Apprentissage supervisé

Aucun document n'est autorisé.

Durée 2 heures

Exercice 1: Questions de cours

- 1. Décrivez ce qu'est un modèle de type « régression logistique »
- 2. Expliquez le principe de la méthode des k plus proches voisins ? Illustrez son principe avec un petit dessin ? Dans le cas d'égalité des probabilités d'appartenance aux différentes classes, quelles stratégies proposeriez-vous pour enlever l'ambiguïté.
- 3. Expliquez comment estimer les performances d'un modèle de classification (cross-validation, etc) et en quoi cela est important.
- 4. Dérivez et explicitez la méthode permettant d'obtenir les axes factoriels d'une analyse discriminante. Interprétez ces résultats.

Exercice 2: QCM

Dans une question à deux réponses, une mauvaise réponse est pénalisée : si la question vaut 1, une réponse fausse implique -0.5.

1.	L'AFD et une méthode	 A – de classification non supervisée B – de prédiction C – de visualisation 	
2.	L'AFD admet-elle une interprétation probabiliste	A – Vrai B – Faux	
3.	Un axe discriminant est une combinaison linéaire	A – des variables initiales B – des valeurs propres C – des vecteurs propres	
4.	Dans une AFD, la variance d'un axe discriminant est égale à	A – 1 B – la valeur propre associée C– 0	
5.	Les axes discriminants sont	A – corrélées deux à deux B – non corrélées deux à deux C– ni l'un ni l'autre	
6.	Dans l'analyse discriminante quadratique toutes les classes ont	A – même matrice de variance- covariance B–différentes matrices de variance- covariance C – ni l'un ni l'autre	
7.	Dans une AFD les corrélations entre les variables et les axes discriminants sont	A – uniquement positives B – uniquement négatives C – positives ou négatives	
8.	la matrice à diagonaliser dans une AFD est	$ \begin{vmatrix} A - S^{-1} W S_B \\ B - S^{-1} T S_B \\ C - autre \end{vmatrix} $	

9. La performance de la méthode des k plus proches voisins dépend-t-elle de	A – nombre de voisins B – distance utilisée C – ni l'un ni l'autre	
10. La régression linéaire n'est pas adaptée au problème de classification car la variable à prédire Y prend ses valeurs	A – dans R B – dans [0,1] C – dans C	
11. L'AFD est une ACP sur le nuage des points des K centres pondérés par les effectifs des classes	A – vrai B – faux	
12. En AFD, combien faut-il d'axes pour discriminer K classes	A - K B - K-1 C - K+1	
13. La régression logistique permet de prédire une variable	A – catégorielleB – continueC – binaire	
14. Dans le cadre de la régression logistique les variables explicatives peuvent êtres	A – quantitatives B – qualitatives C – quantitatives et qualitatives	
15. En apprentissage supervisé, si la variable à expliquer Y est catégorielle, on parlera d'un problème de	A – classification B – régression C– ni l'un ni l'autre	
16. L'AFD consiste à projeter le nuage de points sur l'axe qui maximise	A – l'inertie inter classe B – l'inertie intra classe C – le rapport inertie inter/ inertie intra	

Exercice 3 : Interprétation de code et sorties R

Considérons la table discrim suivante croisant un ensemble de 10 individus décrits par 4 variables quantitatives:

age	revenu	patrimoine	emprunt	groupe
45	250	1300	600	3
47	160	1150	450	3
38	165	850	370	1
36	175	770	250	1
29	99	450	400	1
39	170	1400	120	3
27	120	1400	160	2
51	160	1300	320	3
32	155	1500	350	2
35	170	1400	180	2

- a) Expliquer la fonction de chacune des lignes de code ci-dessous
- $1. \quad 1. \\ data 1 = read. \\ table ("C:/Users/pc/Documents/Cours/Appsup/Course/Course/TD3/TP3_LDA/discritering for the properties of the p$ m.txt",header=T)
- attach(data1)library(MASS)
- 4. lda.fit=lda(groupe~age+revenu+patrimoine+emprunt,data1) #data1=Données

```
5. names(lda.fit)
   6. lda.fit$means
       plot(lda.fit, col = as.numeric(data1[,5]))
   8. lda.fit$scaling
   9. D=as.matrix(data1[,1:4])%*%lda.fit$scaling
    10. cor(data1[,1:4],D)
    11. lda.ghat <- predict(lda.fit)$class
    12. sum(lda.ghat != groupe)
    13. mean(lda.ghat != groupe)
    14. table(lda.ghat, groupe)
   b) Interpréter les résultats de l'analyse discriminante linéaire appliquée sur la table discrim, préciser
       en particulier la signification des valeurs et formules soulignées ?
> 1da.fit
call:
lda(groupe ~ age + revenu + patrimoine + emprunt, data = data1)
Prior probabilities of groups:
0.3 0.3 0.4
```

Group means:

Coefficients of linear discriminants:

Proportion of trace: LD1 LD2

0.8451 0.1549

> D=as.matrix(data1[,1:4])%*%lda.fit\$scaling

LD1 LD2 <u>-9.359949</u> -9.420789 [2,] -9.071099 -9.926839 [3,] -5.548739 -8.018725 [4,] -3.846767 -7.586535 [5,] -3.289761 -6.175828 [6,] -10.295078-8.125285 [7,] -12.365377 -5.553420 [8,] -9.893802 -10.762344 [9,] **-13.367892** -6.609737 [10,] -10.805283 -7.260388

> cor(data1[,1:4],D)

```
LD1 LD2
age -0.03673802 -0.9991592
revenu -0.13640214 -0.5627526
patrimoine emprunt 0.23596443 -0.4321157
```

c) Interpréter la projection des individus de la table discrim sur le premier plan discriminant

```
> plot(lda.fit, col = as.numeric(data1[ ,5]))
```


Exercice 4

- a) Expliquer la règle géométrique de Fischer (AFD), donnez l'expression de la distance qui permet de faire l'affectation d'une nouvelle donnée x
- b) Expliquez l'hypothèse naïve sur laquelle repose le classifieur bayésien naïf