

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem de evaluare

Pagina 1 din 6

Subjectul 1

Barem de notare	Parţial	Total
Subiectul 1		10
A		4,00
a) Din grafic: $ctg \beta = \frac{\Delta v}{\Delta t} = \frac{ v_0 }{t_1} = a_u $	0,25	
$tg\gamma = \frac{\Delta v}{\Delta t} = \frac{ v }{t_2 - t_1} = a_c $	0,25	
$ a_u = g(\sin\alpha + \mu\cos\alpha)$	0,25	1,50
$ a_c = g(\sin\alpha - \mu\cos\alpha)$	0,25	1,50
$\sin \alpha = \frac{ a_u + a_c }{2g} = \frac{\operatorname{ctg}\beta + \operatorname{tg}\gamma}{2g} = \frac{1}{2}, \ \alpha = 30^{\circ}$	0,25	
$\mu = \frac{1}{2\sqrt{3}} \cong 0,289$	0,25	
b) $t_1 = \frac{v_0}{ctg\beta} = 2s$	0,25	
Distanțele parcurse la urcare și coborâre pe planul înclinat fiind egale înseamnă că și ariile celor 2 triunghiuri din figură sunt egale: $\frac{v_0t_1}{2} = \frac{v\Delta t_2}{2}$	0,25	
Dar $tg\gamma = \frac{ v }{t_2 - t_1} = a_c \text{ deci}$ $t_2 = t_1 + \sqrt{\frac{v_0 t_1}{tg\gamma}} \implies t_2 = 2(1 + \sqrt{3})s$	0,25	
$v = \Delta t_2 \cdot tg \gamma = 5\sqrt{3}m / s$	0,25	
$tg\delta = \frac{ v }{t_3 - t_2} = a_3 \text{dar } a_3 = -\mu g = \frac{5}{\sqrt{3}} m \cdot s^{-2}$		2,00
Graficul vitezei va fi:		
v_0	1,00	
$\Delta t_3 = 3s$, $t = t_1 + \Delta t_2 + \Delta t_3 = (5 + 2\sqrt{3})s$		

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem de evaluare

Pagina 2 din 6

	Pag	ina 2 din 6
c)Calculând aria suprafeței cuprinsă între graficul vitezei și axa Ot :		
$d_{total} = v_0 t_1 + \frac{v \Delta t_3}{2} = 30 + 7, 5\sqrt{3} \approx 43m$	0,50	0,50
В		5,00
 a) Se acordă punctaj integral pentru următoarele afirmații: Rezultanta forțelor ce acționează asupra corpului are următoarele caracteristici: Aceeași direcție cu viteza inițială a corpului dar sens contrar; Constantă în modul. 	0,50	1,00
Sau		
Corpul e aruncat pe verticală, de jos în sus, de la suprafața unei mese orizontale;	0.50	
Viteza corpului scade cu 20% din viteza inițială la fiecare întâlnire cu suprafața	0,50	
$v_4 = 0.8^4 v_0 \Rightarrow v_4 = 4,096 m/s$	0,25	
0.8 v ₀ 0.64 v ₀ 0.512 v ₀ 0.4096 v ₀ -0.512 v ₀ -0.512 v ₀ -0.8 v ₀ -0.8 v ₀	0,75	1,00
$a = \frac{\Delta v}{\Delta t} = 10m/s^2$	0,50	
$t = 2\frac{v_0}{a} \left(1 + 0.8 + 0.8^2 + 0.8^3 + \dots + 0.8^{n-1} \right) = 2\frac{v_0}{a} \frac{1 - 0.8^n}{1 - 0.8}$	0,50	
$D = 2\frac{v_0^2}{2a} \left(1 + 0.8^2 + 0.8^4 + 0.8^6 + \dots + 0.8^{2(n-1)} \right) = \frac{v_0^2}{a} \frac{1 - 0.8^{2n}}{1 - 0.8^2}$	0,50	3,00
Pentru n foarte mare $(n \to \infty) \Rightarrow 0, 8^n \to 0 \Rightarrow t_{total} = 2 \frac{v_0}{a} \frac{1}{1 - 0, 8} = 10s$	0,75	
$D_{total} = \frac{v_0^2}{a} \frac{1}{1 - 0.64} = 27.8 m$	0,75	
Oficiu		1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem de evaluare

Pagina 3 din 6

Problema 2

Barem de notare	Parţial	Total
Problema 2		10
a) Sistemul începe să se miște în momentul în care F ajunge egală cu $G_1=m_1g$: $t_0=\frac{m_1g}{k}\Longrightarrow t_0=0,5~{\rm s}$	0,50	
Pe durata mişcării împreună:		
$\begin{cases} (m_1 + m_2 + m_3)a = F - m_1 g \\ (m_1 + m_2)a = F_f - m_1 g \\ F_f \le \mu_s m_2 g \end{cases}$	1,50	3,00
Rezultă: $t \leq \frac{g}{k} \left[m_1 + \left(1 + \frac{m_3}{m_1 + m_2} \right) \left(\mu_s m_2 - m_1 \right) \right]$	0,50	
Respectiv $t \le 2.5 \text{ s}$	0,25	
Corpurile se mișcă împreună între momentele $t_0=0,5$ s și $t_1=2,5$ s. Rezultă: $\Delta t_1=2$ s	0,25	
b) Dependența accelerației de timp între momentele $t_0 = 0.5 \mathrm{s}$ și $t_1 = 2.5 \mathrm{s}$ este: $a = \frac{kt - m_1 g}{m_1 + m_2 + m_3}$	0,25	
adică: $a = t - 0,5$ (unități SI)	0,50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,75	3,00
Variația vitezei corpurilor în acest interval de timp este egală cu aria hașurată.	0,50	1
Rezultă: $\mathbf{v}_1 = \frac{1}{2} \Delta t_1 \cdot a(t_1)$	0,75	
adică: $v_1 = 2 \frac{m}{s}$	0,25	

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem de evaluare

Pagina 4 din 6

Barem de notare	Parţial	Total
c) După desprindere:	_	
$\begin{cases} a_{12} = \frac{\mu_c m_2 - m_1}{m_1 + m_2} g \\ a_3 = \frac{kt - \mu_c m_2 g}{m_3} \end{cases}$	1,00	
adică (unități SI):		=
$\begin{cases} a_{12} = 0 \\ a_3 = \frac{4}{3}t - \frac{2}{3} \end{cases}$	0,50	
Viteza scândurii față de m_2 se datorează doar accelerației scândurii. Aceasta este egală cu aria	0,50	
haşurată în figura alăturată.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,50	3,00
Rezultă: $\mathbf{v}_2' = \frac{1}{2} \Delta t_2 \cdot \left(a_3 \left(t_1 \right) + a \left(t_2 \right) \right)$	0,25	
adică: $v_2' = 5,5 \frac{m}{s}$	0,25	
Oficiu		1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem de evaluare

Pagina 5 din 6

Problema 3

Barem de notare	Parțial	Total
Problema 3		10
a) Pentru a vedea imaginea discului întreagă, ochiul trebuie așezat la distanța minimă conform figurii:	1,00	
$\tan \varphi = \frac{r_0}{z} = \frac{r_2}{z + x_2}; z = f \frac{2x_1}{2x_1 + f} = -f \frac{2d}{f - 2d}$	0,50	
Discuție:		
 a) Pentru d ≤ f/2, z < 0, oriunde ar fi așezat ochiul pe axul optic principal, imaginea discului este completă. Pentru ca imaginea să fie și clară ochiul trebuie așezat astfel încât distanța imagine – ochi să fie mai mare sau cel puțin egală cu distanța minimă a vederii distincte. b) Pentru f/2 < d < f, există un z_{min} > 0. Pentru ca imaginea discului să fie văzută întreagă, ochiul ar putea fi așezat în intervalul (0, z_{min}). Pentru ca imaginea discului să fie și clară este necesar ca distanța imagine – ochi să fie mai mare sau cel puțin egală cu distanța minimă a vederii distincte: z − x₂ ≥ δ. Cu valorile din problemă, condiția este îndeplinită pentru orice x₁ din intervalul analizat. (Se poate verifica din z^{20x1}/_{2x1+10} – z^{10x1}/_{10+x1} ≥ 20) 	1,00	2,50
b) Luneta astronomică este un sistem afocal. Ca urmare, lungimea lunetei trebuie să îndeplinească condiția $L_0 \ge f + kf = (1 + k)f = 110$ cm.	1,00	1,00
c) În figura alăturată a fost reprezentată una dintre razele de lumină care trece prin lunetă, utilizată la construcția imaginii obiectului. Din figură rezultă imediat că:	0,50	1,50
$\beta = -\frac{f_2}{f_1} = -\frac{1}{k} = -\frac{1}{10}$ Obs. Se pot calcula măririle transversale β_1 și respectiv β_2 ; apoi $\beta = \beta_1 \cdot \beta_2$.	0,50	
$G_{\infty} = \frac{\tan \alpha_2}{\tan \alpha_1} = \frac{f_{ob}}{f_{oc}} = k \times 10 \times 10$		
${f d}$) Față de lentila ocular, imaginea se formează la distanța δ față de lentilă, considerând că ochiul este lipit de lentilă.	0,50	1,00
$G = \frac{\tan \alpha_2}{\tan \alpha_1}, \tan \alpha_1 = \frac{y_1}{-x_1}, \tan \alpha_2 = \frac{y_2}{\delta}, \beta_1 = \frac{kf}{x_1 + kf} = -\frac{1}{99}$	0,50	

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem de evaluare

Pagina 6 din 6

$\beta_2 = 1 - \frac{-\delta}{f} = 3; G = \frac{\beta_1 \beta_2 x_1}{\delta} = \frac{500}{33} = 15,15$ e) Distanța dintre imaginea liliacului și liliac este $D = x_{2,2} - x_1 + (1+k)f$. $\Delta D = \Delta (x_{2,2} - x_1)$ $x_{2,1} = \frac{x_1 k f}{x_1 + k f}, x_{1,2} = x_{2,1} - f(1+k) \Rightarrow 1,00$ $\Rightarrow \frac{\Delta D(x_1)}{\Delta t} = \left(\frac{1}{k^2} - 1\right) \frac{\Delta x_1}{\Delta t}; v_{rel} = \left(\frac{1}{k^2} - 1\right) v_0$	1,50
$\Delta D = \Delta (x_{2,2} - x_1)$ $x_{2,1} = \frac{x_1 k f}{x_1 + k f}, x_{1,2} = x_{2,1} - f(1+k) \implies 1,00$	1,50
$\Delta D = \Delta (x_{2,2} - x_1)$ $x_{2,1} = \frac{x_1 k f}{x_1 + k f}, x_{1,2} = x_{2,1} - f(1+k) \implies 1,00$	1,50
	1,50
$\Rightarrow \frac{\Delta D(x_1)}{\Delta t} = \left(\frac{1}{k^2} - 1\right) \frac{\Delta x_1}{\Delta t}; v_{rel} = \left(\frac{1}{k^2} - 1\right) v_0$	1,50
Discuție:	
a) $k < 1 \Rightarrow v_{rel} > 0$, imaginea se îndepărtează de obiect; b) $k = 1 \Rightarrow v_{rel} = 0$, imaginea este în repaus față de obiect;	
c) $k>1 \Rightarrow v_{rel}<0$, imaginea se apropie de obiect.	
f) Turnând lichid între cele două lentile, distanțele focale ale acestora se modifică (focarele nu mai sunt simetrice față de lentilă!). Pentru determinarea noilor distanțe focale utilizăm formula punctelor conjugate. Pentru prima lentilă: $ \begin{cases} \frac{n}{x'_2} - \frac{1}{x_1} = \frac{n-1}{R} \\ \frac{n_0}{x_2} - \frac{n}{x'_2} = \frac{n_0 - n}{R} \end{cases} $ 0,50	
Cum	
$\frac{1}{f} = (n-1)\frac{2}{R}, \frac{1}{f_{im1}} = \frac{1}{f_1}\frac{2n - n_0 - 1}{2n_0(n-1)}$ 0,50	1,50
Asemănător pentru a doua lentilă	
$\frac{1}{f_{ob2}} = \frac{1}{f_2} \frac{2n - n_0 - 1}{2n_0(n - 1)}$ 0,25	
Tubul trebuie să aibă lungimea minimă	
$L = f_{1im} + f_{2ob} = L_0 \frac{2n_0(n-1)}{2n - n_0 - 1}$ 0,25	
Oficiu	1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.