УДК: 658.310.8: 519.876.2

ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕХНОЛОГИИ ИСПОЛНЕНИЯ МЕРОПРИЯТИЙ И ПРОЦЕССА КОНТРОЛЯ ИСПОЛНИТЕЛЬСКОЙ ДИСЦИПЛИНЫ

П.В. Сенченко

В данной статье рассматриваются вопросы функционального и динамического проектирования технологии управления учрежденческой деятельностью. В частности, предложен вариант построения цветной временной сети Петри, моделирующей процесс исполнения и контроля исполнения организационно-распорядительной документации.

Одной из составляющих частей информационной технологии документооборота является организация контроля исполнительской дисциплины сотрудников организации, занятых в процессе документооборота при работе с различными документами и поручениями руководителя. В данной статье рассматривается вариант построения динамической модели технологии исполнения и контроля исполнения мероприятий на основе функциональной модели.

Построение функциональной модели документооборота позволяет на этапе проектирования информационной технологии определить, какие задачи будут поставлены перед системой. Рассмотрение функциональной модели технологии исполнения и контроля исполнения мероприятий предлагается осуществлять в соответствии с методологией функционального моделирования IDEFO. Результатом работ, проводимых в рамках этой методологии, является модель исследуемой системы. Модель представляет собой совокупность диаграмм — схематичных изображений функций и потоков. На рис. 1 представлен фрагмент функциональной модели документооборота — технология постановки на контроль и организация контроля исполнительской дисциплины. Ниже кратко изложено описание данной технологии

Документы, направляемые исполнителю (*l*2), в зависимости от принадлежности и результата рассмотрения руководителем могут быть поставлены на контроль (*A*1). Документы, не поставленые на контроль, передаются для сведения, и в данном случае процедура контроля исполнения не предусмотрена.

На документах, подлежащих контролю (/2), работником канцелярии (*M*1) проставляется штамп «Контроль». Документ, переданный на исполнение вместе с поручением (/1), может быть поставлен на контроль с определением конкретного срока исполнения, а также без определения этого срока, тогда документ считается поставленным на текущий контроль.

Сотрудник организации (*M*3) в ходе исполнения документа (*A*2) информирует помощника по контролю (*M*5) о ходе работы с документом.

Контроль исполнения документа (A3) осуществляет канцелярия, помощник по контролю и лицо, контролирующее исполнение документа в целом (M4). Контроль исполнения строится на базе данных автоматизированной информационной системы регистрации контроля (M2) и обеспечивает:

 – оперативное информирование руководителя канцелярией либо помощником по контролю о состоянии исполнения всех видов документов;

- предварительный контроль сроков исполнения документов (направление писем-напоминаний исполнителям);
 - анализ исполнительской дисциплины.

Продление срока исполнения документа (*A*4) производится помощником по контролю с информированием руководителя на основании мотивированной письменной просьбы исполнителя, заверенной лицом, контролирующим исполнение документа в целом, поданной не позднее чем за 2 дня до истечения срока исполнения. В противном случае документ считается не исполненным в срок.

Рис. 1 – Технология исполнения и контроля исполнения документа

Изменение срока исполнения документа (A4) документируется, при этом проставляется новый срок исполнения документа, подпись и дата изменения.

Документ считается исполненным и снимается с контроля (A5) после документированного подтверждения исполнения — возврата контрольной карточки с отметкой об исполнении или невозможности исполнения по объективным причинам, а также на основании результатов проверки. Документ с контроля снимается помощником по контролю либо тем должностным лицом, которым дано поручение по контролю исполнения документа.

Канцелярия учитывает и обобщает данные о ходе и результатах исполнения документов. Отчеты о состоянии исполнительской дисциплины (O1) передаются руководителю.

В результате работы с документом может быть сформирован исходящий документ (O3), документ, с которым проводилась работа, сдается в архив (O2). Если результатом исполнения документа является исходящий документ, он передается в канцелярию для регистрации и отправки по назначению.

Данная функциональная модель дает представление об организации процесса постановки на контроль, исполнения и контроля исполнения мероприятия, не учитывая при этом динамику процессов. Использование математических аппаратов динамического моделирования позволяет оптимизировать алгоритмы, положенные в основу работы системы автоматизированного документооборота. Построение динамических моделей в IDEF-технологии будем осуществлять с использованием математического аппарата сетей Петри (СП, PN), что обосновывается следующими факторами [1]:

- сети Петри позволяют реализовать условия выбора, основанные на логических операциях «ИЛИ» и «И»;
- с помощью сетей Петри возможно моделировать не только структурную часть процесса,
 но и отображать динамику выполнения основных его функций посредством перемещения фишек
 из одной позиции сети в другие позиции;
- структура процесса представляется в наглядном графическом виде с помощью графов.
 Классическая структура сетей Петри определяется позициями, переходами, входной и выходной функцией. Дадим обобщенное определение сетей Петри [2]:

Сеть Петри C является четверкой, $C=(P,\ T,\ I,\ O)$, где $P=\left\{p_1,p_2,...,p_n\right\}$ — конечное множество позиций, $n\geq 0$; $T=\left\{t_1,t_2,...,t_m\right\}$ — конечное множество переходов, $m\geq 0$; множество позиций и множество переходов не пересекаются: $P\cap T=\varnothing$; $I:T\to P^{\varnothing}$ является входной функцией — отображением из переходов в комплекты позиций, $O:T\to P^{\varnothing}$ является выходной функцией — отображением из переходов в комплекты позиций.

Мощность множества P есть число n, а мощность множества T есть число m. Произвольный элемент P обозначается символом p_i , i=1,...,n, а произвольный элемент T – символом t_j , j=1,...,m.

Согласно [3] расширение возможностей сетей Петри и использование раскрашенных (цветных) сетей Петри (ЦСП, СРN) позволяет более адекватно описывать реальные процессы по сравнению с обычными сетями Петри. Наличие же в технологии документооборота различных временных характеристик обуславливает возможность применения аппарата временных сетей Петри, основанных на введении времени срабатывания конкретного перехода, для чего необходимо ввести время начала и конца срабатывания перехода, время длительности срабатывания перехода. Таким образом, для описания динамической модели документооборота будем использовать цветные временные сети Петри (СТРN).

Для цветной сети Петри функции I и O являются многомерными [3] , т.е. $I==(I^1,I^2,...,I^L)$; $O=(O^1,O^2,...,O^L)$, где L=|D|, $D=\left\{d_1,d_2,...,d_L\right\}$ — множество цветов (пометок).

На множестве P задается функция $\mu(P)$ как совокупность целых неотрицательных чисел, характеризующих количество цветных фишек в позициях.

СТРN определяется следующей шестеркой [2]: $C=(F,\ T,\ I,\ O,\ \mu,\ au)$, где au – один из вариантов способа задания некоторых временных характеристик элементов множества T.

Бременные характеристики могут быть заданы приведенными ниже способами [1]:

заданы продолжительность каждого мероприятия и время начала проведения первого мероприятия;

- заданы продолжительность каждого мероприятия и время окончания проведения последнего мероприятия;
- заданы продолжительность каждого мероприятия и время начала и окончания каждого из них;

В нашем случае временные характеристики будем задавать длительностью исполнения организационно-распорядительного документа (мероприятия), временем начала и завершения его исполнения.

В общем случае [1, 3] моделирование процессов контроля и исполнения мероприятий предполагает решение следующих задач:

- периодическое изменение состояния CTPN путем изменения маркировки фишек;
- изменение пользователем временных либо ресурсных характеристик.

Решение первой задачи заключается в следующем [1, 3]: необходимо использовать алгоритм маркировки сетей Петри, при этом начальная маркировка μ_0 соответствует начальному состоянию сети. Переход сети считается разрешенным, а соответствующее мероприятие активным, если все его условия соблюдены (во всех позициях фишки помечены, имеются все необходимые фишки). Условия срабатывания перехода могут быть заданы следующим образом: в выходных позициях перехода фишки появляются сразу после того, как пользователь отметит выполнение любой из работ, входящих в соответствующий данному переходу этап деятельности, вместе с тем отметка об исполнении остальных работ данного этапа осуществляется пользователем в течение времени, отведенного для данного этапа. Это необходимо для избежания тупиковых ситуаций по времени срабатывания для следующих параллельных переходов. В случае истечения регламентного времени выполнения этапа и наличия в нем невыполненных работ (поручение не исполнено в срок) пользователь сети имеет возможность самостоятельно принять решение о дальнейших действиях. Окончание этапа порождает новую маркировку μ позиций и определяет условия активизации следующих переходов.

Исходя из теории, изложенной в [2, 4, 5], классическая структура сети Петри состоит из двух типов узлов: ${\bf O}$ – круг, являющийся позицией, ${\bf I}$ – планка, являющаяся переходом. С помощью ориентированных дуг происходит соединение позиций и переходов. Дуга, направленная от позиции p_i к переходу t_j , определяет позицию, которая является входом перехода. При этом условия моделируются позициями, а события – переходами. Выполнение условия представляется фишкой в позиции, которая соответствует данному условию, при этом запуск перехода удаляет разрешающие фишки, определяющие выполнение так называемых предусловий, и образует новые фишки, которые определяют выполнение постусловий. Следует отметить, что в сети Петри непримитивные события представляются в виде прямоугольников, что позволяет упростить некоторые виды сетей.

При переходе от диаграммы IDEF0 в сети Петри функциональный блок диаграммы заменяется фрагментом сети Петри, имитирующим работу этого блока [1]. Осуществим моделирование процесса контроля и исполнения мероприятия с использованием математического аппарата СТРN. На рис. 2 представлен фрагмент динамической модели технологии исполнения и контроля исполнения документа. Фишки, помеченные синим цветом (для удобства прочтения модели цвет указан буквой со стрелкой), отображают постоянные (неисчерпаемые) ресурсные характе-

ристики модели. Жирной линией изображены позиции, изображающие движение самих документов и связанных с ними мероприятий (поручений).

Рис. 2 – Временная сеть Петри, описывающая динамическую модель технологии исполнения и контроля исполнения документа

Поскольку сотруднику в одно и то же время может быть как передано для сведения несколько документов, так и поставлено на контроль несколько мероприятий, в представленной сети Петри отмеченные пунктиром позиции и переходы составляют подсеть, которая повторится столько раз, сколько документов и поручений передано исполнителю, с целью обеспечения параллелизма и согласованности модели.

Исходя из функциональной модели (см. рис. 1) взаимосвязь элементов предложенной сети Петри описывается следующим образом:

 $t_1^{}$ – поставить документ на контроль:

$$I(t_1) = \left\{ p_1, p_2, p_3, p_4 \right\}$$
 — входная функция,

где p_1 – документ;

 $p_{2}\,$ – поручение (основание для постановки на контроль);

 $p_{_{3}}$ – сотрудник канцелярии;

 $p_{\scriptscriptstyle 4}$ – AИС управления учрежденческой деятельностью;

 $O(t_1) = \left\{p_5
ight\}$ – выходная функция,

где p_{s} – документ, поставленный на контроль;

 t_2 – организовать исполнение мероприятия:

$$I(t_2) = \{p_1, p_5, p_6, p_7\},\$$

где p_1 – документ, контроль исполнения которого не требуется;

 p_{5} – документ, поставленный на контроль;

 p_6 – исполнитель;

 p_{7} – срок исполнения;

$$O(t_2) = \{p_8, p_{11}, p_9, p_{10}\},\$$

где p_8 — информация об исполнении, либо документ с обоснованием необходимости продления срока исполнения мероприятия, либо документ с отметкой об исполнении;

 $p_{\rm 9}$ – исходящий документ, сформированный в результате исполнения мероприятия;

 p_{10} – архивный документ – после работы с документом его оригинал передается в архив организации;

 $p_{\rm H}$ – документ;

 t_3 – организовать контроль исполнения:

$$I(t_3) = \{p_4, p_8, p_{11}, p_{12}, p_{13}\},$$

где p_{12} – лицо, контролирующее исполнение документа в целом;

 p_{13} – помощник по контролю;

$$O(t_3) = \{p_{14}, p_{16}\},$$

где p_{14} - письмо-напоминание;

 p_{16} – отчеты по исполнительской дисциплине;

 t_4 – продлить контрольный срок исполнения:

$$I(t_4) = \{p_3, p_4, p_{13}, p_{14}, p_{15}\}.$$

где p_{14} – документ с обоснованием необходимости продлить контрольный срок исполнения мероприятия;

 p_{15} - руководитель;

$$O(t_4) = \{p_7, p_{16}\},\$$

где p_7 – новый срок исполнения;

 t_{5} — снять с контроля:

$$I(t_5) = \{p_3, p_4, p_{13}, p_{14}, p_{15}\},\$$

где p_{14} – документ с отметкой об исполнении;

$$O(t_5) = \{p_{10}, p_{16}\}.$$

В результате построения данной сети Петри получаем цветную временную сеть со свободным выбором. Позиция p_1 (документ) является входом переходов t_1 и t_2 , что позволяет свободно осуществлять выбор (разрешение конфликта сети) запускаемого перехода, причем наличие фишек в других позициях не влияет на выбор запускаемого перехода. Наличие логики ИЛИ (+) перехода t_2 говорит о необходимости наличия фишки только в одной из позиций p_1 или p_5 . В позиции p_1 одна фишка помечена красным цветом, ее наличие обеспечивает срабатывание перехода t_2 при моделировании процесса передачи сотруднику документа, контроль исполнения которого не требуется. Вертикальная ось, изображенная справа от сети, есть ось времени в условных единицах, при этом высота прямоугольника, изображающего переход, есть время, необходимое для выполнения определенного действия. Временная составляющая сети t_1 имеет важную смысловую нагрузку. Так, время срабатывания перехода t_3 напрямую зависит от продолжительности выполнения мероприятия (исполнения поручения) сотрудником организации — перехода t_2 . И если величины t_1 , t_3 , t_4 , t_5 несущественно влияют на поведение модели (в реальной жизни эти величины слабо варьируются), то от величины t_2 в немалой степени зависит срабатывание всех остальных переходов сети.

Таким образом, с помощью предложенной сети Петри возможно осуществить моделирование процессов исполнения мероприятий и контроля их исполнения. Использование существующих программных средств, имитирующих работу цветной временной сети Петри, позволяет, манипулируя временными составляющими сети и изменяя количество и цвет фишек в позициях, моделировать различные ситуации, возникающие в процессе ведения документооборота организации, что обеспечивает сотруднику, отвечающему за контроль исполнительской дисциплины, всзможность повысить производительность труда сотрудников при работе с организационнораспорядительными документами.

ПИТЕРАТУРА

- 1. Ехлаков Ю.П. Теоретические основы автоматизированного управления: Учебник. Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2001. 337 с.
- 2. Питерсон Дж. Теория сетей Петри и моделирование систем: Пер. с англ. М.: Мир, 1984. 264 с., ил.
- 3. Тарасенко В.Ф. Нелинейные математические модели и информационные системы в финансовом менеджменте / Под ред. В.З. Ямпольского. Томск: Изд-во ТПУ, 1998. 191 с.
- 4. Jensen K. Coloured Petri nets: Basic concepts, analysis methods and practical use. Berlin a. o.: Springer-Verlag, 1996. Vol. 1. Basic concepts.
- 5. Чурина Т.Г. Способ построения раскрашенных сетей Петри, моделирующих SDLсистемы / Институт систем информатики им. А.П. Ершова СО РАН. – Новосибирск, 1998.