Mundial Algebra II Curso 2008-2009 3^{ra} Convocatoria JUSTIFIOUE TODAS SUS RESPUESTAS

Nombre:	Grupo:
---------	--------

1: Sean V, W subespacios vectoriales de $\mathbb{R}_4[x]$; dados por:

$$V = L[x^3 + 1, x^2 + 1, 1]$$
 Y $W = \{ax^3 + bx^2 + cx + d : b = c = 0\}$

- a) Calcule $V \cap W$ y V + W.
- b) Diga si V y W son suplementarios en $\mathbb{R}_4[x]$. Justifique. En caso de no serlo, encuentre, si es posible, un suplementario de W en V. Justifique.

2: Sea
$$f: MS_2(\mathbb{R}) \to \mathbb{R}_4[x]$$
 tal que: $f\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = x^2 + 1$, $f\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = x$, $f\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} = x - 1$

- a) Encuentre la expresión analítica de una aplicación lineal que satisfaga las condiciones anteriores.
- b) Determine el núcleo y la imagen de f. Justifique.
- c) Determine si la aplicación es inyectiva, sobreyectiva o biyectiva. Justifique.

3: Sea
$$A = \begin{pmatrix} 2 & a \\ 1 & b \end{pmatrix}$$

- a) Determine para qué valores de $a, b \in \mathbb{R}$, la matriz A representa un producto escalar real.
- b) Encuentre, si es posible, una matriz diagonal D y una matriz inversible P, tal que $D = P^t A P$.
- 4: Diga Verdadero o Falso. Justifique en cada caso.
 - a) ___Sean U, V y W subespacios vectoriales de un espacio vectorial E de dimensión finita, entonces $(U \cap V) + (U \cap W) \subset U \cap (V + W)$
 - b) ____En todo endomorfismo f de E, espacio vectorial de dimensión finita, se cumple que el núcleo de f es suplementario con la imagen de f.
 - c) ___Si $\mu = 0$ es valor propio de f endomormismo de E, espacio vectorial de dimensión finita, entonces f es no inversible.
 - d) ___Sea W un subespacio vectorial de E, espacio vectorial de dimensión finita, entonces, todo suplementario de W es ortogonal a W.