Deep Learning - Musterlösung Übung 5

Generative Modelle und Fortgeschrittenes Deep Learning

Fachhochschule Südwestfalen

23. Oktober 2025

Hinweise zur Musterlösung

Diese Musterlösung bietet umfassende mathematische Herleitungen und praktische Implementierungen für generative Modelle und fortgeschrittene Deep Learning Techniken.

Autoencoders - Lösungen 1

Aufgabe 1.1: Autoencoder-Mathematik

Encoder-Decoder Architektur:

$$\mathbf{z} = f_{\text{enc}}(\mathbf{x}) = \sigma(\mathbf{W}_e \mathbf{x} + \mathbf{b}_e) \tag{1}$$

$$\hat{\mathbf{x}} = f_{\text{dec}}(\mathbf{z}) = \sigma(\mathbf{W}_d \mathbf{z} + \mathbf{b}_d) \tag{2}$$

$$L(\mathbf{x}, \hat{\mathbf{x}}) = \|\mathbf{x} - \hat{\mathbf{x}}\|^2 \tag{3}$$

Dimensionsanalyse: Für MNIST-Daten ($\mathbf{x} \in \mathbb{R}^{784}$) und latenten Raum ($\mathbf{z} \in \mathbb{R}^{32}$):

$$\mathbf{W}_{e} \in \mathbb{R}^{32 \times 784}, \quad \mathbf{b}_{e} \in \mathbb{R}^{32}$$

$$\mathbf{W}_{d} \in \mathbb{R}^{784 \times 32}, \quad \mathbf{b}_{d} \in \mathbb{R}^{784}$$

$$(5)$$

$$\mathbf{W}_d \in \mathbb{R}^{784 \times 32}, \quad \mathbf{b}_d \in \mathbb{R}^{784} \tag{5}$$

Gradientenberechnung:

Decoder-Gradienten:

$$\frac{\partial L}{\partial \mathbf{W}_d} = \frac{\partial L}{\partial \hat{\mathbf{x}}} \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{W}_d} \tag{6}$$

$$= -2(\mathbf{x} - \hat{\mathbf{x}}) \odot \sigma'(\mathbf{W}_d \mathbf{z} + \mathbf{b}_d) \mathbf{z}^T$$
 (7)

Encoder-Gradienten (Backpropagation durch Decoder):

$$\frac{\partial L}{\partial \mathbf{z}} = \mathbf{W}_d^T \left[-2(\mathbf{x} - \hat{\mathbf{x}}) \odot \sigma'(\mathbf{W}_d \mathbf{z} + \mathbf{b}_d) \right]$$
(8)

$$\frac{\partial L}{\partial \mathbf{W}_e} = \frac{\partial L}{\partial \mathbf{z}} \odot \sigma'(\mathbf{W}_e \mathbf{x} + \mathbf{b}_e) \mathbf{x}^T$$
(9)

Kompressionsverhältnis:

Compression Ratio =
$$\frac{\text{Original Size}}{\text{Compressed Size}} = \frac{784}{32} = 24.5$$
 (10)

Vergleich mit JPEG: JPEG erreicht typischerweise 10:1 bis 50:1, aber verlustbehaftet. Der Autoencoder lernt eine datenspezifische Kompression.

PCA-Vergleich: Linearer Autoencoder mit einer Hidden Layer ist äquivalent zu PCA, wenn:

- Keine Bias-Terms verwendet werden
- MSE Loss verwendet wird
- Globales Minimum erreicht wird

Beweis: Die optimalen Gewichte \mathbf{W}_d entsprechen den ersten k Hauptkomponenten.

1.2 Aufgabe 1.2: Autoencoder-Implementierung

Standard Autoencoder:

```
import numpy as np
  import matplotlib.pyplot as plt
3
  class StandardAutoencoder:
4
       def __init__(self, input_dim, latent_dim):
5
           self.input_dim = input_dim
6
           self.latent_dim = latent_dim
           # Xavier initialization
           self.W_encoder = np.random.randn(latent_dim, input_dim) * np.
10
              sqrt(2.0 / input_dim)
           self.b_encoder = np.zeros((latent_dim, 1))
11
12
           self.W_decoder = np.random.randn(input_dim, latent_dim) * np.
13
              sqrt(2.0 / latent_dim)
           self.b_decoder = np.zeros((input_dim, 1))
14
15
           # For storing during forward pass
16
           self.cache = {}
17
       def sigmoid(self, x):
19
           return np.where(x >= 0,
20
                           1 / (1 + np.exp(-x)),
21
                           np.exp(x) / (1 + np.exp(x)))
22
23
       def sigmoid_derivative(self, x):
24
           s = self.sigmoid(x)
25
           return s * (1 - s)
26
27
       def encode(self, x):
28
           """Encode input to latent representation"""
           z_pre = self.W_encoder @ x + self.b_encoder
30
           z = self.sigmoid(z_pre)
31
           return z, z_pre
32
33
       def decode(self, z):
34
```

```
"""Decode latent representation to reconstruction"""
35
           x_pre = self.W_decoder @ z + self.b_decoder
36
           x_reconstructed = self.sigmoid(x_pre)
37
           return x_reconstructed, x_pre
38
39
       def forward(self, x):
           """Complete forward pass"""
41
           # Encoder
42
           z, z_pre = self.encode(x)
43
44
           # Decoder
           x_reconstructed, x_pre = self.decode(z)
46
^{47}
           # Store for backpropagation
48
           self.cache = {
49
                'x': x,
50
                'z_pre': z_pre,
51
                'z': z,
52
                'x_pre': x_pre,
53
                'x_reconstructed': x_reconstructed
54
           }
55
56
           return x_reconstructed
57
       def backward(self, x_reconstructed, x_target):
59
           """Backpropagation"""
60
           # Loss gradient
61
           dLoss_dx_reconstructed = 2 * (x_reconstructed - x_target)
62
63
           # Decoder gradients
64
           dx_pre = dLoss_dx_reconstructed * self.sigmoid_derivative(
65
              self.cache['x_pre'])
           dW_decoder = dx_pre @ self.cache['z'].T
66
           db_decoder = np.sum(dx_pre, axis=1, keepdims=True)
67
68
           # Encoder gradients
69
           dz = self.W_decoder.T @ dx_pre
70
           dz_pre = dz * self.sigmoid_derivative(self.cache['z_pre'])
71
           dW_encoder = dz_pre @ self.cache['x'].T
72
           db_encoder = np.sum(dz_pre, axis=1, keepdims=True)
73
           return {
75
                'dW_encoder': dW_encoder,
76
                'db_encoder': db_encoder,
77
                'dW_decoder': dW_decoder,
78
                'db_decoder': db_decoder
79
           }
80
81
       def update_weights(self, gradients, learning_rate):
82
           """Update weights using gradients"""
83
           self.W_encoder -= learning_rate * gradients['dW_encoder']
84
```

```
self.b_encoder -= learning_rate * gradients['db_encoder']
85
            self.W_decoder -= learning_rate * gradients['dW_decoder']
86
            self.b_decoder -= learning_rate * gradients['db_decoder']
87
88
        def train(self, X, epochs=1000, learning_rate=0.01, batch_size
89
           =32):
            """Training loop"""
90
            losses = []
91
92
            for epoch in range(epochs):
93
                epoch_loss = 0
                num_batches = 0
95
96
                # Shuffle data
97
                indices = np.random.permutation(X.shape[1])
98
                X_shuffled = X[:, indices]
99
100
101
                # Mini-batch training
                for i in range(0, X.shape[1], batch_size):
102
                     batch_X = X_shuffled[:, i:i+batch_size]
103
104
                     # Forward pass
105
                     x_reconstructed = self.forward(batch_X)
106
107
                     # Compute loss
108
                     loss = np.mean((batch_X - x_reconstructed)**2)
109
                     epoch_loss += loss
110
                     num_batches += 1
111
112
                     # Backward pass
113
                     gradients = self.backward(x_reconstructed, batch_X)
114
115
                     # Update weights
116
                     self.update_weights(gradients, learning_rate)
117
118
                avg_loss = epoch_loss / num_batches
119
                losses.append(avg_loss)
120
121
                if (epoch + 1) % 100 == 0:
122
                     print(f"Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.6f
123
                        }")
124
            return losses
125
126
        def reconstruct(self, x):
127
            """Reconstruct single input"""
128
            return self.forward(x.reshape(-1, 1)).flatten()
129
130
   class DenoisingAutoencoder(StandardAutoencoder):
131
        def __init__(self, input_dim, latent_dim, noise_factor=0.3):
132
            super().__init__(input_dim, latent_dim)
133
```

```
self.noise_factor = noise_factor
134
135
       def add_noise(self, x):
136
            """Add Gaussian noise to input"""
137
            noise = np.random.normal(0, self.noise_factor, x.shape)
138
            noisy_x = x + noise
139
            return np.clip(noisy_x, 0, 1) # Ensure values stay in [0,1]
140
141
        def train_denoising(self, X, epochs=1000, learning_rate=0.01,
142
           batch_size=32):
            """Training with noise"""
            losses = []
145
            for epoch in range(epochs):
146
                epoch_loss = 0
147
                num_batches = 0
148
149
                # Shuffle data
150
                indices = np.random.permutation(X.shape[1])
151
                X_shuffled = X[:, indices]
152
153
                for i in range(0, X.shape[1], batch_size):
154
                     batch_X = X_shuffled[:, i:i+batch_size]
155
156
                     # Add noise to input
157
                     noisy_X = self.add_noise(batch_X)
158
159
                     # Forward pass with noisy input
160
                     x_reconstructed = self.forward(noisy_X)
161
162
                     # Loss computed against clean target
163
                     loss = np.mean((batch_X - x_reconstructed)**2)
164
                     epoch_loss += loss
165
                     num_batches += 1
166
167
                     # Backward pass
168
                     gradients = self.backward(x_reconstructed, batch_X)
169
                     self.update_weights(gradients, learning_rate)
170
171
                avg_loss = epoch_loss / num_batches
172
                losses.append(avg_loss)
173
174
                if (epoch + 1) \% 100 == 0:
175
                     print(f"Epoch {epoch+1}/{epochs}, Denoising Loss: {
176
                        avg_loss:.6f}")
177
178
            return losses
179
   # Test with synthetic data
180
   def create_synthetic_mnist():
181
       """Create synthetic MNIST-like data"""
182
```

```
np.random.seed(42)
183
184
        # Create simple patterns
185
        data = []
186
        for _ in range(1000):
187
            # Create a 28x28 image with simple patterns
188
            img = np.zeros((28, 28))
189
190
            # Random rectangles, circles, lines
191
            if np.random.rand() < 0.33:</pre>
192
                # Rectangle
193
                x1, y1 = np.random.randint(5, 15, 2)
194
                x2, y2 = np.random.randint(x1+3, 25, 2)
195
                img[x1:x2, y1:y2] = 1
196
            elif np.random.rand() < 0.66:</pre>
197
                # Circle
198
                center = np.random.randint(8, 20, 2)
199
                radius = np.random.randint(3, 8)
200
                y, x = np.ogrid[:28, :28]
201
                mask = (x - center[0])**2 + (y - center[1])**2 <= radius
202
                img[mask] = 1
203
            else:
204
                # Line
205
                x1, y1 = np.random.randint(0, 28, 2)
206
                x2, y2 = np.random.randint(0, 28, 2)
207
                # Simple line drawing
208
                length = \max(abs(x2-x1), abs(y2-y1))
209
                for t in np.linspace(0, 1, length):
210
                     x = int(x1 + t*(x2-x1))
211
                     y = int(y1 + t*(y2-y1))
212
                     if 0 \le x \le 28 and 0 \le y \le 28:
213
                          img[x, y] = 1
214
215
            data.append(img.flatten())
216
217
        return np.array(data).T # Shape: (784, 1000)
218
219
   # Example usage
220
   print("Erstelle synthetische Daten...")
221
   X_synthetic = create_synthetic_mnist()
222
223
   print("Trainiere Standard Autoencoder...")
224
   autoencoder = StandardAutoencoder(input_dim=784, latent_dim=32)
225
   losses_standard = autoencoder.train(X_synthetic, epochs=500,
226
       learning_rate=0.01)
227
   print("Trainiere Denoising Autoencoder...")
228
   denoising_ae = DenoisingAutoencoder(input_dim=784, latent_dim=32,
229
       noise_factor=0.3)
   losses_denoising = denoising_ae.train_denoising(X_synthetic, epochs
```

```
=500, learning_rate=0.01)
231
   # Visualization
232
   plt.figure(figsize=(12, 4))
233
234
   # Plot losses
   plt.subplot(1, 3, 1)
236
   plt.plot(losses_standard, label='Standard AE')
237
   plt.plot(losses_denoising, label='Denoising AE')
238
   plt.title('Training Losses')
239
   plt.xlabel('Epoch')
   plt.ylabel('MSE Loss')
   plt.legend()
^{242}
   plt.grid(True)
243
244
   # Original vs Reconstruction
245
   test_idx = 0
246
   original = X_synthetic[:, test_idx].reshape(28, 28)
247
   reconstructed_std = autoencoder.reconstruct(X_synthetic[:, test_idx])
248
       .reshape(28, 28)
249
   # Add noise for denoising test
250
   noisy_input = denoising_ae.add_noise(X_synthetic[:, test_idx:test_idx
      +1])
   reconstructed_denoising = denoising_ae.forward(noisy_input).reshape
252
       (28, 28)
253
   plt.subplot(1, 3, 2)
254
   plt.imshow(original, cmap='gray')
   plt.title('Original')
   plt.axis('off')
257
258
   plt.subplot(1, 3, 3)
259
   plt.imshow(reconstructed_std, cmap='gray')
260
   plt.title('Rekonstruktion')
   plt.axis('off')
262
263
  plt.tight_layout()
264
   plt.show()
265
```

2 Variational Autoencoders (VAE) - Lösungen

2.1 Aufgabe 2.1: VAE-Mathematik

VAE-Formulierung:

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x})) \tag{11}$$

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}_{\theta}(\mathbf{z}), \mathbf{I}) \tag{12}$$

$$\mathcal{L}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$
(13)

KL-Divergenz geschlossen: Für $q(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$ und $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$:

$$D_{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) = \frac{1}{2} \sum_{j=1}^{J} (\mu_j^2 + \sigma_j^2 - \log \sigma_j^2 - 1)$$
 (14)

Reparametrisierung-Trick:

$$\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon} \tag{15}$$

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (16)

Dies macht den Sampling-Prozess differenzierbar.

2.2 Aufgabe 2.2: VAE-Implementierung

```
class VariationalAutoencoder:
       def __init__(self, input_dim, latent_dim):
2
           self.input_dim = input_dim
3
           self.latent_dim = latent_dim
4
5
           # Encoder network (outputs mu and log_var)
6
           self.W_enc_1 = np.random.randn(256, input_dim) * 0.01
           self.b_enc_1 = np.zeros((256, 1))
9
           self.W_mu = np.random.randn(latent_dim, 256) * 0.01
10
           self.b_mu = np.zeros((latent_dim, 1))
11
12
           self.W_logvar = np.random.randn(latent_dim, 256) * 0.01
13
           self.b_logvar = np.zeros((latent_dim, 1))
15
           # Decoder network
16
           self.W_dec_1 = np.random.randn(256, latent_dim) * 0.01
17
           self.b_dec_1 = np.zeros((256, 1))
18
19
           self.W_dec_2 = np.random.randn(input_dim, 256) * 0.01
20
           self.b_dec_2 = np.zeros((input_dim, 1))
21
22
       def relu(self, x):
23
           return np.maximum(0, x)
24
25
       def relu_derivative(self, x):
26
           return (x > 0).astype(float)
27
28
       def sigmoid(self, x):
29
           return np.where(x >= 0,
30
                           1 / (1 + np.exp(-x)),
                           np.exp(x) / (1 + np.exp(x))
32
33
       def encode(self, x):
34
           """Encoder: x -> mu, log_var"""
35
           h1 = self.relu(self.W_enc_1 @ x + self.b_enc_1)
36
```

```
mu = self.W_mu @ h1 + self.b_mu
37
           log_var = self.W_logvar @ h1 + self.b_logvar
38
           return mu, log_var, h1
39
40
       def reparameterize(self, mu, log_var):
41
           """Reparameterization trick"""
           std = np.exp(0.5 * log_var)
43
           eps = np.random.normal(0, 1, mu.shape)
44
           z = mu + std * eps
45
           return z, eps
46
47
       def decode(self, z):
48
           """Decoder: z -> x_reconstructed"""
49
           h1 = self.relu(self.W_dec_1 @ z + self.b_dec_1)
50
           x_reconstructed = self.sigmoid(self.W_dec_2 @ h1 + self.
51
              b_dec_2)
           return x_reconstructed, h1
52
53
       def forward(self, x):
54
           """Complete forward pass"""
55
           # Encode
56
           mu, log_var, h_enc = self.encode(x)
57
58
           # Sample
           z, eps = self.reparameterize(mu, log_var)
60
61
           # Decode
62
           x_reconstructed, h_dec = self.decode(z)
63
64
           # Store for backpropagation
65
           self.cache = {
66
                'x': x,
67
                'h_enc': h_enc,
68
                'mu': mu,
69
                'log_var': log_var,
70
                'z': z,
71
                'eps': eps,
72
                'h_dec': h_dec,
73
                'x_reconstructed': x_reconstructed
74
           }
75
76
           return x_reconstructed, mu, log_var
77
78
       def compute_loss(self, x, x_reconstructed, mu, log_var):
79
           """VAE loss = Reconstruction loss + KL divergence"""
80
           batch_size = x.shape[1]
81
           # Reconstruction loss (binary cross-entropy)
83
           reconstruction_loss = -np.sum(
84
               x * np.log(x_reconstructed + 1e-8) +
85
                (1 - x) * np.log(1 - x_reconstructed + 1e-8)
86
```

```
) / batch_size
87
88
            # KL divergence
89
            kl_loss = -0.5 * np.sum(1 + log_var - mu**2 - np.exp(log_var)
90
               ) / batch_size
            total_loss = reconstruction_loss + kl_loss
92
93
            return total_loss, reconstruction_loss, kl_loss
94
95
        def generate(self, num_samples=1):
96
            """Generate new samples from prior"""
97
            z = np.random.normal(0, 1, (self.latent_dim, num_samples))
98
            generated, _ = self.decode(z)
99
            return generated
100
101
   # Example VAE training (simplified)
102
   def train_vae_example():
103
       # Create simple synthetic data
104
       X = np.random.rand(784, 100) # 100 samples of 784-dim data
105
106
       vae = VariationalAutoencoder(input_dim=784, latent_dim=20)
107
108
       print("Training VAE...")
109
        for epoch in range(100):
110
            # Forward pass
111
            x_recon, mu, log_var = vae.forward(X)
112
113
            # Compute loss
114
            total_loss, recon_loss, kl_loss = vae.compute_loss(X, x_recon
115
               , mu, log_var)
116
            if (epoch + 1) \% 20 == 0:
117
                print(f"Epoch {epoch+1}: Total Loss: {total_loss:.4f}, "
118
                       f"Recon: {recon_loss:.4f}, KL: {kl_loss:.4f}")
119
120
        # Generate new samples
121
        generated = vae.generate(5)
122
        print(f"Generated samples shape: {generated.shape}")
123
124
   train_vae_example()
125
```

3 Generative Adversarial Networks (GANs) - Lösungen

3.1 Aufgabe 3.1: GAN-Theorie

Minimax-Spiel:

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_z}[\log(1 - D(G(\mathbf{z})))]$$
(17)

Optimaler Discriminator: Für festen Generator G, der optimale Discriminator ist:

$$D^*(\mathbf{x}) = \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_q(\mathbf{x})}$$
(18)

Beweis: Zu maximieren:

$$V(G, D) = \int_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \log D(\mathbf{x}) + p_g(\mathbf{x}) \log(1 - D(\mathbf{x})) d\mathbf{x}$$
 (19)

Ableitung nach $D(\mathbf{x})$ und Nullsetzen:

$$\frac{\partial}{\partial D(\mathbf{x})} V(G, D) = \frac{p_{\text{data}}(\mathbf{x})}{D(\mathbf{x})} - \frac{p_g(\mathbf{x})}{1 - D(\mathbf{x})} = 0$$
 (20)

Lösung: $D^*(\mathbf{x}) = \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_g(\mathbf{x})}$

Globales Optimum: Wenn $p_g = p_{\text{data}}$, dann $D^*(\mathbf{x}) = \frac{1}{2}$ und $V(G^*, D^*) = -\log 4$.

3.2 Aufgabe 3.2: GAN-Implementierung

```
class SimpleGAN:
1
       def __init__(self, latent_dim=100, data_dim=784):
2
           self.latent_dim = latent_dim
3
           self.data_dim = data_dim
           # Generator weights
           self.G_W1 = np.random.randn(128, latent_dim) * 0.01
           self.G_b1 = np.zeros((128, 1))
8
           self.G_W2 = np.random.randn(data_dim, 128) * 0.01
9
           self.G_b2 = np.zeros((data_dim, 1))
10
           # Discriminator weights
12
           self.D_W1 = np.random.randn(128, data_dim) * 0.01
13
           self.D_b1 = np.zeros((128, 1))
14
           self.D_W2 = np.random.randn(1, 128) * 0.01
15
           self.D_b2 = np.zeros((1, 1))
16
       def leaky_relu(self, x, alpha=0.2):
18
           return np.where(x > 0, x, alpha * x)
19
20
       def leaky_relu_derivative(self, x, alpha=0.2):
21
           return np.where(x > 0, 1, alpha)
22
```

```
23
       def sigmoid(self, x):
24
           return np.where(x >= 0,
25
                           1 / (1 + np.exp(-x)),
26
                           np.exp(x) / (1 + np.exp(x))
27
       def sigmoid_derivative(self, x):
29
           s = self.sigmoid(x)
30
           return s * (1 - s)
31
32
       def generator(self, z):
33
           """Generator: z -> fake_data"""
34
           h1 = self.leaky_relu(self.G_W1 @ z + self.G_b1)
35
           output = self.sigmoid(self.G_W2 @ h1 + self.G_b2)
36
           return output, h1
37
38
       def discriminator(self, x):
39
           """Discriminator: x -> probability"""
40
           h1 = self.leaky_relu(self.D_W1 @ x + self.D_b1)
41
           output = self.sigmoid(self.D_W2 @ h1 + self.D_b2)
42
           return output, h1
43
44
       def train_discriminator(self, real_data, fake_data, learning_rate
45
          =0.0002):
           """Train discriminator for one step"""
46
           batch_size = real_data.shape[1]
47
48
           # Forward pass on real data
49
           real_output, real_h1 = self.discriminator(real_data)
50
51
           # Forward pass on fake data
52
           fake_output, fake_h1 = self.discriminator(fake_data)
53
54
           # Discriminator loss
55
           d_loss_real = -np.mean(np.log(real_output + 1e-8))
           d_loss_fake = -np.mean(np.log(1 - fake_output + 1e-8))
57
           d_loss = d_loss_real + d_loss_fake
58
59
           # Gradients for real data
60
           d_real_output = -1 / (real_output + 1e-8) / batch_size
61
           d_real_h1_pre = d_real_output * self.sigmoid_derivative(self.
62
              D_W2 @ real_h1 + self.D_b2)
           d_D_W2_real = d_real_h1_pre @ real_h1.T
63
           d_D_b2_real = np.sum(d_real_h1_pre, axis=1, keepdims=True)
64
65
           d_real_h1 = self.D_W2.T @ d_real_h1_pre
66
           d_real_h1_pre_2 = d_real_h1 * self.leaky_relu_derivative(self
67
              .D_W1 @ real_data + self.D_b1)
           d_D_W1_real = d_real_h1_pre_2 @ real_data.T
68
           d_D_b1_real = np.sum(d_real_h1_pre_2, axis=1, keepdims=True)
69
70
```

```
# Gradients for fake data
71
            d_fake_output = 1 / (1 - fake_output + 1e-8) / batch_size
72
            d_fake_h1_pre = d_fake_output * self.sigmoid_derivative(self.
73
               D_W2 @ fake_h1 + self.D_b2)
            d_D_W2_fake = d_fake_h1_pre @ fake_h1.T
74
            d_D_b2_fake = np.sum(d_fake_h1_pre, axis=1, keepdims=True)
76
            d_fake_h1 = self.D_W2.T @ d_fake_h1_pre
77
            d_fake_h1_pre_2 = d_fake_h1 * self.leaky_relu_derivative(self
78
               .D_W1 @ fake_data + self.D_b1)
            d_D_W1_fake = d_fake_h1_pre_2 @ fake_data.T
            d_D_b1_fake = np.sum(d_fake_h1_pre_2, axis=1, keepdims=True)
80
81
            # Update discriminator weights
82
            self.D_W2 -= learning_rate * (d_D_W2_real + d_D_W2_fake)
83
            self.D_b2 -= learning_rate * (d_D_b2_real + d_D_b2_fake)
84
            self.D_W1 -= learning_rate * (d_D_W1_real + d_D_W1_fake)
85
            self.D_b1 -= learning_rate * (d_D_b1_real + d_D_b1_fake)
86
87
           return d_loss
88
89
       def train_generator(self, z, learning_rate=0.0002):
90
            """Train generator for one step"""
91
            batch_size = z.shape[1]
92
93
            # Generate fake data
94
            fake_data, g_h1 = self.generator(z)
95
96
            # Pass through discriminator
97
            d_output, d_h1 = self.discriminator(fake_data)
98
99
           # Generator loss (wants discriminator to output 1)
100
            g_{loss} = -np.mean(np.log(d_output + 1e-8))
101
102
            # Backpropagate through discriminator (frozen weights)
            d_d_output = -1 / (d_output + 1e-8) / batch_size
104
            d_d_h1_pre = d_d_output * self.sigmoid_derivative(self.D_W2 @
105
                d_h1 + self.D_b2)
            d_d_h1 = self.D_W2.T @ d_d_h1_pre
106
            d_fake_data = self.D_W1.T @ (d_d_h1 * self.
107
               leaky_relu_derivative(self.D_W1 @ fake_data + self.D_b1))
108
            # Backpropagate through generator
109
            d_g_output = d_fake_data * self.sigmoid_derivative(self.G_W2
110
               0 \text{ g}h1 + \text{self}.G_b2
            d_G_W2 = d_g_output @ g_h1.T
111
            d_G_b2 = np.sum(d_g_output, axis=1, keepdims=True)
112
113
            d_g_h1 = self.G_W2.T @ d_g_output
114
            d_g_h1_pre = d_g_h1 * self.leaky_relu_derivative(self.G_W1 @
115
               z + self.G_b1
```

```
d_G_W1 = d_g_h1_pre @ z.T
116
            d_G_b1 = np.sum(d_g_h1_pre, axis=1, keepdims=True)
117
118
            # Update generator weights
119
            self.G_W2 -= learning_rate * d_G_W2
120
            self.G_b2 -= learning_rate * d_G_b2
121
            self.G_W1 -= learning_rate * d_G_W1
122
            self.G_b1 -= learning_rate * d_G_b1
123
124
            return g_loss
125
126
        def generate_samples(self, num_samples):
127
            """Generate samples from random noise"""
128
            z = np.random.normal(0, 1, (self.latent_dim, num_samples))
129
            generated, _ = self.generator(z)
130
            return generated
131
132
   # Example training
133
   def train_gan_example():
134
       # Synthetic real data
135
        real_data = np.random.rand(784, 1000)
136
137
        gan = SimpleGAN(latent_dim=100, data_dim=784)
138
139
        epochs = 1000
140
        batch_size = 64
141
142
        print("Training GAN...")
143
        for epoch in range(epochs):
144
            # Random batch of real data
145
            idx = np.random.randint(0, real_data.shape[1], batch_size)
146
            real_batch = real_data[:, idx]
147
148
            # Generate fake data
149
            z = np.random.normal(0, 1, (gan.latent_dim, batch_size))
150
            fake_batch, _ = gan.generator(z)
151
152
            # Train discriminator
153
            d_loss = gan.train_discriminator(real_batch, fake_batch)
154
155
            # Train generator
156
            z = np.random.normal(0, 1, (gan.latent_dim, batch_size))
157
            g_loss = gan.train_generator(z)
158
159
            if (epoch + 1) \% 100 == 0:
160
                print(f"Epoch {epoch+1}: D_loss: {d_loss:.4f}, G_loss: {
161
                    g_loss:.4f}")
162
        # Generate samples
163
        samples = gan.generate_samples(10)
164
```

4 Vertiefende Aufgaben - Lösungen

4.1 Aufgabe 4.1: Data Augmentation

```
class DataAugmentation:
       def __init__(self):
2
           pass
3
4
       def horizontal_flip(self, image):
5
           """Horizontal flip"""
           return np.fliplr(image)
8
       def vertical_flip(self, image):
9
           """Vertical flip"""
10
           return np.flipud(image)
11
12
       def rotation(self, image, angle):
13
           """Simple rotation (simplified implementation)"""
14
           # In practice, use scipy.ndimage.rotate or cv2.rotate
15
           # This is a placeholder
16
           return image
17
18
       def gaussian_noise(self, image, mean=0, std=0.1):
19
           """Add Gaussian noise"""
20
           noise = np.random.normal(mean, std, image.shape)
21
           noisy_image = image + noise
22
           return np.clip(noisy_image, 0, 1)
23
       def brightness_adjustment(self, image, factor):
25
           """Adjust brightness"""
26
           bright_image = image * factor
27
           return np.clip(bright_image, 0, 1)
28
29
       def contrast_adjustment(self, image, factor):
30
           """Adjust contrast"""
           mean = np.mean(image)
32
           contrast_image = (image - mean) * factor + mean
33
           return np.clip(contrast_image, 0, 1)
34
35
       def random_crop(self, image, crop_size):
           """Random crop"""
37
           h, w = image.shape
38
           ch, cw = crop_size
39
40
           if h < ch or w < cw:
41
```

```
return image
42
43
           x = np.random.randint(0, h - ch + 1)
44
           y = np.random.randint(0, w - cw + 1)
45
46
           return image[x:x+ch, y:y+cw]
47
48
       def augment_batch(self, images, augmentation_prob=0.5):
49
           """Apply random augmentations to a batch"""
50
           augmented = []
51
52
           for img in images:
53
               # Reshape if needed
54
               if img.ndim == 1:
55
                    img = img.reshape(28, 28)
                                                # Assume MNIST-like
56
57
                # Apply random augmentations
58
                if np.random.rand() < augmentation_prob:</pre>
59
                    # Choose random augmentation
60
                    aug_type = np.random.choice(['flip', 'noise', '
61
                       brightness', 'contrast'])
62
                    if aug_type == 'flip':
63
                        if np.random.rand() < 0.5:</pre>
64
                             img = self.horizontal_flip(img)
65
                        else:
66
                             img = self.vertical_flip(img)
67
                    elif aug_type == 'noise':
68
                        img = self.gaussian_noise(img, std=0.1)
69
                    elif aug_type == 'brightness':
70
                        factor = np.random.uniform(0.8, 1.2)
71
                        img = self.brightness_adjustment(img, factor)
72
                    elif aug_type == 'contrast':
73
                        factor = np.random.uniform(0.8, 1.2)
74
                        img = self.contrast_adjustment(img, factor)
76
                augmented.append(img.flatten())
77
78
           return np.array(augmented)
79
80
  # Example usage
81
  augmenter = DataAugmentation()
82
  sample_images = np.random.rand(10, 784) # 10 samples
83
  augmented = augmenter.augment_batch(sample_images)
84
  print(f"Augmented {len(augmented)} images")
```

4.2 Aufgabe 4.2: Gradient Clipping

```
class GradientClipper:
def __init__(self, max_norm=5.0):
```

```
self.max_norm = max_norm
3
4
       def clip_gradients(self, gradients):
5
           """Clip gradients by global norm"""
6
           # Calculate global norm
           total_norm = 0
           for grad in gradients.values():
               if isinstance(grad, np.ndarray):
10
                    total_norm += np.sum(grad**2)
11
12
           total_norm = np.sqrt(total_norm)
13
14
           # Clip if necessary
15
           if total_norm > self.max_norm:
16
               clip_ratio = self.max_norm / total_norm
17
               clipped_gradients = {}
18
               for key, grad in gradients.items():
19
                    if isinstance(grad, np.ndarray):
20
                        clipped_gradients[key] = grad * clip_ratio
21
                    else:
22
                        clipped_gradients[key] = grad
23
               return clipped_gradients, total_norm
24
25
           return gradients, total_norm
26
27
       def clip_gradients_by_value(self, gradients, min_val=-1.0,
28
          max_val=1.0):
           """Clip gradients by value"""
29
           clipped_gradients = {}
30
           for key, grad in gradients.items():
31
               if isinstance(grad, np.ndarray):
32
                    clipped_gradients[key] = np.clip(grad, min_val,
33
                       max_val)
               else:
34
                    clipped_gradients[key] = grad
           return clipped_gradients
36
37
  # Example usage with RNN
38
  class RNNWithClipping:
39
       def __init__(self, input_size, hidden_size, output_size):
40
           self.W_xh = np.random.randn(hidden_size, input_size) * 0.01
41
           self.W_hh = np.random.randn(hidden_size, hidden_size) * 0.01
42
           self.W_hy = np.random.randn(output_size, hidden_size) * 0.01
43
           self.b_h = np.zeros((hidden_size, 1))
44
           self.b_y = np.zeros((output_size, 1))
45
46
           self.clipper = GradientClipper(max_norm=5.0)
47
48
       def forward(self, inputs):
49
           """Forward pass through RNN"""
50
           h = np.zeros((self.W_hh.shape[0], 1))
51
```

```
outputs = []
52
           self.cache = {'inputs': inputs, 'hiddens': [h.copy()]}
53
54
           for x in inputs:
55
               x = x.reshape(-1, 1)
56
               h = np.tanh(self.W_xh @ x + self.W_hh @ h + self.b_h)
57
               y = self.W_hy @ h + self.b_y
               outputs.append(y)
59
               self.cache['hiddens'].append(h.copy())
60
61
           return outputs
62
63
       def backward(self, doutputs):
64
           """Backward pass with gradient computation"""
65
           # Simplified backward pass
66
           gradients = {
67
                'W_xh': np.zeros_like(self.W_xh),
68
                'W_hh': np.zeros_like(self.W_hh),
69
               'W_hy': np.zeros_like(self.W_hy),
70
                'b_h': np.zeros_like(self.b_h),
71
                'b_y': np.zeros_like(self.b_y)
72
           }
73
           # Accumulate gradients (simplified)
75
           for i, dout in enumerate(doutputs):
76
               gradients['W_hy'] += dout @ self.cache['hiddens'][i+1].T
77
               gradients['b_y'] += dout
78
               # ... (weitere Gradienten-Berechnungen)
79
80
           # Clip gradients
81
           clipped_gradients, grad_norm = self.clipper.clip_gradients(
82
              gradients)
83
           return clipped_gradients, grad_norm
84
       def update_weights(self, gradients, learning_rate):
86
           """Update weights with clipped gradients"""
87
           self.W_xh -= learning_rate * gradients['W_xh']
88
           self.W_hh -= learning_rate * gradients['W_hh']
89
           self.W_hy -= learning_rate * gradients['W_hy']
90
           self.b_h -= learning_rate * gradients['b_h']
91
           self.b_y -= learning_rate * gradients['b_y']
92
93
  print("Gradient Clipping implementiert")
```

Zusammenfassung und Best Practices

Generative Modelle - Vergleich

• **Autoencoders:** Deterministische Kompression, gut für Dimensionsreduktion

- **VAEs:** Probabilistische Generierung, interpretierbare latente Räume
- **GANs:** Hochqualitative Samples, aber Training instabil

Training-Stabilität

- **Data Augmentation:** Erhöht Generalisierung und Robustheit
- **Gradient Clipping:** Verhindert explodierenden Gradienten
- **Proper Initialization:** Xavier/He für stabile Aktivierungen
- **Learning Rate Scheduling:** Adaptive Anpassung während Training

Praktische Tipps

- **VAE Training:** Balance zwischen Rekonstruktion und KL-Loss
- **GAN Training:** Discriminator nicht zu stark trainieren
- **Monitoring:** Visualisierung von generierten Samples
- **Evaluation:** FID, IS für quantitative Bewertung