UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in GEO4310 - Stochastic methods in hydrology

Day of exam: 8 December 2015 Exam hours: 09:00 - 12:00

This examination paper consists of 4 pages (plus an appendix).

Appendices: Yes

Permitted materials: Calculator

Make sure that your copy of this examination paper is complete before answering.

Task 1 Definitions (10 points):

Give a brief definition for each of the following terms:

- a) Coefficient of variation
- b) Central limit theorem
- c) Autocorrelation
- d) Confidence interval
- e) Homoscedasticity

Task 2 Distributions and exreme value statistics (~30 points)

a) Two catchments receive the same annual precipitation, 1000 mm/year. Based on 30 years of streamflow data, we have estimated the following statistics:

	Catchment 1	Catchment 2
Mean (m³/s)	0.4	0.6
Standard deviation (m³/s)	0.2	0.1
Skewness	3.5	0.0

Sketch the probability distributions (pdf) of catchment 1 and 2 in the same figure. Sketch the cumulative probability distributions (cdf) of the two catchments in a different figure. Which mathematical distributions could fit catchment 1 and which could fit catchment 2?

b) The probability that an annual maximum flood at a measuring site in a river exceeds 100 m³/s is p=0.1, and the probability of not exceeding 100 m³/s is q=1-p=0.9. Assume that annual maximum floods are independent of each other.

What is the probability that the annual maximum flood exceeds 100 m³/s excactly three times during a period of 30 years?

- c) Flood-frequency analysis is used to calculate the magnitude of a flood.
 - Describe and sketch how you may select data used for a flood-frequency analysis from a data series consisting of daily mean flow.
 - ii) How is the return period defined? What is the relationship between the return period (T) and the cumulative distribution function (F), and which nonexceedence probability does a 100-year flood have?
 - iii) For a certain catchment, extreme streamflow values (q [m³/s]) may be described by a Gumbel distribution with parameters $\alpha = 0.234$ og $\beta = 0.369$.

$$F(q) = \exp(-\exp(-(q-\beta)/\alpha))$$

0

How large is a 100-year flood in this catchment?

Task 3 Hypothesis testing (~30 points)

a) Is there a significance difference between (a) the annual mean precipitation and (b) the variance of precipitation in point A and point B at a level of significance of 5% if for a 50-year period it has been found that:

Point Precipitation

	Mean	Standard deviation							
A	720 mm	220 mm							
В	660 mm	140 mm							

b) Based on 90-year records of yearly maximum discharge data at two adjacent stations, the following statistics are calculated (with n=90). The mean value in station A is 130 m3/s, standard deviation in A is 50 m3/s. The mean value in station B is 120 m3/s, standard deviation in B is 50 m3/s. The significance level is 5%

	Q≤50	50 <q≤100< th=""><th>100<q≤150< th=""><th>150<q≤250< th=""><th>Q>250</th></q≤250<></th></q≤150<></th></q≤100<>	100 <q≤150< th=""><th>150<q≤250< th=""><th>Q>250</th></q≤250<></th></q≤150<>	150 <q≤250< th=""><th>Q>250</th></q≤250<>	Q>250
Station A (# years)	6	24	35	15	10
Station B (# years)	5	25	20	26	14

Use Chi square method to test:

- i) the hypothesis that data in Station A and Station B have the same distribution
- ii) the hypothesis that data in Station A has normal distribution.

Task 4 Regression and time series (~30 points)

- a) The precipitation and runoff data for 25 Storms on the Monocacy River are provided in the table below.
 - i) Plot the observed data for runoff vs. Precipitation
 - ii) Determine and draw the regression line of runoff on precipitation (that is, the mean runoff for given value of precipitation).
 - iii) Estimate the variance of runoff for a given precipitation. Assume that the variance of th runoff is constant with precipitation.
 - iv) Assume that the runoff corresponding to a given precipitation is a normal variate; what is the probability that the runoff will exceed 50 mm. During a storm with 100-mm. precipitation?

24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	œ	7	6	σı	4	ω	2	Н	Storm ID
74.422	38.608	129.794	90.678	65.278	29.21	29.718	89.916	53.086	39.116	39.878	41.656	25.654	30.48	69.85	53.086	43.942	81.026	39.116	28.702	142.748	45.466	29.718	28.194	Precipitation (mm.)
28.448	14.224	44.196	40.386	11.43	5.842	9.906	25.908	24.13	14.986	19.558	17.78	7.62	9.906	31.496	19.812	16.764	19.304	4.826	4.318	74.168	24.638	10.16	13.208	Runoff (mm.)