

SEQUENCE LISTING

<110> Clark, Janet

<120> METHOD FOR IDENTIFYING COMPOUNDS THAT

AFFECT EXPRESSION OF TRYPTOPHAN HYDROXYLASE ISOFORM 2

<130> 21487YP

<140> 10/576,807

<141> 2006-04-21

<150> PCT/US2004/34619

<151> 2004-10-20

<150> 60/514,268

<151> 2003-10-24

<160> 12

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 447

<212> PRT

<213> Mus musculus

<400> 1

Met Ile Glu Asp Asn Lys Glu Asn Lys Glu Asn Lys Asp His Ser Ser

1 5 10 15
Glu Arg Gly Arg Val Thr Leu Ile Phe Ser Leu Glu Asn Glu Val Gly

20 25 30

Gly Leu Ile Lys Val Leu Lys Ile Phe Gln Glu Asn His Val Ser Leu

5 40 4

Leu His Ile Glu Ser Arg Lys Ser Lys Gln Arg Asn Ser Glu Phe Glu

	50					55					60				
Ile	Phe	Val	Asp	Cys	Asp	Ile	Ser	Arg	Glu	Gln	Leu	Asn	Asp	Ile	Phe
65					70					75					80
Pro	Leu	Leu	Lys	Ser	His	Ala	Thr	Val	Leu	Ser	Val	Asp	Ser	Pro	Asp
				85					90					95	
Gln	Leu	Thr	Ala	Lys	Glu	Asp	Val	Met	Glu	Thr	Val	Pro	Trp	Phe	Pro
			100					105					110		
Lys	Lys	Ile	Ser	Asp	Leu	Asp	Phe	Cys	Ala	Asn	Arg	Val	Leu	Leu	Tyr
		115					120					125			
Gly	Ser	Glu	Leu	Asp	Ala	Asp	His	Pro	Gly	Phe	Lys	Asp	Asn	Val	Tyr
	130					135					140				
Arg	Arg	Arg	Arg	Lys	Tyr	Phe	Ala	Glu	Leu	Ala	Met	Asn	Tyr	Lys	His
145					150					155					160
Gly	Asp	Pro	Ile	Pro	Lys	Ile	Glu	Phe	Thr	Glu	Glu	Glu	Ile	Lys	Thr
				165					170					175	
Trp	Gly	Thr	Ile	Phe	Arg	Glu	Leu	Asn	Lys	Leu	Tyr	Pro	Thr	His	Ala
			180					185					190		
Cys	Arg	Glu	Tyr	Leu	Arg	Asn	Leu	Pro	Leu	Leu	Ser	Lys	Tyr	Cys	Gly
		195					200					205			
Tyr	Arg	Glu	Asp	Asn	Ile	Pro	Gln	Leu	Glu	Asp	Val	Ser	Asn	Phe	Leu
	210					215					220				
Lys	Glu	Arg	Thr	Gly	Phe	Ser	Ile	Arg	Pro	Val	Ala	Gly	Tyr	Leu	Ser
225					230					235					240
Pro	Arg	Asp	Phe	Leu	Ser	Gly	Leu	Ala	Phe	Arg	Val	Phe	His	Cys	Thr
				245					250					255	
Gln	Tyr	Val	Arg	His	Ser	Ser	Asp	Pro	Leu	Tyr	Thr	Pro	Glu	Pro	Asp
			260					265					270		
Thr	Cys	His	Glu	Leu	Leu	Gly	His	Val	Pro	Leu	Leu	Ala	Glu	Pro	Ser
		275					280					285			
Phe	Ala	Gln	Phe	Ser	Gln	Glu	Ile	Gly	Leu	Ala	Ser	Leu	Gly	Ala	Ser
	290					295					300				
Glu	Glu	Thr	Val	Gln	Lys	Leu	Ala	Thr	Cys	Tyr	Phe	Phe	Thr	Val	Glu
305					310					315					320
Phe	Gly	Leu	Cys	Lys	Gln	Asp	Gly	Gln	Leu	Arg	Val	Phe	Gly	Ala	Gly
				325					330					335	
Leu	Leu	Ser	Ser	Ile	Ser	Glu	Leu	Lys	His	Ala	Leu	Ser	Gly	His	Ala
			240					245					2 5 0		

Lys Val Lys Pro Phe Asp Pro Lys Ile Ala Cys Lys Gln Glu Cys Leu 355 360 365 Ile Thr Ser Phe Gln Asp Val Tyr Phe Val Ser Glu Ser Phe Glu Asp 375 380 Ala Lys Glu Lys Met Arg Glu Phe Ala Lys Thr Val Lys Arg Pro Phe 385 390 395 400 Gly Leu Lys Tyr Asn Pro Tyr Thr Gln Ser Val Gln Val Leu Arg Asp 405 410 415 Thr Lys Ser Ile Thr Ser Ala Met Asn Glu Leu Arg Tyr Asp Leu Asp 425

Val Ile Ser Asp Ala Leu Ala Arg Val Thr Arg Trp Pro Ser Val 435 440 445

<210> 2

<211> 488

<212> PRT

<213> Mus musculus

<400> 2

Met Gln Pro Ala Met Met Phe Ser Ser Lys Tyr Trp Ala Arg Arg 5 1 10 15 Gly Leu Ser Leu Asp Ser Ala Val Pro Glu Asp His Gln Leu Leu Gly 20 25 30 Ser Leu Thr Gln Asn Lys Ala Ile Lys Ser Glu Asp Lys Lys Ser Gly 40 45 Lys Glu Pro Gly Lys Gly Asp Thr Thr Glu Ser Ser Lys Thr Ala Val 50 55 60 Val Phe Ser Leu Lys Asn Glu Val Gly Gly Leu Val Lys Ala Leu Arg 75 Leu Phe Gln Glu Lys His Val Asn Met Leu His Ile Glu Ser Arg Arg 90 Ser Arg Arg Arg Ser Ser Glu Val Glu Ile Phe Val Asp Cys Glu Cys 100 105

Gly Lys Thr Glu Phe Asn Glu Leu Ile Gln Leu Leu Lys Phe Gln Thr 115 120 125

Thr Ile Val Thr Leu Asn Pro Pro Glu Ser Ile Trp Thr Glu Glu Glu

	130					135					140				
Asp	Leu	Glu	Asp	Val	Pro	Trp	Phe	Pro	Arg	Lys	Ile	Ser	Glu	Leu	Asp
145					150					155					160
Arg	Cys	Ser	His	Arg	Val	Leu	Met	Tyr	Gly	Thr	Glu	Leu	Asp	Ala	Asp
				165					170					175	
His	Pro	Gly	Phe	Lys	Asp	Asn	Val	Tyr	Arg	Gln	Arg	Arg	Lys	Tyr	Phe
			180					185					190		
Val	Asp	Val	Ala	Met	Gly	Tyr	Lys	Tyr	Gly	Gln	Pro	Ile	Pro	Arg	Val
		195					200					205			
Glu	Tyr	Thr	Glu	Glu	Glu	Thr	Lys	Thr	Trp	Gly	Val	Val	Phe	Arg	Glu
	210					215					220				
Leu	Ser	Lys	Leu	Tyr	Pro	Thr	His	Ala	Cys	Arg	Glu	Tyr	Leu	Lys	Asn
225					230					235					240
Leu	Pro	Leu	Leu	Thr	гуs	Tyr	Cys	Gly	Tyr	Arg	Glu	Asp	Asn	Val	Pro
				245					250					255	
Gln	Leu	Glu	Asp	Val	Ser	Met	Phe	Leu	Lys	Glu	Arg	Ser	Gly	Phe	Thr
			260					265					270		
Val	Arg	Pro	Val	Ala	Gly	Tyr	Leu	Ser	Pro	Arg	Asp	Phe	Leu	Ala	Gly
		275					280					285			
Leu	Ala	Tyr	Arg	Val	Phe	His	Cys	Thr	Gln	Tyr	Val	Arg	His	Gly	Ser
	290					295					300				
Asp	Pro	Leu	Tyr	Thr	Pro	Glu	Pro	Asp	Thr	Cys	His	Glu	Leu	Leu	Gly
305					310					315					320
His	Val	Pro	Leu	Leu	Ala	Asp	Pro	Lys	Phe	Ala	Gln	Phe	Ser	Gln	Glu
				325					330					335	
Ile	Gly	Leu	Ala	Ser	Leu	Gly	Ala	Ser	Asp	Glu	Asp	Val	Gln	Lys	Leu
			340					345					350		
Ala	Thr	Cys	Tyr	Phe	Phe	Thr	Ile	Glu	Phe	Gly	Leu	Cys	ГÀЗ	Gln	Glu
		355					360					365			
Gly	Gln	Leu	Arg	Ala	Tyr	Gly	Ala	Gly	Leu	Leu	Ser	Ser	Ile	Gly	Glu
	370					375					380				
Leu	Lys	His	Ala	Leu	Ser	Asp	Lys	Ala	Cys	Val	Lys	Ser	Phe	Asp	Pro
385					390					395					400
Lys	Thr	Thr	Cys	Leu	Gln	Glu	Cys	Leu	Ile	Thr	Thr	Phe	Gln	Asp	Ala
				405					410					415	
Tyr	Phe	Val	Ser	Asp	Ser	Phe	Glu	Glu	Ala	Lys	Glu	Lys	Met	Arg	Asp
			420					425					430		

 Phe
 Ala
 Lys
 Ser
 Ile
 Thr
 Arg
 Pro
 Phe
 Ser
 Val
 Tyr
 Phe
 Asn
 Arg
 Tyr

 Thr
 435
 1le
 Glu
 Ile
 Leu
 Lys
 Asp
 Thr
 Arg
 Ser
 Ile
 Glu
 Asn
 Val

 Val
 Glu
 Asp
 Leu
 Asp
 Leu
 Asp
 Thr
 Val
 Cys
 Asp
 Ala
 Leu
 Asp

 Val
 Asp
 Leu
 Asp
 Leu
 Asp
 Thr
 Val
 Cys
 Asp
 Ala
 Leu
 Asp

 Asp
 Met
 Asp
 Glu
 Tyr
 Leu
 Gly
 Ile
 I

<210> 3 <211> 219 <212> DNA <213> Artificial Sequence

<220>
<223> TPH2a riboprobe template

<400> 3
gccatgcagc ccgcaatgat gatgttttcc agtaaatact gggccaggag agggttgtcc 60
ttggattctg ctgtgccaga agatcatcag ctacttggca gcttaacaca aaataaggct 120
atcaaaagcg aggacaagaa aagcggcaaa gagcccggca aaggcgacac cacagagagc 180
agcaagacag cagttgtgtt ctccttgaag aatgaagtt 219

<210> 4 <211> 219 <212> DNA <213> Artificial Sequence

<223> TPH2b riboprobe

<220>

<400> 4

gtgaaagcac ttagactatt ccaggaaaaa catgtcaaca tgcttcatat cgaatccagg 60 cggtcccggc gaagaagttc tgaagtcgaa atcttcgtgg actgcgaatg tggcaaaacg 120 gaattcaatg agctcatcca gttgctgaaa tttcagacca ccattgtgac cctgaatccg 180 cctgagagca tttggacgga ggaagaagat ctcgaggat 219

<210> 5
<211> 818
<212> DNA

<213> Artificial Sequence

```
<220>
<223> TPH2c riboprobe
<400> 5
atgcagcccg caatgatgat gttttccagt aaatactggg ccaggagagg gttgtccttg 60
gattetgetg tgecagaaga teateageta ettggeaget taacacaaaa taaggetate 120
aaaagcgagg acaagaaaag cggcaaagag cccggcaaag gcgacaccac agagagcagc 180
aagacagcag ttgtgttctc cttgaagaat gaagttggtg ggctggtgaa agcacttaga 240
ctattccagg aaaaacatgt caacatgctt catatcgaat ccaggcggtc ccggcgaaga 300
agttctaagt cgaaatcttc gtggactgcg aatgtggcaa aacggaattc aatgagctca 360
tccagttgct gaaatttcag accaccattg tgaccctgaa tccgcctgag agcatttgga 420
cggaggaaga agatctcgag gatgtgccgt ggttccctcg gaagatctct gagttagaca 480
gatgetetea cegagteete atgtaeggea cegagettga tgeegaecat ceaggattta 540
aggacaatgt ctatcgacag aggaggaagt attttgtgga tgtggccatg ggctataaat 600
atggtcagcc cattcccagg gtcgagtaca cagaagaaga gactaaaact tggggtgttg 660
tgttccggga gctctccaaa ctctacccga ctcatgcttg ccgggagtac ctgaaaaacc 720
tececetget gaccaagtae tgtggetaca gggaagacaa egtgeegeaa etggaagaeg 780
tctccatgtt tctgaaagag cgatctggct tcacagtg
                                                                  818
<210> 6
<211> 842
<212> DNA
<213> Artificial Sequence
<220>
<223> TPH2-892 riboprobe ·
<400> 6
gaattcacgg aagaagagat taagacctgg gggaccatct tccgagagct aaacaaactc 60
tacccgaccc acgcctgcag ggagtacctc agaaacctcc ctttgctctc aaaatactgt 120
ggctatcggg aagacaacat cccgcaactg gaggatgtct ccaacttttt aaaagaacgc 180
```

<211> 22

actgggtttt ccatccgtcc tgtggctggt tacctctcac cgagagattt tctgtcgggg 240 ttagectttc gagtetttca etgeactcag tatgtgagac acagttcaga teceetctac 300 actocagage cagacacetg ccatgaacte ctaggecaeg tteetetett ggetgaacee 360 agttttgctc aattctccca agaaattggc ctggcttccc ttggagcttc agaggagaca 420 gttcaaaaac tggcaacgtg ctactttttc actgtggagt ttgggctgtg caaacaagat 480 ggacagetga gagtetttgg ggeeggettg etttetteea teagtgaaet eaaacatgea 540 ctttctggac atgccaaagt caagccttt gatcccaaga ttgcctgtaa acaggaatgt 600 ctcatcacga gcttccagga tgtctacttt gtatctgaga gctttgaaga tgcaaaggag 660 aagatgagag aatttgccaa gaccgtgaag cgcccgtttg gactgaagta caacccgtac 720 acacagagtg ttcaggttct cagagacacc aagagcataa ctagtgccat gaatgagttg 780 cggtagacct tgatgtcatc agtgatgccc tcgctagggt caccaggtgg cccagtgtgt 840 842 ga <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Murine TPH2 forward primer mTPH2-514F <400> 7 gaccaccatt gtgaccctga at 22 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Murine TPH2 forward primer mTPH2-1270F <400> 8 ttcgtccatc ggagaattga a 21 <210> 9

<220>

<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Murine TPH2 reverse primer mTPH2-585R	
<400> 9	
gaccaccatt gtgaccctga at	22
<210> 10	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Murine TPH2 reverse primer mTPH2-1344R	
<400> 10	
caggtcgtct ttgggtcaaa g	21
<210> 11	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Murine TPH2 probe mTPH2-565T	
<400> 11	
ttetteetee gteeaaatge teteagg	27
<210> 12	
<211> 26	
<212> DNA	
<213> Artificial Sequence	

<223> Murine TPH2 probe mTPH2-1292T

<400> 12

catgctcttt ccgacaaggc gtgtgt

26