Vidéo ■ partie 2.1. Vecteurs du plan Vidéo ■ partie 2.2. Vecteurs de l'espace

Nous étudions les vecteurs du plan, de l'espace et en n'importe quelle dimension.

1. Vecteurs du plan

1.1. Opérations sur les vecteurs

Dans le plan, on considère $(O, \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormé direct. Un *vecteur* \overrightarrow{u} est défini par des coordonnées $(x, y) \in \mathbb{R}^2$ par rapport à ce repère. Cela correspond à l'égalité :

$$\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}.$$

On peut aussi noter les coordonnées verticalement :

$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
.

Plusieurs opérations sont définies sur les vecteurs. Soient $\overrightarrow{u} = (x, y)$ et $\overrightarrow{v} = (x', y')$ deux vecteurs, et soit $\lambda \in \mathbb{R}$ un scalaire.

• L'addition de \vec{u} et \vec{v} est définie par

$$\overrightarrow{u} + \overrightarrow{v} = (x + x', y + y').$$

• La multiplication par un scalaire λ est définie par

$$\lambda \vec{u} = (\lambda x, \lambda y).$$

• Le vecteur nul est défini par

$$\vec{0} = (0,0).$$

• Le *vecteur opposé* de \overrightarrow{u} est défini par

$$-\overrightarrow{u} = (-x, -y).$$

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont *colinéaires* si $\overrightarrow{u} = \lambda \overrightarrow{v}$ (ou bien $\overrightarrow{v} = \lambda \overrightarrow{u}$) pour un certain scalaire $\lambda \in \mathbb{R}$.

1.2. Norme

La *norme* d'un vecteur $\vec{u} = (x, y)$ est définie par

$$\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}.$$

La norme mesure la distance entre le point $(x, y) \in \mathbb{R}^2$ et l'origine O = (0, 0).

On dira qu'un vecteur est *unitaire* si sa norme vaut 1. Autrement dit, $\overrightarrow{u} = (x, y)$ est unitaire si et seulement si $x^2 + y^2 = 1$. Ci-dessous des exemples de vecteurs unitaires.

Soit \overrightarrow{u} un vecteur non nul quelconque. La *normalisation* de \overrightarrow{u} est le vecteur unitaire $\frac{\overrightarrow{u}}{\|\overrightarrow{u}\|}$.

1.3. Produit scalaire

Le *produit scalaire* de deux vecteurs \vec{u} et \vec{v} est défini par

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'.$$

Le produit scalaire mesure à quel point deux vecteurs ont la même direction. On le note aussi $\langle \vec{u} \mid \vec{v} \rangle$. Le résultat fondamental est :

Proposition 1.

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \, ||\overrightarrow{v}|| \cos(\theta)$$

où θ est l'angle entre \overrightarrow{u} et \overrightarrow{v} .

Cela entraîne:

Proposition 2.

 \vec{u} et \vec{v} sont deux vecteurs orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.

Inversement cette formule permet de calculer l'angle (au signe près) entre deux vecteurs à l'aide du produit scalaire : $\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$. La fonction arccos permet de retrouver un angle (sans son signe), connaissant son cosinus. Ainsi l'angle θ , en valeur absolue, vaut :

$$|\theta| = \arccos\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}\right).$$

Exemple.

Quel est l'angle entre les vecteurs $\vec{u} = (1,2)$ et $\vec{v} = (-1,4)$?

4 VECTEURS

On a:

• $\vec{u} \cdot \vec{v} = 1 \times (-1) + 2 \times 4 = 7$.

•
$$\|\vec{u}\| = \sqrt{1^2 + 2^2} = \sqrt{5}$$
.

• $\|\vec{v}\| = \sqrt{(-1)^2 + 4^2} = \sqrt{17}$.

 Comme \$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(θ)\$ alors cos θ = \$\frac{7}{√5√17}\$.
Enfin, θ = arccos \$\frac{7}{√5√17} \simeq 0.708\$ radians. Soit θ \$\simeq 40,6°\$. (Attention au choix de l'unité d'angle sur votre calculatrice!)

Exemple.

Fixons un vecteur \vec{u} . On considère le vecteur \vec{v} qui est obtenu en tournant \vec{u} d'un angle θ dans le sens trigonométrique. On a alors:

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(\theta).$$

- Le produit scalaire est donc nul si et seulement si $\cos \theta = 0$, c'est-à-dire lorsque \vec{u} et \vec{v} sont orthogo-
- Le produit scalaire est maximal lorsque $\cos \theta = 1$, c'est-à-dire, \vec{u} et \vec{v} sont colinéaires, dirigés dans le même sens.
- Le produit scalaire est minimal lorsque $\cos \theta = -1$, c'est-à-dire, \vec{u} et \vec{v} sont colinéaires, dirigés dans des sens opposés.

Ci-dessous un vecteur \vec{u} fixé et le signe du produit scalaire $\vec{u} \cdot \vec{v}$ pour différents vecteurs \vec{v} .

1.4. Applications

Vecteur normal à une droite.

La droite d'équation ax + by + c = 0 admet pour vecteur directeur le vecteur $\vec{u} = (-b, a)$. Ainsi un vecteur orthogonal à la droite est le vecteur $\vec{n} = (a, b)$ (on parle aussi de « vecteur normal », sans exiger qu'il soit de norme 1). En effet le produit scalaire de \vec{u} et \vec{n} est nul :

$$\vec{u} \cdot \vec{n} = (-b, a) \cdot (a, b) = -ba + ab = 0.$$

Une application est le résultat suivant.

Proposition 3.

La distance entre un point $A(x_A, y_A)$ quelconque et la droite \mathcal{D} d'équation ax + by + c = 0 est donnée par :

$$d(A, \mathcal{D}) = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}.$$

Démonstration. $\overrightarrow{n} = (a, b)$ est un vecteur orthogonal à la droite \mathcal{D} . Notons H le projeté orthogonal de A sur la droite. La distance d cherchée est la distance dH. Calculons la valeur absolue du produit scalaire de \overrightarrow{HA} et \overrightarrow{n} de deux manières :

• d'une part \overrightarrow{HA} et \overrightarrow{n} sont colinéaires, donc

$$|\overrightarrow{HA} \cdot \overrightarrow{n}| = ||\overrightarrow{HA}|| \, ||\overrightarrow{n}|| = d\sqrt{a^2 + b^2}$$

• d'autre part, à l'aide des coordonnées :

$$\overrightarrow{HA} \cdot \overrightarrow{n} = \begin{pmatrix} x_A - x_H \\ y_A - y_H \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = (x_A - x_H)a + (y_A - y_H)b = ax_A + by_A + c$$

On a utilisé que H est un point de la droite \mathcal{D} donc $ax_H + by_H + c = 0$.

On en déduit que :

$$d = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}.$$

Projection orthogonale.

Fixons un vecteur \vec{u} non nul quelconque. Nous pouvons décomposer n'importe quel vecteur \vec{v} en deux parties :

$$\overrightarrow{v} = \overrightarrow{v_{/\!/}} + \overrightarrow{v_{\perp}}$$

où $\overrightarrow{v_{\parallel}}$ est colinéaire à \overrightarrow{u} et $\overrightarrow{v_{\perp}}$ est orthogonal à \overrightarrow{u} .

6 VECTEURS

Le vecteur $\overrightarrow{v_{\parallel}}$ est appelé *projeté orthogonal* de \overrightarrow{v} sur \overrightarrow{u} . Il se calcule par :

$$\overrightarrow{v_{/\!\!/}} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\|^2} \overrightarrow{u}.$$

La preuve découle simplement du fait que dans le triangle rectangle suivant on a $AH = AB \cos \theta$.

Le vecteur $\overrightarrow{v_{\perp}}$ est alors :

$$\overrightarrow{v_{\perp}} = \overrightarrow{v} - \overrightarrow{v_{/\!\!/}} = \overrightarrow{v} - \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\|^2} \overrightarrow{u}.$$

Exemple.

Soit $\vec{u}=(3,1)$. C'est un vecteur de norme $\|\vec{u}\|=\sqrt{10}$. Soit $\vec{v}=(x,y)$ un vecteur quelconque. On a :

$$\overrightarrow{v_{\parallel}} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\|^2} \overrightarrow{u} = \frac{1}{10} (3x + y) \overrightarrow{u}$$

On pourrait calculer $\overrightarrow{v_{\perp}}$ à l'aide de la formule $\overrightarrow{v} = \overrightarrow{v_{\parallel}} + \overrightarrow{v_{\perp}}$. On peut aussi considérer $\overrightarrow{u'}$, un vecteur orthogonal à \overrightarrow{u} , on a : $\overrightarrow{u'} = (-1,3)$. Le projeté orthogonal de \overrightarrow{v} sur \vec{u}' est :

$$\overrightarrow{v_{\perp}} = \frac{\overrightarrow{u'} \cdot \overrightarrow{v}}{\|\overrightarrow{u'}\|^2} \overrightarrow{u'} = \frac{1}{10} (-x + 3y) \overrightarrow{u'}$$

Intensité lumineuse.

L'intensité lumineuse arrivant en P sur un élément de surface est bien sûr proportionnelle à l'intensité i_0 émise, mais elle dépend aussi de l'angle d'incidence.

Notons:

• $\vec{\ell}$: le vecteur unitaire issu de *P* dirigé vers la source lumineuse,

• \vec{n} : le vecteur unitaire orthogonal à la surface élémentaire.

Alors l'intensité lumineuse i reçue en P est donnée par :

$$i = i_0 \overrightarrow{\ell} \cdot \overrightarrow{n} = i_0 \cos \theta.$$

où θ est l'angle entre $\overrightarrow{\ell}$ et \overrightarrow{n} .

Exemple.

Considérons un angle d'incidence $\theta = \frac{\pi}{4} = 45^\circ$. Alors $i = i_0 \cos \frac{\pi}{4} = i_0 \frac{\sqrt{2}}{2}$. L'intensité reçue est environ 70% de l'intensité émise.

2. Vecteurs dans l'espace

2.1. Opérations sur les vecteurs

Considérons l'espace \mathbb{R}^3 muni du repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

• Un vecteur \overrightarrow{u} de l'espace est un triplet (x, y, z) de nombres réels de sorte que $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$.

• Opérations. Pour $\overrightarrow{u}=(x,y,z)$ et $\overrightarrow{v}=(x',y',z')$ et $\lambda\in\mathbb{R}$:

$$\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix} \qquad \lambda \vec{u} = \lambda \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$$

• Le produit scalaire est défini par :

$$\vec{u} \cdot \vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = xx' + yy' + zz'.$$

• La norme d'un vecteur $\vec{u} = (x, y, z)$ se calcule par :

$$\|\overrightarrow{u}\| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}} = \sqrt{x^2 + y^2 + z^2}.$$

- Deux vecteurs \vec{u} et \vec{v} de l'espace sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.
- L'angle θ (non orienté) entre deux vecteurs \vec{u} et \vec{v} s'obtient par la relation :

$$\cos \theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}.$$

2.2. Produit vectoriel

Le **produit vectoriel** $\overrightarrow{u} \wedge \overrightarrow{v}$ est un vecteur orthogonal à \overrightarrow{u} et \overrightarrow{v} . Il se calcule par la formule :

$$\vec{u} \wedge \vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \wedge \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} yz' - zy' \\ zx' - xz' \\ xy' - yx' \end{pmatrix}$$

Vous rencontrerez peut-être aussi la notation anglo-saxonne $\overrightarrow{u} \times \overrightarrow{v}$ (cross-product).

Exemple.

Soient:

$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

Alors:

$$\vec{u} \wedge \vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \wedge \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \times 6 - 3 \times 5 \\ 3 \times 4 - 1 \times 6 \\ 1 \times 5 - 2 \times 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}$$

Le triplet $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{u} \wedge \overrightarrow{v})$ est un repère direct de \mathbb{R}^3 $(\overrightarrow{u}$ et \overrightarrow{v} n'ont pas besoin d'être orthogonaux). On distingue un repère direct de \mathbb{R}^3 d'un repère indirect de \mathbb{R}^3 par la « règle de la main droite ».

Repère direct

Repère indirect

Régle de la main droite

Proposition 4.

- Le produit vectoriel $\vec{u} \wedge \vec{v}$ est un vecteur orthogonal à \vec{u} et à \vec{v} .
- Sa norme vaut :

$$\|\overrightarrow{u} \wedge \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| |\sin \theta|.$$

où θ est l'angle entre \vec{u} et \vec{v} .

• La norme du produit vectoriel $\vec{u} \wedge \vec{v}$ est égale à l'aire du parallélogramme formé par \vec{u} et \vec{v} .

Exemple.

Soient $\vec{u} = (2, -1, -2)$ et $\vec{v} = (3, -1, 1)$.

1. Le produit vectoriel $\vec{w} = \vec{u} \wedge \vec{v}$ est

$$\vec{w} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix} \land \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -8 \\ 1 \end{pmatrix}$$

- 2. On peut vérifier que \vec{w} est orthogonal à \vec{u} et à \vec{v} . En effet : $\vec{u} \cdot \vec{w} = 0$ et $\vec{v} \cdot \vec{w} = 0$.
- 3. L'aire du parallélogramme (de l'espace) formé par \overrightarrow{u} et \overrightarrow{v} est :

$$A = \|\vec{w}\| = \sqrt{(-3)^2 + (-8)^2 + 1^2} = \sqrt{74}$$

Exemple.

Déterminons une équation ax + by + cz + d du plan \mathcal{P} contenant les trois points A(1,0,1), B(1,3,0) et C(2,1,2). Si $\overrightarrow{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal à un plan alors une équation de ce plan est ax + by + cz + d = 0.

- On calcule les vecteurs $\overrightarrow{AB} = (0, 3, -1)$ et $\overrightarrow{AC} = (1, 1, 1)$.
- On calcule le produit vectoriel $\overrightarrow{n} = \overrightarrow{AB} \wedge \overrightarrow{AC} = (4, -1, -3)$. C'est un vecteur normal au plan \mathcal{P} . Ainsi a = 4, b = -1, c = -3.
- On détermine d en utilisant les coordonnées d'un point du plan. Par exemple $A \in \mathcal{P}$ donc $ax_A + by_A + cz_A + d = 0$, donc $a \times 1 + b \times 0 + c \times 1 + d = 0$, d'où d = -1.
- Conclusion : une équation du plan est 4x y 3z 1 = 0.

2.3. Produit mixte

Le **produit mixte** ou **déterminant** des vecteurs \vec{u} , \vec{v} et \vec{w} est le nombre défini par :

$$\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = \overrightarrow{u} \cdot (\overrightarrow{v} \wedge \overrightarrow{w}).$$

Il est donc formé par un produit vectoriel suivi d'un produit scalaire. Le nom anglais est triple product.

Proposition 5.

Le produit mixte mesure le volume du parallélépipède formé par les trois vecteurs.

Exemple.

Quel est le volume du parallélépipède formé par les vecteurs $\vec{u} = (1, 1, 0), \vec{v} = (1, 1, 1)$ et $\vec{w} = (1, 2, 3)$?

- On calcule le produit vectoriel $\overrightarrow{v} \wedge \overrightarrow{w} = (1, -2, 1)$.
- On calcule le produit mixte $\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = \overrightarrow{u} \cdot (\overrightarrow{v} \wedge \overrightarrow{w}) = 1 \times 1 + 1 \times (-2) + 0 \times 1 = -1$.
- Conclusion : le volume du parallélépipède est -1. Son volume géométrique vaut donc 1. (Le fait que le volume algébrique soit négatif est dû au fait que les trois vecteurs forment une base indirecte.)

3. Cas général

3.1. Espace vectoriel

On généralise ces notions en considérant des espaces de dimension n pour tout entier positif $n=1, 2, 3, 4, \ldots$ Il n'y a aucune difficulté mathématique excepté le fait qu'il n'est plus possible de visualiser les vecteurs à partir de la dimension 4. Les éléments de l'espace de dimension n sont les n-uples $\binom{x_1}{x_2}$ de nombres réels.

L'espace de dimension n est noté \mathbb{R}^n . Comme en dimensions 2 et 3, le n-uple $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ dénote aussi bien un point qu'un vecteur de l'espace de dimension n.

Soient $u = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ et $v = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$ deux vecteurs de \mathbb{R}^n . L'usage est d'abandonner la flèche pour noter un vecteur.

11 VECTEURS

Définition.

Somme de deux vecteurs. Leur somme est par définition le vecteur $u + v = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$.

- Produit d'un vecteur par un scalaire. Soit $\lambda \in \mathbb{R}$ (appelé un scalaire) : $\lambda u =$
- Le *vecteur nul* de \mathbb{R}^n est le vecteur $0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.
- L'opposé du vecteur $u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ est le vecteur $-u = \begin{pmatrix} -x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Théorème 1. Soient
$$u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ et $w = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$ des vecteurs de \mathbb{R}^n et $\lambda, \mu \in \mathbb{R}$. Alors :

- 2. u + (v + w) = (u + v) + w
- 3. u + 0 = 0 + u = u
- 4. u + (-u) = 0
- 5. 1u = u
- 6. $\lambda(\mu u) = (\lambda \mu)u$
- 7. $\lambda(u+v) = \lambda u + \lambda v$
- 8. $(\lambda + \mu)u = \lambda u + \mu u$

Chacune de ces propriétés découle directement de la définition de la somme et de la multiplication par un scalaire. Ces huit propriétés font de \mathbb{R}^n un espace vectoriel. Dans le cadre général, ce sont ces huit propriétés qui définissent ce qu'est un espace vectoriel.

3.2. Norme et produit scalaire

• Le *produit scalaire* usuel de $u = (x_1, ..., x_n)$ et $v = (y_1, ..., y_n)$, noté $u \cdot v$ (ou bien parfois $\langle u \mid v \rangle$), est défini par

$$u \cdot v = x_1 y_1 + \dots + x_n y_n.$$

• La norme euclidienne sur \mathbb{R}^n est la norme associée à ce produit scalaire. Pour $u \in \mathbb{R}^n$, la norme euclidienne de u, notée ||u||, est définie par

$$||u|| = \sqrt{u \cdot u} = \sqrt{x_1^2 + \dots + x_n^2}$$

• La *distance* entre le point $A = (a_1, ..., a_n)$ et le point $M = (x_1, ..., x_n)$ est

$$||M - A|| = \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2}.$$

Terminons avec une inégalité qui majore le produit scalaire de deux vecteurs en fonction de leurs normes.

Théorème 2 (Inégalité de Cauchy-Schwarz).

Pour u et v deux vecteurs de \mathbb{R}^n , on a :

$$|u \cdot v| \leq ||u|| ||v||$$
.

3.3. Coordonnées

Définition.

Les vecteurs

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \cdots \qquad e_{n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

sont appelés les vecteurs de la base canonique de \mathbb{R}^n .

Les coordonnées usuelles d'un vecteur $u=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}$ sont les coordonnées dans la base canonique, c'est-à-dire : $u=x_1e_1+x_2e_2+\cdots+x_ne_n$.

Mais on peut également exprimer des coordonnées du même vecteur u dans une autre base. Une *base* de \mathbb{R}^n est un ensemble $\mathcal{B} = (f_1, f_2, \dots, f_n)$ de n vecteurs, tel que pour tout $u \in \mathbb{R}^n$ il existe des réels y_1, \dots, y_n uniques tels que

$$u = y_1 f_1 + y_2 f_2 + \dots + y_n f_n$$
.

 $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}_{\mathcal{B}}$ s'appellent les **coordonnées** du vecteur u dans la base \mathcal{B} .

Exemple.

Soit $\mathcal{B}_0=(\overrightarrow{i},\overrightarrow{j})$ la base canonique de \mathbb{R}^2 (autrement dit (e_1,e_2)). Définissons

$$\vec{f_1} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad \vec{f_2} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}.$$

Alors $\mathcal{B} = (\overrightarrow{f_1}, \overrightarrow{f_2})$ est une base de \mathbb{R}^2 .

Soit maintenant le vecteur \overrightarrow{u} de coordonnées $\binom{1}{2}$ dans la base canonique, c'est-à-dire :

$$\overrightarrow{u} = 1\overrightarrow{i} + 2\overrightarrow{j}.$$

Quelles sont les coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}_{\mathcal{B}}$ de \overrightarrow{u} dans la base \mathcal{B} ?

On veut écrire \overrightarrow{u} sous la forme :

$$\overrightarrow{u} = x\overrightarrow{f_1} + y\overrightarrow{f_2}.$$

On peut donc écrire, avec les coordonnées dans la base canonique :

$$\binom{1}{2} = x \binom{3}{1} + y \binom{-2}{2}.$$

On résout le système :

$$\begin{cases} 3x - 2y = 1 \\ x + 2y = 2 \end{cases}$$

On obtient $x = \frac{3}{4}$ et $y = \frac{5}{8}$. On en déduit que les coordonnées de \vec{u} dans la base \mathcal{B} sont :

$$\begin{pmatrix} \frac{3}{4} \\ \frac{5}{8} \end{pmatrix}_{\mathcal{B}}$$

c'est-à-dire :

$$\overrightarrow{u} = \frac{3}{4}\overrightarrow{f_1} + \frac{5}{8}\overrightarrow{f_2}.$$