

Report No.: FR911104A

FCC RADIO TEST REPORT

FCC ID : UZ7CC6000

Equipment: Customer Concierge

Brand Name : ZEBRA Model Name : CC6000

Applicant : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Manufacturer : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Standard : FCC Part 15 Subpart C §15.247

The product was received on Jan. 11, 2019 and testing was started from Jan. 22, 2019 and completed on Feb. 20, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Reviewed by: Jones Tsai

TEL: 886-3-327-3456

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

Page Number

: 1 of 64

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

Table of Contents

Report No. : FR911104A

His	tory of	f this test report	. 3
Sur	nmary	of Test Result	. 4
1	Gene	ral Description	. 5
	1.1	Product Feature of Equipment Under Test	. 5
	1.2	Product Specification of Equipment Under Test	. 6
	1.3	Modification of EUT	. 6
	1.4	Testing Location	. 6
	1.5	Applicable Standards	. 7
2	Test (Configuration of Equipment Under Test	. 8
	2.1	Carrier Frequency Channel	. 8
	2.2	Test Mode	. 9
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	13
	2.5	EUT Operation Test Setup	13
	2.6	Measurement Results Explanation Example	14
3	Test I	Result	15
	3.1	Number of Channel Measurement	15
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	23
	3.4	20dB and 99% Bandwidth Measurement	25
	3.5	Output Power Measurement	36
	3.6	Conducted Band Edges Measurement	38
	3.7	Conducted Spurious Emission Measurement	45
	3.8	Radiated Band Edges and Spurious Emission Measurement	55
	3.9	AC Conducted Emission Measurement	59
	3.10	Antenna Requirements	61
4	List o	f Measuring Equipment	62
5	Unce	rtainty of Evaluation	64
App	endix	A. AC Conducted Emission Test Result	
App	endix	B. Radiated Spurious Emission	
App	endix	C. Radiated Spurious Emission Plots	
App	endix	D. Duty Cycle Plots	
App	endix	E. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

History of this test report

Report No.: FR911104A

Report No.	Version	Description	Issued Date
FR911104A	01	Initial issue of report	Mar. 26, 2019

TEL: 886-3-327-3456 Page Number : 3 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

Summary of Test Result

Report No.: FR911104A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	2.1049 99% Occupied Bandwidth		-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission		Under limit 3.81 dB at 121.260 MHz
3.9	15.207	15.207 AC Conducted Emission		Under limit 5.73 dB at 0.564 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Polly Tsai

TEL: 886-3-327-3456 Page Number : 4 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Customer Concierge			
Brand Name	ZEBRA			
Model Name	CC6000			
FCC ID	UZ7CC6000			
	NFC			
EUT supports Radios application	WLAN 11a/b/g/n HT20/HT40			
Lot supports Natios application	WLAN 11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			
HW Version	DV			
SW Version	01-15-05.00.OG-U00-PRD			
FW Version	01-15-05.00.OG-U00-PRD			
MFD	21DEC18			
EUT Stage	Engineering Sample			

Report No.: FR911104A

Remark: The above EUT's information was declared by manufacturer.

<Sample Information>

	Sample 1	Sample 2	Sample 3
Component	CC6000 Landscape	CC6000 Landscape	CC6000 Portrait Display
Category	Display with Camera	Display, No Camera	with Camera
Data capture options	SE4710	SE4710	SE4710
Camera	Front Facing ≥5 Mp	None	Front Facing ≥5 Mp

Supported Unit Used in Test Configuration and System					
AC Adaptor Brand Name ZEBRA Part Number PWR-BUA5V16W0WW					
DC Cable	Brand Name	ZEBRA	Part Number	CBL-DC-383A1-01	
AC Cable	Brand Name	ZEBRA	Part Number	50-16000-182R	
POE	Brand Name	Microsemi	Part Number	PD-9501GR/AC	

TEL: 886-3-327-3456 Page Number : 5 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
	Bluetooth BR(1Mbps) : 2.57 dBm (0.0018 W)			
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 1.71 dBm (0.0015 W)			
	Bluetooth EDR (3Mbps): 2.10 dBm (0.0016 W)			
	Bluetooth BR(1Mbps): 0.840MHz			
99% Occupied Bandwidth	Bluetooth EDR (2Mbps): 1.172MHz			
	Bluetooth EDR (3Mbps) : 1.152MHz			
Antenna Type / Gain	PIFA Antenna type with gain 3.86 dBi			
	Bluetooth BR (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			

Report No.: FR911104A

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton	Site No.		
Test Site NO.	TH05-HY	CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
iest site NO.	03CH15-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No. TW1190 and TW0007

TEL: 886-3-327-3456 Page Number : 6 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR911104A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 7 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 8 of 64 Issued Date : Mar. 26, 2019

Report No.: FR911104A

Report Version : 01

2.2 Test Mode

		Blue	tooth Average Output Po	ower
Channel	Frequency		GFSK / 1Mbps	
		DH1	DH3	DH5
Ch00	2402MHz	1.83 dBm	1.82 dBm	1.81 dBm
Ch39	2441MHz	<mark>2.10</mark> dBm	2.09 dBm	2.08 dBm
Ch78	2480MHz	1.76 dBm 1.75 dBm 1.74 dBm		

Report No. : FR911104A

		Blue	tooth Average Output Po	ower	
Channel	Frequency		π/4-DQPSK / 2Mbps		
		2DH1	2DH3	2DH5	
Ch00	2402MHz	-1.14 dBm	-1.14 dBm -1.29 dBm -1.24		
Ch39	2441MHz	-1.40 dBm	-1.49 dBm	-1.47 dBm	
Ch78	2480MHz	<mark>-0.80</mark> dBm	-0.92 dBm	-0.87 dBm	

		Bluetooth Average Output Power					
Channel	Frequency	8-DPSK / 3Mbps					
		3DH1	3DH3	3DH5			
Ch00	2402MHz	-1.17 dBm	-1.25 dBm	-1.23 dBm			
Ch39	2441MHz	-1.40 dBm	-1.51 dBm	-1.48 dBm			
Ch78	2480MHz	<mark>-0.80</mark> dBm	-0.89 dBm	-0.90 dBm			

TEL: 886-3-327-3456 Page Number : 9 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

		Bluetooth Peak Output Power				
Channel	Frequency	GFSK / 1Mbps				
		DH1	DH3	DH5		
Ch00	2402MHz	2.29 dBm	2.27 dBm	2.25 dBm		
Ch39	2441MHz	<mark>2.57</mark> dBm	2.54 dBm	2.51 dBm		
Ch78	2480MHz	2.24 dBm	2.21 dBm	2.20 dBm		

Report No.: FR911104A

		Blu	uetooth Peak Output Pov	ver		
Channel	Frequency	π/4-DQPSK / 2Mbps				
		2DH1	2DH3	2DH5		
Ch00	2402MHz	1.65 dBm	1.61 dBm	1.63 dBm		
Ch39	2441MHz	1.67 dBm	1.64 dBm	1.65 dBm		
Ch78	2480MHz	<mark>1.71</mark> dBm	1.67 dBm	1.69 dBm		

		Bluetooth Peak Output Power				
Channel	Frequency	8-DPSK / 3Mbps				
		3DH1	3DH3	3DH5		
Ch00	2402MHz	1.92 dBm	1.90 dBm	1.86 dBm		
Ch39	2441MHz	<mark>2.10</mark> dBm	2.05 dBm	2.01 dBm		
Ch78	2480MHz	1.90 dBm	1.88 dBm	1.84 dBm		

Remark: The data rate was set in 1Mbps for all the test items due to the highest RF output power.

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

TEL: 886-3-327-3456 Page Number : 10 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Report No.: FR911104A

	Summary table of Test Cases							
	Data Rate / Modulation							
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps					
	GFSK	π/4-DQPSK	8-DPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz					
iesi Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz					
		Bluetooth BR 1Mbps GFSK						
Radiated		Mode 1: CH00_2402 MHz						
Test Cases		Mode 2: CH39_2441 MHz						
	Mode 3: CH78_2480 MHz							
40	Mode 1: Bluetooth Link + W	/LAN (2.4GHz) Link + Scanne	r + USB (3.1/Type C) Data					
AC	Link with Notebook	(Notebook to eMMC) + USB	(2.0/Type A) USB Flash Disk					
Conducted	Load + USB (2.0/T	ype A) USB Flash Disk Load -	POE + LAN Load with AP +					
Emission	Headset for Sampl	e 3						

Remark:

- For radiated test cases, the worst mode data rate 1Mbps was reported only since the highest RF
 output power in the preliminary tests. The conducted spurious emissions and conducted band edge
 measurement for other data rates were not worse than 1Mbps, and no other significantly
 frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, the tests were performed with Sample 2.

TEL: 886-3-327-3456 Page Number : 11 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

2.3 Connection Diagram of Test System

<Radiated Emission Mode>

Report No.: FR911104A

: 01

<AC Conducted Emission>

TEL: 886-3-327-3456 Page Number : 12 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1 1	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
5.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
6.	Notebook	ASUS	P2430U	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
7.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
8.	Notebook	Lenovo	L570	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
9.	USB Flash Disk	TOSHIBA	TOSHIBA 32G	FCC DoC	N/A	N/A
10.	USB Flash Disk	SanDisk	Cruzer Glide 3.0 16G	FCC DoC	N/A	N/A
11.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

Report No.: FR911104A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-3456 Page Number : 13 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No.: FR911104A

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$4.2 + 10 = 14.2$$
 (dB)

TEL: 886-3-327-3456 Page Number : 14 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Report No.: FR911104A

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

TEL: 886-3-327-3456 Page Number : 15 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.1.5 Test Result of Number of Hopping Frequency

Test Engineer :	Luffy Lin and Allen Lin	Temperature :	21~25 ℃
		Relative Humidity:	51~54%

Report No.: FR911104A

Number of Hopping Adaptive Frequency Hopping (Channel) (Channel)		Limits (Channel)	Pass/Fail	
79	20	> 15	Pass	

Number of Hopping Channel Plot on Channel 00 - 78

Date: 31.JAN.2019 16:11:23

TEL: 886-3-327-3456 Page Number : 16 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR911104A

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

TEL: 886-3-327-3456 Page Number : 17 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.2.5 Test Result of Hopping Channel Separation

Test Engineer :	Luffy Lin and Allen Lin	Temperature :	21~25℃	
		Relative Humidity:	51~54%	

Report No.: FR911104A

Mod.	Data Rate	N TX	CH.	Freq. (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	1.014	0.5813	Pass
DH	1Mbps	1	39	2441	1.008	0.5973	Pass
DH	1Mbps	1	78	2480	1.008	0.5973	Pass
2DH	2Mbps	1	0	2402	1.002	0.8440	Pass
2DH	2Mbps	1	39	2441	1.002	0.8440	Pass
2DH	2Mbps	1	78	2480	1.008	0.8600	Pass
3DH	3Mbps	1	0	2402	1.014	0.8240	Pass
3DH	3Mbps	1	39	2441	1.002	0.8240	Pass
3DH	3Mbps	1	78	2480	1.002	0.8360	Pass

<1Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 31.JAN.2019 15:57:26

TEL: 886-3-327-3456 Page Number : 18 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

Channel Separation Plot on Channel 39 - 40

Report No.: FR911104A

Date: 31.JAN.2019 16:16:59

Channel Separation Plot on Channel 77 - 78

Date: 31.JAN.2019 16:18:07

TEL: 886-3-327-3456 Page Number : 19 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<2Mbps>

Channel Separation Plot on Channel 00 - 01

Report No.: FR911104A

Date: 31.JAN.2019 16:27:14

Channel Separation Plot on Channel 39 - 40

Date: 31.JAN.2019 16:34:14

TEL: 886-3-327-3456 Page Number : 20 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

Channel Separation Plot on Channel 77 - 78

Report No.: FR911104A

Date: 31.JAN.2019 16:36:11

<3Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 31.JAN.2019 16:43:28

TEL: 886-3-327-3456 Page Number : 21 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

Channel Separation Plot on Channel 39 - 40

Report No.: FR911104A

Date: 31.JAN.2019 16:51:52

Channel Separation Plot on Channel 77 - 78

Date: 31.JAN.2019 16:53:46

TEL: 886-3-327-3456 Page Number : 22 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: FR911104A

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 886-3-327-3456 Page Number : 23 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.3.5 Test Result of Dwell Time

Test Engineer :	Luffy Lin and Allen Lin	Temperature :	21~25°ℂ
		Relative Humidity	: 51~54%

Report No.: FR911104A

Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time (hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

Package Transfer Time Plot

Date: 22.JAN.2019 19:50:41

Remark:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-3456 Page Number : 24 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR911104A

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the OBW; VBW ≥ RBW; Sweep = auto; Detector function = peak;

Trace = \max hold.

- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

3.4.4 Test Setup

TEL: 886-3-327-3456 Page Number : 25 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.4.5 Test Result of 20dB Bandwidth

Test Engineer :	Luffy Lin and Allen Lin	Temperature :	21~25℃
		Relative Humidity:	51~54%

Report No.: FR911104A

Mod.	Data Rate	N тх	CH.	Freq. (MHz)	20db BW (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.872	Pass
DH	1Mbps	1	39	2441	0.896	Pass
DH	1Mbps	1	78	2480	0.896	Pass
2DH	2Mbps	1	0	2402	1.266	Pass
2DH	2Mbps	1	39	2441	1.266	Pass
2DH	2Mbps	1	78	2480	1.290	Pass
3DH	3Mbps	1	0	2402	1.236	Pass
3DH	3Mbps	1	39	2441	1.236	Pass
3DH	3Mbps	1	78	2480	1.254	Pass

<1Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 31.JAN.2019 15:53:15

TEL: 886-3-327-3456 Page Number : 26 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

20 dB Bandwidth Plot on Channel 39

Report No.: FR911104A

Date: 31.JAN.2019 16:13:10

20 dB Bandwidth Plot on Channel 78

Date: 31.JAN.2019 16:19:21

TEL: 886-3-327-3456 Page Number : 27 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Report No.: FR911104A

Date: 31.JAN.2019 16:23:24

20 dB Bandwidth Plot on Channel 39

Date: 31.JAN.2019 16:28:34

TEL: 886-3-327-3456 Page Number : 28 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

20 dB Bandwidth Plot on Channel 78

Report No.: FR911104A

Date: 31.JAN.2019 16:37:15

<3Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 31.JAN.2019 16:40:26

TEL: 886-3-327-3456 Page Number : 29 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

20 dB Bandwidth Plot on Channel 39

Report No.: FR911104A

Date: 31.JAN.2019 16:44:26

20 dB Bandwidth Plot on Channel 78

Date: 31.JAN.2019 16:54:38

TEL: 886-3-327-3456 Page Number : 30 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.4.6 Test Result of 99% Occupied Bandwidth

Test Engineer :		Temperature :	21~25℃
	Luffy Lin and Allen Lin	Relative Humidity :	51~54%

Report No.: FR911104A

Mod.	Data Rate	N TX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.816	Pass
DH	1Mbps	1	39	2441	0.840	Pass
DH	1Mbps	1	78	2480	0.840	Pass
2DH	2Mbps	1	0	2402	1.168	Pass
2DH	2Mbps	1	39	2441	1.168	Pass
2DH	2Mbps	1	78	2480	1.172	Pass
3DH	3Mbps	1	0	2402	1.148	Pass
3DH	3Mbps	1	39	2441	1.144	Pass
3DH	3Mbps	1	78	2480	1.152	Pass

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 31.JAN.2019 15:54:31

TEL: 886-3-327-3456 Page Number : 31 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

99% Occupied Bandwidth Plot on Channel 39

Report No.: FR911104A

Date: 31.JAN.2019 16:14:00

99% Occupied Bandwidth Plot on Channel 78

Date: 31.JAN.2019 16:20:34

TEL: 886-3-327-3456 Page Number : 32 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

Report No.: FR911104A

Date: 31.JAN.2019 16:24:26

99% Occupied Bandwidth Plot on Channel 39

Date: 31.JAN.2019 16:29:25

TEL: 886-3-327-3456 Page Number : 33 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

99% Occupied Bandwidth Plot on Channel 78

Report No.: FR911104A

Date: 31.JAN.2019 16:38:12

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 31.JAN.2019 16:41:24

TEL: 886-3-327-3456 Page Number : 34 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

99% Occupied Bandwidth Plot on Channel 39

Report No.: FR911104A

Date: 31.JAN.2019 16:45:15

99% Occupied Bandwidth Plot on Channel 78

Date: 31.JAN.2019 16:55:39

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 35 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

Report No.: FR911104A

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

TEL: 886-3-327-3456 Page Number : 36 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.5.5 Test Result of Peak Output Power

Took Engineer	Luffy Lin and Allen Lin	Temperature :	21~25℃
Test Engineer :		Relative Humidity :	51~54%

Report No.: FR911104A

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	2.29	20.97	Pass
DH1	39	1	2.57	20.97	Pass
	78	1	2.24	20.97	Pass

2DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	1.65	20.97	Pass
2DH1	39	1	1.67	20.97	Pass
	78	1	1.71	20.97	Pass

3DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	1.92	20.97	Pass
3DH1	39	1	2.10	20.97	Pass
	78	1	1.90	20.97	Pass

3.5.6 Test Result of Average Output Power (Reporting Only)

To at Empire and	Luffic Lin and Allan Lin	Temperature :	21~25℃
Test Engineer :	Luffy Lin and Allen Lin	Relative Humidity :	51~54%

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	1.83	5.18
DH1	39	1	2.10	5.18
	78	1	1.76	5.18

2DH	CH.	N TX	Average Power (dBm)	Duty Factor (dB)
	0	1	-1.14	5.12
2DH1	39	1	-1.40	5.12
	78	1	-0.80	5.12

3DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	-1.17	5.12
3DH1	39	1	-1.40	5.12
	78	1	-0.80	5.12

TEL: 886-3-327-3456 Page Number : 37 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR911104A

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

TEL: 886-3-327-3456 Page Number: 38 of 64
FAX: 886-3-328-4978 Issued Date: Mar. 26, 2019

3.6.5 Test Result of Conducted Band Edges

Took Fundance .	L M. Linna LAllandia	Temperature :	21~25 ℃
Test Engineer :	Luffy Lin and Allen Lin	Relative Humidity :	51~54%

Report No.: FR911104A

<1Mbps>

Low Band Edge Plot on Channel 00

Date: 31.JAN.2019 15:53:47

High Band Edge Plot on Channel 78

Date: 31.JAN.2019 16:19:56

TEL: 886-3-327-3456 Page Number : 39 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<2Mbps>

Low Band Edge Plot on Channel 00

Report No.: FR911104A

Date: 31.JAN.2019 16:23:46

High Band Edge Plot on Channel 78

Date: 31.JAN.2019 16:37:35

TEL: 886-3-327-3456 Page Number : 40 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<3Mbps>

Low Band Edge Plot on Channel 00

Report No.: FR911104A

Date: 31.JAN.2019 16:40:46

High Band Edge Plot on Channel 78

Date: 31.JAN.2019 16:54:58

TEL: 886-3-327-3456 Page Number : 41 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Took Fundance .	L M. Linna LAllandia	Temperature :	21~25 ℃
Test Engineer :	Luffy Lin and Allen Lin	Relative Humidity :	51~54%

Report No.: FR911104A

<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 31.JAN.2019 15:58:50

Hopping Mode High Band Edge Plot

Date: 31.JAN.2019 15:59:42

TEL: 886-3-327-3456 Page Number : 42 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<2Mbps>

Hopping Mode Low Band Edge Plot

Report No.: FR911104A

Date: 31.JAN.2019 16:01:34

Hopping Mode High Band Edge Plot

Date: 31.JAN.2019 16:03:02

TEL: 886-3-327-3456 Page Number : 43 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<3Mbps>

Hopping Mode Low Band Edge Plot

Report No.: FR911104A

Date: 31.JAN.2019 16:04:32

Hopping Mode High Band Edge Plot

Date: 31.JAN.2019 16:05:20

TEL: 886-3-327-3456 Page Number : 44 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR911104A

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

TEL: 886-3-327-3456 Page Number : 45 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.7.5 Test Result of Conducted Spurious Emission

Took Fundance .	L M. Linna LAllandia	Temperature :	21~25 ℃
Test Engineer :	Luffy Lin and Allen Lin	Relative Humidity :	51~54%

Report No.: FR911104A

<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 31.JAN.2019 15:56:03

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 15:56:33

TEL: 886-3-327-3456 Page Number : 46 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Report No.: FR911104A

Date: 31.JAN.2019 16:14:38

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 16:15:06

TEL: 886-3-327-3456 Page Number : 47 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR911104A

Date: 31.JAN.2019 16:21:11

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 16:21:39

TEL: 886-3-327-3456 Page Number : 48 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Report No.: FR911104A

Date: 31.JAN.2019 16:25:03

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 16:26:11

TEL: 886-3-327-3456 Page Number : 49 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Report No.: FR911104A

Date: 31.JAN.2019 16:30:02

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 16:32:29

TEL: 886-3-327-3456 Page Number : 50 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR911104A

Date: 31.JAN.2019 16:38:45

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 16:39:13

TEL: 886-3-327-3456 Page Number : 51 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Report No.: FR911104A

Date: 31.JAN.2019 16:41:57

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 16:42:27

TEL: 886-3-327-3456 Page Number : 52 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Report No.: FR911104A

Date: 31.JAN.2019 16:45:57

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 16:49:46

TEL: 886-3-327-3456 Page Number : 53 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR911104A

Date: 31.JAN.2019 16:56:18

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 31.JAN.2019 16:57:48

TEL: 886-3-327-3456 Page Number : 54 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR911104A

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 55 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.8.3 Test Procedures

1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR911104A

- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-3456 Page Number : 56 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.8.4 Test Setup

For radiated emissions below 30MHz

Report No.: FR911104A

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 57 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

For radiated emissions above 1GHz

Report No.: FR911104A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

TEL: 886-3-327-3456 Page Number : 58 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR911104A

Eroquency of emission (MUz)	Conducted limit (dBμV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number : 59 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.9.4 Test Setup

Report No.: FR911104A

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 60 of 64
FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR911104A

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 61 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2018	Jan. 22, 2019~ Jan. 31, 2019	Dec. 26, 2019	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2018	Jan. 22, 2019~ Jan. 31, 2019	Dec. 26, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 21, 2018	Jan. 22, 2019~ Jan. 31, 2019	Nov. 20, 2019	Conducted (TH05-HY)
BT Base Station (Measure)	Rohde & Schwarz	CBT	101136	BT 3.0	Sep. 27, 2018	Jan. 22, 2019~ Jan. 31, 2019	Sep. 26, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC130048 4	N/A	Mar. 01, 2018	Jan. 22, 2019~ Jan. 31, 2019	Feb. 28, 2019	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Feb. 20, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	Feb. 20, 2019	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Feb. 20, 2019	Nov. 13, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 09, 2018	Feb. 20, 2019	Nov. 08, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Feb. 20, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	Feb. 20, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	Feb. 20, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz~30 MHz	Mar. 29, 2018	Jan. 23, 2019~ Feb. 19, 2019	Mar. 28, 2019	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 06, 2018	Jan. 23, 2019~ Feb. 19, 2019	Dec. 05, 2019	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL6111D&0 0802N1D01N- 06	47020&06	30MHz to 1GHz	Oct. 13, 2018	Jan. 23, 2019~ Feb. 19, 2019	Oct. 12, 2019	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-162 0	1G~18GHz	Oct. 17, 2018	Jan. 23, 2019~ Feb. 19, 2019	Oct. 16, 2019	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 576	18GHz ~ 40GHz	May 08, 2018	Jan. 23, 2019~ Feb. 19, 2019	May 07, 2019	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 28, 2018	Jan. 23, 2019~ Feb. 19, 2019	Dec. 27, 2019	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 00550006	1GHz~18GHz	Jul. 10, 2018	Jan. 23, 2019~ Feb. 19, 2019	Jul. 09, 2019	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 23, 2018	Jan. 23, 2019~ Feb. 19, 2019	Aug. 22, 2019	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY541300 85	20Hz ~ 8.4GHz	Nov. 01, 2018	Jan. 23, 2019~ Feb. 19, 2019	Oct. 31, 2019	Radiation (03CH15-HY)
Spectrum Analyzer	Agilent	E4446A	MY501801 36	3Hz~44GHz	Apr. 25, 2018	Jan. 23, 2019~ Feb. 19, 2019	Apr. 24, 2019	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jan. 23, 2019~ Feb. 19, 2019	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jan. 23, 2019~ Feb. 19, 2019	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24	RK-00045 1	N/A	N/A	Jan. 23, 2019~ Feb. 19, 2019	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY36980/ 4	30M-18G	Apr. 16, 2018	Jan. 23, 2019~ Feb. 19, 2019	Apr. 15, 2019	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9838/4	30M-18G	Apr. 16, 2018	Jan. 23, 2019~ Feb. 19, 2019	Apr. 15, 2019	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	MTJ	000000-M T18A-100 D3210	30M-18G	Apr. 16, 2018	Jan. 23, 2019~ Feb. 19, 2019	Apr. 15, 2019	Radiation (03CH15-HY)

Report No. : FR911104A

TEL: 886-3-327-3456 Page Number : 62 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 14, 2018	Jan. 23, 2019~ Feb. 19, 2019	Mar. 13, 2019	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 14, 2018	Jan. 23, 2019~ Feb. 19, 2019	Mar. 13, 2019	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60SS		3.0 GHz High pass	Jul. 16, 2018	Jan. 23, 2019~ Feb. 19, 2019	Jul. 15, 2019	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S		1G Low Pass	Sep. 16, 2018	Jan. 23, 2019~ Feb. 19, 2019	Sep. 15, 2019	Radiation (03CH15-HY)

Report No. : FR911104A

TEL: 886-3-327-3456 Page Number : 63 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Manager to the contribution of the contributio	
Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.2

Report No.: FR911104A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.2

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.5
of 95% (U = 2Uc(y))	5.5

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.2

TEL: 886-3-327-3456 Page Number : 64 of 64 FAX: 886-3-328-4978 Issued Date : Mar. 26, 2019

Appendix A. AC Conducted Emission Test Results

Test Mode :	Mode 1	Temperature :	23~24 ℃
Test Engineer :	Rick Lin	Relative Humidity :	51~53%
Test Voltage :	120Vac / 60Hz	Phase :	Line

Report No.: FR911104A

Final Result:

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		35.18	55.88	20.70	L1	OFF	19.5
0.152250	48.64		65.88	17.24	L1	OFF	19.5
0.546000		36.42	46.00	9.58	L1	OFF	19.5
0.546000	44.32		56.00	11.68	L1	OFF	19.5
0.550500		38.28	46.00	7.72	L1	OFF	19.5
0.550500	45.60		56.00	10.40	L1	OFF	19.5
0.564000		40.27	46.00	5.73	L1	OFF	19.5
0.564000	47.61		56.00	8.39	L1	OFF	19.5
0.570750		39.42	46.00	6.58	L1	OFF	19.5
0.570750	46.33		56.00	9.67	L1	OFF	19.5
0.575250		38.29	46.00	7.71	L1	OFF	19.5
0.575250	45.09		56.00	10.91	L1	OFF	19.5
2.080500		26.27	46.00	19.73	L1	OFF	19.4
2.080500	33.37		56.00	22.63	L1	OFF	19.4
6.492750		20.14	50.00	29.86	L1	OFF	19.6
6.492750	22.67		60.00	37.33	L1	OFF	19.6

TEL: 886-3-327-3456 Page Number : A1 of A2

Test Mode:	Mode 1	Temperature :	23~24 ℃
Test Engineer :	Rick Lin	Relative Humidity :	51~53%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral

Report No.: FR911104A

Final Result:

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.161250		34.91	55.40	20.49	N	OFF	19.5
0.161250	48.51		65.40	16.89	N	OFF	19.5
0.548250		37.70	46.00	8.30	N	OFF	19.5
0.548250	45.32		56.00	10.68	N	OFF	19.5
0.557250		39.78	46.00	6.22	N	OFF	19.5
0.557250	47.01		56.00	8.99	N	OFF	19.5
0.564000		39.74	46.00	6.26	N	OFF	19.5
0.564000	47.24		56.00	8.76	N	OFF	19.5
0.570750		39.32	46.00	6.68	N	OFF	19.5
0.570750	46.30		56.00	9.70	N	OFF	19.5
0.575250		38.09	46.00	7.91	N	OFF	19.5
0.575250	44.82		56.00	11.18	N	OFF	19.5
2.037750		26.25	46.00	19.75	N	OFF	19.5
2.037750	33.16		56.00	22.84	N	OFF	19.5
6.609750		21.02	50.00	28.98	N	OFF	19.6
6.609750	23.09		60.00	36.91	N	OFF	19.6

TEL: 886-3-327-3456 Page Number : A2 of A2

Appendix B. Radiated Spurious Emission

Toot Engineer		Temperature :	23~26°C
Test Engineer :	Watt Tseng, Karl Hou, and Bigshow Wang	Relative Humidity :	50~57%

Report No.: FR911104A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2365.965	43.18	-30.82	74	40.55	27.67	5.82	30.86	313	310	Р	Н
		2365.965	18.39	-35.61	54	-	-	-	-	-	-	Α	Н
	*	2402	97.98	-	-	95.36	27.6	5.87	30.85	313	310	Р	Н
	*	2402	73.19	-	-	-	-	-	-	-	-	Α	Н
ВТ													Н
CH00													Н
2402MHz		2374.89	42.86	-31.14	74	40.26	27.63	5.83	30.86	380	114	Р	V
Z-TOZIVITIZ		2374.89	18.07	-35.93	54	-	-	-	-	-	-	Α	V
	*	2402	96.03	-	-	93.41	27.6	5.87	30.85	380	114	Р	V
	*	2402	71.24	-	-	-	-	-	-	-	-	Α	٧
													V
													٧
		2338.84	43.06	-30.94	74	40.46	27.7	5.78	30.88	304	311	Р	Н
		2338.84	18.27	-35.73	54	-	-	-	-	-	-	Α	Н
	*	2441	96.66	-	-	93.96	27.6	5.93	30.83	304	311	Р	Н
	*	2441	71.87	1	-	-	-	-	-	-	-	Α	Н
D.T.		2489.85	42.74	-31.26	74	40.16	27.4	6	30.82	304	311	Р	Н
BT CH 39		2489.85	17.95	-36.05	54	-	-	-	-	-	-	Α	Н
2441MHz		2352.84	43.34	-30.66	74	40.75	27.67	5.8	30.88	359	145	Р	٧
Z77 (IVI) (Z		2352.84	18.55	-35.45	54	-	-	-	-	-	-	Α	٧
	*	2441	95.49	-	-	92.79	27.6	5.93	30.83	359	145	Р	٧
	*	2441	70.7	-	-	-	-	-	-	-	-	Α	V
		2493.84	43.37	-30.63	74	40.78	27.4	6	30.81	359	145	Р	V
		2493.84	18.58	-35.42	54	-	-	-	-	-	-	Α	٧

TEL: 886-3-327-3456 Page Number: B1 of B6

	*	2480	97.4	-	-	94.77	27.47	5.98	30.82	331	310	Р	Н
	*	2480	72.61	-	-	-	-	-	-	-	-	Α	Н
		2499.68	43.64	-30.36	74	41.04	27.4	6.01	30.81	331	310	Р	Н
		2499.68	18.85	-35.15	54	-	-	-	-	-	-	Α	Н
DT													F
BT CH 78													F
Сп 76 2480MHz	*	2480	95.49	-	-	92.86	27.47	5.98	30.82	400	128	Р	V
1400IVII 12	*	2480	70.7	-	-	-	-	-	-	-	-	Α	٧
		2497.16	43.32	-30.68	74	40.72	27.4	6.01	30.81	400	128	Р	٧
		2497.16	18.53	-35.47	54	-	-	-	-	-	-	Α	٧
													٧
													V
Domark	1. N	lo other spurious	s found.	·									
Remark	2. A	II results are PA	SS against	Peak and	Average li	mit line.							

Report No. : FR911104A

TEL: 886-3-327-3456 Page Number : B2 of B6

2.4GHz 2400~2483.5MHz

Report No. : FR911104A

BT (Harmonic @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	38.63	-35.37	74	56.93	31.3	8.44	58.04	100	0	Р	Н
		4804	13.84	-40.16	54	-	-	-	-	-	-	Α	Н
DT													Н
BT													Н
CH 00 2402MHz		4804	40.39	-33.61	74	58.69	31.3	8.44	58.04	100	0	Р	V
24U2IVI		4804	15.6	-38.4	54	-	-	-	-	-	-	Α	V
													V
													V
		4882	39.16	-34.84	74	57.3	31.3	8.67	58.11	100	0	Р	Н
		4882	14.37	-39.63	54	-	-	-	-	-	-	Α	Н
		7323	45.19	-28.81	74	56.03	36.23	11.27	58.34	100	0	Р	Н
ВТ		7323	20.4	-33.6	54	-	-	-	-	-	-	Α	Н
CH 39		4882	38.51	-35.49	74	56.65	31.3	8.67	58.11	100	0	Р	V
2441MHz		4882	13.72	-40.28	54	-	-	-	-	-	-	Α	V
		7323	43.48	-30.52	74	54.32	36.23	11.27	58.34	100	0	Р	٧
		7323	18.69	-35.31	54	-	-	-	-	-	-	Α	٧
		4960	38.84	-35.16	74	56.64	31.47	8.9	58.17	100	0	Р	Н
		4960	14.05	-39.95	54	-	-	-	-	-	-	Α	Н
		7440	44.92	-29.08	74	55.3	36.6	11.33	58.31	100	0	Р	Н
BT		7440	20.13	-33.87	54	-	-	-	-	-	-	Α	Н
CH 78		4960	38.68	-35.32	74	56.48	31.47	8.9	58.17	100	0	Р	V
2480MHz		4960	13.89	-40.11	54	-	-	-	-	-	-	Α	V
		7440	44.31	-29.69	74	54.69	36.6	11.33	58.31	100	0	Р	V
		7440	19.52	-34.48	54	-	-	-	-	-	-	Α	V
Domest	1. No	o other spurious	s found.	1	1	1	1		1	1	1	1	1
Remark	2. All	results are PA	SS against F	Peak and	l Average lim	it line.							

TEL: 886-3-327-3456 Page Number : B3 of B6

Emission below 1GHz

Report No.: FR911104A

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		78.6	34.26	-5.74	40	52.44	13.2	1.07	32.54	-	-	Р	Н
		121.26	39.69	-3.81	43.5	53.3	17.52	1.32	32.51	100	0	Р	Н
		137.73	37.88	-5.62	43.5	51.46	17.42	1.41	32.5	-	-	Р	Н
		497.4	37.77	-8.23	46	43.7	23.9	2.63	32.57	-	-	Р	Н
		568.8	36.57	-9.43	46	40.26	25.91	2.82	32.59	-	-	Р	Н
		746.6	33.48	-12.52	46	34.34	28.13	3.19	32.31	-	-	Р	Н
													Н
													Н
													Н
													Н
0.4011													Н
2.4GHz													Н
BT LF		37.02	35.83	-4.17	40	46.82	20.86	0.75	32.61	100	0	Р	V
LF		120.18	33.37	-10.13	43.5	46.98	17.53	1.31	32.51	-	-	Р	V
		138	34.24	-9.26	43.5	47.82	17.42	1.41	32.5	-	-	Р	V
		498.1	36.42	-9.58	46	42.33	23.92	2.63	32.57	-	-	Р	V
		568.8	37.85	-8.15	46	41.54	25.91	2.82	32.59	-	-	Р	V
		640.2	30.16	-15.84	46	33.33	26.22	2.97	32.52	-	-	Р	V
													V
													٧
													V
													V
													V
													V

2. All results are PASS against limit line.

TEL: 886-3-327-3456 Page Number : B4 of B6

Note symbol

Report No. : FR911104A

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions								
	shall not exceed the level of the fundamental frequency.								
!	Test result is over limit line.								
P/A	Peak or Average								
H/V	Horizontal or Vertical								

TEL: 886-3-327-3456 Page Number : B5 of B6

A calculation example for radiated spurious emission is shown as below:

Report No.: FR911104A

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : B6 of B6

Appendix C. Radiated Spurious Emission Plots

Test Engineer :	Watt Tseng, Karl Hou, and Bigshow Wang	Temperature :	23~26°C
		Relative Humidity :	50~57%

Report No.: FR911104A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number : C1 of C10

TEL: 886-3-327-3456 Page Number : C2 of C10

вт 2.4GHz 2400~2483.5MHz Band Edge @ 3m BT CH39 2441MHz Horizontal **Fundamental** : 03CH15-HY :PEAK_BE_74 3m 9120b_15_1620 HORIZONTAL :R8W:1000.000KHz V8W:3000.000KHz SWT:Auto :Peak :21 Peak Peak Left blank

Report No.: FR911104A

TEL: 886-3-327-3456 Page Number: C3 of C10

вт 2.4GHz 2400~2483.5MHz Band Edge @ 3m BT CH39 2441MHz Vertical **Fundamental** Peak Peak Left blank

Report No.: FR911104A

TEL: 886-3-327-3456 Page Number : C4 of C10

TEL: 886-3-327-3456 Page Number: C5 of C10

TEL: 886-3-327-3456 Page Number : C6 of C10

2.4GHz 2400~2483.5MHz

Report No.: FR911104A

BT (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number: C7 of C10

TEL: 886-3-327-3456 Page Number : C8 of C10

TEL: 886-3-327-3456 Page Number : C9 of C10

Emission below 1GHz

Report No.: FR911104A

2.4GHz BT (LF)

TEL: 886-3-327-3456 Page Number : C10 of C10

Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

TEL: 886-3-327-3456 Page Number : D1 of D2

FCC RADIO TEST REPORT

Duty Cycle Correction Factor Consideration for AFH mode:

Report No.: FR911104A

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

 $2.88 \text{ ms } \times 20 \text{ channels} = 57.6 \text{ ms}$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.76 \text{ ms}/100\text{ms}) = -24.79 \text{ dB}$

TEL: 886-3-327-3456 Page Number : D2 of D2