

Applicants: Chadwick et al. Docket No. 28110/36120B 1/46

9
ACGTTGACAC AGGAATGAAG AGTGTATTGG CTGAATCTTC AAGCAGAGGC GATATTGACC 6
AAGCAGAGGC
CIGAAICIIC
AG AGTGTATTGG CTGAATCTTC 1
C AGGAATGAAG
ACGTTGACAC

	•					•	
09	120	180	231	279	327	375	423
ACGITGACAC AGGAATGAAG AGTGTATTGG CTGAATCTTC AAGCAGAGGC GATATTGACC	ATGTGCTTTT TAAATTGGCC TGCGTGACCC GCCCACTTGG TGTAAAAGAA GAACCGGCCA	AAGGGAGGGC CTGAAGGACC TCCACAGGAG TGTGAGCAGC ACTGCTTCAG CAACAAAGCC	TCAGGTCCAC ATCTTGGGAA GAAT ATG GCC ACT TCC TGG GGG GCT GTC TTC Met Ala Thr Ser Trp Gly Ala Val Phe 1	ATG CTG ATC ATA GCC TGC GTT GGC AGC ACT GTC TTC TAC AGA GAA CAG Met Leu Ile Ile Ala Cys Val Gly Ser Thr Val Phe Tyr Arg Glu Gln 10	CAG ACC TGG TTT GAA GGT GTC TTC TTG TCT TCC ATG TGC CCC ATT AAT Gln Thr Trp Phe Glu Gly Val Phe Leu Ser Ser Met Cys Pro Ile Asn 30	GTC AGT GCC GGC ACC TTT TAT GGA ATT ATG TTT GAT GCG GGC AGC ACT Val Ser Ala Gly Thr Phe Tyr Gly Ile Met Phe Asp Ala Gly Ser Thr 45	GGA GCT CGG ATT CAT GTT TAC ACT TTT GTG CAG AAA ACA GCA GGA CAG Gly Ala Arg Ile His Val Tyr Thr Phe Val Gln Lys Thr Ala Gly Gln 60

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120B
2/46

IG. 1

			•		•
471	519	567	615	663	711
ctt Leu	GAG Glu 105	AGG Arg	GAG	AAT Asn	TCC Ser
gga Gly	CAG Gln	GAA Glu 120	CCT		GGG G1y
ccg Pro	GTC Val	TGG Trp	CTG Leu 135	TTC AAG Phe Lys	GAT Asp
aag ccg Lys Pro	ACT Thr	CAC His	TTG	ATC Ile 150	ATG Met
gtg Val 85	GAG	AGC Ser	CGT	GAG Glu	ATC Ile 165
tct Ser	GCT Ala 100	AGA Arg	CTC	GAG Glu	AGC Ser
gat Asp	GGT Gly	CCC Pro 115	GGA Gly	GTA Val	GTT Val
ttt Phe	CAG Gln	ATC Ile	GCC Ala 130	GAG Glu	AGC 3er
att Ile	AAA Lys	TCG ATC Ser Ile	ACG Thr	TTG (Leu (GGC 7
gaa Glu 80	CCC	GAC	GCA Ala	CTC	GAT Asp 160
ggt. Gly	CAG Gln 95	AAA Lys	AAA Lys	CTG Leu	CCA
ctg gaa Leu Glu	GAT Asp	GCC Ala 110	CTG	GCT Ala	GTC Val
ctg Leu	GTG Val	GTG Val	GTT Val 125	CAG Gln	CTG Leu
ccc ttt Pro Phe 75	TTT Phe	GAG Glu	GTG Val	GCC Ala 140	TTC
	GCT Ala	TTG Leu	CCG	AAA Lys	CCT Pro 155
ctc Leu	TCT Ser 90	CTC	ACC	CAG Gln	TCA Ser

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 3/46

	•				
759	8.07	. 855	903	951	666
CAG Gln 185	GGT	GAA	ACT	GCA Ala	CAT His 265
GGT Gly	GGG G1y 200	CTG	AGC Ser	GCT	GGA Gly
ACA Thr	CTG	ACC Thr 215	AAC Asn	AAA Lys	GAT Asp
CTA Leu	GAC Asp	AAA Lys	TTT Phe 230	CTG	ACT
TTT Phe	CTT Leu	GAG Glu	ATG Met	GGA Gly 245	666 G1y
AAC Asn 180	ACC	TTT	GAG Glu	TTT Phe	AAA Lys 260
GTG Val	GGG Gly 195	CAG Gln	TTT Phe	GGA Gly	GCA Ala
ACC	GTG (Val (CCC Pro 210	TCC Ser	TTG Leu	GAA Glu
GTT Val	ACT Thr	CTA	ACT Thr 225	TAC Tyr	CTG
GCC TGG Ala Trp' 175	GAG Glu	TTT Phe	CTC 7 Leu	AGT Ser 240	GCC Ala
GCC Ala 175	CAG Gln	ACG Thr	TAC Tyr	CAT	GGA G1y 255
CTA Leu	GGC Gly 190	ATC Ile	GGC G1y	ACA	CTG Leu
ATA Ile	CGT	CAA Gln 205	AGG Arg	\mathtt{TAT}	ACT Thr
.GGC Gly	GGT Gly	ACC Thr	CCT Pro 220	CTC Leu	GCA Ala
GAA Glu	CAT H1S	TCC Ser	ACA Thr	AAG Lys 235	CTG
TAT Tyr 170	CTG	GCC Ala	CAA	TTT Phe	AGA Arg 250

FIG. 1

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 4/46

1047	1095	1143	1191	1239	1287
ATC	ATG	AAA Lys	TCT	AAG Lys 345	GTG
TGG Trp 280	GAG Glu	666 61y	TTC Phe	GAA Glu	GAA Glu 360
GAG Glu	GGG G1y 295	CAG Gln	GCT Ala	TAT Tyr	AGA Arg
GCA Ala	GAA Glu	GTA Val 310	TAC Tyr	GAT Asp	GCC
GAA Glu	CAA Gln	GTA Val	TTC Phe 325	ATC Ile	aaa Lys
TTG	AAC Asn	AGG Arg	GCC Ala	TTG Leu 340	AGA Arg
TGG Trp 275	GGT Gly	CTG	AGC Ser	CAC His	GAA Glu 355
AGA Arg	GGT Gly 290	GTG Val	3GA 31y	ACA Thr	TTT
CCA	TAT Tyr	GAA Glu 305	CGA (Arg (GAC	GAT Asp
TTA Leu	CAG Gln	GCG Ala	GTC Val 320	GCT Ala	GAA Glu
TGT Cys	TAC Tyr	TAT Tyr	GAA Glu	GCC Ala 335	GTT Val
GCC Ala 270	AAA Lys	TGC Cys	GAA Glu	CGA Arg	AAA Lys 350
AGT Ser	GTG Val 285	CCC Pro	CCA	GAT Asp	TTA
CGA Arg	GGT Gly	GAA G1u 300	CAG Gln	TAC Tyr	GTT Val
rrr Phe	GGG G1y	TTT Phe	CAC His 315	TAC	666 61 y
Thr	TTT Phe	66C 61y	CTT	TAC Tyr 330	66c 61y
			· .		

Applicants: Chadwick et al. Docket No. 28110/36120B 5/46

1335	1383	1431	1479	1527	1575
ATG Met	GCC	GAC Asp	CAT His 425	CCA Pro	TCT Ser
TGC Cys	TTT Phe	AGA Arg	GGG Gly	GAA Glu 440	CTC
CTC Leu 375	GGC Gly	CAT	TCT Ser	TCT Ser	GAC Asp 455
TTC	TTG Leu 390	CAA Gln	GTC Val	ATT Ile	TCT Ser
CCT	GAT GGT Asp Gly	GAA Glu 405	CCA	TGC Cys	TTT Phe
AGT		AGT Ser	GCT Ala 420	GCC Ala	ACA Thr
66C 61y	AAA Lys	GAA Glu	CCT	GAA G1u 435	GAG Glu
TCC TCG Ser Ser 370	TTG	AAA Lys	TCA Ser	TCT	TCA Ser 450
ICC	CTG Leu 385	CAC His	CTT TCA Leu Ser	ACC	GAC Asp
TTC	GCC Ala	GCT Ala 400	CAC His	TCC	GTG Val
AGC	AÇA Thr	ACA Thr	GGC G1y 415	AGC	GGC Gly
666 61 ŷ	ATC Ile	CTT	GGG G1y	CCA Pro 430	GAA Glu
TTG Leu 365	TAC	CCT	CTT Leu		CA CAG er Gln 445
AAC Asn	ACT Th <i>r</i> 380	CAC	66C 61γ	CTG AGG Leu Arg	TCA
GAC	CTC	GAA CGG Glu Arg 395	TTG	CAG Gln	TTC
TGT	GAC Asp	GAA Glu	TGG Trp 410	CAC	GTT Val
	:				

Applicants: Chadwick et al. Docket No. 28110/36120B 6/46

TG. 1E

2119

AAAAAAAA

3GTTTT 1629	TAATGT 1689	TTTGGGA 1,749	CTAGAT 1809	TGGATG 1869	CATAAC 1929	AAGCCT 1989	GATACT 2049	CTTAAA 2109
TAACTGGTTT TATAAGGAGG GAGGGGTTTT	IGATITGCA CATC	SACTGTAAA TCTT	TTTGGAACTC CATGCTAGAT 1809	CTCGTTTCAA CCCTTGGATG 1869	TTACTGAA ATCC	TITCTICCIA CCCTIAITAC ATTCCCTACC CTAAAAGCCT	CTTCCCATCT ATAATTGAGA AAGAGGGGGG AAAAGATACT 2049	ACCCATIT AAAG
TAACTGGTTT TA'	TTGGGCTTCA A	GGCTGGCACC AC		AAAGAACAAT CI	TTATAAGCTG AT	CCCTTATTAC AT	ATAATTGAGA AA	ATAGATCAAC CA
ACC CGT Thr Arg 465	TIGCICITGA GCCIAGIGAT TIGGGCTICA AIGAITIGCA CAICTAAIGI 1689	TAACCACTIG GIGGGIGCAT GGCIGGCACC AGACIGIAAA ICTITIGGGA 1749	TTCTTTGTAC AGAGTCCTGC AAAGGAAAAA AGAGAAAAGG	TGCGAGTTCA GAGACAGGTC CCTGGGGACC AAAGAACAAT	TTGAATGGAT TCATTTTGC TTATAAGCTG ATTTACTGAA ATCCCATAAC 1929		ITTG CTTCCCATCT	TTGTGTGATC CTGTGGCACA ATAGATCAAC CAACCCATTT AAAGCTTAAA 2109
GCC TGG CCC GAA Ala Trp Pro Glu 460		C TAACCA(C AGAGTCO	A GAGACA(C TGTTAATTTT	A CCTGGTTTTG	T TTGTGTG
GGA AAA G Gly Lys A	TAGATGAGTC	GAATAGCTCC	TTCTTTGTA	TGCGAGTTC	CCTCATTGCT	CCATCAATGC	GGGGGAAATA	GTATTAGAAT

Applicants: Chadwick et al. Docket No. 28110/36120B 7/46

FIG. 24

Applicants: Chadwick et al. Docket No. 28110/36120B 8/46

FIG. 28

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 9/46

GOKNLFASS SFFYLPEDTGMVDASTPNFILRPVDIETKAKEACALNFEDAKSTYPFLD GOKNIHASSFFYDIGAQVGIVDTKFPSALAKPIOVINAAVIAS	GSA-FYAFSYYYDRAADIHLIDYE-KGGVLKVRDFRPWAPPHG	ESNDIY IFSYFYDRIRPLGMPLSFILNELNDLARIVCKG	NVASYVCMDLIYQYVLLVDGFGLDPLQKITSGKEIRVONATWFAAHDY GEE	NI-PYLCMDLIYEYTLLVDGFGLNPHKEITVIHDVOYKNVIUCAAUTOGAAVEAISALP	FLCMDLTYITALLKDGLGFAERHPLTAHKESEOHRDWIGIGGTALDLVSSTT	QVSLLHTGYDIPLQRELRTGKKIANK		FERLMYFV	KIRVASS*	PSST <u>SEA</u> CISEPVFSQEGVDSETFSDLSGKAWPETR*	
328 e 329	322	354	388	389	374	411		448	448	430	467
peaNTPase potapyrase	mNTPase	yGDPase	peaNTPase	potapyrase	mNTPase	yGDPase	-	peaNTPase	potapyrase	mNTPase	vGDPase

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 10/46

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120B
11/46

		ארא וו
CD39	47	KE-VQKVNRIGI-YLTDCMERAREVIPRS-QHQRTPVYLGATAGMRLLRMESEELAD
ratCD39	47	KY-AQKTDEIAA-YLAECMKMSTERIPASKQHQ-TPVYLGATAGMRLLRMESKQSAD
CD39L1	47	SY - ADNPSGASO - SLVGCLEOALODVPK ER - HAGTPLYLGATAGMRLLNLTNPEAST
chiATPase	47	SY - SSKPPAAGK - SLEHCLSQAMRDVPK EK - HADTPLYLGATAGMRLLTIADPPSQT
peaNTPase	46	SY-ANNPEQAAKS-LIPLLEQAEDVVPDDLQPKTPVRLGATAGLRLLNGDA-SE
potRROP1	46	SY-AEDPKAAANS-LEPLLDGAEGVVPQELQSETPLELGATAGLRMLKGDA-AE
yGDA1	4	SPDTDSV-GAANS-LDPLLKVAMNYVPIKARSCTPVAVKATAGLRLLGDAKSS
mNTPase	46	AF-VDOPKOGAET-VOELLEVAKDSIPRSHWERTPVVLKATAGLRLLPEOKAO
hCD39L2	10	AY - ADDVEKSAQG - IRELLDVAKODIP PDSGRP - TPLVLKATAGLRLL PGEKAQ
celegans	21	SFG-DKPEQVVE-YLTPLLRFAEEHIPYEQLGETDLLIFATAGMRLLPEAOKD
y71KD	61	SFE-KKPQDAYKSHIKPLLDFAKNIIPESHWSSCPVFIQATAGMRLLPQDIQS

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120B
12/46

. 1		ALK III
cD39	101	RVLDVVERSLSN-YPFDFQGARIITGQEEGAYGWITINYLLGKFSQKTRWFSIVP
ratCD39	101	RETOEOS
CD39L1	101	VFI-KYGW
chiATPase	101	- CLSAVMATLKS - YPF DFGGAKILSGEEEGVFGWITANYLLENFI - KRGWLG B
peanTPase	97	KILQSVRDMLSNRSTPN-VQPD-A-VSIIDGTQEGSYLWVTVNYALGNLG
potRROP1	97	, " ,
ygdal	95	KILSAVRDHLEKDYPPVVEGD - G - VSIMGGDERGVFAWITTNYLLGN I GANG
mNTРаве	97	ALLLEYEBIF - KNSPF - LY - PD - GSVSIMDGSYEGILAWVTVNFLTGQ LHGRG
hCD39L2	19	TGSKTP
celegans	102	LGRF-D-
y71KD	113	SILDGLCQGLKHPABFLVEDCS-AQIQVIDGETEGLYGWLGLNYLYGHFNDYN

FIG. 30

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120B
13 4446

YETNNOETP GALDLGGASTOVTPVPONO	- DSQKQATFGALDLGGSSTQVTFVPLNQ	WFRPRKGTLGAMDLGGASTOITFETTSP	WIQSKKKTLGAMDFGGASTQITFETSDAI	KKYTK TVGVIDLIGGGSVQMAYAVSKK	KDYKS TTATIDLGGGSVOMAYAISNE	PKL-P-TAAVFDLGGGSTQIVFEPTFPI	QETVGTLDLGGASTQITFLPQFE	GSSVGMLDLGGGSTQIAFLPRVE	KE-NDS-KVGMIDMGGASVQIAFEIA-NE	PEVSDHFTFGFMDMGGASTOIAF APHD
155	155	152	151	144	144	146	146	110	149	165
CD39	ratCD39	CD39L1	chlATPase	peaNTPase	potrropl	yGDA1	mNTPase	hCD39L2	celegans	y71KD

FIG. 3D

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 14/46

<	r
Ċ	ל
ŀ	4
Ģ	4

. 09	120	180	237	285	333	381
SGGAGCCCAA	GTGGCGGAGC 120	AACTTCCAGA	s ATG AGA Met Arg 1	TAC CCC Tyr Pro	AAG TGG Lys Trp	GCA GCC Ala Ala
GCCGGGGGG GGGAGCCCAA	CTCCGTGGGT	TCCGTTATGA AACTTCCAGA 180	ACATTTTCA GCAGCCGCAG CACGGTCCTT GGCAAACAAG G ATG AGA Met Arg	AAA ATA TCC AAC CAC GGG AGC CTG CGG GTG GCG AAG GTG GCA TAC CCC Lys Ile Ser Asn His Gly Ser Leu Arg Val Ala Lys Val Ala Tyr Pro 5	TAT GTT GCC TAC ATC AAG Tyr Val Ala Tyr Ile Lys 30	ATC ACC AGG Ile Thr Arg
sereececce	SGGCACTCGT	aaaaaggta	CACGGTCCTT	CTG CGG GTG GCG Leu Arg Val Ala 10	ATC TAT GTT GCC Ile Tyr Val Ala 30	TTC TTC AGC Phe Phe Ser
GTGGGGTCGT ATCCCGCGGG TGGAGGCCGG GGTGGCGCCG	CCCCGGAAAA GGGCACTCGT	TATGTGAATG AAAAAAGGTA	GCAGCCGCAG (G AGC CTG CC Y Ser Leu A1	rrc Phe	ACC CAG GCC TI Thr Gln Ala Ph 40
ATCCCGCGGG	GCCGCCIGCT	TGGAATGGGC	ACATTTTCA	TCC AAC CAC GGG AGC Ser Asn His Gly Ser 5	GGG CTG TGT GTG GGC GTG Gly Leu Cys Val Gly Val 20	ACC GCC Thr Ala
GTGGGGTCGT	AAGACCGGCT GCCGCCTGCT	GCGCGGTGCA	AAAACGAGCT	AAA ATA TCC Lys Ile Ser 5	CTG GGG CTG Leu Gly Leu 20	CAC CGG GCC His Arg Ala 35

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120B
15/46

IG. 4

429	477	525	573	621
GCT Ala	AGC Ser	GAA	CTT	GAA Glu 130
ACA Thr 65	GGA Gly		3GT 31Y	CGG Arg
GGG Gly	GCA Ala 80	CCC CCC AGA Pro Pro Arg 95	CCA Pro	ATC Ile
CTG Leu	GAT Asp	CCC Pro 95	AAG CCA (Lys Pro (GGA Gly
CCC	TTT Phe	CGG	GTG Val 110	CAG
AGC Ser	ATG Met	ACC Thr	GCA Ala	GCT Ala 125,
CAC His	ATC Ile	TTC Phe	AAA Lys	AGC Ser
GCC Ala	GGG G1y 75	CAG Gln	ACC TTC Thr Phe	GAA AAG Glu Lys
CAG (Gln)	TAC Tyr	TTC Phe 90	ACC	GAA Glu
GG TGG GGT CAG CA(cg Trp Gly Gln Gl) 55	GTC TTC Val Phe	CAC GTC His Val	CAC GAA 1 His Glu 1	GAT GTT Asp Val 120
66T 61y	GTC TTC Val Phe		CAC	GAT Asp 120
TGG Trp 55	GAG Glu	GTA Val	ACC	GAT Asp
S &	GGG CAC GAG G Gly His Glu V. 70	CGA Arg	TTA ACC (Leu Thr F	GCT Ala
GCC Ala	66. G1.	ACC Thr 85	ACG	\mathtt{TAT}
666 61y	GAC Asp	66C 61y	CCC Pro 100	GCC Ala
Pro	GCA Ala	ACT Thr	ACT	TCT GCC Ser Ala 115

Applicants: Chadwick et al. Docket No. 28110/36120B 16/46

FIG. 4

699	717	765	813	861	.606
GCC Ala	GGA Gly	GCA Ala	ACA Thr	AGC Ser 210	GGA Gly
AAG Lys 145	CCT	AAA Lys	GGA Gly	66C 61y	GGC Gly 225
TGG Trp	TTA Leu 160	TTT Phe	AAC Asn	ACA Thr	TTG
TTC Phe	CTG	GTA Val 175	ATG Met	CTG Leu	GAC
GAC	CGC Arg	GAA Glu	ATC Ile 190	TTC Phe	CTG
TTC Phe	TTA Leu	AAA Lys	TCC	AAC Asn 205	ATG Met
CCG Pro 140	66C 61y	GTG Val	GTT	ATC Ile	GGC G1y 220
ATT Ile	GCT Ala 155	AAG Lys	TGT Cys	ACC Thr	GTG Val
GAC Asp	ACA Thr	CAG Gln 170	GAC Asp	ATC	AGC Ser
CAG Gln	GCC	CTG	GAT Asp 185	TGG Trp	AGC Ser
AAA Lys	AAG Lys	TTA Leu	666 G1y	GCG Ala 200	GGG AGC Gly Ser
GCT Ala 135	CTC	AAG Lys	GTA Val	TCG	GGA Gly 215
GAT GTT Asp Val	GTC Val 150	CAG Gln	CTT Leu	GTT Val	
	CTG	GCC Ala 165	TTC Phe	66C 61y	ACT CCA Thr Pro
CTA CTG Leu Leu	CCT	AAG Lys	CCT Pro 180	GAA Glu	AAA Lys
CTA	ACC	GAA Glu	TCG	GAT Asp 195	TTG
•					

Applicants: Chadwick et al. Docket No. 28110/36120B 17/46

TG. 4I

957	1005	1053	1101	1149	1197
CAG	ACC Thr	GCA Ala	GGA G1y 290	TGG Trp	GCA Ala
CTG	AGG Arg	TCG Ser	GAT Asp	GAG Glu 305	GCG Ala
ACC Thr 240	AAC Asn	ATG Met	AAG Lys	GGA Gly	GCA Ala 320
66C	TTT Phe 255	CTG	GCT Ala	AAA Lys	AAA Lys
GAG Glu	ATG Met	GGG CTG Gly Leu 270	CCT	TTC Phe	CAG Gln
GTG Val	CGG Arg	CTC	CAG Gln 285	AGT Ser	666 G1y
CGC	CTG Leu	666 61y	GGG Gly	CCC Pro 300	TCA
CCA Pro 235	GCA Ala	CTC	GAG Glu	TCT Ser	GTT Val
CTG	ACG Thr 250	TAC Tyr	GTG Val	TTG	AGG Arg
TTC	CTG Leu	AGC Ser 265	66C	TGC Cys	TAC
GCC Ala	TAC	TAC Tyr	GGC Gly 280	CCT	ACG Thr
ATC Ile	GGC Gly	TCC	CTG	AGC Ser 295	GTC Val
CAG Gln 230	CCC Pro	TAT Tyr	ATC Ile	GTC Val	GAA Glu 310
ACT	CCA Pro 245	CTC	GCG Ala	TTG	GCA Ala
TCC	TCC	AAG Lys 260	CTG	GAG Glu	CAC
GGA G1y	GCC Ala	TAC Tyr	CGC Arg 275	AAG Lys	GAA Glu
•					

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 18/46

				•	
1245	1293	1341	1389	1437	1485
AAC Asn	TTC	GAG Glu 370	TAC Tyr	TGC	CCC
CAA Gln	GCT Ala	GCG Ala	AAG Lys 385	TCA	TTT Phe
CTT Leu	TAT	GAT	GCC Ala	TTC Phe	GGC Gly
GTC Val 335	TTC	ATA Ile	GCA Ala	CCC	TTC Phe 415
GAG Glu	GAC Asp 350	CIC	ATC Ile	AGC	GAG
TCA Ser	GTG Val	GGC Gly 365	GAG Glu	AGC	CAG Gln
GTG	CAT His	GTG Val	TTC Phe 380	CAG Gln	CTC
AGA Arg	AAG Lys	GGT Gly	GAC Asp	CCG Pro 395	CTA Leu
GCC Ala 330	GTG Val	GCT Ala	666 Gly	CAG Gln	CTG Leu 410
GCT	GAA Glu 345	GCA Ala	GTG Val	ACA Thr	AGC Ser
TGT Cys	GAG Glu	CTT Leu 360	GTG Val	GAG Glu	GTC Val
CTG	ACG	GÀC Asp	CTG Leu 375	•	TAC Tyr
GAG Glu	AGG Arg	TAC Tyr	AGC Ser	ACC CTG Thr Leu 390	ACC
CAC His 325	CAC Hịs	TAT Tyr	66C 61y	CGG Arg	CTC Leu 405
AGC CTG Ser Leu	AGA GTG Arg Val 340	TAC Tyr	GGA G1 у	TGT Cys	GAC Asp
AGC	AGA Arg	TCC Ser 355	AAG GGA Lys Gly	GTG Val	ATG Met
		· · · .			

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120B
19/46

FIG. 4

\sim	H .	on .	0	0	0	0	
1533	1581	1629	168	1749	1809	1869	7
L C	- K 20		ည			CAC	7
ACC	AGA Arg 450	-	GGA		CCI	AAC(į E
GAG Glu	AAC Asn	r n	CTGA	BAAG	:GGA(CAG.	7
GTT Val	CTG Leu	TCAC	TC (CA (TC 1	GG 7	ت و
AAT Asn	TCC	ອນນຸນ	FTCA	CTTG	SCTG	ACCA	, K
GAC Asp 430	GAC	D II C	TGACTTCATC CTGAGGAGCC 1689	3GGA(3AGG(CAGGACCAGG ACAGAACCAC) Th & c
ATT Ile	ATC Ile 445	CCCT	ACG '	CCGTGCTGGC ACTITCIGCA CACTGGCTCT GGGACTTGCA GAAGGCCTGG	CATCTGGCCA GAGGGCTGTC TGGACCTGGG	999	TGAGGGGCA GTGTGGCTCC CTGCCTGTC CATCCCATC CCCATC
AAA Lys	TAC Tyr	CCAT	CTGG	rggc	CTGG	AAGT	J T
CGG AAA Arg Lys	CAT	SA G	GTC	CAC	CAT(TCC	CTC
ACT	TTT Phe	3600	rccr	rgca	STCA	3995	J.T.C.C.
CTC Leu 425	ATT	TAGT	GTGTCTGCAT AAACCCTCCT GTCCTGGACG	TTTC.	CTTCCAGTCA	TGCCACCTGT CTGCCTGGGC TCCAAGTGGG	3TGG(
AAG Lys	GCC Ala 440	TCA	T AA	C AC	I CI	r CT(A GT(
CTG	GGG GCC Gly Ala 440	GCC Ala 455	rgca'	CTGG(AGCC	CTG	366C/
GTG	CTG	CCA GCC Pro Ala 455	IGTC	CGTG(GCATCAGCCT	3CCA(3AGG(
AAA Lys	GCT	AGT	G. G.			AA T(
AGC Ser 420	TGG GCT Trp Ala	AAG . Lys	GTCT(CACA	2005	3CTC	4CAC?
AGG	AGC Ser 435	CAG AAG AGT CCA GCC TCA TAGTGGCCGA GCCATCCCTG TCCCCGTCAG Gln Lys Ser Pro Ala Ser 455	CAGTGTCTGT	ACAGCACAGG	TGCTGCCCTG	CCCTGCTCAA	AGGCACACAC
		٠		• •	-	_	

Applicants: Chadwick et al. Docket No. 28110/36120B 20/46

IG. 4(

2529	CTCGGTGTCT	GAACCAAGCT	CACAGTCCCA	TCAGCTGAGC	AGGTGCAGCT GTGCCACGGG TCAGCTGAGC CACAGTCCCA GAACCAAGCT CTCGGTGTCT 2529	AGGTGCAGCT
2469	GCCATGTCTT	CCTAGCCAGG	TGAATGTATC GCTACTGTGA GCTGTTCCCG CCTAGCCAGG GCCATGTCTT 2469	GCTACTGTGA	TGAATGTATC.	CTGTGTCCTG
2409	TGGACACCAA	CCCCCTTTC	GTGTTCTGAG	TGTAGAAACT	GTGTGGGTGC CAAGTGCTTG TGTAGAAACT GTGTTCTGAG CCCCCTTTTC TGGACACCAA 2409	GTGTGGGTGC
2349	CGTCTCTGTC	GCTTGAGTGA	TGGCTGTGCT	AAACTATTTG	TGCCGGGCAT GAGCTGCTGT AAACTATTTG TGGCTGTGCT GCTTGAGTGA CGTCTCTGTC 2349	TGCCGGGCAT
2289	CATGGGCGGA	AGTCTCCCAG	CCTTTCAGGG	CAGGTGCCCA	AGACACCTCT TCATAGACGG CAGGTGCCCA CCTTTCAGGG AGTCTCCCAG CATGGGCGGA 2289	AGACACCTCT
2229	TGATGGAGGG	TIGGGGTTAA	ATTGTGTGGT	CTCCTCACAC	AGTICACCCA GAGGCCIGCI CICCICACAC AIIGIGIGGI IIGGGGIIAA IGAIGGAGGG 2229	AGTTCACCCA
2169	TGAATGTGTG	TCCTTGGGTA	TGTTTGCTCT	GACTTGAGTG	CGGCACCACT GGGAACTCTG GACTTGAGTG TGTTTGCTCT TCCTTGGGTA TGAATGTGTG 2169	CGGCACCACT
2109	TAGGTCTGGG	CCCGGGACAG	CCATAACACC	CGAGGGACAG	CCTGGCTGCT CTGGGGAAGC CGAGGGACAG CCATAACACC CCCGGGACAG TAGGTCTGGG 2109	CCTGGCTGCT
2049	TGCAGGCTGT	TGGGAGGCGG	TGCAAGAGTC	CICCCCTICC	GTTTCCTCCC CAGGGCAGAG CTCCCCTTCC TGCAAGAGTC TGGGAGGCGG TGCAGGCTGT 2049	GTTTCCTCCC
1989	CAGCCTGTCA	TCTTGTCTCC	GCGATGGGAG	GCATGTCCCT	essectistics crecrecter geargreecr segargegas retrerere cageererea 1989	99.1.9.1.09999

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 21/46

4.
G
Н
f

せつつせつつううう	TCGCCCACC	csscheen ienschen inspection (CCACCICCI CCAIGGACAG IGIGAGCCCC 2589	CCCACCTCCT	CCATGGACAG	TGTGAGCCCC	2589
GGGCCGTGCA	TCCTGCTCAG	GGGCCGTGCA TCCTGCTCAG TGTGGCGTCA GTGTCGGGGC TGAGCCCCTT GAGCTGCTTC 2649	GTGTCGGGGC	TGAGCCCCTT	GAGCTGCTTC	2649
AGIGAAIGIA	CAGTGCCCGG	AGTGAATGTA CAGTGCCCGG CACGAGCTGA ACCTCATGTG TTCCACTCCC AATAAAAGGT 2709	ACCTCATGIG	TTCCACTCCC	AATAAAAGGT	2709
TGACAGGGGC	TTCTCCTTCA	TGACAGGGGC TTCTCCTTCA AAAAAAAAA AAAAAAAAA AAAAAAAA	AAAAAAAA	AAAAAAAA	AAA	2762

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 22/46

FIG. 5A

FIG. 5B

Applicants: Chadwick et al. Docket No. 28110/36120B

23/46

FIG. 5D

FIG. 5E

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 24/46

09
TCCGAATCGG
AGTCGCCTTC
CGGCAGCGCT
GCCGCCTCTG
CIGGCCGCGG
ACCCACGCGT CTGGCCGCGG GCCGCCTCTG CGGCAGCGCT AGTCGCCTTC TCCGAATCGG 60

112	160	208	256	304
CICCGCACAG CTAGGAGAAA AG ATG TTC ACT GTG CTG ACC CGC CAA CCA TGT Met Phe Thr Val Leu Thr Arg Gln Pro Cys 1	GAG CAA GCA GGC CTC AAG GCC CTC TAC CGA ACT CCA ACC ATC ATT GCC Glu Gln Ala Gly Leu Lys Ala Leu Tyr Arg Thr Pro Thr Ile Ile Ala 15	TTG GTG GTC TTG CTT GTG AGT ATT GTG GTA CTT GTG AGT ATC ACT GTC Leu Val Val Leu Leu Val Ser Ile Val Val Leu Val Ser Ile Thr Val 30	ATC CAG ATC CAC AAG CAA GAG GTC CTC CCT CCA GGA CTG AAG TAT GGT Ile Gln Ile His Lys Gln Glu Val Leu Pro Pro Gly Leu Lys Tyr Gly 45 55	ATT GTG CTG GAT GCC GGG TCT TCA AGA ACC ACA GTC TAC GTG TAT CAA Ile Val Leu Asp Ala Gly Ser Ser Arg Thr Thr Val Tyr Val Tyr Gln

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B

25/46

352	400	448	496	544	592
TTC Phe 90	CCC	999 G1y	GCC	AAT Asn	GAC Asp
ACC Thr	AAC Asn 105	aag Lys	GGA Gly	GCT Ala	TTT Phe
CAA Gln	AAT Asn	gtc Val 120	CTG Leu	GCA Ala	CCC Pro
GTC AGT Val Ser	GGA Gly	ааа Lys	ATT CAC Ile His 135	ACA Thr	CAG Gln
GTC Val	TAT Tyr	caa Gln	ATT Ile	GAA Glu 150	TCC Ser
GTG Val 85	AGC	atg Met	CCC Pro	AAT Asn	AAG Lys 165
GGA Gly	TCC Ser 100	tgt Cys	ACC Thr	CAA Gln	TTC
ACC Thr	ATC Ile	gag gag Glu Glu 115	TCC Ser	TTG	TAC Tyr
AATAsn	GGA Gly	gag Glu	GGA Gly 130	AGG Arg	AGC
AAT Asn	TCT	ttt Phe	CAC	CTG Leu 145	CAA Gln
GAG Glu 80	GGC G1y	gcc Ala	CTC	TTG Leu	ATC Ile 160
AAA Lys	AAA Lys 95	aga Arg	CAC His	CGC Arg	AGC
GAA Glu	GTG Val	gtc ccc Val Pro 110	TCC	ATG CGC Met Arg	GAA Glu
GCA Ala	TGT,AGT Cys Ser		CCA Pro 125	GCT GGG Ala Gly 140	CTT
TGG CCA Trp Pro 75	TGT Cys	gat Asp	GTT Val		GTC Val
TGG Trp 75	AAA Lys	caa Gln	CAG Gln	ACG Thr	GAA Glu 155

Applicants: Chadwick et al. Docket No. 28110/36120B 26/46

			•		
640	. 889	736	784	832	088
GGA Gly	CTG	CTG	AAG Lys	TAC Tyr 250	GAG Glu
TAT Tyr 185	AAC Asn	GCC Ala	GAG Glu	66C 61y	AAT Asn 265
GTA Val	AAG Lys 200	GGT	GGA Gly	TAT Tyr	CGG Arg
666 61y	GAG Glu	ACG Thr 215	GCA Ala	CTG	GGC G1y
GAA Glu	CTG	ACC Thr	GTG Val 230	TCC Ser	TAT Tyr
GAA Glu	TTC	GAA Glu	TTC Phe	GTG Val 245	TGC Cys
CAA Gln 180	AAT Asn	GTG Val	TCC	CAG Gln	CAG Gln 260
666 61y	GGA Gly 195	GGA Gly	ATA Ile	ATG Met	TTC Phe
TCT Ser	ATG Met	CAT His 210	CAA Gln	ATC Ile	AGC Ser
ATT Ile	TTA	CCG	ACC Thr 225	GAC	CAC
ATC ATT Ile Ile	TAT Tyr	CAC His	TCC Ser	AGC Ser 240	ACA Th <i>r</i>
CAA Gln 175	AAC Asn	GTG Val	GCC		TAC TYR 255
GCT Ala	GCC Ala 190	TGG Trp	GGT Gly	AAC ACC Asn Thr	CTC
GGT G1y	ACA Thr	ATG Met 205	GGT Gly	CTG Leu	ACG Thr
III AGG GGT GCT CAA Phe Arg Gly Ala Gln 175	ATT Ile	CAC His	TTA Leu 220	GAT Asp	TAC Tyr
TT. Phe	TGG Trp	TGG Trp	GAC Asp	ATG Met 235	GTA Val

Applicants: Chadwick et al. Docket No. 28110/36120B 27/46

928	976	1024	1072	1120	1168
AAA Lys	TTC	CCA Pro	GAC Asp 330	GCT Ala	AAG Lys
ACC Thr	AGC Ser	AGG	GGG (AAA (Lys i	CCA 1 Pro 1
CCT Pro 280	ATC	CAG	ACT	TTC	CAG (Gln 360
TCT Ser	AGC Ser 295	GAC Asp	GGA G1y	GAC	TAT (Tyr (
AAT Asn	TAT Tyr	GTG Val 310	GAA Glu	TTT	GTT V
CAG Gln	GAT Asp	ACT Thr	TTT Phe 325	ATA Ile	GGG G1y
CTG	CGG Arg	TGC Cys	ACT Thr	TCC Ser 340	GAT Asp
CTC Leu 275	CCT	CTG	ATC Ile	GCT Ala	TTT Phe 355
ATG Met	TAC Tyr 290	AGC	GTC Val	GTG Val	TCT
GCA Ala	TGT	GAT Asp 305	GAT Asp	AAG Lys	TGT Cys
CTG Leu	CCC Pro	TTT Phe	AAT Asn 320	GAG Glu	ACC Thr
TTT	AAT Asn	GTA Val	CCC	AAG Lys 335	GAA Glu
AAG TTT Lys Phe 270	ACC Thr	CAT	AAC Asn	TGT Cys	CAA Gln 350
AAG Lys	CTC Leu 285	66c 61y	\mathtt{TAT}	CTG	GAT Asp
GCT GAG Ala Glu	CAT His	ATG Met 300	AGT	TCT	CAT His
GCT Ala	AAC CAT Asn His	ACC Thr	GAA Glu 315	CCA Pro	TGC Cys
	· · · .				

Applicants: Chadwick et al. Docket No. 28110/36120B 28/46

9	4 ".	~ 1		~	
1216	1264	1312	1360	1408	1456
AGT	AGC Ser	CTC Leu 410	AAC Asn	ACT Thr	GCC Ala
GCC	TCC	CTG Leu	GCC Ala 425	GAG	ATA Ile
ACA Thr	AAC Asn	CTG	TCA Ser	GAG Glu 440	AGC
TAC Tyr 375	TTC Phe	CCA	TTC Phe	ACA Thr	AGC Ser 455
TAC Tyr	ACC Thr 390	CTC	${ m TGC}$	TTC	AAT Asn
TTC Phe	GAC Asp	CAG Gln 405	TAC Tyr	AAA Lys	G1y
GGA G1y	CTG	AGT Ser	TCT Ser 420	TAC Tyr	GTG Val
GCA Ala	TCC	CAG AAT TGG Gln Asn Trp	CGC Arg	GGT Gly 435	GAA Glu
TTT Phe 370	TTT Phe	AAT Asn	GCC Ala	AAC Asn	AAA Lys 450
GCT Ala	AGC Ser 385	CAG Gln	TAT Tyr	GTG Val	GAA Glu
GTG Val	GGT Gly	TCA Ser 400	GTA Val	TTT Phe	TTT Phe
TTT Phe	TCA Ser	TGC TCA Cys Ser 400	GAG Glu 415	TTG Leu	CAC His
GGG CCA Gly Pro 365	CTT Leu	TTC	GAT Asp	CAC His 430	ATA Ile
AIT AAA GGG CCA Ile Lys Gly Pro 365	AAT Asn	AAT Asn	TTT Phe	TAC Tyr	CAA Gln 445
AAA	TTA Leu 380	TGG Trp	AAA Lys	ATC	CCC
ATT Ile	GCT	ACC Thr 395	CCC Pro	TAC	TGG

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 29/46

1699	GAC CAT GCA GTG GAT TCT GAC TGAGCCTTCA AAGCAGCTCC TGGAGTCCAA Asp His Ala Val Asp Ser Asp	
1648	TAC CTG TGT TCA GCA ACC AGA AGA AAG AGG CAC TCC GAG CAT GCC TTT Tyr Leu Cys Ser Ala Thr Arg Arg Lys Arg His Ser Glu His Ala Phe 510 510	-
1600	CTC GCT TTC TTC ACA GTG GCA GCC TTG CTG TGT CTG GCA TTT CTT GCA Leu Ala Phe Phe Thr Val Ala Ala Leu Leu Cys Leu Ala Phe Leu Ala 500	
1552	AGC CCT CTG ATC CGT CTG CCC ATA GAA CCA CCT GTC TTT GTG GGC ACC Ser Pro Leu Ile Arg Leu Pro Ile Glu Pro Pro Val Phe Val Gly Thr 475 475	
1504	TGG TCT CTT GGC TAC ATG CTC AGC CTG ACC AAC CAG ATC CCA GCT GAA Trp Ser Leu Gly Tyr Met Leu Ser Leu Thr Asn Gln Ile Pro Ala Glu 460	

TGGCTGCTTA GAGTCAGCCT GGGTGGCACC AGGCAATGCA GGTGAAGTGG CTGCCTTCAG 1759

Applicants: Chadwick et al. Docket No. 28110/36120B 30/46

FIG. 6

1819	379	939	1999	159	2119	.79	39	66.	2359	0
G 18	C 18	C 15		c 20	A 21	C 21	3 22	A 22	2 23	, C
GATTTCT	GAGACCT	TCAGGCT	GTTGAAG	AGATACÇ	TTAACTA	ATAGTAT(CATACAGO	ATTCTCC	rcatcar	ה עיט ע עיטטע העט ע עיטטע
^ CI	CA	v GG	AT.	. CA	CT	. AT	ĠŢ.	CC	IG	<u>ا</u>
CTCTCAAATA	TATTGTTCTI	AGGCCACTA	TATCAGTTTP	TTCTTCCTGG	TCCCATTGGT CTTTAACTAA	GATCAGTAGA	CCAGGCTTCT	AAACTATAGA	CCTGTGTGTT	ACATTGATC
GGTCACGTGC	ATTCTGTGCA	GAGAAGAGAC	GTTGAGAAGG	TCCCTCAGTA	TTATAGTTTT	AACCCCCTCA	GCAGCCACAG	GTCTCCCAGA	TAGATTGCAA CCTGTGTGTT TGTCATCATC	CCATAAAAAC
CAAACACCTA	TCCCTTGGCT	TTGGGGAACA GAGAAGAGAC AGGCCACTAA GGTCAGGCTC 1939	GGAAGAGTAA	TCCATTTCCC TCCCTCAGTA TTCTTCCTGG CAAGATACCC 2059	GAATCTCATT	GTAAGCAGTG	CTTCAGGGCA	CATAAAAAG	CTCTGGTCAC	CTATGCCCTC
GAAATACAAC TAACTAAAAT CAAACACCTA GGTCACGTGC CTCTCAAATA CTGATTTCTG	CCACAGCACC TCTTGAGGCA TCCCTTGGCT ATTCTGTGCA TATTGTTCTT CAGAGACCTC 1879	ACTACCCACA TGCTGATCTA	TTTATATTAA GTTCCCCAGA GGAAGAGTAA GTTGAGAAGG TATCAGTTTA ATGTTGAAGA	ATTGACCTCA GGGCTCAGTT	TCGCCAATCA GAATCTCATT TTATAGTTTT	TAGCAATCTC GTAAGCAGTG AACCCCCTCA GATCAGTAGA ATATAGTATC 2179	TGGGGGAGAA GACTTACTTC CTTCAGGGCA GCAGCCACAG CCAGGCTTCT GTCATACAGG 2239	TAGATCCCGA AGCACAGAGA CATAAAAAG GTCTCCCAGA AAACTATAGA CCATTCTCCA 2299	AGTGGAATIC CCACTTAGGG CTCTGGTCAC	CTCATCTCAC CATTGTATTG CTATGCCCTC CCATAAAAAC ACATTGATCC CTATGATCAAAAAAAAAA
GAAATACAAC	CCACAGCACC	ACTACCCACA	TTTATATTAA	ATTGACCTCA	ATTAAGCATT	GACTITCTIG	TGGGGGAGAA	TAGATCCCGA	AGTGGAATTC	CTCATCTCAC

Applicants: Chadwick et al. Docket No. 28110/36120B 31/46

	CAGALI I I AC	TALISCALLO CAGALLIAO 16001TIGOT AGGOTTTGO TTAGCAAAGG GOTGACTTTO 2479	AGGCT"I"I"IGC	TTAGCAAAGG	GCTGACTTTC	2479
CATTGTTATC	ATGGTGTATA	CATTGTTATC ATGGTGTATA TATTTTGTC ACCATTCCCA CAAGTATACT TGATGTTGTC 2539	ACCATTCCCA	CAAGTATACT	TGATGTTGTC	2539
ATAGAACGAA	CATCCTACTC	ATAGAACGAA CATCCTACTC TATGATTTAC TAACCAATTA CTTTCCCAGA TCATAGACCT 2599	TAACCAATTA	CTTTCCCAGA	TCATAGACCT	2599
CTCTGCATAG	TAGTCATAGG	CTCTGCATAG TAGTCATAGG TCTTGACTTT GGGGAAAGAA AAGGAAGCTG CAGGAATATT 2659	GGGGAAAGAA	AAGGAAGCTG	CAGGAATATT	2659
TATCTCCAAA	GTCGAATGAG	TATCTCCAAA GTCGAATGAG AAAGAACTCC AGCAAATCCA ATGGCTACAA ACTAAAAATC 2719	AGCAAATCCA	ATGGCTACAA	ACTAAAAATC	2719
AGCATTATT	CATATTGCTG	AGCATTATIT CATATIGCIG ITICITAGCI GAATAIGGAA IAAAGAACIA ITATITIAIT 2779	GAATATGGAA	TAAAGAACTA	TTATTTATT	2779
TTGAAAAAA AAAAAAA	AAAAAAA		-			7707

Applicants: Chadwick et al. Docket No. 28110/36120B 32/46

09	120	180	240
GGCTGAATCC	TGTAAGGTTG	AAATTGCCTC	ACATCTTGGG
GGAGTGTCTT	TGTATCCAGA	AGGAAAGAAA	CCACCCAGCC
AAAGAAATGT	AGGTAGGACT	AAAATTCAGA	ACAAAAGCCT
CCTGGTCAAC	TGGTGCTGTT	AACCAAGGAG	TGCTTCTGCA
TTTCCTTGTT	AAGATCATTA	ATAATAAAGG	CGAGCAGGAT
GCGCGCGCGT TTTCCTTGTT CCTGGTCAAC AAAGAAATGT GGAGTGTCTT GGCTGAATCC 60	TCATACAGAC AAGATCATTA TGGTGCTGTT AGGTAGGACT TGTATCCAGA TGTAAGGTTG 120	AAAAAGTGAT ATAATAAAGG AACCAAGGAG AAAATTCAGA AGGAAAGAAA AAATTGCCTC 180	TGCAGGTGTG CGAGCAGGAT TGCTTCTGCA ACAAAAGCCT CCACCCAGCC ACATCTTGGG 240

288	336	38.4	432
GTA Val	TTT Phe 30	AGC Ser	ATT Ile
GTG (Val	TGG	GCC Ala 45	CGA Arg
CTG (Leu 1	ACT	AGC Ser	ACT Thr 60
ATG (Met I	CAG Gln	GTC Val	GGA Gly
TTC P Phe N	CAG Gln	AAT (ACT
TTT 1 Phe E	AGG AAC Arg Asn 25	ATC Ile	AGC
GTC 1 Val E	AGG Arg	CCC Pro 40	666 Gly
ACA (Thr V	CAC His	TGC Cys	GCA Ala 55
GGC <i>F</i>	TCC Ser	ATG Met	GAT Asp
TGG (Trp (5	GTC Val	TCC Ser	TTT Phe
Ser 1	GCT Ala 20	TCT Ser	ATG Met
ACT 1 Thr 5	AGC Ser	CTG Leu 35	ATT Ile
GCC PAla I	TGC	TTC Phe	GGA G1y 50
ATG G Met P	GTT Val	ATC	TAT Tyr
AGA A	TGT	GGT Gly	TTG Leu
· ~			

GAG

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 33/46

FIG. 7

•			•		
480	528	576	624	672	720
CTA	GTA	GTG Val 110	GTC Val	AAG Lys	CTG
ATT Ile	TTT Phe	GAG Glu	GTG Val 125	GCC Ala	TTC Phe
CCA. Pro	GCT Ala	TTA Leu	CCA Pro	AAA Lys 140	CCT
CTT Leu 75	TCT Ser	CTC	ACC Thr	CAC His	TCA Ser 155
CAG Gln	CTT Leu 90	666 61y	AAG Lys	GAA Glu	AAG Lys
GGA G1y	GGA Gly	CAA Gln 105	AAA Lys	CCA	AGG Arg
CCA Pro	CCA	GTT Val	TGG Trp 120	CTG Leu	TTC Phe
ATG Met	AAG Lys	ACC	CAC His	TTA Leu 135	ATC Ile
AAA Lys 70	GTG Val	GAG Glu	AGT	CGC Arg	GAG Glu 150
CAG Gln	TCT Ser 85	GCT	CGA Arg	CTA	AAG Lys
GTG Val	GAT Asp	GGT G1y 100	CCC	GGA Gly	GTA Val
TTT Phe	TTT Phe	CAG Gln	ATC Ile 115	GCA Ala	GAG Glu
ACC Thr	GTT Val	AAG Lys	TCA Ser	ACA Thr 130	TTT Phe
TAC Tyr 65	GAA Glu	CCT Pro	GAC Asp	GCA Ala	CTC Leu 145
GTT Val	666 G1y 80	CAA Gln	AAA Lys	AAG Lys	CTG
CAT	GAA Glu	GAT Asp 95	GCC Ala	CTA	GCT
	•			٠.	

Applicants: Chadwick et al. Docket No. 28110/36120B 34/46

უ
G
ن
ũ

768	. 816	864	912	096	1008
ATA Ile	CAC His 190	CAA Gln	AGG Arg	TAT Tyr	ACC Thr
66C 61y	GGC G1γ	ACC Thr 205	CCT Pro	CTC	GCA Ala
GAA Glu	CAT His	TCC	ACT Thr 220	AAG Lys	CŢA Leu
GAC Asp	CTG	GCC	CAA Gln	TAT Tyr 235	AGA Arg
GGA TCC Gly Ser 170	CAG Gln	GGA G1y	GAA Glu	ACT	GCA Ala 250
GGA Gly	GGT Gly 185	GGG Gly	CTG Leu	AGC Ser	GCT. Ala
GAT Asp	ACA Thr	CTA Leu 200	\mathtt{ACT}	AAC Asn	AAA Lys
ATG Met	CTG	GAC Asp	AAA Lys 215	TTT Phe	TTG
ATC Ile	TTT Phe	TTG	GAG Glu	ATG Met 230	GGA Gly
AGC Ser 165	AAT Asn	ACC Thr	TTT Phe	GAG Glu	TTT Phe 245
GTT Val	GTG Val 180	GGG G1y	CAG	TTT Phe	GGA Gly
AGT Ser	ACT	GTG Val 195	CCC Pro	TCC	TTG Leu
GGC Gly	GTT Val	ACT Thr	CTG CCC Leu.Pro 210	ACT Thr	TAC Tyr
AAG Lys	TGG Trp	GAG Glu	TTC Phe	CTC Leu 225	AGT Ser
CCA Pro 160	GCT	CAG Gln	ACG Thr	TAC Tyr	CAT His 240
GTA Val	TTA Leu 175	AGA Arg	ATC Ile	66C Gly	ACA Thr
			•		

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120B
35/46

					•
1056	1104	1152	1200	1248	1296
AGT Ser 270	GTG	CCC Pro	CCA	GAC Asp	TTA Leu 350
CGG Arg	GGT Gly 285	GAG Glu	CAG	TAT Tyr	ATT Ile
TTC Phe	GGG G1γ	TTT Phe 300	CAC	TAT Tyr	GGT
ACT Thr	TTT Phe	66C 61y	CTT Leu 315	TAC Tyr	GGG G1y
CAC	ATC Ile	GTG Val	aaa Lys	TCT Ser 330	AAG Lys
GGG Gly 265	TGG	GAG	GGA G1y	TTC	GAA Glu 345
GAT Asp	GAG Glu 280	GGG GAG Gly Glu	CGA GGA Arg Gly	GCT Ala	TAT Tyr
ACT Thr	GCA Ala	GAA Glu 295	GTA Val	TAT Tyr	GAT Asp
666 Gly	GAA Glu	CAA Gln	GTG Val 310	TTC	ATT (
GAA Glu	TTG	AAC Asn	AGG Arg	TCC Ser 325	ATG
ACA Thr 260	TGG	GGC G1у	crg	GGT Gly	GAC Asp J
GAG Glu	AGA Arg 275	\mathtt{GGT}	GTG Val	AGA Arg	ACA Thr
CTG Leu	CCG Pro	TAT Tyr 290	GAA Glu	CAG Gln	GAC
GCC Ala	TTA Leu	CAG Gln	GCC Ala 305	GTC Val	GTT (Val
GGA Gly	TGT Cys	TAC Tyr	TAT Tyr	GAG Glu 320	GCT (
CTG Leu 255	GCC	AAA TAC Lys Tyr	TGC TAT Cys Tyr	GAG (Glu (CGA (Arg 7 335
_		• •		· · · · · · · · · · · · · · · · · · ·	

TGAGGCCACG TACTICCTIG GAGACCIGCA TITGCCAACA CCTITITAAG GGGAGGAGAG 1590

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120B 36/46

1344	1392	1440	1488	1530
TTG Leu	TAC	GTC Val	TTG Leu	
AAC Asn 365	AGC	ACA Thr	GCC Ala	
GAT	CTC Leu 380	AGC Ser	TGG Trp	CAT
TGT Cys	GAT Asp	GAC Asp 395.	66C 61y	TCC
GTG Val	ATG Met	GCA Ala	ACG Thr 410	ATC
GAA Glu	TGC	TTT Phe	GAG Glu	GGC G1y 425
GCC AGG Ala Arg 360	CTG	66C 61y	ATA Ile	CTG Leu
GCC A	TTC Phe 375	TTT Phe	AAC Asn	TCT Ser
AAA Lys	CCT	GGC G1γ 390	AAC Asn	CAG
AGA Arg	AGT	GAT Asp	GTG Val 405	TTG Leu
GAA Glu	66C 61y	AAG Lys	AAA Lys	CTG Leu 420
TTT Phe 355	TCA	TTA Leu	AAG Lys	CAC His
GAT Asp	ACC Thr 370	CTG Leu	ACA Thr	TTT Phe
GAA Glu	TTC Phe	GCC Ala 385	CTC	ACC Thr
GTT	AAC Asn	ACA Thr	CAG Gln 400	GCC Ala
AAA Lys	GAA Glu	ATC Ile	TTA	GGG G1y 415

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 37/46

AGCACTTAGT I	TCTGAACTA	TTCTGAACTA GTCTGGGACA TCCTGGACTT GAGCCTAGAG ATTTAGGTTT 1650	TCCTGGACTT	GAGCCTAGAG	ATTTAGGTTT	1650	
AATTAATTTT A	CACATCTAA	ACACATCTAA TGTGAACTGC TGCCTAACCA CTCAAGAGTA CACAGCTGGC 1710	TGCCTAACCA	CTCAAGAGTA	CACAGCTGGC	1710	
ACCAGAGCAT C	ACAGAGAGC	CACAGAGAGC CCTGTGAGCC AAAAGTATA GTTTTGGAAC TTAACCTTGG 1770	AAAAGTATA	GTTTTGGAAC	TTAACCTTGG	1770	
AGTGAGAGCC C	AGGGACAGG	CAGGGACAGG TCCCTGGAAA CCAAAGAAAA ATCGCATTTC AACCCTTTGA	CCAAAGAAAA	ATCGCATTTC	AACCCTTTGA	1830	
GTGCCTCATT C	CACTGAATA	CCACTGAATA TTTAAATTTT CCTCTTAAAT GGTAAACTGA CTTATTGCAA 1890	CCTCTTAAAT	GGTAAACTGA	CTTATTGCAA	1890	
TCCCAAGACC C.	ATCAATATC	CATCAATAIC AGIATITITI ICCICCCIAI ACAGIGCCCI GCCCACCCII	TCCTCCCTAT	ACAGTGCCCT	GCCCACCCTT	1950	. •
ATCTGCACCC A	CCTCCCCTG	ACCTCCCCTG AAAAAGAGAG AAAAAAAAAA AAAAAAA	AAAAAAAAA	ААААААА	•	1998	

NOV 1 7 2003

Title: METHODS AND COMPOSITIONS **RELATING TO CD-39-LIKE POLYPEPTIDES** AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120B 38/46

CD39L2	.	>
CD39L4	н	
CD39L1	1	× Λ
CD39L3	н	, <u>, , , , , , , , , , , , , , , , , , </u>
CD39	ਜ	
CD39L2	61	7 A A A
CD39L4	7	QQTWFEGIFLSSMCPINVSASTLYGIMPDACCTCTDTUVY
CD39L1		LLLAAAGLAGLLLLCVPTRDVREP?ALKYGIVLDAGSSHTSMFT
CD39L3	16	QIHKQEVL - PPGLKYGIVLDAGSSRTTWVVV
CD39	7	IALLAVGLTQNKALPENVKYGIVLDAGSSHTSLYI
CD39L2	120	ALK II FT - RPPRETPTLTHETEKAVK - PGLSAYADDVEKSAQGIRELLDVAKODIPFDFWKATPT.
CD39L4	67	PKQGAETVQGLLEVAKDSIPRSHWKK
CD39L1	28	NPSGASQSLVGCLEOALODVPKERHAGTD
CD39L3	.75	SVKGSGISSYGNNPQDVPRAFEECMOKVKGOVPSHIHGST
CD39	67	ISKEVOKVNEIGIYLTDCMERAREVIPRSOHOETP
		FIG. 8A

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120B
39/46

ACR II	VLKATAGLRLL PGEKAQKLLQKVKEVFKASPFLVGDDCVSIMNGTDEGVSAWITINF	VLKATAGLRLL PEHKAKALLFEVKEIFRKSPFLVPKGSVSIMDGSDEGILAWVTVNF	YLGATAGMRLLNLTNPEASTSVLMAVTHTLTQYPF DFRGARILSGQEEGVFGWVTANY	HLGATAGMRLLRLQNETAANEVLESIQSYFKSQPF DFRGAQIISGQEEGVYGWITANY	TGQEEGAYGWITI	ACR IV	LTGSL XTPGGSSVGMLDLGGGSTQIAFLPRVEGTLQASPPGYLTALRM	LTGQL HGHRQETVGTLDLGGASTQITTLPQFEKTLEQTPRGYLTSFEM	LLENFIKYGWVGRWF RPR - KGTLGAMDLGGASTQITFETTSPAEDRASE V - QLHL	LMGNFLEKNLWHMWV HPHGVETTGALDLGGASTOISFVAGEKMDLNTSD IMQVSL	LLGKESOKTRWFSIVPYETNNOETFGALDLGGASTQVTFVPQNQTIESPDN ALQFRL	FNRTYKLYSYSYLGLGLMSARLAILGGVEGQPAKDGKELVSPCLSPSFKGEWEHAEVTYR	PNSTYKLYTHSYLGFGLKAARLATLGALETE - GTDGHTFRSACLPRWLEAEWIFGGYKYQ	YGQHYRVYTHSFLCYGRDQVLQRLL-ASALQTHGFHPCWPRGFSTQVLLGDVYQS	YGYVYTLYTHSPQCYGRNEAEKKPL-AMLLQNSPTKNHLTNPCYPRDYSISPTMGHVPDS	YGKDYNVYTHSFLCYGKDQALWQKL - AKDIQVASNRI - LRDPCFHPGYKKVVNVSDLYKI
	178.	126	118	135	127		235	183	176	1.93	185	283	231	229	248	242
	CD39L2	CD39L4	CD39L1	CD39L3	CD39		CD39L2	CD39L4	CD39L1	CD39L3	CD39	 CD39L2	CD39L4	CD39L1	CD39L3	CD39

FIG. 88

Applicants: Chadwick et al. Docket No. 28110/36120B 40/46

CD39L2	343	0 4 4 4 7 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
CD39L4	290	EGEVGFEPCYAEVLRVVRGKLHQPEEVQRGSFYAFSYYDRAVDTDMIDYEKGG
CD39L1	283	CRDLVSGLFSFSSC - PFSRCSFNGVPOPVA
срзугз	307	SLCKEKVASIPDFKACHDQETCSPDGVYQPKIKG
CD39	300	QQCHQSILELFNTSYC - PYSQCAFNGIFLPPLQ
CD39L2	403	LVVGDFEIAAKYVCRTLETQPQSSPPSCMDLTYVSLLLQE-FGFPRSKVLKLTRKIDNVE
CD39L4	350	FADSTVLQLTKKVNNI
CD39L1	342	TLQQLEAAAVNVCNQTWAQ
CD39L3	367	TWNFCSONWS
CD39	357	CAQPWEEIKTSYAGUKE
CD39L2	462	TSWALGAIFHYIDSLNRQKSPAS*
CD39L4	410	TGWALGATFHILQSLGISH
CD39L1	384	QLLSRGYGFDERAFGGVIFQKKAADTAVGWALGYMLNLIPADPPG
CD39L3	418	ARSYCFSANY IYHLFVNGYKFTEETWPQIHFEKEVGNSSIAWSLGYMLSLTNQIPAESPL
CD39	409	EHIHFIGKIQGSDAGWTLGYMLNLTNMIPAEQ

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 41/46

> IRLPIEPPVFYGTLAFFTVAALLCLAFLAYLCSATRRKRHSEHAFDHAVDSD* LSTPLSHSTYVFLMVLFSLVLFTVAIIGLLIFHKPSYFWKDMV*

LRKGTDPSSWVVLLLLFASALLAALVLLLRQVHSAKLPSTI*

432

CD39L1

CD39L3

CD39L2

CD39L4

FIG. 8D

Applicants: Chadwick et al. Docket No. 28110/36120B 42/46

реаGDP	ਜਂ	
potapyrase	H	N O N TW
CD39L2	-	MKKGIRYETSRKTSYIFQQPQHGPWQTRMRK <u>IS</u> NHGSLRVA <u>KVA</u> YPLGLCV <u>G</u> VF <u>IYVAYI</u>
CD39L4	1	DMSTSWG
dNTPase	H	
·yGDPase		A d H M
		→ ACR
peaGDP	73	ELLIKLITFLLFSMPAITSSQYLGNNL-LTSRKIFLKQEEISSYAVVFDAGSTGSRIHVY
potapyrase 6	؈	SHFIFIILAIFLVLPLSLLSKNVNAQI - PLRRHLLSHESE HYAVIFDAGSTGSRVHVF
CD39L2	61	KWHRATATQAFFSITRAAPGARWGQQA-H-SPLGTAADGHEVFYGIMFDAGSTGTRVHVF
CD39L4	7	TVPFMLVVSCVCSAVSHRNQQTWFEGI-FLSSMCPINVSASTLYGIMPDAGSTGTRIHVY
dNTPase	37	KISPLCLIISUILLIFVFGFVSENASP-YLARLASKFGYSKVQYAAIIDAGSTGSRVLAY
yGDPase	ın ,	DISILPVNDEPGYLQDSKTEQNYPELADAVKSQTSQTCSEEHKYVIMIDAGSTGSRVHIY

FIG. 9A

Applicants: Chadwick et al. Docket No. 28110/36120B 43/46

		ACR II
peaGDP 6	61	HFNQNLDLLHIGKGVEYYNKITPGLSSYANNPEQAAKSLIPLLEQAEDVVPDDLQPKTPV
potapyrase 6	63	RFDEKLGLLPIGNNIEYFMATEPGLSSYAEDPKAAANSLEPLLDGAEGVVPOELOSETPL
CD39L2 1	119	QET - RPPRETPTLTHETEKAVKPGLSAYADDVEKSAQGIRELLDVAKODIPFDFWKATPL
CD39L4 6	99	TEVQKMPGQLPILEGEVEDSVKPGLSAFVDQPKQGAETVQGLLEVAKDSIPRSHWKKTPV
dNTPase 9	9 6	K F N R S F I D N K L V L Y E E L F K E R K P G L S S F A D N P A E G A H S I K L L L D E A R A F I P K E H W S S T P L
yGDPase 6	65	KRD VCT SPPTLLDEKFDMLEPGLSSFDTDSVGAANSLDPLLKVAMNYVPIKARSCTPV
.*		ACR II
peaGDP 1	121	ALK III
		TI CAN
potapyrase 1	123	ELGATAGLRMLKGDAAEKILQAVRNLVKNOSTE-HSKDOWYTILDGTOEGSYMWAAINYL
CD39L2 1	178	VLKATAGLRLLPGEKAQKLLQKVKEVFK-ASPF-LVGDDCVSIMNGTDEGVSAWITINFL
CD39L4 1	126	VLKATAGLRLLPEHKAKALLFEVKEIFR-KSPF-LVPKGSVSIMDGSDEGILAWVTVNFL
dNTPase 1	156	VLKATAGLRLLPASKAENILNAVRDLFA-KSEF-SVDMDAVEIMDGTDEGIFSWFTVNFL
yGDPase 1	123	AVKATAGLRLLGDAKSSKILSAVRDHLEKDYPFPVVEGDGVSIMGGDEEGVFAWITTNYL

FIG. 9E

Applicants: Chadwick et al. Docket No. 28110/36120B

•	_	•	•	-
4	4	14	6	

4000	•	ACRIV
drapad	180	LGNLGKKYTK TVGVIDLGGGSVOMAYAVSKKTAKNAPKVADGDDPYIKKVVLKGIPYD
potapyrase 182	a 182	00KHLMSKD
CD39L2	236	LOASPPGYLTALRMFNRT
CD39L4	184	OFEK TLEOTPRGYLTSFEMFNSTY
dNTPase	214	VYDK-YMHEVVTSSKKI
удрраве	183	- DGEHKPDLKFGDEN <u>Y</u>
		↑
реаСПР	238	LYVHSYLHEGREASRAEILKLTPRSPNPCLLAGFNGIY
potapyrase	239	G C D G
CD39L2	289	CLSPSFKGE-
CD39L4	237	TFR SACLPRWLEA E-
dNTPase	264	CVNPIIAN RT
YGDPase	238	CLPPKVNATVEKV

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120B 45/46

рвабрр	276	TYSGEEFKATAYTSG-ANFNKCKNTIRKALKLNYPCPYQNCTFGGIWNGGGGNGQKN
potapyrase	277	EECTFNGVWNGG G
CD39L2	335	E E V K H V
CD39L4	282	IFGGUKYQYGGNQEGEVGFEPCYAR VLRV VRGKL HQP EEVQRGS
dNTPase	308	KVMPL <u>u</u> kpkpFT
yGDPase	298	K D A Q C Q S P P C S F N G V H Q P S L V R T F K E
peaGDP	332	LFASSSFFYLPEDTGMVDASTPNFILRPVDIETKAKEACALNFEDAKSTYPFLDKKNVAS
potapyrase 333	333	ADIKSIFPKTQD
CD39L2	379	IAAKYVCRTLETQPQSS
CD39L4	326	N LENFTSGS
dNTPase	360	I B N D E
yGDPase	358	SVFSGIAGSL DELESD

Applicants: Chadwick et al. Docket No. 28110/36120B 46/46

					٠
MYFV	ASS*	* ×			OSA
452	452	483	429	462	471
реаGDP	potapyrase	CD39L2	CD39L4	dNTPase	yGDPase

FIG 9F