Содержание

- 1 Скачай библиотеки
- 2 Импорты
- ▼ 3 Визуализация координат
 - 3.1 Создание точек роутеров на карте
 - 3.2 Создание линий на карте
 - 3.3 Очистка router network от координат, не входящих в площадь
 - 3.4 Инициализация точек и дорог на одной карте
- ▼ 4 Прогонка небольших логов wifi logs 2022 12 01 202312081829
 - 4.1 Heatmap лога
 - 4.2 Проверка картины на соответствие с id & mac
 - 4.3 Дадим каждому роутеру название улицы
- ▼ <u>5 Отношение дорог одностороннего движение к двустороннему</u>
 - 5.1 Инициализация дорог одностороннего движения
 - 6 Чтение файла с логами за 2023-03-07 : 2023-03-13
- ▼ 7 График загруженности по последнему мартовскому логу
 - 7.1 Замена тас на название улицы
 - 7.2 heatmap в динамике
 - 7.3 Изменения дорожно-транспортной ситуации с течением времени на основе пер
 - 7.4 Разбивка загруженности по категориальным данным
 - 7.5 Проверка среднего времени пребывания на роутерах
- ▼ 8 Итоги
 - 8.1 Провести разведочный анализ данных (EDA Exploratory data analysis). Проана
 - 8.2 Составить матрицу перемещений/спроса с расчётом среднего времени поездкі
 - 8.3 Предоставить замечания/комментарии, если такие появятся, к расположение V

Ввод [1]: import pandas as pd

import folium

from shapely.geometry import Point

from shapely.geometry.polygon import Polygon

import seaborn as sns

from tqdm import tqdm

import matplotlib.pyplot as plt

from datetime import datetime

import plotly.graph_objects as go

import numpy as np

import plotly.express as px

import ipywidgets as widgets

from IPython.display import display

from ipywidgets import interact

1 Скачай библиотеки

```
Ввод [2]: #!pip install tqdm
#!pip install folium
#!pip install shapely
#!pip install plotly
```

2 Импорты

```
= pd.read_csv('wifi_routers.csv', sep = ';')
Ввод [3]:
Ввод [4]:
  Out[4]:
                   guid
                                                                               address json
                                               geom
                   0648078a-9d45-4577-af14-
                                                                                   {"rus": "г. Тула, Октябрьская
               0
                                                 POINT (37.618886 54.204617)
                                12b49e8f017b
                                                                                           ул. - ул. Демидо...
                   6422a0a5-2c2d-4610-bebc-
                                                    POINT (37.5826629190378
                                                                                  {"rus": "г. Тула, ул. Болдина -
                               91722ea37827
                                                           54.1688958982062)
                                                                                            Оружейная ул."...
                   b17aefd3-8431-4054-a0b5-
                                                    POINT (37.5931054621157
                                                                                 {"rus": "г. Тула, Первомайская
               2
                               b0a26eeb9f14
                                                           54.1854456631672)
                                                                                             ул. – ул. Фрунз...
                     92c1cc9e-cfa4-4ef0-91f0-
                                                    POINT (37.5726628595483
                                                                                 {"rus": "г. Тула, ул. 9-мая – ул.
               3
                                c0a158f547e7
                                                           54.1691301221863)
                                                                                               Макаренко", ...
                    f0058c02-034f-429a-b932-
                                                    POINT (37.6230252453024
                                                                                      {"rus": "г. Тула, Аэропорт
                               8638089d8718
                                                           54.2347433816421)
                                                                                         (Октябрьская ул., 2...
                   37cea6a6-eaaa-4e12-9b4b-
                                                                                {"rus": "г. Тула, Советская ул. –
                                                 POINT (37.616479 54.191903)
                               b444163a2cc8
                                                                                               пр-т Ленина"...
                   07190dec-be71-44a2-8d64-
                                                                                   {"rus": "г. Тула, Октябрьская
                                                   POINT (37.622509 54.2128)
                               c24fb51ebc7b
                                                                                           ул. - ул. Максим...
                    0-000404 7744 400- 0074
                                                                                ("m.o", "- Type Constance ye
```

Ввод [5]: rn = pd.read_csv('road_network.csv', sep = ';')

Ввод [6]: rn

Out[6]:

	geom	from_vertex_id	to_vertex_id	weight	was_one_way	group_ic
0	LINESTRING (37.081866 54.504539,37.081866 54.5	3652	3650	17.841263	False	42993.0
1	LINESTRING (38.207016 53.963469,38.207077 53.9	58925	69671	46.891587	False	NaN
2	LINESTRING (38.207016 53.963469,38.207077 53.9	58925	69510	60.111670	False	NaN
3	LINESTRING (37.101248 54.581554,37.101109 54.5	248317	248315	19.512979	False	NaN
4	LINESTRING (37.113535 54.50601,37.11351 54.506	24102	24100	6.462459	False	41418.0
349748	LINESTRING (37.658182 54.237703,37.658616 54.2	298532	298534	90.974444	False	38000.0
349749	LINESTRING (38.73984 54.273241,38.740602 54.27	138623	138621	172.788779	False	NaN
349750	LINESTRING (38.446588 54.061748,38.44644 54.06	100230	100232	33.078981	False	NaN
349751	LINESTRING (37.982225 53.900182,37.98195 53.90	256839	256837	92.553325	False	NaN
349752	LINESTRING (37.887381 54.542572,37.887218 54.5	194509	194507	22.617343	False	NaN
349753	rows × 6 columns					
<						>

3 Визуализация координат

3.1 Создание точек роутеров на карте

```
wr['clean_geom'] = wr['geom'].str.replace('POINT', '')
Ввод [7]:
          wr['clean_geom']
  Out[7]: 0
                                (37.618886 54.204617)
          1
                  (37.5826629190378 54.1688958982062)
          2
                  (37.5931054621157 54.1854456631672)
                  (37.5726628595483 54.1691301221863)
          4
                  (37.6230252453024 54.2347433816421)
          5
                                (37.616479 54.191903)
          6
                                   (37.622509 54.2128)
          7
                                 (37.611688 54.195984)
          8
                                (37.625018 54.218076)
          9
                                (37.622566 54.189654)
          10
                                  (37.604794 54.18133)
          11
                                 (37.614096 54.193204)
          12
                  (37.6286864157148 54.2276569624141)
          13
                  (37.6245072514748 54.2333462654037)
          14
                                  (37.67935 54.219052)
          15
                  (37.6182365086987 54.2413214831852)
          16
                                (37.627888 54.191341)
          17
                  (37.6119371506259 54.2491761841739)
          18
                                (37.625265 54.190082)
                                   /27 (20044 E4 2404)
          wr['clean_geom'] = wr['clean_geom'].replace({'\(': ' ', '\)': ' '}, regex=Tr
```

```
Ввод [9]:
          wr['clean_geom']
  Out[9]: 0
                                 37.618886 54.204617
                   37.5826629190378 54.1688958982062
           1
           2
                   37.5931054621157 54.1854456631672
           3
                   37.5726628595483 54.1691301221863
           4
                   37.6230252453024 54.2347433816421
           5
                                  37.616479 54.191903
           6
                                    37.622509 54.2128
           7
                                  37.611688 54.195984
           8
                                  37.625018 54.218076
          9
                                 37.622566 54.189654
          10
                                   37.604794 54.18133
                                  37.614096 54.193204
           11
           12
                   37.6286864157148 54.2276569624141
          13
                   37.6245072514748 54.2333462654037
          14
                                   37.67935 54.219052
           15
                   37.6182365086987 54.2413214831852
          16
                                  37.627888 54.191341
          17
                   37.6119371506259 54.2491761841739
           18
                                  37.625265 54.190082
           19
                                    37.620844 54.2101
           20
                   37.5855121948686 54.1714546891764
          21
                   37.5799264475165 54.1666267574838
          22
                   37.5754334510529 54.1718766491252
           23
                                  37.619014 54.191034
           24
                   37.5946593824111 54.1646166190679
           25
                   37.5974766750285 54.1839287967087
           26
                                  37.619966 54.208412
           27
                                  37.614644 54.200674
          28
                                 37.619182 54.205679
          Name: clean_geom, dtype: object
```

```
Ввод [10]: map = folium.Map()

for index, row in wr.iterrows():
    location = [float(coord) for coord in row['clean_geom'].strip('[]').spli location.reverse() # Изменяем порядок координам marker = folium.Marker(location=location, popup=f'Location {index}') marker.add_to(map)

map
```

Out[10]: Make this Notebook Trusted to load map: File -> Trust Notebook

3.2 Создание линий на карте

```
Ввод [11]: import re

# Преобразуем каждую строку в колонке geom в список координат

rn['coords'] = rn['geom'].apply(lambda x: [[float(i) for i in coord.split()]

# Получаем список всех координат из столбца coords

line_coords = [coord for sublist in rn['coords'] for coord in sublist]
```

```
Ввод [12]: rn['flipped_geom'] = rn['geom'].apply(lambda x: ','.join([' '.join(coord.spl
           rn['flipped_geom']
                                                                                       >
 Out[12]: 0
                     54.504539 37.081866,54.50443 37.081866,54.5043...
           1
                     53.963469 38.207016,53.963733 38.207077,53.963...
                     53.963469 38.207016,53.963733 38.207077,53.963...
           2
           3
                     54.581554 37.101248,54.581603 37.101109,54.581...
                     54.50601 37.113535,54.506036 37.11351,54.50605...
           349748
                     54.237703 37.658182,54.238107 37.658616,54.238...
           349749
                     54.273241 38.73984,54.2746 38.740602,54.274707...
           349750
                     54.061748 38.446588,54.061882 38.44644,54.0619...
                     53.900182 37.982225,53.900393 37.98195,53.9008...
           349751
           349752
                     54.542572 37.887381,54.542527 37.887218,54.542...
           Name: flipped_geom, Length: 349753, dtype: object
Ввод [13]:
           del map
```

Ввод [14]: # import folium from folium.plugins import MiniMap from tqdm import tqdm # Создание основной карты m = folium.Map(location=[54.5, 37], zoom_start=12) # Добавление линий на основную карту с прогрессбаром for i in tqdm(range(len(rn['flipped_geom'])), desc='Добавление линий'): if i % 20 == 0: line = rn['flipped_geom'][i] coords = [list(map(float, point.split(' '))) for point in line.lstri folium.PolyLine(locations=coords, color='blue').add_to(m) # Создание мини-карты mini_map = MiniMap() m.add_child(mini_map) # Отображение основной карты m

Добавление линий: 100%| **100%| 100%**

Out[14]:

3.3 Очистка router network от координат, не входящих в площадь

```
Ввод [15]: rn['cleaned_geom'] = [item.split(",")[0].strip() for item in rn['flipped_geo
           rn['cleaned_geom']
 Out[15]: 0
                     54.504539 37.081866
           1
                     53.963469 38.207016
           2
                     53.963469 38.207016
           3
                     54.581554 37.101248
                      54.50601 37.113535
           349748
                     54.237703 37.658182
           349749
                      54.273241 38.73984
           349750
                     54.061748 38.446588
           349751
                     53.900182 37.982225
           349752
                     54.542572 37.887381
           Name: cleaned_geom, Length: 349753, dtype: object
Ввод [16]: rn['cleaned_geom'] = rn['cleaned_geom'].str.replace(' ', ',')
Ввод [17]:
Ввод [18]: rn['cleaned_geom']
 Out[18]: 0
                     54.504539,37.081866
           1
                     53.963469,38.207016
           2
                     53.963469,38.207016
                     54.581554,37.101248
                      54.50601,37.113535
           349748
                     54.237703,37.658182
           349749
                      54.273241,38.73984
           349750
                     54.061748,38.446588
                     53.900182,37.982225
           349751
           349752
                     54.542572,37.887381
           Name: cleaned_geom, Length: 349753, dtype: object
```

```
Ввод [19]:
           # Создание полигона для квадрата
           square_coords = [(37.70902904943893, 54.25855193504911),
                            (37.56590025352726, 54.25855193504911),
                            (37.56590025352726, 54.167450582590305),
                            (37.70902904943893, 54.167450582590305)]
           polygon = Polygon(square_coords)
           # Функция для проверки, находится ли точка внутри полигона
           def point_inside_square(coord):
                   lat, lon = map(float, coord.split(',')) # Разделяем строку координа
                   point = Point(lon, lat) # Создаем объект точки
                   return polygon.contains(point) # Проверяем, находится ли точка внут
           # Применение функции к столбцу cleaned_geom
           rn['is_inside_square'] = rn['cleaned_geom'].apply(point_inside_square)
           # Удаление строк, для которых is inside square равно False
           rn = rn[rn['is_inside_square']]
```

Ввод [20]:

Out[20]:

€

	geom	from_vertex_id	to_vertex_id	weight	was_one_way	group
15	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	24602	158.805103	False	N
16	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	62722	207.237527	False	Ν
17	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	24601	158.519475	False	Ν
25	LINESTRING (37.599466 54.211929,37.59949 54.21	129918	129920	7.188256	False	4034

```
Ввод [21]: rn['is_inside_square'] = rn['cleaned_geom'].apply(point_inside_square)

# Удаление строк, для которых is_inside_square равно False
rn = rn[rn['is_inside_square']]
```

C:\Users\Ruslan\AppData\Local\Temp\ipykernel_15448\4179812677.py:1: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

rn['is_inside_square'] = rn['cleaned_geom'].apply(point_inside_square)

Ввод [22]: rn.reset_index()

Out[22]:

	index	geom	from_vertex_id	to_vertex_id	weight	was_one_way (
0	15	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	24602	158.805103	False			
1	16	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	62722	207.237527	False			
2	17	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	24601	158.519475	False			
3	25	LINESTRING (37.599466 54.211929,37.59949 54.21	129918	129920	7.188256	False			
4	62	LINESTRING (37.590964 54.192815,37.591059 54.1	262461	262459	16.193512	False			
25562	349711	LINESTRING (37.660305 54.204487,37.660334 54.2	16501	16503	16.716789	False			
25563	349742	LINESTRING (37.585576 54.187689,37.584933 54.1	1518	1520	96.022967	False			
25564	349743	LINESTRING (37.585576 54.187689,37.584933 54.1	1518	1530	106.381193	False			
25565	349745	LINESTRING (37.688395 54.234531,37.688325 54.2	288258	288260	20.798847	False			
25566	349748	LINESTRING (37.658182 54.237703,37.658616 54.2	298532	298534	90.974444	False			
25567	25567 rows × 11 columns								

localhost:8888/notebooks/Exploratory_analysis_of_data_from_Wi-Fi _routers_2023.ipynb

```
Ввод [23]: rn['flipped_geom'] = rn['geom'].apply(lambda x: ','.join([' '.join(coord.spl
             rn['flipped_geom'].reset_index()
                                                                                                       >
  Out[23]:
                     index
                             flipped_geom
                         15 54.200393 37.686139,54.20105 37.687477,54.2007...
                  1
                         16 54.200393 37.686139,54.20105 37.687477,54.2015...
                  2
                         17 54.200393 37.686139,54.20105 37.687477,54.2013...
                  3
                         25 54.211929 37.599466,54.211924 37.59949,54.2119...
                         62 54.192815 37.590964,54.192822 37.591059,54.192...
                  4
              25562 349711 54.204487 37.660305,54.204468 37.660334,54.204...
              25563 349742 54.187689 37.585576,54.187356 37.584933,54.187...
              25564 349743 54.187689 37.585576,54.187356 37.584933,54.187...
              25565 349745 54.234531 37.688395,54.234653 37.688325,54.234...
              25566 349748 54.237703 37.658182,54.238107 37.658616,54.238...
Ввод [24]:
             rn = rn.reset_index(drop=True)
```

```
Ввод [25]: m = folium.Map(location=[54.19, 37.62], zoom_start=12)
           # Добавление линий на карту с прогрессбаром
           for i in tqdm(range(len(rn['flipped_geom'])), desc='Добавление линий'):
               #if i % 20 == 0:
                   line = rn['flipped_geom'][i]
                   coords = [list(map(float, point.split(' '))) for point in line.lstri
                   folium.PolyLine(locations=coords, color='blue').add_to(m)
           for index, row in wr.iterrows():
               location = [float(coord) for coord in row['clean_geom'].strip('[]').spli
               location.reverse() # Изменяем порядок координат
               marker = folium.Marker(location=location, popup=f'Location {index}')
               circle = folium.CircleMarker(location=location, radius=20, color='red',
               marker.add_to(m)
               circle.add_to(m)
           # Отображение карты
           m
```

Добавление линий: 100%| **100%** | 17388.23it/s]

Out[25]:

3.4 Инициализация точек и дорог на одной карте

```
m = folium.Map(location=[54.19, 37.62], zoom_start=12)
# Добавление линий на карту с прогрессбаром
for i in tqdm(range(len(rn['flipped_geom'])), desc='Добавление линий'):
    #if i % 20 == 0:
        line = rn['flipped_geom'][i]
        coords = [list(map(float, point.split(' '))) for point in
line.lstrip('LINESTRING (').rstrip(')').split(',')]
        folium.PolyLine(locations=coords, color='blue').add_to(m)

    #_____
for index, row in wr.iterrows():
```

```
location = [float(coord) for coord in
row['clean_geom'].strip('[]').split()]
    location.reverse() # Изменяем порядок координат
    marker = folium.Marker(location=location, popup=f'Location {index}')
    marker.add_to(m)
# Отображение карты
m
```

4 Прогонка небольших логов wifi_logs_2022_12_01_202312081829

```
Ввод [26]: df1 = pd.read_csv('wifi_logs_2022_12_01_202312081829.csv', sep = ';')
```

Ввод [27]: df1

Out[27]:

	guid	tm	router_mac	user_mac	signal	router_id
0	1a25652b- f346-4ffb- aec3- 295ecf08fd97	2022-12-01 03:00:03.000 +0300	CC:2D:E0:82:B8:DD	0E:AC:4A:34:2A:F1	-68.0	cdcab1i cc3a-46 ae! 024216190a
1	f250e9af- 498e-42e7- 9439- 7a82473b829a	2022-12-01 03:00:09.000 +0300	CC:2D:E0:82:B9:07	56:36:9B:28:28:F8	-67.0	8a823fi 771f-42i 89 928cba314a
2	525c9f06-fc70- 426e-81b3- ed96497b6f01	2022-12-01 03:00:10.000 +0300	CC:2D:E0:82:B9:07	E0:63:DA:DC:D8:49	-61.0	8a823fi 771f-42i 89 928cba314a
3	cf66e62d- a621-4aed- a46a- b6bc135ce766	2022-12-01 03:00:14.000 +0300	CC:2D:E0:82:B9:07	1C:15:1F:CA:88:EE	-70.0	8a823fl 771f-42l 89 [°] 928cba314a
4	d3554553- 5555-4cfd- 8d01- 3f56fea0a589	2022-12-01 03:00:17.000 +0300	CC:2D:E0:82:B9:40	D0:37:45:C1:E1:1E	-66.0	3d9490 fb08-4c 80 ca744a6d9a
		•••	•••			
463699	a9e0a25f- 0ae0-46c1- 8dba- 6d9c7b52eb9e	2022-12-02 02:59:57.000 +0300	48:8F:5A:AC:81:1D	3C:84:6A:4F:1A:54	-72.0	8a7346 e451-4fi 8b: 3b3b46e334
463700	79af3fc4-f500- 46b0-8e3c- 66787e31b158	2022-12-02 02:59:57.000 +0300	48:8F:5A:AC:81:1D	C8:3A:35:EA:DD:31	-75.0	8a7346 e451-4fi 8b: 3b3b46e334
463701	fcc9465e-c40f- 491d-8de4- 36a7da784a20	2022-12-02 02:59:59.000 +0300	48:8F:5A:AC:81:1D	B0:95:75:DA:D6:00	-70.0	8a7346 e451-4f 8b 3b3b46e334
463702	2f287ac9- 0581-4103- 9028- f37d47dc7263	2022-12-02 02:59:23.000 +0300	CC:2D:E0:F3:8C:6E	F8:34:41:CD:71:07	-69.0	0b91ef 3b4f-4a: b3; 9683c6fd78
463703	03595db5- 4efb-40a1- 8851- 82652a5c6d3d	2022-12-02 02:59:26.000 +0300	CC:2D:E0:F3:8C:6E	A6:4C:84:74:9A:1D	-73.0	0b91ef 3b4f-4a; b3; 9683c6fd78
463704	rows × 6 colum	nns				

€

Ввод [28]: df1.dtypes

Out[28]: guid

object object router_mac object object user_mac signal float64 router_id object dtype: object

>

```
Ввод [29]: df1['tm'] = pd.to_datetime(df1['tm'], format='%Y-%m-%d %H:%M:%S.%f %z') df1['tm'] = df1['tm'].dt.round('H')
```

Ввод [30]: df1

Out[30]:

	guid	tm	router_mac	user_mac	signal	router_id				
0	1a25652b- f346-4ffb- aec3- 295ecf08fd97	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B8:DD	0E:AC:4A:34:2A:F1	-68.0	cdca cc3a- 02421619				
1	f250e9af- 498e-42e7- 9439- 7a82473b829a	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B9:07	56:36:9B:28:28:F8	-67.0	8a82 771f- 928cba31				
2	525c9f06-fc70- 426e-81b3- ed96497b6f01	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B9:07	E0:63:DA:DC:D8:49	-61.0	8a82 771f 928cba31				
3	cf66e62d- a621-4aed- a46a- b6bc135ce766	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B9:07	1C:15:1F:CA:88:EE	-70.0	8a82 771f- 928cba31				
4	d3554553- 5555-4cfd- 8d01- 3f56fea0a589	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B9:40	D0:37:45:C1:E1:1E	-66.0	3d94 fb08- ca744a6c				
463699	a9e0a25f- 0ae0-46c1- 8dba- 6d9c7b52eb9e	2022-12-02 03:00:00+03:00	48:8F:5A:AC:81:1D	3C:84:6A:4F:1A:54	-72.0	8a73- e451- 3b3b46e3				
463700	79af3fc4-f500- 46b0-8e3c- 66787e31b158	2022-12-02 03:00:00+03:00	48:8F:5A:AC:81:1D	C8:3A:35:EA:DD:31	-75.0	8a73- e451- 3b3b46e3				
463701	fcc9465e-c40f- 491d-8de4- 36a7da784a20	2022-12-02 03:00:00+03:00	48:8F:5A:AC:81:1D	B0:95:75:DA:D6:00	-70.0	8a73- e451- 3b3b46e3				
463702	2f287ac9- 0581-4103- 9028- f37d47dc7263	2022-12-02 03:00:00+03:00	CC:2D:E0:F3:8C:6E	F8:34:41:CD:71:07	-69.0	0b91 3b4f- 9683c6fc				
463703	03595db5- 4efb-40a1- 8851- 82652a5c6d3d	2022-12-02 03:00:00+03:00	CC:2D:E0:F3:8C:6E	A6:4C:84:74:9A:1D	-73.0	0b91 3b4f- 9683c6fc				
463704	163704 rows × 6 columns									

<

>

4.1 **Heatmap** лога

```
ВВОД [31]: # Сначала сгруппируем данные grouped_data = df1.groupby(['router_id', 'tm'])['user_mac'].count().reset_in pivot_table = grouped_data.pivot(index='router_id', columns='tm', values='us # Теперь построим тепловую карту plt.figure(figsize=(12, 8)) sns.heatmap(pivot_table, cmap='YlGnBu') plt.title('Нагрузка на router_id в каждый момент времени') plt.show()
```



```
Ввод [32]: df1.groupby(['router_mac', 'tm'])['user_mac'].count()
 Out[32]: router_mac
           48:8F:5A:AC:81:1D
                               2022-12-01 03:00:00+03:00
                                                             1813
                               2022-12-01 04:00:00+03:00
                                                             3628
                               2022-12-01 05:00:00+03:00
                                                             3526
                               2022-12-01 06:00:00+03:00
                                                             3488
                               2022-12-01 07:00:00+03:00
                                                             4078
           CC:2D:E0:F3:8C:6E
                               2022-12-01 23:00:00+03:00
                                                             1243
                               2022-12-02 00:00:00+03:00
                                                              756
                               2022-12-02 01:00:00+03:00
                                                              455
                               2022-12-02 02:00:00+03:00
                                                              403
                               2022-12-02 03:00:00+03:00
                                                              143
           Name: user_mac, Length: 225, dtype: int64
```

4.2 Проверка картины на соответствие с id & mac

```
Ввод [33]: # Сначала сгруппируем данные grouped_data = df1.groupby(['router_mac', 'tm'])['user_mac'].count().reset_i pivot_table = grouped_data.pivot(index='router_mac', columns='tm', values='u # Теперь построим тепловую карту plt.figure(figsize=(12, 8)) sns.heatmap(pivot_table, cmap='YlGnBu') plt.title('Нагрузка на router_mac в каждый момент времени') plt.show()
```



```
Ввод [34]: wr['address_json'].loc[0]

Out[34]: '{"rus": "г. Тула, Октябрьская ул. - ул. Демидовская плотина (Оружейный пе р.)", "tur": "No TUR", "usa": "No USA"}'

Ввод [35]: wr['address_json'] = wr['address_json'].str.split('", "').str[0]

Ввод [36]: wr['address_json'] = wr['address_json'].str.split('": "').str[1]
```

```
Ввод [37]: wr['address_json'].unique()
 Out[37]: array(['г. Тула, Октябрьская ул. – ул. Демидовская плотина (Оружейный пе
           p.)',
                   'г. Тула, ул. Болдина - Оружейная ул.',
                   'г. Тула, Первомайская ул. – ул. Фрунзе',
                   'г. Тула, ул. 9-мая - ул. Макаренко',
                   'г. Тула, Аэропорт (Октябрьская ул., 250)',
                   'г. Тула, Советская ул. – пр-т Ленина',
                   'г. Тула, Октябрьская ул. – ул. Максима Горького',
                   'г. Тула, Советская ул. - Красноармейский пр-т',
                   'г. Тула, Октябрьская ул. – ул. Пузакова',
                   'г. Тула, Советская ул. – Оборонная ул.',
                   'г. Тула, пр-т Ленина - Первомайская ул.'
                   'г. Тула, Советская ул. – ул. Фридриха Энгельса',
                   'г. Тула, Октябрьская ул. – ул. Неман Н.',
                   'г. Тула, Октябрьская ул. – ул. Судейского',
                   'г. Тула, ул. Щегловская Засека, д. 5',
                   'г. Тула, Октябрьская ул. – ул. Карпова',
                   'г. Тула, Советская ул. – ул. Дзержинского',
                   'г. Тула, Октябрьская ул. – Большая ул.',
          wr.groupby('geom')['address_json'].count()
Ввод [38]:
 Out[38]: geom
           POINT (37.5726628595483 54.1691301221863)
                                                          1
           POINT (37.5754334510529 54.1718766491252)
                                                          1
           POINT (37.5799264475165 54.1666267574838)
                                                          1
           POINT (37.5826629190378 54.1688958982062)
           POINT (37.5855121948686 54.1714546891764)
           POINT (37.5931054621157 54.1854456631672)
           POINT (37.5946593824111 54.1646166190679)
                                                          1
           POINT (37.5974766750285 54.1839287967087)
           POINT (37.604794 54.18133)
                                                          1
           POINT (37.611688 54.195984)
                                                          1
           POINT (37.6119371506259 54.2491761841739)
                                                          1
           POINT (37.614096 54.193204)
                                                          1
           POINT (37.614644 54.200674)
                                                          1
           POINT (37.616479 54.191903)
                                                          1
           POINT (37.6182365086987 54.2413214831852)
           POINT (37.618886 54.204617)
                                                          1
           POINT (37.619014 54.191034)
                                                          1
           POINT (37.619182 54.205679)
                                                          1
```

```
Ввод [39]: wr['guid']
 Out[39]: 0
                 0648078a-9d45-4577-af14-12b49e8f017b
           1
                  6422a0a5-2c2d-4610-bebc-91722ea37827
           2
                  b17aefd3-8431-4054-a0b5-b0a26eeb9f14
           3
                 92c1cc9e-cfa4-4ef0-91f0-c0a158f547e7
                  f0058c02-034f-429a-b932-8638089d8718
           4
           5
                  37cea6a6-eaaa-4e12-9b4b-b444163a2cc8
           6
                  07190dec-be71-44a2-8d64-c24fb51ebc7b
           7
                  8a823f01-771f-420e-8971-928cba314a24
           8
                  8a734674-e451-4fe1-8b50-3b3b46e334a1
           9
                  cdcab165-cc3a-460f-ae99-024216190ab1
                  64642101-76de-4d38-9a09-c595b0c310d5
           10
                  b42c687a-0dc2-49d1-9d6e-0d9e514d29bf
           11
                 4cf88651-6c76-46a4-80d0-5dea3e5bcce2
           12
                  7a04763d-e3ba-4e45-b1df-1d322a449030
           13
           14
                  4deed344-b28a-4ecb-818e-252e4fc70a97
           15
                  86b9b151-ae96-45b1-97b2-20558726245c
                  3d9490f4-fb08-4c4c-80ec-ca744a6d9ab4
           16
           17
                  be579fae-23ff-48ed-a400-0691c6075faa
           18
                 7080fd33-a510-4b1a-af7e-99fb5abc29d7
           df1.groupby('router_mac')['router_id'].nunique()
Ввод [40]:
 Out[40]: router_mac
           48:8F:5A:AC:81:1D
                                 1
           48:8F:5A:AE:A1:27
                                 1
           48:8F:5A:AE:A1:D9
                                 1
           B8:69:F4:6B:FD:E9
                                 1
           CC:2D:E0:10:F0:32
                                 1
           CC:2D:E0:82:B8:DD
                                 1
           CC:2D:E0:82:B9:07
                                 1
           CC:2D:E0:82:B9:40
                                 1
           CC:2D:E0:F3:8C:6E
                                 1
           Name: router_id, dtype: int64
```

Ввод [41]: df1[df1['router_id'] == '0648078a-9d45-4577-af14-12b49e8f017b']

Out[41]:

	guid	tm	router_mac	user_mac	signal	router_id			
34	605990ad- a4a3-4327- ac2e- 793500068a07	2022-12-01 03:00:00+03:00	48:8F:5A:AE:A1:D9	68:D7:9A:A2:74:60	-69.0	064807 9d45-4{ a 12b49e8f0			
35	d7bad818- 1471-4db6- a29f- 62cb44de8f36	2022-12-01 03:00:00+03:00	48:8F:5A:AE:A1:D9	46:D5:F2:29:ED:8C	-64.0	064807 9d45-4{ a 12b49e8f0			
36	31334b4f- e6d3-47a3- 84aa- 13d03effa3f5	2022-12-01 03:00:00+03:00	48:8F:5A:AE:A1:D9	6C:5A:B0:A1:DB:8E	-68.0	064807 9d45-4{ a 12b49e8f0			
95	651a0be7- e685-4d91- b14c- 4c7e69af2072	2022-12-01 03:00:00+03:00	48:8F:5A:AE:A1:D9	68:D7:9A:A2:74:60	-69.0	064807 9d45-4{ a 12b49e8f0			
96	0066ae6d- f742-4c84- 800e- 7f235ab01053	2022-12-01 03:00:00+03:00	48:8F:5A:AE:A1:D9	46:D5:F2:29:ED:8C	-64.0	064807 9d45-4{ a 12b49e8f0			
463658	14f3caf8-f4c3- 40fa-a05c- a196039f9a0b	2022-12-02 03:00:00+03:00	48:8F:5A:AE:A1:D9	6C:5A:B0:A1:DB:8E	-68.0	064807 9d45-4 a 12b49e8f0			
463659	b7776026- 6c56-4498- a344- 0205b3b3e82c	2022-12-02 03:00:00+03:00	48:8F:5A:AE:A1:D9	68:D7:9A:A2:74:60	-69.0	064807 9d45-4{ a 12b49e8f0			
463688	c3f30413- 6388-4c07- acd1- d79dbd165a3c	2022-12-02 03:00:00+03:00	48:8F:5A:AE:A1:D9	68:D7:9A:A2:74:60	-71.0	064807 9d45-49 a 12b49e8f0			
463689	1ffcb435- be6b-4b25- ac2a- 2833572c24d6	2022-12-02 03:00:00+03:00	48:8F:5A:AE:A1:D9	6C:5A:B0:A1:DB:8E	-69.0	064807 9d45-49 a 12b49e8f0			
463690	9cadfc89- e791-4b60- aa9b- cb88ca37a72e	2022-12-02 03:00:00+03:00	48:8F:5A:AE:A1:D9	C4:5D:83:FD:E5:01	-73.0	064807 9d45-4{ a 12b49e8f0			
57752 rows x 6 columns									
€ C	57752 rows × 6 columns								

Заджойнить df1 & wr по колонке router id. После этого у нас к каждому роутеру будет соотнесена улица, что позволит раскрасить её в соответствии с баллом

загруженности дорог

```
Ввод [42]: wr1 = wr.copy()
```

```
Exploratory analysis of data from Wi-Fi routers 2023 - Jupyter Notebook
              wr1.columns = ['router_id', 'geom', 'address_json', 'clean_geom']
Ввод [43]:
Ввод [44]:
              df2 = pd.merge(wr1, df1, on='router id')
Ввод [45]:
              df2.head()
  Out[45]:
                                                                                                       router_
                  router_id
                                            address json
                                                           clean geom guid
                                geom
                                                                                       tm
                                                  г. Тула,
                     0648078a-
                                                                            605990ad-
                                    POINT
                                             Октябрьская
                                                             37.618886
                    9d45-4577-
                                                                           a4a3-4327-
                                                                                           2022-12-01
               0
                                (37.618886
                                                                                                       48:8F:5
                                                 ул. – ул.
                                                                                       03:00:00+03:00
                          af14-
                                                             54.204617
                                                                                ac2e-
                                54.204617)
                                             Демидовская
                  12b49e8f017b
                                                                        793500068a07
                                                    пло...
                                                  г. Тула,
                     0648078a-
                                                                            d7bad818-
                                    POINT
                                             Октябрьская
                    9d45-4577-
                                                             37.618886
                                                                           1471-4db6-
                                                                                           2022-12-01
                                (37.618886
                                                 ул. – ул.
                                                                                                       48:8F:5
                                                             54.204617
                                                                                 a29f-
                                                                                       03:00:00+03:00
                          af14-
                                54.204617)
                                             Демидовская
                  12b49e8f017b
                                                                         62cb44de8f36
                                                    пло...
                                                  г. Тула,
                     0648078a-
                                                                            31334b4f-
                                    POINT
                                             Октябрьская
                    9d45-4577-
                                                             37.618886
                                                                           e6d3-47a3-
                                                                                           2022-12-01
                                                                                                       48:8F:5
               2
                                (37.618886
                                                 ул. – ул.
                          af14-
                                                             54.204617
                                                                                84aa-
                                                                                       03:00:00+03:00
                                54.204617)
                                             Демидовская
                  12b49e8f017b
                                                                          13d03effa3f5
                                                    ппо...
                                                  г. Тула,
                     0648078a-
                                                                            651a0be7-
                                    POINT
                                             Октябрьская
                    9d45-4577-
                                                             37.618886
                                                                           e685-4d91-
                                                                                           2022-12-01
                                (37.618886
                                                                                                       48:8F:5
                                                 ул. – ул.
                                                             54.204617
                                                                                       03:00:00+03:00
                          af14-
                                                                                b14c-
                                54.204617)
                                             Демидовская
                  12b49e8f017b
                                                                         4c7e69af2072
                                                    пло...
                                                  г. Тула,
                     0648078a-
                                                                            0066ae6d-
                                    POINT
                                             Октябрьская
                    9d45-4577-
                                                             37.618886
                                                                            f742-4c84-
                                                                                           2022-12-01
                                                                                                       48:8F:5
                                (37.618886
                                                 ул. – ул.
                                                             54.204617
                                                                                800e-
                                                                                       03:00:00+03:00
                          af14-
                                54.204617)
                                             Демидовская
                  12b49e8f017b
                                                                         7f235ab01053
                                                    пло...
                                                                                                           >
Ввод [46]:
              df2.groupby('router_mac')['address_json'].unique()
  Out[46]: router_mac
              48:8F:5A:AC:81:1D
                                                  [г. Тула, Октябрьская ул. – ул. Пузакова]
                                             [г. Тула, Октябрьская ул. – ул. Луначарского]
              48:8F:5A:AE:A1:27
              48:8F:5A:AE:A1:D9
```

```
[г. Тула, Октябрьская ул. – ул. Демидовская пл...
B8:69:F4:6B:FD:E9
                     [г. Тула, Октябрьская ул. – ул. Максима Горького]
CC:2D:E0:10:F0:32
                                [г. Тула, ул. Щегловская Засека, д. 5]
CC:2D:E0:82:B8:DD
                              [г. Тула, Советская ул. – Оборонная ул.]
CC:2D:E0:82:B9:07
                       [г. Тула, Советская ул. – Красноармейский пр-т]
CC:2D:E0:82:B9:40
                           [г. Тула, Советская ул. – ул. Дзержинского]
CC:2D:E0:F3:8C:6E
                                 [г. Тула, Советская ул. – ул. Мосина]
Name: address json, dtype: object
```

4.3 Дадим каждому роутеру название улицы

```
Ввод [47]: # Сначала сгруппируем данные grouped_data = df2.groupby(['address_json', 'tm'])['user_mac'].count().reset pivot_table = grouped_data.pivot(index='address_json', columns='tm', values= # Теперь построим тепловую карту plt.figure(figsize=(12, 8)) sns.heatmap(pivot_table, cmap='YlGnBu') plt.title('Harpyзка на router_mac в каждый момент времени') plt.show()
```


Ввод [48]: rn.head()

Out[48]:

	geom	from_vertex_id	to_vertex_id	weight	was_one_way	group_id	coc
0	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	24602	158.805103	False	NaN	[[37 [54 [37
1	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	62722	207.237527	False	NaN	[[37 [54 [37
2	LINESTRING (37.686139 54.200393,37.687477 54.2	62724	24601	158.519475	False	NaN	[[37 [54 [37
3	LINESTRING (37.599466 54.211929,37.59949 54.21	129918	129920	7.188256	False	40342.0	[[37 [54 [3
4	LINESTRING (37.590964 54.192815,37.591059 54.1	262461	262459	16.193512	False	28339.0	[[37 [54 [37
<							>

5 Отношение дорог одностороннего движение к двустороннему

```
Ввод [49]: # Преобразование булевых значений в целочисленный формат rn['was_one_way_int'] = rn['was_one_way'].astype(int)

# Построение гистограммы plt.hist(rn['was_one_way_int']) plt.show()
```


Ввод [50]: rn_oneway = rn[rn['was_one_way']==True] rn_oneway.head()

Out[50]:

	geom	from_vertex_id	to_vertex_id	weight	was_one_way	group_id	coc
5	LINESTRING (37.606554 54.186595,37.606625 54.1	232135	232136	50.292525	True	17740.0	[[37 [54 [37
13	LINESTRING (37.586232 54.167799,37.586266 54.1	174056	174057	53.602831	True	18878.0	[[37 [54 [37
14	LINESTRING (37.616011 54.201864,37.615922 54.2	187622	187623	31.109309	True	1874.0	[[37 [54 [37
15	LINESTRING (37.665038 54.212276,37.664805 54.2	165727	165728	23.419885	True	27145.0	[[37 [54 [37
37	LINESTRING (37.616462 54.182934,37.616894 54.1	8984	8985	99.713604	True	17061.0	[[37 [54 [37
<							>

5.1 Инициализация дорог одностороннего движения

```
Ввод [51]: m = folium.Map(location=[54.19, 37.62], zoom_start=12)
           # Добавление линий на карту с прогрессбаром
           for i in tqdm(range(len(rn_oneway['flipped_geom'])), desc='Добавление линий'
               #if i % 20 == 0:
                   line = rn['flipped geom'][i]
                   coords = [list(map(float, point.split(' '))) for point in line.lstri
                   folium.PolyLine(locations=coords, color='blue').add_to(m)
           for index, row in wr.iterrows():
               location = [float(coord) for coord in row['clean_geom'].strip('[]').spli
               location.reverse() # Изменяем порядок координат
               marker = folium.Marker(location=location, popup=f'Location {index}')
               circle = folium.CircleMarker(location=location, radius=20, color='red',
               marker.add_to(m)
               circle.add_to(m)
           # Отображение карты
           m
           m
```

Добавление линий: 100%| **100%** | 13595.17it/s]

Out[51]:

6 Чтение файла с логами за 2023-03-07 : 2023-03-13

```
Ввод [52]: df_march = pd.read_csv('march-07.csv')

Ввод [53]: df_march.columns

Out[53]: Index(['Unnamed: 0', 'guid', 'tm', 'router_mac', 'user_mac', 'signal', 'router_id'], dtype='object')
```

```
Ввод [54]: df_march = df_march.drop('Unnamed: 0', axis=1)

Ввод [55]: df_march['tm'] = pd.to_datetime(df_march['tm'], format='%Y-%m-%d %H:%M:%S.%f df_march['tm'] = df_march['tm'].dt.round('H')

Ввод [56]: df_march['tm'].head()

Out[56]: 0 2023-03-07 03:00:00+03:00
1 2023-03-07 03:00:00+03:00
2 2023-03-07 03:00:00+03:00
3 2023-03-07 03:00:00+03:00
4 2023-03-07 03:00:00+03:00
Name: tm, dtype: datetime64[ns, UTC+03:00]

Ввод [57]: df_march['tm'] = df_march['tm'].apply(lambda x: x.strftime('%Y-%m-%d %H'))
```

7 График загруженности по последнему мартовскому логу

```
ВВОД [58]: # Сначала сгруппируем данные grouped_data = df_march.groupby(['router_id', 'tm'])['user_mac'].count().res pivot_table = grouped_data.pivot(index='router_id', columns='tm', values='us
```

7.1 Замена тас на название улицы

```
Ввод [59]: wr2 = wr.copy()

Ввод [60]: wr2.columns = ['router_id', 'geom', 'address_json', 'clean_geom']

Ввод [61]: df_name_march = pd.merge(wr2, df_march, on='router_id')
```

```
Ввод [62]:
           df_name_march.groupby('router_mac')['address_json'].unique()
 Out[62]: router_mac
           08:55:31:2A:7F:0D
                                         [г. Тула, Октябрьская ул. – ул. Неман Н.]
           08:55:31:2A:81:09
                                        [г. Тула, Аэропорт (Октябрьская ул., 250)]
           08:55:31:2A:81:1D
                                          [г. Тула, Октябрьская ул. - ул. Карпова]
           48:8F:5A:AC:7E:D8
                                         [г. Тула, пр-т Ленина – Первомайская ул.]
           48:8F:5A:AC:81:1D
                                         [г. Тула, Октябрьская ул. – ул. Пузакова]
           48:8F:5A:AE:A1:27
                                     [г. Тула, Октябрьская ул. – ул. Луначарского]
                                 [г. Тула, Октябрьская ул. – ул. Демидовская пл...
           48:8F:5A:AE:A1:D9
           48:8F:5A:AE:A2:2A
                                         [г. Тула, Октябрьская ул. – Литейная ул.]
           48:8F:5A:B4:91:50
                                       [г. Тула, Октябрьская ул. – ул. Судейского]
           B8:69:F4:6B:FD:B6
                                  [г. Тула, Советская ул. – ул. Фридриха Энгельса]
                                 [г. Тула, Октябрьская ул. – ул. Максима Горького]
           B8:69:F4:6B:FD:E9
           CC:2D:E0:10:F0:32
                                          [г. Тула, Октябрьская ул. – Большая ул.]
           CC:2D:E0:82:B8:DD
                                          [г. Тула, Советская ул. – Оборонная ул.]
           CC:2D:E0:82:B9:07
                                   [г. Тула, Советская ул. – Красноармейский пр-т]
           CC:2D:E0:82:B9:40
                                       [г. Тула, Советская ул. – ул. Дзержинского]
           CC:2D:E0:F3:8C:6E
                                             [г. Тула, Советская ул. – ул. Мосина]
           CC:2D:E0:F3:8C:EF
                                            [г. Тула, Советская ул. – пр-т Ленина]
           CC:2D:E0:F3:8C:FB
                                       [г. Тула, Советская ул. – Тургеневская ул.]
           Name: address_json, dtype: object
```

Ввод [63]: # Сначала сгруппируем данные grouped_data = df_name_march.groupby(['address_json', 'tm'])['user_mac'].cou pivot_table = grouped_data.pivot(index='address_json', columns='tm', values= # Теперь построим тепловую карту plt.figure(figsize=(40, 40)) sns.heatmap(pivot_table, cmap='YlGnBu') plt.title('Нагрузка на router_mac в каждый момент времени') plt.show()

7.2 heatmap в динамике

```
Ввод [64]:
           # Filtering the DataFrame based on the condition df_march['tm'] < 2023.03.08
           filtered_df = df_march[df_march['tm'] < '2023-03-08 00']</pre>
           # Creating a pivot table to get the counts of user_mac for each router_id an
           pivot_table = filtered_df.groupby(['router_id', 'tm'])['user_mac'].count().u
           grouped_data = df_name_march.groupby(['address_json', 'tm'])['user_mac'].cou
           pivot_table = grouped_data.pivot(index='address_json', columns='tm', values=
           # Building the heatmap using the pivot table
           fig = go.Figure(data=go.Heatmap(
               z=pivot_table.values,
               x=pivot_table.columns,
               y=pivot_table.index,
               colorscale='YlGnBu'))
           # Configuring the slider to change the date range
           fig.update layout(
               title='Dynamic Heatmap with a Slider for Date Range Selection',
               xaxis=dict(title='Date'),
               yaxis=dict(title='Router ID'),
               updatemenus=[dict(
                   type="buttons",
                   buttons=[dict(label="Play",
                                  method="animate",
                                  args=[None])])])
```

Dynamic Heatmap with a Slider for Date Range Selection

outer II

Ввод [65]: pivot_table											
Out[65]:	tm	2023- 03-07 03	2023- 03-07 04	2023- 03-07 05	2023- 03-07 06	2023- 03-07 07	2023- 03-07 08	2023- 03-07 09	2023- 03-07 10	2023- 03-07 11	2 0 1
	address_json										
	г. Тула, Аэропорт (Октябрьская ул., 250)	77.0	197.0	201.0	284.0	657.0	1008.0	762.0	685.0	489.0	
	г. Тула, Октябрьская ул. – Большая ул.	114.0	291.0	273.0	317.0	442.0	506.0	651.0	625.0	654.0	
	г. Тула, Октябрьская ул. – Литейная ул.	749.0	1613.0	1732.0	1870.0	2307.0	3172.0	3078.0	2612.0	2545.0	2
	г. Тула, Октябрьская ул. – ул. Демидовская	237.0	581.0	555.0	970.0	2280.0	3192.0	3683.0	2806.0	2756.0	3,

Ввод [66]: grouped_data

Out[66]:

	address_json	tm	user_mac
0	г. Тула, Аэропорт (Октябрьская ул., 250)	2023-03-07 03	77
1	г. Тула, Аэропорт (Октябрьская ул., 250)	2023-03-07 04	197
2	г. Тула, Аэропорт (Октябрьская ул., 250)	2023-03-07 05	201
3	г. Тула, Аэропорт (Октябрьская ул., 250)	2023-03-07 06	284
4	г. Тула, Аэропорт (Октябрьская ул., 250)	2023-03-07 07	657
2819	г. Тула, пр-т Ленина – Первомайская ул.	2023-03-13 23	3587
2820	г. Тула, пр-т Ленина – Первомайская ул.	2023-03-14 00	3472
2821	г. Тула, пр-т Ленина – Первомайская ул.	2023-03-14 01	3470
2822	г. Тула, пр-т Ленина – Первомайская ул.	2023-03-14 02	3433
2823	г. Тула, пр-т Ленина – Первомайская ул.	2023-03-14 03	1697

7.3 Изменения дорожно-транспортной ситуации с течением времени на основе перемещений между роутерами

Изменения дорожно-транспортной ситуации с течением вре


```
Ввод [68]: df_march.head()
```

Out[68]:

	guid	tm	router_mac	user_mac	signal	router_id
0	9cee7337-103a- 4e3e-9d6a- d4fa2ba9fd90	2023- 03-07 03	CC:2D:E0:82:B9:07	80:2A:A8:76:08:1C	-74.0	8a823f01-771f- 420e-8971- 928cba314a24
1	f77d6f20-fac1- 4fd3-879c- 454b52bf92f2	2023- 03-07 03	CC:2D:E0:82:B9:07	56:36:9B:28:28:F8	-63.0	8a823f01-771f- 420e-8971- 928cba314a24
2	281ae006-577a- 4e7d-afb7- 6b88f7f7f889	2023- 03-07 03	CC:2D:E0:82:B9:07	98:54:1B:8A:20:A5	-74.0	8a823f01-771f- 420e-8971- 928cba314a24
3	0059a476-d01f- 4e55-a78a- b2ba9c7389c3	2023- 03-07 03	CC:2D:E0:82:B9:07	0C:0E:76:D3:6D:F8	-65.0	8a823f01-771f- 420e-8971- 928cba314a24
4	6e6122d4-34e9- 4360-9e63- 0d55778d8faf	2023- 03-07 03	CC:2D:E0:82:B9:07	0C:D9:96:4D:80:D3	-74.0	8a823f01-771f- 420e-8971- 928cba314a24

```
Ввод [69]: df_march.groupby(['router_mac','user_mac'])['signal'].count()
```

```
Out[69]: router_mac
                            user_mac
         08:55:31:2A:7F:0D
                            00:00:00:8D:08:2B
                                                  1
                            00:00:21:14:32:34
                                                  1
                            00:00:73:27:F3:01
                                                  1
                            00:02:5B:1E:00:1B
                                                  1
                            00:02:5B:D6:10:07
                                                 12
         CC:2D:E0:F3:8C:FB FE:FF:F53:A8:90
                                                  1
                            FE:FF:FF:DC:2A
                                                  1
                            FF:6B:48:CF:09:15
                                                  1
                            FF:E3:90:85:A3:ED
                                                  1
                            FF:FF:FF:FF:FF
                                                  2
```

Name: signal, Length: 2369569, dtype: int64

```
Ввод [70]: wr3 = wr.copy()
```

```
Ввод [71]: wr3.columns = ['router_id', 'geom', 'address_json', 'clean_geom']
```

```
Ввод [72]: df_name_march3 = pd.merge(wr3, df_march, on='router_id')
```

```
df_name_march3.groupby('router_mac')['address_json'].unique()
Ввод [73]:
  Out[73]: router_mac
           08:55:31:2A:7F:0D
                                         [г. Тула, Октябрьская ул. – ул. Неман Н.]
           08:55:31:2A:81:09
                                        [г. Тула, Аэропорт (Октябрьская ул., 250)]
           08:55:31:2A:81:1D
                                          [г. Тула, Октябрьская ул. - ул. Карпова]
           48:8F:5A:AC:7E:D8
                                         [г. Тула, пр-т Ленина – Первомайская ул.]
           48:8F:5A:AC:81:1D
                                         [г. Тула, Октябрьская ул. – ул. Пузакова]
           48:8F:5A:AE:A1:27
                                     [г. Тула, Октябрьская ул. – ул. Луначарского]
                                 [г. Тула, Октябрьская ул. - ул. Демидовская пл...
           48:8F:5A:AE:A1:D9
           48:8F:5A:AE:A2:2A
                                         [г. Тула, Октябрьская ул. – Литейная ул.]
           48:8F:5A:B4:91:50
                                       [г. Тула, Октябрьская ул. – ул. Судейского]
           B8:69:F4:6B:FD:B6
                                  [г. Тула, Советская ул. – ул. Фридриха Энгельса]
                                 [г. Тула, Октябрьская ул. – ул. Максима Горького]
           B8:69:F4:6B:FD:E9
           CC:2D:E0:10:F0:32
                                          [г. Тула, Октябрьская ул. – Большая ул.]
           CC:2D:E0:82:B8:DD
                                          [г. Тула, Советская ул. – Оборонная ул.]
           CC:2D:E0:82:B9:07
                                   [г. Тула, Советская ул. – Красноармейский пр-т]
           CC:2D:E0:82:B9:40
                                       [г. Тула, Советская ул. – ул. Дзержинского]
           CC:2D:E0:F3:8C:6E
                                             [г. Тула, Советская ул. – ул. Мосина]
           CC:2D:E0:F3:8C:EF
                                            [г. Тула, Советская ул. – пр-т Ленина]
           CC:2D:E0:F3:8C:FB
                                       [г. Тула, Советская ул. – Тургеневская ул.]
           Name: address_json, dtype: object
```

Ввод [74]: df_name_march3

Out[74]:

	router_id	geom	address_json	clean_geom	guid	tm	router_m
0	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	0390ae84- f7ef-4675- a6e2- 189836f44af1	2023- 03-07 03	48:8F:5A:
1	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	3c65597e- 9d06-4a3f- bbb3- da71de9c0c3f	2023- 03-07 03	48:8F:5A:
2	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	851d14f3- 11ed-47f0- 8b91- 824ccb233629	2023- 03-07 03	48:8F:5A:
3	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	93f20c99- b29b-4525- 82df- 93d69c45dc53	2023- 03-07 03	48:8F:5A:
4	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	9671c147- ef4d-4d7f- 8c40- 3d752a957e1c	2023- 03-07 03	48:8F:5A:
			•••				
6177220	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	8945b49c- 8089-496b- a22f- 988f82772624	2023- 03-14 03	48:8F:5A
6177221	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	fa2b6d88- a1d4-4254- 95fa- 7c80f13aeecd	2023- 03-14 03	48:8F:5A
6177222	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	cd22c223- 0932-4bdb- 9ed7- 8fd16082f72a	2023- 03-14 03	48:8F:5A
6177223	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	0e8c30f8- eb97-447f- a7b4- bbae733ebbe2	2023- 03-14 03	48:8F:5A
6177224	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	f124ecb1- a640-478b- 821d- 5a0c7f116452	2023- 03-14 03	48:8F:5A

6177225 rows × 9 columns

3

7.4 Разбивка загруженности по категориальным данным

```
Ввод [75]: time_categories = pd.cut(pd.to_datetime(df_name_march3['tm']).dt.hour,
                                    bins=[7, 10, 16, 19],
                                    labels=['утренний_час_пик', 'день', 'вечерний_час_п
           df_name_march3['time_category'] = time_categories
           # Создаем матрицу спроса по категориям времени
           demand_matrix = df_name_march3.pivot_table(index='address_json', columns='ti
                                                                                      >
```

Ввод [76]: demand_matrix

Out[76]:

time_category	утренний_час_пик	день	вечерний_час_пик
address_json			
г. Тула, Аэропорт (Октябрьская ул., 250)	13461	25694	12933
г. Тула, Октябрьская ул. – Большая ул.	9426	21789	10332
г. Тула, Октябрьская ул. – Литейная ул.	52742	107823	52528
г. Тула, Октябрьская ул. – ул. Демидовская плотина (Оружейный пер.)	56953	126779	68998
г. Тула, Октябрьская ул. – ул. Карпова	29163	57762	28261
г. Тула, Октябрьская ул. – ул. Луначарского	39472	84908	42452
г. Тула, Октябрьская ул. – ул. Максима Горького	91620	200123	97150
г. Тула, Октябрьская ул. – ул. Неман Н.	44416	79268	43561
г. Тула, Октябрьская ул. – ул. Пузакова	74129	175022	83850
г. Тула, Октябрьская ул. – ул. Судейского	8778	22134	11825
г. Тула, Советская ул. – Красноармейский пр-т	69615	130210	61740
г. Тула, Советская ул. – Оборонная ул.	47197	99964	57603
г. Тула, Советская ул. – Тургеневская ул.	49665	107839	56660
г. Тула, Советская ул. – пр-т Ленина	68867	182258	102163
г. Тула, Советская ул. – ул. Дзержинского	57866	131628	71375
г. Тула, Советская ул. – ул. Мосина	46894	98000	53772
г. Тула, Советская ул. – ул. Фридриха Энгельса	5037	0	0
г. Тула, пр-т Ленина – Первомайская ул.	104518	218518	107363

```
Ввод [77]:
              time_categories = pd.cut(pd.to_datetime(df_name_march3['tm']).dt.hour,
                                         bins=[7, 10, 16, 19],
                                         labels=['утренний_час_пик', 'день', 'вечерний_час_п
              # Добавляем категории дней
              day_categories = pd.cut(pd.to_datetime(df_name_march3['tm']).dt.dayofweek,
                                        bins=[0, 4, 6],
                                        labels=['рабочий_день', 'выходной'])
              # Создаем новую колонку для категорий дней
              df_name_march3['day_category'] = day_categories
              # Создаем матрицу спроса по категориям времени и дня
              demand_matrix = df_name_march3.pivot_table(index='address_json', columns=['d
  Ввод [78]:
              demand_matrix.reset_index()
    Out[78]:
                            address ison
               day_category
                                            рабочий день
                                                                                      выходной
               time category
                                            утренний час пик день
                                                                     вечерний час пик утренний
                             г. Тула. Аэропорт
                            (Октябрьская ул.,
                                                        8102
                                                              14063
                                                                                 7174
                                       250)
                                     г. Тула,
                              Октябрьская ул.
                                                        4932
                                                              10728
                                                                                 5364
                               – Большая ул.
                                     г. Тула,
                          2
                                                                                30560
                              Октябрьская ул.
                                                       31149
                                                              63328
                               - Литейная ул.
                                     г. Тула,
                              Октябрьская ул.
                          3
                                                       35672
                                                              75380
                                                                                42790
                                       — ул.
                                Демидовская
                                      пло...
€
  Ввод [79]:
             demand matrix.columns
    Out[79]: MultiIndex([('рабочий_день',
                                              'утренний час пик'),
                            ('рабочий_день',
                                                            день'),
                             'рабочий_день',
                                              'вечерний_час_пик'),
                                 'выходной', 'утренний_час_пик'),
                                 'выходной',
                                                           'день'),
                                 'выходной', 'вечерний_час_пик')],
                          names=['day_category', 'time_category'])
```

Ввод [80]: # Создаем тепловую карту для матрицы спроса
plt.figure(figsize=(12, 8))
sns.heatmap(demand_matrix, annot=True, fmt='d', cmap='YlGnBu')
plt.title('Матрица спроса по категориям времени и дня')
plt.xlabel('Категория времени и дня')
plt.ylabel('Адрес')
plt.show()

Ввод [81]: df1.head()

Out[81]:

	guid	tm	router_mac	user_mac	signal	router_id
0	1a25652b- f346-4ffb- aec3- 295ecf08fd97	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B8:DD	0E:AC:4A:34:2A:F1	-68.0	cdcab165- cc3a-460f- ae99- 024216190ab1
1	f250e9af- 498e-42e7- 9439- 7a82473b829a	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B9:07	56:36:9B:28:28:F8	-67.0	8a823f01- 771f-420e- 8971- 928cba314a24
2	525c9f06-fc70- 426e-81b3- ed96497b6f01	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B9:07	E0:63:DA:DC:D8:49	-61.0	8a823f01- 771f-420e- 8971- 928cba314a24
3	cf66e62d- a621-4aed- a46a- b6bc135ce766	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B9:07	1C:15:1F:CA:88:EE	-70.0	8a823f01- 771f-420e- 8971- 928cba314a24
4	d3554553- 5555-4cfd- 8d01- 3f56fea0a589	2022-12-01 03:00:00+03:00	CC:2D:E0:82:B9:40	D0:37:45:C1:E1:1E	-66.0	3d9490f4- fb08-4c4c- 80ec- ca744a6d9ab4
<						>

localhost:8888/notebooks/Exploratory_analysis_of_data_from_Wi-Fi _routers_2023.ipynb

```
Ввод [82]: df1.groupby(['router_mac','user_mac'])['signal'].count()
 Out[82]: router_mac
                              user_mac
           48:8F:5A:AC:81:1D 00:00:FA:17:DB:FA
                                                    4
                                                    1
                              00:08:22:0A:D8:2C
                               00:08:22:16:29:F7
                                                    1
                               00:08:22:20:E9:FB
                               00:08:22:2A:4B:A7
           CC:2D:E0:F3:8C:6E FE:FF:0C:68:6E:6E
                                                    1
                               FE:FF:3A:1D:85:DE
                                                    1
                              FE:FF:60:31:2E:63
                              FE:FF:E7:EA:19:B6
                               FF:D4:DE:BA:72:46
                                                    1
           Name: signal, Length: 192140, dtype: int64
```

7.5 Проверка среднего времени пребывания на роутерах

Ввод [83]: df1[(df1['router_mac'] == '48:8F:5A:AC:81:1D') & (df1['user_mac'] == '00:00:
Out[83]:

	guid	tm	router_mac	user_mac	signal	router_id
194951	aa0a778e- fc12-4918- b460- fb7d2bc83e70	2022-12-01 13:00:00+03:00	48:8F:5A:AC:81:1D	00:00:FA:17:DB:FA	-72.0	8a7346 e451-4 8b 3b3b46e33
236598	af6bbed6-f7f4- 4b2b-8bfb- 03510d7402a5	2022-12-01 15:00:00+03:00	48:8F:5A:AC:81:1D	00:00:FA:17:DB:FA	-68.0	8a7346 e451-4 8t 3b3b46e33
283852	c4ee8dc8- 40b2-48f7- b360- 7d312327ad8d	2022-12-01 17:00:00+03:00	48:8F:5A:AC:81:1D	00:00:FA:17:DB:FA	-73.0	8a7346 e451-4 8b 3b3b46e33
311862	41464573- 16fa-44a8- 99f0- b423dd32a43b	2022-12-01 18:00:00+03:00	48:8F:5A:AC:81:1D	00:00:FA:17:DB:FA	-75.0	8a7346 e451-4 8b 3b3b46e33
<						>

```
Ввод [84]: df1.groupby(['router_mac', 'user_mac', 'tm'])['signal'].mean()
 Out[84]: router mac
                              user mac
                                                  tm
           48:8F:5A:AC:81:1D 00:00:FA:17:DB:FA
                                                 2022-12-01 13:00:00+03:00
                                                                              -72.0
                                                  2022-12-01 15:00:00+03:00
                                                                              -68.0
                                                  2022-12-01 17:00:00+03:00
                                                                              -73.0
                                                  2022-12-01 18:00:00+03:00
                                                                              -75.0
                              00:08:22:0A:D8:2C
                                                 2022-12-01 12:00:00+03:00
                                                                              -67.0
                                                                               . . .
           CC:2D:E0:F3:8C:6E FE:FF:3A:1D:85:DE
                                                 2022-12-01 09:00:00+03:00
                                                                              -70.0
                                                  2022-12-01 10:00:00+03:00
                                                                              -66.0
                              FE:FF:60:31:2E:63
                                                 2022-12-01 06:00:00+03:00
                                                                              -65.0
                              FE:FF:E7:EA:19:B6
                                                  2022-12-01 11:00:00+03:00
                                                                              -71.0
                              FF:D4:DE:BA:72:46 2022-12-01 12:00:00+03:00
                                                                              -74.0
           Name: signal, Length: 202164, dtype: float64
```

t_mean = df1.groupby(['router_mac', 'user_mac', 'router_id'])['tm'].agg(lambd

Ввод [85]:

```
t_mean
  Out[85]: router_mac
                                                    router_id
                                user_mac
            48:8F:5A:AC:81:1D
                                                    8a734674-e451-4fe1-8b50-3b3b46e334a1
                                00:00:FA:17:DB:FA
            0 days 05:00:00
                                00:08:22:0A:D8:2C
                                                    8a734674-e451-4fe1-8b50-3b3b46e334a1
            0 days 00:00:00
                                00:08:22:16:29:F7
                                                    8a734674-e451-4fe1-8b50-3b3b46e334a1
            0 days 00:00:00
                                00:08:22:20:E9:FB
                                                    8a734674-e451-4fe1-8b50-3b3b46e334a1
            0 days 11:00:00
                                00:08:22:2A:4B:A7
                                                    8a734674-e451-4fe1-8b50-3b3b46e334a1
            0 days 00:00:00
            CC:2D:E0:F3:8C:6E
                                FE:FF:0C:68:6E:6E
                                                    0b91ef8c-3b4f-4a39-b3a3-9683c6fd7832
            0 days 00:00:00
                                FE:FF:3A:1D:85:DE
                                                    0b91ef8c-3b4f-4a39-b3a3-9683c6fd7832
            0 days 01:00:00
                                FE:FF:60:31:2E:63
                                                    0b91ef8c-3b4f-4a39-b3a3-9683c6fd7832
            0 days 00:00:00
                                FE:FF:E7:EA:19:B6
                                                    0b91ef8c-3b4f-4a39-b3a3-9683c6fd7832
            0 days 00:00:00
                                0 days 00:00:00
            Name: tm, Length: 192140, dtype: timedelta64[ns]
Ввод [86]:
            t mean = t mean.reset index()
Ввод [87]:
           t mean.columns
           Index(['router_mac', 'user_mac', 'router_id', 'tm'], dtype='object')
Ввод [88]:
            t mean.head()
  Out[88]:
               router_mac
                               user_mac
                                               router_id
                                                                               tm
                                                         8a734674-e451-4fe1-8b50-
                                                                                     0 days
              48:8F:5A:AC:81:1D
                              00:00:FA:17:DB:FA
                                                                  3b3b46e334a1
                                                                                    05:00:00
                                                         8a734674-e451-4fe1-8b50-
                                                                                     0 days
               48:8F:5A:AC:81:1D
                               00:08:22:0A:D8:2C
                                                                  3b3b46e334a1
                                                                                    00:00:00
                                                         8a734674-e451-4fe1-8b50-
                                                                                     0 days
               48:8F:5A:AC:81:1D
                                00:08:22:16:29:F7
                                                                  3b3b46e334a1
                                                                                    00:00:00
                                                         8a734674-e451-4fe1-8b50-
                                                                                     0 days
               48:8F:5A:AC:81:1D
                               00:08:22:20:E9:FB
                                                                  3b3b46e334a1
                                                                                    11:00:00
                                                         8a734674-e451-4fe1-8b50-
                                                                                     0 days
              48:8F:5A:AC:81:1D 00:08:22:2A:4B:A7
                                                                  3b3b46e334a1
                                                                                    00:00:00
Ввод [89]:
            t mean['tm'] = pd.to timedelta(t mean['tm'], errors='coerce')
            t mean['tm'] = t mean['tm'].apply(lambda x: x.total seconds() / 3600 if not
```

```
Ввод [91]: |t_mean['tm']
 Out[91]: 0
                      5.0
           1
                      0.0
           2
                      0.0
           3
                     11.0
           4
                      0.0
           192135
                      0.0
           192136
                      1.0
           192137
                      0.0
           192138
                      0.0
                      0.0
           192139
           Name: tm, Length: 192140, dtype: float64
           t_mean.plot(x='user_mac', y='tm', kind='line', figsize=(30, 30)) # Adjust
           the figsize parameter here
           plt.xlabel('User MAC')
           plt.ylabel('Time (hours)')
           plt.title('Time Spent by User MAC')
           plt.show()
           average_time_per_router = t_mean.groupby('router_mac')['tm'].mean()
           # Создаем линейный график
           plt.figure(figsize=(12, 6))
           average_time_per_router.plot(kind='line', marker='o')
           plt.xlabel('Router MAC')
           plt.ylabel('Average Time (hours)')
           plt.title('Average Time Spent on Each Router')
           plt.show()
Ввод [92]: |t_mean_name = pd.merge(wr3, t_mean, on='router_id')
           t_mean_name.groupby('router_mac')['address_json'].unique()
 Out[92]: router mac
           48:8F:5A:AC:81:1D
                                         [г. Тула, Октябрьская ул. – ул. Пузакова]
           48:8F:5A:AE:A1:27
                                     [г. Тула, Октябрьская ул. – ул. Луначарского]
           48:8F:5A:AE:A1:D9
                                 [г. Тула, Октябрьская ул. – ул. Демидовская пл...
           B8:69:F4:6B:FD:E9
                                 [г. Тула, Октябрьская ул. – ул. Максима Горького]
           CC:2D:E0:10:F0:32
                                            [г. Тула, ул. Щегловская Засека, д. 5]
           CC:2D:E0:82:B8:DD
                                          [г. Тула, Советская ул. – Оборонная ул.]
           CC:2D:E0:82:B9:07
                                   [г. Тула, Советская ул. – Красноармейский пр-т]
           CC:2D:E0:82:B9:40
                                       [г. Тула, Советская ул. – ул. Дзержинского]
           CC:2D:E0:F3:8C:6E
                                             [г. Тула, Советская ул. – ул. Мосина]
           Name: address_json, dtype: object
```

Ввод [93]: t_mean_name

Out[93]:

	router_id	geom	address_json	clean_geom	router_mac	user_mac
0	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	48:8F:5A:AE:A1:D9	00:00:73:27
1	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	48:8F:5A:AE:A1:D9	00:01:12:42:
2	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	48:8F:5A:AE:A1:D9	00:05:B5:AE:(
3	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	48:8F:5A:AE:A1:D9	00:07:22:C2:
4	0648078a- 9d45-4577- af14- 12b49e8f017b	POINT (37.618886 54.204617)	г. Тула, Октябрьская ул. – ул. Демидовская пло	37.618886 54.204617	48:8F:5A:AE:A1:D9	00:08:22:00:
192135	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	48:8F:5A:AE:A1:27	FE:FC:BA:18:
192136	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	48:8F:5A:AE:A1:27	FE:FD:CF:1E:l
192137	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	48:8F:5A:AE:A1:27	FE:FF:3A:1D:
192138	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	48:8F:5A:AE:A1:27	FE:FF:B6:63:
192139	a8c8525e- cfcf-416f- 88dd- bf1efc79df00	POINT (37.619182 54.205679)	г. Тула, Октябрьская ул. – ул. Луначарского	37.619182 54.205679	48:8F:5A:AE:A1:27	FE:FF:C8:73:

192140 rows × 7 columns

```
BBOД [94]: t_mean.index = pd.to_datetime(t_mean.index)

# Создаем сводную таблицу для среднего времени, проведенного всеми пользоват average_time_per_router = t_mean_name.groupby([t_mean.index.day, t_mean.inde

# Создаем тепловую карту
plt.figure(figsize=(20, 7))
sns.heatmap(average_time_per_router, cmap='coolwarm', annot=True, fmt=".1f")
plt.title('Среднее время, проведенное на каждом роутере')
plt.xlabel(' ')

plt.ylabel('День')

plt.show()
```


Задачи:

- Провести разведочный анализ данных (EDA Exploratory data analysis).
 Проанализировать изменения дорожно-транспортной ситуации с течением времени на основе перемещений между роутерами. Построить временную шкалу по неделям
- 2. Составить матрицу перемещений/спроса с расчётом среднего времени поездки по трём видам интервалов: утренний час пик, день, вечерний час пик.
- 3. Визуализировать результат на диаграммах/картограммах
- 4. Предоставить замечания/комментарии, если такие появятся, к расположение WiFi роутеров для качественного улучшения охвата города

8 Итоги

8.1 Провести разведочный анализ данных (EDA - Exploratory data analysis). Проанализировать изменения дорожнотранспортной ситуации с течением времени на основе перемещений между роутерами. Построить временную шкалу по неделям

 Проведен разведочный анализ данных всех файлов, которые были предоставлены.

В процессе EDA определено,что файл wifi_routers содержит 3 столбца и 29 строк. Все три столбца содержат категориальные данные, определяющие место положение роутера, а строки - отдельный роутер, расположенный в городе Тула. Пропуски в данных отсутствуют.

Файл road_network содержит данные о дорожной сети - графы и узлы. Пропуски имеются в столбце group_id. Данный столбец несет служебную информацию и не имеет значения для последующего анализа. Также содержится столбец, несущий в себе информацию, является ли улица односторонней.

Также для анализа представлены данные с каждого роутера по дням в течение одного года - с 1 декабря 2022 года по 30 ноября 2023 года. Нами был взят за основу и изучен один период времени - с 7 по 14 марта 2023 года.

Данные за неделю были объединены в один файл, содержащий 7 столбцов и 6 177 225 строк. В файле содержится информация о том, какие и сколько машин проехали через тот или иной перекресток. Пропуски отсутствуют, в файл попало 18 роутеров из 29, представленных в первом файле.

Временную шкалу по неделям построить не удалось, так как изучался всего один период - одна неделя в году. Была построена временная шкала перемещений между роутерами за каждый час выше указанной недели.

8.2 Составить матрицу перемещений/спроса с расчётом среднего времени поездки по трём видам интервалов: утренний час пик, день, вечерний час пик

Матрица перемещений составлена без расчета среднего времени поездки. При попадании в финал у нас будет стимул построить данную матрицу)

Данные по спросу с тремя видами интервалов представлены выше. Самыми загруженными перекрестками оказались Ленина - Первомайская, Октябрьская - Максима Горького, Октябрьская - Пузакова. Эти перекрестки загружены в любое время суток.

На перекрестках Советская - Энгельса, Советская - Красноармейский проспект и Октябрьская - Большая часть информации по передвижениям отсутствует. Мы предполагаем, что данное обстоятельство связано с техническими сбоями роутеров.

8.3 Предоставить замечания/комментарии, если такие появятся, к расположение WiFi роутеров для качественного улучшения охвата города

Город Тула является старинным городом, которому в этом году исполнилось 877 лет. При этом население составляет всего полмиллиона человек. Роутеры, представленные в третьем файле и анализируемые нами, расположены в центре города - в Советском и Центральном районах, в основе своей - на центральных улицах, а с учетом возраста города - довольно узких, что объясняет большую загрузку в дневное время суток.

В связи с выше изложенным, матрица перемещений значительно отличается от матрицы, которая была бы при анализе данных в спальных районах.

Для качественного улучшения охвата города, рекомендую установить роутеры на таких перекрестках, как Кутузова - Кирова, Металлургов - Ложевая, Некрасова - Перекопская, Некрасова - Оборонная, Одоевское шоссе - Тихмянова, Ликбеза - Чмутова, Дульная - Максима Горького и иные выезды из спальных районов.

Ввод []:	
-----------	--