Práctica: Transacciones

CI-0127 Bases de Datos, Universidad de Costa Rica

Sivana Hamer

Importante

Este documento recopila contenidos de diversos de sitios web especializados, académicos y documentos compartidos por universidades. Toda la información es utilizada con fines estrictamente académicos.

Problemas de control de concurrencia

1. Se tiene el siguiente schedule:

T_1	T_2
read(A);	
write(C);	
	write(C);

(a)	¿Cuáles de los siguientes pro	blemas de control	de concurrencia	tiene el schedule? Mar	que
	todas las opciones posibles.	\square Lost update	☐ Dirty read	☐ Unrepeatable re	ead
	□ Phantom read				

- (b) Para cada uno de los problemas anteriores, detalle todas las instrucciones que generan cada problema respectivo. Debe indicar para cual transacción genera el problema respectivo.
- (c) Si se quisieran evitar todos los problemas de control de concurrencia de este, ¿cuál es el nivel de aislamiento ($isolation\ level$) mínimo que se debe seleccionar? \Box Read uncommitted \Box Repeatable read. \Box Serializable.
- (d) Explique su escogencia del nivel de aislamiento.
- 2. Se tiene el siguiente schedule:

T_1	T_2
read(A);	
	write(B);
write(C);	
	read(D);

(a)	¿Cuáles de los siguientes pro	oblemas de control	de concurrencia	tiene el schedule?	Marque
	todas las opciones posibles.	\square Lost update	\square Dirty read	☐ Unrepeatab	ole read
	☐ Phantom read				

- (b) Para cada uno de los problemas anteriores, detalle todas las instrucciones que generan cada problema respectivo. Debe indicar para cual transacción genera el problema respectivo.
- (c) Si se quisieran evitar todos los problemas de control de concurrencia de este, ¿cuál es el nivel de aislamiento ($isolation\ level$) mínimo que se debe seleccionar? \Box Read uncommitted \Box Repeatable read. \Box Serializable.
- (d) Explique su escogencia del nivel de aislamiento.
- 3. Se tiene el siguiente schedule:

T_1	T_2
read(A);	
	read(A);
read(A);	
	read(B);
read(A);	
	read(A);
write(B);	

(a)	¿Cuáles de los siguientes pro	blemas de control	de concurrencia	tiene el schedule? Marque
	todas las opciones posibles.	☐ Lost update	☐ Dirty read	\Box Unrepeatable read
	□ Phantom read			

(b)	Para cada uno de los	problemas anteriores,	detalle todas	las instrucciones q	ue generan cada
	problema respectivo.	Debe indicar para cu	al transacción	genera el problem	a respectivo.

(c)	Si se quisieran evitar	todos los problemas de o	control de concurrencia	a de este, ¿cuál es el nivel
	de aislamiento (isolo	ation level) mínimo que	se debe seleccionar?	\square Read uncommitted
	\square Read committed	\square Repeatable read.	\square Serializable.	

(d) Explique su escogencia del nivel de aislamiento.

4. Se tiene el siguiente schedule:

T_1	T_2	T_3	T_4
read(A);			
	write(B);		
			read(D);
		write(D);	
		write(C);	
			read(C);
	write(C);		

(a)	¿Cuáles de los siguientes pro	blemas de control	de concurrencia	tiene el schedule? Ma	ırque
	todas las opciones posibles.	□ Lost update	\square Dirty read	☐ Unrepeatable r	read
	☐ Phantom read				

- (b) Para cada uno de los problemas anteriores, detalle todas las instrucciones que generan cada problema respectivo. Debe indicar para cual transacción genera el problema respectivo.
- (c) Si se quisieran evitar todos los problemas de control de concurrencia de este, ¿cuál es el nivel de aislamiento ($isolation\ level$) mínimo que se debe seleccionar? \Box Read uncommitted \Box Repeatable read. \Box Serializable.
- (d) Explique su escogencia del nivel de aislamiento.

 \square Read committed \square Repeatable read.

5. Se tiene el siguiente schedule:

T_1	T_2	T_3
read(B);		
		read(C);
write (B) ;		
		read(A);
write (A) ;		
		write(C);
	read(C);	
	write(C);	
		write(A);
read(A);		
	write(B);	

(a)	¿Cuáles de los siguientes problemas de control de concurrencia tiene el schedule? Marque todas las opciones posibles. \Box Lost update \Box Dirty read \Box Unrepeatable read \Box Phantom read
(b)	Para cada uno de los problemas anteriores, detalle todas las instrucciones que generan cada problema respectivo. Debe indicar para cual transacción genera el problema respectivo.
(c)	Si se quisieran evitar todos los problemas de control de concurrencia de este, ¿cuál es el nivel

de aislamiento ($isolation\ level$) mínimo que se debe seleccionar? \Box Read uncommitted

☐ Serializable.

- (d) Explique su escogencia del nivel de aislamiento.
- 6. Se tiene el siguiente schedule:

T_1	T_2	T_3
	write(A);	
		read(B);
write(C);		
	read(A);	
read(B);		
		write(B);
	read(C);	
	write(C);	
		write(A);
read(B);		

(a)	¿Cuáles de los siguientes problemas de control de concurrencia tiene el schedule? Marque
	todas las opciones posibles. \square Lost update \square Dirty read \square Unrepeatable read \square Phantom read
(b)	Para cada uno de los problemas anteriores, detalle todas las instrucciones que generan cada problema respectivo. Debe indicar para cual transacción genera el problema respectivo.
(c)	Si se quisieran evitar todos los problemas de control de concurrencia de este, ¿cuál es el nivel de aislamiento ($isolation\ level$) mínimo que se debe seleccionar? \Box Read uncommitted \Box Read committed \Box Repeatable read. \Box Serializable.

CI-0127 - Sivana Hamer Práctica: Transacciones

Para cada uno de los siguientes protocolos, seleccione todos los errores que pueden suceder.

Protocolos de control de concurrencia

1. Utilizando candados básicos puede suceder: \Box Inconsistencia en estados de BD \square Starvation \square Deadlocks □ Concurrencia limitada \square Cascading aborts 2. Utilizando 2PL puede suceder: \Box Inconsistencia en estados de BD \square Starvation \square Deadlocks □ Concurrencia limitada \square Cascading aborts 3. Utilizando strict or rigorous 2PL puede suceder: \square Starvation \Box Inconsistencia en estados de BD \square Deadlocks □ Concurrencia limitada \square Cascading aborts 4. Utilizando granularidad múltiple puede suceder: \square Inconsistencia en estados de BD \square Starvation \square Deadlocks □ Concurrencia limitada \square Cascading aborts 5. Utilizando basic T/O puede suceder: \square Inconsistencia en estados de BD \square Starvation \square Deadlocks □ Concurrencia limitada

 \square Starvation

 \square Deadlocks

□ Concurrencia limitada

 \square Cascading aborts

 \square Cascading aborts

6. Utilizando *validation* puede suceder:

□ Inconsistencia en estados de BD

Serializabilidad

Para cada uno de los siguientes schedules, responda las preguntas.

1. Se tiene el siguiente schedule:

T_1	T_2
read(A);	
write (C) ;	
	write (C) ;

- (a) $El\ schedule\ es\ serial?$ \square Si \square No
- (b) Dibuje el gráfico de dependencias del schedule.
- (c) El schedule es serializable en conflictos (conflict serializable)? \square Si \square No
- (d) Si su respuesta a la pregunta anterior es "Si", provea el ejecución serial equivalente. En caso contrario provea los ciclos que indican que no es serializable en conflictos.
- (e) Seleccione todas las transacciones que se deben remover para hacer que la transacción sea serializable en conflictos.
 - \square T_1 \square T_2 \square Ya es serializable en conflictos.

2. Se tiene el siguiente schedule:

T_1	T_2
read(A);	
	write(B);
write(C);	
	read(D);

- (a) i. El schedule es serial? \square Si \square No
- (b) Dibuje el gráfico de dependencias del schedule.
- (c) El schedule es serializable en conflictos (conflict serializable)? \square Si \square No
- (d) Si su respuesta a la pregunta anterior es "Si", provea el ejecución serial equivalente. En caso contrario provea los ciclos que indican que no es serializable en conflictos.
- (e) Seleccione todas las transacciones que se deben remover para hacer que la transacción sea serializable en conflictos.
 - \square T_1 \square T_2 \square Ya es serializable en conflictos.

3. Se tiene el siguiente schedule:

T_1	T_2
read(A);	
	read(A);
read(A);	
	read(B);
read(A);	
	read(A);
write (B) ;	

(a) $El\ schedule\ es\ serial?$ \square Si \square No

Práctica: Transacciones

- (b) Dibuje el gráfico de dependencias del schedule.
- (c) ¿El schedule es serializable en conflictos (conflict serializable)? \square Si \square No
- (d) Si su respuesta a la pregunta anterior es "Si", provea el ejecución serial equivalente. En caso contrario provea los ciclos que indican que no es serializable en conflictos.
- (e) Seleccione todas las transacciones que se deben remover para hacer que la transacción sea serializable en conflictos.

 \square T_1 \square T_2 \square Ya es serializable en conflictos.

4. Se tiene el siguiente schedule:

T_1	T_2	T_3	T_4
read(A);			
	write(B);		
			read(D);
		write(D);	
		$\operatorname{write}(C);$	
			read(C);
	write(C);		

- (a) iEl schedule es serial? \square Si \square No
- (b) Dibuje el gráfico de dependencias del schedule.
- (c) ¿El schedule es serializable en conflictos (conflict serializable)? \square Si \square No
- (d) Si su respuesta a la pregunta anterior es "Si", provea el ejecución serial equivalente. En caso contrario provea los ciclos que indican que no es serializable en conflictos.
- (e) Seleccione todas las transacciones que se deben remover para hacer que la transacción sea serializable en conflictos.

$\Box T_1$	$\Box T_2$	$\Box T_2$	$\Box T_{4}$	□ Ya.e	s serializable e	n conflictos

5. Se tiene el siguiente schedule:

T_1	T_2	T_3
read(B);		
		read(C);
write (B) ;		
		read(A);
write(A);		
		write(C);
	read(C);	
	write(C);	
		write(A);
read(A);		
	write(B);	

- (a) ¿El schedule es serial? \square Si \square No
- (b) Dibuje el gráfico de dependencias del schedule.
- (c) El schedule es serializable en conflictos (conflict serializable)? \square Si \square No
- (d) Si su respuesta a la pregunta anterior es "Si", provea el ejecución serial equivalente. En caso contrario provea los ciclos que indican que no es serializable en conflictos.

(e)	Seleccione todas las transaccione	s que se	deben	remover	para	hacer	que la	a trans	acción	sea
	serializable en conflictos									

 \square T_1 \square T_2 \square T_3 \square Ya es serializable en conflictos.

6. Se tiene el siguiente schedule:

T_1	T_2	T_3
	write(A);	
		read(B);
write(C);		
	read(A);	
read(B);		
		write(B);
	read(C);	
	write(C);	
		write(A);
read(B);		

- (a) $El\ schedule\ es\ serial?$ \square Si \square No
- (b) Dibuje el gráfico de dependencias del schedule.
- (c) ¿El schedule es serializable en conflictos (conflict serializable)? \square Si \square No
- (d) Explique formalmente porque es o no es un schedule serializable en conflictos.
- (e) Seleccione todas las transacciones que se deben remover para hacer que la transacción sea serializable en conflictos.
 - \square T_1 \square T_2 \square T_3 \square Ya es serializable en conflictos.

Candados

Para cada una de los siguientes *schedules*, indique que candado simple se debe pedir. Asuma que despues de obtener un candado, no se libera.

1. Se tiene el siguiente schedule:

	T_1	T_2	T_3
t_1	read(A);		
t_2		read(B);	
t_3			write(A);
t_4		write(B);	
t_5			write(C);
t_6	read(A);		

(a)	En t_1 se pide: $\Box S - LOCK(A)$ $\Box X - LOCK(A)$ $\Box S - LOCK(B)$ $LOCK(B)$ $\Box S - LOCK(C)$ $\Box X - LOCK(C)$ \Box Nada	$\square X$ –
(b)	En t_2 se pide: $\square S - LOCK(A)$ $\square X - LOCK(A)$ $\square S - LOCK(B)$ $LOCK(B)$ $\square S - LOCK(C)$ $\square X - LOCK(C)$ \square Nada	$\square X$ –
(c)	En t_3 se pide: $\square S - LOCK(A)$ $\square X - LOCK(A)$ $\square S - LOCK(B)$ $LOCK(B)$ $\square S - LOCK(C)$ $\square X - LOCK(C)$ \square Nada	$\square X$ –
(d)	En t_4 se pide: $\square S - LOCK(A)$ $\square X - LOCK(A)$ $\square S - LOCK(B)$ $LOCK(B)$ $\square S - LOCK(C)$ $\square X - LOCK(C)$ \square Nada	$\square X$ –
(e)	En t_5 se pide: $\square S - LOCK(A)$ $\square X - LOCK(A)$ $\square S - LOCK(B)$ $LOCK(B)$ $\square S - LOCK(C)$ $\square X - LOCK(C)$ \square Nada	$\square X$ –
` /	En t_6 se pide: $\square S - LOCK(A)$ $\square X - LOCK(A)$ $\square S - LOCK(B)$ $LOCK(B)$ $\square S - LOCK(C)$ $\square X - LOCK(C)$ \square Nada	$\square X$ –

2. Se tiene el siguiente schedule:

	T_1	T_2	T_3
t_1		write(A);	
t_2			read(B);
t_3	$\operatorname{write}(C);$		
t_4		read(A);	
t_5	read(B);		
t_6			write(B);
t_7		read(C);	
t_8		write(C);	
t_9			write(A);
t_{10}	read(B);		

Indique para cada instrucción que candado simple se debe pedir. Debe indicar una de las siguientes opciones en cada espacio: S-LOCK(A), X-LOCK(A), S-LOCK(B), X-LOCK(B), S-LOCK(C), X-LOCK(C) y Nada. Asuma que después de obtener un candado, no se libera. La opción de nada indica que no hay que pedir un candado.

	T_1	T_2	T_3
$\overline{t_1}$			
t_2			
t_3			
t_4			
t_5			
t_6			
t_7			
t_8			
t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_{10}			
t_{10}			

Manejo de deadlocks: Detección

1. Se tiene las siguientes transacciones que piden candados simples:

	T_1	T_2	T_3
t_1	S-LOCK(A);		
t_2		X-LOCK(B);	
t_3			X-LOCK(C);
t_4		S-LOCK(A);	
t_5		X-LOCK(C);	
t_6		, ,,	$X ext{-LOCK}(A);$
t_7	S-LOCK(D);		
t_8	S-LOCK(A);		

- (a) Para cada tiempo, indique si cada candado otorgará (granted) o bloqueará (blocked) el candado.
 - i. En t_1 : \square Otorgará \square Bloqueará
 - ii. En t_2 : \square Otorgará \square Bloqueará
 - iii. En t_3 : \square Otorgará \square Bloqueará
 - iv. En t_4 : \square Otorgará \square Bloqueará
 - v. En t_5 : \square Otorgará \square Bloqueará
 - vi. En t_6 : \square Otorgará \square Bloqueará
 - vii. En t_7 : \square Otorgará \square Bloqueará
 - viii. En t_8 : \square Otorgará \square Bloqueará
- (b) Para las transacciones anteriores, dibuje el wait-for graph.
- (c) ¿Existe un deadlock en el schedule anterior? \square Si \square No
- (d) Explique porque hay o no hay un deadlock.
- 2. Se tiene las siguientes transacciones que piden candados simples:

	T_1	T_2	T_3
t_1		X - LOCK(A)	
t_2			S - LOCK(B)
t_3	X - LOCK(C)		
t_4		Nada	
t_5	S - LOCK(B)		
t_6			X - LOCK(B)
t_7		S - LOCK(C)	
t_8		X - LOCK(C)	
t_9			X - LOCK(A)
t_{10}	Nada		

- (a) Para el schedule anterior, dibuje el wait-for graph.
- (b) ¿Existe un deadlock en el schedule anterior? \square Si \square No
- (c) Explique porque hay o no hay un deadlock.

Manejo de deadlocks: Prevención

Para cada uno de los siguientes protocolos, indique si se otorga el candado (O), bloquea el candado o si se encuentra la transacción bloqueada(B), aborta una transacción (A) o se encuentra muerta la transacción (M). Asuma que después de obtener un candado, no se libera. Además asuma que las transacciones se crearon de tal manera que las estampillas de tiempo son: $T_1 < T_2 < T_3$.

1. Se tiene las siguientes llamadas a candados:

	T_1	T_2	T_3
t_1	S-LOCK(C);		
t_2			X-LOCK(C);
t_3		X-LOCK(A);	
t_4		S-LOCK(B);	
t_5	X-LOCK(A);		
t_6			X-LOCK (A) ;
t_7			S-LOCK(B);

		$egin{array}{c c} t_6 \ t_7 \end{array}$					X-LOCK(E
(a) Si	no se ut	iliza alg	una polí	ítica de	prevencio	ón:	
i.	En t_1 :	$\square O$	$\square B$	$\Box A$	\square M		
ii.	En t_2 :	$\square O$	$\square B$	$\Box A$	\square M		
iii.	En t_3 :	$\square O$	$\square B$	$\Box A$	\square M		
iv.	En t_4 :	$\square O$	$\square B$	$\Box A$	\square M		
v.	En t_5 :	$\square O$	$\square B$	$\Box A$	\square M		
vi.	En t_6 :	$\square O$	$\square B$	$\Box A$	\square M		
vii.	En t_7 :	\square O	\square B	$\Box A$	\square M		
(b) Si s	se utiliza	a la polí	tica <i>wai</i>	t-die:			
i.	En t_1 :	$\square O$	\square B	$\Box A$	\square M		
ii.	En t_2 :	$\square O$	\square B	$\Box A$	\square M		
iii.	En t_3 :	\square O	\square B	$\Box A$	\square M		
iv.	En t_4 :	\square O	\square B	$\Box A$	\square M		
v.	En t_5 :	$\square O$	\square B	$\Box A$	\square M		
vi.	En t_6 :	\square O	\square B	$\Box A$	\square M		
vii.	En t_7 :	$\square O$	\square B	$\Box A$	\square M		
(c) Si s	se utiliza	a la polí	tica wou	ınd-wai	t:		
i.	En t_1 :	$\square O$	\square B	$\Box A$	\square M		
ii.	En t_2 :	$\square O$	\square B	$\Box A$	\square M		
iii.	En t_3 :	$\square O$	$\Box B$	$\Box A$	\square M		
iv.	En t_4 :	$\square O$	$\Box B$	$\Box A$	\square M		
v.	En t_5 :	$\square O$	\square B	$\Box A$	\square M		
vi.	En t_6 :	$\square O$	$\Box B$	$\Box A$	\square M		
vii.	En t_7 :	$\square O$	$\Box B$	$\Box A$	\square M		
Se tiene	n las sig	guientes	llamada	s a can	dados:		
(a) Si	no se ut	iliza alg	una polí	ítica de	prevencio	ón:	
i.	En t_5 :	$\square O$	\square B	$\Box A$	\square M	\square N	
ii.	En t_6 :	$\square O$	\square B	$\Box A$	\square M	\square N	
iii.	En t_7 :	$\square O$	\square B	$\Box A$	\square M	\square N	

2.

	T_1	T_2	T_3
t_1		X - LOCK(A)	
t_2			S-LOCK(B)
t_3	X - LOCK(C)		
t_4		Nada	
t_5	S - LOCK(B)		
t_6			X - LOCK(B)
t_7		S - LOCK(C)	
t_8		X - LOCK(C)	
t_9			X - LOCK(A)
t_{10}	Nada		

iv.	En t_8 :	$\square O$	$\square B$	$\Box A$	\square M	$\square N$
v.	En t_9 :	$\square O$	\square B	$\Box A$	\square M	\square N

vi. En t_{10} : $\square O \square B \square A \square M \square N$

- (b) Si se utiliza la política wait-die:
 - i. En t_5 : $\square O \square B \square A \square M \square N$
 - ii. En t_6 : \square O \square B \square A \square M \square N
 - iii. En t_7 : \square O \square B \square A \square M \square N
 - iv. En t_8 : \square O \square B \square A \square M \square N
 - v. En t_9 : \square O \square B \square A \square M \square N
 - vi. En t_{10} : $\square O \square B \square A \square M \square N$
- (c) Si se utiliza la política wound-wait:
 - i. En t_5 : $\square O \square B \square A \square M \square N$
 - ii. En t_6 : \square O \square B \square A \square M \square N
 - iii. En t_7 : \square O \square B \square A \square M \square N
 - iv. En t_8 : \square O \square B \square A \square M \square N
 - v. En t_9 : \square O \square B \square A \square M \square N
 - vi. En t_{10} : $\square O \square B \square A \square M \square N$