CSSE 332 -- OPERATING SYSTEMS Rose-Hulman Institute of Technology

Exam 1

Name: $_{-}$			
Section:			

Question	Points	Score	
Problem 1	15		
Problem 2	5		
Problem 3	20		
Problem 4	10		
Problem 5	25		
Total:	75		

June 21 2024 Exam Page 1 of 4

Problem 3. Circle the correct answer for each of the following questions.(a) (5 points) All signals can be caught and overridden by the programmer.A. True.	
A. True.	
D D-1	
B. False.	
(b) (5 points) Multiple processes can use the same pipe as long as (1) they has shared ancestor that created the pipe and (2) each process assumes the roleither a writer or that of a reader.	
A. True.	
B. False.	
(c) (5 points) Assume that a parent process P has created two child processes, P_1 P_2 . Assume that P_1 has crashed a long time ago.	and
While P is running and has not called wait yet, P_1 can be described as a process.	
(d) (5 points) This question continues $part(c)$. Assume now that P_2 also crashes (after P_1 has crashed). Having realized that, P calls the wait system call.	long
It is guaranteed that wait will return after having consumed (or waited for) P	١•
A. True.	
B. False.	
Problem 4 . (10 points) Describe what happens when you call waitpid(pid, 0, 0); w pid is the process ID of a child process that is never-ending (e.g., it runs into an inf loop).	

Summer 2023-2024	Name:	OPERATING SYSTEMS

Note: The question below is a **design** question, there is no one right solution. Use your creative thinking along with the tools we learned in this class to design a possible solution. Should you need to make any assumptions, please state them clearly in the answer box below.

Problem 5. Assume that a process P and its child process P_1 want to agree to a certain value of a variable x, read from a user input. In other words, each process wants to make sure the other one has the same value for x.

(a)	(10 points)	Describe i	n simple	terms	how the	two	processes	can m	ake sure	that
	they both h	have the sai	ne value	for x at	fter they	have	read it for	rm the	user.	

June 21 2024 Exam Page 3 of 4

(b) (15 points) In the boxes below, write a pseudocode for each process that can implement your design above. You do not have to worry about the code that performs the fork, only focus on implementing the agreement design.

```
// code for P_1
x := get_value_from_user();
// write pseudocode that checks
// if both P_1 and P_2 have the
// same value of x
```

```
// code for P_2
x := get_value_from_user();
// write pseudocode that checks
// if both P_1 and P_2 have the
// same value of x
```