

Principles of Programming Languages

Assignment 4

1. Which statement is true:

- a. $\{f: [T1 \to T2], g: [T1 \to T2], a: T1\} \vdash (f(g \ a)): T2 \text{ false, } a \text{ is of type T1, } g \text{ receives T1 and returns T2, } f \text{ takes as input T1 and not T2.}$
- b. $\{x: T1, y: T2, f: [T2 \rightarrow T1]\} \vdash (f y): T1 \text{true}, f \text{ receives 1}$ argument of type T2 (y): and returns T1.
- c. $\{f: [T1 \to T2]\} \vdash (lambda(x)(fx)): [T1 \to T2]$ -false, there is no information on the left side about x, could be the wrong type. The lambda exp returns T2 and not $[T1 \to T2]$.
- d. $\{f: [T1 * T2 \rightarrow T3]\} \vdash (lambda(x)(f x 100)): [T1 \rightarrow T3] \text{false},$ there is no information on the left side about x, could be the wrong type. T2 could be a number, but the lambda exp returns T3 and not $[T1 \rightarrow T3]$.

2. Perform type inference algorithm for the expression:

a.
$$((lambda (x1) (+ x1 1)) 4)$$

1. Rename bound vars:
$$((lambda (x1) (+ x1 1)) 4) \rightarrow ((lambda (x) (+ x 1)) 4)$$
.

2. Assign type vars for every sub expression:

Expression	Variable
$\left(\left(lambda\left(x\right)\left(+x\ 1\right)\right)4\right)$	<i>T</i> 0
(lambda(x)(+x1))	<i>T</i> 1
(+ x 1)	<i>T</i> 2
+	T_{+}
x	Tx
1	Tnum1
4	Tnum4

3. Construct type equations:

Expression	Equation
$\left(\left(lambda\left(x\right)\left(+x\ 1\right)\right)4\right)$	$T1 = [Tnum4 \rightarrow T0]$
(lambda (x) (+ x 1))	$T1 = [Tx \to T2]$
(+ x 1)	$T_{+} = [Tx * Tnum1 \rightarrow T2]$
+	$T_{+} = [Number * Number \rightarrow Number]$
1	Tnum1 = Number
4	Tnum4 = Number

4. Solve the equations:

Equation	Substitution
$T1 = [Tnum4 \rightarrow T0]$	{□}
$T1 = [Tx \to T2]$	
$T_{+} = [Tx * Tnum1 \rightarrow T2]$	
$T_{+} = [Number * Number \rightarrow Number]$	
Tnum1 = Number	
Tnum4 = Number	

Step 1:
$$T1 = [Tnum4 \rightarrow T0] \circ Substituotion =$$

$$(T1 = [Tnum4 \rightarrow T0]) \rightarrow$$
Substituotion = Substituotion $\circ (T1 = [Tnum4 \rightarrow T0])$.

Equation	Substitution
$T1 = [Tx \to T2]$	$\{T1 = [Tnum4 \rightarrow T0]\}$
$T_{+} = [Tx * Tnum1 \rightarrow T2]$	
$T_{+} = [Number * Number \rightarrow Number]$	
Tnum1 = Number	
Tnum4 = Number	

Step 2: $T1 = [Tx \rightarrow T2] = [Tnum4 \rightarrow T0]$ both sides are composite that needs to be split.

Equation	Substitution
$T_{+} = [Tx * Tnum1 \rightarrow T2]$	$\{T1 = [Tnum4 \rightarrow T0]\}$
$T_{+} = [Number * Number \rightarrow Number]$	
Tnum1 = Number	
Tnum4 = Number	
Tx = Tnum4	
T2 = T0	

Step 3:
$$T_{+} = [Tx * Tnum1 \rightarrow T2] \circ Substituotion =$$

$$(T_{+} = [Tx * Tnum1 \rightarrow T2]) \rightarrow$$
Substituotion = Substituotion $\circ (T_{+} = [Tx * Tnum1 \rightarrow T2]).$

Equation	Substitution
$T_{+} = [Number * Number \rightarrow Number]$	$ T1 = [Tnum4 \rightarrow T0], T_{+} = [Tx * Tnum1 \rightarrow T2] $
Tnum1 = Number	$\begin{bmatrix} (I_+ = [Ix * Inum1 \rightarrow IZ]) \end{bmatrix}$
Tnum4 = Number	
Tx = Tnum4	
T2 = T0	

Step 4: $T_+ = [Number * Number \rightarrow Number]$ = $[Tx * Tnum1 \rightarrow T2]$ split.

Equation	Substitution
Tnum1 = Number	$ \begin{cases} T1 = [Tnum4 \rightarrow T0], \\ T_{+} = [Tx * Tnum1 \rightarrow T2] \end{cases} $
Tnum4 = Number	$(I_{+} = [Ix * Inum1 \rightarrow IZ])$
Tx = Tnum4	
T2 = T0	
Tx = Number	
T2 = Number	

Step 5: substituted *Tnum*1.

Equation	Substitution
Tnum4 = Number	$\int_{T} T1 = [Tnum4 \rightarrow T0],$
Tx = Tnum4	$ \begin{cases} T1 = [Tnum4 \rightarrow T0], \\ T_{+} = [Tx * Number \rightarrow T2], \\ Tnum1 = Number \end{cases} $
T2 = T0	
Tx = Number	
T2 = Number	

Step 6: substituted *Tnum*4.

Equation	Substitution
Tx = Tnum4	$ \left(\begin{array}{c} T1 = [Number \rightarrow T0], \\ T = [Number \rightarrow T0], \end{array} \right) $
T2 = T0	$\begin{cases} T1 = [Number \rightarrow T0], \\ T_{+} = [Tx * Number \rightarrow T2], \\ Tnum1 = Number, \end{cases}$
Tx = Number	Tnum4 = Number
T2 = Number	

Step 7: first substituted Tx to Number (Tnum4 = Number), then substituted each equation that has Tx with Number.

Equation	Substitution
T2 = T0	$T1 = [Number \rightarrow T0],$ $T = [Tax + Number \rightarrow T0]$
Tx = Number	$\begin{cases} T1 = [Number \rightarrow T0], \\ T_{+} = [Tx * Number \rightarrow T2] \\ Tnum1 = Number, \end{cases}$
T2 = Number	

Step 8: substituted T2 with T0.

Equation	Substitution
Tx = Number $T2 = Number$	$ \begin{cases} T1 = [Number \rightarrow T0], \\ T_{+} = [Tx * Number \rightarrow T0] \\ Tnum1 = Number, \\ Tnum4 = Number, \\ Tx = Number, \\ T2 = T0 \end{cases} $

Step 9: substituted Tx with Number, we will get Number = Number and delete it from the left side.

Equation	Substitution
T2 = Number	$ \begin{cases} T1 = [Number \rightarrow T0], \\ T_{+} = [Tx * Number \rightarrow T0] \\ Tnum1 = Number, \\ Tnum4 = Number, \\ Tx = Number, \\ T2 = T0 \end{cases} $

Step 10: first substituted T2 with T0, then we will get T0 = Number and substituted each equation that has T0 with Number.

Equation	Substitution
	$\begin{cases} T1 = [Number \rightarrow Number], \\ T_{+} = [Tx * Number \rightarrow Number] \\ Tnum1 = Number, \\ Tnum4 = Number, \\ Tx = Number, \\ T2 = T0, \\ T0 = Number \end{cases}$

The inference succeeds the type of T0 is Number.

b.
$$((lambda (f1 x1) (f1 x1 1)) 4 +)$$

1. Rename bound vars: $((lambda (f1 x1) (f1 x1 1)) 4 +) \rightarrow ((lambda (f x) (f x 1)) 4 +).$

2. Assign type vars for every sub expression:

Expression	Variable
$\left(\left(lambda\left(f\ x\right)\left(f\ x\ 1\right)\right)4+\right)$	T_0
(lambda (f x) (f x 1))	T_1
(f x 1)	T_2
f	T_f
x	T_{x}
1	T_{num1}
4	T_{num4}
+	T_{+}

3. Construct type equations:

Expression	Equations
$\left(\left(lambda\left(f\;x\right)\left(f\;x\;1\right)\right)4+\right)$	$T_1 = [T_{num4} * T_+ * T_{num1} \rightarrow T_0]$
(lambda (f x) (f x 1))	$T_1 = \left[T_f * T_x * T_{num1} \to T_2 \right]$
(f x 1)	$T_f = [T_x * T_{num1} \to T_2]$
1	$T_{num1} = Number$
4	$T_{num4} = Number$
+	$T_{+} = [Number * Number \rightarrow Number]$

4. Solve the equations:

Equation	Substitution
$T_1 = [T_{num4} * T_+ * T_{num1} \to T_0]$	{□}
$T_1 = \left[T_f * T_x * T_{num1} \to T_2 \right]$	
$T_f = [T_x * T_{num1} \to T_2]$	
$T_{num1} = Number$	
$T_{num4} = Number$	
$T_{+} = [Number * Number \rightarrow Number]$	

Step 1:
$$T1 = [T_{num4} * T_{+} * T_{num1} \rightarrow T_{0}] \circ Substituotion =$$

$$(T1 = [T_{num4} * T_{+} * T_{num1} \rightarrow T_{0}]) \rightarrow$$

$$Substituotion = Substituotion \circ$$

$$(T1 = [T_{num4} * T_{+} * T_{num1} \rightarrow T_{0}]).$$

Equation	Substitution
$T_1 = \left[T_f * T_x * T_{num1} \to T_2 \right]$	$\{T_1 = [T_{num4} * T_+ * T_{num1} \rightarrow T_0]\}$
$T_f = [T_x * T_{num1} \to T_2]$	
$T_{num1} = Number$	
$T_{num4} = Number$	
$T_{+} = [Number * Number \rightarrow Number]$	

Step 2: $T1 = [T_{num4} * T_{+} * T_{num1} \rightarrow T_{0}] = [T_{f} * T_{x} \rightarrow T_{2}]$ both sides are composite that needs to be split.

Equation	Substitution
$T_f = [T_x * T_{num1} \to T_2]$	$\{T_1 = [T_{num4} * T_+ * T_{num1} \to T_0]\}$
$T_{num1} = Number$	
$T_{num4} = Number$	
$T_{+} = [Number * Number \rightarrow Number]$	
$T_f = T_{num4}$	
$T_{x} = T_{+}$	
$T_{num1} = T_{num1}$	

$$\begin{split} \underline{\text{Step 3:}} \ T_f &= [T_x * T_{num1} \to T_2] \circ Substituotion = \\ & \left(T_f = [T_x * T_{num1} \to T_2]\right) \to \\ Substituotion &= Substituotion \circ \left(T_f = [T_x * T_{num1} \to T_2]\right). \end{split}$$

Equation	Substitution
$T_{num1} = Number$	$ \begin{cases} T_1 = [T_{num4} * T_+ * T_{num1} \to T_0], \\ T_f = [T_x * T_{num1} \to T_2] \end{cases} $
$T_{num4} = Number$	-
$T_{+} = [Number * Number \rightarrow Number]$	
$T_f = T_{num4}$	
$T_{\chi} = T_{+}$	
$T_{num1} = T_{num1}$	

Step 4: substituted *Tnum*1.

Equation	Substitution
$T_{num4} = Number$ $T_{+} = [Number * Number$ $\rightarrow Number]$	$ \begin{cases} T_1 = [T_{num4} * T_+ * Number \rightarrow T_0], \\ T_f = [T_x * Number \rightarrow T_2], \\ T_{num1} = Number \end{cases} $
$T_f = T_{num4}$	
$T_{\chi} = T_{+}$	
$T_{num1} = T_{num1}$	

Step 5: substituted *Tnum*4.

Equation	Substitution
$T_{+} = [Number * Number \\ \rightarrow Number]$	$ \begin{cases} T_1 = [Number * T_+ * Number \rightarrow T_0], \\ T_f = [T_x * Number \rightarrow T_2], \\ T_{num1} = Number, \end{cases} $
$T_f = T_{num4}$	$T_{num4} = Number$
$T_{x} = T_{+}$	
$T_{num1} = T_{num1}$	

Step 6: substituted T_+ .

Equation	Substitution
$T_f = T_{num4}$ $T_x = T_+$ $T_{num1} = T_{num1}$	$ \begin{cases} T_1 = \begin{bmatrix} Number * [Number * Number \rightarrow Number] * Number \\ & \rightarrow T_0 \\ T_f = [T_x * Number \rightarrow T_2], \\ T_{num1} = Number, \\ T_{num4} = Number, \\ T_+ = [Number * Number \rightarrow Number] \end{cases} $

Step 7: $T_f = T_{num4} = [T_x * Number \rightarrow T_2]$, FAILED, Number cannot be a composite expression.

$$(f \ x \ 1) = (4+1) \rightarrow not \ a \ procedure$$

