

Deep Poisson Gamma Dynamical Systems

Dandan Guo^{1,2}, Bo Chen^{1,2}, Hao Zhang^{1,2}, Mingyuan Zhou³

¹National Laboratory of Radar Signal Processing, Xidian University, Xi'an, Shaanxi, China ²Collaborative Innovation Center of Information Sensing and Understanding at Xidian University ³McCombs School of Business, The University of Texas at Austin, Austin, TX 78712, USA

Motivation

Real world applications:

International Relation Study; Recommender System...

☐ Time varying counts

- Capture complex dependencies across time steps
- > Infer interpretable latent structure to analyze and predict

Related Work

Poisson Gamma Dynamical Systems (PGDS) [2]

$$y_v^{(t)} \sim \text{Pois}(\delta^{(t)} \sum_{k=1}^K \phi_{vk} \, \theta_k^{(t)}) \text{ and } \theta_k^{(t)} \sim \text{Gam}(\tau_0 \sum_{k_2=1}^K \pi_{kk_2} \, \theta_{k_2}^{(t-1)}, \tau_0)$$

- ✓ Gamma–Poisson construction, and supports expressive latent transition structures
- ✓ Shallow model may still have shortcomings in capturing long-range temporal dependencies
- Deep Temporal Sigmoid Belief Networks [3]

$$p_{\theta}(\mathbf{V}, \mathbf{H}) = p(h_1)p(v_1|h_1) \cdot \prod_{t=2}^{T} p(h_t|h_{t-1}, v_{t-1}) \cdot p(v_t|h_t, v_{t-1})$$

$$p(h_{jt} = 1|h_{t-1}, v_{t-1}) = \sigma(\mathbf{w}_{1j}^{\top} h_{t-1} + \mathbf{w}_{3j}^{\top} v_{t-1} + b_j), \ p(\mathbf{v}_t|\mathbf{h}_t, \mathbf{v}_{t-1}) = \prod_{m=1}^{M} y_{mt}^{v_{mt}}$$

- ✓ A sequential stack of sigmoid belief networks (SBNs)
- ✓ How the layers in DTSBN are related to each other lacks an intuitive interpretation
- Modelling count data with Replicated Softmax Model

Contributions

- > Improve previously proposed models by mining deep hierarchical latent structure from the data, and capturing long-range temporal dependencies.
- > Derive closed-form Gibbs sampling update equations.
- > Develop stochastic gradient MCMC inference that is scalable to big dataset.
- Deep Poisson–Gamma Dynamical Systems

- \blacktriangleright Hierarchical structure $\mathbb{E}\left[\boldsymbol{x}_{t}^{(1)} \mid \boldsymbol{\theta}_{t}^{(l)}, \{\boldsymbol{\Phi}^{(p)}\}_{p=1}^{l}\right] = \left[\prod_{p=1}^{l} \boldsymbol{\Phi}^{(p)}\right] \boldsymbol{\theta}_{t}^{(l)}$
- Long-range temporal dependence

$$\mathbb{E}[x_t^{(1)} | \boldsymbol{\theta}_{t-1}^{(1)}, \boldsymbol{\theta}_{t-2}^{(2)}, \boldsymbol{\theta}_{t-3}^{(3)}] / \delta_t^{(1)} = \boldsymbol{\Phi}^{(1)} \boldsymbol{\Pi}^{(1)} \boldsymbol{\theta}_{t-1}^{(1)} + \boldsymbol{\Phi}^{(1)} \boldsymbol{\Phi}^{(2)} [\boldsymbol{\Pi}^{(2)}]^2 \boldsymbol{\theta}_{t-2}^{(2)} + \boldsymbol{\Phi}^{(1)} \boldsymbol{\Phi}^{(2)} (\boldsymbol{\Pi}^{(2)} \boldsymbol{\Phi}^{(3)} + \boldsymbol{\Phi}^{(3)} \boldsymbol{\Pi}^{(3)}) [\boldsymbol{\Pi}^{(3)}]^2 \boldsymbol{\theta}_{t-3}^{(3)}$$

Inference

Backward and upward propagation of latent counts

North Korea--South Korea

SumLog $(l, g(\zeta))$ and $l \sim \text{Pois}(a\zeta)$. Refer to [1,2]

 \triangleright Working backward for t = T, ..., 2 and upward for l = 1, 2, ..., L, we draw

$$\begin{split} &(A_{k1t}^{(l)},...,A_{kK_{l}t}^{(l)}) \sim \text{Multi}\left(x_{kt}^{(l,l)}; \frac{\phi_{k1}^{(l)}\theta_{1t}^{(l)}}{\sum_{k_{l}=1}^{K_{l}}\phi_{kk_{l}}^{(l)}\theta_{k_{l}t}^{(l)}},..., \frac{\phi_{kK_{l}}^{(l)}\theta_{K_{l}t}^{(l)}}{\sum_{k_{l}=1}^{K_{l}}\phi_{kk_{l}}^{(l)}\theta_{k_{l}t}^{(l)}}\right), \\ &x_{kt}^{(l+1)} \sim \text{CRT}\left[A_{\cdot kt}^{(l)} + Z_{\cdot k,t+1}^{(l)}, \tau_{0}\left(\sum_{k_{l+1}=1}^{K_{l+1}}\phi_{kk_{l+1}}^{(l+1)}\theta_{k_{l+1}t}^{(l+1)} + \sum_{k_{l}=1}^{K_{l}}\pi_{kk_{l}}^{(l)}\theta_{k_{l},t-1}^{(l)}\right)\right] \\ &(x_{kt}^{(l+1,l)}, x_{kt}^{(l+1,l+1)}) \sim \text{Multi}\left(x_{kt}^{(l+1)}, p_{1}/(p_{1}+p_{2}), p_{2}/(p_{1}+p_{2})\right) \end{split}$$

$$(Z_{k1t}^{(l)},...,Z_{kK_{l}t}^{(l)}) \sim \text{Multi}\left(x_{kt}^{(l+1,l)}; \frac{\pi_{k1}^{(l)}\theta_{1,t-1}^{(l)}}{\sum_{k_{l}=1}^{K_{l}}\pi_{kk_{l}}^{(l)}\theta_{k_{l},t-1}^{(l)}},..., \frac{\pi_{kK_{l}}^{(l)}\theta_{K_{l},t-1}^{(l)}}{\sum_{k_{l}=1}^{K_{l}}\pi_{kk_{l}}^{(l)}\theta_{k_{l},t-1}^{(l)}}\right)$$

 \triangleright Working forward for t = 1,...,T and downward for l = L,...,1, we sample

$$\theta_{kt}^{(l)} \sim \text{Gamma} \Big[A_{\cdot kt}^{(l)} + Z_{\cdot k(t+1)}^{(l)} + \tau_0 \Big(\sum_{k_{l+1}=1}^{K_{l+1}} \phi_{kk_{l+1}}^{(l+1)} \theta_{k_{l+1}t}^{(l+1)} + \sum_{k_{l}=1}^{K_l} \pi_{kk_l}^{(l)} \theta_{k_2,t-1}^{(l)} \Big),$$

□ Stochastic gradient MCMC inference for simplex

$$\begin{split} \left(\boldsymbol{\pi}_{k}^{(l)}\right)_{n+1} = & \left[\left(\boldsymbol{\pi}_{k}^{(l)}\right)_{n} + \frac{\varepsilon_{n}}{M_{k}^{(l)}} \left[\left(\rho \tilde{\boldsymbol{z}}_{:k}^{(l)} + \boldsymbol{\eta}_{:k}^{(l)}\right) - \left(\rho \tilde{\boldsymbol{z}}_{:k}^{(l)} + \boldsymbol{\eta}_{:k}^{(l)}\right) \left(\boldsymbol{\pi}_{k}^{(l)}\right)_{n}\right] \\ & + \mathcal{N}\left(0, \frac{2\varepsilon_{n}}{M_{k}^{(l)}} \left[\operatorname{diag}(\boldsymbol{\pi}_{k}^{(l)})_{n} - (\boldsymbol{\pi}_{k}^{(l)})_{n}(\boldsymbol{\pi}_{k}^{(l)})_{n}^{T}\right]\right)\right]_{\angle}, \quad \text{Refer to [4]} \end{split}$$

Algorithm 2 Stochastic-gradient MCMC for DPGDS

Input: Data mini-batches; Output: Global parameters of DPGDS.

for $i = 1, 2, \cdots$ do $\setminus \star Collect local information$

Backward-upward Gibbs sampling on the *i*th mini-batch for $\{A_{vkt}^{(l)}\}_{v,k,t}$; $\{x_{kt}^{(l+1)}\}_{k,t}$; $\{x_{kt}^{(l+1,l)}\}_{k,t}; \{x_{kt}^{(l+1,l+1)}\}_{k,t}; \{Z_{k_1k_2t}^{(l)}\}_{k_1,k_2,t} \text{ with (9)(10) (11)(12)};$

Backward-upward calculating for the $\{\zeta_t^{(l)}\}_t$;

Forward-downward Gibbs sampling for the $\{\theta_t^{(l)}\}_t$ with (13);

Sampling $\delta^{(1)}$ with (17) or (18); $_{ackslash} \star U$ pdate global parameters for $l = 1, 2, \dots, L$ and $k = 1, 2, \dots, K_L$ do

Update $M_k^{(l)}$ according to [28]; then $\{\phi_k^{(l)}\}_k$ with (35); Update $M_k^{(l)}$ according to [28]; then $\{\pi_k^{(l)}\}_k$ with (34);

Update $\xi^{(l)}$, $\{\nu_k^{(l)}\}_k$, and $\beta^{(l)}$ with SGNHT [21]

end for

Experiments □ Top@M results on real-world text data

		Data					
Model	Top@M	GDELT	ICEWS	SOTU	DBLP	NIPS	_
		$T=365, V\approx 9000$	$T=365, V\approx 3000$	T = 225, V = 7518	T = 14,V = 1771	T = 17, V = 9836	_
GPDPFA	MP	0.611 ± 0.001	0.607 ± 0.002	0.379 ± 0.002	0.435 ± 0.009	0.843 ± 0.005	_
	MR	0.145 ± 0.002	0.235 ± 0.005	0.369 ± 0.002	0.254 ± 0.005	0.050 ± 0.001	9
	PP	0.447 ± 0.014	0.465 ± 0.008	0.617 ± 0.013	0.581 ± 0.011	0.807 ± 0.006	•
PGDS	MP	0.679 ± 0.001	0.658 ± 0.001	0.375 ± 0.002	0.419 ± 0.004	0.864 ± 0.004	_
	MR	0.150 ± 0.001	0.245 ± 0.005	0.373 ± 0.002	0.252 ± 0.004	0.050 ± 0.001	
	PP	0.420 ± 0.017	0.455 ± 0.008	0.612 ± 0.018	0.566 ± 0.008	0.802 ± 0.020	
GPDM	MP	0.520 ± 0.001	0.530 ± 0.002	0.274 ± 0.001	0.388 ± 0.004	0.355 ± 0.008	_
	MR	0.141 ± 0.001	0.234 ± 0.001	0.261 ± 0.002	0.146 ± 0.005	0.050 ± 0.001	
	PP	0.362 ± 0.021	0.185 ± 0.017	0.587 ± 0.016	0.509 ± 0.008	0.384 ± 0.028	
TSBN	MP	0.594 ± 0.007	0.471 ± 0.001	0.360 ± 0.001	0.403 ± 0.012	0.788 ± 0.005	_
	MR	0.124 ± 0.001	0.158 ± 0.001	0.275 ± 0.001	0.194 ± 0.001	0.050 ± 0.001	
	PP	0.418 ± 0.019	0.445 ± 0.031	0.611 ± 0.001	0.527 ± 0.003	0.692 ± 0.017	
DTSBN-2	MP	0.439 ± 0.001	0.475 ± 0.002	0.370 ± 0.004	0.407 ± 0.003	0.756 ± 0.001	_
	2 MR	0.134 ± 0.001	0.208 ± 0.001	0.361 ± 0.001	0.248 ± 0.007	0.050 ± 0.001	
	PP	0.391 ± 0.001	0.446 ± 0.001	0.587 ± 0.027	0.522 ± 0.005	0.737 ± 0.004	
DTSBN-3	MP	0.411 ± 0.001	0.431 ± 0.001	0.450 ± 0.008	0.390 ± 0.002	0.774 ± 0.002	_
	3 MR	0.141 ± 0.001	0.189 ± 0.001	0.274 ± 0.001	0.252 ± 0.004	0.050 ± 0.001	
	PP	0.367 ± 0.011	0.451 ± 0.026	0.548 ± 0.013	0.510 ± 0.006	0.715 ± 0.009	
DPGDS-2	MP	0.688 ± 0.002	0.659 ± 0.001	0.379 ± 0.002	0.430 ± 0.009	0.867 ± 0.008	_
	2 MR	0.149 ± 0.001	0.242 ± 0.007	0.373 ± 0.001	0.254 ± 0.005	0.050 ± 0.001	
	PP	0.443 ± 0.025	0.473 ± 0.012	0.622 ± 0.014	0.582 ± 0.007	0.814 ± 0.035	
DPGDS-3	MP	0.689 ± 0.002	0.660 ± 0.001	0.380 ± 0.001	0.431 ± 0.012	0.887 ± 0.002	_
	3 MR	0.150 ± 0.001	0.244 ± 0.003	0.374 ± 0.002	0.255 ± 0.004	0.050 ± 0.001	
	PP	0.456 ± 0.015	$\textbf{0.478} \pm 0.024$	0.628 ± 0.021	0.600 ± 0.001	0.839 ± 0.007	

☐ Hierarchical topics learned from ICEWS 2007-2009

☐ Hierarchical topics learned from ICEWS 2001-2003

Scalability

Shown in left and right are MP, as the function of time for GDELT 2001-2005, 2015-2018.

Results on the bouncing ball data set. (a) Top fifteen topics learned by three layer DPGDS at the layer 1, 2, 3. (b) APE as a function of the sequence length for various algorithms.

Temporal trajectories at different layers for ICEWS 2001-2003

☐ Transition structure on ICEWS 2001-2003

[1] M. Zhou and L. Carin, "Negative binomial process count and mixture modeling," TPAMI, 2015.

[2] A. Schein, M. Zhou, and H., Wallach "Poisson–gamma dynamical systems," in NIPS, 2016.

[3] Z. Gan, C. Li, R. Henao, D. E. Carlson, and L. Carin, "Deep temporal sigmoid belief networks for sequence modeling," in NIPS, 2015.

[4] Y. Cong, B. Chen, H. Liu, and M. Zhou, "Deep latent Dirichlet allocation with topiclayer adaptive stochastic gradient Riemannian MCMC," in ICML, 2017.