

## **Support Vector Machines**

SVM



#### Support Vector Machines

- Support Vector Machines can be used for classification as well as regression
- Usage of SVM is popular for classification than for regression
- We will be covering SVM for classification.



### **Understanding SVM**

- SVM is a generalization of a simple classifier *maximum margin* classifier.
- The concept of maximum margin classifier can be extended to that of support vector classifier and support vector machines.

# Straight Line Fundamentals (Revision)

- Consider a line with equation, ax + by + c = 0
- Any point (x1,y1) which is lying on the line satisfies the equation of the line i.e. we can write ax1 + by1 + c = 0.





## Separating Hyperplanes

- Let us understand the concept on 2-dimensional plane which can be further extended to multi-dimensional hyperplane
- Suppose that, it is possible to have three hyperplanes for a data



## Separating Hyperplanes



• We observe here that, three hyperplanes have separated the data. Any point which lies in the region of green points can be classified as category of green and similarly with purple.



## Maximum Margin Classifier

- If our data can be perfectly separated using a hyperplane, then there will in fact exist an infinite number of such hyperplanes which will separate different categories in our response variable
- This can be made possible with a given separating hyperplane shifted a tiny bit up or down, or rotated, without coming into contact with any of the observations
- Hence we can imagine a separating hyperplane which has maximum distance from any nearest point in the data. This is called maximum margin classifier.



# Maximum Margin Classifier



- We observe that 5 observations are equidistant from maximal margin hyperplane. These points are called *support vectors*.
- These points are called "support" in the sense that if these points were moved slightly then the maximal margin hyperplane would move as well.



## Non-Separable Case

- In case, if a separating hyperplane is not available then we cannot exactly separate two classes
- Instead, we can find a hyperplane that almost separates the two classes
- A generalization of the maximal margin classifier to the nonseparable case is called as the *support vector classifier*



### Support Vector Classifier

- In case, if a separating hyperplane is not available then a classifier can be considered which exactly does not separate the two classes but classifies most of the training set observations correctly
- In this case, some observations can be allowed to be on the incorrect side of the margin or also incorrect side of separating hyperplane
- This separating hyperplane can also be called as soft margin classifier as it can allow some violations



#### Illustration: SV Classifier



- Consider that the above diagram represents a support vector classifier fitted to a small dataset with 27 observations
- Observations 16, 18, 20, 19, 27 are on the margin
- Observations 4, 13, 15, 17 are on the wrong side of their respective margins
- Observations 21, 28, 25, 22, 24 are not only on the wrong side of their respective margins but also on the wrong side of the separating hyperplane



#### Classification with Non-Linear Decision Boundaries



- When the class boundaries are non-linear, then the feature space (predictors) is enlarged with non-linear components in it.
- Support Vector Machine is an extension of support vector classifier that is constructed from enlarging feature space in a specific way using kernel functions



## **Possible Solutions**





# Polynomial Kernel



This Photo by Unknown Author is licensed under CC BY-SA-NC

Polynomial Kernel



#### Radial Kernel





#### SVM – More than Two Classes

- There are two approaches most popular approaches for SVM with more than two classes:
  - One Versus One Classification
  - One Versus All Classification



#### One – Versus – One Classification

- Suppose there are K (K>2) classes for a SVM problem
- This approach considers  $\binom{K}{2}$  SVMs comparing a pair of classes with each combination
- A test observation is classified by tallying the assignments to each of the K classes
- The final classification is decided by the majority assignments to a particular class



#### One – Versus – All Classification

- K (K>2) SVMs are fitted each time comparing one of the K classes to the remaining K-1 classes
- A test observation is assigned to that class out of K classes for which function of the estimated parameters is highest.



### SVM in Python

- Classification has been implemented in Python using function SVC, NuSVC and LinearSVC from package sklearn.svm
- There are three different implementations of Support Vector Regression: SVR, NuSVR and LinearSVR from package sklearn.svm
- We will cover SVC and SVR

#### Syntax:

```
sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto',..) sklearn.svm.SVR(C=1.0, kernel='rbf', degree=3, gamma='auto',epsilon=0.1,...)
```



## **Example: Riding Mowers**

- A riding-mower manufacturer
   MOW-EASE took part in a
   Industrial Exhibition in which it
   got an opportunity to show a
   demo of its product to 180
   different audience.
- The land owned by each of the audience and their approximate income have been recorded in the file RidingMowers.csv





### **Example: Riding Mowers**

 The Data contains two predictors Area Owned (Lot Size) and Income with response variable as "Bought" and "Not Bought" values

|    | Income ‡ | Lot_Size ‡ | Response * |
|----|----------|------------|------------|
| 1  | 34       | 26         | Not Bought |
| 2  | 34       | 40         | Not Bought |
| 3  | 34       | 46         | Not Bought |
| 4  | 34       | 48         | Not Bought |
| 5  | 34       | 53         | Not Bought |
| 6  | 34       | 58         | Not Bought |
| 7  | 34       | 59         | Not Bought |
| 8  | 34       | 63         | Not Bought |
| 9  | 34       | 64         | Not Bought |
| 10 | 34       | 66         | Bought     |
| 11 | 35       | 41         | Not Bought |



#### **Cost Parameter**

- The C parameter tells the SVM optimization how much you want to avoid misclassifying each training record.
- For large values of C, the optimization will choose a smaller-margin hyperplane if that hyperplane does a better job of getting all the training points classified correctly.
- Conversely, a very small value of C will cause the optimizer to look for a larger-margin separating hyperplane, even if that hyperplane misclassifies more points.
- For very tiny values of C, you should get misclassified examples, often even if your training data is linearly separable.



#### Tuning Non-Linear

The kernel function can be any of the following:

- linear:  $\langle x, x' \rangle$ .
- polynomial:  $(\gamma\langle x,x'
  angle+r)^d$ . d is specified by keyword degree , r by coef0 .
- rbf:  $\exp(-\gamma ||x-x'||^2)$ .  $\gamma$  is specified by keyword gamma, must be greater than 0.
- sigmoid  $(\tanh(\gamma\langle x,x'\rangle+r))$ , where r is specified by coef0.
- For kernel = "polynomial", degree argument can be tried for various values, as degree being actually degree of polynomial, coef0 is the intercept
- For kernel = "rbf", gamma argument can be tried for various values
- For kernel = "sigmoid", coef0 can be tried