CHAPT	ER 2		
	N BIOMEDICAL MENTATION		
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNIE	Sensors in Medical Instrumentation	Chapter 2 -1	

Example: error calculation of a pressure sensor

Pressure range	FS	0-200	kPa
Offset	Voff	±1	mV
Sensitivity	$\Delta V/\Delta P$	0.2	mV/kPa
Linearity		±0.5%	FS
Hysteresis		±0.5%	FS
Temperature effect on FS (0 to 50°C, Tref=25°C)	T_FS	±2%	FS
Temperature effect on Offset (0 to 50°C, Tref=25°C)	T_OFF	±1	mV
Offset Stability		±0.5%	FS

$$\begin{aligned} &Error_{max} = \pm \sum_{i} |\Delta x_{i}| \\ &Error_{probable} = \pm \sqrt{\Delta x_{i}^{2}} \end{aligned}$$

Error $_{OFF}$ = \pm 5kPa, Error $_{lin}$ = \pm 1kPa, Eror $_{Hyst}$ = \pm 1kPa Error $_{T,_FS}$ = \pm 4kPa, Error $_{T,_OFF}$ = \pm 5kPa, Error $_{Stab}$ = \pm 1kPa Error maximum= \pm (5+1+1+4+5+1)= \pm 17kPa Error probable= $\pm\sqrt{(5^2+1^2+1^2+4^2+5^2+1^2)}$ = \pm 8.3kPa

Dynamic transfer characteristics

Ordinary Differential Equations

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_o y = x(t)$$

Zero order

e.g.: goniometer

$$y = \mathbf{S} \cdot x$$

S: sensitivity

 $\tau \frac{dy}{dt} + y = \mathbf{S} \cdot \mathbf{x}$ τ time constant

1st order e.g.: temperature sensor

$$\frac{1}{\omega_o^2} \frac{d^2 y}{dt^2} + \frac{2^{\xi}}{\omega_o} \frac{dy}{dt} + y = \mathbf{S} \cdot x$$

2nd order e.g.: accelerometer

 ω_0 : resonant angular velocity

ξ: damping coefficient

Sensors in Medical Instrumentation

Chapter 2 -5

D'une manière générale, la variation en fonction du temps des valeurs de la grandeur d'entrée x génère des variations des valeurs de la grandeur de sortie. On peut modéliser cette correspondance par l'équation différentielle (1) ou n désigne l'ordre du système de mesure dynamique. En général, on limite la modélisation aux système d'ordre 0, 1 et 2.

Les coefficients an sont déterminés théoriquement par modélisation, ou expérimentalement par l'analyse du comportement du système soumis à des sollicitations appropriées. Ces sollicitations sont les formes typiques du signal x: impulsion, saut unitaire, sinusoïdal.

General model

x_d: desired value, measurand, with transfer function F_d

x_m : modifying value

x_i: interfering value, with transfer function F_i

Sensors in Medical Instrumentation

Examples (M: modifying, I: Interfering)

- Power line interference, 50Hz, white noise
- Electrode movement M
- Signals emanating from other devices nearby: I electrosurgery
- EMG noise when measuring the ECG.

Examples of interfering value

 The heart rate of the mother can overshadow that of the fœtus

Sensors in Medical Instrumentation

Noise characteristics

- Amplitude
 - Ratio of signal to noise
 Signal to Noise Ratio: SNR

$$SNR = \frac{s}{n} = \frac{\text{(desired value, }V)^2}{\text{(deviating value, }V)^2} = \frac{\text{Signal Power}}{\text{Noise Power}}$$

- While performing a measurement, we aim to obtain a high SNR by increasing the signal amplitude and decreasing the noise amplitude.
- The SNR is expressed in dB.

$$SNR_{dB} = 10 \log \frac{s}{n}$$

Sensors in Medical Instrumentation

Noise characteristics

Bandwidth of noise B_N

$$B_N = \frac{1}{G_o^2} \int_0^\infty G^2(f) df$$

Sensors in Medical Instrumentation

Miscellaneous types of intrinsic noise

Thermal noise (Johnson)

In a conductor: the random movements of the atoms are transmitted to the conducting electrons

Shot noise

Random fluctuation of current associated with crossing an electric potential barrier

1/f noise

Instability and drift phenomena, non-homogeneities of materials, contacts between conductors

Sensors in Medical Instrumentation

Intrinsic noise source

Thermal noise

In a conductor: the random movements of the atoms are transmitted to the conducting electrons

$$U_{Neff}^2 = 4KTR_N B_N$$

U2_{Neff}: noise strength

T: conductor temperature in ° K

K: Boltzmann constant =1.38x10⁻²³J/K

$$U_{Neff}$$
 / $\sqrt{B_N} = 0.13\sqrt{R_N}$ ($\eta V/\sqrt{\rm Hz}$ (20°C)

Sensors in Medical Instrumentation

Spectral density of noise

 The psd: power spectral density, Φ_N is the energy of the noise produced by a conductor at each cycle

$$\phi_N = \frac{P_N}{B_N}$$

W/Hz (joule/cycle)

Sensors in Medical Instrumentation

Example: amplifier INA118 (BB)

Parameter	Conditions	Type INA118PB	Units
Input noise voltage	G = 1000		
f = 10 Hz		11	nV/\sqrt{Hz}
f = 100 Hz		10	nV/\sqrt{Hz}
f = 1000 Hz		10	nV/\sqrt{Hz}
$f_B = 0.1 Hz$ to 10 Hz		0.28	$\mu Vp - p$
Noise current			
f = 10 Hz		2.0	pA/\sqrt{Hz}
f = 1000 Hz		0.3	pA/\sqrt{Hz}
$f_B = 0.1 Hz$ to 10 Hz		80	pAp - p

• Example: for a bandwidth of 1kHz, the input noise is $10 \cdot 10^{-9} \cdot \sqrt{1000} = 0.32 \mu V$.

Sensors in Medical Instrumentation

Shot noise or Schottky noise

White noise, normal distribution

$$I_{b,\rm eff} = \sqrt{2ei_oB_N} \qquad {\rm e=1.6x10^{-19}C}$$

Sensors in Medical Instrumentation

Additionnal 1/f noise

- - λ = constant depending on current amplitude
- Power of noise generated in the frequency bandwidth of $B_N = [f_1, f_2]$

$$P_{N} = \int_{f_{I}}^{f_{2}} \frac{\lambda}{f} df = \lambda \ln \frac{f_{2}}{f_{I}}$$

Sensors in Medical Instrumentation

Extrinsic noise sources

- Interferences
 - -50 Hz from electrical power lines.

- -Devices
 - Electrosurgery 500 kHz 3 MHz
 - Diathermy 500 kHz 3000 MHz

Very high frequencies compared to those of physiological signals, but ...

Sensors in Medical Instrumentation

Noise source: interferences

- At the input level of measurement devices, the interferences can be rectified and thus demodulated for erroneous DC (offset) components
- Noise is mainly decreased by shielding

Sensors in Medical Instrumentation

Artefact

EMG while measuring the ECG

- Electrode movement : change in electrode-skin contact impedance (flexible cables, gel)
- Skin movement
- Mechanical movement : vibrations
- Voltage drift

Sensors in Medical Instrumentation

Example (see exercice)

Effect of a transition voltage(depend on RC value)

Sensors in Medical Instrumentation

Power line, 230V

$$U_{mc}=Z_g.i_c$$

For $Z_g = 50k\Omega$ and $i_c = 0.2\mu A_{rms}$,

$$U_{mc} = 50 \cdot 10^3 \cdot 0.2 \cdot 10^{-6} = 10 m V_{rms}$$

Noise at the input of the amplifier:

$$(Z_{in}=10M\Omega, Z_{e}=50k\Omega)$$

$$U_A = \frac{z_{in}}{z_{in} + z_e} U_{mc} \cong 10 m V_{rms} !!$$

Sensors in Medical Instrumentation

Decreasing noise: coupling with wires

Differential amplifier

$$U_{AB} = U_{A} - U_{B} = Z_{e} \cdot i_{c2} - Z_{e} \cdot i_{c1}$$

If the two wires are close :

$$i_{c1} = i_{c2} = i_c$$

$$U_{AB} = U_A - U_B = (Z_e - Z_e) \cdot i_c$$

for
$$Z_e - Z_e = 25k\Omega$$
 and $i_c = 5nA_{rms}$

$$U_{{\scriptscriptstyle AB}}=125\mu V_{{\scriptscriptstyle rms}}$$

Without differential amplifier

Sensors in Medical Instrumentation

Decreasing noise : coupling with the subject

Common mode voltage of the source

$$U_{mc} = i_c \cdot Z_g$$
For $Z_g = 50k\Omega$
and $i_c = 0.2\mu A_{rms}$
 $U_{mc} = 10mV_{rms}$

Higher in amplitude than ECG voltage to measure!

(PfU

Ic=0.2 mA?

For $Z_{in} >> Z_e$ and $Z_{in} >> Z'_e$ $(U_d = 0):$ $U_{AB} = U_A - U_B$ $= U_{mc} \left(\frac{Z_{in}}{Z_{in} + Z_e} - \frac{Z_{in}}{Z_{in} + Z_e} \right)$ $Z'_{in} - Z_{in} = 0.5 U_{in} U_{mc}$ $= U_{mc} \left(\frac{Z_{in}}{Z_{in} + Z_e} - \frac{Z_{in}}{Z_{in} + Z_e} \right)$

Sensors in Medical Instrumentation

Common mode voltage : definition

U_{mc}: Voltage common to U_A and U_B, does not provide any information

$$U_{mc} = \frac{U_A + U_B}{2}$$

$$U_{AB} = U_A - U_B$$

$$U_A = U_{mc} + \frac{U_{AB}}{2}$$

$$U_B = U_{mc} - \frac{U_{AB}}{2}$$

Sensors in Medical Instrumentation

Common mode voltage: origins

Common mode voltage due to power source

$$\begin{split} U_{B} &= \frac{U}{2} \\ U_{A} &= \frac{U}{2} + U_{AB} = \frac{U}{2} + \frac{\Delta R}{4R} U \\ U_{mc} &\cong \frac{U}{2} \end{split}$$

For U = 20V and $\frac{\Delta R}{R} = 0.01$: $U_{mc} = 10V , U_{AB} = 0.05V$

 $U_{\mbox{\tiny mc}}$ can be many times higher than $U_{\mbox{\tiny AB}}$

Sensors in Medical Instrumentation

Common mode voltage : origins

Common mode voltage due to ground

Common mode voltage: origins

 Common mode voltage of the source

$$U_{mc} = i_c \cdot Z_g$$
For $Z_g = 50k\Omega$
and $i_c = 0.2\mu A_{rms}$
 $U_{mc} = 10mV_{rms}$

Higher in amplitude than ECG voltage to measure!

ensors in Medical Instrumentation

s in Medical Institution

Ic=0.2 mA?

Model of a differential amplifier

$$\begin{split} U_o &= A_2 \cdot U_A - A_1 \cdot U_B \\ &= A_2 \left(U_{mc} + \frac{U_{AB}}{2} \right) - A_1 \left(U_{mc} - \frac{U_{AB}}{2} \right) \\ &= \underbrace{\left(A_2 - A_1 \right)}_{A_c} U_{mc} + \underbrace{\frac{A_1 + A_2}{2}}_{A_d} U_{AB} \end{split}$$
 Common mode gain Differential gain

- Differential Gain (A_d)
- Common Mode Rejection Ratio (CMRR)

$$CMRR = \frac{A_d}{A_c} \qquad U_o = A_d \left(U_{AB} + \frac{1}{CMRR} \right) U_{mc}$$

$$CMRR_{dB} = 20 \log_{10} \left| \frac{A_d}{A_c} \right|$$

Sensors in Medical Instrumentation

Model of a differential amplifier

$$U_0 = A_d U_{AB} + A_c U_{mc}$$
 $CMRR = \frac{A_d}{A_c}$ $U_A = U_{mc} + \frac{U_{AB}}{2}$

$$U_A = U_{mc} + \frac{U_{AB}}{2}$$

$$U_A = U_{mc} - \frac{U_{AB}}{2}$$

Sensors in Medical Instrumentation

Remarks

- The skin-electrode contact impedance should be considered in order to reduce the noise of a potential amplifier.
- Decreasing the effect of U_{mc} by minimizing the electrode-skin contact impedance or by increasing the value of Z_{in} and the CMRR.

Sensors in Medical Instrumentation

Instrumentation amplifier

- Tunable differential gain from 1 to 10'000, up to 100
 Hz (decreasing thereafter with frequency)
- Input impedance is very high: 10¹⁰Ω in parallel with a few pF
- Output impedance is very low (0.1Ω)
- Polarization current at input is very low (few pA to few nA)
- High thermal stability
- High CMRR (100 dB and more up to 50 Hz)

Sensors in Medical Instrumentation

Example: INA 118 from Burr-brown CMRR=110dB for G=1000 and bandwidth of 7kHz.

In the voltage divider: 25k/RG/25k: $V2-V1=(RG/(RG+50k)(V4-V3) \rightarrow V4-V3=(1+50k/RG)(V2-V1)$ For amplifier A3: $V3-V4/2=V4/2-V0 \rightarrow V0=V4-V3==(1+50k/RG)(V2-V1)=(1+50k/RG)(Vin^+-Vin^-)$

Sensors in Medical Instrumentation

(Pfl

Decreasing common mode voltage (1)

The measurement amplifier is wired to the ground

 $U_{mc} = f(i_c) = f(C) \Rightarrow \text{decrease } C \Rightarrow \text{electrostatic shielding}$

Decreasing common mode voltage (2) Power line, 230V

The measurement amplifier is not wired to ground

$$i_c = f(C, C_{a1}, C_{a2}, C_g)$$

 \Rightarrow reduce C_{a1} et C_{a2}

 \Rightarrow shielding of the amplifier

Sensors in Medical Instrumentation

DRL circuit

$$U_{mc} = \frac{R_o i_d}{1 + 2\frac{R_f}{R_a}}$$

For $R_f >> R_a$, U_{mc} can be considerably decreased.

Ex.: $R_o = 100k$, $R_f = 5M$, $R_a = 25k$, $i_d = 0.2 \mu A_{rms}$

 U_{mc} =50 μV (instead of 10 mV in the previous case)

Sensors in Medical Instrumentation

Protection against accidental power surge

If the subject touches a conductor (230V) the output of the amplifier (2) saturates:

$$U_o = U_{sat} = 15V$$

• For $R_o = 5M\Omega$, the current in the subject is:

$$i_d = \frac{230 - 15}{5.10^6} = 43 \mu A$$

Sensors in Medical Instrumentation

Example of reference electrode Localised bioelectric signal (EMG, ENG)

- ECG belt with two electrodes
 - Common-mode voltage derived by a voltage divider

Tripolar electrodes are used to measure well located differential signals as for example the electrical activity of a nerve at a particular spot

Isolation amplifier

 Decreases common mode voltage U_{mc} that is very high (disconnection in the ground loop)

Protection of subjects against power surges
 U_{mc2} very high

Stage A₁: instrumentation amplifier

Stage A₂: amplifier of gain 1

C₁: wired to the ground of the source

C2: wired to earth or ground

Isolation barrier: total disconnection of ohmic connection Between A₁et A₂, transfer of signal by electric coupling (magnetic, optic)

Sensors in Medical Instrumentation

Subject

U_{mc1} (

Chapter 2 -47

Uο

Barrier

Αı

Isolation amplifier

 $U_o = A_d (U_{AB} + \frac{1}{CMRR} U_{mc1} + \frac{1}{IMRR} U_{mc2})^{\cup_{mc1}}$

CMRR: common mode rejection ratio (>100dB)

IMRR : Isolation mode rejection ratio (> 140dB)

A_d : differential gain

U_{mc1}: common mode voltage of the subject

(tens of volts)

 U_{mc2}: common mode voltage of the device (can reach hundreds of volts)

Sensors in Medical Instrumentation

Electrostatic shielding and protection against magnetic field

Sensors in Medical Instrumentation

Grounding

R_c<<R internal of the amplifier

Electrical filtering

- Low-pass (anti-aliasing, sampling)
- High-pass (offset, drift)
- Non-stationary signals
 - Adaptative filtering
 - Wavelet

Sensors in Medical Instrumentation

Next lecture

 Chapter 3: Biopotential measurement

Sensors in Medical Instrumentation

Annex: thermal noise model

Noise power provided at charge:

$$P_{N,L} = R_L I_N^2 = \frac{R_L}{(R_N + R_L)^2} U_{Neff}^2$$

The maximum noise power that this source can provide exteriorly is when $R_N=R_L$,

$$P_{N} = \frac{1}{4R_{N}}U_{Neff}^{2} = KTB_{N}$$

$$U_{Neff}^{2} = 4KTR_{N}B_{N}$$

$$U_{Neff}^2 = 4KTR_N B_N$$

 The noise from measurement devices (amplifier or voltmeter) is also expressed in V2/Hz, or V/\sqrt{Hz}

Sensors in Medical Instrumentation