INTRODUCTION TO HOMOLOGICAL ALGEBRA

ROBERT CARDONA, MASSY KHOSHBIN, AND SIAVASH MORTEZAVI

0. MATH 697 Homework Zero.Two

AM 2.1: Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z}) = 0$ if m and n are coprime.

Proof. Choose $a \otimes b \in \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}$. Since m and n are coprime, there exist $s, t \in \mathbb{Z}$ such that ms + nt = 1 Observe that $a = a \cdot 1 = a(ms + nt) = ams + ant \equiv ant \pmod{m}$.

Now observe that

$$a \otimes b = atn \otimes b = a \otimes nb = at \otimes 0 = 0.$$

We have shown that any simple tensor is zero, so any finite linear combination of simple tensors is zero. Conclude $(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z}) = 0$.

AM 2.2: Let R be a ring, I an ideal of R, M an R-module. Show that $(R/I) \otimes_R M$ is isomorphic to M/IM.

Proof. Define $\varphi: R/I \times M \to M/IM$ by $\varphi(r+I,m) = rm+IM$, which we shall henceforth write as $\varphi(\overline{r},m) = \overline{rm}$. Let $(\overline{r},m) = (\overline{s},m)$. Then $\overline{r} = \overline{s} \implies r \in \overline{s} \implies r = s+i$, some $i \in I$. Then $\varphi(\overline{r},m) = \overline{rm} = \overline{(s+i)m} = \overline{sm+im} = \overline{sm} + \overline{im} = \overline{sm} + \overline{0} = \overline{sm} = \varphi(\overline{s},m)$. Thus φ is well-defined.

Observe $\varphi(\overline{r} + \overline{s}, m) = \varphi(\overline{r+s}, m) = \overline{(r+s)m} = \overline{rm + sm} = \overline{rm} + \overline{sm} = \varphi(\overline{r}, m) + \varphi(\overline{s}, m)$. Similarly, $\varphi(\overline{r}, m + n) = \varphi(\overline{r}, m) + \varphi(\overline{r}, m)$. Lastly, $\varphi(\overline{rs}, m) = \overline{(rs)m} = \overline{r(sm)} = \varphi(\overline{r}, sm)$. Thus φ is R-biadditive (In fact, φ is R-bilinear).

Now we are guaranteed a unique R-homomorphism $\phi: R/I \otimes_R M \to M/IM$ given by $\phi(\overline{r} \otimes m) = \overline{rm}$. Notice if we define $f: M/IM \to R/I \otimes_R M$ via $f(\overline{m}) = \overline{1} \otimes m$ then f is a \mathbb{Z} -homomorphism which makes $f \circ \phi$ and $\phi \circ f$ the identity map in $R/I \otimes_R M$ and M/IM, respectively. So ϕ has a two-sided inverse, hence a bijective function, and accordingly is an isomorphism when considered as an R-map.

R 2.28: Let R be a domain with $Q = \operatorname{Frac}(R)$, its field of fractions. If A is an R-module, prove that every element of $Q \otimes_R A$ has the form $q \otimes a$ for $q \in Q$ and $a \in A$ (i.e. every element is a simple tensor).

 $Proof. \ \ \text{Let} \ \textstyle \sum_{1}^{n} q_{i} \otimes a_{i} \in Q \otimes_{R} A. \ \ \text{We can write} \ \textstyle \sum_{1}^{n} q_{i} \otimes a_{i} = \sum_{1}^{n} \frac{r_{i}}{s_{i}} \otimes a_{i} \ \text{for} \ r_{i}, s_{i} \in R, s_{i} \neq 0. \ \ \text{Write} \ s = s_{1}s_{2} \cdots s_{n} \ \text{and} \ \widehat{s_{i}} = \frac{s}{s_{i}}.$ $\text{Then} \ \textstyle \sum_{1}^{n} \frac{r_{i}}{s_{i}} \otimes a_{i} = \sum_{1}^{n} (1 \cdot \frac{r_{i}}{s_{i}}) \otimes a_{i} = \sum_{1}^{n} (\frac{\widehat{s_{i}}}{\widehat{s_{i}}} \cdot \frac{r_{i}}{s_{i}}) \otimes a_{i} = \sum_{1}^{n} \frac{\widehat{s_{i}}r_{i}}{s} \otimes a_{i} = \sum_{1}^{n} (\frac{1}{s}) \widehat{s_{i}} r_{i} \otimes a_{i} = \sum_{1}^{n} \frac{1}{s} \otimes (\widehat{s_{i}}r_{i}) a_{i} = \frac{1}{s} \otimes (\sum_{1}^{n} \widehat{s_{i}} r_{i} a_{i}).$

 $\label{lem:department} \begin{tabular}{ll} Department of Mathematics, California State University Long Beach $E-mail\ address: mrrobertcardona@gmail.com and massy255@gmail.com and siavash.mortezavi@gmail.com and siavash.mortezavi.gmail.com and siavash$

Date: August 14, 2013.