0/1

0/1

+6/1/50+

IPS - S7P - Jean-Matthieu Bourgeot

CC6

$\begin{array}{c} \text{IPS} \\ \text{Controle du } 18/12/2013 \end{array}$

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

— Exercice Pont diviseur —

On dispose d'une batterir de 26V, et l'on souhaite alimenter un circuit polarisé en 12V. Le but de cet exercice est donc d'étudier l'alimentation de ce montage. Le cahier des charges nous donne les contraintes suivantes :

- courant maximum consommé par le circuit à alimenter i_S ≤ 50mA
- tension d'entrée du circuit à alimenter $11.5 \le Vs \le 12.5 \text{V}$

Figure 1: Alimentation

Partie I - Pont diviseur

On commence par utiliser un pont diviseur de tension pour abaisser la tension de 26 à 12V.

Figure 3: Montage equivalent de thevenin

Figure 2: Pont diviseur

Question 1 • A vide (c-a-d avec $i_S = 0$), quelle relation doit vérifier R_1 et R_2 pour avoir $V_S = 12$ V. Si on choisit $R_1 = 200\Omega$, calculer la valeur de R_2 .

 $R_2 = 171\Omega$ $R_2 = 63\Omega$ $R_2 = 92\Omega$ $R_2 = 342\Omega$ $R_2 = 805\Omega$

Question 2 • On étudie maintenant le fonctionnement en charge : Si $i_S = 50 \text{mA}$, que vaut V_S

aide: je vous conseille de calculer le circuit équivalent de thevenin du montage entre les point A et B, puis de calculer la chute de tension au bornes de r_t lorsque $i_S = 50 \text{mA}$. (e_t correspond à la tension à vide, et r_t correspond à la résistance équivalente entre A et B lorsque la source V_E est court-circuité.)

$$V_S = 7.39V$$
 $V_S = 21.39V$ $V_S = 12.00V$ $V_S = 9.60V$ $V_S = 8.85V$ $V_S = 16.61V$

		on souhaite que la chute d'ifier r_t pour que la chute r	
$r_t \le 20\Omega$	$r_t \le 0\Omega$ $r_t \le 10\Omega$		$r_t \le 25\Omega$
Question $4 \bullet$ Connais deuxième équation la relat R_2 permettant de remplir	tion établie à la premi	c_t en fonction de R_1 et R_2 dère question, donner les no	et en utilisant comme uvelles valeurs de R_1 et
$ \begin{array}{ccc} & R_1 = \\ & R_1 = \\ \end{array} $		$R_1=22\Omega$ et $R_2=\Omega$ et $R_1=22\Omega$ et $R_2=\Omega$ et $R_2=19\Omega$	$= 7\Omega$ $= 9\Omega$
Question 5 • Calculer le courant conso puissance P_{pont}^{full} consommé	mmé i_E à àpleine $lpha$ se à pleine charge . C	charge (c-a-d lorsque $i_S=$ alculer le rendement à pleir	50mA). En déduire la ne charge η_{pont}^{full}
$\ \ \ \ \ \eta_{pont}^{full}=6.8\%$		$\eta_{pont}^{full}=3.6\%$	
Question 6 • Donner le rendement théo cateur opérationnel dans l		obtenu en utilisant un régul	ateur linéaire à amplifi-
$\eta_{reg} = 46.2\%$			$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Question 7 • Qu'en concluez-vous			
		ur abaisser une tension d'a ension d'alimentation avec u	
	— Exercice Co	odeur Optique	
et B donnent en sortie un Les chronogrammes de	niveau logique 1 en p	la figure 1 (voir annexe). I orésence de blanc, et 0 en p B sont donnés sur la figure du moteur.	résence de noir :
	Sens 1	Sens 2	
Question 9 • En dédu	ire la vitesse de rotati	ion du moteur (en tr/min).	
☐ 100 ☐ 314.159	50 6000	0.01 3000	0.02 628.319
Question 10 • Les sign 3). Que vaut Q?	naux issus des capteu	rs sont appliqués en entrée	d'une bascule D (figure
	Q=0	Q=1	

1/1

0/1

0/1

1/1

1/1

1/1

1/1

1/1