

Results from the Design Tool

Project name: Case Study 2

Construction site located at: 63.4154, 10.3995

Summary of results

Total score	Score without reuse	Savings	Substitutions	
9 083 kgCO2eq	73 074 kgCO2eq	87.57%	90.7%	

The best results was obtained by the following algorithm: Greedy Algorithm Plural. This algorithm successfully substituted 907/1000 (90.7%) of the demand elements with reusable elements. Using 'GWP' as the optimization metric, a total score of 9 083 kgCO2eq was achieved. For comparison, a score of 73 074 kgCO2eq would have been obtained by employing exclusively new materials. This resulted in a total saving of 87.57%, which corresponds to 63 991 kgCO2eq. The savings is equivalent to 620 flights for one person between Oslo and Trondheim. Note that impacts of transporting the materials to the construction site was accounted for and contributed to 10.44% of the total score. Open the Excel file "Case_Study_2_substitutions.xlsx" to examine the substitutions.

Constants used in the calculations

Constant	Value	Unit
Density timber	491.0	kg/m^3
Density steel	7850.0	kg/m^3
GWP new timber	28.9	kgCO2eq
GWP reusable timber	2.25	kgCO2eq
GWP new steel	9263.0	kgCO2eq
GWP reusable steel	278.0	kgCO2eq
GWP transportation	89.6	g/tonne/km

Information about the datasets

Elements	Filename	Number of elements
Supply	master_thesis_supply.xlsx	1000
Demand	master_thesis_demand.xlsx	1000

The datasets contains 1000 supply elements and 1000 demand elements. The graphs below depicts the distribution of some of the properties of the elements, including the material, length, area, and moment of inertia.

Impact of transportation

Utilizing reusable elements	Percentage of total score	Only manufactured elements
948 kgCO2eq	10.44%	37 kgCO2eq

All calculations in this report accounsed for the effects of material transportation to the construction site. Transportation itself was responsible for 948 kgCO2eq. This accounts for 10.44% of the total score of 9 083 kgCO2eq. For comparison, the transportation impact for exclusively using new materials would have been 37 kgCO2eq. Two maps are included to show the locations of the suggested element substitutions from the design tool. The numbers on the maps indicate the number of elements transported from each location.

Performance of the optimization algorithms

Algorithm name	Total score	Substitutions	Time
Greedy Algorithm Plural	9 083 kgCO2eq	90.7%	10.95s
MBM Plural	9 225 kgCO2eq	90.7%	20.49s
Greedy Algorithm	10 284 kgCO2eq	89.0%	6.68s

The design tool was executed with 3 algorithms, namely: Greedy Algorithm Plural, MBM Plural, and Greedy Algorithm. The Greedy Algorithm Plural yielded the lowest score, as shown in the table. The substitutions by this algorithm was completed in 10.949 seconds.