Численное моделирование по физике

Задание 1 (6 баллов).

«Мертвая петля»

Тело массой m, разгоняется в горизонтальной плоскости и попадает на вертикально расположенный фрагмент кольца (дугу) радиуса R и угловым размером a ($\pi/2 \le a \le 3\pi/2$). Определить скорость тела, необходимую для прохождения всей длины дуги. Изобразить траекторию тела после отрыва от дуги. Дуга имеет коэффициент трения μ .

No॒	Масса тела т,	Радиус кольца	Угловой	Коэффициент
	КГ	R , м	размер дуги a ,	трения μ
			рад	
1	1	5	$\pi/2+\pi/6$	0,01
2	2	4	$\pi/2+\pi/3$	0,02
3	3	3	π + π /6	0,03
4	1	2	π + π /3	0,04
5	2	1	$\pi/2+\pi/6$	0,05
6	3	2	$\pi/2+\pi/3$	0,01
7	1	3	π + π /6	0,02
8	2	4	π + π /3	0,03
9	3	5	$\pi/2+\pi/6$	0,04
10	1	4	$\pi/2+\pi/3$	0,05
11	2	3	π + π /6	0,01
12	3	2	π + π /3	0,02
13	1	1	$\pi/2+\pi/6$	0,03
14	2	2	$\pi/2+\pi/3$	0,04
15	3	3	π + π /6	0,05
16	1	4	π + π /3	0,01
17	2	5	$\pi/2+\pi/6$	0,02
18	3	4	$\pi/2+\pi/3$	0,03
19	1	3	π + π /6	0,04
20	2	2	π + π /3	0,05
21	3	1	$\pi/2+\pi/6$	0,01
22	1	2	$\pi/2+\pi/3$	0,02
23	2	3	π + π /6	0,03
24	3	4	π + π /3	0,04
25	1	5	π	0,05

Задание 2 (6 баллов).

«Прецессия гироскопа»

На корабле вдоль продольной оси установлена турбина. Ротор турбины (1) имеет массу М и может считаться сплошным диском с радиусом R, который вращается с частотой 3000 об/мин. Расстояние между подшипниками (2 и 3) 5 м. Определить максимальные гироскопические давления на подшипники турбины при килевой качке с амплитудой a и периодом T вокруг оси (4), перпендикулярной оси ротора.

No	Macca	Радиус	Амплитуда	Период
	ротора М, кг	ротора R, м	качки <i>а</i> , °	качки Т, с
1	1000	0.5	от 5 до 10	от 6 до 11
2	2000	0.4	от 4 до 9	от 7 до 12
3	3000	0.3	от 3 до 8	от 8 до 13
4	4000	0.2	от 2 до 7	от 9 до 14
5	5000	0.1	от 3 до 8	от 10 до 15
6	1000	0.5	от 4 до 9	от 9 до 14
7	2000	0.4	от 5 до 10	от 8 до 13
8	3000	0.3	от 4 до 9	от 7 до 12
9	4000	0.2	от 3 до 8	от 6 до 11
10	5000	0.1	от 2 до 7	от 7 до 12
11	1000	0.5	от 3 до 8	от 8 до 13
12	2000	0.4	от 4 до 9	от 9 до 14
13	3000	0.3	от 5 до 10	от 10 до 15
14	4000	0.2	от 4 до 9	от 9 до 14
15	5000	0.1	от 3 до 8	от 8 до 13
16	1000	0.5	от 2 до 7	от 7 до 12
17	2000	0.4	от 3 до 8	от 6 до 11
18	3000	0.3	от 4 до 9	от 7 до 12
19	4000	0.2	от 5 до 10	от 8 до 13
20	5000	0.1	от 4 до 9	от 9 до 14
21	1000	0.5	от 3 до 8	от 10 до 15
22	2000	0.4	от 2 до 7	от 9 до 14
23	3000	0.3	от 3 до 8	от 8 до 13
24	4000	0.2	от 4 до 9	от 7 до 12
25	5000	0.1	от 5 до 10	от 6 до 11

Задание 3 (6+3 бонусных балла).

"Лунолет"

Инженер-электронщик лунной базы Иванов, тестируя автопилот малого лунного корабля забыл отключить цепь управления двигателем. В результате двигатель включился и корабль взлетел. Потеряв сознание от перегрузки, Иванов очнулся через некоторое время после отключения двигателя и обнаружил, что находится на высоте H_0 и движется со скоростью V_{0v} .

Помогите Иванову благополучно посадить корабль на Луну. Для этого необходимо рассчитать на какой высоте необходимо включить двигатель, чтобы совершить безопасную посадку. Вертикальная посадочная скорость не должна превышать 3 м/с

Используемые константы:

- 1. Масса аппарата М.
- 2. Масса топлива т.
- 3. Ускорение свободного падения $g_{\rm Л}$ на Луне.
- 4. Предельная перегрузка при маневрах a_{max}.
- 5. Скорость истечения продуктов сгорания из реактивного двигателя V_p.

Исходные данные (в скобках значения констант). Ускорение силы тяжести на Луне 1.62 м/с 2 ($g_{\rm Л}$ =1.62). Масса корабля 2000 кг, плюс пилот в скафандре 150 кг (M=2150). Двигатель работает на керосине с жидким кислородом — скорость истечения продуктов сгорания 3660 м/с ($V_{\rm P}$ =3660).) Начальные скорость и высота определены в варианте задания. В баках 150 кг топлива и окислителя (m = 150). Расход топлива двигателем составляет 15 кг/с.

Для расчетов скорости воспользуйтесь уравнением Мещерского.

Упрощения модели:

- Рассматривается движение только по вертикали.
- Поверхность Луны считается плоской

Входные данные: согласно варианту

Варианты задания

№ варианта	Высота НО, м	Вертикальная скорость V0y, м/с
1	120	79
2	280	76
3	410	73
4	570	70

5 680 67 6 830 64 7 950 61 8 1070 56 9 1190 53 10 1300 50 11 1400 47 12 1500 46 13 1600 41 14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8 25 2800 5			
7 950 61 8 1070 56 9 1190 53 10 1300 50 11 1400 47 12 1500 46 13 1600 41 14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	5	680	67
8 1070 56 9 1190 53 10 1300 50 11 1400 47 12 1500 46 13 1600 41 14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	6	830	64
9 1190 53 10 1300 50 11 1400 47 12 1500 46 13 1600 41 14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	7	950	61
10 1300 50 11 1400 47 12 1500 46 13 1600 41 14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	8	1070	56
11 1400 47 12 1500 46 13 1600 41 14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	9	1190	53
12 1500 46 13 1600 41 14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	10	1300	50
13 1600 41 14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	11	1400	47
14 1700 38 15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	12	1500	46
15 1800 35 16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	13	1600	41
16 1900 32 17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	14	1700	38
17 2000 29 18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	15	1800	35
18 2100 26 19 2200 23 20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	16	1900	32
19 2200 20 2300 21 2400 22 2500 14 23 2600 11 24 2700 8	17	2000	29
20 2300 20 21 2400 17 22 2500 14 23 2600 11 24 2700 8	18	2100	26
21 2400 17 22 2500 14 23 2600 11 24 2700 8	19	2200	23
22 2500 14 23 2600 11 24 2700 8	20	2300	20
23 2600 11 24 2700 8	21	2400	17
24 2700 8	22	2500	14
	23	2600	11
25 2800 5	24	2700	8
	25	2800	5

Построить графики зависимости вертикальной скорости V_y , ускорения a_y , и высоты H от времени.

Вывести значение вертикальной скорости на высоте 0.