· Question: How many labelled trees are there on n vertices? (ie Count the num, of labelled spanning trees in Kn)

f (3) = 3 f (4) = 16 Cayley's formula.

nn-2 labelled spanning Theorem: there are thees on n vertices (in Kn)

· Two ways to prove Cayley's formula: (I) Printer code: (II), Count directed graphs, ("like counting formulae") bijection botwon trees, sequences make and Joyal.

Build by bijection - use 1-to-1 correspondence between Tlabelled (I) Priifer Code trees (on n vertices) and Sequences (ay, ..., an-2), a: E[0]={1,...,n} · (Useful to) and to show have reversibility.

Assume we have an ordered vertex set S.

produce the Printer code of a tree; (f(T)).

ordered vertex set is.

Of size n subject is ordered, with the smallest label, and append the label of the neighbor to the sequence s.t. after n-2 generations, we are left with one edge (connecting two vertices)?

(a) Procedure: (1) Find the leaf with the minimal label, u.

(2) Delete u and put of first symbol in the sequence (immediate accessor of u) the label of the unique neighbor of u

Continue (2) using tree T'= T\ {u3. / of size n-1)

Stop when there are only two vertices" (one edge) remaining.

so a Printer code has length n-2.

(744171)

(b) Now show Printer code gives us 1-to-1 correspondence

Step 1. Delete 2, add 7 to seg. end: 1008 remains

- . If we can never se the code, we can get (V trees) code by bijection.
- · Suppose (ar,..., an-2) is a code/sequence of thee T on n vertices.

Prop/ All elements that appear in the proinfer code (b) contid (Showing 1 to 1 correspondence) are exactly the vertices that are not leaves of-> Prove that (i) no leaves appear in the PC

4i) all non-leaves appear in the PC.

(i) Suppose i is a leaf with unique neighbor j in T. The only way i appears in PC is if j gets deleted. Then, however, we would have disconnected i from the rest of the graph (i is alone) (which contradicts def of tree and we must always have a tree). → No leaves appear in PC.

(ii) Let i be a vertex of degree ≥ 2 in T. Since in the end, there are exactly two vertices left, one of the vertices, j or k, will be deleted, and i will be added to PC.

(i,j), (i,k) EELT), j,kEV(T) wherein

193/2 Graph Theory Lecture 3: Counting Labelled Trees - Cayley's Formula, contid 28 Feb 2018 Cayley's Formula - Proof with Prüfer code, cont'd. · Clary. "Let (a,,.., an-2) be a Privercode of T. * Then, the minimal num which is not as, ..., an - a was the first vertex (heaf) delebed; this vertex was connected to ar. ex. Given 16631 (on T= {1,2,3,4,5,6,7}, Connect the min leaf (at that time) to the vertex in the sequence Ge add (l,a) to E(T), T'=T+(l,a). Step1. leaf 2+7 200 006 Q. (4,6) 3. (5,6) (e) Process is reversible 4. (6,3) 5. (31) >> Step 6: add an edge => (unique)/ \$1-to-1 btwithe remaining vertices (121,71). correspondence. (Idea of the proof - induction on size of tree) (Pf2) Claira: For every code (a1, ..., an. 2), there is a unique tree T which produces this code (by induction on the size of the vertex set S (an ordered ground set) : Unique tree si s2, with an empty Printer code. Induction step: Suppose that for any |S| = n-1 and for any code $(b_1,...,b_{n-3})$ There a unique tree T' on S' with this code. Pf. For n Let (a1, a2,..., an-2) be a code (sequence) on ordered set S: 15 = n Let S1 be the smallest label from S which is not in a1,..., an-2. Then, we know 47 Sy is a leaf connected to ay (2) T\Sy is a tree T', with labels S'\{Sy} = S'') (as,..., an-a) is the Prifer code for T * This can also be applied to counting the num. of By unduction, T'is unique, since un get T'from T, which spanning trees inany G. is unoque. ⇒at any step of building, any the is reversible and unique PE3 Joyal, 1981. a In every true, we label two vertices L and R (which can be the same vertex). We countable num of labelled n-vertex trees for two marked vertices L, R. "If the num of trees is f(n), then the num of such objects is $n^2 f(n)$ (noptions to choose L, and Can we prove that the num of such objects (num of copies of the trees to choose R.) with different labelling? Is $n^2 f(n) = n^n$? Note that no counts/includes all functions from [n] -> [n] (the is with no conditions). Ex all objects are possible, Main Idea: Counting labels of different trees is like counting functions. "It istrategy: starting with a function, how can we get the tree?.

o Joval: Given any f'n h: [n] → [n], we can buck a directed graphon [n] by placing edges (i, h(i)) in G.

in neighborhood with all with a the indegree . When the court out neighborhood with all with a the court of t

ex. (n=10) $f = \begin{pmatrix} 1 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 5 & 5 & 9 & 1 & 2 & 5 & 8 & 4 & 7 \end{pmatrix} R$ mapping

observe that Gf is a digraph in which
the out-degree of every
vertex is exactly 1

GG= 5 bidirected loop

(ie f(i) is the only out-neighbor of i). \Rightarrow Ne have a unique one-to-one correspondence.

& Directed graphs on a vertices with outdegrees of 1 (Yvertex).

Properties Looking at the connected components (not considering direction), we find (i) that I each component, consists of exactly one cycle

(ii) if the component has x vertices, Because of out degree 1, it has x edges.)

S. Moreover, the cycle is directed.

Note that the union of cycles gives set M, which

as per Lemma inwhich the path + 1 edgess exactly one cycle.

is the maximal set by inclusion on which hoperates as a bijection.

ie that works an abjection h permute elements of M.

· If there is a bjection C one-to-one mapping), then M can be rewritten as the union of directed cycles. Bijection () all out- and in-degrees are exactly one year. Every component has exactly one cycle, so we can reduce the graph to only cycles () bijection with set M.

To prove reversibility in Joyal's theorem, . Recall that a function is a unique mapping that works as a bijection on precisely the path with M

· The order of vertices on the path is exactly the order of the vertices in the first line of M

· Recall fh is a unique mapping that works as a bijection precisely on the path with maximal set M

In ex 2) 7 The vertices of path P=(7,1,8) give Ordering these vertices of M gives us

M=[1,7,83, which gives us the first line in film, P=(7,18)

and the second line from the order of vertices on the path from L to R ie P= (7,1,8).

The remaining vertices, which are not bijection vertices, are oriented by the unique

paths from each vertex to (the closest vertex (vs. R)).

 $f|_{\mathbf{M}} = \begin{pmatrix} 178 \\ 718 \end{pmatrix}$ \leftarrow $f = \begin{pmatrix} 12345678 \\ 77414718 \end{pmatrix}$ This is a convenient way to describe graphs, in general.

Big idea: instead of looking @ a particular graph, look @ a particular function and then see what kinds of graphs can be produced.

