Intro to ML Naïve Bayes, kNN

Vladislav Goncharenko

ML Teamlead, DZEN

MSU, spring 2024

Team

girafe ai

Vladislav Goncharenko

- Author of machine learning courses and Masters program at MIPT
- ML researcher (MIPT)
- Team lead of video ranking team at Dzen (yandex.ru)
- Ex-team lead of perception team at self-driving trucks
- Open source fan

Outline

- 1. ML and AI overview
- 2. Thesaurus and notation
- 3. Maximum Likelihood Estimation
- 4. Some Machine Learning problems
 - a. Classification
 - b. Regression
 - c. Dimensionality reduction
- 5. Naïve Bayes classifier
- 6. k Nearest Neighbours (kNN)

ML and Al overview

girafe ai

Computer Vision

Basics:

- Classical CV (filters, border detectors)
- Convolutional Neural Networks

Computer Vision

Some achievements:

- Object detection
- Semantic segmentation
- Generative models

Natural Language Processing

Basics:

- Language models
- Recurrent Neural Networks
- Attention module

Natural Language Processing

Some achievements:

- Machine translation
- Texts classification
- Texts generation

Reinforcement Learning

Reinforcement Learning

Achievements:

- Alpha Go
- OpenAl Five
- DeepMind Star Craft 2

Machine Learning on Graphs

Basics:

- Random graphs
- Small world model
- Graphs convolutions

Machine Learning on Graphs

Some achievements:

- Communities detection
- Recommender systems

Machine Learning applications

Data Knowledge

Long before the ML

Isaac Newton

Johannes Kepler

Long before the ML

Eratosthenes

girafe

Denote the **dataset**.

,								
			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

Observation (or datum, or data point) is one piece of information.

,		-			•			
\langle			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

In many cases the **observations** are supposed to be *i.i.d.*

- independent
- identically distributed

Feature (or predictor) represents some special property.

			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
L	student	23	3	3	NA	Esperanto	2	FALSE

,	_							
			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
Y	student	23	3	3	NA	Esperanto	2	FALSE

	,							
/			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

,								
\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
Y	student	23	3	3	NA	Esperanto	2	FALSE

,	,							
$\sqrt{}$			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

And even the name is a **feature**

1			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

The **design matrix or feature matrix** contains all the observations and their features

			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
J	student	23	3	3	NA	Esperanto	2	FALSE

Features can even be multidimensional, we will discuss it later in this course

Matrix notation: features

	<mark>/</mark>							
/			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

Feature matrix is usually denoted as $X \in R^{n imes p}$

where $oldsymbol{\eta}$ is number of objects in dataset and $oldsymbol{p}$ is number of properties

Target represents the information we are interested in.

,	_	•						
\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
· ·	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

Target can be either a **number** (real, integer, etc.) – for **regression** problem

Target represents the information we are interested in.

/								
			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
	Aahna	17	4	5	Brown	Hindi	4	TRUE
Ì	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

Or a **label** – for **classification** problem

Target represents the information we are interested in.

							I	
/			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
_	Michael	27	3	4	Green	French	5	TRUE
	Some							
Y	student	23	3	3	NA	Esperanto	2	FALSE

Mark can be treated as a label too (due to finite number of labels: 1 to 5)

Further we will work with the numerical target (mark)

Name	Age	Statistics (mark)	Python (mark)	Eye color	Native language	Target (mark)
John	22	5	4	Brown	English	5
\\ Aahna	17	4	5	Brown	Hindi	4
Emily	25	5	5	Blue	Chinese	5
Michael	27	3	4	Green	French	5
Some student	23	3	3	NA	Esperanto	2

Target represents the information we are interested in.

/								
			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

Target can be either a **number** (real, integer, etc.) – for **regression** problem

Matrix notation: target

		Statistics	Python		Native	Target
Name	Age	(mark)	(mark)	Eye color	language	(mark)
John	22	5	4	Brown	English	5
Aahna	17	4	5	Brown	Hindi	4
Emily	25	5	5	Blue	Chinese	5
Michael	27	3	4	Green	French	5
Some						
student	23	3	3	NA	Esperanto	2

Target matrix is usually denoted as $\,Y\in R^n\,$

where $oldsymbol{\eta}$ is number of objects in dataset

The **prediction** contains values we predicted using some **model**.

\langle			Statistics	Python		Native	Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	4.5
1	Aahna	17	4	5	Brown	Hindi	4	4.5
	Emily	25	5	5	Blue	Chinese	5	5
	Michael	27	3	4	Green	French	5	3.5
	Some							
7	student	23	3	3	NA	Esperanto	2	3

One could notice that prediction just averages of Statistics and Python marks. So our **model** can be represented as follows:

The **prediction** contains values we predicted using some **model**.

					1	I	
		Statistics	Python		Native	Target	Predicted
Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
John	22	5	4	Brown	English	5	4.5
Aahna	17	4	5	Brown	Hindi	4	4.5
Emily	25	5	5	Blue	Chinese	5	5
Michael	27	3	4	Green	French	5	3.5
Some							
student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions:

The **prediction** contains values we predicted using some **model**.

			Statistics	Python		Native	Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	1
	Aahna	17	4	5	Brown	Hindi	4	5
	Emily	25	5	5	Blue	Chinese	5	2
	Michael	27	3	4	Green	French	5	4
	Some							
1	student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions:

$$\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$$

The **prediction** contains values we predicted using some **model**.

			Statistics	Python		Native	Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	1
	Aahna	17	4	5	Brown	Hindi	4	5
	Emily	25	5	5	Blue	Chinese	5	2
_	Michael	27	3	4	Green	French	5	4
	Some							
1	student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions.

Usually some **hypothesis** lies beneath the model choice.

Loss function measures the error rate of our model.

Square deviation	Target (mark)	Predicted (mark)
16	5	1
1	4	5
9	5	2
1	5	4
1	2	3

• **Mean Squared Error** (where **y** is vector of targets):

$$MSE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2 = \frac{1}{N} \sum_i (y_i - \hat{y}_i)^2$$

Loss function measures the error rate of our model.

Absolute deviation	Target (mark)	Predicted (mark)
4	5	1
1	4	5
3	5	2
1	5	4
1	2	3

• **Mean Absolute Error** (where **y** is vector of targets):

$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_1 = \frac{1}{N} \sum_i |y_i - \hat{y}_i|$$

To learn something, our **model** needs some degrees of freedom:

	NI	A		Python			Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	4.5
	Aahna	17	4	5	Brown	Hindi	4	4.5
	Emily	25	5	5	Blue	Chinese	5	5
	Michael	27	3	4	Green	French	5	3.5
	Some							
1	student	23	3	3	NA	Esperanto	2	3

$$\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$$

To learn something, our **model** needs some degrees of freedom:

			Statistics	Python		Native	Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	4.447
	Aahna	17	4	5	Brown	Hindi	4	4.734
	Emily	25	5	5	Blue	Chinese	5	5.101
	Michael	27	3	4	Green	French	5	3.714
	Some							
1	student	23	3	3	NA	Esperanto	2	3.060

$$\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$$

To learn something, our **model** needs some degrees of freedom:

	Name	Age	Statistics (mark)	Python (mark)	Eye color	Native language	Target (mark)	Predicted (mark)
	John	22	5	4	Brown	English	5	1
	Aahna	17	4	5	Brown	Hindi	4	5
	Emily	25	5	5	Blue	Chinese	5	2
_	Michael	27	3	4	Green	French	5	4
\	Some							
1	student	23	3	3	NA	Esperanto	2	3

$$\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer} \text{ from } [1; 5])$$

Last term we should learn for now is **hyperparameter**.

Hyperparameter should be fixed before our model starts to work with the data.

We will discuss it later with kNN as an example.

Recap:

- Dataset
- Observation (datum)
- Feature
- Design matrix
- Target
- Prediction
- Model
- Loss function
- Parameter
- Hyperparameter

Maximum Likelihood Estimation

girafe

Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as is parametric statistics.

Nonparametric statistics can be used for descriptive statistics or statistical inference. Nonparametric tests are often used when the assumptions of parametric tests are evidently violated.

© Common knowledge site

Likelihood maximization

Consider the most simple case of discrete features and target.

Denote dataset X,Y generated by distribution with parameter heta

Likelihood of a parameter is defined as probability of sampling this particular data in case underlying distribution is defined by this parameter.

Maximization of likelihood means we choose the most probable parameters having this particular dataset

$$L(heta|X,Y) = P(X,Y| heta)
ightarrow \max_{ heta}$$

Note that likelihood is not probability function of heta

i.i.d. property

We can employ i.i.d property of data samples to split probability of the whole dataset into independent problems

$$P(X,Y| heta) = \prod_i P(x_i,y_i| heta)$$

Then we apply logarithm function to both parts of equation above

$$\log P(X,Y| heta) = \sum_i \log P(x_i,y_i| heta)$$

The latter expression is easier to operate with: later we will predict log-probability of each object directly

Log-likelihood equivalence

Since logarithm is a convex function on open set, it preserves maximum of expression when applied, so that

$$L(heta|X,Y)
ightarrow \max_{ heta}$$

and

$$\log L(heta|X,Y)
ightarrow \max_{ heta}$$

have the same solutions in terms of heta

Maximum Likelihood Estimation

$$\hat{ heta} = rg \max_{ heta} L(heta|X,Y)$$

is called maximum likelihood estimation of model parameters.

In optimization theory functions are usually minimized, so the same problem could be reformulated using **Negative Log-Likelihood (NLL)** loss

$$\hat{ heta} = rg\min_{ heta} - \sum_i \log P(x_i, y_i | heta)$$

Machine Learning problems overview

girafe

Let's denote:

- ullet Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - $\circ (\mathbf{x} \in \mathbb{R}^p, y \in \mathbb{R})$ for regression
 - $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification
- ullet Model $f(\mathbf{X})$ predicts some value for every object
- ullet Loss function $Q(\mathbf{x},y,f)$ that should be minimized

• Regression problem

- Regression problem
- Classification problem

- Regression problem
- Classification problem
- Dimensionality reduction

girafe ai

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - $oldsymbol{arphi}_i \in \mathbb{R}^{p}$, $y_i \in \{C_1, \dots, C_k\}$ for k-class classification

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

or, in our case

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Let's denote:

- ullet Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{C_1, \dots, C_K\}$ for K-class classification

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are **independent**

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are independent:

$$P(\mathbf{x}_i|y_i = C_k) = \prod_{l=1}^{r} P(x_i^l|y_i = C_k)$$

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Optimal class label:

$$C^* = \arg\max_k P(y_i = C_k | \mathbf{x_i})$$

To find maximum we even do not need the denominator

But we need it to get probabilities

k Nearest Neighbors

girafe ai

Intuition

kNN model

Given a new observation:

- 1. Calculate the distance to each of the samples in the dataset
- 2. Select samples from the dataset with the minimal distance to them
- 3. The label of the new observation will be the most frequent label among those nearest neighbors

How to make it better?

1. The number of neighbors k

How to make it better?

- 1. The number of neighbors k
- 2. The distance measure between samples
 - a. Euclidean
 - b. Minkowski distances
 - c. cosine
 - d. Hamming
 - e. etc.
- 3. Weighted neighbours

They are **hyperparameters** for kNN model.

Weighted kNN

Weights can be adjusted according to the neighbors order

$$w(\mathbf{x}_{(i)}) = w_i$$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

$$p_{\text{green}} = \frac{w(\mathbf{x}_1) + w(\mathbf{x}_2)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

Weighted kNN

Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

 $oldsymbol{w}$ or on the distance itself $w(\mathbf{x}_{(i)}) = w(d(\mathbf{x},\mathbf{x}_{(i)}))$

$$p_{\text{blue}} = \frac{w(\mathbf{x}_3) + w(\mathbf{x}_4)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

Takeouts

- Remember the i.i.d. property
- Usually the first dimension corresponds to the batch size, the second (and so on) to the features/time/...
- Even the naïve assumptions may be suitable in some cases
- Simple models provide great baselines

Revise

- 1. ML and AI overview
- 2. Thesaurus and notation
- 3. Maximum Likelihood Estimation
- 4. Some Machine Learning problems
 - a. Classification
 - b. Regression
 - c. Dimensionality reduction
- 5. Naïve Bayes classifier
- 6. k Nearest Neighbours (kNN)

Thanks for attention!

Questions?

