CS 957, System-2 Al Neuro-Symbolic Al

Mohammad Hossein Rohban

Feb 2025

Sharif University of Technology

Article

Solving olympiad geometry without human demonstrations

https://doi.org/10.1038/s41586-023-06747-5

Trieu H. Trinh^{1,2 ⋈}, Yuhuai Wu¹, Quoc V. Le¹, He He² & Thang Luong^{1 ⋈}

Received: 30 April 2023

Accepted: 13 October 2023

Published online: 17 January 2024

Open access

Check for updates

Proving mathematical theorems at the olympiad level represents a notable milestone in human-level automated reasoning $^{1-4}$, owing to their reputed difficulty among the world's best talents in pre-university mathematics. Current machine-learning approaches, however, are not applicable to most mathematical domains owing to the high cost of translating human proofs into machine-verifiable format. The problem is

Simple Problem Formulation

"Let ABC be any triangle with AB = AC. Prove that \angle ABC = \angle BCA."

Symbolic Solver

What we have:

- Symbolic solvers whose knowledge base are of the Horn clause form: $Q \leftarrow P_1(x) \land ... \land P_k(x)$
- Contains a whole lot of deduction rules (deductive database or DD) in 2D euclidean geometry.
 - If two AB and BC are collinear, then ∠ABC is 180 degrees.
 - \circ AB = DE, AC = DF, and \angle CAB = \angle EDF, then ABC = DEF.
 - 0 ...
- How does the solver work?
 - Picks one of the rules at a time whose premises $(P_1(x), ..., P_k(x))$ are known to be true.
 - Add the conclusion Q to the knowledge base and repeat.

Algebraic Rules (AR)

AR is necessary to perform angle, ratio and distance chasing.

First, convert the input linear equations to a matrix of their coefficients.

Applies Gaussian Elimination

 \angle ABC = \angle XYZ is represented as s(AB) - s(BC) = s(XY) - s(YZ), in which s(AB) is the angle between AB and the x-direction, modulo pi.

Similarly, ratios AB:CD = EF:GH are represented as log(AB) - log(CD) = log(EF) - log(GH), in which log(AB) is the log of the length of segment AB.

$$\begin{pmatrix} a & b & c & d & e \\ 1 & -2 & 1 & 0 & 0 \\ -1 & 0 & -1 & 2 & 0 \\ 0 & 1 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{GE} \begin{pmatrix} a & b & c & d & e \\ 1 & 0 & 0 & -1.5 & 0.5 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -0.5 & -0.5 \end{pmatrix} \Rightarrow \begin{cases} a = 1.5d - 0.5e \\ b = d \\ c = 0.5d + 0.5e \end{cases}$$

Example

- We want to prove that angle 1 and angle 6 are supplementary, given parallel lines AB and CD.
- First, symbolic engine might prove that angle 1 equals angles 4, 5, and 8
- Then, it might prove that angle 6 and angle 8 are supplementary.
- Combining the above two, we have shown that angle 1 and angle 6 are supplementary.

Another Example

We want to prove that triangle ABC and triangle ABD have the same area, given parallel lines AB and CD

Adding Auxiliary Points

- Adding two points P1 and P2 allows us to show the heights of both triangles are the same
- Since both share the same base, the areas are the same

Adding Constructs (point D) Helps a lot!

"Let ABC be any triangle with AB = AC. Prove that \angle ABC = \angle BCA."


```
Construct D: midpoint BC,

AB=AC, BD = DC, AD=AD ⇒ ∠ABD=∠DCA [1]

[1], B C D collinear ⇒ ∠ABC=∠BCA
```

Let's brainstorm how to go about solving this problem

How to incorporate auxiliary points?

General Strategy of AlphaGeometry

The space of auxiliary construction is **huge**

A closer look into the solution

e IMO 2015 P3

"Let ABC be an acute triangle. Let (O) be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on (O) such that QH \perp QA and let K be the point on (O) such that KH \perp KQ. Prove that the circumcircles (O₁) and (O₂) of triangles FKM and KQH are tangent to each other."

ABC Used premises
ABC Neural net output

ABC Symbolic solver output

How to make synthetic data?

How to generate premises?

• A small set of rules to make random premises once applying them consecutively.

Construction	Description
X = angle bisector(A, B, C)	Construct a point X on the angle bisector of ∠ABC
X = angle mirror(A, B, C)	Construct a point X such that BC is the bisector of ∠ABX
X = circle(A, B, C)	Construct point X as the circumcenter of A, B, C
A, B, C, D = eq_quadrilateral()	Construct quadrilateral ABCD with AD = BC
A, B, C, D = eq_trapezoid()	Construct trapezoid ABCD with AD = BC
X = eqtriangle(B, C)	Construct X such that XBC is an equilateral triangle
X = eqangle2(A, B, C)	Construct X such that ∠BAX = ∠XCB
A,B,C,D = eqdia_equadrilateral()	Construct quadrilateral ABCD with AC = BD
X = eqdistance(A, B, C)	Construct X such that XA = BC
X = foot(A, B, C)	Construct X as the foot of A on BC
X = free	Construct a free point X

Random Premises

Visual representations of the synthetic data generated by AlphaGeometry

How to train the LLM?

Randomly make a premise.

Make a deduction closure.

Pick one of the conclusions as a target.

Trace back to the premise so that necessary premises to deduce the selected target.

Remove some constructs X_1 , ..., X_k that do not appear in the target.

Add few sentences to the proof "Add construct X;" for all i.

Train an LLM with all proofs

Fine tune the LLM with modified proofs containing added constructs.

Forward Chaining to get the closure

$$P \Rightarrow Q$$
 $L \wedge M \Rightarrow P$
 $B \wedge L \Rightarrow M$
 $A \wedge P \Rightarrow L$
 $A \wedge B \Rightarrow L$
 A

Language Model Architecture

12 layers Transformer with ~151 M weights

Embedding dim = 1,024

8 attention heads

ReLU activation

Context length = 1,024

Vocab. Size = 757

LLM Inference

Takes as input the conclusion> conclusion>

Adding constructs

Performs beam search to produce k=512 top (highest probable) next tokens

Branching width = 32

Each node containing a set of constructs is fed into the symbolic solver.

If solved then stop.

Search to depth = 16

LLM Inference with beam search

Longer proof problems are harder

Results

Method		Problems solved (out of 30)	
Computer algebra	Wu's method ²¹ (previous state of the art)	10	
	Gröbner basis ²⁰	4	
Search (human-like)	GPT-4 (ref. 25)	0	
	Full-angle method ³⁰	2	
	Deductive database (DD) ¹⁰	7	
	DD+human-designed heuristics ¹⁷	9	
	DD+AR (ours)	14	
	DD+AR+GPT-4 auxiliary constructions	15	
	DD+AR+human-designed heuristics	18	
	AlphaGeometry	25	
	Without pretraining	21	
	Without fine-tuning	23	

We compare AlphaGeometry to other state-of-the-art methods (computer algebra and search approaches), most notably Wu's method. We also show the results of DD+AR (our contribution) and its variants, resulting in the strongest baseline DD+AR+human-designed heuristics. Finally, we include ablation settings for AlphaGeometry without pretraining and fine-tuning.

On par with gold medalist

Ablation

Training data size	Solved / 30
100M	25
80M	24
60M	23
40M	23
20M	21

b.	
Method	Solved / 231
Wu	173
DD	152
DD+human heuristics	160
DD+AR	198
DD+AR+human heuristics	213
AlphaGeometry	228

· ·		
Beam size	Solved / 30	
512	25	
128	25	
32	24	
8	21	
2	16	

d.	
Search depth	Solved / 30
16	25
8	25
4	25
2	21
1	16

Original problem statement:

Let ABC be an acute-angled triangle with AB \neq AC. Let O be any point. The circle with diameter BC intersects the sides AB and AC at M and N respectively. Denote by O the midpoint of the side BC. The bisectors of the angles \angle BAC and \angle MON intersect at R. Prove that the circumcircles of the triangles BMR and CNR have a common point lying on the side BC.

Minimal **Human proof:** construction Let L be the reflection of A about OR \angle RLM = \angle NAR (LN is the reflection of AM about OR) Short. = ∠RAM (AR is bisector of ∠NAM) high-level deductions ⇒ L,M,A,R is cyclic Similarly, ANLR is cyclic ⇒ RMNA is cyclic So BPR = BMR (BMRP is cyclic) =AMRReadable = ANR (RMNA is cyclic) algebraic steps = CNR = CPR (CNRP is cyclic) ⇒ BP // CP ⇒ B. P. and C is collinear.

Adapted problem statement:

Let \triangle BC be a triangle. Let O be any point. Define point M as the intersection of circle (O, B) and line AB. Define point N as the intersection of circle (O,B) and line AC. Define point R such that AR is the bisector of \angle BAC and OR is the bisector of \angle MON. Define point O1 as the circumcenter of triangle BRM. Define point O2 as the circumcenter of triangle NRC. Define point P as the intersection of circles (O1, R) and (O2, R). Prove that B, C, P are collinear.


```
AlphaGeometry proof:
                                                                Redundant
AUXILIARY POINT K : KM=KN
AUXILIARY POINT L : KL=KA, OL=OA
                                                                Verbose.
[01][03] \Rightarrow \angle ONM = \angle NMO [08]
                                                                low-level steps
[01][03][05] \Rightarrow RN=RM [09]
[09][01][03] \Rightarrow NM \perp OR [10]
[01][03][KM=KN] \Rightarrow MN \perp KO [12]
[KL=KA][OL=OA] \Rightarrow KO \perp AL [15] \angle AKO=\angle OKL [16]
[15][12][10][16][KL=KA] \Rightarrow RA=RL [17]
[OL=OA] \Rightarrow \angle OAL=\angle ALO [18]
angle-chase: [12][15][08][18] \Rightarrow \angle NOA = \angle LOM [19]
[19][01][03][OL=OA] \Rightarrow AN=LM [21]
[17][21][09] \Rightarrow \angle NAR = \angle RLM [22]
[22][02][04][00] \Rightarrow circle(L,M,A,R) [23]
similar \Rightarrow circle(R,L,N,A) [24]
                                                               Low readability
[23][24] \Rightarrow \angle RMA = \angle RNA [25]
[06] \Rightarrow \angle BPR = \angle BMR [26]
[07] \Rightarrow \angle NCP = \angle NRP [27]
angle-chase: [25][00][02][26][27] \Rightarrow PC \# BP
\Rightarrow same_line(B,P,C)
```

Neuro-Symbolic Architectures so far ...

Neural | Symbolic uses a neural architecture to interpret perceptual data as symbols and relationships that are reasoned about symbolically. NS-VQA, and Neural-Concept Learner are examples.

Symbolic[Neural] is exemplified by AlphaGo, and AlphaGeometry, where symbolic techniques are used to invoke neural techniques. In this case, the symbolic approach is beam search together with symbolic proof engine, and the neural techniques is the LLM suggesting constructions.