

A. Schwartz

Fakultät Mathematik • Institut für Numerische Mathematik

Brückenkurs Mathematik

Vorlesung 1: Logik, Mengen und Funktionen

Ziele der heutigen Vorlesung – Gliederung

Ziele der heutigen Vorlesung

Logik

Mengen

Funktionen

Ziele der heutigen Vorlesung

- Grundbegriffe der Logik kennenlernen

wie man "Mathematisch" spricht

Mengenoperationen wiederholen

gleichartige Objekte gemeinsam behandeln

- Funktionsbegriff verallgemeinern

das "putput" der Mathematik

- grundlegende Notationen und Begriffe kennenlernen/wiederholen

input

putput

output

Logik – Gliederung

Ziele der heutigen Vorlesung

Logik

Aussagen und Wahrheitswerte Verknüpfen von Aussagen und Wahrheitstabellen Rechnen mit logischen Ausdrücken Prädikate und Quantoren

Mengen

Funktionen

Was ist eigentlich eine Aussage?

Aussagen und Wahrheitswerte

Definition

- (a) Eine **Aussage** p ist ein sinnvolles sprachliches Gebilde, das die Eigenschaft hat, entweder wahr oder falsch zu sein.
- (b) Wir nennen dann w (wahr) bzw. f (falsch) den Wahrheitswert der Aussage p.

- Die zentrale Eigenschaft einer Aussage ist also, dass sie wahr oder falsch ist.
- Der Wahrheitswert einer Aussage darf nicht von weiteren Gegebenheiten abhängen (kein "es kommt darauf an").

Beispiel: Aussagen

Finde Beispiele für Aussagen.

Beispiel: Elementaraussagen identifizieren

Zerlege die Aussage

Ein Polynom f mit ungeradem Grad hat in \mathbb{R} mindestens eine Nullstelle.

in ihre **Elementaraussagen** (= Grundbausteine).

Aussageverknüpfungen

Definition

Seien p, \bar{q} zwei Aussagen. Dann definieren wir die folgenden Aussageverknüpfungen:

Name	Symbol	Aussprache
Negation Konjunktion Disjunktion Implikation Äquivalenz	$ \neg p \text{ (oder } \overline{p}\text{)} p \land q p \lor q p \Longrightarrow q p \Longleftrightarrow q $	"nicht p" "p und q" "p und q" "p oder q" (nicht exklusives "oder") "aus p folgt q", "wenn p, dann q", "p ist hinreichend für q" "p genau dann, wenn q ", " p ist äquivalent zu q "

 $\label{eq:hierarchy} \mbox{Hierbei sind die Wahrheitswerte der Aussagenverknüpfungen in Abhängigkeit von Wahrheitswerten von \ p,q \ wie folgt \ definiert:$

			Р	q	$p \wedge q$	$\mathbf{p} \vee \mathbf{q}$	$p \Longrightarrow q$	$p \Longleftrightarrow q$
p	$\neg p$		w	W	W	W	w	w
w	f	und	W	f	f	w	f	f
f	w		f	W	f	w	W	f
			f	f	f	f	w	w

Anmerkungen zu den Aussageverknüpfungen

- Die Negation ¬p kehrt den Wahrheitswert von p um.
- Die Konjunktion $p \wedge q$ ist genau dann wahr, wenn p und q wahr sind.
- Die Disjunktion p∨q ist genau dann wahr, wenn mindestens eine der beiden Aussagen p, q wahr ist.
- Die Implikation $p \Longrightarrow q$ ist genau dann wahr, wenn p und q wahr sind oder p falsch ist. Ist p falsch, so ist der Wahrheitswert von q egal!
- Die Äquivalenz $p \Longleftrightarrow q$ ist eine Abkürzung für

$$(p \Longrightarrow q) \land (q \Longrightarrow p) \qquad \text{oder f\"{u}r} \qquad (p \Longrightarrow q) \land (\neg p \Longrightarrow \neg q).$$

Beispiel: Negation

Bestimme die Negation der Aussage

Alle Schafe sind weiß.

Beispiel: Implikation

Stelle die Aussage

Ein Polynom f mit ungeradem Grad hat in \mathbb{R} mindestens eine Nullstelle.

als Aussagenverknüpfung dar.

Äquivalente Aussagen und Wahrheitstabellen

Definition

Zwei Aussagenverknüpfungen p,q heißen **äquivalent**, wenn sich für alle möglichen Wahrheitswerte der enthaltenen Aussagen für p und q jeweils die gleichen Wahrheitswerte ergeben. Wir schreiben dann p=q.

- Äquivalente Aussagen treten auf, wenn wir verschiedene logische Darstellungen für die gleiche Aussage angeben können.
- Die Äquivalenz von Aussageverknüpfungen kann mit Hilfe einer Wahrheitstabelle überprüft werden.

Beispiel: Wahrheitstabelle

Weise mit Hilfe einer Wahrheitstabelle nach, dass $p \Longleftrightarrow q$ äquivalent ist zu

$$(p \Longrightarrow q) \land (\neg p \Longrightarrow \neg q).$$

Rechenregeln für Aussagen

Lemma

Seien p, q, r Aussagen. Dann gelten:

$$\textit{Kommutativgesetze:} \quad p \wedge q = q \wedge p \qquad \qquad \textit{und} \quad p \vee q = q \vee p$$

Assoziativgesetze:
$$(p \land q) \land r = p \land (q \land r)$$
 und $(p \lor q) \lor r = p \lor (q \lor r)$

$$\textit{Distributivg} \textbf{esezte:} \qquad (p \wedge q) \vee r = (p \vee r) \wedge (q \vee r) \qquad \textit{und} \qquad (p \vee q) \wedge r = (p \wedge r) \vee (q \wedge r)$$

Anmerkungen

- Bei der Verknüpfung von mehreren Aussagen mit ∧ (oder mit ∨) lassen wir wegen der Assoziativgesetze oft die Klammern weg.
- Wenn wir Verknüpfungen mischen, gilt für die Reihenfolge der Auswertung:

Mit Klammern ist man hier auf der sichereren Seite.

Beispiel: Logik in freier Wildbahn

Beispiel: Logik in freier Wildbahn Fortsetzung

Was ist mit der Aussage

Erbspüree oder Nudelgratin und Tomatensalat

gemeint?

Beispiel: Logik in freier Wildbahn

Fortsetzung

Mehr Rechenregeln für Aussagen

Lemma

Seien p, q, r Aussagen. Dann gelten:

Ersetzen der Implikation:
$$(p \Longrightarrow q) = (\neg p \lor q)$$

Ersetzen der Äquivalenz: $(p \iff q) = (\neg p \lor q) \land (p \land \neg q)$

de Morgan'sche Regeln: $\neg(p \land q) = \neg p \lor \neg q$ und $\neg(p \lor q) = \neg p \land \neg q$

- Damit haben wir jetzt drei äquivalente Darstellungen für $p \Longleftrightarrow q$.
- Achtung: Bei den de Morgan'schen Regeln ändert sich die Art der Verknüpfung.

Beispiel: Negation einer Implikation

Bestimme eine äquivalente Darstellung von

$$\neg(p \Longrightarrow q).$$

Zwei wichtige logische Schlüsse

Lemma

Seien p, q zwei Aussagen. Dann gelten:

(a) Sind die beiden Aussagen p und $p\Longrightarrow q$ wahr, so muss auch die Aussage q wahr sein, in Formeln

$$p \wedge (p \Longrightarrow q) = p \wedge q$$
.

(b) Sind die beiden Aussagen $\neg q$ und $p \Longrightarrow q$ wahr, so muss auch die Aussage $\neg p$ wahr sein, in Formeln

$$(\neg q) \land (p \Longrightarrow q) = \neg q \land \neg p.$$

- Diese Äquivalenzen lassen sich mit den bisherigen Rechenregeln nachweisen.
- Achtung: Ist p falsch und $p \Longrightarrow q$ wahr, so folgt nichts zum Wahrheitswert von q.

Beispiel: Logische Schlüsse

Wir wissen, dass die Aussage

Polynome sind stetig

wahr ist. Was folgt für die Funktion f, wenn

- (a) f ein Polynom ist,
- (b) f nicht stetig ist,
- (c) f kein Polynom ist?

Beispiel: Aussage oder keine Aussage?

Ist der folgende Satz eine Aussage:

Die Funktion f ist stetig.

Prädikate und Stellen eines Prädikats

Definition

- (a) Ein **Prädikat** ist ein sprachliches Gebilde mit Leerstellen bzw. Platzhaltern. Wenn alle diese Leerstellen mit geeigneten Objekten gefüllt werden, ergibt sich eine Aussage.
- (b) Die Anzahl der Leerstellen, die mit verschiedenen Objekten gefüllt werden können, bezeichnet man als **Stellen** des Prädikats.

- Ein Prädikat ist also eine Funktion, in die man Objekte einsetzen kann und die eine (wahre oder falsche)
 Aussage zurückgibt.
- Die Anzahl der Variablen dieser Funktion entspricht den Stellen des Prädikats.

Beispiel: Prädikate

Gib Beispiele für Prädikate mit 0, 1, und 2 Stellen an.

Existenzquantor und Allquantor

Definition

Es sei P ein 1-stelliges Prädikat. Dann definieren wir:

Name	Symbol	Aussprache
Existenzquantor	$\exists x : P(x)$ $\exists x \in M : P(x)$	"es gibt (mindestens) ein x mit der Eigenschaft P " "es gibt (mindestens) ein x in der Menge M mit der Eigenschaft P "
Allquantor	$\forall x : P(x)$ $\forall x \in M : P(x)$	"alle x haben die Eigenschaft $P^{\prime\prime}$ "alle x in der Menge M haben die Eigenschaft $P^{\prime\prime}$

- Die Quantoren machen aus dem 1-stelligen Prädikat P eine Aussage $\exists x : P(x)$ bzw. $\forall x : P(x)$.
- Der Existenzquantor erlaubt auch die Existenz von mehreren x, für die P(x) wahr ist. Soll es genau ein x geben, für das P(x) wahr ist, so schreiben wir $\exists ! x : P(x)$.
- Wir können eine eingeschränkte Menge ${\rm M}$ angeben, aus der die Objekte ${\rm x}$ gewählt werden dürfen.

Beispiel: Aussagen mit Quantoren

Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2 - 1$. Finde Beispiele für Aussagen über die Funktion f mit Quantoren. Sind diese Aussagen wahr oder falsch?

Beispiel: Reihenfolge von Quantoren

Es sei L die Menge aller affin-linearen Funktionen $f: \mathbb{R} \to \mathbb{R}$, d.h. von Funktionen der Form $f(x) = a \cdot x + b$ mit $a,b \in \mathbb{R}$ beliebig.

(a) Vervollständige mit Hilfe von Quantoren die Äquivalenzaussage

$$f \in L \iff \dots$$

Beispiel: Reihenfolge von Quantoren Fortsetzung

Es sei L die Menge aller affin-linearen Funktionen $f: \mathbb{R} \to \mathbb{R}$, d.h. von Funktionen der Form $f(x) = a \cdot x + b$ mit $a,b \in \mathbb{R}$ beliebig.

(b) Was besagen die folgenden Aussagen:

$$\exists f \in L \quad \forall x \in \mathbb{R} : f(x) \neq 0,$$

$$\forall x \in \mathbb{R} \quad \exists f \in L \quad : \quad f(x) \neq 0.$$

Negation von Quantoren

Lemma

Es sei P(x) ein 1-stelliges Prädikat. Dann gelten:

Negation von Existenzquantoren:
$$\neg (\exists x : P(x)) = \forall x : \neg P(x)$$
 $\neg (\exists x \in M : P(x)) = \forall x \in M : \neg P(x)$

- Achtung: Bei der Negation ändert sich die Art des Quantors.
- Bei der Negation einer Aussage mit mehreren Quantoren bleibt die Reihenfolge der Quantoren erhalten, aber sie ändern alle ihre Art.

Beispiel: Negation von Quantoren

Formuliere die Aussage

Es gibt keine reelle Zahl, deren Quadrat -1 ist

mit Hilfe von Quantoren und löse die Negation auf.

Mengen – Gliederung

Ziele der heutigen Vorlesung

Logik

Mengen und Elemente Teilmengen Rechnen mit Mengen

Funktionen

Was ist eigentlich eine Menge?

Mengen

Definition

- (a) Eine **Menge** ist eine Zusammenfassung von wohlbestimmten und unterscheidbaren Objekte zu einem Ganzen.
- (b) Objekte, die zu der Menge gehören, heißen **Elemente** der Menge. Ist a ein Element der Menge M, so schreiben wir $a \in M$. Ist hingegen a kein Element der Menge M, so schreiben wir $a \notin M$.
- (c) Zwei Mengen A,B heißen gleich, wenn sie die gleichen Elemente enthalten, d.h.

$$A = B \iff \forall x : x \in A \iff x \in B.$$

- Die zentrale Eigenschaft einer Menge ist also, dass ein Objekt entweder enthalten ist oder nicht.
- Jedes Objekt ist höchstens einmal in der Menge enthalten.
- Mengen haben keine innere Struktur, insbesondere keine Reihenfolge.

Notation von Mengen

- Für die leere Menge, die kein einziges Element enthält, schreiben wir

$$\emptyset$$
 oder $\{\}.$

- Mengen werden mit geschweiften Klammern berandet

$$A = \{a, b, c\}.$$

Wir beschreiben Mengen oft mit Hilfe eines Prädikats P als

$$B = \{x \in M : P(x)\}.$$

Als Trennzeichen verwenden wir manchmal auch einen senkrechten Strich, d.h.

$$B = \{x \in M \mid P(x)\}.$$

Beispiel: Notation von Mengen

Gib die folgenden Mengen an:

- (a) Die Menge aller geraden Zahlen zwischen 15 und 25.
- (b) Die Menge aller nichtnegativen Zahlen, die kleiner als 3 sind.
- (c) Die Menge aller achsensymmetrischen Funktionen von $\mathbb R$ nach $\mathbb R.$

Beispiel: Notation von Mengen

Fortsetzung

Teilmenge einer Menge

Definition

(a) Eine Menge A heißt eine **Teilmenge** der Menge B, wenn aus $a \in A$ immer $a \in B$ folgt. In diesem Fall schreiben wir

$$A \subseteq B$$
.

(b) Ist A eine echte Teilmenge von B, d.h. gilt zusätzlich $A \neq B$, so schreiben wir

$$A \subset B$$
 oder $A \nsubseteq B$.

- Teilmengen dürfen auch gleich sein, d.h. $A \subseteq B$ erlaubt auch den Fall A = B.
- $\ \ \, \text{Achtung: Manche verwenden die Notation } A \subset B \ \text{für Teilmengen und } A \not\subseteq B \ \text{für echte Teilmengen}.$
- Ist A keine (echte) Teilmenge von B, so schreiben wir $A \notin B$ (bzw. $A \notin B$).
- Gilt $A \subseteq B$, so ist B eine **Obermenge** von A und wir schreiben auch $B \supseteq A$. Analog schreiben wir $B \supset A$ für eine echte Obermenge B von A.

Illustration einer Teilmenge

Beispiel: Teilmengen einer Menge von Zahlen

Gegeben seien die vier Mengen

$$A = \{1, 2, 3, 4\}, \qquad B = \{1, 2\}, \qquad C = \{4, 5\}, \qquad D = \{3\}.$$

Gib Beispiele für Element- und Teilmengenbeziehungen an.

Beispiel: Teilmengen einer Menge von Zahlenmengen

Gegeben sei die Menge

$$\mathbf{M} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$

Gib Beispiele für Elemente und Teilmengen von \boldsymbol{M} an.

Rechenregeln für Teilmengen

Lemma

Seien A, B, C drei Mengen. Dann gelten:

Reflexivität: $A \subseteq A$

Antisymmetrie: $(A \subseteq B) \land (B \subseteq A) \implies A = B$

Transitivität: $(A \subseteq B) \land (B \subseteq C) \implies A \subseteq C$

 $\textit{sonstiges} \qquad \qquad A \not \in A, \qquad A \subset B \quad \Longrightarrow \quad A \subseteq B, \qquad A \subset B \quad \Longleftrightarrow \quad (A \subseteq B) \wedge (A \neq B)$

Gleichheit: $A = B \iff (A \subseteq B) \land (B \subseteq A)$

- Gilt bei der Transitivität $A \subset B$ oder $B \subset C$, so folgt $A \subset C$.
- Die letzte Regel verwenden wir oft, um die Gleichheit von Mengen zu zeigen.

Schnitt von zwei Mengen

Definition

(a) Seien M eine Grundmenge und $A,B\subseteq M$ zwei Teilmengen. Dann heißt die Menge

$$A \cap B := \{ m \in M \mid (m \in A) \land (m \in B) \}$$

der Schnitt von A und B.

(b) Zwei Mengen A, B mit $A \cap B = \emptyset$ heißen disjunkt.

- Der Schnitt erlaubt mehrere Bedingungen gleichzeitig zu stellen (logisches "und").
- Für den Schnitt ist die Reihenfolge von A und B egal, d.h.

$$A \cap B = B \cap A$$
.

Illustration eines Schnitts

Vereinigung von zwei Mengen

Definition

Seien M eine Grundmenge und $A,B\subseteq M$ zwei Teilmengen. Dann heißt die Menge

$$A \cup B \coloneqq \{m \in M \mid (m \in A) \lor (m \in B)\}$$

die Vereinigung von A und B.

- Die Vereinigung erlaubt es alternative Bedingungen zu stellen (logisches "oder").
- Für die Vereinigung ist die Reihenfolge von A und B egal, d.h.

$$\mathbf{A} \cup \mathbf{B} = \mathbf{B} \cup \mathbf{A}.$$

Illustration einer Vereinigung

Komplement einer Menge

Definition

Seien M eine Grundmenge und $A\subseteq M$ eine Teilmenge. Dann heißt die Menge

$$\overline{A} \coloneqq \{ m \in M \mid m \notin A \}$$

das Komplement von A (in M).

- Das Komplement beschreibt den Rest, der verbleibt, wenn man $\mathrm A$ aus der Grundmenge $\mathrm M$ herausnimmt.
- Das Komplement erlaubt logische Verneinungen darzustellen (logisches "nicht").
- Für das Komplement von \boldsymbol{A} ist die Obermenge \boldsymbol{M} wichtig.

Illustration eines Komplements

Differenz von zwei Mengen

Definition

Seien M eine Grundmenge und $A,B\subseteq M$ zwei Teilmengen. Dann heißt die Menge

$$A\backslash B \coloneqq \{m \in M \mid (m \in A) \land (m \notin B)\} = A \cap \overline{B}$$

die Differenz von A und B (gesprochen: A ohne B).

Anmerkungen

- Achtung: Die Differenz von Mengen hat nichts mit Subtrahieren zu tun.
- Für die Differenz ist die Reihenfolge von A und B wichtig, d.h. im Allgemeinen sind

 $A\B$ und $B\A$ zwei verschiedene Mengen.

Illustration einer Differenz

Beispiel: Vereinigung und Schnitt

Gegeben seien die Mengen

$$A = \{2,4,6\}, \qquad B = \{1,3,5\}, \qquad C = \{1,2,3\}.$$

Bestimme die Mengen

$$A\cap B, \qquad A\cap C, \qquad A\cup C.$$

Beispiel: Vereinigung und Schnitt Fortsetzung

Beispiel: Differenz

Gegeben seien die Mengen

$$A = \{1, 2, 3, 4, 5, 6\}, B = \{2, 4, 6\}$$

Bestimme die Mengen

$$A\backslash B$$
, $B\backslash A$.

Beispiel: Differenz

Fortsetzung

Rechenregeln für Mengen

Lemma

Seien M eine Grundmenge und $A, B, C \subseteq M$. Dann gelten:

leere Menge:	$A \cup \emptyset = A$	und $A \cap \emptyset$

Grundmenge:
$$A \cup M = M$$
 und $A \cap M = A$

Kommutativgesetze:
$$A \cup B = B \cup A$$
 und $A \cap B = B \cap A$

Associative Series
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 und $(A \cap B) \cap C = A \cap (B \cap C)$

$$\textbf{\textit{Distributive gesetze:}} \qquad \qquad (A \cup B) \cap C = (A \cap C) \cup (B \cap C) \qquad \textit{und} \qquad (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cup B) \backslash C = (A \backslash C) \cup (B \backslash C) \qquad \qquad \textit{und} \qquad (A \cap B) \backslash C = (A \backslash C) \cap (B \backslash C)$$

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
 und $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

De Morgan'sche Regeln:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 und $\overline{A \cap B} = \overline{A} \cup \overline{B}$

 $= \emptyset$

Beispiel: De Morgan'sche Gesetze

Gegeben seien die Mengen

$$M = \{1, 2, 3, ...\},$$
 $A = \{2, 4, 6, 8, ...\},$ $B = \{3, 6, 9, 12, ...\}$

Bestimme die Mengen

$$\overline{A \cup B}, \qquad \overline{A} \cup \overline{B}.$$

Beispiel: De Morgan'sche Gesetze Fortsetzung

Kartesisches Produkt von zwei Mengen

Definition

Seien A, B zwei Mengen. Dann heißt die Menge

$$A \times B := \{(a, b) \mid a \in A, b \in B\}$$

das kartesisches Produkt (oder Kreuzprodukt) von A und B (gesprochen: A kreuz B).

- Achtung: Das kartesische Produkt hat nichts mit Multiplizieren zu tun.
- Die Reihenfolge ist wichtig, denn die Menge A × B besteht aus geordneten Tupeln (a,b), bei denen die erste Komponente aus A und und die zweite aus B stammt.
- Mit dem kartesischen Produkt können wir z.B. die xy-Ebene beschreiben als

$$\mathbb{R}^2 := \mathbb{R} \times \mathbb{R} = \{ (\mathbf{x}, \mathbf{y}) \mid (\mathbf{x} \in \mathbb{R}) \land (\mathbf{y} \in \mathbb{R}) \}.$$

Beispiel: Kartesisches Produkt

Unser Blutgruppe bestimmt sich aus einer Kombination von Antigenen und Antikörpern. Wir haben das Antigen vom Typ A oder das Antigen vom Typ A oder beide. Gegen die Antigene, die wir nicht haben, entwickeln wir Antikörper. Jeder Mensch gehört also bezüglich Typ A zur Menge

$$M_A := \{Antigen A, Antikörper gegen A\}$$

und bezüglich Typ B zur Menge

$$M_B \coloneqq \{ \text{Antigen } B, \text{Antik\"orper gegen } B \}.$$

Um unsere Blutgruppe zu bestimmen, brauchen wir beide Informationen, also das kartesische Produkt der beiden Mengen:

$$M_A \times M_B = \Big\{ (\mbox{Antigen } A, \mbox{Antigen } B), \mbox{ (Antik\"orper ggn. } A, \mbox{Antik\"orper ggn. } A, \mbox{Antik\"orper ggn. } B) \Big\}.$$

Beispiel: Kartesisches Produkt Fortsetzung

Wir können die Elemente des kartesischen Produkts $\mathrm{M}_\mathrm{A} \times \mathrm{M}_\mathrm{B}$ übersichtlich in einer Tabelle darstellen:

	Antigen B	Antikörper gegen B
Antigen A	(Antigen A, Antigen B) Blutgruppe AB	(Antigen A, Antikörper ggn. B) Blutgruppe A
Antikörper gegen A	(Antikörper ggn. A, Antigen B) Blutgruppe B	(Antikörper ggn. A, Antikörper ggn. B) Blutgruppe 0

Funktionen – Gliederung

Ziele der heutigen Vorlesung

Logik

Mengen

Funktionen
Definition einer Funktion
Umkehrfunktion

Was macht eigentlich eine Funktion aus?

input

putput

output

Definition einer Funktion

Definition

Seien X, Y zwei Mengen.

(a) Eine Vorschrift, die (manchen) Elementen $x \in X$ ein Element $y = f(x) \in Y$ zuordnet, heißt **Funktion** oder **Abbildung**. Wir schreiben für die Zuordnungsvorschrift dann auch

$$f: D_f \subseteq X \to Y, \qquad x \mapsto f(x)$$

und nennen x die Variable und f(x) den Funktionswert.

(b) Die Menge

$$D_f := \{x \in X : (\exists y \in Y : y = f(x))\}$$

heißt der Definitionsbereich der Funktion f.

(c) Die Menge Y heißt der Wertebereich der Funktion f und die Menge

$$f(D_f) \coloneqq \{ y \in Y : (\exists x \in D_f : y = f(x)) \}$$

heißt Bildmenge von f.

Illustration einer Funktion

Anmerkungen zur Definition einer Funktion

- Wir verwenden die beiden Begriffe "Funktion" und "Abbildung" austauschbar.
- Der Definitionsbereich D_f muss nicht ganz X sein, d.h. die Funktion muss nicht allen $x \in X$ einen Funktionswert zuordnen. Aber sie darf keinem $x \in X$ mehr als einen Funktionswert zuordnen, d.h. der Funktionswert f(x) muss — wenn er existiert — eindeutig sein.
- Die Bildmenge $f(D_f)$ muss ebenfalls nicht den ganzen Wertebereich Y abdecken. Es ist möglich, dass ein Wert $v \in Y$ von mehr als einem $x \in X$ als Funktionswert angenommen wird.
- Zwei Funktionen f, g heißen gleich, wenn gelten $f: D_f \subseteq X \to Y$ und $g: D_f \subseteq X \to Y$ mit $D_f = D_g$ und für alle $x \in D_f$ gilt f(x) = g(x). Ein Beispiel für zwei gleiche Funktionen sind $f(x) = \sqrt{x^2}$ und g(x) = |x| mit $X = D_f = D_g = Y = \mathbb{R}$.

Beispiel: Exponentialfunktion und Logarithmus

Bestimme für die natürliche Exponentialfunktion und den natürlichen Logarithmus jeweils den Definitionsbereich und die Bildmenge.

Beispiel: Mehr Funktionen

Bestimme jeweils eine Funktion, die

- (a) von der Menge der stetig differenzierbaren Funktionen in die Menge der stetigen Funktionen abbildet;
- (b) von der Menge der natürlichen Zahlen in die Menge der Wahrheitswerte $\{w,f\}$ abbildet.

Injektive, surjektive und bijektive Funktion

Definition

Seien X, Y zwei Mengen und $f: D_f \subseteq X \to Y$ eine Funktion.

(a) Wird kein Element des Wertebereichs Y mehr als einmal angenommen, d.h. gilt

$$\forall x_1, x_2 \in D_f : x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2),$$

so heißt die Funktion f injektiv.

(b) Werden alle Elemente des Wertebereichs Y angenommen, d.h. gilt

$$\forall y \in Y \ \exists x \in D_f : f(x) = y$$

so heißt die Funktion f surjektiv.

(c) Ist f injektiv und bijektiv, so heißt die Funktion f bijektiv.

Beispiel: Injektiv, surjektiv und bijektiv

Sind die nachfolgenden Abbildungen injektiv, surjektiv oder bijektiv?

Umkehrfunktion einer Funktion

Definition

Seien $X,Y\subseteq \mathbb{R}$ zwei Mengen und $f:D_f\subseteq X\to Y$ eine Funktion. Existiert eine Funktion

$$g: f(D_f) \subseteq Y \to X \qquad \text{ mit der Eigenschaft} \qquad \forall x \in D_f: g(f(x)) = x,$$

so heißt g die **Umkehrfunktion** zu f und wird mit f^{-1} bezeichnet.

- Achtung: Die Umkehrfunktion f^{-1} hat nichts mit dem Bruch $\frac{1}{f}$ zu tun.
- Die Umkehrfunktion muss nicht immer existieren.
- Wenn die Umkehrfunktion f^{-1} existiert, hat sie als Definitionsbereich $D_{f^{-1}} = f(D_f)$ und als Bildmenge $f^{-1}(D_{f^{-1}}) = D_f$.

Illustration einer Umkehrfunktion

$$f:[0,\infty)\to[0,\infty)$$
 mit $f(x)$ = x^2

$$f^{-1}:[0,\infty)\to[0,\infty)$$
 mit $f(x)$ = \sqrt{x}

Existenz einer Umkehrfunktion

Satz

Seien $X,Y\subseteq\mathbb{R}$ zwei Mengen und $f:D_f\subseteq X\to Y$ eine injektive Funktion. Dann gelten:

- (a) Die Umkehrfunktion $f^{-1}: f(D_f) \subseteq Y \to X$ existiert.
- (b) Für alle $x \in D_f$ gilt $f^{-1}(f(x)) = x$ und für alle $y \in f(D_f)$ gilt $f(f^{-1}(y)) = y$.
- (c) Die Umkehrfunktion von f^{-1} ist wieder die Funktion f, d.h. $(f^{-1})^{-1} = f$.

- Ist f nicht injektiv, so existiert die Umkehrfunktion nicht auf ganz $\mathrm{D}_{\mathrm{f}}.$
- $\mbox{ Für Funktionen } f: D_f \subseteq \mathbb{R} \to \mathbb{R} \mbox{ erhalten wir den Graph der Umkehrfunktion geometrisch durch Spiegeln des Graphen von } f \mbox{ an der Winkelhalbierenden } y = x.$

