Trigonometry Facts for SL

Dr. William J. Larson - MathsTutorGeneva.ch

θ	sin θ	Memory Trick for sin θ count 0, 1, 2, 3, 4	cos θ (same as sin θ, but in reverse order)	$\tan\theta = \frac{\sin\theta}{\cos\theta}$
0, 2π	0	$\frac{\sqrt{0}}{2}=0$	1	0
$\frac{\pi}{6}$	1/2	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	$\frac{\sqrt{4}}{2} = 1$	0	undefined
π	0		-1	0
$\frac{3\pi}{2}$	-1		0	undefined

Arc length = $s = r \theta (in radians only)$

Area of a sector = $\frac{1}{2}r^2\theta = \frac{1}{2}sr$ (<u>in radians only</u>)

Area of a triangle = $\frac{1}{2}ab\sin C$

[plus 2 more interchanging the letters]

Trig functions definitions

Function	Using the sides of a right triangle	Using a point (x, y) on the terminal side	Using the point (x, y) on the unit circle
sin θ	$\frac{opp}{hyp}$	$\frac{y}{r}$	у
cos θ	$\frac{adj}{hyp}$	$\frac{x}{r}$	X
tan θ	opp adj	$\frac{y}{x}$	$\frac{y}{x}$

$$r^2 = x^2 + y^2$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

The quadrants in which the function is positive:

Mnemonic: "All Students Take Calculus"

$$\sin^{2}\theta + \cos^{2}\theta = 1$$

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos 2\theta = \cos^{2}\theta - \sin^{2}\theta$$

$$= 2\cos^{2}\theta - 1$$

$$= 1 - 2\sin^{2}\theta$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

 $a^2 = b^2 + c^2 - 2bc\cos A$ [plus 2 more interchanging the letters]

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 [plus 2 more interchanging the letters]

$$sin(-\theta) = -sin \theta$$

$$cos(-\theta) = +cos \theta$$

$$tan(-\theta) = -tan \theta$$

The co-functions of complementary angles are equal:

$$\sin \theta = \cos (90 - \theta)$$
 $\cos \theta = \sin (90 - \theta)$

$$\sin(180^{\circ} - \theta) = \sin \theta$$

$$\cos(180^{\circ} - \theta) = -\cos\theta$$

$$tan(180^{\circ} - \theta) = - tan \theta$$

Angle between two lines with slopes

$$m_1$$
 and m_2 : $\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2}$