

Group Theory

Homework Assignment 12

Spring, 2020

The analytic homomorphic mapping ϕ of SU(2) onto SO(3) is given by

$$\phi(u)_{jk} = \frac{1}{2} \operatorname{tr}(\sigma_j u \sigma_k u^{-1}), \ u \in \operatorname{SU}(2), \ j, k = 1, 2, 3.$$

Note that the Pauli matrices σ_1 , σ_2 , and σ_3 are also denoted respectively by σ_x , σ_y , and σ_z .

- 1. Verify explicitly that a rotation about the Oz-axis is indeed obtained from the given mapping for $u = e^{-i\theta\sigma_z/2}$.
- 2. Verify explicitly that a rotation about the Oy-axis is indeed obtained from the given mapping for $u = e^{-i\theta\sigma_y/2}$.
- 3. Show that the analytic isomorphic mapping of the real Lie algebra su(2) onto the real Lie algebra so(3) is given by

$$\psi(a)_{jk} = \frac{1}{2} \operatorname{tr}(\sigma_j[a, \sigma_k]), \ a \in \operatorname{su}(2), \ j, k = 1, 2, 3.$$

4. Without using the explicit matrix representations of the Pauli matrices, show that $\psi(a_p)_{jk} = \epsilon_{pjk}$ for $a_p = i\sigma_p/2$ with p = 1, 2, 3.

Hint:
$$[\sigma_p, \sigma_k] = 2i \sum_{\ell=1}^3 \epsilon_{pk\ell} \sigma_{\ell}.$$

5. Using the definition of ϵ_{pjk} , show that

$$\psi(a_1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \ \psi(a_2) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ \psi(a_3) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$