基础物理实验报告

测量金属的杨氏模量

姓	名:	赵启渊
学	院:	工学院
学	号:	2000011153
分	组:	第1组7号
日	期:	2022 年 4 月 27 日
指导教师:		刘春玲 夏颖

学号: 2000011153

实验八

测量金属的杨氏模量

赵启渊 2000011153

1 数据及处理

1.1 CCD 成像系统测定杨氏模量

1.1.1 相关数据的测量

在调试好实验装置之后,称量每个砝码的重量,并测量金属丝受外力拉伸后的伸展变化数据,再测量金属丝长 L 和金属丝直径 d。其中,有 $\delta L = (\bar{r}_{i+5} - \bar{r}_i)$

表 1: CCD 法测量金属丝受外力拉伸后的伸展变化数据表

i	m_i/g	r_i/cm	r_i'/cm	\bar{r}/cm	$\delta L/cm$
0	0	0.235	0.235	0.235	
1	199.96	0.235	0.235	0.235	
2	199.53	0.245	0.245	0.245	
3	199.76	0.255	0.255	0.255	
4	200.41	0.265	0.265	0.265	
5	199.93	0.280	0.275	0.278	0.043
6	200.06	0.290	0.290	0.290	0.055
7	199.91	0.300	0.300	0.300	0.055
8	199.97	0.315	0.310	0.312	0.057
9	199.96	0.325	0.325	0.325	0.060

金属丝长 L = 100.00 - 21.10 = 78.90 cm

学号: 2000011153

表 2: 测量金属丝直径数据表

i	1	2	3	4	5	6	7	8	9	10
d'/cm	0.0321	0.0321	0.0322	0.0323	0.0321	0.0325	0.0324	0.0323	0.0322	0.0324

测量得到 $d_0 = 0.0000$ cm, 上面有 $d' = d - d_0$ 计算得

 $\bar{d}' = 0.0323cm$

1.1.2 记录一次测量数据的不确定度

 $e_L = 0.1cm$

1.1.3 用逐差法和最小二乘法分别处理数据

使用最小二乘法处理 $\bar{r}-m$ 可以得到

图 1: 测得 $\bar{r}-m$ 关系图

其中可以得到

$$a = 5.63 * 10^{-5}$$
$$b = 0.222$$
$$r = 0.99924$$

使用逐差法处理数据

$$\delta \bar{L} = \frac{(\bar{r_6} - \bar{r_1}) + (\bar{r_7} - \bar{r_2}) + (\bar{r_8} - \bar{r_3}) + (\bar{r_9} - \bar{r_4})}{4}$$

$$= \frac{0.055 + 0.055 + 0.057 + 0.060}{4}$$

$$= 0.057cm$$

还有

$$\delta \bar{m} = \frac{(\bar{m}_6 - \bar{m}_1) + (\bar{m}_7 - \bar{m}_2) + (\bar{m}_8 - \bar{m}_3) + (\bar{m}_9 - \bar{m}_4)}{4}$$

$$= \frac{999.69 + 1000.07 + 1000.28 + 999.83}{4}$$

$$= 999.97q$$

1.1.4 计算杨氏模量及其不确定度

在计算时发现,第一组的数据偏离过大,当舍去第一组数据时,计算得到

$$\delta \bar{L} = 0.057cm$$

这里 g = 9.8012N/kg

$$\bar{F} = \bar{\delta m} * g = 9.8009N$$

其中有

$$\delta m = m_{i+5} - m_i$$

有杨氏模量的计算公式有

$$E = \frac{F * L}{S * \delta L}$$
$$= \frac{F * L * 4}{\pi * d^2 * \delta L}$$
$$= 1.66 * 10^{11} N/m^2$$

学号: 2000011153

1. 计算 \bar{d}' 的不确定度: 其中平均值的标准差计算使用

$$\sqrt{\frac{\sum_{j=1}^{n} \left(N_{j} - \bar{N}\right)^{2}}{n(n-1)}}$$

$$= \sqrt{\frac{2}{9} * 10^{-8} cm}$$

$$= 4.71 * 10^{-5} cm$$

考虑仪器允差之后的标准差计算使用

$$\sqrt{\frac{\sum_{j=}^{n} \left(N_{j} - \bar{N}\right)^{2}}{n\left(n-1\right)} + \left(\frac{e}{\sqrt{3}}\right)^{2}}$$

这里 $e_d = 0.004mm$

$$\sigma_d = \sqrt{\frac{2}{9} * 10^{-8} + \frac{0.0004^2}{3}}$$
$$= 2.36 * 10^{-4} cm$$

这里可以得到

$$\bar{d}' \pm \sigma_d = 0.0323 \pm 0.0002cm$$

2. 计算 *m* 的不确定度: 其中平均值的标准差计算使用

$$\sqrt{\frac{\sum_{j=1}^{n} \left(N_{j} - \bar{N}\right)^{2}}{n(n-1)}}$$

$$= \sqrt{\frac{0.20410}{4 * 3}}g$$

$$= 0.13042q$$

考虑仪器允差之后的标准差计算使用

$$\sqrt{\frac{\sum_{j=}^{n} \left(N_{j} - \bar{N}\right)^{2}}{n\left(n-1\right)} + \left(\frac{e}{\sqrt{3}}\right)^{2}}$$

这里 $e_m = 0.02g$

$$\sigma_m = \sqrt{\frac{0.20410}{4*3} + \frac{0.02^2}{3}}$$

$$-5/12 -$$

= 0.13093g

这里可以得到

$$\bar{m} \pm \sigma_m = 999.97 \pm 0.13g$$

3. 计算 L 的不确定度:

$$e_L = 0.1cm$$

4. 计算 δL 的不确定度: 其中平均值的标准差计算使用

$$\sqrt{\frac{\sum_{j=1}^{n} \left(N_{j} - \bar{N}\right)^{2}}{n(n-1)}}$$

$$= \sqrt{\frac{17}{4*3} * 10^{-6} cm}$$

$$= 1.19 * 10^{-3} cm$$

考虑仪器允差之后的标准差计算使用

$$\sqrt{\frac{\sum_{j=1}^{n} \left(N_{j} - \bar{N}\right)^{2}}{n(n-1)} + \left(\frac{e}{\sqrt{3}}\right)^{2}}$$

这里 $e_{\delta}L = 0.005cm$

$$\sigma_{\delta}L = \sqrt{\frac{17}{4*3}*10^{-6} + \frac{0.05^2}{3}}$$
$$= 3.12*10^{-3} cm$$

这里可以得到

$$\bar{\delta L} \pm \sigma_{\delta} L = 0.057 \pm 0.003 cm$$

根据杨氏模量的公式

$$E = \frac{m * g * L * 4}{\pi * d^2 * \delta L}$$

由求导得到相对不确定度公式

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{\partial \ln(E)}{\partial \bar{d}'} * \sigma_{\bar{d}'}\right)^2 + \left(\frac{\partial \ln(E)}{\partial \bar{m}} * \sigma_{\bar{m}}\right)^2 + \left(\frac{\partial \ln(E)}{\partial L} * \sigma_L\right)^2 + \left(\frac{\partial \ln(E)}{\partial \bar{\delta}L} * \sigma_{\bar{\delta}L}\right)^2}
= \sqrt{\left(\frac{2 * \sigma_{\bar{d}'}}{\bar{d}'}\right)^2 + \left(\frac{\sigma_{\bar{m}}}{\bar{m}}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_{\bar{\delta}L}}{\bar{\delta}L}\right)^2}
- 6 / 12 -$$

学号: 2000011153

总的不确定度

$$\sigma_E = E * 0.0541$$

$$\sigma_E = 0.0898 * 10^{11} Pa$$

这里可以得到

$$E \pm \sigma_E = 1.66 * 10^{11} \pm 0.09 * 10^{11} Pa$$

还可以使用最小二乘法分析不确定度:

$$\delta L = \frac{4 * g * L}{\pi * d^2 * E} * m$$

因此有

$$\bar{r} = \frac{4 * g * L}{\pi * d^2 * E} * m$$

所以根据上面的计算

$$k = \frac{4 * g * L}{\pi * d^2 * E} = a = 5.63 * 10^{-5} cm/g$$
$$r = 0.99924$$

所以有

$$\frac{\sigma_k}{k} = \sqrt{\frac{\frac{1}{r^2} - 1}{n - 2}}$$

$$\frac{\sigma_k}{k} = 0.014744$$

$$\sigma_k = 0.0830 * 10^{-5} cm/g$$

从 k 的值计算 E, 可以得到

$$k = \frac{4 * g * L}{\pi * d^2 * E}$$
$$E = 1.68 * 10^{11} Pa$$

又因为

$$E = \frac{4 * g * L}{\pi * d^2 * k}$$

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{\partial \ln(E)}{\partial \bar{d}'} * \sigma_{\bar{d}'}\right)^2 + \left(\frac{\partial \ln(E)}{\partial L} * \sigma_L\right)^2 + \left(\frac{\partial \ln(E)}{\partial k} * \sigma_k\right)^2}$$

$$= \sqrt{\left(\frac{2 * \sigma_{\bar{d}'}}{\bar{d}'}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2}$$

总的不确定度

$$\sigma_E = E * 0.0193$$

$$-7/12$$
 -

学号: 2000011153

$$\sigma_E = 0.0324 * 10^{11} Pa$$

这里可以得到

$$E \pm \sigma_E = 1.68 * 10^{11} \pm 0.03 * 10^{11} Pa$$

1.2 梁的弯曲测定杨氏模量

1.2.1 相关数据的测量

在调试好实验装置之后,称量每个砝码的重量,并测量金属梁中点受外力影响后的挠度变化数据,再测量金属梁长 l 和金属梁厚 h,金属梁宽度 a。其中,有 $\delta L=(\bar{r}_{i+3}-\bar{r}_i)$

表 3: 梁的弯曲法测量金属梁中点受外力拉伸后的挠度变化数据表

i	m_i/g	r_i/cm	r_i'/cm	\bar{r}/cm	λ/cm
0	0	4.2819	4.1234	4.2026	
1	199.96	4.1865	4.0181	4.1023	
2	199.53	4.0889	3.9111	4.0000	
3	199.76	3.9882	3.8143	3.9012	0.3012
4	200.41	3.8846	3.7111	3.7978	0.3045
5	199.93	3.7791	3.6119	3.6955	0.3045
6	200.06	3.6344	3.5211	3.5778	0.3234

金属梁长 l = 22.35 cm

学号: 2000011153

表 4: 测量金属梁宽度 a 数据表

i	1	2	3	4	5	6
a'/cm	1.185	1.200	1.200	1.200	1.200	1.190

测量得到 $a_0 = 0.000$ cm, 上面有 $a' = a - a_0$ 计算得

 $\bar{a'} = 1.196cm$

表 5: 测量金属梁宽度 h 数据表

i	1	2	3	4	5	6
h'/cm	0.1360	0.1360	0.1360	0.1356	0.1359	0.1358

测量得到 $h_0=0.050$ cm, 上面有 $h'=h-h_0$ 计算得

$$\bar{h'}=0.1359cm$$

1.2.2 记录一次测量数据的不确定度

 $e_l = 0.1cm$

1.2.3 用逐差法和最小二乘法分别处理数据

使用最小二乘法处理 $\bar{r}-m$ 可以得到

图 2: 测得 $\bar{r}-m$ 关系图

其中可以得到

$$a = -5.1626 * 10^{-4}$$
$$b = 4.2063$$
$$r = -0.99973$$

使用逐差法处理数据

$$\bar{\lambda} = \frac{(\bar{r_6} - \bar{r_3}) + (\bar{r_5} - \bar{r_2}) + (\bar{r_4} - \bar{r_1}) + (\bar{r_3} - \bar{r_0})}{4}$$

$$= \frac{0.3234 + 0.3045 + 0.3045 + 0.3014}{4}$$

$$= 0.3035cm$$

还有

$$\delta \bar{m} = \frac{(\bar{m}_6 - \bar{m}_3) + (\bar{m}_5 - \bar{m}_2) + (\bar{m}_4 - \bar{m}_1) + (\bar{m}_3 - \bar{m}_0)}{4}$$

$$= \frac{599.25 + 599.70 + 600.10 + 600.40}{4}$$

$$= 599.86g$$

学号: 2000011153

1.2.4 计算杨氏模量

根据公式计算得到

$$\bar{\lambda} = 0.3035cm$$

这里 g = 9.8012N/kg

$$\bar{F} = \bar{\delta m} * g = 5.8793N$$

其中有

$$\delta m = m_{i+3} - m_i$$

有杨氏模量的计算公式有

$$E = \frac{F * L}{S * \delta L}$$

$$= \frac{F * l^3}{4 * \lambda * a * h^3}$$

$$= 1.801 * 10^{11} N/m^2$$

2 分析与讨论

2.1 分析开始加第砝码时 r 的变化量大于正常的变化量

- 1. 在调试设备时,金属丝上下夹子未夹紧,在开始加第一、二个砝码时金属丝有一定的下滑。
- 2. 开始加第一、二个砝码时,金属丝有部分弯曲,第一、二个砝码不仅仅会拉长金属 丝,还会把它拉直。

2.2 分析开始加第砝码时 r 的变化量小于正常的变化量

- 1. 开始加第一、二个砝码时,金属丝发生扭转,使金属丝拉长量减少。
- 2. 在调节设备时,没有调节好,使得开始加第一、二个砝码时,竖直方向有摩擦力的 影响,使金属丝拉长量减少。

学号: 2000011153

3 收获与感想

1. 在实验的过程中,要清楚逐差法的内核,笔者在计算 CCD 法测量的数据时,因为疏忽,计算了六个砝码的平均重量,但拉伸是在五个砝码的情况下发生的,因此导致 E 过大,更正错误之后,E 的数值是正常的。注意逐差法在以后的实验中也有重要应用。

2. 在 CCD 法测量的数据时,笔者在放第一个砝码时,金属丝没有发生伸长,发生了上面讨论的错误,以后应该注意。但在出现异常数据之后,将该数据舍去,笔者仍然得到了符合实际的 E 值。在以后的数据处理中,应该注意异常值的舍去。