## Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning

DeepMind, Imperial College

### 0. Index

- ◆ Introduction
- ◆ Design
- **◆**Evaluation
- **◆**Conclusion

### 01. Introduction

How to Solve Cats VS Dogs problem?

































**≠** 



- Contrastive Learning
  - 유사한 이미지가 저차원 공간에서 서로 가깝게, 다른 이미지는 서로 멀리 떨어져 있도록 저차원 공간에서 이미지를 인코딩하는 방법을 모델이 학습하는 것을 의미

- ◆ Contrastive Learning의 단점
  - Require careful treatment of negative pairs
    - ✓ Negative pairs를 제공하는 전략을 고려할 필요 있음ex) SimCLR: Batch Size
  - Choice of Image Augmentation
    - ✓ Augmentation 조합에 따라 모델의 성능이 크게 좌우됨



Requires comparing each representation of an augmented view with many negative example

- Collapsed representation (Mode collapse)
  - Positive pairs로만 학습을 하는 경우 모델이 constant vector만을 출력하는 문제
    - ✓ Train loss는 작아지지만 학습은 전혀 안되는 문제 발생



- Collapsed representation (Mode collapse)
  - Contrastive loss는 positive와 negative sample을 모두 사용하여 collapse를 방지
    - ✓ Positive pair간의 유사도가 크고 Negative pair간의 유사도가 작을수록 loss값이 작아짐

$$L_{i,j} = -\log \frac{\exp\left(\frac{sim(\boldsymbol{z_i}, \boldsymbol{z_j})}{\tau}\right)}{\sum_{k=1}^{N} \left[k \neq i\right]} \exp\left(\frac{sim(\boldsymbol{z_i}, \boldsymbol{z_k})}{\tau}\right)}$$
 Cosine similarity (Negative pair)

### 01. Introduction: BYOL

- Bootstrap Your Own Latent (BYOL)
  - 기존 Contrastive learning에서 negative sample에 의존하는 방식을 벗어나고자 함
  - Positive sample만으로 mode collapse 현상 없이 representation learning 가능



# 02. Design

# 02. Design: Overview

- Core Motivation of BYOL
  - BYOL의 Motive가 된 간단한 실험
    - ✓ Case 1) Encoder(random parameter / freeze) + MLP



## 02. Design: Overview

- Core Motivation of BYOL
  - BYOL의 Motive가 된 간단한 실험
    - ✓ Case 2) Case 1과 동일한 구조의 네트워크를 생성하여 Case 1의 네트워크가 출력한 값을 예측하도록 학습



## 02. Design: Overview

- Core Motivation of BYOL
  - BYOL의 Motive가 된 간단한 실험
    - ✓ if) 만약 Model B의 파라미터를 이용하여 타겟이 되는 Model A의 파라미터를 update한다면? (Bootstrap)



## 02. Design: Model Structure

- Architecture of BYOL
  - 파라미터를 업데이트하는 방식이 서로 다른 동일한 구조의 두 네트워크로 구성됨 (Online Network / Target Network)
     두 네트워크 모두 Encoder와 Projector를 보유하나 Predictor는 Online Network에서만 보유함

  - Target Network에서 출력한 representation vector를 Online Network에서 예측하는 훈련을 진행함



### 02. Design: Model Structure

- Target Network update in BYOL
  - Exponential moving average
    - ✓ Online Network의 weight를 이용하여 Target Network의 weight를 점진적으로 update하는 방식
    - $\checkmark$  Cosine annealing을 사용하여 학습이 진행될수록  $\tau$ 를 점점 1에 가까운 값으로 키움



$$\tau \triangleq 1 - (1 - \tau_{base}) \cdot \frac{\left(\cos\frac{\pi k}{K} + 1\right)}{2}$$

K: Maximum Number of Training step

k: Current Training step

### 02. Design: Loss Function

- Loss Function of BYOL
  - L2 loss
    - ✓ 각 네트워크의 Prediction과 Projection에 L2 정규화를 취한 뒤 loss를 계산

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}(z_{\theta})} - \overline{\mathbf{z}'_{\xi}} \right\|_{2}^{2}$$

$$= 2 - 2 \cdot \frac{\left\langle q_{\theta}(z_{\theta}), \mathbf{z}'_{\xi} \right\rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| \mathbf{z}'_{\xi} \right\|_{2}}$$

$$\overline{q_{\theta}(z_{\theta})} \triangleq \frac{q_{\theta}(z_{\theta})}{\|q_{\theta}(z_{\theta})\|_{2}} \qquad \overline{\mathbf{z}'_{\xi}} \triangleq \frac{\mathbf{z}'_{\xi}}{\|\mathbf{z}'_{\xi}\|_{2}}$$

- Loss Function symmetrization
  - ✓ Augmentation 조합을 교환하여 loss를 한번 더 계산

$$\mathcal{L}_{\theta,\xi}^{BYOL} = \mathcal{L}_{\theta,\xi} + \tilde{\mathcal{L}}_{\theta,\xi}$$



### 02. Design: Optimization

- Optimization strategy of BYOL
  - ✓ Online Network와 Target Network의 파라미터는 서로 다른 방식으로 갱신된다.
  - $\checkmark$  앞에서 계산한 loss function은 Online Network의 파라미터  $\theta$ 에 대해서만 최적화됨
  - $\checkmark$  Target Network의 파라미터  $\xi$ 의 경우, 앞서 언급했던 것처럼  $\theta$ 를 이용한 Exponential moving average를 통해 업데이트됨

$$heta=optimizer( heta,
abla_{ heta}\mathcal{L}_{ heta,\xi}^{BYOL},\eta)$$
  $\eta$  =learning rate  $\xi= au\xi+(1- au) heta$ 

## 02. Design: Collapsed representation

#### Collapsed representation

- Positive pair만 사용하였을 때 Mode Collapse가 발생하는 이유
  - ✓ Contrastive learning의 경우, negative samples을 제외하면 별도의 규제항이 없기 때문에, positive samples에 overfitting되면서 collapsed representation을 출력
  - ✓ collapsed representation을 내보내는 것은 모델의 출력이 바뀌지 않는다는 것을 의미하며, 이는 모델이 local optimum problem에 빠져 있다는 것을 의미함 (optimization을 해줄 때 gradient descent에 대한 local minima 문제 발생
  - ✓ 즉, positive sample의 표현을 출력하도록 학습하는 것이 아니라, 단순히 loss만을 최소화하도록 학습할 경우 Mode Collapse가 발생함
  - $\checkmark$   $\arg\min_{\theta,\xi} \nabla_{\theta,\xi} \mathcal{L}_{\theta,\xi}$  인  $(\theta^*,\xi^*)$ 에 도달하여  $\mathcal{L}_{\theta,\xi}=0$ 이 되면 다른 정보들은 고려하지 않고 같은 표현만을 출력하게 됨

## 02. Design: Collapsed representation

#### Collapsed representation

- Positive pair만 사용하였을 때 Mode Collapse가 발생하는 이유
  - $\checkmark$  그러나 BYOL은  $\arg\min_{\xi} \nabla_{\xi} \mathcal{L}_{\xi}$  방향으로  $\xi$ 를 업데이트하지 않음
  - ✔ BYOL에서 Target Network의 parameter tuning은 exponential moving average 방식을 통해 이루어짐
  - $\checkmark$  저자들은 이러한 EMA 방식이 local minima에 빠지지 않게 해주며,  $(\theta^*, \xi^*)$ 가 동시에 optimal point가 되는  $\mathcal{L}_{\theta, \xi}$ 는 존재하지 않는다고 함
  - ✓ 또한 만약 Target Network의 파라미터 ξ에 대해 EMA 방식 대신 gradient descent를 적용하면, Mode collapse가 발생한다고 함

#### Implement Details

- Datasets
  - ✓ ImageNet ILSVRC-2012 dataset
- Image Augmentations
  - ✓ 이미지 무작위 패치 선택 -> horizontal flip 무작위 적용 -> 224 x 224 크기 resize
  - ✓ Color distortion 적용
- Architecture
  - ✓ Encoder baseline: Resnet-50 사용
  - ✓ Projection, Predictor: MLP 사용
  - ✓ MLP는 linear-batchnorm-relu-linear 순으로 구성
- Optimization
  - ✓ Lars 사용
  - ✓ 1000 epoch동안 재시작 없이 진행

- Experiment Results
  - Linear evaluation on ImageNet

| Method            | Top-1 | Top-5 |
|-------------------|-------|-------|
| Local Agg.        | 60.2  | -     |
| PIRL [35]         | 63.6  | -     |
| CPC v2 [32]       | 63.8  | 85.3  |
| CMC [11]          | 66.2  | 87.0  |
| SimCLR [8]        | 69.3  | 89.0  |
| MoCo v2 [37]      | 71.1  | -     |
| InfoMin Aug. [12] | 73.0  | 91.1  |
| BYOL (ours)       | 74.3  | 91.6  |

| Method      | Architecture          | Param. | Top-1 | Top-5 |
|-------------|-----------------------|--------|-------|-------|
| SimCLR [8]  | ResNet-50 (2×)        | 94M    | 74.2  | 92.0  |
| CMC [11]    | ResNet-50 (2×)        | 94M    | 70.6  | 89.7  |
| BYOL (ours) | ResNet-50 $(2\times)$ | 94M    | 77.4  | 93.6  |
| CPC v2 [32] | ResNet-161            | 305M   | 71.5  | 90.1  |
| MoCo [9]    | ResNet-50 $(4\times)$ | 375M   | 68.6  | -     |
| SimCLR [8]  | ResNet-50 $(4\times)$ | 375M   | 76.5  | 93.2  |
| BYOL (ours) | ResNet-50 $(4\times)$ | 375M   | 78.6  | 94.2  |
| BYOL (ours) | ResNet-200 (2×)       | 250M   | 79.6  | 94.8  |

(a) ResNet-50 encoder.

(b) Other ResNet encoder architectures.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

Semi-supervised training on ImageNet

| Method          | Top  | <b>5-1</b> | Top-5 |      |  |
|-----------------|------|------------|-------|------|--|
|                 | 1%   | 10%        | 1%    | 10%  |  |
| Supervised [77] | 25.4 | 56.4       | 48.4  | 80.4 |  |
| InstDisc        | -    | -          | 39.2  | 77.4 |  |
| PIRL [35]       | -    | -          | 57.2  | 83.8 |  |
| SimCLR [8]      | 48.3 | 65.6       | 75.5  | 87.8 |  |
| BYOL (ours)     | 53.2 | 68.8       | 78.4  | 89.0 |  |

Method Architecture Top-5 Param. Top-1 CPC v2 [32] ResNet-161 305MResNet-50  $(2\times)$ 58.5 71.7ResNet-50  $(2\times)$ SimCLR [8] ResNet-50  $(4\times)$ ResNet-50  $(4\times)$ 69.1 75.7 BYOL (ours) ResNet-200  $(2\times)$ 250M 71.2 77.7 89.5 93.7

Table 2: Semi-supervised training with a fraction of ImageNet labels.

<sup>(</sup>a) ResNet-50 encoder.

<sup>(</sup>b) Other ResNet encoder architectures.

#### Experiment Results

Transfer to other classification tasks

| Method             | Food101 | CIFAR10 | CIFAR100 | Birdsnap | SUN397 | Cars | Aircraft | VOC2007 | DTD  | Pets | Caltech-101 | Flowers |
|--------------------|---------|---------|----------|----------|--------|------|----------|---------|------|------|-------------|---------|
| Linear evaluation: |         |         |          |          |        |      |          |         |      |      |             |         |
| BYOL (ours)        | 75.3    | 91.3    | 78.4     | 57.2     | 62.2   | 67.8 | 60.6     | 82.5    | 75.5 | 90.4 | 94.2        | 96.1    |
| SimCLR (repro)     | 72.8    | 90.5    | 74.4     | 42.4     | 60.6   | 49.3 | 49.8     | 81.4    | 75.7 | 84.6 | 89.3        | 92.6    |
| SimCLR[8]          | 68.4    | 90.6    | 71.6     | 37.4     | 58.8   | 50.3 | 50.3     | 80.5    | 74.5 | 83.6 | 90.3        | 91.2    |
| Supervised-IN [8]  | 72.3    | 93.6    | 78.3     | 53.7     | 61.9   | 66.7 | 61.0     | 82.8    | 74.9 | 91.5 | 94.5        | 94.7    |
| Fine-tuned:        |         |         |          |          |        |      |          |         |      |      |             |         |
| BYOL (ours)        | 88.5    | 97.8    | 86.1     | 76.3     | 63.7   | 91.6 | 88.1     | 85.4    | 76.2 | 91.7 | 93.8        | 97.0    |
| SimCLR (repro)     | 87.5    | 97.4    | 85.3     | 75.0     | 63.9   | 91.4 | 87.6     | 84.5    | 75.4 | 89.4 | 91.7        | 96.6    |
| SimCLR[8]          | 88.2    | 97.7    | 85.9     | 75.9     | 63.5   | 91.3 | 88.1     | 84.1    | 73.2 | 89.2 | 92.1        | 97.0    |
| Supervised-IN [8]  | 88.3    | 97.5    | 86.4     | 75.8     | 64.3   | 92.1 | 86.0     | 85.0    | 74.6 | 92.1 | 93.3        | 97.6    |
| Random init [8]    | 86.9    | 95.9    | 80.2     | 76.1     | 53.6   | 91.4 | 85.9     | 67.3    | 64.8 | 81.5 | 72.6        | 92.0    |

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

#### Transfer to other vision tasks

| Method            | $AP_{50}$ | mIoU |                    |             | Higher better   |                 | Lower | better |
|-------------------|-----------|------|--------------------|-------------|-----------------|-----------------|-------|--------|
| Supervised-IN [9] | 74.4      | 74.4 | Method             | pct. < 1.25 | $pct.<1.25^{2}$ | $pct.<1.25^{3}$ | rms   | rel    |
| MoCo [9]          | 74.9      | 72.5 | Supervised-IN [83] | 81.1        | 95.3            | 98.8            | 0.573 | 0.127  |
| SimCLR (repro)    | 75.2      | 75.2 | SimCLR (repro)     | 83.3        | 96.5            | 99.1            | 0.557 | 0.134  |
| BYOL (ours)       | 77.5      | 76.3 | BYOL (ours)        | 84.6        | 96.7            | 99.1            | 0.541 | 0.129  |

<sup>(</sup>a) Transfer results in semantic segmentation and object detection.

Table 4: Results on transferring BYOL's representation to other vision tasks.

<sup>(</sup>b) Transfer results on NYU v2 depth estimation.

#### Ablation study

- Batch size
  - ✓ 배치 사이즈가 모델의 성능에 미치는 영향을 파악하기 위한 실험

  - ✓ SimCLR은 배치 사이즈가 작아짐에 따라서 성능저하가 BYOL보다 가파른 특징을 보임 ✓ BYOL은 negative sample을 쓰지 않기 때문에 배치사이즈에 강건한 특징을 보임

| Batch | Batch Top-1    |                |                | Top-5          |  |  |
|-------|----------------|----------------|----------------|----------------|--|--|
| size  | BYOL (ours)    | SimCLR (repro) | BYOL (ours)    | SimCLR (repro) |  |  |
| 4096  | 72.5           | 67.9           | 90.8           | 88.5           |  |  |
| 2048  | 72.4           | 67.8           | 90.7           | 88.5           |  |  |
| 1024  | 72.2           | 67.4           | 90.7           | 88.1           |  |  |
| 512   | 72.2           | 66.5           | 90.8           | 87.6           |  |  |
| 256   | 71.8           | $64.3 \pm 2.1$ | 90.7           | $86.3 \pm 1.0$ |  |  |
| 128   | $69.6 \pm 0.5$ | 63.6           | 89.6           | 85.9           |  |  |
| 64    | $59.7 \pm 1.5$ | $59.2 \pm 2.9$ | $83.2 \pm 1.2$ | $83.0 \pm 1.9$ |  |  |

Table 16: Influence of the batch size.



(a) Impact of batch size

#### Ablation study

- Image Augmentation
  - ✓ Ablation study에서 BYOL과 SimCLR 모두 color distortion을 data augmentation에서 제외했을 때 성능 하락이 크게 나타남
  - ✓ BYOL의 경우 SimCLR에 비해 Image Augmentation에서 비교적 강건한 성능을 보여줌

|                                        | 7              | Top-1          | Top-5       |                |  |
|----------------------------------------|----------------|----------------|-------------|----------------|--|
| Image augmentation                     | BYOL (ours)    | SimCLR (repro) | BYOL (ours) | SimCLR (repro) |  |
| Baseline                               | 72.5           | 67.9           | 90.8        | 88.5           |  |
| Remove flip                            | 71.9           | 67.3           | 90.6        | 88.2           |  |
| Remove blur                            | 71.2           | 65.2           | 90.3        | 86.6           |  |
| Remove color (jittering and grayscale) | $63.4 \pm 0.7$ | 45.7           | 85.3±0.5    | 70.6           |  |
| Remove color jittering                 | 71.8           | 63.7           | 90.7        | 85.9           |  |
| Remove grayscale                       | 70.3           | 61.9           | 89.8        | 84.1           |  |
| Remove blur in $T'$                    | 72.4           | 67.5           | 90.8        | 88.4           |  |
| Remove solarize in $T'$                | 72.3           | 67.7           | 90.8        | 88.2           |  |
| Remove blur and solarize in $T'$       | 72.2           | 67.4           | 90.8        | 88.1           |  |
| Symmetric blurring/solarization        | 72.5           | 68.1           | 90.8        | 88.4           |  |
| Crop only                              | $59.4 \pm 0.3$ | $40.3\pm0.3$   | 82.4        | $64.8 \pm 0.4$ |  |
| Crop and flip only                     | 60.1±0.3       | 40.2           | 83.0±0.3    | 64.8           |  |
| Crop and color only                    | 70.7           | 64.2           | 90.0        | 86.2           |  |
| Crop and blur only                     | $61.1 \pm 0.3$ | 41.7           | 83.9        | 66.4           |  |



Table 17: Ablation on image transformations.

#### Ablation study

- Bootstapping
  - ✓ Ablation study에서 exponential moving average coefficient에 대해 실험하였음
  - $\checkmark$   $\tau_{base}$ 가 0일 경우 Target Network에서 Online Network의 파라미터를 그대로 가져오는 것이며, 학습이되지 않는 모습을 보임
  - $\checkmark$   $\tau_{base}$ 가 1일 경우 Target Network의 파라미터가 Update되지 않는 것이며, 낮은 score를 보이고 있음
  - ✓ 가장 학습이 잘되는  $\tau_{base}$ 의 값은 0.99이다.

| Target                               | $	au_{ m base}$ | Top-1                      |
|--------------------------------------|-----------------|----------------------------|
| Constant random network              | 1               | $18.8{\scriptstyle\pm0.7}$ |
| Moving average of online             | 0.999           | 69.8                       |
| Moving average of online             | 0.99            | 72.5                       |
| Moving average of online             | 0.9             | 68.4                       |
| Stop gradient of online <sup>†</sup> | 0               | 0.3                        |

(a) Results for different target modes.  $^{\dagger}$ In the *stop gradient of online*,  $\tau = \tau_{\text{base}} = 0$  is kept constant throughout training.

## 04. Conclusion

### 04. Conclusion

- ◆ Negative sample에 의존하지 않고도 representation learning을 할 수 있는 방법을 찾아내었다.
- ◆ Batch size, augmentation methods의 변화에 대해서도 contrastive methods보다 robust한 모습을 보인다.
- ◆ BYOL을 통해 여러 Task들에 대해 SOTA 달성
- ◆ BYOL은 비전 분야에만 국한된 모델이기 때문에, 다른 분야에 적용하기 위해서는 더 연구가 필요할 수 있다.

# Thank You 감사합니다