

CHIMIE
NIVEAU MOYEN
ÉPREUVE 2

	Num	éro d	u can	didat	

Mercredi 14 mai 2003 (après-midi)

1 heure 15 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- Écrivez votre numéro de candidat dans la case ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Section A: Répondez à toute la section A dans les espaces prévus à cet effet.
- Section B : Répondez à une question de la section B. Rédigez vos réponses dans un livret de réponses. Inscrivez votre numéro de candidat sur chaque livret de réponses que vous avez utilisé et joignez-les à cette épreuve écrite et à votre page de couverture en utilisant l'attache fournie.
- À la fin de l'examen, veuillez indiquer les numéros des questions auxquelles vous avez répondu ainsi que le nombre de livrets utilisés dans les cases prévues à cet effet sur la page de couverture.

223-165 12 pages

SECTION A

Répondez à toutes les questions dans les espaces prévus à cet effet.

1. Le tableau ci-dessous fournit des données relatives au rendement en pourcentage de la production d'ammoniac par le procédé Haber appliqué dans différentes conditions.

Pression /		Tempéra	ture / °C	
atmosphères	200	300	400	500
10	50,7	14,7	3,9	1,2
100	81,7	52,5	25,2	10,6
200	89,1	66,7	38,8	18,3
300	89,9	71,1	47,1	24,4
400	94,6	79,7	55,4	31,9
600	95,4	84,2	65,2	42,3

(a)		examinant les données de ce tableau, identifiez la combinaison de température et de sion qui correspond au rendement le plus élevé en ammoniac.	[1]
(b)	L'éq	uation de la réaction principale du procédé Haber est	
		$N_2(g) + 3H_2(g) \implies 2NH_3(g)$ ΔH est négative	
		sez ces informations pour décrire et expliquer l'effet sur le rendement en ammoniac e augmentation de :	
	(i)	la pression :	[2]
	(ii)	la température :	[2]

(Suite de la question à la page suivante)

(Suite d	e la c	question	1)
----------	--------	----------	----

(c)	de 500 °C et une pression de 200 atmosphères. Expliquez pourquoi on travaille dans ces conditions plutôt que dans celles qui fournissent le rendement maximal.	[2]
(d)	Donnez l'expression de la constante d'équilibre, $K_{\rm c}$, de la réaction de synthèse de l'ammoniac.	[1]

Tournez la page

2.

Le graphique ci-dessus représente la distribution de l'énergie des molécules d'un échantillon de gaz à une température donnée T_1 .

(a)	Sur le graphique, E_a représente l'énergie d'activation d'une réaction. Définissez ce terme.	[1]
(b)	Sur le graphique ci-dessus, dessinez une autre courbe représentant la distribution de l'énergie des molécules pour le même échantillon de gaz porté à une température supérieure. Désignez cette courbe par T_2 .	[2]
(c)	En vous référant à votre graphique, décrivez et expliquez comment évolue la vitesse d'une réaction lorsqu'on augmente la température.	[2]

3.	(a)	La masse moléculaire relative du chlorure d'aluminium est 267 et sa composition en masse est 20,3 % d'Al et 79,7 % de Cl. Déterminez la formule empirique et la formule moléculaire du chlorure d'aluminium.	[4]
	(b)	Le sodium réagit avec l'eau conformément à l'équation suivante :	
		$2\text{Na(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} + \text{H}_2(g)$	
		On fait réagir complètement 1,15 g de sodium avec de l'eau. La solution obtenue est diluée jusqu'à ce que son volume atteigne 250 cm³. Calculez la concentration, en mol dm⁻³, de la solution d'hydroxyde de sodium obtenue.	[3]

1.	Expl	liquez	les propositions suivantes.	
	(a)	L'én	nergie de première ionisation du sodium est	
		(i)	inférieure à celle du magnésium.	[2
		(ii)	supérieure à celle du potassium.	[1
	(b)	L'él	ectronégativité du chlore est supérieure à celle du soufre.	[2

5.	L'él	ément vanadium possède deux isotopes, ${}_{23}^{50}$ V et ${}_{23}^{51}$ V et sa masse atomique relative vaut 50,94.	
	(a)	Définissez le terme <i>isotope</i> .	[1]
	(b)	Précisez le nombre de protons, d'électrons et de neutrons dans $^{50}_{23}$ V .	[2]
	(c)	Indiquez quel est l'isotope le plus abondant et expliquez votre réponse.	[1]
	(d)	Précisez le nom et le nombre de masse de l'isotope par rapport auquel toutes les masses atomiques sont mesurées.	[1]

[2]

[2]

SECTION B

Répondez à **une** question. Rédigez vos réponses dans les livrets de réponses fournis. Inscrivez votre numéro de candidat sur chaque livret de réponse que vous avez utilisé et joignez-les à cette épreuve écrite et à votre page de couverture en utilisant l'attache fournie.

6. (a) L'histogramme ci-dessous présente les températures d'ébullition des composés hydrogénés des éléments du groupe 6.

- (i) Expliquez la tendance observée dans l'évolution des températures d'ébullition de $\rm H_2S$ à $\rm H_2Te$.
- (ii) Expliquez pourquoi la température d'ébullition de l'eau est supérieure à la valeur attendue d'après la tendance observée dans le groupe. [2]
- (b) (i) Indiquez la géométrie de la distribution des électrons autour de l'atome d'oxygène dans la molécule d'eau et précisez la géométrie (la forme) de la molécule.
 - (ii) Précisez la valeur de l'angle de liaison HOH et expliquez votre réponse. [2]
- (c) Dans la molécule de tétrachlorure de silicium, SiCl₄, bien que les liaisons soient polaires, la molécule ne l'est pas. Expliquez pourquoi. [2]

(Suite de la question à la page suivante)

[1]

[4]

(Suite de la question 6)

Les schémas ci-dessous représentent les structures de l'iode, du sodium et de l'iodure de sodium.

- (d) (i) Établissez la correspondance entre chacune des structures proposées (A, B et C) et chacun des corps purs concernés, iode, sodium et iodure de sodium.
 - (ii) Indiquez le type de liaisons présent dans chacune de ces structures. [3]
- (e) (i) Le sodium et l'iodure de sodium sont tous deux conducteurs de l'électricité à l'état fondu. Toutefois, seul le sodium est conducteur à l'état solide. Expliquez cette différence de conductivité en vous référant aux structures du sodium et de l'iodure de sodium.
 - (ii) L'iode est beaucoup plus volatile que le sodium ou l'iodure de sodium. Expliquez cette volatilité élevée de l'iode. [2]

7.	(a)	Définissez les termes acide fort et acide faible. En prenant comme exemples l'acide
		chlorhydrique et l'acide éthanoïque, écrivez les équations de dissociation de chacun de ces
		acides en solution aqueuse.

[4]

(b) (i) On ajoute séparément du carbonate de calcium à deux solutions de même concentration, à savoir, une solution d'acide chlorhydrique et une solution d'acide éthanoïque. Relevez **une** similitude et **une** différence entre les observations que l'on pourrait faire.

[2]

(ii) Écrivez une équation traduisant la réaction entre l'acide chlorhydrique et le carbonate de calcium.

[2]

(iii) Déterminez le volume d'une solution d'acide chlorhydrique de concentration 1,50 mol dm⁻³ qui réagirait avec exactement 1,25 g de carbonate de calcium.

[3]

[2]

(iv) Calculez le volume de dioxyde de carbone, mesuré à 273 K et 1,01×10⁵ Pa, produit lors de la réaction complète de 1,25 g de carbonate de calcium avec de l'acide chlorhydrique.

(Suite de la question à la page suivante)

[1]

(Suite de la question 7)

(c) Le graphique ci-dessous représente la variation du pH lorsqu'une solution aqueuse d'hydroxyde de sodium est ajoutée à 20 cm³ d'une solution aqueuse d'acide chlorhydrique.

En vous référant à ce graphique,

(i) précisez [H⁺] avant toute addition de la base. [1]

(ii) déterminez la variation qu'a subie [H⁺] après l'addition de 20 cm³ de la solution aqueuse d'hydroxyde de sodium. [1]

(iii) déterminez le volume de cette même solution d'hydroxyde de sodium qui sera nécessaire pour neutraliser 20 cm³ d'une solution aqueuse d'acide éthanoïque de même concentration que l'acide chlorhydrique.

(d) (i) Définissez le terme solution tampon. [2]

(ii) Proposez un mélange susceptible de fonctionner comme une solution tampon. [2]

[5]

8. Les deux réactions ci-dessous sont celles auxquelles peut donner lieu l'alcène B.

- (a) (i) Nommez le composé **A** et écrivez l'équation de sa combustion complète. Expliquez pourquoi la combustion incomplète de **A** est dangereuse.
 - (ii) Décrivez brièvement un test qui permettrait de distinguer **A** de **B** et donnez le résultat de ce test dans chaque cas. [3]
 - (iii) Écrivez l'équation de la conversion de **B** en **C**. Précisez le type de réaction dont il s'agit et représentez la structure de **C**. [3]
- (b) (i) Un composé **D** répondant à la formule moléculaire $C_2H_4O_2$ est obtenu par réaction entre l'acide méthanoïque et le méthanol. Écrivez l'équation de cette réaction et nommez le composé **D**. [3]
 - (ii) Un second composé, **E**, possède la même formule moléculaire que **D** et présente des propriétés acides. Nommez le composé **E**.
- (c) La première fibre synthétique à avoir été fabriquée était un polyester. Un fragment de ce polyester est représenté ci-dessous :

- (i) Dessinez la formule de structure du monomère (incluant deux groupements fonctionnels) qui pourrait être utilisé pour synthétiser ce polyester et nommez les deux groupements fonctionnels. [3]
- (ii) En fournissant un argument à l'appui de votre réponse, précisez si ce polyester est obtenu par une réaction de condensation ou par une réaction d'addition. [2]