SRN									
-----	--	--	--	--	--	--	--	--	--

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE18CS322

DECEMBER 2020: END SEMESTER ASSESSMENT (ESA) B TECH V SEMESTER UE18CS322 - Big Data

Time	: 3 Hrs Answer All Questions in the order they are asked Max Marks: 100	0								
1 a)	Suggest two reasons why the amount (Volume) of data in Big Data is exponentially increasing and is larger in comparison to the traditional data with examples.									
b)	You have setup a new cluster of Hadoop v2 and are in process of inserting the first file into HDFS and the size of the file is 171MB. Outline the insertion process in terms of what changes will occur on the namenode files and how many datanodes are used for the storage of this file. Assume 3 replicas for HDFS.									
c)	Consider that you are given a file containing the annotated form of the Mahabharata which runs into 4GB as a text file. The Mahabharata is broken into 18 chapters of parvas and each parva had many shlokas. Different shlokas were given to different scholars for translation to English and each shloka and its translation were entered into a web page that accepted data in the following format and stored it on a text file Parva Number, Shloka Number, Translation And hence were in random order in the file "Mahabharata.txt" which was stored on HDFS. Design a MapReduce program to sort all the shlokas and their translations in the right order both based on the Parva and the shloka within it. You need not write entire map-reduce code, but need to identify the intermediate keys of the mapper and corresponding values. The keys at the reducer and the corresponding output values. Do you need anything else to make this work? How many mappers do you expect to start if you are using Hadoop v2?	5								
d)	A student taking notes on YARN drew the diagram but forgot to mark the various components. Identify where application master, node manager and resource manager would run? If we are to run 2 map reduce jobs, each requiring 3 mappers and 1 reducers, how many tasks, node managers, resource managers and application masters would run if we assume that there are only 3 worker nodes and 1 master in the cluster. Master Worker A Worker B Worker C	5								

	_							SRN			\perp				丄
2	a)	Consider the following graph of web pages connected to each other											1		
					3	2)								
		the nod destinat page rai keys to	es in this ion node nk compu mappers	transition of an edutation of and value	n matrix a ge is ever one iteratues and ir	are distrib n it is on ion assun nput/outpo	atrix and a uted in an node 0 ar ning all in ut keys of	HDFS in the state of the red if it is	file a s odd e rani ucer	cross l it is ks are assun	2 noo on no 1. Sh ning a	des sunde 1. now in sing	ch tha Perfo nterme	t if a rm a diate	
	b)	runssco pseudoc	red> you	u need to graph sho	determi	ne the to sequence	ving sche tal #runs of map-re	scored	by a	ll the	batsı	nen.	Write	MR	5
	c)	India" d 150 and database	and "Har d a right e like HB	dik Pand arm me ase. Desi	ya is hard dium fast gn this in	hitting m bowler" terms of	whit Sharm widdle order and you column for the datab	er batsme need to amilies	an w	<i>ith a s</i> re this	<i>trike</i> data	rate i in a	<i>n exce.</i> colur	ss of nnar	5
	a)	What is	Type infe	rencing i	n Scala? (Give an e	kample to	illustrate	е						5
	b)	distribut Spark re val li val l val pa	ed across cover? nes = s = lines irs = l	3 workers: c.texti filter .map(x.	rs, and if	worker 3	es the follodies after entary. (x))	executin					now do	oes	5
	c)						what wou		#pai	rtition	s (ii)	prefer	red		5
	d)	Why doe	es the con	nmunicat	on cost m	odel of c	omplexity a map-red	only co				and 1	not out	put	5
4 3	a)	What does the following code do? Clearly indicate what the + and the - operators are used for? playerScores.reduceByKeyAndWindow(_+_,, Minutes(5),)											5		
	b)	What are	partition	s in Kafk	a? How is	fault tole	erance of p	partitions	s ach	ieved'	?				5
(c)	Identify i Hash fun	f the nunction 1 –	_	recognize		a bloom fi en numbe					ucket	s.		5
		1	0	0	1	0	1	1	1	1	0	_ [0	\neg	
		0	1	2	3	4	5	6	7		8		9		
0		is $1 - e^{-t}$	nx. What is	tail lengt	n? Is this s		ability that ue under al							h r	5

		SRN	
5	a)	How are the number of centroids in a MR version of the k-means algorithm related to the number of reducers? The k-means algorithm terminates when the centroids do not change across iterations. However, the previous centroids are in the reducer of the previous iteration while the current centroids are computed on the reducer of the current iteration. The reducers of the previous iteration and current iteration may be running on different machines. How can this comparison be performed? If one of the mappers that is used for computing the centroids crashes, will we have to recompute all the centroids from the beginning?	10
	b)	Consider a scenario where we are receiving retail sales data of purchase made on a site like Amazon. A machine learning algorithm has to be run on this data by copying it to the big data compute engines, refined and then used on their production servers during the weekend. Based on the tools learnt in the course, design the entire workflow pipeline and show what tools you will use for the same?	6
	c)	Give two examples of Big Data solutions for Deep Learning?	4