

Parallel machine scheduling

Gruppo 18

Bertè Sonia Lochi Lorenza Maria Sawan Omar Verdi Federico

Descrizione del problema

- Si abbiano J job, con $J = \{1, 2, ..., n\}$, ed M macchine parallele identiche, con $M = \{1, 2, ..., m\}$. A ciascun job è associato un tempo di processamento p_j ed una penalità w_j .
- Il problema richiede di schedulare tali job nelle macchine in modo da minimizzare la somma pesata dei tempi di completamento $\sum_{i=1}^{n} w_i C_i$, con C_i l'istante di completamento del j-esimo job.
- Tale problema può essere indicato attraverso la notazione a tre campi come: $P||\sum w_j C_j$. Il problema così descritto appartiene alla classe NP-hard.

- I job non possono essere interrotti o spostati da una macchina all'altra.
- Non sono presenti vincoli di precedenza tra i job.

Esempio

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_j = \{15, 4, 39, 39, 2, 30, 28, 29\}$

8

Esempio

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_i = \{15, 4, 39, 39, 2, 30, 28, 29\}$

$$\mathbf{z} = \sum_{j=1}^{8} w_j C_j = 15 \times 5 + 4 \times 9 + 39 \times 1 + 39 \times 7 + 2 \times 15 + 30 \times 16 + 28 \times 11 + 29 \times 16 = \mathbf{1705}$$

Passaggi operativi

Modello time-indexed di Sousa e Wolsey

Euristico Greedy WSPT

Ricerca locale SWAP

Multi-start + SWAP

Metaeuristico Simulated Annealing

Modello time-indexed di Sousa e Wolsey

•
$$x_{jt} = \begin{cases} 1 & \text{se il j-esimo job inizia il suo processamento all'istante t} \\ 0 & \text{altrimenti} \end{cases}$$

$$\forall j \in J, \forall t \in T - p_j$$

- T: orizzonte temporale, calcolato come $T = \left[\frac{1}{m}\sum_{j\in J}p_j + \frac{(m-1)}{m}p_{max}\right]$
- p_{max} : massimo tempo di processamento tra tutti i job

Modello time-indexed di Sousa e Wolsey

$$C_j = \sum_t t x_{jt} + p_j$$

(TI)
$$\min \sum_{j \in J} \sum_{t=0}^{T-p_j} w_j t x_{jt} + \sum_{j \in J} w_j p_j$$
 (1)

$$\operatorname{st.} \sum_{t=0}^{T-p_j} x_{jt} = 1 \qquad j \in J$$
 (2)

$$\sum_{j \in J} \sum_{s=max\{0,t+1-p_j\}}^{min\{t,T+1-p_j\}} x_{is} \le m \qquad t = 0, \dots, T-1$$
(3)

$$x_{jt} \in \{0,1\}$$
 $j \in J, t = 0, ..., T - p_j$ (4)

Esempio modello

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_j = \{15, 4, 39, 39, 2, 30, 28, 29\}$

Esempio modello

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_j = \{15, 4, 39, 39, 2, 30, 28, 29\}$

$$z = \sum_{j=1}^{8} w_j C_j = 1373$$

Algoritmo Euristico Greedy - WSPT

Descrizione

- Si effettui un ordinamento WSPT (Weighted Shortest Processing Time) in cui si ordinano i job secondo un ordinamento decrescente di w_j/p_j .
- Si assegni ciascun job, uno alla volta e secondo l'ordinamento precedentemente elaborato, alla macchina che risulta essere più scarica nell'istante di assegnamento del *j*-esimo job.

Algoritmo Euristico Greedy - WSPT

Pseudocodice

- 1. Ordinare i job per rapporti w_i/p_i decrescenti;
- 2. Inizializzare il valore della funzione obiettivo a 0; inizializzare il primo istante libero di ciascuna macchina a t=0;
- **3. For** (tutti i lavori) **do**
 - 3.1 Selezionare un job alla volta secondo l'ordinamento WSPT
 - 3.2 Individuare la macchina più scarica
 - 3.3 Inserire il job sulla macchina più scarica e aggiornare l'istante di liberazione di tale macchina
 - 3.4 Aggiornare il valore della funzione obiettivo

Esempio euristico WSPT

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_j = \{15, 4, 39, 39, 2, 30, 28, 29\}$
- ordine = [3, 4, 6, 8, 1, 7, 2, 5]

Esempio euristico WSPT

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_j = \{15, 4, 39, 39, 2, 30, 28, 29\}$
- ordine = [3, 4, 6, 8, 1, 7, 2, 5]

$$z = \sum_{j=1}^{8} w_j C_j = 1419$$

Ricerca locale SWAP

Descrizione

- Si è implementata una ricerca locale di tipo SWAP, in ottica best-improvement, per migliorare:
 - 1. La soluzione ottenuta dall'algoritmo euristico con l'ordinamento WSPT
 - 2. Le soluzioni ottenute attraverso un approccio Multi-Start (come si vedrà in seguito)

Ricerca locale SWAP

Pseudocodice

```
Generare una soluzione euristica x
x' := x (x' := soluzione incumbent); x^* := x' (x^* := miglior soluzione trovata);
improved := true
while (improved) do
     improved := false
     Forall(tutti i lavori) do
          c(x\_swap) := 0
          Selezionare due job diversi tra loro ed effettuare lo SWAP
          Aggiornare gli istanti di completamento di ciascun job su ogni macchina
          Verificare che i job non abbiano sforato T \rightarrow \text{se s}ì, break (ritornare all'inizio del while)
          Aggiornare il valore della soluzione obiettivo x_swap
          if(c(x\_swap) < c(x')) then x' := x\_swap
      end-for
     if ( c(x') < c(x^*) )
          x^* := x'
          improved := true
          Effettuare nuovamente lo SWAP a partire dalla soluzione ottima trovata
      end-if
end-while
```

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_j = \{15, 4, 39, 39, 2, 30, 28, 29\}$

$$z = \sum_{j=1}^{8} w_j C_j = 1419$$

ordine = [3, 4, 6, 8, 1, 7, 2, 5]

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_i = \{15, 4, 39, 39, 2, 30, 28, 29\}$

 $z = \sum_{j=1}^{8} w_j C_j = 1419$

ordine = [3, 4, 6, 8, 1, 7, 2, 5]

 $z = \sum_{j=1}^{\infty} w_j C_j = 1653$

ordine = [4, 3, 6, 8, 1, 7, 2, 5]

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_j = \{15, 4, 39, 39, 2, 30, 28, 29\}$

$$\mathbf{z} = \sum_{j=1}^8 w_j C_j = \mathbf{1419}$$

ordine = [3, 4, 6, 8, 1, 7, 2, 5]

- n = 8, m = 4
- $p_j = \{5, 9, 1, 7, 10, 7, 10, 9\}$
- $w_i = \{15, 4, 39, 39, 2, 30, 28, 29\}$

ordine = [3, 4, 6, 8, 1, 7, 2, 5]

$$\mathbf{z} = \sum_{j=1}^8 w_j C_j = \mathbf{1665}$$

ordine = [6, 4, 3, 8, 1, 7, 2, 5]

SWAP

Multi-start

- Per esplorare al meglio lo spazio delle soluzioni, si è implementata una procedura Multi-Start
- Il Multi-Start esegue più volte l'euristico precedentemente descritto, sostituendo al classico ordinamento WSPT un ordinamento casuale guidato
- Ordinamento casuale guidato implementato andando a generare dei rapporti w_j/p_j randomici nel seguente modo:

$$\frac{w_j}{p_j}_{random} = \left(\frac{w_j}{p_j} \times 0.7\right) + \left(random \times \frac{w_j}{p_j} \times 0.4\right) \ \forall j \in J$$

- Numero di iterazioni = 50
- Ogni soluzione generata dal Multi-Start viene ulteriormente migliorata attraverso una procedura di ricerca locale SWAP best-improvement

Simulated Annealing

Descrizione

- Procedura che permette l'esplorazione degli intorni di molte soluzioni attraverso un'ottica first-improvement
- Accetta occasionalmente soluzioni peggiorative, alla ricerca di eventuali miglioramenti di lungo termine
- Simula il fenomeno dell'annichilimento della materia: all'abbassarsi della temperatura, è
 meno probabile accettare soluzioni peggiorative → si passa, gradualmente, da una ricerca
 estensiva ad una ricerca intensiva

Simulated Annealing

Parametri di inizializzazione

Sono stati inizializzati, tramite analisi empiriche, i seguenti dati in input:

- Numero di iterazioni in cui t rimane costante $\Delta_k = 2000$
- Costante moltiplicativa $\alpha = 0.9$
- Temperatura iniziale $t_0 = z_multi_{worst} z_multi_{best}$
- Temperatura critica $t_{critica}$ calcolata come la minima differenza tra tutte le soluzioni trovate dal Multi-start

Criteri di stop:

- Numero di iterazioni massime senza spostamento $iter_{max} = n \cdot 50$
- Numero massimo di iterazioni senza miglioramento $no_miglioramento_{max} = 10000 \cdot n$ (usato come ulteriore criterio di interruzione)

Simulated Annealing

Pseudocodice

```
Generare una soluzione euristica x
t:=t_0; iter:=0; no\_miglioramento:=0; \Delta_k:=2000; iter_{max}:=n\cdot 50; k:=0;
no\_miglioramento_{max} := 10000 \cdot n; x^* := x;
while (iter < iter_{max}) do
      no_miglioramento := no_miglioramento + 1;
      Generare una soluzione x' \in N(x) (trovato con swap random);
      If (c(x') < c(x)) then
           x:= x'; iter:= 0;
           if (c(x) < c(x^*)) then
                 x^*:=x; no_miglioramento:=0
            end-if
      elif (c(x') > c(x)) then
            Generare probabilità random prob \in [0,1];
           if \left(prob \leq e^{-\left(\frac{c(x')-c(x)}{t}\right)}\right) then
                 x:= x'; iter:= 0;
            else iter:= iter + 1;
            end-if
      end-if
     k := k+1:
     if (k = \Delta_k \text{ and } t > t_{critica}) then
            t := \alpha \cdot t; k := 0;
     end-if
      if (no\_miglioramento \ge no\_miglioramento_{max}) then break;
      end-if
end-while
```

Risultati computazionali

Descrizione delle istanze

- Generate 80 istanze attraverso un generatore di istanze sviluppato con Python
- Istanze generate seguendo diversi criteri*
- Istanze differenziate attraverso la combinazione dei seguenti elementi:
 - Massimo tempo di processamento ≤ [20, 50, 75, 100]
 - Numero di job = [20, 50, 75, 100]
 - Numero di macchine = [3, 5, 8, 10, 12]

*Bülbül, K., & ,S en, H. (2017). An exact extended formulation for the unrelated parallel machine total weighted completion time problem. Journal of Scheduling, 20 (4), 373–389.

Kowalczyk, D., & Leus, R. (2018). A branch-and-price algorithm for parallel machine scheduling using ZDDs and generic branching. INFORMS Journal on Computing, 30 (4), 768–782.

Risultati computazionali

Istanze con tempi di processamento ≤ 20

ISTANZA	WSPT	GAP WSPT	RICERCA LOCALE	GAP RICERCA LOCALE	MULTI- START	GAP MULTI-START	SIMULATED	GAP SIMULATED	MODELLO
PwC20-3	6488	0,123	6482	0,031	6480	0	6480	0	6480
PwC20-5	4504	0,977	4468	0,179	4460	0	4462	0,045	4460
PwC50-3	22964	0,065	22956	0,030	22952	0,013	22949	0	x
PwC50-5	14630	0,150	14627	0,130	14608	0	14611	0,021	x
PwC75-3	68745	0,010	68745	0,010	68750	0,017	68738	0	X
PwC75-5	44718	0,045	44716	0,040	44704	0,013	44698	0	X
PwC100-3	96664	0,010	96660	0,006	96673	0,020	96654	0	х
PwC100-5	74463	0,001	74462	0	74484	0,030	74463	0,001	x

Risultati computazionali

Istanze con tempi di processamento ≤ 100

ISTANZA	WSPT	GAP WSPT	RICERCA LOCALE	GAP RICERCA LOCALE	MULTI- START	GAP MULTI-START	SIMULATED	GAP SIMULATED	MODELLO
PwC20-10	12737	0,847	12666	0,292	12631	0,018	12629	0	12629
PwC20-12	11743	0,221	11722	0,042	11717	0	11722	0,042	11717
PwC50-10	53648	0,221	53594	0,121	53531	0,003	53529	0	x
PwC50-12	45007	0,344	44949	0,215	44873	0,046	44852	0	x
PwC75-10	94897	0,138	94802	0,037	94766	0	94835	0,072	X
PwC75-12	87610	0,262	87513	0,151	87445	0,074	87380	0	X
PwC100-10	174235	0,052	174159	0,009	174143	0	174199	0,032	x
PwC100-12	132083	0,132	132027	0,090	131908	0	131941	0,025	x

Conclusioni

- I GAP dei vari algoritmi sono, in valore assoluto, molto bassi (inferiori all'1%)
- Multi-start + SWAP e Simulated Annealing ottengono i GAP migliori
- I tempi di esecuzione del Multi-Start tendono ad avere una crescita esponenziale all'aumentare del numero di job
- Per istanze grandi, il Simulated Annealing ha il rapporto tempo-prestazioni più conveniente, poiché permette di trovare soluzioni paragonabili/migliori del Multi-Start con un risparmio di tempo considerevole

Grazie per l'attenzione

Gruppo 18

Bertè Sonia Lochi Lorenza Maria Sawan Omar Verdi Federico