```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import statsmodels.api as sm
        from statsmodels.tsa.seasonal import seasonal decompose
        from statsmodels.tsa.holtwinters import SimpleExpSmoothing
        from statsmodels.tsa.holtwinters import Holt
        from statsmodels.tsa.holtwinters import ExponentialSmoothing
        import statsmodels.graphics.tsaplots as tsa_plots
        import statsmodels.tsa.statespace as tm models
        from datetime import datetime,time
        import warnings
        import itertools
        import matplotlib.pyplot as plt
        warnings.filterwarnings("ignore")
        plt.style.use('fivethirtyeight')
        import pandas as pd
        import statsmodels.api as sm
        import matplotlib
        from pylab import rcParams
        from statsmodels.tsa.arima model import ARIMA
        from matplotlib import pyplot
        from sklearn.metrics import mean_squared_error
        import statsmodels.formula.api as smf
```

Matplotlib is building the font cache; this may take a moment.

In [2]: coca = pd.read_excel("CocaCola_Sales_Rawdata.xlsx")
coca

Out[2]:

	Quarter	Sales
0	Q1_86	1734.827000
1	Q2_86	2244.960999
2	Q3_86	2533.804993
3	Q4_86	2154.962997
4	Q1_87	1547.818996
5	Q2_87	2104.411995
6	Q3_87	2014.362999
7	Q4_87	1991.746998
8	Q1_88	1869.049999
9	Q2_88	2313.631996
10	Q3_88	2128.320000
11	Q4_88	2026.828999
12	Q1_89	1910.603996
13	Q2_89	2331.164993
14	Q3_89	2206.549995
15	Q4_89	2173.967995
16	Q1_90	2148.278000
17	Q2_90	2739.307999
18	Q3_90	2792.753998
19	Q4_90	2556.009995
20	Q1_91	2480.973999
21	Q2_91	3039.522995
22	Q3_91	3172.115997
23	Q4_91	2879.000999
24	Q1_92	2772.000000
25	Q2_92	3550.000000
26	Q3_92	3508.000000
27	Q4_92	3243.859993
28	Q1_93	3056.000000
29	Q2_93	3899.000000
30	Q3_93	3629.000000
31	Q4_93	3373.000000
32	Q1_94	3352.000000

```
Quarter
                            Sales
          33
               Q2_94
                      4342.000000
          34
               Q3 94
                      4461.000000
          35
               Q4_94
                      4017.000000
          36
               Q1_95
                      3854.000000
          37
               Q2_95
                      4936.000000
          38
               Q3_95 4895.000000
          39
               Q4_95 4333.000000
               Q1_96 4194.000000
          40
          41
               Q2_96 5253.000000
In [3]:
         coca1 = coca.copy()
In [4]: coca1.head().T
Out[4]:
                         0
                                     1
                                                 2
                                                              3
                                                                          4
          Quarter
                     Q1_86
                                 Q2_86
                                             Q3_86
                                                          Q4_86
                                                                      Q1_87
            Sales 1734.827 2244.960999 2533.804993 2154.962997 1547.818996
In [5]: coca1.isnull().sum()
Out[5]: Quarter
                      0
                      0
         Sales
         dtype: int64
In [6]: coca1.shape
Out[6]: (42, 2)
In [7]: coca1.describe()
Out[7]:
                       Sales
                   42.000000
          count
          mean
                 2994.353308
                  977.930896
            std
                 1547.818996
            min
           25%
                 2159.714247
                 2782.376999
           50%
           75%
                 3609.250000
           max 5253.000000
```

```
In [8]: coca1.dtypes
 Out[8]: Quarter
                       object
          Sales
                      float64
          dtype: object
 In [9]: coca1.describe().T
 Out[9]:
                                                                25%
                                                                            50%
                                                                                    75%
                 count
                             mean
                                          std
                                                     min
                                                                                           max
           Sales
                  42.0 2994.353308 977.930896 1547.818996 2159.714247 2782.376999
                                                                                 3609.25
                                                                                         5253.0
In [10]: temp = coca1.Quarter.str.replace(r'(Q\d)_(\d+)', r'19\2-\1')
In [11]: coca1['quater'] = pd.to_datetime(temp).dt.strftime('%b-%Y')
In [12]: coca1.head()
Out[12]:
              Quarter
                           Sales
                                   quater
           0
              Q1 86 1734.827000
                                 Jan-1986
              Q2_86 2244.960999
                                 Apr-1986
           1
              Q3 86 2533.804993
                                  Jul-1986
              Q4 86 2154.962997
                                 Oct-1986
              Q1 87 1547.818996
                                Jan-1987
In [13]: coca1 = coca1.drop(['Quarter'], axis=1)
In [14]: | coca1.reset_index(inplace=True)
In [15]: coca1['quater'] = pd.to_datetime(coca1['quater'])
In [16]: coca1 = coca1.set_index('quater')
In [17]: coca1.head()
Out[17]:
                     index
                                 Sales
              quater
           1986-01-01
                         0 1734.827000
           1986-04-01
                           2244.960999
           1986-07-01
                         2 2533.804993
           1986-10-01
                         3 2154.962997
                           1547.818996
           1987-01-01
```

```
In [18]: coca1['Sales'].plot(figsize=(20, 8),color='green',marker='o')
plt.show()
```



```
In [19]: for i in range(2,10,2):
          coca1["Sales"].rolling(i).mean().plot(label=str(i))
          plt.legend(loc=3)
```

Out[19]: <matplotlib.legend.Legend at 0x40284d76a0>


```
In [20]: ts_add = seasonal_decompose(coca1.Sales,model="additive")
fig = ts_add.plot()
plt.show()
```


In [22]: tsa_plots.plot_pacf(coca1.Sales, lags=10,color='black')

Out[22]:

In [23]: tsa_plots.plot_acf(coca1.Sales, lags=30,color='red')

Out[23]:

Building Time series forecasting with ARIMA

```
In [24]: X = coca1['Sales'].values
        size = int(len(X) * 0.66)
        train, test = X[0:size], X[size:len(X)]
        model = ARIMA(train, order=(5,1,0))
        model_fit = model.fit(disp=0)
        print(model fit.summary())
                                   ARIMA Model Results
        _______
        Dep. Variable:
Model:
                                        D.y No. Observations:
                                                                               26
                            ARIMA(5, 1, 0) Log Likelihood
                                                                        -172.036
        Method:
                                    css-mle S.D. of innovations
                                                                          163.191
                            Sun, 30 Jan 2022 AIC
        Date:
                                                                          358.071
        Time:
                                  20:24:36 BIC
                                                                          366.878
                                             HQIC
        Sample:
                                                                           360.607
        ______
                               std err z P>|z| [0.025
                        coef
        const 41.8440 26.509 1.579 0.114 -10.112 93.800 ar.L1.D.y -0.1479 0.195 -0.758 0.448 -0.530 0.234 ar.L2.D.y -0.3127 0.157 -1.996 0.046 -0.620 -0.006 ar.L3.D.y -0.1881 0.173 -1.090 0.276 -0.526 0.150 ar.L4.D.y 0.6222 0.167 3.716 0.000 0.294 0.950 ar.L5.D.y -0.1766 0.220 -0.804 0.422 -0.607 0.254 Roots
                                          Roots
         ______
                         Real Imaginary
                                                        Modulus Frequency
         ------
                 -1.0476 -0.0000j 1.0476

-0.0437 -1.0161j 1.0170

-0.0437 +1.0161j 1.0170

1.8835 -0.0000j 1.8835

2.7754 -0.0000j 2.7754
        AR.1
                                                                         -0.5000
        AR.2
                                                                        -0.2568
                                                                       0.2568
-0.0000
-0.0000
        AR.3
        AR.4
        AR.5
```

This summarizes the coefficient values used as well as the skill of the fit on the on the in-sample observations

```
In [25]: residuals = pd.DataFrame(model_fit.resid)
    residuals.plot()
    pyplot.show()
    residuals.plot(kind='kde',color='red')
    pyplot.show()
    print(residuals.describe())
```


	0
count	26.000000
mean	31.325143
std	202.029834
min	-438.906210
25%	-58.603725
50%	-9.191026
75%	200.235650
max	468.290007

The plot of the residual errors suggests that there may still be some trend information not captured by the model The results show that indeed there is a bias in the prediction (a non-zero mean in the residuals)

Rolling Forecast ARIMA Model

```
In [26]: history = [x for x in train]
         predictions = list()
         for t in range(len(test)):
             model = ARIMA(history, order=(5,1,0))
             model fit = model.fit(disp=0)
             output = model fit.forecast()
             yhat = output[0]
             predictions.append(yhat)
             obs = test[t]
             history.append(obs)
             print('predicted=%f, expected=%f' % (yhat, obs))
         predicted=3135.586995, expected=3243.859993
         predicted=3188.846687, expected=3056.000000
         predicted=3734.223342, expected=3899.000000
         predicted=3782.622445, expected=3629.000000
         predicted=3355.124415, expected=3373.000000
         predicted=3297.218016, expected=3352.000000
         predicted=4112.813791, expected=4342.000000
         predicted=3961.043871, expected=4461.000000
         predicted=4130.787500, expected=4017.000000
         predicted=3912.795280, expected=3854.000000
         predicted=4687.044803, expected=4936.000000
         predicted=4970.519023, expected=4895.000000
         predicted=4384.040798, expected=4333.000000
         predicted=4229.063937, expected=4194.000000
         predicted=5261.673205, expected=5253.000000
In [27]: |error = mean_squared_error(test, predictions)
         print('Test MSE: %.3f' % error)
```

Test MSE: 31594.780

```
In [28]: pyplot.plot(test)
    pyplot.plot(predictions, color='orange')
    pyplot.show()
```


A line plot is created showing the expected values (blue) compared to the rolling forecast predictions (red). We can see the values show some trend and are in the correct scale

Comparing Multiple Models

```
In [29]: coca2 = pd.get_dummies(coca, columns = ['Quarter'])
```

Out[30]:

	Sales	Q1	 Q4	Q4														
0	1734.827000	1	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
1	2244.960999	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
2	2533.804993	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
3	2154.962997	0	0	0	0	0	0	0	0	0	 1	0	0	0	0	0	0	0
4	1547.818996	0	1	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
5	2104.411995	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
6	2014.362999	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
7	1991.746998	0	0	0	0	0	0	0	0	0	 0	1	0	0	0	0	0	0
8	1869.049999	0	0	1	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
9	2313.631996	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
10	2128.320000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
11	2026.828999	0	0	0	0	0	0	0	0	0	 0	0	1	0	0	0	0	0
12	1910.603996	0	0	0	1	0	0	0	0	0	 0	0	0	0	0	0	0	0
13	2331.164993	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
14	2206.549995	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
15	2173.967995	0	0	0	0	0	0	0	0	0	 0	0	0	1	0	0	0	0
16	2148.278000	0	0	0	0	1	0	0	0	0	 0	0	0	0	0	0	0	0
17	2739.307999	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
18	2792.753998	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
19	2556.009995	0	0	0	0	0	0	0	0	0	 0	0	0	0	1	0	0	0
20	2480.973999	0	0	0	0	0	1	0	0	0	 0	0	0	0	0	0	0	0
21	3039.522995	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
22	3172.115997	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
23	2879.000999	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	1	0	0
24	2772.000000	0	0	0	0	0	0	1	0	0	 0	0	0	0	0	0	0	0
25	3550.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
26	3508.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
27	3243.859993	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	1	0
28	3056.000000	0	0	0	0	0	0	0	1	0	 0	0	0	0	0	0	0	0
29	3899.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
30	3629.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
31	3373.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	1
32	3352.000000	0	0	0	0	0	0	0	0	1	 0	0	0	0	0	0	0	0

	Sales	Q1	 Q4	Q4														
33	4342.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
34	4461.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
35	4017.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
36	3854.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
37	4936.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
38	4895.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
39	4333.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
40	4194.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
41	5253.000000	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0

42 rows × 43 columns

In [32]: coca2.head().T

Out[32]:

	0	1	2	3	4
Sales	1734.827	2244.960999	2533.804993	2154.962997	1547.818996
Q1	1.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	1.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q1	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	1.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q2	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	1.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q3	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	1.000000	0.000000

	0	1	2	3	4
Q4	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	0.000000	0.000000
Q4	0.000	0.000000	0.000000	0.000000	0.000000

```
In [33]: t= np.arange(1,43)
    coca2['t'] = t
    coca2['t_sq'] = coca2['t']*coca2['t']
    log_Sales=np.log(coca2['Sales'])
    coca2['log_Sales']=log_Sales
```

In [34]: coca2.head().T

Out[34]:

	0	1	2	3	4
Sales	1734.827000	2244.960999	2533.804993	2154.962997	1547.818996
Q1	1.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	1.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q1	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	1.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q2	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	1.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q3	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	1.000000	0.000000

	0	1	2	3	4
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
Q4	0.000000	0.000000	0.000000	0.000000	0.000000
t	1.000000	2.000000	3.000000	4.000000	5.000000
t_sq	1.000000	4.000000	9.000000	16.000000	25.000000
log_Sales	7.458663	7.716443	7.837477	7.675529	7.344602

```
In [35]: train1, test1 = np.split(coca2, [int(.67 *len(coca2))])
In [36]: linear= smf.ols('Sales ~ t',data=train1).fit()
         predlin=pd.Series(linear.predict(pd.DataFrame(test1['t'])))
         rmselin=np.sqrt((np.mean(np.array(test1['Sales'])-np.array(predlin))**2))
         rmselin
Out[36]: 580.1224130918627
In [37]: |quad=smf.ols('Sales~t+t_sq',data=train1).fit()
         predquad=pd.Series(quad.predict(pd.DataFrame(test1[['t','t_sq']])))
         rmsequad=np.sqrt(np.mean((np.array(test1['Sales'])-np.array(predquad))**2))
         rmsequad
Out[37]: 783.7297975037421
In [38]:
         expo=smf.ols('log_Sales~t',data=train1).fit()
         predexp=pd.Series(expo.predict(pd.DataFrame(test1['t'])))
         rmseexpo=np.sqrt(np.mean((np.array(test1['Sales'])-np.array(np.exp(predexp)))**2)
         rmseexpo
Out[38]: 588.1405104900215
In [39]: | additive= smf.ols('Sales~ Q1+Q2+Q3+Q4',data=train1).fit()
         predadd=pd.Series(additive.predict(pd.DataFrame(test1[['Q1','Q2','Q3','Q4']])))
         rmseadd=np.sqrt(np.mean((np.array(test1['Sales'])-np.array(predadd))**2))
         rmseadd
Out[39]: 1869.718820918695
```

```
In [40]: | addlinear= smf.ols('Sales~t+Q1+Q2+Q3+Q4',data=train1).fit()
         predaddlinear=pd.Series(addlinear.predict(pd.DataFrame(test1[['t','Q1','Q2','Q3'
         rmseaddlinear=np.sqrt(np.mean((np.array(test1['Sales'])-np.array(predaddlinear))*
         rmseaddlinear
Out[40]: 596.152628237252
In [41]: | addquad=smf.ols('Sales~t+t_sq+Q1+Q2+Q3+Q4',data=train1).fit()
         predaddquad=pd.Series(addquad.predict(pd.DataFrame(test1[['t','t sq','Q1','Q2','(
         rmseaddquad=np.sqrt(np.mean((np.array(test1['Sales'])-np.array(predaddquad))**2)]
         rmseaddquad
Out[41]: 412.1144436054246
         mulsea=smf.ols('log Sales~Q1+Q2+Q3+Q4',data=train1).fit()
         predmul= pd.Series(mulsea.predict(pd.DataFrame(test1[['Q1','Q2','Q3','Q4']])))
         rmsemul= np.sqrt(np.mean((np.array(test1['Sales'])-np.array(np.exp(predmul)))**2)
         rmsemul
Out[42]: 2374.9194407954424
In [43]: |mullin= smf.ols('log_Sales~t+Q1+Q2+Q3+Q4',data=train1).fit()
```

out[43]: 5359.687911931707

```
In [44]: mul_quad= smf.ols('log_Sales~t+t_sq+Q1+Q2+Q3+Q4',data=train1).fit()
    pred_mul_quad= pd.Series(mul_quad.predict(test1[['t','t_sq','Q1','Q2','Q3','Q4']]
    rmse_mul_quad=np.sqrt(np.mean((np.array(test1['Sales'])-np.array(np.exp(pred_mul_
    rmse_mul_quad
```

predmullin= pd.Series(mullin.predict(pd.DataFrame(test1[['t','Q1','Q2','Q3','Q4']
rmsemulin=np.sqrt(np.mean((np.array(test1['Sales'])-np.array(np.exp(predmullin))))

Out[44]: 3630.5619467350475

Conclusion

```
In [45]: output = {'Model':pd.Series(['rmse_mul_quad','rmseadd','rmseaddlinear','rmseaddquad', rmseaddquad', rmseaddlinear', rmseaddquad, rmseaddlinear', rms
```

In [46]: rmse=pd.DataFrame(output)

```
print(rmse)
In [47]:
                    Model
                                 Values
            rmse_mul_quad 3630.561947
         1
                  rmseadd
                           1869.718821
         2
            rmseaddlinear
                            596.152628
         3
              rmseaddquad
                            412.114444
         4
                 rmseexpo
                             588.140510
         5
                  rmselin
                            580.122413
         6
                  rmsemul 2374.919441
         7
                rmsemulin 5359.687912
```

783.729798

rmsequad

Additive seasonality with quadratic trend has the best RMSE value

