# Modal Testing as an Aid in sessing Penetration Mechanic Patrick L. Walter

#### Endevco, San Juan Capistrano, CA



TCU, Fort Worth, T>







#### Goals

- Describe a gun-launched earth penetrator test
  - provide test details
  - review and analyze test results
  - draw conclusions concerning analytical/experimental process
- Support program theme
  - measurement system design
    - transducers, system checks, model verification, modal analysis, data filtering, data sampling,





## Earth Penetrator Applications

- Deliver ordnance device
- Exploration of geological layer
- Measurement of sea ice thickr
- Insitu chemistry
- etc.







### Specific Penetrator to be Field Tested

- length: 61.25"
- diameter: 6.125"
- wall thickness: 1.062"
- weight: 336 pounds
- c.g.: 28.05" from nose
- on board data recording system (accelerometer triggered)
  - resolution: \*6 bits (1 part in 63)
  - Nyquist frequency: 11,300 Hz
  - two data channels
    - anti-alias filters designed



### Specific Penetrator (con't)

- two data channels (con't)
  - Micro-Measurements WA 06-250BK-10C strain gages (constantan material, 1/4" gage length, temperature compensated for steel, fully encapsulated, 1000Ω resistance)
    - 180 degrees on circumference, 30" from nose
    - measure compression and bending strain calibrated +/- 6,000με ( corresponds to yield of penetrator steel case [D6 A-C normalized and



#### Specific Penetrator (con't)





#### Specific Penetrator (con't)



MM WA 06-250BK-10C +/- 6,000 microstrain full scale

- 6dB at 4,200 Hz 24 dB/octave

~211 microstrain/word

constantan 1,000 ohm T. C. 6 ppm/deg F

.250" grid length encapsulated in glass fiber reinforced epoxy phenolic resin ~48,000 bits

~6 bits/word

~179 msec. window dT/sample for 2

channel system =

.00004417 sec. =

11,300 Hz Nyquist

frequency





# Experimental modal Analysis (review)

- Experimental modal analysis enables extraction of:
  - shape,
  - natural frequency, and
  - damping

for each vibratory mode of a structi



- NASTRAN
- ANSYS
- ALGOR





# Penetrator Experimental Modal Analysis Results Prior to Field Test



Acceleromet er Mounting cations



Penetrator tested with Hammer Input Free-Free Boundaries



Instrumented Sandia



#### Penetrator Experimental Modal Analysis Results Prior to Field Test





Sandia

deterministic structure adds credibility





Fourth Bending Mode - 2,713 HЪ

Penetrator Natural Frequencies

| <u>Bending</u> | <u>Axial</u> |
|----------------|--------------|
| 392            | 1,712        |
| 976            | 3,845        |

1,764

4,368

2,713 Agree with Analytical Model 3,464





#### Strain gage Mounting Verification By Modal Test





Sandia

E

### Field Data Recording System Characterization/Verificatio



AMPLITUDE-FREQUENCY RESPONSE

Sandia

(2 amplitude levels > linearity verified) IT STEP RESPONSE (bit resolution  $213\mu\epsilon$ )



#### Penetrator Preparation



strain gage mounted before encapsulation





#### Penetrator Preparation







### Penetrator Preparation









#### Davis Gun

- recoilless Cannon
- 2 Deg to Vertical
- pressure data TM from barrel transducer (Kistler 607A in grease filled cavity)
- 93' dry lake bed target penetration



#### Data Analysis/Validation





#### Calculation Consideration:

- from peak pressure in gun:
  - sabot area, yields peak force
- total mass penetrator
  - yields total peak acceleration
- penetrator characteristics:
  - cross section area
  - modulus of elasticity
  - mass in front of strain gage
  - enables calculation of 2,040με <u>VS</u>
     2,000 2,213με (within bit resolution)



Data offset explanation:



Miners report that penetrator springs back when freed









image motion also helps in diagnostics





Data Time Expanded - one of the gag vert +/- 4,000με horiz 0-73 msec



Fourier transform of same horiz 0-6,000 Hz peaks at ~ 392, 976, 1712, & 3845 Hz







vert  $\pm$  4,000 $\mu\epsilon$  horiz 0-73 msec

Low pass filter preceding

**date**ulate constant deceleration (assumption) required on penetrator to stop in 93'. Combine with E, cross section area & mass in front of calculate -300με. Note: within bit levels







(1,100 Hz - 3dB point)



Penetrator bending motion vert +/- 4,000με horiz 0-73 msec

Zero phase shift filter enables waveform subtraction (see next)





penetrator high frequency
Axial motion
(subtracted from original data)
vert +/- 4,000με horiz 0-73



Conclusion: High frequency axial loading is occurring



many body lengths of penetration.

#### Data Analysis



- increased high frequency
- increased amplitud

Deconvolved Strain Response (unit step used)

vertical  $\pm /-6,000 \mu \epsilon$  horiz 0-73 msec



#### Data Analysis/Pretest Predictions



- note significant difference
- large bending and axial strains that occurred duri test differed greatly from analytical predictions!

Sandia

Analytically predicted test results vertical +/- 400με horiz 0 - 50 msec





#### Conclusions

- Pretest, experimental modal analysis results agreed with analytical structural model.
- Strain gages were verified to be properly mounted.
- Data recording system was dynamically characterized and verified to
  - be linear.
- Independent post-test calculations based on pressure-time in gun
  - and depth of penetration correlated with measured strain
- ♥Aeanalytical loads applied to the penetrator in the modeling Brotiggificant differentesimproversing tradtreapseuribetween
- Tepeniged on more representative models for the