Inverse Probability Weighting Selection Bias

Barbra Dickerman, Joy Shi, Miguel Hernán DEPARTMENTS OF EPIDEMIOLOGY AND BIOSTATISTICS

Learning objectives At the end of this lecture you will be able to

- Review the conditions for selection bias under the null
- Use IP weighting to adjust for selection bias when estimating causal effects
- ☐ Key concepts
 - Selection bias under the null
 - IP weights for selection
 - Differential loss to follow-up
 - Competing risks

Plan for today

- A. Review of selection bias
- B. IP weighting to adjust for selection bias
 - Due to loss to follow-up/missing data

Selection bias 3

Selection bias

- ☐ Ubiquitous concept
- ☐ Bias that arises when the parameter of interest in a population differs from the parameter in the subset of individuals from the population that are available for analysis
 - Selection bias for descriptive measures (e.g., prevalence) because of non-random sampling
 - Selection bias for effect measures (e.g., causal risk ratio) because of differential loss to follow-up

Selection bias for effect measures

☐ Many different names

- Inappropriate selection of controls, Berkson's bias, incidence-prevalence bias, loss to follow-up, nonresponse bias, missing data bias, volunteer bias, self selection, healthy worker effect...
- ☐ Here we focus on selection bias that arises even in the absence of a causal effect of treatment on the outcome
 - Selection bias under the null

Selection bias

The structure of selection bias under the null

- ☐ The bias arises as the consequence of conditioning on a common effect of treatment and outcome
 - or on a common effect of a cause of the treatment and a cause of the outcome
- \square That is, the design or the analysis is conditioned on "being selected for analysis" C=0

Missing data / Nonresponse Censoring / Loss to follow-up L A C Y A L C Y A C Y A C Y A C Y A C Y A C Y A C Y A C Selection bias 7

Aside: Internal vs. external validity in randomized experiments

- ☐ Internal validity
 - the estimated association has a causal interpretation in the studied population
 - i.e., no selection bias, no confounding
- □ External validity
 - the estimated association has a causal interpretation in another population
 - i.e., generalizability or transportability
- ☐ In randomized experiments
 - There is internal validity
 - Perhaps not external validity

Selection bias 11

A note on terminology

- ☐ The usage of the terms 'confounding' and 'selection bias' is not standardized
- Epidemiologists use 'confounding' and statisticians/econometricians 'selection bias' when referring to the same bias
- Others use 'selection bias' when 'confounders' are unmeasured
- Some use the term 'selection-confounding'

A note on terminology

- ☐ We refer to the presence of common causes as confounding, and to conditioning on common effects as selection bias
 - This classification may not coincide perfectly with the traditional, often discipline-specific, terminologies
- ☐ Our goal is not to be normative about terminology
 - but rather to emphasize that there exist two distinct causal structures that lead to bias
 - regardless of the terms chosen to refer to them

Selection bias 13

Selection bias in our study population?

- ☐ 1629 cigarette smokers
- ☐ Aged 25-74 years when interviewed in 1971-75 (baseline)
- ☐ Interviewed again in 1982
- □ Known sex, age, race, weight, height, education, alcohol use, and smoking intensity at both baseline and follow-up visits, and who answered the general medical history questionnaire at baseline

Key variables

Treatment A	Quit smoking between baseline and 1982 1: yes, 0: no
Continuous outcome Y	Weight gain, kg Weight in 1982 minus baseline weight Available for 1566 individuals
Dichotomous outcome D	Death by 1992 1: yes, 0: no
Baseline (pre-treatment) covariates	Age, sex, race, alcohol use, intensity of smoking, weight
Censoring C	Missing weight in 1982 1: yes, 0: no

Selection bias 15

Differential loss to follow-up / nonresponse or missing data

A: Smoking cessation, Y: weight gain,

C: Censoring (1: yes, 0: no),

L: Smoking intensity in 1971-75,

U: Lifetime history of smoking

Differential loss to follow-up

C: Missing data (1: yes, 0: no)

Selection bias

17

Plan for today

- A. Review of selection bias
- B. IP weighting to adjust for selection bias
 - Due to loss to follow-up/missing data

Selection bias

18

Adjustment for selection bias

- □ Sometimes selection bias can be prevented by study design
 - e.g., sampling controls in a manner to ensure that they will represent the treatment distribution in the population
- ☐ Most often selection bias needs to be adjusted for via
 - Stratification
 - IP weighting

Selection bias 19

Stratification to adjust for selection bias

- \square The idea is blocking the path that was unblocked because of conditioning on the collider C
 - Can block it if L (or U) is measured
- \square The path is blocked by estimating the A-Y association in the selected within levels of L
 - \blacksquare That is, adding a box around L
- \square The conditional association measure is the causal effect within levels of L and C=0
 - a bit weird but unbiased under the null

Stratification to adjust for selection bias?

Conditional association measure not always causal!

Selection bias 21

IP weighting to adjust for selection bias

- $\ \square$ The idea is eliminating the path that was unblocked because of conditioning on the collider C
 - Can eliminate it if L (or U) is measured
- ☐ The path is eliminated by creating a pseudo-population in which everybody is selected (e.g., uncensored)
 - Because then there are no arrows into C
- ☐ The association measure in the pseudo-population is the effect measure in the study population
 - Unconditionally

Example

- □ 100 participants with same treatment and covariate history
 - untreated, men, aged 40-45, CD4 count >500
- □ 50 are lost to follow-up and do not contribute to the analysis (zero weight)
- \square The remaining 50 receive a weight=2
 - Probability of remaining uncensored is 0.5, weight for uncensored individuals is 1/0.5=2
 - IP weighting creates a pseudo-population in which the 100 participants are replaced by 2 copies of the 50 uncensored individuals

Which assumption are we making?

 $Y^{a,c=0} \coprod C | A, L \text{ for } c=0$

- □ Conditional exchangeability
 - lacktriangle within levels of A,L the risk in the unselected if selected is the same as the risk in the selected
 - or selection is randomized within levels of A.L.
 - lacksquare or no unmeasured confounding for selection C within levels of the measured variables A,L
- ☐ Also required:
 - Positivity: not all censored for some A,L levels
 - Consistency, including a well-defined intervention to eliminate censoring
 - □ problems with competing risks (see later)

Selection bias 27

IP weights for selection bias

$$W^C = \frac{1}{\Pr[C = 0|A, L]}$$

- \square Each selected individual in the population is weighted to create W^C individuals in the pseudo-population
 - Unselected individuals have weight zero
- \square The denominator of your weight is (informally) the probability of having been selected given your A,L values
 - Equal for all C=0 individuals with same A,L values

IP weights

- □ To adjust for confounding
 - Use IP weights W^A
 - \blacksquare A is the treatment variable
- ☐ To adjust for selection bias
 - Use IP weights W^C
 - \blacksquare *C* is the selection variable
- ☐ To adjust for both biases
 - Multiply $W^A \times W^C$

Selection bias 29

Stabilized IP weights for selection bias

$$SW^{C} = \frac{\Pr[C = 0|A]}{\Pr[C = 0|A, L]}$$

- ☐ Same denominator as nonstabilized IP weights multiplied by an individual's probability of having been selected given their A values
- \square Each selected individual i in the population is weighted to create SW_i^C individuals in the pseudo-population

Stabilized IP weights

- ☐ To adjust for confounding
 - Use IP weights *SW*^A
 - \blacksquare A is the treatment variable
- ☐ To adjust for selection bias
 - Use IP weights *SW^C*
 - \blacksquare *C* is the selection variable
- ☐ To adjust for both biases
 - Multiply $SW^A \times SW^C$

Selection bias 31

Summary of IP weights for confounding and selection bias

	IP weights for confounding		IP weights for selection bias	
	Nonstabilized	Stabilized	Nonstabilized	Stabilized
Formula	$\frac{1}{f(A L)}$	$\frac{f(A)}{f(A L)}$	$\frac{1}{\Pr[C = 0 A, L]}$	$\frac{\Pr[C = 0 A]}{\Pr[C = 0 A, L]}$
DAG for pseudopopulation	L A Y	L A Y	A C Y	$A \longrightarrow C \qquad Y$
Size of pseudopopulation	Original N * number of levels of A	Original N	Original N before censoring	Original N after censoring

Nonstabilized wei	ghts eliminate censoring	₡ 0
True		
False		0%
		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	- N

- ☐ Estimate the mean weight gain if everybody had quit smoking
 - \blacksquare $E[Y^{a=1}]$
- ☐ Estimate the mean weight gain if nobody had quit smoking
 - \blacksquare $E[Y^{a=0}]$
- ☐ Estimate the average causal effect on the additive scale
 - $\blacksquare E[Y^{a=1}] E[Y^{a=0}]$

Selection bias 35

We have ignored censoring all this time!

- ☐ We restricted the analysis to the 1566 participants with non missing outcome
 - i.e., we did not use data from the 63 participants with missing outcome
- ☐ Effectively we assumed that the 1566 uncensored and the 63 censored participants were exchangeable
 - \blacksquare We assumed no selection bias due to censoring C

See ipw selection.R, lines 6-9

Causal question 1 (what we really meant)

- ☐ Estimate the mean weight gain if everybody had quit smoking **and nobody had been censored**
 - \blacksquare $E[Y^{a=1,c=0}]$
- ☐ Estimate the mean weight gain if nobody had quit smoking **and nobody had been censored**
 - \blacksquare $E[Y^{a=0,c=0}]$
- ☐ Estimate the average causal effect
 - $\blacksquare E[Y^{a=1,c=0}] E[Y^{a=0,c=0}]$

Selection bias 37

What model were we really fitting?

☐ We fit the weighted regression model

$$E[Y|A] = \theta_0 + \theta_1 A$$

- but restricted to individuals with nonmissing weight gain, i.e., conditional on C=0
- ☐ That is, we were really fitting the weighted regression model

$$E[Y|A,C=0] = \theta_0 + \theta_1 A$$

What if this were a randomized experiment...

- ☐ ... in which individuals had been randomly assigned to "quit smoking" or "remain as smokers"?
- □ Is the difference $E[Y^{a=1,c=0}] E[Y^{a=0,c=0}]$ consistently estimated by $\hat{\theta}_1$ from the unweighted regression model?

$$E[Y|A,C=0] = \theta_0 + \theta_1 A$$

- □ Not in general
 - Post-randomization loss to follow-up/missing data may destroy the baseline exchangeability achieved by randomization

Selection bias 39

What if this were an observational study...

- □ ... in which the treated and the untreated are exchangeable **at baseline**, conditional on measured confounders?
 - e.g., age, sex, race, alcohol, etc.
- ☐ IP weighting creates a pseudo-population with unconditional exchangeability **at baseline**
- □ In general, $E[Y^{a=1,c=0}] E[Y^{a=0,c=0}]$ is not consistently estimated by $\hat{\theta}_1$ from the weighted regression model $E[Y|A,C=0] = \theta_0 + \theta_1 A$

Which assumption were we making?

- □ Exchangeability
 - \blacksquare unconditional with respect to covariates L
 - selection is randomized within levels of A only
- ☐ This assumption is stronger than the assumption of conditional exchangeability
 - selection is randomized within levels of A,L
- ☐ Let's then conduct the analysis under the weaker assumption by using IP weighting

Selection bias 41

Doubly-weighted regression model

 $E[Y|A,C=0] = \theta_0 + \theta_1 A$

- ☐ Adjusting for the following variables
 - Sex, age, race, hbp, education, active, smokeyrs, smokeintensity, exercise
 - □ squared terms for continuous variables
 - For both SW^A and SW^C
- □ Parameter estimates
 - \blacksquare $\hat{\theta}_0 = 1.8$
 - $\hat{\theta}_1$ = 3.3 (conservative 95% CI: 2.3, 4.3)
- ☐ Saturated model
 - 2 parameters, 2 quantities

See ipw selection.R, lines 11-64

☐ Did we adjust fo standardization?	r censoring when using	
☐ See homework		
	Selection bias	

☐ By creating a p	seudo-population in which
 selection (e.g., randomly allocated) 	censoring, missing data) is eliminated or ated
2. the effect of the population	e treatment is the same as in the original
	oulation effect measure is equal to sure had everybody been selected in oulation

Interpretation for different types of selection

- ☐ Censoring due to loss to follow-up
 - Effect had nobody, or only a random sample, been lost to follow-up
 - Appropriate
- ☐ Missing data, nonresponse
 - Effect had nobody, or only a random sample, had missing data
 - Appropriate
- ☐ Censoring due to competing risks
 - Effect had nobody, or only a random sample, been censored due to competing risks
 - Probably not interesting

Selection bias 45

Example of competing risks

- ☐ A study to estimate the effect of cigarette smoking on the risk of Alzheimer's disease
- ☐ Do we want effect estimates from a pseudo-population in which all other causes of death (cancer, heart disease, stroke, etc.) have been removed?
 - Pseudo-population does not correspond to any known human population
 - Plus, no well-defined intervention could possibly remove just one cause of death without affecting the others as well

Readings

- ☐ Causal Inference, What If. Chapter 8
- ☐ Greenland S. Quantifying biases in causal models: classical confounding versus collider-stratification bias. *Epidemiology* 2003; 14:300-306
- □ Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. *Epidemiology* 2004; 15:615–625

Selection bias 47

Progress report

- 1. Introduction to modeling
- 2. Stratified analysis:
 - outcome regression
 - propensity scores
- 3. Standardization
- 4. Inverse probability weighting
 - Marginal structural models
- 5. Instrumental variable estimation