Front end Digitisation

Sias Malan

MeerKAT Digitiser System Engineer

SCOPE

- Why front end Digitisation
- Key specifications of MeerKAT Digitiser
- Block diagram of Digitiser
- RF front end
- Analogue to Digital converter
- Sample Clock Generation
- Results

Why front end Digitisation

- Negate the need for expensive RF chains
- Reduces the number of local oscillators
- Improves channel isolation and cross talk
- Negate the need for RF over fibre links
- Improves gain and phase stability
- Digitisation can be done close to the feed

Parameter	Unit	Spe	Specification		Result
Frequency range	900 to 1670 MHz				
Stop band rejection (ambient)	dB	27			28
Nominal Gain	dB	10.5			10
Gain flatness	dB	+-2dB			+-1.9
Input matching	dB	15			19
Channels		H and V channel			
Sampling zone	2 nd Nyquist Zone				
Sampling efficiency	>98.5%				
Number of bits	10				
SFDR (-1dB full scale)	dB	>50dB			55dB
Output data	4x 10Ge BASE SR				
1PPS synchronization	<10ns				
Weight	kg	40			40
Dimensions		510x215x255mm			
Cooling	Ambient >50° C	Forced air			
	Ambient <50° C	Convection			
RFI compliance	SARAS levels for equipment installed <1m from MeerKAT receiver				
Environment	ETSI EN 300 019-1-4 V2.1.2 standard class 4.2H				
Power supply (220Vac)	VA		<125		85

Digitiser block diagram

11/17/2014

HPSP 2014 - Front end Digitisation

Integrated Digitiser

Passively cooled Digitiser

Actively cooled Digitiser

Bandpass Sampling

- Sample Zone 2 due to the availability ADCs capable of this sample rate while still providing the required dynamic range
- Chose to sample at1712MHz due to the Anti-aliasing filter symmetry

Down conversion for free

Sampling efficiency

SNR_{in} / SNR_{out}

Sampling efficiency ≥98%
98.8 %

99.8 %

ADC small signal to noise power ratio

$$SNR_{NF}(dB) = 10 * log_{10} \frac{\eta_{ADC}}{1 - \eta_{ADC}} = 19.14dB$$

Anti –aliasing filter

$$\alpha = 10 * log \left(\frac{1}{\eta_{BPF}} - 1\right) = 27dB$$

Anti-aliasing filter

Headroom and signal to noise ratio

Degradation of SNR due to clock jitter

Measured ADC noise floor

RFCU frequency response

Measured Results: RF Performance

RFCU II Ser #001 Stopband Attenuation +25C (+25.8C actual) -44dBm Source Power

freq=1.284GHz dB(S(2,1))=16.509

freq=812.0MHz dB(S(2,1))=-11.727

freq=1.754GHz dB(S(2,1))=-12.819

Measured Results: RF Performance

RFCU II Ser #001 Gain Flatness +25C (+25.8C actual) -44dBm Source Power

Digitiser passband

Measured Results: SFDR

Sample clock generation

Measured Results: Gain Stability

Measured Results: Phase Stability

Questions?

Reference signals

