第一学期期末考试

高一数学试卷

★ 温馨提示:本套试卷中有部分试题分"选做一"和"选做二",请根据你学校要求选择一题作为该题试

题。										
得分 评卷人 一. 选择题:本大题共 10 题,满分 50 分. 请选择你认为最正确的答案(每小题有且只有一个)写在括号内. 每题填写正确得 5 分,否则得 0 分.										
1. tan 300° 的值为	_					().			
$(A) \frac{\sqrt{3}}{3}$	$(B) - \frac{\sqrt{3}}{3}$	(C)	$\sqrt{3}$		$(D) - \sqrt{3}$					
2. 已知全集 $U = R$, 集合 $A = \{x 1 < x < 3\}$, $B = \{x x > 2\}$, 则 $A \cap \mathbb{C}_U B =$										
(A) $\{x 1 < x \le 2\}$	(B) $\{x 2 < x < 3\}$	(C)	$\{x \ 1 < x <$	2}	(D) $\{x \mid x \leq 2\}$					
3. 已知角 α 终边上有一点 Α	$P(3,-4)$,则 $\cos \alpha$ 的	值是				().			
(A) $-\frac{4}{5}$	(B) $\frac{3}{5}$	(C)	$\pm \frac{3}{5}$		(D) $\pm \frac{4}{5}$					
4. 下列函数中, 既是奇函数又是偶函数的为						().			
(A) y = x + 1	$(B) y = -x^2$	(C)	$y = \frac{1}{x}$		(D) y = x x					
5. 若 O 为平面内任一点且 $(\overrightarrow{OB} + \overrightarrow{OC} - 2 \overrightarrow{OA}) \cdot (\overrightarrow{AB} - \overrightarrow{AC}) = 0$, 则 $\triangle ABC$ 是).			
(A) 直角三角形或等腰三角形			(B) 等腰直角三角形							
(C) 等腰三角形但不一定是直角三角形			(D) 直角三角形但不一定是等腰三角形							
6. 函数 $f(x) = e^x + x - 2$ 的	零点所在的区间是					().			
(A) $(0, \frac{1}{2})$	$(B) \left(\frac{1}{2}, 1\right)$	(C)	(1, 2)		(D) $(2,3)$					
7. 已知 $a = 0.2^{0.3}, b = \log_{0.2} 3, c = \log_{0.2} 4$,则						().			
(A) $b > c > a$	(B) $a > c > b$	(C)	a > b > c		(D) $c > b > a$					
8. 某地西红柿从 2 月 1 日起开始上市,通过市场调查,得到西红柿种植成本 Q (单位:元/ 10^2kg)与上市时间 t (单位:天)的数据如下表:										
	时间 <i>t</i>	50	110	250						

时间 t	50	110	250
种植成本 Q	150	108	150

根据上表数据,对于下列四种函数类型,你觉得哪种函数类型描述西红柿种植成本 Q 与上市时间 t 的 变化关系最合适?

(A) Q = at + b

(B) $Q = at^2 + bt + c$ (C) $Q = a \cdot b^t$

(D) $Q = a \cdot \log_b t$

9. (选做一) 已知 $f(x) = \sin 2x$ 要得到函数 $y = \cos 2x$ 的图象, 只需将函数 y = f(x) 的图象).

(A) 向左平移 $\frac{\pi}{2}$ 个单位长度

(B) 向右平移 $\frac{\pi}{2}$ 个单位长度

(C) 向左平移 $\frac{\pi}{4}$ 个单位长度

(D) 向右平移 $\frac{\pi}{4}$ 个单位长度

(选做二) 已知函数 $f(x) = A sin(\omega x + \varphi)$ (其中 A > 0, $|\varphi| < \frac{\pi}{2}$) 的部分 图象如下图所示,为了得到 g(x) = sin2x 的图象,则只需将 f(x) 的图

- (A) 向左平移 $\frac{\pi}{12}$ 个单位长度 (B) 向右平移 $\frac{\pi}{12}$ 个单位长度
- (C) 向左平移 $\frac{\pi}{6}$ 个单位长度 (D) 向右平移 $\frac{\pi}{6}$ 个单位长度
- 10. (选做一) 李明放学回家的路上,开始和同学边走边讨论问题,走得比较慢;然后他们索性停下来将问 题彻底解决,最后他快速地回到了家。下列图象中与这一过程吻合最好的是).

(选做二) 函数 $y = \frac{x \ln |x|}{|x|}$ 的图象可能是

).

评卷人 得分

二. 填空题: 本大题共4题, 满分20分. 请在横线上方填写最终的、最准确的、最完整的 结果. 每题填写正确得 5 分, 否则一律得 0 分.

- 11. 函数 $y = log_a(x-2) 1$ (a > 0 且 $a \ne 1$) 的图象恒过的定点的坐标是
- 12. 若 $\vec{a} = (1,2), \vec{b} = (-1,0)$, 则 \vec{a} 在 \vec{b} 方向上的投影等于
- 13. 已知 $a \in (\frac{\pi}{2}, \pi)$, $sin\alpha = \frac{\sqrt{5}}{5}$,则 $tan(\alpha \frac{\pi}{4}) = \underline{\hspace{1cm}}$.
- 14. (选做一) 已知: $f(x) = \begin{cases} 2^{x-2} & (x \leq 2) \\ log_2(x-1) & (x > 2) \end{cases}$, 则 f[f(5)] 等于______.

(选做二)已知函数 $f(x) = \begin{cases} -x^2 - 4x, x \ge 0 \\ x^2 - 4x, x < 0 \end{cases}$, 若 f(a-2) + f(a) > 0 , 则实数 a 的取值范围是______

得分评卷人

三. 简答题: 本大题共 6 题, 满分 80 分. 请在题后空处写出必要的推理计算过程.

15. (本题满分 12 分)

已知
$$cos\alpha = \frac{1}{7}, cos(\alpha + \beta) = -\frac{11}{14}$$
 , 且 $\alpha, \beta \in (0, \frac{\pi}{2})$, 求 $cos\beta$ 的值.

16. (本题满分 12 分)

(选做一) 已知函数 $f(x) = log_4(3^x - 1)$.

- (1) 求 f(x) 的定义域;
- (2) 求 f(1) + f(2) 的值.

(选做二) 已知函数 $f(x) = log_a(a^x - 1) (a > 0 且 a \neq 1)$.

- (1) 求函数 f(x) 的定义域;
- (2) 若 f(x) > 1, 求 x 的取值范围.

17. (本题满分 12 分)

已知 $\vec{a} = (\sqrt{3}sinx, cosx), \vec{b} = (cosx, cosx), x \in R$, 函数 $f(x) = 2\vec{a} \cdot \vec{b} - 1$.

- (1) 求 f(x) 的最小正周期及其单调递减区间;
- (选做一) (2) 求 f(x) 的最大值和最小值及取得最大值、最小值时 x 的值。
- (选做二)(2) 求 f(x) 在区间 $\left[-\frac{\pi}{6}, \frac{\pi}{4}\right]$ 上的最大值和最小值及取得最大、最小值时 x 的值。

18. (本题满分13分)

(选做一)已知函数 $f(x) = 2^x - 2^{-x}$.

- (1) 求函数 f(x) 的零点;
- (2) 判断函数 f(x) 的奇偶性;
- (3) 证明函数 f(x) 在 R 上是增函数.

(选做二) 已知函数 $f(x) = 2^x + \lambda \cdot 2^{-x} (x \in R)$.

- (1) 当 $\lambda = -1$ 时,求函数 f(x) 的零点;
- (2) 若函数 f(x) 为偶函数,求实数 λ 的值,判断此时函数 f(x) 在 $[0,+\infty)$ 上的单调性,并证明;
- (3) 当 $x \in [0,2]$ 时, $f(x) \le 2^{x+1} 3$ 恒成立, 求 λ 的取值范围。

得分