Летний коллоквиум по математическому анализу

hse-ami-open-exams

Содержание

1	Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак		
	сходимости числового ряда.	5	
	1.1 Понятие числового ряда, его частичной суммы.	5	
	1.2 Сходимость и расходимость числовых рядов	5	
	1.3 Примеры сходящихся и расходящихся числовых рядов	5	
	1.4 Необходимый признак сходимости числового ряда	5	
2	Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.	6	
	2.1 Критерий Коши сходимости числового ряда	6	
	2.2 Доказать расходимость гармонического ряда	6	
3	Критерий сходимости ряда с неотрицательными членами через частичные суммы. Тео-		
	рема о сравнении и предельный признак сравнения.	7	
	3.1 Критерий сходимости ряда с неотрицательными членами через частичные суммы	7	
	3.2 Теорема о сравнении и предельный признак сравнения	7	
4	Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β .	8	
	4.1 Интегральный признак сходимости числового ряда	8	
	4.2 Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β . (TODO)	8	
5	Признак Даламбера в простой и предельной формах. Примеры.	9	
	5.1 Примеры	9	
6	Признак Коши в простой и предельной формах. Примеры.	10	
	6.1 Примеры	10	
7	Абсолютно сходящиеся ряды. Докажите, что абсолютно сходящийся ряд сходится.	11	
8	Определение перестановки членов ряда. Теорема о перестановке членов абсолютно		
	сходящегося ряда.	12	
	8.1 Определение перестановки членов ряда	12	
	8.2 Теорема о перестановке членов абсолютно сходящегося ряда	12	
9	Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства). Тео-		
	рема о произведении двух абсолютно сходящихся рядов.	14	
	9.1 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства)	14	
	9.2 Теорема о произведении двух абсолютно сходящихся рядов		
10	Условно сходящийся числовой ряд. Признак Лейбница сходимости знакопеременного		
	ряда вместе с оценкой на его остаток.	15	
11	Преобразование Абеля. Объясните, почему это преобразование является дискретным		
	аналогом формулы интегрирования по частям.	16	
19	Признаки Лириула и Абалд суолимости радов	17	

13	Теорема Римана о перестановке членов условно сходящегося ряда, идея доказательства.	18
	Дайте определение поточечной и равномерной сходимости функциональных последовательностей и рядов. Необходимое условие равномерной сходимости функционального ряда.	
	14.1 Дайте определение поточечной и равномерной сходимости функциональных последовательностей и рядов.	19
	14.2 Необходимое условие равномерной сходимости функционального ряда	19
15	Критерий Коши сходимости функциональных последовательностей и рядов.	20
16	Признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда. 16.1 Признак сравнения для функциональных рядов	21 21
17	Дайте определение равномерной ограниченности последовательности функций. Сформулируйте признаки Дирихле и Абеля равномерной сходимости ряда (б.д.). 17.1 Дайте определение равномерной ограниченности последовательности функций	22 22
18	Приведите пример последовательности непрерывных функций, которая поточечно сходится к разрывной функции. Теорема об интеграле от равномерного пределеа непрерывных функций и ее следствие для равномерно сходящихся рядов. 18.1 Приведите пример последовательности непрерывных функций, которая поточечно сходится к разрывной функции	
19	равномерно сходящихся рядов	23 2 4
	Определение степенного ряда, его радиуса и круга сходимости (формула Коши-Адамара Докажите, что степенной ряд поточечно сходится строго внутри круга сходимости, и расходится строго вне круга сходимости. 20.1 Определение степенного ряда, его радиуса и круга сходимости (формула Коши-Адамара) 20.2 Докажите, что степенной ряд поточечно сходится строго внутри круга сходимости, и расходится строго вне круга сходимости	a).
	Определение радиуса и круга сходимости степенного ряда. Докажите, что степенной ряд сходится равномерно на любом замкнутом круге, лежащем строго внутри круга сходимости.	
	Приведите 3 примера степенных рядов: (1) сходится везде на границе круга сходимости, (2) не сходится на границе круга сходимости, (3) в некоторых точках границы круга сходимости ряд сходится, а в некоторых — нет. Дайте определение функции, аналитической в точке x_0 . 22.1 Приведите 3 примера степенных рядов: (1) сходится везде на границе круга сходимости, (2) не сходится на границе круга сходимости, (3) в некоторых точках границы круга сходимости ряд сходится, а в некоторых — нет	[
	Лемма о сохранении радиуса сходимости при почленном дифференцировании степенного ряда. Теорема о почленном дифференцировании и интегрировании степенного ряда.	

	 23.1 Лемма о сохранении радиуса сходимости при почленном дифференцировании степенного ряда. 23.2 Теорема о почленном дифференцировании и интегрировании степенного ряда. 	28 28
24	Единственность разложения в ряд для аналитической функции. Ряд Тейлора. 24.1 Единственность разложения в ряд для аналитической функции.	29 29 29
25	Вычислите ряды Маклорена для функций $\frac{1}{1-x}$ и $\frac{1}{(1-x)^2}$ и докажите, что эти функции аналитичны в точке 0. Приведите пример неаналитической функции (б.д.). 25.1 Вычислите ряды Маклорена для функций $\frac{1}{1-x}$ и $\frac{1}{(1-x)^2}$ и докажите, что эти функции аналитичны в точке 0	30 30
26	Запишите ряды Маклорена для функций $e^x,\cos x,\sin x,\ln(1+x),\arctan gx,(1+x)^{\alpha}$. Докажите аналитичность функции e^x и функции $\ln(1+x)$ в точке 0. 26.1 Запишите ряды Маклорена для функций $e^x,\cos x,\sin x,\ln(1+x),\arctan gx,(1+x)^{\alpha}$	31 31
27	Дайте определение квадрируемости плоской фигуры по Жордану. Докажите критейрий квадрируемости плоской фигуры. В чем состоит свойство конечной аддитивности меры Жордана? 27.1 Дайте определение квадрируемости плоской фигуры по Жордану	32 32 32
28	Дайте определение кратного интеграла от функции двух переменных по компактному квадрируемому множеству, со всеми необходимыми определениями (разбиение, диаметр разбиения, размеченное разбиение, измельчение, интегральная сумма).	33
29	Докажите, что если $\Phi {\rm M}\Pi$ интегрируема на множестве, то она ограничена на этом множестве.	34
30	Дайте определение верхней и нижней суммы Дарбу, верхнего и нижнего интегралов. Сформулируйте критерий Дарбу интегрируемости функции двух переменных на измеримом плоском множестве. 30.1 Дайте определение верхней и нижней суммы Дарбу, верхнего и нижнего интегралов 30.2 Сформулируйте критерий Дарбу интегрируемости функции двух переменных на измеримом плоском множестве	35 35
31	Сформулируйте ключевые идеи доказательства критерия Дарбу.	36
32	Докажите теорему Кантора: функция, непрерывная на компакте, равномерно непрерывна на нем (теорему Больцано - Вейерштрасса нужно сформулировать, но не обя-	
	зательно доказывать).	37
33	зательно доказывать). Докажите, что функция, непрерывная на компакте, интегрируема на нем (теорему Кантора нужно сформулировать, но не обязательно доказывать).	37 38
	Докажите, что функция, непрерывная на компакте, интегрируема на нем (теорему	
34	Докажите, что функция, непрерывная на компакте, интегрируема на нем (теорему Кантора нужно сформулировать, но не обязательно доказывать). Запишите основные свойства кратных интегралов (аддитивность, линейность, моно-	38

Теорема о сведении двойного интеграла к повторному (доказательство для произвольной области, можно пользоваться соответствующей теоремой для прямоугольной области и теоремой Лебега). 42

- 1 Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак сходимости числового ряда.
- 1.1 Понятие числового ряда, его частичной суммы.

Определение 1. Числовая последовательность a_k , рассматриваемая вкупе с последовательностью

$$S_n = \sum_{k=1}^n a_k$$

ее частичных сумм, называется числовым рядом.

1.2 Сходимость и расходимость числовых рядов.

Определение 2. Числовой ряд называется сходящимся, если

$$\exists \lim_{n \to \infty} S_n = S < \infty$$

и расходящимся иначе. Число S называется суммой ряда.

- 1.3 Примеры сходящихся и расходящихся числовых рядов.
 - 1. $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится (гармонический ряд)
 - 2. $\sum_{n=1}^{\infty} \frac{1}{n^2} \text{сходится}$
 - $3. \sum_{n=1}^{\infty} \frac{1}{e^n}$ сходится
 - 4. $\sum_{n=1}^{\infty} n$ расходится

1.4 Необходимый признак сходимости числового ряда.

Теорема 1. Необходимым условием сходимости числового ряда является стремление κ 0 его n-го члена a_n .

Доказательство. Действительно, в противном случае не выполняется критерий Коши для числовой последовательности S_n .

2 Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.

2.1 Критерий Коши сходимости числового ряда.

Теорема 2. Числовой ряд сходится тогда и только тогда, когда он удовлетворяет условию Коши:

$$\forall \varepsilon > 0 \exists N_{\varepsilon} \forall n \geqslant N \forall p \in \mathbb{N} \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

Доказательство. Следует из критерия Коши сходимости числовой последовательности S_n .

2.2 Доказать расходимость гармонического ряда.

Теорема 3. Гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Доказательство. Воспользуемся критерием Коши:

$$\exists \varepsilon > 0 \forall N \exists n \geqslant N \exists p \in \mathbb{N} |S_{n+p} - S_n| \geqslant \varepsilon$$

Пусть p = n. Тогда

$$S_{n+p}-S_n=\frac{1}{n+1}+\ldots+\frac{1}{2n}\geqslant\frac{n}{2n}=\frac{1}{2}=\varepsilon$$

- 3 Критерий сходимости ряда с неотрицательными членами через частичные суммы. Теорема о сравнении и предельный признак сравнения.
- 3.1 Критерий сходимости ряда с неотрицательными членами через частичные суммы.

Теорема 4. Ряд с неотрицательными членами $\sum_{n=1}^{\infty} p_n$ сходится тогда и только тогда, когда последовательность частиных сумм $\{S_n\}$ ограничена.

Доказательство. Необходимость следует из того, что любая сходящаяся последовательность является ограниченной. Поскольку $p_n \geqslant 0$, то $\{S_n\}$ монотонно возрастает, а тогда по теореме Вейерштрасса эта последовательность сходится тогда и только тогда, когда она является ограниченной сверху. Тем самым доказана достаточность.

3.2 Теорема о сравнении и предельный признак сравнения.

Теорема 5 (первый признак сравнения). Если $\forall n \in \mathbb{N} \Rightarrow 0 \leqslant p_n \leqslant q_n, \ mo$

- 1. Из сходимости $\sum q_n$ следует сходимость $\sum p_n$
- 2. Из расходимости $\sum p_n$ следует расходимость $\sum q_n$

Доказательство.

- 1. Напрямую следует из теоремы 4.
- 2. Предположим, что $\sum p_n$ расходится, а $\sum q_n$ сходится. Тогда получаем противоречие с пунктом 1.

Теорема 6 (предельный признак сравнения). Если $p_n > 0, q_n > 0$ и $\exists \lim_{n \to \infty} = l \in (0, +\infty)$, то ряды $\sum p_n$ и $\sum q_n$ сходятся и расходятся одновременно.

Доказательство. По определению предела

$$\forall \varepsilon \exists N_{\varepsilon} \forall n \geqslant N \Rightarrow \left| \frac{p_n}{q_n} - l \right| < \varepsilon \Leftrightarrow l - \varepsilon < \frac{p_n}{q_n} < l + \varepsilon \Leftrightarrow q_n(l - \varepsilon) < p_n < q_n(l + \varepsilon).$$

Осталось лишь воспользоваться теоремой 5.

4 Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β .

4.1 Интегральный признак сходимости числового ряда.

Теорема 7. Пусть при любом $k \in [1, +\infty)$ выполняется $f(k) \ge 0$, причем $f(k) \searrow 0$. Тогда сходимость ряда $\sum_{k=1}^{\infty} f(k)$ эквивалентна сходимости несобственного интеграла $\int\limits_{1}^{\infty} f(x) dx$.

Доказательство. При $x \in [k, k+1]$, в силу $f(x) \searrow$, имеем $f(k+1) \leqslant f(x) \leqslant f(k)$. Возьмем определенный интеграл от всех частей неравенства:

$$\int_{k}^{k+1} f(k+1)dx \leqslant \int_{k}^{k+1} f(x)dx \leqslant \int_{k}^{k+1} f(k)dx$$

$$f(k+1) \leqslant \int_{k}^{k+1} f(x)dx \leqslant f(k)$$

Просуммируем теперь это неравенство по всем k от 1 до n. Получаем

$$\sum_{k=2}^{n+1} f(k) \leqslant \int_{1}^{n+1} f(x) dx \leqslant \sum_{k=1}^{n} f(k)$$

Теперь, если ряд $\sum_{k=1}^{\infty}$ сходится, то из правой части неравенства следует, что сходится интеграл. Если же сходится интеграл, то из левой части неравенства вытекает, что сходится ряд. Аналогично с расходимостью.

4.2 Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β . (TODO)

Ряд $\sum_{k=1}^{\infty}\frac{1}{k^{\alpha}\ln^{\beta}k}$ сходится, если $\alpha>1$ или $\alpha=1,\beta>1$ и расходится иначе.

5 Признак Даламбера в простой и предельной формах. Примеры.

Теорема 8 (признак Даламбера в допредельной форме). *Если* $\forall k \in \mathbb{N}$ *выполнено*

$$\frac{p_{k+1}}{p_k} \leqslant q < 1 \left(\frac{p_{k+1}}{p_k} \geqslant 1 \right),$$

то ряд $\sum p_k$ сходится (расходится).

Доказательство. Положим $p'_k = q^k$. Тогда

$$\frac{p'_{k+1}}{p'_k} = q < 1 \left(\frac{p'_{k+1}}{p'_k} = 1 \right)$$

$$\frac{p_{k+1}}{p_k} \leqslant \frac{p'_{k+1}}{p'_k} \left(\frac{p_{k+1}}{p_k} \geqslant \frac{p'_{k+1}}{p'_k} \right)$$

Но теперь, учитывая тот факт, что ряд $\sum_{k=1}^{\infty} p_k'$ сходится (расходится) и, пользуясь первым признаком сравнения (теорема 5), делаем вывод, что ряд $\sum_{k=1}^{\infty} p_k$ сходится (расходится).

Теорема 9 (признак Даламбера в предельной форме). Пусть существует

$$\lim_{k \to \infty} \frac{p_{k+1}}{p_k} = L$$

Тогда при L < 1 ряд $\sum p_k$ сходится, при L > 1 расходится, а при L = 1 может как сходиться, так и расходиться.

Доказательство. Как мы знаем,

$$\lim_{k \to \infty} \frac{p_{k+1}}{p_k} = L$$

Это означает, что $\forall \varepsilon > 0 \exists N(\varepsilon) \forall k \geqslant N$ выполняется

$$L - \varepsilon < \frac{p_{k+1}}{p_k} < L + \varepsilon$$

Теперь если L>1, то мы можем выбрать такое ϵ , что $L+2\varepsilon=1\Leftrightarrow L+\varepsilon=1-\varepsilon.$ Но тогда

$$\frac{p_{k+1}}{p_k} < L + \varepsilon < 1$$

Тем самым получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ сходится. Пусть теперь L>1. Выберем такое ε , что $L-\varepsilon=1$. Получаем

$$\frac{p_{k+1}}{p_k} > L - \epsilon = 1$$

Снова получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ расходится. Наконец, рассмотрим ряды $\sum \frac{1}{k}$ и $\sum \frac{1}{k^2}$. В обоих случаях L=1, но ряд $\sum \frac{1}{k}$ расходится, а ряд $\sum \frac{1}{k^2}$ сходится.

5.1 Примеры.

- 1. $\sum \frac{1}{n!}$ сходится
- 2. $\sum n!$ расходится

6 Признак Коши в простой и предельной формах. Примеры.

Теорема 10 (признак Коши в допредельной форме). *Если* $\forall k \in \mathbb{N}$ *выполнено*

$$\sqrt[k]{p_k} \leqslant q < 1 \left(\sqrt[k]{p_k} \geqslant 1 \right),$$

то ряд $\sum p_k$ сходится (расходится).

Доказательство. Положим $p'_k = q^k$. Тогда

$$\sqrt[k]{p_k'} = q < 1\left(\sqrt[k]{p_k'} = 1\right)$$

$$\sqrt[k]{p_k} \leqslant \sqrt[k]{p_k'} \left(\sqrt[k]{p_k} \geqslant \sqrt[k]{p_k'} \right)$$

Но теперь, учитывая тот факт, что ряд $\sum_{k=1}^{\infty} p_k'$ сходится (расходится) и, пользуясь первым признаком сравнения (теорема 5), делаем вывод, что ряд $\sum_{k=1}^{\infty} p_k$ сходится (расходится).

Теорема 11 (признак Коши в предельной форме). Пусть существует

$$\lim_{k \to \infty} \sqrt[k]{p_k} = L$$

Тогда при L < 1 ряд $\sum p_k$ сходится, при L > 1 расходится, а при L = 1 может как сходиться, так и расходиться.

Доказательство. Как мы знаем,

$$\lim_{k \to \infty} \sqrt[k]{p_k} = L$$

Это означает, что $\forall \varepsilon > 0 \exists N(\varepsilon) \forall k \geqslant N$ выполняется

$$L - \varepsilon < \sqrt[k]{p_k} < L + \varepsilon$$

Теперь если L>1, то мы можем выбрать такое ϵ , что $L+2\varepsilon=1\Leftrightarrow L+\varepsilon=1-\varepsilon$. Но тогда

$$\sqrt[k]{p_k} < L + \varepsilon < 1$$

Тем самым получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ сходится. Пусть теперь L>1. Выберем такое ε , что $L-\varepsilon=1$. Получаем

$$\sqrt[k]{p_k} > L - \epsilon = 1$$

Снова получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ расходится. Наконец, рассмотрим ряды $\sum \frac{1}{k}$ и $\sum \frac{1}{k^2}$. В обоих случаях L=1, но ряд $\sum \frac{1}{k}$ расходится, а ряд $\sum \frac{1}{k^2}$ сходится.

6.1 Примеры.

- 1. $\sum \frac{n^n}{e^n}$ расходится
- 2. $\sum \frac{n^2}{e^n}$ сходится

7 Абсолютно сходящиеся ряды. Докажите, что абсолютно сходящийся ряд сходится.

Определение 3. Будем говорить, что ряд $\sum u_k$ сходится абсолютно, если $\sum |u_k|$ сходится.

Теорема 12. Абсолютно сходящийся ряд сходится.

Доказательство. По критерию Коши имеем

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \forall p \in N \sum_{k=n+1}^{n+p} |u_k| < \varepsilon.$$

Осталось лишь воспользоваться неравенством

$$\left|\sum_{k=n+1}^{n+p} u_k\right| \leqslant \sum_{k=n+1}^{n+p} |u_k| < \varepsilon.$$

8 Определение перестановки членов ряда. Теорема о перестановке членов абсолютно сходящегося ряда.

8.1 Определение перестановки членов ряда.

Определение 4. Говорят, что два ряда $\sum a_n$ и $\sum b_n$ получаются друг из друга перестановкой членов, если существует такое взаимо-однозначное отображение φ множества $\mathbb N$ натуральных чисел на себя, что $b_n = a_{\varphi(n)}$.

8.2 Теорема о перестановке членов абсолютно сходящегося ряда.

Теорема 13. Если числовой ряд $\sum u_k$ сходится абсолютно, то любая его перестановка членов сходится κ той же самой сумме.

Доказательство. Пусть $\sum u_k$ абсолютно сходится к S, а $\sum u_k'$ – некоторая перестановка членов исходного ряда. Требуется доказать, что $\sum u_k' = S$ и $\sum u_k'$ сходится абсолютно. Докажем сначала первое утверждение. Для этого достаточно доказать, что

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \left| \sum_{k=1}^{n} u'_k - S \right| < \varepsilon.$$

Зафиксируем произвольное ε . Поскольку ряд $\sum u_k$ сходится абсолютно, то по признаку Коши

$$\exists N_0' \forall p \in \mathbb{N} \sum_{k=N_0'+1}^{N_0'+p} |u_k| < \frac{\varepsilon}{2},$$

а по определению сходимости ряда

$$\exists N_0'' \left| \sum_{k=1}^{N_0''} u_k - S \right| \leqslant \frac{\varepsilon}{2}.$$

Напоминаем, что данные неравенства по определениям выполняются и для $n \ge N_0', N_0''$. Примем $N_0 = \max\{N_0', N_0''\}$, чтобы для этого номера выполнялись оба неравенства. Теперь возьмем такое N, чтобы любая частичная сумма S_n' ряда $\sum u_k'$ при $n \ge N$ содержала все первые N_0 членов ряда $\sum u_k$. Заметим, что такое N всегда можно выбрать, поскольку мы просто переставили некоторые члены исходного ряда. Оценим теперь разность

$$\left| \sum_{k=1}^{n} u_k' - S \right| < \varepsilon.$$

Пусть $n \geqslant N$. Указанную разность можно перезаписать в виде

$$\sum u'_k - S = \left(\sum_{k=1}^n u'_k - \sum_{k=1}^{N_0} u_k\right) + \left(\sum_{k=1}^{N_0} u_k - S\right).$$

Переходя к модулям, получаем

$$\left| \sum u'_k - S \right| \le \left| \sum_{k=1}^n u'_k - \sum_{k=1}^{N_0} u_k \right| + \left| \sum_{k=1}^{N_0} u_k - S \right|.$$

Если воспользоваться неравенством $\left|\sum_{k=1}^{N_0''}u_k-S\right|\leqslant \frac{\varepsilon}{2},$ то достаточно доказать, что

$$\left| \sum_{k=1}^{n} u_k' - \sum_{k=1}^{N_0} u_k \right| < \frac{\varepsilon}{2}.$$

Вспомним теперь, что мы таким образом выбрали N, что при $n\geqslant N$ первая из сумм содержит все N_0 членов второй суммы. Поэтому указанная выше разность представляет собой сумму $n-N_0$ членов ряда $\sum u_k$ с номерами, каждый из которых превосходит N_0 .

Тогда выберем такое p, чтобы номер N_0+p превосходил номера всех $n-N_0$ членов только что указанной суммы. Тогда справедливо

$$\left| \sum_{k=1}^{n} u_k' - \sum_{k=1}^{n} u_k \right| \leqslant \sum_{k=N_0+1}^{N_0+p} |u_k|$$

Но теперь, пользуясь неравенством

$$\left| \sum_{k=1}^{N_0''} u_k - S \right| \leqslant \frac{\varepsilon}{2},$$

получаем то, что и требовалось доказать. Таким образом, мы доказали, что ряд $\sum u_k'$ сходится к S. Осталось лишь доказать, что он сходится абсолютно. Для этого достаточно применить приведенное выше доказательство для рядов $\sum |u_k|$ и $\sum |u_k'|$.

- 9 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства). Теорема о произведении двух абсолютно сходящихся рядов.
- 9.1 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства).

Теорема 14. Если числовой ряд $\sum u_k$ сходится абсолютно, то любая его перестановка членов сходится κ той же самой сумме.

9.2 Теорема о произведении двух абсолютно сходящихся рядов.

Теорема 15. Если $\sum u_k$ и $\sum v_k$ сходятся абсолютно κ и и v соответственно, то ряд $\sum w_k$, составленный из всевозможных произведений $u_i \cdot v_j$ сходится абсолютно κ и $\cdot v$.

Доказательство. Докажем сначала, что ряд $\sum w_k$ сходится абсолютно. Возьмем произвольное n_0 и рассмотрим $\sum_{k=1}^{n_0} |w_k|$. Эта сумма состоит из членов вида $|u_iv_j|$. Найдем среди этих индексов i и j наибольший индекс m, входящий в исследуемую сумму. Тогда

$$\sum_{k=1}^{n_0} |w_k| \leqslant (|u_1| + \ldots + |u_m|) \cdot (|v_1| + \ldots + |v_m|) \leqslant M_1 M_2$$

Ограничения M_1 и M_2 следуют из абсолютной сходимости рядов $\sum u_k$ и $\sum v_k$. Мы ограничили n_0 -ую частичную сумму исследуемого ряда $\sum |w_k|$, значит этот ряд сходится. Осталось лишь доказать, что он сходится к uv.

Пусть данный ряд сходится к S. Заметим, что в силу теоремы 9.1 мы можем как угодно переставлять члены ряда w_i , не влияя на сходимость. Иными словами, любая последовательность или подпоследовательность частичный сумм будет сходиться к S. Тогда рассмотрим последовательность частичных сумм $\{S_{m^2}\}$, где $S_{m^2}=(u_1+\ldots+u_m)\cdot(v_1+\ldots+v_m)$. Но

$$\lim_{m \to \infty} (u_1 + \dots + u_m) = u$$

$$\lim_{m \to \infty} (v_1 + \dots + v_m) = v$$

$$\Rightarrow S_{m^2} \to uv$$

10 Условно сходящийся числовой ряд. Признак Лейбница сходимости знакопеременного ряда вместе с оценкой на его остаток.

Определение 5. Будем говорить, что числовой ряд $\sum u_k$ сходится условно, если ряд $\sum u_k$ сходится, а ряд $\sum |u_k|$ расходится.

Теорема 16. Пусть для любого $k \in \mathbb{N}$ выполняется $a_k \geqslant a_{k+1}$, причем $a_k \to 0$. Тогда числовой ряд (называемый рядом Лейбница) $\sum (-1)^{k+1} a_k$ сходится, причем

$$|r_k| = \left| \sum_{l=k+1}^{\infty} (-1)^{l+1} a_l \right| \leqslant a_{k+1}$$

$$0 \leqslant S_{2n} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}) = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n} \leqslant a_1$$

Из этого можно сделать вывод, что последовательность $\{S_{2n}\}$ – ограниченная и монотонно неубывающая. Тогда $\exists \lim_{n\to\infty} S_{2n} = S$. С другой стороны, видно, что $S_{2n-1} = S_{2n} + a_{2n}$. Тогда $\exists \lim_{n\to\infty} S_{2n-1} = S + 0 = S$, т.е. $\lim_{n\to\infty} S_n = S$.

Итак, мы доказали, что ряд сходится. Теперь докажем вторую часть теоремы. Для этого заметим, что поскольку $\{S_{2n}\}$ не убывает, а $\{S_{2n-1}\}$ не возрастает (т.к. $S_{2n+1}=S_{2n-1}-(a_{2n}-a_{2n+1})$), то $S_{2n}\leqslant S\leqslant S_{2n-1}$, а также $S\leqslant S_{2n+1}$. По определению остаточного члена $r_{2n}=S-S_{2n}$. Пользуясь этими замечаниями, можно записать

$$r_{wn} = S - S_{2n} \leqslant S_{2n+1} - S_{2n} = a_{2n+1},$$

$$S_{2n-1} - S \leqslant S_{2n-1} - S_{2n} = a_{2n} \Rightarrow |r_{2n-1}| \leqslant a_{2n}.$$

Но тогда $|r_n| \leqslant a_{n+1}$, что и требовалось доказать.

11 Преобразование Абеля. Объясните, почему это преобразование является дискретным аналогом формулы интегрирования по частям.

Пусть $B_n = \sum_{k=1}^n b_k$ и $B_0 = 0$. Тогда

$$\sum_{k=1}^{n} = a_n B_n - \sum_{k=1}^{n-1} B_k (a_{k+1} - a_k).$$

Преобразование Абеля является дискретным аналогом интегрирования по частям. Для наглядности рассмотрим следующюю таблицу:

f	$\{a_n\}_{n=1}^{\infty}$
f'	$\{a_n - a_{n-1}\}_{n=2}^{\infty}$
$\int_{a}^{b} f(x) dx$	$\sum_{k=1}^{\infty} a_k$
$\left(\int_{a}^{x} f(x) dx\right)_{x}' = f(x)$	$\sum_{k=1}^{n} a_k - \sum_{k=1}^{n-1} a_k = a_n$
$f, g, G = \int_{a}^{x} g(t) dt + C$	${a_k}, {b_k}, {B_k = \sum_{j=1}^k b_j + B_0}$
$\int_{a}^{b} fg dx = \int_{a}^{b} f dG = f \cdot G _{a}^{b} - \int_{a}^{b} Gf' dx$	$\sum_{k=1}^{n} a_k b_k = a_n B_n - a_1 B_0 - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k$

12 Признаки Дирихле и Абеля сходимости рядов.

Теорема 17 (Признак Дирихле). Пусть последовательность $\{a_n\}$ монотонна, причем $\lim_{n\to\infty} a_n = 0$, а последовательность $\{B_n\}$ ограничена (например, числом M > 0). Тогда $\sum a_k b_k$ сходится.

Доказательство. Воспользуемся преобразованием Абеля:

$$\sum_{k+1}^{n} a_k b_k = a_n B_n - \sum_{k=1}^{n-1} B_k (a_{k+1} - a_k).$$

Из условия теоремы следует, что $a_nB_n \to 0$. Из ограниченности $\{B_n\}$ и монотонности $\{a_n\}$ следует, что

$$\sum_{k=1}^{\infty} |B_k(a_{k+1} - a_k)| \leqslant M \sum_{k+1}^{\infty} |a_{k+1} - a_k| = M \left| \sum_{k+1}^{\infty} (a_{k+1} - a_k) \right| = M \cdot |a_1| \Rightarrow \sum_{k+1}^{\infty} B_k(a_{k+1} - a_k) \text{ сходится абсолютно.}$$

A это означает, что $\exists \lim_{n\to\infty} \sum_{k=1}^{n-1} B_k(a_{k+1}-a_k)$. Но тогда данный ряд сходится.

Теорема 18 (Признак Абеля). Пусть последовательность $\{a_n\}$ монотонная и ограничена, $a \sum b_k$ сходится. Тогда $\sum a_k b_k$ сходится.

Доказательство. Заметим, что раз $\{a_n\}$ монотонна и ограничена, то $\exists \lim_{n\to\infty} a_n = a$. Тогда $a_n = a + \alpha_n$, где α_n – бесконечно малая, причем в силу монотонности $\{a_n\}$ последовательность $\{\alpha_n\}$ также является монотонной. Тогда

$$\sum a_k b_k = \sum a b_k + \sum \alpha_k b_k.$$

Здесь первый ряд сходится, т.к. сходится ряд $\sum b_k$, а второй ряд сходится по признаку Дирихле ($\{B_k\}$ ограничена, т.к. соответствующий ряд сходится). Значит, $\sum a_k b_k$ сходится.

13 Теорема Римана о перестановке членов условно сходящегося ряда, идея доказательства.

Лемма 1. Если $\sum a_k$ сходится условно, то $\sum a^+$ и $\sum a^-$ расходятся.

Доказательство. Пусть $a_k = a_k^+ + a_k^-$. Допустим, что один из $\sum a^+$ или $\sum a^-$ сходится. Тогда сходится и второй (т.к. сходится сумма). Тогда

$$\sum |a_k| = \sum a^+ - \sum a^-$$

тоже сходится. Противоречие с условной сходимостью.

Теорема 19. Какого бы ни было число $L \in \mathbb{R}$, члены условно сходящегося ряда $\sum u_n$ можно переставить так, чтобы его сумма стала равной L.

- 1. Будем добавлять неиспользованные положительные члены ряда до тех пор пока сумма не станет больше L. Это всегда возможно по лемме 1.
- 2. Будем добавлять неиспользованные отрицательные члены ряда до тех пор пока сумма не станет меньше L. Это всегда возможно по лемме 1.
- 3. Вернемся к первому шагу.

Таким образом, полученный ряд сходится к L.

- 14 Дайте определение поточечной и равномерной сходимости функциональных последовательностей и рядов. Необходимое условие равномерной сходимости функционального ряда.
- 14.1 Дайте определение поточечной и равномерной сходимости функциональных последовательностей и рядов.

Определение 6. Будем говорить, что функциональная последовательность $\{f_n(x)\}$ сходится поточечно на \mathbb{E} , если $\forall x_0 \in \mathbb{E}$ сходится уже числовая последовательность $\{f_n(x_0)\}$.

Определение 7. Будем говорить, что функциональная последовательность $\{f_n(x)\}$ сходится на \mathbb{E} равномерно κ функции f, если

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \forall n \geqslant N \,\forall x \in \mathbb{E} \, |f_n(x) - f(x)| < \varepsilon.$$

Для равномерной сходимости принято использовать обозначение $\{f_n(x)\} \rightrightarrows f(x)$.

Определение 8. Будем говорить, что функциональный ряд $\{\sum f_n(x)\}$ сходится поточечно на \mathbb{E} , если $\forall x_0 \in \mathbb{E}$ сходится уже числовой ряд $\{\sum f_n(x_0)\}$.

Определение 9. Будем говорить, что функциональный ряд $\{\sum f_n(x)\}$ сходится на $\mathbb E$ равномерно к функции S(x), если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \forall n \geqslant N \ \forall x \in \mathbb{E} \left| \sum_{k=1}^{n} f_k(x) - S(x) \right| < \varepsilon.$$

Для равномерной сходимости принято использовать обозначение $\sum f_n(x)
ightharpoons S(x)$.

14.2 Необходимое условие равномерной сходимости функционального ряда.

Теорема 20. Если $\sum u_n(x)$ равномерно сходится на \mathbb{E} , то $u_k(x) \rightrightarrows 0$ на \mathbb{E} .

Доказательство. Просто заметим, что $u_n(x) = U_n(x) - U_{n-1}(x) \rightrightarrows S(x) - S(x) = 0$, где $U_n(x) = \sum_{k=1}^n u_k(x)$.

15 Критерий Коши сходимости функциональных последовательностей и рядов.

Теорема 21 (Критерий Коши равномерной сходимости функциональной последовательности).

$$\{f_n(x)\} \implies \text{ \it Ha} \ \mathbb{E} \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n \geqslant N \ \forall p \in \mathbb{N} \ \forall x \in \mathbb{E} \ |f_n(x) - f_{n+p}(x)| < \varepsilon \}$$

Доказательство.

• Необходимость Пусть $\{f_n(x)\} \rightrightarrows f(x)$ на $\mathbb E$. Тогда

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \forall x \in \mathbb{E} |f_n(x) - f(x)| < \frac{\varepsilon}{2}.$$

Тогда и подавно $\forall p \in \mathbb{N} |f_{n+p}(x) - f(x)| < \frac{\varepsilon}{2}$. Но

$$|f_{n+p}(x) - f_n(x)| = |f_{n+p}(x) - f(x) + f(x) - f_n(x)| \le |f_{n+p}(x) - f(x)| + |f_n(x) - f(x)| < \varepsilon.$$

• Достаточность Зафиксируем произвольное $x \in \mathbb{E}$. Теперь, используя признак Коши сходимости числовой последовательности, получаем сходимость $\{f_n(x)\}\forall x \in \mathbb{E}$. А это значит, что существует предельная функция f(x).

Снова зафиксируем произвольные $x \in \mathbb{E}$ и $\varepsilon > 0$. Делая предельный перезод в неравенстве $|f_{n+p}(x) - f_n(x)| < \varepsilon$ при $p \to \infty$, получаем $|f_n(x) - f(x)| \le \varepsilon < 2\varepsilon = \varepsilon'$.

Теорема 22. Функциональный ряд сходится равномерно, тогда и только тогда, когда последовательность его частичных сумм сходится равномерно.

Доказательство. Прямое следствие из теоремы 21.

16 Признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда.

16.1 Признак сравнения для функциональных рядов.

Теорема 23. Пусть $\sum v_k(x)$ равномерно сходится. Если $|u_k(x)| \leq v_k(x) \forall x \in \mathbb{E}$, то ряд $\sum u_k$ тоже сходится равномерно.

Доказательство. То же самое, что и в доказательстве признака Вейерштрасса, но вместо c_k функциональная последовательность.

16.2 Признак Вейерштрасса равномерной сходимости функционального ряда.

Теорема 24. Пусть

$$\exists \{c_k\} \forall k \in \mathbb{N} \forall x \in \mathbb{E} |u_k(x)| \leqslant c_k.$$

Тогда если $\sum c_k$ сходится, то $\sum u_k(x)$ сходится равномерно на \mathbb{E} .

Доказательство. Воспользуемся признаком Коши сходимости числового ряда:

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \forall p \in \mathbb{N} \left| \sum_{k=n+1}^{n+p} c_k \right| < \varepsilon$$

Заметим, что модуль можно опустить. В условии теоремы мы неявно полагаем, что $c_k \geqslant 0$, иначе условие $|u_k(x)| \leqslant c_k$ никак не может выполняться. Тогда

$$\left|\sum_{k=n+1}^{n+p} u_k(x)\right| \leqslant \sum_{k=n+1}^{n+p} |u_k(x)| \leqslant \sum_{k=n+1}^{n+p} c_k < \varepsilon.$$

- 17 Дайте определение равномерной ограниченности последовательности функций. Сформулируйте признаки Дирихле и Абеля равномерной сходимости ряда (б.д.).
- 17.1 Дайте определение равномерной ограниченности последовательности функций.

Определение 10. Будем говорить, что функциональная последовательность $\{f_k(x)\}$ равномерно ограничена на \mathbb{E} , если

$$\exists M > 0 \forall k \in \mathbb{N} \forall x \in \mathbb{E} |f_k(x)| \leqslant M$$

17.2 Сформулируйте признаки Дирихле и Абеля равномерной сходимости ряда (б.д.).

Теорема 25 (Признак Дирихле). Пусть выполнено:

- 1. Последовательность частичных сумм $\{U_n(x)\}$ равномерно ограничена на \mathbb{E} .
- 2. Функциональная последовательность $\{v_k(x)\}$ монотонна по k на $\mathbb E$ и $\{v_k(x)\} \rightrightarrows 0$ на $\mathbb E$.

Тогда
$$\sum u_k(x) \cdot v_k(x) \Rightarrow на \mathbb{E}$$
.

Теорема 26. Пусть выполнены условия:

- 1. Функциональная последовательность $\{v_k(x)\}$ равномерно ограничена на \mathbb{E} , $u \, \forall x \in \mathbb{E}$ последовательность $\{v_k(x)\}$ монотонна по k.
- 2. $\sum u_k(x) \Rightarrow на \mathbb{E}$

Тогда функциональный ряд $\sum u_k(x) \cdot v_k(x) \Longrightarrow$ на \mathbb{E} .

- 18 Приведите пример последовательности непрерывных функций, которая поточечно сходится к разрывной функции. Теорема об интеграле от равномерного пределеа непрерывных функций и ее следствие для равномерно сходящихся рядов.
- 18.1 Приведите пример последовательности непрерывных функций, которая поточечно сходится к разрывной функции.

$$f_n(x) = \cos^{2n} x \to f(x) = \begin{cases} 1, & x = \pi k, k \in \mathbb{Z} \\ 0, & \text{иначе} \end{cases}$$

Очевидно, что $f_n(x)$ непрерывная, а f(x) разрывная.

18.2 Теорема об интеграле от равномерного предела непрерывных функций и ее следствие для равномерно сходящихся рядов.

Теорема 27. Пусть f_n непрерывна на отрезке [a,b] при всех $n \in \mathbb{N}$. Пусть $f_n \rightrightarrows f$ на [a,b] при $n \to \infty$. Тогда

$$\int_{a}^{x} f_{n}(t)dt \Rightarrow \int_{a}^{x} f(t)dt$$

Доказательство. Так как функция f_n непрерывна на отрезке [a,b], то функция f также непрерывна на этом отрезке. В частности f интегрируема по Риману на $[a,x], a \leqslant x \leqslant b$. Поскольку $f_n \rightrightarrows f$, имеем

$$\exists N = N(\varepsilon/(b-a)) \forall n \geqslant N \forall x \in [a,b] |f_n(x) - f(x)| < \frac{\varepsilon}{b-a}$$

Следовательно, при $n\geqslant N$

$$\sup \left| \int\limits_a^x f_n(t) dt - \int\limits_a^x f(t) dt \right| \leqslant \int\limits_a^b |f_n(t) - f(t)| dt \leqslant \int\limits_a^b \frac{\varepsilon}{b-a} dt = \varepsilon, \text{ r.e. } \int\limits_a^x f_n(t) dt \rightrightarrows \int\limits_a^x f(t) dt$$

Теорема 28 (Теорема о почленном интегрировании функционального ряда). Пусть $u_k \in C([a,b])$ и ряд $\sum u_k$ равномерно сходится на [a,b]. Тогда ряд $\sum \int_a^x f(t)dt$ тоже равномерно сходится на [a,b] и его сумма равна $\int_a^x \sum u_k dt \forall x \in [a,b]$.

Доказательство. Применяем теорему 27 к последовательности частичных сумм.

19 Теорема о производной функционального предела и ее следствие для рядов.

Теорема 29. Пусть $\forall n f_n \in C^1([a,b])$ $(f_n$ непрерывно дифференцируема на [a,b], т.е. существует производная и она непрерывна). Пусть $\{f_n(c)\}$ сходится для некоторой $c \in [a,b]$ и пусть $f'_n \rightrightarrows \varphi$. Тогда $\{f_n\}$ сходится равномерно на [a,b] к некоторой функции $f \in C^1([a,b])$ и $f' = \varphi$, то есть

$$\left(\lim_{n\to\infty} f_n\right)' = \lim_{n\to\infty} f_n'$$

Доказательство. По теореме ? о непрерывности предельной функции φ непрерывна на [a,b]. По теореме 27 об интеграле от равномерного предела непрерывных функций и формуле Ньютона-Лейбница:

$$f_n(x) - f_n(c) = \int_{c}^{x} f'_n(t)dt \Rightarrow \int_{a}^{x} \varphi(t)dt$$
$$f(x) - f(c) = \int_{a}^{x} \varphi(t)dt$$
$$f'(x) = \varphi(x)$$

Теорема 30. Пусть $\sum u_k$ сходится в точке $c \in [a,b]$, а ряд $\sum u_k'$ сходится равномерно на [a,b]. Тогда $\sum u_k$ сходится равномерно на [a,b] и $(\sum u_k)' = \sum u_k'$.

Доказательство. Доказывается аналогично.

- 20 Определение степенного ряда, его радиуса и круга сходимости (формула Коши-Адамара). Докажите, что степенной ряд поточечно сходится строго внутри круга сходимости, и расходится строго вне круга сходимости.
- 20.1 Определение степенного ряда, его радиуса и круга сходимости (формула Коши-Адамара).

Определение 11. Функциональный ряд $\sum a_n(z-z_0)^n$ (где $a_n,z_0\in\mathbb{C}$) называется степенным рядом.

Определение 12 (Формула Коши-Адамара). Радиус сходимости ряда – это число

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

 $(число или +\infty)$

Определение 13. Круг сходимости ряда – это $\{z \in \mathbb{C} \mid |z-z_0| < R\}$. Нас интересует, при каких z сходится $\sum a_n(z-z_0)^n$. Сделав замену $z:=z-z_0$, сведем вопрос $\kappa \sum a_n z^n$.

20.2 Докажите, что степенной ряд поточечно сходится строго внутри круга сходимости, и расходится строго вне круга сходимости.

Теорема 31. Пусть R – радиус сходимости $\sum a_n z^n$. Тогда

- 1. $\Pi pu |z| < R$ ряд сходится, причем абсолютно.
- 2. При |z|>R ряд расходится и даже его общий член не стремится к 0
- 3. При |z| = R всякое бывает

Доказательство. Применим признак Коши к ряду $\sum |a_n z^n| = \sum |a_n| \cdot |z^n|$.

$$l = \lim_{n \to \infty} \sqrt[n]{|a_n| \cdot |z|^n} = |z| \cdot \lim_{n \to \infty} \sqrt[n]{|a_n|} = \frac{|z|}{R}$$

21 Определение радиуса и круга сходимости степенного ряда. Докажите, что степенной ряд сходится равномерно на любом замкнутом круге, лежащем строго внутри круга сходимости.

Определение 14 (Формула Коши-Адамара). Радиус сходимости ряда – это число

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

 $(число или +\infty)$

Определение 15. Круг сходимости ряда – это $\{z \in \mathbb{C} \mid |z-z_0| < R\}$. Нас интересует, при каких z сходится $\sum a_n(z-z_0)^n$. Сделав замену $z := z-z_0$, сведем вопрос $\kappa \sum a_n z^n$.

Теорема 32 (о равномерной сходимости степенного ряда). Пусть R – радиус сходимости ряда $\sum a_n z^n$ и 0 < r < R. Тогда в замкнутом круге $\{z \in \mathbb{C} | |z| \leqslant r\}$ ряд сходится равномерно.

Доказательство. При $|z| \leqslant r$ имеем $|a_n z^n| \leqslant |a_n| r^n$, а ряд $\sum |a_n| \cdot r^n$ сходится по теореме 31 (т.к. r < R). Значит, по признаку Вейерштрасса $\sum a_n z^n$ сходится равномерно.

- 22 Приведите 3 примера степенных рядов: (1) сходится везде на границе круга сходимости, (2) не сходится на границе круга сходимости, (3) в некоторых точках границы круга сходимости ряд сходится, а в некоторых нет. Дайте определение функции, аналитической в точке x_0 .
- 22.1 Приведите 3 примера степенных рядов: (1) сходится везде на границе круга сходимости, (2) не сходится на границе круга сходимости, (3) в некоторых точках границы круга сходимости ряд сходится, а в некоторых нет.
 - 1. $\sum \frac{z^n}{n^2}$ сходится при |z|=1
 - 2. $\sum z^n$ не сходится на границе круга сходимости
 - 3. $\sum \frac{z^n}{n}, R=1$ расходится при z=1, сходится при z=-1 (по признаку Лейбница)
- **22.2** Дайте определение функции, аналитической в точке x_0 .

Определение 16. Функция f называется аналитической в точке x_0 , если существует $\rho > 0$ для которого $f(z) = \sum a_n (z-z_0)^n$ при $|z-z_0| < \rho$ (т.е. f представляется степенным рядом).

- 23 Лемма о сохранении радиуса сходимости при почленном дифференцировании степенного ряда. Теорема о почленном дифференцировании и интегрировании степенного ряда.
- 23.1 Лемма о сохранении радиуса сходимости при почленном дифференцировании степенного ряда.

Лемма 2. Радиусы сходимости рядов $\sum a_k(x-x_0)^k$ и $\sum ka_k(x-x_0)^{k-1}$ совпадают. Доказательство. Очевидно, т.к. $\lim_{n\to\infty} \sqrt[k]{k} = 1$.

23.2 Теорема о почленном дифференцировании и интегрировании степенного ряда.

Теорема 33. Пусть R>0 – радиус сходимости ряда $f(x)=\sum a_k(x-x_0)^k$. Тогда при $|x-x_0|< R$

- $1. \ f$ имеет производную всех порядков, которые можно вычислить почленным дифференцированием
- 2. $\int_{x_0}^{k} f(t)dt = \sum a_k \frac{(x-x_0)^{k+1}}{k+1}$
- 3. Pяды, полученные почленным дифференцированием и интегрированием имеют радиус сходимости R.

24 Единственность разложения в ряд для аналитической функции. Ряд Тейлора.

24.1 Единственность разложения в ряд для аналитической функции.

Теорема 34. Пусть f – аналитическая функция. Тогда ее предствление в виде

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

единственно. Более того,

$$a_k = \frac{f^{(k)}(x_0)}{k!} \quad \forall k = 0, 1, 2, \dots$$

Доказательство. Из леммы? и теоремы о почленном дифференцировании ряда имеем

$$f^{(n)}(x) = \sum_{k=0}^{\infty} (a_k(x - x_0)^k)^{(n)}$$

$$f^{(n)}(x_0) = n! a_n \Rightarrow a_n = \frac{f^{(n)}(x_0)}{n!}$$

24.2 Ряд Тейлора.

Определение 17. Ряд

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k, \ \text{rde } a_k = \frac{f^{(k)}(x_0)}{k!}$$

называется рядом Тейлора функции f в точке x_0 .

- 25 Вычислите ряды Маклорена для функций $\frac{1}{1-x}$ и $\frac{1}{(1-x)^2}$ и докажите, что эти функции аналитичны в точке 0. Приведите пример неаналитической функции (б.д.).
- **25.1** Вычислите ряды Маклорена для функций $\frac{1}{1-x}$ и $\frac{1}{(1-x)^2}$ и докажите, что эти функции аналитичны в точке 0.

Утверждение 1.

$$f(x) = \frac{1}{1-x} = 1 + x + x^2 + \dots = \sum_{k=0}^{\infty} x^k \ npu \ |x| < 1.$$

Доказательство. Заметим, что $S_n = 1 + x + x^2 + ... + x^{n-1}$. Умножим обе части на x:

$$x \cdot S_n = x + x^2 + \dots + x^n$$

Далее заметим, что

$$x + x^2 + \dots + x^{n-1} = S_n - 1 \Rightarrow x \cdot S_n = S_n - 1 + x^n \Rightarrow S_n = \frac{1 - x^n}{1 - x} \Rightarrow \lim_{n \to \infty} S_n = \frac{1}{1 - x}$$

Утверждение 2.

$$g(x) = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots = \sum_{k=0}^{\infty} (k+1)x^k \text{ npu } |x| < 1.$$

Доказательство. $g(x) = (f(x))^2$

25.2 Приведите пример неаналитической функции (б.д.).

$$x_0 = 0, \quad f(x) = \begin{cases} 0, & x = 0 \\ e^{-1/x^2}, & x \neq 0 \end{cases}$$

Ряд Тейлора равен 0, т.к. $f^{(k)}(0) = 0 \ \forall k$.

- 26 Запишите ряды Маклорена для функций $e^x, \cos x, \sin x, \ln(1+x), \arctan x, (1+x)^{\alpha}$. Докажите аналитичность функции e^x и функции $\ln(1+x)$ в точке 0.
- **26.1** Запишите ряды Маклорена для функций $e^x, \cos x, \sin x, \ln(1+x), \arctan x, (1+x)^{\alpha}$.

1.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

2.

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

3.

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

4.

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$$

5.

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$

6.

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)x^n}{n!}$$

26.2 Докажите аналитичность функции e^x и функции $\ln(1+x)$ в точке **0.**

Утверждение 3.

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots \quad \forall x \in \mathbb{R}$$

Доказательство. Имеем

$$r_{n,f} = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} = \frac{e^c}{(n+1)!} x^{n+1}$$

для некоторого $c \in [0, x]$.

$$|r_{n,f}| \leqslant \frac{e^{|x|}|x|^{n+1}}{(n+1)!} \to 0.$$

Поскольку $(n+1)! \geqslant (\frac{n}{2})^{n/2} \Rightarrow (n+1)!$ растет быстрее, чем x^{n+1} .

Утверждение 4.

$$f(x) = \ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \dots$$

Доказательство.

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots = (\ln(1+x))' \Rightarrow \ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \dots$$

27 Дайте определение квадрируемости плоской фигуры по Жордану. Докажите критейрий квадрируемости плоской фигуры. В чем состоит свойство конечной аддитивности меры Жордана?

27.1 Дайте определение квадрируемости плоской фигуры по Жордану.

Определение 18. Множество $M \subset \mathbb{R}^2$ называется элементарным, если его можно представить в виде объединения конечного числа непересекающихся прямоугольников с вычислимой площадью.

Определение 19. Пусть $E \subset \mathbb{R}^2$ – ограниченное множество. Числа

$$S_*(E) = \sup_{A \subset E} S(A), \quad S^*(E) = \inf_{E \subset B} S(B),$$

где верхняя и нижняя грани берутся по всем желементарным множествам A и B ($A \subset E \subset B$), называются соответственно нижней и верхней мерой множества E.

Определение 20. Ограниченное множество $E \subset \mathbb{R}^2$ называется квадрируемым по Жордану, если его нижняя и верхняя меры совпадают (т.е. $S_*(E) = S^*(E)$).

27.2 Докажите критейрий квадрируемости плоской фигуры.

Теорема 35. Плоская фигура E квадрируема тогда и только тогда, когда

$$\forall \varepsilon > 0 \exists Q, P(P \subset e \subset Q) \quad S(Q) - S(P) < \varepsilon$$

Доказательство.

1. Необходимость

Пусть E квадрируема, т.е. $S_*(E)=S^*(E)$. По определению верхней и нижней меры для любого фиксированного $\varepsilon>0$ найдутся такие P и $Q(P\subset E\subset Q)$, что $S_*-\frac{\varepsilon}{2}< S(P)\leqslant S_*, S^*< S(Q)\leqslant S^*+\frac{\varepsilon}{2}$. Получается, что $S(Q)-S(P)<\varepsilon$

2. Достаточность

Пусть

$$\forall \varepsilon > 0 \exists Q, P(P \subset E \subset Q) S(Q) - S(P) < \varepsilon$$
$$S(P) \leqslant S_* \leqslant S^* \leqslant S(Q) \Rightarrow 0 \leqslant S^* - S_* \leqslant S(Q) - S(P) < \varepsilon$$

Так как ε – произвольное положительное число, то получаем, что $S_* = S^*$.

27.3 В чем состоит свойство конечной аддитивности меры Жордана?

Определение 21. Измеримость по Жордану обладает свойством конечной аддитивности, т.е. если

$$F = \bigcup_{i=1}^{n} F_i,$$

а для любых $i \neq j$ выполняется $F_i \cap F_j = \varnothing$, причем все F_i измеримы, то и F измерима, причем

$$S(F) = \sum S(F_i)$$

28 Дайте определение кратного интеграла от функции двух переменных по компактному квадрируемому множеству, со всеми необходимыми определениями (разбиение, диаметр разбиения, размеченное разбиение, измельчение, интегральная сумма).

Пусть дана функция z = f(x, y), G – область изменения переменных x и y (G – компактно и квадрируемо).

Определение 22. Разбиение σ множества G – набор попарно непересекающихся подмножеств $\sigma = \{G_i \subset G\}$, которые в объединении дают все G.

Определение 23. Диаметр разбиения d – наибольший диаметр множеств G_i .

$$= \max_i (\sup_{M_1,M_2 \in G_i} \rho(M_1,M_2))$$

Определение 24. Размеченное разбиение – разбиение множества G вместе c конечной последовательностью $M_1, ..., M_n, c$ условием, что $M_i \in G_i$

Определение 25 (Измельчение разбиения). Возъмем более мелкое разбиение по x, y, m.e. каждая клетка мелкого разбиения будет содержаться в более крупной. Тогда получим разбиение мельче исходного.

Определение 26 (Интегральная сумма). Сумма $S_{f,(\sigma,M)} = \sum_{i=1}^n f(M_i)S(G_i)$ называется интегральной суммой для функции f, соответствующей разбиению σ и заданному выбору точек M_i .

Определение 27. Кратным интегралом функции f на множестве G называется число I, такое что

$$I = \int_{G} f(x, y) dx dy = \lim_{|\sigma| \to 0} S_{f, (\sigma, M)}.$$

Обозначение:

$$\iint\limits_{G} f(x,y) dx dy = \int\limits_{G} f(M) dS$$

29 Докажите, что если ФМП интегрируема на множестве, то она ограничена на этом множестве.

Теорема 36. Если $\Phi M\Pi$ интегрируема на множестве, то она ограничена на этом множестве.

Доказательство. От противного. Интеграл $I = \lim_{\delta \to 0} I(M_i, G_i)$. Пусть для определенности функция неограничена в области G, тогда она неограничена в какой-то области G_j .

$$I(M_i, G_i) = \sum_i f(M_i) \delta S_i = f(M_j) \delta S_j + \sum_{i \neq j} f(M_i) \delta S_i$$

Так как $f(M_j)$ можно делать сколь угожно большим, то не будет существовать предела. Следовательно, функция f неинтегрируема на G.

- 30 Дайте определение верхней и нижней суммы Дарбу, верхнего и нижнего интегралов. Сформулируйте критерий Дарбу интегрируемости функции двух переменных на измеримом плоском множестве.
- 30.1 Дайте определение верхней и нижней суммы Дарбу, верхнего и нижнего интегралов.

Аналогично одномерному случаю.

30.2 Сформулируйте критерий Дарбу интегрируемости функции двух переменных на измеримом плоском множестве.

Теорема 37. Для того, чтобы $\Phi M\Pi$ была интегрируема на измеримом множестве по Риману необходимо и достаточно, чтобы ее верхний и нижний интеграл Дарбу совпадали $(\overline{I_f} = I_f)$.

31	Сформулируйте ключевые идеи доказательства критерия Дар-
	бу.

Теорема 38. Для того, чтобы $\Phi M\Pi$ была интегрируема на измеримом множестве по Риману необходимо и достаточно, чтобы ее верхний и нижний интеграл Дарбу совпадали $(\overline{I_f} = \underline{I_f})$.

Доказательство. Аналогично одномерному случаю.

32 Докажите теорему Кантора: функция, непрерывная на компакте, равномерно непрерывна на нем (теорему Больцано - Вейерштрасса нужно сформулировать, но не обязательно доказывать).

Теорема 39. Функция, непрерывная на компакте, равномерно непрерывна на нем.

Доказательство. От противного. Функция f непрерывна на K, но не равномерно непрерывна. Запишем отрицание равномерной непрерывности:

$$\exists \varepsilon > 0 \forall \delta > 0 \exists x, y \in K|x - y| < \delta \land |f(x) - f(y)| \geqslant \varepsilon$$

Пусть $\delta=\frac{1}{n}$, тогда найдутся такие $x_n,y_n\in K$, что $|x_n-y_n|<\frac{1}{n}$ и $|f(x_n)-f(y_n)|\geqslant \varepsilon$. Так как $x_n\in K$ и K – компакт, то по теореме Больцано-Вейерштрасса существует подпоследовательность x_{n_k} , которая сходится к некоторому $x_0\in K$. Из того, что $|x_{n_k}-y_{n_k}|<\frac{1}{n_k}$, следует, что $y_{n_k}\to x_0$. Из непрерывности: $f(x_{n_k})\to f(x_0), f(y_{n_k})\to f(y_0)\Rightarrow 0<\varepsilon\leqslant |f(x_{n_k})-f(y_{n_k})|\to 0$. Пришли к противоречию.

33 Докажите, что функция, непрерывная на компакте, интегрируема на нем (теорему Кантора нужно сформулировать, но не обязательно доказывать).

Теорема 40. Функция, непрерывная на компакте, интегрируема на нем.

Доказательство. По теореме Вейерштрасса функция f – ограничена на E. Если S(E)=-, то $\int\limits_E f(x)dx=0$. Если S(E)>0 и $f\in C(E)$, то по теореме Кантора f – равномерно непрерывна на E, т.е.

$$\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0 \forall x_1, x_2 \in E \rho(x_1, x_2) < \delta(\varepsilon) \Rightarrow |f(x_1) - f(x_2)| < \frac{\varepsilon}{S(E)}$$

Возьмем далее разбиение τ множество E настолько мелким, чтобы выполнялось неравенство: $d_{\tau} \leqslant \delta(\varepsilon)$. Для него имеем:

$$\sum_{k=1}^{N} (\sup f(x) - \inf f(x)) S(E_k) \leqslant \frac{\varepsilon}{S(E)} \sum_{k=1}^{N} S(E_k) = \varepsilon.$$

Следовательно, f интегрируема на данном компакте

- 34 Запишите основные свойства кратных интегралов (аддитивность, линейность, монотонность, интеграл от модуля).
 - 1. Аддитивность

$$\int_{E} f(x)dx = \int_{E_1} f(x)dx + \int_{E_2} f(x)dx$$

2. Линейность

$$\int_{E} (\alpha f(x) + \beta g(x)) = \alpha \int_{E} f(x) dx + \beta \int_{E} g(x) dx$$

3. Монотонность

$$f(x) \leqslant g(x) \Rightarrow \int_{E} f(x)dx \leqslant \int_{E} g(x)dx$$

4. Интегрирование модуля и оцунка интеграла

$$\left| \int_{E} f(x) dx \right| \leqslant \int_{E} |f(x)| dx$$

35 Теорема о среднем для двойного интеграла (формулировка и доказательство).

Теорема 41.

- 1. Если f интегрируема на $A\subseteq R^2$ и если $\forall x\in A\ m\leqslant f(x,y)\leqslant M$, то $m\cdot S(A)\leqslant \iint\limits_A f(x,y)dxdy\leqslant M\cdot S(A)$
- 2. Если f непрерывна, множество А связно, то

$$\exists (x_0, y_0) \in A \ f(x_0, y_0) = \frac{\iint\limits_A f(x, y) dx dy}{S(A)}$$

Доказательство.

- 1. Просто навесить интеграл на данное неравенство.
- 2. Из первого пункта следует, что

$$m = \min_{A} f = f(x_1, y_1) \leqslant R = \frac{\iint_{A} f(x, y) dx dy}{S(A)} \leqslant M = \max_{A} f = f(x_2, y_2).$$

Так как множество связно, то существует непрерывная кривая $(\varphi(t), \psi(t))$, такая что $(\varphi(0), \psi(0)) = (x_1, y_1), (\varphi(1), \psi(1)) = (x_1, y_1)$. Рассмотрим функцию $g(t) = f(\varphi(t), \psi(t))$. Она непрерывна на отрезке [0, 1] и достигает минимума и максимума на концах. Значит, существует некоторая точка $c \in [0, 1]$ такая, что $f(\varphi(c), \psi(c)) = g(c) = R$ (по теореме о промежуточном значении).

36 Теорема о сведении двойного интеграла к повторному (доказательство для прямоугольной области).

Теорема 42. Пусть $R = [a,b] \times [c,d]$. Если f интегрируема на R и для любого $\widetilde{x} \in [a,b]$ существует $I(\widetilde{x}) = \int\limits_{c}^{d} f(\widetilde{x},y) dy$, тогда существует интеграл

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \iint_{R} f(x, y) dx dy$$

$$a = x_0 < x_1 < \dots < x_n = b$$
, $\Delta x_k = x_k - x_{k-1}$; $c = y_0 < y_1 < \dots < y_n = d$, $\Delta y_l = y_l - y_{l-1}$;

на $n \cdot m$ прямоугольников $R_{kl} = [x_{k-1}, x_k] \times [y_{l-1}, y_l], \Delta R_{kl} = \Delta x_k \cdot \Delta y_l$. Пусть $m_{kl} = \inf_{R_k l} f(x, y), M_{kl} = \sup_{R_k l} f(x, y)$. Тогда

$$m_{kl} \leqslant f(x,y) \leqslant M_{kl} \quad \forall (x,y) \in R_k l.$$

Зафиксируем $x = \xi_k \in [x_{k-1}, x_k]$ и проинтегрируем по у на $[y_{l-1}, y_l]$:

$$m_{kl}\Delta y_l \leqslant \int_{y_{l-1}}^{y_l} f(\xi_k, y) dy \leqslant M_{kl}\Delta y_l$$

Домножим далее на Δx_k и просуммируем полученные неравенства по l от 1 до m, а затем по k от 1 до n. Имеем:

$$\underline{S}_{\tau}(f) = \sum_{k=1}^{n} \sum_{l=1}^{m} m_{kl} \Delta x_k \Delta y_l \leqslant \sum_{k=1}^{n} I(\xi_k) \Delta x_k \leqslant \overline{S}_{\tau}(f) = \sum_{k=1}^{n} \sum_{l=1}^{m} M_{kl} \Delta x_k \Delta y_l.$$

Устремим диаметр разбиения к 0, получаем, в силу интегрируемости функции f, что суммы Дарбу стремятся к двойному интегралу. Значит, что предел среднего члена в данном выше неравенстве равен как двойному, так и повторному интегралу.

37 Теорема о сведении двойного интеграла к повторному (доказательство для произвольной области, можно пользоваться соответствующей теоремой для прямоугольной области и теоремой Лебега).

Теорема 43. Пусть Ω – элементарное относительно оси O_x множество, функция f интегрируема на Ω и при $\forall x \in [a,b]$ существует интеграл

$$\int_{\varphi(x)}^{\psi(x)} f(x,y) dy.$$

Тогда существует повторный интеграл

$$\int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x, y) dy. \right) dx,$$

причем

$$\int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x, y) dy. \right) dx = \iint_{\Omega} f(x, y) dx dy.$$

Доказательство. Пусть R прямоугольник со сторонами, параллельными осям координат, содержащий область Ω и

$$F(x,y) = f(x,y) \cdot \chi_{\Omega}(x,y).$$

Применяя предыдущую теорему к функции F, получаем искомую формулу.