Lecture 5: Midterm Review

http://book.imt-decal.org, Ch. 1, 2

Introduction to Mathematical Thinking

October 3rd, 2018

Suraj Rampure

Announcements

- HW5 won't be collected, but you should do it. There are a lot of proof problems on it, but it's not necessarily comprehensive.
 - Solutions coming soon (before the weekend)
 - Might add a few more problems.
 - On Monday, we'll take up some of these problems.
- Midterm is a week from today, in class, starting at 6:40.
 - Some T/F, same M/C, some short answer.
 - You can bring one 2-sided cheat sheet, handwritten.
 - HWs are a good indication of difficulty; we're not out to get you, we really just want to see how well you've learned the material so far (remember, this class is P/NP).
- Week after the midterm: Discussion and lecture swapped (disc Wednesday, lec Monday)

Overview

To put things in context: The course can be thought of as being in two parts.

Part 1

- Set theory
- Types of functions
- Propositional logic
- Proof techniques

Part 2

- Number theory (modular arithmetic)
- Combinatorics (counting techniques, Pascal's triangle)
- Combinatorics with polynomials (Binomial theorem, Vieta's formulas)

sets of numbers

 $\binom{n}{k}$

Set Theory (1.1)

A set is a well-defined collection collection of objects.

Set Operations:

$$ullet A^C = \{x:
eg(x \in A)\}$$

$$\bullet \ A \cup B : \{x : x \in A \lor x \in B\}$$

•
$$A \cap B : \{x : x \in A \land x \in B\}$$

$$\bullet \ A-B:\{x:x\in A,\neg(x\in B)\}$$

$$\bullet \ A\times B:\{(a,b):a\in A,b\in B\}$$

3}
A can be equal to B

A is a subset of B: $A \subseteq B$

A is a proper subset of B: $A \subset B$

De Margan's Laws for Usets (AUB) = A NBC (ANB) = A UB

a subset that isn't equal i.e. $A \neq B$

Functions (1.2)

A function with domain A and codomain B is a subset of $A \times B$ such that there is exactly one ordered pair for each element in A.

$$f(x_1) = f(x_2) \longrightarrow x_1 = x_2$$

- Injections (one-to-one)
 - Horizontal line test
 - Strictly increasing, decreasing
- Surjections (onto) -> Codomaiv=vange
- Bijections (both)

$$f: \{(1,4), (2,5), (3,4)\}$$
 $g: \{(1)4), (1)5\}, (2,5)\}$
 $g: \{(1)4), (1)5\}, (2,5)$
 $f: \{(1,4), (2,5), (3,4)\}$
 $f: \{(1,4), (2,5), (3,4)\}$
 $f: \{(1,4), (2,5), (3,4)\}$

 $A = \{1, 2, 3\}$ f(1) = f(3), f(1

R: 24,53

dense: between any 2 elements in 5, there are infinitely many clements in	S a set is
Number Sets (1.3) $\{1,2,3,\dots\}$	countable if
$ N_0: 0 \rangle = \begin{cases} 1 & 2 \\ -1 & 2 \end{cases} \qquad \begin{cases} 4 \\ -2 & 3 \end{cases} \qquad \begin{cases} 6 \\ -3 & 1 \end{cases} \qquad \begin{cases} 6 \\ -3 & 1 \end{cases} \qquad \begin{cases} 7 \\ 7 & 1 \end{cases} \qquad \end{cases} \qquad \begin{cases} 7 \\ 7 & 1 \end{cases} \qquad \end{cases} \qquad \end{cases} \qquad \begin{cases} 7 \\ 7 & 1 \end{cases} \qquad \end{cases}$	there exists a bije to be tre
$f(n) = \begin{cases} -\frac{1}{2} & \text{if } n \text{ is even} \\ 0, 1, 2, 3, \dots \end{cases}$ Which of these sets are countable? Uncountable?	bijection between S and IN
• What does it mean for an arbitrary set to be countable? • What was the bijection we showed between \mathbb{N}_0 and \mathbb{Z} ? Be	countable = countably
 What was the bijection we showed between 1%0 and \(\tilde{\pi}\)? Be There aren't many questions about this content in the 	

sure to review it

Propositional Logic (1.4)

Logical Operators

Basic

- Conjunction (A) • Disjunction (V) 7 OR
- Negation (¬) → Y No T

Complex

- ullet Implication $P\Rightarrow Q$, and its equivalent form $eg P\lor Q$
- Contrapositive $\neg Q \Rightarrow \neg P$

• Converse $Q \Rightarrow P$ • Exclusive OR $P\oplus Q \to$ only true when exactly 1 of ℓ , G now how to use truth tables.

P-) Q = 1 Q->7P

If and only if

Know how to use truth tables.

Existential Quantifiers

- "for all" (∀)
- "there exists" (∃)

De Morgan's Laws:

$$eg(P \lor Q) \equiv
eg P \land
eg Q$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\neg(\forall x P(x)) \equiv \exists x \neg P(x)$$

$$\neg(\exists x P(x)) \equiv \forall x \neg P(x)$$

What is the negation of
$$\forall x \exists y (P(x,y) \lor Q(y))$$
?

$$\exists x \forall y (\gamma P(x,y) \wedge \gamma Q(y))$$

Also should know how to convert statements in English to statements using propositional logic (many examples in book).

Proof Techniques (2.1, 2.2)

Direct Proof

Proof by Contradiction

Proof by Contraposition

Vacuous Proofs

Proof by Induction

Proof by Cases

Attendance

tinyurl.com/KDisleaving

LA 2019

Rest of today: Walking through examples.

Example 1: Prove that if
$$p$$
 is a prime greater than 3, then $24 \mid p^2 - 1$.

$$p^2 - 1 = (p-1)(p+1)$$

i.e. $p^2 - 1$ is a multiple of 24

$$24 = 2^3 \cdot 3$$

= 8 · 3

8/24 -> 24 = 8c n wholes Example 2: Prove that $3|n^3-n$, for all $n\in \mathbb{N}_0$ using (1) induction and (2) a direct n'an multiple of 3 proof. Induction Assume 3 | K7-K2 Base Case: N= 0 2) Direct for arbitrary K $n^3 - n = 0^3 - 0 = 0$, indeed a multiple $\frac{15}{(k+1)} - (k+1)$ = K3+3k2+3K+1-K-1 0 = 1k= $K^{9}-K+3(K^{2}+K)$

- by induction, the statement holds.

 $3|k^{9}-k-7|k^{3}-k=3c$

 $n^2-n=n\left(n^2-1\right)$ = (n-1)(n)(n+1)

2 consecutive ints, 1 will be multiple of 3 : n³-n 15 multiple of S

Example 3: Suppose A,B are two countable sets. Prove that $A\cup B$ is also countable.

countably infinite AUB: $a_1, b_1, a_2, b_2, a_3, b_3, \dots$ U : 1, 2, 3, 4, 5, 6only care about unique element;
if some element on A = some element on B, ue only list it, the first time

$$N = a_{k-1} a_{k-2} \dots a_2 a_1 a_0$$

Example 4: Prove that n is a multiple of 3 if and only if the sum of the digits of n is a multiple of 3.

$$N = a_3 a_2 a_1 a_0 \quad (\text{digits})$$

$$= 10^3 \cdot a_3 + 10^3 \cdot a_2 + 10^3 \cdot a_1 + 10^3 \cdot a_0 \qquad \text{of } 3$$

$$= (10^{3} - 1) a_3 + (10^{3} - 1) a_1 + (10^{3} - 1) a_1 + (10^{3} - 1) a_0 + (10^{3} - 1) a_0 \qquad \text{of } 3$$

$$= (10^{3} - 1) a_3 + (10^{3} - 1) a_1 + (10^{3} - 1) a_1 + (10^{3} - 1) a_0 \qquad \text{of } 3$$

$$+ (a_3 + a_2 + a_1 + a_0)$$

$$= 999$$

$$\therefore \text{ if } N = 3K, \text{ then } a_2 + a_1 + a_0 = 3j$$

$$\therefore \text{ and if } a_3 + a_2 + a_1 + a_0 = 3l, \text{ then } N = 3m$$