Aprendizaje no supervisado

Felipe Oliver (58439) Juan Bensadon (57193) Red de Kohonen

\$

Países asociados en red 2x2

Distancias promedio en red 2x2

Países asociados en red 4x4

Distancias promedio en red 4x4

Países asociados en red 8x8

-								
	(0, 6)Austria œlāħd Luxembourg Vetherlands	(1, 7)	(2, 7)Denmark	(3, 7)Belgium	(4, 7)	(5, 7)	(6, 7)	(7, 7)Bulgaria Estonia Hungary Latvia Ukraine
- 1	Norway Switzerland	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)	(7, 6)
	(0, 5)	(1, 5)	(2, 5)	(3, 5)Czech Repub	lic (4, 5)	(5, 5)	(6, 5)	(7, 5)Lithuania
4 -	(0, 4)Germany	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)Slovakia	(6, 4)	(7, 4)
	(0, 3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)Slovenia	(5, 3)	(6, 3)	(7, 3)
2 -	(0, 2)Ireland	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)	(7, 2)
	(0, 0)Finland taly Spain	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)	(6, 1)	(7, 1) (7, 0)Croatia Greece
0	Sweden United Kingdom	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	(6, 0) 6	Poland Portugal , 8

Distancias promedio en red 4x4

Regla de Oja

4

Primer componente de Europe.csv

```
Normalized Values:

[[-0.09597183  0.12924503  0.02162841  0.10786695 -0.19358342 -0.03340997 -0.23538255]
[-0.15798674  0.07881719  0.02162841  0.09217721 -0.07350509 -0.02190818 -0.11196099]
[-0.06457318 -0.23967441  0.11797317 -0.2584281  0.23869857 -0.35162624 -0.01322374]
[-0.12768322 -0.18393838 -0.14353403 -0.12868603  0.18826567 -0.07941714  0.32001448]
[-0.10178933 -0.06317698 -0.19858817 -0.04480627 -0.10952859 -0.09475287 -0.05847831]
[-0.1433779  0.06820081 -0.07471634  0.03967694 -0.07350509  0.04710258 -0.15721556]
```

Principal component 1 0 -0.127435 1 0.500277 2 -0.409036 3 0.483402 4 -0.185981 5 0.475159 6 -0.270408

Mean:

-1.5916972955085152e-16 Standard deviation:

0.1889822365046136

Análisis de la primer componente

Producto
escalar entre
los valores
normalizados
y los pesos
obtenidos en
Oja's rule

Comparación Oja's rule y sklearn.PCA

```
pca = PCA(n_components=1)
principalComponents = pca.fit_transform(values_normalized)
principal_Df = pd.DataFrame(data = pca.components_.T, columns = ['Principal component 1'])
```


Modelo de Hopfield

Proceso de entrenamiento

```
Letra por agregar al entrenamiento:
Letra por agregar al entrenamiento:
                                       Matriz de entrenamiento luego de haber metido la letra
Matriz de entrenamiento luego de haber metido la letra
                                       [[0. 0.08 0.08 0.08 0.08 -0.08 -0.08 0.
                                                                 -0.08 -0.08 -0.08
    0. 0. -0.08 0. -0.08 0. 0. -0.08 0.
                                                                    0.08 - 0.08
-0.081
-0.041
                                       [ 0.08 0.
                                              0.08 0.08 0.08 -0.08 -0.08 0.
                                                                 -0.08 -0.08 -0.08
       0.04 0.04 0.04 -0.04 -0.04 -0.04 0.04 -0.04 -0.04 -0.04
                                        0. 0. -0.08 0. -0.08 0. 0. -0.08 0.
                                                                    0.08 - 0.08
-0.081
-0.041
                                       0.
                                                                 -0.08 -0.08 -0.08
0. -0.08 0. -0.08 0.
                                                                    0.08 -0.08
-0.081
-0.04
                                       [ 0.04 0.04 0.04 0.
            0.04 -0.04 -0.04 -0.04 0.04 -0.04 -0.04 -0.04
                                        0. 0. -0.08 0. -0.08 0.
                                                         0. -0.08 0.
-0.081
-0.041
                                       -0.08 -0.08 -0.08
0. 0. -0.08 0. -0.08 0.
                                                         0. -0.08 0.
                                                                    0.08 - 0.08
-0.081
-0.041
                                       [-0.08 -0.08 -0.08 -0.08 -0.08 0.
                                                         0.08
                                                            0.
                                                                 0.08 0.08 0.08
[-0.04 -0.04 -0.04 -0.04 -0.04 0.
                  0.04 0.04 -0.04 0.04 0.04 0.04
                                        0. 0. 0.08 0. 0.08 0.
                                                            0.08 0.
                                                                 0. -0.08 0.08
 0.08]
 0.041
```

Proceso de entrenamiento

Letra por agregar al entrenamiento: Matriz de entrenamiento luego de haber metido la letra 0.04 0.12 0.12 0.12 -0.04 -0.12 0.04 0.04 -0.04 -0.04 -0.12 0.04 0.04 -0.04 0.04 -0.12 0.04 0.04 -0.04 0.04 -0.04 0.04 -0.12 -0.0410.04 0.04 0.04 -0.12 -0.04 -0.04 -0.04 -0.12 -0.12 -0.04 [0.04 0. -0.04 -0.04 -0.12 -0.04 -0.04 -0.04 -0.04 -0.12 -0.04 0.04 0.12 -0.04 -0.1210.12 0.12 -0.04 -0.12 0.04 0.04 -0.04 -0.04 -0.12 0.04 0.04 -0.04 0.04 -0.12 0.04 0.04 -0.04 0.04 -0.04 0.04 -0.12 -0.041[0.12 0.04 0.12 0. 0.12 -0.04 -0.12 0.04 0.04 -0.04 -0.04 -0.12 0.04 0.04 -0.04 0.04 -0.12 0.04 0.04 -0.04 0.04 -0.04 0.04 -0.12 -0.041[0.12 0.04 0.12 0.12 0. -0.04 -0.12 0.04 0.04 -0.04 -0.04 -0.12 0.04 0.04 -0.04 0.04 -0.12 0.04 0.04 -0.04 0.04 -0.04 0.04 -0.12 -0.041[-0.04 -0.12 -0.04 -0.04 -0.04 0. 0.04 0.04 0.04 0.12 0.12 0.04 0.04 0.04 0.12 0.04 0.04 0.04 0.04 0.12 0.04 -0.04 -0.12 0.04 0.121

```
Letra por agregar al entrenamiento:
[-1 1 1 1-1 1-1-1-1 1 1-1-1-1 1 1-1-1-1 1 1 1 1
-11
Matriz de entrenamiento luego de haber metido la letra
          0.08 0.08 0.16 -0.08 -0.08 0.08 0.08 -0.08 -0.08 -0.08
  0. 1
         0.08 0.08 0. -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08
 -0.161
 [ 0.08 0.08 0.
              0.16 0.08 0.
                         -0.16 0.
                                          0. -0.16
              0.08 -0.16 0.
                             0.
                                          0.08 - 0.08
         0.
 -0.08]
                  0.08 0.
                         -0.16 0.
 [ 0.08  0.08  0.16  0.
              0.08 -0.16 0.
 -0.081
          0.08 0.08 0. -0.08 -0.08 0.08 0.08 -0.08 -0.08 -0.08
 [ 0.16 0.
  0. ]
              0. -0.08 0.
 [-0.08 -0.08 0.
          0.16 0.08 0.
                             0.16 0.
  0.081
```

Probando letras creadas aleatoriamente

- Probabilidad de alteración: 10%
- Nuevas letras generadas: 500

Resultados:

Correct stabilizations: 94.6%

Patron creado aleatoriamente:	Patron creado aleatoriamente:	Patron creado aleatoriamente:	Patron creado aleatoriamente:
1 1 1 1 1 1 1 1 1 1	11111 1 1 1 1 1 1111	1111 1 1 11 1 1 1 1	1 1 1 1 1
Patron despues de evolucionar:	Patron despues de evolucionar:	Patron despues de evolucionar:	Patron despues de evolucionar:
111 1 1 1 1 1 1 1 1	11111 1 1 1 1 1 1	111 1 1 1 1 1 1 1 1 111	1 1 1 1 1
Patron esperado:	Patron esperado:	Patron esperado:	Patron esperado:
111 1 1 1 1 1 1 1 1	11111 1 1 1 1 1 1	111 1 1 1 1 1 1 1 1 111	1 1 1 1 1 111

Probando letras muy ruidosas

- Probabilidad de alteración: 50%
- Nuevas letras generadas: 500

Resultados

Correct stabilizations: 5.0%

Patron creado aleatoriamente:	Patron creado aleatoriamente:	Patron creado aleatoriamente:	Patron creado aleatoriamente:
11 11 1 111 111 1 1 1	1 111 1 1 1 1 1 1 11 111 1	111 1 11111 11 11 11 11 11	11 11 1 1 111 1
Patron despues de evolucionar:	Patron despues de evolucionar:	Patron despues de evolucionar:	Patron despues de evolucionar:
11111 11111 1111 1 11	11111 11 11 11 11	1 111 1 111 1 111 1 111 1 111	11111 1 1 1 1
Patron esperado:	Patron esperado:	Patron esperado:	Patron esperado:
1 1 1 1 1 111	11111 1 1 1 1 1	11111 1 1 1 1	1 1 1 1 1 111

Relación entre la probabilidad de mutación y la cantidad de estabilizaciones correctas

Gracias!

