Probabilistic Context-Free Grammars

Michael Collins, Columbia University

Overview

- Probabilistic Context-Free Grammars (PCFGs)
- ► The CKY Algorithm for parsing with PCFGs

A Probabilistic Context-Free Grammar (PCFG)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is $p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$ where $q(\alpha \to \beta)$ is the probability for rule $\alpha \to \beta$.

DERIVATION S RULES USED

PROBABILITY

DERIVATION

RULES USED

PROBABILITY

S

NP VP

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$

1.0

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP o DT \; NN$	0.3
DT NN VP		

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP o DT \; NN$	0.3
DT NN VP	DT o the	1.0
the NN VP	2.7	

RULES USED	PROBABILITY
$S \to NP \; VP$	1.0
$NP \rightarrow DT NN$	0.3
	1.0
	0.1

the dog VP

RULES USED	PROBABILITY
$S \to NP \; VP$	1.0
$NP \rightarrow DT NN$	0.3
	1.0

 $NN \to dog$

 $VP \rightarrow Vi$

0.1

0.4

the NN VP

the dog VP

the dog Vi

S	S o NP VP	1.0
NP VP	$NP \rightarrow DT NN$	0.3
DT NN VP	$DT \to the$	1.0

 $NN \to dog$

 $Vi \rightarrow laughs$

 $VP \rightarrow Vi$

RULES USED

PROBABILITY

0.1

0.4

0.5

DERIVATION

the NN VP

the dog VP

the dog Vi

the dog laughs

Properties of PCFGs

► Assigns a probability to each *left-most derivation*, or parse-tree, allowed by the underlying CFG

Properties of PCFGs

- ► Assigns a probability to each *left-most derivation*, or parse-tree, allowed by the underlying CFG
- ▶ Say we have a sentence s, set of derivations for that sentence is $\mathcal{T}(s)$. Then a PCFG assigns a probability p(t) to each member of $\mathcal{T}(s)$. i.e., we now have a ranking in order of probability.

Properties of PCFGs

- Assigns a probability to each left-most derivation, or parse-tree, allowed by the underlying CFG
- Say we have a sentence s, set of derivations for that sentence is $\mathcal{T}(s)$. Then a PCFG assigns a probability p(t) to each member of $\mathcal{T}(s)$. i.e., we now have a ranking in order of probability.
- ▶ The most likely parse tree for a sentence s is

$$\arg\max_{t\in\mathcal{T}(s)}p(t)$$

Data for Parsing Experiments: Treebanks

- ▶ Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Deriving a PCFG from a Treebank

- ▶ Given a set of example trees (a treebank), the underlying CFG can simply be all rules seen in the corpus
- Maximum Likelihood estimates:

$$q_{ML}(\alpha \to \beta) = \frac{\mathsf{Count}(\alpha \to \beta)}{\mathsf{Count}(\alpha)}$$

where the counts are taken from a training set of example trees.

▶ If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

PCFGs

Booth and Thompson (1973) showed that a CFG with rule probabilities correctly defines a distribution over the set of derivations provided that:

- 1. The rule probabilities define conditional distributions over the different ways of rewriting each non-terminal.
- 2. A technical condition on the rule probabilities ensuring that the probability of the derivation terminating in a finite number of steps is 1. (This condition is not really a practical concern.)

Parsing with a PCFG

- ▶ Given a PCFG and a sentence s, define $\mathcal{T}(s)$ to be the set of trees with s as the yield.
- Given a PCFG and a sentence s, how do we find

$$\arg\max_{t\in\mathcal{T}(s)}p(t)$$

Chomsky Normal Form

A context free grammar $G=(N,\Sigma,R,S)$ in Chomsky Normal Form is as follows

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- ightharpoonup R is a set of rules which take one of two forms:
 - $X \to Y_1Y_2$ for $X \in N$, and $Y_1, Y_2 \in N$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

A Dynamic Programming Algorithm

▶ Given a PCFG and a sentence s, how do we find

$$\max_{t \in \mathcal{T}(s)} p(t)$$

► Notation:

```
n= number of words in the sentence w_i=i'th word in the sentence N= the set of non-terminals in the grammar S= the start symbol in the grammar
```

► Define a dynamic programming table

```
\pi[i,j,X] = \max \max \text{ maximum probability of a constituent with non-terminal } X spanning words i \dots j inclusive
```

• Our goal is to calculate $\max_{t \in \mathcal{T}(s)} p(t) = \pi[1, n, S]$

An Example

the dog saw the man with the telescope

A Dynamic Programming Algorithm

▶ Base case definition: for all $i = 1 \dots n$, for $X \in N$

$$\pi[i, i, X] = q(X \to w_i)$$

(note: define $q(X \to w_i) = 0$ if $X \to w_i$ is not in the grammar)

▶ Recursive definition: for all i = 1 ... n, j = (i + 1) ... n, $X \in N$,

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in J_i \ (i-1)}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

An Example

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

the dog saw the man with the telescope

The Full Dynamic Programming Algorithm

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$.

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i,i,X) = \left\{ egin{array}{ll} q(X
ightarrow x_i) & \mbox{if } X
ightarrow x_i \in R \\ 0 & \mbox{otherwise} \end{array}
ight.$$

Algorithm:

Initialization:

▶ For
$$l = 1 \dots (n-1)$$

- ▶ For $i = 1 \dots (n l)$
 - \triangleright Set i = i + l

 $s \in \{i...(i-1)\}\$

▶ For all
$$X \in N$$
, calculate

 $\pi(i, j, X) = \max_{X \to YZ \in R} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$

 $bp(i, j, X) = \arg \max_{X \to YZ \in R} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$

A Dynamic Programming Algorithm for the Sum

▶ Given a PCFG and a sentence s, how do we find

$$\sum_{t \in \mathcal{T}(s)} p(t)$$

Notation:

$$n =$$
 number of words in the sentence $w_i = i$ 'th word in the sentence

N= the set of non-terminals in the grammar S= the start symbol in the grammar

► Define a dynamic programming table

$$\pi[i,j,X] = \text{sum of probabilities for constituent with non-terminal } X$$
 spanning words $i\ldots j$ inclusive

• Our goal is to calculate $\sum_{t \in \mathcal{T}(s)} p(t) = \pi[1, n, S]$

Summary

- ► PCFGs augments CFGs by including a probability for each rule in the grammar.
- ► The probability for a parse tree is the product of probabilities for the rules in the tree
- ► To build a PCFG-parsed parser:
 - 1. Learn a PCFG from a treebank
 - Given a test data sentence, use the CKY algorithm to compute the highest probability tree for the sentence under the PCFG