Amendments to the Specification

Please replace paragraph [0009] with the following amended paragraph:

[0009] Briefly, the present invention provides a multiple catheter assembly. The assembly includes a first catheter having a first proximal end region, a first distal end region terminating in a first distal tip, and an outer surface defining at least a first lumen extending longitudinally therethrough between a first distal and a first proximal opening. The assembly also includes a second catheter having a second proximal end region, a second distal end region terminating in a second distal tip, and a second outer surface defining at least a second lumen extending longitudinally therethrough between a second distal and a second proximal opening. The first lumen and the second lumen are independent from each other for facilitating simultaneous flow in opposite directions. The outer surfaces of the first and second catheters are releasably joined for allowing the first and second distal tips and first and second proximal end regions to be at least partially longitudinally split from each other. In this regard, the bond has a proximal end initially spaced a first initial distance from the first proximal end and a second initial distance from the second proximal end, wherein the distances from the proximal ends of first and second flexible catheters to the bond proximal end may be increased by splitting the splittable bond.

Please replace paragraph [0029] with the following amended paragraph:

[0029] The multiple catheter assembly 100 includes a cannulating portion 102 defined by an outer surface 104. The multiple catheter assembly 100 further includes a first catheter 110 at least partially releasably joined to a second catheter 130. The first catheter 110 includes a first proximal end region 112 concluding in a first proximal end 111, and a first distal end region 114 having a first distal tip 116. The first distal tip 116 has a first distal opening 118. The first catheter 110 also has a first outer surface 120 defining a first lumen 122. The first lumen 122 fluidly communicates with the first distal opening 118. The second catheter 130 includes a second proximal end region 132 concluding in a second proximal end 131, and a second distal end region 134 having a second distal tip 136. First and second proximal ends 111, 131 are seen in Fig. 1 to extend through hub 150 and beyond the proximal end thereof. The second distal tip 136 has a second distal opening 138. The second catheter 130 also has a second outer surface

140 defining a second lumen 142. The second lumen 142 fluidly communicates with the second distal opening 138. Preferably, the first distal tip 116 ends approximately 2.5 cm proximate of the second distal tip 136. As such, the distal end of the bond is initially spaced an initial distance from the first distal end and a different initial distance from the second distal end. The first catheter 110 is preferably an arterial lumen used to draw fluid, such as blood, from the patient, while the second catheter 130 is preferably a venous lumen used to return the fluid to the patient after processing, such as by hemodialysis. The approximate 2.5 cm distance difference between the first distal tip 116 and the second distal tip 136 serves to reduce recirculation of the fluid that has already been processed.

Please replace paragraph [0036] with the following amended paragraph:

[0036] Still referring to Fig. 1, a longitudinally translatable hub 150 is releasably connected to the proximal regions 112, 132 of the first and second catheters 110, 130, respectively. A preferred hub 150 is disclosed in U.S. Patent No. 7,261,708 issuing on Application Serial No. 10/691,331 filed on even date herewith, which is incorporated by reference herein in its entirety as though fully set forth, although those skilled in the art will recognize that other hub designs may be used, or that the hub 150 may be omitted in its entirety. The hub 150, as shown in Figs. 1, 5, and 6, is operable between an open position and a closed position and has a distal end 152 and a proximal end 154. The hub 150 is designed to allow both of the catheters 110, 130 in the multiple catheter assembly 100 to enter the distal end 152 of the hub 150 together. A distal channel 155 runs longitudinally through the hub 150 to house the catheters 110, 130. At a predetermined point along the hub 150, the distal channel 155 branches out, from the single distal channel 155, near the distal end 152 of the hub 150, to a first proximal channel 158 and a second proximal channel 159 near the proximal end 154 of the hub 150. Each of the first proximal and second proximal channels 158, 159 houses one or more individual catheters 110, 130 but less than the number of catheters housed by the distal channel 155. In the present embodiment, as shown in Figs. 1, 5, and 6, the distal end 152 of the hub 150 is designed to juxtapose the first catheter 110 and second catheter 130 against each other and the proximal end 154 of the hub 150 is designed to separate the first catheter 110 from the second catheter 130. More specifically, the first proximal channel 158 is configured for passage of the first flexible catheter 110 and has a length less than the initial distance of the proximal end 111 of the first

catheter 110 to the proximal end 182 of the bond such that the first flexible catheter 110 extends from the proximal opening of the hub 150 and the second proximal channel 159 is configured for passage of the second flexible catheter 130 and has a length less the initial distance of the proximal end 131 of the second catheter 131 to the proximal end 182 of the bond such that the second flexible catheter 130 extends from the proximal opening of the hub 150. The hub 150 may also be slid longitudinally along the multiple catheter assembly 100. The distal channel 155 and the first and second proximal channels 158, 159 of the hub are sized so that the hub 150 may frictionally maintain its place on the multiple catheter assembly 100.