

Simulation using Python

Jayendran Venkateswaran

Industrial Engineering & Operations Research Indian Institute of Technology Bombay

Agenda

- Monte Carlo Simulation
- Simulation of Dynamic Systems
- Optimisation using Simulation

2

Monte Carlo Simulation

Monte Carlo Simulation

- Any simulation that uses random numbers
 - Very broad, includes all stochastic simulations

More restrictive definition

- Monte Carlo is a scheme employing random numbers, i.e. U(0,1) random variates, which is used for solving certain stochastic or deterministic problems where the passage of time plays no role!
 - Monte Carlo simulations are static rather than dynamic

MCS basics

 Deterministic model maps a set of input variables to a set of output variables

Stochastic uncertainty propagation

Source:

http://www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html

Example PI: Compute value of π

- Consider a quarter-circle inscribed inside a unit square
- Area_{quarter-circle} = π/4
- Area_{square} = 1
- Area_{region} ~ Points inside region
 - $\Pi = 4*$ points in circle/ Total points
- Set-up a MCS to compute π .
 - Generate (x, y) coordinate where $x, y \in [0,1]$
 - If $(x^2 + y^2 < 1)$ then
 - Count point inside quarter-circle
 - \blacksquare Repeat above two steps n times.
 - $\tilde{\pi} \approx 4 * points in circle/n$

Compute π for various values of n

SimPython2-class1.ipynb

- Estimate PI
 - Solved example;
 - Vary N & run multiple times; observe results
- Project planning
 - Solved example
 - Vary N & run multiple times; observe results
- A rat in a trap (Markov chain example)
 - Partially complete: You need complete this
- Newvendor Model

Simulation of Dynamic Systems

8

Simulation of Dynamic Systems

- Dynamic systems are often represented as differential equation (ODEs)
 - We can simulate them by numerically exercising the ODEs
- Using <u>odeint</u> of scipy
- odeint() function, takes as input
 - ✓ The set of equations as a function definition
 - ✓ Initial values
 - ▼ Timeline or timesteps
 - Parameter values
 - etc

- Inputs
- Initial conditions
- Model (with the ODEs)
- **✓** Timeline
- Simulate using odeint function
- Plot the results

10

Example: Population dynamics

The rate of change of population P(t) of a region is affected by its birth rate and death rate as follows

$$rac{dP}{dt} = Births - Deaths = bP - dP$$

, b & d are known constants

```
Inputs→
                                                                                                                                                                                                                                                                                                                                                      #First input is Equations/
                                                                                                                                                           state, Time, then optional
                                                                                                                                                                                                                                                                                                                                                      input parameters
                                                Initial values→
                                                                                                                                                            def popModel(P, t, b, d):
                      Model with ODEs→
                                                                                                                                                                 dP dt = b*P - d*P
                                              Variable name =
                                                                                                                                                                              return dP dt
                                                                                                                                                          t = np.linspace(0, 100, 1000)
                                                                               timeline→
Simulate with odeint \rightarrow represent the population of the population of the state o
                                                                                       Results→ | plt.plot(t, Pop)
```

SimDynamicModelsclass.ipynb

- Population Dynamics
 - Solved example
- Simple Harmonic Motion
 - Solved example
- The real non-linear simple pendulum
- Partially complete. You need to complete this
- SIR epidemics model
 - Solved Example
- SIRS epidemics model

¥ ■ To Do

Optimisation using Simulation

13

Optimisation using Simulation

- We typically solve optimisation problems using general mathematical programming, or heuristics
- For NP-Hard problems, or <u>non-linear</u> problems it may be difficult to get the exact solution and hence we may settle for 'good enough' solutions.
- Now, can we simply randomly sample the search space, and by chance, get (near) optimum solution?

14

Example: Rosenbrock's function

Minimize the Rosenbrock's function

$$f(\mathbf{x}) = \sum_{i=1}^{N-1} 100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \quad ext{where} \quad \mathbf{x} = [x_1, \dots, x_N] \in \mathbb{R}^N$$

- Let N=2. The optimum is at (1,1) with value 0.
- Let's randomly sample the solution space and see if we can near optimum solutions
 - 1. Randomly choose a solution point
 - 2. Evaluate the function
 - 3. Repeat 1 and 2 for N samples
 - 4. Report the minimum obj and corresponding solution obtained

SimOptClass.ipynb

- Rosenbrock Function
 - Solved example

To Do: You can find some single objective unconstrained test functions at <u>Wiki page</u>

- 1. Through simulation, find the optimum solution of any one of the function: Beale or Goldstein-Price or Booth
- 'Optimise' either Himmelblau's function OR Cross-in-Tray function. These functions have 4 alternate solutions. Do 20 sets of 'simulation-optimisation' runs, with N \sim = 200000. Compute the number of times we are close to a particular known solution.