Subtrajectory Clustering: Models and Algorithms

Pankaj K. Agarwal¹

Abhinandan Nath¹

Kyle Fox²

Jiangwei Pan³

Kamesh Munagala¹

Erin Taylor¹

¹ Duke University

² UT Dallas

³ Facebook

Introduction

- Huge trajectory data
 - GPS traces, sensors ...
 - Improve decision making
 - Gain useful insights

Noisy and incomplete

Gives rise to several computational challenges

- Subtrajectory clusters capture common portions
- Different from clustering trajectories as a whole

 Extract high-level shared structure from large trajectory data sets

 Extract high-level shared structure from large trajectory data sets

Leverage wisdom of the crowd

Pathlet

Representative *pathlet* for each cluster

- Cluster "center"
- Pathlet is a curve, not necessarily part of the input

Application of pathlets

- Compression of large trajectory data [Chen et al. 2013]
 - Hope that each trajectory can be reconstructed with small no. of pathlets
 - Small pathlet dictionary non-linear dimension reduction
- Can provide semantic information
 - Useful for anomaly detection [Sung et al. 2012]
- Reconstructing road network from trajectory data [Li et al. 2013; Buchin et al. 2017]

Our contribution

- Model for subtrajectory clustering
 - Robust to noise and missing data
 - Data-driven clusters and pathlets

NP-hardness of subtrajectory clustering problem

- Provably-efficient approximation algorithms
 - Faster algorithms for realistic inputs
- Experimental results

Previous work

- Graph setting no noise or gaps [Chen et al. 2013]
- Based only on point density [Panagiotakis et al. 2012]
- Restricted to line segments [Lee et al. 2007]
- Search for pre-defined patterns [Fan et al. 2016; Tang et al. 2013; Wang et al. 2015; Zheng et al. 2013]

None of these have provable performance guarantees

Outline of talk

Model and problem formulation

Algorithms

Experiments

Outline of talk

Model and problem formulation

Input

- Trajectories : $\mathcal{T} = \{T_1, \dots, T_n\}$

- Each trajectory is sequence of points $\langle p_1, p_2, \dots \rangle$ in \mathbb{R}^2
 - Subtrajectory is subsequence of traj.

- Let $X = \bigcup_i T_i$ be all trajectory points, |X| = m

pathlets

unassigned for

each trajectory: "gaps"

$$c_1|\mathcal{P}| + c_2 \sum\limits_{P \in \mathcal{P}} \sum\limits_{S \in \mathcal{T}(P)} d(S,P) + c_3 \sum\limits_{T \in \mathcal{T}} \phi(T)$$

A note on the distance

We use discrete Fréchet distance

Given
$$T_1 = \langle p_1, p_2, \ldots \rangle$$
 and $T_2 = \langle q_1, q_2, \ldots \rangle$

• Correspondence $C \subseteq T_1 \times T_2$ s.t. every pt. in at least one pair

• C is monotone if for all $(p_i, q_{i'}), (p_j, q_{j'}) \in C$,

$$j \geq i \Rightarrow j' \geq i'$$

Discrete Fréchet distance

$$d_F(T_1,T_2) = \min_{C \in \mathbb{C}} \max_{p,q \in C} ||p-q||$$

 $\mathbb C$: Set of all monotonone correspondencess b/w T_1 , T_2

Choosing pathlets

Given \mathcal{T} , goal is to choose \mathcal{P}^* from set of candidate pathlets \mathbb{P} to minimize objective function

If P is given as input: pathlet-cover problem

If P not given but assumed to be (uncountably) infinite set of all trajectories in plane:
 subtrajectory-clustering problem

Outline of talk

Model and problem formulation

Algorithms

Experiments

Outline of talk

Algorithms

Basic idea

Reduce to set-cover

• Solve using greedy algorithm : gives $O(\log |X|)$ approximation

Challenge: implementing greedy step efficiently

Set-cover

Input:

- Set system (X, S)
- Weight $w:\mathcal{S} \to \mathbb{R}^+$

Goal is to find $\mathcal{C} \subseteq \mathcal{S}$ of minimum total weight such that $\bigcup \mathcal{C} = X$

$$(\mathcal{T},\mathbb{P},d) o (X,\mathcal{S},w)$$

- $X \leftarrow \bigcup_{T \in \mathcal{T}} T$
- S has two kinds of sets:
 - For all $p \in X$, $\{p\}$ with $w(\{p\}) = c_3/|T^{(p)}|$ where $p \in T^{(p)}$

$$(\mathcal{T},\mathbb{P},d) o (X,\mathcal{S},w)$$

- $X \leftarrow \bigcup_{T \in \mathcal{T}} T$
- S has two kinds of sets:
 - For all $P \in \mathbb{P}$ and for any set of subtraj. \mathcal{R} ,

$$S(P,\mathcal{R}) = \{ p \in S \mid S \in \mathcal{R} \}$$

with

$$w(S(P,\mathcal{R})) = c_1 + c_2 \sum_{S \in \mathcal{R}} d(S,P)$$

$$(\mathcal{T},\mathbb{P},d) o (X,\mathcal{S},w)$$

- $X \leftarrow \bigcup_{T \in \mathcal{T}} T$
- S has two kinds of sets:
 - For all $P \in \mathbb{P}$ and for any set of subtraj. \mathcal{R} ,

$$S(P,\mathcal{R}) = \{p \in S \mid S \in \mathcal{R}\}$$

with

$$|c_2\sum_{S\in\mathcal{R}}d(S,P)|$$

Exponential # sets : cannot construct explicitly!!

Theorem : There exists bijection between feasible solutions of (X, S, w) and (T, \mathbb{P}, d) with same weight and cost across bijection

For sets of form {p}: leave p unassigned, and vice versa

• For sets of form $S(P,\mathcal{R})$: assign subtraj. in \mathcal{R} to P, and vice versa

Greedy algorithm for set-cover

Initialize $\mathcal{C} = \{\}$

- At each step add to C the set in S that maximizes the coverage-to-weight ratio
- Stop when all points are covered

• For $S(P,\mathcal{R})$ let $\rho(P,\mathcal{R})$ denote coverage-to-weight ratio

• For $S(P,\mathcal{R})$ let $\rho(P,\mathcal{R})$ denote coverage-to-weight ratio

$$oxed{
ho(P,\mathcal{R}) = rac{\sum_{S \in \mathcal{R}} |\hat{S}|}{c_1 + c_2 \sum_{S \in \mathcal{R}} d(S,P)}}$$

where \hat{S} is set of uncovered pts. of S

• For $S(P,\mathcal{R})$ let $\rho(P,\mathcal{R})$ denote coverage-to-weight ratio

• Let
$$\mathcal{T}_P = rg \max_{\mathcal{R}: S(P,\mathcal{R}) \in \mathcal{S}}
ho(P,\mathcal{R})$$
 $P^* = rg \max_{P \in \mathbb{P}}
ho(P,\mathcal{T}_P)$

• For $S(P,\mathcal{R})$ let $\rho(P,\mathcal{R})$ denote coverage-to-weight ratio

• Let
$$\mathcal{T}_P = rg \max_{\mathcal{R}: S(P,\mathcal{R}) \in \mathcal{S}}
ho(P,\mathcal{R})$$
 $P^* = rg \max_{P \in \mathbb{P}}
ho(P,\mathcal{T}_P)$

• For each uncovered pt. p let $ho(p) = rac{|T^{(p)}|}{c_2}$ and $p^* = rg \max_p
ho(p)$

Implementing greedy step

At every greedy step

- Pick $S(P^*, \mathcal{T}_{P^*})$ or $\{p^*\}$ whichever has higher ρ
- Update \mathcal{T}_P, P^*, p^* accordingly

Computing/updating TP

Form of $\rho(P, \mathcal{R})$ permits to

- Break
 p into contribution corresponding to each traj.
- Independently choose "best" subtraj. from each traj.

Computing/updating TP

Form of $\rho(P, \mathcal{R})$ permits to

- Break
 into contribution corresponding to each traj.
- Independently choose "best" subtraj. from each traj.

 \mathcal{T}_P can be computed/updated in poly-time without explicitly constructing sets $S(P, \mathcal{R})$!!

Our result

Let
$$|\mathbb{P}| = b$$

• Theorem: The greedy algorithm computes a $O(\log m)$ -approximate solution to the pathlet-cover problem in $\tilde{O}(bm^3)$ time

Subtrajectory clustering

Set of candidate pathlets not given, assumed to be *all possible trajectories*

Reducing # candidate pathlets

- d satisfies triangle inequality :
 - Let candidate pathlets be subtraj. of input traj.
 - # candidate pathlets is $O(m^2)$
 - Optimal solution cost increases by factor of 2

Reducing # candidate pathlets

- d satisfies triangle inequality :
 - Let candidate pathlets be subtraj. of input traj.
 - # candidate pathlets is $O(m^2)$
 - Optimal solution cost increases by factor of 2

- $d=d_F$:
 - Reduce # candidate pathlets to O(m)
 - Cost increases by factor of $O(\log m)$

Improved running time

 For realistic inputs can further cut down on # assignments need to consider

• Theorem : For realistic curves using Fréchet distance, can compute $O(\log^2 m)$ -approximate solution to the subtrajectory clustering problem in $\tilde{O}(m^2)$ time

Outline of talk

Model and problem formulation

Algorithms

Experiments

Outline of talk

Experiments

Data sets

Real data sets:

- Beijing taxi data [Tsinghua University]
 - 28,000 cabs over 4 days
 - 9 mil. points
 - Incomplete and sparse

Data sets

Real data sets:

- GeoLife [Microsoft Research Asia]
 - Pedestrian data of 182 users over 4 years
 - ~2,600 trajs.
 - − ~1.5 mill. pts.
- Cycling
 - 37 traj.
 - 106,000 pts.
 - Has self-intersections and loops

Data sets

Synthetic data sets:

RTP

Traffic data generated by web-based tool

[http://mntg.cs.umn.edu/tg/index.php]

- Research Triangle in NC
- ~20,000 traj.
- ~1 mill. pts.

Dense & popular regions

Common trajectory portions

Handling noise

Gaps

Data-driven pathlets

Conclusion

- Proposed new models and algorithms for subtrajectory clustering
 - Theoretical analysis
 - Experiments

- Future directions
 - Clustering trajectories under Fréchet (and other) distances
 - k-means, k-medians, k-center objective ??
 - Going "beyond worst-case analysis"

Thank you!