Very Busy Expression

Domain	Sets of expression	
Direction	Backward: $In[B] = f_b(Out[B])$ $Out[B] = \bigwedge In[succ(B)]$	
Transfer Function	$f_b(x) = Gen[B] \cup (x - Kill[B])$	
Meet Operator (△)	Λ	
Boundary Condition	$In[exit] = \emptyset$	
Initial Interior Points	In[B] = u	

- $Gen[B] \rightarrow$ le espressioni usate nel blocco B che non hanno operandi definiti nel blocco stesso.
- $Kill[B] \rightarrow \text{tutte le espressioni che contengono variabili definite nel blocco B}$

Tabella Gen-Kill

	Gen	Kill
BB2	-	-
BB3	(b-a)	-
BB4	(a-b)	-
BB5	(b-a)	-
BB6	-	(a-b),(b-a)
BB7	(a-b)	-

Tabella iterazioni

	Iterazione 1		Iterazione 2	
	In[B]	Out[B]	In[B]	Out[B]
BB1	Ø	(b-a)	0	(b-a)
BB2	(b-a)	$\{(b - a), (a - b)\} \cap \{(b - a)\}\$ $= (b - a)$	(b-a)	$\{(b-a), (a-b)\} \cap \{(b-a)\}$ = $(b-a)$
вв3	(b-a),(a-b)	(a-b)	(b-a),(a-b)	(a-b)
BB4	(a - b)	Ø	(a-b)	Ø
BB5	(b-a)	Ø	(b-a)	Ø
BB6	Ø	(a-b)	0	(a-b)
BB7	(a - b)	Ø	(a-b)	\Diamond

Passi dell'algoritmo

1° Iterazione

$$OldIn[B4] = \emptyset$$

$$In[B4] = (a - b) \cup (\emptyset - \emptyset)$$

$$= \{(a - b)\}$$

$$OldIn[B3] = \emptyset$$

$$In[B3] = (b - a) \cup ((a - b) - \emptyset)$$

$$= \{(b - a), (a - b)\}$$

$$OldIn[B7] = \emptyset$$

$$In[B7] = (a - b) \cup (\emptyset - \emptyset)$$

$$= \{(a - b)\}$$

$$OldIn[B6] = \emptyset$$

$$In[B6] = \emptyset \cup ((a - b) - (a - b))$$

$$= \emptyset$$

$$OldIn[B5] = \emptyset$$

$$In[B4] = (b - a) \cup (\emptyset - \emptyset)$$

$$= \{(b - a)\}$$

$$OldIn[B2] = \emptyset$$

$$In[B2] = \emptyset \cup (\{(b-a), (a-b)\} \cap \{(b-a)\} - \emptyset) \ OldIn[B2] = \{(b-a)\}$$

= $\{(b-a)\}$ $In[B2] = \emptyset \cup (\{(b-a)\} - \emptyset)$

$$OldIn[Entry] = \bigcirc$$

$$In[Entry] = \bigcirc \cup (\{(b-a)\} - \bigcirc)$$

$$= \{(b-a)\}$$

2° Iterazione

$$OldIn[B4] = \{(a - b)\}$$

$$In[B4] = (a - b) \cup (\bigcirc -\bigcirc)$$

$$= \{(a - b)\}$$

$$OldIn[B3] = \{(b-a), (a-b)\}\$$

 $In[B3] = (b-a) \cup ((a-b) - \bigcirc)$
 $= \{(b-a), (a-b)\}$

$$OldIn[B7] = \{(a - b)\}$$

$$In[B7] = (a - b) \cup (\bigcirc -\bigcirc)$$

$$= \{(a - b)\}$$

$$OldIn[B6] = \emptyset$$

$$In[B6] = \emptyset \cup ((a - b) - (a - b))$$

$$= \emptyset$$

$$OldIn[B5] = \{(b-a)\}$$

$$In[B4] = (b-a) \cup (\bigcirc -\bigcirc)$$

$$= \{(b-a)\}$$

$$OldIn[B2] = \{(b-a)\}$$

$$In[B2] = \emptyset \cup (\{(b-a), (a-b)\} \cap \{(b-a)\} - \emptyset)$$

$$= \{(b-a)\}$$

$$OldIn[Entry] = \{(b - a)\}$$

$$In[Entry] = \emptyset \cup (\{(b - a)\} - \emptyset)$$

$$= \{(b - a)\}$$

Dominator Analysis

Domain	Sets of Basic Block
Direction	Forward: $Out[B] = f_b(In[B])$ $In[B] = \wedge Out[pred(B)]$
Transfer Function	$f_b(x) = Gen[B] \cup x$
Meet Operator (∧)	Λ
Boundary Condition	Out[entry] = entry
Initial Interior Points	Out[B] = Universal Set

• $Gen[B] \rightarrow il blocco stesso$

Tabella Gen-Kill

Ogni blocco genera solo sé stesso e non uccide niente.

Passi dell'algoritmo

$$In[A] = \emptyset$$

 $Out[A] = A$
 $In[B] = A$
 $Out[B] = B \cup A = A, B$
 $In[C] = A$
 $Out[C] = C \cup A = A, C$
 $In[D] = A, C$
 $Out[D] = D \cup \{A, C\} = A, C, D$
 $In[E] = A, C$
 $Out[E] = E \cup \{A, C\} = A, C, E$
 $In[F] = Out[D] \cap Out[E] = \{A, C, D\} \cap \{A, C, E\} = \{A, C\}$
 $Out[F] = F \cup (\{A, C, D\} \cap \{A, C, E\}) = \{A, C, F\}$
 $In[G] = Out[B] \cap Out[F] = \{A, C, F\} \cap \{A, B\} = \{A\}$
 $Out[G] = G \cup (\{A, C, F\} \cap \{A, B\}) = \{A, G\}$

Tabella iterazioni

	In[B]	Out[B]
Α	I	A
В	A	A, B
С	A	А, С
D	А, С	A, C, D
E	А, С	A, C, E
F	${A, C, D} \cap {A, C, E} = A, C$	A, C, F
G	$\{A,C,F\} \cap \{A,B\} = A$	A, G

(Iterazione 2 analoga)

Constant Propagation

Domain	Sets of [x, c]	
Direction	Forward: $Out[B] = f_b(In[B])$ $In[B] = \wedge Out[pred(B)]$	
Transfer Function	$f_b(x) = Gen[B] \cup (x - Kill[B])$	
Meet Operator (∧)	n	
Boundary Condition	Out[entry] =	
Initial Interior Points	Out[B] = Universal Set	

- $Gen[B] \rightarrow le$ definizioni che hanno uno o entrambi gli operandi costanti in B
- ullet Kill[B]
 ightarrow tutte le coppie che contengono le variabili definite nuovamente nel blocco ullet

Tabella Gen-Kill

	Gen	Kill	
BB1	[k, 2]	-	
BB2	-	-	
BB3	-	-	
BB4	[x, 5]	[x, 8]	
BB5	-	-	
BB6	[x, 8]	[x, 5]	
BB7	-	[k, 2]	
BB8	-	-	
BB9	[b, 2]		
BB10	-	[x, 5], [x, 8]	
BB11	-	-	
BB12	-	[k, 2]	

Tabella iterazioni

	Iterazione 1		Iterazione 2	
	In[B]	Out[B]	In[B]	Out[B]
BB1	Ø	[k, 2]	0	[k, 2]
BB2	[k, 2]	[k, 2]	[k, 2]	[k, 2]
BB3	[k, 2]	[k, 2]	[k, 2]	[k, 2]
BB4	[k, 2]	[k, 2], [x, 5]	[k, 2]	[k, 2], [x, 5]
BB5	[k, 2]	[k, 2]	[k, 2]	[k, 2]
BB6	[k, 2]	[k, 2], [x, 8]	[k, 2]	[k, 2], [x, 8]
BB7	[k, 2]	Ø	[k, 2]	0
BB8	Ø	Ø	0	Ø
BB9	Ø	[b, 2]	0	[b, 2]
BB10	[b, 2]	[b, 2]	[b, 2]	[b, 2]
BB11	[b, 2]	[b, 2]	[b, 2]	[b, 2]
BB12	[<i>b</i> , 2]	[b, 2]	[b, 2]	[b, 2]
BB13	Ø	0	0	Ø

Passi dell'algoritmo

```
1° Iterazione
                                                                                     2° Iterazione
OldOut[BB1] = u
                                                             OldOut[BB1] = [k, 2]
In[BB1] = \emptyset
                                                             In[BB1] = \emptyset
Out[BB1] = [k, 2] \cup (\bigcirc -\bigcirc) = [k, 2]
                                                             Out[BB1] = [k, 2] \cup (\bigcirc -\bigcirc) = [k, 2]
OldOut[BB2] = u
                                                             OldOut[BB2] = [k, 2]
In[BB2] = [k, 2]
                                                             In[BB2] = [k, 2]
Out[BB2] = \emptyset \cup ([k,2] - \emptyset) = [k,2]
                                                             Out[BB2] = \bigcirc \cup ([k,2] - \bigcirc) = [k,2]
OldOut[BB3] = u
                                                             OldOut[BB3] = [k, 2]
In[BB3] = [k, 2]
                                                             In[BB3] = [k, 2]
Out[BB3] = \emptyset \cup ([k,2] - \emptyset) = [k,2]
                                                             Out[BB3] = \emptyset \cup ([k,2] - \emptyset) = [k,2]
                                                              OldOut[BB4] = \{[x, 5], [k, 2]\}
OldOut[BB4] = u
In[BB4] = [k, 2]
                                                             In[BB4] = [k, 2]
Out[BB4] = [x, 5] \cup ([k, 2] - [x, 8]) = \{[x, 5], [k, 2]\} Out[BB4] = [x, 5] \cup ([k, 2] - [x, 8]) = \{[x, 5], [k, 2]\}
OldOut[BB5] = u
                                                             OldOut[BB5] = [k, 2]
In[BB5] = [k, 2]
                                                             In[BB5] = [k, 2]
Out[BB5] = \emptyset \cup ([k,2] - \emptyset) = [k,2]
                                                              Out[BB5] = \bigcirc \cup ([k,2] - \bigcirc) = [k,2]
OldOut[BB6] = u
                                                              OldOut[BB6] = \{[x, 8], [k, 2]\}
In[BB6] = [k, 2]
                                                              In[BB6] = [k, 2]
Out[BB6] = [x, 8] \cup ([k, 2] - [x, 5]) = \{[x, 8], [k, 2]\} Out[BB6] = [x, 8] \cup ([k, 2] - [x, 5]) = \{[x, 8], [k, 2]\}
OldOut[BB7] = u
                                                              OldOut[BB7] = \emptyset
In[BB7] = Out[BB4] \cap Out[BB6] =
                                                              In[BB7] = Out[BB4] \cap Out[BB6] =
          = \{[x, 8], [k, 2]\} \cap \{[x, 5], [k, 2]\} = [k, 2]
                                                                        = \{[x, 8], [k, 2]\} \cap \{[x, 5], [k, 2]\} = [k, 2]
Out[BB7] = \emptyset \cup ([k,2] - [k,2]) = \emptyset
                                                              Out[BB7] = \emptyset \cup ([k,2] - [k,2]) = \emptyset
OldOut[BB8] = u
                                                             OldOut[BB8] = \bigcirc
In[BB8] = Out[BB12] \cap Out[BB7] = \bigcirc
                                                             In[BB8] = Out[BB12] \cap Out[BB7] = \emptyset
Out[BB8] = \bigcirc \cup (\bigcirc -\bigcirc) = \bigcirc
                                                             Out[BB8] = \bigcirc \cup (\bigcirc -\bigcirc) = \bigcirc
OldOut[BB9] = u
                                                             OldOut[BB9] = [b, 2]
In[BB9] = \emptyset
                                                             In[BB9] = \emptyset
Out[BB9] = [b, 2] \cup (\bigcirc -\bigcirc) = [b, 2]
                                                             Out[BB9] = [b, 2] \cup (\bigcirc -\bigcirc) = [b, 2]
OldOut[BB10] = u
                                                             OldOut[BB10] = [b, 2]
In[BB10] = [b, 2]
                                                             In[BB10] = [b, 2]
Out[BB10] = \emptyset \cup ([b,2] - [x,5], [x,8]) = [b,2] \quad Out[BB10] = \emptyset \cup ([b,2] - [x,5], [x,8]) = [b,2]
OldOut[BB11] = u
                                                              OldOut[BB11] = [b, 2]
```

$$In[BB11] = [b, 2]$$
 $In[BB11] = [b, 2]$ $Out[BB11] = \emptyset \cup ([b, 2] - \emptyset) = [b, 2]$ $Out[BB11] = \emptyset \cup ([b, 2] - \emptyset) = [b, 2]$ $OldOut[BB12] = u$ $OldOut[BB12] = [b, 2]u$ $In[BB12] = [b, 2]$ $Out[BB12] = [b, 2]$ $Out[BB12] = \emptyset \cup ([b, 2] - [k, 2]) = [b, 2]$ $Out[BB12] = \emptyset \cup ([b, 2] - [k, 2]) = [b, 2]$ $OldOut[BB13] = u$ $OldOut[BB13] = \emptyset$

$$\begin{array}{lll} OldOut[BB13] &= u & OldOut[BB13] &= \oslash \\ In[BB13] &= & \oslash & In[BB13] &= & \oslash \\ Out[BB13] &= & \oslash & \cup (\oslash - \oslash) &= \oslash \\ \end{array}$$