

Aufgaben Tag 1

1 Komplexe Zahlen I

Berechnen Sie Real- und Imaginärteil von

- a) $(1+i)^2$
- **b)** $(1+\frac{1}{i})^{-1}$
- c) $\frac{5}{3+i}$
- d) den Lösungen der Gleichung $z^2=2i$

2 Komplexe Zahlen II

Die folgenden komplexen Zahlen schreibe man in der Normalform $x+\mathrm{i}y,\ x,y\in\mathbb{R}$ und berechne ihren Betrag.

- a) $\left(\frac{1+i}{1-i}\right)^4$
- **b)** $\frac{2+i}{2-i}$
- c) $(1+i)^n + (1-i)^n, N \in \mathbb{N}$
- **d)** $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{-1}$

3 Komplexe Zahlen III

Bestimmen Sie für n=3,4(,5) alle $z\in\mathbb{C}$ mit $z^n=1$. Geben Sie die Lösungen jeweils in der Standardform $x+\mathrm{i}y,\ x,y\in\mathbb{R}$ an und zeigen Sie, dass die Lösungen die Eckpunkte eines dem Einheitskreis einbeschriebenen regelmäßigen n-Ecks sind (n=3,4(,5)).

4 vollständige Induktion I

Zeigen Sie induktiv, dass dür alle $n \in \mathbb{N}$ und $w, z \in \mathbb{K}$ die binomische Formel gilt.

$$(w+z)^n = \sum_{k=0}^n \binom{n}{k} w^{n-k} z^k$$

Hinweis: Verwenden sie $\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}$ und die Konvention $z^0=1.$

5 vollständige Induktion II

Für $x \in \mathbb{R}$ definieren wir den Betrag als $|x| = \max\{-x, x\}$.

- a) Zeigen Sie Dreiecksungleichung: $\forall x,y \in \mathbb{R} : |x+y| \le |x| + |y|$
- b) Zeigen Sie, dass für alle $n \in \mathbb{N}$ und $x_1, \ldots, x_n \in \mathbb{R}$ gilt:

$$\left|\sum_{k=1}^{n} x_k\right| \le \sum_{k=1}^{n} |x_k|$$

6 vollständige Induktion III

Beweisen Sie:

a)
$$2^n < n!, \ \forall n \in \mathbb{N}, n \ge 4$$

b)
$$\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = (a+b)^n$$

Hinweis: Verwenden sie
$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$
.

7 Die geometrische Folge

Für $q \in \mathbb{R}$ definieren wir $Q = \{q^n \mid n \in \mathbb{N}\}.$

Hinweis: Bernoulli-Ungleichung und die archimedische Anordnung von \mathbb{R} .

- a) Zeigen Sie, für q > 1 ist Q unbeschränkt.
- b) Zeigen Sie, für 0 < q < 1 ist $\inf Q = 0$
- 8 Folgen
- a) Stellen Sie eine Vermutung über den Grenzwert der Folge $(a_n)=\left(\frac{3n+1}{5n-2}\right)$ auf und versuchen Sie dann, Ihre Vermutung durch Rückgriff auf die ϵ -N-Definition zu beweisen.
- b) Ist die Folge (f_n) der Fibonacci-Zahlen konvergent?

$$f_1 = f_2 = 1$$

$$f_n + 1 = f_n + f_{n-1}, \ n > 2$$

c) Untersuchen Sie die komplexe Zahlenfolge (c_n) mit $c_n = \frac{1}{(1+i)^n}$ auf Konvergenz.