AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. through 64. (Canceled).
- 65. (Currently Amended): A diphosphine in racemic form or in chiral form, corresponding to formula (I):

in said formula:

- R₁ and R₂, which are identical or different, represent a hydrogen atom or a substituent selected from the group consisting of alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms,
- Ar₁ and Ar₂ independently represent an alkyl, alkenyl, cycloalkyl, aryl or arylalkyl group,
- X₁ and X₂, which are identical or different, represent:

 an alkyl, alkenyl, alkynyl, cycloalkyl, aryl or arylalkyl group,

an alkyl group substituted with one or more halogen atoms, or with <u>one or more</u> nitro groups,

a halogen atom selected from the group consisting of bromine, chlorine and iodine,

an -OH group,

a group-O-CORa group,

a group -O-Ra group,

a group-S-Ra group,

a group selected from the group consisting of:

a group--COORa group,

a -COOH group;

a -CH₂-NH₂ group;

a -CN group;

a -CH₂OH group, and

a group -CO-NH-R_b,

a group selected from the group consisting of:

a group-CH2-NH-CO-R_b group,

a group-CH₂-NH-CO-NH-R_b group,

a group--CH₂-N=CH-R_a group,

a -CH₂-N=C=O group, and

a -CH₂-NH₄⁺ -CH₂-NH₃⁺ group,

a group selected from the group consisting of:

a group -N=CH-Ra group,

an -NH-NH₂ group,

an $-N=N^+=N^-$ group, and

a magnesium or lithium atom,

in the various formulae, R_a represents an alkyl, cycloalkyl, arylalkyl or phenyl group and R_b has the meaning given for R_a and also represents a naphthyl group.

66. (Currently Amended): The diphosphine as claimed in claim 65, bearing two functional groups capable of reacting with one or more polymerizable monomers corresponding to the general formula (I'):

in said formula:

- R₁ and R₂, which are identical or different, represent a hydrogen atom or a substituent selected from the group consisting of alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms,
- Ar₁ and Ar₂ independently represent an alkyl, alkenyl, cycloalkyl, aryl or arylalkyl group,
- X_1 and X_2 , which are identical, represent:

an -OH group,

a -CH2-NH2 group,

a -CH₂OH group,

a -COOH group,

a group-COOR_a group in which R_a represents an alkyl, cycloalkyl, arylalkyl or phenyl group,

an -N=C=O group, or

a -CH₂-N=C=O group.

67. (Previously Presented): The diphosphine as claimed in claim 65, wherein in formula (I), Ar₁ and Ar₂ represent a (C₁-C₆)alkyl group, a phenyl group optionally substituted with one or more (C₁-C₆)alkyl or (C₁-C₆)alkoxy; or a (C₄-C₈)cycloalkyl group optionally substituted with one or more (C₁-C₆)alkyl groups.

68. (Previously Presented): The diphosphine as claimed in claim 65, wherein in formula (I), R_1 and R_2 , which are identical or different, represent a hydrogen atom or an alkyl or alkoxy group containing from 1 to 4 carbon atoms, Ar_1 and Ar_2 represent a phenyl group, and X_1 and X_2 , which are identical, represent:

a halogen atom, or

an alkyl group substituted with one or more fluorine atoms.

69-70. (Canceled).

71. (Withdrawn): The diphosphine as claimed in claim 65, wherein X_1 and X_2 , which are identical, represent a perfluoroalkyl group C_pF_{2p+1} in which p is between 1 and 15.

72. (Withdrawn-Currently Amended): A process for preparing a diphosphine as defined in claim 65, comprising at least one step of halogenation in positions 5,5' of a compound of formula (III):

in said formula R_1 , R_2 , Ar_1 and Ar_2 have the same meanings as in formula (I), said halogenation being optionally performed in an inert aprotic solvent.

73. (Withdrawn): The process as claimed in claim 72, wherein the diphosphine in dioxide form of formula (III) is obtained by oxidation of the chiral or achiral diphosphine of formula (IV):

in said formula:

 R_1 , R_2 , Ar_1 and Ar_2 having the same meanings as in formula (I).

74. (Previously Presented): A process for preparing the diphosphine corresponding to formula (I) as defined in claim 65, and wherein X_1 and X_2 represent a halogen atom, said process comprising the following steps:

i) performing an halogenation in the 5,5' position of a compound of formula (III):

wherein:

- R₁, R₂, Ar₁ and Ar₂ have the same meanings as in formula (I),
using a halogen and in the presence of iron, so as to obtain the corresponding
dihalo compound of formula:

in said formula:

- X represents a chlorine, bromine or iodine atom,
- R_1 , R_2 , Ar_1 and Ar_2 have the meanings given above; and
- ii) performing the reduction of the diphosphine in dioxide and dihalo form in position 5,5' of formula (IIa₁), into the diphosphine of formula (Ia₁):

- X represents a chlorine, bromine or iodine atom, and
- R_1 , R_2 , Ar_1 and Ar_2 having the meanings given above.

75-79. (Canceled)

- 80. (Withdrawn): A polymer in racemic or optically active form, made by reaction of a chiral or achiral diphosphine of formula (I') as defined in claim 66, with one or more polymerizable monomers.
- 81. (Withdrawn): The polymer as claimed in claim 80, wherein the diphosphine corresponds to formula (Ia₃) as follows:

in said formula: R₁, R₂, Ar₁ and Ar₂ have the same meanings as in formula (I').

82. (Withdrawn): The polymer as claimed in claim 80, wherein the monomer reacted with the diphosphine corresponds to formula (X) below:

$$Y_1$$
- M - $Y_1(X)$

in which:

- M represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature, and
- Y₁ represents a carboxylic, ester, hydroxyl, amino, isocyanato, aldehyde or ketone group.
- 83. (Withdrawn): The polymer as claimed in claim 82, wherein the monomer reacted with the diphosphine corresponds to formula (X) in which M represents a C₁-C₁₂ alkylene chain; a cycloalkylene group; or an arylene group.
- 84. (Withdrawn-Currently Amended): A polymer in racemic or optically active form comprising the following repeating unit:

in which

- R₁ and R₂, which are identical or different, represent a hydrogen atom or a substituent selected from the group consisting of alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms,
- Ar₁ and Ar₂ independently represent an alkyl, alkenyl, cycloalkyl, aryl or arylalkyl group,
- M represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature;
 - F₁ represents a functional group resulting from the reaction:
 - of the group X₁ chosen from the following groups: aminomethyl, hydroxyl, hydroxymethyl, carboxylic, ester, isocyanato, <u>and</u> isocyanatomethyl, and
 - of the group Y₁ chosen from carboxylic, ester, hydroxyl, amino, isocyanato, aldehyde and ketone groups, and
 - the degree of polymerization is optionally between 2 and 100.
- 85. (Withdrawn): The polymer as claimed in claim 84, wherein in formula (P), M represents a C₁-C₁₂ and optionally C₁-C₆ alkylene chain; a cycloalkylene group, cyclohexylene; an arylene group, phenylene, tolylene or naphthalene.

- 86. (Withdrawn): The polymer as claimed in claim 84, wherein in formula (P), F₁ represents:
- a urea group (F_1) resulting from the reaction of an aminomethyl group (X_1) with an isocyanato group (Y_1) or an isocyanato or isocyanatomethyl group (X_1) with an amino group (Y_1) ,
- a urethane group (F₁) resulting from the reaction of an isocyanato or isocyanatomethyl group (X₁) with a hydroxyl group (Y₁) or a hydroxyl or hydroxymethyl group (X₁) with an isocyanato group (Y₁),
- an ester group (F_1) resulting from the reaction of a carboxylic or ester group (X_1) with a hydroxyl group (Y_1) or a hydroxyl or hydroxymethyl group (X_1) which a carboxylic or ester group (Y_1) ,
- an amide group (F_1) resulting from the reaction of a carboxylic group (X_1) with an amino group (Y_1) or an aminomethyl group (X_1) with a carboxylic group (Y_1) , or
- an imine group (F_1) resulting from the reaction of an aminomethyl group (X_1) with an aldehyde or ketone group (Y_1) .
- 87. (Withdrawn): The polymer as claimed in claim 80, wherein the polymer is a polyurea, polyamide, polyimide, polyimine, polyester or polyurethane.
- 88. (Withdrawn-Currently Amended): The polymer as claimed in claim 84, wherein the polymer is a polymer of polyurea type containing the repeating unit:

in which:

- R₁ and R₂, which are identical or different, represent a hydrogen atom or a substituent selected from the group consisting of alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms,
- Ar₁ and Ar₂ independently represent an alkyl, alkenyl, cycloalkyl, aryl or arylalkyl group,
- J represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature, and
 - the degree of polymerization is optionally between 2 and 100.
- 89. (Withdrawn): A process for preparing the polyurea as claimed in claim 88, wherein a diphosphine bearing two -CH₂-NH₂ groups is polymerized with one or more di- or polyisocyanates.
- 90. (Withdrawn-Currently Amended): The polymer as claimed in claim 80, wherein the polymer is a polyamide containing the repeating unit:

in which:

- R₁ and R₂, which are identical or different, represent a hydrogen atom or a substituent selected from the group consisting of alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms,
- Ar₁ and Ar₂ independently represent an alkyl, alkenyl, cycloalkyl, aryl or arylalkyl group,
- W represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature, and
 - the degree of polymerization is optionally between 2 and 100.
- 91. (Withdrawn): A transition metal complex comprising at least one ligand as defined in claim 65.
- 92. (Withdrawn): A transition metal complex comprising at least one ligand as defined in claim 80.
- 93. (Withdrawn): The complex as claimed in claim 91, wherein the transition metal is chosen from: rhodium, ruthenium, rhenium, iridium, cobalt, nickel, platinum and palladium.

94. (Previously Presented): The diphosphine as claimed in claim 66, wherein in formula (I'), Ar_1 and Ar_2 represent a (C_1-C_6) alkyl group, a phenyl group optionally substituted with one or more (C_1-C_6) alkyl or (C_1-C_6) alkoxy; or a (C_4-C_8) cycloalkyl group optionally substituted with one or more (C_1-C_6) alkyl groups.

95. (Canceled).

96. (New): A diphosphine in racemic form or in chiral form, corresponding to formula (I):

in said formula:

- R₁ and R₂ represent a hydrogen atom,
- Ar₁ and Ar₂ independently represent an aryl group,
- X_1 and X_2 , which are identical or different, represent:
 - an alkyl, aryl or arylalkyl group,
 - an alkyl group substituted with one or more halogen atoms,
- a halogen atom selected from the group consisting of bromine, chlorine and

iodine,

a -CN group,

a -CH2-NH2 group,

a -COOH group,

a -COOR_a group in which R_a represents an alkyl, cycloalkyl, arylalkyl or phenyl group, or

a -CH₂-NH₃⁺ group.

97. (New): The diphosphine as claimed in claim 96, bearing two functional groups capable of reacting with one or more polymerizable monomers corresponding to the general formula (I'):

in said formula:

- R₁ and R₂ represent a hydrogen atom,
- Ar₁ and Ar₂ independently represent an aryl group,
- X_1 and X_2 , which are identical or different, represent:
 - a -CN group,
 - a -CH₂-NH₂ group,
 - a -COOH group, or

a -COOR_a group in which R_a represents an alkyl, cycloalkyl, arylalkyl or phenyl group.

- 98. (New): The diphosphine as claimed in claim 96, wherein Ar₁ and Ar₂ represent a phenyl group optionally substituted with one or more (C₁-C₆)alkyl or (C₁-C₆)alkoxy.
- 99. (New): The diphosphine as claimed in claim 96, wherein Ar₁ and Ar₂ represent a phenyl group.
- 100. (New): The diphosphine as claimed in claim 96, wherein it corresponds to one of the following formulae:

101. (New): The diphosphine as claimed in claim 96, wherein it corresponds to the following formula:

$$R_1$$
 PAr_1Ar_2
 PAr_1Ar_2
 PAr_1Ar_2

in which p is between 1 and 15, and R_1 , R_2 , Ar_1 and Ar_2 have the same meanings as in formula (I).

102. (New): A process for preparing a diphosphine corresponding to formula (I) as claimed in claim 96, comprising at least one step of halogenation in positions 5,5' of a compound of formula (III):

in said formula, R₁, R₂, Ar₁ and Ar₂ have the same meanings as in formula (I).

103. (New): The process as claimed in claim 102, wherein the halogenation is performed in an inert aprotic solvent.

104. (New): The process as claimed in claim 102, wherein the diphosphine in dioxide form of formula (III) is obtained by oxidation of a chiral or achiral diphosphine of formula (IV):

in said formula, R₁, R₂, Ar₁ and Ar₂ having the same meanings as in formula (I).

105. (New): A process for preparing the diphosphine corresponding to formula (I) as defined in claim 96, and wherein X_1 and X_2 represent a halogen atom, said process comprising the following steps:

i) performing an halogenation in the 5,5' positions of a compound of formula (III):

wherein R₁, R₂, Ar₁ and Ar₂ have the same meanings as in formula (I),

using a halogen and in the presence of iron, so as to obtain the corresponding dihalo compound of formula:

- X represents a chlorine, bromine or iodine atom,
- R_1 , R_2 , Ar_1 and Ar_2 have the same meanings given above; and

ii) performing reduction of the diphosphine in dioxide and dihalo form in positions 5,5' of formula (IIa₁), into the diphosphine of formula (Ia₁):

in said formula:

- X represents a chlorine, bromine or iodine atom, and
- R_1 , R_2 , Ar_1 and Ar_2 having the same meanings given above.

106. (New): A process for preparing the diphosphine corresponding to formula (I) as claimed in claim 96 and wherein X_1 and X_2 represent a -CN group, comprising:

- performing substitution of the two halogen atoms with cyano groups by reacting the diphosphine in dioxide and dihalo form in positions 5,5' of formula (Ia₁):

in said formula:

- X represents a chlorine, bromine or iodine atom, and
- R_1 , R_2 , Ar_1 and Ar_2 having the same meanings as in formula (I).

107. (New): A process for preparing the diphosphine corresponding to formula (I) as claimed in claim 96 and wherein X₁ and X₂ represent a -CN group, comprising the following steps:

i) performing cyanation by substitution of the two halogen atoms with cyano groups by reacting a diphosphine in dioxide and dihalo form in positions 5,5' of formula (IIa₁):

- X represents a chlorine, bromine or iodine atom,
- R_1 , R_2 , Ar_1 and Ar_2 have the same meanings as in formula (I), using a nucleophilic reagent so as to obtain the corresponding dicyano compound (IIa₂):

in said formula:

- R₁, R₂, Ar₁ and Ar₂ have the same meanings given above, and
ii) performing reduction of the diphosphine in dioxide and dicyano form in positions 5,5' of
formula (IIa₂) into the diphosphine of formula (Ia₂):

in said formula, R₁, R₂, Ar₁ and Ar₂ have the same meanings given above.

108. (New): The process as claimed in claim 107, wherein the cyanation is performed using copper cyanide.

109. (New): The process as claimed in claim 107, wherein the reduction of the diphosphine in dioxide form is performed using a hydrogenosilane of formula:

$$HSiR_{\alpha}R_{\beta}R_{\delta}$$
 (F_a)

in said formula:

- R_{α} , R_{β} and R_{δ} , which are identical or different, represent a hydrogen atom, an alkyl group containing from 1 to 6 carbon atoms, a phenyl group or a chlorine atom, and
 - at most two of the groups R_{α} , R_{β} and R_{δ} represent a hydrogen atom.
- 110. (New): The process as claimed in claim 109, wherein the reduction of the diphosphine in dioxide form is performed using a mixture of PhSiH₃ (or PMHS) and HSiCl₃.
- 111. (New): A process for preparing the diphosphine as defined in claim 96, wherein X₁ and X₂ represent a -CH₂-NH₂ group, said process comprising a step of reducing the cyano groups of a compound of formula (Ia₂):

- R_1 , R_2 , Ar_1 and Ar_2 have the same meanings as in formula (I), leading to the corresponding diaminomethyl compound of formula (Ia₃):

in said formula:

- R_1 , R_2 , Ar_1 and Ar_2 have the same meanings given above.
- 112. (New): The process as claimed in claim 111, wherein the reduction is performed using lithium aluminum hydride (LiAlH₄).
- 113. (New): A process for preparing the diphosphine as defined in claim 96, wherein X₁ and X₂ represent a -COOH group, comprising the steps of:
- i) performing cyanation by substitution of the two halogen atoms with cyano groups by reacting a diphosphine in dioxide and dihalo form in positions 5,5' of formula (IIa₁):

- X represents a chlorine, bromine or iodine atom,
- R₁, R₂, Ar₁ and Ar₂ have the meanings as in formula (I), using a nucleophilic reagent so as to obtain the corresponding dicyano compound (IIa₂):

in said formula:

- R₁, R₂, Ar₁ and Ar₂ have the same meanings given above, and
ii) performing reduction of the diphosphine in dioxide and dicyano form in positions 5,5' of
formula (IIa₂) into the diphosphine of formula (Ia₂):

- R₁, R₂, Ar₁ and Ar₂ have the same meanings given above; and, then,
iii) treating, in an acidic medium or in an basic medium, the compound of formula (Ia₂), so as to
obtain the corresponding carboxylic acid of formula (Ia₄):

in said formula:

- R₁, R₂, Ar₁ and Ar₂ have the same meanings given above.

114. (New): A process for preparing the diphosphine as defined in claim 96, wherein X_1 and X_2 represent a -CH₂-NH₃⁺ group, comprising performing a reaction by placing a compound

of formula (Ia₃) in contact with an acid at room temperature, in a solvent capable of dissolving the compound of formula (Ia₃):

in said formula:

- R_1 , R_2 , Ar_1 and Ar_2 have the same meanings as in formula (I).

115. (New): A process for preparing the diphosphine as defined in claim 96, wherein X_1 and X_2 represent a group selected from the group consisting of alkyl, aryl and arylalkyl groups, comprising

- preparing an organomagnesium reagent corresponding to a diphosphine in dioxide and dihalo form of formula (IIa₁) by reacting the diphosphine with magnesium;

in said formula:

- X represents a chlorine, bromine or iodine atom,
- R_1 , R_2 , Ar_1 and Ar_2 have the meanings as in formula (I),
- reacting the reagent obtained with a halogenated hydrocarbon $R-X_0$ ($X_0 = Br$ or Cl); and
- reducing the diphosphine in dioxide form using a hydrogenosilane of formula:

$$HSiR_{\alpha}R_{\beta}R_{\delta}$$
 (F_a)

- R_{α} , R_{β} and R_{δ} , which are identical or different, represent a hydrogen atom, an alkyl group containing from 1 to 6 carbon atoms, a phenyl group or a chlorine atom, and
 - at most two of the groups R_{α} , R_{β} and R_{δ} represent a hydrogen atom.
- 116. (New): A process for preparing the diphosphine as defined in claim 96, wherein X_1 and X_2 represent an alkyl substituted with one or more halogen atoms represented by formula C_pF_{2p+1} , wherein p is between 1 and 15, comprising
- reacting a diphosphine in dioxide and dihalo form of formula (IIa₁) with a corresponding iodo species IC_pF_{2p+1} in the presence of copper, optionally a base and a polar solvent:

in said formula: X represents a chlorine, bromine or iodine atom, R₁, R₂, Ar₁ and Ar₂ have the meanings as in formula (I); and

- reducing the diphosphine in dioxide form using a hydrogenosilane of formula:

$HSiR_{\alpha}R_{\beta}R_{\delta}$ (F_a)

in said formula:

- R_{α} , R_{β} and R_{δ} , which are identical or different, represent a hydrogen atom, an alkyl group containing from 1 to 6 carbon atoms, a phenyl group or a chlorine atom, and
 - at most two of the groups R_{α} , R_{β} and R_{δ} represent a hydrogen atom.
- 117. (New): A polymer in racemic or optically active form, made by a reaction of a chiral or achiral diphosphine of formula (I') as defined in claim 97, with one or more polymerizable monomers.
- 118. (New): The polymer as claimed in claim 117, wherein the diphosphine corresponds to formula (Ia₃) as follows:

in said formula: R₁, R₂, Ar₁ and Ar₂ have the same meanings as in formula (I').

119. (New): The polymer as claimed in claim 117, wherein the monomer reacted with the diphosphine corresponds to formula (X) below:

$$Y_1$$
- M - $Y_1(X)$

in which:

- M represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature, and
- Y₁ represents a carboxylic, ester, hydroxyl, amino, isocyanato, aldehyde or ketone group.
- 120. (New): The polymer as claimed in claim 119, wherein the monomer reacted with the diphosphine corresponds to formula (X) in which M represents a C_1 - C_{12} alkylene chain; a cycloalkylene group; or an arylene group.
- 121. (New): A polymer in racemic or optically active form comprising a following repeating unit:

in which

- R₁ and R₂ represent a hydrogen atom,
- Ar₁ and Ar₂ independently represent an aryl group,
- M represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature;
 - F₁ represents a functional group resulting from a reaction:

Attorney's Docket No. 1022702-000281 Application No. 10/539,640 Page 30

- of the group X₁ chosen from the following groups: aminomethyl, hydroxyl, hydroxymethyl, carboxylic, ester, isocyanato, and isocyanatomethyl, and
- of the group Y₁ chosen from carboxylic, ester, hydroxyl, amino, isocyanato,
 aldehyde and ketone groups, and
- the degree of polymerization is between 2 and 100.
- 122. (New): The polymer as claimed in claim 121, wherein in formula (P), M represents a C₁-C₁₂ alkylene group, a cycloalkylene group, or an arylene group.
- 123. (New): The polymer as claimed in claim 121, wherein in formula (P), F₁ represents:
- a urea group (F_1) resulting from a reaction of an aminomethyl group (X_1) with an isocyanato group (Y_1) or an isocyanato or isocyanatomethyl group (X_1) with an amino group (Y_1) ,
- a urethane group (F_1) resulting from a reaction of an isocyanato or isocyanatomethyl group (X_1) with a hydroxyl group (Y_1) or a hydroxyl or hydroxymethyl group (X_1) with an isocyanato group (Y_1) ,
- an ester group (F₁) resulting from a reaction of a carboxylic or ester group (X₁) with a hydroxyl group (Y₁) or a hydroxyl or hydroxymethyl group (X₁) which a carboxylic or ester group (Y₁),
- an amide group (F_1) resulting from a reaction of a carboxylic group (X_1) with an amino group (Y_1) or an aminomethyl group (X_1) with a carboxylic group (Y_1) , or
- an imine group (F_1) resulting from a reaction of an aminomethyl group (X_1) with an aldehyde or ketone group (Y_1) .

124. (New): The polymer as claimed in claim 117, wherein the polymer is a polyurea, polyamide, polyimide, polyimine, polyester or polyurethane.

125. (New): A process for preparing the optically active or inactive polymer as claimed in claim 117, comprising polymerizing a chiral or achiral diphosphine (I') and one or more monomers of formula (X):

$$Y_1$$
- M - $Y_1(X)$

in which:

- M represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature, and
- Y₁ represents a carboxylic, ester, hydroxyl, amino, isocyanato, aldehyde or ketone group.
- 126. (New): The polymer as claimed in claim 122, wherein the polymer is a polymer of polyurea containing a repeating unit:

in which:

- R₁ and R₂ represent a hydrogen atom,
- Ar₁ and Ar₂ independently represent an aryl group,

Attorney's Docket No. 1022702-000281 Application No. 10/539,640 Page 32

- J represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature, and
 - the degree of polymerization is between 2 and 100.
- 127. (New): The polymer as claimed in claim 126, wherein the degree of polymerization is between 4 and 25.
- 128. (New): The polymer as claimed in claim 126, wherein a diphosphine bearing two -CH₂-NH₂ groups is polymerized with one or more di- or polyisocyanates.
- 129. (New): The polymer as claimed in claim 128, wherein the diisocyanate is a diisocyanate of formula (Xa):

$$O=C=N-J-N=C=O(Xa)$$

in which:

- J represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature.
- 130. (New): The polymer as claimed in claim 121, wherein the polymer is a polyamide containing a repeating unit:

in which:

- R₁ and R₂ represent a hydrogen atom,
- Ar₁ and Ar₂ independently represent an aryl group,
- W represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature, and
 - the degree of polymerization is between 2 and 100.
- 131. (New): A process for preparing the polyamide as claimed in claim 130, comprising polymerizing a diphosphine bearing two -CH₂-NH₂ groups with a dicarboxylic acid.
- 132. (New): The process as claimed in claim 131, wherein a dicarboxylic acid corrsponds to formula (Xb):

in which:

- W represents a divalent hydrocarbon-based group of aliphatic, alicyclic and/or aromatic nature.

133. (New): The diphosphine as claimed in claim 101, wherein in formula (I'), Ar_1 and Ar_2 represent a phenyl group optionally substituted with one or more (C_1 - C_6)alkyl or (C_1 - C_6)alkoxy.

134. (New): The diphosphine as claimed in claim 133, wherein Ar₁ and Ar₂ represent a phenyl group.

135. (New): A transition metal complex comprising at least one ligand as defined in claim 96.

136. (New): The complex as claimed in claim 135, wherein the transition metal is chosen from: rhodium, ruthenium, rhenium, iridium, cobalt, nickel, platinum and palladium.

137. (New): A process for preparing a metal complex useful in asymmetric catalysis, comprising reacting an optionally active diphosphine as claimed in claim 96 with a transition metal compound.

138. (New): The process as claimed in claim 137, wherein the metal complex is capable of catalyzing asymmetric hydrogenation of a C=O, C=N or C=C bond.

139. (New): The process as claimed in claim 137, wherein the metal complex is a ruthenium, rhodium or iridium complex.