Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

In [3]:

```
# Dependencies and Setup
import pandas as pd
```

In [2]:

```
# File to Load (Remember to Change These)
school_data = "Resources/schools_complete.csv"
student_data = "Resources/students_complete.csv"

#Read school and Student Data File and store into Pandas Data Frames
school_df = pd.read_csv(school_data)
student_df = pd.read_csv(student_data)

#Combine the data into a single dataset
merge_df = pd.merge(student_df, school_df, how = "left", on = ["school_name", "school_name"])
# merge_df = pd.merge(school_df, student_df, on = ["school_name", "school_name"])
merge_df
```

Out[2]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	type	size	budget
0	0	Paul Bradley	М	9th	Huang High School	66	79	0	District	2917	1910635
1	1	Victor Smith	М	12th	Huang High School	94	61	0	District	2917	1910635
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	District	2917	1910635
3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	District	2917	1910635
4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	District	2917	1910635
39165	39165	Donna Howard	F	12th	Thomas High School	99	90	14	Charter	1635	1043130
39166	39166	Dawn Bell	F	10th	Thomas High School	95	70	14	Charter	1635	1043130
39167	39167	Rebecca Tanner	F	9th	Thomas High School	73	84	14	Charter	1635	1043130
39168	39168	Desiree Kidd	F	10th	Thomas High School	99	90	14	Charter	1635	1043130
39169	39169	Carolyn Jackson	F	11th	Thomas High School	95	75	14	Charter	1635	1043130

39170 rows × 11 columns

In [3]:

```
merge_df.dtypes
```

Out[3]:

```
Student ID student_name object object
                object
grade
school name
                object
reading_score int64
                 int64
int64
math score
School ID
                object
type
                 int64
size
budget
                 int64
dtype: object
```

District Summary

- · Calculate the total number of schools
- · Calculate the total number of students
- · Calculate the total budget
- · Calculate the average math score
- · Calculate the average reading score
- Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2
- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- Create a dataframe to hold the above results
- · Optional: give the displayed data cleaner formatting

In [4]:

```
total_number_schools = school_df["school_name"].count()
total number students = merge df["student name"].count()
# total budget calculates incorrectly, need to talk to TA or Travis
total budget = school df["budget"].sum()
average math score = merge df["math score"].mean()
average reading score = merge df["reading score"].mean()
passing_math_score = merge_df.loc[merge_df["math_score"] >= 70]["student_name"].count()
passing math rate = (passing math score / total number students) * 100
passing reading score = merge df.loc[merge df["reading score"] >= 70]["student name"].count()
passing reading rate = (passing reading score / total number students) * 100
overall passing rate = (passing math rate + passing reading rate) / 2
results df = pd.DataFrame({"Total Schools": total number schools, "Total Students":
total number students,
                           "Total Budget" : total budget,
                           "Average Math Score" : average_math_score, "Average Reading Score" : ave
age reading score,
                          "% Passing Math" : passing math rate, "% Passing Reading" : passing readi
g_rate,
                          "% Overall Passing Rate" : overall passing rate}, index = [0])
# using map to format displaying $ and two decimal points
results df["Total Budget"] = results df["Total Budget"].map("${:,.2f}".format)
results df
4
```

Out[4]:

	Total Schools	Total Students	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
0	15	39170	\$24,649,428.00	78.985371	81.87784	74.980853	85.805463	80.393158

School Summary

- Create an overview table that summarizes key metrics about each school, including:
 - School Name
 - School Type
 - Total Students
 - Total School Budget
 - Per Student Budget
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)

In [5]:

```
school_summary_df = pd.merge(student_df, school_df, on = "school_name")
school_summary_df
```

Out[5]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	type	size	budget
0	0	Paul Bradley	М	9th	Huang High School	66	79	0	District	2917	1910635
1	1	Victor Smith	М	12th	Huang High School	94	61	0	District	2917	1910635
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	District	2917	1910635
3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	District	2917	1910635
4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	District	2917	1910635
39165	39165	Donna Howard	F	12th	Thomas High School	99	90	14	Charter	1635	1043130
39166	39166	Dawn Bell	F	10th	Thomas High School	95	70	14	Charter	1635	1043130
39167	39167	Rebecca Tanner	F	9th	Thomas High School	73	84	14	Charter	1635	1043130
39168	39168	Desiree Kidd	F	10th	Thomas High School	99	90	14	Charter	1635	1043130
39169	39169	Carolyn Jackson	F	11th	Thomas High School	95	75	14	Charter	1635	1043130

39170 rows × 11 columns

In [6]:

```
# School Summary
# school summary = school df
school summary df = pd.merge(student df, school df, on = "school name")
school name = school df["school name"].unique()
# school name = school df["school name"].count()
# school name = school_summary_df.groupby("school_name")["school_name"].unique()
school_type = school_summary_df.groupby("school_name")["type"].unique()
# total_school_students = school_summary_df["size"].count()
total school students = school summary df["school name"].value counts()
# total school budget and per student budget
total school budget = school summary df.groupby("school name")["budget"].mean()
per student budget = total school budget / total school students
# average school math and reading score to get passing rate and overall passing rate
average school math score = school summary df.groupby("school name")["math score"].mean()
average school reading score = school summary df.groupby("school name")["reading score"].mean()
passing_school_math_score = school_summary_df[(school_summary_df["math_score"] >= 70)]
passing_school_reading_score = school_summary_df[(school_summary_df["reading_score"] >= 70)]
passing school math rate = (passing school math score.groupby(["school name"])
["student name"].count() / total school students) * 100
passing_school_reading_rate = (passing_school_reading_score.groupby(["school_name"])
["student name"].count() / total school students) * 100
overall school passing rate = (passing school math rate + passing school reading rate) / 2
# create dataframe
results school summary df = pd.DataFrame({"School Name": school name, "School Type": school type,
"Total Students" : total_school_students,
                                  "Total School Budget" : total school budget, "Per Student Budget"
: per student budget,
                                  "Average Math Score" : average school math score, "Average Readir
Score" : average school reading score,
                                 "% Passing Math" : passing_school_math_rate, "% Passing Reading" :
passing school reading rate.
```

```
"% Overall Passing Rate": overall_school_passing_rate
})

del results_school_summary_df["School Name"]

results_school_summary_df["Total School Budget"] = results_school_summary_df["Total School Budget"

].map("${:,.2f}".format)

results_school_summary_df["Per Student Budget"] = results_school_summary_df["Per Student Budget"].

map("${:.2f}".format)

results_school_summary_df
```

Out[6]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Bailey High School	[District]	4976	\$3,124,928.00	\$628.00	77.048432	81.033963	66.680064	81.933280	74.306672
Cabrera High School	[Charter]	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828	95.586652
Figueroa High School	[District]	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234	73.363852
Ford High School	[District]	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.299014	73.804308
Griffin High School	[Charter]	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965	95.265668
Hernandez High School	[District]	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999	73.807983
Holden High School	[Charter]	427	\$248,087.00	\$581.00	83.803279	83.814988	92.505855	96.252927	94.379391
Huang High School	[District]	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421	73.500171
Johnson High School	[District]	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432	73.639992
Pena High School	[Charter]	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946	95.270270
Rodriguez High School	[District]	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055	73.293323
Shelton High School	[Charter]	1761	\$1,056,600.00	\$600.00	83.359455	83.725724	93.867121	95.854628	94.860875
Thomas High School	[Charter]	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.308869	95.290520
Wilson High School	[Charter]	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641	95.203679
Wright High School	[Charter]	1800	\$1,049,400.00	\$583.00	83.682222	83.955000	93.333333	96.611111	94.972222

Top Performing Schools (By Passing Rate)

• Sort and display the top five schools in overall passing rate

```
In [7]:
```

```
# Top Five Schools by Passing Rate
top_five = results_school_summary_df.sort_values("% Overall Passing Rate", ascending = False)
top_five.head()
```

Out[7]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Cabrera High School	[Charter]	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828	95.586652
Thomas High			*	*					

• • •	School	[Charter]	1635 Total	\$1,043,130.00 Total School	\$638.00 Per Student	83.418349 Average	83.848930 Average	93.272171	97.308869 % Passing	95.290520 % Overall
	Pena High School	Type [Charter]	Students 962	Budget \$585,858.00	Budget \$609.00	Math Score 83.839917	Reading Score 84.044699	Passing 94.59 439	Reading 95.945946	Passing Rate 95.270270
(Griffin High School	[Charter]	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965	95.265668
W	Vilson High School	[Charter]	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641	95.203679

Bottom Performing Schools (By Passing Rate)

· Sort and display the five worst-performing schools

In [8]:

```
bottom_five = results_school_summary_df.sort_values("% Overall Passing Rate", ascending = True)
bottom_five.head()
```

Out[8]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Rodriguez High School	[District]	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055	73.293323
Figueroa High School	[District]	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234	73.363852
Huang High School	[District]	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421	73.500171
Johnson High School	[District]	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432	73.639992
Ford High School	[District]	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.299014	73.804308

Math Scores by Grade

- Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

In [9]:

.1

Out[9]:

	9th	10th	11th	12th
school_name				
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Reading Score by Grade

• Perform the same operations as above for reading scores

```
In [10]:
```

Out[10]:

	9th	10th	11th	12th
school_name				
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567

Holden High School	83.787402 9th	83.429825 10th	85.0000000	82.855422 12th
Huang High School school_name	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)

In [11]:

```
#create bins
school spending = results school summary df
spending_bins = [0, 585, 615, 645, 675]
group names = ["<$585", "$585-615", "$615-645", "$645-675"]
student spending = school spending["Per Student Budget"].replace("[\$,)]", "", regex=True)
#change data type to float
per student spending = student spending.astype(float)
per student spending
school_spending["Spending Ranges (Per Student)"] = pd.cut(per_student_spending, spending_bins,
labels = group names)
school_spending["Average Math Score"] = school_spending["Average Math Score"].astype(float)
school_spending["Average Reading Score"] = school_spending["Average Reading Score"].astype(float)
school spending math = school spending.groupby("Spending Ranges (Per Student)")["Average Math Scor
e"1.mean()
school spending reading = school spending.groupby("Spending Ranges (Per Student)")["Average
Reading Score"].mean()
#reset data types to float
school spending["% Passing Math"] = school spending["% Passing Math"].astype(float)
school spending["% Passing Reading"] = school_spending["% Passing Reading"].astype(float)
school_spending["% Overall Passing Rate"] = school_spending["% Overall Passing Rate"].astype(float)
#calculate percentages
spending_pass_math = school_spending.groupby("Spending Ranges (Per Student)")["% Passing Math"].me
spending pass reading = school spending.groupby("Spending Ranges (Per Student)")["% Passing
Reading"].mean()
spending overall reading = school spending.groupby("Spending Ranges (Per Student)")["% Overall Pas
sing Rate"].mean()
#set dataframe
results_spending = pd.DataFrame({"Average Math Score": school spending math, "Average Reading
Score": school spending reading,
                                 "% Passing Math": spending_pass_math, "% Passing Reading": spendin
pass reading,
                                 "% Overall Passing Rate": spending overall reading})
results_spending = results_spending[["Average Math Score", "Average Reading Score", "% Passing
Math", "% Passing Reading",
                                       "% Overall Passing Rate"]]
results spending
4
```

Out[11]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Spending Ranges (Per Student)					
<\$585	83.455399	83.933814	93.460096	96.610877	95.035486
\$585-615	83.599686	83.885211	94.230858	95.900287	95.065572
\$615-645	79.079225	81.891436	75.668212	86.106569	80.887391
\$645-675	76.997210	81.027843	66.164813	81.133951	73.649382

Scores by School Size

• Perform the same operations as above, based on school size.

In [12]:

```
# Sample bins. Feel free to create your own bins.
size_bins = [0, 1000, 2000, 5000]
group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]
```

In [13]:

```
#create bins
school size = results school summary df
size_bins = [0, 1000, 2000, 5000]
group names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]</pre>
student size = school size["Total Students"]
#change data type to float
per_student_spending = student_size.astype(float)
per_student_spending
school size["School Size"] = pd.cut(per student spending, size bins, labels = group names)
school size["Average Math Score"] = school size["Average Math Score"].astype(float)
school size["Average Reading Score"] = school size["Average Reading Score"].astype(float)
school spending math = school size.groupby("School Size")["Average Math Score"].mean()
school spending reading = school size.groupby("School Size")["Average Reading Score"].mean()
#reset data types to float
school_size["% Passing Math"] = school_size["% Passing Math"].astype(float)
school size["% Passing Reading"] = school size["% Passing Reading"].astype(float)
school size["% Overall Passing Rate"] = school size["% Overall Passing Rate"].astype(float)
#calculate percentages
spending pass math = school size.groupby("School Size")["% Passing Math"].mean()
spending pass reading = school size.groupby("School Size")["% Passing Reading"].mean()
spending overall reading = school size.groupby("School Size")["% Overall Passing Rate"].mean()
#set dataframe
results size = pd.DataFrame({"Average Math Score": school spending math, "Average Reading Score":
school_spending_reading,
                                 "% Passing Math": spending pass math, "% Passing Reading": spendin
pass reading,
                                 "% Overall Passing Rate": spending overall reading})
results_size = results_size[["Average Math Score", "Average Reading Score", "% Passing Math", "% P
assing Reading",
                                       "% Overall Passing Rate"]]
results size
4
```

School Size	Average Math Score	Average Reading	% Passing Math	% Passing % (Overall Passing Rate
Small (<1000) School Size	83.821598	83.929843	93.550225	96.099437	94.824831
Medium (1000-2000)	83.374684	83.864438	93.599695	96.790680	95.195187
Large (2000-5000)	77.746417	81.344493	69.963361	82.766634	76.364998

Scores by School Type

• Perform the same operations as above, based on school type.

In [14]:

```
school type = results school summary df
# school_type["School Size"] = pd.cut(per_student_spending, size_bins, labels = group_names)
school type["Average Math Score"] = school_type["Average Math Score"].astype(float)
school type["Average Reading Score"] = school_type["Average Reading Score"].astype(float)
# school type.dtypes
# school_type["School Type"].value_counts()
# help from Travis
# this is a subtle difference: because lists are mutable,
# they can't be "hash"ed, which is what groupby is using to do the grouping.
# However, tuples are immutable, and can be hashed
school type['School Type'] = school type['School Type'].map(tuple)
school type math = school type.groupby("School Type")["Average Math Score"].mean()
school_type_reading = school_type.groupby("School Type")["Average Reading Score"].mean()
#reset data types to float
school type["% Passing Math"] = school type["% Passing Math"].astype(float)
school_type["% Passing Reading"] = school_type["% Passing Reading"].astype(float)
school type["% Overall Passing Rate"] = school type["% Overall Passing Rate"].astype(float)
#calculate percentages
type pass math = school type.groupby("School Type")["% Passing Math"].mean()
type_pass_reading = school_type.groupby("School Type")["% Passing Reading"].mean()
type overall reading = school type.groupby("School Type")["% Overall Passing Rate"].mean()
#set dataframe
results type = pd.DataFrame({"Average Math Score": school type math, "Average Reading Score":
school type reading,
                                 "% Passing Math": type pass math, "% Passing Reading": type pass r
ading,
                                 "% Overall Passing Rate": type overall reading})
results_type = results_type[["Average Math Score", "Average Reading Score", "% Passing Math", "% P
assing Reading",
                                       "% Overall Passing Rate"]]
results type
```

Out[14]:

		Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
5	School Type					
	(Charter,)	83.473852	83.896421	93.620830	96.586489	95.103660
	(District,)	76.956733	80.966636	66.548453	80.799062	73.673757

In []:

```
# Description of observable trends

# 1. Based on the data, we can analyze that the Chareter schools performed better than the District schools.

# 2. Schools with smaller number of students performed better in both math and reading
```

n []:			