Lecture 15: Section 3.4

Shuanglin Shao

October 28, 2013

In this section we will use **parametric and vector methods** to study general systems of linear equations. This work will enable us to interpret **solution sets of linear systems** with n unknowns as **geometric objects in** \mathbb{R}^n .

Vector and Parametric equations of lines in \mathbb{R}^2 and \mathbb{R}^3 .

Theorem. Let L be the line in \mathbb{R}^2 or \mathbb{R}^3 that contains the point x_0 and is parallel to the nonzero vector \mathbf{v} . Then the equation of the line through x_0 that is parallel to \mathbf{v} is

$$\mathbf{x} = \mathbf{x_0} + t\mathbf{v}. \tag{1}$$

If $x_0 = \mathbf{0}$, then the line passing through the origin and the equation has the form

$$\mathbf{x} = t\mathbf{v}$$
.

Let $x_0 = (1, 2, 3)$ and $\mathbf{v} = (1, 1, 1)$. Then the equation passing through x_0 and \mathbf{v} is

$$x = x_0 + t\mathbf{v}$$
,

that is to say,

$$x = (1,2,3) + t(1,1,1).$$

If writing $x = (x_1, x_2, x_3)$, we have

$$x_1 = 1 + t, x_2 = 2 + t, x_3 = 3 + t.$$

This is the parametric form of the line L.

Find a vector equation and parametric equations of the line in \mathbb{R}^2 that passes through the origin and is parallel to the vector $\mathbf{v}=(2,3)$.

Solution. Since the line passes through the origin, $x_0 = \mathbf{0}$, and the equation can be expressible in the vector from

$$(x, y) = t(-2, 3).$$

In the parametric from,

$$x = -2t, y = 3t.$$

Find a vector equation and parametric equations of the line in \mathbb{R}^3 that passes through the point $P_0(1,2,-3)$ and is parallel to the vector $\mathbf{v}=(4,-5,1)$.

Solution. In the vector form,

$$x = x_0 = t\mathbf{v} = (1, 2, -3) + t(4, -5, 1).$$

In the parametric form,

$$x = 1 + 4t,$$

$$y = 2 - 5t,$$

$$z = -3 + t.$$

Vector and Parametric equations of planes in \mathbb{R}^3 .

Let **W** be the plane in \mathbb{R}^3 that contains the point x_0 and is parallel to the non-collinear vectors \mathbf{v}_1 and \mathbf{v}_2 . Then an equation of the plane through x_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2 is given by

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v_1} + t_2 \mathbf{v_2}. \tag{2}$$

If $x_0 = 0$, then the plane passes through the origin and the equation has the form

$$x=t_1\mathbf{v_1}+t_2\mathbf{v_2}.$$

Let $x_0 = (2, 1, 3)$, $\mathbf{v}_1 = (1, 0, 1)$ and $\mathbf{v}_2 = (0, 1, 1)$. Find the plane that passes through x_0 and is parallel to the vectors \mathbf{v}_1 and \mathbf{v}_2 .

Solution. The vectors $\mathbf{v}_1, \mathbf{v}_2$ are not collinear because both of them are starting from the origin, and one of them is not a multiple of the other.

By using the theorem above,

$$x = x_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$

= $(2, 1, 3) + t_1 (1, 0, 1) + t_2 (0, 1, 1)$
= $(2 + t_1, 1 + 2t_2, 3 + t_1 + t_2).$

If writing $x=(x_1,x_2,x_3)$ as any point in \mathbb{R}^3 , then we have the following parametric form

$$x_1 = 2 + t_1,$$

 $x_2 = 1 + 2t_2,$
 $x_3 = 3 + t_1 + t_2.$

Find the vector and parametric equations of the plane in \mathbb{R}^4 that passes through the point $x_0=(2,-1,0,3)$ and is parallel to both $\mathbf{v}_1=(1,5,2,-4)$ and $\mathbf{v}_2=(0,7,-8,6)$.

Solution. The vectors \mathbf{v}_1 and \mathbf{v}_2 are not collinear. In the vector form,

$$\mathbf{x} = (x_1, x_2, x_3, x_4) = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2.$$

In the parametric form,

$$x_1 = 2 + t_1,$$

 $x_2 = -1 + 5t_1 + 7t_2,$
 $x_3 = 2t_1 - 8t_2,$
 $x_4 = 3 - 4t_1 + 6t_2.$

Lines through two points in \mathbb{R}^2 .

Find vector and parametric equations for the line in \mathbb{R}^2 that passes through the points P(0,7) and Q(5,0).

Solution. The two points form a vector in \mathbb{R}^2 :

$$\mathbf{v} = (5,0) - (0,7) = (5,-7).$$

Thus in the vector form

$$\mathbf{x} = (0,7) + t\mathbf{v} = (0,7) + (5t, -7t) = (5t, 7 - 7t).$$

In the parametric form

$$x_1 = 5t,$$

$$x_2 = 7 - 7t.$$

Line Segment.

Definition. If \mathbf{x}_0 and \mathbf{x}_1 are vectors in \mathbb{R}^n , then the equation

$$x = x_0 + t(x_1 - x_0), (0 \le t \le 1)$$

defines **the line segment** from \mathbf{x}_0 to \mathbf{x}_1 . When convenient, this equation can be also written as

$$\mathbf{x} = (1 - t)\mathbf{x}_0 + t\mathbf{x}_1, \ 0 \le t \le 1.$$

Line Segment from one point to another point in \mathbb{R}^2 .

Find the equation of the line segment in \mathbb{R}^2 from $\mathbf{x}_0 = (1, -3)$ and $\mathbf{x}_1 = (5, 6)$.

Solution. The line segment, for $0 \le t \le 1$,

$$\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 - \mathbf{x}_0)$$

= $(1, -3) + t(4, 9)$.

or it can be written as

$$(1-t)\mathbf{x}_0+t\mathbf{x}_1=(1-t)(1,-3)+t(5,6),\,0\leq t\leq 1.$$

Dot product form of a linear system.

A linear equation in the variables x_1, x_2, \dots, x_n has the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b,$$

for the coefficients a_1, a_2, \dots, a_n not all zero. This equation can be written as

$$\mathbf{a} \cdot \mathbf{x} = b$$
.

The corresponding homogeneous equation is

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0,$$

for the coefficients a_1, a_2, \dots, a_n not all zero. Similarly

$$\mathbf{a} \cdot \mathbf{x} = 0$$
.

Dot product form of a linear system.

Consider the homogeneous system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= 0, \\ \vdots &\vdots &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= 0. \end{cases}$$

If we denote the successive row vectors of the coefficient matrix by \mathbf{r}_1 , \mathbf{r}_2 , \cdots , \mathbf{r}_m , then we can rewrite this system in dot product as

$$\begin{cases} \mathbf{r_1} \cdot x &= 0, \\ \mathbf{r_2} \cdot x &= 0, \\ \vdots & \vdots \\ \mathbf{r_m} \cdot x &= 0. \end{cases}$$

This shows that every solution vector \mathbf{x} is orthogonal to every row vector of the coefficients matrix.

Conclusion. If A is an $m \times n$ matrix, then the solution set of the homogeneous linear system

$$Ax = 0$$

consists of all vectors in \mathbb{R}^n that are orthogonal to every row vector of A.

Orthogonality of row vectors and solution vectors.

Consider the homogeneous linear system

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

The solution is

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$.

In the vector from,

$$\mathbf{x} = (-3r - 4s - 2t, r, -2s, s, t, 0).$$

This solution is orthogonal to every row vector in the matrix A.

The relationship between $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{x} = \mathbf{b}$.

Theorem. The general solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding any specific solution of $A\mathbf{x} = \mathbf{b}$ to the general solution of $A\mathbf{x} = \mathbf{0}$.

Proof.

Proof. Let \mathbf{x}_0 be any specific solution of $A\mathbf{x} = \mathbf{b}$. Let W be the solution set of $A\mathbf{x} = \mathbf{0}$ and V be the solution set of $A\mathbf{x} = \mathbf{b}$. We first prove that $x_0 + \mathbf{W} \subset \mathbf{V}$.

For any $w \in W$, we show that $x_0 + w$ is a solution to the linear system $A\mathbf{x} = \mathbf{b}$:

$$A(\mathbf{x}_0 + w) = A\mathbf{x}_0 + Aw = \mathbf{0} + \mathbf{b} = \mathbf{b}.$$

Thus $\mathbf{x}_0 + w$ is a solution to the inhomogeneous linear system $A\mathbf{x} = \mathbf{b}$.

Secondly we prove that $\mathbf{V} \subset x_0 + \mathbf{W}$. On the other hand, let $y \in \mathbf{V}$. It is known that $\mathbf{x}_0 \in \mathbf{V}$. Then

$$A(\mathbf{y} - \mathbf{x}_0) = A\mathbf{y} - A\mathbf{x}_0 = \mathbf{b} - \mathbf{b} = \mathbf{0},$$

which shows that $\mathbf{y} - \mathbf{x}_0 \in \mathbf{W}$, i.e., $y \in x_0 + \mathbf{W}$.

To conclude the proof, we have

$$\mathbf{V} = x_0 + \mathbf{W}$$
.

Homework and Reading.

Homework. Exercise. #2, #4, #6, #8,#10,#12,#15,#25. True or false questions on page 160.

Reading. Section 4.1.