

Jaringan Syaraf Tiruan - Content

1 Jaringan Syaraf Tiruan
2 Neuron
3 Perceptron
4 Supervised Learning
5 Unsupervised Learning
Kecerdasan Komputasional | Jaringan Syaraf Tiruan

K-Self Organizing Map

Memetakan data input yang berdimensi besar menjadi berdimensi dua

Membentuk 'Peta': rectangular atau hexagonal grid dua dimensi $\begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mn} \end{bmatrix}$ Dataset berdimensi n, berjumlah mPeta Data: 3 kelompok

Kecerdasan Komputasional | Jaringan Syaraf Tiruan

Arsitektur K-SOM

Output K-SOM : Peta Grid 2D

Tiap Grid adalah neuron output

Neuron merepresentasikan kelompok output

Jumlah kelas maksimal adalah sebanyak 1016

jumlah data

Kecerdasan Komputasional | Jaringan Syaraf Tiruan

Arsitektur K-SOM

Pengelompokan data berdasarkan kesamaan input
Winning Neuron pada output jika memiliki jarak paling
minimal dengan sinyal input
Update dilakukan pada code vector yang dekat dengan
winning neuron

Kecerdasan Komputasional

Algoritma Pembelajaran

- Inisialisasi bobot atau code vector
- Cari winning neuron, dengan mencari jarak minimal antara sinyal input dengan semua neuron pada output

$$w_{mn} = min_{\forall kj}(||w_{kj} - x_p||)$$

 Hitung nilai neighborhood, untuk menentukan code vector mana saja yang akan diupdate. Semakin jauh code vector terhadap winning neuron maka kemungkinan untuk update semakin kecil, begitu juga sebaliknya

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

9

Algoritma Pembelajaran

Contoh fungsi Neighborhood:

$$h_{mn,kj}(t) = e^{-\frac{||c_{mn} - ckj||}{2\sigma^2(t)}}$$

Update Code Vector :

$$w_{kj}(t+1) = w_{kj}(t) + \eta(t)h_{mn,kj}(t)[x_p - w_{kj}(t)]$$

Lakukan langkah 2-4 sampai epoch tertentu atau Error tertentu :

$$\varepsilon_T = \sum_{p=1}^P ||x_p - w_{mn}(t)||$$

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

K-Self Organizing Map

- Empat buah vector berdimensi 4, yaitu :
 - ⁻ [1110]
 - [0001]
 - [1000]
 - ⁻ [0011]
- Jumlah kelas/kelompok : 2
- Learning Rate = 0.5
- Fungsi Neighborhood adalah fungsi Gaussian, dengan Standar Deviasi = 2
- Code Vector kelas 1 = [0.9 0.7 0.1 0.2]
- Code Vector kelas 2 = [0.2 0.2 0.7 0.9]

Kecerdasan Komputasional | Jarin

Jaringan Syaraf Tiruan

11

K-Self Organizing Map

Epoch - 1, data ke-1

- Cari Winning Neuron :
 - ⁻ jarak antara [1 1 1 0] dengan [0.9 0.7 0.1 0.2]
 - Jarak antara [1 1 1 0] dengan [0.2 0.2 0.7 0.9]
 - Winning Neuron :
- Hitung Nilai Neighborhood
- Update Bobot/code vector

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

K-Self Organizing Map Epoch – 1, data ke-2 Cari Winning Neuron: jarak antara [0 0 0 1] dengan [? ? ? ?] Jarak antara [0 0 0 1] dengan [? ? ? ?] Winning Neuron: Hitung Nilai Neighborhood Hitung Nilai Neighborhood Update Bobot/code vector Kecerdasan Komputasional | Jaringan Syaraf Tiruan

13

