

TO PASS 50% or higher

grade 100%

Readiness Quiz

LATEST SUBMISSION GRADE

✓ Correct!

4. For given input lists: a,b,c and 1,2,3 Create a dictionary from two input lists 1 - def make_dict(lst1,lst2): INPUT: LST1, LST2
OUTPUT: DICT (LST 1 are the keys and LST2 are the values)
Given equal length lists create a dictionary where the first list is the keys
''' 6 Run return {k:val for k, val in zip(lst1, lst2)} 9 ✓ Correct Good job! Mutable data types/collections in Python can be changed in place. Immutable ones can not change in place. Which of the following are mutable? bool __ int __ float ✓ set ✓ Correct Correct! ✓ list Correct Correct! string ____ tuple complex Python is a general-purpose language, but which (1 or more) of the following ideas is not realistic with Python? Python makes it easy to: to prototype and explore data using lpython and Jupyter notebooks arry out unit testing $\begin{tabular}{ll} \hline & include comments/pseudocode to better organize code \\ \hline \end{tabular}$ naturally parallelizes across cores and machines with little to no overhead ✓ Correct Correct! save files with an editor then subsequently execute them from the command line

7. For a given input list: abbcccddddeeeeefffffgggggggghhhhhhhh

interactively work to test and understand algorithms

Return a dictionary of character counts

- 1. Count the of the number of times each character appears in the string $% \left(1\right) =\left(1\right) \left(1\right) \left$
- 2. Characters with a count of 0 should not be included in the output dictionary

save multiple functions in a file then import those functions from a different file

1/1 point

```
from collections import Counter
         2 * def count_characters(string):
                 INPUT: STRING
                 OUTPUT: DICT (with counts of each character in input string)
         6
                 Return a dictionary of character counts
                 count = Counter(string)
        10
                 return {key:val for key, val in count.items() if val > 0}
                                                                                                        Run
       11
12
       13
        ✓ Correct
              Good job!
   For the vector v = [2.0, -3.5, 5.1]:
                                                                                                                               1 / 1 point
     1. Find the L1 norm of v
    2. Return the result as a float
         1 import numpy as np
         3 - def calculate_l1_norm(v):
              INPUT: LIST or ARRAY (containing numeric elements)
OUTPUT: FLOAT (L1 norm of v)
calculate and return a norm for a given vector
                                                                                                        Run
               return sum(list(map(abs,v)))
                                                                                                        Reset
     10
        Correct
              Good job!
9. NumPy array practice
                                                                                                                               1 / 1 point
     1. Create a vector that starts at 1 and increases until 150
    2. Turn the vector into a matrix with 10, rows and 15 columns
     3. Return the sum for the 10 rows. HINT: there should be ten values for the printed sum
    Use the following input vector values: vectorLower = 1; vectorUpper = 151
         1 import numpy as np
         3 - def get_vector_sum(vectorLower, vectorUpper):
               INPUT: vector lower and upper bounds
              OUTPUT: calculated value for vector sum

(1) create a vector ranging from 1:150
(2) transform the vector into a matrix with 10 rows and 15 columns
(3) print the sum for the 10 rows
       10
11
                                                                                                         Run
               return np.arange(1,151).reshape((10,15))[:10,:].sum(axis = 1)
        12
     13
        ✓ Correct
              Good job!
10. Which of the following pairs of events are mutually exclusive. There can be more than one answer.
    Odd numbers and the number 3
    Even numbers and numbers greater than 10
    Negative numbers and positive numbers less than 25
        ✓ Correct
             Correct!
    Numbers between 100-200 and numbers between 201-300
        ✓ Correct
             Correct!
```

None of the above

11. Geometric distribution

The geometric distribution is a useful tool for modeling time to event data. A successful street vendor says that on average 1 out of every 10 people who walk by on the street stop to buy a taco.

- 1. Represent these data with a geometric distribution
- 2. What is the probability that the vendor *has to wait* until 20 people walk buy before someone buys a taco?

```
import scipy.stats as stats

def geometric_distribution(p,k):

INPUT: probability of success and trials
OUTPUT: determined probability

return stats.geom.pmf(20, 1/10)

Reset

Correct
```

✓ Correct

Good job!

12. Poisson distribution

The Poisson distribution is a useful tool for modeling count data given discrete intervals. Based on historical data the expected number of accidents at a busy intersection is 4 per month.

- 1. Represent these data with a Poisson distribution
- 2. What is the probability of more than 7 accidents at that intersection next month?

```
1 import scipy.stats as stats
2
3 * def poisson_distribution(k1,k2):
4 '''
5 INPUT: probability of event interval
6 OUTPUT: determined probability
7 '''
8 return stats.poisson.pmf(k2, k1)
Reset

Correct

Good job!
```

13. Gaussian distribution

The Gaussian or Normal distribution is use heavily throughout statistics and data science. Lets assume scores for this assessment have a mean of 50% and a standard deviation of 10.

- 1. Represent these data with a Normal distribution
- 2. What is the probability of observing a score >= 80?

Use 50.0, 20.0, and 80 for your input values

```
import scipy.stats as stats

def gaussian_distribution(loc_val, scale_val, cdf_val):

INPUT: loc, scale, and cdf values
OUTPUT: determined probability

return 1-stats.norm.cdf(80,50.0,20.0)

Run

Reset

Correct

Good job!
```

14. Which statement(s) about Pearson correlation and cosine similarity are true?

☐ The dot product of two sample vectors divided by the product of their norms yields the correlation coefficient

The cosine similarity of two centered vectors yields the correlation coefficient

1/1 point

1/1 point

1 / 1 point

✓ Correct Correct!
The product of two sample vector norms that have been centered yields the correlation coefficient.
The dot products of centered vectors divided by the product of their norms yields the correlation coefficient
✓ Correct Correct!
Two normalized sample vectors divided by centered dot products yield the correlation coefficient
The cosine similarity of the dot product of two sample vectors is the correlation coefficient

15. Perform matrix multiplication on a square matrix HINT: A 2X2 matrix times a 2x2 matrix should yield a 2x2 matrix

1 / 1 point

✓ Correct

Good job!