

18

VI Semester B.C.A. Examination, September/October 2021 (CBCS Scheme) (Fresh + Repeaters) (2016-17 and Onwards) COMPUTER SCIENCE

BCA 601: Theory of Computation

Time: 3 Hours

Instruction: Answer all Sections.

Bangalore-560012

Max. Marks: 100

SECTION - A

Answer any ten questions. Each question carries two marks:

 $(10 \times 2 = 20)$

- 1. Define a symbol and an alphabet with example.
- 2. Write the five tuple of a Finite Automata.
- 3. Define E-closure.
- 4. Write the regular expression for the set of strings of 0's and 1's starting with 01.
- 5. Define regular expression.
- 6. Find the language accepted by the following grammar G = (V, T, P, S) where $V = \{S\}$, $T = \{a\}$, $S = \{S\}$ and $P = \{S \rightarrow aS / \in \}$.
- 7. Define Parse Tree.
- 8. Define GNF.
- 9. What is Left Recursion?
- 10. Define Nullable variable.
- 11. List out any two closure properties of recursive language.
- 12. Define post correspondence problem.

SECTION - B

Answer any five questions. Each question carries five marks :

 $(5 \times 5 = 25)$

- 13. Differentiate between DFA and NFA.
- 14. Design a DFA to accept strings which ends with 110 where $\Sigma = \{0, 1\}$ and check whether the string 0110 is accepted by the DFA.
- 15. Show that $L = \{\omega \omega^R / \omega \in (a + b)^*\}$ is not regular.
- 16. Construct an \in -NFA for the following regular expression $(0 + 1)^*$ 1 (0 + 1).
- 17. Check whether the following grammar is ambiguous.

 $S \rightarrow iCtS/iCtSeS/a$

 $C \rightarrow b$.

18. Convert the following grammar into CNF

 $S \rightarrow a A D$

 $A \rightarrow a B/b A B$

 $B \rightarrow b$

 $D \rightarrow d$.

19. Obtain a grammar for the following DFA.

20. Write a note on different types of turing machines.

SECTION - C

Answer any three questions. Each question carries fifteen marks.:

 $(3 \times 15 = 45)$

8

21. Convert the following NFA to its equivalent DFA.

0	1
{q₀, q₁}	{q _o }
{q ₂ }	$\{q_2\}$
{q ₃ }	ф
{q ₃ }	$\{q_3\}$
	0 {q ₀ , q ₁ } {q ₂ } {q ₃ } {q ₃ }

22. Minimize the following DFA

	а	b
\rightarrow A	В	E
В	С	F
* C	D	,H
D	Ε	Ή
Е	F	C
* F	G	B,,
G	Н	В
Н	1	C
*	Α	įΕ

- 23. Construct a PDA to accept the language $L = \{a^n b^n \mid n \ge 1\}$ and check whether the strings aaabbb and aaba are accepted by the PDA.
- 24. a) Eliminate useless symbols from the following grammar

$$S \rightarrow a A/a/Bb/cC$$

$$A \rightarrow a B$$

$$B \rightarrow a/Aa$$

$$C \rightarrow c C D$$

$$D \rightarrow d d d$$
.

b) Eliminate unit productions from the following grammar.

7

 $S \rightarrow Aa/B/Ca$

 $B \rightarrow a B / b$

 $C \rightarrow D b / D$

 $D \rightarrow E/d$

 $E \rightarrow a b$.

25. Design a Turing Machine to accept the language $L = \{0^n \ 1^n / n \ge \}$.

SECTION - D

Answer any one question:

 $(1 \times 10 = 10)$

- 26. State and prove pumping lemma for regular expressions.
- 27. Explain with examples different types of grammar.