

(11)Publication number:

61-032681

(43)Date of publication of application: 15.02.1986

(51)Int.Cl.

H04N 7/01 H04N 11/20

(21)Application number: 59-152917

(71)Applicant :

HITACHI LTD

(22)Date of filing:

25.07.1984

(72)Inventor:

SUGIYAMA MASAHITO

NAKAGAWA HIMIO

(54) SIGNAL PROCESSING CIRCUIT

(57)Abstract

PURPOSE: To obtain a natural image even if a subject to be imaged moves, not by using only a signal before one field when varying into scanning signal successively, but by using an average value between a signal before one field and a signal after one field in a case that the scanning rectification is performed against TV signal making interlace scanning.

CONSTITUTION: A standard is placed on output signal Xn of a line memory 3. For example, a signal Xn-262 before one field, signal Xn+263 after one field and signal Xn+1 after one line are obtd. and an average value Xa is obtd. by the first adding circuit 5 and the first 1/2 coefficient circuit 6. An average value Xb between signal Xn and signal Xn is obtd. by the second adding circuit 7 and the second 1/2 coefficient circuit 8, and the mixed ratio between the rectifying signal Xa within the field and the rectifying signal Xb within the field is changed according to the degree of movement of the subject to be imaged. Thus, the rectifying signal Xn, n+1 in accordance with the extent of the movement can be obtained, time axis is compressed to 1/2 by time compression circuits 13, 14, and switch 15 switched over by each one scanning line after time compression.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

19 日本国特許庁(JP)

⑩特許出顧公開

⑫ 公 開 特 許 公 報 (A)

昭61-32681

@Int_Cl.4

識別記号

庁内整理番号 7334-5C 7423-5C ❸公開 昭和61年(1986)2月15日

H 04 N 7/01 11/20

審査請求 未請求 発明の数 1 (全6頁)

母発明の名称 信号処理回路

②特 顧 昭59-152917

②出 願 昭59(1984)7月25日

砂発明者 杉山 雅

横浜市戸塚区吉田町292番地 株式会社日立製作所家電研

究所内

⑩発 明 者 中川 一三夫

横浜市戸塚区吉田町292番地 株式会社日立製作所家電研

究所内

切出 願 人 株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

砂代理 人 弁理士 高橋 明夫 外1名

明 無 書

1 発明の名称 信号処理回路

2 特許請求の範囲

・インターレース歩春を行っているテレビジョ ン信号を入力し、順次走査の信号に変換する 信号処理方式において、入力信号を1フィー ルド周期選延する第1のフィールドメモリと、 敵1のフィールドメモリの出力をさらに1フィー ルド周期遅延する第2のフィールドメモリと を有し、上記第1のフィールドメモリの出力 信号における補間走査額信号を求める為に、 上記載1のフィールドメモリの入力信号と上 記第2のフィールドメモリの出力信号の平均 値とから第1の補間走査線信号を得る錦1の **追査額補間回路と、上記第1のフィールドメ** モリの出力の隣接する走査製の信号から第2 の補間走査線信号を得る第2の走査般補間回 路とを有し、被写体の動きの程度によって上 記第1の補間走査線信号と上記第2の補間走 査線信号の混合の割合を変える混合手段とを

有するととを特徴とする信号処理回路。

- 2. 上記第1のフィールドメモリの入力信号と 上記第2のフィールドメモリの出力信号とか ら被写体の動きの程度を求める動き検出回路 を有し、上記混合手段は設動き検出回路の出 力によって、上記第1の補間走査線信号と上 記第2の補間走査線信号の割合を変えること を特数とする特許請求の範囲・第1項記載の 信号処理回路。
- 3. 上記テレビジョン信号として、カラーテレビジョン信号が入力され、少なくとも輝度信号については上記第1及び第2の補間走査線信号を得ることを特徴とする特許請求の範囲・
 第1項記載の信号処理回路。
- 4. 上記カラーテレビジョン信号中の色差信号 については第2の補間走査級信号のみを得る ことを特徴とする特許諸求の範囲・第3項記 載の信号処理回路。
- 5. 上記テレビジョン信号が1水平走査期間中 に輝度信号と、2つの色差信号の両方ともを

特開昭61- 32681(2)

時間軸多度しているカラーテレビジョン信号であり、少なくとも輝度信号については第1及び第2の補間走査線信号を得ることを特徴とする特許請求の範囲・第1項記載の信号処理回路。

- 7. 上記テレビジョン信号中の上記色差信号があらかじめ送信仰で上記輝度信号より1フィールド分だけ遅延されていることを特徴とする特許請求の範囲・第6項記載の信号処理回路。
- 3 発明の詳細な説明

[発明の利用分野]

本発明はテレビジェン信号の信号処理回路に係り、特にインターレース走査を行っている信号に対して走査被補関を施し、順次走査の信号に変換する信号処理回路に関する。

[発明の背景]

インターレース走査を行っているテレビジョ

印で表わされるように、時間軸上を移動すると とになる。 、さらに、との方式によって検出された動きは

さらに、との方式によって検出された動きは、 実際に補間しようとしている走査線の位置その ものにおける動きではなく、原次走査のときの 走査線 1 本分だけ離れた位置における動きにす ぎない。従って、画面の 1 部分だけが動いてい るようなときは、その境界付近で劣化を生じる。 〔発明の目的〕

本発明の目的はインターレース定査を行っているテレビジョン信号に対して定査線補間を行い、 順次定査の信号に変換する信号処理回路において、被写体が動いても不自然さのない 画像を得ることができるようにすることにある。 〔発明の概要〕

上記目的を選成する為に本発明は、フィールド間補間を行う際に1フィールド前の信号だけを用いるのではなく、1フィールド前の信号と1フィールド後の信号との平均値を用いることとする。

ならばフィールド間補間を行うことにしてXn-262という走査線信号を用い、また、動きの程度が大きいならばフィールド内補間を行うことにして信号Xnと信号Xn+1の平均値を用いる。そして信号Xnと信号Xn-525の差をとるなどして被写体の動きを検出し、この動きの値によって走査線補間におけるフィールド間補間の割合を制御する。

 ン信号を受信側において走査線を補間してやり、 順次走査の信号に変換して表示する方法として、 例えば特開昭58-117788号公報に示されるよう に、フレーム間差信号を計算して被写体の動き を検出し、この動きによってフィールド間補間 とフィールド内補間とを切り換えるものが知ら れている。

この方法は動きの程度が少ないならば主にフィールド間補間を、動きの程度が大きいならば、 フィールド内補間を行うことにより、静止で 動画いずれに対しても劣化の少ない。面像を得る ことができるものであるが、フィールド間補 によって得た信号とフィールド内補間によって得た信号とでは時間軸上における位置が違う に、動きの程度が変化した時に不自然な画像に なるということがあった。

この従来例における走査稼補間の方法は例えば第1回のように表現できる。つまり、第(M)フィールドにおけるXn,n+1という補間走査報信号を得るために、被写体の動きの程度が小さい

特開昭61-32681(3)

すなわち、本発明においては、第3図のようにして補間走査線信号を得る。Xn,n+1という補間走査線信号を得るためにフィールド間補間を行うときは信号Xn-262と信号Xn+268の平均値を用い、フィールド内補間を行うときは信号Xnと信号Xn+268を用いる。そして、信号Xn-262と信号Xn+253を用い両者の差をとるなどして被写体の動きを検出し、この動きの値によってフィールド間補間とフィールド内補間の割合を創御する。

このようにすることにより、フィールド間補 間で得た信号とフィールド内補間で得た信号の 時間軸上における位置を合わせることができ、 動きについても補間しようとしている走査線の 位置における動きそのものを検出することが可能となる。

(発明の実施例)

以下、本発明の一実施例を第4図により説明 する。入力端子Iから入力されたインターレース走査を行っているテレビジョン信号は厳続等

統された2つの262 H容量のフィールドメモリ2. 4 及びラインメモリ 3 に入力される。この構成 により、ラインメモリ3の出力信号Xnを基準と して、1フィールド前の信号Xn-262、1フィー ルド後の信号Xn+268 , 1 ライン後の信号Xn+1を 得ることができる。信号Xn-262と信号Xn+263の 平均値Xaを第1の加算回路5と第1の支係数回 路6によって求める。また、信号Xnと信号Xn+n との平均値Xbを第2の加算回路7と第2の責係 数国路8によって求める。このようにして求め たフィールド間補間信号Xáとフィールド内補間 信号Xbとの混合比を秘写体の動きの程度に応じ て変える。このためにまず、信号Xn-262と信号 Xn+263を動き係数算出回路12に入力して、動き 係数Kを求める。このKの値を例えば、信号 Xn-262と信号Xn+263との差が少ないならば1に 近づけ、差が大きいならば0亿近づけるといっ たように、0から1の値で変化するようにする。 この動き係数質出回路12の具体例は例をば、特 開昭58-130685号を参照されたい。被算回路 9

と乗算回路10と加算回路11により、信号Xaと信号Xbについて次式に示す演算を行い、乗算回路

 $Xb + K(Xa - Xb) = K \cdot Xa + (1 - K)Xb$

10の乗数を動き係数 K とすれば、動きの程度に応じた補間信号 Xn,n+iを得られる。こうして得た信号 Xn,n+iと信号 Xnを時間圧縮回路 13,14によって時間軸を立に圧縮し、スイッチ15を時間圧縮後の1 走査終毎に切換えることにより、インターレース 走査を行っているテレビジョン信号から 原次走査の信号に変換することができる。

本実施例によれば、フィールド間補間によって得た補間定査線信号とフィールド内補間によって得た補間定査線信号の時間軸上における位置を合わせることができる。

次にカラーテレビジョン信号について考える。カラーテレビジョン信号において輝度信号と2つの色差信号を考えると、色差信号に対する人間の視覚特性は輝度信号に対する特性よりも劣っているので、色差信号については同一フィールド内の隣接する走査線の信号からのみ作成す

る。すなわちフィールド内補間のみを行うこと にしても画像の劣化はほとんどわからない。 上 記のようにするならば、色差信号用のフレーム メモリ及びフィールド間補間回路が不要となる ので、信号処理回路の構成を非常に簡単にでき る。

特開昭61~ 32681(4)

れかを記録しなければならないのに対し、フレームメモリには輝度信号と色差信号が周波数多重されている信号を記録する必要があるからである。このためにメモリ容量の増加を招く。

とこで、輝度信号と2つの色差信号が時間軸 多重されているとは上記の様な問題は生りかの フィールド補間に用いる2フィールド分の フィールドメモリは、動きの検出に用いるフレー ムメモリと、第4図で示したように共用できる。 また、時間圧離されて時間軸多重されていように 度信号と色差信号を、分離してから元のように 時間伸張するための回路はたかだか数ライン分 のラインメモリで実現できる。

例えば、1 水平走査期間中に輝度信号と、2 つの色整信号の両方ともが時間軸多重されているような信号を第 5 図に示すような回路に入力するならば、まず分離回路18によって分離された各信号は、輝度信号を時間伸張する第 1 の伸張回路19と、2 つの色整信号をそれぞれ時間伸張する第 2 及び第 3 の伸張回路20,21によって 時間伸張してから、第4図に示すような回路に 入力することによって補間走査線信号を得ることができる。

第6図に、そのための一実施例として、カラーテレビジョン信号を処理する場合の本発明による回路構成を示す。同図において、入力端子25,26,27はそれぞれ第5図の出力幾子22,23,24に接続される。第1の入力端子25に入力された焊度信号のための走査報補関回路28は第4図に

本実施例によれば、色差信号用の走査根補間 回路の構成を非常に簡単にできる。

本実施例において出力される色差信号は輝度 信号より l フィールド周期だけ先行することに なるので色ずれを生じる場合がある。これを避 ける為には送信側においてあらかじめ色差信号 を l フィールド周期だけ遅延させておけば良い。 送信例において何も処理が行われていない場合は、本実施例において入力端子 26 , 27 の後に 262H 容量のフィールドメモリをそれぞれ追加してやれば良い。

[発明の効果]

本発明によれば、フィールド間補間で得た信号とフィールド内補間で得た信号の時間軸上における位置を同じにすることができるので、被写体の動きの程度が変化しても、動きによる劣化を生ずることなくインターレース走査の信号を順次走査の信号に変換することができる。

4 図面の簡単な説明

第1図は走査線補間の方法の従来例を説明する図、第2図は従来例による補間走査般信号の時間軸上における位置を示す図、第3図は本発明による走査線補間の原理を説明する図、第4図は本発明による一実施例を示す図、第5図は時間伸級回路を示す図、第6図は本発明による他の実施例を示す図である。

1,17,25,26,27 … 入力端子、16,22,23,

特開昭61- 32681(5)

24,39,40,41… 出力熔子、2,4…フィールドメモリ、3,29,30 … ラインメモリ、5,7,11,31,32…加算器、6,8… 1 係数回路、10… 乗算器、9 … 被算器、12… 動き係数算出回路、13,14,33,34,35,36…時間圧縮回路、15,37,38…スイッチ、18…分離回路、19,20,21…時間伸張回路、28…輝度信号用走査線補間回路。

 \mathbb{Z}

代理人弁理士 高 格 明 失

 \mathbb{Z}

粥

特開昭61- 32681(6)

