GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
	Dibujo Industrial	

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primer Semestre	110103	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al estudiante el conocimiento y la habilidad de las herramientas, métodos y técnicas del dibujo asistido por computadora para representar formas geométricas, conceptos de ingeniería, interpretación, evaluación de planos y diagramas de uso en la industria.

TEMAS Y SUBTEMAS

1. Conceptos básicos de dibujo técnico.

- 1.1. Introducción.
- 1.2. Normas mexicanas de simbología, dimensionamiento y tolerancias.
- 1.3. Sistema europeo y americano.
- 1.4. Normalización del papel.
- 1.5. Representación de vistas ortogonales.

2. Modelado básico en dos dimensiones.

- 2.1. Configuración de herramientas.
- 2.2. Entidades básicas de CAD.
- 2.3. Generación y edición de geometrías.
- 2.4. Normalización de planos.
- 2.5. Impresión y presentación gráfica.

B. Modelado en tres dimensiones.

- 3.1. Características de los sistemas 3D.
- 3.2. Operaciones de modelado para sólidos.
- 3.3. Edición de geometrías.
- 3.4. Definición de materiales, apariencias y propiedades físicas.
- 3.5. Anotación gráfica de modelos.
- 3.6. Impresión y presentación visual de modelos.

4. Representación de vistas auxiliares.

- 4.1. Vistas auxiliares y proyectadas.
- 4.2. Vistas de sección parcial y estándar.
- 4.3. Vistas de detalle y del modelo.
- 4.4. Vistas de rotura y posición alternativa.
- 4.5. Anotación en vistas.

5. Ensambles.

- 5.1. Configuración y relación de las piezas de montaje.
- 5.2. Unión permanente y dispositivos de sujeción.
- 5.3. Vista explosionada y montaje.
- 5.4. Anotación y lista de materiales.
- 5.5. Presentación de montaje.

ACTIVIDADES DE APRENDIZAJE

Exposición del profesor, haciendo uso de equipo de cómputo y software especializado, así como de documentos impresos; validando los conocimientos a través de evaluaciones teóricas y prácticas.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación, que debe comprender tres evaluaciones parciales que tienen una equivalencia del 50% y un examen final equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros Básicos

- 1. Fundamentos de dibujo en ingeniería. Luzadder W.J, Duff M.J., Edit. Prentice Hall, 1994, 11a. Ed.
- 2. Dibujo para ingeniería. Giesecke F., Mitchell A., Spencer H., Hill I.L., Loving R., Editorial Mc Graw Hill, 1986.
- 3. Dibujo y Diseño en Ingeniería, Cecil, J., Jay D. H., Dennos R. S. Mc Graw-Hill 2004, México D.F.
- 4. Dibujo Industrial., André Chevalier, Limusa 2008, México D.F.

Libros de Consulta

- 1. Fundamentos de dibujo en Ingeniería, Warren, J. L, CECSA 1981, México D.F.
- 2. Dibujo Técnico. Elías Támez Esparza, Limusa 2009, México D.F.
- 3. Dibujo de Ingeniería, French, T, E., Charles J. V. Mc. Graw Hill.
- 4. Manuales y/o libros designados por el profesor, para aprender el software a utilizar, para el modelado de sólidos, superficies, etc. Por ejemplo, *AutoCAD*, *Solidworks*, *NX*, *VisiCad*, *Catia*, etc.

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Diseño Industrial o a fin, como algún postgrado en ingeniería industrial, mecánica o civil, con conocimientos en Dibujo Industrial; con experiencia en la industria sobre el desarrollo, ingeniería y diseño de productos, y proyectos industriales.

