# Bayesian Infinite Automata David Pfau\*, Nicholas Bartlett<sup>†</sup>, Frank Wood<sup>†</sup>

### Overview

- -nth-order Markov models, or m-gram models, are popular for learning sequences, but the size of the models blows up as n increases.
- -We relax the problem by expanding the class of models to include all *probabilistic deterministic* finite automata (PDFA), which includes m-gram models as a special case
- -Inference is Bayesian we define a prior over PDFAs of arbitrary size, using hierarchical Pitman-Yor processes. We call the model the Probabilistic Deterministic *Infinite* Automata since there is no bound on the possible number of states of a sample -Posterior inference via MCMC on natural language, DNA and synthetic grammars yield encouraging results

## Finite Automata



The posterior of the PDIA is approximated with a mixture of PDFAs. From m-gram models to Hidden Markov Models, the model classes here form a simple hierarchy:

m-gram  $\subseteq$  PDFA  $\subseteq$  mixture of PDFA  $\subseteq$  PNFA = HMM\*



(a) PNFA in mixture of PDFA (b) PNFA not in mixture of PDFA

#### Notation

PUT BIG

MATRIX

HERE.

CARTOON

TRANSITION

Q – finite set of states  $\Sigma$  – finite alphabet  $\delta: Q \times \Sigma \rightarrow Q$  – transitions  $\pi: \mathbb{Q} \times \Sigma \rightarrow [0,1]$  – emissions  $q_0 \in Q$  – initial state  $x_t \in \Sigma$  – data at time t  $\xi_t \in \mathbb{Q}$  – state at time t  $\alpha,\alpha_0\geqslant 0$  – concentrations  $d, d_0 \in [0,1]$  – discounts  $\beta \geqslant 0$  – emission param H – base distribution on  $\mathbb N$ 

 $M=(Q,\Sigma,\delta,\pi,q_0)-PDFA$ 

Generative Model

# Natural Language and DNA Prediction

|     | PDIA  | PDIA-MAP | HMM-EM | bigram | trigram | 4-gram | 5-gram | 6-gram | SSM     |
|-----|-------|----------|--------|--------|---------|--------|--------|--------|---------|
| AIW | 5.13  | 5.46     | 7.89   | 9.71   | 6.45    | 5.13   | 4.80   | 4.69   | 4.78    |
|     | 365.6 | 379      | 52     | 28     | 382     | 2,023  | 5,592  | 10,838 | 19,358  |
| DNA | 3.72  | 3.72     | 3.76   | 3.77   | 3.75    | 3.74   | 3.73   | 3.72   | 3.56    |
|     | 64.7  | 54       | 19     | 5      | 21      | 85     | 341    | 1,365  | 314,166 |

Top rows: perplexity of held out data. Bottom: number of states

- Alice in Wonderland: 10k train, 4k test "alice was beginning to..."
- Mouse DNA: 150k train, 50k test "CGTATATGCGCC..."
- Controls: EM-trained HMM, HPYP smoothed n-gram
- Average predictions superior to predictions of "best" or MAP sample from PDIA posterior



# Synthetic Grammar Induction



## **Future Directions**

- Evaluation on larger data sets
- More efficient sampling split-merge?
- How to tie together emission distributions between different states? (Like Kneser-Ney for n-grams)

<sup>\*</sup> technically, PNFA without final state = HMM, but those are the only models we consider here