вариант	ф. номер	група	поток	курс	специалност
K2.1					
Име:					

Второ контролно по логическо програмиране 8 януари 2022 год.

Да няма лист, на който е писано по повече от една задача! За всеки дефиниран предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри . . . , предикатът . . . разпознава дали . . .
- 2. При параметри . . . , предикатът . . . генерира . . . в . . .
- 3. $p(\dots)$ е истина тогава и само тогава, когато \dots Следното условие е достатъчно, за да няма зацикляне с предиката: \dots

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Нивка е краен списък L от двуелементни списъци, вторият член на всеки от които е число и всеки два различни члена на L имат различни първи членове. Парче от една нивка L е множество, чиито елементи са първи членове от елементи на L. Размер на едно парче $A=\{a_1,a_2,\ldots,a_n\}$ на нивката L е числото $R_L(A)=p_1+p_2+\cdots+p_n$, където $[a_1,p_1], [a_2,p_2],\ldots,[a_n,p_n]$ са членове на L.

Да се дефинира на пролог предикат indepen(L), който по дадена нивка L рапознава дали има поне две такива различни парчета A и B на L, че $A \cap B \neq \emptyset$ и $R_L(A \cap B) = R_L(A)R_L(B)$.

Зад. 2. За безкрайна редица $\{a_n\}_{n\in\mathbb{N}}$ ще казваме, че е napane-puoduчнa, ако съществува такова положително естествено число d, че за всяко $n\in\mathbb{N}$ от $n\equiv 1\pmod 3$ следва $a_{n+d}=a_n$. Да се дефинира на пролог едноместен предикат арегiod(X), който при преудовлетворяване генерира в X последователно двуелементни списъци $[0,a_0],[1,a_1],[2,a_2],\ldots$, така че генерираната безкрайна редица $\{a_n\}_{n\in\mathbb{N}}$ е от нули и единици и не е парапе-

Йма неизброимо много редици, които удовлетворяват условието, достатъчно е предикатът aperiod(X) да генерира една такава. Докажете, че Вашият предикат aperiod(X) наистина прави това.

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
K2.1					
Име:					

Второ контролно по логическо програмиране 8 януари 2022 год.

Да няма лист, на който е писано по повече от една задача! За всеки дефиниран предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри . . . , предикатът . . . разпознава дали . . .
- 2. При параметри . . . , предикатът . . . генерира . . . в . . .
- 3. $p(\dots)$ е истина тогава и само тогава, когато \dots Следното условие е достатъчно, за да няма зацикляне с предиката: \dots

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Нивка е краен списък L от двуелементни списъци, вторият член на всеки от които е число и всеки два различни члена на L имат различни първи членове. Парче от една нивка L е множество, чиито елементи са първи членове от елементи на L. Размер на едно парче $A=\{a_1,a_2,\ldots,a_n\}$ на нивката L е числото $R_L(A)=p_1+p_2+\cdots+p_n$, където $[a_1,p_1], [a_2,p_2],\ldots,[a_n,p_n]$ са членове на L.

Да се дефинира на пролог предикат indepen(L), който по дадена нивка L рапознава дали има поне две такива различни парчета A и B на L, че $A \cap B \neq \emptyset$ и $R_L(A \cap B) = R_L(A)R_L(B)$.

Зад. 2. За безкрайна редица $\{a_n\}_{n\in\mathbb{N}}$ ще казваме, че е $napane-puo\partial u$ чна, ако съществува такова положително естествено число d, че за всяко $n\in\mathbb{N}$ от $n\equiv 1\pmod 3$ следва $a_{n+d}=a_n$.

Да се дефинира на пролог едноместен предикат aperiod(X), който при преудовлетворяване генерира в X последователно двуелементни списъци $[0,a_0],[1,a_1],[2,a_2],\ldots$, така че генерираната безкрайна редица $\{a_n\}_{n\in\mathbb{N}}$ е от нули и единици и не е парапериодична.

Йма неизброимо много редици, които удовлетворяват условието, достатъчно е предикатът $\operatorname{aperiod}(X)$ да генерира една такава. Докажете, че Вашият предикат $\operatorname{aperiod}(X)$ наистина прави това.

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
K2.2					
Име:					

Второ контролно по логическо програмиране 8 януари 2022 год.

Да няма лист, на който е писано по повече от една задача! За всеки дефиниран предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри ..., предикатът ... разпознава дали ...
- 2. При параметри ..., предикатът ... генерира ... в ...
- 3. $p(\dots)$ е истина тогава и само тогава, когато \dots Следното условие е достатъчно, за да няма зацикляне с предиката: \dots

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Нивка е краен списък L от двуелементни списъци, вторият член на всеки от които е число и всеки два различни члена на L имат различни първи членове. Парче от една нивка L е множество, чиито елементи са първи членове от елементи на L. Мярка на едно парче $A = \{a_1, a_2, \ldots, a_n\}$ на нивката L е числото $M_L(A) = p_1 p_2 \cdots p_n$, където $[a_1, p_1], [a_2, p_2], \ldots, [a_n, p_n]$ са членове на L.

Да се дефинира на пролог предикат $\operatorname{impedne}(L)$, който по дадена нивка L рапознава дали има поне две такива различни парчета A и B на L, че $A \cap B \neq \varnothing$ и $M_L(A \cap B) = M_L(A) + M_L(B)$.

Зад. 2. За безкрайна редица $\{a_n\}_{n\in\mathbb{N}}$ ще казваме, че е napane-puoduчнa, ако съществува такова положително естествено число d, че за всяко $n\in\mathbb{N}$ от $n\equiv 2\pmod 3$ следва $a_{n+d}=a_n$. Да се дефинира на пролог едноместен предикат арарегі(X), кой-

Да се дефинира на пролог едноместен предикат арареті(X), който при преудовлетворяване генерира в X последователно двуелементни списъци $[0,a_0], [1,a_1], [2,a_2], \ldots$, така че генерираната безкрайна редица $\{a_n\}_{n\in\mathbb{N}}$ е от нули и единици и не е парапериодична.

Йма неизброимо много редици, които удовлетворяват условието, достатъчно е предикатът арареті(X) да генерира една такава. Докажете, че Вашият предикат арареті(X) наистина прави това.

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
K2.2					
Име:					

Второ контролно по логическо програмиране 8 януари 2022 год.

Да няма лист, на който е писано по повече от една задача! За всеки дефиниран предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри . . . , предикатът . . . разпознава дали . . .
- 2. При параметри ..., предикатът ... генерира ... в ...
- 3. $p(\dots)$ е истина тогава и само тогава, когато \dots Следното условие е достатъчно, за да няма зацикляне с предиката: \dots

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Нивка е краен списък L от двуелементни списъци, вторият член на всеки от които е число и всеки два различни члена на L имат различни първи членове. Парче от една нивка L е множество, чиито елементи са първи членове от елементи на L. Мярка на едно парче $A = \{a_1, a_2, \ldots, a_n\}$ на нивката L е числото $M_L(A) = p_1 p_2 \cdots p_n$, където $[a_1, p_1], [a_2, p_2], \ldots, [a_n, p_n]$ са членове на L.

Да се дефинира на пролог предикат impedne(L), който по дадена нивка L рапознава дали има поне две такива различни парчета A и B на L, че $A\cap B\neq\varnothing$ и $M_L(A\cap B)=M_L(A)+M_L(B)$.

Зад. 2. За безкрайна редица $\{a_n\}_{n\in\mathbb{N}}$ ще казваме, че е napane-puoduuna, ако съществува такова положително естествено число d, че за всяко $n\in\mathbb{N}$ от $n\equiv 2\pmod 3$ следва $a_{n+d}=a_n$.

Да се дефинира на пролог едноместен предикат арареті(X), който при преудовлетворяване генерира в X последователно двуелементни списъци $[0,a_0],[1,a_1],[2,a_2],\ldots$, така че генерираната безкрайна редица $\{a_n\}_{n\in\mathbb{N}}$ е от нули и единици и не е парапериолична.

Има неизброимо много редици, които удовлетворяват условието, достатъчно е предикатът арарегі(X) да генерира една такава. Докажете, че Вашият предикат арарегі(X) наистина прави това.

Пожелаваме ви приятна и успешна работа!