

Animal farm waste pyrolysis recycling complex **«PULSAR-BIO»**

CARBON EMISSIONS NEGATIVE WASTE PROCESSING IN TO ENERGY

UNIQUE "6 IN 1" UTILITY COMPLEX FOR WASTE, ENERGY, FRESH WATER, HEAT/COLD, FERTILISER, CARBON CREDITS

THE TYPES OF PROCESSABLE ANIMAL WASTE

PIG MANURE
HORSE MANURE
SHEEP MANURE
POULTRY MANURE

Dried/ hard dung, semi liquid, separated, fresh manure with moisture to 80%

"PULSAR-BIO" OPERATIONS DEMO (press >)

PRODUCED PRODUCTS

SYNTHETIC GAS MIX

COMBUSTIBLE/BALLAST GAS RATIO

PRODUCTS PRODUCED

SYNTHETIC GAS MIX

SYN GAS CALORIFIC CAPACITY = $43,14 \text{ MJ/m}^3$

PRODUCTS PRODUCED

LIQUID CONCENTRATE OF SALTS AND MINERALS

Nº	Показатели	Фактическое значение
1	Плотность при 20°С, г/см³	1,0
2	Водородный показатель рН	4,8
3	Взвешенные частицы, мг/дм³	700
4	Азот аммонийный, мг/дм ³	221,7
5	Хлорид-ион, мг/дм³	386,0
6	Сульфат-ион, мг/дм³	9,1
7	Минерализация, г/л содержание неорганических солей – бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия	6,2
8	Фосфор общий, мг/дм³	<0,025
9	Химическое потребление кислорода (ХПК), мг 0_2 /дм³ *	35680

^{*} AERATION REDUCES CHEMICAL CONSUMPTION OF OXYGEN TO: NORMS 03

PRODUCTS PRODUCED SOLID RESIDUE AFTER PYROLYSIS DECOMPOSITION

SOLID RESIDUE PARAMETERS	RESULTS
MOISTURE, MASS %	1.3
ASH RESIDUE, %	27.7
SULPHUR CONTENT, % MASS	1.2
COMBUSTION HEAT, KJ / KG	15,150 .00

PRODUCED PRODUCTS

CHEMICAL CONTENT OF THE SOLID RESIDUE

ELEMENT	AVERAGE FACTOR, % MASS			
C CARBON	64.81			
MgO	2.07			
Al ₂ O ₃	1.39			
SiO ₂	17.05			
P2O5	3.35			
SO ₃	0.28			
MnO	0.04			
K ₂ O	3.98			
CaO	4.71			
TiO ₂	0.10			
FeO	0.57			
Na₂O	1.65			
TOTAL	100 %			

COMPARABLE ANALYSIS OF THE MANURE PROCESSING TECHNOLOGIES CALCULATED BY 1MT OF THE PROCESSED FRESH MANURE

Технология пиролизной переработки свежего навоза КРС (Пульсар)	Переработка свежего навоза КРС на биогазовых комплексах (мезофильный процесс)			
Цикл переработки				
1 час	10 дней (среднее значение)			
Выработка газа, м³				
80,83	40-50			
Расход газа на поддержание техпроцесса, %				
15-20	до 20			
Степень разложе	ния биомассы,%			
100	40			
Время получения газа после	первого пуска оборудования			
2 ч	30-50 суток			
Выход газа на 1 кг с	сухого вещества, м ³			
0,28	0,25-0,34			

AEP ENGINEERING

Технология пиролизной переработки свежего навоза КРС (Пульсар)	Переработка свежего навоза КРС на биогазовых комплексах (мезофильный процесс)			
Теплота сгорания выработанного газа, МДж/м³				
43,2	22,0			
Расход газа на выработку	1 кВт/ч электроэнергии, м³			
0,3	0,36-0,38			
Биологическая опасность тве	ердых остатков производства			
100% обезвреживание углеродного остатка от патогенной флоры и гельминтов	Осадки не обезвреженные, содержат большое количество гельминтов.			
Требования к кислотности и наличи	ю питательных веществ в субстрате			
Нет требований	Требуется следить за оптимальной кислотностью и достаточным количеством питательных веществ и микроэлементов			
Требования к перера	абатываемому сырью			
Нет требований	Тщательный подбор субстратов для обеспечения выхода биогазов			
Требования к темпо	ературному режиму			
Широкий температурный диапазон, более + 600 °C	Узкий температурный диапазон, + 10 °C			
Попутное производство питьевой в	оды из атмосферного воздуха, т/сут			
До 35 т	Невозможно			
Проектные работы і	и кап.строительство			
Не требуется (мобильное исполнение)	Требуется (капитальные строения)			
Удельные капиталовложения на 1 кВт установленной мощности, евро				
1200–1900 (включая монтаж и пусконаладочные работы)	3000-5000 (без монтажа и пусконаладочных работ)			

QUANTATIVE CHARACTERISTICS

CALCULATED BY 1 MT OF THE PROCESSED FRESH CATTLE MANURE

PROCESSING CYCLE, HOURS	1
SYN GAS PRODUCED, m ³	80.83
SYN GAS CONSUMPRION FOR THE PROCESSING MAINTENANCE, %	15 – 20
BIOMASS DECOMPOSITION DEGREE, %	100
TIME NEEDED FOR GAS GENERATION AFTER THE PLANT FIRST START, HRS	2
COMBUSTION HEAT OF PRODUCED SYN GAS, MJ/m³	43.2
GAS CONSUMPTION REQUIRED FOR 1 KWh ELECTRICITY GENERATION, M ³	0.3
TEMPERATURE REGIME REQUIREMENTS	BROAD t*C RANGE, > +600°C
FRESH WATER PRODUCTION FROM ATMOSPHERIC AIR, MT/24 HRS	30-35

QUANTATIVE CHARACTERISTICS

WITH 30MT/DAY OF THE CATTLE FARM FRESH MANURE PROCESSING WE SHALL GET APPROX.QUANTITY OF THE FOLLOWING PRODUCTS:

- 100% SANITIZED, CLEAN FROM HAZARD MICROFLORA WATER SOLUTION OF MINERALS SALTS (LIQUID FERTILISER CONCENTRATE) **25.2 MT/DAY**
- PYROLYSIS SYN GAS 2,026 m³/ DAY, CALORIFIC CAPACITY 43,138 KJ/m³
- CARBON BLACK POWDER RESIDUE 3,1MT/DAY
- * POTENTIAL CARBON RESIDUE USAGE OPTIONS:
- A). MICRO FERTILISER, SIMILAR TO A WOODEN CHAR COAL
- B). SOLID PELLETISED FUEL WITH COMBUSTION HEAT CAPACITY OF
- 15,150 KJ/KG (SIMILAR TO BROWN COAL, FIREWOOD SOLID FUEL)

BENEFITS & ADVANTAGES

- 100% ENERGY INDEPENDENCE & SECURITY
- FAST ASSEMBLY & DEPLOYMENT ON SITE
- STATIONARY OR MOBILE DESIGN AS REQUIRED
- COMPLETE AUTOMATION, CONTINUOUS CYCLE 24/7
 - EXPLOSION AND FIRE-PROOF SAFETY DESIGN
 - REMOTE CONTROL SYSTEM VIA CLOUD DATA
 - LOW MAINTENANCE, SMALL PERSONNEL
 - NO CAPITAL BUILDING CONSTRUCTION COSTS
 - NO NEGATIVE BIOSPHERE ECOLOGICAL IMPACT
- CARBON EMISSIONS NEGATIVE WASTE PROCESSING
 - QUALIFY FOR THE CARBON CREDIT CERTIFICATES
- PROFITABLE COMPLEX WITH MULTIPLE REVENUE STREAMS

CONTACTS

AEP Engineering Sp.z.oo, Poland EU

Advanced Environment Protection Technologies Pte Ltd, Singapore

Director, Co-Founder, CTO Vitaly Shablov, Ph.D. in Ecological Safety

Director, Co-Founder, CEO Andrey Kolmogorov, BSc Eng, MBA

<u>aep.tech@mail.com</u> TEL +61.451488808

