Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 950 669 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
08.09.2004 Bulletin 2004/37

(51) Int Cl.7: C08F 8/06

(21) Application number: 99302577.4

(22) Date of filing: 01.04.1999

(54) Method of catalytic crosslinking of polymers and two-pack composition used therein

Verfahren zur katalytischen Vernetzung von Polymeren und Verwendung zu Zweikomponentenzusammensetzungen

Procédé de réticulation catalytique de polymères et l'application aux compositions à deux composants

(84) Designated Contracting States: DE FR GB IT

(30) Priority: 13,04,1998 US 81491 P

(43) Date of publication of application: 20.10.1999 Bulletin 1999/42

(73) Proprietor: ROHM AND HAAS COMPANY Philadelphia, Pennsylvania 19106-2399 (US)

(72) Inventors:

Fischer, Gordon Charles

Horsham, Pennsylvania 19044 (US)

Larson, Gary Robert

Hatfield, Pennsylvania 19440 (US)

(74) Representative: Kent, Venetia Katherine et al Rohm and Hass (UK) Ltd., European Patent Department, 28th Floor,

City Point, One Ropemaker Street London EC2Y 9HS (GB) (56) References cited: EP-A- 0 647 659 GB-A- 1 290 702

DE-A- 2 337 828 US-A- 5 512 619

 DATABASE WPI Section Ch, Week 9811 Derwent Publications Ltd., London, GB; Class A14, AN 1998-114845 XP002116915 & JP 10 001552 A (ASAHI KASEI KOGYO KK), 6 January 1998 (1998-01-06)

 DATABASÉWPI Section Ch, Week 9409 Derwent Publications Ltd., London, GB; Class A85, AN 1994-072047 XP002116916 & JP 06 025462 A (FURUKAWA ELECTRIC CO., LTD.), 1 February 1994 (1994-02-01)

 MATHEIS G.; WHITAKER J.R.: 'A Review: enzymatic cross-linking of proteins applicable to foods.' JOURNAL OF FOOOD BIOCHEMISTRY vol. 11, no. 4, 1987, pages 309 - 327

P 0 950 669 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Field of the Invention

g [0001] This invention generally relates to a method of crosslinking polymers and more particularly relates to catalytic crosslinking of polymers having oxidatively crosslinkable functional groups, wherein said polymers are polymerized from at least one ethylenically unsaturated monomer. "Crosslinkable" and "crosslinking" refer to the formation of new chemical bords between existing polymer chains.

Background of the Invention

[0002] A number of polymers are capable of being crosslinked in the presence of a catalyst. A significant improvement in physical and chemical properties of such polymers occurs when such polymers are subjected to a crosslinking process. However, crosslinked polymers become highly viscous as a result of their increased ... nolecular weight, which occurs due to the crosslinking process. As a result, crosslinked polymers are typically incapable of being molded into desired shapes or are incapable of being readily applied over substrates surfaces as a layer.

[0003] Thus, a catalyst is stored separately from a polymer or a polymeric component of a ceating composition, which contains the polymer. Just before use the catalyst is mixed with the polymeric component to form a pot mix which can then be readily applied as a layer by conventional means, such as by brushing or spraying, over the surfaces of substrates or can be readily shaped into an article by conventional means, such as modifing. The polymers in the layer then crosslink in the presence of the catalyst to form a costling on the surface having improved physical and chemical properties, such as durability, water and solvent resistance, mar resistance, block resistance compared to the uncrosslinked however.

10043 Seviral types of catalysts are known to crosslink a polymer. For example, it is conventional to use a heavy metal catalysts, such as a tin compound, for crosslinking polymers having oxidatively crosslinkable functionalities. However, these metal catalysts tend to have a low catalytic activity. As a result, a significantly higher quantity of such catalysts, generally in amounts exceeding 5000 parts per million (ppm) or in excess of 0.5 weight percent based on the total polymer solide weight, have to be added to the polymer for activelying a desired degree of crosslinking of the polymer. Moreover, these metal catalysts have adverse impact on the environment bocause they are hazardous to human, animal and plant habital. Futhermore, these heavy metal catalysts cannot be are cateful second of the control of the control

sites, unless such catalysts are removed or rendered harmless before disposal. The present invention solves this problem by providing for an oxidative catalyst that has no substantially adverse impact on the environment and it readily undergoes biologicatation upon disposal. As a result, the catalyst of the present invention can be safely disposed of in conventional landfills or disposal sites without any significant impact on the environment. Furthermore, as the catalyst of the present invention is catalytically more active than conventional heavy metal catalysts, smaller amounts of the catalyst of the present invention are needed to achieve the same degree of crosslinking that is accomplished by utilizing ligher amounts of conventional heavy metal catalysts.

Statement of the Invention

40

[0005] The present invention is directed to a method of crosslinking an oxidative polymer having oxidatively crosslinkable functional groups, wherein said oxidative polymer is polymerized from at least one ethylenically unsaturated monomer, said method comprisind:

contacting said oxidative polymer with a catalytic amount of an oxidizing enzyme; and crosslinking said oxidatively crosslinkable functional groups on said oxidative polymer.

applying a layer of said pot mix over said substrate; and

50 [0006] The present invention is also directed to a method of applying a coating on a substrate comprising:

contacting a polymeric component of a coating composition with a crosslinking component of said coating composition to form a pot mix, said polymeric component comprising an oxidative polymer having oxidatively crosslinkable functional groups, wherein said oxidative polymer is polymerized from at least one ethylehically unsaturated monomer, and said crosslinking component comprising a catalytic amount of an oxidating enzyme;

crosslinking said oxidatively crosslinkable functional groups on said oxidative polymer to form said coating on said substrate.

[0007] The present invention is further directed to a two-pack coating composition comprising:

a first container containing a polymeric component, which comprises an oxidative polymer having oxidatively crosslinkable functional groups, wherein said oxidative polymer is polymerized from at least one ethylenically unsaturated monomer; and

a second container containing a catalytic component, which comprises a catalytic amount of an oxidizing enzyme sufficient to crosslink said oxidatively crosslinkable functional groups on said oxidative polymer, when said polymeric component is mixed with said catalytic component.

10 Detailed Description of the Preferred Embodiment

[0008] As defined herein:

5

[0009] "Polymer" means a dispersed, solubilized or a sequential polymer, defined below, all provided with oxidatively crosslinkable functional groups.

(0010] "Disposed polymer" means particles of polymer colloidally dispersed and stabilized in an aqueous medium. (0011] "Solubilized polymer" includes "Water soluble polymer", "Water reducible polymer" or a miture thereof. Water soluble polymer means a polymer dissolved in an aqueous medium. Water reducible polymer means a polymer dissolved in water and water miscible solvent. Solubilized polymer results in a polymer solution characterized by having the self-crowding constant (fo) of the Mooney equation in finger | 10% / KZ5 | equal to zero. By contrast, dispersed polymer has (ft) equal to 1.9. The details of Mooney equation are disclosed in an article entitled "Playsical Characterization of Water Dispersed and Soluble Acrific Pulymers" by Brendley et al., in "Noopoliting Coatings and Coating

Processes" published by Plenum Pross, 1973 and adflad by Gordon and Prane. (O12) "Sequential polymer" means particles of a polymer colloidally dispersed and stabilized in an aqueous medium having a coreshell morphology, wherein reactable group(s) and tocated on the shell or on the relatively more hydrophilic

25 portion of the sequential polymer. [0013] "Polymer particle size" means the diameter of the polymer particles measured by using a Brookhaven Model BI-90 Particle Sizer supplied by Brookhaven Instruments Corporation, Holtswille, New York, which employs a quasislastic light scattering bethingue to measure the size of the polymer particles. The intensity of the scattering is a function of particle size. The diameter based on an intensity weighted average is used. This tochnique is described in Chapter 30 3, pages 48-61, entitled Uses and Abuses of Photon Correlation Spectroscopy in Particle Sizing by Weiner et al. in 1987 edition of American Chemical Society Symposium series. To measure the particle diameter, 0.1 to 0.2 grams of

a sample of the oppmer was diluted to a total of 40 millilliers (mLs) with distilled water. A two mLs portion was delivered into an acrylic cell, which was then capped. The particle size in nanometers was measured for 1000 cycles. The measurement was repeated three times and an average was reported.

[0014] "Tig of a polymer" is a measure of the hardness and melt flow of the polymer. The higher the Tig, the lesser

[0014] "Ig or a polymer is a measure or the naroness and ment into will purpoyner. The impair but by up were swill be the melt flow and the harder will be the cataling. Tig is described in Principles of Polymer Chamilstry (1953), Comell University Press. The Tig can be actually measured or it can be calculated as described by Fox in Bull. Amer. Physics Soc., 1, 3, page 123 (1958), Tig, as used herein, refers to actually measured values. D0151 "GPC weight average molecular weight" means the weight average molecular weight determined by oel per-

(bill 5) — Very light average unional regard. A Chapter I of The Characterization of Polymers published by Robm and Haas Company, Philadelphia, Pomays Wantain in 1976, utilizing polymethy methicaytate as the standard. The GPC weight average molecular weight can be estimated by catculating a theory weight average molecular weight can be estimated by catculating a theory weight average molecular weight in systems containing chain transfer agents, the theory weight average molecular weight expressed weight of polymerizable monomer in grams divided by the total molar amount of chain transfer agent used during the polymerizable monomer in grams and weight of an emulsion polymer system that does not contain a chain transfer agent is more complex. A runder estimate can be obtained by taking the total weight of polymerizable monomer in grams and dividing that quentify by the product of the molecular amount of an initiator multiplied by an efficiency factor (in our persultate initiated systems, we have used a factor of approximation (b) 0.5. Further information on theoretical moleculars.

personant indiation systems, we rise ease of rection organizations of the source of the source of the weight calculations can be found in *Principles of Polymerization* and edition, by George Odian published by John Wiley and Sons, N. Y., N. Y. In 1981 and in *Emulsion Polymerization* edited by Irja Pirma published by Academic Press, N. Y., N. Y. in 1981.

[0016] For measurement of the Tg of a polymer, differential scanning calorimetry (DSC) can be used. To measure the Tg by the DSC method, the polymer samples were dried, preheated to 120°C, rapidly cooled to -100°C, and then heated to 150°C, at a rate of 20°C/minute while data was being collected. The Tg was measured at the midpoint of the inflection using the half-height method.

[0017] "Oxidative polymer" means a polymer provided with a oxidatively functional group or group(s), which are a pendant functional group or groups attended to a polymer backbone or a functional group or groups located in the polymer backbone (tself, Such a group or groups crosslink in the presence of an oxidative catalyst with other such

functional groups to increase the molecular weight of the crosslinked polymer and to thereby improve the physical and chemical properties of the coatings resulting therefrom.

[0018] "Inactive polymer" means a polymer having a dormant functional group or group(s), which are a pendant functional group or groups attached to the polymer backbone or a functional group or groups located in the polymer backbone Itself. The dormant functional groups are latent until they are exposed to an activating agent. Thereaffer, dormant functional groups on the inactive polymer are converted into an oxidatively crosslinkable functional group or groups. [0019] "Enzymer" means a complex proteinaceous substance that acts as a catalyst. Enzymes are high molecular weight compounds made up principally of chains of amino acids linked together by apptide bonds.

[0020] "Oxidizing Enzymes" means an enzyme catalyst in whose presence oxidative functionalities on an oxidative polymer crosslink to form a crosslinked polymer.

[0021] "Substrate molecule" means a testing material which is known to have reactive sites that are specifically reactive to the enzyme catalyst being analyzed for its enzyme activity.

processing the control of entryme causeys compared to the control of entryme activity of entryme (in grams, milligrams, moles, millimotes, or micromoles) required to produce a specified amount in grams, milligrams, moles, millimotes of no micromoles proquired to produce a specified amount in grams, milligrams, moles, millimotes of an oxidized substrate during a defined period of time, i.e., in seconds or minutes and at a specified pH and temperature. A higher untia activity per mass (usually expressed in milligrams) of an enzyme is an indication of a catalytically more settly enzymes like peroxides, the concentration of a substrate molecule which undergoes an enzyme catalyzed oxidation, is measured before and after exposure to the enzyme. Determine the calculated. A common substrate used to measure peroxidates activity is pyrogallol which is oxidized to purpurogallin by peroxidates, Purpurourogallin is 2,34.4 Faritantyphory-6H-henzocyclohepten-5-ene. Pyrogulosi is 12,34-firindyrocy-6H-enzocyclohepten-5-ene.

[0023] "Swell Ratio" is a ratio of the volume of a swelled test film of a crosslinked polymer crosslinked by a catalyst or an uncrosslinked polymer, swelled by soaking it for an hour in methyl ethyl ketone to the volume of the same set film before it is asoked. The swell ratio is used to determine the degree of crosslinking, i.e., increase in the molecular weight of the polymer that results from crosslinking in the presence of an oxidative catalyst. The lower the swell ratio, higher will be the crosslinking of the polymer and wide versa.

[0024] "Two-pack" or "two-component" composition retires to a coating composition which includes a polyment correponent and a crosslaiking component stored separately and then mixed together shortly before use to form a pot mix. 39 [0025] "Pot tille" reters to the pend of time at the end of which the pot mix is no longer useful, which occurs when an oxidizing enzyme in the crosslinking component in the pot mix loses its potency. Such a loss of potency is indicated by a pot mix having a swell ratio of 20 or more.

[0026] "Polymer solids" means polymer in its dry state.

[0027] "(meth)acrylate" includes acrylate and methacrylate.

[UU27] "(meth)acrylate" includes acrylate and methacrylate.

35 [0028] Ranges specified are to be read as inclusive, unless specifically identified otherwise.

[0029] The present invention is directed to a method of crosslinking an oxidative polymer having oxidatively crosslinkable functional groups. The method includes contacting the oxidative polymer with a catalytic amount of an oxidizing enzyme to crosslink the oxidative functional groups on the oxidative polymer. Any conventional contacting step, such as by mixing, may be used. Mixing with stirring is preferred to ensure uniform mixing of the oxidizing enzyme with the oxidative polymer for improving the catalytic activity of oxidizing enzyme. The contacting step is typically conducted under arabitent conditions.

[0030] The oxidative polymer may be any copolymer provided with oxidatively crosslinkable functional groups. The glass transition temperature of the oxidative polymer is in the range of from -40°C to 120°C, as measured by conventional differential scanning actionitety (DSC).

45 [0031] The oxidatively crosslinkable functional groups suitable for use in the present invention include phenolic, active methylene, armino groups and combinations thereof. The foregoing oxidatively crosslinkable functional groups in the oxidative polymer may result from polymerizing the oxidative polymer from an oxidative monomer mixture that includes one or more of oxidative monomers. Alternatively, these oxidatively functional group may be also introduced through nost-polymerization reaction.

50 [0032] Some of the phenolic oxidative monomers include vinylically, (meth)acrylically, or allylically substituted:

phenol, anisole, creacis (a. mant jr), hydroxylduane, 1,2-benzenediol, 2-hydroxylpenzylalcohol, 2-methoxyphenol, 3-methoxyphenol, 3-definehyphenol, 4-phenyphenol, 3-phenylphenol, 3-(3-phenoxy

[0033] By "active methylene" herein is meant the esters and amides of acetoacetic acid, malonic acid, and cyanoace-

Its acid. Preferred are the esters of acotoscetic acid. When monome(s) which do not bear active methylene groups are used exclusively in the formation of the oxidative polymer or when additional accelerated groups are desired, acotoscetate groups may be introduced by the use of acetoacetate-functional chain transfer agents as disclosed in U. S. Patt. No.4,980,924, or by post-veaction of a copolymeric demonraris. Cyanoscetates and cyanoscetamisms may be prepared by methods known in the art as disclosed, for example, in U.S. Patt. No.3,565,987,9,668,878, and 5,021,511. In general, any polymerizable hydroxy- or amino-functional monomer can be convented to the corresponding scetare or acotoscentamics, before or after polymerization, by reaction with distense or other suitable accelerationsistic pagent (See e.g. Comparison of Methods for the Preparation of Acotoacetylated Coating Resins, Witzernan, J. S.; Dell Mottipaham, W., De Redote, F. J. Coatings Technology, Vol. 62, 1999, 101 (and references contained therein)).

[0034] Some of the active methylene oxidative monomers include:

ethylenically unsaturated monomer bearing acetoacetate functionality such as, for example, vinyl acetoacetate, acetoacetoxyethyl acrylate, acetoacetoxyethyl methacrylate (AAEM), acetoacetoxypropyl methacrylate (AAEM), alliq acetoacetoxypropyl methacrylate, 2,3-dil[acetoacetoxy] propyl methacrylate, diacetonacetyl-mide, acetoacetoxyd idelytenegdycol methacrylate, and combinations thereof. Acetoacetoxyethyl(meth)acrylate is notformed

[0035] Some of the amino oxidative monomers include:

18

20

- tert-buty/aminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, dimethylaminoethyl (meth)acrylate, oxazolidinylathyl (meth)acrylate, 2-vin/pyridine or 4-vin/pyridine, aminostyrene; allyl, aryl, or halo substitued aminostyrene; aryl or allyl substituted diallyl-amine, vin/piperidine, vinylimidizole, 2-morpholinoethyl (meth)acrylate, and dallyl dimethyl ammonium chloride. Aminostyrene is preferred.
- 28 [0036] Functional groups, such as, allylic, vinylic, acrylic, methacrylic, itaconic, maleic, mercapto, sulfide, phosphino may be introduced through post-polymerization reaction to also provide the oxidative polymer with oxidative functionalities.
 - [0037] The amount of oxidative monomers in the oxidative monomer mixture is adjusted to provide a single chain of the oxidative polymer resulting therefrom with at least two oxidatively crosslinkable functional groups. Depending upon the degree of crosslinking desired, the amount of oxidative monomers in the oxidative monomer mixture may vary in the range of from 2 to 90 weight percent, preferably in the range of from 5 to 25 based on total polymer solids.
- 40 preferably in the range of from 10 to 600, of the oxidatively crosslinkable functional groups having molecular weight in the rage of from 50 to 500, preferably in the range of 70 to 220.
 (2003) The remainder of the monomers in the oxidative monomer mixture from which the oxidative polymer is po-
- lymerized, include at least one of the following:

 [70040] An ethylenically unsaturated monomer, such as, for example, acrylic ester monomers including methyl acr-
- (se ylate, ethyl soxylate, butyl soxylate, 2-ethylhoxyl acrylate, decyl acrylate, nerhyl methacrylate, ethyl methacrylate, isobornyl (meth)acrylate, loadooryl (meth)acrylate, loadooryl (meth)acrylate, loadooryl (meth)acrylate, loadooryl (meth)acrylate, loadooryl (meth)acrylate, loadoorylate, loadoorylate,
- trile. Additionally copolymerizable ethylenically-unsaturated acid monomers in the range of from 0.1% to 50%, by weight based on the total weight of polymer solids of an acrylic acid, melacrylic acid, crotionic acid, licanonic acid, fumarios acid, menorently flazonate, monomethyl fumarate, monobutyl fumarate, maleic anhydride, 2-ecrylamido-2-methyl-1-propanesulfonic acid, sodium vinyl sulfonate, phosphoethyl methacrylate, and combinations thereof may be used.
 - [0041] The oxidative polymer is preferably polymerized from an oxidative monomer mixture that includes, in addition

to the oxidative monomer(s), at least one or more monoethylenically unsaturated monomer selected from the group consisting of methyl methacrylate, butyl acrylate, butyl methacrylate, ethyl acrylate, ethyl acrylate, styrene, methyl styrene and mixtures thereof.

- [0042] Even more preferred oxidative polymer is polymerized from an oxidative monomer mixture that includes, in addition to the oxidative monomer(s), at least one or more of the following monomeric mixtures:
 - 1) butyl acrylate and methyl methacrylate.
 - butyl methacrylate and methyl methacrylate,
 - 3) butyl acrylate and styrene,

10

- 4) 2-ethylhexyl acrylate with methyl methacrylate, or
- 2-ethylhexyl acrylate with styrene.
- [0043] The oxidative polymer may be prepared by any known procedures, such as emulsion polymerization, solution polymerization, dispersion polymerization, and solid phase polymerization. Emulsion polymerization is preferred. Some of the emulsion polymerization polymerization procedures are provided in well known texts on the subject such as "Emulsion Polymerization: Theory and Practice" by D. C. Blackley published by Wiley in 1975 and "Emulsion Polymerization" by F. A. Bower et al. published by Interactioner Publishers in 1965.
- [0044] The polymerization techniques used to prepare a dispersed oxidative polymer are well known in the art. The dispersed oxidative polymers are preferably prepared by emulsion polymerization. Either thermal or redox hitilation or processes may be used. Redox systems using the same initiators may be used at similar levels as thermal systems when coupled with a suitable reductant such as, for example, isoascorbic acid and sodium bisuitle.
 - [0045] The polymerization process is typically initiated by conventional free radical initiators, such as, for example, hydrogen peroxide, benzoyl peroxide, butyl hydroperoxide, butyl peroctoate, ammonium and sikall persulfates, typically at a jewel of 0.05% to 3.0% by welloth, based on the welloth of total monomer.
- 25 [0046] The composition of the oxidative polymer may contain one or more conventional chain-transfer agents for controlling the molecular weight of the resulting oxidative polymer. Sultable chain transfer agents include, for example, C₁ to C₁₀ alkyl or functional alkyl mercaptional alkyl mercaption alkyl mercaptio
- 30 [0047] If desired, the oxidative polymer may be a sequential polymer, which includes particles containing two or more polymeric phases, such as, for example, an inner phase, and an outer phase, wherein the outer phase is the predominant phase in contact with the aqueous medium in which the particle is dispersed. Some particles containing two or more polymeric phases include core/shell particles, core/shell particles with shell phases incompletely encapsulating the core, core/shell particles with shell phases incompletely encapsulating the core, occashed particles with shell phases incompletely encapsulating the core, or interpenentating network particles. The oxidatively crosslinkable functional groups of the sequential polymer are preferably provided on the shell or on the outer phase.
- [0048] The sequential polymers are prepared by conventional emulsion polymerization process, preferably by well known multi-stage emulsion polymerization, in which at least two stages differing in composition are formed in a sequential fashion. Such a process usually results in the formation of at least two mutually incompatible polymer compositions, thereby resulting in the formation of at least two phases. Each stage of the sequential polymer particles may contain the same monomers, chair transfer agents, surfactants, as those disclosed earlier for the dispersed oxidative polymer. Particles the produced the properties of the dispersed oxidative polymer. The multiple polymers are well known in the
- art and are disclosed, for example, in the US Patents No. 4,325,856, 4,654,397 and 4,814,373.

 [0049] Alternatively, the oxidatively crossinkable functional groups on the oxidative polymer may be produced by contacting an inactive polymer having domant functional groups with an activating amount of an activating agent.
- 10060] The linactive polymer may be any copolymer provided with domant functional groups. The glass transition temperature of the inactive polymer is in the range of from -40°C to 120°C, as measured by conventional differential scenning calcimater (DSC).
- [0051] The dormant monomers which contain dormant functional groups suitable for use in the present invention include, but are not limited to, vinylic, allyle, or (meth)acrylic ester substituted acetoxybenzene, acetoxyoleune, acetoxyonephthalene, acetoxyoleune, acetoxyonetoxyoleune, acetoxyoleune, acet

doacetoxybenzene, 3-iodoacetoxybenzene, 4-iodoacetoxybenzene, 2-fluoroacetoxybenzene, 3-fluoroacetoxybenzene

zene, 4-fluoroacetoxybenzene, 2,3-difloroacetoxybenzene, 2,4-difloroacetoxybenzene, 2-fluoro-3-ethylacetoxybenzene zene, 2-bromoacetoxybenzoic acid, 2-bromoacetoxybenzoic acid, 3-bromoacetoxybenzoic acid, 4-bromoacetoxybenzoic acid. 2.3-dibromoacetoxybenzoic acid, 2-chloroacetoxybenzoic acid, 3-chloroacetoxybenzoic acid, 4-chloroacetoxybenzoic acid, 2,3-dichloroacetoxybenzoic acid, 2-iodoacetoxybenzoic acid, 2,3-diiodoacetoxybenzoic acid, 3-iodoacetoxybenzoic acid, 4-iodoacetoxybenzoic acid, 2-fluoroacetoxybenzoic acid, 3-fluoroacetoxybenzoic acid, 4-fluoroacetoxybenzoic acid, 2,3-difloroacetoxybenzoic acid, 2,4-difloroacetoxybenzoic acid, 2-fluoro-3-ethylacetoxybenzoic acid. 2-bromoacetoxybenzoic acid ethyl ester, 2-bromoacetoxybenzoic acid ethyl ester, 3-bromoacetoxybenzoic acid ethyl ester, 4-bromoacetoxybenzoic acid ethyl ester, 2,3-dibromoacetoxybenzoic acid ethyl ester, 2-chloroacetoxybenzoic acid ethyl ester, 3-chloroacetoxybenzoic acid ethyl ester, 4-chloroacetoxybenzoic acid ethyl ester, 2,3-dichloroacetoxybenzoic acid ethyl ester, 2-iodoacetoxybenzoic acid ethyl ester, 2,3-diiodoacetoxybenzoic acid ethyl ester, 3-iodoacetoxybenzoic acid ethyl ester, 4-iodoacetoxybenzoic acid ethyl ester, 2-fluoroacetoxybenzoic acid ethyl ester, 3-fluoroacetoxybenzoic acid ethyl ester, 4-fluoroacetoxybenzoic acid ethyl ester, 2,3-difloroacetoxybenzoic acid ethyl ester, 2,4-difloroacetoxybenzoic acid ethyl ester, 2-fluoro-3-ethylacetoxybenzoic acid ethyl ester, acetamidobenzene, acetamidotoluene, acetamidoanisole, acetamidocresols (o, m and p), diacetamidobenzene, acetamidobenzylaicohol, 2-methoxyacetamidobenzene, 3-methoxyacetamidobenzene, 4-methoxyacetamidobenzene, 3-phenylacetamidobenzene, 2-phenoxyacetamidobenzene, diethylacetamidostilbene, 1-acetamidonaphthalene, 2-acetamidonaphthalene, 1,3-diacetamidonaphthalene, 1,5-diacetamidonaphthalene, 2-propylacetamidosytrene, 2-propylacetamidosytrene, 3-propylacetamidosytrene, 4-propylacetamidosytrene, 2-propylacetamidotoluene, 2-propylacetamidotoluene, 3-propylacetamidotoluene, 4-propylacetamidotoluene, 2-propylacetamidocreosol, 2-bromoacetamidobenzene, 2-bromoacetamidobenzene, 3-bromoacetamidobenzene, 4-bromoacetamidobenzene, 2,3-dibromoacetamidobenzene, 2-chioroacetamidobenzene, 3-chioroacetamidobenzene, 4-chioroacetamidobenzene, 2,3-dichioroacetamidobenzene, 2-iodoacetamidobenzene, 2,3-diiodoacetamidobenzene, 3-iodoacetamidobenzene, 4-iodoacetamidobenzene, 2-fluoroacetamidobenzene, 3-fluoroacetamidobenzene, 4-fluoroacetamidobenzene, 2,3-difloroacetamidobenzene, 2,4-difloroacetamidobenzene, 2-fluoro-3-ethylacetamidobenzene, acetamidobenzylalcohol, 2-nitroacetamidobenzene, 3-nitroacetamidobenzene, 4-nitroacetamidobenzene, 2-bromoacetamidobenzoic acid, 2-bromoacetamidobenzoic acid, 3-bromoacetamidobenzolc acid, 4-bromoacetamidobenzolc acid, 2,3-dibromoacetamidobenzolc acid, 2-chloroacetamidobenzoic acid, 3-chloroacetamidobenzoic acid, 4-chloroacetamidobenzoic acid, 2,3-dichloroacetamidobenzoic acid, 2-lodoacetamidobenzolc acid, 2,3-dilodoacetamidobenzolc acid, 3-iodoacetamidobenzolc acid, 4-lodoacetamidobenzolc acid, 2-fluoroacetamidobenzolc acid, 3-fluoroacetamidobenzoic acid, 4-fluoroacetamidobenzolc acid, 2,3-difloroacetamidobenzolo acid, 2.4-difloroacetamidobenzolo acid, 2-fluoro-3-ethylacetamidobenzolo acid, 2-bromoacetamidobenzolc acid ethyl ester, 2-bromoacetamidobenzolc acid ethyl ester, 3-bromoacetamidobenzolc acid ethyl ester, 4-bromoacetamidobenzolc acid ethyl ester, 2,3-dibromoacetamidobenzolc acid ethyl ester, 2-chloroacetamidobenzolc acid ethyl ester, 3-chloroacetamidobenzolc acid ethyl ester, 4-chloroacetamidobenzolc acid ethyl ester, 2,3-dichloroacetamidobenzoic acid ethyl ester, 2-iodoacetamidobenzoic acid ethyl ester, 2,3-diiodoacetamidobenzoic acid ethyl ester, 3-lodoacetamidobenzoic acid ethyl ester, 4-lodoacetamidobenzoic acid ethyl ester, 2-fluoroacetamidobenzoic acid ethyl ester, 3-fluoroacetamidobenzolc acid ethyl ester, 4-fluoroacetamidobenzolc acid ethyl ester, 2,3-difloroacetamidobenzolc acid ethyl ester, 2,4-difloroacetamidobenzolc acid ethyl ester, 2-fluoro-3-ethylacetamidobenzolc acid ethyl ester; O-propanoylphenol, O-butanoylphenol, O-pentanoylphenol, O-hexanolylphenol, O-heptanoylphenol, Ooctanoviphenol, O-nonanoviphenol, O-decanoviphenol, O-dodecanoviphenol, O-benzoviphenol, N-benzoviaminobenzene, N-propanoylaminobenzene, N-butanoylaminobenzene, N-pentanoylaminobenzene, N-hexanoylaminobenzene, N-heptanoylaminobenzene, N-octanoylaminobenzene, N-nonanoylaminobenzene, N-decanoylaminobenzene, N-dodecanoylaminobenzene, phenolic phosphate esters and, mono and dialkyl phenolic phosphate ester where the phenolic substituent can be optionally substituted with alky, anyl, alkoxy, phenoxy, halo, nitro, and sulfonyl groups; and combinations thereof. The foregoing dormant functional groups in the inactive polymer may result from polymerizing the dormant monomer mixture which includes one or more of dormant monomers. Alternatively, these dormant functional group may be also introduced through post-polymerization reaction.

[0062] The amount of dormant monomers in the dormant monomer mixture is adjusted to provide at least two dormant functional groups per Inactive polymer chain. Depending upon the degree of crosslinking desired, the amount of dormant monomers in the dormant monomer mixture may vary in the range of from 2 to 90 weight percent, preferably in the range of from 5 to 25 based on total polymer solids.

[0053] The domant functional groups of the inactive polymer may be either in the backbone or attached to the inactive polymer backbone as pendent moleties. The number of functional groups per chain of the inactive polymer depends upon the GPC weight average molecular weight of the functional group. Thus, inactive polymers having a GPC weight average molecular weight of 500,000 or greater, preferably in the range of from 500,000 to 2,000,000 may have in the range of from 2000,000 repletably in the range of from 50 at 0,000, of the domant functional groups having a molecular weight in the range of from 50 to 500, preferably in the range of from 50 to 500, preferab

from 10 to 600, of the dormant functional groups having molecular weight in the rage of from 50 to 500, preferably in the range of 70 to 220.

[0054] The remainder of the monomers in the dormant monomer mixture from which the inactive polymer is polymerized are the same as those listed earlier for the oxidative polymer. The manner in which the inactive polymer is polymerized in the same process as that used in the polymerization of the oxidative polymer described earlier.

[0055] The activating agent is selected from the group consisting of an activating acid, activating base, activating enzyme, and combinations thereof. An activating enzyme is preferred.

[0055] The activating amount of the activating enzyme used in activating the dormant functional groups on the inactive polymer into the oxidatively crosslinkable functional groups generally varies in the range of from 10 parts per million (pmn) to 50,00 pmn, perferably in the range of from 100 pmn to 1000 pmn and most preferably in the range of from 100 pmn to 500 pmn and most perferably in the range of from 100 pmn to 500 pmn based on total polymer solids. The foregoing quantities are based on using substantially pure activating agents. Correspondingly higher activating amount of the activating enzyme would be required when lesser pure activation enzyme would be required when lesser pure activation enzyme would be required when lesser pure activation enzyme when

[0057] Activating acids include but are not limited to hydrochloric, nitric, sulfuric, trifluoroacetic, phosphoric acids, and combinations thereof. Activating bases include but are not limited to trihlum hydroxide, sodium hydroxide, potassium hydroxide, acidium methoxide, sodium enthoxide, ammonium hydroxide, and combinations thereof. Activating acids
and bases are used in the range of from 0.25 molar equivalents to 2.0 molar equivalents per mole of domant functional
group present in the inactive polymer, preferably in the range of from 0.75 molar equivalents to 1.25 molar equivalents
per mole of domant functional group present in the inactive polymer.

to [0058] The activating enzyme suitable for use in the present invention include lipase (EC 3.1.1.3), esterase (EC 3.1.1.1), and phosphatase (EC 3.1.3.1), or mixtures thereof. Activating enzymes generally have a unit activity in the range of tom 10 to 500,000 per range of tom 20 to 500,000 per range of enzyme solids. Lipase, which has a unit activity in the range of from 10 to 500,000 per large of the solids. The solids is particularly forefered to the solids in the solids is particularly forefered.

[0059] The activating enzymes mybe employed in the form of a powder, solution, or a dispersion. The activating enzymes mybe employed in the form of a powder, solution, or a dispersion. The activating enzymes are given an Enzyme Commission (E.C.) number under the Enzyme Commission Classification Scheme so that each enzyme can be uniquely identified. All E.C. numbers have four fields separated by periods, for example, in "E.C. 1,2.3.4", the extreme left numeral prepresent the most broad dessification for the enzyme. The numerals thereafter represent a finer division of that broad category. The third numeral provides for a more detailed information and the fourth numeral (extreme left) field) defines the specific enzyme. For example:

"Lipase" (acylhydrolase, EC 3.1.1.3) and "esterase" (carboxyllo-ester hydrolase, EC 3.1.1.1) catalyze the hydrolysis and formation of ester and amide bonds. "Phosphatiase" (Phosphoric monoester phosphorydrolase, EC 3.1.3.1) catalyze the hydrolysis of phosphate setans. See pages 852, 492, and 832, respectivity, of Sigma 1997 catalog entitled "BIOCHEMICAL SAND REAGENTS FOR LIFE SCIENCE RESEARCH", supplied by Sigma Chemlast. PO Box 14508, St. Louis, No 63178.

[0060] The degree of activation of the domant groups into oxidatively crossinicable function groups achieved depends on the activity of the activating enzyme used, its purity, the presence of a co-factor during the activation process, temperature and the pH of the pot mix that results from the mixing of the inactive polymer with the activation process, or other control of the oxidizing enzyme. Typical lipsase activities range from 10 to 100 unitativing solid protein for crude, 1000 to 400,000 unitativing solid for purified lessers. Typical elsterase activities range from 10 to 100 unitativing solid or purified seterase. Typical phosphatase activities range from 1 to 100 unitativing solid protein for crude, 1000 to 5000 unitativing solid for purified or hasharbatase.

[0061] The catalytic amount of the oxidizing enzyme is an amount that is sufficient to crosslink the oxidatively crosslinkable functional groups on the oxidative polymer for achieving a desired degree of crosslinking of the oxidative polymer. The degree of crosslinking is expressed as a swell ratio. The lower the swell ratio, the higher will be the crosslinking of the oxidative polymer.

[0062] The catalytic amount of the oxidizing enzyme suitable for use in the method of the present invention may vary in the range of from 25 parts per million (ppm) to 10,000 ppm, preferably in the range of from 50 ppm to 600 ppm and most preferably in the range of from 100 ppm to 300 ppm based on total polymer solids. The foregoing quantities are based on using substantially pure oxidizing enzymes. Correspondingly higher catalytic amount of the oxidizing enzyme would be required when lesser pure oxidizing enzyme is used.

25 [0063] The oxidizing enzyme suitable for use in the present invention include laccase, polyphenol oxidase, horseradish peroxidase, soybean peroxidase, pea peroxidase, guar beans peroxidase, garbanzo beans peroxidase, runner beans peroxidase, rice peroxidase, cotton peroxidase or mixtures thereof. Oxidizing enzymes generally have a unit activity in the range of from 20 to 1000, preferably in the range of from 100 to 1000 per mg of enzyme solids. Horseradish

peroxidase, which has a unit activity in the range of from 40 to 1000, preferably in the range of from 100 to 1000 per mg of enzyme solids is particularly preferred.

[0064] The oxidizing enzymes may be employed in the form of a powder, solution, or a dispersion. The oxidizing enzymes dispersed in water are preferred and those dispersed in buffered water are more preferred. For example:

[0065] "Horseradish peroxidase (HRP)" (Donor: hydrogen-peroxide oxidoreductase; EC.1.11.7) is a glycoprotein with a hemin prosthetic group and bound Cat". The miscular weight of native horseradish peroxidase is 44,00. (Ref. Wolfoder, K.J., Eur. J. Biochem, 96, 483 (1979)). See also page 812 of Sigma 1997 catalog entitled "BIOCHEMICALS AND REAGENTS FOR LIFE SCHEMICALS TO AND REAGENTS FOR LIFE SCHEMICALS TO AND REAGENTS FOR LIFE SCHEMICALS TO A to the control of the mustant family (Brassicaceae, or Curdens). It is a both control of the period of the control of the control

roots. Inses are roots or a narry perennial pain (*Varinanas alepaniamus*) uniter instalation anny (*Drassa-au-eae*, or *Operatias*). It is a hotly pungent, flashly root. Other sources of peroxidase include *arthromyses ramosus*, Bowler milk (lactoperoxidase), and equine heart. HRP is supplied by Sigma Chemical, PO Box 14508, St. Louis, MO 63178.

[0065] "Laccase (hexcenedol: oxygen oxidoreductase, ECI 1.0.3.2)" is a copper containing glycoprotein. The miceular weight of laccase leolated from 8. cineresfung is 7-4,000 (Ref. D. Siornczynski, Lei, Applied and Terwhomental Microbiology, 61, 907 (1995). See also page 629 of Sigma 1997 catalog entitled "BIOCHEMICALS AND REAGENTS FOR LIFE SCIENCE RESEARCH". Sources for laccase include plants, fungal, and insects. Laccase is supplied by Sigma Chemical, PO 80x 14569, St. Louis, MO 83178.

[0057] The degree of crosslinking achieved depends on the activity of the oxidizing enzyme used, its purity, the presence of a co-factor during the crosslinking process, temperature and the pH of the pot mix that results from the mixing of the oxidative polymer with the catalytic amount of the oxidizing enzyme. Typical peroxidase activities range from 40 units/mg solid protein for crude horseradish peroxidases to 1000 units/mg solid for purified horseradish peroxidase.

[1068] Some of the oxidizing enzymes may require the presence of an oxidant to bring about the crosslinking of the oxidative polymer. The type of an oxidant being utilized depends upon the type of oxidizing enzyme being used. For example, hydrogen peroxide having the strength in the range of 15% to 50%, preferably in the range of 15% to 50%, and most preferably in the range of 15% to 50% may be employed with horseradish peroxidase. The other suitable oxidants include core, a tempospher oxygen, t-butyl hydrogen peroxide, tempospher oxygeneatics acid, m-chloroperibenzoic acid, sodium and ammonium persulfate, sodium and potassium periodate, and sodium and potassium periodate, and sodium and potassium periodate, produce peroxide, hydrogen peroxide, in the demonium persulfate and atmospheric oxygen are preferred. Hydrogen peroxide, hydrogen peroxide, to more preferred.

2 (0089) Stability and activity of the oxidizing enzyme in addition to the temperature and pH of the pot mix also depends upon the specific enzyme and the source from which the oxidizing enzyme acrose from. For example, lacease when measured over a pH range of 1.5 to 7.0 and a temperature range of 0 to 85°C was found to have optimum activity at a pH of ~3.5 and ~50°C. However, the enzyme did show activity over the complete range of conditions evaluations (Ref. D. Storozynski, et al., Applied and Environmental Microbiology, 61, 90°) (1995). Horseradish peroxidiase was 5 shown to be active over a pH range of at least 5 to 7.5 by J. A. Akkara, et. al. (J. Polymer Science: Part A: Polymer Chemistry, 29, 156-11574 (1991)) when used to optimetre phenois monomers.

[0070] Thus, the pH of the pot mix may vary in the range of from 3 to 11, preferably in the range of from 5 to 10, and most preferably in the range of from 7 to 9. The pH of the pot mix may be adjusted by witilizing addisor of bases, such as, sodium and potassium brachonate, entroping an entire of the period of the period

Phosphoric acid is preferred when it is desired to lower the p.H. (1071). The present invention is also directed to a two-pack composition which includes a polymeric component and a catalytic component. The oxidative polymer is included in the polymeric component and a catalytic amount of the oxidative genzyme is included in the catalytic component. Generally, the two foregoing components of the coating composition are stored separately and then mixed in a conventional way just prior to use to form a pot mix. The pot mix of

position are stored separately and then mixed in a conventional way just prior to use to form a por imx. The pot mix of the coating composition of the present invention is sufficiently fluid to allow the user for readily apply the por limk by conventional application means, such as air-assisted spray or airless spray, roll, brush, curtain, squeegee, flood, disc, and dip-coating methods over a substrate surface.

[0072] The potifie of the pot mix depends upon a number of factors, such as for example the amount, type, purify and maintenance of the enzyme potency in the pot mix environment and the number of the oxidatively crosslinkable functionalities present on each polymer chain of the oxidative polymer and the type of the oxidatively crosslinkable functionalities present on the oxidative polymer. Generally, the potitie of the two-pack composition of the present invention varies in the range of from two weeks to six months.

[0073] The composition of the present invention may be used as a coating composition, as a molding composition, suitable for use in conventional molding methods, or in a polymer cement composite.

[0074] When utilized as a coating composition, a layer of the pot mix is conventionally applied to a substrate under

ambient conditions. Once applied, the oxidatively crosslinkable functional groups on the oxidative polymer of the composition crosslink to form a coating on the substrate.

- [0075] The coating composition of the present invention may contain conventional additives, such as, for example, amulsifiers, pigments, fillers, coalescing agents, anti-ingration aids, aqueous solutions or dispersions of non-inuctional polymers, curring agents, thickness, humedants, wetting agents, bloodes, plasticizers, antilicaming agents, colorants, and anti-oxidants. Examples of pigments that may be employal include object, acidum carbonate, tact, titarium clicoxide, eachon black, and various colored pigments. In the paint industry, alkyds or oils are sometimes added to promote cure and adhesion to difficult substrates. The amount of the foregoing additives added to the composition is not critical. Generally most of these additives are added to the polymeric component of the composition.
- 10 [0076] The coating compositions of the present invention may be used as top coats, intermediate coats, or primer coats and are useful as paints, wood lacquers, stains, vanishes, adhesives and inks. The substrates to which the composition of this invention may be applied include wood, plastic, leather, paper, woven and nonwoven fabrics, metal, plaster, cementitious and asphaltic substrates, and previously primed or coated substrates. The coating composition may fulfill a decorative or protective function, or both, or may act as a primer or as an adhesive when disposed between two coatings or between two such substrates.
 - [0077] The composition is also well suited for producing articles, such as roof tiles, from a cement formulation that includes the coating coriposition of the present invention and cement. To produce a cement article, the pot mix is thoroughly make in which esten which is then worked in a conventional roof tile making process to produce roof tiles. If desired, the pot mix of cement may contain additional components, such as, fiber glass, wood chips or wood fibers, milineral wood or combinations thereof. If desired the cement may be added to the polymeric component or the crosslinking component, which are then mixed.
 - [0078] If desired, the coating composition of the present twention may applied in the form of a foam layer over substrate surfaces, such as reconstituted wood substrates by including the foaming agent in the composition. The foaming techniques and methods, such as those disclosed in the United States Patent Nos. 5,355,248 and 5,595,823, which are incorporated herein by reference are suitable for the composition of the present invention for producing sealer coatings on reconstituted wood substrates.
- [0079] The coating composition of the present invention may be also applied in the form of a foam layer over cament substrate to reduce efforescence on the coment substrate surface by Including the foaming agent in the composition. The techniques and methods disclosed in the United States Partel No. 5,718,943, which is incorporated herein by
- 30 reference are sultable for the composition of the present invention for producing efflorescent resistant coatings on cement substrate surfaces.

Swell Ratio Procedure

35 [0080] A polymer film having a dry film thickness of 50 microns was prepared by applying a layer of a pot rink with a conventional draw-down hav over a film releasing substrate made from EnterflowSeterflurvolthere, supplied by DuPont Company, Wilmington, Delawer. The layer was dried at room temperature for various time durations, specified in Examples below, to produce the dry film. The film was then peeled off from the film releasing substrate and cut into 1 cm square test specimens. The test specimens were immersed in methyl ethyl ketone for 1 hour. The degree of swelling is determined by measuring the width of the immersed specimen after 1 hour of soaking in methyl ethyl katone. A swell ratio of the film was calculated to determine the extent of crosslinking that was achieved by the oxidizing enzyme. The swell ratio is calculated by using the following equation:

Swell Ratio = (width of the immersed specimen)3/(1 cm)3

[0081] A swell ratio of 20 or less is usually indicative of polymer crosslinking. A swell ratio of from 10 to 15 is indicative of light crosslinking. A swell ratio of 5 to 10 is indicative of moderate crosslinking. A swell ratio of from 1 to 5 is indicative of high crosslinking.

MEK Rubs Procedure

45

[0082] A polymer film having a dry film thickness of 50 microns was prepared by applying a layer of a pot mix with a conventional draw-down bar over an aluminum panel substrate. The layer was dried at room temperature for various time durations, specified in Examples below, to produce a coeting on the panel. MEX double rubs were tested by using a Crockmeter, supplied by Atlas Electrical Services Company, Chicago, Illinois, by mounting the coated panel on the Crockmeter, applying methyl ethyl ketone to the cheese obth wrapped on the rubbing probe of the Crockmeter, and paleaging the probe on the surface of the coating on the panel. The MEX double rub end point was determined by the

number of back and forth strokes of the probe on the coating required to expose the underlying substrate. The higher the number of strokes required to expose the underlying surface, better will be the crosslinking of the oxidative polymer achieved by the method of the present invention.

Abbreviations used in Examples below		
AAEM Acetoacetoxy ethyl methacrylate		
BMA	Butyl methacrylate	
BA	butyl acrylate	
MAA	Methacrylic Acid	
MMA	MA Methyl Methacrylate	
n-DDM	n-Dodecyl Mercaptan-Chain transfer agent (CTA)	

Example 1

10

90

35

[0083] To a 3 liter stirred neachr containing 437.8 g, of delonkzed water (DI water) heated to 85 °C under a nitrogen atmosphere, was added 0.5 grams of ammonium hydroxide (28% active), 74 grams of a polymer seed latex (solids content 41.5%, average particle diameter of 60mm), and 27.5 grams of 10 water followed by a solution of 1.72 grams of ammonium persulfate in 12.5 grams of 10 water to form a reaction mixture. The following domant monomer mixture was then added to the neaction mixture over 150 minutes along with a solution of 1 gram of ammonium presulfate dissolved in a solution of 4 grams of ammonium hydroxide and 47.5 grams of 10 water. After the feeds were completed the domant monomer mixture container was rinsed with 50 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and the ammonium persulfate container was fined with 5 grams of 10 water and 10 water and

Monomer Mix:	in grams (g)
DI water	233.0
surfactant* (58% active)	13.0
butyl methacrylate	559.8
butyl acrylate	177.8
acetoxy styrene (97% active)	104.2
styrene	151.6
methacrylic acid	20.2
n-Dodecanethiol	2.5
DI water rinse	65.0

^{*} ammonium salt of a sulfated alkylphenol athoxylaic with an average of 4 moles of ethylene oxide.

10049. Upon completion of the polymerization, 0.056 grams of FaSO4 in 3.3 grams of DI water, 0.16 grams of texts add um salt of ethylenediamhie tetraacetic acid in 16.3 grams of DI water, 1.2 g of t-butylhydroperoxide in 15 grams of DI water and 1.23 grams of DI water were added at 65°C to the reaction product. The reaction mixture was diluted with 40.35 grams of DI water. The resulting inactive polymer had a solids content of 50.2 % and an average particle diemater of 189 m.

50.2 % and an average parace durinered or 1 to 1 fm. (10085) A20 grams a simple of the forgoing inactive polymer was then mixed with 2 grams of butyl Cellosobve cosolvent. To the mixture, 0.5 ml of £5128 (£6.3.1.1.1) esterase supplied by Sigma Chemical, PO Box 14508, St. Louis, MO 3178 (fm icontains 15 mg of enzyme anothere are 300 unitsimg, not untivell hydroviter inferenced eithy butyrate per minute at pH 8 and 25°C) was added to generate a phenolic functionality on the leactive polymer. Thereafter, 0.150 in 0 P-6410 horseradish peroxidase supplied by Sigma Chemical, St. Louis, MO 3178 was added (1.5 mls sequivalent to 3.15 mg enzyme having 250 units activity per mg). The mixture was then conventionally applied to a plastic sheet as a clear layer having a dry film thickness of 50 microns. The layer was air dried for 7 days to form at Element Preventer, specimens of the film were removed and measured for the degree of crossisficing active by the oxidizing enzyme. The film was found to have a swell ratio of 3.4 indicating significant crossificing of the oxidative polymer by the oxidative polymer by

[0086] For comparison, a film from a mixture containing all the foregoing components, except for horseradish peroxidase was applied and air dried in a similar fashion. The dry film dissolved in methyl ethyl ketone indicating lack of crosslinking of the oxidative polymer.

Example 2

15

20

[0087] To a 3 liter stirred reactor containing 423.1 g, of deinnized water (DI water) heated to 85° C under a nitrogen atmosphere, was added 0.5 grams of armonium hydroxide (28% active), 74 grams of a polymer seed latax (solids content 41.5%, average particle diameter of 60mm), and 27.5 grams of DI water followed by a solution of 1.72 grams of ammonium pestulfate in 12.5 grams of DI water to form a reaction mixture. The following dommant monomer mixture was then added to the reaction mixture over 150 minutes alony with a solution of 1 gram of ammonium presulfate dissolved in a solution of 4 grams of ammonium hydroxide and 47.5 grams of DI water. After the feeds were completed, the dommant monomer mixture container was rineed with 50 grams of DI water and the ammonium presulfate container were rinsed with 5 grams of DI water and the ammonium presulfate container were rinsed with 5 grams of DI water and the ammonium presulfate container

Monomer Mix:	in grams (g)
DI water	233.0
surfactant* (58% active)	13.0
butyl methacrylate	360.7
butyl acrylate	275.9
acetoxy styrene (97% active)	208.4
styrene	151.6
methacrylic acid	20.2
n-Dodecanethiol	2.5
DI water rinse	65.0

ammonium salt of a sulfated alkylphanol othoxylata with an average of 4 moles of ethylena oxide.

[0088] Upon completion of the polymerization, 0.005 grams of FeSO4 in 3.3 grams of DI water, 0.16 grams of fletssodium salt of ethylenediamine tetrascetic acid in 16.3 grams of DI water, 1.2 gr t-butyliyid/poperoxide in 15 grams of DI water and 1.25 grams of basesorbic acid in 3.5 grams of DI water were added at 65°C to the reaction product. The reaction mbture was diluted with 40.35 grams of DI water. The resulting inactive polymer had a solids content of 48.8% and an average carticle disenter of 204 nm.

[0089] A 20 gram sample of the forgoing inactive polymer was then mixed with 2 grams of Butyl Cellosolve cosolvent. To the mixture, 0.3 mi of E-9122 (EG.3.1.1) esterase supplied by Sigma Chemical, St. Louis, Missouri (1 mi contains 15 mg of enzyme and there are 300 unitsimg, 0 ne unit will hydrolyse 1 micromole of ethyl butyrate per minute at pH 8 and 25°C) was added to generate a phenolic functionality on the inactive polymer. Thereafter, 0.150 mi of P-8140 horsendalin peroxidaes supplied by Sigma Chemical, PO Box 1456, St. Louis, Mo 63174 was added (0.15 mi is equivalent to 3.15 mg enzyme having 250 units activity per mg). The mixture was then conventionally applied to a plastic sheet as a clear layer having a dry film thickness of 50 microns. The layer was all dried for 7 days to form a film. Thereafter, specimens of the film were removed and measured for the degree of crosslinking achieved by the oxidizing enzyme. The film was found to have a swell ratio of 4.5 indicating significant crosslinking of the oxidazive polymer by the oxidizing enzyme.

[0090] For comparison, a film from a mixture containing all the foregoing components, except for horseradish peroxidase was applied and air dried in a similar fashion. The dry film dissolved in methyl ethyl ketone indicating lack of crosslinking of the oxidative polymer.

45 Example 3

[0091] A 20 gram sample of the forgoing inactive polymer was then mixed with 2 grams of Butly Cellasolive cosolvent. To the mixture, 1 g of E-1754 (EG 3.1.1.3) lipses applied by Sigma Chemica, IP Do x 41509, St. Louis, MO 63178 (There are 950 units/mg and one unit will hydrobyze 1 micro equivalent of fathy acid from olive oil in one hour at pH 7.2 at 37°C.) was added to generate a phenoic functionality on the inactive polymer. Thereafice, 0.150 mil of P-164 horser-addin peroxidase supplied by Sigma Chemical, PO Box 14508, St. Louis, MO 63178 was added [0.15 mil is equivalent to 3.15 mg enzyme having 250 units extivity per mg). The mixture was then conventionally applied to a plastic sheet as a clear layer having a dry film thickness of 50 microns. The layer was air dried for 7 days to form a lifm. Thereafler, specimens of the film were removed and measured for the degree of crossinking achieved by the oxidizing enzyme. The lifm was bound to have a swell rate to 22 sinclasting significant crosslinking of the oxidative polymer by the oxidizing enzyme.

[0092] For comparison, a film from a mixture containing all the foregoing components, except for horseradish peroxidase was applied and air dried in a similar fashion. The dry film dissolved in methyl ethyl ketone indicating lack of crosslinking of the oxidative polymer.

Example 4

15

20

[0093] To a 5 liker silred reachor containing 797.0 g, of delonized water (D) water) heated to 90°C under a nitrogen at the compleme, was added 148 grams of a polymer seed talex (solids content 41.5%, average particle diameter of 60mm), 40 grams of U) water and a solution of 3.45 grams of amount of grams of 10 water to form a reaction mixture. The following oxidative monomer mixture was then added to the reaction mixture over 120 mixtures along a solution of 2 grams of amount mpresulfate aboved in a solution of 9.1 grams of amount in yorkrotide and 95 grams of (D) water. The oxidative monomer mixture container was rinesd with 20 grams of D) water and the ammonium presulfate container was finesd with 10 grams of D) water. 5th or the rinesse were added to the reaction mixture.

Monomer Mix:	in grams (g)
DI water	466.0
ammonium lauryl sulfate (26.7% active)	56.0
Methyl methacrylate	666.9
butyl acrylate	808.4
acetylacetoxyethyl methacrylate	202.1
styrene	303.2
methacrylic acid	40.4
n-Dodecanethiol	5.1

[0094] Upon completion of the polymerization, 0.01 grams of FeSO4 in 6.6 grams of Di water, 0.3 grams of tetrasodium salt of ethylenediamine tetraacetic acid in 32.6 grams of DI water, 1.8 g of t-butylhydroperoxide in 20 grams of DI water and 1.64 grams of isoascorbic acid in 30 grams of DI water were added at 65°C to the reaction product. The reaction mixture was neutralized with 68 grams of ammonium hydroxide (28.8% active) and diluted with 147.5 grams of DI water. The resulting oxidative polymer had a solids content of 49.3% and an average particle diameter of 189 nm. [0095] TiO, grind [16.4 g Ti Pure® titanium dioxide supplied by DuPont Company, Wilmington, Delaware, 0.7 g dispersing, 0.1 g ammonia (28% strength), 0.2 g surfactant, 0.1 g defoamer, and 1.6 g water] mixed with 54 g of the oxidative polymer and 8 grams of Butyl Cellosolve cosolvent, 1.5 grams of propylene glycol was added to 12.6 grams of water to form a paint. To the paint, 0.6 ml of P-6140 horseradish peroxidase P-6140 (EC 1.11.1.7) supplied by Sigma Chemical, PO Box 14508, St. Louis, MO 63178 (1 ml contains 21 mg enzyme which has an activity of 250 units/mg. One unit will form 1 mg of purpurogallin from pyrogallol in 20 sec. at pH 6 and 20°C) was added (0.15 ml is equivalent to 3.15 mg enzyme having 250 units activity per mg). The pot mix was then conventionally applied to a plastic sheet as a clear layer having a dry film thickness of 50 microns. The layer was air dried for 4 days to form a film. Thereafter, specimens of the film were removed and measured for the degree of crosslinking achieved by the oxidizing enzyme. The film was found to have a swell ratio of 5.7 indicating significant crosslinking of the oxidative polymer by the oxidizing enzyme

[0096] For comparison, a film from a mixture containing all the foregoing components, except for horseradish peroxidase was applied and air dried in a similar fashion. The dry film had a swell ratio of 7 in methyl ethyl ketone indicating less crosslinking of the additive powhere in the absence of the oxidizing enzyme.

[0097] A leyer having a dry film thickness of 50 microns was applied over Crockmeter test panel, which was then died for 11 days under ambient condition to form a coating on the substrate panel. When the coating was subjected to MEK rubs test, 83 double rubs were required before the coating cut through to expose the underlying substrate surface.

[0098] A similar paint coating prepared without adding any horseradish peroxidase, produced a coating that required 35 MEK double rubs before the coating cut through to expose the underlying substrate surface.

[0099] From the foregoing Examples, it can be seen that the presence of the oxidizing enzyme improves the crosslinking of the oxidative polymer and coafing resulting therefrom has improved properties, such scrub resistance over those coatings that are not crosslinked by the oxidizing enzyme.

Example 5

[0100] Flasks containing 20 g each of the polymer of Example 4 were pH-adjusted with ammonia in accordance with Table 1 below. Horseradish peroxidase P-6140 (EC 1.11.1.7) supplied by Sigma Chemical, PO Box 1 4060, St. Louis, MO 83178 was then mixed with these polymers in various amounts shown in Table 1 below to form various pot mixes.

Swell ratios of films resulting from these pot mixes were measured after 7 days of drying the layer.

Table 1

pH of Polymer	mg of enzyme mixed with polymer	Swell Ratio of cross linked polymer
9.04	0	9.4
9.04	0.300	8.3
7.1	0.300	6.2
9.04	0.150	8.8
7.1	0.150	6.7
9.04	0.75	9.0
7.1	0.75	7.1

[0101] From Table 1, it can be seen that as the pH of the pot mix drops to 7 from 9.4, increased crosslinking of the oxidative polymer by the oxidizing enzyme occurs even at various levels of enzyme additions.

Example 6

10

15

20

20

35

55

[0102] Flasks containing 20 g each of the polymer in Example 4 were adjusted with ammonia to a pH of 9.04. To these flasks, horseradish peroxidase P-8140 (EC 1.11.1.7) supplied by Signa Chemical, PO Box 14508, St. Louis, MO 63178 was mixed in various amounts shown in Table 2 below to form various pot mixes. Swell ratios of the films resulting from these pot mixes were measured after 4 days and after 11 days of drying.

Table 2

Peroxidase, mg wet*	Swell Ratio (4 day)	Swell Ratio (11 day)
0	10.3	9.3
0.75	10.1	8.8
0.75**	10.1	8.6
0.150	9.7	8.5
0.300	8.9	7.9

^{*1} mg wet peroxidase contains 21 mg enzyme which has an activity of 250 units/mg.

[0103] Table 2 above demonstrates that the oxidizing enzyme will effectively crosslink the oxidative polymer at a wide range of concentrations and by increasing the drying time, higher degree of crosslinking can be achieved. Furthermore, applicants have unexpectedly discovered that it is not necessary to include an oxidant, such as hydrogen peroxide, to attain almost the same degree of crosslinking achieved by the oxidizing enzyme, such as horseradish peroxideae. As a result, negative effects, such as thillentess of a croating or loss of adhesion of a coating to an underlying substrate that may occur when a coating composition contains an oxidant, are reduced.

Example 7

[0104] Flasks containing 20 g each of the polymer of Example 4 were adjusted with ammonia to a pH of 9.04. To these flasks, laccase (EC 1.10.3.2) was mixed in various amounts shown in Table 3 below to form various por mixes. Swell ratios of the films made from these pot mixes were measured after 4 days and after 11 days of drying.

Table 3

Laccase, ml wet*	Swell Ratio (4 day)	Swell Ratio (11 day)
0	10.3	9.3
0.05	9.8	8.0

^{*1} ml wel laccase contains 0.79 mg enzyme which has an activity of 1000 units/microliter.

^{**} also contains 1.6 grams of hydrogen peroxide at 10 % concentration.

Table 3 (continued)

Laccase, ml wet*	Swell Ratio (4 day)	Swell Ratio (11 day)
0.15	9.7	7.9

*1 ml wet laccase contains 0.79 mg enzyme which has an activity of 1000 units/microliter

[0105] Table 3 above demonstrates that the oxidizing enzyme will effectively crosslink the oxidative polymer at a wide range of concentrations and increase in the drying time improves the degree crosslinking achieved.

Claims

6

10

18

25

45

50

55

A method of crosslinking an oxidative polymer having oxidatively crosslinkable functional groups, wherein said
oxidative polymer is polymerized from at least one ethylenically unsaturated monomer, said method comprising:

contacting said oxidative polymer with a catalytic amount of an oxidizing enzyme; and crosslinking said oxidatively crosslinkable functional groups on said oxidative polymer.

- The method of claim 1 wherein said crosslinking step is conducted at ambient temperature.
 - The method of claim 1 wherein said oxidizing enzyme is selected from the groups consisting of lacease, polyphenol
 oxidase, horseradish peroxidase, arobbean peroxidases, pea peroxidases, guar beans peroxidase, garbanzo beans
 peroxidase, runner beans peroxidase, otto peroxidase, cost on mixtures thereof.
 - The method of claim 1 wherein said oxidizing enzyme is an aqueous solution at a pH varying in the range of from 3 to 11.
 - The method of clalm 1 wherein said oxidatively crosslinkable functional groups are selected from the group conslating of phenolic, active methylene, amino, allylic, vinylic, acrylic, methacrylic, itaconic, maleic, mercapto, suilfide, phosphino groups and combinations thereof.
 - 6. The method of claim 1 wherein said catalytic amount varies in the range of from 25 ppm to 10,000 ppm.
 - The method of claim 1 wherein said oxidative polymer is a powder, a dispersed polymer, a solubilized polymer, or a mixture thereof.
 - The method of claim 1 wherein said oxidatively crosslinkable functional groups on said oxidative polymer are produced by contacting an inactive polymer having dormant functional groups with an activating amount of an activating agent.
 - 9. A method of applying a coating on a substrate comprising:
 - contacting a polymeric component of a coating composition with a crosslinking component of said coating composition to form a pot mix, said polymeric component comprising an oxidative polymer having oxidatively crosslinksel-functional groups, wherein said oxidative polymer is polymerized from at least one ethylenically unsaturated monomer, and said crosslinking component comprising a catalytic amount of an oxidizing enzyme; applying a layer of said pot mix over said substrate; and
 - crosslinking said oxidatively crosslinkable functional groups on said oxidative polymer to form said coating on said substrate.
 - 10. A two-pack coating composition comprising:
 - a first container containing a polymeric component, which comprises an oxidative polymer having oxidatively crosslinkable functional groups wherein said oxidative polymer is polymerized from at least one ethylenically unsaturated monomer: and
 - a second container containing a catalytic component, which comprises a catalytic amount of an oxidizing enzyme sufficient to crosslink said oxidatively crosslinkable functional groups on said oxidative polymer, when

said polymeric component is mixed with said catalytic component.

Patentansprüche

10

25

40

88

- Verfahren zur Vernetzung eines oxidativen Polymens mit oxidativ vernetzbaren, funktioneilen Gruppen, wobei das oxidative Polymer aus mindestens einem ethylenisch ungesättigten Monomer polymerisiert ist, wobei das Verfahren umfaße:
- das inkontaktbringen des oxidativen Polymers mit einer katalytischen Menge eines oxidierenden Enzyms, und
 - das Vernetzen der oxidativ vernetzbaren, funktionellen Gruppen im oxidativen Polymer.
- 2. Verfahren nach Anspruch 1, wobei der Vermetzungsschritt bei Raumtemperatur ausgeführt wird.
- Verfahren nach Anspruch 1, wobei das oxidierende Enzym aus der Gruppe, bestehend aus Laccase, Polyphenoloxidase, Meernettichperoxidase, Sojabohnenperoxidase, Erbsenperoxidase, Büschelbohnenperoxidase, Kichererbsenbohnenperoxidase, Stangenbohnenperoxidase, Reisperoxidase, Baurnwollperoxidase und Gernischen davon, ausgewählt ist.
- Verfahren nach Anspruch 1, wobel das oxidierende Enzym eine w\u00e4\u00dfrige L\u00f6sung bei einem pH, welcher im Bereich von 3 bis 11 variiert, ist.
- Verfahren nach Anspruch 1, wobel die oxidativ vermetzbaren, funktionellen Gruppen aus der Gruppe, bestehend aus Phenol-, aktiven Methylen-, Amino-, Allyt-, Villyt-, Acryl-, Methacryl-, Itacon-, Malein-, Mercapto-, Suriid-, Phosphingruppen und Kombinationen davon, ausgewählt sich.
 - 6. Verfahren nach Anspruch 1, wobei die katalytische Menge im Bereich von 25 ppm bis 10.000 ppm variiert.
- Verfahren nach Anspruch 1, wobei das oxidative Polymer ein Pulver, ein dispergiertes Polymer, ein löslich gemachtes Polymer oder ein Gemisch davon ist.
 - Verfahren nach Anspruch 1, wobei die oxidativ vernetzbaren, funktionellen Gruppen im oxidativen Polymer durch das Inkontsktbringen eines inaktiven Polymers, welches latente funktionelle Gruppen aufweist, mit einer aktivierenden Mence eines Aktivierungsmittels berostelft ill werden.
 - 9. Verfahren zum Aufbringen einer Beschichtung auf ein Substrat, umfassend:
 - das Inkontaktbringen einer Pelymerkomponente einer Beschichtungszussammensetzung mit einer Vernetzungskomponente der Beschichtungszussammensetzung, um ein Topfgernisch zu bilden, wobei die Polymerkomponente ein oxidatives Polymer mit oxidativ vernetzbaren, funktionellen Gruppen umfaßt, wobei das oxidative Polymer aus mindestens einem erhlyfenisch ungesättigten Monomer hergestellt ist und die Vernetzungskomponente eine katalytische Menge eines oxiderenden Enzyme umfaßt;
- 45 das Aufbringen einer Schicht des Topfgemisches auf das Substrat, und
 - das Vernetzen der oxidativ vernetzbaren, funktionellen Gruppen im oxidativen Polymer, um die Beschichtung auf dem Substrat zu bilden.
- 50 10. Zweikomponenten-Beschichtungszusammensetzung, umfassend:
 - einen ersten Behälter, welcher eine Polymerkomponente enthält, welche ein oxidatives Polymer mit oxidativ vernetzbaren, funktionellen Gruppen umfaß, wobel das oxidative Polymer aus mindestens einem ethylenisch ungesättigten Monorner polymerislert ist, und
 - einen zweiten Behälter, welcher eine katalytische Komponente enthält, welche eine katalytische Menge eines oxidierenden Enzyms umfaßt, welche ausreicht, die oxidativ vernetzbaren, funktionellen Gruppen im oxidativen Polymer zu vernetzen, wenn die Polymerkomponente mit der katalytischen Komponente gemischt wird.

Revendications

 Procédé de réticulation d'un polymère oxydatif ayant des groupes fonctionnels réticulables de manière oxydative, dans lequel ledit polymère oxydatif est polymérisé à partir d'au moins un monomère éthyténiquement insaturé, ledit procédé comprenant:

la mise en contact dudit polymère oxydatif avec une quantité catalytique d'une enzyme oxydante; et la réticulation sur ledit polymère oxydatif desdits groupes fonctionnels réticulables de manière oxydative.

- Procédé selon la revendication 1, dans lequel ladite étape de réticulation est conduite à température ambiante.
 - 3. Procédé selon la revendication 1, dans lequel ladite enzyme oxydante est choisie dans les groupes constitués par la laccase, la polyphénotoxydase, la peroxydase de railort, la peroxydase de soja, la peroxydase de pois, la perroxydase de harícots de guar, la peroxydase de harícots de garbanzo, la peroxydase de harícots à rames, la peroxydase de riz, la peroxydase de cotion et leurs mélanges.
 - Procédé selon la revendication 1, dans lequel ladite enzyme oxydante est une solution aqueuse à un pH variant dans la gamme de 3 à 11.
- 20 5. Procédé selon la revendication 1, dans lequel lesdits groupes fonctionnels réticulables de manière oxydative sont choisis dans le groupe constitué par les groupes phénoliques, métilypiène actif, annie, allyiques, vinyiques, acryliques, méthacryliques, laconiques, médiques, mercapic, suffure, phosphino, et leurs combinaisons.
- Procédé selon la revendication 1, dans lequel ladite quantité catalytique varie dans la gamme de 25 ppm à 10 000
 ppm.
 - Procédé seion la revendication 1, dans lequel ledit polymère oxydatif est une poudre, un polymère dispersé, un polymère solubilisé, ou un de leurs mélanges.
- 8. Procédé selon la revendication 1, dans lequel lesdits groupes fonctionnels réticulables de manière oxydative sur ledit polymère oxydatif sont produits par mise en contact d'un polymère inactif ayant des groupes fonctionnels domants avec une quantifié activation d'un agent d'activation.
 - 9. Procédé d'application d'un revêtement sur un substrat, comprenant :

la mile en contact d'un composant polymère d'une composition de reviètement avec un composant de réticutation de lactite composition de reviètement pour former un mélange en pot, ledit composant polymère comprenant un polymère oxydatif ayant des groupes fonctionnels réticulables de manière oxydatife, ledit polymère oxydatif étant polyméries à partir d'au moins un monomère éthyléniquement insaturé, et ledit composant de réticulation componant une quantific étativituse d'une enzyme oxydation.

l'application d'une couche dudit mélange en pot sur ledit substrat ; et la réticulation desdits groupes fonctionnels réticulables de manière oxydative sur ledit polymère oxydatif pour

former ledit revêtement sur ledit substrat.

10. Composition de revêtement en deux emballages, comprenant :

un premier récipient contenant un composant polymère, qui comprend un polymère oxydatif ayant des groupes fonctionnels réticulables de manière oxydative, ledit polymère oxydatif étant polymérisé à partir d'au mohs un monomère éthyléniquement insaturé, et

un second récipient contenant un composant catalytique, qui comprend une quantité catalytique d'une enzyme oxydante suffisante pour réticuler lesdits groupes fonctionnels réticulébles de manière oxydatit, et un composant catalytique. lymère oxydatif, ledit composant polymère étant métangé avec ledit composant catalytique.

40