Breach Analysis Case Study

Yahoo

The Yahoo data breach is one of the largest and most significant cybersecurity incidents in history. It involved two separate breaches:

- 2013 Breach Affected all 3 billion Yahoo accounts worldwide.
- 2014 Breach Affected 500 million accounts and was later linked to Russian statesponsored hackers.

Yahoo failed to detect the breaches at the time and only disclosed them in 2016, years after the attacks occurred.

Breach Checklist

Category	Details		
Types of Data	Names, email addresses, phone numbers, dates of birth, hashed		
Affected	passwords (MD5), security questions & answers (some unencrypted)		
What Happened?	Two breaches (2013 & 2014), affecting 3 billion & 500 million accounts.		
	Weak encryption & poor monitoring allowed attackers to extract data undetected.		
Who Was	2013: Unknown hackers; 2014: Russian state-sponsored hackers. US DOJ		
Responsible?	charged Russian intelligence officers & hackers.		
Were Escalations	No. Breaches went undetected for years. No effective security measures		
Stopped?	prevented escalation.		
Was the Business	No clear evidence of a robust BCP. The slow response suggests poor		
Continuity Plan	incident response planning.		
Used?			
Was the ICO	Yes, but only after Yahoo publicly disclosed the breach in 2016. Possible		
Notified?	GDPR non-compliance due to delayed reporting.		
Were Users	Yes, but the delay (2016) increased security risks for affected individuals.		
Notified?			
Social, Legal &	Social: Loss of trust, risk of identity theft. Legal: \$35M SEC fine, \$117.5M		
Ethical	lawsuit settlement, £250K ICO fine. Ethical: Delayed disclosure, weak		
Implications	security, prioritising reputation over users.		
Mitigations as ISM	Strong encryption, MFA, security audits, network monitoring, access		
	control, incident response planning, timely breach disclosure, security		
	training.		

Abbreviations

BCP – Business Continuity	DOJ – Department of Justice	GDPR – General Data
Plan		Protection Regulation
ICO – Information	ISM – Information Security	MFA – Multi-Factor
Commissioner's Office	Manager	Authentication
MD5 – Message-Digest	PoLP - Principle of Least	SEC – Securities and
Algorithm 5	Privilege	Exchange Commission

Was MD5 Already Bad Practice?

MD5 was designed in 1991 and officially deprecated by 2004 due to serious vulnerabilities. Cryptographic researchers found collision attacks (where two different inputs can produce the same hash), making MD5 unsuitable for security-sensitive applications. Tools for cracking MD5 hashes became widely available, meaning passwords hashed with MD5 could be broken within seconds.

Yahoo was still using MD5 at the time of the breach 10 years after it had been depreciated.