# Introduction to Dynamic Programming

Part II: FE for identifying the value function

PPE Phil(e)<sup>1</sup>

<sup>1</sup>material @ https://github.com/PPEphile

September 2021

#### Table of Contents

#### Identifying the value function

- Theorem 2 (necessary condition)
- Theorem 3 (sufficient condition)
- Example

Stokey, N.L., Lucas, R.E. and Prescott, E.C. (1989) *Recursive Methods in Economic Dynamics*. Cambridge, Harvard University Press.

# The Functional Equation (Recap)

- We eliminated infinitely many constraints at the cost of now having to find a function
- **Theorem 2:** For any candidate function v to be the true value function  $v^*$ , it needs to satisfy the (FE).

## **Functional Equation**

$$v(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta v(y) \}$$
 (FE)

where  $\Gamma(x)$  is the set of admissible values of y given the current state x.

### Sufficient condition

#### Theorem 3

If v is real-valued, solves the (FE) and

$$\lim_{t\to\infty}\beta^t v(x_t)=0\quad\text{for all feasible paths of }(x_t)_{t=0}^\infty$$

then  $v = v^*$ 





# Example

# Corn-growing with linear utility

Consider the classical corn growing example with utility U(c) = c,  $f(k) = \alpha k$  and  $\alpha, \beta \in [0, 1]$ .