Лабораторная работа №4.7.2 Эффект Поккельса

Гёлецян А.Г. 13 апреля 2023 г. **Цель работы:** Исследовать интерференцию рассеянного света, про- шедшего кристалл; наблюдать изменение характера поляризации све- та при наложении на кристалл электрического поля.

1 Теоретическая часть

1.1 Интерференционные кольца при прохождении света через одноосный кристалл

Рис. 1: Схема для наблюдения интерференционной картины

При прохождении света через одноосный кристалл, показатель преломления необыкновенной волны зависит от угла между направлением распространения волны и осью кристалла по формуле

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_o^2} + \frac{\sin^2 \theta}{n_e^2} \tag{1}$$

Если считать, что $(n_o-n_e)\ll n_o$, то при малых углах θ можно воспользоваться приближенной формулой

$$n_2 \approx n_o - (n_o - n_e)\theta^2 \tag{2}$$

Показатель преломления обыкновенного луча не зависит от направления распространения: $n_1 = n_o$. Если длине кристалла l, то после прохождения через кристалл между обыкновенным и необыкновенным лучом набегает разность фаз

$$\Delta \varphi = \frac{2\pi}{\lambda} l(n_1 - n_2) \approx \frac{2\pi}{\lambda} l(n_o - n_e) \theta^2$$
 (3)

Для случая, когда разрешенное направление анализатора перпендикулярно направлению поляризации лазера, условием для темного кольца с номером m является $\varphi=2\pi m$, откуда следует

$$\theta_m^2 = \frac{\lambda m}{l(n_o - n_e)} \tag{4}$$

При выхоже из кристалла луч преломляется на границе кристалл-воздух, поэтому угол $\theta_{\text{внешн}} \approx n_o \theta$. Радиус m-го темного кольца $r_m = L \theta_{\text{внешн},m}$. Для квадрата радиуса

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{(n_o - n_e)} m \tag{5}$$

1.2 Эффект Поккельса

Рис. 2: Главные оси при наличии напряжения вдоль x

При наличии электрического поля вдоль x в кристалле появляются новые перпендикулярные главные направления, показатели преломления которых равны $n_o \pm \Delta n$, где $\Delta n = A \cdot E_x$. Пусть поляризация лазера вертикальна, а разрешенное направление анализатора горизонтальна. Тогда, интенсивность света на выходе будет зависеть от прикладываемого напряжения $(U=E_x d)$ по закону

$$I = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right) \tag{6}$$

где

$$U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l} \tag{7}$$

2 Измерения

2.1 Интерференционные кольца

Рис. 3: Интерференционные кольца

№ кольца	r, см
1	2.5
2	3.6
3	4.3
4	4.9
5	5.5
6	6.1
7	6.5
8	6.9
9	7.2

Таблица 1: Зависимость радиусов темных колец от номера колец

Рис. 4: Линеаризованные график зависимости радиуса колец от номера

Из графика и согласно формуле (5)

$$\frac{\lambda}{l} \frac{(n_o L)^2}{(n_o - n_e)} = (5.97 \pm 0.16) \text{ cm}^2$$

Для нашей установки $\lambda=6328$ Å, l=26 мм, $L=(65.5\pm0.5)$ см, $n_o=2.29.$ После подстановки получаем

$$n_o - n_e = (0.092 \pm 0.003) \tag{8}$$

2.2 Эффект Поккельса

Напряжение, В	скрещенные поляризации	парралельные поляризации
$ U_{\lambda/2}$	450	450
$\mathrm{U}_{\lambda}^{'}$	900	900
$\mathrm{U}_{3\lambda/2}$	1350	1350

Таблица 2: Полуволновые, волновые и 3/2-волновые напряжения

Рис. 5: Фигуры лиссажу для $\mathrm{U}_{\lambda/2},\,\mathrm{U}_{\lambda}$ и $\mathrm{U}_{3\lambda/2}$