

Localization

Aravind Battaje

Particle Filter

► A popular instance of the Bayes Filter (besides Kalman Filters, Discrete Filters, Hidden Markov Models, etc.)

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- ▶ Basic Principle:
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

200

x: state

z: observation

u: action

► Efficiently represent non-Gaussian distributions

Mobile Robot Localization

► Each particle is a potential pose of the robot

Prediction step: Proposal distribution is the motion model of the robot

► Correction step: The observation model is used to compute the importance weight

Resampling step: A new set of particles is drawn according to their importance weights

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , u_{t-1} z_t):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- **3. For** i = 1K n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $6. w_t^i = p(z_t \mid x_t^i)$

Compute importance weight

- 7. $\eta = \eta + w_t^i$ Update normalization factor
- 8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$ **Insert**
- **9. For** i = 1K n
- $10. w_t^i = w_t^i / \eta$

Normalize weights

Resampling

Motion model

Sensor model

Motion Model $\rightarrow p(x_t|x_{t-1},u_t)$

- ► In practice, one often finds two types of motion models:
 - Odometry-based (what we'll implement)
 - Used when systems are equipped with wheel encoders
 - Velocity-based (dead reckoning dead d
 - Must be applied when no wheel encoders are given
 - They calculate the new pose based on the velocities and the time elapsed

Odometry model

"Probabilistic Robotics", p. 132

 $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$

- ▶ Robot moves from $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$
- Odometry information

$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$$

$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$

$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

-

Noise Model for Odometry

► The measured motion is given by the true motion corrupted with noise:

$$\begin{split} \hat{\delta}_{rot1} &= \delta_{rot1} + \mathcal{E}_{\alpha_{1} | \delta_{rot1}| + \alpha_{2} | \delta_{trans}|} \\ \hat{\delta}_{trans} &= \delta_{trans} + \mathcal{E}_{\alpha_{3} | \delta_{trans}| + \alpha_{4} | \delta_{rot1} + \delta_{rot2}|} \\ \hat{\delta}_{rot2} &= \delta_{rot2} + \mathcal{E}_{\alpha_{1} | \delta_{rot2}| + \alpha_{2} | \delta_{trans}|} \end{split}$$

► In practice, the parameters (alphas) must often be estimated using domain knowledge

Sample Odometry Motion Model

Algorithm sample_motion_model(u, x):

$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$$

- 1. $\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$
- 2. $\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha, \delta_{trans} + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|))$
- 3. $\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 | \delta_{rot2} | + \alpha_2 | \delta_{trans})$
- 4. $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$
- 5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$ sample_normal_distribution
- 6. $\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$
- 7. Return $\langle x', y', \theta' \rangle$

Examples (Odometry-based)

Map-consistent Motion Model

(a)
$$p(x_t \mid u_t, x_{t-1})$$
 (b) $p(x_t \mid u_t, x_{t-1}, m)$

We approximate (taking only final pose into account): $p(x_t \mid u_t, x_{t-1}, m) = \eta p(x_t \mid m) p(x_t \mid u_t, x_{t-1})$

Sensor Model $\rightarrow p(z_t|x_t,m)$

- ► In practice, one often finds two types of sensor models:
 - Beam-based Proximity Model
 - Likelihood Field / Endpoint Model / Scan-based Model (what we'll implement)
- Scan z consists of K measurements

$$z_t = \{z_t^1, \dots, z_t^K\}$$

Independence assumption:

$$p(z_t \mid x_t, m) = \prod_{k=1}^K p(z_t^k \mid x_t, m)$$

Beam-based Proximity Model (for completeness)

(a) Gaussian distribution $p_{\rm hit}$

(c) Uniform distribution p_{max}

(b) Exponential distribution p_{short}

(d) Uniform distribution $p_{\rm rand}$

$$\frac{p(z_t^k \mid x_t, m)}{z_t^{k*}} z_{\text{max}}$$

Beam-based Proximity Model (for completeness)

- Not smooth for small obstacles and at edges
- ▶ Not very efficient

Scan-based Model (what we'll implement)

"Probabilistic Robotics", p. 169

- ► Probability is a mixture of ...
 - a Gaussian distribution with mean at distance to closest obstacle,
 - a uniform distribution for random measurements, and
 - a small uniform distribution for max range measurements.

 not used in the assignment!

$$p(z_t^k \mid x_t, m) = z_{\mathrm{hit}} \cdot p_{\mathrm{hit}} + z_{\mathrm{rand}} \cdot p_{\mathrm{rand}} + z_{\mathrm{max}} \cdot p_{\mathrm{max}}$$
 inferred from map we assume z_{rand} =1 and $(p_{\mathit{hit}} + p_{\mathit{rand}} = 1)$

► This probability is pre-calculated (for any possible measurement) and stored in the likelihood field

Example

Map *m*

Likelihood field

Properties of Scan-based Model

- Ignores physical properties of beams! (explains measurement with distance to the closest obstacle)
- ► Highly efficient, uses 2D tables only
- ► Smooth w.r.t. to small changes in robot position
- (Allows gradient descent, scan matching)

Importance Sampling Principle

- We can even use a different distribution g (proposal) to generate samples from f (target)
- ▶ By introducing an importance weight w = f/g, we can account for the "differences between g and f"

Resampling

"Replace unlikely samples by more likely ones"

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Stochastic Universal Sampling

```
1. Algorithm systematic_resampling(S,n):
2. S' = \emptyset, c_1 = w^1
3. For i = 2...n
                              Generate cdf
4. c_i = c_{i-1} + w^i
5. u_1 \sim U[0, n^{-1}], i = 1 Initialize threshold
6. For j = 1...n
                              Draw samples ...
7. While (u_i > c_i)
                              Skip until next threshold reached
8. i = i + 1
9. S' = S' \cup \{ \langle x^i, n^{-1} \rangle \}
                              Insert
10. u_{i+1} = u_i + n^{-1} Increment threshold
11. Return S'
```


Running assignment code – preliminaries

- Download assignment workspace from ISIS
- ▶ Build the nodes required for localization (if not done already during assignment 4.2):

```
$ cd /<path_to_dir>/ws_assignment4/
$ catkin_make
```

Source the workspace [better: put into .bashrc]

```
$ source devel/setup.bash [or zsh]
```

Running assignment code – localization

- \$ roslaunch localization mcl.launch
- ► Launches:
 - particle_filter: Node that you must implement
 - map_view: visulization tool
 - map_server: Publishing the map your robot should localize itself in
 - map_transform: Static transformation between map and world frame
 - rosbag: Recorded test data
- You implement your code in ws_assignment4/src/localization/src/ParticleFilter.cpp

Visualization / Debugging Tool

```
$ rosrun create_gui map_view
```

- Right click on the map to select a position for normal distribution of particles.
- Mouse wheel will zoom in and out.
 - If you select the likelihood field you must press "publish all" to get the data from the localization.

Visualization / Debugging Tool

On the real robot

