Теория принятия решений

Лисид Лаконский

September 2023

Содержание

1	Лек	кция —	- 25.09.2023	2
	1.1	Доми	оминирование стратегий	
		1.1.1	Определение доминирования в классе смешанных стратегий	2
		1.1.2	Примеры	2
		1.1.3	Теоремы о доминировании стратегий	3
	1.2	Решен	ние матричной игры размерности $n imes n$	3
		1.2.1	Примеры	4

Π екция — 25.09.20231

1.1 Доминирование стратегий

Сложность решения матричной игры возрасатает с увеличением размеров матрицы, поэтому перед решением игры следует проанализровать матрицу с целью сокращения ее размерности. При анализе матрицы следует выделить стратегии, являющиеся дублирующими и заведомо невыгодными игрокам.

Определение 1 Стратегия A_i игрока A доминирует какую-либо его стратегию A_l , если $a_{ij} \geq a_{lj}$; $\forall j = \overline{1,n}$. Строгое доминирование: $(a_{ij} > a_i j)$

Определение 2 Стратегия A_i игрока A дублирует какую-либо его стратегию A_l , если $a_{ij}=a_{lj}; \ \forall j=\overline{1,n}$

Оставлять все дублирующиеся стратегии нельзя, нужно оставить только одну из них. В случае доминирования стратегии **необходимо оставлять только доминирующую стратегию** A_i , а доминируемую стратегию необходимо отбросить (то есть, удалить строку из матрицы).

Определение 3 Стратегия B_i игрока E доминирует какую-либо его стратегию B_i , если $a_{ij} \leq a_{il}$; $\forall i = \overline{1,m}$. Мы исходим из того, что игрок $ar{B}$ должен удалять из матрицы большие, а не меньшие столбцы. Стратегию B_j называется доминирующей, а стратегия B_1 называется доминируемой.

1.1.1 Определение доминирования в классе смешанных стратегий

Определение 4 Стратегия x' игрока A доминирует какую-либо его стратегию x'', если $x'p^j \ge x''p^j$; $\forall j = \overline{1,n}$, где p^j — векторы вероятностей.

Аналогичное определение можно дать и для игрока Б:

Определение 5 Стратегия y' игрока B доминирует какую-либо его стратегию y'', если $P_i y' \leq P_i y''$, $\forall i = \overline{1,m}$, где P_i — i-ая строка матрицы $P = (a_{ij})_{m \times n}$.

1.1.2 Примеры

Пример №1 Допустим, $P = \begin{pmatrix} 5 & 2 & 4 \\ 7 & 3 & 6 \\ 1 & 5 & 3 \\ 7 & 3 & 6 \end{pmatrix}$. Проанализируем данную матрицу на предмет доминирования и дублирования. Видим, что $A_2 = A_4$ — следовательно, одну из строк можем убрать. Сократим четвертую строку:

 $P' = \begin{pmatrix} 5 & 2 & 4 \\ 7 & 3 & 6 \\ 1 & 5 & 3 \end{pmatrix}$. Кроме того, видим, что вторая строка в матрице строго доминирует первую строку: $A_2 > A_1$. Значит,

необходимо удалить строку №1. Получим матрицу: $P'' = \begin{pmatrix} 7 & 3 & 6 \\ 1 & 5 & 3 \end{pmatrix}$.

Таким образом, эта игра может быть решена как матрица размерности (2×3) , при этом можем записать x = (0, p, 1 - p, 0).

Пример №2 Допустим, $P = \begin{pmatrix} -5 & 3 & 1 & 20 \\ 5 & 5 & 4 & 6 \\ -4 & -2 & 0 & -5 \end{pmatrix}$. Проанализируем данную матрицу на предмет доминирования и

дублирования. A_3 строго доминируется A_2 , следовательно, ее сокращаем: $P' = \begin{pmatrix} -5 & 3 & 1 & 20 \\ 5 & 5 & 4 & 6 \end{pmatrix}$. Вольше строки невозможно сократить, но перейдем к анализу столбцов: $B_1 \leq B_2$, сокращаем второй столбец. Кроме того, $B_3 < B_2$, $B_4 < B_3$. Получаем итоговую матрицу: $P'' = \begin{pmatrix} -5 & 1 \\ 5 & 4 \end{pmatrix}$. Первая строка становится доминируемой, переходим к матрице: $P''' = (5 \quad 4) \implies V_A = 4, (A_2, B_3)$

1.1.3 Теоремы о доминировании стратегий

Теорема 1 Если в матричной игре стратегия x' одного из игроков доминирует его оптимальную стратегию x^* , то стратегия x' также является оптимальной.

Теорема 2 Если стратегия x^* одного из игроков является оптмальной, то она недоминируема строго. Обратное неверно: $P = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. В этом примере две недоминированные стратегии игроков составляют их оптимальные стратегии.

1.2 Решение матричной игры размерности $n \times n$

Определение 6 Стратегия A_i (B_j) игроков A или B называется **существенной** (активной) стратегией, если она входит c ненулевой вероятностью c вектор оптимальных смешанных стратегий: $p_i^* > 0$ ($q_j^* > 0$). Никакая существенная стратегия не может быть доминируемой. c спектр оптимальной смешанной стратегии любого игрока входят только существенные чистые стратегии.

Определение 7 Стратегия x (y) игрока A (или B) называется вполне смешанной, если ее спектр состоит из всех стратегий игрока A (или B).

Определение 8 Ситуация равновесия (x^*, y^*) называется вполне смешанной, если ее стратегии x^* и y^* вполне смешаны.

Теорема 3 Вполне смешанная $(m \times n)$ игра **имеет единственное решение и квадратную матрицу** (m = n). То есть, ни одна стратегия не является доминируемой и для всех них вероятности ненулевые. Покажем это: так как у игроков все стратегии существенные, то по свойству M1 оптимальных смешанных стратегий если один из игроков придерживается своей оптимальной стратегии, а другой нет, то выигрыш остается неизменным и равным цене игры.

Рассмотрим решение для игрока A: Пусть игрок A выбирал свою оптимальную смешанную стратегию x^* , состоящую из чисел P_1^*, \ldots, P_n^* . Игрок B выбирал чистые стратегии. Тогда $v = H_A(x^*, j), \ \forall j = \overline{1, n}$. То есть,

$$v = a_{1j}P_1^* + a_{2j}P_2^* + \dots + a_{mj}P_m^*, \sum_{i=1}^m P_i^* = 1.$$

Eдинственное решение будет только при m=n.

Допустим, m=n:

$$\begin{cases}
a_{11}p_1 + a_{21}p_2 + \dots + a_{n1}p_n = v \\
\dots \\
a_{1n}p_1 + a_{2n}p_2 + \dots + a_{nn}p_n = v \\
p_1 + p_2 + \dots + p_n = 1
\end{cases}$$
(1)

Решение данной системы выполняется методом обратной матрицы. Введем следующий вектор, состоящий из единиц: u = (1, ..., 1), перепишем последнее уравнение системы:

 $1p_1+1p_2+\dots+1p_n=1 \implies xu^T=1 \implies xP=vu=(v,v,\dots,v)$. Отсюда следует, что $x^*=vuP^{-1}$. Остается лишь найти $v\colon x^*u^T=1=vuP^{-1}u^T\implies v=\frac{1}{uP^{-1}u^T}\implies x^*=\frac{uP^{-1}}{uP^{-1}u^T}$. Таким образом, чтобы найти вектор оптимальных смешанных стратегий, необходимо обратить матрицу игрока P и выполнить записанные в формуле манипуляции. Это применимо только для квадратных матриц.

Решение для B: Игрок B выбирает свою оптимальную стратегию $y^* = (q_1^*, \dots, q_n^*)$, а игрок A выбирает свою чистую стратегию A_i $(i = \overline{1,n})$. Таким образом, $v = H_A(i,y^*) =$

$$\begin{cases} v = a_{11}q_1^* + \dots + a_{1n}q_n^* \\ \dots \\ v = a_{n1}q_1^* + \dots + a_{nn}q_n^* \\ q_1^* + q_2^* + \dots + q_n^* = 1 \end{cases}$$
(2)

$$\implies uy^{*^T} = 1, Py^{*^T} = vu^T \implies y^{*^T} = vP^{-1}u^T \implies y^{*^T} = \frac{P^{-1}u^T}{u^{P-1}u^T}.$$

Лемма о масштабе Пусть имеются две матричные игры с матрицами P_A и P_A' такие, что P_A' получается из матрицы P_A в виде линейного преобразования $P_A' = \alpha P_A + \beta$ (α и β — числа), тогда в этих играх множество оптимальных стратегий игроков A и B совпадают. А $v_A' = \alpha v_A + \beta$. Рассмотрим $P = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, $x^* = (\frac{1}{2}; \frac{1}{2})$, $y^* = (\frac{1}{2}; \frac{1}{2})$, v = 0. Ее определитель равен нулю. Используя лемму о масштабе,

заменим матрицу P на матрицу $P'=\frac{1}{2}(P+1)=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Теперь мы имеем единичную матрицу, $(P')^{-1}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $u(P)^{-1}=(1,1,1),\ (P')^{-1}u^T=(1,1)^T,\ u(P')^{-1}u^T=1+1=2 \implies v'=\frac{1}{2},\ x^*=\frac{1}{2}*(1,1),\ y^*=\frac{1}{2}(1,1),$ $v'=\frac{1}{2}(v+1)=\frac{1}{2} \implies v=0$.

1.2.1 Примеры

Пример №1 Пусть $P = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 2 & 1 \\ 2 & 1 & 6 \end{pmatrix}$. В этой матрице нет доминируемых стратегий, то есть, ничего сократить

невозможно. Кроме того, данная матрица имеет обратную: $|P| \neq 0$. Это позволяет применить вышенаписанные способы

$$P^{-1} = \frac{1}{27} \begin{pmatrix} -11 & 14 & 5 \\ 10 & 2 & -7 \\ 2 & -5 & 4 \end{pmatrix}.$$
 Далее вычислим $uP^{-1} = (-11+10+2,14+2-5,5-7+4) = \frac{1}{27}(1,11,2).$ Далее:
$$uP^{-1}v^T = \frac{1}{27}(1+11+2) = \frac{14}{27} \implies v_A = \frac{1}{uP^{-1}u^T} = \frac{27}{14}.$$
 Тогда, соответственно, $x^* = vuP^{-1} = \frac{27}{14} * \frac{1}{27}(1,11,2) = (\frac{1}{14},\frac{11}{14},\frac{2}{14}).$ Найдем y^* : $P^{-1}u^T = \frac{1}{27}(-11+14+5,10+2-7,2-5+4) = \frac{1}{27}(8,5,1),$ $y^* = vP^{-1}u^T = \frac{1}{14}(8,5,1) = (\frac{8}{14},\frac{5}{14},\frac{1}{14}).$

$$uP^{-1}v^T = \frac{1}{27}(1+11+2) = \frac{14}{27} \implies v_A = \frac{1}{uP^{-1}u^T} = \frac{27}{14}.$$
 Тогда, соответственно, $x^* = vuP^{-1} = \frac{27}{14} * \frac{1}{27}(1,11,2) = (\frac{1}{14},\frac{11}{14},\frac{2}{14}).$ Найдем $y^* : P^{-1}u^T = \frac{1}{27}(-11+14+5,10+2-7,2-5+4) = \frac{1}{27}(8,5,1), \ y^* = vP^{-1}u^T = \frac{1}{14}(8,5,1) = (\frac{8}{14},\frac{5}{14},\frac{1}{14}).$