

轮 趣 科 技

单片机与 APP 通信协议说明

推荐关注我们的公众号获取更新资料

版本说明:

版本	日期	内容说明				
V1.0	2023/03/14	第一次发布				

网址:www.wheeltec.net

序言

此文档主要讲述蓝牙模块与单片机主控之间的通信协议,本文不涉及蓝牙模块与手机 APP 之间的远程通信协议,只涵盖单片机与蓝牙模块之间的串口通信内容。本文适用于轮趣科技所有产品。WiFi 通信与蓝牙 APP 通信相同,该文档同样适用于 WiFi 通信。

目录

序言				2
	〉绍			
	.1 通信框架			
	. 2 数据转换			
	单片机发送的数据			
2.	.1 遥控小车运动			2
2.	. 2 参数调试	a wheel b	\ 	3
2.	.3 聊天界面		MEET.	4
3. 单片机	l向 APP 发送数据进行可补	见化	<u>E</u>	5
3.	.1 状态区显示内容			5
3.	.2 波形区显示内容		Test	6
3	. 3 调试区显示内容			7

1. 概念介绍

1.1通信框架

蓝牙 APP 与单片机之间通过蓝牙模块(WIFI 模块)进行远程通信,单片机与蓝牙模块(WIFI) 是串口通信,具体看图 1。

图 1 单片机与手机 APP 之间实现通信的框架

单片机可以发送数据到 APP 进行可视化显示; APP 可以发送数据给单片机, 这些数据单片机可以作为遥控指令、可以用于调整参数等等。

本文不涉及蓝牙模块与手机 APP 之间的远程通信协议,只涵盖单片机与蓝牙模块之间的串口通信内容,通信协议分为 "APP 给单片机发送的数据"、"单片机给 APP 发送的数据",具体请看下文。

1.2数据转换

ASCii 码表是字符与数值的对应关系表,APP 给单片机的通信是字符与数值以一定关系组合发送的,单片机给 APP 发送数据是以 printf 函数的形式进行发送 (使用 Printf 是因为其可以发送字符)。

最终单片机接收到的是 16 进制数据,APP 收到的是 ASCii 码,因此在使用时请注意格式转换。由于 ASCii 码篇幅较长,本文不对 ASCii 码表进行展示,请读者自行查阅资料获取。

2. APP 给单片机发送的数据

在 APP 界面做一定的动作例如按下按键, APP 会向单片机发送某字符, 根据 ASCii 码表单片机接收的数值为该字符对应的数据(具体请查阅 ASCii 码表), 发送的内容以及协议请看下文。

2.1遥控小车运动

遥控支持: 摇杆、按键、重力三种模式, 进入 APP 默认是摇杆模式。

图 2-1 三种遥控界面

三种遥控方式在对小车做控制时发送的数据是相同的(例如三种不同遥控模式在控制小车向前时,都是给单片机发送 0X41),每个方位的具体发送内容看表格 1。需要注意,按键模式只有"前进、后退、左转、右转"四种控制指令,重力模式与摇杆模式都是 8 中控制控制指令。

控制	前进	右上	右转	右下	后退	左下	左转	左上	减速	加速	停车
		方向		方向		方向		方向			
ASCii	A	В	С	D	Е	F	G	Н	Y	X	Z
码											
指令	0x41	0x42	0x43	0x44	0x45	0x46	0x47	0x48	0x59	0x58	0x5A
备注	部分车型不支持"右上、右下、左上、左下"四个方向的运动										

表格 1 主控板正面的接口标注

需要注意的是,假设摇杆一直保持向前,是会一直发送"A"指令的,松手时摇杆回到正中心,此时会发送一个"Z"停车命令。摇杆、重力、按键界面切换时,也会发送对应的 ASCii 码以进行区分,分别是:重力("I" 0x49)、摇杆("J" 0x4A)、按键("K" 0x4B)。

2.2参数调试

参数调试界面最大支持 8 个数据调参,每一个调参的滑轨在滑动后就会给单片机发送数据。假设将参数 0 的滑轨移动到数值 127 然后松开,此时 APP 就会向单片机发送" $\{0:127\}$ "(ASCii 码对应 16 进制数值则是: 0x7B 0x30 0x3A 0x31 0x32 0x37 0x7D); 假设将参数 1 的滑轨移动到数值 6 然后松开,此时 APP 就会向单片机发送" $\{1:6\}$ (ASCii 码对应 16 进制数值则是: 0x7B 0x31 0x3A 0x36 0x7D)"。

图 2-2 参数调试界面

在调参界面点击右上角的菜单按钮,会在底部有设置弹窗,点击"设置掉电保存参数"、"获取设备参数",此时 APP 分别是向单片机发送"{Q:W}"、"{Q:P}"。"发送所有参数"则是向单片机一次性发送 8 个参数,如图 1-2 所示的参数值,对应发送"{#67:11:307:81:300:211:300:211:10000}"。

图 2-3 调参界面菜单栏

参数调试界面还有 15 个自定义按键,每一个按键都对应发送一个 ASCii 码 (单击则发送一次),默认为从 "M0"到"自定义按键 14"对应"a"到"o"。长按某个按钮可以自定义设置该按键的名称和发送的 ASCii 码。

图 2-4 用户可自定义按键

图 2-5 自定义按钮聊天界面

2.3聊天界面

聊天界面可以自定义发送的内容,同样是以 ASCii 码的形式发送。勾选"可用"时,才可应使用聊天功能。

图 2-6 聊天界面

3. 单片机向 APP 发送数据进行可视化

APP上显示的数据均为单片机发送过来,每个部分的内容均对应着其通信协议。

3.1状态区显示内容

图 3-1 APP 状态显示内容

状态区内容分为 6 部分(以下以 B570 平衡小车产品作为示例讲解),分别 是: 左轮的编码器速度(1)、右轮的编码器速度(2)、小车的平衡倾角(3)、 APP 给单片机发送的指令显示窗口(4)、单片机给 APP 发送的数据显示窗口(5)、 电池剩余电量显示(6)。角度显示(3)方框非所有产品都会用到,四驱的车型 只会抽取其中两个轮子的数据显示到左轮和右轮的编码器速度框。

"左轮的编码器速度、右轮的编码器速度、小车的平衡倾角、电池剩余电量" 这四项由单片机给 APP 发送的数据是一起发送的,具体格式为:

"{A%d:%d:%d}\$"(%d 为填充数据),顺序为: 左轮的编码器速度、右轮的编码器速度、电池电压、平衡倾角。例如,当左轮编码器速度、右轮的编码器速度、小车的平衡倾角、电池剩余电量分别是"23mm/S、35mm/S、1°、17%"时,则发送"{A23:35:1:17}\$"。

3.2波形区显示内容

波形界面可以显示需要的波形,对于调试或者是数据观察有很大的帮助。最大支持显示 5 个数据的波形,具体通信协议为"{B%d:%d:%d:%d:%d}\$"(%d为填充数据),如果只显示三个数据的波形有可以是"{B%d:%d:%d}\$"。每个程序中默认显示的波形数据均不相同,以 B570 平衡小车的为例,波形界面会显示"X、Y、Z 三轴的欧拉角"数据的波形,假设 XYZ 三轴的欧拉角分别是"5°、72°、13°"时,则发送"{B5:72:13}\$"。

需要注意的是,模拟数据勾选后会出现波形的随机数据,这些数据并非是单片机向 APP 发送的数据,只是展示波形功能,默认不勾选。

图 3-2 波形显示界面

在波形显示界面点击右上角的菜单,底部会出现图 3-3 的弹窗,每个波形可以设置对应的名称,以及是否隐藏波形,是否隐藏数值。

图 3-3 波形界面菜单

3.3调试区显示内容

图 3-4 调参显示界面