Combinatorial optimization Exercise sheet 1

Solutions by: Anjana E Jeevanand and David Čadež

25. Oktober 2023

Exercise 1.1. We can define a graph in the following way: Let $A = \{x_i\}_{i \in \mathbb{N}}$, $B = \{y_i\}_{i \in \mathbb{N}}$ and $E = \{\{x_i, y_{i+1}\} \mid i \in \mathbb{N}\} \cup \{\{x_i, y_1\} \mid i \in \mathbb{N}\}$. Clearly any subset of A or B satisfies Hall's condition.

Suppose it has a perfect matching M. Then $\{x_1, y_{i_0}\} \in M$ for some $i_0 \in \mathbb{N}$. Since vertex x_{i_0+1} is of degree 1 and his only neighbour is already matched, he cannot be covered. Therefore a perfect matching M cannot exist.

Exercise 1.2.

a) Suppose we have a bipartite graph $G = (A \dot{\cup} B, E)$, two subsets $A' \subseteq A$ and $B' \subseteq B$ and matchings $M_{A'}$ and $M_{B'}$ that cover A' and B' respectively.

To create a matching that covers $A' \cup B'$ we can take the union $M_{A'} \cup M_{B'}$ and pick out a subset in the following way. First observe that the degree of every edge $v \in V(G)$ is in $\{0,1,2\}$, so the graph $G' = (A \dot{\cup} B, M_{A'} \cup M_{B'})$ is union of circles and paths.

Because the graph is bipartite, circles are of even length and we can pick every second edge to get a matching that covers all edges in a circle.

Regarding the paths, observe that edges alternate (w.r.t. coming from $M_{A'}$ or $M_{B'}$). Let $(e_i = \{v_i, v_{i+1}\})_{i=1,\dots,k-1}$ be one of the paths in G' (we assume this path to be the whole connected component in G').

- If k is even, we can pick every second edge and get a perfect matching of the path.
- If k is odd: first and last vertex must lie in the same half of (bipartite) graph, WLOG $v_1, v_k \in A$. Assume $v_1, v_k \in A'$. Since edges alternate, either e_1 or e_{k-1} lies in $M_{B'}$. WLOG $e_1 \in M_{B'}$. Because v_1 is covered by the matching $M_{A'}$, there must exist an edge $\{v_1, u\} \in M_{A'}$, which is a contradiction with assumption $v_1, v_k \in A'$. Therefore at least one of v_1, v_k does not lie in A' in which case we do not have to cover it. We can remove it and perfectly cover the remaining (even length) path.

- b) Suppose for every non-empty $E' \subseteq E(G)$ we have $\tau(G E') < \tau(G)$. We want to show E(G) is a matching in G.
 - Let M be the maximum matching in bipartite graph G. By Königs theorem we have $\tau(G) = \nu(G)$. Take an edge $\{u,v\} \in E(G) \backslash M$. Matching M is still a maximum matching in $G \{u,v\}$ and thus $\nu(G) = \nu(G \{u,v\})$. But according to the assumption $\tau(G \{u,v\}) < \tau(G) = \nu(G \{u,v\})$, which cannot hold. Therefore E(G) must be equal to M and thus a matching.