CSC 2305 Numerical Methods for Optimization Problems (Winter 2016) Assignment # 6

1002119049 Hao Wang (UTORid: wangh110)

April 8, 2016

1 Problem 1

1.1 Solution

We generate the following graph based on the Jacobian matrix has the structure. To find a combination of perturbation vectors p to obtain the minimum number of evaluations of f.

By node coloring algorithm, we could generate:

$$p = \epsilon e_1, \ p = \epsilon e_2, \ p = \epsilon e_3, \ p = \epsilon (e_4 + e_5 + e_6).$$

The in this way, the number of evaluations of f will be minimized to 4. If we have smaller number of evaluations, like 3, which results in two of the e_1 , e_2 , e_3 and $e_4 + e_5 + e_6$ will be evaluated at the same time. However, in this way, we can not obtain the correct Jacobian, since any two of them will overlap in a row.

2 Problem 2

2.1 Plots

Figure 1: Convergence of x by Newton Method.

2.2 Comments

For the Newton Method, when arriving at the convergence, the x = [1.1911, 1.3626, 1.4728, 1.6350, 1.6791]', f(x) = 0.0788 and $\lambda = [0.0388, 0.0167, 0.0003]'$. To check it for optimality, let's calculate the $\nabla f(x^*)$ and $\nabla^2 f(x^*)$:

$$\nabla f(x^*) = 1.0e - 07 \times [0.0507, -0.0165, -0.7556, 0.4640, 0.0676, -0.1958, 0.0316, 0.0570]' \approx \mathbf{0}$$

And $\nabla^2 f(x^*)$ is:

4.0000	-2.0000	0	0	-0.0003	-1.0000	0	-1.6791
-2.0000	3.9224	-2.0000	0	0	-2.7252	-1.0000	0
0	-2.0000	2.0061	-0.3157	0	-6.5076	2.9456	0
0	0	-0.3157	0.3390	-0.0233	0	-1.0000	0
-0.0003	0	0	-0.0233	0.0233	0	0	-1.1911
-1.0000	-2.7252	-6.5076	0	0	0	0	0
0	-1.0000	2.9456	-1.0000	0	0	0	0
-1.6791	0	0	0	-1.1911	0	0	0

By executing MATLAB code as below, we could obtain the eigenvalue of $\nabla^2 f(x^*)$:

$$-7.1535$$
 -1.5883 -1.1798 0.6031 0.9700 3.7575 6.4761 8.4056

As we can see, the matrix of $\nabla^2 f(x^*)$ is not positive semidefinite. Therefore, this critical point does not meet the second-order optimality.

Let's pick nearby feasible points x, and keep $\lambda = [0.0388, 0.0167, 0.0003]'$. By changing x_1 and x_2 , and calculating x_3 , x_4 and x_5 , we have the following output (the code is presented in the function sampling in source code list):

x1	x2	x3	x4	x 5	fx	
0.6911	0.8626	1.6877	2.8143	2.8939	2.4164	
0.7911	0.9626	1.6540	2.6016	2.5281	1.3573	
0.8911	1.0626	1.6163	2.3782	2.2444	0.6852	
0.9911	1.1626	1.5740	2.1435	2.0180	0.3041	
1.0911	1.2626	1.5265	1.8962	1.8330	0.1261	
1.1911	1.3626	1.4728	1.6350	1.6791	0.0788	< critical point
1.2911	1.4626	1.4115	1.3582	1.5491	0.1181	
1.3911	1.5626	1.3407	1.0633	1.4377	0.2572	
1.4911	1.6626	1.2572	0.7465	1.3413	0.6281	
1.5911	1.7626	1.1560	0.4022	1.2570	1.6037	
1.6911	1.8626	1.0267	0.0199	1.1827	4.0607	

2.3 Output

2.3.1 Newton Method

Output of Newton Method:

x1	x2	xЗ	x4	x5	lambda1	lambda2	lambda3
1.1252	1.2496	1.8727	2.3242	1.8748	-0.7482	0	-0.1252
1.1573	1.2694	1.5787	1.9649	1.7240	-0.1724	0.0661	0.1300
1.1812	1.3152	1.4983	1.7518	1.6925	-0.0019	-0.0778	0.0583
1.1880	1.3564	1.4765	1.6515	1.6834	0.0362	0.0017	0.0022
1.1911	1.3625	1.4729	1.6352	1.6792	0.0388	0.0165	0.0002
1.1911	1.3626	1.4728	1.6350	1.6791	0.0388	0.0167	0.0003

2.3.2 By MATLAB fmincon

The convergence of x:

The iteration output of fmincon:

Iter	F-count	f(x)	Feasibility	First-order optimality	Norm of step
0	6	1.000000e+00	6.607e+00	2.564e-01	
1	15	6.255168e-01	5.782e+00	2.323e+00	8.604e-01
2	23	2.944478e+00	2.520e+00	3.238e+00	1.884e+00
3	30	2.409655e+00	1.199e+00	4.269e+00	8.752e-01
4	39	1.496926e+00	1.693e+00	4.238e+00	4.636e-01
5	45	4.295142e-01	1.145e+00	1.693e+00	1.383e+00
6	53	2.322135e-01	1.259e+00	1.902e+00	5.178e-01
7	59	1.189454e-01	2.805e-01	2.378e+00	6.067e-01
8	65	7.439318e-02	1.821e-01	1.900e-01	1.289e-01
9	71	8.028673e-02	1.903e-02	8.334e-01	1.239e-01
10	81	7.978084e-02	1.879e-02	3.941e-01	2.502e-03
41	361	7.877681e-02	4.336e-07	1.159e-01	5.399e-08
42	369	7.877681e-02	4.323e-07	1.066e-01	3.779e-07
43	379	7.877682e-02	1.247e-07	5.268e-02	1.794e-07
44	392	7.877683e-02	6.978e-08	3.030e-02	4.532e-08
45	399	7.877683e-02	6.769e-08	3.053e-02	9.064e-08
46	413	7.877682e-02	6.967e-08	1.089e-01	4.532e-08
47	430	7.877682e-02	6.959e-08	1.635e-01	5.665e-09

2.4 Source code list

```
x0 = zeros(5, 1);
5
      options = optimoptions('fmincon','Display','iter');
6
      [x, fval] = fmincon(@(x) objFunc(x), x0, ...
7
          [],[],[],[],[],[],(x) cons(x), options);
      disp(x);
10
      disp(fval);
11
12
      %% newton
13
      x0 = ones(8, 1);
      [xiter, output] = newton(@lagrangian, x0, TOL);
      fig = draw(xiter);
17
      fig.PaperUnits = 'inches';
18
      fig.PaperPosition = [0 0 6 3];
19
      print(fig, '-depsc', '-r0', sprintf('../figs/a6-2-1'));
20
21
      dlmwrite(sprintf('../output/a6-2-1.txt'), ...
22
          output, 'delimiter','\t', 'precision', '%6.6g');
24 end
1 function f = objFunc(x)
      f = (x(1)-1)^2 + (x(1)-x(2))^2 + (x(2)-x(3))^2 ...
      + (x(3)-x(4))^4 + (x(4)-x(5))^4;
4 end
1 function [ c, ceq ] = cons( x )
      a = [3*sqrt(2)+2; 2*sqrt(2)-2; 2];
      y = [x(1)+x(2)^2+x(3)^3; ...
          x(2)-x(3)^2+x(4); ...
          x(1) * x(5);
      ceq = norm(y - a);
      C = [];
10 end
```

```
1 function [ y, gy, hy ] = lagrangian( x )
2    t = num2cell(x);
3    [x1, x2, x3, x4, x5] = t{1:5};
4    [lambda1, lambda2, lambda3] = t{6:8};
5
6
7    y = (x1 - x2)^2 + (x2 - x3)^2 ...
```

```
+ (x3 - x4)^4 + (x4 - x5)^4 \dots
           - lambda1 * (x2^2 + x3^3 + ...
          x1 - 3514294284039789/562949953421312) ...
10
           - lambda2*(- x3^2 + x2 + x4 ...
          - 1865452045155277/2251799813685248) ...
          + (x1 - 1)^2 - lambda3*(x1*x5 - 2);
13
14
      qy = [4*x1 - lambda1 - 2*x2 - lambda3*x5 - 2;
15
           4 \times x^2 - 2 \times x^1 - lambda^2 - 2 \times x^3 - 2 \times lambda^1 \times x^2;
16
           2*x3 - 2*x2 + 4*(x3 - x4)^3 + 2*lambda2*x3 - 3*lambda1*x3^2;
17
           4 * (x4 - x5)^3 - 4 * (x3 - x4)^3 - lambda2;
          -4*(x4-x5)^3 - lambda3*x1;
           -x2^2 - x3^3 - x1 + 3514294284039789/562949953421312;
20
          x3^2 - x^2 - x^4 + 1865452045155277/2251799813685248;
21
           2 - x1 * x51;
22
23
      hy = [4, -2, 0, 0, -lambda3, -1, 0, -x5;
24
           -2, 4 - 2 \times lambda1, -2, 0, 0, -2 \times x2, -1, 0;
25
           0, -2, 2*lambda2 + 12*(x3 - x4)^2 - 6*lambda1*x3 + 2, ...
           -12*(x3 - x4)^2, 0, -3*x3^2, 2*x3,
          0, 0, -12*(x3 - x4)^2, 12*(x3 - x4)^2 ...
28
           + 12*(x4 - x5)^2, -12*(x4 - x5)^2, 0,
                                                        -1,
                                                               0;
29
          -1ambda3, 0, 0, -12*(x4 - x5)^2, ...
30
           12*(x4 - x5)^2, 0,
                                    0, -x1;
          -1, -2*x2, -3*x3^2, 0, 0,
                                              Ο,
                                                   0,
                                                           0;
32
          0, -1, 2 \times x3, -1, 0,
                                       Ο,
                                             0,
                                                    0;
          -x5, 0, 0, 0, -x1,
                                     0,
                                             Ο,
                                                   0];
35
36 end
```

```
1 function [ xiter, outputlist ] = newton( func, x, tol )
      [\tilde{y}, gx, hx] = feval(func, x);
      gxnorm = norm(gx, 2);
      it = 1;
      xiter{it} = x;
      outputlist(it, :) = [it, 0];
      while( gxnorm > tol )
          p = -inv(hx) * qx;
          alphak = backtracking(func, p, x, 0.5, 0.1);
11
          x = x + alphak * p;
12
          it = it + 1;
13
          xiter{it} = x;
          disp([x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8)]);
15
          diff = norm(xiter{it} - xiter{it-1});
          outputlist(it, :) = [it, diff];
```

```
18
          [\tilde{g}, gx, hx] = feval(func, x);
19
          gxnorm = norm(gx, 2);
      end
      disp(qx);
      disp(hx);
24 end
1 function alphak = backtracking( f, d, x, rho, c )
      alphak = 1;
      [fk, gk] = feval(f, x);
      xx = x;
      x = x + alphak * d;
      fk1 = feval(f, x);
      while fk1 > fk + c * alphak * (gk' * d),
        alphak = alphak * rho;
        x = xx + alphak * d;
        fk1 = feval(f, x);
      end
14 end
1 function [] = sampling()
      x0 = [1.1911, 1.3626, 1.4728, 1.6350, 1.6791];
      for i = -5:5
          x1 = x0(1) + i *0.1;
          x2 = x0(2) + i *0.1;
          x3 = (3*sqrt(2)+2-x1-(x2)^2)^(1/3);
          x4 = (2*sqrt(2)-2-x2+(x3)^2);
          x5 = 2/x1;
```

x = [x1, x2, x3, x4, x5];

disp([x1, x2, x3, x4, x5, fx]);

fx = objFunc(x);

10

11

 $_{14}$ end

end

3 Problem 3

3.1 Comments

(a)

Problem	is Considered	Example	
Bound Constrained Optimization	Yes	Golden search	
Combinatorial Optimization	No		
Complementarity Problems	No		
Constrained Optimization	Yes	Lagrange multiplier	
Continuous Optimization	Yes	Line search	
Derivative-Free Optimization	Yes	Gradient approximation	
Discrete Optimization	No		
Global Optimization	No		
Integer Linear Programming	No		
Linear Programming	No		
Mixed Integer Nonlinear Programming	No		
(MINLP) Mathematical Programs with Equilibrium Constraints (MPEC)	No		
Multi-Objective Optimization	No		
Network Optimization	No		
Non-differentiable Optimization	No		
Nonlinear Programming	Yes	Conjugate gradient	
Nonlinear Equations	Yes	Conjugate gradient	
Nonlinear Least-Squares Problems	Yes	Conjugate gradient	
Optimization Under Uncertainty	No	, , ,	
Quadratically Constrained Quadratic	No		
Programming (QCQP)			
Quadratic Programming (QP)	Yes	Quadratic section	
Semidefinite Programming (SDP)	No		
Semiinfinite Programming (SIP)	No		
Stochastic Linear Programming	No		
Second Order Cone Programming (SOCP)	No		
Stochastic Programming	No		
Traveling Salesman Problem (TSP)	No		
Unconstrained Optimization	Yes	Line search	

⁽b) We need to input n as float, X as initial point, fx as the function, MY_GRAD for gradient and MY_HESS for hessian.