, so no time was saved compared to fully running the CluStream algorithm. All variants of online-offline CluStream used the same micro-cluster sets. CluStream-O with a fixed or variable k were optimized separately as they typically did not have the same number of micro-clusters. The online phase of CluStream-O used the full time to perform parameter optimization, rather than just 20%. Outside of some experiments where some parameters failed to produce results, this setup resulted in 6 parameter options for datasets, which were split, and 2 parameter options for Complex-9. Each parameter setup was repeated for 5 seeds. Parameter setups were not necessarily unique. For the examination of the best-case performance, the offline parameters were fixed to the ones for the online phase they were determined with to ensure fairness to non-split methods. The exception here is the default parameter set. While an optimization for the default parameters was performed, this was not included when determining the best

 $^{^5}$ https://github.com/automl/SMAC3, last accessed 30.01.2025

parameters. Instead, the pure default case was included (as was the case for all methods). The number of ground truth clusters k was set according to the number of classes in the full dataset.

The exception to the split into subsets was Complex-9, for which we did not perform subsampling and instead used a single 24-hour run of SMAC3 on the full dataset. The parameter optimizations are summarized in Tables 6 and 7. A score of -inf means that the parameter optimization failed. This was the case only for Projected Dip-Means [21] for CluStream-S and CluStream-W for high-dimensional data. As a result, Projected Dip-Means was excluded from the experiments for these reconstruction methods for all datasets aside from the two-dimensional ones. Additionally, GB-FuzzyStream [76] failed to terminate on the Fertility-vs-Income dataset during optimization and did not produce any parameters.

GB-FuzzyStream [76] reports clusters on a timestep basis, and as such, the data was processed so that the evaluation batches each correspond to a timestep. The batch size of 1000 also corresponds to the example setup used in the code for GB-FuzzyStream.

There was a hard 7-day limit on the experiments per configuration. While most experiments finished within the allotted time, there were some experiments that failed. Specifically, this was the case for GB-FuzzyStream [76] on KDDCUP99 [69] for all tested parameters. There were also some parameters for CluStream-W on RBF-3 that did not result in finished runs. However, this was not the case for all parameter runs on the same datasets. We treat the incomplete runs as failed and instead report the performance across the runs that produced complete results. Some experiments for CluStream variants were performed using intermediary results by utilizing the stored micro-clusters or generated data. Still, care was taken to ensure that they would have finished within the 7-day limit if they had been run regularly, taking into account the runtime required to produce the intermediary results.

Table 3: Subset settings		

Name	Key	Type	Shuffled?	# Dimensions	# Samples	# Classes	Subset size
Complex-9 [13]	Comp-9	Synthetic	Yes	2	3031	9	-
DENSIRED-10 [39]	DEN-10	Synthetic	Yes	10	5000	11	2500 (50%)
RBF-3 40000 ⁶	RBF-3	Synthetic	No	2	40000	8	8000 (20%)
Fertility-vs-Income ⁷ [74]	FvI	Real-World	No	2	4014	2	-
KDDCUP99 [69]	KDD99	Real-World	No	41	494021	23	4940 (1%) [80]
Gas Sensor Array [69]	Gas	Real-World	No	128	13910	6	6955~(50%)

⁶ https://github.com/CIG-UFSCar/DS_Datasets/tree/master, last accessed 25.02.2025, based on data generation from MOA [14]

⁷ Dataset created from data from the Gapminder data repository https://www.gapminder.org/data/, last accessed: 05.06.2025

Table 4: Stream Clustering Parameter Optimization options. The note (log) means that the parameter was sampled based on the logarithm to prevent skew for wide parameter ranges.

Method	Parameter Name	Parameter Options	Default
STREAMKmeans [60]	chunk_size	[10, 1000]	10
	$_{ m sigma}$	[0, 1]	0.5
	${ m mu}$	[0, 1]	0.5
DenStream [18]	decaying_factor	[0.1, 1]	0.25
	beta	[0,1]	0.75
	mu	$[1, 100000] (\log)$	2
	epsilon	$[0.001, 0.5] (\log)$	0.02
	$n_samples_init$	5, 10, 25, 50, 75, 100, 250, 500, 750, 1000	1000
	$stream_speed$	1, 10, 100	100
DBSTREAM [34]	clustering_threshold	[0.05, 1]	1
	$fading_factor$	$[0.005, 0.015] (\log)$	0.01
	$cleanup_interval$	2, 5, 10, 100, 1000	2
	$intersection_factor$	[0.1, 0.5]	0.3
	$minimum_weight$	[1, 5]	1)
EMCStream [81]	horizon	[10, 1000]	100
	$\operatorname{ari_threshold}$	[0.5, 1]	1.0
	$ari_threshold_step$	$[0.0001, 0.01] (\log)$	0.001
MCMSTream [25]	W	[100, 2000]	235
	N	[2, 15]	5
	r	$[0.001, 0.25] (\log)$	0.033
	n_micro	[2, 25]	2
GB-FuzzyStream [76]	lam	[0.1, 5]	1
	batchsize	1000	1000
	threshold	[0.1, 0.8]	0.3
Clustream [2]	${\rm time_window}$	1000, 1500, 2000, 2500, 5000, 10000	1000
	$micro_cluster_r_factor$	[1.0, 5.0]	2.0
Clustream-O - fixed / var. k	$time_window$	1000, 1500, 2000, 2500, 5000, 10000	1000
	$micro_cluster_r_factor$	[1.0, 5.0]	2.0
	$\max_{\text{micro_clusters}}$	$\max[1, 100]$	100

Table 5: Offline Clustering Parameter Optimization options. The note (log) means that the parameter was sampled based on the logarithm to prevent skew

for wide parameter ranges.

Method	Parameter Name	Parameter Options	Default
k-Means/W k -Means [48]	init	k-means++ [11]	k-means++
SubKMeans [54]	outliers	1, 0	0
	mdl_for_noisespace	1, 0	0
	check_global_score	default, mdl	default
	n_i init	[1, 10]	1
X-Means [62]	n_clusters_init	[2, 20]	2
	check_global_score	True, False	True
	allow_merging	True, False	False
	n_split_trials	[2, 50]	10
P-DipM [21]	significance	[0.0001, 0.01] (log)	0.001
	n_random_projections	[0, 5]	0
	n split trials	[2, 50]	10
	allow_merging	table, function, bootstrap	table
SC [49]	affinity	rbf, nearest neighbors	rbf
	gamma	$[0,\overline{5}]$	1.0
	n_neighbors	[2,100]	10
SCAR [37]	normalize	0,1	0
	weighted	0,1	0
	alpha	[0,1]	0.5
	nn	[2,100]	32
	theta	[1,1000]	50
	m	[0,1]	0.5
	laplacian	0,1,2	0
SpectACl [36]	epsilon	[0,2]	1
	normalize_adjacency	0,1	0
DBSCAN [26]	eps	[0,0.5]	0.5
	$\min_{samples}$	[1,100]	5
HDBSCAN [17]	cluster_selection_epsilon	[0,0.1]	0.0
	min_cluster_size	[1,100]	5
	allow_single_cluster	0,1	0
	cluster_selection_method	eom, leaf	eom
	alpha	[0,1]	1
RNNDBS [16]	n_neighbors	[2,100]	5
MDBSCAN [63]	n_neighbors	[2,100]	5
	eps	[0,0.5]	0.5
	min_samples	[1,100]	5
DPC [65]	dc	Auto (<0), [0,0.5]	Auto
	density_threshold	Auto (<0) , $[0,0.5]$	Auto
	distance_threshold	Auto (<0) , $[0,0.5]$	Auto
	gauss_cutoff	0,1	1
	anormal	0,1	1
	distance_metric	euclidean, cosine	euclidean
SNN-DPC [47]	n_neighbors	[2,100]	5
DBHD [24]	min_cluster_size	[2,100]	5
	beta	[0,1]	0.1
	rho	[0,5]	1.2

Table 6: Summaries of stream clustering parameter optimization. The count is the average number of examined parameter settings per subset, score is the average score (ARI+AMI) achieved (the maximal possible score is 2). CluStream was optimized for Wk-Means. GB-FuzzyStream [76] failed to produce results for FvI.

Method	Con	1p-9	DEN	DEN-10		RBF-3		FvI		KDD99		Gas	
	Runs	Score	Runs	Score	Runs	Score	Runs	Score	Runs	Score	Runs	Score	
STREAMKmeans	34568	1.09	8915.4	0.85	12488.8	1.24	25165	1.81	1265.6	1.79	2270.4	0.24	
DenStream	5678	1.16	1874.0	1.16	2953.8	0.94	4526	1.66	2330.2	1.88	877.2	0.65	
DBSTREAM	16548	1.18	1692.2	1.42	4537.2	1.25	11772	1.60	729.2	1.77	59.6	0.54	
EMCStream	1161	1.48	272.6	1.52	31.4	0.92	579	1.87	51.8	1.18	32.2	0.85	
MCMSTStream	1194	1.40	70.0	1.58	74.6	1.19	1727	1.88	7.8	1.74	1.0	0.00	
GB-FuzzyStream	5620	0.84	1325.2	0.68	395.2	0.66	-	-	912	1.26	592.6	0.28	
CluStream-O - var. k	9176	1.16	189.8	1.30	1806.8	0.98	6064	1.71	25.0	1.76	7.8	0.71	
CluStream-O - fixed k	12578	1.06	2219.4	0.49	2768.2	0.98	9032	1.71	141.2	1.67	278.2	0.40	
CluStream-C	1314	1.13	27.4	1.26	120.4	0.97	218	1.90	2.2	1.66	1.0	0.53	

C.2 Expanded Offline Clustering

Aside from the methods introduced in the main paper, we also investigated the performance of the offline phase with SCAR [37] and MDBSCAN [63]. SCAR improves upon Spectral Clustering by increasing the robustness [49] by pruning noisy edges and by accelerating the eigendecomposition calculation. MDBSCAN uses a preprocessing scheme to extract low-density clusters before performing a DBSCAN clustering [26]. The implementation for SCAR stems from its repository⁸. MDBSCAN was self-implemented and can be found in our repository. We include the full ARI and NMI scores for all evaluated methods in Table 8. We also report the performance for default parameters in Table 9. Aside from this, we also perform a single-parameter optimization run using micro-clusters produced using the default parameters for the online phase. We then apply these parameters as an alternative for the online-offline CluStream variants when using default parameters in the online phase. Ultimately, we report the best performance according to the sum of ARI and AMI for runs, where the online phase used default parameters, but the parameters of the offline phase were optimized, in Table 10. The competitors do not allow for this procedure, but their default parameter scores are still included for comparison. Allowing for optimization in the offline phase while still maintaining the same default online phase leads to improvements over CluStream-O in most cases.

C.3 Expanded Metrics

Aside from ARI [38] and AMI [59] reported in the main paper, we also calculated several additional metrics. These were the normalized mutual information (NMI) [71], clustering accuracy [78, 43], precision[61], recall [61], F1 score [50],

 $^{^8}$ https://github.com/SpectralClusteringAcceleratedRobust/SCAR, last accessed: Feb 20th, 2025

Fowlkes—Mallows index (FMI) [29], Purity [51], Homogeneity [66] and Completeness [66]. Additionally, we tracked the average number of produced clusters per timestep for these runs. These can be found for the best-performing parameters based on ARI and AMI in Figures 1 to 12. Additionally, the numeric values for these can be found in Tables 11 to 22. Furthermore, we include these values for the default parameters as well in Tables 23 to 34. Finally, we also include all the metrics for experiments using the best parameters according to the sum of ARI and AMI for the offline phase, but with default parameters in the online phase in Tables 35 to 46. Here, the default parameters of the competitors are included for comparison.

Table 7: Summaries of offline clustering parameter optimization. The count is the average number of examined parameter settings per subset, score is the average score (ARI+AMI) achieved (the maximal possible score is 2). The online parameters are the ones obtained when optimizing CluStream. A score of -inf means that the optimization run failed. This was the case for Projected Dip-Means [21] for higher dimensions for CluStream-W and CluStream-S.

	Score 1.70 1.71 1.72 1.72 1.75	Runs 2.0 189.8 2391.2	Score 0.38 0.41
	1.70 1.71 1.72 1.72 1.75	2.0 189.8	0.38
CluStream-C SubKMeans 206 0.99 188.0 0.91 188.0 0.96 209 1.79 183.8 CluStream-C X-Means 3689 1.14 2715.0 1.06 2732.6 0.97 4121 0.79 2626.4 CluStream-C P-DipM 10734 0.00 4057.6 0.00 5038.8 0.04 22116 1.00 5021.0 CluStream-C SC 32057 1.21 4672.8 1.15 3885.2 0.98 25159 1.88 5657.4 CluStream-C SCAR 9456 1.09 3631.2 1.21 3317.0 0.98 5174 1.75 3296.6	1.71 1.72 1.72 1.75	189.8	11
CluStream-C X-Means 3689 1.14 2715.0 1.06 2732.6 0.97 4121 0.79 2626.4 CluStream-C P-DipM 10734 0.00 4057.6 0.00 5038.8 0.04 22116 1.00 5021.0 CluStream-C SC 32057 1.21 4672.8 1.15 3885.2 0.98 25159 1.88 5657.4 CluStream-C SCAR 9456 1.09 3631.2 1.21 3317.0 0.98 5174 1.75 3296.6	1.72 1.72 1.75	III	0.41
CluStream-C P-DipM 10734 0.00 4057.6 0.00 5038.8 0.04 22116 1.00 5021.0 CluStream-C SC 32057 1.21 4672.8 1.15 3885.2 0.98 25159 1.88 5657.4 CluStream-C SCAR 9456 1.09 3631.2 1.21 3317.0 0.98 5174 1.75 3296.6	$1.72 \\ 1.75$	2391.2	
	1.75		0.78
CluStream-C SC 32057 1.21 4672.8 1.15 3885.2 0.98 25159 1.88 5657.4 CluStream-C SCAR 9456 1.09 3631.2 1.21 3317.0 0.98 5174 1.75 3296.6		4776.6	0.40
CluStream-C SCAR 9456 1.09 3631.2 1.21 3317.0 0.98 5174 1.75 3296.6		1800.2	0.60
	1.81	3286.6	0.64
CluStream-C SpectACl 34551 1.51 10123.2 1.45 10373.0 1.02 27457 1.98 9223.0	1.73	11215.2	0.66
CluStream-C DBSCAN 22791 1.60 6611.6 1.33 9045.2 0.83 15135 1.79 7695.6	1.71	7170.6	0.73
CluStream-C HDBSCAN 10486 1.58 4064.4 1.23 4353.2 0.88 8745 1.90 4812.6	1.73	4593.0	0.73
CluStream-C RNN-DBS 251 1.06 215.6 0.48 234.2 0.85 185 1.41 195.8	1.69	215.6	0.66
CluStream-C MDBSCAN 10749 1.58 4125.0 1.32 4408.8 0.87 9000 1.93 4905.8	1.71	4662.2	0.73
CluStream-C DPC 19551 1.21 6915.6 1.38 7030.8 1.00 12522 1.67 8649.6	1.79	8210.0	0.80
		187.4	
	1.72	11	0.62
CluStream-C DBHD 18213 1.28 5386.2 1.36 6953.4 0.99 15825 1.93 8503.8	1.74	3831.8	0.83
CluStream-W k-Means 2 1.03 2.0 1.23 2.0 0.97 2 1.90 2.0	1.66	2.0	0.56
CluStream-W SubKMeans 194 1.02 194.0 1.34 189.2 0.97 218 1.90 197.0	1.66	198.8	0.58
CluStream-W X-Means 1743 0.64 820.8 1.29 217.0 0.74 1293 0.62 659.0	1.45	212.6	0.71
CluStream-W P-DipM 1877 0.67 3.0 -inf 357.8 0.61 3521 0.39 3.2	-inf	1.2	-inf
CluStream-W SC	1.68	1053.0	0.86
CluStream-W SCAR 114 1.11 1270.4 1.35 378.6 0.86 175 1.37 772.2	1.62	292.2	0.76
CluStream-W SpectACl 6940 1.68 3904.0 1.46 2373.6 1.03 7263 1.87 3763.2	1.77	1638.4	0.66
CluStream-W DBSCAN 17309 1.60 7398.6 1.46 7673.6 0.95 14583 1.79 7055.8	1.75	4984.0	0.75
CluStream-W HDBSCAN 9705 1.59 4026.8 1.42 3816.6 0.91 8436 1.93 3579.8	1.73	1740.2	0.82
CluStream-W RNN-DBS 209 0.89 228.8 1.27 199.6 0.64 158 1.21 92.8	1.54	91.6	0.75
CluStream-W MDBSCAN 16586 1.61 6380.4 1.33 5575.4 0.98 13878 1.93 5012.4	1.82	2350.8	0.80
CluStream-W DPC	1.71	80.8	0.72
CluStream-W SNN-DPC 221 1.27 240.8 0.96 106.2 0.78 275 1.90 41.0	1.46	27.6	0.42
CluStream-W DBHD 17293 1.28 5358.2 1.36 6263.0 0.99 14205 1.92 5763.8	1.74	1218.2	0.83
CluStream-S k-Means 2 1.07 2.0 1.22 2.0 0.96 2 1.90 2.0	1.67	2.0	0.53
CluStream-S SubKMeans 194 1.03 185.6 1.34 185.6 0.97 170 1.90 198.8	1.67	182.6	0.57
CluStream-S X-Means 1693 0.79 509.2 1.26 169.0 0.78 1207 0.63 520.2	1.45	211.4	0.72
CluStream-S P-DipM 1681 0.68 3.0 -inf 257.4 0.61 3254 0.38 3.0	-inf	1.0	-inf
	1	11	!!
	1.69	1957.6	0.86
CluStream-S SCAR 703 1.28 926.2 1.34 421.0 0.95 151 1.22 537.8	1.61	396.6	0.78
CluStream-S SpectACl 7383 1.67 3034.6 1.45 2493.6 1.03 7020 1.95 3898.0	1.77	2388.0	0.65
CluStream-S DBSCAN 14943 1.60 7191.4 1.46 5755.8 0.93 14439 1.79 5199.0	1.76	3326.6	0.74
CluStream-S HDBSCAN 7857 1.59 3921.0 1.43 3101.6 0.92 8745 1.93 3012.2	1.74	1982.6	0.81
CluStream-S RNN-DBS 197 1.22 249.8 1.26 201.2 0.65 263 1.23 195.8	1.53	222.2	0.76
CluStream-S MDBSCAN 15501 1.61 5842.2 1.33 4518.6 0.98 17466 1.93 4206.0	1.83	2307.2	0.82
CluStream-S DPC 2503 1.18 753.2 1.34 286.0 0.94 2806 1.80 435.2	1.74	295.8	0.75
CluStream-S SNN-DPC 248 1.36 201.2 0.99 99.2 0.94 200 1.90 101.8	1.57	95.8	0.54
CluStream-S DBHD 13979 1.28 4994.4 1.36 4890.6 0.99 16075 1.93 4430.4	1.74	968.4	0.82
CluStream-G k-Means 2 1.02 2.0 1.25 2.0 0.94 2 1.89 2.0	1.67	2.0	0.54
CluStream-G SubKMeans 176 1.06 192.2 1.36 197.6 0.96 146 1.89 176.0	1.66	211.4	0.57
CluStream-G X-Means 1585 0.81 430.0 1.28 611.8 0.89 381 -inf 645.2	1.54	339.0	0.72
CluStream-G P-DipM 16107 1.12 838.8 1.29 6450.0 0.80 17219 0.90 1015.6	1.65	133.2	0.77
CluStream-G SC 3206 1.32 1621.4 1.29 1875.2 0.98 8690 1.89 868.4	1.66	2550.6	0.86
CluStream-G SCAR	1.57	672.0	0.79
CluStream-G SpectACl 9335 1.58 2744.2 1.41 2412.2 1.00 7770 1.91 3757.8	1.78	2688.0	0.64
CluStream-G DBSCAN 20367 1.52 8873.8 1.41 8133.8 0.93 22287 1.84 8140.6	1.76	4099.6	0.75
CluStream-G HDBSCAN 9879 1.43 3894.0 1.39 4006.6 0.96 9657 1.84 3682.4	1.74	2215.6	0.13
	1.74	196.4	
CluStream-G RNN-DBS 233 1.35 214.4 1.12 220.4 0.81 233 1.42 217.4 CluStream-G MDBSCAN 20878 1.55 6961.2 1.34 6143.6 1.01 21909 1.93 5503.6	1.83	2860.8	0.77
			0.85
CluStream-G DPC 4122 1.19 822.4 1.30 492.8 1.04 3201 1.65 703.4	1.60	397.6	0.77
CluStream-G SNN-DPC 209 1.30 220.2 1.33 148.8 1.00 248 1.48 178.0	1.78	120.2	0.69
CluStream-G DBHD 19790 1.66 1120.4 1.39 2454.0 1.12 17694 1.19 43.0	1.51	43.6	0.83

Table 8: Mean metric scores over 5 seeds for evaluated datasets for best-performing parameters according to the sum of ARI and AMI ($\times 100$). The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

scores are marked as bo	\mathbf{u} , an	IU U	ne se	COHO	- nesi	SCO.	ies a	16 <u>ur</u>	idem	neu.		
Name	Comp	o-9	DEN	V-10	RB	F-3	Iv	·F	KD	D99	G	as
	ARI A		ARI			AMI			ARI	AMI	ARI	A MT
CTDEAMIZ												
STREAMKmeans		31.6	28.8	52.6	68.4	74.6	91.3	88.1	94.0		11.6	17.0
DenStream	50.0 7	70.5	60.0	73.2	63.3	69.9	86.1	87.4	79.2	75.9	35.3	53.0
DBSTREAM	56.9 6	59.3	67.8	74.9	69.6	76.1	74.2	74.9	92.5	85.2	26.3	50.1
EMCStream		30.4	60.3	73.9	53.6	66.3	92.6	90.8	81.6		35.1	41.7
MCMSTStream		74.5		84.7	74.8	78.1	95.3	92.5	90.3	82.7	16.4	38.4
GB-FuzzyStream	20.0 - 5	57.5	19.8	43.4	31.0	51.4	-	-	-	-	5.8	20.4
CluStream-O - var. k	48.7 6	26 O	53.2	70.7	CE O	73.2	06.0	016	100 5	00 5	27.4	EO 1
		6.9		70.7	65.2		86.2	84.6	89.5		27.4	50.1
CluStream-O - fixed k	41.6 6	54.7	16.0	34.3	60.2	71.2	86.2	84.6	87.1	80.6	25.5	37.8
CluStream-O - k=100	9.5 5	53.0	49.7	69.8	41.9	60.3	5.4	26.8	80.3	67.5	24.2	50.5
CluStream - Wk-Means	36.8 6	32.8	54.5	67.9	75.3	78.4	95.7	93.4	89.7	77.5	32.0	45.2
CluStream-C - k-Means	37.6	33.4	14.4	37.2	73.5	77.8	90.9	87.7	90.4	79.6	24.7	39.4
CluStream-W - k-Means		32.8	54.5	67.9	75.3	78.4	95.7	93.4	89.7	77.5	32.0	45.2
CluStream-S - k-Means		33.5	52.1	66.9	76.3	78.9	95.5	93.4	89.8	77.9	30.7	44.1
CluStream-G - k-Means	37.0 6	32.9	54.1	68.1	76.8	79.2	95.5	93.3	89.8	77.9	30.8	44.0
CluStream-C - SubKMeans		31.3	35.9	53.9	73.5	77.5	91.6	87.9	90.4	79.6	24.2	38.7
CluStream-W - SubKMeans		52.0	57.4	71.9	74.3	78.2	95.3	92.9	89.7	77.6	31.9	45.6
CluStream-S - SubKMeans		31.9	51.8	69.0	75.1	78.5	94.9	92.9	89.8	77.9	31.4	44.9
CluStream-G - SubKMeans	36.1	32.2	56.9	71.2	76.1	78.8	95.5	93.3	89.8	77.9	31.5	44.9
CluStream-C - X-Means		66.7	26.6	47.3	76.3	79.3	30.5	50.0	90.2	79.6	29.8	52.4
CluStream-W - X-Means		53.2	50.4	73.0	69.6	75.2	21.2	41.5	80.3	67.7	24.2	50.6
CluStream-S - X-Means		63.0	50.0	71.6	68.3	73.7	20.0	39.8	80.3	67.8	24.3	50.7
CluStream-G - X-Means	19.4 5	58.9	52.9	71.6	78.0	80.1	19.3	36.8	86.1	69.9	24.3	50.8
CluStream-C - P-Dip-M		0.0	0.0	0.0	18.3	24.4	24.9	24.9	89.6	79.0	12.7	20.3
		57.5			42.3			30.9	1	10.0		
CluStream-W - P-Dip-M			-	-		60.6	7.1		-	-	-	-
CluStream-S - P-Dip-M	13.2 5	57.7	-	-	44.8	61.9	6.8	30.2	-	-	-	-
CluStream-G - P-Dip-M	41.0 6	68.5	51.7	69.9	73.5	78.0	36.5	51.4	89.6	76.7	26.7	53.1
CluStream-C - SC		72.8	49.6	64.7	76.8	79.0	95.1	92.4	91.2	81.4	31.6	45.3
				70.3		77.1						
CluStream-W - SC		73.7	55.3		73.5		95.5	93.3	89.0	77.8	$\frac{39.5}{20.5}$	54.3
CluStream-S - SC		79.5	54.6	71.1	72.9	76.7	95.5	93.3	88.9	77.9	<u>39.5</u>	54.2
CluStream-G - SC	52.1 7	76.7	51.1	69.9	73.1	76.8	95.5	93.3	88.8	77.4	39.7	54.1
CluStream-C - SCAR	41.0	66.4	48.3	63.3	75.4	78.0	71.3	69.9	90.7	83.8	28.5	44.3
CluStream-W - SCAR					56.8			55.9	30.1	00.0		47.9
		37.3	56.3	69.7		68.3	55.2		-	-	35.6	
CluStream-S - SCAR		75.5	58.6	70.6	65.1	71.5	55.9	57.6	87.2	73.8	36.9	48.4
CluStream-G - SCAR	48.6	73.0	52.6	69.5	65.9	71.8	50.0	49.8	82.8	73.5	37.1	48.0
CluStream-C - SpectACl	60.8 7	79.0	55.9	74.5	66.5	76.4	84.9	86.5	89.6	80.0	26.4	39.0
CluStream-W - SpectACl		35.7	55.8	73.9	62.2	71.9	94.8	92.7	91.1	82.4	29.3	41.1
Clustream-w - spectACI												
CluStream-S - SpectACl		33.3	60.1	75.2	69.6	77.4	98.1	96.6	91.2	82.4	30.2	41.8
CluStream-G - SpectACl	57.5 7	77.2	58.4	74.9	63.9	73.4	94.3	92.9	91.3	82.3	29.8	41.7
CluStream-C - DBSCAN	73.4 8	36.5	52.8	70.3	63.7	77.1	88.9	89.6	90.6	78.0	26.5	50.9
CluStream-W - DBSCAN		36.5	53.6	75.3	63.2	77.4	89.1	89.8	91.2	81.3	27.3	51.3
CluStream-S - DBSCAN		86.6	52.8	74.4	62.0	75.9	89.0	89.6	90.4	82.0	27.5	51.4
CluStream-G - DBSCAN	58.4 7	78.3	55.3	75.6	73.4	82.0	88.6	89.0	90.5	82.1	26.8	51.4
CluStream-C - HDBSCAN	71.9 8	35.7	58.3	73.2	72.0	79.6	96.0	94.1	90.7	80.5	34.7	51.4
CluStream-W - HDBSCAN		35.8	58.5	76.8	67.6	77.6	97.4	95.7	90.1	80.9	37.3	51.1
CluStream-S - HDBSCAN		35.8	57.5		69.8	77.3	$\frac{37.4}{97.4}$	95.7	90.2	81.2	39.1	54.6
				$\frac{77.3}{77.0}$								
CluStream-G - HDBSCAN		78.7	56.7	77.0	74.2	80.5	81.7	83.6	90.6	81.4	39.1	54.7
CluStream-C - RNN-DBS		69.2	9.5	22.1	65.1	71.9	72.9	72.1	87.6	79.8	32.4	49.0
CluStream-W - RNN-DBS	39.6 4	19.3	50.9	71.4	40.0	56.3	57.8	63.2	76.0	66.6	25.9	51.0
CluStream-S - RNN-DBS		73.2	49.5	70.8	44.4	60.4	58.7	63.9	76.8	66.7	27.9	51.0
CluStream-G - RNN-DBS		73.2	30.2	58.5	54.3	65.4	55.6	62.2	76.8	68.6	30.3	52.0
CluStream-C - MDBSCAN	71.6 8	36.2	51.1	69.4	62.8	73.1	97.2	<u>95.9</u>	90.6	78.0	26.4	51.0
CluStream-W - MDBSCAN	73.6 8	7.0	52.4	70.6	62.5	73.3	97.3	$\overline{95.9}$	92.1	83.8	29.2	52.9
CluStream-S - MDBSCAN	$\frac{10.0}{73.9}$ 8		51.4	70.4	62.4	73.0	97.3	$\frac{55.5}{95.9}$	92.1	83.9	31.3	54.5
CluStream-G - MDBSCAN		30.0	52.5	68.3	66.7	75.8	96.7	95.3	92.2	84.0	31.0	54.3
CluStream-C - DPC		75.7	56.5	70.2	69.3		83.2	83.3	92.1		31.5	
CluStream-W - DPC	47.3 7	74.8	57.3	69.8	67.7	74.8	88.9	91.2	87.6	81.0	26.3	51.1
CluStream-S - DPC		75.6	59.7	71.3	67.5	73.4	88.9	91.2	93.0	86.5	28.6	48.4
CluStream-G - DPC				70.9								
		73.9	57.7		76.7	79.2	75.3	76.2	90.1	82.1	32.4	52.1
CluStream-C - SNN-DPC		68.0	25.6	49.4	59.0	69.2	55.8	61.4	86.1	77.6	29.6	47.0
CluStream-W - SNN-DPC	52.2 7	75.3	44.2	64.4	56.1	63.7	87.8	86.5	85.4	74.3	29.9	43.8
CluStream-S - SNN-DPC		78.5	38.9	60.2	54.6	62.9	96.1	94.2	83.8		27.4	40.7
CluStream-G - SNN-DPC		72.7	56.0	69.9	70.2	77.4	66.3	68.0	90.6		34.3	46.6
CluStream-C - DBHD		75.9	57.7	69.9	73.4	78.5	97.3	95.9	88.4	79.4	35.6	54.0
CluStream-W - DBHD	52.3 7	75.9	57.7	69.9	73.4	78.5	96.9	$\overline{95.5}$	88.4	79.4	35.6	54.0
CluStream-S - DBHD		75.9	57.7	69.9	73.4	78.5	97.3	95.9	88.4		35.6	54.0
CluStream-G - DBHD		33.5	52.6	73.3	81.4		49.7	$\frac{30.3}{60.4}$	74.7	68.0	34.5	53.5
Orubureanii-G - DDIID	00.0	0.0	02.0	10.0	61.4	04.2	49.1	00.4	14.1	00.0	04.0	00.0

Table 9: Mean metric scores over 5 seeds for evaluated datasets for the default parameters ($\times 100$). The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

scores are <u>underlined</u> .												
Name	Con	np-9	DEI	N-10	RB	F-3	Iv	F	KD	D99	G	as
	ARI	AMI	ARI	AMI	ARI	AMI	ARI	AMI	ARI	AMI	ARI	AMI
STREAMKmeans	36.5	56.6	0.3	2.3	54.9	66.5	13.3	14.4	0.0	0.0	0.0	0.0
DenStream	7.9	48.7	32.4	63.4	59.2	68.0	19.0	39.9	77.6	67.6	26.8	39.4
DBSTREAM	0.0	0.0	0.1	0.7	0.0	0.0	0.0	0.0	92.7	84.4	6.2	11.7
EMCStream	48.9	67.4	58.4	70.5	53.6	66.3	26.2	27.1	57.2	60.4	4.1	6.6
MCMSTStream	1.0	14.5	7.5	32.5	70.0	74.0	42.5	54.1	58.9	55.8	16.4	38.4
GB-FuzzyStream	2.9	9.9	13.3	36.2	25.4	49.0	-	-	-	-	4.6	16.7
CluStream-O - var. k	9.5	53.0	49.7	69.8	19.0	51.4	5.4	26.8	68.1	57.2	19.5	46.8
CluStream-O - fixed k	36.4	62.1	7.7	21.4	57.2	68.0	38.4	40.6	83.9	77.2	25.5	37.8
CluStream-O - k=100	9.5	53.0	49.7	69.8	19.0	51.4	5.4	26.8	68.1	57.2	19.5	46.8
CluStream - Wk-Means	36.8	62.8	50.2	66.4	75.2	78.4	95.7	93.4	86.7	74.9	32.0	45.2
CluStream-C - k-Means	37.1	62.8	14.4	37.2	70.2	76.2	90.9	87.7	89.9	78.3	24.7	39.4
CluStream-W - k-Means	36.8	62.8	50.2	66.4	75.2	78.4	95.7	93.4	86.7	74.9	32.0	45.2
CluStream-S - k-Means	35.4	61.8	48.8	65.0	<u>76.3</u>	<u>78.9</u>	94.9	92.4	86.9	75.3	30.7	44.1
CluStream-G - k-Means	36.1	62.0	50.0	66.0	76.8	79.2	95.4	93.1	87.0	75.3	30.8	44.0
CluStream-C - SubKMeans	35.7	61.3	15.3	40.2	70.6	76.1	91.2	87.8	89.8	78.3	24.2	38.7
CluStream-W - SubKMeans	35.4	61.5	49.9	66.3	73.7	77.3	95.3	92.9	86.6	75.0	31.9	45.6
CluStream-S - SubKMeans	35.5	61.6	49.8	65.9	74.8	77.9	94.9	92.4	87.0	75.4	31.4	44.9
CluStream-G - SubKMeans	36.1	61.9	51.2	66.9	76.1	78.8	95.4	93.0	87.0	75.4	31.5	44.9
CluStream-C - X-Means	$\frac{46.0}{0.7}$	64.4	5.7	18.6	49.7	62.7	30.5	50.0	84.6	72.9	28.1	48.5
CluStream-W - X-Means	9.7	53.2	50.2	72.9	66.5	73.4	21.2	41.5	68.2	57.6	19.5	47.0
CluStream-S - X-Means	9.5	53.0	50.0	71.5	64.2	72.0	$20.0 \\ 19.3$	39.8	68.2	57.3	19.5	46.9
CluStream-G - X-Means	19.4	58.9	51.4	71.0	68.7	75.0	24.9	36.8	73.6		19.5	46.9
CluStream-C - P-Dip-M CluStream-W - P-Dip-M	13.4	57.5	0.0	0.0	$\frac{3.3}{24.5}$	$\begin{bmatrix} 5.0 \\ 56.1 \end{bmatrix}$		24.9	89.5	79.0	12.7	20.3
CluStream-S - P-Dip-M	13.4	57.5 57.7	-	-	24.0	55.7	$6.5 \\ 6.4$	$\begin{vmatrix} 29.6 \\ 29.3 \end{vmatrix}$	_	_	-	-
CluStream-G - P-Dip-M	39.6	66.7	50.9	70.2	70.8	77.3	32.1	49.8	81.4	67.5	22.4	50.2
CluStream-C - SC	30.3	52.6	10.2	31.1	57.5	68.2	90.9	87.0	90.4	79.6	23.0	36.3
CluStream-W - SC	25.7	53.3	37.2	55.2	73.5	77.1	94.9	92.4	51.7	51.3	22.0	35.1
CluStream-S - SC	$\frac{25.7}{25.7}$	53.7	29.9	50.4	72.9	76.7	94.9	92.4	48.8	50.0	22.8	35.6
CluStream-G - SC	24.8	51.9	31.8	51.9	73.1	76.8	95.4	93.2	48.9	50.0	22.8	35.6
CluStream-C - SCAR	30.0	50.2	2.2	15.1	45.8	57.9	32.9	35.5	89.7	76.2	22.1	33.5
CluStream-W - SCAR	13.5	44.5	33.4	58.3	17.2	41.7	5.3	13.4	-	-	11.6	31.3
CluStream-S - SCAR	11.1	42.9	24.9	52.6	16.9	41.7	6.9	14.3	61.3	56.3	9.9	30.4
CluStream-G - SCAR	15.7	45.6	47.8	65.8	30.7	52.2	8.1	14.7	66.3	60.8	11.1	32.1
CluStream-C - SpectACl	10.8	29.4	19.9	42.3	21.5	32.8	28.0	24.4	86.7	72.4	22.3	32.7
CluStream-W - ŠpectACl	5.9	28.6	37.4	59.3	28.6	41.7	27.8	33.2	87.8	74.2	22.6	32.1
CluStream-S - SpectACl	5.8	28.6	37.5	58.8	26.0	39.2	30.4	34.2	88.4	74.7	23.8	33.3
CluStream-G - SpectACl	5.1	24.4	36.5	58.2	20.3	34.1	29.7	33.6	88.2	74.6	22.9	32.5
CluStream-C - DBSCAN	0.0	0.0	6.2	25.2	0.0	$\mid 0.0 \mid$	0.0	0.0	66.6	64.1	10.6	19.3
CluStream-W - DBSCAN	0.0	0.0	6.2	25.2	0.0	0.0	0.0	0.0	91.2	81.3	9.0	20.0
CluStream-S - DBSCAN	0.0	0.0	6.1	25.0	0.0	0.0	0.0	0.0	91.2	80.7	9.0	20.0
CluStream-G - DBSCAN	0.0	0.0	6.0	24.3	0.0	0.0	0.0	0.0	91.2	80.8	9.1	20.1
CluStream-C - HDBSCAN	25.2	47.5	3.2	8.0	61.8	74.4	88.7	87.4	83.7	77.2	28.7	40.6
CluStream-W - HDBSCAN	11.2	54.4	56.2	76.3	21.9	54.9	6.1	29.0	78.0	65.9	20.5	49.4
CluStream-S - HDBSCAN	11.4 22.2	54.9	56.4	$\frac{76.8}{77.0}$	21.3	54.5	6.0	28.7	76.9	64.2	20.4	$\begin{vmatrix} 49.2 \\ 49.2 \end{vmatrix}$
CluStream-G - HDBSCAN CluStream-C - RNN-DBS	15.2	30.3	$\frac{56.7}{0.1}$	77.0 1.0	70.4	78.1 19.6	13.9 72.9	33.9 72.1	76.9	64.3	20.4 $ 17.1 $	26.6
CluStream-W - RNN-DBS	8.5	48.7	28.9	56.7	19.6	51.7	6.1	27.8	78.6 63.6	75.6 58.4	19.7	47.9
CluStream-S - RNN-DBS	8.2	49.0	42.0	67.0	19.6	51.7	5.7	$\frac{27.8}{27.7}$	63.1	56.2	19.7	47.8
CluStream-G - RNN-DBS	36.2	66.1	19.5	42.3	48.1	60.8	18.8	38.0	63.9	57.4	19.9	48.2
CluStream-C - MDBSCAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$\frac{62.3}{62.3}$	63.0	5.5	10.7
CluStream-W - MDBSCAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	91.7	81.9	8.8	19.3
CluStream-S - MDBSCAN	0.0	0.0	0.1	0.9	0.0	0.0	0.0	0.0	$\frac{91.5}{91.5}$	$\frac{81.5}{81.5}$	8.8	19.3
CluStream-G - MDBSCAN	0.0	0.0	0.2	1.3	0.0	0.0	0.0	0.0	91.5		8.9	19.4
CluStream-C - DPC	14.4	32.8	7.3	14.3	48.3		71.1	73.8	32.1	37.8	8.6	14.2
CluStream-W - DPC	25.6	49.2	7.5	20.6	17.9	25.4	38.4	40.5	55.1	52.1	16.5	24.8
CluStream-S - DPC	25.3	48.5	3.3	9.2	9.4	13.6	38.4	40.5	11.5	10.9	9.0	11.9
CluStream-G - DPC	16.1	37.1	0.0	0.0	44.1	59.7	9.4	16.1	4.5	4.8	8.8	12.3
CluStream-C - SNN-DPC	45.6	66.8	15.5	34.3	57.1	68.0	31.9	35.7	82.7	71.0	29.6	47.0
CluStream-W - SNN-DPC	33.0	56.3	25.8	50.8	40.3	55.2	57.1	56.0	81.8	72.8	29.9	43.8
CluStream-S - SNN-DPC	30.9	56.7	26.0	50.5	42.8	58.0	68.0	66.5	79.8	71.1	27.4	40.7
CluStream-G - SNN-DPC	43.5	69.0	15.0	35.1	69.1	76.7	46.4	52.0	89.7	78.4		47.3
CluStream-C - DBHD	43.6	72.7	37.7	60.2	66.6	74.7	29.2	46.1	88.2		35.6	
CluStream-W - DBHD		72.7	37.7	60.2	66.6	74.7	29.2	46.1	88.2		35.6	
CluStream-S - DBHD		72.7	37.7	60.2	66.6	74.7	29.2	46.1	88.2		35.6	
CluStream-G - DBHD	5.6	43.5	22.6	59.1	5.9	39.5	2.5	22.9	61.6	51.7	5.5	37.4

Table 10: Mean metric scores over 5 seeds for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The best scores are marked as **bold**, and the second-best scores are underlined.

pest scores are <u>underline</u>	_					-			1775	D 00		
Name		np-9		N-10	RB		lv A D I		KD.			as
CEDEAMI	ARI			AMI		AMI		AMI		AMI	ARI	AMI
STREAMKmeans	36.5	56.6	0.3	2.3	54.9	66.5	13.3	14.4	0.0	0.0	0.0	0.0
DenStream	7.9	48.7	32.4	63.4	59.2	68.0	19.0	39.9	77.6	67.6	26.8	39.4
DBSTREAM	0.0	0.0	0.1	0.7	0.0	0.0	0.0	0.0	92.7	84.4	6.2	11.7
EMCStream	48.9	67.4	58.4	70.5	53.6	66.3	26.2	27.1	57.2	60.4	4.1	6.6
MCMSTStream	1.0	14.5	7.5	32.5	70.0	74.0	42.5	54.1	58.9	55.8	16.4	38.4
GB-FuzzyStream	2.9	9.9	13.3	36.2	25.4	49.0	-	-	-	-	4.6	16.7
CluStream-O - var. k	9.5	53.0	49.7	69.8	19.0	51.4	5.4	26.8	68.1	57.2	19.5	46.8
CluStream-O - fixed k	36.4	62.1	7.7	21.4	57.2	68.0	38.4	40.6	83.9	77.2	25.5	37.8
CluStream-O - $k=100$	9.5	53.0	49.7	69.8	19.0	51.4	5.4	26.8	68.1	57.2	19.5	46.8
CluStream - Wk-Means	36.8	62.8	50.2	66.4	75.2	78.4	95.7	93.4	86.7	74.9	32.0	45.2
CluStream-C - k-Means	37.1	62.8	14.4	37.2	70.2	76.2	90.9	87.7	89.9	78.3	24.7	39.4
CluStream-W - k-Means	36.8	62.8	50.2	66.4	75.2	78.4	95.7	93.4	86.7	74.9	32.0	45.2
CluStream-S - k-Means	35.4	61.8	48.8	65.0	76.3	78.9	94.9	92.4	86.9	75.3	30.7	44.1
CluStream-G - k-Means	36.1	62.0	50.0	66.0	76.8	79.2	95.4	93.1	87.0	75.3	30.8	44.0
CluStream-C - SubKMeans	35.7	61.3	34.8	53.9	$\frac{10.6}{70.6}$	76.1	91.4	88.1	89.8	78.3	24.5	39.1
CluStream-W - SubKMeans	35.4	61.5	52.0	69.1	74.5	78.2	95.3	92.9	86.6	75.0	31.9	45.6
CluStream-S - SubKMeans	35.5	61.6	52.6	69.2	75.4	78.5	94.9	92.4	87.0	75.4	31.6	45.3
CluStream-G - SubKMeans	36.1	61.9	53.2	69.0	76.1	78.8	95.4	93.0	87.0	75.4	31.6	45.2
CluStream-C - X-Means	46.0	64.4	19.2	41.1	73.5	78.1	32.7	51.2	86.1	75.3	28.1	48.5
CluStream-W - X-Means	10.0	53.4	50.2	72.9	67.8	74.5	21.2	41.5	68.2	57.9	19.5	47.1
CluStream-S - X-Means	9.7	53.1	50.0	71.8	68.7	74.7	20.5	40.5	68.2	57.3	19.5	46.9
CluStream-G - X-Means	21.5	60.9	51.9	71.5	73.4	77.2	19.3	36.8	73.8	58.7	19.5	46.9
CluStream-C - P-Dip-M	0.0	0.0	0.0	0.0	3.3	5.0	29.9	29.9	89.3	79.3	20.9	33.0
CluStream-W - P-Dip-M	14.4	58.5	-	-	25.4	56.7	12.2	33.5	-	-	-	-
CluStream-S - P-Dip-M	13.9	58.2	-	-	24.9	56.3	13.5	34.1	-	-	_	-
CluStream-G - P-Dip-M	40.4	66.0	50.9	70.2	73.0	78.4	40.9	54.8	82.2	68.6	22.7	50.7
CluStream-C - SC	44.4	64.6	44.2	61.6	76.3	79.6	94.9	92.4	90.3	79.7	29.9	45.0
CluStream-W - SC	48.5	73.6	50.3	68.7	73.5	77.1	94.9	92.4	85.5	75.1	42.3	56.8
CluStream-S - SC	47.3	72.5	53.6	70.7	72.9	76.7	94.9	92.4	85.2	73.7	44.5	58.2
CluStream-G - SC	44.9	71.8	52.0	70.2	73.1	76.8	95.4	93.2	85.5	74.0	37.0	50.9
CluStream-C - SCAR	41.8	66.4	44.9	61.7	73.3	77.1	83.5	80.8	87.5	79.1	31.5	46.1
CluStream-W - SCAR	41.9	66.0	53.8	69.8	57.8	69.1	51.3	54.6	-	-	36.5	48.7
CluStream-S - SCAR	45.1	69.7	52.4	69.5	58.3	69.2	37.2	39.8	71.0	65.5	35.0	48.5
CluStream-G - SCAR	45.8	71.2	52.0	69.6	58.4	69.5	53.7	54.2	74.8	65.2	37.6	49.8
CluStream-C - SpectACl	44.6	69.1	54.3	73.3	66.8	76.3	84.7	84.4	86.7	72.4	29.9	43.3
CluStream-W - SpectACl	49.8	71.6	59.4	75.7	28.6	41.7	97.7	96.4	90.7	80.7	34.6	46.8
CluStream-S - SpectACl	48.7	71.1	57.3	74.5	68.4	76.9	97.7	96.4	90.3	81.7	34.4	47.1
CluStream-G - SpectACl	48.2	70.8	53.6	73.2	20.3	34.1	94.2	93.3	90.5	81.9	33.1	45.7
CluStream-C - DBSCAN	46.3	72.8	46.2	66.1	63.5	76.0	93.2	93.8	91.2	79.5	28.3	49.7
CluStream-W - DBSCAN	47.1	71.3	49.3	73.6	64.5	77.3	93.1	93.4	91.4	83.6	28.4	49.9
CluStream-S - DBSCAN	46.5	73.1	48.6	72.8	66.4	78.4	93.0	93.2	91.5	83.8	28.6	50.0
CluStream-G - DBSCAN	44.5	71.2	53.7	75.6	73.6	81.5	75.5	75.9	91.5	83.8	28.8	50.2
CluStream-C - HDBSCAN	48.5	72.3	46.6	67.5	65.5	76.6	98.2	96.9	84.4	77.0	33.9	53.1
CluStream-W - HDBSCAN	47.9	71.7	57.9	77.4	62.9	75.3	98.2	96.9	88.4	81.6	35.0	55.9
CluStream-S - HDBSCAN	48.0	71.9	56.8	$\frac{77.1}{1}$	62.4	72.3	98.2	96.9	89.4	81.4	34.8	57.0
CluStream-G - HDBSCAN	47.7	70.6	56.8	77.0	74.0	80.2	89.1	89.8	89.4	81.4	35.5	53.4
CluStream-C - RNN-DBS	34.9	67.0	12.5	23.8	63.2	71.4	74.7	74.7	86.2	76.7	31.8	49.0
CluStream-W - RNN-DBS	40.8	66.4	50.1	71.8	26.8	51.4	53.5	62.2	60.9	61.1	30.4	51.3
CluStream-S - RNN-DBS	40.8	65.4	49.7	71.1	19.6	51.9	59.6	67.4	61.3	61.6	33.3	52.4
CluStream-G - RNN-DBS	40.9	68.0	28.8	47.0	53.5	63.9	40.3	49.9	64.5	63.7	$\frac{30.7}{20.6}$	53.0
CluStream-C - MDBSCAN	47.1	71.3	52.3	70.4	67.5	74.9	98.0	96.2	91.2	81.0	29.6	51.9
CluStream-W - MDBSCAN	49.4	75.8	53.7	70.6	63.2	73.4	99.5		90.4	84.1	31.5	52.5
CluStream-S - MDBSCAN	48.6	74.6	53.5	70.5	63.6	73.8	99.5		91.8	85.2	30.7	52.3
CluStream-G - MDBSCAN CluStream-C - DPC	44.8	72.3	49.2	68.6	66.0		93.9		91.9 88.8	85.3 84.2	27.9	52.2
					70.7	76.9	88.4				21.5	37.9
CluStream-W - DPC	45.6		58.9	70.8	67.0	74.2	74.0	77.6	89.6	75.8	29.3	51.0 $ 51.4 $
CluStream-S - DPC CluStream-G - DPC	47.3 38.1	65.7 70.2	$\frac{59.1}{54.8}$	71.9 70.7	67.2 76.4	74.6 79.4	75.1	78.1 73.8	89.6 82.3	75.9 76.3	$\begin{vmatrix} 28.9 \\ 29.1 \end{vmatrix}$	-
CluStream-C - SNN-DPC	45.6		22.9	45.0		69.2	31.9	35.7	82.7	70.3	29.1	51.6
CluStream-W - SNN-DPC	45.6	64.7	34.6	$ 45.0 \\ 58.6 $	58.3	55.2	87.1	87.0	82.7	72.8	33.6	$47.0 \\ 45.8$
CluStream-S - SNN-DPC	47.9	67.7	32.6	55.7	40.3	58.0	81.7	82.7	81.9	71.2	28.5	40.0
CluStream-G - SNN-DPC	43.5		32.0 42.7	63.1	69.1	76.7	62.1	65.7	90.1	78.6	31.5	47.3
CluStream-C - DBHD		76.6	52.1	75.0	71.4	77.6	95.6	93.2	88.2	75.4	43.7	58.1
CluStream-W - DBHD	52.9 52.9		52.1	75.0	71.4	77.6	95.6		88.2	75.4 75.4	$\frac{43.7}{43.7}$	$\frac{56.1}{58.1}$
CluStream-S - DBHD	52.9		52.1	75.0	71.4	77.6	95.6		88.2	75.4	$\frac{43.7}{43.7}$	$\frac{56.1}{58.1}$
CluStream-G - DBHD	44.8		49.8	72.4		81.7	31.7	47.5	68.2	64.6	$\frac{43.7}{33.5}$	$\frac{55.1}{55.3}$
Classicani G - DDiib	12.0	10.0	10.0	12.1		92.1	01.1	11.0	00.2	01.0	55.0	00.0

Fig. 1: ARI results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 2: AMI results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 3: NMI results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 4: Accuracy results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 5: Precision results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 6: Recall results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 7: F1 results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDDCUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 8: FMI results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 9: Purity results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 10: Homogeneity results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 11: Completeness results for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDD-CUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G) (also marked by the horizontal line), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top.

Fig. 12: Average number of clusters per evaluation batch for the datasets Complex-9 (1), RBF-3 40000 (2), DENSIRED-10 (3), Fertility-vs-Income (4), Gas Sensor Array (5), and KDDCUP99 (6) for the best-performing runs of STREAMKmeans (A), DenStream (B), DBSTREAM (C), EMCStream (D), MCMSTStream (E), GB-FuzzyStream (F), CluStream-O (G), as well as the CluStream variants (denoted by hatch) for the respective offline clustering algorithms, including the default case of Wk-Means (H). The color indicates the offline clustering. The standard deviation for different seeds is denoted by gray bars at the top. The horizontal line notes the ground truth cluster number.

Table 11: ARI Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

ne best scores are mark		,				
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
CTDEAMZ	ARI	ARI		ARI 91.3±0.0	ARI 94.0 ±0.0	ARI
STREAMKmeans DenStream	41.6 ± 2.6 50.0 ± 0.0	28.8±2.3	68.4 ± 1.8 63.3 ± 0.0	86.1 ± 0.0	79.2 ± 0.0	11.6 ± 0.0 35.3 ± 0.0
DBSTREAM EMCStream	56.9 ± 0.0	$\frac{67.8 \pm 0.0}{60.3 \pm 5.0}$		74.2 ± 0.0	92.5 ± 0.0	26.3 ± 0.0
	57.3 ± 1.5	60.3 ± 5.9 73.7 ±0.0		92.6 ± 1.2	81.6 ± 2.4	35.1 ± 6.2
MCMSTStream GB-FuzzyStream	65.3 ± 0.0 20.0 ± 2.2			95.3±0.0	90.3±0.0	16.4 ± 0.0
		19.8±0.9				5.8 ± 0.2
CluStream-O - var. k	48.7 ± 0.0	53.2 ± 0.0		86.2 ± 0.0	89.5 ± 0.0	27.4 ± 0.0
CluStream-O - fixed k	41.6 ± 0.0	16.0 ± 0.0		86.2 ± 0.0	87.1 ± 0.0	25.5 ± 0.0
CluStream-O - $k=100$	9.5 ± 0.0	$ 49.7\pm0.0 $	$ 41.9\pm0.0 $	5.4 ± 0.0	80.3 ± 0.0	24.2 ± 0.0
CluStream - Wk-Means	36.8 ± 1.0	54.5 ± 2.6	75.3 ± 0.7	95.7 ± 0.4	89.7 ± 0.0	32.0 ± 1.1
CluStream-C - k-Means	37.6 ± 2.0	14.4 ± 2.7	73.5 ± 0.9	90.9±2.5	90.4±0.0	24.7±1.2
CluStream-W - k-Means	36.8 ± 1.0	54.5 ± 2.6	75.3 ± 0.7	95.7 ± 0.4	89.7±0.0	32.0 ± 1.1
CluStream-S - k-Means	37.9 ± 2.5	52.1 ± 3.6	76.3 ± 0.6	95.5 ± 1.2	89.8 ± 0.0	30.7 ± 0.7
CluStream-G - k-Means	37.0 ± 1.6	54.1 ± 3.2	76.8 ± 0.8	95.5 ± 0.1	89.8 ± 0.0	30.8 ± 0.8
CluStream-C - SubKMeans	35.7 ± 1.4	35.9 ± 3.0	73.5 ± 0.5	91.6 ± 0.0	90.4 ± 0.0	24.2±1.9
CluStream-W - SubKMeans	36.2 ± 1.1	57.4±3.9	74.3 ± 1.1	95.3 ± 0.5	89.7±0.0	31.9 ± 0.5
CluStream-S - SubKMeans	35.7 ± 1.7	51.8 ± 1.7	75.1 ± 0.8	94.9 ± 1.5	89.8±0.0	31.4 ± 0.4
CluStream-G - SubKMeans	36.1 ± 1.5	56.9 ± 2.9	76.1 ± 0.9	95.5 ± 0.1	89.8±0.0	31.5 ± 0.6
CluStream-C - X-Means	49.9 ± 5.5	26.6 ± 5.2	76.3 ± 0.6	30.5 ± 1.8	90.2 ± 0.1	29.8 ± 0.3
CluStream-W - X-Means	9.7 ± 0.1	50.4 ± 0.2	69.6 ± 0.4	21.2 ± 0.0	80.3±0.0	24.2 ± 0.0
CluStream-S - X-Means	9.5 ± 0.0	50.0 ± 0.1	68.3±1.1	20.0 ± 0.0	80.3±0.0	24.3 ± 0.0
CluStream-G - X-Means	19.4 ± 4.7	52.9 ± 1.0	78.0 ± 1.0	19.3 ± 0.1	86.1 ± 0.0	24.3 ± 0.0
CluStream-C - P-Dip-M	0.0 ± 0.0	0.0 ± 0.0	18.3 ± 0.9	24.9 ± 0.0	89.6±0.0	12.7 ± 0.4
CluStream-W - P-Dip-M	13.4 ± 0.2	-	42.3 ± 0.0	7.1 ± 0.1	-	_
CluStream-S - P-Dip-M	13.2 ± 0.1	_	44.8 ± 0.1	6.8 ± 0.1	_	_
CluStream-G - P-Dip-M	41.0 ± 1.4	51.7 ± 1.0	73.5 ± 0.6	36.5 ± 3.3	89.6 ± 0.0	26.7 ± 0.1
CluStream-C - SC	47.7 ± 0.2	49.6 ± 0.8	76.8 ± 0.1	95.1 ± 0.0	91.2 ± 0.0	31.6 ± 0.7
CluStream-W - SC	49.6 ± 2.1	55.3±0.5	73.5 ± 0.5	95.5 ± 0.0	89.0±0.1	39.5 ± 0.7
CluStream-S - SC	56.0 ± 1.4	54.6 ± 1.0	72.9 ± 0.5	95.5 ± 0.0	88.9±0.1	39.5 ± 1.4
CluStream-G - SC	52.1 ± 1.8	51.1 ± 0.7	73.1 ± 0.3	95.5 ± 0.1	88.8 ± 0.1	39.7 ± 0.8
CluStream-C - SCAR	41.0 ± 0.3	48.3 ± 0.9	75.4 ± 0.1	71.3 ± 21.4	90.7 ± 0.2	28.5 ± 1.2
CluStream-W - SCAR	42.7 ± 0.5	56.3 ± 0.7	56.8 ± 0.5	55.2 ± 3.3	-	35.6 ± 1.3
CluStream-S - SCAR	51.6 ± 1.4	58.6 ± 1.9	65.1 ± 0.3	55.9 ± 11.8	87.2 ± 0.1	36.9 ± 1.2
CluStream-G - SCAR	48.6 ± 3.1	52.6 ± 1.2	65.9 ± 0.5	50.0 ± 18.2	82.8 ± 0.5	37.1 ± 1.3
CluStream-C - SpectACl	60.8 ± 2.7	55.9 ± 1.5	66.5 ± 0.8	84.9 ± 11.8	89.6 ± 0.1	26.4 ± 1.8
CluStream-W - SpectACl	70.2 ± 3.7	55.8 ± 1.6	62.2 ± 0.8	94.8 ± 1.6	91.1 ± 0.2	29.3 ± 0.9
CluStream-S - SpectACl	65.9 ± 6.7	60.1 ± 2.0	69.6 ± 1.2	98.1 ± 0.0	91.2 ± 0.2	30.2 ± 1.1
CluStream-G - SpectACl	57.5 ± 3.0	58.4 ± 2.4	63.9 ± 0.8	94.3 ± 0.5	91.3 ± 0.1	29.8 ± 1.1
CluStream-C - DBSCAN	73.4 ± 0.0	52.8 ± 0.0	63.7 ± 0.0	88.9 ± 0.0	90.6 ± 0.0	26.5 ± 0.0
CluStream-W - DBSCAN	73.4 ± 0.0	53.6 ± 0.0	63.2 ± 0.0	89.1 ± 0.0	91.2 ± 0.0	27.3 ± 0.0
CluStream-S - DBSCAN	73.5 ± 0.0	52.8 ± 0.0	62.0 ± 0.0	89.0 ± 0.0	90.4 ± 0.0	27.5 ± 0.0
CluStream-G - DBSCAN	58.4 ± 6.3	55.3 ± 1.2	73.4 ± 0.3	88.6 ± 7.1	90.5 ± 0.0	26.8 ± 0.0
CluStream-C - HDBSCAN	71.9 ± 0.0	58.3 ± 0.0	72.0 ± 0.0	96.0 ± 0.0	90.7 ± 0.0	34.7 ± 0.0
CluStream-W - HDBSCAN	72.9 ± 0.0	58.5 ± 0.0	67.6 ± 0.0	97.4 ± 0.0	90.1 ± 0.0	37.3 ± 0.0
CluStream-S - HDBSCAN	72.9 ± 0.0	57.5 ± 0.0	69.8 ± 0.0	97.4 ± 0.0	90.2 ± 0.0	39.1 ± 0.0
CluStream-G - HDBSCAN	61.0 ± 5.4	56.7 ± 0.2	74.2 ± 0.6	81.7±8.7	90.6 ± 0.0	39.1 ± 0.0
CluStream-C - RNN-DBS	37.0 ± 0.0	9.5 ± 0.0	65.1 ± 0.0	72.9 ± 0.0	87.6 ± 0.0	32.4 ± 0.0
CluStream-W - RNN-DBS	39.6 ± 0.0	50.9 ± 0.0	40.0 ± 0.0	57.8 ± 0.0	76.0 ± 0.0	25.9 ± 0.0
CluStream-S - RNN-DBS	48.5 ± 0.0	49.5 ± 0.0	44.4 ± 0.0	58.7 ± 0.0	76.8 ± 0.0	27.9 ± 0.0
CluStream-G - RNN-DBS	52.7 ± 6.3	30.2 ± 1.4	54.3 ± 1.6	55.6 ± 12.2	76.8 ± 0.1	30.3 ± 0.2
CluStream-C - MDBSCAN	71.6 ± 0.0	51.1 ± 0.0	62.8 ± 0.0	97.2 ± 0.0	90.6 ± 0.0	26.4 ± 0.0
CluStream-W - MDBSCAN	73.6 ± 0.0	52.4 ± 0.0	62.5 ± 0.0	97.3 ± 0.0	92.1 ± 0.0	29.2 ± 0.0
CluStream-S - MDBSCAN	73.9 ± 0.0		62.4 ± 0.0	97.3 ± 0.0	92.1 ± 0.0	31.3 ± 0.0
CluStream-G - MDBSCAN	57.9 ± 7.0	52.5 ± 1.3	66.7 ± 0.4	96.7 ± 0.3	92.2 ± 0.0	31.0 ± 0.1
CluStream-C - DPC	45.0 ± 0.0	56.5 ± 0.0	69.3 ± 0.0	83.2 ± 0.0	92.1 ± 0.0	31.5 ± 0.0
CluStream-W - DPC	47.3 ± 0.0	57.3 ± 0.0	67.7 ± 0.0	88.9 ± 0.0	87.6 ± 0.0	26.3 ± 0.0
CluStream-S - DPC	42.7 ± 0.0	59.7 ± 0.0	67.5 ± 0.0	88.9 ± 0.0	93.0 ± 0.0	28.6 ± 0.0
CluStream-G - DPC	41.0 ± 0.9	57.7 ± 1.2	76.7 ± 0.3	75.3 ± 1.5	90.1 ± 0.1	32.4 ± 0.0
CluStream-C - SNN-DPC	46.3 ± 0.7	25.6 ± 0.0	59.0 ± 0.0	55.8 ± 0.0	86.1 ± 0.0	29.6 ± 0.5
CluStream-W - SNN-DPC	52.2 ± 0.0	44.2 ± 0.1	56.1 ± 0.0	87.8 ± 6.8	85.4 ± 0.0	29.9 ± 0.0
CluStream-S - SNN-DPC	58.0 ± 0.0	38.9 ± 0.0	54.6 ± 0.0	96.1 ± 0.0	83.8 ± 0.0	27.4 ± 0.0
CluStream-G - SNN-DPC	49.8 ± 2.4	56.0 ± 1.2	70.2 ± 0.4	66.3 ± 8.8	90.6 ± 0.0	34.3 ± 0.5
CluStream-C - DBHD	52.3 ± 0.0	57.7±0.0	73.4 ± 0.0	97.3±0.0	88.4±0.0	35.6 ± 0.0
CluStream-W - DBHD	52.3 ± 0.0	57.7 ± 0.0	73.4 ± 0.0	96.9 ± 0.0	88.4 ± 0.0	35.6 ± 0.0
CluStream-S - DBHD	52.3 ± 0.0	57.7 ± 0.0	73.4 ± 0.0	97.3 ± 0.0	88.4 ± 0.0	35.6 ± 0.0
CluStream-G - DBHD	68.5 ± 7.9	52.6 ± 0.7	81.4 ± 0.4	49.7 ± 7.1	74.7 ± 0.2	34.5 ± 0.4
-						

Table 12: AMI Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

ne best scores are mark						
Name	Comp-9	DEN-10		FvI	KDD99	Gas
CODEAMI	AMI	AMI	AMI	AMI	AMI	AMI
STREAMKmeans Day Stream	61.6 ± 3.4	52.6 ± 1.0	74.6 ± 1.1	88.1±0.0	87.0 ±0.3	17.0 ± 0.0
DenStream DBSTREAM	70.5 ± 0.0 69.3 ± 0.0	73.2 ± 0.0	69.9 ± 0.0 76.1 ± 0.0	87.4±0.0 74.9±0.0	75.9 ± 0.0 85.2 ± 0.0	53.0 ± 0.0
EMCStream	80.4 ± 1.2	74.9 ± 0.0		90.8 ± 1.1	76.8 ± 1.1	50.1 ± 0.0
	74.5 ± 0.0	73.9 ± 3.1 84.7 ±0.0	66.3 ± 2.3 78.1 ± 0.0	90.8 ± 1.1 92.5 ± 0.0		41.7 ± 5.7
MCMSTStream GB-FuzzyStream	57.5 ± 1.6	43.4 ± 0.5	51.4 ± 0.3	92.0±0.0	82.7±0.0	38.4 ± 0.0 20.4 ± 0.5
					-	
CluStream-O - var. k	66.9 ± 0.0	70.7 ± 0.0	73.2 ± 0.0	84.6±0.0	83.5 ± 0.0	50.1 ± 0.0
CluStream-O - fixed k	64.7 ± 0.0	34.3 ± 0.0	71.2 ± 0.0	84.6±0.0	80.6 ± 0.0	37.8 ± 0.0
CluStream-O - $k=100$	53.0 ± 0.0	$ 69.8\pm0.0 $	$ 60.3\pm0.0 $	26.8 ± 0.0	67.5 ± 0.0	50.5 ± 0.0
CluStream - Wk-Means	62.8 ± 0.8	67.9 ± 1.1	78.4 ± 0.5	93.4 ± 0.5	77.5 \pm 0.1	45.2 ± 0.6
CluStream-C - k-Means	63.4 ± 1.7	37.2 ± 2.9	77.8 ± 0.5	87.7±3.1	79.6 ± 0.0	39.4 ± 2.0
CluStream-W - k-Means	62.8 ± 0.8	67.9 ± 1.1	78.4 ± 0.5	93.4 ± 0.5	77.5 ± 0.1	45.2 ± 0.6
CluStream-S - k-Means	63.5 ± 1.9	66.9 ± 2.2	78.9 ± 0.3	93.4 ± 0.9	77.9 ± 0.1	44.1 ± 0.5
CluStream-G - k -Means	62.9 ± 1.2	68.1 ± 1.7	79.2 ± 0.4	93.3 ± 0.1	77.9 ± 0.1	44.0 ± 0.7
CluStream-C - SubKMeans	61.3 ± 1.0	53.9 ± 1.6	77.5 ± 0.1	87.9 ± 0.0	79.6 ± 0.1	38.7 ± 1.6
CluStream-W - SubKMeans	62.0 ± 0.7	71.9 ± 2.5	78.2 ± 0.6	92.9 ± 0.6	77.6 ± 0.1	45.6 ± 0.6
CluStream-S - SubKMeans	61.9 ± 1.1	69.0 ± 1.4	78.5 ± 0.4	92.9 ± 1.2	77.9 ± 0.1	44.9 ± 0.6
CluStream-G - SubKMeans	62.2 ± 1.4	71.2 ± 1.9	78.8 ± 0.5	93.3 ± 0.1	77.9 ± 0.1	44.9 ± 0.5
CluStream-C - X-Means	66.7 ± 3.3	47.3 ± 3.7	79.3 ± 0.5	50.0 ± 1.6	79.6 ± 0.1	52.4 ± 0.1
CluStream-W - X-Means	53.2 ± 0.0	73.0 ± 0.3	75.2 ± 0.4	41.5 ± 0.1	67.7 ± 0.0	50.6 ± 0.0
CluStream-S - X-Means	53.0 ± 0.0 58.9 ± 0.7	71.6 ± 0.2 71.6 ± 0.7	73.7 ± 0.6 80.1 ± 0.6	$39.8\pm0.1 36.8\pm0.6$	67.8 ± 0.0 69.9 ± 0.0	50.7 ± 0.0 50.8 ± 0.0
CluStream-G - X-Means CluStream-C - P-Dip-M		0.0 ± 0.0	24.4 ± 0.9	24.9 ± 0.0		20.3 ± 0.5
CluStream-W - P-Dip-M	0.0 ± 0.0 57.5 ± 0.4		60.6 ± 0.0	30.9 ± 0.0	79.0 ± 0.0	20.3±0.3
CluStream-S - P-Dip-M	57.3 ± 0.4 57.7 ± 0.0	-	61.9 ± 0.1	30.9 ± 0.1 30.2 ± 0.2		_
CluStream-G - P-Dip-M	68.5 ± 0.9	69.9 ± 0.5	78.0 ± 0.1	50.2 ± 0.2 51.4 ± 1.7	76.7 ± 0.0	53.1 ± 0.1
CluStream-C - SC	72.8 ± 0.1	64.7 ± 0.6	79.0 ± 0.1	92.4 ± 0.0	81.4 ± 0.0	45.3 ± 0.8
CluStream-W - SC	73.7 ± 1.1	70.3 ± 0.3	77.1 ± 0.4	93.3 ± 0.0	77.8 ± 0.1	54.3 ± 0.4
CluStream-S - SC	79.5 ± 0.6	71.1 ± 0.5	76.7 ± 0.3	93.3 ± 0.0	77.9 ± 0.1	54.2 ± 1.4
CluStream-G - SC	76.7 ± 1.4	69.9 ± 0.3	76.8 ± 0.2	93.3 ± 0.1	77.4 ± 0.0	54.1 ± 0.8
CluStream-C - SCAR	66.4 ± 0.3	63.3 ± 0.6	78.0 ± 0.1	69.9 ± 19.2	83.8 ± 0.1	44.3 ± 0.8
CluStream-W - SCAR	67.3 ± 0.5	69.7 ± 0.4	68.3 ± 0.2	55.9 ± 4.1	-	47.9 ± 0.8
CluStream-S - SCAR	75.5 ± 1.2	70.6 ± 1.0	71.5 ± 0.2	57.6 ± 8.9	73.8 ± 0.1	48.4 ± 0.7
CluStream-G - SCAR	73.0 ± 1.8	69.5 ± 0.6	71.8 ± 0.2	49.8 ± 16.8	73.5 ± 0.4	48.0 ± 1.1
CluStream-C - SpectACl	79.0 ± 0.7	74.5 ± 0.5	76.4 ± 0.4	86.5 ± 10.0	80.0 ± 0.1	39.0 ± 1.9
CluStream-W - SpectACl	85.7 ± 0.9	73.9 ± 0.9	71.9 ± 0.4	92.7 ± 1.6	82.4 ± 0.1	$ 41.1\pm0.5 $
CluStream-S - SpectACl	83.3 ± 2.6	75.2 ± 1.1	77.4 ± 0.6	96.6 ±0.0	82.4 ± 0.1	41.8 ± 0.4
CluStream-G - SpectACl	77.2 ± 1.8	74.9 ± 1.2	73.4 ± 0.3	92.9 ± 0.4	82.3 ± 0.1	41.7 ± 0.9
CluStream-C - DBSCAN	86.5 ± 0.0	70.3 ± 0.0	77.1 ± 0.0	89.6±0.0	78.0 ± 0.0	50.9 ± 0.0
CluStream-W - DBSCAN	86.5 ± 0.0	75.3 ± 0.0	77.4 ± 0.0	89.8±0.0	81.3 ± 0.0	51.3 ± 0.0
CluStream-S - DBSCAN CluStream-G - DBSCAN	86.6 ± 0.0	74.4 ± 0.0	75.9 ± 0.0	89.6±0.0	82.0 ± 0.0	51.4 ± 0.0
CluStream-C - HDBSCAN	78.3 ± 2.4 85.7 ± 0.0	75.6 ± 0.4 73.2 ± 0.0	$\frac{82.0 \pm 0.1}{79.6 \pm 0.0}$	89.0±5.4 94.1±0.0	82.1 ± 0.0 80.5 ± 0.0	51.4 ± 0.1 51.4 ± 0.0
CluStream-W - HDBSCAN	85.8 ± 0.0	76.8 ± 0.0	77.6 ± 0.0	95.7 ± 0.0	80.9 ± 0.0	51.4 ± 0.0 51.1 ± 0.0
CluStream-S - HDBSCAN	85.8 ± 0.0	$\frac{70.0\pm0.0}{77.3\pm0.0}$	77.3 ± 0.0	95.7 ± 0.0	81.2 ± 0.0	54.6 ± 0.0
CluStream-G - HDBSCAN	78.7 ± 3.2	$\frac{77.0 \pm 0.0}{77.0 \pm 0.2}$	80.5 ± 0.2	83.6±7.0	81.4 ± 0.0	54.7 ± 0.0
CluStream-C - RNN-DBS	69.2±0.0	22.1 ± 0.0	71.9 ± 0.0	72.1 ± 0.0	79.8 ± 0.0	49.0 ± 0.0
CluStream-W - RNN-DBS	49.3±0.0	71.4 ± 0.0	56.3 ± 0.0	63.2 ± 0.0	66.6±0.0	51.0 ± 0.0
CluStream-S - RNN-DBS	73.2 ± 0.0	70.8 ± 0.0	60.4 ± 0.0	63.9 ± 0.0	66.7 ± 0.0	51.0 ± 0.0
CluStream-G - RNN-DBS	73.2 ± 3.7	58.5 ± 0.8	65.4 ± 1.4	62.2 ± 11.7	68.6 ± 0.1	52.0 ± 0.2
CluStream-C - MDBSCAN	86.2 ± 0.0	69.4 ± 0.0	73.1 ± 0.0	95.9 ± 0.0	78.0 ± 0.0	51.0 ± 0.0
CluStream-W - MDBSCAN	87.0 ± 0.0	70.6 ± 0.0	73.3 ± 0.0	95.9 ± 0.0	83.8 ± 0.0	52.9 ± 0.0
CluStream-S - MDBSCAN	87.0 ± 0.0	70.4 ± 0.0	73.0 ± 0.0	95.9 ± 0.0	83.9 ± 0.0	54.5 ± 0.0
CluStream-G - MDBSCAN	80.0 ± 3.1	68.3 ± 0.4	75.8 ± 0.3	95.3 ± 0.3	84.0 ± 0.0	54.3 ± 0.0
CluStream-C - DPC	75.7 ± 0.0	70.2 ± 0.0	76.7 ± 0.0	83.3±0.0	83.7 ± 0.0	52.2 ± 0.0
CluStream-W - DPC	74.8 ± 0.0	69.8 ± 0.0	74.8 ± 0.0	91.2 ± 0.0	81.0 ± 0.0	51.1 ± 0.0
CluStream-S - DPC	75.6 ± 0.0	71.3 ± 0.0	73.4 ± 0.0	91.2 ± 0.0	86.5 ± 0.0	48.4 ± 0.0
CluStream-G - DPC	73.9 ± 0.8	70.9 ± 0.4	79.2 ± 0.1	76.2 ± 1.4	82.1±0.0	52.1 ± 0.0
CluStream-C - SNN-DPC	68.0 ± 1.3	49.4 ± 0.0	69.2±0.0	61.4 ± 0.0	77.6 ± 0.0	47.0 ± 0.5
CluStream-W - SNN-DPC	75.3 ± 0.0	64.4 ± 0.2	63.7 ± 0.0	86.5 ± 6.3	74.3 ± 0.0	43.8 ± 0.0
CluStream-S - SNN-DPC	78.5 ± 0.0	60.2 ± 0.0	62.9 ± 0.0	94.2 ± 0.0	73.3 ± 0.0	40.7 ± 0.0
CluStream-G - SNN-DPC	72.7 ± 2.1	69.9 ± 0.5 69.9 ± 0.0	77.4 ± 0.2	68.0 ± 6.7	79.5 ± 0.0	46.6 ± 0.2 54.0 ± 0.0
CluStream-C - DBHD CluStream-W - DBHD	75.9 ± 0.0 75.9 ± 0.0	69.9 ± 0.0 69.9 ± 0.0	78.5 ± 0.0 78.5 ± 0.0	$\frac{95.9}{95.5}\pm0.0$	79.4 ± 0.0 79.4 ± 0.0	54.0 ± 0.0 54.0 ± 0.0
CluStream-S - DBHD	75.9 ± 0.0 75.9 ± 0.0	69.9 ± 0.0 69.9 ± 0.0	78.5 ± 0.0 78.5 ± 0.0	95.9 ± 0.0 95.9 ± 0.0	79.4 ± 0.0 79.4 ± 0.0	54.0 ± 0.0 54.0 ± 0.0
CluStream-G - DBHD	83.5 ± 4.1	73.3 ± 0.5	84.2 ± 0.2	$\frac{99.9}{60.4\pm6.4}$	68.0 ± 0.2	53.5 ± 0.4
Classicani G - DDiiD	JU.UI 1.1	.0.0±0.0	J 1.2 10.2	30.110.4	30.0±0.2	JJ.J.T.

Table 13: NMI Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

The best scores are mark		ld, and t	he second	d-best sco	$ext{res are } \underline{u}$	<u>nderlined</u> .
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	NMI	NMI	NMI	NMI	NMI	NMI
STREAMKmeans	62.1 ± 3.3	54.0±1.0	74.9 ± 1.0	88.1±0.0	87.2 ± 0.3	17.2 ± 0.0
DenStream	70.9 ± 0.0	73.8 ± 0.0	70.3 ± 0.0	87.4±0.0		53.9 ± 0.0
DBSTREAM	69.6 ± 0.0	76.1 ± 0.0	76.2 ± 0.0	74.9 ± 0.0	85.6±0.0	53.0 ± 0.0
EMCStream	80.7 ± 1.2	74.4±3.1		90.8 ± 1.1	77.1±1.1	41.9 ± 5.7
MCMSTStream	74.9 ± 0.0	$ 85.1\pm0.0 $		92.5 ± 0.0	82.9 ± 0.0	41.0 ± 0.0
GB-FuzzyStream	59.8 ± 1.2	$ 44.6{\pm}0.5 $	$ 52.0\pm0.3 $	-	-	21.3 ± 0.6
CluStream-O - var. k	67.3 ± 0.0	$ 73.9\pm0.0 $	$ 73.7\pm0.0 $	84.6±0.0	$ 83.8\pm0.0 $	51.7 ± 0.0
CluStream-O - fixed k	65.5 ± 0.0	36.2 ± 0.0	71.6 ± 0.0	84.6±0.0	81.1±0.0	38.3 ± 0.0
CluStream-O - k =100	59.4 ± 0.0	73.2 ± 0.0	62.8 ± 0.0	28.8 ± 0.0	69.5 ± 0.0	53.1 ± 0.0
CluStream - Wk -Means	63.6 ± 0.8	68.7 ± 1.1	78.7 ± 0.5	93.4 ± 0.5	78.2 ± 0.1	45.6 ± 0.6
CluStream-C - k-Means	64.2 ± 1.6	39.3 ± 2.8	78.0 ± 0.5	87.7±3.1	80.2 ± 0.0	39.9 ± 1.9
CluStream-W - k-Means	63.6 ± 0.8	68.7 ± 1.1	78.7 ± 0.5	93.4 ± 0.5	78.2 ± 0.1	45.6 ± 0.6
CluStream-S - k-Means	64.4±1.8	67.8 ± 2.1	79.2 ± 0.3	93.4 ± 0.9	78.5±0.1	44.5 ± 0.5
CluStream-G - k-Means	63.7 ± 1.2	68.9 ± 1.6	79.4 ± 0.4	93.4 ± 0.1	78.5 ± 0.1	44.4 ± 0.7
CluStream-C - SubKMeans	62.1 ± 1.0	55.1 ± 1.6	77.7 ± 0.1	87.9±0.0	80.2±0.1	39.2 ± 1.6
CluStream-W - SubKMeans	62.8 ± 0.6	72.7 ± 2.4	78.5 ± 0.6	92.9 ± 0.6	78.3 ± 0.1	46.0 ± 0.6
CluStream-S - SubKMeans	62.8 ± 1.1	69.9 ± 1.4	78.7 ± 0.4	92.9 ± 1.2	78.6 ± 0.1	45.2 ± 0.6
CluStream-G - SubKMeans	63.1 ± 1.3	72.0 ± 1.8	79.0 ± 0.5	93.4 ± 0.1	78.6 ± 0.1	45.2 ± 0.5
CluStream-C - X-Means	67.1 ± 3.3	50.3 ± 3.5	79.7 ± 0.5	50.3 ± 1.6	80.2 ± 0.1	53.8 ± 0.1
CluStream-W - X-Means	59.6 ± 0.0	74.9 ± 0.2	75.8 ± 0.3	$ 42.6\pm0.0 $	69.6 ± 0.0	53.1 ± 0.0
CluStream-S - X-Means	59.4 ± 0.0	74.0 ± 0.1	74.7 ± 0.6	$ 41.1\pm0.0 $	$ 69.7\pm0.0 $	53.2 ± 0.0
CluStream-G - X-Means	63.1 ± 0.4	74.1 ± 0.7	80.5 ± 0.6	39.3 ± 0.4	$ 71.8\pm0.0 $	53.2 ± 0.0
CluStream-C - P-Dip-M	0.0 ± 0.0	0.0 ± 0.0	24.5 ± 0.9	24.9 ± 0.0	79.5 ± 0.0	20.5 ± 0.5
CluStream-W - P-Dip-M	62.1 ± 0.4	-	62.9 ± 0.0	31.8 ± 0.1	-	-
CluStream-S - P-Dip-M	62.4 ± 0.0	_	63.9 ± 0.1	31.2 ± 0.1	_	_
CluStream-G - P-Dip-M	69.3±0.9	71.7 ± 0.4	78.2 ± 0.3	51.6 ± 1.6	77.5 ± 0.0	54.5 ± 0.1
CluStream-C - SC	73.4 ± 0.1	65.6 ± 0.5	79.2 ± 0.1	92.4 ± 0.0	81.9 ± 0.0	45.7 ± 0.8
CluStream-W - SC	74.2 ± 1.1	71.0 ± 0.3	77.3 ± 0.4	93.3 ± 0.0	78.4 ± 0.1	54.5 ± 0.4
CluStream-S - SC	79.9 ± 0.6	71.8 ± 0.5	76.9 ± 0.3	93.3 ± 0.0	78.5 ± 0.1	54.5 ± 1.4
CluStream-G - SC	77.2 ± 1.4	70.6 ± 0.3	77.0 ± 0.2	93.3 ± 0.1	78.1 ± 0.0	54.4 ± 0.8
CluStream-C - SCAR	67.2 ± 0.3	64.2 ± 0.5	78.3 ± 0.1	69.9 ± 19.2	84.2 ± 0.1	44.9 ± 0.8
CluStream-W - SCAR	68.0 ± 0.5	70.4 ± 0.4	68.6 ± 0.2	55.9 ± 4.1		48.3 ± 0.8
CluStream-S - SCAR	76.0 ± 1.2	71.3 ± 1.0	71.7 ± 0.2	$ 57.7\pm8.9 $	74.6 ± 0.1	48.7 ± 0.7
CluStream-G - SCAR	73.6 ± 1.8	70.2 ± 0.6	72.0 ± 0.2	$ 49.9\pm16.8 $	$ 74.1\pm0.4 $	48.3 ± 1.1
CluStream-C - SpectACl	79.5 ± 0.7	75.1 ± 0.5	76.7 ± 0.4	86.5 ± 10.0	80.5 ± 0.1	39.5 ± 1.9
CluStream-W - SpectACl	86.0 ± 0.9	74.5 ± 0.9	72.2 ± 0.4	92.7 ± 1.6	82.9 ± 0.1	41.4 ± 0.5
CluStream-S - SpectACl	83.7 ± 2.6	75.8 ± 1.0	77.6 ± 0.6	96.6 \pm 0.0	82.8 ± 0.1	42.2 ± 0.4
CluStream-G - SpectACl	77.7 ± 1.8	75.5 ± 1.2	73.7 ± 0.3	92.9 ± 0.4	82.8 ± 0.1	42.1 ± 0.9
CluStream-C - DBSCAN	86.8±0.0	73.4 ± 0.0	77.2 ± 0.0	89.7±0.0	79.1 ± 0.0	53.0 ± 0.0
CluStream-W - DBSCAN	86.8±0.0	75.9 ± 0.0	77.5 ± 0.0	89.8±0.0	81.7±0.0	52.6 ± 0.0
CluStream-S - DBSCAN	86.9 ± 0.0	75.1 ± 0.0	76.0 ± 0.0	89.6±0.0	82.3±0.0	52.7 ± 0.0
CluStream-G - DBSCAN	79.0 ± 2.4	76.3 ± 0.4	82.2±0.1	89.1±5.4	82.3 ± 0.0	52.8 ± 0.1
CluStream-C - HDBSCAN						
	86.0 ± 0.0	74.1 ± 0.0	79.7 ± 0.0	94.1 ± 0.0	81.0 ± 0.0	52.1 ± 0.0
CluStream-W - HDBSCAN	86.1 ± 0.0	77.4 \pm 0.0	77.8 ± 0.0	95.7 ± 0.0	81.2 ± 0.0	51.5 ± 0.0
CluStream-S - HDBSCAN	86.1 ± 0.0	$\frac{78.1}{57.0} \pm 0.0$	77.5 ± 0.0	95.7 ± 0.0	81.5 ± 0.0	55.0 ± 0.0
CluStream-G - HDBSCAN	79.5 ± 3.2	77.8 ± 0.2	80.7 ± 0.2	83.6 ± 7.0	81.7 ± 0.0	55.1 ± 0.0
CluStream-C - RNN-DBS	70.3 ± 0.0	23.1 ± 0.0	72.4 ± 0.0	72.1 ± 0.0	80.1 ± 0.0	49.7 ± 0.0
CluStream-W - RNN-DBS	49.5 ± 0.0	72.8 ± 0.0	56.7 ± 0.0	63.4 ± 0.0	67.4 ± 0.0	52.3 ± 0.0
CluStream-S - RNN-DBS	73.7 ± 0.0	72.7 ± 0.0	61.5 ± 0.0	$ 64.0\pm0.0 $	$ 67.7\pm0.0 $	51.9 ± 0.0
CluStream-G - RNN-DBS	74.1 ± 3.7	62.1 ± 0.7	66.0 ± 1.3	$ 62.3\pm11.7 $	$ 69.3\pm0.1 $	52.8 ± 0.2
CluStream-C - MDBSCAN	86.5 ± 0.0	72.7 ± 0.0	73.3 ± 0.0	95.9 ± 0.0	79.1 ± 0.0	53.0 ± 0.0
CluStream-W - MDBSCAN	87.2 ± 0.0	72.6 ± 0.0	73.4 ± 0.0	95.9 ± 0.0	84.0 ± 0.0	53.7 ± 0.0
CluStream-S - MDBSCAN	87.3 ± 0.0	73.1 ± 0.0	73.1 ± 0.0	95.9 ± 0.0	84.1 ± 0.0	55.2 ± 0.0
CluStream-G - MDBSCAN	80.6 ± 3.1	71.8 ± 0.4	75.9 ± 0.3	95.3 ± 0.3	84.2 ± 0.0	55.2 ± 0.0
CluStream-C - DPC	76.8 ± 0.0	72.5 ± 0.0	76.8 ± 0.0	83.3±0.0	84.1 ± 0.0	53.3 ± 0.0
CluStream-W - DPC	75.6 ± 0.0	73.0 ± 0.0	75.3 ± 0.0	91.2 ± 0.0	81.3 ± 0.0	53.2 ± 0.0
CluStream-S - DPC	76.6 ± 0.0	74.3 ± 0.0	74.2 ± 0.0	91.2 ± 0.0	86.7 ± 0.0	49.8 ± 0.0
CluStream-G - DPC						
Chiefmann C. CNN DDC	74.9 ± 0.8	72.9 ± 0.4	79.7 ± 0.1	76.3 ± 1.4	82.4 ± 0.0	53.1 ± 0.0
CluStream-C - SNN-DPC	68.8 ± 1.3	50.7 ± 0.0	69.5 ± 0.0	61.5 ± 0.0	78.2 ± 0.0	47.4 ± 0.5
CluStream-W - SNN-DPC	75.7 ± 0.0	64.9 ± 0.2	63.9 ± 0.0	86.6 ± 6.3	75.0 ± 0.0	44.1 ± 0.0
CluStream-S - SNN-DPC	79.0±0.0	60.8 ± 0.0	63.2 ± 0.0	94.2±0.0	73.9 ± 0.0	41.0 ± 0.0
CluStream-G - SNN-DPC	73.3 ± 2.0	70.6 ± 0.5	77.6 ± 0.2	68.1 ± 6.7	80.0 ± 0.0	46.9 ± 0.2
CluStream-C - DBHD	76.6 ± 0.0	72.1 ± 0.0	78.8 ± 0.0	95.9 ± 0.0	79.8 ± 0.0	54.8 ± 0.0
CluStream-W - DBHD	76.6 ± 0.0	72.1 ± 0.0	78.8 ± 0.0	95.5 ± 0.0	79.8 ± 0.0	54.8 ± 0.0
CluStream-S - DBHD	76.6 ± 0.0	72.1 ± 0.0	78.8 ± 0.0	95.9 ± 0.0	79.8 ± 0.0	54.8 ± 0.0
CluStream-G - DBHD	83.9 ± 4.0	74.1 ± 0.5	84.3 ± 0.2	60.5 ± 6.4	68.7 ± 0.2	54.1 ± 0.4
1						

Table 14: Accuracy Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

STREAMKmeans	Gas 44.2±0.0 46.6±0.0 36.1±0.0 57.7±3.7 37.5±0.0 38.8±0.0 51.0±0.0 31.2±0.0 53.4±0.6 53.4±0.6 53.4±0.6 53.4±0.6 53.4±0.6 53.4±0.6 33.1±0.5 33.1±0.5 33.1±0.5 33.1±0.5 33.1±0.5
Accuracy	44.2±0.0 46.6±0.0 46.6±0.0 46.6±0.0 36.1±0.0 57.7±3.7 37.5±0.0 33.9±0.5 38.8±0.0 51.0±0.0 53.4±0.6 50.1±0.6 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0 31.2±0.0
STREAMKmeans	44.2±0.0 46.6±0.0 46.6±0.0 46.6±0.0 36.1±0.0 57.7±3.7 37.5±0.0 33.9±0.5 38.8±0.0 51.0±0.0 53.4±0.6 50.1±0.6 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0 31.2±0.0
DenStream	46.6±0.0 36.1±0.0 36.1±0.0 36.7:7±3.7 37.5±0.0 35.9±0.5 38.8±0.0 51.0±0.0 31.2±0.0 53.4±0.6 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0 31.2±0.0
DBSTREAM	36.1±0.0 57.7±3.7 37.5±0.0 35.9±0.5 38.8±0.0 51.0±0.0 31.2±0.0 53.4±0.6 50.1±0.6 53.4±0.6 51.9±0.4 51.9±0.4 51.9±0.5 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 38.7±0.4 38.7±0.4 51.9±0.5 53.1±0.5 53.1±0.5 53.1±0.5 53.1±0.5
EMCStream	57.7±3.7 37.5±0.0 35.9±0.5 38.8±0.0 31.2±0.0 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 53.2±0.0 31.2±0.0 31.2±0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.5±0.0 35.9±0.5 38.8±0.0 51.0±0.0 31.2±0.0 53.4±0.6 53.4±0.6 53.4±0.6 51.9±0.4 51.9±0.4 51.9±0.5 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.5±0.0 35.9±0.5 38.8±0.0 51.0±0.0 31.2±0.0 53.4±0.6 53.4±0.6 53.4±0.6 51.9±0.4 51.9±0.4 51.9±0.5 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35.9±0.5 38.8±0.0 51.0±0.0 31.2±0.0 53.4±0.6 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0 31.2±0.0
	38.8±0.0 51.0±0.0 31.2±0.0 53.4±0.6 50.1±0.6 53.4±0.6 51.9±0.4 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 38.7±0.4 38.2±0.0 31.2±0.0
	51.0 ± 0.0 31.2 ± 0.0 31.2 ± 0.0 53.4 ± 0.6 50.1 ± 0.6 53.4 ± 0.6 51.9 ± 0.4 51.9 ± 0.5 50.1 ± 1.2 53.2 ± 0.9 52.9 ± 0.5 53.1 ± 0.5 53.7 ± 0.4 50.7 ± 0.0
	51.0 ± 0.0 31.2 ± 0.0 31.2 ± 0.0 53.4 ± 0.6 50.1 ± 0.6 53.4 ± 0.6 51.9 ± 0.4 51.9 ± 0.5 50.1 ± 1.2 53.2 ± 0.9 52.9 ± 0.5 53.1 ± 0.5 53.7 ± 0.4 50.7 ± 0.0
	31.2±0.0 53.4±0.6 50.1±0.6 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 38.7±0.4 38.2±0.0 31.2±0.0
CluStream - Wk-Means 49.2±1.5 62.2±2.5 81.4±0.7 98.9±0.1 81.0±0.1 55 CluStream-C - k-Means 50.1±1.3 30.9±2.3 80.2±0.9 97.6±0.7 83.6±0.1 55 CluStream-W - k-Means 49.2±1.5 62.2±2.5 81.4±0.7 98.9±0.1 81.0±0.1 55 CluStream-G - k-Means 49.2±1.5 62.2±2.5 81.4±0.7 98.9±0.1 81.0±0.1 55 CluStream-G - k-Means 49.1±1.3 61.3±2.5 82.4±0.7 98.8±0.0 81.3±0.1 51 CluStream-G - SubKMeans 48.3±0.6 50.5±2.5 80.4±0.3 97.8±0.0 83.6±0.2 56 CluStream-S - SubKMeans 47.7±0.7 66.6±3.0 79.4±1.0 98.8±0.0 81.1±0.1 53 CluStream-G - SubKMeans 48.0±1.4 64.6±2.3 81.8±0.9 98.8±0.0 81.3±0.1 52 CluStream-G - SubKMeans 15.9±0.1 52.7±0.5 75.5±0.8 29.5±0.0 73.3±0.0 33 CluStream-G - X-Means 15.9±0.1 52.0±0.4 72.1±1.0 27.4±0.0 7	53.4±0.6 50.1±0.6 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 38.7±0.4 31.2±0.0 31.2±0.0
	50.1±0.6 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0
	50.1±0.6 53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53.4±0.6 51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.9±0.4 51.9±0.5 50.1±1.2 53.2±0.9 52.9±0.5 53.1±0.5 38.7±0.4 31.2±0.0 31.2±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.9 ± 0.5 50.1 ± 1.2 53.2 ± 0.9 52.9 ± 0.5 53.1 ± 0.5 58.7 ± 0.4 51.2 ± 0.0 51.2 ± 0.0 51.2 ± 0.0
CluStream-C - SubKMeans 48.3±0.6 50.5±2.5 80.4±0.3 97.8±0.0 83.6±0.2 50.5±2.5 80.4±0.3 97.8±0.0 83.6±0.2 50.5±2.5 80.4±0.3 97.8±0.0 83.6±0.2 50.5±2.5 80.4±0.3 97.8±0.0 83.6±0.2 50.5±2.5 80.4±0.3 97.8±0.0 83.6±0.2 50.5±2.5 50.5±2.5 80.4±0.3 97.8±0.0 83.6±0.2 50.5±2.5 80.8±0.1 81.3±0.1 50.5±2.5 80.5±0.7 98.8±0.0 81.3±0.1 50.5±2.5 80.9±2.7 98.8±0.0 81.3±0.1 50.5±2.5 80.9±2.7 98.8±0.0 81.3±0.1 50.5±2.5 80.9±2.7 81.6±0.7 98.8±0.0 81.3±0.1 50.9±2.8 80.9±2.7 80.9±2.7 80.9±2.0 70.9±0.0 20.9±0	50.1 ± 1.2 53.2 ± 0.9 52.9 ± 0.5 53.1 ± 0.5 58.7 ± 0.4 31.2 ± 0.0 31.2 ± 0.0
CluStream-W - SubKMeans 47.7±0.7 66.6±3.0 79.4±1.0 98.8±0.1 81.1±0.1 55 CluStream-G - SubKMeans 48.7±1.8 62.1±1.1 80.5±0.7 98.7±0.4 81.3±0.1 55 CluStream-G - SubKMeans 49.0±1.4 64.6±2.3 81.8±0.9 98.8±0.0 81.3±0.1 55 CluStream-C - X-Means 58.0±3.8 39.6±4.7 75.5±0.8 29.5±0.0 73.3±0.0 31 CluStream-S - X-Means 15.9±0.1 52.0±0.4 72.1±1.0 27.4±0.0 73.3±0.0 31 CluStream-G - X-Means 28.0±5.5 54.2±0.6 82.1±1.1 26.8±0.4 76.2±0.0 33 CluStream-G - P-Dip-M 29.9±0.0 20.9±0.0 38.9±0.7 70.8±0.0 84.7±0.0 47 CluStream-S - P-Dip-M 20.9±0.1 44.7±0.1 12.6±0.0 - - CluStream-G - P-Dip-M 20.9±0.1 58.8±0.3 81.6±0.4 47.2±3.0 80.8±0.0 31 CluStream-G - SC 60.9±1.9 62.0±0.3 81.6±0.4 98.8±0.0 81.5±0.1 6 <td>53.2 ± 0.9 52.9 ± 0.5 53.1 ± 0.5 58.7 ± 0.4 31.2 ± 0.0 31.2 ± 0.0 31.2 ± 0.0</td>	53.2 ± 0.9 52.9 ± 0.5 53.1 ± 0.5 58.7 ± 0.4 31.2 ± 0.0 31.2 ± 0.0 31.2 ± 0.0
CluStream-S - SubKMeans 48.7±1.8 62.1±1.1 80.5±0.7 98.7±0.4 81.3±0.1 55 CluStream-G - SubKMeans 49.0±1.4 64.6±2.3 81.8±0.9 98.8±0.0 81.3±0.1 55 CluStream-C - X-Means 16.5±0.2 52.7±0.5 75.5±0.8 29.5±0.0 73.3±0.0 31 CluStream-G - X-Means 15.9±0.1 52.0±0.4 72.1±1.0 27.4±0.0 73.3±0.0 31 CluStream-G - X-Means 28.0±5.5 54.2±0.6 82.1±1.1 26.8±0.4 76.2±0.0 33 CluStream-W - P-Dip-M 29.9±0.1 20.9±0.0 38.9±0.7 70.8±0.0 84.7±0.0 47.2±0.1 12.6±0.0 47.2±0.1 12.5±0.1 - CluStream-G - P-Dip-M 20.9±0.1 54.9±0.6 81.5±0.6 47.2±3.0 80.8±0.0 86.0±0.1 30 CluStream-G - SC 60.9±1.9 60.9±1.9 62.0±0.3 81.6±0.4 98.8±0.0 81.5±0.1 60 CluStream-G - SCAR 65.5±2.2 58.7±0.5 80.9±0.3 98.8±0.0 81.5±0.1 60	52.9 ± 0.5 53.1 ± 0.5 38.7 ± 0.4 31.2 ± 0.0 31.2 ± 0.0 31.2 ± 0.0
CluStream-S - SubKMeans 48.7±1.8 62.1±1.1 80.5±0.7 98.7±0.4 81.3±0.1 55 CluStream-G - SubKMeans 49.0±1.4 64.6±2.3 81.8±0.9 98.8±0.0 81.3±0.1 55 CluStream-C - X-Means 16.5±0.2 52.7±0.5 75.5±0.8 29.5±0.0 73.3±0.0 31 CluStream-G - X-Means 15.9±0.1 52.0±0.4 72.1±1.0 27.4±0.0 73.3±0.0 31 CluStream-G - X-Means 28.0±5.5 54.2±0.6 82.1±1.1 26.8±0.4 76.2±0.0 33 CluStream-W - P-Dip-M 29.9±0.1 20.9±0.0 38.9±0.7 70.8±0.0 84.7±0.0 47.2±0.1 12.6±0.0 47.2±0.1 12.5±0.1 - CluStream-G - P-Dip-M 20.9±0.1 54.9±0.6 81.5±0.6 47.2±3.0 80.8±0.0 86.0±0.1 30 CluStream-G - SC 60.9±1.9 60.9±1.9 62.0±0.3 81.6±0.4 98.8±0.0 81.5±0.1 60 CluStream-G - SCAR 65.5±2.2 58.7±0.5 80.9±0.3 98.8±0.0 81.5±0.1 60	52.9 ± 0.5 53.1 ± 0.5 38.7 ± 0.4 31.2 ± 0.0 31.2 ± 0.0 31.2 ± 0.0
CluStream-G - SubKMeans 49.0±1.4 64.6±2.3 81.8±0.9 98.8±0.0 81.3±0.1 55 CluStream-C - X-Means 58.0±3.8 39.6±4.7 81.6±0.7 41.3±2.3 84.1±0.1 38 CluStream-W - X-Means 16.5±0.2 52.7±0.5 75.5±0.8 29.5±0.0 73.3±0.0 31 CluStream-G - X-Means 28.0±5.5 54.2±0.6 82.1±1.0 27.4±0.0 73.3±0.0 31 CluStream-C - P-Dip-M 29.9±0.0 20.9±0.0 38.9±0.7 70.8±0.0 84.7±0.0 44.7±0.1 12.6±0.0 - - CluStream-S - P-Dip-M 20.9±0.1 - 47.2±0.1 12.5±0.1 - - - - 47.2±0.1 12.5±0.1 - - - - - - - - 47.2±0.1 12.5±0.1 -	53.1 ± 0.5 38.7 ± 0.4 31.2 ± 0.0 31.2 ± 0.0 31.2 ± 0.0
CluStream-C - X-Means 58.0±3.8 39.6±4.7 81.6±0.7 41.3±2.3 84.1±0.1 38 CluStream-W - X-Means 16.5±0.2 52.7±0.5 75.5±0.8 29.5±0.0 73.3±0.0 31 CluStream-G - X-Means 28.0±5.5 54.2±0.6 82.1±1.1 27.4±0.0 73.3±0.0 31 CluStream-G - X-Means 28.0±5.5 54.2±0.6 82.1±1.1 26.8±0.4 76.2±0.0 31 CluStream-G - P-Dip-M 29.9±0.0 20.9±0.0 38.9±0.7 70.8±0.0 84.7±0.0 41 CluStream-G - P-Dip-M 20.9±0.1 - 44.7±0.1 12.6±0.0 - CluStream-G - P-Dip-M 49.6±1.2 54.9±0.6 81.5±0.6 47.2±3.0 80.8±0.0 32 CluStream-G - P-Dip-M 49.6±1.2 54.9±0.6 81.5±0.6 47.2±3.0 80.8±0.0 32 CluStream-G - SC 69.8±0.4 55.3±0.7 83.3±0.1 98.7±0.0 86.0±0.1 56 CluStream-G - SC 65.6±1.4 60.2±0.5 81.0±0.5 98.8±0.0 81.5±0.1 62	38.7±0.4 31.2±0.0 31.2±0.0 31.2±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.2 ± 0.0 31.2 ± 0.0 31.2 ± 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.2 ± 0.0 31.2 ± 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.2 ± 0.0 31.2 ± 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.2 ± 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\pm 1.8 \pm 0.4$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	33.9 ± 0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58.0 ± 0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	63.9 ± 0.7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	64.2 ± 0.8
	64.3 ± 0.6
	52.2 ± 1.2
	56.4 ± 1.2
	and the second second
	57.2 ± 1.0
	57.7 ± 1.1
	51.6 ± 1.0
	53.3 ± 0.6
CluStream-G - $\hat{\text{SpectACl}}$ 64.6±3.3 65.5±2.3 71.3±0.8 98.5±0.1 86.7±0.2 54.5 55.5 64.6±3.3 65.5±2.3 71.3±0.8	
	54.2 ± 0.5
	54.6 ± 0.9
CluStream-C - DBSCAN 81.4 \pm 0.0 54.5 \pm 0.0 74.3 \pm 0.0 94.0 \pm 0.0 85.0 \pm 0.0 35	35.6 ± 0.0
	40.3 ± 0.0
	40.4 ± 0.0
	37.8 ± 0.0
	51.2 ± 0.0
CluStream-W - HDBSCAN 79.7 ± 0.0 64.3 ± 0.0 76.6 ± 0.0 98.6 ± 0.0 85.0 ± 0.0 56.0 ± 0.0 86.0 ± 0.0 $86.$	53.9 ± 0.0
	54.7 ± 0.0
	54.8 ± 0.0
	52.2 ± 0.0
CluStream-W - RNN-DBS 57.8 ± 0.0 56.4 ± 0.0 56.7 ± 0.0 74.8 ± 0.0 75.5 ± 0.0 38	35.0 ± 0.0
CluStream-S - RNN-DBS 60.6 ± 0.0 54.0 ± 0.0 54.4 ± 0.0 79.1 ± 0.0 75.2 ± 0.0 41	41.6 ± 0.0
	44.6 ± 0.2
	37.0 ± 0.0
	12.9 ± 0.0
CluStream-S - MDBSCAN 79.8 ± 0.0 54.3 ± 0.0 72.9 ± 0.0 99.3 ± 0.0 89.7 ± 0.0 41	41.6 ± 0.0
CluStream-G - MDBSCAN 68.3 ± 3.5 57.1 ± 1.2 76.3 ± 0.4 99.1 ± 0.1 89.8 ± 0.0 40.0	40.3 ± 0.1
	44.9 ± 0.0
	35.2 ± 0.0
CluStream-S - DPC 53.6 ± 0.0 62.9 ± 0.0 73.9 ± 0.0 91.7 ± 0.0 90.7 ± 0.0 44.0	
CluStream-G - DPC 51.4 ± 2.0 59.9 ± 0.9 81.4 ± 0.2 80.7 ± 0.6 88.3 ± 0.0 47	14.8 ± 0.0
	14.8 ± 0.0
	44.8 ± 0.0 47.0 ± 0.0
Chiefman C CNN DDC (54.10.0) 54.11.0 0 0.420.0 50.020.0 50.00.0 0	14.8 ± 0.0 17.0 ± 0.0 15.4 ± 1.2
	14.8 ± 0.0 17.0 ± 0.0 15.4 ± 1.2 154.4 ± 0.0
	44.8 ± 0.0 47.0 ± 0.0 55.4 ± 1.2 54.4 ± 0.0 63.9 ± 0.0
CluStream-C - DBHD 63.1 \pm 0.0 62.5 \pm 0.0 77.7 \pm 0.0 99.3 \pm 0.0 86.6 \pm 0.0 48	$ \begin{array}{c} 44.8 \pm 0.0 \\ 47.0 \pm 0.0 \\ 55.4 \pm 1.2 \\ 54.4 \pm 0.0 \\ 53.9 \pm 0.0 \\ 58.4 \pm 0.3 \end{array} $
	44.8 ± 0.0 47.0 ± 0.0 55.4 ± 1.2 54.4 ± 0.0 63.9 ± 0.0
	14.8 ± 0.0 147.0 ± 0.0 155.4 ± 1.2 154.4 ± 0.0 153.9 ± 0.0 158.4 ± 0.3 18.2 ± 0.0
	14.8 ± 0.0 17.0 ± 0.0 155.4 ± 1.2 154.4 ± 0.0 153.9 ± 0.0 158.4 ± 0.3 18.2 ± 0.0 18.2 ± 0.0
CluStream-G - DBHD $ 75.6\pm3.4 $ $ 61.1\pm0.7 $ $ 87.5\pm0.5 $ $ 66.5\pm3.2 $ $ 72.4\pm0.1 $ $ 48.5\pm0.5 $	14.8 ± 0.0 147.0 ± 0.0 155.4 ± 1.2 154.4 ± 0.0 153.9 ± 0.0 158.4 ± 0.3 18.2 ± 0.0

Table 15: Precision Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are underlined.

<u>ınderlined</u> .						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Precision	Precision	Precision	Precision	Precision	
STREAMKmeans	50.1 ± 2.8	29.3 ± 2.2	70.1 ± 2.1	94.9 ± 0.0	98.5 ± 0.1	31.3 ± 0.0
DenStream	57.5 ± 0.0	61.4 ± 0.0	$ 70.1\pm0.0 $	96.6±0.0	79.8 ± 0.0	69.0 ± 0.0
DBSTREAM	56.4 ± 0.0	66.0 ± 0.0	$ 68.7\pm0.0 $	96.2 ± 0.0	99.5 ± 0.0	69.9 ± 0.0
EMCStream	79.6 ± 2.5	60.6 ± 5.5	53.6 ± 2.6	96.9 ± 0.5	98.4 ± 0.2	49.5 ± 4.4
MCMSTStream	63.2 ± 0.0	$ 76.5\pm0.0 $		99.1 ± 0.0	93.1 ± 0.0	
GB-FuzzyStream	51.7 ± 2.9	25.1 ± 0.6	$ 41.7\pm0.3 $	-	-	29.4 ± 0.1
CluStream-O - var. k	56.2 ± 0.0	$\frac{76.0}{100} \pm 0.0$		93.4 ± 0.0	99.3 ± 0.0	65.2 ± 0.0
CluStream-O - fixed k	58.8 ± 0.0	20.9 ± 0.0	$ 59.5\pm0.0 $	93.4 ± 0.0	99.6 ± 0.0	42.4 ± 0.0
CluStream-O - $k=100$	$ 99.9\pm0.0 $	73.2 ± 0.0	$ 89.3\pm0.0 $	99.5±0.0	99.9 ± 0.0	18.0 ± 0.0
CluStream - Wk -Means	59.4 ± 1.3	51.2 ± 2.0	81.3 ± 0.7	97.8 ± 0.0	99.8 ± 0.0	52.1 ± 1.0
CluStream-C - k-Means	60.4 ± 2.0	20.0 ± 1.5	74.5 ± 1.0	95.6 ± 1.5	99.7 ± 0.0	44.0 ± 1.2
CluStream-W - k -Means	59.4 ± 1.3	51.2 ± 2.0	81.3 ± 0.7	97.8 ± 0.0	99.8 ± 0.0	52.1 ± 1.0
CluStream-S - k-Means	60.3 ± 2.5	48.9 ± 3.5	81.2 ± 0.6	97.8 ± 0.4	99.8 ± 0.0	51.0 ± 0.7
CluStream-G - k-Means	59.9 ± 1.7	50.7 ± 2.9	82.2 ± 0.6	98.1 ± 0.0	99.8 ± 0.0	51.1 ± 0.8
CluStream-C - SubKMeans	57.2 ± 1.5	35.6 ± 2.1	75.5 ± 0.8	95.8 ± 0.0	99.7 ± 0.0	43.4 ± 1.4
CluStream-W - SubKMeans	58.3 ± 1.2	53.9 ± 3.2	83.1±1.0	97.8 ± 0.0	99.8 ± 0.0	52.2 ± 0.8
CluStream-S - SubKMeans	57.9 ± 1.6	48.7 ± 1.8	82.9 ± 0.6	97.7 ± 0.4	99.8 ± 0.0	51.8 ± 0.5
CluStream-G - SubKMeans CluStream-C - X-Means	59.0 ± 1.5 53.8 ± 3.6	53.6 ± 3.1 30.4 ± 3.6	82.0 ± 0.5 79.5 ± 0.5	98.1 ± 0.0 98.6 ± 0.5	99.8 ± 0.0 99.4 ± 0.1	51.7 ± 0.6 70.6 ± 0.3
CluStream-W - X-Means	99.9 ± 0.0	71.2 ± 0.2	76.0 ± 0.3	99.5 ± 0.0	99.4 ± 0.1 99.9 ± 0.0	78.0 ± 0.3
CluStream-S - X-Means	99.9 ± 0.0	71.2 ± 0.2 71.1 ± 0.1	81.3 ± 1.3	99.5 ± 0.0	99.9 ± 0.0	78.1 ± 0.0
CluStream-G - X-Means	92.9 ± 7.5	69.2 ± 0.9	82.8±0.9	99.7±0.2	99.9 ± 0.0	78.0±0.0
CluStream-C - P-Dip-M	18.6±0.0	12.9 ± 0.0	30.4 ± 0.7	64.3 ± 0.0	98.1 ± 0.0	36.6 ± 0.7
CluStream-W - P-Dip-M	97.4 ± 1.9	-	89.0 ± 0.0	99.8 \pm 0.0	-	-
CluStream-S - P-Dip-M	99.3±0.2	- 1	88.1 ± 0.1	99.8 ±0.0	-	-
CluStream-G - P-Dip-M	69.5 ± 0.7	63.5 ± 1.1	75.2 ± 0.9	98.0 ± 0.1	99.8 ± 0.0	75.0 ± 0.3
CluStream-C - SC	69.5 ± 0.2	45.2 ± 0.5	82.3 ± 0.1	97.9 ± 0.0	99.6 ± 0.0	46.5 ± 0.4
CluStream-W - SC	71.5 ± 2.2	59.1 ± 0.2	76.8 ± 0.4	98.1±0.0	99.5 ± 0.0	52.2 ± 0.8
CluStream-S - SC	79.6 ± 0.6	57.6 ± 1.1	76.7 ± 0.6	98.1 ± 0.0	99.5 ± 0.0	52.4 ± 1.1
CluStream-G - SC CluStream-C - SCAR	73.1 ± 2.4 63.4 ± 0.1	56.1 ± 0.4 45.6 ± 0.6	77.0 ± 0.3 81.2 ± 0.1	98.1 ± 0.0 86.3 ± 10.3	99.3 ± 0.0 97.8 ± 0.2	52.6 ± 0.6 50.6 ± 1.0
CluStream-W - SCAR	59.9 ± 0.6	57.7 ± 0.8	77.1 ± 0.4	78.5 ± 1.6	91.6±0.2	53.2 ± 1.2
CluStream-S - SCAR	73.2 ± 1.8	58.7 ± 1.7	77.9 ± 0.3	78.0 ± 5.3	99.5±0.0	55.5 ± 0.7
CluStream-G - SCAR	67.9 ± 3.5	57.9 ± 0.8	78.5 ± 0.3	75.8 ± 9.1	96.5 ± 0.5	56.2 ± 1.2
CluStream-C - SpectACl	78.6 ± 1.7	59.6 ± 1.0	66.2 ± 1.0	92.7 ± 5.6	99.6 ± 0.0	45.0 ± 2.1
CluStream-W - SpectACl	88.0 ± 1.4	58.4 ± 1.0	75.7 ± 0.6	97.2 ± 0.8	98.8 ± 0.2	47.9 ± 1.2
CluStream-S - SpectACl	84.7 ± 4.4	60.5 ± 0.8	83.5 ± 0.9	99.2 ± 0.0	99.0 ± 0.2	48.3 ± 0.4
CluStream-G - SpectACl	75.1 ± 2.9	59.8 ± 1.8	79.6 ± 0.7	96.7 ± 0.3	99.1 ± 0.1	48.2 ± 1.2
CluStream-C - DBSCAN	72.1 ± 0.0	67.2 ± 0.0	61.7 ± 0.0	99.7±0.0	99.8 ± 0.0	69.2 ± 0.0
CluStream-W - DBSCAN	72.1 ± 0.0	51.6 ± 0.0	60.8 ± 0.0	99.7 ± 0.0	99.4 ± 0.0	65.4 ± 0.0
CluStream-S - DBSCAN CluStream-G - DBSCAN	72.4 ± 0.0 72.1 ± 9.7	51.3 ± 0.0 55.3 ± 0.9	60.3 ± 0.0 72.4 ± 0.4	99.6 ± 0.0 97.4 ± 4.7	97.7 ± 0.0 98.0 ± 0.0	65.4 ± 0.0 67.0 ± 0.1
CluStream-C - HDBSCAN	77.3 ± 0.0	52.7 ± 0.0	71.3 ± 0.0	98.4±0.0	98.9 ± 0.0	58.2 ± 0.0
CluStream-W - HDBSCAN	71.9 ± 0.0	65.8 ± 0.0	68.8 ± 0.0	99.8 ± 0.0	97.8 ± 0.0	62.0 ± 0.0
CluStream-S - HDBSCAN	71.9 ± 0.0	69.5 ± 0.0	74.4 ± 0.0	99.8 ± 0.0	97.0 ± 0.0	64.1 ± 0.0
CluStream-G - HDBSCAN	81.6±8.1	68.4 ± 0.3	75.9 ± 0.8	92.7 ± 5.7	98.0 ± 0.0	64.2 ± 0.0
CluStream-C - RNN-DBS	69.4±0.0	17.9 ± 0.0	73.2 ± 0.0	88.0±0.0	94.0 ± 0.0	51.5 ± 0.0
CluStream-W - RNN-DBS	$ 43.9\pm0.0 $	66.9 ± 0.0	52.3 ± 0.0	90.1 ± 0.0	90.7 ± 0.0	70.3 ± 0.0
CluStream-S - RNN-DBS	56.7 ± 0.0	66.8 ± 0.0	67.9 ± 0.0	91.4 ± 0.0	92.2 ± 0.0	63.8 ± 0.0
CluStream-G - RNN-DBS	59.9 ± 9.9	52.2±3.2	60.9 ± 0.9	94.8±5.7	90.9 ± 0.0	64.7 ± 0.5
CluStream-C - MDBSCAN	69.8 ± 0.0	64.2 ± 0.0	60.9 ± 0.0 60.1 ± 0.0	98.4 ± 0.0	99.8 ± 0.0	67.8 ± 0.0
CluStream-W - MDBSCAN CluStream-S - MDBSCAN	72.1 ± 0.0 80.4 ± 0.0	66.7 ± 0.0 66.7 ± 0.0	59.8 ± 0.0	98.4 ± 0.0 98.4 ± 0.0	97.7 ± 0.0 97.5 ± 0.0	65.2 ± 0.0 68.9 ± 0.0
CluStream-G - MDBSCAN	79.7 ± 10.7	55.5 ± 1.0	64.2 ± 0.4	98.1 ± 0.2	97.5 ± 0.0	75.6 ± 0.1
CluStream-C - DPC	86.3 ± 0.0	55.0 ± 0.0	67.1 ± 0.0	97.0±0.0	99.1 ± 0.0	65.0 ± 0.0
CluStream-W - DPC	78.4 ± 0.0	54.1 ± 0.0	67.2 ± 0.0	98.7±0.0	94.9 ± 0.0	71.5 ± 0.0
CluStream-S - DPC	88.9±0.0	60.4 ± 0.0	69.8 ± 0.0	98.7 ± 0.0	98.7 ± 0.0	60.7 ± 0.0
CluStream-G - DPC	88.2±2.9	62.5 ± 1.2	77.0 ± 0.4	97.9 ± 0.9	95.9 ± 0.1	62.5 ± 0.0
CluStream-C - SNN-DPC	61.2 ± 3.2	26.5 ± 0.1	62.9 ± 0.1	78.1 ± 0.0	98.6 ± 0.0	45.7 ± 0.5
CluStream-W - SNN-DPC	72.8 ± 0.0	40.2 ± 0.2	$ 68.5\pm0.0 $	94.6±3.1	94.3 ± 0.0	44.6 ± 0.0
CluStream-S - SNN-DPC	73.7 ± 0.0	35.6 ± 0.0	60.3 ± 0.0	98.4±0.0	93.3 ± 0.0	42.2 ± 0.0
CluStream C DBHD	64.5 ± 4.1	53.3 ± 1.4	68.9 ± 0.6 78.1 ± 0.0	84.0±4.1	99.6 ± 0.0 95.8 ± 0.0	50.5 ± 0.7
CluStream-C - DBHD CluStream-W - DBHD	72.8 ± 0.0 72.8 ± 0.0	61.2 ± 0.0 61.2 ± 0.0	78.1 ± 0.0 78.1 ± 0.0	$98.4\pm0.0 98.2\pm0.0$	95.8 ± 0.0 95.8 ± 0.0	66.6 ± 0.0 66.6 ± 0.0
CluStream-S - DBHD	72.8 ± 0.0	61.2 ± 0.0 61.2 ± 0.0	78.1 ± 0.0	98.4 ± 0.0	95.8 ± 0.0	66.6 ± 0.0
CluStream-G - DBHD	80.6 ± 9.0	63.6 ± 0.6	85.2±0.6	97.2 ± 4.6	95.3 ± 0.3	69.0 ± 0.6

Table 16: Recall Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

The pest scores are man		,				<u>naci inica</u>
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Recall	Recall	Recall	Recall	Recall	Recall
STREAMKmeans	56.8±3.5	85.5±3.6	83.6±0.8	97.1±0.0	94.4±0.1	80.7±0.0
DenStream	62.0 ± 0.0	70.4 ± 0.0	72.4 ± 0.0	88.8 ± 0.0	$ 99.7\pm0.0 $	
DBSTREAM	80.5 ± 0.0	80.7 ± 0.0	88.2±0.0	77.9 ± 0.0	$ 91.7\pm0.0 $	$ 26.2\pm0.0 $
EMCStream	53.2 ± 1.1	74.5 ± 4.5	89.3±0.5	95.9 ± 0.6	80.5 ± 2.6	62.5 ± 3.0
MCMSTStream	85.7±0.0	77.8±0.0	84.5±0.0	96.4 ± 0.0		44.4±0.0
				30.410.0	30.0±0.0	
GB-FuzzyStream	$24.4{\pm}1.8$	52.8 ± 1.5	$ 52.7\pm0.7 $	-	-	46.4 ± 0.5
CluStream-O - var. k	61.4 ± 0.0	47.6 ± 0.0	84.3±0.0	93.3 ± 0.0	$ 88.4\pm0.0 $	29.3 ± 0.0
CluStream-O - fixed k	45.1 ± 0.0	82.7±0.0	87.8±0.0	93.3 ± 0.0	85.4±0.0	56.3 ± 0.0
CluStream-O - $k=100$	6.1 ± 0.0	46.2 ± 0.0	$ 33.5\pm0.0 $	5.6 ± 0.0		21.7 ± 0.0
CluStream - Wk-Means	37.5 ± 0.7	79.3 ± 2.9	80.1 ± 1.6	98.1 ± 0.4	88.2 ± 0.01	$ 47.8\pm1.0 $
CluStream-C - k-Means	37.9 ± 1.7	90.3 ± 2.0	86.0 ± 0.5	95.9 ± 0.9	89.1±0.0	
CluStream-W - k-Means	37.5 ± 0.7	79.3 ± 2.9	80.1 ± 1.6	98.1 ± 0.4	88.2 ± 0.0	$ 47.8\pm1.0 $
CluStream-S - k-Means	38.4 ± 1.9	79.6 ± 1.4	82.1 ± 0.9	97.9 ± 0.8	88.3 ± 0.0	47.2 ± 1.5
CluStream-G - k-Means	37.4 ± 1.3	79.8 ± 1.6	81.6 ± 1.0	97.6 ± 0.0	88.3±0.0	47.3 ± 1.4
CluStream-C - SubKMeans	37.3 ± 1.5	71.6 ± 2.6	84.6±0.5	96.3±0.0	89.1±0.0	52.5 ± 1.5
CluStream-W - SubKMeans	37.3 ± 1.2	80.2 ± 3.5	77.1 ± 1.8	97.8 ± 0.5	88.2 ± 0.0	$ 48.1\pm0.7 $
CluStream-S - SubKMeans	36.9 ± 1.5	79.5 ± 2.8	78.1 ± 0.8	97.5 ± 1.0	88.3 ± 0.0	$ 47.2\pm0.8 $
CluStream-G - SubKMeans	36.6 ± 1.3	79.5 ± 2.6	80.7 ± 1.3	97.6 ± 0.0	88.3 ± 0.0	$ 47.6\pm1.0 $
CluStream-C - X-Means	69.8 ± 7.1	88.3±1.9	84.9 ± 1.0	31.7 ± 1.8	89.2±0.0	29.1 ± 0.3
	6.2 ± 0.0	47.3 ± 0.2				
CluStream-W - X-Means CluStream-S - X-Means			82.1 ± 1.6	21.7 ± 0.0	77.6 ± 0.0	21.7 ± 0.0
CluStream-S - X-Means	6.1 ± 0.0	46.8 ± 0.2	74.8 ± 1.5	20.5 ± 0.0	77.7 ± 0.0	$ 21.8\pm0.0 $
CluStream-G - X-Means	17.7 ± 9.0	53.8 ± 0.6	84.0 ± 1.9	19.8 ± 0.1	84.0 ± 0.0	$ 21.9\pm0.0 $
CluStream-C - P-Dip-M	100.0 ± 0.0	100.0 ± 0.0	97.7 ± 0.2	100.0 ± 0.0	89.6 ± 0.0	82.5 ± 0.3
CluStream-W - P-Dip-M	8.8 ± 0.1	_	33.9 ± 0.0	7.4 ± 0.1	_	_
CluStream-S - P-Dip-M	8.6 ± 0.1		36.7 ± 0.1	7.2 ± 0.1		
Clustream-5 - 1 -Dip-M		FC 0 1 0	30.7±0.1		00 1 1 0 0	04.01.0.1
CluStream-G - P-Dip-M	37.5 ± 1.6	56.9 ± 1.2	85.7 ± 0.8	39.1 ± 3.4	88.1 ± 0.0	24.9 ± 0.1
CluStream-C - SC	46.2 ± 0.2	84.7 ± 1.0	81.3 ± 0.1	97.5 ± 0.0	90.0 ± 0.0	$ 66.6\pm1.2 $
CluStream-W - SC	47.6 ± 1.3	64.9 ± 0.8	82.5 ± 0.6	97.6 ± 0.0	87.6 ± 0.2	64.7 ± 0.3
CluStream-S - SC	51.5 ± 1.6	65.7 ± 0.3	81.9 ± 0.4	97.6 ± 0.0	87.6 ± 0.1	64.9 ± 0.8
CluStream-G - SC	50.0 ± 1.3	59.3 ± 1.2	81.8 ± 0.4	97.6 ± 0.1	87.6±0.1	64.7 ± 0.6
CluStream-C - SCAR	40.8 ± 0.5	78.2 ± 1.0	80.1 ± 0.1	94.2 ± 0.6	91.6 ± 0.1	51.4 ± 1.0
CluStream-W - SCAR	47.4 ± 1.0	69.4 ± 2.2	55.8 ± 0.5	83.1 ± 3.7	-	$ 52.5\pm0.7 $
CluStream-S - SCAR	49.2 ± 1.0	72.6 ± 2.0	67.3 ± 0.3	85.0 ± 3.9	85.6 ± 0.1	50.8 ± 1.3
CluStream-G - SCAR	48.8 ± 3.3	59.8 ± 1.5	67.9 ± 0.5	79.2 ± 6.7	83.5 ± 0.2	50.6 ± 1.4
CluStream-C - SpectACl	58.5 ± 3.1	65.1 ± 2.1	87.2 ± 0.9	96.5 ± 3.6	88.3±0.1	52.2 ± 1.6
CluStream-W - SpectACl	65.5 ± 5.1	67.1 ± 2.0	$ 65.3\pm1.0 $	97.9 ± 1.0	90.8 ± 0.1	$ 52.9\pm1.1 $
CluStream-S - SpectACl	61.6 ± 6.9	72.6 ± 3.9	$ 69.4\pm1.5 $	99.0 ± 0.0	90.8 ± 0.1	$ 54.5\pm0.9 $
CluStream-G - SpectACl	56.4 ± 3.5	70.1 ± 3.2	64.3 ± 0.6	98.1 ± 0.1	90.7 ± 0.1	53.4 ± 1.0
CluStream-C - DBSCAN	87.6±0.0	52.0±0.0	93.0 ± 0.0	89.4±0.0	89.2±0.0	28.4 ± 0.0
CluStream-W - DBSCAN	87.6±0.0	83.2±0.0	93.2 ± 0.0	89.6±0.0	90.3 ± 0.0	36.6 ± 0.0
CluStream-S - DBSCAN	87.5 ± 0.0	82.1 ± 0.0	93.0 ± 0.0	89.6 ± 0.0	91.0 ± 0.0	$ 36.8\pm0.0 $
CluStream-G - DBSCAN	65.5 ± 4.6	73.1 ± 2.9	$ 91.3\pm0.2 $	92.7 ± 0.5	90.9 ± 0.0	$ 32.4\pm0.0 $
CluStream-C - HDBSCAN	78.4 ± 0.0	87.8 ± 0.0	89.9 ± 0.0	97.7 ± 0.0	90.2 ± 0.0	44.4 ± 0.0
CluStream-W - HDBSCAN	86.9±0.0	65.6 ± 0.0	85.7±0.0	97.7 ± 0.0	90.6 ± 0.0	50.9 ± 0.0
CluStream-S - HDBSCAN	86.9 ± 0.0	61.7 ± 0.0	80.2 ± 0.0	97.7 ± 0.0	91.5 ± 0.0	$ 45.0\pm0.0 $
CluStream-G - HDBSCAN	60.9 ± 7.7	59.9 ± 0.1	86.8 ± 0.9	94.0 ± 1.5	90.9 ± 0.0	$ 45.0\pm0.0 $
CluStream-C - RNN-DBS	33.5 ± 0.0	92.0 ± 0.0	73.2 ± 0.0	98.3 ± 0.0	91.8 ± 0.0	$ 53.4\pm0.0 $
CluStream-W - RNN-DBS	93.4 ± 0.0	51.0 ± 0.0	61.4 ± 0.0	66.6 ± 0.0	80.8 ± 0.0	$ 25.1\pm0.0 $
CluStream-S - RNN-DBS	62.4 ± 0.0	48.7 ± 0.0	45.3 ± 0.0	67.9 ± 0.0	80.2 ± 0.0	31.6 ± 0.0
CluStream-G - RNN-DBS	68.0 ± 3.4	30.1 ± 1.2	74.4 ± 1.6	66.3 ± 2.6	81.9±0.0	34.8 ± 0.1
CluStream-C - MDBSCAN	88.0±0.0	52.0 ± 0.0	92.1 ± 0.0	99.0 ± 0.0	89.2 ± 0.0	31.2 ± 0.0
CluStream-W - MDBSCAN	88.1 ± 0.0	53.2 ± 0.0	92.9 ± 0.0	99.0 ± 0.0	93.0 ± 0.0	$ 39.1\pm0.0 $
CluStream-S - MDBSCAN	78.4 ± 0.0	50.1 ± 0.0	93.2 ± 0.0	99.0 ± 0.0	93.2 ± 0.0	$ 33.2\pm0.0 $
CluStream-G - MDBSCAN	56.9 ± 3.3	65.4 ± 3.1	$\overline{92.7} \pm 0.2$	$\overline{98.8} \pm 0.1$	93.3 ± 0.0	29.4 ± 0.2
CluStream-C - DPC		77.7±0.0	92.0 ± 0.0		91.6 ± 0.0	
CluStream-W - DPC	41.4 ± 0.0	78.9 ± 0.0	89.6 ± 0.0	90.1 ± 0.0	92.9 ± 0.0	$ 25.6\pm0.0 $
CluStream-S - DPC	33.4 ± 0.0	72.1 ± 0.0	83.0 ± 0.0	90.1 ± 0.0	93.1 ± 0.0	38.6 ± 0.0
CluStream-G - DPC	31.9 ± 0.8	65.3 ± 1.6	89.5 ± 0.3	77.4 ± 0.6	93.0 ± 0.0	44.6 ± 0.0
CluStream-C - SNN-DPC	51.4 ± 1.8	87.9 ± 0.3	77.4 ± 0.3	89.3±0.0	85.3±0.0	61.2 ± 1.1
CluStream-W - SNN-DPC			70.5 ± 0.0			
Clustream-w - SNN-DPC	51.2±0.0	84.8±0.4		93.6 ± 3.4	88.9 ± 0.0	$ 65.8\pm0.0 $
CluStream-S - SNN-DPC	58.2 ± 0.0	87.4 ± 0.0	78.4 ± 0.0	97.8 ± 0.0	88.6 ± 0.0	$ 68.1\pm0.0 $
CluStream-G - SNN-DPC	54.1 ± 1.6	77.1 ± 1.0	90.1 ± 0.2	94.7 ± 1.9	89.4 ± 0.0	62.6 ± 0.3
CluStream-C - DBHD	51.7 ± 0.0	69.5 ± 0.0	81.1±0.0	99.0 ± 0.0	90.8 ± 0.0	39.9 ± 0.0
CluStream-W - DBHD	51.7 ± 0.0	69.5 ± 0.0	81.1 ± 0.0	$\frac{80.0}{98.9}\pm0.0$	90.8 ± 0.0	39.9 ± 0.0
CluStream-S - DBHD	51.7 ± 0.0 51.7 ± 0.0	69.5 ± 0.0	81.1 ± 0.0	99.0 ± 0.0	90.8 ± 0.0	39.9 ± 0.0
	70.2 L 4.4					
CluStream-G - DBHD	70.3 ± 4.4	57.4 ± 0.7	86.5 ± 0.5	54.7 ± 0.2	75.2 ± 0.1	36.2 ± 0.4
·	· <u></u>	·		· · · · · · · · · · · · · · · · · · ·		_

Table 17: F1 Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are underlined.

The best scores are marked as bold , and the second-best scores are <u>underlined</u> .									
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas			
	F1	F1	F1	F1	F1	F1			
STREAMKmeans	53.1 ± 2.0	42.7 ± 1.5	75.2 ± 1.4	96.0 ± 0.0	96.4 \pm 0.0	43.6 ± 0.0			
DenStream	59.7 ± 0.0	65.6 ± 0.0	70.6 ± 0.0	91.9 ± 0.0	88.7 ± 0.0	45.7 ± 0.0			
DBSTREAM	66.3 ± 0.0	72.4 ± 0.0	76.3 ± 0.0	84.9 ± 0.0	95.4 ± 0.0	36.4 ± 0.0			
EMCStream	63.7 ± 1.2	$\overline{66.0}\pm 5.0$	64.7 ± 2.1	96.4 ± 0.6	87.9 ± 1.7	53.6 ± 3.7			
MCMSTStream	72.7 ± 0.0	77.1 ± 0.0	79.9 ± 0.0	97.7±0.0	94.3±0.0	38.8 ± 0.0			
GB-FuzzyStream	31.0 ± 2.3	33.9 ± 0.8	46.1 ± 0.5	-	-	35.4 ± 0.2			
CluStream-O - var. k	58.6±0.0	57.8±0.0	73.0 ± 0.0	93.3±0.0	93.5±0.0	39.0 ± 0.0			
CluStream-O - fixed k	51.0 ± 0.0	33.3 ± 0.0	69.8 ± 0.0	93.3 ± 0.0	91.9 ± 0.0	46.7 ± 0.0			
CluStream-O - $k=100$	11.4 ± 0.0	54.7 ± 0.0	47.9 ± 0.0	10.6 ± 0.0	87.2 ± 0.0	32.3 ± 0.0			
CluStream - Wk -Means	45.9 ± 0.9	$ 61.7\pm2.2 $	80.1 ± 0.6	98.0 ± 0.2	93.6 ± 0.0	48.5 ± 0.7			
CluStream-C - k-Means	46.6 ± 1.8	32.5 ± 1.8	79.0 ± 0.6	95.7 ± 1.2	94.1 ± 0.0	45.8 ± 0.9			
CluStream-W - k-Means	45.9 ± 0.9	61.7 ± 2.2	80.1 ± 0.6	98.0 ± 0.2	93.6 ± 0.0	48.5 ± 0.7			
CluStream-S - k -Means	46.9 ± 2.1	59.9 ± 2.9	81.0 ± 0.4	97.9 ± 0.6	93.7 ± 0.0	47.6 ± 0.7			
CluStream-G - k -Means	46.0 ± 1.4	61.4 ± 2.5	81.3 ± 0.6	97.9 ± 0.0	93.7 ± 0.0	47.6 ± 0.7			
CluStream-C - SubKMeans	45.1±1.3	47.1 ± 2.4	79.0 ± 0.4	96.0 ± 0.0	94.1 ± 0.0	45.4 ± 1.4			
CluStream-W - SubKMeans	45.5 ± 1.0	64.0 ± 3.3	79.2 ± 0.9	97.8 ± 0.3	93.7 ± 0.0	48.5 ± 0.3			
CluStream-S - SubKMeans	45.0 ± 1.5	59.6 ± 1.5	79.8 ± 0.6	97.6 ± 0.7	93.7 ± 0.0	48.1 ± 0.3			
CluStream-G - SubKMeans	45.2 ± 1.3	63.6 ± 2.3	80.7 ± 0.8	97.9 ± 0.0	93.7 ± 0.0	48.2 ± 0.5			
CluStream-C - X-Means	60.3 ± 4.5	41.6±3.8	81.1±0.5	44.5 ± 2.2	94.0 ± 0.0	40.0 ± 0.4			
CluStream-W - X-Means	11.7 ± 0.1	55.5 ± 0.2	75.9 ± 0.4	29.8 ± 0.0	87.2 ± 0.0	32.3 ± 0.0			
CluStream-S - X-Means	11.5 ± 0.0	55.1±0.1	73.9 ± 1.0	27.9 ± 0.0	87.2±0.0	32.4 ± 0.0			
CluStream-G - X-Means	23.4 ± 6.1	58.1±0.9	82.3±0.9	26.4 ± 0.2	91.2 ± 0.0	32.4 ± 0.0			
CluStream-C - P-Dip-M	31.4 ± 0.0	22.9 ± 0.0	43.5 ± 0.5	76.6 ± 0.0	93.6±0.0	44.4 ± 0.3			
CluStream-W - P-Dip-M	16.0 ± 0.1	-	48.3 ± 0.0	13.8 ± 0.2	-	-			
CluStream-S - P-Dip-M	15.8 ± 0.1	_	50.9 ± 0.1	13.3 ± 0.1	_	_			
CluStream-G - P-Dip-M	48.6 ± 1.4	57.6±1.0	79.1 ± 0.5	49.3 ± 2.3	93.6 ± 0.0	35.8 ± 0.1			
CluStream-C - SC	55.5 ± 0.2	58.2±0.7	81.3±0.1	97.7 ± 0.0	94.6 ± 0.0	52.6 ± 0.5			
CluStream-W - SC	57.0 ± 1.7	61.3 ± 0.4	78.9 ± 0.4	97.8 ± 0.0	93.2 ± 0.1	56.4 ± 0.5			
CluStream-S - SC	62.4 ± 1.3	60.8 ± 0.8	78.4 ± 0.4	97.8 ± 0.0	93.1 ± 0.1	56.5 ± 0.9			
CluStream-G - SC	59.3 ± 1.5	57.6 ± 0.7	78.5 ± 0.2	97.8 ± 0.1	93.1 ± 0.0	56.5 ± 0.6			
CluStream-C - SCAR	49.6 ± 0.3	56.9 ± 0.7	80.2 ± 0.1	89.2±6.7	94.5 ± 0.1	47.1 ± 0.8			
CluStream-W - SCAR	52.1 ± 0.6	62.5 ± 0.7	63.9 ± 0.5	80.5±1.8	-	51.8 ± 0.9			
CluStream-S - SCAR	58.8 ± 1.2	64.5 ± 1.6	71.4 ± 0.2	81.0 ± 4.4	92.0 ± 0.0	52.2 ± 1.0			
CluStream-G - SCAR	56.5 ± 2.7	58.8 ± 1.1	72.1 ± 0.4	77.2 ± 7.8	89.3±0.3	52.3 ± 1.0			
CluStream-C - SpectACl	66.9 ± 2.3	61.8 ± 1.3	74.0 ± 0.5	94.2 ± 4.5	93.5 ± 0.0	46.6 ± 1.2			
CluStream-W - SpectACl	74.8±3.3	61.9 ± 1.4	69.1 ± 0.7	97.5 ± 0.8	94.6 ± 0.1	48.4 ± 0.4			
CluStream-S - SpectACl	71.1 ± 5.8	65.7 ± 1.8	75.0 ± 1.1	99.1 ± 0.0	94.7 ± 0.1	49.0 ± 0.7			
CluStream-G - SpectACl	64.3 ± 2.6	64.3 ± 2.1	70.2 ± 0.6	97.4 ± 0.2	94.7 ± 0.1	48.6 ± 0.6			
CluStream-C - DBSCAN	78.8±0.0	58.1 ± 0.0	72.8 ± 0.0	93.2±0.0	94.2 ± 0.0	37.2 ± 0.0			
CluStream-W - DBSCAN	78.8 ± 0.0	61.5 ± 0.0	72.4 ± 0.0	93.3 ± 0.0	94.6 ± 0.0	40.6 ± 0.0			
CluStream-S - DBSCAN	78.9 ± 0.0	60.8 ± 0.0	71.7 ± 0.0	93.3 ± 0.0	94.2 ± 0.0	40.7 ± 0.0			
CluStream-G - DBSCAN	$\frac{16.0}{65.4} \pm 4.8$	62.0 ± 1.1	79.4 ± 0.2	94.5 ± 2.1	94.2 ± 0.0	39.0 ± 0.0			
CluStream-C - HDBSCAN	76.9 ± 0.0	65.2 ± 0.0	78.2 ± 0.0	98.0 ± 0.0	94.3 ± 0.0	49.0 ± 0.0			
CluStream-W - HDBSCAN	78.4 ± 0.0	63.8 ± 0.0	74.7 ± 0.0	98.7 ± 0.0	94.0 ± 0.0	51.9 ± 0.0			
CluStream-S - HDBSCAN	78.4 ± 0.0	62.7 ± 0.0	75.9 ± 0.0	$\frac{36.7}{98.7}$ ± 0.0	94.1 ± 0.0	51.6 ± 0.0			
CluStream-G - HDBSCAN	66.8 ± 4.5	61.9 ± 0.1	79.6 ± 0.4	$\frac{30.1}{92.7}$ ± 2.5	94.3 ± 0.0	51.7 ± 0.0			
CluStream-C - RNN-DBS	44.7 ± 0.0	29.2 ± 0.0	71.9 ± 0.0	91.2±0.0	92.7 ± 0.0	50.2 ± 0.0			
CluStream-W - RNN-DBS	56.4 ± 0.0	56.3 ± 0.0	53.1 ± 0.0	72.5 ± 0.0	85.3 ± 0.0	35.8 ± 0.0			
CluStream-S - RNN-DBS	58.3 ± 0.0	55.0 ± 0.0	53.0 ± 0.0	76.6 ± 0.0	85.7 ± 0.0	40.0 ± 0.0			
CluStream-G - RNN-DBS	62.1 ± 4.6	36.8 ± 1.2	64.8 ± 1.0	72.3 ± 4.0	85.9 ± 0.0	42.6 ± 0.1			
CluStream-C - MDBSCAN	77.5 ± 0.0	56.7 ± 0.0	72.0 ± 0.0	98.7 ± 0.0	94.2 ± 0.0	38.1 ± 0.0			
			71.8 ± 0.0	$\frac{98.7 \pm 0.0}{98.7 \pm 0.0}$	95.3 ± 0.0	42.8 ± 0.0			
CluStream-W - MDBSCAN CluStream-S - MDBSCAN	78.4 ± 0.0	56.8 ± 0.0	71.7 ± 0.0	$\frac{98.7}{98.7}$ ± 0.0	95.3 ± 0.0	42.6 ± 0.0 42.6 ± 0.0			
CluStream-G - MDBSCAN	64.2 ± 5.2	59.3 ± 1.2	74.7 ± 0.0	$\frac{98.1}{98.4}\pm0.0$	95.3 ± 0.0	40.7 ± 0.1			
CluStream-C - DPC	51.1 ± 0.0	63.3 ± 0.0	76.4 ± 0.0	90.4 ± 0.0	95.2 ± 0.0	43.3 ± 0.0			
CluStream-W - DPC	54.1 ± 0.0	64.0 ± 0.0	75.3 ± 0.0	93.5 ± 0.0	93.2 ± 0.0 93.3 ± 0.0	35.9 ± 0.0			
CluStream-S - DPC	48.5 ± 0.0	65.4 ± 0.0	74.5 ± 0.0	93.5 ± 0.0	95.8 ± 0.0	43.7 ± 0.0			
CluStream-G - DPC	46.8 ± 0.9	63.3 ± 1.0	81.7 ± 0.3	85.0 ± 1.1	$\frac{99.8 \pm 0.0}{94.2 \pm 0.0}$	46.9 ± 0.0			
CluStream-C - SNN-DPC			68.1 ± 0.0						
CluStream-W - SNN-DPC	55.3 ± 0.4 59.5 ± 0.0	40.5 ± 0.0 54.0 ± 0.1	65.8 ± 0.0	82.8±0.0 94.1±3.3	91.3 ± 0.0 91.3 ± 0.0	50.6 ± 0.3 51.0 ± 0.0			
CluStream-S - SNN-DPC	64.8 ± 0.0	54.0 ± 0.1 50.2 ± 0.0	65.8 ± 0.0 65.9 ± 0.0	94.1 ± 3.5 98.1 ± 0.0		51.0 ± 0.0 50.2 ± 0.0			
CluStream-G - SNN-DPC	58.4 ± 1.7	62.8 ± 0.9			90.5 ± 0.0 94.2 ± 0.0				
CluStream-C - DBHD	59.8 ± 0.0		76.9 ± 0.3	88.0 ± 3.2		53.6 ± 0.4			
CluStream-W - DBHD		63.5 ± 0.0	78.8 ± 0.0	$\frac{98.7}{98.5} \pm 0.0$	93.1 ± 0.0	48.3 ± 0.0			
CluStream-W - DBHD CluStream-S - DBHD	59.8 ± 0.0 59.8 ± 0.0	63.5 ± 0.0 63.5 ± 0.0	78.8 ± 0.0	98.5 ± 0.0 98.7 ± 0.0	93.1 ± 0.0	48.3 ± 0.0			
			78.8 ± 0.0	$\frac{96.1}{67.7}$ ± 0.0	93.1 ± 0.0	48.3 ± 0.0			
CluStream-G - DBHD	73.7 ± 6.1	58.5 ± 0.6	$ 85.2\pm0.3 $	67.7 ± 2.3	83.9 ± 0.1	45.9 ± 0.3			

Table 18: FMI Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are underlined.

The best scores are mark	ed as bo	\mathbf{ld} , and \mathbf{t}	he second	i-best sco	$ext{res are } \underline{u}$	<u>nderlined</u>
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	FMI	FMI	FMI	FMI	FMI	FMI
STREAMKmeans	53.3 ± 2.0	49.4 ± 0.9	76.0 ± 1.3	96.0 ± 0.0	96.4 \pm 0.0	49.2 ± 0.0
DenStream	59.7 ± 0.0	65.7 ± 0.0	70.9 ± 0.0	92.3 ± 0.0	89.2 ± 0.0	48.9 ± 0.0
DBSTREAM	67.3 ± 0.0	72.9 ± 0.0	77.4 ± 0.0	85.9 ± 0.0	95.5 ± 0.0	41.5 ± 0.0
EMCStream	65.0 ± 1.3	66.8 ± 4.8	67.9 ± 1.6	96.4 ± 0.6		54.8 ± 3.6
MCMSTStream	73.6 ± 0.0	77.2 ± 0.0	80.3±0.0	97.7±0.0	94.3±0.0	40.3 ± 0.0
GB-FuzzyStream	34.1 ± 1.7	36.3 ± 0.9	46.6 ± 0.5	-	-	36.6 ± 0.2
					1027100	
CluStream-O - var. k	58.7 ± 0.0		74.1 ± 0.0		93.7 ± 0.0	42.8 ± 0.0
CluStream-O - fixed k	51.5 ± 0.0	41.5 ± 0.0	71.7 ± 0.0	93.3 ± 0.0	92.2 ± 0.0	48.0 ± 0.0
CluStream-O - $k=100$	24.6 ± 0.0	57.1 ± 0.0	54.1 ± 0.0	23.4 ± 0.0	88.0 ± 0.0	39.8 ± 0.0
CluStream - Wk -Means	47.2 ± 0.9	63.4 ± 2.2	80.4 ± 0.6	98.0 ± 0.2	93.8 ± 0.0	49.2 ± 0.7
CluStream-C - k-Means	47.8±1.8	42.3±1.1	79.6 ± 0.6	95.7±1.2	94.3±0.0	47.1±1.0
CluStream-W - k-Means	47.2 ± 0.9	63.4 ± 2.2	80.4 ± 0.6	98.0 ± 0.2	93.8 ± 0.0	49.2 ± 0.7
CluStream-S - k-Means	48.1 ± 2.2	62.0 ± 2.5	81.3 ± 0.4	97.9 ± 0.6	93.9 ± 0.0	48.4 ± 0.7
CluStream-G - k -Means	47.3 ± 1.4	63.3 ± 2.1	81.6 ± 0.6	97.9 ± 0.0	93.9 ± 0.0	48.4 ± 0.8
CluStream-C - SubKMeans	46.2 ± 1.3	50.2 ± 2.2	79.5 ± 0.4	96.0 ± 0.0	94.3 ± 0.0	46.6 ± 1.4
CluStream-W - SubKMeans	46.6 ± 1.0	65.5 ± 3.2	79.6 ± 0.4	97.8 ± 0.3	93.8 ± 0.0	49.3 ± 0.4
CluStream-S - SubKMeans	46.2 ± 1.5	61.8 ± 1.7	80.2 ± 0.6	97.6 ± 0.7	93.9 ± 0.0	48.8 ± 0.3
CluStream-G - SubKMeans	46.5 ± 1.3	65.1 ± 2.1	81.0 ± 0.7	97.9 ± 0.0	93.9 ± 0.0	48.9 ± 0.5
CluStream-C - X-Means						
CluStream-W - X-Means CluStream-W - X-Means	61.0 ± 4.6	49.3 ± 2.8	81.6 ± 0.5	53.0 ± 1.8	94.1 ± 0.0	44.6 ± 0.3
	24.9 ± 0.1	57.3 ± 0.2	77.4 ± 0.4	39.8 ± 0.0	88.0 ± 0.0	39.8 ± 0.0
CluStream-S - X-Means	24.6 ± 0.0	57.0 ± 0.1	75.8 ± 0.8	37.9 ± 0.0	88.0 ± 0.0	39.8 ± 0.0
CluStream-G - X-Means	35.0 ± 4.1	59.8 ± 0.8	82.8 ± 0.8	35.9 ± 0.3	91.6 ± 0.0	39.9 ± 0.0
CluStream-C - P-Dip-M	43.1 ± 0.0	36.0 ± 0.0	52.3 ± 0.4	79.3 ± 0.0	93.8 ± 0.0	51.2 ± 0.3
CluStream-W - P-Dip-M	29.0 ± 0.4	-	54.3 ± 0.0	27.0 ± 0.2	-	-
CluStream-S - P-Dip-M	29.1 ± 0.1	-	56.2 ± 0.1	26.5 ± 0.1		-
CluStream-G - P-Dip-M	51.0 ± 1.2	58.9 ± 0.9	79.8 ± 0.4	56.9 ± 2.1	93.7 ± 0.0	42.1 ± 0.1
CluStream-C - SC	56.7 ± 0.2	61.4 ± 0.7	81.6 ± 0.1	97.7 ± 0.0	94.7 ± 0.0	54.5 ± 0.6
CluStream-W - SC	58.2 ± 1.7	61.6 ± 0.5	79.3 ± 0.4	97.8 ± 0.0	93.4 ± 0.1	57.4 ± 0.5
CluStream-S - SC	64.0 ± 1.2	61.2 ± 0.7	78.8 ± 0.4	97.8 ± 0.0	93.3 ± 0.1	57.5 ± 0.9
CluStream-G - SC	60.4 ± 1.6	57.6 ± 0.7	79.0 ± 0.2	97.8 ± 0.1	93.3 ± 0.0	57.6 ± 0.6
CluStream-C - SCAR	50.8 ± 0.3	59.3 ± 0.7	80.4 ± 0.1	89.7 ± 6.1	94.6 ± 0.1	48.8 ± 0.7
CluStream-W - SCAR	52.9 ± 0.5	$ 63.0\pm0.8 $	65.1 ± 0.4	80.6 ± 1.9	-	52.3 ± 0.9
CluStream-S - SCAR	60.0 ± 1.2	$ 65.1\pm1.5 $	72.0 ± 0.2	81.2 ± 4.3	92.3 ± 0.0	52.7 ± 1.0
CluStream-G - SCAR	57.4 ± 2.7	58.8 ± 1.1	72.7 ± 0.4	77.4 ± 7.7	89.7 ± 0.3	52.8 ± 1.0
CluStream-C - SpectACl	67.7 ± 2.2	62.1 ± 1.3	75.3 ± 0.5	94.4 ± 4.4	93.7 ± 0.0	47.5 ± 1.4
CluStream-W - SpectACl	75.8 ± 2.9	62.3 ± 1.4	69.8 ± 0.7	97.5 ± 0.8	94.7 ± 0.1	49.3 ± 0.4
CluStream-S - SpectACl	72.1 ± 5.5	$ 66.1\pm2.0 $	75.7 ± 1.0	99.1 ± 0.0	94.8 ± 0.1	50.2 ± 0.6
CluStream-G - SpectACl	65.0 ± 2.6	64.6 ± 2.1	71.1 ± 0.6	97.4 ± 0.2	94.8 ± 0.1	49.6 ± 0.6
CluStream-C - DBSCAN	79.3 ± 0.0	58.8 ± 0.0	75.0 ± 0.0	93.9 ± 0.0	94.4 ± 0.0	42.4 ± 0.0
CluStream-W - DBSCAN	79.3 ± 0.0	64.3 ± 0.0	74.7 ± 0.0	94.0 ± 0.0	94.7 ± 0.0	45.2 ± 0.0
CluStream-S - DBSCAN	79.4 ± 0.0	63.6 ± 0.0	74.1 ± 0.0	93.9 ± 0.0	94.3 ± 0.0	45.4 ± 0.0
CluStream-G - DBSCAN	67.1 ± 4.9	63.1 ± 1.3	80.6 ± 0.2	94.8 ± 2.2	94.3 ± 0.0	43.8 ± 0.0
CluStream-C - HDBSCAN	77.4 ± 0.0	67.7 ± 0.0	79.3 ± 0.0	98.1 ± 0.0	94.4 ± 0.0	50.1 ± 0.0
CluStream-W - HDBSCAN	78.9 ± 0.0	64.7 ± 0.0	76.0 ± 0.0	98.7 ± 0.0	94.1 ± 0.0	54.0 ± 0.0
CluStream-S - HDBSCAN	78.9 ± 0.0	64.1 ± 0.0	76.6 ± 0.0	98.7 ± 0.0	94.2 ± 0.0	53.1 ± 0.0
CluStream-G - HDBSCAN	68.9 ± 5.0	63.0 ± 0.2	80.5 ± 0.4	93.0 ± 2.4	94.4 ± 0.0	53.1 ± 0.0
CluStream-C - RNN-DBS	47.9 ± 0.0	39.7 ± 0.0	72.6 ± 0.0	92.1 ± 0.0	92.8 ± 0.0	51.3 ± 0.0
CluStream-W - RNN-DBS	61.7 ± 0.0	57.6 ± 0.0	54.8 ± 0.0	75.1 ± 0.0	85.5 ± 0.0	41.1 ± 0.0
CluStream-S - RNN-DBS	58.9 ± 0.0	56.3 ± 0.0	54.8 ± 0.0	78.1 ± 0.0	86.0 ± 0.0	43.5 ± 0.0
CluStream-G - RNN-DBS	63.0 ± 4.5	38.9 ± 1.3	66.2 ± 1.0	76.1 ± 3.6	86.2 ± 0.0	45.9 ± 0.2
CluStream-C - MDBSCAN	78.2 ± 0.0	57.4 ± 0.0	74.2 ± 0.0	98.7 ± 0.0	94.4 ± 0.0	43.2 ± 0.0
CluStream-W - MDBSCAN	79.6 ± 0.0		74.1 ± 0.0	$\frac{98.7}{2} \pm 0.0$	95.3 ± 0.0	47.1 ± 0.0
CluStream-S - MDBSCAN	78.9 ± 0.0	57.6 ± 0.0	74.0 ± 0.0	$\frac{98.7}{2} \pm 0.0$	95.3 ± 0.0	46.5 ± 0.0
CluStream-G - MDBSCAN	66.2 ± 5.7	59.9 ± 1.4	76.5 ± 0.2	$\frac{98.4}{98.4} \pm 0.1$	95.4 ± 0.0	46.1 ± 0.1
CluStream-C - DPC	56.0 ± 0.0	64.8 ± 0.0	78.0 ± 0.0	90.9 ± 0.0	95.3 ± 0.0	46.4 ± 0.0
CluStream-W - DPC	57.0 ± 0.0	65.2 ± 0.0	76.8 ± 0.0	93.9 ± 0.0	93.6 ± 0.0	41.5 ± 0.0
CluStream-S - DPC	54.5 ± 0.0	65.8 ± 0.0	75.5 ± 0.0	93.9 ± 0.0	95.9 ± 0.0	46.5 ± 0.0
CluStream-G - DPC	53.0 ± 0.9	63.6 ± 1.0	82.5 ± 0.2	86.2 ± 0.9	$\frac{93.9}{94.3}\pm0.0$	50.0 ± 0.0
CluStream-C - SNN-DPC	55.8 ± 0.5	48.0 ± 0.0	69.1 ± 0.1	83.2±0.0	91.6 ± 0.0	50.0 ± 0.0 52.0 ± 0.3
CluStream-W - SNN-DPC	60.7 ± 0.0	58.1 ± 0.0	67.4 ± 0.1	94.1 ± 3.3	91.0 ± 0.0 91.5 ± 0.0	52.0 ± 0.3 53.0 ± 0.0
CluStream-S - SNN-DPC	65.4 ± 0.0	55.5 ± 0.0	67.4 ± 0.0 67.5 ± 0.0	98.1 ± 0.0	91.3 ± 0.0 90.7 ± 0.0	52.5 ± 0.0
CluStream-G - SNN-DPC	58.8 ± 1.7					
CluStream-C - DBHD		64.0 ± 0.8	78.2 ± 0.3	88.7 ± 3.1	94.4 ± 0.0	55.0 ± 0.3
CluStream-W - DBHD	61.0 ± 0.0 61.0 ± 0.0	64.4 ± 0.0	79.2 ± 0.0	$\frac{98.7 \pm 0.0}{08.6 \pm 0.0}$	93.2 ± 0.0	50.7 ± 0.0 50.7 ± 0.0
		64.4 ± 0.0	79.2 ± 0.0	98.6 ± 0.0	93.2 ± 0.0	
CluStream-S - DBHD	61.0 ± 0.0	64.4 ± 0.0	79.2 ± 0.0	$\frac{98.7 \pm 0.0}{71.6 \pm 2.2}$	93.2 ± 0.0	50.7 ± 0.0
CluStream-G - DBHD	74.6 ± 6.3	59.5 ± 0.6	85.5 ± 0.3	71.6 ± 2.3	84.5 ± 0.1	49.1 ± 0.4

Table 19: Purity Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are underlined.

The best scores are mark	ed as bo	\mathbf{ld} , and \mathbf{t}	he secono	i-best scc	$res are \underline{u}$	<u>nderlined</u>
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Purity	Purity	Purity	Purity	Purity	Purity
STREAMKmeans	61.9 ± 2.6	47.8±1.8	81.2±1.5	97.7±0.0	97.8 ± 0.3	44.2±0.0
DenStream	66.9 ± 0.0	74.5±1.0	80.6±0.0	98.2±0.0	78.7 ± 0.0	79.9 ± 0.0
DBSTREAM	64.8 ± 0.0	81.9 ± 0.0	80.0 ± 0.0	97.8 ± 0.0	99.1 ± 0.0	86.9 ± 0.0
EMCStream	85.6 ± 1.5	71.0 ± 4.1	$ 67.1\pm2.7 $	$ 98.0\pm0.3 $	97.1 ± 0.0	61.5 ± 3.9
MCMSTStream	72.8 ± 0.0	$ 89.6\pm0.0 $	86.3 ± 0.0	99.6 ± 0.0	93.2 ± 0.0	68.3 ± 0.0
GB-FuzzyStream	81.8±1.1	51.0 ± 0.2	64.6 ± 0.3	-	-	47.5 ± 0.4
CluStream-O - var. k	66.7±0.0	91.2 ± 0.0	79.0±0.0	96.2±0.0	08 6+0 0	82.3±0.0
CluStream-O - fixed k	70.2 ± 0.0	41.7 ± 0.0	73.6 ± 0.0	96.2 ± 0.0		59.8 ± 0.0
CluStream-O - $k=100$	99.9 ± 0.0	90.7 ± 0.0	$ 93.4\pm0.0 $	$ 99.9\pm0.0 $	99.6 ± 0.0	90.4 ± 0.0
CluStream - Wk-Means	69.8 ± 1.6	68.4 ± 1.1	88.9 ± 0.4	98.9 ± 0.1	99.0 ± 0.0	66.9 ± 0.4
CluStream-C - k-Means						
	71.1 ± 1.8	37.1 ± 2.3	84.2±0.6	97.6 ± 0.7	99.0 ± 0.0	61.0 ± 1.0
CluStream-W - k-Means	69.8 ± 1.6	68.4 ± 1.1	88.9 ± 0.4	98.9 ± 0.1	99.0 ± 0.0	66.9 ± 0.4
CluStream-S - k -Means	72.0 ± 2.6	$ 67.3\pm1.9 $	88.8 ± 0.4	98.8 ± 0.3	99.0 ± 0.0	65.6 ± 0.5
CluStream-G - k -Means	71.3 ± 1.5	$ 67.8\pm2.3 $	89.6 ± 0.4	98.8 ± 0.0	99.0 ± 0.0	65.6 ± 0.7
CluStream-C - SubKMeans	68.9 ± 1.4	55.6 ± 2.1	85.0 ± 0.5	97.8 ± 0.0	99.0 ± 0.0	60.9 ± 1.0
CluStream-W - SubKMeans	69.4 ± 0.7	72.1 ± 2.3	90.0 ± 0.6	98.8 ± 0.1	99.0 ± 0.0	67.4 ± 0.6
CluStream-S - SubKMeans	68.2 ± 1.1	68.8 ± 1.3	89.9 ± 0.3	98.7 ± 0.4	99.0 ± 0.0	66.8 ± 0.5
CluStream-G - SubKMeans	70.1 ± 1.4	71.2 ± 2.2	89.5 ± 0.3	98.8 ± 0.0	99.0 ± 0.0	66.8 ± 0.5
CluStream-C - X-Means	64.8 ± 3.1	$ 49.7 \pm 4.5 $	87.7 ± 0.3	99.0 ± 0.4	98.7 ± 0.0	84.6 ± 0.1
CluStream-W - X-Means	$ 99.9\pm0.0 $	89.4 ± 0.4	84.4 ± 0.8	$ 99.9\pm0.0 $	99.5 ± 0.0	90.4 ± 0.0
CluStream-S - X-Means	$ 99.9\pm0.0 $	89.5 ± 0.2	88.1 ± 1.0	$ 99.9\pm0.0 $	99.5 ± 0.0	$ 90.4\pm0.0 $
CluStream-G - X-Means	94.7 ± 5.8	88.1 ± 0.9	90.1 ± 0.7	$ 99.9\pm0.0 $	99.5 ± 0.0	90.4 ± 0.0
CluStream-C - P-Dip-M	29.9 ± 0.0	20.6 ± 0.0	38.9 ± 0.7	70.8 ± 0.0	98.2 ± 0.0	48.3 ± 0.5
CluStream-W - P-Dip-M	98.7 ± 0.8	-	93.2 ± 0.0	99.9 ± 0.0	-	-
CluStream-S - P-Dip-M	99.5 ± 0.2	_	$\frac{30.2}{92.6}\pm0.1$			
				99.9 ± 0.0	00 0 1 0 0	99 9 1 0 9
CluStream-G - P-Dip-M	81.9 ± 0.6	82.2±0.6	84.8 ± 0.6	98.8 ± 0.1	98.8 ± 0.0	88.2 ± 0.2
CluStream-C - SC	80.6 ± 0.0	$ 60.6\pm0.5 $	89.1 ± 0.1	98.7 ± 0.0	99.0 ± 0.0	63.9 ± 0.6
CluStream-W - SC	81.0 ± 0.9	$ 72.4\pm0.3 $	85.7 ± 0.4	98.8 ± 0.0	98.6 ± 0.0	70.1 ± 0.5
CluStream-S - SC	86.8 ± 0.8	72.5 ± 0.7	85.8 ± 0.4	98.8 ± 0.0	98.6 ± 0.0	70.0 ± 0.9
CluStream-G - SC	82.7 ± 1.2	71.5 ± 0.5	85.9 ± 0.2	98.8 ± 0.0	98.9 ± 0.0	70.1 ± 0.6
CluStream-C - SCAR	75.3 ± 0.2	62.8 ± 0.6	88.7±0.1	90.1±8.4	97.9 ± 0.1	67.1 ± 0.9
CluStream-W - SCAR		70.1 ± 0.6			31.3±0.1	
	76.0 ± 1.0		85.8 ± 0.2	83.6 ± 1.7	00 0 1 0 0	66.1 ± 1.0
CluStream-S - SCAR	82.1±1.4	70.9 ± 1.4	85.2 ± 0.2	85.4 ± 5.1	98.3±0.0	67.9 ± 0.7
CluStream-G - SCAR	79.7 ± 2.1	71.9 ± 0.6	85.5 ± 0.2	83.2 ± 7.0	96.4 ± 0.3	68.3 ± 1.0
CluStream-C - SpectACl	84.7 ± 0.6	$ 74.9\pm0.8 $	78.4 ± 0.6	94.2 ± 4.6	98.8 ± 0.0	61.0 ± 1.2
CluStream-W - SpectACl	90.1 ± 0.8	75.9 ± 0.8	83.7 ± 0.5	98.6 ± 0.5	98.8 ± 0.1	62.4 ± 0.6
CluStream-S - SpectACl	88.9 ± 2.1	76.6 ± 0.9	88.7 ± 0.5	99.5 ± 0.0	98.9 ± 0.1	63.6 ± 0.8
CluStream-G - SpectACl	82.2 ± 2.9	76.2 ± 1.3	86.1 ± 0.5	98.5 ± 0.1	98.9 ± 0.0	63.1 ± 1.0
CluStream-C - DBSCAN	86.4±0.0	87.8±0.0	74.9 ± 0.0	99.9 ± 0.0	99.5 ± 0.0	86.0±0.0
CluStream-W - DBSCAN						
	86.4 ± 0.0	73.0 ± 0.0	74.5 ± 0.0	99.8 ± 0.0	98.1 ± 0.0	81.9 ± 0.0
CluStream-S - DBSCAN	87.1 ± 0.0	$ 73.0\pm0.0 $	73.5 ± 0.0	99.7 ± 0.0	96.4 ± 0.0	82.0 ± 0.0
CluStream-G - DBSCAN	85.4 ± 4.9	78.5 ± 0.6	82.8 ± 0.3	98.1 ± 3.6	96.7 ± 0.0	82.9 ± 0.1
CluStream-C - HDBSCAN	88.9 ± 0.0	$ 68.4\pm0.0 $	82.1 ± 0.0	99.3 ± 0.0	98.5 ± 0.0	74.4 ± 0.0
CluStream-W - HDBSCAN	86.4 ± 0.0	82.1 ± 0.0	79.6 ± 0.0	$ 99.9\pm0.0 $	96.6 ± 0.0	72.5 ± 0.0
CluStream-S - HDBSCAN	86.4 ± 0.0	85.2 ± 0.0	83.5 ± 0.0	$ 99.9\pm0.0 $	95.9 ± 0.0	74.9 ± 0.0
CluStream-G - HDBSCAN	89.3±2.7	85.8±0.3	84.5±0.4	94.4 ± 4.4	96.5 ± 0.0	75.1 ± 0.0
CluStream-C - RNN-DBS	83.8±0.0	34.7 ± 0.0	82.2±0.0	90.2 ± 0.0	96.2 ± 0.0	70.0 ± 0.0
CluStream-W - RNN-DBS						84.1 ± 0.0
	57.8 ± 0.0	83.1±0.0	68.8 ± 0.0	94.5 ± 0.0	94.9 ± 0.0	
CluStream-S - RNN-DBS	75.7 ± 0.0	84.5 ± 0.0	81.4 ± 0.0	94.8 ± 0.0	95.6 ± 0.0	80.5 ± 0.0
CluStream-G - RNN-DBS	75.6 ± 7.0	$ 79.5\pm1.6 $	74.7 ± 0.9	95.5 ± 4.6	94.9 ± 0.0	79.8 ± 0.2
CluStream-C - MDBSCAN	85.2 ± 0.0	87.0 ± 0.0	73.9 ± 0.0	99.3 ± 0.0	99.5 ± 0.0	84.5 ± 0.0
CluStream-W - MDBSCAN	86.4 ± 0.0	85.0 ± 0.0	73.2 ± 0.0	99.3 ± 0.0	96.4 ± 0.0	80.7 ± 0.0
CluStream-S - MDBSCAN	92.0 ± 0.0	87.0 ± 0.0	72.9 ± 0.0	99.3 ± 0.0	96.4 ± 0.0	82.1 ± 0.0
CluStream-G - MDBSCAN	89.8 ± 5.5	82.0 ± 0.6	76.3 ± 0.4	99.1 ± 0.1	96.4 ± 0.0	85.6 ± 0.1
CluStream-C - DPC	94.0 ± 0.0	78.9 ± 0.0	78.5 ± 0.0	97.2 ± 0.0	98.9 ± 0.0	81.3 ± 0.0
CluStream-W - DPC	87.6 ± 0.0	79.2 ± 0.0	79.0 ± 0.0	99.3 ± 0.0	96.2±0.0	86.7 ± 0.0
CluStream-S - DPC	93.8 ± 0.0	83.9 ± 0.0	82.0 ± 0.0	99.3 ± 0.0	98.5 ± 0.0	76.2 ± 0.0
CluStream-G - DPC	93.0 ± 2.0	81.7 ± 0.4	86.5 ± 0.2	99.0 ± 0.4	94.9 ± 0.0	78.8 ± 0.0
CluStream-C - SNN-DPC	73.9 ± 2.1	45.3 ± 0.1	77.0 ± 0.1	84.2 ± 0.0	98.0 ± 0.0	64.3 ± 0.7
CluStream-W - SNN-DPC	83.3 ± 0.0	57.6 ± 0.8	78.2 ± 0.0	96.5 ± 2.0	95.8 ± 0.0	58.4 ± 0.0
CluStream-S - SNN-DPC	85.3 ± 0.0	56.3 ± 0.0	72.1 ± 0.0	99.0±0.0	94.9 ± 0.0	56.6 ± 0.0
CluStream-G - SNN-DPC	77.1 ± 2.3	68.3 ± 0.7	80.5 ± 0.4	87.6±3.5	98.5 ± 0.0	65.3 ± 0.2
CluStream-C - DBHD	85.7 ± 0.0	78.0 ± 0.0	85.7 ± 0.0	99.3 ± 0.0	97.0 ± 0.0	80.3 ± 0.0
CluStream-W - DBHD	85.7 ± 0.0	78.0 ± 0.0	85.7 ± 0.0	99.2 ± 0.0	97.0 ± 0.0	80.3 ± 0.0
CluStream-S - DBHD	85.7 ± 0.0	78.0 ± 0.0	85.7 ± 0.0	99.3 ± 0.0	97.0 ± 0.0	80.3 ± 0.0
CluStream-G - DBHD	88.3 ± 4.1	80.5 ± 0.4	90.4 ± 0.3	97.6 ± 3.6	95.9 ± 0.1	78.4 ± 0.5
			•			

Table 20: Homogeneity Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

State	Name	C 0	DEN-10	RBF-3	FvI	KDD99	Gas
STREAMKmeans	Name	Comp-9					
DenStream	STDEAMKmoons						
DBSTREAM							
EMCStream							
MCMSTStream							
GB-PuzzyStream							
CluStream					90.7±0.0	79.1±0.0	
CluStream-O -	· ·				-	-	
CluStream - V-K-Means 68.1±0.9 63.7±1.1 81.1±0.2 93.3±0.4 97.2±0.0 48.8±0.8							
CluStream-WK-Means							
CluStream-V - k-Means 68.9±1.7 27.9±2.6 77.2±0.7 87.6±3.3 96.9±0.0 40.2±1.9 40.2±1.0 40.2±1.	CluStream-O - $k=100$	99.8 ±0.0	89.1 ± 0.0	90.1±0.0	99.5±0.0	98.9 ± 0.0	86.2 ±0.0
CluStream-W - k-Means 68.1±0.9 63.7±1.1 81.1±0.2 93.3±0.4 97.2±0.0 47.5±0.6	CluStream - Wk-Means	68.1 ± 0.9	63.7 ± 1.1	81.1±0.2	93.3 ± 0.4	97.2 ± 0.0	48.8 ± 0.8
CluStream-W - k-Means 68.1±0.9 63.7±1.1 81.1±0.2 93.3±0.4 97.2±0.0 47.5±0.6	CluStream_C - k-Means	68 9±1 7	27 9+2 6	77 2+0 7	87.6+3.3	96.9+0.0	40.2+1.9
CluStream-S - k-Means	CluStream-W - k-Means						
CluStream-G - k-Means 66.4±1.3 63.7±2.2 81.7±0.3 87.7±0.0 99.9±0.0 39.5±0.1							
CluStream-C - SubKMeans CluStream-W - SubKMeans CluStream-S - Su							
CluStream-W - SubKMeans G7.2±0.7 68.1±2.4 83.0±0.5 92.9±0.5 97.2±0.0 49.3±0.8							
CluStream-G - SubKMeans							
CluStream-G - SubKMeans 59,943,9 42,524.0 81,754.0 93,554.0 97,240.0 48,44-0.7 51,000 51,000 52,000 51,000 52,000 51,000 52,000 51,000 52,000							
CluStream-W - X-Means 99.8±0.0 87.9±0.3 81.7±0.4 96.5±1.0 95.9±0.1 77.5±0.3							
CluStream-W - X-Means 99.8±0.0 87.8±0.3 77.3±1.0 99.5±0.0 98.8±0.0 86.2±0.0 CluStream-G - X-Means 99.8±0.0 87.9±0.3 81.9±1.0 99.5±0.0 98.8±0.0 86.2±0.0 CluStream-C - P-Dip-M 0.0±0.0 0.0±0.0 1.9±0.0 0.0±0.0 1.9±0.0 0.0±0.0	CluStream-C - X-Means						77.5 ± 0.3
CluStream-S - X-Means	CluStream-W - X-Means						86.2±0.0
CluStream G - X.Means	CluStream-S - X-Means			81.9±1.0			
CluStream-W - P-Dip-M 0.0±0.0 0.0±0.0 88.7±0.0 99.6±0.0 99.6±0.0 0.0±0.0 0.0±0.0 88.6±0.1 99.6±0.0 0.0±0.0 0.0±0.0 0.0±0.0 99.6±0.0 0.0±	CluStream-G - X-Means						
CluStream-W - P-Dip-M						93.7 ± 0.0	
CluStream-G - P-Dip-M 79,4±0.6 75,7±0.6 33,5±0.4 96,5±0.0 82,3±0.3			-			-	-
CluStream-G - P-Dip-M			_			_	_
CluStream-C - SC		77.6 ± 0.8	79.4 ± 0.6	75.7 ± 0.6	93.5 ± 0.4	96.5 ± 0.0	82.3 ± 0.3
ChuStream-W - SC							
CluStream-G - SC	CluStream-W - SC						
CluStream-G - SC				77.3 ± 0.3			
CluStream-W - SCAR							
CluStream-W - SCAR	CluStream-C - SCAR	71.8 ± 0.4	58.4 ± 0.5	80.6±0.1	69.3 ± 19.9	92.6 ± 0.3	48.0 ± 0.8
CluStream-G - SCAR	CluStream-W - SCAR					-	
CluStream-G - SCAR						95.4 ± 0.1	
CluStream-W - SpectACl 90.1±0.4 73.1±0.8 77.6±0.4 92.4±1.6 95.7±0.2 43.3±0.5						88.9 ± 0.8	
CluStream-W - SpectACl 90.1±0.4 73.1±0.8 77.6±0.4 92.4±1.6 95.7±0.2 43.3±0.5	CluStream-C - SpectACl	83.4±0.6	74.5 ± 0.6	73.4 ± 0.7	86.1±10.3		40.0 ± 2.2
CluStream-G - SpectACl 88.0±2.2 74.0±0.8 84.0±0.5 96.6±0.0 95.9±0.2 43.0±0.5	CluStream-W - SpectACl	90.1 ± 0.4	73.1 ± 0.8	77.6 ± 0.4	$92.4{\pm}1.6$	95.7 ± 0.2	42.3 ± 1.1
CluStream-G - SpectACl 81.3±2.0 74.1±1.1 80.3±0.4 92.4±0.5 96.0±0.1 43.3±1.2	CluStream-S - Spect ACl					95.9 ± 0.2	
CluStream-G - DBSCAN 83.9±0.0 70.8±0.0 68.2±0.0 97.9±0.0 88.3±0.0 72.6±0.0	CluStream-G - SpectACl	81.3±2.0	74.1 ± 1.1	80.3±0.4	92.4 ± 0.5	96.0 ± 0.1	43.3 ± 1.2
CluStream-G - DBSCAN 83.9±0.0 70.8±0.0 68.2±0.0 97.9±0.0 88.3±0.0 72.6±0.0	CluStream-C - DBSCAN	83.4±0.0	86.3 ± 0.0	69.8 ± 0.0	99.2±0.0	98.4 ± 0.0	79.7 ± 0.0
CluStream-G - DBSCAN 83.9±0.0 70.8±0.0 68.2±0.0 97.9±0.0 88.3±0.0 72.6±0.0	CluStream-W - DBSCAN	83.4±0.0	70.8 ± 0.0	69.5 ± 0.0	98.5±0.0	93.0 ± 0.0	72.5 ± 0.0
CluStream-C + HDBSCAN 86.0±0.0 76.8±0.0 76.3±0.0 95.7±0.0 95.0±0.0 61.7±0.0	CluStream-S - DBSCAN	83.9 ± 0.0	70.8 ± 0.0	68.2 ± 0.0	97.9 ± 0.0	88.3±0.0	72.6 ± 0.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-G - DBSCAN	83.6 ± 4.5	75.4 ± 0.7	78.9 ± 0.3	94.9 ± 8.4	89.0±0.0	74.7 ± 0.1
CluStream-G - HDBSCAN 83.4±0.0 82.8±0.0 77.0±0.0 99.1±0.0 87.4±0.0 64.6±0.0 CluStream-G - HDBSCAN 81.3±3.5 83.4±0.2 78.4±0.3 85.9±10.4 89.2±0.0 64.7±0.0 CluStream-C - RNN-DBS 83.1±0.0 16.9±0.0 76.3±0.0 74.7±0.0 86.0±0.0 54.5±0.0 CluStream-S - RNN-DBS 42.7±0.0 81.0±0.0 58.3±0.0 80.8±0.0 82.3±0.0 77.0±0.0 CluStream-G - RNN-DBS 72.2±0.0 82.6±0.0 74.2±0.0 81.8±0.0 84.9±0.0 70.0±0.0 CluStream-G - RNN-DBS 72.2±0.0 85.0±0.0 65.8±0.0 95.7±0.0 88.4±0.0 69.1±0.4 CluStream-G - MDBSCAN 82.0±0.0 85.0±0.0 65.8±0.0 95.7±0.0 88.2±0.0 77.2±0.0 CluStream-G - MDBSCAN 88.4±0.0 85.1±0.0 64.0±0.0 95.7±0.0 88.8±0.0 77.3±0.0 CluStream-G - DPC 93.1±0.0 75.1±0.0 70.4±0.0 95.0±0.3 88.0±0.0 78.3±0.1 CluStream-G - DPC 94.1±0.0 81.1±0.0 70.2±0.0	CluStream-C - HDBSCAN	86.0±0.0	67.8 ± 0.0	76.3 ± 0.0	95.7±0.0	95.0 ± 0.0	61.7±0.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-S - HDBSCAN	83.4 ± 0.0					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-G - HDBSCAN						64.7 ± 0.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-C - RNN-DBS						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W - RNN-DBS						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-S - RNN-DBS						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			75.7 ± 1.4				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-C - DPC						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				72.8 ± 0.0			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				75.7 ± 0.0			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-G - DPC						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-C - SNN-DPC						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
CluStream-S - DBHD 82.7 ± 0.0 75.4 ± 0.0 81.7 ± 0.0 95.7 ± 0.0 89.1 ± 0.0 70.6 ± 0.0							
CluStream-G - DBHD 86.6 ± 4.8 77.8 ± 0.5 84.7 ± 0.3 92.8 ± 8.4 86.8 ± 0.3 69.3 ± 0.6							
	CluStream-G - DBHD	86.6±4.8	77.8 ± 0.5	84.7±0.3	92.8 ± 8.4	86.8 ± 0.3	69.3 ± 0.6

Table 21: Completeness Scores for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Completeness	Completeness		Completeness	Completeness	Completeness
STREAMKmeans	68.5±4.0	70.5±1.6	76.7±0.7	88.9±0.0	83.6±0.2	34.4±0.0
DenStream	77.2±0.0	75.1 ± 0.0	68.3±0.0	84.8±0.0	97.9 ±0.0	44.8±0.0
DBSTREAM	83.4±0.0	75.2 ± 0.0	83.0±0.0	65.4 ± 0.0	76.7 ± 0.0	39.9 ± 0.0
EMCStream	76.5 ± 1.0	79.8 ± 2.2	82.5±0.4	90.5±1.1	68.1±1.8	47.7 ± 5.6
MCMSTStream	85.4±0.0	83.4±0.0	79.3±0.0	89.6±0.0	87.0 ± 0.0	35.3 ± 0.0
GB-FuzzyStream	50.2 ± 1.5	52.5 ± 0.8	53.1 ± 0.5	-	-	$22.7{\pm}0.4$
CluStream-O - var. k	73.5±0.0	62.9±0.0	75.4±0.0	84.6±0.0	75.1 ± 0.0	40.3±0.0
CluStream-O - fixed k	63.1±0.0	61.4±0.0	78.4±0.0	84.6±0.0	69.8±0.0	41.7 ± 0.0
CluStream-O - k=100	42.3±0.0	62.3±0.0	48.5±0.0	16.8 ± 0.0	53.6 ± 0.0	38.7 ± 0.0
CluStream - Wk-Means	59.6±0.7	75.1 ± 1.4	76.8±1.1	93.5±0.6	65.4 ± 0.1	43.5±0.8
CluStream-C - k-Means	60.2±1.6	68.0±1.5	79.5±0.4	87.9±2.8	68.4±0.1	41.5±2.2
CluStream-W - k-Means	59.6±0.7	75.1 ± 1.4	76.8±1.1	93.5±0.6	65.4±0.1	43.5±0.8
CluStream-S - k-Means	60.4 ± 1.7	74.8 ± 1.3	77.8±0.5	93.5 ± 1.1	65.9±0.1	42.7±0.8
CluStream-G - k -Means	59.6±1.2	75.5 ± 0.9	77.8±0.6	93.2 ± 0.1	65.9 ± 0.1	42.6±0.8
CluStream-C - SubKMeans	58.6±1.0	65.1±1.4	78.3±0.4	88.1±0.0	68.3±0.1	40.5±1.5
CluStream-W - SubKMeans	59.0 ± 0.7	78.2 ± 2.5	74.9 ± 1.0	92.9 ± 0.8	65.5 ± 0.1	44.1 ± 0.5
CluStream-S - SubKMeans	58.9 ± 1.0	76.4 ± 1.7	75.5±0.5	92.9 ± 1.3	65.9 ± 0.1	43.2 ± 0.6
CluStream-G - SubKMeans	59.0 ± 1.3	77.3±1.3	77.2±0.7	93.2 ± 0.1	65.9 ± 0.1	43.3 ± 0.6
CluStream-C - X-Means	77.0 ± 4.2	68.0 ± 2.5	78.4 ± 0.7	35.6 ± 1.3	68.9 ± 0.1	41.5 ± 0.1
CluStream-W - X-Means CluStream-S - X-Means	42.5 ± 0.0	65.6 ± 0.3	77.4 ± 1.5	29.4 ± 0.0	53.8 ± 0.0	38.7 ± 0.0
CluStream-S - X-Means	42.3 ± 0.0	64.1 ± 0.2	71.9 ± 0.9	28.3 ± 0.0	53.9 ± 0.0	38.8 ± 0.0
CluStream-G - X-Means	50.1±4.6	65.7±0.4	78.5±1.3	27.1±0.3	56.4±0.0	38.8±0.0
CluStream-C - P-Dip-M	100.0±0.0	100.0 ±0.0	94.6±0.2	100.0±0.0	69.2±0.0	73.4 ±0.3
CluStream-W - P-Dip-M CluStream-S - P-Dip-M	45.4 ± 0.2 45.5 ± 0.0	-	$48.8\pm0.0 \\ 50.3\pm0.1$	19.0 ± 0.1 18.5 ± 0.1	-	-
CluStream-G - P-Dip-M	62.7 ± 1.1	66.9±0.8	81.9±0.6	39.3 ± 2.7	64.8±0.0	41.1±0.1
CluStream-C - SC	69.3±0.1	76.5 ± 0.6	77.2±0.1	92.3±0.0	71.0 ± 0.1	50.9 ± 0.8
CluStream-W - SC	70.1 ± 0.9	71.8 ± 0.5	77.6±0.5	93.1 ± 0.0	66.3±0.1	57.2 ± 0.3
CluStream-S - SC	75.2 ± 0.8	73.0 ± 0.3	77.0±0.4	93.1±0.0	66.5 ± 0.1	57.3±1.3
CluStream-G - SC	73.2 ± 1.3	70.7 ± 0.5	77.0±0.3	93.2 ± 0.1	65.6 ± 0.0	57.2 ± 0.8
CluStream-C - SCAR	63.1 ± 0.2	71.7 ± 0.6	76.5±0.0	71.7±17.0	77.5±0.3	44.5±0.8
CluStream-W - SCAR	65.5±0.7	72.7 ± 0.7	63.0 ± 0.3	56.6 ± 4.7	-	47.2 ± 0.6
CluStream-S - SCAR	71.8 ± 1.1	73.9 ± 0.7	67.9 ± 0.2	59.5 ± 8.7	61.3 ± 0.1	46.6 ± 0.7
CluStream-G - SCAR	70.2 ± 1.7	70.0 ± 0.6	68.2±0.2	50.8 ± 16.0	63.7 ± 0.2	46.2 ± 1.1
CluStream-C - SpectACl	76.0 ± 1.0	75.8 ± 0.7	81.3±0.5	87.7±9.0	69.3±0.1	40.3 ± 1.9
CluStream-W - SpectACl	82.3±1.6	76.1 ± 1.0	68.2±0.4	92.9 ± 1.7	73.1 ± 0.1	42.0 ± 0.7
CluStream-S - SpectACl CluStream-G - SpectACl	79.9±3.1	77.8±1.5	72.8±0.8	96.5 ± 0.0	73.0 ± 0.2	43.1±0.3
CluStream-G - SpectACl	74.5±1.8	77.0±1.5	68.7±0.3	93.4±0.4	72.9±0.2	42.4±0.8
CluStream-C - DBSCAN	90.6±0.0	64.0±0.0	88.7±0.0	85.5±0.0	66.1±0.0	40.4±0.0
CluStream-W - DBSCAN CluStream-S - DBSCAN	90.6±0.0 90.3±0.0	$\frac{83.8 \pm 0.0}{82.4 \pm 0.0}$	$\frac{89.2 \pm 0.0}{88.6 \pm 0.0}$	85.8±0.0 85.7±0.0	72.8 ± 0.0 77.1 ± 0.0	43.3 ± 0.0 43.5 ± 0.0
CluStream-G - DBSCAN	76.0 ± 1.9	77.8 ± 1.2	86.8±0.2	86.0±3.8	76.7 ± 0.0	41.9±0.0
CluStream-C - HDBSCAN	86.6±0.0	82.0±0.0	84.6±0.0	92.6±0.0	70.8±0.0	46.0±0.0
CluStream-W - HDBSCAN	89.2±0.0	76.6±0.0	83.2±0.0	93.2±0.0	74.7±0.0	53.1±0.0
CluStream-S - HDBSCAN	89.2±0.0	75.3 ± 0.0	78.9±0.0	93.2±0.0	76.5±0.0	48.7±0.0
CluStream-S - HDBSCAN CluStream-G - HDBSCAN	73.0 ± 4.3	73.9 ± 0.2	84.0±0.5	82.6±4.8	75.5 ± 0.0	48.7±0.0
CluStream-C - RNN-DBS	61.1±0.0	57.0±0.0	69.7±0.0	95.2 ± 0.0	75.3 ± 0.0	47.2 ± 0.0
CluStream-W - RNN-DBS	93.0 ± 0.0	66.9 ± 0.0	58.1±0.0	57.2 ± 0.0	57.2 ± 0.0	39.9 ± 0.0
CluStream-S - RNN-DBS	76.1 ± 0.0	65.3 ± 0.0	53.1 ± 0.0	54.6 ± 0.0	56.4 ± 0.0	41.8 ± 0.0
CluStream-G - RNN-DBS	74.6 ± 2.6	52.9 ± 0.6	66.3 ± 1.6	58.3 ± 6.5	60.1 ± 0.0	43.4 ± 0.1
CluStream-C - MDBSCAN	91.7 ± 0.0	63.6 ± 0.0	84.7±0.0	96.1 ± 0.0	66.1 ± 0.0	41.5 ± 0.0
CluStream-W - MDBSCAN		65.5 ± 0.0	86.9±0.0	96.2±0.0	80.4±0.0	45.6±0.0
CluStream-S - MDBSCAN	86.8±0.0	64.1±0.0	87.2±0.0	96.2±0.0	80.9±0.0	44.6±0.0
CluStream-G - MDBSCAN	74.2±2.1	65.7±0.8	87.3±0.1	95.5 ± 0.3	81.0±0.0	43.1±0.0
CluStream-C - DPC	65.3±0.0	70.9±0.0	85.8±0.0	77.7±0.0	75.0±0.0	43.4±0.0
CluStream-W - DPC CluStream-S - DPC	67.3 ± 0.0 64.6 ± 0.0	70.0 ± 0.0 68.6 ± 0.0	79.2 ± 0.0 73.4 ± 0.0	88.0±0.0 88.0±0.0	78.0 ± 0.0 80.3 ± 0.0	40.1 ± 0.0 41.9 ± 0.0
CluStream-G - DPC	63.1 ± 0.4	68.1±0.5	79.6±0.1	65.2 ± 1.0	79.2 ± 0.0	46.2 ± 0.0
CluStream-C - SNN-DPC	67.0±0.5	73.2 ± 0.4	71.7±0.2	65.0±0.0	67.4±0.0	50.6±0.5
CluStream-W - SNN-DPC	72.8±0.0	81.5±0.5	71.4±0.0	86.3±6.4	66.4±0.0	52.0 ± 0.0
CluStream-S - SNN-DPC	76.0±0.0	81.3±0.0	73.0±0.0	94.1±0.0	66.1±0.0	51.7±0.0
CluStream-G - SNN-DPC	71.4 ± 1.4	76.3 ± 0.4	82.4±0.1	70.1 ± 6.3	69.1 ± 0.0	49.6 ± 0.2
CluStream-C - DBHD	71.6 ± 0.0	69.4 ± 0.0	76.5 ± 0.0	96.2 ± 0.0	72.3 ± 0.0	45.3 ± 0.0
CluStream-W - DBHD	71.6 ± 0.0	69.4 ± 0.0	76.5 ± 0.0	95.8 ± 0.0	72.3 ± 0.0	45.3 ± 0.0
CluStream-S - DBHD	71.6 ± 0.0	69.4 ± 0.0	76.5 ± 0.0 84.4 ± 0.4	96.2 ± 0.0 45.9 ± 5.1	72.3 ± 0.0	45.3 ± 0.0 45.1 ± 0.3
CluStream-G - DBHD	81.9±3.6	71.9 ± 0.6			57.0 ± 0.1	

Table 22: Average reported cluster number per evaluation batch for evaluated datasets for the best parameters according to the sum of ARI and AMI ($\times 100$). The standard deviation across seeds is noted.

Cluster Number Clus	Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
STREAMKmeans	Tome						
DenStream	STREAMKmeans						2.1±0.0
DBSTIREAM							20.1 ± 0.0
EMCSITeram							68.0±0.0
CBF FuzzyStream							4.1 ± 0.2
CB-FuzzyStream							32.6±0.0
CluStream-O - var. k	GB-FuzzvStream	27.8 ± 4.9		8.5±0.2	-	-	8.5±0.6
CluStream-O - Face No. 99.3±0.0 99.3±0.0 80.3±0.0 99.7±0.0 70.1±0.0 62.3±0 1.0±0.0 80.3±0.0 99.7±0.0 70.1±0.0 62.3±0 1.0±0.0 80.3±0.0 99.7±0.0 70.1±0.0 62.3±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.0±0.0 60.0±0 1.0±0.0 80.0±0.0 2.0±0.0 22.0±0.0 60.0±0 1.0±0.0 90.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 90.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 90.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 90.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 90.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 90.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 90.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 1.0±0.0 90.0±0.0 2.0±0.0 22.2±0.0 60.0±0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 2.0±0.0 21.0±0.0 30.0±0 20.0±0.0					20+00	10.0+0.0	32.3±0.0
CIUSTERAM-W-Means							
CluStream - W. A. Means							
CluStream-C - k-Means							
CluStream-K - k-Means							
CluStream S - k-Means							
CluStream-C - SubKMeans							
CIRISTERANC - SubKMeans							
CluStream-W - SubKMeans							
CluStream-S - SubKMeans							
CluStream-G - SubKMeans 9.0±0.1 12.0±0.0 8.0±0.0 2.0±0.0 21.9±0.0 6.0±0 CluStream-C - X-Means 4.9±0.9 26.0±0.6 12.1±0.3 15.5±0.9 63.3±0.0 58.4±0 CluStream-S - X-Means 99.1±0.3 64.9±2.6 27.2±1.6 64.5±0.9 63.3±0.0 58.4±0 CluStream-G - X-Means 72.0±8.5 64.9±2.6 27.2±1.6 64.5±0.9 63.3±0.0 58.4±0 CluStream-G - X-Means 72.0±8.5 64.2±2.7 14.4±1.4 126.0±10.6 64.2±0.1 57.2±0 CluStream-C - P-Dip-M 1.0±0.0 1.0±0.0 1.0±0.0 1.2±0.0 17.1±0.0 3.9±0 CluStream-S - P-Dip-M 70.3±0.5 - 25.2±0.2 55.4±1.5							6.0±0.0
CluStream-C - X-Means							6.0±0.0
CluStream-W - X-Means							30.7±0.1
CluStream-S - X-Means 72.0±8.5 64.9±2.6 27.2±1.6 64.5±0.9 63.3±0.0 58.4±1 CluStream-C - P-Dip-M 1.0±0.0 1.	CluStream-W - X-Means		44.4±2.1				59.4±0.2
CluStream-G - X. Means 72.0±8.5 64.2±2.7 14.4±1.4 126.0±10.6 64.2±0.1 57.2±1 CluStream-W - P-Dip-M 68.9±0.6 - 63.4±0.1 48.1±1.8 - -	CluStream-S - X-Means						58.4±0.1
CluStream-W - P-Dip-M	CluStream-G - X-Means						57.2±0.3
CluStream-W - P-Dip-M	CluStream-C - P-Dip-M	1.0±0.0	1.0±0.0	1.6±0.0	1.2±0.0	17.1±0.0	3.9 ± 0.1
CluStream G - P-Dip-M	CluStream-W - P-Dip-M	68.9 ± 0.6	-	63.4±0.1	48.1±1.8	-	-
ChiStream C - SC	CluStream-S - P-Dip-M	70.3 ± 0.5	-	52.2±0.2	55.4 ± 1.5	-	-
ChiStream-W - SC							32.2 ± 0.4
CluStream G - SC							5.2±0.1
	CluStream-W - SC			7.8±0.0	2.0±0.0	19.4 ± 0.0	5.2 ± 0.0
ChiStream C - SCAR							5.2±0.0
CluStream-W - SCAR							5.2 ± 0.0
CluStream G - SCAR						17.4 ± 0.1	11.0 ± 0.0
CluStream-G - SCAR							5.9±0.0
ChiStream C - SpectACl							
CluStream-W - SpectACl 9.0±0.0 10.6±0.1 8.0±0.0 2.0±0.0 18.8±0.0 5.5±0							
CluStreamS - SpectACI	Clustream-C - SpectACI						
CluStream G - SpectACI							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Clustream C SpectACI						
$ \begin{bmatrix} \text{CluStream-W} - \text{DBSCAN} & 8.6 \pm 0.0 & 10.8 \pm 0.0 & 4.5 \pm 0.0 & 3.7 \pm 0.0 & 10.1 \pm 0.0 & 24.5 \pm 0.0 \\ \text{CluStream-S} - \text{DBSCAN} & 9.0 \pm 0.0 & 16.0 \pm 0.0 & 4.5 \pm 0.0 & 3.5 \pm 0.0 & 5.3 \pm 0.0 & 24.7 \pm 0.0 \\ \text{CluStream-G} - \text{DBSCAN} & 9.6 \pm 0.0 & 16.0 \pm 0.0 & 6.1 \pm 0.0 & 2.5 \pm 0.0 & 26.8 \pm 0.0 \\ \text{CluStream-C} - \text{HDBSCAN} & 9.6 \pm 0.0 & 16.6 \pm 0.0 & 6.1 \pm 0.0 & 2.7 \pm 0.0 & 6.1 \pm 0.0 & 8.0 \pm 0.0 \\ \text{CluStream-W} + \text{HDBSCAN} & 9.3 \pm 0.0 & 13.8 \pm 0.0 & 5.2 \pm 0.0 & 2.7 \pm 0.0 & 6.1 \pm 0.0 & 8.0 \pm 0.0 \\ \text{CluStream-S} - \text{HDBSCAN} & 9.3 \pm 0.0 & 16.2 \pm 0.0 & 5.7 \pm 0.0 & 2.7 \pm 0.0 & 5.4 \pm 0.0 & 8.4 \pm 0.0 \\ \text{CluStream-G} - \text{HDBSCAN} & 9.3 \pm 0.0 & 16.2 \pm 0.0 & 5.7 \pm 0.0 & 2.7 \pm 0.0 & 5.4 \pm 0.0 & 8.4 \pm 0.0 \\ \text{CluStream-G} - \text{HDBSCAN} & 9.3 \pm 0.0 & 16.2 \pm 0.0 & 5.7 \pm 0.0 & 2.7 \pm 0.0 & 5.4 \pm 0.0 & 8.4 \pm 0.0 \\ \text{CluStream-G} - \text{HDBSCAN} & 9.3 \pm 0.0 & 5.6 \pm 0.0 & 12.0 \pm 0.0 & 2.0 \pm 0.0 & 7.5 \pm 0.0 & 10.9 \pm 0.0 \\ \text{CluStream-W} + \text{RNN-DBS} & 16.6 \pm 0.0 & 5.6 \pm 0.0 & 12.0 \pm 0.0 & 2.0 \pm 0.0 & 7.5 \pm 0.0 & 10.9 \pm 0.0 \\ \text{CluStream-W} + \text{RNN-DBS} & 8.6 \pm 0.0 & 39.6 \pm 0.0 & 24.1 \pm 0.0 & 3.5 \pm 0.0 & 22.4 \pm 0.0 & 17.5 \pm 0.0 \\ \text{CluStream-G} - \text{RNN-DBS} & 8.6 \pm 0.0 & 39.6 \pm 0.0 & 24.1 \pm 0.0 & 3.5 \pm 0.0 & 22.4 \pm 0.0 & 17.5 \pm 0.0 \\ \text{CluStream-S} - \text{RNN-DBS} & 8.0 \pm 0.0 & 95.6 \pm 0.0 & 5.4 \pm 0.0 & 2.0 \pm 0.0 & 45.9 \pm 0.0 & 43.9 \pm 0.0 \\ \text{CluStream-W} + \text{MDBSCAN} & 8.0 \pm 0.0 & 39.0 \pm 0.0 & 3.9 \pm 0.0 & 2.0 \pm 0.0 & 4.8 \pm 0.0 & 16.8 \pm 0.0 \\ \text{CluStream-S} - \text{MDBSCAN} & 8.0 \pm 0.0 & 39.0 \pm 0.0 & 3.8 \pm 0.0 & 2.0 \pm 0.0 & 4.8 \pm 0.0 & 15.8 \pm 0.0 \\ \text{CluStream-G} - \text{DPC} & 18.6 \pm 0.0 & 58.8 \pm 0.0 & 5.2 \pm 0.0 & 2.2 \pm 0.0 & 4.8 \pm 0.0 & 20.2 \pm 0.0 \\ \text{CluStream-W} + \text{DPC} & 13.0 \pm 0.0 & 89.4 \pm 0.0 & 14.3 \pm 0.0 & 2.3 \pm 0.0 & 10.9 \pm 0.0 & 27.1 \pm 0.0 \\ \text{CluStream-W} - \text{DPC} & 18.0 \pm 0.0 & 89.4 \pm 0.0 & 14.3 \pm 0.0 & 2.3 \pm 0.0 & 19.9 \pm 0.0 & 27.1 \pm 0.0 \\ \text{CluStream-W} - \text{SNN-DPC} & 9.0 \pm 0.0 & 6.1 \pm 0.2 & 6.8 \pm 0.0 & 2.0 \pm 0.0 & 16.3 \pm 0.0 & 19.9 \pm 0.0 \\ \text{CluStream-W} - \text{SN-DPC} & 9.0 \pm 0.0 & 6.1 \pm 0.2 & 6.8 \pm 0.0 & 2.0 \pm 0.0 & 19.6 \pm$	CluStream-C - DBSCAN						
	CluStream-W - DBSCAN						24.5±0.0
							24.7±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							26.8±0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							12.2±0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CluStream-W - HDBSCAN						8.0±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-S - HDBSCAN		16.2 ± 0.0		2.7 ± 0.0		8.4±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-G - HDBSCAN	15.9 ± 1.3	18.8±0.2			5.9 ± 0.0	8.5±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-C - RNN-DBS				2.0±0.0		10.9±0.0
							26.5 ± 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							17.5 ± 0.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-G - RNN-DBS						15.2 ± 0.1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-C - MDBSCAN		95.6±0.0				43.9 ± 0.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W - MDBSCAN						16.8 ± 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-S - MDBSCAN						15.8 ± 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							20.2±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							22.6±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							47.1±0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clustream-G - DPC						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Checkman W CNN DPC						
	Clustream C CNN DDC						
CluStream-W - DBHD 11.3 \pm 0.0 42.4 \pm 0.0 9.7 \pm 0.0 2.0 \pm 0.0 9.9 \pm 0.0 15.1 \pm 0							
CluStream-S - DRHD	CluStream-S - DBHD	11.3±0.0 11.3±0.0	42.4±0.0 42.4±0.0	9.7±0.0 9.7±0.0	2.0±0.0 2.0±0.0	9.9±0.0 9.9±0.0	15.1±0.0 15.1±0.0
							12.2±0.1

Table 23: ARI Scores for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Join , and the second-bea						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	ARI	ARI	ARI	ARI	ARI	ARI
CORREANIZ						
STREAMKmeans	$ 36.5\pm4.3 $	0.3 ± 0.2	$ 54.9\pm2.9 $	$ 13.3\pm15.8 $	0.0 ± 0.0	0.0 ± 0.0
DenStream	7.9 ± 0.0	32.4 ± 0.0	59.2 ± 0.0	19.0 ± 0.0	77.6 ± 0.0	26.8 ± 0.0
DBSTREAM	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	92.7 ± 0.0	6.2±0.0
EMCStream	$ 48.9\pm3.4 $	$ 58.4\pm4.4 $	$ 53.6\pm3.0 $	26.2 ± 19.6	$ 57.2\pm15.6 $	4.1 ± 0.8
MCMSTStream	1.0 ± 0.0	7.5 ± 0.0	70.0 ± 0.0	42.5 ± 0.0	58.9 ± 0.0	16.4 ± 0.0
				-	-	
GB-FuzzyStream	2.9 ± 5.7	$ 13.3\pm1.2 $	$ 25.4\pm0.5 $		-	4.6 ± 0.3
CluStream-O - var. k	9.5 ± 0.0	$ 49.7\pm0.0 $	19.0 ± 0.0	5.4 ± 0.0	68.1 ± 0.0	19.5 ± 0.0
CluStream-O - fixed k	36.4 ± 0.0	7.7 ± 0.0	$ 57.2\pm0.0 $	38.4 ± 0.0	83.9 ± 0.0	25.5 ± 0.0
CluStream-O - $k=100$	9.5 ± 0.0	49.7 ± 0.0	19.0 ± 0.0	5.4 ± 0.0	68.1 ± 0.0	19.5 ± 0.0
CluStream - Wk-Means	36.8 ± 1.0	50.2 ± 2.3	75.2 ± 0.8	95.7 ± 0.4	86.7 ± 0.4	32.0 ± 1.1
CluStream-C - k-Means	37.1 ± 2.3	14.4 ± 2.7	70.2 ± 1.0	90.9 ± 2.5	89.9±0.0	24.7 ± 1.2
CluStream-W - k-Means	36.8 ± 1.0	50.2 ± 2.3	$ 75.2\pm0.8 $	95.7 ± 0.4	86.7 ± 0.4	32.0 ± 1.1
CluStream-S - k-Means	35.4 ± 1.5	48.8 ± 1.8	76.3 ± 0.6	94.9 ± 0.0	86.9 ± 0.3	30.7 ± 0.7
CluStream-G - k-Means						
	36.1 ± 1.3	50.0 ± 2.8	76.8 \pm 0.8	95.4 ± 0.0	87.0 ± 0.3	30.8 ± 0.8
CluStream-C - SubKMeans	35.7 ± 1.4	15.3 ± 2.0	$ 70.6\pm1.2 $	91.2 ± 2.3	89.8 ± 0.0	24.2 ± 1.9
CluStream-W - SubKMeans	35.4 ± 1.7	49.9 ± 2.8	73.7 ± 1.1	95.3 ± 0.5	86.6 ± 0.3	31.9 ± 0.5
CluStream-S - SubKMeans	35.5 ± 1.3	49.8 ± 2.6	74.8 ± 0.4	94.9 ± 0.0	87.0 ± 0.3	31.4 ± 0.4
CluStream-G - SubKMeans	36.1 ± 1.4	51.2 ± 3.2	76.1 ± 0.9	95.4 ± 0.0	87.0 ± 0.3	31.5 ± 0.6
CluStream-C - X-Means	46.0 ± 0.8	5.7 ± 1.0	49.7 ± 0.9	30.5 ± 1.8	84.6±0.1	28.1 ± 0.3
CluStream-W - X-Means	9.7 ± 0.1	50.2 ± 0.2	$ 66.5\pm0.9 $	21.2 ± 0.0	68.2 ± 0.0	19.5 ± 0.0
CluStream-S - X-Means	9.5 ± 0.0	50.0 ± 0.1	64.2 ± 1.1	20.0 ± 0.0	68.2 ± 0.0	19.5 ± 0.0
	19.4 ± 4.7	51.4 ± 0.5	68.7 ± 1.0	19.3 ± 0.1	73.6 ± 0.1	19.5 ± 0.0
CluStream-G - X-Means						
CluStream-C - P-Dip-M	0.0 ± 0.0	0.0 ± 0.0	3.3 ± 0.0	24.9 ± 0.0	89.5 ± 0.1	12.7 ± 0.4
CluStream-W - P-Dip-M	13.4 ± 0.2	-	24.5 ± 0.1	6.5 ± 0.1	-	-
CluStream-S - P-Dip-M	13.2 ± 0.1	-	24.0 ± 0.1	6.4 ± 0.0	-	-
CluStream-G - P-Dip-M	39.6 ± 2.5	50.9 ± 0.5	70.8 ± 0.5	32.1 ± 3.2	81.4 ± 0.0	22.4 ± 0.2
CluStream-C - SC	30.3±1.0	10.2 ± 2.0	57.5 ± 0.9	90.9 ± 0.0	90.4 ± 0.0	23.0 ± 1.0
CluStream-W - SC	25.7 ± 0.4	37.2 ± 4.2	73.5 ± 0.5	94.9 ± 0.0	51.7 ± 0.3	22.0 ± 0.5
CluStream-S - SC	25.7 ± 0.9	29.9 ± 3.4	72.9 ± 0.5	94.9 ± 0.0	48.8 ± 0.5	22.8 ± 0.3
					48.9 ± 0.5	
CluStream-G - SC	24.8 ± 0.2	31.8 ± 2.6	73.1 ± 0.3	95.4 ± 0.1		22.8 ± 0.3
CluStream-C - SCAR	30.0 ± 2.6	$2.2{\pm}1.0$	$ 45.8\pm1.7 $	32.9 ± 2.7	89.7 ± 0.2	22.1 ± 1.4
CluStream-W - SCAR	13.5 ± 1.4	33.4 ± 1.9	17.2 ± 0.3	5.3 ± 3.4	-	11.6 ± 0.9
CluStream-S - SCAR	$ 11.1\pm2.3 $	24.9 ± 0.8	$ 16.9\pm0.6 $	6.9 ± 3.1	61.3 ± 0.3	9.9 ± 0.3
CluStream-G - SCAR	15.7 ± 3.5	47.8 ± 5.0	30.7 ± 0.9	8.1 ± 2.7	66.3 ± 0.3	11.1 ± 1.0
CluStream-C - SpectACl	10.8 ± 1.3	19.9 ± 4.4	21.5 ± 1.0	28.0 ± 4.6	86.7 ± 0.1	22.3 ± 0.8
CluStream-W - SpectACl	5.9 ± 0.2	37.4 ± 1.4	28.6 ± 2.5	27.8 ± 4.8	87.8 ± 0.4	22.6 ± 0.7
CluStream-S - SpectACl	5.8 ± 0.4	37.5 ± 1.3	26.0 ± 1.5	$ 30.4\pm10.9 $	88.4 ± 0.1	23.8 ± 1.4
CluStream-G - SpectACl	5.1 ± 0.6	36.5 ± 2.6	20.3 ± 1.5	29.7 ± 5.6	88.2 ± 0.2	22.9 ± 1.3
CluStream-C - DBSCAN	0.0 ± 0.0	6.2 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	66.6 ± 0.0	10.6 ± 0.0
CluStream-W - DBSCAN	0.0 ± 0.0	6.2 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	91.2 ± 0.0	9.0 ± 0.0
CluStream-S - DBSCAN	0.0 ± 0.0	6.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	91.2 ± 0.0	9.0 ± 0.0
CluStream-G - DBSCAN	0.0 ± 0.0	6.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	91.2 ± 0.0	9.1 ± 0.0
CluStream-C - HDBSCAN	25.2 ± 0.0	3.2 ± 0.0	61.8 ± 0.0	88.7 ± 0.0	83.7 ± 0.0	28.7 ± 0.0
CluStream-W - HDBSCAN	11.2 ± 0.0	56.2 ± 0.0	21.9 ± 0.0	6.1 ± 0.0	78.0 ± 0.0	20.5 ± 0.0
CluStream-S - HDBSCAN	$ 11.4\pm0.0 $	56.4 ± 0.0	$ 21.3\pm0.0 $	6.0 ± 0.0	76.9 ± 0.0	20.4 ± 0.0
CluStream-G - HDBSCAN	22.2 ± 2.1	56.7 ± 0.2	70.4 ± 0.4	13.9 ± 0.3	76.9 ± 0.0	20.4 ± 0.0
CluStream-C - RNN-DBS	15.2 ± 0.0	0.1 ± 0.0	11.9 ± 0.0	72.9 ± 0.0	78.6 ± 0.0	17.1 ± 0.0
CluStream-W - RNN-DBS	8.5 ± 0.0	28.9 ± 0.0	19.6 ± 0.0	6.1 ± 0.0	63.6 ± 0.0	19.7 ± 0.0
CluStream-S - RNN-DBS	8.2 ± 0.0	42.0 ± 0.0	19.6 ± 0.0	5.7 ± 0.0	63.1 ± 0.0	19.7 ± 0.0
CluStream-G - RNN-DBS	36.2 ± 1.4	19.5 ± 3.0	48.1 ± 1.4	18.8 ± 1.4	63.9 ± 0.1	19.9 ± 0.0
CluStream-C - MDBSCAN	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	62.3 ± 0.0	5.5 ± 0.0
CluStream-W - MDBSCAN	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	91.7 ± 0.0	8.8 ± 0.0
CluStream-S - MDBSCAN	0.0 ± 0.0	0.1 ± 0.0		0.0 ± 0.0	$\frac{91.7}{91.5}\pm0.0$	8.8±0.0
			0.0 ± 0.0			
CluStream-G - MDBSCAN	0.0 ± 0.0	0.2 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	91.5 ± 0.0	8.9 ± 0.0
CluStream-C - DPC	14.4 ± 0.0	7.3 ± 0.0	48.3 ± 0.0	71.1 ± 0.0	32.1 ± 0.0	8.6 ± 0.0
CluStream-W - DPC	25 6.1 0.0		17.0 1.0.0			
	25.6 ± 0.0	7.5 ± 0.0	17.9 ± 0.0	38.4 ± 0.0	55.1 ± 0.0	16.5 ± 0.0
CluStream-S - DPC	25.3 ± 0.0	3.3 ± 0.0	9.4 ± 0.0	38.4 ± 0.0	11.5 ± 0.0	9.0 ± 0.0
CluStream-G - DPC	16.1 ± 1.5	0.0 ± 0.0	44.1 ± 1.3	9.4 ± 0.3	4.5 ± 0.0	8.8 ± 0.1
Clasticania G - Di C						
CluStream-C - SNN-DPC	45.6 ± 1.9	15.5 ± 0.4	57.1 ± 0.0	31.9 ± 0.0	82.7 ± 0.0	29.6 ± 0.5
CluStream-W - SNN-DPC	33.0 ± 0.0	25.8 ± 0.5	40.3 ± 0.0	57.1 ± 0.0	81.8 ± 0.1	29.9 ± 0.0
CluStream-S - SNN-DPC	30.9 ± 0.0	26.0 ± 0.0	42.8 ± 0.0	68.0±0.0	79.8 ± 0.0	27.4 ± 0.0
			42.0±0.0			
CluStream-G - SNN-DPC	43.5 ± 1.6	15.0 ± 1.7	69.1 ± 1.0	46.4 ± 9.9	89.7 ± 0.1	31.5 ± 1.5
CluStream-C - DBHD	43.6 ± 0.0	37.7 ± 0.0	66.6 ± 0.0	29.2 ± 0.0	88.2 ± 0.0	35.6 ± 0.0
CluStream-W - DBHD	43.6 ± 0.0	37.7 ± 0.0	66.6 ± 0.0	29.2 ± 0.0	88.2±0.0	
						35.6 ± 0.0
CluStream-S - DBHD	$ 43.6\pm0.0 $	37.7 ± 0.0	$ 66.6\pm0.0 $	29.2 ± 0.0	88.2 ± 0.0	35.6 ± 0.0
CluStream-G - DBHD	5.6 ± 0.1	22.6 ± 1.1	5.9 ± 0.1	2.5 ± 0.1	61.6 ± 0.0	5.5 ± 0.1
January C Dilli	3.020.1		0.010.1	2.020.1	31.010.0	3.020.1

Table 24: AMI Scores for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Join , and the second-bes						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	AMI	AMI	AMI	AMI	AMI	AMI
STREAMKmeans	56.6 ± 4.4	2.3 ± 1.3	66.5±2.2	14.4±15.4	0.0 ± 0.1	0.0 ± 0.0
DenStream	$ 48.7\pm0.0 $	$ 63.4\pm0.0 $	$ 68.0\pm0.0 $	39.9 ± 0.0	67.6 ± 0.0	39.4 ± 0.0
DBSTREAM	0.0 ± 0.0	$ 0.7 \pm 0.0 $	$ 0.0\pm0.0 $	$ 0.0\pm0.0 $	$ 84.4\pm0.0 $	11.7 ± 0.0
EMCStream	67.4 ± 0.7	70.5 ± 2.2	66.3 ± 2.3	27.1 ± 18.7	60.4 ± 9.7	6.6 ± 1.0
MCMSTStream	14.5 ± 0.0	32.5 ± 0.0	74.0 ± 0.0	54.1 ± 0.0	55.8 ± 0.0	38.4 ± 0.0
GB-FuzzyStream	9.9 ± 19.7	$ 36.2\pm1.0 $	$ 49.0\pm0.4 $	-	-	16.7 ± 0.9
CluStream-O - var. k	53.0 ± 0.0	$ 69.8 \pm 0.0 $	$ 51.4\pm0.0 $	26.8 ± 0.0	57.2 ± 0.0	46.8 ± 0.0
CluStream-O - fixed k	62.1 ± 0.0	21.4 ± 0.0	68.0 ± 0.0	40.6±0.0	77.2 ± 0.0	37.8 ± 0.0
CluStream-O - $k=100$	53.0 ± 0.0	$ 69.8\pm0.0 $	$ 51.4\pm0.0 $	$ 26.8\pm0.0 $	57.2 ± 0.0	46.8 ± 0.0
CluStream - Wk-Means	62.8 ± 0.8	66.4 ± 1.1	78.4 ± 0.4	93.4 ± 0.5	74.9 ± 0.2	45.2 ± 0.6
CluStream-C - k-Means	62.8 ± 1.7	37.2 ± 2.9	76.2 ± 0.7	87.7±3.1	78.3 ± 0.0	39.4 ± 2.0
CluStream-W - k-Means	62.8 ± 0.8	66.4 ± 1.1	78.4 ± 0.4	93.4 ± 0.5	74.9 ± 0.2	45.2 ± 0.6
CluStream-S - k-Means	61.8 ± 1.3	65.0 ± 1.0	78.9 ± 0.3	92.4 ± 0.0	75.3 ± 0.2	44.1 ± 0.5
CluStream-G - k-Means	62.0 ± 1.0	66.0 ± 1.5	79.2 ± 0.4	93.1 ± 0.1	75.3 ± 0.2	44.0 ± 0.7
CluStream-C - SubKMeans	61.3 ± 1.0	40.2 ± 2.3	76.1 ± 0.7	87.8±3.0	78.3 ± 0.0	38.7 ± 1.6
CluStream-W - SubKMeans	61.5 ± 1.3	66.3 ± 1.5	77.3 ± 0.5	92.9 ± 0.6	75.0 ± 0.2	45.6 ± 0.6
CluStream-S - SubKMeans	61.6 ± 1.0	65.9 ± 1.3	77.9 ± 0.4	92.4 ± 0.0	75.4 ± 0.2	44.9 ± 0.6
	61.9 ± 1.0	66.9 ± 1.5	78.8 ± 0.5	93.0 ± 0.1	75.4 ± 0.2	44.9 ± 0.5
CluStream-G - SubKMeans						
CluStream-C - X-Means	64.4 ± 0.3	18.6 ± 3.1	62.7 ± 0.8	50.0 ± 1.6	72.9 ± 0.1	48.5 ± 0.3
CluStream-W - X-Means	53.2 ± 0.0	72.9 ± 0.3	73.4 ± 0.5	41.5 ± 0.1	57.6 ± 0.0	47.0 ± 0.0
CluStream-S - X-Means	53.0 ± 0.0	71.5 ± 0.2	72.0 ± 0.6	39.8 ± 0.1	57.3 ± 0.0	46.9 ± 0.0
CluStream-G - X-Means	58.9 ± 0.7	71.0 ± 0.2	75.0 ± 0.5	36.8 ± 0.6	58.6 ± 0.0	46.9 ± 0.0
CluStream-C - P-Dip-M	0.0 ± 0.0	0.0 ± 0.0	5.0 ± 0.0	24.9 ± 0.0	79.0 ± 0.1	20.3 ± 0.5
CluStream-W - P-Dip-M	57.5 ± 0.4	-	56.1 ± 0.0	29.6 ± 0.1	-	-
CluStream-S - P-Dip-M	57.7 ± 0.0	- 1	55.7 ± 0.0	29.3 ± 0.1	_	_
CluStream-G - P-Dip-M	66.7 ± 1.2	70.2 ± 0.4	77.3 ± 0.3	49.8 ± 1.6	67.5 ± 0.0	50.2 ± 0.2
CluStream-C - SC	52.6 ± 1.0	31.1 ± 3.6	68.2 ± 0.5	87.0 ± 0.0	79.6 ± 0.1	36.3 ± 0.8
CluStream-W - SC	53.3 ± 0.5	55.2 ± 2.6	77.1 ± 0.4	92.4 ± 0.0	$ 51.3\pm0.3 $	35.1 ± 0.3
CluStream-S - SC	53.7 ± 0.9	50.4 ± 2.8	76.7 ± 0.3	92.4 ± 0.0	50.0 ± 0.4	35.6 ± 0.3
CluStream-G - SC	51.9 ± 0.3	51.9 ± 2.2	76.8 ± 0.2	93.2 ± 0.1	50.0 ± 0.4	35.6 ± 0.3
CluStream-C - SCAR						
	50.2 ± 1.7	15.1 ± 1.7	57.9 ± 1.2	35.5 ± 2.4	76.2 ± 0.2	33.5 ± 1.8
CluStream-W - SCAR	44.5 ± 1.7	58.3 ± 1.6	41.7 ± 0.2	13.4 ± 2.7	-	31.3 ± 0.7
CluStream-S - SCAR	42.9 ± 2.1	52.6 ± 1.2	41.7 ± 0.4	14.3 ± 1.9	56.3 ± 0.2	30.4 ± 0.3
CluStream-G - SCAR	45.6 ± 2.3	65.8 ± 2.4	52.2 ± 0.6	14.7 ± 2.2	60.8 ± 0.1	32.1 ± 0.8
CluStream-C - SpectACl	29.4 ± 2.0	42.3 ± 4.4	32.8 ± 1.2	24.4 ± 4.0	72.4 ± 0.1	32.7 ± 0.6
CluStream-W - SpectACl	28.6 ± 0.5	59.3 ± 1.1	41.7 ± 1.9	33.2 ± 3.4	$ 74.2\pm0.2 $	32.1 ± 1.2
CluStream-S - SpectACl	28.6 ± 0.9	58.8 ± 0.9	39.2 ± 1.2	34.2 ± 6.6	74.7 ± 0.1	33.3 ± 0.8
CluStream-G - SpectACl	24.4 ± 1.0	58.2 ± 1.8	34.1 ± 1.6	33.6 ± 3.5	74.6 ± 0.1	32.5 ± 0.9
CluStream-C - DBSCAN	0.0 ± 0.0	25.2 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	64.1 ± 0.0	19.3 ± 0.0
CluStream-W - DBSCAN	0.0 ± 0.0	25.2 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	81.3 ± 0.0	20.0 ± 0.0
CluStream-S - DBSCAN	0.0 ± 0.0	25.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	80.7 ± 0.0	20.0 ± 0.0
CluStream-G - DBSCAN	0.0 ± 0.0	24.3 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	80.8 ± 0.0	20.1 ± 0.0
CluStream-C - HDBSCAN	47.5 ± 0.0	8.0 ± 0.0	74.4 ± 0.0	87.4±0.0	77.2 ± 0.0	40.6±0.0
CluStream-W - HDBSCAN				29.0 ± 0.0		
	54.4 ± 0.0	76.3 ± 0.0	54.9 ± 0.0		65.9 ± 0.0	49.4 ± 0.0
CluStream-S - HDBSCAN	54.9 ± 0.0	76.8 ± 0.0	54.5 ± 0.0	28.7 ± 0.0	64.2 ± 0.0	49.2 ± 0.0
CluStream-G - HDBSCAN	54.9 ± 4.0	77.0 ± 0.2	78.1 ± 0.4	33.9 ± 0.4	64.3 ± 0.0	49.2 ± 0.0
CluStream-C - RNN-DBS	30.3 ± 0.0	1.0 ± 0.0	19.6 ± 0.0	72.1 ± 0.0	75.6 ± 0.0	26.6 ± 0.0
CluStream-W - RNN-DBS	48.7 ± 0.0	56.7 ± 0.0	51.7 ± 0.0	27.8 ± 0.0	58.4 ± 0.0	47.9 ± 0.0
CluStream-S - RNN-DBS	49.0 ± 0.0	67.0 ± 0.0	51.9 ± 0.0	27.7 ± 0.0	$ 56.2\pm0.0 $	47.8 ± 0.0
CluStream-G - RNN-DBS	66.1 ± 1.8	42.3 ± 3.6	60.8 ± 1.5	38.0 ± 1.2	$ 57.4\pm0.0 $	48.2 ± 0.0
CluStream-C - MDBSCAN	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	63.0 ± 0.0	10.7 ± 0.0
CluStream-W - MDBSCAN	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	81.9 ± 0.0	19.3 ± 0.0
CluStream-S - MDBSCAN		0.9 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	$\frac{81.5 \pm 0.0}{81.5 \pm 0.0}$	
Clusticam-b - MDDbCAN	0.0 ± 0.0					19.3 ± 0.0
CluStream-G - MDBSCAN	0.0 ± 0.0	1.3 ± 0.3	0.0 ± 0.0	0.0 ± 0.0	81.5 ± 0.0	19.4 ± 0.0
CluStream-C - DPC	32.8 ± 0.0	14.3 ± 0.0	62.5 ± 0.0	73.8 ± 0.0	37.8 ± 0.0	14.2 ± 0.0
CluStream-W - DPC	49.2 ± 0.0	20.6 ± 0.0	25.4 ± 0.0	40.5 ± 0.0	52.1 ± 0.0	24.8 ± 0.0
CluStream-S - DPC	48.5 ± 0.0	9.2 ± 0.0	13.6 ± 0.0	40.5±0.0	10.9 ± 0.0	11.9 ± 0.0
						12.2 10.1
CluStream-G - DPC	37.1±1.8	0.0 ± 0.0	59.7 ± 1.4	16.1 ± 0.1	4.8 ± 0.0	12.3±0.1
CluStream-C - SNN-DPC	66.8 ± 0.1	34.3 ± 0.6	$ 68.0\pm0.0 $	35.7 ± 0.0	71.0 ± 0.0	47.0 ± 0.5
CluStream-W - SNN-DPC	56.3 ± 0.0	50.8 ± 0.2	55.2 ± 0.0	56.0 ± 0.0	72.8 ± 0.1	43.8 ± 0.0
CluStream-S - SNN-DPC	56.7 ± 0.0	50.5 ± 0.0	58.0 ± 0.0	66.5 ± 0.0	71.1 ± 0.0	40.7 ± 0.0
CluStream-G - SNN-DPC				52.0 ± 8.6		47.3 ± 1.3
	69.0 ± 0.5	35.1 ± 2.7	76.7 ± 0.5		78.4 ± 0.0	
CluStream-C - DBHD	72.7 ± 0.0	60.2 ± 0.0	74.7 ± 0.0	46.1 ± 0.0	75.4 ± 0.0	54.0 ± 0.0
CluStream-W - DBHD	72.7 ± 0.0	60.2 ± 0.0	74.7 ± 0.0	46.1 ± 0.0	75.4 ± 0.0	54.0 ± 0.0
CluStream-S - DBHD	72.7 ± 0.0	60.2 ± 0.0	74.7 ± 0.0	46.1 ± 0.0	75.4 ± 0.0	54.0 ± 0.0
CluStream-G - DBHD	43.5 ± 0.2	59.1 ± 0.5	39.5 ± 0.1	22.9 ± 0.2	51.7 ± 0.0	37.4 ± 0.2
Orabiteam-Q - DDIID	40.0±0.2	09.1±0.0	09.0±0.1	22.910.2	01.1±0.0	01.410.2

Table 25: NMI Scores for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Join, and the second-bes						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	NMI	NMI	NMI	NMI	NMI	NMI
STREAMKmeans	57.3 ± 4.3		66.8±2.2	14.4 ± 15.4	0.0 ± 0.1	0.0±0.0
		3.4 ± 1.3				
DenStream	56.2 ± 0.0	$ 66.7\pm0.0 $	$ 68.9\pm0.0 $	40.3 ± 0.0	$ 68.4\pm0.0 $	$ 40.1\pm0.0 $
DBSTREAM	0.0 ± 0.0	0.8 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	84.6 ± 0.0	12.0 ± 0.0
EMCStream	67.8 ± 0.7	71.0 ± 2.2	66.4 ± 2.3	27.1 ± 18.7	60.7 ± 9.6	6.7 ± 1.0
MCMSTStream	17.2 ± 0.0	34.2 ± 0.0	$ 74.4\pm0.0 $	54.4 ± 0.0	56.4 ± 0.0	41.0 ± 0.0
GB-FuzzyStream	$ 10.6\pm21.2 $	$ 37.4\pm1.0 $	$ 49.4\pm0.4 $	-	-	17.4 ± 0.9
(Cl-Ct		72 2 1 0 0	IFF 41001	10001001		150 710 0
CluStream-O - var. k	59.4 ± 0.0	73.2 ± 0.0	55.4 ± 0.0	28.8 ± 0.0	60.4 ± 0.0	50.7 ± 0.0
CluStream-O - fixed k	62.9 ± 0.0	24.0 ± 0.0	$ 68.4\pm0.0 $	40.7 ± 0.0	77.9 ± 0.0	38.3 ± 0.0
CluStream-O - $k=100$	59.4 ± 0.0	73.2 ± 0.0	55.4 ± 0.0	28.8 ± 0.0	60.4 ± 0.0	50.7 ± 0.0
CluStream - Wk-Means	63.6 ± 0.8	67.2 ± 1.0	$ 78.6\pm0.4 $	93.4 ± 0.5	75.7 ± 0.2	45.6 ± 0.6
CluStream-C - k-Means	697117	20 2 2 0	76 5 1 0 7	077191	70.010.0	20.0 1.0
	63.7 ± 1.7	39.3 ± 2.8	76.5 ± 0.7	87.7 ± 3.1	79.0 ± 0.0	39.9 ± 1.9
CluStream-W - k-Means	63.6 ± 0.8	67.2 ± 1.0	$ 78.6\pm0.4 $	93.4 ± 0.5	75.7 ± 0.2	45.6 ± 0.6
CluStream-S - k-Means	62.7 ± 1.2	65.9 ± 0.9	79.2 ± 0.3	92.4 ± 0.0	76.0 ± 0.2	44.5 ± 0.5
CluStream-G - k-Means	62.8 ± 1.0	66.9 ± 1.5	79.4 ± 0.4	93.1 ± 0.1	76.0 ± 0.2	44.4 ± 0.7
CluStream-C - SubKMeans	62.1 ± 1.0	42.1 ± 2.2	76.3 ± 0.7	87.8±3.0	79.0 ± 0.0	39.2 ± 1.6
CluStream-W - SubKMeans	62.3 ± 1.3	67.2 ± 1.4	$ 77.6\pm0.5 $	92.9 ± 0.6	75.8 ± 0.2	46.0 ± 0.6
CluStream-S - SubKMeans	62.4 ± 1.0	66.8 ± 1.3	78.1 ± 0.4	92.4 ± 0.0	76.2 ± 0.2	45.2 ± 0.6
CluStream-G - SubKMeans	62.7 ± 1.0	67.8 ± 1.5	79.0 ± 0.5	93.1 ± 0.1	76.2 ± 0.2	45.2 ± 0.5
CluStream-C - X-Means	64.7 ± 0.3	19.0 ± 3.0	$ 62.9\pm0.8 $	50.3 ± 1.6	73.8 ± 0.1	49.5 ± 0.3
CluStream-W - X-Means	59.6 ± 0.0	74.8 ± 0.3	74.2 ± 0.4	42.6 ± 0.0	60.7 ± 0.0	50.8 ± 0.0
CluStream-S - X-Means	59.4 ± 0.0	74.2 ± 0.2	72.9 ± 0.5	41.1±0.0	60.5 ± 0.0	50.7 ± 0.0
CluStream-G - X-Means	63.1 ± 0.4	73.6 ± 0.3	75.8 ± 0.4	39.3 ± 0.4	61.8 ± 0.0	50.7 ± 0.0
CluStream-C - P-Dip-M	0.0 ± 0.0	0.0 ± 0.0	5.0 ± 0.0	24.9 ± 0.0	79.4 ± 0.1	20.5 ± 0.5
CluStream-W - P-Dip-M	62.1 ± 0.4	-	58.0 ± 0.0	30.8 ± 0.1	-	-
CluStream-S - P-Dip-M	62.4 ± 0.0		57.7 ± 0.1	30.5 ± 0.1		
		71 5 1 0 4			CO 1 1 0 0	-
CluStream-G - P-Dip-M	67.6 ± 1.2	71.5 ± 0.4	$ 77.5\pm0.3 $	50.0 ± 1.6	69.1 ± 0.0	52.8 ± 0.2
CluStream-C - SC	53.7 ± 1.0	33.4 ± 3.4	$ 68.6\pm0.5 $	87.0 ± 0.0	80.2 ± 0.1	36.8 ± 0.8
CluStream-W - SC	54.3 ± 0.5	56.4 ± 2.5	77.3 ± 0.4	92.4 ± 0.0	53.0 ± 0.2	35.7 ± 0.3
CluStream-S - SC	54.7 ± 0.9	51.8 ± 2.7	76.9 ± 0.3	92.4 ± 0.0	51.7 ± 0.4	36.2 ± 0.3
CluStream-G - SC	53.0±0.3	53.2 ± 2.1	$ 77.0\pm0.2 $	93.2 ± 0.1	51.7 ± 0.4	36.2 ± 0.3
CluStream-C - SCAR	51.3 ± 1.6	17.6 ± 1.6	58.4 ± 1.1	35.5 ± 2.4	77.0 ± 0.2	34.0 ± 1.8
CluStream-W - SCAR	46.0 ± 1.7	59.3 ± 1.6	42.3 ± 0.2	13.5 ± 2.7		31.8 ± 0.7
					F7 F I O O	
CluStream-S - SCAR	$ 44.3\pm2.0 $	53.9 ± 1.2	$ 42.3\pm0.4 $	14.4 ± 1.9	57.5 ± 0.2	31.0 ± 0.3
CluStream-G - SCAR	47.0±2.3	66.6 ± 2.4	$ 52.7\pm0.6 $	14.8 ± 2.2	61.9 ± 0.1	32.6 ± 0.8
CluStream-C - SpectACl	31.0 ± 2.0	44.0 ± 4.2	33.6 ± 1.1	24.5 ± 4.0	73.3 ± 0.1	33.2 ± 0.6
CluStream-W - SpectACl	30.5 ± 0.5	60.3 ± 1.1	42.4 ± 1.9	33.2 ± 3.4	75.0 ± 0.2	32.6 ± 1.2
Clustream-w - SpectACI						
CluStream-S - SpectACl	30.4±0.9	59.9 ± 0.8	$ 39.9\pm1.2 $	34.2 ± 6.6	75.5 ± 0.1	33.7 ± 0.8
CluStream-G - SpectACl	26.2±1.0	59.2 ± 1.8	$ 34.9\pm1.5 $	33.6 ± 3.5	75.4 ± 0.1	32.9 ± 0.9
CluStream-C - DBSCAN	0.0 ± 0.0	25.5 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	64.5 ± 0.0	19.6 ± 0.0
CluStream-W - DBSCAN	0.0 ± 0.0	25.5 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	81.7 ± 0.0	20.7 ± 0.0
CluStream-S - DBSCAN	$\mid 0.0\pm 0.0 \mid$	25.4 ± 0.0	$ 0.0\pm0.0 $	0.0 ± 0.0	81.2 ± 0.0	20.7 ± 0.0
CluStream-G - DBSCAN	0.0±0.0	24.8 ± 0.1	$ 0.0\pm0.0 $	0.0 ± 0.0	81.2 ± 0.0	20.8 ± 0.0
CluStream-C - HDBSCAN	48.0 ± 0.0	8.1 ± 0.0	74.5 ± 0.0	87.5 ± 0.0	77.5 ± 0.0	41.0 ± 0.0
CluStream-W - HDBSCAN				30.1 ± 0.0		
	59.6 ± 0.0	77.1 ± 0.0	56.8 ± 0.0		66.9 ± 0.0	51.5 ± 0.0
CluStream-S - HDBSCAN	60.1 ± 0.0	$ 77.8\pm0.0 $	$ 56.6\pm0.0 $	29.8 ± 0.0	65.6 ± 0.0	51.5 ± 0.0
CluStream-G - HDBSCAN	57.4 ± 4.5	$ 77.8\pm0.2 $	78.5 ± 0.4	34.7 ± 0.4	65.6 ± 0.0	51.5 ± 0.0
CluStream-C - RNN-DBS	30.5 ± 0.0	1.4 ± 0.0	19.8 ± 0.0	72.1 ± 0.0	75.9 ± 0.0	26.9 ± 0.0
CluStream-W - RNN-DBS	54.3 ± 0.0	57.7 ± 0.0	53.5 ± 0.0	28.8 ± 0.0	59.4 ± 0.0	49.9 ± 0.0
CluStream-S - RNN-DBS	54.7 ± 0.0	68.1 ± 0.0	$ 53.9\pm0.0 $	28.7 ± 0.0	57.7 ± 0.0	50.0 ± 0.0
CluStream-G - RNN-DBS	67.8 ± 1.7	43.4 ± 3.5	61.3 ± 1.4	38.5 ± 1.2	58.8 ± 0.0	50.3 ± 0.0
CluStream-C - MDBSCAN	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	63.4 ± 0.0	10.9 ± 0.0
CluStream-W - MDBSCAN	0.00					
	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	82.2 ± 0.0	19.8 ± 0.0
CluStream-S - MDBSCAN	$\mid 0.0 \pm 0.0 \mid$	1.2 ± 0.0	$ 0.0\pm0.0 $	0.0 ± 0.0	81.9 ± 0.0	19.8 ± 0.0
CluStream-G - MDBSCAN	0.0 ± 0.0	1.6 ± 0.3	0.0 ± 0.0	0.0 ± 0.0	81.9 ± 0.0	19.9 ± 0.0
CluStream-C - DPC	33.2 ± 0.0	14.5 ± 0.0	62.6 ± 0.0	73.8 ± 0.0	38.0 ± 0.0	14.3 ± 0.0
CluStream-W - DPC	$ 49.8\pm0.0 $	28.0 ± 0.0	25.6 ± 0.0	40.6 ± 0.0	52.4 ± 0.0	25.2 ± 0.0
CluStream-S - DPC	49.2 ± 0.0	11.9 ± 0.0	$ 13.7\pm0.0 $	40.6 ± 0.0	11.0 ± 0.0	12.1 ± 0.0
CluStream-G - DPC	38.0 ± 1.8	0.0 ± 0.0	59.8 ± 1.4	16.2 ± 0.1	4.8 ± 0.0	12.4 ± 0.1
CluStream-C - SNN-DPC	67.6 ± 0.1	36.1 ± 0.6	68.3 ± 0.0	35.8 ± 0.0	71.9 ± 0.0	
Custream-C - SNN-DPC						47.4 ± 0.5
CluStream-W - SNN-DPC	56.8 ± 0.0	51.5 ± 0.2	$ 55.4\pm0.0 $	56.0 ± 0.0	73.3 ± 0.1	44.1 ± 0.0
CluStream-S - SNN-DPC	57.2 ± 0.0	51.1 ± 0.0	58.2 ± 0.0	66.6 ± 0.0	71.7 ± 0.0	41.0 ± 0.0
CluStream-G - SNN-DPC	69.6±0.5	37.0 ± 2.6	77.0 ± 0.5	52.0 ± 8.6	79.0 ± 0.0	47.7 ± 1.2
CluStream-C - DBHD						
	73.6 ± 0.0	61.7 ± 0.0	75.1 ± 0.0	46.4 ± 0.0	76.0 ± 0.0	54.8 ± 0.0
CluStream-W - DBHD	73.6 ±0.0	61.7 ± 0.0	$ 75.1\pm0.0 $	46.4 ± 0.0	76.0 ± 0.0	54.8 ± 0.0
CluStream-S - DBHD	73.6 \pm 0.0	61.7 ± 0.0	75.1 ± 0.0	46.4 ± 0.0	76.0 ± 0.0	54.8 ± 0.0
CluStream-G - DBHD	54.1 ± 0.2	65.0 ± 0.4	47.3 ± 0.1	25.4 ± 0.1	55.0 ± 0.0	43.8 ± 0.2
Crash Cam G - DDIID	J-1.1 ± U.2	30.010.4	11.010.1	20.110.1	30.0±0.0	10.010.2

Table 26: Accuracy Scores for evaluated datasets for the default parameters $(\times 100)$. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

is bold, and the second-					IIDDOO	
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
STREAMKmeans	51.8 ± 2.4	21.6 ± 0.4	66.0 ± 2.1	66.6±6.9	56.8 ± 0.0	34.4 ± 0.0
DenStream	14.1 ± 0.0	44.5 ± 0.0	64.6 ± 0.0	33.3 ± 0.0	71.7 ± 0.0	46.0 ± 0.0
DBSTREAM	29.9 ± 0.0	20.9 ± 0.0	26.4 ± 0.0	61.1±0.0	89.6 ± 0.0	39.7 ± 0.0
EMCStream	59.0 ± 3.1	$ 65.6\pm3.3 $		73.5 ± 9.4	78.2 ± 6.5	36.9 ± 0.6
MCMSTStream	35.8 ± 0.0	$ 31.7\pm0.0 $	78.3 ± 0.0	$ 55.5\pm0.0 $	$ 71.3\pm0.0 $	37.5 ± 0.0
GB-FuzzyStream	31.2 ± 2.5	40.1 ± 0.9	55.8 ± 0.5	-	-	35.3 ± 0.6
CluStream-O - var. k	15 9 10 0	50.8±0.0	22.6±0.0	11 1400	61.0±0.0	26.1 ± 0.0
CluStream-O - fixed k	49.3 ± 0.0	$ 27.8\pm0.0 $	$ 68.2\pm0.0 $	80.1 ± 0.0	81.3 ± 0.0	51.0 ± 0.0
CluStream-O - $k=100$	15.8 ± 0.0	$ 50.8\pm0.0 $	22.6 ± 0.0	$ 11.4\pm0.0 $	$ 61.0\pm0.0 $	26.1 ± 0.0
CluStream - Wk-Means	49.2 ± 1.5	$ 60.2\pm2.1 $	81.2 ± 0.7	98.9 ± 0.1	$ 75.5\pm0.3 $	53.4 ± 0.6
CluStream-C - k -Means	50.2 ± 2.5	30.9 ± 2.3	77.4 \pm 0.8	97.6 ± 0.7	$ 81.5\pm0.1 $	50.1 ± 0.6
CluStream-W - k-Means	49.2 ± 1.5	$ 60.2\pm2.1 $	81.2 ± 0.7	98.9 ± 0.1	75.5 ± 0.3	53.4 ± 0.6
CluStream-S - k-Means	48.1 ± 1.9	59.4 ± 1.6	82.3 ± 0.6	98.7 ± 0.0	76.1 ± 0.2	51.9 ± 0.4
CluStream-G - k -Means	47.9 ± 1.5	59.6 ± 2.4	82.4 ± 0.7	98.8 ± 0.0	76.1 ± 0.2	51.9 ± 0.5
CluStream-C - SubKMeans	48.3±0.6	31.8 ± 1.4	78.0 ± 1.0	97.7 ± 0.6	81.5±0.1	50.1 ± 1.2
CluStream-W - SubKMeans	48.8 ± 2.0	$ 59.4\pm2.0 $	80.2 ± 1.0	98.8 ± 0.1	75.9 ± 0.4	53.2 ± 0.9
CluStream-S - SubKMeans	48.6 ± 1.9	$ 59.3\pm1.8 $	81.2 ± 0.5	98.7 ± 0.0	76.5 ± 0.4	52.9 ± 0.5
CluStream-G - SubKMeans	48.2 ± 1.5	$ 60.0\pm2.5 $	81.8 ± 0.9	98.8 ± 0.0	76.5 ± 0.4	53.1 ± 0.5
CluStream-C - X-Means	57.9 ± 0.6	27.3 ± 1.0	62.2 ± 0.6	41.3 ± 2.3	75.5 ± 0.2	41.1 ± 0.5
CluStream-W - X-Means	16.5 ± 0.2	52.6 ± 0.4	71.4 ± 0.9	29.5 ± 0.0	61.1 ± 0.0	26.1 ± 0.0
CluStream-S - X-Means	15.9 ± 0.1	51.6 ± 0.2	69.0 ± 1.1	27.4 ± 0.0	61.0 ± 0.0	26.1 ± 0.0 26.1 ± 0.0
CluStream-G - X-Means	28.0 ± 5.5	55.4 ± 0.4	72.0 ± 1.1	26.8 ± 0.4	63.6 ± 0.0	26.2 ± 0.0
CluStream-C - P-Dip-M	29.9 ± 0.0	20.9 ± 0.0	28.4 ± 0.0	70.8 ± 0.0	84.1 ± 0.0	41.8 ± 0.4
CluStream-W - P-Dip-M	21.3 ± 0.2	-	27.3 ± 0.1	12.2 ± 0.3	-	-
CluStream-S - P-Dip-M	20.9 ± 0.1	-	26.8 ± 0.1	12.4 ± 0.0	-	-
CluStream-G - P-Dip-M	50.1 ± 2.3	56.7 ± 0.4	79.6 ± 0.5	43.2 ± 2.7	70.2 ± 0.0	28.3 ± 0.2
CluStream-C - SC	45.7 ± 0.6	27.8±1.6	68.3 ± 0.7	97.6±0.0	84.2±0.1	49.4 ± 0.6
CluStream-W - SC	42.9 ± 0.7	51.9 ± 2.7	81.6 ± 0.4	98.7 ± 0.0	70.5 ± 0.1	48.8 ± 0.3
CluStream-S - SC	43.2 ± 0.7	45.1 ± 3.3	81.0 ± 0.5	98.7 ± 0.0	70.9 ± 0.2	48.4 ± 0.2
CluStream-G - SC	42.2 ± 0.5	$ 46.5\pm2.3 $	80.9 ± 0.3	98.8 ± 0.0	70.9 ± 0.2	48.4 ± 0.3
CluStream-C - SCAR	46.6 ± 2.1	$ 25.7\pm0.4 $	60.0 ± 1.2	78.2 ± 1.2	84.3 ± 0.2	50.7 ± 0.9
CluStream-W - SCAR	43.5 ± 1.1	51.3 ± 1.5	44.8 ± 0.4	62.0 ± 3.0	-	43.6 ± 0.8
CluStream-S - SCAR	41.6 ± 1.7	47.6 ± 0.7	44.9 ± 0.4	63.9 ± 3.3	66.7 ± 0.2	43.6 ± 0.6
CluStream-G - SCAR	42.9 ± 2.4	58.7 ± 2.8	52.0 ± 0.7	65.3 ± 2.5	62.1 ± 0.1	43.9 ± 0.8
CluStream-C - SpectACl	33.5 ± 2.1	36.8 ± 2.6	44.4±0.6	74.0 ± 2.0	78.4 ± 0.1	47.9 ± 1.0
CluStream-W - SpectACl	35.9 ± 0.3	50.7 ± 1.0	48.4 ± 2.0	73.7 ± 2.0	$ 78.3\pm0.3 $	45.8 ± 1.0
CluStream-S - SpectACl	35.6 ± 0.5	$ 50.5\pm1.4 $	47.0 ± 1.3	75.0 ± 4.2	$ 78.8\pm0.1 $	47.4 ± 1.2
CluStream-G - SpectACl	32.9 ± 0.9	$ 50.0\pm2.3 $	43.3 ± 1.2	74.7 ± 2.5	$ 78.8\pm0.1 $	46.6 ± 1.2
CluStream-C - DBSCAN	29.9 ± 0.0	30.5 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	85.3 ± 0.0	41.0 ± 0.0
CluStream-W - DBSCAN	29.9 ± 0.0	30.5 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	86.1 ± 0.0	38.7 ± 0.0
CluStream-S - DBSCAN	29.9 ± 0.0	30.3 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	86.3±0.0	38.7 ± 0.0
CluStream-G - DBSCAN	29.9 ± 0.0	30.1 ± 0.0	26.4 ± 0.0	61.1±0.0	86.4 ± 0.0	39.0 ± 0.0
CluStream-C - HDBSCAN	46.2 ± 0.0	24.2 ± 0.0	72.5 ± 0.0	95.2 ± 0.0	87.0 ± 0.0	52.5 ± 0.0
CluStream-W - HDBSCAN	18.9 ± 0.0	63.6 ± 0.0	28.0 ± 0.0	13.0 ± 0.0	68.0 ± 0.0	27.1 ± 0.0
CluStream-S - HDBSCAN	19.3 ± 0.0	$ 62.3\pm0.0 $	26.8 ± 0.0	12.4 ± 0.0	$ 66.7\pm0.0 $	26.9 ± 0.0
CluStream-G - HDBSCAN	38.3 ± 2.3	63.2 ± 0.5	77.4 ± 0.4	26.3 ± 0.6	66.7 ± 0.0	26.9 ± 0.0
CluStream-C - RNN-DBS	38.8 ± 0.0	21.5 ± 0.0	35.8 ± 0.0	88.8±0.0	86.2±0.0	47.0 ± 0.0
CluStream-W - RNN-DBS	19.8 ± 0.0	46.4 ± 0.0	25.7 ± 0.0	16.0 ± 0.0	65.6 ± 0.0	28.1 ± 0.0
CluStream-S - RNN-DBS					63.6 ± 0.0	
	19.2 ± 0.0	52.2 ± 0.0	25.7 ± 0.0	14.8 ± 0.0		27.5 ± 0.0
CluStream-G - RNN-DBS	48.3 ± 1.0	$ 42.3\pm2.7 $	60.8 ± 1.0	33.4 ± 1.8	$ 63.8\pm0.0 $	27.2 ± 0.1
CluStream-C - MDBSCAN	29.9 ± 0.0	$ 20.9\pm0.0 $	26.4 ± 0.0	61.1 ± 0.0	81.0 ± 0.0	37.8 ± 0.0
CluStream-W - MDBSCAN	29.9 ± 0.0	20.9 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	87.7 ± 0.0	38.8 ± 0.0
CluStream-S - MDBSCAN	29.9 ± 0.0	21.4 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	87.4 ± 0.0	38.8 ± 0.0
CluStream-G - MDBSCAN	29.9 ± 0.0	21.5 ± 0.1	26.4 ± 0.0	61.1 ± 0.0	87.4±0.0	39.1 ± 0.0
CluStream-C - DPC					70.8±0.0	42.0±0.0
	46.0 ± 0.0	28.8 ± 0.0	60.9 ± 0.0	91.9 ± 0.0	70.8 ± 0.0	42.0±0.0
CluStream-W - DPC	44.5 ± 0.0	25.0 ± 0.0	39.0 ± 0.0	72.4 ± 0.0	76.7 ± 0.0	46.5 ± 0.0
CluStream-S - DPC	44.3 ± 0.0	$ 22.6\pm0.0 $	33.2 ± 0.0	72.4 ± 0.0	$ 61.0\pm0.0 $	41.0 ± 0.0
CluStream-G - DPC	38.4 ± 1.4	20.9 ± 0.0	57.9 ± 0.9	60.8 ± 0.4	58.7 ± 0.0	41.6 ± 0.0
CluStream-C - SNN-DPC	60.3 ± 1.0	33.3 ± 0.6	67.4 ± 0.0	74.4 ± 0.0	74.6 ± 0.0	55.4 ± 1.2
CluStream-W - SNN-DPC	53.1 ± 0.0	46.1 ± 0.0	57.4 ± 0.0	87.6±0.0	78.4 ± 0.1	54.4 ± 0.0
CluStream-S - SNN-DPC	52.1 ± 0.0	45.1 ± 0.0	58.6 ± 0.0	90.8 ± 0.0	79.0 ± 0.0	$\frac{54.4}{53.9}\pm0.0$
CluStream-G - SNN-DPC	56.5 ± 2.9	33.7 ± 1.8	76.6 ± 0.8	78.3 ± 4.1	82.6 ± 0.1	54.3 ± 1.3
CluStream-C - DBHD	55.1 ± 0.0	$ 47.8\pm0.0 $	70.2 ± 0.0	37.4 ± 0.0	79.3 ± 0.0	48.2 ± 0.0
CluStream-W - DBHD	55.1 ± 0.0	$ 47.8\pm0.0 $	70.2 ± 0.0	37.4 ± 0.0	79.3 ± 0.0	48.2 ± 0.0
CluStream-S - DBHD	55.1 ± 0.0	47.8 ± 0.0	70.2 ± 0.0	37.4 ± 0.0	79.3 ± 0.0	48.2 ± 0.0
CluStream-G - DBHD	11.5 ± 0.3	27.2 ± 1.2	9.6 ± 0.2	7.0 ± 0.3	54.3 ± 0.0	10.7 ± 0.3

Table 27: Precision Scores for evaluated datasets for the default parameters $(\times 100)$. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

as bola , and the second-		es are <u>ur</u>		•		
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Precision	Precision	Precision	Precision	Precision	Precision
STREAMKmeans	48.4 ± 4.2	13.1 ± 0.1	54.5±2.6	58.4 ± 7.2	40.9 ± 0.0	25.9 ± 0.0
						49.8 ± 0.0
DenStream	90.4±0.0	$\frac{77.6}{12.0} \pm 0.0$	78.7±0.0	91.3 ± 0.0	98.8±0.0	
DBSTREAM	18.6 ± 0.0	13.0 ± 0.0	$ 19.9\pm0.0 $	52.4 ± 0.0	98.7 ± 0.0	29.0 ± 0.0
EMCStream	59.9 ± 1.4	56.1 ± 2.7	53.6 ± 2.6	65.3 ± 9.6	74.3 ± 9.0	28.3 ± 0.4
MCMSTStream	19.1 ± 0.0	16.9 ± 0.0	79.6 ± 0.0	99.4 ± 0.0	75.3 ± 0.0	39.2 ± 0.0
GB-FuzzyStream	23.8 ± 10.5	20.7 ± 0.9	36.8 ± 0.4	-	-	28.6 ± 0.2
v v					110000	
CluStream-O - var. k	99.9 ± 0.0	73.2 ± 0.0	$ 93.1\pm0.0 $	99.5 ± 0.0	$ 100.0\pm0.0 $	85.6 ± 0.0
CluStream-O - fixed k	56.6 ± 0.0	16.7 ± 0.0	58.0 ± 0.0	67.7 ± 0.0	99.7 ± 0.0	42.4 ± 0.0
CluStream-O - k=100	99.9 ±0.0	73.2 ± 0.0	93.1 ± 0.0	99.5 ± 0.0	100.0 ±0.0	85.6 ± 0.0
CluStream - Wk-Means	59.4 ± 1.3	47.8 ± 1.7	81.1 ± 0.6	97.8 ± 0.0	99.8 ± 0.0	52.1 ± 1.0
CluStream-C - k-Means	59.5 ± 2.4	20.0 ± 1.5	70.5 ± 0.7	95.6 ± 1.5	99.8 ± 0.0	44.0 ± 1.2
CluStream-W - k-Means	59.4 ± 1.3	47.8 ± 1.7	81.1 ± 0.6	97.8 ± 0.0	99.8 ± 0.0	52.1 ± 1.0
CluStream-S - k-Means	58.2 ± 1.6	45.9 ± 1.4	81.2 ± 0.6	97.7 ± 0.0	99.8±0.0	51.0 ± 0.7
CluStream-G - k-Means						
	58.7±1.4	47.2 ± 2.3	82.2±0.6	98.0 ± 0.0	99.8±0.0	51.1 ± 0.8
CluStream-C - SubKMeans	57.2 ± 1.5	20.5 ± 1.2	71.8 ± 0.8	95.7 ± 1.4	99.8 ± 0.0	43.4 ± 1.4
CluStream-W - SubKMeans	57.3 ± 1.5	48.4 ± 1.8	80.3 ± 0.2	97.8 ± 0.0	99.8 ± 0.0	52.2 ± 0.8
CluStream-S - SubKMeans	57.6 ± 1.3	47.8 ± 2.1	80.6 ± 0.6	97.7 ± 0.0	99.8 ± 0.0	51.8 ± 0.5
CluStream-G - SubKMeans	58.6 ± 1.6	48.7 ± 2.8	82.0 ± 0.5	98.0 ± 0.0	99.8 ± 0.0	51.7 ± 0.6
CluStream-C - X-Means	49.8 ± 0.5	15.6 ± 0.4	50.2 ± 0.7	98.6 ± 0.5	99.2±0.1	62.7 ± 0.5
CluStream-W - X-Means	99.9 ± 0.0	72.7 ± 0.4	77.1 ± 0.4	99.5 ± 0.0	99.9 ± 0.0	85.6 ± 0.0
CluStream-S - X-Means						
	99.9 ± 0.0	73.3 ± 0.0	$ 76.4\pm0.5 $	99.5 ± 0.0	$ 100.0\pm0.0 $	$\frac{85.6}{25.6} \pm 0.0$
CluStream-G - X-Means	92.9 ± 7.5	66.8 ± 0.2	81.1 ± 1.1	99.7 \pm 0.2	$ 100.0\pm0.0 $	85.6 ± 0.0
CluStream-C - P-Dip-M	18.6 ± 0.0	12.9 ± 0.0	21.5 ± 0.0	64.3 ± 0.0	98.1 ± 0.1	36.6 ± 0.7
CluStream-W - P-Dip-M	97.4 ± 1.9	-	90.0 ± 0.1	99.5 ± 0.0	-	-
CluStream-S - P-Dip-M	99.3 ± 0.2	_	90.3 ± 0.2	$\overline{99.5} \pm 0.0$	-	-
CluStream-G - P-Dip-M	67.2 ± 2.7	60.8 ± 0.7	68.7 ± 0.5	$\frac{97.7}{2}$	99.9±0.0	84.4±0.3
CluStream-C - SC	43.8 ± 1.2	17.8 ± 1.0	57.7 ± 0.8	95.4 ± 0.0	99.7±0.0	42.9 ± 0.7
CluStream-W - SC				97.7 ± 0.0		
	44.4±0.8	34.9 ± 3.1	76.8 ± 0.4		66.9 ± 0.2	42.3 ± 0.3
CluStream-S - SC	$ 44.1\pm1.2 $	29.7 ± 2.3	76.7 ± 0.6	97.7 ± 0.0	64.9 ± 0.3	43.1 ± 0.2
CluStream-G - SC	43.3 ± 0.4	31.2 ± 1.8	77.0 ± 0.3	98.0 ± 0.0	64.9 ± 0.4	43.0 ± 0.2
CluStream-C - SCAR	44.2 ± 2.5	14.0 ± 0.5	51.6 ± 1.8	66.1 ± 1.0	97.6 ± 0.1	40.2 ± 1.2
CluStream-W - SCAR	26.0 ± 0.9	34.9 ± 1.6	30.5 ± 0.2	54.0 ± 1.0	-	32.1 ± 0.5
CluStream-S - SCAR	24.8 ± 1.4	28.4 ± 0.8	30.3 ± 0.4	54.4 ± 0.9	82.9 ± 0.2	30.9 ± 0.2
CluStream-G - SCAR	29.2 ± 2.7	51.8 ± 4.5	43.6 ± 0.8	54.7 ± 0.9	97.0 ± 0.2	32.0 ± 0.6
CluStream-C - SpectACl	26.7 ± 1.0	24.1 ± 2.8	33.9 ± 1.1	64.3 ± 2.0	97.4±0.1	42.7 ± 1.0
CluStream-W - SpectACl	21.8 ± 0.1	39.5 ± 1.6	$ 37.2\pm1.8 $	66.1 ± 2.5	99.9 ± 0.0	44.1 ± 1.0
CluStream-S - SpectACl	21.7 ± 0.2	38.9 ± 1.1	$ 35.3\pm1.2 $	67.2 ± 5.6	99.9 ± 0.0	45.0 ± 1.2
CluStream-G - SpectACl	21.5 ± 0.3	38.2 ± 2.5	$ 31.4\pm1.1 $	67.0 ± 2.9	99.8 ± 0.0	44.3 ± 1.1
CluStream-C - DBSCAN	18.6 ± 0.0	15.7 ± 0.0	19.9 ± 0.0	52.4 ± 0.0	74.5 ± 0.0	30.9 ± 0.0
CluStream-W - DBSCAN	18.6 ± 0.0	15.7 ± 0.0	19.9 ± 0.0	52.4 ± 0.0	99.4 ± 0.0	30.3 ± 0.0
CluStream-S - DBSCAN	18.6 ± 0.0	15.7 ± 0.0	19.9 ± 0.0	52.4 ± 0.0	99.5 ± 0.0	30.3 ± 0.0
CluStream-G - DBSCAN	18.6 ± 0.0	15.6 ± 0.0	19.9 ± 0.0	52.4 ± 0.0	99.5±0.0	30.4 ± 0.0
CluStream-C - HDBSCAN	34.0 ± 0.0	14.5 ± 0.0	60.4 ± 0.0	98.6 ± 0.0	90.1±0.0	44.8 ± 0.0
CluStream-W - HDBSCAN	86.2±0.0	67.6 ± 0.0	82.0 ± 0.0	95.3 ± 0.0	99.1±0.0	80.8±0.0
CluStream-S - HDBSCAN	90.6±0.0	68.8 ± 0.0	84.4±0.0	96.4 ± 0.0	99.5±0.0	82.3±0.0
CluStream-G - HDBSCAN	48.9 ± 8.5	68.4 ± 0.3	70.8 ± 0.3	90.1 ± 0.7	99.5 ± 0.0	82.2 ± 0.0
CluStream-C - RNN-DBS	25.6 ± 0.0	13.0 ± 0.0	26.1 ± 0.0	88.0 ± 0.0	85.2 ± 0.0	36.0 ± 0.0
CluStream-W - RNN-DBS	52.4 ± 0.0	35.3 ± 0.0	70.8 ± 0.0	87.4 ± 0.0	87.6 ± 0.0	72.1 ± 0.0
CluStream-S - RNN-DBS	52.2 ± 0.0	51.9 ± 0.0	72.8 ± 0.0	89.0 ± 0.0	87.9 ± 0.0	74.4 ± 0.0
CluStream-G - RNN-DBS	70.0±5.9	29.3 ± 3.3	51.7 ± 0.8	97.4 ± 1.0	89.0±0.1	76.0 ± 0.1
CluStream-C - MDBSCAN	18.6 ± 0.0	12.9 ± 0.0	19.9 ± 0.0	52.4 ± 0.0	71.4 ± 0.0	28.6 ± 0.0
CluStream-W - MDBSCAN	18.6 ± 0.0	12.9 ± 0.0 12.9 ± 0.0	19.9 ± 0.0	52.4 ± 0.0 52.4 ± 0.0	99.2 ± 0.0	30.2 ± 0.0
CluStream-S - MDBSCAN	18.6 ± 0.0	13.0 ± 0.0	19.9 ± 0.0	52.4 ± 0.0	99.4±0.0	30.2 ± 0.0
CluStream-G - MDBSCAN	18.6 ± 0.0	13.0 ± 0.0	19.9 ± 0.0	52.4 ± 0.0	99.4 ± 0.0	30.3 ± 0.0
CluStream-C - DPC	26.1 ± 0.0	16.6 ± 0.0	$ 48.4\pm0.0 $	89.4 ± 0.0	53.4 ± 0.0	30.5 ± 0.0
CluStream-W - DPC	38.1 ± 0.0	16.4 ± 0.0	30.0 ± 0.0	74.5 ± 0.0	73.7 ± 0.0	38.3 ± 0.0
CluStream-S - DPC	37.9 ± 0.0	14.5 ± 0.0	25.2 ± 0.0	74.5 ± 0.0	47.7 ± 0.0	30.6 ± 0.0
CluStream-G - DPC	30.0 ± 1.6	12.9 ± 0.0	45.2 ± 0.9	59.6 ± 0.4	43.1 ± 0.0	30.0 ± 0.1
CluStream-C - SNN-DPC	59.6 ± 0.4	20.7 ± 0.2	60.8 ± 0.0	67.1 ± 0.0	98.5 ± 0.0	45.7 ± 0.5
	38.2 ± 0.0	20.7 ± 0.2 27.0 ± 0.4	44.1 ± 0.0	77.2 ± 0.0	95.3 ± 0.0 95.3 ± 0.1	
CluStream-W - SNN-DPC						44.6 ± 0.0
CluStream-S - SNN-DPC	37.6 ± 0.0	27.0 ± 0.0	46.5 ± 0.0	82.2 ± 0.0	92.1 ± 0.0	42.2 ± 0.0
CluStream-G - SNN-DPC	58.7 ± 1.3	20.5 ± 0.9	67.4 ± 1.2	74.4 ± 4.7	99.7 ± 0.0	47.0 ± 0.8
CluStream-C - DBHD	78.8 ± 0.0	35.3 ± 0.0	83.9 ± 0.0	98.9 ± 0.0	98.9 ± 0.0	66.6 ± 0.0
CluStream-W - DBHD	78.8 ± 0.0	35.3 ± 0.0	83.9 ± 0.0	98.9 ± 0.0	98.9 ± 0.0	66.6 ± 0.0
CluStream-S - DBHD	78.8 ± 0.0	35.3 ± 0.0	83.9 ± 0.0	98.9 ± 0.0	98.9 ± 0.0	66.6 ± 0.0
CluStream-G - DBHD	94.1±1.4	87.0 ± 1.0		99.4 ± 0.1	99.6 ± 0.0	90.0 ± 0.4
Classicani G DDIID	O 1.1 ± 1. T	CCI.0	01.220.0	00.120.1	55.0±0.0	0 J.O _ U.T

Table 28: Recall Scores for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

bold, and the second-t						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Recall	Recall	Recall	Recall	Recall	Recall
STREAMKmeans	48.6±4.2	97.8±0.7	87.7±0.8	96.3±3.0		100.0 ± 0.0
DenStream	5.2 ± 0.0	23.9 ± 0.0	58.3 ± 0.0	22.8 ± 0.0	75.5 ± 0.0	38.9 ± 0.0
DBSTREAM	100.0 ± 0.0	99.3 ± 0.0	$ 100.0\pm0.0 $	$ 100.0\pm0.0 $	92.6 ± 0.0	78.9 ± 0.0
EMCStream	57.9 ± 6.2	77.5±5.9	89.3±0.5	80.2±8.3	80.6 ± 12.6	83.7±1.1
MCMSTStream	71.2 ± 0.0	54.8±0.0	73.3±0.0	43.8±0.0	80.4±0.0	44.4±0.0
				45.6±0.0	00.4±0.0	
GB-FuzzyStream	85.3 ± 29.3	52.6 ± 0.5	51.7 ± 0.3	-	-	52.3 ± 0.5
CluStream-O - var. k	6.1±0.0	46.2 ± 0.0	13.1±0.0	5.6±0.0	64.6 ± 0.0	15.6 ± 0.0
	38.7±0.0	92.3±0.0	84.6±0.0	89.0±0.0	81.8±0.0	56.3±0.0
CluStream-O - fixed k						
CluStream-O - k =100	6.1 ± 0.0	46.2 ± 0.0	13.1±0.0	5.6 ± 0.0	64.6 ± 0.0	15.6 ± 0.0
CluStream - Wk-Means	37.5 ± 0.7	76.3 ± 2.5	80.2 ± 1.2	98.1 ± 0.4	84.8 ± 0.4	47.8 ± 1.0
CluStream-C - k-Means	37.7 ± 1.7	90.3 ± 2.0	85.9 ± 0.9	95.9 ± 0.9	88.4 ± 0.0	53.2 ± 2.0
CluStream-W - k-Means	37.5 ± 0.7	76.3 ± 2.5	80.2 ± 1.2	98.1 ± 0.4	84.8 ± 0.4	47.8 ± 1.0
CluStream-S - k-Means	36.1±1.1	77.4 ± 3.4	82.1±0.9	97.4 ± 0.0	85.0 ± 0.4	47.2 ± 1.5
						47.2 1.0
CluStream-G - k -Means	36.8 ± 1.1	77.8 ± 2.7	81.6 ± 1.0	97.5 ± 0.0	85.1 ± 0.4	47.3 ± 1.4
CluStream-C - SubKMeans	37.3 ± 1.5	91.5 ± 0.8	84.6±1.0	96.0 ± 0.7	88.4 ± 0.0	52.5 ± 1.5
CluStream-W - SubKMeans	36.8 ± 1.5	72.9 ± 3.9	78.7 ± 1.5	97.8 ± 0.5	84.7 ± 0.3	48.1 ± 0.7
CluStream-S - SubKMeans	36.7 ± 1.2	74.7 ± 2.7	80.0 ± 1.2	97.4 ± 0.0	85.1 ± 0.4	47.2 ± 0.8
CluStream-G - SubKMeans						
Clustream-G - Subkivieans	36.9 ± 1.2	76.6 ± 3.3	80.7 ± 1.3	97.5 ± 0.0	85.1 ± 0.4	47.6 ± 1.0
CluStream-C - X-Means	68.5 ± 0.7	94.3 ± 1.2	91.5 ± 0.4	31.7 ± 1.8	83.1 ± 0.2	32.0 ± 0.7
CluStream-W - X-Means	6.2 ± 0.0	47.2 ± 0.2	77.8 ± 1.4	21.7 ± 0.0	64.6 ± 0.0	15.6 ± 0.0
CluStream-C - X-Means CluStream-W - X-Means CluStream-S - X-Means	6.1 ± 0.0	46.5 ± 0.1	75.7 ± 1.2	20.5 ± 0.0	64.6 ± 0.0	15.6 ± 0.0
CluStream-G - X-Means	17.7 ± 9.0	52.9 ± 0.5	75.2 ± 1.9	19.8 ± 0.1	70.3 ± 0.1	15.6 ± 0.0
						10.0±0.0
CluStream-C - P-Dip-M	100.0 ± 0.0	100.0 ± 0.0	99.5 ± 0.0	100.0 ± 0.0	89.5±0.0	82.5 ± 0.3
CluStream-W - P-Dip-M	8.8 ± 0.1	-	17.7 ± 0.1	6.8 ± 0.1	-	-
CluStream-S - P-Dip-M	8.6 ± 0.1	-	17.2 ± 0.0	6.7 ± 0.0	-	-
CluStream-G - P-Dip-M	37.1 ± 3.6	57.3 ± 0.6	91.9 ± 0.1	34.6 ± 3.3	78.9 ± 0.0	18.3 ± 0.1
CluStream-C - SC	42.6 ± 0.6	91.9 ± 0.3	85.1±0.2	96.0 ± 0.0	89.1±0.0	55.3 ± 1.5
CluStream-W - SC	32.2 ± 0.4	82.8 ± 0.9	82.5 ± 0.6	97.4 ± 0.0	88.6 ± 0.0	61.0 ± 0.3
CluStream-S - SC	32.5 ± 0.6	85.1 ± 0.9	81.9 ± 0.4	97.4 ± 0.0	89.5 ± 0.1	57.7 ± 0.8
CluStream-G - SC	31.8 ± 0.3	85.8 ± 1.3	81.8 ± 0.4	97.5 ± 0.1	89.5 ± 0.0	57.7 ± 0.8
CluStream-C - SCAR	41.1±2.0	84.0±1.6	70.7 ± 1.0	86.7±0.7	90.3 ± 0.1	53.4 ± 1.8
					30.3±0.1	
CluStream-W - SCAR	56.7 ± 0.8	67.9 ± 1.3	52.2 ± 0.5	87.7±1.9	-	60.3 ± 0.7
CluStream-S - SCAR	52.4 ± 3.1	68.9 ± 2.3	52.8 ± 0.5	88.5±1.5	73.6 ± 0.2	63.8 ± 1.1
CluStream-G - SCAR CluStream-G - SCAR	42.5 ± 3.0	59.7 ± 3.4	48.8 ± 0.6	89.4 ± 1.7	64.6 ± 0.3	57.6 ± 1.4
CluStream-C - SpectACl CluStream-W - SpectACl	31.5 ± 2.5	72.3 ± 4.3	54.6 ± 1.3	75.2 ± 3.4	87.0 ± 0.1	47.7 ± 0.7
CluStream-W - Spect ACl	48.3 ± 0.2	60.2 ± 1.8	69.1 ± 1.5	71.0 ± 4.4	86.0 ± 0.5	41.5 ± 1.8
CluStream-S - SpectACl	48.4 ± 0.2	62.1 ± 2.6	69 7 1 1 9	70.9 ± 5.6	86.7±0.1	44.0 ± 2.0
			68.7 ± 1.3			
CluStream-G - SpectACl	42.3 ± 1.0	62.2 ± 3.3	70.8 ± 1.8	69.4 ± 4.5	86.5 ± 0.2	43.4 ± 2.1
CluStream-C - DBSCAN	100.0 ± 0.0	99.9 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	91.3 ± 0.0	88.6 ± 0.0
CluStream-W - DBSCAN	100.0 ± 0.0	99.9 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	90.3 ± 0.0	88.0±0.0
CluStream-S - DBSCAN	100.0 ± 0.0	99.5±0.0	100.0 ± 0.0	100.0 ± 0.0	90.2 ± 0.0	88.0±0.0
Clasticanias - DDSCAN	100.0 ± 0.0	99.3 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	90.2 ± 0.0	88.1±0.0
Clustream-G - DBSCAN						
CluStream-G - DBSCAN CluStream-C - HDBSCAN CluStream-W - HDBSCAN	80.0±0.0	99.0 ± 0.0	92.0 ± 0.0	90.1 ± 0.0	91.9 ± 0.0	72.8 ± 0.0
CluStream-W - HDBSCAN	7.8 ± 0.0	60.1 ± 0.0	16.3 ± 0.0	6.6 ± 0.0	75.6 ± 0.0	16.9 ± 0.0
CluStream-S - HDBSCAN	7.7 ± 0.0	58.9 ± 0.0	15.6 ± 0.0	6.5 ± 0.0	74.2 ± 0.0	16.6 ± 0.0
CluStream-G - HDBSCAN	37.5 ± 20.2	59.9 ± 0.1	88.2±0.8	16.7 ± 0.4	74.3 ± 0.0	16.7 ± 0.0
CluStream-C - RNN-DBS	99.9 ± 0.0	99.1 ± 0.0		98.3 ± 0.0	93.3 ± 0.0	88.7±0.0
			97.5 ± 0.0			
CluStream-W - RNN-DBS	9.5 ± 0.0	59.2 ± 0.0	15.7 ± 0.0	7.9 ± 0.0	68.6 ± 0.0	17.6 ± 0.0
CluStream-S - RNN-DBS	9.1 ± 0.0	52.0 ± 0.0	15.3 ± 0.0	7.0 ± 0.0	67.7 ± 0.0	17.1 ± 0.0
CluStream-G - RNN-DBS	32.8 ± 2.2	64.6 ± 1.7	$84.4{\pm}1.0$	19.8 ± 1.3	67.6 ± 0.0	17.0 ± 0.0
CluStream-C - MDBSCAN	100.0 ± 0.0	100.0 ± 0.0			93.6 ± 0.0	94.0 ± 0.0
CluStream-W - MDBSCAN						
	100.0 ± 0.0		100.0 ± 0.0	100.0 ± 0.0	91.0 ± 0.0	88.6±0.0
CluStream-S - MDBSCAN	100.0 ± 0.0	99.2 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	90.7 ± 0.0	88.6 ± 0.0
CluStream-G - MDBSCAN	100.0 ± 0.0	99.0 ± 0.1	100.0 ± 0.0	100.0 ± 0.0	90.7 ± 0.0	88.7±0.0
CluStream-C - DPC	68.2 ± 0.0	86.1±0.0	92.4 ± 0.0	88.6±0.0	97.5±0.0	91.1±0.0
CluStream-W - DPC	50.1 ± 0.0	92.2±0.0	95.4±0.0	89.7±0.0	95.2 ± 0.0	76.9 ± 0.0
CluStream-S - DPC						
Chastream-5 - DFC	49.8±0.0	96.7 ± 0.0	97.4 ± 0.0	89.7±0.0	99.0 ± 0.0	88.5±0.0
CluStream-G - DPC	43.5 ± 2.0	100.0 ± 0.0	94.5 ± 0.1	76.4 ± 0.2	99.8 ± 0.0	90.4 ± 0.1
CluStream-C - SNN-DPC	51.7±3.4	91.1±0.0	78.1 ± 0.0	85.8 ± 0.0	81.6 ± 0.0	61.2 ± 1.1
CluStream-W - SNN-DPC	71.7 ± 0.0	86.5±0.1	83.7±0.0	84.5±0.0	83.6 ± 0.1	65.8±0.0
CluStream-S - SNN-DPC	64.4 ± 0.0	87.5±0.0	83.2±0.0	91.3 ± 0.0	85.3 ± 0.0	68.1 ± 0.0
CluStream-G - SNN-DPC	48.5 ± 2.6	89.9 ± 1.4	90.9 ± 0.2	89.0±3.9	88.2 ± 0.1	67.3 ± 1.0
CluStream-C - DBHD	37.0 ± 0.0	89.1±0.0	65.5 ± 0.0	30.5 ± 0.0	87.3±0.0	39.9 ± 0.0
CluStream-W - DBHD	37.0 ± 0.0	89.1 ± 0.0	65.5 ± 0.0	30.5 ± 0.0	87.3 ± 0.0	39.9 ± 0.0
CluStream-S - DBHD	37.0±0.0	89.1±0.0	65.5 ± 0.0	30.5 ± 0.0	87.3±0.0	39.9 ± 0.0
Clasticani-5 - DDID						
CluStream-G - DBHD	3.6 ± 0.1	15.4 ± 0.9	3.9 ± 0.0	2.7 ± 0.1	57.9 ± 0.0	3.9 ± 0.1

Table 29: F1 Scores for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Join, and the second-bes					IZDDaa	
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	F1	F1	F1	F1	F1	F1
STREAMKmeans	$ 48.3\pm3.4 $	$ 23.1\pm0.1 $	$ 66.0\pm1.9 $	$ 71.7\pm4.1 $	58.0 ± 0.0	40.8 ± 0.0
DenStream	9.8 ± 0.0	36.5 ± 0.0	65.6 ± 0.0	36.1 ± 0.0	85.5 ± 0.0	42.9 ± 0.0
DBSTREAM	31.4 ± 0.0	23.0 ± 0.0	33.0 ± 0.0	68.8 ± 0.0	95.6 ± 0.0	41.5 ± 0.0
EMCStream		64.6 ± 3.8	64.7 ± 2.1	70.3 ± 5.0	75.8 ± 8.8	40.6 ± 0.6
MCMSTStream	30.0 ± 0.0	25.8 ± 0.0	75.5 ± 0.0	56.9 ± 0.0	76.9 ± 0.0	38.8±0.0
				- 50.9±0.0	70.9±0.0	
GB-FuzzyStream	31.0 ± 0.8	$ 29.5\pm0.9 $	42.5 ± 0.4			36.2 ± 0.3
CluStream-O - var. k	11.4 ± 0.0	$ 54.7\pm0.0 $	$ 22.8\pm0.0 $	$ 10.6\pm0.0 $	$ 78.1\pm0.0 $	25.6 ± 0.0
CluStream-O - fixed k	46.0 ± 0.0	28.0 ± 0.0	67.5 ± 0.0	76.4 ± 0.0	89.8 ± 0.0	46.7 ± 0.0
CluStream-O - k=100		54.7 ± 0.0	22.8 ± 0.0	10.6 ± 0.0	78.1 ± 0.0	25.6 ± 0.0
CluStream - Wk -Means	45.9 ± 0.9	$ 58.2\pm1.8 $	80.1 ± 0.6	98.0 ± 0.2	91.6 ± 0.3	48.5 ± 0.7
CluStream-C - k-Means	46.2 ± 1.9	32.5 ± 1.8	76.5 ± 0.8	95.7 ± 1.2	93.7 ± 0.0	45.8 ± 0.9
CluStream-W - k-Means	45.9 ± 0.9	58.2 ± 1.8	80.1 ± 0.6	98.0 ± 0.2	91.6 ± 0.3	48.5 ± 0.7
CluStream-S - k -Means	44.6 ± 1.3	57.2±1.6	81.0 ± 0.4	97.5 ± 0.0	91.8 ± 0.2	47.6 ± 0.7
CluStream-G - k-Means	45.2 ± 1.2	58.2 ± 2.1	81.3 ± 0.6	97.8 ± 0.0	91.8 ± 0.2	47.6 ± 0.7
CluStream-C - SubKMeans	45.1 ± 1.3	33.3 ± 1.4	76.8 ± 0.9	95.8 ± 1.1	93.7 ± 0.0	45.4 ± 1.4
CluStream-W - SubKMeans	44.8 ± 1.5	$ 57.7\pm2.5 $	78.8 ± 0.9	97.8 ± 0.3	91.6 ± 0.2	48.5 ± 0.3
CluStream-S - SubKMeans	44.8 ± 1.2	57.8 ± 2.1	79.7 ± 0.4	97.5 ± 0.0	91.9 ± 0.2	48.1 ± 0.3
CluStream-G - SubKMeans	45.3 ± 1.3	59.0 ± 2.5	80.7 ± 0.8	97.8 ± 0.0	91.8 ± 0.2	48.2 ± 0.5
CluStream-C - X-Means	57.6±0.6	26.7 ± 0.7	63.0 ± 0.7	44.5 ± 2.2	90.3±0.1	40.3 ± 0.4
CluStream-W - X-Means	$\frac{67.0\pm0.0}{11.7\pm0.1}$	55.2 ± 0.2	73.0 ± 0.9	29.8 ± 0.0	78.1 ± 0.0	25.6 ± 0.0
CluStream-S - X-Means					78.1 ± 0.0 78.1 ± 0.0	
	11.5 ± 0.0	54.9 ± 0.1	71.0 ± 1.0	27.9 ± 0.0		25.6 ± 0.0
CluStream-G - X-Means	23.4 ± 6.1	57.0 ± 0.4	74.2 ± 1.0	26.4 ± 0.2	82.3 ± 0.1	25.6 ± 0.0
CluStream-C - P-Dip-M	31.4 ± 0.0	$ 22.9\pm0.0 $	34.8 ± 0.0	76.6 ± 0.0	93.6 ± 0.0	44.4 ± 0.3
CluStream-W - P-Dip-M	16.0 ± 0.1	-	29.2 ± 0.1	12.6 ± 0.3	-	-
CluStream-S - P-Dip-M	15.8 ± 0.1	-	28.6 ± 0.1	12.5 ± 0.0	-	-
CluStream-G - P-Dip-M	47.5 ± 2.8	57.0 ± 0.4	77.5 ± 0.3	46.3 ± 2.2	88.0 ± 0.0	29.0 ± 0.2
CluStream-C - SC	43.1 ± 0.7	29.7 ± 1.4	67.6 ± 0.6	95.7 ± 0.0	94.1 ± 0.0	45.3 ± 0.6
CluStream-W - SC	37.3 ± 0.3	48.7 ± 3.1	78.9 ± 0.4	97.5 ± 0.0	75.3 ± 0.1	45.6 ± 0.3
CluStream-S - SC	37.4 ± 0.7	$ 43.5\pm2.4 $	78.4 ± 0.4	97.5 ± 0.0	74.3 ± 0.2	45.3 ± 0.3
CluStream-G - SC	36.6 ± 0.2	$ 44.9\pm1.9 $	78.5 ± 0.2	97.8 ± 0.0	74.3 ± 0.2	45.3 ± 0.3
CluStream-C - SCAR	42.5 ± 2.1	23.9 ± 0.6	58.3 ± 1.2	74.2 ± 0.7	93.8 ± 0.1	44.7 ± 1.0
CluStream-W - SCAR	35.6 ± 0.9	45.0 ± 1.4	37.9 ± 0.2	66.8 ± 1.0	_	41.4 ± 0.6
CluStream-S - SCAR	33.6 ± 1.6	38.9 ± 0.7	37.8 ± 0.4	67.3 ± 1.1	76.7 ± 0.2	41.0 ± 0.2
CluStream C SCAP						
CluStream-G - SCAR	34.5 ± 2.6	55.1 ± 4.1	45.3 ± 0.6	67.9 ± 0.9	77.1 ± 0.2	40.4 ± 0.7
CluStream-C - SpectACl	28.6 ± 1.2	35.6 ± 3.0	40.5 ± 0.3	69.1 ± 2.4	91.8 ± 0.0	43.2 ± 0.5
CluStream-W - SpectACl	30.0 ± 0.1	$ 47.3\pm0.9 $	46.8 ± 1.4	67.9 ± 2.3	92.4 ± 0.3	41.5 ± 0.7
CluStream-S - SpectACl	30.0 ± 0.2	$ 47.5\pm1.1 $	45.2 ± 0.8	68.5 ± 4.8	92.8 ± 0.1	42.8 ± 1.0
CluStream-G - SpectACl	28.5 ± 0.4	46.8 ± 2.1	42.1 ± 0.8	67.8 ± 3.1	92.7 ± 0.1	42.3 ± 1.1
CluStream-C - DBSCAN	31.4 ± 0.0	27.2 ± 0.0	33.0 ± 0.0	68.8 ± 0.0	81.8 ± 0.0	44.9 ± 0.0
CluStream-W - DBSCAN	31.4 ± 0.0	27.2 ± 0.0	33.0 ± 0.0	68.8 ± 0.0	94.6 ± 0.0	44.0 ± 0.0
CluStream-S - DBSCAN	31.4 ± 0.0	27.1 ± 0.0	33.0 ± 0.0	68.8 ± 0.0	94.6 ± 0.0	44.0 ± 0.0
CluStream-G - DBSCAN	31.4 ± 0.0	27.0 ± 0.0	33.0 ± 0.0	68.8 ± 0.0	94.6 ± 0.0	44.0 ± 0.0
CluStream-C - HDBSCAN	44.3 ± 0.0	25.1 ± 0.0	71.4 ± 0.0	93.8 ± 0.0	90.7 ± 0.0	51.7 ± 0.0
CluStream-W - HDBSCAN	14.1 ± 0.0	$ 61.6\pm0.0 $	26.8 ± 0.0	12.4 ± 0.0	85.7 ± 0.0	27.1 ± 0.0
CluStream-S - HDBSCAN	14.1 ± 0.0	61.6 ± 0.0	26.0 ± 0.0	12.1 ± 0.0	84.9 ± 0.0	26.9 ± 0.0
CluStream-G - HDBSCAN	33.3 ± 3.7	61.9 ± 0.1	77.0 ± 0.4	26.9 ± 0.5	84.9 ± 0.0	26.9 ± 0.0
CluStream-C - RNN-DBS	40.6±0.0	23.0 ± 0.0	39.8 ± 0.0	91.2 ± 0.0	88.4±0.0	47.8 ± 0.0
CluStream-W - RNN-DBS	14.7 ± 0.0	40.4 ± 0.0	25.3 ± 0.0	14.4 ± 0.0	76.7 ± 0.0	27.7 ± 0.0
CluStream-S - RNN-DBS				13.0 ± 0.0		
	14.3 ± 0.0	49.7 ± 0.0	25.0 ± 0.0		76.2 ± 0.0	27.1 ± 0.0
CluStream-G - RNN-DBS	43.6 ± 1.4	34.6 ± 2.1	61.6 ± 1.0	31.6 ± 1.7	76.6 ± 0.0	27.1 ± 0.0
CluStream-C - MDBSCAN	31.4 ± 0.0	$ 22.9\pm0.0 $	33.0 ± 0.0	68.8 ± 0.0	80.4 ± 0.0	43.1 ± 0.0
CluStream-W - MDBSCAN	31.4 ± 0.0	22.9 ± 0.0	33.0 ± 0.0	68.8 ± 0.0	94.9 ± 0.0	44.0 ± 0.0
CluStream-S - MDBSCAN	31.4 ± 0.0	23.0 ± 0.0	33.0 ± 0.0	68.8 ± 0.0	94.8 ± 0.0	44.0 ± 0.0
CluStream-G - MDBSCAN	31.4 ± 0.0	23.0 ± 0.0	33.0 ± 0.0	68.8 ± 0.0	94.8±0.0	44.1 ± 0.0
CluStream-C - DPC	37.6 ± 0.0	27.5 ± 0.0	62.1 ± 0.0	87.5±0.0	68.6 ± 0.0	43.4 ± 0.0
CluStream-W - DPC	41.8 ± 0.0	27.8 ± 0.0	43.4 ± 0.0	77.5 ± 0.0	79.8 ± 0.0	
						45.2 ± 0.0
CluStream-S - DPC	41.6 ± 0.0	25.1 ± 0.0	38.3 ± 0.0	77.5 ± 0.0	62.5 ± 0.0	43.2 ± 0.0
CluStream-G - DPC	34.7 ± 0.7	22.9 ± 0.0	59.1 ± 0.7	62.9 ± 0.2	59.7 ± 0.0	43.6 ± 0.1
CluStream-C - SNN-DPC	55.0 ± 1.9	33.4 ± 0.3	66.5 ± 0.0	74.1 ± 0.0	89.0 ± 0.0	50.6 ± 0.3
CluStream-W - SNN-DPC	49.6 ± 0.0	40.6 ± 0.3	55.9 ± 0.0	80.6 ± 0.0	88.8 ± 0.1	51.0 ± 0.0
CluStream-S - SNN-DPC	47.1 ± 0.0	40.8 ± 0.0	57.5 ± 0.0	86.3±0.0	88.0±0.0	50.2 ± 0.0
CluStream-G - SNN-DPC	53.0 ± 1.6	33.0 ± 1.2	76.3 ± 0.8	79.9 ± 3.9	93.6 ± 0.0	52.1 ± 1.0
CluStream-C - DBHD	50.2±0.0	49.5 ± 0.0	72.3 ± 0.0	45.6 ± 0.0	92.7 ± 0.0	48.3 ± 0.0
CluStream-W - DBHD	50.2 ± 0.0	49.5 ± 0.0	72.3 ± 0.0	45.6 ± 0.0	92.7 ± 0.0	48.3 ± 0.0
CluStream-S - DBHD	50.2 ± 0.0	49.5 ± 0.0	72.3 ± 0.0	45.6 ± 0.0	92.7 ± 0.0	48.3 ± 0.0
CluStream-G - DBHD	6.9 ± 0.1	25.5 ± 1.2	7.4 ± 0.1	5.2 ± 0.1	73.0 ± 0.0	7.5 ± 0.2

Table 30: FMI Scores for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Join, and the second-bes						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	FMI	FMI	FMI	FMI	FMI	FMI
STREAMKmeans	48.4 ± 3.5	35.8 ± 0.0	68.5 ± 1.5	74.4±3.4	63.9 ± 0.0	50.6 ± 0.0
DenStream	21.6 ± 0.0	43.0 ± 0.0	66.9 ± 0.0	$ 45.2\pm0.0 $	86.3 ± 0.0	43.6 ± 0.0
DBSTREAM	$ 43.1\pm0.0 $	$ 35.9\pm0.0 $	$ 44.3\pm0.0 $	$ 72.4\pm0.0 $	$ 95.6\pm0.0 $	47.1 ± 0.0
EMCStream	58.6 ± 3.2	65.7 ± 4.0	67.9 ± 1.6	71.5 ± 4.5	76.6 ± 8.5	47.5 ± 0.5
MCMSTStream	36.8 ± 0.0	30.4 ± 0.0	76.0 ± 0.0	63.4 ± 0.0	77.3±0.0	40.3 ± 0.0
GB-FuzzyStream	41.0 ± 4.3	32.9 ± 0.8	$ 43.4\pm0.3 $	-	-	38.2 ± 0.3
CluStream-O - var. k	24.6 ± 0.0	57.1±0.0	34.7 ± 0.0	123 4+0 01	80.1±0.0	35.5 ± 0.0
CluStream-O - fixed k	46.8 ± 0.0	$ 38.9\pm0.0 $	$ 69.3\pm0.0 $	$ 77.4\pm0.0 $	90.3 ± 0.0	48.0 ± 0.0
CluStream-O - $k=100$	24.6 ± 0.0	57.1 ± 0.0	34.7 ± 0.0	23.4 ± 0.0	80.1 ± 0.0	35.5 ± 0.0
CluStream - Wk -Means	47.2 ± 0.9	$ 60.1\pm1.8 $	80.4 ± 0.6	98.0 ± 0.2	92.0 ± 0.2	49.2 ± 0.7
CluStream-C - k-Means	47.4 ± 2.0	$ 42.3\pm1.1 $	77.4 ± 0.8	95.7 ± 1.2	93.9 ± 0.0	47.1 ± 1.0
CluStream-W - k -Means	47.2 ± 0.9	$ 60.1\pm1.8 $	80.4 ± 0.6	98.0 ± 0.2	92.0 ± 0.2	49.2 ± 0.7
CluStream-S - k -Means	45.9 ± 1.3	$ 59.4\pm1.7 $	81.3 ± 0.4	97.5 ± 0.0	92.1 ± 0.2	48.4 ± 0.7
CluStream-G - k-Means	46.5 ± 1.2	$ 60.3\pm1.9 $	81.6 ± 0.6	97.8 ± 0.0	92.1 ± 0.2	48.4 ± 0.8
CluStream-C - SubKMeans	46.2 ± 1.3	43.1±1.1	77.5±0.9	95.8 ± 1.0	93.9 ± 0.0	46.6 ± 1.4
CluStream-W - SubKMeans	45.9 ± 1.5	$ 59.1\pm2.6 $	$ 79.2\pm0.8 $	97.8 ± 0.3	91.9 ± 0.2	49.3 ± 0.4
CluStream-S - SubKMeans	46.0 ± 1.2	$ 59.5\pm2.0 $	80.0 ± 0.4	97.5 ± 0.0	92.2 ± 0.2	48.8 ± 0.3
CluStream-G - SubKMeans	46.5 ± 1.3	60.8 ± 2.3	81.0 ± 0.7	97.8 ± 0.0	92.2 ± 0.2	48.9 ± 0.5
CluStream-C - X-Means	$\frac{58.4}{2} \pm 0.6$	38.3 ± 0.8	66.7 ± 0.6	53.0 ± 1.8	90.7 ± 0.1	43.6 ± 0.4
CluStream-W - X-Means	24.9 ± 0.1	$ 57.4\pm0.1 $	$ 75.1\pm0.7 $	39.8 ± 0.0	80.2 ± 0.0	35.5 ± 0.0
CluStream-S - X-Means	24.6 ± 0.0	57.3 ± 0.1	73.4 ± 0.8	37.9 ± 0.0	80.1 ± 0.0	35.5 ± 0.0
CluStream-G - X-Means	35.0 ± 4.1	58.4 ± 0.4	76.1 ± 0.8	35.9 ± 0.3	83.7±0.0	35.5 ± 0.0
CluStream-C - P-Dip-M	43.1 ± 0.0	36.0 ± 0.0	45.7 ± 0.0	79.3 ± 0.0	93.7 ± 0.0	51.2 ± 0.3
CluStream-W - P-Dip-M	29.0 ± 0.4	-	39.4 ± 0.1	25.8 ± 0.3	-	-
CluStream-S - P-Dip-M	29.1 ± 0.1	_	39.0 ± 0.1	25.7 ± 0.0	_	_
		50 010 4			99 7±0 0	20 1⊥0 1
CluStream-G - P-Dip-M	49.8 ± 2.0	58.0 ± 0.4	78.9 ± 0.3	54.1 ± 2.0	88.7 ± 0.0	38.1 ± 0.1
CluStream-C - SC	43.2 ± 0.7	$ 40.3\pm1.1 $	69.5 ± 0.5	95.7 ± 0.0	94.2 ± 0.0	47.1 ± 0.7
CluStream-W - SC	37.8 ± 0.3	53.5 ± 2.3	79.3 ± 0.4	97.5 ± 0.0	76.5 ± 0.1	48.4 ± 0.3
CluStream-S - SC	37.8 ± 0.7	49.9 ± 1.8	78.8 ± 0.4	97.5 ± 0.0	75.7 ± 0.2	47.7 ± 0.3
CluStream-G - SC	37.1 ± 0.1	$ 51.1\pm1.4 $	79.0 ± 0.2	97.8 ± 0.0	75.7 ± 0.2	47.6 ± 0.3
CluStream-C - SCAR	42.6 ± 2.1	34.2 ± 0.4	59.7 ± 1.1	75.3 ± 0.6	93.9 ± 0.1	45.7 ± 1.1
CluStream-W - SCAR	38.3 ± 0.8	48.1 ± 1.2	39.6 ± 0.3	68.8 ± 1.0	_	43.7 ± 0.6
CluStream-S - SCAR			39.6 ± 0.4	69.3 ± 1.1	77 540 2	44.0 ± 0.4
Clustream-5 - 5CAR	36.0 ± 1.7	$ 43.3\pm0.9 $			77.5 ± 0.2	
CluStream-G - SCAR	35.1 ± 2.7	$ 55.4\pm3.9 $	45.8 ± 0.6	69.9 ± 0.9	78.9 ± 0.2	42.5 ± 0.7
CluStream-C - SpectACl	28.8 ± 1.3	41.3 ± 2.2	42.2 ± 0.2	69.4 ± 2.5	92.0 ± 0.0	44.2 ± 0.5
CluStream-W - SpectACl	32.4 ± 0.1	48.5 ± 0.7	49.8 ± 0.9	68.2 ± 2.4	92.6 ± 0.3	42.1 ± 0.8
CluStream-S - SpectACl	32.4 ± 0.2	$ 49.0\pm1.2 $	48.4 ± 0.5	68.8 ± 4.8	93.0 ± 0.1	43.6 ± 1.1
CluStream-G - SpectACl	30.2 ± 0.5	$ 48.4\pm2.0 $	$ 46.2\pm0.5 $	68.0 ± 3.2	92.9 ± 0.1	43.0 ± 1.0
CluStream-C - DBSCAN	43.1 ± 0.0	39.7 ± 0.0	44.3 ± 0.0	72.4 ± 0.0	82.4 ± 0.0	51.6 ± 0.0
CluStream-W - DBSCAN	43.1 ± 0.0	39.7 ± 0.0	44.3 ± 0.0	72.4 ± 0.0	94.7 ± 0.0	50.8 ± 0.0
CluStream-S - DBSCAN	43.1 ± 0.0	$ 39.5\pm0.0 $	$ 44.3\pm0.0 $	72.4 ± 0.0	94.7 ± 0.0	50.8 ± 0.0
CluStream-G - DBSCAN	43.1 ± 0.0	$ 39.4\pm0.0 $	$ 44.3\pm0.0 $	72.4 ± 0.0	94.7 ± 0.0	50.9 ± 0.0
CluStream-C - HDBSCAN	50.1 ± 0.0	37.6 ± 0.0	73.7 ± 0.0	94.1 ± 0.0	90.8 ± 0.0	55.0 ± 0.0
CluStream-W - HDBSCAN	25.5 ± 0.0	62.7 ± 0.0	36.2 ± 0.0	24.9 ± 0.0	86.5±0.0	36.0 ± 0.0
CluStream-S - HDBSCAN	26.2 ± 0.0	$ 62.7\pm0.0 $	35.9 ± 0.0	24.7 ± 0.0	85.9 ± 0.0	36.0 ± 0.0
CluStream-G - HDBSCAN	37.9 ± 5.5	63.0 ± 0.2	78.2 ± 0.4	37.0 ± 0.4	85.9 ± 0.0	36.0 ± 0.0
CluStream-C - RNN-DBS	50.4 ± 0.0	35.9 ± 0.0	49.2 ± 0.0	92.1 ± 0.0	88.8±0.0	54.3 ± 0.0
CluStream-W - RNN-DBS						
	20.8 ± 0.0	$ 43.6\pm0.0 $	32.9 ± 0.0	26.1 ± 0.0	77.4 ± 0.0	35.0 ± 0.0
CluStream-S - RNN-DBS	20.4 ± 0.0	50.8 ± 0.0	33.0 ± 0.0	24.9 ± 0.0	77.0 ± 0.0	34.9 ± 0.0
CluStream-G - RNN-DBS	47.2 ± 1.1	39.9 ± 1.6	64.6 ± 0.9	42.3 ± 1.6	77.4 ± 0.0	35.2 ± 0.0
CluStream-C - MDBSCAN	43.1±0.0	36.0 ± 0.0	44.3 ± 0.0	72.4 ± 0.0	81.4±0.0	51.2 ± 0.0
CluStream-W - MDBSCAN	43.1 ± 0.0	36.0 ± 0.0	$ 44.3\pm0.0 $	72.4 ± 0.0	95.0 ± 0.0	51.0 ± 0.0
CluStream-S - MDBSCAN	43.1 ± 0.0	35.9 ± 0.0	44.3 ± 0.0	72.4 ± 0.0	94.9 ± 0.0	50.9 ± 0.0
CluStream-G - MDBSCAN	43.1 ± 0.0	35.9 ± 0.0	44.3 ± 0.0	72.4 ± 0.0	94.9 ± 0.0	51.0 ± 0.0
CluStream-C - DPC	42.1 ± 0.0			88.2±0.0	71.9 ± 0.0	51.1 ± 0.0
		37.3 ± 0.0	66.0 ± 0.0			
CluStream-W - DPC	42.9 ± 0.0	$ 38.8\pm0.0 $	$ 51.7\pm0.0 $	79.8 ± 0.0	82.0 ± 0.0	50.8 ± 0.0
CluStream-S - DPC	42.6 ± 0.0	$ 37.3\pm0.0 $	48.1 ± 0.0	79.8 ± 0.0	67.7 ± 0.0	50.4 ± 0.0
CluStream-G - DPC	35.7 ± 0.6	36.0 ± 0.0	64.1 ± 0.6	65.4 ± 0.2	65.3 ± 0.0	51.0 ± 0.1
CluStream-C - SNN-DPC	55.3 ± 1.7	$ 43.1\pm0.2 $	67.9 ± 0.0	75.3 ± 0.0	89.5±0.0	52.0 ± 0.3
CluStream-W - SNN-DPC	52.2 ± 0.0	$ 47.9\pm0.2 $	59.6 ± 0.0	80.7 ± 0.0	89.1 ± 0.1	53.0 ± 0.0
CluStream-S - SNN-DPC	49.0 ± 0.0	48.2 ± 0.0	60.9 ± 0.0	86.5 ± 0.0	88.3 ± 0.0	52.5 ± 0.0
CluStream-G - SNN-DPC	53.3 ± 1.5	42.6 ± 1.0	77.7 ± 0.7	80.8±3.8	93.8 ± 0.0	54.5 ± 1.0
CluStream-C - DBHD	53.9 ± 0.0	$ 55.4\pm0.0 $	73.5 ± 0.0	54.1 ± 0.0	92.9 ± 0.0	50.7 ± 0.0
CluStream-W - DBHD	53.9 ± 0.0	$ 55.4\pm0.0 $	73.5 ± 0.0	54.1 ± 0.0	92.9 ± 0.0	50.7 ± 0.0
CluStream-S - DBHD	53.9 ± 0.0	55.4 ± 0.0	73.5 ± 0.0	54.1 ± 0.0	92.9 ± 0.0	50.7 ± 0.0
CluStream-G - DBHD	18.4 ± 0.2	35.7 ± 1.0	18.6 ± 0.1	16.1 ± 0.2	75.8 ± 0.0	18.6 ± 0.3
Orabiteam-Q - DDIID	10.410.2	99.1±1.0	10.010.1	10.110.2	10.0±0.0	10.0±0.3

Table 31: Purity Scores for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are underlined.

Name	oold , and the second-bes	st scores a	are <u>unde</u> i	<u>rlined</u> .			
STREAMKmeans	Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
STREAMKmeans							
DenStream	STREAMKmeans						
DBSTREAM							
EMCStream							
MCMSTStream							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
CluStream-O - van					$ 99.5\pm0.0 $	79.0 ± 0.0	
	GB-FuzzyStream	$ 39.1\pm18.3 $	$ 43.3\pm0.4 $	$ 62.1\pm0.4 $	-	-	44.2 ± 0.6
	CluStream-O - var k	99.9+0.0	90.7+0.0	95.4+0.0	99.9+0.0	99.6+0.0	93 9+0 0
CluStream - V k-Means							
CluStream - WMeans G9.8±1.6 67.2±1.5 88.7±0.3 98.9±0.1 99.0±0.0 66.9±0.4							
CluStream-C - k-Means CluStream-W - k-Means G9.2±1.6 G5.7±1.3 S8.7±0.3 S9.9±0.1 S9.0±0.0 G6.9±0.4 G1.0±1.0 G1.0±							
CluStream-W - k-Means CluStream-S - k-Means CluStream-G - k-Means CluStream-G - k-Means CluStream-G - k-Means CluStream-G - k-Means CluStream-S - SubKMeans CluStream-S - K-Means CluStream-S - Namens P9.9±0.0 R9.2±0.8 R5.4±0.1 R5.4±0.0 R5.4±	CluStream - Wk -Means	69.8 ± 1.6	67.2 ± 1.5	88.7 ± 0.3	98.9 ± 0.1	99.0 ± 0.0	66.9 ± 0.4
CluStream-W - k-Means CluStream-S - k-Means CluStream-G - k-Means CluStream-G - k-Means CluStream-G - k-Means CluStream-G - k-Means CluStream-S - SubKMeans CluStream-S - K-Means CluStream-S - Namens P9.9±0.0 R9.2±0.8 R5.4±0.1 R5.4±0.0 R5.4±	CluStream-C - k-Means	70.1+1.8	37 1+9 3	81 3+0 6	97.6+0.7	99 1+0 0	61.0 ± 1.0
CluStream-G - k-Means CluStream-W - SubKMeans CluStream-W - SubKMeans CluStream-S - SubKMeans CluStream-S - SubKMeans CluStream-S - SubKMeans CluStream-S - SubKMeans CluStream-G - SubKMeans CluStream-S - SubKMeans CluStream-S - SubKMeans CluStream-G - SubKMeans CluStream-G - SubKMeans CluStream-S - X-Means CluStream-S - X-Means CluStream-S - X-Means Subtream-S - X-Means Subtream-S - X-Means Substream-S - X-Means Substream-S - P-Dip-M CluStream-S - P-Dip-M CluStream-G - Y-Dip-M CluStream-G - SC CluStream-G - SCAR							
CluStream-C - shokMeans CluStream-W - SubKMeans CluStream-W - SubKMeans CluStream-S - SubKMeans CluStream-G - SubKMeans CluStream-W - X-Means CluStream-W - X-Means CluStream-W - X-Means CluStream-G - P-Dip-M CluStream-G - SC CluStream-G - SCAR CluStream-G							
CluStream-C - SubKMeans CluStream-W - SubKMeans CluStream-G - X-Means Sp. 4-to. 8	Clustream C h Mann						
CluStream-W - SubKMeans 68.3±1.7 67.7±1.3 88.2±0.1 99.0±0.0 66.8±0.5 CluStream-G - SubKMeans 69.8±1.3 67.4±2.1 89.5±0.3 98.8±0.0 99.0±0.0 66.8±0.5 CluStream-W - X-Means 59.8±0.4 77.0±1.1 80.9±0.0 99.0±0.0 99.0±0.0 66.8±0.5 CluStream-W - X-Means 79.9±0.0 99.2±0.8 89.9±0.0 99.0±0.0 99.0±0.0 99.0±0.0 CluStream-G - X-Means 99.9±0.0 99.2±0.8 89.9±0.0 99.0±0.0 99.0±0.0 99.0±0.0 CluStream-G - X-Means 99.9±0.0 99.0±0.0 99.0±0.0 99.0±0.0 99.0±0.0 CluStream-G - Y-Dip-M 99.5±0.2 99.0±0.0 99.0±0.0 99.0±0.0 99.0±0.0 CluStream-S - P-Dip-M 99.0±0.0 99.0±0.0 99.0±0.0 99.0±0.0 CluStream-G - P-Dip-M 78.8±1.9 81.3±0.8 79.0±0.0 99.0±0.0 99.0±0.0 CluStream-G - SC 61.7±0.2 57.4±2.8 85.7±0.4 99.9±0.0 CluStream-G - SC 61.7±0.2 57.4±2.8 85.7±0.4 98.7±0.0 99.0±0.0 CluStream-G - SC 61.4±0.1 52.0±2.3 85.9±0.2 98.8±0.0 CluStream-G - SCAR 57.2±1.3 54.8±0.4 58.3±0.3 CluStream-G - SCAR 60.7±2.0 60.9±2.8 66.2±1.5 78.2±1.2 CluStream-G - SCAR 60.7±2.1 54.8±0.4 58.3±0.3 CluStream-G - SCAR 60.7±2.1 54.8±0.4 58.3±0.3 CluStream-G - SCAR 60.7±2.0 60.9±2.8 60.9±1.1 75.5±2.1 75.5±0.0 CluStream-G - SpectACl 46.6±0.7 58.3±0.1 55.9±0.3 CluStream-G - SpectACl 42.1±1.0 58.3±0.0 57.4±0.8 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - BDSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - MDBSCAN 29.9±0.0 30.0±0.0 66.8±0.5 CluStream-G - DPC 40.9±0.0 39.9±0.0 30.0±0.0 30.0±0.0 CluStream-G - DPC 40.9±0.0 30.0±0.0 30.0±0.0 30.0±0.0 CluStream-G - DPC 40.9±0.0 30.0±0.0 30.0±0.0 CluStream-G - DPC 40.0±0.0 40.0±0.0 40.0±0.							
CluStream G - SubKMeans 68.6 ± 1.2 67.0 ± 1.7 ± 1.8 ± 1.9 ± 1.0 ±							
CluStream-G - SubKMeans 69.8±1.3 67.4±2.1 89.5±0.3 98.8±0.0 99.0±0.0 66.8±0.5							
CluStreamC - X-Means 59.8±0.4 27.0±1.1 62.9±0.7 99.0±0.4 98.8±0.0 77.6±0.5 0.9±0.0 0.9±0							
CluStream-W - X-Means CluStream-G - X-Means CluStream-G - X-Means CluStream-C - P-Dip-M Variety							
CluStream-G - X-Means 99.9±0.0 97.±0.1 84.8±0.4 99.9±0.0 99.6±0.0 33.9±0.0 CluStream-G - P-Dip-M 98.7±0.8 99.5±0.2 70.8±0.9 99.5±0.2 70.8±0.9 99.5±0.2 70.8±0.9 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0 70.8±0.9 70.8±0.9 99.9±0.0 70.8±0.9 70.8±0.9 99.9±0.0 70.8±0.9 99.9±0.0 70.8±0.9 70.8±0.9 99.9±0.0 70.8±0.9 70.8±0.9 99.9±0.0 70.8±0.9 70.8±0		59.8 ± 0.4	27.0 ± 1.1	62.9 ± 0.7	99.0 ± 0.4	98.8 ± 0.0	77.6 ± 0.5
CluStream-G - X-Means 94.7±5.8 88.3±0.2 88.1±0.8 99.9±0.0 99.6±0.0 93.9±0.0 CluStream-W - P-Dip-M 99.5±0.2 99.5±0.2 93.5±0.0 99.9±	CluStream-W - X-Means	99.9 ± 0.0	89.2 ± 0.8	85.4 ± 0.3	$ 99.9\pm0.0 $	99.5 ± 0.0	93.9 ± 0.0
CluStream-W - P-Dip-M 98.7±0.8 0.0 98.5±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.5±0.2 78.8±1.9 81.3±0.8 79.7±0.5 98.5±0.1 99.2±0.0 99.9±0.0 9	CluStream-S - X-Means	99.9 ± 0.0	90.7 ± 0.1	84.8 ± 0.4	$ 99.9\pm0.0 $	99.6 ± 0.0	93.9 ± 0.0
CluStream-C - P-Dip-M 08.7±0.8 07.8±0.0 09.9±0.	CluStream-G - X-Means	94.7 ± 5.8	88.3 ± 0.2	88.1±0.8	$ 99.9\pm0.0 $	99.6 ± 0.0	93.9 ± 0.0
CluStream-W - P-Dip-M 98.7±0.8 - 99.5±0.2 99.9±0.0 99.9±	CluStream-C - P-Dip-M						
CluStream-G - P-Dip-M 78.8±1.9 81.3±0.8 79.7±0.5 98.5±0.1 99.2±0.0 92.9±0.2 02.9±0.2 02.9±0.2 02.9±0.2 02.0±0.2 02.9±0.						-	-
CluStream-G - P-Dip-M 78.8±1.9 81.3±0.8 79.7±0.5 98.5±0.1 99.2±0.0 92.9±0.0 58.6±0.6 CluStream-C - SC 61.7±0.2 57.4±2.8 85.7±0.4 98.7±0.0 80.3±0.2 57.8±0.3 CluStream-G - SC 61.6±0.9 50.9±2.9 85.8±0.4 98.7±0.0 80.3±0.2 58.8±0.3 CluStream-G - SCAR 59.2±2.6 30.2±0.8 66.2±1.5 78.2±1.2 77.5±0.7 77.5±0.1 77.			_			_	_
CluStream-C - SC			81 3+0 8			99 2+0 0	92 9+0 2
CluStream-S - SC							
CluStream-G - SC							
CluStream-C - SCAR 59.2±2.6 30.2±0.8 66.2±1.5 78.2±1.2 97.4±0.1 57.5±1.1 57.5±1.1 58.5±0.3 66.5±1.5 58.5±0.3 66.5±1.5 58.7±0.7 57.2±1.3 54.8±0.4 58.3±0.3 66.5±1.7 69.8±0.2 97.4±0.1 57.5±1.1							
CluStream-C - SCAR							
CluStream-W - SCAR 57.2±1.2 58.8±1.5 58.5±0.3 65.6±1.8 - 53.7±0.7 CluStream-G - SCAR 60.7±2.0 69.0±2.8 69.7±0.6 67.1±1.4 95.7±0.1 54.8±0.6 CluStream-G - SpectACl 46.6±0.2 59.3±2.0 52.8±2.1 74.9±2.3 98.5±0.0 57.4±0.8 CluStream-G - SpectACl 46.6±0.7 58.7±1.7 51.5±1.2 75.6±4.2 98.5±0.0 57.4±0.8 CluStream-G - SpectACl 44.2±1.0 58.3±2.0 47.5±1.4 75.9±2.5 98.5±0.0 57.4±0.8 CluStream-G - SpectACl 44.2±1.0 58.3±2.0 47.5±1.4 75.9±2.5 98.5±0.0 57.9±1.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 49.4±0.0 23.2±0.0 73.2±0.0 99.0±0.0 97.2±0.0 97.2±0.0 97.0±0.0 09.0±0.0 0							
CluStream-G - SCAR 57.2±1.3 54.8±0.4 58.3±0.3 66.5±1.7 89.8±0.2 52.7±0.4 60.7±2.0 69.0±2.8 69.7±0.6 67.1±1.4 95.7±0.0 54.8±0.6 CluStream-C - SpectACl 46.7±1.1 43.1±2.4 49.8±1.1 75.5±2.1 97.5±0.0 57.6±0.6 CluStream-S - SpectACl 46.6±0.2 59.3±2.0 52.8±2.1 74.9±2.3 98.5±0.0 57.4±0.8 CluStream-G - SpectACl 44.2±1.0 58.3±2.0 47.5±1.4 75.9±2.5 98.5±0.0 57.6±0.6 CluStream-C - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 88.5±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.4±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.4±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - HDBSCAN 49.4±0.0 23.2±0.0 73.2±0.0 99.0±0.0 97.2±0.0 97.2±0.0 07.8±0.0 07.2±						97.4±0.1	
CluStream-G - SCAR							
CluStream-U - SpectACl 46.7±1.1 43.1±2.4 49.8±1.1 75.5±2.1 97.5±0.0 57.6±0.6 CluStream-S - SpectACl 46.6±0.2 59.3±2.0 52.8±2.1 74.9±2.3 98.5±0.0 57.4±0.8 CluStream-G - SpectACl 44.2±1.0 58.3±2.0 47.5±1.4 75.9±2.5 98.5±0.0 57.9±1.0 CluStream-C - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.1±0.0 44.9±0.0 CluStream-S - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-C - HDBSCAN 29.9±0.0 30.4±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-C - HDBSCAN 49.4±0.0 23.2±0.0 73.2±0.0 99.0±0.0 97.2±0.0 91.6±0.0 CluStream-G - HDBSCAN 97.3±0.0 86.3±0.0 93.0±0.0 99.0±0.0 97.8±0.0 91.6±0.0 CluStream-G - RNN-DBS 38.8±0.0 21.2±0.0 85.8±0.0 90.2±0.0 97.8±0.0 91.6±0.0 CluStream-G - RNN-DBS 86.8±0.0 61.0±0.0 86.5±0.0 96.5±0.0 93.2±0.0 87.7±0.0 CluStream-G - RNN-DBS 84.6±3.9 49.9±2.8 65.7±0.7 98.5±0.4 94.1±0.0 88.8±0.0 CluStream-G - MDBSCAN 29.9±0.0 20.6±0.0 26.4±0.0 61.1±0.0 97.9±0.0 88.8±0.0 CluStream-G - MDBSCAN 29.9±0.0 21.3±0.1 26.4±0.0 61.1±0.0 97.9±0.0 44.7±0.0 CluStream-G - DPC 46.0±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.7±0.0 CluStream-G - DPC 46.0±0.0 28.8±0.0 39.6±0.0 97.9±0.0 44.7±0.0 CluStream-G - DPC 46.0±0.0 28.8±0.0 39.6±0.0 79.6±0.0 62.0±0.0 42.0±0.0 CluStream-G - SNN-DPC 53.4±0.0 25.9±0.0 33.4±0.0 97.9±0.0 44.7±0.0 CluStream-G - SNN-DPC 53.4±0.0 55.7±0.0 89.7±0.0 99.0±0.0 98.1±0.0 80.3±0.0 CluStream-G - SNN-DPC 58.5±0.0 46.1±0.0 60.7±0.0 99.0±0.0 98.1±0.0 64.4±0.7 60.0±0.0 60.							
CluStream-S - SpectACl 46.6±0.2 59.3±2.0 52.8±2.1 74.9±2.3 98.5±0.0 57.4±0.8	CluStream-G - SCAR	60.7 ± 2.0	69.0 ± 2.8	69.7 ± 0.6	$ 67.1\pm1.4 $	95.7 ± 0.1	54.8 ± 0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-C - SpectACl	46.7 ± 1.1	43.1 ± 2.4	49.8 ± 1.1	75.5 ± 2.1	97.5 ± 0.0	57.6 ± 0.6
CluStream-G - SpectACI 44.2±1.0 58.3±2.0 47.5±1.4 75.9±2.5 98.5±0.0 57.9±1.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.1±0.0 44.9±0.0 CluStream-S - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.4±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - HDBSCAN 49.4±0.0 23.2±0.0 73.2±0.0 99.0±0.0 97.2±0.0 97.8±0.0 91.0±0.0 CluStream-G - HDBSCAN 97.3±0.0 86.3±0.0 93.0±0.0 99.2±0.0 97.8±0.0 91.6±0.0 CluStream-G - HDBSCAN 75.6±10.0 85.8±0.3 81.9±0.3 96.9±0.7 97.8±0.0 91.6±0.0 CluStream-G - RNN-DBS 86.8±0.0 61.0±0.0 86.5±0.0 96.5±0.0 93.2±0.0 97.8±0.0 91.6±0.0 CluStream-G - MDBSCAN 29.9±0.0	CluStream-W - SpectACl	46.6 ± 0.2	59.3 ± 2.0	52.8 ± 2.1	74.9 ± 2.3	98.5 ± 0.0	57.4 ± 0.8
CluStream-G - SpectACI 44.2±1.0 58.3±2.0 47.5±1.4 75.9±2.5 98.5±0.0 57.9±1.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.1±0.0 44.9±0.0 CluStream-S - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.5±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - DBSCAN 29.9±0.0 30.4±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-G - HDBSCAN 49.4±0.0 23.2±0.0 73.2±0.0 99.0±0.0 97.2±0.0 97.8±0.0 91.0±0.0 CluStream-G - HDBSCAN 97.3±0.0 86.3±0.0 93.0±0.0 99.2±0.0 97.8±0.0 91.6±0.0 CluStream-G - HDBSCAN 75.6±10.0 85.8±0.3 81.9±0.3 96.9±0.7 97.8±0.0 91.6±0.0 CluStream-G - RNN-DBS 86.8±0.0 61.0±0.0 86.5±0.0 96.5±0.0 93.2±0.0 97.8±0.0 91.6±0.0 CluStream-G - MDBSCAN 29.9±0.0	CluStream-S - SpectACl	46.6 ± 0.7	58.7 ± 1.7	51.5 ± 1.2	75.6 ± 4.2	98.5 ± 0.0	58.6 ± 0.9
$ \begin{array}{c} \text{CluStream-C - DBSCAN} \\ \text{CluStream-W - DBSCAN} \\ \text{CluStream-S - DBSCAN} \\ \text{CluStream-S - DBSCAN} \\ \text{CluStream-G - DBSCAN} \\ \text{CluStream-G - DBSCAN} \\ \text{CluStream-G - DBSCAN} \\ \text{CluStream-C - HDBSCAN} \\ \text{CluStream-C - HDBSCAN} \\ \text{CluStream-C - HDBSCAN} \\ \text{CluStream-W - HDBSCAN} \\ \text{CluStream-W - HDBSCAN} \\ \text{CluStream-W - HDBSCAN} \\ \text{CluStream-G - RNN-DBS} \\ \text{CluStream-W - RNN-DBS} \\ \text{CluStream-W - RNN-DBS} \\ \text{CluStream-W - RNN-DBS} \\ \text{CluStream-W - RNN-DBS} \\ \text{CluStream-G - RNBSCAN} \\ \text{CluStream-G - MDBSCAN} \\ \text{CluStream-G - SNN-DPC} \\ CluStream-G - SN-D$	CluStream-G - SpectACl						
$ \begin{array}{c} {\rm CluStream-W-DBSCAN} \\ {\rm CluStream-S-DBSCAN} \\ {\rm CluStream-G-DBSCAN} \\ {\rm CluStream-G-DBSCAN} \\ {\rm CluStream-C-DBSCAN} \\ {\rm CluStream-W-DBSCAN} \\ {\rm CluStream-BC-DBSCAN} \\ {\rm CluStream-C-DBSCAN} \\ {\rm CluStream-C-DBSCAN} \\ {\rm CluStream-BC-DBSCAN} \\ {\rm CluStream-C-RNN-DBS} \\ {\rm CluStream-C-RNN-DBS} \\ {\rm CluStream-C-RNN-DBS} \\ {\rm CluStream-W-RNN-DBS} \\ {\rm CluStream-W-RN-DBS} \\ {\rm CluStream-G-RNN-DBS} \\ {\rm CluStream-G-RNN-DBS} \\ {\rm CluStream-G-RNN-DBS} \\ {\rm CluStream-C-RNN-DBS} \\ {$							
$ \begin{array}{c} {\rm CluStream-S-DBSCAN} \\ {\rm CluStream-G-DBSCAN} \\ {\rm CluStream-G-DBSCAN} \\ {\rm CluStream-C-HDBSCAN} \\ {\rm CluStream-W-HDBSCAN} \\ {\rm CluStream-W-HDBSCAN} \\ {\rm CluStream-S-HDBSCAN} \\ {\rm CluStream-S-RNN-DBS} \\ {\rm CluStream-W-RNN-DBS} \\ {\rm CluStream-W-RNN-DBS} \\ {\rm CluStream-S-RNN-DBS} \\ {\rm CluStream-W-MDBSCAN} \\ {\rm CluStream-S-MDBSCAN} \\ {\rm CluStream-G-RMBSCAN} \\ {\rm CluStream-G-RMBSCAN} \\ {\rm CluStream-G-RMBSCAN} \\ {\rm CluStream-W-MDBSCAN} \\ {\rm CluStream-W-MDBSCAN} \\ {\rm CluStream-W-MDBSCAN} \\ {\rm CluStream-W-NDBSCAN} \\ {\rm CluStream-W-NDBCAN} \\ {\rm CluStream-W-NDBC} \\ {\rm CluStream-W-NDBC} \\ {\rm CluStream-W-NDBC} \\ {\rm CluStream-W-SNN-DPC} \\ {\rm CluStream-W-DBHD} \\ {\rm 85.3\pm0.0} \\ {\rm 55.7\pm0.0} \\ {\rm 89.7\pm0.0} \\ {\rm 89.7\pm0.0} \\ {\rm 99.0\pm0.0} \\ {\rm 99.0\pm0.0} \\ {\rm 98.1\pm0.0} \\ {\rm 80.3\pm0.0} \\ {\rm 80.3\pm0.$							
CluStream-G - DBSCAN 29.9±0.0 30.4±0.0 26.4±0.0 61.1±0.0 98.4±0.0 44.9±0.0 CluStream-C - HDBSCAN 49.4±0.0 23.2±0.0 73.2±0.0 98.4±0.0 94.7±0.0 58.9±0.0 CluStream-W - HDBSCAN 96.4±0.0 86.3±0.0 92.6±0.0 99.0±0.0 97.2±0.0 91.0±0.0 CluStream-G - HDBSCAN 97.3±0.0 86.3±0.0 93.0±0.0 99.2±0.0 97.8±0.0 91.6±0.0 CluStream-G - RNN-DBS 38.8±0.0 21.2±0.0 35.9±0.0 90.2±0.0 91.6±0.0 48.6±0.0 CluStream-S - RNN-DBS 86.8±0.0 61.0±0.0 86.5±0.0 96.5±0.0 93.2±0.0 87.7±0.0 CluStream-G - RNN-DBS 84.6±3.9 49.9±2.8 85.7±0.7 98.5±0.4 94.1±0.0 88.5±0.0 CluStream-W - MDBSCAN 29.9±0.0 20.6±0.0 26.4±0.0 61.1±0.0 83.8±0.0 39.6±0.0 CluStream-G - MDBSCAN 29.9±0.0 21.3±0.1 26.4±0.0 61.1±0.0 98.4±0.0 44.7±0.0 CluStream-G - DPC 46.0±0.0 28.8±0.0 61.1±0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-G - DBSCAN						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		29.9 ± 0.0	20.6 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	83.8 ± 0.0	39.6 ± 0.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W - MDBSCAN					97.9 ± 0.0	44.7 ± 0.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-S - MDBSCAN	29.9 ± 0.0	21.1 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	98.4 ± 0.0	44.7 ± 0.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-G - MDBSCAN	29.9 ± 0.0	21.3 ± 0.1	26.4 ± 0.0	61.1 ± 0.0	98.4 ± 0.0	44.7 ± 0.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-C - DPC	46.0 ± 0.0	28.8 ± 0.0	61.1 ± 0.0	93.2 ± 0.0	70.9 ± 0.0	42.5 ± 0.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W - DPC						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-C - SNN-DPC						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W SNN DDC						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-S. SNN DDC					93.0±0.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
CluStream-S - DBHD 85.3 ± 0.0 55.7 ± 0.0 89.7 ± 0.0 99.0 ± 0.0 98.1 ± 0.0 80.3 ± 0.0							
CluStream-G - DBHD 97.7 ± 0.3 94.5 ± 0.4 94.8 ± 0.1 99.8 ± 0.1 98.8 ± 0.0 95.8 ± 0.3							
	CluStream-G - DBHD	97.7±0.3	94.5 ± 0.4	94.8 ± 0.1	99.8±0.1	98.8±0.0	95.8 \pm 0.3

Table 32: Homogeneity Scores for evaluated datasets for the default parameters $(\times 100)$. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
			Homogeneity			
STREAMKmeans	55.1±4.4	1.8 ± 0.7	59.6±3.2	13.7±15.3	0.0 ± 0.0	0.0 ± 0.0
DenStream	96.0±0.0	87.5±0.0	81.6±0.0	90.1±0.0	90.6 ± 0.0	46.8±0.0
DBSTREAM	0.0±0.0	$0.4{\pm}0.0$	0.0 ± 0.0	0.0±0.0	90.2 ± 0.0	9.0 ± 0.0
EMCStream	65.5±1.3	65.3 ± 1.5	57.2±3.0	27.3±19.1	58.5 ± 10.7	5.7 ± 0.6
MCMSTStream	12.6 ± 0.0	27.1 ± 0.0	78.8±0.0	97.3±0.0	56.4 ± 0.0	50.7±0.0
GB-FuzzyStream	13.0 ± 26.0	31.0 ± 0.9	47.6±0.4	-	-	16.2±0.9
CluStream-O - var. k	99.8±0.0	89.1±0.0	93.2±0.0	99.5±0.0	99.1 ±0.0	91.4±0.0
CluStream-O - fixed k	66.6±0.0	$\frac{55.1\pm0.0}{15.8\pm0.0}$	64.0±0.0	36.3±0.0	97.3±0.0	$\frac{36.8\pm0.0}{36.8\pm0.0}$
CluStream-O - k=100	99.8±0.0	89.1±0.0	93.2±0.0	99.5±0.0	99.1±0.0	91.4±0.0
CluStream - Wk-Means	68.1±0.9	62.1 ± 1.3	80.9 ± 0.2	93.3±0.4	97.3±0.0	$\frac{91.4 \pm 0.0}{48.8 \pm 0.8}$
CluStream-C - k-Means	68.2±1.8	27.9 ± 2.6	74.7±0.7	87.6±3.3	97.5±0.0	40.2 ± 1.9
CluStream-W - k-Means	68.1±0.9	62.1±1.3	80.9±0.2	93.3±0.4	97.3±0.0	48.8 ± 0.8
CluStream-S - k-Means	67.3±1.3	60.1±1.3	81.0±0.2	92.5±0.0	97.3±0.0	47.5 ± 0.6
CluStream-G - k-Means CluStream-C - SubKMeans	67.4±1.0	61.4±1.9	81.7±0.3	93.2±0.1	97.4±0.0	47.4 ± 0.9
	66.1±1.2	30.0±2.1	75.2±0.7	87.7±3.2	97.4±0.0	39.5 ± 1.6
CluStream-W - SubKMeans		62.9 ± 1.4	80.2±0.1	92.9±0.5	97.3±0.0	49.3 ± 0.8
CluStream-S - SubKMeans	66.8±1.0	62.0 ± 1.5	80.4±0.1	92.5±0.0	97.4±0.0	48.6 ± 0.7
CluStream-G - SubKMeans	67.2±1.1	62.8 ± 2.1	81.5±0.2	93.2±0.1	97.4±0.0	48.4 ± 0.7
CluStream-C - X-Means	55.8 ± 0.3	11.2±1.8	53.2±0.8	96.5±1.0	96.3±0.1	67.1 ± 0.5
CluStream-W - X-Means	99.8±0.0	88.0±0.6	79.1±0.3	99.5 ± 0.0	98.9±0.0	$\frac{91.4 \pm 0.0}{01.4 \pm 0.0}$
CluStream-S - X-Means	99.8±0.0	89.1 ± 0.1 85.4 ± 0.2	78.9 ± 0.4	99.5 ± 0.0	99.1±0.0	91.4 ± 0.0
CluStream-G - X-Means CluStream-C - P-Dip-M	93.7±6.8		82.2±0.8	99.6±0.2	99.1±0.0	91.4 ± 0.0
Clustream-C - P-Dip-M	0.0±0.0	0.0 ± 0.0	3.5 ± 0.0	24.9±0.0	93.0±0.1	21.3 ± 0.8
CluStream-W - P-Dip-M	98.5±0.8	-	89.6±0.1	$\frac{99.5}{20.5} \pm 0.0$	-	-
CluStream-S - P-Dip-M	99.4±0.2	-	90.0±0.2	99.5 ± 0.0	97.9±0.0	
CluStream-G - P-Dip-M	75.3 ± 2.6	77.1±0.7	70.9 ± 0.4	93.7±0.3		89.8±0.3
CluStream-C - SC	52.4±1.1	22.8 ± 2.7	63.4±0.7	86.8±0.0	97.2±0.0	36.7 ± 0.7
CluStream-W - SC	57.2±0.6	47.3±3.1	77.5 ± 0.4	92.5±0.0	55.7±0.4	35.4 ± 0.3
CluStream-S - SC	57.5±1.0	41.6±3.0	77.3±0.3	92.5 ± 0.0 93.3 ± 0.1	52.4 ± 0.5 52.4 ± 0.6	36.3 ± 0.3
CluStream-G - SC	55.7 ± 0.2	43.2±2.1	77.6 ± 0.2			36.3 ± 0.3
CluStream-C - SCAR CluStream-W - SCAR	51.2±1.9	11.2±1.4	55.9±1.6	31.8±2.3	90.6±0.1	32.6 ± 1.9
CluStream-W - SCAR CluStream-S - SCAR	40.4±1.8	53.8 ± 2.0 47.5 ± 1.2	40.7 ± 0.3	9.7 ± 2.3	73.0±0.3	28.4±0.6
CluStream-G - SCAR	$39.1\pm2.1 45.0\pm2.4$	65.9 ± 2.7	40.4 ± 0.4 54.9 ± 0.8	10.3 ± 1.4 10.6 ± 1.9	88.2±0.2	$26.8\pm0.5 \\ 29.8\pm0.9$
CluStream-C - SpectACl CluStream-W - SpectACl	$30.3\pm2.0 \\ 26.4\pm0.5$	35.5 ± 4.4 56.3 ± 1.5	30.9 ± 1.6 36.9 ± 2.3	23.1 ± 3.7 33.3 ± 3.6	92.3±0.1 96.1±0.0	$34.1\pm0.8 \\ 34.7\pm1.4$
CluStream-W - SpectACl	26.4 ± 0.5 26.3 ± 0.8	55.2 ± 0.6	36.9 ± 2.3 34.4 ± 1.5	34.3±6.9	96.1±0.0 96.3±0.0	34.7 ± 1.4 35.7 ± 0.8
Clastream-S - SpectACI	20.5 ± 0.8 23.5 ± 0.9		29.0 ± 1.7	33.8 ± 3.8	96.3±0.0	
CluStream-G - SpectACl CluStream-C - DBSCAN	23.5±0.9 0.0±0.0	54.6 ± 2.3 14.7 ± 0.0	$\frac{29.0\pm1.7}{0.0\pm0.0}$	0.0 ± 0.0	60.8±0.0	34.8 ± 1.1 14.6 ± 0.0
CluStream-W - DBSCAN	0.0 ± 0.0 0.0 ± 0.0	14.7 ± 0.0 14.7 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	93.0±0.0	17.2 ± 0.0
CluStream-S - DBSCAN	0.0 ± 0.0 0.0 ± 0.0	14.7 ± 0.0 14.7 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	94.2±0.0	17.2 ± 0.0 17.2 ± 0.0
CluStream-G - DBSCAN	0.0 ± 0.0 0.0 ± 0.0	14.7 ± 0.0 14.3 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	94.2±0.0 94.2±0.0	17.2 ± 0.0 17.2 ± 0.0
CluStream-C - HDBSCAN	37.1 ± 0.0	5.4 ± 0.0	67.2 ± 0.0	94.5±0.0	81.1±0.0	$\frac{17.2\pm0.0}{38.1\pm0.0}$
CluStream-W - HDBSCAN	95.1 ± 0.0	82.0±0.0	88.0±0.0	94.5±0.0 96.1±0.0	91.3±0.0	86.9 ± 0.0
CluStream-S - HDBSCAN	96.6±0.0	83.9±0.0	88.9±0.0	96.6±0.0	93.5±0.0	87.9±0.0
CluStream-G - HDBSCAN	70.2 ± 13.6	83.4 ± 0.2	77.1 ± 0.4	91.9 ± 1.1	93.4 ± 0.0	87.8±0.0
CluStream-G - HDBSCAN CluStream-C - RNN-DBS	19.9±0.0	0.7 ± 0.0	14.7 ± 0.4	74.7 ± 0.0	75.3±0.0	22.7 ± 0.0
CluStream-W - RNN-DBS	83.0±0.0	54.5 ± 0.0	81.0±0.0	89.2±0.0	78.2 ± 0.0	81.8±0.0
CluStream-S - RNN-DBS	84.4±0.0	70.9 ± 0.0	82.7 ± 0.0	90.6±0.0	79.5 ± 0.0	83.0 ± 0.0
CluStream-G - RNN-DBS	82.8±3.7	39.6 ± 3.5	56.5 ± 1.3	94.9 ± 1.1	81.1±0.1	83.7 ± 0.0
CluStream-C - MDBSCAN	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	56.8±0.0	8.3±0.0
CluStream-W - MDBSCAN	0.0 ± 0.0 0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	92.7 ± 0.0	16.6 ± 0.0
CluStream-S - MDBSCAN	0.0 ± 0.0 0.0 ± 0.0	0.6 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	94.5±0.0	16.6 ± 0.0
CluStream-S - MDBSCAN CluStream-G - MDBSCAN	0.0 ± 0.0 0.0 ± 0.0	0.8 ± 0.2	0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	94.5±0.0	16.6 ± 0.0
CluStream-C - DPC	24.3 ± 0.0	9.5 ± 0.0	51.8 ± 0.0	78.8±0.0	27.9±0.0	11.2 ± 0.0
CluStream-C - DPC CluStream-W - DPC	45.3 ± 0.0	19.4 ± 0.0	20.5 ± 0.0	45.6 ± 0.0	55.6 ± 0.0	24.9 ± 0.0
CluStream-S - DPC	44.7 ± 0.0	8.4±0.0	11.0 ± 0.0	45.6 ± 0.0	11.6±0.0	10.5 ± 0.0
CluStream-G - DPC	34.1 ± 2.0	0.0 ± 0.0	47.8 ± 1.2	20.4 ± 0.3	4.0 ± 0.0	8.8±0.1
CluStream-C - SNN-DPC	68.8±0.7	25.6 ± 0.4	66.4±0.0	34.0±0.0	93.2±0.0	46.0 ± 0.6
CluStream-W - SNN-DPC	46.3±0.0	39.1 ± 0.3	47.1 ± 0.0	53.9 ± 0.0	85.8±0.1	40.0 ± 0.0 40.0 ± 0.0
CluStream-S - SNN-DPC	48.1 ± 0.0	38.2±0.0	50.2±0.0	64.0±0.0	81.9±0.0	35.6 ± 0.0
CluStream-G - SNN-DPC	71.6 ± 0.7	26.1 ± 2.1	72.7 ± 0.7	51.1±8.7	96.7±0.0	46.1 ± 1.1
CluStream-G - SNN-DPC CluStream-C - DBHD	85.4±0.0	51.8 ± 0.0	85.2±0.0	95.7±0.0	94.3±0.0	70.6 ± 0.0
CluStream-W - DBHD	85.4±0.0	51.8 ± 0.0	85.2±0.0	95.7±0.0	94.3±0.0	70.6 ± 0.0
CluStream-S - DBHD	85.4±0.0	51.8 ± 0.0	85.2±0.0	95.7±0.0	94.3±0.0	70.6 ± 0.0
CluStream-G - DBHD	97.6±0.3	94.8 ± 0.4	93.3 ± 0.1	99.3±0.2	97.1±0.0	94.4 ± 0.2

Table 33: Completeness Scores for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Completeness	Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
DenStream					Completeness	Completeness	
DenStream	STREAMKmeans						
EMCStream	DenStream	39.8 ± 0.0		60.4±0.0	26.0 ± 0.0	55.0 ± 0.0	35.8±0.0
MCMSTStream	DBSTREAM	100.0±0.0	87.4±0.0	100.0±0.0	100.0±0.0	79.7±0.0	48.4±0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	EMCStream	70.9 ± 2.3	78.2 ± 3.2	82.5±0.4	52.5±8.1	66.7 ± 10.7	68.2±6.5
CluStream-O - var. k	MCMSTStream	30.2 ± 0.0	47.0 ± 0.0	70.9 ± 0.0	39.1 ± 0.0	60.8±0.0	35.3 ± 0.0
CluStream-O - k=100	GB-FuzzyStream	89.0±22.0	47.4 ± 0.9	51.9 ± 0.4	-	-	19.6 ± 1.1
CluStream-O - k=100	CluStream-O - var. k	42.3±0.0	62.3±0.0	39.6+0.0	16.8±0.0	43.5±0.0	35.3±0.0
CluStream - V. A. Means							
CluStream - W. A. Means	CluStream-O - k=100					43.5±0.0	
CluStream-C - k-Means 50.6±1.0 73.6±1.0 79.0±0.8 87.9±2.8 66.4±0.1 41.5±2.2 42.6±0.8 42.7±0.							
CluStream-W - k-Means 58.6±0.7 73.6±1.0 76.9±0.7 33.5±0.6 61.9±0.3 43.5±0.8							
CluStream-S - k-Means 58.7±1.2 73.2±1.2 77.8±0.6 92.3±0.0 62.4±0.2 42.6±0.8							
CluStream-G - k-Means 58.8±1.0 73.9±1.2 77.8±0.6 92.9±0.1 62.4±0.2 42.6±0.8							
CluStream-C - SubKMeans 58.5±1.3 72.2±1.8 75.6±0.8 92.9±0.8 62.6±0.2 43.2±0.6 14.0±0.5 14.0±0.5 14.0±0.5 15.0±0.5 14.0±	CluStream-C - k-Means						
CluStream-W - SubKMeans 58.6±1.3 72.2±1.8 75.6±0.8 92.9±0.8 62.1±0.2 44.1±0.5	CluStream-C - SubK Means						
CluStream-S - SubKMeans 58.6±1.0 72.6±1.3 76.4±0.8 92.3±0.0 62.6±0.2 43.3±0.6 CluStream-G - SubKMeans 58.8±1.0 73.9±1.2 77.2±0.7 72.2±0.7 92.9±0.1 62.6±0.2 43.3±0.6 CluStream-W - X-Means 42.5±0.0 63.8±0.2 72.5±0.8 29.4±0.0 43.8±0.0 35.4±0.0 CluStream-G - X-Means 50.1±4.6 65.0±0.4 73.2±1.0 27.1±0.3 44.9±0.0 35.3±0.0 CluStream-G - P.Dip-M 45.4±0.2 -4.3±0.0 43.2±0	CluStream-W - SubKMeans						
CluStream-G - SubKMeans	CluStream-S - SubKMeans						
CluStream-W - X-Means							
CluStream-G - X-Means 50.1±4.6 65.0±0.4 73.2±1.0 27.1±0.3 44.9±0.0 35.3±0.0	CluStream-C - X-Means	77.0 ± 0.3	68.8 ± 5.3	81.7±0.8	35.6 ± 1.3	60.3 ± 0.2	40.3 ± 0.3
Clustream-W - P-Dip-M	CluStream-W - X-Means						
Clustream-W - P-Dip-M	CluStream-S - X-Means						
Clustream-W - P-Dip-M	CluStream-G - X-Means						
Clustream-W - P-Dip-M	CluStream-C - P-Dip-M					69.5 ± 0.1	
CluStream-G - P-Dip-M	CluStream-W - P-Dip-M				18.2±0.1	-	-
CluStream-C - SC				42.8±0.0		505100	- 07 0 1 0 1
CluStream-W - SC							
CluStream-G - SC							
CluStream-G - SC		52.0±0.4 52.3±0.8	70.5±0.8			51.0±0.1 52.4±0.3	
CluStream-W - SCAR 53.6±1.5 66.6±0.9 44.7±0.2 23.0±3.1 - 36.7±0.8	CluStream-G - SC						
CluStream-W - SCAR 53.6±1.5 66.6±0.9 44.7±0.2 23.0±3.1 - 36.7±0.8	CluStream-C - SCAB	51.3±1.5					
CluStream-G - SCAR	CluStream-W - SCAR					-	
CluStream-G - SCAR						48.0 ± 0.2	
CluStream-C - SpectACl 32.0±2.2 59.7±2.4 38.1±0.7 26.4±4.5 60.8±0.1 33.5±0.4	CluStream_G - SCAB						
CluStream-C - DBSCAN	CluStream-C - SpectACl		59.7±2.4				
CluStream-C - DBSCAN	CluStream-W - SpectACl	36.0 ± 0.6			33.5 ± 3.2		31.5 ± 1.3
CluStream-C - DBSCAN	CluStream-S - SpectACl	36.0 ± 0.9		49.7 ± 0.4			
CluStream-C - DBSCAN	CluStream-G - SpectACl			46.7 ± 1.0			
CluStream-G - DBSCAN 100.0±0.0 93.7±0.4 100.0±0.0 100.0±0.0 71.3±0.0 50.9±0.0 100.0±0.0 71.4±0.0 51.1±0.0 100.0±0.0 71.4±0.0 51.1±0.0 100.0±0.0 71.4±0.0 71.4±0.0 51.1±0.0 100.0±0.0 71.4±0.0 71.4±0.0 51.1±0.0 100.0±0.0 71.4±0.0 71.4±0.0 51.1±0.0 100.0±0.0 74.9±0.0 49.8±0.0 17.8±0.0 49.8±0.0 17.8±0.0 52.8±0.0 36.8±0.0 36.8±0.0 17.1±0.0	CluStream-C - DBSCAN						
CluStream-G - DBSCAN 100.0±0.0 93.7±0.4 100.0±0.0 100.0±0.0 71.4±0.0 51.1±0.0							
CluStream-C + IDBSCAN							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Clustream-G - DBSCAN						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Clustream-C - HDBSCAN	80.9±0.0		86.0±0.0	82.5±0.0	74.9±0.0	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Clustroom S HDBSCAN						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-G - HDBSCAN						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							47.3±0.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40.6±0.0		40.2 ± 0.0	17.1 ± 0.0	45.4 ± 0.0	36.0 ± 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-G - RNN-DBS	57.7 ± 1.1	58.6 ± 1.7	71.1 ± 1.9	24.3 ± 0.9	46.2 ± 0.0	36.1 ± 0.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-C - MDBSCAN	100.0±0.0	100.0 ±0.0	100.0±0.0	100.0±0.0	74.2 ± 0.0	81.5 ± 0.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W - MDBSCAN						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-S - MDBSCAN						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W - DPC	57.5±0.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clustream-G - DPC					99.0±0.0	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Clustream W SNN DDC						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-S - SNN-DPC	71.1±0.0	78.7±0.1	72.9±0.0	69.7±0.0	64.3±0.1	51.7±0.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
CluStream-S - DBHD 64.8 ± 0.0 77.5 ± 0.0 67.8 ± 0.0 30.7 ± 0.0 63.7 ± 0.0 45.3 ± 0.0							
CluStream-G - DBHD 37.4 ± 0.1 49.6 ± 0.4 31.8 ± 0.1 14.5 ± 0.1 38.4 ± 0.0 28.7 ± 0.1	CluStream-S - DBHD		77.5 ± 0.0		30.7 ± 0.0		45.3 ± 0.0
	CluStream-G - DBHD		49.6 ± 0.4			38.4 ± 0.0	28.7 ± 0.1

Table 34: Average reported cluster number per evaluation batch for evaluated datasets for the default parameters ($\times 100$). The standard deviation across seeds is noted.

Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Cluster Number	Cluster Number	Cluster Number	Cluster Number	Cluster Number	Cluster Number
STREAMKmeans	6.5 ± 0.5	5.0 ± 1.2	6.7±0.5	1.3±0.2	1.0 ± 0.0	1.0 ± 0.0
DenStream	112.5±0.0	53.6 ± 0.0	25.2±0.0	17.5±0.0	16.1 ± 0.0	11.7±0.0
DBSTREAM	1.0 ± 0.0	1.4 ± 0.0	1.0±0.0	1.0±0.0	5.2 ± 0.0	2.5 ± 0.0
EMCStream	6.5 ± 0.3	7.5 ± 0.2	3.6±0.2	1.8±0.2	3.5 ± 0.4	1.9 ± 0.1
MCMSTStream	12.5 ± 0.0	10.6 ± 0.0	10.6±0.0	13.0±0.0	$8.4{\pm}0.0$	32.6 ± 0.0
GB-FuzzyStream	8.3 ± 14.5	7.2 ± 0.1	6.6±0.2	-	-	6.8 ± 0.5
CluStream-O - var. k	99.3±0.0	99.8±0.0	100.0±0.0	99.7±0.0	99.5 ± 0.0	99.3±0.0
CluStream-O - fixed k	9.0 ± 0.0	11.0±0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0±0.0
CluStream-O - k=100	99.3±0.0	99.8±0.0	100.0±0.0	99.7±0.0	99.5 ± 0.0	99.3±0.0
CluStream - Wk-Means	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.0	23.0±0.0	6.0±0.0
CluStream-C - k-Means	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.0	23.0±0.0	6.0±0.0
CluStream-W - k-Means	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.0	23.0±0.0	6.0±0.0
CluStream-S - k-Means	9.0 ± 0.0	11.0 ± 0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0 ± 0.0
CluStream-G - k-Means	9.0 ± 0.0	11.0 ± 0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0 ± 0.0
CluStream-C - SubKMeans	8.8±0.3	11.0 ± 0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0±0.0
CluStream-W - SubKMeans		11.0 ± 0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0 ± 0.0
CluStream-S - SubKMeans	9.0 ± 0.0	11.0 ± 0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0 ± 0.0
CluStream-G - SubKMeans	9.0 ± 0.0	11.0 ± 0.0	8.0±0.0	2.0 ± 0.0	23.0 ± 0.0	6.0±0.0
CluStream-C - X-Means	4.0 ± 0.0	2.0 ± 0.0	4.4±0.1	15.5±0.6	29.8 ± 0.3	20.9 ± 0.6
CluStream-W - X-Means	97.5±0.2	47.3±1.9	24.2±1.6	52.9±0.9	90.2±0.0	95.0±0.5
CluStream-S - X-Means	99.1 ± 0.3	74.0 ± 1.9	27.2±1.3	64.5±0.9	97.5 ± 0.0	97.5 ± 0.3
CluStream-G - X-Means	72.0±8.5	71.5±3.4	25.2±1.2	126.0±10.6	98.7±0.1	97.4±0.3
CluStream-C - P-Dip-M	1.0±0.0	1.0±0.0	1.1±0.0	1.2±0.0	13.6±0.1	3.9±0.1
CluStream-W - P-Dip-M	68.9±0.6	-	44.5±0.6	59.6±0.6	-	-
CluStream-S - P-Dip-M CluStream-G - P-Dip-M	70.3 ± 0.5 11.0 ± 1.5	24.6±1.7	49.5±0.4 4.3±0.0	63.5±1.5 11.9±0.6	48.2±0.1	62.0±0.5
CluStream-C - SC	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.0	23.0±0.0	6.0±0.0
CluStream-W - SC	9.0±0.0 9.0±0.0	11.0±0.0 11.0±0.0	7.8±0.0	2.0±0.0 2.0±0.0	23.0±0.0 23.0±0.0	6.0±0.0 6.0±0.0
CluStream-S - SC	9.0±0.0 9.0±0.0	11.0±0.0 11.0±0.0	7.9±0.0	2.0±0.0 2.0±0.0	23.0±0.0 23.0±0.0	6.0±0.0
CluStream-G - SC	9.0±0.0	11.0±0.0	7.9±0.0	2.0±0.0	23.0±0.0	6.0±0.0
CluStream-C - SCAR	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.0	22.9±0.0	6.0±0.0
CluStream-W - SCAR	9.0±0.0	10.9±0.1	8.0±0.0	2.0±0.0	22.5±0.0	6.0±0.0
CluStream-S - SCAR	8.7±0.0	11.0 ± 0.0	7.9±0.0	2.0±0.0	20.4 ± 0.1	6.0±0.0
CluStream-G - SCAR	9.0±0.0	11.0 ± 0.0	8.0±0.0	2.0±0.0	19.4 ± 0.2	6.0±0.0
CluStream-C - SpectACl	9.0 ± 0.0	11.0 ± 0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0±0.0
CluStream-W - SpectACl	9.0 ± 0.0	11.0 ± 0.0	8.0±0.0	2.0 ± 0.0	22.9 ± 0.0	6.0 ± 0.0
CluStream-S - SpectACl	9.0 ± 0.0	11.0 ± 0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0 ± 0.0
CluStream-G - SpectACl	9.0 ± 0.1	11.0 ± 0.0	7.9±0.0	2.0±0.0	23.0 ± 0.0	6.0 ± 0.0
CluStream-C - DBSCAN	1.0 ± 0.0	2.0 ± 0.0	1.0±0.0	1.0±0.0	4.7 ± 0.0	2.9 ± 0.0
CluStream-W - DBSCAN	1.0 ± 0.0	2.0 ± 0.0	1.0±0.0	1.0±0.0	10.1 ± 0.0	5.9 ± 0.0
CluStream-S - DBSCAN	1.0 ± 0.0	2.6 ± 0.0	1.0±0.0	1.0±0.0	14.1 ± 0.0	6.2±0.0
CluStream-G - DBSCAN	1.0 ± 0.0	2.8 ± 0.1	1.0±0.0	1.0±0.0	14.1 ± 0.0	6.1±0.0
CluStream-C - HDBSCAN	4.0±0.0	1.4±0.0	4.8±0.0	2.8±0.0	6.3±0.0	4.5±0.0
CluStream-W - HDBSCAN	72.9±0.0	17.0±0.0	42.6±0.0	55.4±0.0	20.3±0.0	46.7±0.0
CluStream-S - HDBSCAN CluStream-G - HDBSCAN	75.2 ± 0.0 32.6 ± 10.8	20.6±0.0 18.8±0.2	46.9±0.0 11.0±0.6	59.3±0.0	$31.1\pm0.0 \\ 30.9\pm0.0$	51.6 ± 0.0 51.4 ± 0.1
Clustream C DNN DBC	32.6±10.8 2.0±0.0	18.8±0.2 2.0±0.0	2.3±0.0	36.2±1.6 2.0±0.0	5.1±0.0	3.2±0.0
CluStream-C - RNN-DBS CluStream-W - RNN-DBS	69.5±0.0	2.0±0.0 11.2±0.0	38.0±0.0	50.4±0.0	5.1±0.0 16.6±0.0	3.2±0.0 42.1±0.0
CluStream-S - RNN-DBS	71.5 ± 0.0	18.2±0.0 18.2±0.0	41.8±0.0	53.9±0.0	26.9 ± 0.0	42.1±0.0 45.9±0.0
CluStream-G - RNN-DBS	23.2±1.6	10.4±0.7	8.8±0.3	24.7±1.2	25.6±0.0	45.2±0.1
CluStream-C - MDBSCAN	1.0±0.0	1.0±0.0	1.0±0.0	1.0±0.0	3.7±0.0	2.1±0.0
CluStream-W - MDBSCAN	1.0±0.0	1.0±0.0	1.0±0.0	1.0±0.0	9.1±0.0	5.2±0.0
CluStream-S - MDBSCAN	1.0±0.0	1.6±0.0	1.0±0.0	1.0±0.0	13.1±0.0	5.5±0.0
CluStream-G - MDBSCAN	1.0±0.0	1.8±0.1	1.0±0.0	1.0±0.0	13.1±0.0	5.3±0.0
CluStream-C - DPC	2.7±0.0	1.6±0.0	3.1±0.0	2.5±0.0	1.8±0.0	1.6±0.0
CluStream-W - DPC	5.4 ± 0.0	52.4 ± 0.0	2.8±0.0	1.8±0.0	7.3 ± 0.0	4.4 ± 0.0
CluStream-S - DPC	5.4 ± 0.0	19.8 ± 0.0	1.8±0.0	1.8±0.0	2.4 ± 0.0	2.8 ± 0.0
CluStream-G - DPC	5.4 ± 0.3	1.0 ± 0.0	2.7±0.0	2.0±0.0	1.1 ± 0.0	1.5 ± 0.0
CluStream-C - SNN-DPC	9.0 ± 0.0	11.0±0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0 ± 0.0
CluStream-W - SNN-DPC	4.0 ± 0.0	5.8 ± 0.0	4.0±0.0	2.0±0.0	10.4 ± 0.0	4.1 ± 0.0
CluStream-S - SNN-DPC	4.7 ± 0.0	5.0 ± 0.0	4.2±0.0	2.0±0.0	10.3 ± 0.0	3.9 ± 0.0
CluStream-G - SNN-DPC	9.0 ± 0.0	10.9 ± 0.1	8.0±0.0	2.0 ± 0.1	22.1 ± 0.0	6.0 ± 0.0
CluStream-C - DBHD	13.3 ± 0.0	14.2±0.0	13.1±0.0	12.0±0.0	16.4 ± 0.0	15.1±0.0
CluStream-W - DBHD	13.3±0.0	14.2±0.0	13.1±0.0	12.0±0.0	16.4±0.0	15.1±0.0
CluStream-S - DBHD	13.3±0.0	14.2±0.0	13.1±0.0	12.0±0.0	16.4±0.0	15.1±0.0
CluStream-G - DBHD	170.5 ± 2.3	108.7±1.5	166.0±0.8	134.8±2.7	83.0 ± 0.1	154.8±1.6

Table 35: ARI Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

narked as bold , and the	second-	best scor	es are <u>un</u>	<u>aerimea</u> .		
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	ARI	ARI	ARI	ARI	ARI	ARI
STREAMKmeans	36.5 ± 4.3	0.3 ± 0.2		13.3 ± 15.8	0.0 ± 0.0	0.0±0.0
DenStream	7.9 ± 0.0	32.4 ± 0.0	59.2 ± 0.0		77.6 ± 0.0	26.8 ± 0.0
DBSTREAM	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	$ 92.7\pm0.0 $	6.2 ± 0.0
EMCStream	48.9 ± 3.4	58.4 ± 4.4	53.6 ± 3.0	26.2 ± 19.6	57.2 ± 15.6	4.1 ± 0.8
MCMSTStream	1.0 ± 0.0	7.5 ± 0.0	70.0 ± 0.0	42.5 ± 0.0	58.9 ± 0.0	16.4 ± 0.0
GB-FuzzyStream	2.9 ± 5.7	13.3 ± 1.2	25.4 ± 0.5	12.020.0		4.6 ± 0.3
CluStream-O - var. k	9.5 ± 0.0	$ 49.7\pm0.0 $	19.0 ± 0.0	5.4 ± 0.0	68.1 ± 0.0	19.5 ± 0.0
CluStream-O - fixed k	36.4 ± 0.0	7.7 ± 0.0	57.2 ± 0.0	38.4 ± 0.0	83.9 ± 0.0	25.5 ± 0.0
CluStream-O - $k=100$	9.5 ± 0.0	49.7 ± 0.0	19.0 ± 0.0	5.4 ± 0.0	68.1±0.0	19.5±0.0
CluStream - Wk -Means	36.8 ± 1.0	50.2 ± 2.3	75.2 ± 0.8	95.7 ± 0.4	86.7 ± 0.4	32.0 ± 1.1
CluStream-C - k-Means	37.1 ± 2.3	14.4 ± 2.7	70.2 ± 1.0	90.9 ± 2.5	89.9 ± 0.0	24.7 ± 1.2
CluStream-W - k-Means	36.8 ± 1.0	50.2 ± 2.3	75.2 ± 0.8	95.7 ± 0.4	86.7±0.4	32.0 ± 1.1
CluStream-S - k -Means	35.4 ± 1.5	48.8 ± 1.8	76.3 ± 0.6	94.9 ± 0.0	86.9 ± 0.3	30.7 ± 0.7
CluStream-G - k-Means	36.1 ± 1.3	50.0 ± 2.8	76.8 ± 0.8	95.4 ± 0.0	87.0 ± 0.3	30.8 ± 0.8
CluStream-C - SubKMeans	35.7 ± 1.4	34.8 ± 2.9	70.6 ± 1.2	91.4 ± 2.2	89.8 ± 0.0	24.5 ± 1.9
CluStream-W - SubKMeans	35.4 ± 1.7	52.0 ± 3.5	$ 74.5\pm1.5 $	95.3 ± 0.5	86.6 ± 0.3	31.9 ± 0.5
CluStream-S - SubKMeans	35.5 ± 1.3	52.6 ± 2.7	75.4 ± 0.7	94.9 ± 0.0	87.0 ± 0.3	31.6 ± 0.6
CluStream-G - SubKMeans	36.1 ± 1.4	53.2 ± 3.5	76.1 ± 0.9	95.4±0.0	87.0±0.3	31.6 ± 0.6
CluStream-C - X-Means	46.0 ± 0.8	19.2 ± 8.4	73.5 ± 0.8	32.7 ± 0.7	86.1±0.1	28.1 ± 0.3
CluStream-W - X-Means	10.0 ± 0.2	50.2 ± 0.2	67.8 ± 1.2	21.2 ± 0.0	68.2 ± 0.0	19.5 ± 0.0
CluStream-S - X-Means	9.7 ± 0.0	50.0 ± 0.0	$ 68.7\pm0.6 $	$ 20.5\pm0.5 $	$ 68.2\pm0.0 $	19.5 ± 0.0
CluStream-G - X-Means	21.5 ± 4.4	51.9 ± 0.5	$ 73.4\pm1.2 $	19.3 ± 0.1	73.8 ± 0.1	19.5 ± 0.0
CluStream-C - P-Dip-M	0.0 ± 0.0	0.0 ± 0.0	3.3 ± 0.0	29.9 ± 10.0	89.3 ± 0.1	20.9 ± 0.7
CluStream-W - P-Dip-M	14.4 ± 0.2	-	25.4 ± 0.2	12.2 ± 2.7	-	_
CluStream-S - P-Dip-M	13.9 ± 0.1		24.9 ± 0.2	13.5 ± 0.1		
		-			99 91 0 0	00.710.0
CluStream-G - P-Dip-M	40.4 ± 1.1	50.9 ± 0.5	73.0 ± 0.6	40.9 ± 0.6	82.2 ± 0.0	22.7 ± 0.2
CluStream-C - SC	44.4 ± 0.6	44.2 ± 1.7	76.3 ± 0.0	94.9 ± 0.0	90.3 ± 0.0	29.9 ± 1.7
CluStream-W - SC	$ 48.5\pm2.4 $	50.3 ± 0.6	$ 73.5\pm0.5 $	94.9 ± 0.0	85.5 ± 0.1	42.3 ± 1.1
CluStream-S - SC	47.3 ± 0.2	53.6 ± 0.1	72.9 ± 0.5	94.9 ± 0.0	85.2 ± 0.1	44.5 ± 0.7
CluStream-G - SC	44.9 ± 3.4	52.0 ± 1.2	73.1 ± 0.3	95.4 ± 0.1	85.5 ± 0.1	37.0 ± 1.8
CluStream-C - SCAR	41.8 ± 1.2	44.9 ± 2.9	73.3 ± 0.2	83.5 ± 11.9	87.5 ± 0.2	31.5 ± 1.3
					81.3±0.2	
CluStream-W - SCAR	$ 41.9\pm2.1 $	53.8 ± 0.5	57.8 ± 0.2	51.3 ± 14.6	-	36.5 ± 0.6
CluStream-S - SCAR	$ 45.1\pm2.1 $	52.4 ± 0.7	$ 58.3\pm0.3 $	37.2 ± 13.9	71.0 ± 0.2	35.0 ± 1.9
CluStream-G - SCAR	$ 45.8\pm2.4 $	52.0 ± 1.3	$ 58.4\pm0.4 $	53.7 ± 9.2	74.8 ± 0.2	37.6 ± 0.5
CluStream-C - SpectACl	44.6 ± 1.6	54.3 ± 1.7	66.8 ± 1.3	84.7 ± 12.1	86.7 ± 0.1	29.9 ± 1.4
CluStream-W - SpectACl	49.8 ± 1.5	59.4 ± 1.0	28.6 ± 2.5	97.7 ± 0.0	90.7 ± 0.1	34.6 ± 0.9
CluStream-S - SpectACl	48.7 ± 4.3	57.3 ± 1.9	68.4 ± 0.7	97.7±0.0	90.3 ± 0.2	34.4 ± 0.8
CluStream-G - SpectACl	48.2±3.2	53.6 ± 2.0	20.3 ± 1.5	94.2 ± 6.3	90.5 ± 0.3	33.1 ± 1.7
CluStream-C - DBSCAN	46.3 ± 0.0	46.2 ± 0.0	63.5 ± 0.0	93.2 ± 0.0	91.2 ± 0.0	28.3 ± 0.0
CluStream-W - DBSCAN	$ 47.1\pm0.0 $	49.3 ± 0.0	$ 64.5\pm0.0 $	93.1 ± 0.0	91.4 ± 0.0	28.4 ± 0.0
CluStream-S - DBSCAN	$ 46.5\pm0.0 $	48.6 ± 0.0	$ 66.4\pm0.0 $	93.0 ± 0.0	91.5 ± 0.0	28.6 ± 0.0
CluStream-G - DBSCAN	44.5 ± 2.9	53.7 ± 0.9	73.6 ± 0.3	75.5 ± 4.8	91.5 ± 0.0	28.8 ± 0.1
CluStream-C - HDBSCAN	48.5 ± 0.0	46.6 ± 0.0	65.5 ± 0.0	98.2±0.0	84.4±0.0	33.9 ± 0.0
CluStream-W - HDBSCAN	47.9 ± 0.0	57.9±0.0	62.9 ± 0.0	98.2±0.0	88.4±0.0	35.0 ± 0.0
CluStream-S - HDBSCAN	48.0 ± 0.0	56.8 ± 0.0	62.4 ± 0.0	98.2 ± 0.0	89.4 ± 0.0	34.8 ± 0.0
CluStream-G - HDBSCAN						
	$ 47.7\pm3.4 $	56.8 ± 0.1	74.0 ± 0.4	89.1 ± 1.1	89.4 ± 0.0	35.5 ± 0.4
CluStream-C - RNN-DBS	34.9 ± 0.0	12.5 ± 0.0	63.2 ± 0.0	74.7 ± 0.0	86.2 ± 0.0	31.8 ± 0.0
CluStream-W - RNN-DBS	$ 40.8\pm0.0 $	50.1 ± 0.0	26.8 ± 0.0	53.5 ± 0.0	60.9 ± 0.0	30.4 ± 0.0
CluStream-S - RNN-DBS	40.8 ± 0.0	$ 49.7\pm0.0 $	19.6 ± 0.0	59.6 ± 0.0	61.3 ± 0.0	33.3 ± 0.0
CluStream-G - RNN-DBS	40.9 ± 1.6	28.8 ± 0.8	53.5 ± 2.0	40.3 ± 12.0	64.5 ± 0.1	30.7 ± 0.3
CluStream-C - MDBSCAN	47.1±0.0	52.3 ± 0.0	67.5±0.0	98.0±0.0	91.2 ± 0.0	29.6 ± 0.0
CluStream-W - MDBSCAN	49.4 ± 0.0	53.7 ± 0.0	63.2 ± 0.0	99.5 ± 0.0	90.4 ± 0.0	31.5 ± 0.0
CluStream-S - MDBSCAN	48.6 ± 0.0	53.5 ± 0.0		99.5 ± 0.0	91.8 ± 0.0	30.7 ± 0.0
CluStream-G - MDBSCAN	44.8 ± 2.9	49.2 ± 1.3	66.0 ± 0.6	93.9 ± 3.0	91.9 ± 0.0	27.9 ± 0.0
CluStream-C - DPC	$ 42.2\pm0.0 $	46.1 ± 0.0	$ 70.7\pm0.0 $	88.4 ± 0.0	88.8 ± 0.0	21.5 ± 0.0
CluStream-W - DPC	45.6 ± 0.0	58.9 ± 0.0	67.0 ± 0.0	74.0 ± 0.0	89.6 ± 0.0	29.3 ± 0.0
CluStream-S - DPC	47.3 ± 0.0	59.1 ± 0.0	67.2 ± 0.0	75.1 ± 0.0	89.6 ± 0.0	28.9 ± 0.0
CluStream-G - DPC	38.1±1.0	54.8 ± 0.3	76.4 ± 0.5	71.9 ± 11.1	82.3±0.2	29.1 ± 0.0
CluStream-C - SNN-DPC	45.6 ± 1.9		58.3 ± 0.0		82.7 ± 0.0	29.6 ± 0.5
CluStream-W - SNN-DPC		22.9 ± 0.0		31.9 ± 0.0		
	$ 47.8\pm0.0 $	34.6 ± 1.1	40.3 ± 0.0	87.1 ± 0.0	81.8±0.1	33.6 ± 0.0
CluStream-S - SNN-DPC	47.9 ± 0.0	32.6 ± 0.0	42.8 ± 0.0	81.7 ± 0.0	81.9 ± 0.0	28.5 ± 0.0
CluStream-G - SNN-DPC	43.5 ± 3.9	42.7 ± 2.1	69.1 ± 1.0	62.1 ± 9.4	90.1 ± 0.0	31.5 ± 1.5
CluStream-C - DBHD	52.9 ± 0.0	52.1 ± 0.0	71.4 ± 0.0	95.6 ± 0.0	88.2±0.0	43.7 ± 0.0
CluStream-W - DBHD	52.9 ± 0.0	52.1 ± 0.0	71.4 ± 0.0	95.6 ± 0.0	88.2±0.0	$\frac{13.7}{43.7}\pm0.0$
CluStream-S - DBHD	52.9 ± 0.0	52.1 ± 0.0 52.1 ± 0.0	71.4 ± 0.0	95.6 ± 0.0	88.2±0.0	$\frac{43.7}{43.7}$ ± 0.0
CluStream-G - DBHD					69 2 1 0 1	22 5 1 0 2
Clustream-G - DDnD	44.8 ± 1.8	49.8 ± 1.0	$ 77.8\pm0.3 $	31.7 ± 8.1	68.2 ± 0.1	33.5 ± 0.3

Table 36: AMI Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

narked as bold, and the						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	AMI	AMI	AMI	AMI	AMI	AMI
CORREANIZ						
STREAMKmeans	56.6 ± 4.4	2.3 ± 1.3	66.5±2.2	$ 14.4 \pm 15.4 $	0.0 ± 0.1	0.0 ± 0.0
DenStream	48.7 ± 0.0	63.4 ± 0.0	68.0 ± 0.0	39.9 ± 0.0	67.6 ± 0.0	39.4 ± 0.0
DBSTREAM					84.4±0.0	
	0.0 ± 0.0	0.7 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		11.7 ± 0.0
EMCStream	$ 67.4\pm0.7 $	$ 70.5\pm2.2 $	$ 66.3\pm2.3 $	$ 27.1\pm18.7 $	$ 60.4\pm 9.7 $	6.6 ± 1.0
MCMSTStream	14.5 ± 0.0	32.5 ± 0.0	74.0 ± 0.0	54.1±0.0	55.8 ± 0.0	38.4 ± 0.0
				04.110.0	00.0±0.0	
GB-FuzzyStream	9.9 ± 19.7	$ 36.2\pm1.0 $	$ 49.0\pm0.4 $	-	-	16.7 ± 0.9
CluStream-O - var. k	53.0 ± 0.0	69.8±0.0	$ 51.4\pm0.0 $	26.8±0.0	57.2±0.0	46.8 ± 0.0
CluStream-O - fixed k	$ 62.1\pm0.0 $	$ 21.4\pm0.0 $	$ 68.0\pm0.0 $	$ 40.6\pm0.0 $	$ 77.2\pm0.0 $	37.8 ± 0.0
CluStream-O - $k=100$	53.0 ± 0.0	69.8 ± 0.0	51.4 ± 0.0	26.8 ± 0.0	57.2 ± 0.0	46.8 ± 0.0
CluStream - Wk-Means	62.8 ± 0.8	66.4 ± 1.1	78.4 ± 0.4	93.4 ± 0.5	74.9 ± 0.2	45.2 ± 0.6
CluStream-C - k-Means	CO 0 1 7	27 0 0 0	700107	077191	70 2 1 0 0	20 4 2 0
	62.8 ± 1.7	37.2 ± 2.9	76.2 ± 0.7	87.7±3.1	78.3 ± 0.0	39.4 ± 2.0
CluStream-W - k-Means	62.8 ± 0.8	66.4 ± 1.1	78.4 ± 0.4	93.4 ± 0.5	74.9 ± 0.2	45.2 ± 0.6
CluStream-S - k-Means	61.8 ± 1.3	65.0 ± 1.0	78.9 ± 0.3	92.4 ± 0.0	75.3 ± 0.2	44.1 ± 0.5
CluStream-G - k -Means	62.0 ± 1.0	66.0 ± 1.5	79.2 ± 0.4	93.1 ± 0.1	75.3 ± 0.2	44.0 ± 0.7
CluStream-C - SubKMeans	61.3 ± 1.0	53.9 ± 1.8	76.1 ± 0.7	88.1 ± 2.8	78.3 ± 0.0	39.1 ± 1.5
CluStream-W - SubKMeans	61.5 ± 1.3	69.1 ± 1.8	78.2 ± 0.6	92.9 ± 0.6	75.0 ± 0.2	45.6 ± 0.6
CluStream-S - SubKMeans	61.6 ± 1.0	69.2 ± 1.5	78.5 ± 0.3	92.4 ± 0.0	$ 75.4\pm0.2 $	45.3 ± 0.5
CluStream-G - SubKMeans	61.9 ± 1.0	69.0 ± 1.8	78.8 ± 0.5	93.0 ± 0.1	75.4 ± 0.2	45.2 ± 0.4
CluStream-C - X-Means	64.4 ± 0.3	41.1 ± 7.8	78.1±0.3	51.2 ± 0.9	75.3 ± 0.1	48.5 ± 0.3
CluStream-W - X-Means	53.4 ± 0.2	72.9 ± 0.3	74.5 ± 0.6	$ 41.5\pm0.0 $	$ 57.9\pm0.0 $	47.1 ± 0.0
CluStream-S - X-Means	53.1 ± 0.1	71.8 ± 0.1	74.7 ± 0.4	40.5 ± 0.9	57.3 ± 0.0	46.9 ± 0.0
CluStream-G - X-Means	60.9 ± 1.0	71.5 ± 0.3	77.2 ± 0.6	36.8 ± 0.6	58.7±0.0	46.9 ± 0.0
Clabiteani-G - A-Means						
CluStream-C - P-Dip-M	0.0 ± 0.0	0.0 ± 0.0	5.0 ± 0.0	$ 29.9\pm10.0 $	$ 79.3\pm0.1 $	33.0 ± 0.6
CluStream-W - P-Dip-M	58.5 ± 0.2	-	56.7 ± 0.0	33.5 ± 1.4	-	-
CluStream-S - P-Dip-M	58.2 ± 0.1		56.3 ± 0.1	34.1 ± 0.2		_
		70 0 10 4			-	-
CluStream-G - P-Dip-M	66.0 ± 0.9	70.2 ± 0.4	78.4 ± 0.3	$ 54.8\pm0.3 $	68.6 ± 0.0	50.7 ± 0.2
CluStream-C - SC	64.6 ± 0.6	61.6 ± 1.0	79.6 ± 0.0	92.4 ± 0.0	79.7 ± 0.0	45.0 ± 0.5
CluStream-W - SC	73.6 ± 1.6	68.7 ± 0.3	77.1±0.4	92.4 ± 0.0	75.1 ± 0.1	56.8 ± 0.8
CluStream-S - SC	72.5 ± 0.3	70.7 ± 0.1	76.7 ± 0.3	92.4 ± 0.0	$ 73.7\pm0.1 $	$ 58.2 \pm 0.5 $
CluStream-G - SC	71.8 ± 2.3	70.2 ± 0.7	76.8 ± 0.2	93.2 ± 0.2	74.0 ± 0.1	50.9 ± 1.1
CluStream-C - SCAR	66.4 ± 0.5	61.7 ± 1.5	77.1 ± 0.1	80.8 ± 11.3	79.1 ± 0.1	46.1 ± 1.0
					10.110.1	
CluStream-W - SCAR	66.0 ± 1.4	$ 69.8\pm0.5 $	69.1 ± 0.1	$ 54.6\pm13.0 $	-	48.7 ± 0.4
CluStream-S - SCAR	69.7 ± 1.4	69.5 ± 0.3	69.2 ± 0.1	39.8 ± 12.7	$ 65.5\pm0.3 $	48.5 ± 1.6
CluStream-G - SCAR	71.2 ± 1.7	69.6 ± 0.7	69.5 ± 0.1	54.2 ± 8.0	65.2 ± 0.1	49.8 ± 0.3
CluStream-C - SpectACl	69.1 ± 0.7	73.3 ± 0.8	76.3 ± 0.7	84.4±11.9	72.4 ± 0.1	43.3 ± 1.2
CluStream-W - SpectACl	71.6 ± 0.8	75.7 ± 0.4	41.7 ± 1.9	96.4 ± 0.0	80.7 ± 0.1	46.8 ± 1.0
CluStream-S - SpectACl	71.1 ± 2.9	74.5 ± 1.0	76.9 ± 0.2	96.4 ± 0.0	81.7 ± 0.1	47.1 ± 0.7
CluStream-G - SpectACl	70.8 ± 2.2	73.2 ± 1.0	34.1 ± 1.6	93.3 ± 5.1	81.9 ± 0.2	45.7 ± 1.4
CluStream-C - DBSCAN	72.8 ± 0.0	66.1±0.0	76.0 ± 0.0	93.8 ± 0.0	79.5 ± 0.0	49.7 ± 0.0
CluStream-W - DBSCAN	71.3 ± 0.0	73.6 ± 0.0	77.3 ± 0.0	$ 93.4\pm0.0 $	$ 83.6\pm0.0 $	49.9 ± 0.0
CluStream-S - DBSCAN	73.1 ± 0.0	72.8 ± 0.0	78.4 ± 0.0	93.2 ± 0.0	$ 83.8\pm0.0 $	50.0 ± 0.0
CluStream-G - DBSCAN	71.2 ± 2.6	75.6 ± 0.5	81.5 ± 0.2	75.9 ± 4.0	83.8 ± 0.0	50.2 ± 0.1
CluStream-C - HDBSCAN	72.3 ± 0.0	67.5 ± 0.0	76.6 ± 0.0	96.9 ± 0.0	77.0 ± 0.0	53.1 ± 0.0
CluStream-W - HDBSCAN	71.7 ± 0.0	77.4 ± 0.0	75.3 ± 0.0	96.9 ± 0.0	81.6 ± 0.0	55.9 ± 0.0
CluStream-S - HDBSCAN	71.9 ± 0.0	77.1 ± 0.0	72.3 ± 0.0	96.9 ± 0.0	81.4 ± 0.0	57.0 ± 0.0
CluStream-G - HDBSCAN	70.6 ± 2.5	77.0 ± 0.2	80.2 ± 0.3	89.8 ± 1.1	81.4 ± 0.0	53.4 ± 0.2
CluStream-C - RNN-DBS	67.0 ± 0.0	23.8 ± 0.0	71.4 ± 0.0	74.7 ± 0.0	76.7 ± 0.0	49.0 ± 0.0
CluStream-W - RNN-DBS	66.4 ± 0.0	71.8 ± 0.0	51.4 ± 0.0	$ 62.2\pm0.0 $	$ 61.1\pm0.0 $	51.3 ± 0.0
CluStream-S - RNN-DBS	65.4 ± 0.0	71.1 ± 0.0	51.9 ± 0.0	$ 67.4\pm0.0 $	$ 61.6\pm0.0 $	52.4 ± 0.0
CluStream-G - RNN-DBS	68.0 ± 2.1	47.0 ± 3.4	63.9 ± 1.1	49.9 ± 11.2	63.7 ± 0.0	53.0 ± 0.1
CluStream-C - MDBSCAN	71.3 ± 0.0	70.4 ± 0.0	74.9 ± 0.0	96.2 ± 0.0	81.0±0.0	51.9 ± 0.0
CluStream-W - MDBSCAN	75.8 ± 0.0	70.6 ± 0.0	73.4 ± 0.0	$ 99.0\pm0.0 $	84.1 ± 0.0	52.5 ± 0.0
CluStream-S - MDBSCAN	74.6 ± 0.0	70.5 ± 0.0	73.8 ± 0.0	99.0 ± 0.0	85.2 ± 0.0	52.3 ± 0.0
CluStream-G - MDBSCAN	72.3 ± 2.4	68.6 ± 0.4	75.3 ± 0.4	93.1 ± 1.6	85.3 ± 0.0	52.2 ± 0.0
CluStream-C - DPC	70.0 ± 0.0	67.6 ± 0.0	76.9 ± 0.0	88.5 ± 0.0	84.2 ± 0.0	37.9 ± 0.0
CluStream-W - DPC	65.3 ± 0.0	70.8 ± 0.0	74.2 ± 0.0	$ 77.6\pm0.0 $	$ 75.8\pm0.0 $	51.0 ± 0.0
CluStream-S - DPC	65.7 ± 0.0	71.9 ± 0.0	74.6 ± 0.0	78.1 ± 0.0	75.9 ± 0.0	51.4 ± 0.0
CluStream-G - DPC	70.2 ± 0.9	70.7 ± 0.1	79.4 ± 0.2	73.8 ± 10.4	76.3 ± 0.2	51.6 ± 0.0
Olasticani-G - Di C						
CluStream-C - SNN-DPC	66.8 ± 0.1	45.0 ± 0.1	69.2 ± 0.0	35.7 ± 0.0	$ 71.0\pm0.0 $	47.0 ± 0.5
CluStream-W - SNN-DPC	64.7 ± 0.0	58.6 ± 0.7	55.2 ± 0.0	87.0 ± 0.0	72.8 ± 0.1	45.8 ± 0.0
CluStream-S - SNN-DPC	67.7±0.0	55.7 ± 0.0	58.0 ± 0.0	82.7±0.0	71.2 ± 0.0	40.0 ± 0.0
CluStream-G - SNN-DPC	69.4 ± 2.3	63.1 ± 1.2	76.7 ± 0.5	65.7 ± 7.7	78.6 ± 0.0	47.3 ± 1.3
CluStream-C - DBHD	76.6 \pm 0.0	75.0 ± 0.0	77.6 ± 0.0	93.2 ± 0.0	75.4 ± 0.0	58.1 ± 0.0
CluStream-W - DBHD	76.6 \pm 0.0	75.0 ± 0.0	77.6 ± 0.0	93.2 ± 0.0	75.4 ± 0.0	58.1 ± 0.0
CluStream-S - DBHD	76.6 ± 0.0	75.0 ± 0.0	77.6 ± 0.0	93.2 ± 0.0	75.4 ± 0.0	$\frac{50.1}{58.1} \pm 0.0$
CluStream-G - DBHD	73.0 ± 0.4	72.4 ± 0.8	81.7 ± 0.3	47.5 ± 7.7	64.6 ± 0.1	55.3 ± 0.2

Table 37: NMI Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

narked as bold , and the	e secona-i	Jest score	s are und	aernneu.		
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	NMI	NMI	NMI	NMI	NMI	NMI
STREAMKmeans	57.3±4.3	$3.4{\pm}1.3$	66.8 ± 2.2	14.4 ± 15.4	0.0 ± 0.1	0.0 ± 0.0
DenStream	56.2 ± 0.0	66.7 ± 0.0	68.9 ± 0.0	40.3 ± 0.0	68.4 ± 0.0	40.1 ± 0.0
DBSTREAM	0.0 ± 0.0	0.8 ± 0.0	$ 0.0\pm0.0 $	0.0 ± 0.0	84.6 ± 0.0	12.0 ± 0.0
EMCStream	67.8 ± 0.7	71.0 ± 2.2	66.4 ± 2.3	27.1 ± 18.7	60.7 ± 9.6	6.7 ± 1.0
MCMSTStream	17.2 ± 0.0	34.2 ± 0.0	74.4 ± 0.0	54.4 ± 0.0	56.4 ± 0.0	41.0±0.0
GB-FuzzyStream	10.6 ± 21.2	37.4 ± 1.0	49.4±0.4	01112010	-	17.4 ± 0.9
CluStream-O - var. k	59.4 ± 0.0	$ 73.2\pm0.0 $	$ 55.4\pm0.0 $	28.8 ± 0.0	$ 60.4\pm0.0 $	$ 50.7\pm0.0$
CluStream-O - fixed k	62.9 ± 0.0	24.0 ± 0.0	68.4 ± 0.0	40.7 ± 0.0	77.9 ± 0.0	38.3 ± 0.0
CluStream-O - k=100	59.4 ± 0.0	73.2 ± 0.0	55.4 ± 0.0	28.8 ± 0.0	60.4 ± 0.0	50.7±0.0
CluStream - Wk -Means	63.6 ± 0.8	67.2 ± 1.0	$ 78.6\pm0.4 $	93.4 ± 0.5	75.7 ± 0.2	45.6 ± 0.6
CluStream-C - k-Means	63.7 ± 1.7	39.3 ± 2.8	76.5 ± 0.7	87.7 ± 3.1	79.0 ± 0.0	39.9 ± 1.9
CluStream-W - k-Means	63.6 ± 0.8	67.2 ± 1.0	78.6 ± 0.4	93.4 ± 0.5	75.7 ± 0.2	45.6 ± 0.6
CluStream-S - k -Means				92.4 ± 0.0	76.0 ± 0.2	
	62.7 ± 1.2	65.9 ± 0.9	79.2 ± 0.3			44.5 ± 0.5
CluStream-G - k-Means	62.8 ± 1.0	66.9 ± 1.5	79.4 ± 0.4	93.1 ± 0.1	76.0 ± 0.2	44.4 ± 0.7
CluStream-C - SubKMeans	62.1 ± 1.0	55.2 ± 1.8	$ 76.3\pm0.7 $	88.2 ± 2.8	79.0 ± 0.0	39.6 ± 1.5
CluStream-W - SubKMeans	62.3 ± 1.3	69.9 ± 1.7	78.4 ± 0.6	92.9 ± 0.6	75.8 ± 0.2	46.0 ± 0.6
CluStream-S - SubKMeans	62.4 ± 1.0	70.0 ± 1.4	78.8 ± 0.3	92.4 ± 0.0	76.2 ± 0.2	45.7 ± 0.5
CluStream-G - SubKMeans	62.8 ± 1.0	69.8 ± 1.7	79.0 ± 0.5	93.1±0.1	76.2 ± 0.2	45.7±0.4
CluStream-C - X-Means	64.7 ± 0.3	43.4 ± 7.5	78.5 ± 0.3	51.4 ± 0.9	76.1 ± 0.1	49.5 ± 0.3
CluStream-W - X-Means	59.7 ± 0.1	74.8 ± 0.3	75.1 ± 0.5	42.6 ± 0.0	60.8 ± 0.0	50.8 ± 0.0
CluStream-S - X-Means	59.5 ± 0.0	74.2 ± 0.1	$ 75.3\pm0.4 $	$ 41.7\pm0.7 $	60.5 ± 0.0	$ 50.7\pm0.0$
CluStream-G - X-Means	64.4 ± 0.6	73.9 ± 0.3	77.9 ± 0.6	39.3 ± 0.4	61.9 ± 0.0	50.7 ± 0.0
CluStream-C - P-Dip-M	0.0 ± 0.0	0.0 ± 0.0	5.0 ± 0.0	29.9 ± 10.0	79.7 ± 0.1	33.5 ± 0.6
CluStream-W - P-Dip-M	62.8 ± 0.2	-	58.5±0.0	34.4 ± 1.4	-	-
CluStream-S - P-Dip-M	62.6 ± 0.1		58.1 ± 0.1	35.0 ± 0.2		
		71 5 1 0 4			70.010.0	-
CluStream-G - P-Dip-M	66.8 ± 0.9	71.5 ± 0.4	78.5 ± 0.3	55.0 ± 0.3	70.0 ± 0.0	53.0 ± 0.2
CluStream-C - SC	65.5 ± 0.6	62.6 ± 1.0	79.8 ± 0.0	92.4 ± 0.0	80.4 ± 0.0	45.5 ± 0.5
CluStream-W - SC	74.3 ± 1.5	69.4 ± 0.3	77.3 ± 0.4	92.4 ± 0.0	75.8 ± 0.1	57.1 ± 0.8
CluStream-S - SC	73.2 ± 0.2	71.4 ± 0.1	76.9 ± 0.3	92.4 ± 0.0	74.5 ± 0.1	58.5 ± 0.5
CluStream-G - SC	72.4 ± 2.3	70.9 ± 0.7	77.0 ± 0.2	93.2 ± 0.2	74.8 ± 0.1	51.2 ± 1.1
CluStream-C - SCAR	67.1 ± 0.5	62.8 ± 1.5	77.3 ± 0.1	80.8 ± 11.3	79.7 ± 0.1	46.5 ± 1.0
					19.1±0.1	
CluStream-W - SCAR	66.8 ± 1.4	70.5 ± 0.4	69.4 ± 0.1	54.6 ± 13.0	-	49.1 ± 0.4
CluStream-S - SCAR	70.4 ± 1.4	70.3 ± 0.3	$ 69.5\pm0.1 $	$ 39.9\pm12.7 $	66.3 ± 0.2	48.8 ± 1.6
CluStream-G - SCAR	71.9 ± 1.7	70.4 ± 0.7	$ 69.7\pm0.1 $	54.3 ± 8.0	66.2 ± 0.1	50.1 ± 0.3
CluStream-C - SpectACl	69.7 ± 0.7	73.9 ± 0.8	76.6 ± 0.7	84.4 ± 11.9	73.3 ± 0.1	43.7 ± 1.2
CluStream-W - SpectACl	72.2 ± 0.8	76.3 ± 0.3	42.4 ± 1.9	96.4 ± 0.0	81.3 ± 0.1	47.1 ± 1.0
CluStream-S - SpectACl	71.7 ± 2.9	75.1 ± 0.9	77.1 ± 0.2	96.4 ± 0.0	82.3 ± 0.1	47.5 ± 0.7
CluStream-G - SpectACl	71.4 ± 2.2	73.9 ± 1.0	34.9 ± 1.5	93.3 ± 5.1	82.4 ± 0.2	46.1 ± 1.4
CluStream-C - DBSCAN	73.6 ± 0.0	69.7 ± 0.0	$ 76.1\pm0.0 $	93.8 ± 0.0	80.4 ± 0.0	51.7 ± 0.0
CluStream-W - DBSCAN	72.0 ± 0.0	74.3 ± 0.0	$ 77.4\pm0.0 $	93.4 ± 0.0	83.8 ± 0.0	51.2 ± 0.0
CluStream-S - DBSCAN	73.9 ± 0.0	73.6 ± 0.0	78.5 ± 0.0	93.3 ± 0.0	84.0 ± 0.0	51.2 ± 0.0
CluStream-G - DBSCAN	72.1 ± 2.5	76.4 ± 0.4	81.6 ± 0.2	75.9 ± 4.0	84.1 ± 0.0	51.4 ± 0.1
CluStream-C - HDBSCAN	73.0 ± 0.0	68.6 ± 0.0	76.7 ± 0.0	96.9 ± 0.0	77.3 ± 0.0	54.3 ± 0.0
CluStream-W - HDBSCAN	72.3 ± 0.0	78.1 ± 0.0	75.4 ± 0.0	96.9 ± 0.0	81.8 ± 0.0	56.4 ± 0.0
CluStream-S - HDBSCAN	72.6 ± 0.0	$\frac{77.8 \pm 0.0}{77.8 \pm 0.0}$	72.5 ± 0.0	96.9 ± 0.0	81.7 ± 0.0	57.5 ± 0.0
CluStream-G - HDBSCAN	71.1 ± 2.5	77.8 ± 0.2	80.3 ± 0.3	89.8 ± 1.1	81.7 ± 0.0	53.9 ± 0.2
CluStream-C - RNN-DBS	68.3 ± 0.0	25.0 ± 0.0	$ 71.9\pm0.0 $	74.7 ± 0.0	77.1 ± 0.0	49.9 ± 0.0
CluStream-W - RNN-DBS	67.4 ± 0.0	73.2 ± 0.0	52.1 ± 0.0	62.2 ± 0.0	61.6 ± 0.0	51.9 ± 0.0
CluStream-S - RNN-DBS	66.4 ± 0.0	72.9 ± 0.0	53.9 ± 0.0	67.5 ± 0.0	62.1 ± 0.0	52.9 ± 0.0
CluStream-G - RNN-DBS	69.2 ± 2.1	47.5 ± 3.4	64.8 ± 1.1	50.1 ± 11.2	64.2 ± 0.0	53.8 ± 0.1
				96.2 ± 0.0	81.4 ± 0.0	
CluStream-C - MDBSCAN	72.0 ± 0.0	73.6 ± 0.0	75.1 ± 0.0			54.3 ± 0.0
CluStream-W - MDBSCAN	76.5 ± 0.0	73.8 ± 0.0	73.5 ± 0.0	99.0 ± 0.0	84.3 ± 0.0	53.1 ± 0.0
CluStream-S - MDBSCAN	75.3 ± 0.0	73.7 ± 0.0	73.9 ± 0.0	$ 99.0\pm0.0 $	85.4 ± 0.0	52.9 ± 0.0
CluStream-G - MDBSCAN	73.2 ± 2.4	69.8 ± 0.3	75.4 ± 0.4	93.1 ± 1.6	85.5 ± 0.0	53.1 ± 0.0
CluStream-C - DPC	70.9 ± 0.0	69.2 ± 0.0	77.2 ± 0.0	88.5±0.0	84.4 ± 0.0	39.1 ± 0.0
CluStream-W - DPC	65.8 ± 0.0	73.9 ± 0.0	74.8 ± 0.0	77.7±0.0	77.0 ± 0.0	52.6 ± 0.0
CluStream-S - DPC	66.2 ± 0.0	74.9 ± 0.0	75.0 ± 0.0	78.1 ± 0.0	77.0 ± 0.0	53.5 ± 0.0
CluStream-G - DPC	71.3 ± 0.9	72.6 ± 0.1	79.9 ± 0.2	73.9 ± 10.4	76.6 ± 0.2	53.3 ± 0.0
CluStream-C - SNN-DPC	67.6 ± 0.1	46.5 ± 0.1	69.5 ± 0.0	35.8 ± 0.0	71.9 ± 0.0	47.4 ± 0.5
	CE 1 LOO	59.0 ± 0.7	55.4 ± 0.0	87.0 ± 0.0	73.3 ± 0.1	46.1 ± 0.0
CluStream-W - SNN-DPC	65.1 ± 0.0				F1 0 1 0 0	10 0 1 0 0
CluStream-W - SNN-DPC		56.3 ± 0.0	58.2 ± 0.0	82.7 ± 0.0	71.9 ± 0.0	40.2±0.0
CluStream-W - SNN-DPC CluStream-S - SNN-DPC	68.1 ± 0.0	56.3 ± 0.0	58.2 ± 0.0	82.7 ± 0.0	71.9 ± 0.0 79.2 ± 0.0	40.2 ± 0.0 47.7 ± 1.2
CluStream-W - SNN-DPC CluStream-S - SNN-DPC CluStream-G - SNN-DPC	68.1 ± 0.0 70.1 ± 2.3	56.3 ± 0.0 64.0 ± 1.2	77.0 ± 0.5	65.7 ± 7.7	79.2 ± 0.0	47.7 ± 1.2
CluStream-W - SNN-DPC CluStream-S - SNN-DPC CluStream-G - SNN-DPC CluStream-C - DBHD	68.1 ± 0.0 70.1 ± 2.3 77.2 ±0.0	56.3 ± 0.0 64.0 ± 1.2 76.5 ± 0.0	77.0 ± 0.5 77.8 ± 0.0	65.7 ± 7.7 93.2 ± 0.0	79.2 ± 0.0 76.0 ± 0.0	47.7 ± 1.2 58.7 ±0.0
CluStream-W - SNN-DPC CluStream-S - SNN-DPC CluStream-G - SNN-DPC CluStream-C - DBHD CluStream-W - DBHD	68.1 ± 0.0 70.1 ± 2.3 77.2 ±0.0 77.2 ±0.0	56.3 ± 0.0 64.0 ± 1.2 76.5 ± 0.0 76.5 ± 0.0	77.0 ± 0.5 77.8 ± 0.0 77.8 ± 0.0	65.7 ± 7.7 93.2 ± 0.0 93.2 ± 0.0	79.2 ± 0.0 76.0 ± 0.0 76.0 ± 0.0	47.7 ± 1.2 58.7 ± 0.0 58.7 ± 0.0
CluStream-W - SNN-DPC CluStream-S - SNN-DPC CluStream-G - SNN-DPC CluStream-C - DBHD	68.1 ± 0.0 70.1 ± 2.3 77.2 ±0.0	56.3 ± 0.0 64.0 ± 1.2 76.5 ± 0.0	77.0 ± 0.5 77.8 ± 0.0	65.7 ± 7.7 93.2 ± 0.0	79.2 ± 0.0 76.0 ± 0.0	47.7 ± 1.2 58.7 ±0.0

Table 38: Accuracy Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

narked as boid , and the	second-i	best score	s are <u>unc</u>	<u>ierimea</u> .		
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
STREAMKmeans	51.8 ± 2.4	21.6 ± 0.4	66.0 ± 2.1	66.6 ± 6.9	56.8±0.0	34.4 ± 0.0
DenStream	14.1 ± 0.0			33.3 ± 0.0		
		44.5 ± 0.0	64.6 ± 0.0		71.7 ± 0.0	46.0 ± 0.0
DBSTREAM	29.9 ± 0.0	20.9 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	89.6±0.0	39.7 ± 0.0
EMCStream	59.0 ± 3.1	65.6 ± 3.3	66.3 ± 2.6	73.5 ± 9.4	78.2 ± 6.5	36.9 ± 0.6
MCMSTStream	35.8 ± 0.0	31.7 ± 0.0	78.3 ± 0.0	55.5 ± 0.0	71.3 ± 0.0	37.5 ± 0.0
GB-FuzzyStream	31.2 ± 2.5	$ 40.1\pm0.9 $	55.8 ± 0.5	-	-	35.3 ± 0.6
CluStream-O - var. k	15.8 ± 0.0	50.8 ± 0.0	22.6 ± 0.0	11.4±0.0	61.0±0.0	26.1 ± 0.0
CluStream-O - fixed k	49.3 ± 0.0	27.8 ± 0.0	68.2 ± 0.0	80.1±0.0		51.0 ± 0.0
CluStream-O - $k=100$	15.8 ± 0.0	50.8 ± 0.0	22.6 ± 0.0	$ 11.4\pm0.0 $	61.0 ± 0.0	26.1 ± 0.0
CluStream - Wk -Means	49.2 ± 1.5	60.2 ± 2.1	81.2 ± 0.7	98.9 ± 0.1	75.5 ± 0.3	53.4 ± 0.6
CluStream-C - k-Means	50.2 ± 2.5	30.9 ± 2.3	77.4 ± 0.8	97.6 ± 0.7	81.5±0.1	50.1 ± 0.6
CluStream-W - k -Means	49.2 ± 1.5	60.2 ± 2.1	81.2 ± 0.7	98.9 ± 0.1	75.5 ± 0.3	53.4 ± 0.6
CluStream-S - k-Means	48.1±1.9	59.4 ± 1.6	82.3 ± 0.6	98.7 ± 0.0	76.1 ± 0.2	51.9 ± 0.4
CluStream-G - k -Means	47.9 ± 1.5	59.6 ± 2.4	82.4 ± 0.7	98.8 ± 0.0	76.1 ± 0.2	51.9 ± 0.4
	48.3 ± 0.6		$\frac{52.4\pm0.7}{78.0\pm1.0}$	97.7 ± 0.6		
CluStream-C - SubKMeans		50.7 ± 2.8			81.5 ± 0.1	50.2 ± 1.3
CluStream-W - SubKMeans	48.8 ± 2.0	62.9 ± 2.5	79.7 ± 1.2	98.8 ± 0.1	75.9 ± 0.4	53.2 ± 0.9
CluStream-S - SubKMeans	48.6 ± 1.9	$ 62.8\pm1.4 $	80.7 ± 0.8	98.7 ± 0.0	76.5 ± 0.4	52.9 ± 0.6
CluStream-G - SubKMeans	48.3 ± 1.5	62.0 ± 2.7	81.8 ± 0.9	98.8 ± 0.0	76.5 ± 0.4	52.9 ± 0.4
CluStream-C - X-Means	57.9 ± 0.6	34.3 ± 5.6	78.9 ± 0.7	43.9 ± 0.8	78.2 ± 0.1	41.1 ± 0.5
CluStream-W - X-Means	17.2 ± 0.4	52.6 ± 0.4	73.6 ± 1.2	29.5 ± 0.0	61.1 ± 0.0	26.2 ± 0.0
CluStream-S - X-Means	16.3 ± 0.1	52.1 ± 0.2	74.3 ± 0.8	28.2 ± 1.0	61.0 ± 0.0	26.1 ± 0.0
CluStream-G - X-Means	30.7 ± 5.1	56.0 ± 0.7	76.7 ± 1.2	26.8 ± 0.4	63.7 ± 0.0	26.2 ± 0.0
CluStream-C - P-Dip-M	29.9 ± 0.0	20.9 ± 0.0	28.4 ± 0.0	72.8 ± 3.9	85.0 ± 0.1	47.0 ± 0.5
CluStream-W - P-Dip-M	22.7 ± 0.3	-	27.9 ± 0.2	20.1 ± 3.5	-	-
CluStream-S - P-Dip-M	22.0 ± 0.1	_	27.8 ± 0.2	21.8 ± 0.3	_	_
CluStream-G - P-Dip-M	49.8 ± 1.8	56.7 ± 0.4	81.6±0.5	51.2 ± 1.1	70.9 ± 0.0	28.5 ± 0.1
CluStream-C - SC	54.4±0.5	54.2 ± 0.5	82.0 ± 0.0	98.7±0.0	85.1 ± 0.0	52.9 ± 1.1
CluStream-W - SC	60.4 ± 2.1	59.1 ± 0.6	81.6 ± 0.4	98.7 ± 0.0	77.4 ± 0.1	60.8 ± 0.6
CluStream-S - SC						
Clastream-5 - 5C	58.1 ± 0.5	$ 61.9\pm0.2 $	81.0 ± 0.5	98.7 ± 0.0	75.9 ± 0.1	62.1 ± 0.5
CluStream-G - SC	58.1±3.5	$ 60.6\pm1.1 $	80.9 ± 0.3	98.8 ± 0.0	75.2 ± 0.1	56.9 ± 1.3
CluStream-C - SCAR	55.4 ± 1.3	52.7 ± 2.1	80.4 ± 0.1	94.4 ± 4.6	83.9 ± 0.2	55.2 ± 0.8
CluStream-W - SCAR	55.0 ± 2.5	$ 61.7\pm0.5 $	63.8 ± 0.2	80.3 ± 5.7		53.9 ± 0.5
CluStream-S - SCAR	57.5 ± 1.4	$ 59.8\pm0.6 $	64.3 ± 0.2	76.0 ± 7.2	73.8 ± 0.2	53.1 ± 1.5
CluStream-G - SCAR	56.7 ± 1.9	$ 59.9\pm1.4 $	64.5 ± 0.4	82.9 ± 4.8	65.6 ± 0.1	55.4 ± 0.4
CluStream-C - SpectACl	59.4 ± 2.7	65.3 ± 1.0	74.5 ± 0.9	94.2 ± 4.6	78.4 ± 0.1	53.3 ± 0.8
CluStream-W - SpectACl	61.8 ± 2.3	$ 69.3\pm0.9 $	48.4 ± 2.0	99.4 ± 0.0	85.4 ± 0.1	54.9 ± 1.2
CluStream-S - SpectACl	61.9 ± 4.7	67.0 ± 1.7	74.8 ± 0.6	99.4 ± 0.0	86.8 ± 0.1	54.9 ± 0.4
CluStream-G - SpectACl	59.6 ± 3.1	$\overline{65.5} \pm 1.9$	43.3 ± 1.2	98.2 ± 2.4	86.8 ± 0.1	54.2 ± 1.3
CluStream-C - DBSCAN	62.7 ± 0.0	54.9 ± 0.0	73.9 ± 0.0	96.5 ± 0.0	86.7 ± 0.0	41.6 ± 0.0
CluStream-W - DBSCAN	63.6 ± 0.0	61.4 ± 0.0	75.2 ± 0.0	96.5 ± 0.0	85.6 ± 0.0	41.9 ± 0.0
CluStream-S - DBSCAN	64.1 ± 0.0	60.6 ± 0.0	76.5 ± 0.0	96.4 ± 0.0	85.6 ± 0.0	42.3 ± 0.0
CluStream-G - DBSCAN	59.4 ± 2.6	63.2 ± 0.7	81.2 ± 0.2	87.8 ± 2.4	85.6 ± 0.0	42.7 ± 0.0
CluStream-C - HDBSCAN	62.7 ± 0.0	59.0 ± 0.0	74.6 ± 0.0	99.2 ± 0.0	86.9 ± 0.0	46.0 ± 0.0
CluStream-W - HDBSCAN	62.5 ± 0.0	$ 66.7\pm0.0 $	73.9 ± 0.0	99.2 ± 0.0	88.8±0.0	46.8 ± 0.0
CluStream-S - HDBSCAN	63.1 ± 0.0	$ 65.0\pm0.0 $	71.6 ± 0.0	99.2 ± 0.0	88.3 ± 0.0	45.5 ± 0.0
CluStream-G - HDBSCAN	61.9 ± 1.9	64.2 ± 0.2	82.4 ± 0.4	93.8 ± 0.7	88.3±0.0	50.4 ± 0.4
CluStream-C - RNN-DBS	48.6 ± 0.0	31.1 ± 0.0	70.5 ± 0.0	90.2 ± 0.0	85.0 ± 0.0	46.6 ± 0.0
CluStream-W - RNN-DBS	58.3 ± 0.0	57.0 ± 0.0	46.0 ± 0.0	69.4 ± 0.0	74.2 ± 0.0	45.7 ± 0.0
CluStream-S - RNN-DBS	58.7 ± 0.0	55.9 ± 0.0	25.7 ± 0.0	73.5 ± 0.0	74.4 ± 0.0	49.0 ± 0.0
CluStream-G - RNN-DBS	53.5 ± 1.6	44.2 ± 1.5	62.9 ± 1.9	61.5 ± 5.6	75.1 ± 0.1	43.1 ± 0.2
CluStream-C - MDBSCAN	63.6 ± 0.0	53.9 ± 0.0	76.4 ± 0.0	99.2 ± 0.0	86.9 ± 0.0	40.4 ± 0.0
CluStream-W - MDBSCAN	66.8 ± 0.0	55.2±0.0	73.7 ± 0.0	99.9 ± 0.0	92.4 ± 0.0	44.0 ± 0.0
CluStream-S - MDBSCAN	64.9 ± 0.0	55.6 ± 0.0	74.0 ± 0.0	99.9 ± 0.0	93.2 ± 0.0	43.6 ± 0.0
CluStream-G - MDBSCAN	60.1 ± 2.5	55.2 ± 1.0	75.8 ± 0.6	97.3 ± 2.9	93.2 ± 0.0	35.9 ± 0.0
CluStream-C - DPC	57.3 ± 0.0	56.8 ± 0.0	78.4 ± 0.0	83.9 ± 0.0	90.1 ± 0.0	39.4 ± 0.0
CluStream-W - DPC	54.4 ± 0.0	62.7 ± 0.0	74.3 ± 0.0	83.9 ± 0.0	81.6 ± 0.0	42.4 ± 0.0
CluStream-S - DPC						
	57.1 ± 0.0	$ 61.9\pm0.0 $	74.7 ± 0.0	88.4 ± 0.0	81.8±0.0	39.6 ± 0.0
CluStream-G - DPC	50.3 ± 1.1	58.5 ± 0.3	81.4 ± 0.5	82.6 ± 4.2	86.5 ± 0.1	39.1 ± 0.0
CluStream-C - SNN-DPC	60.3 ± 1.0	38.8 ± 0.0	67.6 ± 0.1	74.4 ± 0.0	74.6 ± 0.0	55.4 ± 1.2
CluStream-W - SNN-DPC	58.7 ± 0.0	49.6 ± 0.7	57.4 ± 0.0	96.3 ± 0.0	78.4 ± 0.1	57.2 ± 0.0
CluStream-S - SNN-DPC	61.6 ± 0.0	47.8 ± 0.0	58.6 ± 0.0	94.2 ± 0.0	78.8 ± 0.0	55.8 ± 0.0
CluStream-G - SNN-DPC	55.8 ± 3.1	56.3±1.6	76.6 ± 0.8	84.2 ± 4.5	82.8 ± 0.0	54.3 ± 1.3
CluStream-C - DBHD	65.2 ± 0.0	57.9 ± 0.0	77.4 ± 0.0	98.9 ± 0.0	79.3 ± 0.0	57.8 ± 0.0
CluStream-W - DBHD	65.2 ± 0.0	57.9 ± 0.0	77.4 ± 0.0	98.9 ± 0.0	79.3 ± 0.0	57.8 ± 0.0
CluStream-S - DBHD	$\frac{65.2}{65.2} \pm 0.0$	57.9±0.0	77.4 ± 0.0	98.9 ± 0.0	79.3 ± 0.0	57.8 ± 0.0
CluStream-G - DBHD	56.4 ± 1.4	57.7±0.7	84.7 ± 0.3	51.4±3.2	69.4 ± 0.1	44.0 ± 0.2
II.						

Table 39: Precision Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are underlined.

narked as bold , and the	e secona-i	est scor	es are <u>un</u>	<u>aernnea</u> .		
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Precision	Precision	Precision	Precision	Precision	Precision
STREAMKmeans	48.4±4.2	13.1 ± 0.1	54.5 ± 2.6	58.4 ± 7.2	40.9±0.0	25.9 ± 0.0
DenStream				91.3 ± 0.0		49.8 ± 0.0
	90.4±0.0		78.7 ± 0.0		98.8±0.0	
DBSTREAM	18.6 ± 0.0	13.0 ± 0.0	19.9 ± 0.0	52.4 ± 0.0	98.7 ± 0.0	29.0 ± 0.0
EMCStream	59.9 ± 1.4	56.1 ± 2.7	$ 53.6\pm2.6 $	65.3 ± 9.6	74.3 ± 9.0	28.3 ± 0.4
MCMSTStream	19.1 ± 0.0	16.9 ± 0.0	79.6 ± 0.0	99.4 ± 0.0	75.3 ± 0.0	39.2 ± 0.0
GB-FuzzyStream	23.8 ± 10.5	20.7 ± 0.9	36.8 ± 0.4	-	-	28.6 ± 0.2
CluStream-O - var. k	99.9 ±0.0			100 5 1 0 0	100.0 ±0.0	
CluStream-O - fixed k	56.6 ± 0.0		58.0 ± 0.0		99.7 ± 0.0	42.4 ± 0.0
CluStream-O - $k=100$	$ 99.9\pm0.0 $	73.2 ± 0.0	$ 93.1\pm0.0 $	99.5 ± 0.0	$ 100.0 \pm 0.0 $	85.6±0.0
CluStream - Wk-Means	59.4 ± 1.3	47.8 ± 1.7	81.1 ± 0.6	97.8 ± 0.0	99.8 ± 0.0	52.1 ± 1.0
CluStream-C - k-Means	59.5 ± 2.4	20.0 ± 1.5	70.5 ± 0.7	95.6 ± 1.5	99.8±0.0	44.0 ± 1.2
CluStream-W - k-Means	59.4 ± 1.3	47.8 ± 1.7	81.1 ± 0.6	97.8 ± 0.0	99.8±0.0	52.1 ± 1.0
CluStream-S - k-Means	58.2 ± 1.6	45.9 ± 1.4	$ 81.2\pm0.6 $	97.7 ± 0.0	99.8 ± 0.0	51.0 ± 0.7
CluStream-G - k-Means	58.7 ± 1.4	47.2 ± 2.3	82.2 ± 0.6	98.0 ± 0.0	99.8 ± 0.0	51.1 ± 0.8
CluStream-C - SubKMeans	57.2 ± 1.5	34.4 ± 2.2	71.8 ± 0.8	95.8 ± 1.3	99.8 ± 0.0	43.8 ± 1.3
CluStream-W - SubKMeans	57.3 ± 1.5	50.1 ± 2.3	83.3 ± 0.4	97.8 ± 0.0	99.8 ± 0.0	52.2 ± 0.8
CluStream-S - SubKMeans	57.6 ± 1.3	50.1 ± 2.3	83.0 ± 0.6	97.7 ± 0.0	99.8 ± 0.0	52.2 ± 0.6
CluStream-G - SubKMeans	58.6 ± 1.5	50.7 ± 3.1	82.0 ± 0.5	98.0 ± 0.0	99.8 ± 0.0	52.0 ± 0.6
CluStream-C - X-Means	49.8 ± 0.5	23.9 ± 6.8	74.3 ± 1.1	98.3 ± 0.7	99.8±0.0	62.7 ± 0.5
CluStream-W - X-Means	99.7 ± 0.1	72.7 ± 0.4	75.7 ± 0.6	99.5 ± 0.0	99.9 ± 0.0	85.6±0.0
CluStream-S - X-Means	99.7 ± 0.2	73.1 ± 0.2	75.7 ± 0.6	99.5 ± 0.0	$ 100.0\pm0.0 $	$ 85.6\pm0.0 $
CluStream-G - X-Means	92.3 ± 7.2	66.9 ± 0.3	83.2 ± 1.5	99.7 ± 0.2	100.0 ± 0.0	85.6 ± 0.0
CluStream-C - P-Dip-M	18.6 ± 0.0	12.9 ± 0.0	21.5 ± 0.0	66.6 ± 4.8	97.5 ± 0.1	43.5 ± 0.8
CluStream-W - P-Dip-M	97.5±0.9	-	$ 90.2\pm0.2 $	99.5 ± 0.0	-	-
CluStream-S - P-Dip-M	97.7 ± 0.4	-	89.9 ± 0.1	99.5 ± 0.0	-	-
CluStream-G - P-Dip-M	63.4 ± 1.7	60.8 ± 0.7	71.3 ± 0.7	97.7 ± 0.3	99.9 ± 0.0	84.0 ± 0.3
CluStream-C - SC	53.2±0.3	41.4 ± 1.1	79.7 ± 0.0	97.7 ± 0.0	99.0 ± 0.1	46.7 ± 1.4
CluStream-W - SC	66.1 ± 2.3	52.6 ± 0.9	76.8 ± 0.4	97.7 ± 0.0	99.4 ± 0.0	60.1 ± 0.7
CluStream-S - SC		58.3 ± 0.0	76.7 ± 0.6	97.7 ± 0.0	97.0 ± 0.1	60.9 ± 0.7
	65.7 ± 0.3			98.0 ± 0.1		
CluStream-G - SC	64.2±3.6	56.6 ± 1.1	77.0 ± 0.3		98.2±0.1	55.1 ± 1.4
CluStream-C - SCAR	62.4 ± 0.8	43.5 ± 2.7	80.0 ± 0.4	92.1 ± 5.7	98.8±0.1	49.0 ± 1.4
CluStream-W - SCAR	$ 62.2\pm2.1 $	57.5 ± 0.5	$ 78.0\pm0.1 $	76.5 ± 7.0	-	59.1 ± 0.9
CluStream-S - SCAR	64.5 ± 2.5	55.5 ± 1.1	$ 78.4\pm0.2 $	70.5 ± 6.6	89.4 ± 0.2	55.6 ± 1.7
CluStream-G - SCAR	65.1 ± 2.7	57.0 ± 1.1	$ 77.8\pm0.3 $	77.5 ± 4.5	99.6 ± 0.0	61.2 ± 0.4
CluStream-C - SpectACl	61.9 ± 1.9	57.5 ± 2.0	$ 65.9\pm1.5 $	92.6 ± 5.8	97.4 ± 0.1	48.3 ± 1.6
CluStream-W - SpectACl	68.5 ± 1.8	59.9 ± 1.1	37.2 ± 1.8	98.6 ± 0.0	99.0 ± 0.1	54.7 ± 0.9
CluStream-S - SpectACl	66.7 ± 4.6	59.6 ± 1.3	82.7 ± 0.3	98.6 ± 0.0	98.2 ± 0.2	54.4 ± 0.7
CluStream-G - SpectACl	66.0 ± 3.0	57.2 ± 1.8	31.4 ± 1.1	96.9 ± 2.9	98.4 ± 0.3	53.8 ± 1.3
CluStream-C - DBSCAN	56.3 ± 0.0	50.9 ± 0.0	62.4 ± 0.0	99.7 ± 0.0	99.8±0.0	61.8 ± 0.0
CluStream-W - DBSCAN	53.3 ± 0.0	51.0 ± 0.0	62.9 ± 0.0	$\frac{99.7}{99.7}$ ± 0.0	99.0 ± 0.0	61.1 ± 0.0
CluStream-S - DBSCAN	57.6 ± 0.0	50.8 ± 0.0	64.7 ± 0.0	$\frac{99.7}{99.7}$ ± 0.0	98.9 ± 0.0	60.9 ± 0.0
CluStream-G - DBSCAN		58.7 ± 1.7	73.5 ± 0.2		98.9 ± 0.0	60.9 ± 0.0
	63.8 ± 8.0			89.6 ± 3.1		
CluStream-C - HDBSCAN	71.1 ± 0.0	43.6 ± 0.0	63.0 ± 0.0	$\frac{99.7}{20.7}$ ± 0.0	91.3 ± 0.0	64.2 ± 0.0
CluStream-W - HDBSCAN	$ 65.1\pm0.0 $	68.0 ± 0.0	$ 61.4\pm0.0 $	99.7 ± 0.0	94.2 ± 0.0	72.4 ± 0.0
CluStream-S - HDBSCAN	65.9 ± 0.0	68.2 ± 0.0	$ 75.1\pm0.0 $	99.7 ± 0.0	95.6 ± 0.0	74.3 ± 0.0
CluStream-G - HDBSCAN	62.3 ± 4.2	67.9 ± 0.2	74.9 ± 0.6	98.2 ± 0.7	95.6 ± 0.0	64.4 ± 0.4
CluStream-C - RNN-DBS	65.7 ± 0.0	19.5 ± 0.0	72.3 ± 0.0	88.0 ± 0.0	94.1 ± 0.0	58.2 ± 0.0
CluStream-W - RNN-DBS	54.8 ± 0.0	67.0 ± 0.0	46.3 ± 0.0	96.5 ± 0.0	77.9 ± 0.0	60.3 ± 0.0
CluStream-S - RNN-DBS	54.1 ± 0.0	67.8 ± 0.0	72.8 ± 0.0	99.3 ± 0.0	78.1 ± 0.0	60.2 ± 0.0
CluStream-G - RNN-DBS	62.0 ± 5.8	36.2 ± 0.4	66.6 ± 2.2	90.2 ± 4.6	82.1 ± 0.1	68.0 ± 0.2
CluStream-C - MDBSCAN	53.3±0.0	69.4 ± 0.0	68.3 ± 0.0	99.4 ± 0.0	99.3±0.0	68.5 ± 0.0
CluStream-W - MDBSCAN	62.9 ± 0.0	69.1 ± 0.0	61.0 ± 0.0	99.7 ± 0.0	93.8±0.0	63.7 ± 0.0
CluStream-S - MDBSCAN	58.1 ± 0.0	68.0 ± 0.0	61.1 ± 0.0	$\frac{99.7}{99.7}$ ± 0.0	94.7 ± 0.0	67.7 ± 0.0
CluStream-G - MDBSCAN	62.7 ± 7.9	64.9 ± 0.8	63.5 ± 0.6	$\frac{97.4}{20.3}$	94.9 ± 0.0	75.9 ± 0.1
CluStream-C - DPC	64.4 ± 0.0	50.5 ± 0.0	69.7 ± 0.0	99.8 ± 0.0	94.1 ± 0.0	
						51.7 ± 0.0
CluStream-W - DPC	52.4 ± 0.0	61.6 ± 0.0	66.6 ± 0.0	93.5 ± 0.0	99.9 ± 0.0	64.7 ± 0.0
CluStream-S - DPC	52.8 ± 0.0	65.5 ± 0.0	66.8 ± 0.0	92.3 ± 0.0	99.9±0.0	68.2 ± 0.0
CluStream-G - DPC	76.9 ± 2.3	63.4 ± 0.1	76.0 ± 0.7	93.2 ± 5.4	91.2 ± 0.1	68.0 ± 0.0
CluStream-C - SNN-DPC	59.6 ± 0.4	25.4 ± 0.0	$ 63.0\pm0.0 $	67.1 ± 0.0	98.5 ± 0.0	45.7 ± 0.5
CluStream-W - SNN-DPC	60.7 ± 0.0	32.7 ± 0.9	44.1 ± 0.0	92.8 ± 0.0	95.3 ± 0.1	46.2 ± 0.0
CluStream-S - SNN-DPC	60.6 ± 0.0	31.5 ± 0.0	46.5 ± 0.0	90.3 ± 0.0	94.0 ± 0.0	42.6 ± 0.0
CluStream-G - SNN-DPC	59.2 ± 4.0	44.1 ± 2.0	67.4 ± 1.2	81.8 ± 4.3	99.7 ± 0.0	47.0 ± 0.8
CluStream-C - DBHD	78.6±0.0	69.5 ± 0.0	78.7±0.0	98.0±0.0	98.9±0.0	66.4 ± 0.0
CluStream-W - DBHD	78.6 ± 0.0	69.5 ± 0.0	78.7 ± 0.0	98.0 ± 0.0	98.9 ± 0.0	66.4 ± 0.0
CluStream-S - DBHD	78.6 ± 0.0	69.5 ± 0.0	78.7 ± 0.0	98.0 ± 0.0	98.9 ± 0.0	66.4 ± 0.0
CluStream-G - DBHD	75.3 ± 2.2	66.4 ± 1.0	82.3 ± 0.6	92.0 ± 5.6	91.0 ± 0.0	75.7 ± 0.8
Ciabifeani-G - DDIID	10.012.2	00.4±1.0	02.0±0.0	32.0±3.0	91.0±0.1	10.1 ±0.8

Table 40: Recall Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Name				FvI	KDD99	Gas
	Comp-9 Recall	DEN-10 Recall	RBF-3 Recall	Recall	Recall	Recall
STREAMKmeans	48.6±4.2	97.8±0.7	87.7±0.8	96.3±3.0		100.0±0.0
DenStream	5.2 ± 0.0	23.9±0.0	58.3±0.0	22.8±0.0	75.5±0.0	38.9±0.0
DBSTREAM	100.0±0.0	99.3±0.0		100.0±0.0	92.6±0.0	78.9±0.0
EMCStream	57.9 ± 6.2	$\frac{50.5}{77.5\pm5.9}$	89.3±0.5	80.2±8.3	80.6±12.6	83.7±1.1
MCMSTStream	71.2 ± 0.0	54.8±0.0	73.3 ± 0.0	43.8±0.0	80.4±0.0	44.4±0.0
GB-FuzzyStream	85.3±29.3	52.6 ± 0.5	51.7±0.3	-	-	52.3±0.5
CluStream-O - var. k	6.1±0.0	46.2±0.0	13.1±0.0	5.6±0.0	64.6±0.0	15.6±0.0
CluStream-O - fixed k	38.7 ± 0.0	92.3 ± 0.0	84.6±0.0	89.0±0.0	81.8±0.0	56.3 ± 0.0
CluStream-O - $k=100$	6.1 ± 0.0	46.2 ± 0.0	13.1±0.0	5.6 ± 0.0	64.6 ± 0.0	15.6 ± 0.0
						1
CluStream - Wk-Means	37.5 ± 0.7	76.3 ± 2.5	80.2±1.2	98.1±0.4	84.8 ± 0.4	47.8 ± 1.0
CluStream-C - k-Means	37.7 ± 1.7	90.3 ± 2.0	85.9±0.9	95.9 ± 0.9	88.4 ± 0.0	53.2 ± 2.0
CluStream-W - k-Means	37.5 ± 0.7	76.3 ± 2.5	80.2 ± 1.2	98.1 ± 0.4	84.8 ± 0.4	47.8 ± 1.0
CluStream-S - k -Means CluStream-G - k -Means	36.1±1.1	77.4±3.4	82.1±0.9	97.4 ± 0.0	85.0 ± 0.4	47.2±1.5
CluStream-G - k-Means	36.8±1.1	77.8 ± 2.7	81.6±1.0	97.5±0.0	85.1±0.4	47.3±1.4
CluStream-C - SubKMeans	37.3±1.5	74.2±3.0	84.6±1.0	96.1 ± 0.7	88.4±0.0	52.4 ± 1.7
CluStream-W - SubKMeans	36.8 ± 1.5	74.6 ± 4.3	77.2±1.8	97.8 ± 0.5	84.7±0.3	48.1 ± 0.7
CluStream-S - SubKMeans	36.7 ± 1.2	76.8 ± 3.4	78.6 ± 1.2	97.4 ± 0.0	85.1±0.4	47.0 ± 0.9
CluStream-G - SubKMeans	37.0 ± 1.1	77.4±3.3	80.7 ± 1.3	97.5 ± 0.0	85.1±0.4	47.4 ± 1.0
CluStream-C - X-Means	68.5 ± 0.7 6.4 ± 0.1	88.5 ± 5.1 47.2 ± 0.2	87.0 ± 0.3 80.7 ± 1.5	$34.2\pm0.6 \\ 21.7\pm0.0$	84.1 ± 0.1 64.6 ± 0.0	32.0 ± 0.7 15.6 ± 0.0
CluStream-W - X-Means CluStream-S - X-Means	6.4 ± 0.1 6.2 ± 0.0	47.2 ± 0.2 46.7 ± 0.1	80.7 ± 1.5 81.7 ± 1.2	21.7 ± 0.0 21.0 ± 0.5	64.6 ± 0.0 64.6 ± 0.0	15.6 ± 0.0 15.6 ± 0.0
CluStream-G - X-Means	19.3 ± 8.7	53.4 ± 0.5	78.4 ± 2.0	19.8 ± 0.1	70.5 ± 0.1	15.6 ± 0.0 15.6 ± 0.0
CluStream-C - P-Dip-M	100.0 ± 0.0	100.0±0.0	99.5±0.0	100.0±0.0	89.8±0.0	68.1 ± 1.0
CluStream-W - P-Dip-M	9.5 ± 0.1	-	$\frac{33.6}{18.4\pm0.2}$	12.7±2.8	-	-
CluStream-S - P-Dip-M	9.1 ± 0.1	_	18.0 ± 0.2	14.1 ± 0.1	_	_
CluStream-G - P-Dip-M	40.1 ± 2.0	57.3 ± 0.6	91.2 ± 0.4	43.8 ± 0.7	79.7 ± 0.0	18.6 ± 0.1
CluStream-C - SC	57.5 ± 0.8	85.6±1.7	84.1±0.1	97.4±0.0	89.6±0.0	61.6±1.3
CluStream-W - SC	49.9 ± 1.6	63.9 ± 0.6	82.5 ± 0.6	97.4 ± 0.0	83.8 ± 0.1	57.1 ± 1.1
CluStream-S - SC	48.5 ± 0.5	62.8 ± 0.1	81.9 ± 0.4	97.4 ± 0.0	85.7 ± 0.0	59.1 ± 0.8
CluStream-G - SC	46.5 ± 1.9	60.4 ± 1.3	81.8 ± 0.4	97.6 ± 0.1	84.9 ± 0.1	52.4 ± 1.5
CluStream-S - SC CluStream-G - SC CluStream-C - SCAR	42.7 ± 1.2	79.3 ± 1.5	78.5 ± 0.2	96.0 ± 0.8	86.7 ± 0.1	54.9 ± 1.0
CluStream-W - SCAR	43.3 ± 1.9	64.4 ± 0.8	56.5 ± 0.3	85.3 ± 5.9		45.6 ± 0.5
CluStream-S - SCAR	45.9 ± 1.5	63.6 ± 0.2	56.8 ± 0.4	76.1 ± 4.6	77.4 ± 0.4	46.9 ± 1.2
CluStream-G - SCAR	46.7 ± 2.0	60.1 ± 2.0	57.5±0.5	83.0±3.6	71.8 ± 0.2	44.7 ± 0.4
CluStream-C - SpectACl CluStream-W - SpectACl	47.3 ± 2.5 50.2 ± 2.3	64.7 ± 0.8 72.4 ± 1.1	88.6±0.4	99.6 ± 0.2	87.0±0.1	52.1±2.7
Clastream-W - SpectACI	50.2 ± 2.3 49.9 ± 3.1		69.1±1.5	99.2 ± 0.0 99.2 ± 0.0	90.1 ± 0.1 90.8 ± 0.0	48.4±0.8
CluStream-S - SpectACl CluStream-G - SpectACl CluStream-C - DBSCAN	49.9 ± 3.1 49.7 ± 3.3	68.3 ± 2.5 64.1 ± 2.6	68.2 ± 1.0 70.8 ± 1.8	99.2 ± 0.0 97.8 ± 2.6	90.8 ± 0.0 90.8 ± 0.1	49.0 ± 1.1 47.5 ± 1.3
Clustroam C DBSCAN	$\frac{49.7\pm 3.3}{57.9\pm 0.0}$	64.1 ± 2.0 64.8 ± 0.0	92.1 ± 0.0	93.7 ± 0.0	89.9 ± 0.0	48.0 ± 0.0
CluStream-W - DBSCAN	64.6 ± 0.0	72.7 ± 0.0	92.8 ± 0.0	93.6 ± 0.0	91.0 ± 0.0	48.3 ± 0.0
CluStream-S - DBSCAN	57.3 ± 0.0	71.6 ± 0.0	92.8±0.0	93.5 ± 0.0	91.1 ± 0.0	48.5 ± 0.0
CluStream-G - DBSCAN	49.8 ± 4.9	63.7 ± 1.0	89.4±0.1	89.6±1.9	91.1 ± 0.0	48.8 ± 0.1
CluStream-C - HDBSCAN CluStream-W - HDBSCAN	47.1±0.0	80.5±0.0	92.4±0.0	98.5±0.0	91.6±0.0	41.1±0.0
CluStream-W - HDBSCAN	50.4 ± 0.0	63.5 ± 0.0	92.6 ± 0.0	98.5 ± 0.0	93.7 ± 0.0	34.6 ± 0.0
CluStream-S - HDBSCAN	49.6 ± 0.0	60.9 ± 0.0	65.5 ± 0.0	98.5 ± 0.0	92.5 ± 0.0	32.9 ± 0.0
CluStream-G - HDBSCAN	52.5 ± 2.2	60.4 ± 0.0	86.8 ± 0.5	90.6 ± 0.7	92.5 ± 0.0	39.9 ± 0.2
CluStream-C - RNN-DBS	32.1 ± 0.0	94.9 ± 0.0	72.0 ± 0.0	100.0 ± 0.0	89.8±0.0	41.5 ± 0.0
CluStream-W - RNN-DBS	48.4 ± 0.0	49.9 ± 0.0	41.0 ± 0.0	57.2 ± 0.0	80.6 ± 0.0	36.3 ± 0.0
CluStream-S - RNN-DBS	49.2 ± 0.0	49.0 ± 0.0	15.3 ± 0.0	61.2 ± 0.0	80.9 ± 0.0	40.5 ± 0.0
CluStream-G - RNN-DBS	47.9 ± 7.7	74.5 ± 1.1	63.1 ± 1.5	61.0 ± 3.5	78.5 ± 0.0	31.5 ± 0.3
CluStream-C - MDBSCAN CluStream-W - MDBSCAN	64.6 ± 0.0	50.3 ± 0.0	88.4 ± 0.0	98.7 ± 0.0	90.4 ± 0.0	36.7 ± 0.0
CluStream-W - MDBSCAN	59.4±0.0	52.3 ± 0.0	92.6 ± 0.0	99.8±0.0	95.9 ± 0.0	44.3 ± 0.0
CluStream-S - MDBSCAN	60.6 ± 0.0	52.6 ± 0.0	92.7 ± 0.0	99.8 ± 0.0	$\frac{96.1}{96.0} \pm 0.0$	36.9 ± 0.0
CluStream-G - MDBSCAN	51.0±5.1	48.1±1.6	92.8 ± 0.1	96.6 ± 3.5	96.0 ± 0.0	25.3±0.0
CluStream-C - DPC	42.0±0.0	64.3±0.0	89.3±0.0	89.0±0.0	94.3±0.0	45.2±0.0
CluStream-W - DPC	$61.8\pm0.0 \\ 65.0\pm0.0$	68.9 ± 0.0 63.7 ± 0.0	$88.3\pm0.0 \\ 88.4\pm0.0$	79.5 ± 0.0 83.0 ± 0.0	$88.0\pm0.0 \\ 88.0\pm0.0$	35.5 ± 0.0
CluStream-S - DPC CluStream-G - DPC	31.7 ± 0.5	58.9 ± 0.0	90.2 ± 0.2	83.0 ± 0.0 82.2 ± 1.0	94.1 ± 0.1	32.0 ± 0.0 31.5 ± 0.0
CluStream-C SNN DPC	51.7 ± 0.5 51.7 ± 3.4	84.3±0.0	76.1 ± 0.1	85.8±0.0	81.6 ± 0.0	61.2 ± 1.1
CluStream-C - SNN-DPC CluStream-W - SNN-DPC	66.9 ± 0.0	87.0±0.4	83.7 ± 0.0	96.6 ± 0.0	83.6 ± 0.0	71.4 ± 0.0
CluStream-S - SNN-DPC	67.3 ± 0.0	87.6±0.4	83.2±0.0	96.5 ± 0.0	85.3 ± 0.0	70.6 ± 0.0
CluStream-G - SNN-DPC	48.4 ± 4.2	63.9 ± 1.6	90.9 ± 0.2	92.5 ± 2.9	88.7±0.0	67.3 ± 1.0
CluStream-C - DBHD	48.8±0.0	50.3 ± 0.0	78.0±0.0	97.8±0.0	87.3±0.0	51.9 ± 0.0
CluStream-W - DBHD	48.8 ± 0.0	50.3 ± 0.0	78.0 ± 0.0	97.8 ± 0.0	87.3 ± 0.0	51.9 ± 0.0
CluStream-S - DBHD	48.8 ± 0.0	50.3 ± 0.0	78.0 ± 0.0	97.8 ± 0.0	87.3 ± 0.0	51.9 ± 0.0
CluStream-G - DBHD	41.7 ± 1.8	50.4 ± 1.0	83.8 ± 0.6	42.9 ± 1.1	71.5 ± 0.1	31.5 ± 0.2

Table 41: F1 Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

narked as bold , and the	second-r	est score	es are <u>unc</u>	$\underline{\text{nermed}}$.		
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	F1	F1	F1	F1	F1	F1
STREAMKmeans	48.3±3.4	23.1±0.1	66.0±1.9	71.7±4.1	58.0±0.0	40.8±0.0
DenStream	9.8 ± 0.0	36.5 ± 0.0	65.6 ± 0.0	36.1 ± 0.0	85.5±0.0	42.9 ± 0.0
DBSTREAM	31.4 ± 0.0	23.0 ± 0.0	33.0 ± 0.0		$ 95.6\pm0.0 $	$ 41.5\pm0.0 $
EMCStream	$ 58.2\pm3.0 $	$ \underline{64.6}\pm 3.8 $	$ 64.7\pm2.1 $	$ 70.3\pm5.0 $	$ 75.8\pm8.8 $	$ 40.6\pm0.6 $
MCMSTStream	30.0 ± 0.0	25.8 ± 0.0	75.5 ± 0.0	56.9 ± 0.0	76.9 ± 0.0	38.8 ± 0.0
GB-FuzzyStream	31.0 ± 0.8	29.5 ± 0.9	42.5 ± 0.4	_	_	36.2 ± 0.3
					15011001	
CluStream-O - var. k	$ 11.4\pm0.0 $	54.7 ± 0.0	$ 22.8\pm0.0 $	10.6 ± 0.0	78.1 ± 0.0	$ 25.6\pm0.0 $
CluStream-O - fixed k	$ 46.0\pm0.0 $	$ 28.0\pm0.0 $	$ 67.5\pm0.0 $	$ 76.4\pm0.0 $	89.8 ± 0.0	$ 46.7\pm0.0 $
CluStream-O - $k=100$	11.4 ± 0.0	54.7 ± 0.0	22.8 ± 0.0	10.6 ± 0.0	78.1 ± 0.0	25.6 ± 0.0
CluStream - Wk -Means	45.9 ± 0.9	58.2 ± 1.8	80.1 ± 0.6	98.0 ± 0.2	91.6 ± 0.3	48.5 ± 0.7
CluStream-C - k-Means	46.2 ± 1.9	32.5 ± 1.8	76.5 ± 0.8	95.7 ± 1.2	93.7 ± 0.0	45.8 ± 0.9
CluStream-W - k-Means	45.9 ± 0.9	58.2 ± 1.8	80.1±0.6	98.0 ± 0.2	91.6 ± 0.3	48.5 ± 0.7
CluStream-S - k-Means	44.6 ± 1.3	57.2 ± 1.6	81.0 ± 0.4	97.5 ± 0.0	91.8 ± 0.2	47.6 ± 0.7
CluStream-G - k-Means	45.2 ± 1.2	58.2 ± 2.1	81.3 ± 0.6	97.8 ± 0.0	91.8 ± 0.2	47.6 ± 0.7
CluStream-C - SubKMeans	45.1 ± 1.3	$ 46.5\pm2.2 $	76.8 ± 0.9	95.9 ± 1.0	93.7 ± 0.0	45.5 ± 1.4
CluStream-W - SubKMeans	44.8 ± 1.5	59.5 ± 3.0	79.3 ± 1.2	97.8 ± 0.3	91.6 ± 0.2	48.5 ± 0.3
CluStream-S - SubKMeans	44.8 ± 1.2	60.1 ± 2.2	80.0 ± 0.6	97.5 ± 0.0	91.9 ± 0.2	48.1 ± 0.5
CluStream-G - SubKMeans	45.3 ± 1.2	60.6 ± 2.7	80.7±0.8	97.8 ± 0.0	91.8 ± 0.2	48.2 ± 0.5
CluStream-C - X-Means						
	57.6 ± 0.6	36.0 ± 5.9	79.1 ± 0.6	47.6 ± 0.8	91.2 ± 0.1	40.3 ± 0.4
CluStream-W - X-Means	12.0 ± 0.3	$ 55.2\pm0.2 $	74.3 ± 1.1	29.8 ± 0.0	78.1 ± 0.0	25.6 ± 0.0
CluStream-S - X-Means	11.6 ± 0.0	$ 55.0\pm0.0 $	$ 75.1\pm0.6 $	28.6 ± 0.9	78.1 ± 0.0	25.6 ± 0.0
CluStream-G - X-Means	25.8 ± 5.7	57.4 ± 0.4	78.3 ± 1.1	26.4 ± 0.2	82.5 ± 0.0	25.6 ± 0.0
CluStream-C - P-Dip-M	31.4 ± 0.0	22.9 ± 0.0	34.8 ± 0.0	78.1±3.1	93.5±0.0	46.4 ± 0.4
CluStream-W - P-Dip-M	17.2 ± 0.2	22.0±0.0	30.1 ± 0.2	21.0 ± 3.9	00.0±0.0	10.1±0.1
		-			-	_
CluStream-S - P-Dip-M	16.6 ± 0.2	-	29.6 ± 0.2	22.9 ± 0.1	-	-
CluStream-G - P-Dip-M	49.0 ± 1.2	57.0 ± 0.4	79.1 ± 0.4	53.4 ± 0.9	88.6 ± 0.0	29.4 ± 0.2
CluStream-C - SC	55.1 ± 0.5	$ 54.3\pm1.4 $	81.0 ± 0.0	97.5 ± 0.0	94.1 ± 0.0	50.7 ± 1.1
CluStream-W - SC	56.8 ± 1.9	57.4 ± 0.5	78.9 ± 0.4	97.5 ± 0.0	90.8 ± 0.0	56.7 ± 0.9
CluStream-S - SC	55.7 ± 0.3	59.8 ± 0.1	78.4 ± 0.4	97.5 ± 0.0	90.9 ± 0.1	58.3 ± 0.4
CluStream-G - SC	53.7 ± 2.6	58.4 ± 1.1	78.5 ± 0.2	97.8 ± 0.1	91.0 ± 0.1	53.0 ± 1.3
CluStream-C - SCAR						
	50.6 ± 1.1	54.4 ± 2.2	78.5 ± 0.2	93.5 ± 3.9	92.1 ± 0.1	50.3 ± 0.8
CluStream-W - SCAR	50.9 ± 1.9	$ 60.1\pm0.4 $	64.7 ± 0.2	80.1 ± 6.3		50.6 ± 0.4
CluStream-S - SCAR	53.6 ± 1.8	$ 59.0\pm0.6 $	$ 65.1\pm0.3 $	72.6 ± 4.5	82.2 ± 0.2	50.0 ± 1.4
CluStream-G - SCAR	54.2 ± 2.0	58.4 ± 1.2	65.3 ± 0.3	79.8 ± 3.6	83.3 ± 0.1	50.9 ± 0.4
CluStream-C - SpectACl	53.5 ± 1.6	60.6 ± 1.4	74.5 ± 0.9	95.1 ± 3.8	91.8 ± 0.0	48.5 ± 0.8
CluStream-W - SpectACl	57.7 ± 1.4	65.2 ± 0.8	46.8 ± 1.4	98.9 ± 0.0	94.3 ± 0.0	50.3 ± 0.7
CluStream-S - SpectACl					94.2 ± 0.1	
Clustream-5 - SpectACI	56.9 ± 3.5	$ 63.2\pm1.7 $	74.0 ± 0.6	98.9 ± 0.0		50.3 ± 0.5
CluStream-G - SpectACl	56.5 ± 2.7	60.0 ± 1.7	42.1 ± 0.8	97.3 ± 2.8	94.3 ± 0.1	49.3 ± 1.2
CluStream-C - DBSCAN	55.8 ± 0.0	$]54.5\pm0.0[$	72.8 ± 0.0	96.3 ± 0.0	94.6 ± 0.0	43.4 ± 0.0
CluStream-W - DBSCAN	57.6 ± 0.0	57.6 ± 0.0	73.5 ± 0.0	96.2 ± 0.0	94.8 ± 0.0	43.7 ± 0.0
CluStream-S - DBSCAN	55.7 ± 0.0	56.9 ± 0.0	74.7 ± 0.0	96.2 ± 0.0	94.8 ± 0.0	44.0 ± 0.0
CluStream-G - DBSCAN	53.4 ± 1.5	60.1±0.8	79.5 ± 0.2	89.3±1.4	94.8 ± 0.0	44.2 ± 0.0
CluStream-C - HDBSCAN			73.6 ± 0.0			
	56.3 ± 0.0	55.5 ± 0.0		99.1 ± 0.0	91.1 ± 0.0	46.8 ± 0.0
CluStream-W - HDBSCAN	56.5 ± 0.0	$ 63.2\pm0.0 $	72.3 ± 0.0	99.1 ± 0.0	93.5 ± 0.0	45.1 ± 0.0
CluStream-S - HDBSCAN	56.4 ± 0.0	$ 62.2\pm0.0 $	$ 69.4\pm0.0 $	99.1 ± 0.0	93.8 ± 0.0	44.3 ± 0.0
CluStream-G - HDBSCAN	56.6 ± 2.6	$ 62.1\pm0.1 $	79.4 ± 0.3	93.7 ± 0.7	93.8 ± 0.0	48.2 ± 0.3
CluStream-C - RNN-DBS	43.0 ± 0.0	31.5 ± 0.0	70.5 ± 0.0	92.1 ± 0.0	91.8 ± 0.0	46.2 ± 0.0
CluStream-W - RNN-DBS	50.9 ± 0.0	55.5 ± 0.0	40.7 ± 0.0	69.7 ± 0.0	77.8 ± 0.0	43.2 ± 0.0
CluStream-S - RNN-DBS	51.0 ± 0.0	55.2 ± 0.0	25.0 ± 0.0	73.7 ± 0.0	78.1 ± 0.0	46.7 ± 0.0
CluStream-G - RNN-DBS	50.2 ± 1.0	42.2 ± 0.6	62.7 ± 1.5	63.9 ± 4.5	79.1 ± 0.0	41.3 ± 0.4
CluStream-C - MDBSCAN	57.6 ± 0.0	57.5 ± 0.0	75.1 ± 0.0	99.0 ± 0.0	94.6 ± 0.0	40.9 ± 0.0
CluStream-W - MDBSCAN	57.8 ± 0.0	58.8 ± 0.0	72.3 ± 0.0	99.8 ± 0.0	94.6 ± 0.0	45.3 ± 0.0
CluStream-S - MDBSCAN	57.8 ± 0.0	58.7 ± 0.0	72.6 ± 0.0	99.8 ± 0.0	95.3 ± 0.0	42.8 ± 0.0
CluStream-G - MDBSCAN	53.9 ± 1.5	54.8 ± 1.2	74.2 ± 0.4	96.8 ± 2.0	$\frac{95.3}{95.3}\pm0.0$	36.6 ± 0.0
CluStream-C - DPC			77.3 ± 0.0	93.6 ± 0.0	93.8 ± 0.0	39.8 ± 0.0
	50.7 ± 0.0	54.4 ± 0.0				
CluStream-W - DPC	56.6 ± 0.0	64.6 ± 0.0	74.7 ± 0.0	85.1 ± 0.0	93.6 ± 0.0	42.1 ± 0.0
CluStream-S - DPC	58.1 ± 0.0	$ 64.4\pm0.0 $	$ 74.8\pm0.0 $	86.7 ± 0.0	93.6 ± 0.0	40.0 ± 0.0
CluStream-G - DPC	44.7 ± 0.8	60.4 ± 0.3	81.5 ± 0.4	85.2 ± 3.9	91.3 ± 0.1	40.2 ± 0.0
CluStream-C - SNN-DPC	55.0 ± 1.9	38.3 ± 0.0	67.3 ± 0.0	74.1 ± 0.0	89.0 ± 0.0	50.6 ± 0.3
CluStream-W - SNN-DPC	59.3 ± 0.0	47.1 ± 0.8	55.9 ± 0.0	94.5 ± 0.0	88.8±0.1	54.0 ± 0.0
		47.1 ± 0.8 45.7 ± 0.0				
CluStream-S - SNN-DPC	59.1 ± 0.0		57.5 ± 0.0	92.9 ± 0.0	89.1 ± 0.0	51.4 ± 0.0
CluStream-G - SNN-DPC	52.9 ± 3.4	51.6 ± 1.8	76.3 ± 0.8	86.0 ± 3.5	93.9 ± 0.0	52.1 ± 1.0
CluStream-C - DBHD	59.6 ± 0.0	57.2 ± 0.0	77.2 ± 0.0	97.9 ± 0.0	92.7 ± 0.0	56.3 ± 0.0
CluStream-W - DBHD	59.6 ± 0.0	57.2 ± 0.0	77.2 ± 0.0	97.9 ± 0.0	92.7 ± 0.0	56.3 ± 0.0
CluStream-S - DBHD	59.6 ± 0.0	57.2±0.0	77.2 ± 0.0	97.9 ± 0.0	92.7 ± 0.0	56.3 ± 0.0
CluStream-G - DBHD	51.6 ± 1.5	55.3 ± 1.0	82.3 ± 0.2	54.6 ± 2.9	79.6 ± 0.1	43.2 ± 0.3
CIGNITOTI G DDIID	O1.011.0	JU.51.0	3 2. 010.2	J 1.0 ± 2.0	.0.010.1	20.210.0

Table 42: FMI Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

narked as bold , and the						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	FMI	FMI	FMI	FMI	FMI	FMI
CTDE A MIZmoons	48.4±3.5	35.8±0.0	68.5±1.5	74.4±3.4	63.9±0.0	50.6±0.0
STREAMKmeans						
DenStream	$ 21.6\pm0.0 $	$ 43.0\pm0.0 $	66.9 ± 0.0	$ 45.2\pm0.0 $	86.3 ± 0.0	43.6 ± 0.0
DBSTREAM	43.1 ± 0.0	35.9 ± 0.0	44.3 ± 0.0	72.4 ± 0.0	95.6 ± 0.0	47.1 ± 0.0
EMCStream	58.6 ± 3.2	65.7 ± 4.0	67.9 ± 1.6	71.5 ± 4.5	76.6 ± 8.5	47.5 ± 0.5
MCMSTStream				63.4 ± 0.0		
	36.8 ± 0.0	30.4 ± 0.0	76.0 ± 0.0	03.4±0.0	77.3 ± 0.0	40.3 ± 0.0
GB-FuzzyStream	$ 41.0\pm4.3 $	$ 32.9\pm0.8 $	$ 43.4\pm0.3 $	-	-	38.2 ± 0.3
CluStream-O - var. k	24.6±0.0	57.1±0.0	34.7 ± 0.0	23.4±0.0	80.1±0.0	35.5 ± 0.0
CluStream-O - fixed k	$ 46.8\pm0.0 $	$ 38.9\pm0.0 $	69.3 ± 0.0	$ 77.4\pm0.0 $	90.3 ± 0.0	48.0 ± 0.0
CluStream-O - $k=100$	24.6 ± 0.0	$ 57.1\pm0.0 $	34.7 ± 0.0	$ 23.4\pm0.0 $	80.1 ± 0.0	35.5 ± 0.0
ClCt W. Maran	470100	701110	00 4 1 0 6	000100		40.01.0.7
CluStream - Wk -Means	47.2 ± 0.9	$ 60.1\pm1.8 $	80.4 ± 0.6	98.0 ± 0.2	92.0 ± 0.2	49.2 ± 0.7
CluStream-C - k-Means	47.4 ± 2.0	42.3 ± 1.1	77.4 ± 0.8	95.7 ± 1.2	93.9 ± 0.0	47.1 ± 1.0
CluStream-W - k-Means	47.2 ± 0.9	60.1 ± 1.8	80.4±0.6	98.0 ± 0.2	92.0 ± 0.2	49.2 ± 0.7
CluStream-S - k -Means	45.9 ± 1.3	59.4 ± 1.7	81.3 ± 0.4	97.5 ± 0.0	92.1 ± 0.2	48.4 ± 0.7
CluStream-G - k -Means	46.5 ± 1.2	$ 60.3\pm1.9 $	81.6 ± 0.6	97.8 ± 0.0	92.1 ± 0.2	48.4 ± 0.8
CluStream-C - SubKMeans	46.2 ± 1.3	50.2 ± 1.9	77.5 ± 0.9	95.9 ± 1.0	93.9 ± 0.0	46.7 ± 1.4
CluStream-W - SubKMeans	45.9 ± 1.5	60.9 ± 3.1	79.8 ± 1.1	97.8 ± 0.3	91.9 ± 0.2	49.3 ± 0.4
CluStream-S - SubKMeans	46.0 ± 1.2	$ 61.7\pm2.2 $	80.4 ± 0.6	97.5 ± 0.0	92.2 ± 0.2	48.8 ± 0.5
CluStream-G - SubKMeans	46.5 ± 1.2	62.3 ± 2.4	81.0 ± 0.7	97.8 ± 0.0	92.2 ± 0.2	48.9 ± 0.5
CluStream-C - X-Means	58.4 ± 0.6	44.7±3.9	79.9 ± 0.6	55.4 ± 0.7	91.6 ± 0.1	43.6 ± 0.4
CluStream-W - X-Means						
	25.2 ± 0.3	$ 57.4\pm0.1 $	76.2 ± 0.9	39.8 ± 0.0	80.2±0.0	35.5 ± 0.0
CluStream-S - X-Means	24.8 ± 0.1	57.3 ± 0.0	76.8 ± 0.5	38.7 ± 0.9	80.1 ± 0.0	35.5 ± 0.0
CluStream-G - X-Means	37.1 ± 3.9	$ 58.8\pm0.4 $	79.5 ± 0.9	35.9 ± 0.3	83.8 ± 0.0	35.5 ± 0.0
CluStream-C - P-Dip-M	43.1 ± 0.0	36.0 ± 0.0	45.7 ± 0.0	80.7 ± 2.8	93.6 ± 0.0	50.7 ± 0.4
CluStream-W - P-Dip-M	30.2 ± 0.2	-	40.2 ± 0.1	33.0 ± 3.3	33.320.0	50
		-			-	-
CluStream-S - P-Dip-M	29.7 ± 0.1	-	39.8 ± 0.2	34.6 ± 0.2		-
CluStream-G - P-Dip-M	50.3 ± 0.9	$ 58.0\pm0.4 $	80.1 ± 0.4	60.3 ± 0.7	89.2 ± 0.0	38.4 ± 0.2
CluStream-C - SC	55.2 ± 0.5	58.6 ± 1.4	81.4 ± 0.0	97.5 ± 0.0	94.2 ± 0.0	52.3 ± 1.1
CluStream-W - SC	57.4 ± 2.0	57.8±0.4	79.3 ± 0.4	97.5 ± 0.0	91.2 ± 0.0	57.6±0.9
CluStream-S - SC	56.4 ± 0.2	$ 60.2\pm0.1 $	78.8 ± 0.4	97.5 ± 0.0	91.1 ± 0.1	59.1 \pm 0.3
CluStream-G - SC	54.5 ± 2.6	58.4 ± 1.1	79.0 ± 0.2	97.8 ± 0.1	91.3 ± 0.1	53.4 ± 1.3
CluStream-C - SCAR	51.6 ± 1.1	57.7±1.8	78.9 ± 0.1	93.8 ± 3.6	92.4 ± 0.1	51.1 ± 0.8
CluStream-W - SCAR	51.8 ± 1.8	60.6 ± 0.4	66.0 ± 0.2	80.5 ± 6.3	_	51.4 ± 0.4
					00 0 1 0 0	
CluStream-S - SCAR	54.4 ± 1.8	$ 59.3\pm0.5 $	66.3 ± 0.3	73.0 ± 4.3	82.8 ± 0.2	50.6 ± 1.4
CluStream-G - SCAR	$ 55.1\pm2.0 $	$ 58.5\pm1.2 $	66.4 ± 0.3	80.0 ± 3.5	84.5 ± 0.1	51.9 ± 0.4
CluStream-C - SpectACl	54.1 ± 1.4	60.8 ± 1.3	75.9 ± 0.8	95.6 ± 3.4	92.0 ± 0.0	49.3 ± 0.9
CluStream-W - SpectACl	58.5 ± 1.3	65.7 ± 0.8	49.8 ± 0.9	98.9 ± 0.0	94.4 ± 0.0	50.9 ± 0.7
Clastream-W - SpectACI						
CluStream-S - SpectACl	57.6 ± 3.6	$ 63.6\pm1.7 $	74.7 ± 0.5	98.9 ± 0.0	94.3 ± 0.1	51.0 ± 0.5
CluStream-G - SpectACl	57.2 ± 2.7	$ 60.3\pm1.8 $	46.2 ± 0.5	97.3 ± 2.8	94.4 ± 0.1	49.9 ± 1.2
CluStream-C - DBSCAN	56.5 ± 0.0	56.1 ± 0.0	74.9 ± 0.0	96.5 ± 0.0	94.7 ± 0.0	48.4 ± 0.0
CluStream-W - DBSCAN	58.3 ± 0.0	59.6 ± 0.0	75.6 ± 0.0	96.4 ± 0.0	94.9 ± 0.0	48.6 ± 0.0
CluStream-S - DBSCAN	56.5 ± 0.0	$ 58.9\pm0.0 $	76.6 ± 0.0	96.4 ± 0.0	94.9 ± 0.0	48.8 ± 0.0
CluStream-G - DBSCAN	55.1 ± 1.8	$ 60.6\pm0.9 $	80.5 ± 0.2	89.4 ± 1.5	94.9 ± 0.0	48.9 ± 0.0
CluStream-C - HDBSCAN	57.7 ± 0.0	58.7 ± 0.0	75.6 ± 0.0	99.1 ± 0.0	91.3 ± 0.0	49.5 ± 0.0
CluStream-W - HDBSCAN	57.1 ± 0.0	64.4 ± 0.0	74.5 ± 0.0	99.1 ± 0.0	93.7 ± 0.0	48.9 ± 0.0
CluStream-S - HDBSCAN						
Clasticanias - HDDSCAN	57.1 ± 0.0	$ 63.4\pm0.0 $	69.8 ± 0.0	99.1 ± 0.0	93.9 ± 0.0	48.6 ± 0.0
CluStream-G - HDBSCAN	57.0 ± 2.6	$ 63.1\pm0.1 $	80.1 ± 0.3	94.0 ± 0.7	93.9 ± 0.0	50.1 ± 0.3
CluStream-C - RNN-DBS	45.8 ± 0.0	$ 42.1\pm0.0 $	71.3 ± 0.0	93.0 ± 0.0	91.9 ± 0.0	48.0 ± 0.0
CluStream-W - RNN-DBS	51.3 ± 0.0	56.9 ± 0.0	42.1 ± 0.0	73.1 ± 0.0	78.5 ± 0.0	45.6 ± 0.0
CluStream-S - RNN-DBS	51.4 ± 0.0	56.7 ± 0.0	33.0 ± 0.0	76.8 ± 0.0	78.8 ± 0.0	48.4 ± 0.0
CluStream-G - RNN-DBS	52.4 ± 1.0	$ 47.6\pm0.7 $	63.8 ± 1.5	69.1 ± 4.0	79.7 ± 0.0	45.2 ± 0.3
CluStream-C - MDBSCAN	58.3 ± 0.0	$ 58.7\pm0.0 $	76.7 ± 0.0	99.0 ± 0.0	94.7 ± 0.0	45.9 ± 0.0
CluStream-W - MDBSCAN	59.5 ± 0.0	59.8 ± 0.0	74.5 ± 0.0	99.8 \pm 0.0	94.7 ± 0.0	49.3 ± 0.0
CluStream-S - MDBSCAN	58.6 ± 0.0	59.5 ± 0.0	74.7 ± 0.0	99.8 ± 0.0	95.3 ± 0.0	47.1 ± 0.0
CluStream-G - MDBSCAN	55.3 ± 1.8	55.6 ± 1.1	76.1 ± 0.3	96.9 ± 1.8	95.4 ± 0.0	42.8 ± 0.0
CluStream-C - DPC	51.9 ± 0.0	$ 55.8\pm0.0 $	78.4 ± 0.0	94.0 ± 0.0	94.0 ± 0.0	43.7 ± 0.0
CluStream-W - DPC	56.9 ± 0.0	64.9 ± 0.0	76.0 ± 0.0	85.8 ± 0.0	93.8 ± 0.0	45.8 ± 0.0
CluStream-S - DPC	58.5 ± 0.0	64.5±0.0	76.2 ± 0.0	87.2±0.0	93.8 ± 0.0	44.5 ± 0.0
CluStream-G - DPC	49.3 ± 1.0	60.8 ± 0.4	82.3 ± 0.3	86.4±3.5	91.9 ± 0.1	44.4 ± 0.0
CluStream-C - SNN-DPC	55.3 ± 1.7	$ 45.7\pm0.0 $	68.4 ± 0.0	75.3 ± 0.0	89.5 ± 0.0	52.0 ± 0.3
CluStream-W - SNN-DPC	61.4 ± 0.0	53.0 ± 0.5	59.6 ± 0.0	94.6 ± 0.0	89.1 ± 0.1	56.3 ± 0.0
CluStream-S - SNN-DPC	61.4 ± 0.0	52.0 ± 0.0	60.9 ± 0.0	93.2 ± 0.0	89.4±0.0	53.8 ± 0.0
CluStream-G - SNN-DPC	53.3 ± 3.3	52.7 ± 1.7	77.7 ± 0.7	86.5±3.4	94.0 ± 0.0	54.5 ± 1.0
CluStream-C - DBHD	$ 61.6\pm0.0 $	$ 58.5\pm0.0 $	77.7 \pm 0.0	97.9 ± 0.0	92.9 ± 0.0	57.7 ± 0.0
CluStream-W - DBHD	61.6 ± 0.0	$ 58.5\pm0.0 $	77.7 ± 0.0	97.9 ± 0.0	92.9 ± 0.0	57.7 ± 0.0
CluStream-S - DBHD	61.6 \pm 0.0	58.5 ± 0.0	77.7 ± 0.0	97.9 ± 0.0	92.9 ± 0.0	57.7 ± 0.0
CluStream-G - DBHD	54.8 ± 1.4	56.8 ± 0.9	82.7 ± 0.3	60.3 ± 2.9	80.4 ± 0.1	48.0 ± 0.3
Classicani-G - DDIID	O4.011.4	50.0±0.9	52.1 ±0.5	30.0±2.3	JU.41U.1	10.0±0.0

Table 43: Purity Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

narked as bold, and the						
Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Purity	Purity	Purity	Purity	Purity	Purity
CODEANIZ					v	v
STREAMKmeans	61.9 ± 2.8	22.2 ± 0.6	$ 68.0\pm2.6 $	$ 67.0\pm6.6 $	$ 56.8\pm0.0 $	34.4 ± 0.0
DenStream	96.9 ± 0.0	89.0 ± 0.0	87.2 ± 0.0	96.8 ± 0.0	97.1 ± 0.0	64.7 ± 0.0
DBSTREAM	29.9 ± 0.0	20.9 ± 0.0	26.4 ± 0.0	61.1 ± 0.0	97.2 ± 0.0	41.0 ± 0.0
EMCStream	70.2 ± 1.1	68.9 ± 1.4	$ 67.1\pm2.7 $	73.9 ± 9.0	83.4 ± 5.3	38.0 ± 0.4
MCMSTStream	40.7 ± 0.0	$ 42.1\pm0.0 $	$ 87.7\pm0.0 $	$ 99.5\pm0.0 $	79.0 ± 0.0	68.3 ± 0.0
GB-FuzzyStream	39.1 ± 18.3	43.3±0.4	62.1 ± 0.4	_	_	44.2 ± 0.6
CluStream-O - var. k	99.9 ± 0.0	90.7 ± 0.0	$ 95.4 \pm 0.0 $	$ 99.9\pm0.0 $	$ 99.6\pm0.0 $	93.9 ± 0.0
CluStream-O - fixed k	68.4 ± 0.0	32.7 ± 0.0	71.8 ± 0.0	80.1±0.0	99.1 ± 0.0	59.8 ± 0.0
CluStream-O - $k=100$	99.9 ± 0.0	$ 90.7\pm0.0 $	∥95.4 ±0.0	$ 99.9\pm0.0 $	$ 99.6\pm0.0 $	93.9±0.0
CluStream - Wk-Means	69.8 ± 1.6	67.2 ± 1.5	88.7 ± 0.3	98.9 ± 0.1	99.0 ± 0.0	66.9 ± 0.4
CluStream-C - k-Means	70.1 ± 1.8	37.1 ± 2.3	81.3 ± 0.6	97.6 ± 0.7	99.1 ± 0.0	61.0 ± 1.0
CluStream-W - k-Means	69.8 ± 1.6	67.2 ± 1.5	88.7 ± 0.3	98.9 ± 0.1	99.0 ± 0.0	66.9 ± 0.4
CluStream-S - k-Means	69.2 ± 1.6	65.7 ± 1.3	88.8 ± 0.4	98.7 ± 0.0	99.0 ± 0.0	65.6 ± 0.5
CluStream-G - k-Means	70.0 ± 1.3	66.4 ± 2.3	89.6 ± 0.4	98.8 ± 0.0	99.0 ± 0.0	65.6 ± 0.7
CluStream-C - SubKMeans	68.9 ± 1.4	55.4 ± 2.5	82.3 ± 0.6	97.7 ± 0.6	99.1 ± 0.0	61.3 ± 1.0
CluStream-W - SubKMeans	68.3 ± 1.7	70.7 ± 1.2	90.2 ± 0.2	98.8±0.1	99.0 ± 0.0	67.4 ± 0.6
CluStream-S - SubKMeans	68.6 ± 1.2	69.9 ± 1.6	89.8 ± 0.3	98.7 ± 0.0	99.0 ± 0.0	67.5 ± 0.4
CluStream-G - SubKMeans	69.9 ± 1.3	69.6 ± 2.5	89.5 ± 0.3	98.8 ± 0.0	99.0 ± 0.0	67.4 ± 0.3
CluStream-C - X-Means	59.8±0.4	42.0 ± 7.2	84.1 ± 0.7	99.0 ± 0.4	98.9 ± 0.0	77.6 ± 0.5
CluStream-W - X-Means	99.9 ± 0.0	89.2 ± 0.8	84.5 ± 0.5	$ 99.9\pm0.0 $	99.5 ± 0.0	93.9 ± 0.0
CluStream-S - X-Means	$ 99.9\pm0.0 $	89.8 ± 0.4	84.3 ± 0.4	$ 99.9\pm0.0 $	$ 99.6\pm0.0 $	93.9 ± 0.0
CluStream-G - X-Means	94.4 ± 5.7	88.0 ± 0.4	89.9 ± 1.0	$ 99.9\pm0.0 $	99.6 ± 0.0	93.9 ± 0.0
CluStream-C - P-Dip-M	29.9 ± 0.0	20.6 ± 0.0	28.4 ± 0.0	72.8±3.9	97.7 ± 0.0	59.8 ± 0.7
					91.1±0.0	
CluStream-W - P-Dip-M	98.7 ± 0.5	-	93.7 ± 0.1	$ 99.9\pm0.0 $	-	-
CluStream-S - P-Dip-M	98.8 ± 0.1	-	93.5 ± 0.1	$ 99.9\pm0.0 $	-	-
CluStream-G - P-Dip-M	76.2 ± 1.8	81.3 ± 0.8	81.8 ± 0.5	98.6 ± 0.2	99.1 ± 0.0	92.5 ± 0.2
CluStream-C - SC	65.7 ± 0.7					
		58.6 ± 0.6	87.6 ± 0.0	98.7 ± 0.0	98.3 ± 0.1	64.2 ± 0.9
CluStream-W - SC	79.4 ± 1.4	70.5 ± 0.3	85.7 ± 0.4	98.7 ± 0.0	98.5 ± 0.0	73.4 ± 0.4
CluStream-S - SC	77.7 ± 0.5	73.4 ± 0.1	85.8 ± 0.4	98.7 ± 0.0	98.1 ± 0.1	74.0 ± 0.6
CluStream-G - SC	77.2 ± 2.8	72.3 ± 0.6	85.9 ± 0.2	98.8±0.0	98.6±0.0	69.9 ± 0.9
CluStream-C - SCAR	73.8 ± 0.9	59.0 ± 2.0	87.9 ± 0.2	94.6 ± 4.4	98.1 ± 0.1	66.1 ± 1.2
CluStream-W - SCAR	73.7 ± 1.4	72.1 ± 0.3	86.6 ± 0.0	82.3 ± 5.5	-	69.7 ± 0.4
CluStream-S - SCAR	77.2 ± 1.6	71.8 ± 0.4	86.7 ± 0.2	77.7 ± 5.5	92.5 ± 0.1	69.8 ± 1.6
CluStream-G - SCAR	77.5 ± 1.6	72.1 ± 0.8	86.6 ± 0.1	84.0 ± 4.0		70.8 ± 0.3
					98.0 ± 0.0	
CluStream-C - SpectACl	75.7 ± 1.1	74.0 ± 1.2	77.8 ± 0.9	94.2 ± 4.6	97.5 ± 0.0	65.4 ± 1.0
CluStream-W - SpectACl	79.2 ± 1.1	76.9 ± 0.5	52.8 ± 2.1	99.4 ± 0.0	98.9 ± 0.0	68.0 ± 1.0
CluStream-S - SpectACl	76.5 ± 4.1	76.7 ± 1.1	88.1 ± 0.4	99.4 ± 0.0	98.5 ± 0.1	68.1 ± 0.7
CluStream-G - SpectACl		75.2 ± 1.2				67.2 ± 1.1
	77.0 ± 2.5		47.5 ± 1.4	98.2 ± 2.4	98.6 ± 0.1	
CluStream-C - DBSCAN	78.8 ± 0.0	78.2 ± 0.0	75.2 ± 0.0	$ 99.9\pm0.0 $	99.5 ± 0.0	78.0 ± 0.0
CluStream-W - DBSCAN	73.3 ± 0.0	74.8 ± 0.0	75.7 ± 0.0	$ 99.9\pm0.0 $	97.9 ± 0.0	76.5 ± 0.0
CluStream-S - DBSCAN	80.2 ± 0.0	74.8 ± 0.0	76.9 ± 0.0	$ 99.9\pm0.0 $	97.7 ± 0.0	76.2 ± 0.0
CluStream-G - DBSCAN	79.0 ± 4.7	81.6 ± 0.6	83.5 ± 0.2	92.0 ± 2.9	97.8 ± 0.0	76.2 ± 0.0
CluStream-C - HDBSCAN	82.2 ± 0.0	65.0 ± 0.0	75.3 ± 0.0	$ 99.9\pm0.0 $	94.9 ± 0.0	82.7 ± 0.0
CluStream-W - HDBSCAN	78.2 ± 0.0	84.1 ± 0.0	74.5 ± 0.0	$ 99.9\pm0.0 $	94.7 ± 0.0	82.3 ± 0.0
CluStream-S - HDBSCAN	78.8 ± 0.0	84.7±0.0	83.9±0.0	99.9 ± 0.0	94.6 ± 0.0	83.8±0.0
CluStream-G - HDBSCAN					94.6 ± 0.0	
	73.8 ± 3.2	85.3 ± 0.2	84.2±0.3	98.7 ± 0.3		76.7 ± 0.2
CluStream-C - RNN-DBS	86.0 ± 0.0	32.3 ± 0.0	82.6 ± 0.0	90.2 ± 0.0	96.3 ± 0.0	74.9 ± 0.0
CluStream-W - RNN-DBS	73.8 ± 0.0	84.0 ± 0.0	71.3 ± 0.0	98.3 ± 0.0	87.0 ± 0.0	76.2 ± 0.0
CluStream-S - RNN-DBS	72.4 ± 0.0	84.5 ± 0.0	88.0 ± 0.0	99.7 ± 0.0	87.2 ± 0.0	75.9 ± 0.0
					89.6 ± 0.0	
CluStream-G - RNN-DBS	80.6 ± 4.1	53.0 ± 1.4	79.2 ± 1.2	92.0 ± 3.8		81.9 ± 0.1
CluStream-C - MDBSCAN	73.3 ± 0.0	89.6 ± 0.0	79.4 ± 0.0	99.7 ± 0.0	98.3 ± 0.0	85.2 ± 0.0
CluStream-W - MDBSCAN	82.6 ± 0.0	89.0 ± 0.0	73.7 ± 0.0	$ 99.9\pm0.0 $	95.1 ± 0.0	76.6 ± 0.0
	79.7 ± 0.0	88.5±0.0	74.0 ± 0.0	99.9 ± 0.0	95.6±0.0	80.0 ± 0.0
CluStream-S - MDBSCAN CluStream-G - MDBSCAN						
Clustream-G - MDBSCAN	79.3 ± 4.6	79.5 ± 0.5	75.8 ± 0.6	98.8 ± 0.1	95.7 ± 0.0	84.1 ± 0.0
CluStream-C - DPC	78.0 ± 0.0	75.0 ± 0.0	80.9 ± 0.0	$ 99.9\pm0.0 $	95.9 ± 0.0	68.3 ± 0.0
CluStream-W - DPC	63.4 ± 0.0	84.7±0.0	78.8 ± 0.0	95.0 ± 0.0	99.5 ± 0.0	80.5 ± 0.0
CluStream-S - DPC	64.7 ± 0.0	87.3 ± 0.0	79.1 ± 0.0	95.0 ± 0.0		84.8 ± 0.0
	04.7±0.0				99.5 ± 0.0	
CluStream-G - DPC	86.6±1.1	82.0 ± 0.2	85.8 ± 0.4	95.5 ± 4.1	92.6 ± 0.1	83.5 ± 0.0
CluStream-C - SNN-DPC	70.9 ± 0.1	43.7 ± 0.1	76.2 ± 0.0	76.2 ± 0.0	97.8 ± 0.0	64.3 ± 0.7
CluStream-W - SNN-DPC	68.1 ± 0.0	51.3 ± 0.7	58.9 ± 0.0	96.3 ± 0.0	95.0 ± 0.1	61.1 ± 0.0
CluStroom S SNN DDC		49.5 ± 0.0				
CluStream-S - SNN-DPC	72.4 ± 0.0		60.7 ± 0.0	94.2±0.0	95.0 ± 0.0	57.4 ± 0.0
CluStream-G - SNN-DPC	74.0 ± 3.2	65.8 ± 1.7	79.2 ± 0.8	86.1 ± 3.6	98.8 ± 0.0	64.4 ± 0.7
CluStream-C - DBHD	85.9 ± 0.0	88.3 ± 0.0	85.9 ± 0.0	98.9 ± 0.0	98.1 ± 0.0	80.3 ± 0.0
CluStream-W - DBHD	85.9 ± 0.0	88.3±0.0	85.9±0.0	98.9±0.0	98.1 ± 0.0	80.3 ± 0.0
CluStream-S - DBHD	85.9 ± 0.0	88.3 ± 0.0	85.9 ± 0.0	98.9 ± 0.0	98.1 ± 0.0	80.3 ± 0.0
CluStream-G - DBHD	85.7 ± 2.1	82.1 ± 0.6	87.9 ± 0.3	93.5 ± 4.7	93.8 ± 0.0	83.2 ± 0.2

Table 44: Homogeneity Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

	Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
DenStream		Homogeneity	Homogeneity	Homogeneity	Homogeneity	Homogeneity	Homogeneity
DBSTREAM	STREAMKmeans						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
MCMSTStream							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	EMCStream	65.5 ± 1.3	65.3 ± 1.5	57.2±3.0	27.3±19.1	58.5 ± 10.7	
ClaStream-O - war. k	MCMSTStream	12.6 ± 0.0		78.8±0.0	97.3±0.0	56.4 ± 0.0	50.7±0.0
CluStream-O - k=100	GB-FuzzyStream	13.0 ± 26.0	31.0 ± 0.9	47.6±0.4	-	-	16.2±0.9
CluStream-O - k=100	CluStream-O - var. k	99.8±0.0	89.1±0.0	93.2±0.0	99.5±0.0	99.1±0.0	91.4±0.0
CluStream - W Means 68.1+0.9 62.1±1.3 80.9±0.2 93.3±0.4 97.3±0.0 48.8±0.8				64.0 ± 0.0			36.8 ± 0.0
CluStream - W Means 68.1+0.9 62.1±1.3 80.9±0.2 93.3±0.4 97.3±0.0 48.8±0.8	CluStream-O - k=100	99.8±0.0	89.1±0.0	93.2±0.0	99.5±0.0	99.1±0.0	91.4±0.0
CluStream-W - k-Means G8.1±0.9 G2.1±1.3 80.9±0.2 93.3±0.4 97.3±0.0 47.5±0.6							
CluStream-W - k-Means G8.1±0.9 G2.1±1.3 80.9±0.2 93.3±0.4 97.3±0.0 47.5±0.6							
CluStream-S - k-Means 67.3±1.3 60.1±1.3 81.0±0.2 92.5±0.0 97.3±0.0 47.5±0.6							
CluStream-W - SubKMeans 66.1±1.2 47.4±2.2 75.2±0.7 88.0±3.0 97.4±0.0 40.2±1.5							
CluStream-S - SubKMeans 66.8±1.0 65.5±1.6 82.7±0.2 92.5±0.0 97.4±0.0 49.5±0.6 CluStream-W - XMeans 58.8±0.3 33.3±9.2 78.4±0.5 95.8±1.6 97.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0			61.4 ± 1.9	81.7±0.3	93.2 ± 0.1	97.4 ± 0.0	47.4 ± 0.9
CluStream-S - SubKMeans 66.8±1.0 65.5±1.6 82.7±0.2 92.5±0.0 97.4±0.0 49.5±0.6 CluStream-W - XMeans 58.8±0.3 33.3±9.2 78.4±0.5 95.8±1.6 97.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0	CluStream-C - SubKMeans	66.1±1.2	47.4 ± 2.2	75.2 ± 0.7	88.0±3.0	97.4 ± 0.0	40.2 ± 1.5
CluStream-S - SubKMeans 66.8±1.0 65.5±1.6 82.7±0.2 92.5±0.0 97.4±0.0 49.5±0.6 CluStream-W - XMeans 58.8±0.3 33.3±9.2 78.4±0.5 99.3±0.1 97.0±0.0 67.1±0.5 67.0±0.0 67.0±0.0 67.1±0.5 67.0±0.0 67.0	CluStream-W - SubKMeans	66.7 ± 1.3				97.3 ± 0.0	49.3 ± 0.8
CIRStream-W - X-Means 93.8±0.1 88.0±0.6 77.7±0.6 99.5±0.0 99.1±0.0 91.4±0.0 91.4±0.0	CluStream-S - SubKMeans	66.8 ± 1.0	65.5 ± 1.6	82.7 ± 0.2	92.5 ± 0.0	97.4 ± 0.0	49.5 ± 0.6
CluStream-W - X-Means 99.8±0.1 88.0±0.6 77.7±0.6 99.5±0.0 99.1±0.					93.2 ± 0.1		
CluStream-G - X-Means							
CluStream G - X-Means							
CIUStream W - P-Dip-M 0.0±0.0 0.0±0.0 3.5±0.0 29.9±10.0 91.8±0.1 36.8±0.9							
CluStream-G - P-Dip-M 198.6±0.1 -	CluStream-G - X-Means						
CluStream-G - P-Dip-M 198.6±0.1 -	CluStream-C - P-Dip-M		0.0 ± 0.0		29.9 ± 10.0	91.8 ± 0.1	36.8 ± 0.9
CluStream-G - P-Dip-M 98.6±0.1 77.1±0.7 72.9±0.5 92.4±0.7 97.6±0.0 89.2±0.4	CluStream-W - P-Dip-M		-		99.5 ± 0.0	-	-
CluStream-C - SC	CluStream-S - P-Dip-M		-		99.5 ± 0.0	-	
CluStream-W - SC							
CluStream-G - SC							
CluStream-G - SCAR							
CluStream-W - SCAR	CluStream-S - SC	76.5 ± 0.1					61.5 ± 0.7
CluStream-W - SCAR			70.8 ± 0.7				
CluStream-G - SCAR 74.1±.14 69.4±0.5 77.1±0.1 53.5±8.2 79.3±0.4 53.3±1.9 CluStream-G - SCAR 75.5±1.9 70.3±0.7 77.1±0.1 53.5±8.2 94.5±0.1 55.9±0.4 CluStream-W - SpectACI 75.6±1.0 74.3±0.6 36.9±2.3 96.2±0.0 95.7±0.1 51.3±1.1 CluStream-G - SpectACI 74.5±2.3 73.8±1.0 83.5±0.2 96.2±0.0 95.7±0.1 51.3±1.1 CluStream-G - SpectACI 74.5±2.3 72.9±1.1 29.0±1.7 93.1±5.1 95.6±0.3 50.2±1.5 CluStream-G - DBSCAN 76.2±0.0 75.6±0.0 69.7±0.0 99.0±0.0 98.2±0.0 67.5±0.0 CluStream-B - DBSCAN 77.1±0.0 71.6±0.0 71.9±0.0 99.0±0.0 91.3±0.0 64.6±0.0 CluStream-G - BBSCAN 77.9±5.4 78.5±0.8 78.9±0.2 79.0±5.4 91.3±0.0 64.6±0.0 CluStream-G - HDBSCAN 77.5±0.4 81.8±0.0 69.6±0.0 98.9±0.0 81.9±0.0 71.6±0.0 CluStream-G - HDBSCAN 75.6±0.0 82.3±0.0 76.8±0.0 <td>CluStream-C - SCAR</td> <td></td> <td></td> <td></td> <td></td> <td>93.6 ± 0.2</td> <td></td>	CluStream-C - SCAR					93.6 ± 0.2	
CluStream-G - SCAR 75.5±1.9 70.3±0.7 77.1±0.1 53.5±8.2 94.5±0.1 55.9±0.4 CluStream-C - SpectACI 72.7±0.9 73.0±1.1 72.7±1.1 84.2±12.0 92.3±0.1 45.5±1.8 CluStream-S - SpectACI 74.8±3.2 73.8±1.0 83.5±0.2 96.2±0.0 95.7±0.1 51.3±1.1 CluStream-G - SpectACI 74.8±3.2 73.8±1.0 83.5±0.2 96.2±0.0 95.3±0.2 51.4±0.7 CluStream-G - SpectACI 74.5±2.3 72.9±1.1 29.0±1.7 99.0±0.0 95.3±0.2 51.4±0.7 CluStream-G - DBSCAN 76.2±0.0 75.6±0.0 69.7±0.0 99.0±0.0 91.5±0.0 67.5±0.0 CluStream-S - DBSCAN 77.1±0.0 71.6±0.0 71.0±0.0 99.0±0.0 91.3±0.0 64.6±0.0 CluStream-G - DBSCAN 77.9±5.4 78.5±0.8 78.9±0.2 79.0±5.4 91.3±0.0 64.6±0.0 CluStream-G - HDBSCAN 74.7±0.0 81.8±0.0 66.0±0.0 98.9±0.0 81.9±0.0 71.7±0.0 CluStream-G - HDBSCAN 75.6±0.0 82.3±0.0 76.8±0.							
CluStream-W - SpectACl							
CluStream-W - SpectACl 75.6±1.0 74.3±0.6 36.9±2.3 96.2±0.0 95.7±0.1 51.3±1.1							
CluStream-G - SpectACl 74.8±3.2 73.8±1.0 83.5±0.2 96.2±0.0 95.3±0.2 51.4±0.7	Clustream-C - SpectACI						
CluStream-W - DBSCAN	Clustream-w - Speciaci						
CluStream-W - DBSCAN	Clustream C SpectACI	74.0±3.2					
CluStream-W - DBSCAN 69.4±0.0 71.6±0.0 70.4±0.0 99.0±0.0 91.5±0.0 65.1±0.0 CluStream-S - DBSCAN 77.1±0.0 71.6±0.0 71.9±0.0 99.0±0.0 91.3±0.0 64.6±0.0 CluStream-G - DBSCAN 77.9±5.4 78.5±0.8 78.9±0.2 79.0±5.4 91.3±0.0 64.6±0.0 CluStream-C - HDBSCAN 78.8±0.0 61.8±0.0 69.6±0.0 98.9±0.0 81.9±0.0 71.6±0.0 CluStream-S - HDBSCAN 75.6±0.0 82.3±0.0 76.8±0.0 98.9±0.0 83.6±0.0 73.7±0.0 CluStream-G - HDBSCAN 71.5±3.0 82.9±0.2 77.8±0.3 94.2±1.4 84.8±0.0 64.9±0.2 CluStream-G - RNN-DBS 81.6±0.0 17.6±0.0 76.2±0.0 74.7±0.0 86.0±0.0 62.4±0.0 CluStream-S - RNN-DBS 89.0±0.0 82.7±0.0 82.7±0.0 74.7±0.0 66.2±0.0 64.7±0.0 65.3±0.0 CluStream-G - RNN-DBS 69.0±0.0 82.7±0.0 82.7±0.0 97.4±0.0 65.2±0.0 64.4±0.0 CluStream-G - MDBSCAN 69.4±0.0 87.7±0.0<	CluStream C DBSCAN						
CluStream-G - DBSCAN 77.1±0.0 71.6±0.0 71.9±0.0 99.0±0.0 91.3±0.0 64.6±0.0 CluStream-G - DBSCAN 77.9±5.4 78.5±0.8 78.9±0.2 79.0±5.4 91.3±0.0 64.6±0.0 CluStream-C - HDBSCAN 78.8±0.0 61.8±0.0 69.6±0.0 98.9±0.0 81.9±0.0 71.6±0.0 CluStream-S - HDBSCAN 74.7±0.0 81.8±0.0 68.0±0.0 98.9±0.0 83.6±0.0 73.7±0.0 CluStream-G - HDBSCAN 71.5±3.0 82.9±0.2 77.8±0.3 94.2±1.4 84.8±0.0 64.9±0.2 CluStream-G - RNN-DBS 81.6±0.0 17.6±0.0 76.2±0.0 74.7±0.0 86.0±0.0 62.4±0.0 CluStream-B - RNN-DBS 71.2±0.0 81.8±0.0 59.8±0.0 90.5±0.0 64.7±0.0 65.2±0.0 CluStream-G - RNN-DBS 69.0±0.0 82.7±0.0 82.7±0.0 97.4±0.0 65.2±0.0 64.4±0.0 CluStream-G - RNN-DBS 77.0±5.6 43.9±1.8 72.3±1.5 78.9±9.3 70.2±0.1 73.2±0.1 CluStream-G - MDBSCAN 76.6±0.0 87.2±0.0 64.9±0.0	Clustroom W DRSCAN					01.5±0.0	
CluStream-G - DBSCAN 77.9±5.4 78.5±0.8 78.9±0.2 79.9±5.4 91.3±0.0 64.6±0.0 CluStream-C - HDBSCAN 78.8±0.0 61.8±0.0 69.6±0.0 98.9±0.0 81.9±0.0 71.6±0.0 CluStream-W - HDBSCAN 74.7±0.0 81.8±0.0 68.0±0.0 98.9±0.0 83.6±0.0 73.7±0.0 CluStream-G - HDBSCAN 75.6±0.0 82.3±0.0 76.8±0.0 98.9±0.0 84.8±0.0 76.3±0.0 CluStream-G - HDBSCAN 71.5±3.0 82.9±0.2 77.8±0.3 94.2±1.4 84.8±0.0 64.9±0.2 CluStream-G - RNN-DBS 81.6±0.0 17.6±0.0 76.2±0.0 74.7±0.0 86.0±0.0 62.4±0.0 CluStream-S - RNN-DBS 71.2±0.0 81.8±0.0 59.8±0.0 90.5±0.0 64.7±0.0 65.3±0.0 CluStream-G - RNN-DBS 77.0±5.6 43.9±1.8 72.3±1.5 78.9±9.3 70.2±0.1 73.2±0.1 CluStream-G - MDBSCAN 79.4±0.0 87.2±0.0 64.9±0.0 98.9±0.0 82.9±0.0 76.4±0.0 CluStream-G - MDBSCAN 76.6±0.0 86.7±0.0 65.2±0.							
CluStream-C - HDBSCAN 78.8±0.0 61.8±0.0 69.6±0.0 98.9±0.0 81.9±0.0 71.6±0.0 CluStream-W - HDBSCAN 74.7±0.0 81.8±0.0 68.0±0.0 98.9±0.0 83.6±0.0 73.7±0.0 CluStream-G - HDBSCAN 75.6±0.0 82.3±0.0 76.8±0.0 98.9±0.0 84.8±0.0 76.3±0.0 CluStream-G - HDBSCAN 71.5±3.0 82.9±0.2 77.8±0.3 94.2±1.4 84.8±0.0 64.9±0.2 CluStream-W - RNN-DBS 81.6±0.0 17.6±0.0 72.9±0.0 74.7±0.0 86.0±0.0 62.4±0.0 CluStream-S - RNN-DBS 69.0±0.0 82.7±0.0 82.7±0.0 97.5±0.0 64.7±0.0 65.3±0.0 CluStream-G - RNN-DBS 69.0±0.0 87.7±0.0 71.0±0.0 97.4±0.0 65.2±0.0 64.4±0.0 CluStream-G - MDBSCAN 69.4±0.0 87.7±0.0 71.0±0.0 97.4±0.0 94.2±0.0 77.4±0.0 CluStream-G - MDBSCAN 76.6±0.0 65.2±0.0 65.2±0.0 98.9±0.0 82.9±0.0 65.4±0.0 CluStream-G - DPC 78.1±0.0 71.3±0.0 73.7±0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
CluStream-W - HDBSCAN 74.7±0.0 81.8±0.0 68.0±0.0 98.9±0.0 83.6±0.0 73.7±0.0 CluStream-S - HDBSCAN 75.6±0.0 82.3±0.0 76.8±0.0 98.9±0.0 84.8±0.0 76.3±0.0 CluStream-G - HDBSCAN 71.5±3.0 82.9±0.2 77.8±0.3 94.2±1.4 84.8±0.0 64.9±0.2 CluStream-C - RNN-DBS 81.6±0.0 17.6±0.0 76.2±0.0 74.7±0.0 86.0±0.0 62.4±0.0 CluStream-S - RNN-DBS 69.0±0.0 82.7±0.0 82.7±0.0 99.5±0.0 64.7±0.0 65.3±0.0 CluStream-G - RNN-DBS 77.0±5.6 43.9±1.8 72.3±1.5 78.9±9.3 70.2±0.1 73.2±0.1 CluStream-C - MDBSCAN 69.4±0.0 87.7±0.0 71.0±0.0 97.4±0.0 97.4±0.0 74.7±0.0 74.0±0.0 74.0±0.0 74.0±0.0 74.0±0.0 74.0±0.0 74.0±0.0 74.0±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 82.9±0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
CluStream-S - HDBSCAN 75.6±.0 82.3±0.0 76.8±0.0 98.9±0.0 84.8±0.0 76.3±0.0 76.3±0.0 CluStream-G - HDBSCAN 71.5±3.0 82.9±0.2 77.8±0.3 94.2±1.4 84.8±0.0 64.9±0.2 CluStream-C - RNN-DBS 81.6±0.0 17.6±0.0 76.2±0.0 74.7±0.0 86.0±0.0 62.4±0.0 CluStream-S - RNN-DBS 71.2±0.0 81.8±0.0 59.8±0.0 90.5±0.0 64.7±0.0 65.3±0.0 CluStream-G - RNN-DBS 77.0±5.6 43.9±1.8 72.3±1.5 78.9±9.3 70.2±0.1 73.2±0.1 CluStream-G - MDBSCAN 69.4±0.0 87.7±0.0 71.0±0.0 97.4±0.0 94.2±0.0 77.4±0.0 CluStream-S - MDBSCAN 79.4±0.0 86.7±0.0 65.2±0.0 98.9±0.0 82.9±0.0 65.4±0.0 CluStream-G - MDBSCAN 76.6±0.0 86.7±0.0 65.2±0.0 98.9±0.0 84.0±0.0 69.4±0.0 CluStream-G - DPC 78.1±0.0 71.3±0.0 73.7±0.0 99.0±0.0 87.4±0.0 72.0±0.0 CluStream-W - DPC 60.4±0.0 81.2±0.0							
CluStream-G - HDBSCAN 71.5±3.0 82.9±0.2 77.8±0.3 94.2±1.4 84.8±0.0 64.9±0.2 CluStream-C - RNN-DBS 81.6±0.0 17.6±0.0 76.2±0.0 74.7±0.0 86.0±0.0 62.4±0.0 CluStream-W - RNN-DBS 71.2±0.0 81.8±0.0 59.8±0.0 90.5±0.0 64.7±0.0 65.3±0.0 CluStream-G - RNN-DBS 69.0±0.0 82.7±0.0 82.7±0.0 97.4±0.0 65.2±0.0 64.4±0.0 CluStream-G - RNN-DBS 69.4±0.0 87.7±0.0 71.0±0.0 97.4±0.0 94.2±0.0 77.4±0.0 CluStream-W - MDBSCAN 69.4±0.0 87.2±0.0 64.9±0.0 98.9±0.0 82.9±0.0 65.4±0.0 CluStream-G - MDBSCAN 76.6±0.0 86.7±0.0 65.2±0.0 98.9±0.0 82.9±0.0 69.4±0.0 CluStream-G - MDBSCAN 78.2±5.2 76.8±0.5 67.3±0.5 93.8±0.6 84.3±0.0 77.4±0.0 CluStream-G - DPC 78.1±0.0 71.3±0.0 73.7±0.0 99.0±0.0 87.4±0.0 52.2±0.0 CluStream-G - DPC 59.8±0.0 84.5±0.0 72.5±0.0	CluStream-S - HDBSCAN						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-G - HDBSCAN						
	CluStream-C - RNN-DBS						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-C - MDBSCAN						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W - MDBSCAN						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-S - MDBSCAN		86.7±0.0				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-G - DPC	85.8 ± 1.3					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-C - SNN-DPC	68.8±0.7					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CluStream-W - SNN-DPC						40.6 ± 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CluStream-S - SNN-DPC						
	CluStream-G - SNN-DPC						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
CluStream-S - DBHD 84.6 ± 0.0 87.1 ± 0.0 81.3 ± 0.0 93.3 ± 0.0 94.3 ± 0.0 69.1 ± 0.0		84.6±0.0	87.1 ± 0.0	81.3±0.0	93.3 ± 0.0	94.3 ± 0.0	69.1 ± 0.0
CluStream-G - DBHD 84.9±1.2 80.1±0.7 82.4±0.3 84.1±10.7 81.3±0.1 75.0±0.5							
	CluStream-G - DBHD	84.9±1.2	80.1 ± 0.7	82.4±0.3	84.1±10.7	81.3 ± 0.1	75.0 ± 0.5

Table 45: Completeness Scores for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted. The best scores are marked as **bold**, and the second-best scores are <u>underlined</u>.

Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Completeness	Completeness	Completeness	Completeness	Completeness	Completeness
STREAMKmeans	59.9±4.7	38.7±4.4	77.7±0.5	85.6±7.5	99.7±0.3	100.0±0.0
DenStream	39.8 ± 0.0	53.9 ± 0.0	60.4 ± 0.0	26.0 ± 0.0	55.0 ± 0.0	35.8±0.0
DBSTREAM	100.0±0.0	$\frac{87.4 \pm 0.0}{78.2 \pm 3.2}$	100.0±0.0	100.0±0.0	79.7 ± 0.0	48.4±0.0
EMCStream	70.9 ± 2.3	78.2±3.2	82.5±0.4	52.5 ± 8.1	66.7 ± 10.7	68.2 ± 6.5
MCMSTStream	30.2 ± 0.0	47.0 ± 0.0	70.9 ± 0.0	39.1 ± 0.0	60.8 ± 0.0	35.3 ± 0.0
GB-FuzzyStream	89.0±22.0	47.4±0.9	51.9±0.4	-	-	19.6±1.1
CluStream-O - var. k	42.3±0.0	62.3±0.0	39.6±0.0	16.8±0.0	43.5±0.0	35.3±0.0
CluStream-O - fixed k	59.5±0.0	55.1±0.0	74.7 ± 0.0	47.9 ± 0.0	65.1 ± 0.0	41.7 ± 0.0
CluStream-O - k=100	42.3±0.0	62.3±0.0	39.6±0.0	16.8 ± 0.0	43.5±0.0	35.3±0.0
CluStream - Wk-Means	59.6±0.7	73.6 ± 1.0	76.9±0.7	93.5 ± 0.6	61.9±0.3	43.5±0.8
CluStream-C - k-Means	59.7±1.6	68.0±1.5	79.0±0.8	87.9±2.8	66.4±0.1	41.5±2.2
CluStream-W - k-Means	59.6±0.7	73.6 ± 1.0	76.9±0.7	93.5 ± 0.6	61.9±0.3	43.5±0.8
CluStream-S - k-Means	58.7±1.2	73.2 ± 1.2	77.8 ± 0.5	92.3 ± 0.0	62.4 ± 0.2	42.7 ± 0.8
CluStream-G - k-Means	58.8 ± 1.0	73.9 ± 1.2	77.8 ± 0.6	92.9 ± 0.1	62.4 ± 0.2	42.6 ± 0.8
CluStream-C - SubKMeans CluStream-W - SubKMeans	58.6 ± 1.0	66.6 ± 1.0	78.1±0.8	88.3±2.5	66.4 ± 0.0	40.6 ± 1.4
CluStream-W - SubKMeans	58.5 ± 1.3	$74.7{\pm}2.1$	74.9 ± 0.9	92.9 ± 0.8	62.1 ± 0.2	44.1 ± 0.5
CluStream-S - SubKMeans	58.6 ± 1.0	75.5 ± 1.7	75.7±0.7	92.3 ± 0.0	62.6 ± 0.2	43.2 ± 0.5
CluStream-G - SubKMeans	58.8 ± 1.0	75.2 ± 1.3	77.2 ± 0.7	92.9 ± 0.1	62.6 ± 0.2	43.3 ± 0.4
CluStream-C - X-Means	77.0 ± 0.3	67.6 ± 2.9	79.2 ± 0.2	36.7 ± 0.6	62.8 ± 0.1	40.3 ± 0.3
CluStream-W - X-Means	42.6±0.1	65.4±0.2	76.5±0.9	29.4±0.0	44.0±0.0	35.4 ± 0.0
CluStream-S - X-Means	42.4±0.0	64.2±0.1	76.6±0.9	28.8±0.5	43.6±0.0	35.3 ± 0.0
CluStream-G - X-Means	51.6 ± 4.4 100.0 ±0.0	65.7 ± 0.4 100.0 ±0.0	74.5 ± 1.1 98.7 ± 0.0	27.1 ± 0.3 100.0 ± 0.0	45.0 ± 0.0 70.5 ± 0.1	35.3 ± 0.0 61.5 ± 0.3
CluStream-C - P-Dip-M CluStream-W - P-Dip-M	46.2±0.1		$\frac{98.7}{43.7\pm0.0}$	20.9 ± 1.1	70.5±0.1	01.0±0.5
CluStream-S - P-Dip-M	45.9 ± 0.1	-	43.4±0.0	20.9 ± 1.1 21.4 ± 0.1	_	_
CluStream-G - P-Dip-M	62.4 ± 1.1	67.9 ± 0.4	85.9±0.3	43.3±0.3	54.7±0.0	38.0 ± 0.1
CluStream-C - SC	69.3±0.7	75.1 ± 1.3	79.2±0.1	92.3±0.0	69.3±0.0	48.0±0.4
CluStream-W - SC	71.3±1.4	71.0 ± 0.2	77.6±0.5	92.3±0.0	63.0 ± 0.1	55.2±0.8
CluStream-S - SC	70.1±0.4	71.8 ± 0.2	77.0±0.4	92.3±0.0	62.0 ± 0.1	57.0±0.4
CluStream-G - SC	69.3±1.9	71.0 ± 0.7	77.0 ± 0.3	93.0 ± 0.2	61.7 ± 0.1	49.2 ± 1.0
CluStream-C - SCAR	63.7±0.6	71.7±0.9	75.5±0.1	81.8±10.1	69.6 ± 0.1	46.5 ± 0.8
CluStream-W - SCAR	63.4±1.3	71.5 ± 0.3	63.7 ± 0.1	60.8 ± 12.7	-	45.3 ± 0.3
CluStream-S - SCAR	67.0 ± 1.3	71.3 ± 0.2	63.8 ± 0.1	40.9±11.6	57.4 ± 0.2	45.7 ± 1.5
CluStream-G - SCAR	68.6 ± 1.6	70.4 ± 0.9	64.3 ± 0.2	55.4 ± 7.8	51.0 ± 0.1	45.9 ± 0.3
CluStream-C - SpectACl	67.1±1.0	74.9 ± 0.5	81.8±0.4	86.6±10.1	60.8±0.1	43.3±1.1
CluStream-W - SpectACl	69.1±0.9	78.5±0.3	52.0±0.7	96.6±0.0	70.7±0.1	44.4±0.9
CluStream-S - SpectACl CluStream-G - SpectACl	68.9 ± 2.6 68.7 ± 2.2	76.6 ± 1.0 75.0 ± 1.2	72.1±0.4	96.6±0.0	72.5 ± 0.1 72.6 ± 0.1	44.9 ± 0.8 43.3 ± 1.4
Clastream-G - SpectACI	68.7 ± 2.2 71.5 ± 0.0		46.7 ± 1.0 86.6 ± 0.0	93.6±5.0 90.5±0.0	68.1±0.0	43.3 ± 1.4 47.6 ± 0.0
CluStream-C - DBSCAN CluStream-W - DBSCAN	71.5 ± 0.0 75.2 ± 0.0	65.5 ± 0.0 78.7 ± 0.0	88.7±0.0	89.9±0.0	77.3 ± 0.0	47.6 ± 0.0 47.6 ± 0.0
CluStream-S - DBSCAN	71.5±0.0	77.5±0.0	88.8±0.0	89.4±0.0	77.9 ± 0.0	47.8±0.0
CluStream-G - DBSCAN	68.1±1.3	74.9 ± 0.3	85.4±0.1	73.5 ± 3.1	77.9 ± 0.0	48.1±0.1
CluStream-C - HDBSCAN	68.4±0.0	77.7±0.0	86.7±0.0	95.1±0.0	74.8±0.0	44.5±0.0
CluStream-W - HDBSCAN	70.3±0.0	76.2 ± 0.0	87.3±0.0	95.1 ± 0.0	81.3±0.0	46.5±0.0
CluStream-S - HDBSCAN	69.9 ± 0.0	74.9 ± 0.0	69.2±0.0	95.1 ± 0.0	79.2 ± 0.0	46.9 ± 0.0
CluStream-S - HDBSCAN CluStream-G - HDBSCAN	70.9 ± 2.3	74.2 ± 0.1	83.8±0.5	87.0 ± 0.9	79.2 ± 0.0	46.6 ± 0.1
CluStream-C - RNN-DBS	58.7±0.0	59.9±0.0	68.9±0.0	100.0±0.0	70.1 ± 0.0	42.6 ± 0.0
CluStream-W - RNN-DBS	64.4 ± 0.0	66.8 ± 0.0	47.6 ± 0.0	50.0 ± 0.0	60.8 ± 0.0	44.2 ± 0.0
CluStream-S - RNN-DBS	64.1 ± 0.0	65.6 ± 0.0	40.2 ± 0.0	53.4 ± 0.0	61.2 ± 0.0	45.9 ± 0.0
CluStream-G - RNN-DBS	64.7 ± 2.5	69.1 ± 5.3	59.7 ± 1.1	60.1 ± 4.2	60.5 ± 0.0	43.3 ± 0.1
CluStream-C - MDBSCAN CluStream-W - MDBSCAN	75.2±0.0	63.5±0.0	82.1±0.0	95.2±0.0	71.7±0.0	43.9±0.0
Clastream-W - MDBSCAN	74.7±0.0	64.1±0.0	86.8±0.0	99.0±0.0	86.5±0.0	48.3±0.0
CluStream-S - MDBSCAN CluStream-G - MDBSCAN	74.5 ± 0.0 69.7 ± 1.7	64.2±0.0 64.1±0.5	87.0±0.0 87.2±0.1	99.0 ± 0.0 92.8 ± 2.9	$\frac{87.5}{87.2\pm0.0}$	44.5 ± 0.0 41.0 ± 0.0
CluStream-C - DPC	65.0 ± 0.0	68.7 ± 0.0	81.8±0.0	82.0±0.0	82.4 ± 0.0	47.9 ± 0.0
CluStream-W - DPC	72.4 ± 0.0	67.9±0.0	78.3±0.0	72.5 ± 0.0	63.3±0.0	42.8 ± 0.0
CluStream-S - DPC	74.4 ± 0.0 74.4 ± 0.0	67.3±0.0	78.8±0.0	74.8 ± 0.0	63.3±0.0	41.8±0.0
CluStream-G - DPC	61.1±0.7	67.1 ± 0.2	80.7±0.1	72.1 ± 6.3	82.2±0.2	42.0 ± 0.0
CluStream-C - SNN-DPC	66.4±0.4	69.2±0.0	71.4±0.1	41.3±0.0	58.7±0.0	50.6±0.5
CluStream-C - SNN-DPC CluStream-W - SNN-DPC	74.0±0.0		70.9±0.0	88.3±0.0	64.3±0.1	57.4 ± 0.0
CluStream-S - SNN-DPC	77.4±0.0	81.2±0.3 79.7±0.0	72.9±0.0	84.9±0.0	62.5 ± 0.0	51.6 ± 0.0
CluStream-G - SNN-DPC	68.0±2.4	68.3 ± 1.0	82.7±0.3	67.9 ± 7.3	67.2 ± 0.0	53.0 ± 1.3
CluStream-C - DBHD	71.3 ± 0.0	68.4 ± 0.0	75.2 ± 0.0	93.2 ± 0.0	63.7 ± 0.0	51.8±0.0
CluStream-W - DBHD	71.3 ± 0.0	68.4 ± 0.0	75.2 ± 0.0	93.2 ± 0.0	63.7 ± 0.0	51.8 ± 0.0
CluStream-S - DBHD	71.3±0.0	68.4±0.0	75.2±0.0	93.2±0.0	63.7±0.0	51.8±0.0
CluStream-G - DBHD	66.1±1.1	68.4±0.8	81.8±0.5	34.2 ± 5.8	54.8 ± 0.1	45.0 ± 0.1

Table 46: Average reported cluster number per evaluation batch for evaluated datasets using the default parameters for the online phase, but the best-performing parameters according to the sum of ARI and AMI for the offline phase ($\times 100$). Competitors are included with default parameters. The standard deviation across seeds is noted.

Name	Comp-9	DEN-10	RBF-3	FvI	KDD99	Gas
	Cluster Number	Cluster Number	Cluster Number	Cluster Number	Cluster Number	Cluster Number
STREAMKmeans	6.5 ± 0.5	5.0 ± 1.2	6.7±0.5	1.3±0.2	1.0 ± 0.0	1.0±0.0
DenStream	112.5 ± 0.0	53.6 ± 0.0	25.2±0.0	17.5±0.0	16.1 ± 0.0	11.7±0.0
DBSTREAM	1.0±0.0	1.4±0.0	1.0±0.0	1.0±0.0	5.2±0.0	2.5±0.0
EMCStream	6.5±0.3	7.5±0.2	3.6±0.2	1.8±0.2	3.5±0.4	1.9±0.1
MCMSTStream GB-FuzzyStream	12.5±0.0 8.3±14.5	10.6 ± 0.0 7.2 ± 0.1	10.6±0.0 6.6±0.2	13.0±0.0	8.4±0.0	32.6±0.0 6.8±0.5
				_		
CluStream-O - var. k	99.3±0.0	99.8±0.0	100.0±0.0	99.7±0.0	99.5±0.0	99.3±0.0
CluStream-O - fixed k CluStream-O - k=100	9.0±0.0 99.3±0.0	11.0±0.0 99.8±0.0	8.0±0.0 100.0±0.0	2.0±0.0 99.7±0.0	23.0 ± 0.0 99.5 ± 0.0	6.0±0.0 99.3±0.0
CluStream - Wk-Means	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.0	23.0±0.0	6.0±0.0
CluStream-C - k-Means CluStream-W - k-Means	9.0±0.0 9.0±0.0	11.0±0.0 11.0±0.0	8.0±0.0 8.0±0.0	2.0±0.0 2.0±0.0	23.0 ± 0.0 23.0 ± 0.0	6.0±0.0 6.0±0.0
CluStream-W - k-Means CluStream-S - k-Means	9.0±0.0 9.0±0.0	11.0±0.0 11.0±0.0	8.0±0.0 8.0±0.0	2.0±0.0 2.0±0.0	23.0±0.0 23.0±0.0	6.0±0.0 6.0±0.0
CluStream-G - k-Means	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.0 2.0±0.0	23.0 ± 0.0 23.0 ± 0.0	6.0±0.0
CluStream-C - SubKMeans	8.8±0.3	11.6±0.2	8.0±0.0	2.0±0.0	23.0±0.0	6.5±0.0
CluStream-W - SubKMeans	9.0 ± 0.0	12.0 ± 0.0	9.0±0.0	2.0 ± 0.0	23.0 ± 0.0	6.0 ± 0.0
CluStream-S - SubKMeans	9.0 ± 0.0	12.0 ± 0.0	9.0±0.0	2.0 ± 0.0	23.0 ± 0.0	6.9±0.0
CluStream-G - SubKMeans	9.0 ± 0.0	12.0 ± 0.0	8.0±0.0	2.0 ± 0.0	23.0 ± 0.0	6.9 ± 0.0
CluStream-C - X-Means	4.0±0.0	14.7±2.0	12.0±0.3	13.5±0.1	24.1±0.1	20.9±0.6
CluStream-W - X-Means CluStream-S - X-Means	96.3 ± 0.6 98.2 ± 0.1	47.3 ± 1.9 65.3 ± 2.1	18.8±1.7 19.8±1.4	52.1±0.0 60.2±6.6	85.5 ± 0.0 96.7 ± 0.0	94.6±0.4 96.9±0.5
CluStream-G - X-Means	59.3±9.8	64.3±2.8	23.8±1.9	126.0±10.6	98.3 ± 0.1	90.9±0.5 97.4±0.3
CluStream-C - P-Dip-M	1.0±0.0	1.0±0.0	1.1±0.0	1.3±0.1	12.0±0.1	8.4±0.5
CluStream-W - P-Dip-M	65.0±0.5	-	42.8±0.3	43.6±3.3	-	- 0.410.0
CluStream-S - P-Dip-M	66.2±0.8	-	44.0±0.7	42.9±1.2	-	-
CluStream-G - P-Dip-M	$9.4{\pm}0.6$	24.6 ± 1.7	4.6 ± 0.1	9.8 ± 0.6	41.8 ± 0.2	55.4 ± 1.1
CluStream-C - SC	9.0 ± 0.0	11.0±0.0	8.0±0.0	2.0 ± 0.0	23.0 ± 0.0	6.0±0.0
CluStream-W - SC	9.0 ± 0.0	11.0 ± 0.0	7.8±0.0	2.0 ± 0.0	19.2 ± 0.0	6.0±0.0
CluStream-S - SC	9.0±0.0	11.0±0.0	7.9±0.0	2.0±0.0	23.0±0.0	6.0±0.0
CluStream-G - SC	9.0±0.0 9.0±0.0	11.0 ± 0.0 11.0 ± 0.0	7.9±0.0 8.0±0.0	2.0±0.0 2.0±0.0	23.0 ± 0.0 22.9 ± 0.0	6.0±0.0 6.0±0.0
CluStream-C - SCAR CluStream-W - SCAR	9.0±0.0 9.0±0.0	10.8±0.1	8.0±0.0 8.0±0.0	2.0±0.0 2.0±0.1	22.9±0.0	6.0±0.0
CluStream-S - SCAR	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.1 2.0±0.0	13.9 ± 0.2	6.0±0.0
CluStream-G - SCAR	9.0±0.0	11.0±0.1	8.0±0.0	2.0±0.0	22.4 ± 0.0	6.0±0.0
CluStream-C - SpectACl	9.0±0.0	11.0±0.0	8.0±0.0	2.0±0.0	23.0 ± 0.0	6.0±0.0
CluStream-W - SpectACl	9.0 ± 0.0	10.6 ± 0.1	8.0±0.0	2.0 ± 0.0	21.6 ± 0.0	6.0±0.0
CluStream-S - SpectACl	9.0±0.0	10.8±0.1	8.0±0.0	2.0±0.0	21.1±0.0	6.0±0.0
CluStream-G - SpectACl CluStream-C - DBSCAN	9.0 ± 0.0 12.3 ± 0.0	10.9±0.1 91.8±0.0	7.9±0.0 6.0±0.0	2.0±0.0 2.5±0.0	21.8 ± 0.0 40.8 ± 0.0	6.0±0.0 43.4±0.0
Clustream-W - DBSCAN	9.0±0.0	12.0±0.0	4.6±0.0	2.5±0.0 2.7±0.0	5.9 ± 0.0	24.4±0.0
CluStream-S - DBSCAN	12.0±0.0	17.0±0.0	4.7±0.0	2.7±0.0 2.7±0.0	5.6±0.0	21.7±0.0
CluStream-G - DBSCAN	13.7±0.6	15.1±0.1	7.5±0.1	2.4±0.2	5.6 ± 0.0	21.4±0.1
CluStream-C - HDBSCAN	10.0±0.0	16.6±0.0	4.7±0.0	2.5±0.0	6.3 ± 0.0	22.5±0.0
CluStream-W - HDBSCAN	8.3±0.0	15.2 ± 0.0	4.7±0.0	2.5 ± 0.0	4.2 ± 0.0	11.7±0.0
CluStream-S - HDBSCAN CluStream-G - HDBSCAN	8.7 ± 0.0	15.8 ± 0.0	7.1±0.0	2.5 ± 0.0	4.5 ± 0.0	12.4 ± 0.0
CluStream-G - HDBSCAN	7.3±0.2	17.5±0.1	5.3±0.0	2.2±0.0	4.5±0.0	8.4±0.1
CluStream-C - RNN-DBS CluStream-W - RNN-DBS	17.9 ± 0.0 12.3 ± 0.0	5.8 ± 0.0 28.4 ± 0.0	12.2±0.0 12.6±0.0	1.7±0.0 4.7±0.0	9.1±0.0 5.7±0.0	15.4±0.0 11.8±0.0
CluStream-S - RNN-DBS	12.3±0.0 11.3±0.0	39.0±0.0	41.8±0.0	5.0±0.0	5.7 ± 0.0 5.8 ± 0.0	10.8±0.0
CluStream-G - RNN-DBS	16.7±1.5	6.6±0.3	19.2±0.5	7.3±0.3	6.5±0.0	16.9±0.1
CluStream-C - MDBSCAN	9.0±0.0	97.4±0.0	6.9±0.0	2.2±0.0	12.7±0.0	54.2±0.0
CluStream-W - MDBSCAN	11.0±0.0	96.4±0.0	3.9±0.0	2.0±0.0	3.6 ± 0.0	12.3±0.0
CluStream-S - MDBSCAN	10.3 ± 0.0	96.0 ± 0.0	3.9±0.0	2.0±0.0	3.5 ± 0.0	14.3±0.0
CluStream-G - MDBSCAN CluStream-C - DPC	12.8 ± 0.6	18.5 ± 0.7	4.0 ± 0.0	2.1±0.1	3.6 ± 0.0	19.7±0.0
CluStream-C - DPC	12.3±0.0	30.8±0.0	8.4±0.0	3.0±0.0	6.1±0.0	23.6±0.0
CluStream-W - DPC	5.3±0.0	91.6±0.0	14.3±0.0	2.5±0.0	46.6±0.0	35.4±0.0
CluStream-S - DPC CluStream-G - DPC	5.0 ± 0.0 16.6 ± 0.3	93.0 ± 0.0 49.5 ± 0.1	13.3±0.0 16.7±0.3	2.3±0.0 3.6±0.3	46.7±0.0 8.5±0.1	45.2±0.0 37.0±0.1
CluStream-G - DPC CluStream-C - SNN-DPC	9.0±0.0	49.5±0.1 11.0±0.0	8.0±0.0	3.6±0.3 2.0±0.0	8.5±0.1 23.0±0.0	6.0±0.0
CluStream-W - SNN-DPC	6.7±0.0	5.0±0.0	4.0±0.0	2.0±0.0 2.0±0.0	10.4 ± 0.0	3.7±0.0
CluStream-S - SNN-DPC	7.0±0.0	5.8±0.0	4.2±0.0	2.0±0.0 2.0±0.0	14.6 ± 0.0	3.5±0.0
CluStream-G - SNN-DPC	9.0±0.0	10.9±0.1	8.0±0.0	2.0±0.0	21.5 ± 0.0	6.0±0.0
CluStream-C - DBHD	11.0±0.0	39.8±0.0	9.3±0.0	2.0±0.0	16.4±0.0	11.1±0.0
CluStream-W - DBHD	11.0 ± 0.0	39.8 ± 0.0	9.3±0.0	2.0 ± 0.0	16.4 ± 0.0	11.1±0.0
CluStream-S - DBHD	11.0±0.0	39.8±0.0	9.3±0.0	2.0±0.0	16.4 ± 0.0	11.1±0.0
CluStream-G - DBHD	14.8 ± 0.8	18.1±0.2	6.0±0.1	6.9±0.4	9.7 ± 0.0	12.8±0.1

References

- Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.: StreamKM++: A clustering algorithm for data streams. ACM J. Exp. Algorithmics 17(1) (2012)
- 2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB. pp. 81–92. Morgan Kaufmann (2003)
- 3. Ahmed, R.D., Dalkiliç, G., Erten, Y.M.: DGStream: High quality and efficiency stream clustering algorithm. Expert Syst. Appl. 141 (2020)
- Ahsani, S., Yousef Sanati, M., Mansoorizadeh, M.: DynamicCluStream: An algorithm based on clustream to improve clustering quality. International Journal of Web Research 6(2), 77–87 (2023)
- Alazeez, A.A.A., Jassim, S., Du, H.: EDDS: an enhanced density-based method for clustering data streams. In: ICPP Workshops. pp. 103–112. IEEE Computer Society (2017)
- Amini, A., Saboohi, H., Herawan, T., Wah, T.Y.: MuDi-stream: A multi density clustering algorithm for evolving data stream. J. Netw. Comput. Appl. 59, 370–385 (2016)
- 7. Amini, A., Saboohi, H., Ying Wah, T., Herawan, T.: A fast density-based clustering algorithm for real-time internet of things stream. The Scientific World Journal **2014**(1), 926020 (2014)
- 8. Amini, A., Wah, T.Y., et al.: Leaden-stream: A leader density-based clustering algorithm over evolving data stream. Journal of Computer and communications 1(05), 26 (2013)
- 9. Anderson, R., Koh, Y.S.: Streamxm: An adaptive partitional clustering solution for evolving data streams. In: DaWaK. Lecture Notes in Computer Science, vol. 9263, pp. 270–282. Springer (2015)
- de Andrade Silva, J., Hruschka, E.R.: A support system for clustering data streams with a variable number of clusters. ACM Trans. Auton. Adapt. Syst. 11(2), 11:1– 11:26 (2016)
- 11. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SODA. pp. 1027–1035. SIAM (2007)
- 12. Backhoff, O., Ntoutsi, E.: Scalable online-offline stream clustering in apache spark. In: ICDM Workshops. pp. 37–44. IEEE Computer Society (2016)
- 13. Barton, T.: Clustering-benchmark repository. https://github.com/deric/clustering-benchmark (2015)
- 14. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)
- 15. Böhm, C., Kailing, K., Kriegel, H., Kröger, P.: Density connected clustering with local subspace preferences. In: ICDM. pp. 27–34. IEEE Computer Society (2004)
- 16. Bryant, A., Cios, K.J.: RNN-DBSCAN: A density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Trans. Knowl. Data Eng. **30**(6), 1109–1121 (2018)
- 17. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: PAKDD (2). Lecture Notes in Computer Science, vol. 7819, pp. 160–172. Springer (2013)
- 18. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: SDM. pp. 328–339. SIAM (2006)
- 19. Carnein, M., Trautmann, H.: Optimizing data stream representation: An extensive survey on stream clustering algorithms. Bus. Inf. Syst. Eng. **61**(3), 277–297 (2019)

- Carnein, M., Trautmann, H., Bifet, A., Pfahringer, B.: Towards automated configuration of stream clustering algorithms. In: PKDD/ECML Workshops (1). Communications in Computer and Information Science, vol. 1167, pp. 137–143. Springer (2019)
- Chamalis, T., Likas, A.: The projected dip-means clustering algorithm. In: SETN. pp. 14:1–14:7. ACM (2018)
- 22. Chen, D., Du, T., Zhou, J., Wu, Y., Wang, X.: DWDP-Stream: A dynamic weight and density peaks clustering algorithm for data stream. Int. J. Comput. Intell. Syst. **15**(1), 96 (2022)
- Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: KDD. pp. 133–142. ACM (2007)
- 24. Durani, W., Mautz, D., Plant, C., Böhm, C.: DBHD: density-based clustering for highly varying density. In: ICDM. pp. 921–926. IEEE (2022)
- Erdinç, B., Kaya, M., Senol, A.: MCMSTStream: applying minimum spanning tree to kd-tree-based micro-clusters to define arbitrary-shaped clusters in streaming data. Neural Comput. Appl. 36(13), 7025–7042 (2024)
- Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD. pp. 226–231. AAAI Press (1996)
- Faroughi, A., Boostani, R., Tajalizadeh, H., Javidan, R.: ARD-Stream: An adaptive radius density-based stream clustering. Future Gener. Comput. Syst. 149, 416–431 (2023)
- 28. Feng, C., Fang, J., Xia, Y., Chao, P., Zhao, P., Xu, J., Zhou, X.: Ocean: Online clustering and evolution analysis for dynamic streaming data. In: ICDE. pp. 4504–4517. IEEE (2024)
- Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings.
 Journal of the American statistical association 78(383), 553–569 (1983)
- Gama, J., Rodrigues, P.P., Lopes, L.M.B.: Clustering distributed sensor data streams using local processing and reduced communication. Intell. Data Anal. 15(1), 3–28 (2011)
- 31. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. IEEE Ann. Hist. Comput. **7**(1), 43–57 (1985)
- 32. Grua, E.M., Hoogendoorn, M., Malavolta, I., Lago, P., Eiben, A.E.: Clustream-gt: Online clustering for personalization in the health domain. In: WI. pp. 270–275. ACM (2019)
- 33. Guha, S., Mishra, N., Motwani, R., O'Callaghan, L.: Clustering data streams. In: FOCS. pp. 359–366. IEEE Computer Society (2000)
- 34. Hahsler, M., Bolaños, M.: Clustering data streams based on shared density between micro-clusters. IEEE Trans. Knowl. Data Eng. **28**(6), 1449–1461 (2016)
- 35. Hassani, M., Spaus, P., Gaber, M.M., Seidl, T.: Density-based projected clustering of data streams. In: SUM. Lecture Notes in Computer Science, vol. 7520, pp. 311–324. Springer (2012)
- 36. Hess, S., Duivesteijn, W., Honysz, P., Morik, K.: The SpectACl of nonconvex clustering: A spectral approach to density-based clustering. In: AAAI. pp. 3788–3795. AAAI Press (2019)
- 37. Hohma, E., Frey, C.M.M., Beer, A., Seidl, T.: SCAR spectral clustering accelerated and robustified. Proc. VLDB Endow. **15**(11), 3031–3044 (2022)
- 38. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)
- 39. Jahn, P., Frey, C.M.M., Beer, A., Leiber, C., Seidl, T.: Data with density-based clusters: A generator for systematic evaluation of clustering algorithms.

- In: ECML/PKDD (7). Lecture Notes in Computer Science, vol. 14947, pp. 3–21. Springer (2024)
- Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The ClusTree: indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst. 29(2), 249–272 (2011)
- 41. Kranen, P., Reidl, F., Villaamil, F.S., Seidl, T.: Hierarchical clustering for real-time stream data with noise. In: SSDBM. Lecture Notes in Computer Science, vol. 6809, pp. 405–413. Springer (2011)
- 42. Kumar, A., Singh, A., Singh, R.: An efficient hybrid-clustream algorithm for stream mining. In: SITIS. pp. 430–437. IEEE Computer Society (2017)
- 43. Leiber, C., Miklautz, L., Plant, C., Böhm, C.: Benchmarking deep clustering algorithms with clustpy. In: ICDM (Workshops). pp. 625–632. IEEE (2023)
- 44. Li, M., Croitoru, A., Yue, S.: GeoDenStream: An improved denstream clustering method for managing entity data within geographical data streams. Comput. Geosci. **144**, 104563 (2020)
- 45. Lin, J., Vitter, J.S.: epsilon-approximations with minimum packing constraint violation (extended abstract). In: STOC. pp. 771–782. ACM (1992)
- Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., Hutter, F.: SMAC3: A versatile bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 23, 54:1–54:9 (2022)
- Liu, R., Wang, H., Yu, X.: Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf. Sci. 450, 200–226 (2018)
- 48. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–136 (1982)
- 49. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
- 50. Manning, C.D.: An introduction to information retrieval (2009)
- 51. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge University Press (2008)
- 52. Mansalis, S., Ntoutsi, E., Pelekis, N., Theodoridis, Y.: An evaluation of data stream clustering algorithms. Stat. Anal. Data Min. 11(4), 167–187 (2018)
- 53. Masud, M.M., Woolam, C., Gao, J., Khan, L., Han, J., Hamlen, K.W., Oza, N.C.: Facing the reality of data stream classification: coping with scarcity of labeled data. Knowl. Inf. Syst. **33**(1), 213–244 (2011)
- 54. Mautz, D., Ye, W., Plant, C., Böhm, C.: Towards an optimal subspace for k-means. In: KDD. pp. 365–373. ACM (2017)
- 55. McInnes, L., Healy, J.: UMAP: uniform manifold approximation and projection for dimension reduction. CoRR abs/1802.03426 (2018)
- Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R.,
 Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T., Bifet, A.: River: machine
 learning for streaming data in python. J. Mach. Learn. Res. 22, 110:1–110:8 (2021)
- 57. Mousavi, M., Khotanlou, H., Bakar, A.A., Vakilian, M.: Varying density method for data stream clustering. Appl. Soft Comput. **97**(Part B), 106797 (2020)
- 58. Naldi, M.C., Campello, R.J.G.B., Hruschka, E.R., de Carvalho, A.C.P.L.F.: Efficiency issues of evolutionary k-means. Appl. Soft Comput. **11**(2), 1938–1952 (2011)
- Nguyen, X.V., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)
- O'Callaghan, L., Meyerson, A., Motwani, R., Mishra, N., Guha, S.: Streaming-data algorithms for high-quality clustering. In: ICDE. pp. 685–694. IEEE Computer Society (2002)

- Olson, D.L., Delen, D.: Advanced data mining techniques. Springer Science & Business Media (2008)
- 62. Pelleg, D., Moore, A.W.: X-means: Extending k-means with efficient estimation of the number of clusters. In: ICML. pp. 727–734. Morgan Kaufmann (2000)
- Qian, J., Zhou, Y., Han, X., Wang, Y.: MDBSCAN: A multi-density DBSCAN based on relative density. Neurocomputing 576, 127329 (2024)
- 64. Ren, J., Ma, R.: Density-based data streams clustering over sliding windows. In: FSKD (5). pp. 248–252. IEEE Computer Society (2009)
- 65. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science **344**(6191), 1492–1496 (2014)
- Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster evaluation measure. In: EMNLP-CoNLL. pp. 410–420 (2007)
- 67. Sculley, D.: Web-scale k-means clustering. In: WWW. pp. 1177–1178. ACM (2010)
- 68. da Silva, M.C., Licari, B., Tavares, G.M., Junior, S.B.: Benchmarking automl clustering frameworks. In: AutoML Conference 2024 (ABCD Track) (2024)
- de Souza, V.M.A., dos Reis, D.M., Maletzke, A.G., Batista, G.E.A.P.A.: Challenges in benchmarking stream learning algorithms with real-world data. Data Min. Knowl. Discov. 34(6), 1805–1858 (2020)
- 70. Steinbach, M.: A comparison of document clustering techniques. Tech. rep., Technical Report, University of Minnesota (2000)
- Strehl, A., Ghosh, J.: Cluster ensembles A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)
- Tajalizadeh, H., Boostani, R.: A novel stream clustering framework for spam detection in twitter. IEEE Trans. Comput. Soc. Syst. 6(3), 525–534 (2019)
- Tari, Z., Thompson, A., Almusalam, N., Bertók, P., Mahmood, A.: MicroGRID: An accurate and efficient real-time stream data clustering with noise. In: PAKDD (2). Lecture Notes in Computer Science, vol. 10938, pp. 483–494. Springer (2018)
- Vázquez, F.I., Zseby, T.: Temporal silhouette: validation of stream clustering robust to concept drift. Mach. Learn. 113(4), 2067–2091 (2024)
- 75. Workineh, A., Homaifar, A.: A fitness proportionate reward sharing: a viable default hierarchy formation strategy in lcs. In: GEM. p. 1 (2012)
- Xie, J., Dai, M., Xia, S., Zhang, J., Wang, G., Gao, X.: An efficient fuzzy stream clustering method based on granular-ball structure. In: ICDE. pp. 901–913. IEEE (2024)
- 77. Yan, X., Razeghi-Jahromi, M., Homaifar, A., Erol, B.A., Girma, A., Tunstel, E.W.: A novel streaming data clustering algorithm based on fitness proportionate sharing. IEEE Access 7, 184985–185000 (2019)
- 78. Yang, Y., Xu, D., Nie, F., Yan, S., Zhuang, Y.: Image clustering using local discriminant models and global integration. IEEE Transactions on Image Processing 19(10), 2761–2773 (2010)
- 79. Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams over sliding windows. Knowl. Inf. Syst. 15(2), 181–214 (2008)
- 80. Zogaj, F., Cambronero, J.P., Rinard, M.C., Cito, J.: Doing more with less: Characterizing dataset downsampling for AutoML. Proc. VLDB Endow. **14**(11), 2059–2072 (2021)
- 81. Zubaroglu, A., Atalay, V.: Online embedding and clustering of evolving data streams. Stat. Anal. Data Min. 16(1), 29–44 (2023)