Questions

- 1. As mentioned in Lemma 13, T is any valid transformation of size t. A T is valid for x and y only if the number of delete and replace operations in $T \leq |x|$ and the number of insert and replace operations in $T \leq |y|$. In the proof, it is mentioned that if $g(x, y, \rho) \in G_T$ and $g(x, y, \rho)$ is complete, then T is a prefix of $T(x, y, \rho)$. If we are given x, y, and ρ , then we can have only one gridwalk $g(x, y, \rho)$ which gives rise to only one transformation $T(x, y, \rho)$, but we can have multiple valid T. How does the above statement hold true?
- 2. In Lemma 13, while defining g'', the proof mentions: g'' consists of loop and match operations concatenated onto the end of $g' \cdot \sigma$, ending with a match operation. Consider a simple case where $h_{\rho}(x) = h_{\rho}(y)$, the last element in transcript would process \$ and have same value of |s|, hence the transcript could be hash-replace hash-replace, in which case the Edit Distance operation would be replace, in this case σ i.e., the gridwalk would be of the form $g' \cdot \sigma$ and would not have the match operation mentioned above.
- 3. The proof of Lemma 14 mentions: By Lemma 13, h induces T on x and y (which is sufficient for h(x) = h(y) by Lemma 12) with probability $p^r 2/n^2$. Lemma 12 mentions the case where T solves x and y and the probability is derived from Lemma 13 which mentions T of length t that is valid for x and y.