

# **Optical Flow**

张举勇 中国科学技术大学

#### **Overview**

Method to estimate apparent motion of scene points from a sequence of images

#### **Topics:**

- (1) Motion Field and Optical Flow
- (2) Optical Flow Constraint Equation
- (3) Lucas-Kanada Method
- (4) Coarse-to-Fine Flow Estimation
- (5) Applications of Optical Flow



#### **Motion Field**



Image Point Velocity: 
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt} = f \frac{(\mathbf{r}_0 \cdot \mathbf{z})\mathbf{v}_0 - (\mathbf{v}_0 \cdot \mathbf{z})\mathbf{r}_0}{(\mathbf{r}_0 \cdot \mathbf{z})^2} : \mathbf{v}_0 = \frac{d\mathbf{r}_0}{dt}$$
(Motion Field)

$$\mathbf{v}_i = \frac{(\boldsymbol{r}_0 \times \mathbf{v}_0) \times \boldsymbol{z}}{(\boldsymbol{r}_0 \cdot \boldsymbol{z})^2}$$



## **Optical Flow**

#### Motion of brightness patterns in the image



Image Sequence (2 frames)



Optical Flow



#### When is Optical Flow $\neq$ Motion Field?



Motion Field exists But no Optical Flow



No Motion Field exists But there is Optical Flow



# When is Optical Flow $\neq$ Motion Field?









#### **Motion Illusions**



"Dongurakokko" (Donguri wave), produced by Akiyoshi Kitaoka in 2004 as an artwork of waving demonstration of the 'optimized' Fraser-Wilcox illusion Type IIa. Framuller, C., Ji, H., and Kitaoka, A. (2010). Illusory motion due to causal time filtering. Vision Research, 50, 315-329.



### **Optical Flow**



Displacement:  $(\delta x, \delta y)$ 



Optical Flow: 
$$(u, v) = (\frac{\delta x}{\delta t}, \frac{\delta y}{\delta t})$$



### **Optical Flow Constraint Equation**





#### **Assumption #1:**

Brightness of image point remains constant over time

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t)$$



### **Optical Flow Constraint Equation**





#### **Assumption #2:**

Dispacement  $(\delta x, \delta y)$  and time step  $\delta t$  are small

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$



# **Optical Flow Constraint Equation**

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) \qquad \qquad (1)$$

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t \qquad (2)$$

Subtract (1) from (2): 
$$I_x \delta x + I_v \delta y + I_t \delta t = 0$$

Divide by 
$$\delta t$$
 and take limit as  $\delta t \to 0$ :  $I_x \frac{\partial x}{\partial t} + I_y \frac{\partial y}{\partial t} + I_t = 0$ 

Constraint Equation: 
$$I_x u + I_y v + I_t = 0$$
 (u, v): Optical Flow

 $(I_x, I_y, I_t)$  can be easily computed from two frames



# Computing Partial Derivatives $I_x, I_y, I_t$



$$I_{x}(k,l,t)$$

$$= \frac{1}{4}[I(k+1,l,t) + I(k+1,l+1,t) + I(k+1,l,t+1) + I(k+1,l+1,t+1)]$$

$$-\frac{1}{4}[I(k,l,t) + I(k,l+1,t) + I(k,l,t+1) + I(k,l+1,t+1)]$$

Similarly find  $I_y(k, l, t)$  and  $I_t(k, l, t)$ 



### Geometric interpretation

For any point (x, y) in the image, its optical flow (u, v) lies on the line:

$$I_{\mathcal{X}}u + I_{\mathcal{Y}}v + I_{t} = 0$$

Optical Flow can be split into two components.

$$u = u_n + u_p$$

 $u_n$ : Normal Flow

 $u_p$ : Parallel Flow



#### **Normal Flow**

#### Direction of Normal Flow:

Unit vector perpendicular to the constraint line:

$$\widehat{\boldsymbol{u}}_n = \frac{(I_x, I_y)}{\sqrt{I_x^2 + I_y^2}}$$

#### Magnitude of Normal Flow:

Distance of origin from the constant line:

$$|\boldsymbol{u}_n| = \frac{|I_t|}{\sqrt{I_x^2 + I_y^2}}$$



$$u_n = \frac{|I_t|}{(I_x^2 + I_y^2)} (I_x, I_y)$$



#### **Parallel Flow**

We can not determine  $u_p$ , the optical flow component parallel to the constraint line.





# **Aperture Problem**



Locally, we can only determine Normal Flow!



### Optical Flow is Under constrained

Constraint Equation:

$$I_x u + I_y v + I_t = 0$$

2 unknowns, 1 equation.



#### **Lucas-Kanada Solution**

Assumption: For each pixel, assume Motion Field, and hence Optical Flow (u, v), is constant within a small neighbourhood W.



That is for all points  $(k, l) \in W$ :

$$I_x(k,l)u + I_y(k,l)v + I_t(k,l) = 0$$



#### **Lucas-Kanada Solution**

For all points  $(k, l) \in W$ :  $I_x(k, l)u + I_y(k, l)v + I_t(k, l) = 0$ 

Let the size of window W be  $n \times n$ 

In matrix form:

$$\begin{bmatrix} I_{x}(1,1) & I_{y}(1,1) \\ \vdots & \vdots \\ I_{x}(k,l) & I_{y}(k,l) \\ \vdots & \vdots \\ I_{x}(n,n) & I_{y}(n,n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} I_{t}(1,1) \\ \vdots \\ I_{t}(k,l) \\ \vdots \\ I_{t}(n,n) \end{bmatrix}$$

$$A \qquad u \qquad B$$
(Known) (Unknown) (Known)
$$n^{2} \times 2 \qquad 2 \times 1 \qquad n^{2} \times 1$$

 $n^2$  Equations, 2 Unknowns: Find Least Squares Solution



#### When Dose Optical Flow Estimation Work?

$$Au = B$$

$$A^T A u = A^T B$$

- $A^T A$  must be invertible. That is  $det(A^T A) \neq 0$
- $A^TA$  must be well-conditioned.

If  $\lambda_1$  and  $\lambda_2$  are eigen values of  $A^T A$ , then

$$\lambda_1 > \epsilon$$
 and  $\lambda_2 > \epsilon$ 

$$\lambda_1 \ge \lambda_2$$
 but not  $\lambda_1 \gg \lambda_2$ 



# **Smooth Regions (Bad)**



Equations for all pixels in window are both more or less the same

Cannot reliably compute flow!



## Edges (Bad)



Badly conditioned. Prominent gradient in one direction.

Cannot reliably compute flow!

Same as Aperture Problem.



### **Textured Regions (Good)**



Well conditioned. Large and diverse gradient magnitudes.

Can reliably compute optical flow!



# What if we have Large Motion?





Taylor Series approximation of

$$I(x + \delta x, y + \delta y, t + \delta t)$$
 is not valid

Our simple linear constraint equation not valid

$$I_x u + I_y v + I_t \neq 0$$



### Large Motion: Coarse-to-Fine Estimation



At lowest resolution, motion  $\leq 1$  pixel



#### **Coarse-to-Fine Estimation Algorithm**





## **Results: Tree Sequence**





Image Sequence

Optical Flow



#### **Results: Rotating Ball**



Image Sequence



Optical Flow



#### **Alternative Approach: Template Matching**

#### Determine Flow using Template Matching



Template window *T* 

Image  $I_1$  at time t



Search window S

Image  $I_2$  at time  $t + \delta t$ 

For each template window T in image  $I_1$ , find the corresponding match in image  $I_2$ 



#### **Alternative Approach: Template Matching**

#### Determine Flow using Template Matching



Template window T

Image  $I_1$  at time t



Search window S

Image  $I_2$  at time  $t + \delta t$ 

- 1. Template Matching is slow when search window S is large.
- 2. Also mismatches are possible



## **Applications: Optical Mouse**



**Estimating Mouse Movements** 



# **Applications: Traffic Monitoring**



Finding Velocities of Vehicles



# **Applications: Video Retiming**





Optical Flow is used to determine the intermediate frames to produce slow-motion effect.

