

Bem-Vindx à Comunidade DS

Live #037

DS em Clusterização Ciclo 08 -Como os modelos funcionam?

Agenda:

- Live #037 DS em Clusterização Ciclo 08 Explicação dos modelos de clusterização - Parte II
 - Hierarchical Clustering
 - o DBScan

- Live #038 DS em Clusterização Ciclo 09 Aplicação dos modelos de clusterização
 - Aplicação dos modelos.
 - Avaliação das performance.

Live #037

Ciclo 08 - Como os modelos funcionam?

Conteúdo da Live #037

1. Como funcionam os modelos:

- a. Hierarchical Clustering
- b. DBSCAN (Density-Based Spatial Clustering Application Noise)

O funcionamento do Hierarchical Clustering

Critério de ligação (Linkage Criteria)

- Cada ponto é considerado um cluster.
- Calcula a distância entre todos os pontos do espaço.
- · Identifica o vizinho mais próximo.
- Crie um novo cluster.
- Repete o processo.

	Α	В	С	D	Ε	F		Α	B,F	С	D	Е
Α	0.000	0.500	0.428	1.000	0.250	0.625	Α	0.000	0.625	0.428	1.000	0.250
В	0.500	0.000	0.714	0.833	0.667	0.200	B,F	0.625	0.000	0.714	0.833	0.777
С	0.428	0.714	0.000	1.000	0.428	0.667	С	0.428	0.714	0.000	1.000	0.428
D	1.000	0.833	1.000	0.000	0.800	0.800	D	1.000	0.833	1.000	0.000	0.800
Ε	0.250	0.667	0.428	0.800	0.000	0.777	Е	0.250	0.777	0.428	0.800	0.000
F	0.625	0.200	0.667	0.857	0.777	0.000						

Complete-linkage

	Α	B,F	С	D	Е		A,E	B,F	С	D
Α	0.000	0.625	0.428	1.000	0.250	A,E	0.000	0.777	0.428	1.000
B,F	0.625	0.000	0.714	0.833	0.777	B,F	0.777	0.000	0.714	0.833
С	0.428	0.714	0.000	1.000	0.428	С	0.428	0.714	0.000	1.000
D	1.000	0.833	1.000	0.000	0.800	D	1.000	0.833	1.000	0.000
Ε	0.250	0.777	0.428	0.800	0.000					

Complete-linkage

	A,E	B,F	С	D	A,E,C B,F	D
A,E	0.000	0.777	0.428	1.000	A,E,C 0.000 0.777	1.0
B,F	0.777	0.000	0.714	0.833	B,F 0.777 0.000	0.8
С	0.428	0.714	0.000	1.000	D 1.000 0.833	0.0
D	1.000	0.833	1.000	0.000		

Complete-linkage

	A,E,C	B,F	D		A,E,C,B, F	D
A,E,C	0.000	0.777	1.000	A,E,C,B,F	0.000	1.000
B,F	0.777	0.000	0.833	D	1.000	0.000
D	1.000	0.833	0.000			

Complete-linkage

3. Características do Hierarchical Clustering

Características do H-Clustering

- Número de cluster é um hiperparâmetro.
- Métricas de distância.
- Definição do tipo de ligação.
- Definição do K, através do dendograma.

2. Vantagens & Desvantagens do H-Clustering

Características do H-Clustering

Vantagens

- Simples de implementar.
- Fácil de definir o número k de clusters.

Desvantagens

- Uma vez o ponto atribuído a um cluster, não há modificações.
- Alta complexidade. Lento para conjunto de dados muito grandes.
- Sensível na presença de outliers.
- Escolha do critério de ligação.

(Density-Based Spatial Clustering Application with Noise)

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

- Definir um raio &
- Definir o número mínimo de pontos da vizinhança N
- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".

Avalia os pontos marcados

- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".
- Para cada "core point" avalia os pontos da vizinhança em "border point" ou "noise point".

- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".
- Para cada "core point" avalia os pontos da vizinhança em "border point" ou "noise point".

- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".
- Para cada "core point" avalia os pontos da vizinhança em "border point" ou "noise point".

- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".
- Para cada "core point" avalia os pontos da vizinhança em "border point" ou "noise point".

- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".
- Para cada "core point" avalia os pontos da vizinhança em "border point" ou "noise point".

- Se o ponto X, dentro de uma vizinhança & tem mais pontos que o mínimo. Logo, "core point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele é vizinho de um "core point". Logo, "border point".
- Se o ponto X, dentro de uma vizinhança & tem menor pontos que o mínimo e ele não é vizinho de um "core point". Logo, "noise point".
- Para cada "core point" avalia os pontos da vizinhança em "border point" ou "noise point".

Características do DBSCAN

Características do DBSCAN

- Número de cluster não é um hiperparâmetro.
- Definição do raio da vizinhança.
- Definição do número mínimo de pontos da vizinhança.
- Definição da métricas de distância.

Características do DBSCAN

Vantagens

- Encontra cluster de qualquer formato.
- Encontra o número de clusters automaticamente.

Desvantagens

- Muito sensível aos parâmetros.
- Difícil o fine-tuning.

Perguntas?

Referência

Hierarchical Clustering

- Flexível em relação aos formatos dos clusters.
- Permite incluir incertezas na atribuição do ponto ao cluster.
- Robusto aos outliers.
- Não depende de métricas de distâncias.