## Álgebra Universal e Categorias

1° teste (11 de abril de 2018) — duração: 2 horas \_\_\_\_\_

1. Seja  $\mathcal{A}=(\{1,2,3,4,5\};f^{\mathcal{A}},g^{\mathcal{A}})$  a álgebra de tipo (2,1), onde  $A=\{1,2,3,4,5\}$  e  $f^{\mathcal{A}}$  e  $g^{\mathcal{A}}$  são as operações definidas por

| $f^{\mathcal{A}}$     | 1 | 2 | 3 | 4 | 5 |                      |   |   |   |   |  |
|-----------------------|---|---|---|---|---|----------------------|---|---|---|---|--|
| 1                     | 2 | 2 | 2 | 2 | 2 |                      |   |   |   |   |  |
| 2                     | 2 | 2 | 2 | 2 | 2 | x                    | 1 | 2 | 3 | 4 |  |
| 1<br>2<br>3<br>4<br>5 | 2 | 2 | 2 | 2 | 2 | $g^{\mathcal{A}}(x)$ | 3 | 4 | 2 | 2 |  |
| 4                     | 3 | 3 | 3 | 4 | 1 |                      |   |   |   |   |  |
| 5                     | 3 | 3 | 3 | 3 | 5 |                      |   |   |   |   |  |

Dado  $X \subseteq A$ , define-se

$$X_0=X;$$
 
$$X_{i+1}=X_i\cup\{h(x)\,|\, h \text{ \'e operaç\~ao } n\text{-\'aria em }\mathcal{A} \text{ e } x\in(X_i)^n, n\in\{1,2\}\}, i\in\mathbb{N}_0.$$

Seja  $X = \{1\}$ . Para cada  $k \in \mathbb{N}_0$ , determine  $X_k$ . Indique  $Sg^{\mathcal{A}}(X)$ . Justifique.

- 2. Sejam  $\mathcal{A}=(A;F)$  uma álgebra e  $\alpha:\mathcal{A}\to\mathcal{A}$  um homomorfismo. Mostre que o conjunto dos pontos fixos de  $\alpha$ ,  $P_{\alpha}=\{a\in A\,|\,\alpha(a)=a\}$ , é um subuniverso de  $\mathcal{A}$ .
- 3. Considere as álgebras  $\mathcal{A}=(\mathbb{Z};+^{\mathcal{A}})$  e  $\mathcal{B}=(\{a,b\};+^{\mathcal{B}})$  de tipo (2), onde  $+^{\mathcal{A}}$  representa a adição usual em  $\mathbb{Z}$  e  $+^{\mathcal{B}}:\{a,b\}\times\{a,b\}\to\{a,b\}$  é a operação binária em  $\{a,b\}$  definida por

$$\begin{array}{c|cccc} +^{\mathcal{B}} & a & b \\ \hline a & a & b \\ b & b & a \end{array}$$

Seja  $\alpha:\mathbb{Z} \to \{a,b\}$  a aplicação definida por

$$\alpha(x) = \left\{ \begin{array}{ll} a & \text{ se } x \text{ \'e par} \\ b & \text{ se } x \text{ \'e \'impar} \end{array} \right.$$

- (a) Mostre que a aplicação  $\alpha$  é um epimorfismo de  $\mathcal{A}$  em  $\mathcal{B}$ .
- (b) Justifique que  $\mathcal{B} \cong \mathcal{A}/\ker \alpha$ . Defina a operação da álgebra  $\mathcal{A}/\ker \alpha = (\mathbb{Z}/\ker \alpha; +^{\mathcal{A}/\ker \alpha})$ .
- 4. Sejam  $\mathcal{A}=(A;F)$  uma álgebra,  $\theta\in\mathrm{Con}\mathcal{A}$  e  $\alpha:\mathcal{A}\to\mathcal{A}/\theta$  o homomorfismo definido por  $\alpha(a)=[a]_{\theta}$ , para todo  $a\in A$ . Justifique que  $\alpha$  é um monomorfismo se e só se  $\theta=\triangle_A$ .
- 5. Sejam  $\mathcal{R}=(R;\wedge,\vee)$  um reticulado distributivo e  $r\in R$ . Seja  $\theta_r$  a relação de equivalência em R definida por

$$(x,y) \in \theta_r$$
 sse  $x \wedge r = y \wedge r$ , para quaisquer  $x,y \in R$ .

Mostre que a relação  $\theta_r$  é uma congruência em  $\mathcal{R}$ .

6. Seja  $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$  a álgebra de tipo (1,1) tal que  $A=\{a,b,c,d\}$ ,  $f^{\mathcal{A}}$  e  $g^{\mathcal{A}}$  são as operações definidas por

e cujo reticulado de congruências pode ser representado por



Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

- (a)  $\Theta(b,d) \cup \Theta(c,d) = \Theta(b,d) \vee \Theta(c,d)$ .
- (b) Se  $\mathcal B$  e  $\mathcal C$  são álgebras tais que  $\mathcal A\cong\mathcal B\times\mathcal C$ , então  $\mathcal B$  é a álgebra trivial ou  $\mathcal C$  é a álgebra trivial.
- (c) A álgebra  ${\mathcal A}$  é subdiretamente irredutível.
- 7. Considere os operadores de classes de álgebras H e S. Mostre que SHS é um operador de fecho.