TABLE OF CONTENTS

Definition 1.6.1

A function f(x) is continuous at a point a if $\lim_{x \to a} f(x)$ exists AND is equal to f(a).

Does f(x) exist at x = 1? Is f(x) continuous at x = 1?

Definitions 1.6.1 and 1.6.2

A function f(x) is continuous from the left at a point a if $\lim_{x \to a^-} f(x)$ exists AND is equal to f(a).

Is f(x) continuous at x = 3?

Is f(x) continuous from the left at x = 3?

Is f(x) continuous from the right at x = 3?

Definition

A function f(x) is continuous at a point a if $\lim_{x\to a} f(x)$ exists AND is equal to f(a).

Definition

A function f(x) is continuous at a point a if $\lim_{x\to a} f(x)$ exists AND is equal to f(a).

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$$

Is f(x) continuous at 0?

CONTINUOUS FUNCTIONS

Functions made by adding, subtracting, multiplying, dividing, and taking appropriate powers of polynomials are continuous for every point in their domain.

$$f(x) = \frac{x^2}{2x - 10} - \left(\frac{x^2 + 2x - 1}{x - 1} + \frac{\sqrt[5]{25 - x} - \frac{1}{x}}{x + 2}\right)^{1/3}$$

A continuous function is continuous for every point in \mathbb{R} .

We say f(x) is continuous over (a, b) if it is continuous at every point in (a, b).

Common Functions – Theorem 1.6.8

Functions of the following types are continuous over their domains:

- polynomials and rationals
- roots and powers
- trig functions and their inverses
- exponential and logarithm
- The products, sums, differences, quotients, powers, and compositions of continuous functions

Where is the following function continuous?

$$f(x) = \left(\frac{\sin x}{(x-2)(x+3)} + e^{\sqrt{x}}\right)^3$$

A TECHNICAL POINT

Definition 1.6.3

A function f(x) is continuous on the closed interval [a,b] if:

- ightharpoonup f(x) is continuous over (a,b), and
- ightharpoonup f(x) is continuous from the left at b, and
- ightharpoonup f(x) is continuous from the right at a

Intermediate Value Theorem (IVT) – Theorem 1.6.12

Let a < b and let f(x) be continuous over [a, b]. If y is any number between f(a) and f(b), then there exists c in (a, b) such that f(c) = y.

Intermediate Value Theorem (IVT) – Theorem 1.6.12

Let a < b and let f(x) be continuous over [a, b]. If y is any number between f(a) and f(b), then there exists c in (a, b) such that f(c) = y.

Suppose your favourite number is 45.54. At noon, your car is parked, and at 1pm you're driving 100kph.

USING IVT TO FIND ROOTS: "BISECTION METHOD"

Let $f(x) = x^5 - 2x^4 + 2$. Find any value x for which f(x) = 0. Let's find some points:

$$f(0) = 2$$

$$f(1) = 1$$

$$2 \xrightarrow{y}$$

$$1 \xrightarrow{-1}$$

$$-1 \xrightarrow{-1}$$

$$f(-1) = -1$$

$$1$$

USING IVT TO FIND ROOTS: "BISECTION METHOD"

Let $f(x) = x^5 - 2x^4 + 2$. Find any value x for which f(x) = 0.

Use the Intermediate Value Theorem to show that there exists some solution to the equation $\ln x \cdot e^x = 4$, and give a reasonable interval where that solution might occur.

Use the Intermediate Value Theorem to give a

reasonable interval where the following is true: $e^x = \sin(x)$. (Don't use a calculator – use numbers you can easily evaluate.)

Is there any value of *x* so that $\sin x = \cos(2x) + \frac{1}{4}$?

Is the following reasoning correct?

- $f(x) = \tan x$ is continuous over its domain, because it is a trigonometric function.
- In particular, f(x) is continuous over the interval $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$.
- $f\left(\frac{\pi}{4}\right) = 1$, and $f\left(\frac{3\pi}{4}\right) = -1$.
- Since $f\left(\frac{3\pi}{4}\right) < 0 < f\left(\frac{\pi}{4}\right)$, by the Intermediate Value Theorem, there exists some number c in the interval $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ such that f(c) = 0.

CONTINUITY

Section 1.6 Review

Suppose f(x) is continuous at x = 1. Does f(x) have to be defined at x = 1?

Suppose f(x) is continuous at x = 1 and $\lim_{x \to 1^-} f(x) = 30$.

True or false: $\lim_{x \to 1^+} f(x) = 30$.

Suppose f(x) is continuous at x = 1 and f(1) = 22. What is $\lim_{x \to 1} f(x)$?

Suppose $\lim_{x\to 1} f(x) = 2$. Must it be true that f(1) = 2?

$$f(x) = \begin{cases} ax^2 & x \ge 1\\ 3x & x < 1 \end{cases}$$

For which value(s) of a is f(x) continuous?

$$f(x) = \begin{cases} \frac{\sqrt{3}x+3}{x^2-3} & x \neq \pm\sqrt{3} \\ a & x = \pm\sqrt{3} \end{cases}$$

For which value(s) of *a* is f(x) continuous at $x = -\sqrt{3}$?

$$f(x) = \begin{cases} \frac{\sqrt{3}x+3}{x^2-3} & x \neq \pm\sqrt{3} \\ a & x = \pm\sqrt{3} \end{cases}$$

For which value(s) of *a* is f(x) continuous at $x = \sqrt{3}$?

Included Work

'Brain' by Eucalyp is licensed under CC BY 3.0 (accessed 8 June 2021), 15–17