Let $s \in L_1$.

Assume $x \in L_{ee}$ for every $x \in L_1$ and |x| < |s|.

There are three cases to consider:

- ullet If s=arepsilon, then #(0,s)=0 and #(1,s)=0 and thus $s\in L_{ee}$
- ullet If s=x0101 or s=x1010, for $x\in L_{ee}$

$$\#(0, x0101) = \#(0, x) + \#(0, 0101) = \#(0, x) + 2$$
 $\#(1, x0101) = \#(1, x) + \#(1, 0101) = \#(1, x) + 2$
 $\#(0, x1010) = \#(0, x) + \#(0, 1010) = \#(0, x) + 2$
 $\#(1, x1010) = \#(1, x) + \#(1, 1010) = \#(1, x) + 2$

Since |x|<|s|, according to the assumption, #(0,x) and #(1,x) is even number, and thus #(0,s) and #(1,s) is too. $s\in L_{ee}$

ullet If s=x00y or s=x11y, for $xy\in L_{ee}.$ Then

$$\#(0, x00y) = \#(0, x) + \#(0, 00) + \#(0, y) = \#(0, x) + \#(0, y) + 2$$

$$\#(1, x00y) = \#(1, x) + \#(1, 00) + \#(1, y) = \#(1, x) + \#(1, y) + 0$$

$$\#(0, x11y) = \#(0, x) + \#(0, 11) + \#(0, y) = \#(0, x) + \#(0, y) + 0$$

$$\#(1, x11y) = \#(1, x) + \#(1, 11) + \#(1, y) = \#(1, x) + \#(1, y) + 2$$

since |x|<|s| and |y|< s, according to the assumption #(0,x) and #(0,y) and #(1,x) and #(1,y) is even number, and thus #(0,s) and #(1,s) too. $s\in L_{ee}$

Thus $L_1 \subseteq L_{ee}$

(b)

Let $s \in L_{ee}$,

Assume $x \in L_1$ for every $x \in L_{ee}$ and |x| < |s|.

There are three cases to consider:

- s=arepsilon, according to definition, $s\in L_1$
- s=x0101 or x=x1010, $x=L_{ee}$, according to the definition, |x|<|s| and thus $x\in L_1$. s has the form of x0101 and x1010, and according to the definition of the L_1 , $s\in L_1$.
- s=x00y or s=x11y, $x,y=L_{ee}$, according to the definition, |x|<|s| and |y|<|s| and thus $x\in L_1$, $y\in L_1$. Thus if $xy\in L_1$, then $s\in L_1$. We could recursively apply this case to x and y until write s as a product of string in $s\in L_1$ with no subpattern $s\in L_1$. In case, it will become previous two cases.

Then $L_{ee} \subseteq L_1$