сравнительных испытаний мигрирующих ингибиторов коррозии.

Настоящий акт составлен по результатам испытаний функциональных свойств мигрирующих ингибиторов коррозии ИФХАН-МИК-80, МСІ 2020 и Sika Ferrogard - 903, проведенных в лаборатории коррозии и электрохимии металлов Тамбовского государственного технического университета.

В ходе эксперимента сравнивались:

- антикоррозионные свойства препаратов в электролитах, моделирующих поровую жидкость бетонного камня;
 - способность препаратов впитываться в бетонный камень.

Защитные свойства ингибиторов на коррозию стали исследовали в водном растворе с рН 12.2 ± 0.05 добавками NaCl (0.01, 0.03 и 0.1М) и 1 г/л CaO, гидролизующегося до Ca(OH)₂. Плоские образцы из стали 08пс зачищали шлифовальной бумагой, обезжиривали этиловым спиртом, высушивали и на нейлоновой нити укрепляли в герметичных пластиковых (ПЭТ) ячейках, емкостью 0.5л, так, что бы они были погружены в исследуемый электролит. Его объем составлял не менее 0.49л, а продолжительность опытов - 10 суток. Эксперимент проводили при температуре $20\pm2^{\circ}$ С. Для каждого ингибитора определяли концентрацию, обеспечивающую полную защиту металла ($C_{3ацц}$). О полной защите металла судили по отсутствию на образцах очагов коррозии при финальном осмотре. Результаты испытаний приведены в таблице 1.

Таблица 1. Величины $C_{\text{защ}}$ исследованных растворов ингибиторов для различных модельных электролитов.

Ингибитор	$C_{\text{заш}}$ (в пересчете на сухое вещество), г/л		
	$C_{NaCl}=0.1M$	$C_{NaCl}=0.03M$	C _{NaCl} =0.01M
ИФХАН-МИК-80	0.38	0.0032	0.0018
MCI 2020	5	1.12	0.04
Sika Ferrogard - 903	6	1.5	0.07

Из таблицы 1 следует, что полная защита стали достигалась добавками всех исследованных ингибиторов. Однако наиболее высокую эффективность в данных условиях демонстрировал ИФХАН-МИК-80, величины $C_{\text{защ}}$ которого были заметно ниже, чем в случае аналогов, во всех исследованных электролитах.

Способность бетонного камня поглощать растворы ингибиторов оценивалась по изменению массы цилиндрических бетонных образцов опушенных двумя методами. В эксперименте использовали цилиндрические образцы бетона диаметром 8 и высотой 30мм армированные с боков пластиковой опалубкой. Для их изготовления смешивали 1 весовую часть

(в.ч.) цемента; 2 в.ч. песка и 0.4 - воды. Приготовленные таким образом бетонные образцы выдерживали в течение недели в условиях 100% - ной влажности и месяца - в комнатной атмосфере. Далее образцы помещали в эксикатор с прокаленным силикагелем, где экспонировали до достижения постоянной массы. В конические колбы наливали исследуемые ингибиторы и фиксировали образцы в держателях вертикально так, чтобы они были одним концом погружены в растворитель на 1см. Периодически образцы извлекали из держателей, промокали фильтровальной бумагой и взвешивали. Продолжительность экспериментов составляла 3 суток.

Образцы бетона, погруженные в исследуемые ингибиторы, вначале интенсивно впитывали их, что сопровождалось резким увеличением массы образцов. Через сутки после начала опыта масса образцов стабилизировалась. При этом поглощение бетонным камнем ИФХАН-МИК-80 значительно превышало поглощение воды и ингибиторов МСІ 2020 и Sika Ferrogard - 903. Результаты испытаний приведены в Табл.2.

Табл. 2. Способность ингибиторов впитываться в бетонный камень.

Ингибитор	Масса ингибитора, поглощенного единицей массы образца, мг/г	
	единицеи массы образца, мі/1	
ИФХАН-МИК-80 (товарный продукт)	130	
МСІ 2020 (20% раствор)	30	
Sika Ferrogard - 903(товарный продукт)	80	
Вода	60	

Из таблицы 2 видно, что масса ингибитора ИФХАН-МИК-80, поглощенного единицей массы образцов, значительно превышает массы МСІ 2020 и Sika Ferrogard-903.

Таким образом, результаты испытаний свидетельствуют, что мигрирующий ингибитор ИФХАН-МИК-80 превосходит аналоги (МСІ 2020 и Sika Ferrogard - 903) по способности проникать в бетон и антикоррозионным свойствам.

Научный руководитель

лаборатории коррозии и электрохимии металлов

Тамбовского государственного технического

университета, заслуженный деятель науки-

и техники РФ, д.х.н., профессор

ЅВ.И. Вигдорович

Подпись профессора В.И. Вигдоровича удостоверяю

Ученый секретарь Ученого совета

Тамбовского государственного т

университета, к.т.н., доцент

В.Г. Серегина

10.02.10