Optimization Theory Summary

Mathematical Notes

October 19, 2025

Contents

1	\mathbf{Lin}	ear Programming				
	1.1	Standard Form				
	1.2	Basic Solutions				
	1.3	Simplex Method				
	1.4	Duality				
2	Cor	nvex Optimization				
	2.1	Convex Sets				
	2.2	Convex Functions				
	2.3	Convex Optimization Problem				
	2.4	Optimality Conditions				
3	Uno	constrained Optimization 4				
	3.1	Gradient Descent				
	3.2	Newton's Method				
	3.3	Convergence Analysis				
4	Cor	nstrained Optimization 5				
	4.1	Lagrange Multipliers				
	4.2	Penalty Methods				
	4.3	Barrier Methods				
5	Inte	eger Programming				
	5.1	Branch and Bound				
	5.2	Cutting Planes				
6	Noi	Nonlinear Programming 6				
	6.1	Sequential Quadratic Programming				
	6.2	Trust Region Methods				
7	Sto	chastic Optimization				
	7.1	Stochastic Gradient Descent				
	7.2	Robust Optimization				

8	App	olications
	8.1	Operations Research
	8.2	Machine Learning
	8.3	Finance
9		portant Theorems
	9.1	Farkas' Lemma
	9.2	Complementary Slackness
	9.3	Minimax Theorem
10	Con	mplexity
	10.1	Computational Complexity
	10.2	Approximation Algorithms

1 Linear Programming

1.1 Standard Form

Definition 1.1. A linear programming problem in standard form:

$$\min \quad c^T x \tag{1}$$

s.t.
$$Ax = b$$
 (2)

$$x \ge 0 \tag{3}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

1.2 Basic Solutions

Definition 1.2. A basic solution is obtained by setting n-m variables to zero and solving the resulting system. If all variables are nonnegative, it's a basic feasible solution.

1.3 Simplex Method

Definition 1.3. The simplex method:

- 1. Start with a basic feasible solution
- 2. Choose entering variable (most negative reduced cost)
- 3. Choose leaving variable (minimum ratio test)
- 4. Pivot to new basic feasible solution
- 5. Repeat until optimal

1.4 Duality

Definition 1.4. The dual of the primal problem $\min\{c^Tx: Ax = b, x \geq 0\}$ is:

$$\max \quad b^T y \quad \text{s.t.} \quad A^T y \leq c$$

Theorem 1.1 (Strong Duality). If the primal has an optimal solution, then so does the dual, and their optimal values are equal.

2 Convex Optimization

2.1 Convex Sets

Definition 2.1. A set $C \subseteq \mathbb{R}^n$ is **convex** if for all $x, y \in C$ and $\lambda \in [0, 1]$:

$$\lambda x + (1 - \lambda)y \in C$$

2.2 Convex Functions

Definition 2.2. A function $f: C \to \mathbb{R}$ is **convex** if for all $x, y \in C$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Figure 1: Linear programming feasible region and objective contours

2.3 Convex Optimization Problem

Definition 2.3. A convex optimization problem:

$$\min \quad f(x) \tag{4}$$

s.t.
$$g_i(x) \le 0, \quad i = 1, \dots, m$$
 (5)

$$h_j(x) = 0, \quad j = 1, \dots, p$$
 (6)

where f and g_i are convex, and h_j are affine.

2.4 Optimality Conditions

Theorem 2.1 (KKT Conditions). For a convex optimization problem, x^* is optimal if and only if there exist Lagrange multipliers $\lambda_i \geq 0$ and ν_j such that:

$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x^*) + \sum_{j=1}^{p} \nu_j \nabla h_j(x^*) = 0$$
 (7)

$$g_i(x^*) \le 0, \quad i = 1, \dots, m$$
 (8)

$$h_j(x^*) = 0, \quad j = 1, \dots, p$$
 (9)

$$\lambda_i g_i(x^*) = 0, \quad i = 1, \dots, m$$
 (10)

3 Unconstrained Optimization

3.1 Gradient Descent

Definition 3.1. Gradient descent for minimizing f(x):

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

where α_k is the step size.

3.2 Newton's Method

Definition 3.2. Newton's method for optimization:

$$x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$$

3.3 Convergence Analysis

Theorem 3.1. If f is strongly convex with Lipschitz gradient, gradient descent with constant step size converges linearly:

$$f(x_k) - f(x^*) \le \rho^k (f(x_0) - f(x^*))$$

for some $\rho < 1$.

4 Constrained Optimization

4.1 Lagrange Multipliers

Definition 4.1. For the problem min f(x) subject to h(x) = 0, the Lagrangian is:

$$L(x,\lambda) = f(x) + \lambda^T h(x)$$

4.2 Penalty Methods

Definition 4.2. The penalty method approximates constrained problems by:

$$\min f(x) + \mu \sum_{i=1}^{m} [g_i(x)]_+^2 + \mu \sum_{j=1}^{p} h_j(x)^2$$

where $[z]_{+} = \max(0, z)$.

4.3 Barrier Methods

Definition 4.3. The barrier method uses:

$$\min f(x) - \mu \sum_{i=1}^{m} \log(-g_i(x))$$

for inequality constraints.

5 Integer Programming

5.1 Branch and Bound

Definition 5.1. Branch and bound for integer programming:

- 1. Solve LP relaxation
- 2. If solution is integer, stop

- 3. Branch on fractional variable
- 4. Bound using LP relaxation
- 5. Prune infeasible or suboptimal nodes

5.2 Cutting Planes

Definition 5.2. Cutting plane methods add valid inequalities to tighten the LP relaxation:

- 1. Solve LP relaxation
- 2. If solution is fractional, find cutting plane
- 3. Add cut and resolve
- 4. Repeat until integer solution

6 Nonlinear Programming

6.1 Sequential Quadratic Programming

Definition 6.1. SQP solves the subproblem:

$$\min \quad \frac{1}{2}d^T B_k d + \nabla f(x_k)^T d \tag{11}$$

s.t.
$$\nabla g_i(x_k)^T d + g_i(x_k) \le 0$$
 (12)

$$\nabla h_j(x_k)^T d + h_j(x_k) = 0 \tag{13}$$

where B_k approximates the Hessian.

6.2 Trust Region Methods

Definition 6.2. Trust region methods solve:

$$\min_{d:||d|| \le \Delta_k} m_k(d)$$

where $m_k(d)$ is a model of $f(x_k + d)$.

7 Stochastic Optimization

7.1 Stochastic Gradient Descent

Definition 7.1. SGD for minimizing $E[F(x,\xi)]$:

$$x_{k+1} = x_k - \alpha_k \nabla F(x_k, \xi_k)$$

where ξ_k is a random sample.

7.2 Robust Optimization

Definition 7.2. Robust optimization considers uncertainty in parameters:

$$\min_{x} \max_{\xi \in \mathcal{U}} f(x, \xi)$$

where \mathcal{U} is the uncertainty set.

8 Applications

8.1 Operations Research

Optimization is used in:

- Supply chain management
- Scheduling problems
- Resource allocation
- Network design

8.2 Machine Learning

Applications include:

- Training neural networks
- Support vector machines
- Regularized regression
- Clustering algorithms

8.3 Finance

Used for:

- Portfolio optimization
- Risk management
- Option pricing
- Algorithmic trading

9 Important Theorems

9.1 Farkas' Lemma

Theorem 9.1. Exactly one of the following holds:

- 1. There exists $x \ge 0$ such that Ax = b
- 2. There exists y such that $A^T y \leq 0$ and $b^T y > 0$

9.2 Complementary Slackness

Theorem 9.2. For optimal solutions x^* and y^* of primal and dual:

$$x_i^* > 0 \Rightarrow (A^T y^*)_i = c_i$$

$$(A^T y^*)_i < c_i \Rightarrow x_i^* = 0$$

9.3 Minimax Theorem

Theorem 9.3. For a convex-concave function f(x,y):

$$\min_{x} \max_{y} f(x, y) = \max_{y} \min_{x} f(x, y)$$

10 Complexity

10.1 Computational Complexity

- Linear programming: Polynomial time (interior point methods)
- Convex optimization: Polynomial time
- Integer programming: NP-hard
- General nonlinear programming: NP-hard

10.2 Approximation Algorithms

Definition 10.1. An α -approximation algorithm produces a solution within factor α of optimal in polynomial time.