Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrif
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblen
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkei
- 8. Reduzierbarkeit
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblen
- 11. Komplexität Einführung
- 12. NP-Vollständigkeit
- 13 PSPACE

"Rice'sohe Watestrophe"

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar

{ω | Mω berechnet 52} -> mentscheidbar {ω | Mω berechet honst. Flog-7-13

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar Theorem (Satz von Rice)

Sei R die Menge aller Turing-berechenbaren Funktionen.

Sei $S \subseteq R$ eine **nicht-triviale** Teilmenge von R (d.h. $S \neq \emptyset$ und $S \neq R$).

Dann ist $C(S) := \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$ unentscheidbar.

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar Theorem (Satz von Rice)

Sei \mathcal{R} die Menge aller Turing-berechenbaren Funktionen.

Sei $S \subseteq \mathcal{R}$ eine **nicht-triviale** Teilmenge von \mathcal{R} (d.h. $S \neq \emptyset$ und $S \neq \mathcal{R}$).

Dann ist $C(S) := \{w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S\}$ unentscheidbar.

Beweis

Fall 1: Die überall undefinierte Funktion Ω ist <u>nicht</u> in \mathcal{S} .

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar Theorem (Satz von Rice)

Sei \mathcal{R} die Menge aller Turing-berechenbaren Funktionen.

Sei $S \subseteq \mathcal{R}$ eine **nicht-triviale** Teilmenge von \mathcal{R} (d.h. $S \neq \emptyset$ und $S \neq \mathcal{R}$).

Dann ist $C(S) := \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$ unentscheidbar.

Beweis

Fall 1: Die überall undefinierte Funktion Ω ist nicht in \mathcal{S} . Wir zeigen $H_0 \leq \mathcal{C}(\mathcal{S})$.

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar Theorem (Satz von Rice)

Sei \mathcal{R} die Menge aller <u>Turing-berechenbaren</u> Funktionen.

Sei $S \subseteq \mathcal{R}$ eine **nicht-triviale** Teilmenge von \mathcal{R} (d.h. $S \neq \emptyset$ und $S \neq \mathcal{R}$).

Dann ist $C(S) := \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$ unentscheidbar.

Beweis

Fall 1: Die überall undefinierte Funktion Ω ist nicht in S. Wir zeigen $H_0 \leq C(S)$.

Da $S \neq \emptyset$, existiert eine Turingmachine Q, deren berechnete Funktion \underline{q} in S liegt.

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar Theorem (Satz von Rice)

Sei \mathcal{R} die Menge aller Turing-berechenbaren Funktionen.

Sei $S \subseteq \mathcal{R}$ eine **nicht-triviale** Teilmenge von \mathcal{R} (d.h. $S \neq \emptyset$ und $S \neq \mathcal{R}$).

Dann ist $C(S) := \{w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S\}$ unentscheidbar.

Beweis

Fall 1: Die überall undefinierte Funktion Ω ist nicht in S. Wir zeigen $H_0 \leq C(S)$.

Da $S \neq \emptyset$, existiert eine Turingmachine Q, deren berechnete Funktion q in S liegt.

Wir konstruieren Reduktion $f:\{0,1\}^* \to \{0,1\}^*$ die bei Eingabe eines <u>Codewortes w</u> das

Codewort w' der Maschine M' ausgibt die bei Eingabe x

- 1. erst $M_{\rm w}$ auf leerem Band simuliert, und
- 2. nachdem M_w hält, Q auf Eingabe x simuliert.

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar Theorem (Satz von Rice)

Sei R die Menge aller Turing-berechenbaren Funktionen.

Sei $S \subseteq \mathcal{R}$ eine **nicht-triviale** Teilmenge von \mathcal{R} (d.h. $S \neq \emptyset$ und $S \neq \mathcal{R}$).

Dann ist $\mathcal{C}(S) := \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$ unentscheidbar.

Beweis

Fall 1: Die überall undefinierte Funktion Ω ist nicht in \mathcal{S} . Wir zeigen $H_0 \leq \mathcal{C}(\mathcal{S})$.

Da $S \neq \emptyset$, existiert eine Turingmachine Q, deren berechnete Funktion q in S liegt.

Wir konstruieren Reduktion $f: \{0,1\}^* \to \{0,1\}^*$ die bei Eingabe eines Codewortes w das

Codewort w' der Maschine M' ausgibt die bei Eingabe x

- $\bigstar 1$. erst $M_{\rm w}$ auf leerem Band simuliert, und
- **★**2. nachdem M_w hält, Q auf Eingabe x simuliert.

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar Theorem (Satz von Rice)

Sei R die Menge aller Turing-berechenbaren Funktionen.

Sei $S \subseteq \mathcal{R}$ eine **nicht-triviale** Teilmenge von \mathcal{R} (d.h. $S \neq \emptyset$ und $S \neq \mathcal{R}$).

Dann ist $C(S) := \{w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S\}$ unentscheidbar.

Beweis

Fall 1: Die überall undefinierte Funktion Ω ist nicht in S. Wir zeigen $H_0 \leq C(S)$.

Da $S \neq \emptyset$, existiert eine Turingmachine Q, deren berechnete Funktion q in S liegt.

Wir konstruieren Reduktion $f: \{0,1\}^* \to \{0,1\}^*$ die bei Eingabe eines Codewortes w das Codewort w' der Masshine M' ausgibt die bei Eingabe w

Codewort w' der Maschine M' ausgibt die bei Eingabe x

- 1. erst M_w auf leerem Band simuliert, und
- 2. nachdem M_w hält, Q auf Eingabe x simuliert.

$$\sim M'$$
 berechnet $\begin{cases} q & \text{falls } \underline{w \in H_0} \\ \underline{\Omega} & \text{sonst} \end{cases}$

 $\begin{array}{c} \underline{w \in H_0} \Leftrightarrow M_w \text{ h\"{a}lt auf leerem Band} \\ \Leftrightarrow \underline{M' \text{ berechnet } q \in \mathcal{S}} \\ \Leftrightarrow \underline{\langle M' \rangle \in \mathcal{C}(\mathcal{S})} \\ \hline \text{Red. E:q.} \end{array}$

Informell: Fragen bzgl. Leistungsfähigkeit/Verhalten einer TM generell unentscheidbar Theorem (Satz von Rice)

Sei \mathcal{R} die Menge aller Turing-berechenbaren Funktionen.

Sei $S \subseteq R$ eine **nicht-triviale** Teilmenge von R (d.h. $S \neq \emptyset$ und $S \neq R$).

Dann ist $C(S) := \{w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S\}$ unentscheidbar.

Beweis

Fall 1: Die überall undefinierte Funktion Ω ist nicht in \mathcal{S} . Wir zeigen $H_0 \leq \mathcal{C}(\mathcal{S})$.

Da $S \neq \emptyset$, existiert eine Turingmachine Q, deren berechnete Funktion q in S liegt. Wir konstruieren Reduktion $f: \{0,1\}^* \to \{0,1\}^*$ die bei Eingabe eines Codewortes w das

Codewort w' der Maschine M' ausgibt die bei Eingabe x

- 1. erst M_w auf leerem Band simuliert, und $w \in H_0 \Leftrightarrow M_w$ hält auf leerem Band
- 2. nachdem M_w hält, Q auf Eingabe x simuliert. $\Leftrightarrow M'$ berechnet $g \in \mathcal{S}$

$$\sim M'$$
 berechnet $\begin{cases} q & \text{falls } w \in H_0 \\ \Omega & \text{sonst} \end{cases} \Leftrightarrow \langle M' \rangle \in \mathcal{C}(\mathcal{S})$

Frage: Überlegen Sie sich den analogen Fall 2 des Beweises (Reduktion von $\overline{\underline{H_0}}$ auf $\mathcal{C}(\mathcal{S})$)

Korollar

Folgende Fragestellungen bzgl. der Leistung von Turing-Maschinen sind un<u>entscheidbar</u>:

- (a) Die berechnete Funktion ist
 - konstant,
 - ***►** total,
 - primitiv-rekursiv.

Korollar

Folgende Fragestellungen bzgl. der Leistung von Turing-Maschinen sind unentscheidbar:

(a) Die berechnete Funktion ist (b) Die <u>akzeptierte Sprache</u> ist konstant. ► total, • primitiv-rekursiv.

Mathias Weller (TU Berlin)

Korollar

Folgende Fragestellungen bzgl. der Leistung von Turing-Maschinen sind unentscheidbar:

- (a) Die berechnete Funktion ist
 - konstant,
 - total,
 - primitiv-rekursiv.

- (b) Die akzeptierte Sprache ist
 - leer,
 - endlich,
 - **▶** ∑*,

- regulär,
- kontextfrei,
- kontextsensitiv.

Abschließende Bemerkungen / Mitteilungen:

1. "ist die akzeptierte Sprache vom <u>Typ-0?</u>" ist trivial (immer <u>"ja"</u>)

Korollar

Folgende Fragestellungen bzgl. der Leistung von Turing-Maschinen sind unentscheidbar:

- (a) Die berechnete Funktion ist
 - konstant,
 - total,
 - primitiv-rekursiv.

- (b) Die akzeptierte Sprache ist
 - leer,
 - endlich,
 - ∑*,

- regulär,
- kontextfrei,
- kontextsensitiv.

Abschließende Bemerkungen / Mitteilungen:

- 1. "ist die akzeptierte Sprache vom Typ-0?" ist trivial (immer "ja")
- 2. "zweiter Satz von Rice" charakterisiert semi-entscheidbare Teilmengen $\underline{\mathcal{S} \subseteq \mathcal{R}}$: zB. $\mathcal{C}(\{q \mid q \neq \Omega\})$ semi-entscheidbar, aber $\underline{\mathcal{C}(\{\Omega\})}$ nicht

!!! ACHTUNG !!!

Korollar

Folgende Fragestellungen bzgl. der Leistung von Turing-Maschinen sind unentscheidbar:

- (a) Die berechnete Funktion ist
 - konstant,
 - total,
 - primitiv-rekursiv.

- (b) Die akzeptierte Sprache ist
 - leer,
 - endlich,
 - **▶** ∑*,

- regulär,
- kontextfrei,
- kontextsensitiv.

Abschließende Bemerkungen / Mitteilungen:

- 1. "ist die akzeptierte Sprache vom Typ-0?" ist trivial (immer "ja")
- 2. "zweiter Satz von Rice" charakterisiert semi-entscheidbare Teilmengen $S \subseteq \mathcal{R}$: zB. $\mathcal{C}(\{q \mid q \neq \Omega\})$ semi-entscheidbar, aber $\mathcal{C}(\{\Omega\})$ nicht
- 3. Es gibt nachweislich schwierigere Probleme als das allgemeine Halteproblem: zB. das "Äquivalenzproblem für Turing-Maschinen" $\underline{Eq} := \{\underline{w} \# \underline{w'} \mid \underline{T(M_w)} = \underline{T(M_{w'})}\}$ $\underline{H} \leq \underline{Eq}$ aber **nicht** $\underline{Eq} \leq \underline{H}$