Particle spectrograph

Wave operator and propagator

$ au_1^{\#1}$ $ au_1^{\#2}$	0 0	0 0	0 0	$0 \frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$0 \frac{i \sqrt{2} k(6k^2 r_5 + t_1 + 4t_3)}{(1 + 2k^2)^2 (3t_1 t_3 + 2k^2 r_5 (t_1 + t_3))}$	0 0	$0 \frac{2 k^2 (6k^2 r_5 + t_1 + 4t_3)}{(1 + 2k^2)^2 (3t_1t_3 + 2k^2 r_5 (t_1 + t_3))}$	$\sigma_{0^{+}}^{\#1}$ - $ au_{0^{+}}^{\#1}$ - $ au_{0^{+}}^{\#2}$ - $ au_{0^{-}}^{\#1}$ -	$\uparrow \frac{1}{(1+2)}$ $\uparrow \frac{i}{(1+2)}$ $\uparrow \frac{1}{(1+2)}$		$-\frac{i}{(1+i)}$	$ \tau_{0}^{#1} + \frac{\sqrt{2} k}{(2k^2)^2 t_3} \\ \frac{2k^2}{(2k^2)^2 t_3} \\ 0 \\ 0 $		$ \sigma_{0}^{\#1} $ 0 0 -\frac{1}{t_{1}}	$ au_2^{\sharp}$	$\overset{t_1}{\overset{t_1}}{\overset{t_1}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}{\overset{t_1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\frac{1+2}{2i}$ $\frac{2i}{(1+2)}$	$ \frac{t^{1}}{t^{2}} \alpha \beta $ $ \frac{2}{k^{2})^{2} t_{1}} $ $ \frac{\sqrt{2} k}{k^{2})^{2} t_{1}} $ $ 0$	$\tau_{2}^{\#1}$ $-\frac{2i}{(1+2k)}$ $\frac{4k}{(1+2k)}$	$\sqrt{2} \frac{k}{(k^2)^2 t_1}$	$\sigma_{2^{-1}\alpha}^{\sharp 1}$ 0 0 $\frac{2}{t_1}$	βχ
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_3}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	$f_{1^-}^{\#1}$ $f_{1^-}^{\#2}$	0 0	0 0	0 0	$0 \frac{1}{3} \tilde{l} k (t_1 - 2 t_3)$	$0 \frac{1}{3} \bar{l} \sqrt{2} k (t_1 + t_3)$	0 0) 0 $\frac{2}{3} k^2 (t_1 + t_3)$							
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$\frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2k^2) (3t_1t_3 + 2k^2 r_5 (t_1 + t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	lpha $\omega_{1}^{#2}$	0	0	0	$_{1}+4t_{3}) \qquad \frac{t_{1}-2t_{3}}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-2t_3$) $\left -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\right $		[:] ¹ † ^{αβ} [:] ¹ † ^{αβ}	<u>t</u> 1 2	$ \begin{array}{c} \alpha\beta & f_{2}^{\#1} \\ -\frac{ikt}{\sqrt{2}} \\ k^2 & t \end{array} $	<u>1</u>	$\frac{f^{1}}{0}\alpha\beta\chi$	
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	- 0	0	0	$\omega_{1}^{\#1}$	0	0	0	$\frac{1}{6} (6 k^2 r_5 + t_1)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}k(t_1)$				0		<u>t</u> 1 2	
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2} -$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	$\omega_{1}^{\#2}_{\alpha\beta}\;f_{1}^{\#1}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}} - \frac{i k t_1}{\sqrt{2}}$	0 0	0 0	0 0	0 0	0 0	0 0	$f_{0}^{#1} = f_{0}^{#2}$	$-i\sqrt{2}kt_3$ 0	$2k^2t_3$ 0				
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	$\omega_{1}^{\#1}{}_{lphaeta}$ ω_{1}	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	$\omega_{0}^{\#1}$ f		kt ₃	0 0			
	$\sigma_1^{\#1} + ^{\alpha\beta}$	$\sigma_1^{\#2} + ^{\alpha\beta}$	$ au_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$		$\omega_{1}^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{#2} + \alpha$	3		$f_{0}^{#1} + \sqrt{2}$	$\omega_{0}^{\#1}$			

Quadratic (free) action	Source constraints/gaug	2
$S == \iiint (\frac{1}{2} (2 \omega^{\alpha \prime}) (t_1 \omega^{\beta} - 2t_3 \omega^{\kappa}) + 6 f^{\alpha \beta} t_{2,0} + 6 \omega^{\alpha \beta \chi} \sigma_{2,0} - 4t_1 \omega^{\beta})$	SO(3) irreps	\geq
$\frac{\partial f^{\alpha l}}{\partial f^{\alpha l}} + 8f_{2}(l) \times \frac{\partial f^{\alpha l}}{\partial f^{\alpha l}} + 4f_{2}(l) + \frac{\partial f^{\alpha l}}{\partial f^{\alpha l}} - 8f_{2}(l) \times \frac{\partial f^{\alpha l}}{\partial f^{\alpha l}} + \partial f^$	$\tau_{0+}^{#2} == 0$ 1	
$A + 3 \mathcal{L} K 3 \mathcal{L} \alpha \qquad A + 3 \mathcal{L} \alpha \qquad A + 3 \mathcal{L} \alpha \qquad A + 3 \mathcal{L} \beta \qquad A + 3 \mathcal{L} \alpha \qquad A + 3 \mathcal{L}$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0 \qquad \boxed{1}$	
$+ t_3 \sigma_{ij} \ _{\kappa} \sigma_{j} = - t_1 \sigma_{ij} \ _{\sigma} \theta_{j} \ _{\sigma} + + t_1 \sigma_{j} \ _{\sigma} \sigma_{ij} \ _{\sigma} - \sigma_{ij} \sigma_{ij} \ _{i\theta} \sigma_{j} \ _{\sigma} - \sigma_{ij} \sigma_{ij$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$ 3	m
$5c_1 c_{\alpha} \theta_1 \sigma_1 = 5c_1 c_{\beta} \alpha_{\theta} \sigma_1 = 5c_1 c_{\theta} \alpha_{\theta} \sigma_1 = 5c_1 c_{\theta} \sigma_1 \sigma_2 = 5c_1 c_{\theta} \sigma_2 = 5c_1 c_{\theta} \sigma_1 \sigma_2 = 5c_1 c_{\theta} \sigma_2 = 5c_1 c_1 c_{\theta} = 5c_1 c_1 c_{\theta} = 5c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1 $	$t_{1}^{\#1}{}^{\alpha} == 0 $ 3	m
$4t_2 \partial_z f^{\alpha \beta} \partial_z f^{-\kappa} - 8t_2 \partial_z f^{\alpha} - \beta_z f^{\kappa} - 6r_{\epsilon} \partial_z \omega^{\alpha \beta} \partial_z \omega^{\kappa} + 12r_{\epsilon} \partial_\theta \omega^{\alpha \beta} - \beta_z \omega^{\kappa} +$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0 \ \ 3$	m
$6r_{5}\partial_{\alpha}\omega^{\alpha\prime\theta}\partial_{\nu}\omega^{\kappa}_{a}-12r_{5}\partial^{\theta}\omega^{\alpha\prime}_{a}\partial_{\nu}\omega^{\kappa}_{a}))[t,x,u,z]dzdudxdt$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	10
	Total constraints: 16	16

16

constraints/gauge generators

Multiplicities

Massive and massless spectra

Massive particle

Pole residue:
$$\frac{6t_{1}t_{3}(t_{1}+t_{3})-3r_{5}(t_{1}^{2}+2t_{3}^{2})}{2r_{5}(t_{1}+t_{3})(-3t_{1}t_{3}+r_{5}(t_{1}+t_{3}))} > 0$$
Polarisations:
$$3$$
Square mass:
$$-\frac{3t_{1}t_{3}}{2r_{5}t_{1}+2r_{5}t_{3}} > 0$$
Spin:
$$1$$
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_5 < 0 \,\&\&\, (t_1 < 0 \,\&\&\, 0 < t_3 < -t_1) \,||\, (t_1 > 0 \,\&\&\, (t_3 < -t_1 \,||\, t_3 > 0))$