

<u>Gameboard</u>

Maths

Matrices: nxm Rules 2i

Matrices: nxm Rules 2i

The matrices ${f A}$, ${f B}$ and ${f C}$ are given by ${f A}=\begin{pmatrix}1&-4\end{pmatrix}$, ${f B}=\begin{pmatrix}5\\3\end{pmatrix}$ and ${f C}=\begin{pmatrix}3&0\\-2&2\end{pmatrix}$

Part A AB

Find the matrix **AB**

Part B $\mathbf{BA} - 4\mathbf{C}$

Find the matrix given by $\mathbf{BA} - 4\mathbf{C}$.

Adapted with permission from UCLES, A Level, June 2010, Paper 4725, Question 2.

<u>Gameboard</u>

Maths

2x2 Operations 2ii

2x2 Operations 2ii

The matrices ${f A}$ and ${f B}$ are given by ${f A}=egin{pmatrix} 2 & 1 \ 3 & 2 \end{pmatrix}$ and ${f B}=egin{pmatrix} a & -1 \ -3 & -2 \end{pmatrix}$.

Part A a

$$a$$
 satisfies the equation $2\mathbf{A}+\mathbf{B}=egin{pmatrix}1&1\3&2\end{pmatrix}$.

Find the value of a.

The following symbols may be useful: a

Part B Alternate value of a

Now take a to satisfy the equation $\mathbf{AB} = \begin{pmatrix} 7 & -4 \\ 9 & -7 \end{pmatrix}$.

Find the value of a.

The following symbols may be useful: a

Adapted with permission from UCLES, A Level, June 2007, Paper 4725, Question 1.

Gameboard:

STEM SMART Double Maths 9 - Matrices

Gameboard

Maths

2x2 Determinants and Inverses 1ii

2x2 Determinants and Inverses 1ii

The matrices ${f A}$ and ${f B}$ are given by ${f A}=\begin{pmatrix}2&1\\-4&5\end{pmatrix}$ and ${f B}=\begin{pmatrix}3&1\\2&3\end{pmatrix}$. ${f I}$ denotes the 2×2 identity matrix.

Part A
$$4\mathbf{A} - \mathbf{B} + 2\mathbf{I}$$

Find the matrix given by $4\mathbf{A} - \mathbf{B} + 2\mathbf{I}$.

Part B \mathbf{A}^{-1}

Find \mathbf{A}^{-1} .

$$\mathbf{A}^{-1} = \frac{1}{\Box} \begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix}$$

Part C
$$\left(\mathbf{A}\mathbf{B}^{-1}\right)^{-1}$$

Find
$$\left(\mathbf{A}\mathbf{B}^{-1}\right)^{-1}$$
.

$$\left(\mathbf{A}\mathbf{B}^{-1}
ight)^{-1} = rac{1}{igg(igg)} \left(igg(igg) igg(igg)$$

Items:

Adapted with permission from UCLES, A Level, Jan 2014, Paper 4725, Question 3.

Gameboard:

STEM SMART Double Maths 9 - Matrices

Gameboard

Maths

Matrices: 3x3 Determinants and Inverses 1i

Matrices: 3x3 Determinants and Inverses 1i

The matrix \mathbf{A} is given by $\mathbf{A} = \begin{pmatrix} a & 8 & 10 \\ 2 & 1 & 2 \\ 4 & 3 & 6 \end{pmatrix}$. The matrix \mathbf{B} is such that $\mathbf{AB} = \begin{pmatrix} a & 6 & 1 \\ 1 & 1 & 0 \\ 1 & 3 & 0 \end{pmatrix}$.

Part A $\det \mathbf{AB}$

Find $\det \mathbf{AB}$.

The following symbols may be useful: a

Part B $(AB)^{-1}$

Find $(\mathbf{AB})^{-1}$.

$$(\mathbf{A}\mathbf{B})^{-1} = rac{1}{igg(igg(igg) \ igg(igg$$

$$oxed{3a-6} \ egin{pmatrix} 2-3a \ \end{bmatrix} \ egin{pmatrix} 3-3a \ \end{bmatrix} \ egin{pmatrix} 6-3a \ \end{bmatrix}$$

Part C	\mathbf{B}^{-1}

Find \mathbf{B}^{-1} .

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 10.

Gameboard:

STEM SMART Double Maths 9 - Matrices

<u>Gameboard</u>

Maths

3 Simultaneous Equations 3i

3 Simultaneous Equations 3i

The matrix ${f B}$ is given by ${f B}=egin{pmatrix} a & 1 & 3 \ 2 & 1 & -1 \ 0 & 1 & 2 \end{pmatrix}$.

Part A a

Find the value of a in exact form, given that ${\bf B}$ is singular.

The following symbols may be useful: a

Part B \mathbf{B}^{-1}

Given that ${\bf B}$ is non-singular, find ${\bf B}^{-1}$.

$$\mathbf{B}^{-1} = rac{1}{igcup_{i}}}}}}}}}}}}}}}}
}
 \end{\igntime}}}}}}}}}}}}}}}}}}}}}}$$

$$oxed{a+6} oxed{\left[a-6
ight]} oxed{\left[2a+2
ight]} oxed{\left[2a-2
ight]} oxed{\left[3a+2
ight]} oxed{\left[3a-2
ight]}$$

Part C Simultaneous equations

x, y and z satisfy the following simultaneous equations

$$-x + y + 3z = 1$$
$$2x + y - z = 4$$
$$y + 2z = -1$$

Use matrix methods to find x, y and z.

Adapted with permission from UCLES, A Level, June 2005, Paper 4725, Question 7.

Gameboard:

STEM SMART Double Maths 9 - Matrices

<u>Gameboard</u>

Maths

Algebra

Matrices

Matrices - Intersecting Lines

Matrices - Intersecting Lines

Two lines are described by

$$3x - 4y - 1 = 0$$

$$2x + py - 10 = 0.$$

where p is a constant. Use matrix notation to find the coordinates of the point of intersection of these two lines.

Part A Write in matrix form

Write these equations in matrix form $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Part B Condition for no intersection

Use the matrix to find the value of p for which the lines do not intersect. Give your answer as an improper fraction.

The following symbols may be useful: p

Part C The inverse matrix

Find \mathbf{A}^{-1} , the inverse of \mathbf{A} .

$$\mathbf{A}^{-1} = \frac{1}{\Box} \begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix}$$

Items:

Part D Components of point of intersection

Using A^{-1} find the point of intersection in terms of p.

Items:

$$\boxed{18} \quad \boxed{20} \quad \boxed{28} \quad \boxed{30} \quad \boxed{38} \quad \boxed{40} \quad \boxed{p+4} \quad \boxed{p+8} \quad \boxed{p+40} \quad \boxed{p+80} \quad \boxed{3p+4} \quad \boxed{3p+8} \quad \boxed{3p+40} \quad \boxed{3p+80}$$

$\textbf{Part E} \qquad \textbf{A value for } p$

If the y-component of the point of intersection is equal to 2, find the value of p.

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 9 - Matrices

<u>Gameboard</u>

Maths

Algebra

Matrices

Matrices - Linear Equations 2

Matrices - Linear Equations 2

Use matrix notation to solve the following set of three equations for x, y and z:

$$x+cy=c \ x-y+2z=-c \ 2x-2y-z=2.$$

Part A Write in matrix form

Write these equations in matrix form $\mathbf{R}\mathbf{x} = \mathbf{p}$.

Part B Determinant of the matrix

Find the determinant of \mathbf{R} in terms of c.

The following symbols may be useful: c

Part C Condition for no unique solution

Deduce the value of c for which there is no unique solution.

Part D The inverse matrix

Find the inverse matrix \mathbf{R}^{-1} .

$$\mathbf{R}^{-1} = \frac{1}{\Box} \begin{pmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \\ \Box & \Box & \Box \end{pmatrix}$$

Items:

Part E Solution to the set of equations if c=1

Using ${f R}^{-1}$, find the solutions for x, y and z if c=1.

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 9 - Matrices

<u>Gameboard</u>

Maths

Algebra Matrices

Matrices - Linear Equations 3

Matrices - Linear Equations 3

A system consists of three masses m_1 , m_2 and m_3 in a line; they each have the same mass m. The mass m_2 is in the centre and connected by springs of spring constant k to m_1 on the left and m_3 on the right. The masses are all performing simple harmonic motion at the same angular frequency ω such that their equations of motion are

$$egin{aligned} -kx_1 + kx_2 &= -m\omega^2 x_1 \ kx_1 - 2kx_2 + kx_3 &= -m\omega^2 x_2 \ kx_2 - kx_3 &= -m\omega^2 x_3 \,. \end{aligned}$$

where x_1 , x_2 and x_3 are the displacements of m_1 , m_2 and m_3 respectively.

These equations can be written in matrix form

$$\mathbf{A}\mathbf{x} = -m\omega^2\mathbf{x}$$

$$= -m\omega^2\mathbf{I}\mathbf{x}$$

$$\Rightarrow (\mathbf{A} + m\omega^2\mathbf{I})\mathbf{x} = 0$$

A matrix equation of this sort only has solutions if $|\mathbf{A} + m\omega^2\mathbf{I}| = 0$. Use this to find the possible values of ω^2 . For each value of ω find the relationship between x_1 , x_2 and x_3 .

Part A The matrix A

Find the matrix **A**.

$$\mathbf{A} = \begin{pmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{pmatrix}$$

Part B The matrix ${f A} + m \omega^2 {f I}$

Find the matrix ${f A} + m \omega^2 {f I}$.

Items:

Part C The possible values of ω^2

Using the fact that non-zero solutions to the equation $(\mathbf{A}+m\omega^2\mathbf{I})\mathbf{x}=0$ require that $|\mathbf{A}+m\omega^2\mathbf{I}|=0$, deduce the three values of ω^2 . The three values, ω_1^2 , ω_2^2 and ω_3^2 , are such that $\omega_1^2<\omega_2^2<\omega_3^2$.

$$\omega_1^2=$$
 ______, $\omega_2^2=$ _______ and $\omega_3^2=$ _______

Part D The relationship between x_1 , x_2 and x_3

Since the determinant of the matrix is zero there are no unique solutions to the set of three equations; however, for each value of ω^2 , x_1 , x_2 and x_3 have a fixed relationship to each other. On the assumption that $x_1=1$, find x_2 and x_3 for each of the three frequencies deduced in Part B.

Created for isaacphysics.org by Julia Riley