Flights Tidiying

MGinorio

Assignment - Tidying and Transforming Data

		Los Angeles	Phoenix	San Diego	San Francisco	Seattle
ALASKA	on time	497	221	212	503	1,841
	delayed	62	12	20	102	305
AMWEST	on time	694	4,840	383	320	201
	delayed	117	415	65	129	61

Source: Numbersense, Kaiser Fung, McGraw Hill, 2013

The chart above describes arrival delays for two airlines across five destinations. Your task is to:

- (1) Create a .CSV file (or optionally, a MySQL database!) that includes all of the information above. You're encouraged to use a "wide" structure similar to how the information appears above, so that you can practice tidying and transformations as described below.
- (2) Read the information from your .CSV file into R, and use tidyr and dplyr as needed to tidy and transform your data.
- (3) Perform analysis to compare the arrival delays for the two airlines.
- (4) Your code should be in an R Markdown file, posted to rpubs.com, and should include narrative descriptions of your data cleanup work, analysis, and conclusions. Please include in your homework submission:
 - The URL to the .Rmd file in your GitHub repository. and
 - The URL for your rpubs.com web page.

Process

Overview

Pending

Packages

```
#Packages used

library(tidytext)
library(tidyverse)
library(ggplot2)
library(dplyr)
library(plotly)
library(stringr)
```

Dataset

Names Notice that because we used read_csv(), the data frame we received now prints nicely without having to use the head() function and does not clutter your screen.

```
flights <-read.csv("https://raw.githubusercontent.com/mgino11/Flights_Mani/main/HW_5_flights.csv", stringglimpse(flights)
```

We need to get rid of spaces in "on time" so we can later manipulate data

```
flights[,2] <- sapply(flights[,2], str_replace, " ", "_")
flights</pre>
```

```
##
           Χ
                 X.1 Los.Angeles Phoenix San.Diego San.Francisco Seattle
## 1 ALASKA on_time
                             497
                                      221
                                                212
                                                               503
                                                                      1841
## 2 ALASKA delayed
                               62
                                                 20
                                                               102
                                                                       305
                                       12
## 3 AM WEST on_time
                              694
                                     4840
                                                383
                                                               320
                                                                       201
## 4 AM WEST delayed
                             117
                                      415
                                                 65
                                                               129
                                                                        61
```

Manipulate

Clean data. Add the header Airline and Arrival Status to column 1 and 2. Pivot Longer for Arrival City

```
flights_pivot_1 <-flights %>%
  rename(airline = X, arrival.status = X.1) %>%
  pivot_longer(flights,
   cols = c(Los.Angeles, Phoenix, San.Diego, San.Francisco, Seattle),
   names_to = "Arrival_City",
    values_to = "Flight"
   )
## Warning in gsub(pasteO("^", names_prefix), "", names(cols)): argument 'pattern'
## has length > 1 and only the first element will be used
flights_pivot_1
## # A tibble: 20 x 4
##
     airline arrival.status Arrival_City Flight
##
      <chr> <chr>
                            <chr>
                                            <int>
## 1 ALASKA on_time
                                              497
                             Los.Angeles
                                              221
## 2 ALASKA on_time
                            Phoenix
## 3 ALASKA on_time
                                              212
                             San.Diego
## 4 ALASKA on time
                             San.Francisco
                                              503
## 5 ALASKA on_time
                                             1841
                             Seattle
## 6 ALASKA delayed
                             Los.Angeles
                                               62
## 7 ALASKA delayed
                             Phoenix
                                               12
## 8 ALASKA delayed
                             San.Diego
                                               20
## 9 ALASKA delayed
                             San.Francisco
                                              102
## 10 ALASKA delayed
                             Seattle
                                              305
## 11 AM WEST on_time
                             Los.Angeles
                                              694
## 12 AM WEST on_time
                             Phoenix
                                             4840
## 13 AM WEST on_time
                             San.Diego
                                              383
## 14 AM WEST on_time
                             San.Francisco
                                              320
                             Seattle
                                              201
## 15 AM WEST on_time
## 16 AM WEST delayed
                             Los.Angeles
                                              117
                             Phoenix
## 17 AM WEST delayed
                                              415
                             San.Diego
## 18 AM WEST delayed
                                               65
## 19 AM WEST delayed
                             San.Francisco
                                              129
## 20 AM WEST delayed
                             Seattle
                                               61
Pivot Wider I want to know the airline the Arrival City and what flight is on time or delayed
flights_pivot_1 <- flights_pivot_1 %>%
 pivot_wider(names_from = arrival.status,
              values_from = Flight)
flights_pivot_1
## # A tibble: 10 x 4
##
      airline Arrival_City on_time delayed
##
      <chr>
              <chr>
                              <int>
                                      <int>
## 1 ALASKA Los.Angeles
                               497
                                         62
                                221
                                         12
## 2 ALASKA Phoenix
## 3 ALASKA San.Diego
                                212
                                         20
## 4 ALASKA San.Francisco
                                503
                                        102
```

```
## 5 ALASKA Seattle
                              1841
                                       305
## 6 AM WEST Los.Angeles
                              694
                                       117
## 7 AM WEST Phoenix
                              4840
                                      415
## 8 AM WEST San.Diego
                              383
                                       65
## 9 AM WEST San.Francisco
                              320
                                       129
## 10 AM WEST Seattle
                              201
                                       61
```

Transform

```
## # A tibble: 10 x 6
##
     airline Arrival_City on_time delayed total_flights delayed_avg
##
     <chr>
             <chr>
                            <int>
                                    <int>
                                                  <int>
                                                              <dbl>
## 1 AM WEST San.Francisco
                                                              28.7
                              320
                                      129
                                                    449
## 2 AM WEST Seattle
                              201
                                       61
                                                    262
                                                              23.3
## 3 ALASKA San.Francisco
                              503
                                      102
                                                    605
                                                              16.9
## 4 AM WEST San.Diego
                              383
                                       65
                                                    448
                                                              14.5
## 5 AM WEST Los.Angeles
                              694
                                      117
                                                    811
                                                              14.4
## 6 ALASKA Seattle
                                      305
                                                   2146
                                                             14.2
                             1841
## 7 ALASKA Los.Angeles
                              497
                                      62
                                                   559
                                                              11.1
                                                    232
                                                              8.62
## 8 ALASKA San.Diego
                              212
                                       20
## 9 AM WEST Phoenix
                              4840
                                      415
                                                   5255
                                                              7.9
## 10 ALASKA Phoenix
                              221
                                       12
                                                    233
                                                              5.15
```

Graphs

Delayed Avg by Airline I want to interpret graphically the frequency of delayed flights by airline

```
ggplot(flights_pivot_1, aes(x = airline, y = delayed_avg,)) +
geom_boxplot() + geom_point() + ggtitle("Delayed Rate by Airline")
```

Delayed Rate by Airline

Delayed Avg by Airline I want to interpret graphically the frequency of delayed flights by by City

```
ggplot(flights_pivot_1, aes(x = Arrival_City, y = delayed_avg)) +
geom_boxplot() + geom_point() + ggtitle("Delayed Rate by City")
```

Delayed Rate by City

Conclusion

Delays By Airline Thanks to the data Wrangling we were able to determine that AM West has more delays compared to Alaska Airlines

```
ggplot(flights_pivot_1, aes(x = airline, y = delayed_avg,)) +
geom_boxplot() + geom_point() + ggtitle("Delayed Rate by Airline")
```

Delayed Rate by Airline

Delays By city Thanks to the data wrangling I was able to determine that SFO and SEATTLE are the two cities with the most delays on average for the two airlines considered in this data Set.

```
ggplot(flights_pivot_1, aes(x = Arrival_City, y = delayed_avg)) +
geom_boxplot() + geom_point() + ggtitle("Delayed Rate by City")
```

Delayed Rate by City

