

INTRODUÇÃO

Objetivo

 Este laboratório investiga a atividade de code review em repositórios populares do GitHub, analisando fatores que influenciam no merge de Pull Requests e no número de revisões realizadas.

Amostra

Este relatório usa a amostra balanceada de 500 PRs (com 200 repositórios e 2–3 PRs por repositório). Após aplicar filtros e checagens, 381 PRs válidos foram analisados.

HIPÓTESES

H01

PRs menores
(menos arquivos e
linhas modificadas)
têm maior
probabilidade de
serem merged.

H02

PRs com descrições mais detalhadas têm maior probabilidade de serem merged. H03

PRs que demoram mais tempo para serem analisados têm menor probabilidade de serem merged.

HIPÓTESES

H04 H05

PRs com mais interações (comentários e participantes) têm maior probabilidade de serem merged.

PRs maiores requerem mais revisões.

TECNOLOGIAS

• Linguagens:

a. Python 3.10+ (análise e geração de gráficos)

Bibliotecas

requests, pandas, numpy, matplotlib, seaborn, scipy

Análise estática

a. Teste de correlação de Spearman

API:

 a. GitHub GraphQL API (consulta de repositórios Java por popularidade)

METODOLOGIA

Coleta de dados

- Foram coletados dados dos 200 repositórios mais populares do GitHub.
- Para cada repositório, coletamos PRs que atendessem aos critérios: Status:
 MERGED ou CLOSED Interações: ≥ 1 comentário ou review

Métricas definidas

Os dados foram consolidados em data/pull_requests_500.csv com métricas derivadas (tamanho, tempo, interações). Resultados e figuras foram gerados em results_500pr/, com resumo em results_500pr/analysis_results.json.

Análise

Foi realizada estatística descritiva (medianas) e correlações de Spearman (p < 0,05). Foram gerados gráficos por RQ e uma matriz de correlação das principais variáveis.

Qual a relação entre o tamanho dos PRs e o feedback final das revisões?

Qual a relação entre o tempo de análise dos PRs e o feedback final das revisões?

Qual a relação entre a descrição dos PRs e o feedback final das revisões?

Qual a relação entre as interações nos PRs e o feedback final das revisões?

Qual a relação entre o tamanho dos PRs e o número de revisões realizadas?

Qual a relação entre o tempo de análise dos PRs e o número de revisões realizadas?

Qual a relação entre a descrição dos PRs e o número de revisões realizadas?

Qual a relação entre as interações nos PRs e o número de revisões realizadas?

Correlação Geral

DISCUSSÃO

Tempo é o fator mais determinante: A correlação mais forte encontrada (r = -0.355) foi entre tempo de análise e probabilidade de merge. PRs que demoram mais para serem analisados têm menor chance de serem integrados.

Tamanho influencia revisões: PRs maiores (mais linhas adicionadas) requerem significativamente mais revisões (r = 0.298), confirmando a hipótese IH05.

Reviews vs Comments: Interessantemente, review comments aumentam a chance de merge (r = 0.196), enquanto comments gerais a diminuem (r = -0.061), sugerindo que feedback estruturado é mais efetivo.

- IH01 NÃO CONFIRMADA Correlações observadas indicam leve tendência oposta
- IH02 NÃO CONFIRMADA Sem correlação significativa entre tamanho da descrição e merge.
- IH03 CONFIRMADA Correlação negativa forte (r = -0.355).
- IH04 PARCIALMENTE CONFIRMADA Depende do tipo de interação
- IH05 CONFIRMADA Correlação positiva (r ≈ 0.27-0.30 para tamanho).

CONCLUSÃO

O estudo de 3.616 PRs de repositórios populares do GitHub revelou que:

- O tempo de análise é o fator mais crítico para o sucesso de um PR (r = -0.355)
- PRs maiores demandam mais revisões, mas não necessariamente são rejeitados
- A qualidade das interações importa mais que a quantidade (reviews > comments)
- Descrições detalhadas aumentam ligeiramente as chances de merge

A taxa geral de merge de 55.5% indica um processo seletivo, mas equilibrado nos repositórios analisados.

Obrigado!

Alguma Pergunta?

Bibliografía

- GitHub REST API: https://docs.github.com/en/rest
- Pandas: https://pandas.pydata.org/
- Matplotlib: https://matplotlib.org/
- Seaborn: https://seaborn.pydata.org/
- SciPy: https://scipy.org/