Regelungstechnik Aufgabe 10

David Weber

May 14, 2024

1.1

$$G_p(j\omega) = -\frac{1}{\omega^2}$$

Figure 1: Ortskurve von $G_p(j\omega)$

1.2

Nyquist Kriterium:

$$\Delta^{\infty}_{w=0}\angle(1+L(j\omega))=\pi n^{o}_{r}+\frac{\pi}{2}n^{o}_{a}$$

Mit $n_r^o=0$ und $n_a^o=2$ ergibt sich für die rechte Seite das Ergbenis π Die Ortskurve geht durch -1, daraus folgt keine stetige Winkeländerung und ist somit instabil. Ein P- oder PI-Regler kann die Phase nur absenken und kann somit nicht stabil werden.

1.3

Durch das Lead-Glied geht die Ortskurve nicht mehr durch -1, sondern verläuft unter -1. Somit ergibt sich eine Winkeländerung von π und sind somit stabil.

1.4

$$T_v = \frac{1}{\omega_c} tan(60^\circ) = \sqrt{3}s = 1.732s$$

$$L(s) = \frac{K_p(\frac{T_v}{K_p}s + 1)}{s^2}$$

Figure 2: Bode Diagramm von L(s) mit $K_p=1$

Der Phasenrand ist 72.4°, muss also um 12,4° abgesenkt werden.

Figure 3: Bode Diagramm von L(s) mit $K_p=2\,$

Mit $K_p=2$ ergibt sich ein Phasenrand von 60°.

Figure 4: Bode Diagramm von L(s) mit $K_p=0.5$ und $T_s=0.866$

Figure 5: Pol und Nullstellen

Figure 6: Sprungantwort von T(s)

2.1

$$M_p = \Delta h + 1 = 1.1$$

$$M_m = 1 + 12,517(M_p - 1)^6, 9 + 4,634(M_p - 1)^1,865 = 1,0632$$

$$M_m = -\frac{\pi}{\ln(\Delta h)} - 0.5 \frac{\ln(\Delta h)}{\pi} = 1,0487$$

$$\omega_b \approx 2.3 \frac{1}{t_r} = 4.6$$

2.2

 ${\rm Oder}:$

$$\omega_c \approx \frac{\omega_b}{1.55} = 2,977$$

$$\varphi_r \approx 57,8^{\circ}$$

2.3

Der Regler benötigt einen I-Anteil um einen endlichen Geschwindigkeitsfehler zu haben.

$$L(s) = \frac{0,5}{s(s+1)(\frac{s}{2}+1)(\frac{s}{10}+1)}$$

Figure 7: Bode Diagramm von L(s)

Phasenrand muss um 6,9° erhöht werden, die Cut-Frequenz um 2,532. Es wird ein $PID-T_1$ -Glied verwendet. Die beiden Nullstellen werden so gewählt, das sich Pollstellen der Strecke kürzen. Mit anpassung von K und T_1 kann nun das gewünschte Verhalten eingestellt werden. Daraus ergibt sich die Übertragungsfunktion des Regles:

$$\frac{6,47(s+1)(\frac{s}{2}+1)}{s(\frac{s}{10.5}+1)}$$

Figure 8: Bode Diagramm von L(s) mit Regler

Figure 9: Sprungantwort von T(s)

Figure 10: Pol- und Nullstellen von L(s)