Fatina Mirzayeva (20932695) Benjamin Liu (63031306) Alex Sun (67050294)

Q1: Find y(n) expression in the following block diagrams, (a) and (b). In (a), assume that α' s are scalar values. In **(b)**, assume α , β , γ are all scalar values.

4[n] = d,x[n] + d2x[n-1] +d3x[n-2] + d4x[n-3]

w[n7=x[n]+dw[n-1]

(b)

$$-\frac{y[n]}{\beta} = \frac{\beta}{w[n-1]} + \frac{\gamma}{w[n-1]}$$

$$w[n-1] = \frac{1}{d} \left(\frac{w[n]}{w[n]} - x[n] \right)$$

$$-\frac{\gamma}{w[n]} = \frac{1}{d} \left(\frac{w[n]}{w[n]} + \frac{\gamma}{w[n]} \right)$$

$$-\frac{\gamma}{w[n]} = \frac{y[n+1]}{\beta} + \frac{\gamma}{\gamma}$$

$$-\frac{\gamma}{w[n-1]} = \frac{1}{d} \left(\frac{y[n+1]}{\beta} - x[n] \right)$$

$$-\frac{\gamma}{w[n-1]} = \frac{\beta}{d} + \frac{\gamma}{\beta} \left(\frac{y[n+1]}{\beta} - x[n] \right)$$

$$-\frac{\gamma}{w[n-1]} = \frac{\beta}{d} + \frac{\gamma}{\alpha} \left(\frac{y[n+1]}{\beta} - x[n] \right)$$

$$-\frac{\gamma}{w[n-1]} = \frac{\beta}{w[n]} + \frac{\gamma}{w[n-1]} - x[n]$$

$$-\frac{\gamma}{w[n-1]} = \frac{\beta}{w[n]} + \frac{\gamma}{w[n]} - x[n]$$

$$-\frac{\gamma}{w[n]} = \frac{\beta}{w[n]} + \frac{\gamma}{w[n]} - x[n]$$

$$G[n-1] = \frac{D+1}{2} \left(\frac{g(n-1)}{B+1} - \frac{1}{2} \right)$$

Q2: Find the expressions for the even digital sequence/signal, x_e (n), and the odd digital sequence/signal, $x_o(n)$, for the given digital sequence/signal, x(n). Plot each sequence/signal.

$$x[n] = x[n] + x[-n], x[-n] = \{-1,0,2,1,-2\}$$

$$= 7 x[n] = \{-2,1,2,0,-1\} + \{-1,0,2,1,-2\} = \{-3,1,4,1,-3\}$$

$$= 2$$

 $x_{0}[n] = \frac{x[n] - x[-n]}{2} = \frac{\{-2, [, 2], 0, -1\} - \{-1, 0, 2, 1, -2\}}{2} = \frac{\{-1, 1, 0, -1, 1\}}{2}$ $x_{0}[n] = \frac{x[n] - x[-n]}{2} = \frac{\{-2, [, 2], 0, -1\} - \{-1, 0, 2, 1, -2\}}{2} = \frac{\{-1, 1, 0, -1, 1\}}{2}$ $x_{0}[n] = \frac{\{-1, 1, 0, -1, 1\}}{2}$

Q3: Determine which of the following signals are energy signals or power signals.

$$x(n) = 4, n > 0$$

$$x(n) = \left(\frac{1}{4}\right)^n u(n)$$

$$x(n) = \begin{cases} 3(-1)^n, n \ge 0 \\ 0, n < 0 \end{cases}$$

Use the following hints:

For [) T Signals:

$$E = \sum_{n=-\infty}^{\infty} | 2 \sqrt{n} |^{2}$$

$$P = \lim_{N \to \infty} \left[\sum_{n=-N}^{\infty} | 2 \sqrt{n} |^{2} \right]$$

$$\frac{1}{2N+1}$$

>c[n]=4,n>0

Energy Signal:
$$0 < E < \infty$$
 (Finite Total Energy) and $P = 0$ (Zero Average Power)

Power Signal: $0 < P < \infty$ (Finite Average Power) and $E = \infty$ (Infinite Total Energy)

A signal cannot be both an energy signal and a power signal

There can be signals that are neither an energy signal nor a power signal

No physical signal can have infinite energy or infinite average power

$$\begin{array}{c}
E = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} |x[n]|^2 = \sum$$

$$P = \lim_{N \to \infty} \frac{16/15}{2N+1} = 0$$

of $\sum_{N \to \infty} \frac{16/15}{2N+1} = 0$

$$\begin{array}{c} C. & \text{in } \overline{l} = \sqrt{(-1)^n}. \quad 3, \quad n > 0 \\ & \left(U, \quad n < D \right) \end{array}$$

$$F = \sum_{n=0}^{10} q = \infty$$

$$P = \lim_{N \to \infty} \sum_{n=0}^{N} q \qquad \lim_{n \to \infty} \frac{qN}{2N+1}$$

$$= \frac{1}{2N+1}$$

$$= \frac{1}{2N+1}$$

$$= \frac{4.5}{2N+1}$$

$$= \frac{4.5}{2N+1}$$
Signal

Q4: Express the following signal in terms of (a) unit impulse signal, and (b) unit step signal.

Use the mathematical definitions of unit impulse sequence and unit step sequence given below.

Q5: Find the fundamental period for the following digital signals:

$$\bar{x}_1(n) = 4\cos\left(\frac{2\pi n}{5}\right)$$
 $\bar{x}_2(n) = \sin(0.6\pi n + 0.6\pi)$

Note that a sinusoidal discrete signal is periodic if $2\pi/\omega$ equals a rational number, as shown below:

$$\omega N = 2\pi r$$
, $r \rightarrow + ve$ intight
$$\frac{2\pi}{\omega} = \frac{N}{r}$$

In the above, both N and r are positive integers, where N is the period of the digital signal.

$$\omega N = 2\pi x$$

 $\Rightarrow T = \frac{2\pi}{\omega} = \frac{N}{\lambda}$, where $N, x \in \mathbb{Z}^+$

a)
$$T = \frac{2\pi}{\frac{2\pi}{5}} = 5 = \frac{5}{1}$$

b)
$$T = \frac{2\pi}{0.6\pi} = \frac{10}{3}$$

Q6: Find the fundamental period for the following digital signal:

$$\bar{x}(n) = \cos(1.2\pi n + 0.65\pi) - 4\sin(0.9\pi n) + 5\cos(0.5\pi n)$$

Use the following hint, where LCM is the Least Common Multiple. Note that the LCM is the smallest positive integer that is evenly divisible by two or more given numbers.

$$ar{x}_1(n)$$
 $ar{x}_2(n)$ $ar{x}_3(n)$ N_1 N_2 N_3 $ar{x}_4(n) = lpha ar{x}_1(n) + eta ar{x}_2(n) + \gamma ar{x}_3(n)$ $N_4 = LCM(N_1, N_2, N_3)$

You need to show the graphs of each digital signal using MATLAB. Also, plot the graph of the overall signal of $x_4(n)$.

$$\bar{x}_{1}[n]: \frac{2\pi}{1.2\pi} = \frac{5}{3} \implies N_{1} = \frac{5}{3}$$
 $\bar{x}_{2}[n]: \frac{2\pi}{0.9\pi} = \frac{20}{9} \implies N_{2} = 20$
 $\bar{x}_{3}[n]: \frac{2\pi}{0.5\pi} = \frac{4}{1} \implies N_{3} = 4$
 $N_{4} = LCM(5,20,4) = 20$

Q7: Show whether the given digital signals are time-variant or time-invariant.

Part 1: y(n) = x(2n).

Part 2: y(n) = 2n + x(n).

Part 3: y(n) = n.x(n).

Use the given hints.

For a system to be time-invariant:

- 1. It should not have time scaling property
- 2. Added/subtracted term in the system equation should be constant or zero
- 3. Coefficient of terms in the system equation should be constant

$$V[n] = 2n + x[n]$$

$$V[n]$$

YINT = n x [n] is time-variant because the coefficient is not constant

Q8: Show whether the given digital signals are causal or non-casual.

Part 1: y(n) = x(n) - x(n-1). \longrightarrow No $x[n \in \mathbb{Z}^4]$ therefore the signor is Part 2: y(n) = a.x(n). \longrightarrow y[n] is scaled version of present input x[n], therefore it is causal.

Part 3:
$$y(n) = \sum_{k=-\infty}^{n} x(k)$$
. $\rightarrow y[n] = \cdots + x[0] + x[1] + \cdots + x[n-1] + x[n]$

$$y[n] \text{ depends only on values before n and is therefore causal}$$
Part 4: $y(n) = x(n) + 3x(n+4)$. $\rightarrow 3x[n+4]$ depends on a value 4 steps ahead what we carredy have 2 is therefore non-causal.

Part 5: $y(n) = x(n^2)$. $\rightarrow y[-n] = x[n^2]$. Negative values of n depend on factore values, hence, non-causal.

Part 6: y(n) = x(-n). -> y[-1] = x[1], ourput of system at negative values depends on fature values. Therefore non-rassal. Use the given hints.

Causal Systems | Property: Causality

A system is said to be causal if the output of the system at any time n depends only on the present and past inputs, but does not depend on future inputs.

For a causal system.

$$y(n) = F[x(n), x(n-1), x(n-2), ...]$$

The output of a non-causal system depends not only on the present and past inputs, but also on the future inputs.

Q9: Show whether the given digital systems are static system (memoryless) or dynamic (memory) system.

Part 1: $y(n) = [2 + \sin(n - 1)].x(n)$

Part 2: $y(n) = max[x(n), x(n-1), ..., x(-\infty)]$

Part 3: y(n) = x(-n).

Use the given hints.

Memoryless Systems | Property : Memory A discrete-time system is called memoryless if its output at any instant n depends at most on the input sample at the same time, but not on the past or future samples of the input. y(n) = ax(n)Memoryless systems or Static systems $y(n) = nx(n) + bx^3(n)$ Memoryless systems are also called Static systems Memory systems are systems whose outputs also depend on past values of input or output. $y(n) = \sum_{k=0}^{\infty} x(n-k) = x[n-N] + x[n-(N-1)] + \cdots + x[n-1] + x[n]$ Memory system Dynami C System If $0 < N < \infty$, the system is said to have finite memory

Part [: -> Memoryless system because y[n] depends only on a present value of x[n] and is static.

Part 2. -> Suppose x[n]= S[n], then y[n] = | Y n ≥ 0, i.e.
y[i]= x[v], y[2]= x[v],..., y[k]= x[v] V k E I! Through
counterexample, this system has memory and is a dynamic system.

If $N=\infty$, the system is said to have inifinite memory

Part 3: -> given n = -k, y[-k]=x[k] which depends on a non-part value, and hors memory and is a dynamic system.

Q10: Consider the following LTI system, y[k] - 0.8y[k - 1] = x[k].

Part 1:

Find the frequency response of the system, i.e., both the amplitude response and the phase response. Only find the equations and no need to plot them.

Part 2:

Let x[k] = 1 be the input with the frequency response obtained in **Part 1**. Find the system response.

Part 3:

Let $x[k] = \cos{(\frac{\pi}{6}k - 0.4)}$ be the input with the frequency response obtained in **Part 1**. Find the system response.

Part 4:

Let $x(t) = \cos(1500t)$ be the **continuous** input with the frequency response obtained in **Part 1**. Find the system response if we sample the continuous signal every 0.001 seconds.

$$\frac{Y(\omega) - 0.8e^{-j\omega}Y(\omega) = \chi(\omega)}{X(\omega)} = \frac{1}{|-0.8e^{-j\omega}Y(\omega)|} = \frac$$

=> y[k] \$ 1.9828 cos (76h - 1.3159)

$$x[k] = 1$$
 is α |) C signal with $\omega = 0$
 $|H(0)| = \frac{1}{(1-0.8)^2 + 0^2} = \frac{1}{0.2} = 5$
 $A = 1$
 $A =$

X H(w) = - arctan (0.8in(w))

$$x(t) = \cos(1500 t)$$
 sampled every $0.001s$, i.e. $f_s = 1000$ [Part 4] $t = n.T_s$
 $x[n] = \cos(\frac{1500}{1000}.n) = \cos(1.5n)$
 $= \lambda = 1.5$
 $|H(1.5)| = \frac{1}{(1-0.8\cos(1.5))^2} + (0.8\sin(1.5))^2} \sim 0.909$
 $4 + |(1.5)| = -\arctan(\frac{0.8\sin(1.5)}{1-0.8\cos(1.5)}) = -0.7021$
 $y[n] = 0.8093 \cos(1.5n - 0.7021)$

Q11: Explain the general shapes of the amplitude response using the given pole/zero plots.

Part 1:

Part 2:

Use the following hints: |K| Product of distances of zeros to $e^{j\Omega}$ Peahs are approximately at $\Omega=1$. Amplitude response is given by: |V| Product of distances of poles to $e^{j\Omega}$ Peahs are approximately at $\Omega=1$. The want to be as far as possible to a zero K as a close as possible to a pole. We get close to a pole near $\Omega=\frac{\pi}{4}$ which happens to be close to the poles. It $\Omega=\frac{\pi}{4}$ we see the lowest on the amplitude plot because the distance is at a may. Also, at $\Omega=0$ we get to the maximum separation before approaching a new pole, hence the trough.

Part 2: We are close to a pole at approx $\Omega = 0, \pm \frac{12}{5}, \pm \frac{7}{5}$ and a zero at $\Omega = \frac{32}{5}, \pi$. We see great attenuation at the edges where the zeros are located and peoples around $\Omega = \pm 1.2, \pm 0.75$, and Ω all corresponding to the respective values of Ω as we expect. Again, being close to the poles amplifies, while being close to zeros attenuates when we go around the unit circle.

■ The Transfer Function Of A DT LTI System Can Be Written As

$$H(z) = K \frac{(z-z_1)(z-z_2)\cdots(z-z_n)}{(z-\gamma_1)(z-\gamma_2)\cdots(z-\gamma_n)}$$

where z_i and γ_i are Zeros and Poles of the System.

Let $z = e^{j\Omega}$ (i.e evaluate H(z) on the unit circle). This Gives The System Frequency Response

$$H(e^{j\Omega}) = H(\Omega) = K \frac{(e^{j\Omega} - z_1)(e^{j\Omega} - z_2) \cdots (e^{j\Omega} - z_n)}{(e^{j\Omega} - \gamma_1)(e^{j\Omega} - \gamma_2) \cdots (e^{j\Omega} - \gamma_n)}$$

- lacksquare The Quantity $e^{j\Omega}$ Is A Point On the Unit Circle
- The Quantity $e^{j\Omega} z_i$ Is A Vector From z_i to $e^{j\Omega}$
- The Quantity $e^{j\Omega} \gamma_i$ Is A Vector From γ_i to $e^{j\Omega}$
- Use Polar Coordinates To Define

$$r_i e^{j\phi_i} = e^{j\Omega} - z_i$$

and

$$d_i e^{j\theta_i} = e^{j\Omega} - \gamma_i$$

■ The Frequency Response Can Now Be Written As

$$H(\Omega) = K \frac{(r_1 e^{j\phi_1})(r_2 e^{j\phi_2}) \cdots (r_n e^{j\phi_n})}{(d_1 e^{j\theta_1})(d_2 e^{j\theta_2}) \cdots (d_n e^{j\theta_n})}$$

$$= K \frac{r_1 r_2 \cdots r_n}{d_1 d_2 \cdots d_n} e^{j[(\phi_1 + \phi_2 + \cdots + \phi_n) - (\theta_1 + \theta_2 + \cdots + \theta_n)]}$$

■ The Amplitude Response Is

$$|H(\Omega)| = \left| K \frac{(r_1 e^{j\phi_1})(r_2 e^{j\phi_2}) \cdots (r_n e^{j\phi_n})}{(d_1 e^{j\theta_1})(d_2 e^{j\theta_2}) \cdots (d_n e^{j\theta_n})} \right|$$

$$= K \frac{r_1 r_2 \cdots r_n}{d_1 d_2 \cdots d_n}$$

$$= K \frac{\text{product of distances of zeros to } e^{j\Omega}}{\text{product of distances of poles to } e^{j\Omega}}$$

■ The Phase Response Is

$$\angle H(\Omega) = \angle \left(K \frac{(r_1 e^{j\phi_1})(r_2 e^{j\phi_2}) \cdots (r_n e^{j\phi_n})}{(d_1 e^{j\theta_1})(d_2 e^{j\theta_2}) \cdots (d_n e^{j\theta_n})} \right)$$

$$= (\phi_1 + \phi_2 + \cdots + \phi_n)$$

$$- (\theta_1 + \theta_2 + \cdots + \theta_n)$$

$$= \text{sum of zero angles to } e^{j\Omega}$$

$$- \text{sum of pole angles to } e^{j\Omega}$$

 The Amplitude and Phase Response Of A Filter Is Controlled By Its Pole and Zero Locations