Théorie des groupes et algèbre multilinéaire

Karol Gromada

2024-2025

Table des matières

	Théorie des groupes	5			
1	Groupes 1.1 Une étude sociologique des groupes	8			
Ш	Algèbre multilinéaire	11			
2	Formes linéaires 2.1 Formes linéaires 2.2 Bidual	14			
3	Application multilinéaire et produit tensoriel 3.1 Application bilinéaire				
4	Application multilinéaire et algèbre tensorielle				
5	Produit extérieur 5.1 Application symétrique, anti-symétrique et alternée	21 21 22			

4 TABLE DES MATIÈRES

Première partie Théorie des groupes

1 Groupes

1.1 Une étude sociologique des groupes

Commençons par définir la notion de groupe.

Définition 1.1.1. Un groupe est la donnée d'un triplet (G, *, e) avec G un ensemble muni d'une fonction $\circ: G \times G \to G: (g, h) \mapsto g * h$ appelée **loi de composition**, telle que :

1. la loi * est associative, c'est-à-direă:

$$\forall a, b, c \in G, a * (b * c) = (a * b) * c$$

2. G contient un élément e, appelé élément neutre, tel que $\forall g \in G$, on ait

$$e * g = g = g * e$$

3. Pour tout $g \in G$, il existe $g' \in G$ tel que g' * g = e

Proposition 1.1.2. Soit *G* un groupe.

- (i) L'élément neutre est unique
- (ii) Pour tous $g, h \in G$, si g * h = e alors h * g = e
- (iii) Pour tout $g \in G$, l'élément g' issu de la condition 3 est unique

DÉMONSTRATION. Ceci est une preuve valable...

Le corollaire suivant est immédiat.

Corollaire 1.1.3. Soit G un groupe. Pour tout $g \in G$, il existe un unique élément $g' \in G$ tel que g' * g = e = g * g'.

Cet élément est noté g^{-1} et est appelé l'inverse de g.

Par exemple, le singleton $G = \{e\}$, avec la loi e * e = e est un groupe. C'est le groupe **trivial**.

Certains groupes ont la particularité que leur loi de composition est commutative. Définissons la notion de groupe commutatif.

Définition 1.1.4. Un groupe G est dit **commutatif** (ou **abélien**) si pour tous $g, h \in G$, on a g * h = h * g.

Il est important de garder en tête que les groupes commutatifs font figure dexception. On termine cette chapter avec une dernière observation élémentaire.

Lemme 1.1.5. Soit (G,*) un groupe. Pour tout élément $g \in G$ et tout entier n > 0, on a $(g^{-1})^n = (g^n)^{-1}$.

DÉMONSTRATION. On procède par récurrence sur n. Le cas n=1 est trivial. Supposons que l'énonce est vrai pour

8 CHAPITRE 1. GROUPES

n. Cela implique que $(g^{-1})^n * g^n = e$. On en déduită:

$$(g^{-1})^{n+1} * g^{n+1} = (g^{-1} * (g^{-1})^n) * (g^n * g)$$

$$= g^{-1} * ((g^{-1})^n * g^n) * g$$

$$= g^{-1} * e * g$$

$$= g^{-1} * g = e$$

Donc $(g^{-1})^{n+1}$ est l'inverse de g^{n+1} .

1.2 Groupes de permutations

Intéressons-nous maintenant au cas particulier de l'exemple du début de cours. Prenons O un ensemble non vide, dépourvu de toute autre structure. Dans ce cas, le groupe Aut(O) est constitué de toutes les permutations des points de O, c'est-à-dire de toutes les bijections de O dans lui-même. On note ce groupe Sym(O) et on l'appelle le **groupe symétrique** associe à O.

Dans le cas ou $O = \{1, ..., n\}$, on écrit plutôt Sym(n) ou S_n .

Un élément $\sigma \in \operatorname{Sym}(n)$ est une fonction bijective qui associe à tout entier $i \in \{1, ..., n\}$ un entier $\sigma(i)$. Le neutre de $\operatorname{Sym}(n)$ est bien sûr la permutation triviale $\operatorname{Id}: i \mapsto i$. La loi de groupe est la composition des fonctions notée \circ . Dans nos notations, le symbole \circ sera omis. On écrit donc

$$\alpha \circ \beta = \alpha \beta$$

et on parle du *produit* de α et β .

Il est pratique de noter la permutation σ comme suit

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Définition 1.2.1. On dit que $x \in O$ est un point fixe de σ si $\sigma(x) = x$.

Par convention, nous pouvons omettre les points fixes dans la notation matricielle d'une permutation $\sigma \in \text{Sym}(n)$. Par exemple, pour n=7, la permutation

$$\sigma^{-1} = \begin{pmatrix} 1 & 3 & 4 & 7 \\ 3 & 1 & 7 & 4 \end{pmatrix}$$

fixe 2, 5 et 6.

Définition 1.2.2. Le **support** d'une permutation σ est le complémentaire de l'ensemble de ses points fixes. On la note supp (σ) . Deux permutations sont dites **disjointes** si leurs supports sont disjoints.

Proposition 1.2.3. Deux permutations disjointes commutent. Autrement dit, si $\alpha, \beta \in \text{Sym}(O)$ sont disjointes, alors $\alpha\beta = \beta\alpha$.

DÉMONSTRATION. Soit $x \in O$ un point quelconque. Supposons d'abord que $x \in \text{supp}(\alpha)$. Comme $\text{supp}(\alpha)$ et $\text{supp}(\beta)$ sont disjoints, $x \notin \text{supp}(\beta)$ ce qui signifie que x est fixé par β . Donc $\alpha\beta(x) = \alpha(x)$.

De plus, on sait que $\alpha(x) \in \operatorname{supp}(\alpha)$, sinon $\alpha(x)$ serait fixé par α , ce qui impliquerait que $\alpha\alpha(x) = \alpha(x)$ et donc que $\alpha(x) = x$ et $x \notin \operatorname{supp}(\alpha)$. De manière analogue, on peut appliquer l'argument précédent et déduire que $\beta\alpha(x) = \alpha(x)$. On obtient ainsi que $\alpha\beta(x) = \alpha(x)$. En échangeant α et β , on obtient la même conclusion dans le cas ou $x \in \operatorname{supp}(\beta)$.

Enfin, si $x \notin \text{supp}(\alpha)$ et $x \notin \text{sup}(\beta)$ alors x est fixé à la fois par α et β ce qui implique que $\alpha\beta(x) = \alpha(x) = x = \beta(x) = \beta\alpha(x)$.

Et donc, $\alpha\beta = \beta\alpha$ quelque soit $x \in O$.

Définissons maintenant ce qu'est une permutation cyclique.

Définition 1.2.4. Une permutation $\sigma \in \text{Sym}(O)$ est appelée un **cycle** (ou est dite **cyclique**) si pour tous $x, y \in \text{supp}(\sigma)$, il existe $n \in \mathbb{Z}$ tel que $\sigma^n(x) = y$.

Lorsque supp(σ) est fini de cardinal k, on dit que σ est un k-cycle.

Remarque. Si σ est un k-cycle, et que $x \in \text{supp}(\sigma)$, alors

$$\sigma = \begin{pmatrix} x & \sigma(x) & \cdots & \sigma^{k-1}(x) \\ \sigma(x) & \sigma^2(x) & \cdots & x \end{pmatrix}$$

Vu que les cycles jouent un rôle important, il convient de leur réserver la notation

$$\sigma = \begin{pmatrix} x & \sigma(x) & \sigma^2(x) & \cdots & \sigma^{k-1}(x) \end{pmatrix}$$

Notre prochain objectif est de montrer que dans le groupe Sym(n), tout élément est un produit de cycles disjoints.

Théorème 1.2.5. Soit n > 0 un entier. Pour toute permutation $\sigma \in \text{Sym}(n)$, il existe des cycles $\gamma_0, \ldots, \gamma_l$ tels que :

- (i) $\sigma = \gamma_0 \cdots \gamma_I$.
- (ii) pour $i \neq j$, les cycles γ_i et γ_i sont disjoints.
- (iii) pour tout i on a supp $(\gamma_i) \subseteq \text{supp}(\sigma)$.

DÉMONSTRATION. On pose $m = |\sup(\sigma)|$ et on procède par récurrence sur ce m.

Si m=0, la permutation σ est triviale. On peut la voir comme un 0-cycle. Elle est évidemment disjointe de toute autre permutation. L'énonce est donc vrai.

Supposons maintenant m > 0, de sorte que $supp(\sigma)$ est non vide. Soit $x \in supp(\sigma)$ un point quelconque. Considérons la suite

$$x, \sigma(x), \sigma^2(x), \ldots$$

de points de $O = \{1, ..., n\}$. Comme O est fini, il doit exister des entiers $p > q \ge 0$ tels que $\sigma^p(x) = \sigma^q(x)$. En post-composant par $(\sigma^q)^{-1} = \sigma^{-q}$, on trouve que $\sigma^{p-q}(x) = x$. Soit maintenant $k \ge 0$ le plus petit entier positif ou nul tel que $\sigma^k(x) = x$. Les points de l'ensemble

$$O(x) = \left\{x, \sigma(x), \dots, \sigma^{k-1}(x)\right\}$$

sont deux à deux distincts et permutés cycliquement par σ . Définissons un k-cycle γ_0 en posant

$$\gamma_0 = \begin{pmatrix} x & \sigma(x) & \cdots & \sigma^{k-1}(x) \end{pmatrix}$$

Clairement, la permutation σ préservé O(x), c'est-à-dire

$$\sigma(y) \in O(x)$$
 pour tout point $y \in O(x)$

et la restriction de σ à O(x) coïncide avec γ_0 . Notons que

$$\operatorname{supp}(\gamma_0) = O(x) \subseteq \operatorname{supp}(\sigma).$$

En outre, la permutation $\gamma_0^{-1}\sigma$ fixe chacun des points de O(x). Comme γ_0 agit comme l'identité sur le complémentaire de O(x), on en déduit que

$$\operatorname{supp}(\sigma) = O(x) \sqcup \operatorname{supp}(\gamma_0^{-1}\sigma)$$

En particulier γ_0 est disjoint de la permutation $\gamma_0^{-1}\sigma$. Dès lors, l'hypothèse de récurrence s'applique à $\gamma_0^{-1}\sigma$, qui s'écrit donc comme un produit de cycles

$$\gamma_0^{-1}\sigma = \gamma_1 \cdots \gamma_I$$

satisfaisant les conditions (ii) et (iii) du théorème. En multipliant l'égalité qui précède par γ_0 à gauche, on trouve $\sigma = \gamma_0 \gamma_1 \cdots \gamma_l$, ce qui prouve (i). Comme supp (σ) est la réunion disjointe de O(x) et de supp $(\gamma_0^{-1}\sigma)$, les assertions (ii) et (iii) découlent de l'hypothèse de récurrence.

10 CHAPITRE 1. GROUPES

Définition 1.2.6. Soit $\sigma \in \operatorname{Sym}(n)$ et $\gamma_1, \ldots, \gamma_l$ des cycles disjoints tels que $\sigma = \gamma_1 \cdots \gamma_l$. La représentation $\sigma = \gamma_1 \cdots \gamma_l$ est appelée **décomposition standard de** σ **en un produit de cycles**. Cette écriture de σ est unique à une permutation près de l'ordre des facteurs γ_i .

1.3 Transpositions et signature

Deuxième partie Algèbre multilinéaire

2 Formes linéaires

Soit \mathbb{K} un corps, V et W des espaces vectoriels sur \mathbb{K} . On définit

$$\mathsf{Hom}_{\mathbb{K}}(V,W) = \{A : V \to W \mid A \text{ linéaire}\}\$$

Une toute première affirmation est que $\operatorname{Hom}_{\mathbb{K}}(V,W)$ est un espace vectoriel sur \mathbb{K} . La preuve se fait très simplement. Soit $A,B\in\operatorname{Hom}_{\mathbb{K}}(V,W)$. On définit l'addition comme

$$A + B : V \longrightarrow W$$

 $V \longmapsto (A + B)(V) \stackrel{\text{def}}{=} A(V) + B(V)$

et la multiplication par un scalaire $\lambda \in \mathbb{K}$ comme

$$\lambda A: V \longrightarrow W$$

$$v \longmapsto (\lambda A)(v) \stackrel{\text{def}}{=} \lambda \cdot (A(v))$$

La preuve en découle trivialement.

2.1 Formes linéaires

Définition 2.1.1. Une forme linéaire sur un espace vectoriel V sur \mathbb{K} est une application linéaire

$$f:V\longrightarrow \mathbb{K}$$

On définit aussi le dual a V qui est $V^* = \{\text{formes linéaires sur } V\} \text{ Hom}_{\mathbb{K}}(V, \mathbb{K})$

Théorème 2.1.2. Soit dim $(V) = n < \infty$ et (e_1, \ldots, e_n) une base ordonnée de V. Alors l'application

$$\varphi: V^* \longrightarrow \mathbb{K}^n$$

$$f \longmapsto (f(e_1), \dots, f(e_n))$$

est un isomorphisme linéaire donc $\dim(V^*) = n$.

En outre, V^* possède une seule base ordonnée (e_1^*, \ldots, e_n^*) définie par

$$e_i^*(e_j) = \delta_{ij}$$

pour tout $i, j \in \{1, ..., n\}$. C'est la base duale.

DÉMONSTRATION. φ est linéaire, car $\forall f, g \in V^*$, $\forall \lambda, \mu \in \mathbb{K}$,

$$\varphi(\lambda f + \mu g) = ((\lambda f + \mu g)(e_1), \dots, ((\lambda f + \mu g)(e_n)))
= (\lambda f(e_1) + \mu g(e_1), \dots, \lambda f(e_n) + \mu g(e_n))
= \lambda (f(e_1), \dots, f(e_n)) + \mu (g(e_1), \dots, g(e_n))
= \lambda \varphi(f) + \mu \varphi(g)$$

De plus, φ est injective car

$$\ker(\varphi) = \{ f \in V^* \mid (f(e_1), \dots, f(e_n)) = (0, \dots, 0) \}$$
$$= \{ f \in V^* \mid f(v) = 0 \ \forall v \in V \}$$
$$= \{ 0 \}$$

Pour vérifier la surjectivité, définissons pour tout $i \in \{1, ..., n\}$ une forme linéaire $e_i^*: V \to \mathbb{K}$ telle que $e_i^*(e_i) = \delta_{ij}$. Observons que

$$\varphi(e_i^*) = (e_i^*(e_1), \dots, e_i^*(e_i), \dots, e_i^*(e_n))$$

$$= (0, \dots, 1, \dots, 0)$$

$$= i\text{-eme vecteur de la base canonique de } \mathbb{K}^n$$

Cela implique que \mathbb{K}^n contient une base de \mathbb{K}^n et contient dès lors tout \mathbb{K}^n puisque φ est linéaire. On conclut donc que φ est un isomorphisme.

Remarque. Soit V, W deux espaces vectoriels sur \mathbb{K} . Fixons $f \in V^*$ et $w \in W$. Définissons ensuite

$$B_{(f,w)}: V \longrightarrow W$$

 $v \longmapsto f(v) \cdot w$

Alors, $B_{(f,w)}$ est linéaire donc $B_{(f,w)} \in \operatorname{Hom}_{\mathbb{K}}(V,W)$. Cette construction fourni une application

$$V^* \times W \longrightarrow \operatorname{Hom}_{\mathbb{K}}(V, W)$$

 $(f, w) \longmapsto B_{(f, w)}$

Cette application est bilinéaire. Elle dépend linéairement de chacune des 2 variables.

2.2 Bidual

Le bidual de V est défini comme $V^{**} \stackrel{\text{def}}{=} (V^*)^*$. Ses éléments sont parfois appelés des cocovecteurs. Soit $v \in V$ fixe et

$$\operatorname{ev}_v: V^* \longrightarrow \mathbb{K}$$

$$f \longmapsto f(v)$$

Cette application ev_{V} est un cocovecteur. En effet, $\forall f, g \in V^*$ et $\forall \lambda, \mu \in \mathbb{K}$

$$ev_{v}(\lambda f + \mu g) = (\lambda f + \mu g)(v)$$
$$= \lambda f(v) + \mu g(v)$$
$$= \lambda ev_{v}(f) + \mu ev_{v}(g)$$

Remarque. Tout vecteur est un cocovecteur.

Théorème 2.2.1 (Bidual).

- (i) L'application $V \to V^{**}: v \mapsto ev_v$ est linéaire et injective.
- (ii) Si dim $(V) = n < \infty$ alors, elle est aussi surjective (et donc c'est un isomorphisme).

DÉMONSTRATION. (i) Soient $v, w \in V$, $\lambda, \mu \in \mathbb{K}$ et $f \in V^*$. On a

$$\begin{aligned} \operatorname{ev}_{\lambda v + \mu g}(f) &= f(\lambda v + \mu w) \\ &= \lambda f(v) + \mu f(w) \\ &= \lambda \operatorname{ev}_v(f) + \mu \operatorname{ev}_w(f) \\ &= (\lambda \operatorname{ev}_v + \mu \operatorname{ev}_w)(f) \end{aligned}$$

2.3. TRANSPOSÉE 15

Donc $v \mapsto ev_v$ est linéaire.

Supposons $v \in V \setminus \{0\}$. On peut alors choisir une base Q de V qui contient v. Il existe alors un seul unique $f \in V^*$ tel que f(v) = 1 et f(w) = 0 pour tout $w \in Q \setminus \{v\}$. Donc

$$ev_v(f) = 1 \neq 0 \implies ev_v \neq 0 \implies v \notin ker(ev)$$

Donc $ker(ev) = \{0\}$ et ev est injective.

(ii) Par le théorème 2.1.2 on sait que $\dim(V^*) = n$. De manière analogue, $\dim(V^{**}) = \dim(V^*) = n$. Par le théorème du rang, elle est aussi surjective.

2.3 Transposée

Considérons maintenant deux espaces vectoriels V, W sur \mathbb{K} et une application $A \in \text{Hom}_{\mathbb{K}}(V, W)$.

Définition 2.3.1. L'application

$$A^{\top}: W^* \longrightarrow V^*$$
$$f \longmapsto f \circ A$$

est appelée la transposée de A.

Théorème 2.3.2. Soit $A \in \text{Hom}_{\mathbb{K}}(V, W)$.

- (i) La transposée $A^{\top}: W^* \to V^*$ est linéaire.
- (ii) $\forall B \in \operatorname{Hom}_{\mathbb{K}}(V, W)$ on a $(A + B)^{\top} = A^{\top} + B^{\top}$.
- (iii) $\forall B \in \text{Hom}_{\mathbb{K}}(U, V)$ on a $(A \circ B)^{\top} = B^{\top} \circ A^{\top}$.
- (iv) Si dim(V), dim(W) $< \infty$ alors A est bijective si et seulement si A^{\top} l'est et $(A^{-1})^{\top} = (A^{\top})^{-1}$.

DÉMONSTRATION. (i) Soient $\varphi, \psi \in W^*$ des formes linéaires et $\lambda, \mu \in \mathbb{K}$ des scalaires. On a

$$A^{\top}(\lambda\varphi + \mu\psi) = (\lambda\varphi + \mu\psi) \circ A$$
$$= \lambda\varphi \circ A + \mu\psi \circ A$$
$$= \lambda A^{\top}(\varphi) + \mu A^{\top}(\psi)$$

ce qui confirme que A^{\top} est linéaire.

(ii) Soit $\varphi \in W^*$. On a

$$(A+B)^{\top}(\varphi) = \varphi \circ (A+B)$$
$$= \varphi \circ A + \varphi \circ B$$
$$= A^{\top}(\varphi) + B^{\top}(\varphi)$$
$$= (A^{\top} + B^{\top})(\varphi)$$

(iii) Soit $\varphi \in W^*$. On a

$$(A \circ B)^{\top}(\varphi) = \varphi \circ (A \circ B)$$

$$= (\varphi \circ A) \circ B$$

$$= A^{\top}(\varphi) \circ B$$

$$= B^{\top} (A^{\top}(\varphi))$$

$$= (B^{\top} \circ A^{\top})(\varphi)$$

(iv) Remarquons d'abord que si $\operatorname{Id}: V \to V: v \mapsto v$ est l'application identique alors Id^{\top} est l'application identique sur V^* . En effet, pour toute forme linéaire $\varphi \in V^*$, on a $\operatorname{Id}^{\top}(\varphi) = \varphi \circ \operatorname{Id} = \varphi$. Si maintenant $A: V \to W$ est inversible, elle admet un inverse A^{-1} et on a $\operatorname{Id} = A^{-1} \circ A$ ce qui implique que $\operatorname{Id} = A^{\top} \circ (A^{-1})^{\top}$ par le point (iii). Cela confirme que A^{\top} est inversible et que son inverse est $(A^{-1})^{\top}$. La réciproque s'établit de manière analogue.

3 Application multilinéaire et produit tensoriel

3.1 Application bilinéaire

Définition 3.1.1. Soit V_1, V_2, W des espaces vectoriels sur \mathbb{K} . Une application $f: V_1 \times V_2 \to W$ est bilinéaire si elle est linéaire en chacune de ses coordonnés. C'est-à-dire que $\forall v_2 \in V_2$ fixé, $V_1 \to W: x \mapsto f(x, v_2)$ est linéaire et $\forall v_1 \in V_1$ fixé, $V_2 \to W: y \mapsto f(v_1, y)$ est linéaire.

Donnons quelques exemples d'applications bilinéaires.

Exemple 1 : Soit $\mathbb{K} = \mathbb{R}$, $V_1 = V_2 = \mathbb{R}^n$, $W = \mathbb{R}$ alors le produit scalaire

$$(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$\begin{pmatrix} \vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \end{pmatrix} \longmapsto \vec{x} \cdot \vec{y} \stackrel{\text{def}}{=} \sum_{i=1}^n x_i y_i$$

est une application (et même forme!) bilinéaire. Il y a plus d'exemples, mais flm d'écrire. Introduisons la notation suivante.

$$\mathcal{L}(V_1, V_2; W) = \{\text{application bilin\'eaire de } V_1 \times V_2 \text{ dans } W\}$$

Affirmation: $\mathcal{L}(V_1, V_2; E)$ est un espace vectoriel sur \mathbb{K} . La preuve se fait tres simplement a partir des définitions suivantes. Soit $f, g \in \mathcal{L}(V_1, V_2, W)$, on pose

$$(f+g)(v_1, v_2) = f(v_1, v_2) + g(v_1, v_2)$$
$$(\lambda f)(v_1, v_2) = \lambda f(v_1, v_2)$$

On se pose donc la question naturelle quelle est la dimension de $\mathcal{L}(V_1,V_2;W)$? Fixons (e_1,\ldots,e_n) une base de V_1 et (d_1,\ldots,d_m) une base de V_2 . Tout $\varphi\in\mathcal{L}(V_1,V_2;W)$ est déterminé par $\varphi(e_i,d_j)=w_{ij}\in W$. Soit $v_1\in V_1$ et $v_2\in V_2$. On peut réécrire ces 2 vecteurs comme

$$v_1 = \sum_{i=1}^n \lambda_i e_i \quad (\lambda_i \in \mathbb{K}) \text{ et } v_2 = \sum_{j=1}^m \mu_j d_j \quad (\mu_j \in \mathbb{K})$$

On a

$$\varphi(v_1, v_2) = \varphi\left(\sum_i \lambda_i e_i, \sum_j \mu_j d_j\right)$$

$$= \sum_{i,j} \lambda_i \mu_j \varphi(e_i, d_j)$$

$$= \sum_{i,j} \lambda_i \mu_j w_{ij}$$

Pour l'inverse, choisissons $n \cdot m$ vecteurs de W, disons $x_{ij} \in W$ avec $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$ alors $\exists ! \psi \in \mathcal{L}(V_1, V_2; W)$ tel que $\psi(e_i, d_j) = x_{ij}$. En effet, on peut poser

$$\psi\left(\underbrace{\sum_{v_i}\lambda_i e_i}_{v_i}, \underbrace{\sum_{v_j}\mu_j d_j}\right) \stackrel{\text{def}}{=} \sum_{i,j} \lambda_i \mu_j x_{ij}$$

On voit ainsi que les éléments de l'espace auquel on est intéressé sont déterminés par $n \cdot m$ vecteurs de W qui lui-même est un espace dont là d'immersion est, disons I. On conclut donc que

$$\dim (\mathcal{L}(V_1, V_2; W)) = n \cdot m \cdot I$$

3.2 Application bilinéaire universelle

Soit V_1, V_2, U des espaces vectoriels sur \mathbb{K} .

Définition 3.2.1. Une application $\varphi \in \mathcal{L}(V_1, V_2; U)$ est appelée universelle si pour tout espace vectoriel W sur \mathbb{K} et $\forall h \in \mathcal{L}(V_1, V_2; W)$, $\exists ! \tilde{h} : U \to W$ linéaire telle que $\forall (v_1, v_2) \in V_1 \times V_2$ on a $h(v_1, v_2) = \tilde{h}(\varphi(v_1, v_2))$.

Théorème 3.2.2. Il existe un espace vectoriel U sur \mathbb{K} ou $\varphi \in \mathcal{L}(V_1, V_2; U)$ est universelle.

DÉMONSTRATION. On va voir qu'on peut poser

$$U = \mathcal{L}(V_1^*, V_2^*; \mathbb{K})$$

On doit construire

$$\varphi: V_1 \times V_2 \longrightarrow U$$

$$(v_1, v_2) \longmapsto \varphi(v_1, v_2) : V_1^* \times V_2^* \longrightarrow \mathbb{K}$$

On pose

$$\varphi(v_1, v_2) : V_1^* \times V_2^* \longrightarrow \mathbb{K}$$

$$(f_1, f_2) \longmapsto f_1(v_1) \cdot f_2(v_2)$$

(Affirmation 1) $\forall (v_1, v_2) \in V_1 \times V_2$, on a $\varphi(v_1, v_2) \in U$.

Autrement dit, le scalaire $\varphi(v_1, v_2)(f_1, f_2) \in \mathbb{K}$ dépend linéairement de f_1 et f_2 . Fixons $f_2 \in V_2^*$. Soit $\lambda, \lambda' \in \mathbb{K}$ et $g, g' \in V_1^*$. Alors on a

$$\varphi(v_1, v_2)(\lambda g + \lambda' g', f_2) = (\lambda g + \lambda' g')(v_1) \cdot f_2(v_2)
= (\lambda g(v_1) + \lambda' g'(v_1)) \cdot f_2(v_2)
= \lambda g(v_1) f_2(v_2) + \lambda' g'(v_1) f_2(v_2)
= \lambda \varphi(v_1, v_2)(g, f_2) + \lambda' \varphi(v_1, v_2)(g', f_2)$$

L'argument pour la linéarité par rapport à f_2 est analogue.

(Affirmation 2) L'application

$$\varphi: V_1 \times V_2 \longrightarrow U$$
$$(v_1, v_2) \longmapsto \varphi(v_1, v_2)$$

est bilinéaire.

Fixons $v_2 \in V_2$. Soit $\lambda, \mu \in \mathbb{K}$ et $x, y \in V_1$ et $(f_1, f_2) \in V_1^* \times V_2^*$. On a

$$\varphi(\lambda x + \mu y, v_2)(f_1, f_2) = f_1(\lambda x + \mu y) f_2(v_2)$$

$$= (\lambda f_1(x) + \mu f_1(y)) f_2(v_2)$$

$$= \lambda f_1(x) f_2(v_2) + \mu f_1(y) f_2(v_2)$$

$$= \lambda \varphi(x, v_2) (f_1, f_2) + \mu \varphi(y, v_2) (f_1, f_2)$$

$$= (\lambda \varphi(x, v_2) + \mu \varphi(y, v_2)) (f_1, f_2)$$

Il reste à vérifier que φ est universelle. Pour démontrer ceci, construisons d'abord une base de U. Choisissons (e_1, \ldots, e_n) et (d_1, \ldots, d_m) des bases ordonnées de V_1 et V_2 .

(Affirmation 3) L'ensemble $\{\varphi(e_i,d_j)\mid i\in\{1,\ldots,n\}, j\in\{1,\ldots,m\}\}\subseteq U$ est une base de U. Cet ensemble est linéairement indépendant. En effet, soit $\lambda_{ij}\in\mathbb{K}$ un choix de nm scalaires tels que

$$\sum_{i,j} \lambda_{ij} \varphi(e_i, d_j) = 0.$$

L'égalité implique que $\forall (f_1, f_2) \in V_1^* \times V_2^*$ on a

$$\sum_{i,j} \lambda_{ij} \varphi(e_i, d_j)(f_1, f_2) = 0$$

Prenons le cas particulier ou $f_1=e_s^*$ et $f_2=d_t^*$. Alors on a

$$0 = \sum_{i,j} \lambda_{ij} \varphi(e_i, d_j)(e_s^*, d_t^*) = \sum_{i,j} \lambda_{ij} \underbrace{e_s^*(e_i)}_{\delta_{si}} \underbrace{d_t^*(d_j)}_{\delta_{ti}} = \lambda_{st}$$

Montrons que les $\varphi(e_i, d_j)$ formes une famille génératrice. Il y a nm vecteurs dans cet ensemble. On observe que

$$dim(U) = dim(\mathcal{L}(V_1, V_2; \mathbb{K}))$$

$$= dim(V_1^*) dim(V_2^*)$$

$$= dim(V_1) dim(V_2)$$

$$= nm$$

On doit dès lors montrer encore que φ est universelle. Soit W un espace vectoriel sur \mathbb{K} et $h \in \mathcal{L}(V_1, V_2; W)$ donnés. On veut montrer que $\exists ! \tilde{h} : U \to W$ linéaire tel que

$$h = \tilde{h} \circ \varphi \tag{*}$$

On sait que les $\varphi(e_i, d_i)$ forment une base de U. De plus,

$$\tilde{h}(\varphi(e_i, d_i)) = h(e_i, d_i) \tag{**}$$

est nécessaire pour que (*) soit vraie. L'existence et l'unicité sont donc vérifiées. Il reste a verifier que (*) est vraie pour tous les points du domaine.

Soit $(v_1, v_2) \in V_1 \times V_2$, $v_1 = \sum_i \lambda_i e_i$ et $v_2 = \sum_j \mu_j d_j$ avec $\lambda_i, \mu_j \in \mathbb{K}$. Alors, on a

$$\tilde{h} \circ \varphi(v_1, v_2) = \tilde{h} \left(\varphi \left(\sum_i \lambda_i e_i, \sum_j \mu_j d_j \right) \right)$$

$$= \tilde{h} \left(\sum_{i,j} \lambda_i \mu_j \varphi(e_i, d_j) \right)$$

$$= \sum_{i,j} \lambda_i \mu_j \tilde{h}(\varphi(e_i, d_j))$$

$$= \sum_{i,j} \lambda_i \mu_j h(e_i, d_j)$$

$$= h \left(\sum_i \lambda_i e_i, \sum_j \mu_j d_j \right)$$

$$= h(v_1, v_2)$$

donc (*) est vérifiée.

Introduisons une notation.

Notation. $U = V_1 \otimes V_2$ est le produit tensoriel de V_1 et V_2 et $\varphi(v_1, v_2) = v_1 \otimes v_2$ est le produit tensoriel de v_1 et v_2 .

Le produit tensoriel des vecteurs v_1 et v_2 est donc l'application bilinéaire universelle

$$\otimes: V_1 \times V_2 \longrightarrow U$$
$$(v_1, v_2) \longmapsto v_1 \otimes v_2$$

Le tenseur élémentaire $v_1 \otimes v_2$ est aussi une forme bilinéaire sur $V_1^* \times V_2^*$

$$v_1 \otimes v_2(f_1, f_2) = f_1(v_1)f_2(v_2)$$

Théorème 3.2.3. Le produit tensoriel

$$\otimes: V_1 \times V_2 \longrightarrow U = V_1 \otimes V_2$$
$$(v_1, v_2) \longmapsto v_1 \otimes v_2$$

est univoquement déterminé (à isomorphisme près) par la propriété universelle.

Remarque. Attention. Une erreur courante est de penser que l'égalité

$$V_1 \otimes V_2 = \{v_1 \otimes v_2 \mid v_1 \in V_1, v_2 \in V_2\}$$

est vraie. Ce n'est pas le cas!

Autrement dit, $\varphi: V_1 \times V_2 \to U$ n'est pas surjective. Par contre, $V_1 \otimes V_2$ contient une base $\{e_i \otimes d_j: i \in \{1, ..., n\}, j \in \{1, ..., m\}\}$

Soit

$$- \otimes -: V_1^* \times V_2^* \longrightarrow V_1^* \otimes V_2^*$$
$$(f_1, f_2) = \longmapsto f_1 \otimes f_2$$

l'application bilinéaire universelle sur $V_1^* \times V_2^*$. En outre, $V_1^* \otimes V_2^*$ s'identifie a $\mathcal{L}(V_1^{**}, V_2^{**}; \mathbb{K}) = \mathcal{L}(V_1, V_2 I \mathbb{K})$. Soit $(f_1, f_2) \in V_1^* \times V_2^*$ et

$$f_1 \otimes f_2 : V_1 \times V_2 \longrightarrow \mathbb{K}$$

 $(v_1, v_2) \longmapsto f_1(v_1) f_2(v_2)$

A titre d'exemple, disons que $V_1 = V_2 = \mathbb{R}^n$ et (e_1, \dots, e_n) est la base canonique. Comment construire une forme bilinéaire sur \mathbb{R}^n ? On vient de voir que le produit tensoriel de 2 formes linéaires est une forme bilinéaire.

Donc par exemple, prenons l'application

$$e_3^* \otimes e_4^* : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right) \longmapsto x_3 \cdot y_4$$

Pour un autre exemple, le produit scalaire usuel sur \mathbb{R}^n est $\vec{x} \cdot \vec{y} = \sum_{i=1}^n x_i y_i$. On peut l'ecrire comme

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \left(\sum_{i=1}^n e_i^* \otimes e_i^* \right) \left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right)$$

4 Application multilinéaire et algèbre tensorielle

Commençons par définir ce qu'est une application *I*-linéaire.

Définition 4.0.1. Soit $l \ge 1$ un entier et V_1, \ldots, V_l, W des espaces vectoriels sur \mathbb{K} . Une application l-linéaire est une fonction

$$f: V_1 \times \cdots \times V_l \longrightarrow W$$

qu'est linéaire sur chacune des coordonnés. Si $W=\mathbb{K}$ on parle de forme $\emph{I-}$ linéaire.

Soit $I, I', I'' \geq 1$ des entiers, $f \in \mathcal{L}(V_1, \dots, V_l; \mathbb{K}), g \in \mathcal{L}(V_1', \dots, V_{l'}; \mathbb{K})$ et $h \in \mathcal{L}(V_1'', \dots, V_{l''}; \mathbb{K})$ des formes multilinéaires. Alors

$$f \otimes g : V_1 \times \cdots V_l \times V_1' \times \cdots V_{l'}' \longrightarrow \mathbb{K}$$
$$(v_1, \dots, v_l, v_1', \dots, v_{l'}) \longmapsto f(v_1, \dots, v_l)g(v_1', \dots, v_{l'}')$$

est une forme (I + I')-linéaire. De plus, on a

$$(f \otimes q) \otimes h = f \otimes (q \otimes h)$$

Ensuite, soit f_1, \ldots, f_l des formes linéaires sur V_1, \ldots, V_l respectivement, c'est-à-dire $f_i \in V_i^*$. Alors $f_1 \otimes \cdots \otimes f_l \in \mathcal{L}(V_1, \ldots, V_l; \mathbb{K})$. En outre,

$$\dim(\mathcal{L}(V_1,\ldots,V_l;\mathbb{K})) = \dim(V_1) \cdot \dim(V_2) \cdots \dim(V_l)$$

Une base de cet espace est donnée par

$$\left\{e_{1,i_1}^*\otimes\cdots\otimes e_{l,i_l}^*\mid 1\leq i_1\leq \dim(V_1),\ldots,1\leq i_l\leq \dim(V_l)\right\}$$

ou $\left\{e_{j,i_j}^* \mid 1 \leq j \leq \dim(v_j)\right\}$ est une base duale à une base de V_j . Enfin, on a un isomorphisme linéaire $V_1^* \otimes \cdots \otimes V_j^* \cong \mathcal{L}(V_1, \ldots, V_l; \mathbb{K})$. Un cas particulier important de cela est quand on prend V ou V^* comme espace vectoriel considérés.

Définition 4.0.2. Un tenseur d'espèce $\binom{p}{q}$ sur V est une forme (p+q)-linéaire

$$T: \underbrace{V^* \times \cdots \times V^*}_{p \text{ fois}} \times \underbrace{V \times \cdots \times V}_{q \text{ fois}} \longrightarrow \mathbb{K}$$

On note $T_q^p(V)$ l'espace des tenseurs d'espèce $\binom{p}{q}$. On dit aussi que T est p-fois covariant et q-fois contravariant.

On donne quelques cas particuliers.

 $T_0^1(V) = \operatorname{Hom}_{\mathbb{K}}(V^*, \mathbb{K}) = V^{**} \cong V$ qui est l'espace des cocovecteurs.

 $T_1^0(V) = \operatorname{Hom}_{\mathbb{K}}(V, \mathbb{K}) = V^*$ qui est l'espace des covecteurs.

 $T_2^0(V) = \mathcal{L}(V, V; \mathbb{K})$ qui est l'espace des formes bilinéaires sur V.

$$T_q^p(V) = \mathcal{L}(\underbrace{V^*, \dots, V^*}_p, \underbrace{V, \dots, V}_q; \mathbb{K})$$
$$\cong V \otimes \dots \otimes V \otimes V^* \otimes \dots \otimes V^*$$

et aussi $\dim(T_q^p(V)) = (\dim(V))^{p+q}$

On obtient une base de $T_q^p(V)$ en fixant une base (e_1,\ldots,e_n) de V et en considérant $\left\{e_{i_1}\otimes\cdots\otimes e_{i_p}\otimes e_{j_i}^*\otimes\cdots\otimes e_{j_q}^*\right\}$

5 Produit extérieur

5.1 Application symétrique, anti-symétrique et alternée

Définition 5.1.1. Soit $f: V^l \to W$ une application I-linéaire. f est **symétrique** si $\forall \sigma \in \text{Sym}(I), \forall (v_1, \dots, v_l) \in V^l$ on a

$$f(v_{\sigma(1)},\ldots,v_{\sigma(I)})=f(v_1,\ldots,v_I).$$

f est **anti-symétrique** si $\forall \sigma \in \text{Sym}(I)$, $\forall (v_1, \ldots, v_l) \in V^I$ on a

$$f(v_{\sigma(1)},\ldots,v_{\sigma(l)}) = \operatorname{sgn}(\sigma)f(v_1,\ldots,v_l).$$

f est **alternée** si $\forall (v_1, \ldots, v_l) \in V^l$, $\exists i, j \in \{1, \ldots, l\}$ avec $i \neq j$ tel que si $v_i = v_j$ alors $f(v_1, \ldots, v_l) = 0$.

Proposition 5.1.2. Toute application *I*-linéaire $f: V^I \to W$ alternée est automatiquement anti-symétrique.

DÉMONSTRATION. Commençons par prouver le cas l=2. Soit $x,y\in V$. Vu que par hypothèse f est alternée, on a

$$f(x-y,x-y)=0$$

f est 2-linéaire donc on peut écrire

$$0 = f(x, x) - f(y, x) - f(x, y) + f(y, y)$$

qui donne l'égalité

$$f(x,y) = -f(y,x)$$

Traitons ensuite le cas $l \ge 2$. Soit $(v_1, \ldots, v_l) \in V^l$ et, soit $\sigma \in \text{Sym}(l)$. Si σ est une transposition, disons $\sigma = (i \ j)$, on observe que

$$V_{\sigma(h)} = V_h$$

$$v_{\sigma(i)} = v_i$$
 $\forall h \in \{1, \dots, l\} \setminus \{i, j\}$

$$V_{\sigma(j)} = V_i$$

Donc tous les v_h ou $h \neq i, j$ sont fixes. Par le cas l=2, on déduit que si σ est une transposition alors $f(v_{\sigma(1)}, \ldots, f_{\sigma(l)}) = -f(v_1, \ldots, v_l)$.

En général, σ est un produit de transpositions, disons

$$\sigma = \tau_1 \cdots \tau_n$$

$$\gamma = \tau_1 \cdots \tau_{n-1}$$

$$\tau = \tau_n = (i j)$$

On a

$$f(v_{\sigma(1)}, \dots, v_{\sigma(l)}) = f(v_{\gamma\tau(1)}, \dots, v_{\gamma\tau(l)})$$

$$= f(v_{\gamma(1)}, \dots, v_{\gamma(j)}, \dots, v_{\gamma(j)}, \dots, v_{\gamma(l)})$$

$$= -f(v_{\gamma(1)}, \dots, v_{\gamma(i)}, \dots, v_{\gamma(j)}, \dots, v_{\gamma(l)})$$

$$= (-1)(-1)^{n-1}f(v_1, \dots, v_l)$$

$$= (-1)^n f(v_1, \dots, v_l)$$

$$= \operatorname{sgn}(\sigma) f(v_1, \dots, v_l)$$

Il est évident que toute fonction $f: \mathbb{R} \to \mathbb{R}$ est la somme d'une fonction paire et impaire. En effet,

$$f(x) = \frac{1}{2}(f(x) + f(-x)) + \frac{1}{2}(f(x) - f(-x))$$

De manière analogue, toute forme bilinéaire sur \mathbb{R}^n est la somme d'une forme bilinéaire symétrique et antisymétrique. En effet, soit

$$f: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $(x, y) \longmapsto f(x, y)$

alors, on peut écrire

$$f(x,y) = \frac{1}{2}(f(x,y) + f(y,x)) + \frac{1}{2}(f(x,y) - f(y,x))$$

5.2 Produit extérieur

Définition 5.2.1. Soit $f: V' \to W$ une application *I*-linéaire.

La **symétrisée** de f est

$$S(f): (v_1, \ldots, v_l) \mapsto \sum_{\sigma \in \mathsf{Sym}(I)} f(v_{\sigma(1)}, \ldots, v_{\sigma(l)})$$

L'anti-symétrisée de f est

$$A(f): (v_1, \ldots, v_l) \mapsto \sum_{\sigma \in \operatorname{Sym}(l)} \operatorname{sgn}(\sigma) f(v_{\sigma(1)}, \ldots, v_{\sigma(l)})$$

Théorème 5.2.2.

- 1. $S(f): V^I \to W$ est *I*-linéaire et symétrique.
- 2. $A(f): V^I \to W$ est *I*-linéaire et alternée (et donc aussi anti-symétrique).

DÉMONSTRATION. S(f) et A(f) sont I-linéaire, car elles sont définies comme combinaisons linéaires de I! formes I-linéaire. Tritons maintenant la seconde partie du théorème.

(1) Soit $\gamma \in \text{Sym}(I)$ et $(v_1, \ldots, v_I) \in V^I$. On a

$$S(f)(v_{\gamma(1)}, \dots, v_{\gamma(l)}) = \sum_{\sigma \in \mathsf{Sym}(l)} f(v_{\gamma\sigma(1)}, \dots, v_{\gamma\sigma(l)})$$
$$= \sum_{\sigma' \in \mathsf{Sym}(l)} f(v_{\sigma'(1)}, \dots, v_{\sigma'(l)})$$
$$= S(f)(v_1, \dots, v_l)$$

Donc le caractère symétrique de S(f) est vérifié.

Ensuite, soit $(v_1, \ldots, v_l) \in V^l$. On doit vérifier que si $\exists i < j$ tel que $v_i = v_j$ alors $A(f)(v_1, \ldots, v_l) = 0$. Posons

$$E = \{ \sigma \in \text{Sym}(I) \mid \sigma^{-1}(I) < \sigma^{-1}(I) \}$$

et

$$E' = \left\{ \sigma \in \operatorname{Sym}(I) \mid \sigma^{-1}(I) > \sigma^{-1}(J) \right\}$$

Par définition, $Sym(I) = E \sqcup E'$.

$$A(f)(v_1, \dots, v_l) = \sum_{\sigma \in \operatorname{Sym}(l)} \operatorname{sgn}(\sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(l)})$$

$$= \sum_{\sigma \in E} \operatorname{sgn}(\sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(l)}) + \sum_{\sigma \in E'} \operatorname{sgn}(\sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(l)})$$

$$\stackrel{\text{def}}{=}_{T}$$

Notre but est dès lors de montrer que T' = -T.

Observons que E et E' sont en bijection. Posons $\tau = (i j)$. On a

$$\sigma \in E \iff \sigma^{-1}(i) < \sigma^{-1}(j)$$

$$\iff \sigma^{-1}\tau(j) < \sigma^{-1}\tau(i)$$

$$\iff \sigma^{-1}\tau^{-1}(j) < \sigma^{-1}\tau^{-1}(i)$$

$$\iff (\tau\sigma)^{-1}(j) < (\tau\sigma)^{-1}(i)$$

$$\iff (\tau\sigma)^{-1}(i) > (\tau\sigma)^{-1}(j)$$

$$\iff \tau\sigma \in E'$$

L'application $\sigma \mapsto \tau \sigma$ établi donc une bijection de E vers E'. Par notre hypothèse de début, $v_i = v_i$ donc $\forall k \in \{1, ..., l\}$, on a

$$v_{\tau(k)} = \begin{cases} v_k & \text{si } k \neq i, j \\ v_j = v_i & \text{si } k = i \\ v_i = v_j & \text{si } k = j \end{cases}$$

On voit donc que $v_{\tau(k)} = v_k$ pour tout $k \in \{1, ..., l\}$. On a

$$T' = \sum_{\sigma' \in E'} \operatorname{sgn}(\sigma') f(v_{\sigma'(1)}, \dots, v_{\sigma'(l)})$$

$$= \sum_{\sigma \in E} \operatorname{sgn}(\tau \sigma) f(v_{\tau \sigma(1)}, \dots, v_{\tau \sigma(l)})$$

$$= -\sum_{\sigma \in E} \operatorname{sgn}(\sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(l)})$$

$$= -T$$

Définition 5.2.3. Le produit extérieur de I formes linéaires $f_1, \ldots, f_l \in V^*$ est défini par

$$f_1 \wedge f_2 \wedge \cdots \wedge f_l = A(f_1 \otimes f_2 \otimes \cdots \otimes f_l)$$

Pour un exemple de ce concept, prenons $V=\mathbb{R}^2=\mathbb{R}^{2 imes 1}.$ On prend

$$e_1^* \wedge e_2^* \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2; \mathbb{R})$$

Par définition, on a

$$\begin{split} e_1^* \wedge e_2^* \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) &= A(e_1^* \otimes e_2^*) \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) \\ &= e_1^* \otimes e_2^* \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) - e_1^* \otimes e_2^* \left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) \\ &= x_1 y_2 - y_1 x_2 \\ &= \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} \end{split}$$