Implementação de Modelo Computacional Baseado em Autômatos Celulares para Simulação de Propagação de Incêndio em Florestas de Pinheiro

Juliete Ferreira da Silva

Departamento de Informática
Universidade Federal Rural de
Pernambuco
Email: julieteferreira08@gmail.com

Resumo

Este trabalho apresenta a implementação de um modelo computacional para simular a propagação de incêndios em florestas de pinheiro, utilizando a abordagem de autômatos celulares. O modelo considera o ambiente florestal como uma grade bidimensional, onde cada célula representa uma porção do terreno e pode assumir diferentes estados, como vegetação intacta, em chamas ou queimada.

Como o tipo de vegetação e densidade de árvores por metro quadrado influencia diretamente na velocidade e propagação do incêndio, o presente trabalho utiliza como modelo as florestas de Pinheiros (geralmente localizadas nos EUA e Europa), cujas características são: uniformidade de indivíduos, produção de resinas inflamáveis, copas altas - o que favorece a propagação aérea - e que mesmo estando em clima predominantemente frio, são altamente inflamáveis em épocas secas. Deste modo, o algoritmo é baseado em um ambiente propício para a propagação de incêndios, sem fatores como excesso de umidade e densidade de copas. Os resultados obtidos demonstram que o modelo é capaz de reproduzir comportamentos realistas de avanço do fogo e que pequenas variações nas condições ambientais podem influenciar significativamente a velocidade e a extensão da área queimada. Conclui-se que a metodologia baseada em autômatos celulares é uma ferramenta promissora para o apoio à tomada de decisão em manejo e mitigação de riscos de incêndios em florestas de pinheiro.

Palavras Chave: Autômatos celulares; Incêndios florestais; Modelagem computacional; Floresta de pinheiro; Simulação.

1 Introdução

Os incêndios florestais constituem uma das maiores ameaças aos ecossistemas naturais, resultando em perdas consideráveis de biodiversidade, deterioração do solo e efeitos socioeconômicos significativos. Florestas de pinheiro, em particular, são áreas de grande vulnerabilidade, por conta do material combustível altamente inflamável, como agulhas secas e resinas, que facilitam a rápida disseminação do fogo. Nesse cenário, a utilização de modelos computacionais para simular e analisar o comportamento do fogo se transforma em um recurso estratégico para a prevenção e gestão de áreas de risco. Dentre as metodologias disponíveis, os autômatos celulares se sobressaem pela habilidade de modelar sistemas complexos a partir de regras locais simples, permitindo a replicação de padrões de propagação não lineares e que dependem de diversos fatores. A adoção de um modelo fundamentado nessa abordagem possibilita não só a previsão do desenvolvimento espacial e temporal do incêndio, como também a simulação de cenários hipotéticos e estratégias de contenção, oferecendo suporte para decisões mais eficientes na administração de recursos e na redução de danos. Este estudo descreve a criação e a aplicação de um modelo computacional

fundamentado em autômatos celulares, com o objetivo de simular a propagação de incêndios em florestas de pinheiro. O objetivo é analisar o comportamento do fogo em diversas condições ambientais e estruturais, auxiliando na compreensão dos mecanismos envolvidos e no aperfeiçoamento de práticas de prevenção e combate.

2 Metodologia

O presente modelo computacional, baseado em autômatos celulares, foi desenvolvido para simular a propagação de incêndios em uma floresta utilizando a linguagem Python juntamente com as bibliotecas NumPy e Matplotlib. A floresta é representada por uma matriz bidimensional, em que cada célula pode ter um dos seguintes estados discretos: vazio (valor 0), árvore (valor 1) ou fogo (valor 2). A floresta é inicializada de maneira estocástica, utilizando uma densidade estabelecida pelo usuário. Cada célula da matriz é preenchida de forma aleatória como árvore ou espaço vazio, mantendo a proporção determinada. O incêndio começa no centro da matriz, mas pode ser configurado para iniciar em qualquer posição. Uma regra simples descreve a dinâmica da propagação do fogo: a cada iteração, todas as árvores em chamas se transformam em espaços vazios e tentam incendiar suas vizinhas imediatas (norte, sul, leste e oeste). Somente células com árvores (estado 1) são passíveis de incêndio. Essa lógica é implementada de forma síncrona em toda a matriz, resultando em uma nova configuração da floresta a cada intervalo de tempo. Para a visualização do processo, utilizou-se a biblioteca Matplotlib, que gera uma animação da propagação do fogo ao longo do tempo. A matriz é apresentada com um mapa de cores "hot", no qual cada estado é indicado por uma cor diferente. A função de animação atualiza o estado da floresta em cada quadro, possibilitando a visualização da evolução espacial e temporal do incêndio.

3 Resultados e Discussões

A simulação da propagação de incêndios florestais utilizando o modelo baseado em autômatos celulares foi realizada em três cenários distintos, permitindo avaliar o impacto da densidade de vegetação e da posição inicial do foco de incêndio no comportamento das chamas.

Cenário 1: com alta densidade de árvores (90%), observou-se uma propagação rápida e abrangente do fogo. A conectividade elevada entre as células contendo árvores facilitou a transferência do incêndio entre vizinhos, resultando na queima quase completa da área simulada. Esse comportamento reforça o risco elevado em florestas densas de pinheiro, onde o material combustível é abundante e contínuo.

Cenário 2: com baixa densidade de árvores (30%), o fogo apresentou propagação limitada. A ausência de conectividade em várias regiões impediu a continuidade das chamas, levando à sua extinção prematura. Esse resultado indica que a fragmentação da vegetação atua como barreira natural à propagação, embora possa não ser suficiente em condições reais onde vento e topografia favoreçam o avanço das chamas.

Cenário 3: o incêndio foi iniciado no canto da matriz, com densidade moderada (60%). Nessa configuração, o avanço do fogo ocorreu predominantemente em uma direção, restringido pelas bordas da simulação. Comparado ao caso central, o tempo de propagação foi menor e a área queimada mais limitada, evidenciando que a posição inicial do foco influencia diretamente a intensidade e a extensão dos danos.

De forma geral, os resultados obtidos validam o potencial do modelo para representar diferentes comportamentos de incêndios florestais a partir de regras simples. Apesar de simplificações, como a ausência de fatores ambientais dinâmicos, o modelo se mostrou capaz de reproduzir padrões coerentes com fenômenos reais, oferecendo um ponto de partida para estudos mais complexos.

4 Conclusões

O modelo computacional baseado em autômatos celulares provou ser eficiente ao fornecer uma representação visual e dinâmica do processo de propagação de incêndios em florestas de pinheiro. A implementação em Python, empregando numpy e matplotlib, possibilitou a simulação da propagação do fogo com base em regras simples. Nessa simulação, células que representam árvores inflamáveis são convertidas em focos de incêndio e, posteriormente, em áreas vazias, evidenciando a devastação provocada pelas chamas.

A metodologia empregada mostrou que, mesmo com um conjunto limitado de parâmetros — como densidade inicial de árvores, localização do foco inicial e vizinhança imediata — é viável replicar comportamentos típicos da propagação do fogo, como a expansão radial e rápida ocupação de regiões com alta densidade arbórea. Ademais, a simplicidade do código o torna uma base adaptável para aprimoramentos futuros, como a adição de efeitos de vento, umidade, relevo e variação na inflamabilidade da vegetação.

Dessa forma, o estudo destaca a capacidade dos autômatos celulares como instrumento pedagógico e de investigação, possibilitando não só uma compreensão mais aprofundada da dinâmica dos incêndios, mas também atuando como base para a criação de modelos mais realistas que podem ser aplicados na gestão e prevenção de riscos em ecossistemas florestais.

5 Referências Bibliográficas

PYTHON SOFTWARE FOUNDATION. *Python Documentation*. Disponível em: https://www.python.org/doc/. Acesso em: 11 ago. 2025.

PEREIRA, Alexandre de Matos Martins et al. Investigação de incêndios florestais. Brasília, DF: Prevfogo/IBAMA, 2. ed., 2010

USDA Forest Service. Fire Ecology. *Rocky Mountain Research Station / Northern Research Station / Pacific Southwest Research Station*. Disponível em: https://research.fs.usda.gov/rmrs/fire/behavior . Acesso em: 11 ago. 2025