é, na sua permanente tentativa de dominar, construindo e testando modelos do universo em que vive, a Física é considerada, na escola, uma matéria difícil, pouco motivadora, aprendida mecanicamente. As causas são muitas, mas a falta de atualização ou, pelo menos, de reformulação do currículo deve ser uma das mais importantes. O currículo de Física nas escolas é desatualizado; ensina-se uma Física que não chega ao século XX que é quase só Mecânica e que invariavelmente começa pela Cinemática. Esta, por seu caráter altamente representacional, é, psicologicamente, talvez o mais inadequado dos conteúdos para se começar a aprender Física. Por que, então, não começar com tópicos contemporâneos? Dificilmente serão mais inapropriados do que a Cinemática, a Estática e a Dinâmica.

O presente trabalho pretende contribuir para uma reflexão nesse sentido e, ao mesmo tempo, servir como material de apoio para professores que queiram renovar ou, quem sabe, resgatar a Física no Ensino Médio.

Notas

¹Apesar de consagrado, o termo partícula elementar, em especial a palavra partícula, não é adequado para nomear as unidades fundamentais da matéria. No domínio subatômico, partícula não é um corpúsculo, um corpo diminuto. Pensar as partículas elementares como corpos muito pequenos, com massas muito pequenas, ocupando espaços muito pequenos, funciona como obstáculo representacional para compreendê-las de maneira significativa (partículas elementares podem, por exemplo, não ter massa; além disso, tais partículas não têm existência situada, i.e., não podem ser localizadas com precisão). Por esta razão, ao longo deste texto as partículas elementares não serão referidas ou representadas por corpúsculos ou "bolinhas" como aparece na maioria dos textos didáticos sobre esse tema.

²Spin é uma propriedade fundamental das partículas elementares que descreve seu estado de rotação; é o *momentum* angular intrínseco das partículas. De acordo com as regras da Mecânica Quântica, o spin das partículas elementares pode ter apenas determinados valores que são sempre um número inteiro (0, 1, 2, 3, ...) ou semi-inteiro (1/2, 3/2, 5/2, ...) multiplicados por \hbar (h/2 π ; onde $h \cong 6,6.10^{-22}$ MeV.s é a constante de Planck, a constante fundamental da Mecânica Quântica). Isso significa que o spin das partículas elementares é uma propriedade essencialmente quântica, ou seja, um número quântico, sem análogo na Física Clássica, pois se tais partículas fossem bolinhas girando em torno de um eixo seu momentum angular poderia ter qualquer valor.

 3 De acordo com esse princípio, duas partículas da mesma espécie e com spins não inteiros não podem ocupar o mesmo estado quântico. Férmions (léptons e quarks) obedecem a esse princípio, bósons (fótons, glúons e partículas W e Z) não.

⁴Grávitons seriam, teoricamente, partículas de massa nula e spin 2. Fótons são também partículas de massa nula, porém a troca de fótons produz atração entre partículas de cargas opostas e repulsão entre partículas de mesma carga, enquanto a troca de grávitons produz só atração. No entanto, em condições terrestres a atração gravitacional é tão fraca que os quanta dessa interação são praticamente indetectáveis. A interação gravitacional torna-se dominante em energias da ordem de 2.10⁻⁵ g, que é a chamada massa de Planck (ou energia de Planck), que seriam fantasticamente grandes para serem produzidas em condições de laboratório. Note-se que, devido à equivalência massaenergia, faz sentido medir a energia em unidades de massa e a massa em unidades de energia. A massa de Planck, 2.10⁻⁵ g, equivale à energia de Planck, $1, 1.10^{19} \text{ GeV}$ (Giga eV = 10^9 eV, onde 1 eV \cong 1,6.10⁻¹⁹ J é a energia adquirida por um elétron acelerado ao longo de uma diferença de potencial de 1 V).

⁵Cada glúon tem uma cor (vermelho, verde e azul) e uma anticor (antivermelho, antiverde e antiazul), de modo que haveria nove possibilidades de pares cor anticor que corresponderiam a nove glúons. No

entanto, de acordo com a teoria da carga cor, a chamada Cromodinâmica Quântica (em analogia à Eletrodinâmica Quântica), no caso das possibilidades vermelho-antivermelho, verde-antiverde e azul-antiazul poderia haver transições de uma para outra que levaria a três combinações (superposições) lineares entre elas, das quais uma seria totalmente sem cor, i.e., branca. Portanto, há oito glúons, não nove como pareceria inicialmente. Assim como a carga elétrica, a carga cor também obedece uma lei de conservação, porém enquanto existe apenas uma carga elétrica, há oito cargas cores distintas (Okun, 1987, p. 41-42).

⁶Medir a intensidade de duas grandezas físicas simultaneamente implica duas medições, porém a realização da primeira medida poderá perturbar o sistema e criar uma incerteza na segunda. Nesse caso, não será possível medir as duas simultaneamente com a mesma precisão. Não se pode, por exemplo, medir tanto a posição como a velocidade de uma partícula com toda precisão, nem sua exata energia num exato momento. Macroscopicamente isso não faz diferença, pois a perturbação é tão pequena que pode ser ignorada, porém para partículas subatômicas o efeito é dramático (Close, 1983, p. 175).

Bibliografia

- F. Close, The Cosmic Onion. Quarks and the Nature of the Universe (American Institute of Physics, USA, 1983), 180 p.
- P. Colas y B. Tuchming, Mundo Científico **247**, 46 (2003).
- H. Fritzch, Quarks: The Stuff of Matter (Basic Books Inc., USA, 1983), 295 p.
- P.I.P. Kalmus, Contemporary Physics, **41**, 129 (2000).
- G. Kelly, A Theory of Personality The Psychology of Personal Constructs (W.W. Norton & Company, New York, 1963), 189 p.
- M.A. Moreira, Revista Brasileira de Ensino de Física **11**, 114 (1989).
- M.A. Moreira, Enseñanza de las Ciencias **8**, 133 (1990).
- M.A. Moreira e B. Buchweitz, Mapas Conceituais. Instrumentos Didáticos, de Avaliação e de Análise de Currículo (Editora Moraes, São Paulo, 1987), 83 p.
- L.B. Okun, A Primer in Particle Physics (Harwood Academic Publishers, UK, 1987), 112 p.