Lab3 ASCIILYATOR

Nikulin

2022

RUDN University, Moscow, Russian Federation

Mission

Models for solving math problems $\operatorname{ASCIILYATOR}$

Formulas

Модель гармонических колебаний

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором.

						Для одновичной разрешимости уравнения второго порядка (2) необходимо задить два начальных условия вида		
						$\begin{cases} x(t_0) = x_0 \\ \dot{x}(t_0) = y_0 \end{cases}$ (7))	
						Уравнение второго порядка (2) межно представить в няде системы двух уравнений первого порядка:		
						$\begin{cases} \dot{x} = y \\ \dot{y} = -\alpha \dot{\zeta} x \end{cases}$ (4)	1)	
	свобесных	колобаний	гарменического	осщилитера	HMOST	Начальные условия (3) для системы (4) примут вид:		
		x + 2yx	$+ag^2x=0$		(1)	$\begin{cases} x(t_i) = x_0 \\ y(t_i) = y_i \end{cases}$ (5))	

Code

```
model lab 4
  Real x(start=0.1);
  Real y(start=-1.1);
equation
  y=der(x);
  der(y)+1.5*x=0;
end lab 4;
```

Figure 1: 2