Concept B2101) Expanding Binomial Products

The distributive law is used when expanding binomial products.

$$(a+b)(c+d) = a \times (\square + \square) + b \times (\square + \square) = \underline{\hspace{1cm}}$$

Drawing arrows is recommended if the distributive law is found to be difficult.

This allows us to avoid making silly mistakes.

i)
$$\widehat{(a+b)(c+d)} = ac + ad$$
 1

ii)
$$(a+b)(c+d) = bc+bd$$
 2

iii)
$$(1) + (2) = ac + ad + bc + bd$$

	c	d
a	ac	ad
b	bc	bd

The area of the whole rectangle is (a+b)(c+d)

The sum of the small rectangles' area is ac + ad + bc + bd.

Therefore, (a+b)(c+d) = ac + ad + bc + bd.

Common mistake

 $(x+y)^2 = x^2 + y^2$ Wrong (How do you expand?)

Example

(x+1)(x+5)

a. Expand and simplify (x+1)(x+5).

b. Expand and simplify -2(x-3)(x+5).

$$-2(x-3)(x+5)$$

Try It Yourself!

Expand the following. Your answer must be in descending order.

i)
$$(3x-4)(x-2)$$

(ii)
$$(3a+5)(2a-3)$$

(iii)
$$(2x+3)(5x-10)$$

(iv)
$$(2x-1)(3x+1)$$

(v)
$$-3(2x-3)(2x+1)$$

(vii)
$$-3(1-4x)(3x+8)$$

(viii)
$$5-7(2-3x)(4-x)$$

ANSWERS (Try It Yourself!)

i)
$$3x^2 - 10x + 8$$

ii)
$$6a^2 + a - 15$$

iii)
$$10x^2 - 5x - 30$$

iv)
$$6x^2 - x - 1$$

$$\mathbf{v}$$
) $-12x^2 + 12x + 9$

vi)
$$3x^2 - 7x + 2$$

v)
$$-12x^2 + 12x + 9$$
 vi) $3x^2 - 7x + 2$ vii) $36x^2 + 87x - 24$

viii)
$$-21x^2 + 98x - 51$$

