DPENCLASSROOMS

Détection des profils susceptibles d'être atteints par un AVC

Projet 8 : Réaliser un projet libre

Les AVC (Accident Vasculaire Cérébrale) :

- ☐ Rupture ou obstruction d'un **vaisseau sanguin**
- ☐ En France: 140 000 personnes touché par an
- ☐ 1 AVC toutes les 4 minutes
- ☐ 1ère cause d'handicap

Contexte

- ☐ 2^{ème} cause de **démence**
- 2ème cause de mortalité

Les conséquences d'un AVC :

20% des personnes atteintes décèdent

□ 50% Survivent mais ont des troubles de l'équilibre et de la mémoire

□ 30% des victimes souffrent de dépression

- ☐ Ces attaques cérébrales font des dommages irréversible sur le cerveau et sont donc très
 - dangereuse pour les personnes

Comment lutter contre les AVC:

- ☐ La meilleure stratégie : La **prévention** (dépistage des facteurs de risque)
- ☐ Différents facteurs à **risques** :
 - Hypertension
 - Obésité
 - Alimentation
 - Manque d'activité physique
 - Consommation d'alcool
 - Diabète
 - Cholestérol

Objectif

Réduire au maximum le risque d'une personne d'être atteint par un AVC

■ Stratégie :

- Identifier les caractéristiques qui favorisent l'apparition d'AVC dans un jeu de données
- Créer un modèle de régression logistique pour la prédiction d'AVC
- Détection des profils susceptibles d'être atteints par un AVC
- Profils à risque pris en consultation médicale

Données à ma disposition :

kaggle

4861 : 0		id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
	0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
\downarrow	1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
Sans AVC	2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
	3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
	4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
	5105	18234	Female	80.0	1	0	Yes	Private	Urban	83.75	NaN	never smoked	0
249 : 1	5106	44873	Female	81.0	0	0	Yes	Self-employed	Urban	125.20	40.0	never smoked	0
	5107	19723	Female	35.0	0	0	Yes	Self-employed	Rural	82.99	30.6	never smoked	0
↓	5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.6	formerly smoked	0
AVC	5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban	85.28	26.2	Unknown	0

5110 rows x 12 columns

Contexte Données Analyse et Régression logistique Conclusion

Remplacement des valeurs NaN:

id gender age hypertension heart disease ever married work_type 0 Residence type avg glucose level Θ bmi 201 smoking status stroke dtype: int64

Remplacement de la valeur par la moyenne de bmi

Création de la colonne diabète :

Sélection des personne avec un taux de glucose > 126 mg/ld

Diabète

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke	diabete
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.600000	formerly smoked	1	1
1	51676	Female	61.0	0	0	Yes	Self- employed	Rural	202.21	28.893237	never smoked	1	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.500000	never smoked	1	0
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.400000	smokes	1	1
4	1665	Female	79.0	1	0	Yes	Self- employed	Rural	174.12	24.000000	never smoked	1	1

Préparation des données pour l'équilibrage :

dict residence type={'Urban':0,'Rural':1}

Nombre d'individus

Contexte Données Analyse et ACP Régression logistique Conclusion

Visualisation des données finales :

	age	hypertension	heart_disease	stroke	diabete	gender_map	married_map	residence_map	smoke_map	Govt_job	Never_worked	Private	Self- employed
0	67.0	0	1	1	1	0.0	1	0	1	0	0	1	0
1	61.0	0	0	1	1	1.0	1	1	0	0	0	0	1
2	80.0	0	1	1	0	0.0	1	1	0	0	0	1	0
3	49.0	0	0	1	1	1.0	1	0	3	0	0	1	0
4	79.0	1	0	1	1	1.0	1	1	0	0	0	0	1
5105	80.0	1	0	0	0	1.0	1	0	0	0	0	1	0
5106	81.0	0	0	0	0	1.0	1	0	0	0	0	0	1
5107	35.0	0	0	0	0	1.0	1	1	0	0	0	0	1

Contexte Données Analyse et Régression logistique Conclusion

Analyse des variables :

Pourcentage de femme et d'homme parmi les individus sans AVC Pourcentage de femme et d'homme parmi les individus atteints d'AVC

Test d'indépendance entre les variables

Test Chi2 p-value =0.78

H0: Il n'y a pas de différence significative entre les variables

Ha: Il y a une différence significative entre les variables

p value > 0.05: il n'y a de pas différence significative

Indépendance entre le sexe et l'apparition d'AVC

Contexte Données Analyse et Régression Conclusion

Analyse des variables :

Vérification des conditions ANOVA

Homoscédasticité : équivalence des variances

Test levene

p-value = 1

H0: Les variances de population sont égales

Ha: Au moins une des variances est différente

p value > 0.05 ; les variances sont égales

Test de normalité

Test Jarque - Bera

p-value =0.0

HO: Les échantillons suivent une distribution normale

Ha: Les échantillons ne suivent pas une distribution normale

p value < 0.05: Les échantillons ne suivent pas une loi normale

Analyse des variables :

Age des individus

Test d'indépendance des variables

Test paramétrique

Test ANOVA welch

p-value = 2.19e-95

HO: Les variables sont indépendantes

Ha: Les variables sont dépendantes

p value < 0.05 : Les moyennes sont

significativement différentes entres échantillons

Test non paramétrique

Test Kruskal - Wallis

p-value =3.72e-71

HO: Les médianes des populations sont égales

Ha: Les médianes des populations sont différentes

p value < 0.05 : Au moins un échantillon est différent

Dépendance entre l'âge et l'apparition d'AVC

Analyse des variables:

Hypertension des individus

Répartition de l'hypertension des individus sans AVC Répartition de l'hypertension des individus atteints d'AVC

Test d'indépendance entre les variables

Test Chi2

p-value =1.66e-19

H0: Il n'y a pas de différence significative entre les variables

Ha: Il y a une différence significative entre les variables

p value < 0.05: il y a une différence significative

Dépendance entre l'hypertension et l'apparition d'AVC

Analyse des variables :

Maladie cardiaque des individus

Test d'indépendance entre les variables

Test Chi2

p-value = 2.08e-21

HO: Il n'y a pas de différence significative entre les variables

Ha: Il y a une différence significative entre les variables

p value < 0.05: il y a une différence significative

Dépendance entre les maladies cardiaques et l'apparition d'AVC

Analyse des variables :

Statut mariée des individus

Test d'indépendance entre les variables

Répartition des personnes sans AVC en fonction du mariage Répartition des personnes atteintes d'AVC en fonction du mariage

Test Chi2
p-value =1.63e-14

HO: Il n'y a pas de différence significative entre les variables

Ha: Il y a une différence significative entre les variables

p value < 0.05: il y a une différence significative

Dépendance entre le mariage et l'apparition d'AVC

Données

Analyse et ACP

Régression logistique

Conclusion

Analyse des variables :

Type de travail des individus

Répartition des personnes sans d'AVC en fonction du type de travail Répartition des personnes atteintes d'AVC en fonction du type de travail

Test d'indépendance entre les variables

Test Chi2

p-value =5.39e-10

H0: Il n'y a pas de différence significative entre les variables

Ha: Il y a une différence significative entre les variables

p value < 0.05 : il y a une différence significative

Analyse des variables:

Type de résidence des individus

Répartition des personnes sans d'AVC en fonction de la résidence Répartition des personnes atteintes d'AVC en fonction de la résidence

Test d'indépendance entre les variables

H0: Il n'y a pas de différence significative entre les variables

Ha: Il y a une différence significative entre les variables

p value > 0.05: il n'y a pas de différence significative

never smoked

Analyse des variables:

Statut fumeur des individus

Répartition des personnes sans d'AVC en fonction du status fumeur
Répartition des personnes atteintes d'AVC en fonction du status fumeur

Unknown

18.88

Н0

smokes

Test d'indépendance entre les variables

Test Chi2

p-value =0.00

H0: Il n'y a pas de différence significative entre les variables

Ha: Il y a une différence significative entre les variables

p value < 0.05 : il y a une différence significative

Les variables 'unknown' biaise les résultats de l'analyse

Analyse des variables :

Indice de masse corporelle des individus

Vérification des conditions ANOVA

HO: Les échantillons suivent une distribution normale

Ha: Les échantillons ne suivent pas une distribution normale

p value < 0.05: Les échantillons ne suivent pas une loi normale

Analyse des variables :

Indice de masse o

Indice de masse corporelle des individus

Test d'indépendance des variables

Test ANOVA welch

Test paramétrique

p-value = 0.00

HO: Les variables sont indépendantes

Ha: Les variables sont dépendantes

p value < 0.05 : Les moyennes sont significativement différentes entres échantillons

Test non paramétrique

Test Kruskal - Wallis

p-value = 0.00

H0: La médianes des populations sont égales

Ha: Les médianes des populations sont différentes

p value < 0.05 : Au moins un échantillon est différent

Dépendance entre l'indice de masse corporelle et l'apparition d'AVC

Données

Analyse et ACP

Régression logistique

Conclusion

Analyse des variables :

Taux de glucose dans le sang des individus

Vérification des conditions ANOVA

Test de normalité

Test Jarque - Bera

p-value =0.0

HO: Les échantillons suivent une distribution normale

Ha: Les échantillons ne suivent pas une distribution normale

p value < 0.05: Les échantillons ne suivent pas une loi normale

Analyse des variables :

Taux de

Taux de glucose dans le sang des individus

Test paramétrique

Test ANOVA welch

p-value = 2.40e-11

HO: Les variables sont indépendantes

Ha: Les variables sont dépendantes

p value < 0.05 : les moyennes sont significativement différentes entres échantillons

Test d'indépendance des variables

Test non paramétrique

Test Kruskal - Wallis p-value = 3.64e-9

HO: La médianes des populations sont égales

Ha: Les médianes des populations sont différentes

p value < 0.05 : Au moins un échantillon est différent

Dépendance entre le taux de glucose dans le sang et l'apparition d'AVC

Analyse des variables :

Diabète des individus

Données

Répartition des personnes sans AVC en fonction du diabète

Répartition des personnes atteints d'AVC en fonction du diabète

Test Chi2

p-value =1.47e-17

H0: Il n'y a pas de différence significative entre les variables

Ha: Il y a une différence significative entre les variables

p value < 0.05 : il y a une différence significative

Présentation du Dashboard avec tableau :

Détermination du nombre de composantes :

Analyse en composantes principales :

Pas de groupes distincts

Cercle de corrélation :

Trop de variables pour conclure sur des corrélations

Visualisation à l'aide de la technique t-SNE :

Deux groupes assez distincts avec des chevauchements

Régression à partir des données non équilibrées :

Régression à partir des données équilibrées avec SMOTE-Tomek :

Suréchantillonage et suppression des échantillons proches de la limites des deux classes

Contexte

	precision		f1-score	support
0	0.97	0.84	0.90	1590
1	0.17	0.54	0.25	96
accuracy			0.82	1686
macro avg	0.57	0.69	0.58	1686
weighted avg	0.92	0.82	0.86	1686
macro avg			0.58	168

1 3265 0 3265

Name: stroke, dtype: int64

L'équilibrage des données a permis d'améliorer le modèle

Evaluation des performances du modèle LogisticRegression:

ROC AUC score 0.69

Interprétation des variable du modèle Logistic Regression avec SHAP :

4 variables qui ont le plus d'impact pour la prédiction

Interprétation des variable du modèle Logistic Regression avec SHAP :

Comparaison de plusieurs algorithmes de classification :

Random Forest Classifier

K Nearest Neighbors

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.96	0.87	0.91	1590	0	0.96	0.84	0.90	1590
1	0.16	0.44	0.24	96	1	0.15	0.47	0.23	96
accuracy			0.84	1686	accuracy			0.82	1686
macro avg	0.56	0.65	0.58	1686	macro avg	0.56	0.66	0.57	1686
weighted avg	0.92	9.84	0.87	1686	weighted avg	0.92	0.82	0.86	1686

Performances entre les classifications équivalentes

Sélection du modèle final:

	Accuracy	f1-score : 1	Recall : 1
LogisticRegression	0.82	0.25	0.54
Random Forest Classifier	0.84	0.24	0.44
K Nearest Neighbors	0.82	0.23	0.47
RFE 4 attributs	0.82	0.27	0.59

Paramètres

```
rfc1=RandomForestClassifier(criterion= 'gini',
  max_depth= 8,
  max_features= 'auto',
  n_estimators= 500)
```


Amélioration du modèle de classification Random Forest Classifier :

RFE : Sélection des variables les plus pertinentes

Contexte

Validation croisée : base de test différent

4 Attributs : compromis entre un bon cross_val_score et le recall

Evaluation du modèle Random Forest Classifier avec 4 attributs :

metric	Score
accuracy	0.731
precision	0.152
recall	0.812
f1	0.256
roc_auc_score	0.819

Seuil de proba : 0.25

4 Attributs : Age, imc, glucose dans le sang et sexe

Prédiction individuel:

Contribution to prediction probability = 77.04%

Contribution : Age, imc, glucose dans le sang et sexe

☐ Les AVC touchent environ 16 millions de personnes par an dans le monde

□ Détecter les personnes à risques pour les envoyer en **consultation médicale**

☐ Différentes modèles de classifications: accuracy et recall proche

RFE a permis d'améliorer le modèle avec 4 attributs : un score ROC de 0.82

- ☐ L'ensemble des variables ne permettent pas de prédire à 100 %
- ☐ Amélioration du modèle grâce à d'autre facteurs de risque :
 - Consommation d'alcool
 - Effet héréditaire
 - Cholestérol
 - L'alimentation
- Les personnes à risque sont pris en consultation médicale (pour alerter ou traitement)

Merci pour votre attention

