Problem Set #10: Uniform Electronic Semiconductors in Equilibrium

1.

Through the relations:

$$n_o = 2 \left(\frac{2\pi m_n^* kT}{h^2}\right)^{\frac{3}{2}} e^{\frac{-(E_c - E_f)}{kT}}$$

$$p_o = 2 \left(\frac{2\pi m_p^* kT}{h^2} \right)^{\frac{3}{2}} e^{\frac{-(E_f - E_v)}{kT}}$$

we can define the parameters N_c and N_v known as the *effective density of states* in the conduction band and valence band respectively, where:

$$N_c = 2\left(\frac{2\pi m_n^* kT}{h^2}\right)^{\frac{3}{2}}$$

$$N_v = 2\left(\frac{2\pi m_p^* kT}{h^2}\right)^{\frac{3}{2}}$$

(a) Calculate N_c and N_v for the following semiconductors at T=300K (note m_o is the rest mass of an electron) :

(i) Si: $m_n^* = 1.08m_o$ and $m_p^* = 0.56m_o$

(ii) GaAs: $m_n^* = 0.067 m_o$ and $m_p^* = 0.48 m_o$

(iii) Ge: $m_n^* = 0.55m_o$ and $m_o^* = 0.37m_o$

- (b) Comment on the similarity of the effective density of states in the above semiconductors.
- (c) Calculate the thermal equilibrium electron and hole concentration in Si at T=300K for the following cases:
 - (i) when the Fermi energy level is at the mid gap.
 - (ii) when the Fermi energy level is 0.22eV below the conduction band.
- 2. The mass action relation dictates that for a semiconductor in equilibrium:

$$n_o p_o = n_i^2$$

Through this relation it can be seen that for an extrinsic (doped) semiconductor the minority carrier concentration will decrease below its intrinsic value. Provide a physical explanation for why this occurs.

electrons.	ven intrinsic semiconductor, the effective mass of hole Is the Fermi level above or below the mid gap level?	
answer.		