EPSY 5261: Introductory Statistical Methods

Day 12
Hypothesis Testing for Comparing Two Proportions

Learning Goals

- At the end of this lesson, you should be able to...
 - List the steps of a hypothesis test
 - Describe the purpose of a hypothesis test for comparing groups
 - Describe a parametric approach to hypothesis testing for comparing two proportions
 - List the assumptions for using the z-distribution to test for a difference in proportions

Recall: Variable Types

- We have been working with quantitative data
 - The population mean (\hat{p}) has been our parameter of interest
- Sometimes we have two groups that we want to compare (this could be an additional categorical variable)
 - The parameter of interest is now $p_{group1} p_{group2}$

Hypothesis Testing

- Purpose: to test a claim about a population parameter
- One Group
 - RQ: Is the proportion of people who vote democrat different than 0.5?
- Two Groups
 - RQ: Is there a difference in the proportion of people that vote democrats between those that live in rural and urban areas?

Steps of Hypothesis Testing

- 1. Formulate a research question
- 2. Write your hypotheses
- 3. Find **Distribution** of the Null Hypothesis
- 4. Compare Sample to the Distribution of Null Hypothesis
- 5. Get a p-value
- 6. Make a decision to reject or fail to reject the p-value
- 7. Communicate your **conclusion** in context

Assumptions

- $n_1 \hat{p}_1 > 10$ and $n_1 (1 \hat{p}_1)$ AND
- $n_2\hat{p}_2 > 10$ and $n_2(1 \hat{p}_2)$
 - For difference in means: conditions must be met for both groups
- If these are not met, better to use a randomization test

Type I and Type II Errors

- When we conduct a test we come to a conclusion based on your p-value
 OReject the null hypothesis OR not reject the null hypothesis
- However, this conclusion could be "incorrect"
- One of two things could have happened based on our p-value:
 - 01. We got a low p-value and rejected the null hypothesis but we should not have based on the true population parameter
 - o2. We got a high p-value and we did not reject the null hypothesis but we should have based on the true population parameter

Type I and Type II Errors

Type I: We say there is a significant result, when there really is NOT.

Type II: We say there is NOT a significant result, when there really IS.

	TRUTH	
Decision	H₀ is true	H₀ is false
We reject H ₀	Incorrect: Type I error	Correct decision! ⊚
We fail to reject H ₀	Correct decision! ©	Incorrect: Type II error

Example: Marijuana Users Executive Functioning

- H_{0} : $\mu_{0} \mu_{0} = 0$
- H_a: µ_a − µ_a ≠ 0
- Decision: We rejected the null hypothesis
 - Type I: Test concludes that there is a difference in average response time between marijuana users and non-users, when in reality there is none.

In the activity: At α = .05: We rejected the null – hopefully we were right, but we could have made a Type I error.

Example: Drug trial - Type I

- H_0 : $\mu_0 \mu_1 = 0$
- H_a: µ_a − µ_a ≠ 0
- Decision: We rejected the null hypothesis
 - Type I: Test concludes that there is a difference in average response time between marijuana users and non-users, when in reality there is none.

In the activity: At α = .05: We rejected the null – hopefully we were right, but we could have made a Type I error.

Example: Drug trial - Type II

- H.: Drug does not work better than placebo
- Ha: Drug does work better than placebo
- Type 2: conclude drug does NOT work, but it does
 - Oconsequence: Potentially beneficial drug does not get sold!
 - O Producer risk producers missing out on an opportunity
 - Consumers also missing out on effective treatment

Use R Studio

- Use the z-distribution to help us get our estimate for the variability
- Use functions in R Studio to also give us our p-value
- We will explore the entire hypothesis test process and consider type I and type II errors in today's activity!

Summary

- Hypothesis tests help us test a claim while taking into account sampling variability
- They provide one form of evidence to help answer a research question
- We can use a z-distribution to help us conduct our test when we have categorical data