Name:	
Score: _	
Midterm	1
Part 1	
	Study of abstract computing devices or machines is known as A. Computing B. Machine learning C. Automata theory D. Formal theory Answer Point Value: 1.0 points Answer Key: C
	A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols: True False Answer Point Value: 1.0 points Answer Key: True
	A containment hierarchy of classes of formal languages is known as: A. Turing Machine B. Chomsky hierarchy C. DFA D. NFA Answer Point Value: 1.0 points

Answer Key: B

We use the symbol ∑ (sigma) to denote an alphabet: ☐ True ☐ False
Answer Point Value: 1.0 points Answer Key: True
An alphabet is not a finite set of symbols: True False
Answer Point Value: 1.0 points Answer Key: False
Empty string is represented by: A. \sum (sigma) B. δ (delta) C. ϵ (epsilon) D. α (alpha) Answer Point Value: 1.0 points Answer Key: C
" If y≥4, then 2 ^y ≥y ² " is an example of what type of proof: A. dumb B. deductive C. definitive D. decisive
Answer Point Value: 1.0 points Answer Key: B

An intermediate result that we show to prove a larger result is known as: A. proof
C B. lemma
C. corollary
O. theorem
Answer Point Value: 1.0 points Answer Key: B
The machine that can exist in only one state at any given time is known as: A. DFA
C B. NFA
C. Turing machine
D. Chomsky heirarchy
Answer Point Value: 1.0 points Answer Key: A
The machine that can exist in multiple state at any given time is known as: A. chomsky hierarchy
C B. turing machine
C. NFA
C D. DFA
Answer Point Value: 1.0 points Answer Key: C
A DFA is defined by 3-tuple: True
C False
Answer Point Value: 1.0 points Answer Key: False

String 00110010 will be accepted by a DFA that accepts? A. Only 0s
C B. 1100 as substring
C. only 1s
C D. 1010 as substring
Answer Point Value: 1.0 points Answer Key: B
String 00110100 will be accepted by a DFA that accepts? A. Only 0s
C B. only 1s
C. 1010 as substring
D. 1100 as substring
Answer Point Value: 1.0 points Answer Key: C
A DFA that accepts only even number of 1s and 0s will accept which of these strings? • A. 00000100
© B. 11111000
C. 1010101
C D. 11000011
Answer Point Value: 1.0 points Answer Key: D
A DFA that accepts any string that ends with 10 will accept which of these strings? A. 11000011 B. 1010101 C. 11111000

Answer Point Value: 1.0 points Answer Key: D

Regular expressions are more like program syntax: True
C False
Answer Point Value: 1.0 points Answer Key: True
L U M = all strings that are either in L or M: Γ True
C False
Answer Point Value: 1.0 points Answer Key: True
L = { w w is a binary string which does not contain two consecutive 0s or two consecutive 1s anywhere}. What is the regular expression for this language? A. $(01)^* + (10)^* + 0(10)^* + 1(01)^*$
 B. (01)* + (10)* + 0(10)* C. (10)* + 0(10)* + 1(01)*
O. (01)* + 10(10)* + 1(01)*
Answer Point Value: 1.0 points Answer Key: A
If we introduce ϵ then the regular expression n(01)* + (10)* + 0(10)* + 1(01)* can be simplified to $(\epsilon$ +1)(01)*(ϵ +0)
C True
C False
Answer Point Value: 1.0 points Answer Key: True

True or False:

$$(RS + R)*RS = (RR*S)*$$

True

False

Answer Point Value: 1.0 points

Answer Key: False

What is the regular expression for this DFA?

- A. 1*00*1(0+1)*
- B. 1*01*1(01)*
- C. 0*10*1(01)*
- O. 00*1(0+1)*

Answer Point Value: 1.0 points

Answer Key: A

If we are able to construct one of the following: DFA or NFA or e -NFA or regular expression then the language is called:

- A. Regular
- B. Npt regular
- C. Complex
- O. Simple

Answer Point Value: 1.0 points

Answer Key: A

A technique that is used to show that a given language is not regular is known as: A. Dilemma
C B. DFA
C. Pumping Lemma
C D. Regular expression
Answer Point Value: 1.0 points Answer Key: C
Regular languages are regular under reunion. True
C False
Answer Point Value: 1.0 points Answer Key: False
How to minimize a DFA? A. Identify reachable states.
C B. Identify empty states
C. Not possible
D. Remove unreachable states and Identify &condense equivalent states into one
Answer Point Value: 1.0 points Answer Key: D
How to perform emptiness test on a language L? Provide steps.
Answer Point Value: 5.0 points Model Short Answer: nDecision Problem: Is L=Ø?
nApproach:
On a DFA for L:
1.From the start state, run a <i>reachability</i> test, which returns:
1. success: if there is at least one final state that is reachable from the start state
2.failure: otherwise

2.L=Ø if and only if the reachability test fails

What are the steps to decide membership question? i.e. Given L, is w in L?

Answer Point Value: 5.0 points

Model Short Answer: 1. Build a DFA for L

2. Input w to the DFA

3. If the DFA ends in an accepting state, then yes; otherwise no.

What are the steps for finiteness question? i.e. Is L finite or infinite?

Answer Point Value: 5.0 points Model Short Answer: Approach 1:

On a DFA for L:

- a. Remove all states unreachable from the start state
- b. Remove all states that cannot lead to any accepting state.
- c. After removal, check for cycles in the resulting FA
- d. L is finite if there are no cycles; otherwise it is infinite

Approach 2:

Build a regular expression and look for Kleene closure

Either answer is correct.

How to minimize a DFA? Only provide steps / algorithm.

Answer Point Value: 5.0 points

Model Short Answer: 1. Eliminate states unreachable from the start state

- 2. Identify and remove equivalent states
- 3. Output the resultant DFA

How to decide if two DFAs are equivalent? Provide steps.

Answer Point Value: 5.0 points

Model Short Answer: 1. Make a new dummy DFA by just putting together both DFAs.

- 2. Run table-filling algorithm on the unified DFA.
- 3. IF the start states of both DFAs are found to be equivalent,

THEN:DFA1≡ DFA2 ELSE:different