LoFTR: Detector-Free Local Feature Matching with Transformers

CVPR 2021 Zhejiang University CG&CAD

Introduction

Problem setting: Point matching between images

Input: A pair of image

Output: Sparse points correspondence between images

Application: SfM, SLAM, etc.

Motivation

- 1. Hand-crafted point descriptor fail to extract **enough interest points** due to various factors: e.g. poor texture, repetitive patterns, illumination variation
 - → pixel-wise dense matches by CNNs and selected by high confidence scores
- 2. CNNs suffer from limited receptive field, which may fail in large indistinctive regions
 - → human can find correspondences with a larger global receptive field -> transformer

Method: Pipeline

Method: Local Feature Transformer(LoFTR) Module

- (a) Transformer encoder layer; (b) Vanilla dot-product attention with O(N*N) complexity;
- (c) Linear attention layer with O(N) complexity;

Method: Establishing Coarse-level Matches

Differentiable matching layers

Dual-softmax

$$\hat{c}_{ijkl} = r_{ijkl}^A r_{ijkl}^B c_{ijkl},$$

$$r_{ijkl}^A = \frac{c_{ijkl}}{\max_{ab} c_{abkl}}, \quad \text{and} \quad r_{ijkl}^B = \frac{c_{ijkl}}{\max_{cd} c_{ijcd}}.$$

Match Selection

$$\mathcal{M}_c = \{ (\tilde{i}, \tilde{j}) \mid \forall (\tilde{i}, \tilde{j}) \in MNN(\mathcal{P}_c), \mathcal{P}_c (\tilde{i}, \tilde{j}) \geq \theta_c \}.$$

Sinkhorn

Sinkhorn Algorithm

Simply saying, iteratively normalize the matrix row and col, finally will converge.

Method: Coarse-to-Fine Module

By computing expectation over the probability distribution, we get the final position with sub-pixel accuracy.

Method: Supervision

Coarse-level Supervision

$$\mathcal{L}_{c} = -\frac{1}{|\mathcal{M}_{c}^{gt}|} \sum_{(\tilde{i}, \tilde{j}) \in \mathcal{M}_{c}^{gt}} \log \mathcal{P}_{c}(\tilde{i}, \tilde{j})$$

Fine-level Supervision

$$\mathcal{L}_f = \frac{1}{|\mathcal{M}_f|} \sum_{(\hat{i}, \hat{j}') \in \mathcal{M}_f} \left[\frac{1}{\sigma^2(\hat{i})} \right] \left\| \hat{j}' - \hat{j}'_{gt} \right\|_2$$

Focusing on low uncertainty points

Experiments: Homography Estimation

Category	Method	Homography est. AUC			and the second
		@3px	@5px	@ 10px	#matches
Detector-based	D2Net [11]+NN	23.2	35.9	53.6	0.2K
	R2D2 [32]+NN	50.6	63.9	76.8	0.5K
	DISK [47]+NN	52.3	64.9	78.9	1.1K
	SP [9]+SuperGlue [37]	53.9	68.3	81.7	0.6K
Detector-free	Sparse-NCNet [33]	48.9	54.2	67.1	1.0K
	DRC-Net [19]	50.6	56.2	68.3	1.0K
	LoFTR-DS	65.9	75.6	84.6	1.0K

Corner error

Experiments: Pose Estimation

	Mar and	Pose estimation AUC			
Category	Method	@5°	@10°	@20°	
	ORB [35]+GMS [2]	5.21	13.65	25.36	
Detector-based	D2-Net [11]+NN	5.25	14.53	27.96	
	ContextDesc [27]+Ratio Test [26]	6.64	15.01	25.75	
	SP [9]+NN	9.43	21.53	36.40	
	SP [9]+PointCN [52]	11.40	25.47	41.41	
	SP [9]+OANet [53]	11.76	26.90	43.85	
	SP [9]+SuperGlue [37]	16.16	33.81	51.84	
	DRC-Net † [19]	7.69	17.93	30.49	
Datastas fora	LoFTR-OT†	16.88	33.62	50.62	
Detector-free	LoFTR-OT	21.51	40.39	57.96	
	LoFTR-DS	22.06	40.8	57.62	

Category	Method	Pose estimation AUC			
		@5°	@10°	@20°	
Detector-based	SP [9]+SuperGlue [37]	42.18	61.16	75.96	
THE STATE OF THE S	DRC-Net [19]	27.01	42.96	58.31	
Detector-free	LoFTR-OT	50.31	67.14	79.93	
	LoFTR-DS	52.8	69.19	81.18	

ScanNet (Indoor)

MegaDepth (Outdoor)

Experiments: Visual Localization

Mathod	Day	Night
Method	(0.25m,2°)/(0.5	m,5°)/(1.0m,10°)
Local Feature Evaluation on Nig	ht-time Queries	
R2D2 [32]+NN	D	71.2 / 86.9 / 98.9
LISRD [31]+SP [9]+AdaLam [4]	70	73.3 / 86.9 / 97.9
ISRF [29]+NN	=	69.1 / 87.4 / 98.4
SP [9]+SuperGlue [37]	=	73.3 / 88.0 / 98.4
LoFTR-DS	=	72.8 / 88.5 / 99.0
Full Visual Localization with HI	oc	
SP [9]+SuperGlue [37]	89.8 / 96.1 / 99.4	77.0 / 90.6 / 100.0
LoFTR-OT	88.7 / 95.6 / 99.0	78.5 / 90.6 / 99.0

Method	DUC1	DUC2
Method	(0.25m,10°) / (0.5i	m,10°)/(1.0m,10°)
ISRF [29]	39.4 / 58.1 / 70.2	41.2 / 61.1 / 69.5
KAPTURE [14]+R2D2 [32]	41.4 / 60.1 / 73.7	47.3 / 67.2 / 73.3
HLoc [36]+SP [9]+SuperGlue [37]	49.0 / 68.7 / 80.8	53.4 / 77.1 / 82.4
HLoc [36]+LoFTR-OT	47.5 / 72.2 / 84.8	54.2 / 74.8 / 85.5

Aachen Day-Night (outdoor)

InLoc benchmark

Experiments

Using DETR-style [3] Transformer architecture which has positional encoding at each layer, leads to a noticeably declined result.

Mathad	Pose estimation AUC		
Method	@5° @10 a convolution 14.98 32.04 a + 1/4 fine-resolution 16.75 34.82 per layer 18.02 35.64	@10°	@20°
1) replace LoFTR with convolution	14.98	32.04	49.92
2) 1/16 coarse-resolution + 1/4 fine-resolution	16.75	34.82	54.0
3) positional encoding per layer	18.02	35.64	52.77
4) larger model with $N_c = 8$, $N_f = 2$	20.87	40.23	57.56
Full $(N_c = 4, N_f = 1)$	20.06	40.8	57.62

