Machine Learning

Lecture 1.

Course Overview & Introduction

Alireza Rezvanian

Fall 2023

Outline

- Course overview
- Syllabus
- References
- Policies
- Evaluation & grading
- Research methods
- Machine learning

Course overview

Instructure

- Alireza Rezvanian
 - Email: rezvanlms[At]gmail[dot]com
 - URL: https://ce.aut.ac.ir/~rezvanian/
- o TA: Mr. Ahmadi & Babae
- Class platform
 - https://courses.aut.ac.ir

Evaluation

- Discipline
 - 5% of the final grade (tentative)
- Homeworks and Quizzes
 - About 4 prearranged homework.
 - Important! no large delay is accepted.
 - 25% of the final grade (tentative)
- Research presentation, report and simulation
 - Select 1 WoS journal paper published after 2021 having IF>1.5 or SNIP>1.5 or Q1
 - 30% of the final grade (tentative)
- Exam
 - Conceptual questions about topics
 - 15% of the final grade for mid-exam (tentative)
 - 25% of the final grade for final exam (tentative)
- Evaluation on your works (not any other)!
- 20-90% penalty per day for late submission of homework
- Email policy (subject: MLPR_4021_ID, introduction, body, rezvanlms@gmail.com)

Policies & Assumptions

- Familiar with fundamental computer sciences, mathematics, probability, and statistics
- Love (like) mathematic and algorithms (at least don't hate)
- Interested in problem solving
- Everything is abstract model of real problem
- We don't discuss about details of models, algorithms and implementations.
- You have no problem with class time
- You can use Python libraries
- You as an engineer should behave like an engineer!
 - Accuracy, Time, Ethics

Topics of this course

- Feature engineering
- Regression & generalization
- Classification
- Probabilistic classifiers
- Support Vector Machine (SVM)
- Decision tree
- Neural Networks
- Genetic algorithm
- Non-parametric methods
- Ensemble learning
- Dimensionality reduction
- Clustering
- Reinforcement Learning

References

- 1) T. Mitchel, **Machine learning**, McGraw-Hill Education, 1998.
- 2) E. Alpaydin, Introduction to Machine Learning, 4th ed., The MIT Press, 2020.
- 3) C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.
- 4) S. Theodoridis and K. Koutroumbas, **Pattern** recognition, 4th ed., Academic Press, 2008.
- 5) R. O. Duda, P. E. Hart. D. G. Stork, **Pattern** classification, 2nd ed., John Wiley & Sons, 2006.
- 6) A. Muller, S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly, 2106.

Resources: Datasets

- UCI Repository
 - http://archive.ics.uci.edu/ml/index.php
- UCI KDD Archive
 - https://kdd.ics.uci.edu
- Kaggle
 - https://www.kaggle.com/datasets
- Delve Datasets
 - https://www.cs.toronto.edu/~delve/data/dataset
 s.html
- Statlib
 - http://lib.stat.cmu.edu/datasets/

Resources: Journals

- Journal of Machine Learning Research www.jmlr.org
- Machine Learning
- Neural Computation
- Neural Networks
- IEEE Transactions on Neural Networks and Learning Systems (NNLS)
- IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
- Pattern Recognition (PR)
- Information Sciences (INS)
- Knowledge-based Systems (KNOSYS)

Resources: Conferences

- International Conference on Machine Learning (ICML)
- Neural Information Processing Systems (NIPS)
- European Conference on Machine Learning (ECML)
- The ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
- International Conference on Pattern Recognition (ICPR)
- International Conference on Learning Representations (ICLR)
- Computational Learning Theory (COLT)
- International Conference on Artificial Neural Networks (ICANN)
- International Conference on AI & Statistics (AISTATS)

Famous researchers

vapnik 98, 289149

Professor of Columbia, Fellow of NEC Labs America, Verified email at nec-labs.com machine learning statistics computer science

97. 95260 Kevin Murphy Research Scientist, Google

Verified email at google.com - Homepage Artificial Intelligence Machine Learning Computer Vision Natural Language Processing

Andrew Ng 142, 238311 Stanford University

Verified email at cs.stanford.edu - Homepage Machine Learning Deep Learning AI

Jure Leskovec 141, 144627

Professor of Computer Science, Stanford University Verified email at cs.stanford.edu - Homepage

Data mining Machine Learning Graph Neural Networks Knowledge Graphs Complex Networks

Christopher M. Bishop 70, 136605

Distinguished Scientist, Microsoft Research, Cambridge, U.K. Verified email at microsoft.com - Homepage

Machine learning

Tom Mitchell 98, 75426

Founders University Professor of Machine Learning, Carnegie Mellon University

Verified email at cs.cmu.edu - Homepage

Machine Learning cognitive neuroscience natural language understan...

Richard S. Sutton 100, 138741

DeepMind, Amii, and University of Alberta Verified email at richsutton.com - Homepage artificial intelligence reinforcement learning machine computer science

Geoffrey Hinton 179, 713100

Emeritus Prof. Computer Science, University of Toronto Verified email at cs.toronto.edu - Homepage machine learning psychology artificial intelligence

What is machine learning?

- Learning: "the acquisition of knowledge or skills through experience, study, or by being taught."
- Machine Learning:
 - Arthur Samuel (1959): Field of study that gives computers, the ability to learn without being explicitly programmed.
 - Herbert Simon (1970): Any process by which a system <u>improves</u> its <u>performance</u>
 - Tom Mitchell (1998): A computer program that <u>improves</u> its <u>performance</u> with <u>experience</u> using the observed data to make better <u>decisions</u> (generalizing from the observed data)
 - Alpaydin (2004): programming computers to <u>optimize</u> a <u>performance</u> criterion using example data or past experience.
 - Kevin Murphy (2012): algorithms that automatically detect <u>patterns</u> in data use the uncovered patterns to <u>predict</u> future data or other outcomes of interest
- Example
 - Consider an email program that learns how to filter <u>spam</u> according to emails you do or do not mark as spam
 - Task: Classifying emails as spam or not spam
 - **Experience**: Watching you label emails as spam or not spam.
 - Performance: The number (or fraction) of emails correctly classified as spam/not spam

Why "Learn"?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in <u>time</u> (routing on a computer network)
 - Solution needs to be <u>adapted</u> to particular cases (user biometrics)

What We Talk About When We Talk About "Learning"

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:
 - People who bought "X" also bought "Y" (www.amazon.com)
- Build a model that is a good and useful approximation to the data.

Where does ML fit in?

ML in Computer Science

- Why ML applications are growing?
 - Improved machine learning algorithms
 - Availability of data (Increased data capture, networking, etc.)
 - Software too complex to write by hand
 - Demand for complex systems (on high-dimensional, multi-modal, or heterogeneous data)
 - Demand for self-customization to user or environment

Some Learning Application Domains

- Computer Vision (Photo tagging, face recognition, ...)
- Natural language processing (e.g., machine translation)
- Market prediction (e.g., stock/house prices)
- Anomaly detection
- Robotics, Speech recognition, Autonomous vehicles, Social network analysis, Web search engines, Medical outcomes analysis
- Computational biology (e.g., annotation of biological sequences)
- Self-customizing programs (recommender systems)

ML unicorn business

- ByteDance
- SambaNova Systems
- UiPath
- Dataminr
- HighRadius
- SenseTime
- Feedzai Inc.
- Scale Al Inc.
- Automation Anywhere
- Pony.ai

https://www.analyticsinsight.net/top-10-ai-unicorns-that-are-setting-the-stage-on-fire/

ML in a Nutshell

- Every machine learning algorithm has three components:
 - Representation / feature set / Model Class (form)
 - Evaluation / Objective Function / Loss function
 - Optimization
 - Optimize a performance criterion using example data or past experience
 - Parameter estimation
 - Model selection and hyper-parameter tuning
- We have different types of (getting)
 observations in different types or paradigms
 of ML methods

Representation / Model Class

Decision trees

- $\hat{y} = f(x; w) = w^T x$
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evaluation / Objective Function

Accuracy

 $L(y, \hat{y}) = ||y, \hat{y}||_{2}$

- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

Optimization

 $argmin_w L(y, \hat{y}(w))$

- Discrete/Combinatorial optimization
 - Greedy search
 - Graph algorithms (cuts, flows, etc)

- Continuous optimization
 - Convex/Non-convex optimization
 - Linear programming

Example: Home Price

Housing price prediction

Example: Home Price

Predicting house price from 3 attributes

Size (m²)	Age (year)	Region	Price (10°T)
100	2	2	5
80	10	3	3
•••	•••	•••	•••

Example: Bank loan (Credit scoring)

- Applicant form as the input:
 - Salary
 - o Age
 - o gender
 - o current debt
 - 0 ...

Output: approving or denying the request

Comparison

■Traditional Programming

Machine Learning

Paradigms of ML

- Supervised learning (regression, classification)
 - Predicting a target variable for which we get to see examples.
 - Training data includes desired outputs

Unsupervised learning

- revealing structure in the observed data
- Training data does not include desired outputs

Weakly or Semi-supervised learning

Training data includes a few desired outputs

Reinforcement learning

- o Partial (indirect) feedback, no explicit guidance
- Given rewards for a sequence of moves to learn a policy and utility functions
- Rewards from sequence of actions

Data in Supervised Learning

 Data are usually considered as vectors in a d dimensional space

Columns

- Features
- Attributes
- Dimensions

Rows

- o Data
- o Points
- Instances
- Examples
- Samples
- o Records

Y column

- Class
- Target
- o Outcome
- o Response
- Label

$\overline{X} =$	$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$	$= [X_1, X_2, \dots X_d]^T$
	$\lfloor \frac{1}{Xd} \rfloor$	

	X 1	X 2	•••	X_d	Y (Target)
Sample 1					
Sample 2					
•••					
Sample n-1					
Sample n					

$$X = [x_1, \dots, x_d]$$

Supervised Learning: Regression vs. Classification

- Supervised Learning
 - o Regression: predict a continuous target variable
 - E.g., y ∈ [0,1]
 - Examples: stock market prediction, weather prediction, pose estimation.

- Classification: predict a <u>discrete</u> (unordered) target variable
 - E.g., y ∈ {1,2, ..., C}
 - Examples: image classification, face recognition, speech recognition,

Regression: Example

Housing price prediction

Classification: Example

Classification of tumors to Benign/Malignant according to attributes

Training data: Example

X_1	X ₂	Y	
0.9	2.3	0	
3.5	2.6	0	
2.6	3.3	0	
2.7	4.1	0	
1.8	3.9	0	
3.5	3	1	+
4.2	3.7	1	+
4.9	4.5	1	+
3.9	4.5	1	+
5.8	4.1	1	+
6.1	2.6	1	+

Classification: example

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF income > θ_1 AND savings > θ_2 THEN low-risk ELSE high-risk

Handwritten Digit Recognition Example

Data: labeled samples

Handwritten Digit Recognition Example

Components of (Supervised) Learning

- Unknown target function: $f: X \rightarrow Y$
 - Input space/input feature: X
 - Output space/output feature: Y

- Training data: $(x_1, y_1), (x_1, y_1), ..., (x_n, y_n)$
- Pick a formula h: X → Y that approximates the target function f
 - \circ selected from a set of hypotheses ${\cal H}$
 - hypothesis function h(x)

Components of (Supervised) Learning

We have some example pairs of (input, output) called training samples

$$(x_1, y_1), (x_1, y_1), \dots, (x_n, y_n)$$

- We want to select a function from the input space to the output space
 - \circ f: X \rightarrow Y
- We choose a set of hypotheses (candidate formulas)
 - o e.g., linear functions
- We use a learning algorithm to select a function from hypothesis set that approximates the target function

Components of (Supervised) Learning

A

HYPOTHESIS SET

Learning From Data A short course, Y. S. Abu-Mostafa, M. Magdon-Ismail, HT. Lin - (2012)

(Supervised) Learning problem

- Selecting a hypothesis space
 - Hypothesis space: a set of mappings from feature vector to target
- Learning: find mapping g training data (from hypothesis set) based on the training data
 - Which notion of error should we use? (loss functions)
 - Optimization of loss function to find mapping g
- Evaluation: we measure how well g generalizes to unseen example (generalization)

hypothesis space

Solution Components

Learning model composed of:

- Hypothesis set
- Learning algorithm

Perceptron example

Handwritten Digit Recognition Example

Data: labeled samples

Example: Input representation

- \blacksquare Raw input X=(x₀, x₁, ...x₂₅₆)
- Linear model input $W=(w_0, w_1, ..., w_{256})$
- Features: extract useful information e.g.,
 - o Intensity and symmetry $X(x_0, x_1, x_2)$
 - o Linear model: (w_0, w_1, w_2)

Feature

- Individual measurable property of a observable phenomenon
- Good feature: informative, discriminating and independent
- Examples:
 - o character recognition:
 - histograms counting the number of black pixels along horizontal and vertical directions, number of internal holes, stroke detection
 - o speech recognition,
 - noise ratios, length of sounds, relative power, filter matches
 - spam detection
 - presence or absence of certain email headers, the email structure, the language, the frequency of specific terms, the grammatical correctness of the text

Example: Illustration of features

 $X = (x_0, x_1, x_2)$ x_1 : intensity x_2 : symmetry

Perceptron classifier

- $\blacksquare \text{Input } \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_d]$
- Classifier:

If
$$\sum_{i=1}^{d} w_i x_i >$$
 threshold then output 1 else -1

- The linear formula $g \in \mathcal{H}$ can be written:
 - o G(x) = sign $(\sum_{i=1}^{d} w_i x_i \text{threshold})$
 - $G(x) = sign \left(\sum_{i=1}^{d} w_i x_i w_0 \right)$
 - o If we add a coordinate $x_0 = 1$ to the input
 - $\circ G(x) = sign \left(\sum_{i=0}^{d} w_i x_i\right)$

 $g(x)=sign(W^TX)$

Perceptron learning algorithm: linearly separable data

• Give the training data $(x_1, y_1), ..., (x_n, y_n)$

- Misclassified data (x_i, y_i) : sign $(W^TX_n) \neq y_n$
 - Repeat
 - Pick a misclassified data (x_i, y_i) from training data and update w:
 - $W = W + y_n x_n$
 - \circ Until all training data points are correctly classified by g

Example: Illustration of features

 $X = (x_0, x_1, x_2)$ x_1 : intensity x_2 : symmetry

Generalization

We don't intend to memorize data but want to distinguish the pattern.

- A core objective of learning is to generalize from the experience.
 - Generalization: ability of a learning algorithm to perform accurately on new, unseen examples after having experienced.

Supervised Learning vs. Unsupervised Learning

- Supervised learning
 - Given: Training set
 - labeled set of n input-output pairs D ={ $(x_1, y_1), ...(x_n, y_n)$ }
- Goal: learning a mapping from X to Y
- Unsupervised learning
 - o Given: Training set D = $\{(x_1), ...(x_n)\}$
- Goal: find groups or structures in the data
 - Discover the intrinsic structure in the data

Supervised Learning: Samples

Classification

Unsupervised Learning: Samples

Wants to use data to improve their knowledge on a task

Data in Unsupervised Learning

- Data are also usually considered as vectors in a d dimensional space
 - Columns:
 - Features
 - Attributes
 - o Dimensions
 - Rows:
 - o Data
 - o Points
 - Instances
 - o Examples
 - Samples
 - o Records
 - Y column:
 - Target
 - Outcome
 - Response
 - Label

$\overline{X} =$	$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$	$= [X_1, X_2, \ X_d]^T$
	$\lfloor_{\pmb{X}d} floor$	

	X 1	X 2	•••	X_d
Sample 1				
Sample 2				
Sample n-1				
Sample n				

$$X = [x_1, \dots, x_d]$$

Unsupervised learning

Clustering: partitioning of data into groups of similar data points.

- Dimensionality reduction/embedding: data representation using a smaller number of dimensions while preserving (perhaps approximately) some properties of the data.
- Density estimation

Some clustering purposes

- Preprocessing stage to index, compress, or summarize the data
- As a tool to understand the hidden structure in data or to group them
 - To gain knowledge (insight into the structure of the data) or
 - To group the data when no label is available
- Example Applications
 - Clustering docs based on their similarities
 - Grouping new stories in the Google news site
 - Market segmentation: group customers into different market segments given a database of customer data.
 - Community detection in social networks

Clustering of docs

Google news

Dimensionality reduction: Example

How to map the high dimensional data into a lower dimensional space in which the distance is more meaningful

Reinforcement learning

- Provides only an indication as to whether an action is correct or not (feedback)
- Data in supervised learning:
 - o (input, correct output)
- Data in Reinforcement Learning:
 - (input, a reward/penalty for this output)

Reinforcement Learning

- Typically, we need to get a sequence of decisions
- Usually, need to decide under uncertainty

Learn a policy that specifies the action for each state

Three dimensions of ML

- Data
 - Fully observed
 - Partially observed
 - Actively collecting data
- Task (i.e., what is the type of knowledge that we seek from data)
 - Prediction (i.e. classification or regression)
 - Control
 - Description
- Algorithm
 - Parametric models
 - Non-parametric models

Parametric models

- We consider a parametric boundary (e.g., hyper-plane, hyperbola, ...) and learn its parameters form data based on simplify or known form of model
 - The set of parameters does not grow with increasing the data

Benefits

- Simpler
- Speed
- Less Data

Limitations

- Constrained
- Limited Complexity
- Poor Fit

Non-parametric models

- We must store data and for each prediction, we need to process training data
- More data means a more complex model
 - Models that grow with the data

Benefits

- Flexibility
- Power
- Performance

Limitations

- More data
- Slower
- Overfitting

- k-NN classifier
 - Label for X predicted by majority voting among its k-NN.
 - Find k nearest training data to the new input and predict its label from the labels of its k nearest neighbors
 - The number of points to search scales with the training data

Discriminative model

- Goal
 - \circ Directly estimate P(y|x)P(y|x)
 - Focuses on predicting the labels of the data
- What's learned
 - Decision boundary
- Examples
 - o SVMs

Generative model

- Goal
 - \circ Estimate P(x|y)P(x|y) to then deduce P(y|x)P(y|x)
 - Focuses on explaining how the data was generated
- What's learned
 - Probability distributions of the data
- Examples
 - Naive Bayes

Reading

- C. M. Bishop, Pattern recognition and machine learning, Springer, 2006. (ch. 1)
- E. Alpaydin, Introduction to Machine Learning, 4th ed., The MIT Press, 2020. (ch. 1)
- Y. S. Abu-Mostafa, M. Magdon-Ismail, HT. Lin, Learning
 From Data A short course, 2012 (ch. 1)
- R. O. Duda, P. E. Hart. D. G. Stork, Pattern
 classification, 2nd ed., John Wiley & Sons, 2006. (ch. 1)

