

HANDBOOK OF THE ELEMENTS

IA

H

IIA

Li

Be

Na

Mg

IIIB

IVB

VB

VIIB

VIIIB

—

VIII

IB

IIIB

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cs

Ba

La*

Hf

Ta

W

Re

Os

Ir

Pt

Au

Fr

Ra

Act

104

105

106

107

109

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

SAMUEL RUBEN

								O			
								He			
					III A	IV A	V A	VIA	VIIA		
					B	C	N	O	F		
					Al	Si	P	S	Cl	Ar	
VII B	VIII	IB	IIB								
Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
107		109									
Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu				
Cm	Bk	Cf	Es	Fm	Md	No	Lr				

OPEN COURT
LA SALLE, ILLINOIS 61301

ISBN 0-87548-399-2

\$10.95

ISBN 0-87548-399-2

9 780875 483993

Handbook of the Elements

Handbook of the Elements

Samuel Ruben

**Open Court Publishing Company
La Salle, Illinois 61301**

**To order books from Open Court,
call toll-free 1-800-815-2280.**

Open Court Publishing Company is a division of Carus Publishing Company.

Copyright © 1965, 1967, 1985 by Samuel Ruben.

Fourth printing 1992

Fifth printing 1994

Sixth printing 1995

Seventh printing 1996

Eighth printing 1998

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Open Court Publishing Company, a division of Carus Publishing Company, 315 Fifth Street, P.O. Box 300, Peru, Illinois 61354-0300.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Ruben, Samuel

Handbook of the elements.

1. Chemical elements. I. Title

QD466.R78 1985 546 85-18942

ISBN 0-87548-399-2

Preface

Handbook of the Elements is a practical reference source that provides essential information on the 108 known chemical elements for students and working scientists alike.

Knowledge about the elements is critical to our understanding of science and the world around us. This edition represents the most up-to-date compilation of information on the elements currently available.

Data on the chemical elements have been the fundamentals of scientific work for years, yet new research is continually revising previously published material about them. Even physical "constants" are subject to change in the light of additional research.

The information contained in this the third edition reflects state-of-the-art values on the most frequently required constants. The material in this current edition was compiled, corrected, and updated over a period of several years, utilizing hundreds of sources. Each value was checked in a minimum of 10 sources to ensure accuracy. A partial listing of the primary reference sources consulted is given at the end of the monographs.

I wish to acknowledge the significant assistance of Wayne Hruden for updating the reported values of the constants and the support given by the Duracell International Inc.

SAMUEL RUBEN
December 1984

Introduction

This handbook contains monographs for each of the 108 known chemical elements, arranged in alphabetical order for rapid reference.

Except where unavailable, values for the following twenty-five different elemental constants are given:

Periodic classification The group, family name, and/or series of the element; this categorization reflects the position of the element in the periodic table.

Atomic number An element of atomic number Z occupies the Z th position in the periodic classification. Its neutral atom has a nucleus with a charge of $+Ze$ surrounded by Z electrons, each of charge $-e$.

Atomic weight The relative atomic mass (A_r) based on $^{12}\text{C} \equiv 12$; the value for the most stable isotope is given for synthetic elements.

Naturally occurring isotopes Mass numbers of the isotopes are listed in decreasing order of natural terrestrial abundance.

Density The weight per unit volume of the element; measurements of this constant are generally made at 25°C, but the temperature utilized is shown in parentheses. Units are grams per cubic centimeter (g/cm^3).

Melting point Units are degrees Celsius (°C); **Boiling point:** Units are degrees Celsius (°C).

Latent heat of fusion The quantity of heat required to change 1 g of the solid element into the liquid state at a constant temperature. Units are Joules per gram (J/g).

Specific heat The thermal capacity of an element; the specific heat capacity is the quantity of heat required to raise the temperature of a mass through a measured number of Celsius degrees. Units are Joules per gram per degree Celsius ($\text{J}/\text{g}/^\circ\text{C}$).

Coefficient of lineal thermal expansion The ratio of the change in length per degree Celsius to the original length at zero degrees Celsius. Units are centimeter per centimeter per degree Celsius ($\text{cm}/\text{cm}/^\circ\text{C}$).

Thermal conductivity Thermal energy transmitted through a unit cube per unit time when there exists unit temperature difference between opposite parallel faces. Units are watts (or milliwatts) per centimeter per degree Celsius [$\text{w} \text{ (or mw)}/\text{cm}/^\circ\text{C}$].

Electrical resistivity A proportionality factor (ρ) relating the resistance to current flow between parallel faces of a 1-cm cube of the element. This factor is also known as specific resistance. Because the resistance of semiconductor is substantially influenced by the presence of traces of impurities, the intrinsic resistivity is the parameter given for these ultrapure elements. Units are ohm-centimeters (ohm-cm).

Ionization potential (1st) The energy necessary to remove the least strongly bound electron from its orbit and place it at rest at an infinite distance. Units are electron volts (eV).

Electron work function (ϕ) The minimum photonic energy required to remove an electron from the boundary of an element; also known as photoelectric work function. Units are electron volts (eV).

Oxidation potential The difference in potential produced by a voltaic half-cell associated with the cited chemical reaction. By using the oxidation potential, the likelihood of various chemical reactions can be predicted. Oxidation of gaseous hydrogen (at 1 atmosphere pressure) to ionic hydrogen (in 1 molar acid solution at 25°C) defines the zero reference. Units are volts (V).

Chemical valence The number of hydrogen atoms (or their equivalent) with which an atom of an element can combine (if negative) or the number which it can displace in a reaction (if positive). The principal valence is set in italic type when more than one valence is possible.

Electrochemical equivalents The mass of an element displaced by the passage of unit quantity of electricity. The values provided are derived from:

$$\text{electrochemical equivalents} = \frac{kA}{n}$$

where k is a constant equal to 0.0373100, A is the gram-atomic weight, and n is the principal valence. Units are grams per ampere-hour (g/amp-hr).

Ionic radius The radius an ion exhibits in an ionic crystal in which the ions are packed together with their outermost electronic shells in contact with each other. Values are given for a coordination number of 6. Ionic radii for other coordination numbers can be obtained by multiplying by the following conversion factors:

Coordination Number	Conversion Factor
12	1.12
9	1.05
8	1.03
6	1.00
4	0.94

Units are Ångstroms ($1\text{\AA} = 10^{-8}$ cm).

Valence electron potential ($-\epsilon V$) A calculated value based on the charge of the valence electrons and the ionic radius. It provides a quantitative indication of the reactivity of an element and is determined by the equation:

$$(-\epsilon V) = \frac{kn}{r}$$

where $(-\epsilon V)$ is the valence electron potential, n is the valence, and k is a proportionality factor converting Ångstroms to centimeters and expressing the force exerted by the valence electrons in electron volts and is equal to 14.399; r is the ionic radius in Ångstroms. The principal valence has been used for the determination.

Electronic configuration A sequential listing of the orbiting electrons, indicating the principal shells and the number of electrons in each subshell. For example, $4d^{10}$ would indicate the presence of 10 electrons in the "d" subshell of the fourth (N) principal shell. Principal shells are assigned letters corresponding to their quantum numbers as follows: 1 = K, 2 = L, 3 = M, 4 = N, 5 = O, 6 = P, and 7 = Q. A maximum exists for the number of electrons in each subshell: 2 in s, 6 in p, 10 in d, and 14 in f.

Valence electrons A sequential listing of the electrons involved in the ionization of the element. They are indicated in the same manner as in the electronic configuration.

Crystal form A brief description of the atomic arrangement in the elemental solid state. (See accompanying figure for common Crystal Forms).

Half life The time required for one-half of an initial quantity of a radioactive isotope to be converted into its decay product. This entry is included only when all known isotopes of an element are unstable. The half life presented is that of the most stable isotope. Units are seconds, minutes, hours, days, or years.

Cross section σ The effective size of a nucleus in capturing a thermal (slow) neutron. The larger the cross section the greater is the probability of neutron capture. Units are millibarns (mbarns) or barns (1 barn = 10^{-24} cm 2).

Vapor pressure The pressure exerted when a solid or liquid is in equilibrium with its vapor. Since this parameter is a function of temperature, the vapor pressure at the melting point is given. Units are Pascals (Pa).

Crystal Forms

CUBIC, BODY CENTERED

CUBIC, FACE CENTERED

CUBIC, DIAMOND

RHOMBOHEDRAL

$\alpha, \beta, \gamma \neq 90^\circ$

TETRAHEDRAL

$a \neq c$

MONOCLINIC

$\alpha \neq 90^\circ$

ORTHORHOMBIC

$a \neq b \neq c$

HEXAGONAL

$a \neq c$

Periodic Classification of the Elements

IA

1.0079 H 1		IIA							
6.941 Li 3	9.01218 Be 4								
22.98977 Na 11	24.305 Mg 12	IIIIB	IVB	VB	VIB	VIIB	VIII		
39.098 K 19	40.08 Ca 20	44.95592 Sc 21	47.90 Ti 22	50.9415 V 23	51.996 Cr 24	54.9380 Mn 25	55.847 Fe 26	58.9332 Co 27	58.70 Ni 28
85.4678 Rb 37	87.62 Sr 38	88.9059 Y 39	91.22 Zr 40	92.9064 Nb 41	95.94 Mo 42	96.906 Tc 43	101.07 Ru 44	102.9055 Rh 45	106.4 Pd 46
132.9054 Cs 55	137.34 Ba 56	138.9055 La* 57	178.49 Hf 72	180.9479 Ta 73	183.85 W 74	186.2 Re 75	190.2 Os 76	192.22 Ir 77	195.09 Pt 78
223.01976 Fr 87	226.02544 Ra 88	227.02777 Act 89	104	105	106	107		109	

*Lanthanide Series

140.12 Ce 58	140.9077 Pr 59	144.24 Nd 60	144.913 Pm 61	150.4 Sm 62	151.96 Eu 63	157.25 Gd 64	158.9254 Tb 65	162.50 Dy 66	164.9304 Ho 67
--------------------	----------------------	--------------------	---------------------	-------------------	--------------------	--------------------	----------------------	--------------------	----------------------

†Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
-----------------------	----------------------	--------------------	----------------------	-----------------------	----------------------	-----------------------	-----------------------	-----------------------	-----------------------

O

		III A	IV A	V A	V I A	VII A	He 2	4.00260
IB	IIB	10.81 B 5	12.011 C 6	14.0067 N 7	15.9994 O 8	18.998403 F 9	20.179 Ne 10	
63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.9216 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36	
107.868 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.9045 I 53	131.30 Xe 54	
196.9665 Au 79	200.59 Hg 80	204.37 Tl 81	207.2 Pb 82	208.9804 Bi 83	208.98243 Po 84	209.987 At 85	222.01761 Rn 86	

167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71
---------------------------	-----------------------------	---------------------------	---------------------------

257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103
-------------------------------	-------------------------	-------------------------	-------------------------

Ac Actinium

89

227.02777

44 99592
Sc
21
88 9059
Y
39
138 9055
La
57
227 92777
AC
89

Actínio

Actinium

Aktinium

Actinio

актиний

אקטיניום

銅 アクチニウム

Naturally occurring isotope: 227 (minute quantities only)

Density: 10.07 g/cm³ (25°C)

Melting point: 1100 ± 50°C **Boiling point:** 3200 ± 300°C (est)

Latent heat of fusion: 62 J/g

Specific heat: 0.12 J/g/°C

Thermal conductivity: 0.12 w/cm/°C (25°C)

Ionization potential (1st): 5.17 eV

Oxidation potential: $\text{Ac} \rightarrow \text{Ac}^{3+} + 3\epsilon = 2.2 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 2.82347 g/amp-hr

Ionic radius: 1.119 Å (Ac³⁺)

Valence electron potential (−eV): 38.60 (Ac³⁺)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s² 6p⁶ 6d¹ 7s²

Valence electrons: 6d¹ 7s²

Crystal form: Cubic, face centered

Half life: 21.77 years

Cross section σ: 810 ± 20 barns

Al

Aluminum

13

26.98154

10.81	III A
B	
5	
26.98154	
Al	13
Ga	31
In	49
Tl	81

Alumínio
Aluminium
Aluminium
Aluminio
алюминий
אלומין
鋁
アルミニウム

Naturally occurring isotope: 27

Density: 2.6984 g/cm³ (20°C)

Melting point: 660.37°C **Boiling point:** 2467°C

Latent heat of fusion: 395.7 J/g

Specific heat: 0.903 J/g°C (25°C)

Coefficient of lineal thermal expansion: 23.9×10^6 cm/cm/°C (20°C)

Thermal conductivity: 2.37 W/cm/°C (25°C)

Electrical resistivity: 2.6548×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 5.986 eV

Electron work function ϕ : 4.28 eV

Oxidation potential: Al → Al³⁺ + 3e = 1.662 V

Chemical valence: 3

Electrochemical equivalents: 0.33556 g/amp-hr

Ionic radius: 0.535 Å (Al³⁺)

Valence electron potential ($-\epsilon$ V): 80.7

Principal quantum number: 3

Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p¹

Valence electrons: 3s² 3p¹

Crystal form: Cubic, face centered

Cross section σ : 232 ± 3 mbarns

Vapor pressure: 2.42×10^{-6} Pa (at melting point)

Am Americium

95

243.0614

Actinide Series

232.03807 Th 90	231.0358 Pa 91	238.029 U 92	237.0462 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07981 Cf 98	254.08805 Es 99
257.09515 Fm 100	258 Md 101	259 Md 102	260 Lr 103						

Ameríco

Américium

Amerizium

Americio

америций

אָמְרִיכִיּוֹם

镅 アメリシウム

Naturally occurring isotopes: None

Density: 13.67 g/cm³ (20°C)

Melting point: 1176°C **Boiling point:** 2011°C

Ionization potential (1st): 5.99 eV

Oxidation potential: Am → Am³⁺ + 3e = 2.32 V

Chemical valence: 2, 3, 4, 5, 6

Electrochemical equivalents: 3.0229 g/amp-hr

Ionic radius: 0.982 Å (Am³⁺)

Valence electron potential (–eV): 44.0

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 5f⁷ 6s² 6p⁶ 7s²

Valence electrons: 5f⁷ 7s²

Crystal form: Hexagonal

Half life: 7.32 × 10³ years

Cross section σ: 180 ± 20 barns

Sb

Antimony

51

121.75

VA
14.0067
N
7
30.97376
P
15
74.9216
As
33
121.75
Sb
51
208.9604
Bi
83

Antimônio

Antimoine

Antimon

Antimonio

сурьма

אנטימון

锑 アソチモソ

Naturally occurring isotopes: 121, 123

Density: 6.691 g/cm³ (20°C)

Melting point: 630.74°C **Boiling point:** 1750°C

Latent heat of fusion: 165.0 J/g

Specific heat: 0.207 J/g°C (25°C)

Coefficient of lineal thermal expansion: 9.2×10^{-6} cm/cm/°C (0°C)

Thermal conductivity: 0.244 w/cm/°C (25°C)

Electrical resistivity: 39×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 8.641 eV

Electron work function ϕ : 4.55 eV

Oxidation potential: 2Sb + 3H₂O → Sb₂O₃ + 6H⁺ + 6e = -0.152 V

Chemical valence: -3, 0, 3, 5

Electrochemical equivalents: 1.5142 g/amp-hr

Ionic radius: 0.76 Å (Sb³⁺)

Valence electron potential (-εV): 57

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p³

Valence electrons: 5s² 5p³

Crystal form: Rhombohedral

Cross section σ : 5 ± 1 barns

Vapor pressure: 2.49×10^{-9} Pa (at melting point)

Ar Argon

18

39.948

O
He
2
20 179
Ne
10
39 948
Ar
18
83 80
Kr
36
131 30
Xe
54
222 01761
Rn
86

Argônio

Argon

Argon

Argón

apron

アルゴン

氩
アルゴン

Naturally occurring isotopes: 40, 36, 38

Density: 1.65 g/cm³ (-233°C), 1.784×10^{-3} g/cm³ (0°C)

Melting point: -189.2°C **Boiling point:** -185.7°C

Latent heat of fusion: 29.45 J/g

Specific heat: 0.52032 J/g/°C (25°C)

Thermal conductivity: 0.1772 mw/cm/°C (27°C at 1 atm)

Ionization potential (1st): 15.759 eV

Chemical valence: 0

Principal quantum number: 3

Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶

Valence electrons: (3s² 3p⁶)

Crystal form: Cubic, face centered

Cross section σ: 0.66 barns

As

Arsenic

33

74.9216

VA
14.0067 N 7
30.9736 P 15
74.9216 As 33
121.75 Sb 51
208.9804 Bi 83

Arsênio

Arsenic

Arsen

Arsénico

мышияк

砷

砒素

Naturally occurring isotope: 75**Density:** 5.73 g/cm³ (gray) (20°C)**Melting point:** 817°C (at 28 atm) **Boiling point:** 613°C (sublimes)**Latent heat of fusion:** 369.9 J/g**Specific heat:** 0.329 J/g/°C (gray) (25°C)**Coefficient of lineal thermal expansion:** 6.02×10^{-6} cm/cm/°C (25°C)**Thermal conductivity:** 0.502 w/cm/°C (gray) (25°C)**Electrical resistivity:** 35×10^{-6} ohm-cm (0°C)**Ionization potential (1st):** 9.81 eV**Electron work function ϕ :** 3.75 eV**Oxidation potential:** As + 2H₂O → HAsO₂ + 3H⁺ + 3e = -0.2476 V**Chemical valence:** -3, 0, 3, 5**Electrochemical equivalents:** 0.93177 g/amp-hr**Ionic radius:** 0.58 Å (As³⁺)**Valence electron potential (-eV):** 74**Principal quantum number:** 4**Principal electron shells:** K L M N**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p³**Valence electrons:** 4s² 4p³**Crystal form:** Rhombohedral**Cross section σ :** 4.30 ± 0.10 barns

At Astatine

85

209.987

VIIA

18 998403
F
9
35 453
Cl
17
79 904
Br
35
126 9045
53
209 987
At
85

Astato

Astatine

Astat

Astatino

астатин

アストラジン

砹 アス
タチ
ン

Naturally occurring isotopes: None

Melting point: 302°C (est) **Boiling point:** 337°C (est)

Latent heat of fusion: 114 J/g (est)

Ionization potential (1st): 9.65 eV

Oxidation potential: $2\text{At}^- \rightarrow \text{At}_2 + 2e = -0.2\text{ V}$

Chemical valence: 1, 3, 5, 7

Electrochemical equivalents: 7.8346 g/amp-hr

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^5$

Valence electrons: $6s^2 6p^5$

Half life: 8.1 hr

Ba

Barium

56

137.34

IIA
9 01218
Be
4
24 305
Mg
12
40 08
Ca
20
87 62
Sr
38
137 34
Ba
56
226 02544
Ra
88

Bário

Barium

Barium

Bario

барий

בריאום

鉱 バリウム

Naturally occurring isotopes: 138, 137, 136, 135, 134, 130, 132

Density: 3.59 g/cm³ (20°C)

Melting point: 725°C **Boiling point:** 1640°C

Latent heat of fusion: 55.79 J/g

Specific heat: 0.204 J/g°C (25°C)

Coefficient of lineal thermal expansion: 19.0×10^{-6} cm/cm°C (20°C)

Thermal conductivity: 0.184 W/cm°C (22°C)

Ionization potential (1st): 5.212 eV

Electron work function ϕ : 2.7 eV

Oxidation potential: Ba → Ba²⁺ + 2e = 2.906 V

Chemical valence: 2

Electrochemical equivalents: 2.5621 g/amp-hr

Ionic radius: 1.35 Å (Ba²⁺)

Valence electron potential ($-\epsilon$ V): 21.3

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 6s²

Valence electrons: 6s²

Crystal form: Cubic, body centered

Cross section σ : 1.2 ± 0.1 barns

Vapor pressure: 9.80 × 10 Pa (at melting point)

Bk

Berkelium

97

247.07032

Actinide Series

232.03607 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.06805 Es 99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Berquélio

Berkelium

Berkelium

Berkelio

беркелий

ברקליום

鉻
バークリウム

Naturally occurring isotopes: None

Density: 14.78 g/cm³ (25°C)

Melting point: 986 ± 25°C

Ionization potential (1st): 6.23 eV

Oxidation potential: $Bk \rightarrow Bk^{3+} + 3\epsilon = 1.97 \text{ V}$

Chemical valence: 3, 4

Electrochemical equivalents: 3.0727 g/amp-hr

Ionic radius: 0.949 Å (Bk^{3+})

Valence electron potential ($-\epsilon\text{V}$): 45.5

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 5f^8 6s^2 6p^6 6d^1 7s^2$

Valence electrons: 5f⁸ 6d¹ 7s²

Crystal form: Hexagonal

Half life: 1.4×10^3 years

Be

Beryllium

4

9.01218

IIA
9.01218
Be
4
24.305
Mg
12
40.08
Ca
20
87.62
Sr
38
137.34
Ba
56
226.02544
Ra
88

Berilio

Beryllium

Beryllium

Berilio

берилий

בריליום

鉛 バリウム

Naturally occurring isotope: 9**Density:** 1.848 g/cm³ (20°C)**Melting point:** 1278±5°C **Boiling point:** 2970°C**Latent heat of fusion:** 1301 J/g**Specific heat:** 1.82 J/g/°C (25°C)**Coefficient of lineal thermal expansion:** 11.6×10^{-6} cm/cm/°C (20°C)**Thermal conductivity:** 2.01 w/cm/°C (25°C)**Electrical resistivity:** 4.0×10^{-6} ohm-cm (20°C)**Ionization potential (1st):** 9.322 eV**Electron work function ϕ :** 4.98 eV**Oxidation potential:** Be → Be²⁺ + 2e = 1.85 V**Chemical valence:** 2**Electrochemical equivalents:** 0.16812 g/amp-hr**Ionic radius:** 0.35 Å (Be²⁺)**Valence electron potential (-eV):** 82**Principal quantum number:** 2**Principal electron shells:** K L**Electronic configuration:** 1s² 2s²**Valence electrons:** 2s²**Crystal form:** Hexagonal, close packed**Cross section σ :** 9.2±0.5 mbarns**Vapor pressure:** 4.18 Pa (at melting point)

Bi

Bismuth

83

208.9804

VA
14.0067
N
7
30.97376
P
15
74.9216
As
33
121.76
Sb
51
208.9804
Bi
83

Bismuto

Bismuth

Wismut

Bismuto

висмут

ביסמוט

铋
ビスマス

Naturally occurring isotope: 209

Density: 9.78 g/cm³ (20°C)

Melting point: 271.3°C **Boiling point:** 1560 ± 5°C

Latent heat of fusion: 52.09 J/g

Specific heat: 0.122 J/g/°C (25°C)

Coefficient of linear thermal expansion: 13.3×10^{-6} cm/cm/°C

Thermal conductivity: 0.0792 W/cm/°C (25°C)

Electrical resistivity: 106.8×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 7.289 eV

Electron work function ϕ : 4.22 eV

Oxidation potential: Bi + H₂O → BiO⁺ + 2H⁺ + 3e = -0.320 V

Chemical valence: 3, 5

Electrochemical equivalents: 2.5990 g/amp-hr

Ionic radius: 1.03 Å (Bi³⁺)

Valence electron potential (-eV): 41.9

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s² 6p³

Valence electrons: 6s² 6p³

Crystal form: Rhombohedral

Cross section σ : 19 ± 2 mbarns

Vapor pressure: 6.27×10^{-4} Pa (at melting point)

B

Boron

5

10.81

IIIA	
10.81	B
5	
26.98154	Al
13	
65.72	Ga
31	
114.82	In
49	
204.37	Tl
81	

Bóro

Bore

Bor

Boro

bop

硼

Naturally occurring isotopes: 11, 10**Density:** 2.34 g/cm³ (crystalline), 2.37 g/cm³ (amorphous) (both at 20°C)**Melting point:** 2300°C **Boiling point:** 2550°C (sublimes)**Latent heat of fusion:** 890.8 J/g**Specific heat:** 1.03 J/g/°C (25°C)**Coefficient of linear thermal expansion:** 8.3×10^{-6} cm/cm/°C (20°C)**Thermal conductivity:** 0.274 w/cm/°C (25°C)**Electrical resistivity:** 1.8×10^6 ohm-cm (0°C)**Ionization potential (1st):** 8.298 eV**Electron work function ϕ :** 4.45 eV**Oxidation potential:** $B + 3H_2O \rightarrow H_3BO_3 + 3H^+ + 3\epsilon = -0.8698$ V**Chemical valence:** 3**Electrochemical equivalents:** 0.1344 g/amp-hr**Ionic radius:** 0.23 Å (B³⁺)**Valence electron potential ($-\epsilon$ V):** 190**Principal quantum number:** 2**Principal electron shells:** K L**Electronic configuration:** 1s² 2s² 2p¹**Valence electrons:** 2s² 2p¹**Crystal form:** Hexagonal, close packed**Cross section σ :** 759 barns**Vapor pressure:** 3.48×10^{-1} Pa (at melting point)

Br

Bromine

35

79.904

VIIA

18 996403
F
9
35 453
Cl
17
79.904
Br
35
126.9045
I
53
209.967
At
85

Bromo

Brome

Brom

Bromo

бром

בָּרְוִם

溴 臭 素

Naturally occurring isotopes: 79, 81

Density: 3.1028 g/cm³ (20°C)

Melting point: -7.2°C **Boiling point:** 58.78°C

Latent heat of fusion: 132.0 J/g (Br₂)

Specific heat: 0.47362 J/g°C (Br₂) (25°C)

Thermal conductivity: 1.22 mw/cm/°C (27°C)

Electrical resistivity: 7.8 × 10¹² ohm-cm (0°C)

Ionization potential (1st): 11.814 eV

Oxidation potential: 2Br⁻ → Br₂ + 2e = -1.0652 V

Chemical valence: -1, 3, 5, 7

Electrochemical equivalents: 2.9812 g/amp-hr

Ionic radius: 1.96 Å (Br⁻)

Valence electron potential (-εV): -7.35

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁵

Valence electrons: 4s² 4p⁵

Crystal form: Orthorhombic, rhombic

Cross section σ: 6.8 ± 0.1 barns

Vapor pressure: 5.80 × 10³ Pa (at melting point)

Cd

Cadmium

48

112.41

	IIB
65-38	Zn
30	
112-41	Cd
48	
200-59	Hg
80	

Cádmio

Cadmium

Cadmium

Cadmio

кадмий

קַדְמִיּוֹת

קַדְמִיּוֹת

Naturally occurring isotopes: 114, 112, 111, 110, 113, 116, 106, 108

Density: 8.65 g/cm³ (20°C)

Melting point: 320.9°C **Boiling point:** 765°C

Latent heat of fusion: 54.01 J/g

Specific heat: 0.231 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 29.8×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.969 w/cm/°C (25°C)

Electrical resistivity: 6.83×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 8.993 eV

Electron work function ϕ : 4.22 eV

Oxidation potential: Cd → Cd²⁺ + 2e = 0.4029 V

Chemical valence: 2

Electrochemical equivalents: 2.0970 g/amp-hr

Ionic radius: 0.97 Å (Cd²⁺)

Valence electron potential ($-\epsilon V$): 30

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s²

Valence electrons: 5s²

Crystal form: Hexagonal, close packed

Cross section σ : 2450 ± 20 barns

Vapor pressure: 1.48×10 Pa (at melting point)

Ca

Calcium

20

40.08

IIA	
9.01218	
Be	4
24.305	
Mg	12
40.08	
Ca	20
87.62	
Sr	38
137.34	
Ba	56
226.02544	
Ra	88

Cálcio
Calcium
Kalzium
Calcio
кальций
カルシウム
鈣

Naturally occurring isotopes: 40, 44, 42, 48, 43, 46

Density: 1.55 g/cm³ (20°C)

Melting point: 839 ± 2°C **Boiling point:** 1484°C

Latent heat of fusion: 216.2 J/g

Specific heat: 0.632 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 22.3×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 2.01 W/cm/°C (25°C)

Electrical resistivity: 3.91×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 6.113 eV

Electron work function ϕ : 2.87 eV

Oxidation potential: Ca → Ca²⁺ + 2e = 2.866 V

Chemical valence: 2

Electrochemical equivalents: 0.7477 g/amp-hr

Ionic radius: 0.99 Å (Ca²⁺)

Valence electron potential ($-\epsilon V$): 29

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²

Valence electrons: 4s²

Crystal form: Cubic, face centered

Cross section σ : 0.44 ± 0.02 barns

Vapor pressure: 2.54×10^2 Pa (at melting point)

Cf

Californium

98

251.07961

Actinide Series

232.03607 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Califórnia

Californium

Californium

Californio

калифорний

קָלִיפּוֹרְנִיָּם

金剛
カリ
フォリニ
ウム

Naturally occurring isotopes: None

Density: 15.1 g/cm³ (25°C)

Melting point: 900 ± 30°C

Ionization potential (1st): 6.30 eV

Oxidation potential: Cf → Cf³⁺ + 3e = 2.0 V

Chemical valence: 2, 3, 4

Electrochemical equivalents: 3.1226 g/amp-hr

Ionic radius: 0.934 Å (Cf³⁺)

Valence electron potential (−εV): 44.5

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 5f¹⁰ 6s² 6p⁶ 7s²

Valence electrons: 5f¹⁰ 7s²

Crystal form: Hexagonal

Half life: 900 years

Cross section σ: 2100 ± 1000 barns

C

Carbon

6

12.011

IVA

12.011
C
6
28.0855
Si
14
72.59
Ge
32
116.69
Sn
50
207.2
Pb
82

Carbono

Carbone

Kohlenstoff

Carbono

углерод

углерод

碳 素

Naturally occurring isotopes: 12, 13, 14**Density:** 3.52 g/cm³ (diamond), 1.9–2.3 g/cm³ (graphite), 1.8–2.1 g/cm³ (amorphous) (all at 20°C)**Melting point:** 3550°C **Boiling point:** 4827°C**Specific heat:** 0.7099 J/g/°C (graphite) (25°C)**Coefficient of lineal thermal expansion:** 2.10×10^{-6} cm/cm/°C (graphite) (30°C)**Thermal conductivity:** 0.8–2.2 W/cm/°C (graphite) (25°C)**Electrical resistivity:** 1375×10^{-6} ohm-cm (graphite) (0°C)**Ionization potential (1st):** 11.260 eV**Electron work function ϕ :** 5.0 eV**Oxidation potential:** $\text{CH}_4 \rightarrow \text{C} + 4\text{H}^+ + 4e^- = -0.1316 \text{ V}$ **Chemical valence:** 2, 3, 4**Electrochemical equivalents:** 0.11203 g/amp-hr**Ionic radius:** 0.16 Å (C⁴⁺)**Valence electron potential ($-\epsilon$ V):** 360**Principal quantum number:** 2**Principal electron shells:** K L**Electronic configuration:** 1s² 2s² 2p²**Valence electrons:** 2s² 2p²**Crystal form:** Hexagonal (graphite), cubic (diamond)**Cross section σ :** 3.4 ± 0.2 mbarns

Ce

Cerium

58

140.12

Lanthanide Series

140.12 Ce 58	140.9077 Pr 59	144.24 Nd 60	144.913 Pm 61	150.4 Sm 62	151.96 Eu 63	157.25 Gd 64	158.9254 Tb 65	162.50 Dy 66	164.9304 Ho 67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Cério
Cérium
Zerium
Cerio
церий
չրութ

铈 セリウム

Naturally occurring isotopes: 140, 142, 138, 136

Density: 6.657 g/cm³ (25°C)

Melting point: 799°C **Boiling point:** 3426°C

Latent heat of fusion: 65.7 J/g

Specific heat: 0.192 J/g°C (25°C)

Coefficient of lineal thermal expansion: 7.1×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.113 w/cm/°C (25°C)

Electrical resistivity: 77×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.47 eV

Electron work function ϕ : 2.84 eV

Oxidation potential: Ce → Ce³⁺ + 3e = 2.483 V

Chemical valence: 3, 4

Electrochemical equivalents: 1.7426 g/amp-hr

Ionic radius: 1.034 Å (Ce³⁺)

Valence electron potential ($-eV$): 41.78

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f² 5s² 5p⁶ 6s²

Valence electrons: 4f² 6s²

Crystal form: Cubic, face centered

Cross section σ : 0.73 ± 0.08 barns

Cs Cesium

55

132.9054

IA	
1.0079	H 1
6.941	Li 3
22.98977	Na 11
39.098	K 19
85.4678	Rb 37
132.9054	Cs 55
223.01976	Fr 87

Césio
Césium
Caesium
Cesio
цезий
铯
铯
セシウム

Naturally occurring isotope: 133

Density: 1.873 g/cm³ (20°C)

Melting point: 28.40 ± 0.01°C **Boiling point:** 669.3°C

Latent heat of fusion: 16.372 J/g

Specific heat: 0.241 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 97×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.359 w/cm/°C (solid at melting point)

Electrical resistivity: 20.46×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 3.894 eV

Electron work function ϕ : 2.14 eV

Oxidation potential: Cs → Cs⁺ + ϵ = 2.923 V

Chemical valence: 1

Electrochemical equivalents: 4.95870 g/amp-hr

Ionic radius: 1.67 Å (Cs⁺)

Valence electron potential ($-\epsilon V$): 8.62

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 6s¹

Valence electrons: 6s¹

Crystal form: Cubic, body centered

Cross section σ : 30.0 ± 1.5 barns

Vapor pressure: 2.50×10^{-5} Pa (at melting point)

Cl

Chlorine

17

35.453

VIIA	
18.998403	
F	9
35.453	
Cl	17
79.904	
Br	35
126.9045	
I	53
209.987	
At	85

Clóro
Chlore
Chlor
Cloro
хлор
כלור
氯 咸 素

Naturally occurring isotopes: 35, 37

Density: 1.56 g/cm³ (-33.6°C), 3.214×10^{-3} g/cm³ (0°C)

Melting point: -100.98°C **Boiling point:** -34.6°C

Latent heat of fusion: 180.8 J/g (Cl₂)

Specific heat: 0.4782 J/g/°C (Cl₂) (25°C)

Thermal conductivity: 0.089 mw/cm/°C (27°C at 1 atm)

Ionization potential (1st): 12.967 eV

Oxidation potential: $2\text{Cl}^- \rightarrow \text{Cl}_2 + 2\epsilon = -1.3595$ V

Chemical valence: -, 1, 3, 5, 7

Electrochemical equivalents: 1.3228 g/amp-hr

Ionic radius: 1.81 Å (Cl⁻)

Valence electron potential (-eV): -7.96

Principal quantum number: 3

Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁵

Valence electrons: 3s² 3p⁵

Crystal form: Tetragonal

Cross section σ: 33 barns

Vapor pressure: 1.30×10^3 Pa (at melting point)

Cr

Chromium

24

51.996

VIB

51.996
Cr
24
95.94
Mo
42
183.85
W
74
106

Crômio

Chrom

Chrom

Cromo

xrom

כְּרֹמוֹ

鉻 ウニ
——
A

Naturally occurring isotopes: 52, 53, 50, 54

Density: 7.20 g/cm³ (20°C)

Melting point: 1857 ± 20°C **Boiling point:** 2672°C

Latent heat of fusion: 265.7 J/g

Specific heat: 0.449 J/g°C (25°C)

Coefficient of lineal thermal expansion: 6.2×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.939 W/cm/°C (25°C)

Electrical resistivity: 12.9×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 6.766 eV

Electron work function ϕ : 4.5 eV

Oxidation potential: Cr → Cr³⁺ + 3e = 0.744 V

Chemical valence: 1, 2, 3, 4, 5, 6

Electrochemical equivalents: 0.32333 g/amp-hr

Ionic radius: 0.52 Å (Cr⁶⁺)

Valence electron potential (-eV): 170

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹

Valence electrons: 3d⁵ 4s¹

Crystal form: Cubic, body centered

Cross section σ : 3.1 ± 0.2 barns

Vapor pressure: 9.90×10^2 Pa (at melting point)

Co Cobalt

27

58.9332

VIII		
55.847 Fe 26	58.9332 Co 27	58.70 Ni 28
101.07 Ru 44	102.9055 Rh 45	106.4 Pd 46
190.2 Os 76	192.22 Ir 77	195.09 Pt 78
	109	

Cobalto

Cobalt

Kobalt

Cobalto

кобальт

cobalt

鉱物
コバルト

Naturally occurring isotope: 59

Density: 8.71 g/cm³ (21°C)

Melting point: 1495°C **Boiling point:** 2870°C

Latent heat of fusion: 258.6 J/g

Specific heat: 4.21 J/g°C (25°C)

Coefficient of lineal thermal expansion: 13.80×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 1.00 w/cm/°C (25°C)

Electrical resistivity: 6.24×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.86 eV

Electron work function ϕ : 5.0 eV

Oxidation potential: Co → Co²⁺ + 2e = 0.277 V

Chemical valence: 2, 3, 4

Electrochemical equivalents: 1.0994 g/amp-hr

Ionic radius: 0.745 Å (Co³⁺)

Valence electron potential ($-eV$): 38.7

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷ 4s²

Valence electrons: 3d⁷ 4s²

Crystal form: Hexagonal, close packed

Cross section σ : 37.5 ± 0.2 barns

Vapor pressure: 1.75×10^2 Pa (at melting point)

Cu Copper

29

63.546

IB
63.546
Cu
29
107.868
Ag
47
196.9665
Au
79

Cobre

Cuivre

Kupfer

Cobre

меди

銅

銅 銅

Naturally occurring isotopes: 63, 65

Density: 8.96 g/cm³ (25°C)

Melting point: 1083.4 ± 0.2°C **Boiling point:** 2567°C

Latent heat of fusion: 205.6 J/g

Specific heat: 0.3845 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 16.6×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 4.01 w/cm/°C (25°C)

Electrical resistivity: 1.678×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.726 eV

Electron work function ϕ : 4.65 eV

Oxidation potentials: Cu → Cu⁺ + ϵ = -0.521 V

Cu → Cu²⁺ + 2 ϵ = -0.3419 V

Chemical valence: 1, 2

Electrochemical equivalents: 1.1855 g/amp-hr

Ionic radius: 0.73 Å (Cu²⁺)

Valence electron potential (-εV): 34

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s¹

Valence electrons: 3d¹⁰ 4s¹

Crystal form: Cubic, face centered

Cross section σ : 3.8 ± 0.1 barns

Vapor pressure: 5.05×10^{-2} Pa (at melting point)

Cm Curium

96

247.07038

Actinide Series

232.03807 Th 90	231.0368 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Cúrio

Curium

Curium

Curio

кюрий

קְיוּרִום

銅 キュリウム

Naturally occurring isotopes: None

Density: 13.51 g/cm³ (25°C)

Melting point: 1340 ± 40°C **Boiling point:** 3110°C

Ionization potential (1st): 6.02 eV

Oxidation potential: Cm → Cm³⁺ + 3e = 2.07 V

Chemical valence: 3, 4

Electrochemical equivalents: 3.0727 g/amp-hr

Ionic radius: 0.970 Å (Cm³⁺)

Valence electron potential (−εV): 44.5

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 5f⁷ 6s² 6p⁶ 6d¹ 7s²

Valence electrons: 5f⁷ 6d¹ 7s²

Crystal form: Hexagonal

Half life: 1.6 × 10⁷ years

Cross section σ: 180 barns

Dy

Dysprosium

66

162.50

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	144 913 Pm 61	150 4 Sm 62	151 96 Eu 63	157 25 Gd 64	158 9254 Tb 65	162 50 Dy 66	164 9304 Ho 67
167 26 Er 68	168 9342 Tm 69	173 04 Yb 70	174 97 Lu 71						

Disprósio

Dysprosium

Dysprosium

Disprosio

диспрозий

תִּסְפּוֹרָזְיָה

镝

ジスプロシウム

Naturally occurring isotopes: 164, 162, 163, 161, 160, 158, 156**Density:** 8.550 g/cm³ (25°C)**Melting point:** 1412°C **Boiling point:** 2562°C**Latent heat of fusion:** 105.6 J/g**Specific heat:** 173 J/g/°C (25°C)**Coefficient of lineal thermal expansion:** 8.6×10^{-6} cm/cm/°C (25°C)**Thermal conductivity:** 0.107 w/cm/°C (25°C)**Electrical resistivity:** 90×10^{-6} ohm-cm (25°C)**Ionization potential (1st):** 5.928 eV**Oxidation potential:** Dy → Dy³⁺ + 3e = 2.353 V**Chemical valence:** 3**Electrochemical equivalents:** 2.0210 g/amp-hr**Ionic radius:** 0.912 Å (Dy³⁺)**Valence electron potential (-eV):** 47.4**Principal quantum number:** 6**Principal electron shells:** K L M N O P**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁰ 5s²
5p⁶ 6s²**Valence electrons:** 4f¹⁰ 6s²**Crystal form:** Hexagonal, close packed**Cross section σ:** 930 ± 20 barns

Es Einsteinium

99

254,08805

Actinide Series

232.03607	231.0359	238.029	237.0482	244.06423	243.0614	247.07038	247.07032	251.07961	254.08605
Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99
252.09515	258	259	260						
Fm 100	Md 101	No 102	Lr 103						

Einstênia
Einsteinium
Einsteinium
Einstenio
эйнштейний
אַינְשְׁטַיְנִים

アーバン・リバーナード

Naturally occurring isotopes: None

Melting point: $860 \pm 30^\circ\text{C}$

Ionization potential (1st): 6.42 eV

Oxidation potential: $\text{Es} \rightarrow \text{Es}^{2+} + 2e^- = 2.3 \text{ V}$

Chemical valence: 2, 3

Electrochemical equivalents: 4.7400 g/amp·hr

Ionic radius: 0.925 Å (Es^{3+})

Principal quantum number: 7

Principal electron shells: K L

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

5d¹⁰ 5f¹¹ 6s² 6p⁶ 7s²

ence electrons: $5f^{11} 7s^2$

Crystal form: Cubic, face c.

Half-life: 276 days

Cross section at

Cross section 3: < 40 barns

Er

Erbium

68

167.26

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	144 913 Pm 61	150 4 Sm 62	151 96 Eu 63	157 25 Gd 64	158 9254 Tb 65	162 50 Dy 66	164 9304 Ho 67
167 26 Er 68	168 9342 Tm 69	173 04 Yb 70	174 97 Lu 71						

Érbio

Erbium

Erbium

Erbio

эрбий

erbium

エルビウム
Naturally occurring isotopes: 166, 168, 167, 170, 164, 162**Density:** 9.066 g/cm³ (25°C)**Melting point:** 1529°C **Boiling point:** 2863°C**Latent heat of fusion:** 102.6 J/g**Specific heat:** 0.168 J/g°C (25°C)**Coefficient of lineal thermal expansion:** 9.2×10^{-6} cm/cm/°C (25°C)**Thermal conductivity:** 0.145 w/cm/°C (25°C)**Electrical resistivity:** 107.0×10^{-6} ohm-cm (25°C)**Ionization potential (1st):** 6.10 eV**Oxidation potential:** $\text{Er} \rightarrow \text{Er}^{3+} + 3e = 2.296 \text{ V}$ **Chemical valence:** 3**Electrochemical equivalents:** 2.0802 g/amp-hr**Ionic radius:** 0.881 Å (Er³⁺)**Valence electron potential ($-\epsilon V$):** 49.0**Principal quantum number:** 6**Principal electron shells:** K L M N O P**Electronic configuration:** $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{12} 5s^2 5p^6 6s^2$ **Valence electrons:** 4f¹² 6s²**Crystal form:** Hexagonal, close packed**Cross section σ :** 160 ± 30 barns

Eu

Europium

63

151.96

Lanthanide Series

140.12 Ce 58	140.9077 Pr 59	144.24 Nd 60	144.913 Pm 61	150.4 Sm 62	151.96 Eu 63	157.25 Gd 64	158.9254 Tb 65	162.50 Dy 66	164.9304 Ho 67
187.26 Er 68	166.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Európio

Europium

Europium

Europio

европий

אִירּוֹפְּיָם

铕 ユーロピウム

Naturally occurring isotopes: 153, 151

Density: 5.243 g/cm³ (25°C)

Melting point: 822°C **Boiling point:** 1597°C

Latent heat of fusion: 68.9 J/g

Specific heat: 0.182 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 26×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.139 w/cm/°C (25°C)

Electrical resistivity: 81×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.666 eV

Electron work function ϕ : 2.5 eV

Oxidation potential: Eu → Eu³⁺ + 3e = 2.407 V

Chemical valence: 2, 3

Electrochemical equivalents: 1.8899 g/amp-hr

Ionic radius: 0.947 Å (Eu³⁺)

Valence electron potential ($-\epsilon V$): 45.6

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f⁷ 5s²
5p⁶ 6s²

Valence electrons: 4f⁷ 6s²

Crystal form: Cubic, body centered

Cross section σ : 4100 ± 100 barns

Vapor pressure: 1.44×10^2 Pa (at melting point)

Fm

Fermium

100

257.09515

Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Férmio

Fermium

Fermium

Fermio

фермий

סְרָמִיּוֹם

鑽

フェ
リ
ミ
ウ
ム

Naturally occurring isotopes: None

Ionization potential (1st): 6.50 eV

Oxidation potential: $\text{Fm} \rightarrow \text{Fm}^{3+} + 3\epsilon = 2.0 \text{ V}$

Chemical valence: 2, 3

Electrochemical equivalents: 3.1974 g/amp-hr

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$
 $5d^{10} 5f^{12} 6s^2 6p^6 7s^2$

Valence electrons: $5f^{12} 7s^2$

Half life: 80 days

F

Fluorine

9

18.998403

VIIA
18.998403
F
9
36.453
Cl
17
79.904
Br
35
126.9045
I
53
209.987
At
85

Flúor

Fluor

Fluor

Flúor

Фтор

מולואור

氟
弗
素**Naturally occurring isotope:** 19**Density:** 1.696×10^{-3} g/cm³ (0°C)**Melting point:** -219.62°C **Boiling point:** -188.14°C**Latent heat of fusion:** 26.89 J/g (F₂)**Specific heat:** 0.824 J/g/°C (F₂) (25°C)**Thermal conductivity:** 0.279 mw/cm/°C (27°C at 1 atm)**Ionization potential (1st):** 17.422 eV**Oxidation potential:** F⁻ → ½F₂ + e = -2.87 V**Chemical valence:** -1**Electrochemical equivalents:** 0.70883 g/amp-hr**Ionic radius:** 1.33 Å (F⁻)**Valence electron potential (-eV):** -10.1**Principal quantum number:** 2**Principal electron shells:** K L**Electronic configuration:** 1s² 2s² 2p⁵**Valence electrons:** 2s² 2p⁵**Cross section σ:** 9.8 ± 0.7 mbarns**Vapor pressure:** 4.90×10^2 Pa (at melting point)

Fr

Francium

87

223.01976

IA
1.0079
H
1
6.941
Li
3
22.98917
Na
11
39.098
K
19
85.4678
Rb
37
132.9054
Cs
55
223.01976
Fr
87

Frâncio

Francium

Franzium

Francio

франций

סְרָנְצִיּוֹם

钫 ワランシウム

Naturally occurring isotopes: None (actinium decay product)

Melting point: 27°C (est) **Boiling point:** 677°C (est)

Latent heat of fusion: 9.39 J/g (est)

Ionization potential (1st): 3.83 eV

Chemical valence: 1

Electrochemical equivalents: 8.3209 g/amp-hr

Ionic radius: 1.80 Å (Fr⁺)

Valence electron potential (−eV): 8.00

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s² 6p⁶ 7s¹

Valence electrons: (7s¹)

Half life: 22 minutes

Crystal form: Cubic, body centered

Gd

Gadolinium

64

157.25

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	144 913 Pm 61	150 4 Sm 62	151 96 Eu 63	157 75 Gd 64	158 9254 Tb 65	162 50 Dy 66	164 9304 Ho 67
167 26 Er 68	168 9342 Tm 69	173 04 Yb 70	174 97 Lu 71						

Gadolíno

Gadolinium

Gadolínum

Gadolino

гадолиний

גָדוֹלִינִיּוּם

钆 ガドリニウム

Naturally occurring isotopes: 158, 160, 156, 157, 155, 154, 152

Density: 7.900 g/cm³ (25°C)

Melting point: 1313°C **Boiling point:** 3266°C

Latent heat of fusion: 98.51 J/g

Specific heat: 0.235 J/g°C (25°C)

Coefficient of lineal thermal expansion: 9.7 × 10⁻⁶ cm/cm/°C (25°C)

Thermal conductivity: 0.105 w/cm/°C (25°C)

Electrical resistivity: 140.5 × 10⁻⁶ ohm-cm (25°C)

Ionization potential (1st): 6.14 eV

Electron work function ϕ : 3.1 eV

Oxidation potential: Gd → Gd³⁺ + 3e = 2.397 V

Chemical valence: 3

Electrochemical equivalents: 1.9557 g/amp-hr

Ionic radius: 0.938 Å (Gd³⁺)

Valence electron potential ($-\epsilon$ V): 46.1

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f⁷ 5s² 5p⁶
5d¹ 6s²

Valence electrons: 4f⁷ 5d¹ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 46,000 ± 2000 barns

Vapor pressure: 2.44 × 10⁴ Pa (at melting point)

Ga Gallium

31

69.72

IIIA

10.81
B
5
26.98154
Al
13
69.72
Ga
31
114.82
In
49
204.37
Tl
81

Gálio

Gallium

Gallium

Galio

галлий

נוּלִים

镓 ガリウム

Naturally occurring isotopes: 69, 71

Density: 5.906 g/cm³ (25°C)

Melting point: 29.78°C **Boiling point:** 2403°C

Latent heat of fusion: 80.17 J/g

Specific heat: 0.371 J/g/°C (25°C)

Coefficient of linear thermal expansion: 18.1×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.281 W/cm/°C (liquid) (30°C)

Electrical resistivity: 17.4×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 5.999 eV

Electron work function ϕ : 4.2 eV

Oxidation potential: Ga → Ga³⁺ + 3e = -0.529 V

Chemical valence: 2, 3

Electrochemical equivalents: 0.8671 g/amp-hr

Ionic radius: 0.620 Å (Ga³⁺)

Valence electron potential ($-\epsilon_V$): 69.7

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p¹

Valence electrons: 4s² 4p¹

Crystal form: Orthorhombic, rhombic

Cross section σ : 3.1 ± 0.3 barns

Vapor pressure: 9.31×10^{-36} Pa (at melting point)

Ge

Germanium

32

72.59

IVA	
12 011	C
6	
28 0855	Si
14	
72 59	Ge
32	
118 69	Sn
50	
207 2	Pb
82	

Germânia

Germanium

Germanium

Germanio

германий

גֶּרְמַנְיוֹם

金鉛
ゲルマニウム

Naturally occurring isotopes: 74, 72, 70, 73, 76

Density: 5.323 g/cm³ (25°C)

Melting point: 937.4°C **Boiling point:** 2830°C

Latent heat of fusion: 438.3 J/g

Specific heat: 0.3216 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 5.75×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.667 w/cm/°C (25°C)

Electrical resistivity: 47 ohm-cm (intrinsic resistivity) (22°C)

Ionization potential (1st): 7.899 eV

Electron work function ϕ : 5.0 eV

Oxidation potential: Ge + 2H₂O → GeO₂ + 4H⁺ + 4e = -0.15 V

Chemical valence: -4, 2, 4

Electrochemical equivalents: 0.6771 g/amp-hr

Ionic radius: 0.530 Å (Ge⁴⁺)

Valence electron potential (-εV): 109

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p²

Valence electrons: 4s² 4p²

Crystal form: Cubic, diamond

Cross section σ: 2.30 ± 0.26 barns

Vapor pressure: 7.46×10^{-5} Pa (at melting point)

Au Gold

79

196.9665

IB

63.546
Cu
29
107.868
Ag
47
196.9665
Au
79

Ouro

Or

Gold

Oro

золото

آل

金 金

Naturally occurring isotope: 197

Density: 19.32 g/cm³ (20°C)

Melting point: 1064.43°C **Boiling point:** 3080°C

Latent heat of fusion: 62.81 J/g

Specific heat: 0.1290 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 14.2×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 3.19 W/cm/°C (25°C)

Electrical resistivity: 2.44×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 9.225 eV

Electron work function ϕ : 5.1 eV

Oxidation potentials: Au → Au⁺ + ϵ = -1.691 V

Au → Au³⁺ + 3 ϵ = -1.498 V

Chemical valence: 1, 3

Electrochemical equivalents: 2.4496 g/amp-hr

Ionic radius: 0.85 Å (Au³⁺)

Valence electron potential (-eV): 51

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s¹

Valence electrons: 5d¹⁰ 6s¹

Crystal form: Cubic, face centered

Cross section σ : 98.8 ± 0.3 barns

Vapor pressure: 2.37×10^{-4} Pa (at melting point)

Hf

Hafnium

72

178.49

IVB	
47.90	Ti
22	
91.22	Zr
40	
178.49	Hf
72	
104	

Háfnio

Hafnium

Hafnium

Hafnio

гафний

הַפְנִיּוֹם

鉱
ハフニウム

Naturally occurring isotopes: 180, 178, 177, 179, 176, 174

Density: 13.31 g/cm³ (20°C)

Melting point: 2227±20°C **Boiling point:** 4602°C

Latent heat of fusion: 122.0 J/g

Specific heat: 0.144 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 5.6×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.230 W/cm/°C (25°C)

Electrical resistivity: 35.1×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 6.65 eV

Electron work function ϕ : 3.9 eV

Oxidation potential: Hf → Hf⁴⁺ + 4e = 1.70 V

Chemical valence: 4

Electrochemical equivalents: 1.6649 g/amp-hr

Ionic radius: 0.71 Å (Hf⁴⁺)

Valence electron potential ($-\epsilon$ V): 81

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d² 6s²

Valence electrons: 5d² 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 103±3 barns

Vapor pressure: 1.12×10^{-3} Pa (at melting point)

He

Helium

2

4.00260

O
4 00260
He
2
20 179
Ne
10
39 948
Ar
18
83 80
Kr
36
131 30
Xe
54
222 01761
Rn
86

Hélio

Hélium

Helium

Helio

гелий

helium

氦 ヘリウム

Naturally occurring isotopes: 4, 3

Density: 0.17847×10^{-3} g/cm³ (0°C)

Melting point: -272.2°C (26 atm); **I Boiling point:** -268.934°C

Latent heat of fusion: 5.23 J/g

Specific heat: 5.1930 J/g/°C (25°C)

Thermal conductivity: 1.520 mw/cm/°C (25°C at 1 atm)

Ionization potential (1st): 24.58 eV

Chemical valence: 0

Principal quantum number: 1

Principal electron shells: K

Electronic configuration: 1s²

Valence electrons: (1s²)

Crystal form: Hexagonal, close packed

Cross section σ: 0.007 barns

Ho

Holmium

67

164.9304

Lanthanide Series

140.12 Ce 58	140.9077 Pr 59	144.24 Nd 60	144.913 Pm 61	150.4 Sm 62	151.96 Eu 63	157.25 Gd 64	158.9254 Tb 65	162.50 Dy 66	164.9304 Ho 67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Hólmió

Holmium

Holmium

Holmio

холмий

Holmio

鉄

ホルミウム

Naturally occurring isotope: 165**Density:** 8.795 g/cm³ (25°C)**Melting point:** 1474°C **Boiling point:** 2695°C**Latent heat of fusion:** 104.1 J/g**Specific heat:** 0.165 J/g°C (25°C)**Coefficient of lineal thermal expansion:** 9.5×10^{-6} cm/cm°/C (400°C)**Thermal conductivity:** 0.162 w/cm°/C (25°C)**Electrical resistivity:** 87.0×10^{-6} ohm-cm (25°C)**Ionization potential (1st):** 6.02 eV**Oxidation potential:** Ho → Ho³⁺ + 3e = 2.319 V**Chemical valence:** 3**Electrochemical equivalents:** 2.0512 g/amp-hr**Ionic radius:** 0.901 Å (Ho³⁺)**Valence electron potential (-eV):** 47.9**Principal quantum number:** 6**Principal electron shells:** K L M N O P**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹¹ 5s²5p⁶ 6s²**Valence electrons:** 4f¹¹ 6s²**Crystal form:** Hexagonal, close packed**Cross section σ:** 65 ± 2 barns

H

Hydrogen

1

1.0079

IA
1.0079 H 1
6.941 Li 3
22.98977 Na 11
39.096 K 19
85.4678 Rb 37
132.9054 Cs 55
223.01976 Fr 87

Hidrogênio

Hydrogène

Wasserstoff

Hidrógeno

водород

מִימָן

氫 水素

Naturally occurring isotopes: 1.007825 (protium), 2.01410 (deuterium), 3.01605 (tritium)

Density: 0.08988×10^{-3} g/cm³ (0°C)

Melting point: -259.14°C **Boiling point:** -252.87°C

Latent heat of fusion: 116.3 J/g (H₂)

Specific heat: 14.30 J/g/°C (H₂) (25°C)

Thermal conductivity: 1.815 mw/cm/°C (27°C at 1 atm)

Ionization potential (1st): 13.59765 eV

Oxidation potentials: H₂ → 2H⁺ + ε = 0.00000 V

H⁻ → ½H₂ + ε = 2.25 V

Chemical valence: 1

Electrochemical equivalents: 0.037605 g/amp-hr

Ionic radius: 0.012 Å (H⁺)

Valence electron potential (-εV): 1200

Principal quantum number: 1

Principal electron shells: K

Electronic configuration: 1s¹

Valence electrons: 1s¹

Crystal form: Hexagonal, close packed

Cross section σ: 0.33 barns

In

Indium

49

114.82

IIIA	
10.61	B
5	
26.98154	Al
13	
69.72	Ga
31	
114.82	In
49	
204.37	Tl
81	

Índio

Indium

Indium

Indio

индий

इन्डियम

銦 イソジウム

Naturally occurring isotopes: 115, 113

Density: 7.28 g/cm³ (20°C)

Melting point: 156.61°C **Boiling point:** 2080°C

Latent heat of fusion: 28.44 J/g

Specific heat: 0.233 J/g°C (25°C)

Coefficient of lineal thermal expansion: 24.8×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.818 W/cm/°C (25°C)

Electrical resistivity: 8.37×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 5.786 eV

Electron work function ϕ : 4.12 eV

Oxidation potential: In → In³⁺ + 3e = 0.343 V

Chemical valence: 1, 2, 3

Electrochemical equivalents: 1.4280 g/amp-hr

Ionic radius: 0.800 Å (In³⁺)

Valence electron potential ($-\epsilon$ V): 54.0

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p¹

Valence electrons: 5s² 5p¹

Crystal form: Tetragonal

Cross section σ : 194 ± 2 barns

Vapor pressure: 1.42×10^{17} Pa (at melting point)

Iodine

53

126.9045

VIIA	
18 996403	
F	9
35 453	
Cl	17
79 904	
Br	35
126 9045	
I	53
209 987	
At	85

碘

Iodo

Iode

Iod

Yodo

иод

iod

碘 汗素

Naturally occurring isotope: 127

Density: 4.93 g/cm³ (20°C)

Melting point: 113.5°C **Boiling point:** 184.35°C

Latent heat of fusion: 124.4 J/g (I₂)

Specific heat: 0.21448 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 93×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 4.49 mw/cm/°C (27°C)

Electrical resistivity: 1.3×10^9 ohm-cm (20°C)

Ionization potential (1st): 10.451 eV

Oxidation potential: I⁻ → $\frac{1}{2}$ I₂ + ε = -0.5355 V

Chemical valence: -1, 3, 5, 7

Electrochemical equivalents: 4.7348 g/amp-hr

Ionic radius: 2.20 Å (I⁻)

Valence electron potential (-eV): -6.55

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁵

Valence electrons: 5s² 5p⁵

Crystal form: Orthorhombic

Cross section σ: 6.2 ± 0.2 barns

Ir

Iridium

77

192.22

VIII		
55 647 Fe 26	58 9332 Co 27	58 70 Ni 28
101 07 Ru 44	102 9055 Rh 45	106 4 Pd 46
190 2 Os 76	192 22 Ir 77	195 09 Pt 78
109		

Irídio

Iridium

Iridium

Iridio

иридий

אִרְיָדִום

Naturally occurring isotopes: 193, 191**Density:** 22.42 g/cm³ (17°C)**Melting point:** 2410°C **Boiling point:** 4130°C**Latent heat of fusion:** 137.2 J/g**Specific heat:** 0.131 J/g/°C (25°C)**Coefficient of linear thermal expansion:** 6.6×10^{-6} cm/cm/°C (25°C)**Thermal conductivity:** 1.47 w/cm/°C (25°C)**Electrical resistivity:** 4.71×10^{-6} ohm-cm (20°C)**Ionization potential (1st):** 9.1 eV**Electron work function ϕ :** 5.27 eV**Oxidation potential:** Ir + 6Cl⁻ → IrCl₆³⁻ + 3e = -0.77 V**Chemical valence:** 2, 3, 4, 6**Electrochemical equivalents:** 1.793 g/amp-hr**Ionic radius:** 0.625 Å (Ir⁴⁺)**Valence electron potential (-eV):** 92.2**Principal quantum number:** 6**Principal electron shells:** K L M N O P**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d⁷ 6s²**Valence electrons:** 5d⁷ 6s²**Crystal form:** Cubic, face centered**Cross section σ :** 425 ± 15 barns**Vapor pressure:** 1.47 Pa (at melting point)

Fe Iron

26

55.847

VIII		
55.847 Fe 26	58.9332 Co 27	58.70 Ni 28
101.07 Ru 44	102.9055 Rh 45	106.4 Pd 46
190.2 Os 76	192.22 Ir 77	195.09 Pt 78
		109

Ferro
Fer
Eisen
Hierro
иелезо
ברול

鉄 鉄

Naturally occurring isotopes: 56, 54, 57, 58

Density: 7.874 g/cm³ (20°C)

Melting point: 1535°C **Boiling point:** 2750°C

Latent heat of fusion: 275.1 J/g

Specific heat: 0.450 J/g/°C (25°C)

Coefficient of linear thermal expansion: 11.76×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.804 w/cm/°C (25°C)

Electrical resistivity: 9.71×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.870 eV

Electron work function ϕ : 4.70 eV

Oxidation potential: $\text{Fe} \rightarrow \text{Fe}^{2+} + 2e = 0.4402 \text{ V}$

Chemical valence: 2, 3, 4, 6

Electrochemical equivalents: 0.69455 g/amp-hr

Ionic radius: 0.645 Å (Fe^{3+})

Valence electron potential ($-eV$): 67.0

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

Valence electrons: $3d^6 4s^2$

Crystal form: Cubic, body centered

Cross section σ : 2.56 ± 0.05 barns

Vapor pressure: 7.05 Pa (at melting point)

Kr Krypton

36

83.80

O
4 00260
He
2
20 179
Ne
10
39 948
Ar
18
63 80
Kr
36
131 30
Xe
54
222 01761
Rn
86

Criptônio

Krypton

Krypton

Criptón

криpton

קְרִיטָפּוֹן

氪 ワリブトン

Naturally occurring isotopes: 84, 86, 82, 83, 80, 78

Density: 3.733×10^{-3} g/cm³ (20°C)

Melting point: -156.6°C **Boiling point:** $-152.30 \pm 0.10^{\circ}\text{C}$

Latent heat of fusion: 19.54 J/g

Specific heat: 0.24804 J/g/°C (25°C)

Thermal conductivity: 0.0949 mw/cm/°C (27°C)

Ionization potential (1st): 13.999 eV

Chemical valence: 0

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$

Valence electrons: $(4s^2 4p^6)$

Crystal form: Cubic, face centered (solid)

Cross section σ : 24.5 ± 1.0 barns

La Lanthanum

57

138.9055

IIIB
44 95592
Sc
21
86 9059
Y
39
138 9055
La
57
227 02777
Ac
89

Lantânia

Lanthane

Lanthan

Lantano

лантан

լանտան

镧 ランタン

Naturally occurring isotopes: 139, 138

Density: 6.145 g/cm³ (25°C)

Melting point: 921°C **Boiling point:** 3457°C

Latent heat of fusion: 81.4 J/g

Specific heat: 0.195 J/g°C (25°C)

Coefficient of linear thermal expansion: 5.2×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.134 W/cm/°C (25°C)

Electrical resistivity: 56×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.577 eV

Electron work function ϕ : 3.5 eV

Oxidation potential: La → La³⁺ + 3e = 2.522 V

Chemical valence: 3

Electrochemical equivalents: 1.7275 g/amp-hr

Ionic radius: 1.061 Å (La³⁺)

Valence electron potential ($-\epsilon_V$): 40.71

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶
5d¹ 6s²

Valence electrons: 5d¹ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 8.9 ± 0.2 barns

Vapor pressure: 1.33×10^{-7} Pa (at melting point)

Lr

Lawrencium

103

260

Actinide Series

232.03807 Th 90	231.0358 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Laurêncio

Lawrencium

Lawrenzium

Lawrencio

лавренций

テーレンチウム

Naturally occurring isotopes: None

Oxidation potential: $\text{Lr} \rightarrow \text{Lr}^{3+} + 3e = 2.0 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 3.23 g/amp-hr

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

$5d^{10} 5f^{14} 6s^2 6p^6 6d^1 7s^2$

Valence electrons: $5f^{14} 6d^1 7s^2$

Half life: 3 minutes

Pb

Lead

82

207.2

IVA	
12.011	C
6	
28.0855	Si
14	
72.59	Ge
32	
118.69	Sn
50	
207.2	Pb
82	

Chumbo

Plomb

Blei

Plomo

свинец

תְּלַבְּ

鉛 鉻

Naturally occurring isotopes: 208, 206, 207, 204

Density: 11.342 g/cm³ (20°C)

Melting point: 327.502°C **Boiling point:** 1740°C

Latent heat of fusion: 23.06 J/g

Specific heat: 0.128 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 28.3×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.353 w/cm/°C (25°C)

Electrical resistivity: 20.65×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.416 eV

Electron work function ϕ : 4.25 eV

Oxidation potential: Pb → Pb²⁺ + 2e = 0.126 V

Chemical valence: 2, 4

Electrochemical equivalents: 3.865 g/amp-hr (Pb²⁺)

Ionic radius: 1.19 Å (Pb²⁺)

Valence electron potential ($-\epsilon V$): 24.2

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s² 6p²

Valence electrons: 6s² 6p²

Crystal form: Cubic, face centered

Cross section σ : 180 ± 10 mbarns

Vapor pressure: 4.21×10^{-7} Pa (at melting point)

Li

Lithium

3

6.941

IA	
1.0079	H
1	1
6.941	Li
3	3
22.98977	Na
11	11
39.098	K
19	19
85.4678	Rb
37	37
132.9054	Cs
55	55
223.01976	Fr
87	87

Litio

Lithium

Lithium

Litio

литий

ליチום

Naturally occurring isotopes: 7, 6**Density:** 0.534 g/cm³ (20°C)**Melting point:** 180.54°C **Boiling point:** 1342°C**Latent heat of fusion:** 430.1 J/g**Specific heat:** 3.57 J/g/°C (25°C)**Coefficient of lineal thermal expansion:** 60×10^{-6} cm/cm/°C (25°C)**Thermal conductivity:** 0.848 w/cm/°C (25°C)**Electrical resistivity:** 8.55×10^{-6} ohm-cm (0°C)**Ionization potential (1st):** 5.392 eV**Electron work function ϕ :** 2.9 eV**Oxidation potential:** Li → Li⁺ + e^- = 3.045 V**Chemical valence:** 1**Electrochemical equivalents:** 0.2590 g/amp-hr**Ionic radius:** 0.76 Å (Li⁺)**Valence electron potential ($-eV$):** 19**Principal quantum number:** 2**Principal electron shells:** K L**Electronic configuration:** 1s² 2s¹**Valence electrons:** 2s¹**Crystal form:** Cubic, body centered**Cross section σ :** 71 barns**Vapor pressure:** 1.63×10^{-8} Pa (at melting point)

Lu Lutetium

71

174.97

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	144 913 Pm 61	150 4 Sm 62	151 96 Eu 63	157 25 Gd 64	158 9254 Tb 65	162 50 Dy 66	164 9304 Ho 67
167 26 Er 68	168 9342 Tm 69	173 04 Yb 70	174 97 Lu 71						

Lutécio

Lutetium

Lutetium

Lutecio

лютесций

לוּטֶזְיוֹם

金魯智
ルテチウム

Naturally occurring isotopes: 175, 176

Density: 9.840 g/cm³ (25°C)

Melting point: 1663°C Boiling point: 3395°C

Latent heat of fusion: 110.1 J/g

Specific heat: 0.154 J/g°C (25°C)

Coefficient of lineal thermal expansion: 12.5×10^{-6} cm/cm/°C (400°C)

Thermal conductivity: 0.164 W/cm/°C (25°C)

Electrical resistivity: 79.0×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.4259 eV

Electron work function ϕ : 3.3 eV

Oxidation potential: Lu → Lu³⁺ + 3e = 2.255 V

Chemical valence: 3

Electrochemical equivalents: 2.1760 g/amp-hr

Ionic radius: 0.848 Å (Lu³⁺)

Valence electron potential ($-\epsilon V$): 50.9

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹ 6s²

Valence electrons: 5d¹ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 75 ± 2 barns

Vapor pressure: 2.46×10^3 Pa (at melting point)

Mg

Magnesium

12

24.305

IIA	
9 01218	
Be	
4	
24 305	
Mg	
12	
40 08	
Ca	
20	
87 62	
Sr	
38	
137 34	
Ba	
56	
228 02544	
Ra	
88	

Magnésio

Magnésium

Magnesium

Magnesio

магний

מגניום

鎂 マグネシウム

Naturally occurring isotopes: 24, 26, 25

Density: 1.738 g/cm³ (20°C)

Melting point: 648.8 ± 0.5°C **Boiling point:** 1090°C

Latent heat of fusion: 368.6 J/g

Specific heat: 102 J/g°C (25°C)

Coefficient of lineal thermal expansion: 27.1×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 1.56 W/cm/°C (20°C)

Electrical resistivity: 4.45×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.646 eV

Electron work function ϕ : 3.66 eV

Oxidation potential: Mg → Mg²⁺ + 2e = 2.363 V

Chemical valence: 2

Electrochemical equivalents: 0.45341 g/amp-hr

Ionic radius: 0.72 Å (Mg²⁺)

Valence electron potential ($-\epsilon$ V): 40

Principal quantum number: 3

Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s²

Valence electrons: 3s²

Crystal form: Hexagonal, close packed

Cross section σ : 64 ± 2 mbarns

Vapor pressure: 3.61×10^2 (at melting point)

Mn

Manganese

25

54.9380

VIIIB

54.9380
Mn
25
96.906
Tc
43
196.2
Re
75
107

Manganês

Manganese

Mangan

Manganoso

марганец

マグネシウム

錳
マグネシウム

Naturally occurring isotope: 55

Density: 7.44 g/cm³ (20°C)

Melting point: 1244±3°C **Boiling point:** 1962°C

Latent heat of fusion: 266.7 J/g

Specific heat: 0.479 J/g/°C (20°C)

Coefficient of lineal thermal expansion: 22×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 78.1 mw/cm/°C (25°C)

Electrical resistivity: 185×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.435 eV

Electron work function ϕ : 4.1 eV

Oxidation potential: Mn → Mn²⁺ + 2e = 1.18 V

Chemical valence: -2, -1, 0, 1, 2, 3, 4, 5, 6, 7

Electrochemical equivalents: 0.29282 g/amp-hr

Ionic radius: 0.46 Å (Mn⁷⁺)

Valence electron potential (-eV): 220

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s²

Valence electrons: 3d⁵ 4s²

Crystal form: Cubic, face centered

Cross section σ : 13.3±0.1 barns

Vapor pressure: 1.21×10^2 Pa (at melting point)

Md

Mendelevium

101

258

Actinide Series

232 09807 Th 90	231 0359 Pa 91	238 029 U 92	237 0482 Np 93	244 06423 Pu 94	243.0614 Am 95	247 07038 Cm 96	247 07032 Bk 97	251 07961 Cf 98	254 08805 Es 99
257 09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Mendelévio

Mendelevium

Mendelevium

Mendelevio

менделевий

מנדלבויום

鉄
メンデルビウム

Naturally occurring isotopes: None

Ionization potential (1st): 6.58 eV

Oxidation potential: $Md \rightarrow Md^{3+} + 3e^- = 1.6\text{ V}$

Chemical valence: 1, 2, 3

Electrochemical equivalents: 3.21 g/amp-hr

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$
 $5d^{10} 5f^{13} 6s^2 6p^6 7s^2$

Valence electrons: $5f^{13} 7s^2$

Half life: 55 days

Hg

Mercury

80

200.59

IIIB
65 38 Zn 30
112 41 Cd 48
200 59 Hg 80

Mercúrio

Mercure

Quecksilber

Mercurio

рутъ

汞

水銀

Naturally occurring isotopes: 202, 200, 199, 201, 198, 204, 196

Density: 13.534 g/cm³ (25°C)

Melting point: -38.87°C **Boiling point:** 356.58°C

Latent heat of fusion: 11.46 J/g

Specific heat: 0.1395 J/g/°C (liquid) (25°C)

Thermal conductivity: 0.0830 w/cm/°C (25°C)

Electrical resistivity: 95.78×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 10.437 eV

Electron work function ϕ : 4.49 eV

Oxidation potential: Hg → Hg²⁺ + 2e = -0.788 V

Chemical valence: 1, 2

Electrochemical equivalents: 3.7420 g/amp-hr

Ionic radius: 1.02 Å (Hg²⁺)

Valence electron potential (-eV): 28.2

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s²

Valence electrons: 6s²

Crystal form: Rhombohedral

Cross section σ : 375 ± 5 barns

Vapor pressure: 2.00×10^{-4} Pa (at melting point)

Mo

Molybdenum

42

95.94

VIB
51 996
Cr
24
95 94
Mo
42
183 85
W
74
106

Molibdênia

Molybdène

Molybdän

Molibdeno

молибден

מָלִיבְדָּן

鉬 モリブデン

Naturally occurring isotopes: 98, 96, 95, 92, 100, 97, 94

Density: 10.22 g/cm³ (20°C)

Melting point: 2617°C **Boiling point:** 4612°C

Latent heat of fusion: 288.0 J/g

Specific heat: 0.251 J/g°C (25°C)

Coefficient of lineal thermal expansion: 6.6×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 1.38 w/cm/°C (25°C)

Electrical resistivity: 5.2×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 7.099 eV

Electron work function ϕ : 4.6 eV

Oxidation potential: Mo → Mo³⁺ + 3e = 0.2 V

Chemical valence: 2, 3, 4, 5, 6

Electrochemical equivalents: 0.8949 g/amp-hr

Ionic radius: 0.650 Å (Mo⁴⁺)

Valence electron potential ($-eV$): 88.6

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d⁵ 5s¹

Valence electrons: 4d⁵ 5s¹

Crystal form: Cubic, body centered

Cross section σ : 2.65 ± 0.05 barns

Vapor pressure: 3.47 Pa (at melting point)

Nd

Neodymium

60

144.24

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	144 913 Pm 61	150 4 Sm 62	151 96 Eu 63	157 25 Gd 64	158 9254 Tb 65	162 50 Dy 66	164 9304 Ho 67
167 26 Er 68	168 9342 Tm 69	173 04 Yb 70	174 97 Lu 71						

Neodimio

Neodymium

Neodym

Neodimio

неодимий

נֵאוֹדִימְיוֹן

钕
ネオジム

Naturally occurring isotopes: 142, 144, 146, 143, 145, 148, 150

Density: 7.007 g/cm³ (25°C)

Melting point: 1021°C **Boiling point:** 3068°C

Latent heat of fusion: 75.47 J/g

Specific heat: 0.190 J/g°C (25°C)

Coefficient of lineal thermal expansion: 8.6×10^{-6} cm/cm°C (25°C)

Thermal conductivity: 0.165 w/cm°C (25°C)

Electrical resistivity: 64.0×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.49 eV

Electron work function ϕ : 3.2 eV

Oxidation potential: Nd → Nd³⁺ + 3e = 2.431 V

Chemical valence: 2, 3

Electrochemical equivalents: 1.7939 g/amp-hr

Ionic radius: 0.995 Å (Nd³⁺)

Valence electron potential ($-\epsilon V$): 43.4

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f⁴ 5s² 5p⁶
6s²

Valence electrons: 4f⁴ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 49 ± 2 barns

Vapor pressure: 6.03×10^{-3} Pa (at melting point)

Ne

Neon

10

20.179

O	
4 00260	He
2	
20 179	Ne
10	
39 948	Ar
18	
83 80	Kr
36	
131 30	Xe
54	
222 01761	Rn
86	

Neônio

Neon

Neon

Neón

neoh

ネオン

氖 ネオニ

Naturally occurring isotopes: 20, 22, 21

Density: 0.8999×10^{-3} g/cm³ (20°C)

Melting point: -248.67°C **Boiling point:** -246.048°C

Latent heat of fusion: 16.6 J/g

Specific heat: 1.0301 J/g°C (25°C)

Thermal conductivity: 0.493 mw/cm/°C (27°C)

Ionization potential (1st): 21.564 eV

Chemical valence: 0

Principal quantum number: 2

Principal electron shells: K L

Electronic configuration: 1s² 2s² 2p⁶

Valence electrons: (2s² 2p⁶)

Crystal form: Cubic, face centered

Cross section σ : 38 ± 10 mbarns

Np

Neptunium

93

237.0482

Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Neptúnio

Neptunium

Neptunium

Neptunio

нептуний

ネプチウム

錳 ネ
プ
チ
ウ
ム**Naturally occurring isotopes:** None**Density:** 20.45 g/cm³ (25°C)**Melting point:** 640 ± 1°C **Boiling point:** 3902°C**Latent heat of fusion:** 46 J/g**Thermal conductivity:** 63 mw/cm/°C (27°C)**Electrical resistivity:** 119 × 10⁻⁶ ohm-cm (100°C)**Ionization potential (1st):** 6.19 eV**Oxidation potential:** Np → Np³⁺ + 3e = 1.856 V**Chemical valence:** 3, 4, 5, 6, 7**Electrochemical equivalents:** 1.7689 g/amp-hr**Ionic radius:** 0.75 Å (Np⁵⁺)**Valence electron potential (–eV):** 96**Principal quantum number:** 7**Principal electron shells:** K L M N O P Q**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶5d¹⁰ 5f⁴ 6s² 6p⁶ 6d¹ 7s²**Valence electrons:** 5f⁴ 6d¹ 7s²**Crystal form:** Orthorhombic**Half life:** 2.14 × 10⁴ years**Cross section σ:** 170 ± 5 barns

Ni

Nickel

28

58.70

VIII		
55.847 Fe 26	58.9332 Co 27	58.70 Ni 28
101.07 Ru 44	102.9055 Rh 45	106.4 Pd 46
190.2 Os 76	192.22 Ir 77	195.09 Pt 78
	109	

Niquel

Nickel

Nickel

Niquel

никель

ニッケル

ニッケル

Naturally occurring isotopes: 58, 60, 62, 61, 64

Density: 8.902 g/cm³ (25°C)

Melting point: 1453°C **Boiling point:** 2732°C

Latent heat of fusion: 300.3 J/g

Specific heat: 0.444 J/g°C (25°C)

Coefficient of lineal thermal expansion: 13.3×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.909 w/cm/°C (25°C)

Electrical resistivity: 6.84×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.635 eV

Electron work function ϕ : 5.15 eV

Oxidation potential: Ni → Ni²⁺ + 2e = 0.250 V

Chemical valence: 0, 1, 2, 3

Electrochemical equivalents: 1.095 g/amp-hr

Ionic radius: 0.69 Å (Ni²⁺)

Valence electron potential ($-\epsilon V$): 42

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ 4s²

Valence electrons: 3d⁸ 4s²

Crystal form: Cubic, face centered

Cross section σ : 4.54 ± 0.10 barns

Vapor pressure: 2.37×10^2 Pa (at melting point)

Nb

Niobium

41

92.9064

50 9415
V
23
92 9064
Nb
41
180 9479
Ta
73
105

Nióbio
Niobium
Niob
Niobio
ниобий
ニオブ

铌
ニオブ

Naturally occurring isotope: 93

Density: 8.57 g/cm³ (20°C)

Melting point: 2468 ± 10°C **Boiling point:** 4742°C

Latent heat of fusion: 288.4 J/g

Specific heat: 0.265 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 7.31×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.537 W/cm/°C (25°C)

Electrical resistivity: 14.6×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 6.88 eV

Electron work function ϕ : 4.3 eV

Oxidation potential: Nb → Nb³⁺ + 3e = 1.099 V

Chemical valence: 2, 3, 4, 5

Electrochemical equivalents: 0.69327 g/amp-hr

Ionic radius: 0.69 Å (Nb⁵⁺)

Valence electron potential ($-eV$): 104

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d⁴ 5s¹

Valence electrons: 4d⁴ 5s¹

Crystal form: Cubic, face centered

Cross section σ : 1.15 ± 0.05 barns

Vapor pressure: 7.55×10^{-2} Pa (at melting point)

N

Nitrogen

7

14.0067

VA
14.0067
N
7
30.97376
P
15
74.9216
As
33
121.75
Sb
51
206.9604
Bi
83

Nitrogênio

Azote

Stickstoff

Nitrógeno

азот

氮

氮 窒 素

Naturally occurring isotopes: 14, 15**Density:** 1.165×10^{-3} g/cm³ (20°C)**Melting point:** -209.86°C **Boiling point:** -195.8°C**Latent heat of fusion:** 51.41 J/g (N₂)**Specific heat:** 1.040 J/g°C (N₂) (25°C)**Thermal conductivity:** 0.2598 mw/cm°C (27°C at 1 atm)**Ionization potential (1st):** 14.534 eV**Oxidation potential:** N₂ + 2H₂O → H₂N₂O₂ + 2H⁺ + 2e = -2.65 V**Chemical valence:** -3, 3, 5**Electrochemical equivalents:** 0.10452 g/amp-hr**Ionic radius:** 0.13 Å (N⁵⁺)**Valence electron potential (-εV):** 550**Principal quantum number:** 2**Principal electron shells:** K L**Electronic configuration:** 1s² 2s² 2p³**Valence electrons:** 2s² 2p³**Crystal form:** Hexagonal, close packed**Cross section σ:** 1.9 barns

No Nobelium

102

Nobélio

259

Nobelium

Actinide Series

Nobelium

Nobelio

нобелий

ノ貝リウム

232.03607 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.06805 Es 99
251.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

ノ
ベ
リ
ウ
ム

Naturally occurring isotopes: None

Ionization potential (1st): 6.65 eV

Oxidation potential: $\text{No} \rightarrow \text{No}^{2+} + 2e = 2.5\text{ V}$

Chemical valence: 2, 3

Electrochemical equivalents: 4.83 g/amp-hr

Ionic radius: 1.1 Å (est) (No^{2+})

Valence electron potential ($-\epsilon\text{V}$): (26)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

$5d^{10} 5f^{14} 6s^2 6p^6 7s^2$

Valence electrons: $5f^{14} 7s^2$

Half life: ~59 minutes

Os

Osmium

76

190.2

VIII		
55.947 Fe 26	58.9332 Co 27	58.70 Ni 28
101.07 Ru 44	102.9055 Rh 45	106.4 Pd 46
190.2 Os 76	192.22 Ir 77	195.09 Pt 78
	109	

Osmio

Osmium

Osmium

Osmio

осмий

אומסמיום

锇
オスミウム

Naturally occurring isotopes: 192, 190, 189, 188, 187, 186, 184**Density:** 22.61 g/cm³ (20°C)**Melting point:** 3045 ± 30°C **Boiling point:** 5027 ± 100°C**Latent heat of fusion:** 154.1 J/g**Specific heat:** 0.13 J/g°C (25°C)**Coefficient of lineal thermal expansion:** 6.3×10^{-6} cm/cm/°C (20°C)**Thermal conductivity:** 0.876 w/cm/°C (25°C)**Electrical resistivity:** 9.5×10^{-6} ohm-cm (20°C)**Ionization potential (1st):** 8.7 eV**Electron work function ϕ :** 4.83 eV**Oxidation potential:** Os + 4H₂O → OsO₄ + 8H⁺ + 8e = -0.85 V**Chemical valence:** 0, 1, 2, 3, 4, 5, 6, 7, 8**Electrochemical equivalents:** 1.774 g/amp-hr**Ionic radius:** 0.630 Å (Os⁴⁺)**Valence electron potential ($-\epsilon V$):** 91.4**Principal quantum number:** 6**Principal electron shells:** K L M N O P**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d⁶ 6s²**Valence electrons:** 5d⁶ 6s²**Crystal form:** Hexagonal, close packed**Cross section σ :** 15.3 ± 0.7 barns**Vapor pressure:** 2.52 Pa (at melting point)

0

Oxygen

8

15.9994

VIA
15.9994
O
B
32.06
S
16
78.96
Se
34
127.60
Te
52
208.98243
Po
84

Oxigênio

Oxygène

Sauerstoff

Oxigeno

кислород

газ

氧 酸 素

Naturally occurring isotopes: 16, 18, 17**Density:** 1.429×10^{-3} g/cm³ (0°C)**Melting point:** -218.4°C **Boiling point:** -182.962°C**Latent heat of fusion:** 26.17 J/g (O₂)**Specific heat:** 0.9174 J/g°C (O₂) (25°C)**Thermal conductivity:** 0.2674 w/cm°C (25°C at 1 atm)**Ionization potential (1st):** 13.618 eV**Oxidation potential:** 2H₂O (liquid) → O₂ + 4H⁺ + 4e = -1.229 V**Chemical valence:** -2**Electrochemical equivalents:** 0.29847 g/amp-hr**Ionic radius:** 1.40 Å (O²⁻)**Valence electron potential (-eV):** -20.6**Principal quantum number:** 2**Principal electron shells:** K L**Electronic configuration:** 1s² 2s² 2p⁴**Valence electrons:** 2s² 2p⁴**Crystal form:** Cubic**Cross section σ:** 0.27 mbarns

Pd

Palladium

46

106.4

VIII		
55.847 Fe 26	58.932 Co 27	58.70 Ni 28
101.07 Ru 44	102.905 Rh 45	106.4 Pd 46
190.2 Os 76	192.22 Ir 77	196.09 Pt 78
	109	

Paládio

Palladium

Palladium

Paladio

палладий

פלדיום

鉑 パラジウム

Naturally occurring isotopes: 106, 108, 105, 110, 104, 102

Density: 12.023 g/cm³ (20°C)

Melting point: 1554°C **Boiling point:** 3140°C

Latent heat of fusion: 157.4 J/g

Specific heat: 0.244 J/g/°C (25°C)

Coefficient of linear thermal expansion: 11.67×10^{-6} cm/cm/°C (0°C)

Thermal conductivity: 0.718 W/cm/°C (25°C)

Electrical resistivity: 10.54×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 8.34 eV

Electron work function ϕ : 5.12 eV

Oxidation potential: $\text{Pd} \rightarrow \text{Pd}^{2+} + 2e = -0.987$ V

Chemical valence: 2, 3, 4

Electrochemical equivalents: 1.985 g/amp-hr

Ionic radius: 0.86 Å (Pd²⁺)

Valence electron potential ($-\epsilon V$): 33

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰

Valence electrons: 4d¹⁰

Crystal form: Cubic, face centered

Cross section σ : 6.0 ± 1.0 barns

Vapor pressure: 1.33 Pa (at melting point)

P

Phosphorus

15

30.97376

VA
14.0067 N 7
30.97376 P 15
74.9216 As 33
121.75 Sb 51
208.9604 Bi 83

Fósforo
Phosphore
Phosphor
Фосфор
磷 煙

Naturally occurring isotope: 31

Density: 1.828 g/cm³ (white), 2.34 g/cm³ (red), 2.699 g/cm³ (black)
(all at 20°C)

Melting point: 44.1°C (white) **Boiling point:** 280.3°C (white)

Latent heat of fusion: 20.28 J/g (white)

Specific heat: 0.7697 J/g/°C (white) (25°C)

Coefficient of linear thermal expansion: 125×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 2.36 mw/cm/°C (white) (25°C)

Electrical resistivity: 10^{11} ohm-cm (white) (20°C)

Ionization potential (1st): 10.486 eV

Oxidation potential: P + 2H₂O → H₃PO₂ + H⁺ + ϵ = 0.508 V

Chemical valence: -3, 3, 5

Electrochemical equivalents: 0.23113 g/amp-hr

Ionic radius: 0.38 Å (P⁵⁺)

Valence electron potential (-eV): 190

Principal quantum number: 3

Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p³

Valence electrons: 3s² 3p³

Crystal form: Cubic

Cross section σ : 0.19 barns

Vapor pressure: 20.8 Pa (at melting point)

Four allotropes of phosphorus have different melting points, crystal forms, colors, and electrical conductivities. The black variety has the highest electrical conductivity.

Pt

Platinum

78

195.09

VIII		
55.847	58.9332	58.70
Fe 26	Co 27	Ni 28
101.07	102.9055	106.4
Ru 44	Rh 45	Pd 46
190.2	192.22	195.09
Os 76	Ir 77	Pt 78
		109

Platina

Platine

Plátin

Platino

платина

platīn

鉑 白金 [プラチナ]

Naturally occurring isotopes: 195, 194, 196, 198, 192, 190**Density:** 21.45 g/cm³ (20°C)**Melting point:** 1773.5°C **Boiling point:** 3827 ± 100°C**Latent heat of fusion:** 100.9 J/g**Specific heat:** 0.133 J/g°C (25°C)**Coefficient of lineal thermal expansion:** 9.5×10^{-6} cm/cm/°C (25°C)**Thermal conductivity:** 0.716 w/cm/°C (25°C)**Electrical resistivity:** 9.85×10^{-6} ohm-cm (0°C)**Ionization potential (1st):** 8.96 eV**Electron work function ϕ :** 5.65 eV**Oxidation potential:** Pt → Pt²⁺ + 2e = -1.2 V**Chemical valence:** 2, 3, 4**Electrochemical equivalents:** 1.8197 g/amp-hr**Ionic radius:** 0.625 Å (Pt⁴⁺)**Valence electron potential ($-\epsilon$ V):** 92.2**Principal quantum number:** 6**Principal electron shells:** K L M N O P**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d⁹ 6s¹**Valence electrons:** 5d⁹ 6s¹**Crystal form:** Cubic, face centered**Cross section σ :** 9 ± 1 barns**Vapor pressure:** 3.12×10^{-2} Pa (at melting point)

Pu Plutonium

94

244.06423

Actinide Series

232.03607 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.06805 Es 99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Plutônio

Plutonium

Plutonium

Plutonio

плутоний

פלוטוניום

鉢

ブリトニウム

Naturally occurring isotope: 242 (trace)

Density: 19.737 g/cm³ (25°C)

Melting point: 639.5°C Boiling point: 3232°C

Latent heat of fusion: 11 J/g

Specific heat: 0.14 J/g/°C (25°C)

Coefficient of linear thermal expansion: 42.3×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.0670 w/cm/°C (25°C)

Electrical resistivity: 146.45×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 6.06 eV

Oxidation potential: Pu → Pu³⁺ + 3e = 2.031 V

Chemical valence: 3, 4, 5, 6, 7

Electrochemical equivalents: 2.2765 g/amp-hr

Ionic radius: 0.887 Å (Pu⁴⁺)

Valence electron potential (-εV): 64.9

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶

5d¹⁰ 5f⁶ 6s² 6p⁶ 7s²

Valence electrons: 5f⁶ 7s²

Crystal form: Monoclinic

Half life: 8.3×10^7 years

Cross section σ: 1.8 ± 0.3 barns

Po

Polonium

84

208.98243

VIA
15.9994
O
8
32.06
S
16
78.96
Se
34
127.60
Te
52
208.98243
Po
84

Polônio

Polonium

Polonium

Polonio

полоний

פולוניום

鉢

ポロニウム

Naturally occurring isotopes: None**Density:** 9.20 g/cm³ (20°C)**Melting point:** 254°C **Boiling point:** 962°C**Latent heat of fusion:** 60.1 J/g**Specific heat:** 0.13 J/g/°C (25°C)**Coefficient of lineal thermal expansion:** 23.5×10^{-6} cm/cm/°C (20°C)**Electrical resistivity:** 42×10^{-6} ohm-cm (0°C)**Ionization potential (1st):** 8.42 eV**Oxidation potential:** Po → Po²⁺ + 2e = -0.65 V**Chemical valence:** -2, 0, 2, 4, 6**Electrochemical equivalents:** 3.8986 g/amp-hr**Ionic radius:** 2.30 Å (Po²⁻)**Valence electron potential (-εV):** -12.5**Principal quantum number:** 6**Principal electron shells:** K L M N O P**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s² 6p⁴**Valence electrons:** 6s² 6p⁴**Crystal form:** Cubic, body centered**Half life:** 103 years**Vapor pressure:** 1.76×10^{-2} Pa (at melting point)

K

Potassium

19

39.098

IA
1.0079
H
1
6.941
Li
3
22.98977
Na
11
39.098
K
19
85.4678
Rb
37
132.9054
Cs
55
223.01976
Fr
87

Potássio
Potassium
Kalium
Potasio
калий
אשלגן
鉀 カリウム

Naturally occurring isotopes: 39, 41, 40**Density:** 0.862 g/cm³ (20°C)**Melting point:** 63.25°C **Boiling point:** 759.9°C**Latent heat of fusion:** 59.33 J/g**Specific heat:** 0.757 J/g°C (25°C)**Coefficient of lineal thermal expansion:** 83×10^{-6} cm/cm/°C (20°C)**Thermal conductivity:** 1.025 w/cm/°C (25°C)**Electrical resistivity:** 7.20×10^{-6} ohm-cm (20°C)**Ionization potential (1st):** 4.341 eV**Electron work function ϕ :** 2.30 eV**Oxidation potential:** K → K⁺ + ϵ = 2.925 V**Chemical valence:** 1**Electrochemical equivalents:** 1.4587 g/amp-hr**Ionic radius:** 1.38 Å (K⁺)**Valence electron potential ($-\epsilon$ V):** 10.4**Principal quantum number:** 4**Principal electron shells:** K L M N**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹**Valence electrons:** 4s¹**Crystal form:** Cubic, body centered**Cross section σ :** 2.1 barns**Vapor pressure:** 1.06×10^{-4} Pa (at melting point)

Pr

Praseodymium

59

140.9077

Lanthanide Series

140.12 Ce 58	140.9077 Pr 59	144.24 Nd 60	144.913 Pm 61	150.4 Sm 62	151.96 Eu 63	157.25 Gd 64	158.9254 Tb 65	162.50 Dy 66	164.9304 Ho 67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Praséodímo

Prasèodyne

Praseodym

Praseodimio

празеодимий

בָּרְסֵוֹדִימִום

鉢
プラセオジム

Naturally occurring isotope: 141

Density: 6.773 g/cm³ (25°C)

Melting point: 931°C **Boiling point:** 3512°C

Latent heat of fusion: 71.3 J/g

Specific heat: 0.193 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 6.5×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.125 w/cm/°C (25°C)

Electrical resistivity: 68×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.42 eV

Electron work function ϕ : 2.7 eV

Oxidation potential: Pr → Pr³⁺ + 3e = 2.462 V

Chemical valence: 3, 4

Electrochemical equivalents: 1.7524 g/amp-hr

Ionic radius: 1.013 Å (Pr³⁺)

Valence electron potential ($-\epsilon V$): 42.64

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f³ 5s²
5p⁶ 6s²

Valence electrons: 4f³ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 3.9 ± 0.5 barns

Pm

Promethium

61

144.913

Lanthanide Series

140.12 Ce 58	140.9077 Pr 59	144.24 Nd 60	144.913 Pm 61	150.4 Sm 62	151.96 Eu 63	157.25 Gd 64	158.9254 Tb 65	162.50 Dy 66	164.9304 Ho 67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Promécio

Prometheum

Prometheum

Promecio

прометий

promethium

プロメチウム

プロメチウム

Naturally occurring isotopes: None

Density: $7.22 \pm 0.02 \text{ g/cm}^3$ (25°C)

Melting point: $1168 \pm 6^\circ\text{C}$ **Boiling point:** 2460°C

Latent heat of fusion: 86.7 J/g

Specific heat: $0.185 \text{ J/g}^\circ\text{C}$ (25°C)

Thermal conductivity: $0.179 \text{ W/cm}^\circ\text{C}$ (25°C)

Ionization potential (1st): 5.55 eV

Oxidation potential: $\text{Pm} \rightarrow \text{Pm}^{3+} + 3e = 2.423 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 1.8022 g/amp-hr

Ionic radius: 0.979 \AA (Pm^{3+})

Valence electron potential ($-e\text{V}$): 44.1

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^5 5s^2 5p^6 6s^2$

Valence electrons: $4f^5 6s^2$

Crystal form: Hexagonal

Half life: 17.7 years

Pa

Protactinium

91

231.0359

Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08605 Es 99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Protactínio

Protactinium

Protactinium

Protactinio

протактиний

פְּרוֹטוֹאָקֶטִינִיּוֹם

プロトアクチニウム
Naturally occurring isotope: 231 (minute quantities only)**Density:** 15.37 g/cm³ (25°C)**Melting point:** 1575°C**Latent heat of fusion:** 65 J/g**Specific heat:** 0.12 J/g/°C (25°C)**Coefficient of linear thermal expansion:** 11.2×10^{-6} cm/cm/°C (25°C)**Ionization potential (1st):** 5.89 eV**Chemical valence:** 3, 4, 5**Electrochemical equivalents:** 1.7240 g/amp-hr**Oxidation potential:** $\text{Pa} \rightarrow \text{Pa}^{3+} + 3\epsilon = 1.6 \text{ V}$ **Ionic radius:** 0.78 Å (Pa⁵⁺)**Valence electron potential ($-\epsilon$ V):** 92**Principal quantum number:** 7**Principal electron shells:** K L M N O P Q**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶5d¹⁰ 5f² 6s² 6p⁶ 6d¹ 7s²**Valence electrons:** 5f² 6d¹ 7s²**Crystal form:** Tetragonal**Half life:** 3.248×10^4 years**Cross section σ :** 200 ± 10 barns

Ra Radium

88

226.02544

IIA
9 01218
Be
4
24 305
Mg
12
40 08
Ca
20
87 62
Sr
38
137 34
Ba
56
226 02544
Ra
88

Rádio
Radium
Radium
Radio
радий
רדיום
镭 ラジウム

-
- Naturally occurring isotope:** 226 (minute quantities only)
Density: 5.5 g/cm³ (extrapolated) (20°C)
Melting point: 700°C **Boiling point:** 1140°C
Latent heat of fusion: 37 J/g (est)
Specific heat: 0.120 J/g°C (25°C)
Thermal conductivity: 0.186 W/cm/°C (20°C)
Ionization potential (1st): 5.279 eV
Oxidation potential: Ra → Ra²⁺ + 2e = 2.916 V
Chemical valence: 2
Electrochemical equivalents: 4.2165 g/amp-hr
Ionic radius: 1.43 Å (Ra²⁺)
Valence electron potential (−εV): 20.1
Principal quantum number: 7
Principal electron shells: K L M N O P Q
Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s² 6p⁶ 7s²
Valence electrons: 7s²
Half life: 1622 years
Cross section σ: 20 ± 3 barns
Vapor pressure: 3.27 × 10² Pa (at melting point)

Rn

Radon

86

222.01761

O
4 00260
He
2
20 179
Ne
10
39 948
Ar
18
83 80
Kr
36
131 30
Xe
54
222 01761
Rn
86

Radônio

Radon

Radon

Radón

радон

氡

ラ
ド
ン

Naturally occurring isotopes: None (radium decay product)

Density: 9.96×10^{-3} g/cm³ (20°C)

Melting point: -71°C **Boiling point:** -61.8°C

Latent heat of fusion: 13.1 J/g

Specific heat: 0.09362 J/g/°C (25°C)

Thermal conductivity: 0.0364 mw/cm/°C (27°C)

Ionization potential (1st): 10.748 eV

Chemical valence: 0

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶

5d¹⁰ 6s² 6p⁶

Valence electrons: (6s² 6p⁶)

Crystal form: Cubic, face centered

Half life: 3.824 days

Cross section σ: 0.72 ± 0.07 barns

Re

Rhenium

75

186.2

VIIB	
54-5380	Mn
25	
96.906	Tc
43	
186.2	Re
75	
107	

Rênia

Rhenium

Rhenium

Renio

рений

レニウム

铼
レニウム

Naturally occurring isotopes: 187, 185

Density: 21.04 g/cm³ (20°C)

Melting point: 3180°C **Boiling point:** 5627°C (est)

Latent heat of fusion: 177.6 J/g

Specific heat: 0.137 J/g/°C (25°C)

Coefficient of linear thermal expansion: 6.7×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.480 W/cm/°C (25°C)

Electrical resistivity: 19.3×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.88 eV

Electron work function ϕ : 4.96 eV

Oxidation potential: Re + 2H₂O → ReO₂ + 4H⁺ + 4e = -0.2513 V

Chemical valence: 0, 1, 2, 3, 4, 5, 6, 7

Electrochemical equivalents: 0.9924 g/amp-hr

Ionic radius: 0.56 Å (Re⁷⁺)

Valence electron potential (-eV): 180

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d⁵ 6s²

Valence electrons: 5d⁵ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 85 ± 5 barns

Vapor pressure: 3.24 Pa (at melting point)

Rh

Rhodium

45

102.9055

VIII		
55 847 Fe 26	58 9332 Co 27	58 70 Ni 28
101.07 Ru 44	102.9055 Rh 45	106.4 Pd 46
190.2 Os 76	192.22 Ir 77	195.09 Pt 78
		109

Ródio

Rhodium

Rhodium

Rodio

родий

ロドイド

金
铑
ロ
ジ
ウ
ム

Naturally occurring isotope: 103**Density:** 12.41 g/cm³ (20°C)**Melting point:** 1966 ± 3°C **Boiling point:** 3727 ± 100°C**Latent heat of fusion:** 211.6 J/g**Specific heat:** 0.24 J/g/°C (25°C)**Coefficient of lineal thermal expansion:** 8.3×10^{-6} cm/cm/°C (20°C)**Thermal conductivity:** 1.50 w/cm/°C (25°C)**Electrical resistivity:** 4.51×10^{-6} ohm-cm (20°C)**Ionization potential (1st):** 7.46 eV**Electron work function ϕ :** 4.98 eV**Oxidation potential:** Rh → Rh³⁺ + 3e = -0.80 V**Chemical valence:** 2, 3, 4, 5, 6**Electrochemical equivalents:** 1.2798 g/amp-hr**Ionic radius:** 0.68 Å (Rh³⁺)**Valence electron potential ($-eV$):** 64**Principal quantum number:** 5**Principal electron shells:** K L M N O**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d⁸ 5s¹**Valence electrons:** 4d⁸ 5s¹**Crystal form:** Cubic, face centered**Cross section σ :** 150 ± 5 barns**Vapor pressure:** 6.33×10^{-1} Pa (at melting point)

Rb

Rubidium

37

85.4678

1.0079	IA
H	1
6.941	
Li	3
22.98977	
Na	11
39.098	
K	19
85.4678	
Rb	37
132.9054	
Cs	55
223.01976	
Fr	87

Rubidio
Rubidium
Rubidium
Rubidio
рубидий
רוביידיום

金屬 ルビジウム

Naturally occurring isotopes: 85, 87

Density: 1.532 g/cm³ (20°C)

Melting point: 38.89°C **Boiling point:** 686°C

Latent heat of fusion: 27.43 J/g

Specific heat: 0.3634 J/g/°C (25°C)

Coefficient of linear thermal expansion: 90×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.582 W/cm/°C (25°C)

Electrical resistivity: 12.84×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 4.177 eV

Electron work function ϕ : 2.16 eV

Oxidation potential: Rb → Rb⁺ + ϵ = 2.925 V

Chemical valence: 1

Electrochemical equivalents: 3.1888 g/amp-hr

Ionic radius: 1.52 Å (Rb⁺)

Valence electron potential ($-\epsilon$ V): 9.47

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 5s¹

Valence electrons: 5s¹

Crystal form: Cubic, body centered

Cross section σ : 0.5 ± 0.1 barns

Vapor pressure: 1.56×10^{-4} Pa (at melting point)

Ru

Ruthenium

44

101.07

VIII		
55.847 Fe 26	56.9332 Co 27	58.70 Ni 28
101.07 Ru 44	102.9055 Rh 45	106.4 Pd 46
190.2 Os 76	192.22 Ir 77	195.09 Pt 78
		109

Rutênia

Ruthènium

Ruthenium

Rutenio

рутений

רוּתְּנִיּוֹם

钌 ルテニウム

Naturally occurring isotopes: 102, 104, 101, 99, 100, 96, 98

Density: 12.45 g/cm³ (20°C)

Melting point: 2310°C **Boiling point:** 3900°C

Latent heat of fusion: 252.7 J/g

Specific heat: 0.238 J/g°C (25°C)

Coefficient of lineal thermal expansion: 9.91×10^{-6} cm/cm°C (50°C)

Thermal conductivity: 1.17 w/cm°C (25°C)

Electrical resistivity: 6.80×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 7.37 eV

Electron work function ϕ : 4.71 eV

Oxidation potential: Ru + 5Cl⁻ → RuCl₃²⁻ + 3e = -0.601 V

Chemical valence: 1, 2, 3, 4, 5, 6, 7, 8

Electrochemical equivalents: 1.2570 g/amp-hr

Ionic radius: 0.68 Å (Ru⁴⁺)

Valence electron potential ($-\epsilon$ V): 64

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d⁷ 5s¹

Valence electrons: 4d⁷ 5s¹

Crystal form: Hexagonal, close packed

Cross section σ : 3.0 ± 0.8 barns

Vapor pressure: 1.40 Pa (at melting point)

Sm

Samarium

62

150.4

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	144 913 Pm 61	150 4 Sm 62	151 96 Eu 63	157 25 Gd 64	158 9254 Tb 65	162 50 Dy 66	164 9304 Ho 67
167.26 Er 68	168 9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Samário

Samarium

Samarium

Samario

самарий

סמריום

钐 サマリウム

Naturally occurring isotopes: 152, 154, 147, 149, 148, 150, 144

Density: 7.520 g/cm³ (25°C)

Melting point: 1077°C **Boiling point:** 1791°C

Latent heat of fusion: 73.8 J/g

Specific heat: 0.196 J/g/°C (25°C)

Thermal conductivity: 0.133 w/cm/°C (25°C)

Electrical resistivity: 88 × 10⁻⁶ ohm-cm (25°C)

Ionization potential (1st): 5.63 eV

Electron work function ϕ : 2.7 eV

Oxidation potential: Sm → Sm³⁺ + 3e = 2.414 V

Chemical valence: 2, 3

Electrochemical equivalents: 1.870 g/amp-hr

Ionic radius: 0.964 Å (Sm³⁺)

Valence electron potential ($-\epsilon$ V): 44.8

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f⁶ 5s²
5p⁶ 6s²

Valence electrons: 4f⁶ 6s²

Crystal form: Rhombohedral

Cross section σ : 5820 ± 100 barns

Vapor pressure: 5.63 × 10² Pa (at melting point)

Sc

Scandium

21

44.95592

III B	
44 95592	Sc
21	
88.9059	Y
39	
138.9055	La
57	
227.02777	Ac
89	

Escândio

Scandium

Scandium

Escanđio

скандий

סְקַנְדִּיּוּם

釀
スカンジウム

Naturally occurring isotope: 45**Density:** 2.989 g/cm³ (25°C)**Melting point:** 1541°C **Boiling point:** 2831°C**Latent heat of fusion:** 358.6 J/g**Specific heat:** 0.568 J/g/°C (25°C)**Coefficient of lineal thermal expansion:** 12×10^{-6} cm/cm/°C (25°C)**Thermal conductivity:** 0.158 w/cm/°C (25°C)**Electrical resistivity:** 61.0×10^{-6} ohm-cm (20°C)**Ionization potential (1st):** 6.54 eV**Electron work function ϕ :** 3.5 eV**Oxidation potential:** $\text{Sc} \rightarrow \text{Sc}^{3+} + 3\epsilon = 2.077 \text{ V}$ **Chemical valence:** 3**Electrochemical equivalents:** 0.55914 g/amp-hr**Ionic radius:** 0.745 Å (Sc³⁺)**Valence electron potential ($-\epsilon\text{V}$):** 58.0**Principal quantum number:** 4**Principal electron shells:** K L M N**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹ 4s²**Valence electrons:** 3d¹ 4s²**Crystal form:** Hexagonal, close packed**Cross section σ :** 25 ± 2 barns**Vapor pressure:** $2.21 \times 10 \text{ Pa}$ (at melting point)

Se

Selenium

34

78.96

VIA	
15 9994	
O	8
32 06	
S	16
78 96	
Se	34
127 50	
Te	52
208 98243	
Po	84

Selénio
 Séléniun
 Selen
 Selenio
 селен
 亜硒
 硒
 セレン

Naturally occurring isotopes: 80, 78, 82, 76, 77, 74

Density: 4.792 g/cm³ (gray) (20°C)

Melting point: 217°C (gray) **Boiling point:** 684.9 ± 1.0°C

Latent heat of fusion: 68.93 J/g

Specific heat: 0.1606 J/g/°C (Se₂) (25°C)

Coefficient of lineal thermal expansion: 36.8 cm/cm/°C (20°C)

Thermal conductivity: 0.0452 w/cm/°C (along C-axis at 25°C)

Electrical resistivity: 1 ohm-cm (20°C)

Ionization potential (1st): 9.752 eV

Electron work function ϕ : 5.9 eV

Oxidation potential: Se + 3H₂O → H₂SeO₃ + 4H⁺ + 4e = -0.740 V

Chemical valence: -2, 4, 6

Electrochemical equivalents: 0.73650 g/amp-hr

Ionic radius: 0.50 Å (Se⁴⁺)

Valence electron potential (-eV): 120

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁴

Valence electrons: 4s² 4p⁴

Crystal forms: Hexagonal, monoclinic, amorphous

Cross section σ : 12.2 ± 0.6 barns

Vapor pressure: 6.95 × 10⁻¹ Pa (at melting point)

Si Silicon

14

28.0855

IVA		
12 011	C	6
28 0855	Si	14
72 59	Ge	32
116 69	Sn	50
207 2	Pb	82

Silicio
Silicium
Silizium
Silicio
кремний
珪素

Naturally occurring isotopes: 28, 29, 30

Density: 2.329 g/cm³ (25°C)

Melting point: 1410°C **Boiling point:** 2355°C

Latent heat of fusion: 1.655 J/g

Specific heat: 0.712 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 4.2×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 1.49 W/cm/°C (25°C)

Electrical resistivity: 3.5 ohm-cm (20°C)

Ionization potential (1st): 8.151 eV

Electron work function ϕ : 4.52 eV

Oxidation potential: Si + 2H₂O → SiO₂ + 4H⁺ + 4e = 0.857 V

Chemical valence: -4, -1, 1, 4

Electrochemical equivalents: 0.26197 g/amp-hr

Ionic radius: 0.400 Å (Si⁴⁺)

Valence electron potential (-eV): 144

Principal quantum number: 3

Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p²

Valence electrons: 3s² 3p²

Crystal form: Cubic, diamond

Cross section σ : 160 ± 20 mbarns

Vapor pressure: 4.77 Pa (at melting point)

Ag Silver

47

107.868

IB
63.546
Cu
29
107.868
Ag
47
196.9665
Au
79

Prata
Argent
Silber
Plata
серебро

סֶלַבְּרָה

銀 銀

Naturally occurring isotopes: 107, 109

Density: 10.50 g/cm³ (20°C)

Melting point: 961.93°C **Boiling point:** 2212°C

Latent heat of fusion: 104.8 J/g

Specific heat: 0.2350 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 18.62×10^{-6} cm/cm/°C (17°C)

Thermal conductivity: 4.29 w/cm/°C (25°C)

Electrical resistivity: 1.586×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.576 eV

Electron work function ϕ : 4.26 eV

Oxidation potentials: $\text{Ag} \rightarrow \text{Ag}^+ + \epsilon = -0.7991 \text{ V}$

$\text{Ag}^+ \rightarrow \text{Ag}^{2+} + \epsilon = -1.980 \text{ V}$

Chemical valence: 1, 2, 3

Electrochemical equivalents: 4.0246 g/amp-hr

Ionic radius: 1.26 Å (Ag⁺)

Valence electron potential (-eV): 11.4

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s¹

Valence electrons: (4d¹⁰) 5s¹

Crystal form: Cubic, face centered

Cross section σ : 63.8 ± 0.6 barns

Vapor pressure: 3.42×10^{-1} Pa (at melting point)

Na

Sodium

11

22.98977

IA
1.0079 H 1
6.941 Li 3
22.98977 Na 11
39.098 K 19
85.4678 Rb 37
132.9054 Cs 55
223.01976 Fr 87

Sódio

Sodium

Natrium

Sodio

натрий

ナトリウム

鈉 ナトリウム

Naturally occurring isotopes: 23

Density: 0.9712 g/cm³ (20°C)

Melting point: 97.81 ± 0.03°C **Boiling point:** 882.9°C

Latent heat of fusion: 113 J/g

Specific heat: 1.23 J/g°C (25°C)

Coefficient of lineal thermal expansion: 72×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 1.42 w/cm/°C (25°C)

Electrical resistivity: 4.33×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 5.139 eV

Electron work function ϕ : 2.75 eV

Oxidation potential: Na → Na⁺ + ϵ = 2.714 V

Chemical valence: 1

Electrochemical equivalents: 0.85775 g/amp-hr

Ionic radius: 1.02 Å (Na⁺)

Valence electron potential ($-\epsilon$ V): 14.1

Principal quantum number: 3

Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s¹

Valence electrons: 3s¹

Crystal form: Cubic, body centered

Cross section σ : 534 ± 5 mbarns

Vapor pressure: 1.43×10^{-5} Pa (at melting point)

Sr

Strontium

38

87.62

IIA
9 01216
Be
4
24 305
Mg
12
40 08
Ca
20
87 62
Sr
38
137 34
Ba
56
226 02544
Ra
88

Estrôncio

Strontium

Strontium

Estroncio

стронций

סטרונזיום

锶

ストロンチウム

Naturally occurring isotopes: 88, 86, 87, 84

Density: 2.54 g/cm³ (20°C)

Melting point: 769°C **Boiling point:** 1384°C

Latent heat of fusion: 105.1 J/g

Specific heat: 0.30 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 21×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.354 w/cm/°C (25°C)

Electrical resistivity: 23×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 5.695 eV

Electron work function ϕ : 2.59 eV

Oxidation potential: $\text{Sr} \rightarrow \text{Sr}^{2+} + 2\epsilon = 2.888 \text{ V}$

Chemical valence: 2

Electrochemical equivalents: 1.635 g/amp-hr

Ionic radius: 1.12 Å (Sr^{2+})

Valence electron potential ($-\epsilon V$): 25.7

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^2$

Valence electrons: 5s²

Crystal form: Cubic, face centered

Cross section σ : 1.21 ± 0.06 barns

Vapor pressure: 2.46×10^2 Pa (at melting point)

S Sulfur

16

32.06

VIA		
15 9994	O	8
32 06	S	16
78 96	Se	34
127 60	Te	52
208 98243	Po	84

Enxôfre

Soufre

Schwefel

Azufre

cepa

גִּסְרִית

硫 硫 黄

Naturally occurring isotopes: 32, 34, 33, 36

Density: 2.07 g/cm³ (rhombic form at 25°C)

Melting point: 112.8°C **Boiling point:** 444.674°C

Latent heat of fusion: 44.01 J/g

Specific heat: 0.706 J/g/°C (rhombic) (25°C)

Coefficient of lineal thermal expansion: 64.13×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 2.70 mw/cm/°C (25°C)

Electrical resistivity: 2×10^{17} ohm-cm (20°C)

Ionization potential (1st): 10.360 eV

Oxidation potentials: S + 3H₂O → H₂SO₃ + 4H⁺ + 4e = -0.45 V

S²⁻ → S + 2e = 0.447 V

Chemical valence: -2, 4, 6

Electrochemical equivalents: 0.2990 g/amp-hr

Ionic radius: 0.37 Å (S⁴⁺)

Valence electron potential (-eV): 160

Principal quantum number: 3

Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁴

Valence electrons: 3s² 3p⁴

Crystal form: Orthorhombic

Cross section σ: 0.51 barns

Vapor pressure: 2.65×10^{-20} Pa (at melting point)

Ta

Tantalum

73

180.9479

V	B
23	
Nb	
41	
Ta	
73	
	105

Tantálio

Tantale

Tantal

Tántalo

тантал

钽

鉻 タンタル

Naturally occurring isotopes: 181, 180

Density: 16.60 g/cm³ (20°C)

Melting point: 2996°C **Boiling point:** 5425 ± 100°C

Latent heat of fusion: 174 J/g

Specific heat: 0.140 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 6.5×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.575 w/cm/°C (25°C)

Electrical resistivity: 12.45×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 7.89 eV

Electron work function ϕ : 4.25 eV

Oxidation potential: $2\text{Ta} + 5\text{H}_2\text{O} \rightarrow \text{Ta}_2\text{O}_5 + 10\text{H}^+ + 10e^- = 0.812 \text{ V}$

Chemical valence: 3, 4, 5

Electrochemical equivalents: 1.3502 g/amp-hr

Ionic radius: 0.64 Å (Ta⁵⁺)

Valence electron potential ($-eV$): 110

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d³ 6s²

Valence electrons: 5d³ 6s²

Crystal form: Cubic, body centered

Cross section σ : 22 ± 1 barns

Vapor pressure: 7.76×10^{-1} Pa (at melting point)

Tc

Technetium

43

96.906

VIIIB

54.9380
Mn
25
96.906
Tc
43
186.2
Re
75
107

Tecnécio

Technetium

Technetium

Tespecio

технций

תְּכִינְטוּם

锝

テクネチウム

Naturally occurring isotopes: None

Density: 11.496 g/cm³ (25°C)

Melting point: 2172°C **Boiling point:** 4877°C

Latent heat of fusion: 235 ± 5 J/g

Specific heat: 0.24 J/g°C (25°C)

Thermal conductivity: 0.506 W/cm°C (25°C)

Ionization potential (1st): 7.28 eV

Oxidation potential: Tc → Tc²⁺ + 2e = -0.4 V

Chemical valence: 0, 1, 2, 3, 4, 5, 6, 7

Electrochemical equivalents: 0.51651 g/amp-hr

Ionic radius: 0.56 Å (Tc⁷⁺)

Valence electron potential (- eV): 180

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d⁶ 5s¹

Valence electrons: 4d⁶ 5s¹

Crystal form: Hexagonal, close packed

Half life: 2.6 × 10⁶ years

Vapor pressure: 2.29 × 10⁻² Pa (at melting point)

Te Tellurium

52

127.60

VIA	
15 9994	O
8	
32.06	S
16	
78.96	Se
34	
127.60	Te
52	
208 98243	Po
84	

Telúrio

Tellure

Tellur

Telurio

төллүр

تلور

碲 テルル

Naturally occurring isotopes: 130, 128, 126, 125, 124, 122, 123

Density: 6.24 g/cm³ (20°C)

Melting point: 449.5 ± 0.3°C **Boiling point:** 989.8 ± 3.8°C

Latent heat of fusion: 137.2 J/g

Specific heat: 0.202 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 16.75 × 10⁻⁶ cm/cm/°C (20°C)

Thermal conductivity: 0.0338 W/cm/°C (along C-axis at 25°C)

Electrical resistivity: 4.36 ohm-cm (25°C)

Ionization potential (1st): 0.009 eV

Electron work function ϕ : 4.95 eV

Oxidation potential: Te + 2H₂O → TeO₂ + 4H⁺ + 4e = -0.529 V

Chemical valence: -2, 2, 4, 6

Electrochemical equivalents: 1.1902 g/amp-hr

Ionic radius: 0.97 Å (Te⁴⁺)

Valence electron potential (-eV): 59

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁴

Valence electrons: 5s² 5p⁴

Crystal form: Hexagonal

Cross section σ : 4.7 ± 0.1 barns

Vapor pressure: 2.31 × 10 Pa (at melting point)

Tb

Terbium

65

158.9254

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	144 913 Pm 61	150 4 Sm 62	151 96 Eu 63	157 25 Gd 64	158 9254 Tb 65	162 50 Dy 66	164 9304 Ho 67
167 26 Er 68	168 9342 Tm 69	173 04 Yb 70	174 97 Lu 71						

Térbio
Terbium
Terbium
Terbio
тербий
טרביום

铽
テルビウム

Naturally occurring isotope: 159

Density: 8.229 g/cm³ (25°C)

Melting point: 1356°C **Boiling point:** 3123°C

Latent heat of fusion: 102.7 J/g

Specific heat: 0.182 J/g°C (25°C)

Coefficient of lineal thermal expansion: 11.8×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.111 w/cm/°C (25°C)

Electrical resistivity: 116×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.85 eV

Electron work function ϕ : 3.0 eV

Oxidation potential: Tb → Tb³⁺ + 3e = 2.391 V

Chemical valence: 3, 4

Electrochemical equivalents: 1.9765 g/amp-hr

Ionic radius: 0.923 Å (Tb³⁺)

Valence electron potential ($-\epsilon$ V): 46.8

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f⁹ 5s²
5p⁶ 6s²

Valence electrons: 4f⁹ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 30 ± 10 barns

Tl Thallium

81

204.37

III A	
10.81	B
5	
26.98154	Al
13	
69.72	Ga
31	
114.82	In
49	
204.37	Tl
81	

Tálio
Thallium
Thallium
Talio
таллий
תליום
金鉛 タリウム

Naturally occurring isotopes: 205, 203

Density: 11.85 g/cm³ (20°C)

Melting point: 303.5°C **Boiling point:** 1457±10°C

Latent heat of fusion: 20.90 J/g

Specific heat: 0.129 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 28×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.461 W/cm/°C (25°C)

Electrical resistivity: 18.0×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 6.108 eV

Electron work function ϕ : 3.84 eV

Oxidation potentials: $Tl \rightarrow Tl^+ + \epsilon = 0.3363$ V

$Tl^+ \rightarrow Tl^{3+} + 2\epsilon = -1.25$ V

Chemical valence: 1, 3

Electrochemical equivalents: 7.6250 g/amp-hr

Ionic radius: 1.50 Å (Tl^+)

Valence electron potential ($-\epsilon V$): 9.60

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$
 $5d^{10} 6s^2 6p^1$

Valence electrons: $6s^2 6p^1$

Crystal form: Hexagonal, close packed

Cross section α : 3.4 ± 0.5 barns

Vapor pressure: 5.33×10^{-6} Pa (at melting point)

Th

Thorium

90

232.03807

Actinide Series

232.03807 Th 90	231.0358 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08905 Es 99
257.09915 Fm 100	256 Md 101	259 No 102	260 Lr 103						

Tório

Thorium

Thorium

Torio

торий

thorium

 トリウム

Naturally occurring isotope: 232

Density: 11.724 g/cm³ (25°C)

Melting point: 1750°C **Boiling point:** 4787°C

Latent heat of fusion: 82.93 J/g

Specific heat: 0.118 J/g/°C (25°C)

Coefficient of linear thermal expansion: 12.5×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.540 w/cm/°C (25°C)

Electrical resistivity: 13.1×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 6.08 eV

Electron work function ϕ : 3.41 eV

Oxidation potential: Th → Th⁴⁺ + 4e = 1.899 V

Chemical valence: 3, 4

Electrochemical equivalents: 2.1643 g/amp-hr

Ionic radius: 0.972 Å (Th⁴⁺)

Valence electron potential ($-\epsilon V$): 59.3

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 6s² 6p⁶ 6d² 7s²

Valence electrons: 6d² 7s²

Crystal form: Cubic, face centered

Half life: 1.40×10^{10} years

Cross section σ : 74 ± 0.1 barns

Tm

Thulium

69

168.9342

Lanthanide Series

140.12 Ce 58	140.9077 Pr 59	144.24 Nd 60	144.913 Pm 61	150.4 Sm 62	151.96 Eu 63	157.25 Gd 64	158.9254 Tb 65	162.50 Dy 66	164.9304 Ho 67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Túlio
Thulium
Thulium
Tulio
тулий
תוליום
鉄
ツリウム

Naturally occurring isotope: 169

Density: 9.321 g/cm³ (25°C)

Melting point: 1545 ± 15°C **Boiling point:** 1727°C

Latent heat of fusion: 109.0 J/g

Specific heat: 0.160 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 11.6×10^{-6} cm/cm/°C (400°C)

Thermal conductivity: 0.169 w/cm/°C (25°C)

Electrical resistivity: 79×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 6.1844 eV

Oxidation potential: Tm → Tm³⁺ + 3e = 2.278 V

Chemical valence: 2, 3

Electrochemical equivalents: 2.1010 g/amp-hr

Ionic radius: 0.869 Å (Tm³⁺)

Valence electron potential (-eV): 49.7

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹³ 5s² 5p⁶
6s²

Valence electrons: 4f¹³ 6s²

Crystal form: Hexagonal, close packed

Cross section σ: 115 ± 15 barns

Vapor pressure: 4.90×10^{-3} Pa (at melting point)

Sn Tin

50

118.69

IVA	
12 011	C
6	
28 0855	Si
14	
72 59	Ge
32	
118 69	Sn
50	
207 2	Pb
82	

Estanho

Etain

Zinn

Estaño

олово

鉛

錫 す

Naturally occurring isotopes: 120, 118, 116, 119, 117, 124, 122, 112, 114, 115

Density: 7.298 g/cm³ (25°C)

Melting point: 231.9681°C **Boiling point:** 2270°C

Latent heat of fusion: 60.67 J/g

Specific heat: 0.227 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 23×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.668 w/cm/°C (25°C)

Electrical resistivity: 11.5×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.334 eV

Electron work function ϕ : 4.42 eV

Oxidation potentials: Sn → Sn²⁺ + 2e = 0.136 V

Sn²⁺ → Sn⁴⁺ + 2e = -0.15 V

Chemical valence: -4, -1, 2, 4

Electrochemical equivalents: 1.1071 g/amp-hr

Ionic radius: 0.690 Å (Sn⁴⁺)

Valence electron potential (-eV): 83.5

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p²

Valence electrons: 5s² 5p²

Crystal form: Tetragonal

Cross section σ : 0.63 ± 0.1 barns

Vapor pressure: 5.78×10^{-21} Pa (at melting point)

Ti

Titanium

22

47.90

IVB

47.90
Ti
22
91.22
Zr
40
178.49
Hf
72
104

Titânia

Titane

Titan

Titanio

титан

טיטניום

鉱
チタン**Naturally occurring isotopes:** 48, 46, 47, 49, 50**Density:** 4.507 g/cm³ (20°C)**Melting point:** 1660 ± 10°C **Boiling point:** 3287°C**Latent heat of fusion:** 323.4 J/g**Specific heat:** 0.522 J/g°C (25°C)**Coefficient of lineal thermal expansion:** 8.41×10^{-6} cm/cm/°C (20°C)**Thermal conductivity:** 0.219 W/cm/°C (25°C)**Electrical resistivity:** 42×10^{-6} ohm-cm (20°C)**Ionization potential (1st):** 6.82 eV**Electron work function ϕ :** 4.33 eV**Oxidation potential:** Ti → Ti²⁺ + 2e = 1.628 V**Chemical valence:** 1, 2, 3, 4**Electrochemical equivalents:** 0.4468 g/amp-hr**Ionic radius:** 0.605 Å (Ti⁴⁺)**Valence electron potential ($-\epsilon$ V):** 95.2**Principal quantum number:** 4**Principal electron shells:** K L M N**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d² 4s²**Valence electrons:** 3d² 4s²**Crystal form:** Hexagonal, close packed**Cross section σ :** 6.1 ± 0.2 barns**Vapor pressure:** 4.90×10^{-1} Pa (at melting point)

W

Tungsten

74

183.85

VIB
51 996
Cr
24
95.94
Mo
42
183.85
W
74
106

Tungstênio

Tungstène

Wolframz

Tungsteno

вольфрам

וּלְפָרָם

錫
タング
スチ
ン

Naturally occurring isotopes: 184, 186, 182, 183, 180**Density:** 19.35 g/cm³ (20°C)**Melting point:** 3410±20°C **Boiling point:** 5660°C**Latent heat of fusion:** 191.7 J/g**Specific heat:** 0.125 J/g°C (25°C)**Coefficient of lineal thermal expansion:** 4.6×10^{-6} cm/cm°C (20°C)**Thermal conductivity:** 1.73 w/cm°C (25°C)**Electrical resistivity:** 5.65×10^{-6} ohm-cm (27°C)**Ionization potential (1st):** 7.98 eV**Electron work function ϕ :** 4.55 eV**Oxidation potential:** W + 3H₂O → WO₃ + 6H⁺ + 6e = 0.09 V**Chemical valence:** 2, 3, 4, 5, 6**Electrochemical equivalents:** 1.1432 g/amp-hr**Ionic radius:** 0.62 Å (W⁶⁺)**Valence electron potential ($-\epsilon$ V):** 140**Principal quantum number:** 6**Principal electron shells:** K L M N O P**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d⁴ 6s²**Valence electrons:** 5d⁴ 6s²**Crystal form:** Alpha—cubic, body centered; beta—cubic, face centered**Cross section σ :** 18.5±0.5 barns**Vapor pressure:** 4.27 Pa (at melting point)

U

Uranium

92

238.029

Actinide Series

232 03807 Th 90	231 0359 Pa 91	238 029 U 92	237 0462 Np 93	244 06423 Pu 94	243 0614 Am 95	243 07038 Cm 96	247 07032 Bk 97	251 07961 Cf 98	254 08805 Es 99
257 09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Urânia

Uranium

Uran

Uranio

уран

אורים

鉆 ウラニウム

Naturally occurring isotopes: 238, 235, 234

Density: 19.04 g/cm³ (25°C)

Melting point: 1132.3 ± 0.8°C **Boiling point:** 3818°C

Latent heat of fusion: 65.08 J/g

Specific heat: 0.1162 J/g°C (25°C)

Coefficient of lineal thermal expansion: 13.4 × 10⁻⁶ cm/cm/°C (25°C)

Thermal conductivity: 0.275 w/cm°C (25°C)

Electrical resistivity: 27 × 10⁻⁶ ohm-cm (25°C)

Ionization potential (1st): 6.05 eV

Electron work function ϕ : 3.63 eV

Oxidation potential: U → U³⁺ + 3e = 1.789 V

Chemical valence: 3, 4, 5, 6

Electrochemical equivalents: 1.4801 g/amp-hr

Ionic radius: 0.52 Å (U⁶⁺)

Valence electron potential (−eV): 170

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶
5d¹⁰ 5f³ 6s² 6p⁶ 6d¹ 7s²

Valence electrons: 5f³ 6d¹ 7s²

Crystal form: Orthorhombic

Half life: 4.51 × 10⁹ years

Cross section σ : 7.595 ± 0.070 barns

Vapor pressure: 1.19 × 10⁻⁶ Pa (at melting point)

V

Vanadium

23

50.9415

	V8
50.9415	V
23	23
92.9064	Nb
41	41
180.9479	Ta
73	73
	105

Vanádio

Vanadium

Vanadium

Vanadio

ванадий

וָנְדִיּוּם

鉻 バナジウム
バナジウム

Naturally occurring isotopes: 51, 50**Density:** 6.11 g/cm³ (18.7°C)**Melting point:** 1890 ± 10°C **Boiling point:** 3380°C**Latent heat of fusion:** 345.2 J/g**Specific heat:** 0.489 J/g/°C (25°C)**Coefficient of linear thermal expansion:** 6.15×10^{-6} cm/cm/°C (25°C)**Thermal conductivity:** 0.307 w/cm/°C (25°C)**Electrical resistivity:** 24.8×10^{-6} ohm-cm (20°C)**Ionization potential (1st):** 6.74 eV**Electron work function φ:** 4.3 eV**Oxidation potential:** $V \rightarrow V^{2+} + 2e = 1.186$ V**Chemical valence:** 2, 3, 4, 5**Electrochemical equivalents:** 0.38013 g/amp-hr**Ionic radius:** 0.59 Å (V^{5+})**Valence electron potential ($-eV$):** 120**Principal quantum number:** 4**Principal electron shells:** K L M N**Electronic configuration:** 1s² 2s² 2p⁶ 3s² 3p⁶ 3d³ 4s²**Valence electrons:** 3d³ 4s²**Crystal form:** Cubic, body centered**Cross section σ:** 5.06 ± 0.06 barns**Vapor pressure:** 3.06 Pa (at melting point)

Xe

Xenon

54

131.30

O
4 00260
He
2
20 179
Ne
10
39 948
Ar
18
83 80
Kr
36
131 30
Xe
54
222 01761
Rn
86

Xenônia

Xénon

Xenon

Xenón

ксенон

xenon

氙 キ
セ
ノ
ン

Naturally occurring isotopes: 132, 129, 131, 134, 136, 130, 128, 124, 126

Density: 5.895×10^{-3} g/cm³ (20°C)

Melting point: -111.9°C **Boiling point:** -107.1 ± 3°C

Latent heat of fusion: 17.5 J/g

Specific heat: 0.15831 J/g°C (25°C)

Thermal conductivity: 0.514 mw/cm°C (0°C at 1 atm)

Ionization potential (1st): 12.130 eV

Chemical valence: 0

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶

Valence electrons: (5s² 5p⁶)

Crystal form: Cubic, face centered

Cross section σ: 24.5 ± 1.0 barns

Yb

Ytterbium

70

173.04

Lanthanide Series

140.12 Ce 58	140.9077 Pr 59	144.24 Nd 60	144.913 Pm 61	150.4 Sm 62	151.96 Eu 63	157.25 Gd 64	158.9254 Tb 65	162.50 Dy 66	164.9304 Ho 67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Itérbio

Ytterbium

Ytterbium

Iterbio

иттербий

יאטרביום

镱 イツ
テル
ビウム

Naturally occurring isotopes: 174, 172, 173, 171, 176, 170, 168

Density: 6.965 g/cm³ (25°C)

Melting point: 819°C **Boiling point:** 1194°C

Latent heat of fusion: 53.23 J/g

Specific heat: 0.155 J/g°C (25°C)

Coefficient of lineal thermal expansion: 29.9×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.349 W/cm/°C (25°C)

Electrical resistivity: 28×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 6.2539 eV

Oxidation potential: Yb → Yb³⁺ + 3e = 2.267 V

Chemical valence: 2, 3

Electrochemical equivalents: 2.1520 g/amp-hr

Ionic radius: 0.858 Å (Yb³⁺)

Valence electron potential (–eV): 50.3

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s²
5p⁶ 6s²

Valence electrons: 4f¹⁴ 6s²

Crystal form: Cubic, face centered

Cross section σ : 37 ± 3 barns

Vapor pressure: 3.95×10^2 Pa (at melting point)

Y

Yttrium

39

88.9059

IIIB
44 95592
Sc
21
88 9059
Y
39
136 9055
La
57
227 02777
Ac
89

Itrio
Yttrium
Yttrium
Itrio
и́ттрий
אִיטרְיוּם

钇 イッ
トリウム

Naturally occurring isotope: 89**Density:** 4.469 g/cm³ (25°C)**Melting point:** 1522°C **Boiling point:** 3338°C**Latent heat of fusion:** 193.1 J/g**Specific heat:** 0.298 J/g/°C (25°C)**Coefficient of lineal thermal expansion:** 10.8×10^{-6} cm/cm/°C (400°C)**Thermal conductivity:** 0.172 W/cm/°C (25°C)**Electrical resistivity:** 57×10^{-6} ohm-cm (25°C)**Ionization potential (1st):** 6.38 eV**Electron work function ϕ :** 3.1 eV**Oxidation potential:** $Y \rightarrow Y^{3+} + 3e = 2.372$ V**Chemical valence:** 3**Electrochemical equivalents:** 1.1057 g/amp-hr**Ionic radius:** 0.900 Å (Y^{3+})**Valence electron potential ($-eV$):** 48.0**Principal quantum number:** 5**Principal electron shells:** K L M N O**Electronic configuration:** $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^1 5s^2$ **Valence electrons:** $4d^1 5s^2$ **Crystal form:** Hexagonal, close packed**Cross section σ :** 1.3 ± 0.1 barns**Vapor pressure:** 5.31 Pa (at melting point)

Zn Zinc

30

65.38

	IIB
65.38	Zn
30	
112.41	Cd
48	
200.59	Hg
80	

Zinco

Zinc

Zink

Zinc

цинк

цинк

鋅 亜鉛

Naturally occurring isotopes: 64, 66, 68, 67, 70

Density: 7.133 g/cm³ (25°C)

Melting point: 419.58°C **Boiling point:** 907°C

Latent heat of fusion: 113.0 J/g

Specific heat: 0.388 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 39.7×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 1.16 w/cm/°C (25°C)

Electrical resistivity: 5.916×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 9.394 eV

Electron work function ϕ : 4.33 eV

Oxidation potential: Zn → Zn²⁺ + 2e = 0.7628 V

Chemical valence: 2

Electrochemical equivalents: 1.220 g/amp-hr

Ionic radius: 0.740 Å (Zn²⁺)

Valence electron potential (−eV): 38.9

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s²

Valence electrons: 4s²

Crystal form: Hexagonal, close packed

Cross section σ : 1.10 ± 0.04 barns

Vapor pressure: 19.2 Pa (at melting point)

Zr Zirconium

40

91.22

47 90
Ti
22
91 22
Zr
40
178 49
Hf
72
104

Zircônio

Zirconium

Zirkonium

Zirconio

цирконий

צירקוניום

鈸 ジルコニウム

Naturally occurring isotopes: 90, 94, 92, 91, 96

Density: 6.506 g/cm³ (20°C)

Melting point: 1852±2°C **Boiling point:** 4377°C

Latent heat of fusion: 251.2 J/g

Specific heat: 0.278 J/g°C (25°C)

Coefficient of lineal thermal expansion: 5.85×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.227 W/cm/°C (27°C)

Electrical resistivity: 40×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 6.84 eV

Electron work function ϕ : 4.05 eV

Oxidation potential: $Zr \rightarrow Zr^{4+} + 4e = 1.529$ V

Chemical valence: 1, 2, 3, 4

Electrochemical equivalents: 0.8509 g/amp-hr

Ionic radius: 0.72 Å (Zr⁴⁺)

Valence electron potential ($-\epsilon V$): 80

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d² 5s²

Valence electrons: 4d² 5s²

Crystal form: Hexagonal, close packed

Cross section σ : 0.182±0.005 barns

Vapor pressure: 1.68×10^{-3} Pa (at melting point)

Element
104

Kurchatovium Rutherfordium

104

261

IVB
47.90
Ti
22
91.22
Zr
40
178.49
Hf
72
104

Naturally occurring isotopes: None

Chemical valence: 4

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$
 $5d^{10} 5f^{14} 6s^2 6p^6 6d^2 7s^2$

Valence electrons: $6d^2 7s^2$

Half life: ~65 seconds

Element
105

Nielsbohrium Hahnium

105

(262)

VB
50 9415
V
23
92 9964
Nb
41
180 9479
Ta
73
105

Naturally occurring isotopes: None

Chemical valence: (5)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Half life: ~40 seconds

Element 106

106

(263)

VIB
51.996
Cr
24
95.94
Mo
42
183.85
W
74
106

Naturally occurring isotopes: None

Chemical valence: (6)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Half life: ~1 second

Element 107

107

(262)

VIIIB
54.9380
Mn
25
96.906
Tc
43
186.2
Re
75
107

Naturally occurring isotopes: None

Chemical valence: (7)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Bibliography

Of the numerous references employed in preparation of the third edition of the "Handbook of the Elements," the following are among the most prominent:

- A. E. Bailey et al., Eds., "Tables of Physical and Chemical Constants," 14th ed., Longman Group Limited, London (1973).
- I. Barin and O. Knacke, "Thermochemical Properties of Inorganic Substances," Springer-Verlag, Berlin (1973).
- G. Charlot et al., "Selected Constants: Oxidation-Reduction Potentials of Inorganic Substances in Aqueous Solution," Butterworths, London (1971).
- J. A. Dean, Ed., "Lange's Handbook of Chemistry," 12th ed., McGraw-Hill Book Company, New York (1978).
- S. Fraga and J. Karwowski, "Handbook of Atomic Data," Elsevier Scientific Publishing Company, Amsterdam (1976).
- "Gmelin Handbuch der Anorganischen Chemie," Springer-Verlag, Berlin (up to and including 1980).
- M. Grayson, Executive Ed., "Kirk-Othmer Encyclopedia of Chemical Technology," 3rd ed., Volumes 1-20 incl., John Wiley & Sons, New York (1978-1982 incl.).
- G. B. Naumov et al., Eds., "Handbook of Thermodynamic Data," U.S.S.R. Academy of Sciences, Leningrad (1971).
- L. Pauling, "The Nature of the Chemical Bond," 3rd ed., Cornell University Press, Ithaca, New York (1960).
- G. V. Samsonov, "Handbook of the Physicochemical Properties of the Elements," Plenum, New York (1968).
- R. C. Weast, Editor-in-Chief, "CRC Handbook of Chemistry and Physics, 1983-1984," 64th ed., CRC Press, Inc., Boca Raton, Fla. (1983).
- E. Ya. Zandberg and N. L. Ionov, "Surface Ionization," Science Publishing House, Moscow (1969).

In addition to the reference texts, several primary journals and U.S. government publications were employed. The most commonly utilized were:

- Acta Chemica Scandinavica
- Acta Crystallographica
- Analytical Chemistry
- Bulletin of the American Physical Society
- Canadian Journal of Chemistry
- Canadian Journal of Physics
- Chemical and Engineering News
- Chemical Physics Letters
- Chemical Reviews
- Chemische Berichte
- Electrochimica Acta

Helvetica Chimica Acta
Inorganic Chemistry
Journal of American Chemical Society
Journal of Applied Physics
Journal of Chemical and Engineering Data
Journal of Chemical Education
Journal of Chemical Physics
Journal of Inorganic and Nuclear Chemistry
Journal of Less-Common Metals
Journal of Physical and Chemical Reference Data
Journal of Physical Chemistry
Journal of Physics and Chemistry of Solids
Journal of Solid State Chemistry
Journal of the Chemical Society
Journal of the Electrochemical Society
Materials Research Bulletin
Nature
Physical Review
Proceedings of the Physical Society
Proceedings of the Royal Society
Progress in Inorganic Chemistry
Pure and Applied Chemistry
Science
Talanta
Transactions of the Faraday Society