AD-A041419

AD A041419

FA-TR-76071

OPTICAL TOOLS COMPUTERIZED
DESIGN AND MANUFACTURE

TECHNICAL LIBRARY

by

Richard J. Cavaliere Clint Zimmerman

November 1976

Approved for public release; distribution unlimited.

Manufacturing Technology Directorate

U.S. ARMY ARMAMENT COMMAND
FRANKFORD ARSENAL
PHILADELPHIA, PENNSYLVANIA 19137

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION P.	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER FA-TR-76071	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (end Subtitle) OPTICAL TOOLS COMPUTERIZED DESIGN AND MANUFACTURE		5. TYPE OF REPORT & PERIOD COVERED Tech Engineering Report 6. PERFORMING ORG. REPORT NUMBER
7. Author(*) Richard J. Cavaliere Clint Zimmerman		8. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Frankford Arsenal Attn: SARFA-MTT-O Philadelphia, PA 19137		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AMCMS Code: 3297.06.7497 DA Projects: 6747497 6757497
US Army Armament Command Attn: SARRI-LE, Rock Island, IL	61021	November 1976 13. NUMBER OF PAGES 70
14. MONITORING AGENCY NAME & ADDRESS(II different I	rom Controlling Office)	18. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This project has been accomplished as part of the US Army Manufacturing Methods and Technology Program, which has as its objective timely establishment of manufacturing processes, techniques, or equipment, to insure the efficient production of current or future defense programs.

19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)

Optical tooling Lens manufacture Spot blocks Pitch buttons Grinders Polishers

CAD

Pitch blocks

CAM

Blockers

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report addresses the design, manufacture, and use of tooling used in the production of precision lenses. A computer program is presented which will provide tooling design based on lens specification input and from which a tape for NC manufacture of the tools can be produced. Economic data is presented on tooling made from the computer design using simulated NC methods.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)	
SECOND TO SECURIOR SECURIOR SECOND SE	
_	- 3

TABLE OF CONTENTS

		Page
INTROI	DUCTION	1
UNIVE	RSAL TOOLING	3
COMPU	TTERIZED TOOL DESIGN	3
TOOL I	MANUFACTURE AND USE	8
METHO	DD A vs. METHOD B (COMPARISON)	15
RESUL	TS AND CONCLUSIONS	22
DISTRI	BUTION LIST	69
APPEN	DIX A - MATHEMATICS FOR TOOL DESIGN	23
APPEN	DIX B - COMPUTER PROGRAM STBLK	43
APPEN	DIX C - COMPUTER OUTPUT - COST SAMPLE	54
APPEN	DIX D - COMPUTER OUTPUT - SAMPLE SPOT BLOCKS	59
	CHARTS	
I.	TOOL DESIGN-MANUFACTURE PROCEDURE	18
п.	LENS MANUFACTURE PROCEDURE	19
III.	TOOL DESIGN-MANUFACTURE (COST)	20
IV.	LENS MANUFACTURE (COST)	21
Figure	List of Illustrations	
1.	Universal Spot Blocks, Variable Inserts	4
2.	Distribution of Spots - Convex	5

List of Illustrations - Cont'd

Figure		Page
3.	Distribution of Spots - Concave	6
4.	Limiting Angle Diagram	7
5.	Universal Adapters (Datum)	9
6.	CIM-X Geometry - Convex	10
7.	CIM-X Geometry - Concave	11
8.	Tool Clearance Geometry - Concave	12
9.	K & T Geometry - Convex	13
10.	K & T Geometry - Concave	14
11.	Sample Lens Tool Requirements	17
12.	Geometric Priorities (Computer Selected)	28

INTRODUCTION

The work covered by this report is a two part effort. The first part is devoted to establishing design standards for optical finishing tools, and part two is devoted to the manufacture of these tools and their use to make optical elements. The ultimate objectives are to reduce tool cost per optical element produced, and to reduce optical tool inventories so that less storage space is required.

The frequency of occurrance per 100 optical elements in fire control instruments is approximately 57 lenses, 16 prisms, 9 windows, 7 mirrors and 11 other. Tooling used in <u>lens</u> manufacture was therefore selected for study and improvement.

A review of lenses manufactured at the Frankford Arsenal optical facility between 1 January 1970 and 30 December 1973 showed that approximately 40,000 lenses were made in lot sizes varying from 10 to 1600 pcs. Most lot sizes were between 50 and 400 pcs (approximately 90%) and approximately 70% of the lenses had a finished diameter between 0.750 and 1.500 inches. All efforts in this study have been oriented toward the largest percentages cited above.

For clarity, the following GLOSSARY of terms is provided.

- 1. Generate: The act of forming a spherical surface on a lens blank.
- 2. Generating Chuck: Tool for holding a lens blank for generating.
- 3. Pitch Block: Block for holding lens blank in proper orientation for grinding and polishing operations using pitch buttons for retention.
- 4. <u>Pitch Buttons</u>: Pitch molded on the obverse side of lenses to hold them in place for finishing operations.
 - 5. Pitch Button Mold: Tool for molding pitch buttons on lens blank.
 - 6. Blocker: Spherical tool for precise positioning (curved radii) on pitch blocks.
- 7. Spot Block: Block with machined cavities for positioning and holding lens blank.
- 8. Spot: Machined cavity in spot block for retention and precise positioning of lens blank.
 - 9. <u>Grinder:</u> Precision spherical lap for fine grinding lenses.

- 10. Polisher: Precision spherical lap for polishing lenses.
- 11. <u>Test Glasses:</u> Precise optical elements used for gaging optical work in progress.

Lens blanks are cored from plate or molded, individually generated, mounted on pitch blocks and 'gang' finished. All lens surfaces are finished to within three Newton interference rings of the appropriate Test Glass. This tight tolerance is of particular significance in the case of couplets whereby two lenses are bonded together.

Test glasses, for a particular curve, are made in matching parts to within one Newton ring of each other.

Using existing practices, lens tooling design (including drawings) requires approximately two hours per tool per curve. Calculations are necessary to determine lens blank distribution on mounting blocks and pertinent dimensions of all tools.

Except for curve generation, lens tools are manufactured using conventional machine shop methods. After fabrication, the spherical surfaces of Grinders and Blockers require a "wearing in" process to obtain the necessary precision as indicated above. A Polisher consists of pitch or wax contained by a metal shell that is formed, while heated to its flow temperature, by the surface to be polished.

The operational advantages of using Spot Blocks is well known, however the cost of such tooling has previously been so high as to preclude their use except in large production quantities.

Initial efforts were directed toward making Spot Blocks more universal, i.e., capable of being used on a variety of lens radii. Though some advantages developed, it became apparent that the <u>approach</u> was not economically feasible. Efforts were then directed toward computerized design and N/C manufacture of lens tools.

Note: The use of Spot Blocks causes a change in the lens manufacturing procedure as is shown on Chart II. For the remainder of this report the "Spot Block Method" and the current or "Pitch Button Method" shall be referred to as Method A and Method B, respectively.

UNIVERSAL TOOLING

A universal spot block (Figure 1) was designed, fabricated and used under trial conditions. It utilized replaceable inserts that could be made to accommodate convex radii between 1.5 and 2 inches. Two sets of inserts were made to mount lens blanks whose radii were 1.688 and 1.994 inches respectively. Lenses were made following Method A procedures delineated on Chart II. The quality of the lenses produced was good in all respects.

A comparison of this method with the conventional Method B showed that the grinding and polishing times of the two methods was the same. Method A indicated advantages in the set up and curve generating times, and the elimination of tools such as: Blockers, Pitch Button Molds and Generating Chucks. However, major difficulties arose. Spot Blocks made with removable inserts have a fixed number of spots dictated by the lens outside diameter and the shortest radius that can be accommodated by that block. This results in a less than optimum use of the surface area developed by blanks with the same O.D. and longer radii. New inserts or new blocks must be made for each lens curve and diameter combination, and the result is additional design and fabrication times. In addition, the inventory and storage problems are increased. The benefits of lens fabrication using Method A are offset by the above problems, and the unit tool cost is increased rather than decreased. In order to take advantage of the benefits of Method A over Method B found in lens fabrication, another approach to reducing optical tool costs had to be found. It was determined that this reduction could be achieved with computerized tool design and N/C manufacture.

COMPUTERIZED TOOL DESIGN

Mathematics (Appendix A) suitable for computerizing was developed to calculate design parameters for Spot Blocks, Grinders and Polishers. Application of the mathematics to lens drawing data, i.e., outside diameter, center thickness, and curve radii with a sign (±) convention to indicate form (convex, concave) results in all dimensions, including the precise distribution of spots on a block (Figures 2 and 3), required to fabricate tools for that lens.

A recently completed study, Project #6737062 F. A. report TR 75067 titled 'Radial Pressure Conversion of an Optical Polishing Machine" authored by Martin H. Horchler, showed that lenses block mounted beyond an 80° angle to the axis of the block measurably extended the grinding and polishing times for that block. Vertical forces (weights) are used in these operations, and the resultant normal forces on the surfaces being worked on falls below 20% of the total force applied (Figure 4). Hence, a limit of 160° included angle was accepted as a design constraint along with a limit of 10 inches in block diameter which is dictated by the geometry of most available optical fabrication equipment.

Figure 1. Universal Spot Blocks, Variable Inserts

VAR. INSERTS

Figure 2. Distribution of Spots - Convex

Figure 3. Distribution of Spots - Concave

Figure 4. Limiting Angle Diagram

The project was directed at developing N/C programs for a Wadell Lathe for turning and contour work and a Cincinnati Cim-X equipped with a programmable Walter universal rotary table with tilt capabilities for machining Spots. All lens tools were designed to be mounted on a common adapter (Figure 5) so that a datum could be established for both fixturing and calculating parameters.

The mathematics was further developed to compute position parameters for the above equipment such as: angular tilt increments, angular rotational increments, and Cartesion coordinates for tool to work piece orientation (Figures 6 and 7). In addition, lens blank dimensions are calculated to have excess material for finishing and sized so that standard sized end mills can be used for milling spots. Concave Spot Blocks presented a problem in that the criterion of a 160° included angle of the spherical sector could not be strictly adhered to because of the machine geometry (Figure 8). Hence, the mathematics was adjusted to find the best angle possible.

The mathematics was programmed (Appendix B) in Fortran IV language for a Control Data 6500 computer utilizing a Fortran compiler. Included in the program is a geometric priority selector (see Figure 12).

After debugging, sample computer runs were made (Appendix D), and spot checked for accuracy. The input consisted of lens data as described above and the output included the input data for identification plus all parameters necessary to program N/C equipment for the fabrication of Spot Blocks, Grinders and Polishers.

TOOL MANUFACTURE AND USE

Production time was not available on either the Wadell or the Cim-X (NC machine) when needed; therefore, rather than delay the project, simulated automation was decided on. The reasoning was that a programmed N/C machine can follow explicit instructions more efficiently than an operator; therefore, if an operator can successfully produce a spot block by carrying out indicated moves without recourse to intermittent measurements, success on N/C equipment is assured.

A Kearny and Trecker Milling Machine equipped with a Model H universal dividing head was selected for the milling work, and a Strasbaugh curve generator was selected for the contour work. Turning was done on an engine lathe. Since the geometry of the milling machine to be used in the simulation differs from that of the N/C equipment, it was necessary to include the proper mathematics for cutter to workpiece orientation in the computer program (Figures 9 and 10). This series of calculations has been left in the program and the results may be seen in the computer outputs shown in Appendices C and D.

Figure 5. Universal Adapters (Datum)

Figure 6. Cim-X Geometry - Convex

Figure 7. Cim-X Geometry - Concave

Figure 8. Tool Clearance Geometry - Concave

Figure 9. K & T Geometry - Convex

Figure 10. K & T Geometry - Concave

Computer runs were made for selected lenses and the output information was used to make optical tools. Since both Method A and Method B use the same basic grinder and polisher configuration, only spot blocks were actually made. All of the "spot" milling was done with two-lipped end mills. This type of cutter permits a straight in feed obviating the need for boring or drilling pilot holes, and results in a flat bottom shouldered cavity. After initial setup, all operations were carried out using manual adjustments as dictated by the computer output. No drawings were used.

A prototype lens production line was set up such that: lens blanks were cored out of glass plate, blanks were mounted on spot blocks using a temporary bonding cyanoacrylate adhesive, and curves were "gang" generated on the blanks preparatory to the grinding and polishing operations. The grinding and polishing operations were carried out on a sufficient number of blocks to confirm design integrity and collect data.

Some blocks were successfully used by M. Horchler*, and will be reported on elsewhere.

METHOD A VS. METHOD B

This cost comparison of the two methods of lens manufacture is made on the basis of manhours, and is subject to the following assumptions:

- 1. The factors used for Method A shown on Charts I and II are derived from experience gained in this study; however, the set up and machine times for N/C equipment were extrapolated from actual set up and machine times recorded.
- 2. The criteria for corresponding data used for Method B was estimating charts prepared by the F. A. Production Engineering Section from historical data recorded over a long period.
- 3. An APT or UNI-APT N/C tape preparation system can be used to prepare N/C tapes from design parameters developed in Program STBLK Appendix B.
- 4. Costs for universally used tools for both methods such as: fixtures, adapters, pitch button molds, generating chucks, etc. have been omitted. These tools are permanent in nature, and their costs per lens produced approaches zero as usage increases.

^{*&#}x27;High Speed Fabrication of Precision Optics'' MM&T Project #6747463, by M. Horchler, August, 1976.

- 5. The comparison data shown on Tables 1 and 2 are complete in all essential details. Minor operations common to both methods have been omitted as irrelevent. Hence, the hours shown for each method should be considered as estimates of the two methods.
- 6. An achromatic couplet, as shown on Figure 11, was selected as a typical example for this comparison. The tool requirements shown are predicated on the results shown in Appendix C.
- 7. Application of the factors shown on Charts I and Π , on the typical sample, results in Charts III and IV.

TOOL REQUIREMENTS (Lot Size 200)

RADII	BLANKS/BLK.	BLOCKS	GRINDERS	POLISHERS
R ₁ (2. 542)	25	4	2	2 _
$R_2^{}$ (1. 300)	6	12	4	6
R ₃ (-1. 300)	7	12	4	6
R ₄ (3. 350)	49	2	_1	_2
	TOTALS	30	11	16

TOOL DESIGN REQUIREMENT	METHOD A		METHOD B
1 ea. rad.	4 Spot Blocks		4 Pitch Blocks
1 ea. rad.	4 Grinders		4 Grinders
1 ea. rad.	4 Polishers		4 Polishers
TOTALS	12	•	12

TOOL MANUFACTURE REQUIREMENT

	METHOD A	METHOD B
	30 Spot Blocks	30 Pitch Blocks
	11 Grinders	11 Grinders
	16 Polishers	16 Polishers
TOTALS	57	57

Figure 11. Sample Lens Tool Requirements

CHART I

TOOL DESIGN-MANUFACTURE PROCEDURE TIME IN MAN HOURS

				ETHOD A'' LOCKS TOOL	S		"METHOD B" PITCH BUTTON TOOLS					
OPERATION	Spot Set up		<u>G</u> Set	rinder up Unit	Polis Set up	her Unit	Spot B Set up	lock Unit	Grin Set up	der Unit	Polis Set up	her Unit
Prepare ⁽¹⁾ Computer Irput	- 1	. 0		Includes	all tools		-	-	-		-	
Computer (1) Run	0	, 5		Includes	all tools		_	_	-	-	1_	-
Prepare tspes	1.0	-	0.5	-	0.5	_	-	_	_	_ 1	-	_
Design & Prepare Dwgs	-	-	-	-	-	-		2.0 hour	s per each	differe	nt tool	
Turn Taper & the End	-	-	-	-	_	<u>-</u>	2.0	1.5	Inc	ludes all	L tools	
Face & Bore for Adapter	1.0	0.5		Includes	all tools		-	_	_	_		
Assemble Adapter	0.5	0.5		Includes	all tools		-	-	-	_		_
Turn & Face (2)	1.0	0.5		Includes	all tools		1.0	1.25	Inc	ludes all	tools	
Generate (3)	- "	-	-	-	-	_	1.0	1.25		ludes all		
Mill Spots (4)	1.0	0.33 Per	indiv	idual spot			_	_	-	_	_	
Break In	-	-	-	4.0	-	_	_	-				_
Form	-	_	-	-	1.0	1.0		_	-	4.0	1.0	1.0

Notes:

- (1) The computer design time is a minimum. Tools for as many as ten different size lenses can be designed in the same time.
- (2) Turn face and generate are done on the same set up in Method A. Add 0.5 hours set up time for each different size tool after initial set up.
- (3) Add 0.5 hours set up time for each different size tool after initial set up in Method B.
- (4) Add 0.5 hours set up time for each different size spot block after initial set up.

CHART II LENS MANUFACTURING PROCEDURE TIME IN MAN HOURS

	<u>.</u>	20	ze	ze	az	az ez	i. 0	1	1.0	2.0	ze.	1,0	1	1.0	2.0
	Bloc	25	lot si	ot si	lot si	lot si		1	0.65	1.3	ot siz	0.5	ī	0.65	1.3
	per		e X]	e X]	e X 1	e X]	er B		0	-	e X 1			0	Н
	Blanks per Block	12	Unit time X lot size	Time per Block 0.25 0.5	I	0.5	1.0	Unit time X lot size	0.25	1	0.5	1.0			
IOD B"	Щ	9	Uni	Uni	Uni	Uni	0.08	1	0.4	0.8	Uni	0.08	ı	0.4	0.8
" METHOD B"	Unit	Time	0.05	0.025	0.025	0.025	1	<u>.</u>	ī	1	0.25	į	ı	-1	
	Set up	Time	1.0	1.0	1.0	1.0	1.0	1	1	1	1.0	1.0	I	1	1
		Step	Н	23	က	4	D	N.A.	9	-	∞	6	N.A.	10	11
	20	20	size	1	1	1	0.2	0.5	1.0	2.0	1	0.2	0.5	1,0	2.0
	Bloc	25	X lot	ì	1	1	r Blo 0. 13	0.35	0,65	1.3	1	0.13	0.35	0.65	1.3
¥	Blanks per Block	12	Unit time X lot size	ı	1	1	Time per Block 0.1 0.13 0.	0.25	0.5	1.0	Ī	0.1	0.25	0.5	1.0
"METHOD A"		9		1	ī	1	0.08	0.16	0.4	8.0	1	0.08	0, 16	0.4	0.8
"ME	Unit	Time	0.05	1	1	ı	1	1	1	1	1	1	1	ī	Ē
	Set up Unit	Time	1.0	1	1	ı	0.25	1.0	1	1	1	0.25	1.0	ī	ı
		Step	H	N.A.	N. A.	N.A.	73	က	4	S	N. A.	9	7	∞	6
			Core Cut Blanks	Generate Curve 1	Generate Curve 2	Back up Blanks	Mount Blanks	Generate Block Curve 1	Fine Grind Curve 1	Finish Polish Curve 1	Back up Blanks Curve 2	Mount Blanks Curve 2	Generate Block Curve 2	Fine Grind Curve 2	Finish Polish Curve 2

CHART III

TOOL DESIGN-MANUFACTURE (COST) Couplet - 2 Lenses - 4 Radii - 57 Tools Time in Man Hours

	"Method A "		"Method B "	
	Set up	Operation	Set up	Operation
Prepare Computer input all tools	1.0	-	-	T. 🗉
Computer run all tools	0.5	-	-	-
Prepare tapes 4 Spot Blocks	4. 0	L	- "	_
Prepare tapes 4 Grinders	2.0	_	_	-
Prepare tapes 4 Polishers	2.0	_	_	_
Design & Make Dwgs 12 tools	Note 1	_	24.0	_
Turn & Thd. End 57 tools	-	-	2. 0	85. 5
Face & Bore 57 tools	1. 0	28. 5	_	_
Assemble Adapter 57 tools	0. 5	28.5	-	-
Turn & Face 57 tools	6. 5	Note 2	1. 0	71. 25
Generate 57 tools	Note 2	28.5	6. 5	28.5
Mill Spots R ₁ (25) 4 tools	1.0	3.3	_1	_
Mill Spots R ₂ (6) 12 tools	0.5	2.38	-	
Mill Spots R ₃ (7) 17 tools	0.5	2. 77	_	-
Mill Spots R ₄ (49) 2 tools	0. 5	3.37	_	_
Break in Grinders 11 tools	-	44.0	-	44. 0
Form Polishers R ₁ 2 tools	1. 0	2.0	1. 0	2.0
Form Polishers R ₂ 6 tools	1. 0	6.0	1. 0	6.0
Form Polishers R ₃ 6 tools	1. 0	6.0	1. 0	6. 0
Form Polishers R ₄ 2 tools	1.0	2.0	1. 0	2. 0
TOTALS	24	157. 32	37.5	245. 25

NOTES:

- (1) No drawing necessary in Method A
- (2) See Note 2, Chart 1

CHART IV LENS MANUFACTURING (COST) Couplet (200) - 400 Lenses Time in Manhours

	" Methe	od A "	" Method B"		
PROCEDURE	No.	Set up	Operation	Set up	Operation
Cut Blanks	400 pcs.	1.0	10.0	1.0	10.0
Generate R ₁	200 pcs.	-	-	1.0	5.0
Generate R $_2$	200 pcs.	-	_	1.0	5. 0
Generate R_3	200 pcs.		_	1.0	5. 0
Generate ${ t R}_4$	200 pcs.	· - ^	_	1. 0	5. 0
Back up R ₁	200 pcs.		11=	1.0	5. 0
Back up R ₃	200 pcs.	-	_	1.0	5. 0
Mount 25/block R ₁	8 blks.	. 25	1.04	1.0	4.0
Mount 7/block R ₃	29 blks.	. 25	3. 2	1.0	3. 2
Generate Block R	8 blks.	1. 0	2.8	_	_
Generate Block R ₃	29 blks.	1. 0	6.4		· _
Fine Grind Block R	8 blks.		5. 2	2 <u> </u>	5. 2
Fine Grind Block R ₃	29 blks.		11.6		11.6
Polish Block R	8 blks.		10.4	A = 5	10. 4
Polish Block R ₃	29 blks.		23. 2	<u> 7</u>	23. 2
Back up R ₂	200 pcs.	7 -	_	1. 0	5. 0
Back up R ₄	200 pcs.	1 -	-	1.0	5.0
Mount 6/block R ₂	34 blks.	. 25	2.72	1.0	2.72
Mount 49/block R ₄	4 blks.	. 25	0.8	1. 0	4.00
Generate Block R ₂	34 blks.	1.0	5.44	_	-
Generate Block R ₄	4 blks.	1. 0	2.0	-	_
Fine Grind Block R ₂	34 blks.	-	13. 6	-	13. 6
Fine Grind Block R ₄	4 blks.	_	4.0	_	4.0
Polish Block R ₂	34 blks.	-	27. 2	-	27. 2
Polish Block R ₄	4 blks.	-	8. 0	-	8.0
TOT	ALS	6.0	137. 6	13.0	${167.12}$

RESULTS AND CONCLUSIONS

- 1. This study has provided basic mathematics and a computer design program for tooling required for lens manufacture using the spot block method. It is intended that the tooling be made on specific N/C equipment. Any 5-axis N/C machine can be used for milling, but its geometric constants must be inserted in the program. The same is true of a programmable lathe.
- 2. Charts III and IV indicate a savings, for the sample used, of 35% in tool manufacture, and 18% in lens fabrication. This conclusion presupposes a one time high cost of fixturing tools that have universal application, and whose unit cost per lens produced approaches zero as production of lenses increases.
- 3. The savings cited above will vary with lot sizes tending to increase with an increase in lot size and vice versa. They will also vary from lens to lens, since each lens has its unique set of parameters.
- 4. Spot blocks can be used only for specific lenses therefore the decision to store or scrap after use has to be made on a projection of future need and the cost of storage balanced against the cost of new tool manufacture if needed. Tool lead time is not a major consideration under Method A.
- 5. Grinders and polishers can (with small modifications) be used on a variety of lens sizes thereby reducing their unit tool cost. The probability of future use is sufficiently high to justify storage.
- 6. Tapes generated as a result of the computer design program described in the study should be stored. Having tapes available could reduce production lead time and the cost of storage is relatively small.
- 7. An APT or UNI-APT N/C tape preparation system can be used to prepare N/C tapes from design parameters developed in STBLK Appendix B.
- 8. STBLK output is programmable for an automatic drafting machine, if drawings are deemed necessary.

APPENDIX A

MATHEMATICS FOR TOOL DESIGN

I. MATHEMATICAL NOTATION

A. Variables

R_{1.1} = Radius of first surface.

 $R_{T.2}$ = Radius of second surface.

 T_A = Axial thickness of lens.

 D_{T_i} = Finished Diameter of lens.

 D_{M} = Minimum diameter of lens blank.

R_M = Minimum radius of lens blank.

D_B = Actual blank diameter - End Mill Dia.

 $R_{\mathbf{R}}$ = Blank radius.

 R_{RC} = Blank radius plus clearance.

D_C = Clearance hole diameter. - End Mill Dia.

R_C = Clearance hole radius.

H₁ = Height of first surface on blank.

H₂ = Height of second surface on blank.

H_C = Height of first surface from clearance hole.

 $T_{R} = Actual blank thickness.$

 T_{E1} = Edge thickness with first surface generated.

T_{E2} = Edge thickness with both surfaces generated.

R_{Ei} = Perpendicular distance from center of spot block:

(a) to blank seat (convex)

(b) to top of blank (concave)

R_{Ki} = Spot block spherical radius.

R_{Si} = Clearance radius for concave blocks.

 D_{Ai} = Chord across blocked lenses.

D_{AK} = Chord across spot block (Convex)

= Aperture of spot block (Concave)

 D_{AS} = Chord across spot block (Concave)

H_{Ki} = Height of spot block curve.

H_{Bi} = Spot block overall height.

H' = Distance from blank seat to spot block datum.

H_D = See Figure 6.

R_{Gi} = Grinder spherical radius.

 D_{AGi} = Chord across grinder (Convex)

 D_{AGi} = Aperture of grinder (Concave)

D_{Gi} = Chord across grinder (Concave)

 H_{Gi} = Height of grinder curve.

 G_{Hi} = Grinder overall height.

 $R_{Pi}^{}$ = Polisher spherical radius.

D_{APi} = Chord across polisher (Convex)

= Aperture of polisher (Concave)

 D_{Pi} = Chord across polisher (Concave)

H_{Pi} = Height of polisher curve.

 P_{Hi} = Polisher overall height.

 β_j = The angle subtended by a lens on the surface formed by its spherical radius.

- ϕ_i = 1/2 the angle subtended by a spot block.
- θ_i = Tilt angles.
- R = Radii perpendicular to spot block axis through intersection of tilt angles at R_{Ei}
- α; = Angular divisions at radii R.
- N_{i} = Whole number of angular divisions.
- N_{T} = Number of spots on block.
- ω = Test angle in search routine.
- ω' = Test angle in search routine.
- X = See Figure 8.
- Y = See Figure 5.
- Z_i = See Figures 5 and 8.

NOTE:

Subscript i refers to lens surface number, 1 or 2.

Subscript j refers to number of tilt angle, 1, 2, 3,

B. Constants

- ΔD_{T_i} = Factor to set minimum blank size (1.05)
- Δ D (R. O.) = Blank round off increment (0.125)
- ΔD_{B} = Clearance used in calculations to prevent spots from overlapping (0.005)
- $^{\Delta}D_{C}$ = Difference between spot diameter and clearance hole diameter (0. 125)
- ΔT_{B} = Excess thickness in blank (0.010)

```
= Clearance in concave spot blocks (0.050)
                  = Maximum value for \phi (80°)
                  = Maximum tool radius.
                  = Minimum for H_D (0.250)
          \Delta R_{p}
                  = Difference between grinder and polisher radii (0. 200)
                  = Factor to determine concave tool O.D. (1.1)
                  = Machine spindle extension = 6.000
          L_2 = Tool holder extension = 5.000
          L<sub>3</sub> = End mill extension
Figure 8
                                                  = 3.000
              = Spindle radius
                  = Tool holder radius
                                                  = 2.000
                  = Distance from ¢ of rotary table to pivot point = 3.3465
Figure 6 C_2 = Distance from pivot point to top of table = 3.8386 C_3 = Distance from pivot point to machine table top = 4.7236
                  = Distance from Rotary Table Top to Datum
                      = Distance from Div. Hd Pivot Pt. to Datum
                                                                          = 6.3125
 Figure 9
                      = Distance from Div. Hd Pivot Pt. to Table
                                                                          = 4.6875
                      = Distance from Div. Hd Pivot Pt. to axis of Hd. = .375
```

II. MATHEMATICS

SIGN CONVENTIONS

Convex Lens = (+) R₁

Concave Lens = (-) R_L

Plano Lens (+) $R_{T_i} = 10,000$

GEOMETRIC PRIORITIES (Figure 12)

Case 1. Convex - Convex

 $R_{L1} = Longest Radius$

 R_{L2} = Shortest Radius

Case 2. Convex - Concave

 R_{L1} = Convex Radius

R_{1.2} = Concave Radius

Case 3. Concave - Concave

 $R_{L1} = Longest Radius$

 $R_{1,2}$ = Shortest Radius

Case 4. Plano - Convex

 $R_{L1} = Plano$

 $R_{L2} = Convex Radius$

Case 5. Plano - Concave

 $R_{1.1}$ = Plano (No tools designed for plano surfaces.)

 R_{L2} = Concave Radius

Note: In all subsequent calculations, when an either/or occurs, go to the next step or to the instruction; as dictated by the results.

Figure 12. Geometric Priorities (Computer Selected)

START ALL CASES:

$$D_{M} = (\Delta D_{L}) D_{L}$$

$$R_{M} = \frac{D_{M}}{2}$$

 D_{B} = D_{M} Rounded off upwards to nearest 1/8 inch. Blank dia.

$$R_{\overline{B}} = \frac{D_{\overline{B}}}{2}$$

$$R_{BC} = \frac{D_B + \Delta D_B}{2}$$

$$D_C = D_B - \Delta D_C$$

$$R_{C} = \frac{D_{C}}{2}$$

Go to para 1, 2, 3, 4 or 5 as determined by Geometric Priorities.

1. Convex - Convex

$$H_{1} = R_{L1} - \sqrt{R_{L1}^{2} - R_{B}^{2}}$$

$$H_{2} = R_{L2} - \sqrt{R_{L2}^{2} - R_{B}^{2}}$$

$$T_{B} = T_{A} + \Delta T_{B} = Blank Thk.$$

$$T_{E1} = T_{B} - H_{1}$$

Go to 2A

2. Convex - Concave

$$H_{1} = R_{L1} - \sqrt{R_{L1}^{2} - R_{B}^{2}}$$

$$H_{2} = |R_{L2}| - \sqrt{R_{L2}^{2} - R_{B}^{2}}$$

$$T_{B} = T_{A} + H_{2} + \Delta T_{B}^{2} = Blank thk.$$

$$T_{E1} = T_{B} - H_{1}$$

2A. First Curve Convex

$$H_{C} = R_{L1} - \sqrt{R_{L1}^{2} - R_{C}^{2}}$$

$$R_{E1} = R_{L1} - \left(T_{B} - \frac{\Delta T_{B}}{2}\right)$$

$$R_{K1} = \sqrt{\left(R_{E1} + \frac{T_{E1}}{2}\right)^{2} + R_{B}^{2}}$$

Second Curve Convex Go to 6

Second Curve Concave set H = 0, and go to 7

3. Concave - Concave

$$H_{1} = |R_{L1}| - \sqrt{R_{L1}^{2} - R_{M}^{2}}$$

$$H_{2} = |R_{L2}| - \sqrt{R_{L2}^{2} - R_{M}^{2}}$$

$$H_{C} = 0$$

$$T_{B} = T_{A} + H_{1} + H_{2} + \Delta T_{B} = Blank thk.$$

$$T_{E1} = T_{B} - 0.005$$

$$R_{E1} = |R_{L1}| + T_{A} + H_{2} + \frac{T_{B}}{2}$$

$$R_{K1} = \sqrt{\left(R_{E1} - \frac{T_{E1}}{2}\right)^{2} + R_{B}^{2}}$$

$$R_{S1} = \sqrt{\left(R_{E1} - \Delta R_{K}\right)^{2} + R_{B}^{2}}$$

Go to 7

4. Plano - Convex

$$H_1 = 0$$
 $H_2 = R_{L2} - \sqrt{R_{L2}^2 - R_B^2}$
 $H_C = 0$
 $T_B = T_A + \Delta T_B$

Go to 6

5. Plano - Concave

$$H_{1} = 0$$

$$H_{2} = |R_{L2}| - \sqrt{R_{L2}^{2} - R_{B}^{2}}$$

$$H_{C} = 0$$

$$T_{B} = T_{A} + H_{2} + \Delta T_{B}$$

$$T_{E1} = T_{B} - \frac{\Delta T_{B}}{2}$$

6. Curve 2 Convex

$$T_{E2} = T_A - H_1 - H_2$$
 $R_{E1} = R_{L2} - T_A + H_C$
 $R_{K2} = \sqrt{\left(R_{L2} - \frac{T_{E2}}{2}\right)^2 + R_B^2}$

Go to 8A

7. Curve 2 - Concave

$$\begin{split} \mathbf{T}_{\text{E2}} &= \mathbf{T}_{\text{E1}} \\ \mathbf{R}_{\text{E2}} &= \left| \mathbf{R}_{\text{L2}} \right| + \mathbf{T}_{\text{A}} + \mathbf{H}_{1} - \mathbf{H}_{\text{C}} \\ \mathbf{R}_{\text{K2}} &= \sqrt{\left(\left| \mathbf{R}_{\text{L2}} \right| + \frac{\mathbf{T}_{\text{E2}}}{2} \right)^{2} + \mathbf{R}_{\text{B}}^{2}} \end{split}$$

 R_{L1} Convex Go to 8A

R_{L1} Concave Go to 8B I or II

$8A. R_{L1}$ Convex

$$\phi_{\text{TST}} = 80^{\circ}$$

$$R_{Ai} = R_{Li} \sin 80^{\circ}$$

$$0 < R_{Ai} - 5 \le 0$$
 then $\phi = 80^{\circ}$

$$\phi = \sin - 1 \frac{5}{R_{Li}}$$

$$R_{Ai} = R_{Li} \sin \phi$$

$$H_{Li} = R_{Li} - \sqrt{R_{Li}^2 - R_{Ai}^2} \leftarrow$$

$$R_{AKi} = R_{Ki} \sin \phi$$

$$D_{AKi} = 2 R_{AKi}$$
 Spot block Dia.

$$H_{Ki} = R_{Ki} - \sqrt{R_{Ki}^2 - R_{AKi}^2}$$
 Spot block ht.

$$H'_{TST} = H_{Ki} - (R_{Ki} - R_{Ei}) + H_{DT} + H_{C}$$

Go to 9

8B. R_{Li} Concave

I Search Routine - CIM-X (Figure 7)

$$1 \quad 0 \le R_{Ei} - L_2 < 0$$

Go to 6

$$2 \quad R_{A1} = R_{L1} \quad Sin 80^{\circ}$$

$$3 \quad 0 \leq (R_{A1} - 5) < 0$$

Go to 5

$$4 \phi = \sin^{-1} \frac{5}{R_{L1}}$$

Go to para 8B III

$$5 \qquad \phi = 80^{\circ}$$

Go to para 8B III

$$6 \quad 0 \le (R_{Ei} - L_3) < 0$$

Go to 12

$$7 \quad \omega = \cos^{-1} \frac{W_1}{R_{Ki}}$$

8
$$\omega' = \sin^{-1} \frac{L_2 - R_{Ei}}{R_{Si}}$$

9
$$0 < (\omega - \omega') < 0$$

Go to 11

$$10 \qquad \phi = \frac{\beta/2 + 90 + \omega}{2}$$

Go to para 8B III

$$11 \qquad \phi = \frac{\beta/2 + 90 + \omega'}{2}$$

Go to para 8B III

12
$$R_S \leq (L_2 - R_{Ei}) < R_S$$

Go to 20

13
$$R_S \leq (L_3 - R_{Ei}) < R_S$$

Go to 15

$$14 \quad \phi = 80^{\circ}$$

Go to para 8B III

$$15 \quad \omega = 70 - \beta/2$$

$$16 \qquad \omega' = \sin^{-1} \frac{L_3 - R_{Ei}}{R_S}$$

17
$$0 \leq (\omega - \omega') < 0$$

Go to 19

$$18 \quad \phi \quad = \quad \beta/2 \ + \ 90 \ + \omega'$$

Go to 8B III

$$19 \quad \phi = 80^{\circ}$$

Go to 8B III

$$20 \quad \omega = \cos^{-1} \frac{W_2}{R_K}$$

$$21 \quad \omega' = \sin^{-1} \frac{L_3 - R_{Ei}}{R_{Si}}$$

$$22 \quad 0 < (\omega - \omega') < 0$$

Go to 24

$$23 \qquad \phi \qquad = \qquad \frac{\beta/2 + 90 + \omega}{2}$$

Go to 8B III

$$24 \qquad \phi \qquad = \frac{\beta/2 + 90 + \omega'}{2}$$

Go to 8B III

II Search Routine K & T (Figure 7)

1
$$0 \le (R_{E1} - L_1) < 0$$

Go to 7

$$2 \quad \phi_{\mathrm{T}} = \frac{\cos^{-1}\left(\frac{\mathrm{R_{Ki}} - \mathrm{L_{1}}}{\mathrm{R_{Ki}}}\right) + \frac{\beta}{2}}{2}$$

$$3 \quad R_{AI} = R_{L1} \sin \phi_{T}$$

$$4 \quad 0 \le (R_{Ai} - 5) < 0$$

Go to 6

$$5 \qquad \phi = \sin^{-1} \frac{5}{R_{Li}}$$

Go to para 8B III

$$6 \quad \phi = \phi_{\mathbf{T}}$$

Go to para 8B III

7
$$0 \le (R_{E1} - L_2) < 0$$

Go to 14

$$8 \quad \omega = \sin^{-1} \frac{L_1 - R_{Ei}}{R_{Si}}$$

$$9 \qquad \phi_{\rm T} = \frac{\beta/2 + 90 + \omega}{2}$$

$$10 \quad R_{Ai} = R_{Li} \sin \phi_{T}$$

11
$$0 \le R_{Ai} - 5 < 0$$
 Go to 13

12
$$\phi = \sin^{-1} \frac{5}{R_{\tau,i}}$$
 Go to para 8B III

13
$$\phi = \phi_{T}$$
 Go to para 8B III

14
$$0 \le (R_{E_1} - L_3) < 0$$
 Go to 29

15
$$R_s \le (L_1 - R_{E_i}) < R_{S_i}$$
 Go to 21

$$16 \quad \omega = \cos^{-1} \frac{W_2}{R_{K_1}}$$

$$17 \qquad \omega' = \sin^{-1} \frac{L_2 - R_{Ei}}{R_{Si}}$$

$$18 0 \le (\omega - \omega') < 0 Go to 20$$

19
$$\phi = \frac{\beta/2 + 90 + \omega}{2}$$
 Go to para 8B III

20
$$\phi = \frac{\beta/2 + 90 + \omega}{2}$$
 Go to para 8B III

$$21 \quad \omega = \cos^{-1} \frac{W_1}{R_{K1}}$$

$$22 \qquad \omega = \sin^{-1} \frac{L_1 - R_{Ei}}{R_{Si}}$$

23
$$0 \le (\omega - \omega') < 0$$
 Go to 25

$$24 \qquad \phi \qquad = \frac{\beta/2 + 90 + \omega'}{2}$$
 Go to para 8B III

$$25 \qquad \omega' = \sin^{-1} \frac{L_2 - R_{Ei}}{R_{Si}}$$

$$26 0 \le (\omega - \omega) \le 0 Go to 28$$

$$27 \qquad \phi \qquad = \frac{\beta/2 + 90 + \omega}{2}$$

Go to para 8B III

$$28 \qquad \phi \qquad = \frac{\beta/2 + 90 + \omega'}{2}$$

Go to para 8B III

29
$$R_{Si} \leq (L_2 - R_{Ei}) < R_{Si}$$

Go to 37

30
$$R_{Si} \leq (L_3 - R_{Ei}) < R_{Si}$$

Go to 32

$$31 \quad \phi \quad = 80^{\circ}$$

Go to para 8B III

$$32 \quad \omega = 70 - \beta/2$$

33
$$\omega' = \sin^{-1} \frac{L_3 - R_{Ei}}{R_{Si}}$$

$$34 \quad 0 \leq (\omega - \omega') < 0$$

Go to 36

$$35 \quad \phi \quad = \frac{\beta/2 + 90 + \omega'}{2}$$

Go to para 8B III

$$36 \quad \phi \quad = 80^{\circ}$$

Go to para 8B III

$$37 \quad \omega = \cos^{-1} \frac{W_2}{R_{Ki}}$$

38
$$\omega' = \sin^{-1} \frac{L_3 - R_{Ei}}{R_{Si}}$$

$$39 \qquad 0 \leq (\omega - \omega') < 0$$

Go to 41

$$40 \qquad \phi \qquad = \frac{\beta/2 + 90 + \omega}{2}$$

Go to para 8B III

$$41 \qquad \phi \qquad = \frac{\beta/2 + 90 + \omega'}{2}$$

Go to para 8B III

$8B~\Pi$

$$H' = 1 + H_C$$

$$R_{AKi} = R_{Ki} \sin \phi$$

$$D_{AKi} = 2 R_{AKi}$$
 = Spot Block Aperture

$$H_{Ki} = R_{Ki} - R_{Ki}^2 - R_{AKi}^2$$

$$H_{Bi} = H_{i}' + R_{Ei} - R_{Ki} + H_{Ki} = Spot Block Ht.$$

$$R_{AS} = R_{Si} \sin \phi$$

$$D_{AS} = 2 R_{AS} = Spot Block O. D.$$

$$R_{Gi} = R_{Li} = Grinder Sph. Rad$$

$$R_{AGi} = R_{Gi} Sin 0$$

$$D_{AGi} = 2 R_{AGi} = Grinder O. D.$$

$$H_{Gi} = R_{Gi} - R_{Gi}^2 - R_{AGi}^2$$

$$0 \le H_i' - H_{Gi} < 0$$

$$G_{Hi} = H_i' = Grinder Ht.$$

$$G_{Hi} = H_{Gi} \leftarrow$$
 = Grinder Ht.

$$R_{Pi} = R_{Gi} - 0.200 \leftarrow$$
 = Polisher Sph. Rad.

$$R_{APi} = R_{Pi} Sin 0$$

$$D_{APi} = 2 R_{APi}$$
 = Polisher Dia.

$$H_{Pi} = R_{Pi} - \sqrt{R_{Pi}^{2} - R_{Pi}^{2}}$$

$$0 \le H'_{i} - H_{Pi} < 0$$

$$P_{Hi} = H'_{i}$$

$$P_{Hi} = H'_{i}$$

$$\frac{\beta}{2} = \sin^{-1} \frac{R_{BC}}{R_{Li}}$$
, Round off to nearest 1/2 degree
$$\beta = 2 \frac{\beta}{2} R. O.$$

Go to 9

9. Calculate
$$\theta_j$$
, $j = 1, 2, 3, \dots$

$$\theta = \phi - \frac{\beta}{2}$$
, where $j = 1$

$$0_j < 0 \text{ Error stop}$$

Start loop

$$0 \le (\theta_{j} - \frac{\beta}{2}) < 0, \theta_{j} = 0$$

$$0 \le (\theta_{j} - \beta) < 0$$

$$Tilt < = 90 - \theta$$

$$\theta_{j} + 1 = \theta_{j} - \beta$$

$$Tilt < = 90 - 0$$

$$Tilt < = 90 - \theta$$

$$End of loop$$

Center Lens

No Center Lens

If R_{I,i} convex Go to 10

If R_{Li} concave Go to 11

10 R_{Li} Convex

$$R_{j} = R_{Ei} \operatorname{Sin} \theta_{j}$$

$$R_{j+1} = R_{Ei} \operatorname{Sin} \theta_{j+1}$$

Continue for all values of θ_i and go to 12

11 R_{Li} Concave

$$R_j = (|R_{Li}| - H_i) \sin \theta_j$$

Continue for all values of θ_{j} and go to 12

12 Calculate no. of spot on block

$$\frac{\alpha_{j}}{2} = \sin^{-1} \frac{R_{BC}}{R_{j}}$$

$$\alpha_{j} = 2 \sin^{-1} \frac{R_{BC}}{R_{j}}$$

$$N_{j} = \frac{360}{\alpha_{j}}$$
 Round off down to nearest integer

$$\alpha_{j} = \frac{360}{N_{i}} \quad (R.0.)$$

$$\frac{\alpha_{j+1}}{2} = \sin^{-1} \frac{R_{BC}}{R_{j}+1}$$

$$\alpha_{j+1} = 2 \sin^{-1} \frac{R_{BC}}{R_j + 1}$$

Continue for all values of R

$$N_T = \left\{ N_j \right\}$$

Go to coord. (Convex Concave) CIM-X

or

Go to (Convex Concave) K and T

13a. Calc. Coordinates CIM-X

Convex Block (Fig. 6)

$$S_i = H' + C_4$$

$$K_i = S_i - R_{Ei}$$

Concave Block (Fig. 7)

$$K_i = R_{Ei} + H_i' + C_4$$

Change Sign of R_{Ei}

All Blocks

$$\begin{aligned} \mathbf{Y}_{\mathbf{j}} &= \mathbf{C}_{3} + \mathbf{C}_{2} \sin \theta_{\mathbf{j}} + \mathbf{C}_{1} \cos \theta_{\mathbf{j}} + \mathbf{K}_{\mathbf{i}} \sin \theta_{\mathbf{j}} \\ \mathbf{Y}_{\mathbf{j}} &= (\mathbf{C}_{2} + \mathbf{K}_{\mathbf{i}}) \sin \theta_{\mathbf{j}} + \mathbf{C}_{1} \cos \theta_{\mathbf{j}} + \mathbf{C}_{3} \\ \mathbf{Z}_{\mathbf{j}} &= \mathbf{C}_{1} + \mathbf{C}_{2} \cos \theta_{\mathbf{j}} - \mathbf{C}_{1} \sin \theta_{\mathbf{j}} + \mathbf{K}_{\mathbf{i}} \cos \theta_{\mathbf{j}} + \mathbf{R}_{\mathbf{E}\mathbf{i}} \\ \Delta \mathbf{Z} &= \mathbf{H}_{\mathbf{C}\mathbf{i}} + .030 \end{aligned}$$

13b. Calc. Coordinates K and T

Convex Block (Fig. 8A)

$$S = H' + C_5$$

$$K_i = S - R_{Ei}$$

Concave Block (Fig. 8B)

$$K_{i} = R_{Ei} + H_{i}' + C_{5}$$

Change sign of R_{Ei} from (+) to (-)

All Blocks

$$X_{j} = K_{i} \sin \theta_{j} + C_{7} - C_{7} \cos \theta_{j}$$

$$X_{j} = K_{i} \sin \theta_{j} + C_{7} (1 - \cos \theta_{j})$$

$$Z_{j} = K_{i} \cos \theta_{j} + C_{7} \sin \theta_{j} + R_{Ei} + C_{6}$$

$$\Delta Z = H_{C} + 0.030$$

APPENDIX B

COMPUTER PROGRAM - STPBLK

INPUT, DATA One Card Per Lens

Columns (1 - 9), Lens Radius

Columns (10-18), Lens Radius

Columns (19-27), Axial Thickness

Columns (28-36), Lens Diameter

Column 73, Indicator for Machine Geometry

1 - K and T Dividing Head

2 - Cim - X N/C

NOTE:

- (+) Sign indicates Convex Lens
- (-) Sign indicates Concave Lens

Radius of 10,000 indicates Plano

1	PROGRAM STPBLK (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)
	C- CALCULATION FOR SPOT BLOCKS. BOTH RADIUS .LE. 5.00 AND RADGT. 5.00
	C- BOTH CONVEX AND CONCAVE LENSES
2	
	FOLITARIENCE (PRIOK) - PETTHK(2) - DET(2)
1000	NPUT DATA CARD
10	INC
	2/10 18/19 27/2
	- RL1
	1 IS FOR THE K + T INDEXING HEAD (IN CC. 73)
200	~
15	* 1 * 1 * 1 * 1 * 1 * 1
	C- RION = DADIANS TO DECORES CONVERSION FACTOR
	C
	C- THE FOLLOWING IS THE DELTA Z FOR BOTH CASES (OLD AND NEW)
20	DATA DELY, DELZ/2*0.0300/
	C- TOLMR IS THE MAXIMUM RADIUS OF, THE TOOL R.GT.5.0
	TOLMR/5.00/
-	DATA RF/6,31250/
	C- HPIVOT IS THE VERTICAL DISTANCE (ON INDEXING HEAD) BETWEEN WORK
5	PIECE AND PIVOT POT
	DATA HPIVOT/4.6875/ C- AXDIS IS THE AXIAL DISDLACEMENT OF THE INDEXING HEAD (TOWARD THE SIDE)
	DATA
	0
30	=
	DATA DSTT, DEHT, HC/3,34645, 3,83858, 4,72360/
	-
35	C- DIANO TE SET AT 10.000 6 FOR FIRE STORY
	DATA
	4T (6F9.
	FORMAT (14X+
40	S FORMAT (14H) INPUT DATA = 4 4x, 4F11,4, 10x, 12/ 5x, 16HLENS BLANK DATA
	. 104
	10 FORMAT (4x. 32H CALCIII ATTONS FOR SPOT RIOCK NO 12/ 10x. 19HSPHFDTCAL
45	3 • F9.4)
	25 FORMAT (10X+ 16HBLOCK DIAMETER = + F9.4 / 10X+ 14HBLOCK HEIGHT = +
	26 FORMAT (146 - 10X - 84SIDE NO 12 - 94 IS PLANO ///)
	ZZ TOKMAI (10X+ SCHELOCK APERTURE (CONCAVE) = , F9.4/ 10X+ Z3HBLOCK 0.D.
00	20 FORMAT (19X* 27HOTAMETED OF WOITS (SDOTS) CO A. 19X* SOUDIAMETED
	1ER OF CLEARANCE HOLES = • F9.4/ 10x. 19HEFFECTIVE RADIUS = • F9.4 / 10x.
	-

. 4	PAGE
	69/29/16 15-18-35
ACALA A MTS	024-04+ NIL
0PT=1	
73/74	
STPBLK	

	91/62/60 024-044 011
55	T (11X+ 12+ 3X+ F9.4+ 4X+ 13+ 4X+ T (10X+ 4HRING+ 5X+ 4HTILT+ 5X+ 5 + T INDEXING HEAD / 11X+ 3HNO.+
99	
	37 FORMÁT (21H POLISHER DATA- / 10X. 18HSPHERICAL RADIUS = , F9.4 / 1.4 / 10X. 19HPOLISHER DIAMETER = , F9.4 / 10X. 17HPOLISHER HEIGHT = , 2 = , F9.4 /)
59	ZHCIM-X N.C. EQUIPMENT / SHANGLE. 9X, 2H Y. 8X.
0.2	X* 29HGRINDER APERTURE (CON • F9.4/ 10X• 16HGRINDER HE (21H POLISHER DATA- 0X• 30HPOLISHER APERTURE (C = • F9.4/ 10X• 17HPOLISHER (1H • 10X• 16H NO CENTER
75	TT = TT = A(1)
. 08	4 76 7
85	= 1 ABS(A(1)) ABS(A(2)) 1) • 6T• 0•010 AND A(2) GT. 0.010 NOT
06	A(1) . LT. 0.000 . OR. A(2) .LT. A(1) .LT. 0.000 .AND. A(2) .LT. NOLT .GT. 10) GO TO 6 = AMINI(AA1.AA2) + 0.008 = AMINI(A(1), A(2))
56	IF (A(7) aGT. AA1) AA1 = PLANO IF (A(7) aGT. AA2) AA2 = PLANO RTST(1) = PLANO RTST(2) = AMIN1(AA1, AA2) AA1 = P1 AN0
100	AA2 = FLANC A(1) = PLANO A(2) = A(8) IF (A(8) *LT. 0.000) GO TO 6
105	

PAGE

DOUBLE CONVEX LENS RTST(1) = AMAX1 (AA1, AA IF (RTST(1) = GT = 9999- IF (RTST(1) = GT = 9999- A(1) = RTST(1) A(2) = RTST(1) A(2) = RTST(1) A(2) = AMIN1 (AA1, AA IND(2) = 2 IF (NOLT = NE = 12) GO CONVEX = CONCAVE LENS RTST(1) = AMAX1(A(1), AA(1) = A(2) = ABS(A(2)) IF (NOLT = NE = 12) GO IND(2) = 2 IF (NOLT = NE = 9999- RTST(2) = AMIN1(A(1), AA(1)) RTST(2) = ABS(A(2)) IF (NOLT = NE = 9999- RTST(2) = ABS(A(2)) IF (NOLT = NE = 9999- IF (AA1) = 1 = 2 IF (NOLT = NE = 9999- IF (AA1) = 1 = 2 IF (NOLT = NE = 9999- IF (AA1) = 1 = 2 IF (AA1) = 1 = 0 = 000 IND(2) = 2 IF (AA1) = 1 = 0 = 000 IND(2) = 1 = 0 = 000 IND(2) = 0		6 1F (NOI T NE 11) GO TO 7
RIST(1) = AMAX1(AA) + AA2 A(1) = FTST(1) = GT = 9999, B) NOLT = 91 A(2) = FTST(1) = FTST(1) = FTST(1) = GT = 9999, B) NOLT = 92 A(2) = FTST(1) = AMAX1(AA) + AA2 FTST(1) = AMAX1(AA) + AA2 FTST(1) = AMAX1(AA) + AA2 FTST(1) = AMAX1(AA) + AA2 A(1) = -1,0 = FTST(1) = AMAX1(AA) + AA2 A(1) = -1,0 = FTST(1) = AMAX1(AA) + AA2 A(1) = -1,0 = FTST(1) = AMX1(AI) + AA2 A(1) = -1,0 = FTST(2) = AMX1(AI) + AA2 A(1) = -1,0 = FTST(2) = AMX1(AI) + AA2 A(1) = -1,0 = FTST(2) = AMX1(AI) + AA2 A(1) = AMX1(AI) + AA2 A(2) = AMX1(AI) + AA2 A(3) = FTST(2) = AMX1(AI) + AA2 A(1) = AMX1(AI) + AA2 B(2) = AMX1(AI) + AA2 B(3) = AMX1(AI) + AA2 B(4) = AMX1(AB) + AA2 B(4) = AMX1(A		- DOUBLE CONVEX LENS
17 (ATST(1)	110	= AMAXI(AA)
A(1) = RTST(1) A(2) = RTST(2) T [(NOLT - NE - 25) 60 TO 8 . C- TOUGUE CONAVE LENS RTST(1) = AMAXI(AA1,AA2) RTST(1) = AMAXI(AA1,AA2) RTST(2) = AMINI(AA1,AA2) RTST(2) =		T(1) .GT. 9999.R) NOLT =
C - DOUBLE CONCAVE LENS RTST(1) = AMAXI(AAI,AAZ) RTST(1) = AMAXI(AAI,AAZ) RTST(1) = AMAXI(AAI,AAZ) RTST(1) = AMAXI(AAI,AAZ) RTST(2) = AMINI(AAI,AAZ) INO(1) = Z INO(1) = Z INO(1) = Z INO(1) = Z RTST(1) = AMAXI(A(1),A(Z)) RTST(1) = AMAXI(A(1),A(Z)) RTST(2) = AMIXI(A(1),A(Z)) INO(2) = Z PANO-CONVEX IS NOLT = 92 IN (NOLT,ANE,AZ) IN (NOLT,ANE,AZ) IN (AZ) = RTST(2) IN (AZ) = Z IN (- Acros to section and security of the section	= RTS
C- FOUNTE CONCAVE LENS RTST(1) = AMAXI(AA1,AA2) RTST(1) = AMAXI(AA1,AA2) RTST(1) = AMAXI(AA1,AA2) RTST(2) = AMINI(AA1,AA2) RTST(3) = AMINI(AA1,AA2) A (1) = -1,0 * RTST(1) A (2) = -1,0 * RTST(1) A (3) = -1,0 * RTST(1) C- B (1001 - 0.0 - 1) RTST(1) = AMAXI(A(1),A(2)) RTST(1) = AMAXI(A(1),A(2)) RTST(1) = AMAXI(A(1),A(2)) RTST(1) = AMAXI(A(1),A(2)) A (1) = RTST(1) A (2) = -1,0 * RTST(2) A (3) = RTST(3) A (2) = RTST(3) A (3) = RTST(3) A (2) = -1,0 * RTST(3) A (3) = RTST(3) B (4) + 1,0 * 1,	411	NOI T NF. 221 GO TO
RTST(1) = AMAXI(AA1.AA2) RIST(2) = AMINI(AA1.AA2) IND(1) = 2 IND(1) = 2 IND(2) = -1.0		OUBLE CONCAVE LENS
NO 10 2 2 10 10 10 10 10	1	H
IND(2) = 2		"
Trickling Tric	120	11
A(1) = -1,0 * RTST(2) B IF (NOLT - 10 * 0 TST(2) C- ROWEX-CONOVE LENS RTST(1) = AMANIA(11, A(2)) RTST(2) = AMINIA(11, A(2)) RTST(2) = AMINIA(11, A(2)) RTST(2) = RTST(2) A(1) = RTST(2) A(1) = RTST(2) A(1) = RTST(2) A(2) = RTST(2) A(3) = RTST(2) A(4) = AMO-CONCAVE IS NOLT = 92 AND CONCAVE IS NOLT = 91 AND CONCAVE IS NOLT = 92 AND CONCAVE IS NOLT = 91 AND CONCAVE IS NOLT = 92 AND CONCAVE IS NOLT = 91 AND CONCAVE IS NOLT = 92 AND CONCAVE IS NOLT = 91 AND CONCAVE IS NOLT = 92 AND CONCAVE IS	777	(RTST(1) .6T. 9999.8) NOLT =
A(2) = -1,0 + R*151(2) C- CONVEX-CONCAVE LENS RTST(1) = AMAXILA(1), A(2) RTST(1) = AMAXILA(1), A(2) RTST(2) = ABININ, A(2) RTST(2) = ABININ, A(2) RTST(2) = RTST(2) RTST(2) = ASS(A(2) RTST(2) = ASS(A(2		= -1.0 * RTS
B IF (NOLT ANE, 12) GO TO 9 C - CONVEX—CONCAVE LEAS RTST(1) = AMAXIA(1), A(2)) RTST(2) = AMINIA(1), A(2)) RTST(2) = ARTST(2) RTST(2) = RTST(2) RTST(1) = RTST(2) RTST(1) = RTST(2) RTST(1) = GT 999,8) NOLT = 92 I NO(2) = 2 I NO(2) = 2 I NOLT A(8) = 90 RTST(2) = AMINI(AA1, AA2) C - PLANO-CONVEX IS NOLT = 91 IF (NOLT A(8) = 92 GO TO 11 INOLT A(8) = 10 000 IND(1) = 2 IF (A(1) = DELY DENY DEN) = -1.0 * RTST(2)
## STATICLE AMMAXI (AIL) + A(2) ## STATICLE ABSIA(2) ## STATICLE A	i.	8 IF (NOLT .NE. 12) 60 TO
C	125	DICTOR AND TANKS
C- R-1 IS THE CONVEX AND R-2 IS THE CONCAVE SIDE A(1) = RTST(2) RTST(2) = ABS(A(2)) TST(2) = 2 IND(2) = 2 IF (RTST(1) = 6T + 9999,8) NOLT = 92 C- PLANO-CONVEX IS NOLT = 92 IF (NOLT = 6P + 90) RTST(2) = AMINI(AA1,AA2) C- PLANO-CONVEX IS NOLT = 92 IND(2) = 2 IND(2) = 2 IF (NOLT = 6P + 90) RTST(2) = AMINI(AA1,AA2) IF (A(1) = 1 + 0.000) IND(1) = 2 IF (A(1) = 1 + 0.000) IND(2) = 2 IF (A(1) = 1 + 0.000) IND(2) = 2 IF (A(1) = 1 + 0.000) IND(2) = 2 R1 = RTST(1) R2 = RTST(2) B2 (2) = A(4) * 1.0500 DB4MT = DB4MTN / 2.000 DB MMTH = DB4MTN / 2.000 DB MTH = 0.000 DB RT = 0.000 DB RT = 0.000 DB ANT = 0.0000 DB ANT = 0.0000 DB ANT = 0.0000 DB ANT = 0.0000 DB ANT = DBAMK / 2.000 DB ANT = 0.0000 DB ANT = DBAMK / 2.000 DB ANT = 0.0000 DB ANT = 0.0000 DB ANT = DBAMK / 2.000 DB ANT = DBAMK / 2.000 DB ANT = DBAMK / 2.000 DB ANT = DBAMK - 0.0000 DB ANT = DBAMK - 0.00000 DB ANT = DBAMK - 0.0000 DBAMT = DBAMK -		= AMANI(A(1)
A(1) = RTST(1) A(2) = ATST(2) A(2) = ATST(2) A(2) = ATST(2) A(2) = ATST(2) IND(2) = 2 PLANO-CONVEX IS NOLT = 91 CONTINUE IND(2) = 2 IT (NOLT = 6E 90) RTST(2) = AMINI(AAI + AA2) F (NOLT = 92) GO TO 11 IND(2) = 2 IT (NOLT = 92) GO TO 11 IND(2) = 2 IT (A(1) = LT 0 0 0 0 0) IND(2) = 7 IF (A(1) = LT 0 0 0 0 0) IND(2) = 7 IF (A(1) = LT 0 0 0 0 0) IND(2) = 7 IF (A(1) = DELY DET(1) = DELY DET(1	A STATE OF THE PARTY OF THE PAR	R-1 IS THE CONVEX AND R-2 IS THE CONCAVE
A(2) = RTST(2) RTST(2) = ABS(A(2)) IND(2) = 2 IF (RTST(1)		A(1) =
IND(2) = 2	130	H (
IND (2) = C PLANO-CONVEX IS NOLT = 91 9 IF (NOLT .e6. 90) RTST(2) = AMIM1(AA1.AA2) C PLANO-CONCAVE IS NOLT = 92 1 IND (2) = 2 2 IND (2)		11
C- PLANO-CONVEX IS NOLT = 91 9 IF (NOLT .GE. 90) RTST(2) = AMIN1(AA1.AA2) C- PLANO-CONCAVE IS NOLT = 92 IF (NOLT .NE. 92) GG TG 11 IND(2) = 2 IF (A(1) .LT .0.000) IND(1) = 2 IF (A(1) .LT .0.000) IND(2) = 2 IF (A(2) .LT .0.000) IND(2) = 2 R1 = RTST(2) R2 = RTST(2) R3 = RTST(2) B2 RTST(2) B2 RTST(2) B3 = IF (A(2) .LT .0.000) B4 = IF (A(2) .LT .0.000) B4 = IF (A(2) .LT .0.000) B5 = IF (A(2) .LT .0.000) B6 = IF (A(2) .LT .0.000) B7 = IF (A(2) .		(2) = 2
0 IF (NOLT •GE • 90) RTST(2) = AMINI(AAI, AA2) C-		PLANO-CONVEX IS NOLT = 91
C- PLANO-CONCAVE IS NOLT = 92 If (NOLT .NE. 92) G0 T0 11 IND(2) = 2 II CONTINUE IF (A(1) .LT. 0.000) IND(2) = 2 If (A(2) .LT. 0.000) IND(2) = 2 DEY(1) = DELY DEY(2) = 0.000 DBLAIN = A(4) * 1.050 RMM = DBLAIN / 2.000 IDBLAIN - FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0.1250 ANBTH = ANBTH + 0.1250 G0 TO IS DBLANK = DBLANK / 2.000 C DPRING=DIAMETER OF POSTITION RING C DPRING=DIAMETER OF POSTITION RING DPRING=DIAMETER OF POSTITION RING	135	9 IF (NOLT .GE. 90) RTST(2) =
IF (NOLT .NE. 92) GO TO 11 INOL(2) = -2 II CONTINUE IF (A(1) .LT. 0.000) IND(2) = 7 IF (A(2) .LT. 0.000) IND(2) = 7 DEY(2) = 0.000 INDEXT(1) = 10.000 INDEXT(1) = 10.0000 INDEXT(1) = 10.0000 INDEXT(- PLANO-CONCAVE IS NOLT =
11 IONTINUE 11 (A(1) = LT 0.000) IND(1) = 2 11 (A(1) = LT 0.000) IND(2) = 2 11 (A(1) = LT 0.000) IND(2) = 2 11 (A(1) = LT 0.000) IND(2) = 2 12 R1 = RTST(1) R2 = RTST(2) DEY(1) = DELY DEY(2) = 0.000 DB(MIN = A(4) * 1.0530 RMM = DB(LMIN / 2.000 IDB = IFIX(DB(LMIN) DPART=DB(LMIN / 2.000 IDB = IFIX(DB(MIN) DPART=DB(MIN - FLOAT(IDB) THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANSTH = ANSTH + 0.1250 GO TO 15 20 DB(LANK = FLOAT(IDB) + ANSTH RB(ANK = BB(LANK / 2.000 C DPRING=DIAMETER OF POSITION RING C DPRING=DIAMETER OF POSITION RING C DPRING=DIAMETER OF POSITION RING	30 VII MATERIA :	(NOLT .NE. 92) GO TO
IF (A(2) -LT 0.000) IND(1) = 2 IF (A(2) -LT 0.000) IND(2) = 2 IF (A(2) -LT 0.000) IND(2) = 2 IF (A(2) -LT 0.000) IND(2) = 2 BEY(1) = DELY DEY(2) = 0.000 DBLMIN = A(4) * 1.550 BMM = DBLMIN / 2.000 IDB = IFIX(DBLMIN) DPART=DBLMIN-FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0.1250 IS IR(ANBTH-GE-DPART) GO TO 20 ANBTH = ANBTH + 0.1250 GO TO IS RBC = (DBLANK / 2.000 C DPRING=DIAMETER OF POSITION RING DPARTOR AND		
IF (A(2) -LT. 0.000) IND(2) = 2 R1 = RTST(1) R2 = RTST(2) DEY(1) = DELY DEY(2) = 0.000 DBLMIN = A(4) + 1.55.0 RMM = DBLMIN / 2.000 IDB = IFIX(DBLMIN) DPART=DBLMIN-FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0.1250 IS IF (ANBTH.6E.DPART) GO TO 20 ANBTH = ANBTH + 0.1250 GO TO 15 RBC = (DBLANK = FLOAT(IDB) + ANBTH RBC = (DBLANK + 0.000) C DPRING=DIAMETER OF POSITION RING C DPRING=DIAMETER OF POSITION RING	140	IF (A(1) aLT. 0.000) IND(1) =
RI = RISI(1) R2 = RISI(2) DEY(1) = DELY DEY(2) = 0.000 DBLMIN = A(4) * 1.0500 DBLMIN = A(4) * 1.0500 RMM = DBLMIN / 2.000 IDBLMIN = FIX(DBLMIN) DPART=DBLMIN-FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0.1250 IS IF (ANBTH.6E.DPART) GO TO 20 ANBTH = ANBTH + 0.1250 GO TO IS 20 DBLANK = FLOAT(IDB) + ANBTH RBC = (DBLANK + 0.000) C DPRING=DIAMETER OF POSITION RING DPRING=DIAMETER OF POSITION RING		(A(2) -LT. 0.000) IND(2) =
R2 = RTST(2) DEY(1) = DELY DEY(2) = 0.000 DBLMIN = A(4) * 1.0500 RMM = DBLMIN / 2.000 IDB = IFIX(DBLMIN) DPART=DBLMIN-FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0.1250 15 IF (ANBTH.6E.DPART) GO TO 20 ANBTH = ANBTH + 0.1250 GO TO 15 20 DBLANK = FLOAT(IDB) + ANBTH RBC = (DBLANK + 0.000) / 2.000 C DPRING=DIAMETER OF POSITION RING C DPRING=DIAMETER OF POSITION RING		lı
DEY(1) = DELY DEY(2) = 0.000 DBLMIN = A(4) * 1.0500 RMM = DBLMIN / 2.000 IDB = IFIX(DBLMIN) DPART=DBLMIN-FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0.1250 15 IF (ANBTH.6E.DPART) 60 TO 20 ANBTH = ANBTH + 0.1250 60 TO 15 20 DBLANK = FLOAT(IDB) + ANBTH RBC = (DBLANK + 0.000) / 2.000 C DPRING=DIAMETER OF POSITION RING C DPRING=DIAMETER OF POSITION RING		= RTST (2
DBLMIN = 4(4) * 1.550 RMM = DBLMIN / 2.000 IDB = IFIX(DBLMIN) DPART=DBLMIN-FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0.1250 IS IF (ANBTH.GE.DPART) GO TO 20 ANBTH = ANBTH + 0.1250 GO TO 15 Z D DBLANK = FLOAT(IDB) + ANBTH RBC = (DBLANK + 0.000) C DPRING=DIAMETER OF POSITION RING DPRING=DIAMETER OF POSITION RING		11 11
RMM = DBLMIN / 2,000 IDB = IFIX(DBLMIN) DPART=DBLMIN-FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0,1250 IS IF (ANBTH, GE, DPART) GO TO 20 ANBTH = ANBTH + 0,1250 GO TO 15 Z\$\tilde{D}\$ DBLANK = FLOAT(IDB) + ANBTH RBC = (DBLANK + 0,000) C DPRING=DIAMETER OF POSITION RING C DPRING=DIAMETER OF POSITION RING	243	= A(4) * 1.053
IDB = IFIX(DBLMIN) DPART=DBLMIN-FLOAT(IDB) DPART=DBLMIN-FLOAT(IDB) DPART=DBLMIN-FLOAT(IDB) ANBTH = 0.1250 15 IF(ANBTH-6E.DPART) GO TO 20 ANBTH = ANBTH + 0.1250 GO TO 15 CO TO 15 RBLANK = FLOAT(IDB) + ANBTH RBC = (DBLANK + 0.000) C DPRING=DIAMETER OF POSITION RING DPDING = DBLANK - 0.000		DBLMIN /
DPART=DBLMIN-FLOAT(IDB) C- THE FOLLOWING ROUNDS BLANK DIAMETER UPWARDS TO THE NEAREST EIGHTH ANBTH = 0.1250 15 IF (ANBTH.GE.DPART) GO TO 20 ANBTH = ANBTH + 0.1250 GO TO 15 20 DBLANK = FLOAT(IDB) + ANBTH RBC = (DBLANK +0.005) / 2.000 C DPRING=DIAMETER OF POSITION RING DPPING = DBLANK -0.0051		IDB = IFIX(DBLMIN)
AN8TH = 0.1250 15 IF (AN8TH-6E-DPART) GO TO 20 AN8TH = AN8TH + 0.1250 GO TO 15 20 DBLANK = FLOAT(IDB) + AN8TH RBC = (DBLANK + 0.000) C DPRING=DIAMETER OF POSITION RING		DPART=DBLMIN-FLOAT(IDB)
15 IF (ANBTH-GE-DPART) 60 TO 20 ANBTH = ANBTH + 0.1250 60 TO 15 20 DBLANK = FLOAT(IDB) + ANBTH RBLANK = DBLANK / 2.000 RBC = (DBLANK +0.005) / 2 C DPRING-DIAMETER OF POSITION DPOING = DRIAMETER OF POSITION	150	ANNETH I CALVE
AN8TH = AN8TH + 0.1250 60 TO 15 20 DBLANK = FLOAT(IDB) + AN8TH RBLANK = DBLANK / 2.000 C DPRING=DIAMETER OF POSITION DPOING = DRIAMETER OF POSITION DPOING = DRIAMETER OF POSITION		IF (ANSTH. GE. DPART) GO TO
20 TO 15 20 DBLANK = FLOAT(IDB) + ANBTH RBLANK - DBLANK / 2-000 RBC = (DBLANK +0-005) / 2 C DPRING=DIAMETER OF POSITION DPRING = DRIAMETER OF POSITION		- ANBTH +
RBLANK = DBLANK / 2.000 RBC = (DBLANK +0.505) / 2 C DPRING=DIAMETER OF POSITION PROTNG = DRIANK = 0.1250	155	60 TO 15 DBLANK = FLOAT(IDB) +
RBC = (DBLANK +0.005) / 2 DPRING=DIAMETER OF POSITION OPDING = DRIANK - 0.1250	*	RBLANK = DBLANK / 2.000
OPETING - DBI ANK - A		RBC = (DBLANK +0.005) / 2
	4	OPKING-DIAMETER OF

PAGE

PROGRAM STPBLK 73/74 OPT=1

140	A.C.SING=DB01NG-2.A	
	FRIT SORT (RI * 2 - RBLANK * * 2)	
165	TSB = A(3) + CLR TSB = A(3) + CLR IF (NOLT *E0* 12) TSB = TSR + H2 HCLR = R1 - SORT(R1**2 - RPRING**2)	
170	HK(1) = A(3) - H1 F(1) = R1 - TSB + 0. OK1 = SQRT (REFF(ONLT + NE. 22) GO = R1 - SQRT(R1**2 -	•
175	TS + S + H	
180	NUE PRINT.S) A(1). LOWING IS CORRECT .GT. 90) H1 ≅	
185	.6T. 90) HCL .6T. 90) H2 = .EQ. 92) TSB .EQ. 92) EFTH = ABS(RBLOK)	
190	- H1 - H2 2)	
-o <u>261</u>	IF (IND(2) .EQ. 2) RBLOK2 = R2 + EFTHK(2)/2.00 RSS2 = SORI((REFF(2) + RBLOK2) ** 2 + RBLANK ** 2) RBLOK(2) = RBLOK2 THE FOLLOWING LOOP CALCULATES BLOCK FOR R1,THEN RETURNS FOR R2. DO 60 K = 1, 2	S W Z
	INITIALIZE THE LENS PER RLOCK COUNT (LPB) LPB = 0 IF (RTST(K) .LT. 9999.8) GO TO 47 WRITE (NPRINT.26) K GO TO 60 47 CONTINUE	
C- C- C-	KSIDDM = KISI(N) KSIDD = KISI(N) KSIDD = L If (IND(K) .EQ. 2) PLDUM = -1.00 * RIST(K) WRITE (NPRINT.10) K. KSIDE, RLDUM, RB(K) THE FOLLOWING IS THE CONVERSION FROM RADIANS TO DEGREES THE FOLLOWING IS THE CONVERSION FROM RADIANS TO DEGREES HBETA = RTOD * ATAN(RBC/REFF(K)) IF (IND(K) .EQ. 2) HRETA = ASIN(RBC/RTST(K)) * RTOD IF (IND(K) .EQ. 2) HRETA = ASIN(RBC/RTST(K)) * RTOD RETA IS THE ANGLE SUBTENDED BY A LENS ON THE SPOT BLOCK	CONCAVE

	BETA = (HBFTA + 0.5000) * 4.00	
	= IFIX(BETA) / 2	- 0.000
	= FLOAT (KD	
,	THE FOLLOWING ROUTINE IS ONE	
	DIFFERENT ANGLE (PHI) IS NEEDED DUE TO INTEREFEREN	
	CHI	dernich d'Albert (20-77 septime elle-
	CHIRAD = 80.0 / RIOD	
	ST(K) * SIN(CHI	
	(RADUM .LT. TOLMR) GO TO 33	
	CHI = ASIN (TOLMR/RIST(K)) * RIOD IF (IND/K) EO 3) CHI = CHI - A EAAA	
	I = CHI	AND THE COMPANY OF STREET
	XDUM = CHI - FLOAT(ICHI)	
	= FLOAT(ICHI)	
, in the second	Tr (XUM - 64E, - 6-5000) CHI = CHI + 0.5000	
	= CHI	
	ONTINIE	and the second s
	RASP	
	RASP # 2.00	and the second desired to the
	= -1.00 * RLDUM	
	4D = RIST(K) - SORT(RO	
	00 * (RTST(K) + 0.1500)	41194
	DEG = ABSIDGE & STACHERN)	
	L = ABS (POLR)	
	(K) .NE, 2) G0 T0 63	
	HGRIND = ABS(RGRIND) - SORT(RGR	
-	LODINE LICE H	
	IF CHERIND - F. HDRIMF) HERIND - HDRIMF	
	OL = HTPOL - 1.000	
	IF (HTPOL .LE. H	
	XON = CHI CO DECK	4
	, C. C. NC	
٠.		
	4/2	
	= 2.0 * RADUM	
	= RBLOK(K) - SORT (RBLOK(K) **2 - RASP **2)	
	KAY - RBLOK(K) + REFF(K) + 0.25	A U U
	T CHAINE - CELED HANNE - 1.000 - CCLR	
	- HPRIME + 3.	CIM-X
	EE = 1.00 - HKAY + PRLOK(K) -	
	IF (HPRIME .GT. 1.00) HDEE = 0.25000	
	TOR THE CONCAVE LENS, US	
	IF (IND(K) .Ed. 2) GO TO 132	

· LO

PAGE

270	(NPRINI , 25) DASP , HBKA		
	WRITE (NPRINT,29) DBLANK, DPRING, REFF(K), CHI, BETA		
	\vdash	;	
	WKIIE (NPKINI+554) 60 TO 950		
	2		
275	IF (TILT AGE.		
	(NPRINT, 188)		
	60 TO 40		
	IF (TILT 6T HBETA) GO TO 44		
280	98 + 1		
-	C- THE FOLLOWING ESTABLISHES THE PARAMFTERS FOR A CENTER LENS	٠	
	SANG =		
	TILT = 0,0000		
285	11 1		
	0.000		
	IF (LIMP "EQ" 1) 60 TO 42		
	DSTT + HC	CIM-X	
06	42 CONTINUE	X-WID	
	Š		
295	60 TO 40		
The state of the s	R = REFF(K) * SIN(ANGLE)		
	4D(K) .EQ. 2) R		
008	* KTOD *		
and the control of th	FIX(XM)		
the dead materials than higher or price	MBER		
	LPB = LPB + M POSANG=360.0/FLOAT(W))		
5	AY * SIN(ANGLE) + AXDIS * (1.00		
	= REFF(K) + FLKAY * COS(ANGLE) + HPI		
	(DEHT + FKC) * SIN(ANGLE) + DSTT * COS(ANGLE)		
A to and advantable from a con-	2NEW = 0SII	X-MIO (A.	
310	- 00.06 =	V = E T >	
	IF (LIMP .NE. 2) GO TO 48		
	X = XNEW		
	. =		
315	WRITE (
And the second s			

73/74 OPT=1 FTN 4.6+420 09	420 69729/7
----------------------------	-------------

	SNE SENED ON -S	CANNOT BELETITED	181
320	ITE (NPRINT, 167)		
	132 CONTINUE	= !	
325	C+		
	E		
	3KX = SORT ((REFF(K) + 0.0500) **	2)	
330	X3 = RPRING PHI = 80.00		DEGDEEC
	(LIMP .NE. 2) GO TO	ann man enter er ougstadendelde. Auch je delta er faundaggen austus (* 15 s.)	מרטיירים
A I LAS ARRESTE MANAGEMENTS	CHIRAD = 80.00 / RIOD		
335	RIST(K) * SIN(CHIRAD)		
edina acema je spoje dje jej vlatinskom dem s emero. Dog	PHI = ASIN(TOLMR/RTST(K)) * RTOD		
	181		1
340	PHI = 80.00	Ĭ	DEGREES
	09		
	146 CONTINUE PHT = 80.00	č	
	(K) .LT. ELL3)		LONCE.3
345	- ACOS (WI / RBLOK(K)) * RTOD		
•	, *		
	(OMCA .GT. OMCAP) PHI = (HBE	* 0.5000	
250	60 TO 181	a septimipo en la transita desentida en la compansión de	1
) Oc	IF (ELL2 - REFF(K) LT. RSSKX) GO TO		
	(ELL3 - REFF(K) LT. RSSKX) 60	•	!\
	PHI = 80,00	90	DEGREES
355	VI INUE		
	OMC		
	80.00	30	DEGREES
360	IF (OMCA .LT. OMCAP) GO TO 181		
	G0 T0 181		
	175 CONTINUE OMCA = ACOS(W2/PRIOK(K)) * PTOD		
376	P = ASIN((ELL3 - REFF(K)		
	PHI = (HBETA + 90.00 + OMDUM) * 0.50000		
	LINUE		
	CHI = PHI * 2.000	1	
370	= FIOAT		
	֡		

œ

(K)) * RTOD + HBETA) *	* RTOD	1160	RTOD		. 00		D 00 + OMCAP) * 0.500	0
JACCOLATIONS FOR THE N+1 INCEAING HEAD IF (REFF(K) - LT. ELL1) 60 TO 1140 CHI = (ACOS((REFF(K) - ELL1) / RALOK(K)) IF (RADUM - LT. TOLMR) 60 TO 1181 CHI = ASIN(TOLMR / RTST(K)) * RTOD GO TO 1181	JE (REFE(K) -LT. ELL2) GO TO 1150 OMCA = ASIN((ELL1 - REFF(K)) / RSSKX) CHI = (HBETA + 90.00 + OMCA) * 0.5000 RADUM = RTST(K) * SIN(CHI/RTOD) IF (RADUM -LT. TOLMR) GO TO 1181	0 0 0 0	OMCA = ACOS(WZ / RRLOK(K)) * RTOD OMCAP = ASIN((ELL2 - RFFF(K)) / RSSKX) * R OMDUM = AMIN1(OMCA,OMCAP) CHI = (HETA + 90,00 + OMDUM) * 0,5000 GO TO 1181	NTINUE A = ACOS AP = ASI COMCA • L = (HBET	IN ((ELL2 - REFF(K)) / RSSKX) AXI.(OMCA+OMCAP) TA + 90.00 + OMDUM) # 0.5000 181 -LT. L-2 - DFFF(K) T BSSKX) GO TO	(ELL3 _ REFF(K) .LT. RSSKX) 60 = 80.00 60 TO 1181 NTINUE.	OMCA = 70.00 - HBETA OMCAP = ASIN((ELL3 - REFF(K)) / RSSKX) * RTOD CH! = 80.000 IF (OMCA .GE. OMCAP) CHI = (HBETA + 90.00 GO TO 1181	CONTINUE CONCA = ACOS(WZ / RBLOK(K)) * RTOD OMCAP = ASIN((ELL3 - REFE(K)) / RSSKX) * RRTOD OMDUM = AMAXI(OMCA,OMCAP) CONTINUE CONTINUE CHEX = CHI * 2,000
		1150		1164 CO	1175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IF CHI 1235 CO		000

KDUM = IFIX(CHEX)

425

1199 CM1 = FLOATIROUM)			
C- TOWN SOUTH AND GO ON TO CALCULATE THETA OR TILT (CADMS = SORTIGETICH, A. 6.05000)**2.* RALANK**2) (CADMS = SORTIGETICH, A. 6.05000)**2.* RALANK**2) (CADMS = L. 6.01) (CADMS = L. 6.01) (CADMS = L. 6.01) (CADMS = L. 6.01) (CADMITTE (MARINIT-27) (CADMINITE (MARINIT-27) (CAMINITE (MARINIT-27) (CAMINITE (MARINIT-27) (CAMINITE (MARINIT-27) (CAMINITE (MARINIT-2		CAI = FLOA! (KDUM) *	
The continue of the continue		TAR CONTINOE	
Title SORI(REKIN) DOSON'S 2 RRLANKS 2)		PRINT OUT PHI AND GO ON TO CALCULATE THETA OR	
TITUTH	and the state of t	EFF (K) +	
CONDR. = 2.400	430	MP .E0.1) PHI =	
DASP = 2.00 * RELOK(K) = SINIAHINGON DIASP = 2.00 * RELOK(K) = SINIAHINGON DIASP = 2.00 * RELOK(K) = SINIAHINGON DIASP = CONDON - BRA	And the second s	= 2.00 * XDUM * S	
WARTE (WARINT: 29)		= 2.00 * RBLOK(K) *	
WATTE (WRRINT-27) DASP- CONDS. HBKA WRITE (WRRINT-29) DASP- CONDS. HBKA IF (LIMP.NE. 2) GO TO 197 S = 8.250 + HPIVOT + RB(K) - REF(K) FKC = RFF(K) + 4.000 FKC = RFF(K) + 4.000 FKC = RFF(K) + 4.000 C - TILT = WS FOR THE K-T INDEXING HEAD (ONLY) FKC = RFF(K) + 4.000 C - TILT = WS FOR THE K-T INDEXING HEAD (ONLY) III = PHI - HBETA C - TILT = PH		= HKAY + HCLR + 1.09 + REFF(K) -	
WAITE (MPRINT: 29)		(NPRINT,27)	
If (LIMP, NE, 2) GO TO 197 WRITE (MPRINT, 54)	435	(NPRINT, 29) DBLANK, DPRING, REFF(K), PHI,	
WRITE (NPRINI, 54) 197 WRITE (NPRINI, 34) 197 WRITE (NPRINI, 34) 198 WRITE (NPRINI, 34) 199 WRITE (NPRINI, 34) 199 WRITE (NPRINI, 34) 199 WRITE (NPRINI, 34) 190 WRITE (NPRINI, 34) 190 WRITE (NPRINI, 32) 190 CONTINUE 19		(LIMP .NE. 2) 60 TO 197	
197 WRITE (GO TO 199) 197 WRITE (LORRINT, 34) 199 CONTINUE S = 8.250.4 + HOTOT + RB(K) - REFF(K) R = REFF(K) + 4.000 FKC = REFF(K) + 4.000 C - TILT IS FOR THE CLI*X N.C. MACHINE AND/OR C - TILT S FOR THE CLI*X N.C. MACHINE AND/OR C - TILT = PHI - HBETA C - TILT = PHI - HBETA IT (TILT = CHI - HBETA IF (TILT = 10.000) GO TO 144 IF (TILT = 10.000) GO TO 144 IF (TILT = 0.000 ALPB = LPB + I PB = 1 F PRAMETERS FOR A CENTER LENS POSANG. = 0.000 ALPR = 0.000 AND = REFF(K) + FLKAY + HPIVOT IF (LIMP = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP = 0.000 AND = DSTT + HC AND CONTINUE AND CENTER LENS OCOTIL = 90.00 AND CENTER LENS OCOTIVE = 0.000 AND CENTER LENS OCONTINUE AND CENTER LENS OCONTINUE AND CENTER LENS AND CEN		(NPRINT, 54)	
197 WRITE (MARINT, 34)		60 T0 199	
199 CONTINUE C		WRITE	
C- S = 8.250 + HPIVOT + RB(K) - REFF(K) RF = REFF(K) + 4.000 C- TILT IS FOR THE CIM-X N.C. MACHINE AND/OR C- TILT = PHI - HBETA C- TILT = PHI - HBETA IF (TILT = CONTINUE C- TILT = CONTINUE C- TILT = CONTINUE IF (TILT = CONTINUE C- TILT = CONTINUE ANGE = ANGLE ANGLE = TILT / RTDD ANGE = ANGLE ANGE = ANGLE ANGE = TILT / RTDD ANGE = ANGLE ANGE = TILT I / RTDD ANGE = TILT ANGLE ANGLE ANGLE ANGLE ANGLE = TILT ANGLE	077	LNO	
FF = REFF(K) + 6.000 C- TILT IS FOR THE K+T INDEXING HEAD C- TILT WAS FOR THE K+T INDEXING HEAD TILT = PHI - HBETA C- TILT = PHI - HBETA 15. CONTINUE C- TIL = 0.000 If (TILT - 1.T - 0.000) GO TO 144 If (TILT - 1.T - 0.000) GO TO 142 If (TILT - 1.T - 0.000) If (TILT - 1.T - 0.000) A = 1 PARAMETERS FOR A CENTER LENS H = 1 PARAMETERS FOR A CENTER LENS POSANG = 0.000 A =		- S = 8.250 + HPIVAT + PB(K) -	
FKC = REF(K) + 4.000 C		DF - DEFEND + 6 AAA	•
C- TILT IS FOR THE KAT INDEXING HEAD C- TILT		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
C- TILT IS FOR THE CIM-X. WANDENINE AND/OR C- TILT2 WAS FOR THE K+7 INDEXING HEAD (ONLY) TILT = PH1 - HBETA 150 CONTINUE IF (TILT isIT 0.000) GO TO 144 IF (TILT isIT 0.000) GO TO 144 IF (TILT isIT 0.000) M = 1 POSANG = 0.000 ALPHA = 0.0000 ALPHA = 0.000 ALPHA = 0.0	and the second second second second		
C - TILT2 WAS FOR THE K+T INDEXING HEAD (ONLY) TILT = PHI - HBETA C - TILT2 = CHI - HBETA TILT = CHI - HBETA IF (TILT + LT 0.000) GO TO 144 IF (TILT + GT + HBETA) GO TO 142 LPB = LPB + HBETA) GO TO 142 C - THE FOLLOWING ESTABLISHES THE PARAMETERS FOR A CENTER LENS POSANG = 0.000 TILT = 0.000 TILT = 0.000 ALPHA = 0.000 VOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP = 0.000 VOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP = 0.000 VOLD = BSTT + DEHT + FKC - REFF(K) I CONTINUE COTILT = 90.00 MRITE (NPRINT, 32) I, COTILT, M, POSANG, X, YOLD, DEY(K) GO TO 89 142 CONTINUE C - NO CENTER LENS C - NO CENTER LENS ANGE = ANGLE R = SORT (RETTK(**2 - RBLANK*2) * SIN(ANGLE) ANGL = ANGLE R = SORT (RETTK(**2 - RBLANK*2) * SIN(ANGLE) ANGL = ANGLE R = SORT (RETTK(**2 - RBLANK*2) * SIN(ANGLE) ANGL = ANGLE R = SORT (RETTK(**2 - RBLANK*2) * SIN(ANGLE) ANGL = ANGLE R = SORT (RETTK(**2 - RBLANK*2) * SIN(ANGLE) ANGL = ANGLE R = SORT (RETTK(**2 - RBLANK*2) * SIN(ANGLE) ANGL = ANGLE R = SORT (RETTK(**2 - RBLANK*2) * SIN(ANGLE)	L	TILL IS FUR THE CIM-X N.C. MACHINE	
C- TILT2 = CHI - HBETA C- TILT2 = CHI - HBETA (15) CONTINUE IF (TILT .6I. HBETA) GO TO 144 IF (TILT .6I. HBETA) GO TO 142 C- THE FOLLOWING ESTABLISHES THE PARAMETERS FOR A CENTER LENS M = 10.000 TILT = 0.000 ALPHA = 0.000 TILT = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP .EO. 1) GO TO 149 X = 0.000 X = 0.	545	K + I INDEXING HEAD	
C- TILL = PHI - HBETA 155 CONTINUE 1F (TILT .01.0.000) 60 T0 144 IF (TILT .01.0.000) 60 T0 144 LPB = LPB + H LPB = LPB + H POSANG = 0.000 TILT = 0.000 A = 0.000 X = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP .00) YOLD = DSTT + HC YOLD = DSTT + DEHT + FKC - REFF(K) X = DSTT + HC YOLD = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) A = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) YOLD = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = DSTT + DEHT + FKC - REFF(K) X = SORT(RTST(K)**2 - RBLANK**2) * SIN(ANGLE) X = SORT(RTST(K)**3 - RBLANK**3 * SIN(ANGLE) X = SORT(RTST(K	•	HILLS WAS FUR THE K+1 INDEXING HEAD	
15. ILLT = CHI - HBETA 15. CONTINUE 16. (TILT - LT 0.000) GO TO 144 17. (TILT - LT 0.000) GO TO 144 18. CONTINUE 19. CONTIN			
159 CONTINUE C= THE FOLLOWING ESTABLISHES THE PARAMETERS FOR A CENTER LENS H = 1 POSANG = 0.000 TILT = 0.000 ALPHA = 0.000 X = 0.000 YOLD = REFE(K) + FLKAY + HPIVOT IF (LIMP = E0. 1) GO TO 149 X = DSTT + DEHT + FKC - REFE(K) 149 CONTINUE COTILT = 90.00 WRITE (NPRINT 32) I, COTILT, M, POSANG, X, YOLD, DEY(K) GO TO 89 144 CONTINUE C- NO CENTER LENS WRITE (NPRINT 167) 140 CONTINUE ANGLE = TILT / RTOD ALPHA = 2.00 * RTOD * ASIN(RBC/R) ALPHA = 2.00 * RTOD * ASIN(RBC/R) ALPHA = 2.00 * ALPHA ** ** ** ** ** ** ** ** ** ** ** ** **		- TILT2	
IF (TILT -6LT - 0.000) GO TO 144 IF (TILT -6LT - 0.000) GO TO 142 LPB = LPB + 1 LPB = LPB + 1 POSANG = 0.000 ALPHA = 0.000 ALPHA = 0.000 X = 0.000 X = 0.000 YOLD = REF(K) + FLKAY + HPIVOT IF (LIMP - 0.00) X = DSTT + HC YOLD = DSTT + DEHT + FKC - REFF(K) YOLD = DSTT + DEHT + FKC - REFF(K) GO TO 89 144 CONTINUE COTILT = 90.00 WRITE (NPRINT - 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = TILT / RTOD ALPHA = 2.00 * RTOD * ASIN(RBC/R) ** ANGLE = ANGLE ** ANGLE ** ASIN(RBC/R) ** ANGLE ** ANGLE ** ANGLE ** ASIN(RBC/R) ** ANGLE ** A		CONTINUE	
F (TIT & GT & HBETA) GO TO 142	120	(TILT ,LT. 0.000) GO TO	
C- THE FOLLOWING ESTABLISHES THE PARAMETERS FOR A CENTER LENS M = 1 POSANG = 0.000 TILT = 0.000 ALPHA = 0.000 X = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP * E0* 1) 60 TO 149 X = DSTT + DEHT + FKC - REFF(K) IQ CONTINUE COTILT = 0.000 WRITE (NPRINT*32) I, COTILT, M, POSANG, X, YOLD, DEY(K) 60 TO 89 I44 CONTINUE NO CENTER LENS WRITE (NPRINT* 167) GO TO 89 I42 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = ALLE / RELANK**2) * SIN(ANGLE) ALPHA = 2.00 * RTOD * ASIN(RBC/R) X = 3.00 * RTOD * ASIN(RBC/R) X = 3.00 * RTOD * ASIN(RBC/R) X = 3.00 * ALPHA	- manufacture control of the control	(TILT .GT. HBETA) GO TO	
C- THE FOLLOWING ESTABLISHES THE PARAMETERS FOR A CENTER LENS M		LPB = LPB + 1	
M = 0.000 TILT = 0.000 ALPHA = 0.000 ALPHA = 0.000 X = 0.000 X = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP .EO. 1) 60 TO 149 X = DSTT + HC YOLD = DSTT + DEHT + FKC - REFF(K) 149. CONTINUE COTILT = 90.00 WRITE (NPRINT.32) I, COTILT, M, POSANG, X, YOLD, DEY(K) GO TO 89 144. CONTINUE C- NO CENTER LENS WRITE (NPRINT. 167) GO TO 89 142. CONTINUE ANGLE = TILT / RTOD ANGLE = ANGLE R = SORT(RPIST(K)**2 - RBLANK**2) * SIN(ANGLE) ALPHA = 2.00 * RTOD * ASIN(RBC/R) XM = 360.0. ALPHA	to the delication and the second	FOLLOWING ESTABLISHES THE PARAMETERS FOR A	
TILT = 0.000 ALPHA = 0.000 X = 0.000 X = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT If (LIMP & EO. 1) 60 TO 149 X = DSTT + DEHT + FKC - REFF(K) 149 CONTINUE COTILT = 90.00 WRITE (NPRINT, 32) I, COTILT, M, POSANG, X, YOLD, DEY(K) 60 TO 89 142 CONTINUE C- NO CENTER LENS WRITE (NPRINT, 167) 60 TO 89 142 CONTINUE ANGLE = TILT / RTOD ALPHA = 2.00 * RTOD * ASIN(RBC/R)	u	- II C	
ALPHA = 0.000 X = 0.000 X = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP .EO. 1) 60 TO 149 X = DSTT + HC COTILT = 90.00 WRITE (NPRINT.32) I, COTILT. M, POSANG. X, YOLD. DEY(K) GO TO 89 144 CONTINUE C- NO CENTER LENS WRITE (NPRINT. 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * SIN(ANGLE) ALPHA = 2.50 * RTOD * ASIN(RBC/R) X M = 360.0 / ALPHA		0.00 ± 0.	
X = 0.000 X = 0.000 YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP .EO. 1) GO TO 149 X = DSTT + HC YOLD = DSTT + DEHT + FKC - REFF(K) 149 CONTINUE COTILT = 90.00 WRITE (NPRINT.32) I, COTILT, M, POSANG, X, YOLD, DEY(K) GO TO 89 144 CONTINUE C- NO CENTER LENS WRITE (NPRINT. 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = ANGLE R = SORI(RTST(K)**2 - RBLANK**2) * SIN(ANGLE) ALPHA = 2.00 * RTOD * ASIN(RBC/R) XM = 36.00 / ALPHA			
YOLD = REFF(K) + FLKAY + HPIVOT IF (LIMP & EO. 1) 60 TO 149 X = DSTT + HC YOLD = DSTT + HC YOLD = DSTT + DEHT + FKC - REFF(K) YOLD = DSTT + HC CONTINUE CONTINUE C- NO CENTER LENS MRITE (NPRINT, 32) I, COTILT, M, POSANG, X, YOLD, DEY(K) 60 TO 89 144 CONTINUE C- NO CENTER LENS MRITE (NPRINT, 167) 60 TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * SIN(ANGLE) XM = 360,00 / ALPHA	THE STREET, S. LEWIS CO., LANSING.		
IF (LIMP *EO. 1) 60 TO 149 X = DSTT + HC YOLD = DSTT + DEHT + FKC - REFF(K) 149 CONTINUE COTILT = 90.00 WRITE (NPRINT, 32) I, COTILT, M, POSANG, X, YOLD, DEY(K) 60 TO 89 144 CONTINUE C- WRITE (NPRINT, 167) 60 TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * SIN(ANGLE) ALPHA = 2.00 * RTOD * ASIN(RBC/R) X M = 360.00 / ALPHA		00000	
X	07	THE TO THE TOTAL	
149 CONTINUE COTILT = 90.00 WRITE (NPRINT.32) I, COTILT, M, POSANG, X, YOLD, DEY(K) GO TO 89 144 CONTINUE C- NO CENTER LENS WRITE (NPRINT. 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * SIN(ANGLE) ALPHA = 2.00 * RTOD * ASIN(RBC/R) ALPHA = 2.00 * RTOD * ASIN(RBC/R)	000	CLIMP SEO. 1)	i
149 CONTINUE COTILT = 90.00 WRITE (NPRINT.32) I, COTILT. M, POSANG. X, YOLD. DEY(K) GO TO 89 142 CONTINUE WRITE (NPRINT. 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * SIN(ANGLE) ALPHA = 2.50 * RTOD * ASIN(RBC/R) ALPHA = 2.50 * RTOD * ASIN(RBC/R) ALPHA = 2.50 * RTOD * ASIN(RBC/R)	A STANDARD STANDARD STANDARD STANDARD	- DOTT DOUT . COO	CIMI
CONTINCE CONTINCE CONTINUE GO TO 89 144 CONTINUE C- NO CENTER LENS WRITE (NPRINT, 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = SORI(RTST(K)**2 - RBLANK**2) * ALPHA = 2.00 * RTOD * ASIN(RBC/R) ANGLE = SORI(RTST(K) **2 - RBLANK**2) * ALPHA = 2.00 * RTOD * ASIN(RBC/R) ANGLE = SORI(RTST(K) **2 - RBLANK**2) * ALPHA = 2.00 * RTOD * ASIN(RBC/R)		CONTINUE	CIM-X
MRITE (NPRINT, 32) I, COTILT, M, POSAN GO TO 89 144 CONTINUE C- NO CENTER LENS WRITE (NPRINT, 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = TILT / RTOD ANGLE = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * ALPHA = 2.00 * RTOD * ASIN(RBC/R) ALPHA = 2.00 * ALPHA	marketisch metr z me mange z zugle-	COLLINGE	
144 CONTINUE C- NO CENTER LENS WRITE (NPRINT, 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * ALPHA = 2.00 * RTOD * ASIN(RBC/R) ALPHA = 2.00 * ALPHA	7	00 this contract to the contra	
144 CONTINUE C		CONTRINITION 19 COLLETO M9	
C- MO CENTER LENS WRITE (NPRINT, 167) GO TO 89 142 CONTINUE ANGLE = TILT / RTOD ANGLE = ANGLE R = SORI(RTST(K)**2 - RBLANK**2) * ALPHA = 2.00 * RTOD * ASIN(RBC/R) M = 360.00 / ALPHA		TITT	
WRITE (NPRINT, 167) 142	Charl Affic Segmentary of a visit Annual	LAST CONTINOS	
142 CONTINUE ANGLE = TILT / RTOD ANG2 = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * ALPHA = 2.50 * RTOD * ASIN(RBC/R) M = 350.00 / ALPHA		MOTTE ANDUTAT 1671	TIEU IN)
142 CONTINUE ANGLE = TILT / RTOD ANG2 = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * ALPHA = 2.50 * RTOD * ASIN(RBC/R) X = 3.50.00 / ALPHA	7.0		
ANGLE = TILT / RTOD ANG2 = ANGLE R = SORI(RTST(K)**2 - RBLANK**2) * ALPHA = 2.50 * RTOD * ASIN(RBC/R) XM = 350.00 / ALPHA		S	
ANG2 = ANGLE R = SORT(RTST(K)**2 - RBLANK**2) * ALPHA = 2.00 * RTOD * ASIN(RBC/R) XM = 2.00.0 / ALPHA		ANGIE = TILL	
R = SORT(RTST(K)**2 - RBLANK**2) * ALPHA = 2.00 * RTOD * ASIN(RBC/R) XM = 2.00.0 / ALPHA		ANGI E	
XM = 2.00 * RTOD * ASIN(RBC/R)	a training of the second order of the second of	CORT (RICT (K) **2 - DB! ANK **2) *	
XM = 360.0 / ALPHA	75	SOUTH STATE OF STATE	
1 2 2 2 2 E E		- 36.0 / Albun	
		20000	

	S = NUMBER OF LENS IN A RING		
087	A × >		
, o.	* SIN(ANGLE) + DSTT *	OPTIONAL CIM-X	
0.00	EFF (K) = 5 - Y T = 90.00 - TILT	1	
490	IF (LIMP •NE. 2) GO TO 404 X = XNEW CO. =	· · · · · · · · · · · · · · · · · · ·	
	404 CONTINUE WRITE (NPRINT, 32) I, COTILT, M, POSANG, X, YOLD, DEY(K) TIT = TIT - BETA		
564	89 . 98 40 CONTIN	Control of the contro	
500	TOTAL NUMBER OF LENWRITE (NPRINT+4). LPRINT OUT THE GRINDIF (IND(K) + NE - 2)		
505	WRITE (NPRINT, 35) RGRIND, DGND, HGRIND WRITE (NPRINT, 37) POLR, DPOL, HTPOL 60 TO 60 58 CONTINUE IF (IND(K) NE, 1) GO TO 60		
510	MRITE (NPRINT, 136) RGRIND, DGND, XDUM, HGRIND XDUM = 1,100 * DPOL WRITE (NPRINT, 137) POLR, DPOL, XDUM, HTPOL 60 TO 1		

$\label{eq:appendix} \mbox{\ensuremath{\mathtt{APPENDIX}}\ C}$ $\mbox{\ensuremath{\mathtt{COMPUTER}}\ OUTPUT\ -\ COST\ COMPARISON}$

_LENS	ATA =			3000 .25		.8870	1
	BLANK	OIAMETER = THICKNESS =	1.0000				
CALC	ULATION	S FOR SPOT	BLOCK NO.	1			
		CAL RADIUS.					
		CAL RAOIUS					
		DIAMETER =					
			2.2654				
		FR OF HOLES		= 1.0000			
		ER OF CLEAR					
		IVE RADIUS					
	PHI =			•••			
•	BETA	= 25.00					
	RING	TILT	NO.OF	POSITION	К	+ T INDEXING	HEAD
	NO.	ANGLE	SPOTS	ANGLE	X	Z	OELTA
	1100	THE STATE OF THE S		ANOGE.			<u> </u>
	î	22.5005	13	27.6923	4.7256	9.1825	.030
	2	47.5000	9	40.0000	3.3849	10.8143	.036
	3	72.5000	á	120.0000	1.4801	11.7265	.030
		ENTER LENS		1200000	1.4001	1101502	•030
		5 LENS ON B	LOCK NO	1			
		S LENS ON B	LOCK NO.				
CDI	NDER DA	TA					
URI		CAL RADIUS	2 542	^			
				•			
		R APERTURE	-	= 5.0068			
			5.5074				
		R HEIGHT =	3,1006		 		
POL	ISHER D		- 0 :00	=			
		CAL RADIUS		4			
	. –	ER APERTURE) = 5.3022			
		ER 0.D. =					
	POLISH	ER HEIGHT =	3.2245				
C41 C	4 = 7 0 1	c 500 c007	Di OCK NO				
CALC		S FOR SPOT	_				
		CAL RADIUS,					
		CAL RAOIUS		= 1.3461			
	BLOCK	DIAMETER =	2.6514				
	BLOCK	HEIGHT =	1.3624				
	DIAMET	ER OF HOLES	(SPOTS) :	= 1.0000			
		ER OF CLEAR					
	EFFECT	IVE RADIUS	= 1.08	29			
	PHI :	80.00					
		= 50.00					
	RING	TILT	NO.OF	POSITION	K	+ T INOEXING	HEAD
	NO.	ANGLE	SPOTS	ANGLE	X	Z	OELTA
		- AUTVILL		ALL YELL			- ULLIA
	1	35.0000	5	72.0000	4.3000	8.9766	.049
	2	90.0000		A A A A A	0.0000	10.8246	.049
				1	0.0000	10.00040	•049
		6 LENS ON B	LUCH NU				
GPT	NDER DA	TA-					•
URI			1 204				
	SPITERI	CAL RADIUS	1+300	- 25655			
				= 2.5605			
		R 0.D. =					
		R_HEIGHT =	2.0743				
POL	ISHER D			-			
	COLUEDA	GAL DAGTILE	1 / 50	^			
		CAL RADIUS					
		ER APERTURE					
	POLISH		CONCAVE	2.8559			

LENS BLANK D	2.54	+20 1	.3000 .25	00 •8	870	2
BLANK D	IAMETER = HICKNESS =		•			
CALCULATIONS	FOR SPOT	BLOCK NO	1			
	AL RADIUS					
	AL RADIUS		= 2.4390			
	IAMETER =					
	EIGHT =	2.2654				
			= 1.0000			
	R OF CLEAR VE RADIUS					
	80.00		21.9			
	25.00			•		
RING	TILT	NO.OF	POSITION	CIM	-X N.C. EQUI	PMENT
NO.	ANGLE	SPOTS	ANGLE	Υ	2	DELTA :
	22.5000	13	27,6923	12.1970	5.1069	.0300
2	47.5000	9	40.0000	11.7193	8.3146	•0300
3	72.5000	3	120.0000	9.9308	11.0199	.0366
	NTER LENS					
25	LENS ON	BLOCK NO.	1			
GRINDER DAT	Δ-					
	AL RADIUS	= -2.542	20			
	APERTURE		- "			×
	0.D. =	5.5074	30000			
	HEIGHT =					
POLISHER DA		0,11,1				
SPHERIC	AL RADIUS	= -2.692	20			
POLISHE	R APERTURE	E (CONCAVE	= 5.3022			
POLISHE	R O.D. =	5.8324				
POLISHE	R HEIGHT	3 • 224	5			
CALCULATIONS	FOR SPOT	BLOCK NO.	. 2		···	· · · · · · · · · · · · · · · · · · ·
	AL RADIUS					
	AL RADIUS					
	IAMETER =		- 103401			
	EIGHT =	1.3624				
	R OF HOLES		= 1.0000		. •	
	R OF CLEAR					
	VE RADIUS					
PHI =			327			
	- 4					
					-X N.C. EQU	PMENT
BETA =		NO.OF	POSITION	CIM	TA NOCO EUU	LIPEIN
	TILT ANGLE	NO.OF SPOTS	POSITION ANGLE	Y CIM	Z Z	
BEŤA = RING	TILT ANGLE	SPOTS	ANGLE	Y	Z	DELTA 2
BETA = RING NO.	TILT ANGLE 35.0000	SPOTS 5	72.0000	Y 12•2893	2 5.6417	DELTA :
BETA = RING NO. 1 2	TILT ANGLE 35.0000 90.0000	5 1	ANGLE	Y	Z	DELTA .0497
BETA = RING NO. 1 2	TILT ANGLE 35.0000	5 1	72.0000	Y 12•2893	2 5.6417	DELTA .0497
BETA = RING NO. 1 2	TILT ANGLE 35.0000 90.0000 LENS ON	5 1	72.0000	Y 12•2893	2 5.6417	DELTA .0497
BETA = RING NO. 1 2 GRINDER DAT	TILT ANGLE 35.0000 90.0000 LENS ON	SPOTS 5 1 BLOCK NO.	72.0000 0.0000 2	Y 12•2893	2 5.6417	DELTA .0497
BETA = RING NO. 1 2 GRINDER DAY SPHERIC	TILT ANGLE 35.0000 90.0000 LENS ON	5 1 BLOCK NO.	72.0000 0.0000 2	Y 12•2893	2 5.6417	DELTA :
BETA = RING NO. 1 2 GRINDER DAT SPHERIC GRINDER	TILT ANGLE 35.0000 90.0000 LENS ON	SPOTS 5 BLOCK NO. = -1.300 (CONCAVE	72.0000 0.0000 2	Y 12•2893	2 5.6417	DELTA .0497
BETA = RING NO. 1 2 6 GRINDER DAT SPHERIC GRINDER GRINDER GRINDER	35.0000 90.0000 LENS ON	5 BLOCK NO. = -1.30 (CONCAVE 2.8166	ANGLE 72.0000 0.0000 2 00 0 2.5605	Y 12•2893	2 5.6417	DELTA .0497
BETA = RING NO. 1 2 6 GRINDER DAT SPHERIC GRINDER GRINDER GRINDER GRINDER	35.0000 90.0000 LENS ON SAL RADIUS APERTURE 0.D. =	5 BLOCK NO. = -1.30 (CONCAVE 2.8166	ANGLE 72.0000 0.0000 2 00 0 2.5605	Y 12•2893	2 5.6417	DELTA .0497
BETA = RING NO. 1 2 GRINDER DAT SPHERIC GRINDER GRINDER GRINDER GRINDER POLISHER DA	35.0000 90.0000 LENS ON A- CAL RADIUS APERTURE 0.00 = HEIGHT =	5 1 BLOCK NO. = -1.30 (CONCAVE 2.8166 2.0743	72.0000 0.0000 2	Y 12•2893	2 5.6417	DELTA :
BETA = RING NO. 1 2 GRINDER DAT SPHERIC GRINDER GRINDER GRINDER GRINDER FOLISHER DA SPHERIC	35.0000 90.0000 LENS ON A- CAL RADIUS APERTURE 0.D. = HEIGHT =	5 1 BLOCK NO. = -1.30 (CONCAVE 2.8166 2.0743 = -1.45	ANGLE 72.0000 0.0000 2 00 0 2.5605	Y 12.2893 8.0701	2 5.6417	DELTA :
BETA = RING NO. 1 2 GRINDER DAT SPHERIC GRINDER GRINDER GRINDER GRINDER FOLISHER DA SPHERIC	35.0000 90.0000 LENS ON A- CAL RADIUS APERTURE 0.00 = HEIGHT =	5 1 BLOCK NO. = -1.30 (CONCAVE 2.8166 2.0743 = -1.45 E (CONCAVE	ANGLE 72.0000 0.0000 2 00 2.5605	Y 12.2893 8.0701	2 5.6417	DELTA :

```
3.3500 -1.3000
INPUT DATA =
                                                  .0460
                                                               .8870
 LENS BLANK DATA
         BLANK OIAMETER = 1.0000
         BLANK THICKNESS =
                                -- 1560
   CALCULATIONS FOR SPOT BLOCK NO. 1
         SPHERICAL_RAOIUS. C1 = 3.3500
         SPHERICAL PADIUS OF BLOCK = 3.2420
        BLOCK DIAMETER = 6.3855
BLOCK HEIGHT = 2.9291
        DIAMETER OF HOLES (SPOTS) = 1.0000
DIAMETER OF CLEARANCE HOLES = .8750
EFFECTIVE RAQIUS = ...3.1990
         PHI = 80.00
          BETA = 18.00
         RING
                             NO.OF
                                        POSITION
                                                            K + T INDEXING HEAD
                   TILT
          NO.
                            SPOTS
                                         ANGLE
                                                                                 DELTA Z
                   ANGLE
                19.0000
37.0000
                              18
                                         20.0000
                                                        4.7117
                                                                    9.7764
                                                                                   .0305
                                                                                   .0365
                                                        3.9155
                                15
                                         24.0000
                                                                   11.0240
                  55.0000
                                         32.7273
                                                        2.7726
                                                                   11.9645
                                                                                   .0367
           3
                                11
                  73.0000
                                                                    12.5058
                                                                                   .0300
           4.
                                         72.0000
                                                        1.3951
           NO CENTER LENS
              49 LENS ON BLOCK NO. 1
    GRINDER DATA-
         SPHERICAL RADIUS = -3.3500
        GRINDER APERTURE (CONCAVE) = GRINDER 0.D. = 7.2580
GRINDER HEIGHT = 3.7683
                                             6.5982
    POLISHER DATA-
         SPHERICAL RADIUS = -3.5000
         POLISHER APERTURE (CONCAVE) =
                                               6.8937
        POLISHER 0.0. = -7.5830
POLISHER HEIGHT = 3.8922
   CALCULATIONS FOR SPOT BLOCK NO. 2
         SPHERICAL RADIUS, C2 = -1.3000
         SPHERICAL RADIUS OF BLOCK = 1.3042
         BLOCK APERTURE (CONCAVE) = 2.5688
         BLOCK 0.D. (CONCAVE) = 2.9370
BLOCK HEIGHT = 2.1570 (H))
        OIAMETER OF HOLES (SPOTS) = 1.0000
OIAMETER OF CLEARANCE HOLES = .8750
       EFFECTIVE RADIUS =
                               1.3548
          PHI = 80.00
          BETA = 46.00
                             NO.OF
                                        POSITION
                                                              K + T INDEXING HEAD
         RING
                   TILT
          NO.
                  ANGLE SPOTS
                                         ANGLE
                                                                   Z
                                                                                 DELTA Z
                                         60.0000
                                                        6.3390
                                                                   10.3626
                                                                                   .0375
                  33.0001
                  90.0000
                               1
                                          0.0000
                                                        0.0000
                                                                    11.0945
                                                                                   .0375
               7 LENS ON BLOCK NO. 2
    GRINOER OATA-
         SPHERICAL RADIUS = 1.3000
GRINDER DIAMETER = 2.5605
         GRINDER HEIGHT = 1.0743
    POLISHER DATA-
        SPHERICAL RADIUS = 1.1500
POLISHER OIAMETER = 2.2651
         POLISHER HEIGHT = 1.0287
```

INPUT D	ATA = BLANK D		00 -1	3000	.0460	.8870	2
LENS.	BLANK D	IAMETER =	1.0000)			
	BLANK T	HICKNESS =	•156	50			
CALC	ULATIONS	FOR SPOT	BLOCK NO	. 1	•		
	SPHERIC	AL RADIUS.	C1 =	3.3500			
	SPHERIC	AL RADIUS	OF BLOCK	= 3.2420			
		IAMETER =					
			2.9291	= 1.0000			
		R OF CLEAR					
		VE RADIUS			50		
		80.00					
		18.00					
	RING	TILT	NO.0F	POSITION	С	IM-X N.C. EQU	
	NO.	ANGLE	SPOTS	ANGLE	Y	Z	DELTA
	÷	10 0000	10	20 0000	12.0103	5.5152	•0300
	2	19.0000	18 15	20.0000 24.0000	11.9720		.0360
	3	37.0000 55.0000	11	32.7273	11.2242		.0360
	4	73.0000	5	72.0000	9.8401		.0360
		NTER LENS	-	,		•	
	49	LENS ON B	LOCK NO.	1.			
GRI	NDER DAT	`A-		•••			
		AL RADIUS	= -3.35	00	1		•
		APERTURE			982		
		0.D =					
		HEIGHT =	3.7683			•	
POL	ISHER DA						and the same of th
•		AL RADIUS			0007		
		R APERTURE		E) = 0.0	3937	a din non situa dinandiaran diputifikan wila s	
		R O.D. = R HEIGHT =		2			
	PULISHE	K HEIGHT -	3,072	۷			and the second s
CALC	ULATIONS	FOR SPOT	BLOCK NO	. 2			
		CAL RADIUS					
				= 1.304	2	4	
		PERTURE (C				· ·	•
		D.D. (CONCA					
		HEIGHT =					÷.
				= 1.000			
		R OF CLEAF IVE RADIUS			750		
		80.00	- 1.3	540			
		= 46.00					
	RING	TILT	NO.OF	POSITION	C	IM-X N.C. EQU	IPMENT
	NO.		SPOTS	ANGLE		Z	DELTA
	ĩ	33.0000	6	60.0000	14.2565	4.1921	•0375
	2	90.0000	1	0.0000			.0375
		LENS ON E	_				
CD.	NIDED DA	T A -					
GKI	NDER DAT	CAL RADIUS	= 1.30	0.ō			
		R DIAMETER					
		R HEIGHT =		-			
PΩI	ISHER DA		140143				
FUL		CAL RADIUS	= 1.15	OŌ			
		ER DIAMETER					
		ER HEIGHT					

APPENDIX D

COMPUTER OUTPUT - TEST SPOT BLOCKS

```
.2500
                      2.5420
                                -1.2580
                                                          .8870
                                                                          1
INPUT DATA =
  LENS BLANK DATA
        BLANK DIAMETER =
                             1.0000
        BLANK THICKNESS =
                               •3636
   CALCULATIONS FOR SPOT BLOCK NO. 1
        SPHERICAL RADIUS, C1 = 2.5420
        SPHERICAL RADIUS OF BLOCK = 2.3376
        BLOCK DIAMETER = 4,6042
                         2.1817
        BLOCK HEIGHT =
        DIAMETER OF HOLES (SPOTS) = 1.0000
DIAMETER OF CLEARANCE HOLES = .8750
        EFFECTIVE RADIUS = 2.1834
         PHI = 80.00
         BETA = 26.00
                                                        K + T INDEXING HEAD
                           NO.OF
                                    POSITION
        RING
                  TILT
         NO.
                           SPOTS
                                                                Z
                                                                          DELTA Z
                  ANGLE
                                      ANGLE
                                                   4.7224
                                                               9.1236
                                                                            .0301
                 23.0000
                             12
                                      30.0000
                                                   3.2949
                                                              10.8014
                                                                            .0300
                 49.0000
                              8
                                      45.0000
                                                              11.6836
                                                   1.2763
                                                                            .0300
                 75.0000
                                     180.0000
          3
          NO CENTER LENS
             22 LENS ON BLOCK NO. 1
    GRINDER DATA-
        SPHERICAL RADIUS = -2.542
        GRINDER APERTURE (CONCAVE) = 5.0068
        GRINDER 0.D. = 5.5074
        GRINDER HEIGHT = 3.1006
    POLISHER DATA-
        SPHERICAL RADIUS = -2.6920
POLISHER APERTURE (CONCAVE) =
                                           5.3022
        POLISHER 0.0 = 5.8324
POLISHER HEIGHT = 3.224
                             3.2245
   CALCULATIONS FOR SPOT BLOCK NO. 2
        SPHERICAL RADIUS, C2 = -1.2580
        SPHERICAL RADIUS OF BLOCK = 1.3582
        BLOCK APERTURE (CONCAVE) =
                                       2.6751
                                  3.2448
        BLOCK O.D. (CONCAVE) =
        BLOCK HEIGHT = 2.3218 (H1)
        DIAMETER OF HOLES (SPOTS) =
                                       1.0000
        DIAMETER OF CLEARANCE HOLES = .8750
        EFFECTIVE RADIUS =
                               1.5197
        PHI = 80.00
         BETA = 48.00
                                                         K + T INDEXING HEAD
        RING
                           NO.OF
                                     POSITION
                 TILT
                           SPOTS
                                                                           DELTA Z
         NO.
                                      ANGLE
                  ANGLE
                                      72.0000
                                                                            .0497
                 34.0000
                                                   6.3994
                                                              10.7231
                 90.0000
                                      0.0000
                                                              11.2593
                                                                            .0497
                              1
                                                    0.0000
               6 LENS ON BLOCK NO.
    GRINDER DATA-
        SPHERICAL RADIUS =
                              1.2580
        GRINDER DIAMETER = 2.4778
        GRINDER HEIGHT = 1.0396
    POLISHER DATA-
        SPHERICAL RADIUS = 1.1080
        POLISHER DIAMETER = 2.1823
        POLISHER HEIGHT = 1.0379
```

PUT DATA =		20 1.	2580 .250	i	8870.	1
LENS BLANK I	DATA DIAMETER = THICKNESS =	1.0000	ō			
CALCULATION	S FOR SPOT	BLOCK NO.	1			
SPHERI	CAL RADIUS.	C1 = 2	-5420			
SPHERI	CAL RADIUS	OF BLOCK	= 2.4390			
BL OCK	TAMETER =	4.8038				
BLOCK	HEIGHT =	2.2654				
DIAMET	FR OF HOLES	(SPOTS)	= 1.0000	-		disable 1 12 1 miles e desempe deligible
DIAMET	ER OF CLEAR	ANCE HOLE	S = •8750			
EFFECI	IVE RADIUS	= 2.28	70		page mayor or a second of the	
PHI =	80.00					
BETA	= 25.00					
RING	TILT	NO.OF	POSITION		+ T INDEXING	
NO.	ANGLE	SPOTS	ANGLE	X	Z	DELTA
• 1	22.5000	13	27.6923	4.7256		.0300
2	47.5000	9	40.0000	3.3849		•0369
3	72.5000	3	120.0000	1.4801	11.7265	.0300
NO C	ENTER LENS					**
_2	5 LENS ON B	LOCK NO.	1		and the second of the second of	
GRINDER DA						
SPHERI	CAL RADIUS	= -2.542	20			
GRINDE	R APERTURE	(CONCAVE)	= 5.0068		min the second t	
		5.5074				
GRINDE	R HEIGHT =	3,1006				لأد عصدت واستنسانيا
POLISHER D	ATA					
SPHERI	CAL RADIUS	= -2.697	20			
POLISH	ER APERTURE	CONCAVE	= 5.3022			
POLISH	FR O.D. =	5.8324				
POLISH	ER HEIGHT =	3.224	5			
					-	
CALCULATION	S FOR SPOT	BLOCK NO	. 2			
SPHERI	CAL RADIUS.	C2 =	1.2580			
SPHERI	CAL RADIUS	OF BLOCK	= 1.3089			
BI OCK	DIAMETER =	2.5780	•			
	HEIGHT =					
DIAMET	FR OF HOLES	(SPOTS)	= 1.0000	· ·		
DIAMET	ER OF CLEAR	PANCE HOL	ES = .8750		•	
FEFECT	IVE RADIUS	= 1.0	409			
PHI W			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	= 52.00					
RING	TILT	NO.OF	POSITION	K	+ T INDEXING	HEAD
NO.	ANGLE	SPOTS	ANGLE	X	Z	DELTA
NO.	ANOLL					
ī	36.0000	4	90.0000	4.2487	9.0064	.0497
2	90.0000	1	0.0000	0.0000		.0497
۷	5 LENS ON F	_	-		• • • • • • • • • • • • • • • • • • • •	
	5 LENS UN	PLOCK INO.				
COTNOCO DA	T A		•			
GRINDER DA		1 25	οÃ			
SPHER	CAL RADIUS	1.25) = 2.4778			
GRINDE	R APEKTURE	CUNCAVE	2.41.10			•
GRINDE	R 0.D. =	2.7256				
		2.0396			,	
POLISHER	JATA-	- 1 (0	0.0			
SPHER	ICAL RADIUS	= -1.40	5) - 2 7-25		payer allow additional controls and	can i copada vial
	HER APERTURI	L (CONCAV	E) = 2.7732			
POLIS						
POLISI	HER D.D. =	3.0505				

PUT DATA =	1.965	ň -2	.1950 .15	00 .9	350	1
LENS BLANK			•••			
	OIAMETER =	1.000	0			
	THICKNESS =					
	S FOR SPOT B				•	
	CAL RADIUS,					
	CAL RADIUS O					
	DIAMETER =		***************************************			•
	HEIGHT = 1		- 1 0000			
	ER OF HOLES					
	ER OF CLEARA IVE RADIUS =					
	80.00	101	323			
	= 33.00					
RING		NO.OF	POSITION	K .	T INDEXING	HEAD
NO.		SPOTS	ANGLE	х т	Z	DELTA Z
NO.	ANOLE	3-013	ANOLL			
1	26.5000	9	40.0000	4.6607	8.9956	•0300
2	59.5000	5	72.0000	2.5773	10.9174	.0300
_	ENTER LENS			•		
	4 LENS ON BL	OCK NO.	1			
GRINOER OA	ΤΔ-					
	CAL RADIUS =	-1.96	50			
	R APERTURE (<u> </u>		
GRINDE	R 0.D2 = 4	-2573				
	R HEIGHT =	2.6238				
POLISHER D	ATA-					
SPHERI	CAL RAOIUS =	-2.11	50			
POLISH	ER APERTURE	(CONCAV	(E) = 4.1657			
POLISH	ER 0.D. =	4.5823				
POLISH	ER HEIGHT =	2.747	7		•	
CALCULATION	S FOR SPOT B	LOCK NO	. 2			
	CAL RAOIUS,				· · · · · · · · · · · · · · · · · · ·	
	CAL RADIUS C					
	APERTURE (CO					
	O.D. (CONCAV					
BLOCK		.0211				
	ER OF HOLES					
	ER OF CLEARA					
	IVE RADIUS =					
	59.00					
BETA	= 27.00		1	·		
RIŅG	TILT	NO.OF	POSITION	K +	T INOEXING	
NO.	ANGLE	SPOTS	ANGLE	X	Z	DELTA
ĵ.	44.5000	9	40.0000	6.0752	13.1752	.0647
. 2	71.5000	3	120.0000	2.6722	15.0952	.0647
_	ENTER LENS					
	2 LENS ON BL	OCK NO	. 2			
	ΤΔ-		*			
GRINDER DA		2.19	95 <u>0</u>			
GRINDER DA	CAL RADIUS =		W M			
SPHER	CAL RADIUS =		22			
SPHER! GRINDE	R OIAMETER =	4.32				
SPHERI GRINDE GRINDE	R OIAMETER =	4.32				
SPHER) GRINDE GRINDE POLISHER (R OIAMETER = R HEIGHT = DATA-	1.8138				
SPHERI GRINDE GRINDE POLISHER (SPHERI	R OIAMETER =	1.8138 2.04		,		

PUT DATA =	1.965	50 1.	0625 .15	00 93	350 -	1
I FNS BLANK D	IAMETER =	1.0000				
BLANK T	HICKNESS =	•160	ō			
CALCULATIONS	FDR SPDT B	BLOCK ND.	1			
SPHERIC	AL RADIUS.	C1 = 1	.9650			
SPHERIC	AL RADIUS	OF BLOCK	= 1.9189			
BLOCK C	IAMETER =	3.7796				
BLOCK F	EIGHT =	1.8357				
DIAMETE	R OF HOLES	(SPOTS)	= 1.0000			
DIAMETE	R OF CLEAR	ANCE HOLE	s = •875 0			
	VE RADIUS	= 1.81	00			
	80.00					
	= 32.00		DOCTTION	К.	T INDEXING	HEAD
RING	TILT	NO.OF	POSITION	x '\ *	Z	DELTA
NO.	ANGLE	SPOTS .	ANGLE	^		DLLIA
7	:::		36.0000	4.6741	9.0115	.0300
	26.0000	<u>10</u> 5	72.0000	2.6886	10.9077	.0300
2	58.0000	3	0.0000	0.0000	11.4636	.0303
3	90.0000	DOK ND	1	0.0000		
16	LENS ON B	LUCK NU.				
GRINDER DA	TA-					
SPHERIO	CAL RADIUS	1.955	= 3.8703	•		
GRINDE	RAPERTURE					
		4.2573				
	R HEIGHT =	2.6238				
POLISHER D	CAL RADIUS	-2 116	· ^			
SPHERI	CAL RADIUS	E - I I I	1) = 4.165	7		
POLISH	ER D.D. =	4.5823	, = +,105			
POLISH	ER HEIGHT =		,			
PULISH	ER HEIGHT -					
CALCULATION	S FOR SPOT	BLDCN NO.	2			
SPHERT	CAL RADIUS,	C2 = 1	.0625			
SPHERT	CAL RADIUS	OF BLOCK	= 1.1922			
	DIAMETER =					
	HEIGHT =					
DIAMET	EP OF HOLES	(SPOTS)	= 1.0000			
DIAMET	ED OF CLEAR	ANCE HOLD	S = .8750			
EFFECT	IVE RADIUS	= 9	568			
	80.00					
	= 56.00				•	
RING		NO.OF	PDSITION	K •	T INDEXING	HEAD
NO.	ANGLE	SPOTS	ANGLE	X	Z	DELTA
1	38.0000	4	90.0000	4.1569	9.0750	.064
NO C	ENTER LENS					
	4 LENS DN E	BLDCK ND.	2			
GRINDEP DA	TA-					
SPHERI	CAL RADIUS	= -1.06	25			
GRINDE	R APERTURE	(CONCAVE) = 2.0927			
GRINDE	R 0.D. =	2.3020				
GRINDE	R HEIGHT =	1.8780				
POLISHER_E	ATA-					
SPHER	CAL RADIUS	= -1.21	25	_		
POLISH	IER_APERTUR	CONCAV	E) = 2.388	2	the state of the s	
POLISH	ER 0.D. =	2.6270	0			

JT DATA =	10000.00	00 1.9	9650	.1500	39	3 <mark>50</mark>	1
ENS BLANK	DATA DIAMETER =	1.0000	·····				
	THICKNESS =						
DLAM	ITILINESS -	•1001	·				
SIDE	NO. I IS PL	ANO					
		Di agir via	2				
	S FOR SPOT						
_	CAL RADIUS,		.9650				
	CAL RADIUS		= 1.98	363			
	DIAMETER =	3.9122					
		1.8914					
	ER OF HOLES	_		-			
DIAMET	ER OF CLEAR	ANCE HOLES	5 = .	8750			
EFFECT	IVE RADIUS	= 1.816	0 0				
EFFECT PHI ≖	80.00	= 1.810	0				
EFFECT PHI ■ BETA	80.0 <u>0</u> = 32.00					T THOUSE	UEAD
EFFECT PHI ■ BETA RING	80.00 = 32.00 TILT	NO.OF	POSITIO	DN		T INDEXING	
EFFECT PHI ■ BETA	80.0 <u>0</u> = 32.00			DN	K +	T INDEXING	HEAD DELTA
EFFECT PHI ■ BETA RING	80.00 = 32.00 TILT ANGLE	NO.OF SPOTS	POSITIO ANGLE		X	Z	DELTA
EFFECT PHI ■ BETA RING	80.00 = 32.00 TILT ANGLE	NO.OF	POSITIO ANGLE	00	X 4.6193	Z 8•9848	• 0000
EFFECT PHI ■ BETA RING	80.00 = 32.00 TILT ANGLE 26.0000 58.0000	NO.OF SPOTS	POSITIO ANGLE 36.000 72.000	00	X	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI ** BETA RING NO. 1 2 3	80.00 = 32.00 TILT ANGLE 26.0000 58.0000	NO.OF SPOTS	POSITIO ANGLE	00	X 4.6193 2.6563	Z 8•9848	.0000 .0002
EFFECT PHI ** BETA RING NO. 1 2 3	80.00 = 32.00 TILT ANGLE 26.0000 58.0000	NO.OF SPOTS	POSITIO ANGLE 36.000 72.000	00	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI ** BETA RING NO. 1 2 3	80.00 = 32.00 TILT ANGLE 26.0000 58.0000 90.0000 6 LENS ON BI	NO.OF SPOTS	POSITIO ANGLE 36.000 72.000	00	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI ** BETA RING NO. 1 2 3 1 GRINDER DA	80.00 = 32.00 TILT ANGLE 26.0000 58.0000 90.0000 6 LENS ON BI	NO.OF SPOTS 10 5 1 LOCK NO.	POSITIO ANGLE 36.000 72.000 0.000	00	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI = BETA RING NO. 1 2 3 GRINDER DA	80.00 = 32.00 TILT ANGLE 26.0000 58.0000 90.0000 6 LENS ON BI	NO.OF SPOTS 10 5 1 LOCK NO.	POSITIO ANGLE 36.000 72.000 0.000	00	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI = BETA RING NO. 1 2 3 1 GRINDER DA SPHERI GRINDE	80.00 = 32.00 TILT ANGLE 26.0000 90.0000 6 LENS ON BI TA- CAL RADIUS R APERTURE	NO.OF SPOTS 10 5 1 LOCK NO.	POSITIO ANGLE 36.000 72.000 0.000	00	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI = BETA RING NO. 1 2 3 1 GRINDER DA SPHERI GRINDE GRINDE	80.00 = 32.00 TILT ANGLE 26.0000 90.0000 6 LENS ON BI TA- CAL RADIUS R APERTURE	NO.OF SPOTS 10 5 1 LOCK NO. = -1.9650 (CONCAVE)	POSITIO ANGLE 36.000 72.000 0.000	00	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI = BETA RING NO. 1 2 3 1 GRINDER DA SPHERI GRINDE GRINDE	80.00 = 32.00 TILT ANGLE 26.0000 58.0000 90.0000 6 LENS ON BI TA- CAL RADIUS R APERTURE R O.D. = R HEIGHT =	NO.OF SPOTS 10 5 1 LOCK NO. = -1.9650 (CONCAVE) 4.2573	POSITIO ANGLE 36.000 72.000 0.000	00	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI = BETA RING NO. 1 2 3 1 GRINDER DA SPHERI GRINDE GRINDE GRINDE POLISHER D	80.00 = 32.00 TILT ANGLE 26.0000 58.0000 90.0000 6 LENS ON BI TA- CAL RADIUS R APERTURE R O.D. = R HEIGHT =	NO.OF SPOTS 10 5 1 LOCK NO. = -1.965((CONCAVE) 4.2573 2.6238	POSITIO ANGLE 36.000 72.000 0.000 2	00 00 00 8763	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002
EFFECT PHI = BETA RING NO. 1 2 3 1 GRINDER DA SPHERI GRINDE GRINDE GRINDE GRINDE POLISHER D SPHERI	80.00 = 32.00 TILT ANGLE 26.0000 90.0000 6 LENS ON BI TA- CAL RADIUS R APERTURE R O.D. = R HEIGHT =	NO.OF SPOTS 10 5 1 LOCK NO. = -1.965((CONCAVE) 4.2573 2.6238 = -2.115	POSITIO ANGLE 36.000 72.000 0.000 2	00	X 4.6193 2.6563	Z 8•9848 10•8560	DELTA
EFFECT PHI = BETA RING NO. 1 2 3 1 GRINDER DA SPHERI GRINDE GRINDE GRINDE GRINDE POLISHER D SPHERI POLISH	80.00 = 32.00 TILT ANGLE 26.0000 58.0000 90.0000 6 LENS ON BI TA- CAL RADIUS R APERTURE R O.D. = R HEIGHT = ATA- CAL RADIUS	NO.OF SPOTS 10 5 1 LOCK NO. = -1.965((CONCAVE) 4.2573 2.6238 = -2.115	POSITIO ANGLE 36.000 72.000 0.000 2	00 00 00 8763	X 4.6193 2.6563	Z 8•9848 10•8560	.0000 .0002

ļ 	HEAD	00000000000000000000000000000000000000
,9350	+ T INDEXING HEAD	8.9848 10.8560 11.4026
	¥ >	4.6193 2.6563 0.0000
INPUT DATA = 10000.000 1.9650 .1500 LENS BLANK DATA BLANK DIAMETER = 1.0000 BLANK THICKNESS = .1600 SIDE NO. 1 IS PLANO	ONS FOR SPOT BLOCK NO. 2 RICAL RADIUS, C2 = 1.9 RICAL RADIUS OF BLOCK = 3.9122 K HEIGHT = 1.8914 ETER OF HOLES (SPOTS) = ETER OF CLEARANCE HOLES CTIVE RADIUS = 1.8100 = 80.00 A = 32.00 ANCLE	1

		-	53		00	8750		Z ,	12.2518		8.0701	And what a complete former	3.8703				4-1657		
LENS BLANK DATA BLANK DIAMETER = 1.0000 BLANK THICKNESS = .1600	SIDE NO. 1 IS PLANO	OR SPOT BLOCK NO	SPHERICAL RADIUS, C2 = 1.9650 SPHERICAL RADIUS OF BLOCK = 1.9863	BLOCK DIAMETER = 3.9122	OF HOLES (SPOTS) = 1.00	ETER OF CLEARANCE HOLES = . CTIVE RADIUS = 1.8100	BETA = 32.00	LL)		58.0007 5	3 90.0000 1 0.0000	RADIUS = -1.9650	GRINDER APERTURE (CONCAVE) = 3.87	GRINDER 0.0% = 4.2573	TA-	RADIUS = -2.1150		HEIGHT =	ARGUMENT NEGATIVE

	ATA = BLANK D	-	00 3.	2500	.2500	1.0	900	1
	BLANK D	IAMETER =		-				
041.6		HICKNESS = FOR SPOT						
CALC		AL RADIUS.						
		AL RADIUS						
		IAMETER =		- 300010				
			2.8450		****			•
				= 1.2500				
		R OF CLEAR						
		VE RADIUS			J V			
	PHI =	-						
		13.00						
	RING	TILT	NO.OF	POSITION		K +	T INDEXING	HEAD
	NO.	ANGLE	SPOTS	ANGLE	,	(Z	DELTA
	1	40.5000	21	17,1429	1.6	405	12.0065	.030
	2	53.5000	17	21.1765	1 • 2	2540	12.2508	.030
	3.	66.5000	11	32.7273	• 8	3224	12.4019	.030
	4	79.5000	4	90.0000	• :	3679	12.4521	.030
.:	NO CE	NTER LENS		- V				
	53	LENS ON B	LOCK NO.	1 .				
GRI	NDER DAT							
	SPHERIC	AL RADIUS	= -6.000	0				
	GRINDER	APERTURE	(CONCAVE)	= 9.94	85			
		0.0 = 1						
	GRINDER	HEIGHT =	3.6448					
POL	ISHER DA							
	_	AL RADIUS		7				
) = 10.1	972			· · · · · · · · · · · · · · · · · · ·
		R 0.D. =						
	POLISHE	R HEIGHT =	3,7110)				
CALC	ULATIONS	FOR SPOT	BLOCK NO.	2				
		AL RADIUS		.2500				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		AL RADIUS		. ,				
		IAMETER =	6.3671					
		EIGHT =	-					
		R OF HOLES		= 1.2500				
				S = 1.12	-			
		VE RADIUS						
		80.00		•				
		24.00						
	RING	TILT	NO.OF	POSITION		Κ 4	T INDEXING	HEAD
	NO.	ANGLE	SPOTS	ANGLE)	(Z	DELTA
	1	22.0000	13	27.6923	4.1	5063	9.8229	.032
	2	46.0000	10	36.0000		3806	11.3612	.032
	3	70.0000	4	90.0000		5353	12.2679	.032
	-	NTER LENS						
		LENS ON B	LOCK NO.	2				
GRI	NDER DAT	Α-						
		AL RADIUS	= -3.250	00				
		APERTURE			13			
		0 D =		3240				
		HEIGHT =						rent men same rett is verrenen fant de rent de
POI	ISHER DA		3.0000				_	
		AL RADIUS	= +3,400	00				
		R APERTURE		() = 6.6	967			
	,							
	POLISHE	R O.D. =	(.3554					

PUT OATA =	6.00	300	.2500 .25	500 1.7	900	2
LENS BLANK BLANK	OIAMETER =	1.2500			* *** *** *** *** *** *** *** *** ***	
	THICKNESS :		•			
CALCULATION	S FOR SPOT	BLOCK NO.	. 1		Per printer i de la companya yang pengangangan pengangan pengangan pengangan pengangan pengangan pengangan pen	Berlin Commission of the Commi
	CAL RADIUS					
SPHERI	CAL RADIUS	OF BLOCK	= 5.8870			
BLOCK	OIAMETER =	9.7610				
BLOCK	HEIGHT =	2.8450				
DIAMET	ER OF HOLES	(SPOTS)	= 1.2500			
OIAMET	ER OF CLEAR	RANCE HOLE	S = 1.1250			
 EFFECT 	IVE RADIUS	= 5,74	50			
PHI =	56.00					
BETA	= 13.00					
RING	TILT	NO.OF	POSITION	CIM	-X N.C. EQUI	PMENT
NO.	ANGLE	SPOTS	ANGLE	Υ	Z	DELTA
		= 17		******		
1	40.5000	21	17.1429	9.8040	9.0297	.0300
2 .	53.5000	17	21.1765	9.6877	10.1741	.0300
3	66.5000	11	32,7273	9.3169	11.2630	.0300
4	79.5000	4	90.0000	8.7107	12.2407	•0300
	ENTER LENS	•	704000	04.10.	1240,0	•030
	3 LENS. ON E	BLOCK NO.	1			
	5 2211,51 011 2		•			
GRINOER OA	TA-					
SPHERT	CAL RADIUS	= -6.000	ñ			
	R APERTURE					
	$R \ 0.0 = 1$		747403			
	R HEIGHT =					
POLISHER O						
	CAL RAOIUS	= -6.150	10			
	ER APERTURE			•		
	ER 0.0. =		1001912			
	ER HEIGHT =	Trains.		•		
1021311	CK TIL TOTT	341110				
CALCULATION	S FOR SPOT	BLOCK NO.	. 2			
	CAL RADIUS		.2500			
	CAL RADIUS					
	OIAMETER =		- 302320			
	HEIGHT =	2,9213				
	ER OF HOLES		= 1.2500			
	ER OF CLEAR					
	IVE RADIUS					
	-9	= 3.02	14			
	80.00					
	= 24.00	NO 05	DOCTTON			D
RING	TILT	NO OF	POSITION	CIM	-X N.C. EQUI	
NO.	ANGLE	SPOTS	ANGLE	Y	7	OELTA
•	22 4444	1.0	07 (000		= 3043	
1	22.0000	13	27.6923	12.0537	5.7201	.0326
	46.0000	10	36.0000	11.6834	8.7575	•0326
3	70.0000	4	90.0000	10.1097	11.3818	.0326
	ENTER LENS					
5	7 LENS ON E	BLOCK NO.	2			
GRINDER OA						
	CAL RADIUS					
	R APERTURE		= 6.4013			
	R O D =					
GRINOE	R HEIGHT =	3.6856				
POLISHER D	ATA-					
SPHERI	CAL RAOIUS	= -3.400	0			
			6.6967			
PUL I SIT						
POLISH	ER 0.0. = ER HEIGHT =					

DISTRIBUTION

Commander

US Army Materiel Development and Readiness Command 5001 Eisenhower Avenue

Alexandria, VA 22203

1 Attn: DRCRD-R

1 Attn: DRC-PP

Director

US Army Production Equipment Agency

Attn: AMXPE-MT

Mr. C. McVurney Rock Island, IL 61201

Commander

US Army Armament Command Rock Island, IL 61201

1 Attn: DRSAR-PPP

1 Attn: DRSAR-RDT

1 Attn: DRSAR-ASF

1 Attn: DRSAR-RDR

1 Attn: DRSAR-MA (Bldg 30)

Commander

Picatinny Arsenal

2 Attn: Scientific & Technical

Information Branch

Dover, NJ 07801

Defense Documentation Center

Cameron Station

Alexandria, VA 22314

Commander

US Army Mobility Equipment Research

and Development Center

Attn: AMXFB-DS

Ft. Belvoir, VA 22060

Commander

US Army Missile Command

Redstone Arsenal, AL 35809

1 Attn: AMCPM-HEL-T

Dr. Thomas Norwood

1 Attn: AMSI-QRT

Mr. Guilford Hutcheson

1 Attn: AMSMI-RLS

Mr. Richard Cotter

1 Attn: AMSMI-QLU

Mr. Richard G. Shingler

1 Attn: AMCPM-LDE

Mr. William J. Harris

Commander

US Army Electronic Command

Attn: AMSEL-CT-L

Dr. Rufolf G. Buser

Ft. Monmouth, NJ 07703

US Army Field Office

HQ AFSC/SDOA

Andrews AFB, DC 20334

Commander

Michelson Laboratories

Naval Weapons Center

Attn: Dr. H. E. Bennet

Code 6018

China Lake, CA 93555

Commander

AF Armament Laboratory

Attn: DLOSL

Eglin AFB, FL 32542

Kollmorgan Corporation

347 King Street

Attn: Mr. Lentz

Northampton, MA 01060

Commander US Army, Frankford Arsenal Philadelphia, PA 19137

1 Attn: Commander's Reading File B4110-107-B

1 Attn: Dr. S. Ross, Technical Director A1000-107-1

1 Attn: Plans Branch U1000-107-2

1 Attn: Reliability Engineering Branch 03100-119-2

1 Attn: Patent Branch R1000-28-1

3 Attn: Library K2400-52-1

1 - Reference copy1 - Circulation copy1 - Record copy

5 Attn: Project Engineer Richard Cavaliere

1 Attn: Project File, T4300

1 Attn: Chief, Optics & Electronics Processes Branch, T4300-110-3

1 Attn: Chief, Advanced Technology Division, T4000-211-2

1 Attn: Director, Manufacturing Technology T1000-211-2

2 Attn: Chief, Applied Technology X1000-228-1

2 Attn: Chief, Manufacturing Engineering Division, X2000-228-3

Printing & Reproduction Division FRANKFORD ARSENAL Date Printed: 20 June 1977