Exercices de Statistiques Université de Lorraine

Estimation et théorie des tests

Clément Dell'Aiera

1 Principe de Neyman : décision à 2 points

- 1. Soit f la densité d'une loi de probabilité sur \mathbb{R} , et \mathcal{E} l'expérience statistique engendré par un n-échantillon de loi $p_{\theta}(x) = f(x \theta)$. On suppose que $\Theta = \{0, \theta_0\}$ avec $\theta_0 \neq 0$. On veut tester $H_0|\theta = 0$ contre $H_1|\theta = \theta_0$.
 - (a) Décrire l'expérience statistique et donner la vraisemblance du modèle.
 - (b) Donner la zone de rejet du test de Neyman-Pearson de niveau α associé à H_0 et H_1 .
- 2. L'expérimentateur observe une seule réalisation d'une v.a. X de loi de Poisson de paramètre $\theta > 0$. On veut tester $H_0|\theta = \theta_0$ contre $H_1|\theta = \theta_1$, où $\theta_0 \neq \theta_1$.
 - (a) Donner la zone de rejet du test de Neyman-Pearson de niveau α associé.
 - (b) Sachant que $\mathbb{P}_{\theta_0}(X > 9) = 0.032$ et $\mathbb{P}_{\theta_1}(X > 8) = 0.068$, donner une zone de rejet explicite pour $\alpha = 0.05 = 5\%$. Le test est-il optimal?

2 Neyman-Pearson : familles à rapport de vraisemblance monotone

- 1. Soit \mathcal{E} l'expérience statistique engendrée par un n-échantillon de loi normale $\mathcal{N}(\theta, \sigma^2)$, où σ^2 est connu, et $\theta \in \Theta = \mathbb{R}$. On souhaite tester $H_0|\theta = \theta_0$ contre $H_1|\theta = \theta_1$, où $\theta_0 < \theta_1$.
 - (a) Décrire le modèle ainsi que la vraisemblance. On choisira la mesure de Lebesgue comme mesure dominante.
 - (b) Calculer le rapport de vraisemblance

$$\frac{f(\theta_1, Z)}{f(\theta_0, Z)}$$

(c) Donner la zone de rejet pour le test de Neyman-Pearson associé.

2. Pour la même expérience statistique, on a un test optimal (uniformément plus puissant) de H_0 contre H_1 donné par la région de rejet

$$\mathcal{R} = \{ \overline{X}_n > c \}$$

où c est solution de $\mathbb{P}_{\theta_0}(\overline{X}_n > c) = \alpha$.

- (a) Calculer explicitement la valeur de la constante $c = c(\theta_0, \alpha)$.
- (b) Calculer la puissance de ce test.

3 Exercice

L'expérimentateur observe 2 échantillons indépendants $X_1,...,X_n$ et $Y_1,...,Y_m$ de tailles distinctes $n \neq m$, de lois respectives $\mathcal{N}(\mu_1,\sigma_1^2)$ et $\mathcal{N}(\mu_2,\sigma_2^2)$. Il souhaite tester

$$H_0: \mu_1 = \mu_2 \text{ contre } H_1: \mu_1 \neq \mu_2.$$

Si $s_{n,1}^2=\frac{1}{n}\sum_{j=1}^n(X_j-\overline{X}_n)^2$ et $s_{m,2}^2=\frac{1}{m}\sum_{j=1}^m(Y_j-\overline{Y}_m)^2$, construire un test basé sur la statistique

$$T_{n,m} = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{s_{n,1}^2 + s_{m,2}^2}}$$

et étudier sa consistance.