

Secure Classification as a Service

Levelled Homomorphic, Post-Quantum Secure Machine Learning Inference based on the CKKS Encryption Scheme

Peter Waldert

Bachelor Thesis Presentation, 01.08.2022

> iaik.tugraz.at

Outline

- Introduction
- 2 Lattice Cryptography
- 3 The CKKS Scheme
- 4 Implementation
- 5 Results

Privacy for Medical Applications

The Rivest-Shamir-Adleman (RSA) Scheme

Polynomial Rings

Figure: The 5throots of unity

The Learning With Errors (LWE) Problem

Overview of Cheon-Kim-Kim-Song (CKKS)

[1]

Encoding and Decoding

Encryption and Decryption

Homomorphic Addition

Demo: Secure Handwritten Digit Classification as a Service

Neural Networks

Implementation

Runtime Benchmarks

Results

Ciphertext Visualisations

Conclusion

Crypto is good for us

Questions?

Glossary I

Cheon-Kim-Kim-Song	1
Learning With Errors	•
Rivest-Shamir-Adleman	ļ
	Learning With Errors

Bibliography I

[1] Jung Hee Cheon, Andrey Kim, Miran Kim and Yongsoo Song. Homomorphic Encryption for Arithmetic of Approximate Numbers. ASIACRYPT. 2017.