

Dr. LaBerge (CMPE)

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved. 1.1

This is our task

- We're going to be designing elements of a precision landing system for fixed wing (airplanes) and rotary wing (helicopters) aircraft
- To do the design exercise, we need some common vocabulary
- I'll post a document that goes through much of this in a slightly different way
- My goal today is just to introduce the vocabulary

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

A precision landing system

- A landing system is a collection of devices that permit a pilot to land an aircraft on a selected runway in low-visibility conditions
- At it's simplest, a landing system provides guidance to the pilot indicating if the aircraft is left or right of runway (or at least landing zone)
- A precision landing system also provides guidance to the pilot about whether the aircraft is above or below the desired flight path to the landing zone.
- The vertical element of the approach path is called the glide path, or elevation angle even though the aircraft isn't gliding during the approach.

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

LaBerge Sketch #1 (On board in lecture) Runway Threshold Stop end Touchdown zone Error Window Glide path Glide intercept point UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

Items on the sketch

- Runway surface
- Runway centerline
- Runway stop end
- Runway dimensions
- Threshold
- Glide path
- Lateral position error
- Vertical position error
- Glide Path Intercept Point
- Touchdown zone
- Threshold crossing height
- Error window

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

Items on sketch #2

- Decision Height
- Minimum Guidance Altitude
- "Break Out"
- Missed Approach

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

ICAO Landing Categories

Table 1 ICAO Precision Landing Categories

Precision Landing	Decision Height &	Minimum Guidance
Category	Minimum Visibility	Altitude
Category I	200 feet & ³ / ₄ nautical mile	100 feet
Category II	100 feet & ½ nautical mile	50 feet
Category III A	50 feet & ¼ nautical mile	8 feet
Category III B	50 feet & 1/8 nautical mile	8 feet
Category III C	0/0	8 feet, taxi guidance required

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved. 1-9

Standard for Safe Landing

- ICAO wants the aircraft to have the same probability of landing safely at the specified Category as and aircraft operating in "Visual Flight Rules" or VFR,...
- ...where the pilot can clearly see the runway at all times during the final phases of the approach.

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

Guidance vs. Position

- Landing systems generally provide guidance not direct position
- Position is the aircraft location in space, referenced to some accepted coordinate system (more later)
- Guidance consists of instructions to the pilot on how the position of the aircraft to match a selected and defined path
- Think of using Google Maps on your phone.
 - Position (via Google Maps)
 - Desired Path (you choose destination)
 - Guidance relative to that path ("turn left on Wilkens Ave)

UMBC CMPE450 Capstone I
Course Notes © E F C LaBerge, 2011 All rights reserved.

1-11

Three dimensional guidance

- Precision Landing guidance is always three dimensional
 - Lateral (fly to the left or fly to the right)
 - Vertical (fly up or fly down)
 - Distance to touchdown...
 - …followed by distance to stop end.

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

How does the guidance get to the pilot?

Analog form via the CDI, "fly to the bars"

Fly up and to the left

By Fred the Oyster, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35320370

UMBC CMPE450 Capstone I
Course Notes © E F C LaBerge, 2011 All rights reserved.

How does guidance get to the pilot?

- In a Cat I+ landing, the pilot rarely flies the aircraft directly...
- ... at least until reaching the decision height...
- ...and often not even then
- The actual control of the aircraft is done by the automatic flight control system (AFCS)...
- ...using inputs from the precision landing system.
- Most modern AFCS are fancy computers, which "like" digital inputs...
- ...so modern landing systems also provide digital words containing both position and guidance.
- How often this data is provided, and the precision (number of bits) are subject to the system design.

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

Broad Categories of Precision Landing Systems

- Autonomous: The aircraft determines its position with a very limited (ideally no) external inputs, and computes guidance relative to a pilot-selected path.
- Air derived: The aircraft determines its position using well-defined external inputs, and computes guidance relative to a pilot-selected path.
- Ground derived: The ground system at the airport determines the aircraft position using well-defined external inputs, and computes guidance relative to a ground selected path. This guidance information is then transmitted to the aircraft via some radio link.
- Voice Command: The ground system at the airport determines the aircraft position, and displays that position relative to a ground selected path. A controller (human) then instructs the pilot how to fly to follow the selected path

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved. 1-15

What might be some issues with each?

- Autonomous:
- Air derived:
- Ground Derived
- Voice Controlled

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.

What might be issues associated with

- Precision landing in flat terrain (Kansas?)
- Precision landing with local obstacles (BWI?)
- Precision landing in mountainous terrain (Alaska?)
- Precision landing at busy airport (JFK/Dulles?)

UMBC CMPE450 Capstone I
Course Notes © E F C LaBerge, 2011 All rights reserved.

1-17

Near term schedule

- We will meet HERE this Friday
- We will receive a request for information about a landing system.
- We'll discuss it and see what might be our way forward,...
- ...or other things we might need to know.
- CATME Surveys should be available by Wed evening, please respond before Friday!

UMBC CMPE450 Capstone I Course Notes © E F C LaBerge, 2011 All rights reserved.