- Q1 Let $K_1, K_2, ..., K_n$ be subfields of K. The composite field of $K_1, K_2, ..., K_n$, denoted $K_1K_2, ..., K_n$, is defined to be the smallest subfield of K containing $K_1, K_2, ..., K_n$.
 - (a) Suppose that $K_j = F(S_j)$ for some $S_j \subseteq K$, $1 \le j \le n$. Show that $K_1K_2 \cdots K_n = F(S_1 \cup S_2 \cup \cdots \cup S_n)$.
 - (b) Let $K \subseteq \overline{F}$ be a finite separable field extension of F and $L \subseteq \overline{F}$ be the Galois closure of K over F. Suppose that $Gal(L/F) = \{\sigma_1, \ldots, \sigma_n\}$. Show that $L = \sigma_1(K)\sigma_2(K)\cdots\sigma_n(K)$.
- **Q2** §14.4 Problem 5.
- **Q3** §14.4 Problem 9.
- Q4 §14.7 Problem 12. (Hint: One can use Cauchy's Theorem: If G is a finite group, p is a prime number and $p \mid |G|$, then G has a subgroup of order p.)
- Q5 Let F be a field and n be a positive integer. Suppose that $\operatorname{ch}(F) = 0$ or $\operatorname{ch}(F) \nmid n$ and $x^n 1$ splits completely over F. Denote by $\sqrt[n]{a}$ a root in \overline{F} of $x^n a \in F[x]$. Let $m = [F(\sqrt[n]{a}), F]$. Show that m is the smallest positive integer such that $(\sqrt[n]{a})^m \in F$.