

R - Fundamentos para Análise de Dados

Seja Bem-Vindo

Linguagem SQL (Structured Query Language)

Tudo que fazemos no banco de dados, passa pelo SGBD

A Lingagem SQL é implementada de forma diferente em diferentes RDBMS, mas a base da linguagem é a mesma

- MS SQL Server utiliza a T-SQL
- Oracle utiliza PL/SQL
- MS Access utiliza o JET SQL

Permite que os usuários acessem dados em sistemas de gerenciamento de bancos de dados relacionais

Permite a manipulação de dados armazenados em bancos de dados

Permite a criação e remoção de objetos no banco de dados (tabelas, índices, visões, procedimentos armazenados)

Permite que os usuários possam definir restrições de acesso

Existem 3 Tipos de Instrução SQL

DDL

DDL – Data Definition Language

- Create
- Alter
- Drop

DML

DML – Data Manipulation Language

- Select
- Insert
- Delete
- Update

DCL

DCL – Data Control Language

- Revoke
- Alter

Tabela

Coluna

Linha ou Registro

ID	NOME	IDADE	CIDADE
0001	Pele	120	Roma
0002	Zico	110	Paris
0003	Garrincha	105	Vienna

Constraints - Integridade Referencial

Importação e Manipulação de Dados de Bancos de Dados Relacionais

Bancos de Dados são Coleções de Tabelas

DataFrames em R são estruturas semelhantes a Tabelas

Observações => Linhas Variáveis => Colunas

Como acessamos dados em tabelas?

Linguagem SQL

Sistemas Gerenciadores de Bancos de Dados

E como o R se conecta aos SGBD's?

Bancos de Dados e Pacotes R

Banco de Dados	Pacote R	
Oracle	ROracle	
Microsoft SQL Server	RSQLServer	
PostgreSQL	RPostgreSQL	
MySQL	RMySQL	
SQLite	RSQLite	
MongoDB	RMongo	
Conexão ODBC	RODBC	

Bancos de Dados e Pacotes R

Banco de Dados	Pacote R
Conexão ODBC	RODBC

Conectar ao banco de dados → DBI.dbConnect ()

- Conectar ao banco de dados
- Determinar o nome do banco de dados, endereço, porta, usuário e senha
- Listar e importar tabelas → dbListTables()

- Conectar ao banco de dados
- Determinar o nome do banco de dados, endereço, porta, usuário e senha
- Listar e importar tabelas
- Manipular os dados
- Desconectar

Importação e Manipulação de Dados de Bancos de Dados NoSQL

Bancos de Dados NoSQL (Not Only SQL)

NoSQL é uma tecnologia de banco de dados projetada para suportar os requisitos de aplicações em nuvem e arquitetado para superar em escala e desempenho as limitações de bancos de dados relacionais (RDBMS)

Os principais Bancos de Dados NoSQL são:

Key-value	Oracle NoSQL DB
	MemcacheDB
	Redis
	Voldemort

Document	MongoDB
	CouchDB
	RavenDB
	Terrastore

Column	HBase
	Cassandra*
	Hypertable
	Accumulo

MongoDB	RDBMS
Database	Database
Collection	Tabela
Document	Linha/Tupla
Field	Coluna
Embedded Documents	Join de Tabelas
Primary Key	Primary Key

E por que devo aprender a usar um banco de dados NoSQL?

Preparação

Data Wrangling (Manipulação de Dados)

Como o cliente explicou o que queria

Como o gerente do projeto entendeu

Como foi idealizado

Como foi planejado

Como o gerente o explicou ao cliente

Como o projeto foi documentado

Como o projeto foi entregue

Como o cliente foi cobrado

Como o projeto foi apoiado

O que o cliente realmente precisava

Data Wrangling (Manipulação de Dados)

Limpeza, Processamento, Organização e Manipulação

Qual o objetivo do Data Wrangling?

Cada Variável em uma coluna

Cada observação em uma linha

E o que o R pode fazer para ajudar o Cientista de Dados?

dplyr

- select()
- filter()
- group_by()
- summarise()
- arrange()
- join()
- mutate()

tidyr

- gather()
- spread()
- separate()
- unite()

tidyr

Remodelagem de Dados

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

gather()

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

demy

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

separate()

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

Talvez você ainda não tenha percebido.

Mas com apenas uma função, somos capazes de mudar completamente o formato (shape) dos nossos dados e isso pode fazer muita diferença no processo de análise

diplyr

Transformação de Dados

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

summarise()

Species	Mean	SD	n
setosa	5.006	0.352	50
versicolor	5.936	0.516	50
virginica	6.588	0.636	50

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
7.9	3.8	6.4	2.0	virginica
7.7	3.8	6.7	2.2	virginica
7.7	2.6	6.9	2.3	virginica
7.7	2.8	6.7	2.0	virginica
7.7	3.0	6.1	2.3	virginica
7.6	3.0	6.6	2.1	virginica

mutate()

head(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Sepal Area	
17.85	
14.70	
15.04	
14.26	
18.00	
21.06	

x1	x2
Α	Т
В	F
D	Т

x1	x2.x	x2.y
Α	1	Т
В	2	F
С	3	NA
D	NA	Т

Existem outras funções e variações destas funções

O pacote dplyr permite que se realize operações complexas com dataframes e matrizes, utilizando apenas uma instrução

Operador %>%

filter(data, variable == numeric_value)

<u>ou</u>

data %>% filter(variable == numeric_value)

