UNIVERSITY OF SOUTHERN CALIFORNIA CHAN DIVISION OF OCCUPATIONAL SCIENCE AND OCCUPATIONAL THERAPY

OT 699: Building Technologies that Promote Health and Occupational Engagement

Credits: 2

Spring 2021 (Thursdays 12:40-3 pm)

Location: remote, Zoom Link: https://usc.zoom.us/j/98410120625 (984-1012-0625)

Instructor: Dr. Sook-Lei Liew, Dr. Christopher Laine **Office Hours:** Thursdays 3-4 pm or by appointment

Contact Info: sliew@usc.edu, christopher.laine@chan.usc.edu

Course Description

This course aims to equip students with the ability to harness technology to create innovative solutions to healthcare challenges encountered in their local, national and international communities. The course includes a high-level overview of different technologies and how they can be used to meet different needs, along with hands-on exercises for students to begin to learn how each technology works and what each technology requires. Specifically, students will gain knowledge and skills in the basics of innovation (e.g., intellectual property, business development), software development (e.g., introduction to basic computer programming, game engines, and app development), and hardware development (e.g., basic sensors, arduinos, 3D printing and prototyping). The class will culminate in use of these skills in a hackathon-styled week of development with project pitches.

Course Objectives

By the end of this course, students will be able to:

- 1. Identify, describe, and develop innovations that promote improved health and increased occupational engagement.
- 2. Create a business development plan for a technology that meets a clinical need, identify the appropriate software and hardware skills that are needed to implement their concept.
- 3. Design an initial prototype of a concept.

Note: This course is meant to provide a high-level overview of different technologies, with the expectation that students may take additional time on their own to learn how to implement specific technologies for their own needs.

Description of Teaching Methods and Learning Experiences:

This course contains will provide both information and basic skill training. As such, this course introduces students to the software and hardware most relevant to translating ideas into physical reality. The course is roughly divided in half between lectures, which introduce various software, hardware, legal, and procedural concepts associated with innovation in today's high-tech world, and hands-on practice via online tutorials (as well as in-person tutorials, when safe to do so). These will allow students to learn by designing small projects themselves, learning to seek out information from various sources and having the ability to request guidance from experts in each area.

Prerequisite(s): None Co-Requisite(s): None

Recommended Preparation: Basic computer programming

Required Materials

Laptop or desktop computer

Software: Will be downloaded during the course

Hardware: Arduino kit (TBA)

Grading Breakdown

Assignment	Points	% of Grade
Weekly Quiz/Assignment	44 (4 points per week)	44%
Participation	11 (1 point per week)	11%
Final Project	45	45%
TOTAL	100	100%

Grading Scale

Course final grades will be determined using the following scale

A 95-100

A- 90-94

B+ 87-89

B 83-86

B- 80-82

C+ 77-79

C 73-76

C- 70-72

D+ 67-69

D 63-66

D- 60-62

F 59 and below

Grading Timeline

Grading will be completed the week after an assignment is submitted. Quizzes and inclass assignments will be assessed the same day.

Additional Policies

In-class programming will require that students bring or have access to laptop or desktop computers. Laptops can be provided for students who cannot provide their own. In case of missed classes, students should contact the instructor to determine if make-up work is required.

Course Schedule: A Weekly Breakdown

Each week, we will have approximately 1 hour and 20 minutes of asynchronous content (e.g., lectures and follow-along labs) that you are expected to complete prior to our weekly 1-hour synchronous meeting via Zoom, during which we will review the lecture and lab materials and provide additional hands-on support and tutorials. Links to asynchronous content will be posted on Blackboard and emailed the week prior.

IMPORTANT:

In addition to in-class contact hours, all courses must also meet a minimum standard for out-of-class time, which accounts for time students spend on homework, readings, writing, and other academic activities. For each unit of in-class contact time, the university expects two hours of out of class student work per week over a semester: that is in addition to the 2 hours 20 minutes of contact time per week, which will be delivered synchronously or asynchronously.

(Please refer to the *Contact Hours Reference* at arr.usc.edu/services/curriculum/resources.html.)

	Lecture Schedule	Activities	Lab Software/Hardware & Instructor(s)
Week 1 January 21	Course Intro Software: Computer Programming Basics I	Course overview Basic computer inputs and outputs, navigating programming interfaces, command line (Hello World!)	Hands-On Lab: Anaconda (Jupyter, Python) Dr. Liew
Week 2 January 28	Software: Computer Programming Basics II	Simple functions, programs, practice with programming logic	Hands-On Lab: Anaconda (Jupyter, Python) Dr. Liew
Week 3 February 4	Software: App Development	Overview of app development process, app user interface principles, programming options for creating apps (web and mobile)	Hands-On Lab: App User Interface Design Dr. Laine (potential guest lecturer: Dr. Cohn)
Week 4 February 11	Software: Gamification	Introduction to gamification for apps and software; different game engines, basic GUI-based programming in Unity	Hands-On Lab: Unity Dr. Liew (Guest lecturer: Ms. Phanord)
Week 5 February 18	Hardware: Prototyping and Arduinos	Overview of prototyping process, what is prototyping, why is it useful, and main materials/tools/software that can be used. Intro to using Arduinos for prototyping	Hands-On Lab: Getting started with Arduino Dr. Laine
Week 6 February 25	Hardware: Electronic Device Data Acquisition and Design	Electronics and sensors Basic sensor types of biofeedback	Hands-On Lab: Distance sensor with Arduino Dr. Laine

		How data is acquired and processed for functional use	
Week 7 March 4	Hardware: Software Integration	Putting it all together: How to integrate sensor input using Arduinos and Unity	Hands-On Lab: Making a basic game with a distance sensor, Arduino, and Unity
			Dr. Laine (potential guest lecturers: Ms. Phanord, Mr. Marin-Pardo)
WEEK OF F	RESTORATIVE OCCUPATIONS		
Week 8 March 18	Hardware: 3D Printing	3D printing for prototypes Overview of how 3D printing can be used, possibilities and limitations, what is needed, types of filaments, basic software	Hands-On Lab: Edit/design 3D model casings for sensor/Arduino Dr. Liew, with guest lecturers: Mr. Andy Lin, Director of Rancho's Emerging Tech Lab, and Mr. Marin-Pardo, USC biomedical engineering PhD student
Week 9 March 25	Implementation: Innovation concepts I	Innovations and intellectual property Identifying a need	Hands-On Lab: Identify need and potential solution/prototype idea Dr. Liew with videos from Stevens Center for Innovation
Week 10 April 1	Implementation: Innovation concepts II	Completing a market analysis and making a value proposition Articulating a viable business plan	Hands-On Lab: Complete basic market analysis and business plan, budget Dr. Laine with videos from Incubate USC / Grief Center
Week 11 April 8	Capstone project design	Design a prototype for an invention that meets a clinical need and has a viable market plan	Hands-On Lab: Complete prototype design and identify skills needed to create prototype (identify needed team)

			Drs. Liew/Laine, students discuss progress
Final Projects / Summative	Capstone project presentations	Present project pitch	Hands-On Lab: Capstone project pitches
Experience April 9			Drs. Liew/Laine to moderate student presentations

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in *SCampus* in Part B, Section 11, "Behavior Violating University Standards" https://policy.usc.edu/student/scampus/part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in *SCampus* and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Discrimination, sexual assault, intimate partner violence, stalking, and harassment are prohibited by the university. You are encouraged to report all incidents to the Office of Equity and Diversity/Title IX Office http://equity.usc.edu and/or to the Department of Public Safety http://equity.usc.edu and/or to the Department of Public Safety http://edu.ty.usc.edu and/or to the Department of Public Safety http://edu.ty.usc.edu and staff must report any information regarding an incident to the Title IX Coordinator who will provide outreach and information to the affected party. The sexual assault resource center webpage http://sarc.usc.edu fully describes reporting options. Relationship and Sexual Violence Services https://engemannshc.usc.edu/rsvp provides 24/7 confidential support.

Support Systems

A number of USC's schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the *American Language Institute* http://ali.usc.edu, which sponsors courses and workshops specifically for international graduate students. *The Office of Disability Services and Programs* http://dsp.usc.edu provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, *USC Emergency Information* http://emergency.usc.edu will provide safety and other updates, including ways in which instruction will be continued by means of Blackboard, teleconferencing, and other technology.