D16 Chapter 12	
Countercurrent Stripping Column	
· dissolved CO2 m a liquid	the second street for
Water feed (1) @ 25°C. Latin	Lin / Gout
Lim EQ with Coz@latm (0.035 vololocoz)	Xcoz, in V ycoz, out
· Stripping gas (G) is Nzgas	T=25°C
saturated with pure water @ 25°C	P=50
	mnttq
Assume:	Lout Gin
(i) Nz msoluble in H20	Xcoz, out V ycoz, in
(ii) Ideal gas (vololo = mololo)	30-2,
Data found in Table 12-1	
Goal: Remove 95% of initial COz in wa	ter feed.
	C 0
a) Calculate inlet & outlet mol fracs o	t CO2 in water.
1) since the water feed is in equilibrium	with air Chubich contains
0.035 vololo CO2) at Ptotal = latm, we can	Tina XCoz, in using:
Ptot	
X coz = Hot y coz Henry's Law	v: eqn-12-3
where $y_{co_2} = 0.00035 \leftarrow \text{change } /. + 1$	a fract by
Ptot = latm	a wachow.
Hco2 = 1640 atm (from Table 12-	1 @ 25°C)
CO2	
$X_{co_2, in} =$	
$\Rightarrow \chi_{C0_2, \text{in}} = \frac{1}{1640} (0.00035) \Rightarrow 2.14 \times 10$	-7 use scientific * notation!
1640 (1640)	7.01001001
2) We designated that we desire 95% of	the Coz in the feed
to be removed in the Nz gas, leaving	5%. of CO2 to exit
@ We designated that we desire 95% of to be removed in the Nz gas, leaving in the liquid water phase.	
$X_{co2, out} = X_{co2, in} (1-0.95) = 2.14 \times 10^{-7} (0.05)$	
1002, out 1002, in (1-0.13) 2.11x10 (0.05	Xco2, out =

$$\left(\frac{L}{q}\right)_{\text{max}} = \frac{y_{\text{co}_2, \text{max}} - y_{\text{co}_2, \text{in}}}{x_{\text{co}_2, \text{in}} - x_{\text{co}_2, \text{out}}}$$

$$y_{co_2, max} = \frac{H_{co_2}}{P_{tot}} \times co_2$$
, in $H_{co_2} = 1640$ atm from step ()
 $P_{tot} = P_{column} = 50 \text{ mmHg} \left(\frac{1}{760}\right) = 0.066 \text{ later}$

$$y_{co_2, max} = \frac{1640 \text{ atm}}{0.066 \text{ atm}} (2.14 \times 10^{-7}) \Rightarrow y_{co_2, max} = 5.32 \times 10^{-3}$$

$$\frac{L}{Q} = \frac{5.32 \times 10^{-3} - 0}{2.14 \times 10^{-7} - 1.07 \times 10^{-8}} \Rightarrow \frac{L}{Q} = 2.62 \times 10^{4}$$

$$G_{min} = L \left(\frac{L}{G}\right)^{-1} = \frac{1}{9} \frac{kg_{mol}}{hr} \Rightarrow G_{min} = 3.82 \times 10^{-5} \frac{kg_{mol}}{h}$$

c)	Find	4000	\$ N =	#	stages	needed	if	G=	1.59mb
-		002,000		100.000	d			V	1111111

$$\frac{L}{g}$$
 max, new $\frac{L}{1.56}$ max, old $\frac{L}{9}$ max, old $\frac{1}{1.5}$ $\frac{2.62 \times 10^4}{1.5}$

$$y_{co_{2},out} = \frac{L}{G} \times co_{2,in} + \left[y_{co_{2,m}} - \frac{L}{G} \times co_{2,out} \right] = egn. 12-40$$

$$\Rightarrow = 17470 \left(2.14 \times 10^{-7} - 1.07 \times 10^{-8} \right)$$

$$\int_{0}^{1} \int_{0}^{1} Co_{2,0} dt = 3.55 \times 10^{-3}$$

sanity check: ycoz, out should be less than theoretical ycoz, max

McCabe - Thiele Method:

Kremser Method: this method is allowed since OL & EL are linear Use eqn. 12-29 to solve for N

Part b)

Part c) McCabe-Thiele Method

