CG1 Probeklausur

Tobias Wylega

$\mathrm{June}\ 28,\ 2022$

Contents

1 Orga				
2	Einführung in OpenGL 2.1 Rendering Pipelines	2 2 2 2		
3	Geometrie und Zeichnen 3.1 Backface Culling	2 2 2 2		
4	Koordinatensysteme und Transformationen4.1 Rotationsmatrizen4.2 Zusammenfassen verschiedener Matrizen	3 3		
5	Verdeckung5.1 Z-Buffer-Algorithmus5.2 Scissor-Test	3 3		
6	Farbe 6.1 CIE Farbraum 6.2 Paprika 6.3 RGB-Farbraum	4 4 4		
7	Beleuchtung und Schattierung 7.1 Phong	5 5 6		
8	Texturen 8.1 Mipmaps 8.2 Mipmap Level	666		
9	Transparenz 9.1 Z-Buffer once again	6		
	Sonstiges 10.1 Vet another buffer	6		

1 Orga

Die maximale Punktzahl beträgt 90. Zusätzlich gibt es 10 Bonuspunkte.

2 Einführung in OpenGL

2.1 Rendering Pipelines

Nenne den Namen der neuen Renderingpipeline.

1P

2.2 Skizze

Fertige eine Skizze zur zuvor genannten Pipeline an.

7P

2.3 Unterschiede

Nenne zwei Unterschiede zwischen der älteren und der neuen Pipeline.

2P

3 Geometrie und Zeichnen

3.1 Backface Culling

Warum ist das Rendering schneller, wenn in OpenGL der Befehl glEnable (GL_CULL_FACE); ausgeführt wird?

2P

3.2 Modeling

Beim Modeling können Lücken entstehen, die erst bei Betrachtung aus einem anderen Blickwinkel auffallen. Nenne drei Lösungsansätze und fertige eine Skizze an.

5P

3.3 Triangle Fan

Fertige eine Skizze eines TriangleFans an, bei dem kein Face im Uhrzeigersinn angeordnet ist (CCW). Deine Skizze sollte mindestens 4 Dreiecke beinhalten. Gebe das dazugehörige Index-Array an.

5P

3.4 Triangle Strip

Fertige eine Skizze eines TriangleStrips an, bei dem alle Faces im Uhrzeigersinn (CW) angeordnet sind. Deine Skizze sollte mindestens 4 Dreiecke beinhalten. Gebe das dazugehörige Index-Array an.

4 Koordinatensysteme und Transformationen

4.1 Rotationsmatrizen

Gegeben ist folgende Linie mit folgenden Punkten: $P_1 = (2,3,0)$ $P_2 = (8,5,0)$ Drehe die Line mithilfe einer Matrix um 180 Grad um die X-Achse.

Figure 1: Die zu drehende Linie

10P

4.2 Zusammenfassen verschiedener Matrizen

Ein mittelgroßes Einfamilienhaus soll zunächst an der Y-Achse gespiegelt werden und anschließend um 50 Einheiten nach oben verschoben werden. Fasse die beiden Operationen in einer Matrix zusammen.

10P

5 Verdeckung

5.1 Z-Buffer-Algorithmus

Beschreibe detailliert, also Schritt für Schritt, wie der z-Buffer-Algorithmus funktioniert.

10P

5.2 Scissor-Test

Beschreibe die Aufgabe des Scissor-Tests in einem Satz.

6 Farbe

6.1 CIE Farbraum

Beschreibe kurz, wie der CIE-Farbraum aufgebaut ist.

2P

6.2 Paprika

Warum nehmen wir die Farbe einer roten Paprika als "rot" wahr? Erkläre mit wenigen Worten und zeichne eine beispielhafte Kurve in den unten stehenden Graph.

Figure 2: Prozentuale Reflektion vs Wellenlänge

4P

6.3 RGB-Farbraum

Es sind drei verschiedene RGB-Farbwerte gegeben. Kreuze an, welcher Wert die stärkste Sättigung / höchste Helligkeit / höchsten Grauwert hat.

	R = 1, G = 1, B = 0	R = 1, G = 1, B = 0.5	R = 0, G = 0, B = 1
Sättigung			
Helligkeit			
Grauwert			

6P

7 Beleuchtung und Schattierung

7.1 Phong

Nenne einen Vorteil und einen Nachteil des Phong-Shadings.

2P

7.2 Diffuse Beleuchtung

Das weiße Licht scheint von L(2, 2, 2) auf die Normale N(8, 8, 0) eines Schokoriegels. Der Schokoriegel hat am Punkt der Normalen den RGB_D -Wert (0.01, 0.01, 0.01).

Berechne die Farbe der diffusen Beleuchtungskomponente.

7.3 Radiosity

Beschreibe Radiosity mithilfe einer Skizze und nenne anschließend zwei Vorteile und zwei Nachteile.

8P

8 Texturen

8.1 Mipmaps

Ein Bild ist 9Mb groß. Es werden MipMaps generiert und dem Bild hinzugefügt. Wie groß ist die Datei jetzt und warum?

5P

8.2 Mipmap Level

Eine quadratische Textur der Breite 512px soll auf einem Objekt der Größe 1024x256px dargestellt werden. Welches Mipmap-Level wird angewendet? Zeige den Rechenweg.

2P

9 Transparenz

9.1 Z-Buffer once again

Der Z-Buffer Algorithmus berücksichtigt keine Alpha-Werte.

Wie kann dieses Problem gelöst werden, sodass auch transparente Objekte zusammen mit dem z-Buffer verwendet werden können?

3Р

10 Sonstiges

10.1 Yet another buffer

Beschreibe, wie Buffer in WebGL funktionieren. Texture, Vertex, Frame-Buffer