a) implication: horizontal line y= a because E(e;)=0 so mean e;=0] if B=0 y;=4+e;

b)
$$y_i = \alpha + e_i$$
 derivative= minimize

least square estimator minimizes SSR

 $S(\alpha) = \sum_{i=1}^{n} (y_i - \alpha)^2 \rightarrow SSR$
 $\frac{d}{d\alpha} = \sum_{i=1}^{n} (y_i - \alpha)^2 = \frac{2}{2} \sum_{i=1}^{n} (y_i - \alpha) = 0/2$
 $\frac{d}{d\alpha} = \sum_{i=1}^{n} (y_i - \alpha)^2 = \frac{2}{2} \sum_{i=1}^{n} (y_i - \alpha) = 0/2$
 $\frac{d}{d\alpha} = \sum_{i=1}^{n} (y_i - \alpha)^2 = \frac{2}{2} \sum_{i=1}^{n} (y_i - \alpha) = 0/2$
 $\frac{d}{d\alpha} = \sum_{i=1}^{n} (y_i - \alpha)^2 = \frac{2}{2} \sum_{i=1}^{n} (y_i - \alpha) = 0/2$
 $\frac{d}{d\alpha} = \sum_{i=1}^{n} (y_i - \alpha)^2 = \frac{2}{2} \sum_{i=1}^{n} (y_i - \alpha) = 0/2$

C)
$$\alpha = \frac{n}{N} \sum_{i=1}^{n} Y_i = \frac{1}{N} \sum_{i=1}^{n} (\kappa_i + e_i)$$

take expectation to see if unioicised
 $E(\alpha) = \frac{1}{N} \sum_{i=1}^{n} E(\chi_i + e_i) = \frac{1}{N} \sum_{i=1}^{n} (\chi_i + E(e_i))$
 $E(e_i) = 0 \rightarrow E(\alpha) = \frac{1}{N} \sum_{i=1}^{n} \lambda = \lambda$

d)
$$V(a) = V(\frac{1}{N} \sum_{i=1}^{N} (k+e_i))$$

 $V(\frac{1}{N} \sum_{i=1}^{N} (k+e_i))$
 $V(\frac{1}{N} \sum_{i=1}^{N} (k+e_i))$
 $V(\frac{1}{N} \sum_{i=1}^{N} (k+e_i))$

e) The estimates are normally distributed by the Central Limit Theorem, which States that with enough n values ca lot of them) & follows a normal distribution, as long as they are independent and identically distributed,

iii)
$$Y_i = x + e_i$$

 $V(\hat{u}) = V(\sum_{i=1}^{n} C_i Y_i) \rightarrow V(\sum_{i=1}^{n} C_i (d_i + e_i))$
 $V(\sum_{i=1}^{n} C_i e_i) \rightarrow \sum_{i=1}^{n} C_i^2 V(e_i)$
 $V(\sum_{i=1}^{n} C_i e_i) \rightarrow \sum_{i=1}^{n} C_i^2 V(e_i)$

variance is minimized when $V(4) = \frac{6^2}{N}$