GSI024 - Organização e recuperação de informação

Prof. Dr. Rodrigo Sanches Miani (FACOM/UFU)

Realimentação de relevância e expansão de consultas

Agenda

"Realimentação de relevância e expansão de consultas"

Introdução e contextualização

Métodos de realimentação explícitos

Método de Rocchio

Cliques

Métodos de realimentação implícitos

Local (análise de contexto)

Global (tesauro de similaridade)

QP-3

QP-3

- Provavelmente será na semana que vem...
- Avaliação + Realimentação + Alguma coisa de modelos de RI

Aula passada

Coleção de referência

- Coleções de referência permitem comparar diretamente os resultados produzidos por diferentes funções de ranqueamento;
- Os julgamentos de relevância são produzidos por humanos especialistas e idealmente devem fornecer uma decisão de relevância para cada par necessidade de informação-documento;
- Claramente, isso só é viável para coleções de documento pequenas, como as dos experimentos Cranfield.

Precisão e revocação

As medidas de precisão e revocação são definidas da seguinte forma:

Precisão (fração dos documentos recuperados que é relevante):

$$p = |R \cap A| / |A|$$

Revocação (fração dos documentos relevantes que foi recuperada):

$$r = |R \cap A| / |R|$$

P@n

 Na Web, é comum medir a média da precisão quando n = 5 ou 10 documentos tenham sido vistos;

 Os valores típicos para n são normalmente precisão na posição 5 (P@5), precisão na posição 10 (P@10) e precisão na posição 20 (P@20);

• Essas métricas fornecem uma avaliação da impressão do usuário sobre os resultados.

MAP - Exemplo

Calcular o MAP para o conjunto de consultas q_1 ($R_1 = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_5, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_5, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89} \in Calcular o MAP para o conjunto de consultas <math>q_1$ ($R_1 = \{d_3, d_5, d_5, d_{59}, d_{59},$ d_{123}) e q_2 ($R_2 = \{d_3, d_{56}, d_{129}\}$).

1.	d_{123}	•
----	-----------	---

5. d_8

6.
$$d_9 \bullet$$

2. d_{84} 7. d_{511} 12. d_{48}

10. $d_{25} \bullet$ 15. $d_3 \bullet$

11.
$$d_{38}$$

3. $d_{56} \bullet$ 8. d_{129} 13. d_{250}

4. d_6 9. d_{187} 14. d_{113}

1.
$$d_{425}$$

4. d_{32} 9. d_4

5. d_{124}

6.
$$d_{615}$$

3. $d_{56} \bullet$ 8. $d_{129} \bullet$ 13. d_{810}

10. d_{130}

6.
$$d_{615}$$
 11. d_{193}

2. d_{87} 7. d_{512} 12. d_{715}

14. d_5

15. $d_3 \bullet$

Coeficiente de Spearman - Exemplo

Documentos	$s_{1,j}$	$s_{2,j}$	$s_{i,j}-\ s_{2,j}$	$(s_{i,j}-s_{2,j})^2$
d_{123}	1	2	-1	1
d_{84}	2	3	-1	1
d_{56}	3	1	+2	4
d_6	4	5	-1	1
d_8	5	4	+1	1
d_9	6	7	-1	1
d_{511}	7	8	-1	1
d_{129}	8	10	-2	4
d_{187}	9	6	+3	9
d_{25}	10	9	+1	1
Soma d	24			

 Sem um conhecimento detalhado da coleção de documentos, a maioria dos usuários acha difícil formular consultas bem projetadas para fins de recuperação;

- Exemplo: usuários de sistemas de RI muitas vezes precisam reformular suas consultas para obter os resultados que interessam.
 - A primeira consulta deve ser tratada como uma tentativa inicial de recuperar informações relevantes!
 - Formulações melhores da consulta podem ser escritas para recuperar mais documentos úteis.

Como melhorar a formulação da consulta inicial utilizando a informação que está relacionada com a intenção "por trás" da consulta?

Como melhorar a formulação da consulta inicial utilizando a informação que está relacionada com a intenção "por trás" da consulta?

1) Realimentação explícita – quando o usuário fornece explicitamente informações sobre os documentos relevantes para uma consulta;

Como melhorar a formulação da consulta inicial utilizando a informação que está relacionada com a intenção "por trás" da consulta?

1) Realimentação explícita – quando o usuário fornece explicitamente informações sobre os documentos relevantes para uma consulta;

2) Realimentação implícita – quando informações relacionadas à consulta são utilizadas implicitamente pelo sistema.

Métodos de realimentação - Definição

Definição: A realimentação de relevância refere-se a um ciclo de realimentação em que documentos que são conhecidamente relevantes para a consulta q em questão são usados para transformá-la em uma consulta modificada q_m .

 A expectativa é que a consulta q_m retornará um maior número de documentos relevantes para q.

Métodos de realimentação - Problemas

- Obter informações sobre a relevância dos documentos em relação a consulta:
 - É caro;
 - Exige a interferência direta do usuário;

 Exemplo: um sistema de RI poderia perguntar aos usuários se os 10 primeiros resultados para uma determinada consulta são de fato relevantes. Será que os usuários estão dispostos a fornecer essa informação?

Métodos de realimentação - Possível solução

- Em vez de pedir aos usuários que marquem os documentos relevantes, poderíamos analisar documentos que:
 - Eles tenham clicado;
 - Ou observar os termos pertencentes aos documentos do topo do conjunto dos resultados.

• Em ambos os casos, se supusermos que a informação recolhida está relacionada à consulta original, esperamos que o ciclo de realimentação produza resultados de melhor qualidade!

Ciclo de realimentação - Etapas

1) Determinar a informação de realimentação que está relacionada, ou que se espera que esteja relacionada à consulta original;

2) Determinar como transformar a consulta q de modo a utilizar essa informação de forma eficaz.

Ciclo de realimentação - Etapas

A etapa 1) pode ser realizada de duas formas distintas:

- A. Obter **explicitamente** a informação de realimentação a partir dos usuários;
- B. Obter **implicitamente** a informação de realimentação a partir dos resultados da consulta ou de fontes externas, como um tesauro.

Informações explícitas de realimentação

Informações explícitas de realimentação

Informações implícitas de realimentação

Informações implícitas de realimentação

Métodos de realimentação explícitos

 Usuários de máquinas de busca na Web não só inspecionam os resultados de suas consultas, como também clicam sobre eles;

 Os cliques podem ser coletados em grandes números, sem interferir nas ações dos usuários;

• Pergunta: os dados de cliques podem ser usados para decidir sobre a relevância do resultado para consultas futuras?

Realimentação explícita - Comportamento do usuário

- Experimentos com um grupo de 29 indivíduos;
- Resultados:
 - Usuários escaneiam os resultados da consulta de cima para baixo;
 - Inspecionam o primeiro e o segundo resultados de imediato;
 - Tendem a escanear em detalhe as primeiras cinco ou seis respostas que aparecem na área visível da tela;

Realimentação explícita - Comportamento do usuário

Resultados:

- 60-70% das tarefas, os usuários têm uma fixação no primeiro ou no segundo resultado para o quarto resultado a frequência cai pela metade;
- Usuários inspecionam as duas primeiras respostas quase que igualmente, mas eles clicam quase três vezes mais no primeiro resultado;
- Indicativo de que o usuário tende a confiar na máquina de busca!

- Participantes recebem dois conjuntos distintos de resultados:
 - O ranking normal retornado pela máquina de busca;
 - Um ranking modificado, no qual os dois melhores resultados têm a sua posição trocada.
- O que acontece?

- Participantes recebem dois conjuntos distintos de resultados:
 - O ranking normal retornado pela máquina de busca;
 - Um ranking modificado, no qual os dois melhores resultados têm a sua posição trocada.
- O que acontece?
- Usuários clicam quase três vezes mais no primeiro resultado do que no segundo!
 - A posição do resultado tem uma grande influência na decisão do usuário.

• Interpretar cliques como um indicativo direto de relevância não é uma boa abordagem...

• Ideia: interpretar cliques como métricas de PREFERÊNCIA do usuário;

• Exemplo: Se você olha para o *snippet* de um resultado e decide ignorá-lo e clicar em um resultado mais abaixo no ranking, é apropriado dizer que este usuário prefere o resultado clicado ao mostrado mais acima do ranking.

Cliques dentro de uma mesma consulta (exemplo)

$$r_1$$
 r_2 $\sqrt{r_3}$ r_4 $\sqrt{r_5}$ r_6 r_7 r_8 r_9 $\sqrt{r_{10}}$

- Skip-Above: supõe que o usuário prefere o resultado em que ele clicou a todos os outros resultados em que ele não clicou e que aparecerem antes;
- Skip-Previous: usuário prefere o resultado clicado ao resultado imediatamente anterior no ranking que não foi clicado.

Cliques em uma cadeia de consultas (exemplo 2)

- Top-One-No-Click-Earlier: supõe que o usuário prefere qualquer resposta do segundo conjunto de resultados à primeira resposta do primeiro conjunto de resultados;
- Top-Two-No-Click-Earlier: supõe que o usuário prefere qualquer resposta do segundo conjunto de resultados às duas primeiras respostas do primeiro conjunto de resultados;

Realimentação de relevância explícita

Ideia: reformulação da consulta à partir de informações do usuário sobre a relevância de documentos.

- 1. Usuário submete a consulta original;
- 2. Uma lista de documentos recuperados é apresentada ao usuário;
- 3. O usuário examina os documentos e marca aqueles que são relevantes;
- 4. Com base na informação fornecida pelo usuário, o sistema computa uma nova consulta;
- 5. A nova consulta é submetida ao sistema.

Realimentação de relevância explícita

- O objetivo principal consiste em:
 - Selecionar termos importantes dos documentos que foram identificados como relevantes pelos usuários;
 - Aumentar a importância desses termos em uma nova formulação da consulta.

• Espera-se que a nova consulta seja movida para mais perto dos documentos relevantes e para mais longe dos documentos não relevantes.

Realimentação de relevância explícita - Objetivo

Realimentação de relevância explícita - Características

 Evita que o usuário tenha que se envolver com o processo de reformulação da consulta (ele somente precisa fornecer julgamentos de relevância para os documentos);

 Divide a tarefa da busca em uma sequência de pequenos passos que são mais fáceis de aprender.

Método de Rocchio - Premissas

- 1. Considera que os documentos identificados como relevantes (para uma determinada consulta) têm semelhanças entre si;
- 2. Documentos não relevantes têm vetores de termos **diferentes** dos vetores dos documentos relevantes;

• Ideia: reformular a consulta, de forma que ela aproxime-se dos documentos relevantes e afaste-se dos documentos não relevantes.

Realimentação de relevância explícita - Ideia

Realimentação de relevância explícita - Ideia

Vetor diferença entre os centróides dos vetores dos documentos relevantes e não relevantes:

Método de Rocchio - Consulta ótima

Conjunto completo dos documentos relevantes C_r para uma determinada consulta q é conhecido de antemão. Nesse caso, o melhor vetor consulta para distinguir os documentos relevantes dos não relevantes é o vetor diferença entre cada um dos centroides:

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\forall \vec{d}_j \in C_r} \vec{d}_j - \frac{1}{N - |C_r|} \sum_{\forall \vec{d}_j \notin C_r} \vec{d}_j$$

N = documentos da coleção.

Método de Rocchio (padrão)

$$Rocchio_Padr\~ao: \vec{q}_m = \alpha \ \vec{q} \ + \ \frac{\beta}{N_r} \sum_{\forall \vec{d}_i \in D_r} \vec{d}_j \ - \ \frac{\gamma}{N_n} \sum_{\forall \vec{d}_i \in D_n} \vec{d}_j$$

 D_r = documentos relevantes entre os documentos recuperados.

 N_r = número de documentos no conjunto D_r .

 D_n = documentos não relevantes entre os documentos recuperados.

 N_n = número de documentos no conjunto D_n .

q = consulta original.

Outros termos são constantes de ajuste.

```
new query vector = \alpha \cdot original query vector + \beta \cdot relevant document vectors - \gamma \cdot non-relevant document vectors
```


new query vector = $\alpha \cdot$ original query vector + $\beta \cdot$ relevant document vectors - $\gamma \cdot$ non-relevant document vectors

2	4	8	0	0	2	$\beta = 0.5$
---	---	---	---	---	---	---------------

8 0 4 4 0 16
$$\gamma = 0.25$$

Typically β > γ, since positive feedback is more meaningful.

new query vector = $\alpha \cdot$ original query vector + $\beta \cdot$ relevant document vectors - $\gamma \cdot$ non-relevant document vectors

2 4 8 0 0
$$\beta = 0.5$$

8 0 4 4 0 16
$$\gamma = 0.25$$

Typically β > γ, since positive feedback is more meaningful.

new query vector = $\alpha \cdot$ original query vector + $\beta \cdot$ relevant document vectors - $\gamma \cdot$ non-relevant document vectors

2 4 8 0 0
$$\beta = 0.5$$

8 0 4 4 0 16
$$\gamma = 0.25$$

Typically β > γ, since positive feedback is more meaningful.

Negative term weights become 0.

-1	6	3	7	0	-3
0	6	3	7	0	0

Método de Rocchio - Exercício

Considere a seguinte coleção:

- D1 = {good movie trailer shown}
- D2 = {trailer with good actor}
- D3 = {unseen movie}

Considere também que o vocabulário seja formado pelas palavras movie, trailer e good. Suponha que o usuário considerou D1 e D2 relevantes para a consulta Q={movie trailer}. Qual seria a consulta modificada usando o método de Rocchio?

Método de Rocchio - Vantagens

 Simplicidade – pesos modificados dos termos são computados diretamente a partir do conjunto de documentos recuperados;

 Bons resultados – vetor modificado da consulta reflete uma parte da semântica da consulta pretendida.

Método de Rocchio - Desvantagens

- Retorno de relevância é caro;
 - Retorno de relevância implica em consultas longas;
 - Consultas longas são caras.

Usuário evitam fornecer retorno explícito.

Métodos de realimentação implícitos

Realimentação implícita

1. Análise global

2. Análise local

Realimentação implícita – Análise global

 Expandir a consulta usando informações de todo o conjunto de documentos da coleção;

 A consulta é modificada baseada em alguma característica global da coleção, isto é, um recurso que não depende da consulta.

Realimentação implícita – Análise global

• Informação principal utilizada: sinônimos (ou quase sinônimos);

 Uma publicação ou base de dados que lista esse tipo de sinônimo é conhecido como tesauro;

- Existem dois tipos de tesauro:
 - Criados manualmente;
 - Criados automaticamente.

Análise global - Exemplo

Análise global – Tipos de expansão de consultas

- 1. Tesauro construído manualmente (mantido por editores, exemplo UNESCO);
- 2. Tesauro construído automaticamente (baseado em estatísticas de coocorrências, por exemplo);
- 3. Equivalência de consulta baseada em mineração do histórico de consultas (muito comum na Web como no exemplo do slide anterior).

Expansão de consultas com tesauros

- Para cada termo t na consulta, a ideia consiste em expandi-la com palavras relacionadas ao termo t presentes no tesauro;
 - HOSPITAL MÉDICO;
- Em geral aumenta a recuperação mas pode diminuir a precisão com a presença de termos ambíguos;
- Utilizado amplamente em motores de busca especializados para ciência e engenharia;
- É muito caro criar e manter um tesauro manualmente.

Exemplo de tesauro manual - UNESCO

 Tesauro utilizado para o controle e indexação de termos das áreas de Educação, Cultura, Ciências Naturais, Sociais e Humanas (http://databases.unesco.org/thesaurus/)

Exemplo de tesauro manual - UNESCO

Computer s	vstems >	Computer	networks
------------	----------	----------	----------

PREFERRED TERM	Computer networks	Search in UNESDOC	
BROADER CONCEPT	Computer systems		
NARROWER CONCEPTS	Computer interfaces Internet		
RELATED CONCEPTS	Computer applications Computers Computer terminals Telecommunications Telecommunications networks		
ENTRY TERMS	Computer communications Data networks Electronic networking		
BELONGS TO GROUP	Information and communication > Information technology (hardware)		
IN OTHER LANGUAGES	شبكات الحاسب مشابكة الكترونية شبكات البيانات ربط شبكي الكتروني اتصالات حاسبية	Arabic	
	Réseau informatique Réseau d'ordinateurs RE Réseau local d'ordinateurs Réseau électronique RLE Travail en réseau	French	

Exemplo de tesauro manual - INEP

 Vocabulário controlado que reúne termos e conceitos extraídos de documentos analisados no Centro de Informação e Biblioteca em Educação (http://pergamum.inep.gov.br/pergamumweb/biblioteca/ pesquisa thesauro.php)

Geração automática de tesauro

Como gerar de forma automática um tesauro?

Geração automática de tesauro

- Como gerar de forma automática um tesauro?
- Resposta: analisar a distribuição das palavras em documentos e usar o conceito de similaridade entre duas palavras;

Geração automática de tesauro

- Definição 1: Duas palavras são similares se elas co-ocorrem com as mesmas palavras:
 - "carro" é similar a "motocicleta" pois ambos ocorrem com "estrada", "gasolina" e "carteira";
- Definição 2: duas palavras são similares se elas ocorrem em uma relação gramatical com as mesmas palavras:
 - Maça é similar a pera pois em ambos os casos podemos colher, descascar, comer, preparar...

Realimentação implícita - Análise local

• Documentos recuperados para uma determinada consulta q são examinados para determinar os termos para a expansão da consulta;

• Semelhante a um ciclo de realimentação de relevância, mas feito sem o envolvimento do usuário.

- Construir matrizes de associação que quantificam as correlações entre os termos dos documentos que aparecem no topo do ranking;
- Quanto maior o número de documentos em que os dois termos coocorrem, mais forte a correlação;
- Termos com tais características podem ser usados para criar a consulta modificada.

matriz de termos por termos

Seja $\mathbf{M} = [m_{ij}]$ uma matriz de termos por documentos com t linhas e N colunas onde $m_{ij} = w_{i,j}$, ou seja, cada célula da matriz é dada pelo peso associado ao par termo-documento (k_i, d_j) . Sendo \mathbf{M}^T a transposta de \mathbf{M} , a matriz $\mathbf{C} = \mathbf{M} \cdot \mathbf{M}^T$ é uma matriz de correlação entre termos. Cada elemento $c_{u,v} \in \mathbf{C}$ expressa uma correlação entre os termos k_u e k_v , dada por

$$c_{u,v} = \sum_{d_j} w_{u,j} \times w_{v,j}$$

- A matriz C de correlação entre termos estabelece um relacionamento entre quaisquer dois termos baseado em suas coocorrências dentro de documentos da coleção;
- Quanto maior o número de documentos nos quais os termos ku e kv coocorram, maior será essa correlação;
- Para criar uma consulta modificada q_m, bastaria adicionar a qm os termos com maior correlação aos termos da consulta original.

Análise local – Abordagem 1 - Exemplo

- Considere a matriz de correlação da coleção do livro;
- Se a consulta for "to do", uma abordagem de análise local por clustering de associação poderia criar uma consulta modificada qm = "to be do da";
- "be" foi inserido pois a correlação entre to e be é alta (12), ou seja, o número de documentos que eles coocorrem é alto! O mesmo vale para o termo "da";
- As coisas ficam mais interessantes em coleções maiores...

Análise local – Abordagem 2

- Usa grupos de substantivos (único, dois ou três adjacentes no texto) selecionados a partir dos documentos no topo do ranking;
- Em vez de documentos, são usadas passagens de tamanho fixo do documento (por exemplo, 300 palavras) para a determinação das coocorrências entre os substantivos;
- Para cada grupo de substantivo calcula-se a similaridade entre ele e a consulta q – os grupos mais bem ranqueados são adicionados a consulta modificada qm;

Análise local – Abordagem 2

- Usa grupos de substantivos (único, dois ou três adjacentes no texto) selecionados a partir dos documentos no topo do ranking;
- Em vez de documentos, são usadas passagens de tamanho fixo do documento (por exemplo, 300 palavras) para a determinação das coocorrências entre os substantivos;
- Para cada grupo de substantivo calcula-se a similaridade entre ele e a consulta q os grupos mais bem ranqueados são adicionados a consulta modificada qm;

- Método ajustado para dados específicos (TREC);
- Não funcionou bem para outras coleções.

Roteiro de estudo

Estudos

- Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca
 - Capítulo 4.1, 4.2, 4.3, 4.4, 4.5.1 e 4.6.1
- Lista 3 Já disponível no Teams