Linear Algebra Done Right

Week 3 Notes (a)

shaozewxy

June 2022

3.F Duality

Definition of Dual Space and Dual Map

3.92 Definition of Linear Functional

A linear functional on V is a linear map from V to F, i.e. the set of $\mathcal{L}(V, \mathbf{F})$

3.93 Examples of Linear Functionals

- Define $\phi: \mathbf{R}^3 \to \mathbf{R}$ by $\phi(x, y, z) = 4x 5y + 2z$. Then ϕ is a linear function on \mathbf{R}^3 .
- Fix $(c_1,...,c_n) \in \mathbf{F}^n$. Define $\phi: \mathbf{F}^n \to F$ by

$$\phi(x_1, ..., x_n) = c_1 x_1 + ... + c_n x_n$$

Then ϕ is a linear functional on \mathbf{F}^n .

• Define $\phi: \mathcal{P}(\mathbf{R}) \to \mathbf{R}$ by $\phi(p) = 3p''(5) + 7p(4)$. Then ϕ is a linear functional on $\mathcal{P}(\mathbf{R})$.

• Define $\phi : \mathcal{P}(\mathbf{R}) \to \mathbf{R}$ by $\phi(p) = \int_0^1 p(x) dx$. Then ϕ is a linear functional on $\mathcal{P}(\mathbf{R})$.

3.94 Definition of dual space

The **dual space** of V denoted V' is just the vector space of all linear functional on V, i.e. $V' = \mathcal{L}(V, \mathbf{F})$.

3.95 Dual space and the orignal space have same dimension.

Suppose V is finite dimensional, then V' is also finite dimensional and $\dim V = \dim V'$.

Proof:

This comes from the fact that

$$dim \mathcal{L}(V, \mathbf{F}) = dim \ V \times dim \ \mathbf{F} = dim \ V$$
 using 3.61

3.96 Definition of dual basis

Given $v_1, ..., v_n$ a basis of V, then the **dual basis** of $v_1, ..., v_n$ is the list $\phi_1, ..., \phi_n$ of elements in V', where each ϕ_j is the linear functional on V such that

$$\phi_j(v_k) = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases}$$

3.98 Dual basis is a basis of dual space

Proof:

First NTS $\phi_1, ..., \phi_n$ are linearly independent:

Suppose $\exists \phi = \sum_{i=1}^{n} a_i \phi_i = 0$, then this means that $\phi(v_j) = a_j \phi_j(v_j) = a_j = 0$, i.e. all $a_i = 0$, therefore $\phi_1, ..., \phi_n$ are linearly independent.

Then NTS $\phi_1, ..., \phi_n$ span V':

Given $\phi \in V'$, we claim that

$$\phi = \sum_{i=1}^{n} \phi(v_i)\phi_i$$

 $\forall v = \sum_{i=1}^{n} a_i v_i, \phi(v) = \sum_{i=1}^{n} a_i \phi(v_i), \text{ similarly,}$

$$\left(\sum_{i=1}^{n} \phi(v_i)\phi_i\right) \left(\sum_{i=1}^{n} a_i v_i\right) = \sum_{i=1}^{n} \phi(v_i)\phi_i \left(\sum_{i=1}^{n} a_i v_i\right)$$
$$= \sum_{i=1}^{n} a_i \phi(v_i)\phi_i(v_i)$$
$$= \sum_{i=1}^{n} a_i \phi(v_i) = \phi(v)$$

Therefore $\phi_1, ..., \phi_n$ span V'.

Therefore $\phi_1, ..., \phi_n$ is a basis for V'.

3.99 Definition of dual map

Given $T \in \mathcal{L}(V, W)$, then the **dual map** of T is the linear map $T' \in \mathcal{L}(V, W)$ defined by

$$T'(\phi) = \phi \circ T$$

3.101 Algebraic Properties of Dual Maps

- $\forall S, T \in \mathcal{L}(V, W)(S+T)' = S' + T'$
- $\forall \lambda \in \mathbf{F}, T \in \mathcal{L}(V, W), (\lambda T)' = \lambda T'$
- $\forall T \in \mathcal{L}(U, W), S \in \mathcal{L}(V, W), (ST)' = T'S'$

Properties of Dual Maps

3.102 Definition of annihilator

Given $U \subset V$, the **annihilator** of U, denoted U^0 is defined by

$$U^{0} = \{ \phi \in V' : \forall u \in U, \phi(u) = 0 \}$$

3.103 Example of Annihilator

Given $U \subset \mathcal{P}(\mathbf{R})$ consisting of all polynomial multiples of x^2 . Then ϕ defined by

$$\phi(p) = p'(0)$$

is $\in U^0$.

3.104 Example of Annihilator

 $e_1,...,e_5$ the standard basis of \mathbf{R}^5 , and $\phi_1,...,\phi_5$ the dual basis of $(\mathbf{R}^5)'$. Suppose

$$U = span(e_1, e_2) = \{(x_1, x_2, 0, 0, 0) \in \mathbf{R}^5 : x_1, x_2 \in \mathbf{R}\}\$$

Show that $U^0 = span(\phi_3, \phi_4, \phi_5)$. **Proof:**

First NTS that $span(\phi_3, \phi_4, \phi_5) \subseteq U^0$:

Given $\phi = a_3\phi_3 + a_4\phi_4 + a_5\phi_5$, $\phi(x_1, x_2, 0, 0, 0) = 0 \rightarrow span(\phi_3, \phi_4, \phi_5) \subseteq U^0$.

Then NTS $U^0 \subseteq span(\phi_3, \phi_4, \phi_5)$:

Given $\phi = a_1\phi_1 + a_2\phi_3 + a_3\phi_3 + a_4\phi_4 + a_5\phi_5 \in U^0, \phi(x_1, x_2, 0, 0, 0) = a_1x_1 + a_2\phi_3 + a_3\phi_3 + a_4\phi_4 + a_5\phi_5 \in U^0$

 $a_2x_2 = 0 \forall x_1, x_2 \to a_1 = a_2 = 0$. Therefore $\phi \in span(\phi_3, \phi_4, \phi_5)$, i.e. $U^0 \subseteq$

 $span(\phi_3, \phi_4, \phi_5)$

Therefore $U^0 = span(\phi_3, \phi_4, \phi_5)$

3.105 Annihilator is a subspace

The proof for this is easy to verify.

3.106 Dimension of the annihilator

Given V finite dimensional and U < V, then we have

$$dim\ U + dim\ U^0 = dim\ V$$

Proof:

The first proof would be to create a basis for U and extend it to a basis of V, then prove that the dual basis of the extension is a basis for U^0 .

The second prrof is as follows:

Let $i \in \mathbf{L}(U, V)$ be the inclusion mapping defined by i(u) = u.

Then $i' \in \mathbf{L}(V', U')$. We have

$$dim \ range \ i' + dim \ null \ i' = dim \ V' = dim \ V$$

Then we only NTS range i' = U' and null $i' = U^0$:

WTS range i' = U':

Given $\psi \in U'$, then we can extend this to $\phi \in V'$ such that $\forall u \in U, \phi(u) = \psi(u)$. Then clearly $i'(\phi) = \phi \circ i = \psi$.

Therefore range i' = U'.

WTS null $i' = U^0$:

This is basically the definition. Given $\phi \in U^0$, then $\forall u \in U, \phi \circ i(u) = \phi(u) = 0$, i.e. $\phi \circ i(u) = 0 \to \phi \in null\ i'$.

Given $\phi \in null\ i'$, then $\forall u \in U, \phi(u) = \phi \circ i(u) = 0$, therefore $\phi \in U^0$.

Therefore null $i' = U^0$.

Therefore $\dim U + \dim U^0 = \dim V$.

3.107 Null space of T'

Given V, W both finite-dimensional and $T \in \mathcal{L}(V, W)$, then

- (a) $null\ T' = (range\ T)^0$
- (b) $\dim null T' = \dim null T + \dim W \dim V$

Proof:

For a:

First we NTS null $T' \subseteq (range\ T)^0$:

Suppose $\phi \in null\ T'$, then we know that $\phi \circ T = 0$.

Therefore, $\forall w \in W$ such that $\exists v \in V, Tv = w$, we know that $\phi(w) = \phi(Tv) = \phi \circ T(v) = 0$, i.e. $\phi \in (range\ T)^0$.

Therefore $null\ T \subseteq (range\ T)^0$.

Then we NTS $(range\ T)^0 \subseteq null\ T'$:

Given $\phi \in (range\ T)^0$, then denote $\psi = \phi \circ T$, we have $\forall v \in V, \psi(v) = \phi \circ Tv = 0$, therefore $(range\ T)^0 \subseteq null\ T'$.

Therefore null $T' = (range\ T)^0$.

For b:

With $null\ T' = (range\ T)^0$, we have that

$$dim \ null \ T' = dim \ (range \ T)^0$$

$$= dim \ W - dim \ range \ T$$

$$= dim \ W - (dim \ V - dim \ null \ T)$$

$$= dim \ W - dim \ V + dim \ null \ T$$

3.108 T surjective iff T' injective

Proof:

T surjective \iff $dim (range T)^0 = 0 \iff dim null T' = 0 \iff T'$

injective.

3.109 Range of T'

Given V, W both finite-dimensional and $T \in \mathcal{L}(V, W)$. Then

- (a) $\dim range T' = \dim range T$
- (b) range $T' = (null\ T)^0$

Proof:

(a) We have

$$\begin{aligned} \dim \ range \ T' &= \dim \ W - \dim \ null \ T' \\ &= \dim \ W - (\dim \ W - \dim \ V + null \ T) \\ &= \dim \ range \ T \end{aligned}$$

(b) First we NTS range $T' \subseteq (null\ T)^0$:

Given
$$\phi \in range\ T', \exists \psi \in W', \psi \circ T = \phi$$
.

Therefore
$$\forall v \in null\ T, \phi(v) = \psi \circ Tv = \psi(0) = 0.$$

Therefore we have shown that range $T' \subseteq (null\ T)^0$.

Then we NTS $dim\ range\ T' = dim\ (null\ T)^0$:

$$\begin{aligned} \dim \ range \ T' &= \dim \ W' - \dim \ null \ T' \\ &= \dim \ W - (\dim \ W - \dim \ V + \dim \ null \ T) \\ &= \dim \ V - \dim \ null \ T \\ &= \dim \ (null \ T)^0 \end{aligned}$$

3.110 T injective iff T' surjective

Proof:

Tinjective
$$\iff$$
 dim null $T=0$

$$\iff$$
 dim range $T=V$

$$\iff$$
 dim range $T'=$ dim range $T=V$

$$\iff$$
 T' surjective

Matrix of a Dual Map

3.113 Transpose of product

Given A an $m \cdot n$ matrix and C an $n \cdot p$ matrix, then

$$(AC)^t = C^t A^t$$

3.104 Matrix of T' is the transpose of matrix of T

Given
$$T \in \mathcal{L}(V, W)$$
, then $\mathcal{M}(T') = (\mathcal{M} * (T))^t$.

Proof:

Denote $v_1, ..., v_n$ a basis for $V, v'_1, ..., v'_n$ the corresponding basis for V'. Similarly $w_1, ..., w_m$ a basis for $W, w'_1, ..., w'_n$ the corresponding basis for W'.

We denote $\mathcal{M}(T) = A, \mathcal{M}(T') = C$. Then we have

$$w'_{j}(Tv_{i}) = w'_{j} \left(\sum_{r=1}^{m} A_{ri} w_{r} \right)$$

$$= \left(\sum_{r=1}^{m} A_{ri} w'_{j}(w_{r}) \right)$$

$$= A_{ji}$$

$$= w'_{j} \circ T(v_{i})$$

$$= T'(w'_{j}) v_{i}$$

$$= \left(\sum_{r=1}^{n} C_{rj} v'_{r}(v_{i}) \right)$$

$$= C_{ij}$$

Here the main equality is $w'_j(Tv_i) = T'w'_j(v_i)$. Using two ways to perform this calculation leads to the equality of the two entries of matrices $\mathcal{M}(T)$ and $\mathcal{M}(T')$.

 Tv_i selects the i^{th} column of $\mathcal{M}(T)$ and similarly, $T'w'_j$ selects the j^{th} column of $\mathcal{M}(T')$.

Then applying w'_j to Tv_i will result in 0 for all rows $r \neq j$, leaving only $\mathcal{M}(T)_{ji} \cdot w'_j(w_j) = \mathcal{M}(T)_{ji}.$

Simlarly, applying $T'w'_j$ to v_i will result in 0 for all rows $r \neq i$, leaving only $\mathcal{M}(T')_{ij} \cdot v'_i(v_i) = \mathcal{M}(T')_{ij}$.

Therefore $\mathcal{M}(T)_{ji} = \mathcal{M}(T')_{ij} \to \mathcal{M}(T)^t = \mathcal{M}(T')$.

Check the below graph for a better understanding:

Rank of a Matrix

3.115 Definition of rank

Given A an $m \times n$ matrix with entries in **F**.

- The **row rank** of A is the dimension of the span of rows of A in $\mathbf{F}^{1,n}$.
- The column rank of A is the dimension of the span of the columns of A
 in F^{m,1}.

3.117 T and rank of M(T)

Given V, W finite-dimensional and $T \in \mathcal{L}(V, W)$. Then $\dim range T = \text{column}$ rank of $\mathcal{M}(T)$.

Row rank equals to column rank

Proof:

Given $A \in \mathbf{F}^{m,n}$, then

$$\begin{aligned} \operatorname{columnrankof} A &= \operatorname{columnrankof} \mathcal{M}(T) \\ &= \dim \, range \, T \\ &= \dim \, range \, T' \\ &= \operatorname{columnrankof} \mathcal{M}(T') \\ &= \operatorname{columnrankof} A^t \\ &= \operatorname{rowrankof} A \end{aligned}$$

3.119 Definition of rank

The ${\bf rank}$ of a matrix $A\in {\bf F}^{m,n}$ is the column rank of A.