ĐẠO HÀM VÀ CỰC TRỊ HÀM SỐ NHIỀU BIẾN

Nguyễn Minh Huy

HCMUS-Khoa Toán Tin

Ngày 31 tháng 7 năm 2019

Nội dung

- Đạo hàm của hàm số nhiều biến
 - Hàm số nhiều biến
 - Đạo hàm riêng
 - Đạo hàm theo hướng
 - Gradient
 - Đạo hàm riêng của hàm số hợp
 - Đạo hàm riêng cấp cao
- Cực trị hàm số nhiều biến
 - Cực trị
 - Cực trị có điều kiện

Hàm số nhiều biến

Định nghĩa 1.

Hàm số nhiều biến f gán vào mỗi $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ một điểm $y=(y_1,\ldots,y_m)\in\mathbb{R}^m$. Mỗi thành phần của y là một hàm trả về giá trị thực với $x\in\mathbb{R}^n$, được viết dưới dạng

$$y_1 = f_1(x_1, \dots, x_n)$$

$$y_2 = f_2(x_1, \dots, x_n)$$

$$\vdots$$

$$y_m = f_m(x_1, \dots, x_n).$$

Hàm số nhiều biến

Ví dụ 1.

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} f_1(x, y, z) \\ f_2(x, y, z) \end{pmatrix} = \begin{pmatrix} x - y + z \\ xyz \end{pmatrix}$$

xác định một hàm số từ \mathbb{R}^3 vào \mathbb{R}^2 .

Đạo hàm riêng

Định nghĩa 2.

Cho
$$f:D\subset\mathbb{R}^n o\mathbb{R}$$
 và $x^0=\left(x_1^0,x_2^0,\dots,x_n^0
ight)\in D$. Giới hạn

$$\lim_{h \to 0} \frac{f\left(x_1^0, \dots, x_i^0 + h, x_{i+1}^0, \dots, x_n^0\right) - f\left(x_1^0, \dots, x_i^0, x_{i+1}^0, \dots, x_n^0\right)}{h}$$

nếu có, được gọi là đạo hàm riêng theo biến thứ i của f tại x, ký hiệu là $\frac{\partial f}{\partial x_i}\left(x^0\right)$ hay $f_{x_i}\left(x^0\right)$.

Đạo hàm riêng

Ví dụ 2.

Cho
$$f\left(x,y\right)=x^2y+y^3-1$$
. Muốn tính $\frac{\partial f}{\partial x}$, ta xem y như hằng số và biến x , ta có $\frac{\partial f}{\partial x}=2xy$. Tương tự, ta có $\frac{\partial f}{\partial y}=x^2+3y^2$.

Dao hàm riêng

Ví du 3.

Tìm các đạo hàm riêng của hàm số $f(x, y, z) = x^y$.

Ví du 4.

Cho $f: \mathbb{R}^2 \to \mathbb{R}$ xác định bởi

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}.$$

Chứng minh rằng $\frac{\partial f}{\partial y}(x_0,0)=x_0$ và $\frac{\partial f}{\partial x}(0,y_0)=-y_0$.

Đạo hàm theo hướng

Định nghĩa 3.

Xét hàm $f:D\subset\mathbb{R}^n\to\mathbb{R}$ và vecto $a=(a_1,a_2,\ldots,a_n)\in\mathbb{R}^n$ khác vecto không. Giới hạn

$$\lim_{t\to 0} \frac{f(x_1 + ta_1, x_2 + ta_2 \dots, x_n + ta_n) - f(x_1, x_2, \dots, x_n)}{t}$$

nếu có, được gọi là đạo hàm theo hướng a của f tại x, ký hiệu $D_a f\left(x\right)$.

Đạo hàm theo hướng

Nhận xét 1. Như vậy, đạo hàm theo biến thứ i của f tại x chính là đạo hàm theo hướng $\overrightarrow{e_i}$, trong đó $\overrightarrow{e_i}$ là vectơ mà mọi thành phần đều bằng 0 trừ thành phần thứ i bằng 1.

Nhận xét 2. Đặt $f_a(t) = f(x + ta)$, ta có $D_a f(x) = f'_a(0)$. (nếu có)

Dao hàm theo hướng

Ví du 5.

Cho $f(x,y)=x^3y+y$ và vecto a=(1,-2). Tính đạo hàm của f theo hướng a tại (0,1).

Chứng minh.

Đặt x = (0,1) và

$$f_a(t) = f(x+ta) = f(t, 1-2t) = t^3(1-2t) + 1-2t.$$

Ta có

$$f_a'(t) = -8t^3 + 3t^2 - 2.$$

Suy ra

$$D_a f(x) = f'_a(0) = -2.$$

Định nghĩa 4.

Cho D là một miền và $f:D\subset\mathbb{R}^n\to\mathbb{R}$. Khi f có đạo hàm riêng theo tất cả các biến tại $x\in D$, gradient của f tại x, ký hiệu grad f (x) (hay vắn tắt ∇f (x)) là vecto

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right).$$

Ví dụ 6.

Xét hàm $f:\mathbb{R}^2 o \mathbb{R}$ xác định bởi

$$f\left(x,y\right) =x^{2}y.$$

Tính $\nabla f(1,2)$.

Chứng minh.

Ta có
$$\frac{\partial f}{\partial x}(x,y)=2xy$$
 nên $\frac{\partial f}{\partial x}(1,2)=2.1.2=4.$

Tương tự,
$$\dfrac{\partial f}{\partial y}\left(x,y\right)=x^{2}$$
 nên $\dfrac{\partial f}{\partial y}\left(x,y\right)=1^{2}=1.$

Vậy
$$\nabla f\left(1,2\right) = \left(\frac{\partial f}{\partial x}\left(1,2\right), \frac{\partial f}{\partial y}\left(1,2\right)\right) = (4,1).$$

Mệnh đề 1.

Cho $f,g:D\subset\mathbb{R}^n\to\mathbb{R}.$ Nếu f,g có đạo hàm riêng theo mọi biến tại $x\in D$ thì

- i) $\nabla (f+g)(x) = \nabla f(x) + \nabla g(x)$;
- ii) $\nabla (f.g)(x) = g(x) \cdot \nabla f(x) + f(x) \cdot \nabla g(x)$.

Hơn nữa, nếu $g\left(x\right)\neq0$ và hàm $\frac{f}{g}$ xác định trên một lân cận của x thì nó có đao hàm riêng theo mọi biến tại x và

iii)
$$\nabla \left(\frac{f}{g}\right)(x) = \frac{1}{g^2(x)} \left(g(x) \cdot \nabla f(x) - f(x) \cdot \nabla g(x)\right)$$
.

Mệnh đề 2.

Cho $f:D\subset\mathbb{R}^n\to\mathbb{R}$ là hàm có đạo hàm riêng theo các biến tại mọi điểm của D và tất cả các đạo hàm riêng này đều liên tục tại điểm $x\in D$. Khi đó, với mọi vectơ $a=(a_1,a_2,\ldots,a_n)$ khác vectơ không trong \mathbb{R}^n , f có đạo hàm theo hướng a tại x và

$$D_{a}f(x) = a_{1} \cdot \frac{\partial f}{\partial x_{1}}(x) + \ldots + a_{n} \cdot \frac{\partial f}{\partial x_{n}}(x) = a \cdot \nabla f(x).$$

Từ công thức trên, ta có

$$D_a f(x) = a.\nabla f(x) \le (\nabla f(x))^2,$$

Điều này có nghĩa là theo hướng của vectơ $\nabla f\left(x\right)$ thì f sẽ thay đổi với tốc đô nhanh nhất.

Đạo hàm riêng của hàm số hợp

Dinh lý 1.

(Quy tắc mắc xích) Cho hàm số khả vi $f: \mathbb{R}^n \to \mathbb{R}$ và các hàm số khả vi $x_1, x_2, \dots, x_n: \mathbb{R}^m \to \mathbb{R}$ đều là hàm theo các biến t_1, t_2, \dots, t_m . Khi đó,

$$\frac{\partial f}{\partial t_i} = \frac{\partial f}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_i} + \ldots + \frac{\partial f}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_i}, \quad \forall i \in \{1, 2, \ldots, m\}.$$

Đạo hàm riêng của hàm số hợp

Ví dụ 7.

Cho
$$f(x, y, z) = x^2 + yz$$
 với

$$x(s,t) = t + s,$$

$$y(s,t) = 3t - s,$$

$$z(s,t) = t^{2}.$$

Khi đó,

$$\frac{\partial f}{\partial s} = 2x.1 + z. (-1) + y.0 = 2(t+s) - t^2,$$

$$\frac{\partial f}{\partial t} = 2x.1 + z.3 + y.2t = 2(t+s) + 3t^2 + 2t(3t-s).$$

Đạo hàm riêng của hàm số hợp

Ví du 8.

Tìm đạo hàm riêng của f theo s và t với

$$f(x,y) = x^3 \sin(xy),$$

$$x(s,t) = t \cos s,$$

$$y(s,t) = t \sin s.$$

Đạo hàm riêng cấp cao

Định nghĩa 5.

Cho $f:D\subset\mathbb{R}^n\to\mathbb{R}$ là hàm có đạo hàm riêng theo tất cả các biến tại mọi điểm của D. Khi đó, đạo hàm riêng theo các biến của các hàm

$$\frac{\partial f}{\partial x_i} : D \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{\partial f}{\partial x_i}(x)$$

với $i=\overline{1,n}$ tại điểm $x\in D$, nếu có, được gọi là các đạo hàm riêng cấp 2 của f tại điểm x, ký hiệu là $\frac{\partial^2 f}{\partial x_i\partial x_i}(x)$ hoặc $f_{x_ix_j}(x)$ với $i,j=\overline{1,n}$.

Đạo hàm riêng cấp cao

Ví dụ 9.

Cho $f(x,y) = x^2y + x$. Tính các đạo hàm riêng cấp hai của f.

Đạo hàm riêng cấp cao

Định lý 2.

Nếu $f:D\subset\mathbb{R}^n\to\mathbb{R}$ có các đạo hàm riêng cấp 2 liên tục trên D thì

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

trên D, với mọi $i, j = \overline{1, n}$.

Định nghĩa 6.

Cho f là hàm nhiều biến xác định trên một miền $D \subset \mathbb{R}^n$ và $x^0 \in D$.

- i) f được gọi là đạt cực đại địa phương tại x^0 nếu tồn tại lân cận Ω chứa trong D của x^0 sao cho $f(x) \leq f\left(x^0\right)$ với mọi $x \in \Omega$.
- ii) f được gọi là đạt cực tiểu địa phương tại x^0 nếu tồn tại lân cận Ω chứa trong D của x^0 sao cho $f(x) \geq f(x^0)$ với mọi $x \in \Omega$.
- iii) f được gọi là đạt cực trị địa phương tại x^0 khi nó đạt cực đại địa phương hoặc cực tiểu địa phương tại x^0 .

Chú ý rằng khi $x=(x_1,\ldots,x_n)$, $x^0=\left(x_1^0,\ldots,x_n^0\right)\in D\subset\mathbb{R}^n$ thì với mỗi $i=\overline{1,n}$, hàm $t\to f\left(x_1^0,\ldots,x_{i-1}^0,t,x_{i+1}^0,\ldots,x_n^0\right)$ là hàm một biến xác định trên $D_i=\left\{t\in\mathbb{R}:\left(x_1^0,\ldots,t,\ldots,x_n^0\right)\in D\right\}$ và đạt cực trị địa phương tại $t=x_i^0$ khi f đạt cực trị địa phương tại x^0 . Do đó, ta có

Định lý 3.

Cho $f:D\subset\mathbb{R}^n\to\mathbb{R}$ là hàm có đạo hàm riêng theo các biến trên D. Điều kiện cần để f đạt cực trị địa phương tại $x^0\in D$ là

$$\frac{\partial f}{\partial x_i} \left(x^0 \right) = 0, \forall i = \overline{1, n}.$$

Đẳng thức trên có thể viết lại dưới dạng vectơ là

$$\nabla f\left(x^0\right) = 0$$

và điểm x^0 được gọi là một điểm dừng của f.

Ví du 10.

Tìm điểm dừng của $f(x,y) = x^2 - 12y^2 + 4y^3 + 3y^4$.

Chứng minh.

Ta có
$$\nabla f(x,y) = (2x, 12(y^3 + y^2 - 2y)).$$

Suy ra
$$\nabla f\left(x,y\right)=0\Leftrightarrow\left\{ \begin{array}{l} x=0\\ y=0\lor y=1\lor y=-2 \end{array} \right.$$

Vây (0,0), (0,1) và (0,-2) là các điểm dừng của f.

Vây có phải tất cả các điểm dừng trên đều là các cực tri địa phương của fkhông?

Chú ý rằng ngay cả khi f là hàm một biến thì không nhất thiết f đạt cực trị địa phương tại các điểm dừng của nó. Tuy nhiên, giống như trường hợp hàm một biến, người ta có thể dùng các đạo hàm cấp 2 để xây dựng một điều kiên đủ cho các cực trị tại các điểm dừng.

Với hàm $f:D\subset\mathbb{R}^n\to\mathbb{R}$ thuộc lớp C^2 và điểm dừng $x\in D$. Đặt $\varphi\left(h,h\right)=\sum\limits_{i=1}^n\frac{\partial^2 f}{\partial x_i\partial x_i}\left(x\right)h_ih_j$

$$= \begin{pmatrix} h_1 & \dots & h_n \end{pmatrix} \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

$$\equiv h^T.H_f(x).h,$$

trong đó $H_f(x)$ được gọi là ma trận Hessian của f tại x.

Đinh lý 4.

- i) Nếu $\varphi(h,h) > 0, \forall h \neq 0$ thì f đạt cực tiểu địa phương tại x.
- ii) Nếu $\varphi(h,h) < 0, \forall h \neq 0$ thì f đạt cực đại địa phương tại x.
- iii) Nếu tồn tại $h,k\in\mathbb{R}^n$ sao cho $\varphi\left(h,h\right)>0$ và $\varphi\left(k,k\right)<0$ thì x không là cực trị địa phương của f.

Ví dụ 11.

Tìm cực trị của $f(x,y) = x^2 - 12y^2 + 4y^3 + 3y^4$.

Chứng minh.

Ta có $f_{xx}=2, f_{xy}=f_{yx}=0, f_{yy}=12\left(y^3+y^2-2y\right)$ nên với $h=(h_1,h_2)$ thì

$$\varphi(h,h) = 2h_1^2 + 12(y^3 + y^2 - 2y)h_2^2.$$

Trong ví dụ trước, ta đã tìm được các điểm dừng của f là $(0,0)\,,(0,1)$ và (0,-2).

Chứng minh.

*Tại x = (0,1), ta có

$$\varphi(h,h) = 2h_1^2 + 36h_2^2 > 0, \forall h \neq (0,0).$$

Vậy f đạt cực tiểu tại x = (0, 1).

*Tại x = (0, -2), ta có

$$\varphi(h,h) = 2h_1^2 + 72h_2^2 > 0, \forall h \neq (0,0).$$

Vậy f đạt cực tiểu tại x = (0, -2).

*Tại x = (0,0), ta có

$$\varphi(h,h) = 2h_1^2 - 24h_2^2$$
.

Khi đó, $\varphi\left(1,0\right)>0$ nhưng $\varphi\left(0,1\right)<0$ nên f không đạt cực trị tại $x=\left(0,0\right).$

Ví dụ 12.

Khảo sát cực trị của hàm số $f(x,y) = x^2 - 2xy + \frac{y^3}{3} - 3y$.

Khi D không là một mở của \mathbb{R}^n , chẳng hạn khi D là biên của một miền trong \mathbb{R}^n , do không xét được tính khả vi của f trên D nên ta không thể dùng **Định lý 2**. Tuy nhiên nếu ta có phương trình xác định D, chẳng hạn

$$D = \{(x_1, \dots, x_n) \in \mathbb{R}^n : \Phi(x_1, \dots, x_n) = 0\},\$$

với hàm khả vi $\Phi:\mathbb{R}^n \to \mathbb{R}$ và f là hàm xác định trên một mở chứa D. Khi đó, cực trị của f trên D còn được gọi là **cực trị có điều kiện**.

Định lý 5.

Cho $f:E\subset\mathbb{R}^n\to\mathbb{R}$ là hàm thuộc lớp C^1 , nghĩa là f có đạo hàm riêng theo các biến tại mọi điểm của E và tất cả các đạo hàm riêng này đều liên tục trên E. Xét

$$D = \{(x_1, \dots, x_n) \in E : g(x_1, \dots, x_n) = 0\}$$

với $g:E\subset\mathbb{R}^n\to\mathbb{R}$ là hàm thuộc lớp C^1 . Nếu f đạt cực trị trên D, tại $x^0\in D$ và $\nabla g\left(x^0\right)\neq 0$ thì tồn tại $\lambda\in\mathbb{R}$ sao cho

$$\nabla f\left(x^{0}\right) + \lambda \nabla g\left(x^{0}\right) = 0.$$

Hơn nữa, việc tìm cực trị của f trên D chính là tìm cực trị của $f + \lambda g$.

Ví dụ 13.

Tìm cực đại, cực tiểu của $f\left(x,y,z\right)=x+y-z$ với điều kiện $x^2+y^2+z^2=1$.

Chứng minh.

Đặt $g\left(x,y,z\right)=x^2+y^2+z^2-1$ và $\phi=f+\lambda g.$ Ta giải hệ phương trình sau

$$\begin{cases} \nabla f + \lambda \nabla g = 0 \\ g(x, y, z) = 0 \end{cases} \Leftrightarrow \begin{cases} (1, 1, -1) + \lambda (2x, 2y, 2z) = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda = \frac{\sqrt{3}}{2} \\ x = y = -\frac{1}{\sqrt{3}} \end{cases}$$
 (1) $\vee \begin{cases} \lambda = -\frac{\sqrt{3}}{2} \\ x = y = \frac{1}{\sqrt{3}} \end{cases}$ (2)
$$z = \frac{1}{\sqrt{3}}$$

Chứng minh.

Ta tính được $\varphi(h,h) = h^T . H_{\phi}(x,y,z) . h = 2\lambda \left(h_1^2 + h_2^2 + h_3^2\right).$

- *Với **(1)**, ta có $\varphi(h,h)>0, \forall h\neq 0$ nên ϕ đạt cực tiểu tại $\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$ hay f đạt cực tiểu trên D tại $\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$ với $D=\{(x,y,z)\in\mathbb{R}^3: q\left(x,y,z\right)=0\}.$
- *Với **(2)**, ta có $\varphi(h,h)<0, \forall h\neq 0$ nên ϕ đạt cực đại tại $\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$ hay f đạt cực đại trên D tại $\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$.

Ví dụ 14.

Tìm cực trị của
$$f\left(x,y,z\right)=x^2+xy+y^2+yz+z^2$$
 với điều kiện $x^2+y^2+z^2=1$.

Định lý 6.

Cho $f: E \subset \mathbb{R}^n \to \mathbb{R}$ là hàm thuộc lớp C^1 , nghĩa là f có đạo hàm riêng theo các biến tại mọi điểm của E và tất cả các đạo hàm riêng này đều liên tuc trên E. Xét

$$D = \{(x_1, \dots, x_n) \in E : g_i(x_1, \dots, x_n) = 0, \forall i = \overline{1, m}\}$$

với $g: E \subset \mathbb{R}^n \to \mathbb{R}$ là hàm thuộc lớp C^1 . Nếu f đạt cực trị trên D, tại $x^0 \in D$ và $\nabla g_i(x^0) \neq 0, \forall i = \overline{1,m}$ thì tồn tại $\lambda_i \in \mathbb{R}$ sao cho

$$\nabla f\left(x^{0}\right) + \sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{0}\right) = 0.$$

Hơn nữa, việc tìm cực trị của f trên D chính là tìm cực trị của $f + \sum_{i=1}^{n} \lambda_i g_i$.

Ví dụ 15.

Giả sử nhiệt độ trong một quả cầu đơn vị $x^2+y^2+z^2=1$ được cho bởi hàm số sau

$$T(x, y, z) = 80 + 50(x + z)$$
.

Tìm cực trị của T trên phần giao của quả cầu đơn vị và mặt phẳng x+y+z=1.

Chứng minh.

Đặt
$$g_1\left(x,y,z\right)=x^2+y^2+z^2-1$$
, $g_2\left(x,y,z\right)=x+y+z-1$ và $\phi=f+\lambda_1g_1+\lambda_2g_2$. Ta giải hệ phương trình sau

$$\begin{cases} \nabla f + \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2 = 0 \\ g_1(x, y, z) = 0 \\ g_2(x, y, z) = 0 \end{cases}$$

