Цель работы: изучение методов решения дифференциального уравнения.

1 Теоретическая часть

В данном разделе рассматриваются аналитический приближенный метод Пикара и численный метод Эйлера (явная и неявная схема).

1.1 Метод Пикара

$$y^{(\xi)}(x) = \eta + \int_{0}^{x} f(t, y^{\xi-1}(t))dt,$$

 $y^{(\xi)} = \eta.$

1.2 Явный метод Эйлера

$$x_i = x_{i-1} + h,$$

$$y_i = y_{i-1} + h \cdot f(x_{i-1}, y_{i-1}).$$

1.3 Неявный метод Эйлера

$$x_i = x_{i-1} + h,$$

$$y_i = y_{i-1} + h \cdot f(x_i, y_i).$$

2 Практическая часть

Задача: решить уравнение:

$$\begin{cases} u'(x) = x^2 + u^2, \\ u(0) = 0. \end{cases}$$

Произведем вычисления для метода Пикара:

$$y_1(x) = 0 + \int_0^x f(t, y_0(t))dt, \quad y_0(x) = 0,$$

$$y_1(x) = 0 + \int_0^x f(t, 0)dt = \int_0^x t^2 dt = \frac{x^3}{3},$$

$$y_2(x) = 0 + \int_0^x f(t, \frac{x^3}{3})dt = \int_0^x (t^2 + \frac{x^6}{9})dt = \frac{x^3}{3} + \frac{x^7}{63},$$

$$\begin{split} y_3(x) &= 0 + \int\limits_0^x f(t, \frac{x^3}{3} + \frac{x^7}{63}) dt = \int\limits_0^x (t^2 + \frac{x^6}{9} + \frac{2x^{10}}{189} + \frac{x^{14}}{3969}) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}, \\ y_4(x) &= 0 + \int\limits_0^x f(t, \frac{x^3}{3} + \frac{x^7}{63} + \frac{x^{11}}{2079} + \frac{x^{15}}{59535}) dt = \int\limits_0^x (t^2 + (\frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535})^2) dt = \\ &= \int\limits_0^x (t^2 + ((\frac{x^3}{3} + \frac{x^7}{63})^2 + 2 \cdot (\frac{x^3}{3} + \frac{x^7}{63})(\frac{2x^{11}}{2079} + \frac{x^{15}}{59535}) + (\frac{2x^{11}}{2079} + \frac{x^{15}}{59535})^2)) dt \\ &= \int\limits_0^x (t^2 + \frac{x^6}{9} + \frac{2x^{10}}{189} + \frac{13x^{14}}{14553} + \frac{82x^{18}}{1964655} + \frac{662x^{22}}{453835305} + \frac{4x^{26}}{123773265} + \frac{x^{30}}{3544416225}) dt \\ &= \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} + \frac{4x^{27}}{3341878155} + \frac{x^{31}}{10987690975}. \end{split}$$

Произведем вычисления для неявного метода Эйлера:

$$y_{i+1} = y_i + h \cdot f(x_{i+1}, y_{i+1}),$$

$$f(x_i, y_i) = x_i^2 + y_i^2,$$

$$y_{i+1} = y_i + h(x_{i+1}^2 + y_{i+1}^2),$$

$$hy_{i+1}^2 - y_{i+1} + (y_i + hx_{i+1}^2) = 0,$$

$$D = b^2 - 4ac = 1 - 4h(y_i + h(x_i + h)^2),$$

$$y_{i+1} = \frac{-b \pm \sqrt{D}}{2a} = \frac{1 \pm \sqrt{D}}{2h}.$$

В листинге 1 представлена реализация расмотренных методов.

Листинг 1: Реализации трех методов решения дифференциального уравнения

```
from math import sqrt
from numpy import arange
from prettytable import PrettyTable

def func(x, u):
    return x ** 2 + u ** 2

def picard_1(x):
    return x ** 3 / 3

def picard_2(x):
    return x ** 3 / 3 * (1 + x ** 4 / 21)
```

```
13
  def picard 3(x):
14
       return x ** 3 / 3 * (1 + (x ** 4 / 21) + (2 / 693 * x **
15
          8) + (1 / 19845 * x ** 12))
16
  def picard 4(x):
17
       return x ** 3 / 3 + (x ** 7 / 63) + (2 / 2079 * x ** 11) +
18
            (13 / 218295 * x ** 15) + (82 / 37328445 * x ** 19) +
               (662 / 10438212015 * x ** 23) + (4 / 3341878155 * x
19
                    ** 27) + (x ** 31 / 10987690975)
20
  def explicit_scheme(x, y, h):
21
       return y + h * func(x, y)
22
23
  def implicit\_scheme(x, y, h):
24
      D = 1 - 4 * h * (y + h * (x + h) ** 2)
25
       if D < 0:
26
           return float("NaN")
27
       else:
28
           \textbf{return} \ (1 - \mathsf{sqrt}(D)) \ / \ (2 * h)
29
30
  def calculate_picard(x_values, func):
31
       y_values = []
32
       for x_cur in x_values:
33
           result = func(x cur)
34
           if result \leq 10e + 300:
35
               y_values.append(round(result, 8))
36
           else:
37
               y_values.append(float('inf'))
39
       return y_values
40
  def calculate_euler(step, x_end, func):
41
       y_values = []
42
       y_values.append(0.0)
43
       for x_{cur} in arange(step, x_{end} + step, step):
44
           result = func(y_values[-1], x_cur - step, step)
45
           if result \leq 10e + 300:
46
               y_values.append(round(result, 8))
47
48
           else:
               y_values.append(float('inf'))
49
50
       return y_values
```

6

На рис. 1 представлен результат работы программы при шаге 0.001:

Х	Пикар (1 приближение)	Пикар (2 приближение)	Пикар (3 приближение)	Пикар (4 приближение)	Эйлер (явная схема)	Эйлер (неявная схема)
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.001	0.0	0.0	0.0	0.0	0.0	1.0000333894311098e-09
0.002	0.0	0.0	0.0	0.0	l 1e-09	5.000055924853086e-09
0.003	1e-08	1e-08	1e-08	1e-08	5.00000000001e-09	1.4000078873976918e-08
0.004	2e-08	2e-08	2e-08	2e-08	1.4000000000026e-08	3.000011350451359e-08
0.005	4e-08	4e-08	4e-08	4e-08	3.0000000000222e-08	5.500011557302287e-08
0.006	7e-08	7e-08	7e-08	7e-08	5.5000000001122004e-08	9.100015185836696e-08
0.007	1.1e-07	1.1e-07	1.1e-07	1.1e-07	9.1000000004147e-08	1.4000017811710563e-0
0.008	1.7e-07	1.7e-07	1.7e-07	1.7e-07	1.4000000001242802e-07	2.0400020561694987e-0
0.009	2.4e-07	2.4e-07	2.4e-07	2.4e-07	2.0400000003202804e-07	2.8500024562561066e-0
0.01	3.3e-07	3.3e-07	3.3e-07	3.3e-07	2.8500000007364403e-07	3.8500025389964776e-0
0.011	4.4e-07	4.4e-07	4.4e-07	4.4e-07	3.85000000154869e-07	5.060002417067722e-07
0.012	5.8e-07	5.8e-07	5.8e-07	5.8e-07	5.06000000303094e-07	6.500002758258461e-07
0.013	7.3e-07	7.3e-07	7.3e-07	7.3e-07	6.5000000055913e-07	8.190003120134293e-07
0.014	9.1e-07	9.1e-07	9.1e-07	9.1e-07	8.1900000098163e-07	1.0150003060260815e-0
0.015	1.12e-06	1.13e-06	1.13e-06	1.13e-06	1.015000001652391e-06	1.240000324642665e-06
0.016	1.37e-06	1.37e-06	1.37e-06	1.37e-06	1.240000002682616e-06	1.4960003236197394e-0
0.017	1.64e-06	1.64e-06	1.64e-06	1.64e-06	1.496000004220216e-06	1.785000314225016e-06
0.018	1.94e-06	1.94e-06	1.94e-06	1.94e-06	1.7850000064582322e-06	2.1090003077262054e-6
0.019	2.29e-06	2.29e-06	2.29e-06	2.29e-06	2.1090000096444574e-06	2.470000315391019e-06
0.02	2.67e-06	2.67e-06	2.67e-06	2.67e-06	2.4700000140923384e-06	2.8700003484871672e-0
0.021	3.09e-06	3.09e-06	3.09e-06	3.09e-06	2.8700000201932384e-06	3.3110003627712103e-0
0.022	3.55e-06	3.55e-06	3.55e-06	3.55e-06	3.3110000284301384e-06	3.795000369510859e-06
0.023	4.06e-06	4.06e-06	4.06e-06	4.06e-06	3.7950000393928597e-06	4.324000379973825e-06
0.024	4.61e-06	4.61e-06	4.61e-06	4.61e-06	4.324000053794885e-06	4.900000405427818e-06
0.025	5.21e-06	5.21e-06	5.21e-06	5.21e-06	4.900000072491862e-06	5.52500045714055e-06
0.026	5.86e-06	5.86e-06	5.86e-06	5.86e-06	5.525000096501863e-06	6.20100049086858e-06
0.027	6.56e-06	6.56e-06	6.56e-06	6.56e-06	6.201000127027489e-06	6.93000051787962e-06
0.028	7.32e-06	7.32e-06	7.32e-06	7.32e-06	6.930000165479892e-06	7.714000604952531e-06
0.029	8.13e-06	8.13e-06	8.13e-06	8.13e-06	7.714000213504794e-06	8.555000652332723e-06
0.03	9e-06	9e-06	9e-06	9e-06	8.555000273010593e-06	9.455000726799057e-06
0.031	9.93e-06	9.93e-06	9.93e-06	9.93e-06	9.455000346198622e-06	1.0416000839619244e-0
0.032	1.092e-05	1.092e-05	1.092e-05	1.092e-05	1.0416000435595653e-05	1.1440000946549844e-0
0.033	•	1.198e-05	1.198e-05	1.198e-05	1.1440000544088717e-05	1.252900111436972e-05

Рис. 1: Результат работы программы

Вывод

В ходе лабораторной работы были реализованы аналитический приближенный метод Пикара и численный метод Эйлера.