

Média, Variância e Desvio-Padrão

 As seguintes expressões podem ser usadas para cálculos de média, variância e desvio-padrão para dados não agrupados:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 onde n é o tamanho da amostra

$$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

$$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right]$$

$$s = \sqrt{s^2}$$

Exemplo

 Considere a amostra formada por 10, 11, 13, 15 e 18. Determinar a média, variância e desvio-padrão usando as fórmulas alternativas

vi	St	ta	S.
VI	0	·	U .

X _i	X _i ²
10	100
11	121
13	169
15	225
18	324
Soma: 67	Soma: 939

$$n=5 \Rightarrow \overline{x} = \frac{67}{5} = 13,4$$

$$s^{2} = \frac{1}{5-1} \left[939 - \frac{(67)^{2}}{5} \right] = 10,3 \Rightarrow s = \sqrt{10,3} = 3,21$$

Dados sujeitos a repetições

- Cada dado x_i possui uma frequência n_i .
- Assim, existem k classes de frequências ou número de agrupamentos.

$$n = \sum_{i=1}^{k} n_i$$
 onde n é o tamanho da amostra

Assim, podemos calcular a média, variância e desvio-padrão:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i . n_i$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} (x_{i} - \overline{x})^{2} n_{i}$$

ou

$$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{k} x_{i}^{2} . n_{i} - \frac{1}{n} \left(\sum_{i=1}^{k} x_{i} . n_{i} \right)^{2} \right] e \quad s = \sqrt{s^{2}}$$

Exercícios

Considere a seguinte tabela de dados:

x_i	10	20	30	40	50	60	70
n_i	1	5	22	24	22	5	1

Determinar a média e o desvio-padrão.

x_i	n_i	$x_i.n_i$	$(x_i - \ddot{x})$	$(x_i$ - $\ddot{x})^2$	$(x_i$ - $\ddot{x})^2$. n_i
10	1				
20	5				
30	22				
40	24				
50	22				
60	5				
70	1				
Soma:					

Resposta

x_i	n_i	$x_i.n_i$	$(x_i$ - $\ddot{x})$	$(x_i$ - $\ddot{x})2$	$(x_i - \ddot{x})^2 \cdot n_i$
10	1	10	-30	900	900
20	5	100	-20	400	2000
30	22	660	-10	100	2200
40	24	960	0	0	0
50	22	1100	10	100	2200
60	5	300	20	400	2000
70	1	70	30	900	900
Soma:	80	3200			10200

$$k = 7 e n = 80 \Rightarrow \bar{x} = \frac{3200}{80} = 40 \Rightarrow \bar{x} = 40$$

$$s^{2} = \frac{1}{80 - 1} \sum_{i=1}^{7} (x_{i} - \bar{x})^{2} . n_{i} = \frac{10200}{79} = 129,11$$

$$s^{2} = 129,11 \Rightarrow s = \sqrt{129,11} = 11,36$$

Dados Agrupados

 Limites reais e aparentes: Esta é uma forma antiga de se determinar os limites de uma classe na construção de um histograma.

- Considere as seguintes classes:
 - 10 é o limite aparente inferior da primeira classe.
 - 19 é o limite aparente superior da primeira classe.
 - 20 é o limite aparente inferior da segunda classe.

29 é o limite aparente superiro da segunda classe.

Limites da classe
10 a 19
20 a 29
30 a 39
40 a 49
50 a 59

Isto pode ser verdadeiro para dados discretos variando de 1 em 1, mas e para dados contínuos? Onde ficaria o 19,5?

Dados Agrupados

 Para dados contínuos, são usados os limites reais obtidos pela média aritmética simples dos limites diagonais:

$$Limite\ real\ inferior = \frac{Limite\ aparente\ superior\ da\ classe\ i + Limite\ aparente\ inferior\ da\ classe\ i + 1}{2}$$

Assim:

Limite real inferior da segunda classe =
$$\frac{19+20}{2}$$
 = 19,5

 Assim, o limite inferior da primeira classe seria 9,5 inclusive e o limite superiro seria 19,5 exclusive.

O limite inferior da segunda classe seria 19,5 inclusive e o superior seria 29,5 exclusive (29,5=(29+30)/2).

Dessa forma os dados contínuos passariam a constar das classes. Essa abordagem não é mais feita atualmente e os limites reais e aparentes não são mais usados.

Cálculos Aproximados

- Sejam x_i o ponto médio da classe i; f_i a frequência relativa da classe i; N_i a frequência absoluta acumulada da classe i e F_i a frequência relativa acumulada da classe i.
- Complete a tabela:

Classes	x_i	n_i	N_i	f_i	F_i
90,5 97,5		3			
97,5 104,5		8			
104,5 111,5		10			
111,5 118,5		8			
118,5 125,5		11			
125,5 132,5		6			
132,5 139,5		2			
139,5 146,5		2			
Soma:					

Cálculos Aproximados

Classes	x_i	n_i	N_i	f_i	F_i
90,5 97,5	94	3	3	0,06	0,06
97,5 104,5	101	8	11	0,16	0,22
104,5 111,5	108	10	21	0,20	0,42
111,5 118,5	115	8	29	0,16	0,58
118,5 125,5	122	11	40	0,22	0,80
125,5 132,5	129	6	46	0,12	0,92
132,5 139,5	136	2	48	0,04	0,96
139,5 146,5	143	2	50	0,04	1,00
Soma:		50		1,00	

Com essa tabela é possível a construção do Histograma e da Ogiva.

Média e Desvio-Padrão

 Usando as seguintes expressões é possível obter a média e o desvio-padrão de dados agrupados:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i . n_i$$

$$s^2 = \frac{1}{n-1} \left[\sum_{i=1}^{k} x_i^2 . n_i - \frac{1}{n} \left(\sum_{i=1}^{k} x_i . n_i \right)^2 \right] e \quad s = \sqrt{s^2}$$

Média e Desvio-padrão

Complete a seguinte tabela e determine a média e o desvio-padrão:

Classes	x_i	n_i	$x_i.n_i$	$x_i^2 \cdot n_i$
90,5 97,5	94	3		
97,5 104,5	101	8		
104,5 111,5	108	10		
111,5 118,5	115	8		
118,5 125,5	122	11		
125,5 132,5	129	6		
132,5 139,5	136	2		
139,5 146,5	143	2		
Soma:		50		

Média e Desvio-Padrão

Solução:

Classes	x_i	n_i	x_i , n_i	$x_i^2 n_i$
90,5 97,5	94	3	282	26508
97,5 104,5	101	8	808	81608
104,5 111,5	108	10	1080	116640
111,5 118,5	115	8	920	105800
118,5 125,5	122	11	1342	163724
125,5 132,5	129	6	774	99846
132,5 139,5	136	2	272	36992
139,5 146,5	143	2	286	40898
Soma:		50	5764	672016

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i . n_i = \frac{5764}{50} = 115,28 \Rightarrow \bar{x} = 115,28$$

$$s^2 = \frac{1}{n-1} \left[\sum_{i=1}^{k} x_i^2 . n_i - \frac{1}{n} \left(\sum_{i=1}^{k} x_i . n_i \right)^2 \right] =$$

$$= \frac{1}{49} \left[672016 - \frac{5764^2}{50} \right] = 153,92 \Rightarrow s^2 = 153,92 \Rightarrow s = 12,4065$$

Separatrizes

- São valores que dividem o rol que contém a mesma quantidade de elementos. Ex.:
- Mediana: divide o rol em duas metades.
- Quartis: divide o rol em quatro partes iguais.

Simbologia

- n = tamanho da amostra.
- l_i = limite inferior da classe separatriz.
- N_a = frequência acumulada da classe anterior à da separatriz.
- h_i = amplitude da classe da medida.
- n_i = frequência absoluta da classe separatriz.
- f_i = frequência relativa da classe separatriz.

Moda

 A moda pode ser obtida pelo método de King:

$$\boldsymbol{M}_{o} = \boldsymbol{l}_{i} + \frac{\boldsymbol{h}_{i}.\boldsymbol{f}_{p}}{\boldsymbol{f}_{a} + \boldsymbol{f}_{p}}$$

Ou pelo método de Czuber:

$$M_o = l_i + h_i \frac{f_i - f_a}{2f_i - (f_a + f_p)}$$

Exemplo

 Usaremos os dados da tabela dos dados agrupados usada nos cálculos da média e desvio padrão.

	Classes	x_i	n_i	N_i	J_i	F_i
1	90,5 97,5	94	3			
2	97,5 104,5	101	8			
3	104,5 111,5	108	10			
4	111,5 118,5	115	8			
5	118,5 125,5	122	11			
6	125,5 132,5	129	6			
7	132,5 139,5	136	2			
8	139,5 146,5	143	2			
	Soma:		50			

Exemplo - Resposta

i	Classes	x_i	n_i	N_i	f_i	F_{i}
1	90,5 97,5	94	3	3	0,06	0,06
2	97,5 104,5	101	8	11	0,16	0,22
3	104,5 111,5	108	10	21	0,20	0,42
4	111,5 118,5	115	8	29	0,16	0,58
5	118,5 125,5	122	11	40	0,22	0,80
6	125,5 132,5	129	6	46	0,12	0,92
7	132,5 139,5	136	2	48	0,04	0,96
8	139,5 146,5	143	2	50	0,04	1,00
	Soma:		50		1,00	

Exemplo

- A classe modal (que contém a moda) é a classe de maior frequência. No nosso caso é a classe $5 (n_5=11)$.
- Assim, temos:

$$-i=5$$

$$-l_i = l_5 = 118,5$$

$$-f_a = f_4 = 0.16$$

$$-f_p = f_6 = 0.12$$

$$-f_i = f_5 = 0.22$$

Exemplo - Moda

King:

$$M_o = l_i + \frac{h_i \cdot f_p}{f_a + f_p} = 118.5 + \frac{7.0,12}{0,16 + 0,12} \Rightarrow M_o = 121.5$$

Czuber

$$M_o = l_i + h_i \frac{f_i - f_a}{2f_i - (f_a + f_p)} = 118.5 + 7 \frac{(0.22 - 0.16)}{2.0.22 - (0.16 + 0.12)}$$

$$M_o = 121,125$$

Mediana

A mediana pode ser obtida por:

$$Md = l_i + \frac{1}{n_i} \left(\frac{n}{2} - N_a \right) h_i$$

 Para determinar a classe da mediana, escolhemos a classe que acumula 50% dos dados. No nosso caso, a amostra tem 50

Mediana - Exemplo

A mediana se encontra na classe 4 (i = 4).

$$-i=4$$

$$-l_i = l_4 = 111,5$$

$$-N_a = N_3 = 21$$

$$-n_i=n_4=8$$

$$-h_i=h_4=7$$

Mediana - Exemplo

$$Md = l_i + \frac{1}{n_i} \left(\frac{n}{2} - N_a \right) h_i = 111,5 + \frac{1}{8} \left(\frac{50}{2} - 21 \right) 7 =$$

$$= 111,5 + 7. \frac{(25 - 21)}{8}$$

$$Md = 115$$

Quartis

Os quartis podem ser obtidos pelas expressões:

$$Q_1 = l_i + \frac{1}{n_i} \left(\frac{n}{4} - N_a \right) h_i$$

$$Q_3 = l_i + \frac{1}{n_i} \left(3\frac{n}{4} - N_a \right) h_i$$

• Para determinar a *classe do primeiro quartil*, escolhemos a classe que acumula **n/4** dados ou com frequência relativa acumulada de

Para determinar a *classe do terceiro quartil*, escolhemos a classe que acumula **3n/4** dados ou com frequência acumulada de **0,75**. No nosso caso, isso ocorre na **classe 5** (i = 5).

Exemplos

$$Q_1 \rightarrow i = 3$$

 $l_i = l_3 = 104,5$
 $N_a = N_2 = 11$
 $n_i = n_3 = 10$
 $h_i = h_3 = 7$

$$Q_3 \rightarrow i = 5$$
 $l_i = l_5 = 118,5$
 $N_a = N_4 = 29$
 $n_i = n_5 = 11$
 $h_i = h_5 = 7$

$$Q_{1} = l_{i} + \frac{1}{n_{i}} \left(\frac{n}{4} - N_{a} \right) h_{i} = 104.5 + \frac{1}{10} \left(\frac{50}{4} - 11 \right) 7 =$$

$$= 104.5 + 7 \frac{12.5 - 11}{10} \Rightarrow Q_{1} = 105.55$$

$$Q_{3} = l_{i} + \frac{1}{n_{i}} \left(3 \frac{n}{4} - N_{a} \right) h_{i} = 118.5 + \frac{1}{11} \left(3 \frac{50}{4} - 29 \right) 7 =$$

$$= 118.5 + 7 \frac{(37.5 - 29)}{11} \Rightarrow Q_{3} = 123.91$$

Percentis

• Para determinação do percentil P_k usaremos a seguinte expressão:

$$P_k = l_i + \frac{1}{n_i} \left(k \frac{n}{100} - N_a \right) h_i$$

• Para determinar a classe onde se encontra o P_k , escolhemos a classe que acumula P_k % dos dados. Pode-se usar tanto a frequência absoluta como a relativa acumulada.

Por exemplo, queremos obter a *classe do P*₉₀. Como *n*=50, 90% equivale a 90.50/100 = 45. Escolhemos a **classe 6 (i = 6).** Podemos também escolher a classe que *acumula 0,90*.

•Exemplo – P₉₀

•
$$i = 6$$

•
$$l_i = l_6 = 125,5$$

•
$$N_a = N_5 = 40$$

•
$$n_i = n_6 = 6$$

•
$$h_i = h_6 = 7$$

$$P_k = l_i + \frac{1}{n_i} \left(k \frac{n}{100} - N_a \right) h_i$$

$$P_{90} = l_6 + \frac{1}{n_6} \left(90 \frac{n}{100} - N_5 \right) h_6 =$$

$$=125,5+\frac{1}{6}(45-40).7$$

$$P_{90} = 131,33$$

Bibliografia

- Morettin, Luiz Gonzaga. Estatística Básica Volume Único. Probabilidade e Inferência. Pearson.
- Rodrigues, Cláudio Nestor. Apostila On-Line de Pesquisa Operacional (2012) http://pt.slideshare.net/claudionr/distribuio-de-frequencia
- Blog de Estatística do Prof. Alexandre: http://alexandreprofessor.blogspot.com.br/p/medidas-

1234567890