IN THE CLAIMS:

Please cancel claim 20 without prejudice.

- 1. (Previously Presented) Apparatus for tightly-coupling hardware data encryption func-
- tions with software-based protocol decode processing within a pipelined processor of a
- programmable processing engine in a network switch, the apparatus comprising:
- an encryption execution unit contained within the pipelined processor;
- an ALU contained within the pipelined processor;
- an instruction decode stage (ID stage), in response to reading an opcode, enables
- 7 the encryption execution unit to read data from a memory shared by the ALU and the
- 8 encryption execution unit, and for the encryption execution unit to process the data read
- 9 from the shared memory; and
- a multiplexer to select as an output a result of processing by the encryption exe-
- cution unit rather than a result of ALU processing.

1	2. (Original) The apparatus of Claim 1 wherein the encryption execution unit is an en-
2	cryption tightly coupled state machine (TCSM) unit that is selectively invoked within the
3	pipelined processor.
1	3. (Previously Presented) The apparatus of Claim 2, further comprising:
2	native encryption opcodes provided within an instruction set of the pipelined
3	processor to enable selective access to the encryption TCSM unit by software.
1	4. (Previously Presented) The apparatus of Claim 3, further comprising:
•	a plurality of busses internal to the pipelined processor and wherein a hardware
4	
3	portion of the interface allows the encryption TCSM unit to utilize the internal buses in
4	response to decode processing of the native encryption opcodes.

_1	5. (Previously Presented) The apparatus of Claim 4, further comprising:
2	the pipelined processor is a microcontroller core (TMC) processor having a
3	multi-stage pipeline architecture that includes an instruction fetch stage, an instruction
4	decode stage, an execution stage and a memory write-back stage.
1	6. (Previously Presented) The apparatus of Claim 5, further comprising:
2	the TMC processor further includes an arithmetic logic unit, at least one internal
3	register, an instruction fetch and decode unit and the encryption TCSM unit organized as
4	a data path.

1	7. (Previously Presented) The apparatus of Claim 5 wherein the encryption TCSM unit
2	comprises:
3	a data encryption standard (DES) functional component cooperatively coupled to
4	a sub-key generation functional component.
1	8. (Previously Presented) The apparatus of Claim 7 wherein the DES functional compo-
2	nent comprises:
3	state machine hardware used to execute each round of a DES function.
1	9. (Previously Presented) The apparatus of Claim 7, further comprising:
2	the sub-key generation functional component comprises state machine hardware
3	that generates a sub-key as needed for each round of a DES function.

- 1 10. (Previously Presented) A method for tightly-coupling hardware data encryption
- 2 functions with software-based protocol decode processing within a pipelined processor of
- a programmable processing engine in a network switch, the method comprising the steps
- 4 of:
- 5 providing an encryption execution unit within the pipelined processor;
- 6 providing an ALU within the pipelined processor;
- enabling, by an instruction decode stage (ID stage) in response to reading an op-
- 8 code, the encryption execution unit to read data from a memory shared by the ALU and
- 9 the pipelined processor, and for the encryption execution unit to process the data read
- 10 from the memory; and
- selecting as output the result of processing by the encryption execution unit rather
- than selecting results from the ALU.

11. (Previously Presented) The method of Claim 10, further comprising:

2	having native encryption opcodes contained within an instruction set of the pipe-
3	lined processor; and
	issuing the native encryption opcodes directly to the encryption execution unit to
4	issuing the native energytion opeous uncerty to the energytion execution unit to
5	substantially reduce encryption setup latency.
1	12. (Previously Presented) The method of Claim 11, further comprising:
2	
3	decoding the native encryption opcodes at the instruction decode stage; and
4	in response to the step of decoding, invoking the encryption execution unit to per-
5	form encryption/decryption functions at the execution stage.
1	13. (Previously Presented) The method of Claim 12, further comprising:
2	
	protocol processing of protocols contained in a plaintext stored at the network
3	protocol processing of protocols contained in a plaintext stored at the network
4	switch to determine an appropriate encryption algorithm;
5	upon determining the appropriate encryption algorithm, immediately starting an
6	operation to fetch initial keys needed to perform the encryption/decryption functions; and

7	upon fetching the keys, providing the keys to the encryption execution unit within
8	the TMC processor.
-1	14. (Previously Presented) The method of Claim 13, further comprising:
2	including a plurality of high-performance busses internal to the TMC processor;
3	and
4	accessing the internal busses to simultaneously load an encryption key and store
5	a previous encryption result.
1	15. (Previously Presented) The method of Claim 12 further comprising the step of,
2	wherein the encryption execution unit is an encryption tightly coupled state machine
3	(TCSM) unit:
4	initializing the encryption TCSM unit in response to execution of a first instruc-
5	tion that defines the form of operation to be performed.
1	16. (Original) The method of Claim 15 wherein the encryption TCSM unit comprises a
2	data encryption standard (DES) functional component cooperatively coupled to a sub-key

3	generation functional component and wherein the step of initializing comprises the steps
4	of:
5	decoding a first portion of the first instruction to initialize the DES functional
6	component; and
7	decoding a second portion of the first instruction to initialize the sub-key genera-
8	tion functional component.
1	17. (Original) The method of Claim 16 further comprising the step of:
2	executing a second instruction having a micro-opcode field containing a native
3	encryption opcode that specifies loading an initial key from a memory into the sub-key
4	generation functional component of the encryption TCSM unit.
j	18. (Previously Presented) The method of Claim 17 further comprising the step of:
2	performing a DES function on a plaintext in response to execution of a third in-
3	struction having a micro-opcode field containing a native encryption code that specifies

4	loading of the plaintext into the DES functional component of the encryption TCSM uni
5	and initiating DES operations; and
6	upon completing the DES operations, storing a ciphertext result in an internal
7	register coupled to the DES functional component.
1	19. (Original) The method of Claim 18 further comprising the step of:
2	executing a fourth instruction to store the ciphertext results contained in the inter
3	nal register to a location in the memory.
1	20. (Canceled)
1	21. (Previously Presented) A pipelined processor in a network switch, the processor
2	comprising:

3	an ALU internal to the processor responsive to a first set of opcodes;
4	an encryption execution unit internal to the processor having an encryption tightly
5	coupled state machine (TCSM) responsive to a second set of opcodes;
6	an instruction decode stage (ID stage) to decode an opcode, the ID stage, in re-
7	sponse to an opcode of said second set of opcodes, transferring processing to the encryp-
8	tion execution unit;
9	a multiplexer to select output from the ALU OR from the encryption execution
10	unit.
1	22. (Previously Presented) The processor of Claim 21, wherein the processor is a micro-
2	controller core (TMC) processor and further comprises:
3	an instruction fetch stage;
4	an execution stage to execute an instruction decoded by the ID stage; and
5	a memory write-back stage to write a result of said execution stage to memory.
3	a memory write stage to write a result of said execution stage to memory.

23. (Previously Presented) The processor of Claim 21, further comprises:

2		one or more internal registers;
3		a bus operatively connecting the one or more internal registers to both the ALU
4	and the	e encryption execution unit; and
5		a multiplexer having inputs from both the ALU and the encryption execution unit,
6	the mu	altiplexer outputting a selected input.
1	24.	(Previously Presented) The processor of Claim 21, wherein the encryption TCSM
2	unit co	omprises:
3		a data encryption standard (DES) functional component cooperatively coupled to
4	a sub-l	key generation functional component.
1	25.	(Previously Presented) The processor of Claim 24, wherein the DES functional
2	compo	nent comprises:
3		a state machine that executes each round of a DES function.

- 1 26. (Previously Presented) The processor of Claim 24, wherein the sub-key genera-
- 2 tion functional component comprises:
- a state machine that generates a sub-key as needed for each round of a DES func-
- 4 tion.

- 27. (Previously Presented) A method for providing encryption functions within a pipe-
- 2 lined processor in a network switch, the method comprising the steps of:
- associating a first set of opcodes with an ALU internal to the processor, the ALU
- 4 performing protocol processing operations;
- associating a second set of opcodes with an encryption execution unit internal to
- 6 the processor, the encryption execution unit performing encryption operations;
- 7 decoding opcodes by an instruction decode stage (ID stage);
- transferring by the ID stage, in response to an opcode from said first set of op-
- 9 codes, processing to the ALU;
- transferring by the ID stage, in response to an opcode from said second set of op-
- codes, processing to the encryption execution unit; and
- selecting output from the ALU OR from the encryption execution unit.

1	28. (Previously Presented) The method of Claim 27, further comprises the step of:
2	providing one or more internal registers;
3	providing a bus operatively connecting the one or more internal registers to both
4	the ALU and the encryption execution unit;
5	providing a multiplexer having inputs from both the ALU and the encryption exe-
6	cution unit, the multiplexer outputting a selected input.
1	29. (Previously Presented) The method of Claim 27 further comprising the step of:
2	initializing the encryption TCSM unit in response to a first instruction that defines
3	a form of operation to be performed.

1	30. (Previously Presented) The method of Claim 29, wherein the step of initializing
2	comprises the steps of:
3	decoding a first portion of the first instruction to initialize a DES functional com-
4	ponent; and
5	decoding a second portion of the first instruction to initialize a sub-key genera-
6	tion functional component.
1	31. (Previously Presented) The method of Claim 27, further comprising the steps of:
2	executing a second instruction including an encryption opcode that specifies load-
3	ing an initial key from a memory into a sub-key generation functional component of the
4	TCSM unit.
1	32. (Previously Presented) The method of Claim 27, further comprising the steps of:
2	performing a DES function in response to execution of a third instruction having a
3	field containing an encryption opcode that specifies loading plaintext and initializing a
4	DES operation.

- 33. (Previously Presented) A computer readable media, comprising:
- said computer readable media containing instructions for execution in a processor
- 3 for the practice of the method of,
- 4 providing a tightly-coupling hardware data encryption function with software-
- based protocol decode processing within a pipelined processor of a programmable proc-
- 6 essing engine in a network switch;
- 7 providing an encryption execution unit within the pipelined processor;
- 8 providing an ALU within the pipelined processor;
- enabling, by an instruction decode stage (ID stage) in response to reading an op-
- code, the encryption execution unit to read data from a memory shared by the ALU and
- the pipelined processor, and for the encryption execution unit to process the data read
- 12 from the memory; and
- selecting as output the result of processing by the encryption execution unit rather
- than selecting results from the ALU.
- 1 34. (Previously Presented) Electromagnetic signals propagating on a computer network,
- 2 comprising:

said electromagnetic signals carrying instructions for execution on a processor for 3 the practice of the method of, 4 providing a tightly-coupling hardware data encryption function with soft-5 ware-based protocol decode processing within a pipelined processor of a programmable processing engine in a network switch; 7 providing an encryption execution unit within the pipelined processor; 8 providing an ALU within the pipelined processor; 9 enabling, by an instruction decode stage (ID stage) in response to reading 10 an opcode, the encryption execution unit to read data from a memory shared by the ALU 11 and the pipelined processor, and for the encryption execution unit to process the data read 12 13 from the memory; and selecting as output the result of processing by the encryption execution 14 unit rather than selecting results from the ALU. 15

- 1 35. (Previously Presented) A router, comprising:
- a processor having an instruction decode stage (ID stage) for processing opcodes;
- an ALU for performing protocol processing operations;
- a tightly coupled state machine (TCSM) for performing encryption processing;
- a shared memory for providing data to either the ALU or the TCSM;

6	the ID stage, in response to reading an opcode, transferring processing to the
7	TCSM, and the TCSM performing encryption processing on data read from the shared
8	memory;
9	a selector to select as output results from the ALU OR results from the TCSM.
1	36. (Previously Presented) The apparatus of Claim 35, further comprising:
2 ·	the selector is a multiplexer.
1	37. (Previously Presented) The apparatus of Claim 35, further comprising;
2	the ALU selects whether the ALU or the TCSM reads data from the memory.
1	38. (Previously Presented) The apparatus of Claim 35, further comprising:
2	the TCSM performs DES data encryption standard encryption processing.

39. (Previously Presented) The apparatus of Claim 35, further comprising:

a sub-key generation component to provide a key to the TCSM.

- 40. (Previously Presented) A method for operating a router, comprising:
- processing opcodes by an instruction decode stage (ID stage);
- 4 performing encryption processing by a tightly coupled state machine (TCSM);
- 5 performing protocol processing by an ALU;
- reading data from a shared memory by either the ALU or the TCSM;
- 7 transferring processing by the ID stage, in response to reading an opcode to the
- 8 TCSM, and the TCSM performing encryption processing on data read from the shared
- 9 memory;

2

selecting as output results from the ALU OR results from the TCSM.

- 1 41. (Previously Presented) The method of Claim 40, further comprising:
- using a multiplexer for selecting as output results from the ALU OR results from
- 3 the TCSM.

42. (Previously Presented) The method of Claim 40, further comprising; 1 selecting whether the ALU or the TCSM reads data from the memory. 43. (Previously Presented) The method of Claim 40, further comprising: performing DES data encryption standard encryption processing by the TCSM. 2 44. (Previously Presented) The method of Claim 40, further comprising: providing a key to the TCSM by a sub-key generation component. 2 45. (Previously Presented) A router, comprising: 1 means for providing a processor having an ALU for processing opcodes and a 2 tightly coupled state machine (TCSM) for performing encryption processing; 3 means for reading data from a shared memory by either the ALU or the TCSM; 4 means for transferring processing by an instruction decode stage (ID stage), in 5

response to reading an opcode, to the TCSM, and the TCSM performing encryption proc-

essing on data read from the shared memory;

6

7

8	means for selecting as output results from the ALU OR results from the TCSM.
1	46. (Previously Presented) The apparatus of Claim 45, further comprising:
2	means for using a multiplexer for selecting as output results from the ALU OR
3	results from the TCSM.
1	47. (Previously Presented) The apparatus of Claim 45, further comprising;
2	means for selecting by the ALU whether the ALU or the TCSM reads data from
3	the memory.
1	48. (Previously Presented) The apparatus of Claim 45, further comprising:
2	means for performing DES data encryption standard encryption processing by the
3	TCSM.

49. (Previously Presented) The apparatus of Claim 45, further comprising:

2	means for providing a key to the TCSM by a sub-key generation component.
1	50. (Previously Presented) A computer readable media, comprising:
2	said computer readable media containing instructions for execution in a processor
3	for the practice of the method of,
4	providing encryption functions within a pipelined processor in a network switch,
5	having the steps,
6	associating a first set of opcodes with an ALU internal to the processor, the ALU
7	performing protocol processing operations;
8	associating a second set of opcodes with an encryption execution unit internal to
9	the processor, the encryption execution unit performing encryption operations;
10	decoding opcodes by an instruction decode stage (ID stage);
11	transferring by the ID stage, in response to an opcode from the first set of op-
12	codes, processing to the ALU;
13	
14	transferring by the ID stage, in response to an opcode from said second set of op-
15	codes, processing to the encryption execution unit; and

selecting output from the ALU OR from the encryption execution unit.

1	51. (Previously Presented) Electromagnetic signals propagating on a computer network,
2	comprising:
3	said electromagnetic signals carrying instructions for execution on a processor for
4	the practice of the method of,
5	providing encryption functions within a pipelined processor in a network switch,
6	having the steps,
7	associating a first set of opcodes with an ALU internal to the processor, the ALU
8	performing protocol processing operations;
9	associating a second set of opcodes with an encryption execution unit internal to
10	the processor, the encryption execution unit performing encryption operations;
11	decoding opcodes by an instruction decode stage (ID stage);
12	transferring by the ID stage, in response to an opcode from the first set of op-
13	codes, processing to the ALU;
14	
15	transferring by the ID stage, in response to an opcode from said second set of op-
16	codes, processing to the encryption execution unit; and

17

selecting output from the ALU OR from the encryption execution unit.

52. (Previously Presented) A computer readable media, comprising: 1 2 said computer readable media containing instructions for execution in a processor for the practice of the method of operating a router, having the steps, 3 processing opcodes by an instruction decode stage (ID stage); 4 performing encryption processing by a tightly coupled state machine 5 (TCSM); performing protocol processing by an ALU; 7 reading data from a shared memory by either the ALU or the TCSM; 8 transferring processing by the ID stage, in response to reading an opcode 9 to the TCSM, and the TCSM performing encryption processing on data read from the 10 shared memory; and 11 electing as output results from the ALU OR results from the TCSM. 12 53. (Previously Presented) Electromagnetic signals propagating on a computer network, 1 comprising: 2 said electromagnetic signals carrying instructions for execution on a processor for 3

the practice of the method of operating a router, having the steps,

4

5	processing opcodes by an instruction decode stage (ID stage);
6	performing encryption processing by a tightly coupled state machine
7	(TCSM);
8	performing protocol processing by an ALU;
9	reading data from a shared memory by either the ALU or the TCSM;
10	transferring processing by the ID stage, in response to reading an opcode
11	to the TCSM, and the TCSM performing encryption processing on data read from the
12	shared memory; and
13	selecting as output results from the ALU OR results from the TCSM.