ch03 선형모델 - linear model

학습 목표

- 선형 모델(Linear Regression)에 대해 이해합니다.
- 보스턴 집값 데이터 셋을 활용하여 회귀 모델을 만들어 봅니다.

학습 내용

- Boston 데이터 셋 불러오기
- 집값 예측 선형모델 구축해 보기
- 통계학에서의 선형회귀는 종속 변수 y와 한개이상의 독립변수(입력변수 or 예측변수) X의 선형관계를 모델링하는 회귀분석 기법이다.
- 선형회귀(linear regression)는 100여 년 전(1885년 논문)에 개발되었다.
- 선형 모델은 입력 특성에 대한 선형 함수를 만들어 예측을 수행합니다.
- 일반적으로 최소제곱법(least square method)를 사용해 선형회귀 모델을 세운다.
- 특성이 하나일 때는 **직선**, 두개일 때는 **평면**, 더 높은 차원 초평면(hyperplane)
- knn 모델의 회귀와 비교해 보면 직선이 사용한 예측이 더 제약이 있음.
- 특성이 많은 데이터 셋이라면 선형 모델은 휼륭한 성능을 갖는다.

사전 설치 필요

• scikit-learn은 1.0.2 버전으로 설치를 하여야 load_boston()의 데이터 셋을 불러와, 분석이 가능하다.

```
pip install mglearn
pip instll scikit-learn==1.0.2
```

목차

- 01 matplotlib의 한글 폰트 설정
- 02 선형 회귀 모델 소개
- 03 Boston 데이터 셋 주택 가격 예측(머신러닝 모델)
- 04 모델 평가하기

In [54]: from IPython.display import display, Image

01 matplotlib의 한글 폰트 설정

목차로 이동하기

matplotlib의 한글 폰트 설정(개인 PC사용시)

```
In [55]: ### 한글 폰트 설정
import matplotlib import font_manager, rc
import matplotlib.pyplot as plt
import platform

path = "C:/Windows/Fonts/malgun.ttf"
if platform.system() == "Windows":
    font_name = font_manager.FontProperties(fname=path).get_name()
    rc('font', family=font_name)
elif platform.system()=="Darwin":
    rc('font', family='AppleGothic')
else:
    print("Unknown System")

matplotlib.rcParams['axes.unicode_minus'] = False
%matplotlib inline
```

In [56]: display(Image(filename='img/linear_model01.png'))

$$\hat{y} = w1*x1 + w2*x2 + ... + wp*xp + b$$

- x1~xp는 데이터 포인트에 대한 특성(feature)
- w와 b는 모델이 학습할 파라미터
- 선형회귀 또는 최소제곱법(OLS)은 가장 간단하고 오래된 회귀용 선형 알고리즘.
- 선형 회귀는 예측과 훈련 세트에 있는 **타깃 y사이의 평균제곱오차(mean squared** error)를 최소화하는 파라미터 w와 b를 찾는다.
- 평균 제곱 오차는 예측값과 타깃값의 차이를 제곱하여 더한 후에 샘플의 개수로 나 눈 것.

In [57]: display(Image(filename='img/linear_model02_mse.png'))

MSE(평균제곱오차)=
$$\frac{\sum (y_i - \hat{y}_i)^2}{n}$$

₩begin{align} y_{i} : 실제값 ₩₩ ₩hat{y_{i}} : 예측값 ₩₩ n: 샘플개수 ₩end{align}

```
In [58]: import numpy as np
import matplotlib.pyplot as plt
```

```
import matplotlib
import pandas as pd

# 설치가 안되어 있을 경우, 설치 필요.
import sklearn
import mglearn

print("numpy 버전 : ", np.__version__)
print("matplotlib 버전 : ", matplotlib.__version__)
print("sklearn 버전 : ", sklearn.__version__)
print("mglearn 버전 : ", mglearn.__version__)
print("pandas 버전 : ", pd.__version__)
```

numpy 버전 : 1.26.4 matplotlib 버전 : 3.9.0 sklearn 버전 : 1.0.2 mglearn 버전 : 0.1.9 pandas 버전 : 2.2.2

02 선형 회귀 모델 소개

목차로 이동하기

In [59]: from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression

특성이 하나일 때의 선형 함수

In [60]: mglearn.plots.plot_linear_regression_wave()

w[0]: 0.393906 b: -0.031804

• [그래프 설명] w는 기울기, b는 y절편을 의미.

03 Boston 데이터 셋을 활용한 회귀 모델 만들어보기 목차로 이동하기

Boston 데이터 셋을 활용한 회귀 모델 만들어보기

데이터 설명

- 1970년대의 보스턴 주변의 주택 평균 가격 예측
- 506개의 데이터 포인트와 13개의 특성
 - (1) 모델 만들기 [모델명 = 모델객체()]
 - (2) 모델 학습 시키기 [모델명.fit()]
 - (3) 모델을 활용한 예측하기 [모델명.predict()]
 - (4) 모델 평가

```
load_boston은 현재 버전으로 삭제되어, 이를 사용하기 위해서는 다운그
레이드가 필요
!pip install scikit-learn==1.0.2
```

```
In [61]: from sklearn.linear_model import LinearRegression
         from sklearn.datasets import load boston
In [62]: boston = load_boston()
         X = boston.data # 입력 데이터 - 문제
                             # 출력 데이터 - 답
         y = boston.target
        C:\Users\user\anaconda3\envs\sklearn102\lib\site-packages\sklearn\utils\deprecati
        on.py:87: FutureWarning: Function load_boston is deprecated; `load_boston` is dep
        recated in 1.0 and will be removed in 1.2.
            The Boston housing prices dataset has an ethical problem. You can refer to
           the documentation of this function for further details.
           The scikit-learn maintainers therefore strongly discourage the use of this
            dataset unless the purpose of the code is to study and educate about
           ethical issues in data science and machine learning.
           In this special case, you can fetch the dataset from the original
            source::
                import pandas as pd
                import numpy as np
                data_url = "http://lib.stat.cmu.edu/datasets/boston"
                raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
                data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
                target = raw_df.values[1::2, 2]
           Alternative datasets include the California housing dataset (i.e.
            :func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing
            dataset. You can load the datasets as follows::
                from sklearn.datasets import fetch_california_housing
                housing = fetch california housing()
            for the California housing dataset and::
                from sklearn.datasets import fetch openml
                housing = fetch_openml(name="house_prices", as_frame=True)
           for the Ames housing dataset.
          warnings.warn(msg, category=FutureWarning)
```

데이터 살펴보기

features	내용	값
crim	마을별 1인당 범죄율	-
zn	25,000 평방 피트 이상의 대형 주택이 차지하는 주거용 토지의 비율	-
indus	소매상 이외의 상업 지구의 면적 비율	-
chas	Charles River(찰스강 접한 지역인지 아닌지) (강 경계면=1, 아니면=0	-
nox	산화 질소 오염도(1000만분 율)	-
rm	주거 당 평균 방수	-
age	1940년 이전에 지어진 소유주 집들의 비율	-
dis	보스턴 고용 센터 5곳까지의 가중 거리	-
rad	도시 순환 고속도로에의 접근 용이 지수	-
tax	만 달러당 주택 재산세율	-
ptratio	학생 - 선생 비율	-
black-(B)	흑인 인구 비율(Bk)이 지역 평균인 0.63과 다른 정도의 제곱	-
lstat	저소득 주민들의 비율 퍼센트	-
(target) MEDV	소유주가 거주하는 주택의 중간 가치(\$ 1000)	-

```
In [63]: print( boston.keys() )
    print( boston.feature_names )

dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename', 'data_modul
    e'])
    ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
    'B' 'LSTAT']
```

주택 가격 시각화 - 히스토 그램

```
In [64]: plt.hist(y)
```

```
Out[64]: (array([ 21., 55., 82., 154., 84., 41., 30., 8., 10., 21.]),
array([ 5. , 9.5, 14. , 18.5, 23. , 27.5, 32. , 36.5, 41. , 45.5, 50. ]),
<BarContainer object of 10 artists>)
```


• (실습) DataFrame으로 만들어 기본 시각화 등을 통해 확인해 보자.

데이터 전처리 - 데이터 준비하기

모델 구축부터 학습, 예측까지

```
In [66]: model = LinearRegression().fit(X_train, y_train) # 학습
pred = model.predict(X_test)
pred
```

```
Out[66]: array([28.64896005, 36.49501384, 15.4111932 , 25.40321303, 18.85527988,
                 23.14668944, 17.3921241 , 14.07859899, 23.03692679, 20.59943345,
                 24.82286159, 18.53057049, -6.86543527, 21.80172334, 19.22571177,
                 26.19191985, 20.27733882, 5.61596432, 40.44887974, 17.57695918,
                 27.44319095, 30.1715964, 10.94055823, 24.02083139, 18.07693812,
                 15.934748 , 23.12614028, 14.56052142, 22.33482544, 19.3257627 ,
                 22.16564973, 25.19476081, 25.31372473, 18.51345025, 16.6223286 ,
                 17.50268505, 30.94992991, 20.19201752, 23.90440431, 24.86975466,
                 13.93767876, 31.82504715, 42.56978796, 17.62323805, 27.01963242,
                 17.19006621, 13.80594006, 26.10356557, 20.31516118, 30.08649576,
                 21.3124053 , 34.15739602, 15.60444981, 26.11247588, 39.31613646,
                 22.99282065, 18.95764781, 33.05555669, 24.85114223, 12.91729352,
                 22.68101452, 30.80336295, 31.63522027, 16.29833689, 21.07379993,
                 16.57699669, 20.36362023, 26.15615896, 31.06833034, 11.98679953,
                 20.42550472, 27.55676301, 10.94316981, 16.82660609, 23.92909733,
                 5.28065815, 21.43504661, 41.33684993, 18.22211675, 9.48269245,
                 21.19857446, 12.95001331, 21.64822797, 9.3845568, 23.06060014,
                 31.95762512, 19.16662892, 25.59942257, 29.35043558, 20.13138581,
                 25.57297369, 5.42970803, 20.23169356, 15.1949595, 14.03241742,
                 20.91078077, 24.82249135, -0.47712079, 13.70520524, 15.69525576,
                 22.06972676, 24.64152943, 10.7382866 , 19.68622564, 23.63678009,
                12.07974981, 18.47894211, 25.52713393, 20.93461307, 24.6955941,
                 7.59054562, 19.01046053, 21.9444339 , 27.22319977, 32.18608828,
                 15.27826455, 34.39190421, 12.96314168, 21.01681316, 28.57880911,
                 15.86300844, 24.85124135, 3.37937111, 23.90465773, 25.81792146,
                 23.11020547, 25.33489201, 33.35545176, 20.60724498, 38.4772665 ,
                 13.97398533, 25.21923987, 17.80946626, 20.63437371, 9.80267398,
                 21.07953576, 22.3378417 , 32.32381854, 31.48694863, 15.46621287,
                 16.86242766, 28.99330526, 24.95467894, 16.73633557, 6.12858395,
                 26.65990044, 23.34007187, 17.40367164, 13.38594123, 39.98342478,
                 16.68286302, 18.28561759])
```

04 모델 평가하기

목차로 이동하기

```
In [67]: import pandas as pd

In [68]: dict_dat = {"실제값":y_test, "예측값":pred, "오차":y_test - pred}
dat = pd.DataFrame(dict_dat)
dat
```

Out[68]:		실제값	예측값	오차
	0	23.6	28.648960	-5.048960
	1	32.4	36.495014	-4.095014
	2	13.6	15.411193	-1.811193
	3	22.8	25.403213	-2.603213
	4	16.1	18.855280	-2.755280
	•••			
	147	17.1	17.403672	-0.303672
	148	14.5	13.385941	1.114059
	149	50.0	39.983425	10.016575
	150	14.3	16.682863	-2.382863
	151	12.6	18.285618	-5.685618

152 rows × 3 columns

```
In [69]: dat['오차절대값'] = abs(dat['오차'])
dat['오차제곱'] = dat['오차'] ** (2)
dat
```

_			-	_	-	-	
()	1.1	+		6	u	- 1	4
\cup	u	L		\cup	~	- 1	4

	실제값	예측값	오차	오차절대값	오차제곱
0	23.6	28.648960	-5.048960	5.048960	25.491998
1	32.4	36.495014	-4.095014	4.095014	16.769138
2	13.6	15.411193	-1.811193	1.811193	3.280421
3	22.8	25.403213	-2.603213	2.603213	6.776718
4	16.1	18.855280	-2.755280	2.755280	7.591567
•••		•••			
147	17.1	17.403672	-0.303672	0.303672	0.092216
148	14.5	13.385941	1.114059	1.114059	1.241127
149	50.0	39.983425	10.016575	10.016575	100.331779
150	14.3	16.682863	-2.382863	2.382863	5.678036
151	12.6	18.285618	-5.685618	5.685618	32.326247

152 rows \times 5 columns

평가 지표

- 모델을 평가하기 위해 회귀모델은 일반적으로 사용하는 지표는 다음을 사용합니다.
 - MAE(mean absolute error) : 평균 절대값 오차
 - MSE(mean squared error) : 평균 제곱 오차

■ RMSE(root mean squared error) : 평균 제곱근 오차

MAE (mean absolute error)

• 각각의 값에 절대값을 취한다. 이를 전부 더한 후, 갯수로 나누어주기

```
In [70]: ### MSE, MAE, RMSE, RMLSE sum(dat['오차절대값'])/len(dat['오차절대값'])
Out[70]: 3.1627098714574284
In [71]: np.mean(dat['오차절대값'])
Out[71]: 3.1627098714574284
```

MSE (mean squared error)

• 각각의 데이터의 (실제값-예측값) ^ 2 의 합를 데이터의 샘플의 개수로 나누어준것

```
In [72]: value = np.mean(dat['오차제급'])
value

Out[72]: 21.51744423117749

In [73]: mse_value = sum(dat['오차'] ** 2) / len(dat['오차'])
mse_value

Out[73]: 21.517444231177492

In [74]: from sklearn.metrics import mean_squared_error

In [75]: mean_squared_error(y_test, pred)

Out[75]: 21.51744423117749
```

RMSE (root mean squared error)

• 각 데이터의 (실제값-예측값) ^ 2 의 합을 데이터의 샘플의 개수로 나누어 준 이후 에 제곱근 씌우기

```
In [76]: # (1) 제곱에 루트를 씌워구하기 (2) 제곱한 값을 길이로 나누기
rmse = np.sqrt(mse_value)
# rmse = mse_value ** 0.5 # 다른 방법
print(rmse)
```

4.638689926172852

결정계수(coefficient of determination)

- 결정계수는 회귀모델에서 모델의 적합도를 의미하는 것으로 0~1사이의 값을 갖는다.
- 1에 가까우면 가까울수록 이 모델은 좋다라고 볼수 있다.

```
In [77]: # R^2의 값을 구하기- 결정계수 구하기
         print("훈련 데이터 세트 점수 : {:.2f}".format(model.score(X_train, y_train)))
         print("테스트 데이터 세트 점수 : {:.2f}".format(model.score(X_test, y_test)))
        훈련 데이터 세트 점수 : 0.74
       테스트 데이터 세트 점수 : 0.71
In [78]: for i in range(1, 6, 1):
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(i/10),
            model = LinearRegression()
            model.fit(X_train, y_train)
            pred = model.predict(X_test)
            pred[:5]
            mae = np.abs(y_test - pred).sum() / len(pred)
            mse = ((y_test - pred)**2).sum()/len(pred)
            rmse = (((y_test - pred)**2).sum()/len(pred))**0.5
            print("test_size : ",(i/10))
            print("MAE : {:.3f}".format(mae))
            print("MSE : {:.3f}".format(mse))
            print("RMSE : {:.3f}".format(rmse))
            print("")
       test_size : 0.1
       MAE : 2.834
       MSE: 14.996
       RMSE: 3.872
       test size : 0.2
       MAE : 3.189
       MSE: 24.291
       RMSE: 4.929
       test size : 0.3
       MAE : 3.163
       MSE: 21.517
       RMSE: 4.639
       test_size : 0.4
       MAE : 3.298
       MSE : 21.833
       RMSE: 4.673
       test_size : 0.5
       MAE : 3.398
       MSE: 25.175
       RMSE: 5.018
```

실습과제1

- 데이터를 나누는 것에 따라 RMSE는 어떻게 되는지 확인해 보자.
- 70:30, 90:10, 80:20, 75:25 등

• 나만의 데이터 셋을 선택하여 다중 선형 회귀 모델을 만들고 이를 예측을 수행한 후, 제출해 보자.

T		
In []:		
L] .		