

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

SEQUENCE LISTING

<110> Ashkenazi, Avi J.
Fong, Sherman
Goddard, Audrey
Gurney, Austin L.
Napier, Mary A.
Tumas, Daniel
Wood, William I.

<120> COMPOUNDS, COMPOSITIONS AND METHODS FOR
THE TREATMENT OF DISEASES CHARACTERIZED BY A-33 RELATED
ANTIGENS

<130> 39780-1216R1C1D5

<140> US 10/785,607
<141> 2004-02-24

<150> US 09/953,499
<151> 2001-09-14

<150> US 09/254,465
<151> 1999-03-05

<150> PCT/US98/24855
<151> 1998-11-20

<150> PCT/US98/19437
<151> 1998-09-17

<160> 30

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 299
<212> PRT
<213> Homo sapiens

<400> 1
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
1 5 10 15
Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
20 25 30
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
35 40 45
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
50 55 60
Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
65 70 75 80
Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95
Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
100 105 110
Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
115 120 125
Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
130 135 140
Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
145 150 155 160
Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

165 170 175
Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro
180 185 190
Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly
195 200 205
Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser
210 215 220
Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val
225 230 235 240
Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly
245 250 255
Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly
260 265 270
Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu
275 280 285
Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
290 295

<210> 2
<211> 321
<212> PRT
<213> Homo sapiens

<400> 2
Met Gly Ile Leu Leu Gly Leu Leu Leu Leu Gly His Leu Thr Val Asp
1 5 10 15
Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr Gly Pro
20 25 30
Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro Leu Gln Gly
35 40 45
Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg Gly Ser Asp Pro
50 55 60
Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp His Ile Gln Gln Ala
65 70 75 80
Lys Tyr Gln Gly Arg Leu His Val Ser His Lys Val Pro Gly Asp Val
85 90 95
Ser Leu Gln Leu Ser Thr Leu Glu Met Asp Asp Arg Ser His Tyr Thr
100 105 110
Cys Glu Val Thr Trp Gln Thr Pro Asp Gly Asn Gln Val Val Arg Asp
115 120 125
Lys Ile Thr Glu Leu Arg Val Gln Lys Leu Ser Val Ser Lys Pro Thr
130 135 140
Val Thr Thr Gly Ser Gly Tyr Gly Phe Thr Val Pro Gln Gly Met Arg
145 150 155 160
Ile Ser Leu Gln Cys Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile
165 170 175
Trp Tyr Lys Gln Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr
180 185 190
Leu Ser Thr Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser
195 200 205
Tyr Phe Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp
210 215 220
Ile Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
225 230 235 240
Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser Thr
245 250 255
Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr Leu Gly
260 265 270
Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe Ala Ile Ile
275 280 285
Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr Met Ala Tyr Ile
290 295 300

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His Val Tyr Glu Ala Ala
305 310 315 320
Arg

<210> 3
<211> 390
<212> DNA
<213> Artificial Sequence

<220>
<223> Consensus DNA Sequence

<400> 3
cttcttgcca actggtatca cttcaagtc cgtgacacgg gaagacactg ggacatacac 60
ttgtatggtc tctgaggaag gcggcaacag ctatggggag gtcaaggta agctcatcgt 120
gcttgccttccatccaagc ctacagttaa catccccctcc tctgccacca ttgggaaccg 180
ggcagtgcgt acatgcttag aacaagatgg ttcccacct tctgaataca cctggttcaa 240
agatggata gtatgccta cgaatccaa aagcacccgt gccttcagca actcttccta 300
tgtcctgaat cccacaacag gagagctggc ctttgcattt ctgtcagcct ctgataactgg 360
agaatacagc tgtgaggcac ggaatgggt 390

<210> 4
<211> 726
<212> DNA
<213> Artificial Sequence

<220>
<223> Consensus DNA Sequence

<400> 4
tctcagttccc ctcgcgttag tcgcggagct gtgttctgtt tcccaggagt cttcgccgg 60
ctgttgctc cagggtgcgcc tgatcgcat ggggacaaag ggcgaagctc gagagggaaac 120
tggatgtgcctt cttcatattt ggcgcattttgt tggatgtccctt ggcattgggc agtggatcag 180
ttgcactctt ctgaaccttga agtcagaattt cctgagaata atcctgtgaa gttgtccctgt 240
gcctactctt gctttcttc tccccgtgtt gaggatgtt ttgaccaagg agacaccacc 300
agactcgat tttttttttt caagatcaca gcttcctatg aggacccgggt gacccctttt 360
ccaaactggta tcaccttcaa gtccgtgaca cggggagaca ctgggacata cacttgcatt 420
gtctctgagg aaggccggcaa cagctatggg gaggtcaagg tcaagctcat cgtgcttgc 480
cctccatcca agcctacagt taacatcccc tcctctgcca ccattggaa ccgggcagtg 540
ctgacatgtt cagaacaaga tggttccca ctttgcattt acacccgtt caaatgggg 600
atagtgtatgc ctacgaatcc caaaagcacc cgtgccttca gcaactcttc ctatgtccctg 660
aatccacaa caggagagct ggttttttgc cccctgtcag cctctgatac tggagaatac 720
agctgtt 726

<210> 5
<211> 1503
<212> DNA
<213> Artificial Sequence

<220>
<223> Consensus DNA Sequence

<400> 5
gcaggccaaag taccaggggcc gcctgcattt gagccacaag gttccaggag atgtatccct 60
ccaaattggac accctggaga tggatgaccg gagccactac acgtgtgaag tcacctggca 120
gactcctgtt ggcaccaag tcgtgagaga taagattact gagctccgtt tccagaaact 180
ctctgtctcc aagccccacag tgacaactgg cagcggttat ggcttcacgg tgccccaggg 240
aatgaggatt agccttcaat gccagggttc ggggttctcc tcccatcagt tatattttgt 300
ataagcaaca gactaataac caggaaaccc atcaaagttag caaccctaag taccttactc 360
ttcaaggcctg cggtgatagc cgactcaggc tcctattttt gcactgccaa gggccaggtt 420
ggctctgagc agcacagcga cattgtgaag tttgtggta aagactcctc aaagctactc 480

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

aagaccaaga ctgaggcacc tacaaccatg acataaccct tgaaagcaac atctacagtg 540
aagcagtccct gggactggac cactgacatg gatggctacc ttggagagac cagtgcgtgg 600
ccagggaaaga gcctgcctgt ctttgcctatc atcctcatca tctccctgtg ctgtatgtg 660
gttttacca tggcctatat catgctctgt cggaagacat cccaacaaga gcatgtctac 720
gaagcagcca gggcacatgc cagagaggcc aacgactctg gagaaaccat gagggtgcc 780
atcttcgcaa gtggctgctc cagtatgag ccaactccc agaatctgg gcaacaacta 840
ctctgatgag ccctgcatag gacaggaga ccagatcatc gccagatca atggcaacta 900
cgccccctg ctggacacag ttccctctgga ttatgagttt ctggccactg agggcaaaag 960
tgtctgttaa aaatgccccca ttaggccagg atctgctgac ataattgcct agtcagtcct 1020
tgccttctgc atggccttct tccctgctac ctctcttcct ggatagccca aagtgtccgc 1080
ctaccaacac tggagccgct gggagtcaact ggcttgcctt ggaatttgc cagatgcac 1140
tcaagtaagc cagctgctgg atttgctctt gggcccttctt agtatctctg ccgggggctt 1200
ctggtaactcc tctctaaata ccagagggaa gatgcccata gcactaggac ttggtcatca 1260
tgcctacaga cactattcaa ctttggcata ttgcccaccag aagaccggag gggaggctca 1320
gctctgcccag ctcagaggac cagctatac caggatcatt tctcttctt cagggccaga 1380
cagctttaa ttgaattgt tatttcacag gccagggttc agttctgctc ctccactata 1440
agtctaattgt tctgactctc tcctggtgct caataaatat ctaatcataa cagcaaaaaa 1500
aaa 1503

<210> 6
<211> 319
<212> PRT
<213> Homo sapiens

<400> 6
Met Val Gly Lys Met Trp Pro Val Leu Trp Thr Leu Cys Ala Val Arg
1 5 10 15
Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro Gln Asp Val Leu Arg
20 25 30
Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys Thr Tyr His Thr Ser
35 40 45
Thr Ser Ser Arg Glu Gly Leu Ile Gln Trp Asp Lys Leu Leu Leu Thr
50 55 60
His Thr Glu Arg Val Val Ile Trp Pro Phe Ser Asn Lys Asn Tyr Ile
65 70 75 80
His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile Ser Asn Asn Ala Glu
85 90 95
Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu Thr Met Ala Asp Asn
100 105 110
Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser Asp Leu Glu Gly Asn
115 120 125
Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val Pro Pro Ser Lys Pro
130 135 140
Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly Asn Asn Ile Gln Leu
145 150 155 160
Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro Gln Tyr Ser Trp Lys
165 170 175
Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu Ala Gln Pro Ala Ser
180 185 190
Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr Asp Thr Ser Gly Tyr
195 200 205
Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe Cys Asn Ile
210 215 220
Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala Leu Tyr Val Gly
225 230 235 240
Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile Ile Gly Ile Ile Ile
245 250 255
Tyr Cys Cys Cys Cys Arg Gly Lys Asp Asp Asn Thr Glu Asp Lys Glu
260 265 270
Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu Pro Pro Glu Gln Leu
275 280 285
Arg Glu Leu Ser Arg Glu Arg Glu Glu Glu Asp Asp Tyr Arg Gln Glu
290 295 300

39780-1216R1C1D5 SAVED NOV 1 2005.TXT
Glu Gln Arg Ser Thr Gly Arg Glu Ser Pro Asp His Leu Asp Gln
305 310 315

<210> 7
<211> 2181
<212> DNA
<213> Homo sapiens

<400> 7
ccccacgcgtc cgcccacgcg tccgcccacg ggtccgccc a cgcgtccggg ccaccagaag 60
tttgaggcttc ttggtagca ggaggcttga agaaaaggaca gaagtagctc tggctgtat 120
ggggatctta ctgggcctgc tactccttgg gcacctaaca gtggacactt atggccgtcc 180
catcctggaa gtgccagaga gtgtacacgg accttggaaa gggatgtga atcttccctg 240
cacctatgac cccctgcaag gctacaccca agtcttggg aagtggctgg tacaacgtgg 300
ctcagaccct gtcaccatct ttctacgtga ctcttggaa gaccataatcc agcaggcaaa 360
gtaccaggc cgcctgtcat tgagccacaa ggttccaggg gatgtatccc tccaatttgg 420
caccctggag attggatgacc ggagccacta cacgtgtgaa gtcacccgttgc agactccgt 480
tggcaaccaa gtcgtgagag ataagattac tgagctccgt gtccagaaac tctctgtctc 540
caagcccaca gtgacaactg gcagcggtt tggcttcacg gtgcggcagg gaatgagat 600
tagccttcaa tgccaggctc ggggtctcc tcccatcaat tataatttggt ataagcaaca 660
gactaataac caggaaccca tcaaagttagc aaccctaagt accttactct tcaaggctgc 720
ggtgatagcc gactcaggct cctatttctg cactgccaag ggccagggtt gctctgagca 780
gcacagcgac attgtgaagt ttgtggtcaa agactcctca aagctactca agaccaagac 840
tgaggcacct acaaccatga cataccctt gaaagcaaca tctacagtga agcagtccctg 900
ggactggacc actgacatgg atggcttacct tggagagacc agtgcgtggc cagggaaagag 960
cctgcctgtc ttggccatca tcctcatcat ctcccttgtc tgtatgggtt tttttaccat 1020
ggcctataatc atgctctgtc ggaagacatc ccaacaagag catgtctacg aagcagccag 1080
gtaagaaaatg ctctccctt ccattttga ccccttgcctt gccctcaatt ttgattactg 1140
gcagggaaatg tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccctc 1200
agggttagga catagctgcc ttccctctt caggcacctt ctgagggtt tttggccctc 1260
tgaacacaaa ggataattt gatccatctg cttctgtttt ccagaatccc tgggtggtag 1320
gatcctgtata attaatttggc aagaattttag gcaaggggtt gggaaaccag gaccacagcc 1380
ccaagttccct tcttattgggt ggtggcttct tggggccatag ggcacatgcc agagaggcca 1440
acgactctgg agaaaccatg agggtggcca ttttgcgaag tggctgttcc agtgcgttgc 1500
caatttccca gaaatctggc aacaactact ctgtatggcc ctgcatacg caggagtacc 1560
agatcatcgc ccagatcaat ggcaactacg cccgcctgtt ggacacagtt cctctggatt 1620
atagatttctt ggccactgtgg ggcggaaatgt tctgtttaaa atgcggcattt aggccaggat 1680
ctgctgacat aatttgccttgc tcagttccctt ctttctgtat ggccttcttc cctgctaccc 1740
cttccctgg atagccaaa gtgtccctt accaacactg gagccgttgg gagtcactgg 1800
cttgcctgtt gaatttgcctt gatcatctc aagtaagccca gctgtggat ttggctctgg 1860
gcccttctgtt tatctctgtt gggggcttctt ggtactccctc tctaaatacc agagggaaaga 1920
tgcccatatgc actaggactt ggtcatcatg ctttgcacatc ctattcaact ttggcatctt 1980
gccaccagaa gaccgggggg aggctcagct ctggccgttcc agaggaccag ctatatccag 2040
gatcatttctt ctttcttgc ggcggacatg cttttaattt aaattgttat ttcacaggcc 2100
agggttcagt tctgcttgc cactataatgt ctaatgttctt gactctctcc tggtgctcaa 2160
taaatatcta atcataacac c 2181

<210> 8
<211> 1295
<212> DNA
<213> Homo sapiens

<400> 8
ccccagaaggtt caagggccccc cggcccttgc cgtccctgtcc gcccgggaccc tcgacccctt 60
cagagcagcc ggctggccgc cccggaaatg ggccggggagg agccggccacc gcctccctt 120
gctgctgtgt cgttacctgg tggctggccctt gggcttatcat aaggccctatg ggttttctgc 180
ccccaaagac caacaagttag tcacacgtt agagttccaa gaggcttattt tagcctgttcc 240
aacccttcaatg aagactgtttt cttccatgtt agagttccaa gaggcttattt ggagtgcttc 300
ctttgtcttac tatcaacatgtt cttttcaatgtt tgattttttt aatcgatgtt agatgtataga 360
tttcaatatc cggatcaaaa atgtgacaatg aagtgtatgtt gggaaatatc gttgtgaatg 420
tagtgcccca tctgagcaatg gccaaatccat ggaagggat acgtcactc tggaaatgtt 480
agtggctcca gcagttccat catgttcaatg acccttcttgc gctctgttgg gaactgttgg 540

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

agagctacga tgcataagaca aagaaggaa tccagctcct gaatacacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattccgt gaagcccgca attctgttg atatcgagg tgcctggaa aacgaatgca 780
agtagatgtat ctcacataa gtggcatcat agcagccgta gtatgttg ccttagtgtat 840
ttccgttgtt ggccttggg tatgttatgc tcagaggaaa ggctacttt caaaaagaaac 900
ctcccttccag aagagaattt cttcatctaa agccacgaca atgagtggaa atgtgcagt 960
gctcacgcct gtaatcccag cactttggaa ggccgcggcg ggcggatcac gaggtcagga 1020
gttcttagacc agtctggcca atatggtaa accccatctc tactaaaata caaaaattag 1080
ctggcatgg tggcatgtgc ctgcagttcc agctgttg gagacaggag aatacttga 1140
acccgggagg cggaggttgc agtgagctga gatcagccca ctgcagttca gcctggtaa 1200
cagagcaaga ttccatctca aaaaataaaa taaaataata aataaataact ggtttttacc 1260
tgtagaattc ttacaataaa tatagtttg tattc 1295

<210> 9
<211> 312
<212> PRT
<213> Homo sapiens

<400> 9
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
1 5 10 15
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
20 25 30
Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
35 40 45
Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
50 55 60
Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
65 70 75 80
Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
85 90 95
Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
100 105 110
Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu
115 120 125
Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
130 135 140
Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
145 150 155 160
Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
165 170 175
Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
180 185 190
Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp
195 200 205
Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg
210 215 220
Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
225 230 235 240
Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
245 250 255
Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser
260 265 270
Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met Ser Glu Asn
275 280 285
Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
290 295 300
Gly Gly Ser Arg Gly Gln Glu Phe
305 310

<210> 10

<211> 300
<212> PRT
<213> Mus musculus

<400> 10
Met Gly Thr Glu Gly Lys Ala Gly Arg Lys Leu Leu Phe Leu Phe Thr
1 5 10 15
Ser Met Ile Leu Gly Ser Leu Val Gln Gly Lys Gly Ser Val Tyr Thr
20 25 30
Ala Gln Ser Asp Val Gln Val Pro Glu Asn Glu Ser Ile Lys Leu Thr
35 40 45
Cys Thr Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Val
50 55 60
Gln Gly Ser Thr Thr Ala Leu Val Cys Tyr Asn Ser Gln Ile Thr Ala
65 70 75 80
Pro Tyr Ala Asp Arg Val Thr Phe Ser Ser Ser Gly Ile Thr Phe Ser
85 90 95
Ser Val Thr Arg Lys Asp Asn Gly Glu Tyr Thr Cys Met Val Ser Glu
100 105 110
Glu Gly Gln Asn Tyr Gly Glu Val Ser Ile His Leu Thr Val Leu
115 120 125
Val Pro Pro Ser Lys Pro Thr Ile Ser Val Pro Ser Ser Val Thr Ile
130 135 140
Gly Asn Arg Ala Val Leu Thr Cys Ser Glu His Asp Gly Ser Pro Pro
145 150 155 160
Ser Glu Tyr Ser Trp Phe Lys Asp Gly Ile Ser Met Leu Thr Ala Asp
165 170 175
Ala Lys Lys Thr Arg Ala Phe Met Asn Ser Ser Phe Thr Ile Asp Pro
180 185 190
Lys Ser Gly Asp Leu Ile Phe Asp Pro Val Thr Ala Phe Asp Ser Gly
195 200 205
Glu Tyr Tyr Cys Gln Ala Gln Asn Gly Tyr Gly Thr Ala Met Arg Ser
210 215 220
Glu Ala Ala His Met Asp Ala Val Glu Leu Asn Val Gly Gly Ile Val
225 230 235 240
Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Leu Leu Ile Phe Gly
245 250 255
Val Trp Phe Ala Tyr Ser Arg Gly Tyr Phe Glu Thr Thr Lys Lys Gly
260 265 270
Thr Ala Pro Gly Lys Lys Val Ile Tyr Ser Gln Pro Ser Thr Arg Ser
275 280 285
Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
290 295 300

<210> 11
<211> 1842
<212> DNA
<213> Homo sapiens

<400> 11
gtctgttccc aggagtccctt cggcggttgt tttgtcagtg gcctgatcgc gatggggaca 60
aaggcgcaag tcgagaggaa actgttgtgc ctcttcataat tggcgatcct gttgtgcctc 120
ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcaaat tcctgagaat 180
aatcctgtga agttgtcctg tgcctactcg ggctttctt ctccccgtgt ggagtggaaag 240
tttgaccacag gagacaccac cagactcggt tgctataata acaagatcac agttccat 300
gaggaccggg tgacaccttgc gccaactggg atcaccttca agtccgtgac acggaaagac 360
actggggacat acacttgtat ggtctctgag gaaggcgccca acagctatgg ggaggtcaag 420
gtcaagctca tcgtgttgttgc gcctccatcc aagcctacag ttaacatccc ctccctgtcc 480
accattggga accggggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
tacacctgg tcaaagatgg gatagtgtat cctacgaatc ccggaaacac ccgtgccttc 600
agcaactctt cctatgtcctt gaatcccaca acaggagagc tggctttga tcccctgtca 660
gcctctgata ctggagaata cagctgtgag gcacggaaatg ggtatgggac acccatgact 720

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

tcaaatgctg tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780
ctttaaccc tgattctcctt gggaaatctt gttttggca tctgtttgc ctatagccga 840
ggccacttg acagaacaaa gaaaggact tcgagtaaga aggtgattt aagccagcct 900
agtgcggaa gtgaaggaga attcaaacag acctcgtcat tcctgtgtg agcctggtcg 960
gctcaccggc tatcatctgc atttgcctta ctcaggtgct accggactct ggcccctgtat 1020
gtctgttagtt tcacaggatg ccttatttgtt cttctacacc ccacagggcc ccctacttct 1080
tcggatgtgt ttttaataat gtcagctatg tgcccatatcc tccttcatgc cttccctccc 1140
tttcctacca ctgctgagtg gcctggaact tttttaaagt gtttattccc catttttttg 1200
agggatcagg aaggaatccc gggatgcca ttgacttccc ttctaaagtag acagcaaaaa 1260
tggcgggggt cgccaggaaatc tgcactcaac tgcccacctg gctggaaggat atctttgaat 1320
aggtatctt agcttggttc tgggcctttt ctttgcgtac tgacgaccag ggccagctgt 1380
tctagagcgga gaatttagagg cttagagcggt taaaatgggtt gtttgggtat gacactgggg 1440
tccttccatc tctggggccc actcttcttct gtcttccat gggaaatgtcc actgggatcc 1500
ctctgcctg tcctccctgaa tacaagctga ctgacattga ctgtgtctgt gaaaaatggg 1560
agctctgtt gtggagagca tagtaaattt tcaagaaact tgaagccaaa aggatttaaa 1620
accgctgctc taaagaaaaag aaaactggag gctgggcgca gtggctcacg cctgtaatcc 1680
cagaggctga ggcaggcgga tcacccgttcc tggggagttc gggatcagcc tgaccaacat 1740
ggagaaaaccc tactggaaat acaaagtttgc ccaggcatgg tggtgcattc ctgttagtccc 1800
agctgctc tagc gggctggca acaagagcaa aactccagct ca 1842

<210> 12

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Primer

<400> 12

tcgcggagct gtgttctgtt tccc

24

<210> 13

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Hybridization Probe

<400> 13

tgatcgcgat ggggacaaag gcgcaagctc gagagggaaac tttttgtgcct

50

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Primer

<400> 14

acacacctgggtt caaagatggg

20

<210> 15

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Primer

<400> 15

taggaagagt tgctgaaggc acgg

24

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 16
ttgccttact caggtgctac

20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 17
actcagcagt ggttagaaag

20

<210> 18
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 18
tatccctcca attgaggcacc ctgg

24

<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 19
gtcggaagac atcccaacaa g

21

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 20
cttcacaatg tcgctgtgct gctc

24

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 21
 agccaaatcc agcagctggc ttac 24

<210> 22
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Hybridization Probe

<400> 22
 tggatgaccg gagccactac acgtgtgaag tcacctggca gactcctgat 50

<210> 23
 <211> 260
 <212> PRT
 <213> Homo sapiens

<400> 23
 Leu Ala Leu Gly Ser Val Thr Val His Ser Ser Glu Pro Glu Val Arg
 1 5 10 15
 Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr Ser Gly Phe
 20 25 30
 Ser Ser Pro Arg Val Glu Trp Lys Phe Asp Gln Gly Asp Thr Thr Arg
 35 40 45
 Leu Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val
 50 55 60
 Thr Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp
 65 70 75 80
 Thr Gly Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Gly Asn Ser Tyr
 85 90 95
 Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro
 100 105 110
 Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val Leu
 115 120 125
 Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr Trp Phe
 130 135 140
 Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe
 145 150 155 160
 Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu Leu Val Phe
 165 170 175
 Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys Glu Ala Arg
 180 185 190
 Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg Met Glu Ala
 195 200 205
 Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu Val Thr Leu
 210 215 220
 Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala Tyr Ser Arg
 225 230 235 240
 Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys Lys Val Ile
 245 250 255
 Tyr Ser Gln Pro
 260

<210> 24
 <211> 270
 <212> PRT
 <213> Homo sapiens

<400> 24

39780-1216R1C1D5 SAVED NOV 1 2005.TXT
 Val Arg Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro Gln Asp Val
 1 5 10 15
 Leu Arg Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys Thr Tyr His
 20 25 30
 Thr Ser Thr Ser Ser Arg Glu Gly Leu Ile Gln Trp Asp Lys Leu Leu
 35 40 45
 Leu Thr His Thr Glu Arg Val Val Ile Trp Pro Phe Ser Asn Lys Asn
 50 55 60
 Tyr Ile His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile Ser Asn Asn
 65 70 75 80
 Ala Glu Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu Thr Met Ala
 85 90 95
 Asp Asn Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser Asp Leu Glu
 100 105 110
 Gly Asn Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val Pro Pro Ser
 115 120 125
 Lys Pro Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly Asn Asn Ile
 130 135 140
 Gln Leu Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro Gln Tyr Ser
 145 150 155 160
 Trp Lys Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu Ala Gln Pro
 165 170 175
 Ala Ser Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr Asp Thr Ser
 180 185 190
 Gly Tyr Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe Cys
 195 200 205
 Asn Ile Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala Leu Tyr
 210 215 220
 Val Gly Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile Ile Gly Ile
 225 230 235 240
 Ile Ile Tyr Cys Cys Cys Arg Gly Lys Asp Asp Asn Thr Glu Asp
 245 250 255
 Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu Pro
 260 265 270

<210> 25
<211> 263
<212> PRT
<213> Homo sapiens

<400> 25
 Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His Ser Ser Glu Pro
 1 5 10 15
 Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr
 20 25 30
 Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Asp Gln Gly Asp
 35 40 45
 Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr Glu
 50 55 60
 Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr
 65 70 75 80
 Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Gly
 85 90 95
 Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro
 100 105 110
 Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg
 115 120 125
 Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr
 130 135 140
 Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr
 145 150 155 160
 Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

165 170 175
Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys
180 185 190
Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg
195 200 205
Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu
210 215 220
Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala
225 230 235 240
Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys
245 250 255
Lys Val Ile Tyr Ser Gln Pro
260

<210> 26
<211> 273
<212> PRT
<213> Homo sapiens

<400> 26
Leu Cys Ala Val Arg Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro
1 5 10 15
Gln Asp Val Leu Arg Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys
20 25 30
Thr Tyr His Thr Ser Thr Ser Arg Glu Gly Leu Ile Gln Trp Asp
35 40 45
Lys Leu Leu Leu Thr His Thr Glu Arg Val Val Ile Trp Pro Phe Ser
50 55 60
Asn Lys Asn Tyr Ile His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile
65 70 75 80
Ser Asn Asn Ala Glu Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu
85 90 95
Thr Met Ala Asp Asn Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser
100 105 110
Asp Leu Glu Gly Asn Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val
115 120 125
Pro Pro Ser Lys Pro Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly
130 135 140
Asn Asn Ile Gln Leu Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro
145 150 155 160
Gln Tyr Ser Trp Lys Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu
165 170 175
Ala Gln Pro Ala Ser Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr
180 185 190
Asp Thr Ser Gly Tyr Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr
195 200 205
Gln Phe Cys Asn Ile Thr Val Ala Val Arg Ser Pro Ser Met Asn Val
210 215 220
Ala Leu Tyr Val Gly Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile
225 230 235 240
Ile Gly Ile Ile Ile Tyr Cys Cys Cys Cys Arg Gly Lys Asp Asp Asn
245 250 255
Thr Glu Asp Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu
260 265 270
Pro

<210> 27
<211> 413
<212> DNA
<213> Artificial sequence

39780-1216R1C1D5 SAVED NOV 1 2005.TXT

<220>

<223> Consensus DNA Sequence

<400> 27

ctcgagccgc tcgagccgtc cggggaaata tcgttgtgaa gtttagtgccc catctgagca 60
aggccaaaac ctggaaagagg atacagtcac tctggaaagta ttatgtggctc cagcagtcc 120
atcatgtgaa gtaccctctt ctgctctgag tggaactgtg gtagagctac gatgtcaaga 180
caaagaaggg aatccagctc ctgaatacac acatggtttaag gatggcatcc gtttgctaga 240
aaatcccaga ctggctccc aaagcaccaa cagctcatac acaatgaata caaaaactgg 300
aactctgcaa ttaataactg tttccaaact ggacactgga gaatattcct gtgaagcccg 360
caattctgtt ggatatcgca ggtgtcctgg ggaaacgaaat gcaagtagat gat 413

<210> 28

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Primer

<400> 28

atcggttgtga agtttagtgcc cc 22

<210> 29

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Primer

<400> 29

acctgcgata tccaacagaa ttg 23

<210> 30

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Hybridization Probe

<400> 30

ggaagaggat acagtcaactc tggaagtatt agtggctcca gcagttcc 48