

Accelerated crystal plasticity simulations for deformation behaviour of materials using machine learning

Kshitij Bagga*, Shirish Chandrakar, Swati Mahato, N.P. Gurao

Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016

INTRODUCTION

- Crystal Plasticity Simulations → Synthetically generated microstructures
 → Reduced time consumption and computational costs
- Applications → Advanced material designing, automobile, aerospace, microelectronics, biomedical and defence applications
- Plasticity Simulation Techniques → Finite Element Method, Phase Field Models, Boundary Element Method, Isogeometric Analysis

OBJECTIVE

- To study the pattern in the variation of the textural response parameters: Euler angles and Kernel Average Misorientation (KAM) values
- To predict the texture of the microstructure for extrapolated strain values using Machine Learning and Deep Learning models

METHODOLOGY

Parameters (Cu FCC)	Values
C ₁₁	168.6 GPa
C ₁₂	121.50 GPa
C ₄₄	75.59 GPa
R^{α}	240 MPa
$ au_{RSS}^{lpha}$	500 MPa
h _o	1
h _{sl-sl}	1.4
n	20
а	1

RESULTS

SUMMARY

- DAMASK simulations were used to generate microstructures with the applied strain values for a given stress state condition
- The texture evolution was successfully captured by the DAMASK simulated microstructure
- RNN-LSTM model was built and successfully trained using simulated microstructure to predict the texture response (Euler angles) for the final strain values
- The simulated and predicted microstructure shows a good match (Euler angles, KAM values)
- RNN-LSTM model accelerates the prediction of microstructure at further higher strains

FUTURE WORK

- To build classification models for the predicting the strain path that a given microstructure has been subjected to
- To incorporate stress concentration in the given microstructure in order to predict the failure strain value

REFERENCES

[1] F. Roters et. al., Comput. Mater. Sci., 158, 420-478, (2019)

[2] U.F. Kocks, Metall. Mater. Trans. B, 1, 1121-1143, (1975)

ACKNOWLEDGEMENT

Students' Undergraduate Research Graduate Excellence program, Centre for Continuing Education, Indian Institute of Technology Kanpur