# Lý thuyết Điều khiển tự động 1

Đặc tính tần Logarith Đồ thị Bode



ThS. Đỗ Tú Anh

Bộ môn Điều khiển tự động Khoa Điện, Trường ĐHBK HN

#### Đồ thị Bode

# Nhược điểm của việc sử dụng đường đặc tính tần biên-pha

Phạm vi của tần số biến đổi quá lớn

→ Logarith hóa trục tần số



Nhược điểm của thang đo logarith: vạch chia không đều trong phạm vi một decade

**Ưu điểm của thang đo logarith**: đồ thị minh họa được đầy đủ tính chất của hệ thống ở cả dải tần số lớn và dải tần số bé.

# Đồ thị Bode (tiếp)

#### Định nghĩa

Là cách biểu diễn  $G(j\omega)$  thành hai đồ thị riêng biệt theo  $\omega$  cho

1) biên độ, hay giá trị logarith của  $|G(j\omega)|$  là

$$L(\omega) = 20 \cdot \lg |G(j\omega)|$$
, có đơn vị là Dezibel (dB),

2) và pha, hay giá trị góc  $\varphi(\omega) = \operatorname{arc} G(j\omega)$  có đơn vị là Grad.

#### Chú ý

$$G(s) = k \frac{(1 + T_1 s)(1 + T_2 s) \cdots (1 + T_m s)}{(1 + T_1 s)(1 + T_2 s) \cdots (1 + T_n s)}, \implies G(j\omega) = k \frac{(1 + T_1 j\omega)(1 + T_2 j\omega) \cdots (1 + T_m j\omega)}{(1 + T_1 j\omega)(1 + T_2 j\omega) \cdots (1 + T_n j\omega)}$$

trong đó

$$L_k'(\omega) = 20 \lg |1 + T_k' j\omega|$$
 và  $L_k(\omega) = 20 \lg |1 + T_k j\omega|$ 

Đồ thị Bode của một khâu

phức tạp có thể được thực

hiện bằng cách cộng trừ

các đồ thị thành phần

# Đồ thị Bode của khâu khuếch đại

Hàm truyền đạt

$$G(s) = k$$

Hàm đặc tính tần

$$G(j\omega) = k$$
.

Đồ thị Bode

$$L(\omega) = 20 \cdot \lg |k|$$

$$\varphi(\omega) = \begin{cases} 0 & \text{n\'eu} & k \ge 0 \\ -180 & \text{n\'eu} & k < 0 \end{cases}$$





# Đồ thị Bode của khâu tích phân

Hàm truyền đạt

$$G(s) = \frac{1}{s}$$

Hàm đặc tính tần

$$G(j\omega) = \frac{1}{j\omega} = -\frac{j}{\omega}$$

Đồ thị Bode

$$L(\omega) = -20 \lg \omega$$

$$\varphi(\omega) = -\frac{\pi}{2}$$





# Đồ thị Bode của khâu vi phân

Hàm truyền đạt

$$G(s) = s$$

Hàm đặc tính tần

$$G(j\omega) = j\omega$$

Đồ thị Bode

$$L(\omega) = 20 \lg \omega$$

$$\varphi(\omega) = \frac{\pi}{2}$$





# Đồ thị Bode của khâu quán tính bậc nhất

$$G(s) = \frac{1}{1 + Ts} \qquad G(j\omega) = \frac{1}{1 + Tj\omega} = \frac{1}{1 + (T\omega)^2} - j \cdot \frac{T\omega}{1 + (T\omega)^2}.$$

Nên 
$$L(\omega) = -10 \cdot \lg(1 + T^2 \omega^2)$$

và 
$$\varphi(\omega) = -\arctan T\omega$$

Các đường tiệm cận

$$L(\omega) = \begin{cases} 0 & \text{khi } \omega \to 0 \\ -20(\lg \omega + \lg T) & \text{khi} \end{cases}$$

Tại điểm tần số gãy

$$L(\omega_G) = -10 \cdot \lg(2) \approx -3 \text{dB}.$$



# Đồ thị Bode của khâu dao động bậc hai

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$G(j\omega) = \frac{1}{1 + 2\zeta \left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2}$$

$$L(\omega) = -20 \lg \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}$$

$$\varphi = -\operatorname{arctg}\left[\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right]$$

$$t \to 0$$
:  $L(\omega) = 0$ 

$$t \rightarrow 0$$
:  $L(\omega) = -20 \log \frac{\omega^2}{\omega_n^2} = -40 \log \frac{\omega}{\omega_n} dB$ 



# Đồ thị Bode của khâu bất kỳ

Vidu

Xét hệ có hàm đặc tính tần

$$G(j\omega) = \frac{10(j\omega + 3)}{(j\omega)(j\omega + 2)[(j\omega)^2 + j\omega + 2]}$$

$$G(j\omega) = \frac{7.5\left(\frac{j\omega}{3} + 1\right)}{(j\omega)\left(\frac{j\omega}{2} + 1\right)\left[\frac{(j\omega)^2}{2} + \frac{j\omega}{2} + 1\right]}$$

Hàm truyền này có các thành phần là

7.5, 
$$(j\omega)^{-1}$$
,  $1+j\frac{\omega}{3}$ ,  $\left(1+j\frac{\omega}{2}\right)^{-1}$ ,  $\left[1+j\frac{\omega}{2}+\frac{(j\omega)^2}{2}\right]^{-1}$ 

Tần số gãy của các thành phần thứ ba, thứ tư, thứ năm lần lượt là  $\omega = 3$ ,  $\omega = 2$  và  $\omega = \sqrt{2}$ . Thành phần cuối cùng có hệ số tắt dần là 0.3536

# Đồ thị Bode của khâu bất kỳ (tiếp)



