CAT(0) spaces

A geodesic metric space X is CAT(0) if for every geodesic triangle $P = \triangle(p,q,r) \subseteq X$ there exists a comparison triangle in \mathbb{E}^2 with the same side lengths as P such that for each pair of points $x, y \in \partial P$ we have:

A group is CAT(0) if it acts properly cocompactly by isometries on a CAT(0) space.

Examples

- **瓜**n.
- ► Trees;
- Non-compact symmetric spaces (e.g. $\mathbb{R}H^2$);
- Infinite buildings.

Lattices

Let H = Isom(X) be a locally compact group with Haar measure μ . A discrete subgroup $\Gamma \leq H$ is:

- ightharpoonup a *lattice* if X/Γ has finite covolume;
- ightharpoonup a uniform lattice if X/Γ is compact.

For a lattice Γ in a product $\prod_{i=1}^n H_i$ we say Γ is:

- ightharpoonup irreducible if the projection to each subproduct of the H_i is non-discrete;
- reducible otherwise.

Examples

- ightharpoonup Crystallograhic groups in $\mathbf{Isom}(\mathbb{E}^n)$;
- Free groups acting on trees in $Aut(\mathcal{T})$;
- Arithmetic subgroups of Lie groups e.g. $\mathbf{SL}_2(\mathbb{Z}[\sqrt{2}])$ in $\mathbf{SL}_2(\mathbb{R})^2$;
- Graph products of finite groups acting on right-angled buildings.

Questions

Let X be a metric space and $H = \operatorname{Isom}(X)$ with Haar measure μ .

- 1. Does **H** have lattices?
- 2. What are properties of a generic lattice in **H**?
- 3. Do the properties of lattices in **H** reflect properties of **H**?
- 4. Can we classify lattices in **H** up to isomorphism, commensurability, or isometry?

Trees

A $tree\ \mathcal{T}$ is a connected graph with no loops.

rigure 1. A 4-regular ti

Theorem (Bass-Kulkarni 1990)

- 1. $\operatorname{Aut}(\mathcal{T})$ admits a uniform lattice if and only if \mathcal{T} is the universal cover of a finite connected graph.
- 2. Lattices in $\operatorname{Aut}(\mathcal{T})$ are fundamental groups of graphs of groups acting faithfully on their Bass-Serre tree. In particular, any uniform lattice is virtually free.

Biautomatic groups

- An automatic group is a finitely generated group equipped with several finite-state automata. These automata represent the Cayley graph of the group. That is, they can tell if a given word representation of a group element is in a "canonical form" and can tell if two elements given in canonical words differ by a generator.
- A group is *biautomatic* if it has two multiplier automata, for left and right multiplication by elements of the generating set, respectively.

Until 2019 it was not known if every CAT(0) group is biautomatic.

Leary-Minasyan groups

Let $A \in O(2)$, let L_1 be a finite index subgroup of \mathbb{Z}^2 and let $L_2 = A(L_1)$. Consider the following graph of groups:

$$\mathbb{Z}^2 \cap L_1^t = L_2$$

We call the fundamental group a Leary-Minasyan group. Such a group has the following presentation:

$$LM(A) = \langle a, b, t | [a, b], tL_1t^{-1} = L_2 \rangle$$

The group is equipped with a representation into $\mathbf{Isom}(\mathbb{E}^2)$ which can be described as follows:

$$\phi: \mathbf{LM}(\mathcal{A}) o \mathbf{Isom}(\mathbb{E}^2)$$
 by
$$\begin{cases} a \mapsto [1,0]^T \\ b \mapsto [0,1]^T \\ t \mapsto \mathcal{A}. \end{cases}$$

The group acts freely cocompactly on $\mathbb{E}^2 \times \mathcal{T}$ where \mathcal{T} is the Bass-Serre tree. In particular LM(A) is a CAT(0) group. Note that the construction generalises to $\mathbb{E}^n \times \mathcal{T}$.

Example

Concretely we can take

$$m{A} = egin{bmatrix} 3/5 & -4/5 \ 4/5 & 3/5 \end{bmatrix}, \quad m{L}_1 = \left\langle egin{bmatrix} 2 \ 1 \end{bmatrix} egin{bmatrix} 1 \ 2 \end{bmatrix}
ight
angle \quad ext{and} \quad m{L}_2 = \left\langle egin{bmatrix} 2 \ -1 \end{bmatrix} egin{bmatrix} -1 \ 2 \end{bmatrix}
ight
angle$$

in this case

$$LM(A) = \langle a, b, t \mid [a, b], ta^2bt^{-1} = a^2b^{-1}, tab^2t^{-1} = a^{-1}b^2 \rangle.$$

Figure 2: The action of a Leary-Minasyan group on \mathbb{E}^n . The orthogonal matrix maps the green squares to the blue squares.

Theorem (Leary-Minasyan 2019)

Let $\Gamma = \mathbf{LM}(A)$, \mathcal{T} be the Bass-Serre tree of Γ and $T = \mathbf{Aut}(\mathcal{T})$. Then Γ is virtually biautomatic if and only if A has finite order if and only if Γ is reducible as an $(\mathbf{Isom}(\mathbb{E}^n) \times T)$ -lattice.

Uniform $\text{Isom}(\mathbb{E}^n) \times T$)-lattices

The following lemma gives a rough classification of $\mathrm{Isom}(\mathbb{E}^n) imes \mathcal{T}$ -lattices.

Lemma (H. 2021)

Let \mathcal{T} be a locally finite unimodular leafless tree not quasi-isometric to \mathbb{E} and let $T = \operatorname{Aut}(\mathcal{T})$. Every uniform lattice in $\operatorname{Isom}(\mathbb{E}^n) \times T$ splits as a finite graph of virtually abelian groups.

Using the lemma we can prove a number of generic properties for irreducible lattices in $\mathrm{Isom}(\mathbb{E}^n) imes \mathcal{T}$.

Theorem (H. 2021)

Let $\mathcal T$ be a locally finite unimodular leafless tree not quasi-isometric to $\mathbb E$ and let $T=\operatorname{Aut}(\mathcal T)$. Let Γ be a uniform $(\operatorname{Isom}(\mathbb E^n) imes T)$ -lattice. The following are equivalent:

- 1. Γ is an irreducible $(\operatorname{Isom}(\mathbb{E}^n) \times T)$ -lattice;
- 2. Γ is irreducible as an abstract group;
- 3. Γ acts on \mathcal{T} faithfully;
- 4. Γ does not virtually fibre;
- 5. Γ is C^* -simple;
- 6. and if n = 2, Γ is non-residually finite and not virtually biautomatic.

The theorem is optimal in the sense that we can show for $n \geq 3$ all irreducible lattices are non-residually finite and not virtually biautomatic. However, there are also reducible lattices with these properties (consider $\mathbb{Z} \times \mathrm{LM}(A)$).

Theorem (H. 2021)

Let $n \ge 2$ and let X be a pentagonal building of thickness 10n. There exist uniform lattices acting on $\mathbb{E}^n \times X$ which are not virtually biautomatic.

Acknowledgements

I would like to thank my PhD supervisor Professor Ian Leary for his guidance and support.

References

- [1] Hyman Bass and Ravi Kulkarni
- Uniform tree lattices.
- J. Amer. Math. Soc., 3(4):843–902, 1990.
- [2] Hyman Bass and Alexander Lubotzky.

Tree lattices, volume 176 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2001.

- With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits.
- [3] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston. Word processing in groups.
- Jones and Bartlett Publishers, Boston, MA, 1992.

 [4] Sam Hughes.

Graphs and complexes of lattices. in preparation, 2021.

[5] Ian J. Leary and Ashot Minasyan.

Commensurating HNN-extensions: non-positive curvature and biautomaticity. arXiv:1907.03515 [Math.GR], 2019.