Lecture 23: Options Pricing

Wednesday, April 19, 2023 13:02

23-option-p ricing

QTM 385 Quantitative Finance

Lecture 23: Option pricing

Instructor: Ruoxuan Xiong Suggested reading: Investments Ch 21

Feedback from Google form

- I thought the R coding are super efficient in calculations, but I was wondering if we get a chance to learn the same thing in Python, as it is a widely used language nowadays.
- Some Python sample code (calculation of duration and convexity (in Duration_and_Convexity.ipynb), calculation of summary statistics (in Summary_Statistics.ipynb) has been provided (credited to our TA, Hao).

Options

- American option: gives its holder the right to purchase/sell an asset for a specified price, called the exercise or strike price, on or before some specified expiration date
 - Most traded options in the United States
- European option: allows for exercise only on the expiration date
- Call option: gives its holder the right to purchase an asset for a specified price, called the exercise or strike price, on or before (or only on) some specified expiration date
- Put option: gives its holder the right to sell an asset for a specified price, called the exercise or strike price, on or before (or only on) some specified expiration date

Protective put

- Protective put: *Invest* in stock (stock price at time 0: S_0) and *purchase a put* option on the stock (cost P)
- Suppose the strike of the put is X = \$100
- At expiration, if $S_T = \$97$, then the put is worth $X S_T = \$3$ and portfolio value is $S_T + (X S_T) = \$97 + \$3 = \$100$
- If stock is worth $S_T = \$104$, the put is worth \$0. the portfolio value is $S_T + 0 = \$104$

	$S_T \leq X$	$S_T > X$
Stock	S_T	S_T
+ Put	$X - S_T$	0
Total	X	ST

Call-plus-bills portfolio

- Call-plus-bills portfolio: purchase a risk-free zero-coupon bond with face value X and hold a call with exercise price X
- Suppose the strike of the call is X = \$100
- At expiration, if $S_T = \$97$, then the call is worth \$0 and portfolio value is 0 + X = \$100

• If $S_T = \$104$, the call is worth $S_T - X = \$4$. the portfolio value is $X + (S_T - X) = \$100 + \$4 = \$104$

	$S_T \leq X$	$S_T > X$
Value of call option	0	$S_T - X$
Value of zero-coupon bond	X	X
Total	X	ST

The put-call parity relationship

- Protective put: *invest* in stock and *purchase a put* with exercise price X
- Call-plus-bills portfolio: purchase a risk-free zero-coupon bond with face value X and hold a call with exercise price X
- Two portfolios have the same payoff: provide a guaranteed minimum payoff and unlimited upside potential
- Their cost should be the same

	$S_T \leq X$	$S_T > X$
Value of call option	0	$S_T - X$
Value of zero-coupon bond	×	X
Total	X	Sr

The put-call parity relationship

- The cost of the protective put is $S_0 + P$
- The cost of the call-plus-bills is $C + X/(1 + r_f)^T$
- Their cost should be the same, so the put-call parity theorem states

$$C + \frac{X}{\left(1 + r_f\right)^T} = S_0 + P$$

	$S_T \leq X$	$S_T > X$
Value of call option	0	$S_T - X$
Value of zero-coupon bond	X	X
Total	X	S_T

Question

• Question: Suppose the current stock price is $S_0 = \$110$, 1-year expiration call with exercise price X = \$105 sells at C = \$17 and 1-year expiration put with exercise price X = \$105 sells at P = \$5. Suppose the risk-free interest rate is 5%. Is there an arbitrage opportunity?

Question

- Question: Suppose the current stock price is $S_0 = \$110$, 1-year expiration call with exercise price X = \$105 sells at C = \$17 and 1-year expiration put with exercise price X = \$105 sells at P = \$5. Suppose the risk-free interest rate is 5%. Is there an arbitrage opportunity?
- Answer: Based on put-call parity theorem,

•
$$C + \frac{X}{(1+r_f)^T} = 17 + \frac{105}{1.05} = 117$$

- $S_0 + P = 110 + 5 = 115$
- We can buy a share of stock and put, and sell the call and risk-free one-year zero

Option valuation

- Intrinsic value: $S_0 X$ for the in-the-money call options
 - Intrinsic value is zero for out-of-the-money or at-the-money options
- Option's time value: difference between option price and intrinsic value
 - · A type of volatility value
 - The stock price may rise above the exercise price of the call by expiration date
- Adjusted intrinsic value: $S_0 PV(X)$
 - If you are virtually certain to exercise the option (at the expiration date), then present value of the option is PV(X)

Determinants of option values

- Determinant 1: stock price S_0
 - The value of the call increases with the stock price
 - Expected payoff increases with $S_0 X$
- Determinant 2: exercise price X
 - The value of the call decreases with the exercise price X
- Determinant 3: volatility of the stock price
 - · The value increases with the volatility

High-Volatility Scenario					
Stock price	\$10	\$20	\$30	\$40	\$50
Option payoff	0	0	0	10	20
	Low-\	olatility !	Scenario		
Stock price	\$20	\$25	\$30	\$35	\$40
Option payoff	0	0	0	5	10

Determinants of option values

- Determinant 4: expiration date T
 - Option value increases with time to expiration
 - More time for unexpected events, and present value of exercise price X is lower
- Determinant 5: interest rate r_f
 - Option value increases with interest rate
 - Present value of X is lower
- Determinant 6: dividend payouts
 - · Option value decreases with the dividend payouts
 - The stock price S_T decreases with dividend payouts

Question

If this variable increases	Value of American call
Stock price S	Increases
Exercise price X	Decreases
Volatility σ	
Time to expiration T	
Interest rate r_f	
Dividend payouts	

Question

If this variable increases	Value of American call
Stock price S	Increases
Exercise price X	Decreases
Volatility σ	Increases
Time to expiration T	Increases
Interest rate $r_{\!f}$	Increases
Dividend payouts	Decreases

Question

If this variable increases	Value of American call	Value of American put
Stock price S	Increases	
Exercise price X	Decreases	
Volatility σ	Increases	
Time to expiration T	Increases	
Interest rate r_f	Increases	
Dividend payouts	Decreases	

Question

If this variable increases	Value of American call	Value of American put
Stock price S	Increases	Decreases
Exercise price X	Decreases	Increases
Volatility σ	Increases	Increases
Time to expiration T	Increases	Increases
Interest rate r_f	Increases	Decreases
Dividend payouts	Decreases	Increases

Binomial option pricing

- · We start with two state option pricing
- The stock sells at $S_0 = 100$. The price will either increase to 120 or decrease to 90
- Consider two portfolios
 - Portfolio A: buy three calls
 - Portfolio B: buy a share of stock and borrow \$81.82 at interest rate 10%
 - · Two portfolios have the same payoff

Value of stock at year-end	\$90	\$120
- Repayment of loan with interest	-90	-90
Total	\$ 0	\$ 30

Price of the call

- Consider two portfolios
 - Portfolio A: buy three calls
 - Portfolio B: buy a share of stock and borrow \$81.82 at interest rate 10%
 - Two portfolios have the same payoff
- The current cost is \$18.18 = \$100 \$81.82 of portfolio B
- We have
 - 3C = \$18.18
 - C = \$6.06

Hedge ratio

 A portfolio with one share of stock and three call options written is perfectly hedged. Its year-end value is independent of ultimate stock price

Stock price	\$90	\$120
– Obligations from 3 calls written	_0	-30
Portfolio value	\$90	\$ 90

- The hedge ratio is one share of stock to three calls, or one-third
 - Interpretation: range of call value is 10, range of stock price is 30, ratio of range is 10/30

Hedge ratio

• More generally, the hedge ratio H for other two-state option problem is

$$H = \frac{C_u - C_d}{uS_0 - dS_0}$$

- ullet C_u or C_d refers to the call option's value when the stock goes up or down
- uS_0 and dS_0 are the stock prices in two states

Option-pricing technique

- Step 1: Given possible end-of-year stock prices $uS_0 = \$120$ and $dS_0 = \$90$ and value of call option with exercise price \$110, $C_u = \$10$ or $C_d = 0$
- Step 2: Find the hedge ratio $H = \frac{C_u C_d}{uS_0 dS_0} = \frac{1}{3}$
- Step 3: find a portfolio made up of $\frac{1}{3}$ share of stock with one written call
 - This portfolio is a hedged portfolio with certainty payoff of \$30

Option-pricing technique

- Step 4: The present value of \$30 is $\frac{$30}{1.1} = 27.27
- Step 5: Set the present value of the hedge position to the present value of the certainty payoff

$$\frac{1}{3}S_0 - C_0 = \$27.27$$

• Step 6: Solve the call's value

$$C_0 = \frac{1}{3}S_0 - \$27.27 = \$33.33 - \$27.27 = \$6.06$$

