Análisis II Matemática 3 Análisis Matemático II

FCEyN, Universidad de Buenos Aires, Argentina

Clase teórica 23, 2do. cuatrimestre 2020

Diagramas de fases de sistemas lineales a coeficientes constantes

Consideramos el sistema

$$\mathbf{X}' = A\mathbf{X},$$

con $A \in \mathbb{R}^{2 \times 2}$.

Queremos dibujar aproximadamente las trayectorias del sistema en función de los autovalores λ_1 y λ_2 de A.

Supongamos que 0 no es autovalor. Por lo tanto, $AX = \mathbf{0} \Leftrightarrow X = (0,0)$, es decir, (0,0) es el único punto de equilibrio del sistema.

Caso I: $\lambda_1 > 0 > \lambda_2$

Sean $\xi_1, \xi_2 \in \mathbb{R}^2$ que forman una base de autovectores de A, correspondientes a λ_1, λ_2 . La solución general es

$$\mathbf{X}(t) = c_1 e^{\lambda_1 t} \boldsymbol{\xi}_1 + c_2 e^{\lambda_2 t} \boldsymbol{\xi}_2.$$

Si $\textbf{\textit{X}}(0) = c\boldsymbol{\xi}_1$ (estoy en la recta de autovectores asociados a $\lambda_1) \Rightarrow c_1 = c$ y $c_2 = 0 \Rightarrow \textbf{\textit{X}}(t) = ce^{\lambda_1 t} \boldsymbol{\xi}_1$. Como $\lambda_1 > 0$, $\boldsymbol{\textit{X}}(t) \xrightarrow[t \to +\infty]{} \infty$ y $\boldsymbol{\textit{X}}(t) \xrightarrow[t \to -\infty]{} 0$.

$$\text{Si } \textbf{\textit{X}}(0) = \textbf{\textit{c}}\boldsymbol{\xi}_2 \Rightarrow \textbf{\textit{X}}(t) = \textbf{\textit{ce}}^{\lambda_2 t}\boldsymbol{\xi}_2, \text{ y como } \lambda_2 < 0, \\ \textbf{\textit{X}}(t) \xrightarrow[t \to +\infty]{} 0 \text{ y } \textbf{\textit{X}}(t) \xrightarrow[t \to -\infty]{} \infty.$$

Por último, si $X(0) \neq c\xi_1$ y $X(0) \neq c\xi_2 \Rightarrow c_1c_2 \neq 0$. Escribamos a X(t) en la base $\{\xi_1, \xi_2\}$:

$$\mathbf{X}(t) = y_1(t)\xi_1 + y_2(t)\xi_2$$

Caso I: $\lambda_1 > 0 > \lambda_2$

Tenemos que

$$egin{aligned} y_1(t) &= c_1 e^{\lambda_1 t} \xrightarrow[t o +\infty]{} \infty, & y_1(t) \xrightarrow[t o -\infty]{} 0, \ y_2(t) &= c_2 e^{\lambda_2 t} \xrightarrow[t o +\infty]{} 0, & y_2(t) \xrightarrow[t o -\infty]{} \infty. \end{aligned}$$

Por lo tanto, X(t) se acerca a la recta $\langle \xi_1 \rangle$ cuando $t \to +\infty$ y a la recta $\langle \xi_2 \rangle$ cuando $t \to -\infty$.

Para dibujar el diagrama de fases, dibujamos primero las curvas $(y_1(t), y_2(t))$: como $y_1(t) = c_1 e^{\lambda_1 t}$ e $y_2(t) = c_2 e^{\lambda_2 t} \Rightarrow$

$$\left(\frac{y_1(t)}{c_1}\right)^{1/\lambda_1} = e^t = \left(\frac{y_2(t)}{c_2}\right)^{1/\lambda_2}$$

$$\Rightarrow y_2(t) = c_2 \left(\frac{y_1(t)}{c_1}\right)^{\lambda_2/\lambda_1} = k|y_1(t)|^{\lambda_2/\lambda_1}.$$

Caso I: $\lambda_1 > 0 > \lambda_2$

Como $\lambda_1/\lambda_2 < 0$, las curvas tienen la forma:

Por lo tanto, el diagrama de fases tiene el siguiente aspecto:

Caso II: $\lambda_1 > \lambda_2 > 0$

Si escribimos como antes $\boldsymbol{X}(t)=y_1(t)\boldsymbol{\xi}_1+y_2(t)\boldsymbol{\xi}_2$, entonces

$$y_2 = k|y_1|^{\lambda_2/\lambda_1}, \text{ con } 0 < \frac{\lambda_2}{\lambda_1} < 1.$$

En este caso, dado el signo de λ_1 y λ_2 ,

$$y_1(t),y_2(t) \xrightarrow[t \to +\infty]{} \infty \ \ \text{e} \ \ y_1(t),y_2(t) \xrightarrow[t \to -\infty]{} 0.$$

Caso II: $\lambda_1 > \lambda_2 > 0$

Por lo tanto, las curvas $(y_1(t), y_2(t))$ tienen la forma

y el diagrama de fases es

Caso III: $\lambda_1 < \lambda_2 < 0$

Este caso es exactamente como el anterior:

$$y_2 = k|y_1|^{\lambda_2/\lambda_1}, \quad \text{con } 0 < \frac{\lambda_2}{\lambda_1} < 1.$$

Así, este caso es como el Caso II con las flechas con sentido invertido.

Caso IV: $\lambda_1 = \lambda_2 = \lambda \neq 0$

Supongamos que $A \neq \lambda I$ (el caso $A = \lambda I$ queda como ejercicio). La solución general es

$$\mathbf{X}(t) = c_1 e^{\lambda t} \xi_1 + c_2 e^{\lambda t} (\xi_1 t + \xi_2) = y_1(t) \xi_1 + y_2(t) \xi_2,$$

 $con \ y_1(t) = (c_1 + c_2 t) e^{\lambda t}, \ y_2(t) = c_2 e^{\lambda t}.$

Tenemos que $y_1(0) = c_1$, $y_2(0) = c_2$. Si $X(0) = c\xi_1 \Rightarrow c_1 = c$ y $c_2 = 0 \Rightarrow X(t) = c_1 e^{\lambda t} \xi_1$. Es decir, si comenzamos en $\langle \xi_1 \rangle$,

 $X(t) \in \langle \xi_1 \rangle$ para todo t. No ocurre lo mismo con $\langle \xi_2 \rangle$. Tenemos

$$rac{y_2}{c_2} = e^{\lambda t} \Rightarrow t = rac{1}{\lambda} \log \left| rac{y_2}{c_2}
ight| \Rightarrow \ y_1(t) = e^{\lambda t} (c_1 + c_2 t) = rac{y_2(t)}{c_2} \left(c_1 + rac{c_2}{\lambda} \log \left| rac{y_2(t)}{c_2}
ight|
ight) = y_2(t) \left(k_1 + rac{1}{\lambda} \log |y_2(t)|
ight).$$

$$y_2(t)$$
 no cambia de signo, pero $y_1(t) = y_2(t) \left(k_1 + \frac{1}{\lambda} \log |y_2(t)|\right)$ sí porque $\log |y_2(t)| \xrightarrow{y_2(t) \to \infty} +\infty$ y $\log |y_2(t)| \xrightarrow{y_2(t) \to 0} -\infty$.

Caso IV: $\lambda_1 = \lambda_2 = \lambda \neq 0$.

Dibujamos las curvas $(y_1(t), y_2(t))$ en el caso en que $\lambda < 0$:

Así, el correspondiente diagrama de fases resulta

La solución real es

$$\mathbf{X}(t) = c_1 \operatorname{Re}(\mathbf{e}^{(\alpha+i\beta)t}\boldsymbol{\xi}_1) + c_2 \operatorname{Im}(\mathbf{e}^{(\alpha+i\beta)t}\boldsymbol{\xi}_1),$$

donde $\boldsymbol{\xi}_1 = \boldsymbol{v}_1 + i \boldsymbol{v}_2$ es un autovector asociado a $\lambda_1 \Rightarrow$

$$\mathbf{X}(t) = c_1 e^{\alpha t} (\cos \beta t \, \mathbf{v}_1 - \sin \beta t \, \mathbf{v}_2) + c_2 e^{\alpha t} (\sin \beta t \, \mathbf{v}_1 + \cos \beta t \, \mathbf{v}_2)
= e^{\alpha t} (c_1 \cos \beta t + c_2 \sin \beta t) \mathbf{v}_1 + e^{\alpha t} (-c_1 \sin \beta t + c_2 \cos \beta t) \mathbf{v}_2.$$

Consideremos (c_1, c_2) de la forma $(c_1, c_2) = (r \cos \theta, r \sin \theta) \Rightarrow$

$$y_1(t) = e^{\alpha t} r(\cos \theta \cos \beta t + \sin \theta \sin \beta t) = e^{\alpha t} r \cos(\theta - \beta t)$$

$$y_2(t) = e^{\alpha t} r(-\cos\theta \, \sin\beta t + \sin\theta \cos\beta t) = e^{\alpha t} r \, \sin(\theta - \beta t).$$

Luego, la curva $(y_1(t), y_2(t))$ se obtiene rotando el punto (c_1, c_2) un ángulo $-\beta t > 0$ y expandiendo (o contrayendo) su módulo por un factor $e^{\alpha t}$. Esto da los siguientes diagramas dependiendo de α .

$$\alpha = \mathbf{0}$$

 $\alpha < 0$

 $\underline{\alpha > \mathbf{0}}$

Así, los diagramas de fases son los siguientes:

$$\alpha = 0$$

$$\alpha < 0$$

 $\underline{\alpha>\mathbf{0}}$

Comportamientos

A modo de resumen, si todos los autovalores de A tienen parte real negativa, todas las trayectorias tienden a (0,0) cuando $t \to +\infty$.

Si todos los autovalores de A tienen parte real positiva, todas las trayectorias tienden a (0,0) cuando $t \to -\infty$.

Si un autovalor es positivo y el otro negativo, hay exactamente dos trayectorias $\boldsymbol{X}(t) \xrightarrow[t \to +\infty]{} (0,0)$: las que corresponden a la recta de autovectores asociados al autovalor negativo.

También hay exactamente dos trayectorias que se acercan a (0,0) cuando $t\to -\infty$: las que corresponden a la recta de autovectores asociados al autovalor positivo.

Todas las demás trayectorias se alejan del origen cuando $t \to +\infty$.

Retomamos el estudio del sistema autónomo de primer orden

$$X' = F(X),$$

donde $X: I \subset \mathbb{R} \to \mathbb{R}^n$ y $F: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ es de clase C^1 en el abierto Ω .

Recordamos que $\boldsymbol{X}^* \in \Omega$ es un punto de equilibrio del sistema si $\boldsymbol{F}(\boldsymbol{X}^*) = \boldsymbol{0}$. Equivalentemente, la trayectoria $\boldsymbol{X}(t) = \boldsymbol{X}^*$ para todo $t \in I$ es solución del sistema.

Hablamos de equilibrios estables (cuando trayectorias que pasan "cerca" de X* tienden a X*) e inestables (existen trayectorias con condiciones iniciales arbitrariamente cerca de X* que se "alejan" de X*).

Desde un punto de vista físico, solo "se ven" los equilibrios estables; los inestables "desaparecen" frente a la menor perturbación de las condiciones (ejemplo: el péndulo).

Determinar los puntos de equilibrios es solo "la mitad del problema"; es necesario analizar su estabilidad para caracterizar aquellos que ocurren en situaciones "normales".

Definición: Un punto de equilibrio $\textbf{\textit{X}}^* \in \Omega$ es

- estable si para cada $\varepsilon > 0$ existe $\delta > 0$ tal que, si $\| \boldsymbol{X}_0 \boldsymbol{X}^* \| < \delta$, entonces la solución de $\boldsymbol{X}' = \boldsymbol{F}(\boldsymbol{X})$, $\boldsymbol{X}(0) = \boldsymbol{X}_0$, satisface $\| \boldsymbol{X}(t) \boldsymbol{X}^* \| < \varepsilon$ para todo $t \geq 0$.
- **2** asintóticamente estable si es estable y además existe $\delta_0 > 0$ tal que, si $\| \boldsymbol{X}_0 \boldsymbol{X}^* \| < \delta_0$, entonces la trayectoria $\boldsymbol{X}(t)$ tal que $\boldsymbol{X}(0) = \boldsymbol{X}_0$ satisface $\boldsymbol{X}(t) \xrightarrow[t \to +\infty]{} \boldsymbol{X}^*$.

Ejemplo: Para $\mathbf{X}' = A\mathbf{X}$ con $A \in \mathbb{R}^{2\times 2}$ inversible, (0,0) es el único punto de equilibrio. Vimos que $\mathbf{X}(t) \to (0,0)$ para toda trayectoria \Leftrightarrow los dos autovalores de A son reales negativos ((0,0) es asintóticamente estable).

Usando el hecho de que conocemos las trayectorias de sistemas lineales con coeficientes constantes, estudiamos el sistema autónomo no lineal

$$X' = F(X).$$

El punto clave es linealizar: si X^* es un punto de equilibrio, para X cerca de X^* tenemos que

$$\mathbf{F}(\mathbf{X}) \simeq \underbrace{\mathbf{F}(\mathbf{X}^*)}_{=\mathbf{0}} + D\mathbf{F}(\mathbf{X}^*)(\mathbf{X} - \mathbf{X}^*) = D\mathbf{F}(\mathbf{X}^*)(\mathbf{X} - \mathbf{X}^*),$$

donde $A = D\mathbf{F}(\mathbf{X}^*) \in \mathbb{R}^{n \times n}$ es la matriz jacobiana de \mathbf{F} en \mathbf{X}^* . Por lo tanto, si llamamos $\mathbf{Y} = \mathbf{X} - \mathbf{X}^*$, tenemos que

$$Y' = (X - X^*)' = X' = F(X) \simeq DF(X^*)(X - X^*) = DF(X^*)Y$$

para $Y \simeq 0$.

El sistema

$$\mathbf{Y}' = D\mathbf{F}(\mathbf{X}^*)\mathbf{Y}$$

tiene a $\mathbf{0}$ como punto de equilibrio asintóticamente estable \Leftrightarrow todos los autovalores tiene parte real negativa. Por otro lado, si algún autovalor tiene parte real negativa \Rightarrow $\mathbf{0}$ es inestable.

Estas condiciones también son suficientes para el caso no lineal:

Teorema (Estabilidad lineal): Sea $\mathbf{X}^* \in \Omega$ un punto de equilibrio del sistema $\mathbf{X}' = \mathbf{F}(\mathbf{X})$, con $\mathbf{F}: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ de clase C^1 . Si todos los autovalores de $D\mathbf{F}(\mathbf{X}^*)$ tienen parte real negativa, $\operatorname{Re} \lambda_j < 0$, entonces \mathbf{X}^* es asintóticamente estable. Si $D\mathbf{F}(\mathbf{X}^*)$ tiene algún autovalor con parte real positiva, $\operatorname{Re} \lambda_j > 0$, entonces \mathbf{X}^* es inestable.

Ejemplo: Retomamos el ejemplo del sistema

$$\begin{cases} x' = (-\alpha + \beta y)x, \\ y' = (-\gamma + \delta x)y, \end{cases}$$

con $\alpha, \beta, \gamma, \delta > 0$. En este caso, el sistema es

$$\mathbf{X}' = \mathbf{F}(\mathbf{X}), \text{ con } \mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2, \ \mathbf{F}(\mathbf{X}, \mathbf{y}) = ((-\alpha + \beta \mathbf{y})\mathbf{X}, (-\gamma + \delta \mathbf{X})\mathbf{y}).$$

Los puntos de equilibrio son (0,0) y $(\gamma/\delta,\alpha/\beta)$. Tenemos que

$$DF(x,y) = \begin{pmatrix} -\alpha + \beta y & \beta x \\ \delta y & -\gamma + \delta x \end{pmatrix}.$$

Por lo tanto,

$$DF(0,0) = \begin{pmatrix} -\alpha & 0 \\ 0 & -\gamma \end{pmatrix},$$

cuyos autovalores son $\lambda_1 = -\alpha$, $\lambda_2 = -\gamma$. En consecuencia, (0,0) es un equilibrio asintóticamente estable.

Por otro lado,

$$A = DF(\gamma/\delta, \alpha/\beta) = \begin{pmatrix} 0 & \beta\gamma/\delta \\ \delta\alpha/\beta & 0 \end{pmatrix}.$$

El polinomio característico es $p(\lambda) = \lambda^2 - \alpha \gamma \Rightarrow$ los autovalores son $\lambda_1 = \sqrt{\alpha \gamma}$, $\lambda_2 = -\sqrt{\alpha \gamma} \Rightarrow (\gamma/\delta, \alpha/\beta)$ es inestable.

Más aun, podemos ver las trayectorias que "salen" o "entran" al punto de equilibrio: son tangentes a las rectas autovectores de A. Para encontrarlas, hacemos

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = (\lambda_1 I - A) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \sqrt{\alpha \gamma} & -\beta \gamma / \delta \\ -\delta \alpha / \beta & \sqrt{\alpha \gamma} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\Leftrightarrow \sqrt{\alpha \gamma} x = \beta \frac{\gamma}{\delta} y \Leftrightarrow y = \frac{\delta}{\beta} \sqrt{\frac{\alpha}{\gamma}} x.$$

En el otro caso,

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = (\lambda_2 I - A) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\sqrt{\alpha \gamma} & -\frac{\beta \gamma}{\delta} \\ -\frac{\delta \alpha}{\beta} & -\sqrt{\alpha \gamma} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow y = -\frac{\delta}{\beta} \sqrt{\frac{\alpha}{\gamma}} x.$$

