from sklearn.datasets import load_iris
import numpy as np
from sklearn import tree

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris = load_iris()

df.head()

₽	sepa	l length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	150 non-null	float64
1	sepal width (cm)	150 non-null	float64
2	petal length (cm)	150 non-null	float64
3	petal width (cm)	150 non-null	float64
4	target	150 non-null	int64

dtypes: float64(4), int64(1)

memory usage: 6.0 KB

df.shape

```
(150, 5)
```

```
df.isnull().sum()
```

```
sepal length (cm) 0
sepal width (cm) 0
petal length (cm) 0
petal width (cm) 0
target 0
dtype: int64
```

histogram plot

```
df.hist(edgecolor='black',figsize=(10,10))
plt.show()
```


pair plot

sns.pairplot(df, hue="target")

from sklearn import metrics
from sklearn.metrics import accuracy_score

x = df.drop('target', axis=1)
y= df.target

```
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=5)
logreg = LogisticRegression()
logreg.fit(x, y)
logreg.fit(x_train,y_train)
y pred = logreg.predict(x)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear model/ logistic.py:818: Convergence
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
     /usr/local/lib/python3.7/dist-packages/sklearn/linear model/ logistic.py:818: Convergence
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
```

Accuracy score

```
print(metrics.accuracy_score(y, y_pred))
```

0.98

Colab paid products - Cancel contracts here

✓ 0s completed at 11:07

×