BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 50 959.6

Anmeldetag:

18. Oktober 2001

Anmelder/Inhaber:

Gesellschaft für Biotechnologische Forschung mbH

(GBF), Braunschweig/DE

Bezeichnung:

Verfahren zur quantitativen Bestimmung viraler

Partikel mit cholesterinhaltiger Hülle

IPC:

C 12 Q 1/70

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 21. Februar 2002 **Deutsches Patent- und Markenamt**

Der Präsident

"allmen'e

Im Auftrag

Waasmaier

5 Verfahren zur quantitativen Bestimmung viraler Partikel mit cholesterinhaltiger Hülle

Die Erfindung betrifft ein Verfahren zur quantitativen Bestimmung viraler Partikel mit cholesterinhaltiger Hülle unter Verwendung des Fluoreszenzfarbstoffs Filipin.

Hintergrund

10

15

25

30

Virusquantifizierung

Die Quantifizierung viraler Gesamtpartikel ist im Vergleich zur Bestimmung der Anzahl infektiöser viraler Partikel relativ aufwendig. Der Nachweis von retroviralen Partikeln in Zellkulturüberständen wird zum einen eingesetzt, um eine mögliche Kontamination mit Retroviren auszuschließen, und zum anderen, um die Quantität und Qualität der Virusproduktion durch Verpackungszellen zu überprüfen. Eine Kontamination mit Retroviren wird zumeist über die Aktivität der viralen reversen Transkriptase im Überstand nachgewiesen [85, 106] (ein Literaturverzeichnis mit detaillierten bibliographischen Angaben findet sich am Ende der Beschreibung). Für die Quantifizierung der Produktion viraler Gesamtpartikel stehen verschiedene Methoden zur Verfügung. Neben der erwähnten Aktivität der reversen Transkriptase werden die Bestimmung der viralen "strong-stop"-cDNA, elektronenmikroskopische Untersuchungen und immunhistochemische Färbungen von Proteinen auf der Virusoberfläche für eine Quantifizierung der Gesamtpartikel eingesetzt [7, 84, 85, 103].

Diese Methoden lassen sich nach ihrem Prinzip in zwei Arten 35 klassifizieren. Zum einen handelt es sich um indirekte Quan-

tifizierungsmethoden, bei denen von viralen Enzymaktivitäten 5 oder dem Nukleinsäuregehalt auf die Anzahl der viralen Partikel geschlossen wird. Zum anderen sind es direkte Methoden, die der Sichtbarmachung der viralen Partikel dienen. Zur ersten Klasse zählen der Nachweis der viralen RNA, der viralen "strong-stop"-cDNA und der Aktivität der viralen reversen 10 Transkriptase [84, 85, 143, 144]. Elektronenmikroskopische Untersuchungen und immunhistochemische Färbungen der viralen Envelope-Proteine auf der Virusoberfläche zählen zur zweiten Klasse der verwendeten Methoden [103, 7]. Die Vorteile der indirekten Methoden liegen in ihrer relativ einfachen Durchführung und in der schnellen Quantifizierung einer großen Probenzahl. Der Nachteil dieser Art der Partikelzahlbestimmung liegt darin, daß sie nur einen ungefähren Anhaltspunkt für die Anzahl der freigesetzten Viren bietet und, wie im Rahmen der Untersuchungen zur Erfindung gezeigt, zum Teil 20 zelltypspezifische Faktoren zur Berechnung der Gesamtpartikelzahlen notwendig sind. Meist wird z.B. davon ausgegangen, daß 1% der infektiösen Retroviren "strong-stop"-cDNA enthält, unabhängig von der Zellinie und den Produktionsbedingungen. Die mit der Erfindung vorgelegten Daten zeigen jedoch, daß je 25 nach Art der Produktionszellinie der Anteil von infektiösen Viren an den cDNA-haltigen Partikeln unterschiedlich hoch ist. Für die murine Fibroblastenzellinie NIH3T3 konnte in mehreren Experimenten nachgewiesen werden, daß in etwa der Hälfte der infektiösen Partikel die "strong-stop"cDNA enthal-30 ten ist. Dies widerspricht den Daten anderer Arbeitsgruppen, die zeigten, daß circa 1% der Gesamtpartikel infektiös sind [84, 149]. Für eine exakte Quantifizierung der viralen Gesamtpartikel mit dieser Methode ist es somit notwendig, einen 35 zelltypspezifischen Faktor zu berücksichtigen. Dieser ist jedoch nur mit Methoden zu bestimmen, die alle viralen Parti-

kel erfassen können, wie die direkten Methoden. Aber elektro-

nenmikroskopische Untersuchungen z.B. weisen einen nicht unerheblichen Geräte- und Materialaufwand auf. Die von Pizzato
et al. [7] entwickelte immunhistochemische Färbungen von Viren ist dagegen relativ schnell und einfach durchzuführen,
erfordern aber z.T. einen erheblichen Aufwand bei der Optimierung der Färbungen und sind auf die Existenz eines entsprechenden Antikörpers gegen virale Oberflächenproteine angewiesen.

Grundlage der Filipinfärbung

15

20

25

30

35

Bei der Bildung und der Freisetzung der Retroviren wird die virale Membran aus der Plasmamembran der Produktionszelle gebildet. Diese Umhüllung des Virus gleicht in der Zusammensetzung den Membranbereichen, in denen die Ausknospung des Virus stattgefunden hat [46]. Bestandteil ist neben Proteinen, Sphingo- und Glykolipiden auch Cholesterin. Dieses Lipid ist ein essentieller Bestandteil eukaryotischer Zellen, an das spezifisch Filipin bindet. Filipin wurde aus dem Kulturüberstand von Streptomyces filipinensis isoliert, besteht aus einem 35 gliedrigen Lacton-Ring und gehört damit zur Gruppe der Polyen-Makrolid-Antibiotika [145]. In früheren Arbeiten konnte gezeigt werden, daß Filipin mit dem Cholesterin der äußeren Hülle von Retroviren und anderen umhüllten Viren einen Komplex bildet [146, 147]. Die Membranen der Viren dienten dabei zur Untersuchung von Protein-Lipid-Interaktionen mit Hilfe von elektronenmikroskopischen Aufnahmen.

Eine Aufgabe der Erfindung ist die Bereitstellung eines schnell und einfach durchzuführenden, aber trotzdem verläß-lichen Verfahrens bzw. Methode zur quantitativen Bestimmung viraler und bakterieller Partikel.

Erfindungsgemäß gelöst wird diese Aufgabe durch eine Methode zur Quantifizierung viraler oder bakterieller Partikel mit cholesterinhaltiger Hülle, bei der man die Partikel mit einem fluorogenen Polyen-Macrolid anfärbt und danach die Fluoreszenzsignale der einzelnen Partikel quantitiv erfasst.

10

Erfindungsgemäß kann man die Methode auf HIV, Masernvirus, Influenza-Virus oder Mykoplasmen anwenden.

15

Bei der erfindungsgemäßen Methode kann man die Anzahl der Partikel durch Auszählen fluoreszierender Partikel unter einem Fluoreszenzmikroskop bestimmen.

Bei der erfindungsgemäßen Methode kann man ferner als Polyen-Makrolid Filipin verwenden.

20

Bei der erfindungsgemäßen Methode kann man ferner die Fluoreszenz von Filipin bei einer Wellenlänge von 387 nm anregen und die Auszählung bei der Emissionswellenlänge von 450 nm vornehmen.

25

Bei der erfindungsgemäßen Methode kann man ferner zur quantitativen Erfassung die Anzahl und/oder Konzentration der fluoreszierenden Partikel mit der bekannten Anzahl und/oder Konzentration von vorgegebenen fluoreszierenden Partikeln vergleichen.

30

35

Bei der erfindungsgemäßen Methode kann man ferner zum Vergleich fluoreszierende Partikel vorgeben, die 0,5- bis 2-mal so groß sind wie die zu quantifizierenden Partikel, insbesondere etwa gleich groß sind.

5 Bei der erfindungsgemäßen Methode kann man schließlich zum Vergleich inerte fluoreszierende Partikel vorgeben.

Die im Rahmen dieser Erfindung entwickelte Methode zur Virusquantifizierung kombiniert die Vorteile einer antikörperunabhängigen Färbung der viralen oder bakteriellen Membran und die Quantifizierung mit Hilfe eines Fluoreszenzmikroskopes.

Für eine Quantifizierung viraler Partikel über Fluoreszenz mit einem Fluoreszenzmikroskop sind die Interaktionen zwischen Cholesterin und Filipin bisher noch nicht genutzt worden. Das liegt wahrscheinlich auch mit daran, daß die Möglichkeit hochqualitative Objektive mit etwa einer 1000× Vergrößerung zur Sichtbarmachung von Viren oder Bakterien einzusetzen, unterschätzt worden ist.

20

10

Ein weiterer Gegenstand der Erfindung ist ein Besteck (kit of parts) zur Quantifizierung von viralen oder bakteriellen Partikeln mit cholesterinhaltiger Hülle, umfassend ein fluorogenes Polyen-Makrolid und

25

- (als fakultativen Bestandteil) fluoreszierende Partikel als Vergleichs-Standard.

Bei dem erfindungsgemäßen Besteck kann der Vergleichs-Standard in einem wässerigen Medium vorliegen.

30

Ferner können bei dem erfindungsgemäßen Besteck die fluoreszierenden Partikel des Vergleichs-Standards inerte Partikel sein.

35 Ferner können bei dem erfindungsgemäßen Besteck die fluoreszierenden Partikel des Vergleichs-Standards 0,5- bis 2-mal so 5 groß sein und insbesondere etwa so groß sein wie die zu quantifizierenden Partikel.

Schließlich kann das erfindungsgemäße Besteck durch Filipin als Polyen-Makrolid gekennzeichnet sein.

10

Ein weiterer Gegenstand der Erfindung ist schließlich die Verwendung eines fluorogenen Polyen-Makrolids, insbesondere von Filipin, zur Quantifizierung von viralen oder bakteriellen Partikeln mit cholesterinhaltiger Hülle.

15

20

35

Im folgenden wird die Erfindung ohne Beschränkung und unter Bezugnahme auf Beispiele und Figuren detaillierter erläutert.

Figur 1 zeigt: die Markierung der viralen Membran von 4070A MLV's mit Filipin. a) 4070A MLV produziert von NIH3T3 nach Transfektion mit dem 4070A-MLV-Provirus und dem retroviralen Vektor pLEIN. Die Viren wurden nach der Fixierung auf Glasobjektträgern durch Polybrene mit Filipin markiert; b) Negativkontrolle; Überstand von mock-transfizierten NIH3T3; c) Texas-Rot-markierte 100 nm große Beads. Die Beads wurden ebenfalls mit Polybrene auf Glasobjektträger fixiert und dienen als Größenvergleich mit den circa 100 nm großen viralen Partikeln und als Standard für die Quantifizierung; fluoreszenzmikroskopische Aufnahmen, Originalvergrößerung 1000x (Ölimmersionsobjektiv)

30 Färbung viraler Partikel am Beispiel von 4070A MLV

Für die Quantifizierung der viralen Partikel werden die fluorogenen Eigenschaften von Filipin ausgenutzt. Filipin markierte Viren können im Fluoreszenzmikroskop sichtbar gemacht
(Anregung 387 nm, Emission 450 nm) und quantifiziert werden
(siehe Figur 1). Die Quantifizierung der physischen viralen

Partikel erfolgt über den direkten Vergleich mit Texas-Rotmarkierten "Beads", die dem virushaltigen Überstand vor der Fixierung in bekannter Konzentration zugesetzt wurden (siehe Kapitel Methodik, Abschnitt Quantifizierung).

Vorteile der Filipinfärbung gegenüber anderen Quantifizie10 rungsmethoden

20

25

Die Filipinfärbung weist einige Vorteile auf: sie ist einfach und schnell durchführbar (Zeitaufwand unter 2 Stunden). Der Vergleich mit der Quantifizierung der "strong-stop"-cDNA zeigt, daß sie bis zu 40 mal sensitiver ist (vergleiche Tabelle 1). Die Methode erfordert aufgrund der Spezifität für Cholesterin keine langwierigen Optimierungen, wie sie häufig bei immunhistochemischen Färbungen notwendig ist, und sie ist unabhängig von virusspezifischen Antikörper. Dies ist gerade bei Viren, für die keine Antikörper zur Verfügung stehen von Vorteil. Die viralen Partikel können mit einem gängigen Fluoreszenzmikroskop, wie es in jedem biologischen Institut zu finden ist, sichtbar gemacht werden. Einzige Bedingung ist die Sicherstellung einer 1000x Vergrößerung und das Vorhandensein eines entsprechenden Filtersatzes. Beides ist jedoch mit einer einfachen Aufrüstung des Mikroskopes möglich. Ein weiterer Vorteil dieser Partikelfärbung ist der generelle Einsatz bei allen Virusarten, die über eine cholesterinhaltige Hülle verfügen (z.B. HIV, Masernvirus, Influenza-Virus).

5 Tabelle 1: Vergleich d r Partikelzahlbestimmung mit cDNA-Messung und Filipinmarkierung von 4070A MLV.

Zellinie	cDNA-Partikel [Partikel/10 ⁶ Zellen/24h]	filipinmarkierte Partikel [Partikel/10 ⁶ Zel- len/24h]
NIH3T3	3,1×10 ⁷	1,5×10 ⁸
BHK-A	3,7×10 ⁶	5,8×10 ⁷
ВНК 21В	6,0×10 ⁶	2,6×10 ⁷
TE FlyA7	8,2×10 ⁵	3,2×10 ⁷

Bestimmung der Varianz der Quantifizierung filipinmarkierter viraler Partikel

Für den Einsatz der Filipinmarkierung zur Quantifizierung physischer viraler Partikel muß die Reproduzierbarkeit der Analysen gewährleistet sein. Dazu wurden neun virale 4070A-MLV-Proben in Doppelbestimmung gefärbt und jede einzelne Färbung quantifiziert. Aus den Daten wurde die durchschnittliche Abweichung vom Mittelwert berechnet. Diese lag bei 12,5%.

Methodik

Färbung der viralen Membranen

20

25

10

Zur systematischen Quantifizierung von Viren, die mit der Plasmamembran der Wirtszelle umhüllt sind, wurde eine Färbungsmethode entwickelt, die unabhängig von Antikörpern ist, da gezielt das Cholesterin der viralen Membran fluoreszenzmarkiert wird. Filipin ist ein Antibiotikum, das auf die Membran-Sterine eukaryotischer Zellen wirkt, wobei es zu Ände-

rungen der Membranpermeabilität kommt. Aufgrund seiner Fluoreszenzeigenschaften und spezifischen Bindung an Cholesterin kann es zur Anfärbung von cholesterinhaltigen Membranen verwendet werden.

Für die Färbung wurden 195 μl virushaltiger Zellüberstand (filtriert; 0,45 μm) mit 4 μl Polybrene (0,4 mg/ml) und 1 μl Texas-Red-markierter Fluoreszenzpartikel (Molecular Probes, Durchmesser 100 nm, 3,6×10⁷/μl) vermischt und 1 Stunde bei Raumtemperatur in 8-Loch-"Chamber-Slides" inkubiert. Nachfolgend wurden die Proben dreimal mit 1×PBS gewaschen, 10 min mit Glycin (1,5 mg/ml) und anschließend 30 min mit Filipin (0,05 mg/ml) inkubiert. Die Präparate wurden dreimal mit 1×PBS gewaschen, mit Fluoreszenzeinschlußmedium (Dako) überschichtet und mit einem Deckgläschen versiegelt.

20

1×PBS: 140 mM NaCl; 27 mM KCl; 7,2 mM NaHPO4; 14,7 mM KH₂PO₄; pH 6,8 - 7,0 als 10× Stammlösung von GibcoBRL, als Gebrauchslösung 1:10 mit destilliertem Wasser verdünnt

30

35

Detektion der gefärbten Viren

Die Bestimmung der Anzahl der viralen Partikel eines virushaltigen Zellüberstandes erfolgt mit Hilfe von fluoreszenzmikroskopischen Aufnahmen (1000x Vergrößerung, 100er Ölimmersionsobjektiv). Die Visualisierung der Fluoreszenzpartikel erfolgte mit Filtern der Wellenlängen 595 / 615. Die Filipinsignale können mit Hilfe eines Fluoreszenzmikroskopes detektiert werden (Filter Set XF113 von Omegafilters, Anregung 387 nm (28), Emission 450 nm (58)).

5 Quantifizierung der filipinmarkierten viralen Partikel

Für die Quantifizierung werden vom selben Präparatausschnitt Aufnahmen der filipinmarkierten Viren und der fluoreszenzmarkierten Beads gemacht. Für eine statistisch signifikante Auswertung der Quantifizierung sollten mindestens sieben Aufnahmen aufgenommen werden (je für Viren und Beads). Die auf den Bildern sichtbaren Viren und Beads werden gezählt. Die Bestimmung der Konzentration der Viren erfolgt mit Formel 1. Die Berechnung wird durch den Einsatz der Beads mit einer bekannten Konzentration möglich.

10

 $\frac{c_{Beads} \times A_{Virus}}{A_{Beads}} = c_{Virus} \tag{1}$

20 c_{Beads} - Konzentration der Beads [Anzahl/ml]

c_{Virus} - Konzentration der Viren

A_{Beads} - Anzahl der Beads pro Bild

Avirus - Anzahl der Viren pro Bild

Zusammengefaßt wurde erfindungsgemäß eine neue Methode zur Quantifizierung von Viren entwickelt, die über eine cholesterinhaltige Membran verfügen. Es handelt sich dabei um eine antikörperunabhängige Färbung, bei der durch das Antibiotikum Filipin spezifisch die Cholesterinmoleküle der viralen Membran markiert werden. Filipin weist fluorogene Eigenschaften auf und kann mit einem Filtersatz für das bfp ("blue fluorescence protein"; Anregung bei 387 nm, Emission bei 450 nm) visualisiert werden. Durch diese Fluoreszenz können die Viren im Fluoreszenzmikroskop bei 1000x Vergrößerung sichtbar gemacht werden. Die Quantifizierung erfolgt über den direkten Vergleich mit 100 nm großen fluoreszenzmarkierten Partikeln (z.B. Texas-Rot-markiert), deren Konzentration bekannt ist.

Definitionen, Abkürzungen

10 4070A MLV: Maus-Leukämie-Virus, der in der Lage ist, die Zellen einer Vielzahl von Organismen zu infizieren

reverse Transkriptase: Enzym zur Umschreibung von RNA in DNA

"strong-stop"-cDNA: wird in viralen Partikeln des 4070A MLV von der reversen Transkriptase gebildet und dient der Quantifizierung der viralen Partikel

immunhistochemische Färbungen: fluoreszenzmarkierte Antikör20 per binden an spezifische Oberflächenstrukturen und können im
Fluoreszenzmikroskop sichtbar gemacht werden

Beads: Bezeichnung für kugelförmige Partikel

5 Literatur

20

25

- [7] Pizzato M. et al., Initial binding of murine leukemia virus particles to cells does not require specific Env-receptor interaction, J. Virol. 73: 8599-8611 (1999)
- [46] Hammerstedt M. et al., Minimal exclusion of plasma

 membrane proteins during retroviral envelope formation,

 Proc. Natl. Acad. Sci. USA 97: 7527-7532 (2000)
 - [84] Towers G.J. et al., One step screening of retroviral producer clones by real time quantitative PCR, J. Gene Med. 1: 352-359 (1999)
- 15 [85] Müller K. et al., Real time detection of retroviruses by PCR, J. Gene Med. Supplement to volume 1: 46 (1999)
 - [103] Bierley S.T. et al., A comparison of methods for the estimation of retroviral burden, Dev. Biol. Stand. 88: 163-165 (1996)
 - [106] Goff S. et al., Isolation and properties of Moloney murine leukemia virus mutants: use of a rapid assay for release of virion reverse transcriptase, J. Virol. 38: 239-248 (1981)
 - [143] Hofmann-Lehmann R. et al., Sensitive and robust one-tube real-time reverse transcriptase-polymerase chain reaction to quantify SIV RNA load: comparison of one- versus two-enzyme systems, AIDS Res. Hum. Retroviruses 16: 1247-1257 (2000)
- 30 [144] Schutten M. et al., Development of a real-time quantitative RT-PCR for the detection of HIV-2 RNA in plasma, J. Virol. Methods 88: 81-87 (2000)
 - [145] Whitefield G.B. et al., J. Am. Chem. Soc. 77: 4799-4801 (1955)

- 5 [146] Majuk Z. et al., Effects of filipin on the structure and biological activity of enveloped viruses,
 J. Virol. 24: 883-892 (1977)
 - [147] Feltkamp C.A. et al., Membrane-associated proteins affect the formation of filipin-cholesterol complexes in viral membranes, Exp. Cell. Res. 140: 289-297 (1982)
 - [149] Andersen K.B. et al., Entry of murine retrovirus into mouse fibroblasts, Virology 125: 85-98 (1983)

10

11. Oktober 2001/ch

Unser Zeichen: 12356

Neue deutsche Patentanmeldung

Gesellschaft für Biotechnologische Forschung mbH (GBF)

Wirth & Beer; Quantitative Bestimmung von Viren etc...

Ansprüche

- 1. Methode zur Quantifizierung viraler oder bakterieller Partikel mit cholesterinhaltiger Hülle bei der man die Partikel mit einem fluorogenen Polyen-macrolid anfärbt und danach die Fluoreszenzsignale der einzelnen Partikel quantitiv erfasst.
- Methode nach Anspruch 1, wobei man die Methode auf HIV, Masernvirus, Influenza-Virus oder Mykoplasmen anwendet.
 - 3. Methode nach Anspruch 1 oder 2 bei der man die Anzahl der Partikel durch Auszählen fluorisierter Partikel unter einem Fluoreszenzmikroskop bestimmt.
 - 4. Methode nach einem der vorhergehenden Ansprüche bei der man als Polyen-Makrolid Filipin verwendet.
 - 5. Methode nach Anspruch 4, bei der man die Fluoreszenz von Filipin bei einer Wellenlänge von 387 nm anregt und die

Auszählung bei der Investitionswellenlänge von 450 nm vornimmt.

- 6. Methode nach einem der vorhergehenden Ansprüche, bei der man zur quantitativen Erfassung die Anzahl und/oder Konzentration der fluoreszierenden Partikel mit der bekannten Anzahl und/oder Konzentration von vorgegebenen fluoreszierenden Partikeln vergleicht.
- 7. Methode nach Anspruch 6, bei der man zum Vergleich fluoreszierende Partikel vorgibt, die 0,5 2-mal so groß sind wie die zu quantifizierenden Partikel, insbesondere etwa gleich groß sind.
 - 8. Methode nach einem der Ansprüche 6-7, bei der man zum Vergleich inerte fluoreszierende Partikel vorgibt.
 - 9. Besteck (kit of parts) zur Quantifizierung von viralen oder bakteriellen Partikeln mit cholesterinhaltiger Hülle, umfassend
 - ein fluorogenes Polyen-Makrolid und
 - (als fakultativen Bestandteil) fluoreszierende Partikel als Vergleichs-standard.
 - 10. Besteck nach Anspruch 7, bei dem der Vergleichs-Standard in einem wässerigen Medium vorliegt.
 - 11. Besteck nach Anspruch 7 oder 8, bei dem die fluoreszierenden Partikel des Vergleichs-standards inerte Partikel sind.
 - 12. Besteck nach einem der Ansprüche 7-9, bei denen die fluoreszierenden Partikel des Vergleichs-standards 0,5 - 2-

mal so groß sind und insbesondere etwa so groß sind wie die zu quantifizierenden Partikel.

- 13. Besteck nach einem der Ansprüche 7-12 mit Filipin als Polyen-Makrolid.
- 14. Verwendung eines fluorogenen Polyen-Makrolids, insbesondere von Filipin, zur Quantifizierung von viralen oder bakteriellen Partikeln mit cholesterinhaltiger Hülle.

Zusammenfassung

Die Erfindung betrifft ein Verfahren zur quantitativen Bestimmung viraler Partikel mit cholesterinhaltiger Hülle, bei dem die viralen Partikel mit dem Fluoreszenzfarbstoff Filipin angefärbt werden und die Anzahl der viralen Partikel durch Auszählen der fluoreszierenden Partikel unter dem Fluoreszenzmikroskop bestimmt wird.

5

10

5 Figuren 1a, b, c

