

10.8.2020

Metodika pre IEP kalkulačku osobnej uhlíkovej stopy

Čo je uhlíková stopa?

Uhlíková stopa je množstvo emisií takých plynov uvoľnených do atmosféry, ktoré majú dopad na podnebie Zeme, pričom tieto emisie sú spôsobené činnosťou človeka. Tieto plyny produkujeme pri väčšine našich aktivít, napríklad pri spotrebe fosílnych palív v doprave alebo spotrebe tepla vyrobeného z uhlia či elektriny. Uhlíková stopa má svoje uplatnenie od jednotlivcov cez rodiny až po veľké organizácie a je jedným z dôležitých nástrojov sledovania vplyvu všetkých ľudských aktivít na životné prostredie. Vyjadruje sa v ekvivalentoch oxidu uhličitého (CO₂e) a meria sa v hmotnostných jednotkách, zvyčajne tonách, kilogramoch alebo gramoch.

Uhlíkovú stopu môžeme rozdeliť na priamu a nepriamu:

- Priama (primárna) množstvo skleníkových plynov vypustených priamo pri aktivitách (spaľovanie pohonných hmôt, spotreba elektriny, tepla ...)
- Nepriama (sekundárna) množstvo skleníkových plynov vypustených počas celého životného cyklu výrobkov a služieb (od výroby až po likvidáciu)

Ako sa počíta uhlíková stopa?

Prvým krokom k výpočtu uhlíkovej stopy je stanovenie využitia zdrojov pri výrobe a spotrebe jednotky produktu či služby. Následne sa daným k týmto zdrojom priradí zodpovedajúci emisný faktor, ktorý spája množstvo uvoľnenej znečisťujúcej látky s aktivitou spojenou s jej vypúšťaním (napr. 0,2 g metánu na kilogram spotrebovanej nafty). Výsledné emisie tak získame prenásobením emisného faktora mierou aktivity:

$$Emisie_x = EF_x \times Q \times GWP_x$$

kde $Emisie_x$ sú emisie znečisťujúcej látky x, EF_x je emisný faktor znečisťujúcej látky x, Q je miera aktivity, spotreby alebo produkcie a GWP_x je potenciál globálneho otepľovania danej látky. Keďže medzi skleníkové plyny patrí viacero látok (oxid uhličitý, metán a iné), emisie týchto látok sa prevádzajú do ekvivalentov emisií oxidu uhličitého (CO_2 e) prenásobením s potenciálom pre globálne otepľovanie (Global Warming Potential – GWP). Emisie skleníkových plynov, ktoré škodia v rôznych pomeroch, tak môžeme pomocou CO_2 e vzájomne porovnávať.

Tabuľka 1 - Potenciál globálneho otepľovania (GWP) vybraných látok v období 100 rokov

Látka	Chemický vzorec	Potenciál globálneho otepľovania
Oxid uhličitý	CO ₂	1
Metán	CH ₄	28
Oxid dusný	N_2O	265

Zdroj: <u>IPCC</u>

Komentár od [AV1]: Slovíčka ako jednotlivý/samotný/daný a pod. trošku menej používať ©

Slovo užívateľ sa používa len s drogami, ak ide o aplikáciu, hovorí sa

Komentár od [AV2]: Odkiaľ máme túto definiíciu? Dala by som asi niečo menej kostrbaté ©

O kalkulačke

Naša kalkulačka uhlíkovej stopy počíta objem vyprodukovaných emisií jednotlivca za obdobie ostatného roka na základe odpovedí na otázky rozdelené do štyroch kategórií (bývanie, doprava, jedlo a spotreba). Kalkulačka okrem priamej uhlíkovej stopy počíta aj nepriamu stopu celého životného cyklu, najmä v kategórii spotreba.

Hoci na internete existuje množstvo rôznych kalkulačiek uhlíkovej stopy, naša kalkulačka je zameraná špecificky na obyvateľov Slovenska a používa lokálne emisné faktory. Najzásadnejším rozdielom oproti iným dostupným kalkulačkám je reálnejšie započítanie spotreby elektriny podľa slovenského energetického mixu a výroby tepla. Preto kalkulačka slúži najmä užívateľom, ktorí strávili prevažnú časť posledného roka na Slovensku. Kalkulačka vychádza z oficiálnych údajov či už Slovenského hydrometeorologického ústavu alebo iných organizácií. Emisné faktory pre jednotlivé kategórie pochádzajú z viacerých zdrojov a sú uvedené v ďalších častiach tejto metodiky.

V prvej časti výpočtu je v kategórii *začíname* používateľ vyzvaný vyplniť základné údaje o vlastnej domácnosti. Pomocou nich je možné dosiahnuť presnejší výsledok celkovej uhlíkovej stopy a zároveň zjednodušiť používateľovi vypĺňanie kalkulačky pomocou prednastavených parametrov domácnosti (napr. množstvo elektriny či náklady na teplo v závislosti od typu, veľkosti ubytovania alebo aj počtu členov v domácnosti).

Bývanie

V oblasti bývania prispieva k produkcii skleníkových plynov hlavne vykurovanie a ohrev vody. Emisné faktory jednotlivých palív (energií) sú uvedené v Tabuľke 2. Ich uhlíková stopa sa získa vynásobením spotreby energie prislúchajúcim emisným faktorom podľa vzorca uvedeného vyššie. Pripojenie na centrálne dodávané vykurovanie významne znižuje vytvorené emisie. Emisná náročnosť jednotlivých teplárni na Slovensku sa významne líši, najmä z dôvodu rozdielnej výroby tepla. Emisné faktory na jednu MWh (megawatt hodinu) tepla sme prepočítali pre 10 najväčších slovenských teplární a ostatným teplárenským spoločnostiam sme priradili priemernú hodnotu 10-tich najväčších. Zdrojom údajov pre výpočet boli výročné správy jednotlivých teplárenských spoločností v kombinácií s údajmi EEA. Pri dodávaní vyrobenej elektrickej energie do siete je množstvo vyrobenej elektrickej energie so slovenským emisným faktorom odpočítané od celkovej uhlíkovej stopy, pretože týmto spôsobom sa zabráni dodatočnej výrobe elektriny, ktorá by vyprodukovala ďalšie emisie CO₂e.

Tabuľka 2 – Emisné faktory energií a palív využívaných v domácnostiach

Energia/palivo	Hodnota	Jednotka	Zdroj
Elektrina	16,9	kg CO₂e / MWh	
Teplo ¹	25,45	kg CO ₂ e / MWh	IEP
Zemný plyn	20,03	kg CO ₂ e / MWh	<u>SPP</u>
LPG	1,665	kg CO₂e / liter	EcoScore
Tuhé palivo (drevo)	910	kg CO₂e / m³	<u>IPCC</u>

¹ Priemer 10-tich najväčších slovenských teplární

Inštitút environmentálnej politiky

Automobilová doprava

Výpočet emisií z automobilovej dopravy je založený na informáciách o počte najazdených kilometrov, reálnej spotrebe paliva, type paliva a priemernom počte osôb aute. Následne na základe vybraného typu paliva kalkulačka priradí prislúchajúci emisný faktor (Tabuľka 3). Pri výpočte v tejto časti sú zahrnuté len emisie vyplývajúce zo samotného používania automobilu, emisie vznikajúce pri výrobe sú započítané v časti Spotreba.

Spaľovanie jedného litra paliva vyprodukuje vždy rovnaké množstvo emisií uhlíka bez ohľadu na technológiu spaľovania. Platí to aj pre vozidlá na stlačený zemný plyn (CNG) alebo LPG. Preto pre presný výpočet stačí informácia o reálnej spotrebe a veku auta. Použitá technológia, na rozdiel od emisií oxidov dusíka, nedokáže dodatočnými filtračnými systémami znížiť množstvo emisií. Pri automobiloch poháňaných elektrinou je emisný faktor nastavený podľa slovenského energetického mixu a to 169g CO₂e na kWh.

V prípade ak používateľ zadá počet kilometrov na cudzích autách, emisný faktor je priemerným emisným faktorom novo registrovaných áut na Slovensku za posledných 10 rokov. Hodnota je uvedená v tabuľke 3.

Tabuľka 3 – Emisné faktory palív automobilov

Palivo	Hodnota	Jednotka
Benzín	2,39	kg CO ₂ e / liter
Nafta	2,64	kg CO ₂ e / liter
LPG	1,665	kg CO ₂ e / liter
CNG	2,666	kg CO₂e / kg
Biodiesel	0,1658	kg CO ₂ e / liter
Bioetanol	0,0084	kg CO ₂ e / liter
Elektrina	0,169	kg CO₂e / kWh
Cudzie auto	0,1332	kg CO₂e / km

Zdroj: <u>DEFRA</u>, <u>EEA</u>, <u>EcoScore</u>

Letecká doprava

Množstvo emisií z leteckej dopravy ovplyvňuje hlavne dĺžka a kategória letu (jednosmerný/spiatočný). Emisné faktory pre leteckú dopravu sú použité podľa organizácie DEFRA. Okrem priamych emisií pri výpočte počítame aj s nepriamymi vplyvmi leteckej dopravy na klímu, keďže v bežnej letovej výške (nad 9 km) majú emisie výraznejší vplyv na zmenu klímy ako v menších výškach. Na vyjadrenie týchto dodatočných emisných vplyvov sa používa tzv. Radiative Forcing Index (RFI). Hodnota daného faktora sa zvyčajne pohybuje medzi 2 až 4 (v priemere 3). Tento faktor však nie je použiteľný pri výpočte emisií CO2e, pretože berie do úvahy potenciál globálneho otepľovania (GWP) emisií, ktorý je meraný v časovom období 100 rokov. Z tohto dôvodu bol vyvinutý vážený emisný faktor (EWF). GWP aj EWF berú do úvahy všetky ďalšie vplyvy emisií z leteckej dopravy pre obdobie 100 rokov. V kalkulačke použité vážené emisné faktory sú uvedené v tabuľke 4.

Tabuľka 4 – Emisné faktory leteckej dopravy

Vzdialenosť (km)	Emisie (g CO ₂ e / osobokm)	EWF	Vážený emisný faktor (g CO ₂ e / osobokm)
500	11,84	1	11,84
750	10,61	1,57	16,64
1000	9,36	1,83	17,12
1366	0,75	1,92	14,44
2000	7,74	2,06	15,94
4000	8,37	2,21	18,49
6823	9,25	2,26	20,88
10000	10,25	2,31	23,67

Komentár od [AV3]: Tu by sme mali popísať aj to, akým spôsobom sme rátali spolujazdu.

Komentár od [AV4]: Nikde nehovoríš o tom grafe, z ktorého si bral túto súvislosť – či to vychádza z DEFRA/EEA dát?

Komentár od [SR5R4]: IFEU INFRAS v tabulke

Zdroj: <u>DEFRA</u>, <u>EEA</u>, <u>IFEU/INFRAS</u>, IEP

Hromadná doprava

Kalkulačka v kategórií hromadnej dopravy rozlišuje medzi autobusmi, vlakmi a mestskou hromadnou dopravou. V každej kategórií je možné zadať buď čas strávený v danom dopravnom prostriedku alebo počet prejdených kilometrov. Emisné faktory jednotlivých druhov dopravy sú uvedené v tabuľke 5. Prepočet medzi hodinami a kilometrami autobusovej dopravy, ako aj priemerná obsadenosť a priemerná spotreba autobusov vychádza z Prieskumu autobusovej dopravy MD SRII V rámci železničnej prepravy využívame údaje DEFRA ale aj vlastné prepočty IDP. Kalkulačka rozlišuje medzi elektrifikovanými a naftovými vlakmi, keďže emisné faktory pre dané vlaky sú výrazne rozdielne (Tab.5). V prípade ak používateľ nevie alebo cestuje oboma typmi vlaku, kalkulačka priradí emisný faktor vypočítaný ako vážený priemer, prevážený počtom osobokilometrov na, či už elektrických alebo naftových vlakoch. Do výpočtu emisií mestskej hromadnej dopravy vstupujú údaje SHMÚ a DEFRA, na výpočet priemernej rýchlosti (pre výpočet kilometrov zo zadaných hodín) boli použité údaje Dopravného podniku Bratislava (DPB). Emisie elektrobežky sa riadia emisným faktorom slovenského energetického mixu, priemerná spotreba je založená na elektrobežke Mi.

Tabuľka 5 – Emisné faktory hromadnej dopravy

Spôsol	b dopravy	Hodnota	Jednotka	Zdroj
Medzim	nestský autobus	39,67	g CO ₂ e / osobokm	<u>SHMÚ</u>
Vlak:	elektrický + naftový	30,73	g CO ₂ e / osobokm	IEP, IDP, <u>DEFRA</u>
	elektrický	14,90	g CO ₂ e / osobokm	<u>DEFRA</u>
	naftový	78,20	g CO ₂ e / osobokm	<u>DEFRA</u>
Mestska	á hromadná doprava	29,91	g CO ₂ e / osobokm	<u>DEFRA</u>
Elektrol	bežka	1,86	g CO₂e / km	<u>Mi</u>

Jedlo

Emisné faktory v kg CO₂e na kg potraviny alebo liter nápoja pochádzajú hlavne zo štúdie <u>Poora a Nemeceka</u>. Zahŕňajú celý životný cyklus potravín od pôdy cez výrobu, transport a balenie až po predaj. Priemernú spotrebu jednotlivých druhov potravín na jedného obyvateľa Slovenska čerpajú z údajov <u>ŠÚ SR</u>. V každej kategórií jedla sme určili referenčnú <u>porciu</u> (napr. pre mäso tvorí jednu porciu 150 gramov). Celoročnú spotrebu na obyvateľa sme potom vydelili veľkosťou referenčnej porcie, čím sme získali priemernú ročnú frekvenciu daného jedla. Tú potom podľa používateľovej voľby frekvencie kalkulačka zmení na každý deň, raz za týždeň a pod. a každej skupine potravín priradí výšku emisií, uvedenú v <u>Tabuľke 6</u>. Z dôvodu vysokého uvoľňovania metánu tvorí spotreba červeného mäsa a mliečnych výrobkov prevažnú časť vyprodukovaných emisií potravy.

Tabuľka 6 – Emisie v kg CO₂e na rok podľa frekvencie spotreby jedla

Jedlo	V každom jedle	Každý deň	Niekoľkokrát do týždňa	Raz za týždeň	Raz za mesiac	Vôbec	Porcia(g)
Hovädzie mäso	2211	1474	842	211	53,7	0	150
Ostatné mäso	674,6	449,7	257,0	64,2	16,1	0	150
Mliečne výrobky a vajíčka	780,5	520,4	297,3	74,3	17,1	0	200
Syry	419,0	279,3	159,6	45,6	11,4	0	100
Zelenina	137,2	91,5	52,3	13,1	3,3	0	150
Alkohol	338,5	225,7	129,0	32,2	8,1	0	

Zdroj: Poor and Nemecek, IEP, výrobcovia

Komentár od [AV6]: Doplň podľa pána Ľosa ©

Komentár od [AV7]: Toto by zrejme tiež malo byť niekde v metodike – aké sú tie porcie, čo sme nastavili?

Inštitút environmentálnej politiky

Hneď na začiatku tejto kategórie si však používateľ môže zvoliť druh diéty (napr. vegán, či vegetarián). Kalkulačka potom na základe jeho výberu prenásobí množstvo vyprodukovaných CO₂e priemerného Slováka koeficientom uvedeným v Tabuľke 7.

Tabuľka 7 - Koeficienty a emisie pri výbere diéty

	Mäso každý deň	Mäso niekoľkokrát týždenne	Mäso zriedkavo	Len ryby	Vegetarián	Vegán
Koeficient	1	0,91	0,86	0,69	0,68	0,54
Emisie v kg CO₂e	2214	2009	1924	1532	1510	1206

Zdroj: Aleksandrowicz et al., ŠÚSR, Poor and Nemecek, IEP

Spotreba

Pri spotrebe počíta kalkulačka s priamou aj nepriamou uhlíkovou stopou. Do nákupu áut, oblečenia, elektroniky, elektrospotrebičov alebo nábytku sú vo výpočtoch započítané emisné faktory celého životného cyklu produktov, okrem fázy používania (napr. spotreba elektriny alebo pohonných hmôt). Táto časť uhlíkovej stopy je totiž už započítaná v predchádzajúcich kategóriách (v rámci energií bytu, prípadne využívania auta). Emisie spojené s údržbou a opravami rovnako nie sú zohľadnené. Ak má používateľ vyšší podiel nákupov z druhej ruky, jeho výsledná uhlíková stopa je nižšia. Na základe vyplnených údajov o nákupe jednotlivých zariadení sa celkové ročné množstvo emisií jednotlivca v kategórii spotreby domácnosti počíta vzorcom:

$$Uhlíková stopa (US)_x = (1-DR_x)*\frac{EF_x*Počet_x}{V \'{y}mena_x*Počet \"{c}lenov domácnost\'{1}}$$

Kde $Uhlíková stopa (US)_x$ je množstvo vyprodukovaných emisií CO_2 e pri životnom cykle výrobkov kategórie x, DR_x je podiel nákupov produktov kategórie x z druhej ruky, EF_x je emisný faktor pre danú kategóriu, $Počet_x$ je počet kusov v danej kategórií a $Výmena_x$ je priemerná frekvencia výmeny produktov v kategórií x. Emisný faktor pre každú kategóriu je vypočítaný ako priemer emisných faktorov všetkých vybraných zariadení v danej kategórií, pričom emisné faktory pre jednotlivé produkty sú získané priamo od výrobcu alebo z iných odborných štúdií. V <u>Tabuľke 8</u> sú uvedené emisné faktory jednotlivých kategórií. Pri kategórií automobil je uvedený údaj nového auta, ktorý sa pri jazdenom aute zníži o amortizáciu podľa <u>IFP</u>.

Tabuľka 8 – Emisie v kg CO₂e priemerného produktu v každej kategórií

Kategória	Hodnota	Jednotka	Zdroj
Automobil	7764	kg CO ₂ e / produkt	IEP1
Biela technika	271	kg CO ₂ e / produkt	IEP1
Ostatné elektrospotrebiče v domácnosti	196	kg CO ₂ e / produkt	IEP1
Osobná elektronika	258	kg CO ₂ e / produkt	IEP1
Nábytok	68	kg CO ₂ e / produkt	FIRA

IEP1 – Výpočty IEP na základe údajov výrobcov

V rámci otázky 15 o oblečení využívame údaje zo štúdie <u>Sandin et al.</u> o nakupovaní oblečenia. Podrobné údaje pre Slovensku nie sú dostupné, využívame preto priemery EÚ prebraté podľa štúdie <u>INCIEN</u>. Na základe prieskumu o nákupe oblečenia sme za priemernú frekvenciu nakupovania oblečenia Slovákov zvolili frekvenciu raz za mesiac. V <u>Tabuľke 9</u> sú uvedené jednotlivé množstvá emisií CO₂e prislúchajúce k možnostiam výberu. Pri tejto

Komentár od [AV8]: Toto sme prenásobovali nejakou bulharskou konštantou – o koľko sa znižujú tie emisie, keď je to z druhej ruky? Či počítame s nulou (podľa vzorca to tak vyzerá, ale asi by to tu malo byť napísané)?

Komentár od [SR9R8]: Nestačí, že je to vo vzorci?

Inštitút environmentálnej politiky

otázke rovnako ako aj pri otázke 18 sa dané hodnoty už nedelia počtom členov domácnosti, keďže tieto produkty sú zväčša predmetmi individuálnej spotreby každého jednotlivca.

Tabuľka 9 - Emisie v kg CO2e a počet kusov oblečenia na základe výberu

Emisie v kg CO₂e 404	Počet kusov oblečenia ročne
404	
404	51
303	30
202	17
135	11
101	7
34	2,9
17	1,4
	202 135 101 34

Zdroj: Sandin et al., INCIEN, Pravda, IEP

Dovolenkovanie

Do individuálnej uhlíkovej stopy sa zarátava aj množstvo emisií vyprodukovaných počas pobytu mimo domova. Tieto emisie nie je možné vyčísliť úplne presne, no vieme ich odhadnúť podľa počtu strávených nocí a typu ubytovacieho zariadenia (čím luxusnejšie ubytovanie, tým vyššia uhlíková stopa). Uhlíková stopa závisí aj od miesta pobytu, preto sme výsledný objem emisií vypočítali ako priemer ubytovania v Berlíne (ako zástupcu mestského ubytovania) a v Rijeke (ako zástupcu prímorského ubytovania).

Tabuľka 10 – Emisie v kg CO₂e podľa typu ubytovacieho zariadenia na jednu noc pre jednu osobu

Typ ubytovania	Emisie	Jednotky
Stan (voľne v prírode)	0	kg CO₂e / noc
Kemp, Hostel	10	kg CO₂e / noc
Štandardný hotel (3*-4*)	19,75	kg CO₂e / noc
Luxusný hotel (5*+)	54	kg CO₂e / noc
		Zdroj: <u>Hotel footprints</u> , IEP

Odpady

Spôsob nakladania s odpadom tiež výrazne ovplyvňuje uhlíkovú stopu. Emisie z odpadu sú vypočítané na základe emisných faktorov zo štúdie Turner et al. a údajov EPA. Množstvo priradeného či už triedeného alebo zmesového odpadu na základe odpovedí užívateľa vychádza z údajov ŠÚSR. Ak používateľ separuje všetky druhy odpadu, kalkulačka mu priradí množstvá odpadu vyprodukované v 100 najlepších obciach (obce, v ktorých je najvyššia miera triedenia odpadu) na Slovensku prepočítané na jedného obyvateľa. Ak netriedi ani jeden druh odpadu, kalkulačka priradí množstvo odpadu v 100 najhorších (obce, v ktorých je najnižšia miera triedenia odpadu) slovenských obciach prepočítaných na jedného obyvateľa. Pri ostatných kombináciách je používateľovi priradená priemerná hodnota Slovenska, pričom pri jednotlivých druhoch odpadu je použitý emisný faktor pre recyklovaný materiál (ak napríklad triedi sklo, použije sa emisný faktor recyklovaného skla). Ak človek triedi všetok odpad, vo všeobecnosti produkuje menej odpadu a teda jeho uhlíková stopa môže byť veľmi nízka (až záporná). Vytriedením odpadu a následnou recykláciou sa totiž zabráni výrobe, ktorá produkuje ďalšie emisie skleníkových plynov.

Komentár od [AV10]: Na jednu noc a jedného človeka? Ak sme v tej istej izbe dvaja, počíta to dvojnásobok emisií?

Komentár od [AV11]: Nezabudnime pridať zdroj ©

Komentár od [AV12]: Čo znamená najlepších? 100 obciach, ktoré najviac triedia?

Komentár od [AV13]: Čo znamená najlepších? 100 obciach, ktoré najviac triedia?

Komentár od [AV14]: Čo znamená najlepších? 100 obciach, ktoré najviac triedia?

Komentár od [AV15]: Opäť – špecifikovať bližšie, čo to znamená.

Inštitút environmentálnej politiky

Tabuľka 10 – Emisné faktory pre jednotlivé odpady				
Odpad	Hodnota	Jednotka		
Plasty	-1,024	kg CO₂e / kg		
Sklo	-0,314	kg CO₂e / kg		
Papier	-0,495	kg CO₂e / kg		
BIO Odpad	0,06	kg CO₂e / kg		
Zmesový komunálny odpad	0,9	kg CO₂e / kg		

Zdroj: Tumer et al., EPA

Výsledky

Po zodpovedaní otázok vo všetkých kategóriách môže používateľ porovnať svoju uhlíkovú stopu s priemerom obyvateľov Slovenska aj priemerom EÚ podľa údajov OECD. V danej databáze však nie je zarátaná letecká doprava, takže objem emisií z leteckej dopravy bol pre priemerného občana EÚ a Slovenska dodatočne dopočítaný na základe počtu odbavených pasažierov na letiskách Poprad, Bratislava a Košice. Podľa našej metodiky pre leteckú dopravu sme pre tieto lety zohľadnili ich priemernú vzdialenosť a počty pasažierov na jedného obyvateľa Slovenska. Výsledné číslo sme prirátali k pôvodnej uhlíkovej stope priemerného Slováka. Skutočné priemerné slovenské emisie z leteckej dopravy sú zrejme vyššie ako je náš odhad, keďže Slováci často využívajú aj letiská mimo nášho územia. Údaje o štátnej príslušnosti odbavených cestujúcich však nie sú dostupné. Okrem toho na slovenské letiská lietajú aj zahraniční cestujúci, ktorých počet nepoznáme a pre potreby tohto výpočtu sme ich považovali za Slovákov. Na výpočet uhlíkovej stopy z leteckej dopravy pre obyvateľa EÚ sme využili údaje IFAO a Eurostatu. Celkový počet osobokilometrov sme predelili počtom odbavených pasažierovobyvateľov EÚ, pričom uvažujeme rovnako ako pri Slovenskom priemere. To znamená, že všetkých pasažierov považujeme za občanov EÚ.

Komentár od [AV16]: Toto som sa snažila výrazne zjednodušiť, lebo si sa trochu zamotával. Niekde tu by sme asi mali mať to číslo uvedené – koľko je to CO2e a aj koľko letov to zhruba predstavuje.