Linear Algebra: Homework #3

Due on September 11, 2019

 $Professor\ MacArthur$

Carson Storm

Problem 1 (1.9#1)

Assuming T is a linear transformation. Find the standard matrix of T where $T: \mathbb{R}^2 \to \mathbb{R}^4$, $T(\mathbf{e_1}) = (3, 1, 3, 1)$ and $T(\mathbf{e_2}) = (-5, 2, 0, 0)$.

Problem 2 (1.9#3)

Assuming T is a linear transformation. Find the standard matrix of T where $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates poing (about the origin) through $3\pi/2$ radians (counterclockwise).

Problem 3 (1.9#5)

Assuming T is a linear transformation. Find the standard matrix of T where $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a vertical shear transformation that maps e_1 into $e_1 - 2e_2$ but leaves the vector e_2 unchanged.

Problem 4 (1.9#10)

Assuming T is a linear transformation. Find the standard matrix of T where $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the vertical x_2 -axis and then rotates points $\pi/2$ radians.

Problem 5 (1.9#11)

Assuming T is a linear transformation. Find the standard matrix of T where $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the x_1 -axis and then reflects points through the x_2 -axis. Show that T can also be described as a linear transformation that roates points about the origin. What is the angle of that rotation?

Problem 6 (1.9#15)

Fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

Problem 7 (1.9#17)

Show that T is a linear transformation by finiding a matrix that implements the mapping. Note that x_1, x_2, \ldots are not vectors but are entries in vectors.

$$T(x_1, x_2, x_3, x_4) = (0, x_1 + x_2, x_2 + x_3, x_3 + x_4)$$

Problem 8 (1.9#20)

Show that T is a linear transformation by finiding a matrix that implements the mapping. Note that x_1, x_2, \ldots are not vectors but are entries in vectors.

$$T(x_1, x_2, x_3, x_4) = 2x_1 + 3x_3 - 4x_4$$

Problem 9 (1.9#21)

Show that T is a linear transformation by finiding a matrix that implements the mapping. Note that x_1, x_2, \ldots are not vectors but are entries in vectors. Let $T: \mathbb{R}^2 \to \mathbb{R}^5$ such that $T(x_1, x_2) = (x_1 + x_2, 4x_1 + 5x_2)$. Find \boldsymbol{x} such that $T(\boldsymbol{x}) = (3, 8)$.

Problem 10 (1.9#25)

Determine if the linear transformation in Exercise 17 is (a) one-to-one and (b) onto. Justfiy your answer.

Problem 11 (2.1#1)

Problem 12 (2.1#2)

Problem 13 (2.1#3)

Problem 14 (2.1#5)

Problem 15 (2.1#7)

Problem 16 (2.1#9)

Problem 17 (2.1#13)

Problem 18 (2.1#15)

Problem 19 (2.1#21)

Problem 20 (2.1#27)

Problem 21 (2.2#1)

Problem 22 (2.2#5)

Problem 23 (2.2#7)

Problem 24 (2.2#9)

Problem 25 (2.2#13)

Problem 26 (2.2#15)

Problem 27 (2.2#17)

Problem 28 (2.2#19)

Problem 29 (2.2#21)

Problem 30 (2.2#31)