Tegnekurs i TikZ

Veronika Heimsbakk veronahe@ulrik.uio.no

6. oktober 2014

Innhold

1	The	Basics 4
	1.1	tikzpicture
	1.2	Linjer
	1.3	Kurver
	1.4	Kvadrat
	1.5	Sirkel
	1.6	Ellipse
	1.7	Buer
	1.8	Pynte litt
	1.9	Tykkelser
	1.10	Farger
		Fylle med farge
		1.11.1 Gradient
		1.11.2 Blande farger
	1 12	Plotte funksjoner
		1.12.1 plot
		process process (1)
2	Koo	rdinatsystem 9
	2.1	Akser
	2.2	Noder
	2.3	Løkker
	2.4	Hele koden for koordinatsystemet
_		·
3	Træ	· -
	3.1	Bygge treet
	3.2	Justere avstand mellom noder
	3.3	Former som noder kan ha
	3.4	Eksempel på et tre med avstander
	3.5	Rød-svarte trær
	3.6	Bygge det rød-svarte treet

4	4.1 4.2 4.3	Tegne grafen 18 Noder 19 Kanter 19
5	Auto 5.1 5.2	Omater20Automatens tilstander20Stien gjennom automaten21
6	6.1	skjellige TikZ biblioteker 22 mindmap
7	7.1	uitikz 24 Eksempel på en liten krets
8	Res 8.1	surser 26 Nyttige lenker
Fi	gur	er
	1 2 3 4	Farger i TikZ.6Piler i TikZ.8Fasonger på noder.14Forskjellige porter i Circuitikz25

Introduksjon

Dette er et «kompendie», eller et sammendrag av «Tegnekurs i TeX» arrangert av studentforeningen {ProgNett} 6. oktober 2014 ved Institutt for informatikk, Universitetet i Oslo.

Dokumentet du nå leser er lagt opp slik at du skal kjenne til TEX/LATEXfra før, men ikke nødvendigvis pakken TikZ. Per dags dato, 6. oktober 2014, så fins ingen engelsk versjon av dette dokumentet. Men det er underveis.

Hvis du har spørsmål, finner feil, eller har andre tilbakemeldinger. Send dette til forfatteren Veronika Heimsbakk, veronahe@ulrik.uio.no.

1 The Basics

For å kunne bruke pakken TikZ må man først inkludere pakken i dokumentet.

\usepackage{tikz}

1.1 tikzpicture

Alle illustrasjoner som skal tegnes ved hjelp av pakken TikZ krever et miljø som heter tikzpicture.

1.2 Linjer

En av de mest brukte TikZ kommandoene er \draw . For å tegne ei rett linje sier man hvor man vil tegne fra og til:

```
\draw (0,2) -- (4,2);
\draw (0cm,1.5cm) -- (4cm,1.5cm);
\draw (0em, 1cm) -- (4em, 1cm);
\draw (0pt, 0.5cm) -- (4pt, 0.5cm);
```

1.3 Kurver

Vi bruker kontrollpunkter for å lage en kurvet linje. I eksempelet her, så starter vi i koordinatene (-2,2) og så tegner vi en kurve til første kontrollpunkt som er (-1,0), så videre til (1,0), og til slutt ender kurven opp i slutt-punktet som er (2,2).

draw (-2,2) ... controls (-1,0) and (1,0) ... (2,2);

1.4 Kvadrat

Vi kan bygge på linjen vår og lage et kvadrat:

$$draw (0,0) -- (1.5,0) -- (1.5,1,5) -- (0,1.5) -- (0,0);$$

Vi kan også bruke nøkkelordet rectangle, og lage en kortversjon som gjør akkurat det samme:

\draw (0,0) rectangle (1.5,1.5);

1.5 Sirkel

Den første koordinaten er sirkelens sentrum, og lengden vi oppgir til slutt er sirkelens radius.

\draw (0,0) circle (1cm);

Oppgave Hvordan tegnes figurene ⊚ og ⊗ ?

1.6 Ellipse

Ellipser tegnes ved at vi oppgir radiusen i x- og y-retningene:

 $\dot (0,0)$ ellipse (2cm and 0.5cm);

1.7 Buer

Buer (arc) skriver man på formen

\draw (0,0) arc (0:180:1);

Hvor (0,0) er posisjonen. Og (0:180:1) betyr at vi skal tegne en bue fra 0 til 180 grader på en sirkel med radius 1.

1.8 Pynte litt

For å pynte litt på sirkelen vår, kan vi legge til noen ekstra argumenter til \draw-kommandoen. For eksempel slik:

\draw[red, thick, dashed] (2,2) circle (1cm); \draw[green, thick] (6,2) circle (1cm);

1.9 Tykkelser

1.10 Farger

Figur 1: Farger i TikZ.

1.11 Fylle med farge

Vi kan også fylle formene våre ved å bruke kommandoen \fill. Ønsker vi å legge til en kant rundt kvadratet, kan vi bruke kommandoen \filldraw.


```
\fill[orange] (0,0) rectangle (2,2);
\filldraw[orange, draw=black, very thick] (3,0) rectangle (5,2);
```

1.11.1 Gradient

Vi har også gradient i TikZ, og det kan se slik ut:


```
\shade[left color=orange, right color=yellow] (0,0) rectangle (2,2);
\shade[top color=orange, bottom color=yellow] (3,0) rectangle (5,2);
\shade[inner color=orange, outer color=yellow] (6,0) rectangle (8,2);
```

Oppgave Hvordan tegner vi dette ?

1.11.2 Blande farger

Vi kan også blande farger i TikZ. Her blander vi 50% blå og 50% orange med hverandre.

\fill[blue!50!orange] (6,0) rectangle (8,2);

Når vi skriver

\fill[blue!50] (0,0) rectangle (2,2);

så blander vi 50% blå med 50% hvit.

1.12 Plotte funksjoner

Man kan også plotte funksjoner i TikZ. Da er det kjekt å kjenne til de forskjellige typer piler.

Figur 2: Piler i TikZ.

```
\draw[<->] (0,1.5) -- (4,1.5);
\draw[|->] (0,1) -- (4,1);
\draw[<-] (0,0.5) -- (4,0.5);
\draw[->] (0,0) -- (4,0);
```

1.12.1 plot


```
\begin{tikzpicture}
  \draw[<->] (0,3.5) -- (0,0) -- (5,0);
  \draw[red, thick, domain=0:1.2] plot (\x, {0.25+\x+\x*\x});
\end{tikzpicture}
```

domain er rekkevidden av x som blir plottet. I dette tilfellet plotter vi funksjonen $0.25 + x + x^2$. Legg merke til at det er parenteser rundt funksjonen som vi skal plotte plot (\x, {function}).

Oppgave Hvordan kan vi plotte dette \(\sqrt{?} \)?

2 Koordinatsystem

Dette eksempelet krever et rutenett, piler, noder og plassering av tall og bokstaver. Vi starter med et rutenett:

\draw[step=1cm,gray!80,very thin] (-1.9,-1.9) grid (5.9,5.9);

2.1 Akser

Videre trenger vi x-aksen og y-aksen. Dette er to linjer med piler i enden.


```
\draw[thick, ->] (0,0) -- (4.5,0);
\draw[thick, ->] (0,0) -- (0,4.5);
```

2.2 Noder

Vi kan legge på tekst (*label*) ved å bruke nøkkelordet node. Vi plasserer teksten ved linjene vi har tegnet ved å fortelle noden hvor vi vil ha den.


```
\draw[thick, ->] (0,0) -- (4.5,0) node[below right] {x axis}; \draw[thick, ->] (0,0) -- (0,4.5) node[above left] {y axis};
```

2.3 Løkker

Vi kan fortsette med tallene som skal gå langs aksene ved å bruke løkker:

Denne løkken går over linjene vi allerede har tegnet, og setter en liten strek for hver centimeter. Og ved siden av linjen skriver vi et tall.

```
\foreach \x in {0,1,2,3,4}
\draw (\x cm, 2pt) -- (\x cm, -2pt) node[below] {$\x$};
\foreach \y in {0,1,2,3,4}
\draw (2pt, \y cm) -- (-2pt, \y cm) node[left] {$\y$};
```

Oppgave Hvordan kan vi bruke foreach til å tegne dette

2.4 Hele koden for koordinatsystemet


```
\begin{tikzpicture}
\draw[step=1cm,gray!80,very thin] (-1.9,-1.9) grid (5.9,5.9);
\draw[thick, ->] (0,0) -- (4.5,0) node[below right] {x axis};
\draw[thick, ->] (0,0) -- (0,4.5) node[above left] {y axis};

\foreach \x in {0,1,2,3,4}
\draw (\x cm, 2pt) -- (\x cm, -2pt) node[below] {$\x$};
\foreach \y in {0,1,2,3,4}
\draw (2pt, \y cm) -- (-2pt, \y cm) node[left] {$\y$};
\end{tikzpicture}
```

Oppgave Hvordan kan vi tegne dette?

3 Trær

Et tre består av en rekke noder. Når vi tegner trær i TikZ starter vi med å definere rot-noden. Legg merke til attributtene vi git tikzpicture. Her sier vi at every node skal ha *stilen* (.style) sirkel med sort strek.


```
\begin{tikzpicture}[every node/.style={circle, draw=black}]
     \node {1};
\end{tikzpicture}
```

3.1 Bygge treet

Treet bygger vi ved å legge til barna. Barna skrives på formen:

```
child { node[opt.] {value} }
```



```
\node {1}
    child { node {2}
        child { node {4} }
        child { node {5} }
    }
    child { node {3} }
;
```

3.2 Justere avstand mellom noder

Når vi nå vil bygge videre og legge til tallet 6 under child {node {3}} vil vi overlappe 5. Da trenger vi å justere avstanden mellom søsken-noder.

Da legger vi på et attributt til i listen til tikzpicture som forteller noe om avstanden mellom nodene.

Her forteller vi at stilen til nodene på level 1 skal være at de har avstand til sine søsken med 20 mm, og 15 mm for level 2. Vi kunne også lagt til attributtet level distance for å få større eller mindre avstand mellom lagene.

3.3 Former som noder kan ha

Man kan få forskjellige fasonger på noder ved å inkludere \usetikzlibrary{shapes}. Her er en oversikt over forskjellige fasonger en node kan ha. For å få ønsket fasong skriver man noden på denne formen:

```
\node[rectangle] {Rectangle};
\node[regular polygon, regular polygon sides=5] {n=5};
\node[circle split] {Circle \nodepart{lower} split};
```


Figur 3: Fasonger på noder.

3.4 Eksempel på et tre med avstander


```
\begin{tikzpicture}[every node/.style={},
                    level 2/.style={sibling distance=20mm},
                    level 3/.style={sibling distance=10mm},
                    level distance=30pt]
\node {S}
   child { node{A}
        child { node {A}
            child { node {(} }
            child { node {)} }
        }
        child { node {A}
            child { node {(} }
            \verb|child { node {A}}|
                child { node {(} }
                child { node {)} }
            child { node {)} }
        }
    }
\end{tikzpicture}
```

3.5 Rød-svarte trær

Å tegne trær på denne måten krever ingen tilleggsbiblioteker fra TikZ. Dette er et eksempel på tegning med egendefinerte noder. Dette gjør vi via tikzset, her kan vi gi stilen de forskjellige typer noder.

Starter med å definere treenode, som er felles for alle nodene. Røde og sorte noder tegnes som circle, hvor sorte noder har fill=black og tekstfarge white, mens røde noder har rødt omriss med draw=red, og tekstfarge red. Null-nodene sier vi skal være sorte rectangle. Tegnes som små kvadrater på $0.3~\rm cm \times 0.3~cm$.

3.6 Bygge det rød-svarte treet

Setter forskjellige opsjoner med:

```
\begin{tikzpicture}[->,level/.style={ sibling distance = 2cm, level distance = 1.5cm }]
```

Her sier vi at treet skal tegnes med piler (->), og at stilen (.style) for distansen mellom søskennoder skal være 2 cm, og distansen mellom barn og foreldre skal være 1.5 cm.

Videre så forteller vi barna i treet hva slags node de skal være.

```
child { node [node_red] {x} }
child { node [node_black] {y} }
child { node [node_null] {z} }
```

Oppgave Hvordan kan vi tegne dette treet?

4 Grafer

Det fins enklere måter å tegne grafer på enn dette, men jeg syns denne måten er fin. Den krever heller ingen andre biblioteker eller pakker enn TikZ selv.

Vi starter med å definere de forskjellige elementene til en graf.

```
begin{tikzpicture}
    \tikzstyle{vertex} = [circle,fill=black!10]
    \tikzstyle{selected vertex} = [vertex, fill=red!50]

    \tikzstyle{selected edge} = [draw,line width=1pt,-,red!100]
    \tikzstyle{edge} = [-,black,line width=1pt]
    \end{tikzpicture}
```

Her forteller vi at vertexer (eller noder), skal være sirkler. Markerte noder skal være fylt med rød farge.

Kanter skal tegnes som sorte linjer ([-, black ...]). Og markerte kanter skal være røde.

4.1 Tegne grafen

For å plassere nodene rundt om på arket sier man hvor man vil de skal være ved hjelp at koordinater.

```
\begin{tikzpicture}
   \tikzstyle{vertex}
                              = [circle,fill=black!10]
   \tikzstyle{selected vertex} = [vertex, fill=red!50]
   \tikzstyle{selected edge} = [draw,line width=1pt,-,red!100]
   \tikzstyle{edge}
                               = [-,black,line width=1pt]
   \node[vertex]
                        (v1) at (1.25,1.7) {1};
   \node[vertex]
                         (v2) at (1.5,1.1) {2};
   \node[selected vertex] (v3) at (0.9,1.5) {3};
    \node[vertex] (v4) at (1.6,1.5) {4};
   \node[vertex]
                         (v5) at (1,1.1)
                                            {5};
                      (v1) - -(v2) - -(v3) - -(v4) - -(v5) - -(v1);
   \draw[edge]
   \draw[selected edge] (v1)--(v2);
\end{tikzpicture}
```

4.2 Noder

Nodene defineres ved å først bruke nøkkelordet node, så fortelle hvilken type node dette er. I dette tilfellet, så er det enten vertex eller selected vertex som vi har definert med tikzstyle. Nodens navn bruker man kun i egen kode, når vi skal tegne opp kantene trenger vi disse navnene. Koordinatene (x,y) forteller hvor vi vil plassere noden, og verdien er innholdet i noden.

```
\node[type of node] (node name) at (x,y) {value};
```

4.3 Kanter

Kantene tegnes likt som linjer fra seksjon 1. Men her gir vi nøkkelordet draw en av to stiler, som vi definerte med tikzstyle. Enten edge eller selected egde.

```
\draw[type of edge] (from node) -- (to node);
```

Oppgave Hvordan kan vi tegne denne?

5 Automater

Denne måten å tegne automater på krever at man inkluderer

\usetikzlibrary{automata}


```
\begin{tikzpicture}[->,auto,node distance=3cm,line width=0.2mm]
                                              {$q_1$};
 \node[initial,state
                         (A)
 \node[state]
                         (B) [right of=A]
                                              {$q_2$};
 \node[state]
                         (C) [right of=B]
                                              {$q_3$};
 \node[state,accepting](D) [right of=C]
                                              {$q_4$};
 \path (A) edge [loop above] node
                                              {b}
                                                    (A)
            edge node
                                              {a}
                                                     (B)
        (B) edge [loop above] node
                                              {b}
                                                     (B)
                                              {a}
                                                     (C)
            edge node
                                                     (C)
        (C) edge [loop above] node
                                              {b}
            edge node
                                              {a}
                                                     (D)
        (D) edge [loop above] node
                                              {b,a} (D);
\end{tikzpicture}
```

For denne måten å tegne automater på, så settes alle attributter som beskriver automaten i definisjonen til tikzpicture. Her har automaten følgende egenskaper:

```
{tikzpicture}[->, auto, node distance=3cm, line width=0.2mm]
```

Dette forteller oss at automaten skal tegnes med piler (->), nodene skal ha avstand på 3 cm, og linjene en tykkelse på 0,2 mm. Auto stiller teksten *over* linjene, i stedet for *på* linjene.

5.1 Automatens tilstander

En automat har tre typer tilstander: starttilstanden, vanlig tilstand(er), og akepterende tilstand(er).

```
\node[state] (node name) {state name};
```

I tillegg til [state], så kan man ha med opsjonen [initial, state] for starttilstanden, eller [state, accepting] for aksepterende tilstand.

5.2 Stien gjennom automaten

Stien tegnes gjennom en path. Denne konstrueres på følgende vis:

```
\path (from state) edge [opt.] node {weight} (to state)
```

Her kan [opt] være loop above/below, bend left/right.

Flittig bever

Her er en flittig 4-bever. Denne automaten dekker de fleste opsjoner.


```
\begin{tikzpicture}[->,auto,node distance=4cm,line width=0.2mm]
 \node[initial,state] (A)
                                        {};
 \node[state]
                       (B) [below of=A] {};
 \node[state]
                       (C) [right of=A] {};
 \node[state]
                       (D) [below of=C] {};
 \node[state]
                       (E) [right of=D] {H};
 \path (A) edge node
                                   {1 $\rightarrow$ 1,L}
                                                           (C)
        (A) edge [bend left] node {0 $\rightarrow$ 1,R}
                                                           (C)
        (C) edge [bend left] node {0 $\rightarrow$ 1,L}
                                                           (A)
        (B) edge node
                                   {1 $\rightarrow$ 0,R}
                                                           (A)
        (B) edge [loop below] node {0 $\rightarrow$ 1,R}
                                                           (B)
        (D) edge node
                                   {1 $\rightarrow$ 1,L}
                                                           (B)
        (C) edge node
                                   {1 $\rightarrow$ 0,L}
                                                           (D)
                                   {0 $\rightarrow$ 1,R}
        (D) edge node
                                                           (E);
\end{tikzpicture}
```

6 Forskjellige TikZ biblioteker

Som med automatene, er det flere andre TikZ-biblioteker som kan inkluderes. Her kommer noen eksempler.

6.1 mindmap


```
\path[mindmap,concept color=violet,text=white]
   node[concept] {TikZ-kurs}
   [clockwise from=0]
   child[concept color=purple] {
   node[concept] {The Basics} [clockwise from=90]
       child { node[concept] {Fasonger} }
       child { node[concept] {Farger} }
   child[concept color=cyan] {
   node[concept] {Trær} [clockwise from=-20]
       child { node[concept] {Noder}
            child { node[concept] {Egendefinerte noder}}
       }
       child { node[concept] {Justere avstand} }
    }
   child[concept color=red] { node[concept] {Automater} }
   child[concept color=orange] { node[concept] {Grafer} };
```

6.2 calendar

October 2014

```
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
```

Attributter Attributter som vi gir kalenderen mycalendar er at den skal strekke seg fra 1. oktober 2014 til 31. oktober 2014. Den skal tegnes som lister av uker, og månedens navn skal skrives på toppen, sentrert. Vi sier også at tekstfargen til måneden skal være *teal*, og at vi skal legge på året.

If-setninger Her har vi også et eksempel på if-setninger i TikZ. Disse er på formen

```
if=(<condition>)<code or options> else<else code or options>
```

I dette eksempelet sier vi at *hvis* dagen er en søndag, så skal teksten være rød. Og hvis datoen er 6. oktober 2014, så skal vi tegne en rød ring rundt denne.

7 Circuitikz

Noe som er kjekt å vite om er også logiske porter i Circuitikz. Dette får du ved å inkludere pakken:

\usepackage{circuitikz}

Siden dette ikke er TikZ jobber vi ikke i miljøet tikzpicture, men i miljøet circuitikz.

7.1 Eksempel på en liten krets


```
begin{circuitikz} \draw
    (-3,0.3) node[not port] (not) {}
    (0,0)    node[and port] (and) {}
    (2,1)    node[or port] (or) {}

    (not.out) -- (and.in 1)
    (and.out) -- (or.in 2);
    \end{circuitikz}
```

Det fungerer på samme måte som når vi tegner noder i TikZ. Vi starter med koordinatene, så definerer vi hva slags node (port) vi vil ha, og til slutt en evt. merkelapp.

```
(x,y) node [what kind of port] (name of port) {label}
```

Portens navn er valgfritt, og brukes kun i din egen kode.

7.2 Oversikt over forskjellige porter i Circuitikz

Figur 4: Forskjellige porter i Circuitikz

8 Ressurser

Gøyale eksempler

- Enderman
- Dartboard
- India map

8.1 Nyttige lenker

- $\bullet\,$ A TikZ tutorial: Generating graphics in the spirit of TeX
- TikZ & PGF Manual
- Graphics with TikZ
- TeXample.net
- TEXUsers Group (tug.org)

Visste du at..

Roger Antonsens bok «Logiske Metoder» er full av TikZ/PGF?