## Relatório de Algoritmo de Busca Local Marco Bockoski – 7° Período de Engenharia de Computação

## **DESCRIÇÃO DO PROBLEMA**

O problema consiste na aplicação do problema do caixeiro viajante (PCV) sobre um estoque.

Esse estoque tem grande escala, de modo a utilizar empilhadeiras para colocar e retirar mercadorias armazenadas dele.

Frequentemente, há pedidos de determinados produtos presentes nesse estoque, assim, considerando que cada solicitação de diferentes produtos é destinada a uma empilhadeira em específica, utiliza-se um algoritmo PCV para otimização do tempo de retirada de produtos, tal como economia de gasolina da empilhadeira.

Esse algoritmo PCV utiliza três metodologias para calcular rotas mais eficientes:

- Hill Climbing
- Hill Climbing Alterado
- Tempera Simulada

## **TABELA DE RESULTADOS**

A implementação do problema contém execução dos códigos de modo individual e de modo comparativo, conforme é apresentado na Figura 1.

Figura 1 - Interface de Opção de Busca (Option)



A escolha da operação comparativa tem valores fixos de:

- Número de Iterações do Hill Climbing Alterado;
- Fator Redutivo da Tempera Simulada;
- Temperatura Final da Tempera Simulada;

O valor da temperatura inicial é calculado durante a execução do código, sendo diferente de instância para instância. A Figura 2 ilustra como o usuário é informado dessas particularidades, portanto, a tabela de resultados tem como referência esses valores (e a temperatura inicial mudando a cada instância).

Figura 2 - Interface de Opção de Busca (Message)



Para as Tabelas 1 a 4, considerar os seguintes valores presentes na Figura 2:

- Número de Iterações (Hill Climbing Alter) = 5
- Temperatura Final (Tempera Simulada) = 0.01
- Fator Redutivo (Tempera Simulada) = 0.95

Tabela 1 - Tabela para Problema n = 5

| Problema<br>n = 5      | Configuração | Custo | Ganho  | Temperatura<br>Inicial |
|------------------------|--------------|-------|--------|------------------------|
| Inicial                | 1 3 0 2 4    | 101   | -      | -                      |
| Hill Climbing          | 1 4 0 3 2    | 77    | 23.76% | -                      |
| Hill Climbing<br>Alter | 0 3 1 2 4    | 68    | 32.67% | -                      |
| Tempera<br>Simulada    | 0 3 2 4 1    | 71    | 29.7%  | 9.311,13               |

Figura 3 - Matriz de Adjacência para Problema n = 5

Matriz de Adjacência: 00 23 23 14 23 09 00 12 20 22 20 19 00 15 19 19 10 09 00 22

13 20 19 14 00

Uma observação interessante referente à Tabela 1 é a eficiência do Hill Climbing Alterado (HC Alter) sobre a Tempera Simulada nessa instância, muito certamente os parâmetros da têmpera não foram melhores que as iterações de HC Alter.

Tabela 2 - Tabela para Problema n = 7

| Problema<br>n = 7      | Configuração  | Custo | Ganho  | Temperatura<br>Inicial |
|------------------------|---------------|-------|--------|------------------------|
| Inicial                | 5 2 6 4 0 3 1 | 102   | -      | -                      |
| Hill Climbing          | 5 0 6 2 4 3 1 | 73    | 28.43% | -                      |
| Hill Climbing<br>Alter | 3 5 2 4 0 6 1 | 57    | 44.11% | -                      |
| Tempera<br>Simulada    | 0 3 5 1 6 4 2 | 77    | 24.5%  | 12.970,12              |

Figura 4 - Matriz de Adjacência para Problema n = 7

Novamente, os parâmetros da Tempera Simulada não favoreceram sua eficiência

Tabela 3 - Tabela para Problema n = 10

| Problema<br>n = 10        | Configuração        | Custo | Ganho  | Temperatura<br>Inicial |
|---------------------------|---------------------|-------|--------|------------------------|
| Inicial                   | 3 7 8 4 0 1 2 6 9 5 | 157   | -      | -                      |
| Hill<br>Climbing          | 5 7 8 0 4 9 2 6 1 3 | 95    | 39.49% | -                      |
| Hill<br>Climbing<br>Alter | 5 7 8 6 4 9 2 1 0 3 | 93    | 40.76% | -                      |
| Tempera<br>Simulada       | 5 1 2 9 7 3 8 0 4 6 | 103   | 34.39% | 26.033,76              |

Figura 5 - Matriz de Adjacência para Problema n = 10

Uma observação interessante do Tempera Simulada é o crescimento do valor da temperatura inicial ao passo do crescimento do problema.

Um último teste é realizado baseado na pesquisa de Tempera Simulada, considerando que as temperaturas finais as mesmas, foi escolhida 3 instâncias daquela publicação para serem utilizadas para testes presentes nas Tabelas 4 e 5.

Tabela 4 - Testando Parâmetros (Problema n = 5)

| Instância | Temperatura | Fator    | Configuração | Custo   | ,         | Custo | Ganho  |
|-----------|-------------|----------|--------------|---------|-----------|-------|--------|
|           | Inicial     | Redutivo | Inicial      | Inicial | TS        | TS    |        |
| Chr15b    | 6.000       | 0.95     | 3 0 2 1 4    | 79      | 3 1 2 0 4 | 70    | 11.39% |
| Els19     | 3.000       | 0.5      | 1 3 0 4 2    | 67      | 0 4 3 1 2 | 44    | 34.32% |
| Esc3a     | 3.000       | 0.99     | 0 2 3 1 4    | 69      | 3 0 1 4 2 | 51    | 26.08% |

Tabela 5 - Testando Parâmetros (Problema n = 10)

| Instância | Temperatura<br>Inicial | Fator<br>Redutivo | Configuração<br>Inicial | Custo<br>Inicial | Configuração<br>TS     | Custo<br>TS | Ganho  |
|-----------|------------------------|-------------------|-------------------------|------------------|------------------------|-------------|--------|
| Chr15b    | 6.000                  | 0.95              | 1 0 6 3 4<br>7 2 5 9 8  | 132              | 0 3 5 9 8<br>7 2 1 6 4 | 124         | 6.06%  |
| Els19     | 3.000                  | 0.5               | 4 0 8 3 6<br>5 1 2 7 9  | 166              | 5 0 9 1 4<br>8 3 2 6 7 | 141         | 15.06% |
| Esc3a     | 3.000                  | 0.99              | 1 0 8 2 9<br>3 7 6 4 5  | 152              | 2 0 9 6 7 8 4 1 5 3    | 97          | 36.18% |

Um observação interessante é a de que as instâncias "Chr15b" e "Els19" eram perfeitas para solução do problema do artigo, no entanto, nesse teste com o problema apresentado no algoritmo desenvolvido de busca local, a instância "Esc3a" tem um melhor aproveitando, contrário ao problema do artigo.

## **CONCLUSÃO**

A implementação dos 3 métodos para resolução do problema do estoque para PCV tem melhor resolução para Hill Climbing Alter, visto que sua versão básica não tenta nem atingir ótimos locais e que a Tempera Simulada precisa de muitos testes para garantir ótimos resultados com parâmetros bem calibrados. O aumento de amostras favorecem a eficiência desses métodos de busca, portanto, esse fator é valorizado dado a questão do problema do estoque.