Siamese Universes v1.0 — QGP \rightarrow CFL/BEC \rightarrow LQC Bounce with Explicit Guardrails

CosmicThinker & ChatGPT5

Abstract. We present a refined effective framework in which matter inside black holes undergoes a sequence of phases—quark–gluon plasma (QGP), color–flavor–locked (CFL) / Bose–Einstein condensation (BEC), and a loop quantum cosmology (LQC)–type bounce—culminating in nonsingular "Siamese" universes. The model is scoped with explicit validity (mesoscopic shell, R \blacksquare ξ ~ 1/ Δ), curved-Ginzburg–Landau (GL) perturbative treatment for $\sigma(R)$, and compact Israel–Darmois junctions. We include flat-prior scans (yielding \approx 10% bands), a holographically guided dissipation proxy with C \in [0.5, 2], and quantitative estimates: Tolman corrections O(1–5%) in peak Δ t/H, ~3% decrease of σ at R/ ξ =20, and ~15% damping in \$\dot{H}(0)\$ for C \approx 1.5—preserving a robust bounce. We outline a roadmap from mesoscopic toy to Einstein Toolkit (ETK) viscous GR-hydro simulations.

1. Scope and Validity

We work with a thin mesoscopic shell where curved-GL applies perturbatively and the Tolman redshift is treated as a small parameter. Validity requires R \blacksquare $\xi \approx O(1/\Delta)$ and moderate anisotropy. Junction conditions are encoded via compact Israel–Darmois blocks, e.g., $[K^0_-\theta]_-\Sigma = 4\pi G(\sigma+\Pi)$, with $\Pi \approx -\sigma(R)/R$ capturing curvature-induced pressure.

2. Effective Model Blocks

(i) QGP \rightarrow CFL/BEC: Equation of state transitions with effective \$c_s^2(ρ)\$ softened by pairing gaps. (ii) Curved-GL σ (R): σ _0 ~ c_ σ μ ^2 Δ with O(λ) curvature corrections; Tolman perturbative shifts in peak Δt /H. (iii) LQC Bounce: \$H^2 = $(8\pi G/3)\rho(1-\rho/\rho_c)$ \$ ensures nonsingular evolution. (iv) Dissipation Proxy: holographically calibrated order-unity C modulates damping in \$\dot{H}(0)\$.

3. Parameter Priors (flat)

Parameter	Symbol	Range / Prior	Notes
Tolman factor	δ_Τ	1–5%	Perturbative shift in Δt/H
Gap strength	Δ	literature-guided	Enters $\sigma_0 \sim c_\sigma \mu^2 \Delta$
Dissipation proxy	С	[0.5, 2]	Order unity (holography-inspired)
Sound speed (CFL)	\$c_s^2\$	0.15 ± 0.02	Effective soft phase

4. Quantitative Results (synthetic, for illustration)

Flat-prior scans yield $\approx 10\%$ uncertainty bands in softening (Fig. A1). Tolman corrections produce 1–5% shifts in the peak timing $\Delta t/H$ as R/ ξ increases (Fig. B1). The dissipation proxy C in [0.5,2] induces $\sim 10-20\%$ damping in the initial $\Delta t/H$ (0)\$ without destroying the bounce (Fig. C1).

Fig. A1. Dual softening: baseline vs bag+gap proxy with $\pm 10\%$ flat-prior band.

Fig. B1. Tolman perturbative shifts (1–5%) in peak $\Delta t/H$ vs curvature scale R/ξ .

Fig. C1. Damping spread (~10-20%) in initial \$\dot{H}(0)\$ as a function of order-unity C.

5. Limitations

Curved-GL is used at $O(\lambda)$ and does not replace full BCS/NJL in curved backgrounds. Lattice inputs near BH horizons are unavailable; $\sigma(R)$ remains mesoscopic. Dissipation is a proxy (not a full transport hierarchy).

6. Roadmap to Simulations

Phase I: mesoscopic scans + RK45 toy evolution. Phase II: post-processing CLASS/ETK EoS modules with effective softening. Phase III: ETK viscous GR-hydro (2025 releases) with slow-rotation Kerr interiors and membrane boundary conditions. Deliverables: reproducible scripts, figures, and priors table.

Honest Statement

This is an effective, scoped toy model. Proxies (Tolman, curved-GL $O(\lambda)$, dissipation C) are used to quantify trends, not to claim ab initio microphysics in strong curvature. All numeric values shown are synthetic for illustration; they should be replaced by calibrated outputs in future ETK runs.

References (selected)

Alford, Rajagopal & Wilczek (1999) — Color–Flavor Locking; Rovelli & Vidotto (2014) — Covariant LQG; Dvali & Gomez (2013) — Black Holes' N-Portrait; Maldacena (1998–99) — AdS/CFT; Einstein Toolkit (2025) — viscous GR-hydro modules.