

Aerobotics-Seminar Moonshot-Aufgabe

Systemidentifikation: Schätzung der Parameter flugmechanischer Modelle aus Flugmessdaten

Autoren: Gruppe 02 Calvin Ebert Adam Ghribi Florian Gschwandtner Fabrizio Turco

Datum: 06.08.2021

Liste der noch zu erledigenden Punkte

Abbildung: Bild von Fourier-Trafo .														10
Svv kurz in ein zwei Sätzen erklären														11

Inhaltsverzeichnis

1	Einleitung	2
2	Modelle	3
	2.1 Längsbewegung	3
	2.2 Seitenbewegung	3
3	Vorbereitung der Daten	4
	3.1 Ermittlung der relevanten Signale	4
	3.2 Trimmpunkt	5
	3.3 Interpolation	6
	3.4 Filterung	6
	3.4.1 Ablauf	7
	3.4.2 Wahl der Filterübertragungsfunktion	7
4	Systemidentifikation im Zeitbereich	9
5	Systemidentifikation im Frequenzbereich	10
	5.1 Fouriertransformation	10
	5.2 Output Error-Methode	10
	5.3 Vor- und Nachteile	12
	5.4 Ergebnisse	12
6	Zusammenfassung und Ausblick	13
Lit	eraturverzeichnis	13

1 Einleitung

gegeben: x(t), u(t) aus Flugmessdaten, Struktur der lin. Modelle (Längs- und Seitenbewegung)

gesucht: Parameter der lin. Modelle

2 Modelle

Im folgenden Abschnitt werden die der durchgeführten Systemidentifikationen zugrundeliegenden Modelle beschrieben, deren Beiwerte zu bestimmen sind. Es handelt sich dabei um die bekannten linearisierten Modelle der Längs- und Seitenbewegung mit den folgenden Annahmen [1]:

- Linearisierung um den symmetrischen Horizontalflug ($\gamma_0 = 0$)
- kein Auftrieb durch Nickrate $(Z_q = 0)$
- keine Querkräfte durch Roll- oder Gierdrehrate $(Y_p = Y_r = 0)$
- keine Querkraft durch Querruder (Y_{ξ})
- kein Wind $(\Delta \gamma = \Delta \theta \Delta \alpha)$
- horizontal eingebautes Triebwerk $(i_F = 0)$

Die Dynamiken können deshalb entkoppelt behandelt werden, was eine getrennte Identifikation der Längs- bzw. Seitenbewegung ermöglicht.

2.1 Längsbewegung

Der Zustand der Längsbewegung setzt sich zusammen aus dem Anstellwinkel α , der Nickrate q, der Anströmgeschwindigkeit V_A und dem Bahnwinkel γ . Die zugehörigen Steuerungen umfassen den Höhenruderausschlag η und den Schubdrosselgrad δ_F . Bis auf die Nickrate werden alle Größen als Abweichungen (Delta-Größen) vom jeweiligen Trimmpunkt (gekennzeichnet durch den Index " $_0$ ") beschrieben. Es ergibt sich folgendes Modell:

$$\begin{pmatrix} \Delta \dot{\alpha} \\ \dot{q} \\ \Delta \dot{V}_A \\ \Delta \dot{\gamma} \end{pmatrix} = \begin{pmatrix} \frac{Z_{\alpha}}{V_0} & 1 & \frac{Z_V}{V_0} & 0 \\ M_{\alpha} & M_q & M_V & 0 \\ X_{\alpha} & 0 & X_V & -g \\ -\frac{Z_{\alpha}}{V_0} & 0 & -\frac{Z_V}{V_0} & 0 \end{pmatrix} \cdot \begin{pmatrix} \Delta \alpha \\ q \\ \Delta V_A \\ \Delta \gamma \end{pmatrix} + \begin{pmatrix} \frac{Z_{\eta}}{V_0} & -\frac{X_{\delta F}}{V_0} \sin(\alpha_0) \\ M_{\eta} & M_{\delta F} \\ X_{\eta} & X_{\delta F} \cos(\alpha_0) \\ -\frac{Z_{\eta}}{V_0} & \frac{X_{\delta F}}{V_0} \sin(\alpha_0) \end{pmatrix} \cdot \begin{pmatrix} \Delta \eta \\ \Delta \delta_F \end{pmatrix} \quad (2.1)$$

2.2 Seitenbewegung

Das Modell der Seitenbewegung wird mit dem absoluten Zustand aufgestellt. Dies ist möglich, da es sich bei p und r um Drehraten handelt. Außerdem sind die Trimmwerte für den Schiebeund Rollwinkel sowie für die Steuereingaben jeweils 0:

$$\begin{pmatrix} \dot{r} \\ \dot{\beta} \\ \dot{p} \\ \dot{\phi} \end{pmatrix} = \begin{pmatrix} N_r & N_{\beta} & N_p & 0 \\ -1 & \frac{Y_{\zeta}}{V_0} & 0 & \frac{g}{V_0} \\ L_r & L_{\beta} & L_p & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} r \\ \beta \\ p \\ \phi \end{pmatrix} + \begin{pmatrix} N_{\xi} & N_{\zeta} \\ 0 & \frac{Y_{\zeta}}{V_0} \\ L_{\xi} & L_{\zeta} \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \xi \\ \zeta \end{pmatrix} \tag{2.2}$$

3 Vorbereitung der Daten

Aus den Flugversuchen des e-Genius 1:3 liegt eine Fülle von Messdaten in verschiedenen .csv-Dateien vor. Im folgenden Kapitel wird erklärt, wie diese vorbereitet werden, um sie für die anschließende Systemidentifikation zu verwenden.

3.1 Ermittlung der relevanten Signale

Für die weitere Verarbeitung ist es zunächst nötig, aus den gegebenen Messdaten die relevanten Signalverläufe auszuwählen bzw. zu berechnen. Die meisten Zustandsgrößen können direkt aus den Messdaten verwendet werden, einzig der Bahnwinkel γ muss explizit berechnet werden. Die Bestimmung über die Beziehung $\gamma = \theta - \alpha$ liefert dabei aufgrund eines unplausiblen Verlaufs des Nickwinkels θ kein sinnvolles Ergebnis. Stattdessen wird der Bahnwinkel mit Gleichung (3.1) über die geodätischen Geschwindigkeiten in z- und x-Richtung berechnet.

$$\gamma = \arcsin\left(\frac{V_z}{V_x}\right) \tag{3.1}$$

Tabelle 3.1 zeigt eine Übersicht über die verwendeten Messsignale aus den Originaldateien. Zu beachten ist, dass in den Originaldaten für das Höhenruder jeweils ein eigenes Signal für das linke sowie das rechte Ruder vorlieg, im Falle es Querruders sogar zwei je Seite. Im betrachteten Bereich sind diese Signale jedoch zu jedem Zeitpunkt gleich, weshalb die Verwendung eines Verlaufs je Steuerruder ausreicht.

	••			
Tabelle 3.1	 Ubersicht. 	über die	verwendeten	Messgrößen

	Längsl	pewegung	Seitenbewegung								
Größe	Messsignal	Datei	Größe	Messsignal	Datei						
α	Alpha	vectoflow_airdata	\overline{r}	yawspeed	vehicle_attitude						
q	pitchspeed	$vehicle_attitude$	β	Beta	vectoflow_airdata						
V_A	VMag	$vectoflow_airdata$	p	rollspeed	$vehicle_attitude$						
γ	vx, vz	vehicle_local_position	ϕ	Phi	vectoflow_airdata						
η	$elevator_l$	$actuator_controls$	ξ	$aileron_inner_l$	$actuator_controls$						
δ_F	thrust	$actuator_controls$	ζ	rudder	$actuator_controls$						

Die vorliegenden Messdaten umfassen einen großen Zeitbereich von Start bis Landung. Für die Systemidentifikation wurde nur der Abschnitt berücksichtigt, in dem das Flugzeug Platzrunden fliegt. Dies entspricht im originalen Datensatz in etwa der Zeit zwischen 910s und 2225s. Abb. 3.1 zeigt den Flug und den entsprechenden Ausschnitt.

¹Berechnet man den Bahnwinkel auf diese Weise, nimmt er genau wie der Nickwinkel nie Werte kleiner 0 an. Lediglich der Anstellwinkel bewegt sich sowohl im positiven als auch im negativen Bereich.

Abbildung 3.1 – Visualisierung der Flugbahn

3.2 Trimmpunkt

In Abb. 3.2 ist beispielhaft der zeitliche Verlauf der Anströmgeschwindigkeit dargestellt. Es zeigen sich insgesamt acht stationären Bereiche, die als Trimmpunkt für eine Modellierung dienen könnten. In den nachfolgenden Systemidentifikationen soll jeweils der erste Punkt (TP 1) als Grundlage dienen. Dazu werden alle Zustands- und Steuergrößen über den Bereich TP 1 gemittelt und diese Mittelwerte als Trimmwerte x_0 und u_0 verwendet. Damit lassen sich die Abweichungen vom Trimmpunkt berechnen:

$$\Delta x(t) = x(t) - x_0$$

$$\Delta u(t) = u(t) - u_0$$
(3.2)

Eine Ausnahme bilden hier die Drehraten p, q und r, bei denen keine Differenz zum Trimmwert gebildet werden muss.

Abbildung 3.2 – zeitlicher Verlauf der Anströmgeschwindigkeit mit den stationären Bereichen

3.3 Interpolation

Die Rohdaten werden von mehreren Sensoren mit unterschiedlichen Abtastraten geliefert. Da die Identifikationsalgorithmen die Werte zu diskreten Zeitpunkten benötigen, ist es notwendig, einen einheitlichen Zeitvektor mit zugehörigen Eingangs- und Zustandsvektoren zu generieren. Außerdem wird eine konstante Schrittweite gefordert.

Die Abtastrate dieses Zeitvektors ist wichtig, da die Dimension des Optimierungsproblems und damit der Rechenaufwand mit feinerer Diskretisierung steigt (im Zeitbereich). In dieser Arbeit wird der Zeitvektor des

Abbildung 3.3 - Beispiel Interpolation

3.4 Filterung

Verrauschte Messdaten stellen für die Systemidentifikation eine Herausforderung dar. Numerische Ableitungen aus verrauschten Daten liefern in vielen Fällen keine sinnvolle Aussage. Neben aufwändigeren Ableitungsregeln bietet sich eine vorangehende Filterung der Daten an.

Das Vorwärts-Rückwärtsfilter bietet den Vorteil, dass keine Phasenverschiebung auftritt. Gerade wenn nur einzelne Signalteile gefiltert werden, beispielsweise nur der Eingang, ist diese Eigenschaft unerlässlich. Der Nachteil ist, dass das Filter nicht in Echtzeit verwendet werden kann, da immer die vollständige Datenreihe vorliegen muss. Für eine Systemidentifikation ist dies jedoch keine praktische Einschränkung.

In Abb. 3.4 sind die Auswirkungen einer reinen Vorwärts- und einer Vorwärts-Rückwärtsfilterung auf die Phase gut zu sehen.

Abbildung 3.4 – Beispiel Filterung

3.4.1 Ablauf

Für das Filter wird eine Übertragungsfunktion f(s) auf die Messdaten vorwärts angewandt, die Messdaten umgekehrt und die selbe Übertragungsfunktion noch einmal verwendet. In Matlab ist dies in der Funktion filtfilt() bereits implementiert.

3.4.2 Wahl der Filterübertragungsfunktion

Es wurde ein quadriertes PT2-Glied gewählt, da so die Eckfrequenz direkt eingestellt werden kann. Die Eckfrequenz wurde zu 20 Hz gewählt, damit das Rauschen unterdrückt wird, aber keine Information verloren geht.

Mit

$$\omega_{filt} = 2 \cdot \pi \cdot f_{eck} = 2 \cdot \pi \cdot 20 \,\text{Hz} \tag{3.3}$$

und der Dämpfung

$$\zeta_{filt} = \frac{1}{\sqrt{2}} \tag{3.4}$$

ergibt sich die Übertragungsfunktion zu:

$$f(s) = \left(\frac{\omega_{filt}^2}{s^2 + 2 \cdot \zeta_{filt} \cdot \omega_{filt} + \omega_{filt}^2}\right)^2$$
(3.5)

Im Bodediagramm, Abb. 3.5, sind Amplituden- und Frequenzgang der Filterfunktion zu sehen.

 ${\bf Abbildung~3.5}$ – Bodediagramm der Filterfunktion aus Gleichung (3.5)

4 Systemidentifikation im Zeitbereich

5 Systemidentifikation im Frequenzbereich

Neben der Systemidentifikation im Zeitbereich ist es möglich die Parameterschätzung auch im Frequenzbereich durchzuführen. Die Analyse im Frequenzbereich bringt einige Vorteile mit sich, die im weiteren Verlauf dieser Dokumentation genauer beleuchtet werden. Die Grundlage der Frequenzanalyse ist die Fouriertransformation der gemessenen Daten vom Zeitbereich in den Frequenzbereich. Ausgehend von den transformierten Messwerten wird im Folgenden genauer auf die Idee der *Output Error*-Methode und auf den Algorithmus zur Lösung des Schätzproblems eingegangen. Zum Schluss werden die Ergebnisse bewertet und der Blick auf mögliche Verbesserungen und andere Methoden gerichtet.

5.1 Fouriertransformation

$$j\omega_{k}\tilde{\mathbf{x}}(k) = \mathbf{A}\tilde{\mathbf{x}}(k) + \mathbf{B}\tilde{\mathbf{u}}(k)$$
$$\tilde{\mathbf{y}}(k) = \mathbf{C}\tilde{\mathbf{x}}(k) + \mathbf{D}\tilde{\mathbf{u}}(k) = \mathbf{G}(k,\theta)\tilde{\mathbf{u}}(k)$$
mit $\mathbf{G}(k,\theta) = \mathbf{C}(j\omega\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ (5.1)

5.2 Output Error-Methode

Die Idee der Output Error-Methode (OEM) liegt in der Art der Fehlerbetrachtung. Es wird dabei der Fehler, der durch die mathematische Modellbildung entsteht, vernachlässigt. Das dynamische System wird als deterministisch angenommen. Unsicherheiten entstehen nur durch fehlerhafte und verrauschte Messungen. Ausgangspunkt der OEM ist das transformierte Zustandsraummodell (5.1). Im vorliegenden Fall entspricht der Ausgangsvektor $\tilde{\mathbf{y}}$ dem Zustandsvektor $\tilde{\mathbf{x}}$. Die Matrizen \mathbf{C} und \mathbf{D} nehmen also folgende Gestalt an:

$$\mathbf{C} = \mathbf{I}$$

$$\mathbf{D} = \mathbf{0}$$
(5.2)

Da der Zustandsvektor gleichzeitig der gemessene Zustand ist, kann der *Output Error* folgendermaßen formuliert werden:

$$\tilde{\nu}(k,\theta) = \tilde{\mathbf{z}}(k) - \tilde{\mathbf{y}}(k,\theta) = \tilde{\mathbf{z}}(k) - \mathbf{G}(k,\theta)\tilde{\mathbf{u}}(k)$$
(5.3)

 $\tilde{\mathbf{z}}$ entspricht dabei dem gemessenen Zustand, der zusammen mit dem Messrauschen aus dem übertragenen Zustand $\tilde{\mathbf{y}}$ entsteht. Der übertragene Zustand kann aus den Steuergrößen $\tilde{\mathbf{u}}$ durch Multiplikation mit der Übertragungsmatrix $\mathbf{G}(\theta)$ berechnet werden. Die Übertagungsmatrix ist, wie in Gleichung (5.1) gezeigt, abhängig vom zugrunde liegenden Modell und von den zu schätzenden Parametern θ . Diese sind die Einträge der Matrizen des Zustandsraummodells. Das Ziel der Methode ist nun, den Ausgangsvektor, der aus dem Modell und seinen Parametern folgt, dem gemessenen Zustand möglichst gut anzunähern. Mathematisch bedeutet das, dass das Minimum einer Kostenfunktion gefunden werden soll. Die Kostenfunktion der OEM ist nach Klein und Morelli [3] die negative Log-Likelihood-Funktion mithilfe des Ansatzes des Ausgangsfehlers (5.3):

$$J(\theta) = N \sum_{k=0}^{N-1} \tilde{\nu}^H(k, \theta) \mathbf{S}_{\nu\nu}^{-1} \tilde{\nu}(k, \theta) + N \ln|\mathbf{S}_{\nu\nu}|$$
 (5.4)

Wie bereits beschrieben, geht es nun darum das Minimum dieser Kostenfunktion zu finden. Wir suchen also die Nullstelle ihrer Ableitung. Einer der wichtigsten Algorithmen zur Bestimmung von Nullstellen (nicht)-linearer Funktionen sowohl bei Eingrößenproblemen als auch bei Mehrgrößenproblemen ist der iterative Newton-Raphson-Algorithmus. Dabei wird die Nullstelle mithilfe der Richtung der Tangentensteigung iterativ angenähert. Das Problem lässt sich folgendermaßen beschreiben:

Svv kurz in ein zwei Sätzen erklären

Gesucht ist die Nullstelle s einer Funktion f(x) mit f(s) = 0 für x = s. \overline{x} sei ein Punkt in der Umgebung der Nullstelle.

Stellt man nun eine Taylor-Reihe um \overline{x} auf und vernachlässigt die Terme höherer Ordnung, erhält man die Iterationsvorschrift des Newton-Raphson-Verfahrens:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \text{ für } i = 0, 1, 2...$$
 (5.5)

Diese Vorschrift lässt sich umformulieren für einen mehrdimensionalen Funktionsvektor F:

$$\underbrace{\begin{pmatrix}
\frac{\delta f_1}{\delta x_1} & \frac{\delta f_1}{\delta x_2} & \dots & \frac{\delta f_1}{\delta x_n} \\
\frac{\delta f_2}{\delta x_1} & \frac{\delta f_2}{\delta x_2} & \dots & \frac{\delta f_2}{\delta x_n} \\
\dots & \dots & \dots & \dots \\
\frac{\delta f_n}{\delta x_1} & \frac{\delta f_n}{\delta x_2} & \dots & \frac{\delta f_n}{\delta x_n}
\end{pmatrix}^{i}}_{\mathbf{I}^{i}} \underbrace{\begin{pmatrix}
\Delta x_1 \\
\Delta x_2 \\
\dots \\
\Delta x_n
\end{pmatrix}}_{\mathbf{A}\mathbf{X}^{i+1}} = - \underbrace{\begin{pmatrix}
f_1 \\
f_2 \\
\dots \\
f_n
\end{pmatrix}}_{\mathbf{F}^{i}}$$
(5.6)

Da wir das Miminum der Kostenfunktion suchen ist unser Funktionsvektor die Ableitung der Kostenfunktion nach den einzelnen zu schätzenden Parametern.

$$F = \frac{\delta J}{\delta \theta} \tag{5.7}$$

Wir suchen die Nullstelle dieser Funktion. Mithilfe von Gleichung (5.6) können wir die Vorschrift für unser Problem umschreiben:

$$\Delta \theta^{i+1} = -\left(\left[\frac{\delta^2 J}{\delta \theta \delta \theta^{\mathbf{T}}} \right]^{-1} \right)^i \cdot \left(\frac{\delta J}{\delta \theta} \right)^i$$

$$\theta^{i+1} = \theta^i + \Delta \theta^{i+1}$$
(5.8)

In jedem Iterationsschritt muss also ein lineares Gleichungssystem gelöst werden. Das größte Problem bei der Implementierung des Algorithmus ist die Berechnung der Ableitungen und der Hesse-Matrix in jedem Iterationsschritt. Diese können bei vielen zu schätzenden Parametern schnell sehr kompliziert werden. Da die Kostenfunktion als Summe über alle Frequenzen berechnet wird (siehe Gleichung (5.4)), gilt dies auch für die Ableitungen. Dadurch wird zusätzliche Rechenzeit beansprucht.

5.3 Vor- und Nachteile

Wie bereits erwähnt werden bei der Systemidentifikation im Frequenzbereich fouriertransformierte Signalverläufe betrachtet. Ein großer Vorteil besteht nun darin, dass die in der Identifikation berücksichtigten Frequenzpunkte frei gewählt werden können. Dies ist von Vorteil, wenn im Vorhinein bereits bekannt ist, welche Frequenzen für das Modell eine wichtige Rolle spielen. Auch wenn die Berechnungen im Algorithmus durchaus sehr aufwändig werden können, so ist der Rechenaufwand unabhängig von der Länge des betrachteten Zeitraums bzw. der Anzahl der Datenpunkte im Zeitbereich.

Darüberhinaus lässt sich ein physikalisches Verständnis des Systems im Frequenzbereich gewinnen, was für viele Anwendungen sehr hilfreich sein kann. Im Reglerentwurf beispielsweise sind Frequenzverläufe von großer Wichtigkeit.

Ein schwerwiegender Nachteil ist die Notwendigkeit eines passenden Eingangssignals zum Erreichen einer guten Identifikation. Als Beispiel sei ein Frequency Sweep, auch Chirp-Signal genannt, bei welchem eine Schwingung mit steigender Frequenz auf eine Steuerung gegeben wird. Mit solchen passenden Steuerungen ist mit deutlich besseren Identifikationsergebnissen zu rechnen.

Die Bestimmung der einfachen und zweifachen Ableitungen für die Jacobi- und Hesse-Matrizen ist sehr aufwändig. In diesem Projekt wurde deshalb auf die Möglichkeit des symbolischen Rechnens in Matlab zurückgegriffen. Trotdzem bleibt dies ein Nachteil.

Schließlich bleibt noch die Berücksichtigung des Abtasttheorems nach Shannon ein wichtiger Punkt, um Frequenzverfälschungen zu vermeiden [2]. Demzufolge muss die Abtastfrequenz mehr als doppelt so groß sein wie die größte Frequenz im Signal. Dies stellte sich bei den vorliegenden Daten jedoch nicht als Problem heraus.

5.4 Ergebnisse

6 Zusammenfassung und Ausblick

- Datenvorbereitung sehr wichtig und großer Teil der Arbeit
- Matrix-LSQ sehr schnell und einfach zu implementieren, ABER flugmechanisch nur bedingt sinnvoll
- Frequenzbereich nur sinnvoll bei passendem Eingangssignal
- generell: Datennormalisierung (Skalierung mit Maximalwerten =; Absolutwerte in gleicher Größenordnung) bzw. -gewichtung
- Zeitbereich: nichtlineare Modellbildung
- Frequenzbereich: Equation Error-Methode, kombinierte Methode (Output Error + Equation Error)

Literaturverzeichnis

- [1] FICHTER, W.; GRIMM, W.: Flugmechanik. 2009
- [2] Grimm, W.: Skriptum Digitale Regelung und Filterung. 2017
- [3] Klein, V.; Morelli, E. A.: Aircraft System Identification. American Institute of Aeronautics and Astronautics, Reston, VA, 2006. ISBN 1–56347–832–3