

AUTHOR INDEX

Articles under the rubric *Of Nephrology and Nephrologists* are referred to by journal number, a colon, and page numbers.

Articles appearing on AJKD ELECTRONIC PAGES are referred to by journal number, a colon, the letter E, and a number.

Page references to Supplement 1 (April 2000) and Supplement 2 (June 2000) are preceded, respectively, by S1: and S2:.

- Abbott, K.C., 237
Abrass, C.K., 544
Abt, A.B., 533
Abu-Alfa, A.K., 1076
Adams, J.E., 227
Afzal, A.R., 211
Agodoa, L., 157, 352
Agodoa, L.Y.C., 80
Agraharkar, M., 319
Ahmad, S., 477, 493
Ahuja, T.S., 884
Albizuia, R., 137
Alegre, R., 141
Allen, A.C., 551
Alon, U.S., 1111
Alt, P.S., S1:141
Anastasio, P., 1144
Anderson, R.J., 1127
Anderson, S., 923
André, M.B., 839
Andreoli, S.P., S1:31
Andrés, A., 141
Andresdottir, M.B., 2:E6
Andreucci, M., 448
Andreucci, V.E., 448
Argyle, R., 112
Arisz, L.A., 819
Arora, N., 301
Arruda, J.A.L., 739
Arumugam, R., 301
Asaka, M., 6:E31
Aschauer, M., 529
Ashby, V.B., 80
Ashford, R.G., 796
Ashmore, S.D., 827
Asif, A., 3:E10
Assmann, K.J.M., 2:E6
Ates, K., 1207
Atkins, C., S1:19
Atkins, R.C., 418
Azzopardi, J., 708
- Bahlmann, F., 21
Bahnner, U., 347
Bailie, G.R., 1
Balabanian, M., 963
Barats, M.S., 963
Bargman, J.M., 506
Barrios, R., 4:E15
- Bastani, B., 146
Beach, K., 477
Becker, B.N., 653
Becker, Y.T., 653
Bellin, M-F., 745
Bellovich, K., 606
Beltramo, D., 941
Bengal, R., 930
Benini, R., 1155
Bennett, W.M., 333
Benz, R.L., 1052
Berden, J.H.M., 845
Berger, R., 1149
Berl, T., 6:xlvii-l
Berland, Y., 13
Bernardini, J., 1104
Bia, M.J., 1076
Birk, C.G., 1089
Bitzan, M.M., 354
Blagg, C.R., 493
Blake, P.G., 506
Blake, R., 506
Block, G.A., 1226
Blowey, D.L., 1111
Boeschoten, E.W., 69
Böhmg, G.A., 667
Bolton, W.K., 266
Border, W.A., 773
Borucki, M., 884
Bos, W.J.W., 819
Bosch, J.P., 2:xlvi-xlviii
Boulton-Jones, J.M., 852
Bourgoignie, J., 5:E24
Bouvier, C., 13
Boyle, P., 157, 352
Braam, B., 202
Braden, G.L., 878
Brand, J.L., S1:81
Brazy, P.C., 653
Brezina, M., 122, 832
Brier, M.E., 89
Briggs, D., 157, 352
Briggs, W., 282
Brophy, P.D., 958
Brosnahan, G.M., 427
Brown, W.W., S1:3
Bruin, S., 819
Bryant, J.L., 408
Buccianti, G., 157, 352
- Buchalter, M., 753
Budde, K., 3:E12
Bühler, M., 624
Bunchman, T.E., 958
Burkart, J.M., 506
- Caglioti, A., 448
Cain, J.A., 275
Caldeira, F.E.R., 839
Callan, R., 493
Calleja, Y., 606
Cameron, J.I., 629
Campbell, G.A., 319
Cao, P.G., 211
Cao-Huu, T., 5:E21
Capodicasa, L., 1144
Carey, S., 482
Caridi, G., 44
Carlson, L., 482
Carreiro, A., 137, 141
Carroll, L.E., 533
Cartwright, J. Jr., 4:E15
Caslake, M.J., 852
Cesana, B., 1135
Chadha, V., 1111
Chan, T.M., 644
Chang, J-M., 189
Chang, S-H., 313
Chapman, A., 35
Chapman, A.B., 427
Charney, D., 173
Charney, D.A., 1193
Chau, K.F., 660
Chayama, K., 1186
Chen, C-H., 52
Chen, G., 408
Chen, H-C., 189
Cheng, C-H., 52
Chertow, G.M., 557, 1044, 6:E30
Chevalier, R.L., 775
Chin, W.D.N., 802
Choi, P.C.L., 392
Choudhury, D., 365
Chrystyn, H., 827
Ciardi, M.R., 44
Cirillo, E., 1144
Clase, C.M., 500
Claudon, M., 5:E21
Clayman, R.V., 720
Coffin, R., 275

- Cohen, G., 1117
 Cohen, J., 58
 Cole, J.J., 493
 Cole, M.J., 122
 Coles, G.A., 112
 Colindres, R.E., 695
 Collins, A.J., 244
 Collins, B.H., 653
 Comi, N., 448
 Comper, W.D., 418
 Conlon, P.J., 573
 Conrad, A., 832
 Constantini, E.G., 244
 Cormier, L., 5:E21
 Coroneos, E., 4:E15
 Cosio, F.G., 749
 Couser, W.G., 5:E23
 Covic, A., 361, 617
 Covic, M., 617
 Covinsky, K.E., 275
 Cruz, D., 1076
 Cueto-Manzano, A.M., 227
 Cushing, H., 4:E16
 Cusumano, A., 408
 Cynke, E., 537
- D'Agata, E. M.C., 1083
 D'Agata, E.M.C., 64
 D'Agati, V.D., 777
 Dagnino, M., 44
 Dalleska, F., 244
 Daly, M.J., 827
 Daniel, L., 13
 Dasgupta, M.K., 506
 Datta, S.K., 992
 Daugirdas, J.T., 80
 Davies, S.J., 753
 Davis, J., S1:76
 De Haan, R.J., 69
 Deicher, R., 1117
 Deighan, C.J., 852
 Dekker, F.W., 69
 Delano, B.G., 506
 Delmez, J.A., 150
 De Mattos, A.M., 333
 DeMayo, F., 362
 De Meer, K., 1149
 De Nicola, L., 448
 Deray, G., 745
 De Sain-van der Velden, M.G.M., 1149
 De Santo, N.G., 1144
 Devins, G.M., 629
 Diaz-Buxo, J.A., 293
 Diego, J., 3:E10, 5:E24
 Diehl, L.F., 237
 Diemont, W.L., 845
 Disney, A.P.S., 157, 352
 Dixit, V., 122, 832
 Doe, N., 4:E15
 Doesburg, W.H., 845
- Dominguez-Gil, B., 137
 Domínguez-Gil, B., 141
 Dossetor, J.B., 1002
 Druml, W., 667
 Dunea, G., 739
 Dunn, M.D., 720
 Dunn, M.J., 976
- Ebben, J.P., 244
 Ecdet, T., 427
 Echenagusia, A., 5:E26
 Edelstein, C.L., 427
 Eknoyan, G., S1:69
 El Asmar, B., 362
 Elbahnasy, A.M., 720
 El-Ghoroury, M., 606
 Elli, A., 1135
 Endo, M., 401
 Eppel, G.A., 418
 Eras, J., 937
 Erekul, S., 1207
 Ertug, A.E., 1207
 Ertürk, U., 1207
 Escrivá, A., 137
 Evans, J., 904
 Everson, S.E., 244
 Exner, M., 667, 1117
- Fabrizi, F., 122, 832
 Faict, D., 112
 Falk, R.J., 695, 1166
 Falkenhain, M.E., 749
 Fatica, R.A., 526
 Fava, S., 708
 Federico, P., 1144
 Feehally, J., 551
 Ferrer, C.I., 941
 Ferreras, I., 5:E26
 Fine, A., 506
 Finkel, K.W., 1:E2, 2:E5, 3:E8, 4:E14,
 5:E18, 6:E29
 Finkelstein, F., 506
 Finkelstein, F.O., 638
 Finkelstein, S.H., 638
 Flis, R.S., 777
 Floege, J., 21
 Fogo, A., 1:E1, 2:E4, 3:E7, 4:E13,
 5:E17, 6:E28, 997
 Fogo, A.B., 179, 1242
 François, M., 745
 Frangiosa, A., 1144
 Frankel, W.L., 749
 Franklin, S.C., 150
 Freedman, B.I., 35
 Freemont, A.J., 227
 Frey, F.J., 624
 Friedman, A., 653
 Frimat, L., 5:E21
 Fu, P., 257
 Fujiano, G., 448
 Fujimoto, K., 863
- Fujita, T., 401
 Furth, S.L., 282
- Gadallah, M.F., 301
 García, N.H., 941
 Gardner, J., 958
 Gaucher, O., 5:E21
 Gellens, M., 146
 Gellert, R., 157, 352
 George, A.L. Jr., S1:160
 Georgitis, J.W., 354
 Germain, M.J., 878
 Gesualdo, L., 726
 Gherardi, G., 1155
 Ghiggeri, G.M., 44
 Ghio, L., 44
 Gibney, R.T.N., 802
 Ginevri, F., 44
 Giorgi, R., 13
 Girndt, M., 95, 611
 Gitnick, G., 122, 832
 Gitomer, J.J., 1:E2, 2:E5, 3:E8, 4:E14,
 5:E18, 6:E29
 Givner, L.B., 354
 Glasscock, R.J., S1:90
 Gokal, R., 227
 Gokhale, S., 319
 Goldsmith, D.J.A., 361, 617
 Gonick, H.C., 963
 Gonwa, T.A., S1:153
 Gopal, H., 969
 Grady, J., 884
 Grandaliano, G., 726
 Grantham, J.J., 221
 Green, K., 64
 Grimm, E.M., 1:E2, 2:E5, 3:E8,
 4:E14, 5:E18, 6:E29
 Group for the Water and Electrolyte
 Balance Study in CAPD, 515
 Grover, F.L., 1127
 Guardia, J.A., 5:E24
 Guh, J.-Y., 189
 Gupta, A., 360
 Gusmano, R., 44
- Haag-Weber, M., 1117
 Haas, D.W., 64
 Haas, M., 433
 Haddad, F., 362
 Hamm, L., S1:1
 Hammermeister, K.E., 1127
 Hanaoka, M., 458
 Hara, M., 1186
 Hara, S., 761, 1186
 Harada, T., 896
 Hashimoto, K., 889
 Hasnain, M., 739
 Hassan, H., 146
 Hateboer, N., 753
 Hattersley, A.T., 708
 Haubitz, M., 21

- Hauk, M., 105
 Hayano, S., 323
 Hayashi, T., 194, 250
 Hayek, G., 362
 Hegde, A., 1039
 Heidenheim, P., 506
 Heidland, A., 347
 Helderman, H., 154
 Helderman, J.H., 1242
 Helmandollar, A.W., 266
 Henderson, L.W., S1:106
 Henderson, W.G., 1127
 Hermann, J.A., 282
 Hernández, E., 141
 Herrero, J.C., 137
 Herzenberg, A.M., 5:E25
 Herzog, C.A., 1217
 Hewan-Lowe, K., 1:E3
 Hewan-Lowe, K., 783
 Hickman, R., 477
 Hilbrands, L.B., 2:E6
 Hirsch, D.J., 588
 Hisada, Y., 169
 Ho, K.K.L., 392
 Hogan, S.L., 695
 Hollander, W.M., 884
 Holley, J.L., 1061
 Holmes, C.J., 112
 Holzer, H., 529
 Hori, M., 194, 250, 713
 Hörl, W.H., 130, 667, 1117
 Horn, K., 4:E15
 Horn, R.G., 1242
 Hosoya, T., 465
 Hovick, E.T., 1052
 Hsu, H.-C., 313
 Hubert, J., 5:E21
 Hull, C.M., 5:E23
 Hutchison, A.J., 227
 Hwang, S.-J., 189
- Ichikawa, I., 5:lviii–lx
 Imai, E., 194, 250, 713
 Imai, H., 3:E9, 3:E11
 Imai, T., 761
 Ingram, A.J., 500
 Inoue, S., 761
 Iodice, C., 448
 Ishikawa, I., 6:E31, 216, 1072
 Ishikawa, Y., 216
 Ishiwaru, K., 5:E22
 Iskander, S.S., 354
 Itoh-Ihara, T., 889
 Izumi, M., 713
 Izzedine, H., 745
- Jaar, B.G., 282
 Jaber, B.L., 980
 Jager, K.J., 69
 Janigan, D.T., 588
 Janssen, U., 21
- Jaradat, M., 4:E16
 Jeffery, S., 211
 Jenette, J.C., 1166
 Johnson, A.M., 427
 Johnson, C.A., 1
 Jones, C.A., 80
 Jones, C.H., 827
 Jones, E., 157, 352
 Jones, S., 112
 Jost, M.-C., 537
 Joy, M.S., 695
 Julian, B.A., 555
 Juncos, L.I., 941
- Kalra, P.A., 573
 Kambham, N., 777
 Kaneda, H., 863
 Kang, S.-H., 923
 Kanno, Y., 408
 Karatan, O., 1207
 Karsou, S.A., 980
 Kasahara, M., 221
 Kasahara, Y., 863
 Kasai, K., 465
 Katoh, N., 465
 Katori, H., 761, 1186
 Katz, J., 629
 Kaul, H., 95, 611
 Kawaguchi, Y., 465, 515, 1072
 Kawakatsu, H., 5:E22
 Kawamura, T., 889, 896
 Kawasaki, C., 323
 Kayser, G., S1:1
 Kayser, G.A., 469, 1149
 Keane, W.F., S1:97
 Kenefick, T.M., 923
 Kessler, M., 5:E21
 Keur, I., 819
 Keven, K., 1207
 Khairullah, Q., 606
 Khan, S., 1039
 Kiaii, M., 5:E25
 Kimmel, P.L., S1:132, 1221
 Kirschbaum, B., 1068
 Kitabayashi, A., 3:E11
 Kitagawa, S., 6:E31
 Kitamura, A., 761, 1186
 Klassen, G.A., 588
 Kliger, A.S., 638
 Knostman, J.D., 5:E23
 Kobayashi, Y., 896
 Kodama, T., 3:E9
 Koenig, K.G., 266
 Köhl, J., 21
 Köhler, H., 95, 105, 611
 Koizumi, S., 863
 Kojima, K., 1175
 Komatsu, H., 5:E22
 Komatsuda, A., 3:E9, 3:E11
 Konel, S., 227
 Kooman, J.P., 5:E19
- Koomans, H.A., 202
 Kopp, J.B., 408, 1166
 Kopple, J.D., S1:1, S1:93
 Korbet, S.M., 506, 904
 Kovarik, J., 667
 Kravet, S., 173
 Krediet, R.T., 69, 819
 Krepinsky, J., 500
 Krisher, J., 35
 Krisper, P., 529
 Kshirsagar, A.V., 695
 Kubo, H., 465
 Kuhlmann, M.K., 105
 Kulik, W., 1149
 Kumano, K., 515
 Kundu, G., 362
 Kuo, H.-T., 189
 Kurtzman, N.A., 327
 Kusaka, M., 221
 Kutsogiannis, D.J., 802
 Kuzuhara, K., 761
 Kyriazis, J., 1096
- Lafayette, R., 166
 Lai, K.B., 644
 Lai, K.N., 644
 Lai, Y.-H., 189
 Lai Mac-Moune, F., 392
 Lam, C.W.K., 644
 Lan, H.Y., 418
 Lan, J.-L., 52
 Laski, M.E., 1224
 Lazarou, L.P., 753
 Lazarus, J.M., 293, 598
 Le, L., 319
 LeBrun, C.J., 237
 Lederer, E., 1238
 Leitner, G., 529
 Lemmens, W.A.J.G., 845
 Lengler, S., 95
 Leung, C.B., 392
 Leung, J.C.K., 644
 Leunissen, K.M.L., 5:E19
 Levey, A.S1:., S1:117
 Levi, M., 365
 Levin, N.W., S1:69
 Levine, R.A., 469
 Lew, N.L., 293, 598
 Lewis, E.J., 904
 Lewis, J.B., 154
 Li, C.S., 660
 Li, F.K., 644
 Li, P.K.T., 392
 Li, Z., 598
 Lian, J.-D., 52
 Lien, Y.-H.H., 539
 Lin, C.-H., 313
 Litalien, C., 29
 Liu, J.S., 216
 López-Baena, J.A., 5:E26
 Lorentz, W.B., 354

- Losito, A., 211
 Lowefels, A.B., 157, 352
 Lowrie, E.G., 293, 598
 Lugon, J.R., 839
 Lui, S.F., 392
- Ma, J.Z., 244
 Maccario, M., 1135
 McClellan, W.M., 35
 McConnell, M., 852
 McCredie, M., 157, 352
 McCusker, F.X., 506
 MacDonald, A.S., 588
 McDougall, E.M., 720
 Mackenzie, R.K., 112
 McKinley, M., S1:19
 McMurray, S.D., 506
 McNeil, B.J., 1044
 Madaio, M.P., 992
 Madhan, K.K., 1212
 Madi-Jebara, S., 362
 Maeda, K., 1072
 Magil, A.B., 5:E25
 Mahnensmith, R.L., 1076
 Maisonneuve, P., 157, 352
 Mamouna, A., 1096
 Mantadilok, V., 469
 Manton, W.I., 963
 Mariscalco, M.M., 29
 Markowitz, G.S., 777
 Martin, P., 122, 832
 Martin, S. R., 1089
 Maschio, G., 4:liv-lvi
 Mason, N.A., 1
 Matos, J.P.S., 839
 Matsuda, J., 221
 Matsui, K., 1175
 Matsuo, T., 458
 Matsushita, M., 401
 Matsushita, Y., 761, 1186
 Mawer, B., 227
 MaWhinney, S., 1127
 Mayers, I., 802
 Mazza, G., 448
 Meehan, S.M., 433
 Meissner, M., 477
 Melissant, C. F., 1149
 Mercadal, L., 745
 Merkus, M.P., 69
 Mestecky, J., 555
 Meuleman, E.J.H., 845
 Meyer, T.W., 674
 Miki, K., 3:E9
 Miller, J., 3:E10
 Miller, S.B., 150
 Milutinovic, J., 950
 Miura, A.B., 3:E9, E11
 Moe, S., 4:E16
 Mohler, J.H., 533
 Moles, K., 301
 Molino, D., 1144
- Molony, D.A., 1:E2, 2:E5, 3:E8,
 4:E14, 5:E18, 6:E29
 Monno, R., 726
 Montagnino, G., 1135
 Moore, J. Jr., 1039
 Moore, K.D., 796
 Moore, L.W., S1:19
 Morales, E., 137, 141
 Moriggi, M., 381
 Moritz, T.E., 1127
 Morrison, L., 606
 Morton, A.R., 306
 Mosconi, L.M., 381
 Moseley, A., 112
 Mount, D.B., 1083
 Mouratoff, J.G., 557
 Mousa, M., 122
 Mueller, B.A., 310
 Muiño, J.C., 941
 Mukherjee, A.B., 362
 Mulhern, J.G., 878
 Munir, I., 950
 Murer, L., 44
 Muso, E., 889
 Myll, J., 482
- Nadasdy, T., 1193
 Nagahama, K., 1186
 Nagao, S., 221
 Nagaraj, S.K., 354
 Nagase, M., 1175
 Nagatoya, K., 713
 Nagy, M., 1104
 Nakai, S., 1072
 Nakamoto, Y., 3:E11
 Nakamura, H., 713
 Nakanishi, I., 194
 Nakano, H., 465
 Nakayama, M., 465
 Nakazawa, T., 6:E31, 216
 Nash, S.V., 878
 Nassar, G., 1193
 Neilson, E.G., S1:160
 Nergizoglu, G., 1207
 Neumayer, H-H., 3:E12
 Newstead, C.G., 827
 Nieto, F.J., 812
 Nikolic-Paterson, D.J., 418
 Nimura, T., 3:E11
 Nishi, R., 323
 Nishida, M., 5:E22
 Noble, N.A., 773
 Nogueira, M., 4:E15
 Nomura, M., 458
 Normand, S.T., 1044
 Novak, J., 555
 Nudo, S.A., 796
 Nüesch, R., 537
 Nylander, W., 997
 Nzerue, C.M., 1:E3, 783
- Oberley, E.T., S1:141
 O'Brien, M., 1127
 Oderinde, A., 1:E3
 Ogiso, N., 221
 Ohi, H., 401
 Ohswa, I., 401
 Ohta, K., 863
 Ohtani, H., 3:E9, E11
 Okada, N., 194, 250
 Olson, J.L., 557, 674
 Olyaei, A.J., 333
 O'Neill, W.C., 978, 1021
 Ono, T., 889
 Orhan, D., 1207
 O'Riordan, E., 573
 Ortel, T.L., 796
 Orth, S.R., 767
 Ortúñu, T., 137
 O'Shea, M.H., 878
 Otagiri, M., 323
 Ouseph, R., 89
 Ovworue, C., 173
 Oyama, A., 889
 Oyama, T.T., 923
 Oyama, Y., 3:E11
- Pacheco, D., 5:E26
 Packard, C.J., 852
 Painter, P., 482
 Parente, B., 211
 Paukesakon, P., 1242
 Paul, S.M., 482
 Paulson, W.D., 973, 1089
 Paun, M., 477
 Pece, R., 954
 Pegeraro, A.A., 739
 Pellissier, J-F., 13
 Peracha, W., 739
 Perazella, M.A., 937, 1076
 Pereira, B.J.G., 980
 Perfumo, F., 44
 Perna, A., 1155
 Peterson, D.D., 1052
 Pfister, M., 624
 Phillips, C., 4:E16
 Piaggio, G., 44
 Pieper, D., 606
 Pintar, T.J., 653
 Piraino, B., 1104
 Pirsch, J.D., 653
 Plante, C.L., S1:45
 Plett, C., 477
 Pobes, A., 954
 Poffenbarger, T., 681
 Polito, A., 832
 Pollastro, R.M., 1144
 Polo, J.R., 5:E26
 Ponticelli, C., 1135
 Port, F.K., 80, 1226
 Portis, A.J., 720
 Portman, R., 681

- Postler, G., 871
 Powe, N.R., 282
 Powers, K.M., 266
 Prag, K.A., 310
 Praga, M., 137, 141
 Pressman, M.R., 1052
 Proulx, F., 29
 Provenzano, R., 606
 Provost, A.P., 202
 Pu, K., 112
- Quan, S., 832
- Rabb, H., 871
 Rabelink, T.J., 1149
 Racusen, L., 173
 Rahman, M., 257
 Raj, D.S.C., 365
 Rajaraman, S., 319, 884
 Ram, S.J., 1089
 Ranginwala, N., 739
 Ranieri, E., 726
 Ravine, D., 753
 Regalado, M., 687
 Regele, H., 667
 Reichlin, M., 904
 Rembold, S.M., 839
 Remuzzi, A., 381
 Remuzzi, G., 381, 1155
 Renoult, E., 5:E21
 Revelo, M.P., 1242
 Riegel, W., 105
 Riley, L.J. Jr., 783
 Ritz, E., 767
 Rodriguez, M., 954
 Rodriguez-Iturbe, B., 1:xvi-xlviii
 Rohde, R.D., 904
 Romero, M., 941
 Rosenkranz, A.R., 130
 Roth, D., 3:E10
 Rothenberg, S., 963
 Rothstein, M., 720
 Rubin, J.M., 526
 Ruggenenti, P., 381, 1155
- Sadler, J.H., 51:141
 Säemann, M.D., 667
 Saingra, Y., 13
 Saito, I., 465
 Saito, Y., 216
 Sakai, S., 465
 Sakamoto, K., 6:E31
 Sakarcan, A., 5:E20
 Sambuelli, R.H., 941
 Sands, J.J., 796
 Sangalli, F., 381
 Sankarasubbayan, S., 1061
 Sano, K., 465
 Sarnak, M.L., 51:117
 Saruta, T., 458
 Sayasama, S., 889
- Sawada, T., 5:E22
 Saxena, R., 749
 Schädeli, F., 624
 Schaffner, W., 64, 1083
 Schena, F. P., 726
 Schenk, P., 130
 Schievink, W.I., 40
 Schneditz, D., 529
 Schötschel, R., 3:E12
 Schreiner, G.E., 51:37
 Schrier, R.W., 427
 Schulman, G., 64
 Schwartz, M.M., 904
 Scott, K., 539
 Scott, M.K., 310
 Seco, M., 954
 Sedmak, D.D., 749
 Sehgal, A.R., 257, 275, 51:148
 Seidman, A., 1039
 Seidman, E., 29
 Seki, H., 863
 Seno, A., 863
 Sepe, J., 1144
 Sester, M., 95, 611
 Sester, U., 95, 611
 Sethi, G. K., 1127
 Shahinian, V., 884
 Shalhav, A.L., 720
 Shappell, H.W., 997
 Shappell, S., 4:E15
 Shaykh, M., 739
 Shek, C.C., 660
 Sherrard, D.J., 969
 Shigematsu, T., 465
 Shoji, T., 194, 250
 Shrivastav, S., 408
 Shroyer, A.L., 1127
 Shu, K.-H., 52
 Silva, L. R., 1044
 Silver, M.R., 275
 Simckes, A.M., 1111
 Simon, D., 1076
 Singer, M.A., 306
 Singh, A.K., 739
 Sklar, A.H., 969
 Smith, M.C., 257
 Smoyer, W.E., 958
 Soleimani, M., 871
 Sollinger, H.W., 653
 Sorof, J.M., 681
 Soucie, J.M., 35
 Sowinski, K.M., 310
 Spargo, B.H., 433
 Spitali, L., 1144
 Spósito, M., 812
 Stamatiadis, D., 1096
 Steinberg, E.P., 51:69
 Steinman, T.I., 770
 Stellato, D., 1144
 Stewart, J.H., 157, 352
 Stigant, C.E., 58
- Strandness, D.E. Jr., 477
 Sugaya, T., 169
 Sugiura, T., 713
 Suri, D.L., 674
 Suzuki, A., 194, 250
 Suzuki, S., 896
 Suzuki, Y., 896
 Symmans, P., 1212
 Szeto, C.C., 392
- Tagami, T., 761, 1186
 Takagawa, R., 761
 Takahashi, H., 221
 Takahashi, Y., 458
 Takazoe, K., 418
 Takemoto, F., 761, 1186
 Tamai, M., 5:E22
 Tanawattanacharoen, S., 1166
 Tang, N.L.S., 392
 Tarantino, A., 1135
 Tayeb, J.S., 606
 Tenenbein, M., 958
 Tenney, F., 5:E20
 Te Strake, L., 1212
 Thayer, V., 1083
 Thompson, M.M., 923
 Tiesenhausen, K., 529
 To, K.F., 392
 Togawa, M., 194, 250
 Tokumoto, J., 557
 Toma, T., 863
 Tomana, M., 555
 Tomino, Y., 896
 Tomlanovich, S.J., 674
 Tomosugi, N., 6:E31, 216
 Topley, N., 112
 Toral, C., 3:E10
 Torres, V.E., 40, 547, 930
 Tostivint, I., 745
 Traindl, O., 130
 Truong, L., 1193
 Truong, L.D., 4:E15
 Tsai, J-C., 189
 Tsai, J-H., 189
 Tsubakihara, Y., 194, 250
 Tsukamoto, Y., 458
 Tulunay, O., 1207
 Turgeon, J.P., 29
- Ubara, Y., 761, 1186
 Ucci, A.A. Jr., 878
 Uehlinger, D.E., 624
 Uekihara, S., 323
 Uflacker, R., 950
- Vamvakas, S., 347
 VanBuren, D., 997
 Van der Merwe, W., 1212
 Van der Sande, F.M., 5:E19
 Vanherwegen, J-L., 330
 Van Olden, R.W., 819

- Vega, D., 5:E26
 Veis, J.H., 1039
 Vendramin, G., 381
 Ventura, J.E., 812
 Versepuit, G.H., 202
 Vijayan, A., 150
 VillaNueva, C.B., 1127
 Vinson, S., 122
 Vivera, M., 58
 Volcy, J., 1:E3
 Volmar, K., 173
 Vruggink, P.A., 845
 Wada, T., 863
 Waiser, J., 3:E12
 Wakui, H., 3:E9
 Wang, A.Y.M., 392
 Wang, Z., 871
 Warady, B.A., 1111
 Ward, J., 362
 Ward, M.M., 915
 Ward, R. A., 89
 Watkins, P.J., 708
 Watschinger, B., 667
 Weening, J.J., 202
 Weidner, M., 1242
 Weitzel, W., 526
 Welbourne, T.C., 365
 Welch, P.G., 237
 Wesseling, K.H., 819
 Wesson, D.E., 3:lii-liv, 687
 Westerhof, N., 819
 Wetzels, J.F.M., 2:E6
 Whiteside, C., 629
 Wijdicks, E.F.M., 40
 Wilkowski, M.J., 266
 Williams, J.D., 112
 Wit, E.J.C., 433
 Wolfe, R.A., 80, 157, 352
 Wölfl, G., 130
 Woltmann, D., 526
 Wong, K.M., 660
 Wong, T.Y.H., 392
 Work, J., 1089
 Wu, M-J., 52
 Wuert, D.B., 638
 Wyckoff, S.J., S1:49
 Yachie, A., 863
 Yamada, A., 761, 1186
 Yamaguchi, A., 3:E11
 Yamaguchi, T., 221
 Yamamoto, H., 465
 Yang, C.-S., 313
 Yang, S., 687
 Yashiro, M., 889
 Yazigi, A., 362
 Yeun, J.Y., 469
 Yokata, M., 1186
 Yokota, M., 761
 Yokoyama, H., 863
 Yoshida, H., 896
 Yoshida, I., 930
 Yuan, C.M., 237
 Yum, M-N., 4:E16
 Yurik, T., 6:E31
 Zabetakis, P.M., 506
 Zaltzman, J.S., 58
 Zapczynski, M., 1089
 Zhang, H., 293
 Zhang, Z., 362
 Zheng, F., 362
 Zimmerli, W., 537
 Zimmerman, S.W., 506
 Zlabinger, G.J., 667
 Zwirner, J., 21

SUBJECT INDEX

Articles under the rubric *Of Nephrology and Nephrologists* are referred to by journal number, a colon and page numbers.

Articles appearing on AJKD ELECTRONIC PAGES are referred to by journal number, a colon, the letter E and a number.

Page references to Supplement 1 (April 2000) and Supplement 2 (June 2000) are preceded, respectively, by S1: and S2:.

- Abstracts, from 9th Annual Clinical Nephrology Meeting, 4:A1-A29
 ACE gene polymorphisms. *See* Angiotensin-converting enzyme gene polymorphisms
 ACEi. *See* Angiotensin-converting enzyme inhibitors
 Acetic dialysate, dialysis dose and, 493-499
 Acid-base status
 cocaine-induced imbalance, 789
 management guidelines
 adult, S2:38-39
 pediatric, S2:107-108
 Acidemia, treatment, S2: 38-39
 Acidosis, metabolic. *See* Metabolic acidosis
 Activated charcoal, for diethylene glycol poisoning, 958-962
 Active transport inhibitor, for lead, in uremic plasma, 963-968
 Acute illness, during maintenance dialysis
 energy intake and, S2:51-53
 protein intake and, S2:51-53
 Acute phase response activation, in IgA nephropathy, 21-28
 Acute renal failure (ARF)
 cocaine-associated, 783-795
 COX-2 inhibitor associated, 937-940
 diagnosis, Doppler ultrasound for, 713-719
 etiology/outcome in elderly, 433-447
 with interstitial nephritis in AIDS, 557-561
 noni juice-induced hyperkalemia and, 310-311
 normeperidine neurotoxicity treatment and, 146-149
 outcome after cardiac valve surgery and, 1127-1134
 outcome variables, intermittent hemodialysis and, 980-991
 pediatric, peritoneal dialysis catheter choice for, 1111-1116
 potassium excretion impairment in, 871-877
 renal biopsy, 448-457

- secondary to hematuria and tubular necrosis, 533–536
ultrasonography, 1021–1039
- Acute tubular necrosis (ATN)
differential diagnosis, Doppler ultrasound for, 713–719
etiology/outcome, in elderly, 433–447
ultrasonography, 1021–1039
- Adequacy
impact of intermittent hemodialysis variables on, 980–991
increased dialysate flow rate and, 05–111
Netherlands Cooperative Study on, 69–79
peritoneal dialysis
multicenter cross-sectional study of, 515–525
in U.S. vs. Canada, 506–514
with two parallel dialyzers, 266–274
- Adjusted edema-free body weight, maintenance dialysis, S2:36–37
- ADPKD. *See* Autosomal dominant polycystic kidney disease
- Advanced glycation end products (AGEs), renal effects, 365–380
- Age/aging
blood pressure in hemodialysis and, 257–265
- AIDS interstitial nephritis, with acute renal failure, 557–561
- Air pollution, MPO-ANCA-associated angitis/nephritis and, 889–895
- Albumin, serum
ACE inhibition in diabetic vs. nondiabetic chronic renal disease and, 695–707
low levels, CRP and, 469–476
measurement methods, S2:66
mortality prediction in ESRD with sleep disorders and, 1052–1061
nutritional status in maintenance dialysis and, S2:20–21
outcome prediction in chronic dialysis, 69–79
processing
in anti-glomerular basement membrane glomerulonephritis, 418–426
in anti-Thy1 nephritis, 418–426
- Albuminuria
absence, glomerular filtration rate and, 1144–1148
diagnosis, fluorescent dye method vs. radioimmunoassay for, 739–744
in progressive renal disease, S1: 97–105
in terminal renal failure, prevention of, 202–210
total protein excretion and, 418–426
- Alcohol dehydrogenase inhibitor, for diethylene glycol poisoning, 958–962
- Alcoholism prevalence, in dialysis patients, 1039–1043
- Allograft dysfunction
in adult male, 997–1001
vein thrombosis, surgical thrombectomy of, 5:E21
- Allograft failure, with systemic lupus erythematosus, 1242–1247
- Allograft nephropathy, angiotensin-converting enzyme inhibitors in, 154–156
- Allopurinol, for familial microscopic hematuria, 141–145
- Alternative medicine
Chinese herbal nephropathy and, 330–331
noni juice-induced hyperkalemia, 310–311
- Aminoguanidine, inhibition of AGEs, 373–374
- Amlodipine, for hypertensive ADPKD patients, 427–432
- Amyloidosis
remission after Castleman's disease removal, 1207–1211
secondary
in fibrillary glomerulonephritis, 173–177
in giant-cell arteritis, 137–140
in polymyalgia rheumatica, 137–140
- ANCA (antineutrophil cytoplasmic antibody), in anti-GBM-associated glomerulonephritis, 954–957
- Anemia
in ESRD
iron therapy for, 1–12
with sleep disorders, mortality prediction for, 1052–1061
exacerbation in CRF, ACE inhibitors and, 1076–1082
- Angitis, MPO-ANCA-associated, 889–895
- Angiotensin, in renal fibrosis, maximal reduction of, 773–776
- Angiotensin-converting enzyme gene polymorphisms
DD, RVD survival and, 211–215
insertion/deletion, IgA nephropathy progression and, 896–903
- Angiotensin-converting enzyme inhibitors
antiproteinuric effect, 381–391
in chronic allograft nephropathy, 154–156
in diabetic and nondiabetic chronic renal disease, 695–707
for hypertensive ADPKD patients, 427–432
kidney disease progression and, 1155–1165
for prevention of terminal renal failure in albuminuria, 202–210
for renal transplant recipients, 58–63
rHuEPO requirements in hemodialysis and, 1076–1082
- Angiotensin II
in immune-mediated renal injury, 166–172
in progressive glomerulosclerosis, 179–188
- Angiotensin II antagonists
for chronic allograft nephropathy, 154–156
for renal transplant recipients, 58–63
- Angiotensin receptors, new research on, 5: i–iii
- Anion gap increase, in metabolic acidosis of hemodialysis, 1068–1072
- Anthropometry methods. *See also specific anthropometric methods*
nutritional status in maintenance dialysis and, S2:32–33
performance, S2:76–85
- Antibiotics, for chronic hemodialysis, 64–68
- Anticoagulation
heparin vs. rTPA, for Quinton Permocath priming, 130–136
population pharmacodynamic model for, 89–94
regional citrate, in CVVHDF, 802–811
- Anti-glomerular basement membrane antibodies, glomerulonephritis-associated with, 954–957
- Anti-glomerular basement membrane disease
glomerulonephritis, albumin processing in, 418–426
pathogenesis, All and, 166–172
- Antihypertensive therapy
for hypertensive ADPKD patients, 427–432
for nondiabetic nephropathy, 4: liv–lvi
- Antineutrophil cytoplasmic antibody (ANCA), in anti-GBM-associated glomerulonephritis, 954–957
- Antioxidant, effects on PKD murine model, 221–226
- Antiphospholipid antibodies, vascular access thrombosis and, 796–801

- Anti-Thy1 nephritis, albumin processing in, 418–426
 ANZDATA registry, cross-cultural comparison of renal disease classifications, 157–165
 Arachnoid cysts, subdural hematoma in ADPKD and, 40–43
 Area under concentration curve, for tacrolimus monitoring of transplant recipients, 660–666
 ARF. *See* Acute renal failure
 L-Arginine, effects on polycystic rat model, 930–936
 Aristolochic acid, fibrosing interstitial nephritis from, 313–318
 Arterial compliance, dialysate calcium level in hemodialysis and, 1096–1103
 Arteriole calcification, in chronic renal failure, 588–597
 Arteriopathic renal diseases, cross-cultural classification comparisons, 162
 Arteriovenous fistula, microembolic signals in, 526–528
 Arteriovenous graft, microembolic signals in, 526–528
 AT1a receptor knockout, immune-mediated renal injury and, 166–172
 Atherosclerotic renovascular disease (ARVD), epidemiology/clinical manifestations, 573–587
 AT II antagonists. *See* Angiotensin II antagonists
 Autosomal dominant polycystic kidney disease (ADPKD)
 age of hemodialysis induction, gender differences in, 1072–1075
 chronic subdural hematoma in, 40–43
 ESRD, laparoscopic nephrectomy for, 720–725
 hypertension, antihypertensive therapy for, 427–432
 with Marfan syndrome in kindred, 753–760
 pain management in, 770–772
 progression, hypertension/proteinuria and, 547–550
 racial variation in, 35–39
 renal mass reduction for, 923–929
 Azotemia
 differential diagnosis, Doppler ultrasound for, 713–719
 neutrophil β_2 -microglobulin and lactoferrin content in, 1117–1126
 Basic fibroblast growth factor, during peritonitis CAPD, 644–652
 BCG (bromresol green assay), S2:66
 Berger's disease, histologic features, survival and, 392–400
 BIA (bioelectrical impedance analysis), S2:86
 Bicarbonate, serum
 low, treatment of, S2: 38–39
 in maintenance dialysis
 measurement, 39, S2: 38
 pediatric guidelines, S2:107–108
 Bicarbonate-buffered peritoneal dialysis fluid, ex vivo peritoneal macrophage function and, 112–121
 Bicarbonate dialysate concentration, metabolic acidosis and, 1224–1225
 Biocompatibility
 of bicarbonate-buffered dialysis fluids, 112–121
 of dialyzer membranes, outcome and, 980–991
 of vitamin E-coated dialyzer membranes, 95–104
 Bioelectrical impedance analysis (BIA), S2:86
 Biological scaling, Kt/V and, 306–309
 Blacks
 ADPKD in, 35–39
 blood pressure in hemodialysis, 257–265
 idiopathic focal segmental glomerulosclerosis in, 878–883
 mortality risk with dialysis dose, body size and, 80–88
 Blood flow, in curved-tip vs. standard dialysis catheters, 624–628
 Blood pressure
 in chronic hemodialysis, 257–265
 dialysate calcium level and, 1096–1103
 seasonal variations, 812–818
 and ultrafiltration, 819–826
 circadian variation in rHuEPO therapy for CRF and, 250–256
 normal, glomerular filtration rate and, 1144–1148
 post-transplantation changes in children, 681–686
 predictive accuracy for graft thrombosis, 1089–1095
 in renal insufficiency, smoking-related progression of, 687–694
 renal mass reduction, adaptation in polycystic rat, 923–929
 Blood vessel prosthesis blood flow decrease, in graft thrombosis prediction, 1089–1095
 Blood volume, in hemodialysis and ultrafiltration, 819–826
 BMI. *See* Body mass index
 Body fat, estimation, S2:81–82
 Body mass index (BMI)
 calculation, S2:77
 glomerular filtration rate in normotension and, 1144–1148
 hemodialysis dose, mortality and, 80–88
 urea reduction ratio, urea product and, 598–605
 Body size, hemodialysis dose, mortality and, 80–88
 Body weight
 excessive. *See* Obesity
 glomerular filtration rate in normotension and, 1144–1148
 interdialytic gain, blood pressure in hemodialysis and, 257–265
 measurements
 by age, S2:130–131
 methods for, S2:124
 standard, percentage of, S2:76–77
 standing, measurement method, S2:124
 Bone densitometry, of long-term renal transplant recipients, 227–236
 Bone histomorphometry
 of long-term renal transplant recipients, 227–236
 22-oxacalcitriol effects on, 458–464
 Bone loss, renal transplant-associated, 1,25-dihydroxyvitamin D₃ and calcium carbonate effects on, 227–236
 Bovine thrombin antibodies, vascular access thrombosis and, 796–801
 Bowman's capsule volume, digital reconstruction in glomerulocystic kidney disease, 216–220
 Brachiocephalic vein occlusion, secondary unilateral breast enlargement from, E:26
 Breast cancer screening, failure of, 327–329
 Bromresol green assay (BCG), S2:66
 Calcifications
 in chronic renal failure, 588–597
 peritoneal, after long-term CAPD, 761–766
 Calciphylaxis, in chronic renal failure, 588–597

- Calcitriol, pulsed-dose, for secondary hyperparathyroidism, 465–468
- Calcium
in dialysate, arterial compliance in hemodialysis and, 1096–1103
posthemofiltration levels, for regional citrate anticoagulation, 802–811
- Calcium carbonate, renal transplant-associated bone loss and, 227–236
- Calcium channel blockers, for hypertensive ADPKD patients, 427–432
- Calcium oxalate, in familial microscopic hematuria urine sediment, 141–145
- Cancer
dialysis-associated, incidence/spectrum of, 347–353
screening
breast, failure of, 327–329
in end-stage renal disease, life expectancy benefits of, 237–243
- CAPD. *See* Continuous ambulatory peritoneal dialysis
- Cardiac compromise, improving hemodynamic stability during hemodialysis, 5:E19
- Cardiac oxygen supply/demand, in hemodialysis and ultrafiltration, 819–826
- Cardiac valve surgery, mild renal failure outcome after, 1127–1134
- Cardiopulmonary manifestations, of Henoch-Schönlein purpura, 319–322
- Cardiopulmonary vasculitis, in Henoch-Schönlein purpura, 319–322
- Cardiovascular disease
chronic renal disease and, S1:117–131
comorbidity, blood pressure in hemodialysis and, 259, 261, 262–263
mortality prediction in hemodialysis, CRP and, 469–476
risk
proteinuria and, S1:97–105
small dense LDL and, 852–862
- L-Carnitine, for maintenance dialysis
adults, S2:54–55
children, S2:88–92
- Case-control design study, of prolonged hypoglycemia in ESRD, 500–505
- Castleman's disease, localized removal, nephrotic syndrome remission after, 1207–1211
- Catheters
hemodialysis
blood flow in curved-tip vs. standard, 624–628
central venous soft cuffed implantable, priming of, 130–136
facility specific standardized ratio calculation, 275–281
peritoneal dialysis
pediatric, 1111–1116
repositioning, Fogarty catheter manipulation for, 301–305
- C4d, antibody-mediated graft injury in spousal-donor kidney transplantation, 667–673
- CD4 lymphocytes, in renal disease in HIV-transgenic mice, 408–417
- Celecoxib, nephrotoxicity, 937–940
- Cell proliferation, in polycystic kidney disease, lovastatin and, 221–226
- Channel inducing factor (CHIF), in acute renal failure, 871–877
- Charcoal hemoperfusion, for phenytoin overdosage, 323–326
- Children
acid-base status management guidelines, S2:107–108
diethylene glycol poisoning in, 958–962
with hemolytic uremic syndrome, TGF β -1 and lymphokines in, 29–34
hypertensive emergencies, nicardipine for, 5:E20
kidney transplantation, abnormal 24-hour blood pressure patterns, 681–686
- maintenance dialysis. *See* K/KOQI Nutrition Clinical Practice Guidelines, pediatric
- peritoneal dialysis, catheter choice for, 1111–1116
- renal effects of cocaine exposure, 783–795
- Chinese herb nephropathy (CHN)
incidence of, 330–331
progressive fibrosing interstitial nephritis in, 313–318
- Cholesterol
nutritional status in maintenance dialysis and, S2:25–26
in PKD model, probucol effects on, 221–226
- Chronic interstitial nephritis, incidence, 878–883
- Chronic renal failure, progression in hypertension, augmentation by smoking, 687–694
- Chronic renal failure (CRF). *See also* End-stage renal disease
ADPKD-associated, racial variation in, 35–39
anemia exacerbation, ACE inhibitors and, 1076–1082
calcified arterioles and subcutaneous infarcts in, 588–597
cocaine in, 790–791
delayed by ACE inhibition, 202–210
- Dialysis Outcomes Quality Initiative, S1:69–75
- EPO therapy, hematocrit target for, 250–256
- hemodialysis, diabetic muscle infarction and, 1212–1216
- in juvenile nephronophthisis, 44–51
- nondialyzed
dietary energy intake for, S2:60–61
dietary protein intake for, S2:58–59
intensive nutritional counseling for, S2:62–63
nutritional measures for, S2:56–57
- prediction, in IgA nephropathy, 13–20
- progression, aminoguanidine prevention of, 365–380
- protein-energy malnutrition causes, S2:9
- proteinuria and, S1:97–105
- renal biopsy, 448–457
- survival after acute myocardial infarction, 1044–1051
- ultrasonography, 1021–1039
- Cigarette smoking. *See* Smoking
- Circadian rhythm, blood pressure variation, rHuEPO therapy for CRF and, 250–256
- Citrate anticoagulation, regional, in CVVHDF, 802–811
- Citrate dialysis, dialysis dose and, 493–499
- Classification
of Haas, prognostic value of, 13–20
of primary renal diseases, world-wide differences in, 157–165
- Clinical performance measures, Dialysis Outcomes Quality Initiative, S1:69–75

- Clinical practice guidelines, Dialysis Outcomes Quality Initiative, S1:69–75
- Coagulation. *See also* Anticoagulation
in crescentic glomerulonephritis, 726–738
- Cocaine abuse, kidney and, 783–795
- Cohort study, of survival after myocardial infarction in ESRD, 1044–1051
- Comorbidity
in hemodialysis, 2:xlvii–xlviii
reuse-associate mortality and, 244–249
- Complement activation, in Henoch-Schönlein purpura nephritis, 401–407
- Complement C3, in IgA nephropathy, 21–28
- Complex traits, in kidney disease, S1:160–169
- Compliance. *See also* Noncompliance
alcoholism and, 1039–1043
blood pressure and, 257–265
with dialysis exchanges in peritoneal dialysis, 1104–1110
- Congenital diseases, cross-cultural classification comparisons, 157–165
- Congestive heart failure
atherosclerotic renovascular disease and, 573–587
comorbidity, blood pressure in hemodialysis and, 257–265
- Continuous ambulatory peritoneal dialysis (CAPD)
catheter migration, Fogarty catheter manipulation for, 301–305
long-term, ectopic intestinal wall calcification in, 761–766
noncompliance, in US vs. Canada, 506–514
noncompliance pattern with dialysis exchanges, 1104–1110
for peritonitis, cytokine profile changes in, 644–652
sexual dysfunction after, 845–851
- Continuous venovenous hemodiafiltration (CVVHDF), regional citrate anticoagulation in, 802–811
- Cook catheters, for pediatric peritoneal dialysis, 1111–1116
- Coronary artery disease, risk, with hyperphosphatemia and hyperparathyroidism in dialysis, 1226–1237
- Corticosteroids, for diffuse proliferative IgA nephropathy, 194–201
- Cox2 selective inhibitors, nephrotoxicity, 976–977
- C1q nephropathy, spontaneous improvement, 5:E22
- C-reactive protein (CRP)
in IgA nephropathy, 21–28
mortality prediction in hemodialysis and, 469–476
- Creatinine
in hypertensive-associated renal disease, smoking and, 687–694
mild renal failure outcome after cardiac valve surgery and, 1127–1134
nutritional status in maintenance dialysis and, S2:23–24
- Creatinine clearance
in Japanese peritoneal dialysis patients, 515–525
long-term cyclosporine monotherapy in transplant patients and, 1135–1143
in overweight normotensive humans, 1144–1148
- Creatinine index
calculation, S2:67
nutritional status in maintenance dialysis and, S2:23–24
usage, S2:67
- Creatinine urine/serum ratio, in differentiation of prerenal azotemia from ATN, 713–719
- Crescentic glomerulonephritis, tissue factor, PAI-1 and thrombin receptor expression in, 726–738
- Crescents
IgA nephropathy prognosis and, 13–20
in pauci-immune necrotizing lupus nephritis, 1193–1206
- Cross-cultural comparison, of primary renal disease classifications, 157–165
- Cross-infection in chronic hemodialysis, risk factors for, 1083–1089
- CRP. *See* C-reactive protein
- Cryoglobulinemia glomerulopathy, splenectomy and, 1186–1192
- Cuprammonium membrane biocompatibility, serum albumin and, 606–610
- CVVHDF (continuous venovenous hemodiafiltration), regional citrate anticoagulation in, 802–811
- Cyclooxygenase-2, renal cell adaptation to hypertonicity and, 6:xlvii–1
- Cyclooxygenase-2 enzyme inhibitors, nephrotoxicity, 937–940
- Cyclophosphamide, long-term, for post-transplant MPGN prophylaxis, 539–542
- Cyclosporine
long-term, for post-transplant MPGN prophylaxis, 539–542
nephrotoxicity of, 333–346
for transplant patients, long-term results of, 1135–1143
- Cryoglobulinemia, subclinical, in HD and KT patients, 52–57
- Cytokines. *See also* specific cytokines
induction
through dialyzer membranes, in ESRD, 611–616
vitamin E-coated dialyzer membranes and, 95–104
profile changes during peritonitis CAPD, 644–652
- 1,25(OH)D₃ derivatives, for secondary hyperparathyroidism in CAPD, 761–766
- DEG (diethylene glycol), childhood poisoning, treatment of, 958–962
- Depression, in end-stage renal disease, S1:132–140
- Dextran fractional clearance, ACE inhibition and, 381–391
- Diabetes mellitus
chronic renal disease, ACEi effects in, 695–707
complications. *See also* Diabetic nephropathy
advanced glycation end products and, 369–370
muscle infarction in dialysis patients, 1212–1216
cross-cultural classification comparisons, 157–165
end-stage renal disease, prolonged sulfonylurea-induced hypoglycemia in, 500–505
hemodialysis, septicemia in, 282–292
with proteinuria, cardiovascular morbidity/mortality and, S1:97–105
type 2
familial clustering of proteinuria in, 708–712
progressive renal failure with nephrotic syndrome in, 173–177
- Diabetic nephropathy
gender differences, vs. ADPKD, 1072–1075
incidence, 878–883

- pancreatic transplant for, 1238–1241
progression and response to treatment, 1155–1165
- Dialysate
bicarbonate concentration, metabolic acidosis and, 1224–1225
calcium, effect on arterial compliance, 1096–1103
citrate vs. acetic, dialysis dose and, 493–499
in vivo flow rate, Kt/V maintenance and, 105–111
- Dialysis. *See* Hemodialysis; Peritoneal dialysis
- Dialysis cannulas, curved-tip vs. standard, 624–628
- Dialysis dose
citrate vs. acetic dialysate and, 493–499
Kt/V and, 306–309
mortality risk, body size and, 80–88
multicenter cross-sectional study, 515–525
in vivo effects of dialysate flow rate on, 105–111
- Dialysis health care team, demands of functionally dependent patients on, 1061–1067
- Dialysis Outcomes Quality Initiative (DOQI), history, impact and prospects, S1:69–75
- Dialyzer membranes
biocompatibility
in intermittent hemodialysis, outcome and, 980–991
serum albumin and, 606–610
low-flux, permeability of, 839–844
polysulfone, serum albumin levels and, 606–610
vitamin E-coated, T-cell activation, cytokine induction and, 95–104
- Dialyzer reuse
mortality, disease severity, hematocrit and, 244–249
permeability of low-flux membranes and, 839–844
population pharmacodynamic model for heparin dosing and, 89–94
septicemia in diabetics vs. nondiabetics and, 282–292
- Dialyzers
double, URR and Kt/V improvement with, 266–274
reuse. *See* Dialyzer reuse
- Dietary interviews/diaries
nutritional status in maintenance dialysis and, S2:27
protein intake expression/calculation, S2:68–69
validity/reliability, S2:68
- Dietary protein intake
in chronic peritoneal dialysis, S2: 42–43
in maintenance hemodialysis, S2: 40–41
- Diethylene glycol (DEG), childhood poisoning, treatment of, 958–962
- 1,25-Dihydroxyvitamin D₃, renal transplant-associated bone loss and, 227–236
- Disease severity, dialyzer reuse-associated mortality and, 244–249
- Distal tubule acidification, physiologic/pathophysiologic consequences, 3: lii–liv
- Diurnal rhythm, of blood pressure, left ventricular hypertrophy risk in hemodialysis and, 617–623
- Doppler ultrasound
acute renal failure diagnosis, 713–719
continuous-wave, for vascular access monitoring, 477–481
- DOQI (Dialysis Outcomes Quality Initiative), history, impact and prospects, S1:69–75
- Dual energy X-ray absorptiometry (DXA), nutritional status in maintenance dialysis and, S2:34–35
- Duplex ultrasound, detection of microembolic signals in HD access, 526–528
- EDTA registry, cross-cultural comparison of renal disease classifications, 157–165
- Elderly
acute renal insufficiency in, 433–447
renal biopsy in, 544–546
- Electrolyte imbalance, cocaine-induced, 789
- Emotional distress, from renal replacement therapies, comparison of, 629–637
- Enalapril, for hypertensive ADPKD patients, 427–432
- Endocapillary proliferative glomerulonephritis, parvovirus B19 infection after, 6:E31
- Endothelial injury, AII and PAI-1 in, 179–188
- Endothelin secretion, H⁺-stimulated, physiologic/pathophysiological consequences, 3: lii–liv
- End-stage renal disease (ESRD)
ADPKD-associated
laparoscopic nephrectomy for, 720–725
racial variation in, 35–39
alcoholism and, 1039–1043
anemia
exacerbation, ACE inhibitors and, 1076–1082
parenteral iron use for, 1–12
atherogenic lipoprotein phenotype in, 852–862
cancer screening, life expectancy benefits of, 237–243
chronic hemodialysis
demands on health care team, 1061–1067
metabolic acidosis in, 1069–1072
diabetic, prolonged sulfonylurea-induced hypoglycemia in, 500–505
DOQI and, S1:69–75
hemodialysis
iron therapy and, 1–12
for normeperidine-induced neurotoxicity, 146–149
with sleep disorders, mortality predictors for, 1052–1061
sleep disorders and, 1221–1223
with hypertension, smoking-related progression of, 687–694
IGF-1 after peritoneal dialysis, renal function improvement from, 150–153
immobilization, hypercalcemia from, 969–972
lead-induced, in dialysis patient, 963–968
from lupus nephritis
outcome predictors for, 904–914
renal transplant access for, 915–922
- Medicare program
1971 amendment and, S1:45–48
historical aspects of, S1:37–44
- outcome
predictors of, 69–79
URR vs. urea product and, 598–605
psychosocial factors, S1:132–140
renal rehabilitation and, S1:141–147
severity, dialyzer reuse-associated mortality and, 244–249
with sleep disorders, mortality predictors for, 1052–1061
survival
ACE gene polymorphism and, 211–215
after myocardial infarction and, 1044–1051

- T-cell activation in, hemodialysis initiation and, 611–616
treatment, future developments in, S1:106–116
world-wide classification differences in, 157–165
- Energy intake**
expression/calculation, from dietary interviews/diaries, S2: 68–69
maintenance dialysis
during acute illness, S2:51–53
adult, S2:44–45
pediatric, S2:112–113
for nondialyzed CRF, S2:60–61
- Enterococcus infection**, in chronic hemodialysis patients, vancomycin for, 64–68
- EPO.** *See* Erythropoietin
- Erythropoietin (EPO)**
and iron therapy, for ESRD anemia, 1–12
recombinant human
hematocrit target for, 250–256
resistance in hemodialysis, ACE inhibitors and, 1076–1082
- Escherichia coli**, Shiga-like toxin-producing. *See* Verotoxin-producing *Escherichia coli*
- ESRD.** *See* End-stage renal disease
- Ethical issues**
of kidney vending, 1002–1018
of renal transplantation, S1:153–159
- Exercise**, by hemodialysis patients, self-reports on, 482–492
- Familial clustering**
of ADPKD-associated ESRD, 35–39
cross-cultural classification comparisons, 157–165
of proteinuria in type 2 diabetes, 708–712
- Familial microscopic hematuria**, with hypercalciuria and/or hyperuricosuria, 141–145
- Fanconi syndrome**, with urinary free kappa light chains, 777–781
- FBN1 locus**, ADPKD with Marfan syndrome in kindred, 753–760
- Ferrlecit**, for end-stage renal disease anemia, 1–12
- Fibrillary deposits**, renal biopsy, differential diagnosis of, 173–177
- Fibrillary glomerulonephritis (FGN)**, differential diagnosis, 173–177
- Fibrils**, differential diagnosis in renal failure with diabetes, 173–177
- Fibrinolysis**, in crescentic glomerulonephritis, 726–738
- Fibrosing interstitial nephritis**, Chinese herbal drugs and, 313–318
- Fistula**
facility specific standardized ratio calculation, 275–281
microembolic signals in, 526–528
- FK506.** *See* Tacrolimus
- Flow cytometry cross-matching**, detection of antibody-mediated allograft rejection, 667–673
- Fluorescent dye technique**, for urinary albumin detection, 739–744
- Focal segmental glomerulonephritis**, HIV-associated, T lymphocytes in, 408–417
- Focal segmental glomerulosclerosis (FSGS)**
idiopathic, increasing incidence of, 878–883
kidney tissue, parvovirus B19DNA in, 1166–1174
- Fogarty catheter**, manipulation for PD catheter repositioning, 301–305
- Fomepizole**, for diethylene glycol poisoning in child, 958–962
- Fractional clearance index for urea**, improvement with two parallel dialyzers, 266–274
- Fractional clearance of dextran**, ACE inhibition and, 381–391
- Fractional excretion of sodium**, in differentiation of prerenal azotemia from ATN, 713–719
- Free kappa light chains**, in Fanconi syndrome urine, 777–781
- Gender differences**
in L-NAME effects on polycystic rat model, 930–936
in mean age for ADPKD hemodialysis induction, 1072–1075
in sexual dysfunction after renal replacement therapy, 845–851
- Gene polymorphism**, IgA nephropathy progression and, 896–903
- Gene therapy**, for kidney disease, S1:160–169
- Genetics**, of kidney disease, S1:160–167
- Genitourinary embryogenesis**, cocaine effects on, 783–795
- Germicide**, reuse-associated mortality and, 244–249
- GFR.** *See* Glomerular filtration rate
- Giant-cell arteritis**, secondary amyloidosis in, 137–140
- Glomerular basement membrane**, autoantibodies, in ESRD, 954–957
- Glomerular chemiluminescence**, of reactive oxygen species in puromycin aminonucleoside nephrosis, 1175–1185
- Glomerular filtration rate (GFR)**
body scaling and, 306–309
estimation, S2:87
in overweight normotensive humans, 1144–1148
- Glomerulocytic kidney disease**, sporadic adult, digital reconstruction in, 216–220
- Glomerulonephritis**
anti-GBM-associated, with pulmonary hemorrhage, 954–957
chronic incidence, 878–883
cross-cultural classification comparisons, 162–163
in elderly with acute renal insufficiency, 433–447
gender differences vs. ADPKD, 1072–1075
in heme oxygenase-1 deficiency, 863–870
IgE deposits in, 941–949
parvovirus B19 infection after, 6:E31
prognosis, histologic classification for, 13–20
with thrombotic microangiopathy, in SLE and lupus-like syndrome, 1193–1206
- Glomerulonephrosis**, postinfectious, 1:xlvii–xlviii
- Glomerulopathy**
transplant, in late graft loss, 674–680
of type II mixed cryoglobulinemia, splenectomy and, 1186–1192
ultrasonography, 1021–1039
- Glomerulosclerosis**
development delay, ACE inhibition and, 202–210
focal segmental. *See* Focal segmental glomerulosclerosis progressive, AII and PAI-1 in, 179–188

- Goodpasture's syndrome, autoantibody development in, 954–957
- Graft
- blood flow decrease, accuracy in graft thrombosis prediction, 1089–1095
 - facility specific standardized ratio, calculation of, 275–281
 - failure, with systemic lupus erythematosus, 1242–1247
 - loss, transplant glomerulopathy in, 674–680
 - microembolic signals in, 526–528
 - rejection vs. immunosuppressive drug nephrotoxicity, 333–346
 - survival, long-term cyclosporine monotherapy and, 1135–1143
 - thrombosis prediction, 973–975
- Growth measurements
- interval, for pediatric maintenance dialysis, S2:111
 - parameters for
 - evaluation, S2:125–132
 - methods, S2:124–125
- Han-SPRD rat polycystic kidney disease, L-NAME effects on, 930–936
- Haptoglobin, in heme oxygenase-1 deficiency, 863–870
- HCV. *See* Hepatitis C virus
- HD. *See* Hemodialysis
- Head circumference, measurement method, S2:124–125
- Health care costs, immunosuppressant-induced nephrotoxicity and, 341–342
- Health-related quality of life, renal rehabilitation and, S1:141–147
- Health status outcome. *See* Outcome
- Heat shock proteins (HSPs), renal cell adaptation to hypertonicity and, 6:xvii–I
- Heavy chain IgG₂ deposition disease, recurrence in renal transplant, 5:E25
- Height measurement
- by age, S2:128–129
 - method, S2:124
- Hematocrit
- dialyzer reuse-associated mortality and, 244–249
 - mortality prediction, for ESRD with sleep disorders, 1052–1061
 - target, for erythropoietin therapy, 250–256
- Hematuria
- IgA nephropathy prognosis and, 13–20
 - renal biopsy for, 448–457
 - with *Staphylococcus aureus* pneumonia, 354–359
 - with thin basement membrane disease and acute renal failure, 533–536
- Heme oxygenase-1 deficiency, tubulointerstitial injury in, 863–870
- Hemodialysis (HD)
- access. *See* Vascular access
 - age of induction, gender differences in ADPKD, 1072–1075
 - alcoholism prevalence and, 1039–1043
 - for anti-GBM-associated glomerulonephritis, 954–957
 - antiphospholipid antibodies, vascular access thrombosis and, 796–801
- arterial compliance in, dialysate calcium levels and, 1096–1103
- bone loss, with secondary hyperparathyroidism, 458–464
- cannulas, curved-tip vs. standard, 624–628
- cardiac-compromised patients, improving hemodynamic stability for, 5:E19
- cardiac/hemodynamic effects, 819–826
- catheters. *See* Catheters, hemodialysis
- of child, with diethylene glycol poisoning, 958–962
- chronic
- blood pressure factors in, 257–265
 - demands on health care team, 1061–1067
 - heparin model for improving dialyzer reuse rates, 89–94
 - hospital-acquired infections in, 1083–1089
 - metabolic acidosis in, 1069–1072
 - predictors of poor outcome in, 69–79
 - seasonal variations in BP and overhydration, 812–818
 - vancomycin for, 64–68
- for chronic renal disease, with cardiovascular disease, S1:117–131
- for cor triatriatum, left atrial calcification and, 5:E27
- diabetic muscle infarction, 1212–1216
- dose. *See* Dialysis dose
- with double dialyzers, URR and Kt/V improvement in, 266–274
- ESRD
- in future, S1:106–116
 - psychosocial factors in, S1:132–140
- health related quality-of-life changes after, 482–492
- hepatitis C virus in. *See* Hepatitis C virus, in hemodialysis initiation, T-cell activation in ESRD and, 611–616
- intermittent, impact on ARF outcome variables, 980–991
- iron therapy, parenteral, 1–12
- lead-induced peripheral neuropathy in, 963–968
- left ventricular hypertrophy, blood pressure variability and, 617–623
- maintenance. *See* Maintenance dialysis
- mortality, reuse-associated, HCT and disease severity and, 244–249
- for normeperidine-induced neurotoxicity, 146–149
- Ochrobactrum anthropi* bacteremia and, 6:E30
- outcome. *See* Outcome
- pruritus, ondansetron for, 821–831
- quality of life evaluation, vs. peritoneal dialysis, 293–300
- rHuEPO requirements, ACE inhibitors and, 1076–1082
- risks, with hyperphosphatemia and hyperparathyroidism, 1226–1237
- septicemia, in diabetic vs. nondiabetic patients, 282–292
- sexual dysfunction after, 845–851
- social factors, 2:xvi–xviii
- subclinical cryoglobulinemia in, 52–57
- technological improvements, 2:xvi–xviii
- Hemodynamics of hemodialysis
- dialysate calcium levels and, 1096–1103
 - and ultrafiltration, 819–826
- Hemolysis, in heme oxygenase-1 deficiency, 863–870
- Hemolytic uremic syndrome, circulating levels of TGF β 1 and lymphokines in, 29–34
- Hemorrhage, regional citrate anticoagulation in CVVHDF and, 802–811
- Henoch-Schönlein purpura

- cardiopulmonary manifestations, 319–322
nephritis, complement activation in, 401–407
- Heparin
dosing, population pharmacodynamic model for, 89–94
vs. rTPA, for Quinton Permethyl priming, 130–136
- Hepatitis C virus (HCV)
cryoglobulinemia-associated, splenectomy for, 1186–1192
in hemodialysis
genotype assessment, 832–838
RIBA serotyping SIA for, 832–838
serotyping strip immunoblot assay for, 832–838
subclinical cryoglobulinemia and, 52–57
viral load, biological dynamics of, 122–129
- Herbal medicine
Chinese, progressive fibrosing interstitial nephritis associated with, 313–318
nephropathy and, 330–331
noni juice-induced hyperkalemia, 310–311
- Heredity renal diseases, cross-cultural classification comparisons, 157–165
- Hispanics, idiopathic focal segmental glomerulosclerosis in, 878–883
- Histological classification
IgA nephropathy outcome and, 392–400
prognostic value, 13–20
- HIV infection. *See* Human immunodeficiency virus infection
- Home visits for peritoneal dialysis, noncompliance pattern with dialysis exchanges, 1104–1110
- Hospital-acquired infections, in chronic hemodialysis, risk factors for, 1083–1089
- Hospitalized patients, on chronic hemodialysis, vancomycin for, 64–68
- HSPs (heat shock proteins), renal cell adaptation to hypertonicity and, 6:xlvii–l
- H+–stimulated endothelin secretion, physiologic/pathophysiologic consequences, 3: iii–liv
- Human immunodeficiency virus infection
HIVAN prevalence, 884–888
nephropathy prevalence, 884–888
renal mucormycosis, 5:E24
with renal mucormycosis, 5:E24
transgenic mice renal disease, T lymphocyte in, 408–417
- Human parvovirus. *See* Parvovirus B19
- Humoral rejection, as antirejection therapy target, 667–673
- Hydration state, seasonal variations in chronic hemodialysis, 812–818
- Hypercalcemia, from immobilization in ESRD, 969–972
- Hypercalciuria, in familial microscopic hematuria, 141–145
- Hyperkalemia
noni juice ingestion, 310–311
star fruit ingestion, 189–193
- Hyperparathyroidism
risk in dialysis, 1226–1237
secondary
in CAPD, vitamin D₃ and calcium carbonate for, 761–766
22-oxacalcitriol effect on bone histology in, 458–464
pulsed-dose calcitriol for, 465–468
- Hyperphosphatemia, risk in dialysis, 1226–1237
- Hypertension
in adaptation to renal mass reduction in polycystic rat, 923–929
- in ADPKD
antihypertensive therapy for, 427–432
with proteinuria, progression and, 547–550
with chronic proteinuric nephropathy, ACE inhibitor for, 1155–1165
- cross-cultural classification comparisons, 162
essential, renal insufficiency in, smoking and, 687–694
- IgA nephropathy prognosis and, 13–20
pediatric emergencies, nicardipine for, 5:E20
- post-transplantation, in children, 681–686
- primary, smoking effects on outcome in, 767–769
- with progressive albuminuria, ACE inhibition for, 202–210
- renovascular, in atherosclerotic renovascular disease, 573–587
- as risk in hemodialysis with left ventricular hypertrophy, 617–623
- with *Staphylococcus aureus* pneumonia, 354–359
- Hypertensive nephrosclerosis, incidence, 878–883
- Hyperuricosuria, in familial microscopic hematuria, 141–145
- Hypoalbuminemia, mortality predictions, CRP and, 469–476
- Hypoglycemia, sulfonylurea-induced, in diabetics with ESRD, 500–505
- Hyponatremia, with *Staphylococcus aureus* pneumonia, 354–359
- IgA1 glycosylation, IgA nephropathy pathogenesis and, 551–556
- IgA nephropathy. *See* Immunoglobulin A nephropathy
- IGF-1 (insulin-like growth factor 1), after PD, renal function improvement from, 150–153
- Immobilization hypercalcemia, in end-stage renal disease, 969–972
- Immune function
defect in ESRD, hemodialysis initiation effect on, 611–616
vitamin E-coated dialyzer membranes and, 95–104
- Immunoabsorption, with staphylococcal protein A, for antibody-mediated allograft rejection, 667–673
- Immunoglobulin A (IgA)
nephropathy. *See* Immunoglobulin A nephropathy
subendothelial topography, in renal failure prediction, 13–20
- Immunoglobulin A nephropathy
acute phase response and C3 activation in, 21–28
diffuse proliferative, corticosteroids for, 194–201
in Henoch-Schönlein purpura, 319–322
incidence, 878–883
outcome, histological grading system and, 392–400
pathogenesis, IgA1 glycosylation and, 551–556
prognosis, tubular grading and, 13–20
progression, ACE gene insertion/deletion polymorphism in, 896–903
- Immunoglobulin E deposits, with renal tubular acidosis and vasculitis, 941–949
- Immunosuppressive drugs

- for anti-GBM-associated glomerulonephritis, 954–957
for Henoch-Schönlein purpura, 319–322
history in renal transplantation, S1:153–159
nephrotoxicity, 333–346
Immunotactoid glomerulopathy, differential diagnosis, 173–177
Infants, renal effects of cocaine exposure, 783–795
Infections
nosocomial, in chronic hemodialysis, 1083–1089
septicemia, in diabetic *vs.* nondiabetic hemodialysis patients, 282–292
Inflammation, hypoalbuminemia effect on hemodialysis mortality and, 469–476
Inherited disorders, of kidney, S1:160–169
In situ hybridization, detection of parvovirus B19DNA in FSGS kidney tissue, 1166–1174
Insulin clearance, in ESRD treated with IGF1 and PD, 150–153
Insulin-like growth factor 1 (IGF-1), after PD, renal function improvement from, 150–153
Intensity, of intermittent hemodialysis, outcome and, 980–991
Interferon- γ circulating levels, in hemolytic uremic syndrome, 29–34
Interleukins
circulating levels, in hemolytic uremic syndrome, 29–34
during peritonitis CAPD, 644–652
Interstitial nephritis
in AIDS, with acute renal failure, 557–561
in elderly with acute renal insufficiency, 433–447
Intrarenal arteries, in Takayasu's arteritis, 950–953
Iron dextran, for end-stage renal disease anemia, 1–12
Iron gluconate, for end-stage renal disease anemia, 1–12
Iron sucrose (iron saccharate), for end-stage renal disease anemia, 1–12
Ischemia-reperfusion, potassium handling in ARF and, 871–877
Japanese population
with IgA nephropathy, ACE gene insertion/deletion polymorphism in, 896–903
MPO-ANCA-associated angitis/nephritis in, 889–895
Juvenile nephronophthisis, clinical/molecular heterogeneity of, 44–51
KEEP (Kidney Early Evaluation Program), S1:78
Kidney
cocaine abuse and, 783–795
function
long-term immunosuppressive drug therapy and, 333–346
monitoring, 338
transplanted, renal biopsy for, 448–457
vending, ethical issues, 1002–1018
Kidney disease. *See also specific kidney diseases*
chronic
cardiovascular disease and, S1:117–131
risk factor reduction, to prevent CVD, S1:117–131
genetics, S1:160–167
progression, with ACE inhibitor treatment, 1155–1165
ultrasonography, 1021–1039
world-wide classification differences in, 157–165
K/DOQI Nutrition Clinical Practice Guidelines
adult
acid-base status management, S2:38–39
nutritional measures, S2:17–37
protein/energy intake management, S2:40–41
definition, S2:11
development
abstraction, S2:13
article selection, critical appraisal methods for, S2:13–14
draft report, S2:15
formulation, S2:14–15
literature review, S2:12–13
peer review, S2:15
targeting/focus for, S2:12
work group member selection, S2:11–12
evidentiary basis for, S2:11–15
final, issuance of, S2:11
guiding principles, S2:11
implementation planning, S2:15–16
pediatric
acid-base status management, S2:107–108
energy intake, S2:112–113
interval measurements, S2:111
mineral requirements, S2:116–117
nutritional status assessment, S2:105–106
nutritional supplementation, S2:120–121
nutrition management, S2:118–119
protein intake, S2:114–115
urea kinetic modeling, S2:109–110
vitamin requirements, S2:116–117
for PEM prevention/treatment, S2:9–10
Knockout mice, AT1a, immune-mediated renal injury and, 166–172
Kt/V
biological scaling and, 306–309
of citric acid dialysate, 493–499
equilibrated, mortality risk, body size and, 80–88
in Japanese peritoneal dialysis patients, 515–525
as outcome-based measure of hemodialysis dose, 598–605
protein catabolic rate, dialyzer membrane change and, 606–610
in vivo dialysate flow rate effects on, 105–111
Lactate-buffered peritoneal dialysis fluid, ex vivo peritoneal macrophage function and, 112–121
Lactoferrin, in PMNLs of renal failure patients, 1117–1126
Laparoscopic nephrectomy, for ESRD in ADPKD, 720–725
Lead-induced peripheral neuropathy, in dialysis patient, 963–968
Lectin pathway, for complement activation in HSPN, 401–407
Left atrial calcification, in hemodialysis patient with cor triatriatum, 5:E27
Left ventricular hypertrophy
in chronic renal failure, rHuEPO therapy for, 250–256
risk in hemodialysis, blood pressure variability and, 617–623
Length measurements, for infants, S2:132

- Life span**
 cancer screening in end-stage renal disease and, 237–243
 observed/expected, for ESRD, 653–659
- Liver cirrhosis**, with HCV-related cryoglobulinemia, splenectomy for, 1186–1192
- Losartan**, for kidney transplant recipients, 58–63
- Lovastatin**, effect in murine polycystic kidney disease model, 221–226
- Low-density lipoprotein (LDL)**, small dense, 852–862
- Lupus nephritis**
 ESRD, renal transplant access for, 915–922
 outcome predictors, 904–914
 pauci-immune, with thrombotic microangiopathy, 1193–1206
 remission, predictive features in, 904–914
- Lymphokines**. *See also specific lymphokines*
 circulating levels, in hemolytic uremic syndrome, 29–34
 $T_{H}2$ -associated. *See* Interleukins
- MAC**. *See* Mid-arm circumference
- Macrophages**
 cytokine profile changes during peritonitis in CAPD patients, 644–652
 in renal disease of HIV-transgenic mice, 408–417
 in vivo function, bicarbonate/lactate vs. bicarbonate buffered PDF, 112–121
- Magnetic resonance angiography (MRA)**, of access recirculation in native fistula, 529–532
- Magnetic resonance imaging (MRI)**
 acute bilateral renal cortical necrosis, 745–748
 diabetic muscle infarction, 1212–1216
- Maintenance dialysis**
 acid-base status management, pediatric guidelines, S2:107–108
 biological dynamics of HCV viral load in, 122–129
 L-carnitine
 adult, S2:54–55
 children, S2:88–92
 dietary protein intake, S2: 40–41
 energy intake, S2: 44–45
 nutritional counseling, intensive, S2:46–47
 nutritional measures, S2:17–19
 adjusted edema-free body weight, S2:36–37
 anthropometry, S2:32–33
 cholesterol, S2:25–26
 creatinine, serum, S2:23–24
 creatinine index, S2:23–24
 dietary interviews/diaries, S2:27
 DXA, S2:34–35
 PNA, S2:28–29
 serum albumin, S2:20–21
 serum prealbumin, S2:22
 SGA, S2:30–31
 nutritional support indications, S2:48–50
 pediatric
 mineral requirements, S2:116–117
 nutritional supplementation, S2:120–121
 nutrition counseling, S2:118–119
 protein intake, S2:114–115
 urea kinetic modeling, S2:109–110
 vitamin requirements, S2:116–117
 Qd effect on Kt/V, 105–111
- Malaria**, post-transplant thrombocytopenia and, 537–538
- MAMA** (mid-arm muscle area), calculation, S2:125–127
- MAMC**. *See* Mid-arm muscle circumference
- Manose-binding lectin**, for complement activation in HSPN, 401–407
- Marfan syndrome**, with ADPKD in kindred, 753–760
- MCN** (minimal change nephropathy), incidence, 878–883
- MCP-1** (monocyte chemoattractant protein-1), AI and, 166–172
- Mean arterial pressure**. *See* Blood pressure
- Medical Outcomes Study Short Form 36-item questionnaire**.
See Short Form 36-item questionnaire
- Membranoproliferative glomerulonephritis (MPGN)**
 incidence, 878–883
- post-transplant**
 cyclophosphamide prophylaxis for, 539–542
 plasmapheresis for, 749–752
- Membranous nephropathy (MN)**
 idiopathic, ACE inhibition in, 381–391
 incidence, 878–883
- Men**. *See* Gender differences
- Meperidine metabolite**. *See* Normeperidine
- Mesangial phenotypic modulation**, in IgA nephropathy, early corticosteroids for, 194–201
- Mesangiolysis**, in glomerulonephritis after parvovirus B19 infection, 6:E31
- Mesothelial cells**, cytokine profiles, during peritonitis, 644–652
- Meta-analysis**
 ACE inhibition in diabetic vs. nondiabetic chronic renal disease, 695–707
 quality of life from renal replacement therapies, 629–637
- Metabolic acidosis**
 correction, pediatric guidelines, S2:107–108
 dialysate bicarbonate concentration and, 1224–1225
 in hemodialysis patients, 1068–1072
 treatment, S2: 39
- β_2 -Microglobulin**
 in PMNLs of renal failure patients, 1117–1126
 in ultrafiltrate, for assessment of low-flux membrane permeability, 839–844
- Mid-arm circumference (MAC)**
 adult, S2:82–84
 pediatric, S2:125
- Mid-arm muscle area (MAMA)**, calculation, S2:125–127
- Mid-arm muscle circumference (MAMC)**
 adult, S2:82–85
 pediatric, S2:125–126
- Mineral requirements**, pediatric maintenance dialysis, S2: 116–117
- Minimal change nephropathy (MCN)**, incidence, 878–883
- Mitogen-activating protein kinases (MAP kinases)**, renal cell adaptation to hypertonicity and, 6:xlvi–l
- Modeling**, population pharmacodynamic, for heparin dosing and, 89–94
- Monocyte chemoattractant protein-1 (MCP-1)**, AI and, 166–172
- Monocytes**, in tissue factor expression, 726–738
- Morbidity**
 in chronic dialysis, predictors of, 69–79

- dialyzer membrane change and, 606–610
prolonged hypoglycemia in ESRD, 500–505
Morinda citrifolia, hyperkalemia and, 310–311
- Mortality**
breast cancer, 327–329
dialyzer membrane change and, 606–610
ESRD, in comparison of renal replacement therapy effectiveness, 653–659
hyperphosphatemia/hyperparathyroidism and, 1226–1237
prediction
in chronic dialysis, 69–79
C-reactive protein and, 469–476
in ESRD with sleep disorders, 1052–1061
prolonged hypoglycemia in ESRD, 500–505
in renovascular disease, DD genotype and, 211–215
reuse-associated, disease severity, HCT and, 244–249
from septicemia, in diabetic vs. nondiabetic patients, 282–292
of uremic patients after star fruit ingestion, 189–193
- MPO-ANCA** (myeloperoxidase-antineutrophil cytoplasmic autoantibody), angitis/nephritis associated with, 889–895
- MRA** (magnetic resonance angiography), of access recirculation in native fistula, 529–532
- MRI.** See Magnetic resonance imaging
- Mucormycosis**, renal, in HIV-infected patient, 5:E24
- Multivariate analysis**, long-term cyclosporine in transplant patients, 1135–1143
- Murine model**
knockout. *See Knockout mice*
of polycystic kidney disease, probucol effects on, 221–226
- Muscle infarction**, diabetic, in dialysis patients, 1212–1216
- Mycophenolate mofetil**, immunosuppression, renal function and, 333–346
- Myeloperoxidase** (MPO), in anti-GBM-associated glomerulonephritis, 954–957
- Myeloperoxidase-antineutrophil cytoplasmic autoantibody** (MPO-ANCA), angitis/nephritis associated with, 889–895
- Myocardial infarction**
dialysis outcome after, 1217–1219
with ESRD, survival and, 1044–1051
- Myocardial ischemia**, in hemodialysis and ultrafiltration, 819–826
- Myocardial necrosis**, in Henoch-Schönlein purpura, 319–322
- Myocardial vasculitis**, in Henoch-Schönlein purpura, 319–322
- L-NAME**, effects on polycystic rat model, 930–936
- National Kidney Foundation**
affiliates, 79, S1:49–68
Constituent Councils, S1:78
- Dialysis Outcomes Quality Initiative**, 77, S1:69–75
- Family Focus Program**, S1:77
50th anniversary, S1:1–2
history, S1:3–18
of professional councils, S1:19–30
of research efforts, S1:31–36
- KEEP**, S1:78
- Office of Scientific and Public policy**, S1:79
- PARADE**, S1:78
- physician membership, S1:78–79
- private sector relationship, S1:79
- professional councils, 78, S1:19–30
- research programs, 79, S1:31–36
- restructuring, S1:81–89
in 21st century, S1:93–96
- Transplant America**, S1:77
- US Transplant Games**, S1:77–78
- volunteers, S1:79–80
- Neoplasms**, cross-cultural classification comparisons, 165
- Nephrectomy**, laparoscopic, for ESRD in ADPKD, 720–725
- Nephrocalcinosis**, IgE, with renal tubular acidosis and vascu-litis, 941–949
- Nephrocystin**, in juvenile nephronophthisis, 44–51
- Nephrolithiasis**, for familial microscopic hematuria, 141–145
- Nephrologist**
technological changes and, 978–979
ultrasonography and, 1021–1039
- Nephrology**, in 21st century, S1:90–92
- Nephronophthisis**, juvenile, clinical/molecular heterogeneity of, 44–51
- Nephropathy**
atherosclerotic, in atherosclerotic renovascular disease, 573–587
herbal medicine and, 330–331
- Nephroprotection**, of ACE inhibitors, 1155–1165
- Nephrotic proteinuria**, total body protein synthesis and, 1149–1154
- Nephrotic syndrome**
persistent, ACE inhibition in, 381–391
remission, after removal of localized Castleman's disease, 1207–1211
in renal failure prediction, in IgA nephropathy, 13–20
whole-body valine flux in, 1149–1154
- Nephrotoxicity**, of immunosuppressive drugs, 333–346
- Neurological symptoms**, after star fruit ingestion, 189–193
- Neutrophil granules**, β_2 -microglobulin and lactoferrin content in renal failure, 1117–1126
- Nicardipine**, for pediatric hypertensive emergencies, 5:E20
- Nitric oxide**, in polycystic kidney disease pathogenesis, 930–936
- Noncompliance**
with CAPD, in US vs. Canada, 506–514
with dialysis exchanges in peritoneal dialysis, 1104–1110
- Nondiabetic renal disease**
ACE effects in, 695–707
nephropathy, antihypertensive therapy for, 4: liv–lvi
proteinuria and, S1:97–105
- Noni juice**, hyperkalemia and, 310–311
- Nonsteroidal anti-inflammatory drugs** (NSAIDs), nephrotoxi-city, 937–940, 976–977
- Normeperidine neurotoxicity**, hemodialysis for, 146–149
- Nosocomial infections**, in chronic hemodialysis, risk factors for, 1083–1089
- NSAIDs** (nonsteroidal anti-inflammatory drugs), nephrotoxi-city, 937–940, 976–977
- Nutritional counseling**
maintenance dialysis

- adult, S2:46–47
pediatric, S2:118–119
for nondialyzed chronic renal failure, S2:62–63
- Nutritional status
assessment, pediatric guidelines, S2:105–106
dialysis dose, mortality risk and, 80–88
measures
for hemodialysis maintenance, S2:17–19
for nondialyzed CRF patients, S2:56–57
- Nutritional support, for maintenance dialysis
adult, S2:48–50
pediatric, S2:120–121
- Obesity
in chronic renal failure, calcified arterioles and subcutaneous infarcts in, 588–597
normotensive, glomerular filtration rate in, 1144–1148
- Obstructive nephropathy, cross-cultural classification comparisons, 157–165
- Obstructive uropathy, ultrasonography, 1021–1039
- Ochrobactrum anthropi* bacteremia, in hemodialysis patient, 6:E30
- Ondansetron, for uremic pruritus, in hemodialysis, 827–831
- Organ distribution, for renal transplantation, S1:153–159
- Osteitis fibrosa, 22-oxacalcitriol for, 458–464
- Outcome
of acute renal failure in older adults, 433–447
body size, dialysis dose and, 80–88
Dialysis Outcomes Quality Initiative, S1:69–75
of dialysis patients, after acute myocardial infarction, 1217–1219
dialyzer reuse, disease severity, hematocrit level and, 244–249
evaluation, of HD vs. PD patients, 293–300
fatal, after star fruit ingestion in uremic patients, 189–193
IgA nephropathy, histological grading system and, 392–400
intermittent hemodialysis variables and, 980–991
long-term, cyclosporine monotherapy in transplant patients and, 1135–1143
measures, URR vs. Kt/V for, 598–605
of mild renal failure, after cardiac valve surgery, 1127–1134
peritoneal dialysis, noncompliance pattern with dialysis exchanges and, 1104–1110
predictors
in chronic dialysis patients, 69–79
in lupus nephritis, 904–914
in primary hypertension, smoking and, 767–769
renal rehabilitation and, S1:141–147
septicemia in diabetic vs. nondiabetic hemodialysis patients and, 282–292
subdural hematoma in ADPKD and, 40–43
- 22-Oxacalcitriol, for osteitis fibrosa, 458–464
- Oxidant stress, advanced glycation end products and, 365–380
- Pain
management, in ADPKD, 770–772
puncture-related, dialysis cannula design and, 624–628
- P-ANCA glomerulonephritis, familial case report, 5:E23
- Pancreas transplants, for diabetic nephropathy, 1238–1241
- Pancytopenia, with HCV-related cryoglobulinemia, splenectomy for, 1186–1192
- PARADE, S1:78
- Parathyroid glands, sonographically detected, pulsed-dose calcitriol resistance and, 465–468
- Parathyroid hormone
recombinant human growth hormone, for pediatric maintenance dialysis and, S2:122–123
secretion, 22-oxacalcitriol suppression of, 458–464
- Parvovirus B19
DNA, in kidney tissue in FSGS, 1166–1174
infection, after acute glomerulonephritis, 6:E31
- Patient assessment, of chronic peritoneal dialysis, 638–643
- Patient self-reports, on renal rehabilitation, S1:141–147
- Pauci-immune necrotizing lupus nephritis, with microangiopathy, 1193–1206
- Pediatric patients. *See Children*
- PEM. *See Protein-energy malnutrition*
- Periodic limb movements in sleep (PLMS), with ESRD, mortality predictors for, 1052–1061
- Peripheral neuropathy, lead-induced, in dialysis patient, 963–968
- Peripheral vascular disease, progressive treatment in diabetics, for septicemia prevention, 282–292
- Peritoneal calcification, after long-term CAPD, 761–766
- Peritoneal dialysis (PD)
adequacy. *See Adequacy, peritoneal dialysis*
automated, noncompliance pattern with dialysis exchanges, 1104–1110
catheters. *See Catheters, peritoneal dialysis*
chronic
dietary protein intake, S2: 42–43
predictors of poor outcome in, 69–79
quality of care assessment for, 638–643
for chronic renal disease, with cardiovascular disease, S1:117–131
continuous ambulatory. *See Continuous ambulatory peritoneal dialysis*
for ESRD, in future, S1:106–116
fluid. *See Peritoneal dialysis fluid*
IGF-1 improvement of renal function after, 150–153
iron dextran therapy and, 3
in Japan, multicenter cross-sectional study of, 515–525
noncompliance pattern with dialysis exchanges, 1104–1110
outcome, after star fruit ingestion, 189–193
pediatric, Tenckhoff vs. Cook catheters for, 1111–1116
quality of life evaluation, vs. HD, 293–300
- Peritoneal dialysis facility, quality of care, patient assessment of, 638–643
- Peritoneal dialysis fluid (PDF), bicarbonate-lactate and bicarbonate buffered, macrophage function and, 112–121
- Peritoneal macrophage, in vivo function, bicarbonate/lactate vs. bicarbonate buffered PDF and, 112–121
- Peritonitis, CAPD, cytokine profile changes in, 644–652
- Permcath priming, heparin vs. rTPA for, 130–136
- Pharmacoeconomics, of IV iron products, 9–10
- Pharmacoeconomics access, for ESRD, in future, S1:106–116

- Pharmacokinetics, tacrolimus, for kidney transplant recipients, 660–666
- Phenytoin overdosage, charcoal hemoperfusion for, 323–326
- Phosphate binders, for hyperphosphatemia in dialysis, 1226–1237
- Phosphatidylcholine-superoxide dismutase, protection of α_3 -integrin-mediated podocyte shape in puromycin aminonucleoside nephrosis, 1175–1185
- Physical function, in hemodialysis patients, self-reports on, 482–492
- Physicians, subjective judgment on peritoneal dialysis dose, 515–525
- PKD1 locus, ADPKD with Marfan syndrome in kindred and, 753–760
- Plasminogen activator inhibitor-1 (PAI-1) expression, in crescentic glomerulonephritis, 726–738 in progressive glomerulosclerosis, 179–188
- Polyclastic kidney disease (PKD) autosomal dominant. *See* Autosomal dominant polycystic kidney disease experimental L-NAME effects on, 930–936 probucol effects on, 221–226 renal mass reduction effects in, 923–929
- Polymerase chain reaction (PCR), detection of parvovirus B19DNA in FSGS kidney tissue, 1166–1174
- Polymorphonuclear leukocytes (PMNLs) β_2 -microglobulin, in renal failure patients, 1117–1126 lactoferrin, in renal failure patients, 1117–1126
- Polymyalgia rheumatica, secondary amyloidosis in, 137–140
- Polysulfone membrane, serum albumin levels and, 606–610
- Polytetrafluoroethylene graft (PTFE), thrombosis, antiphospholipid antibodies and, 796–801
- Postinfectious glomerulonephrosis, 1:xvi–xlvii
- Potassium excretion impairment, in acute renal failure, 871–877 in star fruit, 189–190
- Prealbumin, maintenance dialysis nutritional status and, S2:22
- Prescription for peritoneal dialysis, vs. delivered dosage, 515–525
- Presensitization, in spousal-donor kidney transplantation, 667–673
- Primary renal diseases, world-wide classification differences, 157–165
- Probucol, effects on murine PKD model, 221–226
- Prognosis for chronic dialysis, 69–79 IgA nephropathy histological grading system and, 392–400 tubular grading and, 13–20 renal cortical necrosis, magnetic resonance imaging and, 745–748
- Progression of IgA nephropathy, CRP and C3 levels and, 21–28 of renal disease proteinuria in, S1:97–105
- Proliferative lesions, in IgA nephropathy, early corticosteroids for, 194–201
- Prospective cohort study, chronic dialysis outcome prediction, 69–79
- Protease-activated receptor, in crescentic glomerulonephritis, 726–738
- Protein binding, in phenytoin overdosage, charcoal hemoperfusion for, 323–326
- Protein catabolic rate, dialyzer membrane change and, 606–610
- Protein-energy malnutrition (PEM) causes, in CRF, S2:9 K/DOQI guidelines for adults, S2:17–19 for prevention/treatment, S2:9–10 research recommendations, S2:17–19
- Protein-energy nutritional status, pediatric assessment guidelines, S2:105–106
- Protein equivalent of nitrogen appearance determination, S2:71–74 nutritional status in maintenance dialysis, S2:28–29
- Protein intake expression/calculation, from dietary interviews/diaries, S2:68–69 for maintenance dialysis during acute illness, S2:51–53 pediatric, S2:114–115 for nondialyzed chronic renal failure, S2:58–59
- Proteinuria. *See also* Albuminuria in adaptation to renal mass reduction in polycystic rat, 923–929
- ADPKD progression and, 547–550 antihypertensive therapy for hypertension in ADPKD and, 427–432 diagnosis, fluorescent dye method vs. radioimmunoassay for, 739–744
- ESRD progression risk, ACE inhibition and, 381–391 in heme oxygenase-1 deficiency, tubulointerstitial injury and, 863–870
- in IgA nephropathy early corticosteroids for, 194–201 prognosis and, 13–20 progression to terminal failure, ACE inhibition and, 202–210
- in progressive renal disease, S1:97–105 renal biopsy for, 448–457 smoking-related augmentation, in hypertension, 687–694 with *Staphylococcus aureus* pneumonia, 354–359 in type 2 diabetes, familial clustering of, 708–712
- Proteinuric nephropathy, progression and response to treatment, 1155–1165
- Pruritus, uremic, in hemodialysis, ondansetron for, 827–831
- Psychological well-being, from renal replacement therapies, comparison of, 629–637
- Psychosocial factors, in end-stage renal disease, S1:132–140
- Pulmonary hemorrhage, in anti-GBM-associated glomerulonephritis, 954–957
- Pulmonary renal syndrome, MPO-ANCA-associated, 889–895
- Puromycin aminonucleoside nephrosis, SOD protection of α_3 -integrin-mediated podocyte shape in, 1175–1185

- Quality of life
for chronic dialysis patients, 69–79
comparisons, of renal replacement therapies, 629–637
in end-stage renal disease, S1:132–140
for hemodialysis patients, self-reports on, 482–492
Short Form 36 evaluation, in HD vs. PD patients, 293–300
- Quinton Permcath, priming, heparin vs. rTPA for, 130–136
- Race
idiopathic focal segmental glomerulosclerosis and, 878–883
renal replacement therapy outcomes in women and, S1:148–152
variations
in ADPKD, 35–39
of blood pressure in hemodialysis, 257–265
of mortality risk with dialysis dose/body size, 80–88
- Ramipril, kidney disease progression and, 1155–1165
- Randomized placebo-controlled trials, of ACE inhibition in diabetic vs. nondiabetic renal disease, 695–707
- Ras proteins, progression of polycystic kidney disease and, 221–226
- Rats
hypertensive fawn-hooded, ACE inhibition effects on, 202–210
with polycystic kidney disease, L-NAME effects on, 930–936
- Reactive oxygen species, protection of α_3 -integrin-mediated podocyte shape in puromycin aminonucleoside nephrosis, 1175–1185
- Recirculation
despite adequate access flow, 529–532
measurement, ultrasound method for, 477–481
- Recombinant human erythropoietin. *See* Erythropoietin, recombinant human
- Recombinant human growth hormone, for pediatric maintenance dialysis, S2:122–123
- Recombinant immunoblot assay, HCV serotyping, 832–838
- Recombinant tissue plasminogen vs. heparin, for Quinton Permcath priming, 130–136
- Recumbent length measurement, S2:124
- Renal ablation, ADPKD acceleration and, 923–929
- Renal artery stenosis, atherosclerotic renovascular disease and, 573–587
- Renal biopsy
acute renal failure
in elderly, 433–447
with interstitial nephritis in AIDS, 557–561
allograft dysfunction, 997–1001
current indications, 448–457
in elderly, 433–447, 544–546
Fanconi syndrome, 777–781
fibrillary deposits, differential diagnosis of, 173–177
procedure, 451–452
Staphylococcus aureus pneumonia, 354–359
- Renal cells, adaptation to hypertonicity, 6:xlvii–l
- Renal cortical necrosis, magnetic resonance imaging features, 745–748
- Renal cyst, digital reconstruction, 216–220
- Renal dialysis registries, world-wide classification differences in, 157–165
- Renal dietitian, role of, S2:70
- Renal Exercise Demonstration Project, 482–492
- Renal failure. *See* Acute renal failure; Chronic renal failure; End-stage renal disease
- Renal failure index, in differentiation of prerenal azotemia from ATN, 713–719
- Renal fibrosis
AI and PAI-1 in, 179–188
maximal reduction of angiotensin in, 773–776
renin-angiotensin system in, 773–776
- Renal infarction, cocaine-induced, 788–789
- Renal outer medullary potassium channel, in acute renal failure, 871–877
- Renal plasma flow, in overweight normotensive humans, 1144–1148
- Renal rehabilitation, obstacles, progress and future prospects, S1:141–147
- Renal replacement therapy. *See also* Hemodialysis; Peritoneal dialysis; specific types of renal replacement therapies
advanced glycation end products and, 374–375
body scaling, Kt/V and, 306–309
continuous, regional citrate anticoagulation in, 802–811
evaluating effectiveness of, 633–659
indications, for nondialyzed CRF patients, S2:64–65
outcomes, in black vs. white women, S1:148–152
quality of life, comparison studies of, 629–637
sexual dysfunction after, 845–851
- Renal transplantation
access, for lupus nephritis end-stage renal disease, 915–922
bone loss, 1,25-dihydroxyvitamin D₃ and calcium carbonate effects on, 227–236
for chronic renal disease, with cardiovascular disease, S1:117–131
complications, membranoproliferative glomerulonephritis, 539–542, 749–752
cyclosporine monotherapy, long-term results of, 1135–1143
for ESRD, in future, S1:106–116
in evaluating therapeutic effect on ESRD survival, 653–659
history of, S1:153–159
kidney transplant, renal biopsy for, 448–457
pediatric, abnormal 24-hour blood pressure patterns, 681–686
recipients
abbreviated tacrolimus AUC monitoring for, 660–666
ACEi and AT II antagonists for, 58–63
subclinical cryoglobulinemia in, 52–57
rejection, 674–680
sexual dysfunction after, 845–851
spousal-donor, antirejection therapy target for, 667–673
thrombocytopenia after, 537–538
ultrasonography, 1021–1039
- Renal tubular acidosis, with vasculitis and IgE deposits, 941–949
- Renin-angiotensin system
in ESRD progression with IgA nephropathy, ACE genotype and, 896–903
in renal fibrosis, 773–776

- Renovascular disease**
 atherosclerotic, epidemiology/clinical manifestations of, 573–587
 survival, ACE gene polymorphism and, 211–215
- Renovascular hypertension**, in atherosclerotic renovascular disease, 573–587
- Residual renal function**, outcome prediction in chronic dialysis, 69–79
- Revascularization**, for atherosclerotic renovascular disease, 573–587
- Seasonal variations**, of blood pressure in chronic hemodialysis, 812–818
- Self-report questionnaires**, on sexual dysfunction after renal replacement therapy, 845–851
- Septicemia**, in diabetic vs. nondiabetic hemodialysis patients, 282–292
- Serotonin-receptor antagonist**. *See also* Ondansetron
 for uremic pruritus, in hemodialysis, 827–831
- Serotyping strip immunoblot assay**, hepatitis C virus, 832–838
- Sexual dysfunction**, after renal replacement therapy, 845–851
- SGA**. *See Subjective global nutritional assessment*
- Short Form 36-item questionnaire**
 of HD vs. PD patients, 293–300
 physical function in hemodialysis patients and, 482–492
- Skeletal frame size**, estimation of, 77, S2:76
- Skinfold thickness**, measurement of, S2:77–84
- Skin infarction**, in chronic renal failure, 588–597
- SLE**. *See Systemic lupus erythematosus*
- Sleep disorders**, in ESRD
 hemodialysis and, 1221–1223
 mortality predictors for, 1052–1061
- Smoking**
 renal insufficiency in essential hypertension and, 687–694
 renal outcome in primary hypertension and, 767–769
 α -Smooth muscle actin, in IgA nephropathy, after corticosteroid therapy, 194–201
- Social support**, for end-stage renal disease, S1:132–140
- Splenectomy**, glomerulopathy of type II mixed cryoglobulinemia and, 1186–1192
- Staphylococcus aureus pneumonia**, in adolescent, 354–359
- Star fruit ingestion**, by uremic patients, fatal outcome from, 189–193
- Step-down unit patients**, health care team demands of, 1061–1067
- Steroid therapy**, adjuvant, for long-term cyclosporine monotherapy, 1135–1143
- Subcutaneous infarction**, in chronic renal failure, 588–597
- Subdural hematoma**, in ADPKD, 40–43
- Subendothelial deposits**, in glomerulonephritis after parvovirus B19 infection, 6:E31
- Subjective global nutritional assessment (SGA)**
 maintenance dialysis, S2:30–31
 methods, S2:75
- Sulfonylurea-induced hypoglycemia**, in diabetics with ESRD, 500–505
- Sulfosalicylic acid urinary albumin measurement**, vs. fluorescent dye method, 739–744
- Survival**
 ESRD
 after acute myocardial infarction, 1044–1051
 evaluating effectiveness of renal replacement therapy, 653–659
 urea reduction ratio and, 598–605
- Systemic lupus erythematosus (SLE)**
 glomerulonephritis and thrombotic microangiopathy in, 1193–1206
 with allograft failure, 1242–1247
 nephritis, outcome predictors in, 904–914
 peptide autoepitopes for nucleosome-specific T cells, 992–996
- Tacrolimus**
 abbreviated AUC monitoring, for kidney transplant recipients, 660–666
 long-term post-transplant, for MPGN prophylaxis, 539–542
 nephrotoxicity, 333–346
- Takayasu's arteritis**, with intrarenal vessel involvement, 950–953
- Taxonomy**, 638–643
- TBW (total body water)**, mortality of dialysis patients and, 80–88
- T-cells**
 activation
 in ESRD, hemodialysis initiation and, 611–616
 vitamin E-coated dialyzer membranes and, 95–104
 in renal disease in HIV-transgenic mice, 408–417
- Tenckhoff catheter**
 malposition, repositioning techniques for, 301–305
 for pediatric peritoneal dialysis, 1111–1116
- T helper 1**, circulating levels, in hemolytic uremic syndrome, 29–34
- Thiazide diuretics**, for familial microscopic hematuria, 141–145
- Thin basement membrane disease**, secondary to hematuria and tubular necrosis, 533–536
- Thrombectomy**, for renal allograft vein thrombosis, 5:E21
- Thrombin**, as pathogenic mediator of crescentic lesions, 726–738
- Thrombin antibodies**, vascular access thrombosis and, 796–801
- Thrombin receptor expression**, in crescentic glomerulonephritis, 726–738
- Thrombocytopenia**, post-transplant, 537–538
- Thrombosis**
 predictive accuracy of graft blood flow decrease and, 1089–1095
 vascular access, antiphospholipid antibodies and, 796–801
- Thrombotic microangiopathy**, with glomerulonephritis in SLE and lupus-like syndrome, 1193–1206
- Timing**, of intermittent hemodialysis, outcome and, 980–991
- Tissue factor expression**, in crescentic glomerulonephritis, 726–738
- T lymphocytes**. *See* T-cells
- Total body protein synthesis**, nephrotic proteinuria and, 1149–1154

- Total body water (TBW), mortality of dialysis patients and, 80–88
- Total parenteral nutrition (TPN), in maintenance dialysis, S2:49–50
- Toxic nephropathy, cross-cultural classification comparisons, 157–165
- TPN (total parenteral nutrition), in maintenance dialysis, S2:49–50
- Transferrin, serum, S2:86
- Transforming growth factor- β 1
 All and, 166–172
 circulating levels, in hemolytic uremic syndrome, 29–34
 during peritonitis CAPD, 644–652
- Transgenic mice, T-cell role in HIV-associated renal disease, 408–417
- Transplantation
 kidney. *See Renal transplantation*
 pancreas, for diabetic nephropathy, 1238–1241
- Transplant registries, world-wide classification differences in, 157–165
- Triceps skinfold thickness
 by age, S2:127
 measurement method, S2:125
- Tubular grading, IgA nephropathy prognosis and, 13–20
- Tubular necrosis, with thin basement membrane disease, 533–536
- Tubular obstruction, in glomerulocystic kidney disease, digital reconstruction of, 216–220
- Tubulointerstitial disease, ultrasonography, 1021–1039
- Tubulointerstitial injury, in heme oxygenase-1 deficiency, 863–870
- Ultrafiltration, cardiac and hemodynamic effects of, 819–826
- Ultrasound
 dilution technique, for recirculation measurement, 529–532
 Doppler. *See Doppler ultrasound*
 of microembolic signals in HD access, 526–528
 parathyroid gland, pulsed-dose calcitriol resistance and, 465–468
 principles, review of, 1021–1039
 renal failure, 1021–1039
- Uninephrectomy, ADPKD acceleration and, 923–929
- Urea filtration rate/volume. *See Kt/V*
- Urea kinetic modeling, pediatric guidelines, S2:109–110
- Urea reduction ratio (URR)
 citrate vs. acetic dialysate and, 493–499
 improvement with two parallel dialyzers, 266–274
 mortality of dialysis patients and, 80–88
 mortality prediction, for ESRD with sleep disorders, 1052–1061
 as outcome-based measure of hemodialysis dose, 598–605
- Uremia. *See also End-stage renal disease*
 complications, aminoguanidine prevention of, 365–380
 effect of hemodialysis initiation on, 611–616
 neutrophil β_2 -microglobulin and lactoferrin content in, 1117–1126
- Uric acid crystals, in familial microscopic hematuria urine sediment, 141–145
- Urinary tract infection
 cocaine-induced, 789
 nosocomial in chronic hemodialysis, risk factors for, 1083–1089
- URR. *See Urea reduction ratio*
- USRDS registry, cross-cultural comparison of renal disease classifications, 157–165
- Usual body weight, percentage of, S2:76
- Valine whole-body flux, in nephrotic syndrome, 1149–1154
- Vancomycin, for chronic hemodialysis, 64–68
- Vascular access. *See also Catheters; Graft*
 failure, ultrasound surveillance methods for, 477–481
 fistula
 facility specific standardized ratio calculation for, 275–281
 microembolic signals in, 526–528
 flow adequacy, access recirculation and, 529–532
 microembolic signals in, 526–528
 monitoring, ultrasound dilution technique for, 529–532
 puncture, dialysis cannula design and, 624–628
 recirculation, despite adequate access flow, 529–532
 septicemia risk in diabetic vs. nondiabetic hemodialysis patients, 282–292
 thrombosis, antiphospholipid antibodies and, 796–801
 variability, standardized ratios of, 275–281
- Vascular calcification risk, with hyperphosphatemia and hyperparathyroidism in dialysis, 1226–1237
- Vascular disease, ultrasonography, 1021–1039
- Vascular graft occlusion, predictive accuracy of graft blood flow decrease and, 1089–1095
- Vasculitis
 in elderly with acute renal insufficiency, 433–447
 intrarenal, in Takayasu's arteritis, 950–953
 with renal tubular acidosis and IgE deposits, 941–949
- Verotoxin-producing *Escherichia coli*, hemolytic uremic syndrome and, 29
- Vitamin B₁₂, in ultrafiltrate, for assessment of low-flux membrane permeability, 839–844
- Vitamin D receptor, resistance to calcitriol for secondary hyperparathyroidism, 465–468
- Vitamin D supplementation, for hyperphosphatemia/hyperparathyroidism in dialysis, 1226–1237
- Vitamin E-coated dialyzer membranes, T-cell activation, cytokine induction and, 95–104
- Vitamin requirements, pediatric maintenance dialysis, S2:116–117
- Waist/hip ratio, GFR in normotension and, 1144–1148
- Weight. *See Body weight*
- Whole-body turnover, of valine in nephrotic syndrome, 1149–1154
- Women. *See also Gender differences*
 renal replacement therapy outcomes, race and, S1:148–152
- Wrist drop, in lead-induced peripheral neuropathy, 963–968
- Xenotransplantation, for ESRD in future, S1:106–116

