

TÉCNICAS PARA UN MEJOR COMPUTER VISION

Dr. Rubén Alvarez

"Everything human beings can imagine; nature has already created..."

-Albert Einstein.

Humans use our eyes and our brains to see and visually perceive the world around us. Computer Vision is the science that aims to provide a similar, if not better, capability to a machine or computer.

COMPUTER VISION

- I. Optics and 3D Reconstruction
- 2. Image Processing
- 3. Machine Learning in images

- I. Optics and 3D Reconstruction
- 2. Image Processing
- 3. Machine Learning in images

OPTICS AND 3D RECONSTRUCTION

COMPUTER VISION

3D CLOUD SAMPLES

- I. Optics and 3D Reconstruction
- 2. Image Processing
- 3. Machine Learning in images

IMAGE PROCESSING

- I. Optics and 3D Reconstruction
- 2. Image Processing
- 3. Machine Learning in images

SEGMENTATION

(c) Semantic segmentation

(d) Instance segmentation

STYLETRANSFER

VIDEO GAMES

COMPUTER VISION

PERCEPCIÓN 3D

Odilon Redon, Cyclops, 1914

OUR GOAL: RECOVERY OF 3D STRUCTURE

Is recovering the structure of an image unambiguous?

OUR GOAL: RECOVERY OF 3D STRUCTURE

What about perspective?

DataLab Community

AMES ROOM

VIRTUAL REALITY LIGHTING

RAY TRACING

WHAT IF WE JUST WORK WITH THE CENTER OF THE LENS?

MOVE INFORMATION FROM 3D TO 2D

DOES OPENNESS MATTER?

• In the case of the above drawing, is it important to enter the dimensions of that opening where the light enters the box?

LENS FOCAL LENGTH

DOES OPENNESS MATTER?

OPENNESS AND DEPTH ARE CORRELATED

• Gaussian Law $\frac{1}{Z} + \frac{1}{Z} = \frac{1}{f}$

CAMERA CALIBRATION

$$\bullet \begin{pmatrix} p_{xi} \\ p_{yi} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{f}{dx} & -\rho \frac{f}{dy} & c_{xi} \\ 0 & \frac{f}{dy} & c_{yi} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \end{pmatrix}$$

COMPUTER VISION

DEMO ARUCO

CHECKERBOARD

FEATURE MATCHING

COMPUTER VISION

DEMO MATCHING

WHAT IS CONVOLUTION?

REMEMBER...

AVERAGE FILTER

■ Then for a neighborhood of 3...

$$\frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

G[x,y]

G[x,y]

G[x,y]

G[x,y]

G[x,y]

G[x,y]

33		6: 00				3			SV.
	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	8
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	8
	10	20	30	30	30	30	20	10	
7	10	10	10	0	0	0	0	0	C)

WHAT IS CONVOLUTION?

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\eta)g(t - \eta) d\eta$$

WHAT IS CONVOLUTION?

WHY THE CONVOLUTION?

- Filtros FIR (Finite Impulse Response)
- Filtros IIR (Infinite Impulse Response)

$$\mathcal{F}(f * g) = F(\omega)G(\omega)$$

FILTERS IN WAVE NUMBER DOMAIN

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

FILTERS IN WAVE NUMBER DOMAIN

FILTERS IN WAVE NUMBER DOMAIN

COMPUTER VISION

DEMO EDGES

IMAGE PROCESSING VS CNN

DataLab Community

COMPUTER VISION

CONVOLUTIONAL NEURAL NETWORKS

CNN

ARCHITECTURE OF A CNN

- Convolutional Layer
- Pooling Layer
- Flatten Layer
- Activation Layer
- Fully Connected Layer
- • •

CONVOLUTIONAL NEURAL NETWORKS

ACTIVATION MAP CNN

ACTIVATION MAP

We stack these up to get a "new image" of size 28x28x6!

1 _{×1}	1,0	1 _{×1}	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

1	1	1	0	0
0	1	1	1	0
0 _{×1}	0,×0	1 _{×1}	1	1
0,0	0 _{×1}	1 _{×0}	1	0
0 _{×1}	1,0	1,	0	0

Image

4	3	4
2	4	თ
2		

Convolved Feature

POOLING LAYER

IMAGE WITH SALT AND PEPPER NOISE

POOLING LAYER

FULLY CONNECTED LAYER

FULLY CONNECTED LAYER

DEEP LEARNING

AlexNet (Krizhevsky et al. 2012)

The class with the highest likelihood is the one the DNN selects

When AlexNet is processing an image, this is what is happening at each layer.

INCEPTION V3

ConcatDropoutFully connectedSoftmax

COMPUTER VISION

DEMO CNN

COMPUTER VISION

WHAT IS A TENSOR?

WHAT IS A TENSOR?

DataLab Community

WHAT IS A TENSOR?

DataLab Community

LILIAN LIEBER

- Tensors
- "The facts of the universe".

LILIAN LIEBER

- From "The Einstein Theory of Relativity"
- In n-dimensional space,
- a VECTOR has n components,
- a TENSOR of rank TWO has n^2 comp
- a TENSOR of rank THREE has n^3 comp
- and so on.

IMAGE PROCESSING VS CNN

DataLab Community

COMPUTER VISION

CNN ARCHITECTURE

CNN ARCHITECTURE

RELU

IF WE LOOK CLOSELY AT THE "CONVOLUTION LAYER"

$$C_p^1(i,j) = \sigma \left(\sum_{u=-2}^2 \sum_{v=-2}^2 I(i-u,j-v) k_{1,p}^1(u,v) + b_p^1 \right)$$

COMPUTER VISION

WHY DO YOU NEED SO MANY IMAGES FOR TRAINING?

How to confuse machine learning

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

"Those who can imagine anything, can create the impossible."

-Alan Turing

Questions?

Rubén Alvarez - @bio_ruben @datalabmx