PROBABILITY AND STATISTICS

Lecture 5 – Discrete distributions

LAST TIME

- Discrete random variables
 - PMF
 - CDF
 - Expectation and variance
- Practice problems

TODAY

- Two random variables
- More on expected value and variance
- Standard discrete distributions and their properties

$$P(X = k) =$$

$$EX =$$

$$P(X = k) = \begin{cases} \frac{1}{2^k}, & k \ge 1\\ 0, & otherwise \end{cases}$$

$$EX =$$

$$P(X = k) = \begin{cases} \frac{1}{2^k}, & k \ge 1\\ 0, & otherwise \end{cases}$$

$$EX = \sum_{k=1}^{+\infty} k \cdot P(X = k) =$$

$$P(X = k) = \begin{cases} \frac{1}{2^k}, & k \ge 1\\ 0, & otherwise \end{cases}$$

$$EX = \sum_{k=1}^{+\infty} k \cdot P(X = k) = \sum_{k=1}^{+\infty} \frac{k}{2^k} = \dots$$

$$P(X = k) = \begin{cases} \frac{1}{2^k}, & k \ge 1\\ 0, & otherwise \end{cases}$$

$$EX = \sum_{k=1}^{+\infty} k \cdot P(X = k) = \sum_{k=1}^{+\infty} \frac{k}{2^k} = \dots = 2$$

STANDARD DISCRETE DISTRIBUTIONS

Part I

Bernoulli distribution

- Consider a random experiment with two possible outcomes: "success" (with probability p) or "failure" (with probability 1-p)
 - tossing a coin: H or T;
 - a new child: a boy r a girl;
 - you take an exam: pass or fail.

- Consider a random experiment with two possible outcomes: "success" (with probability p) or "failure" (with probability 1-p)
 - tossing a coin: H or T;
 - a new child: a boy r a girl;
 - you take an exam: pass or fail.
- Consider a random variable X

\boldsymbol{x}	0	1
P(X=x)		

- Consider a random experiment with two possible outcomes: "success" (with probability p) or "failure" (with probability 1-p)
 - tossing a coin: H or T;
 - a new child: a boy r a girl;
 - you take an exam: pass or fail.
- Consider a random variable X

χ	0	1
P(X=x)	1-p	p

- Consider a random experiment with two possible outcomes: "success" (with probability p) or "failure" (with probability 1-p)
 - tossing a coin: H or T;
 - a new child: a boy r a girl;
 - you take an exam: pass or fail.
- Consider a random variable $X \sim Bernoulli(p)$

\boldsymbol{x}	0	1
P(X=x)	1-p	p

• An English-speaking tourist visits a country in which 30% of the population speaks English. He needs to ask someone directions.

Find the probability that the first person he encounters will be able to speak English.

• An English-speaking tourist visits a country in which 30% of the population speaks English. He needs to ask someone directions.

Find the probability that the first person he encounters will be able to speak English.

 An English-speaking tourist visits a country in which 30% of the population speaks English. He needs to ask someone directions.

Find the probability that the first person he encounters will be able to speak English.

$$X \sim Bernoulli() \rightarrow$$

• An English-speaking tourist visits a country in which 30% of the population speaks English. He needs to ask someone directions.

Find the probability that the first person he encounters will be able to speak English.

$$X \sim Bernoulli(0.3) \rightarrow$$

• An English-speaking tourist visits a country in which 30% of the population speaks English. He needs to ask someone directions.

Find the probability that the first person he encounters will be able to speak English.

$$X \sim Bernoulli(0.3) \rightarrow P(X = 1) = p = 0.3$$

• Consider $X \sim Bernoulli(p)$. What is EX = ?

\boldsymbol{x}	0	1
P(X=x)	1-p	p

$$EX =$$

• Consider $X \sim Bernoulli(p)$. What is EX = ?

\boldsymbol{x}	0	1
P(X=x)	1-p	p

$$EX = 0 \cdot (1 - p) + 1 \cdot p = p$$

• Consider $X \sim Bernoulli(p)$. What is EX = ?

χ	0	1
P(X=x)	1-p	p

$$EX = 0 \cdot (1 - p) + 1 \cdot p = p$$

Example: algorithm finds a correct solution with p=0.8. If we run it very many times, what % of the trials, on average, be successful?

• Consider $X \sim Bernoulli(p)$. What is EX = ?

χ	0	1
P(X=x)	1-p	p

$$EX = 0 \cdot (1 - p) + 1 \cdot p = p$$

Example: algorithm finds a correct solution with p=0.8. If we run it very many times, what % of the trials, on average, be successful?

Each trial: success or fail (Bernoulli random variable X) -> EX = 0.8

• Consider $X \sim Bernoulli(p)$. What is Var[X] = ?

$\boldsymbol{\mathcal{X}}$	0	1
P(X=x)	1-p	p

$$EX = 0 \cdot (1 - p) + 1 \cdot p = p$$
$$Var[X] = EX^2 - (EX)^2 =$$

• Consider $X \sim Bernoulli(p)$. What is Var[X] = ?

\boldsymbol{x}	0	1
P(X=x)	1-p	p

$$EX = 0 \cdot (1 - p) + 1 \cdot p = p$$
$$Var[X] = EX^{2} - (EX)^{2} = p - p^{2} = p(1 - p)$$

Poisson distribution

POISSON DISTRIBUTION

$$X \sim Po(\lambda), \quad \lambda > 0$$

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0\\ 0, \text{ otherwise} \end{cases}$$

$$E(X) = ?$$
, $Var(X) = ?$

- Models number of events occurring in a fixed interval of time.
- Assumptions: events occur
 - with a known constant mean rate;
 - independently of the time since the last event.

- 1. Plot PMF for different values of the parameter $\lambda > 0$.
- 2. What is the expected value of $X \sim Poisson(\lambda)$?

$$EX =$$

- 1. Plot PMF for different values of the parameter $\lambda > 0$.
- 2. What is the expected value of $X \sim Poisson(\lambda)$?

$$EX = \sum_{k=0}^{+\infty} k \cdot \frac{e^{-\lambda} \lambda^k}{k!} = \cdots? \dots =$$

- 1. Plot PMF for different values of the parameter $\lambda > 0$.
- 2. What is the expected value of $X \sim Poisson(\lambda)$?

$$EX = \sum_{k=0}^{+\infty} k \cdot \frac{e^{-\lambda} \lambda^k}{k!} = \dots? \dots = \lambda$$

- 1. Plot PMF for different values of the parameter $\lambda > 0$.
- 2. What is the expected value of $X \sim Poisson(\lambda)$?

$$EX = \sum_{k=0}^{+\infty} k \cdot \frac{e^{-\lambda} \lambda^k}{k!} = \dots? \dots = \lambda$$

$$Var(X) = \lambda$$
Probability & Statistics - January 202

POISSON DISTRIBUTION: EXAMPLE

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0\\ 0, \text{ otherwise} \end{cases}$$

- A given restaurant receives an average of 100 customers per day.
- Random variable $X \sim Poisson(100)$ number of customers the restaurant will receive today.
- Find the probability that the restaurant receives
 - 110 customers:

• 90 customers:

POISSON DISTRIBUTION: $P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^k}{k!}, k \ge 0 \\ 0, \text{ otherwise} \end{cases}$ **EXAMPLE**

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0\\ 0, \text{ otherwise} \end{cases}$$

- A given restaurant receives an average of 100 customers per day.
- Random variable $X \sim Poisson(100)$ number of customers the restaurant will receive today.
- Find the probability that the restaurant receives
 - 110 customers:

$$P(X = 110) = \frac{e^{-100}100^{110}}{110!} \approx 0.0234$$

• 90 customers:

POISSON DISTRIBUTION: $P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^k}{k!}, k \ge 0 \\ 0, \text{ otherwise} \end{cases}$ **EXAMPLE**

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0\\ 0, \text{ otherwise} \end{cases}$$

- A given restaurant receives an average of 100 customers per day.
- Random variable $X \sim Poisson(100)$ number of customers the restaurant will receive today.
- Find the probability that the restaurant receives
 - 110 customers:

$$P(X = 110) = \frac{e^{-100}100^{110}}{110!} \approx 0.0234$$

• 90 customers:

$$P(X = 90) = \frac{e^{-100}100^{90}}{90!} \approx 0.025$$

POISSON DISTRIBUTION: $P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^k}{k!}, k \ge 0 \\ 0, \text{ otherwise} \end{cases}$ **EXAMPLE**

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, k \ge 0\\ 0, \text{ otherwise} \end{cases}$$

- A given restaurant receives an average of 100 customers per day.
- Random variable $X \sim Poisson(100)$ number of customers the restaurant will receive today.
- Find the probability that the restaurant receives
 - 110 customers:

$$P(X = 110) = \frac{e^{-100}100^{110}}{110!} \approx 0.0234$$

• 90 customers:

$$P(X = 90) = \frac{e^{-100}100^{90}}{90!} \approx 0.025$$

$$P(X < 100) = \sum_{k=0}^{99} \frac{e^{-100}100^k}{k!} \approx 0.4867$$

Two random variables

- Let X and Y be two random variables.
- **Joint** distribution of X and Y: $P_{XY}(x,y) = P(X = x \ and \ Y = y)$

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

- Let X and Y be two random variables.
- **Joint** distribution of X and Y: $P_{XY}(x,y) = P(X = x \text{ and } Y = y)$

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

$$P(X = 1, Y = 1) =$$

$$P(X = 0, Y \le 1) =$$

$$P(X = 0) =$$

$$P(X = 0 | Y = 1) =$$

- Let X and Y be two random variables.
- **Joint** distribution of X and Y: $P_{XY}(x,y) = P(X = x \text{ and } Y = y)$

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

$$P(X = 1, Y = 1) = \frac{1}{6}$$

$$P(X=0,Y\leq 1)=$$

$$P(X = 0) =$$

$$P(X = 0 | Y = 1) =$$

- Let X and Y be two random variables.
- **Joint** distribution of X and Y: $P_{XY}(x,y) = P(X = x \text{ and } Y = y)$

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

$$P(X = 1, Y = 1) = \frac{1}{6}$$

$$P(X = 0, Y \le 1) = \frac{1}{6} + \frac{1}{4}$$

$$P(X = 0) =$$

$$P(X = 0 | Y = 1) =$$

- Let X and Y be two random variables.
- **Joint** distribution of X and Y: $P_{XY}(x,y) = P(X = x \text{ and } Y = y)$

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

$$P(X = 1, Y = 1) = \frac{1}{6}$$

$$P(X = 0, Y \le 1) = \frac{1}{6} + \frac{1}{4}$$

$$P(X = 0) = \frac{1}{6} + \frac{1}{4} + \frac{1}{8}$$

$$P(X = 0 \mid Y = 1) =$$

- Let X and Y be two random variables.
- **Joint** distribution of X and Y: $P_{XY}(x, y) = P(X = x \text{ and } Y = y)$

	Y=0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

$$P(X = 1, Y = 1) = \frac{1}{6}$$

$$P(X = 0, Y \le 1) = \frac{1}{6} + \frac{1}{4}$$

$$P(X = 0) = \frac{1}{6} + \frac{1}{4} + \frac{1}{8}$$

$$P(X = 0 \mid Y = 1) = \frac{1/4}{\frac{1}{4} + \frac{1}{6}}$$

- Let X and Y be two random variables.
- Marginal distribution

$$P_X(x) = P(X = x) = \sum_i P(X = x, Y = y_i),$$

- Let X and Y be two random variables.
- Marginal distribution

$$P_X(x) = P(X = x) = \sum_i P(X = x, Y = y_i),$$

- Let X and Y be two random variables.
- Marginal distribution

$$P_X(x) = P(X = x) = \sum_i P(X = x, Y = y_i), \quad P_Y(y) = P(Y = y) = \sum_j P(X = x_j, Y = y)$$

$$P_X(x) = egin{cases} rac{13}{24} & x = 0 \ & & \ rac{11}{24} & x = 1 \ & & \ 0 & ext{otherwise} \end{cases}$$

- Let X and Y be two random variables.
- Marginal distribution

$$P_X(x) = P(X = x) = \sum_i P(X = x, Y = y_i), \quad P_Y(y) = P(Y = y) = \sum_j P(X = x_j, Y = y)$$

$$P_X(x) = egin{cases} rac{13}{24} & x = 0 \ & & \ rac{11}{24} & x = 1 \ & & \ 0 & ext{otherwise} \end{cases}$$

$$P_Y(y) = egin{cases} rac{7}{24} & y = 0 \ & rac{5}{12} & y = 1 \ & rac{7}{24} & y = 2 \ & 0 & ext{otherwise} \end{cases}$$

- Let X and Y be two random variables.
- Conditional distribution

$$P(X|Y = 0)$$
:

x	0	1
$P(X=x\mid Y=0)$		

- Let X and Y be two random variables.
- Conditional distribution

$$P(X|Y = 0)$$
:

x	0	1
$P(X = x \mid Y = 0)$	1/6	1/8
	1/6 + 1/8	1/6 + 1/8

$$P(Y|X = 1)$$
:

- Let X and Y be two random variables.
- Conditional distribution

$$P(X|Y = 0)$$
:

x	0	1
$P(X = x \mid Y = 0)$	1/6	1/8
	1/6 + 1/8	1/6 + 1/8

$$P(Y|X = 1)$$
:

x	0	1	2
$P(X = x \mid Y = 0)$			

TWO RANDOM VARIABLES (X=0)

- Let X and Y be two random variables.
- Conditional distribution

$$P(X|Y = 0)$$
:

x	0	1
$P(X = x \mid Y = 0)$	1/6	1/8
	1/6 + 1/8	1/6 + 1/8

$$P(Y|X = 1)$$
:

x	0	1	2
$P(X = x \mid Y = 0)$	1/8	1/6	1/6
	1/8 + 1/6 + 1/6	1/8 + 1/6 + 1/6	1/8 + 1/6 + 1/6

- Let X and Y be two random variables.
- X and Y are independent if and only if

$$P(X = x \text{ and } Y = y) = P_X(x) \cdot P_Y(y) \quad \forall x \in R_x, y \in R_Y$$

- Let X and Y be two random variables.
- X and Y are independent if and only if

$$P(X = x \text{ and } Y = y) = P_X(x) \cdot P_y(y) \quad \forall x \in R_x, y \in R_Y$$

• Are X and Y independent?

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

$$P_X(x) = egin{cases} rac{13}{24} & x = 0 \ & & & \ rac{11}{24} & x = 1 \ & & & \ 0 & & ext{otherwise} \end{cases}$$

$$P_X(x)=egin{cases} rac{13}{24} & x=0 \ rac{11}{24} & x=1 \ 0 & ext{otherwise} \end{cases} P_Y(y)=egin{cases} rac{7}{24} & y=0 \ rac{5}{12} & y=1 \ rac{7}{24} & y=2 \ 0 & ext{otherwise} \end{cases}$$

- Let X and Y be two random variables.
- X and Y are independent if and only if

$$P(X = x \ and \ Y = y) = P_X(x) \cdot P_y(y) \quad \forall x \in R_x, y \in R_Y$$

Are X and Y independent? No!

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

$$P_X(x) = egin{cases} rac{13}{24} & x = 0 \ & & \ rac{11}{24} & x = 1 \ & \ 0 & ext{otherwise} \end{cases}$$

E.g.,
$$P(X = 0, Y = 0)$$
 ability & $\frac{1}{6}$ tatistics $P_{J_2X_{UA}}(Q_0)_3 \cdot P_Y(1) = \frac{13}{24} \cdot \frac{7}{24}$

Expected value and variance

EXPECTED VALUE

- Let X be a discrete random variable that takes values from R_X .
- Expected value of X is defined as

$$EX = \sum_{x_k \in R_X} x_k \cdot P(X = x_k)$$

• Let a and b be some numbers. Then

$$E(aX + b) = aEX + b$$

EXAMPLE

- Let X be a random variable with EX = 10.
- Let Y = 5X + 1

$$E(Y) =$$

• Let Z = 3X - 2

$$E(Z) =$$

EXAMPLE

- Let X be a random variable with EX = 10.
- Let Y = 5X + 1

$$E(Y) = 5 \cdot 10 + 1 = 51$$

• Let Z = 3X - 2

$$E(Z) =$$

EXAMPLE

- Let X be a random variable with EX = 10.
- Let Y = 5X + 1

$$E(Y) = 5 \cdot 10 + 1 = 51$$

• Let Z = 3X - 2

$$E(Z) = 3 \cdot 10 - 3 = 28$$

EXPECTED VALUE

• Let $X_1, ..., X_n$ be some random variables such that $EX_i = \mu_i$.

• It is always true that

$$E[X_1 + X_2 + \dots + X_n] = EX_1 + \dots + EX_n = \mu_1 + \dots + \mu_n$$

VARIANCE

- Let X be a random variable with expected value EX.
- Variance is defined as

$$Var(X) = E[(X - EX)^2]$$

VARIANCE

- Let X be a random variable with expected value EX.
- Variance is defined as

$$Var(X) = E[(X - EX)^2] =$$

 $E[X^2 - 2X \cdot EX + (EX)^2] =$

VARIANCE

- Let X be a random variable with expected value EX.
- Variance is defined as

$$Var(X) = E[(X - EX)^{2}] =$$

$$E[X^{2} - 2X \cdot EX + (EX)^{2}] =$$

$$EX^{2} - 2(EX^{2}) + (EX)^{2} =$$

$$EX^{2} - (EX)^{2}$$

• X is a random variable, a and b are some numbers.

$$Var(aX + b) =$$

• X is a random variable, a and b are some numbers.

$$Var(aX + b) =$$

$$= E(aX + b - E(aX + b))^{2} =$$

$$= E(aX + b - aEX - b)^{2} = E(aX - aEX)^{2} =$$

$$= a^{2}E(X - EX)^{2} =$$

$$= a^{2}Var(X)$$

• If X is a random variable with Var(X) = 1, compute

$$Var(-5X + 10) =$$

• If X is a random variable with Var(X) = 1, compute

$$Var(-5X + 10) = 25 \cdot Var(X) = 25$$

$$Var(X + Y) =$$

$$Var(X + Y) =$$

$$E[X + Y - E(X + Y)]^{2} =$$

$$Var(X + Y) =$$

$$E[X + Y - E(X + Y)]^{2} =$$

$$E[(X - EX) - (Y - EY)]^{2} =$$

$$E[(X - EX)^{2} - 2(X - EX)(Y - EY) + (Y - EY)^{2}] =$$

$$Var(X) + Var(Y) - 2E(X - EX)(Y - EY) =$$

$$Var(X + Y) =$$

$$E[X + Y - E(X + Y)]^{2} =$$

$$E[(X - EX) - (Y - EY)]^{2} =$$

$$E[(X - EX)^{2} - 2(X - EX)(Y - EY) + (Y - EY)^{2}] =$$

$$Var(X) + Var(Y) - 2E(X - EX)(Y - EY) =$$

$$Var(X) + Var(Y) - 2Cov(X, Y).$$

COVARIANCE

• Covariance is a measure of *joint variability* between two random variables.

$$Cov(X,Y) = E[(X - EX)(Y - EY)]$$

COVARIANCE

• Covariance is a measure of joint variability between two random variables.

$$Cov(X,Y) = E[(X - EX)(Y - EY)]$$

• There is also a shortcut formula

$$Cov(X,Y) = E(XY) - EX \cdot EY$$

COVARIANCE AND INDEPENDENCE

When random variables X and Y are independent,

$$Cov(X,Y) = E(XY) - EX \cdot EY =$$

COVARIANCE AND INDEPENDENCE

When random variables X and Y are independent,

$$Cov(X,Y) = E(XY) - EX \cdot EY = EX \cdot EY - EX \cdot EY = 0$$

COVARIANCE AND INDEPENDENCE

When random variables X and Y are independent,

$$Cov(X,Y) = E(XY) - EX \cdot EY = EX \cdot EY - EX \cdot EY = 0$$

• Therefore, when *X* and *Y* are independent,

$$Var(X,Y) = Var(X) + Var(Y).$$

CORRELATION

- Let X and Y be two random variables with variances Var(X) and Var(Y).
- Correlation between X and Y is defined as

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) \cdot Var(Y)}} = \frac{Cov(X,Y)}{std(X) \cdot std(Y)}$$

- What is the difference between covariance and correlation?
- Covariance is scale-dependent. Correlation isn't.

Programming exercise

Google classroom -> Day 5