FAMÍLIA EXPONENCIAL

Modelos Lineares Generalizados

Luan Fiorentin

12 de maio de 2021

Sumário

- ► Introdução
- ► Família Exponencial
- **Componentes**
- ► Escolha dos Componentes
- **▶** Poisson
- **▶** Binomial
- **▶** Normal
- ► Considerações finais

▶ Inventário florestal envolve a coleta de informações quali- quantitativas de variáveis da floresta.

▶ Variáveis:

- ► Altura:
- ► Diâmetro:
- Presença de ataques de pragas;
- Número de árvores por unidade amostral:
- Entre outras.
- ► Fundamental reconhecer a **natureza** das variáveis.

Figura 1. Floresta. Imagem de Brandon Montrone no Pexels

Figura 2. Principais tipos de variáveis.

entin FAMÍLIA EXPONENCIAL

- O comportamento da resposta pode ser estudado por meio de modelos probabilísticos.
- Modelos disponíveis para variáveis:
 - ▶ Discreta → Poisson:
 - ► Contínua → Normal, Gamma;
 - ► Binária → Binomial, Hipergeométrica;
 - ► Limitada em intervalo → Beta.
- Escolha do modelo depende da **natureza** da resposta e análises gráficas.

Figura 3. Modelo linear generalizado. Extraído de Walmes Zeviani no Tikz.

- O componente aleatório de um modelo linear generalizado consiste em uma variável **aleatória** Y, por meio de um conjunto de observações independentes $y_1, y_2, ..., y_n$ com distribuição pertencente à família exponencial.
- Assumimos que a função de probabilidade ou densidade de probabilidades de u possa ser expressa na forma:

$$f_e(y_i; \theta_i, \phi) = exp\left\{\frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i; \phi)\right\},$$

em que a.b. c são funções adequadas.

- ▶ O parâmetro θ_i é chamado parâmetro natural (ou **parâmetro canônico**) e ϕ o parâmetro de dispersão da distribuição.
- ▶ Temos $a(\phi) = \phi$ ou $a_i(\phi) = \frac{\phi}{\omega_i}$, sendo ω_i um **peso** particular a cada observação.
- Para distribuições pertencentes à **família exponencial de dispersão**, expressões para $E(y_i)$ e $Var(y_i)$ são dadas por

$$E(y_i) = \mu_i = b'(\theta_i) = \frac{\partial b(\theta_i)}{\partial \theta_i},$$

$$Var(y_i) = a(\phi)b''(\theta_i) = a(\phi)\frac{\partial \mu_i}{\partial \theta_i}.$$

- ▶ A **variância** de *ui* pode ser fatorada em dois componentes:
 - \triangleright O primeiro $(a(\phi))$ é função de um parâmetro (ϕ) que está associado exclusivamente à **dispersão** de $y_i i$ (não à sua média).
 - ightharpoonup O segundo, usualmente denotado por $V(\mu_i) = b''(\theta_i)$ e chamado **função de variância**, é função da média da distribuição, e exprime a relação média-variância de u.
- Cada distribuição pertencente à família exponencial de dispersão tem sua particular função de variância e vice-versa (unicidade).

Componentes

- ▶ Definido pela **especificação** de três componentes:
 - ightharpoonup 1: **Componente aleatório**: conjunto de variáveis aleatórias independetes (u_i) com distribuição pertencente à família exponencial, e vetor de parâmetros θ , ϕ :

$$f_e(y_i; \theta_i, \phi) = exp\left\{\frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i; \phi)\right\},$$

em que a, b, c são funções adequadas.

 Membros da família exponencial: distribuições binomial, Poisson, normal, gama, normal inversa

Componentes

- ▶ Definido pela **especificação** de três componentes:
 - ▶ 2: **Componente sistemático**: é o preditor linear do modelo, em que as variáveis são inseridas por meio de uma combinação linear de parâmetros:

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}.$$

Componentes

- ▶ Definido pela **especificação** de três componentes:
 - > 3: **Função de ligação**: É uma função real, monótona e diferenciável, que conecta o componente sistemático ao aleatório:

$$g(\mu_i) = \eta_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip},$$

em que
$$\mu_i = E(y_i | x_i = (x_{i1}, ..., x_{ip})').$$

▶ Pelas propriedades da função de ligação, podemos escrever de forma equivalente por

$$\mu_i = g^{-1}(\eta_i) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}.$$

Escolha dos Componentes

Componente aleatório:

- ▶ Definição de uma distribuição de probabilidades para a resposta.
- Propor um modelo que tenha propriedades compatíveis à distribuição dos dados (espaço paramétrico, simetria, ...).
- ▶ Não se tendo convicção sobre uma particular escolha, pode-se testar diferentes alternativas ou usar alguma abordagem que não exija essa especificação.

▶ Preditor linear:

- Considerar quais variáveis explicativas devem ser utilizadas.
- ► Considerar como essas variáveis serão incorporadas ao modelo.

► Função de ligação:

- ► Finalidade de linearizar a relação entre os componentes aleatório e sistemático.
- \triangleright Deve produzir valores no espaco paramétrico (para μ_i) para qualquer valor produzido pelo preditor linear n_i .
- ► Proporcionar interpretações práticas para os parâmetros de regressão.

Luan Fiorentin FAMÍLIA EXPONENCIAL

Escolha dos Componentes

▶ Principais distribuições com as respectivas funções de ligação:

Ligação	$\eta = g(\mu)$	$\mu = g^{-1}(\eta)$	Ligação Canônina
Identidade	μ	η	Normal
Logarítmica	$ln(\mu)$	e^{η}	Poisson
Inversa	μ^{-1}	η^{-1}	Gama
Inversa-quadrada	μ^{-2}	$\eta^{-1/2}$	Normal Inversa
Raíz quadrada	$\sqrt{\mu}$	η^2	Normal Inversa
Logito	$ln\frac{\mu}{1-\mu}$	$\frac{e^{\eta}}{1+e^{\eta}}$	Binomial
Probito	$\Phi^{-1}(\mu)$	$\Phi(\eta)$	Binomial
Log-log	$-ln[ln(\mu)]$	$exp[-exp(-\eta)]$	Binomial
Clog-log	$ln[-ln(1-\mu)]$	$1 - exp[-exp(\eta)]$	Binomial

Luan Fiorentin FAMÍLIA EXPONENCIAL

Poisson

Poisson

 \blacktriangleright Y ~ Poisson(λ), $\lambda > 0$. Então, $y = \{0, 1, 2, ...\}$.

$$f(y) = \frac{e^{-\lambda}\lambda^y}{y!}.$$

Escrevendo na forma da família exponecial, temos

$$f(y) = \frac{e^{-\lambda}\lambda^y}{y!} = \ln(e^{-\lambda}\lambda^y) - \ln(y!)$$
$$= exp\{y\ln(y) - \lambda - \ln(-y!)\}$$
$$= exp\{\phi[y\theta - b(\theta)] + c(y, \phi)\},$$

em que $\theta = ln(\lambda)$, $b(\theta) = exp(\theta)$, $\phi = 1$ e $c(y, \phi) = -ln(y!)$.

Binomial

Binomial

 \triangleright Seja Y^* a proporção de sucessos em n ensaios de Bernoulli independentes. Então, temos $nY^* \sim \text{Binomial}(n, \mu)$, sendo $\mu \in (0,1)$. Temos que $\mu = \{0, 1/n, 2/n, \dots, 1\}$ e

$$f(y) = \binom{n}{ny^*} \mu^{ny^*} (1-\mu)^{n-ny^*}.$$

Binomial

► Escrevendo na forma da família exponecial, temos

$$f(y) = \binom{n}{ny^*} \mu^{ny^*} (1 - \mu)^{n-ny^*} =$$

$$= \ln \binom{n}{ny^*} + ny^* \ln \left(\frac{\mu}{1 - \mu}\right) + n \ln(1 - \mu)$$

$$= \exp \left\{ \ln \binom{n}{ny^*} + ny^* \ln \left(\frac{\mu}{1 - \mu}\right) + n \ln(1 - \mu) \right\}$$

$$= \exp \left\{ n \left[y^* \ln \left(\frac{\mu}{1 - \mu}\right) + \ln(1 - \mu) \right] + \ln \binom{n}{ny^*} \right\}$$

$$= \exp \left\{ \phi [y\theta - b(\theta)] + c(y, \phi) \right\},$$

em que $\theta = ln\left(\frac{\mu}{1-\mu}\right)$, $b(\theta) = ln(1+e^{\theta})$, $\phi = n$, $c(y^*, \phi) = ln\left(\frac{\phi}{\phi y^*}\right)$. Se n=1, então $Y^* \sim \text{Bernoulli}(\mu)$.

Luan Fiorentin FAMÍLIA EXPONENCIAL 20

Normal

Normal

► Seja $Y \sim \text{Normal}(\mu, \sigma^2), \mu \in \{-\infty, +\infty\}, \mu \in \{-\infty, +\infty\}, \sigma^2 \in \{0, +\infty\} \text{ e}$

$$f(y) = f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}.$$

Escrevendo na forma da família exponecial, temos

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\} =$$

$$= \exp\left\{\frac{1}{\sigma^2}\left(\mu y - \frac{\mu^2}{2}\right) - \frac{1}{2}\left[\ln(2\pi\sigma^2) + \frac{y^2}{\sigma^2}\right]\right\}$$

$$= \exp\left\{\phi[y\theta - b(\theta)] + c(y,\phi)\right\},$$

em que $\theta = \mu$, $b(\theta) = \frac{\theta^2}{2}$, $\phi = \sigma^{-2}$ e $c(y, \phi) = \frac{1}{2}ln(\phi/2\pi) - \frac{\phi y^2}{2}$.

Principais Distribuições

Principais Distribuições

▶ Principais distribuições da família exponencial e respectivos parâmetros:

Distribuição	$b(\theta)$	θ	ϕ	$V(\mu)$
Normal	$\theta^2/2$	μ	σ^{-2}	1
Poisson	$e^{ heta}$	$ln(\mu)$	1	μ
Binomial	$ln(1+e^{\theta})$	$ln(\mu/(1-\mu))$	n	$\mu(1 - \mu)$
Gama	$-ln(-\theta)$	$-1/\mu$	$1/(CV^2)$	μ^2
Normal Inversa	$-\sqrt{-2\theta}$	$-1/2\mu^2$	ϕ	μ^3

Considerações finais

Considerações finais

- ► Família exponencial é uma generalização de distribuições de probabilidades com características similares.
- ▶ É uma classe de modelos flexível e permite modelar variáveis de diferentes naturezas

Figura 4. Fórmulas. Imagem de Nothing Ahead no Pexels