Союз Советских Социалистическия Республик

# Описани Е | 100 959878 **ИЗОБРЕТЕНИЯ**



Росударственный комитет

4333 пинатарови превед оп

a superink

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к выт. свид-му

(22) Запилено 05,03,81 (21) 3256044/25-27

с присоединением заявки 👫 🗕

(23) Приоритет

Опубликовано 23.09.82. Бюллетень № 35

Дата опубликования описания 23.09.82

(51) M. Kn3 B 21 D 41/02

(53) YAK 621,774. .72 (088.8)

(72) Astopu изобретения Л. С. Чярков, А. А. Чертищев, М. И. Плышевский, В. А. Рассадинков я Р. Н. Купелия

(71) Заявитель

(54) ИНСТРУМЕНТ ДЛЯ ХОЛОДНОЙ РАЗДАЧИ ТРУБ

Изобретение относится к металлообработке, предназначено для обработки отверстий в трубах и может быть использовано при окончатальной обработке принидрических отверстий труб для гадро-пневмо- и адентичных деталей методом деформационного протягивания

(дорнования). Известен инструмент для раздачи труб, содержаний ступеячатую оправку с напрессованизми на нее деформирующими кольшами, на оси оправки выполнена пилимприческая расточка, в стенках оправки - разнальные отверства, на торцах копец - разнальные пазы, сообщинициеся с отверстиями оправки. Инструмент снабжен системой подачи рабочей жилкости в образованные отверстиями и пазамок жаналы [1].

Разделятельной смазкой между поверхностью трубы и рабочими кольцами при работе этого инструмента является паровой слой, образующийся в результате нагрева рабочей жилкости в полости инструмента до температуры парообразования, он работает только

по предварительно нагретому до температуры горячего деформирования металла трубы. Недостатком, этого инструмента является

то, что для подготовки к работе он требует зарядки рабочей жидкостью полости и предварительной раздачи заходного конца трубы. На выходе из трубы после окончания процесса раздачи инструмент нагревается до температуры выше парообразования рабочей жиджости, что вызывает определенные неудобства при эксплуатация. Точность обработки отверстий таким инструментом невыcover.

Цель наобретения — повышение качества обработкя.

Поставленная цель достигается тем, что известный инструмент, содержащий полую оправку с насаженными на нее деформируюшими элементами, в стенках которой выполнены радиальные отверстия, а на торцах деформирующих элементов, обращенных один к другому, - раднальные пазы, а также ноточник рабочей жидкости для подачи се в образованные отверстиями и пазами каналы,

BEST AVAILABLE COPY

снабжен смонтированным в расточке оправки с возможностью осеаюто перемещения полым штоком с поришем, на наружной поверхности которого выполнена копныелая проточка, соединения с попостно штока и с одини из радилальных отверстий оправки, а полосты штока соединена с истоявиком рабоность штока качестве которой использо-

вана смазывающая жидкость.
На чертеже показан общий вид предлагае- 10 мого инструмента, разрез.

. Инструмент соперакт корпус-оправку 1, по осн оправки выполенов допипирическое отверстие с размещенным в нем подвяжжим элементом полим штоком 2 с поришем, выполненным зоолно со штоком. На поришем колицевах протокох а, соединения с полостью 2 штоко. В стенках оправки предусмотрены радилальные отверстия а для полозная смазочной жидкости к пазам б на ториах деформирующих элементов 3. Шток, установленный с возмежность в полость оправки отностительно размежном в полости оправки отностительно размежним в стенках, проследовательно распределяет пок смазочной жидкости к зонам обработка.

Рабочне элементы 3 с увеличивающимися к выходу поаметрами посажим на циплицрическую часть оправки, плотное прижатие друг к другу рабочих элементов и удержание за таком остоянно обслечивается табкой 4, навинчивающейся на перешною часть отравки.

Работу виструмента можно проследить на примере обработко отверстии диаметром 70°076м протиглявания заготовки из тру<sup>55</sup> бы с диаметром отверстия 67 мм в толициной стемся 10,5 мм, матераля — цирконнойниобиевый епиза марки 3-125.

Обработка произволится на вертикальном прессе моделя П-6352 с усилизем 100 гс. Инструмент закрепляется в верхией траверсе пресса, отверстве в трубе раздамт на рамер 70 °270м с набором рабочих заементов д наруживым дыметрами соответствено: 6750; 68.75, 03.57, 03.57, 03.57, 00.50 °20.06 °70.08 мм. При обработке наруживый дваметр трубы увеличивается до 90 мм., упрутых усадка оставляет 0,47 – 0,52 мм. величим упроченно-

то слоя — 1000 — 1100 мкм. При движе пли инструмента вииз при полосая с в верхнему горцу заголовки 5 в иггок поступает смазочвая экидессть (масло индустриальное 20—30), которая направлется через радиальным зами на горциа первого всформирующего элемента. При последующем движелам инструмента вина, шток перемещества вверх и последовательно расперателент смазочную экидкость к деформирующим элементам. При обратиом коде виструмента шток возращается в нюжиее исколию положение, детала жало-

ется. Экономический эффект от использования предлагаемого инструмента при изготовлении комплекта деталей из аппарат составляет бо тыс. руб. за счет уменьшения припусков при окончательной обработке и замены операции рысточки оперстии на деформационное протягивание без силиня металла.

кается из опорного стакана и цикл повторя-

# Формула нзобретския

Инструмент для холодной раздачи труб, содержащий полую оправку с насаженными на нее деформирующими элементами, в стенках которой выполнены радиальные отверстия, в на ториях деформирующих элементов, обращенных один к другому - радиальные пазы, в также источник рабочей жидкости для подачи ее в образованные отверстиями и пазами ханалы, отличающийся тем. что, с целью повышения качества обработки. он снабжен смонтированизм в полости оправки с возможностью осевого перемещения полымі штоком с поршнем, на наружной поверхности которого выполнена кольцевая проточка, соединенная с нолостью штока и с одини из раднальных отверстий, а полость штока соединена с источником рабочей жидкости, в качестве которой использована смазывающия жидкость.

Источники информации, привитые во вимакие при экспертизе

1. Авторское свидетельство СССР № 614862, кл. В 21 D 41/02, 13.12.76 (прототип).

BEST AVAILABLE COPY



 Редактор В. Лазаренко
 Техрел М. Рейвес
 Корректор. Г. Решелюк

 Заказ 7095/12
 Тараж 845
 Подписное

 ВНИИЛИ Государственного комитета СССР по делам клобретеной и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5
 4/5

 Филимал ППП "Патент", г. Ужгород, ун. Проектика, 4
 4

EEST AVAILABLE COPY Copied from 10468/19 on 05/26/2006

| Union of Soviet<br>Socialist<br>Republics          | SPECIFICATION<br>OF INVENTOR'S<br>CERTIFICATE                                             | (11) 959878                                |
|----------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|
| [State Seal]                                       | (61) Inventor's certificate of addition —                                                 |                                            |
|                                                    | (22) Applied March 5, 1981<br>(21) 3256044/25-27 with the attachment<br>of application No | (51) Int. Cl. <sup>3</sup><br>B 21 D 41/02 |
| USSR State Committee on Inventions and Discoveries | (23) Priority -  Published September 23, 1982, Bulletin No. 35                            |                                            |
|                                                    | Publication date of specification<br>September 23, 1982                                   | (53) UDC 621.774.72<br>(088.8)             |
|                                                    | Chirkov, A. A. Chertishchev, M. I. Plyshev<br>Kudelin                                     | skiy, V. A. Rassadnikov, and               |
| (71) Applicant                                     | _                                                                                         |                                            |

## (54) TOOL FOR COLD EXPANSION OF PIPES

1

The invention relates to metal machining, is intended for machining holes in pipes, and may be used for final machining of cylindrical holes in pipes for hydraulic/pneumatic and identical parts by deformation broaching (mandreling).

A tool is known for expanding pipes that contains a stepped mandrel with deforming rings press-fit thereon, a cylindrical bore is made on the axis of the mandrel, radial holes are made in the walls of the mandrel, radial grooves that communicate with the holes of the mandrel are made on the endfaces of the rings. The tool is provided with a system for delivery of working fluid to the channels formed by the holes and grooves [1].

The separation lubricant between the pipe surface and the working rings during operation of this tool is a vapor layer formed as a result of heating the working fluid in the cavity of the tool up to the vaporization temperature, it operates only

on a pipe that has been preheated up to the hot working temperature of the metal.

A disadvantage of this tool is that in order to prepare for operation, it requires charging the cavity with working fluid and preliminary expansion of the starting end of the pipe. At the pipe outlet, after the expansion process is completed, the tool is heated up to a temperature above the vaporization temperature of the working fluid, which causes certain inconveniences in its use. The precision of machining holes by such a tool is not very high.

The aim of the invention is to improve the quality of machining.

The proposed aim is achieved by the fact that the known tool, containing a hollow mandrel with deforming members fit thereon, where radial holes are made in the walls of the mandrel and radial grooves are made on opposing endfaces of the deforming members, and also containing a source of working fluid for delivery to the channels formed by the holes and grooves,

is provided with a hollow rod with a piston, mounted in the bore of the mandrel so that it can move axially, where on the outer surface of the piston an annular groove is made that communicates with the cavity of the rod and with one of the radial holes in the mandrel, and the cavity of the rod communicates with the source of working fluid, as which a lubricating fluid is used.

The drawing shows a general cutaway view of the proposed tool.

The tool contains mandrel body 1, a cylindrical hole is made along the axis of the mandrel with a moveable member disposed therein: hollow nod 2 with piston made together with the rod. An annular groove c, communicating with cavity d of the rod, is made on the piston. In the walls of the mandrel, radial holes a are provided for delivery of lubricating fluid to grooves b on the endfaces of deforming members 3. The rod, mounted so that it can execute reciprocal motion in the cavity of the mandrel relative to the radial holes in the walls, successively distributes a flow of lubricating fluid to the machining zones.

Working members 3, with diameters increasing toward the outlet, are fit on the cylindrical portion of the mandrel, tight compression of the working members against each other is provided by nut 4 that is screwed onto the front portion of the mandrel.

The operation of the tool may be followed using the example of machining holes of diameter 70+0.120 mm when broaching blanks from pipe with hole diameter 67 mm and wall thickness 10.5 mm; the material is zirconium—niobium alloy, grade E-125.

Machining is performed on a model P-6330 vertical press with a force of 100 tonforce. The tool is clamped in the upper crossbar of the press, the hole in the pipe is expanded to the size 70+0.120 mm with a set of working members with outer diameters respectively: 67.50 mm, 68.75 mm, 70.35 mm, 70.55 mm, 70.06 to 70.08 mm. During machining, the outer diameter of the pipe is increased to 90 mm, the elastic shrinkage is 0.47-0.52 mm, the size of the hardrened

#### 959878

layer is  $1000\text{-}1100~\mu m$ . When the tool moves downward, as it approaches the upper end of blank  $S_1$  lubricating oil (industrial oil 20-30) enters the rod, and the oil is guided through the radial holes on the endfaces of the first deforming member. During subsequent movement of the tool downward, the rod moves upward and successively distributes the lubricating fluid to the deforming members. During reverse travel of the tool, the piston returns to the lower initial position, the part is removed from the support sleeve, and the cycle is repeated.

The savings from use of the proposed tool in manufacture of a set of parts on the apparatus is 50 thousand rubles, as a result of reducing the allowance for final machining and replacing the hole drilling operation by deformation broaching, without removal of metal.

#### Claim

A tool for cold expansion of pipes, containing a hollow mandrel with deforming members fit thereon, where radial holes are made in the walls of the mandrel and radial grooves are made on opposing endfaces of the deforming members, and also containing a source of working fluid for delivery to the channels formed by the holes and grooves, distinguished by the fact that, with the aim of improving the quality of machining, it is provided with a hollow rod with a piston, mounted in the cavity of the mandrel so that it can move axially, where on the outer surface of the piston an annular groove is made that communicates with the cavity of the rod and with one of the radial holes in the mandrel, and the cavity of the rod communicates with the source of working fluid, as which a lubricating fluid is used.

Information sources considered in the examination

USSR Inventor's Certificate No. 614862, cl. B 21 D 41/02, 13.12.76 [December 13, 1976] (prototype).

#### 959878

[see original Russian for drawing]

а

h

d

C

# Compiler I. Kapitonov

Editor V. Lazarenko Tech. Editor M. Reyves Proofreader G. Reshetnik

Order 7095/12

Run 845

Subscription edition

All-Union Scientific Research Institute of Patent Information and Technical and Economic Research of the USSR State Committee on Inventions and Discoveries [VNIIPI]

4/5 Raushkaya nab., Zh-35, Moscow 113035

Affiliate of "Patent" Printing Production Plant, Uzhgorod, 4 ul. Proektnaya



### AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

ATLANTA BOSTON PRI ISSELS CHICAGO DALLAS DETROIT FRANKFURT HOUSTON LONDON LOS ANGELES MINNEAPOLIS NEW YORK PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATTLE WASHINGTON, DC Patent 1786241 A1 Patent 989038 Abstract 976019 Patent 959878 Abstract 909114 Patent 907220 Patent 894169 Patent 1041671 A Patent 1804543 A3 Patent 1686123 A1 Patent 1677225 A1 Patent 1698413 A1 Patent 1432190 A1 Patent 1430498 A1 Patent 1250637 A1 Patent 1051222 A Patent 1086118 A Patent 1749267 A1 Patent 1730429 A1 Patent 1686125 A1 Patent 1677248 A1 Patent 1663180 A1 Patent 1663179 A2 Patent 1601330 A1 Patent SU 1295799 A1 Patent 1002514

# PAGE 2 AFFIDAVIT CONTINUED

(Russian to English Patent/Abstract Translations)

Kim Stewart

TransPerfect Translations, Inc. 3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 9th day of October 2001.

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX