MT5830 - 4. Hyperbolic Isometnes.

(1) Let $g \in PSL(2,1R)$ be withen as

 $g(z) = \frac{az+b}{Cz+d}$ where $a,b,c,d \in \mathbb{R}$ with ad-bc.

we know from tuterial sheet 3, question 3a) that

€ ESE Con+(1)

and that this is in standard form.

 $tr(\not g \not g \not f^{-1}) = \frac{1}{2}(a+d) + \frac{1}{2}(a+d)$ = a+d

= tr(g)

as required.

1) continued... Therefore we have the following dassification:

a non-identity element $g \in con^{+}(1)$ is

i) Hyperbolie (=> tr(g) > 4 (=> g has precisely 2 fied points, both in S'.

2) parabolie (=> tr(g) = 4 (=> g has preexely

1 fixed point, I fixed point, which has in S!

3) elliptic (=> (r(g) < 4 (=> g has precisely 2 fired points, one in 12 and $\hat{C} \setminus \{D^2 \cup S^i\}$.

hyperbolie

parabolic

elliptic

2) This question is open ended and designed 3 just to make you think and explore.

Important relations you may have come across are include

 $tr(ghg^{-1}) = \pm tr(h), tr(gh) = \pm tr(hg)$ $tr(g) = \pm tr(g^{-1}).$

In particular, if we write elements in "standard form" such that $tr(g) \ge 0$, then

 $tr(ghg^{-1}) = tr(h), tr(gh) = tr(hg).$ $tr(g) = tr(g^{-1})$

Therefore, conjugation & inversion do not after the "type" of an element.

(3) (i) Suppose
$$g \in PSL(2, \mathbb{R})$$
 is given
by $g(z) = \frac{az+b}{Cz+d}$ and

$$g(\infty) = \frac{a}{c} = \infty$$
, $g(0) = \frac{b}{d} = 0$.

We deduce that c=b=0 and so

$$g(z) = \frac{a}{d} z.$$

Moreover, $\frac{a}{d} = a^2 \approx 0$ since ad-bc=ad=1

and a = 1 (=> g is the identity.

The result follows by setting $x = \frac{a}{d}$

(ii) Suppose n $g \in PSL(2,1R)$ is given by $g(z) = \frac{az+b}{Cz+d}$ and

 $g(\infty) = \infty$. We deduce that C = 0 as before and so

 $g(z) = \frac{a}{d}z + \frac{b}{d}$. Suppose $\frac{a}{d} \neq 1$. Then

- bd 7 so is a second fixed point, which and 1 contradicts 9 being parabolic.

(i) F& (hgh-1) = h (Fix(g))

Let $z \in Fix(hgh^{-1})$. Then $hgh^{-1}(z) = \overline{z}$ and so $gh^{-1}(z) = h^{-1}(\overline{z})$ and so $h^{-1}(\overline{z}) \in Fix(g)$ and therefore $\overline{z} = h(h^{-1}(\overline{z})) \in h(Fix(g))$.

(ii) $h(Fix(g)) \subseteq Fix(hgh')$

Let $z \in Fix(g)$. Then g(z) = zand $hgh^{-1}(h(z)) = hg(z)$ = h(z)

and so h(z) ∈ Fix(hghi).

Since every element of h(Fix(g)) can be expressed as h(z) for some $z \in Fix(g)$, the result follows.

Thus we have given a second proof that conjugation does not change the 'type' of an element.

(4) cont...

(i) g hyperbolic \Leftrightarrow | Fix(g) \(\cappa\) | = 2

and since hePSL(2,1R) preserves

the boundary

| Fix(g) n 1R 0 2 m3]

= | Fix (hgh-1) n 1Ru{os}

(ii) g parabolie => | Fix(g) | = 1

(iii) g elliptic (=> | Fix(g) N 1H2 |= |
and since h & PSI(2,1R) preserves 1H2

| Fix(g) n 1H2 | = | Fix (hgh-1) n 1H2 |,

(5) let
$$\lambda > 0$$
 and g be defined
by $g(z) = \frac{z}{\lambda z + 1}$

(i)
$$g(z) = \frac{1 \times z + 0}{\lambda \times z + 1} \in PSL(2, \mathbb{R})$$

since |x| - ox = 1

(ii)
$$tr(g)^2 = (1+1)^2 = 4$$

and so g is parabolic

(iii) Suppose
$$g(z) = \frac{z}{\lambda_{z+1}} = z$$
.

Z=0 is a solution I since g is parabolic it is the only solution.

to test the direction of the action $g(i) = \frac{i}{\lambda i + 1} = \frac{\lambda}{1 + \lambda^2} + \frac{i}{1 + \lambda^2}$ and so i is moved dochwise round the horoeyele!

6) Let $g \in PSL(2,1R)$ be parabolie. We have already seen in lectures that we can conjugate g to the map ZHZ+B. That is, for some h, EPSL(2,1R) $h,gh''(z) = z + \beta$ for some $\beta \in \mathbb{R}$. $(\beta \neq 0)$. Let $h_2 \in PSL(2, \mathbb{R})$ be given by $h_2(z) = XZ$ for some X > 0Then $h_2(h,gh,^{-1})h_2(z)$ $= h_2(h,gh,'(\frac{z}{\alpha}))$ $= h_2\left(\frac{2}{x} + \beta\right)$ = Z + $\times \beta$. therefore if we choose $X = \frac{1}{|S|}$ then $(h_2h_1)g(h_2h_1)^{-1} = h_2hgh_1h_2^{-1}$

does the job!