Homework Assignment 03

Machiry Aravind Kumar

UCSB

1 Problem 1

Consider the exponent d=49=(110001). Show the steps and all intermediate powers in the computation of m^d for the algorithms

- 1.1 the left-to-right binary method
- 1.2 the right-to-left binary method
- 1.3 the square-and-multiply-always algorithm

$$R_0 = 1, R_1 = 1$$

i	d_i	b	R_0	R_b
5	1	0	$R_0 = 1^2 (mod N)$	$R_0 = 1.m(modN)$
4	1		$R_0 = m^2(modN)$	$R_0 = m^2.m(modN)$
3	0	1	$R_0 = (m^3)^2 (mod N)$	$R_1 = 1.m(modN)$
2	0	1	$R_0 = (m^6)^2 (mod N)$	$R_1 = m.m(modN)$
1	0	1	$R_0 = (m^{12})^2 (mod N)$	$R_1 = m^2.m(modN)$
0	1	0	$R_0 = (m^{24})^2 (mod N)$	$R_0 = m^{48}.m(modN)$

$$R_0 = m^{49} mod N$$

1.4 the Montgomery powering ladder

$$R_0 = 1, R_1 = m$$

i	d_i	b	R_b	R_{d_i}
5	1	0	$R_0 = 1.m(modN)$	$R_1 = m^2(modN)$
4	1	0	$R_0 = m.m^2(modN)$	$R_1 = (m^2)^2 (mod N)$
3	0	1	$R_1 = m^3.m^4 (mod N)$	$R_0 = (m^3)^2 (mod N)$
2	0	1	$R_1 = m^6.m^7 (mod N)$	$R_0 = (m^6)^2 (mod N)$
1	0	1	$R_1 = m^{12}.m^{13}(modN)$	$R_0 = (m^{12})^2 (mod N)$
0	1	0	$R_0 = m^{24}.m^{25} (mod N)$	$R_1 = (m^{25})^2 (mod N)$

$$R_0 = m^{49} mod N$$

- 1.5 the Atomic square-and-multiply algorithm
- 1.6 the Atomic right-to-left algorithm
- 1.7 Binary method

i	\mathbf{e}_i	Step 2a	Step 2b
6	0	$(M)^2 = M^2$	M^2
5	0	$(\mathbf{M}^2)^2 = M^4$	M^4
4	0	$(\mathbf{M}^4)^2 = M^8$	M^8
3	1	$(M^8)^2 = M^{16}$	$M^{16}.M = M^{17}$
2	1	$(\mathrm{M}^{17})^2 = M^{34}$	$M^{34}.M = M^{35}$
1	1	$(\mathrm{M}^{35})^2 = M^{70}$	$M^{70}.M = M^{71}$
0	1	$(M^{71})^2 = M^{142}$	$M^{142}.M = M^{143}$

 $Addition\ chain = 1\ 2\ 4\ 8\ 16\ 17\ 34\ 35\ 70\ 71\ 142\ 143,\ Length = 12.$

1.8 m-ary method

1.8.1 For d=2

bits	W	M^w
00	0	1
01	1	M
10	2	$M.M = M^2$
11	3	$M^2.M = M^3$

i	F_i	Step 4a	Step 4b
2	00	$(\mathbf{M}^2)^4 = M^8$	M^8
1	11	$(M^8)^4 = M^{32}$	$M^{32}.M^3 = M^{35}$
0	11	$(M^{35})^4 = M^{140}$	$M^{140}.M^3 = M^{143}$

Addition chain = $1\ 2\ 3\ 4\ 8\ 16\ 32\ 35\ 70\ 140\ 143$, Length = 11.

1.8.2 For d=4

bits	W	M^w
0000	0	1
0001	1	M
0010	2	$M.M = M^2$
0011	3	$M^2.M = M^3$
0100	4	$M^3.M = M^4$
0101	5	$M^4.M = M^5$
0110	6	$\mathbf{M}^5.M = M^6$
0111	7	$M^6.M = M^7$
1000	8	$M^7.M = M^8$
1001	9	$M^8.M = M^9$
1010	10	$M^9.M = M^{10}$
1011	11	$M^{10}.M = M^{11}$
1100	12	$M^{11}.M = M^{12}$
1101	13	$M^{12}.M = M^{13}$
1110	14	$M^{13}.M = M^{14}$
1111	15	$M^{14}.M = M^{15}$

i	F_i	Step 4a	Step 4b
0	1111	$(M^8)^{16} = M^{128}$	$M^{128}.M^{15} = M^{143}$

Addition chain $= 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 32\ 64\ 128\ 143$, Length = 20.

1.9 Factor Method

Compute: $M \to M^2$

 $Assign: a = M^2$

 $Compute: a \to a^2 \to a^4 \to a^5$

 $Assign: b = a^5 = M^{10}$ $Compute: b.M \rightarrow M^{11}$

 $Assign: c = M^{11}$

$$\begin{split} &Compute: c \to c^2 \to c^3 \\ &Assign: d = c^3 = (M^{11})^3 \\ &Compute: d \to d^2 \to d^4 \\ &Assign: e = d^4 = (M^{11})^{12} \\ &Compute: e.c \to (M^{11})^{13} = &M^{143} \end{split}$$

Addition chain = $1\ 2\ 4\ 8\ 10\ 11\ 22\ 33\ 66\ 132\ 143$, Length = 11.

1.10 Power Tree Method

A tree of height 11 leads to 143 as its leaf node. Refer code mk_tree.py for the details. The path from the root is: 1 2 3 5 7 14 21 35 70 140 143. Addition chain is same as this path. Addition chain = 1 2 3 5 7 14 21 35 70 140 143, Length = 11.

1.11 Canonical Recording for d=1

Truth table for canonical recording is as shown below:

\mathbf{c}_i	e_{i+1}	e_i	c_{i+1}	f_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	0
1	1	0	1	$\overline{1}$
1	1	1	1	0

Using truth table, recording for given number is:

c_i	e_{i+1}	e_i	c_{i+1}	f_i
0	1	1	1	$\overline{1}$
1	1	1	1	0
1	1	1	1	0
1	0	1	1	0
1	0	0	0	1
0	0	0	0	0
0	1	0	0	0
0	0	1	0	1

$$1001000\overline{1} = 2^7 + 2^4 - 2^0 = 143$$

Computing the exponent:

i	f_i	Step 2a	Step 2b
7	1	M	M
6	0	$(M)^2 = M^2$	M^2
5	0	$(M^2)^2 = M^4$	M^4
4	1	$(M^4)^2 = M^8$	$M^8.M = M^9$
3	0	$(M^9)^2 = M^{18}$	M^{18}
2	0	$(M^{18})^2 = M^{36}$	M^{36}
1	0	$(M^{36})^2 = M^{72}$	M^{72}
0	$\overline{1}$	$(M^{72})^2 = M^{144}$	$M^{144}.M^{-1} = M^{143}$

Addition chain: 1 2 4 8 9 18 36 72 144 143, Length = 10.

2 Illustrate the steps of the standard multiplication algorithm for computing c =a * b = 456 * 555

i	j	Step	(C,S)	Partial t
0	0	$t_0 + a_0b_0 + C$	(0,*)	000000
		0 + 6*5 + 0	(3,0)	00000 0
	1	$\mathbf{t}_1 + a_1 b_0 + C$		
		0 + 5*5 + 3	(2,8)	000080
	2	$t_2 + a_2b_0 + C$		
		0 + 4*5 + 2	(2,2)	000 2 80
				00 2 280
1	0	$\mathbf{t}_1 + a_0 b_1 + C$	(0,*)	
		8 + 6*5 + 0	(3,8)	002280
	1	$\mathbf{t}_2 + a_1 b_1 + C$		
		2 + 5*5 + 3	(3,0)	002 0 80
	2	$\mathbf{t}_3 + a_2 b_1 + C$		
		2 + 4*5 + 3	(2,5)	005080
				025080
2	0	$t_2 + a_0b_2 + C$	(0,*)	
		0 + 6*5 + 0	(3,0)	025 0 80
	1	$\mathbf{t}_3 + a_1 b_2 + C$		
		5 + 5*5 + 3	(3,3)	023080
	2	$\mathbf{t}_4 + a_2 b_2 + C$		
		2 + 4*5 + 3	(2,5)	053080
				2 53080

3 Illustrate the steps of the standard squaring algorithm for computing c =a * a = 456 * 456

i	j	Step	(C,S)	Partial t
0	1	$t_0 + a_0 a_0$		000000
		0 + 6*6	(3,6)	00000 6
		$t_1 + 2a_1a_0 + C$	(3,*)	000006
		0 + 2*5*6 + 3	(6,3)	000036
0	2	$t_2 + 2a_2a_0 + C$	(6,*)	000036
		0 + 2*4*6 + 6	(5,4)	000436
				00 5 436
1	2	$t_2 + a_1 a_1$		005436
		4 + 5*5	(2,9)	005 9 36
		$t_3 + 2a_2a_1 + C$	(2,*)	005936
		5 + 2*4*5 + 2	(4,7)	007936
				047936
2	2	$t_4 + a_2 a_2$		047936
		4 + 4*4	(2,0)	0 0 7936
				2 07936

4 Let r = 32, n = 21, a = 13, and b = 15. Compute $c = a * b * r^{-1}$ mod n using the standard Montgomery multiplication algorithm. Illustrate the steps and give all temporary results

iteration	q	g_0	g_1	u_0	$ u_1 $	v_0	v_1
0	-	32	21	1	0	0	1
1	1	21	11	0	1	1	-1
2	1	11	10	1	-1	-1	2
3	1	10	1	-1	2	2	-3
4	10	1	0	2	-21	-3	32
		•		•		•	
		•		•			

From Table 4, GCD = 1, $r^{-1} = 2$, n' = 3.

Consider $\overline{x} = a = 13$, such that $x = \overline{x} * r^{-1} \mod n = 5$. $\overline{y} = b = 15$, such that $y = \overline{y} * r^{-1} \mod n = 9$.

Now, $a * b * r^{-1} \mod n$ is same as $\overline{x} * \overline{y} * r^{-1} \mod n$.

So, $a * b * r^{-1} \mod n = \overline{x} * \overline{y} * r^{-1} \mod n = \operatorname{MonPro}(\overline{x} = 13, \overline{y} = 15).$

4.1 function MonPro($\bar{a} = 13$, $\bar{b} = 15$)

- 1. t = 13*15 = 195
- 2. $m = (195*3) \mod 32 = 9$
- 3. u = (195 + 9 * 21) / 32 = 384/32 = 12
- 4. 12 < 21 return 12

Final result is: 12.

5 Let p = 29, a = 23, and g = 10. Compute $g^a \pmod{p}$ using the binary method of exponentiation and the Montgomery multiplication where r = 32. Show the steps and temporary values.

Consider n=p=29, M=g=10, e=a=23.

iteration	q	g_0	$ g_1 $	$ u_0 $	u ₁	v_0	v_1
0	-	32	29	1	0	0	1
1	1	29	3	0	1	1	-1
2	9	3	2	1	-9	-1	10
3	1	2	1	-9	10	10	-11
4	2	1	0	10	-29	-11	32
		•		•		•	

From Table 5, GCD = 1, $r^{-1} = 10$, n' = 11.

- Step 2 $\overline{M} = M * r \mod n = 10 * 32 \mod 29 = 1$
- Step 3 $\overline{C} = 1 * r \mod n = 1 * 32 \mod 29 = 3$
- Step 4

e_i	Step 5	Step 6
1	MonPro(3,3) = 3	MonPro(1,3) = 1
0	MonPro(1,1) = 10	
1	MonPro(10,10) = 14	MonPro(1,14) = 24
1	MonPro(24,24) = 18	MonPro(1,18) = 6
1	MonPro(6,6) = 12	MonPro(1,12) = 4

$$MonPro(3,3)$$

 $t = 3 * 3 = 9$
 $m = 9 * 11 \mod 32 = 3$
 $u = (9 + 3 * 29) / 32 = 3$

$$MonPro(1,3)$$

 $t = 1 * 3 = 3$
 $m = 3 * 11 \mod 32 = 1$
 $u = (3 + 1 * 29) / 32 = 1$

$$MonPro(1,1)$$

 $t = 1 * 1 = 1$
 $m = 1 * 11 mod 32 = 11$
 $u = (1 + 11 * 29) / 32 = 10$

$$MonPro(10, 10)$$

 $t = 10 * 10 = 100$
 $m = 100 * 11 \mod 32 = 12$
 $u = (100 + 12 * 29) / 32 = 14$

$$MonPro(1, 14)$$

 $t = 1 * 14 = 14$
 $m = 14 * 11 \mod 32 = 26$
 $u = (14 + 26 * 29) / 32 = 24$

$$MonPro(24, 24)$$

 $t = 24 * 24 = 576$
 $m = 576 * 11 \mod 32 = 0$
 $u = (576 + 0 * 29) / 32 = 18$

$$MonPro(1, 18)$$

 $t = 1 * 18 = 18$
 $m = 18 * 11 \mod 32 = 6$
 $u = (18 + 6 * 29) / 32 = 6$

$$MonPro(6,6)$$

 $t = 6 * 6 = 36$
 $m = 36 * 11 \mod 32 = 12$
 $u = (36 + 12 * 29) / 32 = 12$
 $MonPro(1,12)$
 $t = 1 * 12 = 12$
 $m = 12 * 11 \mod 32 = 4$
 $u = (12 + 4 * 29) / 32 = 4$

• Step 7
$$C = MonPro(4,1) = 11$$

Result of $10^{23} \pmod{29} = 11$

- 6 Let an RSA key be determined by the parameters $\{p,q,n,e,d\} = \{17,23,391,29,85\}$. Compute $S = M^d \pmod{n}$ for M = 175 with and without the Chinese remainder theorem and the binary exponentiation.
- 6.1 Chinese remainder theorem

$$d_1 = 85 \mod (16) = 5$$

 $d_2 = 85 \mod (22) = 19$

iteration	quotient	g_0	g_1	$ u_0 $	$ u_1 $	v_0	v_1
0	-	23	17	1	0	0	1
1	1	17	6	0	1	1	-1
2	2	6	5	1	-2	-1	3
3	1	5	1	-2	3	3	-4
4	5	1	0	3	-17	-4	23
		•		•		•	

In Table 6.1, Initial values of
$$g_0={\bf q}=23$$
 and $g_1={\bf p}=17$. This $p^{-1}=-4$ and $q^{-1}=3$. $M_1=M^{d_1} \mod {\bf p}=175^5 \mod 17=14$. $M_2=M^{d_2} \mod {\bf q}=175^{19} \mod 23=10$. S= $M_1+{\bf p}*((M_2-M_1)*p^{-1} \mod {\bf q})=14+17*((10-14)*-4 \mod 23)=14+272=286$.

6.2 Binary Exponentiation.

Representing 85 in binary results in: 1 0 1 0 1 0 1

Following table shows computation of RSA decryption using binary exponentiation.

i	e_i	Step 2a	Step 2b
6	0	$((175)^2) \bmod 391 = 127$	127
5	1	$((127)^2) \bmod 391 = 98$	$98*175 \mod 391 = 337$
4		$((337)^2) \bmod 391 = 179$	179
3		$((179)^2) \bmod 391 = 370$	$370*175 \mod 391 = 235$
1		$((235)^2) \bmod 391 = 94$	94
0	1	$((94)^2) \bmod 391 = 234$	$234*175 \mod 391 = 286$