Computer Vision

Modelisation

Reminder: purpose

Computer vision is a field of artificial intelligence that trains computers to interpret and understand the visual world. Using digital images from cameras and videos and **deep learning** models, machines can accurately **identify and classify objects** — and then **react** to what they "see."

- Object detection
- Object tracking
- > Image segmentation / search
- > 3D scene modeling

Reminder: problems

- Object orientation
- > Lighting conditions
- > Obstruction
- **>** ...

→ Too many possibilities!

Why deep learning?

Machine Learning

Deep Learning

Plan

Classification Results (CLS)

- > Tasks
- > CNN
- > Compilation
- > Transfert learning

Tasks

Classification - detection - segmentation - creation

Classification

Particularity:

• N possible outputs with N = number of classes.

CAT

Algorithms

- Mark 1
- SVM
- CNN

Datasets

- ImageNet
- CIFAR 100
- ISIC
- MURA
- DermNet

- LeNet5
- VGG
- GoogleNet / MobileNet
- RestNet

Object detection

Particularity:

- Is an object present?
- Location:
 - x and y (top left of the object area, or center)
 - Area height and width

Datasets

Sliding window

Algorithms

CNN

- COCO
- PASCAL

CAT

- R-CNN
- YOLO
- SSD

Image segmentation

Particularity:

- Is an object present?
- Object boundaries
- Give a value for each pixel

CAT, DOG, DUCK

Algorithms

CNN

Datasets

- COCO
- PASCAL
- BraTS
- Agriculture-Vision
- SpaceNet

- U-net
- Mask R-CNN

Image creation / generation

Particularity:

- Give a value for each pixel
- Unlike any training image
- Improve resolution

This Person Does Not Exist

This Person Does Not Exist

This Person Does Not Existthispersondoesnotexist.com

Algorithms

CNN

Datasets

Any...

- GANs
- VAEs

Potential

- Biomédical
- > Robotics
- > Airports
- Security / Surveillance
- > Space exploration
- > Customer experience
- ➤ ..

Behavioral tracking

Potential

- Biomédical
- > Robotics
- > Airports
- Security / Surveillance
- > Space exploration
- Customer experience
- **>** ..

Healthcare

Potential

- Biomédical
- > Robotics
- > Airports
- > Security / Surveillance
- > Space exploration
- > Customer experience
- > ..

Autonomous vehicles

CNN

"Learn" the features

MLP

CNN

CNN: convolution layer

Activation function:

ightharpoonup ReLU: f(x) = Max(0, x)

CNN: convolution layer

Image (input):

➤ W : width (pixels)

➤ H : hight (pixels)

> D: number of channels

Hyperparameters:

- > K: number of filters
- \rightarrow F: filter size in pixels (F x F x D)
- ➤ S: sliding step (pixels)
- > P: 0 padding (pixels)
- > Initialization: random / He / Gorot ...

Feature maps (output):

➤ Wc: (W - F + 2P) / S + 1

➤ Hc: (H - F + 2P) / S + 1

> Dc: K

Common choice:

- \rightarrow F = 3 or 5
- > S = 1 or 2
- > P = 1

CNN Normalisation Fully Connected Convolution **Pooling** Output Input Classification **Feature Extraction**

CNN: Batch normalization

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Advantages:

- Improved Training Speed
- Better Gradient Flow: smooth the flow
- Reduced Sensitivity to Initialization
- Handling Different Batch Sizes

CNN Normalisation Fully Connected Convolution **Pooling** Output Input Classification **Feature Extraction**

CNN: pooling layer

Advantages:

- Dimension reduction
- Less sensitive to feature position

CNN: pooling layer

Feature maps (input):

➤ W : width (pixels)

➤ H: hight (pixels)

> D : previously used number of filters

Hyperparameters:

- > F: cell size (F x F pixels)
- > S: pixels between cells

Feature maps (output):

- > Wp: (W F) / S + 1
- \rightarrow Hp: (H F) / S + 1
- ➤ Dp : D

Common choce:

- \rightarrow F = 2 or 3
- > S = 2

CNN: Features extraction

CNN: fully-connected layer

Options:

- > Flatten: convert output to 1D vector
- > Number of neurons
- Dropout: rate
- Activation:
 - o ReLU
 - Classifier 2N: sigmoid
 - Classifier xN: Softmax

CNN: summary

Key points:

- Conv layers => extract features
- Pooling layers => reduce dimensions
- ➤ NN => classify

CNN: VGG16

CNN: VGG16

```
from keras.models import Sequential
     from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
    # Empty NN
    my VGG16 = Sequential()
     ####################################
     ### Convolution block ###
    ###############################
    # Add the first CNN layer with relu activation
    my VGG16.add(Conv2D(64, (3, 3), input shape=(224, 224, 3), padding='same', activation='relu'))
    # Add the second CNN layer with relu activation
    my VGG16.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
    # Add the first pooling layer
    my VGG16.add(MaxPooling2D(pool size=(2,2), strides=(2,2)))
    # Repeat the previous steps as often as needed...
    ### Fully-connected block ###
26 # Convert 3D matrix to 1D vector
    my VGG16.add(Flatten())
    my VGG16.add(Dense(4096, activation='relu'))
32 # Add second fully-connected layer with relu activation
    my VGG16.add(Dense(4096, activation='relu'))
    # Add last fully-connected layer which is the classifier
    my VGG16.add(Dense(1000, activation='softmax'))
```

Compilation

The suspense is intense!

Hyperparameters

- Loss function
- > Optimizer:
 - Learning rate
 - Momentum
- Metrics

```
### Transfer learning ###
#############################
from keras import Model
# Load the VGG16 trained on imagenet images without the fully-connected layer
model = VGG16(weights="imagenet", include top=False, input shape=(224, 224, 3))
# Get the output of VGG16
x = model.output
# Add your new classifier
predictions = Dense(10, activation='softmax')(x)
# Design your new model
new model = Model(inputs=model.input, outputs=predictions)
# Strat n°1:
for layer in new model.layers:
   layer.trainable = True
# Strat n°2:
for layer in new model layers:
   layer.trainable = False
# Strat n°3: let's not train the first 5 layers (the largests)
for layer in new model.layers[:5]:
   layer.trainable = False
# Compile the new model
new model.compile(loss="categorical crossentropy", optimizer=optimizers.SGD(lr=0.0001, momentum=0.9), metrics=["accuracy"])
model info = new model.fit(X train, y train, epochs=epochs, batch size=batch size, verbose=2)
```

Which loss?

- Classification:
 - Cross-entropy: Categorical / sparse
- Object detection:
 - Intersection over Union (IoU) Loss
 - Smooth L1 Loss => outliers robust
- Generative Models:
 - Adversarial Loss: match the generated output distribution to the target distribution.
 - Pixel-wise Mean Squared Error (MSE)
 Loss

- Semantic Segmentation:
 - Pixel-wise Cross-Entropy Loss
 - Dice Loss
- > Instance Segmentation:
 - Mask-RCNN Loss:
 - Cross-entropy
 - smooth L1
 - binary cross-entropy or Dice loss.

Which optimizer?

➤ SGD:

- Small dataset
- Small CNN architecture
- No LR scheduler
- Set LR and Momentum carefully

➤ Adam and RMSprop:

- LR scheduler
- LR and Momentum settings have little impact
- RMSprop slower but more stable
- RMSprop requires less RAM

Empirical testing required!

Underfitting vs. Overfitting

my_model.fit(X_train, y_train,
early_stopping_rounds=5,
eval_set=[(X_valid, y_valid)],
verbose=False)

Transfer learning

Time to be lazy and... smart!:)

Transfer learning: purpose

Weights:

- Convolution layer:
 - o F: filter size
 - K: number of filters
 - \circ weights = F x F x K + K
- Fully-connected:
 - o W: width of input
 - H: height of input
 - K: number of filters
 - N : number of neurons
 - \circ Weights = W x H x K x N + N

VGG16 = 138 357 544 weights !!!

Transfer learning: strategy

The idea:

- Keep the architecture
- Replace the classifier

Strategy:

- Pre-trained model initialization
- Freezing initial layers
- Make the upper layers trainable
- Optional: adjusting upper layers: add / remove
- Training on the New Task

Transfer learning: exemple

```
*********************
 ### Pre-trained exemple ###
 from keras.applications.vgg16 import VGG16
 # Get VGG16 available in keras
 model = VGG16()
 from keras.preprocessing.image import load img, img to array
 from keras.applications.vgg16 import preprocess input
 # Load image and reshape image to match VGG16 dimensions expectation
 img = load img('cat.jpg', target size=(224, 224))
 # Convert to numpy array because keras processes images as such
 img = img to array(img)
 # A CNN expects (in general) a collection of images.
# Reshape the array to add the number of images
 img = img.reshape((1, img.shape[0], img.shape[1], img.shape[2]))
 # Preprocess images the same way the images used to train VGG16 were preprocessed.
 img = preprocess input(img)
# Predict the class (or label) of this image
 y = model.predict(img)
```

Transfer learning: exemple

```
69 ### Transfer learning ###
    from keras import Model
    # Load the VGG16 trained on imagenet images without the fully-connected layer
    model = VGG16(weights="imagenet", include top=False, input shape=(224, 224, 3))
     # Get the output of VGG16
    x = model.output
    # Add your new classifier
    predictions = Dense(10, activation='softmax')(x)
83 # Design your new model
    new model = Model(inputs=model.input, outputs=predictions)
    # Strat n°1:
    for layer in new model.layers:
       layer.trainable = True
    # Strat n°2:
    for layer in new model.layers:
       laver.trainable = False
94 # Strat n°3: let's not train the first 5 layers (the largests)
95 for layer in new model.layers[:5]:
       layer.trainable = False
98 # Compile the new model
    new model.compile(loss="categorical crossentropy", optimizer=optimizers.SGD(lr=0.0001, momentum=0.9), metrics=["accuracy"])
    # Train it
    model info = new model.fit(X train, y train, epochs=epochs, batch size=batch size, verbose=2)
```

Transfer learning: tools

Exemples

Architectures

ResNet

Residual connections:

- Faster training
- Better performances

EfficiencyNet

EfficientNet Architecture

