Gulliver in the land of Data Modeling

Cesena, 21 Febbraio 2024

BIG Expertise

The Business Intelligence Group has been carrying out its research activity since 1997, mainly aiming at studying methodologies, techniques and technologies in the field of Data Analysis

Currently 5 researchers are involved

More in details:

- Business Intelligence
- Data Warehouse
- Simulations
- Pervasive BI
- Collaborative BI

Our current research topics are related to:

- Social BI
- Big Data & NOSql DBMS
- Semantic Data Warehousing
- Data mining

BIG Expertise

European funding

- PANDA (pattern management in DM)
- ENPADASI (EU Nutritional Phenotype Assessment and Data Sharing Initiative)
- TOREADOR (As-a-service Big Data Analytics)
- WeLaser (Laser-based Robotic Weeding)

Public funding

- D2I (integration and mining of heterogeneous DBs)
- WISDOM (ontology-enhanced web searching)
- WebPolEU (Comparing Social Media and Political Participation across EU)
- GenData2020 (data-centric genomic computing)
- DyNamiTE (Digital fightiNg Tax Evasion)

- MO.RE.Farming (Big Data for Precision Farming)
- INNOFRUVE (Ricerca industriale ed innovazione nel comparto ortofrutta)
- AgroBigDataScience (Big Data for Precision Farming)

Private funding (2015-2021)

- Data Mining in the Fashion Field with Valentino
- Set-up of a Social Business Intelligence framework with Amadori s.p.a.
- Feasibility study for a Social Business Intelligence system with DOXA
- Anomaly detection in the gas network with HERA spa
- Harnessing Wellness Knowledge with Technogym
- Methodological and Scientific Support to several Public bodies With Ministry of Justice, Economy and Finance
- Vaccine monitoring with Regione Veneto & ONIT
- Intelligent Monitoring Systems for Critical Environments with Leonardo-Finmeccanica

- Data-driven budgetting with Teddy
- Digital Transformation with BRT, PLT Energia

Dalla programmazione alla progettazione

Nel primo anno di studi vi siete concentrati sulla programmazione (imperativa): C, Java

... MA per realizzare applicazioni complesse sono necessarie competenze di progettazione, modellazione e astrazione

Progettazione: il processo di definizione di architettura, componenti, moduli, interfacce e dati per un prodotto software, in modo che soddisfi determinati requisiti. E' fondamentale limitarsi agli aspetti salienti evitando i dettagli che saranno trattati in fase di programmazione

Si può progettare un algoritmo, un'architettura HW e SW, un database, un processo,...

Per progettare è necessario sviluppare capacità di modellazione e astrazione che, partendo dalla descrizione di singoli casi reali, permettano di eliminare i dettagli dei singoli eventi e permettano di estrapolare i concetti salienti e le loro relazioni

Modellazione e Astrazione

Ne avete avuto un'anteprima nell'ambito della progettazione a oggetti in cui avete usato il diagramma delle classi UML

L'astrazione utilizza diversi meccanismi quali:

•Classificazione: si giunge al concetto astratto identificando le proprietà che accomunano le diverse istanze

- •Aggregazione: si giunge al concetto astratto identificando le parti che lo compongono
- •Generalizzazione: si giunge al concetto astratto come unione delle classi contenute nel concetto

Modellazione: una competenza fondamentale

Indipendentemente dal percorso lavorativo che seguirete la capacità di modellazione rappresenta LA COMPETENZA FONDAMENTALE che distingue l'ingegnere informatico poiché permette di:

- Orientarsi in/comprendere problemi complessi
- Risolvere un problema complesso traducendolo in molti problemi semplici
- Permettere di comunicare e organizzare il lavoro

Progettazione e Modellazioni sono competenze difficili da acquisire:

- Richiedono capacità di astrazione
- Sono meno sintattiche della programmazione
- Richiedono la conoscenza del dominio applicativo
- Spesso non c'è sempre una solo soluzione corretta
- Risultano cruciali solo quando i problemi sono complessi
- Danno soddisfazione solo quando applicate in contesti reali

Orientiamoci!

Sondaggio 1

Ti senti più:

- Programmatore
- Sistemista
- Progettista
- Project manager

Sondaggio 2

Dopo quanti anni di lavoro ritieni che avrai un ruolo di progettista?

Dopo quanti anni di lavoro ritieni che avrai un ruolo di project manager?

IDBMS

Un DBMS è un sistema software che gestisce grandi quantità di dati persistenti e condivisi, e che offre supporto per almeno un modello dei dati

- La gestione di grandi quantità di dati richiede particolare attenzione ai problemi di efficienza (ottimizzazione delle richieste, ma non solo!)
- La persistenza e la condivisione richiedono che un DBMS fornisca meccanismi per garantire l'affidabilità dei dati (fault tolerance), per il controllo degli accessi e per il controllo della concorrenza
- Un modello dei dati consente agli utenti di disporre di un'astrazione di alto livello attraverso cui interagire con il DB.
- Diverse altre funzionalità vengono messe a disposizione per motivi di efficacia, ovvero per semplificare la descrizione delle informazioni, lo sviluppo delle applicazioni, l'amministrazione di un DB, ecc.

1970 E.F. Codd (IBM) pubblica il modello relazionale

"It provides a means of describing data with its natural structure only--that is, without superimposing any additional structure for machine representation purposes. Accordingly, it provides a basis for a high level data language which will yield maximal independence between programs on the one hand and machine representation on the other." (Codd 1970)

2005 nasce Hadoop 1 (Apache)

basato sugli articoli di Google è un sistema Big Data open source a supporto del web crawler Nutch

One size does not fit all!

- ☐ Per oltre 40 anni l'unico modello dati disponibile era quello relazionale
 - ✓ Applicazioni con necessità/caratteristiche diverse venivano implementate sullo stesso modello
 - ✓ Le performance erano limitate

- ☐ La necessità di supportare applicazioni con vincoli di performance stringenti ed enormi moli di dati ha portato alla nascita dei DBMS NoSQL
 - ✓ Ogni modello ha caratteristiche diverse, specifiche per carichi di lavoro
- Il progettista deve conoscere le caratteristiche e i principi di modellazione dei diversi modelli

Studia Scegli il Modella l'applicazione l'applicazione

One size does not fit all!

- ☐ Per oltre 40 anni l'unico modello dati disponibile era quello relazionale
 - ✓ Applicazioni con necessità/caratteristiche diverse venivano implementate sullo stesso modello

Modello	Descrizione	Casi d'uso	Applicazioni
Key-value	Associates any kind of value to a string	Dictionary, lookup table, cache, file and images storage	Web session profile, shopping cart, user preferences
Document	Stores hierarchical data in a tree-like structure	Documents, anything that fits into a hierarchical structure	Event log, CMS, blogging platform
Wide column	Stores sparse matrixes where a cell is identified by the row and column keys	Crawling, high-variability systems, sparse matrixes	Event log, CMS, blogging platform, GIS
Graph	Stores vertices and arches	Social network queries, inference, pattern matching	Social network, routing application, fraud detection

l'applicazione

modello

realtà

One size does not fit all!

- ☐ Per oltre 40 anni l'unico modello dati disponibile era quello relazionale
 - ✓ Applicazioni con necessità/caratteristiche diverse venivano implementate sullo stesso modello

Modello	Descrizione	Casi d'uso	Applicazioni
Key-value	Associates any kind of value to a string	Dictionary, lookup table, cache, file and images storage	Web session profile, shopping cart, user preferences
Document	Stores hierarchical data in a tree-like structure	Documents, anything that fits into a hierarchical structure	Event log, CMS, blogging platform
Wide column	Stores sparse matrixes where a cell is identified by the row and column keys	Crawling, high-variability systems, sparse matrixes	Event log, CMS, blogging platform, GIS
Graph	Stores vertices and arches	Social network queries, inference, pattern matching	Social network, routing application, fraud detection

Aggregate Modelling

Modello concettuale per un ecommerce

Modellazione relazionale

Customer			0rders				
Id	Nar	ne	Id Cus	Custom	erId S	hippingAddressId	
1	Martin		99			77	
Product			BillingAddr	ess			
Id	i i	Name	Id	2512	stomerId	AddressId	
27	NoSQL	Distilled	55		1	77	
OrderItem Id	OrderId	ProductId	Price		Address Id	City	
100	99	27	32.45		77	Chicago	
OrderPayment							
Id OrderId		CardNumbe	er BillingAddre	essId	txnIc	i	
			9 55		elif879r		

key	value	Customer	1	*	
cust-1:name	Martin	name			
cust-1:adrs	[{"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007}, {"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}]	# Billing Address	1	* Order Pa	_
cust-1:order-99	-1:order-99 {"orderpayments":[{"card":477,		1 shipping	Address	
	"products":[{"id":1, "name":"Cola",			key	,
	"price":12.4}, {"id":2, "name":"Fanta", "price":14.4}],			p-1:name	C
	"shipAdrs":{"street":"9th", "city":"NewYork", "state":"NewYork",			p-2:name	F
	"code":10001}				

Customer	1	* Or	der 1
1	_	1	1
*		*	*
Dillian	7 1	* Order Payment	Order Item
Billing Address		cardNumber txnld	price
*		ixilia	*
1			1
Address	7		Product
street	1		name
city state	1		
post code	shipping A	ddress	

key	value
p-1:name	Cola
p-2:name	Fanta

key	value	Customer 1 * Order
cust-1:name	Martin	name Order
cust-1:adrs	[{"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007}, {"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}]	Billing 1 * Order Payment CardNumber txnld Order Item
cust-1:order-99	{"orderpayments":[{"card":477, "billadrs":{"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007}}, {"card":457, "billadrs":{"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}}], "products":[{"id":1, "name":"Cola", "price":12.4}, {"id":2, "name":"Fanta", "price":14.4}], "shipAdrs":{"street":"9th", "city":"NewYork", "state":"NewYork",	Address street city state post code shipping Address
	"code":10001} }	

Modellazione Document-based

```
{ " id": 1,
  "name": "Martin",
   "adrs": [ {"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007},
             {"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}
   {" id": 1,
    "customer":1,
    "orderpayments":[{"card":477, "billadrs":{"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007}},
                        {"card":457, "billadrs":{"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}}
   "products":[ {"id":1, "name":"Cola", "price":12.4},
                 {"id":2, "name": "Fanta", "price": 14.4}
                                                                                                  Customer
                                                                                                                                   Order
    "shipAdrs":{"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}
              " id":1,
               "name":"Cola".
                                                                                                                         Order Payment
                                                                                                                                          Order Item
                                                                                                   Billing
               "price":12.4
                                                                                                                                        price
                                                                                                                         cardNumber
                                                                                                   Address
          {" id":2,
             "name":"Fanta",
                                                                                                                                           Product
                                                                                                   Address
                     "price":14.4
                                                                                                 street
                                                                                                post code
                                                                                                             shipping Address
```

Modellazione a grafo

Una realtà frustrante

- Nella maggior parte delle aziende la divisione informatica NON è tra le più importanti!
- ☐ I progetti informatici sono finanziati solo se si riesce a esplicitarne il ritorno economico
 - √ Far approvare un progetto è più difficile che realizzarlo

Procedure

Le applicazioni informatiche sono spesso viste come un costo necessario, non come una

opportunità

Ma le cose stanno cambiando!

La trasformazione digitale

- ☐ La DT mira a migliorare l'efficienza e l'efficacia delle aziende sfruttando le possibilità offerte dalle nuove tecnologie.
- ☐ Tutti i settori aziendali pubblici e privati saranno coinvolti in questa trasformazione anche se con tempi e modi diversi
- ☐ E' importante sperimentare e capire dove e quando digitalizzare
- ☐ La DT non è solo una questione tecnologica!
 - √ Richiede una strategia a lungo termine e un percorso a piccoli passi
 - ✓ Ha bisogno di cambiamenti nella mentalità delle persone e nella ricerca di talenti digitali

Il percorso di digital transformation

L'adozione delle tecnologie digitali è un percorso incrementale e raramente permette di saltare dei passaggi. Saltarli sarebbe *rischioso*, *costoso* e *inutile*

- Il personale non è pronto
 - ✓ Non ha il corretto mindset, non è disponibile al cambiamento, non percepisce il valore
- I dati non sono pronti
 - ✓ Dati di scarsa qualità e che non descrivono i processi a un sufficiente livello di dettaglio
- Le aziende non sono pronte
 - ✓ I processi aziendali non sono adeguati a sfruttare e reagire prontamente

Non fidatevi di consulenti e fornitori di software che vi propongono sistemi avanzati quando la vostra azienda opera ancora con fogli Excel o a malapena utilizza un sistema gestionale

Trasformare l'azienda in data-driven

Il termine data-driven company indica le aziende in cui le decisioni e i processi sono supportati dai dati

- Le decisioni si basano su una conoscenza quantitativa piuttosto che qualitativa
- Processi e Conoscenze sono un patrimonio dell'azienda e non vanno perduti se cambiano i manager

La differenza tra una decisione data-driven e una buona decisione è un buon manager

L'adozione di una mentalità basata sui dati va ben oltre l'adozione di una soluzione di business intelligence e comporta:

- ✓ Creare una cultura dei dati
- √ Cambia la mentalità dei manager
- ✓ Cambiare i processi
- ✓ Migliora la qualità di tutti i dati

Trasformare l'azienda in data-driven

La **Digitalizzazione** è un percorso che coinvolge tre dimensioni. Spostarsi tra A e B è un processo pluriennale fatto di obiettivi intermedi ognuno dei quali deve essere fattibile

- Risolve un problema aziendale e portare valore
- Può essere realizzato in un intervallo di tempo limitato (in genere meno di un anno)

La Data Revolution

- ☐ I dati rappresentano il principale combustibile che alimenta la trasformazione digitale
- □ La digitalizzazione è iniziata negli anni '70s con la progressive diffusione dei calcolatori dando il via al processo di digitalizzazione dei processi e delle Informazioni che continua ad accellerare ancora oggi cambiando nome ma non obiettivo
 - √ Post-industrial society
 - √ Information technology revolution
 - ✓ Digital age
- □ Possiamo stimare l'inizio della **Digital Age** nel 2002, quando nel mondo sono state archiviate più informazioni digitali che analogiche. Alla fine degli anni '80 meno dell'1% delle informazioni era in formato digitale, mentre nel 2012 la percentuale era salita al 99% con un incremento annuo di circa il 30%, che porta ad un raddoppio delle informazioni conservate in meno di 3 anni.

Chi produce i dati nella digital age?

□ I sistemi informativi non sono più limitati ai dati prodotti dai processi aziendali ma vanno ripensati per permettere di sfruttare tutti i dati utili all'azienda e per poter supportare processi interni ed esterni

Big Data vs Small Data

- ☐ La progressiva digitalizzazione di servizi e impianti genera una enorme massa di dati eterogenei e in tempo reale
- ☐ I Big Data devono essere trasformati in Small data affinché possano essere sfruttati ai fini decisionali
- Per gestire questa trasformazione occorrono
 - √ Tecnologia ad hoc (NO SQL DBMS)
 - ✓ Potenza di calcolo (cluster computing)
 - ✓ Sistemi automatizzati (Intelligenza artificiale)

Un'architettura per i Big Data

Un'architettura per i Big Data OLAP & **Business User** Enterprise Dashboarding Data Warehouse Data Scientist Data Enthusiast Analytics ETL Sandbox Data Lake Exploratory Mega Batch Real Time Micro Batch Text mining WEB & Doc. **ODS SENSORS** internal - strucured external - unstrucured real time

Oltre i Data Lake: le Data Platform

Considerazioni finali

Il principale carburante che alimenta la trasformazione digitale è la maggiore disponibilità di dati

Oggi, non esistono applicazioni informatiche che non siano data-intensive

- Digital Twins
- Data mesh
- AI

La capacità di modellare e di analizzare i dati rappresenta una competenza cruciale e qulificante

- Quando il dominio diventa complesso (è normale avere 100-200 relazioni in un applicativo)
- Quando i dati sono molti (1 M di tuple con interrogazioni che coinvolgono 5 relazioni)
- Quando le relazioni tra i dati sono complessi (DW, AI)

