第4章组合逻辑电路

第1讲:分析与设计方法

§ 4.1 概述

§ 4.2 组合逻辑电路的分析和设计方法

§ 4.3 常用组合逻辑电路

§ 4.4 组合逻辑电路的竞争一冒险现象

Ŋ.

§ 4.1 概述

数字电路

组合逻辑电路

任一时刻的输出仅取决于 该时刻的输入,与电路原来的 状态无关。

时序逻辑电路

任一时刻的输出不仅取决 于现时的输入,而且还与电路 原来状态 有关。

组合逻辑电路的框图

组合逻辑电路在电路结构上不包含存储单元,仅仅是由各种门电路组成,

4.2 组合逻辑电路的分析和设计方法

§ 4.2.1 组合逻辑电路的分析方法

己知逻辑电路 分析 说明逻辑功能

分析方法步骤:

组合逻辑电路图 —— 写出逻辑表达式

── 化简 ── 列真值表 ── 说明功能

逻辑图

逻辑表达式

化 2

最简与或 表达式

$$Y = (Y_1Y_2Y_3)' = ((AB)'(BC)'(CA)')'$$

$$Y = AB + BC + CA$$

Y = AB + BC + CA

最简与或 表达式

真值表

电路的逻辑功能

3

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

当输入A、B、 C中有2个或3 个为1时,输 出Y为1,否则 输出Y为0。所 以这个电路实 际上是一种3 人表决用的组 合电路: 只要 有2票或3票同 意,表决就通 过。

解:

$$Y_2 = ((DBA)' \cdot (DC)')' = DBA + DC$$

$$Y_1 = ((DC'A')' \cdot (DC'B')' \cdot (D'CB)')' = DC'A' + DC'B' + D'CB$$

$$Y_0 = ((D'B')' \cdot (D'C')')' = D'B' + D'C'$$

DCBA	Y ₂	Y_1	Y_0	DCBA	Y ₂	Y ₁	Y ₀
0000	0	0	1	1000	0	1	0
0001	0	0	1	1001	0	1	0
0010	0	0	1	1010	0	1	0
0011	0	0	1	1011	1	0	0
0100	0	0	1	1100	1	0	0
0101	0	0	1	1101	1	0	0
0110	0	1	0	1110	1	0	0
0111	0	1	0	1111	1	0	0

由真值表知:该电路可用来判别输入的4位二进制数数值的范围。

re.

例1: 半加、全加器

$$F = A \cdot B' + A' \cdot B$$

真值表

A	В	F	CO
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

异或门

$$\mathbf{F} = \mathbf{A} \oplus \mathbf{B}$$
$$\mathbf{CO} = \mathbf{A} \bullet \mathbf{B}$$

特点:若把AB分别看或加镍二进数

输入不同为**"1"**。

-

$$S = A \oplus B \oplus CI$$
$$CO = (A \oplus B)CI + AB$$

A	В	CI	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
_1	1	1	1	1

$$S = A \oplus B \oplus CI$$

$$CO = (A \oplus B)CI + AB$$

这是一个全加器电路

全加器逻辑图

全加器图形符号

W

半加器:

只考虑了本位的两个数二进制数相加, 而没有考虑低位的进位。

全加器:

不只是本位的两个数二进制数相加,来自低位的进位也一起相加。

§ 4.2.2 组合逻辑电路的设计方法

例1:设计三人表决电路(A、B、C)。每人一个按键,如果同意则按下,不同意则不按。结果用指示灯表示,多数同意时指示灯亮,否则不亮。用与非门实现.

解: 1. 首先指明逻辑符号取 "0"、"1"的含义。

三个按键A、B、C按下时为"1",不按时为"0"。输出量为 L,多数赞成时是"1",否则是"0"。

据 题意 列出真值表

\boldsymbol{A}	В	\boldsymbol{C}	$oldsymbol{L}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3.画出卡诺图化简:

$$L=AC+BC+AB$$

4、用与非门实现逻辑电路

$$L = ((AB + AC + BC)')' = ((AB)' \cdot (AC)' \cdot (BC)')'$$

例4.2.2:

解:取红、黄、绿三盏灯分别用R、A、G表示,设灯亮为"1",不亮为"0";故障信号为输出变量用Z表示,规定正常为"0",不正常为"1"。

2、写逻辑函数式

Z = R'A'G' + R'AG + RA'G + RAG' + RAG

1、列真值表

R	A	\mathbf{G}	Z
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3、化简

$$Z = R'A'G' + AG + RG + RA$$

4、画逻辑图

$$Z = R'A'G' + AG + RG + RA$$

M

用与非门实现

$$Z = ((R'A'G' + AG + RG + RA)')' = ((R'A'G')' \cdot (AG)' \cdot (RG)' \cdot (RA)')'$$

