# Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.







1/23

# Motivations et objectif du cours

- Il s'agit de modéliser un marché financier en temps continu. Le modèle est plus réaliste, car les cours des actions sont généralement cotés de manière continue : par exemple pour le CAC40.
- Le modèle principal est le modèle de Black-Scholes et se base sur le mouvement Brownien.
- Après avoir définit le mouvement Brownien, on étudiera quelques propriétés et on verra que le mouvement Brownien apparaît comme limite de marches aléatoires renormalisées.
- Finalement, on introduira le modèle de Black-Scholes comme limite du modèle de Cox-Ross-Rubinstein.
- On établira la formule de Black-Scholes donnant le prix des options européennes (call et put).



### Plan du cours

1 Le mouvement Brownien

Le modèle de Black-Scholes comme limite du modèle Cox-Ross-Rubinstein

La formule de Black-Scholes pour le prix des options européennes



# Notion de processus stochastique

Un processus stochastique représente l'évolution aléatoire d'une quantité dans le temps : la valeur  $X_t(\omega)$  représente la quantité au temps t pour la réalisation  $\omega$ .

#### **Définition**

Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisé.

- On appelle processus stochastique  $X = (X_t)_{t \ge 0}$  une collection  $X_t$  de variables aléatoires (i.e. pour tout  $t \ge 0$ ,  $\omega \mapsto X_t(\omega)$  est mesurable).
- On dit que le processus  $X=(X_t)_{t\geq 0}$  est à trajectoires continues si il existe un ensemble de probabilité nulle N tel que pour tout  $\omega\in\Omega\setminus N$  l'application  $t\mapsto X_t(\omega)$  est continue.

# Notion de processus stochastique

Un processus stochastique représente l'évolution aléatoire d'une quantité dans le temps : la valeur  $X_t(\omega)$  représente la quantité au temps t pour la réalisation  $\omega$ .

#### **Définition**

Soit  $X = (X_t)_{t>0}$  un processus stochastique.

- On appelle accroissement de X entre les temps  $t_1$  et  $t_2$  la variable aléatoire  $X_{t_2} X_{t_1}$ .
- On dit que le processus  $X = (X_t)_{t \ge 0}$  est à accroissements indépendants si pour tout  $k \ge 2$ ,  $0 = t_0 < t_1 < t_2 < \cdots < t_k$ , les variables  $X_{t_i} X_{t_{i-1}}$ ,  $1 \le i \le k$  sont indépendantes.

## Notion de mouvement Brownien

#### **Définition**

On appelle mouvement Brownien standard  $B = (B_t)_{t \ge 0}$  un processus stochastique à trajectoires continues vérifiant

- i)  $B_0 = 0$  p.s.,
- ii) pour tout  $0 \le t_1 < t_2$ ,  $B_{t_2} B_{t_1} \sim \mathcal{N}(0, t_2 t_1)$ ,
- iii) pour tout  $k \ge 2$ ,  $0 = t_0 < t_1 < t_2 < \cdots < t_k$ , les accroissements  $(B_{t_i} B_{t_{i-1}})_{1 \le i \le k}$  sont indépendants.

Par définition du mouvement Brownien, les accroissements sont Gaussiens (ii) et indépendants (iii). Remarquons que l'existence du mouvement Brownien est non triviale, notamment la continuité des trajectoires.



## Simulation d'un mouvement Brownien

- Avec un ordinateur, on peut simuler très simplement les valeurs du processus  $(B_t)_{t>0}$  en un nombre fini de points.
- Par exemple, pour  $t_k = \frac{kT}{n}$ ,  $0 \le k \le n$  variant entre  $t_0 = 0$  et  $t_n = T$ , on commence par simuler les accroissements  $\Delta_k = B_{t_k} - B_{t_{k-1}}, 0 \le k \le n$ , qui sont i.i.d. de loi  $\mathcal{N}(0, T/n)$  et on pose

$$B_0 = 0, \quad B_{t_k} = \sum_{i=1}^k (B_{t_i} - B_{t_{i-1}}) = \sum_{i=1}^k \Delta_k, \quad 1 \leq k \leq N.$$

Avec le logiciel R :

T<-10 N < -100D < -rnorm(N, 0, sqrt(T/N))B < -c(0, cumsum(D))plot(seq(0,T,T/N),B,type='ol')



#### Simulation d'un mouvement Brownien

- Attention, cette représentation est trompeuse car le logiciel fait une interpolation linéaire! On a donc une représentation approchée du mouvement Brownien.
- Evidemment la qualité de cette représentation est meilleure lorsque N est grand :





8/23

# Propriétés du mouvement Brownien

#### **Proposition**

Soit  $B = (B_t)_{t>0}$  un mouvement brownien :

- (covariance) pour tout  $t_1, t_2 \ge 0$ ,  $Cov(B_{t_1}, B_{t_2}) = min(t_1, t_2)$ ;
- (symétrie) le processus  $(-B_t)_{t>0}$  est aussi un mouvement Brownien;
- (propriété de Markov) pour tout a > 0 le processus (B<sub>a+t</sub> − B<sub>a</sub>)<sub>t≥0</sub> est un mouvement Brownien;
- (autosimilarité) pour tout c>0 ( $c^{-1/2}B_{ct}$ ) $_{t\geq0}$  est un mouvement Brownien.



# Propriétés du mouvement Brownien

#### **Définition**

Soit  $(M_t)_{t\geq 0}$  un processus aléatoire et  $\mathcal{F}_t = \sigma(M_s; s \leq t)$  la filtration naturelle. On dit que  $(M_t)_{t\geq 0}$  est une martingale si pour tout  $0 \leq s \leq t$ ,  $M_t$  est intégrable et

$$\mathbb{E}[M_t \mid \mathcal{F}_s] = M_s.$$

#### Proposition

Soit  $B = (B_t)_{t \ge 0}$  un mouvement brownien. Alors :

- i)  $(B_t)_{t\geq 0}$  est une martingale;
- ii)  $(B_t^2 t)_{t \ge 0}$  est une martingale;
- iii)  $(\exp(B_t t/2))_{t>0}$  est une martingale.



## Marche aléatoire et théorème de Donsker

#### **Définition**

Soit  $(X_i)_{i>1}$  une suite de v.a.i.i.d.

On appelle marche aléatoire la suite de variable aléatoires  $(S_n)_{n\geq 0}$  définie par

$$S_0 = 0, \quad S_n = \sum_{i=1}^n X_i, \quad n \ge 1$$

• Simulation avec R dans le cas Bernoulli  $X_i \rightsquigarrow \mathcal{B}(p)$ :

N<-50 p<-1/2 X<-rbinom(N,1,0.5) S<-c(0,cumsum(X)) plot(seq(0,N),S,type='p')



## Marche aléatoire et théorème de Donsker

• On étend la marche aléatoire  $(S_n)_{n\geq 0}$  au temps continu par interpolation linéaire

$$S_t = S_n + (t - n)X_{n+1}, \quad n \le t \le n + 1.$$

#### Théorème de Donsker

On suppose les  $X_i$  de carré intégrable de moyenne m et variance  $\sigma^2$ . Alors la marche aléatoire renormalisée

$$\left(\frac{S_{nt} - ntm}{\sigma\sqrt{n}}\right)_{t \ge 0}$$

converge en loi vers un mouvement Brownien standard  $(B_t)_{t\geq 0}$ .

Ce résultat généralise le TCL que l'on retrouve lorsque t = 1.



## Illustration du théorème de Donsker

Avec R, on simule la marche aléatoire (renormalisée) de Bernoulli avec p=1/2 ou p=1/4, pour N=10 ou N=1000.



### Plan du cours

1 Le mouvement Brownien

Le modèle de Black-Scholes comme limite du modèle Cox-Ross-Rubinstein

La formule de Black-Scholes pour le prix des options européennes



Année 2014-2015

## Modèle de Black-Scholes

On cherche à modéliser le cours d'un actif coté en temps continu par un processus aléatoire  $(S_t)_{t\geq 0}$ .

#### **Définition**

Le modèle de Black-Scholes de prix initial  $S_0>0$ , rendement instantané  $\mu$  et volatilité  $\sigma>0$  est donné par

$$S_t = S_0 \exp\left(\mu t - rac{\sigma^2}{2}t + \sigma B_t
ight), \quad t \geq 0,$$

où  $(B_t)_{t>0}$  est un mouvement Brownien standard.



# Propriétés du processus de Black-Scholes

$$S_t = S_0 \exp\left(\mu t - \frac{\sigma^2}{2}t + \sigma B_t\right), \quad t \ge 0,$$

## Propriétés

- Le processus  $(S_t)_{t\geq 0}$  est à trajectoires continues et démarre en  $S_0$  pour t=0.
- Pour tout  $t \ge 0$ ,  $S_t$  suit une loi log normale

$$\ln(S_t) \sim \mathcal{N}(\ln(S_0) + (\mu - \sigma^2/2)t, \sigma^2 t)$$

L'espérance de S<sub>t</sub> est donnée par

$$\mathbb{E}(S_t) = S_0 e^{\mu t}$$

ce qui explique l'interprétation de  $\mu$  comme rendement instantané.



# Propriétés du processus de Black-Scholes

De l'équation

$$S_t = S_0 \exp \left( \mu t - \frac{\sigma^2}{2} t + \sigma B_t \right), \quad t \geq 0,$$

on déduit facilement que pour tout  $t \ge 0$ , h > 0

$$S_{t+h} = S_t e^{(\mu - \sigma^2/2)h} e^{\sigma(B_{t+h} - B_t)}.$$

Avec un développement de Taylor heuristique, pour  $h \approx 0$ 

$$S_{t+h} \approx S_t \Big(1 + (\mu - \sigma^2/2)h\Big) \Big(1 + \sigma(B_{t+h} - B_t) + \sigma^2/2(B_{t+h} - B_t)^2\Big).$$

On va à l'ordre 2 pour la partie Brownienne car  $\mathbb{E}[(B_{t+h}-B_t)^2]=h$  et on peut montrer que les termes  $-\sigma^2/2h$  et  $\sigma^2/2(B_{t+h}-B_t)^2$  se compensent en moyenne ce qui conduit à

$$S_{t+h} \approx S_t + \mu S_t h + \sigma S_t (B_{t+h} - B_t).$$

La formulation rigoureuse se fait par la théorie des équations différentielles stochastiques :

$$dS_t = \mu S_t dt + \sigma S_t dB_t.$$



## Black-Scholes comme limite de Cox-Ross-Rubinstein

#### Rappels:

- Le modèle CRR est un modèle à temps discret n = 0, ... N où le rendement de l'actif à chaque pas de temps ne prend que deux valeurs possibles 1 + a et 1 + b, a < b.
- Pour que le marché soit viable, le taux d'intérêt par période r doit vérifier  $r \in [a, b]$ .
- Il existe alors une unique probabilité risque neutre  $\mathbb{P}^*$  sous laquelle les variables de rendement  $R_n = S_n/S_{n-1} 1$ ,  $1 \le n \le N$  sont i.i.d. et d'espérance r:

$$a\mathbb{P}^*(R_n=a)+b\mathbb{P}^*(R_n=b)=r$$

ďoù

$$\mathbb{P}^*(R_n = a) = p\delta_a + (1-p)\delta_b \quad \text{avec } p = \frac{b-r}{b-a}.$$

• Pour  $n = 0, \ldots, N$ , on a

$$S_n = S_0 \prod_{i=1}^n (1 + R_i).$$



## Black-Scholes comme limite de Cox-Ross-Rubinstein

#### Asymptotique:

- Pour obtenir un modèle continu sur [0, T] à la limite, on suppose le nombre de période N → ∞ et que chaque période est de durée T/N → 0.
- Les paramètres a, b, r > 0 dépendent alors de N et on pose

$$r = e^{rT/n} - 1, \quad \log\left(\frac{1+a}{1+r}\right) = -\sigma\sqrt{T/N}, \quad \log\left(\frac{1+b}{1+r}\right) = \sigma\sqrt{T/N}.$$

On en déduit

$$1+a=\exp\left(rT/N-\sigma\sqrt{T/N}\right),\quad 1+b=\exp\left(rT/N+\sigma\sqrt{T/N}\right),\quad p=\frac{1}{2}+\frac{\sigma}{4}\sqrt{T/N}+o(\sqrt{T/N})$$

lacktriangle Le modèle Cox-Ross-Rubinstein est alors donné par  $0 \leq t \leq T$ 

$$S_t^N = S_{[tN/T]}^N = S_0 \prod_{i=1}^{[tN/T]} (1 + R_i) = S_0 \prod_{i=1}^{[tN/T]} \exp\left(rT/N + \varepsilon_i \sigma \sqrt{T/N}\right)$$

$$= S_0 \exp\left(rt + \sigma \sqrt{T/N} \sum_{i=1}^{[tN/T]} \varepsilon_i\right)$$

avec  $\varepsilon_i = 1_{\{R_i = b\}} - 1_{\{R_i = a\}}$  i.i.d. de loi  $p\delta_{-1} + (1 - p)\delta_1$ .



## Black-Scholes comme limite de Cox-Ross-Rubinstein

#### Asymptotique:

• On a  $\mathbb{E}(\varepsilon_i)=1-2p\sim -\frac{\sigma}{2}\sqrt{T/N}$  et  $\mathrm{Var}(\varepsilon_i)\sim 1$  d'ou

$$\mathbb{E}\left[\sqrt{T/N}\sum_{i=1}^{[tN/T]}\varepsilon_i\right]\sim\sqrt{T/N}\left[tN/T\right]\left(-\frac{\sigma}{2}\sqrt{T/N}\right)\sim-\frac{\sigma}{2}t$$

et

$$\operatorname{Var}\left[\sqrt{T/N}\sum_{i=1}^{[tN/T]}\varepsilon_i\right]\sim t/N[tN/T]\sim t.$$

On peut montrer un résultat à la Donsker :

$$\left(\sqrt{T/N}\sum_{i=1}^{\lfloor tN/T\rfloor}\varepsilon_i+\frac{\sigma}{2}t\right)_{0\leq t\leq T}\Longrightarrow (B_t)_{0\leq t\leq T}\quad\text{mouvement Brownien}.$$

En revenant au modèle CCR, on obtient

$$(S_t^N)_{0 \le t \le T} \Longrightarrow \left(S_0 \exp\left(rt - \frac{\sigma^2}{2}t + \sigma B_t\right)\right)_{0 \le t \le T}.$$

On retrouve bien le modèle de Black-Scholes avec  $r = \mu!!!$ 



### Plan du cours

La formule de Black-Scholes pour le prix des options européennes



#### Prix de du call

 Rappelons que dans le modèle Cox-Ross-Rubinstein, le prix du Call à l'instant 0 est donné par

$$C_0 = (1+r)^{-N} \mathbb{E}^* [(S_N - K)^+]$$

En passant à la limite, on obtient la formule pour le modèle Black-Scholes

$$C_0 = e^{-RT} \mathbb{E}^{\star} \left[ \left( \mathcal{S}_{\mathcal{T}} - \mathcal{K} \right)^+ 
ight)$$

avec  $(S_t)$  processus de Black-Scholes.

• En particulier,  $S_T$  suit une loi log-normale

$$\ln(S_T) \sim \mathcal{N}(\ln(S_0) + (\mu - \sigma^2/2)T, \sigma^2T)$$



Année 2014-2015

#### Prix de du call

On peut donc écrire  $C_0$  comme une intégrale gaussienne, qui se calcule avec un peu d'efforts ! On obtient

#### Théorème de Black-Scholes

Dans le modèle de Black-Scholes, le prix du put est donné par

$$C_0 = S_0 \Phi(d_1) - Ke^{-rT} \Phi(d_2).$$

avec Φ la f.r. de la loi normale et

$$d_1 = \frac{\log(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}, \quad d_2 = \frac{\log(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}}.$$

