MINISTÉRIO DA EDUCAÇÃO

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA CAMPUS PETRÓPOLIS

CURSO SUPERIOR DE ENGENHARIA DE COMPUTAÇÃO

DEPARTAMENTO				PLANO DE CURSO DA DISCIPLINA			
Engenharia de Computação				Arquitetura de Computadores			
CÓDIGO		Р	ERÍODO	ANO	SEMESTRE	PRÉ-REQUISITOS	
GCOM7046PE			4	2016	1		
CRÉDITOS		,	AULAS/SEMAN	A	TOTAL DE AULAS NO SEMESTRE	Software Básico	
6		TEÓRICA	PRÁTICA	ESTÁGIO	90		
		4	2	0			

EMENTA

- 1. Introdução a circuitos sequenciais: Flip-flop SR, D, JK;
- 2. Processadores, microarquitetura;
- 3. Barramentos: externo e interno;
- 4. Arquiteturas: RISC e CISC
- 5. CPU, registradores, Unidade Lógica e Aritmética, Unidade de Controle, microcódigo;
- 6. Projeto de hierarquia de memória: memória primária; memória secundária; cache, memória virtual;
- 7. Dispositivos de entrada e saída, técnicas de gerenciamento;
- 8. Arquiteturas de alto desempenho: Pipelining; arquiteturas paralelas; multicore; acelera- dores (ex.: GPU, CELL, XEON PHI).

BIBLIOGRAFIA

Bibliografia Básica:

- HENNESSY, J.L.; PATTERSON, D.A. Arquitetura de computadores: uma abordagem quantitativa. 5^a edição. Rio de Janeiro: Campus, 2014.
- STALLINGS, W. Arquitetura e organização de computadores. Tradução de Daniel Vieira, Ivan Bosnic; Revisão de Ricardo Pannain. 8^a edição. São Paulo: Prentice Hall, 2010.
- WEBER, R.F. Fundamentos de arquitetura de computadores. 4^a edição. Porto Alegre: Bookman, 2012.

Bibliografia Complementar:

- TANENBAUM, A.S. Organização estruturada de computadores. 3^a edição. Rio de Janeiro: Livros Técnicos e Científicos, 1992.
- DELGADO, J.; RIBEIRO, C. A arquitetura de computadores. Rio de Janeiro: LTC, 2014.
- PARHAMI, B. Arquitetura de computadores: de microprocessadores a super-computadores. São Paulo: McGraw - Hill, 2008.
- MURDOCCA, M.J.; HEURING, V.P. Introdução à arquitetura de computadores. Rio de Janeiro: Elsevier, 2000.
- MONTEIRO, M.A. Introdução à organização de computadores. 5 edição. Rio de Janeiro: LTC, 2007.
- WEBER, R.F. Arquitetura de computadores pessoais. 2^a edição. Porto Alegre: Sagra Luzzatto, 2001.

OBJETIVOS GERAIS

O principal objetivo desta disciplina prende-se com aprender sobre a estrutura e função de computadores. Esta aprendizagem requer que o aluno seja capaz de:

- Detalhar o ciclo de vida de uma instrução;
- o Descrever métodos analíticos para medir a performance de um processador.
- Listar e descrever diferentes modos de endereçamento.
- Discutir a codificação de instruções e os tipos de operandos;
- o Descrever o pipeline de um processador;
- Listar e discutir os diferentes tipos de problemas que podem surgir com pipelines;
- o Descrever técnicas para predição de ramos;
- Descrever paralelismo a nível de instrução;
- Listar e discutir tipos de dependências entre instruções;
- Descrever a hierarquia de memória;
- Descrever caches e as suas componentes: blocos, palavras, algoritmos de substituição; métodos de mapeamento (direto, associativo e conjunto associativo)
- Listar e discutir técnicas para reduzir cache misses;
- Descrever memória virtual;
- Descrever diferentes níveis RAID.

METODOLOGIA

- Aulas teóricas: onde são leccionados os conceitos fundamentais da disciplina e realizados alguns exercícios com o objetivo de facilitar o aprendizado.
- Aulas práticas em laboratório: onde os alunos têm a possibilidade de implementar um trabalho com o
 apoio do professor ao longo do semestre. O trabalho tem como objetivo mostrar a implementação
 prática de alguns dos conceitos leccionados nas aulas teóricas. O ênfase é que o aluno seja proativo na
 implementação do trabalho e utilize os laboratórios para tirar dúvidas sobre o mesmo. O segundo
 objetivo principal do trabalho é incentivar a iniciativa pessoal da parte dos alunos na resolução de
 problemas.

CRITÉRIO DE AVALIAÇÃO

Critério de Avaliação Principal:

- Três provas durante o semestre (cada prova vale 25% da nota)
- o Trabalho de laboratório (25% da nota)
- o Aprovação neste critério requer que o aluno alcance uma média maior ou igual a 7,0 (sete) pontos.

Critério de Avaliação Secundário:

- Para alunos com nota maior ou igual a 3,0 (três) pontos e menor que 7,0 (sete) pontos na avaliação principal;
- Realização de uma prova final;
- Aprovação neste critério requer que o aluno alcance uma média maior ou igual a 5,0 (cinco) pontos. A média tem em consideração a nota obtida na avaliação principal (50%) e a nota da prova final (50%).

Faltas acima de 25% do número de aulas: reprovado por falta.

CHEFE DO DEPARTAMENTO					
NOME	ASSINATURA				
Laura Silva de Assis					

PROFESSOR RESPONSÁVEL PELA DISCIPLINA				
NOME	ASSINATURA			
Luís Domingues Tomé Jardim Tarrataca				

O CONSELHO DEPARTAMENTAL EM:/
O CONSELHO DEPARTAMENTAL EM://

PROGRAMA

- Lógica Digital:
 - Álgebra Booelana;
 - o Portas booleanas: NOT, AND, OR, NOR
 - Portas Universais;
 - Circuitos Combinatórios: Multiplexers; Decoders; Adders;
 - o Circuitos Sequenciais: Flip-flops SR, D, J-K
 - Registradores
 - o Contadores
- Perspectiva de topo da função de computador:
 - Ciclo básico de instruções;
 - Ciclo detalhado de instruções;
 - o Interrupções;
 - o Barramento
- Memória Cache:
 - o Perspectiva geral;
 - o Hierarquia de memória;

- Princípios de memória cache;
- Princípios de desenho de cache;
- o Funções de mapeamento (direta, associativa, conjunto-associativa)
- Algoritmos de substituição;
- Tamanho de linha
- Memória Interna:
 - Memória baseada em semicondutores;
 - Memória de acesso aleatório
 - DRAM
 - o SRAM
 - o DRAM vs. SRAM
 - o ROM
 - o Correção de erros
 - DRAM avançada: SDRAM, DDR-SDRAM, GDDR-SDRAM, HBM
- Memória Externa:
 - o Mecanismos de Escrita / Leitura;
 - o Organização de dados e formatação;
 - o Componentes de um disco magnético;
 - o Performance de um disco magnético;
 - o RAID
 - Solid State Devices
- Entradas e Saídas:
 - Módulo de E/S;
 - o Principais componentes de um dispositivo de E/S;
 - Controle e temporização;
 - o Comunicação com o processador;
 - Buffering de dados;
 - o Detecção de erros;
 - Processamento de interrupções;
 - Módulo DMA;
- Memória Virtual:
 - o Principais funções de um sistema operacional;
 - Escalonamento
 - Técnicas de escalonamento;
 - Gerenciamento de memória
 - Troca de memória;
 - Particionamento de memória;
 - Paginação
 - Memória virtual:
 - Translation Lookaside Buffer
- Aritmética Computacional:
 - Unidade Aritmética e Lógica;
 - Representação de inteiros;
 - Representação de sinal;
 - o Complemento para dois
 - Extensão de magnitude
 - Aritmética de inteiros: Negação, Adição, Subtração, Multiplicação;
 - Números de virgula flutuante

- Estrutura e Função de Processador:
 - Registradores visíveis ao usuário;
 - Registradores de propósito genérico;
 - o Registradores de dados;
 - Registradores de endereços;
 - Registradores de controle e estado;
 - o Pipeline
 - o Potenciais disrupções de pipeline (recursos, dados (RAW, WAR, WAR), controle ;
 - o Performance de pipeline;
 - o Impacto de overclocking no pipeline.
- Paralelismo a nível de instrução e processadores super-escalares
 - Processador escalar;
 - o Processador super-escalar;
 - o Processador super-escalar vs. Superpipelined;
 - O Política de Emissão de Instruções:
 - In-order issue with in-order completion
 - In-order issue with out-of-order completion;
 - Out-of-order issue with out-of-order completion.
- Processamento Paralelo:
 - o Taxonomia de sistemas computacionais paralelos (SISD, SIMD, MISD, MIMD);
 - Problema de coerência de cache;
 - Protocolo MESI;
 - o Processamento paralelo MIMD em detalhe;
 - Processamento paralelo SIMD em detalhe.
- Computadores multi-core
 - o Lei de Amdahl;
 - Performance;
 - o Organização de cache
- Unidade de Controle:
 - Micro-operações;
 - O Gerenciamento da unidade de controle;
 - o Implementação hardwired;
- Controle Microprogramado:
 - Micro-instruções;
 - Unidade de Controle Microprogramada;
 - Sequenciamento de Microinstruções;
 - Execução de Microinstruções;