Protocolo de Tesis IIMAS, UNAM

1. Título

Desarrollo de un simulador de procedimientos quirúrgicos basado en IntelRealSense: Una opción económica frente a sistemas tradicionales de captura de movimiento en 3D como OptiTrack

2. Nombre del alumno y director(es)

Alumno: José Antonio Ruiz Zavaa
Director: Jorge Marquez Flores
Codirector: Miguel Angel Padilla

3. Introducción

El entrenamiento en procedimientos quirúrgicos se apoya cada vez más en simuladores con captura de movimiento en 3D. Sin embargo, sistemas comerciales como OptiTrack suelen ser costosos y poco accesibles para instituciones con recursos limitados. IntelRealSense se perfila como una opción económica y flexible, pero su precisión y viabilidad para simulación quirúrgica han sido poco evaluadas.

Este proyecto plantea el desarrollo y evaluación de un simulador de sutura laparoscópica con IntelRealSense, validando su precisión y percepción de realismo en comparación con OptiTrack, buscando así ampliar el acceso a esta tecnología en la formación médica.

4. Justificación

OptiTrack supera los 40,000 USD, obstaculizando el acceso de hospitales y laboratorios universitarios a simuladores modernos. IntelRealSense, con un costo de aproximadamente 250 USD, representa una opción viable para replicar entornos de práctica quirúrgica en aulas y laboratorios de México y Latinoamérica. Demostrar su efectividad permitiría la democratización de la educación quirúrgica, favoreciendo la capacitación masiva y de bajo costo.

5. Objetivo general y específico

Objetivo general:

Desarrollar e implementar un simulador interactivo de procedimientos quirúrgicos empleando la tecnología IntelRealSense, y comparar cuantitativamente su desempeño frente al sistema OptiTrack.

Objetivos específicos:

- Programar una plataforma que registre y analice el movimiento de las manos y herramientas quirúrgicas usando IntelRealSense.
- Medir y comparar la precisión espacial y temporal de IntelRealSense frente a OptiTrack en ejercicios estándar de sutura.
- Evaluar mediante cuestionarios la experiencia de usuarios (estudiantes) y determinar la percepción de realismo y utilidad educativa.

6. Hipótesis o preguntas de investigación

Hipótesis:

El simulador basado en IntelRealSense alcanzará un margen de error menor a 5 mm en la reconstrucción de trayectorias comparado con OptiTrack y será preferido por al menos el 70% de los usuarios debido a su facilidad de uso y realismo.

7. Metodología

- **Diseño y desarrollo:** Utilizar el SDK de IntelRealSense en C# o Python para detectar y registrar posiciones de las manos (y si es posible, herramientas quirúrgicas) durante tareas de sutura laparoscópica sobre un modelo físico.
- Comparación técnica: Realizar pruebas paralelas con estudiantes usando ambos sistemas (IntelRealSense y OptiTrack) para realizar la misma tarea de sutura, alternando el orden.
- Análisis de datos: Medir error espacial (diferencia de trayectorias en mm), latencia y tiempo de ejecución, utilizando t de Student para comparación de medias.
- Evaluación de usuario: Aplicar encuestas tipo Likert (1–5) y entrevistas breves sobre percepción de realismo, facilidad de uso y utilidad didáctica.
- **Procesamiento:** Análisis estadístico descriptivo y comparativo.

8. Cronograma de actividades (12 meses)

Actividad	Mes 1	Mes 2	Mes 3	Mes 4	Mes 5	Mes 6	Mes 7	Mes 8	Mes 9	Mes 10	Mes 11	Mes 12
Revisión y actualización de literatura	X	Χ	Χ									
Elaboración y revisión del protocolo detallado	X	X										
Capacitación en SDK de IntelRealSense y OptiTrack		Χ	X									
Diseño de arquitectura de software y algoritmos de captura			X	X								
Desarrollo de interfaz gráfica y módulo de registro de datos con RealSense				Χ	Х							
Integración de modelos físicos y pruebas piloto de simulación					X	X						
Implementación de ejercicios quirúrgicos estandarizados (suturas, nudos, etc.)					X	X						
Validación interna: pruebas técnicas, corrección de bugs y ajustes finales						X	X					
Preparación del diseño experimental y reclutamiento de estudiantes							X	X				
Realización de experimentos formales (con estudiantes y OptiTrack como referencia)								X	X			
Procesamiento y análisis estadístico de resultados (precisión, desempeño, encuestas)									X	X		
Revisión de resultados con asesores y taller de retroalimentación										X		
Redacción de la tesis y envío de borradores a asesor(es)										X	X	
Integración final, correcciones y preparación para la defensa											X	X
Presentación de resultados en seminario/taller al interior del IIMAS (opcional)											X	
Entrega definitiva de la tesis y trámite de titulación												X

9. Bibliografía básica

- Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2).
- IntelRealSense Developer Documentation.
- Badash, I., et al. (2016). Innovations in surgery simulation. Annals of Translational Medicine, 4(23).
- Moorthy, K., et al. (2004). Validation of simulators in surgical education. British Journal of Surgery, 91(11), 1377–1388.
- Manual técnico de OptiTrack.