Logika

Definíció

Predikátum: olyan váltózóktól függő kijelentések, amelyhez a változóik értékétől függően valamilyen igazságérték tartozik:

igaz (I, ↑), hamis (H,↓), és a kettő egyidejűleg nem teljesül.

Definíció (Formulák)

- A predikátumok a legegyszerűbb, ún. elemi formulák.
- Ha \mathcal{A} , \mathcal{B} két formula, akkor $\neg \mathcal{A}$, $(\mathcal{A} \land \mathcal{B})$, $(\mathcal{A} \lor \mathcal{B})$, $(\mathcal{A} \Rightarrow \mathcal{B})$, $(\mathcal{A} \Leftrightarrow \mathcal{B})$ is formulák.
- Ha \mathcal{A} egy formula és x egy változó, akkor , $(\exists x \mathcal{A})$ és $(\forall x \mathcal{A})$ is formulák.

Definíció

Legyenek A, B predikátumok. Ekkor

tagadás, jele
$$\neg A$$

$$\frac{\neg A \mid I \mid H}{\mid H \mid I}$$

vagy (megengedő), jele
$$A \lor B$$

$$\begin{array}{c|cccc}
A \lor B & I & H \\
\hline
I & I & I \\
H & I & H
\end{array}$$

ha..., akkor...
(implikáció), jele
$$A \Rightarrow B$$

$$A \Rightarrow B \mid I \mid H$$

$$I \mid I \mid H$$

$$H \mid I \mid I$$

Ekvivalencia, jele
$$A \Leftrightarrow B$$

$$\begin{array}{c|cccc}
A \Leftrightarrow B & I & H \\
\hline
I & I & H \\
H & H & I
\end{array}$$

Halmazok

Definíció

- Az A halmaz részhalmaza a B halmaznak, $A \subset B$, ha $\forall x (x \in A \Rightarrow x \in B)$.
- Ha $A \subset B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subsetneq B$.

Definíció

Legyen A, B két halmaz. A és B uniója,

$$A \cup B = \{x : x \in A \lor x \in B\}.$$

Általában: legyen \mathcal{A} egy halmazrendszer (halmaz, mely elemei halmazok). Ekkor

$$\cup \mathcal{A} = \cup_{A \in \mathcal{A}} A = \{x : \exists A \in \mathcal{A}, x \in A\}.$$

Legyen A, B két halmaz. A és B metszete,

$$A \cap B = \{x : x \in A \land x \in B\}$$
. Általában: legyen A

egy halmazrendszer (halmaz, mely elemei halmazok). Ekkor

$$\cap \mathcal{A} = \cap_{A \in \mathcal{A}} A = \{x : \forall A \in \mathcal{A}, x \in A\}.$$

Definíció

- Az A, B halmazok diszjunktak, ha $A \cap B = \emptyset$.
- Legyen \mathcal{A} egy halmazrendszer (halmaz, mely elemei halmazok). Ekkor \mathcal{A} diszjunkt, ha $\cap \mathcal{A} = \emptyset$.
- Legyen A egy halmazrendszer (halmaz, mely elemei halmazok). Ekkor A elemei páronként diszjunktak, ha

$$\forall A, B \in \mathcal{A}, A \neq B : A \cap B = \emptyset$$

Definíció

Két A, B halmaz különbsége

$$A \setminus B = \{a \in A : a \not\in B\}$$

Definíció

Legyen *X* egy rögzített alaphalmaz. Ekkor *A* halmaz komplementere

$$\overline{A} = X \setminus A = \{a \in X : a \notin A\}.$$

Definíció

Két A, B halmaz szimmetrikus differenciája

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Definíció

Egy A halmaz hatványhalmaza $\mathcal{P}(A) = 2^A = \{B : B \subset A\}$, A összes részhalmazának halmaza.

Definíció

Adott A, B halmazok Descartes-szorzata: $A \times B = \{(a, b) : a \in A, b \in B\}$.

Relációk

- Legyen X, Y két tetszőleges halmaz. Ekkor az R ⊂ X × Y egy (binér) reláció az X, Y halmaz között.
- Ha X = Y, akkor $R \subset X \times X$ egy (binér) reláció X-en.

Definíció

Legyen $R \subset X \times Y$ egy reláció. Ekkor

- R éretelmezési tartománya ('domain'): $dmn(R) = \{x \in X : \exists y \in Y : (x, y) \in R\}.$
- R értékkészlete ('range'): $rng(R) = \{y \in Y : \exists x \in X : (x, y) \in R\}.$

Definíció

Egy $R \subset X \times Y$ reláció inverze az

$$R^{-1} = \{ (y, x) \in Y \times X : (x, y) \in R \}.$$

Definíció

Legyen R egy binér reláció.

- Az A halmaz képe az $R(A) = \{y : \exists x \in A : (x, y) \in R\}.$
- Adott B halmaz inverz képe, vagy teljes ősképe az R⁻¹(B), a B halmaz képe az R⁻¹ reláció esetén.

Definíció

Legyen $R, S \subset X \times Y$ két binér reláció.

- R az S kiterjesztése (és S az R leszűkítése),
 ha S ⊂ R.
- Ha A ⊂ X, akkor R reláció A-ra való leszűkítése (A-ra való megszorítása)

$$R|_A = \{(x, y) \in R : x \in A\}.$$

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) : \exists z : (x, z) \in S, (z, y) \in R\}.$$

Definíció (szimmetrikusság)

- R reláció szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$ Példa: =, K, ellenpélda: $\leq, <$
- R reláció antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y$ Példa: $=, \leq, \subset$ ellenpélda: K
- R reláció szigorúan antiszimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow \neg(yRx)$ Példa: < ellenpélda: $=, \leq, K$

Definíció (reflexivitás)

- R reláció reflexív, ha $\forall x \in X : xRx$ Példa: $=, \leq, \subset, |, K$ ellenpélda: <
- R reláció irreflexív, ha $\forall x \in X : \neg(xRx)$ Példa: < ellenpélda: $=, \leq, \subset, |, K$

Definíció (tranzitivitás)

• R reláció tranzitív, ha $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$ Példa: $=, \leq, \subset, |, <$ ellenpélda: K

Definíció

• R reláció dichotóm, ha $\forall x, y \in X$ esetén $xRy \lor yRx$ (megengedő "vagy"!) Példa: \leq ellenpélda: \leq ,

Definíció

R reláció trichotóm,
 ha ∀x, y ∈ X esetén x = y, xRy és yRx közül pontosan egy teljesül
 Példa: < ellenpélda: =, ≤, K

Definíció

Egy R reláció ekvivalencia reláció, ha reflexív, tranzitív és szimmetrikus.

Definíció

Egy *X* halmaz részhalmazainak *O* rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

Legyen \sim egy ekvivalencia reláció az X halmazon. Tetszőleges $x \in X$ esetén az

$$\tilde{x} = [x] = \{ y \in X : y \sim x \}$$

halmazt az x ekvivalencia osztályának nevezzük.

Definíció

- Egy R reláció részbenrendezés, ha reflexív; tranzitív és antiszimmetrikus.
- Ha valamely $x, y \in X$ párra $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.
- Ha minden (x, y) pár összehasonlítható (azaz \leq dichotóm), akkor \leq rendezés.

Függvények

Definíció

Legyen $f \subset X \times Y$ egy (binér) reláció. Ha egyelemű halmaz képe legfeljebb egyelemű, azaz

$$xfy \land xfz \Rightarrow y = z,$$

akkor az f-et függvénynek hívjuk. Speciálisan az xfy helyett a f(x) = y használjuk.

Komplex Számok

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

- z valós része Re(z) = a
- z képzetes része Im(z) = b
- z abszolút értéke $|z| = \sqrt{a^2 + b^2}$.

Definíció

- Egy $z = a + bi \in \mathbb{C}$ szám konjugáltja: $\overline{z} = \overline{a + bi} = a bi$.
- Ezzel $z \neq 0$ esetén $1/z = \bar{z}/|z|^2$.

Az $z = a + bi \in \mathbb{C} \setminus \{0\}$ komplex szám trigonometrikus alakja:

$$z = r(\cos \varphi + i \sin \varphi)$$
, ahol $a = \text{Re}(z) = r \cos \varphi$ és $b = \text{Im}(z) = r \sin \varphi$

Kombinatorika

Definíció

Legyenek $n, k \in \mathbb{N}$. Ekkor a

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

értéket binomiális együtthatónak nevezzük.

Gráfok

Definíció

Egy G = (V, E) egy egyszerű gráf, ha

- V a gráf pontjainak halmaza,
- E a gráf éleinek halmaza, ahol E a V-ből alkotott rendezetlen párok egy halmaza.

Definíció

Egy G = (V, E) gráf véges, ha véges sok pontja van (V egy véges halmaz).

Definíció

Legyen G = (V, E) egy egyszerű véges gráf.

- A $v \in V$ csúcs és az $e \in E$ él illeszkednek, ha $v \in e$.
- A $v \in V$ csúcs fokszáma a rá illeszkedő élek száma: $d(v) = |\{e \in E : v \in e\}|$
- A $v \in V$ csúcs izolált csúcs, ha d(v) = 0.
- Az $u, v \in V$ csúcsok szomszédosak, ha $u \neq v \land \exists e \in E : u, v \in e$ (azaz $\{u, v\} \in E$)

Definíció

Két G=(V,E) és H=(U,F) gráf izomorfak, ha léteznek olyan $f:V\to U$ és $g:E\to F$ bijekciók (egyértelmű hozzárendelések), hogy

$$\forall v \in V \land e \in E : v \in e \iff f(v) \in g(e)$$

Egy G = (V, E) gráfnak a H = (U, F) gráf részgráfja, ha $U \subset V \land F \subset E$

Definíció

Egy H = (U, F) egy feszített részgráfja G = (V, E)-nek, ha

- részgráfja: $U \subset V$, $F \subset E$
- feszített: $u_1, u_2 \in U \land \{u_1, u_2\} \in E \implies \{u_1, u_2\} \in F$.

Definíció

Legyen G = (V, E) egy gráf. Egy $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k$ sorozatot k-hosszú sétának nevezünk, ha

- $v_i \in V \ (0 \le i \le k), \quad e_i \in E \ (1 \le i \le k)$
- \bullet $e_i = \{v_{i-1}, v_i\} \ (1 \le i \le k)$

Definíció

Legyen G = (V, E) egy gráf. Egy $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k$ sorozatot k-hosszú útnak nevezünk, ha

- ez egy séta
- \bullet $v_i \neq v_i (i \neq j)$

Definíció

Legyen G = (V, E) egy gráf és $k \ge 3$. Egy $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_0$ sorozatot k-hosszú körnek nevezünk, ha

- ez egy (zárt) séta (zárt, azaz: $v_k = v_0$)
- $\bullet v_i \neq v_i (i \neq j)$

Definíció

Egy G = (V, E) gráf összefüggő, ha $\forall u, v \in V, u \neq v$ van u és v között séta.

Definíció

Egy G = (V, E) gráfot fának hívunk, ha

- összefüggő;
- körmentes.

Egy G gráfban a $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k$ séta egy Euler-séta, ha

- \bullet $e_i \neq e_j \ (i \neq j)$.
- a séta G minden élét tartalmazza.
- zárt Euler-séta: v₀ = v_k

Definíció

Legyen G egy véges egyszerű gráf.

- A G gráfban egy út Hamilton-út, ha minden csúcsot pontosan egyszer tartalmaz.
- A G gráfban egy kör Hamilton-kör, ha minden csúcsot pontosan egyszer tartalmaz.

Definíció

A G = (V, E) gráf páros gráf (kétosztályú gráf, bipartite graph), ha

- \bullet $V = A \cup B, A \cap B = \emptyset$
- $\forall e \in E : e = \{a, b\}, a \in A, b \in B.$

Definíció

Legyen G = (V, E) egy véges, egyszerű gráf. Ekkor $P \subset E$ független élhalmaz vagy párosítás, ha P éleinek nincs közös végpontja.

Definíció

Legyen G = (V, E) egy véges, egyszerű gráf, $P \subset E$ egy párosítás.

- P fedi a $v \in V$ csúcsot, ha v végpontja egy P-beli élnek.
- a P párosítás teljes párosítás, ha minden csúcsot fed.

Definíció

Legyen $G=(L\cup F,E)$ egy teljes páros gráf. A $P\subset E$ párosítás instabil, ha $\exists\{\ell_1,f_1\},\{\ell_2,f_2\}\in P$, hogy

- ℓ_1 listáján f_2 előrébb van, mint f_1 ;
- f_2 listáján ℓ_1 előrébb van, mint ℓ_2 ;

Egy párosítás stabil, ha nem instabil.

Egy párosítás F-optimális stabil párosítás, ha $\forall f \in F$ számára legalább olyan kedvező, mint bármely más stabil párosítás.