EXHIBIT B

Search bmj.com

BMJ 2004;328:1184-1187 (15 May), doi:10.1136/bmj.328.7449.1184

Clinical review

The clinician's perspective on electronic health records and how they can affect patient care

Stephen H Walsh, consultant in acute medicine¹

¹ Birmingham Heartlands and Solihull NHS Trust, Solihull Hospital, Solihull B91 2JL stephen.walsh@heartsol.wmids.nhs.uk

Introduction

Many attempts to get clinicians to use electronic health records have failed, often because of difficulties with data entry. ¹⁻⁴ Technology should complement and improve clinical care, not impose extra burdens on already overloaded medical staff. The clinical "usability" of electronic records systems is particularly relevant with the recent appointment of service providers to implement the national Integrated Care Record Service for the NHS as usability also affects patient care. I examine important lessons learned from previous attempts to get clinicians to use computers in health care; discuss how clinicians actually work; make recommendations on designing or selecting clinical computer systems; and explore how the use of electronic health records might affect patient care.

How clinicians work

Use of narratives in clinical reasoning

Patient documentation systems that try to reproduce previously accepted models of clinical reasoning (pattern recognition, algorithms, or hypothetico-deductive models) have achieved limited acceptance. According to Greenhalgh, the medical encounter consists of stories within stories, ⁵ Kay and Purves maintain that narratives are at the heart of clinical decision making and refers to this concept as "narrative reasoning." They argue that "every patient tells a story (narrative) and clinicians intuitively usen narrative devices in relation to the delivery of patient care." The patient is seen as "a page from the book of nature, a text to be read," and the doctor becomes the author of "stories within the medical record." Kay and Purves make a strong case for retaining information in a conceptual framework and maintain that this is best accomplished by means of narratives rather than "reducing the semantic richness and degrading the story to limited codes and weakly connected phrases."

Van Ginneken also states that many computerised medical record systems are rejected by clinicians because they are not based on a story metaphor. This earn colleagues state that "using conversations as a central metaphor for handling patients' records reflects work flow in a clinical setting" and that "until recently, shortcomings of medical information systems software, computer-human interfaces, and networks forced upon the healthcare community a depersonalised notion of 'information' centred upon the interaction between the individual and the 'system' rather than upon the interaction of human beings with one another." 8

Summary points

Narratives are essential to a patient's episode of illness

Poor communication is more often detrimental to patients than lack of knowledge

Computers should enable clinicians to capture narratives easily

The structure of the patient's record strongly influences the ease of information retrieval

Impact of construction of patient record on clinical insight

Berg argues that, to a large extent, compiling a medical record is a sociological process not a cognitive function. 9 Traditionally, the work of clerking a patient was seen as collecting observations, testing diagnostic hypotheses, and reaching treatment decisions by means of logic. Berg maintains, however, that creating the medical record is a "moulding process in which the patient and his situation are reconstructed to render them manageable within existing agency routines." The clinician tries to transform the patient's narrative into an entity which he or she is familiar with and capable of managing. In this process, some aspects of the story are emphasised and others forgotten. The process of creating a patient record changes the clinician's concept of the patient's illness episode. Berg further maintains that failure to appreciate this sociological aspect could partially explain the current paucity of fully integrated, clinically useful electronic records systems.

Constructing the patient record

"The medical record is a tool... it does not 'represent' the work, but it feeds into it, it structures and transforms it in complex ways: it structures that communication between healthcare personnel, shapes medical decision making, and frames relations between personnel and patients." Berg⁹

Conversational interaction between clinicians

Colera states that most medical interaction is driven by a conversational paradigm, and he points out that communication errors cause twice as many deaths as inadequate clinical skills do. 10 He argues that this is where "substantial information efforts need to be focused," and he adds that "direct support of the communication between clinicians should substantially improve how our organisations acquire, present, and use information." A patient's computer records should promote seamless transfer of care from one clinical team to another. This is best accomplished by using a conversational or narrative format rather than churks of information scattered around divergent screep pages.

Problems in entering data

Data entry has always been a major obstacle to healthcare professionals' acceptance of electronic records. Most input makes use of structured data entry, where the user has to select relevant clinical terms from a predefined list. This is restrictive, and extracting this information from a narrative requires more work from the clinicaln. Also, entering structured data can subtly change the meaning of the item coded. Furthermore, creating a standardised clinical set of terms and keeping these up to date is resource intensive. Rather than placing the burden of coding on the doctor, the developers of electronic records systems should be "more oriented towards creating tools that support medical work as a social, interactive process."

Despite much effort to produce friendlier interfaces—including pen based, hand held computers, ¹³ touch screens, and other forms of structured data entry—no generally accepted computer interface has emerged for capturing data. The fastest method for data entry is speech input, but the quickest way to assimilate information is reading structured text.

Patients generally accept the use of computers in clinical settings Credit: BSIP_LA/HERRERA/SPI

Problems of structured data entry

"Most benefits of computer-based records rely on structured, coded data, not free text, but clinicians value the ability of flowing prose to paint an evocative clinical picture. They generally take longer to select computer concepts corresponding to a patient's findings, diagnoses, or tests from long lists of standard terms drawn from controlled vocabularies than to write a summary. Worse, the codes installed with software may constrain clinical language. Developers and purchasers of computer-based record systems must ensure that the disadvantages of capturing structured, coded data are outweighed by more informative displays and automatic processing of data." Powsner et al. 12

Ease of access to and structure of records

Reading text on a computer screen is up to 40% slower than reading printed text. If the computer is used to generate output, the lavout and structure of the reports are important as this can influence clinical decisions in sometimes fundamental ways. ¹⁴

Colera states: "It is possible for a well-designed set of paper forms to be far more effective in improving the quality of a medical record than a poorly designed computer-based one." ¹⁵ Despite the ease of creating paper based records, they prove difficult to search. Tang and colleagues found that their physicians could not find relevant patient information in traditional paper based records in 80% of outpatient visits. ¹⁶ The ease of using computer based output as opposed to the benefits of generating printed reports must be weighed. ¹⁵

There are obvious benefits of having data available electronically, but having appropriately structured printed output is still far easler for browsing, reading, and finding information. A paperless environment is not necessarily good or desirable. Having the option to use either paper or electronic record output, depending on preference or other clinical constraints, is important.

Clinical perspective and potential benefits for patients; practicalities

Capturing the patient's narrative

Data should be acquired as close to the source as possible. ¹⁷ The ideal electronic records system should allow the clinician to input narratives effortlessly using handwriting and sketches as well as speech input at the patient's bedside or at the office desk. Some coding by clinicians is unavoidable but should be limited if possible to the problem list (diagnoses) and procedures. Kay and Purves propose a clinical approach in which doctors improve their communication skills and allow "each actor responsible for observations and actions within the patient's care pathway... to record the pertinent information." An Bemmel and colleagues state that coding of data should be done "only if there is no other way to present the data" and preferably "by the person making the observation." ¹⁷

Several studies have found that computer use in clinical settings has generally been accepted by patients, whether in general practice surgeries, ^[8] to degradation of the doctor-patient relationship was noted in these studies. A greater emphasis on patients' narratives should be beneficial: "Patients who are fully able to share their perspective often achieve better outcomes." ^[22]

How constructing the electronic record affects clinical insight

Handwriting is automatic—you don't have to think about it—but for most people, using a computer is not. Consequently, the cognitive load associated with documenting the details of a patient encounter is smaller if the clinician writes them by hand rather than entering them on a computer. Handwriting potentially allows more thought for focusing on how to diagnose and manage the patient's illness. Clinicians using computers could have more of a cognitive load and would benefit from having tools that stimulate clinical reasoning—such as differential diagnosis, prompting, reminders, mnemonics, algorithms, references, risk calculators, decision trees, and best evidence resources. These are almost impossible to build into conventional handwritten notes.

Creating the relevant supportive knowledge structure in an electronic environment is also not easy. Great care is needed when integrating such aids into the clinician's workflow as they could easily hinder rather than benefit patient care. ²³ The recent development of digital pens that record and transcribe handwriting—such as those made by Logliech (xww.logliech.com) and Nokia (xww.nokia.com)—might reduce the cognitive load while providing an automated link to electronic aids. Making the right connections with local and national guidelines, stimulating wider thought about the case, and supporting clinical decisions with

the best evidence are extremely important elements for patient outcomes. Much more research in this area is needed, however.

Communicating clinical data by voice

Current technology could easily handle voice on hospital networks or the Internet. Some information is important to have in written or printed format to avoid ambiguity. The problem list (diagnoses) probably falls into this category. But much of what clinicians do has relatively shortlived value—for example, "to do" lists and instructions to others. Why not send a recorded request for a consultation across the network rather than fax a handwritten one? The electronic records system could easily incorporate multiple audio files along with the usual textual data. The audio files could be searched using an "audio mining" engine (www.scansoft.com/audiomining). The admitting doctor could record a summary of the patients admission for the next day's ward round. Recordings could be replayed and critiqued. If required, any good quality voice recording could be transcribed using software or by a secretary. Far more use could be made of asynchronous communication to reduce interruptions. Using the computer to facilitate communication by clinician subnot directly improve clinical outcomes. ¹⁰

Speech: easy for data entry

"Speech is natural—we know how to speak before we know how to read and write. Speech is also efficient—most people can speak hoot five times faster than they type and probably ten times faster than they can write. And speech is flexible—we do not have to touch or see anything to carry on a conversation." Zue²⁴

Facilitating data entry

Making data entry as easy as possible is essential if we want clinicians to use electronic means to enter and share accurate patient records on a national network.

The easiest way to enter data into an electronic records system is to use speech, followed by handwriting and then typing (if you are not a touch typist). Capturing speech would promote the collection of narrative rather than discrete bits of data. Transcription could be used if required. The recording could be sent through an audio mining engine to index the words it contains and thus facilitate access to its otherwise "invisible" contents. As yet there are no commercially available electronic health records systems that capture voice recordings as a source document.

Another important consideration is that medical work is driven by interruptions. Software needs to be able to keep its state when the user is diverted to a telephone call or query and somebody else takes control of the computer or terminal to continue a task they were busy with before being interrupted themselves.

Need for easy data access and interpretation

It is quicker to retrieve and assimilate information by reading and scanning than by listening to speech. Reading printed material is quicker than reading the same text on a computer screen. However, although paper records are easy to create, they can be difficult to search—particularly if they lack structure. Tange and colleagues found that data retrieval from medical narratives is highly dependent on the granularity of paragraphs used (that is, the number of labelled segments of text). They concluded: "Most benefit can be expected from medical history and examination notes divided into organ systems and progress notes divided into problem segments." ²⁵

How information is presented (its context) is an important factor affecting data retrieval and interpretation. Computer systems should be capable of producing well structured screen based and paper based output of narratives. Graphic output of numeric data using visual indicators of normal ranges rather than endless columns of numbers would improve their interpretation.

Improving retrieval and assimilation of existing information on patients can reduce duplication, improve comprehension, provide a more holistic view of the patient, and alert clinicians to potential conflicts in management.

Future challenges

The relatively fluid process of patient management often does not match the rigidity of most electronic health records systems. Medicine is far from a factual science, and patient management requires a tentative, evolving reinterpretation of previous data in the light of new information. Most interaction between clinicians comprises narrative (free text). Narrative contains more information than isolated or coded words. Most electronic records, however, rely on structured data entry. The drawbacks of this approach have been summarised by Powsner¹² and de Lusignan and colleagues ²⁸ Read codes are lead codes are lead to the contains accurate at

capturing general practice concepts.27

There is great pressure to reduce patients' length of stay in hospital. At the time of discharge, computer generated summaries can be produced more quickly than dictated summaries and so improve communication with primary care, ²⁸ The pace of modern practice dictates the use of technology, but the lack of direct clinical input in the development and procurement of information technology has been cited as a major factor in the failure of many clinical information systems. Replacing paper with electronic records will change medical practice, including relationships between doctors and nurses, responsibilities, and work distribution. Clinicians need to be closely involved in ensuring that software for documenting patient encounters complements the way they work.

Patients already have the right of full access to their electronic records for "any or no reason," says Goss; his article provides an interesting view of the difficulties associated with patients' access to health records.²⁹ By June 2004, some patients should have "direct" access to their electronic records in hospitals and in primary care, ³⁰ From the clinician's persective, however, the words of Scott McNealy of Sun Microsystems ring true; "You have zero privacy anyway. Get over it."

Contributors: SHW is the sole contributor.

Funding: No additional funding.

Competing interests: None declared.

References

- McDonald CJ. The barriers to electronic medical record systems and how to overcome them. J Am Med Inform Assoc 1997;4: 213-21. [Abstract/Free Full Text]
 Trace D, Naeymi-Rad F, Haines D, Roberts JJS, Almeida FD, Carmony L, Evans M. Intelligent
- Trace D, Naeymi-Rad F, Haines D, Roberts JJS, Almeida FD, Carmony L, Evans M. Intelligent medical record-entry (IMR-E). J Med Syst 1993;17(3/4); 139-51.[CrossRefi[Medline]
- Gilbert JA. Physician data entry: providing options is essential. Health Data Manag 1998 Sep;6(9): 84-92.[Medline]
- Kaplan B. Reducing barriers to physician data entry for computer-based patient records. Top Health Inf Manage 1994:15(1): 24-34.[Medline]
- Greenhalgh T. Narrative based medicine in an evidence based world. BMJ 1999;318: 323-5.
 IFree Full Textl
- Kay S, Purves IN. Medical records and other stories: a narratological framework. Methods Inf Med. 1996;35: 73.87 [ISI][Medling]
- 1996;35: 72-87.[IS]][Medline]
 7. Van Ginneken A. The physician's flexible narrative. *Methods Inf Med* 1996;35(2): 98-100.[ISI]
- Frisse ME, Schnase JL, Metcalfe ES. Models for patient records. In: Van Bemmel JH, McCray AT, eds. Yearbook of medical informatics. Stuttgart: Schattauer. 1995; 238-42.
- Berg M. Medical work and the computer-based patient record: a sociological perspective. *Methods*| Second Computer | Second Compute
- Inf Med 1998;37: 294-301.[ISI][Medline]
 10. Colera E. When conversation is better than computation. J Am Med Inform Assoc 2000;7: 277-86.
- [Abstract/Free Full Text]
 Berg M, Langenberg C, vd Berg I, Kwakkernaat J. Considerations for sociotechnical design: experiences with an electronic patient record in a clinical context. *Int J Med Inf* 1998;52: 243-51.
- [CrossRef][ISI][Medline]

 12. Powsner SM, Wyatt JC, Wright P. Opportunities for and challenges of computerisation. Lancet
 1009:251: 1417-321 (CrossPa-BIELIMANTIC).
- 1998;352: 1617-22.[CrossRef][ISI][Medline]
 Poon A, Fagan LM, Shortliffe EH. The PEN-Ivory project: exploring user-interface design for the selection of items from large controlled vocabularies of medicine. J Am Med Inform Assoc 1996;3: 168-83.[Abstract/Free Full Text]
- Wright P, Jansen C, Wyatt J. How to limit clinical errors in interpretation of data. Lancet 1998;352: 1539-43. [ISI][Medline]
- Coiera E. Guide to medical informatics, the internet and telemedicine. London: Arnold, 1997; 64.
 Tang PC, Fafchamps D, Shortliffe EH. Traditional hospital records as a source of clinical data in the outpatient setting. Proceedings of the symposium on computer applications in medical care. Philadelphia: Hanley & Belfus, 1994; 575-9.
- 17. Van Bemmel J. Musen MA. Handbook of medical informatics. Heidelberg: Springer, 1997; 34.

- 18. Mitchell E, Sullivan F. A descriptive feast but an evaluative famine: systematic review of published articles on primary care computing during 1980-97. BMJ 2001;322: 1369.[Free Full Text]
- 19. Solomon GL, Dechter M. Are patients pleased with computer use in the examination room? J Fam
- Pract 1995;41: 241-4 [ISI][Medline]
 20. Gadd CS, Penrod LE. Dichotomy between physicians' and patients' attitudes regarding EMR use during outpatient encounters. Proceedings of the American Medical Informatics Association
- symposium 2000. Philadelphia: Hanley & Belfus, 2000: 275-9.
 21. Aydin CE, Rosen PN, Jewell SM, Felitti VJ. Computers in the examining room: the patient's perspective. Proceedings of the annual symposium of computer applications in medical care.
- Philadelphia: Hanley & Belfus, 1995: 824-8.
 22. Haidet P, Paterniti DA. "Building" a history rather than "taking" one. *Arch Intern Med* 2003;163: 1134-40.[Abstract/Free Full Text]
- 23. Rousseau N, McColl E, Newton J, Grimshaw J, Eccles M. Practice based, longitudinal, qualitative interview study of computerised evidence based guidelines in primary care. BMJ 2003;326; 314, [Abstract/Free Full Text]
- Zue V. Talking with your computer. Scientific American 1999 Aug; 40-1.
 Tange HJ, Dreessen VAB, Hasman A, Donkers HHLM. An experimental electronic medical-record system with multiple views on medical narratives. Comput Methods Programs Biomed 1997;54: 157-72.[CrossRef][ISI][Medline]
- 26. De Lusignan S, Wells SE, Hague NJ, Thiru K. Managers see the problems associated with coding clinical data as a technical issue whilst clinicians also see cultural barriers. Methods Inf Med
- 2003;42: 416-22.[ISI][Medline]
 27. Brown PJB, Warmington V, Laurence M, Prevost AT. Randomised crossover trial comparing the performance of Clinical Terms Version 3 and Read Codes 5 byte set coding schemes in general
- practice. *BMJ* 2003;326: 1127-30.[Abstract/Free Full Text]
 28. Dougherty GE. "Conventional" dictated versus database-generated discharge summaries:
- timeliness, quality and completeness. CMAJ 1999;160; 345-6.[Medline] 29. Goss RM. "Now for something completely different"—a patient's eye view of accessing health records, www.doh.gov.uk/ipu/ahr/hrdg1602.pdf (accessed 24 Jan 2004).
- 30. The NHS Plan, www.nhsia.nhs.uk/nhsplan/nhsplan.pdf (see 4.21, p 48) (accessed 24 Jan 2004)

Related Article

What next for electronic communication and health care? Aleiandro R Jadad and Tony Delamothe BMJ 2004 328: 1143-1144. [Extract] [Full Text] [PDF]

This article has been cited by other articles:

- Maisey, S., Steel, N., Marsh, R., Gillam, S., Fleetcroft, R., Howe, A. (2008). Effects of payment for performance in primary care: qualitative interview study. J Health Serv Res Policy 13: 133-139 [Abstract] [Full text]
- Charney, P. (2007). Computer Technology and the Nutrition Support Professional; Make It Work For You!. Nutr Clin Pract 22: 421-427 [Abstract] [Full text]
- Zitner, D. (2006). Physicians will happily adopt information technology.. CMAJ 174: 1583-1584 [Full text]
- Roukema, J., Los, R. K., Bleeker, S. E., van Ginneken, A. M., van der Lei, J., Moll, H. A. (2006).

Paper Versus Computer: Feasibility of an Electronic Medical Record in General Pediatrics. Pediatrics 117: 15-21 [Abstract] [Full text]

- Hazlehurst, B., Frost, H. R., Sittig, D. F., Stevens, V. J. (2005). Mediclass: A System for Detecting
 and Classifying Encounter-based Clinical Events in Any Electronic Medical Record. J. Am. Med.
 Inform. Assoc. 12: 517-529 [Abstract] [Full text]
- Macnaughton, R J, Evans, H M (2004). Medical humanities and medical informatics: an unlikely alliance? Is there a role for patients' voices in the modern case record?. Med. Humanities 30: 57-58 [Full text]
- (2004). Capturing the full story is essential for good care. Qual Saf Health Care 13: 348-348
 [Full text]

Rapid Responses:

Read all Rapid Responses

Great text, bad picture Adrian K Midgley bmj.com, 14 May 2004 [Full text]

in reply

Jonathan Monks bmj.com, 18 May 2004 [Full text]

An excellent paper

Steven Ford bmj.com, 23 May 2004 [Full text]

Facilitating Data Entry

Dinal Vekaria bmj.com, 31 Jan 2007 [Full text]

> Contact us - Privacy policy - Web site terms & conditions - Site map HighWire Press - Feedback - Help - © 2004 BMJ Publishing Group Ltd.

80

DRA, ANA LIKTA MERCHAN
AR KODRING ARRANDIS
ARRANDISTA DR WHENTS SERVED LOCAS :

BERMEO & BERMEO World Trade Center, Torre D. Piso 12 32 Octobre N 24-528 ; Cordet o P.O. Box 17-12-881 Established 1948

Quito - Ecuador

FAX e-mark

web site: www.bermcolav.com bblaw@andinanct.net bblaw@uio.sainet net 254-5871 255-6027 255-6028 223-1227 223-1228 223-1229 (593)(2) 256-4620 223-9333

Quito, July 23, 2007

2405 GRAND BOULEVARD, SUITE 400 HOVEY WILLIAMS LLP. JAMES BROWN

KANSAS CITY, MO 64108-2519

THE NEW TO

YES INSTRUCTIONS FLOREINS THE WE Knobly Ecoust you to GARCH

MUNICITY PATHERIT.

Dear Sirs

RECEAUNS PERMICO & BERNEC

REF: ECUADOR - NEW PCT PATENT APPLICATION MODIFIED LATEX CONOCOPHILLIPS COMPANY Your ref.: 35238-EC THEREWITH, APPLIC. Nº 07-7565 PCT, DEPOSITED ON July 04, 2007. REDUCER AND PROCESSES THEREFOR

the above-mentioned PCT Patent application Thank you for your instructions dated April 20, 2007, we confirm that we have filed

debit note. Also, we are enclosing copy of the first annuity payment Enclosed please find copy of said application with an English Translation, and our

issuance of the certificate will be charged within the process of registration. process of registration and the payment of the first annuity. Expert fees and The enclosed debit note includes all kind of minor disbursements in the normal

instructions in due course Take note the second annuity must be paid before July 04, 2008. Let us have your

We will continue reporting about the progress of this case

Yours faithfully