Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

Rappels #2 (loi normale et vecteur Gaussien)

Random Vectors

Soient X un vecteur aléatoire de dimension d

- L'espérance de X, notée $\mathbb{E}(X)$ est définie (si elle existe) par le vecteur de dimension $d \mathbb{E}(\mathbf{X}) = (\mathbb{E}(\mathbf{X}_1), \dots, \mathbb{E}(\mathbf{X}_d))^{\mathsf{T}}$.
- La matrice de covariance (appelée aussi matrice de variance-covariance de X) est définie (si elle existe) par la matrice de taille (d, d)

$$\mathsf{Var}(\mathbf{X}) = \mathbb{E} ig((\mathbf{X} - \mathbb{E}(\mathbf{X})) (\mathbf{X} - \mathbb{E}(\mathbf{X}))^{ op} ig).$$

Ainsi le terme ij de cette matrice représente la covariance entre X_i et X_i ,

$$Cov(X_i, X_j) = \mathbb{E}\left[(X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))\right].$$

Random Vectors

Soit **X** un vecteur aléatoire de dimension d, de moyenne μ et de matrice de covariance Σ .

Soient **A** et **B** deux matrices réeeles de taille (d, p) et (d, q) et enfin soit $\mathbf{a} \in \mathbb{R}^p$ alors

- $ightharpoonup Var(\mathbf{X}) = \mathbb{E}\left((\mathbf{X} \mu)(\mathbf{X} \mu)^{\top}\right) = \mathbb{E}(\mathbf{X}\mathbf{X}^{\top}) \mu\mu^{\top}.$
- $\triangleright \mathbb{E}(\mathbf{A}^{\mathsf{T}}\mathbf{X} + \mathbf{a}) = \mathbf{A}^{\mathsf{T}}\boldsymbol{\mu} + \mathbf{a}.$
- $\triangleright \mathsf{Cov} \big(\mathbf{A}^{\top} \mathbf{X}, \mathbf{B}^{\top} \mathbf{X} \big) = \mathbf{A}^{\top} \mathbf{\Sigma} \mathbf{B}.$

The Gaussian Distribution

A Gaussian variable, with distribution $\mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma > 0$, has density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$
, for all $x \in \mathbb{R}$.

Then $\mathbb{E}(X) = \mu$ and $Var(X) = \sigma^2$.

Observe that if $Z \sim \mathcal{N}(0,1)$, $X = \mu + \sigma Z \sim \mathcal{N}(\mu, \sigma^2)$.

The Gaussian vector $\mathcal{N}(\mu, \Sigma)$: $\mathbf{X} = (X_1, ..., X_n)$ is a Gaussian vector with mean $\mathbb{E}(\mathbf{X}) = \mu$ and covariance matrix

 $\mathsf{Var}(\mathbf{X}) = \mathbf{\Sigma} = \mathbb{E} \left((\mathbf{X} - \mu) (\mathbf{X} - \mu)^\mathsf{T} \right)$ non-degenerated $(\mathbf{\Sigma}$ is

invertible) if its density is

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det \mathbf{\Sigma}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right), \ \mathbf{x} \in \mathbb{R}^{n},$$

see multivariate Gaussian distribution

The Gaussian Distribution

If **X** is a Gaussian vector, then for any i, X_i has a (univariate) Gaussian distribution, but its converse it not necessarily true.

Let $\mathbf{X} = (X_1, ..., X_n)$ be a random vector with mean $\mathbb{E}(\mathbf{X}) = \boldsymbol{\mu}$ and with covariance matrix Σ , if **A** is a $k \times n$ matrix, and $\mathbf{b} \in \mathbb{R}^k$. then $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$ is a Gaussian vector \mathbb{R}^k , with distribution $\mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathsf{T}}).$

Observe that if (X_1, X_2) is a Gaussian vector, X_1 and X_2 are independent if and only if

$$Cov(X_1, X_2) = \mathbb{E}((X_1 - \mathbb{E}(X_1))(X_2 - \mathbb{E}(X_2))) = 0.$$

The Gaussian Distribution

Let $\mathbf{Z} = (Y, X) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where

$$\mu = \begin{pmatrix} \mu_Y \\ \mu_X \end{pmatrix}$$
 and $\mathbf{\Sigma} = \begin{pmatrix} \Sigma_{Y,Y} & \Sigma_{Y,X} \\ \Sigma_{X,Y} & \Sigma_{X,X} \end{pmatrix}$

Then

$$Y|X = x \sim \mathcal{N}(\mu_{Y|x}, \sigma_{Y|x}^2) \text{ where } \begin{cases} \mu_{Y|x} = \mu_Y + \Sigma_{Y,X} \Sigma_{X,X}^{-1} (x - \mu_X) \\ \sigma_{Y|x}^2 = \Sigma_{Y,Y} - \Sigma_{Y,X} \Sigma_{X,X}^{-1} \Sigma_{X,Y} \end{cases}$$

Hence, $\mathbb{E}[Y|X=x]=\mu_{Y|X}$ is linear in x, with slope $\operatorname{Corr}(X,Y)\sqrt{\Sigma_{Y,Y}\Sigma_{X,X}^{-1}}$ and $\operatorname{Var}[Y|X=x]=\sigma_{Y|X}^2$ is constant (furthermore $\operatorname{Var}[Y|X=x] \leq \operatorname{Var}[Y]$)

Chi-Square Distribution

The chi-squared distribution $\chi^2(\nu)$, with $\nu \in \mathbb{N}^*$ has density

$$x \mapsto \frac{(1/2)^{\nu/2}}{\Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2}$$
, where $x \in [0; +\infty)$,

where Γ denotes the Gamma function ($\Gamma(n+1)=n!$). Observe that $\mathbb{E}(X) = \nu$ et $Var(X) = 2\nu$. ν are the degrees of freedom, see chi-squared distribution

If $X_1, \dots, X_{\nu} \sim \mathcal{N}(0,1)$ are independent variables, then

$$Y = \sum_{i=1}^{r} X_i^2 \sim \chi^2(\nu)$$
, when $\nu \in \mathbb{N}$.

This is a particular case of the Gamma distribution, $X \sim \mathcal{G}\left(\frac{k}{2}, \frac{1}{2}\right)$, see see gamma distribution

Student's t Distribution

The Student's-t distribution St(v), has density

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-(\frac{\nu+1}{2})},$$

Observe that

$$\mathbb{E}(X) = 0$$
 and $Var(X) = \frac{v}{v-2}$ when $v > 2$.

If $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(\nu)$ are independents, then

$$T = \frac{X}{\sqrt{Y/\nu}} \sim St(\nu).$$

see Student's t

Student's t Distribution

Let X_1, \dots, X_n be $\mathcal{N}(\mu, \sigma^2)$ independent random variables. Let

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$
 and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

Then $\frac{(n-1)S_n^2}{r^2}$ has a $\chi^2(n-1)$ distribution, and furthermore

$$T = \sqrt{n} \frac{\overline{X}_n - \mu}{S_n} \sim St(n-1).$$

Fisher's F Distribution

The Fisher distribution $\mathcal{F}(d_1, d_2)$, has density

$$x \mapsto \frac{1}{x \operatorname{B}(d_1/2, d_2/2)} \left(\frac{d_1 x}{d_1 x + d_2} \right)^{d_1/2} \left(1 - \frac{d_1 x}{d_1 x + d_2} \right)^{d_2/2}$$

for $x \ge 0$ and $d_1, d_2 \in \mathbb{N}$, where B denotes the Beta function.

$$\mathbb{E}(X) = \frac{d_2}{d_2 - 2}$$
 when $d_2 > 2$ and $Var(X) = \frac{2 d_2^2 (d_1 + d_2 - 2)}{d_1 (d_2 - 2)^2 (d_2 - 4)}$ when $d_2 > 4$.

If
$$X \sim \mathcal{F}(\nu_1, \nu_2)$$
, then $\frac{1}{X} \sim \mathcal{F}(\nu_2, \nu_1)$.

If $X_1 \sim \chi^2(\nu_1)$ and $X_2 \sim \chi^2(\nu_2)$ are independent

$$Y = \frac{X_1/\nu_1}{X_2/\nu_2} \sim \mathcal{F}(\nu_1, \nu_2)$$

see Fisher's \mathcal{F} on wikipedia

Gaussian Sampling

Suppose X_i 's i.i.d. from a $\mathcal{N}(\mu, \sigma^2)$ distribution,

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \text{ and } S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

then

- $ightharpoonup \overline{X}_n$ and S_n^2 are independent random variables
- \overline{X}_n has distribution $\mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$
- ▶ $(n-1)S_n^2/\sigma^2$ has distribution $\chi^2(n-1)$. Assume that X_i 's are i.i.d. random variables with distribution $\mathcal{N}(\mu, \sigma^2)$, then
- $ightharpoonup \sqrt{n} \frac{X_n \mu}{\sigma}$ has a $\mathcal{N}(0,1)$ distribution
- ▶ $\sqrt{n}\frac{\overline{X}_n \mu}{S_n}$ has a Student-*t* distribution with n 1 degrees of freedom

Théorème de Cochrane (1)

Note: **A** est idempotente si $\mathbf{A}^2 = \mathbf{A}\mathbf{A} = \mathbf{A}$. Si **A** est idempotente, $\exists \mathbf{P}$ de taille (d, r) tq $\mathbf{P}^{\mathsf{T}}\mathbf{P} = \mathbb{I}_r$ et $\mathbf{A} = \mathbf{P}\mathbf{P}^{\mathsf{T}}$ Soit $X \sim \mathcal{N}(0, \mathbb{I}_d)$ et soit **A** une matrice réelle symétrique. Alors,

- ▶ si **A** est une matrice idempotente, de rang r, $\mathbf{X}^{\mathsf{T}}\mathbf{A}\mathbf{X} \sim \chi^2(r)$ où $r = rg(\mathbf{A})$.
- ▶ si $\mathbf{X}^{\mathsf{T}}\mathbf{A}\mathbf{X} \sim \chi^2(s)$ alors **A** est une matrice idempotente et $s = rg(\mathbf{A}).$

Soit $X \sim \mathcal{N}(0, \mathbb{I}_d)$ et F un sous-espace vectoriel de \mathbb{R}^d de dimension p < d. Soient F^{\perp} son orthogonal, \mathbf{P}_F et $\mathbf{P}_{F^{\perp}}$ les matrices de projection sur F et F^{\perp} , alors

- $ightharpoonup P_F X \sim \mathcal{N}(0, P_F)$ et $P_{F^{\perp}} X \sim \mathcal{N}(0, P_{F^{\perp}})$ et $(P_F X)$ et $(P_{F^{\perp}} X)$ sont indépendants.
- $\|\mathbf{P}_F\mathbf{X}\|^2 \sim \chi_p^2$, $\|\mathbf{P}_{F^\perp}\mathbf{X}\|^2 \sim \chi_{d-p}^2$ et ces deux variables sont indépendantes.

Théorème de Cochrane (2)

Soient Y_1, \ldots, Y_n n v.a. i.i.d. de loi N(0,1) et soient

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \text{ et } S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

 \overline{Y} et S^2 sont indépendantes et $(n-1)S^2 \sim \chi^2_{n-1}$.

 $ightharpoonup F = \operatorname{Vec}(\mathbf{1}_n), \ \mathbf{P}_F = \mathbf{1}_n (\mathbf{1}_n^{\mathsf{T}} \mathbf{1}_n)^{-1} \mathbf{1}_n^{\mathsf{T}} = \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} \ \text{et donc}$

$$\mathbf{P}_{F^{\perp}} = \mathbb{I}_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\top}$$

- ▶ P_F est de rang 1 donc $P_{F^{\perp}}$ est de rang n-1.
- ▶ Enfin $\mathbf{P}_F \mathbf{Y} = (\overline{Y}, ..., \overline{Y})^{\top}$ et $\mathbf{P}_{F^{\perp}} = (Y_1 \overline{Y}, ..., Y_n \overline{Y})^{\top}$.
- $\|\mathbf{P}_{F^{\perp}}\mathbf{Y}\|^2 = (n-1)S^2.$