Clustering and Data Mining in R Workshop Supplement

Thomas Girke

October 3, 2010

Introduction

Data Preprocessing

Data Transformations Distance Methods Cluster Linkage

Hierarchical Clustering

Approaches
Tree Cutting

Non-Hierarchical Clustering

K-Means Principal Component Analysis Multidimensional Scaling Biclustering Many Additional Techniques

Outline

Introduction

Data Preprocessing

Data Transformations

Distance Methods

Cluster Linkage

Hierarchical Clustering

Approaches

Tree Cutting

Non-Hierarchical Clustering

K-Means

Principal Component Analysis

Multidimensional Scaling

Biclustering

Many Additional Techniques

What is Clustering?

- ► Clustering is the classification of data objects into similarity groups (clusters) according to a defined distance measure.
- It is used in many fields, such as machine learning, data mining, pattern recognition, image analysis, genomics, systems biology, etc.

Why Clustering and Data Mining in R?

- ▶ Efficient data structures and functions for clustering.
- ► Efficient environment for algorithm prototyping and benchmarking.
- Comprehensive set of clustering and machine learning libraries.
- Standard for data analysis in many areas.

Outline

Introduction

Data Preprocessing

Data Transformations
Distance Methods

Cluster Linkage

Hierarchical Clustering

Approaches

Tree Cutting

Non-Hierarchical Clustering

K-Means

Principal Component Analysis

Multidimensional Scaling

Biclustering

Many Additional Techniques

Data Transformations

Choice depends on data set!

- Center & standardize
 - 1. Center: subtract from each vector its mean
 - 2. Standardize: devide by standard deviation

$$\Rightarrow$$
 Mean = 0 and STDEV = 1

- Center & scale with the scale() fuction
 - 1. Center: subtract from each vector its mean
 - 2. Scale: divide centered vector by their root mean square (rms)

$$x_{rms} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} x_i^2}$$

$$\Rightarrow$$
 Mean = 0 and STDEV = 1

- Log transformation
- ▶ Rank transformation: replace measured values by ranks
- No transformation

Distance Methods

List of most common ones!

Euclidean distance for two profiles X and Y

$$d(X, Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Disadvantages: not scale invariant, not for negative correlations

- Maximum, Manhattan, Canberra, binary, Minowski, ...
- \triangleright Correlation-based distance: 1-r
 - Pearson correlation coefficient (PCC)

$$r = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{(\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2)(\sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2)}}$$

Disadvantage: outlier sensitive

 Spearman correlation coefficient (SCC)

Cluster Linkage

Cluster Linkage

Outline

Introduction

Data Preprocessing

Data Transformations

Distance Methods

Cluster Linkage

Hierarchical Clustering

Approaches

Tree Cutting

Non-Hierarchical Clustering

K-Means

Principal Component Analysis

Multidimensional Scaling

Biclustering

Many Additional Techniques

Hierarchical Clustering Steps

- 1. Identify clusters (items) with closest distance
- 2. Join them to new clusters
- 3. Compute distance between clusters (items)
- 4. Return to step 1

Hierarchical Clustering

Hierarchical Clustering

Agglomerative Approach

Hierarchical Clustering Approaches

- Agglomerative approach (bottom-up) hclust() and agnes()
- Divisive approach (top-down) diana()

Tree Cutting to Obtain Discrete Clusters

- 1. Node height in tree
- 2. Number of clusters
- 3. Search tree nodes by distance cutoff

Outline

Introduction

Data Preprocessing

Data Transformations

Distance Methods

Cluster Linkage

Hierarchical Clustering

Approaches

Tree Cutting

Non-Hierarchical Clustering

K-Means

Principal Component Analysis

Multidimensional Scaling

Biclustering

Many Additional Techniques

Non-Hierarchical Clustering

Selected Examples

K-Means Clustering

- 1. Choose the number of k clusters
- 2. Randomly assign items to the k clusters
- 3. Calculate new centroid for each of the k clusters
- 4. Calculate the distance of all items to the k centroids
- 5. Assign items to closest centroid
- 6. Repeat until clusters assignments are stable

K-Means

Principal Component Analysis (PCA)

Principal components analysis (PCA) is a data reduction technique that allows to simplify multidimensional data sets to 2 or 3 dimensions for plotting purposes and visual variance analysis.

Basic PCA Steps

- Center (and standardize) data
- First principal component axis
 - Accross centroid of data cloud
 - Distance of each point to that line is minimized, so that it crosses the maximum variation of the data cloud
- Second principal component axis
 - Orthogonal to first principal component
 - Along maximum variation in the data
- ▶ 1st PCA axis becomes x-axis and 2nd PCA axis y-axis
- Continue process until the necessary number of principal components is obtained

PCA on Two-Dimensional Data Set

Principal Component Analysis

Identifies the Amount of Variability between Components

Example

Principal Component	1^{st}	2 nd	3 rd	Other
Proportion of Variance	62%	34%	3%	rest

 1^{st} and 2^{nd} principal components explain 96% of variance.

Multidimensional Scaling (MDS)

- Alternative dimensionality reduction approach
- Represents distances in 2D or 3D space
- Starts from distance matrix (PCA uses data points)

Non-Hierarchical Clustering
 ☐ Biclustering

Biclustering

Finds in matrix subgroups of rows and columns which are as similar as possible to each other and as different as possible to the remaining data points.

Remember: There Are Many Additional Techniques!

Continue with R manual section: "Clustering and Data Mining"