試験問題		試験日	曜日	時限	担当者
科目名	数学 II	2010年7月23日	金	3	田崎

答えだけではなく、考え方や計算の筋道を簡潔に書くこと(単純な計算問題は答えだけでもいいが)。解答の順番は(0番以外)自由。解答用紙の裏面も使用してよい。試験後、答案を受け取りにくること。2011年3月を過ぎたら、答案を予告なく処分する。

- **0. これは冒頭に書くこと。**レポートの提出状況を書け(冒頭に何も記述がなければ、レポートは提出していないとみなす)。レポートは、返却済みのものも新規のものも、今日の答案にはさんで提出すること。
- **1.** $m > 0, t_0 > 0, \gamma > 0, f_0$ を実定数とする。一次元運動のニュートン方程式

$$m \frac{d^2}{dt^2} x(t) = \begin{cases} f_0, & 0 \le t \le t_0 \\ f_0 e^{-\gamma(t-t_0)}, & t \ge t_0 \end{cases}$$
 (1)

- の一般解を求めよ。ただし、任意定数としてx(0)と $v(0) := \dot{x}(0)$ を使え。
- **2.** α , β を実定数とする。常微分方程式

$$\frac{d}{dt}x(t) = \alpha x(t) + \beta e^{2\alpha t}$$
(2)

- の一般解を以下の手順にしたがって求めよ。
 - (a) $\beta = 0$ とした斉次の常微分方程式の一般解を求めよ。任意定数として x(0) を使え。
 - (b) 微分方程式 (2) の特解として、 $x_{ps}(t) = A e^{2\alpha t}$ という形のものを求めよ(ただし、A は決めるべき定数)。
 - (c) (a) と (b) での解を足したものが (2) の解になっていることを確かめ、(2) の一般解を求めよ。任意定数として x(0) を使え。
- **3.** 以下の常微分方程式の一般解を求めよ。任意定数として初期値 x(0) を使え。以下で α , β は正の定数。

(a)
$$\frac{dx(t)}{dt} = \alpha \{x(t)\}^2 \cos(\beta t)$$
 (3)

(b)
$$\frac{dx(t)}{dt} = \alpha e^{\beta t} \left\{ 1 + \{x(t)\}^2 \right\}$$
 (4)

4. α, β, γ を定数とし、常微分方程式

$$\frac{dx(t)}{dt} = \alpha t x(t) + (\beta + \gamma t) \exp\left[\frac{\alpha}{2} t^2\right]$$
 (5)

を次の手順(定数変化法)で解け。

- (a) 解を $x(t) = C(t) \exp[(\alpha/2) t^2]$ という形に書き、C(t) が満たす微分方程式を求めよ。
- (b) C(t) についての微分方程式の一般解を求め、(5) の一般解を求めよ。任意定数 を x(0) によって表せ。
- **5.** 3次元の (幾何) ベクトル $\mathbf{a} = (0, a_2, a_3), \mathbf{b} = (b_1, 0, b_3), \mathbf{c} = (c_1, c_2, 0)$ について、 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \ge \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ を計算し、両者が一般に一致するかどうかを調べよ。
- **6.** 計算せよ。

(a)
$$\left(2+3\sqrt{3}i \ 1+\sqrt{3}i \ 1-2\sqrt{3}i\right) \begin{pmatrix} 2+\sqrt{3}i \ 4+\sqrt{3}i \ 1-\sqrt{3}i \end{pmatrix}$$

(b) $\begin{pmatrix} 2 & 9 & 7 \ 2 & 4 & 1 \ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & -1 & 5 \ -1 & 5 & -2 \ -1 & 7 & -3 \end{pmatrix}$ (c) $\begin{pmatrix} 2 & 9 & 5 \ 7 & -2 & 3 \ 6 & 3 & 8 \end{pmatrix} \begin{pmatrix} 4 \ 1 \ 2 \end{pmatrix}$
(d) $\begin{pmatrix} 1 \ x \ x^2 \end{pmatrix} \begin{pmatrix} 1 & y & y^2 \end{pmatrix}$ (e) $\det \begin{bmatrix} \begin{pmatrix} 4 & 1 & 2 \ 6 & -3 & 2 \ 1 & 8 & 6 \end{pmatrix} \end{bmatrix}$

7. A, B を任意の (複素数を成分にもつ) $d \times d$ 行列とするとき、

$$(\mathsf{A}\mathsf{B})^\dagger = \mathsf{B}^\dagger \mathsf{A}^\dagger \tag{6}$$

が成り立つ。両辺の成分表示を一般的に書き下すことで、これを証明せよ。