Website Changes and User Behavior Using Panjiva Data to Examine Code Changes

John J. Wang

14.27 Final Presentation

December 2, 2012

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

The Silicon Valley Mindset

- "Move fast and break things." Facebook
- "The only constant is change itself." Heraclitus
- "Pick a movement, pick a revolution, and join it." Jack Dorsey

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Background and Previous Research

- Academia has little to say on code changes and user behavior
- Most of the data is hidden away in large tech companies
- Although these companies probably run experiments, results aren't necessarily made public

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Lingering Questions

- Do users tend to respond favorably to website changes?
- How do users react to different types of change?
- How do different characteristics of users affect their reactions to change?

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- 2 Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Panjiva, Inc.

- http://www.panjiva.com
- Acts as a medium for buyers and suppliers of manufactured goods
- Example: Home Depot finding a wrench factory

Commit Statistics

Table: Overall Commit Statistics - 11/25/2012

Active Days (at least 1 commit)	1,983
Total Current Files	20,901
Total Lines of Code	1,313,235
Total Lines of Code Added	3,989,295
Total Lines of Code Removed	2,676,060
Total Commits	29,924
Total Authors/Developers	33

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Specification

$$y_t^i = c_0 + \vec{\gamma}^T \vec{M}_t + \vec{\beta}^T \vec{\chi}_t + \epsilon_t \tag{1}$$

- t indexes day
- y_t^i corresponds to *i*th metric of user activity on day t
- \vec{M}_t corresponds to a vector of covariates that represent changes in the code
- $\vec{\chi}_t$ is a vector of controls

Effect of Commits on User Activity

	(1)	(2)
	activitylogcount	eventlogcount
fileschanged	-5530.7	-60589.4*
percentile	(-1.91)	(-2.26)
insertions	4868.8*	47053.7*
percentile	(2.12)	(2.22)
deletions	2778.9	29970.6
percentile	(1.29)	(1.50)
weekend	-14708.0***	-79769.8***
	(-16.48)	(-9.65)
_cons	22396.6***	224482.8***
	(25.05)	(27.12)
N	474	475

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Effect of Commits on User Activity

	(1)	(2)
	avguseractivity	avguserevents
fileschanged	-10.40*	-148.6
percentile	(-2.01)	(-1.52)
insertions	2.817	79.92
percentile	(0.69)	(1.03)
deletions	4.670	49.47
percentile	(1.21)	(0.68)
weekend	-0.297	257.0***
	(-0.19)	(8.49)
_cons	25.00***	340.6***
	(15.58)	(11.24)
N	474	475

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Specification

$$y_{tx}^{i} = c_0 + \gamma M_t + \beta weekend_t + \epsilon_t$$
 (2)

- Lag variable $x \in [1, 30]$.
- Examines how commits on day t affect user behavior in time t + x.

Average Activity Logs Per Distinct User

Figure: γ Coefficients with Varying Lags, Regressed on Average Activity Logs per User

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Problems with Macro-Level Data

- Nothing more than correlations
- Possibly complex, unknown mechanisms for how results come about

The Case for Micro-Level Data

- Panjiva has data on the page and time that any action was performed.
- Code changes (commits) can be thought of as exogeneous shocks.
- Almost all changes are unannounced
- Only extremely large changes are announced on blog (less than 1% of Panjiva's total pageviews come from blog).

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Search Controller

Figure: The Search Page, Panjiva's most trafficked page, provides functionality for finding suppliers, buyers, products, and buyer inquiries.

Visualization of Variables

Search Regression Results

	Dependent Variable: num_views_day_later			
	(1)	(2)	(3)	(4)
after_commit	5.541***		3.378***	
	(17.91)		(11.20)	
time_from_event		0.0000737*** (43.76)		0.000110*** (66.60)
created_at_hour dummies?	No	No	Yes	Yes
_cons	156.9***	159.9***	138.3***	139.7***
	(731.32)	(1033.47)	(127.71)	(130.50)
Ν	2345617	2345617	2345617	2345617
	.1	0.05	0.04 deded	2 221

t statistics in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Differences in Commits

	Depend	ent Variable:	num_views_c	lay_later
	(1)	(2)	(3)	(4)
after_commit	-10.86***	-13.79***	-325.5***	-305.9***
	(-16.90)	(-22.03)	(-154.63)	(-149.28)
insertionspercentile	-50.97***	-50.76***	-650.6***	-609.5***
	(-54.12)	(-55.34)	(-218.09)	(-209.88)
deletionspercentile	66.31***	63.35***	251.5***	230.8***
	(70.67)	(69.34)	(84.73)	(79.94)
insertionspercentile *	57.00***	58.05***	393.0***	365.1***
after_commit	(41.21)	(43.09)	(89.07)	(85.01)
deletionspercentile *	-24.16***	-23.64***	2.306	3.295
after_commit	(-17.65)	(-17.74)	(0.53)	(0.77)
Hour Dummies?	No	Yes	No	Yes
Controllers Used	Search	Search	All	All
_cons	150.1***	133.2***	606.5***	491.0***
	(336.67)	(116.37)	(420.98)	(130.17)
N	2345617	2345617	3858943	3858943

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Effects of Each Controller

$$\begin{array}{lll} \textit{num_views_day_later}_{it} &=& \beta_0 \textit{after_commit}_{it} + \bar{\beta}_1 \overline{\textit{controllers}}_{it} \\ &+& \bar{\beta}_2 \overline{\textit{controllers}}_{it}^T \times \overline{\textit{after_commit}}_{it} \\ &+& \beta_3 \textit{hour_dummies}_{it} + \epsilon_{it} \end{array}$$

- Looking for the impact of controller k on user activity after a commit
- Want to examine $\Gamma_k = \beta_{2k} + \beta_{1k} + \beta_0 \beta_{1k} = \beta_{2k} + \beta_0$.
- Standard errors given by:

$$SE_{sum} = \sqrt{SE_{cont_{2k}}^2 + SE_{ac}^2 + 2Cov(cont_{2k}, ac)}$$

Controller Results

	(1)	(2)
	No Hour Controls	With Hour Controls
Communication	-2.673	5.111
	(-0.50)	(0.98)
My_Panjiva	-41.718*	-54.530***
	(-1.98)	(-2.68)
Profile	-8.167	-6.339
	(-1.30)	(-1.04)
Project	-410.438***	-388.496***
	(-235.55)	(-228.27)
Search	5.541***	1.516
	(4.37)	(1.23)
US_Exports	10.318	-28.946
	(0.28)	(-0.80)
$US_Imports$	-12.487	-8.73
	(-0.82)	(-0.59)
N	3858943	3858943

Observations

- Search controller has 1.4 million observations, while Project and My_Panjiva have less than 100 thousand
- Maybe users respond differently to changes on popular vs. not-popular pages
- Must control for previous popularity

Controlling for Popularity

	(1)	(2)
	num_views_day_later	num_views_day_later
after_commit	-13.79***	-9.618***
	(-9.02)	(-6.40)
insertionspercentile	-108.8***	-104.9***
	(-52.39)	(-51.40)
deletionspercentile	-5.528**	-6.231**
·	(-2.70)	(-3.10)
insertionspercentile *	63.96***	54.02***
after_commit	(20.91)	(17.96)
deletionspercentile *	67.98***	67.61***
after_commit	(22.53)	(22.79)
num_controller_views	0.0475***	0.0469***
	(1780.26)	(1751.65)
num_controller_views *	-0.0138***	-0.0134***
after_commit	(-333.01)	(-328.18)
Hour Dummies?	No	Yes
_cons	-47.43***	-69.41***
	(-44.85)	(-26.29)
N	3858943	3858943

- Introduction
 - Silicon Valley Mindset
 - What We Know
 - Questions to Ask
 - Panjiva Dataset
- 2 Macro-Level Results
 - Daily Effects of Code Changes
 - Lagged Effects of Code Changes
- Micro-Level Results
 - Why Micro-Level Data?
 - Search Controller
 - Commit Types
 - Differential Controller Effects
- 4 Conclusion

Conclusions

- Users respond negatively to low quality code (total and average user activity decreased when more files were changed)
- Changes to highly trafficked pages tend to decrease short term user activity
- Thoughtless code changes can negatively affect user experience

Acknowledgements

I would like to thank:

- Jim Psota
- Professor Ellison
- Panjiva, Inc.