The Self-Amalgamation of Coronas and Generalized Crowns*

Thelma C. Montero-Galliguez
Department of Mathematics
Caraga State University
Butuan City

Abstract

Let G = (V(G), E(G)) be a finite, connected, simple graph. Let u and v be two vertices of G such that the distance between u and v is at least 3. A *self-amalgamation* of G, denoted by G* with *=(u,v), is the graph obtained by identifying u and v. A k^{th} self-amalgamation of G, denoted by $G*^k$, is a self-amalgamation of a $(k-1)^{st}$ self-amalgamation of G, that is, $G*^k = (G*^{k-1})^k$. A graph G is *self-amalgamation stable* (or *amalgamation-stable*) if a G* is not possible. If G is not amalgamation-stable, then the *stability number* of G is the minimum positive integer k such that there exists a $G*^k$ which is amalgamation-stable. The *self-amalgamation number* of G, denoted by G, is the minimum positive integer G such that all the G self-amalgamations of G are amalgamation-stable. Results on the stability number and self-amalgamation number of coronas and generalized crowns are presented.

^{*}Research is supported by the National Research Council of the Philippines (Research Report No. 2, NRCP Research Project B-104)

The Self-Amalgamation of Coronas and Generalized Crowns*

Thelma C. Montero-Galliguez
Department of Mathematics
Caraga State University
Butuan City

1. Introduction

This study considers only graphs which are simple, finite and connected, unless otherwise stated. Graph-theoretic terms which are used but not explicitly defined in this study are adopted from [1] and [4]. Related investigations on the *k*-amalgamation of graphs may be found in [2], [3] and [5]. This study is on the stability number and self-amalgamation number of coronas and generalized crowns.

Let G = (V(G), E(G)) be a simple, finite connected graph. The **order** of G, denoted by |V(G)|, is the number of vertices in G. The **size** of G, denoted by $\varepsilon(G)$, is the number of edges in G. The **distance** between two vertices u and v of G, denoted by d(u,v;G), is the length of a shortest path in G between u and v. Whenever only one graph is under consideration, the distance between u and v will be denoted by d(u,v). The **diameter** of G, denoted by diam(G), is the maximum distance between any two vertices of G.

Definition 1.1. Let G = (V(G), E(G)) be a finite, connected, simple graph. Let u and v be two vertices of G such that the distance between u and v is at least 3, that is $d(u, v; G) \ge 3$. A $\mathbf{1}^{st}$ self-amalgamation (or self-amalgamation) of G, denoted by G *, with * = (u, v) or G * (u, v), is the graph obtained by identifying the vertices u and v.

Definition 1.2. ([2], [4]) For $k \ge 2$, a k^{th} self-amalgamation of G, denoted by $G *^k$, is defined recursively as a self-amalgamation of a $(k-1)^{st}$ self-amalgamation of G, that is, $G *^k = (G *^{(k-1)}) *$. A k^{th} self-amalgamation of G which is obtained with $*^k = (\langle x_i \rangle_{i=1}^k, \langle y_i \rangle_{i=1}^k)$, where $\langle x_i \rangle$ and $\langle y_i \rangle$ are sequences of vertices in G such that x_i is identified with y_i for each $i = 1, 2, 3, \dots, k$ may be denoted by $G *(\langle x_i \rangle_{i=1}^k, \langle y_i \rangle_{i=1}^k)$. The sequences $\langle x_i \rangle$ and $\langle y_i \rangle$ are called *amalgamation sequences*.

^{*}Research is funded by the National Research Council of the Philippines (Research Report No. 2, NRCP Research Project B-104)

The k^{th} self-amalgamation $G *^k$ with $*^k = (\langle x_i \rangle_{i=1}^k, \langle y_i \rangle_{i=1}^k)$ may also be denoted by the following sequence of k self-amalgamations of G:

$$((((G*(x_1, y_1))*(x_2, y_2))*(x_3, y_3))*\cdots*(x_k, y_k)).$$

Example 1.1. A 1st self-amalgamation (or self-amalgamation) of a path $P_8 = (1,2,3,4,5,6,7,8)$, with *=(2,6), is shown in Figure 1.1(a). Another self-amalgamation of P_8 with *=(2,8) is shown in Figure 1.1(b).

Figure 1.1 Some non-isomorphic 1^{st} self-amalgamations of P_8

Note that the 1st self-amalgamations $P_8 * (2,6)$ and $P_8 * (2,8)$ given in Example 1.1 are not isomorphic. In general, different amalgamation sequences may yield non-isomorphic self-amalgamations.

Example 1.2. The 2nd self-amalgamation $P_8 *^2$ with $*^2 = (\langle 1, 1 \rangle, \langle 4, 7 \rangle)$ is obtained through the following sequence of two self-amalgamations. Step 1. Use * = (1,4) to get $P_8 * (1,4)$. Step 2. Apply the second amalgamation * = (1,7) to get $(P_8 * (1,4)) * (1,7) = P_8 * (\langle 1, 1 \rangle, \langle 4, 7 \rangle)$. (Refer to Figure 1.2.)

Figure 1.2 A 2nd self-amalgamation of P_8 with $*^2 = (\langle 1,1 \rangle, \langle 4,7 \rangle)$

Definition 1.3. A graph G is said to be *self-amalgamation stable* (or *amalgamation-stable*) if a G* is not possible. A graph G is *amalgamation-unstable* if G is not self-amalgamation stable; in this case we say that a G* is possible.

Remark 1.1. G is amalgamation-stable whenever G* is not possible Thus, a graph G is self-amalgamation-stable (or amalgamation-stable) whenever $d(u, v; G) \le 2$ for any vertices u and v in G. Equivalently, a graph G is amalgamation-stable if and only if $diam(G) \le 2$.

Remark 1.2. If G^{*k} is possible, then the order of G^{*k} is $|V(G^{*k})| = |V(G)| - k$ and the size is $\varepsilon(G^{*k}) = \varepsilon(G)$.

Example 1.3. The graphs $P_8 * (2,6)$ and $P_8 * (2,8)$ in Figure 1.1 are amalgamation-unstable since there are vertices u and v in these graphs with $d(u,v) \ge 3$. For example, $d(3,8;P_8 * (2,6)) = 3$ and $d(5,8;P_8 * (2,8)) = 3$. Figure 1.2 (b) shows the graph $P_8 *^2$ with $*^2 = (\langle 1,1 \rangle, \langle 4,7 \rangle)$, which is amalgamation-stable.

Example 1.4. The diameter of the Petersen graph is 2; hence, the Petersen graph is amalgamation-stable. The cycles C_n with n = 3,4,5 are also amalgamation-stable.

The following result gives a necessary condition for the existence of a G^{*k} .

Lemma 1.1. If G^* is possible, then $|V(G)| \ge k+3$.

Proof. If a G^{*k} is possible, then there is a G^{*k-1} which is amalgamation-unstable. Thus, there exist vertices u and v in G^{*k-1} such that $d(u,v;G^{*k-1}) \ge 3$. Thus, G^{*k-1} contains a u-v path of order 3, and hence, $|V(G^{*k-1})| \ge 4$. Therefore, $|V(G^{*k-1})| = |V(G)| - (k-1) \ge 4$ and the desired result follows.

Remark 1.3. If k > |V(G)| - 3, then a $G *^k$ is not possible.

Definition 1.4. Let G be an amalgamation-unstable graph, that is, $diam(G) \ge 3$. For $m \ge 1$, the m^{th} amalgamation set, denoted by $S^m(G)$, is the set of all the non-isomorphic m^{th} self-amalgamations of G together with all the non-isomorphic stable k^{th} self-amalgamations of G for each $1 \le k < m$. When G is amalgamation-stable, we define $S^0(G) = \{G\}$.

Definition 1.5. Let G be an amalgamation-unstable graph, that is, $diam(G) \ge 3$. The *stability number* of G, denoted by *(G), is the minimum positive integer k such that there is a $G *^k$ which is amalgamation-stable. The *self-amalgamation number* of G, denoted by s(G), is the minimum integer k such that all the graphs in $S^k(G)$ are amalgamation- stable. When G is amalgamation-stable, we define *(G) = 0 and s(G) = 0.

Remark 1.4. The stability number of a graph G is the minimum k such that $S^{k}(G)$ contains an amalgamation-stable graph.

The next example illustrates the definitions of m^{th} -amalgamation set, stability number and self-amalgamation number for P_6 .

Example 1.5. Consider the path $P_6 = (1, 2, 3, 4, 5, 6)$. Since $diam(P_6) = 5$, so P_6 is amalgamation-unstable. Thus, the stability number of P_6 is not 0. The 1st amalgamation set $S^1(P_6)$ consists of the non-isomorphic self-amalgamations $P_6*(u,v)$, where u and v are vertices in P_6 such that $d(u, v; P_6) \ge 3$. Thus, we have the set $S^{1}(P_{6}) = \{P_{6} * (1,6), P_{6} * (2,5), P_{6} * (1,4), P_{6} * (1,5)\}.$ (Refer to Figure 1.3.) We observe that $diam(P_6*(1,6))=2$ and $diam(P_6*(2,5))=2$; hence, $P_6*(1,6)$ and $P_6*(2,5)$ are both amalgamation-stable. Therefore, the stability number of P_6 is $*(P_6)=1$. However, $d(2,6; P_6*(1,4)) = 3$, and $d(3,6; P_6*(1,5)) = 3$. Hence, both $P_6*(1,4)$ and $P_6*(1,5)$ are amalgamation-unstable, and the self-amalgamation number $s(P_6)$ of P_6 is greater than 1. The 2nd amalgamation set $S^2(P_6)$ consists of the amalgamation-stable graphs in $S^1(P_6)$, together with the non-isomorphic self-amalgamations of $P_6*(1,4)$ and $P_6*(1,5)$. The $2^{\rm nd}$ self-amalgamations of P_6 are represented by $P_6*(\langle 1,2\rangle,\langle 4,6\rangle)=(P_6*(1,4))*(2,6)$ and $P_6*(\langle 1,3\rangle,\langle 5,6\rangle) = (P_6*(1,5))*(3,6)$, which are isomorphic graphs with diameter 2. Therefore, the 2nd-amalgamation set is $S^2(P_6) = \{P_6 * (1,6), P_6 * (2,5), P_6 * (\langle 1,3 \rangle, \langle 5,6 \rangle)\}$. All the graphs in $S^2(P_6)$ are amalgamation-stable. Therefore, the self-amalgamation number of P_6 is $s(P_6) = 2$.

Figure 1.3 The non-isomorphic 1^{st} and 2^{nd} self-amalgamations of P_6

We will next consider a class of amalgamation-stable graphs.

Definition 1.6. Let G and H be connected graphs with disjoint vertex sets. The **sum** or **join** of G and H, denoted by G + H, is the graph whose vertex set is $V(G) \cup V(H)$ and whose edge set is $E(G) \cup E(H)$ together with all edges joining each vertex in V(G) with each vertex in V(H).

Example 1.6. The sum of a cycle $C_5 = [1,2,3,4,5]$ and a path $P_3 = (a,b,c)$ is shown in Figure 1.4.

Figure 1.4 The sum $C_5 + P_3$

Theorem 1.2. For any graphs G and H, diam(G+H)=1 if and only if G and H are complete graphs.

Proof. This follows from the definition of the sum of two graphs.

Theorem 1.3. Let G and H be graphs, each of which may be disconnected. If G or H is not a complete graph, then diam(G+H)=2.

Proof. Suppose G or H has nonadjacent vertices. Without loss of generality, let u and v be nonadjacent vertices in G. For any vertex w in H, the vertex pairs u, w and v, w are adjacent in G + H, thus the path $P_3 = (u, w, v)$ exists in G + H. Hence, d(u, v; G + H) = 2 for any two nonadjacent vertices u and v of G, and d(u, v; G + H) = 1 if u and v are adjacent in G, or u is in G and v is in H. Therefore, diam(G + H) = 2 if G or H is not a complete graph. \blacksquare

Corollary 1.4. Let G and H, each of which may be disconnected. The sum G + H is amalgamation stable, with stability number *(G + H) = 0 and self-amalgamation number s(G) = 0.

By Corollary 1.4, the following classes of graphs, which can be obtained as a sum of graphs, have stability number *(G) = 0 and self-amalgamation number s(G) = 0.

- i. The wheels $W_n = C_n + K_1$ and the fans $F_n = P_n + K_1$
- ii. The complete bipartite graphs $K_{m,n} = \overline{K_m} + \overline{K_n}$

iii. The complete r-partite graphs
$$K_{m_1,m_2,m_3,\cdots,m_r} = \overline{K_{m_1}} + \overline{K_{m_2}} + \cdots + \overline{K_{m_r}}$$

2. The Self-Amalgamation of Coronas and Crowns

Definition 2.1. Let G and H be connected graphs. Let the number of vertices of G be |V(G)| = n, and let the vertices of G be labeled 1, 2, 3, ..., n. A **corona** $G \circ H$ is the graph obtained by making n copies of H and connecting every vertex of the i^{th} copy of H to vertex i of G. A **crown** is the corona $C_n \circ P_1$, where $n \ge 3$ and P_1 is the degenerate path of order 1. A **generalized crown** is the corona $C_n \circ P_m$, $n \ge 3$, $m \ge 2$.

In this section, a cycle of order n will be denoted by $C_n = [1, 2, 3, \dots, n]$, a path of order m by $P_m = (a_1, a_2, a_3, \dots, a_m)$, and the ith copy of P_m by $P_m^i = (a_1^i, a_2^i, a_3^i, \dots, a_m^i)$.

Example 2.1. The crown $C_4 \circ P_1$, the generalized crown $C_4 \circ P_2$, and the corona $P_3 \circ P_2$ are shown in Figure 2.1.

The crown $C_4 \circ P_1$ The generalized crown $C_4 \circ P_2$ The corona $P_3 \circ P_2$

Figure 2.1 Some examples of coronas

Theorem 2.1. $diam(G \circ H) = diam(G) + 2$ if G is a connected graph with at least two vertices and H is any graph.

Proof. The result follows from the definition of a corona.

The next results follow from Theorem 2.1 and the fact that $diam(C_n) = \left\lfloor \frac{n}{2} \right\rfloor$ for any cycle C_n , $n \ge 3$.

Corollary 2.2. For $n \ge 3$ and any graph H, the diameter of the corona $C_n \circ H$ is $diam(C_n \circ H) = \left\lfloor \frac{n}{2} \right\rfloor + 2$.

Corollary 2.3. Let *G* and *H* be connected graphs. Then

(i) If G is the trivial graph, then $*(G \circ H) = 0$ and $s(G \circ H) = 0$.

(ii) If G has at least two vertices, then $*(G \circ H) \ge 1$ and $s(G \circ H) \ge 1$.

Proof. The result follows from Theorem 2.1 and the observation that the diameter of a connected graph G is at least 1, unless $G = P_1$.

Corollary 2.4. Let G be a connected graph. A corona $G \circ H$ is amalgamation-stable if and only if |V(G)| = 1.

Let the crown $C_n \circ P_1$ be obtained by joining the vertex a^i of the i^{th} copy of P_1 to vertex i of the cycle $C_n = [1, 2, 3, \cdots, n]$. The next results establish bounds on the stability number and the self-amalgamation number of crowns. We first consider the crown $C_3 \circ P_1$.

Theorem 2.5. The 1st and 2nd amalgamation sets of $C_3 \circ P_1$ are:

(i)
$$S^1(C_3 \circ P_1) = \{(C_3 \circ P_1) * (a^2, a^3)\}$$

(ii)
$$S^2(C_3 \circ P_1) = \{W_3\}$$

Moreover, $(C_3 \circ P_1) * (a^2, a^3)$ is amalgamation-unstable.

Proof. (i) We note that $d(u, v; C_3 \circ P_1) = 3$ if and only if $u = a^i, v = a^j$, where $i \neq j$ and i, j = 1, 2, 3. Thus, any self-amalgamation will involve only the identification of the vertices of two copies of P_1 . Without loss of generality, consider $* = (a^2, a^3)$ and the resulting 1st self-amalgamation; all other1st self-amalgamations are isomorphic to this graph (refer to Figure 2.2(a)). Thus, $S^1(C_3 \circ P_1) = \{(C_3 \circ P_1) * (a^2, a^3)\}$. Since $d(a^1, a^3; (C_3 \circ P_1) *) = 3$, so $(C_3 \circ P_1) * (a^2, a^3)$ is amalgamation-unstable. Any 2nd self-amalgamation is isomorphic to $(C_3 \circ P_1) *^2$, with $*^2 = ((a^2, a^2), (a^3, a^1))$. This is equivalent to $((C_3 \circ P_1) * (a^2, a^3)) * (a^2, a^1)$, which is the wheel W_3 and is amalgamation-stable (refer to Figure 2.2(b)). Thus, $S^2(C_3 \circ P_1) = \{W_3\}$. ■

(a)
$$S^1(C_3 \circ P_1) = \{(C_3 \circ P_1)^*\}$$
, where $* = (a^2, a^3)$ (b) $S^2(C_3 \circ P_1) = \{W_3\}$

Figure 2.2 $S^{n}(C_{3} \circ P_{1}), n = 1, 2$

Corollary 2.6. 4.3. $*(C_3 \circ P_1) = 2$ and $s(C_3 \circ P_1) = 2$.

Proof. The result follows from Theorem 2.5.

Theorem 2.7. For $n \ge 4$, $1 \le *(C_n \circ P_1) \le n - 1$.

Proof. Consider the $(n-1)^{\text{st}}$ self-amalgamation of $C_n \circ P_1$ defined by $*^{n-1} = (X,Y)$, with $X = \langle x_i \rangle_1^{n-1} = \langle a^1, a^1, a^1, \cdots, a^1 \rangle$ and $Y = \langle y_i \rangle_1^{n-1} = \langle a^2, a^3, \cdots, a^n \rangle$. Then, $(C_n \circ P_1) *^{n-1}$ is isomorphic to the wheel W_n , $n \ge 3$, which is amalgamation-stable. Therefore, $*(C_n \circ P_1) \le n-1$, $n \ge 3$. By Corollary 2.3, $*(C_n \circ P_1) \ge 1$. This completes the proof.

Theorem 2.8. Let G be a connected graph with $diam(G) \le 2$ and order $|V(G)| = n \ge 2$. Then, $1 \le *(G \circ P_1) \le n - 1$.

Proof. The $(n-1)^{\text{st}}$ self-amalgamation of $G \circ P_1$ defined by $*^{n-1} = (X,Y)$, with $X = \langle x_i \rangle_1^{n-1} = \langle a^1, a^1, a^1, \cdots, a^1 \rangle$ and $Y = \langle y_i \rangle_1^{n-1} = \langle a^2, a^3, \cdots, a^n \rangle$ has diameter 2. Thus, $(G \circ P_1) *^{n-1}$ is amalgamation-stable. Therefore, $1 \le *(G \circ P_1) \le n-1$.

Example 2.2. Consider the 6th self-amalgamation of $C_7 \circ P_1$ defined by $*^6 = (X,Y)$, with $X = \langle x_i \rangle_1^6 = \langle a^1, a^1, a^1, \cdots, a^1 \rangle$ and $Y = \langle y_i \rangle_1^6 = \langle a^2, a^3, a^4, a^5, a^6, a^7 \rangle$ shown in Figure 2.3. Note that for this choice of amalgamation sequences, $(C_7 \circ P_1) *^6$ is isomorphic to the wheel W_7 , which is amalgamation-stable. Thus, $*(C_7 \circ P_1) \le 6$.

Figure 2.3 An amalgamation-stable 6th self-amalgamation of $C_7 \circ P_1$, with $*^6 = (\langle a^1, a^1, a^1, \cdots, a^1 \rangle, \langle a^2, a^3, a^4, a^5, a^6, a^7 \rangle)$

Theorem 2.9. For $n \ge 7$, $n \le s(C_n \circ P_1) \le 2n - 3$.

Proof. By Remark 1.3, $s(C_n \circ P_1) \le 2n-3$. Consider the $(n\text{-}1)^{st}$ self-amalgamation of $C_n \circ P_1$ defined by $*^{n-1} = (X,Y)$, with $X = \langle x_i \rangle_1^{n-1} = \langle a^1, a^2, a^2, \cdots, a^2, a^n \rangle$ and $Y = \langle y_i \rangle_1^{n-1} = \langle 3, a^3, a^4, \cdots, a^{n-1}, 2 \rangle$. A shortest path between 1 and n-2 is the path $P_4 = (1, n, n-1, n-2)$, where $n-2 \ge 5$; hence, $d(1,n-2; (C_n \circ P_1) *^{n-1}) = 3$. Thus $(C_n \circ P_1) *^{n-1}$ is amalgamation-unstable for this choice of amalgamation sequences. Hence, $S^{n-1}(G)$ contains an amalgamation-unstable graph, and therefore $s(C_n \circ P_1) \ge n$ for $n \ge 7$. ■

Example 2.3. A 6th self-amalgamation of $C_7 \circ P_1$ defined by $*^6 = (X,Y)$, with $X = \langle x_i \rangle_1^5 = \langle a^1, a^2, a^2, a^2, a^2, a^n \rangle$ and $Y = \langle y_i \rangle_1^5 = \langle 3, a^3, a^4, a^5, a^6, 2 \rangle$. is shown in Figure 2.4. For this choice of amalgamation sequences, $(C_7 \circ P_1) *^6$ is amalgamation-unstable since $d(1,5,C_7 \circ P_1) = 3$. Thus, the self-amalgamation number of $C_7 \circ P_1$ is $s(C_7 \circ P_1) \geq 7$.

Figure 2.4 An amalgamation-unstable 6th self-amalgamation of $C_7 \circ P_1$, with $*^6 = (\langle a^1, a^2, a^2, a^2, a^2, a^7 \rangle, \langle 3, a^3, a^4, a^5, a^6, 2 \rangle)$

3. Self-Amalgamation of Generalized Crowns

We establish upper bounds on the stability number and lower bounds for the self-amalgamation number of the generalized crown $C_n \circ P_m$, $n \ge 3$, $m \ge 2$. Let $C_n = [1, 2, 3, \dots, n]$. Let a path of order m be denoted by $P_m = (a_1, a_2, a_3, \dots, a_m)$ and

the i^{th} copy of P_m by $P_m^i = (a_1^i, a_2^i, a_3^i, \dots, a_m^i)$ where each vertex of P_m^i is joined to vertex i of the cycle C_m .

We consider the stability number and the self-amalgamation number of $C_3 \circ P_2$, $n \ge 3$.

Theorem 3.1.

- (i) $S^1(C_3 \circ P_2) = \{(C_3 \circ P_2)^*\}$, where $* = (a_1^1, a_2^2)$.
- (ii) $S^2(C_3 \circ P_2) = \{G_1, G_2\}$, where $G_1 = (C_3 \circ P_2) *^2$, with $*^2 = (\langle a_1^1, a_1^2 \rangle, \langle a_2^2, a_2^3 \rangle)$, and $G_2 = (C_3 \circ P_2) *^2$, with $*^2 = (\langle a_1^1, a_1^1 \rangle, \langle a_1^2, a_1^3 \rangle)$.
- (iii) $S^3(C_3 \circ P_2) = \{H, G_2\}$, where $G_2 = (C_3 \circ P_2) *^2$, with $*^2 = (\langle a_1^1, a_1^1 \rangle, \langle a_1^2, a_1^3 \rangle)$ and $H = (C_3 \circ P_2) *^3 = G_1 * (a_1^3, a_2^1)$.

Proof. (i) We note that $d(u,v; C_3 \circ P_2) \ge 3$ if and only if $u = a_m^i, v = a_n^j$, where $i \ne j$, i, j = 1, 2, 3, and m, n = 1, 2. Thus, any self-amalgamation will involve the identification of the vertices of different copies of P_2 . For i = 1, 2, 3, $d(a_1^i, a_2^i; C_3 \circ P_2) = d(a_1^i, a_2^i; P_2) = 1$, hence, any k^{th} self-amalgamation must not identify two vertices of a copy of P_2 . Without loss of generality, let $* = (a_1^1, a_2^2)$. The resulting graph $(C_3 \circ P_2) * (a_1^1, a_2^2)$ is shown in Figure 3.1(a); all other 1st self-amalgamations of $C_3 \circ P_2$ are isomorphic to this graph. Thus, $S^1(C_3 \circ P_2) = \{(C_3 \circ P_2) * \}$, where $* = (a_1^1, a_2^2)$. Note that $diam((C_3 \circ P_2) *) = 3$ so that $(C_3 \circ P_2) *$ is amalgamation-unstable.

Figure 3.1 $S^1(C_3 \circ P_2) = \{(C_3 \circ P_2)^*\}, * = (a_1^1, a_2^2)$

(ii) The vertices which are at distance 3 in the 1st self-amalgamation obtained in (i) are the pairs a_1^1 and a_1^3 or a_2^3 , the pairs a_1^2 and a_1^3 or a_2^3 , and the pairs a_2^1 and a_1^3 or

 a_2^3 . The non-isomorphic 2^{nd} self-amalgamations of $C_3 \circ P_2$ are G_1 and G_2 which are obtained using $*^2 = \left(\left\langle a_1^1, a_1^2\right\rangle, \left\langle a_2^2, a_2^3\right\rangle\right)$ and $*^2 = \left(\left\langle a_1^1, a_1^1\right\rangle, \left\langle a_2^2, a_2^3\right\rangle\right)$, respectively. (Refer to Figure 3.2.) The graph G_1 is amalgamation-unstable while G_2 is amalgamation-stable.

Figure 3.2
$$S^2(C_3 \circ P_2) = \{G_1, G_2\}$$

 G_2 amalgamation-stable.

 G_1 amalgamation-unstable

Figure 3.3 $S^3(C_3 \circ P_2) = \{H, G_2\}$

(iii) G_2 is amalgamation-stable, so $G_2 \in S^3(C_3 \circ P_2)$; however $G_1 = (C_3 \circ P_2)*^2$ with $*^2 = (\langle a_1^1, a_1^2 \rangle, \langle a_2^2, a_2^3 \rangle)$, is amalgamation-unstable. Note that $d(u, v; G_1) = 3$ if and only if $u = a_1^3$ and $v = a_2^1$. Thus, $H = G_1 * (a_2^1, a_1^3)$, or equivalently, $(C_3 \circ P_3)*^3$ with $*^3 = (\langle a_1^1, a_1^2, a_1^3 \rangle, \langle a_2^2, a_2^3, a_2^1 \rangle)$ is amalgamation-stable. (Refer to Figure 3.3.) Thus, $S^3(C_3 \circ P_2) = \{H, G_2\}$.

Corollary 3.2. $*(C_3 \circ P_2) = 2$ and $s(C_3 \circ P_2) = 3$

Proof. This follows from Theorem 3.1.

We will consider the self-amalgamation of $C_n \circ P_m$ for other cases.

Theorem 3.3. For $n \ge 4$, $*(C_n \circ P_2) \le n-1$.

Proof. Let $n \ge 4$. We note that $d(u, v, C_n \circ P_2) \ge 3$ if and only if u and v are vertices of different copies of P_2 . (Refer to Figure 3.4.) Consider the $(n-1)^{st}$ self-amalgamation of $C_n \circ P_2$ defined by $*^{n-1} = (X, Y)$, with $X = \langle x_i \rangle_1^{n-1} = \langle a_1^1, a_1^1, a_1^1, \cdots, a_1^1 \rangle$ and $Y = \langle y_i \rangle_1^{n-1} = \langle a_2^2, a_2^3, a_2^4, \cdots, a_2^n \rangle$. Since $diam((C_n \circ P_2) *^{n-1}) = 2$, so $(C_n \circ P_2) *^{n-1}$ is amalgamation-stable for this choice of amalgamation sequences. Therefore, $*(C_n \circ P_2) \le n-1$.

Figure 3.4 An amalgamation-stable $(C_n \circ P_2)^{*n-1}$, $n \ge 4$, with $*^{n-1} = (\langle a_1^1, a_1^1, a_1^1, a_1^1, \cdots, a_1^1 \rangle, \langle a_2^2, a_2^3, a_2^4, a_2^5, \cdots, a_2^n \rangle)$

Remark 3.1. It can be verified that all the elements of $S^1(C_4 \circ P_2)$ and $S^2(C_4 \circ P_2)$ are amalgamation-unstable, hence $*(C_4 \circ P_2) > 2$. By Theorem 3.3, $*(C_4 \circ P_2) \le 3$. Therefore, $*(C_4 \circ P_2) = 3$.

Theorem 3.4. $s(C_4 \circ P_2) \ge 4$

Proof. In the 3rd self-amalgamation $(C_4 \circ P_2) *^3$, with $*^3 = (\langle a_1^1, a_1^2, a_1^3 \rangle, \langle a_2^2, a_2^3, a_2^4 \rangle)$, the shortest path between the vertices a_2^1 and a_1^4 is $(a_2^1, 1, 4, a_1^4)$. Thus, $(C_4 \circ P_2) *^3$ is amalgamation-unstable. Therefore $s(C_4 \circ P_2) \ge 4$.

Theorem 3.5. For $n \ge 5$, $n+1 \le s(C_n \circ P_2) \le 3n-3$.

Proof. For $n \ge 5$, consider the n^{th} self-amalgamation of $C_n \circ P_2$ defined by $*^n = (X,Y)$, with $X = \langle x_i \rangle_1^n = \langle a_1^1, a_1^2, a_1^3, \cdots, a_1^{n-1}, a_1^n \rangle$ and $Y = \langle y_i \rangle_1^n = \langle a_2^2, a_2^3, a_2^4, \cdots, a_2^n, a_2^1 \rangle$. Note that $d(1, a_1^3; (C_n \circ P_2) *^n) = 3$, and $(C_n \circ P_2) *^n$ is amalgamation-unstable for this choice of amalgamation sequences. Thus, $S^n(C_n \circ P_2)$ contains an amalgamation-unstable graph. Therefore, $s(C_n \circ P_2) \ge n+1$, $n \ge 5$. By Remark 1.3, $s(C_n \circ P_2) \le 3n-3$. This completes the proof. ■

Example 3.1. Figure 3.5 shows a 5th self-amalgamation $(C_5 \circ P_2)^{*5}$, with $*^5 = (\langle a_1^1, a_1^2, a_1^3, a_1^4, a_1^5 \rangle, \langle a_2^2, a_2^3, a_2^4, a_2^5, a_2^1 \rangle)$. Since a shortest path between 1 and a_1^3 is $(1, 5, a_1^4, a_1^3)$, which is a path of length 3, so $(C_5 \circ P_2)^{*5}$ is amalgamation-unstable. Therefore, $s(C_5 \circ P_2) \ge 6$.

Figure 3.5 An amalgamation-unstable $(C_5 \circ P_2)^{*5}$, with $*^5 = (\langle a_1^1, a_1^2, a_1^3, a_1^4, a_1^5 \rangle, \langle a_2^2, a_2^3, a_2^4, a_2^5, a_2^1 \rangle)$

Remark 3.2. The n^{th} self-amalgamation of $C_n \circ P_2$ which is indicated in Theorem 3.5, defined by $*^n = (X,Y)$ with $X = \langle x_i \rangle_1^n = \langle a_1^1, a_1^2, a_1^3, \dots, a_1^{n-1}, a_1^n \rangle$ and

 $Y = \langle y_i \rangle_1^n = \langle a_2^2, a_2^3, a_2^4, \cdots, a_2^n, a_2^1 \rangle$, yields amalgamation-stable graphs when n = 3 or 4 instead. Thus, $*(C_3 \circ P_2) \le 3$ and $*(C_4 \circ P_2) \le 4$. In fact, $*(C_3 \circ P_2) = 2$ by Corollary 3.2, and $*(C_4 \circ P_2) = 3$ by Remark 3.1.

Theorem 3.6. $s(C_n \circ P_m) \ge n+1, n \ge 3, m \ge 3$

Proof. Let $n \ge 3$ and $m \ge 3$. Let $C_n = [1, 2, 3, \cdots, n]$, $P_m = (a_1, a_2, a_3, \cdots, a_m)$, and let the i^{th} copy of P_m be denoted by $P_m^i = (a_1^i, a_2^i, a_3^i, \cdots, a_m^i)$, with each vertex of P_m^i joined by an edge to vertex i of the cycle C_n . Consider the n^{th} self-amalgamation of $C_n \circ P_m$ defined by $*^n = (X,Y)$, with $X = \langle x_i \rangle_1^n = \langle a_1^1, a_1^2, a_1^3, \cdots, a_1^{n-1}, a_1^n \rangle$ and $Y = \langle y_i \rangle_1^n = \langle a_m^2, a_m^3, a_m^4, \cdots, a_m^n, a_m^1 \rangle$. Note that $d(a_1^1, a_2^3; (C_n \circ P_2) *^n) = 3$, and hence $(C_n \circ P_m) *^n$ is amalgamation-unstable. Thus, $S^n(C_n \circ P_m)$ contains an amalgamation-unstable graph. Therefore, $s(C_n \circ P_m) \ge n+1$. ■

Example 3.2. An amalgamation-unstable 4th self-amalgamation of $C_4 \circ P_4$, with $*^4 = \left(\left\langle a_1^1, a_1^2, a_1^3, a_1^4 \right\rangle, \left\langle a_4^2, a_4^3, a_4^4, a_4^1 \right\rangle \right)$ is shown in Figure 3.6. Since a shortest path between a_1^1 and a_2^3 is $\left(a_1^1, 2, 3, a_2^3 \right)$, so $C_4 \circ P_4$ is amalgamation-unstable. Therefore, $s\left(\left(C_4 \circ P_4 \right) *^4 \right) \ge 5$.

Figure 3.6 An amalgamation unstable $(C_4 \circ P_4)^{*4}$, with $*^4 = (\langle a_1^1, a_1^2, a_1^3, a_1^4 \rangle, \langle a_4^2, a_4^3, a_4^4, a_4^1 \rangle)$

The stability number and self-amalgamation number for certain coronas and crowns were established. However, sharper bounds may be obtained for the general cases.

The author acknowledges the comments and suggestions of the referees.

References Cited

- [1] Bondy, J. A. and U.S.R. Murty, **Graph Theory with Applications**. London, Unwin Brothers Ltd., 1977.
- [2] Chua, Elvira and Thelma C. Montero-Galliguez, "Amalgamation numbers of cycles and paths". **Journal of Research in Science, Computing and Engineering**, Vol.2 No. 4 (Nov. 2005), pp. 11-17.
- [3] Galliguez, Thelma C.M. and Ian June L. Garces, "On distances in n-amalgamation of certain graphs". *Matimyas Matematika*, Vol. 19, No. 2, pp 16-20.
- [4] Harary, Frank, **Graph Theory**. Reading, Massachusetts: Addison-Wesley Publishing Co., 1972.
- [5] Montero-Galliguez, Thelma C., "A study on n-amalgamation of graphs, Part I". NRCP Research Project B-82, 1997.