

指令、CPU和层次化存储 作业和课程设计

作业

高级语言到汇编程序——编译


```
sum = 0;
for (i = 0; i < 2; i++)
sum += a[i];
*v = sum;
```

高级语言

```
汇编语言
```

```
10: sum <-- 0
```

I1: ap <-- A A是数组a的起始地址

i <-- 0

if $(i \ge 2)$ goto done

I4: loop: t <-- (ap) 数组元素a[i]的值

I5: sum <-- sum + t 累计在sum中

16: ap <-- ap + 4 计算下个数组元素地址

i <-- i + 1

18: if (i < n) goto loop

19: done: V <-- sum 累计结果保存至地址v

汇编程序到机器语言——汇编

作业1: 请使用介绍过的32位MIPS指令,将框图中的汇编语言的第1行、第3行、第6行和9行"的汇编语句,手工翻译成MIPS指令

- 32个寄存器功能可参考: https://www.cnblogs.com/s08243/p/7693387.html
- ■MIPS指令建议使用已经在课堂上分析过的:包括:ADDU、SUBU、ORI、LW、SW、BEQ、J
- (在操作系统空间、程序空间,虚拟空间中)数组a的起始地址A为 0x00002300,地址V的值为0x0030F1BC

0:	sum < 0
1:	ap < A A是数组a的起始地址
2:	i < 0
3:	if (i >= 2) goto done
4: loop:	t < (ap) 数组元素a[i]的值
5=	sum < sum + t 累计在sum中
6:	ap < ap + 4 计算下个数组元素地址
7:	i <i+1< th=""></i+1<>
8: 0	if (i < n) goto loop
9: done:	V < sum 累计结果保存至地址v

分页管理(1)

- ●32位系统采用分页管理地址, 描述如下:
 - ■虚拟地址和物理地址均为32位,每一页的大小为4KB
 - 快表共256行,采用4路组相联映射,快表如下图,页表见下页。

行索	第一组			第二组			第三组			第四组		
引	tag	实页 号	有效 位									
0	0003	-	0	0009	000FD	1	0000	-	0	0700	00021	1
1	0003	1002D	1	0108	-	0	0004	-	0	A001	-	0
2	F002	-	0	0002	00033	0	12F6	-	0	0033	-	0
3	0007	_	0	0003	00F0D	1	0AAA	3BF04	1	F022	-	0
15	0003	0010D	1									
Ţ		•••	•••				•••	•••	•••			
63 EMPTY	·	•••						•••				

分页管理(2)

Async sys

- ●32位系统采用分页管理地址,描述如下:
 - 虚拟地址和物理地址均为32位,每一页的大小为4KB
 - 快表共256行,采用4路组相联映射,快 表见上页,页表见右图

作业2: 请根据分页管理的机制,描述虚地址0x00002XXX、0x0030FXXX和0x0000FXXX,生成实地址的过程(这里大写的XXX表示不考虑页内地址)。

虚页号	实页号	有效位
00000	00028	1
00001	-	0
00002	00033	1
00003	00002	1
00004	-	0
0000E	0002D	1
0000F	-	0
0030F	0010D	1

Cache

● 32位系统cache数据区为64KB,每一槽(块)的大小为16B,采用4路组相联映射。 一次取32位数据。部分cache如下图。

<mark>作业3:</mark>请分析物理地址0x0010D1BC,0x00033000和0x00000004所对应的32位数据。

id x			第-	一组					第二	二组					第3	三组	第四组							
A	ta g	v	DO	D1	D2	D3	ta g	v	DO	D1	D2	D3	ta g	v	D0	D1	D2	D3	ta g	v	D0	D1	D2	D3
0	00 00	0	F1	ВС	1C	AB	00 00	1A	AB	0C	A0	00	00 D0	1	00	00	00	10	00 30	0	0F	FF	FF	FD
1																								
•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••	•••	•••	•••
76 8	A0 11	™ 1	AB	1D	31	A1	00 03	1	ОВ	OA	00	00	00 11	1	00	10	00	AA	01 D0	1	ОВ	0C	00	01
יייי	-	EMPTY_1 EMPTY_n	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
33 55	00 00	0	AA	CA	OD	F0	01 0C	1	1A	ОВ	11	1C	00 33	0	CC	AB	OA	00	00 10	1	00	01	00	01
11 12	X		ŧ NOTE	3	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
40 96			51H			#1	: [: [••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•	•••	•••	•••	•••

CPU执行过程

作业4: 请分析作业1中MIPS指令的执行过程(参考作业2和作业3)。

课程设计

课程设计

请设计一个CPU,要求

- ●可以执行简单的MIPS指令,至少包括:
 - ADDU、SUBU、ORI、LW、SW、BEQ、J
- ●采用单周期/多周期/流水线方式均可
- ●要求采用vivado前仿(功能仿真)成功
- ●作业提交形式
 - ■报告
 - ■vivado工程或代码
 - ■作业文件命名规则
 - ◆报告: XX组.doc、XX组.docx、 XX组.pdf
 - ▶ 报告正文内须在报告第一页注明组员姓名和班级
 - ◆vivado工程或代码: xx组.tar、 xx组.zip等

汇编程序到机器语言——汇编

作业1: 请使用介绍过的32位MIPS指令,将框图中的汇编语言的第1行、第3行、第6行和9行"的汇编语句,手工翻译成MIPS指令

- 32个寄存器功能可参考: https://www.cnblogs.com/s08243/p/7693387.html
- ■MIPS指令建议使用已经在课堂上分析过的:包括:ADDU、SUBU、ORI、LW、SW、BEQ、J
- (在操作系统空间、程序空间,虚拟空间中)数组a的起始地址A为 0x00002,地址V的值为0x0030F

0:	sum < 0
1:	ap < A A是数组a的起始地址
2:	i < 0
3:	if (i >= 2) goto done
4: loop:	t < (ap) 数组元素a[i]的值
5.5	sum < sum + t 累计在sum中
6:	ap < ap + 4 计算下个数组元素地址
7:	i <i+1< th=""></i+1<>
8: 0	if (i < n) goto loop
9: done:	V < sum 累计结果保存至地址v

作业2答案

作业2: 请根据分页管理的机制,描述虚地址0x00002XXX、0x0030FXXX和0x0000FXXX,生成实地址的过程(这里大写的XXX,代表页内地址未知)。

tag0000-line02-offsetXXX tag0003-line0F-offsetXXX tag0000-line0F-offsetXXX

虚页号	实页号。	有效位
00000	00028	1
00001	为高性能	のき
00002	00033	1
00003	00002	1
00004	-	0
0000E	0002D	1
0000F	-	0
0030F	0010D	1

	行索	第一组			第二组			第三组			第四组								
	引	tag	实页 号	有效 位	tag 实页 有效 号 位		tag	实页 号	有效 位	tag	实页 号	有效 位							
+	0	0003 -		0003 -		0003 -		0003 -		0	0009	000FD	1	0000	1	0	0700	00021	1
	1	0003	1002D	1	0108	-	0	0004	1	0	A001	1	0						
	2 EMPTY_n	F002	1	0	0002	00033	0	12F6	1	0	0033	-	0						
AND	3	0007	0		0003	003 00F0D 1 0AAA 3B		3BF04	1	F022	-	0							
	··· FII		1					:	:			:							
7	15	0003	0010D	1	0010	00ABC	0	0101	3BF0A	1	0001	0AABB	1						
100		SIII purri	D FAIL Drain								•••								
1	63				Ė			:	:		•••	:							

Cache

- **作业3**:
 - 0x0010D1BC
 - 0x00033000

id			第-	一组					第二	二组					第三	三组					第四	9组		
X	ta g	v	D0	D1	D2	D3	ta g	v	D0	D1	D2	D3	ta g	v	DO	D1	D2	D3	ta g	v	DO	D1	D2	D3
0	00 00	0	F1	ВС	1C	AB	00 00	1A	AB	0C	AO	00	00 D0	1	00	00	00	10	00 30	0	0F	FF	FF	FD
1																								
•••			•••	•••	•••		•••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••	•••	•••	•••
76 8	A0 11	1	AB	1D	31	A1	00 03	1	0В	OA	00	00	00 11	1	00	10	00	AA	01 D0	1	ОВ	0C	00	01
	Fire	EMPTY_1	•••					•••				•••		•••			•••		•••	•••	•••	•••		
33 55	00 00	EMOY_n	AA	CA	OD	F0	01 0C	1	1A	ОВ	11	1C	00 33	0	CC	AB	OA	00	00 10	1	00	01	00	01
Drain +	selli	HI	-tin-	100	•••		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
40 96		À	OM THE		 D:		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

问题和讨论

