

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Syntax und Semantik

Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Vervollständigen Sie das Sudoku so, dass

- ▶ in jeder der neun Spalten
- ► in jeder der neun Reihen
- und in jeder der neun Regionen

alle Zahlen von 1 bis 9 vorkommen.

Sudoku

Lösung

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Lösungsweg via Aussagenlogik

Wir führen für jede Zellenposition (i,j) des Sudoku und jede Zahl k zwischen 1 und 9 eine Boolesche Variable

$$D_{i,j}^k$$

ein, mit der Vorstellung, dass $D_{i,j}^k$ den Wert wahr hat, wenn auf dem Feld (i,j) die Zahl k steht.

Lösungsweg via Aussagenlogik

Wir führen für jede Zellenposition (i,j) des Sudoku und jede Zahl k zwischen 1 und 9 eine Boolesche Variable

$$D_{i,j}^k$$

ein, mit der Vorstellung, dass $D_{i,j}^k$ den Wert wahr hat, wenn auf dem Feld (i,j) die Zahl k steht.

Wir benutzen kartesische Koordinaten zur Notation von Positionen.

Lösungsweg via Aussagenlogik

Wir führen für jede Zellenposition (i,j) des Sudoku und jede Zahl k zwischen 1 und 9 eine Boolesche Variable

$$D_{i,j}^k$$

ein, mit der Vorstellung, dass $D_{i,j}^k$ den Wert wahr hat, wenn auf dem Feld (i,j) die Zahl k steht.

Wir benutzen kartesische Koordinaten zur Notation von Positionen.

So ist z.B. $D_{9,1}^9$ wahr, wenn in der rechten unteren Ecke die Zahl 9 steht.

Sudoku Regeln als AL-Formeln

$$D_{1,9}^1 \vee D_{2,9}^1 \vee D_{3,9}^1 \vee D_{4,9}^1 \vee D_{5,9}^1 \vee D_{6,9}^1 \vee D_{7,9}^1 \vee D_{8,9}^1 \vee D_{9,9}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Zeile vorkommen muß.

Sudoku Regeln als AL-Formeln

$$\textit{D}_{1,9}^{1} \lor \textit{D}_{2,9}^{1} \lor \textit{D}_{3,9}^{1} \lor \textit{D}_{4,9}^{1} \lor \textit{D}_{5,9}^{1} \lor \textit{D}_{6,9}^{1} \lor \textit{D}_{7,9}^{1} \lor \textit{D}_{8,9}^{1} \lor \textit{D}_{9,9}^{1}$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Zeile vorkommen muß.

$$D_{1,1}^1 \vee D_{1,2}^1 \vee D_{1,3}^1 \vee D_{1,4}^1 \vee D_{1,5}^1 \vee D_{1,6}^1 \vee D_{1,7}^1 \vee D_{1,8}^1 \vee D_{1,9}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Spalte vorkommen muß.

Sudoku Regeln als AL-Formeln

$$\textit{D}_{1,9}^{1} \lor \textit{D}_{2,9}^{1} \lor \textit{D}_{3,9}^{1} \lor \textit{D}_{4,9}^{1} \lor \textit{D}_{5,9}^{1} \lor \textit{D}_{6,9}^{1} \lor \textit{D}_{7,9}^{1} \lor \textit{D}_{8,9}^{1} \lor \textit{D}_{9,9}^{1}$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Zeile vorkommen muß.

$$D_{1,1}^1 \vee D_{1,2}^1 \vee D_{1,3}^1 \vee D_{1,4}^1 \vee D_{1,5}^1 \vee D_{1,6}^1 \vee D_{1,7}^1 \vee D_{1,8}^1 \vee D_{1,9}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Spalte vorkommen muß.

$$D_{1,1}^1 \vee D_{1,2}^1 \vee D_{1,3}^1 \vee D_{2,1}^1 \vee D_{2,2}^1 \vee D_{2,3}^1 \vee D_{3,1}^1 \vee D_{3,2}^1 \vee D_{3,3}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der Region links unten vorkommen muss.

Ergibt soweit: (9+9+9)*9=243 Formeln. Diese Formeln beschreiben Sudoku noch nicht genau.

Ergibt soweit: (9+9+9)*9=243 Formeln. Diese Formeln beschreiben Sudoku noch nicht genau.

Man muss noch sagen, dass auf jeder Zelle höchstens eine Zahl stehen kann.

Ergibt soweit: (9+9+9)*9=243 Formeln. Diese Formeln beschreiben Sudoku noch nicht genau.

Man muss noch sagen, dass auf jeder Zelle höchstens eine Zahl stehen kann.

$$\begin{split} &\neg (D_{1,1}^1 \wedge D_{1,1}^2), \ \neg (D_{1,1}^1 \wedge D_{1,1}^3), \ \neg (D_{1,1}^1 \wedge D_{1,1}^4), \ \neg (D_{1,1}^1 \wedge D_{1,1}^5), \\ &\neg (D_{1,1}^1 \wedge D_{1,1}^6), \ \neg (D_{1,1}^1 \wedge D_{1,1}^7), \ \neg (D_{1,1}^1 \wedge D_{1,1}^8), \ \neg (D_{1,1}^2 \wedge D_{1,1}^3), \ \neg (D_{1,1}^2 \wedge D_{1,1}^4), \ \neg (D_{1,1}^2 \wedge D_{1,1}^5), \ \neg (D_{1,1}^2 \wedge D_{1,1}^6), \ \neg (D_{1,1}^2 \wedge D_{1,1}^7), \ \neg (D_{1,1}^2 \wedge D_{1,1}^8), \ \neg (D_{1,1}^2 \wedge D_{1,1}^9), \ \neg (D_{1,1}^3 \wedge D_{1,1}^4), \ \end{split}$$
 usw.

Allgemein:

$$\neg (D_{i,j}^s \wedge D_{i,j}^t)$$

für alle $1 \le i, j, s, t \le 9$ mit s < t.

Allgemein:

$$\neg (D_{i,j}^{\mathcal{S}} \wedge D_{i,j}^{t})$$

für alle $1 \le i, j, s, t \le 9$ mit s < t.

Ergibt insgesamt: 243 + 81 * 36 = 3159 Formeln.

Allgemein:

$$\neg (D_{i,j}^{\mathcal{S}} \wedge D_{i,j}^{t})$$

für alle $1 \le i, j, s, t \le 9$ mit s < t.

Ergibt insgesamt: 243 + 81 * 36 = 3159 Formeln.

Hinzu kommen atomare Formeln, die das konkrete Rätsel beschreiben:

$$D_{1,4}^7,\ldots,D_{9,6}^3$$

Das 8-Damen-Problem

Man plaziere acht Damen so auf einem Schachbrett, dass sie sich gegenseitig nicht bedrohen.

Das 8-Damen-Problem

Man plaziere acht Damen so auf einem Schachbrett, dass sie sich gegenseitig nicht bedrohen.

Eine Lösung des 8-Damen-Problems

Wiederholung

Syntax und Semantik der Aussagenlogik

Logische Zeichen

1 Symbol für den Wahrheitswert "wahr"

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- ¬ Negationssymbol ("nicht")

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")

- 1 Symbol für den Wahrheitswert "wahr"
- O Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- Disjunktionssymbol ("oder")

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- ∨ Disjunktionssymbol ("oder")
- → Implikationssymbol ("wenn ... dann")

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- Disjunktionssymbol ("oder")
- → Implikationssymbol ("wenn . . . dann")
- → Symbol für beiderseitige Implikation ("genau dann, wenn")

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- ¬ Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- ∨ Disjunktionssymbol ("oder")
- → Implikationssymbol ("wenn . . . dann")
- → Symbol für beiderseitige Implikation ("genau dann, wenn")
- (,) die beiden Klammern

Signatur

Eine (aussagenlogische) Signatur ist eine abzählbare Menge Σ von Symbolen, etwa

$$\Sigma = \{P_0, \ldots, P_n\}$$

oder

$$\Sigma = \{P_0, P_1, \ldots\}.$$

Die Elemente von Σ heißen auch *atomare Aussagen*, *Atome* oder *Aussagevariablen*.

Formeln der Aussagenlogik

Zur Signatur Σ ist $For0_{\Sigma}$, die Menge der

induktiv definiert durch

▶ 1 ∈ *For*0_∑

 $\boldsymbol{0} \in \textit{For} 0_{\Sigma}$

 $\Sigma \subseteq \textit{For} 0_{\Sigma}$

Formeln der Aussagenlogik

Zur Signatur Σ ist $For0_{\Sigma}$, die Menge der

Formeln über Σ

induktiv definiert durch

- 1 ∈ For0_Σ
 0 ∈ For0_Σ
 Σ ⊂ For0_Σ
- ▶ wenn $A, B \in For0_{\Sigma}$ dann sind auch

 $\neg A$ $(A \land B)$ $(A \lor B)$ $(A \to B)$ $(A \leftrightarrow B)$

Elemente von For0₅

Semantik der Aussagenlogik

Interpretation

Es sei Σ eine aussagenlogische Signatur. Eine Interpretation über Σ ist eine beliebige Abbildung

$$I: \Sigma \to \{W, F\}.$$

Semantik der Aussagenlogik

Auswertung

Zu jedem I über Σ wird eine zugehörige Auswertung der Formeln über Σ definiert

$$\textit{val}_{\textit{I}}: \textit{For} 0_{\Sigma} \rightarrow \{\textit{W}, \textit{F}\}$$

mit:

$$val_I(\mathbf{1}) = W$$

 $val_I(\mathbf{0}) = F$
 $val_I(P) = I(P)$ für jedes $P \in \Sigma$

$$val_I(\neg A) = \begin{cases} F & \text{falls} \quad val_I(A) = W \\ W & \text{falls} \quad val_I(A) = F \end{cases}$$

Semantik der Aussagenlogik

Auswertung (Forts.)

 val_l auf $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ wird gemäß der folgenden Tabelle berechnet

		val _l	val _l	val _l	val _l
$val_l(A)$	$val_l(B)$	$(A \wedge B)$	$(A \lor B)$	$(A \rightarrow B)$	$(A \leftrightarrow B)$
W	W	W	W	W	W
W	F	F	W	F	F
F	W	F	W	W	F
F	F	F	F	W	W

Logische Grundbegriffe

Definition

▶ Ein Modell einer Formel $A \in For0_{\Sigma}$ ist eine Interpretation I über Σ mit $val_I(A) = W$.

Logische Grundbegriffe

Definition

- ▶ Ein Modell einer Formel $A \in For0_{\Sigma}$ ist eine Interpretation I über Σ mit $val_I(A) = W$.
- ▶ Zu einer Formelmenge $M \subseteq For0_{\Sigma}$ ist ein Modell von M eine Interpretation I, welche Modell von jedem $A \in M$ ist.

Logische Grundbegriffe

Definition

- Ein Modell einer Formel A ∈ For0_Σ ist eine Interpretation I über Σ mit val_I(A) = W.
- ▶ Zu einer Formelmenge $M \subseteq For0_{\Sigma}$ ist ein Modell von M eine Interpretation I, welche Modell von jedem $A \in M$ ist.
- A ∈ For0_Σ heißt allgemeingültig gdw
 val_I(A) = W für jede Interpretation I über Σ.

Logische Grundbegriffe

Definition

- Ein Modell einer Formel A ∈ For0_Σ ist eine Interpretation I über Σ mit val_I(A) = W.
- ▶ Zu einer Formelmenge $M \subseteq For0_{\Sigma}$ ist ein Modell von M eine Interpretation I, welche Modell von jedem $A \in M$ ist.
- A ∈ For0_Σ heißt allgemeingültig gdw
 val_I(A) = W für jede Interpretation I über Σ.
- A ∈ For0_Σ heißt erfüllbar gdw
 es gibt eine Interpretation I über Σ mit val_I(A) = W.

Logische Grundbegriffe (Forts.)

Definition

 Σ sei eine Signatur, $M \subseteq For0_{\Sigma}$, $A, B \in For0_{\Sigma}$.

 M ⊨ A lies: aus M folgt A gdw
 Jedes Modell von M ist auch Modell von A.

Logische Grundbegriffe (Forts.)

Definition

 Σ sei eine Signatur, $M \subseteq For0_{\Sigma}$, $A, B \in For0_{\Sigma}$.

- ► M ⊨ A lies: aus M folgt A gdw
 Jedes Modell von M ist auch Modell von A.
- A, B ∈ For0_∑ heißen logisch äquivalent gdw
 {A} ⊨_∑ B und {B} ⊨_∑ A

Beispiele allgemeingültiger Formeln

A o A
$ eg \mathcal{A} \lor \mathcal{A}$
${\sf A} o ({\sf B} o {\sf A})$
$0 o \mathcal{A}$
$(A \wedge (A o B)) o B$
$A \wedge A \leftrightarrow A$
$(\neg \neg A) \leftrightarrow A$
$A \wedge (A \vee B) \leftrightarrow A$
$(A \leftrightarrow B) \leftrightarrow ((A \rightarrow B) \land (B \rightarrow A))$
$A \wedge (B \vee C) \leftrightarrow (A \wedge B) \vee (A \wedge C)$
$A \lor (B \land C) \leftrightarrow (A \lor B) \land (A \lor C)$

Selbstimplikation Tertium non datur Abschwächung Ex falso quodlibet Modus Ponens Idempotenz Doppelnegation Absorption Äquivalenz/Implikation Distributivität Distributivität

Beispiele allgemeingültiger Formeln (Forts.)

$$(A \rightarrow B) \leftrightarrow (\neg B \rightarrow \neg A)$$
 Kontraposition $(A \rightarrow (B \rightarrow C)) \leftrightarrow$ $((A \rightarrow B) \rightarrow (A \rightarrow C))$ Verteilen $\neg (A \lor B) \leftrightarrow \neg A \land \neg B$ De Morgan $\neg (A \land B) \leftrightarrow \neg A \lor \neg B$ De Morgan

Theorem

► A erfüllbar gdw ¬A nicht allgemeingültig

- ► A erfüllbar gdw ¬A nicht allgemeingültig
- ► |= A gdw A ist allgemeingültig

- ► A erfüllbar gdw ¬A nicht allgemeingültig
- ► |= A gdw A ist allgemeingültig
- ► |= ¬A gdw A ist unerfüllbar

- ► A erfüllbar gdw ¬A nicht allgemeingültig
- ► |= A gdw A ist allgemeingültig
- ► |= ¬A gdw A ist unerfüllbar
- $\blacktriangleright A \models B \quad \textit{gdw} \quad \models A \rightarrow B$

- ► A erfüllbar gdw ¬A nicht allgemeingültig
- ► |= A gdw A ist allgemeingültig
- ▶ |= ¬A gdw A ist unerfüllbar
- ▶ $A \models B$ $gdw \models A \rightarrow B$
- ► $M \cup \{A\} \models B$ gdw $M \models A \rightarrow B$

- ► A erfüllbar gdw ¬A nicht allgemeingültig
- ► |= A gdw A ist allgemeingültig
- ▶ |= ¬A gdw A ist unerfüllbar
- ► $A \models B$ $gdw \models A \rightarrow B$
- ► $M \cup \{A\} \models B$ gdw $M \models A \rightarrow B$
- ► A, B sind logisch äquivalent gdw A ↔ B ist allgemeingültig

Logische Umformung

Theorem

Wenn

- ► A und B logisch äquivalent
- ► A Unterformel von C
- ► C' entsteht aus C dadurch, dass A durch B ersetzt wird

dann

► C und C' logisch äquivalent

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

$$\begin{array}{ll} 1 & (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A) \\ 2 & \neg (A \rightarrow B) \leftrightarrow (A \land \neg B) \end{array}$$

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

2
$$\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$$

$$3 \quad \neg (A \vee B) \rightarrow (A \vee B)$$

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

$$2 \neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$$

$$3 \neg (A \lor B) \to (A \lor B)$$

$$4 \quad (A \to B) \to (\neg A \to \neg B)$$

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

$$2 \neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$$

$$3 \neg (A \lor B) \to (A \lor B)$$

4
$$(A \rightarrow B) \rightarrow (\neg A \rightarrow \neg B)$$

5
$$(\neg A \lor B) \lor (A \land \neg B)$$

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$ ja
3 $\neg (A \lor B) \rightarrow (A \lor B)$ nein
4 $(A \rightarrow B) \rightarrow (\neg A \rightarrow \neg B)$ nein
5 $(\neg A \lor B) \lor (A \land \neg B)$ ja

Boolesche Funktionen

Definition

1. Eine Funktion f von $\{\mathbf{W}, \mathbf{F}\}^n$ nach $\{\mathbf{W}, \mathbf{F}\}$ für $n \in \mathbb{N}$ heißt eine n-stellige Boolesche Funktion.

Boolesche Funktionen

Definition

- 1. Eine Funktion f von $\{\mathbf{W}, \mathbf{F}\}^n$ nach $\{\mathbf{W}, \mathbf{F}\}$ für $n \in \mathbb{N}$ heißt eine n-stellige Boolesche Funktion.
- 2. Sei $A \in For0_{\Sigma}$, $\Sigma = \{P_1, \dots, P_n\}$ dann wird die *Boolesche Funktion* f_A von A definiert durch:

$$f_A(\bar{b}) = val_I(A)$$

wobei $\bar{b} \in \{\mathbf{W}, \mathbf{F}\}^n$ und $I(P_i) = b_i$.

Boolesche Funktionen

Definition

- 1. Eine Funktion f von $\{\mathbf{W}, \mathbf{F}\}^n$ nach $\{\mathbf{W}, \mathbf{F}\}$ für $n \in \mathbb{N}$ heißt eine n-stellige Boolesche Funktion.
- 2. Sei $A \in For0_{\Sigma}$, $\Sigma = \{P_1, \dots, P_n\}$ dann wird die *Boolesche Funktion* f_A von A definiert durch:

$$f_A(\bar{b}) = val_I(A)$$

wobei $\bar{b} \in \{\mathbf{W}, \mathbf{F}\}^n$ und $I(P_i) = b_i$.

Die Boolesche Funktion f_A hängt ab von der Anordnung der in ihr vorkommenden aussagenlogischen Atome!

Beispiel

Für $A = P_1 \wedge P_3$ in der Signatur $\Sigma = \{P_1, P_2, P_3\}$ ergibt sich f_A aus der folgenden Tabelle:

<i>P</i> ₁	P_2	<i>P</i> ₃	$f_A(P_1,P_2,P_3)$
W	W	W	W
W	W	F	F
W	F	W	W
W	F	F	F
F	W	W	F
F	W	F	F
F	F	W	F
F	F	F	F

Wiederholung

Satz

Zu jeder Booleschen Funktion $f: \{\mathbf{W}, \mathbf{F}\}^n \to \{\mathbf{W}, \mathbf{F}\}$ gibt es eine Formel $A \in For0_{\Sigma}$ mit

$$f = f_A$$

Wiederholung

Satz

Zu jeder Booleschen Funktion $f: \{\mathbf{W}, \mathbf{F}\}^n \to \{\mathbf{W}, \mathbf{F}\}$ gibt es eine Formel $A \in For0_{\Sigma}$ mit

$$f = f_A$$

Beweis:

Wiederholung

Satz

Zu jeder Booleschen Funktion $f: \{\mathbf{W}, \mathbf{F}\}^n \to \{\mathbf{W}, \mathbf{F}\}$ gibt es eine Formel $A \in For0_{\Sigma}$ mit

$$f = f_A$$

Beweis: Seien $\bar{b_1}, \dots \bar{b_k}$ genau die *n*-Tupel aus $\{\mathbf{W}, \mathbf{F}\}^n$ mit $f(\bar{b_i}) = \mathbf{W}$.

Wiederholung

Satz

Zu jeder Booleschen Funktion $f: \{\mathbf{W}, \mathbf{F}\}^n \to \{\mathbf{W}, \mathbf{F}\}$ gibt es eine Formel $A \in For0_{\Sigma}$ mit

$$f = f_A$$

Beweis: Seien $\bar{b_1}, \dots \bar{b_k}$ genau die *n*-Tupel aus $\{\mathbf{W}, \mathbf{F}\}^n$ mit $f(\bar{b_i}) = \mathbf{W}$. $A = A_1 \vee \dots \vee A_k$.

Wiederholung

Satz

Zu jeder Booleschen Funktion $f: \{\mathbf{W}, \mathbf{F}\}^n \to \{\mathbf{W}, \mathbf{F}\}$ gibt es eine Formel $A \in For0_{\Sigma}$ mit

$$f = f_A$$

Beweis: Seien $\bar{b_1}, \dots \bar{b_k}$ genau die *n*-Tupel aus $\{\mathbf{W}, \mathbf{F}\}^n$ mit $f(\bar{b_i}) = \mathbf{W}$.

$$A = A_1 \vee \ldots \vee A_k$$
, $A_i = A_{i,1} \wedge \ldots \wedge A_{i,n}$ mit

Wiederholung

Satz

Zu jeder Booleschen Funktion $f: \{\mathbf{W}, \mathbf{F}\}^n \to \{\mathbf{W}, \mathbf{F}\}$ gibt es eine Formel $A \in For0_{\Sigma}$ mit

$$f = f_A$$

Beweis: Seien $\bar{b_1}, \dots \bar{b_k}$ genau die *n*-Tupel aus $\{\mathbf{W}, \mathbf{F}\}^n$ mit $f(\bar{b_i}) = \mathbf{W}$.

$$A = A_1 \vee \ldots \vee A_k$$
, $A_i = A_{i,1} \wedge \ldots \wedge A_{i,n}$ mit

$$A_{i,j} = \left\{ egin{array}{ll} P_j & ext{falls } b_{i,j} = \mathbf{W} \\
eg P_j & ext{falls } b_{i,j} = \mathbf{F} \end{array}
ight.$$

Basen

Definition

Eine Menge *KOp* von aussagenlogischen Konstanten und Operatoren heißt eine

Basis,

wenn für jede Boolesche Funktion $f: \{\mathbf{W}, \mathbf{F}\}^n \to \{\mathbf{W}, \mathbf{F}\}$ eine Formel A existiert, die nur mit Konstanten und Operatoren aus KOp aufgebaut ist, mit

$$f_A = f$$
.

Basen

Definition

Eine Menge *KOp* von aussagenlogischen Konstanten und Operatoren heißt eine

Basis,

wenn für jede Boolesche Funktion $f: \{\mathbf{W}, \mathbf{F}\}^n \to \{\mathbf{W}, \mathbf{F}\}$ eine Formel A existiert, die nur mit Konstanten und Operatoren aus KOp aufgebaut ist, mit

$$f_A = f$$
.

Keine Minimalität für KOp gefordert.

Basen

Beispiele

- $\blacktriangleright \{1, 0, \neg, \land, \lor, \rightarrow, \leftrightarrow\}$
- $ightharpoonup \{\neg, \land\}$
- ► {**0**, →}
- **▶** {↓}
- ► {1,0,sh}

wobei $A \downarrow B = \neg (A \lor B)$:

$val_l(A)$	val _l (B)	$val_l(A \downarrow B)$
W	W	F
W	F	F
F	W	F
F	F	W