13. Ejercicio Práctico - 3 Puntos en total.

Este examen tiene como objetivo evaluar su capacidad de diseño, dimensionamiento e interpretación de enlaces de datos y la aplicación de criterios de Ingeniería fundamentados para el correcto funcionamiento de los mismos. Se tomará en cuenta de manera equivalente cada uno de estos aspectos en la ponderación final.

La UOCT ha contratado sus servicios para rediseñar su red de cámaras de fiscalización de viás exclusivas Solo Bus. Se le explica que en cada avenida existe un conjunto de cabeceras que están conectadas directamente con la UOCT (Destacada en el mapa con el ícono de una casa). Se sabe que cada cabecera genera 1000 imágenes diarias de un peso de 400KBytes cada una, que deben ser transmitidas a la UOCT.

El ancho de banda disponible para cada enlace es de 1MHz, el equipo tiene una sensibilidad de -85dBm para modulaciones de 6 bits por símbolo, -87dBm para modulaciones de 5 bits por símbolo, -90dBm para modulaciones de 4 bits por símbolo, -102dBm para 3 bits por símbolo y -106dBm para 2 bits por símbolo. El piso de ruido es de -120dBm. La potencia de transmisión es 100mW.

Usted debe considerar en este caso, las pérdidas en el cableado y conectores, según el esquema adjunto, suponiendo que todos los puntos tienen un mástil de 8m. Diseñe los enlaces utilizando la banda de 2.4GHz. Suponga la atenuación en dB lineal con la longitud del cable.

Establezca la topología que permita transmitir los datos hacia el punto central, seleccione las antenas según los catálogos y hojas de datos provistas por su jefe y establezca las modulaciones que correspondan para lograr el cometido. Si existen impedimentos para la realización de alguno de los enlaces, proponga una solución alternativa, dentro de los valores de los equipos típicos. Recuerde que una parte relevante de su diseño, además de su realizabilidad, es el costo total de la instalación, por lo que es indispensable que reduzca al mínimo el uso de recursos.

Los puntos y sus distancias se ofrecen en la tabla siguiente. La diferencia de altura no es relevante en este problema.

Defina cada enlace con la modulación propuesta. Considere que los enlaces se pueden agrupar según criterios comunes para su cálculo. Puede usar rolloff si lo considera necesario.

Tome en cuenta la relación $\frac{E}{N} = \frac{R_0 E_0}{B N_0}$ en veces, establece la proporcionalidad entre la Energía de Bit E_b , la velocidad de bit, R_b , el ancho de banda efectivamente utilizado por el flujo de bits, B, el Ruido Equivalente, N_0 , la Señal, S, y el Ruido, S.

Fig 8. Calculating total signal loss for an antenna cable

Total Signal Loss Calculation

Connectors (4) = -2.0 dB

Lightning Arrestor = -1.0 dB

Cable (105 ft) = -4.095 dB

Total = -7.095 dB

Figura 3: Modelo de atemación (arredur descatgador gancos) para rayon)

Nombre	Cabecera 1 / Providencia	Cabecera 2 / Baquedano	Cabcera 3 / Vespucio-Costanera	Cabecera 4 / Ossa-Bilbao	Cabecera 5 / Tomás Moro-Bilbao	Cabecera 6 / Irarrázaval - Vespucio	Cabecera 7 / Vícuña-Irrarázaval	Cabecera 8 / Macul-Rodrigo de Araya	Cabecera 9 / Macul-Vespucio	UOCT
Cabecera 1 / Providencia	0	3574	3113	2927	4641	4914	4565	6100	9960	1619
Cabecera 2 / Baquedano Cabcera 3 / Vespucio-Costanera	3574 3113		6262	5594 4723			1745 7558			2012 4295
Cabecera 4 / Ossa-Bilbao	2927	5594		0						4153
Cabecera 5 / Tomás Moro-Bilbao	4641	7455		1865					9238	5989
Cabecera 6 / Irarrázaval - Vespucio	4914	6254	7247	2569	2986	- 0	5652	3419	6296	5555
Cabecera 7 / Vicuña-Irrarázaval	4565	1745	7558	5753	7513	5652	0	3846	7235	3301
Cabecera 8 / Macul-Rodrigo de Araya	6100	5279	9108	5226	6300	3419	3846	0	3880	5775
Cabecera 9 / Macul-Vespucio	9960	8886	12913	8671	9238	6296	7235	3880	0	9632
UOCT	1619	2012	4295	4153	5989	5555	3301	5775	9632	0

B=1Mhz

S=-85dBm

Pt=100mW

Peso(c/imagen)=400kbytes

imagenes=1000

Perdida=-7,095dB

400kbytes=400000*bytes=400000*8=3200000*1 000=3.200.000.000

hay 86400 segundos en un día, entonces se debe dividir los 3mil 200 millones de bits en 86400. 3.200.000.000/86.400 = 37037 bits/s

1MHz=1.000.000Hz

Se escoje la modulación BPSK en caso de que las imagenes aumenten de tamaño, permite abaratar costos y disminuye BER.

Pt(dB)= 10*log10(1000*0,1)=20dBm

Hay pérdida al transmitir, esta ocurre cuando la seña sube a la torre de la antena => se esojen antenas de 8m

NOMINAL ATTENUATION				
MHz	db/100ft	db/100m	ľ	
900	9.9	32.6	1	
2500	16.9	55.4 90.5	l	
	MHz	MHz db/100ft 900 9.9 1800 14.2	MHz db/100ft db/100m 900 9.9 32.6 1800 14.2 46.6	

Se elije el cable 200 series, entonces cada 100 mentro hay 55dB de pérdida, se corta a 5db de pérdida por 10m (a una frecuencia 2,5Ghz ya que piden 2,4)

por regla de 3, cada 8m hay 4dB de pérdida, si se le suman 3dB por pérdida por conectores (imagen slide 1), entonces quedan 7dB

Nuestra pt es de 20dbm, si se le restan 7db queda un pt final de Pt= 13dbm se convierte a watts: 13dbm = 10^(13/10) = 19.9526mW = 20mW

Según el modelo de la antena, tiene una ganacia de 14dbi. Según la fórmula se obtiene con

Pt= 20mW

 $10^{(x/10)}$. Lo que da: $10^{(14/10)} = 25.118[veces]$

El lambda es la fórmula: λ = c/fc. donde queda λ = 3*10^8/2.4*10^9 = 0.125

$$P_r = \frac{P_t G_t G_r \lambda}{(4\pi d)^2}$$

 $P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi d)^2}$ Si tomamos la distancia mayor (UOCT-macul) que es 5775m. el Pr: Pr = $(20*25^2*(0,125)^2)/(4*3,14*5775)^2 = 3.71*10^-8$ mW. al pasar esto a Dbm: $10\log 10(3,71*10^-8) = -74,306$ db

pero si se le suma la pérdida de recepción (7db). queda:

-74,306-7 = -81,306

según la fórmula de distancia, $\frac{d=\sqrt{(2\cdot r\cdot h)}}{d=\sqrt{(2\cdot r\cdot h)}}$ se puede calcular el alcance de las antenas. con el radio de la tierra r =8497*10^3mt.