Deep Reinforcement Learning Finale Präsentation

Simon Lausch, Jan Felix Fuchs, Paul Jansen, Tobias Papen

Inhaltsverzeichnis

- Einleitung
 - Wdh.: Environment
 - Wdh.: Reinforcement Learning
- Deep Q-Learning
 - Wdh.: Q-Learning
 - Wdh.: Von Q-Learning zu Deep Q-Learning
 - Baseline
 - Aufbau der Baseline
 - Auswahl an Versuchen
 - Individuelle Ansätze

- ME-TRPO
 - Wdh.: ME-TRPO
 - Model Ensemble
 - Neuronales Netzwerk
 - Daten
 - Training & Testen
 - ME-TRPO Aufbau
 - Reward Function
- Ergebnisse
 - Simon
 - Paul
 - Jan Felix
 - Tobias
 - Gemeinsamer Vergleich

Wdh.: Environment

- Atari: Freeway
 - OpenAl Gym Library
 - Spieldauer 2:30 Minuten (2048 Steps)
 - 8 verschiedene Spielmodi
 - 2 verschiedene Schwierigkeiten
 - Observation
 - RGB
 - Grayscale
 - RAM

Wdh.: Reinforcement Learning

- Methode des maschinellen Lernens
- Bestandteile:
 - Agent
 - Environment
 - State
 - Action
 - Reward
- Exploration vs. Exploitation
- Ziel: Gesamtbelohnung maximieren
- Ansätze: model-based vs. model-free

Deep Q-Learning

Wdh.: Q-Learning

- Q-Table:
 - Matrix mit State-Action Paaren
- Q-Values:
 - Initialisierung mit dem Wert null

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{current value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{current value}}\right)}_{\text{new value (temporal difference target)}}$$

- Temporal difference
- Parameter:
 - Learning rate
 - Discount factor

Wdh.: Von Q-Learning zu Deep Q-Learning

- Berechnung der Q-Values durch ein tiefes neuronales Netz
 - Eingabe: State
 - Ausgabe: Approximierte Q-Values für die Actions
- Anpassung der Gewichte
 - Berechnung des "Loss"
 - Backpropagation
 - Optimierungsalgorithmen

Baseline - Aufbau

- Fully connected 3 layers
- ReLU for the first two layers
- Adam Optimizer
- Mittlere quadratische Abweichung (engl.: MSE) als loss function
- Store transition
- Batch sample learning
- Wahl des Epsilon Decrease
- Reward function

```
#Lineare Transformation
#Pro Layer wird eine lineare Transformation angewandt
self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims) #* entpackt die input_dims
self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
self.fc3 = nn.Linear(self.fc2_dims, self.n_actions)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
```

agent.store_transition(observation, action, reward, observation_, done)

Baseline – Versuche

- Ziele der Versuche:
 - Optimale Hyperparameter finden
 - Epsilon abstieg
 - Learning rate
 - Discount factor
 - Optimale reward function finden
 - Ansätze auf erste Performance untersuchen

Baseline – Versuch 1

• Epsilon Decrease: 0.00264

• Learning rate: 0.005

• Durchläufe (Games): 400

Reward function: Bewegungsabhängig

```
reward_goal = 10000#Reward for reaching the goalreward_forwards = 10#Reward for moving forwardsreward_backwards = -10#Reward for moving backwardsreward_nooperation = 0#Reward for standing stillreward_crash = -100#Reward for colliding with a car
```


Baseline – Versuch 11

• Epsilon Decrease: 0.00264

• Learning rate: 0.005

• Durchläufe (Games): 400

Reward function: nicht linear

Baseline – Versuch 16

• Epsilon Decrease: 0.00264

• Learning rate: 0.003

• Durchläufe (Games): 400

Reward function: Linear

Ansatz – Cropped RAM

- Observation Space begrenzt auf
 - Position d. Autos
 - Position d. Hühnchens
 - Cooldown der Hühnchen
- Input Dimension: 13 vs 128
 - Schneller

Ansatz – CNN mit grayscale image

- Convolutional Layer
 - ReLU Funktion
- MaxPooling
- Convolutional Layer
 - ReLU Funktion
- MaxPooling
- Flattening
- Fully connected Layer
- Fully connected Layer
- Softmax

Ansatz – CNN mit rgb image

Observation Typ: RGB Array

Neuronales Netz:

- Convolutional Layer (Conv2D)
- BatchNorm2D
- ReLU (Aktivierungsfunktion)

ME-TRPO

ME-TRPO Wiederholung

- Model Ensemble
 - Model des Environments wird als Simulation des Environments verwendet
 - Mehrere Models werden zusammengeführt
 - Hohe Robustheit
 - Erhöhter Zeitaufwand
- Trust Region Policy Optimization
 - Policy Gradient
 - Beschränkung wie weit sich die Policy bei jedem Update verändern darf
 - Library von stable-baselines3

Model Ensemble – Neuronales Netzwerk

- Mögliche Arten ein Model zu erstellen
 - Statistische Modelle
 - Gauß Prozess
 - Maschinelles Lernen Modelle
 - Neuronale Netze
 - Support Vector Regression
- Neuronale Netze
 - Vorteile
 - Komplexe Beziehungen in Daten erkennen
 - Verhalten von Systemen genau beschreiben
 - Nachteile
 - Erfordern viele Daten

Model Ensemble – Daten

- Pro Epoche werden Daten von 4 Spielen gesammelt (8192 Samples)
- Numerische Werte
- State
 - Y Koordinate Spieler
 - X Koordinate Autos
 - Score
 - Cooldown
- Actions
 - Oben
 - Unten
 - Nichts
- Neuronales Netz: $f(s, a) = \hat{s}$

Model Ensemble – Training & Testen

- Neuronales Netz:
 - 14 Input Neuronen
 - 1 Hidden Layer mit 256 Neuronen
 - 13 Output Neuronen
- 70/30 Train Test Split
- Loss Function: Mean Squared Error
 - $\frac{1}{n} * \sum (y_i y_i')^2$
- Optimizer: Adam
- Batchsize: 234
 - Ganzer Batch wird auf GPU gespeichert um schneller zu trainieren
- Learning Rate: 0.0014

Reward Function

- Für jeden step einen Grundreward $r = \frac{3}{2}y 90$
- 10.000 jedes mal wenn man ins Ziel läuft
- -10.000 jedes mal wenn man von einem Auto angefahren wird

ME-TRPO Aufbau

Ergebnisse

Ergebnisse – Ansatz Cropped RAM

- Gelernt wurde in 400 Spielen
 - Timesteps = Spiele * 2048 = 819.200
- Getestet wurde in 50 Spielen

Score	Häufigkeit	Crashes
0	8	71
2	1	10
11	5	53 oder 54
12	36	52

Ergebnisse – Ansatz CNN mit RGB image

• Durchschnitt (Score letzten 30 Games): 6.03

Maximal Score: 14

Minimal Score: 0

• Timesteps: 307.200

Ergebnisse – Ansatz CNN mit grayscale image

- Getestet wurde in 100 Spielen
 - Durchschnittlicher Score: 8,88
 - Minimaler Score: 0 (x26) mit jeweils 71 Kollisionen
 - Maximaler Score: 12 (x74) mit jeweils 64 Kollisionen
 - Durchschnittliche Anzahl an Kollisionen: 65,82
- Timesteps (Training) = 100 * 2048 = 204800

Ergebnisse – Ansatz CNN mit grayscale image

Ausblick

- Optimierung bzgl. Performance
- Umfangreicheres Training (mehr Spiele)
- Änderungen im Aufbau des CNN
- Alternative Funktionen zur Berechnung des Loss (statt MSE)
- Alternative Algorithmen zur Optimierung (statt Adam)

Ergebnisse – ME-TRPO

- Timesteps (echtes Environment): 204.800 (100 Spiele)
- Timesteps (Simulation): 12.800.000 (6250 Spiele)

Ergebnisse - ME-TRPO — Fazit

- Was hat funktioniert?
 - Reward Function
 - Verkleinerter Observation space
- Woran hat es gelegen?
 - Models nicht genau genug
 - Score
 - Hit
- Ausblick
 - Trainingszeit und Genauigkeit der Neuronalen Netze optimieren

Gemeinsamer Vergleich

Score	Paul	Simon	Jan Felix	Tobias 1NN	Tobias 2NN	Tobias 5NN
Minimum	0	0	0	4	10	11
Maximum	14	12	12	6	12	12
Average	6.03	9.78	8.88	4.92	11.22	11.98

GitHub Repositories

- Zum Repository von Simon, Jan Felix und Paul:
 - TobiasPapen/projekt-seminar-deep-q-learning (github.com)
- Zum Repository von Tobias:
 - TobiasPapen/projekt-seminar-me-trpo (github.com)