Ampliació a l'enginyeria del programari

Primers principis de disseny

Què hi ha en aquest material

- Què són els principis GRASP
- Principi general d'assignació: Expert
- Captura d'ES: Controlador
- Principis avaluatius: Alta Cohesio;
 Baix Acoblament

GRASP

- GRASP (General Responsibility Assignment Software Principles)
 - Principis bàsics de disseny per a l'assignació de responsabilitats
 - o Introduïts per en Larman
 - Constitueixen un vocabulari universalment conegut
 - ▼ Facilitat de comunicació

Un principi general

- 4
- **Problema**: Quin principi general podem aplicar per assignar alguna responsabilitat a un objecte?
- Solució: Principi Expert

Principi

Expert (GRASP)

La responsabilitat R l'assignem a un component C que tingui (o sàpiga com obtenir) tota la informació necessària per poder realitzar la responsabilitat demanada

• Diem que C és expert en R

Dos significats d'expert

Principi Expert

- o Principi general d'assignació de responsabilitats
- Component (o objecte) expert en R
 - Component o objecte que té el potencial o coneixement suficient per realitzar la responsabilitat R
- Dos o un
 - El principi Expert assigna la responsabilitat R a algun dels experts en R.

Experts parcials i per delegació

- Expert parcial (en R)
 - Coneix part de la informació necessària per exercir la responsabilitat R, però no la coneix pas tota
- Expert per delegació (en R)

 No és un expert però se'n pot convertir si li enviem la informació pertinent

Diferents formes d'usar Expert

- Expert: La responsabilitat R l'assignem a algun dels seus experts
 - L'expert pot necessitar col·laborar amb algú altre per obtenir part de la informació d'expertesa
 - o L'existència d'experts **parcials** pot exigir la necessitat d'una col·laboració gestionada
 - La delegació de l'expertesa augmenta els candidats a exercir la responsabilitat

Primera responsabilitat

- Quina és la primera responsabilitat que cal resoldre?
 - O Quina és la primera responsabilitat que cal assignar?

Captura d'un ES

- És la primera responsabilitat que cal exercir
 - O Una cosa és capturar la petició externa
 - O Una altra cosa exercir la responsabilitat demanada amb la petició

• Recordatori:

• ES = Petició al sistema per sota de la capa d'interacció amb l'usuari

AMEP

Interfície i ES

Figure 16.14 Controller for enterItem?

Josep M. Merenciano

AMEP

Captura d'un ES segons Expert

Què diu Expert

- Un ES pot fer qualsevol tipus de petició. Per tant les necessitats d'informació poden ser qualssevol
 - ➤ Potencialment necessitem conèixer tot el sistema
- L'expert ha de conèixer tot el **Domini** del sistema i la capa d'interacció d'aquest amb l'exterior (**Presentació**)

Principi

Controlador (GRASP)

La responsabilitat de capturar un ES l'assignem a un component C que representi o modelitzi la totalitat del sistema o subsistema considerat

- o Diem que C és el controlador d'aquest ES
- o Des de la Presentació, el controlador és l'expert en el Domini

Controlador:

principi i component (o objecte) que rep la responsabilitat de captura

Controlador

Figure 16.14 Controller for enterItem?

Comunicació entre ES

- Els diferents ES que participen en un mateix CU poden tenir necessitat de comunicar-se entre ells
 - Exemple: Un ES prepara un objecte per tal que hi interactuïn els propers ES
- Els ES són externs, asíncrons i no els tenim sota control

• Com ho podem fer per comunicar-los?

Principi

Controlador de CU

Tots els ES d'un mateix CU són capturats pel mateix objecte controlador

Mateix = mateix **objecte**, no pas component

- Els ES són capturats per un controlador
 - Un controlador comú pot mantenir la informació a comunicar com a valors dels seus atributs
 - Podem parlar de "Controlador del CU" enlloc del "Controlador de l'ES"

Josep M. Merenciano

Controlador artificial

- Situació:
 - Hem d' usar un controlador
 - No podem assignar aquesta responsabilitat a cap component
 - No tenim cap concepte que modelitzi tot el sistema o subsitema considerat
 - ➤ Els components que poden rebre la responsabilitat no són pas adients
 - En assignar-los la responsabilitat, violem d'altres principis de disseny
- Solució
 - Introduïm un component "artificial"
 - **▼** Violem Espill

El principi de la Fabricació Pura ens diu sota quines condicions es pot violar Espill. El cas del controlador artificial compleix aquestes condicions.

Principi

Encarrilament

La tasca bàsica d'un controlador és la delegació de les responsabilitats que els ES li demanen

 El controlador no fa res; és el pont entre la Presentació i el Domini

Josep M. Merenciano

CU ferInscripció

[19]

Josep M. Merenciano

CU ferInscripció

Contracte novaInscripcio(c:Caminada)

Paràmetres

c: Caminada a la que es vol fer la inscripció

PRE

1. No hi ha cap Inscripció activa

POST

- S'ha creat una nova realització i: Inscripció
- S'ha creat un enllaç entre i i c corresponent a l'associació relativa a
- La inscripció i passa a estar activa.

POSTs mal expressades.

Perquè??

Controlador

- Partim del MComp buit
- Accedim a MC a veure si hi ha algun concepte que representi tot el sistema
 - o No n'hi ha cap
 - o Introduïm el component GastemLaSola

D'on pot sortir GLS

Ja el teníem a MC

No és el nostre cas

- Afegim un component homòleg a MComp (Espill)
- No el teníem a MC

Ara sí que és el nostre cas

- o Podem modificar MC per tal que el tingui
 - Desenvolupament àgil
 - **×** Cal analitzar les seves interrelacions
- O Podem introduir un controlador de CU artificial
 - **▼** Violem Espill
 - Hem vist que és un cas on es pot violar

El principi de la **Fabricació pura** és qui permet aquesta violació

Amb l'objectiu d'evitar al màxim les reconsideracions, sempre que sigui possible intentarem mantenir el MC

Singleton

- Concepte GastemLaSola (en cas d'haver-lo introduït)
 - o En volem una sola realització (Singleton)
- Component GastemLaSola
 - En volem una sola realització (Singleton)

GLS 1

Podem tenir un singleton a nivell conceptual, a nivell de disseny, o a nivell d'implementació

Model actual (1)

Diagrama de comunicació

MComp

Creació de la i: Inscripció

- Ja hem resolt la primera responsabilitat: la captura de l'ES novaInscripció (c:Caminada)
- Ara toca assignar les responsabilitats que pertoquen a aquest ES
 - o Les responsabilitats d'un ES estan expressades en les POST del seu contracte
 - ▼ Les PRE indiquen quines condicions podem assumir per tal d'arribar a les POST
- A novaInscripció (c:Caminada) la primera responsabilitat és assegurar l'existència d'una nova i:Inscripció
 - o Cal, per tant, crear una i: Inscripció

Experts en la creació

- Informació d'expertesa
 - o Caminada +
 - o Arguments de l'ES
 - ➤ Data, (Caminada)
- Experts
 - Controlador
 - ➤ Com a capturador de l'ES, en coneix els seus arguments
 - ▼ També coneix la Caminada perquè és un argument de l'ES
 - o Caminada
 - ▼ Expert per delegació des del controlador
 - o La delegació és possible perquè l'ES aporta la Caminada

Les necessitats
d'informació dels ES poden
ser explícites o implícites
(data del sistema, objecte
actiu, ...)

Necessitat dels principis avaluatius

- Tenim dos experts en la creació
- Amb quin dels dos ens quedem?
 - Exercici
 - ➤ Assignar la responsabilitat a algun dels dos experts viola algun principi?
 - Necesitem principis avaluatius

Josep M. Merenciano

Principis avaluatius

(28)

Cohesió

- Mesura qualitativa sobre el grau de relació i focalització de les tasques o responsabilitats assignades a un mateix component
- Aproximacions quantitatives:
 - Nombre de responsabilitats assignades
 - Nombre de missatges que sap respondre

Llegible tant a MComp com des dels diagrames d'interacció

Alta Cohesió (GRASP)

 Davant de dues alternatives d'assignació de responsabilitats, ens decidim per aquella que en el disseny resultant els components tinguin una cohesió més elevada

Acoblament

- Mesura qualitativa de la força amb què un component està connectat o té coneixement d'altres components
- Aproximació quantitativa:
 - Nombre de dependències
 - ➤ Visibilitats d'atribut i dependències

Llegible sobretot a MComp

Baix Acoblament (GRASP)

 Davant de dues alternatives d'assignació de responsabilitats, ens decidim per aquella que en el disseny resultant els components tinguin un acoblament més baix

Dos models per comparar

33)

- Model 1
 - o GLS

- Expert en la creació
- **Responsabilitats**
 - Controlador
 - o Creador d'Inscripció
- **x** Coneixement
 - Caminada
 - o Inscripció
- o Caminada

Sense responsabilitats ni necessitats de coneixement conegudes

- Model 2
 - o GLS
 - **x** Responsabilitats
 - Controlador
 - **X** Coneixement
 - Caminada
 - o Caminada
 - Responsabilitats
 - o Creador d'Inscripció
 - **▼** Coneixement
 - o Inscripció
 - Caminada

Expert en la creació

Josep M. Merenciano

Anàlisi dels dos models (1)

Model 1

- o GLS
 - × més acoblat
 - ▼ menys cohesionat
- O Caminada
 - × menys acoblada
 - × més cohesionada

Model 2

- o GLS
 - * menys acoblat
 - × més cohesionat
- o Caminada
 - × més acoblada
 - menys cohesionada

 L'anàlisi ha de ser global, no pas individual per cada component

Anàlisi dels dos models (2)

Model 1

- Tres* components,
- Dues responsabilitats
 - Assignades a un sol component
- Un component ha de conèixer els altres dos

Estem creant una
Inscripció. Per
tant aquest és un
component que
segur que hem de
tenir

Model 2

- Tres* components,
- Dues responsabilitats
 - Assignades a DOS components
 - Cal afegir una delegació de responsabilitat
- Cada component n'ha de conèixer com a molt un altre

Màxima distribució de coneixement (Baix Acoblament)

Màxima distribució de responsabilitats (**Alta Cohesió**)

Conclusions actuals

- M1
 - o Viola *Alta Cohesio*
 - Viola Baix Acoblament
 - Viola Encarrilament
 - ▼ El podem veure com un cas particular d'Alta Cohesió

- M2
 - Aparentment no viola cap dels principis

- Model considerat
 - o Controlador: GLS
 - o Creador d'Inscripció: Caminada