Practice quiz on Types of Functions

TOTAL POINTS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A\to B$?

1 / 1 point

- $\bigcap f(a) = 4a$, for each $a \in A$
- f(1) = 4, f(2) = 40, and f(10) = 8.
- f(1) = 5, f(2) = 8, and f(10) = 40.
- f(1) = 4, f(2) = 4, and f(10) = 4.

A function $f:A\to B$ is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1 / 1 point

Suppose that $T:A\to Y$ is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- \bigcirc T(a) = + and D(a) = H
- $\bigcirc T(a) = + \text{ and } D(a) = S$
- $\bigcap T(a) = -$ and D(a) = H
- $\bigcirc T(a) = -$ and D(a) = S

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3.	Consider the function $g:\mathbb{R}\to\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are <i>not</i> on the graph of g ?	(1 / 1 poi
	\bigcirc $(-1,0)$	
	\bigcirc $(2,-1)$	
	\bigcirc (1,0)	
	$\bigcirc \ (0,-1)$	
	Correct Recall that the graph of g consists of all points (x,y) such that $y=g(x)$. Here $g(2)=3\neq -1$, so the point $(2,-1)$ is \emph{not} on the graph of g .	
4.	Let the point $A=(2,4).$ Which of the following graphs does $\it not$ contain the point $\it A$?	1/1 poi
	\bigcirc The graph of $f(x)=2x$	
	lacksquare The graph of $h(x)=x-1$	
	\bigcirc The graph of $g(x)=x+2$	
	\bigcirc The graph of $s(x)=x^2$	
	\checkmark Correct The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 \neq 4$, so the point $(2,4)$ is not on the graph of h .	
5.	Suppose that $h(x)=-3x+4.$ Which of the following statements is true?	1/1 poi
	$igcup_h$ is neither a strictly increasing function nor a strictly decreasing function.	
	lacksquare h is a strictly decreasing function	
	All statements are correct	
	$igcup_{h}$ is a strictly increasing function	
	\checkmark Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$	

Since the graph of h is a line with negative slope, this is in fact true!

Which of the following is a possible value for f(3.7)?

- O 3
- 14.7
- 17
- \bigcirc -3

✓ Correct

A function f is called strictly increasing if whenever a < b, then f(a) < f(b).

Since f(3) = 15 is given and 3 < 3.7, it must be that 15 < f(3.7), and this answer satisfies that.