Annotating and Searching Web Tables for Entities, Types, Quantities, and Relationships

Sunita Sarawagi IIT Bombay

Joint work with

Soumen Chakrabarti, Girija Limaye, Rakesh Pimplikar

Tables: an age-old storage idiom for humans

A table from Sumaria ~1822 B.C.

ACTUARIAL TABLES

Logarithm tables ~ 1200 A.D.

Ages			£	Ages		Ages			
vlale	Female	Multiples	Male	Female	Multiples	Male	Female	Muli	Multiples
6	11	65.0	41	46	33.0	76	81		1
7	12	64.1	4.2	47	32.1	77	82		.7
8	13	63.2	43	48	31.2	78	83		. 3
9	14	62.3	44	49	30.4	79	84		в.
10	15	61.4	45	50	29.6	80	85	7	. 5
11	16	60.4	46	51	28.7	21	86	7	.1
12	17	59.5	47	52	27.9	82	87		.7
13	18	58.6	48	53	27.1	83	88	6	. 3
14	19	57.7	49	54	26.3	84	89	6	.0
15	20	56.7	50	55	25.5	85	90	5	.7
16	21	55.8	51	56	24.7	86	91	5	.4
17	22	54.9	52	57	24.0	87	92		.1
18	23	53.9	53	58	23.2	88	93		B
19	24	53.0	54	59	22.4	89	94		. 5
20	25	52.1	55	60	21.7	90	95		2
21	26	51.1	56	61	21.0	91	96		.0
22	27	50.2	57	62	20.3	92	97		.7
23	28	49.3	58	63	19.6	93	98		. 5
24	29	49.3	59	64	18.9	94	99		. 3
24 25	30	47.4	60	65	18.2	95	100		.1
26	31	46.5	61	66	17.5	96	101		. 9
26 27	32	46.5 45.6	62	67	16.9	97	102		.7
28									
	33	44.6	63	68	16.2	98	103		. 5
29	34	43.7	64	69	15.6	99	104		. 3
30	35	42.8	65	70	15.0	100	105	2	.1
31	36	41.9	66	71	14.4	101	106		.9
32	37	41.0	67	72	13.8	102	107		.7
33	38	40.0	68	73	13.2	103	108		. 5
34	39	39.1	69	74	12.6	104	109		. 3
35	40	38.2	70	75	12.1	105	110		. 2
						106	111	1	.0
36	41	37.3	71	76	11.6	107	112		.8
37	42	36.5	72	77	11.0	102	113		.7
38	43	35.6	73	78	10.5	109	114		.6
39	44	34.7	74	79	10.1	110	115		.5
10	45	33.8	75	80	9.6	111	116		o
_	Adjustments t	o Tables I, II, V, V	/I and VIA. F	Payments Made	Quarterly, Sem	ilannually, or	Annually		
	Nu	mber of whole n	nonths from	annuity startir	o date to first p	avment date			
		0-1 2	3	4 5	6 7	8 9		11	12

Actuarial table ~1800 A.D

A modern day spreadsheet

Tables on the Web

Languages by Countries

Afghanistan	Dari Persian, Pashtu (both official), other Turkic and minor languages
Albania	Albanian (Tosk is the official dialect), Greek
<u>Algeria</u>	Arabic (official), French, Berber dialects
<u>Andorra</u>	Catalán (official), French, Castilian, Portuguese
<u>Angola</u>	Portuguese (official), Bantu and other African languages
Antigua and Barbuda	English (official), local dialects
<u>Argentina</u>	Spanish (official), English, Italian, German, French
<u>Armenia</u>	Armenian 98%, Yezidi, Russian

Z	Name	Sym	Period
1	Hydrogen	I	1
2	Helium	He	1
3	Lithium	Li	2
4	Beryllium	Ве	2
5	Boron	В	2
6	Carbon	С	2

Country	Number of Students	Language
Bosnia	4	Bosnian
Brazil	1	Portuguese
China	4	Chinese
Hong Kong	3	Chinese
India	1	Assamese
India	1	Marathi
India	1	Punjabi
India	6	Tamil
India	1	Telugu
India	1	Mahayalam

Mountain Pass	Elevation (m/ft)
Tonale pass	1884 (6181)
Colle Maniva	1669 (5476)
Auden's Col	(17552)
Crown saddle	1076

Tables and Quantities

- 40% of Web tables columns are quantities
- Long tail of quantities missing from Knowledge Bases (KBs) but present in Web Tables
 - Total user accounts of Skype in 2012 Q1
 - Energy density of magnetic fields
 - Syndicated loan volumes

Quantity of major oil spills

	QUANTITIES OF OIL SPILT						
	Position	Ship name	Year	Location	Spill Size _ (tonnes)		
<u>1</u>	1	Atlantic Empress	1979	Off Tobago, West Indies	287,000		
1	2	ABT Summer	1991	700 nautical miles off Angola	260,000		
Ľ	3	Castillo de Bellver	1983	Off Saldanha Bay, South Africa	252,000		
(4	Amoco Cadiz	1978	Off Brittany, France	223,000		
[.]	5	Haven	1991	Genoa, Italy	144,000		
	6	Odyssey	1988	700 nautical miles off Nova Scotia, Canada	132,000		

Tables on the Web

No headers

Languages by Countries

<u>Afghanistan</u>	Dari Persian, Pashtu (both official), other Turkic and minor languages
<u>Albania</u>	Albanian (Tosk is the official dialect), Greek
<u>Algeria</u>	Arabic (official), French, Berber dialects
Andorra	Catalán (official), French, Castilian, Portuguese
<u>Angola</u>	Portuguese (official), Bantu and other African languages
Antigua and Barbuda	English (official), local dialects
<u>Argentina</u>	Spanish (official), English, Italian, German, French
Armenia	Armenian 98%, Yezidi, Russian

Non-informative headers

Z	Name	Sym	Period
1	Hydrogen	I	1
2	Helium	He	1
3	Lithium	Li	2
4	Beryllium	Ве	2
5	Boron	В	2
6	Carbon	C	2

OK headers

Not official language.

Country	Number of Students	Language
Bosnia	4	Bosnian
Brazil	1	Portuguese
China	4	Chinese
Hong Kong	3	Chinese
India	1	Assamese
India	1	Marathi
India	1	Punjabi
India	6	Tamil
India	1	Telugu
India	1	Mahayalam

Useless without correct unit parsing

Pass	Elevation (m/ft)
Tonale pass	1884 (6181)
Colle Maniva	1669 (5476)
Auden's Col	(17552)
Crown saddle	1076

Ontological Knowledge Base

• Entities, Types, Relations born At (Person, Place)

- Freebase
- DBPedia
- Google Knowledge Graph
- Microsoft Satori
- YAGO
 - ~ 350 K types
 - ~ 10 million entities
 - ~ 100 relation types
 - ~ 120 million relation instances

Annotating Tables with Entity, Type, and Relation links

Unit Catalog

QuTree

- Seeded from Wikipedia
- + lemmas from Web
 - ~ 44 concepts (types)
 - ~ 750 units (entities)

Annotating Tables with Entity, Type, Unit, and Relation links

Query-Time Types/Relationships

User Query

Name of Explorers

Nationality

Areas Explored

Index Probe Relevant Tables

Web Table 1

Web Table 2

Web Table 3

List of explorers - Wikipedia, the free encyclopedia

Name	Nationality	Main areas
		explored
Abel Tasman	Dutch	Oceania
Vasco da Gama	Portuguese	Sea route to India
Alexander Mackenzie	British	Canada

This article lists the explorations in history. For the documentary 'Explorations, powered by Duracell', see Explorations (TV)

Exploration	Who (explorer)
(Chronological order)	
Sea route to India	Vasco da Gama
Caribbean	Christopher Columbus
Oceania	Abel Tasman

Other Formal Reserves 1.3 Forest Reserves under the Forestry Act 1920

All areas will be available for mineral exploration and mining

Forest reserves		
ID	Name	Area
7	Shakespeare Hills	2236
9	Plains Creek	880
13	Welcome Swamp	168

Query-Time Types/Relationships

User Query

Name of Explorers

Nationality

Areas Explored

and mining

Web Table 1

Web Table 2

Web Table 3

List of explorers - Wikipedia, the free encyclopedia

Name	Nationality	Main areas
		explored
Abel Tasman	Dutch	Oceania
Vasco da Gama	Portuguese	Sea route to India
Alexander Mackenzie	British	Canada

This article lists the explorations in history. For the documentary 'Explorations, powered by Duracell', see Explorations (TV)

Exploration	Who (explorer)
(Chronological order)	
Sea route to India	Vasco da Gama
Caribbean	Christopher Columbus
Oceania	Abel Tasman

Other Formal Reserves 1.3 Forest Reserves under the Forestry Act 1920
All areas will be available for mineral exploration

Forest reserves		
ID	Name	Area
7	Shakespeare Hills	2236
9	Plains Creek	880
13	Welcome Swamp	168

Covers the long tail of types + relationships not present in any ontology.

Outline

- Entity, Type, Relationship annotation to an existing ontology
- Query-time annotation for new types and relationships
- Unit annotation for quantity columns

Annotating Tables with Entity, Type, and Relation links

Challenges

- Usual challenges of entity annotation
 - Noisy mentions
 - A. Einstien Vs Albert Einstein
 - Ambiguity
 - "Hydrogen" both a chemical element and a place name
- New challenges of type annotation
 - Multiple labels
 - YAGO has average 2.2 types per entity
 - Missing type links in Ontology
 - Universities in Toronto → Universities in Ontario.
 - Satyajit Ray →Indian film directors

A simple approach - Least common ancestor

- Entity Link:
 - link each cell to the entity with the most similar lemma string
- Type Link:
 - Least common type ancestor of the entity.

Over generalizes to entity even with perfect entity annotation

Collective annotation approach

A table with three rows, three columns and a header row

Collective annotation approach

Exact: NP-hard, Belief propagation on factor graph

Accuracy of joint labeling

- Dataset
 - Manually labeled
 - 450 tables spanning general Web and Wikipedia
 - Automatically labeled
 - 6500 tables from Wikipedia where cells have entity links

Type annotation improves from 32% to 44%

Dataset available at http://www.cse.iitb.ac.in/~sunita/wwt

Outline

- Entity, Type, Relationship annotation to an existing ontology
- Query-time annotation for new types and relationships
- Unit annotation for quantity columns

Query-time annotation

User Query

Name of Explorers

Nationality

Areas Explored

Web Table 1

Web Table 2

Web Table 3

List of explorers - Wikipedia, the free encyclopedia

Name	Nationality	Main areas
		explored
Abel Tasman	Dutch	Oceania
Vasco da Gama	Portuguese	Sea route to India
Alexander Mackenzie	British	Canada

This article lists the explorations in history. For the documentary 'Explorations, powered by Duracell', see Explorations (TV)

Exploration	Who (explorer)
(Chronological order)	
Sea route to India	Vasco da Gama
Caribbean	Christopher Columbus
Oceania	Abel Tasman

Other Formal Reserves 1.3 Forest Reserves under the Forestry Act 1920
All areas will be available for mineral exploration

All areas will be available for mineral exploration and mining

Forest reserves		
ID	Name	Area
7	Shakespeare Hills	2236
9	Plains Creek	880
13	Welcome Swamp	168

Two tasks

- 1. Identify relevant tables
- 2. Annotate their columns to query columns

Challenges

- More difficult than matching to an ontology
 - No entities or lemmas on the query-side
 - Table header+context is all that we have.
- Table header can be noisy, missing, uninformative
 - HTML table header tag is not always used (80%).
 - Many tables have no headers (18%).
 - Header text is often uninformative.
 - Context does not give column specific information.

Two contributions

 Carefully designed segmented similarity model to match a query-type-string to a table column

 Collective annotation of multiple tables that leverages content overlap.

Segmented similarity

- Query:- comprises of two parts
 - Top-level type → column header
 - Modifier → context, table's content cells, header itself
- Similarity: the best match over all segmentations
- Example: Modifier in context

User Query

Nobel Prize Winners

The present list contains laureates under the country/countries that are stated by the **Nobel Prize** committee on its website.

Year	Winners	Subject
1902	Ronald Ross	Medicine
1907	Rudyard Kipling	Literature

Segmented similarity

Modifier in content cells → select a subset of rows.

Black metal bands

User Query

Band name	Country	Genre
Aarcon	Germany	Black Metal
Act of God	Russia	Melodic Black
Adragard	Italy	Black Metal

Modifier in other header rows

User Query

Name of Explorers | N

Nationality

Areas Explored

Name	Nationality	Main areas
		explored
Abel Tasman	Dutch	Oceania

Exploration	Who (explorer)
(Chronological order)	
Sea route to India	Vasco da Gama

Segmented similarity matches modifier in first while ignoring extra terms in second

Collective labeling via Graphical Models

User Query

Name of Explorers Nationality Areas Explored

NameNationalityMain areasAbel TasmanDutchOceaniaVasco da GamaPortugueseSea route to IndiaAlexander MackenzieBritishCanada.........

Create a node for every column

 N_1

 $\left(N_{2}\right)$

 N_3

Exploration	Who (explorer)	Century
(Chronological order)		
Sea route to India	Vasco da Gama	15th/16th
Caribbean	Christopher Columbus	15th/16th
Oceania	Abel Tasman	17th

	\
N_9	
	_

Forest reserves		
ID	Name	Area
7	Shakespeare Hills	2236
9	Plains Creek	880
13	Welcome Swamp	168

Collective labeling via Graphical Models

User Query

Name of Explorers Nationality Areas Explored

Possible labels for every node

- 1. Name of explorers
- 2. Nationality
- 3. Areas Explored
- 4. NA (Not Assigned)
- 5. NR (Not Relevant)

Name	Nationality	Main areas
		explored
Abel Tasman	Dutch	Oceania
Vasco da Gama	Portuguese	Sea route to India
Alexander Mackenzie	British	Canada

Constraint: 0/1 match per query column

 N_2

Constraint: all columns NR or none

Exploration	Who (explorer)	Century
(Chronological order)		
Sea route to India	Vasco da Gama	15th/16th
Caribbean	Christopher Columbus	15th/16th
Oceania	Abel Tasman	17th

 N_1

 N_3

Forest reserves		
ID	Name	Area
7	Shakespeare Hills	2236
9	Plains Creek	880
13	Welcome Swamp	168

Graphical Model Approach

User Query

Name of Explorers Nationality Areas Explored

Edges

- Complete Bipartite Graph between nodes of two tables
- Content overlap between column contents and headers
- Maximum Bipartite Matching

Name	Nationality	Main areas
		explored
Abel Tasman	Dutch	Oceania
Vasco da Gama	Portuguese	Sea route to India
Alexander Mackenzie	British	Canada

Exploration	Who (explorer)	Century
(Chronological order)		
Sea route to India	Vasco da Gama	15th/16th
Caribbean	Christopher Columbus	15th/16th
Oceania	Abel Tasman	17th

Graphical Model Approach

User Query

Name of Explorers

Nationality

Areas Explored

Name	Nationality	Main areas
		explored
Abel Tasman	Dutch	Oceania
Vasco da Gama	Portuguese	Sea route to India
Alexander Mackenzie	British	Canada

Edge Potentials

Large weights → Same label

No score for NR

Soft Constraint

 N_4

 N_5

 N_6

Exploration	Who (explorer)	Century
(Chronological order)		
Sea route to India	Vasco da Gama	15th/16th
Caribbean	Christopher Columbus	15th/16th
Oceania	Abel Tasman	17th

	N_1	N_2	N_3
.7			
0.6	0.	4	0.1
	0.3		
	N_7	N_8	N_9

Forest reserves		
ID	Name	Area
7	Shakespeare Hills	2236
9	Plains Creek	880
13	Welcome Swamp	168

Labeling the Graphical Model

- Jointly assign one of |Q|+2 labels to each column to
 - maximize sum of node and edge potentials
 - satisfy the hard mutex constraint
 - At most one column per table assigned a query label
- NP-Hard: Modified α-Expansion Algorithm
 Pimplikar and Sarawagi, VLDB 2012.

Column Mapping Methods Comparison

59 multi-column queries mostly collected from Amazon Mechanical Turk (AMT) service [Cafarella et al, 2009]

Enriching Web Tables

- Entity, Type, Relationship annotation to an existing ontology
- Query-time annotation for new types and relationships
- 3. Unit annotation for quantity columns

Unit Annotation

Ratio with new unit

Unit list

Metre|foot

Pass	Elevation (m/ft)
Tonale pass	1884 (6181)
Colle Maniva	1669 (5476)

Inh. /square kilometre

City	Density (inh. Per km2)
Macau	19796
Mumbai	20694

Atomic unit

Unit with multiplier

Year

British pound [million]

Year ended	Net profit/(loss) (£m)
2012	143
2011	40

Ratio unit

Mega joule/Kilogram

Storage	Energy density by mass in MJ/Kg
Liquid hydrogen	143
Energy from the sun	645,000,000

Simple rules do not work

- Word after "in" a unit e.g. Price in \$, Length in km
 - Scores in last match → last is also a unit name.
 - Capacity in $kt \rightarrow kt = carat$? Kiloton?
- Words within brackets is a unit e.g Price (\$)
 - Population (Dec 2006), dec is a lemma for unit decade.
 - s: second, plural e.g. duration(s), year(s)
- Concept+unit-match e.g. Length m, Speed mph
 - Length (m:s)
 - m gets mapped to meter because of length. Actually, minute.
 - Energy density by volume (MJ/L)
 - → volume helps resolve L as liter.
- ... Rules not easy for compound units that need simultaneous labelling of different parts

Our approach

- Probabilistic Context Free Grammar (QuantCFG)
 - Grammar: captures possible patterns of derived units
 - Diverse set of features from several resources
 - Wordnet frequencies
 - Co-occurrence statistics from unlabeled table corpus.

```
Words? Unit-List Words?
Header
Unit
             ::= CUnit | Multiplier Msep CUnit |
                   CUnit Msep Multiplier | Msep Multiplier
                  Empty | OF | IN
Msep
CUnit
                  SimpleUnit | SimpleUnit UnitOp SimpleUnit
            ::=
UnitOp
            ::= \text{ Empty } | \text{ PER } | '/' | \times
SimpleUnit
            ::= AtomUnit | Multiplier AtomUnit
AtomUnit
                  TokenList_matching_QuTree | New_word
             ::=
Multiplier
                  Token_matching_QuTree_Multiplier | Number
             ::=
```

An example parse

Wind speed (mph / km/h)

Brackets

Multiple units in a list tend to be of the same type

Co-occurrence of "mile per hour" with "wind"

Relative frequency of h in the sense of "hour" in wordnet

Dictionary match

Accuracy of QuantCFG

Manually labeled 664 headers from Web tables

- Rules << QuantCFG
- Linear classifier with same features < QuantCFG
- Frequency feature very useful in NoUnit case
- Co-occurrence features somewhat useful

Summary

- Web tables: rich source of "long-tail" structured data, specifically for
 - Types: richer than "IsA" text patterns.
 - Quantities: more prevalent than in text (40%)

This talk

- Joint models for annotation to existing ontologies
 - Type-Entity scores to handle missing/multi-type links
- Query-time type and relation annotation
 - Segmented similarity to query-type to column
 - Content overlap over many tables.
- Unit annotation
 - PCFG + frequency + co-occurrence from unlabeled corpus

Thank you.