

Replicating and Revising Current Literature on Reinforcement Learning For Strategic Chemotherapy Dosages

Kristina Beck, Daniel Henry, Jimmy Le

CS221 - Fall 2019

Problem Statement

- Treatment scheduling and drug dosages for cancer chemotherapy vary tremendously according to the stage of tumor, patient wellness, white blood cell levels, external illnesses, age, and more.
- Current literature builds virtual environments for Reinforcement Learning agents using ODEs to simulate the effects of chemotherapy on patients.
- Researchers train these agents in hope of a future where RL improves the decisions made during cancer treatment.

Objective

 We explored, replicated, and revised these models to generate our own environments and train our own agents to deliver optimal chemotherapy dosages.

Approach

- We chose to replicate and revise two papers to create two models: the Tumor Size Model [3] (simple) and the Cells Count Model [1] (complex).
- We implement Watkins' Q-Learning algorithm, where we update feature weights with the following equation:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta (\hat{Q}_{opt}(s, a; \mathbf{w}) - (r + \gamma \hat{V}_{opt}(s'))) \phi(s, a)$$

- For feature selection, we discretized our continuous state space to provide indicators for action selection.
- We custom tune hyperparameters with guidance from [1] and [3].

Results

Model 1: Tumor Size (TS)

- <u>States</u>: $S_t = (W_t, M_t, t)$, where W is the patient's wellness, M is tumor size, and t is months
- **Actions**: dosages d where $0 \le d \le 1$
- <u>State Succession / ODEs</u>: Hyperparameters influence changes of wellness and tumor size with each dosags

$$\dot{W}_t = \alpha M_t + \beta (d - \lambda)$$
$$\dot{M}_t = \chi W_t - \gamma (d - \lambda)$$

V=1 ends simulation (death) where $V\sim \mathrm{Bernoulli}(e^{(-W+M)}+\psi)$

Reward

$$R(s, a) = \begin{cases}
-5 & V = 1 \\
R_W(s, a) + R_M(s, a) & t < 6 \\
2M_0 & t = 6
\end{cases}$$

$$a) = \begin{cases}
-\dot{W}_t & \dot{W}_t < -.5 \\
\dot{W}_t & \dot{W}_t > 5
\end{cases}$$

$$R_M(s, a) = \begin{cases}
-\dot{M}_t & \dot{M}_t < -.5 \\
\dot{M}_t & \dot{M}_t > 5
\end{cases}$$

Model 2: Cell Count (CC)

- <u>States</u>: $S_t = (N_t, T_t, I_t, C_t)$ where N is normal cells count, T is tumor cells count, I is immune cells count, C is drug concentration, and t is months
- **Actions**: dosages d where $0 \le d \le 1$
- <u>State Succession / ODEs</u>: Hyperparameters influence cell kill rate, cell carrying capacity, intra-cell competition, and cell death/growth/influx rates

$$\begin{split} \dot{N}_t &= r_2 N_t (1 - b_2 N_t) - c_4 N_t T_t - a_3 N_t C_t \\ \dot{T}_t &= r_1 T_t (1 - b_1 T_t) - c_2 I_t T_t - c_3 T_t N_t - a_2 T_t C_t \\ \dot{I}_t &= s + \frac{\rho I_t T_t}{\alpha + T_t} - c_1 I_t T_t - d_1 I_t - a_1 I_t C_t \\ \dot{C}_t &= d - d_2 C_t \end{split}$$

• Reward

$$R(s,a) = \begin{cases} 3 & \text{T}_t \leq 0 \\ -3 & \text{V} = 1 \\ \frac{T_t - \dot{T}_t}{T_t} & \dot{T}_t < T_t \\ 0 & otherwise \end{cases}$$

Results Analysis

- We implemented a number of learning rates in the TS model and found them all to converge around the same average rewards of between 2-3 at different rates.
- The TS agent gave aggressive dosages when it was possible to cure the patient instantly, but became cautious when the tumor size was large and the patient was unwell.
- The CC agent discovered a fault in the environment setup and attained high rewards without curing the patient.
- Discretization factor had negligible impact, implying a need for a better simulation. Future Work
- Our agent should outperform the constant dosages by a greater factor than it currently does.
- Simulation realism leaves much to be desired. Further tuning and ODEs are needed.

Conclusions + Social Impact

- This project highlights the breakthroughs at the intersection of cancer/chemotherapy research and reinforcement learning.
- Developing the sophistication of the mathematical models behind chemotherapy and effects on patients is crucial. Future research with simulation modeling in mind will be required.
- Our results show that it may be possible to eventually determine treatment schedules across various forms of cancer using reinforcement learning.

References: [1] Padmanabhan, Regina, Nader Meskin, and Wassim M. Haddad. 2017. \Reinforcement Learning-Based Control of Drug Dosing for Cancer Chemotherapy Treatment." Mathematical Biosciences 293 (November):11{20. doi:10.1016/j.mbs.2017.08.004. [2] Yauney, Gregory, and Pratik Shah. "Reinforcement learning with action-derived rewards for chemotherapyand clinical trial dosing regimen selection." In Machine Learning for Healthcare Conference, pp. 161-226. 2018. [3] Zhao, Yufan, Michael R. Kosorok, and Donglin Zeng. "Reinforcement learning design for cancerclinical trials." Statistics in medicine 28, no. 26 (2009): 3294-3315.