Groupe IPESUP Année 2022-2023

TD 18 : Déterminants

Connaître son cours:

- Soit f une application 3-linéaire entre deux \mathbb{K} -espaces vectoriels E et F. Montrer que f est alternée si, et seulement si, f est antisymétrique.
- Montrer que l'espace vectoriel des formes n-linéaires alternées sur un espace vectoriel de dimension n est de dimension 1. Faire la preuve pour n = 2 et n = 3 pour comprendre si besoin. Soit $\beta = (e_1, \ldots, e_n)$ une base de E, donner la définition déterminant en base β
- Soit β une base d'un \mathbb{K} -espace vectoriel E de dimension n. Monter que n vecteurs $x_1, \ldots, x_n \in E$ forme une base de E si, et seulement si, $\det_{\beta} (x_1, \ldots, x_n) \neq 0$.
- Soit $u \in \mathcal{L}(E)$ et $\beta = (e_1, \dots, e_n)$ est une base de E. Montrer que le scalaire $\det_{\beta}(u(e_1), \dots, u(e_n))$ ne dépend pas de la base β
- Montrer que le déterminant d'une matrice triangulaire supérieure $M = (m_{i,j})_{i,j}$ est le produit des éléments diagonaux.
- Montrer que pour toute matrice $M \in \mathcal{M}_n(\mathbb{K})$, $\det(M^T) = \det(M)$.
- Soit $A \in \mathcal{G}l_n(\mathbb{R})$, $b \in \mathcal{M}_{n,1}(\mathbb{R})$ et AX = B un système linéaire de Cramer. Donner les coordonnées de l'unique solution X à l'aide de la formule de Cramer.

Déterminants d'un endomorphisme ou d'une matrice :

Exercice 1. (*)

Calculer les déterminants des matrices suivantes :

$$\begin{pmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 2 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
1 & 2 & 1 & 2 \\
1 & 3 & 1 & 3 \\
2 & 1 & 0 & 6 \\
1 & 1 & 1 & 7
\end{pmatrix}$$

Exercice 2. (*)

Calculer les déterminants suivant :

$$\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 & a_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_2 \\ a_1 & \cdots & a_1 & a_1 \end{vmatrix} \qquad \begin{vmatrix} a+b & a & \cdots & a \\ a & a+b & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ a & \cdots & a & a+b \end{vmatrix}$$

Exercice 3. (*)

Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 = -Id_E$. Que dire de la dimension de E?

Exercice 4. (*)

Soit $u \in \mathcal{L}(\mathbb{R}_n[X])$. Calculer $\det(u)$ dans chacun des cas suivants :

- 1. u(P) = P + P';
- 2. u(P) = P(X+1) P(X);
- 3. u(P) = XP' + P(1).

Exercice 5. (*)

Soit $a, b, c \in \mathbb{R}$, montrer que

$$4(b+c)(c+a)(a+b) = \begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix}$$

Groupe IPESUP Année 2022-2023

Exercice 6. (*)

Soient $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice carrée et $B = (b_{i,j})_{1 \le i,j \le n}$ où $b_{i,j} = (-1)^{i+j} a_{i,j}$. Calculer $\det(B)$ en fonction $\det(A)$.

Exercice 7. (**)

Soit a un réel. On note Δ_n le déterminant suivant :

$$\Delta_n = \begin{vmatrix} a & 0 & \cdots & 0 & n-1 \\ 0 & a & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & 2 \\ 0 & \cdots & 0 & a & 1 \\ n-1 & \cdots & 2 & 1 & a \end{vmatrix}$$

- 1. Calculer Δ_n en fonction de Δ_{n-1} .
- 2. Démontrer que : $\forall n \geq 2$ $\Delta_n = a^n a^{n-2} \sum_{i=1}^{n-1} i^2$.

Exercice 8. (**)

Soit $A \in \mathcal{A}_{2n}(\mathbb{R})$ et $J \in \mathcal{M}_{2n}(\mathbb{R})$ dont tous les coefficients sont égaux à 1. Démontrer que, pour tout $x \in \mathbb{R}$, $\det(A + xJ) = \det(A)$.

Exercice 9. (**)

Soient $n \ge 1$, $p \ge 0$. Calculer le déterminant suivant :

$$\left| \begin{array}{cccc} \binom{n}{0} & \binom{n}{1} & \dots & \binom{n}{p} \\ \binom{n+1}{0} & \binom{n+1}{1} & \dots & \binom{n+1}{p} \\ \vdots & \vdots & & \vdots \\ \binom{n+p}{0} & \binom{n+p}{1} & \dots & \binom{n+p}{p} \end{array} \right| .$$

Exercice 10. (***) (Matrice compagnon)

Soient a_0, \ldots, a_{n-1}, n nombres complexes et

$$A = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

Donner l'expression du polynôme $P = \det(XI_n - A)$.

Exercice 11. (**)

On définit par blocs une matrice A par $A = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$ où A, B et C sont des matrices carrées de formats respectifs n, p et q avec p + q = n. Montrer que $\det(A) = \det(B) \times \det(C)$.

Exercice 12. (**)

Calculer $\det(a_i + b_j)_{1 \le i,j \le n}$ où $a_1, \ldots, a_n, b_1, \ldots, b_n$ sont 2n complexes donnés.

Exercice 13. (**)

Soit A une matrice carrée complexe de format $n \ge 2$ telle que pour tout élément M de $M_n(\mathbb{C})$, on ait

$$\det(A+M) = \det A + \det M$$

Montrer que A = 0.

Exercice 14. (**)

Soit $M \in \mathcal{M}_n(\mathbb{Z})$. Donner une condition nécessaire et suffisante pour que M soit inversible et que M^{-1} soit dans $\mathcal{M}_n(\mathbb{Z})$.

Exercice 15. (***)

Soit $A, B \in M_n(\mathbb{R})$. On suppose que A et B sont semblables sur \mathbb{C} , ie qu'il existe $P \in Gl_n(\mathbb{C})$ tel que $A = PBP^{-1}$.

Montrer que A et B sont semblables sur \mathbb{R} .

Exercice 16. (***)

(Un déterminant par blocs sous conditions!!)

Soient A, B, C et D quatre matrices carrées de format n. Montrer que si C et D commutent et si D est inversible alors $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC)$.

Montrer que le résultat persiste si D n'est pas inversible.

Groupe IPESUP Année 2022-2023

Exercice 17. (**)/(***)

- 1. Calculer $\det(\text{com}A)$ en fonction $\det A$
- 2. Étudier le rang de com A en fonction du rang de A.
- 3. Résoudre, pour $n \ge 3$, l'équation com A = A.

Exercice 18. (**)

Soit A une matrice carrée d'ordre n à coefficients complexes. Montrer :

 $\exists \alpha > 0, \ \forall \varepsilon \in \mathbb{R}, \ 0 < |\varepsilon| < \alpha, \ A + \varepsilon I_n \text{ est inversible.}$

Exercice 19. (***) (Matrice de VANDERMONDE)

Soient x_0, \ldots, x_{n-1} n nombres complexes.

- 1. Calculer $Van(x_0, ..., x_{n-1}) = det(x_{i-1}^{i-1})_{1 \le i, j \le n}$.
- 2. Résoudre le système MX = U où $M = (j^{i-1})_{1 \le i, j \le n} \in M_n(\mathbb{R}),$ $U = (\delta_{i,1})_{1 \le i \le n} \in M_{n,1}(\mathbb{R})$ et X est un vecteur colonne inconnu.

Exercice 20. (**)

Soient (z_0, \ldots, z_n) des nombres complexes deux à deux distincts. Montrer que la famille

$$((X-z_0)^n, (X-z_1)^n, \dots, (X-z_n)^n)$$

est une base de $\mathbb{C}_n[X]$.

Exercice 21. (***)

Soit E un espace vectoriel de dimension n dont une base est \mathcal{B} . Soient $(x_1, \ldots, x_n) \in E$ et $f \in L(E)$. Démontrer que

 $\sum_{k=1}^{n} \det_{\mathcal{B}}(x_1, \dots, f(x_k), \dots, x_n) = \operatorname{Tr}(f) \det_{\mathcal{B}}(x_1, \dots, x_n)$