Mini Project – 2 B Based on ML

Spam Mail Prediction

2 A Based on ML

(SEMESTER VI)

submitted in

partial fulfillment of requirement for the award of

degree of

Bachelor of Engineering

in

Information Technology

Ву

Name of Student:		Roll no.				
1)	Aditi Srivastava	72				
2)	Aishwarya Haresh Nimkar	42				
3)	Devayani Sudhakar Kurup	27				
4)	Alisha Irfan Khot	25				

Guided by

Prof. Swati Powar

Department of Information Technology

Finolex Academy of Management and Technology, Ratnagiri

ACADEMIC YEAR 2022-23

Declaration

We, hereby declare that, the Mini Project titled "Spam Mail Prediction" submitted here in has been carried out by us in the Department of Information Technology at Finolex Academy of Management and Technology, Ratnagiri.

Name of the student:-

- 1. Aditi Srivastava
- 2. Aishwarya Haresh Nimkar
- 3. Devayani Sudhakar Kurup
- 4. Alisha Irfan Khot

Date:

Certificate

The Mini Project "Spam Mail Prediction" submitted by "Aditi Srivastava, Aishwarya Nimkar, Devayani Kurup, Alisha Khot" in the completion of TE Bachelor in Information Technology, has been carried out under my supervision at the Department of Information Technology at Finolex Academy of Management and Technology, Ratnagiri . The work is comprehensive, complete and fit for evaluation.

Prof. Swati Powar,

Assistant Professor,

Department of Information Technology, FAMT, Ratnagiri

INDEX

Sr. No.	CONTENT	Page No			
1	CHAPTER 1 : INTRODUCTION	1			
2	CHAPTER 2 : LITERATURE REVIEW	2			
3	CHAPTER 3 : SOFTWARE AND HARDWARE REQUIREMENTS	3			
4	CHAPTER 4 : GANTT CHART	4			
5	CHAPTER 5 : SYSTEM DESIGN	5			
6	CHAPTER 6 : SOURCE CODE	7			
7	CHAPTER 7: OUTPUT SCREEN SHOTS	11			
8	CHAPTER 8: CONCLUSION	13			
9	CHAPTER 9: REFERENCES	14			

INTRODUCTION

The project title is "Spam Mail Prediction", the scope of the "Spam Mail Prediction" project seems to be to predict Spam and Ham mails. Users can automatically write evaluations or comments on e-commerce websites in the Web 2.0 era. Both customers and collaborations benefit greatly from user-generated content. On the one hand, reading these evaluations before purchasing a product or service can provide buyers with some knowledge about it. Business companies, on the other hand, might use these reviews to improve their goods and marketing methods. When it comes to purchase decisions, people are often influenced by reviews information, therefore favourable evaluations may bring a lot of money and recognition to businesses and individuals. This encourages the spread of false opinion spam (also known as false reviews). However, spam filtering helps to reduce recipient overload to some extent, but with these adjustments, it is feasible to construct an email system that is more efficient and accurate. In addition, a system that gives user specific output has been sought. This ensures that everyone who utilizes the system has a positive experience. The objective is to create a machine learning model for predicting email spam or ham, which might eventually replace updatable classifier models by predicting outcomes in the form of the greatest accuracy by comparing supervised algorithms.

LITERATURE REVIEW

Author	Year	Title Algorithm(s) Use		Dataset Size			
N. Jindal and B. Liu	2007	Analyzing and detecting review spam Decision Trees, Random Forests, Support Vector Machines, Artificial Neural Networks		768 mails			
S. Xie, G. Wang, S. Lin and P. S. Yu	2012	Review spam detection via temporal pattern discovery Gradient Boosting Decision Tree		7,364 mails			
G. Wang, S. Xie, B. Liu and P. S. Yu	2012	Identify online store review spammers via social review graph	Logistic Regression, Support Vector Machines, Decision Trees, Neural Networks	19,564 reviews			
J. K. Rout, S. Singh, S. K. Jena, and S. Bakshi	2017	Deceptive review detection using labeled and unlabeled data	K-Nearest Neighbors, Random Forests, Support Vector Machines, Naive Bayes	768 mails			
N. Hussain, H. T. Mirza, I. Hussain, F. Iqbal, and I. Memon	a, I. Hussain, detection lingui qbal, and I.		Logistic Regression, Support Vector Machines, Decision Trees, Random Forests	2,321 reviews			

SOFTWARE AND HARDWARE REQUIREMENTS

• Software Requirements:

- 1. Required Python libraries (numpy, pandas, scikit-learn, etc.)
- 2. Google Colab

• Hardware Requirements:

- 1. Windows 10 operating system.
- 2. Intel Core i7 processor
- 3. 8GB RAM
- 4. At least 100GB of free hard drive space.

GANTT CHART

Task name	Start Date	End Date	Assigned to	Progress	W	W		W	W			W	W	
					е	e	е	е	e	е	е	е	е	е
					e	e	e	e	e	e	e	e	e	e
					k	k	k	k	k	k	k	k	k	k
					1	2	3	4	5	6	7	8	9	10
T. 11 1	1.1/01/0000	21/01/2022		1000/	•			-		•	,	0		-
Finalizing	14/01/2023	21/01/2023	Aditi,	100%										
requirements			Aishwarya,											
			Devayani,											
Determine all roles	22/01/2023	28/01/2023	Alisha Aditi,	100%										
	22/01/2023	28/01/2023	· ·	100%										
and responsibilities			Aishwarya,											
and develop a schedule			Devayani, Alisha											
schedule			Alislia											
Collecting	29/01/2023	04/02/2023	Aditi,	100%										
resources and			Aishwarya,											
planning required			Devayani,											
technologies			Alisha											
C	05/02/2023	18/02/2023	Aditi,	100%										
review			Aishwarya,											
			Devayani,											
T	10/02/2022	0.4/02/2022	Alisha	1000/										
Logistics	19/02/2023	04/03/2023	Aditi,	100%										
Regression Model			Aishwarya,											
Development			Devayani, Alisha											
Model Evaluation	19/03/2023	25/03/2023	Aditi,	100%										
and Comparison	19/03/2023	25/05/2025	Aishwarya,	100%										
and Comparison			Devayani,											
			Alisha											
Presentation	26/03/2023	01/04/2023	Aditi,	100%										
Preparation	20,03,2023	01/01/2023	Aishwarya,	10070										
			Devayani,											
			Alisha											
Documentation and	02/04/2023	15/04/2023	Aditi,	100%										
			Aishwarya,											
Report Writing			Devayani,											
			Alisha											
Final review and	16/04/2023	20/04/2023	Aditi,	100%										
submission			Aishwarya,											
			Devayani,											
			Alisha											

SYSTEM DESIGN

1. Spam Mail Prediction Using Logistic Regression Algorithm:

SOURCE CODE

Spam Mail Prediction Using Naïve Bayes Algorithm:

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# loading the data from csv file to a pandas Dataframe
raw_mail_data = pd.read_csv('C:/Users/DELL/Downloads/mail_data.csv')
print(raw_mail_data)
# replace the null values with a null string
mail_data = raw_mail_data.where((pd.notnull(raw_mail_data)),'')
# printing the first 5 rows of the dataframe
mail_data.head()
# checking the number of rows and columns in the dataframe
mail data.shape
# label spam mail as 0; ham mail as 1;
mail_data.loc[mail_data['Category'] == 'spam', 'Category',] = 0
mail_data.loc[mail_data['Category'] == 'ham', 'Category',] = 1
# separating the data as texts and label
X = mail data['Message']
Y = mail_data['Category']
print(X)
print(Y)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=3)
print(X.shape)
print(X train.shape)
print(X_test.shape)
# transform the text data to feature vectors that can be used as input to the Logistic
regression
feature extraction = TfidfVectorizer(min df = 1, stop words='english', lowercase=True)
```

```
feature_extraction.fit(X test)
X train features = feature extraction.fit transform(X train)
X_test_features = feature_extraction.transform(X_test)
# convert Y train and Y test values as integers
Y_train = Y_train.astype('int')
Y test = Y test.astype('int')
print(X_train)
print(X_train_features)
model = LogisticRegression()
# training the Logistic Regression model with the training data
model.fit(X_train_features, Y_train)
# prediction on training data
prediction_on_training_data = model.predict(X_train_features)
accuracy_on_training_data = accuracy_score(Y_train, prediction_on_training_data)
print('Accuracy on training data : ', accuracy_on_training_data)
# prediction on test data
prediction_on_test_data = model.predict(X_test_features)
accuracy on test data = accuracy score(Y test, prediction on test data)
print('Accuracy on test data : ', accuracy_on_test_data)
input_mail = ["I've been searching for the right words to thank you for this breather. I
promise i wont take your help for granted and will fulfil my promise. You have been wonderful
and a blessing at all times"]
# convert text to feature vectors
input_data_features = feature_extraction.transform(input_mail)
# making prediction
prediction = model.predict(input_data_features)
print(prediction)
if (prediction[0]==1):
  print('Ham mail')
else:
  print('Spam mail')
```

OUTPUT SCREENSHOTS

Spam Mail Prediction Using Naïve Bayes Algorithm:

CONCLUSION

In conclusion, in today's age of communication and technology, spam email is one of the most demanding and unpleasant concerns on the internet. For safeguarding message and e-mail transmission, spam detection is very necessary. The accurate detection of spam is a big challenge, and researchers have proposed a lot of detection approaches. These approaches, are incapable of proper and efficient detection of spam. To solve this problem, we suggested a spam detection model based on machine learning prediction models. When compared to other current methods, the proposed method attained a high accuracy of 96 percent. As a result, the suggested system is structured in such a way that it recognises unsolicited and undesired mails and blocks them, hence minimising spam messages, which would be beneficial to people.

REFERENCE

- 1. N. Jindal and B. Liu, "Analyzing and detecting review spam", Proc. IEEE Int. Conf. Data Mining, pp. 547-552, Oct. 2007
- 2. S. Xie, G. Wang, S. Lin and P. S. Yu, "Review spam detection via temporal pattern discovery", Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 823-831, 2012
- **3.** G. Wang, S. Xie, B. Liu and P. S. Yu, "Identify online store review spammers via social review graph", ACM Trans. Intell. Syst. Technol., vol. 3, no. 4, pp. 1-61, 2012
- **4.** J. K. Rout, S. Singh, S. K. Jena, and S. Bakshi, "Deceptive review detection using labeled and unlabeled data," Multimedia Tools Appl., vol. 76,pp. 3187–3211, 2017
- **5.** N. Hussain, H. T. Mirza, I. Hussain, F. Iqbal, and I. Memon, "Spam review detection using the linguistic and spammer behavioral methods," IEEE Access, vol. 8, pp. 53801–53816, 2020