Since w is given by the equation

$$w = -X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$

and since we just showed that $\lambda^{\kappa} = \kappa \lambda$, $\mu^{\kappa} = \kappa \mu$, we deduce that $w^{\kappa} = \kappa w$.

We showed earlier that η is given by the equation

$$(p+q)K_s\nu\eta = \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} \left(X^\top X + \frac{1}{2K_s} I_{p+q} \right) \begin{pmatrix} \lambda \\ \mu \end{pmatrix}.$$

If we replace ν by $\kappa\nu$, since λ is replaced by $\kappa\lambda$ and μ by $\kappa\nu$, we see that $\eta^{\kappa} = \kappa\eta$. Finally, b is given by the equation

$$b = \frac{w^{\top}(u_{i_0} + v_{j_0}) + \epsilon_{i_0} - \xi_{j_0}}{2}$$

for and i_0 such that $\lambda_{i_0} > 0$ and any j_0 such that $\mu_{j_0} > 0$. If λ is replaced by $\kappa\lambda$ and μ by $\kappa\mu$, since $\epsilon = \lambda/(2K_s)$ and $\xi = \mu/(2K_s)$, we see that ϵ is replaced by $\kappa\epsilon$ and ξ by $\kappa\xi$, so $b^{\kappa} = \kappa b$.

Since $w^{\kappa} = \kappa w$ and $\eta^{\kappa} = \kappa \eta$ we obtain $\delta = \eta/\|w\| = \eta^{\kappa}/\|w^{\kappa}\| = \delta^{\kappa}$. Since $w^{\kappa} = \kappa w$, $\eta^{\kappa} = \kappa \eta$ and $b^{\kappa} = \kappa b$, the normalized equations of the hyperplanes $H_{w,b}, H_{w,b+\eta}$ and $H_{w,b-\eta}$ (obtained by dividing by $\|w\|$) are all identical, so the hyperplanes $H_{w,b}, H_{w,b+\eta}$ and $H_{w,b-\eta}$ are independent of ν .

The width of the slab is controlled by K. The larger K is the smaller is the width of the slab. Theoretically, since this method does not rely on support vectors to compute b, it cannot fail if a solution exists, but in practice the quadratic solver does not converge for values of K that are too large. However, the method handles very small values of K, which can yield slabs of excessive width.

The "kernelized" version of Problem (SVM $_{s4}$) is the following:

Soft margin kernel SVM (SVM $_{s4}$):

minimize
$$\frac{1}{2}\langle w, w \rangle - \nu \eta + K_s(\epsilon^{\top} \epsilon + \xi^{\top} \xi)$$
subject to
$$\langle w, \varphi(u_i) \rangle - b \ge \eta - \epsilon_i, \qquad i = 1, \dots, p$$
$$-\langle w, \varphi(v_j) \rangle + b \ge \eta - \xi_j, \qquad j = 1, \dots, q$$
$$\eta > 0,$$

with
$$K_s = 1/(p+q)$$
.

By going over the derivation of the dual program, we obtain