

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)»

Магистерская программа- <mark>Динамі</mark> Квалификация <u>маги</u> РАЗ ВЫПУСКНОЙ КВА (МАГИО	БДАТОЧНЫЙ МАТЕРИАЛ К АЛИФИКАЦИОННОЙ РАБОТЕ МА СТЕРСКОЙ ДИССЕРТАЦИИ) обучения с подкреплением в задаче продольн	ных аппаратов АГИСТРА
Маги РАЗ ВЫПУСКНОЙ КВА (МАГИ) На тему: <u>Использование методов</u>	БДАТОЧНЫЙ МАТЕРИАЛ К АЛИФИКАЦИОННОЙ РАБОТЕ МА СТЕРСКОЙ ДИССЕРТАЦИИ) обучения с подкреплением в задаче продольн	АГИСТРА
РАЗ ВЫПУСКНОЙ КВА (МАГИ) На тему: Использование методов	БДАТОЧНЫЙ МАТЕРИАЛ К АЛИФИКАЦИОННОЙ РАБОТЕ МА СТЕРСКОЙ ДИССЕРТАЦИИ) обучения с подкреплением в задаче продольн	
ВЫПУСКНОЙ КВА (МАГИ) На тему: <u>Использование методов</u>	К АЛИФИКАЦИОННОЙ РАБОТЕ МА СТЕРСКОЙ ДИССЕРТАЦИИ) обучения с подкреплением в задаче продольн	
ВЫПУСКНОЙ КВА (МАГИ) На тему: <u>Использование методов</u>	К АЛИФИКАЦИОННОЙ РАБОТЕ МА СТЕРСКОЙ ДИССЕРТАЦИИ) обучения с подкреплением в задаче продольн	
(МАГИ) На тему: <u>Использование методов</u>	СТЕРСКОЙ ДИССЕРТАЦИИ) обучения с подкреплением в задаче продольн	
(МАГИ) На тему: <u>Использование методов</u>	СТЕРСКОЙ ДИССЕРТАЦИИ) обучения с подкреплением в задаче продольн	
На тему: <u>Использование методов</u>	обучения с подкреплением в задаче продольн	ного управления Л
,		ного управления Л
J		ного управления Л
,		
Автор диссертации		
Автор диссертации		
Автор диссертации		
	Москвитин Андрей Семенович	(
TT 0	(фамилия, имя, отчество полностью)	
Научный руководитель	Тюменцев Юрий Владимирович (фамилия, имя, отчество полностью)	(
Рецензент	Каганов Юрий Тихонович	(
	(фамилия, имя, отчество полностью)	
К защите допустить		
Зав. кафедр <u>ой 106</u>	Ефремов Александр Викторович	()
(№ каф) 30.05 2024 г.	(фэминия имя отноство полностио)	()

Использование методов обучения с подкреплением в задаче продольного управления ЛА

Выполнил студент группы М1О-203М-22:

Москвитин Андрей Семенович

Научный руководитель:

Тюменцев Юрий Владимирович

Актуальность

- Для эффективного управления ЛА требуются адаптивные контроллеры, один из подходов в его формировании это методы обучения с подкреплением.
- 2. Управление сложным нелинейными объектом с помощью линейного контроллера является не оптимальным.

Цель работы

- Разработка подхода к решению задачи управления ЛА с помощью методов обучения с подкреплением (ОсП).
- Провести анализ качества управления, полученного с помощью метода ОсП, а также сопоставить его с традиционным РІ-контроллером

Исследуемый объект управления

Система уравнений движения в изолированном продольном канале:

Нелинейность в модели определяется коэффициентами:

$$\begin{split} & m_z(\alpha, \omega_z, V, \varphi), \\ & C_{xa}(\alpha, \omega_z, V, \varphi), \\ & C_{ya}(\alpha, \omega_z, V, \varphi), \\ & P_x(H, M, P_a), \\ & W\Big\{\frac{\varphi_{act}}{\varphi_{ref}}\Big\}. \end{split}$$

Орган управления

Цельноповоротный стабилизатор:

$$W\left\{\frac{\varphi_{act}}{\varphi_{ref}}\right\} = \frac{1}{T_{\text{cra6}}^2 p^2 + 2T_{\text{cra6}}\xi_{\text{cra6}}p + 1}$$

 $T_{\text{стаб}} = 0.03, \, \xi_{\text{стаб}} = 0.707, \, \varphi_{act}$ — фактическое положение, $\, \varphi_{ref} \,$ — заданное положение

Принятые упрощения в модели

- 1. Скорость V принимается постоянной.
- 2. Ограничение на максимальную угловую скорость тангажа:

$$\omega_z = \begin{cases} -60 \, \text{град/c} & \text{при } \omega_z \leqslant -60 \, \text{град/c}, \\ \omega_z \, \text{град/c} & \text{при } -60 \, \text{град/c} < \omega_z < 60 \, \text{град/c}, \\ 60 \, \text{град/c} & \text{при } \omega_z \geqslant 60 \, \text{град/c}. \end{cases}$$

Реакция объекта управления на ступенчатое отклонение стабилизатора

Расчет модели для начального состояния H=2500 м, V=275 м/с.

(c) Изменение угла атаки α

Обучение с подкреплением (ОсП)

Взаимодействие агента со средой в терминах ОсП.

 S_t – состояние среды;

 R_t – награда на текущем шаге;

 a_t – действие.

Взаимодействие агента со средой в терминах управления движением ЛА.

 \mathcal{X} – вектор состояния ЛА;

 \mathcal{U} – вектор управления.

Цель в ОсП

Максимизация ожидаемой награды

$$\mathbb{E}_{\pi} \left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots \right]_{\pi}$$

путем выбора параметра θ для стратегии

$$\pi_{\theta}(a_t|s_t,\theta) = P\left[a_t = a|s_t = s, \theta_t = \theta\right]$$

на основе оптимизации целевой функции

$$J(\theta) \approx R(s, \pi_{\theta})$$
.

Применение метода ОсП в задаче управления движением

Состояние среды:

$$s = (H, \omega_z, V, \omega_{z_{ref}}, \omega_{z_{err}})$$

Действие:

$$a_t = \varphi_{ref}$$

Цель свести к минимуму ошибку по угловой скорости:

$$\omega_{z_{err}} = \omega_z - \omega_{z_{ref.}}$$

Обобщенная функциональная схема РРО-контроллера

Использованная функция награды для реализации алгоритма ОсП

В нашей задаче функция награды имеет вид $\ R_t=1$

$$R_t = 1 - \frac{\frac{|\omega_{z_{err}}|}{k}}{1 + \frac{|\omega_{z_{err}}|}{k}}$$

где:

$$\omega_{z_{err}} = \omega_z - \omega_{z_{ref}}$$
 .

Значение данной функции в каждый момент времени, определяет успешность выполнения цели.

Использованная функция награды для реализации алгоритма ОсП

Пример изменения получаемой награды

Нейронные сети агента

Структура сети для формирования действия:

Структура сети для формирования оценок ожидаемой награды:

Эти сети необходимы для нахождения градиента целевой функции abla J

Обучающий сигнал

- 1. Ступенчатый сигнал со случайной амплитудой в диапазоне -20...20 град/с
- 2. Синусоидальный сигнал со случайной частотой от 0.125...0.75 Гц и амплитудой -20...20 град/с
- 3. Плавный ступенчатый сигнал вида:

Результат обученного агента

Обучение агента проводилось методом непосредственной оптимизации стратегии (РРО)

Изменение награды в процессе обучения агента

Результаты отработки тестовых сценариев

(с) График награды

(b) Изменение угловой скорости тангажа ω_z

Результаты отработки тестовых сценариев

(b) Изменение угловой скорости тангажа ω_z

Численные значения критериев качества управления в тестовых случаях

Сценарий	Средняя абсолютная ошибка, град/с	Среднеквадратичная ошибка, (град/с)²
Ступенчатый сигнал	0.328	0.324
Серия ступенчатых сигналов	0.258	0.122
Синусоида	0.212	0.125
Обучающий сигнал	0.526	0.959

Особые случаи. Влияние шума

Шум на основе нормального распределения с дисперсией 0.5 и мат. ожиданием 0 ($\mathcal{N}(0,0.5)$

Выбранная величина дисперсии шума в 15 раз больше чем у реальных датчиков.

5.3 нулевой сигнал, °/с, не более	± 0.1
5.4 уровень шумовой составляющей (3 σ), $^{\rm o}$ /c, не более	0.1
5.5 порог чувствительности, °/с, не более	0.03

Основные физические и электрические характеристики ИПДММ-2-1 Таблица 1 (продолжено)

Особые случаи. Атмосферная турбулентность

Модель турбулентности фон Кармана:

$$\Phi_u(\Omega) = \frac{\sigma_u^2 L_u}{\pi} \frac{1}{(1 + (1.339L_u\Omega)^2)^{\frac{5}{6}}},$$

Особые случаи. Показатели

Сценарий	Средняя абсолютная ошибка, град/с	Среднеквадратичная ошибка, (град/с)²
Турбулентное воздействие	0.169	0.101
Шумовое воздействие	0.271	0.167
Без внешнего воздействия	0.212	0.125

Сравнение с традиционным контроллером

Результат работы PI-контроллера:

Средняя абсолютная ошибка PI-контроллера	0.216
Средняя абсолютная ошибка РРО-контроллера	0.212

(b) Изменение угловой скорости тангажа ω_z

Ситуация с заклинением стабилизатора

(b) Изменение угловой скорости тангажа ω_z

t, c

(b) Изменение угловой скорости тангажа ω_z

t, c

10

Заключение

- 1. В данной работе был применен метод обучения с подкреплением для формирования РРО-контроллера угловой скорости устойчивого к измерительным шумам и атмосферным турбулентностям.
- 2. Полученные результаты показывают возможность формирования адаптивного контроллера таким подходом и устойчивости сформированного контроллера в рассмотренных тестовых ситуациях.

Спасибо за внимание!

Реализация на Python:

