Coordinates, Dimension, and Rank

Let
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, and $\vec{x} = \begin{bmatrix} 5 \\ 3 \\ 5 \end{bmatrix}$. Verify that \vec{x} is in the span of $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$, and calculate $[\vec{x}]_{\mathcal{B}}$.

In RREF

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

So, \vec{x} is in the span of B and $[x]_B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

Dimension

$$\dim(\mathbb{R}^n) = n$$

 $\dim(\operatorname{Null}(A)) = \text{no of free variables}$
 $\dim(\operatorname{Col}(A)) = \text{no of pivot columns}$

Rank

$$Rank(A) = dim(Col(A)) = no mtext{ of pivot columns}$$

 $Rank(A) + dim(Null(A)) = dim(Col(A)) + dim(Null(A)) = no mtext{ of columns}$

Invertibility

If A is an $n \times n$ matrix. These conditions are equivalent.

- 1. *A* is invertible.
- 2. The columns of A are a basis for \mathbb{R}^n
- 3. Col $A = \mathbb{R}^n$.
- 4. Rank $A = \dim(\operatorname{Col} A) = n$.
- 5. Null $A = \{\vec{0}\}$