Lezione 5 Geometria 2

Federico De Sisti2025-03-10

0.1 Funzioni continue

Osservazione

Siano X, Y spazi topologici, $f: X \to Y$. Siano $A \subseteq Y$ un sottoinsieme,

$$X \setminus f^{-1}(A) = \{x \in X \mid f(x) \notin A\} = \{x \in X \mid f(x) \in Y \setminus A\} = f^{-1}(Y \setminus A).$$

Analogamente, con $A, B \subseteq Y$ e $C, D \subseteq X$

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$$

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

$$f(C \cup D) \neq f(C) \cup f(D).$$

$$f^{-1}(f(C)) \supseteq C.$$

$$f(f^{-1}(A)) = A \cap Im(f).$$

Tornando a $f:X \to Y$

f continua $\Leftrightarrow f^{-1}(A)$ aperto $\forall A \subseteq Y$ aperto $\Leftrightarrow X \setminus f^{-1}(A) = f^{-1}(Y \setminus A)$ chiuso $A \subseteq Y$ aperto \Leftrightarrow con $C = Y \setminus A$ $f^{-1}(C)$ chiuso $\forall C \subseteq Y$ chiuso.

Definizione 1 (Continuità)

Sia $f: X \to Y$ applicazione fra spazi topologici. Sia $p \in X$, f è continua in p se

 $\forall U \subseteq Y \ intorno \ di \ f(p) \ \exists V \subseteq X \ intorno \ di \ p \ t.c \ f(V) \subseteq U.$

Teorema 1

Sia $f: X \to Y$ applicazione fra spazi topologici, sono equivalenti:

- 1. $\forall p \in X : f \ \hat{e} \ continua \ in \ p$
- 2. $\forall Z \subseteq X : f(\bar{Z}) \subseteq \overline{f(X)}$
- 3. f continua

Dimostrazione

1) \Rightarrow 2) Sia $p \in \overline{Z}$ so che $f \ \grave{e}$ continua in p.

Voglio dimostrare che

$$f(p) \in \overline{f(Z)}$$
.

Formuliamo questa condizione in termini di intorni:

devo dimostrare che in ogni intorno di f(p) ci sono punti di f(Z). Sia $U \subseteq Y$ intorno di f(p) per continuità in $p \exists V \subseteq X$ intorno di p tale che $f(V) \subseteq V$ Visto che $p \in \overline{Z}$ esiste $z \in Z$ tale che $z \in V$

Allora f(z) è in U e in f(Z)

cioè ogni intorno U di f(p) contenente punti di f(Z), cioè $f(p) \in \overline{f(Z)}$

2) \Rightarrow 3) Dimostriamo che $f^{-1}(C)$ è chiuso $\forall C \subseteq Y$ chiuso. Considero $f^{-1}(C)$, voglio dimostrare che è chiuso confrontandolo con $f^{-1}(C)$. L'ipotesi 2) dice:

$$f(\overline{f^{-1}(C)})\subseteq \overline{f(f^{-1}(C))}=\overline{C\cap f(X)}\subseteq C.$$

Dato che C è un chiuso che contiene $C \cap f(X)$ Allora $\overline{f^{-1}(C)} \subseteq f^{-1}(C)$ D'altronde vale sempre $f^{-1}(C) \supseteq f^{-1}(C)$ quindi $\overline{f^{-1}(C)} = f^{-1}(C)$ da cui $f^{-1}(C)$ è chiuso.

3) \Rightarrow 1) suppongo f continua, sia $p \in X$, sia $U \subseteq Y$ intorno di f(p) scegliamo $a \subseteq Y$ aperto con $f(p) \in A \subseteq U$ per continuità: $f^{-1}(A)$ aperto di X e contiene p, posso prendere $V = f^{-1}(A)$, intorno aperto di p, ed è tale che $f(V) \subseteq A \subseteq U$

Proposizione 1

 $La\ composizione\ di\ applicazioni\ continue\ qualsiasi\ \grave{e}\ continua$

Dimostrazione

Siano $X \xrightarrow{f} Y \xrightarrow{g} Z$ applicazioni fra spazi topologici, suppongo $f \circ g$ continue, dimostriamo che $g \circ f$ è continua. Sia Z aperto dimostriamo che

$$(g \circ f)^{-1}(A) \ \ \grave{e} \ \ aperto \ .$$

$$(g \circ f)^{-1}(A) = \{x \in X \mid (g \circ f)(x) \in A\}$$

$$= \{x \in X \mid f(x) \in g^{-1}(A)\} = f^{-1}(g^{-1}(A)).$$

g manda aperti in aperti, stesso per f, segue che la composizione fa lo stesso. \square

Definizione 2

Siano X, Y spazi topologici, $f: X \to Y$.

- 1. f si dice omeomorfismo se f è continua, biettiva, e $f^{-1}: Y \to X$ è continua
- 2. X e Y si dicono omeomorfi se esiste $f: X \to Y$ omeomorfismo
- 3. f (non necessariamente omeomorfismo, non necessariamente continua) si dice aperta se f(A) è aperto $\forall A \subseteq X$ aperto, e f si dice chiusa quando f(C) è chiuso $\forall C \subseteq X$ chiuso

Esempi:

 \mathbb{R} con topologia euclidea, $f: \mathbb{R} \to \mathbb{R}$ applicazione costante $f(x) = q \ \forall x \in \mathbb{R}$. Questa f non è aperta, perché \mathbb{R} è aperto in \mathbb{R} e $f(\mathbb{R}) = \{q\}$ non è aperto in topologia euclidea.

Esempio importante:

Applicazione non chiusa.

$$p:\,\mathbb{R}^2\to\mathbb{R}$$

$$(\mathbf{x}, y) \to x$$

 $(\mathbb{R}^2, \mathbb{R} \text{ con topologia euclidea})$

Non è chiusa, prendiamo ad esempio $C = \{(x,y) \mid x \cdot y = 1\}$ è un chiuso in \mathbb{R}^2 , ma $p(C) = \mathbb{R} \setminus \{0\}$ non è chiuso.

C è chiuso di \mathbb{R}^2 perché C è uguale a $f^{-1}(\{1\})$ dove $f:\mathbb{R}^2\to\mathbb{R}$ $(x,y)\to xy$

Infatti f è continua e $\{1\} \subseteq \mathbb{R}$ è un chiuso.

0.2 Spazi metrici

Definizione 3

 $sia~X~un~insieme~e~d:X\times X\to \mathbb{R}$ d~si~dice~distanza~se:

1.
$$d(x,y) \ge 0 \quad \forall x, y \in X,$$

 $d(x,y) = 0 \Leftrightarrow x = y$

2.
$$d(x,y) = d(y,x) \quad \forall x,y \in X$$

3.
$$d(x,z) \le d(x,y) + d(y,z)$$

 $\forall x, y, z \in X$

In tal caso $(X,d)(oX \ stesso)$ si chiama spazio metrico

Esempio

Sia X insieme, poniamo

$$d(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}.$$

dè una distanza.

Definizione 4

Sia(X,d) spazio metrico.

- 1. La palla aperta di centro x e raggio $\varepsilon \in \mathbb{R}_{>0}$ è: $B_{\varepsilon}(x) = \{ p \in X \mid d(p, x) < \varepsilon \}$
- 2. La topologia indotta da d su X è definita da: A aperto $\Leftrightarrow \forall a \in A \; \exists \varepsilon < 0 \mid B_{\varepsilon}(a) \subseteq A$ La denotiamo con T_d

Verifica che T_d è topologia

- 1. \emptyset, X sono aperti: ovvio
- 2. unione di aperti è aperto: ovvio
- 3. Siano $A_1, A_2 \in T_d$, verifichiamo che $A_1 \cap A_2 \in T_d$, sia $a \in A_1 \cap A_2$ quindi $\exists \varepsilon > 0 \mid B_{\varepsilon}(a) \subseteq A_1 \in \exists \delta > 0 \mid B_{\delta}(a) \subseteq A_2$ sia $\gamma = \min\{\varepsilon, \delta\}$ allora soddisfa $B_{\gamma}(a) \subseteq A_1 \cap A_2$

Lemma 1

Sia (X, d) spazio metrico e T_d la topologia indotta da d

- 1. $\forall p \in X \ \forall \varepsilon > 0 \ B_{\varepsilon}(p) \in T_d$
- 2. $B = \{B_{\varepsilon}(p) \mid p \in X, \varepsilon \in \mathbb{R}_{>0}\}$ è una base di T_d
- 3. Un sottoinsieme $U\subseteq X$ è intorno di $p\in X$ se e solo se $\exists \varepsilon>0 \mid B_{\varepsilon}(p)\subseteq U$

Dimostrazione

Per esercizio.

Osservazione

Gli spazi metrici in generale si comportano in modo simile a $\mathbb{R}n$ con distanza euclidea, ma attenzione: non tutto è uguale, ad esempio se (X,d) è uno spazio metrico e $x \in X$:

$$\{p \in X \mid d(x,p) \le \varepsilon\}.$$

con $\varepsilon > 0$ fissato, è un chiuso di X (verifica per esercizio) ma non è sempre la chiusura di $B_{\varepsilon}(x)$.

Ad esempio
$$X=\mathbb{R}$$
 con distanza $d(x,y)=\begin{cases} 0 & \text{se } x=y\\ 1 & \text{se } x\neq y \end{cases}$

Considero
$$\{p \in \mathbb{R} \mid d(p, x) \le 1\} = \mathbb{R}$$

ma
$$B_1(x) = \{x\}$$

Questo vale $\forall x \in \mathbb{R}$

cioè ogni ogni singoletto è aperto, allora T_d è discreta, quindi $\{x\}$ è anche chiuso. Cioè $B_1(x) = \{x\}$.

Osservazione:

Siano X, Y spazi metrici sia $p \in X$

 $f: X \to Y$, allora f è continua in p

(come applicazione fra spazi topologici, dove su X e Y metto le topologie indotte dalle distanze) $\Leftrightarrow \forall \varepsilon > 0 \mid \text{se } d(x,p) < \delta \text{ allora } d(f(x),f(p)) < \varepsilon$ Verifica per esercizio

Corollario 1

Siano d, h distanze su uno stesso insieme X.

Allora T_d è più fine di T_h se $\forall p \in X \ \forall > 0 \ \exists \delta > 0 \mid B^d_{\delta}(p) \subseteq B^h_{\varepsilon}(p)$

Dimostrazione

Usiamo $id_X: X \to X$ dove nel dominio prendiamo de T_d , e nel codominio la distanza h e T_h . Con questa scelta l'identità su X è continua $\Leftrightarrow T_d \supseteq T_h$ La carindalità di Id_X è equivalente alla condizione con ε e δ per l'osservazione.

Definizione 5 (Distanze equivalenti)

Date distanze d, h su un insieme X, esse si dicono equivalenti se $T_d = T_h$

Definizione 6 (Spazio topologico metrizzabile)

Sia X uno spazio topologico con topologia T. Se esiste una distanza d su X tale che $T=T_d$ allora X si dice metrizzabile.

0.3 Sottospazi topologici

Definizione 7

Sia X spazio topologico, sia $Y\subseteq X$ sottoinsieme qualsiasi, allora su Y è definita la topologia di sottospazio ponendo $A\subseteq Y$ aperto in topologia di sottospazio $\Leftrightarrow \exists B\subseteq X$ aperto in X tale che $A=B\cap Y$

Esempi:

1) $X = \mathbb{R}$ con topologia euclidea

$$Y = [0, 1]$$

Allora Y è aperto in topologia di sottospazio

A = Y soddisfa $A = B \cap Y$

Anche $I=]\frac{1}{2},\frac{2}{3}[\subseteq Y$ è aperto in topologia di sottospazio basta prendere B'=I per avere $I=B'\cap Y$

Considero $[0, \frac{1}{2}] = J \subseteq Y$

non è aperto in $\mathbb{R}=X$, ma è aperto in Y in topologia di sottospazio, basta prendere $B'' =]-1, \frac{1}{2}[$ è aperto in X e soddisfa

$$J = B'' \cap Y$$
.

Idea intuitiva:

J non è aperto in \mathbb{R} perché $\forall \varepsilon > 0 \exists$ punti di \mathbb{R} , a distanza $< \varepsilon$ da 0, punti che non sono in J.

Ma J aperto in Y in topologia di sottospazio perché Y non contiene tali punti 2) $X = \mathbb{R}$ con topologia euclidea, sia $Y = \mathbb{Z}$ con topologia di sottospazio, Ad esempio $A =]-100, 23[\cap Y = \{-99, -98, \dots, 22\}]$

Anche] $-\frac{1}{2}$, $\frac{1}{2}$ [$\cap \mathbb{Z} = \{0\}$ è aperto. Analogamente

 $]n-\frac{12}{n}n+\frac{1}{2}[\cap\mathbb{Z}=\{n\}\ \forall n\in\mathbb{Z}$ è aperto in \mathbb{Z} in topologia di sottospazio. Quindi la tipologia di sottospazio è discreta.

3) $X = \mathbb{R}^2$ con topologia euclidea, $Y = \mathbb{R} \times \{0\}$, l'asse x.

allora $A =]0,1[\times\{0\}]$ è aperto in topologia di sottospazio, ad esempio B = $]0,1[\times\mathbb{R}$

Osservazione Verifichiamo che la topologia di sottospazio è una topologia:

$$T_Y = \{ A \subseteq Y \mid \exists B \subseteq X \text{ aperto t.c.} B \cap Y = A \}.$$

Assiomi di topologia

- 1. $\emptyset = \emptyset \cap Y, Y = X \cap Y$
- 2. Siano $A_i, i \in I$ elemento di T_Y , verifica che $\bigcup_{i \in I} A_i$ è in T_y Scegliamo $B_i \ \forall i \in I \text{ aperto in } X \text{ t.c. } A_i = B_i \cap Y$

 $\bigcup_{i\in I}A_i=\bigcup_{i\in I}(B_i\cap U)=\bigcup_{i\in I}B_i\cap Y \text{ dove il primo termine è aperto in X}$ da cui $\bigcup_{i\in I}A_i\in T_Y.$

3. Siano $A_1,A_2\in T_Y$, scegliamo B_1,B_2 aperti in X con $A_i=B_i\cap Y \ \forall i\in\{1,2\}$ allora $A_1\cap A_2=(B_1\cap Y)\cap (B_2\cap Y)=B_1\cap B_2)\cap Y \text{ dove il primo termine è aperto in }X$ quindi $A_1\cap A_2\in I_y$

Osservazione.

Sia $C\subseteq Y$ chiuso in topologia di sottospazio. Allora $A=Y\setminus C$ è scrivibile come $A=B\cap Y$ con B aperto in X, Allora $D=X\setminus B$ è chiuso in X, e vale $D\cap Y=C$

Cioè se C è chiuso in topologia di sottospazio allora esiste $D\subseteq X$ chiuso tale che $C=D\cap Y.$

Vale il viceversa se il sottoinsieme C di Y è scrivibile come $C = D \cap Y$ con $D \subseteq X$ chiuso, allora C è chiuso in topologia di sottospazio (esercizio)