

Département Statistique 1^{ère} année

Série d'exercices Nº2

Continuité et dérivation des intégrales à paramètre

Exercice 1

Soit g la fonction définie sur \mathbb{R}^2_+ par

$$g(x,y) = \frac{e^{-x^2y}}{1+x^2}.$$

1. Montrer que pour tout $y \in \mathbb{R}_+$, la fonction $x \to g(x,y)$ est intégrable par rapport à la mesure de Lebesgue sur \mathbb{R}_+ .

On pose:

 $G(y) = \int_{\mathbb{R}_+} g(x, y) d\lambda(x), \qquad \forall y \ge 0.$ $\text{ur } \mathbb{R}_+$ $\lim_{x \to \infty} G(y)$

2. Montrer que G est continue sur R₊

3. Calculer

4. Montrer que G est dérivable sur $]0, +\infty[$ et donner une expression de sa dérivée.

Exercice 2

Soit f la fonction définie sur $\mathbb{R} \times]0, +\infty[$ par

$$f(x,t) = e^{-xt} \left(\frac{\sin x}{x}\right)^2 \chi_{]0,+\infty[}(x).$$

1. Montrer que pour tout $t \in]0, +\infty[$, la fonction $x \to f(x, t)$ est intégrable par rapport à la mesure de Lebesgue sur \mathbb{R} .

On pose:

$$F(t) = \int_{\mathbb{R}} f(x, t) d\lambda(x), \qquad \forall t \in]0, +\infty[.$$

2. Montrer que F est deux fois dérivable sur $]0, +\infty[$ et calculer F''.

Série d'exercices De.

Exercice 1:
$$g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$$

$$(n,y) \longmapsto g(n,y) = \frac{e^{-n^{2}y}}{1+n^{2}}$$
where \mathbb{R}

soit
$$y \in \mathbb{R}_+$$
 $\frac{e^{-n^2y}}{1+n^2} \le \frac{1}{1+n^2} = h(n)$ qui est bien integrable.

$$\Rightarrow g \in \mathcal{L}'(R_+, R_+, A)$$

2) Enpose
$$G(y) = \int_{\mathbb{R}_{+}} g(n,y) d\lambda(x) ; \forall y > 0$$

*)
$$Y \in \mathbb{R}_+$$
, $n \mapsto g(n,y)$
ext mesurable sur \mathbb{R}_+ car $n \mapsto \frac{-n^2y}{1+x^2}$ est continue

* On a d'après la question précedante

$$\exists c \in Z'(R_+, R_+, 2) \forall y \in R_+$$

$$|g(x,y)| \leq \frac{1}{1+x^2} = \mathcal{G}(x)$$
: integrable

On applique le l'hévienne du continuité sous signe integrale.

3)
$$\forall y \geq 0$$
, $g(n,y)$ converge $\lambda - p \cdot p$ verso $\forall y \geq 0$, $|g(n,y)| \leq \frac{1}{2^{n}+1} = \varphi(x)$

Dapries le TCD ona

$$\lim_{y \to +\infty} \int_{\mathbb{R}_{+}} g(x,y) d\lambda(x) = \int_{\mathbb{R}_{+}} \lim_{x \to +\infty} g(x,y) d\lambda(x)$$

$$= \int_{\mathbb{R}_{+}} o d\lambda(x) = 0$$

ains
$$\lim_{y\to+\infty} G(y) = 0$$

)
$$\forall y \in \mathbb{R}_{+}$$
, $n \mapsto g(n,y)$ est integrable swr \mathbb{R}_{+}
) $\forall y \in \mathbb{R}_{+}$, $\frac{\partial g(xy)}{\partial y} = \frac{-\infty^{2}}{1+n^{2}} e^{-n^{2}y^{2}+n^{2}}$
 $\left|\frac{\partial g(n,y)}{\partial y}\right| = \frac{n^{2}e^{-n^{2}y^{2}+n^{2}}}{1+n^{2}}$

$$\exists f \in \mathcal{Z}' \not\models g \left| \frac{\partial g}{\partial y}(x,y) \right| \leqslant f(x) \text{ in p.p.}$$

Pour montrer la dérivabilité de GracR+

alors
$$\forall y \in J \in \mathcal{L}_{+\infty}[et \forall n \geq 0]$$

$$\left|\frac{\partial g}{\partial y}(n_1y)\right| = \left|\frac{-n^2}{1+n^4}e^{-n^2y}\right| \langle e^{-\varepsilon n} \in \mathcal{Z}'(R_+)$$

D'après le Phévienne de dérivation sous signe integrale.

$$G'(y) = \int_{R_{+}} \frac{-n^{2}}{l_{+}n^{2}} e^{-n^{2}y} d\lambda(x)$$

y∈Jε, +∞[enparticulior ena.

Comme Ceci est viai pour tout a.

Gest derivable sur Jo, + 00 [.

Exercice 28

Sout
$$[0,b]$$
 C $J_{0,+\infty}[$,
$$f(n,k) = e^{-nk} \left(\frac{sim(n)}{n} \right)^{2} \propto (x) \iff e^{-n\alpha} \left(\frac{8imn}{n} \right)^{2} \times (x)$$

$$\iff e^{-n\alpha} (x)$$

m == e integrable

D'où V te Jo, + or [n -> fair) N'integrable sur Ri

$$F(t) = \int_{\mathcal{R}} f(n,r) d\lambda(n) + t \in J_{0,-\infty}[.$$

•
$$t \mapsto f(n,r)$$
 est derivable
• $n \mapsto f(n,r)$ est integrable (question A)
• $\left|\frac{\partial f}{\partial r}(n,r)\right| = \left|-n e^{-nt} \left(\frac{\sin(n)}{n}\right)^2 \chi_{J_0,+\infty}(x)\right|$
 $\leq |m| e^{-nt} \chi_{J_0,+\infty}(x)$

=> Fest dérivable sur [E, + 0 [et ceci V E > 0

Donc Fest dérivable sur Jo, + 0 [

etona
$$F'(x) = -\int_{0}^{\infty} e^{-nr} \frac{\sin^2 nr}{nr} dn(x)$$

The semi-on monthly que. F' Arderivable puir
$$R^{\pm}$$
:
$$F''(+) = \int \frac{\partial f'}{\partial r} d\lambda(x) = \int_{J_0+}^{\infty} e^{-rr} \sin^2 n d\lambda(x)$$

$$=\int_{J_0+\infty} e^{-x} \left(\frac{1-\cos 2x}{2}\right) d\lambda(x)$$