Suites 1 : activités

Exemple 1 (Définition d'une suite par la liste de ces éléments) On considère le nombre rationnel <math>x.

Pour $n \ge 1$, on appelle u_n le n-ième chiffre après la virgule de x.

- **1.** Quelles valeurs peut prendre la suite u_n ?
- **2.** Pour $x = \frac{1}{3}$, déterminer les valeurs de chacun des u_n . Comme appelle-t-on ce type de suite?
- **3.** A partir de cette question, x vaudra $\frac{22}{7}$. Calculer u_n jusque n = 13 sans calculatrice.
- **4.** Que dire de u_{n+6} et u_n ?
- 5. En déduire tous les termes de la suite.
- 6. On considère l'algorithme suivant :

```
def décimale(n):
b=[1,4,2,8,5,7]
u=[]
for i in range (1,n+1):
    u=u+b
N=[10**(-i) for i in range(1,6*n+1)]
M=[x*y for x, y in zip(u,N)]
x=sum(M)
return 1/x
```

Que fait cette algorithme?

7. En faisant tourner l'algorithme pour n = 3 et n = 4, en déduire un autre nombre qui a les mêmes décimales que x.

Exemple 2 (Définition d'une suite par une formule explicite) Soit $(u_n)_n$ la suite définie par $u_n = 2n + 1$ pour $n \ge 0$.

- 1. Calculer u_0 , u_1 , u_2 et u_3 .
- **2.** Comment appelle-t-on ce type d'entiers?
- **3.** Conjecturer quant à la monotonie de la suite $(u_n)_n$.
- 4. Démontrer la conjecture.

Exemple 3 (Définition d'une suite par une formule de réccurence) *Soit* $(u_n)_n$ *la suite définie pour n* \geq 0 *par* :

$$\begin{cases} u_{n+1} = -u_n^2 + u_n - 1 \\ u_0 = 0 \end{cases}$$

- 1. Calculer u_1 , u_2 , u_3 et u_4 .
- **2.** Justifier que $\forall n \geq 0, u_n \geq 0$.
- **3.** Conjecturer quant à la monotonie de la suite $(u_n)_n$.
- 4. Démontrer la conjecture.