Virtual Memory

Memory Hierarchy

Size of the memory at each level

Virtual Memory

Main memory can act as a cache for the secondary storage (disk)

- Advantages:
 - illusion of having more physical memory
 - program relocation
 - protection

Virtual Memory

Pages: virtual memory blocks

- Page faults: the data is not in memory, retrieve it from disk
 - huge miss penalty, thus pages should be fairly large (e.g., 4~16KB)
 - reducing page faults is important (LRU is worth the price)
 - can handle the faults in software instead of hardware
 - using write-through is too expensive so we use writeback

Virtual address

Physical address

Analogy between cache and VM

	Cache	VM
Upper level memory	Cache	Main memory
Lower level memory	Main memory	Secondary Storage
Unit of transfer	Block (32~128B)	Page (4~16 KB)
Upper level memory organization	Direct-mapped or set- associative	Fully associative
Replacement scheme	Random	LRU
Write scheme	Write-through or write-back	Write-back
Miss penalty	Relatively low	Relatively large

Page Table : virtual page number → physical page number

Physical address

Address translation: virtual address → physical address

Address translation

Translation Lookaside Buffer (TLB)

A cache for address translations: translation lookaside buffer (TLB)

Typical values: 16-512 entries,

miss-rate: 0.01% - 1%

miss-penalty: 10 - 100 cycles

Translation Lookaside Buffer (TLB)

Putting it all together : virtual memory + cache example

Virtual address **Memory Hierarchy** Virtual page number main memory Physical page number page table Physical page number Physical address Physical address tag Cache secondary Cache hit storage CPU Iw \$4, 0(\$3) Increasing distance Level 1 from the CPU in Cache access time Levels memory hierarchy Main Memory **Secondary Storage** Size of the memory at each level

virtual memory + cache example

