Отчёта по лабораторной работе 5

по предмету 'Научное программирование'

Дидусь Кирилл Валерьевич

Содержание

4 Выполнение лабораторной работы	
4 выполнение лаоораторнои раооты5 Выводы	5 Выводы

Список иллюстраций

4.1	Поворот .																7
	Отражение																
4.3	Дилатация																8

1 Цель работы

Ознакомится с система для математических вычислений Octave.

2 Задание

Повторить примеры из лабораторной в Octave.

3 Теоретическое введение

GNU Octave — свободная программная система для математических вычислений, использующая совместимый с MATLAB язык высокого уровня.

Остаve представляет интерактивный командный интерфейс для решения линейных и нелинейных математических задач, а также проведения других численных экспериментов. Кроме того, Остаve можно использовать для пакетной обработки. Язык Остаve оперирует арифметикой вещественных и комплексных скаляров, векторов и матриц, имеет расширения для решения линейных алгебраических задач, нахождения корней систем нелинейных алгебраических уравнений, работы с полиномами, решения различных дифференциальных уравнений, интегрирования систем дифференциальных и дифференциально-алгебраических уравнений первого порядка, интегрирования функций на конечных и бесконечных интервалах. Этот список можно легко расширить, используя язык Остаve (или используя динамически загружаемые модули, созданные на языках C, C++, Фортран и др.).

В этой лабораторной рассматривается подгонка полиномиальной кривой, а также матричные преобразования, такие как:

- 1. Поворот
- 2. Отражение
- 3. Дилатация

4 Выполнение лабораторной работы

- 1. Для подгонки полиномиальной кривой используем функции polyfit(x,y,order) и polyval(P,xdata). Найдем значение кривой в точках xdata по формуле y = polyval(polyfit(xdata,ydata,order), xdata), где order порядок кривой.
- 2. Для того чтобы повернуть фигуру необходимо умножить матрицу вращения R с заданным углом поворота theta на матрицу D задающую изображение.

Рис. 4.1: Поворот

3. Для того чтобы отразить фигуру необходимо умножить матрицу отражения R на матрицу D задающую изображение.

Рис. 4.2: Отражение

4. Для того чтобы растянуть фигуру необходимо умножить матрицу деформации T с коэффициентом k на матрицу D задающую изображение.

Рис. 4.3: Дилатация

5 Выводы

Ознакомились с методом подгонки полиномиальной кривой, а также выполнения матричных преобразований с помощью Octave.

Список литературы

• ТУИС