Laboratorio 5

27 novembre 2020

Considerimo la soluzione del problema (equazione di Poisson):

$$\Delta\phi\left(\mathbf{r}\right) = -\rho\left(\mathbf{r}\right)\tag{1}$$

nel caso a due dimensioni, dove \mathbf{r} appartiene ad un rettangolo di lati L_x, L_y . Scegliamo le condizioni al bordo tali che $\phi(\mathbf{r}) = 0$ sui lati del rettangolo. $\rho(\mathbf{r})$ è nulla dapperutto meno che all'interno di un quadrato di lato L_c , la posizione di tale quadrato è individuata dalle coordinate (p_x, p_y) (vedi figura 1). Su tale quadrato $\rho(\mathbf{r}) = \pm \rho_o$ dove il segno è determinato secondo i casi illustrati in figura 2.

Si implementi l'algoritmo iterativo di Jacobi. Si consiglia di usare i parametri $L_x = L_y = 10$, $N_x = N_y = 100$, $p_x = p_y = 4$ $L_c = 2$, $\rho_0 = 80$. Per tali parametri la soluzione per la distribuzione di carica 1 è riportata in figura 3. Per visualizzare dei grafici di funzioni del tipo f(x,y) con gnuplot si possono usare i comandi:

```
gnuplot> set hidden3d
gnuplot> splot 'phi.dat' w l
```

dove nel file phi.dat è stato lasciata una riga vuota dopo ogni linea.

Figura 1:

Figura 2:

'phi.dat' ——

Figura 3: