2부 자바 기본 다루기

- 3장 프로그래밍을 위한 자바의 자료형

최문환

3장 프로그래밍을 위한 자바의 자료형

- 1. 값이 변하지 않는 상수
- 2. 메모리 기억공간인 변수

1.1 소수점을 가지지 않는 정수형 상수 (수치형 상수)

상수의 종류	બા	의미
2진수	0b10	0은 영문자가 아니고 숫자. 0b는 2진수 상수로 인식
10진수	4, 10, 80	
8진수	04, 012, 0100	맨 앞에 숫자 '0'을 덧붙이면 8진수 상수로 인식
16진수	0x4, 0xA, 0x6	맨 앞에 숫자 '0'과 영문자 'x', 즉 '0x'를 덧붙이면 16진수 상수로 인식합니다.
long형	10L,034L,0x2AL	10진, 8진, 16진 상수 뒤에 L을 덧붙임

1.2 소수점을 갖는 실수형 상수 (수치형 상수)

상수의종류	예	의미
소수형	1234.5, 0.0000987	가장 일반적으로 사용하는 실수형 데이터
지수형	1.2345E3, 0.987E-5	영문자E를 기준으로 앞에는 가수부 뒤에는 지수 부를 기술함
float형	1234.5f, 0.00987f	실수형 상수 뒤에 f를 덧붙임

1.3 단일 따옴표로 표현하는 문자형 상수

・ 0割 'A', 'a', '2'

▶ 확장 특수 출력 문자(escape sequence)

종 류	의미
₩n ₩t	엔터 키의 기능을 갖는다. 줄을 바꾼다(new line). 수평 탭으로 일정한 간격을 띄운다(tab).

1.4 참 혹은 거짓을 갖는 논리형 상수

- 참(true), 거짓(false) 둘 중의 하나의 값만을 저장할 수 있는 자료형
- 다른 자료형으로 변환하지 못한다.

<예제> 자바에서 사용되는 상수종류

[파일 이름 : Data01.java]

No.8

```
01:public class Data01 {
02: public static void main(String[] args) {
03:
        //(1) 정수 : 소수점이 없는 수
04:
        System.out.println(1);
05:
        //(2) 실수 : 소수점이 있는 수
06:
        System.out.println(1.5);
07:
        //(3) 문자 : 단일 따옴표로 묶어줌
180
        System.out.println('a');
09:
        //(4) 논리값 : true, false
10:
11:
        System.out.println(true);
12: }
13:}
```

<예제>더 다양한 상수-[파일 이름 : Data02. java]

```
001:public class Data02 {
     public static void main(String[] args) {
002:
       //(1) long 형 상수 : 숫자 끝에 L 혹은 I을 붙임
003:
       System.out.println(1L);
004:
       //(2) float 형 상수 : 숫자 끝에 F 혹은 f를 붙임
005:
       System.out.println(1.5f);
006:
       //(3) 문자열 : 이중 따옴표로 묶어줌
007:
       System.out.println("abc");
:800
009:
010:}
```

2. 메모리 기억공간인 변수 살피기

- 프로그램 실행 중에 변하는 값을 저장할 수 있는 메모리 기억공간
- 변수는 앞에 언급한 상수(값)를 저장하기 위한 공간을 의미
- 이러한 공간은 컴퓨터의 메모리(RAM)의 특 정 위치(스택)에 만들어진다.

2.1 기억공간을 확보하는 변수 선언

변수는 상수처럼 그냥 사용하지 못하고 변수 선언 과정을 거친 후 사용할 수 있다.

자료형 변수_이름;

2.2 기본 자료형

2.3 소수점이 없는 정수형

유 형	크기	허용 값	
byte	1 Byte(8 bit)	$-2^7 \sim 2^7 - 1$	-128~127
short	2 Byte(16 bit)	$-2^{15} \sim 2^{15} - 1$	-32768~32767
int	4 Byte(32 bit)	$-2^{31} \sim 2^{31} - 1$	-2147483648~2147483647
long	8 Byte(64 bit)	$-2^{63} \sim 2^{63} - 1$	- 9223372036854775808 ~ 9223372036854775807

정수를 저장하기 위한 자료형을 4가지로 나눈 이유는 저장할 데이터(상수, 값)에 따라 기억공간의 크기를 다르게 할당하기 위한 것

변수의 이름을 명명하기 위한 규칙

- ① 영문자(A~Z, a~z)와 숫자(0~9)와 밑줄문자(_)의 조합으로 만들어집니다.
- ② 첫 글자는 반드시 영문자나 '_'로 시작하여야 합니다. 숫자로 시작해서는 안 됩니다.
- ③ 식별자는 철자(스펠링)가 같다고 해도 대소문자를 구분하기 때문에 조심해야 합니다.
- ④ 자바에서 사용되는 예약어는 식별자로 사용할 수 없습니다.
- ⑤ 식별자는 가급적이면 자기 역할에 맞는 이름을 부여합니다.

<잠깐만>- 예약어와 식별자

예약어란?

자바에서 미리 정의하고 의미를 부여한 단어. 이미 정해진 자신의 역할이 있기 때문에 프로그래머는 예약어를 다른 용도로 사용할 수 없다.

int, char, class, if, else, switch, for, while, break

식별자란?

프로그래머가 특별히 의미를 부여하는 단어 예를 들어 변수의 이름이나 메소드의 이름이나 클래스의 이름 등을 식별자라고 한다.

<예제>정수 상수를 저장하는 정수형 변수

```
01:public class Data03{
02: public static void main(String[] args) {
                         //변수 선언하고
03:
   int a;
                       //변수에 값을 저장
04: a=1;
05: System.out.println(a);
06:
                        //변수는 값을 변경할 수 있다.
07: a=2;
08: System.out.println(a); //마지막에 대입한 값만 유지
09:
10:}
```

2.4 자료형의 역할

- 1. 저장되는 값의 형태를 결정
 - 1. 소수점이 없는 값을 정수형 상수를 저장하기 위해서는 int형으로 변수 선언

```
int a=1;
```

2. 소수점이 있는 값을 실수형 상수를 저장하기 위해서는 double형으로 변수 선언

```
double m=2.4;
```

3. 참, 거짓 논리값을 저장하기 위해서는 boolean 형으로 변수 선언

```
boolean k=true;
```

2.4 자료형의 역할

2. 메모리의 사이즈를 결정 메모리 할당되는 사이즈에 따라 변수에 저장할 수 있는 값의 허용 범위가 <u>달라진다.</u>

```
byte a=1;
a=128; //컴파일 에러
short b=128;
b=32768; //컴파일 에러
int c=32768;
int c=123456L; //컴파일 에러
long d=123456L;
```

2.5 자료형 변환

```
long d=123456; //암시적인 형 변환
```

int c=123456L; //컴파일 에러

2.5.1 암시적인 형 변환

```
short b=128;
int c=32768;
c=b; //암시적인 형 변환
```

2.5.2 명시적인 형 변환

```
short b=128;
int c=32768;
b=c; //컴파일 에러
b=(short)c; //명시적인 형 변환
```

<예제> 암시적인 형 변환과 명시적인 형 변환

```
01:public class Data05 {
   02: public static void main(String[] args) {
         byte a=1;
   03:
       short b=128;
   04:
   05:
       int c=32768;
   06:
                           //암시적인 형 변환
   07:
         b=a;
         System.out.println(b);
   08:
   09:
         b=(short)c; // 명시적인 형변환
    10:
         //오버플로우가 발생되어 엉뚱한 값 출력
    11:
         System.out.println(b);
    12:
    13:
No.22 14:
```

2.6 소수점이 있는 실수형

int a=23.7; //컴파일 에러

종류	유형	크기
실수형	float	4 Byte
273	double	8 Byte

2.6 소수점이 있는 실수형

• float b=23.7; //컴파일 에러

• double c=23.7; //올바른 표현

•float b=23.7f; //올바른 표현

<예제> 실수 자료형 저장하기

```
01:public class Data06 {
02: public static void main(String[] args){
03:
      double a=23.7;
04:
      float b=23.7f;
      System.out.println(a);
05:
      System.out.println(b);
06:
07:
(:80
 No.25
```

2.7 문자 한 개를 저장하는 문자형

종 류	유 형	크 기	허 용 값
문자형	char	2 Byte (16 bit) 16비트 유니 코드	0 ~ 65535

- •대문자 'A' (65)
- •소문자 'a' (97)
- •정수형태의 문자 '0' (48)

<예제> 문자 자료형 저장하기

```
01:public class Data07 {
     public static void main(String[] args){
02:
03:
        char x;
04:
       x='A';
       System.out.printf("%c->%d₩n",x,(int)x);
05:
06:
       \chi = 10^{\circ};
       System.out.printf("%c->%d\n",x,(int)x);
07:
08:
       \chi=0;
       System.out.printf("%c->%d\n",x,(int)x);
09:
10:
       x='a';
       System.out.printf("%c->%d\n",x,(int)x);
11:
120.27 }
13:}
```

<잠깐만>-printIn, print, printf

- ① println
 - In은 라인의 약어로서 메소드 내에 기술한 내용을 출 력한 후 자동으로 개행(줄을 바꿈)한다.
- ② print 메소드
 - 메소드내에 기술한 내용만을 출력할뿐 줄 바꿈을 하지 않는다.
- ③ printf 메소드
 - printf 지시자(형식지정자)를 기술하여 원하는 자료 형태로 출력할 수 있는 메소드.
 - 문자 데이터를 문자 형태로 출력하기 위해서는 %c라는 형식 지정자를 사용한다.
 - 형식 지정자는 %기호 다음에 영문자를 기술하는데 형식 지정자 %d는 정수형 10진수 형태로 출력하게 된다.

문자여러개를 집합으로 관리하는 문자열형 (String)

```
'AB'
           //잘못된 표현
"AB"
char x="AB"; //잘못된 표현
String y="AB";
String y= 'A'; //잘못된 표현
```

<예제> 문자열 저장하기

No.30

```
01:public class Data08 {
     public static void main(String[] args){
02:
03:
       String y;
04:
       y="AB";
       System.out.println(y);
05:
06:
       y="A";
       System.out.println(y);
07:
180
09:}
```

```
1. 잘못된 문장을 골라내고 그 이유를 설명하시오.
public class DataEx01 {
 public static void main(String[] args) {
              a='a';
                          //A.
   char
              b="a";
                          //B.
   char
              c="a";
                          //C.
   String
              d='a';
   String
                           //D.
                           //E.
              e= "ab";
   char
              f="ab";
                           //F.
   String
 No.31
```

```
2. 잘못된 문장을 골라내고 그 이유를 설명하시오.
public class DataEx02{
  public static void main(String[] args)
    byte var1=128;
                                         //A.
                                         //B.
    short var2=128;
                                         //C.
     int var3=28L;
                                         //D.
     long var4=128L;
                                         //E.
     float var5=123456.789123;
                                         //F.
     double var6=123456.789123;
```

```
3. 잘못된 문장을 고쳐서 에러가 발생하지 않도록 수정하시오.
001:public class DataEx03{
     public static void main(String[] args) {
002:
003:
       byte var1=127;
004:
       short var2=128;
005:
       int var3=128;
006:
       long var4=128L;
007:
       var4 = var1;
        System.out.println(var1+ ", " + var2);
008:
009:
        var1 = var3;
        System.out.println(var1+ ", " + var3);
010:
011:
012:
        float var5=123456.789123;
013:
        double var6=123456.789123;
014:
        var5 =var6;
        System.out.println(var5+ ", " + var6);
015:
016:
        var6 = var5;
        System.out.println(var5+ ", " + var6);
017:
018:
019:}
  No.33
```

- 4. char형의 저장할 수 있는 데이터 값의 허용 범 위는 얼마입니까?
- 5. 변수를 선언하기 위해서는 자료형과 변수의 이름을 결정해야 합니다. 변수 이름으로 사용할 수있는 것을 고르시오.
- A. false
- B. default
- C. _object
- D. a-class

```
6. 다음 프로그램을 컴파일 했을 때 결과를 추측
 해보시오.
public class DataEx06 {
 public static void main (String[] args) {
   byte b = 127;
   byte c = 126;
   byte d = b + c;
```

7. byte 형을 저장할 수 있는 데이터 값의 허용 범위는 얼마입니까?

```
8. float 형 변수 선언이 올바르게 된 것 두개만 고르시오.
public class DataEx09 {
 public static void main (String[] args) {
    float f1 = 1F; //A.
    float f2 = 1.0; //B.
    float f3 = '1'; //C.
    float f4 = "1"; //D.
    float f5 = 1.0d; //E.
No.36
```