Un acercamiento a LATEX, BEAMER y Sweave

José Reyes *jreyes@lcg.unam.mx*

Centro de Ciencias Genómicas Universidad Nacional Autónoma de México

8 de Agosto del 2009

Un acercamiento a LATEX, BEAMER y Sweave

José Reyes jreyes@lcg.unam.mx

Introduccio

Motivacio

Fórmulas

Cambio por selección Información mutua

Sweave

Una suma

Outline

Introducción

Motivación Objetivos

Fórmulas

Teorema de Bayes Cambio por selección Información mutua

Sweave

Una suma Una gráfica

Un acercamiento a LATEX, BEAMER y Sweave

José Reyes jreyes@lcg.unam.mx

Introducciói

Objetivos

-, .

Teorema de Bayes Cambio por selección Información mutua

Sweave

Una suma

Cambio por selección Información mutua

- Esta presentación servirá para familiarizarme con la herramienta LATEX/BEAMER/Sweave para la generación de documentación.
- ► Es un primer acercamiento a lo que haré en el curso de R/Bioconductor para la sexta generación durante el semestre Ago-Dic del 2009.

Objetivos

En esta presentación aprenderé a:

- 1. Generar fórmulas complejas
- 2. Insertar imágenes
- 3. Insertar cuadros de texto
- 4. Generar código de R . . . Probablemente

Un acercamiento a LATEX, BEAMER y Sweave

José Reyes jreyes@lcg.unam.mx

IIItiouuccioi

Objetivos

Objetiv

Fórmulas

Cambio por selección

Sweave

Una suma

Teorema de Bayes

José Reyes jreyes@lcg.unam.mx

Introducció

Motivaci

Objetivos

Teorema de Bayes Cambio por selección

Información mutua

weave Ina suma

Ina suma Ina gráfica

$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$ (1)

Cambio de frecuencia alélica por selección

$$\Delta_s p = \frac{pqs[ph - q(1-h)]}{1 - 2pqsh - q^2s} \tag{2}$$

Donde,

 $p = Frecuencia de A_1$

q =Frecuencia de $A_2 = 1 - p$

s =Coeficiente de selección

h =Efecto del heterocigoto

Un acercamiento a LATEX, BEAMER y Sweave

José Reyes jreyes@lcg.unam.mx

ntroduccion

Motivación Objetivos

-órmulas

Cambio por selección

Sweave

Información mutua

$$MI = \sum_{i=1}^{N} \sum_{i=1}^{M} P(a_i, b_j) log \left(\frac{P(a_i, b_j)}{P(a_i) P(b_j)} \right)$$
(3)

Donde,

N = el número de estados posibles en el vector AM = el número de estados posibles en el vector B

Un acercamiento a LATEX, BEAMER y Sweave

José Reyes jreyes@lcg.unam.mx

Introducciói

Motivació Objetivos

Fórmula

Cambio por selección Información mutua

Sweave

Un rápido ejercicio

Un acercamiento a

Motivac Objetive

Fórmul

Teorema de Bayes

Cambio por selección Información mutua

Sweave

Una suma

> a <- 1 + 2 + 3
> a
[1] 6

```
> a <- rnorm(10000, 0, 1)
> a <- sample(a)
> dim(a) <- c(100, 100)
> image(a, main = "Un heatmap aleatorio",
+ col = rainbow(1000))
```

Un acercamiento a LATEX, BEAMER y Sweave

José Reyes jreyes@lcg.unam.mx

Introducción

Motivaci Objetivo

Fórmulas

Cambio por selección

Sweave

Ejercicio de R II

Un rápido ejercicio

Un acercamiento a LATEX, BEAMER y Sweave

José Reyes ireyes@lcg.unam.m

Introducció

Motivacio

Fórmulas

Teorema de Bayes Cambio por selección

Sweave Una suma Una gráfica