UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

LABORATORIO DE CIRCUITOS ELÉCTRICOS I INFORME No. 1

LA LEY DE *OHM*

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Marco Antonio Vallejo Camacho.

Grupo: 3E.

Fecha de entrega: 09 de Abril del 2024.

1. Cálculos previos

```
Pre-Informe
1.2) Exprese los siguientes números en notación científica:
       659.4 = 6.594×10° 0.00045 = 4.5×10°
       17.3 = 1.73 × 10 0.0008 = 8 × 10 4
       100.750 = 1.00750 × 103 0.106 = 1.06 × 101
 1.b) Exprese los siguientes velores en noteción de ingenieria:
                       10000 [v] = 10 \times 10^{3} [v] 10 [vV]

500 [v] = 0.5 \times 10^{3} [v] 0.5 [vV]
            10000000 [v] = 10 \times 10^{6} [v]   10 [Mv]
0.000000 [v] = 6 \times 10^{6} [A]   6 [\mu A]
0.0001258 [A] = 125.8 \times 10^{6} [A] = 125.8 [\mu A]
0.0000000001 [A] = 1 \times 10^{9} [A]   1 [nA]
  1.c) Sume los sigüientes números y aplique el redondes al número
         correcto de cifres significatives:
        125.862 + 17.54 + 3.4 + 1500 | 15.0085 + 3.001 + 16.0104 + 0.06
           125.862
                                              15.0085
            17.54
                                                3.001
            3.4
                                              16.0104
        1500.
                                              0.06
        1646.802
                                              34.0799
        1647
                                             34.081
```

2) En el circuito de la figura, considere R=750 Dz. Para los distintos valores de la fuente V, indicados en la tabla, en went re el valor de corriente que circulará por la resistencia R, y complete la tabla.

3) Realice la simulación del circuito presentado, variando el valor de la fuente VI, y de la resistencia R 5 750 so complete la tabla.

No 12 [1]		[A] ,[A]	I, [A] Nº VIII		[A] [A]
1	0	0	9	80	0.107
S	10	0.0133	10	90	0.17
3	50	0.0267	11	100	0.133
4	30	0.04	12	110	0.147
5	40	0.0533	13	120	0.16
6	50	0.0667	14	130	0.173
7	60	0.08	15	140	0.187
8	70	0.0933	16	150	0.7

2. Simulación

Se utilizó el software *Quite Universal Circuit Simulator*. para simular el circuito, este puede verse en la figura (1).

Figura 1: Simulación de circuito.

3. Tablas y mediciones

En la figura (2), se adjunta la hoja de resultados provista en la guía de laboratorio, rellenada con la información teórica, simulada y las mediciones realizadas en laboratorio.

PRÁCTICA 1 MARTES	15:05 36 02/04/24 7/24
Día	Hora Grupo Fecha Gestión
CABALLERO BURGOA	CARLOS EDUAROD
Apellido(s)	Nombre(s) VoBo Docente Labora

RESISTENCIA	GRANDE	MEDIANA	PEQUEÑA
ETIQUETA	250 Sb	500 W	1 K.SO
MEDICIÓN OHMETRO	257 50	521 18	1.045 KD

Tabla 1.3. Medición de resistencias de valor fijo

	F0	F10	F20	F30	F40	F50	F60	F70	F80	F90	F100
G1	751	658	498	412	349	262	237	214	162.5	160.9	147,5
G2	123.1	119.6	112.8	107.7	191.1	95.3	88.6	85.5	F.48	73.8	86.5

Tabla 1.4. Medición de resistencia variable

Nº V ₁		TEÓRICO	SIMULACIÓN I, LmA)	ATORIO	
1	0 V	0	Ø	0	0
2	10 V	13.33	13.3	10.0	13.3
3	20 V	26.67	26.7	19.8	26.1
4	30 V	40	40	29.9	39.6
5	40 V	53.33	53.3	40.4	53.4
6	50 V	66.67	66.7	49.9	66
7	60 V	80	80	60.0	74,3
- 8	70 V	93.33	93.3	70.1	92.7
9	80 V	166.67	107	80.3	106.2
10	90 V	120	120	90.2	119.2
11	100 V	133.33	133	100.2	132.3
12	110 V	146.67	147	110.4	145.3
13	120 V	160	160	120.0	157.5
14	130 V	173.33	173	130.3	169.5
15	140 V	186.67	187	140.5	180.0
16	150 V	200	200	150,1	189.9

Tabla 1.5. La Ley de Ohm

Figura 2: Tabla de resultados.

4. Cuestionario

- 1. ¿Qué cuidados hay que tener para emplear un amperímetro digital?
 - Asegurarse que la conexión sea correcta, teniendo en cuenta la polaridad y la corriente que se va a medir.
 - Se debe apagar el circuito antes de realizar la medición.
 - Se debe utilizar el rango apropiado para la medición de corriente, si se desconoce la cantidad de corriente debe usarse la escala con mayor rango.
- 2. (a) Utilizando la tabla de resultados (para el voltaje V_1 y corriente I_1) grafique la curva $I_1 = V_1/R$; (b) empleando el método de regresión lineal, calcule las constantes "A" y "B" de la ecuación lineal, también el coeficiente de correlación " r^2 "; (c) ¿qué significado tienen los valores de las constantes "A" y "B" obtenidos?; (d) ¿cuál es el valor de la resistencia R empleada?

A partir de los datos obtenidos se genera la gráfica de la Figura 3.

Figura 3: Gráfica de voltaje vs corriente.

Se calcula la recta de mejor ajuste por el método de los mínimos cuadrados, resultando los siguientes valores:

$$A = (1.09 \times 10^{-3} \pm 1.02 \times 10^{-3})[A]; 93.79\%$$

$$B = (1.29 \times 10^{-3} \pm 1.16 \times 10^{-5})[1/\Omega]; 0.90\%$$

Siendo su coeficiente de correlación (r):

$$r = 0.9994$$

Considerando que el modelo de ajuste es:

$$I = A + BV$$

A representa un valor de ajuste entre las variables I y V, y como puede notarse es una cantidad despreciable, y puede deberse a inexactitudes en la medición o calibración de los instrumentos.

B representa la constante de proporcionalidad entre las variables I y V, y en según la ley de Ohm es 1/R, conocido como la conductancia.

Resultado
$$R = (776.62 \pm 1.92 \times 10^{-11}) [\Omega]; 2.48 \times 10^{-12} \%$$

3. Un efecto interesante que sucede en el laboratorio, mas allá de la diferencia que existe entre el valor medido y el indicado en las etiquetas, es el descrito a continuación:

Se realizaron mediciones en el laboratorio de las resistencias de valor fijo disponibles, y se encontró que durante las primeras horas de la mañana los valores medidos de las resistencias son unos, mientras que por las tardes tienen un valor mayor.

¿Como puede explicar este fenómeno?

En los materiales conductores, el aumento de la temperatura produce una aumento en la resistencia eléctrica. Bajo la siguiente formula:

$$R_T = R_0 \left(1 + \alpha T \right)$$

Donde:

- R_0 : Resistencia de referencia a la temperatura T_0 .
- α : Coeficiente de temperatura, dependiente del material.
- T_0 : Temperatura de referencia en la cual se conoce R_0 .

5. Conclusiones

Se demostró que la relación directamente proporcional de la ley de *Ohm* entre la corriente eléctrica y el voltaje se cumple de modo experimental.

Cuando se hace uso de los instrumentos de medición de corriente y voltaje, se percibe que estos comienzan con valores cambiantes y después de un espacio corto de tiempo estos se estabilizan, por tanto, es recomendable esperar un tiempo prudencial antes de tomar la medida.