### Нейросетевой синтез текстур с трендами

Будакян Я. С.

Научный руководитель: к.т.н., доцент Грачев Е. А.

Москва, 2017 г.

#### Введение

Геологические среды часто имеют пространственно скоррелированные неоднородности, поэтому при решении проблемы генерирования геологоподобных сред возникает задача синтеза текстур с устойчивыми протяженными корреляциями.

#### Введение

Целью работы является попытка применения нейросетевых подходов для синтеза текстур с трендами, то есть с устойчивым изменением некоторой статистической характеристики вдоль одного из направлений.

## Задача и модельные ограничения

Задача: рассмотреть синтез текстур из множества изображений с трендами, являющихся моделью среды, состоящей из отдельных частиц и удовлетворяющих ограничениям:

- ▶ Это монохромные изображения 256 x 256 пикселей
- Изменяющимся свойством является интенсивность появления частиц  $\lambda$
- ▶ Тренд является линейным и направлен вдоль оси изображения  $z_1$ :  $\lambda = \lambda_{init} + kz_1$
- ightharpoonup По оси  $z_2$  остается равномерное распределение частиц

### Пример входных данных



Пример изображения с трендом, фиксируемого двумя изображениями

# Математическая формализация

Математически задача синтеза текстуры с трендом описывается с помощью вероятностной постановки задачи обучения:

- Рассматривается многомерное пространство X, содержащее множество всех изображений x:  $X = \{x\}$
- Есть обучающая выборка, состоящая из текстур с трендами  $D = \{x_i\}, D \subset X$
- ightharpoonup Считается, что D задает в X вероятностное распределение  $P_X: X \longrightarrow [0,1]$

# Математическая формализация

Таким образом задача синтеза текстуры из нужного множества сводится к синтезу случайного изображения x' из распределения, близкого к задаваемому обучающей выборкой:

$$P_{X'} \approx P_X, \quad x' \sim X'$$

#### **GAN**

Генеративные состязательные сети были придуманы в 2014 году и достигли больших успехов в задачах синтеза объектов из сложных распределений.

- ▶ Переформулируем:  $P_{X'} \approx P_X \Leftrightarrow \rho(P_{X'}, P_X) \longrightarrow \min_{P_{X'}}$
- $X' = g_{\theta}(\cdot) \Rightarrow \rho(g_{\theta}(\cdot), P_X) \longrightarrow \min_{\theta}$
- ▶ В качестве  $\rho$  можно использовать функцию потерь обученного классификатора

#### **GAN**

#### Вводятся две нейросети:

- $d_{\zeta}(x)$  классификатор для измерения расстояния, **дискриминатор**
- $g_{\theta}(x)$  сеть, трансформирующая шум в элементы множества X', **генератор**

Суть использования двух сетей состоит в том, что они обучаются совместно, конкурируя друг с другом.

$$heta^* = rg \max_{ heta} \left[ \min_{\zeta} L(\zeta, heta) 
ight]$$

#### **GAN**

#### Процесс обучения сети GAN принимает следующий вид:

- Обучаем дискриминатор при фиксированном генераторе
- Обучаем генератор при фиксированном дискриминаторе
- Повторяем до сходимости параметров обеих моделей



## Оценка качества синтеза текстур

Вводится специальная метрика, которая будет учитывать наличие в изображении тренда интенсивности частиц. Рассмотрим среднюю плотность черных пикселей в некотором окне  $\xi_k$ , и пройдем этим окном по изображению.

$$\xi_k = \frac{1}{Hw} \sum_{i=k}^{k+w} \sum_{j=0}^{H} \left| \frac{x(i,j) - 255}{255} \right|,$$

$$k = \overline{1, W - w}$$

### Оценка качества синтеза текстур

Построив график  $\xi(k)$ , можно увидеть, как меняется плотность черных пикселей и прослеживается ли тренд.



Прохождение окном, W, H - размеры изображения, w - ширина окна

## Оценка качества синтеза текстур

В качестве метрики можно взять среднеквадратичную ошибку:

$$\xi = \frac{K}{W - w} \sum_{k=1}^{W - w} (\xi_k - \xi_{0k})^2,$$

где  $\xi_{0k}$  - это  $\xi_k$ , усредненное по изображениям, содержащим истинный тренд, а K - нормировочный множитель, вводимый для того, чтобы метрики сетей, обученных на разных выборках можно было сравнивать между собой.

Выборка 1: 3000 обучающих троек, 50 тестовых

| Вход 1 | Вход 2 | Тренд | nf8 | nf16 | nf16woU nf32 |  |
|--------|--------|-------|-----|------|--------------|--|
|        |        |       |     | 19   |              |  |
|        |        |       |     |      |              |  |
|        |        |       | A   | 100  |              |  |

Примеры синтеза (Выборка 1)



Аппроксимация тренда различными сетями (Выборка 1)

| Сеть    | Число фильтров на 1-ом слое | Метрика |
|---------|-----------------------------|---------|
| nf16woU | 16                          | 0.24048 |
| nf8     | 8                           | 0.22511 |
| nf16    | 16                          | 0.18844 |
| nf32    | 32                          | 0.14589 |

Значения метрики для разных сетей (меньше - лучше)

Выборка 2: 6000 обучающих троек, 50 тестовых

| Вход 1 | Вход 2 | Тренд | nf32e5 | nf64e1 | nf64e5 | nf64e10 |
|--------|--------|-------|--------|--------|--------|---------|
|        |        |       |        |        |        |         |
|        |        |       |        |        |        |         |
|        |        |       |        |        |        |         |

Примеры синтеза (Выборка 2)



Аппроксимация тренда различными сетями (Выборка 2)

| Сеть    | Число фильтров на 1-ом слое | Метрика |
|---------|-----------------------------|---------|
| nf64e10 | 64                          | 0.11168 |
| nf64e5  | 64                          | 0.06501 |
| nf32e5  | 32                          | 0.04827 |
| nf64e1  | 64                          | 0.01393 |

Значения метрики для разных сетей (меньше - лучше)

#### Выводы

- Исследовано применение архитектуры GAN для синтеза текстур с трендами
- ▶ Получены результаты синтезирования при некоторых наборах гиперпараметров сети на нескольких выборках
- Проведено измерение качества генерации для каждого из наборов, используя введенную метрику

Результаты показывают на возможность применения GAN для синтеза текстур с трендами.

#### Минимизационная задача

Обучение нейронной сети является задачей многопараметрической оптимизации функционала потерь. Для используемых в этой работе сетей данная задача ставится так:

$$L(G, D) = L_{adv}(G, D) + \eta L1$$
 $L1 = \mathbb{E}_{p_{data}(s_1, s_2, r)}(\parallel r - G(s_1, s_2) \parallel_1)$ 
 $L_{adv}(G, D) = \mathbb{E}_{p_{data}(s_1, s_2, r)} \log D(s_1, s_2, r) +$ 
 $+ \mathbb{E}_{p_{data}(s_1, s_2)} \log(1 - D(s_1, s_2, G(s_1, s_2)))$ 
 $D^* = \underset{D}{\operatorname{arg min}} L(G^*, D)$ 
 $G^* = \underset{G}{\operatorname{arg min}} L(G, D^*)$ 

# Архитектуры G и D



Схематическое изображение нейросети-генератора

# Архитектуры G и D

```
Генератор:
```

```
C[nf]-C[nf*2]-C[nf*4]-C[nf*8]-C[nf*8]-C[nf*8]-C[nf*8]-DC[nf*8]-DC[nf*8]-DC[nf*8]-DC[nf*8]-DC[nf*4]-DC[nf*2]-DC[nf]-DC[1]
```

Под C[nf] или DC[nf] здесь подразумеваются блоки, состоящие из сверточного или разверточного слоя с указанным числом фильтров, батч-нормализации и функции активации LeakyRELU с коэффициентом 0.2.

Дискриминатор:

C[nf]-C[nf\*2]-C[nf\*4]-C[nf\*8]-C[1]

В дискриминаторе батч-нормализация не применялась.