TEMA 6

Espacios Vectoriales.

Ejercicio 1. Sean $v_1 = (1,2,1)$, $v_2 = (1,0,1)$, $v_3 = (2,0,1)$ y $v_4 = (1,0,2)$ cuatro vectores de \mathbb{R}^3 . Comprueba que son linealmente dependientes, y di cuáles de ellos son combinación lineal del resto.

Ejercicio 2. Estudia si los siguientes conjuntos de vectores son linealmente independientes o linealmente dependientes: En $M_2(\mathbb{R})$:

$$1. \ \left\{ \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \right\},$$

$$2. \ \left\{ \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{cc} 2 & 3 \\ 1 & 2 \end{array}\right) \right\}.$$

En $\mathbb{R}_2[x]$ (polinomios con coeficientes reales de grado menor o igual que 2):

1.
$$\{x + x^2, -x - x^2\}$$

2.
$$\{1+2x+3x^2, 1-x+x^2, 1+x-x^2, x+2x^2\}$$

3.
$$\{x + 2x^2, 1 + x + 2x^2, 2 + 2x + x^2\}$$
.

Encuentra en todos los casos un subconjunto con el mayor número posible de vectores linealmente independientes.

Ejercicio 3. Determina si los siguientes conjuntos de vectores son linealmente independientes.

1. En
$$\mathbb{Q}^4$$
, $(\mathbb{Z}_2)^4$, $(\mathbb{Z}_3)^4$, $(\mathbb{Z}_5)^4$ y $(\mathbb{Z}_7)^4$: $(3,-1,-4,0)$, $(0,1,8,-1)$, $(3,-1,5,4)$, $(0,0,3,3)$.

2.
$$1 - x y x en \mathbb{R}_2[x]$$
.

3. En
$$\mathbb{Q}_3[x]$$
 y $(\mathbb{Z}_5)_4[x]$: $-x$, $x^2 - 2x$, $3x + 5x^2$.

4. En
$$(\mathbb{Z}_3)_3[x]$$
: $2x$, $x^3 - 3$, $1 + x - 4x^3$, $x^3 + 18x - 9$.

5. En
$$M_2(\mathbb{Z}_7)$$
: $\begin{pmatrix} 1 & -1 \\ 0 & 6 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Ejercicio 4. En un espacio vectorial sobre \mathbb{R} , tenemos unos vectores e_1, e_2, \dots, e_n, x cuyas coordenadas en una cierta base vienen dadas a continuación.

1.

$$\left. \begin{array}{l} e_1 = (1,0,1) \\ e_2 = (1,2,2) \\ e_3 = (0,1,1) \end{array} \right\} x = (1,0,2)$$

2.

$$\left. \begin{array}{l} e_1 = (1,1,1,1) \\ e_2 = (0,1,1,1) \\ e_3 = (0,0,1,1) \\ e_4 = (0,0,0,1) \end{array} \right\} x = (1,0,1,0)$$

Comprueba que $\{e_1, e_2, \dots, e_n\}$ es una base en cada uno de los casos, y halla las coordenadas del vector x en dicha base. Da también las matrices de cambio de base.

1

Ejercicio 5. Para las bases de \mathbb{R}^3

$$B = \{(4,0,7); (2,1,1); (3,1,3)\}; B' = \{(1,0,2); (4,1,5); (1,0,3)\}$$

calcula las matrices de cambio de base.

Ejercicio 6. Sea $B = \{w_1, w_2, w_3, w_4\}$ con

$$w_1 = (1, 0, 0, -1), w_2 = (0, 1, -1, 0), w_3 = (0, 1, 0, -1), w_4 = (0, 1, 1, 1).$$

- 1. Demuestra que B es una base de $(\mathbb{Z}_{11})^4$.
- 2. Sea x = -3(1, 2, 0, 0) + 2(-1, 0, 1, 1) + (0, 0, -2, 1) 2(-1, 0, -1, 0). Calcula las coordenadas de x respecto de la base B.
- 3. Calcula las matrices de cambio de base $M_{B_C \to B}$ y $M_{B \to B_C}$.
- 4. Si B' = {(1, 2, 0, 0), (-1, 0, 1, 1), (0, 0, -2, 1), (-1, 0, -1, 0)}, demuestra que B' es una base de $(\mathbb{Z}_{11})^4$ y calcula $M_{B\to B'}$.

Ejercicio 7. Estudia si son o no subespacios los siguientes subconjuntos de \mathbb{R}^3 :

1.
$$W = \{(a, b, a + b) \in \mathbb{R}^3 / a, b \in \mathbb{R}\}\$$

2.
$$W = \{(a, b, c) \in \mathbb{R}^3 / a + b + c = 1\}$$

3.
$$W = \{(a, b, c) \in \mathbb{R}^3 / a^2 + b^2 + c^2 = 0\}$$

4.
$$W = \{(a, b, c) \in \mathbb{R}^3 / a^2 - b^2 = 0\}$$

Ejercicio 8. Determina si los siguientes conjuntos de $M_n(\mathbb{R})$ son subespacios vectoriales:

1.
$$H = \{A \in M_n(\mathbb{R}) / A \text{ tiene inversa } \}$$

2.
$$H = \{A \in M_n(\mathbb{R}) / A = -2A^t\}$$

Ejercicio 9. En cada uno de los siguientes casos damos un espacio vectorial V y un subconjunto suyo H. Determina en que casos es H un subespacio vectorial de V.

1.
$$V = \mathbb{R}^2$$
; $H = \{(x, y) \mid y \ge 0\}$

2.
$$V = \mathbb{R}^3$$
; $H = el plano xy$

3.
$$V = M_n(\mathbb{Z}_5)$$
; $H = \{D \in M_n(\mathbb{Z}_5) \mid D \text{ es diagonal}\}\$

4.
$$V = M_n(\mathbb{Z}_7)$$
; $H = \{T \in M_n(\mathbb{Z}_7) \mid T \text{ es triangular superior}\}$

5.
$$V = M_n(\mathbb{Q})$$
; $H = \{S \in M_n(\mathbb{Q}) \mid S \text{ es simétrica}\}\$

6.
$$V = M_2(\mathbb{Z}_5)$$
; $H = \left\{ A \in M_2(\mathbb{Z}_5) \mid A = \begin{pmatrix} a & b \\ 4b & c \end{pmatrix} \right\}$.

7.
$$V=M_2(\mathbb{Z}_2); H=\left\{A\in M_2(\mathbb{Z}_2)\,|\, A=\begin{pmatrix} \alpha & 1+\alpha \\ 0 & 0 \end{pmatrix}\right\}.$$

$$8.\ V=M_2(\mathbb{R}); H=\bigg\{A\in M_2(\mathbb{R})\,|\, A=\begin{pmatrix}0&a\\b&0\end{pmatrix}\bigg\}.$$

9.
$$V = M_2(\mathbb{Z}_{11})$$
; $H = \{A \in M_2(\mathbb{Z}_{11}) \mid rango(A) = 1\}$

10.
$$V = (\mathbb{Z}_5)_4[x]$$
; $H = \{ p \in (\mathbb{Z}_5)_4[x] \mid gr(p) = 4 \}$.

11.
$$V = \mathbb{Q}_4[x]$$
; $H = \{ \mathfrak{p} \in \mathbb{Q}_4[x] \mid \mathfrak{p}(0) = 0 \}$.

12.
$$V = (\mathbb{Z}_2)_n[x]$$
; $H = \{ p \in (\mathbb{Z}_2)_n[x] \mid p(0) = 1 \}$.

Ejercicio 10. Sea $A \in M_{m \times n}(\mathbb{Q})$ y sea $H_1 = \{x \in M_{n \times 1}(\mathbb{Q}) \mid Ax = 0\}$. Comprueba que H_1 es un subespacio de $M_{n \times 1}(\mathbb{Q})$.

Sea $H_2 = \{x \in M_{n \times 1}(\mathbb{Q}) \mid Ax \neq 0\}$; muestra que H_2 no es un subespacio de $M_{n \times 1}(\mathbb{Q})$.

Ejercicio 11. Halla las ecuaciones implícitas y paramétricas del subespacio de $(\mathbb{Z}_5)^3$ generado por los vectores (1,1,0),(0,1,1).

Ejercicio 12. Completa $\{(1, 1, 0), (2, 1, 1)\}$ a una base de \mathbb{Q}^3 .

Ejercicio 13. Calcula las ecuaciones cartesianas y paramétricas del subespacio $U_1 + U_2 \subseteq (\mathbb{Z}_7)^3$, donde

$$U_1 = L((1,1,0),(2,0,0)), \quad U_2 = L((0,0,1),(2,1,3)).$$

$$\operatorname{Es} (\mathbb{Z}_7)^3 = U_1 \oplus U_2?$$

Ejercicio 14. Dada la base $B = \{(1,0,1,1); (0,1,1,0); (1,1,1,1); (0,1,0,1)\}$ de $(\mathbb{Z}_2)^4$, calcula las coordenadas del vector (0,0,0,1) en la base B.

Ejercicio 15. Para cada una de las siguientes parejas de subespacios de \mathbb{R}^4 calcula $U \cap W$ y U + W.

1.

$$U = \{(a, b, -b, a) / a, b \in \mathbb{R} \}$$

$$W = \{(a, b, 0, c) / a, b, c \in \mathbb{R} \}$$

2.

$$U \equiv \begin{cases} x_1 &= \lambda \\ x_2 &= 0 \\ x_3 &= \lambda + \mu \\ x_4 &= \lambda + \mu + \gamma \end{cases}$$

$$W \equiv \begin{cases} x_1 &= \lambda + \mu + \gamma \\ x_2 &= \lambda + \mu \\ x_3 &= 0 \\ x_4 &= \lambda \end{cases}$$

3.

$$U = L((1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1))$$

$$W \equiv \begin{cases} x_1 & +x_2 & -x_4 &= 0 \\ x_2 & +x_3 &= 0 \\ x_1 & -x_2 & -x_3 & -x_4 &= 0 \end{cases}$$

Ejercicio 16. Sea U el subespacio de $(\mathbb{Z}_5)^3$ generado por los vectores (2,3,1) y (1,4,3), y W el subespacio de $(\mathbb{Z}_5)^3$ de ecuaciones $\begin{cases} x+2y+z=0\\ 2x+y+3z=0 \end{cases}$.

Calcula unas ecuaciones cartesíanas o implícitas del subespacio U + W.

Ejercicio 17. Encuentra la dimensión del subespacio generado por los siguientes conjuntos de vectores:

- 1. $\{(1,2), (0,1), (-1,3)\}$ en $(\mathbb{Z}_5)^2$
- 2. $\{1 + x + x^2, 2 x^2 + x^3, 1 x 2x^2 + x^3, 1 + 3x + 4x^2 x^3\}$ en $\mathbb{Z}_5[x]$.

Ejercicio 18. Sea $V = (\mathbb{Z}_3)^4$ y sean los subespacios vectoriales

$$U = \left\{ (x, y, z, t) \in V \middle| \begin{array}{c} x - y - z = 0 \\ t = 0 \end{array} \right\} \qquad W = \langle (1, 1, 1, 1), (0, 1, 0, 1) \rangle.$$

- 1. ¿Cuántos elementos hay en W?
- 2. Calcula bases de $U + W y U \cap W$.
- 3. Calcula las ecuaciones paramétricas y cartesianas (o implícitas) de U + W y $U \cap W$.

Ejercicio 19. En el conjunto \mathbb{C}^n se considera la suma usual y se define el producto por números reales

$$\lambda(z_1, z_2, \dots, z_n) = (\lambda z_1, \lambda z_2, \dots, \lambda z_n)$$

Estudia si \mathbb{C}^n con estas operaciones tiene estructura de espacio vectorial sobre \mathbb{R} .

Ejercicio 20. En el conjunto $\mathbb{R}_n[x]$ de los polinomios en una indeterminada de grado menor o igual que n se considera la suma usual y se define el producto por escalares reales

$$ap(x) = \begin{cases} 0 & \text{si} \quad a \neq 1 \\ p(x) & \text{si} \quad a = 1 \end{cases}$$

Estudia si $\mathbb{R}_n[x]$ con estas operaciones tiene estructura de espacio vectorial sobre \mathbb{R} .

Ejercicio 21. Demuestra las siguientes afirmaciones:

- 1. Un conjunto de vectores que tiene dos vectores iguales es linealmente dependiente.
- 2. Un conjunto de vectores en el que un vector es múltiplo de otro es linealmente dependiente.

Ejercicio 22. Determina si los siguientes conjuntos de vectores generan al espacio vectorial dado:

- 1. En $(\mathbb{Z}_5)_2[x]$: 1+4x, $3+4x^2$.
- 2. En $(\mathbb{Z}_5)_2[x]$: 1 + 4x, $3 + 4x^2$, x.
- 3. En $M_2(\mathbb{Z}_7)$: $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 4 & 6 \\ 3 & 0 \end{pmatrix}$, $\begin{pmatrix} 5 & 5 \\ 6 & 0 \end{pmatrix}$.

Ejercicio 23. Prueba que el espacio vectorial $M_2(\mathbb{R})$ puede ser generada por matrices regulares.

Ejercicio 24. Los siguientes subconjuntos y familias de vectores de algunos espacios vectoriales son subespacios y bases de estos. Verifica la verdad o falsedad de esta afirmación en los ejemplos siguientes:

- 1. $\{(a,b) \in (\mathbb{Z}_3)^2 \mid b=1\}; \{(2,1)\}$
- 2. $\{p(x) \in \mathbb{R}_3[x] \mid (x-1) \text{ divide a } p(x)\}; \{x-1, x^2-1\}.$

Ejercicio 25. ¿Cuántas bases hay en $(\mathbb{Z}_2)^2$?

Ejercicio 26. En el espacio de las matrices simétricas de orden 2, consideramos las bases

$$B = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right\}$$

$$B' = \left\{ \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & -3 \\ -3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix} \right\}$$

- $B' = \left\{ \left(\begin{array}{ccc} 1 & 1 \end{array} \right), \left(\begin{array}{ccc} -3 & 1 \end{array} \right), \left(\begin{array}{ccc} -1 & 3 \end{array} \right) \right\}$
- 2. Calcula las coordenadas de la matriz

1. Calcula las matrices de cambio de base entre ambas.

$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

en las bases B y B'.

Ejercicio 27. Sea $V = (\mathbb{Z}_7)^4$, y sean U_1 y U_2 los siguientes subespacios vectoriales de V:

$$U_1 = L((1,4,4,0), (2,2,1,2), (0,0,3,6))$$

 $U_2 \equiv \{2x + 5y + t = 0\}$

- 1. Calcula una base de $U_1 \cap U_2$.
- 2. ¿Cuáles son las coordenadas del vector (1, 1, 0, 0) en la base anterior?

Ejercicio 28. Determina si los siguientes conjuntos son subespacios vectoriales de $\mathbb{R}_n[x]$:

1.
$$P_1 = \{a + bx^2 + cx^3 \in \mathbb{R}_n[x] / a, b, c \in \mathbb{R} \}$$

2.
$$P_2 = \{p(x) \in \mathbb{R}_n[x]/ p(x) + p(-x) = 0\}$$

3.
$$P_3 = \{ p(x) \in \mathbb{R}_n[x] / p(x) + p'(x) = 0 \}$$

Ejercicio 29. Para los subespacios de $M_{3\times 2}(\mathbb{R})$

$$\begin{split} U &= \left\{ A \in M_{3 \times 2}(\mathbb{R}) / \ A \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) = A \right\} \\ W &= \left\{ A \in M_{3 \times 2}(\mathbb{R}) / \ A \left(\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array} \right) = A \right\} \end{split}$$

calcula $U \cap W$ y U + W.

Ejercicio 30.

1. Calcula la dimensión del subespacio de \mathbb{R}^4 generado por los vectores

$$\{(b,0,0,0),(0,a,1,1+a),(a,1+a,1+a,2+2a),(b,0,0,1-a)\}$$

según los valores de a y b.

2. ¿Cuál es el número máximo de vectores linealmente independientes en el conjunto

$$\{(b, 0, a, b), (0, a, 1 + a, 0), (0, 1, 1 + a, 0), (0, 1 + a, 2 + 2a, 1 - a)\}$$

según los valores de a y b?

Preguntas test

Ejercicio 31. En $(\mathbb{Z}_7)^4$ consideramos los subespacios vectoriales de ecuaciones

$$V_1 = \{x + y + 6z + 6t = 0 \ y \ V_2 = \begin{cases} x + 6z + t = 0 \\ y + 5t = 0 \end{cases}$$

Una base de $V_1 \cap V_2$ es:

- a) $\{(1,1,5,4),(3,3,1,5)\}$
- b) $\{(1,0,0,1),(0,1,0,1),(0,0,1,6)\}$
- c) $\{(1,0,1,0),(0,1,4,4)\}$
- d) $\{(1,0,1,0),(1,1,5,4),(0,0,0,0)\}$

Ejercicio 32. Sea U el subespacio vectorial de \mathbb{R}^4 generado por $\{(1, -1, 0, 0), (0, 0, 1, -1)\}$. Unas ecuaciones implícitas para U son:

a)
$$x_1 + x_2 + x_3 + x_4 = 0$$

b)
$$\begin{cases} x_1 & + x_3 & = 1 \\ x_1 + x_2 + x_3 + x_4 & = 0 \end{cases}$$

$$d) \, \left\{ \begin{array}{l} x_1 & + \ x_3 & = \ 1 \\ x_1 \ + \ x_2 \ + \ x_3 & = \ 0 \end{array} \right.$$

Ejercicio 33. Sean $B = \{v_1, v_2, v_3\}$ y $B' = \{v_1', v_2', v_3'\}$ donde $v_1' = v_1, v_2' = v_1 + v_2, y v_3' = v_1 + v_2 + v_3$ dos bases de un espacio vectorial V sobre \mathbb{R} . Si las coordenadas de x respecto de la base B' son (1, -1, 1), entonces las coordenadas de x respecto de B son

a)
$$(1,0,1)$$
 b) $(1,0,-1)$ c) $(1,2,-1)$ d) $(0,0,1)$

Ejercicio 34. Sean $B_1 = \{u_1, u_2\}$ y $B_2 = \{v_1, v_2\}$ dos bases de \mathbb{R}^2 tales que $v_1 = -2u_1 - u_2$ y $v_2 = 5u_1 + 2u_2$. Si w es un vector cuyas coordenadas respecto de B_1 son (a, b), entonces las coordenadas de w respecto de B_2 son

a)
$$(2a - 5b, a - 2b)$$
 b) $(3a, 2a - b)$ c) $(3a + b, a - 3b)$ d) $(b, -a)$

Ejercicio 35. Consideremos los siguientes subespacios de $(\mathbb{Z}_5)^4$:

$$U_1 = \langle (1, 1, 2, 0), (3, 1, 4, 1) \rangle; \qquad U_2 = \langle (0, 1, 0, 3), (1, 0, 1, 3) \rangle.$$

Una base de $U_1 \cap U_2$ es

- a) $\{(2,0,2,1)\}$
- b) $\{(1,1,2,0),(3,1,4,1),(0,1,0,3),(1,0,1,3)\}$
- c) $\{(1,1,2,0)\}$
- d) $\{(2,0,2,1),(1,0,1,3)\}$

Ejercicio 36. Sea $V = \{ \alpha(x) \in \mathbb{Z}_3[x] \mid \text{el grado de } \alpha(x) \text{ es menor o igual que 2} \}$. Entonces

- a) V es un espacio vectorial sobre \mathbb{Z}_3 de dimensión 3.
- b) V es un espacio vectorial sobre \mathbb{Z}_3 de dimensión 2.
- c) V no es un espacio vectorial sobre \mathbb{Z}_3 .
- d) V es un espacio vectorial sobre \mathbb{Z}_3 de dimensión infinita.

Ejercicio 37. Sea $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$. Un subespacio vectorial W de \mathbb{R}^3 que verifica que $\mathbb{R}^3 = U \oplus W$ es

- a) $W = \{(x, y, z) \in \mathbb{R}^3 \mid x y z = 0\}.$
- b) $W = \{0\}.$
- c) $W = \mathbb{R}^3$.
- d) $W = \{(x, y, z) \in \mathbb{R}^3 \mid \substack{x-y = 0 \\ x-z = 0} \}.$

Ejercicio 38. Sea $V = \{A \in M_2(\mathbb{Q}) \mid det(A) = 0\}$. Entonces

- a) V es un Q-espacio vectorial de dimensión 4.
- b) V es un Q-espacio vectorial de dimensión 0.
- c) V es un Q-espacio vectorial de dimensión 3.
- d) V no es un Q-espacio vectorial.

Ejercicio 39. Consideremos los subespacios de $(\mathbb{Z}_5)^4$ definidos por las ecuaciones

$$U_1 \equiv \begin{cases} x + y + 2z = 0 \\ 3x + y + 4z + t = 0 \end{cases}$$
 $U_2 \equiv \begin{cases} y + 3t = 0 \\ x + z + 3t = 0 \end{cases}$

Una base de $U_1 + U_2$ es

- a) $\{(1,0,4,0),(1,0,0,3),(0,1,0,0)\}$
- b) $\{(1,0,4,0),(1,0,0,3),(0,0,1,3)\}$
- c) $\{(1,0,4,0),(1,0,0,3),(1,1,1,3)\}$
- d) $\{(1,0,4,0),(1,0,0,3)\}$

Ejercicio 40. Sean $B = \{v_1, v_2, v_3\}$ y $B' = \{v_1', v_2', v_3'\}$ dos bases de un espacio vectorial V sobre \mathbb{R} tales que $v_1' = v_1 + 2v_2 + v_3$, $v_2' = -v_2 + v_3$ y $v_3' = -v_1 + v_2 - 5v_3$. Si las coordenadas de x respecto de la base B son (1, -2, 3), entonces las coordenadas de x respecto de B' son:

a)
$$(3, 10, 2)$$
 b) $(-2, 7, -16)$ c) $(0, 5, -18)$ d) $(-9, 4, 2)$

Ejercicio 41. Dados U y W subespacios vectoriales de \mathbb{R}^5 con dim U = 3 y dim W = 3, indica cuál de las siguientes situaciones no es posible.

a)
$$\dim (U + W) = 6 \text{ y } \dim (U \cap W) = 0$$

b)
$$\dim (U + W) = 5 \text{ y } \dim (U \cap W) = 1$$

c)
$$\dim (U + W) = 4 \text{ y } \dim (U \cap W) = 3$$

d)
$$\dim (U + W) = 3 \text{ y } \dim (U \cap W) = 1$$

Ejercicio 42. Sea $B = \{(1,1), (1,2)\}$ una base de \mathbb{R}^2 , y x el vector cuyas coordenadas respecto de B son (3,2). Entonces x es igual a:

a)
$$(2,1)$$
 b) $(7,-4)$ c) $(4,3)$ d) $(-3,2)$

Ejercicio 43. En \mathbb{Q}^4 se considera el subespacio vectorial generado por $\{(1, -1, 1, 1), (1, 1, -1, 1)\}$. Di cuál de los siguientes sistemas de ecuaciones corresponde a unas ecuaciones cartesianas de dicho subespacio.

a)
$$x + y + z - t = 0$$
.

b)
$$\begin{cases} x+y-z+t=0\\ x+y+z-t=0 \end{cases}$$

c)
$$\begin{cases} x + 2y + t = 0 \\ y + z = 0 \end{cases}$$

$$d) \begin{cases} x-y-z-t=0\\ x-t=0 \end{cases}$$

Ejercicio 44. En \mathbb{R}^3 se consideran los subespacios vectoriales

$$U = \{(x, y, z) | x - y + 3z = 0\}$$
 $W = L[(3, 0, -1), (2, -1, -1)]$

Una base de $U \cap W$ es

- a) $\{(1,1,0)\}$
- b) $\{(5,-1,-2),(1,4,1)\}$
- c) $\{(0,0,0)\}$
- d) $\{(-1,2,1),(2,-2,-1)\}$

Ejercicio 45. Sean u = (0, 1, 3, 3), v = (2, 2, 1, 2) y w = (3, 4, 2, 2) vectores de $(\mathbb{Z}_5)^4$. El conjunto formado por los vectores $\{2u, v, 4w, u + 2v\}$

- 1. es una base de $(\mathbb{Z}_5)^4$.
- 2. es linealmente dependiente, pues el tercero es combinación lineal de los restantes.
- 3. es linealmente independiente, pues el tercero no es combinación lineal de los restantes.
- 4. genera un subespacio vectorial de dimensión 3.

Ejercicio 46. Sea U_1 el subespacio de $(\mathbb{Z}_7)^4$ generado por $\{(1,2,0,2);\ (0,1,4,0)\}$ y U_2 el subespacio de $(\mathbb{Z}_7)^4$ de ecuaciones $\left\{\begin{array}{cccc} x & + & 2y & + & 3z & + & 5t & = & 0\\ 3x & & & + & t & = & 0 \end{array}\right.$. Una base de $U_1 + U_2$ es

- 1. $\{(1,2,3,1); (2,0,2,5); (1,0,0,4)\}.$
- 2. $\{(1,2,3,1); (2,0,2,5)\}.$
- 3. $\{(1,0,0,0); (0,1,0,0); (0,0,1,0); (0,0,0,1)\}.$
- 4. $\{(1,0,0,4); (0,1,0,6); (1,1,0,3)\}.$

Ejercicio 47. Sea U el subespacio vectorial de \mathbb{R}^3 de ecuaciones $\begin{cases} 2x - y - 2z = 0 \\ 4x + y - z = 0 \end{cases}$ Entonces $\mathbb{R}^3 = U \oplus V$

- a) Si V es el subespacio generado por los vectores (1, 2, 1), (2, 1, 1), (-1, -1, 1).
- b) Si V es el subespacio de ecuación 2x + 2y + z = 0.
- c) Si V es el subespacio generado por los vectores (1, -2, 2), (2, 1, 3).
- d) Si V es el subespacio generado por (1, 1, 1), (2, -1, 1).

Ejercicio 48. Sean en \mathbb{R}^3 los conjuntos $B_1 = \{(1,0,1); (0,1,1); (1,1,1)\}$ y $B_2 = \{(1,-1,0); (2,1,1); (1,1,2)\}$. Entonces:

- a) La matriz del cambio de base de B_2 a B_1 es $\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.
- b) La matriz del cambio de base de B_2 a B_1 es $\begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 1 \\ 0 & 2 & 0 \end{pmatrix}$.
- c) No existe matriz del cambio de base de B₂ a B₁.
- d) La matriz del cambio de base de B_2 a B_1 es $\begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 1 \\ 0 & 2 & 0 \end{pmatrix}$.

Ejercicio 49. Sea $A=\left(\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right)\in M_2(\mathbb{Z}_5),$ y sea $U=\{B\in M_2(\mathbb{Z}_5):A\cdot B=B\cdot A\}.$ Entonces:

- a) U es un subespacio vectorial de $M_2(\mathbb{Z}_5)$ de dimensión 2.
- b) U es un subespacio vectorial de $M_2(\mathbb{Z}_5)$ de dimensión 1.
- c) U es un subespacio vectorial de $M_2(\mathbb{Z}_5)$ de dimensión 3.
- d) U no es subespacio vectorial.

Ejercicio 50. Dados U el subespacio de $(\mathbb{Z}_5)^3$ generado por los vectores (3,1,4) y (4,3,2), y V el subespacio de ecuaciones $\begin{cases} x + y + 4z = 0 \\ 3x + y + 3z = 0 \end{cases}$, una base de U + V es

- a) $\{(1,0,0); (0,1,0); (0,0,1)\}.$
- b) $\{(1,2,4); (4,3,2)\}.$
- c) $\{(1,1,2)\}.$
- d) $\{(4,2,1); (2,3,0)\}.$

Ejercicio 51. Dados los siguientes vectores $u_1 = (1,0,1,0)$, $u_2 = (1,1,1,1)$, $u_3 = (1,0,0,1)$, $u_4 = (0,0,1,1)$ pertenecientes a $(\mathbb{Z}_2)^4$

- (a) Son linealmente independientes.
- (b) Son linealmente dependientes, pues el segundo es combinación lineal de los restantes.
- (c) Generan un subespacio de dimensión 2.
- (d) Son linealmente dependientes, pues el tercero es combinación lineal de los restantes.

Ejercicio 52. Sea $B = \{(1,0,1,0), (1,1,1,1), (0,1,1,1), (1,0,0,1)\}$. Las coordenadas del vector (1,1,0,0) en la base B son:

- (a) (0, 1, 1, 0).
- (b) (1, 1, 0, 0).

- (c) (1, 1, 1, 1).
- (d) (1, 1, 0, 1).

Ejercicio 53. Sean $U_1 = L[(1,3,1),(3,4,2)]$ y $U_2 \equiv \begin{cases} x + y + 2z = 0 \\ 3x + 3y + z = 0 \end{cases}$ dos subespacios de $(\mathbb{Z}_5)^3$. Entonces:

- (a) $(\mathbb{Z}_5)^3 = U_1 \oplus U_2$.
- (b) $U_2 \subseteq U_1$.
- (c) $U_1 \cap U_2$ tiene dimensión 1, $y\{(2,1,1)\}$ es una base de este subespacio.
- (d) $\{(4,2,4),(1,2,3),(0,4,2)\}$ es una base de U_1+U_2 .

Ejercicio 54. Sean $U_1 = L[(1,1,0,-1),\ (0,1,2,1)]$ y $U_2 \equiv \left\{ \begin{array}{cccc} 2x & + & y & - & 2z & + & t & = & 0 \\ 2x & - & y & & & + & 2t & = & 0 \end{array} \right.$ dos subespacios de \mathbb{R}^4 , y u = (1,-1,1,-1). Entonces:

- (a) $u \in U_1 + U_2$ y se expresa de forma única como suma de un vector de U_1 y uno de U_2 .
- (b) $u \notin U_1 + U_2$, pues no pertenece ni a U_1 ni a U_2 .
- (c) $u \in U_1 + U_2$ y se puede expresar de muchas formas como suma de un vector de U_1 y U_2 .
- (d) $u \in U_1$ pero $u \notin U_2$, por lo que no pertenece a la suma.

Ejercicio 55. Sean u_1, u_2, u_3, u_4 cuatro vectores de un espacio vectorial V. Supongamos que el conjunto $\{u_1, u_2, u_3\}$ es linealmente dependiente. Entonces:

- (a) El conjunto $\{u_1, u_2, u_3, u_4\}$ es linealmente dependiente por contener a un conjunto de vectores linealmente dependientes.
- (b) Si u_4 no es combinación lineal de $\{u_1, u_2, u_3\}$ el conjunto $\{u_1, u_2, u_3, u_4\}$ es linealmente independiente.
- (c) El conjunto $\{u_1, u_2, u_3, u_4\}$ es linealmente dependiente sólo si contiene al vector cero.
- (d) Los datos no nos permiten saber si el conjunto $\{u_1, u_2, u_3, u_4\}$ es linealmente dependiente o independiente.

Ejercicio 56. Sean U = L[(3,5,2,3), (1,6,3,4), (6,4,4,4)] y $W \equiv \begin{cases} 2x + y + 5z + 3t = 0 \\ x + 4y + 6z + 5t = 0 \end{cases}$ dos subespacios de $(\mathbb{Z}_7)^4$.

Entonces una base de $U \cap W$ es:

- a) $\{(5, 2, 1, 6)\}.$
- b) {(6, 1, 1, 1)}.
- c) $\{(5,2,1,6),(6,1,1,1)\}.$
- d) $\{(1,2,1,4),(1,1,1,2)\}.$

Ejercicio 57. Sean $B_1 = \{(1,0,1,0); (0,1,0,0); (1,0,0,1); (1,1,1,1)\}$ y $B_2 = \{(0,1,1,1); (1,0,1,0); (1,0,1,1); (0,0,1,1)\}$ dos bases de $(\mathbb{Z}_2)^4$. Sea u el vector cuyas coordenadas en la base B_1 son (1,0,1,1). Entonces, las coordenadas de u en la base B_2 son:

- (a) (0,0,0,1).
- (b) (1, 1, 0, 0).
- (c) (1,0,1,0).

(d) (1, 1, 1, 1).

Ejercicio 58. Sea $u_1 = (1, 2, 1, 1)$, $u_2 = (4, 2, 2, 1)$, $u_3 = (4, 0, 3, 0)$ y $u_4 = (0, 4, 4, 3)$ cuatro vectores de $(\mathbb{Z}_5)^4$. Entonces:

- a) Son linealmente independientes, pues u₃ no es combinación lineal de los restantes.
- b) Son linealmente independientes, pues u₄ no es combinación lineal de los restantes.
- c) Son linealmente dependientes, pues u₃ es combinación lineal de los restantes.
- d) Son linealmente dependientes, pues u₄ es combinación lineal de los restantes.

Ejercicio 59. Sean $U = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0\}$ y $V = \{(x, y, z) \in \mathbb{R}^3 : y + z = 0\}$. Entonces U + V es igual a:

$$\mathrm{a)} \ \left\{ (x,y,z) \in \mathbb{R}^3: \begin{array}{l} x+y=0 \\ y+z=0 \end{array} \right\}.$$

- b) $\{(x,y,z) \in \mathbb{R}^3 : x + 2y + z = 0\}.$
- c) \mathbb{R}^3 .
- d) $\{(x,y,z) \in \mathbb{R}^3 : x+y+z=0\}.$

Ejercicio 60. Sea el espacio vectorial $V = (\mathbb{Z}_5)^3$ y sea U el subespacio vectorial de V generado por por (1,3,2), (2,1,1). ¿Para cuál de los siguientes subespacios vectoriales W de V se verifica que $V = U \oplus W$?

- a) W = L[(3,4,3)].
- b) W = L[(2,1,3), (3,4,2)].
- c) W = L[(2,3,1), (4,1,2)].

d)
$$W = \left\{ (x, y, z) \in V : \begin{array}{c} 4x + 2y = 0 \\ x + 4z = 0 \end{array} \right\}.$$

Ejercicio 61. Sea U el subespacio de $(\mathbb{Z}_3)^4$ generado por los vectores (1,0,1,0), (1,1,2,1) y (2,1,0,1); y V el subespacio de $(\mathbb{Z}_3)^4$ generado por (0,1,1,1) y (2,2,1,2). Entonces:

- a) $U \subseteq V$ pero $U \neq V$.
- b) $V \subseteq U$ pero $U \neq V$.
- c) U = V.
- d) $\dim(U \cap V) = 1$.

Ejercicio 62. Sea $v = (1,0,2) \in (\mathbb{Z}_5)^3$, y sea $B = \{(1,1,1); (0,3,1); (\alpha,1,2)\}$. ¿Para que valor de $\alpha \in \mathbb{Z}_5$ es B una base, y el vector v tiene coordenadas (3,2,1) con respecto a la base B?.

- a) a = 4.
- b) a = 1.
- c) a = 0.
- d) a = 3.

Ejercicio 63. Dado el conjunto $S = \{u_1, u_2, u_3\}$ donde $u_1 = (3, 1, 5, 2), u_2 = (4, 2, 1, 6)$ y $u_3 = (6, 1, 1, 6)$ son tres vectores de $(\mathbb{Z}_7)^4$.

- (a) S puede ser ampliado a una base añadiéndole el vector (1, 1, 1, 1).
- (b) S no puede ser ampliado a una base pues los vectores de S son linealmente dependientes.

- (c) Los vectores $\{u_1, u_2, u_3, u_1 + u_2 + u_3\}$ forman una base de $(\mathbb{Z}_7)^4$.
- (d) Los vectores de S son linealmente independientes.

Ejercicio 64. Sea V el conjunto de todas las matrices de la forma $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, con a y b números reales. Entonces V con respecto de las operaciones suma de matrices y producto de un número real por una matriz,

- 1. es un espacio vectorial sobre R de dimensión dos.
- 2. es un espacio vectorial sobre R isomorfo a R3.
- 3. no es un espacio vectorial, ya que la suma de matrices no es una operación binaria en V.
- 4. no es un espacio vectorial, ya que en V hay matrices no nulas cuyo determinante no es cero.

Ejercicio 65. Sean $B_1 = \{(1,0,1,0); (0,1,0,0); (1,0,0,1); (1,1,1,1)\}$ y $B_2 = \{(0,1,1,1); (1,0,1,0); (1,0,1,1); (0,0,1,1)\}$ dos bases de $(\mathbb{Z}_2)^4$. Sea $\mathfrak u$ el vector cuyas coordenadas en la base B_1 son (1,0,1,1). Entonces, las coordenadas de $\mathfrak u$ en la base B_2 son:

- 1. (0,0,0,1).
- 2. (1, 1, 0, 0).
- 3. (1,0,1,0).
- 4. (1, 1, 1, 1).

Ejercicio 66. Sea V un espacio vectorial de dimensión n, y U y W dos subespacios vectoriales distintos, ambos de dimensión n-1. Entonces:

- 1. $\dim(U \cap W) = n 1$.
- 2. $\dim(U \cap W) = 1$.
- 3. $\dim(U \cap W) = n 2$.
- 4. $\dim(U \cap W) = 0$.

Ejercicio 67. Sea $V = \{a(x) \in \mathbb{Z}_2[x] : gr(a(x)) \le 3\}$, $y p_1(x) = x^3 + x + 1$, $p_2(x) = x^2 + x + 1$, $p_3(x) = x^3 + x^2 + x$ y $p_4(x) = x^2 + 1$ elementos de V. Entonces:

- 1. Forman una base de V.
- 2. Son linealmente dependientes, pues el segundo es combinación lineal del resto.
- 3. Son un sistema de generadores de V.
- 4. Son linealmente dependientes, pues el tercero es combinación lineal del resto.

Ejercicio 68. Sean $B_1 = \{(1,1,2), (2,3,4), (3,1,5)\}$ y $B_2 = \{(4,2,1), (5,5,2), (1,6,2)\}$ dos bases de $(\mathbb{Z}_7)^3$. Entonces, la matriz del cambio de base de B_1 a B_2 es:

$$1. \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & 3 & 1 \\ 2 & 4 & 5 \end{array}\right).$$

$$2. \left(\begin{array}{ccc} 5 & 2 & 6 \\ 0 & 0 & 1 \\ 2 & 1 & 2 \end{array}\right).$$

$$3. \left(\begin{array}{rrr} 1 & 5 & 5 \\ 5 & 2 & 5 \\ 0 & 1 & 0 \end{array}\right).$$

$$4. \left(\begin{array}{rrr} 4 & 5 & 1 \\ 2 & 5 & 6 \\ 1 & 2 & 2 \end{array}\right).$$

Ejercicio 69. Sean $U = L[(1,2,1), (\alpha,1,1)], V \equiv \left\{ \begin{array}{lll} x & + & 2z & = & 0 \\ 2x & + & y & + & z & = & 0 \end{array} \right.$ dos subespacios de $(\mathbb{Z}_3)^3$, y $W = U \cap V$. Entonces:

- 1. $W \equiv x + 2y + 2z = 0$.
- 2. dim(W) = 1 para cualquier valor de a.
- 3. dim(W) = 1 sólo para a = 1.
- 4. dim(W) = 1 sólo para a = 2.