Лабораторная работа №7: Моделирование орбит небесных тел

Постановка задачи

Изобразить орбиту движения Земли вокруг Солнца.

Оборудование

• ПК (Использовался ПК с OC GNU/Linux)

Математическая модель

Радиус r точки с полярной координатой ф равен:

$$r=rac{p}{1+e\cdot\cos\left(arphi+arphi_{0}
ight)}\;,$$
е - эксцентриситет орбиты, $arphi_{0}$ — начальный угол, $p=v_{0}^{2}/g_{0}$

Исходные данные

М, кг	φ₀, рад.	R, км	V ₀ , м/с	R ₀ , м	G, H · м²/кг²	е
$2 * 10^{30}$	0	696000	$29,75*10^3$	1,496 * 10 ¹¹	6,67 * 10 ⁻¹¹	0,0167

Ход работы

Для выполнения поставленной задачи разработаем программу. Для этого используем язык программирования Python 3 и библиотеку визуализации matplotlib.

Описание переменных

Переменная	Тип	Суть
r0	float	Расстояние от Земли до Солнца
v0	float	Скорость движения
M	float	Масса Солнца
phi0	float	Начальное значение φ
G	float	Гравитационная постоянная
g0	float	Начальное значение
p	float	Переменная р из мат. модели
e	float	Эксцентриситет орбиты
phi_values	list	Массив значений φ в радианах
r_values	list	Массив значений г
x_values	list	Массив координат X
y_values	list	Массив координат Ү

Код программы

```
import matplotlib.pyplot as plt
from math import *
r0 = 1.496 * (10 ** 11)
v0 = 29.75 * (10 ** 3)
M = 2 * (10 ** 30)
phi0 = 0
e = 0.0167
r_values = []
for phi in phi_values:
    r = p / (1 + e * cos(phi + phi0))
    r_values.append(r)
x values = []
y_values = []
for i in range(len(phi values)):
    phi = phi values[i]
    r = r_values[i]
   x = cos(phi) * r
   y = sin(phi) * r
   x_values.append(x)
    y_values.append(y)
plt.plot(x values, y values)
plt.title('Орбита движения Земли вокруг Солнца', fontsize=16)
plt.show()
```

Полученный график

Вывод

В ходе лабораторной работы была разработана программа на языке программирования Python 3 для моделирования орбиты движения Земли вокруг Солнца. Поставленная задача выполнена успешно.