

Modeling lake metabolism using highfrequency deployment sondes

Emanuel Mauch

Background

Sticklebacks introduced in 6 experimental ponds in Greenland, 2019

Background

6 ponds used as fishless reference

Background

- From the year 2021, all 12 lakes were monitored for several days every summer
- Deployment sondes were used to measure various water-related parameters
- 1 sonde per lake
- Measurements every 2 to 5 minutes

Background: Lake Metabolism

- Often estimated from free-water dissolved oxygen (DO) (Winslow et al., 2016)
- Represents balance between carbon fixation (Gross Primary Production GPP)
- and biological carbon oxidation (ecosystem Respiration R):
 - Photosynthesis: $6CO_2 + 6H_2O \stackrel{light}{\rightarrow} C_6H_{12}O_6 + 6O_2$
 - Respiration: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
- Net Ecosystem Production (NEP) = GPP R

Background: Lake Metabolism

Research question

How do Sticklebacks affect lake metabolism?

Methods: Data sources

- Time-series data from deployment sondes
- Wind data from radiosonde in Narsarsuaq
 (https://www.dmi.dk/lokationarkiv/show/GL/3421711/Narsarsuaq/#arkiv)
- Irradiation data from QAS_L automated weather station near Narsarsuaq (https://dataverse.geus.dk/dataset.xhtml?persistentId=doi:10.22008/FK2/IW73UU)
 - Using downwelling shortwave irradiation (tilt corrected)

Methods: Workflow data preparation

- Using the R package LakeMetabolizer (Winslow et al., 2016)
- Our choice: Bayesian model using the function metab.bayesian
- Estimates daily GPP, R, and NEP
- Distinguishes between 3 categories of DO values:
 - y the DO measurements: $y_t \sim N(\alpha_t, \tau_v)$
 - α the true but unknown values of DO: $\alpha_t \sim N(\alpha^*, \tau_w)$
 - α^* the model estimates of the true DO values

■ The Bayesian model can be described by the following main equation:

$$\alpha_t = \beta X_{t-1} + k_{t-1} O_{s,t-1}$$

- $\beta = (\iota, \rho)^T$ a 2 × 1 vector of parameters to be estimated; ι represents GPP and ρ represents R.
- X a $n \times 2$ matrix of predictors $\begin{pmatrix} I_{1,\,t-1} & \cdots & \ln T_{1,\,t-1} \\ \vdots & \ddots & \vdots \\ I_{n,\,t-1} & \cdots & \ln T_{n,\,t-1} \end{pmatrix}$; I is irradiance; T is temperature.
- k is the gas transfer coefficient (modeled from wind); O_s the saturated oxygen concentration for specific temperature.

Required input data:

- 1. DO observations (mg L⁻¹)
- 2. Saturated DO concentration for specific temperature (mg L⁻¹)
 - Calculated from water temperature
- 3. Gas and temperature specific gas transfer coefficient (m⁻¹)
 - Estimated from wind data
- 4. Photosynthetically active radiation (µmol m⁻² s⁻¹)
 - Calculated from irradiation data
- 5. Mixed layer depth (m)
- 6. Water temperature (°C)

Results: Data preparation 2023 – Dissolved Oxygen

Results: Parameters used to estimate lake metabolism – Example of B1P1 in 2023

Results: GPP 2023

Results: R 2023

Results: NEP 2023

Results: GPP daily means 2023

Results: R daily means 2023

Results: NEP daily means 2023

Preliminary Conclusions

- Sticklebacks likely increase magnitude of daily DO variation
- Sticklebacks likely increase gross primary production
- Sticklebacks likely increase ecosystem respiration

Limitations

- Until now: Mixed layer depth qualitatively assessed from pond profiles
 - Mixed layer depth = height of surface layer with constant temperature
 - Used to model the gas transfer coefficient
 - Mixed layer is highly dependent on weather conditions
- Supplied wind data should be normalized to 10m sensor height what is the sensor height of a radiosonde?
 - Consider different source of wind data

Outlook

- Optimize data input for metabolism models minimize "noise", maximize signal
 - Mixed layer depth
 - Wind sensor height
 - Deal with impossible GPP and R estimates
- Investigate underlying causal mechanism leading to increased production and respiration in ponds with Sticklebacks
- Think about strategies to synthesize results from 2021, 2022, and 2023

Appendix

Results: GPP 2021

Results: R 2021

Results: NEP 2021

Results: GPP 2022

Results: R 2022

Results: NEP 2022

Equation 2: Obtaining the model estimates of true DO values

$$\alpha_{t}^{*} = \begin{cases} \alpha_{t} + \alpha_{t}, & \text{if } k_{t} = 0\\ \frac{\alpha_{t}}{k_{t-1}} + \frac{-\exp(-k_{t-1})\alpha_{t}}{k_{t-1}} + \exp(-k_{t-1})\alpha_{t-1}, & \text{otherwise} \end{cases}$$

- where k the gas transfer coefficient
- k is estimated separately, depending on wind and mixed layer depth at time t
- When $k_t = 0$ (i.e. no wind), the modeled DO estimates α^* only depend on α