AMENDMENTS TO THE CLAIMS

The listing of the claims will replace all prior versions, and listings, of claims:

LISTING OF CLAIMS:

Claims 1-38 (canceled)

Claim 39 (original): A method of multivariate spectral analysis, comprising the steps of:

- a) obtaining an estimate of spectral error covariance E_A for measured set of multivariate spectral data A;
- b) decomposing the spectral error covariance $\mathbf{E}_{\mathbf{A}}$ according to $\mathbf{E}_{\mathbf{A}} = \mathbf{TP} + \mathbf{E}$, where \mathbf{T} is a set of $n \times r$ scores and \mathbf{P} is a set of $r \times p$ loading vectors obtained from factor analysis of the spectral error covariance $\mathbf{E}_{\mathbf{A}}$, and \mathbf{E} is a set of $n \times p$ random errors and spectral variations not useful for prediction;
 - c) guessing pure-component spectra K for the set of multivariate spectral data A;
- d) predicting a set of component values $\hat{\mathbf{C}}$ according to $\hat{\mathbf{C}} = \mathbf{A}\mathbf{K}^{T}(\mathbf{K}\mathbf{K}^{T})^{-1} = \mathbf{A}(\mathbf{K}^{T})^{+}$;
- e) augmenting the set of predicted component values $\hat{\mathbf{C}}$ with at least one vector of the T scores to obtain a first set of augmented component values $\hat{\tilde{\mathbf{C}}}$;
- f) estimating augmented pure-component spectra $\hat{\tilde{K}}$ according to $\hat{\tilde{K}} = (\hat{\tilde{C}}^T \hat{\tilde{C}})^{-1} \hat{\tilde{C}}^T A = \hat{\tilde{C}}^+ A$;
 - g) testing for convergence according to $\left\|\mathbf{A} \hat{\widetilde{\mathbf{C}}}\hat{\widetilde{\mathbf{K}}}\right\|^2$;
- h) predicting a second set of augmented component values $\hat{\tilde{C}}$ according to $\hat{\tilde{C}} = A\hat{\tilde{K}}^T(\hat{\tilde{K}}\hat{\tilde{K}}^T)^{-1} = A(\hat{\tilde{K}}^T)^+;$
- i) replacing the augmented portion of the second set of augmented component values $\hat{\widetilde{\mathbf{C}}}$ with the at least one vector of the T scores to obtain a third set of augmented component values $\hat{\widetilde{\mathbf{C}}}$; and
 - j) repeating steps f) through i) at least once.

Claim 40 (original): The method of Claim 39, wherein the steps f) through i) are repeated until the test of step g) converges to obtain an alternating classical least squares solution for $\hat{\mathbf{K}}$ and $\hat{\mathbf{C}}$.

Claim 41 (original): The method of Claim 39, further comprising replacing the augmented portion of the augmented pure-component spectra $\hat{\mathbf{K}}$ with at least one vector of the **P** loading vectors prior to step h).

Claim 42 (original): The method of Claim 39, further comprising augmenting \hat{K} with at least one vector representing a spectral shape that is representative of at least one additional source of spectral variation prior to step h).

Claim 43 (original): The method of Claim 39, further comprising applying at least one constraint to the non-augmented portion of $\hat{\mathbf{K}}$ at step f).

Claim 44 (original): The method of Claim 43, wherein the at least one constraint is selected from the group consisting of non-negativity, equality, closure, monotonic constraint, unimodality, and selectivity.

Claim 45 (original): The method of Claim 39, further comprising applying at least one constraint to the non-augmented portion of $\hat{\mathbf{C}}$ at step h).

Claim 46 (original): The method of Claim 45, wherein the at least one constraint is selected from the group consisting of non-negativity, equality, closure, monotonic constraint, unimodality, and selectivity.

Claim 47 (original): The method of Claim 39, wherein the guessed pure-component spectra **K** comprises random numbers.

Claim 48 (original): The method of Claim 39, wherein the measured set of multivariate spectral data A comprises image data.

Claim 49 (original): The method of Claim 48, wherein the spectral error covariance E_A is obtained from a shift difference generated from a single image.

Claim 50 (original): The method of Claim 48, wherein the spectral error covariance E_A is obtained from repeat image spectra.

- Claim 51 (original): A method of multivariate spectral analysis, comprising the steps of:
- a) obtaining an estimate of spectral error covariance E_A for measured set of multivariate spectral data A;
- b) decomposing the spectral error covariance $\mathbf{E}_{\mathbf{A}}$ according to $\mathbf{E}_{\mathbf{A}} = \mathbf{TP} + \mathbf{E}$, where \mathbf{T} is a set of $n \times r$ scores and \mathbf{P} is a set of $r \times p$ loading vectors obtained from factor analysis of the spectral error covariance $\mathbf{E}_{\mathbf{A}}$, and \mathbf{E} is a set of $n \times p$ random errors and spectral variations not useful for prediction;
 - c) guessing pure-component spectra K for the set of multivariate spectral data A;
- d) augmenting the pure-component spectra K with at least one vector of the P loading vectors to obtain first augmented pure-component spectra \widetilde{K} ;
- e) predicting a first set of augmented component values $\hat{\widetilde{\mathbf{C}}}$ according to $\hat{\widetilde{\mathbf{C}}} = \mathbf{A}\widetilde{\mathbf{K}}^T (\widetilde{\mathbf{K}}\widetilde{\mathbf{K}}^T)^{-1} = \mathbf{A}(\widetilde{\mathbf{K}}^T)^+;$
- f) estimating second augmented pure-component spectra $\hat{\vec{K}}$ according to $\hat{\vec{K}} = (\hat{\vec{C}}^T \hat{\vec{C}})^{-1} \hat{\vec{C}}^T A = \hat{\vec{C}}^+ A$:
 - g) testing for convergence according to $\left\|\mathbf{A} \hat{\widetilde{\mathbf{C}}}\hat{\widetilde{\mathbf{K}}}\right\|^2$;
- h) replacing the augmented portion of the second augmented pure-component spectra $\hat{\vec{K}}$ with the at least one vector of the P loading vectors to obtain third augmented pure-component spectra $\hat{\vec{K}}$; and
- i) predicting a second set of augmented component values $\hat{\tilde{C}}$ according to $\hat{\tilde{C}} = A\hat{\tilde{K}}^T (\hat{\tilde{K}}\hat{\tilde{K}}^T)^{-1} = A(\hat{\tilde{K}}^T)^+;$
 - j) repeating steps f) through i) at least once.

Claim 52 (original): The method of Claim 51, wherein the steps f) through i) are repeated until the test of step g) converges to obtain an alternating classical least squares solution for $\hat{\mathbf{K}}$ and $\hat{\mathbf{C}}$.

Claim 53 (original): The method of Claim 51, further comprising replacing the augmented portion of the set of augmented component values $\hat{\tilde{C}}$ with at least one vector of the T scores prior to step h).

Claim 54 (original): The method of Claim 51, further comprising augmenting \hat{K} with at least one vector representing a spectral shape that is representative of at least one additional source of spectral variation prior to step h).

Claim 55 (original): The method of Claim 51, further comprising applying at least one constraint to the non-augmented portion of $\hat{\mathbf{K}}$ at step f).

Claim 56 (original): The method of Claim 55, wherein the at least one constraint is selected from the group consisting of non-negativity, equality, closure, monotonic constraint, unimodality, and selectivity.

Claim 57 (original): The method of Claim 51, further comprising applying at least one constraint to the non-augmented portion of $\hat{\tilde{C}}$ at step h).

Claim 58 (original): The method of Claim 57, wherein the at least one constraint is selected from the group consisting of non-negativity, equality, closure, monotonic constraint, unimodality, and selectivity.

Claim 59 (original): The method of Claim 51, wherein the guessed pure-component spectra K comprises random numbers.

Claim 60 (original): The method of Claim 51, wherein the measured set of multivariate spectral data A comprises image data.

Claim 61 (original): The method of Claim 60, wherein the estimate of the error covariance E_A is obtained from a shift difference generated from a single image.

Claim 62 (original): The method of Claim 60, wherein the estimate of the error covariance E_A is obtained from repeat image spectra.

Claim 63 (original): A method of multivariate spectral analysis, comprising the steps of:

- a) obtaining an estimate of the spectral error covariance E_A for measured set of multivariate spectral data A;
- b) decomposing the spectral error covariance $\mathbf{E}_{\mathbf{A}}$ according to $\mathbf{E}_{\mathbf{A}} = \mathbf{TP} + \mathbf{E}$, where \mathbf{T} is a set of $n \times r$ scores and \mathbf{P} is a set of $r \times p$ loading vectors obtained from factor analysis of the spectral error covariance $\mathbf{E}_{\mathbf{A}}$, and \mathbf{E} is a set of $n \times p$ random errors and spectral variations not useful for prediction;
 - c) guessing a set of component values C for the set of multivariate spectral data A;
 - d) estimating pure-component spectra $\hat{\mathbf{K}}$ according to $\hat{\mathbf{K}} = (\mathbf{C}^T \mathbf{C})^{-1} \mathbf{C}^T \mathbf{A} = \mathbf{C}^+ \mathbf{A}$;
- e) augmenting the pure-component spectra $\hat{\mathbf{K}}$ with at least one vector of the \mathbf{P} loading vectors to obtain first augmented pure-component spectra $\hat{\tilde{\mathbf{K}}}$;
- f) predicting a first set of augmented component values $\hat{\tilde{C}}$ according to $\hat{\tilde{C}} = A\hat{\tilde{K}}^T (\hat{\tilde{K}}\hat{\tilde{K}}^T)^{-1} = A(\hat{\tilde{K}}^T)^+;$
 - g) testing for convergence according to $\left\|\mathbf{A} \hat{\widetilde{\mathbf{C}}}\hat{\widetilde{\mathbf{K}}}\right\|^2$;
- h) estimating second augmented pure-component spectra $\hat{\tilde{K}}$ according to $\hat{\tilde{K}} = (\hat{\tilde{C}}^T \hat{\tilde{C}})^{-1} \hat{\tilde{C}}^T A = \hat{\tilde{C}}^+ A$;
- i) replacing the augmented portion of the second augmented pure-component spectra $\hat{\vec{K}}$ with the at least one vector of the P loading vectors to obtain a third augmented pure-component spectra $\hat{\vec{K}}$ and
 - j) repeating steps f) through i) at least once.

Claim 64 (original): The method of Claim 63, wherein the steps f) through i) are repeated until the test of step g) converges to obtain an alternating classical least squares solution for $\hat{\mathbf{K}}$ and $\hat{\mathbf{C}}$.

Claim 65 (original): The method of Claim 63, further comprising replacing the augmented portion of the set of augmented component values $\hat{\tilde{C}}$ with at least one vector of the T scores prior to step h).

Claim 66 (original): The method of Claim 63, further comprising augmenting $\tilde{\mathbf{K}}$ with at least one vector representing a spectral shape that is representative of at least one additional source of spectral variation prior to step h).

Claim 67 (original): The method of Claim 63, further comprising applying at least one constraint to the non-augmented portion of $\hat{\mathbf{K}}$ at step h).

Claim 68 (original): The method of Claim 67, wherein the at least one constraint is selected from the group consisting of non-negativity, equality, closure, monotonic constraint, unimodality, and selectivity.

Claim 69 (original): The method of Claim 63, further comprising applying at least one constraint to the non-augmented portion of $\hat{\tilde{C}}$ at step f).

Claim 70 (original): The method of Claim 69, wherein the at least one constraint is selected from the group consisting of non-negativity, equality, closure, monotonic constraint, unimodality, and selectivity.

Claim 71 (original): The method of Claim 63, wherein the guessed set of component values C comprises random numbers.

Claim 72 (original): The method of Claim 52, wherein the measured set of multivariate spectral data A comprises image data.

Claim 73 (original): The method of Claim 62, wherein the spectral error covariance E_A is obtained from a shift difference generated from a single image.

Claim 74 (original): The method of Claim 62, wherein the spectral error covariance E_A is obtained from repeat image spectra.

Claim 75 (original): A method of multivariate spectral analysis, comprising the steps of:

- a) obtaining an estimate of the spectral error covariance E_A for measured set of multivariate spectral data A;
- b) decomposing the spectral error covariance $\mathbf{E}_{\mathbf{A}}$ according to $\mathbf{E}_{\mathbf{A}} = \mathbf{TP} + \mathbf{E}$, where \mathbf{T} is a set of $n \times r$ scores and \mathbf{P} is a set of $r \times p$ loading vectors obtained from factor analysis of the spectral error covariance $\mathbf{E}_{\mathbf{A}}$, and \mathbf{E} is a set of $n \times p$ random errors and spectral variations not useful for prediction;
 - c) guessing a set of component values C for the set of multivariate spectral data A;
- d) augmenting the set of component values C with at least one vector of the T scores to obtain a first set of augmented component values \widetilde{C} ;
- e) estimating augmented pure-component spectra $\hat{\vec{K}}$ according to $\hat{\vec{K}} = (\tilde{C}^T \tilde{C})^{-1} \tilde{C}^T A = \tilde{C}^+ A$;
 - f) testing for convergence according to $\left\|\mathbf{A} \widetilde{\mathbf{C}} \hat{\widetilde{\mathbf{K}}} \right\|^2$;
- g) predicting a second set of augmented component values $\hat{\tilde{C}}$ according to $\hat{\tilde{C}} = A\hat{\tilde{K}}^T(\hat{\tilde{K}}\hat{\tilde{K}}^T)^{-1} = A(\hat{\tilde{K}}^T)^+;$
- h) replacing the augmented portion of the second set of augmented component values $\hat{\tilde{C}}$ with the at least one vector of the T scores to obtain a third set of augmented component values $\hat{\tilde{C}}$ and
- i) repeating steps e) through h) at least once, using the augmented component values $\hat{\tilde{C}}$ in step f).

Claim 76 (original): The method of Claim 75, wherein the steps e) through h) are repeated until the test of step g) converges to obtain an alternating classical least squares solution for $\hat{\mathbf{K}}$ and $\hat{\mathbf{C}}$.

Claim 77 (original): The method of Claim 75, further comprising replacing the augmented portion of the augmented pure-component spectra $\hat{\mathbf{K}}$ with at least one vector of the **P** loading vectors prior to step e).

Claim 78 (original): The method of Claim 75, further comprising augmenting $\widetilde{\mathbf{K}}$ with at least one vector representing a spectral shape that is representative of at least one additional source of spectral variation prior to step e).

Claim 79 (original): The method of Claim 75, further comprising applying at least one constraint to the non-augmented portion of $\hat{\mathbf{K}}$ at step e).

Claim 80 (original): The method of Claim 79, wherein the at least one constraint is selected from the group consisting of non-negativity, equality, closure, monotonic constraint, unimodality, and selectivity.

Claim 81 (original): The method of Claim 75, further comprising applying at least one constraint to the non-augmented portion of $\hat{\tilde{C}}$ at step g).

Claim 82 (original): The method of Claim 81, wherein the at least one constraint is selected from the group consisting of non-negativity, equality, closure, monotonic constraint, unimodality, and selectivity.

Claim 83 (original): The method of Claim 75, wherein the guessed set of component values C comprises random numbers.

Claim 84 (original): The method of Claim 75, wherein the measured set of multivariate spectral data A comprises image data.

Claim 85 (original): The method of Claim 84, wherein the spectral error covariance E_A is obtained from a shift difference generated from a single image.

Claim 86 (original): The method of Claim 84, wherein the spectral error covariance E_A is obtained from repeat image spectra.

By: Marka Trijello

CONCLUSION

Applicants have canceled the nonelected claims and urge that the application is now in condition for allowance.

Respectfully submitted,

Kevin W. Bieg

Attorney for Applicants

Reg. No. 40,912

Ph: 505 284-4784

Sandia National Laboratories

P.O. Box 5800/MS 0161

Albuquerque, NM 87185-01

CERTIFICATION UNDER 37 CFR 1.8

I hereby certify that this correspondence and documents referred to herein were deposited with the United States Postal Service as first class mail addressed to: Commissioner for Patents, Alexandria, VA 22313-1450 on the date shown below.

Date: 7/13/04

10