

- Apresentação
- Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibilização de material
- Calendário
- Métodos de avaliação

- Apresentação
- Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibilização de material
- Calendário
- Métodos de avaliação

- Parte A: Fundamentos da Inferência Bayesiana
 - Conceitos fundamentais de probabilidade e Teorema de Bayes;
 - Distribuições de probabilidade;
 - Método de Monte Carlo via Cadeias de Markov;
 - Estimação de parâmetros;
 - Intervalo de credibilidade.

- Apresentação
- Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibiliza ção de material
- Calendário
- Métodos de avaliação

- Parte B: Modelagem Epidemiológica
 - Modelo fundamental considerando demografia e dinâmicas oscilatórias;
 - Modelo sem imunidade;
 - Modelo com período latente;
 - Modelo para infecções crônicas;
 - Modelo para populações heterogêneas;
 - Modelo com dependência de idade;
 - Modelo para múltiplos patógenos;
 - Modelo considerando sazonalidade da doença;
 - Modelo considerando o controle da doença;
 - Modelo de metapopulação;
 - Método da matriz de próxima geração;
 - Aplicações na modelagem de doenças infecciosas.

- Apresentação
- Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibilização de material
- Calendário
- Métodos de avaliação

- O. N. Bjørnstad.
 Epidemics: Models and Data using R.
 Springer International Publishing, Cham, 2018.
- [2] F. Brauer and C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. Springer New York, New York, 2012.
- [3] F. Brauer, C. Castillo-Chavez, and Z. Feng. Mathematical Models in Epidemiology. Springer, New York, 2019.
- [4] F. Brauer, P. van den Driessche, and J. Wu. Mathematical Epidemiology. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
- [5] M. J. Keeling and P. Rohani. Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton, 2008.

- Apresentação
- Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibiliza ção de material
- Calendário
- Métodos de avaliação

[1] C. Davidson-Pilon.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference.

Addison-Wesley Professional, New Jersey, 1 edition, 2015.

[2] O. Martin.

Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ.
Packt Publishing, Birmingham, 2 edition, 2018.

[3] P. L. Meyer.

Probabilidade. LTC, Rio de Janeiro, 2 edition, 1987.

[4] D. Sivia and J. Skilling.

Data Analysis: A Bayesian Tutorial.
Oxford University Press, Oxford, 2 edition, 2006.

- Apresentação
- Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibilização de material
- Calendário
- Métodos de avaliação

- Apresentação
- ► Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibilização de material
- Calendário
- Métodos de avaliação

- Apresentação
- Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibilização de material
- Calendário
- Métodos de avaliação

Repositório no GitHub:

https://github.com/gustavolibotte/LNCC-GB-500

1

- Apresentação
- ► Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibilização de material
- Calendário
- Métodos de avaliação

janeiro										
D	S	T	Q	Q	S	s				
						1				
2	3	4	5	6	7	8				
9	10	11	12	13	14	15				
16	17	18	19	20	21	22				
23	24	25	26	27	28	29				
30	31									

revereno									
D	s	T	Q	Q	S	s			
		1	2	3	4	5			
6	7	8	9	10	11	12			
13	14	15	16	17	18	19			
20	Pr	26							
27	28								

C-----

Nossas aulas

- Apresentação
- Ementa
- Bibliografia
- Dinâmica das aulas
- Ferramentas utilizadas e linguagem de programação
- Plataforma para disponibilização de material
- Calendário
- Métodos de avaliação