Stage 5 Report

1. Statistics of Table E:

• Schema of Table E

ID	Integer
Name	Text
Address	Text
City	Text
Zipcode	Number/Text
Latitude	Float value
Longitude	Float value
Review_count	Integer
Rating	Range 0-5
Zomato_id	Id to track lineage
Yelp_id	Id to track lineage
Wifi	Boolean 0/1
Researvations	Boolean 0/1
Parking	Boolean 0/1
Wheelchair Accessible	Boolean 0/1
Outdoor Seating	Boolean 0/1
Is_expensive	Boolean 0/1

• Number of Tuples in E - 718

Examples

<u> </u>	kampies				
ID	480	1204	1327	1464	1937
			Firebirds Wood	Bonfyre American	
name	The Cracked Egg	Sauce Pizza & Wine	Fired Grill	Grille	Presti's Bakery & Caf
	1000 N Green Valley	2470 W Happy	6801 Northlake	2601 West Beltline	
	Parkway #480\$*\$	Valley Rd\$*\$	Mall Drive\$*\$	Highway\$*\$	12101 Mayfield
	Henderson\$*\$ NV	Phoenix\$*\$ AZ	Charlotte\$*\$ NC	Madison\$*\$ WI	Rd\$*\$ Cleveland\$*\$
address	89074	85085	28216	53713	OH 44106
city	Henderson	Phoenix	Charlotte	Madison	Cleveland
zipcode	89074	85085	28216	53713	44106
latitude	36.02807582	33.71409205	35.351243	43.03476069	41.5088518
longitude	-115.0851223	-112.1124008	-80.85076	-89.42187057	-81.598275
review_count	714	374	533	754	779
rating	3.811764706	3.787433155	4.158724203	4.033819629	4.279332478
zomato_id	16981241	17030169	17147235	17503464	16962390
	At2bqa8emnEr5WNI	8J55FMsOXei4Xh1j	qVVjbYR0LlfJullzgP	2YlUn3s132hNq5ue	orrrhqRRUORIzUSx
yelp_id	osi0ow	HSpElw	MTuw	GeliJg	WTveKg
wifi	0	0	1	1	0
reservations	0	0	1	1	0
parking	1	1	1	1	1
wheelchairacce ssible	1	1	1	1	1
JJIDIC	1 -	1	_	_	1

outdoorseating	0	1	1	1	1
Is_expensive	0	0	1	1	0

2. Data Analysis Task

We used columns rating, has_restaurant_reservations, parking, wheelchair accessible, outdoor seating, to predict the "is_expensive" of the restaurant. The is_expensive is a binary valued attribute with 0 representing "less than 30\$" and 1 representing "more than 30\$".

We trained 5 models – Random Forests, Linear Regression, Logistic Regression, Decision Tree and SVM. Using these models, we are trying to predict if the given restaurant is expensive.

3. Numbers

These are the results of 5 classifiers for cross-validation:

Classifier	Precision	Recall	F1
Random Forests	0.85	0.75	0.75
Linear Regression	0.89583	0.875	0.86818
Logisitic Regression	0.74063	0.62727	0.60616
Decision Trees	0.5	0.5	0.5
SVM	0.85	0.75	0.75

Based on the result of classifier, Linear Regression offered best Precision, Recall and F1. We ran all the models on Test Set just to ascertain results of cross-validation.

As expected Linear Regression again offered best results.

Classifier	Precision	Recall	F1
Random Forests	0.65625	0.625	0.63095
Linear Regression	0.89583	0.875	0.86818
Logisitic Regression	0.73088	0.62712	0.60935
Decision Trees	0.62395	0.60169	0.6029
SVM	0.70635	0.65254	0.64816

From the Stage4 output, we had 718 records for data analysis. We used 500 records for training the models, 100 for tuning models and 118 to test the accuracy.

Linear Regression provided us precision of 89.5 % and recall of 87.5 %.

4. Conclusion:

We trained ML model to predict if the restaurant is expensive (cost for one people exceeds the threshold). The threshold was defined by one of the two data sources as 30\$. Currently, the model is predicting the Boolean valued attribute is_expensive with good precision and recall. Thus, we can infer that we can predict if the restaurant is expensive by using facilities offered by the restaurant.

5. Future Work

We believe following extensions are feasible from our current progress:

- 1. Reviews provided by customers can be used to figure out best dish served in the restaurant.
- 2. Get more data from source to perform demographic analysis. Currently, data from limited cities is available. But, datasources (Zomato and Yelp) provide APIs to procure more data
- 3. Some columns like cuisine types can be used to get better insights. But, it requires more work as cuisine types are enormous in the data.
- 4. The Yelp also offers multi valued ranges as (below 10\$, 10-30\$, 30-50\$ and 60\$+). We need to verify if current features work for predicting multi-valued price ranges.