315 Assignment 2

Jason Cairns - 8092261

13-08-18

1

Let \mathcal{A} be the statement form composed of connectives \rightarrow , and true statement variables, all equivalently denoted p, such that $\nu(p) = 1$. Then we can show by induction that no matter the ordering of \rightarrow and p, $\nu(\mathcal{A}) = 1$;

First, see the trivial base case, $\nu(p) = 1$.

Now, assume \mathcal{B} is composed of p and connectives \rightarrow , and $\nu(\mathcal{B}) = 1$.

Then we have $\nu((\mathcal{B} \to p)) = 1$ and $\nu((p \to \mathcal{B})) = 1$.

Thus by induction we have that $\nu(\mathcal{A}) = 1$, meaning that negation is not capable of being defined under the set $\{\rightarrow\}$ only. Therefore, $\neg p \Leftrightarrow \mathcal{A}$ under this set, and $\{\rightarrow\}$ is unable to fit the definition of a complete set, making it incomplete.

$\mathbf{2}$

(a)

x is a theorem of \mathcal{F}_1 , iff x is of the form AA^{2i} , for some $i \in \mathbb{N}$

(b)

x is a theorem of \mathcal{F}_2 , iff x is of the form A^{2^i} , for some $i \in \mathbb{N}$ To see this, first consider the derivation;

$$A = A^{2^0}, AA = A^{2^1}, AAAA = A^{2^2}, \dots, \underbrace{AA \dots AA}_{2^i} = A^{2^i}$$

Now suppose $\mathcal{B}_1, \ldots, \mathcal{B}_n = x$ is a derivation. We show by induction that each \mathcal{B}_k , $1 \le k \le n$ is of the required form.

For k = 1, \mathcal{B} is A. So it is of the required form where i = 0.

For k > 1, if $\mathcal{B}_k = A$ we are done. Otherwise, \mathcal{B}_k was obtained from some \mathcal{B}_l , l < k, from the single rule $x \Longrightarrow xx$. By our inductive hypothesis, $\mathcal{B}_l = A^{2^i}$. Then $\mathcal{B}_k = A^{2^i}A^{2^i} = A^{2^{i+1}}$.

Thus \mathcal{B}_k has the required form, ending our inductive proof.

We first show that $(A \to \neg \neg A)$ is a tautology with the following truth table:

$$\begin{array}{c|c|c|c} \mathcal{A} & (\mathcal{A} & \rightarrow & \neg \neg \mathcal{A}) \\ \hline 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ * & & & \end{array}$$

so
$$\nu((\mathcal{A} \to \neg \neg \mathcal{A})) = 1$$

From **Theorem 2.36** (The Adequacy Theorem for L), we have **Corollary 2.37**; Every tautology is a theorem of L. Thus we have $\vdash_L (A \to \neg \neg A)$ Then by **Theorem 2.7** (The Deduction Theorem for L) we have that $\{A\} \vdash_L \neg \neg A \text{ iff } \vdash_L (A \to \neg \neg A)$

Thus $\{A\} \vdash_L \neg \neg A$, without requiring derivation in L

4

We first show that \mathbb{Z} is countable. We do this by demonstrating that we can enumerate \mathbb{Z} as $\{z_n|n\in\mathbb{N}\}$, i.e. there is an onto map $g:\mathbb{N}\mapsto\mathbb{Z}$. Consider the following map:

$$g(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$

We can show this is onto: first let $z \in \mathbb{Z}$. We can now show that there exists $n \in \mathbb{N}$ such that g(n) = z. Choose $n = g^{-1}(z)$, where

$$g^{-1}(z) = \begin{cases} 2z & \text{if } z > 0\\ -2z + 1 & \text{if } z \le 0 \end{cases}$$

and so $g(g^{-1}(z)) = z$. So for all $z \in \mathbb{Z}$, there exists $n \in \mathbb{N}$ such that g(n) = z. Hence, \mathbb{Z} is countable.

Now consider some bijective encoding for each $z \in \mathbb{Z}$ as a string of symbols, represented by the set Z. Decimal representation of a string of digits is suitable. Then by **Proposition 2.30**, the set Z^* of all finite non-empty strings of symbols from Z is countable.

The encoding is bijective, so upon being applied inversely, we will have the same property of countability for the set of all finite subsets of \mathbb{Z}

5

(a)

We have from **Theorem 2.36** (The Adequacy Theorem for L), **Corollary 2.3.7**, that every tautology is a theorem of L.

Hence we have that $\Sigma \vdash_L A$.

Therefore there does exist a wff A such that $\Sigma \vdash_L A$ and $\Sigma \vdash_L \neg A$, going against the definition of consistency, **Definition 2.16**. Thus Σ is inconsistent.

(b)

From **Lemma 2.20**, we have that if $\Sigma \nvdash_L \mathcal{A}$, then $\Sigma \cup \{\neg \mathcal{A}\}$ is consistent. From **Theorem 2.35**, $\Sigma \cup \{\neg \mathcal{A}\}$ is consistent iff $\Sigma \cup \{\neg \mathcal{A}\}$ is satisfiable. Hence we have that $(\Sigma \nvdash_L \mathcal{A} \to \Sigma \cup \{\neg \mathcal{A}\})$ is satisfiable.

Using **Theorem 2.35**, $\Sigma \cup \{\neg A\}$ is satisfiable iff $\Sigma \cup \{\neg A\}$ is consistent. If it is consistent, then under **Definition 2.16**, we do no have both $\Sigma \cup \{\neg A\} \vdash_L A$ and $\Sigma \cup \{\neg A\} \vdash_L \neg A$. Because we certainly have $\Sigma \cup \{\neg A\} \vdash_L \neg A$, as $\neg A \in \Sigma \cup \{\neg A\}$, then we must not have $\Sigma \cup \{\neg A\} \vdash_L A$. Therefore $A \notin \Sigma \cup \{\neg A\}$, else $\Sigma \cup \{\neg A\}$ would entail A under L. So $A \notin \Sigma$, as $\Sigma \subseteq \Sigma \cup \{\neg A\}$.

As $\mathcal{A} \notin \Sigma$, then $\Sigma \nvdash_L \mathcal{A}$, because \mathcal{A} wouldn't be a wff, due to not belonging to Σ , meaning not belonging to form(L).

Hence we have that $(\Sigma \cup \{\neg A\} \text{ is satisfiable} \rightarrow \Sigma \nvdash_L A)$

Combining these, we have that Σ does not entail A iff $\Sigma \cup \{\neg A\}$ is satisfiable.

(c)

By **Theorem 2.14** (The Soundness Theorem for L), we have that if $\{A\} \vdash_L \mathcal{B}$, then $A \models \mathcal{B}$. From **Definition 2.12**, as $A \models \mathcal{B}$, then for the truth assignment ν such that $\nu(A) = 1$, then $\nu(B) = 1$.

Then by **Definition 2.10**, we have that $\nu((A \to B)) = 1$.

Finally, from **Definition 2.11**, we can call this a tautology, as $\nu((\mathcal{A} \to \mathcal{B})) = 1$ under every truth assignment ν .