EBM and construct the confidence interval. We need to find the value of z that puts an area equal to the confidence level (in decimal form) in the middle of the standard normal distribution $Z \sim N(0, 1)$.

The confidence level, CL, is the area in the middle of the standard normal distribution. CL = $1 - \alpha$, so α is the area that is split equally between the two tails. Each of the tails contains an area equal to $\frac{\alpha}{2}$.

The z-score that has an area to the right of $\frac{\alpha}{2}$ is denoted by $z_{\frac{\alpha}{2}}$.

For example, when *CL* = 0.95, α = 0.05 and $\frac{\alpha}{2}$ = 0.025; we write $z_{\frac{\alpha}{2}}$ = $z_{0.025}$.

The area to the right of $z_{0.025}$ is 0.025 and the area to the left of $z_{0.025}$ is 1 – 0.025 = 0.975.

 $z_{\frac{\alpha}{2}}=z_{0.025}=1.96$, using a calculator, computer or a standard normal probability table.

USING THE TI-83, 83+, 84, 84+ CALCULATOR

invNorm(0.975, 0, 1) = 1.96

NOTE

Remember to use the area to the LEFT of $z_{\frac{\alpha}{2}}$; in this chapter the last two inputs in the invNorm command are 0, 1, because you are using a standard normal distribution $Z \sim N(0, 1)$.

Writing the Interpretation

The interpretation should clearly state the confidence level (CL), explain what population parameter is being estimated (here, a population mean), and state the confidence interval (both endpoints). "We estimate with ___% confidence that the true population mean (include the context of the problem) is between ___ and ___ (include appropriate units)."

EXAMPLE 8.2

Suppose scores on exams in statistics are normally distributed with an unknown population mean and a population standard deviation of three points. A random sample of 36 scores is taken and gives a sample mean (sample mean score) of 68. Find a confidence interval estimate for the population mean exam score (the mean score on all exams).

? Problem

Find a 90% confidence interval for the true (population) mean of statistics exam scores.

Solution

- · You can use technology to calculate the confidence interval directly.
- The first solution is shown step-by-step.
- The second solution uses the TI-83, 83+, and 84+ calculators.