光电效应测普朗克常数实验报告

1 实验目的

测量普朗克常数 h

2 实验原理

单色光照射在光电管的阴极上有电子发射出来的现象叫光电效应,出射的电子称之为光电子,形成的电流称之为光电流。光电流很弱。加载在光电管中阳极与阴极之间电压为正值时,随着电压的增大光电流迅速增大,电压增大到一定值后,光电流趋于饱和。加载在阳极与阴极之间电压为负值时,随着电压数值逐渐变大,光电流变弱,负电压数值增大到 U_0 值时,光电流变为零。把电压 U_0 称之为遏止电压。本实验要求测量 5 种不同单色光分别照射下,光电流的遏止电压值。本实验还需测量和验证饱和光电流与光强之间的关系,是否满足线性正比关系。

3 实验仪器

使用 ZKY-GD-4 智能光电效应(普朗克常数)实验仪。如图 1。

图 1: 仪器结构示意图

4 实验步骤及数据处理

4.1 零电流法、补偿法分别测遏止电压

固定一种直径大小光阑的情况下,分别测量5种不同单色光照射下,光电流的遏止电压。

- a) 测量数据记录如表 1。
- b) 用最小二乘法计算普朗克常数 h 大小,以及与公认值 ho 之间的相对误差
- c) 计算此光电管阴极材料,产生光电效应的单色照射光的波长红限,以及光电子从材料表面逸出的功大小。

数据处理和分析:对表 1 中的单色光频率与遏止电压(正值)之间,在直角坐标纸上进行画图、描点,再进行(最小二乘)线性回归拟合分析,做出拟合直线。写出拟合直线方程。(见图 2和 3)

表 1: 不同单色光照射下的光电流的遏止电压 光阑孔 Φ = 4mm

)[W]1[+ - HIIII			
波长 $\lambda_i(\text{nm})$ 频率 $\nu_i(\times 10^{14} \text{Hz})$	$365 \\ 8.214$		$435.8 \\ 6.879$		577 5.196	
零电流法 $U_0(V)$	1.788	1.508	1.176	0.590	0.476	
	1.798	1.508	1.178	0.588	0.474	

主机箱编号: 1823 光电管外壳编号: 1823

图 2: 零电流法线性拟合

图 3: 补偿法线性拟合

零电流法: 线性拟合得拟合直线方程为 $y = (0.44428 \pm 0.01664)x - (1.81429 \pm 0.11206)$. 根据上述拟合直线方程,计算:

- 1. 普朗克常数值为 $h = ek = (7.112 \pm 0.267) \times 10^{-34} J \cdot S$.
- 2. 与公认值比较计算相对误差 $E = \frac{|h h_0|}{h} = 0.07416 \pm 0.04023$,得相对误差在 $3.39\% \sim 11.44\%$.
- 3. 计算单色入射光逸出功为 $W_0 = -be = (1.814 \pm 0.112)$ eV.
- 4. 计算单色入射光红限为 $\nu = (4.080 \pm 0.099) \times 10^{14} \text{Hz}.$

补偿法: 线性拟合得拟合直线方程为 $y = (0.44756 \pm 0.0158)x - (1.86146 \pm 0.10643)$. 根据上述拟合直线方程,计算:

- 1. 普朗克常数值为 $h = ek = (7.169 \pm 0.253) \times 10^{-34} J \cdot S$.
- 2. 与公认值比较计算相对误差 $E = \frac{|h h_0|}{h} = 0.08209 \pm 0.03820$,得对误差在 $4.38\% \sim 12.01\%$.
- 3. 计算单色入射光逸出功为 $W_0 = -be = (1.861 \pm 0.106)$ eV.
- 4. 计算单色入射光红限为 $\nu = (4.156 \pm 0.091) \times 10^{14} \text{Hz}.$

4.2 饱和光电流与光强之间的变化关系

测量饱和光电流与光强的关系。步骤如下:

- a) 其一种情况是,选择一种单色光,固定光电管阴阳极电压(在饱和区),改变不同的光阑(直径)大小,来改变光强.
- b) 另一种情况是,选择一种单色光,固定光电管阴阳极电压(在饱和区),改变光电管与汞灯光源的距离,来改变光强.
 - c) 二种测量内容, 分别列表, 画图。验证饱和光电流与光强, 成正比关系。

得到数据如表 2 和 3。由表格数据画图如图 4和 5。其中光照强度 P 与光阑直径的关系为 $P \propto \Phi^2$,距离 L 关系为 $P \propto \frac{1}{L^2}$,故图 4的横坐标为 Φ^2 ,图 5的横坐标为 $\frac{1}{L^2}$ 。可以看出,在实验允许的误差范围内,饱和电流与光照强度成正比。

表 2: $I_M - P$ 关系 (改变光阑) U=20V, L=400mm $\Phi(nm)$ 4 $435.8\mathrm{nm}$ $I(10^{-10}\text{A})$ 8.2 31.0 124.3 $\Phi(nm)$ 4 $546.1\mathrm{nm}$ $I(10^{-10}\text{A})$ 1.0 3.7 13.9

表 3: $I_M - P$ 关系 (改变距离) $U=20V, \Phi=4mm$ L(mm)300 320 340 360 380 $435.8\mathrm{nm}$ $I(10^{-10}\text{Å})$ 66.155.046.939.633.8 L(mm)300 320 340 360 380 $546.1\mathrm{nm}$ $I(10^{-10}A)$ 7.6 6.3 5.44.7 4.1

图 4: $I_M - P$ 关系图 (改变光阑)

图 5: $I_M - P$ 关系图 (改变距离)