Analysis of Algorithms

The Big-O Notation

Introduction

- There are many ways (algorithms) to do the same job,
- How can we quantify and compare performance of different algorithms given:
 - Different machines, processors, architectures?
 - Different data size, orderings?
 - Different computer languages?
 - Different compilers?

Introduction: Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying sizes and compositions
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Introduction: Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Introduction: Analysis of Algorithms

- An alternative to experimental studies, is to use the theoretical Analysis of Algorithms approach
- It allows us to evaluate the speed of an algorithm independent of the hardware/software environment
 - 1. Use the *size* of the input, *n*, rather than the input itself
 - 2. Write the outline of the algorithm (i.e. use pseudo-code)
 - 3. Count number of primitive operations in the pseudo-code:
 - One primitive operation = one time unit
 - This count, t, is proportional to the actual execution time
 - 4. Express the resulting count as a function, t = f(n), for the worst-case input, e.g. $t = f(n) = 21 n^2 + 6 n$.
 - 5. Find the big-O function, g(n), corresponding to f(n).

Analysis of Algorithms: Pseudo-code

- It is a high-level description of an algorithm
- More structured than normal English
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: Find max element of an array

Algorithm *arrayMax*(*A*, *n*)

Input array *A* of *n* integers

Output max. element of *A*

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n-1 do
if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

Analysis of Algorithms: Pseudo-code Writing Details

- Flow control:
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Expressions:
 - ← Assignment (like = in Java)
 - = Equality testing (like == in Java)
 - Superscripts and other mathematical formatting allowed

- Method declaration:
 - Algorithm method (arg [, arg...])
 Input ...
 Output ...
- Method call: var.method(arg[, arg...])
- Return value: return expression

Analysis of Algorithms: Primitive Operations

The set of primitive operations include:

- Input of a scalar value
- Output of a scalar value
- Returning from a method
- Indexing into an array
- Following an object reference
- Accessing value of a variable, array element, or field of an object
- Assignment to a variable, array element, or field of an object
- Calling a method (not counting argument evaluation and execution of the method body)
- A single arithmetic or logical operation

Analysis of Algorithms: Counting Primitive Operations

- During the analysis of the algorithm, identify the number of primitive operations in each step:
 - For a conditional, count the number of primitive operations on the executed branch
 - For a loop, count the number of primitive operations in the loop body times the number of iterations
 - For a method, count the number of primitive operations in the method's body

Analysis of Algorithms: Counting Primitive Operations

Example:

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by the algorithm, as a function of the input size

```
Algorithm arrayMax(A, n)
                                                # operations
   currentMax \leftarrow A[0]
                                                       2
  for i \leftarrow 1 to n-1 do
                                                    2n + 1
       if A[i] > currentMax then
                                                    2(n-1)
                                                    2(n-1)
                currentMax \leftarrow A[i]
                                                    2(n-1)
   { increment counter i }
  return currentMax
                                                       1
                                        Total:
                                                    8n - 2
```

>

Analysis of Algorithms: Average-Case and Worst-Case

- We are interested in counting the primitive operations for the average-case input of an algorithm
 - Difficult to find because it requires:
 - Defining a probability distribution on the set of inputs, which is difficult to obtain
 - Calculating expected counts based on a given input distribution, which involves sophisticated probability theory.
- But counting the primitive operations for the worst-case input is much easier and gives stronger results
 - Requires to identify the worst-case input

Analysis of Algorithms: Estimating Running Time

- Suppose an algorithm executes 8n-2 primitive operations in the worst case.
- Define:
 - a = Time taken by the fastest primitive operation
 - **b** = Time taken by the slowest primitive operation
- Let T(n) be the worst-case time, Then

$$a(8n-2) \le T(n) \le b(8n-2)$$

Hence, the running time *T(n)* is bounded by two linear functions.

Analysis of Algorithms: Growth Rate of Running Time

- Changing the hardware / software environment
 - Affects *T(n)* by a constant factor, but
 - Does not alter the growth rate of *T(n)*
- Thus, the growth rate is not affected by:
 - Constant factors or
 - Lower-order terms
- Examples:
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Analysis of Algorithms: The Big-O Notation

- A function f(n) is O(g(n)) if there exist constants c, and $n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- What does this mean in English?
 - $c \cdot g(n)$ is an upper bound of f(n) for all n large n_0
- Examples:
 - $f(n) = 3n^2 + 2n + 1$ is $O(n^2)$
 - f(n) = 2n is O(n)
 - $f(n) = 1000n^3$ is $O(n^3)$

Analysis of Algorithms: More Big-O Examples

• f(n) = 7n - 2• 7n - 2 is O(n)• Find c > 0 and $n_0 \ge 1$ such that $7n - 2 \le c \cdot n$ for $n \ge n_0$ • This is true for c = 7 and $n_0 = 1$ • $f(n) = 3n^3 + 20n^2 + 5$ • $3n^3 + 20n^2 + 5$ is $O(n^3)$ • Find c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ • This is true for c = 4 and $n_0 = 21$ • $f(n) = 3 \log n + 5$ • $3 \log n + 5$ is $O(\log n)$ • Find c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \cdot \log n$ for $n \ge n_0$ • This is true for c = 8 and $n_0 = 2$

Analysis of Algorithms: Big-O Rules

- If f(n) is a polynomial of degree d, then f(n) is O(n^d), i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"
- Note:

Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations of an algorithm

Analysis of Algorithms: Commonly Seen Time Bounds

Name	Big-O	Performance
Constant	O(1)	Excellent
Logarithmic	O(log n)	Excellent
Linear	O(n)	Good
n log n	O(n log n)	Pretty Good
Quadratic	$O(n^2)$	OK
Qubic	$O(n^3)$	Maybe OK
Exponential	O(2 ⁿ)	Too Slow

Analysis of Algorithms Performance types

Intuition

Analysis of Algorithms: Running time Comparisons

Running time for algorithm

<u>f(n)</u>	n=256	n=1024	n=1,048,576
1	1µsec	1µsec	1µsec
log_2n	8µsec	10µsec	20µsec
n	256µsec	1.02ms	1.05sec
$n \log_2 n$	2.05ms	10.2ms	21sec
n^2	65.5ms	1.05sec	1.8wks
n^3	16.8sec	17.9min	36,559yrs
2 ⁿ	$3.7 \times 10^{63} yrs$	$5.7x10^{294}yrs$	$2.1x10^{315639}yrs$

Analysis of Algorithms: Problem-Size Examples

Largest problem that can be solved if Time \leq = T at 1 μ sec per step

<u>f(n)</u>	T=1min	T=1hr	T=1wk	T=1 yr
n	$6x10^{7}$	3.6×10^9	$6X10^{11}$	$3.2x10^{13}$
nlogn	2.8×10^{6}	1.3×10^{8}	1.8×10^{10}	$8x10^{11}$
n^2	7.8×10^{3}	6×10^{4}	7.8×10^{5}	5.6×10^{6}
n^3	3.9×10^{2}	1.5×10^{3}	8.5×10^{3}	$3.2x10^4$
2 ⁿ	25	31	39	44

Example Algorithms Sequential Search

Given a list of ${\color{red} n}$ items and the key of an Item, (target), Find out if the item is in the list.

Algorithm:

```
Assume the list is in an array of size n, static boolean sequentialSearch (int[] a, int target) { for (int i=0; i<a.length; i++) // 2n+1 { if (a[i]== target) return true; // n } return false; // 1
```

Position	Key	
1	Mohammad	
2	Ahmad	
3	Abdullah	
4	Yaser	
5	Tareq	
6	Mustafa	
7	Ali	
8	Fareed	

Sequential Search Performance

Worst case: Target was not in the list

$$f(n) = 2 + 3n \rightarrow O(n)$$

· Best case: Target was first in the list

$$f(n) = 2+3*1 \rightarrow O(1)$$

Average case:

Depends on the probability, p, of the number of times the loop is executed before the target was found

$$f(n) = 2 + p*3n \rightarrow O(n/2)$$

Example Algorithms Sequential Search with Sentinel

Can we make sequential search faster?

Note that within the loop there are:

- One assignment statement
- Two conditional statements
- We can move one conditional statement to outside the loop
 - At the cost of one additional space, a large list can be searched faster

```
Assume the list is in an array of size n, static boolean fastSequentialSearch (int[] a, int target) {
The code to the right uses
a sentinel to search faster!
                                            int i = 0;
                                                                                                // 1
                                            int n = a.length;
a[n] = target;
                                                                                                // 2
If the target is not in the list
                                                                        // add a sentinel ...
                                                                                               // 2
                                             while (a[i] != target) i++;
                                                                                                // 2n
  f(n) = 7 + 2n \rightarrow O(n)
                                                                                                // 2
                                            if (i != n) return true;
                                            return false;
                                                                                                // 1
```

Example Algorithms Binary Search

Given a sorted list of n items and the key of an Item, (e.g.: target_key=Zahed), Find out if the item is in the list.

Algorithm:

```
Assume the list is in a sorted array of size n, static boolean BinarySearch (int[] a, int target) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < target)
        low = mid+1;
    else
        if (a[mid] > target)
        high = mid - 1;
        else return true;
    }
    return false;
```

Position	Key	
0	Abdullah	
1	Ahmad	
2	Ali	
3	Fareed	
4	Mohammad	
5	Mustafa	
6	Tareq	
7	Yaser	

Example Algorithms Binary Search

Given a sorted list of n items and the key of an Item, (e.g.: target_key=Zahed), Find out if the item is in the list.

Algorithm:

```
Assume the list is in a sorted array of size n,
static boolean BinarySearch (int[] a, int target) {
 int low = 0;
 int high = a.length - 1;
                                   // = n-1 = 7
  while (low <= high) {
                                   // iteration 2
    int mid = (low + high)/2;
                                   // = 11/2 = 5
    if (a[mid] < target)
      low = mid+1;
                                   // = 6
      if (a[mid] > target)
        high = mid - 1;
      else return true;
 return false;
```

Position	Key	
0	Abdullah	
1	Ahmad	
2	Ali	
3	Fareed	
4	Mohammad	
5	Mustafa	
6	Tareq	
7	Yaser	

Example Algorithms Binary Search

Given a sorted list of n items and the key of an Item, (e.g.: target_key=Zahed), Find out if the item is in the list.

Algorithm:

Position	Key	
0	Abdullah	
1	Ahmad	
2	Ali	
3	Fareed	
4	Mohammad	
5	Mustafa	
6	Tareq	
7	Yaser	

Example Algorithms Binary Search

Given a sorted list of n items and the key of an Item, (e.g.: target_key=Zahed), Find out if the item is in the list.

Algorithm:

Position	Key	
0	Abdullah	
1	Ahmad	
2	Ali	
3	Fareed	
4	Mohammad	
5	Mustafa	
6	Tareq	
7	Yaser	

Example Algorithms Binary Search

Given a sorted list of n items and the key of an Item, (e.g.: target_key=Zahed), Find out if the item is in the list.

Algorithm:

Position	Key
0	Abdullah
1	Ahmad
2	Ali
3	Fareed
4	Mohammad
5	Mustafa
6	Tareq
7	Yaser

Binary Search Performance

Worst case:

Target was not in the list,

The loop is executed k times:

at
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, ..., $\frac{1}{2^k}$.

such that: $2^k >= n$

Then: $k \ge \log_2 n \rightarrow O(\log_2 n)$

Example AlgorithmsMatrix Multiplication

Given two matrices A and B of size nxn each, Find C = A x B Algorithm:

$$C_{i,j} = \sum_{k=1}^{n} A_{i,k} \cdot B_{k,j}$$
 for all i and j from 1 to n

This Algorithm has Time Complexity of O(n³)

Example Algorithms Sparse Matrix

The Sparse matrix structure:

	_				
0	0	0	0	0	0
0	0	36	0	0	0
0	0	0	0	0	0
0	0	0	0	0	17
0	0	0	0	0	0
-1	0	0	0	0	0

Row	Column	Value
2	3	36
4	6	17
6	1	-1

Space complexity is: $O(n^2)$ Time complexity for printing is: $O(n^2)$

Time complexity for inserting a

non-zero value is: 0(1) O(3k); k is # of non-zero entries O(kn²); O(k) for searching table.

O(k).