In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

mydata=pd.read_csv("C:Downloads/xAPI-Edu-Data.csv")

In [3]:

mydata

Out[3]:

	gender	NationalITy	PlaceofBirth	StageID	GradeID	SectionID	Topic	Semester
0	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F
1	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F
2	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F
3	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F
4	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F
475	F	Jordan	Jordan	MiddleSchool	G-08	Α	Chemistry	S
476	F	Jordan	Jordan	MiddleSchool	G-08	Α	Geology	F
477	F	Jordan	Jordan	MiddleSchool	G-08	Α	Geology	S
478	F	Jordan	Jordan	MiddleSchool	G-08	Α	History	F
479	F	Jordan	Jordan	MiddleSchool	G-08	Α	History	S

480 rows × 17 columns

In [4]:

```
mydata.isnull().sum()
```

Out[4]:

gender 0 NationalITy 0 PlaceofBirth 0 StageID 0 GradeID 0 SectionID 0 Topic 0 Semester 0 Relation 0 raisedhands 0 VisITedResources 0 AnnouncementsView 0 Discussion 0 ParentAnsweringSurvey 0 ParentschoolSatisfaction 0 StudentAbsenceDays 0 Class dtype: int64

In [5]:

mydata.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 480 entries, 0 to 479
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	gender	480 non-null	object
1	NationalITy	480 non-null	object
2	PlaceofBirth	480 non-null	object
3	StageID	480 non-null	object
4	GradeID	480 non-null	object
5	SectionID	480 non-null	object
6	Topic	480 non-null	object
7	Semester	480 non-null	object
8	Relation	480 non-null	object
9	raisedhands	480 non-null	int64
10	VisITedResources	480 non-null	int64
11	AnnouncementsView	480 non-null	int64
12	Discussion	480 non-null	int64
13	ParentAnsweringSurvey	480 non-null	object
14	ParentschoolSatisfaction	480 non-null	object
15	StudentAbsenceDays	480 non-null	object
16	Class	480 non-null	object

dtypes: int64(4), object(13)
memory usage: 63.9+ KB

In [6]:

In [7]:

```
mydata=mydata[col_to_use]
```

In [8]:

```
mydata.describe()
```

Out[8]:

	raisedhands	VislTedResources	AnnouncementsView	Discussion
count	480.000000	480.000000	480.000000	480.000000
mean	46.775000	54.797917	37.918750	43.283333
std	30.779223	33.080007	26.611244	27.637735
min	0.000000	0.000000	0.000000	1.000000
25%	15.750000	20.000000	14.000000	20.000000
50%	50.000000	65.000000	33.000000	39.000000
75%	75.000000	84.000000	58.000000	70.000000
max	100.000000	99.000000	98.000000	99.000000

Data Visualization

In [9]:

```
sns.countplot(x="gender",data=mydata,hue="Class");
plt.title("Class based on Gender");
```


From the above graph, we can relate the number of male and female present in the class.

In [10]:

```
sns.countplot(x="ParentschoolSatisfaction",data=mydata,hue="Class");
```


From the above graph, Parent school satisfaction is good for M and H. But it is bad for M and L.

In [11]:

From the above graph, Male discussion is higher than female discussion by 4.0

In [12]:

```
sns.countplot(x="StudentAbsenceDays", data=mydata, hue="Class");
```


From the above graph, We can see that the student absent days under-7 for M and H class is more. Similarly the student absent days above-7 for M and L are more.

In [13]:

```
plt.figure(figsize=(20,7),facecolor="lightgrey",frameon=True,edgecolor='blue');
sns.countplot(x="Topic", data=mydata, hue="Class");
plt.title("Topics based on Class");
```


From the above graph we can see that IT is the most dominating topic based on class.

In [14]:

Out[14]:

Text(0.5, 1.0, 'Discussion on Topic')

In [15]:

```
mydata_corr=mydata.corr()
mydata_corr
```

Out[15]:

	raisedhands	VisITedResources	AnnouncementsView	Discussion
raisedhands	1.000000	0.691572	0.643918	0.339386
VisITedResources	0.691572	1.000000	0.594500	0.243292
AnnouncementsView	0.643918	0.594500	1.000000	0.417290
Discussion	0.339386	0.243292	0.417290	1.000000

In [16]:

sns.heatmap(data=mydata_corr, annot=True, cmap='RdBu')

Out[16]:

<AxesSubplot:>

In [17]:

#From the above heatmap, #we can see that the data columns having more than 50% are very well correlated with eachot

In [18]:

from sklearn.preprocessing import LabelEncoder

In [19]:

LE=LabelEncoder()

In [20]:

```
mydata["gender"]=LE.fit_transform(mydata.gender)
mydata["StageID"]=LE.fit_transform(mydata.StageID)
mydata["GradeID"]=LE.fit_transform(mydata.GradeID)
mydata["SectionID"]=LE.fit_transform(mydata.SectionID)
mydata["Topic"]=LE.fit_transform(mydata.Topic)
mydata["Semester"]=LE.fit_transform(mydata.Semester)
mydata["Relation"]=LE.fit_transform(mydata.Relation)
mydata["ParentAnsweringSurvey"]=LE.fit_transform(mydata.ParentAnsweringSurvey)
mydata["ParentschoolSatisfaction"]=LE.fit_transform(mydata.ParentschoolSatisfaction)
mydata["StudentAbsenceDays"]=LE.fit_transform(mydata.StudentAbsenceDays)
mydata["Class"]=LE.fit_transform(mydata.Class)
```

In [21]:

mydata

Out[21]:

	gender	StageID	GradeID	SectionID	Topic	Semester	Relation	raisedhands	VislTedResc
0	1	2	1	0	7	0	0	15	
1	1	2	1	0	7	0	0	20	
2	1	2	1	0	7	0	0	10	
3	1	2	1	0	7	0	0	30	
4	1	2	1	0	7	0	0	40	
475	0	1	5	0	2	1	0	5	
476	0	1	5	0	5	0	0	50	
477	0	1	5	0	5	1	0	55	
478	0	1	5	0	6	0	0	30	
479	0	1	5	0	6	1	0	35	

480 rows × 15 columns

localhost:8888/notebooks/Log_Reg Assessment.ipynb

In [22]:

```
sns.countplot(x="Class",data=mydata,hue="gender");
```


In [23]:

mydata.VisITedResources.plot.hist(color="springgreen");

In [24]:

```
sns.countplot(x="ParentschoolSatisfaction",data=mydata,hue="Class");
plt.title("Parent School Satisfaction freq plot");
```


In [38]:

```
sns.jointplot(x="Discussion",y="Class",data=mydata);
```


Separating dep and indep variables

In [26]:

```
y_dep = mydata.Class
y_dep
```

Out[26]:

475 1 476 2

477 2478 1479 1

Name: Class, Length: 480, dtype: int32

In [27]:

```
x_ind=mydata.drop("Class",axis=1)
x_ind
```

Out[27]:

		gender	StageID	GradeID	SectionID	Topic	Semester	Relation	raisedhands	VislTedResc
	0	1	2	1	0	7	0	0	15	
	1	1	2	1	0	7	0	0	20	
	2	1	2	1	0	7	0	0	10	
	3	1	2	1	0	7	0	0	30	
	4	1	2	1	0	7	0	0	40	
•	475	0	1	5	0	2	1	0	5	
4	476	0	1	5	0	5	0	0	50	
•	477	0	1	5	0	5	1	0	55	
•	478	0	1	5	0	6	0	0	30	
•	479	0	1	5	0	6	1	0	35	

480 rows × 14 columns

◆

In [28]:

```
from sklearn.model_selection import train_test_split
```

In [29]:

```
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x\_ind, y\_dep, test\_size=0.2, random\_state=2)
```

```
In [30]:
from sklearn.linear_model import LogisticRegression
In [31]:
modelLR=LogisticRegression()
In [32]:
modelLR.fit(x_train,y_train)
Out[32]:
LogisticRegression()
In [33]:
y_pred=modelLR.predict(x_test)
In [34]:
y_pred
Out[34]:
array([0, 0, 0, 2, 0, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 2, 0, 0, 2, 0, 0, 0,
       2, 1, 2, 2, 0, 1, 0, 2, 1, 0, 2, 2, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0,
       2, 2, 0, 1, 0, 1, 1, 2, 0, 2, 2, 2, 0, 1, 1, 2, 0, 1, 2, 2, 2, 1,
       1, 2, 2, 0, 0, 1, 2, 2, 2, 0, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 0,
       0, 0, 1, 2, 2, 0, 0, 0
Confusion Matrix and Accuracy Score
In [35]:
from sklearn.metrics import confusion_matrix,accuracy_score
In [36]:
confusion_matrix(y_test,y_pred)
Out[36]:
array([[20, 0, 14],
       [ 0, 21, 2],
       [12, 7, 20]], dtype=int64)
In [37]:
accuracy_score(y_test,y_pred)
Out[37]:
0.635416666666666
```

In []:			