

	Prob	lem 2		
2.1				
1.	(a)	TIC	True	
	(b)	T.L.G	False	
	(0)	OLC	True	
	(d)	OTH	True	
	(e)	TLGE	True	
	(f)	01010	False	
	(9)	ETHIC	True	
	(h)	C19/0,H	False	
	(1)	C1910,E,H	True	
	(i)	TICIOIG	/E,H False.	
2(a) None.				
$E \rightarrow Q$, $H \rightarrow Q$, $O \rightarrow E \rightarrow Q$,				
	$T \rightarrow E \rightarrow Q$, $C \rightarrow E \rightarrow Q$.			
	None of these paths can be d-seperated.			
(b) (E,T,O) . All paths from (E,T,O) to H are blocked either by $C(O)$. or $Q(\rightarrow Q+)$.				
3. PCG/E,H) PCE10,T,C) PCH/C) PCT) P(C) P(O)				

P(S,=A/d) = 2, B, A = 0.582 P(S,=B/3) = 0.418 Kend most likely S, = A P(S2=A/Q) = Q1 P1 = 0.181 P(S=B/S) = QBBB = 0.819 most likely Sz = B PC3=A(3) = $\alpha_3^A \beta_3^A = 0.776$ P(3=43) = Q3 BB = 0-224 most likely S3 = A No. This is found using Viterbi Algorithm Because forward - backward algorithm allows us to calculate P(s== 5,16) P(s== 5,16). P(s== 5,10) 7 PCS, 52,53/3) Not conditionally independent.

```
problem 2
        P(C= c' / 0=0', a=aB)
    = \( \frac{1}{2} \) \( \frac{1
         5 5 5 5 P(GB/EGH) P(HM/C) P(E/T,C,O) P(O') P(C') P(T')
 = (0.000324+0.000132+0.004536+0.007128+)
                      0.00081+0.000324+0.00061875+0.000132+
                 0.000 $215+0.004536+0.0037125+6.007128+0.00162+
                 0.001776+6.0012375+0.003168+0.00027+0.012036
                     +0.000825 +0.019008
                                                                                                                   0.840116
                         0.054168
                            0.064476
Raw Gibbs Sampling utilises conditional distribution.
  generating a sequence of samples constituting
   a Markov chain, Unlike brute forces which
     assigns marginal probabilities to variables
  Ticit in our case, gibbs sampling generates
    T,C samples with probabilities conditioned
       on 9=98 and 0=01.
```

8-2 d = 0.8x0.25 + 6 2 x 6 8 = 0-2 9B = 0.2×0.8 = 0-16 0-8x0-25x0.4x0.25 + 0,8x0.5x0.25 = 0.04 QB = QAX0.6X0.8 + QBX0.5X0.8 = 0.16 02 = 0, x 0. 4 x 0.75 + 0, x 0.75 = 0.072 98 = 0 x 0.6 x 0.2 + 9 x 0.5 x 0.2 = 0.0208 $d_{end} = d_2^A + d_2^B = 0.0928 = P(0=0,0=0,0=0)$ 2. B3 = 1 B2 = 1 B2 = B3 x 0.75 x 0.4 + B3 x 0.2 x 0.6 = 0.42 BB = BAX 0.75 XO. 5 + BBX 0.2 X 0.5 = 0.475 BA = BA X 0-25 X 0.4 + BX X 0-8 K 0-6 = 0-27 BB = BAX 0-25 X 0.5 + BB X 0.8 X 0.5 = 0-2425 P(0'=0,02=0,03c) = 0.2645 + (0.27x0.8+ 0.2425x0.2)

```
Problem 3
  P(SE/SE-1)
                 = P(S+/S+-1, S+-2)
                 = PCot/St, St-1)
   P(0+ | S+ )
Transition Natrix parameters: K(K-1)
 Emmission probabilities: K(P-1)
 Initial probabilities: (K-1)
 Total parameters =
                    (K+1) (K-1) + K(P-1)
```