Олимпиада школьников «Надежда энергетики». Заключительный этап. Очная форма

ЗАДАНИЕ ПО КОМПЛЕКСУ ПРЕДМЕТОВ ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА

ВАРИАНТ 47111 для 11 класса

Одна из легенд Северомуйского тоннеля рассказывает о бригадире-оптимизаторе, у которого «гвозди сами забивались, а рельсы сами прокладывались». «Хотите охладить сверло водой?» – говорил он – «не используйте всю воду сразу, а разделите на части, и тогда качество охлаждения увеличится в тысячи раз».

Проверьте это утверждение.

Пусть имеется стальное сверло, масса которого $m_C=0.1$ кг, а температура $t_C=100^{\circ}{\rm C}$. Для его охлаждения можно использовать $m_B=0.1$ кг воды с температурой $t_B=0^{\circ}{\rm C}$. Всю имеющуюся воду можно разделить на k равных частей и опускать сверло по очереди в каждую часть так, что после наступления теплового равновесия сверло вынимается и погружается в следующую, еще не использованную, порцию воды. Вода, уже побывавшая в употреблении, повторно не используется. Изменения температур сверла и воды за счет иных тепловых процессов будем считать пренебрежимо малыми. Удельная теплоемкость воды $c_B=4.19\cdot 10^3~\frac{D_{\rm c}}{K_{\rm C}\cdot {\rm cpa}_d}$, удельная теплоемкость стали $c_C=0.46\cdot 10^3~\frac{D_{\rm c}}{K_{\rm C}\cdot {\rm cpa}_d}$.

Коэффициентом охлаждения W_K назовем отношение начальной температуры сверла t_C к той конечной температуре t_K , которую приобретет сверло, побывав во всех k порциях воды.

- 1. Найдите температуру сверла t_1 , которую оно приобретет, если будет опущено сразу во всю имеющуюся воду. Вычислите соответствующий коэффициент охлаждения W_1 .
- 2. Найдите температуру сверла t_2 и коэффициент охлаждения W_2 при использовании воды двумя равными порциями.
- 3. Составьте программу, позволяющую по заданному значению k найти температуру сверла t_K и коэффициент охлаждения W_K . Для значений k равных 1,2,3,5,10,20,30,50,100 заполните таблицу (t_K округляйте до тысячных, W_K до целых)

$\mid k \mid$	t_K	W_K
1		
100		

- 4. Можно ли подобрать значение k_M , при котором температура сверла уменьшается в 8000 раз? Либо найдите такое минимальное k_M , либо укажите максимальное значение W_K , которое удается получить (за разумное время) с помощью написанной в п. 3 программы.
- 5. Следующим шагом оптимизации может стать использование воды со льдом. Пусть имеется та же масса $m_B=0.1$ кг, из которой 1% составляет лед, остальное вода с температурой $t_B=0$ °C (удельная теплота плавления льда $\lambda=334\cdot 10^3 \frac{Дж}{кг}$). Вся эта масса аналогичным образом разделяется на k равных порций. Для каждого из значений k, указанных в п. 3, определите, до какой температуры θ_k охладится сверло. Добавьте в таблицу четвертый столбец, содержащий значения θ_k .

Дополнение

Предполагается, что имеются технические приспособления, позволяющие разделить небольшой объем воды (и льда) на любое количество равных частей, а также обеспечить тепловой контакт всего сверла с полученной малой частью воды.