Student Answer Script View

MIT MPL - BTech-M Sc-MCA - II-IV and VI Semester - Midterm Examination - Mar 2025 Answer Sheet

Student Name: AASHNA BAHETI . .

Roll Number: 220962296
Course: MIT-OPE
Year/Sem: Semester 6

Subject Name: APPLIED GRAPH THEORY

Exam Date: 08-Mar-2025

Q.No:1)

If (4, 3, 2, 2, x) is a degree sequence of a simple graph, then the value of x is

0

1 2

Q.No: 2)

In a social network, if the sum of degrees of all users is100, how many connections (edges) are there in the network?

Q.No: 3)

If G is a disconnected graph of order 101, then the minimum degree of G is

less than 50 less than 51 less than 52 less than 53

Q.No:4)

In a self-complementary graph with 101 vertices, the number of edges is

Q.No: 5)

The number of cut vertices in a Hamiltonian graph of order 10 is

Q.No: 6)

The vertex independence number of a path graph with 15 vertices is

6

4

Q.No : 7)
The vertex covering number of a cycle with 30 vertices is

14 **15** 16 17

Q.No: 8)

The number of cut edges in a tree with 24 vertices is

Q.No: 9)

If G is a connected graph with diameter 10, then diameter of the complement graph of G is at most

4

3

Q.No:10)

Maximum number of edges in a bipartite graph G with 14 vertices is

Q.No: 11)
(i) Prove that a connected graph on n vertices with n-1 edges is a tree.

(ii) A tree T with 50 pendant vertices has an equal number of vertices of degree 2, 3, 4 and 5 and no vertices of degree greater than 5. Determine the order of T.

Let total no of vertices be n.

$$\sum_{i=1}^{n} deg(v_i) = 2(n-1)$$

$$50 + 2x + 3x + 4x + 5x = 2(n-1)$$

$$52 + 19x = 2n$$

$$24 = 3x$$

$$\Rightarrow n = 50 + 4(8)$$

(i)	A	CONN	ected	gra	ph .	ΘN	Λ	wrti	œ۱	is
	tree	if the	ths	De la companya de la						
			7 ,							

A graph with n vertices needs at least edges to make a cycle.

with vertices v, Let e and any be two edges on the with path P, between vz and vn-1. Vi en Pi en-1 Vn It has n-1 adges a va van va van no cycles.

Let Pz be another path between ther

V, e, V, P1 Vn-1 en-1 Vn P2 V1 makes cycler with n edges.

This is a contradiction.

Mence a connected graph on n vertices with n-1 edges is a tree.

Q.No: 12)

Test whether the vector (3, 3, 2, 2, 2, 2, 2) is graphical. If so, draw a simple graph with this vector as a degree vector.

Page:1

Vector
$$v = (3,3,2,2,2,2,2)$$

$$0 \quad v = \left(\frac{3}{1}, \frac{3}{1}, \frac{2}{1}, \frac{2}{1}, \frac{2}{1}, \frac{2}{1}, \frac{2}{1}, \frac{2}{1}\right)$$

$$v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6 \quad v_7 \quad v_8 \quad v_8$$

$$V_1 = \begin{pmatrix} v_2 & v_3 & v_4 & v_5 & v_6 & v_4 \\ 2 & 1 & 1 & 2 & 2 & 2 \end{pmatrix} \longrightarrow V_1$$

$$V_1 = \begin{pmatrix} V_5 & V_6 & V_7 & V_3 & V_4 \\ 1 & 1 & 2 & 1 & 1 \end{pmatrix} \longrightarrow V_2$$

Since all are 0, the vector is graphica

Graph:

Page:1

A self-complementary graph can only be order 4K or 4K+1 for some integer.

If order = 4k, Let H be a graph and H be its complementary graph.

Thus, the graph is

If order = 4k+1, Let H be a graph and H be its complementary graph.

For graphs of order 4k+2 and 4k+3, a self-complementary graph cannot be drawn

9 vertices =
$$4k+1$$

 $k=2$

Q.No: 14)

If G is Eulerian, then show that all its vertices have even degree. Give an example of a Hamiltonian graph that is not Eulerian.

Eu brian an Eularian	dush is	when a	graph	contains
Maniltonian the graph	graph exists.	is when	a spo	nning set
→ If any have a	vertice cycle.	has an	odd d	legree, it vi
ラ ひ is			Merian =	te cycle
	el vertice	_		

Q.No: 15)
Let G be graph on n vertices, with vertex covering number α_0 and vertex independence number β_0 . Prove that $\alpha_0 + \beta_0 = n$.

Vertex	ح04 م	aing	number	\angle_{0}	is	the	mi nim	m c	ardin
			covering						
			edges					_	
			e pitra						

Vertex independent nowher Bo is the maximum cardin of a vertex independence set. A vertex independence set when no too vertices as in the set are ad to each other.

Using an example: No

Vertex cover = $\frac{9}{4}$ v_2 , v_4 $\frac{3}{4}$ v_0 = $\frac{9}{4}$

Vertex independence set = 21 Bo = 3

Q.No: 16)
Prove that the chromatic polynomial $P_X(C_n, x)$ of a cycle C_n is $(x - 1)^n + (-1)^n(x - 1)$ for $n \ge 3$.

For an even cycle, no of colours used =
For an odd yde, no of colours used = 3
Even cycle, n = even
V, would get whom I.
=> 1/2 would get colour 2.
=> 13 would get whom 1.
Similarly, un would get whom 2.
V, and vn are adjacent but have different
Odd cycle, n = odd V1 would get whom 1. >> V2 would get whom 1. Similarly, Vn-, would get colour 2. Similarly, Vn would get whom 1. V1 and Vn are adjacent but have same colour this would be a contradiction. Hence we assign a third colour to Vn.
$\frac{V_1}{V_2} \frac{V_2}{V_1} \frac{V_1}{V_2} \frac{V_2}{V_1} \frac{V_1}{V_2} \frac{V_2}{V_1} \frac{V_1}{V_2} \frac{V_2}{V_1} \frac{V_1}{V_2} \frac{V_2}{V_1} \frac{V_2}{V_2} \frac{V_1}{V_2} \frac{V_2}{V_1} \frac{V_2}{V_2} \frac{V_1}{V_2} \frac{V_2}{V_2} \frac{V_1}{V_2} \frac{V_2}{V_2} V_$

Q.No: 17)
Show that a bipartite graph G has no odd cycles.

A bipartite graph is one where all the war can be divided into two sets where the restrices in each set are not adjacent to to other vertices in the same set.

K3,2

If a cycle graph has odd cycles,

⇒ no of vertices = odd = n ⇒ no of edges = n

Let the two bipartite sets be S_1 , S_2 V_1 , V_2 , V_3 , V_{n-1} , V_n

Let v, belongs to 3,.

>> V2 belongs to S2.

⇒ vz belongs to S1.

Similarly, $v_{2n} \in S_2$ and $v_{2n+1} \in S_1$

Q.No: 18)

Draw a simple graph with vertex connectivity 2, edge connectivity 3 and minimum degree 4.

Vertex connectivity = $K(F) = 2 = K_0$ fdge connectivity = $\chi(F) = 3 = K_0$ Nin degree = $S(F) = 4 = K_0$

Page:1

A cut edge in a graph is any edge who deleting increases the number of component in the graph.

Here either ey or ez is a cut edge.

No of restion = 10 No of perdant vertices = 6

Tree:

There are 4 cut vertices.

Since there are 6 pardout vertices, they can't be out vertices-Hence no of cut vertices = 10-6 = 4

epm