Tanta University Faculty of Engineering Computer and Automatic Control

Electronics Circuits and Measurements Review on DC & AC Analysis Sheet: 1

- 1. For the network of Fig. 1:
 - (a) Determine Z_i and Z_o .
 - (b) Find A_v and A_i .
 - (c) Repeat part (a) with $r_o = 20 \text{ k}\Omega$.
 - (d) Repeat part (b) with $r_o = 20 \text{ k}\Omega$.
- 2. (**Report**) For the network of Fig. 2, determine V_{CC} for a voltage gain of $A_v = -200$.
- 3. For the network of Fig. 3:
 - (a) Determine r_e .
 - (b) Calculate Z_i and Z_o .
 - (c) Find A_{ν} and A_{i} .
 - (d) Repeat parts (b) and (c) with $r_o = 25 \text{ k}\Omega$.
- 4. For the network of Fig. 4:
 - (a) Determine r_e .
 - (b) Find Z_i and Z_o .
 - (c) Calculate A_v and A_i .
 - (d) Repeat parts (b) and (c) with $r_o = 20 \text{ k}\Omega$.
- 5. (**Report**) For the network of Fig. 5, determine R_E and R_B if $A_v = -10$ and $r_e = 3.8 \Omega$. Assume that $Z_b = \beta R_E$
- 6. For the network of Fig. 6:
 - (a) Determine r_e .
 - (b) Find Z_i and A_v .
 - (c) Calculate A_i .
- 7. (**Report**) For the network of Fig. 7:
 - (a) Determine Z_i and Z_o .
 - (b) Find A_{ν} .
 - (c) Calculate V_o if $V_i = 1$ mV.
- 8. For the network of Fig. 8, determine A_{ν} and A_{i}
- 9. For the collector FB configuration of Fig. 9:
 - (a) Determine r_e .
 - (b) Find Z_i and Z_o .

10. (**Report**) Given r_e = 10 , β = 200, A_v = -160, and A_i = 19 for the network of Fig. 10, determine R_C , R_F , and V_{CC} .

Fig.1 Fig.2

Fig.3 Fig.4

Fig.5 Fig.6 Fig.6 Fig.6 Fig.6 Fig.6 Fig.6 Fig.6 Fig.6 Fig.6 Fig.7 Fig.8 Fig.6 Fig.6

Fig.10