

Linguaggi formali e compilatori

UNITN - Lazzerini Thomas ${\it Marzo~2021}$

Indice

1	For: 1.1		3					
2	Intr 2.1	ntroduzione 1 Il metodo sperimentale						
3	B Cinetica dei punti							
	3.1	Sistema di riferimento	3					
	3.2	Diagramma dello spazio	4					
	3.3	-	4					
	3.4	1	5					
	3.5		5					
			6					
			6					
			6					
			7					
			7					
			7					
	3.6	· (9					
		3.6.1 Esempio di moto armonico	0					
	3.7	I moti piani	1					
		3.7.1 I vettori	1					
		3.7.2 Sistema di riferimento	1					
	3.8	Moto circolare uniforme	3					
4	Din	amica 1	5					
-1	4.1	Leggi della dinamica						
	4.1 Leggi dena dinamica							
	4.2.1 Esempio forze impulsive							
	4.2.2 Esercizio su forze impulsive							

1 Formulario

1.1 Unità di misura

T	=>	10^{12}	G	=>	10^{9}
M	=>	10^{6}	k	=>	10^{3}
m	=>	10^{-3}	μ	=>	10^{-6}
n	=>	10^{-9}	p	=>	10^{-12}

2 Introduzione

2.1 Il metodo sperimentale

Distingue discipline sperimentali da discipline non sperimentali. Si compone di diverse fasi:

- 1. formulazione ipotesi: si fa un'ipostesi descrittiva (in linguaggio matematico) della porzione di mondo che si vuole analizzare, di conseguenza si decide di non considerare altre caratteristiche del mondo che non centrano con l'ipotesi che stiamo formulando;
- 2. **esperimento**: si va a ricreare una situazione dove l'aspetto che vogliamo analizzare è **sicuramente** presente e influenzato il meno possibile da fattori esterni;
- 3. **esecuzione dell'esperimento**: si verifica l'ipotesi, formulata in modo matematico, confrontando i valori ottenuti con l'esperimento con quelli che si ottengono dalla nostra ipotesi.

In base alla "verifica" dell'ipotesi possiamo fare una differenziazione:

- teoria: l'ipotesi non è ancora verificata, o è verificata parzialmente;
- legge fisica: l'ipotesi è verificata (in un certo ambito);

3 Cinetica dei punti

Descrive il movimento dei corpi.

3.1 Sistema di riferimento

Specifichiamo un sistema di riferimento per il seguente argomento:

Una cosa importante da notare è che un numero singolo può rappresentare solo cose "mono-dimensionali" e che, soprattutto, non tutte le unità di misura possono rappresentare qualsiasi cosa (ad es.: l'età dell'universo non si può rappresentare con i metri).

3.2 Diagramma dello spazio

Rappresentiamo lo spostamento nel tempo tramite un "diagramma dello spazio":

In particolare, in questo diagramma rappresentiamo sull'asse Y lo **spostamento** (s) (rappresentato come **valore uni-dimensionale**) e sull'asse X il **tempo** (t) (anche rappresentato come **valore uni-dimensionale**). Nota che il diagramma NON RAPPRESENTA una posizione, ma lo spostamento in relazione al tempo.

3.3 Caso semplice

Vediamo un semplice caso di utilizzo per capire come usare i diagrammi dello spazio:

Possiamo immaginare di avere un oggetto in movimento su una retta tra i punti A e B, come possiamo rappresentare questo movimento nel diagramma? Come prima cosa posizioniamo i "fenomeni" ($def.\ qual-cosa\ che\ appare\ evidente\ all'osservazione$), ovvero i **punti A e B**, nota che non è detto che questi punti coincidano con dei "punti particolari" (ad esempio l'origine) nel nostro diagramma. In particolare, a questi punti associamo un valore sull'asse del tempo (t_i, t_f) ed un valore sull'asse dello spazio (s_i, s_f). A questo punto esistono infiniti possibili percorsi tra il punto A ed il punto B, ad esempio:

Importante notare che *non tutti questi percorsi*, *pur avendo senso matematico*, *hanno senso fisico*! Ad esempio, il percorso in rosso "torna indietro nel tempo"!

3.4 Moto rettilineo uniforme

STUB################### (In teoria lo fa dopo, controllare)

3.5 Velocità

Possiamo immaginare la velocità (v) come la "def. variazione dello spazio rapportato al tempo impiegato per percorrerlo", in particolare la velocità è data dalla formula:

$$v = \frac{s_f - s_i}{t_f - t_i} = \frac{\Delta s}{\Delta t}$$

Vediamo un semplice esempio:

$$s_i = 400m, \ s_f = 700m, \ t_i = 7:30 = 450min, \ t_f = 7:40 = 460min$$

$$v = \frac{700m - 400m}{460min - 450min} = \frac{300m}{600s} = 0,5m/s$$

Nota che nella seconda uguaglianza nell'esempio abbiamo **convertito i minuti in secondi**, puoi immaginare che abbiamo posto "min = (60s)", quindi abbiamo fatto "10min = 10 * (60s) = 600s".

3.5.1 Velocità istantanea

Quella che abbiamo calcolato prima possiamo vederla come "velocità media" di tutto il percorso, la **velocità istantanea** invece possiamo vederla come la *def. velocità in un punto specifico del percorso*. Immagina quindi di fare la formula:

$$v_{ist} = lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{\delta s}{\delta t}$$

Nota che quando si usa la lettera " δ " stiamo ad indicare una **piccola** (infinitesima) **variazione**. Ora, se il valore di s viene espresso **in funzione di t**, quindi abbiamo s(t), e la funzione "s(t)" è **derivabile**, allora la **velocità istantanea corrisponde alla derivata prima della funzione** s(t), che a sua volta corrisponde a $\frac{ds}{dt}$.

Supponendo che il **moto del nostro punto** venga identificato dalla curva in verde, il rapporto tra la lunghezza dei 2 cateti C_1C_2 (Δt) e C_2C_3 (Δs) rappresenta la **tangente** α , che in questo caso rappresenta la **velocità media**. Ora, se restringiamo l'intervallo di t in modo che tenda a 0 e calcoliamo il valore della derivata in quel punto otterremo la velocità istantanea.

3.5.2 Accelerazione

Nel paragrafo precedente abbiamo visto che la velocità in un punto corrisponde al valore della derivata prima (della funzione che rappresenta il moto del nostro corpo) in quel punto, per quanto riguarda l'accelerazione abbiamo che l'accelerazione corrisponde al rapporto tra la derivata della velocità e la derivata del tempo, ottenendo quindi la formula $\frac{dv}{dt}$, operativamente dobbiamo fare la derivata seconda della funzione che rappresenta il moto del nostro punto.

3.5.3 Moto rettilineo uniformemente accellerato

Cominciamo col dire che:

$$a = \frac{dv}{dt}$$

Ricorda che con dv e dt intendiamo le **derivate**. Da questa ricaviamo dv, ovvero:

$$dv = a * dt = \int_{A}^{B} dv = \int_{A}^{B} (a * dt) = v_{B} - v_{A} = a(t_{B} - t_{A})$$

Da questo otteniamo quindi che la velocità in funzione del tempo corrisponde a:

$$v(t) = v_0 + a(t - t_0)$$

Ottenuta questa formula, possiamo passare a calcolare lo spazio in funzione del tempo, ovvero:

$$v(t) = \frac{ds}{dt} \implies ds = v * dt \implies \int_{A}^{B} ds = \int_{A}^{B} v * dt \implies s_{B} - s_{A} = \int_{A}^{B} [v_{0} + a(t - t_{0})] dt \implies$$

$$=> s_{B} - s_{A} = \left[v_{0} * t + a \frac{(t - t_{0})^{2}}{2}\right]_{A}^{B} \implies s_{B} - s_{A} = v_{0} * t_{B} + a \frac{(t_{B} - t_{0})^{2}}{2} - v_{0} * t_{A} + a \frac{(t_{A} - t_{0})^{2}}{2}$$

Da questo otteniamo quindi che la velocità in funzione del tempo corrisponde a:

$$s(t) = s_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

Terminiamo dicendo che in questo moto l'accelerazione è costante, quindi:

$$a(t) = a$$

3.5.4 Esercizi vari sui moti con formule

Vediamo alcuni esempi:

3.5.4.1 Esempio 1 (moto rettilineo uniforme) Supponiamo di avere un oggetto che si sposta da un punto A (t_0, s_0) ad un punto B (t_1, s_1) tramite un moto rettilineo uniforme, abbiamo i seguenti dati:

$$t_0 = ?$$
 $s_0 = 1, 5Km$ $v = 36m/s$ $s_1 = 11, 5Km$ $t_1 = 0, 3h$

L'obiettivo è trovare i dati mancanti (ovvero t_0). Noi sappiamo che la velocità "v" corrisponde a:

$$v = \frac{\Delta s}{\Delta t} = \frac{s_1 - s_0}{t_1 - t_0} = > \dots = > t_0 = t_1 - \frac{s_1 - s_0}{v}$$

Sostituendo i valori forniti, otteniamo che $t_0 \approx 802, 22s$

3.5.4.2 Esempio 2 (moto rettilineo uniformemente accellerato) Supponiamo di avere un oggetto all'altezza h_0 e di lanciarlo verso l'alto con una velocità v_0 nell'istante t_0 con un'accelerazione a. Dobbiamo trovare l'altezza (h_c) ed il tempo (t_c) di culmine e, supponendo che alla fine l'oggetto raggiunga l'altezza finale " h_f ", trovare il tempo finale " t_f ". Supponiamo di avere i seguenti dati:

$$h_0 = 100m$$
 $t_0 = 0s$ $v_0 = 5m/s$ $a = -9, 8m/s^2$ $t_c = ?$ $t_f = ?$ $h_f = 0m$

Includiamo delle immagini complementari:

Procediamo per punti:

1. Vogliamo trovare il tempo di culmine (t_c) , quindi poniamo v(t) = 0 e troviamo la t che rende vera l'equazione:

$$v(t) = 0 \implies v_0 + a(t - 0) \implies t_c = -\frac{v_0}{a} = -\frac{5m/s}{-9, 8m/s^2} \approx 0,51s$$

2. Vogliamo calcolare l'altezza di culmine (h_c) , per farlo usiamo la formula dello spazio:

$$h_c = s(t_c) = s_0 + v_0(t_c - 0) + \frac{1}{2}a(t_c - 0)^2 =$$

$$= 100m + 5m/s * (0,51s) + 1/2(-9,8m/s^2) * (0,51s)^2 \approx 101,28m$$

3. Vogliamo calcolare il tempo "finale" (t_f) , per farlo usiamo sempre la formula dello spazio:

$$s(t_f) = h_f = 0 =>$$

=> $s_0 + v_0(t_f - 0) + \frac{1}{2}a(t_f - 0)^2 = 0$

A questo punto abbiamo una funzione di secondo grado con $x = t_f$, quindi usiamo la formula solita:

$$t_{f 1/2} = -\frac{v_0}{a} \pm \sqrt{(-\frac{v_0}{a})^2 - 2\frac{s_0}{a}}$$

$$t_f = 0.51s + \sqrt{(0.51s)^2 - 2 * \frac{100m}{-9.8m/s^2}} \approx 5.06s$$

Nota che possiamo subito sostituire il " \pm " con un "+" dato che la radice sarà sicuramente più grande di quel 0,51 che la precede, quindi non avrebbe fisicamente senso fare altrimenti (tempo negativo).

3.6 Moto armonico

Nel moto armonico abbiamo un'accelerazione oscillante, nella forma $\underline{a_0 * sin(t)}$. Il problema è che il sin (come tutte le funzioni matematiche) è adimensionale, quindi dobbiamo aggiungere delle componenti aggiuntive per rendere il tempo "t" adimensionale, in paricolare abbiamo che:

$$a(t) = a_0 * sin(\omega t + \varphi)$$

dove " ω " rappresenta la **pulsazione** e " φ " la **fase**. Nota che **abbiamo già l'accelerazione**, ovvero $a_0 * sin(t)$, quindi per calcolare velocità e spazio procediamo per **integrazioni successive**, con gli estremi di integrazione che corrispondono al **punto di inizio e di fine** della nostra misurazione.

$$v(t) = v_0 + \int_{t_0}^t a(\tau)d\tau = v_0 + \frac{1}{\omega} \int_{t_0}^t \omega a_0 \sin(\omega t + \varphi)d\tau =$$

$$= v_0 + \frac{1}{\omega} \left[-\cos(\omega t + \varphi) \right]_{t_0}^t = v_0 - \frac{a_0}{\omega} \cos(\omega t + \varphi) + \frac{a_0}{\omega} \cos(\omega t_0 + \varphi) =$$

$$= V - \frac{a_0}{\omega} \cos(\omega t + \varphi)$$

Nota che il testo in rosso sopra, in quanto costante, viene raccolto in V, passiamo ora a calcolare lo spazio (che corrisponde all'integrazione della velocità):

$$s(t) = s_0 + \int_{t_0}^t v(\tau)d\tau =$$

$$= s_0 + V(t - t_0) - \frac{a_0}{\omega^2} sin(\omega t + \varphi) + \frac{a_0}{\omega^2} sin(\omega t_0 + \varphi) =$$

$$= S + V(t - t_0) - \frac{a_0}{\omega^2} sin(\omega t + \varphi)$$

In definitiva, le formule che interessano a noi sono:

$$a(t) = a_0 * sin(\omega t + \varphi)$$

$$v(t) = V - \frac{a_0}{\omega} cos(\omega t + \varphi)$$

$$s(t) = S + V(t - t_0) - \frac{a_0}{\omega^2} sin(\omega t + \varphi)$$

Ricorda che le parti in rosso sono costanti (di solito per noi varranno 0), mentre l'accelerazione ci è stata fornita all'intizio, quindi teniamo quella. Vediamo un "esempio":

Esempio di moto armonico 3.6.1

Ipotiziamo di avere una situazione del genere: vogliamo misuare l'andamento dell'ombra di un'altalena (che va solo avanti e indietro) sulla superficie.

Noi assumiamo sempre che φ (ovvero la fase)= 0 e che cominciamo da $t_0=0$, quindi le nostre formule diventano:

$$a(t) = a_0 * sin(\omega t)$$

$$v(t) = -\frac{a_0}{\omega} cos(\omega t)$$

$$v(t) = -\frac{a_0}{\omega} cos(\omega t)$$
$$s(t) = -\frac{a_0}{\omega^2} sin(\omega t)$$

Prima di passare al grafico dobbiamo calcolare il valore della nostra variabile t, ora noi sappiamo che ωt , dato che $\varphi = 0$, deve rappresentare una rotazione completa (2π) :

$$\omega t = 2\pi = t = \frac{2\pi}{\omega} = T$$

Nota che il nostro T rappresenta il **periodo**. Con queste funzioni/variabili, possiamo passare al calcolo dei grafici temporali:

3.7 I moti piani

Prima di partice con i moti veri e propri, introduciamo velocemente i vettori.

3.7.1 I vettori

Passiamo ora a considerare i **moti con 2 dimensioni**, per questo motivo dobbiamo introdurre i **vettori** composti da:

- punto di inizio;
- verso;
- modulo (la lunghezza del vettore);
- direzione (la retta su cui giace il vettore);

I vettori, si comportano in modi leggermente diversi rispetto ai numeri "normali", in particolare a noi interessa:

• somma: si fa con la **regola del parallelogramma**, ovvero:

• prodotto per scalare: quando si moltiplica un vettore per uno scalare, semplicemente si va a **moltiplicare** il **modulo del vettore**, in particolare " $\vec{a} = b * \vec{c} => |\vec{a}| = b * |\vec{c}|$ "

3.7.2 Sistema di riferimento

Introduciamo ora il sistema di riferimento per questo moto:

Da questo punto in poi, rappresentiamo il moto sul **piano cartesiano**: rappresenteremo quindi il **movimento "fisico"** del moto in quanto **non più unidimensionale!** Per quanto riguarda gli assi, si usano quelli che vengono definiti **versori** che matematicamente si rappresentano come $\hat{x} = \vec{x}/|\vec{x}|$. In questo modo otteniamo qualcosa di **adimensionale** e che ha **modulo 1 per definizione**.

Quando vogliamo rappresentare un punto, possiamo farlo **attraverso un vettore**, che a sua volta si può rappresentare come la **somma di 2 vettori "unidimensionali"** (uno per ogni asse) che a loro volta si possono rappresentare come **spostamenti sui vari assi moltiplicati per il versore associato**:

$$\vec{P} = \vec{P}_x + \vec{P}_y = S_x * \hat{x} + S_y * \hat{y}$$

Allo stesso modo possiamo rappresentare velocità ed accelerazione!

3.8 Moto circolare uniforme

Nel moto circolare uniforme la velocità è **costante**, infatti in tutti i punti la velocità **non** cambia lunghezza, cambia solo la sua direzione. La velocità in un punto, inoltre, è **sempre tangente** alla traiettoria in quel punto. Si hanno le seguenti formule:

$$\alpha(t) = \alpha_0 + \omega t \qquad \qquad r(t) = R$$

dove R è il raggio della circonferenza e ω è la velocità angolare, definita come $\omega = \frac{2\pi}{T}$ con T periodo. La **frequenza** è definita come $f = \frac{1}{T}$ e la **velocità** come:

$$v = \frac{2\pi R}{T} = \omega R$$

Osservando la formula qui sopra, possiamo notare che a meno che il raggio R non cambi, la velocità sarà costante, nel caso in cui cambia, invece, cambierà anche la velocità. Ora, ponendo l'origine del piano cartesiano come il centro della circonferenza, calcoliamo lo **spazio**, la **velocità** e l'**accelerazione** in funzione del tempo come segue:

$$\vec{s}(t) = \begin{cases} x(t) = R\cos(\alpha(t)) \\ y(t) = R\sin(\alpha(t)) \end{cases}$$

$$\vec{v}(t) = \begin{cases} v_x(t) = -R\frac{d\alpha}{dt}sin(\alpha(t)) = -\omega Rsin(\alpha(t)) \\ v_y(t) = R\frac{d\alpha}{dt}cos(\alpha(t)) = \omega Rcos(\alpha(t)) \end{cases}$$

$$\vec{a}(t) = \begin{cases} a_x(t) = -\omega^2 R cos(\alpha(t)) \\ a_y(t) = -\omega^2 R sin(\alpha(t)) \end{cases}$$

Ora l'accelerazione si divide in due componenti, $\vec{a_t}$ (accelerazione tangente) e $\vec{a_n}$ (accelerazione normale o centripeta). La prima è parallela alla tangente nel punto e modifica il modulo della velocità, mentre la seconda è ortogonale alla tangente nel punto e modifica la traiettoria(direzione). Dato un qualsiasi moto piano, se prendo una piccola parte di questo, allora può essere immaginato come un arco di circonferenza. Più il tratto è grande e più l'arco di circonferenza sembrerà rettilineo, più il tratto è piccolo e più l'arco di circonferenza sembrerà curvo e avrò corrispondentemente una circonferenza grande e una piccola.

In questo caso avrò quindi che le due componenti dell'accelerazione varranno:

$$|\vec{a_n}| = \frac{v^2}{R}$$

$$|\vec{a_t}| = \vec{a} \frac{\vec{v}}{|\vec{v}|} = \vec{a}\hat{v}$$

dove \hat{v} è il **versore velocità**.

4 Dinamica

4.1 Leggi della dinamica

La dinamica si occupa dello studio del moto dei corpi a partire dalle sue cause(forze), ovvero delle circostanze che lo determinano e lo modificano nel tempo e nello spazio del suo sistema di riferimento. Wikipedia Le leggi della dinamica sono 3 e sono le seguenti:

- 1. <u>Legge di Inerzia (I legge)</u>: un corpo rimane nel suo stato di quiete finchè non intervengono agenti esterni a modificarne questo stato. Questa legge vale sono in sistemi di riferimento inerziali;
- 2. <u>Legge di Newton (II legge)</u>: Viene definita la quantità di moto come $\vec{p} = m\vec{v}$, ovvero massa per velocità. Successivamente viene definita la forza (\vec{F}) come segue:

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt} = \frac{dm}{dt}\vec{v} + m\frac{d\vec{v}}{dt}$$

dove m è la massa inerziale, ovvero la capacità di un corpo di opporsi alle variazioni del suo stato di moto, questa mette in relazione la velocità alla forza.

Nel caso in cui la massa non varia, allora la forza può essere definita come $\vec{F} = m \cdot \vec{a}$.

L'unità di misura della **forza** è il Newton (N) definito come $\frac{kg \cdot m}{s^2}$.

3. Principio di azione e reazione (III legge): Quando il corpo 1 esercita una forza \vec{F} sul corpo 2, quest'ultimo esercita sul corpo 1 una forza $-\vec{F}$, uguale e opposta.

$$\vec{F}_{1\to 2} = -\vec{F}_{2\to 1}$$

Osserviamo che la **prima legge** potrebbe sembrare un caso particolare della **seconda legge**, con $\vec{F} = \vec{0}$, ma in realtà non è così, infatti la seconda e la terza legge sono valide solo all'interno di sistemi di riferimento inerziali, che sono definiti dalla prima legge.

4.2 Forze impulsive

L'**impulso** \vec{P} è definito come la variazione di quantità di moto $\Delta \vec{p}$ in un Δt piccolo, ovvero:

$$\vec{P} = \Delta \vec{p} = \int_0^t \vec{F} dt$$

E la **forza impulsiva** come:

$$\vec{F}_{imp} = \frac{\Delta \vec{p}}{\Delta t}$$

4.2.1 Esempio forze impulsive

Supponiamo di avere un pavimento ed una palla che viene lasciata in aria. Questa palla cadrà verso il pavimento fino a raggiungerlo, rimbalzare su esso e tornare in sù (assumiamo che la velocità con cui torna in sù sia la stessa con cui cade, quindi non agiscono fattori esterni come attriti, ecc.).

Se ho un vettore velocità \vec{v} , allora ho che:

$$\begin{aligned} \vec{p_i} &= m\vec{v_i} = -m\vec{v} \\ \vec{p_f} &= m\vec{v_f} = m\vec{v} \\ \Delta \vec{p} &= \vec{p_f} - \vec{p_i} = 2m\vec{v} \end{aligned}$$

4.2.2 Esercizio su forze impulsive

Supponiamo di avere i seguenti dati e di dover calcolare \vec{F}_{imp} (forza impulsiva):

$$m = 98g v = 10.2 \frac{m}{s} \Delta t = 100ms$$

Procediamo ora quindi con calcolare $\Delta \vec{p}$ usando la formula appena calcolata sopra e una volta ottenuto il valore calcoliamo la \vec{F}_{imp} :

$$\Delta \vec{p} = 2m\vec{v} = 2 \cdot 10.2 \frac{m}{s} \cdot 0.098 kg = 0.99 \frac{kg \cdot m}{s}$$
$$\vec{F}_{imp} = \frac{\Delta \vec{p}}{\Delta t} = \frac{0.99 \frac{kg \cdot m}{s}}{0.1s} = 9.99 \frac{kg \cdot m}{s^2} = 9.99N$$

4.3 Esercizi sulla dinamica

Supponiamo di avere un'oggetto appeso a due fili, che sono appesi al tetto, alla stessa distanza dall'oggetto e vogliamo trovare $\vec{T_1}$ e $\vec{T_2}$ tensioni dei fili, avendo i seguenti dati:

$$m = 100g \theta = 60^{\circ}$$

Notiamo che l'oggetto resta fermo, quindi oltre a \vec{p} (forza peso), su esso agiscono altre forze la cui somma è uguale e opposta a \vec{p} . Abbiamo quindi che la **risultante delle forze** $\vec{R} = \vec{0}$. Ora possiamo notare che $|\vec{T_1}| = |\vec{T_2}| = T$ e abbiamo le seguenti forze:

$$\begin{split} \vec{p} &= -mg\hat{y} \\ \vec{T_1} &= T_x\hat{x} + T_y\hat{x} = Tsin\theta\hat{x} + Tcos\theta\hat{y} \\ \vec{T_2} &= -T_x\hat{x} + T_y\hat{y} = -Tsin\theta\hat{x} + Tcos\theta\hat{y} \end{split}$$

Ora ci ricordiamo che $\vec{R} = \vec{0}$ quindi:

$$\vec{R} = \vec{0} = \vec{P} + \vec{T_1} + \vec{T_2} => \begin{cases} R_x = 0 \\ R_y = 0 \end{cases} =>$$

$$=> \begin{cases} R_x = 0 = T\sin\theta - T\sin\theta \\ R_y = 0 = -mg + T\cos\theta + T\cos\theta = -mg + 2T\cos\theta \end{cases}$$

La prima equazione del sistema vale zero, ora dalla seconda ricaviamo T:

$$mg = 2Tcos\theta = T = \frac{mg}{2Tcos\theta} = \frac{0.1kg \cdot 9.8\frac{m}{s^2}}{2 \cdot \frac{1}{2}} = 0.98N$$