Advanced Data Structures and Algorithms

The Maximum Network Flow Problem

Types of Networks

- Internet
- Telephone
- Cell
- Highways
- Rail
- Electrical Power
- Water
- Sewer
- Gas
- ..

Maximum Flow Problem

- How can we maximize the flow in a network
 - from a source or set of sources
 - to a destination or set of destinations?

·Instance:

· A Network is a directed graph 6

Figure courtesy of J. Edmonds

·Instance:

- · A Network is a directed graph 6
- ·Edges represent pipes that carry flow

Figure courtesy of J. Edmonds

·Instance:

- · A Network is a directed graph 6
- Edges represent pipes that carry flow
- Each edge (u,v) has a maximum capacity c(u,v)

Figure courtesy of J. Edmonds

•Instance:

- · A Network is a directed graph 6
- Edges represent pipes that carry flow
- •Each edge (u,v) has a maximum capacity c(u,v)
- · A source node s in which flow arrives

·Instance:

- · A Network is a directed graph 6
- Edges represent pipes that carry flow
- •Each edge (u,v) has a maximum capacity c(u,v)
- · A source node s in which flow arrives
- · A sink node t out which flow leaves

·Instance:

- · A Network is a directed graph G
- Edges represent pipes that carry flow
- •Each edge (u,v) has a maximum capacity c(u,v)
- · A source node s in which flow arrives
- · A sink node t out which flow leaves

The Problem

- Use a graph to model material that flows through conduits.
- Each edge represents one conduit, and has a capacity, which is an upper bound on the flow rate, in units/time.
- Can think of edges as pipes of different sizes.
- Want to compute max rate that we can ship material from a designated source to a designated sink.

- Each edge (u,v) has a nonnegative capacity c(u,v).
- If (u,v) is not in E, assume c(u,v)=0.
- We have a source s, and a sink t.
- Assume that every vertex v in V is on some path from s to t.
- e.g., $c(s,v_1)=16$; $c(v_1,s)=0$; $c(v_2,v_3)=0$

• For each edge (u,v), the flow f(u,v) is a real-valued function that must satisfy 3 conditions:

• For each edge (u,v), the flow f(u,v) is a real-valued function that must satisfy 3 conditions:

Capacity constraint: $\forall u,v \in V$, $f(u,v) \leq c(u,v)$

• For each edge (u,v), the flow f(u,v) is a real-valued function that must satisfy 3 conditions:

```
Capacity constraint: \forall u,v \in V, f(u,v) \leq c(u,v)
```

Skew symmetry:
$$\forall u,v \in V, f(u,v) = -f(v,u)$$

• For each edge (u,v), the flow f(u,v) is a real-valued function that must satisfy 3 conditions:

Capacity constraint:
$$\forall u,v \in V$$
, $f(u,v) \leq c(u,v)$

Skew symmetry:
$$\forall u,v \in V, f(u,v) = -f(v,u)$$

Flow conservation:
$$\forall u \in V - \{s,t\}, \sum_{v \in V} f(u,v) = 0$$

 For each edge (u,v), the flow f(u,v) is a real-valued function that must satisfy 3 conditions:

Capacity constraint: $\forall u,v \in V$, $f(u,v) \leq c(u,v)$

Skew symmetry: $\forall u,v \in V, f(u,v) = -f(v,u)$

Flow conservation: $\forall u \in V - \{s,t\}, \sum_{v \in V} f(u,v) = 0$

- Notes:
 - The skew symmetry condition implies that f(u,u)=0.
 - We show only the *positive* flows in the flow network.

• $f(v_2, v_1) = 1, c(v_2, v_1) = 4.$

- $f(v_2, v_1) = 1, c(v_2, v_1) = 4.$
- $f(v_1, v_2) = -1$, $c(v_1, v_2) = 10$.

- $f(v_2, v_1) = 1, c(v_2, v_1) = 4.$
- $f(v_1, v_2) = -1$, $c(v_1, v_2) = 10$.

•
$$f(v_3, s) + f(v_3, v_1) + f(v_3, v_2) + f(v_3, v_4) + f(v_3, t) =$$

0 + (-12) + 4 + (-7) + 15 = 0

The Value of a flow

The value of a flow is given by

$$|f| = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

- This is the total flow leaving s = the total flow arriving in t.

Example:

$$|f| = f(s, v_1) + f(s, v_2) + f(s, v_3) + f(s, v_4) + f(s, t) = ??????$$

$$|f| = f(s, t) + f(v_1, t) + f(v_2, t) + f(v_3, t) + f(v_4, t) = ??????$$

Example:

$$|f| = f(s, v_1) + f(s, v_2) + f(s, v_3) + f(s, v_4) + f(s, t) =$$

$$11 + 8 + 0 + 0 + 0 = 19$$

$$|f| = f(s, t) + f(v_1, t) + f(v_2, t) + f(v_3, t) + f(v_4, t) = 0 + 0 + 0 + 15 + 4 = 19$$

A flow in a network

• We assume that there is only flow in one direction at a time.

Multiple Sources Network

- We have several sources and several targets.
- Want to maximize the total flow from all sources to all targets.

Multiple Sources Network

- We have several sources and several targets.
- Want to maximize the total flow from all sources to all targets.
- Reduce to max-flow by creating a supersource and a supersink:

Multiple Sources Network

- We have several sources and several targets.
- Want to maximize the total flow from all sources to all targets.
- Reduce to max-flow by creating a supersource and a supersink:

Residual Networks

• The residual capacity of an edge (u,v) in a network with a flow f is given by:

$$c_f(u,v) = c(u,v) - f(u,v)$$

Residual Networks

• The residual capacity of an edge (u,v) in a network with a flow f is given by:

$$c_f(u,v) = c(u,v) - f(u,v)$$

• The residual network of a graph *G* induced by a flow *f* is the graph including only the edges with positive residual capacity, i.e.,

Residual Networks

• The residual capacity of an edge (u,v) in a network with a flow f is given by:

$$c_f(u,v) = c(u,v) - f(u,v)$$

• The residual network of a graph *G* induced by a flow *f* is the graph including only the edges with positive residual capacity, i.e.,

$$G_f = (V, E_f), \text{ where } E_f = \{(u, v) \in V \times V : C_f(u, v) > 0\}$$

Example of Residual Network

Flow Network:

Example of Residual Network

Flow Network:

Residual Network:

Augmenting Paths

• An augmenting path *p* is a simple path from *s* to *t* on the residual network

Augmenting Paths

- An augmenting path *p* is a simple path from *s* to *t* on the residual network.
- We can put more flow from *s* to *t* through *p*.

- An augmenting path *p* is a simple path from *s* to *t* on the residual network.
- We can put more flow from *s* to *t* through *p*.
- We call the maximum capacity by which we can increase the flow on *p* the residual capacity of *p*.

- An augmenting path *p* is a simple path from *s* to *t* on the residual network.
- We can put more flow from *s* to *t* through *p*.
- We call the maximum capacity by which we can increase the flow on p the residual capacity of p.

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

Network:

Residual Network:

Network:

Residual Network:

Augmenting path

Network:

Residual Network: $s = v_1$ $s = v_2$ $s = v_3$ v_4 $k = v_4$ $k = v_4$

Augmenting path

The residual capacity of this augmenting path is 4.

Computing Max Flow

- Classic Method:
 - Identify augmenting path
 - Increase flow along that path
 - Repeat

Ford-Fulkerson Method

```
FORD-FULKERSON-METHOD (G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p

3 do augment flow f along p

4 return f
```


Flow(1)

Flow(1)

Residual(1)

Flow(2)

Flow(1)

Residual(1)

Flow(2)

Residual(2)

Flow(1)

Residual(1)

No more augmenting paths \rightarrow max flow attained.

Flow(2)

Residual(2)

Flow(1)

Residual(1)

No more augmenting paths \rightarrow max flow attained.

Flow(2)

Residual(2)

Cut

Cuts of Flow Networks

A cut (S,T) of a flow network is a partition of V into S and T = V - S such that $s \in S$ and $t \in T$.

The Net Flow through a Cut (S,T)

$$f(S,T) = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

$$S = \sum_{u \in S, v \in T} f(u,v)$$

The Capacity of a Cut (S,T)

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

$$v_1 = \sum_{u \in S, v \in T} c(u,v)$$

$$v_2 = \sum_{u \in S, v \in T} c(u,v)$$

$$c(S,T) = 12 + 0 + 14 = 26$$

Augmenting Paths – example

- Capacity of the cut
 - = maximum possible flow through the cut
 - = 12 + 7 + 4 = 23

• The network has a capacity of at most 23.

Augmenting Paths – example

- Capacity of the cut
 - = maximum possible flow through the cut
 - = 12 + 7 + 4 = 23

- The network has a capacity of **at most** 23.
- In this case, the network **does** have a capacity of 23, because this is a **minimum cut**.

Bounding the Network Flow

• The value of any flow *f* in a flow network *G* is bounded from above by the capacity of any cut of *G*.

Max-Flow Min-Cut Theorem

- If f is a flow in a flow network G=(V,E), with source s and sink t, then the following conditions are equivalent:
 - 1.f is a maximum flow in G.
 - 2. The residual network G_f contains no augmented paths.
 - 3. |f| = c(S,T) for some cut (S,T) (a min-cut).

The Basic Ford-Fulkerson Algorithm

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```


Original Network

Example 4/12 20 Resulting Flow = 4 Flow Network 414 v_2 4/14 v_3 Residual Network 10

Flow Network

Resulting Flow = 11

Example 4/12 Resulting Flow = 11 Flow Network S 414 11/14 Residual Network

Example 4/12 Resulting Flow = 11 Flow Network S 414 11/14 augmenting path Residual Network 12/12 Flow Network S 4/4 v_2 11/14

Example 4/12 Resulting Flow = 11 Flow Network S 414 11/14 augmenting path Residual Network 12/12 Flow Network Resulting Flow = ? S 4/4 v_2 11/14

Flow Network

Resulting Flow = 19

Example 12/12 Resulting Flow = 19 Flow Network S 414 11/14 Residual Network

Resulting Flow = 23

Resulting Flow = 23

s v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_9

. .

Residual Network


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

```
FORD-FULKERSON(G, s, t)
    for each edge (u, v) \in E[G]
do f[u, v] \leftarrow 0
               f[v,u] \leftarrow 0
    while there exists a path p from s to t in the residual network G_f
          do c_f(p) \leftarrow \min \{c_f(u, v) : (u, v) \text{ is in } p\}
                    \mathbf{do} \ f[u,v] \leftarrow f[u,v] + c_f(p)
f[v,u] \leftarrow -f[u,v]
               for each edge (u, v) in p
```

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 -f[v,u] \leftarrow 0

6 while there exists a path p from s to t in the residual network G_f

5 do c_f(p) \leftarrow \min\{e_f(u,v) \div (u,v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

• If capacities are all integer, then each augmenting path raises |f| by ≥ 1 .

- If capacities are all integer, then each augmenting path raises |f| by ≥ 1 .
- If max flow is f^* , then need $\leq |f^*|$ iterations \rightarrow time is $O(E|f^*|)$.

- If capacities are all integer, then each augmenting path raises |f| by ≥ 1 .
- If max flow is f^* , then need $\leq |f^*|$ iterations \rightarrow time is $O(E|f^*|)$.
- Note that this running time is **not polynomial** in input size. It depends on |f*|, which is not a function of |V| or |E|.

- If capacities are all integer, then each augmenting path raises |f| by ≥ 1 .
- If max flow is f^* , then need $\leq |f^*|$ iterations \rightarrow time is $O(E|f^*|)$.
- Note that this running time is **not polynomial** in input size. It depends on |f*|, which is not a function of |V| or |E|.
- If capacities are rational, can scale them to integers.
- If irrational, FORD-FULKERSON might never terminate!

The Basic Ford-Fulkerson Algorithm

- With time O (E | f*|), the algorithm is **not** polynomial.
- This problem is real: Ford-Fulkerson may perform very badly if we are unlucky:

|f*|=2,000,000

Run Ford-Fulkerson on this example

Run Ford-Fulkerson on this example

Run Ford-Fulkerson on this example

- Repeat 999,999 more times...
- Can we do better than this?

• A small fix to the Ford-Fulkerson algorithm makes it work in polynomial time.

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

- A small fix to the Ford-Fulkerson algorithm makes it work in polynomial time.
- Select the augmenting path using breadth-first search on residual network.

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f \leftarrow do c_f(p) \leftarrow min\{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

- A small fix to the Ford-Fulkerson algorithm makes it work in polynomial time.
- Select the augmenting path using breadth-first search on residual network.
- The augmenting path p is the shortest path from s to t in the residual network (treating all edge weights as 1).

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f \leftarrow 0

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

- A small fix to the Ford-Fulkerson algorithm makes it work in polynomial time.
- Select the augmenting path using breadth-first search on residual network.
- The augmenting path *p* is the shortest path from *s* to *t* in the residual network (treating all edge weights as 1).
- Runs in time $O(V E^2)$.

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f \leftarrow do c_f(p) \leftarrow min \{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

The Edmonds-Karp Algorithm - example

• The Edmonds-Karp algorithm halts in only 2 iterations on this graph.

Further Improvements

- Push-relabel algorithm O(V² E).
- The relabel-to-front algorithm $O(V^3)$.
- (We will not cover these)

An Application of Max Flow:

Maximum Bipartite Matching

Maximum Bipartite Matching

Maximum Bipartite Matching

■ A bipartite graph is a graph G=(V,E) in which V can be divided into two parts L and R such that every edge in E is between a vertex in L and a vertex in R.

Maximum Bipartite Matching

■ A bipartite graph is a graph G=(V,E) in which V can be divided into two parts L and R such that every edge in E is between a vertex in L and a vertex in R.

 e.g. vertices in *L* represent skilled workers and vertices in *R* represent jobs. An edge connects workers to jobs they can perform.

• A matching in a graph is a subset M of E, such that for all vertices v in V, at most one edge of M is incident on v.

• A maximum matching is a matching of maximum cardinality (maximum number of edges).

A Maximum Matching

- No matching of cardinality 4, because only one of v and u can be matched.
- In the workers-jobs example a maxmatching provides work for as many people as possible.

Solving the Maximum Bipartite Matching Problem

- Reduce the maximum bipartite matching problem on graph G to the max-flow problem on a corresponding flow network G'.
- Solve using Ford-Fulkerson method.

• To form the corresponding flow network **G**' of the bipartite graph **G**:

- To form the corresponding flow network G' of the bipartite graph G:
 - Add a source vertex s and edges from s to L.

- To form the corresponding flow network G' of the bipartite graph G:
 - Add a source vertex s and edges from s to L.
 - Direct the edges in E from L to R.

- To form the corresponding flow network G' of the bipartite graph G:
 - Add a source vertex s and edges from s to L.
 - Direct the edges in E from L to R.
 - Add a sink vertex t and edges from R to t.

- To form the corresponding flow network **G'** of the bipartite graph **G**:
 - Add a source vertex s and edges from s to L.
 - Direct the edges in E from L to R.
 - Add a sink vertex t and edges from R to t.
 - Assign a capacity of 1 to all edges.

- To form the corresponding flow network G' of the bipartite graph G:
 - Add a source vertex s and edges from s to L.
 - Direct the edges in E from L to R.
 - Add a sink vertex t and edges from R to t.
 - Assign a capacity of 1 to all edges.

- To form the corresponding flow network G' of the bipartite graph G:
 - Add a source vertex s and edges from s to L.
 - Direct the edges in E from L to R.
 - Add a sink vertex t and edges from R to t.
 - Assign a capacity of 1 to all edges.
- Claim: max-flow in G' corresponds to a max-bipartitematching on G.

Let G = (V, E) be a bipartite graph with vertex partition $V = L \cup R$.

Let G' = (V', E') be its corresponding flow network.

Let G = (V, E) be a bipartite graph with vertex partition $V = L \cup R$. Let G' = (V', E') be its corresponding flow network.

If M is a matching in G,

then there is an integer-valued flow f in G' with value |f| = |M|.

Let G = (V, E) be a bipartite graph with vertex partition $V = L \cup R$. Let G' = (V', E') be its corresponding flow network.

If M is a matching in G,

then there is an integer-valued flow f in G' with value |f| = |M|.

Conversely if f is an integer-valued flow in G', then there is a matching M in G with cardinality |M| = |f|.

Let G = (V, E) be a bipartite graph with vertex partition $V = L \cup R$. Let G' = (V', E') be its corresponding flow network.

If M is a matching in G,

then there is an integer-valued flow f in G' with value |f| = |M|.

Conversely if f is an integer-valued flow in G', then there is a matching M in G with cardinality |M| = |f|.

Thus $\max |M| = \max(\text{integer } |f|)$

Does this mean that max |f| = max |M|?

Does this mean that max |f| = max |M|?

• Problem: we haven't shown that the max flow f(u,v) is necessarily integer-valued.

• If the capacity function c takes on only integral values, then:

- If the capacity function c takes on only integral values, then:
 - 1. The maximum flow f produced by the Ford-Fulkerson method has the property that |f| is integer-valued.

- If the capacity function c takes on only integral values, then:
 - 1. The maximum flow f produced by the Ford-Fulkerson method has the property that |f| is integer-valued.
 - 2. For all vertices u and v the value f(u,v) of the flow is an integer.

- If the capacity function c takes on only integral values, then:
 - 1. The maximum flow f produced by the Ford-Fulkerson method has the property that |f| is integer-valued.
 - 2. For all vertices u and v the value f(u,v) of the flow is an integer.
- So max | M | = max | f |

Conclusion

 Network flow algorithms allow us to find the maximum bipartite matching fairly easily.

 Similar techniques are applicable in other combinatorial design problems.

- In a department there are n courses and m instructors.
- Every instructor has a list of courses he or she can teach.
- Every instructor can teach at most 3 courses during a year.
- The goal: find an allocation of courses to the instructors subject to these constraints.