Analyzing Electrical Circuits

$$I_{B} = \frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} \qquad (1)$$

$$V_{1} + V_{3} + V_{B} = 0 \qquad (2)$$

$$V_A + V_1 - V_2 = 0$$
 (3)

$$V_3 = R_3 \cdot I_B$$
 $(4) \Rightarrow V_3 = 1 \cdot 2 = 2V$

(3) (n (1) =)
$$I_{B} = \frac{V_{2}-V_{A}}{R_{1}} + \frac{V_{2}}{R_{2}} \Rightarrow R_{1}R_{2} \cdot I_{B} = R_{2}V_{z} - R_{2}V_{A} + R_{1}V_{2}$$

$$R_1$$
= R_3 = 1 k Ω , R_2 =2 k Ω , V_A = 1 V, I_B = 2 mA

$$= V_{2} - \frac{R_{1}R_{2} \cdot T_{3} + R_{2}V_{A}}{R_{1} + Q_{1}} = \frac{1 \cdot 2 \cdot 2 + 2 \cdot 1}{2 + 1} = \frac{6}{3} = 2V \implies T_{2} - \frac{V_{2}}{R_{2}} = \frac{7}{2} = 1 \text{ mA}$$

$$V_{1} = V_{2} - V_{A} = 2 - 1 = 1V \quad T_{A} = \frac{V_{1}}{R_{1}} = \frac{1}{1} = 1 \text{ mA}$$

$$V_{3} = -V_{2} - V_{3} = -2 - 2 = -4V$$

Analyzing Electrical Circuits

 $V_{3} = -4V$ $I_{A} = 1_{m}A$ $I_{2} = 1_{m}A$ $V_{7} = 1V$ $V_{2} = 2V$ $V_{3} = 2V$

Circuit	[v]\v	[Am] I	P[mW]	
VA	1	1	- 8 <mark>1</mark>	
$I^{\mathcal{D}}$	-4 1	2	- 8 1	
R ₁ R ₂	2	1	2	
R_3	2	2	4	
,				
1		\		
			}	
)	l	ı]	

$$R_1$$
= R_3 = 1 k Ω , R_2 =2 k Ω , V_A = 1 V, I_B = 2 mA