(1. ANTLR 4)

hfwei@nju.edu.cn

20230324

Cymbol.g4

IfStat.g4

IfStat.g4

```
| 'if' expr 'then' stat 'else' stat
          expr
stat : matched_stat | open_stat ;
matched_stat : 'if' expr 'then' matched_stat 'else' matched_stat
            expr
open_stat: 'if' expr 'then' stat
        | 'if' expr 'then' matched_stat 'else' open_stat
```

stat: 'if' expr 'then' stat

Left-Factoring

```
stat : 'if' expr 'then' stat stat_prime;
stat : 'if' expr 'then' stat stat_prime : 'else' stat
    | 'if' expr 'then' stat 'else' stat
    | expr
;
expr : ID;
```

, ANTLR 4

Expr.g4


```
expr :
| expr '*' expr
| expr '-' expr
| DIGIT
;
```

Expr.g4


```
expr:
| expr '*' expr
| expr '-' expr
| DIGIT
;
```

ANTLR 4 ()

Call Graphs

Calculator

9/1

Definition (Context-Free Grammar (CFG);)

$$G G = (T, N, P, S)$$
:

- ightharpoonup T (Terminal),;
- \triangleright N (Non-terminal);
- ightharpoonup P (Production);

$$A \in N \longrightarrow \alpha \in (T \cup N)^*$$

- / (Head) A: / (Body) α : , ϵ
- ightharpoonup S (Start) $S \in N$

[Extended] Backus-Naur form ([E]BNF)

John Backus $(1924 \sim 2007)$

Peter Naur $(1928 \sim 2016)$

Niklaus Wirth (1934 \sim)

(hfwei@nju.edu.cn) 20230324 11/1

[Extended] Backus-Naur form ([E]BNF)

John Backus $(1924 \sim 2007)$

1977 (FORTRAN)

Peter Naur $(1928 \sim 2016)$

2005 (ALGOL60)

Niklaus Wirth (1934 \sim)

1984 (PLs; PASCAL)

Syntax Semantics

: G L(G)

Syntax Semantics

: G L(G)

$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid \mathbf{id}$$

,

$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

$$E \to E + E \mid E * E \mid (E) \mid -E \mid id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

$$E \implies -E$$
:

$$E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$$
:

$$E \stackrel{*}{\Rightarrow} -(\mathbf{id} + E):$$

$$E \to E + E \mid E * E \mid (E) \mid -E \mid id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

$$E \implies -E$$
:

$$E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E):$$

$$E \stackrel{*}{\Longrightarrow} -(\mathbf{id} + E):$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(E+\mathbf{id}) \implies -(\mathbf{id}+\mathbf{id})$$

- 4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q @

Definition (Sentential Form;)

$$S \stackrel{*}{\Rightarrow} \alpha, \ \alpha \in (T \cup N)^*, \ \alpha \ G$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + \mathbf{E}) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentential Form;)

$$S \stackrel{*}{\Rightarrow} \alpha, \ \alpha \in (T \cup N)^*, \ \alpha \ G$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + \mathbf{E}) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentence;)

$$S \stackrel{*}{\Rightarrow} w, \ w \in T^*, \ w \ G$$

15/1

Definition $(G\ L(G))$

G L(G)

$$w \in L(G) \iff S \stackrel{*}{\Longrightarrow} w$$

G:

- ▶ Membership : $x \in T^*$, $x \in L(G)$?
- ightharpoonup L(G)?

$$x \in T^*, x \in L(G)$$
?
$$(, xG)$$

$$x \in T^*, x \in L(G)$$
?
$$(, xG)$$

:

,

L(G) ?

$$S \to SS$$

$$S \to (S)$$

$$S \rightarrow ()$$

$$S \to \epsilon$$

$$L(G) =$$

$$S \to SS$$

$$S \to (S)$$

$$S \to ()$$

$$S \to \epsilon$$

$$L(G) = \{\}$$

$$S \to SS$$

$$S \to (S)$$

$$S \rightarrow ()$$

$$S \to \epsilon$$

$$L(G)=\{\}$$

$$S \to aSb$$

$$S \to \epsilon$$

$$L(G) =$$

$$S \to SS$$

$$S \to (S)$$

$$S \rightarrow ()$$

$$S \to \epsilon$$

$$L(G) = \{\}$$

$$S \to aSb$$

$$S \to \epsilon$$

$$L(G)=\{a^nb^n\mid n\geq 0\}$$

$$\Sigma = \{a, b\}$$
 (Palindrome)

20230324

$$\Sigma = \{a, b\}$$
 (Palindrome)

$$S o aSa$$
 $S o bSb$ $S o a$ $S o b$

$$\{b^n a^m b^{2n} \mid n \ge 0, m \ge 0\}$$

$$\{b^n a^m b^{2n} \mid n \ge 0, m \ge 0\}$$

$$S \to bSbb \mid A$$
$$A \to aA \mid \epsilon$$

$$A \to aA \mid \epsilon$$

$$\{x \in \{a,b\}^* \mid x \quad a,b \ \}$$

$$\{x \in \{a, b\}^* \mid x \quad a, b \}$$

$$V \rightarrow aVbV \mid bVaV \mid \epsilon$$

 $\{x \in \{a,b\}^* \mid x \quad a,b \ \}$

$$\{x \in \{a, b\}^* \mid x \quad a, b \}$$

$$S \to T \mid U$$

$$T \to VaT \mid VaV$$

$$U \to VbU \mid VbV$$

$$V \to aVbV \mid bVaV \mid \epsilon$$

$$\{x \in \{a,b\}^* \mid x \quad a,b \}$$

$$S \rightarrow T \mid U$$

$$T \rightarrow VaT \mid VaV$$

$$U \rightarrow VbU \mid VbV$$

$$V \rightarrow aVbV \mid bVaV \mid \epsilon$$

Let me know if you have a proof.

$$r$$
 $L(r)$

$$r = (a|b)^*abb$$

$$r$$
 $L(r)$

$$r = (a|b)^*abb$$

$$r$$
 $L(r)$

$$r = (a|b)^*abb$$

$$, \ \delta(A_i, \epsilon) = A_j, \ A_i \to A_j$$

$$S \to aSb$$
$$S \to \epsilon$$

$$L=\{a^nb^n\mid n\geq 0\}$$

$$L=\{a^nb^n\mid n\geq 0\}$$

$$L=\{a^nb^n\mid n\geq 0\}$$

$$L=\{a^nb^n\mid n\geq 0\}$$

$$r{:}\ L(r) = L$$

$$L = \{a^nb^n \mid n \ge 0\}$$

$$r$$
: $L(r) = L$

$$D(r) \colon L(D(r)) = L; \ k$$

$$L = \{a^nb^n \mid n \geq 0\}$$

$$D(r): L(D(r)) = L; k$$

$$\boxed{a^m(m > k)}$$

$$\text{start} \longrightarrow s_0 \xrightarrow{a^i \ (i \ge 0)} s_i \xrightarrow{a^j \ (j \ge 1)} s_i \xrightarrow{a^{m-i-j}} s_m$$

$$\text{last}$$

$$b^i \ (i \ge 0)$$

r: L(r) = L

$$L = \{a^n b^n \mid n \ge 0\}$$

$$D(r): L(D(r)) = L; k$$

$$\boxed{a^m(m > k)}$$

$$start \longrightarrow s_0 \qquad a^i \ (i \ge 0) \qquad a^j \ (j \ge 1) \qquad s_i \qquad a^{m-i-j} \qquad s_m$$

$$last$$

$$b^i \ (i \ge 0)$$

D(r) $a^{i+j}b^i$; !

r: L(r) = L

$$L = \{a^n b^n \mid n \ge 0\}$$

Pumping Lemma for Regular Languages

(hfwei@nju.edu.cn) 20230324 29 / 1

$$L = \{a^n b^n \mid n \ge 0\}$$

Pumping Lemma for Regular Languages

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Pumping Lemma for Context-free Languages

(hfwei@nju.edu.cn) 20230324 29 / 1

Thank You!

Office 926 hfwei@nju.edu.cn