Relációs adatbázis tervezés

Funkcionális függőségek Felbontások Normálformák

Funkcionális függőségek

- X->Y az R relációra vonatkozó megszorítás, miszerint ha két sor megegyezik X összes attribútumán, Y attribútumain is meg kell, hogy egyezzenek.
 - ☐ Jelölés: X, Y, Z,... attribútum halmazokat; A, B, C,... attribútumokat jelöl.
 - ☐ Jelölés: {A,B,C} attribútum halmaz helyett ABC-t írunk.

Jobboldalak szétvágása (ff)

- $X -> A_1 A_2 ... A_n$ akkor és csak akkor teljesül R relációra, ha $X -> A_1$, $X -> A_2$,..., $X -> A_n$ is teljesül R-en.
- □ Példa: A->BC ekvivalens A->B ésA->C függőségek kettősével.
- Baloldalak szétvágására nincs általános szabály.

Példa: FF

- Vezetők(név, cím, kedveltSörök, gyártó, kedvencSör)
- FF-k, amelyek vszleg teljesülnek:
 - 1. név -> cím kedvencSör
 - Ez az FF ugyanaz, mint név -> cím és név -> kedvencSör.
 - kedveltSörök -> gyártó.

Példa: egy lehetséges előfordulás

Mert kedveltSörök -> gyártó

Relációk kulcsai

- K szuperkulcs R relációra, ha K funkcionálisan meghatározza R attribútumait.
- K kulcs R-en, ha K szuperkulcs, de egyetlen valódi részhalmaza sem szuperkulcs.

Példa: szuperkulcs

- Főnökök(név, cím, kedveltSörök, gyártó, kedvencSör)
- {név, kedveltSörök} szuperkulcs, hiszen a két attribútum meghatározza funkcionálisan a maradék attribútumokat.
 - □ név -> cím kedvencSör
 - □ kedveltSörök -> gyártó

Példa: kulcs

- \[\left\{\text{név, kedveltS\"or\"ok\} \ kulcs, hiszen sem \\ \left\{\text{név}\}, sem \{\text{kedveltS\"or\"ok\} \ nem \\ szuperkulcs.
 - név -> gyártó; kedveltSörök -> cím nem teljesülnek.
- Az előbbin kívül nincs több kulcs, de számos szuperkulcs megadható még.
 - Minden olyan halmaz, amit tartalmazza {név, kedveltSörök}-t.

Kis kombinatorika

- Feladat: R relációnak legyenek A₁,..., An az attribútumai. Adjuk meg n függvényeként, hogy R-nek hány szuperkulcsa van, ha
 - (a) csak A₁ kulcs,
 - (b) A₁ és A₂ kulcsok,
 - (c) $\{A_1, A_2\}, \{A_3, A_4\}$ kulcsok,
 - (d) $\{A_1, A_2\}, \{A_1, A_3\}$ kulcsok.

Hogyan kaphatjuk meg a kulcsokat?

- 1. Szimplán megadunk egy K kulcsot.
 - Az FF-k K-> A alakúak, ahol A "végigmegy" az összes attribútumon
- 2. Vagy: megadjuk az FF-ket, és ezekből következtetjük ki a kulcsokat.

Még egy természetesen adódó FF

Példa: az "ugyanabban az időben nem lehet két előadás ugyanabban a teremben" lefordítva:

idő terem -> előadás.

FF-k kikövetkeztetése

- Legyenek $X_1 ext{->} A_1$, $X_2 ext{->} A_2$,..., $X_n ext{->} A_n$ adott FF-ek, szeretnénk tudni, hogy $Y ext{->} B$ teljesül-e olyan relációkra, amire az előbbi FF-ek teljesülnek.
 - □ Példa: $A \rightarrow B$ és $B \rightarrow C$ teljesülése esetén $A \rightarrow C$ biztosan teljesül.
- Ez az adatbázis sémájának megtervezésekor lesz majd fontos.

Armstrong-axiómák I.

- ☐ (A1) Reflexitivitás: ha Y \subseteq X \subseteq R, akkor X \rightarrow Y. Az ilyen függőségeket triviális függőségeknek nevezzük.
- ☐ (A2) Bővítés: ha X → Y teljesül, akkor tetszőleges Z \subseteq R-ra XZ → YZ teljesül.
- □ (A3) Tranzitivitás: ha $X \rightarrow Y$ és $Y \rightarrow Z$, akkor $X \rightarrow Z$.
- Példák a személy (sz_ig_szám, TAJ, név, anyja_neve, születés, kor, fizetés) tábla esetén:
 - ☐ (A1) (név, születés) → név
 - □ (A2) születés → kor, akkor (születés, név) → (kor, név)
 - □ (A3) TAJ \rightarrow születés, születés \rightarrow kor, akkor TAJ \rightarrow kor.

Példa levezetésre

- Legyen R = ABCD és F = $\{A \rightarrow C, B \rightarrow D\}$:
 - 1. $A \rightarrow C$ adott.
 - 2. AB \rightarrow ABC (A2) alapján.
 - 3. $B \rightarrow D$ adott.
 - 4. ABC → ABCD (A2) alapján.
 - 5. AB \rightarrow ABCD (A3) alapján 2-ből és 4-ből.
- Példa: bizonyítsuk be levezetéssel, hogy $\{ X \rightarrow Y, XY \rightarrow Z \}$ -ből következik $\{ X \rightarrow Z \}$.

Újabb feladat

- Feladat: mutassuk meg, hogy az alábbiak nem érvényes szabályok funkcionális függőségekre:
 - \square ha A \rightarrow B, akkor B \rightarrow A,
 - \square ha AB \rightarrow C és A \rightarrow C, akkor B \rightarrow C,
 - \square ha AB \rightarrow C, akkor A \rightarrow C vagy B \rightarrow C.

Lezárás

- Egy egyszerűbb út, ha kiszámítjuk Y lezártját, jelölésben Y+.
- □ Kiindulás: $Y^+ = Y$.
- □ Indukció: Olyan FF-ket keresünk, melyeknek a baloldala már benne van Y+-ban. Ha X-> A ilyen, A-t hozzáadjuk Y+-hoz.

Mi is az a lezárt?

Adott R séma és F FF halmaza mellett, X⁺ az összes olyan A attribútum halmaza, amire X->A következik F-ből.

A lezárást kiszámító algoritmus "helyes" I.

- Az algoritmus "tényleg" X+-t számítja ki. Vagyis:
 - Ha az A attribútum valamely j-re belekerül X^jbe, akkor A valóban eleme X+-nak.
 - Másfelől, ha A ∈X⁺, akkor létezik olyan j, amire A belekerül X^j-be.
- Megjegyzés: az első állítás könnyen bizonyítható indukcióval.

A lezárást kiszámító algoritmus "helyes" II.

□ (2) Tegyük fel, hogy A ∉X+, tehát nem létezik olyan j, amire A belekerül X^j-be.

	X ⁺ elemei	más attribútumok
t	111 111	000 000
S	111 111	111 111

- Ekkor az előbbi előfordulásra minden F-beli függőség teljesül. (Miért?)
- X → A viszont nem teljesül.

Feladatok

- R = SEBADNM, F = { S → EBAD, D → NM }, mi az S és D attribútumok F-re vonatkozó lezártja?
- 2. R = HTUSDK, F = { H → T, U → HS, HD → KU }, adjuk meg az összes F-szerinti kulcsát R-nek és lássuk be, hogy csak a megadottak kulcsok.
- 3. Bizonyítsuk be, hogy $(X^+)^+ = X^+$.

Az összes következmény FF megtalálása

- Motiváció: "normalizálás", melynek során egy reláció sémát több sémára bonthatunk szét.
- □ Példa: ABCD FF-k: $AB \rightarrow C$, $C \rightarrow D$ és $D \rightarrow A$.
 - □ Bontsuk fel *ABC* és *AD*-re. Milyen FF-k teljesülnek *ABC* –n?
 - \square Nem csak $AB \rightarrow C$, de $C \rightarrow A$ is!

Miért?

Emiatt, ha két vetített sor C-n megegyezik, akkor A-n is, azaz:

$$C \rightarrow A$$

Alapötlet

- Induljunk ki a megadott FF-ekből és keressük meg az összes nem triviális FF-t, ami a megadott FF-ekből következik.
 - Nem triviális = a jobboldalt nem tartalmazza a bal.
- 2. Csak azokkal az FF-kel foglalkozzunk, amelyekben a projektált séma attribútumai szerepelnek.

Exponenciális algoritmus

- Minden X attribútumhalmazra számítsuk ki X+-t.
- Adjuk hozzá a függőségeinkhez X->A-t minden A-ra X+ - X-ből.
- 3. Dobjuk ki $XY \rightarrow A t$, ha $X \rightarrow A$ is teljesül.
 - Mert XY->A X->A -ból minden esetben következik.
- 4. Végül csak azokat az FF-ket használjuk, amelyekben csak a projektált attribútumok szerepelnek.

Néhány trükk

- Az üreshalmaznak és az összes attribútum halmazának nem kell kiszámolni a lezártját.
- □ Ha X⁺ = az összes attribútum, akkor egyetlen X- t tartalmazó halmaznak sem kell kiszámítani a lezártját.

Példa: FF-k projekciója

- $\square ABC$, $A \rightarrow B$ és $B \rightarrow C$ FF-kel. Projektáljunk AC-re.
 - $\Box A^{+}=ABC$; ebből $A\rightarrow B$, $A\rightarrow C$.
 - Nem kell kiszámítani AB + és AC + lezárásokat.
 - $\square B^+ = BC$; ebből $B \rightarrow C$.
 - $\Box C^+=C$; semmit nem ad.
 - $\square BC^+=BC$; semmit nem ad.

Példa -- folytatása

- \square A kapott FF-ek: $A \rightarrow B$, $A \rightarrow C$ és $B \rightarrow C$.
- $\square AC$ -re projekció: $A \rightarrow C$.

Az FF-k geometriai reprezentációja

- Vegyük egy reláció összes lehetséges előfordulásainak halmazát.
- Azaz az összes olyan sorhalmazt, mely sorok komponensei a "megfelelőek".
- Minden ilyen halmaz egy pont a térben.

Példa: R(A,B)

Egy FF az előfordulásoknak egy részhalmaza

- Minden X-> A FF megadható azon előfordulások részhalmazaként, mely teljesíti FF-t.
- Így minden FF egy régióval jellemezhető a térben
- A triviális FF-k azok, melyeknél ez a régió a teljes tér.
 - □ Példa: A -> A.

Példa: A -> B R(A,B) fölött

FF-k halmazának reprezentálása

- □ Ha egy-egy FF előfordulásoknak egy halmazával reprezentálható, akkor az FF-ek halmaza az előbbi halmazok metszetével lesz egyenlő.
 - □ Azaz a metszet = azon előfordulások, amelyekre mindegyik FF teljesül.

Példa

FF-k következtetése

 \square Ha FF $Y \rightarrow B$ következik $X_1 \rightarrow A_1,...,$ $X_n \rightarrow A_n$ FF-ekből, akkor az $Y \rightarrow B$ régiójának tartalmaznia kell az $X_i \rightarrow A_i$ FF-ekhez tartozó régiók metszetét. Azaz: minden előfordulás, ami teljesíti $X_i \rightarrow A_i -t, Y \rightarrow B -t$ is teljesíti. Ugyanakkor ha egy előfordulásra teljesül $Y \rightarrow B$, $X_i \rightarrow A_i$ nem feltétlen teljesül.

Példa

Relációs sémák tervezése

- Cél: az anomáliák és a redundancia megszüntetése.
 - Módosítási anomália: egy adat egy előfordulását megváltoztatjuk, más előfordulásait azonban nem.
 - □ Törlési anomália: törléskor olyan adatot is elveszítünk, amit nem szeretnénk.

Példa: rosszul tervezett séma

Főnökök(név, cím, kedveltSörök, gyártó, kedvencSör)

név	cím	kedveltSörök	gyártó	kedvencSör
Janeway	Voyager	Bud	A.B.	WickedAle
Janeway	???	WickedAle	Pete's	???
Spock	Enterprise	Bud	???	Bud

Redundáns adat, a ??? helyén a név -> cím kedvencSör és kedveltSörök -> gyártó FF-ek felhasználásával tudjuk, mi szerepel.

A rosszul tervezettség anomáliákat is eredményez

név	cím	kedveltSörök	gyártó	kedvencSör
Janeway	Voyager	Bud	A.B.	WickedAle
Janeway	Voyager	WickedAle	Pete's	WickedAle
Spock	Enterprise	Bud	A.B.	Bud

- Módosítási anomália: ha Janeway-t Karcsira módoítjuk, megtesszük-e ezt minden sornál?
- Törlési anomális: Ha senki sem szereti a Bud sört, azt sem tudjuk, ki gyártotta.

Boyce-Codd normálforma

- □ R reláció BCNF normálformában van, ha minden X -> Y nemtriviális FF-re R-ben X szuperkulcs.
 - Nemtriviális: Y nem része X-nek.
 - □ Szuperkulcs: tartalmaz kulcsot (ő maga is lehet kulcs).

Példa

Főnökök(név, cím, kedveltSörök, gyártó, kedvencSör)
 FF-ek: név->cím kedvencSör, kedveltSörök->gyártó
 Itt egy kulcs van: {név, kedveltSörök}.
 A baloldalak egyik FF esetén sem szuperkulcsok.
 Emiatt az *Főnökök* reláció nincs BCNF normálformában.

Még egy példa

Sörök(<u>név</u>, gyártó, gyártóCím)

FF-ek: név->gyártó, gyártó->gyártóCím

- □ Az egyetlen kulcs {név} .
- név->gyártó nem sérti a BCNF feltételét, de a gyártó->gyártóCím függőség igen.

BCNF-re való felbontás

- □ Adott R reláció és F funkcionális függőségek.
- □ Van-e olyan X-> YFF, ami sérti a BCNFt?
 - □ Ha van olyan következmény FF F-ben, ami sérti a BCNF-t, akkor egy F-beli FF is sérti.
- ☐ Kiszámítjuk X+-t:
 - □ Ha itt nem szerepel az összes attribútum, X nem szuperkulcs.

R dekomponálása X -> Y felhasználásával

- R-t helyettesítsük az alábbiakkal:
 - 1. $R_1 = X^+$.
 - 2. $R_2 = R (X^+ X)$.
- Projektáljuk a meglévő F-beli FF-eket a két új relációsémára.

Dekomponálási kép

Példa: BCNF dekompozíció

```
Alkeszek(<u>név</u>, cím, <u>kedveltSörök</u>, gyártó,
     kedvencSör)
F = \text{n\'ev-} > \text{c\'im}, \text{n\'ev-} > \text{kedvencS\"or},
     kedveltSörök->gyártó
   Vegyük név->cím FF-t:
  \{név\}^+ = \{név, cím, kedvencSör\}.
    A dekomponált relációsémák:
   1. Alkeszek1(<u>név</u>, cím, kedvencSör)
   2. Alkeszek2(<u>név</u>, <u>kedveltSörök</u>, gyártó)
```

Példa -- folytatás

- Meg kell néznünk, hogy az Alkeszek1 és Alkeszek2 táblák BCNF-ben vannak-e.
- Az FF-ek projektálása könnyű.
- □ A Alkeszek1(<u>név</u>, cím, kedvencSör), az FF-ek név->cím és név->kedvencSör.
 - ☐ Tehát az egyetlen kulcs: {név}, azaz az Alkeszek1 BCNF-ben van.

Példa -- folytatás

- Az Alkeszek2(név, kedveltSörök, gyártó) esetén az egyetlen FF
 - kedveltSörök->gyártó, az egyetlen kulcs: {név, kedveltSörök}.
 - Sérül a BCNF.
- kedveltSörök+ = {kedveltSörök, gyártó}, az Alkeszek2 felbontása:
 - 1. Alkeszek3(<u>kedveltSörök</u>, gyártó)
 - 2. Alkeszek4(<u>név</u>, <u>kedveltSörök</u>)

Példa -- befejezés

- Az Alkeszek dekompozíciója tehát:
 - 1. Alkeszek1(<u>név</u>, cím, kedvencSör)
 - 2. Alkeszek 3(<u>kedveltSörök</u>, gyártó)
 - 3. Alkeszek 4(<u>név</u>, <u>kedveltSörök</u>)
- Az Alkeszek1 az alkeszekről, az Alkeszek3 a sörökről, az Alkeszek4 az alkeszek és kedvelt söreikről tartalmaz információt.

Miért működik a BCNF?

- (R, F) esetén ha R₁,..., R_k egy veszteségmentes felbontás, S₁, S₂ pedig R₁ veszteségmentes felbontása, akkor S₁, S₂, R₂,..., R_k is veszteségmentes felbontás.
- Könnyen ellenőrizhető, hogy a fenti R₁, R₂ veszteségmentes. Feladat: bizonyítsuk be, hogy ha az R(A, B, C) reláció esetén B → C teljesül, akkor az R₁(A, B), R₂(B, C) felbontás mindig veszteségmentes.
- Minden két attribútumú séma BCNF normálformában van.
- Az algoritmus tehát valóban veszteségmentes felbontást ad, ám sajnos exponenciális lépésszámú is lehet a függőségek vetítése miatt.

Feladat

- Adott R = ABCD reláció és F = { AB → C, A → D, BD → C} függőségi halmaz mellett adjuk meg R egy BCNF dekompozícióját.
- 2. Legyen most R = BOISQD, F = { S \rightarrow D, I \rightarrow B, IS \rightarrow Q, B \rightarrow O }. Ugyanez a feladat.

Veszteségmentes szétvágás I.

- Ha r = Π_{R1}(r) |X| ... |X| Π_{Rk}(r) teljesül, akkor az előbbi összekapcsolásra azt mondjuk, hogy veszteségmentes. Itt r egy R sémájú relációt jelöl.
- \square $\Pi_{Ri}(r)$ jelentése: r sorai az Ri attribútumaira projektálva.
- □ Megjegyzés: könnyen látható, hogy $r \subseteq \Pi_{R1}(r) |X| ... |X| \Pi_{Rk}(r)$ mindig teljesül. (Miért?)

R

Α	В	С
а	b	С
d	е	f
С	b	С

 R_1

Α	В
а	b
d	е
С	b

 R_2

В	С
b	С
е	f

Példa

 A szétvágás után keletkező relációk összekapcsolása nem veszteségmentes:

R

Α	В	C
a	b	С
С	b	е

 R_1

Α	В
a	b
С	b

 R_2

В	С
b	С
b	е

Chase-teszt veszteségmentességhez

Ι.

- □ Példa: adott R(A, B, C, D), F = { A \rightarrow B, B \rightarrow C, CD \rightarrow A } és az R₁(A, D), R₂(A, C), R₃(B, C, D) felbontás. Kérdés veszteségmentes-e a felbontás?
- □ Vegyük $R_1 |X| R_2 |X| R_3$ egy t = (a, b, c, d) sorát. Bizonyítani kell, hogy t R egy sora. A következő tablót készítjük el:

A	В	C	D
a	b_1	C_1	d
a	b_2	С	d_2
a_3	b	С	d

Itt pl. az (a, b_1 , c_1 , d) sor azt jelzi, hogy R-nek van olyan sora, aminek R_1 -re való levetítése (a, d), ám ennek a B és C attribútumokhoz tartozó értéke ismeretlen, így egyáltalán nem biztos, hogy a t sorról van szó.

Chase-teszt veszteségmentességhez II.

- Az F-beli függőségeket használva egyenlővé tesszük azokat a szimbólumokat, amelyeknek ugyanazoknak kell lennie, hogy valamelyik függőség ne sérüljön.
 - Ha a két egyenlővé teendő szimbólum közül az egyik index nélküli, akkor a másik is ezt az értéket kapja.
 - □ Két indexes szimbólum esetén a kisebbik indexű értéket kapja meg a másik.
 - A szimbólumok minden előfordulását helyettesíteni kell az új értékkel.
- Az algoritmus véget ér, ha valamelyik sor t-vel lesz egyenlő, vagy több szimbólumot már nem tudunk egyenlővé tenni.

Chase-teszt veszteségmentességhez III.

A	В	C	D
a	b_1	C_1	d
a	b_2	С	d_2
a_3	b	С	d

A	В	C	D
а	b_1	C_1	d
а	b_1	С	d_2
a ₃	b	С	d

$$B \rightarrow C$$

A	В	C	D
a	b_1	С	d
a	b_1	С	d_2
a_3	b	С	d

$$CD \rightarrow A$$

A	В	C	D
a	b_1	С	d
a	b_1	С	d_2
а	b	С	d

Chase-teszt veszteségmentességhez IV.

- Ha t szerepel a tablóban, akkor valóban R-nek egy sora, s mivel t-t tetszőlegesen választottuk, ezért a felbontás veszteségmentes.
- Ha nem kapjuk meg t-t, akkor viszont a felbontás nem veszteségmentes.
- □ Példa: R(A, B, C, D), F = { B \rightarrow AD }, a felbontás: R₁(A, B), R₂(B, C), R₃(C, D).

A	В	C	D
a	b	C_1	d_1
a_2	b	С	d_2
a_3	b_3	С	d

$$B \rightarrow AD$$

)	а	b	C ₁	d_1
	a	b	С	d_1
	a _a	b_2	C	d

Itt az eredmény jó ellenpélda, hiszen az összekapcsolásban szerepel t = (a, b, c, d), míg az eredeti relációban nem.

Chase-teszt veszteségmentességhez IV.

 \Box {A,B}, {(a, b)}, (a₃, b₃)}. \Box {*B*,*C*}, {(b, c₁), (b, c), (b₃, c)}, \Box {*C*, *D*}, (c₁,d₁), (c, d₁), (c, d)} $\square \bowtie$, {(a, b, c₁), (a, b, c), (a₃, b₃, c)}. $\square \bowtie$,, {(a, b, c₁,d₁), (a, b, c, d₁), (a, b, c, d), (a_3, b_3, c, d_1) , (a_3, b_3, c, d) }. □ 2 extra sor (rekord), és (a, b, c, d), amit kell is tartalmaznia.

A harmadik normálforma --motiváció

- Bizonyos FF halmazok esetén a felbontáskor elveszíthetünk függőségeket.
- $\square AB \rightarrow C \text{ és } C \rightarrow B$
 - \square Példa: $A = f_c(m, B = város, C = mozi.$
- \square Két kulcs van: $\{A,B\}$ és $\{A,C\}$.
- □ {f_cím, város}, {f_cím, mozi}
- C->B megsérti a BCNF-t, tehát AC, BC-re dekomponálunk. [mozi->város, nem szuperkulcs C]

FF-ek kikényszerítése

- A probléma az, hogy AC és BC sémákkal nem tudjuk kikényszeríteni
 - *AB* -> *C* függőséget.
- □ Példa A = f_cím, B = város, C = mozi, a következő dián.

Egy kikényszeríthetetlen FF

F_cím	mozi
Antz	Guild
Antz	Park

város	mozi
Cambridge	Guild
Cambridge	Park

Kapcsoljuk össze a sorokat (mozi).

F_cím	város	mozi
Antz	Cambridge	Guild
Antz	Cambridge	Park

A szétbontott relációkban egyik FF sem sérül, az eredményben az F_cím város -> mozi nem teljesül.

A probléma megoldása: 3NF

3. normálformában (3NF) úgy módosul a BCNF feltétel, hogy az előbbi esetben nem kell dekomponálnunk.
 Egy attribútum *prím*, ha legalább egy kulcsnak eleme.
 X->A megsérti 3NF-t akkor és csak akkor, ha X nem szuperkulcs és A nem prím (elsődleges attribútum).
 minden nem triviális függőségre igaz, hogy bal oldala szuperkulcs, vagy jobb oldala csak elsődleges attribútumokat tartalmaz
 3NF feltétel és a BCNF feltétel közötti különbség a "vagy jobb oldala csak elsődleges attribútumokat tartalmaz"

Példa: 3NF

- □ A problematikus esetben az AB -> C és
 C->B FF-ek esetén a kulcsok AB és
 AC.
- □ Ezért A, B és C mindegyike prím.
- □ Habár C->B megsérti a BCNF feltételét, 3NF feltételét már nem sérti meg.

Miért hasznos 3NF és BCNF?

- A dekompozícióknak két fontos tulajdonsága lehet:
 - Veszteségmentes összekapcsolás: ha a projektált relációkat összekapcsoljuk az eredetit kapjuk vissza.
 - Függőségek megőrzése: a projektált relációk segítségével is kikényszeríthetőek az előre megadott függőségek.

3NF és BCNF -- folytatás

- □ Az (1) tulajdonság teljesül a BCNF esetében.
- ☐ A 3NF (1) és (2)-t is teljesíti.
- □ A BCNF esetén (2) sérülhet.
 - □ Az F_cím város mozi erre volt egy példa.

Minimális bázis létrehozása

- Jobboldalak szétvágása.
- 2. Próbáljuk törölni az FF-eket egymás után. Ha a megmaradó FF-halmaz nem ekvivalens az eredetivel, akkor nem törölhető az épp aktuális FF.
- 3. Egymás után próbáljuk csökkenteni a baloldalakat, és megnézzük, hogy az eredetivel ekvivalens FF-halmazt kapunk-e.

3NF-re bontás – (2)

- A minimális bázis minden FF-re megad egy sémát a felbontásban.
 - □ A séma a jobb- és baloldalak uniója lesz (X-> A FF, XA séma).
- Ha a minimális bázis FF-jei által meghatározott sémák (X-> A FF, XA séma) között nincs szuperkulcs, akkor hozzáadunk a felbontáshoz egy olyan sémát, amely maga egy kulcs az R relációra.

Példa: 3NF felbontás

- □ A reláció: R = ABCD.
- □ FF-ek: A->B és A->C.
- Felbontás: AB és AC az FF-ekből és ADt is hozzá kell venni, mert AB, AC egyike sem kulcs.

Miért működik?

- Megőrzi a függőségeket: minden FF megmarad a minimális bázisból.
- Veszteségmentes összekapcsolás: a CHASE algoritmussal ellenőrizhető (a kulcsból létrehozott séma itt lesz fontos).
- 3NF: a minimális bázis tulajdonságaiból következik.

Minimális bázist kiszámító algoritmus

Jelölje F⁺ az F függőségi halmazból következő függőségek halmazát.

- 1. Kezdetben G az üreshalmaz.
- 2. Minden $X \rightarrow Y \in F$ helyett vegyük az $X \rightarrow A$ függőségeket, ahol $A \in Y X$).
 - Megjegyzés: Ekkor minden G-beli függőség $X \rightarrow A$ alakú, ahol A attribútum.
- 3. Minden $X \to A \in G$ -re, ha $X \to A \in (G \{X \to A\})^+$, vagyis ha elhagyjuk az $X \to A$ függőséget G-ből, az még mindig következik a maradékból, akkor $G := G \{X \to A\}$.
 - Megjegyzés: Végül nem marad több elhagyható függőség.
- 4. Minden $X \rightarrow A \in G$ -re, amíg van olyan $B \in X$ -re, hogy $A \in (X B)$ + a G-szerint, vagyis $(X B) \rightarrow A$ teljesül, akkor X := X B. Megjegyzés: E lépés után minden baloldal minimális lesz.

Feladat

- Példa: F = { H → T, U → HS, HD → KU }. Mi a minimális bázis?
- Feladat: R = BOISQD,
 F = { S → D, I → BS, IS → Q, B → OQ,
 SD → O}. Adjunk meg egy
 függőségőrző, veszteségmentes 3NF
 dekompozíciót.