| Last Name: | First Name: | ID: |  |
|------------|-------------|-----|--|
|------------|-------------|-----|--|

# Q. [1] make your seed values A, B, C, D:

- a) Find an A value by subtracting your student ID's last one digit from the first two digits (i.e., If your student ID is 16301378, the A value should be "16 8 = 8".)
- b) Find a **B** value by subtracting your student ID's last one digit from 14 (i.e., If your student ID is 16301378, the B value should be "14 8 = 6".)
- c) Find a  $\mathbb{C}$  value by subtracting your student ID's last one digit from 12 (i.e., If your student ID is 16301378, the  $\mathbb{C}$  value should be "12 8 = 4".)
- d) Find a **D** value by subtracting your student ID's second last one digit from 20 (i.e., If your student ID is 16301378, the **D** value should be "20 7 = 13".) [

# **Graph Problems (45 points)**

#### Q1. [4] For the given graph, answer the graph type definition:



- **Q1-1**) [1] What is the degree of v5? [
- Q1-2) [1] Are e3 and e4 parallel edges? [
- **Q1-3)** [1] Is v1 a pendant vertex? [
- Q1-4) [1] Is the above graph a simple graph? [
- Q2. [4] Can a simple graph have C vertices and 40 edges? Explain and justify your answer.

Q3. [4] Can a tree graph have C vertices and B edges? Explain and justify your answer.



Q8. [4] What is the maximum number of edges in a bipartite graph having A vertices? Explain and justify your answer.

Q9. [4] Does a complete graph on D vertices has an Eulerian circuit? Explain and justify your answer.

Q10. [4] Show if the two graphs shown below is isomorphic. Is it isomorphic or not? Clearly, explain and justify your answer. Simple yes or no answer will result 0 score.



Q11. [2] Show if the following graph is a planar graph. Clearly, explain and justify your answer.



Q12. [2] Does the following graph has any Euler Cycle? Clearly, explain and justify your answer.



Q13. [2] Does the following graph have any Hamiltonian path? Clearly, explain and justify your answer.



## P, NP, NP-Hard, and NP-Complete (NPC) Problems (24 points)

Q14 [24]. Answer if the following statement is TRUE or FALSE.

```
If your D number is 20 \sim 18 only solve 12 questions including 1, 3, 5, 7, 8, 9, 11, 13, 15, 17, 19, and 21. If your D number is 17 \sim 14 only solve 12 questions including 2, 4, 6, 8, 10, 11, 12, 13, 14, 16, 18, and 20. If your D number is 13 \sim 11 only solve 12 questions including 1, 2, 5, 6, 8, 10, 11, 12, 15, 16, 19, and 21.
```

| Your L     | ) value: |  |  |  |  |  |  |
|------------|----------|--|--|--|--|--|--|
| <b>Q</b> # |          |  |  |  |  |  |  |
| Ans        |          |  |  |  |  |  |  |

- 1. [2]  $O(n^{1,000,000,000})$  algorithm complexity is intractable.
- 2. [2]  $O(n^{\log n})$  algorithm complexity is intractable.
- 3. [2]  $O(2^n)$  algorithm complexity is intractable.
- 4. [2] NP, NPC, and NP-Hard are intractable optimization problems.
- 5. [2] NPC  $\in$  NP-Hard.
- 6. [2] NP problems are always harder than P problems, iff P!= NP
- 7. [2] NP-hard problems are always harder than NPC problems, iff P!= NP
- 8. [2] NPC problems are always harder than P problems, iff P!= NP
- 9. [2] NPC ∈ NP
- 10. [2] If 3-SAT problem can be solved in polynomial time, then P = NP.
- 11. [2] If we want to prove that a problem X is NPC, it is sufficient to take a known NP-Hard problem Y and reduce Y to X.

#### Let X be a problem that belongs to the class NP (for $12 \sim 14$ ):

- 12. [2] if X is NP-complete, then it is NP-hard.
- 13. [2] there is a polynomial time decision algorithm for X.
- 14. [2] if X can be solved deterministically in polynomial time, then P = NP.

Consider two decision problems X1 and X2 such that X1 reduces in polynomial time to 3-SAT and 3-SAT reduces in polynomial time to X2 (for  $15 \sim 19$ ):

- 15. [2] X1 is NP-complete
- 16. [2] X1 is in NP
- 17. [2] X2 is NP-complete
- 18. [2] X2 is NP-hard
- 19. [2] X1 is NP-hard

Ram and Shyam have been asked to show that a certain problem Z is NP-complete. Ram shows a polynomial time reduction from the 3-SAT problem to Z, and Shyam shows a polynomial time reduction from Z to 3-SAT (for  $20 \sim 21$ ):

- 20. [2] Z is NP-hard.
- 21. [2] Z is in NP.

# **Algorithm Solving Problems (30 points)**

Q15 [6]. For the following graph (d to b edge cost is - C value) solve both 15-1 and 15-2:

Q15-1. [3] Find the shortest route and cost from "a" to "c" using **Dijkstra's** Algorithm. Show your work on the given table and write the algorithm. What is the shortest route and cost from "a" to "c"?



|   | a | b | С | d |
|---|---|---|---|---|
| a |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |

**Q15-2.** [3] Find the shortest route and cost from "a" to "c" using **Bellman-Ford Algorithm**. Show your work on the given table by using the edge sequence. What is the shortest route and cost from "a" to "c"?

(a,c) (a,d) (c,d) (d,b) (b,c)

|     | b | С | d |
|-----|---|---|---|
| 1st |   |   |   |
| 2nd |   |   |   |
| 3rd |   |   |   |
|     |   |   |   |

# Q16. [6] All pairs shortest path problem:



Q16-1. [3] show the step process from A<sub>0</sub> to A<sub>1</sub> using a dynamic programming (DP) algorithm.

Q16-2. [3] show the step process from A<sub>1</sub> to A<sub>2</sub> using a dynamic programming (DP) algorithm.

# Q17. [2] Does Bellman-Ford (BF) Algorithm find shortest path from 1 to 2 for the following graph? If yes, what is the shortest path? If not, what is the reason?



# Q18. [16] Solve the following Traveling Salesman Problem

## **Adjacency Matrix**



|   | a | b | С  | d  |
|---|---|---|----|----|
| a | 0 | D | 15 | A  |
| b | 5 | 0 | C  | 10 |
| С | 6 | В | 0  | 12 |
| d | 8 | 8 | 9  | 0  |

Q18-1. [3] Show the Brute Force algorithm design starting from <u>a</u>.

Q18-2. [4] Show the Dynamic Programming (DP) algorithm for solving the given TSP, g(i,S), where i: source, S: a set of cities to visit. Specifically, show the TSP traveling  $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$  route and its cost by using the Dynamic Programming (DP) algorithm.

**Q18-3.** [9] Solve the given TSP using a branch and bound algorithm starting from a. Use the given table to show the process of finding the reduced cost on the each node and specify the reduced cost.

**Q18-3-1.** [3] Show the reduced cost process at  $\underline{\mathbf{a}}$  and its reduced cost:

|   | а | b | С | d |  |
|---|---|---|---|---|--|
| а |   |   |   |   |  |
| b |   |   |   |   |  |
| С |   |   |   |   |  |
| d |   |   |   |   |  |
|   |   |   |   |   |  |

**Q18-3-2.** [3] Show the reduced cost process at  $\underline{\mathbf{b}}$  and its reduced cost:



|   | а | b | С | d |  |
|---|---|---|---|---|--|
| a |   |   |   |   |  |
| b |   |   |   |   |  |
| С |   |   |   |   |  |
| d |   |   |   |   |  |
|   |   |   |   |   |  |

**Q18-3-3.** [3] Show the reduced cost process at  $\underline{\mathbf{c}}$  and its reduced cost:



|   | a | b | С | d |  |
|---|---|---|---|---|--|
| a |   |   |   |   |  |
| b |   |   |   |   |  |
| С |   |   |   |   |  |
| d |   |   |   |   |  |
|   |   |   |   |   |  |