AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for using interval techniques
2	within a computer system to solve a multi-objective optimization problem,
3	comprising:
4	receiving a representation of multiple objective functions $(f_1,, f_n)$ at
5	the computer system, wherein $(f_1,, f_n)$ are scalar functions of a vector
6	$\mathbf{x}=(x_1,\ x_n);$
7	receiving a representation of a domain of interest for the multiple
8	objective functions;
9	storing the representations in a memory within the computer system; and
0	performing an interval optimization process to compute guaranteed
1	bounds on a Pareto front for the objective functions $(f_1,, f_n)$, wherein for
12	each point on the Pareto front, an improvement in one objective function cannot
3	be made without adversely affecting at least one other objective function;
4	wherein performing the interval optimization process involves applying a
5	direct-comparison technique between subdomains of the domain of interest to
16	eliminate subdomains that are certainly dominated by other subdomains.
17	wherein performing the interval optimization process involves applying a
8	gradient technique to eliminate subdomains that do not contain a local Pareto
9	optimum,

- 20 wherein a subdomain $[\mathbf{x}]_i$ is eliminated by the gradient technique if an 21 intersection of certainly negative gradient regions C_i for each objective function f_i is non-empty, $\bigcap_{j=1}^{n} \mathbf{C}_{j}([\mathbf{x}]_{j}) \neq \emptyset$, and 22
- wherein the certainly negative gradient region C_i for objective function f_i 23 is the intersection of $\underline{\mathbf{N}_{j}}([\mathbf{x}]_{i})$ (the negative gradient region associated with the 24 $\underline{\underline{minimum angle}} \ \underline{\underline{\theta_j}} \ \underline{of the gradient of f_j \text{ over the subdomain } [\mathbf{x}]_j)} \ \underline{\mathbf{n}} \ \underline{\mathbf{N}_j} ([\mathbf{x}]_i) (the$ 25 negative gradient region associated with the maximum angle $\overline{\theta_j}$ of the gradient of 26 f_j over the subdomain $[\mathbf{x}]_j$.
- 1 2. (Cancelled)

27

- 1 (Cancelled) 3.
- 1 4. (Currently amended) The method of elaim 3 claim 1, wherein the 2 method further comprises iteratively:
- 3 bisecting remaining subdomains that have not been eliminated by the 4 gradient technique; and
- 5 applying the gradient technique to eliminate bisected subdomains that do 6 not contain a local Pareto optimum.
- 5. 1 (Original) The method of claim 4, wherein bisecting a subdomain 2 involves bisecting the subdomain in the direction that has the largest width of partial derivatives of all objective functions $(f_1, ..., f_n)$ over the subdomain. 3
- 1 6. (Original) The method of claim 4, wherein the direct-comparison 2 technique is applied once for every *n* iterations of the gradient technique.

- 1 7. (Original) The method of claim 6, wherein the iterations continue
- 2 until either a predetermined maximum number of iterations are performed, or the
- 3 largest area of any subdomain is below a predetermined value.
- 1 8. (Original) The method of claim 1,
- wherein a subdomain U certainly dominates a subdomain V if every point
- 3 $\mathbf{u} \in \mathbf{U}$ dominates every point $\mathbf{v} \in \mathbf{V}$; and
- 4 wherein a point **u** dominates a point **v** under minimization if,
- 5 $u_i \# v_i, i = 1, ..., n$, and
- 6 $u_i < v_i \text{ for some } i \in \{1, ..., n\}.$
- 1 9. (Currently amended) A computer-readable storage medium storing
- 2 instructions that when executed by a computer cause the computer to perform a
- 3 method for using interval techniques within a computer system to solve a multi-
- 4 objective optimization problem, wherein the computer-readable storage medium
- 5 can be any device that can store code and/or data for use by a computer system,
- 6 the method comprising:
- 7 receiving a representation of multiple objective functions $(f_1, ..., f_n)$ at
- 8 the computer system, wherein $(f_1, ..., f_n)$ are scalar functions of a vector
- 9 $\mathbf{x} = (x_1, ..., x_n);$
- receiving a representation of a domain of interest for the multiple
- 11 objective functions;
- storing the representations in a memory within the computer system; and
- performing an interval optimization process to compute guaranteed
- bounds on a Pareto front for the objective functions $(f_1, ..., f_n)$, wherein for
- 15 each point on the Pareto front, an improvement in one objective function cannot
- be made without adversely affecting at least one other objective function;

- wherein performing the interval optimization process involves applying a direct-comparison technique between subdomains of the domain of interest to eliminate subdomains that are certainly dominated by other subdomains.
- wherein performing the interval optimization process involves applying a
 gradient technique to eliminate subdomains that do not contain a local Pareto
 optimum,
 - wherein a subdomain $[\mathbf{x}]_j$ is eliminated by the gradient technique if an intersection of certainly negative gradient regions \mathbf{C}_j for each objective function f_j is non-empty, $\bigcap_{j=1}^n \mathbf{C}_j([\mathbf{x}]_j) \neq \emptyset$, and
 - wherein the certainly negative gradient region \mathbf{C}_{j} for objective function f_{j} is the intersection of $\mathbf{N}_{j}([\mathbf{x}]_{i})$ (the negative gradient region associated with the minimum angle $\underline{\theta}_{j}$ of the gradient of f_{j} over the subdomain $[\mathbf{x}]_{i}$) and $\overline{\mathbf{N}_{j}}([\mathbf{x}]_{i})$ (the negative gradient region associated with the maximum angle $\overline{\theta}_{j}$ of the gradient of f_{j} over the subdomain $[\mathbf{x}]_{j}$).
 - 1 10. (Cancelled)

23

24

25

26

27

28

29

30

- 1 11. (Cancelled)
- 1 12. (Currently amended) The computer-readable storage medium of 2 | claim 11claim 9, wherein the method further comprises iteratively:
- bisecting remaining subdomains that have not been eliminated by the
 gradient technique; and
- applying the gradient technique to eliminate bisected subdomains that do not contain a local Pareto optimum.

- 1 13. (Original) The computer-readable storage medium of claim 12,
- 2 wherein bisecting a subdomain involves bisecting the subdomain in the direction
- 3 that has the largest width of partial derivatives of all objective functions $(f_1, ...,$
- 4 f_n) over the subdomain.
- 1 14. (Original) The computer-readable storage medium of claim 12,
- 2 wherein the direct-comparison technique is applied once for every n iterations of
- 3 the gradient technique.
- 1 15. (Original) The computer-readable storage medium of claim 14,
- 2 wherein the iterations continue until either a predetermined maximum number of
- 3 iterations are performed, or the largest area of any subdomain is below a
- 4 predetermined value.
- 1 16. (Original) The computer-readable storage medium of claim 9,
- wherein a subdomain U certainly dominates a subdomain V if every point
- 3 $\mathbf{u} \in \mathbf{U}$ dominates every point $\mathbf{v} \in \mathbf{V}$; and
- 4 wherein a point **u** dominates a point **v** under minimization if,
- 5 $u_i \# v_i, i = 1, ..., n$, and
- 6 $u_i < v_i \text{ for some } i \in \{1, ..., n\}.$
- 1 17. (Currently amended) An apparatus that uses interval techniques to
- 2 solve a multi-objective optimization problem, comprising:
- a receiving mechanism configured to receive a representation of multiple
- 4 objective functions $(f_1, ..., f_n)$, wherein $(f_1, ..., f_n)$ are scalar functions of a
- 5 vector $\mathbf{x} = (x_1, ..., x_n)$;
- 6 wherein the receiving mechanism is configured to receive a representation
- 7 of a domain of interest for the multiple objective functions;

8	a memory configured to store the representations; and
9	an interval optimizer configured to performing an interval optimization
10	process to compute guaranteed bounds on a Pareto front for the objective
11	functions $(f_1,, f_n)$, wherein for each point on the Pareto front, an
12	improvement in one objective function cannot be made without adversely

affecting at least one other objective function;
 wherein the interval optimizer is configured to apply a direct-comparison
 technique between subdomains of the domain of interest to eliminate subdomains

16 that are certainly dominated by other subdomains,

wherein the interval optimizer is configured to apply a gradient technique to eliminate subdomains that do not contain a local Pareto optimum,

wherein a subdomain $[\mathbf{x}]_i$ is eliminated by the gradient technique if an intersection of certainly negative gradient regions \mathbf{C}_j for each objective function f_j is non-empty, $\bigcap_{i=1}^{n} \mathbf{C}_i([\mathbf{x}]_i) \neq \emptyset$, and

is non-empty, $\bigcap_{j=1}^{n} \mathbf{C}_{j}([\mathbf{x}]_{j}) \neq \emptyset$, and

17

18

19

20

21

22

23

24

25

26

wherein the certainly negative gradient region C_j for objective function f_j is the intersection of $\underline{N}_j([\mathbf{x}]_i)$ (the negative gradient region associated with the minimum angle $\underline{\theta}_j$ of the gradient of f_j over the subdomain $[\mathbf{x}]_i$) and $\overline{N}_j([\mathbf{x}]_i)$ (the negative gradient region associated with the maximum angle $\underline{\theta}_j$ of the gradient of f_j over the subdomain $[\mathbf{x}]_i$).

- 1 18. (Cancelled)
- 1 19. (Cancelled)
- 1 | 20. (Currently amended) The apparatus of claim 19claim 17, wherein 2 the interval optimizer is configured to iteratively:

- 3 bisect remaining subdomains that have not been eliminated by the gradient
- 4 technique; and to
- 5 apply the gradient technique to eliminate bisected subdomains that do not
- 6 contain a local Pareto optimum.
- 1 21. (Original) The apparatus of claim 20, wherein bisecting a
- 2 subdomain involves bisecting the subdomain in the direction that has the largest
- width of partial derivatives of all objective functions $(f_1, ..., f_n)$ over the
- 4 subdomain.
- 1 22. (Original) The apparatus of claim 20, wherein the direct-
- 2 comparison technique is applied once for every n iterations of the gradient
- 3 technique.
- 1 23. (Original) The apparatus of claim 22, wherein the iterations
- 2 continue until either a predetermined maximum number of iterations are
- 3 performed, or the largest area of any subdomain is below a predetermined value.
- 1 24. (Original) The apparatus of claim 17,
- wherein a subdomain U certainly dominates a subdomain V if every point
- 3 $u \in U$ dominates every point $v \in V$; and
- 4 wherein a point **u** dominates a point **v** under minimization if,
- 5 $u_i \# v_i, i = 1, ..., n$, and
- 6 $u_i < v_i \text{ for some } i \in \{1, ..., n\}.$