杂谈勾股定理

李世旺

May 3, 2016

Abstract

这是一篇关于 α 勾股定理ij(90°)的小短文。

Contents

1	勾股定理在古代	2
2	勾股定理的近代形式	3
3	方程式	3
4	分式形式	4

1 勾股定理在古代

西方称勾股定理为毕达哥拉斯定理,将勾股定理的发现归功于公元前6世纪的毕达哥拉斯学派.该学派得到了一个法则,可以求出可排成直角三角形三边的三元数组.

毕达哥拉斯学派没有书面著作,该定理的严格表述和证明则见于欧几里德¹《几何原本》的命题 47:

"直角三角形斜边上的正方 形等于两直角边上的两个正 方形之和。"

证明是用面积做的。

$$\angle ACB = \pi/2 = 90^{\circ} \tag{1}$$

¹欧几里德,约公元前 330-275 年。

2 勾股定理的近代形式

西方称勾股定理为毕达哥拉斯定理,将勾股定理 的发现归功于公元前6世纪的毕达哥拉斯学派.该学 派得到了一个法则,

> 可以求出可排成直角三角形三边的三元 数组.

毕达哥拉斯学派没有书面著作,该定理的严格表述和证明则见于欧几里德²《几何原本》的命题 47:

"直角三角形斜边上的正方形等于两直角边上的两个正方形之和。"

证明是用面积做的。

3 方程式

	直角边 c	直角边b	直角边a
a^2	5	4	3
	13	12	5

$$(a^2 + b^2 = c^2)$$

²欧几里德,约公元前 330-275 年。

定理 1 (勾股定理) 直角三角形斜边的平方和等于两腰的平方和。1

定理 2 (判别式) 方程 $xy + z \ln y + e^{xy} = 1$.

$$x_{\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\sqrt[3]{a}} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\sqrt[3]{a}$$

4 分式形式

$$\Delta = b^2 - 4ac \tag{2}$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \sqrt[3]{a} \tag{3}$$

在\verb后,起始的符号和末尾的符号相同,两个符号之间的部分将使用打字机字体逐字原样输出;

\verb"\LaTeX \& \TeX" \qquad
\verb!\/}{#\$%&~!

\LaTeX \& \TeX

\/}{#\$%&~

使用带星号的命令 \verb* 则可以使输出的空格为可见的 ...

显示空格 \verb*!1 2 3 4!

显示空格 1.2.3.3.4

大段的抄录则可以使用 verbatim 环境:

\begin{verbatim}

#!usr/bin/env perl

\$name = "guy";

print "Hello, \$name!\n";

\end{verbatim}

#!usr/bin/env perl
\$name = "guy";

print "Hello, \$name!\n":