Bootcamp de Algoritmos y Estructuras de Datos (Parte I)

Código Facilito

Descripción del bootcamp

Este bootcamp introduce al estudiante a algoritmos y estructuras de datos de nivel **intermedio-avanzado**. A través de mini proyectos; que se desarrollaran en cada clase. Donde el estudiante podrá combinar distintos tipos de algoritmos y estructuras de datos, esto para primero desarrollar la intuición a la hora de escoger una estrategia algorítmica y luego saber cómo aplicarlos.

El bootcamp buscar formar estudiantes con la comprensión de qué los algoritmos no son sólo piezas de software que nos ayudan a desarrollar la lógica, sino también tecnologías que se pueden transformar en productos. Esto está en sintonía con la época en qué vivimos, donde muchas startups, sus productos son, principalmente, algoritmos.

Líder técnico: Camilo Chacón Sartori **Fecha inicio:** 30 de noviembre del 2024

Objetivos

General:

 Demostrar con la comprensión de qué los algoritmos no son sólo piezas de software que nos ayudan a desarrollar la lógica, sino también tecnologías que se pueden transformar en productos.

Específicos:

- Aprender distintas técnicas avanzadas de algoritmos:
 - Exactos (programación dinámica y dividir para conquistar).
 - Aproximación (greedy y metaheurísticas).

- Evolutivos (algoritmos genéticos)
- o Probabilísticos (Monte Carlo).
- Transmisión [streaming] (algoritmos online).
- Aprender a usar las estructura de datos sofisticadas:
 - Puramente funcionales.
 - Para consultar rangos.
 - Para optimizar memoria.
 - Manipulación de cadena de texto.
- Conocer algunos algoritmos que corresponde de la computación cuántica, como el de Deutsch-Jozsa y el de Shor.

Perfil de ingreso

Tener conocimientos de algoritmos que las siguientes estructuras de datos: arreglos, listas, tabla hash, árboles y grafos; y que tengas la capacidad de implementarlas en algún lenguaje de programación como puede ser: C, Python, Haskell. Es decir: haber cursado algún curso de algoritmos y estructuras de datos con anterioridad.

Perfil de egresado

Al completar el bootcamp será capaz de realizar las siguientes actividades:

- 1. Entender la complejidad del concepto de algoritmo, y cómo este evoluciona en el tiempo.
- 2. Cuáles son los pro y contra de cada algoritmo y estructura de datos.
- Comprender qué algoritmos y estructura de datos son más conveniente para desarrollo de un producto.

Temario del Bootcamp de Algoritmos y Estructuras de Datos

IMPORTANTE: Tanto las tecnologías utilizadas como el caso práctico definido en cada clase son propuestas tentativas. Podrían cambiar según el parecer del profesor que dicte la clase.

I. Fundamentos y Técnicas Avanzadas

- 1. Introducción y repaso de conceptos básicos
 - Complejidad algorítmica.
 - Estructuras de datos fundamentales.
 - Caso práctico: Implementación de un sistema de gestión de tareas con análisis de complejidad.
 - **Tecnologías utilizadas:** C++ y Python.

2. Programación Dinámica

- Principios y aplicaciones.
- Problemas clásicos (p. ej., mochila, subsecuencia común más larga).
- Caso práctico: Optimización de rutas de entrega para una empresa de logística.
- **Tecnologías utilizadas:** C++ y Python.
- 3. Dividir para Conquistar
 - Estrategia y ejemplos.
 - Implementación de algoritmos (p. ej., Merge Sort, Quick Sort).
 - Caso práctico: Desarrollo de un sistema de búsqueda eficiente para grandes conjuntos de datos.
 - **Tecnologías utilizadas:** C++ y Python.
- 4. Optimización con Algoritmos de Aproximación (Algoritmos Greedy y Metaheurísticas)
 - Principios y limitaciones.
 - Algoritmos de búsqueda local y global.
 - Caso práctico: Optimización de la planificación de horarios en una institución educativa.
 - Tecnologías utilizadas: C++, Python y Julia.

II. Algoritmos Avanzados

- 5. Algoritmos Evolutivos
 - Introducción a los algoritmos genéticos.
 - Implementación y casos de uso.
 - Caso práctico: Optimización del diseño de redes de transporte urbano.
 - Tecnologías utilizadas: Python y Julia.
- 6. Algoritmos Probabilísticos
 - Métodos de Monte Carlo.
 - Algoritmos de Las Vegas.
 - Caso práctico: Simulación de riesgos financieros para una empresa de inversiones.
 - Tecnologías utilizadas: Julia.

7. Algoritmos Distribuidos

- Algoritmos de consenso (Paxos).
- Algoritmos para computación paralela (MapReduce, computación distribuida en la nube).
- Caso práctico: Implementación de un sistema distribuido para análisis de grandes datos en tiempo real.
- Tecnologías utilizadas: C++ y Erlang.

8. Algoritmos de Transmisión (Streaming)

- Procesamiento de datos en tiempo real.
- Sketching algorithms.
- Caso práctico: Desarrollo de un sistema de monitoreo de tráfico de red en tiempo real.
- Tecnologías utilizadas: C++ y Erlang.

III. Estructuras de Datos Avanzadas

9. Estructuras de Datos Puramente Funcionales

- Listas enlazadas persistentes.
- Árboles balanceados funcionales.
- Caso práctico: Implementación de un sistema de control de versiones para documentos colaborativos.
- Tecnologías utilizadas: Racket, Haskell y OCaml.

10. Estructuras para Consultas de Rango

- Árboles de segmentos.
- Árboles de Fenwick (Árbol Binario Indexado).
- Caso práctico: Desarrollo de un sistema de análisis de datos financieros en tiempo real.
- **Tecnologías utilizadas:** C++ y Python.

11. Estructuras para Optimización de Memoria

- Tries y árboles de sufijos.
- Filtros de Bloom.
- Caso práctico: Creación de un motor de búsqueda eficiente para un diccionario online.
- **Tecnologías utilizadas:** C++ y Python.

12. Estructuras para Manejo de Cadenas de Texto

- Algoritmos de búsqueda de patrones.
- Árboles de sufijos y arreglos de sufijos.
- Caso práctico: Implementación de un sistema de detección de plagio para una plataforma educativa.
- **Tecnologías utilizadas:** C++ y Python.

IV. Computación Cuántica

13. Introducción a la Computación Cuántica

- Conceptos básicos de computación cuántica.
- Algoritmos de Deutsch-Jozsa y Shor.
- Caso práctico: Simulación de un algoritmo cuántico simple y comparación con su contraparte clásica.
- Tecnologías utilizadas: Qiskit (Python).

V. Aplicaciones y Tendencias Futuras

- 14. Tendencias Futuras en Algoritmos y Estructuras de Datos.
 - Nuevas direcciones en investigación.
 - Impacto de la IA y el aprendizaje automático en el diseño de algoritmos.
 - Responsabilidad y ética.
 - Caso práctico: Diseño de un sistema que integre algoritmos clásicos con técnicas de IA generativa.

15. Proyecto Final

- Desarrollo de un proyecto que integre múltiples conceptos del bootcamp.
- Presentación y evaluación de proyectos.
- Discusión sobre la aplicación práctica y comercialización de los proyectos.
- Caso práctico: Los estudiantes trabajarán en grupos para desarrollar una solución algorítmica a un problema del mundo real, desde la conceptualización hasta la implementación y presentación del prototipo.

Otros

En algunas clases se usará Large Language Models (LLM) para entender cómo nos pueden ayudar en la etapa de diseño de nuestros algoritmos.

Referencias

- General:
 - o Algorithms: A Quest for Absolute Definitions, de Andreas Blass y Yuri Gurevich.
 - o Introduction to Algorithms, 4th edition.
 - o Essential Algorithms, de Rod Stephens, 2nd edition.

- o Introduction to Recursive Programming, de Manuel Rubio-Sanchez.
- Estructuras de datos avanzadas:
 - o Advanced Data Structures, de Peter Brass.
 - o Purely Functional Data Structures, de Chris Okasaki.
- Algoritmos de aproximación:
 - *Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison*, de Christian Blum y Andrea Roli.
- Algoritmos distribuidos:
 - o Distributed Systems 4th edition, de Maarten van Steen y Andrew S. Tanenbaum.
- Algoritmos cuánticos:
 - O Quantum Computer Science: An Introduction, de N. David Mermin.