##**NOTE: Pre-req is to run the EDA_and_DataPreparation_CodeFinal.R file for running the below code

library(DataExplorer) library(lubridate)

capstonewithoutna_withinperiod_bk <- capstonewithoutna_withinperiod #str(capstonewithoutna_withinperiod) analysisCategory <- c('CameraAccessory','HomeAudio','GamingAccessory') capstonewithoutna_withinperiod_3subcategory <- filter (capstonewithoutna_withinperiod, capstonewithoutna_withinperiod) capstonewithoutna_withinperiod capstonewithou

capstonewithoutna_withinperiod1b<-capstonewithoutna_withinperiod_3subcategory capstonewithoutna_withinperiod<-capstonewithoutna_withinperiod_3subcategory

#To Check the min and max of weeknumber after treating records not in our analysis period "July 15 to June 16"

min(capstonewithoutna_withinperiod1b\$weeknumber) #01 max(capstonewithoutna_withinperiod1b\$weeknumber) #53

options(repr.plot.width=8, repr.plot.height=3) # look for missing values using the DataExplorer package plot missing(capstone)

#After treating the N/A

plot_missing(capstonewithoutna_withinperiod)

#Revenue Vs Order Date

capstonewithoutna_withinperiod_DateRevenue <- capstonewithoutna_withinperiod %>% group_by(Odate) %>% summarise(revenue = sum(gmv))

ggplot(capstonewithoutna_withinperiod_DateRevenue, aes(x = Odate, y = revenue)) + geom_line() + geom_smooth(method = 'auto', se = FALSE) + labs(x = 'Odate', y = 'Revenue (Rs)', title = 'Revenue by Date')

Revenue Vs Order Date

#Revenue Vs DaysOfWeek

 $caps to new ithout na_with in period \$ days of week <- wday (caps to new ithout na_with in period \$ O date,, label = TRUE)$

Revenue Vs Day of Week

#TO summarises what is happening on each day,

#Summarise Revenue, Transaction & AvgOrderValue With respect to dayOfWeek capstonewithoutna_withinperiod_weekdayssummary <- capstonewithoutna_withinperiod %>% group_by(Odate,daysofweek) %>% summarise(revenue = sum(gmv), transactions = (n_distinct(order_id))) %>% mutate(AvgOrderValue = (round((revenue / transactions),2))) %>% ungroup()

head(capstonewithoutna_withinperiod_weekdayssummary)

Odate	daysofweek	revenue trans	actions AvgOrd	ler∨alue
<date></date>	<ord></ord>	<db1></db1>	<int></int>	<db1></db1>
1 2015-07-0	01 Wed	<u>11</u> 051	6	<u>1</u> 842.
2 2015-07-0	03 Fri	<u>115</u> 347	71	<u>1</u> 625.
3 2015-07-0	04 Sat	<u>40</u> 775	16	<u>2</u> 548.
4 2015-07-0	06 Mon	<u>9</u> 877	3	<u>3</u> 292.
5 2015-07-0	07 Tue	2 <u>346</u> 034	<u>1</u> 721	<u>1</u> 363.
6 2015-07-0	08 Wed	2044820	1522	1344.

#Plot for Revenue per day of the week

ggplot(capstonewithoutna_withinperiod_weekdayssummary, aes(x = daysofweek, y = revenue)) + geom_boxplot() + labs(x = 'Day of the Week', y = 'Revenue', title = 'Revenue by Day of the Week')

Revenue Per Day Of the Week

#Plot for Transaction per day of the week

ggplot(capstonewithoutna_withinperiod_weekdayssummary, $aes(x = daysofweek, y = transactions)) + geom_boxplot() + labs(x = 'Day of the Week', y = 'Number of Daily Transactions', title = 'Number of Transactions by Day of the Week')$

Transaction Per Day Of the Week

#Plot AvgOrderValue per day of the week

 $ggplot(capstonewithoutna_withinperiod_weekdayssummary, aes(x = daysofweek, y = AvgOrderValue)) + geom_boxplot() + labs(x = 'Day of the Week', y = 'Average Order Value', title = 'Average Order Value by Day of the Week')$

Average Order Value Per Day Of the Week

#To Understand the Differences in the amount of revenue on each day of the week, it is driven by a difference in the number of transactions, rather than the average order value.

#Plot "density plot" to see how the data are distributed.

ggplot(capstonewithoutna_withinperiod_weekdayssummary, aes(transactions, fill = daysofweek)) +
geom_density(alpha = 0.2)

"Density Plot" to see how the data are distributed

capstonewithoutna_withinperiod_3subcategory <- filter (capstonewithoutna_withinperiod
,capstonewithoutna_withinperiod\$product_analytic_sub_category %in% analysisCategory)</pre>

weeklygmv3categorytotals<-capstonewithoutna_withinperiod1b %>%
dplyr::group_by(weeknumber,product_analytic_category)%>% dplyr::summarise(weekcattotal=sum(gmv, na.rm = TRUE))

weeklygmvtotals<-capstonewithoutna_withinperiod1b %>% group_by(weeknumber) %>%
dplyr::summarise(weekcattotal=sum(gmv, na.rm = TRUE))

#Weekly GMV Total vs WeekNumber

 $ggplot(weeklygmvtotals, aes(x=weeknumber, y=weekcattotal, color="blue")) + geom_line() + scale_x_continuous(breaks=seq(1,52,1))$

#Weekly GMV Total vs WeekNumber with Product Category

ggplot(weeklygmv3categorytotals,aes(x=weeknumber,y=weekcattotal,color="red"))+geom_line()+scale_x_continuous(breaks=seq(1,52,1)) +facet_grid(.~product_analytic_category)

capstonewithoutna_withinperiod1c<-capstonewithoutna_withinperiod1b capstonewithoutna_withinperiod1c\$discount<-round(capstonewithoutna_withinperiod1c\$discount*100,2)

#Plot for Discount Vs Counts

 $ggplot(capstonewithoutna_withinperiod1c, aes(x=discount)) + \\ geom_histogram(bins=10) + scale_x_continuous(breaks=seq(0,99,10))$

 $caps to new it houtna_with in period 1c $qprice <-ifelse (caps to new it houtna_with in period 1c $product_mrp \% 100 == 0,0,1) vertical decorated price <-id>$

 $caps to new ithout na_with in period 1c\% > \% dplyr:: group_by (product_analytic_vertical, dprice)\% > \% dplyr:: summarise (vertidprice total = sum(gmv, na.rm = TRUE))$

#Plot for Decorated price from Order level data

 $vertical decorated price \%>\% ggplot (aes(x=product_analytic_vertical,y=vertid price total,fill=dprice)) + geom_bar(stat='identity',width=0.8,position="dodge")$

#Plot for Decorated price Vs NOT-Decorated price from Order level data

verticaldecoratedprice%>%ggplot(aes(x=product_analytic_vertical,y=vertidpricetotal)) +
geom_bar(stat='identity',width=0.8,position="dodge")+facet_grid(.~dprice)

categorydecoratedprice<-

 $caps to new ithout na_with in period 1c\% > \% dplyr:: group_by (product_analytic_category, dprice)\% > \% dplyr:: summarise (category dprice total = sum (gmv, na.rm = TRUE))$

 $category decorated price \% > \% ggplot (aes(x=product_analytic_category,y=category dprice total)) + geom_bar(stat='identity',width=0.8,position="dodge") + facet_grid(.~dprice)$

#Plot for Decorated price from Order level data Vs Product Category categorydecoratedprice%>%ggplot(aes(x=product_analytic_category,y=categorydpricetotal,color="blue")) + geom_bar(stat='identity',width=0.8,position="dodge")+facet_grid(.~dprice)