Cryptography 2

Diffie-Hellman and RSA

Asymmetric Cryptography

- Parties don't need to start with a shared secret key
 - Securely sharing a secret key beforehand may not be practical
- Keys are in pairs
 - Public key
 - Can be shared with anyone without compromising
 - Integrity
 - Confidentiality
 - Sharing a public key may have anonymity implications
 - Private key
 - Never shared with anyone
 - Can be stored per device on secure hardware

Uses

- Key exchange
 - Establish a shared secret key using public parameters
 - Diffie-Hellman is often used for this purpose
- Encryption
 - Public key used to encrypt
 - Private key used to decrypt
 - Hides the true meaning of a message
- Signatures
 - Private key used to sign
 - Public key used to verify
 - Prove the authenticity of a message

Diffie-Hellman Analogy

How do two parties established a shared symmetric key over an untrusted

Diffie-Hellman Analogy

Diffie Hellman

- Relies on one way operations
 - Mixing colors is easy
 - Unmixing colors is hard
- Diffie Hellman can be implemented using modular arithmetic and prime exponentiation
 - Public shared info: large safe prime p and a generator g
 - p is safe if (p-1)/2 is also a large prime
 - g is a generator for p if there exists an n for every value in [0, p) in gⁿ mod p
 - Private key: integer *n* in [0, p)
 - Public key: $g^n \mod p = q$

Diffie-Hellman Example

- Alice and Bob agree to use 3 as a generator and 7 as a prime
- Alice picks 2 as a secret number; Bob picks 3
- Alice sends Bob 3² mod 7 = 2; Bob sends Alice 3³ mod 7 = 6
- Alice computes 6² mod 7 = 1; Bob computes 2³ mod 7 = 1
- Eve is left with 3, 7, 2, and 6
- Because the numbers are small, Eve could calculate the shared secret
- In practice, the minimum recommended size of the prime number is 2048 bits

Asymmetric Encryption

RSA Encryption

- Message m is encrypted by m^e mod n
- Ciphertext c is decrypted by c^d mod n
- e and n form the public key
- d is a secret, but n is also needed during decryption

RSA Signatures

- Prove authenticity of a message
- Sign the message with m^d mod n
- Verify the signature with s^e mod n
- Given the message and the signature, anyone with the public key can verify that the message has not been tampered with

RSA Key Generation

- n, e, and d are not arbitrary
- p and q are large prime numbers
- p * q = n
- p and q are a secret
- Factoring n is really hard
- Given p, q, and e, it is easy to compute d

RSA Key Generation

- $\lambda(n) = lcm(p 1, q 1)$
- e is in $(1, \lambda(n))$
- e must be coprime to $\lambda(n)$
- $d = (e^{1} 1) \mod λ(n)$

Limitations of RSA

- Limited message size
- Slower than many symmetric algorithms
- Textbook RSA is vulnerable without padding
- In practice these limitations are avoided by using RSA in addition to other cryptographic primitives
 - A symmetric cipher is typically used for encryption. The key is encrypted with RSA
 - Message hashes are signed instead of the entire message
 - Padding schemes are defined for operations