Calibrating MEMS Accelerometers

Course project of Nikola Totev for Application of mathematics for modelling real processes, Sofia University June 2020 Introduction to accelerometers

MEMS Accelerometers

Calibration Errors

Mathematical Model

Numerical Results

Introduction to accelerometers

- MEMS
- Piezoelectric
- Piezoresistive
- Capacitive

MEMS Accelerometers

Practical Applications

• Sensing applications in industrial settings.

Robotics

Drones/Aircraft

Calibration Errors

- Constant Bias
- Scaling Errors
- Errors due to the non-orthogonality of the axes
- Thermo-Mechanical White Noise / Velocity Random Walk
- Flicker Noise / Bias Stability
- Temperature Effects

Input Sensor Data

Uncalibrated		
X	Υ	Z
0.686143985	9.693013241	0.146230973
0.307313184	-9.555131822	0.121707371
10.20588166	0.146627372	0.293913142
-9.235730337	0.149835656	-0.153514714

Norms Before Calibration
9.71837
9.56085
10.2112
9.23822
9.72837

Mathematical Model

We use a linear relationship between the raw the data and the calibrated data

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \underbrace{\begin{pmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{pmatrix}}_{M} \cdot \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix} + \underbrace{\begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix}}_{B}$$

where the parameters

- M_{xx} , M_{yy} , M_{zz} are the scale coefficients
- B_x , B_y , B_z are the constant offsets
- M_{zx} , M_{zy} , M_{yx} , M_{xy} , M_{xz} , M_{yz} take care of the non-orthogonalities of the axes.

We can say that the sensor data is calibrated when $|v| - g \approx 0$.

Data calibration methods

In order to calibrate the raw measurements, we need to minimize the error

$$Err(M,B) = \sum_{i=1}^{n} (M_{xx}x_i + M_{xy}y_i + M_{xz}z_i + B_x)^2 + (M_{yx}x_i + M_{yy}y_i + M_{yz}z_i + B_y)^2 + (M_{zx}x_i + M_{zy}y_i + M_{xz}z_i + B_z)^2 - g^2$$

with respect to the parameters

$$M_{xx}$$
, M_{xy} , M_{xz} , M_{yx} , M_{yy} , M_{yz} , M_{zx} , M_{zy} , M_{zz} and B_x , B_y , B_z .

Minimizing the error

- Using Partial Derivatives for minimizing the error.
- Solving a system of 12 equations
- Method for solving equations.
- Initial Guess:

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Newton's Method

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

M Matrix & B Vector Comparison

M Mat	rix Values	(BI)
1.00432	-0.0247	-0.0738
0.01773	1.01322	-0.0892
0.07967	0.08645	0.99275

B Matrix Values (BI)
-0.488037
-0.0814727
0.0155627

M Matrix Values (NM)		
0.22671	0.07337	0.97174
0.60662	0.7872	-0.1967
-0.772	0.64003	0.12634

B Matrix Values (NM)
-0.0558736
-0.35741
0.337929

Calibrated Data Comparison

Calibrated (BI)		
X	Υ	Z
-0.0487887	9.73885	1.05333
0.0473013	-9.76837	-0.665145
9.73665	0.22181	1.13312
-9.75604	-0.0796934	-0.859694

Calibrated (NM)		
X	Υ	Z
0.952926	7.66039	6.03053
-0.568964	-7.71673	-5.9995
2.55426	5.89126	-7.40974
-2.28789	-5.81181	7.54415

Norms After Calibration (BI)
9.79577
9.7911
9.80487
9.79417
9.7825

Norms After Calibration (NM)
9.79577
9.7911
9.80487
9.79417
9.7825

Thank you for the attention!