CS 306

RECITATION 2

Outline

- Constraints and Referential Integrity
- Basic ER Diagram Generation with LucidCharts
- ER Diagram to Relational Model
- Weak Entities
- ISA Hierarchies

DOMAIN CONSTRAINT

The type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified

CREATE TABLE students (sid INTEGER, name CHAR(50), login CHAR(50), age INTEGER, gpa real);

INSERT INTO Students (sid, name, login, age, gpa) VALUES (53688, 'Shero', 'shero@cs', 18, 3.2);

Try this:

INSERT INTO Students (sid, name, login, age, gpa) VALUES (53689, 'Shero', 'shero@cs', '18 age', 3.2);

PRIMARY KEY

The PRIMARY KEY constraint uniquely identifies each record in a table.

ALTER TABLE Students ADD PRIMARY KEY (sid);

CREATE TABLE courses (cid INTEGER, cname CHAR(30), grade char(1), PRIMARY KEY (cid));

FOREIGN KEY

A FOREIGN KEY is a key used to link two tables together.

A FOREIGN KEY is a field in one table that refers to the PRIMARY KEY in another table.

CREATE TABLE enrolled(
sid INTEGER,
cid INTEGER,
FOREIGN KEY (sid) REFERENCES students(sid) ON DELETE SET NULL,
FOREIGN KEY (cid) REFERENCES courses(cid) ON UPDATE CASCADE);

REFERENTIAL INTEGRITY

- ON DELETE CASCADE: if a row of the referenced table is DELETED, then all matching rows in the referencing table are also DELETED
- ON UPDATE CASCADE: if a row of the referenced table is UPDATED, then all matching rows in the referencing table are also UPDATED
- ON DELETE SET NULL: if a row of the referenced table is deleted, then all referencing columns in all matching rows of the referencing table to be set to null
- ON DELETE SET DEFAULT: if a row of the referenced table is deleted, then all referencing columns in all matching rows of the referencing table to be set to the column's default value.

CREATE TABLE enrolled(
sid INTEGER,
cid INTEGER,
FOREIGN KEY (sid) REFERENCES students(sid) ON DELETE SET NULL,
FOREIGN KEY (cid) REFERENCES courses(cid) ON UPDATE CASCADE);

EXERCISE

Inserting some values to check referential integrity:

INSERT INTO enrolled VALUES (1,'Hasan','hasan@cs',25,3.5)

Deleting some values to check referential integrity holds:

DELETE FROM students WHERE sid = 53650

Updating some values to check referential integrity holds:

UPDATE students SET sid = 60000 WHERE sid = 53666

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Shero	shero@cs	18	3.2
53650	Shero	shero@math	19	3.8

sid	cid	grade
53831	Carnatic101	С
53831	Reggae203	В
53650	Topology112	A
53666	History105	В

VIEW

A <u>view</u> is just a relation, but we store a <u>definition</u>, rather than a set of tuples.

CREATE VIEW goodStudents (sid, gpa)

AS SELECT S.sid, S.gpa

FROM students S

WHERE S.gpa > 3;

DROPVIEW goodStudents;

VIEW

A <u>view</u> is just a relation, but we store a <u>definition</u>, rather than a set of tuples.

CREATE VIEW goodStudents (sid, gpa)

AS SELECT S.sid, S.gpa

FROM students S

WHERE S.gpa > 3;

DROPVIEW goodStudents;

TOOL FOR DRAWING ER DIAGRAMS: LUCIDCHARTS

- You should use a drawing application for generating ER diagrams to be precise and understandable
- You can use different applications for drawing your ER diagrams
- An example is : https://lucid.app/

CREATE TABLE Employees(
ssn CHAR(II),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn));

CREATE TABLE Departments(
did CHAR(II),
dname CHAR(20),
PRIMARY KEY (did));

Many to many relationship

CREATE TABLE Works_in(

ssn CHAR(II),

did INTEGER,

since DATE,

PRIMARY KEY (ssn, did),

FOREIGN KEY (ssn) REFERENCES employees(ssn),

FOREIGN KEY (did) REFERENCES departments(did));

Many to many relationship

```
CREATE TABLE Dept_Manages(
did CHAR(II),
ssn CHAR(II),
dname CHAR (20),
budget INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY ssn REFERENCES Employees(ssn)
);
CREATE TABLE Employees(
ssn CHAR(II),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn));
```


Key constraint

CREATE TABLE Employees(
ssn CHAR(II),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn));

```
CREATE TABLE Dep_Policy(
pname CHAR(II),
age INTEGER,
cost DECIMAL,
ssn CHAR(II),
PRIMARY KEY (ssn,pname)
FOREIGN KEY ssn REFERENCES Employees(ssn) ON DELETE CASCADE
);
```


How many relations will there be, after we convert the following ER diagram to relational model?

CREATE TABLE Employees(
ssn CHAR(II),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn));

CREATE TABLE Reports_To(
supervisor_ssn CHAR(II),
subordinate_ssn CHAR(II),
PRIMARY KEY (supervisor_ssn,subordinate_ssn),
FOREIGN KEY supervisor_ssn REFERENCES
Employees(ssn) ON DELETE CASCADE,
FOREIGN KEY subordinate_ssn REFERENCES
Employees(ssn) ON DELETE CASCADE,
);

CREATE TABLE Dept_Manages(
did CHAR(II),
ssn CHAR(II) NOT NULL,
dname CHAR (20),
budget INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY ssn REFERENCE
Employees(ssn));

CREATE TABLE Contract_Emps(
ssn CHAR(II),
contract_id INTEGER,
PRIMAY KEY (ssn),
FOREIGN KEY (ssn) References
Employees(ssn) ON DELETE
CASCADE