III Causal Inference

Ishan Nath, Lent 2024

Based on Lectures by Dr. Jieru Shi

January 23, 2025

Page 1 CONTENTS

Contents

Index								4
-1.3	Basic Terminology	 •		•				2
-1.2	Commonly-Used Measures of Association .							2
-1.1	Overview							2

Page 2 CONTENTS

-1.1 Overview

Why causality?

- Investigators are often interested in relationships between variables.
- The major part of classic statistics is about association rather than causation.
- Association does not imply causation.

-1.2 Commonly-Used Measures of Association

1. Correlation and regression. The Pearson correlation coefficient between random variables Z and Y is

$$\rho_{ZY} = \frac{\operatorname{Cov}(Z, Y)}{\sqrt{\operatorname{Var}(Z)\operatorname{Var}(Y)}}.$$

This measures the linear dependence of Z and Y. Note we may get different β with different inputs:

$$Y = \alpha + \beta Z + \epsilon,$$

$$Y = \alpha' + \beta' Z + \gamma X + \varepsilon'.$$

2. Contingency tables. The risk difference of a contingency table is

$$RD = \mathbb{P}(Y = 1|Z = 1) - \mathbb{P}(Y = 1|Z = 0) = \frac{\rho_{11}}{\rho_{11} + \rho_{10}} - \frac{\rho_{01}}{\rho_{01} + \rho_{00}}.$$

We also have risks ratio, and odds ratio.

3. Simpson's paradox.

-1.3 Basic Terminology

Consider a study with n experimental units indexed by i = 1, 2, ..., n.

- 1. The intervention is (Z_i) . This is what could be changed.
- 2. Potential outcomes and the counterfactual are: $Y_i(1)$ and $Y_i(0)$.
- 3. Observed outcomes: $Y_i = Z_i Y_i(1) + (1 Z_i) Y_i(0)$.
- 4. Covariates (X_i) : variables we observe other than Z and Y.

We have two assumptions together by the *stable unit treatment value assumption*: **SUTVA**:

Page 3 CONTENTS

1. No interference: Unit i's potential outcomes do not depend on other units' treatment.

2. Consistency: If $Z_i = z$, then $Y_i(z) = Y_i(Z_i) = Y_i$.

For a binary treatment, under SUTVA, the *individual causal effect* or *average causal effect* can be defined as:

$$\tau_i = Y_i(1) - Y_i(0),$$

$$\tau = \frac{1}{n} \sum_{i=1}^n (Y_i(1) - Y_i(0)).$$

The fundamental problem of causal inference is that we can only observe one of the potential outcomes.

Causal data is a missing data problem.

Index

average causal effect, 3 individual causal effect, 3

stable unit treatment value assumption, 2