Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Eexam

Place student sticker here

Note:

- · During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- · This number is printed both next to the code and to the signature field in the attendance check list.

Grundlagen Rechnernetze und Verteilte Systeme

Exam: IN0010 / Hausaufgabe 7 **Date:** Monday 15th June, 2020

Examiner: Prof. Dr.-Ing. Georg Carle **Time:** 14:00 – 23:59

Working instructions

- This exam consists of **6 pages** with a total of **2 problems**.

 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 21.5 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English \leftrightarrow native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at

Problem 1 Packet Pair Probing (Klausuraufgabe Endterm 2012) (12 credits)

Packet Pair Probing ist ein Verfahren, mit dem sich durch geschickte Ausnutzung von Serialisierungs- und Verzögerungszeiten die Bandbreite eines Linkabschnitts bestimmen lässt. Wir wollen dies anhand des in Abbildung 1.1 dargestellten Beispielnetzwerks nachvollziehen.

Die Knoten 1 und 4 sind mit ihren Routern jeweils über Ethernet mit einer Datenrate von 1 Gbit/s angebunden. Die Verbindung zwischen den Routern 2 und 3 ist jedoch deutlich langsamer. Diese Übertragungsrate r_{23} soll von 1 und 4 bestimmt werden, indem möglichst wenig Last auf der ohnehin langsamen Verbindung erzeugt wird.

Figure 1.1: Netztopologie

Wir leiten in dieser Aufgabe zunächst allgemein ein Verfahren her, mittels dem Knoten 1 und 4 die gefragte Übertragungsrate bestimmen können. Im Anschluss werten wir das Verfahren für konkrete Zahlenwerte aus und diskutieren mögliche Probleme, die in der Praxis auftreten werden.

a)* Geben Sie die Serialisierungszeit $t_s(i,j)$ zwischen zwei benachbarten Knoten i und j in Abhängigkeit der Paketgröße p und der Übertragungsrate r_{ij} an.

to (:i) = dis Valence die reletie Austrelangsgesch. Im Median, Co die Cohlgeschaneligheit in Valenan

c)* Erläutern Sie kurz, wie 1 bei Verwendung von IPv4 die maximale MTU auf dem Pfad nach 4 bestimmen kann.

De MTure auf clem (inte 1-> 2 se: 16ekennt.

Diesur sen etel ein Delced nit dieser (maximalen) Brütze und setzl das DF (Do net Fragnent) Sit

DFalls: MTures < MTure wird des Palcel veranten und netätt eine 1CMP Nochricht (Typ 3 Code 4), aclahe MTures in der Pay Code enthält

3 wiederlole es Schriff D bis dag Palcel 4 errecht had

Dres wird dadorch signelistert, dass 1 leene 1CMP -)

Nachricht dies Sezuglieh nehr ethält.

1 sende nun unmittelbar nacheinander zwei Pakete der Länge p an 4. Sie können davon ausgehen, dass sonst kein weiterer Datenverkehr die Übertragung beeinflusst. Die Länge p sei so gewählt, dass keine Fragmentierung notwendig ist. Eventuelle Verarbeitungszeiten an den Knoten können Sie vernachlässigen.

d) Zeichnen Sie ein Weg-Zeit-Diagramm, welches die Übertragung der beiden Pakete qualitativ richtig darstellt. Berücksichtigen Sie dabei insbesondere $r_{23} < r_{12} = r_{34}$ wie eingangs erwähnt.

Durch die geringe Übertragungsrate zwischen 2 und 3 entsteht an Knoten 3 eine Sendepause Δt zwischen den beiden weitergeleiteten Paketen. Diese kann von 4 gemessen und zur Bestimmung der Übertragungsrate zwischen 2 und 3 verwendet werden.

e) Markieren Sie Δt in Ihrer Lösung von Teilaufgabe d). Von welchen Größen hängt Δt ab?

Pekelgréte Pür Pa, R

f) Geben Sie einen Ausdruck für Δt an. Vereinfachen Sie den Ausdruck soweit wie möglich.

g) Geben Sie einen Ausdruck für die gesuchte Datenrate r_{23} an. Vereinfachen Sie den Ausdruck soweit wie möglich.

Wiederholte Messungen an 4 ergeben einen Durchschnittswert von $\overline{\Delta t}$ = 1,2 ms bei einer Paketgröße von p = 1500 B.

h) Bestimmen Sie r_{23} als Zahlenwert in Mbit/s.

Problem 2 Drahthai (9.5 credits) (cha lithe Aufgaben lemmen heify in de Klacsur

Gegeben sei der in Abbildung 2.1 dargestellte Hexdump in Network-Byte-Order eines Ethernet-Rahmens, ohne Checksum, welcher im Folgenden analysiert werden soll.

Figure 2.1: Hexdump eines Ethernet-Rahmens, ohne Checksum, in Network-Byte-Order

Hinweis: Zur Lösung der Aufgabe sind Informationen aus dem Cheatsheet notwendig.

- a)* Markieren Sie in Abbildung 2.1 Beginn und Ende des Ethernet-Headers.
- b) Begründen Sie, durch Markieren und Beschreiben relevanter Headerfelder, welches Protokoll auf Schicht 3 verwendet wird.

Ellerype: 0x 0800

Nech Chealsheet entopriehl das: 184

c)* Beschreiben Sie, wie die Länge des Headers auf Schicht 3 bestimmt wird. Markieren und benennen Sie dafür relevante Abschnitte in Abbildung 2.1.	
Die Conge des Headers out Schieht 3 (1944) wird durch des	
Feld 11-11 engegeben, welletes in Viellechen ven UB engegelen wird.	
d)* Markieren Sie alle Schicht 3 Addressen und benennen Sie diese.	0
e) Markieren Sie alle in Schicht 3 enthaltenen Extension Header.	
Es existiven locine Extension Header, de es sich euf	
Schicht 3 am Pry handell.	П,
f) Benennen und beschreiben Sie die drei kleinsten Headerfelder von Schicht 3. Geben Sie zudem die Größe der beschriebenen Headerfelder an.	
Die die: Iclinsten Headerfelder des 1Pc4 Headers sind	H.
die Mags zer Fregnentierung mit Länge 16:1.	
OXOCAS: OX GO & Chobo occo	
ITES OF MF	
RES! reserviortes Feld für zurünfige Anzendungen	
OF de hot fragment ME: more fragments	
g) Falls es eine L3-SDU gibt, geben Sie ihren Typ an und begründen Sie die Angabe. Andernfalls, legen Sie Ihren Gedankengang dar und erörtern wie es zu dieser Situation kommen konnte.	
Das Proberd Feld des Headers : sl exOG, dend ist die (3-SDU TCP	Ш'
Beroffel Crocos	
h) Die Bytes 0x0042 und Folgende sind Payload von Schicht 6. Geben Sie die ASCII Darstellung der ersten 7 B der Payload an.	
0× B092 > 53 53 48 22 77 20 30 5 5 H - 2 . C	ш.
i) Um welches Protokoll der Anwendungsschicht handelt es sich also vermutlich und wozu wird dieses Protokoll verwendet?	П٥
Remote Acress einer Kensolen sitzung emöglight. (Vgl. Programme insentan	
Remote Access einer Kensolen sitzung ernäglicht. (Val. Programme ingelogie	

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

