Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Звіт з дисципліни

«Прикладна теорія цифрових автоматів» Лабораторна робота № 1 **Тема:** "Моделювання цифрових логічних схем" Варіант: 7511

Роботу виконав студент 3 курсу KI-CA, ФРЕКС Мургашов Г.Е.

Мета роботи: Ознайомлення з основними можливостями пакета програм автоматизованого проектування електронних схем Proteus. Моделювання роботи простих логічних схем.

Хід виконання роботи

З інтерфейсом ПЗ "Proteus" та з теоретичним матеріалом ознайомився, тому відразу переходимо до 2-ого пункту.

2, 3) Схема з рис. 1.1 зібрана на елементах з бібліотеки «74STD»: 74x08 та74x02. Паралельно підключено схему 74HC51 (74x51).

Вивід схеми:

Як видно з графіку вихідних сигналів, схеми ϵ еквівалентними.

4) «Виключне АБО» у вигляді д.д.н.ф:

Таблиця істинності

x_1	x_2	у	
0	0	0	$y = x_1 \bar{x}_2 \lor \bar{x}_1 x_2,$ тоді
0	1	1	$y = x_1 \bar{x}_2 \vee \bar{x}_1 x_2 = (x_1 \bar{x}_2) (\bar{x}_1 x_2);$
1	0	1	$\bar{x}_1 = x_1 x_1; \ \bar{x}_2 = x_2 x_2; =>$
1	1	0	$y = (x_1 (x_2 x_2)) ((x_1 x_1) x_2);$

Для схеми використовується 74х00 з бібліотеки «74STD», паралельно підключений сам елемент «Виключне АБО» (74HC86) для порівняння.

Схема:

Вивід:

Завдання №5

Bapiaнm: 7511₁₀ = 1 1101 0101 0111₂

0	1	0	1	0	1	0	1	1	1
h_{10}	h_9	h_8	h_7	h_6	h_5	h_4	h_3	h_2	h_1

Базис: ЗАБО, 4І, НЕ

Для побудови схем були використані: 74х04, 74хНС21, 74хНС4075

 ${\it 5.1~(f1)}$ Записуємо функцію ${\it f1}$ за допомогою карт Карно:

К.Н.Ф. функції:

$$f1 = (x_4 \vee \overline{x_3} \vee x_2) \wedge (x_4 \vee \overline{x_2} \vee \overline{x_1}) \wedge (\overline{x_4} \vee x_3 \vee x_2 \vee \overline{x_1}) \wedge (\overline{x_4} \vee x_3 \vee \overline{x_2} \vee x_1)$$

Маємо 4 терми, які об'єднуються елементом «4I». Перша терма є елементом «3AБО», як і друга. А третій і четвертий є елементами «4AБО», тому за правилом де Моргана, перетворюємо їх в елементи «4I» з використанням інверторів.

$$f1 = (x_4 \vee \overline{x_3} \vee x_2) \wedge (x_4 \vee \overline{x_2} \vee \overline{x_1}) \wedge \overline{(\overline{x_4} \vee x_3 \vee x_2 \vee \overline{x_1})} \wedge \overline{(\overline{x_4} \vee x_3 \vee \overline{x_2} \vee x_1)}$$

$$f1 = (x_4 \vee \overline{x_3} \vee x_2) \wedge (x_4 \vee \overline{x_2} \vee \overline{x_1}) \wedge \overline{(x_4 \wedge \overline{x_3} \wedge \overline{x_2} \wedge x_1)} \wedge (\overline{x_4 \wedge \overline{x_3} \wedge x_2 \wedge \overline{x_1}})$$

Схема:

Вивід:

5.2~(f2) Мінімізуємо функцію f2 за допомогою карт Карно:

К.Н.Ф. функції:

$$f2 = (x_4 \vee \overline{x_3} \vee x_2) \wedge (\overline{x_4} \vee x_3 \vee x_2) \wedge (x_3 \vee \overline{x_2} \vee \overline{x_1}) \wedge (\overline{x_4} \vee \overline{x_2} \vee x_1)$$

Маємо чотири терми, що утворюють елемент «4I», а кожний з них реалізується елементом «3AБО».

Схема:

Вивід:

Висновок: було ознайомлено з базовими можливостями ПЗ «*Proteus*», змодульовано кілька простих схем: схему 2І-2АБО-НЕ; схему «Виключне АБО» на елементах І-НЕ; реалізація своіх булевих функцій на заданому базисі елементів.