SRN		1			
				1 1	1

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE18MA101

END SEMESTER ASSESSMENT (ESA), B.TECH. I- SEMESTER- Dec. 2018 UE18MA101- ENGINEERING MATHEMATICS-I

,	Tin	ne:	3 Hrs Answer All Questions May Mark			
	1.	a) Verify Cauchy's Mean value theorem for the function $f(x) = \sin x$, $g(x) = \cos x$				
	ŀ	c)	Show that the two curves $r=a$ $r=a$ $1\pm \cos a$ interests.			
			Show that for the curve $r=f(\theta)$, the curvature is given by $\left[\frac{d^2u}{d\theta^2} + u\right]\sin^3\phi$, where $u=\frac{1}{r}$.	7		
		d)	Find the n th derivative of $\frac{1}{2}e^{3x}\cos x\sin^2 x$.	5		
	2.	a)	If $x=e^u tanv$, $y=e^u secv$, $z=e^{-2u} f(v)$, Prove that $xz_x + yz_y + 2z = 0$	6		
		b)	A hot water storage thank is a vertical cylinder surmounted by a hemispherical top of the same diameter. The tank is designed to hold $400 m^3$ of liquid. Determine the total height H and the diameter 2r of the tank if the surface heat loss is to be a minimum.	7		
		\neg	Expand $e^x \cos y$ in powers of (x-1) and $(y-\pi/4)$ using Taylor's series up to the third degree term.	7		
3			Trace the curve $(x^2+y^2)x=2ay^2$.	6		
	b) 1	Evaluate $\int \int_E \int x dv$, where E is the region enclosed by $z=0$, $z=x+y+5$, $x^2+y^2=4$ and $x^2+y^2=9$.	7		
	c)	- 1	$a/\sqrt{(2)}\sqrt{(a^2-y^2)}$			
		E	Evaluate $\int_{0}^{2\pi} \int_{y}^{4\pi} \log(x^2 + y^2) dxdy$ by changing the order of integration.	7		
4.	a)	F	ind the Orthogonal trajectories for the family of curves $r = \frac{2a}{1 + \cos \theta}$	6		
	b)	S	olve $x - yp = ap^2$, using the method of equation solvable for y.	7		
	c)	S	$\frac{dy}{dx} = 1 + \frac{y}{x} + \frac{y^2}{x^2}$	7		
5.	a)	So	olve $(D^4 + D^2 + 1) y = ax^2 + b \sin 2 x$	6		
	b)	Sc	olve $(5+2x)^2 y'' - 6(5+2x) y' + 8 y = 6x$.	7		
	c)	So	olve $(x^2D^2 + xD - 1)y = x^2e^x$ by the method of variation of parameters. (Reduce the given ferential equation to a differential equation with constant coefficient first)	7		