

Fundamentos de Machine Learning para Geometalurgia Regression Models

Agenda

Machine Learning basis

Univariate **Exploratory Data Analysis (EDA)**

Data Preparation

Regression model (proxy) for geometallurgical parameter Ai

Machine Learning Process

3

Algorithm: Linear regression

Simple linear regression can be expressed as a function of slope (β 1) and the intercept (β 1) of a straight line:

$$Y = \beta_0 + \beta_1 X$$

Algorithm: Linear regression

Multiple linear regression model with response Y and terms $X_1,...,X_p$ can be expressed as:

$$y = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + \beta_0$$

where

 $y\ :$ response variable

n : number of features

 x_n : n-th feature

 eta_n : regression coefficient (weight) of the n-th feature

 β_0 : y-intercept

Animation:

https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python

Algorithm: regression tree

Regression with Decision Trees: Predicting a number

	Ear shape	Face shape	Whiskers	Weight (lbs.)
=	Pointy	Round	Present	7.2
	Floppy	Not round	Present	8.8
3	Floppy	Round	Absent	15
()	Pointy	Not round	Present	9.2
(E)	Pointy	Round	Present	8.4
	Pointy	Round	Absent	7.6
(E)	Floppy	Not round	Absent	11
(=)	Pointy	Round	Absent	10.2
()	Floppy	Round	Absent	18
	Floppy	Round	Absent	20

Algorithm: regression tree

Built through binary recursive partitioning, and then continues splitting each partition into smaller groups.

Andrew₇Ng, "machine learning specialization" (Coursera)

Algorithm: random forest

Ensemble learning is the process of using multiple models, trained over the same data, averaging the results to find a better predictive result. Combining weak learners to build a stronger learner usually increase the model performance. Random forest is a <u>bagging</u> ensemble.

https://towardsdatascience.com/ensemble-learning-bagging-boosting-3098079e5422

Algorithm: random forest

Bootstrapping is the process of randomly sampling subsets of a dataset over a given number of iterations and a given number of variables. Since samples are drawn with replacement, each bootstrap sample is likely to contain duplicate values.

Algorithm: random forest

Bootstrapping algorithm that <u>ensemble</u> multiple randomly drawn decision trees from the data, averaging the results to obtain the prediction. In addition, a subset of the features is <u>randomly</u> selected at each node.

https://www.analyticsvidhya.com/blog/2018/08/k-nearest-neighbor-introduction-regression-python/

Data splitting

Trained model must perform well on new, unseen data. In order to simulate the new, unseen data, the available data is subjected to data splitting whereby it is split into 2 portions. 80% of the original data is used as the training set and the remaining 20% is used as the testing set

Error Metrics

RMSE is the most used metric in regression.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$

Coefficient of Determination (r²) determines the proportion of variance in the dependent variable that can be explained by the dependent.

Independent variable

Coefficient of determination $(R^2) = 0.2$

https://www.scribbr.com/statistics/coefficient-of-determination/

Bias-variance Tradeoff

bias: difference between the model prediction and the actual value. Leads to high error on training and test data.

<u>variance</u>: variability of model prediction. Perform well on training data but has high error on test data.

https://www.endtoend.ai/blog/bias-variance-tradeoff-in-reinforcement-learning/

predictor K-Feldspar (%)	target Ai
10.4	0.21
6.2	0.18
15.9	0.28
•••	

Regression: predict an infinite number of posible outputs. Model:

$$y = wx + b \Rightarrow Ai = w * [K-Feldspar (%)] + b$$

Our goal is to find an algorithm that selects the most appropriate line/curve to fit the data. Which model is better, model A o model B? How can we choose the best?

Model: $y = wx + b \mid w$, b = parameters (coefficients)

What w and b do?

$$\mathbf{w} = 0$$
$$\mathbf{b} = 1.5$$

$$\mathbf{w} = 0.5$$
$$\mathbf{b} = 0$$

$$\mathbf{w} = 0.5$$
$$\mathbf{b} = 1$$

prediction:

$$\widehat{\mathbf{y}}^{(i)} = \mathbf{f}_{\mathsf{w},\mathsf{b}}(\mathbf{x}^{(i)})$$

cost function:

$$\mathbf{J}(\mathbf{w},\mathbf{b}) = \frac{1}{2m} \sum_{i=1}^{m} (\widehat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)})^2$$

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

Simplified Model:

$$f_{w,b}(x) = wx + b$$

if **b** =
$$0$$
,

$$f_w(x) = wx$$

cost function:
$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

goal: minimize J(w)

$$\mathbf{J}(\mathbf{w} = 1) = \frac{1}{2m} \sum_{i=1}^{m} (\widehat{y}^{(i)} - y^{(i)})^2 = \frac{1}{2m} (0^2 + 0^2 + 0^2) = 0$$

$$\mathbf{J}(\mathbf{w} = 0.5) = \frac{1}{2m} \sum_{i=1}^{m} (\widehat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)})^2 = \frac{1}{2m} [(0.5-1)^2 + (2-1)^2 + (1.5-3)^2)] = \frac{1}{2*3} [3.5] = 0.58$$

$$\mathbf{J}(\mathbf{w} = 0) = \frac{1}{2m} \sum_{i=1}^{m} (\widehat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)})^2 = \frac{1}{2m} (1^2 + 2^2 + 3^2)] = \frac{1}{2*3} [14] = 2.3$$

goal: minimize J(w)

Any point represents a particular choice of w and b. The high in that point is the value of J(w,b).

(GPT-3 parameters)

Andrew2Ng, "machine learning specialization" (Coursera)

