PIC Microcontroller - 1

Introduction to PIC Microcontroller

Moving Towards Embedded Hardware

Typical components of a PC:

- x86 family microprocessor
- Megabytes or more of main (volatile) memory
- Gigabytes or more of magnetic memory (disk)
- Operating System (w/ user interface)
- Serial I/O
- Parallel I/O
- Real-time clock
- Keyboard
- Video Display
- Sound card
- Mouse
- NIC (Network Interface Card)
- etc.

C

Overview of Microcontrollers

 Basically, a microcontroller is a device which integrates a number of the components of a microprocessor system onto a single microchip.

Reference: http://mic.unn.ac.uk/miclearning/modules/micros/ch1/micro01notes.html#1.4

Some of the characteristics of the PIC 16F87x series

- High performance, low cost, for embedded applications
- Only 35 instructions
- Each instruction is exactly one word long and is executed in 1 cycle (except branches which take two cycles)
- 4K words (14bit) flash program memory
- 192 bytes data memory (RAM) + 128 bytes EEPROM data memory
- Eight level deep hardware stack
- Internal A/D converter, serial port, digital I/O ports, timers, and more!

What these changes mean when programming?

- Since there is no DOS or BIOS, you'll have to write I/O functions yourself. Everything is done directly in assembly language.
- Code design, test, and debug will have to be done in parallel and then integrated after the hardware is debugged.
- Space matters! Limitations on memory may mean being very clever about algorithms and code design.

PIC Microcontroller (PIC16F684)

- High performance, low cost, for embedded applications
 - Only 35 different instructions
 - Interrupt capability
 - Direct, indirect, relative addressing mode
- Low Power
 - 8.5uA @ 32KHz, 2.0V
- Peripheral Features
 - 12 I/O pins with individual direction control
 - 10-bit A/D converter
 - 8/16-bit timer/counter
- Special Microcontroller Features
 - Internal/external oscillator
 - Power saving sleep mode
 - High Endurance Flash/EEPROM cell
 - Etc.

PIC16F684 Block Diagram

PIC16F684

 12 pins, 2048 instructions, 128 byte variable memory, ADC, comparator, Timers, ICD

Harvard vs Von Neumann

Organization of program and data memory

Instruction Pipelining

- It takes one cycle to fetch the instruction and another cycle to decode and execute the instruction
- Each instruction effectively executes in one cycle
- An instruction that causes the PC to change requires two cycles.

	Tcy0	Tcy1	Tcy2	Tcy3	Tcy4	Tcy5
1. MOVLW 55h	Fetch 1	Execute 1		_		
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. CALL SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (Forced NOP)			Fetch 4	Flush	
5. Instruction @ addre	ss SVB_1		,		Fetch SUB_1	Execute SUB_1
						Fetch SUB_1 + 1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4

Program Memory Space

- 13-bit program counter to address 8K locations (only first 2K is implemented in 16F684)
- PIC16F675 has only 1K (x14 bit) program memory the upper bit is simply ignored during fetches from program memory
- Each location is 14-bit wide (instructions are 14 bits long)
- RESET vector is 0000h
 - When the CPU is reset, its PC is automatically cleared to zero.
- Interrupt Vector is 0004h
 - 0004h is automatically loaded into the program counter when an interrupt occurs

PIC Microcontroller Prof. Yan Luo, UMass Lowell

4

Data Memory Space

1	Address	Α	ddress						
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h	CMCON	19h	VRCON	99h		
TMR0	01h	OPTION_REG	81h		1Ah	EEDATA	9Ah		
PCL	02h	PCL	82h		1Bh	EEADR	9Bh		
STATUS	03h	STATUS	83h		1Ch	EECON1	9Ch		
FSR	04h	FSR	84h		1Dh	EECON2 ⁽¹⁾	9Dh		
GPIO	05h	TRISIO	85h	ADRESH ⁽²⁾	1Eh	ADRESL ⁽²⁾	9Eh		
	06h		86h	ADCON0 ⁽²⁾	1Fh	ANSEL ⁽²⁾	9Fh		
	07h		87h		20h		A0h		
	08h		88h						
	09h		89h	General					
PCLATH	0Ah	PCLATH	8Ah	Purpose		accesses			
INTCON	0Bh	INTCON	8Bh	Registers		20h-5Fh			
PIR1	0Ch	PIE1	8Ch	64 Bytes		20.1 01.1.			
	0Dh		8Dh	o i Dytoo					
TMR1L	0Eh	PCON	8Eh						
TMR1H	0Fh		8Fh		5Fh		DFh		
T1CON	10h	OSCCAL	90h		60h		E0h		
	11h		91h						
	12h		92h						
	13h		93h		7Fh		FFh		
	14h		94h	Bank 0		Bank 1			
	15h	WPU	95h	_					
	16h	IOC	96h	Unimplemented data memory locations, read					
	17h		9/11	1: Not a physical	•				
	18h		98h Princrocontroller	2: PIC12F675 only.					

Prof. Yan Luo, UMass Lowell

Two Special addresses

- Reset Vector Address (0000h)
 - When the CPU starts up from its reset state, its PC is automatically cleared to zero.
 - Assign goto Mainline instruction

Mainline		
call	Initial	;Initialize everything
MainLoop		
call	Task1	;Deal with task1
call	Task2	;Deal with task2
•••		
call	LoopTime	;Force looptime to a fixed value
goto	MainLoop	;repeat

- Interrupt Vector Address (0004h)
 - 0004h is automatically loaded into the program counter when an interrupt occurs.
 - Assign goto IntService instruction there: cause the CPU to jump to the beginning of the interrupt service routine, located elsewhere in the memory space.

Special Function Registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD
Bank 0	Bank 0									
00h	INDF ⁽¹⁾	Addressing	Addressing this Location uses Contents of FSR to Address Data Memory							0000 0000
01h	TMR0	Timer0 Mod	ule's Registe	er						xxxx xxxx
02h	PCL	Program Co	Program Counter's (PC) Least Significant Byte							0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx
04h	FSR	Indirect Data	a Memory Ad	dress Pointe	er				•	xxxx xxxx
05h	GPIO	_	_	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	xx xxxx
0Ah	PCLATH	_	_	_	Write Buffer for Upper 5 bits of Program Counter					0 0000
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00 00
0Eh	TMR1L	Holding Reg	Holding Register for the Least Significant Byte of the 16-bit Timer1							xxxx xxxx
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit Timer1						xxxx xxxx		
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000 0000
19h	CMCON	_	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000
1Eh	ADRESH(3)	Most Significant 8 bits of the Left Shifted A/D Result or 2 bits of the Right Shifted Result							xxxx xxxx	
1Fh	ADCON0(3)	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00 0000

Status Register

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	С	
bit 7							bit 0	•

bit 7 **IRP:** This bit is reserved and should be maintained as '0' bit 6 RP1: This bit is reserved and should be maintained as '0' bit 5 RP0: Register Bank Select bit (used for direct addressing) $0 = Bank \ 0 \ (00h - 7Fh)$ 1 = Bank 1 (80h - FFh)TO: Time-out bit bit 4 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred PD: Power-down bit bit 3 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) For borrow, the polarity is reversed. 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) bit 0 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register

PIC Microcontroller

Prof. Yan Luo, UMass Lowell

4

PCL and PCLATH

PCH PCL

12 11 10 8 7 0

PC GOTO, CALL

2 PCLATH<4:3>
11 Opcode <10:0>

PCLATH

- PC: Program Counter, 13 bits
- PCL (02h): 8 bits, the lower 8 bits of PC
- PCLATH (0Ah): PC Latch, provides the upper 5 (or 2) bits of PC when PCL is written to
- 1st example: PC is loaded by writing to PCL
- 2nd example: PC is loaded during a CALL or GOTO instruction
- PCLATH is used to for jumping across 2K pages (thus, not needed in PIC16F684)

- 8-level deep x 13-bit wide hardware stack
- The stack space is not part of either program or data space and the stackpointer is not readable or writable.
- The PC is "PUSHed" onto the stack when a CALL instruction is executed, or an interrupt causes a branch.
- The stack is "POPed" in the event of a RETURN, RETLW or a RETFIE instruction execution.
- However, NO PUSH or POP instructions!
- PCLATH is not affected by a "PUSH" or "POP" operation.
- The stack operates as a circular buffer:
 - after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push.

Acknowledgement

Some slides are revised based on lecture notes used in WPI ECE 2801