Boolean Algebra

Two-valued Boolean Algebra

- Set of elements: {0,1}
- Set of operations: { ., + , ' }

X	У	x . y
0	0	0
0	1	0
1	0	0
1	1	1

١.	<u> </u>	<u> </u>	, J
	X	y	x + y
	0	0	0
	0	1	1
	1	0	1
	1	1	1

X	x'
0	1
1	0

Signals: High = 5V = 1; Low = 0V = 0

Boolean Functions

- Boolean function is an expression formed with binary variables, the two binary operators, OR and AND, and the unary operator, NOT, parenthesis and the equal sign.
- Its result is also a binary value.
- We usually use for AND, + for OR, and 'for NOT. Sometimes, we may omit the if there is no ambiguity.

Complement of Boolean Functions

 Given a function, F, the complement of this function, F', is obtained by interchanging 1 with 0 in the function's output values.

Example: F1 = x. y. z'

Complement: F1' = (x.y.z')'= x' + y' + (z')' DeMorgan = x' + y' + z Involution

X	У	Z	F1	F1'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

Complement of Functions

More general DeMorgan's theorems useful for obtaining complement functions:

$$(A + B + C + ... + Z)' = A' \cdot B' \cdot C' \cdot ... \cdot Z'$$

$$(A . B . C Z)' = A' + B' + C' + ... + Z'$$

Standard Forms

- Certain types of Boolean expressions lead to gating networks which are desirable from implementation viewpoint.
- Two Standard Forms:
 Products and Product-of-Sums
- Literals: a variable on its own or in its complemented form. Examples: x, x', y, y'
- Product Term: a single literal or a logical product (AND) of several literals.

Examples: x, x.y.z', A'.B, A.B

 Sum Term: a single literal or a logical sum (OR) of several literals.

Sum-of-Products (SOP) Expression: a product term or a logical sum (OR) of several product terms.

Examples:
$$x, x+y.z', x.y' + x'.y.z, A.B + A'.B', A + B'.C + A.C' + C.D$$

Product-of-Sums (POS) Expression: a sum term or a logical product (AND) of several sum terms.

Standard Forms

 Every Boolean expression can either be expressed as sum-of-products or product-of-sums expression.

Examples:

```
SOP: x'.y + x.y' + x.y.z
```

POS: (x + y').(x' + y).(x' + z')

both: x' + y + z or x.y.z'

neither: x.(w' + y.z) or z' + w.x'.y + v.(x.z + w')

Minterm & Maxterm

- Consider two binary variables x, y.
- Each variable may appear as itself or in complemented form as literals (i.e. x, x' & y, y')
- For two variables, there are four possible combinations with the AND operator, namely:

- These product terms are called the *minterms*.
- A minterm of n variables is the product of n literals from the different variables.

Minterm & Maxterm

■ In general, *n* variables can give 2ⁿ minterms.

■ In a similar fashion, a **maxterm** of *n* variables is the sum of *n* literals from the different variables.

■ In general, n variables can also give 2ⁿ maxterms.

Minterm & Maxterm

The minterms and maxterms of 2 variables are denoted by m0 to m3 and M0 to M3 respectively:

		Mintern	Maxterms		
X	y	term	notation	term	notation
0	0	x'.y'	$\mathbf{m_0}$	$\mathbf{x} + \mathbf{y}$	$\mathbf{M_0}$
0	1	x'.y	\mathbf{m}_1	x+y'	$\mathbf{M_1}$
1	0	x.y'	\mathbf{m}_2	x'+y	\mathbf{M}_2
1	1	x. y	\mathbf{m}_3	x'+y'	M_3

Each minterm is the complement of the corresponding maxterm:

Example:
$$m_2 = x.y'$$

 $m_2' = (x.y')' = x' + (y')' = x'+y = M_2$

Canonical Form: Sum of Minterms

- What is a canonical/normal form?
 - A unique form for representing something.
- Minterms are product terms.
 - Can express Boolean functions using Sum-of-Minterms form.

Canonical Form: Sum of Minterms

a) Obtain the truth table. Example:

X	У	Z	F1	F2	F3
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	0
1	1	1	0	1	0

Canonical Form: Sum of Minterms

b) Obtain Sum-of-Minterms by gathering/summing the minterms of the function (where result is a 1)

F1 = x.y.z' =
$$\Sigma$$
m(6)
F2 = x'.y'.z + x.y'.z' +
x.y'.z + x.y.z' + x.y.z
= Σ m(1,4,5,6,7)
F3 = x'.y'.z + x'.y.z
+ x.y'.z' +x.y'.z
= Σ m(1,3,4,5)

X	y	Z	Fl	F2	B
0	0	0	0	0	0
0	0	1	0		1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1		0
1	1	1	0		1.0

- Maxterms are sum terms.
- For Boolean functions, the maxterms of a function are the terms for which the result is 0.
- Boolean functions can be expressed as Products-of-Maxterms.

Why is this so? Take F2 as an example.

$$F2 = \Sigma m(1,4,5,6,7)$$

The complement function of F2 is:

$$F2' = \Sigma m(0,2,3)$$

= m0 + m2 + m3

(Complement functions' minterms are the opposite of their original functions, i.e. when original function = 0)

X	У	Z	F2	F2'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

From previous slide, F2' = m0 + m2 + m3Therefore:

F2 =
$$(m0 + m2 + m3)'$$

= $m0' \cdot m2' \cdot m3'$ DeMorgan
= $M0 \cdot M2 \cdot M3$ $mx' = Mx$
= $\Pi M(0,2,3)$

 Every Boolean function can be expressed as either Sum-of-Minterms or Product-of-Maxterms.

Conversion of Canonical Forms

■ Sum-of-Minterms ⇒ Product-of-Maxterms

- Rewrite minterm shorthand using maxterm shorthand.
- Replace minterm indices with indices not already used.

Eg:
$$F1(A,B,C) = \sum m(3,4,5,6,7) = \prod M(0,1,2)$$

■ Product-of-Maxterms ⇒ Sum-of-Minterms

- Rewrite maxterm shorthand using minterm shorthand.
- Replace maxterm indices with indices not already used.

Eg:
$$F2(A,B,C) = \prod M(0,3,5,6) = \sum m(1,2,4,7)$$

Conversion of Canonical Forms

- Sum-of-Minterms of F ⇒ Sum-of-Minterms of F'
 - In minterm shorthand form, list the indices not already used in F.

Eg: F1(A,B,C) =
$$\sum$$
m(3,4,5,6,7)
F1'(A,B,C) = \sum m(0,1,2)

- Product-of-Maxterms of F ⇒ Prod-of-Maxterms of F'
 - In maxterm shorthand form, list the indices not already used in F.

Eg:
$$F1(A,B,C) = \prod M(0,1,2)$$

 $F1'(A,B,C) = \prod M(3,4,5,6,7)$

Conversion of Canonical Forms

- Sum-of-Minterms of F ⇒ Product-of-Maxterms of F'
 - Rewrite in maxterm shorthand form, using the same indices as in F.

Eg: F1(A,B,C) =
$$\sum$$
m(3,4,5,6,7)
F1'(A,B,C) = \prod M(3,4,5,6,7)

- Product-of-Maxterms of F ⇒ Sum-of-Minterms of F'
 - Rewrite in minterm shorthand form, using the same indices as in F.

Eg: F1(A,B,C) =
$$\prod$$
M(0,1,2)
F1'(A,B,C) = \sum m(0,1,2)

Binary Functions

- Given n variables, there are 2^n possible minterms.
- As each function can be expressed as sum-of-minterms, there could be 2^{2ⁿ} different functions.
- In the case of two variables, there are 2² =4 possible minterms; and 2⁴=16 different possible binary functions.
- The 16 possible binary functions are shown in the next slide.

Binary Functions

X	У	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1
Syn	nbol		-	/		1		\oplus	+
Na	me		AND	x, but not y		y, but not x		XOR	OR

y	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1
0	0	0	1	1	0	0	1	1
1	0	1	0	1	0	1	0	1
bol	+	•	ı	\subset	ı	\supset	↑	
ne	NOR	XNOR					NAND	
		0 1 1 0 0 0 1 0 bol ↓	0 1 1 1 0 0 0 0 0 1 0 1 bol ↓ ⊙	0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 bol ↓ ⊙ '	0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 bol ↓ ○ ' _	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Logic Gates

Introduction

- A Logic Gate is an electronic circuit capable of making logical decisions.
- It has one output and one or more inputs.
- Basic building blocks of digital systems.
- 0 and 1.
- 0 means 0 to 3 V.
- 1 means 3.5 V to 5 V.
- 3 V to 3.5 V is undefined.

Logic Gates and Circuits

- Logic Gates
 - ❖ The Inverter
 - The AND Gate
 - ❖ The OR Gate
 - The NAND Gate
 - ❖ The NOR Gate
 - ❖ The XOR Gate
 - ❖ The XNOR Gate
- Drawing Logic Circuit
- Analysing Logic Circuit

- Universal Gates: NAND and NOR
 - NAND Gate
 - NOR Gate
- Implementation using NAND Gates
- Implementation using NOR Gates
- Implementation of SOP Expressions
- Implementation of POS Expressions
- Positive and Negative Logic
- Integrated Circuit Logic Families

Logic Gates

Logic Gates: The Inverter

The Inverter

Α	Ā
0	1
1	0

Application of the inverter: complement.

CS1104-4 Logic Gates: The Inverter 29

Logic Gates: The AND Gate (1/2)

The AND Gate

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates: The OR Gate

The OR Gate

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates: The NAND Gate

The NAND Gate

A	В	(A.B)'
0	0	1
0	1	1
1	0	1
1	1	0

Logic Gates: The NOR Gate

The NOR Gate

$$\begin{array}{c} A \\ B \end{array} \begin{array}{c} O \\ O \end{array} \begin{array}{c} A \\ O \end{array} \begin{array}{c} O \\ O \end{array} \begin{array}{c} A \\ O \end{array} \begin{array}{c} O \\ O \end{array} \begin{array}{c} A \\ O \end{array} \begin{array}{c} O \end{array} \begin{array}{c} O \\ O \end{array} \begin{array}{c} O$$

A	. E	3	(A+B)'
0	()	1
0	•	1	0
1	()	0
1	1	1	0

Logic Gates: The XOR Gate

The XOR Gate

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Logic Gates: The XNOR Gate

The XNOR Gate

Α	В	(A ⊕ B) '
0	0	1
0	1	0
1	0	0
1	1	1