Probability, Decision Theory, and Loss Functions

CMSC 678

UMBC

A Terminology Buffet

Classification

Regression

Clustering

the task: what kind of problem are you solving?

A Terminology Buffet

Classification

Regression

Clustering

the task: what kind of problem are you solving?

Fully-supervised

Semi-supervised

Un-supervised

the data: amount of human input/number of labeled examples

A Terminology Buffet

Classification

Regression

Clustering

the task: what kind of problem are you solving?

Fully-supervised

Semi-supervised

Un-supervised

the data: amount of human input/number of labeled examples

Probabilistic Neural

Generative Memory-

based

Conditional

Exemplar

Spectral ...

the **approach**: how any data are being used

Outline

Review+Extension

Probability

Decision Theory

Loss Functions

What does it mean to learn?

Generalization

Machine Learning Framework: Learning

Model, parameters and hyperparameters

Model: mathematical formulation of system (e.g., classifier)

Parameters: primary "knobs" of the model that are set by a learning algorithm

Hyperparameter: secondary "knobs"

Gradient Ascent

 $arg max F(\theta)$

General ML Consideration: Inductive Bias

General ML Consideration: Inductive Bias

General ML Consideration: Inductive Bias

General ML Consideration: Inductive Bias

General ML Consideration: Inductive Bias

What do we know *before* we see the data, and how does that influence our modeling decisions?

Tip: Remember how your own biases/interpretation are influencing your approach

Today's Goals:

1. Remember Probability/Statistics

2.Understand Optimizing Empirical Risk

Outline

Review+Extension

Probability

Decision Theory

Loss Functions

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

(Most) Probability Axioms

p(everything) = 1

$$p(\phi) = 0$$

 $p(A) \le p(B)$, when $A \subseteq B$

$$p(A \cup B) = p(A) + p(B),$$

when $A \cap B = \phi$

$$p(A \cup B) \neq p(A) + p(B)$$
$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Random variables: variables that represent the possible outcomes of some random "process"

Random variables: variables that represent the possible outcomes of some random "process"

Example #1: A (weighted) coin that can come up heads or tails

X is a random variable denoting the possible outcomes

X=HEADS or X=TAILS

Random variables: variables that represent the possible outcomes of some random "process"

Example #1: A (weighted) coin that can come up heads or tails

X is a random variable denoting the possible outcomes

X=HEADS or X=TAILS

Example #2: Measuring the amount of snow that fell in the last storm

Y is a random variable denoting the amount snow that fell, in inches

Y=0, or Y=0.5, or Y=1.0495928591, or Y=10, or ...

Random variables: variables that represent the possible outcomes of some random "process"

Example #1: A (weighted) coin that can come up heads or tails

X is a random variable denoting the possible outcomes

X=HEADS or X=TAILS

DISCRETE random variable

Example #2: Measuring the amount of snow that fell in the last storm

Y is a random variable denoting the amount snow that fell, in inches

Y=0, or Y=0.5, or Y=1.0495928591, or Y=10, or ...

CONTINUOUS random variable

	If X is a	
	Discrete random variable	Continuous random variable
The values k that X can take	Discrete: finite or countably	Continuous: uncountably
are	infinite (e.g., integers)	infinite (e.g., real values)

	If X is a	
	Discrete random variable	Continuous random variable
The values k that X can take are	Discrete: finite or countably infinite (e.g., integers)	Continuous: uncountably infinite (e.g., real values)
The function that gives the relative likelihood of a value p(X=k) is a	probability mass function (PMF)	probability density function (PDF)

	If X is a	
	Discrete random variable	Continuous random variable
The values k that X can take are	Discrete: finite or countably infinite (e.g., integers)	Continuous: uncountably infinite (e.g., real values)
The function that gives the relative likelihood of a value p(X=k) is a	probability mass function (PMF)	probability density function (PDF)
The values that PMF/PDF can take are	$0 \le p(X=k) \le 1$	$p(X=k) \ge 0$

	If X is a	
	Discrete random variable	Continuous random variable
The values k that X can take are	Discrete: finite or countably infinite (e.g., integers)	Continuous: uncountably infinite (e.g., real values)
The function that gives the relative likelihood of a value p(X=k) is a	probability mass function (PMF)	probability density function (PDF)
The values that PMF/PDF can take are	$0 \le p(X=k) \le 1$	p(X=k) ≥ 0
We "add" with	Sums (∑)	Integrals (∫)

	If X is a	
	Discrete random variable	Continuous random variable
The values k that X can take are	Discrete: finite or countably infinite (e.g., integers)	Continuous: uncountably infinite (e.g., real values)
The function that gives the relative likelihood of a value p(X=k) is a	probability mass function (PMF)	probability density function (PDF)
The values that PMF/PDF can take are	$0 \le p(X=k) \le 1$	p(X=k) ≥ 0
We "add" with	Sums (∑)	Integrals (∫)
Our PMF/PDF satisfies p(everything)=1 by	$\sum_{k} p(X = k) = 1$	$\int p(x)dx = 1$

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Joint Probability

Probability that multiple things "happen together"

Joint Probability

Probability that multiple things "happen together"

p(x,y), p(x,y,z), p(x,y,w,z)

Symmetric: p(x,y) = p(y,x)

Joint Probability

Probability that multiple things "happen together"

$$p(x,y)$$
, $p(x,y,z)$, $p(x,y,w,z)$

Symmetric: p(x,y) = p(y,x)

Form a table based of outcomes: sum across cells = 1

p(x,y)	Y=0	Y=1
X="cat"	.04	.32
X="dog"	.2	.04
X="bird"	.1	.1
X="human"	.1	.1

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Independence: when events can occur and not impact the probability of other events

Q: Are the results of flipping the same coin twice in succession independent?

Formally: p(x,y) = p(x)*p(y)

Generalizable to > 2 random variables

Independence: when events can occur and not impact the probability of other events

Q: Are the results of flipping the same coin twice in succession independent?

Formally: p(x,y) = p(x)*p(y)

A: Yes (assuming no weird effects)

Generalizable to > 2 random variables

Independence: when events can occur and not impact the probability of other events

Formally: p(x,y) = p(x)*p(y)

Generalizable to > 2 random variables

Q: Are A and B independent?

Independence: when events can occur and not impact the probability of other events

Formally: p(x,y) = p(x)*p(y)

Generalizable to > 2 random variables

Q: Are A and B independent?

A: No (work it out from p(A,B)) and the axioms

Independence: when events can occur and not impact the probability of other events

Formally: p(x,y) = p(x)*p(y)

Generalizable to > 2 random variables

Q: Are X and Y independent?

p(x,y)	Y=0	Y=1
X="cat"	.04	.32
X="dog"	.2	.04
X="bird"	.1	.1
X="human"	.1	.1

Independence: when events can occur and not impact the probability of other events

Formally: p(x,y) = p(x)*p(y)

Generalizable to > 2 random variables

Q: Are X and Y independent?

p(x,y)	Y=0	Y=1
X="cat"	.04	.32
X="dog"	.2	.04
X="bird"	.1	.1
X="human"	.1	.1

A: No (find the marginal probabilities of p(x) and p(y))

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Marginal(ized) Probability: The Discrete Case

Consider the **mutually exclusive** ways that different values of x could occur with y

Q: How do write this in terms of joint probabilities?

Marginal(ized) Probability: The Discrete Case

Consider the **mutually exclusive** ways that different values of x could occur with y

$$p(y) = \sum_{x} p(x, y)$$

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Conditional Probability

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)}$$

Conditional Probabilities are Probabilities

Conditional Probability

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)}$$

$$p(Y) = marginal probability of Y$$

Conditional Probability

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)}$$

$$p(Y) = \int p(X,Y)dX$$

Conditional Probabilities

Bias vs. Variance

Lower bias: More specific to what we care about

Higher variance: For fixed observations, estimates become less reliable

Revisiting Marginal Probability: The Discrete Case

$$p(y) = \sum_{x} p(x,y)$$
$$= \sum_{x} p(x)p(y \mid x)$$

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Deriving Bayes Rule

Start with conditional p(X | Y)

Deriving Bayes Rule

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)}$$
 Solve for p(x,y)

Deriving Bayes Rule

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)}$$
 Solve for p(x,y)

$$p(X,Y) = p(X \mid Y)p(Y)$$
 p(x,y) = p(y,x)

$$p(X \mid Y) = \frac{p(Y \mid X) * p(X)}{p(Y)}$$

Bayes Rule

$$p(X \mid Y) = \frac{p(Y \mid X) * p(X)}{p(Y \mid X)}$$

posterior probability

prior probability

 $p(Y \mid X) * p(X)$

posterior probability

marginal likelihood
(probability)

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Probability Chain Rule

$$p(x_{1}, x_{2}, ..., x_{S}) =$$

$$p(x_{1})p(x_{2} | x_{1})p(x_{3} | x_{1}, x_{2}) \cdots p(x_{S} | x_{1}, ..., x_{i}) =$$

$$\prod_{i}^{S} p(x_{i} | x_{1}, ..., x_{i-1})$$
extension of Bayes rule

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Distribution Notation

If X is a R.V. and G is a distribution:

• $X \sim G$ means X is distributed according to ("sampled from") G

Distribution Notation

If X is a R.V. and G is a distribution:

- $X \sim G$ means X is distributed according to ("sampled from") G
- G often has parameters $\rho=(\rho_1,\rho_2,\dots,\rho_M)$ that govern its "shape"
- Formally written as $X \sim G(\rho)$

Distribution Notation

If X is a R.V. and G is a distribution:

- X ~ G means X is distributed according to ("sampled from") G
- G often has parameters $\rho=(\rho_1,\rho_2,\ldots,\rho_M)$ that govern its "shape"
- Formally written as $X \sim G(\rho)$

i.i.d. If $X_1, X_2, ..., X_N$ are all independently sampled from $G(\rho)$, they are independently and identically distributed

Bernoulli/Binomial

Categorical/Multinomial

Poisson

Normal

(Gamma)

Bernoulli: A single draw

- Binary R.V.: 0 (failure) or 1 (success)
- $X \sim \text{Bernoulli}(\rho)$
- $p(X = 1) = \rho, p(X = 0) = 1 \rho$
- Generally, $p(X = k) = \rho^k (1 p)^{1-k}$

Bernoulli/Binomial

Categorical/Multinomial

Poisson

Normal

(Gamma)

Bernoulli: A single draw

- Binary R.V.: 0 (failure) or 1 (success)
- $X \sim \text{Bernoulli}(\rho)$
- $p(X = 1) = \rho, p(X = 0) = 1 \rho$
- Generally, $p(X = k) = \rho^k (1 p)^{1-k}$

Binomial: Sum of N iid Bernoulli draws

- Values X can take: 0, 1, ..., N
- Represents number of successes
- $X \sim \text{Binomial}(N, \rho)$

•
$$p(X = k) = \binom{N}{k} \rho^k (1 - \rho)^{N-k}$$

Bernoulli/Binomial

Categorical/Multinomial

Poisson

Normal

(Gamma)

Categorical: A single draw

- Finite R.V. taking one of K values: 1, 2, ..., K
- $X \sim \operatorname{Cat}(\rho), \rho \in \mathbb{R}^K$
- $p(X = 1) = \rho_1, p(X = 2) = \rho_2, ... p(X = K) = \rho_K$
- Generally, $p(X = k) = \prod_j \rho_j^{\mathbf{1}[k=j]}$
- $1[c] = \begin{cases} 1, & c \text{ is true} \\ 0, & c \text{ is false} \end{cases}$

Multinomial: Sum of N iid Categorical draws

- Vector of size K representing how often value k was drawn
- $X \sim \text{Multinomial}(N, \rho), \rho \in \mathbb{R}^K$

Bernoulli/Binomial

Categorical/Multinomial

Poisson

Normal

(Gamma)

Poisson

- Finite R.V. taking any integer that is >= 0
- $X \sim \text{Poisson}(\lambda), \lambda \in \mathbb{R}$ is the "rate"

•
$$p(X = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

Normal

- Real R.V. taking any real number
- $X \sim \text{Normal}(\mu, \sigma), \mu$ is the mean, σ is the standard deviation

•
$$p(X = x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(\frac{-(x-\mu)^2}{2\sigma^2})$$

https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Normal_Distribution_PDF.svg/192 0px-Normal_Distribution_PDF.svg.png

Bernoulli/Binomial

Categorical/Multinomial

Poisson

Normal

(Gamma)

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Expected Value of a Random Variable

Expected Value of a Random Variable

uniform distribution of number of cats I have

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$1/6 * 1 +$$

$$1/6 * 2 +$$

$$1/6 * 3 +$$

$$1/6 * 4 +$$

$$1/6 * 5 +$$

$$1/6 * 6$$

uniform distribution of number of cats I have

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$1/6 * 1 +$$

$$1/6 * 2 +$$

$$1/6 * 3 +$$

$$1/6 * 4 +$$

$$1/6 * 5 +$$

$$1/6 * 6$$

Q: What common distribution is this?

uniform distribution of number of cats I have

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$1/6 * 1 +$$

$$1/6 * 2 +$$

$$1/6 * 3 +$$

$$1/6 * 4 +$$

$$1/6 * 5 +$$

$$1/6 * 6$$

Q: What common distribution is this?

A: Categorical

non-uniform distribution of number of cats a normal cat person has

1 2 3 4 5 6

$$\mathbb{E}[X] = \sum_{x} x \, p(x)$$

$$1/2 * 1 + 1/10 * 2 + 1/10 * 3 + 1/10 * 4 + 1/10 * 5 + 1/10 * 6$$

Expected Value of a Function of a Random Variable

$$X \sim p(\cdot)$$

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$\mathbb{E}[f(X)] = ???$$

Expected Value of a Function of a Random Variable

$$X \sim p(\cdot)$$

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$\mathbb{E}[f(X)] = \sum_{x} f(x) p(x)$$

Expected Value of Function: Example

non-uniform distribution of number of cats I start with

What if each cat magically becomes two?

$$f(k) = 2^k$$

$$\mathbb{E}[f(X)] = \sum_{x} f(x) p(x)$$

Expected Value of Function: Example

non-uniform distribution of number of cats I start with

What if each cat magically becomes two?

$$f(k) = 2^k$$

$$\mathbb{E}[f(X)] = \sum_{x} f(x) p(x) = \sum_{x} 2^{x} p(x)$$

$$1/2 * 2^{1} +$$
 $1/10 * 2^{2} +$
 $1/10 * 2^{3} +$
 $1/10 * 2^{4} +$
 $1/10 * 2^{5} +$
 $1/10 * 2^{6}$

Probability Prerequisites

Basic probability axioms and definitions

Bayes rule

Joint probability

Probability chain rule

Probabilistic Independence

Common distributions

Marginal probability

Expected Value (of a function) of a Random Variable

Definition of conditional probability

Outline

Review+Extension

Probability

Decision Theory

Loss Functions

"Decision theory is trivial, apart from the computational details" – MacKay, ITILA, Ch 36

Input: x ("state of the world")

Output: a decision ŷ

"Decision theory is trivial, apart from the computational details" – MacKay, ITILA, Ch 36

Input: x ("state of the world")

Output: a decision ŷ

Requirement 1: a decision (hypothesis) function h(x) to produce ŷ

"Decision theory is trivial, apart from the computational details" – MacKay, ITILA, Ch 36

Input: x ("state of the world")

Output: a decision ŷ

Requirement 1: a decision (hypothesis) function h(x) to produce ŷ

Requirement 2: a function $\ell(y, \hat{y})$ telling us how wrong we are

"Decision theory is trivial, apart from the computational details" – MacKay, ITILA, Ch 36

Input: x ("state of the world")

Output: a decision ŷ

Requirement 1: a decision (hypothesis) function h(x) to produce ŷ

Requirement 2: a loss function $\ell(y, \hat{y})$ telling us how wrong we are

Goal: minimize our *expected* loss across any possible input

Requirement 1: Decision Function

h(x) is our predictor (classifier, regression model, clustering model, etc.)

Requirement 2: Loss Function

loss: A function that tells you how much to penalize a prediction ŷ from the correct answer y

Requirement 2: Loss Function

Negative ℓ ($-\ell$) is called a *utility* or *reward* function

loss: A function that tells you how much to penalize a prediction ŷ from the correct answer y

minimize expected loss across any possible input

$$\arg\min_{\hat{y}} \mathbb{E}[\ell(y,\hat{y})]$$

Risk Minimization

minimize expected loss across any possible input

$$\arg\min_{\hat{y}} \mathbb{E}[\ell(y, \hat{y})] = \arg\min_{h} \mathbb{E}[\ell(y, h(x))]$$

a *particular*, unspecified input pair (**x**,y)... but we want any possible pair

minimize expected loss across any possible input

$$\arg\min_{\hat{y}} \mathbb{E}[\ell(y, \hat{y})] = \arg\min_{h} \mathbb{E}[\ell(y, h(x))] = \arg\min_{h} \mathbb{E}_{(x,y)\sim P}[\ell(y, h(x))]$$

Assumption: there exists *some* true (but likely unknown) distribution *P* over inputs **x** and outputs **y**

Risk Minimization

minimize expected loss across any possible input

$$\arg\min_{\hat{y}} \mathbb{E}[\ell(y,\hat{y})] =$$

$$\arg\min_{h} \mathbb{E}[\ell(y,h(x))] =$$

$$\arg\min_{h} \mathbb{E}_{(x,y)\sim P}[\ell(y,h(x))] =$$

$$\arg\min_{h} \int \ell(y,h(x))P(x,y)d(x,y)$$

Risk Minimization

minimize expected loss across any possible input

$$\arg\min_{\hat{y}} \mathbb{E}[\ell(y, \hat{y})] =$$

$$\arg\min_{h} \mathbb{E}[\ell(y, h(x))] =$$

$$\underset{h}{\operatorname{argmin}} \mathbb{E}_{(x,y)\sim P} [\ell(y,h(x))] =$$

$$\underset{h}{\operatorname{argmin}} \int \ell(y, h(x)) P(x, y) d(x, y)$$

we don't know this distribution*!

Empirical Risk Minimization

minimize expected loss across our observed input

$$\arg\min_{\hat{y}} \mathbb{E}[\ell(y, \hat{y})] =$$

$$\arg\min_{h} \mathbb{E}[\ell(y, h(x))] =$$

$$\arg\min_{h} \mathbb{E}_{(x,y)\sim P}[\ell(y, h(x))] \approx$$

$$\underset{h}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, h(x_i))$$

Empirical Risk Minimization

minimize expected loss across our observed input

our classifier/predictor

controlled by our parameters θ

change $\theta \rightarrow$ change the behavior of the classifier

$$\underset{h}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(y_i, h_{\theta}(x_i))$$

change $\theta \rightarrow$ change the behavior of the classifier

$$\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(y_i, h_{\theta}(x_i))$$

How? Use Gradient Descent on $F(\theta)$!

$$\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(y_i, h_{\theta}(x_i))$$

change $\theta \rightarrow$ change the behavior of the classifier

$$\nabla_{\theta} F = \sum_{i} \frac{\partial \ell(y_{i}, \hat{y} = h_{\theta}(\boldsymbol{x}_{i}))}{\partial \hat{y}} \nabla_{\theta} h_{\theta}(\boldsymbol{x}_{i})$$

differentiating might not always work: "... apart from the computational details"

$$\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(y_i, h_{\theta}(\boldsymbol{x}_i))$$

change $\theta \rightarrow$ change the behavior of the classifier

$$\nabla_{\theta} F = \sum_{i} \frac{\partial \ell(y_{i}, \hat{y} = h_{\theta}(x_{i}))}{\partial \hat{y}} \nabla_{\theta} h_{\theta}(x_{i})$$

Step 1: compute the gradient of the loss wrt the predicted value

$$\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(y_i, h_{\theta}(\boldsymbol{x}_i))$$

change $\theta \rightarrow$ change the behavior of the classifier

$$\nabla_{\theta} F = \sum_{i} \frac{\partial \ell(y_{i}, \hat{y} = h_{\theta}(x_{i}))}{\partial \hat{y}} \nabla_{\theta} h_{\theta}(x_{i})$$
Step 2: compute

Step 1: compute the gradient of the loss wrt the predicted value

Step 2: compute the gradient of the predicted value wrt θ.

differentiating might not always work: "... apart from the computational details"

Outline

Review+Extension

Probability

Decision Theory

Loss Functions

Loss Functions Serve a Task

Classification

Regression

Clustering

the task: what kind of problem are you solving?

Fully-supervised

Semi-supervised

Un-supervised

the **data**: amount of human input/number of labeled examples

Probabilistic Neural

Generative Memorybased

Conditional

Exemplar

Spectral ...

the **approach**: how any data are being used

Classification: Supervised Machine Learning

Assigning subject categories, topics, or genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis

. . .

Input:

an instance da fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ A training set of m hand-labeled instances $(d_1, c_1), ..., (d_m, c_m)$

Output:

a learned classifier γ that maps instances to classes

y learns to associate certain *features* of instances with their labels

Classification Example: Face Recognition

Class	Image	Class	Image
Avrim		Tom	

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

Problem 1: not differentiable wrt \hat{y} (or θ)

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

Problem 1: not differentiable wrt \hat{y} (or θ)

Solution 1: is the data linearly separable? Perceptron (next class) can work

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

Problem 1: not differentiable wrt \hat{y} (or θ)

Solution 1: is the data linearly separable? Perceptron (next class) can work

Solution 2: is h(x) a conditional distribution $p(y \mid x)$? Maximize that probability (a couple classes)

Structured Classification: Sequence & Structured Prediction

Structured Classification Loss Function Example: 0-1 Loss?

$$\ell(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y} \\ 1, & \text{if } y \neq \hat{y} \end{cases}$$

Problem 1: not differentiable wrt \hat{y} (or θ)

Solution 1: is the data linearly separable? Perceptron (next class) can work

Solution 2: is h(x) a conditional distribution $p(y \mid x)$? Use MAP

Problem 2: too strict.
Structured Prediction
involves many individual
decisions

Solution 1: Specialize 0-1 to the structured problem at hand

Regression

Like classification, but real-valued

Regression Example: Stock Market Prediction

Regression Loss Function Examples

squared loss/MSE (Mean squared error)

$$\ell(y, \hat{y}) = (y - \hat{y})^2$$

 \hat{y} is a real value \rightarrow nicely differentiable (generally) \odot

Regression Loss Function Examples

squared loss/MSE (Mean squared error)

$$\ell(y, \hat{y}) = (y - \hat{y})^2$$

 \hat{y} is a real value \rightarrow nicely differentiable (generally) \odot

absolute loss

$$\ell(y, \hat{y}) = |y - \hat{y}|$$

Absolute value is mostly differentiable

Regression Loss Function Examples

squared loss/MSE (Mean squared error)

$$\ell(y, \hat{y}) = (y - \hat{y})^2$$

 \hat{y} is a real value \rightarrow nicely differentiable (generally) \odot

absolute loss

$$\ell(y, \hat{y}) = |y - \hat{y}|$$

Absolute value is mostly differentiable

These loss functions prefer different behavior in the predictions (hint: look at the gradient of each)... we'll get back to this

Unsupervised learning: Clustering

We'll return to clustering loss functions later

Outline

Review+Extension

Probability

Decision Theory

Loss Functions