FELADATOK FOURIER-SOROKKAL

2018. окто́вет 1.—

Feladatok

- 1. Legyenek $x_1(t)$ és $x_2(t)$ periodikus jelek T_1 és T_2 alapperiódussal. Milyen feltételnek kell teljesülnie ahhoz, hogy az összeg $x(t) = x_1(t) + x_2(t)$ is periodikus legyen, és ekkor mi lesz a periódusidő T?
- 2. Sorolja fel a Fourier-sorfejtés definíciói alapján felfedezhető szimmetriatulajdonságokat! Hogyan változnak a Fourier-sor együtthatói az időtükrözés illetve az időeltolás hatására? Hogyan változnak szinuszos moduláció után? Milyen hatással van a differenciálás a jel Fourier-komponenseire? *Megjegyzés:* A szabályok belátása után numerikusan is vizsgálja meg a fenti tulajdonságokat. Ehhez a következő feladat jeleit is használhatja.
- 3. Fejtse az alábbi periodikus jeleket Fourier-sorba, és ábrázolja az együtthatókat! Hasonlít-sa össze az eredeti jelet és a sorfejtésből egyre több tagot felhasználó visszaállított jelet. Vizsgálja meg, hogyan változik a visszaállított és az eredeti jel különbsége!
 - 1. τ talpszélességű és T periódusidejű négyszögjel.
 - 2. fűrészfog jel.
 - 3. f(x) = |x|, ha $x \in [-\pi; \pi]$, és $f(x + 2\pi) = f(x)$ egyébként.
 - 4. f(x) = 1 + x, ha $x \in [-\pi; \pi]$, és $f(x + 2\pi) = f(x)$ egyébként.
 - 5. $f(x) = x^2$, ha $x \in [-\pi; \pi]$, és $f(x + 2\pi) = f(x)$ egyébként.
 - 6. $f(x) = \pi^2 x^2$, ha $x \in [-\pi; \pi]$, és $f(x + 2\pi) = f(x)$ egyébként.
 - 7. f(x) = (x-1)(x-3), ha $x \in [1;3]$, és f(x+2) = f(x) egyébként.
 - 8. f(x) = x, ha $x \in [0, 1]$, és f(x + 1) = f(x) egyébként.

9.

$$f(x) = \begin{cases} 0 & x \in [-\pi; 0] \\ 1 & x \in [0; \pi]. \end{cases}$$

10.

$$f(x) = \begin{cases} -1 & x \in [-3; 0] \\ 1 & x \in [0; 3]. \end{cases}$$

11.

$$f(x) = \begin{cases} 1 & x \in [-1; 0] \\ 1/2 & x = 0 \\ x & x \in [0; 1]. \end{cases}$$

12.

$$f(x) = \begin{cases} 0 & x \in [-2; 0] \\ x & x \in [0; 2]. \end{cases}$$

13.

$$f(x) = \begin{cases} \sin\left(\frac{2\pi t}{T}\right) & x \in [0; T/2] \\ 0 & x \in [T/2; T]. \end{cases}$$

A példában megtalálható periodikus jelalakok gazdag "sokaságot" alkotnak. Vizsgálva hibafüggvény menetét, lehet-e valamit mondani valamit az eredeti jelek alakjáról, pusztán a hibafüggvény alakjából?

- 4. A szimmetriatulajdonságokat és a linearitást alapul véve konstruálja meg a 3.1 együtthatóinak ismeretében algoritmikusan a fűrészfog jel együtthatóit!
- 5. Adott két ugyanazzal a T_0 periódusidővel jellemezhető jel h(t) és x(t). A Fourier-soraiknak az együtthatói rendre a_k illetve b_k . Lássa be, hogy az y(t) = h(t)x(t) Fourier-együtthatóira c_k -kra teljesül a konvolúciós összeg.

$$c_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}.$$

- 6. Határozza meg az alábbi diszkrét jelsorozatok amplitudó- és fázisspektrumait:
 - 1. $x[n] = \left(\frac{1}{3}\right)^n u[n-1],$
 - 2. $x[n] = \left(\frac{1}{4}\right)^n \cos \frac{\pi n}{4} u[n-2],$
 - 3. $x[n] = \operatorname{sinc}(2\pi n/8)\operatorname{sinc}\left(\frac{2\pi(n-4)}{8}\right)$,
 - 4. $x[n] = \sin(0, 1\pi n)(u[n] u[n 10]),$
 - 5. $x[n] = \operatorname{sinc}^{2} \frac{\pi n}{4}$.
- 7. Határozza meg az alábbi Fourier-transzormáltak segítségével az x[n] jelsorozatokat.
 - 1. $X(e^{j\omega}) = \delta(\omega) \delta\left(\omega \frac{\pi}{2}\right) \delta\left(\omega + \frac{\pi}{2}\right)$,
 - 2. $X(e^{j\omega}) = 1$, ha $0 \le |\omega| \le 0, 2\pi$, illetve $X(e^{j\omega}) = 0$ ha $0, 2\pi < |\omega| \le \pi$,
 - 3. $X(e^{j\omega}) = \frac{2|\omega|}{\pi}$ ha $0 \le |\omega| \le \frac{\pi}{2}$ és $X(e^{j\omega}) = 0$ ha $\frac{pi}{2} < |\omega| \le \pi$,
 - 4. $\Delta\omega>0$ paraméter és $\omega_c>\frac{\Delta\omega}{2}$ mellett a spektrum $X(e^{j\omega})=0$ ha $\omega_c-\frac{\Delta\omega}{2}\leq |\omega|\leq \omega_c+\frac{\Delta\omega}{2}$, és egyébként $X(e^{j\omega})=0$.
- 8. Legyen adott a x[n] jelsorozatához tartozó Fourier-transformált $X(e^{j\omega})$. Határozza meg ennek ismeretében a lenti jelsorozatok Fourier-transzformáltját:
 - 1. x[n] = 2x[n+2] + 3x[3-n],
 - 2. $x[n] = (1 + x[n])\cos(0, 2\pi n + \pi/6),$
 - 3. $x[n] = 2e^{j0.5\pi(n-2)}x[n+2],$
 - 4. $x[n] = \frac{x[n] x^*[-n]}{2}$,
 - 5. $x[n] = j^n x[n+1] + j^{-n} x[n-1].$