Comparing RNNs to Transformer

RNNs

- (+) LSTMs work reasonably well for long sequences.
- (-) Expects an ordered sequences of inputs
- (-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformer:

- (+) Good at long sequences. Each attention calculation looks at all inputs.
- (+) Can operate over unordered sets or ordered sequences with positional encodings.
- (+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel.
- (-) Requires a lot of memory: N x M alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Llion Jones*

Google Research

llion@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research

usz@google.com

Łukasz Kaiser* Google Brain

lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Aidan N. Gomez* †

University of Toronto

aidan@cs.toronto.edu

"ImageNet Moment for Natural Language Processing"

Pretraining:

Download a lot of text from the internet

Train a giant Transformer model for language modeling

<u>Finetuning:</u>

Fine-tune the Transformer on your own NLP task

On the Opportunities and Risks of Foundation Models

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Christopher D. Manning Suvir Mirchandani Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan Wu Jiajun Wu Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou Percy Liang*1

Center for Research on Foundation Models (CRFM)
Stanford Institute for Human-Centered Artificial Intelligence (HAI)
Stanford University

Image Captioning using Transformers

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Image Captioning using Transformers

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Encoder: $c = T_w(z)$ where z is spatial CNN features $T_w(.)$ is the transformer encoder

Image Captioning using Transformers

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = T_D(y_{0:t-1}, c)$

where $T_{D}(.)$ is the transformer decoder

Made up of N encoder blocks.

In vaswani et al. N = 6, D_a = 512

Let's dive into one encoder block

Add positional encoding

Attention attends over all the vectors

Add positional encoding

Residual connection

Attention attends over all the vectors

Add positional encoding

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

86

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

Residual connection

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

Transformer Encoder Block:

Inputs: Set of vectors x
Outputs: Set of vectors y

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

Made up of N decoder blocks.

In vaswani et al. N = 6, D_0 = 512

Image Captioning using transformers

No recurrence at all

Image Captioning using transformers

Perhaps we don't need convolutions at all?

Image Captioning using ONLY transformers

- Transformers from pixels to language

Summary

- Adding **attention** to RNNs allows them to "attend" to different parts of the input at every time step
- The **general attention layer** is a new type of layer that can be used to design new neural network architectures
- Transformers are a type of layer that uses self-attention and layer norm.
 - It is highly scalable and highly parallelizable
 - Faster training, larger models, better performance across vision and language tasks
 - They are quickly replacing RNNs, LSTMs, and may(?) even replace convolutions.