1 Conjuntos Dendroidales

En esta sección vamos a introducir las nociones necesarias para poder describir los conjuntos dendroidales mediante el uso de árboles. Para ello tendremos que hablar sobre la formalización de árboles como opéradas coloreadas y los morfismos posibles entre árboles. Finalmente, podremos definir un conjunto dendroidal como una categoría.

1.1 Árboles como opéradas

1.1.1 Formalismo de árboles

Un árbol es un grafo no vacío, finito, conexo y sin lazos. Llamaremos vértices exteriores a los vértices que tienen solamente una arista adyacente. Todos los árboles que consideraremos tendrán raíz, es decir, para cada árbol existe un vértice exterior, llamado output o salida. El conjunto de vértices exteriores restantes lo llamaremos inputs o entradas. Este último conjunto puede ser vacío y no contiene el vértice output.

Para dibujar dichos árboles, borraremos los vértices output e inputs de la figura. De tal manera que los vértices restantes serán los *vértices* del árbol. Dado un árbol T, definimos el conjunto de vértices como V(T) y el conjunto de aristas como E(T).

Llamaremos hojas o aristas externas a las aristas adyacentes de los vértices inputs y raíz a la arista adyacente del vértice output. De tal manera que las aristas restantes las llamaremos aristas internas. Podemos observar que existe una dirección clara en cada árbol, desde las hojas hasta la raíz.

Sea v un vértice de un árbol finito con raíz, definimos out(v) como la única arista de salida y in(v) como el conjunto de aristas de entrada, observamos que este último conjunto puede ser vacío. Llamaremos la valencia de v a la cardinalidad del conjunto in(v).

Finalmente, la siguiente figura es un árbol de ejemplo:

Observamos que hemos eliminado el vértice output de la arista a y los vértices inputs en las aristas e, f y c. Este árbol tiene tres vértices r, v y w con valencia 3, 2 y 0, respectivamente. Este árbol tiene tres hojas e, f y c, y dos aristas internas b y d. Finalmente, la raíz es la arista a.

1.1.2 Árboles planares

Definición 1.1. Un árbol planar con raíz es un árbol con raíz T dotado con un orden lineal del conjunto in(v) para cada v de T.

Observación 1.2. El orden de los conjuntos $\operatorname{in}(v)$ se obtiene de la idea de dibujar los árboles en un plano. Es decir, para dibujar un árbol siempre pondremos la raíz debajo y las hojas arriba ordenando de izquierda a derecha. Observamos con esta técnica que

tendremos varias representaciones planares del mismo árbol. Por ejemplo,

Definición 1.3. Denotaremos por η o *unitario* el árbol que tiene una única arista y ningún vértice.

Definición 1.4. Sea T un árbol planar con raíz. Denotaremos la opérada coloreada nosimétrica generada por T como $\Omega_p(T)$. El conjunto de colores de $\Omega_p(T)$ es el conjunto de aristas E(T) de T y las operaciones están generadas por los vértices del árbol. Es decir, para cada vértice v con entradas e_1, \ldots, e_n y salida e, definimos una operación $v \in$ $\Omega_p(T)(e_1, \ldots, e_n; e)$. Las otras operaciones son las operaciones unitarias y las operaciones obtenidas por composición.

Observación 1.5. Para todo e_1, \ldots, e_n, e , el conjunto de operaciones $\Omega_p(T)(e_1, \ldots, e_n; e)$ contiene como mucho un solo elemento.

Ejemplo 1.6. Vamos a realizar la descripción completa de la opérada asociada al árbol T:

$$e$$
 v
 b
 c
 r
 T
 (1.3)

La operada $\Omega_p(T)$ tiene seis colores a, b, c, d, e, y f. Las operaciones generadoras son $v \in \Omega_p(T)(e,f;b), w \in \Omega_p(T)(\cdot;d)$ y $r \in \Omega_p(T)(b,c,d;a)$. Mientras que las otras operaciones son las operaciones unitarias $1_a,1_b,\ldots,1_f$ y las operaciones composición $r\circ_1 v \in \Omega_p(T)(e,f,c,d;a), r\circ_2 w \in \Omega_p(T)(b,c;a)$ y

$$(r \circ_1 v) \circ_3 w = (r \circ_2 w) \circ_1 v \in \Omega_p(T)(e, f, c; a)$$

Definición 1.7. La categoría de árboles planares con raíz Ω_p es la subcategoría plena de la categoría de opéradas coloreadas no-simétricas cuyos objetos son $\Omega_p(T)$ para cada árbol T.

Podemos pensar que Ω_p es una categoría cuyos objetos son árboles planares con raíz. Sean S y T dos árboles planares con raíz, el conjunto de morfismos $\Omega_p(S,T)$ es dado por los morfismos entre opéradas coloreadas no-simétricas de $\Omega_p(S)$ a $\Omega_p(T)$.

Observación 1.8. La categoría Ω_p extiende la categoría simplicial Δ . Para todo $n \geq 0$ se define un árbol lineal L_n como un árbol planar con n+1 aristas y n vértices v_1, \ldots, v_n , donde la valencia de todos los vértices es uno. Es decir, es un árbol cuyos vértices solo

tienen una arista de entrada.

Denotaremos este árbol por [n]. Toda apliación que mantiene el orden de manera que envíe $\{0,\ldots,n\}$ a $\{0,\ldots,m\}$, define un morfismo $[n]\to[m]$ en la categoría Ω_p . De esta manera obtenemos un encaje

$$\Delta \stackrel{u}{\longrightarrow} \Omega_p$$

Este encaje es un funtor plenamente fiel. Podemos observar que para toda flecha $S \to T$ en Ω_p , si T es lineal entonces S también lo es.

1.2 Morfismos en Ω_p

En los siguientes apartados vamos a tratar con todos los tipos de morfismos en Ω_p y dar una descripción más explícita.

1.2.1 Caras

Sea T un árbol planar con raíz.

Definición 1.9. Una cara interna asociada a una arista interna b en T es una función $\partial_b \colon T/b \to T$ en Ω_p , donde T/b es el árbol que se obtiene al contraer la arista b de T.

A nivel de opéradas, esta función es una inclusión de los colores y de las operaciones generadoras de $\Omega_p(T/b)$, excepto por la operación u, que se envía a la composición $r \circ_b v$, donde r y v son dos vértices en T con la arista b entre ellos, y u es el vértice correspondiente en T/b. Tomamos la siguiente figura para visualizar la función.

Definición 1.10. Una cara externa asociada a un vértice v en T, con solo una arista interna adyacente, es una función $\partial_v \colon T/v \to T$ en Ω_p , donde T/v es el árbol que se obtiene al cortar el vértice v de T con todas sus aristas externas.

A nivel de opéradas, esta función es una inclusión de los colores y de las operaciones generadoras de $\Omega_p(T/v)$, donde r y v son dos vértices en T con la arista b entre ellos, y u es el vértice correspondiente en T/b. Tenemos dos tipos de cara externa que mostramos

en las siguientes figuras.

Observación 1.11. Con esta última definición no queda excluída la posibilidad de cortar la raíz. Esta situación solo será posible si la raíz tiene solamente una arista interna adyacente. Entonces, no todo árbol T tiene una cara externa asociada a su raíz.

Observación 1.12. Vale la pena mencionar un caso en especial, la inclusión del árbol sin vértices η en un árbol con un vértice, llamado corola. En este caso tendremos n+1 caras si la corola tiene n hojas. La opérada $\Omega_p(\eta)$ consiste solamente de un color y la operación identidad de dicho color. Entonces, una función de opéradas $\Omega_p(\eta) \to \Omega(T)$ es simplemente eligir un color de una corola T.

Para concluir, llamaremos caras tanto a las caras internas como a las caras externas.

1.2.2 Degeneraciones

Sea T un árbol planar con raíz y v un vértice de valencia uno en T.

Definición 1.13. Una degeneración asociada al vértice v es una función $\sigma_v \colon T \to T \setminus v$ en Ω_p , donde $T \setminus v$ es el árbol que se obtiene al cortar el vértice v y juntar las dos aristas adjuntas en una nueva arista e.

A nivel de opéradas, la función envía los colores e_1 y e_2 de $\Omega_p(T)$ al color e de $\Omega_p(T \setminus v)$ y envía la operación generativa v a la operación identidad id_e , mientras que es la identidad para los colores y operaciones generativas restantes. Tomamos la siguiente figura para visualizar la función.

Observación 1.14. Las caras y las degeneraciones generan todos los morfismos de la categoría Ω_p .

El siguiente lema es una generalización en Ω_p del lema en la categoría Δ , diciendo que toda flecha en dicha categoría se puede escribir como composición de degeneraciones seguidas por caras.

Lema 1.15. Toda flecha $f: S \to T$ en Ω_p descompone, salvo isomorfismos, como

donde $\sigma\colon S\to H$ es una composición de degeneraciones y $\partial\colon H\to T$ es una composición de caras.

Proof. Es una demostración análoga a la del lema 3.21.

1.2.3 Identidades dendroidales

En este apartado vamos a dar las relaciones entre los morfismos generadores de Ω_p . Las identidades que obtenemos generalizan las identidades simpliciales de la categoría Δ .

Relaciones elementales de caras

Sea $\partial_a \colon T/a \to T$ y $\partial_b \colon T/b \to T$ dos caras internas distintas de T. Seguidamente tenemos las caras internas $\partial_a \colon (T/b)/a \to T/b$ y $\partial_b \colon (T/a)/b \to T/a$. Observamos que (T/a)/b = (T/b)/a, entonces el siguiente diagrama conmuta:

$$(T/a)/b \xrightarrow{\partial_b} T/a$$

$$\downarrow \partial_a \qquad \qquad \downarrow \partial_a$$

$$T/b \xrightarrow{\partial_b} T$$

Mostramos esta relación mediante las siguientes figuras:

Sea $\partial_v \colon T/v \to T$ y $\partial_w \colon T/w \to T$ dos caras externas distintas de T, y asumimos que T tiene como mínimo tres vértices. Seguidamente tenemos las caras externas $\partial_v \colon (T/w)/v \to T/w$ y $\partial_w \colon (T/v)/w \to T/v$. Observamos que (T/v)/w = (T/w)/v, entonces el siguiente diagrama conmuta:

$$(T/v)/w \xrightarrow{\partial_w} T/v$$

$$\downarrow \partial_v \qquad \qquad \downarrow \partial_v$$

$$T/w \xrightarrow{\partial_w} T$$

Mostramos esta relación mediante las siguientes figuras:

En el caso que T solo tenga dos vértices, existe un diagrama conmutativo similar mediante la inclusión de η a una n-corola. Existe un último caso para combinar una cara interna con una cara externa, y viceversa; así obteniendo un diagrama conmutativo similar, pero se debe tener cuenta dos condiciones excluyentes. Sean $\partial_v \colon T/v \to T$ y $\partial_e \colon T/e \to T$ una cara externa y una cara interna de T. Tenemos que la combinación de estas dos caras existen si:

- Si la arista e no es adyacente al vértice v.
- Si la arista e si es adyacente al vértice v, entonces existe otro vértice w adyacente a la arista e.

Relaciones elementales de degeneraciones

Sea $\sigma_v \colon T \to T \backslash v \text{ y } \sigma_w \colon T \to T \backslash w$ dos degeneraciones distintas de T. Seguidamente tenemos las degeneraciones $\sigma_v \colon T \backslash w \to (T \backslash w) \backslash v \text{ y } \sigma_w \colon T \backslash v \to (T \backslash v) \backslash w$. Observamos que $(T \backslash v) \backslash w = (T \backslash w) \backslash v$, entonces el siguiente diagrama conmuta:

$$T \xrightarrow{\sigma_w} T \backslash w$$

$$\sigma_v \downarrow \qquad \qquad \downarrow \sigma_v$$

$$T \backslash v \xrightarrow{\sigma_w} (T \backslash v) \backslash w$$

Mostramos esta relación mediante las siguientes figuras:

Relaciones combinadas

Sea $\sigma_v \colon T \to T \setminus v$ una degeneración y $\partial \colon T' \to T$ es una cara de tal manera que la degeneración $\sigma_v \colon T' \to T' \setminus v$ esta bien definida. Entonces existe una cara $\partial \colon T' \setminus v \to T \setminus v$

determinada por el mismo vértice o arista que $\partial\colon T'\to T$. Además, el siguiente diagrama conmuta:

$$T \xrightarrow{\sigma_v} T \backslash v$$

$$\partial \qquad \qquad \qquad \uparrow \partial$$

$$T' \xrightarrow{\sigma_v} T' \backslash v$$

Sea $\sigma_v \colon T \to T \setminus v$ una degeneración y $\partial \colon T' \to T$ es una cara interna en una arista adyacente a v o una cara externa en v, si es posible. Entonces, tenemos que $T' = T \setminus v$ y la composición $T \setminus v \xrightarrow{\partial} T \xrightarrow{\sigma_v} T \setminus v$ es la función identidad $id_{T \setminus v}$.

1.3 Árboles no planares

Definición 1.16. Sea T un árbol no-planar. Denotaremos la opérada coloreada simétrica generada por T como $\Omega(T)$. El conjunto de colores de $\Omega(T)$ es el conjunto de aristas E(T) de T. Las operaciones están generadas por los vértices del árbol, y el grupo simétrico de n letras Σ_n actúa en cada operación de n entradas permutando el orden de las entradas. Es decir, para cada vértice v con entradas e_1, \ldots, e_n y salida e, definimos una operación $v \in \Omega(T)(e_1, \ldots, e_n; e)$. Las otras operaciones son las operaciones unitarias, las operaciones obtenidas por composición y la acción del grupo simétrico.

Ejemplo 1.17. Consideramos la figura del siguiente árbol T:

La opérada $\Omega(T)$ tiene seis colores a, b, c, d, e, y f. Las operaciones generadoras son las mismas que las operaciones generativas en $\Omega_p(T)$. Observamos que toda operación de $\Omega_p(T)$ son operaciones de $\Omega(T)$, pero no a la inversa ya que hay más operaciones en $\Omega(T)$ obtenidas por la acción del grupo simétrico. Por ejemplo, sea σ la transposición de dos elementos de Σ_2 , entonces tenemos una operación $v \circ \sigma \in \Omega(f, e; b)$.

Observación 1.18. Sea T cualquier árbol, entonces $\Omega(T) = \Sigma(\Omega_p(\overline{T}))$, donde \overline{T} es una representación planar de T y Σ representa todas las acciones del grupo simétrico posibles aplicadas a las entradas de las operaciones. De hecho, se elige una estructura planar de T como generador de $\Omega(T)$.

Definición 1.19. La categoría de árboles con raíz Ω es la subcategoría plena de la categoría de opéradas coloreadas cuyos objetos son $\Omega(T)$ para todo árbol T.

Podemos pensar que Ω es una categoría cuyos objetos son árboles con raíz. Sean S y T dos árboles con raíz, el conjunto de morfismos $\Omega(S,T)$ es dado por los morfismos entre opéradas coloreadas de $\Omega(S)$ a $\Omega(T)$.

Observación 1.20. Los morfismos de la categoría Ω son generados por las caras y las degeneraciones, análogas al caso planar, y los isomorfismos no planares.

Lema 1.21. Toda flecha $f: S \to T$ en Ω descompone como

$$S \xrightarrow{f} T$$

$$\sigma \downarrow \qquad \uparrow \partial$$

$$S' \xrightarrow{\varphi} T'$$

donde $\sigma: S \to S'$ es una composición de degeneraciones, $\varphi: S' \to T'$ es isomorfismo, $y \ni T \to T'$ es una composición de caras.

Proof. Vamos a demostrar por inducción sobre el número de vértices de S y T. Si S y T no tienen vértices, entonces $S=T=\eta$ y f es la identidad. Podemos asumir que f envía la raíz de S a la raíz de T; de lo contrario podemos factorizar f men una función $S\to T'$ que conserva la raíz seguido de otra función $T'\to T$ que es una composición de caras externas. También podemos asumir que f es un epimorfismo en las hojas, de lo contrario podemos factorizar f en $S\to T/v \xrightarrow{\partial_d} T$, donde v es el vértice que está debajo de la hoja en T pero no está en la imágen de f.

Sean a y b son dos aristas de S tales que f(a) = f(b), entonces a y b deberían estar en la misma rama de S y f envía los vértices intermediarios a sus identidades.

Podemos factorizar f como una sobreyección segudia de una inyección con los colores, ya que f es una funcion de opéradas coloreadas. Esto corresponde a una factorización en Ω ,

$$S \xrightarrow{\psi} S' \xrightarrow{\xi} T$$

donde ψ es una composición de degeneraciones y ξ es biyectiva en las hojas, envía la raíz de S' a la raíz de T y es inyectiva en los colores.

Si ξ es sobreyectiva en los colores, entonces ξ es un isomorfismo. Si ξ no es sobreyectiva, entonces existe una arista e de T que no está en la imágen de ξ . Como e debe ser una arista interna (no una hoja), podemos factorizar ξ como

$$S' \xrightarrow{\xi'} T/e \xrightarrow{\partial_e} T$$

Ahora continuamos por inducción sobre la función ξ' .

1.3.1 Prehaz de estructuras planares

Sea $P:\Omega^{\mathrm{op}}\to\mathrm{Set}$ el prehaz en Ω que envía cada árbol a su conjunto de estructuras planares. Recordamos que la categoría $\Omega\backslash P$ es la categoría cuyos objetos son pares (T,x) con $x\in P(T)$. Sean (T,x) y (S,y) dos objetos, un morfismo entre ellos es dado por el morfismo $f\colon T\to S$ en Ω , tal que P(f)(y)=x. Entonces, tenemos que $\Omega\backslash P=\Omega_p$ y existe una proyección $v\colon \Omega_p\to\Omega$. Tenemos el siguiente triángulo conmutativo:

Donde i es un encaje plenamente fiel de Δ en Ω , que envía el objeto [n] de Δ al árbol lineal L_n de Ω , para todo $n \geq 0$.

1.3.2 Relación con la categoría simplicial

Hemos podido ver que las dos categorías, Ω_p y Ω , extienden la categoría Δ , gracias a ver los objetos de Δ como árboles lineales. Además, se puede obtener Δ como la categoría coma de Ω_p o Ω . Sea η un árbol en Ω que no contiene ningún vértice y tan solo una arista, y sea η_p su representación planar en Ω_p . Si T es un árbol cualquiera en Ω , entonces $\Omega(T, \eta)$ consiste en un solo morfismo o es el conjunto vacío, dependiendo si T es un árbol lineal o no. Pasa lo mismo con Ω_p y η_p . Entonces, $\Omega \setminus \eta = \Omega_p \setminus \eta_p = \Delta$.

1.4 Conjuntos Dendroidales

En este apartado a introducir nociones básicas y terminología para la categoría de los conjuntos dendroidales. Describiremos la categoría de los conjuntos dendroidales y los conjuntos dendroidales planares como categorías de prehaces en Ω y Ω_p , respectivamente. Hemos visto la relación entre estas categorías con la categoría de conjuntos simpliciales y la categoría de las opéradas, mediante una adjunción natural de funtores entre ellas. Más adelante definiremos un nervio dendroidal, desde opéradas hacia conjuntos dendroidales, generalizando así la construcción clásica del nervio, desde categorías pequeñas hacia conjuntos simplicales.

Definición 1.22. La categoría dSets de conjuntos dendroidales es la categoría de prehaces en Ω. Los objetos son funtores $\Omega^{\rm op} \to {\rm Set}$ y los morfismos vienen dados por las transformaciones naturales. La categoría pd Set de conjuntos dendroidales planares esta definida de manera análoga intercambiando Ω por Ω_p .

Entonces, un conjunto dendroidal X viene definido como un conjunto X(T), denotado por X_T , para cada árbol T, conjuntamente con una función $\alpha^* \colon X_T \to X_S$ para cada morfismo $\alpha \colon S \to T$ en Ω . Como X es un funtor, entonces $(id)^* = id$ y si $\alpha \colon S \to T$ y $\beta \colon R \to S$ son morfismos en Ω , entonces $(\alpha \circ \beta)^* = \beta^* \circ \alpha^*$. El conjunto X_T lo llamaremos conjunto de dendrices con forma T, o simplemente conjunto de T-dendrices.

Sean X y Y dos conjuntos dendroidales, un morfismo de conjuntos dendroidales $f: X \to Y$ viene definido por funciones $f: X_T \to Y_T$, para cada árbol T, conmutando con las funciones de estructura. Es decir, si $\alpha: S \to T$ es cualquier morfismo en Ω y $x \in X_T$, entonces $f(\alpha^*x) = \alpha^*f(x)$.

Decimos que Y es un subconjunto dendroidal de X si para cada árbol T tenemos que $Y_T \subseteq X_T$ y la inclusión $Y \hookrightarrow X$ es un morfismo de conjuntos dendroidales.

Definición 1.23. Un dendrex $x \in X_T$ se llama degenerado si existe otro dendrex $y \in X_S$ y una degeneración $\sigma \colon T \to S$ tal que $\sigma^*(y) = x$.

Existen inclusiones canónicas y restricciones evidentes

Donde todos tienen adjuntos por la derecha e izquierda

Que vienen dados por las extensiones de Kan correspondientes. Por ejemplo, el funtor i^* envía un conjunto dendroidal X al conjunto simplicial

$$i^*(X)_n = X_{i([n])}$$

Su adjunto por la izquierda $i_!: sSets \to dSets$ es una extensión por el zero, y envía un conjunto simplicial X a un conjunto dendroidal dado por

$$i_!(X)_T = \begin{cases} X_n & \text{si } T \cong i([n]) \\ \emptyset & \text{si } T \not\cong i([n]) \end{cases}$$

Podemos ver que $i_!$ es plenamente fiel y que $i^*i_!$ es el funtor identidad en los conjuntos simpliciales.

El funtor $\Omega \to Oper$ que envía un árbol T a la opérada coloreada $\Omega(T)$ induce la siguiente adjunción

$$\tau_d : dSets \Longrightarrow Oper : N_d$$

El funtor N_d se llama nervio dendroidal. Para toda opérada P su nervio dendroidal es el conjunto dendroidal

$$N_d(P)_T = Oper(\Omega(T), P)$$

Este funtor es plenamente fiel y $N_d(\Omega(T)) = \Omega[T]$ para cada árbol T en Ω . También extiende el nervio de categorías a conjuntos simpliciales. Sea \mathcal{C} una categoría cualquiera y $\underline{\mathcal{C}}$ es una opérada coloreada asociada, entonces

$$i^*(N_d(\underline{\mathcal{C}})) = N(\mathcal{C})$$

Sea X un conjunto dendroidal, nos referimos a la adjunción por la izquierda $\tau_d(X)$ como la opérada genreada por X. Sabemos que el conjunto de colores de $\tau_d(X)$ es igual que el conjunto X_{η} . Las operaciones de las opéradas son generadas por los elementos de X_{C_n} , donde C_n es la n-ésima corola, con las siguientes relaciones:

- (i) $s(x_a) = \mathrm{id}_{x_a} \in \tau_d(X)(x_a; a_a)$ si $x_a \in X_\eta$ y $s = \sigma^*$, donde σ es la degeneración $\sigma \colon C_1 \to \eta$.
- (ii) Si T es un árbol de la forma

y $x \in X_T$, entonces $d_w(x) \circ_{x_{a_i}} d_v(x) = d_{x_{a_i}}(x)$, donde

$$d_w(x) \in \tau_d(X)(x_{a_1}, \dots, x_{a_n}; x_a)$$

$$d_v(x) \in \tau_d(X)(x_{b_1}, \dots, x_{b_m}; x_{a_i})$$

$$d_{a_{x_i}}(x) \in \tau_d(X)(x_{a_1}, \dots, x_{a_{i-1}}, x_{b_1}, \dots, x_{b_m}, x_{a_{i+1}}, \dots, x_{a_n}; x_a)$$

y $d_w = \partial_w^*$ viene inducido por la cara asociada al vértice de la raíz w; $d_v = \partial_v^*$ viene inducido por la cara externa asociada al vértice v; y $d_{x_{a_i}} = \partial_{x_{a_i}}^*$ viene inducido por la cara interna asociada a la arista x_{a_i} .

Entonces, $\tau_d(\Omega[T]) = \Omega(T)$ para todo árbol T en Ω . También extiene el funtor $\tau : sSets \to Cat$ al nervio simplicial, es decir, para todo conjunto simplicial X

$$\tau(X) = j^* \tau_d(i_!(X))$$

En particular, tenemos el siguiente diagrama de funtores adjuntos

$$sSets \xrightarrow{i_!} dSets$$

$$N \downarrow \tau \qquad N_d \downarrow \tau_d$$

$$Cat \xleftarrow{j_!} Oper$$

Tenemos las siguientes relaciones conmutativas salvo isomorfismos:

$$\tau N = \text{id}, \ \tau_d N_d = \text{id}, \ i^* i_! = \text{id}, \ j^* j_! = \text{id}$$

$$j_! \tau = \tau_d i_!, \ N j^* = i^* N_d, \ i_! N = N_d j_!$$

1.5 Producto tensorial de conjuntos dendroidales

1.5.1 Producto tensorial Boardman-Vogt

Definición 1.24. Sea P una opérada simétrica C-coloreada, y sea Q una opérada simétrica D-coloreada. El producto tensorial de Boardman-Vogt $P \otimes_{BV} Q$ es una opérada $(C \times D)$ -coloreada definida en terminos de generadores y relaciones de la siguiente manera. Para cada color $d \in D$ y cada operación $p \in P(c_1, \ldots, c_n; c)$ existe un generador

$$p \otimes d \in P \otimes_{BV} Q((c_1, d), \dots, (c_n, d); (c, d))$$

De manera análoga, para cada color $c \in C$ y cada operación $q \in Q(d_1, \ldots, d_m; d)$ existe un generador

$$c \otimes q \in P \otimes_{BV} Q((c, d_1), \dots, (c, d_m); (c, d))$$

Estos generadores estan sujetos a las siguientes relaciones:

(i)
$$(p \otimes d) \circ ((p_1 \otimes d), \dots, (p_n \otimes d)) = (p \circ (p_1, \dots, p_n)) \otimes d$$

(ii)
$$\sigma^*(p \otimes d) = (\sigma^*p) \otimes d$$
, para cada $\sigma \in \Sigma_n$

(iii)
$$(c \otimes q) \circ ((c \otimes q_1), \dots, (c \otimes q_m)) = c \otimes (q \circ (q_1, \dots, q_m))$$

(iv)
$$\sigma^*(c \otimes q) = c \otimes (\sigma^*q)$$
, para cada $\sigma \in \Sigma_m$

(v) $\sigma_{n,m}^*((p \otimes d) \circ ((c_1 \otimes q), \dots, (c_n \otimes q))) = (c \otimes q) \circ ((p \otimes d_1), \dots, (p \otimes d_m))$, donde $\sigma_{n,m} \in \Sigma_{nm}$ es una permutación que descibimos a continuación. Consideramos el conjunto Σ_{nm} como el conjunto de biyecciones del conjunto $\{0, 1, \dots, nm-1\}$. Cada elemento de dicho conjunto se puede escribir como kn + j de manera única para $0 \leq k < m$ y $0 \leq j < n$; y, análogamente, se puede escribir como km + j para $0 \leq k < n$ y $0 \leq j < m$. Finalmente, la permutación $\sigma_{n,m}$ la definimos de tal manera que $\sigma_{n,m}(kn + j) = jm + k$.

Observación 1.25. Tenemos que las relaciones (i) y (ii) implican que para cada color $d \in D$ la función $P \to P \otimes_{BV} Q$ es una función de opéradas, que viene dada por $p \mapsto p \otimes d$. De manera análoga, tenemos que las relaciones (iii) y (iv) implican que para cada color $c \in C$ la función $Q \to P \otimes_{BV} Q$ es una función de opéradas, que viene dada por $q \mapsto c \otimes q$.

Ejemplo 1.26. Vamos a ilustrar la relación (v), también llamada como la relación del intercambio con las siguientes figuras. Suponemos que n=2 y m=3. Representamos mediante el siguiente árbol la operación de la izquierda de la relación (v), antes de aplicar la permutación $\sigma_{2,3}^*$

Representamos mediante el siguiente árbol la operación de la derecha de la relación (v)

Observamos que la permutación $\sigma_{2,3}$ corresponde a la permutación (2 4 5 3) de Σ_6 . Hemos pintado los vértices de las operaciones en P de color blanco y para los vértices de las operaciones en Q de color negro.

1.5.2 Producto tensorial de conjuntos dendroidales

La categoría de los conjuntos dendroidales es una categoría de prehaces, y por lo tanto cartesiano. El producto cartesiano de los conjuntos dendroidales extiende el producto cartesiano de conjuntos simpliciales, es decir, para cada par de conjuntos simpliciales X e Y

$$i_!(X \times Y) \cong i_!(X) \times i_!(Y)$$

Definición 1.27. Para todo par de árboles T y S en Ω , el producto tensorial de los representables $\Omega[T]$ y $\Omega[S]$ se define como

$$\Omega[T] \otimes \Omega[S] = N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

Donde N_d es el nervio dendroidal, $\Omega(T)$ y $\Omega(S)$ son las opéradas coloreadas asociadas a los árboles T y S, respectivamente; y \otimes_{BV} es el producto tensorial Boardman–Vogt.

Esto define un producto tensorial en toda la categoría de conjuntos dendroidales, ya que es una categoría de prehaces y entonces cada objeto es un colímite canónico de representables y \otimes conserva colímites en cada variable.

Definición 1.28. Sean X e Y dos conjuntos dendroidales y sea $X = \lim_{\to} \Omega[T]$ y $Y = \lim_{\to} \Omega[S]$ sus expresiones canónicas como colímites de representables. Entonces, definimos el producto tensorial $X \otimes Y$ como

$$X \otimes Y = \lim_{\to} \Omega[T] \otimes \lim_{\to} \Omega[S] = \lim_{\to} N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

Sabemos que este producto tensorial es cerrado gracias a la teoría general de categorías [Kel82], y el conjunto de T-dendrices de la hom interna viene definida por

$$\operatorname{Hom}_{dSets}(X,Y)_T = dSets(\Omega[T] \otimes X,Y)$$

Para cada par X e Y de conjuntos dendroidales y para cada árbol T en Ω .

Teorema 1.29. La categoría de conjuntos dendroidales admite una estructura cerrada, monoidal y simétrica. Esta estructura monoidal es únicamente determinada (salvando isomorfismos) por la propiedad de que existe un isomorfismo natural

$$\Omega[T] \otimes \Omega[S] \cong N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

Para cada par T y S de objetos de Ω . La unidad del producto tensorial es el conjunto dendroidal representable $\Omega[\eta] = i_!(\Delta[0]) = U$.

Proposición 1.30. Tenemos las siguientes propiedades:

(i) Para cada par X e Y de conjuntos simpliciales, existe un isomorfismo natural

$$i_1(X) \otimes i_1(Y) \cong i_1(X \times Y)$$

(ii) Para cada par X e Y de conjuntos simpliciales, existe un isomorfismo natural

$$\tau_d(X \otimes Y) \cong \tau_d(X) \otimes_{BV} \tau_d(Y)$$

(iii) Para cada par P e Q de opéradas coloreadas, existe un isomorfismo natural

$$\tau_d(N_d(P) \otimes N_d(Q)) \cong P \otimes_{BV} Q$$

Proof. (i) Basta con ver que la propiedad se mantiene en los representables en sSets. Si vemos que [n] y [m] de Δ como categorías, entonces tenemos

$$j_!([n] \times [m]) \cong j_!([n]) \otimes_{BV} j_!([m])$$

Entonces tenemos la siguiente cadena de isomorfismos naturales

$$i_{!}(\Delta[n] \times \Delta[m]) \cong i_{!}(N([n]) \times N([m])) \cong i_{!}(N([n] \times [m]))$$

$$\cong N_{d}(j_{!}([n] \times [m])) \cong N_{d}(j_{!}([n]) \otimes_{BV} j_{!}([m]))$$

$$\cong N_{d}(\Omega(L_{n}) \otimes_{BV} \Omega(L_{m})) \cong \Omega[L_{n}] \otimes \Omega[L_{m}]$$

$$\cong i_{!}(\Delta[n]) \otimes i_{!}(\Delta[m])$$

Donde L_n y L_m son dos árboles lineales con n y m vértices, y n+1 y m+1 aristas; respectivamente.

(ii) Basta con ver que la propiedad se mantiene en los representables en dSets. Tenemos la siguiente cadena de isomorfismos naturales, usando el isomorfismo natural $\tau_d N_d \cong \mathrm{id}$

$$\tau_d(\Omega[T] \otimes \Omega[S]) \cong \tau_d N_d((\Omega(T) \otimes_{BV} \Omega(S)) \cong \Omega(T) \otimes_{BV} \Omega(S)$$

$$\cong \tau_d(\Omega[T]) \otimes_{BV} \tau_d(\Omega[S])$$

(iii) Análogamente siguiendo (ii) pero remplazando X por $N_d(P)$ y Y por $N_d(Y)$. \square