```
SAS — Assignment
半圣杰 11910901
# Problem 1:
   ". For fixx). We have kurtosis = \frac{E[X+W^{\dagger}]}{E^{4}}
       \Rightarrow N = E_{X}(X) = \int_{-a}^{+a_0} x f_1 dx dx = \int_{-a,q_1,q_1}^{a,q_3,q_1} e^{-\frac{x}{2} + \frac{1}{2}} dx + \int_{-2,q_3,q_3}^{-2,q_4} \frac{e^{-\frac{x}{2} + \frac{1}{2}}}{x} dx + \int_{-2,q_3,q_3}^{-2,q_4,q_4} \frac{e^{-\frac{x}{2} + \frac{1}{2}}}{x} dx
                                                                                                   = 0 + In(0.2945X) \begin{vmatrix} 2.3243 \\ 0.9391 \end{vmatrix} + In(-0.2945X) \begin{vmatrix} 0.9399 \\ -2.3243 \end{vmatrix} = 0.
       \Rightarrow E[(X-\mu)^{+}] = E(X^{4}) = \int_{-\infty}^{+\infty} X^{4} f_{1}(x) dx = \int_{-\infty,9399}^{\infty,9399} o.3334 X^{4} dx + \int_{-0.9399}^{2.3243} o.2945 X^{2} dx + \int_{-2.3243}^{-\infty,9399} o.2945 X^{2} dx
                                                                                           = \frac{0.3334}{5} X^{5} \begin{vmatrix} 0.9399 \\ -0.9399 \end{vmatrix} + \frac{0.1945}{3} X^{3} \begin{vmatrix} 2.3243 \\ 0.9399 \end{vmatrix} + \frac{0.2945}{3} X^{3} \begin{vmatrix} -0.9399 \\ 2.3243 \end{vmatrix}
                                                                                           = 0.3334 [2x 0.93995] + 0.7945 [2.3243 - 0.939 ] - 0.939 ] + 2.3243
                                                                                             = 0.09782 + 2.30229 \approx 2.40
    \Rightarrow b_{3}^{2} = Var(X) = E[X-N_{1}]^{2} = E[X^{2}] = \int_{-0.9399}^{0.9399} o.3334 X^{2} dX + \int_{0.9399}^{0.3245} o.2945 dX + \int_{-2.3243}^{0.9999} o.2945 dX
                                                                                                                           = 0.334 [2x 0.9398] + 0.2945 [2.3243 - 0.9399 - 0.9399 + 2.3243]
                                                                                                                           = 0.18455 + 0.81541 = 1.00
      \Rightarrow The population kuttosis of fiex is \frac{E[ZX+ht]}{h^2} = 2.40 < 3
      > this distribution produces less outliers than the normal distribution.
     1°. For f_c(x). We have kurtosis = \frac{F(x-y^{+})}{b_c^{+}}
       \Rightarrow \mu_{2} = E_{X_{2}}(X) = \int_{-\infty}^{+\infty} x f_{2} \infty dx = \begin{cases} 2.4495 & 0.4082\pi - 0.1667 | \pi/\pi dx = \int_{-2.4495}^{0} 0.4082\pi + 0.1667 | \pi/\pi dx = 0.1667 | \pi/\pi dx =
                                                                                                                  = \left(\frac{0.4082}{2}\vec{X} + \frac{0.1667}{3}\vec{X}^3\right) \left|_{2.8495}^{\infty} + \left(\frac{0.4982}{2}\vec{X} - \frac{0.1667}{3}\vec{X}^3\right)\right|_{2.8495}^{2.8495}
                                                                                                                   = -\frac{0.4012}{2} \cdot (2.4495)^{2} + \frac{0.1667}{3} \cdot (2.4495)^{3} + \frac{0.4082}{2} (2.4495)^{2} - \frac{0.1667}{3} (2.4495)^{3} = 0
         \Rightarrow E[(\chi_2 | y_3)^4] = E(\chi_2^4) = \begin{cases} 2.4495 \\ 0.4982 \chi^4 - 0.1667 \chi^2 d77 + \int_{-2.4495}^{0} (0.4082 \chi^4 + 0.1667 \chi^2) d\chi \end{cases}
                                                                                  = \left(\frac{0.4982}{5} \chi^5 - \frac{0.1667}{6} \chi^6\right) \left| \frac{1}{0} \chi^4 + 95 + \left(\frac{0.4082}{5} \chi^5 + \frac{0.1667}{6} \chi^6\right) \right| \frac{0}{2.9495}
                                                                                   = 0.4082 (2.4495)5 - 0.1667 (2.4495)6 + 0.4082 (2.4495)5 - 0.1667 (2.4495)6
       ⇒ b= Var(X=)= E(X=W=)= [-4475 0.4082x-0.1667x-dx + ]-2.4475 0.4082x+0.1667x-dx
                                                                                             = 2 \left[ \frac{0.4082}{3} \cdot (2.4495)^3 - \frac{0.1667}{4} \cdot (2.4495)^6 \right] \approx 1.00
```

į.	∌ T	he	Pop	·u]o	tior	1	kutt	DS IS	of	f	- 12X)	is	Ē	[ZX-]	1,4]	= 2	40	< 3																			
				+	+				+	+																											
-	⇒) ·	Mis	dis	stri	> V (t	ion	Pro	zduce	es l	ess	οVr	tlier	s T	ian 1	the	Norm	nal (distri	butio	n.																	
	No	te	tha	t	for	fi	ZX).	f21	, ox	17	ıese	: tı	No ·	dist	ribut	ion	nave	the	2 S2	ame	me	an.	Va	riana	ce.	sk	ewn	ess	and	k	urto≤	is,	bnd	th.	e d	istrib	un or
O)	ro	กะเ	r <	ρm	٥	=>	· W	ا حا	Can'	f	iud	ae	+h	ل م	istri	ibut	iph	σh	lu.	Ьи	me	2D	\ <i>la</i> ri	ance	, ,	kowi	ness	ar	rl I	curt	rsis						
											J. C.	J.							Ú	ניי		. ,	V- III	11 (00			,,										
#	Pob	lem	2:							+																											
	Note	z H	nat	th	ere	a	re	tota	Hy	n∠r ≥	<u>۱-۱)</u> د	= 4	ŀs	Þai	rwis	e h	natcl	hinq	me	thod	s																
	۸۰	1 ,	not		يم جلا		سط	i		_	ال.		-ده اد		a:cc			42	0-10	لسم	n4-																
																	14 4	40	וזפט	wra	anı	+201	is,														
	⇒	Thu	s, 1	he	k	en	dall	s 7	Таи	Ŗ	τ	=	40 4	- Է Տ	= 7	-																					
=	> T}	INS.	We	-	nave	·	that	r th	e '	ran	k o	f I	γοΊε	ects	qive	n Ł	n :	2 T	'As	has	a	ווית	not	oπic	; † 0	Sitive	ly ^	relat	ions	hips							
															J		J								ľ		J										
# 17	ro ble	em ?	3;																																		
M	\cA	R.	1	₹(M	\=I	L,	χ,Υ) =	R	(N	۱-	ı)																								
	4h	۸+ i		the		~r~L	ahi	يمدا	tha	_ \	r ;	c n	nicon		1-0-		0.	iah a	mi	44- ۵		h c oxo	۱. م	Vox	: 416	c Y	n.		- +	h.a	Dar-:	L (s.	170	ice il	a v	alues	
	111	ווא	>,	HE	- +	7101	au	uiy	JI 14			را د	, IIZ	ig c	ae pe	ings	110	2) II)E	וטי	. "	e v	DSEI	IEU	VAI	IADIE	2 ^	111	ט יאָכ	(1 6	ile	pussi	Diy	111	וווענו	j v	AINE)	
	ø	fē	₹ it	sel	f.																																
j:	мΑ	R:	:	₽ <i>(</i>	M	=1]	χ.	۲) <i>-</i>	= R	C 18º	\= I]	X)	l																								
																<u>.</u>													_								
45	∍ r	niss	ing	ness	. 0	n	T	may	de	Pe	nd	on	Χ.	, bu	t i	t d	oes	not	dep	end	оη	٢	itself	(afte	r a	djus	ting	for	X)							
					+					+																											
					_					+																											
										_																											
										+																											
					+					+																											

Problem 4

```
DATA Problem4;
INFILE "/home/u60917423/Assignments/Assignment1/NationalPark.txt";
INPUT @1 ParkName $ 12.
 @ 15 State $ 8.
 +2 EstablishDate mmddyy10.
 +2 Acreage comma9.;
RUN;
```

总行数: 5 总列数: 4

总	总行数: 5 总列数: 4									
	ParkName	State	EstablishDate	Acreage						
1	Yellowstone	ID/MT/WY	-32081	2219791						
2	Everglades	FL	-9347	1508976						
3	Yosemite	CA	-25293	759620						
4	Glacier	MT	-18132	1013322						
5	Grand Canyon	AZ	-14919	1217262						

Problem 5

(a)

```
LIBNAME ass "/home/u60917423/my_shared_file_links/u44964922/Assignments";
PROC CONTENTS DATA = ass.sff POSITION;
RUN;
DATA problem5;
 SET ASS.SFF;
PROC FREQ DATA=PROBLEM5;
 TABLES Continent/NOPERCENT NOCUM;
RUN;
```

				按创建时间排序的变量
#	变量	类型	长度	标签
1	ByDate	数值	8	ID for sorting by first case date
2	ByCont	数值	8	ID for sorting by first case date within a continent
3	Country	字符	30	Name of country
4	FirstCase	数值	8	Date of first case reported
5	Apr	数值	8	Number of cumulative cases reported on the first day of the month for April
6	May	数值	8	Number of cumulative cases reported on the first day of the month for May
7	June	数值	8	Number of cumulative cases reported on the first day of the month for June
8	July	数值	8	Number of cumulative cases reported on the first day of the month for July
9	Aug	数值	8	Number of cumulative cases reported on the first day of the month for August
10	Latest	数值	8	Last reported cumulative number of cases reported to WHO as of August 9, 2009
11	ByDate_d	数值	8	ID for sorting by first death date
12	ByCont_d	数值	8	ID for sorting by first death date within a continent
13	FirstDeath	数值	8	Date of first death
14	May_d	数值	8	Number of cumulative deaths reported on the first day of the month for May
15	June_d	数值	8	Number of cumulative deaths reported on the first day of the month for June
16	July_d	数值	8	Number of cumulative deaths reported on the first day of the month for July
17	Aug_d	数值	8	Number of cumulative deaths reported on the first day of the month for August
18	Sep_d	数值	8	Number of cumulative deaths reported on the first day of the month for September
19	Oct_d	数值	8	Number of cumulative deaths reported on the first day of the month for October
20	Nov_d	数值	8	Number of cumulative deaths reported on the first day of the month for November
21	Dec_d	数值	8	Number of cumulative deaths reported on the first day of the month for December
22	Continent	字符	13	Continent

Continent								
Continent	频数							
Africa	24							
Asia	40							
Australia	16							
Europe	50							
North America	35							
South America	14							

(b)

```
* Note that the number for 05-01-2009 is 18018 and the number for 04-01-2009 is 17988;

PROC SQL;

create table data1 AS

SELECT FirstCase, Continent

from PROBLEM5

where 17988 <= FirstCase <18018;
```

```
quit;
PROC FREQ DATA=data1;
 TABLES Continent/NOPERCENT NOCUM;
 TITLE "# of countries per continent that had at least one case during April"
RUN;
PROC SQL;
 create table data2 AS
 SELECT FirstCase, Continent
 from PROBLEM5
 where FirstCase >= 18018;
quit;
PROC FREQ DATA=data2;
 TABLES Continent/NOPERCENT NOCUM;
 TITLE "# of countries per continent that had at least no case during April"
RUN;
PROC SQL;
 create table data3 AS
 SELECT FirstCase, Continent
 from PROBLEM5
 where FirstCase <17988;</pre>
quit;
PROC FREQ DATA=data3;
 TABLES Continent/NOPERCENT NOCUM;
 TITLE "# of countries per continent that we cannot tell whether there were cases
during April."
RUN;
```

of countries per continent that had at least one case during April

FREQ 过程

Continent							
Continent	频数						
Asia	1						
Australia	1						
Europe	7						
North America	3						

of countries per continent that had at least no case during April

FREQ 过程

Continent							
Continent	频数						
Africa	21						
Asia	38						
Australia	15						
Europe	42						
North America	32						
South America	14						

of countries per continent that we cannot tell whether there were cases during April

FREQ 过程

Continent								
Continent	频数							
Africa	3							
Asia	1							
Europe	1							

(c)

```
PROC SQL;

SELECT CONTINENT, COUNTRY, FIRSTCASE, LATEST, FIRSTDEATH format=DDMMYY10.

FROM ASS.SFF

WHERE FIRSTCASE=. AND FIRSTDEATH <> .

ORDER BY CONTINENT;

QUIT;
```

Continent	Name of country	Date of first case reported	Last reported cumulative number of cases reported to WHO as of August 9, 2009	Date of first death
Africa	São Tomé and Príncipe			26/10/2009
Africa	Madagascar			11/09/2009
Africa	Mozambique			16/09/2009
Asia	Mongolia			26/10/2009
Europe	Belarus			06/11/2009

Problem 6

页错误数

页回收数

(a)

According to the note, we have that there is 0 obs and 5 variables in dataset WORK.BB, which means there is no multiple records for 'visit' data.

```
LIBNAME problem6 "~/my_shared_file_links/u44964922/Assignments";

proc sort data=problem6.visits nouniquekey out=bb;

by id;

proc print;

run;

proc sort data=problem6.txgroup nouniquekey out=bb;

by id;

run;
```

```
代码
         日志
                 结果
                       输出数据
▼ ERROR、WARNING、NOTE
▶ (X) ERROR
▶ M WARNING
物理名: /home/u60917423/my_shared_file_links/u44964922/Assignments
  70
            proc sort data=problem6.visits nouniquekey out=bb;
  NOTE: 数据文件"PROBLEM6.VISITS.DATA"的格式是另一个主机的本地格式,或文件编码与会话
       编码不匹配。因此,系统将使用"跨环境数据访问"。这可能需要 额外的 CPU
       资源,并可能降低性能。
  71
           by id;
  NOTE: 从数据集 PROBLEM6.VISITS. 读取了 2363 个观测
  NOTE: 2363 observations with unique key values were deleted.
  NOTE: 数据集 WORK.BB 有 0 个观测和 5 个变量。
  NOTE: "PROCEDURE SORT"所用时间(总处理时间):
       实际时间
                      0.00 秒
       用户 CPU 时间
                      0.00 秒
       系统 CPU 时间
                      0.00 秒
       内存
                      1919.46k
       os 内存
                      28336.00k
                     2022-03-11 下午02:39:53
       时间戳
                                     102 Switch Count 2
       Step Count
```

0

234

```
PROC SQL;
 create table Visits AS
 select ID, visitdt, gender, visit, B_cholesterol
 from problem6.visits;
quit;
proc sort data=Visits;
 by id;
run;
PROC SQL;
 create table TX AS
 select ID, TX
 from problem6.txgroup;
quit;
proc sort data=TX NODUPKEY;
 by id;
run;
DATA temp;
 MERGE Visits TX;
 BY ID;
PROC SQL;
 create table combine AS
 select ID, TX, visit, visitdt, B_cholesterol
 from temp
 where TX = 1;
RUN;
```


(c)

```
proc sql;
create table median as
select median(B_cholesterol) as Median from combine ;
quit;
PROC SQL;
 CREATE TABLE Dummy AS
 SELECT ID, TX, visitdt, visit, B_Cholesterol, Median
 FROM combine median;
QUIT;
Data Dummy;
 SET Dummy;
 Length Abovemedian $ 2.;
 IF B_Cholesterol>Median Then Abovemedian=1;
 ELSE Abovemedian=0;
RUN;
PROC PRINT data=Dummy;
RUN;
```

Problem 7

```
LIBNAME ass "/home/u60917423/my_shared_file_links/u44964922/Assignments";

PROC CONTENTS DATA = ass.sff POSITION;

RUN;

DATA problem5;

SET ASS.SFF;

PROC FREQ DATA=PROBLEM5;

TABLES Continent/NOPERCENT NOCUM;

RUN;
```

				S	全部						
			Fema	le		Male	•				
		Age at Death			/	Age at D	eath	1	Age at D	eath	
		N	Mean	Median	N	Mean	Median	N	Mean	Median	
Cause of Death	Smoking Status										
Cancer	Heavy (16-25)	33	61.61	62.00	93	67.82	68.00	126	66.19	66.50	
	Light (1-5)	30	68.97	67.50	16	74.88	77.00	46	71.02	70.00	
	Moderate (6-15)	34	62.97	62.00	24	70.17	72.50	58	65.95	65.00	
	Non-smoker	150	69.74	71.00	84	74.23	75.00	234	71.35	72.00	
	Very Heavy (> 25)	8	64.63	64.50	64	66.95	68.50	72	66.69	68.00	
Cerebral Vascular Disease	Heavy (16-25)	19	69.26	71.00	54	70.43	70.50	73	70.12	71.00	
	Light (1-5)	27	69.85	72.00	12	69.33	71.50	39	69.69	72.00	
	Moderate (6-15)	19	70.11	74.00	24	70.38	71.50	43	70.26	72.00	
	Non-smoker	122	75.64	77.00	59	73.31	75.00	181	74.88	76.00	
	Very Heavy (> 25)	8	65.38	66.00	29	67.07	66.00	37	66.70	66.00	
Coronary Heart Disease	Heavy (16-25)	24	70.54	72.50	103	66.19	66.00	127	67.02	67.00	
	Light (1-5)	23	72.30	72.00	32	66.88	65.00	55	69.15	70.00	
	Moderate (6-15)	22	71.14	69.00	39	70.59	71.00	61	70.79	71.00	
	Non-smoker	134	75.14	75.00	137	72.69	73.00	271	73.90	74.00	
	Very Heavy (> 25)	5	67.20	75.00	80	64.30	64.50	85	64.47	65.00	

(b)

```
DATA heart1;

set SASHELP.HEART;

IF Sex ~= 'Female' Then Delete;

IF Chol_Status ~= 'High' Then Delete;

run;

DATA heart2;

set SASHELP.HEART;

IF Sex ~= 'Female' Then Delete;

IF Chol_Status ~= 'Desirable' Then Delete;

run;

DATA h1;

set heart1;
```

```
CHDhigh = AgeCHDdiag;
run;
DATA h2;
 set heart2;
 CHDdesir = AgeCHDdiag;
DATA heart3;
 merge h1 h2;
title 'Age at CHD Diagnosed By Cholesterol Status for Female';
PROC SGPLOT DATA=heart3;
 histogram CHDhigh/fillattrs=graphdata1 name='s' legendlabel='High'
 transparency=0.5 binwidth=5;
 density CHDhigh/type=kernel legendlabel='Kernel' lineattrs=(pattern=solid);
 histogram CHDdesir/fillattrs=graphdata1 name='d' legendlabel='Desirable'
 transparency=0.5 binwidth=5;
 density CHDdesir/type=kernel legendlabel='Kernel' lineattrs=(pattern=solid);
  xaxis display=(nolabel);
Run;
```



```
* create a macro named %DrawPlot;
%MACRO DrawPlot(cate=);
 %IF &SYSDAY = Monday %THEN %DO;
   PROC SGPLOT DATA = SASHELP.Heart;
     histogram AgeAtDeath/group=&cate;
   RUN;
 %END;
  %ELSE %IF &SYSDAY = Wednesday %THEN %DO;
   PROC SGPLOT DATA = SASHELP.Heart;
     histogram AgeAtDeath/group=&cate;
   RUN;
  %END;
  %ELSE %IF &SYSDAY = Tuesday %THEN %DO;
   PROC SGPLOT DATA = SASHELP.Heart;
     VBAR AgeAtDeath/group=&cate;
   RUN;
  %END;
 %ELSE %IF &SYSDAY = Thursday %THEN %DO;
   PROC SGPLOT DATA = SASHELP.Heart;
     VBAR AgeAtDeath/group=&cate;
   RUN;
  %END;
%MEND;
* invoke the macro;
%DrawPlot(cate=Sex)
* This figure was drawn on thursday
```

