- a) <u>Indique quais são os sinais de entrada e quais são os sinais de saída do problema</u> sinais de entrada-A,B,C sinais de saída-F
- b) Efetue a análise teórica a este projeto da seguinte forma

Α	В	С	$A.ar{B}$	Б̄. С̄	F	FE
0	0	0	0	1	1	1
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	1	1	1
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	1	0	0	0	0

F é diferente de FE.

- <u>2 Projete um circuito com base no enunciado do problema anterior utilizando somente</u> portas lógicas OR e AND de 2 entradas e portas NOT
- <u>a) Apresente a tabela de verdade com os valores de entrada e saída.</u>

Α	В	С	$A.\bar{B}$	Ē. C	F
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	0	0	0

b)Apresente a função lógica na forma de soma canónica

$$F=\bar{A}.\bar{B}.\bar{C}+A.\bar{B}.\bar{C}+A.B.\bar{C}$$
$$F=\sum(0,4,6)$$

c) Minimize a função utilizando álgebra de Boole, representando-a na forma de soma de produtos. Quantas portas lógicas de cada tipo e quantos circuitos integrados são necessários?

$$F=\bar{A}.\bar{B}.\bar{C}+A.\bar{B}.\bar{C}+A.B.\bar{C}=\bar{B}.\bar{C}(A+\bar{A})+A.B.\bar{C}=\bar{B}.\bar{C}+A.B.\bar{C}$$
 Cl'S: 3 AND (9 portas lógicas) 3NOT (6 portas lógicas) 1 OR (3 portas lógicas)

d) Consegue reduzir o número de portas necessárias pela manipulação da expressão lógica obtida na alínea anterior? Desenhe o diagrama esquemático resultante tendo em consideração as recomendações da página 2.

Sim, é possível, aproveitando a saída do CI-NOT para $\bar{\mathcal{C}}$.

