Pre-Lab 3

Name: Chhay Lay Heng Class: CS 4141.115

Date: November 2, 2023

Problem 1. Adder IC (74LS283)

The mathematical equation computed by the 4-bit adder is $C_{in} + 2^{0}(A_{0} + B_{0}) + 2^{1}(A_{1} + B_{1}) + 2^{2}(A_{2} + B_{2}) + 2^{3}(A_{3} + B_{3}) = 2^{0}S_{0} + 2^{1}S_{1} + 2^{2}S_{2} + 2^{3}S_{3} + 2^{4}C_{out}.$

- 1.1 Pin 16 is VCC.
- 1.2 Pin 8 is GND.
- 1.3 For input A (same for B and output S), A3 is the more significant bit.
- 1.4 Compute 8 + 12 using the binary adder using the binary adder logic symbol. Draw an image of the logic symbol and label the appropriate inputs and outputs with a 1 or a 0.

$$Cin = 0$$

 $A = 8 = 1000_2$
 $B = 12 = 1100_2$
 $S = 0100_2$
 $Cout = 1$ (Overflow)

Cin = 0 $A = 5 = 0101_2$ $B = 6 = 0110_2$ $S = 1011_2$

Problem 2. Subtraction with Two's Complement

- 2.1. To manipulate the bits of B to do both add and subtract is by using XOR gate between Cin and B. If Cin=0 or the remain is the same, then it does addition. If Cin=1 or all B's bits are flipped, then it does subtraction.
- 2.2. Draw the logic diagram (not circuit diagram) of the 4-bit adder/subtractor. For the Full Adder, use the logic symbol in the first page. A logical diagram should contain block notations (such as Full Adder, D Flip-Flop, Decoder, Multiplexer) and gate symbols (such as AND, OR, and NOT).

Problem 3. 1-Digit BCD Full Adder

Learn about Binary Coded Decimal. Check the logic behind a 1-digit BCD full adder. Come up with a truth table and logic diagram for the BCD full adder. (Note: You have to implement the same question in the lab). A logical diagram should contain block notations (such as Full Adder, D Flip-Flop, Decoder, Multiplexer) and gate symbols (such as AND, OR, and NOT).

Truth Table

Decimal	Binary Sum					BCD Sum				
	K	Z_8	Z_4	Z_2	Z_1	С	S_8	S ₄	S_2	S_1
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1
2	0	0	0	1	0	0	0	0	1	0
3	0	0	0	1	1	0	0	0	1	1
4	0	0	1	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	1	0	1
6	0	0	1	1	0	0	0	1	1	0
7	0	0	1	1	1	0	0	1	1	1
8	0	1	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	1	0	0	1
10	0	1	0	1	0	1	1	0	1	0
11	0	1	0	1	1	1	1	0	1	1
12	0	1	1	0	0	1	1	1	0	0
13	0	1	1	0	1	1	1	1	0	1
14	0	1	1	1	0	1	1	1	1	0
15	0	1	1	1	1	1	1	1	1	1
16	1	0	0	0	0	1	0	0	0	0
17	1	0	0	0	1	1	0	0	0	1
18	1	0	0	1	0	1	0	0	1	0
19	1	0	0	1	1	1	0	0	1	1

Logic Diagram

