Low-Complexity Attentions for Transformer

Problems of Scaled Dot-Product

$$\tilde{X} = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V \quad \tilde{X}, Q \in \mathbb{R}^{N \times E}, \ K, V \in \mathbb{R}^{M \times E}$$

- $X \in \mathbb{R}^{N \times E}$ refer to a sentence with N tokens and embedding size of E
- Complexity for each sublayer:
 - Attention: $O(N^2E) + O(NE^2)$
 - FFN: $O(NE^2)$
 - ReLU / LayerNorm / Dropout: O(NE)

Summary

Model Name	Paper Title	Venue	Affl.	Complexity
Sparse Transformer	Generating Long Sequences with Sparse Transformers	arXiv 2019	OpenAl	$O(EN\sqrt{N})$
Reformer	Reformer: The Efficient Transformer	ICLR 2020	Berkeley / Google	$O(EN \log N)$
Linformer	Linformer: Self-Attention with Linear Complexity	arXiv 2020	Facebook	O(NEM)
Linear- Transformer	Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention	ICML 2020	IDIAP / EPFL	$O(NE^2)$

 Generating Long Sequences with Sparse Transformers, Rewon Child, Scott Gray, Alec Radford, Ilya Sutskever (arXiv 2019)

Main idea

- For any position i (i.e. the i-th row in attention), construct 2 index sets A_i, B_i so that
 - 1. $|A_i| \approx \sqrt{N}$ $|B_i| \approx \sqrt{N}$ sparsity of attention matrix
 - 2. For any position $j \le i$, there exists a path (j, k, i) that $j \in A_k, k \in B_i$

i could attend to any $j \le i$ within 2 attention steps

Two patterns manually designed by the authors

Contributions & Limitations

- Contribution:
 - 1. Speedup attention layers from a complexity of $O(EN^2)$ to $O(EN\sqrt{N})$
- Limitations:
 - 1. Can only be used as single direction attention: can't directly apply to encoder selfattention and decoder cross-attention.
 - 2. Hard to implement sparse attention on GPU.

• **Reformer: The Efficient Transformer,** Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya (ICLR 2020)

Main idea

- Large elements in $\operatorname{softmax}(QK^T/d)$ come from similar Q_i, K_j
- Find nearest top- α K_j for any Q_i , ignore other K s.
 - 1. Sort by Locality-Sensitive Hashing (LSH)
 - 2. Cut into N/α chunks
 - 3. For Q_i in chunk c, do dot-product with Ks in chunk c and c-1.
- Time complexity: $O(EN(\log N + \alpha))$

A toy visualization of LSH

LSH function: $h(X) = \underset{i}{\operatorname{argmax}}(XR)^{(i)}$

$$h(X) = h(Y) \iff X \simeq Y$$

Main idea

- Large elements in $\operatorname{softmax}(QK^T/d)$ come from similar Q_i, K_j
- Find nearest top- α K_j for any Q_i , ignore other K s.
 - 1. Sort by Locality-Sensitive Hashing (LSH)
 - 2. Cut into N/α chunks
 - 3. For Q_i in chunk c, do dot-product with Ks in chunk c and c-1.
- Time complexity: $O(EN \log N)$

Main idea

Sequence of queries=keys LSH bucketing Sort by LSH bucket Chunk sorted sequence to parallelize Attend within same bucket in own chunk and previous chunk

Details (free to skip)

- 1. Trick: $h(X) = \operatorname{sign}(XR) \in \{0,1\}^{\log \frac{N}{\alpha}}$
- 2. Use h(X) to project X into an integer from 0 to $\frac{N}{\alpha} 1$ in $O(EN \log N)$ time.
- 3. Sort tokens by h(X) in $O(N \log N)$ time.
- 4. Do dot-product attention for each Q_i with 2α Ks in the previous and the current chunk. The time complexity is $O(EN\alpha)$.

Total:
$$O(EN \log N)$$

Experiments - Speed

Experiments - Image generating

Contributions & Limitations

- Contributions:
 - 1. Attention in $O(EN \log N)$ time.
 - 2. Reversible Transformer (not related to our topic though)
- Limitations:
 - 1. Hard to implement
 - Large constant in the time complexity: multi-round hashing, sorting, unordered causal masking,, etc...

• Linformer: Self-Attention with Linear Complexity, Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma (arXiv 2020)

Main idea

- ullet Replace N Keys and Values with constant M Keys and Values.
- Directly apply linear transformations $E, F \in \mathbb{R}^{M \times N}$ to $K, V \in \mathbb{R}^{N \times E}$ to get $\tilde{K} = EK \in \mathbb{R}^{M \times E}, \, \tilde{V} = FV \in \mathbb{R}^{M \times E}.$
- . Then softmax $\left(Q\tilde{K}^T/\sqrt{d_k}\right)\tilde{V}$
- Time Complexity: $O(ENM + EM^2)$

Experiments - NLU tasks

\overline{n}	Model	SST-2	IMDB	QNLI	QQP	Average
	Liu et al. (2019), RoBERTa-base	93.1	94.1	90.9	90.9	92.25
	Linformer, 128	92.4	94.0	90.4	90.2	91.75
	Linformer, 128, shared kv	93.4	93.4	90.3	90.3	91.85
	Linformer, 128, shared kv, layer	93.2	93.8	90.1	90.2	91.83
512	Linformer, 256	93.2	94.0	90.6	90.5	92.08
	Linformer, 256, shared kv	93.3	93.6	90.6	90.6	92.03
	Linformer, 256, shared kv, layer	93.1	94.1	91.2	90.8	92.30
<i>5</i> 10	Devlin et al. (2019), BERT-base	92.7	93.5	91.8	89.6	91.90
512	Sanh et al. (2019), Distilled BERT	91.3	92.8	89.2	88.5	90.45
	Linformer, 256	93.0	93.8	90.4	90.4	91.90
1024	Linformer, 256, shared kv	93.0	93.6	90.3	90.4	91.83
	Linformer, 256, shared kv, layer	93.2	94.2	90.8	90.5	92.18

Experiments - Speed

NLU tasks reported

lonath m]	projecte	d dime	nsions k	
length n	128	256	512	1024	2048
	1.5x			_	_
1024	1.7x	1.6x	1.3x	_	_
2048	2.6x	2.4x	2.1x	1.3x	-
4096	3.4x	3.2x	2.8x	2.2x	1.3x
8192	5.5x	5.0x	4.4x	3.5x	2.1x
16384	8.6x	7.8x	7.0x	5.6x	3.3x
32768	13x	12x	11x	8.8x	5.0x
65536	20x	18x	16x	14x	7.9x

Opinions

- Potential problems:
 - 1. E, F projections limit the max-length of the model.
 - 2. If K is a constant, then Linformer would lose information when N keep growing.
 - 3. On the other hand, if K is proportional to N, then the complexity will be deteriorated from $O(KNE + K^2E)$ to $O(N^2E)$,

- Transformer Dissection: A Unified Understanding of Transformer's
 Attention via the Lens of Kernel, Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada,
 Louis-Philippe Morency, Ruslan Salakhutdinov (EMNLP 2019)
- Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention, Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, Franc, ois Fleuret (ICML 2020)

Main idea

- Size of QK^TV : $(N \times E)(E \times N)(N \times E)$
- Different multiplication orders have different complexity:

1.
$$((N \times E)(E \times N)) \cdot (N \times E)$$
: $O(N^2E)$

2.
$$(N \times E) \cdot ((E \times N)(N \times E)) : O(NE^2)$$

• Sadly: softmax
$$\left(\frac{QK^T}{d_k}\right)V$$
 determines the order.

Main idea

• Goal: to find a magic (·) to perform:

magic
$$\left(\frac{QK^T}{d_k}\right)V = f(Q)(g(K))^T V$$

= $f(Q)(g(K))^T V$

Introducing Kernel

- **Kernel** is a function $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that there implicitly exists a corresponding feature map function $\phi : \mathcal{X} \to \mathbb{R}^d$ satisfying $\kappa(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{y})$.
- Intuitive property: Kernel can measure similarity between two highdimensional vectors.
- Theorem: dot-product attention can be viewed as a kernel smoother.

$$y = \frac{\sum_{j} \kappa(x, X^{(j)}) Y^{(j)}}{\sum_{j} \kappa(x, X^{(j)})} \qquad X \in \mathbb{R}^{n \times d} \quad x, y \in \mathbb{R}^{d}$$

Reformation of attention (free to skip)

$$f_{attn}(X_q, X_k, M) = \operatorname{softmax}\left(\frac{X_q W_q(X_k W_k)^T}{\sqrt{d_k}} \oplus M\right) X_k W_v$$

- encoder self-attention: $X_q = X_k$, $M_{i,j} = 0$
- . decoder self-attention: $X_q = X_k, \ M_{i,j} = \begin{cases} 0 & j \leq i \\ -\infty & j > i \end{cases}$
- decoder cross-attention: $X_q \neq X_k$, $M_{i,j} = 0$

Reformation of attention (free to skip)

•
$$f_{attn}(X_q, X_k, M) = \operatorname{softmax}\left(\frac{X_q W_q(X_k W_k)^T}{\sqrt{d_k}} \oplus M\right) X_k W_v$$

Raw format

$$\left[f_{attn}(X_q^{(i)}, X_k, \tilde{M}_i)\right]_i = \sum_{j \in \tilde{M}_i} \frac{\exp\left(\frac{(X_q^{(i)}W_q) \cdot (X_k^{(j)}W_k)}{\sqrt{d_k}}\right)}{\sum_{r \in \tilde{M}_i} \exp\left(\frac{(X_q^{(i)}W_q) \cdot (X_k^{(r)}W_k)}{\sqrt{d_k}}\right)} (X_k^{(j)}W_v)$$

consider the i-th row,

 M_i is the index set that i can attend to.

Reformation of attention (free to skip)

$$\left[f_{attn}(X_q^{(i)}, X_k, \tilde{M}_i)\right]_i = \frac{\sum_{j \in \tilde{M}_i} \exp\left(\frac{(X_q^{(i)}W_q) \cdot (X_k^{(j)}W_k)}{\sqrt{d_k}}\right) (X_k^{(j)}W_v)}{\sum_{j \in \tilde{M}_i} \exp\left(\frac{(X_q^{(i)}W_q) \cdot (X_k^{(j)}W_k)}{\sqrt{d_k}}\right)}$$

$$\left[f_{attn}(X_q^{(i)}, X_k, \tilde{M}_i) \right]_i = \frac{\sum_{j \in \tilde{M}_i} \kappa(X_q^{(i)}, X_k^{(j)}) v(X_k^{(j)})}{\sum_{j \in \tilde{M}_i} \kappa(X_q^{(i)}, X_k^{(j)})}$$

$$\tilde{X}_i = \frac{\sum_j \kappa(X_i, X_j) \ \nu(X_j)}{\sum_j \kappa(X_i, X_j)}$$

Rewrite

$$v(x) \triangleq xW_{v}$$

$$\kappa(x, y) \triangleq \exp\left(\langle xW_{q}, yW_{k} \rangle / \sqrt{d_{k}}\right)$$

Simplify

Linear-Transformer FYI

$$\tilde{X}_i = \frac{\sum_{j \leq M(i)} \kappa(X_i, X_j) \ \nu(X_j)}{\sum_{j \leq M(i)} \kappa(X_i, X_j)}$$

• Changing kernel $\kappa = \kappa_F(f_q, f_k) \cdot \kappa_T(t_q, t_k)$ here may improve BLEU:

Approach	PE Incorporation	Kernel Form	NMT (BLEU↑)	
Vaswani et al. (2017) (Eq. (4))	Direct-Sum	$k_{\exp}\Big(f_q+t_q,f_k+t_k\Big)$	33.98	
Shaw et al. (2018) (Eq. (6))	Look-up Table	$L_{t_q-t_k,f_q} \cdot k_{\exp}\Big(f_q,f_k\Big)$	34.12	
Dai et al. (2019) (Eq. (5))	Product Kernel	$k_{ ext{exp}}ig(f_q,f_kig)\cdot k_{f_q}ig(t_q,t_kig)$	33.62	
Ours (Eq. (9))	Product Kernel	$k_F\Big(f_q,f_k\Big)\cdot k_T\Big(t_q,t_k\Big)$	34.71	

Reformation of attention (free to skip)

$$\tilde{X}_i = \frac{\sum_{j \leq M(i)} \kappa(X_i, X_j) \ \nu(X_j)}{\sum_{j \leq M(i)} \kappa(X_i, X_j)}$$

According the definition of kernel, we have

$$\tilde{X}_i = \frac{\sum_{j \leq M(i)} \phi(X_i) \left(\phi(X_j)\right)^T v(X_j)}{\sum_{j \leq M(i)} \phi(X_i) \left(\phi(X_j)\right)^T} = \frac{\phi(X_i) \sum_{j \leq M(i)} \left(\phi(X_j)\right)^T v(X_j)}{\phi(X_i) \sum_{j \leq M(i)} \left(\phi(X_j)\right)^T}$$

Complexity Analysis - w/o causal mask

$$\tilde{X}_{i} = \frac{\phi(X_{i}) \sum_{j \leq N} \left(\phi(X_{j})\right)^{T} \nu(X_{j})}{\phi(X_{i}) \sum_{j \leq N} \left(\phi(X_{j})\right)^{T}}$$

$$\bullet$$

• Preprocess
$$S = \sum_{j \leq N} \left(\phi(X_j) \right)^T v(X_j)$$
 and $Z = \sum_{j \leq N} \left(\phi(X_j) \right)^T$ in $O(NE^2)$.

• For every i, do $\tilde{X}_i = \frac{\phi(X_i) \cdot S}{Z}$ in $O(E^2)$, and repeat for N times.

Total: $O(NE^2)$

Complexity Analysis - w/ causal mask

$$\tilde{X}_{i} = \frac{\phi(X_{i}) \sum_{j \leq M(i)} \left(\phi(X_{j})\right)^{T} v(X_{j})}{\phi(X_{i}) \sum_{j \leq M(i)} \left(\phi(X_{j})\right)^{T}}$$

- Initialize with $S_0 = Z_0 = 0$
- For every i do $S_i = S_{i-1} + \left(\phi(X_i)\right)^T v(X_i)$, $Z_i = Z_{i-1} + \left(\phi(X_i)\right)^T$, $\tilde{X}_i = \frac{\phi(X_i) \cdot S_i}{Z_i}$ in $O(E^2)$, and repeat for N times.

Total:
$$O(NE^2)$$

Experiments - Speed and Memory use

Experiments - Accuracy and Speed

Method	Bits/dim	Imag	ges/sec
Softmax	0.621	0.45	(1×)
LSH-1	0.745	0.68	$(1.5\times)$
LSH-4	0.676	0.27	$(0.6\times)$
Linear (ours)	0.644	142.8	(317×)

Method	Bits/dim	Ima	ges/sec
Softmax	3.47	0.004	(1×)
LSH-1	3.39	0.015	$(3.75\times)$
LSH-4	3.51	0.005	$(1.25\times)$
Linear (ours)	3.40	17.85	(4,462×)

Generating MNIST images

Generating CIFAR-10 images

Summary

Model Name	Paper Title	Venue	Affl.	Complexity
Sparse Transformer	Generating Long Sequences with Sparse Transformers	arXiv 2019	OpenAl	$O(EN\sqrt{N})$
Reformer	Reformer: The Efficient Transformer	ICLR 2020	Berkeley / Google	$O(EN \log N)$
Linformer	Linformer: Self-Attention with Linear Complexity	arXiv 2020	Facebook	O(NEM)
Linear- Transformer	Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention	ICML 2020	IDIAP / EPFL	$O(NE^2)$