Exercício 1. Sejam $\sigma = \sigma_1 \cdots \sigma_k \in S_n$ um produto de ciclos disjuntos. Então $|\sigma| = \text{mmc}(|\sigma|_1, \cdots, |\sigma|_k)$.

Solução:

Sejam
$$X=\{1,2,\cdots,n\}$$
 e $\sigma_1=(j_{1,1}\cdots j_{1,t_1}),\cdots,\sigma_k=(j_{k,1}\cdots j_{k,t_k}).$ Denotando
$$X_1=\{j_{1,1},\cdots,j_{1,t_1}\},\cdots,X_k=\{j_{k,1},\cdots,j_{k,t_k}\},$$

temos que $X=X_1\cup\cdots\cup X_k\cup X_0$, onde $X_0=X\setminus\cup_{i=1}^k X_i$ (por exemplo, se $\sigma_1=(1\,2\,4)$ e $\sigma_2=(3\,6)$ são ciclos em S_7 , então $X_1=\{1,2,4\},\,X_2=\{3,6\}$ e $X_0=\{5,7\}$). Vamos mostrar, primeiramente, que, dado $m\in\mathbb{N}$, se $\sigma_1^m\cdots\sigma_k^m=\mathrm{id}_X$, então $\sigma_i^m=\mathrm{id}_X$, para cada $i=1,\cdots,k$. Para isso, observe que $\sigma_i|_{X\setminus X_i}=\mathrm{id}_{X\setminus X_i}$, para todo $i=1,\ldots,k$. Além disso, dado $m\in\mathbb{N}$ e $x\in X\setminus X_i$, note que

$$\sigma_i^m(x) = \underbrace{\sigma_i \cdots \sigma_i}_{m \text{ vezes}}(x) = x,$$

já que $\sigma_i(x) = x$. Assim, se $\sigma_1^m \cdots \sigma_k^m = \mathrm{id}_X$, então

$$\sigma_i^m|_{X_i} = (\sigma_1^m \cdots \sigma_k^m)|_{X_i} = \mathrm{id}_{X_i}$$
.

Portanto, $\sigma_i^m = \mathrm{id}_X$, para cada $i = 1, \ldots, k$. Usando esse fato, vamos, agora, mostrar que $|\sigma| = \mathrm{mmc}(|\sigma|_1, \cdots, |\sigma|_k)$.

Uma vez que $\sigma_1, \dots, \sigma_k$ são ciclos disjuntos, temos que $\mathrm{id}_X = \sigma^{|\sigma|} = \sigma_1^{|\sigma|} \dots \sigma_k^{|\sigma|}$, logo $|\sigma_i|$ divide $|\sigma|$, ou seja, $|\sigma|$ é um múltiplo de $|\sigma_i|$, para cada $i=1,\dots,k$. Isso implica que $|\sigma|$ é um múltiplo de $\mathrm{mmc}(|\sigma|_1,\dots,|\sigma|_k)$, logo, em particular, $\mathrm{mmc}(|\sigma|_1,\dots,|\sigma|_k) \leq |\sigma|$. Denotando $M = \mathrm{mmc}(|\sigma|_1,\dots,|\sigma|_k)$, temos que

$$\sigma^M = \sigma_1^M \cdots \sigma_k^M = \mathrm{id}_X.$$

Portanto, $|\sigma|$ divide M. Disso segue que $|\sigma| \leq M$. Dessa forma, concluímos que $|\sigma| = \text{mmc}(|\sigma|_1, \dots, |\sigma|_k)$.