

05 VM - Virtual Memory Aneka Soal Ujian Sistem Operasi Rahmat M. Samik-Ibrahim et.al.

© 2016 - 2018 — Rev: 15 - 20-Mar-2018. Silakan mengubah, memperbanyak, serta mendistribusikan dokumen ini selama tidak menghapus ketentuan ini. URL: http://rms46.vlsm.org/2/200.pdf

1. 2016-1 (McGill Fall 1998)

Asumsikan:

- i. Arsitektur komputer dengan ukuran halaman (page size) 1024 bytes.
- ii. Setiap karakter (char) menempati 1 alamat memori @ 1 byte.
- iii. Struktur data "matrix (baris,kolom)" untuk selanjutnya disebut "matrix".
- iv. Setiap 4 baris (berurutan) "matrix" berada dalam satu halaman (page).
- v. Setiap saat, maksimum ada 1 halaman (page) "matrix" dalam memori.
- vi. Saat awal eksekusi fungsi, tidak ada halaman (page) "matrix" dalam memori.

Lingkari atau beri silang huruf "B" jika betul, dan "S" jika salah.

- ${f B}$ / ${f S}$ Fragmentasi eksternal (external fragmentation) akan terjadi pada sistem berbasis halaman (paging systems).
- **B** / **S** Bingkai (frame) pada memori virtual (VM) dipetakan ke halaman (page) pada memori fisik.
- B / S Pengeksekusian program berbasis demand paging selalu menghasilkan page fault.
- B / S Sebuah fungsi, mungkin saja menempati lebih dari satu halaman (page).

```
011 void isiMatrix1 (){
012
       char matrix[256][256];
013
       int ii, jj;
       for (ii=0; ii<8; ii++) {
014
015
          for (jj=0; jj<256; jj++) {
016
             matrix[ii][jj] = 'x';
          }
017
       }
018
019 }
```

- B / S Setiap eksekusi baris 016, selalu akan terjadi "page fault" pada matrix.
- ${f B}$ / ${f S}$ Pada seluruh iterasi loop luar baris 014-018, akan terjadi 8 kali "page fault" pada matrix.
- ${f B}$ / ${f S}$ Pada saat mengeksekusi fungsi isiMatrix1(), terdapat kemungkinan terjadi TOTAL¹ lebih dari 3 kali "page fault".

```
021 void isiMatrix2 (){
022
       char matrix[256][256];
023
       int ii, jj;
024
       for (jj=0; jj<256; jj++) {
025
          for (ii=0; ii<8; ii++) {
             matrix[ii][jj] = 'x';
026
027
          }
       }
028
029 }
```

- B / S Terdapat kemungkinan terjadi TOTAL 2 kali "page fault" saat mengeksekusi baris 026.
- B / S Pada setiap iterasi loop dalam baris 025-027, terjadi 2 kali "page fault" pada matrix.
- B / S Pada seluruh iterasi loop luar baris 024-028, terjadi 512 kali "page fault" pada matrix.

2. **2016-2** (Waterloo **2012**)

Page Table.

Consider this following "structure addrspace" of a 32-bit processor.

```
struct addrspace {
  vaddr_t as_vbase1
                        = 0x00100000; /* text
                                               segment: virtual base addr */
  paddr_t as_pbase1
                        = 0x10000000; /* text
                                               segment: physical base addr */
                                               segment: number
  size_t as_npages1
                        = 0x20:
                                      /* text
                                                                  of pages */
  vaddr_t as_vbase2
                        = 0x00200000; /* data segment: virtual base addr */
  paddr_t as_pbase2
                        = 0x20000000; /* data segment: physical base addr */
  size_t as_npages2
                        = 0x20;
                                      /* data segment: number
                                                                  of pages */
  vaddr_t as_vbase3
                        = 0x80000000; /* stack segment: virtual base addr */
  paddr_t as_pbase3
                        = 0x80000000; /* stack segment: physical base addr */
                                      /* stack segment: number
  size_t as_npages3
                        = 0x10;
                                                                  of pages */
          page_size
                        = 0x1000;
                                      /* virtual page size is 0x1000 bytes */
   int
};
```

When possible, translate the provided address.

Possible	Virtual Address	Physical Address	Segment
YES	0x 0010 0000	$0x1000\ 0000$	text
NO	0 x 0 0 3 0 0 0 0 0	_	_
	$0\mathrm{x}0010\;\mathrm{FEDC}$		
	0x0011 0000		
	0x 7 FFF FFFF		
		0 x 2000 1234	
		0x 8000 FFFF	

3. **2017-1**

(a)	Please	write down	your	student	ID	(NPM):	
(4)	1 ICCOCC	WIIIC GOWI	. your	Buddelle	11	(111 111).	

			 	 	 	,

(b) Please write down the last 2 digits of your student ID (NPM):

(c) Please convert the 2 decimal digits above into an unsigned 32-bit hexdecimal number.

Let's call that number INTEGER32: (HEX) |____|___| |____| |____| |____|

(d) Please add **INTEGER32** to 0080 0000 (HEX).

Let's call it Virtual Address $\mathbf{ADDRESS32}$: (\mathbf{HEX}) |____|_| |____| |____| |____| |____| |____| |____| |____| |____| |____| |____| |____| |__| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |__| |___| |___| |___| |__| |___| |__| |___| |_| |__| |__| |__| |__| |__| |__| |__| |__| |__| |__| |__| |__| |_| |__| |__| |__| |__| |__| |__| |__| |__| |__| |__| |__| |__| |_| |_

- (e) ADDRESS32 with a 4 kbyte page size will have page offset space of _____ bits,
- (f) And the page number space of ADDRESS32 is _____ bits.

(g) T	herefore, th	ne page number	of $ADDRESS32$ is ((HEX)
-------	--------------	----------------	---------------------	-------

	((h)	And, t	the r	oage	offset	of	ADDRESS32 is (HEX)
--	---	-----	--------	-------	------	--------	----	----------------	-----	---

(i) The Page Table Entry (PTE) starts at Physical Address (PA) 001 000 (HEX). Each PTE consists of 4 hexadecimal digits (16 bits or 2 bytes) which is stored in BIG-ENDIAN form.

PA (HEX)	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
001 000	71	00	71	03	71	05	71	07	71	09	71	0B	71	0D	71	0F
001 010	71	10	71	13	71	15	71	17	71	19	71	1B	71	1D	71	1F
002 000	71	20	71	23	71	25	71	27	71	29	71	2B	71	2D	71	2F
002 010	71	30	71	33	71	35	71	37	71	39	71	3B	71	3D	71	3F
003 000	71	40	71	43	71	45	71	47	71	49	71	4B	71	4D	71	4F
003 010	71	41	71	53	71	55	71	57	71	59	71	5B	71	5D	71	5D

The PTE of page number ADDRESS32 is: (HEX) _____.

- (j) The first digit are the flags. The PTE is valid when the flags digit is not zero (0). The flags of the PTE above is (**HEX**) _____ which means the PTE is (VALID / NOT VALID).
- (k) If the PTE is VALID, the next three digits are the Physical Frame Number: (HEX) ______.
- (l) Thus, the physical address of ADDRESS32 is: (HEX) _____.
- (m) Please put INTEGER32 into the physical address of ADDRESS32 (BIG-ENDIAN form).

-PA- (HEX)	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

4. **2017-2**

(a) Please	write	down	your	student	ID ((NPM)):
----	----------	-------	------	------	---------	------	-------	----

		1	ı	1		l .	п
			ı	1			П
	 			l	 		 П
		l .	ı	1	l .		ı

(b) Please write down the last 2 digits of your student ID (NPM):

- 1	1	- 1
	 -	 -

(c) Please add those 2 decimal digits, convert it to hexadecimal, and then convert it to a 32-bit unsigned hexadecimal number. Let's call that number INTEGER32:

$$|-----|_{10} + |-----|_{10} = |-----|_{16} = |-----|_{-----} |$$

(d) Please add INTEGER32 to 0080 0000 (HEX). Let's call the 32-bit Virtual Address as ADDRESS32:

	1	l	1	1	1	1	l	i
								 ı

(e) If the page size of **ADDRESS32** is 4 kbytes, the space of the offset will be _____ bits.

(f) Therefore, the page number space of **ADDRESS32** will be _____ bits.

(g)	Therefore, the page	e num	ıber o	f A E	DR	ESS3	2 is ((HE)	X)			;						
(h)	And, the page offse	et of .	ADD	RES	S32	is (H	$\mathbf{EX})$				_•							
(i)	The Physical Addr (HEX). Each PTE form.	,	, ,	_				_				,						
	PA (HEX)	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	I	7
	0001 0000 000	00	02	00	00	00	02	00	01	00	02	00	02	00	02	00	0	3
	0001 0000 010	00	02	00	04	00	02	00	05	00	02	00	06	00	02	00	0	7
									•	•						'		
	0001 0001 000	00	02	04	00	00	02	04	01	00	02	04	02	00	02	04	0	3
	0001 0001 010	00	02	04	04	00	02	04	05	00	02	04	06	00	02	04	0	7
	0001 0002 000	00	02	08	00	00	02	08	01	00	02	08	02	00			0	3
	0001 0002 010	00	02	08	04	00	02	08	05	00	02	08	06	00	02	08	0	$\frac{7}{2}$
	The PTE of page n	umb	er AI	DDR	ESS	32 is:												
										-						-		
(j)	The PTE is valid if	f the	PTE	value	is no	ot zero	0).	The	refore	, PTF	E is (VAL	ID /	NO'	Γ V A	LID).	
(k)	x) If the PTE is VALID, the Physical Frame Number is:																	
																-		
(1)	(l) Thus, the 44-bit PA of ADDRESS32 is:																	
								-			_		_					
(m)	Please put INTE G is for one byte (2 h					t PA	of A	DDI	RESS	32 (B	IG-E	NDI.	AN fo	orm).	One	addre	ss (box
	Physical Addr	ess (HEX	(2) 1	2	3	4	5	$\overline{3}$ $\overline{7}$	8	9	A	В	\mathbf{C}	D	\mathbf{E}	F
							1 1				1	1			I_			