

SDIO PORT EXPANDER WITH VOLTAGE-LEVEL TRANSLATION

FEATURES

- 6-to-12 Demultiplexer/Multiplexer Allows SDIO Port Expansion
- Built-in Level Translator Eliminates Voltage Mismatch Between Baseband and SD Card or SDIO Peripheral
- V_{CCA}, V_{CCB0}, and V_{CCB1} Each Operate Over Full 1.1-V to 3.6-V Range
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance A Port
 - 2000-V Human-Body Model (A114-B)
 - 100-V Machine Model (A115-A)
 - 1500-V Charged-Device Model (C101)
- ±8-kV Contact Discharge IEC 61000-4-2 ESD Performance (B Port)

DESCRIPTION/ORDERING INFORMATION

The TXS02612 is designed to interface the cell phone baseband with external SDIO peripherals. The device includes a 6-channel SPDT switch with voltage-level translation capability. This allows a single SDIO port to be interfaced with two SDIO peripherals. The TXS02612 has three separate supply rails that operate over the full range of 1.1 V to 3.6 V. This allows the baseband and SDIO peripherals to operate at different supply voltages if required.

The select (SEL) input is used to choose between the B0 port and B1 port. When SEL = Low, B0 port is selected; when SEL = High, B1 port is selected. SEL is referenced to V_{CCA} . For the unselected B port, the clock output is held low, whereas the data and command I/Os are pulled high to their respective V_{CCB} through a 70-k Ω resistor (±30% tolerance).

ORDERING INFORMATION(1)

T _A	PACKAGE	(2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	MicroStar Junior™ BGA (VFBGA) – ZQS	Reel of 3000	TXS02612ZQSR	YJ612
	QFN – RTW	Reel of 3000	TXS02612RTWR	YJ612

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

For RTW, if the exposed center pad is used, it must be connected to ground or electrically open.

Table 1. ZQS PACKAGE TERMINAL ASSIGNMENTS

	1	2	3	4	5
Α	DAT2A	SEL	DAT3 _{B0}	CMD _{B0}	CLK _{B0}
В	DAT3A		DAT2 _{B0}	V _{CCB0}	DAT0 _{B0}
С	CMDA	V_{CCA}	GND	V _{CC B1}	DAT1 _{B0}
D	DAT0A	CLKA	GND	DAT1 _{B1}	DAT0 _{B1}
E	DAT1A	DAT2 _{B1}	DAT3 _{B1}	CMD _{B1}	CLK _{B1}

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

APPLICATION BLOCK DIAGRAM

PIN ASSIGNMENTS

RTW PACKAGE PIN NO.	ZQS PACKAGE BALL NO.	NAME	FUNCTION	TYPE
1	A1	DAT2A	Data bit 2. Referenced to V _{CCA} .	I/O
3	B1	DAT3A	Data bit 3. Referenced to V _{CCA} .	I/O
4	C1	CMDA	Command bit. Referenced to V _{CCA} .	I/O
6	D1	DAT0A	Data bit 0. Referenced to V _{CCA} .	I/O
7	E1	DAT1A	Data bit 1. Referenced to V _{CCA} .	I/O
24	A2	SEL	Select pin to choose between B0 and B1. Referenced to V _{CCA} .	Input
	B2		Depopulated	
5	C2	V_{CCA}	A-port supply voltage. 1.1 $V \le V_{CCA} \le 3.6 V$.	Power
9	D2	CLKA	Clock input A. Referenced to V _{CCA} .	Input
8	E2	DAT2 _{B1}	Data bit 2. Referenced to V _{CCB1} .	I/O
22	A3	DAT3 _{B0}	Data bit 3. Referenced to V _{CCB0} .	I/O
23	В3	DAT2 _{B0}	Data bit 2. Referenced to V _{CCB0} .	I/O
2	C3	GND	Ground	
11	D3	GND	Ground	
10	E3	DAT3 _{B1}	Data bit 3. Referenced to V _{CCB1} .	I/O
20	A4	CMD _{B0}	Command bit. Referenced to V _{CCB0} .	I/O
21	B4	V _{CCB0}	B0-port supply voltage. 1.1 V \leq V _{CCB0} \leq 3.6 V.	Power
17	C4	V _{CCB1}	B1-port supply voltage. 1.1 V \leq V _{CCB1} \leq 3.6 V.	Power
15	D4	DAT1 _{B1}	Data bit 1. Referenced to V _{CCB1} .	I/O
12	E4	CMD _{B1}	Command bit. Referenced to V _{CCB1} .	I/O
19	A5	CLK _{B0}	Clock output. Referenced to V _{CCB0} .	Output
18	B5	DAT0 _{B0}	Data bit 0. Referenced to V _{CCB0} .	I/O
16	C5	DAT1 _{B0}	Data bit 1. Referenced to V _{CCB0} .	I/O
14	D5	DAT0 _{B1}	Data bit 0. Referenced to V _{CCB1} .	I/O
13	E5	CLK _{B1}	Clock output. Referenced to V _{CCB1} .	Output

SIMPLIFIED INTERNAL STRUCTURE

Simplified Architecture of Command and Each Data Path

Simplified Architecture of the Clock Path

- A. R₁ and R₂ resistor values are determined based upon the logic level applied to the A port or B port, as follows:
 - R_1 and R_2 = 40 $k\Omega$ when a logic level low is applied to the A port or B port.
 - R_1 and R_2 = 4 $k\Omega$ when a logic level high is applied to the A port or B port.
 - R_1 and R_2 = 70 k Ω when the port is deselected.

FUNCTION TABLE

	Clock Channel											
SEL	CLKB0	CLKB1	OPERATION									
L	Active	Low	CLKA to CLKB0									
Н	Low	Active	CLKA to CLKB1									
	Da	ata and Command Channel										
SEL	DATxB0 or CMDxB0	DATxB1 or CMDxB1	OPERATION									
L	Active	Disabled, pulled to V_{CCB1} through 70 k Ω	DATxA to DATxB0, CMDA to CMDB0									
Н	Disabled, pulled to V_{CCB0} through 70 k Ω	Active	DATxA to DATxB1, CMDA to CMDB1									

ABSOLUTE MAXIMUM RATINGS(1) (2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CCA} V _{CCB0} V _{CCB1}	Supply voltage range (2)		-0.5	4.6	٧
VI	Input voltage range	A port, B0 port, B1 port, control inputs	-0.5	V _{CCx} + 0.5	V
Vo	Voltage range applied to any output in the high-impedance or power-off state	A port, B0 port, B1 port	-0.5	V _{CCx} + 0.5	V
I_{IK}	Input clamp current	V _I < 0		-50	mA
lok	Output clamp current	V _O < 0		- 50	mA
I _{CC} /	Continuous current through V_{CCA} , V_{CCB0} , V_{CCB1} , or GND			±100	mA
T _{stg}	Storage temperature range	·	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

PACKAGE THERMAL IMPEDANCE

	PARAMETER		UNIT	
0	Dealine at the armed improduces	RTW package	66	90.44
θ _{JA} Package thermal impedance		ZQS package	171.6	°C/W

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

			V _{CCA}	V _{CCBx} ⁽¹⁾	MIN	MAX	UNIT
V _{CCA} V _{CCB0} V _{CCB1}	Supply voltage				1.1	3.6	V
		A-port I/Os			V _{CCI} - 0.2	V_{CCI}	
V_{IH}	High-level input voltage	B-port I/Os	1.1 V to 3.6 V	1.1 V to 3.6 V	V _{CCI} - 0.2	V _{CCI}	V
		SEL, CLKA			$V_{CCA} \times 0.65 V$	3.6	
		A-port I/Os			0	0.15	
V_{IL}	Low-level input voltage	B-port I/Os	1.1 V to 3.6 V	1.1 V to 3.6 V	0	0.15	V
		SEL, CLKA			0	$V_{CCA} \times 0.35$	
Δt/Δν	Input transition rise or fall rate	CLK, SEL				10	ns/V
T _A	Operating free-air temperature				-40	85	°C

⁽¹⁾ V_{CCBx} refers to V_{CCB0} and V_{CCB1} .

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS	V	V	$T_A = 25^{\circ}C$	$T_A = -40^{\circ}C$ to	85°C	UNIT
PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCBx}	TYP	MIN	MAX	UNII
		1.1 V	1.1 V		0.74		
V_{OHA}		1.4 V	1.4 V		V _{CCA} × 0.67		
(DATA &	$I_{OH} = -20 \mu A,$ $V_{IBx} \ge V_{CCBx} - 0.2 V$	1.65 V	1.65 V		V _{CCA} × 0.67		V
CMD)	VIBX = VCCBX U.2 V	2.3 V	2.3 V		V _{CCA} × 0.67		
		3 V	3 V		V _{CCA} × 0.67		
	$I_{OL} = 135 \mu A, V_{IBx} \le 0.15 V$	1.1 V	1.1 V			0.35	
V_{OLA}	$I_{OL} = 180 \mu A, V_{IBx} \le 0.15 V$	1.4 V	1.4 V			0.35	
(DATA &	I _{OL} = 220 μA, V _{IBx} ≤ 0.15 V	1.65 V	1.65 V			0.45	V
CMD)	I _{OL} = 300 μA, V _{IBx} ≤ 0.15 V	2.3 V	2.3 V			0.55	
	$I_{OL} = 620 \mu A, V_{IBx} \le 0.15 V$	3 V	3 V			0.70	
		1.1 V	1.1 V		0.74		
V_{OHB}		1.4 V	1.4 V		V _{CCBx} × 0.67		
(DATA & CMD)	$I_{OH} = -20 \mu A,$ $V_{IAx} \ge V_{CCAx} - 0.2 V$	1.65 V	1.65 V		$V_{CCBx} \times 0.67$		V
		2.3 V	2.3 V		$V_{CCBx} \times 0.67$		
		3 V	3 V		$V_{CCBx} \times 0.67$		
	$I_{OH} = -0.5 \text{ mA}$	1.1 V	1.1 V		0.74		
	I _{OH} = - 1 mA	1.4 V	1.4 V		1.05		
V _{OHCLKB}	I _{OH} = - 2 mA	1.65 V	1.65 V		1.2		V
	I _{OH} = - 4 mA	2.3 V	2.3 V		1.75		
	$I_{OH} = -8 \text{ mA}$	3 V	3 V		2.3		
	$I_{OL} = 135 \mu A, V_{IAx} \le 0.15 V$	1.1 V	1.1 V			0.35	
V_{OLB}	I _{OL} = 180 μA, V _{IAx} ≤ 0.15 V	1.4 V	1.4 V			0.35	
(DATA &	I _{OL} = 220 μA, V _{IAx} ≤ 0.15 V	1.65 V	1.65 V			0.45	V
CMD)	$I_{OL} = 300 \mu A, V_{IAX} \le 0.15 V$	2.3 V	2.3 V			0.55	
	$I_{OL} = 620 \mu A, V_{IAX} \le 0.15 V$	3 V	3 V			0.70	
	I _{OL} = 0.5 mA	1.1 V	1.1 V			0.35	
	I _{OL} = 1 mA	1.4 V 1.4 V					
/ _{OLCLKB}	I _{OL} = 2 mA	1.65 V	1.65 V			0.45	V
	I _{OL} = 4 mA	2.3 V	2.3 V			0.55	
	I _{OL} = 8 mA	3 V	3 V			0.7	

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST COMPITIONS	V	V	T _A = 25°C	$T_A = -40^{\circ}C$ to $85^{\circ}C$	LINUT
PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCBx}	TYP	MIN MAX	UNIT
	SEL, CLKA	1.1 V to 3.6 V	1.1 V to 3.6 V	±1	±2	^
11	DAT, CMD	1.1 V 10 3.6 V	1.1 V 10 3.6 V	±1	±2	μА
		1.1 V to 3.6 V	1.1 V to 3.6 V		12	
I _{CCA}	$V_I = V_O = Open, I_O = 0,$ SEL, CLK = High or Low	3.6 V	0 V		12	μΑ
	oce, ocit - riigh of Low	0 V	3.6 V		-1	
		1.1 V to 3.6 V	1.1 V to 3.6 V		24	
I _{CCB0} or I _{CCB1}	$V_I = V_O = Open, I_O = 0,$ SEL, CLK = High or Low	3.6 V	0 V		-12	μΑ
ICCB1	OLL, OLK = High of Low	0 V	3.6 V		24	
C _i	SEL, CLKA	3.3 V	3.3 V	2.5	3.5	pF
C	A port	221	221/	7	7.5	, r
C _{io}	B port	3.3 V	3.3 V	9.5	10	pF

TIMING REQUIREMENTS

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 \text{ V}$

	/ COA			V _{CCB} = 1.2 V	V _{CCB} = 1.5 V	V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	V _{CCB} = 3.3 V	LINIT
				TYP	TYP	TYP	TYP	TYP	UNIT
	0	Push-pull dri	ving	60	80	120	120	120	Mhaa
Data	Command	Open-drain o	Iriving	2	2	2	2	2	Mbps
rate Clock	Clock	Push-pull driving		30	40	60	60	60	MHz
	Data	Push-pull driving		60	80	120	120	120	Mbps
		Push-pull driving	CLK	17	13	8	8	8	
t _w	Pulse duration	Open-drain driving	CMD	500	500	500	500	500	ns
		Push-pull	Data	17	13	8	8	8	
		driving	CMD	17	13	8	8	8	

TIMING REQUIREMENTS

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (unless otherwise noted)

				V _{CCB} = 1.2 V	V _{CCB} = ± 0.7		V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 2.5 V ± 0.2 V		V _{CCB} = 3.3 V ± 0.3 V		UNIT
				TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Command	Push-pull dri	ving	60		80		120		120		120	Mhna
Data	Command	Open-drain o	Iriving	2		2		2		2		2	Mbps
rate	Clock	Push-pull dri	ving	30		40		60		60		60	MHz
	Data	Push-pull driving		60		80		120		120		120	Mbps
	Pulse duration	Push-pull driving	CLK	17	13		8		8		8		
t _w		Open-drain driving	CMD	500	500		500		500		500		ns
'	duration	Push-pull	Data	17	13		8		8		8		
		driving	CMD	17	13		8		8		8		

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted)

				V _{CCB} = 1.2 V	V _{CCB} = ± 0.7		V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 2.5 V ± 0.2 V		V _{CCB} = 3.3 V ± 0.3 V		UNIT
				TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	0	Push-pull dri	ving	60		80		120		120		120	Maria
Data	Command	Open-drain driving		2		2		2		2		2	Mbps
rate	Clock	Push-pull driving		30		40		60		60		60	MHz
	Data	Push-pull driving		60		80		120		120		120	Mbps
		Push-pull driving	CLK	17	13		8		8		8		
t _w	Pulse duration	Open-drain driving	CMD	500	500		500		500		500		ns
		Push-pull	Data	17	13		8		8		8		
		driving	CMD	17	13		8		8		8		

TIMING REQUIREMENTS

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

				V _{CCB} = 1.2 V	V _{CCB} = ± 0.1		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
				TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Command	Push-pull dri	ving	60		80		120		120		120	Mbps
Data	Command	Open-drain o	driving	2		2		2		2		2	Minha
rate	Clock	Push-pull dri	ving	30		40		60		60		60	MHz
	Data	Push-pull dri	ving	60		80		120		120		120	Mbps
		Push-pull driving	CLK	17	13		8		8		8		
t _w	Pulse duration	Open-drain driving	CMD	500	500		500		500		500		ns
		Push-pull	Data	17	13		8		8		8		
		driving	CMD	17	13		8		8		8		

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 3.3 V ± 0.3 V (unless otherwise noted)

				V _{CCB} = 1.2 V	V _{CCB} = ± 0.7		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
				TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	C	Push-pull dri	ving	60		80		120		120		120	Mha
Data	Command	Open-drain o	driving	2		2		2		2		2	Mbps
rate	Clock	Push-pull dri	ving	30		40		60		60		60	MHz
	Data	Push-pull dri	ving	60		80		120		120		120	Mbps
		Push-pull driving	CLK	17	13		8		8		8		
t _w	Pulse	Open-drain driving	CMD	500	500		500		500		500		ns
		Push-pull	Data	17	13		8		8		8		
		driving	CMD	17	13		8		8		8		

SWITCHING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 \text{ V}$

PARAMETER	FROM	то	TEST	V _{CCB} = 1.2 V	V _{CCB} = 1.5 V	V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	V _{CCB} = 3.3 V	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	TYP	TYP	TYP	TYP	TYP	UNII
	CMDA	CMDB	Push-pull driving	5.9	4.8	4.4	4	4.46	
	CIVIDA	CIVIDB	Open-drain driving	238	214	192	159	140	
	CMDB	CMDA	Push-pull driving	5.6	4.8	4.4	4.1	4	
	CIVIDB	CIVIDA	Open-drain driving	227	201	176	137	114	no
t _{PD}	CLKA	CLKB	Push-pull driving	5.5	4.1	3.6	3.2	3	ns
	DATA	DATB	Push-pull driving	5.8	4.8	4.4	4.2	6.8	
	DATB	DATA	Push-pull driving	5.6	4.8	4.4	4.1	4	
	SEL	B-Port	Push-pull driving	13	11	10	9.4	9.1	
t _{rA}	A-port	rise time	Push-pull driving	4.8	5.1	5.1	5.3	5.7	
rB	B-port	rise time	Push-pull driving	6.1	3.8	2.9	1.9	1.5	
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	3.4	2.6	1.7	1.3	
t _{fA}	A-port fall time		Push-pull driving	3.4	2.8	2.6	2.6	2.6	ns
t _{fB}	B-port	fall time	Push-pull driving	4.2	3	2.3	1.7	1.5	
t _{fB}	CLKA	CLKB	Push-pull driving	3.1	2.1	1.6	1.2	1	
	ChA-to-	ChB skew	Push-pull driving	0.4	0.4	0.3	0.4	0.4	
tura	ChB-to-	ChA skew	Push-pull driving	0.3	0.3	0.3	0.3	0.4	ns
t _{sk(O)}		el-to-Clock kew	Push-pull driving	1.68	1.5	1.5	1.5	1.7	113
			Push-pull driving	60	80	120	120	120	
Marrialata wata	Command	Open-drain driving	2	2	2	2	2	Mbps	
Max data rate	С	lock	Push-pull driving	30	40	60	60	60	MHz
	D	ata	Push-pull driving	60	80	120	120	120	Mbps

SWITCHING CHARACTERISTICS

over operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V V	V _{CCB} = 1 ± 0.15		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(INFUI)	(OUTPUT)	CONDITIONS	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	CMDA	CMDB	Push-pull driving	5.1		13		9		8		7.5	
	CIVIDA	CIVIDB	Open-drain driving	210		777		756		684		758	
	CMDB	CMDA	Push-pull driving	4.5		10.6		9.2		8.5		8.2	
	CIVIDB	CIVIDA	Open-drain driving	200		616		560		433		375	ns
t _{PD}	CLKA	CLKB	Push-pull driving	4.7		13.1		9.8		6		5.2	115
	DATA	DATB	Push-pull driving	5.1		13		9		8		7.8	
	DATB	DATA	Push-pull driving	4.5		11		9.3		8.8		8.4	
	SEL	B-Port	Push-pull driving	9.5		26		21		19		18	
t _{rA}	A-port	rise time	Push-pull driving	2.7	1.5	5.8	1.7	5.9	1.7	6	1.8	6.1	
t _{rB}	B-port	rise time	Push-pull driving	3.3	1.7	8.2	1.3	6.6	1	4.3	0.8	2.9	ns
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	1.7	6.4	1.3	4.9	0.9	3.2	0.8	2.5	
t _{fA}	A-port	fall time	Push-pull driving	2.4	1	3.9	0.9	3.4	0.9	3.2	1.3	3.3	
t _{fB}	B-port	fall time	Push-pull driving	3.7	1.1	6.3	0.9	5.2	0.6	3.9	0.6	3.2	ns
t _{fB}	CLKA	CLKB	Push-pull driving	3.1	0.9	4.1	0.8	3.2	0.5	2.2	0.5	1.9	
	ChA-to-	ChB skew	Push-pull driving	0.32		0.47		0.58		0.63		0.63	
t _{sk(O)}	ChB-to-	ChA skew	Push-pull driving	0.27		0.24		0.23		0.22		0.22	ns
*SK(O)		el-to-Clock kew	Push-pull driving	1.47		1.66		1.68		1.82		1.77	
Many data anta	Command	Push-pull driving	60		80		120		120		120	Maria	
		Open-drain driving	2		2		2		2		2	Mbps	
Max data rate	С	lock	Push-pull driving	30		40		60		60		60	MHz
	D	ata	Push-pull driving	60		80		120		120		120	Mbps

SWITCHING CHARACTERISTICS

over operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V V	V _{CCB} = ± 0.15		V _{CCB} = : ± 0.2	2.5 V V	V _{CCB} = ± 0.3		UNIT
	(INPUT)	(001701)	CONDITIONS	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	CMDA	CMDB	Push-pull driving	4.8		12		8		6		5.7	
	CIVIDA	CIVIDB	Open-drain driving	183		726		715		686		780	
	CMDB	CMDA	Push-pull driving	4		9		7		6.4		6	
	CIVIDB	CIVIDA	Open-drain driving	175		565		563		441		392	
t _{PD}	CLKA	CLKB	Push-pull driving	4.5		13		9		5.4		4.5	ns
	DATA	DATB	Decelor and definition	4.7		12		8.4		6		5.8	
	DATB	DATA	Push-pull driving	4.1		9		7.5		6.4		6.3	
	SEL	B-Port	Push-pull driving	8.2		22		17		14.8		14	
t _{rA}	A-port	rise time	Push-pull driving	2	1.1	4	1.1	4.3	1.2	4.5	1.3	4.6	
t _{rB}	B-port	rise time	Push-pull driving	6.2	1.7	7.9	1.2	6.2	1	4.3	8.0	3.1	ns
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	1.7	6.4	1.3	4.9	0.9	3.2	8.0	2.5	
t _{fA}	A-port	fall time	Push-pull driving	1.8	0.8	3.2	0.7	2.8	0.7	1.7	0.7	2.6	
t_{fB}	B-port	fall time	Push-pull driving	3.5	1	5.6	0.9	3.5	0.6	1.9	0.6	3	ns
t_{fB}	CLKA	CLKB	Push-pull driving	3.1	0.9	4.1	0.8	3.2	0.5	2.2	0.5	1.9	
	ChA-to-	ChB skew	Push-pull driving	0.33		0.45		0.48		0.53		0.67	
t _{sk(O)}	ChB-to-	ChA skew	Push-pull driving	0.28		0.24		0.23		0.23		0.22	ns
*SK(O)		el-to-Clock kew	Push-pull driving	1.51		1.58		1.46		1.56		1.48	110
	0	d	Push-pull driving	60		80		120		120		120	Misses
NA	Con	Command	Open-drain driving	2		2		2		2		2	Mbps
Max data rate	С	lock	Push-pull driving	30		40		60		60		60	MHz
		Data	Push-pull driving	60		80		120		120		120	Mbps

SWITCHING CHARACTERISTICS

over operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1		V _{CCB} = ± 0.15		V _{CCB} = ± 0.2	2.5 V ! V	V _{CCB} = ± 0.3		UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	CMDA	CMDB	Push-pull driving	4.4		11		7.4		4.4		3.8	
	CIVIDA	CIVIDB	Open-drain driving	143		544		596		605		669	
	CMDB	CMDA	Push-pull driving	3.8		7.6		5.5		4.2		3.7	
	CIVIDB	CIVIDA	Open-drain driving	137		434		444		414		372	20
t _{PD}	CLKA	CLKB	Push-pull driving	4.1		12		8		4.8		3.8	ns
	DATA	DATB	Duck pull deising	4.4		11		7		4.5		3.8	
	DATB	DATA	Push-pull driving	4.4		8		5.5		4.1		3.7	
	SEL	B-Port	Push-pull driving	7		18		13		10.5		9	
t _{rA}	A-port	rise time	Push-pull driving	1.4	0.75	2.2	0.74	2.2	1.06	2.6	0.7	2.8	
t _{rB}	B-port	rise time	Push-pull driving	6.3	1.91	7.7	1.34	6.1	0.95	4.2	0.83	3.2	ns
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	1.67	6.4	1.27	4.9	0.9	3.2	0.76	2.6	
t _{fA}	A-port	fall time	Push-pull driving	1.1	0.58	1.9	0.58	2	0.61	1.9	0.57	1.9	
t _{fB}	B-port	fall time	Push-pull driving	3.6	1.04	5.4	0.87	4.3	0.66	3.4	0.57	3	ns
t_{fB}	CLKA	CLKB	Push-pull driving	3.1	0.92	4.2	0.79	3.2	0.56	2.2	0.49	1.9	
	ChA-to-	ChB skew	Push-pull driving	0.41		0.43		0.39		0.59		0.68	
t _{sk(O)}	ChB-to-	ChA skew	Push-pull driving	0.41		0.24		0.2		0.19		0.18	ns
*SK(O)		el-to-Clock kew	Push-pull driving	2.11		1.47		1.3		1.25		1.21	110
	0		Push-pull driving	60		80		120		120		120	Misse
Man data as	Command	Open-drain driving	2		2		2		2		2	Mbps	
Max data rate	С	lock	Push-pull driving	30		40		60		60		60	MHz
		ata	Push-pull driving	60		80		120		120		120	Mbps

SWITCHING CHARACTERISTICS

over operating free-air temperature range, V_{CCA} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER	FROM	TO (OUTPUT)	TEST	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V V	V _{CCB} = ± 0.15		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	CMDA	CMDB	Push-pull driving	4.4		11		7		4.1		3.3	
	CIVIDA	CIVIDB	Open-drain driving	116		432		477		506		533	
	CMDB	CMDA	Push-pull driving	4.2		7.5		5.4		3.8		3	
•	CIVIDB	CIVIDA	Open-drain driving	112		349		363		347		324	ns
t _{PD}	CLKA	CLKB	Push-pull driving	4.1		12		7.8		4.4		3.5	115
	DATA	DATB	Push-pull driving	4.3		11		6.8		4		3.8	
	DATB	DATA	r usii-puii uiiviiig	7.9		7.8		5.4		3.4		3	
	SEL	B-Port	Push-pull driving	6.4		16		11.5		8.8		7.6	
t _{rA}	A-port	rise time	Push-pull driving	1.1	0.57	1.7	0.57	1.8	0.56	1.7	0.53	1.8	
t _{rB}	B-port	rise time	Push-pull driving	6.2	1.96	7.7	1.43	6.1	0.95	4.2	0.71	3.1	ns
t _{rB}	CLKA	CLKB	Push-pull driving	5.2	1.67	6.4	1.26	4.9	0.91	3.3	0.76	2.5	
t _{fA}	A-port	fall time	Push-pull driving	1	0.53	1.6	0.52	1.6	0.53	1.6	0.56	1.6	
t _{fB}	B-port	fall time	Push-pull driving	3.4	0.95	5.2	0.8	4.1	0.63	3.2	0.58	2.9	ns
t _{fB}	CLKA	CLKB	Push-pull driving	3.1	0.92	4.1	0.79	3.2	0.56	2.2	0.49	1.9	
	ChA-to-	ChB skew	Push-pull driving	0.39		0.36		0.39		0.57		0.65	
t-1/(0)	ChB-to-	ChA skew	Push-pull driving	0.45		0.3		0.19		0.19		0.18	ns
t _{sk(O)}		el-to-Clock kew	Push-pull driving	1.7		1.61		1.34		1.22		1.14	
		Push-pull driving	60		80		120		120		120	Misses	
	Con	nmand	Open-drain driving	2		2		2		2		2	Mbps
Max data rate	С	lock	Push-pull driving	30		40		60		60		60	MHz
	D	ata	Push-pull driving	60		80		120		120		120	Mbps

OPERATING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

						V_{CCA}			
				1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
		PARAMETER	TEST CONDITIONS			V _{CCB}		•	UNIT
				1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
				TYP	TYP	TYP	TYP	TYP	
		A-port input, B-port output		14.5	12.9	12.1	13.4	15	
Data	C _{pdA}	B-port input, A-port output	$C_L = 0, f = 10 \text{ MHz},$	20.7	20.7	21	22	23.2	
and		A-port input, B-port output	$t_r = t_r = 1 \text{ ns},$ OE = outputs enabled	23.2	23.4	23.6	24.5	25.5	pF
CMD	C_{pdB}	B-port input, A-port output	·	14.1	12.2	11.5	12.9	14.4	
		A-port input, B-port output	OE = outputs disabled	0.1	0.1	0.1	0.1	0.1	
٠	C_{pdA}		$C_L = 0$, $f = 10 \text{ MHz}$,		0.4	0.4	0.5	0.7	
Clock	t t	$t_r = t_r = 1 \text{ ns},$ OE = outputs enabled		13.9	13.8	13.8	13.7	pF	

POWER-UP CONSIDERATIONS

The following power-up sequence for this TXS02612 SDIO port expander with voltage-level translator should be followed to ensure proper operation and to avoid any unnecessary excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins. The following power-up sequence should be used to safe-guard against these problems:

- 1. Connect the ground pin of the device first before any power-supply voltage is applied.
- 2. Connect and power up V_{CCA}, which internally powers up the SEL control logic of the TXS02612.
- 3. Depending on the port to be chosen, the SEL pin can be high or low. If SEL high is needed (i.e., A port to B_1 port), ramp the SEL pin with the V_{CCA} power supply. Otherwise, keep SEL Low.
- 4. Apply V_{CCB0} and V_{CCB1} only after the V_{CCA} power supply is applied.

PARAMETER MEASUREMENT INFORMATION

DATA RATE, PULSE DURATION, PROPAGATION DELAY, ENABLE/DISABLE
OUTPUT RISE AND FALL TIME MEASUREMENT USING
A PUSH-PULL DRIVER

DATA RATE, PULSE DURATION, PROPAGATION DELAY,
OUTPUT RISE AND FALL TIME MEASUREMENT USING
AN OPEN-DRAIN DRIVER

ENABLE AND DISABLE TIMES

NOTES:

A. C_L includes probe and jig capacitance.

PROPAGATION DELAY TIMES

- B. Waveform 1 is for an output with internal conditions such that the output is lowexcept when disabled by the output control. Waveform2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z_Ω = 50Ω, dv/dt≥ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{HZ} are the same as t_{is} .
- F. t_{PZL} and t_{PZH} are the same as t_{PZL} .
- G. t_{PLH} and t_{HL} are the same as t_d.
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

20-Jan-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TXS02612RTWR	ACTIVE	WQFN	RTW	24	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YJ612	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXS02612RTWR	WQFN	RTW	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	TXS02612RTWR	WQFN	RTW	24	3000	356.0	356.0	35.0

4 x 4, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC QUAD FLATPACK-NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated