- 项目文件结构
- 文件返回说明
 - Class Identifier()
 - 功能
 - 函数
 - Class LineIdentifier()
 - 功能
 - 函数
 - param
 - return
 - 测试代码
 - Class Cubeldentifier()
 - 功能
 - 函数
 - param
 - return
 - Class QRcodeldentifier()
 - 函数
 - param
 - return
- 虚拟环境使用说明
 - Windows系统

项目文件结构

文件返回说明

以下内容均需要调整Settings.py的参数,根据场地具体的光线情况等

Class Identifier()

功能

上面两个函数的整合

函数

main(filename)-> { 'cube':list(angle,distance), 'line':int,
'qrcode':list[(angle,distance),type] }

Class LineIdentifier()

功能

识别巡航线的位置

函数

main(filename)->int

param

filename:传入巡航线的图片

return

0: 中间(巡航线位于中间1/3) 1: 右边(巡航线位于右1/3) -1: 左边(巡航线位于 左1/3)·

测试代码

srcDir=Path('train_image') filename='carview.jpg' lineIdentifier = LineIdentifier()
print(lineIdentifier.main(filename))

Class Cubeldentifier()

功能

识别方块的位置

函数

main(filename)->list(angle,distance)

param

filename:传入图片地址

return

方位角和距离的列表

Class QRcodeldentifier()

函数

main(filename)->int

param

frame:传入图片对象

return

[(angle,distance),type]

type是对应的图片

0:

2:

3:

4:

5:

补充:

这里QRcode识别最终放弃原来的图片矩阵的张量差的范数阈值比较,改为了PCA和随机森林法模型来预测

虚拟环境使用说明

Windows系统

- 我们首先要在view文件夹打开命令行 (powershell)
- 激活虚拟环境——在命令行里面输入:

VIEW_ENV/Scripts/Activate

• 运行:

• python __main__.py