Image Segmentation and Preprocessing

Vincent Luboz
Department of Surgery and Cancer
Imperial College London

MSc Surgical Technology Slide 1

Goals

- Understand the fundamentals of digital image processing.
- Define image enhancement and the different types commonly used in medical/surgical applications.
- Understand the process of image segmentation and its relevance in manipulation of medical images.
- Enumerate the most commonly used image segmentation techniques indicating their main characteristics and advantages/disadvantages.
- Mention some possible applications of image segmentation in surgery.

Manipulation

- Selection of region of interest
- Image resampling
- Greyscale contrast enhancement
- Pre-processing
- Segmentation

MSc Surgical Technology Slide 3

Contents

- Pre-processing
- Segmentation
- Applications
- Summary and Conclusion

Pre-processing

- Goal:
 - Enhance the visual appearance of images.
 - Improve the manipulation of datasets.
- Caution: enhancement techniques can emphasize image artefacts, or even lead to a *loss* of information if not correctly used.

MSc Surgical Technology Slide 5

Pre-processing

- Image resampling
- Greyscale contrast enhancement
- Noise removal
- Mathematical operations
- Manual correction

Pre-processing

- Image resampling:
 - Reduce or increase the number of pixels of the dataset.
- Greyscale contrast enhancement:
 - Improve the visualisation by brightening the dataset.

MSc Surgical Technology Slide 7

Noise removal

- Several techniques:
 - Low-pass, high-pass, band-pass spatial filtering
 - Mean filtering
 - Median filtering

- Low-pass filtering replaces all pixels of intensity higher than a specified value.
- Example:

lasik

Low-pass filtered image

MSc Surgical Technology Slide 9

Noise removal

- High-pass filtering replaces all pixels of intensity lower than a specified value.
- Band-pass filtering replaces all pixels of intensity lower than a specified value and higher than another one.
- Low, high-pass, band-pass spatial filtering are efficient only in specific cases.
- Most of the time, blur the image...

- Mean filtering and median filtering work on a n x n sub-region of the image.
- n is usually 3 or 5.

• Example on a 4x4 sub-image:

Noise removal

- Mean filtering:
 - The 3x3 sub-region is scanned over the entire image
 - At each position the centre pixel is replaced by the **average** value.

Raw sub-image

3x3 average value

- Median filtering:
 - The 3x3 sub-region is scanned over the entire image
 - At each position the centre pixel is replaced by the **median** value.

Raw sub-image

3x3 average value

MSc Surgical Technology Slide 13

Noise removal

• Mean filtering applied to the image with a 3x3 subregion:

MSc Surgical Technology Slide 14

Mean filtered

• Median filtering applied to the image with a 3x3 subregion:

Median filtered

Noise removal

- Mean filtering:
 - Fast to compute.
 - Blurs edges.
 - Smears noise specks.
- Median filtering:
 - Slower to compute.
 - Preserves edges.
 - Can remove noise.

Mathematical operations

- It is possible to apply to images:
 - Arithmetic operations (addition, subtraction...).
 - And morphological operations (dilation, erosion...).
- Goal: to enhance particular features

MSc Surgical Technology Slide 17

Mathematical operations

- Addition is not very helpful
- Subtraction can be used to eliminate confusing background detail which has remained unchanged between the two images
- done pixel-by pixel
- Operations between two images are only useful if the images can be aligned closely enough
- Often used for x-ray contrast angiography to highlight occluded arteries
- Can also be used to show changes over time

Mathematical operations

• Example of subtraction: cerebral volume changes in dementia

MSc Surgical Technology Slide 19

Mathematical operations

• Dilation is used to connect features in an image

Structural element:

Mathematical operations

• Erosion is used to disconnect features in an image and remove small ones

Structural element:

MSc Surgical Technology Slide 21

Mathematical operations

- It is possible to change the structural element to adjust the operators:
 - Different shapes.
 - Different sizes.
- It is possible to combine dilation and erosion to combine their effects:
 - Dilation followed by erosion = Closing.
 - Erosion followed by dilation = Opening.
 - Both tend to smooth the image's features.

Manual correction

- Goal: fine tune an image by editing it.
- Editing can be done:
 - Pixel by pixel.
 - Using lines or splines.
 - Using predefined 2D or 3D shapes (rectangle, brick, sphere...).

MSc Surgical Technology Slide 23

Manual correction

• Example of line editing: separating the liver from the ribs using a 3D spline

Contents

- Pre-processing
- Segmentation
- Applications
- Summary and Conclusion

MSc Surgical Technology Slide 25

Segmentation

- Needed for:
 - Improving the analysis of an image when there is no direct correspondence between the image pixel properties and the type of tissue.
 - Separating (labelling) the pixels of an image according to semantic content (studied structure).
 - Facilitating the manipulation and visualization of the data with a computer.

- Involves the partitioning of an image or volume into distinct (usually) non-overlapping regions in a meaningful way.
- Can also be thought of as a *labelling* operation: a label corresponding to tissue type/anatomical structure is assigned to each pixel or voxel in the image.

MSc Surgical Technology Slide 27

Segmentation

- Identifies separate objects within an image.
- Finds regions of connected pixels with similar properties.
- Finds boundaries between regions.
- Removes unwanted regions.

• Simple example: segmentation of rice grains

Original image

Segmented (binary) image

Each pixel is assigned a label:

- 0 = not rice grain pixel
- 1 = rice grain pixel

MSc Surgical Technology Slide 29

Segmentation

- Types of image segmentation
 - Image domain:
 - Manual.
 - Thresholding.
 - Region growing.
 - Hierarchical.
 - Feature domain:
 - Supervised segmentation.
 - Unsupervised segmentation.

- Manual segmentation
 - Outlines the studied structure in each slice.
 - Only on the contour or on the whole object.
 - Lines or splines can be used.
 - Usually time consuming.

MSc Surgical Technology Slide 31

Segmentation

- Manual segmentation
 - Example of a rta segmentation with a spline:

The spline delineates the contour

Axial V Outline Camera

Once applied, the contour pixels are highlighted

- Thresholding
 - Relies on intensity differences between structures in an image.
 - Can be extended to multiple threshold levels.
 - Advantage: simple to implement
 - Disadvantages:
 - Low tolerance to intensity rescaling,
 - Difficult to set threshold,
 - Little use of spatial information.

MSc Surgical Technology Slide 33

Segmentation

- Thresholding
 - Example of aorta segmentation in CTA.
 - Big intensity difference between bone and soft-tissue, easy to partition into:
 - Bones,
 - Vessels,
 - Other soft tissues.

- Region growing
 - Relies on intensity differences, but includes the notion of spatial proximity of pixels, and a *seed point* for the region.
 - Advantages:
 - Simple to implement,
 - Human interaction is easy to provide (via seed point).
 - Disadvantages:
 - Low tolerance to intensity rescaling,
 - Difficult to set growing criteria and stopping criteria,
 - Needs human intervention for defining seed point.

MSc Surgical Technology Slide 35

Segmentation

- Region growing
 - Example of aorta segmentation in CTA:
 - First, a probability map is built to separate roughly the structures.
 - Then seeds are placed in the studied structure.
 - Finally, the region is growing to fit the structure.

- Hierarchical segmentation
 - Clusters image pixels into regions of similar intensity to create an intensity hierarchy.
 - Marking seeds inside and outside the desired structure starts the merging of the hierarchy.
 - Iteratively separates the inside and outside of the structure.

MSc Surgical Technology Slide 37

Segmentation

- Hierarchical segmentation
 - Advantages:
 - Fast,
 - Reasonably easy to implement.
 - Disadvantages:
 - Medium tolerance to intensity rescaling,
 - Needs human intervention for defining seed points.

- Hierarchical segmentation
 - Example of aorta segmentation in CTA:
 - First, the intensity hierarchy is built to pre-separate the structures.
 - Then seeds are placed in and out the studied structure.

- Two types of feature domain segmentation:
 - Supervised: a set of training data is given, a learning algorithm uses this to determine a classification rule for new data.
 - Unsupervised: algorithms attempt to discover clusters (or groups of data points) in feature space.

Courtesy of Dr. F. Bello, Dept. of Biosurgery

Segmentation

- Feature domain segmentation:
 - Advantages:
 - . Very powerful,
 - . Tremendously flexible.
 - Disadvantages:
 - . Generates increased computation (because each pixel is mapped to N pixels),
 - . Not obvious what features should be used,
 - . Large feature spaces require lots of data (for automated learning) or training examples (for supervised learning).

MSc Surgical Technology Slide 42

Courtesy of Dr. F. Bello, Dept. of Biosurgery

Contents

- Pre-processing
- Segmentation
- Applications
- Summary and Conclusion

MSc Surgical Technology Slide 43

Applications

- Quantitative, or semi-quantitative diagnostic image analysis.
- Surgical planning.
- Computer assisted surgery.

Applications

- Diagnostic analysis
 - Patient come with headache, visual troubles, and speech difficulties.
 - Diagnosis?

MSc Surgical Technology Slide 45

Applications

- Diagnostic analysis
 - CT scan of the brain shows a tumour:

Applications

- Surgical planning
 - Diagnosis: aortic aneurisms
 - How to treat the patient?

MSc Surgical Technology Slide 49

Applications

- Surgical planning
 - Interventional Radiology to deploy stents to stabilise the aneurysms.
 - First, need to know the exact size of the aneurysms and choose the right instruments.

Applications

- Computer assisted surgery
 - Da Vinci robot heart surgery

MSc Surgical Technology Slide 53

Applications

- Computer assisted surgery
 - Da vinci robot heart surgery

Organ segmentation

iread

Augmented surgery (real surgery with an overlay of the virtual organs)

Contents

- Pre-processing
- Segmentation
- Applications
- Summary and Conclusion

MSc Surgical Technology Slide 55

Summary

- We have seen:
 - Key points of digital image processing.
 - Definition of image enhancement and some medical/surgical applications.
 - Overview of image segmentation.
 - Introduction to the most common image segmentation techniques.
 - Three possible applications in surgery.

Conclusion

- Medical imaging is very powerful on its own, but not always intuitive.
- Pre-processing and segmentation are key techniques:
 - To improve the various imaging modalities.
 - To allow interpretation for better diagnosis.
 - To integrate in planning and training software.
- Segmentation is a fast evolving field but there is still a lot to do:
 - Completely automatic.
 - Motion compensation.

- ...

MSc Surgical Technology Slide 57

Image Segmentation and Preprocessing

Vincent Luboz
Department of Surgery and Cancer
Imperial College London

MSc Surgical Technology Slide 58

Imperial College London VOI, years of EVING told