SENG 471 Software Requirements Engineering Feasibility Study

Why, When a Feasibility Study?

- Objectives:
 - Possibilities of an system, alternatives
 - Enough information for management to know
- Early → when performing problem analysis
 - Coarse one:
 - Thorough one:

Note: A project that is feasible at one point may not be feasible at a later point.

Feasibility Study - Content

- Organization of a system → stakeholders, ...
- Problems with the present system → inconsistencies, ...
- Goals for the new system → ...
- Constraints → preliminary ???
- Possible alternatives → other solutions, ...
- Things to conclude → preferred alternative, ...

4

Dr. Y. Hu

[Whi04]

Feasibility Study - Types

Technical

- Possible with current technologies?
- Technologies exist?
- Compatible with others?

Operational

- Urgency of the problem
- Acceptability of any solution
- Human and social issues...
- Internal issues
- External issues

Schedule

 Possible to build a solution in time to be useful?

Economic

- Possible, given resource constraints?
- What benefits?
- What costs?
- Are the benefits worth the costs?

5

Technical Feasibility

- Is the proposed technology / solution practical?
 - necessary technology?
 - necessary technical expertise?
 - relevant technology mature enough?
- What kinds of technology will be needed?
 - state-of-the-art technology?
- Is the required technology available "in house"?
 - available technology → its capacity?
 - non-available technology → how to get?

6

Dr. Y. Hu

Schedule Feasibility

- How long will it take to get the technical expertise?
 - skills required to apply the technology?
- What are the schedule risks?
 - project deadlines reasonable?
 - mandatory or desirable deadlines?
 - alternatives for desired deadlines?
- What are the real constraints on project deadlines?
 - consequences for overrunning the project?
 - flexibility of delivering deadlines?

7

"PIECES" framework:

- Performance
- Information
- Economy
- Control
- Efficiency
- Services
- Whether a system will work ...
 - NOT whether a system can work ...

Operational Feasibility

- How do clients/users and managers feel about?
 - identified problems?
 - alternative solutions?
- What are resistances?
 - Management?
 - clients/users?
 - who may resist (or not use) the system?
 - change of the working environment?
 - adaptation to the change?

8

Dr. Y. Hu

Economic Feasibility

- Purpose What are the costs and benefits?
 - project justified?
 - project completion within given cost constraints?
 - minimal cost to attain a certain system?
 - alternatives for the best return on investment?
- Examples of things to consider:
 - hardware/software?
 - management support?
 - alternative financing?
- Difficulties
 - estimating benefits and costs
 - ranking multi-criteria alternatives

10

Economic Feasibility - Costs

- - Development and purchasing
 - o team, consultant
 - o software
 - o hardware
 - o facilities
 - Installation and conversion
 - o installing
 - o training
 - o file conversion,....

- Development costs (OTO)
 Operational costs (ongoing)
 - System maintenance:
 - o hardware
 - o software
 - o facilities
 - Personnel:
 - o operation
 - o support
 - o on-going training

Dr. Y. Hu

[Whi04] **Example:** Costs of client-server project System analysts (400 hours/each; \$35.00/hour) \$28,000 \$25,000 Programmer/tester (250 hours/each; \$25.00/hour) \$7,000 GUI designer (200 hours/each; \$35.00/hour) Telecommunication specialist (50 hours/each; \$45.00/hour) \$2,250 System architect (100 hours/each; \$45.00/hour) \$4,500 Database specialist (15 hours/each; \$40.00/hour) \$600 System librarian (250 hours/each; \$10.00/hour) Expenses: Smalltalk training registration (\$3500.00/person) \$14,000 New hardware and software: \$18,700 Development server (hardware) \$1,500 Server software (operating system, misc.) \$7,500 Database server software Database client software (\$950.00/client) \$6,650 **Total Projected Development Costs:** \$118,200

Economic Feasibility - Benefits

- Tangible Benefits
 - Readily quantified → \$ values
 - Examples:
 - o sales
 - o cost/error
 - o throughput/efficiency
 - o

- Intangible benefits
 - Difficultly quantified → \$ values; but more important
 - Examples:
 - o operational flexibility
 - o product/service quality

- o customer relations
- o staff morale

Economic Feasibility Cost-Benefit Analysis

- Identify costs and benefits
 - Tangible and intangible
 - One-time and recurring
- Determine cash flow
 - Project costs and benefits over time
 - Calculate Net Present Value (NPV) for all future costs/benefits
- Analyze cost-benefit
 - Break-Even point
 - Return on Investment (ROI)

15

Dr. Y. Hu

Economic Feasibility Net Present Value

- Discount Rate (i) → average annual return for investment in a company or an industry
- Present Value (PV) → "current year" \$ value for costs/benefits in <u>n years</u> into the future

e.g.: if
$$i = 12\%$$
, then PV(1) = 1 / (1 + 0.12)¹ = 0.893
PV(2) = 1 / (1 + 0.12)² = 0.797

Net Present Value (NPV) → total value of investment
 NPV = (cumulative PV of all benefits) – (cumulative PV of all costs)

16

Economic Feasibility - NPV Example

NPV = (cumulative PV of all benefits) - (cumulative PV of all costs)

· ·					
Cash Flow	Year 0	Year 1	Year 2	Year 3	Year 4
Present value (PV)	1	0.893	0.797	0.712	0.636
Development costs	(\$100,000)				
Operational costs		(\$4,000)	(\$4,500)	(\$5,000)	(\$5,500)
Time-adjusted costs	(\$100,000)	(\$3,572)	(\$3,587)	(\$3,560)	(\$3,498)
Cumulative costs	(\$100,000)	(\$103,572)	(\$107,159)	(\$110,719)	(\$114,217)
Benefits	0	\$25,000	\$30,000	\$35,000	\$50,000
Time-adjusted benefits	0	\$22,325	\$23,910	\$24,920	\$31,800
Cumulative benefits	0	\$22,325	\$46,235	\$71,155	\$102,955
Net present value (NPV)	(\$100,00)	(\$81,243)	(\$60,924)	(\$39,564)	(\$11,262)

Assuming subsequent years are like Year 4, the NPV of this investment will be: Year 5, NPV = \$13,969 Year 6, NPV = \$36,530 Dr. Y. Hu

1 /

Economic Feasibility Break-Even Point

- Compute the payback period (Break-Even point)
 - The fraction of a year when payback starts to occur:
 - Example: on Slide #17, the fraction of a Year 5 is as follows:

11,262 / (13,969 + 11,262) = 0.45

Thus, the pay back period (break-even) is 4.45 years.

Dr. Y. Hu

18

Economic Feasibility Return on Investment

- Return on investment (ROI) → the ratio of an investment to its cost
 - Example: on Slide # 17

Year 5: ROI = 13,969/(114,217+3,119) = 11.91% Year 6: ROI = 36,530/(117,336+2,789) = 30.41%

 ROI + Break-Even point → the full picture of investment and preferred alternatives

19

Dr. Y. Hu

Feasibility - Comparing Alternatives

- When to compare alternatives?
 - multiple selection criteria; none alternative stands out
- Use a Candidate Systems Matrix

Feasibility Criteria	Weight	Alternative 1	Alternative 2	Alternative 3
Operational Feasibility				
Technical Feasibility				
Schedule Feasibility				
Economic Feasibility				
Ranking				

- Include other criteria in the matrix
 - quality of output, ease of use, vendor support, load on system
 Dr. Y. Hu

20

Candida	te	Systen	ns Matr	ix - Exa	amp
Feasibility Criteria	Wt.	Alternative1	Alternative 2	Alternative 3	Alternativ
Operational Feasibility Functionality: Describes to what degree the alternative would benefit the organization and how well the system would work.	30%	Only supports Member Services requirements and current business processes would have to be modified to take advantage of software functionality.	Fully supports user required functionality.	Sam as alternative 2.	
Political: Describes how well received this solution would be from user management, user, and organization perspective.		Score: 60	Score: 100	Score: 100	
Technical Feasibility Technology: Assessment of the maturity, availability, and desirability of the computer technology needed to support this candidate system.	30%	- Current production release is version 1.0 and has only been on the market for 6 weeks. Maturity of product is a risk and company charges a monthly fee for technical support.	- Although current technical staff has only Powerbuilder experience, the senior analysts has agreed the transition will be simple and finding experienced VB programmers will be easier than finding	- Although current technical staff is fine with Powerbuilder, management is concerned with recent acquisition of Powerbuilder by Sybase Inc. MS SQL Server is a current	
Expertise: Assessment to technical expertise needed to develop, operate, and maintain the candidate system.		- Required to hire or train C++ expertise to perform modifications for integration requirements. Score: 50	Powerbuilder programmers and at a much cheaper cost VB 5.0 is a mature technology based on version number. Score: 95	company to compete with Sybase. No guarantee future Powerbuilder versions will match with our SQL server.	

Candida	40	Systar	ma Mat	riv Ev	om.
Candida	te	Syster	ns mat	rix - ⊏x	kamij
Feasibility Criteria	Wt.	Alternative 1	Alternative 2	Alternative 3	Alternativ
Operational Feasibility	30%	Score: 60	Score: 100	Score: 100	
Technical Feasibility	30%	Score: 50	Score: 95	Score: 60	
Economic Feasibility	30%				
Cost to develop:		~ \$350,000	~ \$418,000	~ \$400,000	
Payback period:		~ 4.5 Years	~ 3.5 Years	~ 3.3 Years	
Net present value:		~ \$210,000	~ \$306,748	~ \$325,500	
Detailed calculations:		See attachment A.	See attachment A.	See attachment A.	
		Score: 60	Score: 85	Score: 90	
Schedule Feasibility	10%	Less than 3 months.	9-12 months.	9 months.	
Assessment of how long the solution will take to design and implement.		Score: 95	Score: 80	Score: 85	
Ranking	100%	60.5	92	83.5	

Feasibility Study Contents

- 1. Purpose & scope of the study
 - objectives (of the study)
 - who commissioned it & who did it
 - sources of information
 - process used for the study
 - how long did it take...

2. Description of present situation

- organizational settings, current system(s)
- related factors and constraints

3. Problems and requirements

- what's wrong with the present situation?
- what changes are needed?

4. Objectives of the new system

- goals and relationships between them

- 5. Possible alternatives
 - including 'do nothing'

6. Criteria for comparison

definition of the criteria

7. Analysis of alternatives

- description of each alternative
- evaluation with respect to criteria
- cost/benefit analysis and special implications

8. Recommendations

- what is recommended and implications
- what to do next

Appendices

any supporting materials

Dr. Y. Hu

Recap

- Feasibility study
 - Why, when, what
 - Types of feasibility study
 - Comparison of alternatives

24

23