Varianta 053

Subjectul I

- **a)** Aria triunghiului *ABC* este $S = \frac{7}{2}$.
- **b)** Aria pătratului este S = 1.
- **c**) $\text{Re}(z) = \frac{3}{25}$.
- **d**) $\sin^2 \frac{\pi}{3} + \cos^2 \frac{\pi}{6} = \frac{3}{2}$.
- e) Ecuația căutată este: 3x+4y-25=0.
- **f**) Distanța de la punctul M la plan este $\frac{\sqrt{3}}{3}$.

Subjectul II

- 1
- a) $\left\{\frac{1}{2}\right\} + \left\{\frac{2}{2}\right\} + \left\{\frac{3}{2}\right\} = 1$.
- **b)** n = 10
- c) $f(1) \cdot f(2) \cdot f(3) \cdot \dots \cdot f(10) = 0$.
- **d**) Restul împărțirii polinomului f la g este 5.
- e) Probabilitatea căutată este $p = \frac{2}{3}$.
- 2
- **a**) f(1)=2.
- **b)** $f'(x) = 2007 \cdot x^{2006}, \forall x \in \mathbf{R}$.
- c) $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} = 2007$.
- **d**) $\int_{-1}^{1} f(x) dx = 2$.
- e) $\frac{1}{2007}$.

Subjectul III

- a) Pentru k=2 avem $A^2=0_2$, deci $A \in M$.
- b) Se arată prin calcul direct.
- c) Se arată prin calcul direct.

d) Considerăm
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M \implies \exists k \in \mathbb{N}, k \geq 2, X^k = 0_2 \implies \det(X) = 0.$$

Notăm t = tr(X) = a + d. Din **b**) obținem $X^2 = t \cdot X$ (1)

Deducem că $O_2 = X^k = t^{k-1} \cdot X$, deci $X = O_2$ sau t = 0 și apoi că $X^2 = O_2$.

e) Considerăm $n \in \mathbb{N}$, $n \ge 2$.

Presupunem că există $Z \in M_2(\mathbb{C})$ astfel încât $Z^n = A$.

Avem că $Z^{2n}=A^2=0_2$, deci $Z\in M$. Din punctul **d**) rezultă că $Z^2=0_2$, deci $\forall n\in \mathbb{N}$, $n\geq 2$, avem că $Z^n=0_2\neq A$, contradicție.

f) Din punctul e) deducem că $A \notin \text{Im } f$, deci f nu este surjectivă.

g) Considerăm
$$B \in M$$
. Obținem că $\det(I_2 + B + B^2 + ... + B^{n-1}) = \det(I_2 + B)$.

Dacă
$$B = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$$
, avem $\det(B) = -a^2 - bc = 0$, de unde deducem că $\det(I_2 + B) = 1 - a^2 - bc = 1$.

Subjectul IV

- **a**) $g'(x) = tg^2 x$, $\forall x \in (0, 1)$.
- **b)** Avem g'(x) > 0, $\forall x \in (0,1)$, deci funcția g este strict crescătoare pe (0,1).
- c) Funcția g este strict crescătoare pe (0,1), deci $g\left(\frac{1}{2n}\right) \le g\left(\frac{1}{n+k}\right) \le g\left(\frac{1}{n+1}\right)$, de unde rezultă concluzia.
- **d**) Pentru $k \in \mathbb{N}^*$, funcția f este o funcție Rolle pe intervalul [k, k+1], și din teorema lui Lagrange pe acest interval, există $t_k \in (k, k+1)$, astfel încât

$$\frac{f(k+1)-f(k)}{k+1-k} = f'(t_k) \quad \forall \ x > 0 \,, \Leftrightarrow \quad \text{există} \quad t_k \in (k,\,k+1), \ \ln(k+1) - \ln k = \frac{1}{t_k}$$

$$t_k \in \left(k,\, k+1\right) \iff \frac{1}{k+1} < \frac{1}{t_k} < \frac{1}{k} \quad \text{si obținem} \quad \frac{1}{k+1} < \ln(k+1) - \ln k < \frac{1}{k} \; .$$

e) Pentru $n \in \mathbb{N}^*$ avem $c_{n+1} - c_n = \frac{1}{n+1} - (\ln(n+1) - \ln n)^{d} < 0$, aşadar şirul $(c_n)_{n \in \mathbb{N}^*}$ este strict descrescător.

Dându-i lui k valori de la 1 la n în partea dreaptă a dublei inegalități din \mathbf{d}) și adunând relațiile, obținem $c_n > \ln(n+1) - \ln n > 0$, $\forall n \in \mathbf{N}^*$.

În concluzie, șirul este strict descrescător și mărginit inferior, deci conform teoremei lui Weierstrass, el este convergent.

f)
$$c_{2n} - c_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} - \ln 2$$
.

Obţinem
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \lim_{n \to \infty} (c_{2n} - c_n) + \ln 2 = \ln 2.$$

g) Dându-i lui
$$k$$
 valori de la 1 la n în dubla inegalitate din \mathbf{c}) și adunând relațiile, găsim:
$$n \cdot tg \frac{1}{2n} - \frac{1}{2} \le a_n - \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right) \le n \cdot tg \frac{1}{n+1} - \frac{n}{n+1}$$

și trecând la limită, obținem că $\lim_{n\to\infty} a_n = \ln 2$.