

1 **THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY**
2 **OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:**

3

4 1. A hydraulic motor comprising a housing having a fluid inlet, a fluid outlet and a cavity
5 there between, a pair of intermeshing gear elements rotatable in said cavity about mutually
6 parallel axes, each of said gear elements having a set of gear teeth disposed about the periphery
7 of said element and a support shaft extending from oppositely directed end faces of said set of
8 gear teeth, a bearing assembly located on opposite sides of said cavity in said housing to support
9 said shafts for rotation about respective ones of said axes, each of said bearing assemblies having
10 a sealing face overlying said end faces and biased into engagement with said end face by a
11 pressure compensating seal located between said bearing and said housing, said sealing face
12 having a channel extending partially about said spindle and in fluid communication with said
13 inlet to introduce fluid under pressure between said faces.

14

15 2. A motor according to claim 1 wherein said channel is accuate and is centred on said axis
16 of rotation.

17

18 3. A motor according to claim 2 wherein said channel is located between a root diameter
19 and major diameter of each gear teeth.

20

21 4. A motor according to claim 3 wherein said channel is located on a pitch circle of gear
22 teeth.

23

24 5. A motor according to claim 1 wherein said bearing assembly is integrally formed to
25 support both of said shafts and a pair of channels extend about respective ones of said gears.

26

27 6. A motor according to claim 5 wherein said channels intersect at said inlet.

28

1 7. A motor according to claim 4 wherein said channels are located between a root diameter
2 and major diameter of said teeth.

3

4 8. A motor according to claim 7 wherein said channels are located on the pitch circle of said
5 teeth.

6

7 9. A motor according to claim 6 wherein said channels extend over an arc of 180°.

8

9 10. A motor according to claim 9 wherein said channels extend over an arc of 165°.