DAY 9

In last section, we have discussed about similarity and its application Area Theorem. In this section, we shall discuss one very important concept PYTHAGORAS THEOREM.

PYTHAGORAS THEOREM

In earlier classes you have already studied about an important theorem known as the Pythagoras theorem (Also known as **Baudhayan** Theorem) named on the famous mathematician Pythagoras we will prove this theorem now:

Statement: In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of other two sides.

Given $\triangle ABC$ is right angled at B.

To prove :- $AC^2 = AB^2 + BC^2$

Construction Draw BD \perp AC

Proof:- In \triangle ABD and \triangle ACB, we've

$$\angle D = \angle B = 90^{\circ}$$

$$\angle A = \angle A$$
 (common)

∴ \triangle ABD ~ \triangle ACB (AA Similarity) come-becon

$$\Rightarrow \frac{AB}{AC} = \frac{BD}{BC} = \frac{AD}{AB}$$

From first and last, we get

$$AB^2 = AD \times AC....i)$$

$$\angle D = \angle B = 90^{\circ}$$

$$\angle C = \angle C$$
 (common)

 $\therefore \Delta BDC \sim \Delta ABC$ (AA Similarity)

$$\Rightarrow \frac{BC}{AC} = \frac{BD}{AB} = \frac{\dot{C}D}{BC}$$

From first and last, we get

$$BC^2 = AC \times AD$$
....ii)

Adding i) & ii), we get

$$AB^2 + BC^2 = AD \times DC + CD \times AC$$

 $= AC(AD + DC) = AC \times AC$

$$\therefore AB^2 + BC^2 = AC^2$$

Now we shall discuss some examples based on Pythagoras Theorem.

1. A ladder 10m long reaches a window 8m above the ground. Find the distance of the foot of the ladder from base of the wall. [Ex 6.5, Q9]

Sol:- By Pythagoras Theorem, we get

$$H^2 = P^2 + B^2$$

$$\Rightarrow 10^2 = 8^2 + B^2$$

$$\Rightarrow$$
 1

$$\Rightarrow$$
 100 = 64 + B²

$$\Rightarrow$$
 B² = 100 - 64 = 36 = 6²

$$\Rightarrow$$
 B = 6m

Hence the distance of the foot of the ladder from base of the wall is 6m

2. ABC is an equilateral triangle of side 2a. Find each of its altitude.

[Ex 6.5, Q6]

Sol:- Draw AD \perp BC

We know in equilateral triangle altitude divides opposite sides in two equal parts.

i.e.
$$BD = DC = a$$

Now in right angled triangle $\triangle ABD$

$$AB^2 = AD^2 + BD^2$$

$$\Rightarrow$$
 $(2a)^2 = AD^2 + a^2$

$$\Rightarrow 4a^2 = AD^2 + a^2$$

$$\Rightarrow AD^2 = 4a^2 - a^2 = 3a^2$$

$$\Rightarrow$$
 AD = $\sqrt{3a^2} = \sqrt{3}a$

- 3. Two poles of heights 6m and 11m stand on a plane ground. If the distance between their feet is 12m, find distance between their tops.
- **Sol:-** According to figure, AB = 6m and CD = 11m are two poles and BC = 12m is the distance between them.

To find AD, for that $AE \perp CD$

$$\therefore$$
 AB = CE = 6m and DE = 5m, AE = BC = 12m

Now in right angled triangle $\triangle AED$

$$AD^2 = AE^2 + ED^2$$

$$\Rightarrow$$
 AD² = 12² + 5² = 144 + 25 = 169 = 13²

$$\Rightarrow$$
 AD = 13m

12

EXERCISE

1. Ex 6.5, Q10,11,16