WhyR

$M_{-}Raess$

November 13, 2016

1. Why R - packages to be used

```
library(dplyr)
library(ggplot2)
library(scales)
library(ggiraph)
library(RColorBrewer)
library(RCurl)
library(findviews)
library(yarrr)
```

2. How R structures data - the data frame

Working with built-in data sets

##

##

Min.

am

:0.0000

```
data("mtcars")
head(mtcars) # gives us the first six rows alt. head(mtcars, 10)
##
                      mpg cyl disp hp drat
                                                wt qsec vs am gear carb
## Mazda RX4
                     21.0
                            6
                               160 110 3.90 2.620 16.46
                                                          0
                                                             1
                                                                        4
## Mazda RX4 Wag
                     21.0
                            6 160 110 3.90 2.875 17.02
                                                          Λ
## Datsun 710
                     22.8
                            4 108
                                   93 3.85 2.320 18.61
                                                                        1
## Hornet 4 Drive
                     21.4
                            6 258 110 3.08 3.215 19.44
                                                                  3
                                                                        1
                                                          1
                                                                        2
## Hornet Sportabout 18.7
                            8
                               360 175 3.15 3.440 17.02
                                                          0
                                                                  3
## Valiant
                     18.1
                            6 225 105 2.76 3.460 20.22
                                                                        1
summary(mtcars) # summary stats
##
                                          disp
                         cyl
                                                           hp
         mpg
##
   Min.
           :10.40
                    Min.
                           :4.000
                                    Min.
                                           : 71.1
                                                     Min.
                                                            : 52.0
##
   1st Qu.:15.43
                    1st Qu.:4.000
                                     1st Qu.:120.8
                                                     1st Qu.: 96.5
   Median :19.20
                    Median :6.000
                                    Median :196.3
                                                     Median :123.0
##
   Mean
           :20.09
                    Mean
                           :6.188
                                    Mean
                                            :230.7
                                                     Mean
                                                            :146.7
##
   3rd Qu.:22.80
                    3rd Qu.:8.000
                                     3rd Qu.:326.0
                                                     3rd Qu.:180.0
           :33.90
                           :8.000
                                                             :335.0
##
   Max.
                    Max.
                                    Max.
                                            :472.0
                                                     Max.
##
         drat
                                          qsec
                                                           vs
##
   Min.
           :2.760
                    Min.
                           :1.513
                                    Min.
                                            :14.50
                                                     Min.
                                                            :0.0000
   1st Qu.:3.080
                    1st Qu.:2.581
                                    1st Qu.:16.89
                                                     1st Qu.:0.0000
##
                                                     Median :0.0000
##
  Median :3.695
                    Median :3.325
                                    Median :17.71
  Mean
           :3.597
                    Mean
                          :3.217
                                    Mean
                                          :17.85
                                                     Mean
                                                           :0.4375
##
   3rd Qu.:3.920
                    3rd Qu.:3.610
                                     3rd Qu.:18.90
                                                     3rd Qu.:1.0000
##
  Max.
           :4.930
                    Max.
                           :5.424
                                    Max.
                                            :22.90
                                                     Max.
                                                            :1.0000
```

carb

:1.000

Min.

gear

:3.000

Min.

```
## 1st Qu.:0.0000
                   1st Qu.:3.000
                                   1st Qu.:2.000
## Median :0.0000
                   Median :4.000
                                   Median :2.000
                   Mean
                                          :2.812
## Mean
          :0.4062
                          :3.688
                                   Mean
## 3rd Qu.:1.0000
                    3rd Qu.:4.000
                                   3rd Qu.:4.000
## Max.
          :1.0000
                    Max.
                           :5.000
                                   Max.
                                          :8.000
str(mtcars) # structure of your data set
                   32 obs. of 11 variables:
## 'data.frame':
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
#findviews(mtcars) # gives you a great overview of categorical and continous variables
#View(mtcars) # brings up the data set
```

Now, that we have a general idea of how our data is structured, lets do some exploratory data analysis

This is what we are using the ggplot2 package for

3. Histogram for quantitative variables

Alternatively (or additionally), we can overlay the density curve and the normal distribution

4. Barplot for categorical variables

5. Working with colors - get brandcolors - woohoo - brandcolors.net (hex-code)

```
myColors <- c("#1da1f2", "#fd5c63", "#003a70")
names(myColors) <- levels(mtcars2$gear)
names(myColors) <- c("4", "3", "5") # change the level-colors according to order</pre>
```

Colors with RColorBrewer and yarrr

```
display.brewer.all()
```


Here are all of the pirate palettes

6. Boxplots for quantitative variables

```
ggplot(mtcars2, aes(gear, hp)) +
    geom_boxplot(aes(fill = gear), col = "orange", show.legend = TRUE) +
    scale_fill_manual(name = "Gears", values = myColors3) +
    coord_flip() +
```

Boxplot of HP/Gears

7. It is getting more intense - we are going to plot the meanHP/cylinder

Some data-processing to get mean hp (we create a new dataset with meanHP and cyl from mtcars)

```
meanHp <- mtcars %>%
    group_by(cyl) %>%
    filter(!is.na(hp)) %>%
    summarize(avg_hp = mean(hp, na.rm=TRUE))
```

Actual plot

Average hp/cylinder

Saving the plot as a .png file

```
ggsave(p1, filename = "AvgHP.png")
```

8. Now for the fun part, working with real-life online data (RCurl package) - crime statistics

Getting the data

9. Plot crime counts per year

```
head(crimeData)
##
       State Type.of.Crime
                                                          Crime Year Count
## 1 Alabama Violent Crime Murder and nonnegligent Manslaughter 1960
## 2 Alabama Violent Crime Murder and nonnegligent Manslaughter 1961
                                                                      427
## 3 Alabama Violent Crime Murder and nonnegligent Manslaughter 1962
                                                                      316
## 4 Alabama Violent Crime Murder and nonnegligent Manslaughter 1963
                                                                      340
## 5 Alabama Violent Crime Murder and nonnegligent Manslaughter 1964
                                                                      316
## 6 Alabama Violent Crime Murder and nonnegligent Manslaughter 1965
                                                                      395
str(crimeData)
## 'data.frame': 16422 obs. of 5 variables:
                  : Factor w/ 51 levels "Alabama", "Alaska",...: 1 1 1 1 1 1 1 1 1 1 ...
## $ Type.of.Crime: Factor w/ 2 levels "Property Crime",..: 2 2 2 2 2 2 2 2 2 ...
                  : Factor w/ 7 levels "Aggravated assault",..: 6 6 6 6 6 6 6 6 6 ...
## $ Crime
                  : int 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 ...
## $ Year
                   : int 406 427 316 340 316 395 384 415 421 485 ...
## $ Count
crimeCountYear <- crimeData %>%
        group_by(Year) %>%
        summarize(CountYear = sum(Count))
ggplot(crimeCountYear, aes(Year, CountYear)) +
       geom_line() +
        scale_y_continuous(labels = comma)
```


Warning in brewer.pal(2, "Paired"): minimal value for n is 3, returning requested palette with 3 dif

facet_grid(Type.of.Crime ~.) +

scale_y_continuous(labels = comma)

scale_x_continuous(breaks = c(1960, 1965, 2000)) +

10. We are getting more selective (only years 2002 and 2003)

```
crimeSel <- crimeData %>%
    filter(Year == 2002:2003 & !is.na(Year)) %>%
    group_by(State, Year) %>%
    summarize(counts = sum(Count)) %>%
    arrange(desc(counts))

crimeSel$Year <- as.factor(crimeSel$Year)

ggplot(crimeSel, aes(reorder(State, counts), counts, fill = Year)) +
    geom_bar(stat = "identity", position = "dodge") +
    scale_fill_manual(values = c("steelblue", "goldenrod")) +
    theme(axis.text.x = element_text(angle = 90)) +
    scale_y_continuous(labels = comma)</pre>
```


11. Finally, we are going to plot the top ten of year 2000

3

4 ## 5

6 ## 7

8

9

10

Florida 905957 New York 537121

Illinois 506238 Ohio 469104

Michigan 389366

Georgia 385830

392826

350446

North Carolina

Pennsylvania

```
crime2000 <- crimeData %>%
        filter(Year == 2002) %>%
        group_by(State) %>%
        summarize(counts = sum(Count)) %>%
        arrange(desc(counts)) %>%
        filter(counts > 350445)
head(crime2000,10)
## # A tibble: 10 × 2
##
               State counts
##
              <fctr>
                       <int>
          California 1384872
## 1
## 2
               Texas 1130292
```

Top 10 states by total crimes

Saving the plot

```
ggsave(crime, filename = "crimePlot.png")
```

12. Gimmick - plotting with emojis

```
devtools::install_github("dill/emoGG")
library(ggplot2)
library(emoGG)
```

```
## Find an emoji you want to use
emoji_search("car")
```

```
##
                       emoji code
                                           keyword
## 1753
                         bus 1f68c
                                               car
## 1762
                     minibus 1f690
                                               car
## 1797
                         car 1f697
                                               {\tt red}
## 1798
                         car 1f697 transportation
## 1799
                         car 1f697
                                           vehicle
## 1800 oncoming_automobile 1f698
                                               car
## 1812
                     tractor 1f69c
                                               car
## 2733
                           a 1f170
                                        red-square
## 2734
                           a 1f170
                                          alphabet
## 2735
                           a 1f170
                                            letter
```


emoji_search('smiley')

keyword	code	emoji	#	##
smile	1f600	grinning	# :	##
smile	1f601	grin	# '	##
face	1f603	smiley	#	##
happy	1f603	S smiley	#	##
joy	1f603	' smiley	#	##
haha	1f603	3 smiley	#	##

```
## 19
                                smile 1f604
                                                    face
## 20
                                smile 1f604
                                                   happy
## 21
                                smile 1f604
                                                     joy
## 22
                                smile 1f604
                                                   funny
## 23
                                smile 1f604
                                                    haha
## 24
                                smile 1f604
                                                   laugh
## 25
                                smile 1f604
                                                    like
## 51
                                blush 1f60a
                                                   smile
## 65
                                  yum 1f60b
                                                   smile
                           sunglasses 1f60e
                                                   smile
## 83
## 87
                                smirk 1f60f
                                                   smile
## 149
                     stuck_out_tongue 1f61b
                                                   smile
## 155
        stuck_out_tongue_winking_eye 1f61c
                                                   smile
## 160
        stuck_out_tongue_closed_eyes 1f61d
                                                   smile
## 3128
                                       24c2
                                                alphabet
## 3129
                                       24c2 blue-circle
## 3130
                                       24c2
                                                  letter
```


