پایه ای برای زیرفضای W که شامل تمامی بردار هایی در R^4 می شود که بر ستون های ماتریس A عمود هستند را پیدا کنید.

$$A = \begin{bmatrix} 11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{bmatrix}$$

پاسخ)

Let us write $A=[A_1\,A_2\,A_3\,A_4]$, where A_i is the i-th column vector of A for i=1,2,3,4. First we claim that a vector $\mathbf{x}\in\mathbb{R}^4$ is perpendicular to all column vectors A_i if and only if $\mathbf{x}\in\mathcal{N}(A^{\mathrm{T}})$. To see this, we compute

$$A^{\mathrm{T}}\mathbf{x} = egin{bmatrix} A_1^{\mathrm{T}} \ A_2^{\mathrm{T}} \ A_3^{\mathrm{T}} \ A_4^{\mathrm{T}} \end{bmatrix} \mathbf{x} = egin{bmatrix} A_1^{\mathrm{T}}\mathbf{x} \ A_2^{\mathrm{T}}\mathbf{x} \ A_3^{\mathrm{T}}\mathbf{x} \ A_4^{\mathrm{T}}\mathbf{x} \end{bmatrix}.$$

From this equality the claim follows immediately.

So we proved that $\mathcal{N}(A^{\mathrm{T}})=W$. From this, we see that W is actually a subspace of \mathbb{R}^4 .

Thus, we need to find a basis for the null space of the transpose $A^{\mathrm{T}}.$

We apply elementary row operations to A^{T} and obtain a reduced row echelon form

$$A^{
m T}
ightarrow egin{bmatrix} 1 & 0 & -1 & -2 \ 0 & 1 & 2 & 3 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The last two columns correspond to two free variables. Let \boldsymbol{s} and \boldsymbol{t} be free variable.

Then
$$\mathbf{x}=egin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\in\mathcal{N}(A^{\mathrm{T}})$$
 if and only if \mathbf{x} satisfies

$$x_1 = s + 2t$$

 $x_2 = -2s - 3$
 $x_3 = s$
 $x_4 = t$

equivalently

$$\mathbf{x} = s \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}.$$

Therefore a basis of $W = \mathcal{N}(A^{\mathrm{T}})$ is

$$\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}.$$