```
In [30]:
           import numpy as np
           import pandas as pd
           df=pd.read csv("/content/vehicle stolen dataset with headers.csv")
Out[30]:
               number_plate
                              brand color time stoled
             0
                      N001
                              BMW
                                    black
                                          night
                                                  yes
             1
                      N002
                               Audi
                                          night
                                    black
                                                   no
                            NISSAN
             2
                      N003
                                    black
                                          night
                                                  yes
             3
                      N004
                              VEGA
                                      red
                                           day
                                                  yes
                              \mathsf{BMW}
             4
                      N005
                                     blue
                                           day
                                                   no
             5
                      N006
                                    black
                                                  yes
                               Audi
                                           day
                      N007
                              VEGA
             6
                                      red
                                          night
                                                   no
             7
                      N008
                               Audi
                                     blue
                                           day
                                                  yes
             8
                      N009
                              VEGA
                                    black
                                                  yes
                                           day
             9
                      N010 NISSAN
                                     blue
                                           day
                                                   no
            10
                      N011
                              BMW
                                    black
                                          night
                                                  yes
                      N012 NISSAN
            11
                                      red
                                           day
                                                   no
            12
                      N013
                              VEGA black
                                          night
                                                  yes
            13
                      N014
                              BMW
                                      red
                                           day
                                                   no
                      N015
            14
                               Audi
                                    black
                                           day
                                                  yes
            15
                      N016
                               Audi
                                     blue
                                          night
                                                  yes
                      N017
            16
                               Audi
                                      red
                                           day
                                                   no
            17
                      N018 NISSAN
                                    black
                                           day
                                                  yes
            18
                      N019
                              \mathsf{BMW}
                                     blue
                                           day
                                                  yes
                      N020
            19
                              BMW
                                      red
                                         night
                                                  yes
In [31]: df.shape
Out[31]: (20, 5)
In [32]: df.size
Out[32]: 100
In [33]: df.columns
Out[33]: Index(['number plate', 'brand', 'color', 'time', 'stoled'], dtype='object')
In [34]: df.dtypes
Out[34]: number_plate
                              object
           brand
                              object
           color
                              object
           time
                              object
```

stoled

dtype: object

object

```
In [35]: df.isna().sum()
Out[35]: number_plate
         brand
                         0
                         0
         color
         time
                         0
         stoled
                         0
         dtype: int64
In [36]: # COUNT OF STOLEN VEHICLES IN THE DATASET
         count=df['stoled'].value_counts()
         count
Out[36]: yes
                13
         no
               7
         Name: stoled, dtype: int64
In [37]: # COLLECT DATA OF STOLEN CARS
         df1=df.loc[df.stoled=='yes']
         df1
Out[37]:
```

number_plate		brand	color	time	stoled
0	N001	BMW	black	night	yes
2	N003	NISSAN	black	night	yes
3	N004	VEGA	red	day	yes
5	N006	Audi	black	day	yes
7	N008	Audi	blue	day	yes
8	N009	VEGA	black	day	yes
10	N011	BMW	black	night	yes
12	N013	VEGA	black	night	yes
14	N015	Audi	black	day	yes
15	N016	Audi	blue	night	yes
17	N018	NISSAN	black	day	yes
18	N019	BMW	blue	day	yes
19	N020	BMW	red	night	yes

```
In [38]: # VISUALIZE
   import seaborn as sns
   sns.countplot('stoled',data=df1,hue='brand')
```

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

Out[38]: <matplotlib.axes. subplots.AxesSubplot at 0x7f9c67eafa30>

In [39]: sns.countplot(y='stoled',data=df1,hue='color')

Out[39]: <matplotlib.axes. subplots.AxesSubplot at 0x7f9c67a46c10>


```
In [40]: sns.countplot(y='stoled',data=df1,hue='time')
```

Out[40]: <matplotlib.axes. subplots.AxesSubplot at 0x7f9c67a1c6d0>


```
In [41]: # CARS MOST LIKELY TO BE STOLEN
# TIME: DAY
# CAR COLOR: BLACK
# CAR BRAND: AUDI, BMW
```

In [42]: sns.countplot('brand',data=df1,hue='color')

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9c679f5c40>

ABOVE BAR CHART SHOWS THE PREFERRED COLOR OF EACH STOLEN CAR BRAND

```
In [43]: #LABEL ENCODING
    from sklearn.preprocessing import LabelEncoder
    features=['number_plate','brand','color','time']
    df[features]=df[features].apply(LabelEncoder().fit_transform)
    df
```

Out[43]:

	number_plate	brand	color	time	stoled
0	0	1	0	1	yes
1	1	0	0	1	no
2	2	2	0	1	yes
3	3	3	2	0	yes
4	4	1	1	0	no
5	5	0	0	0	yes
6	6	3	2	1	no
7	7	0	1	0	yes
8	8	3	0	0	yes
9	9	2	1	0	no
10	10	1	0	1	yes
11	11	2	2	0	no
12	12	3	0	1	yes
13	13	1	2	0	no
14	14	0	0	0	yes
15	15	0	1	1	yes
16	16	0	2	0	no
17	17	2	0	0	yes
18	18	1	1	0	yes
19	19	1	2	1	yes

```
In [44]: # SEPERATING INPUT X AND OUTPUT Y
    df1=df.drop(['number_plate'],axis=1)
    df1
```

Out[44]:

	brand	color	time	stoled
0	1	0	1	yes
1	0	0	1	no
2	2	0	1	yes
3	3	2	0	yes
4	1	1	0	no
5	0	0	0	yes
6	3	2	1	no
7	0	1	0	yes
8	3	0	0	yes
9	2	1	0	no
10	1	0	1	yes
11	2	2	0	no
12	3	0	1	yes
13	1	2	0	no
14	0	0	0	yes
15	0	1	1	yes
16	0	2	0	no
17	2	0	0	yes
18	1	1	0	yes
19	1	2	1	yes

```
In [45]: x=df1.iloc[:,:-1].values
    y=df1.iloc[:,-1].values
```

```
In [46]: # SEPERATING TRAINING AND TESTING DATA
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_st
ate=42)
```

```
In [47]: # NORMALIZATION
    from sklearn.preprocessing import StandardScaler
    scaler=StandardScaler()
    scaler.fit(x_train)
    x_train=scaler.transform(x_train)
    x test=scaler.transform(x test)
```

```
In [48]: # ML MODELLING
    from sklearn.svm import SVC
    model=SVC()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    y_pred
```

```
Out[48]: array(['yes', 'yes', 'yes', 'yes', 'yes'], dtype=object)
```

 <pre>print(report)</pre>					
	precision	recall	f1-score	support	

	precision	recall	f1-score	support
no yes	0.00 1.00	0.00 0.83	0.00 0.91	0 6
accuracy macro avg weighted avg	0.50 1.00	0.42 0.83	0.83 0.45 0.91	6 6 6

/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1 318: UndefinedMetricWarning: Recall and F-score are ill-defined and being s et to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1
318: UndefinedMetricWarning: Recall and F-score are ill-defined and being s
et to 0.0 in labels with no true samples. Use `zero_division` parameter to
control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1
318: UndefinedMetricWarning: Recall and F-score are ill-defined and being s et to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))