ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ – ΕΡΓΑΣΙΑ 1

ΠΡΟΒΛΗΜΑ 3

α) Από το δοσμένο διάγραμμα προκύπτει ο εξής πίνακας αληθείας για τη συνάρτηση f·

x1	х2	х3	f	Minterm	
0	0	0	0	m0: x1'x2'x3'	
0	0	1	1	m1: x1'x2'x3	
0	1	0	1	m2: x1'x2x3'	
0	1	1	1	m3: x1'x2x3	
1	0	0	0	m4: x1x2'x3'	
1	0	1	0	m5: x1x2'x3	
1	1	0	1	m6: x1x2x3'	
1	1	1	1	m7: x1x2x3	

Από τον παραπάνω πίνακα αληθείας κατασκευάζουμε τον πίνακα Karnaugh της συνάρτησης:

x1x2 x3	00	01	11	10
0	0	1	1	0
1	1	1	1	0

Εντοπίζουμε τις παρακάτω ομάδες minterms:

x1x2 x3	00	01	11	10
0	0	1	1	0
1	1	1	1	0

Άρα $f(x_1, x_3, x_3, x_4) = \Sigma m(2, 3, 6, 7) + \Sigma m(1, 3)$, όπου:

$$\Sigma m(2, 3, 6, 7) = x1'x2x3' + x1'x2x3 + x1x2x3' + x1x2x3 = x2(x1'x3' + x1'x3 + x1x3' + x1x3)$$

= $x2(x1' + x1) = x2$

(διότι από την ιδιότητα 14α έχουμε: x1'x3' + x1'x3 = x1' και x1x3' + x1x3 = x1)

Επίσης:

$$\Sigma m(1, 3) = x1'x2'x3 + x1'x2x3 = x1'x3(x2' + x2) = x1'x3$$

Άρα τελικά f(x1, x3, x3, x4) = x2 + x1'x3

β) Η κυματομορφή της προσομοίωσης λειτουργίας εξόδου που προκύπτει με βάση τον κώδικα είναι η εξής:

γ) Το RTL διάγραμμα που προκύπτει είναι (με χρήση του RTL Viewer):

