Automatic Control Laboratory practice 8

M. Canale - S. M. Fosson June 7, 2024

Objectives: Design of control systems

Problem 1

Objectives: loop shaping design

Let us consider the feedback control system:

where

$$G(s) = \frac{40}{(s^2 + 4s - 9.81)(1 + 0.001s)}.$$

Design a cascade controller C(s) that meets the following requirements.

1.
$$|e_r^{\infty}| \le 0.25$$
, $r(t) = 2t\varepsilon(t)$

2.
$$|y_{d_t}^{\infty}| \leq 0.01$$
, $d_t(t) = \delta_t \sin(\omega_t t)$, $|\delta_t| \leq 0.1$, $\omega_t \geq 90 \text{ rad/s}$

3.
$$\hat{S} \leq 20\%$$

4. $t_r \le 0.3$ s.

[INF] Problem 2

Objectives: digital control design through emulation

Let us consider the feedback control system:

where

$$G(s) = \frac{40}{s^2 + 4s - 9.81}.$$

Assume a sampling time $T_s=0.02~{\rm s.}$ Design a digital controlled $C_d(z)$ that meets the following requirements.

- 1. $|e_r^{\infty}| \le 0.25$, $r(t) = 2t\varepsilon(t)$
- $2. \ |y_{d_t}^{\infty}| \leq 0.01, \quad d_t(t) = \delta_t \sin(\omega_t t), \quad |\delta_t| \leq 0.1, \quad \omega_t \geq 90 \text{ rad/s}.$
- 3. $\hat{S} \leq 20\%$
- 4. $t_r \le 0.3$ s.