

Fig. 1

Fig. 2

Fig. 3

Example database

```
Post office schema = (ID, position (coordinate), type)  
School schema = (ID, position (coordinate), type)  
Police station schema = (ID, position (coordinate), type)  
Train station schema = (ID, position (coordinate), passenger count, transfer station or not)  
Convenience store schema = (ID, position (coordinate), sales, store name)  
Customer schema = (ID, position (coordinate), age, sex, annual income, occupation)  
ATM schema = (ID, position (coordinate), average withdrawal, average operation times)  
Crime schema = (ID, position (coordinate), type)
```


Fig. 4

JP9 - 2000 - 0043
5/15

Define starting point group for distance
and origin point group for orientation

- Post offices (ALL types)
- Schools (ALL types)
- Police stations (ALL)
- Train stations (ALL X passengers or more, less than X passengers)
- Convenience stores (ALL, sales X or higher, less than sales X)
- ATM (ALL)

Fig. 5

JP9 - 2000 - 0043
6/15

Fig. 6

Define objective function

Fig. 7

Intermediate Voronoi diagram including m points

Input $(m + 1)$ -th starting point P_{m+1}

Draw vertical bisector L of PP_{m+1}

Intermediate Voronoi diagram including $m + 1$ points

Fig. 8

Fig. 9

(a) View of map
(two-dimensional plane)

(b) View of quaternary incremental tree

JP9 - 2000 - 0043
11/15

JP9 - 2000 - 0043
11/15

Fig. 11

Fig. 12

Fig. 13

JP9 - 2000 - 0043
14/15

JP9 - 2000 - 0043
14/15

Fig. 14

Intermediate Voronoi diagram including m pointsThe $(m + 1)$ - th starting point

35

Fig. 15