第1学年 数学 II 復習課題

- 確認事項 —

2乗して-1になる数をiとする.

2 つの実数 a,b を用いて a+bi の形で表される数を ____という.

 $a + bi \ \mathcal{C} \supset \mathcal{V} \mathcal{T}$

- b=0 のとき,
- $b \neq 0$ のとき、
- $b \neq 0, a = 0 \text{ OZE}$,
- 1 実部と虚部を求めよ.
 - (1) 3 + 4i
 - $(2) \ \frac{2+3i}{4}$
 - (3) 2
 - (4) -i
- 2 x,y を実数とする. x,y を求めよ.
 - (1) x + yi = 3 + 4i

(2) (x+3) + (y+2)i = 0

(3) (x+y) + (x+2y)i = 3+5i

- 共役な複素数 —

R5. 1

a + bi と_____を互いに共役な複素数という.

共役な複素数の嬉しい点 -

$$(a+bi)(a-bi)$$

$$(a+bi) + (a-bi)$$

- 3 計算せよ.
 - (1) $i \times i$

$$(2) (4+5i) + (2+3i)$$

- (3) (3+i)-(4-5i)
- (4) (2+i)(3+2i)
- $(5) \ \frac{4-i}{4+i}$

(6) $\frac{3+2i}{5-4i}$

1年_______番

氏名_

	Title	===	4	* *	ヹ
_	hii:	宝烈	隼	: 1	ы.
	111年				

a>0 としたとき, $\sqrt{-a}=$ ______ とする.

また、-a の平方根は、 $_{-----}$ となる.

- $\boxed{\mathbf{1}}$ 次の数を, 虚数単位 i を用いて表せ.
 - (1) $\sqrt{-1}$
 - (2) $\sqrt{-3}$
 - (3) $\sqrt{-16}$
 - (4) -24 の平方根
- **2** 計算せよ.
 - (1) $\sqrt{-3}\sqrt{-12}$
 - (2) $\sqrt{-3}\sqrt{6}$
 - (3) $\frac{\sqrt{-2}}{\sqrt{-6}}$
 - (4) $\frac{\sqrt{-12}}{\sqrt{8}}$
 - $(5) \ \frac{\sqrt{21}}{\sqrt{-14}}$

- 3 次の2次方程式を解け.
 - $(1) \ x^2 + 3x + 4 = 0$
 - (2) $x^2 4x + 4 = 0$

- $(3) \ 2x^2 + 4x + 3 = 0$
- **4** 以下の問いに答えよ.
 - (1) $x^2 + 5x + 5 = 0$ の解の種類を判別せよ.
 - (2) m を定数とする. 2 次方程式 $x^2 + mx + 1 = 0$ の解の種類を判別せよ.

1年_______番

氏名___

- 確認事項 (因数定理)	
	}
	j.

1 次の多項式を複素数の範囲で因数分解せよ.

(1) $x^2 - 1$

(2) $x^2 + 1$

(3) $x^2 + 4$

(4) $3x^2 + 4x - 4$

2 $2x^2 + 3x + 4 = 0$ の 2 つの解を α, β とする.

(2) αβ を求めよ

(1) $\alpha + \beta$ を求めよ.

(3) $\alpha^2 + \beta^2$ を求めよ.

(4) $\alpha^3 + \beta^3$ を求めよ.

x = 1,2 を解にもつ 2 次方程式を 1 つ作れ.

4 2 次方程式 $x^2 + 4x + 5$ の 2 つの解を α, β とする. (1) $\alpha - 1, \beta - 1$ を解にもつ 2 次方程式を作れ.

(2) α^2 , β^2 を解にもつ 2 次方程式を作れ.

5 和が 4, 積が 5 になる数を探せ.

1年_______番

氏名_____

第1学年 数学 II 復習課題

	R5. 1
1 2 次方程式 $x^2 + 2(m+1)x + 3m = 0$ が次のような解を持つとき, m の値の範囲を求めよ. (1) 異なる 2 つの正の解	R5. 1 ② 多項式 $P(x)$ を $x-3$ で割った余りが 3 , $x+3$ で割った余が -2 である. $P(x)$ を $(x-3)(x+3)$ で割った余りを求めよ.
(2) 異なる 2 つの負の解	3 多項式 $P(x)$ を $(x+3)(x-1)$ で割った余りが $x+2$, $(x+2)(x-1)$ で割った余が $3x$ である. $P(x)$ を $(x+3)(x+2)(x-1)$ で割った余りを求めよ.
(3) 正と負の解	
	1年

第1学年 数学 II 復習課題

- 確認事項 —

n 乗すると α になる数を α の_____という.

1 以下の高次方程式を解け.

$$(1) \ x^3 - 1 = 0$$

(2)
$$x^3 - 27 = 0$$

$$(3) \ x^3 - 6x^2 + 27 = 0$$

$$(4) \ x^4 - 1 = 0$$

$$(5) \ x^6 - 27x^3 + 26 = 0$$

R5. 1 **2** a,b を実数とする. 3 次方程式 $x^3-4x^2+ax+b=0$ が 2+i を解に持つとき, 実数 a,b の値を求めよ. また, 他の解を求めよ.

3 上の問題を別の解法で解け.

1年_____組____番

氏名 _____