

STEM SMART Phase One, 2022

Physics Week 7 – Energy

https://isaacphysics.org/gameboards#smart_p_1_7

<u>Home</u> Physics Mechanics Dynamics Essential GCSE Physics 33.2

Essential GCSE Physics 33.2

GCSE - Practice (P1) A Level - Practice (P1)

A builder needs to drag a sack of cement 20 m along the floor against a friction force of 60 N.

Part A Work Done

Calculate the work done.

Part B Power

If the builder took two minutes to do the dragging, what was their power?

<u>Home</u> Physics Mechanics Dynamics Essential GCSE Physics 33.5

Essential GCSE Physics 33.5

GCSE - Practice (P1) A Level - Practice (P1)

A lighting bar on stage has a mass of $300\mathrm{kg}$ when supporting stage lights.
Part A Weight
What is its weight?
Part B Energy to lift How much energy do you need to lift it by $10\mathrm{m}$?
Part C Time to lift $\label{eq:continuous} \mbox{If your power is $100W$, how long would it take you to lift the bar by $10m$?}$
Part D Gravitational potential energy What is the increase in gravitational potential energy when the bar is lifted by $10\mathrm{m}$?

Home Physics Mechanics Dynamics Essential GCSE Physics 34.2

Essential GCSE Physics 34.2

GCSE - Practice (P1)

Calculate the kinetic energy of an $800\mathrm{kg}$ car when it is going at	
Part A Kinetic energy at 30 mph	
$30\mathrm{mph}$ (which is $13.4\mathrm{m/s}$);	
Part B Kinetic energy at 40 mph $40\mathrm{mph} \ (\mathrm{which} \ \mathrm{is} \ 17.9\mathrm{m/s}).$	
Part C Road safety Road safety campaigners are continually reminding motorists that 40 mph is much more dangerous than 30 mph even though it only seems a little bit faster. What does this question suggest about the issue? The kinetic energy is a lot greater, almost double. 40 mph is actually safer than 30 mph. The difference between the two is actually minimal.	

Home Physics Mechanics Dynamics Essential GCSE Physics 34.3

Essential GCSE Physics 34.3

GCSE - Practice (P1)

Calculate the kinetic energy of a 20 tonne bus travelling at 40 mph [1 tonne = 1000 kg].

Part B F1 kinetic energy

Calculate the kinetic energy of a $600\,\mathrm{kg}$ Formula 1 race car going at $83\,\mathrm{m/s}$ [about $190\,\mathrm{mph}$], and compare it to that of the bus.

Essential Pre-Uni Physics B8.2

GCSE - Challenge (C3) A Level - Practice (P1)

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

Part A GPE lost by the ball

An object of mass $3.5\,\mathrm{kg}$ slides all the way down a slope inclined at 40° to the horizontal, with a base of length $4.8\,\mathrm{m}$. How much GPE does the object lose?

Part B Work done by the ball against friction

If the average frictional forces are 4.0 N, work out how much work the object does against friction.

Essential Pre-Uni Physics B8.3

GCSE - Challenge (C1) A Level - Practice (P1)

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

 $50\,\mathrm{J}$ of work is done in stretching a spring to an extension of $3.5\,\mathrm{cm}$. Work out the average force applied.

Essential Pre-Uni Physics B8.4

GCSE - Challenge (C1) A Level - Practice (P1)

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

A boy whirls a $30\,\mathrm{g}$ conker around his head in a circle at a speed of $2.2\,\mathrm{m\,s^{-1}}$, using a taut inextensible string. How much work is done on the conker by the tension in the string?

Essential Pre-Uni Physics B8.7

GCSE - Challenge (C1) A Level - Challenge (C1)

A child of $40\,\mathrm{kg}$ rides a $35\,\mathrm{kg}$ bike at $9.0\,\mathrm{m\,s^{-1}}$. The brakes are then applied and the bike is slowed to $3.8\,\mathrm{m\,s^{-1}}$. How much work is done by frictional forces?

Home Physics Mechanics Dynamics Essential GCSE Physics 34.9

Essential GCSE Physics 34.9

GCSE - Challenge (C1)

 $\begin{aligned} & \text{distance} = \text{average speed} \times \text{time} \\ & \text{acceleration} = \text{change in speed} \ / \ \text{time taken} \\ & \text{force} = \text{mass} \times \text{acceleration} \\ & \text{energy transferred} = \text{force} \times \text{distance} \end{aligned}$

Part A Acceleration

A $700\,\mathrm{kg}$ car accelerates uniformly from rest to $30\,\mathrm{m/s}$ in $10\,\mathrm{s}$. Calculate its acceleration.

Part B Force

Calculate the force needed to give the car this acceleration.

Part C Distance

The average speed of the car is midway between the starting speed $(0.0\,\mathrm{m/s})$ and the final speed. Use this information to work out how far the car will go while accelerating.

Part D Kinetic energy

The kinetic energy equals the work done in accelerating the car. Use this fact to calculate the kinetic energy.

Part E Symbolic

The following symbols may be useful: E, $\,$ m, $\,$ t, $\,$ v

Essential Pre-Uni Physics B8.9

GCSE - Challenge (C3) A Level - Challenge (C1)

Physical constants which may be necessary to answer this problem can be found within the hint tab.

A $4.0\,\mathrm{kg}$ ball is thrown vertically up into the air with an initial velocity of $8.5\,\mathrm{m\,s^{-1}}$. By the time it is height h metres above the starting point, it has a velocity of $3.0\,\mathrm{m\,s^{-1}}$ and has done $4.0\,\mathrm{J}$ of work against air resistance. Find h.