IN THE CLAIMS:

Please **AMEND** elected claims 2, 4, 10, 11, 12, 14, 29, 32, 33, 36 and 37 and **ADD** claims 41 and 42 as follows:

- 1. (CANCELED)
- 2. (CURRENTLY AMENDED) An electrolyte for a lithium-sulfur battery having a positive and negative electrode, comprising:
 - a first solvent having a dielectric constant that is greater than or equal to 20; a second solvent having a viscosity that is less than or equal to 1.3 <u>cP</u>; and an electrolyte salt,

wherein:

said first solvent is at least one selected from a group consisting of methanol, hexamethyl phosphoramide, ethanol, and isopropanol, and

the first solvent is roughly between 20% and 80% by volume of the electrolyte.

- 3. (WITHDRAWN) The electrolyte for the lithium-sulfur battery of claim 2, wherein said second solvent is at least one selected from a group consisting of methylethyl ketone, pyridine, methyl formate, n-propyl acetate, ethyl ether, methylethyl carbonate, toluene, fluorotoluene, benzene, fluorobenzene, p-dioxane, and cyclohexane.
- 4. (CURRENTLY AMENDED) A lithium-sulfur battery comprising: a positive electrode including an active material including lithium; a negative electrode having another active material including sulfur; and an electrolyte disposed between the positive and negative electrodes, the electrolyte comprising:
 - a first solvent having a dielectric constant that is greater than or equal to 20; a second solvent having a viscosity that is less than or equal to 1.3 <u>cP</u>; and an electrolyte salt,

wherein:

the first solvent is less than 30% and at or greater than 20% between 20% inclusively and 30% by volume of the electrolyte, and

the second solvent is roughly between 80% and about 60% by volume of the electrolyte.

- 5. (WITHDRAWN) The lithium-sulfur battery of claim 4, wherein the electrolyte further comprises an additive that forms a solid electrolyte interface (SEI) at a surface of the negative electrode during charging.
- 6. (WITHDRAWN) The lithium-sulfur battery of claim 5, wherein said additive is at least one selected from a group consisting of vinylene carbonate, vinylene trithiocarbonate, ethylene sulfite, ethylene sulfide and bismuth carbonate.
- 7. (WITHDRAWN) The lithium-sulfur battery of claim 5, wherein said additive is roughly between 0.2% and 10% by weight of the electrolyte.
- 8. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 4, wherein said electrolyte salt is at least one selected from a group consisting of lithium hexafluorophosphate (LiPF₆), lithium tetrafluoroborate (LiBF₄), lithium hexafluoroarsenate (LiAsF₆), lithium perchlorate (LiClO₄), lithium trifluoromethane sulfonyl imide (LiN(CF₃SO₂)₂), and lithium trifluorosulfonate (CF₃SO₃Li).
- 9. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 4, wherein a concentration of said electrolyte salt is roughly between 0.5 M and 2.0 M.
 - 10. (CURRENTLY AMENDED) A lithium-sulfur battery comprising:

a negative electrode comprising a negative active material selected from a group consisting of lithium metal, lithium-containing alloy, a combination electrode of a lithium/inactive sulfur, a compound that can reversibly intercalate lithium ion, and a compound that can reversibly redoxidate with a lithium ion at a surface;

an electrolyte comprising a first solvent having a dielectric constant that is greater than or equal to 20, a second solvent having a viscosity that is less than or equal to 1.3 <u>cP</u>, and an electrolyte salt; and

a positive electrode comprising a positive active material comprising at least one sulfurbased material selected from a group consisting of a sulfur element, Li_2S_n ($n \ge 1$), an organic

sulfur compound, and a carbon-sulfur polymer ($(C_2S_x)_n$ where x=2.5 to 50 and $n \ge 2$), and an electrically conductive material,

wherein

the first solvent is roughly between 20% and 40% by volume of the electrolyte, and

the second solvent is roughly between 80% and about 60% by volume of the electrolyte.

11. (CURRENTLY AMENDED) A lithium-sulfur battery comprising:

a positive electrode including an active material including lithium;

a negative electrode including another active material including sulfur; and

an electrolyte disposed between the positive and negative electrodes, the electrolyte comprising

a first solvent having a polarity high enough to dissolve an ionic compound; a second solvent having a viscosity that is less than or equal to 1.3 <u>cP</u>; and an electrolyte salt,

wherein

and

the first solvent is <u>between 20% inclusively and 30% less than 30% and at or</u> greater than 20% by volume of the electrolyte, and

the second solvent is roughly between 80% and about 60% by volume of the electrolyte.

12. (CURRENTLY AMENDED) A lithium-sulfur battery comprising:

a negative electrode comprising a negative active material including sulfur; an electrolyte comprising

a first solvent having a polarity high enough to dissolve an ionic compound, a second solvent having a viscosity that is less than or equal to 1.3 <u>cP</u>, and an electrolyte salt; and

a positive electrode comprising a positive active material including lithium, wherein

the first solvent is roughly between 20% and 40% by volume of the electrolyte,

the second solvent is more than 70% and at or less than 80% between 70% and 80% inclusively by volume of the electrolyte.

- 13. (ORIGINAL) The lithium-sulfur battery of claim 12, wherein the first solvent has a dielectric constant that is greater than or equal to 20.
 - 14. (CURRENTLY AMENDED) A lithium-sulfur battery comprising: a negative electrode comprising a negative active material; an electrolyte comprising

a first solvent having a polarity high enough to dissolve an ionic compound, a second solvent having a viscosity that is less than or equal to 1.3 <u>cP</u>, and an electrolyte salt; and

a positive electrode comprising a positive active material,

wherein:

the first solvent is at least one selected from a group consisting of methanol, hexamethyl phosphoramide, ethanol, and isopropanol,

the first solvent is roughly between 20% and 80% by volume of said electrolyte, and

the second solvent is roughly between 20% and about 80% by volume of said electrolyte.

- 15. (WITHDRAWN) The lithium-sulfur battery of claim 14, wherein the second solvent is at least one selected from a group consisting of methylethyl ketone, pyridine, methyl formate, n-propyl acetate, ethyl ether, methylethyl carbonate, toluene, fluorotoluene, benzene, fluorobenzene, p-dioxane, and cyclohexane.
 - 16. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 14, wherein: the first solvent is roughly between 20% and 40% by volume of said electrolyte, and the second solvent is roughly between 80% and about 60% by volume of said electrolyte.
- 17. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 14, wherein a ratio of the first solvent to the second solvent is roughly 1:1.
- 18. (WITHDRAWN) The lithium-sulfur battery of claim 12, wherein said electrolyte further comprises an additive that prevents the formation of dendrite on a surface of said negative electrode during charging.

- 19. (WITHDRAWN) The lithium-sulfur battery of claim 18, wherein the additive forms a solid electrolyte interface (SEI) at the surface of said negative electrode.
- 20. (WITHDRAWN) The lithium-sulfur battery of claim 18, wherein the additive is at least one selected from a group consisting of vinylene carbonate, vinylene trithiocarbonate, ethylene sulfite, ethylene sulfide and bismuth carbonate.
- 21. (WITHDRAWN) The lithium-sulfur battery of claim 18, wherein the additive is roughly between 0.2% and 10% by weight of said electrolyte.
- 22. (WITHDRAWN) The lithium-sulfur battery of claim 10, further comprising an additive that forms a solid electrolyte interface (SEI) at a surface of the negative electrode during charging.
- 23. (WITHDRAWN) The lithium-sulfur battery of claim 22, wherein said additive is at least one selected from a group consisting of vinylene carbonate, vinylene trithiocarbonate, ethylene sulfite, ethylene sulfide and bismuth carbonate.
- 24. (WITHDRAWN) The lithium-sulfur battery of claim 23, wherein said electrolyte salt is at least one selected from a group consisting of lithium hexafluorophosphate (LiPF₆), lithium tetrafluoroborate (LiBF₄), lithium hexafluoroarsenate (LiAsF₆), lithium perchlorate (LiClO₄), lithium trifluoromethane sulfonyl imide (LiN(CF₃SO₂)₂), and lithium trifluorosulfonate (CF₃SO₃Li).
- 25. (WITHDRAWN) The electrolyte for the lithium-sulfur battery of claim 3, wherein said first solvent is sulfolane, and said second solvent is the toluene.
- 26. (WITHDRAWN) The electrolyte for the lithium-sulfur battery of claim 3, wherein said first solvent is sulfolane, and said second solvent is the n-propyl acetate.
- 27. (WITHDRAWN) The lithium-sulfur battery of claim 15, wherein said first solvent is sulfolane, and said second solvent is the toluene.

- 28. (WITHDRAWN) The lithium-sulfur battery of claim 15, wherein said first solvent is sulfolane, and said second solvent is the n-propyl acetate.
- 29. (CURRENTLY AMENDED) The lithium-sulfur battery of claim 4, wherein the first solvent is at least one selected from a group consisting of ethylene carbonate, propylene carbonate, dimethyl sulfoxide, sulforane sulfolane, γ-butyrolactone, acetonitrile, dimethyl formamide, methanol, hexamethyl phosphoramide, ethanol, and isopropanol.
- 30. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 4, wherein the second solvent is at least one selected from a group consisting of methylethyl ketone, pyridine, methyl formate, tetrahydrofuran, diglyme (2-methoxyethyl ether), 1,3-dioxolane, methyl acetate, 2-methyl tetrahydrofuran, ethyl acetate, n-propyl acetate, ethyl propionate, methyl propionate, ethyl ether, diethyl carbonate, methylethyl carbonate, dimethyl carbonate, toluene, fluorotoluene, 1,2-dimethoxy ethane, benzene, fluorobenzene, p-dioxane, and cyclohexane.
- 31. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 10, wherein said first solvent is at least one selected from a group consisting of methanol, hexamethyl phosphoramide, ethanol, and isopropanol.
- 32. (CURRENTLY AMENDED) The lithium-sulfur battery of claim 10, wherein the second solvent is <u>between 70% and 80% inclusively more than 70%</u> by volume of the electrolyte.
- 33. (CURRENTLY AMENDED) The lithium-sulfur battery of claim 10, wherein the first solvent is between 20% inclusively and 30% less than 30% by volume of the electrolyte.
- 34. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 10, wherein the second solvent is substantially 80% by volume of the electrolyte.
- 35. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 10, wherein the first solvent is substantially 20% by volume of the electrolyte.

- 36. (CURRENTLY AMENDED) The lithium-sulfur battery of claim 14, wherein the second solvent is <u>between 70% and 80% inclusively more than 70%</u> by volume of the electrolyte.
- 37. (CURRENTLY AMENDED) The lithium-sulfur battery of claim 14, wherein the first solvent is between 20% inclusively and 30% less than 30% by volume of the electrolyte.
- 38. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 14, wherein the second solvent is substantially 80% by volume of the electrolyte.
- 39. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 14, wherein the first solvent is substantially 20% by volume of the electrolyte.
- 40. (PREVIOUSLY PRESENTED) The lithium-sulfur battery of claim 14, wherein said first solvent is at least one selected from a group consisting of methanol, hexamethyl phosphoramide, ethanol, and isopropanol.
 - 41. (NEW) A lithium-sulfur battery comprising:
 - a positive electrode including an active material including lithium;
 - a negative electrode including another active material including sulfur; and
- an electrolyte disposed between the positive and negative electrodes, the electrolyte comprising

at least a first solvent selected from a group consisting of ethylene carbonate, propylene carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, acetonitrile, dimethyl formamide, methanol, hexamethyl phosphoramide, ethanol, and isopropanol;

at least a second solvent selected from a group consisting of methylethyl ketone, pyridine, methyl formate, tetrahydrofuran, diglyme (2-methoxyethyl ether), 1,3-dioxolane, methyl acetate, 2-methyl tetrahydrofuran, ethyl acetate, n-propyl acetate, ethyl propionate, methyl propionate, ethyl ether, diethyl carbonate, methylethyl carbonate, dimethyl carbonate, toluene, fluorotoluene, 1,2-dimethoxy ethane, benzene, fluorobenzene, p-dioxane, and cyclohexane; and an electrolyte salt,

wherein

the first solvent is roughly between 20% and about 40% by volume of the electrolyte, and

the second solvent is roughly between 80% and about 60% by volume of the electrolyte.

42. (NEW) A lithium-sulfur battery comprising: a negative electrode comprising a negative active material; an electrolyte comprising

at least a first solvent selected from a group consisting of ethylene carbonate, propylene carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, acetonitrile, dimethyl formamide, methanol, hexamethyl phosphoramide, ethanol, and isopropanol,

at least a second solvent selected from a group consisting of methylethyl ketone, pyridine, methyl formate, tetrahydrofuran, diglyme (2-methoxyethyl ether), 1,3-dioxolane, methyl acetate, 2-methyl tetrahydrofuran, ethyl acetate, n-propyl acetate, ethyl propionate, methyl propionate, ethyl ether, diethyl carbonate, methylethyl carbonate, dimethyl carbonate, toluene, fluorotoluene, 1,2-dimethoxy ethane, benzene, fluorobenzene, p-dioxane, and cyclohexane, and an electrolyte salt; and

a positive electrode comprising a positive active material, wherein:

the first solvent is roughly between 20% and 80% by volume of said electrolyte, and

the second solvent is roughly between 20% and about 80% by volume of said electrolyte.