Oppgaver for kapittel 0

0.1.1

Bruk definisjonen av den deriverte til å vise at for funksjonen $f(x) = \frac{1}{x} \text{ er } f'(x) = -\frac{1}{x^2}.$

0.1.2

Deriver uttrykkene

- a) $5x^3$ b) $-8x^6$ c) $\frac{3}{7}x^7$ d) $-x^{\frac{2}{3}}$ e) $x^{\frac{9}{7}}$

0.1.3

Deriver uttrykkene

- a) $2e^x$ b) $-30e^x$ c) $8 \ln x$ d) $-4 \ln x$

0.1.4

Forklar hvordan du kan omskrive uttrykk på formen $\frac{1}{x^k}$ slik at du kan anvende (??) til å derivere uttrykkene.

0.1.5

Deriver uttrykkene (Hint: Se oppgave 0.1.4)

- a) $\frac{5}{r^2}$ b) $\frac{7}{r^{10}}$ c) $-\frac{2}{9r^7}$ d) $\frac{3}{11r^{\frac{8}{5}}}$

0.1.6

Deriver funksjonene

- a) $g(x) = 3x^3 4x + \frac{1}{x}$ b) $f(x) = x^2 + \ln x$ c) $h(x) = \ln x + x^2 + 2$ d) $a(x) = x^2 + e^x$ e) $p(x) = e^x + \ln x$

0.1.7

Deriver uttrykkene med hensyn på x.

- a) $ax^2 + bx + c$ b) $7x^5 3ax + b$ c) $-9qx^7 + 3px^3 + b^3$

0.2.1

Deriver funksjonene

- a) $f(x) = x\sqrt{1-2x}$ b) $p(x) = 3xe^{2x}$ c) $h(x) = 3x^2 \ln x$ d) $k(x) = \sqrt{4x^2 5}$ e) $f(x) = x^3\sqrt{2x 1}$ f) $q(x) = \frac{x^3}{x^2 2}$ g) $f(x) = (x^2 + 2)^7$ h) $h(x) = \frac{x}{e^{x^2}}$

0.2.2

Løs **Gruble ??** ved hjelp av L'Hopitals regel.

Gruble 1

(R1V22D1)

En funskjon f er gitt ved

$$f(x) = \begin{cases} x^2 + 1 & , & x < 2 \\ x - t & , & x \ge 2 \end{cases}$$

- a) Bestem tallet t slik at f blir en kontinuerlig funksjon. Husk å grunngi svaret.
- b) Avgjør om f er deriverbar i x=2 for den verdien av t du fant i oppgave a).

Gruble 2

Bruk definisjonen av den deriverte til å finne den deriverte funksjonen til henholdsvis $f_1(x) = x$, $f_2(x) = x^2$, $f_3(x) = x^3$.

La $f_n(x) = x^n$ for $n \in \mathbb{N}$. Bruk det du har funnet til å foreslå et uttrykk for $f'_n(x) = x^n$.

Gruble 3

(T1H23D1)

Funksjonen f er gitt ved

$$f(x) = x^3 - 3x^2 - x + 4$$

Bestem ligningen for tangenten til f i punktet (1, f(1)).

Gruble 4

Bevis at (??) er gyldig.

Gruble 5

Bevis at $(a^x)' = a^x \ln a$.