FUNDAMENTOS MATEMÁTICOS DA COMPUTAÇÃO

Vanessa Davanço

Neste E-Book:

INTRODUÇÃO	3
TEORIA DOS CONJUNTOS E	
SEQUÊNCIA	4
Conjuntos	5
Intervalos reais	10
Operações com conjuntos	12
Álgebra dos conjuntos – Diagrama de Venn	13
Propriedades das operações com conjuntos	17
SEQUÊNCIA E SOMATÓRIO	18
Sequência	18
String	23
Somatório	24
CONSIDERAÇÕES FINAIS	.30
SÍNTESE	31

INTRODUÇÃO

Neste módulo, exploraremos a noção de conjuntos e suas operações: União, Intersecção e Diferença; abordaremos um tema interessante e muito importante para a álgebra moderna, o Diagrama de Venn. Esse diagrama foi criado pelo matemático John Venn e introduzido ao ensino de conjuntos apenas na década de 1960. Depois, apresentaremos os estudos de Sequências e Somatória, que também são importantes definições, pois são muito usadas no dia a dia da Programação.

TEORIA DOS CONJUNTOS E SEQUÊNCIA

Conjunto é uma coleção ou agrupamento de objetos e essa definição é uma noção primitiva. Para um melhor entendimento, observemos os exemplos citados na sequência:

- I) Conjunto das vogais: a, e, i, o, u.
- **II)** Conjunto das consoantes: b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, x, y, z.
- III) Conjunto dos países que chegaram às quartas de finais da Copa do Mundo 2018: Brasil, Bélgica, Croácia, França, Inglaterra, Rússia, Suécia e Uruguai.
- **IV)** Conjunto dos Estados da Região Sudeste do Brasil: Espírito Santo, Minas Gerais, Rio de Janeiro e São Paulo.
- **V)** Conjunto das cores primárias: Azul, Amarelo e Vermelho.

Por meio desses conjuntos, podemos observar que a coleção ou agrupamento pode ser qualquer coisa que exista um agrupamento, como números, letras, nomes etc. Também observamos que os conjuntos são dotados de algumas características:

- Ordem: a ordem em que os elementos são adicionados ao conjunto não tem relevância. Por exemplo: {1,4,5,3} = {1,3,4,5}.
- Repetição: A repetição do mesmo elemento no conjunto não tem relevância. Por exemplo: {1,2,2,2,3,3} = {1,2,3}.

Para representar os elementos do conjunto, utilizamos letras minúsculas; para indicar o conjunto, utilizamos letras maiúsculas.

Conjuntos

Conjunto Vazio (ϕ): é aquele que não possui elemento.

Por exemplo: $A = \phi$ ou $A = \{ \}$, não confunda com $B = \{ \phi \}$, pois o conjunto B não é um conjunto vazio.

Conjunto Unitário: é aquele que possui um único elemento.

Exemplo: A={1}, ou seja, o conjunto A é o conjunto formado com o elemento 1.

Conjunto Universo (U): é aquele ao qual pertencem todos os elementos do assunto tratado. Por exemplo: A= R, pode ser definido que o conjunto universo de um determinado problema seja o conjunto dos números reais.

Conjuntos Iguais: dois conjuntos, A e B, são iguais quando todo elemento de A pertencente a B e todo elemento de B pertence a A. $A = B \leftrightarrow \forall x, x \in A \leftrightarrow x \in B$

OBSERVAÇÃO: = ∀ para todo, qualquer que seja.

Por exemplo: $A=\{1, 2, 3, 4\}$ e $B=\{1, 2, 3, 4\}$, sendo assim, A=B

Subconjunto (⊂): Um conjunto A é subconjunto de um conjunto B se e somente se todo elemento de A pertencente também a B. Em símbolos, tem-se:

$$A \subset B \leftrightarrow \forall x, x \in A \rightarrow x \in B$$

Por exemplo: A= $\{0, 3, 4\}$ e B= $\{0, 1, 2, 3, 4, 5\}$, sendo assim $A \subset B$.

Conjuntos Disjuntos: dois conjuntos, A e B, são denominados conjuntos disjuntos quando não possuem elementos comuns.

Por exemplo: A= {0, 1, 2, 3} e B= {4, 5, 6, 7}, podemos observar que os conjuntos A e B não têm termos em comum.

Conjuntos numéricos

O universo está rodeado por números. Aonde quer que olhamos, sempre há um indicativo numérico; podemos observá-los mais facilmente em áreas como meios de comunicação, jornais, revistas, rádio, *outdoors* etc. Essas informações geralmente são demonstradas em gráficos e tabelas, por isso, precisamos estar preparados para enfrentar e com-

preender situações envolvendo informações numéricas relacionadas a medidas, comparações, dados e pesquisas. Abordemos os principais conjuntos numéricos.

Conjunto dos Números Naturais: surgiu a partir da contagem de objetos. Como estamos falando de contagem, este conjunto não comporta números negativos, portanto, o conjunto dos números naturais é definido como:

$$N = \{0,1,2,3,4,...\}$$

Quando o zero não faz parte do conjunto, ele é definido como:

$$N^* = \{1,2,3,4,\dots\}$$

Na figura1, podemos observar a reta dos números reais.

Figura 1: Reta dos números naturais. Fonte: Elaboração Própria.

Conjunto dos Números Inteiros: surgiu a partir dos números naturais, mas com a ideia da parte negativa, em que dizemos que o número -1 é simétrico de 1 e assim por diante. O conjunto dos Inteiros é representado por:

$$Z = {\dots, -3, -2, -1, 0, 1, 2, 3, 4, \dots}$$

O conjunto dos números inteiros tem suas variações, conforme observamos:

Conjunto Z^* dos inteiros não nulos: $Z^* = \{\dots, -3, -2, -1, 1, 2, 3, 4, \dots\}$

Conjunto Z_{-} dos inteiros não positivos: $Z_{-} = \{..., -3, -2, -1, 0\}$

Conjunto Z_+ dos inteiros não negativos: $Z_+ = \{....+3, +2, +1,0\}$

Conjunto Z_{-}^{*} dos inteiros negativos: $Z_{-}^{*} = \{..., -3, -2, -1\}$

Conjunto Z_+^* dos inteiros positivos (maiores que zero): $Z_+^* = \{1,2,3,4,....\}$

Figura 2: Reta dos números inteiros. Fonte: Elaboração Própria.

Conjunto dos Números Racionais: números que podem ser escritos na forma $\frac{a}{b}$, com a e b inteiros, $b \neq 0$. Por exemplo: 1,43; -0,25; $\frac{5}{8}$.

A representação desse conjunto é feita pela letra Q.

Figura 3: Reta dos números racionais. Fonte: Elaboração Própria.

Conjunto dos Números Irracionais: números cuja escrita decimal é infinita e não tem periodicidade. Por exemplo:

- raízes quadradas de números naturais cujos radicando não são quadrados perfeitos: $\sqrt{3}$, $\sqrt{8}$, $\sqrt{5}$
- raízes cúbicas de números naturais cujos radicando não sejam cubos perfeitos: $\sqrt[3]{7}$, $\sqrt[3]{7}$, $-\sqrt[3]{20}$
- o resultado de algumas operações entre um número racional e um irracional: $4.\sqrt{5}$; $\frac{2}{\sqrt[3]{2}}$; $7+\sqrt[5]{3}$

Além desses, temos outros números irracionais que são famosos, como o π (pi), obtido quando dividimos o comprimento da circunferência de um objeto qualquer pelo seu diâmetro. O valor de π é representado por uma dízima não periódica, aproximadamente igual a 3,141592654.

Os Números Reais: abrangem todos os números apontados anteriormente, ou seja, os números reais resultam da união dos números racionais com os irracionais.

Figura 4: Reta dos números reais. Fonte: Elaboração Própria.

Na Figura 5, temos uma melhor visualização dos números reais (a união dos conjuntos racionais com os conjuntos irracionais).

Figura 5: Diagrama dos conjuntos. Fonte: Elaboração Própria.

Intervalos reais

Utilizamos intervalos reais para definir início e fim de um conjunto. Por exemplo, ultimamente nossos dias estão muito quentes, e as noites mais geladinha. Assim, quando recorremos à previsão do tempo, define-se uma escala de variação para o próximo dia: no dia 23 de agosto de 2019, a previsão para a cidade de Campinas foi de $12^\circ \le x \le 24^\circ$, ou seja, máxima de 24°C e mínima de 12°C. Apresentamos, a seguir, diversos formatos em que podem ser representados esses intervalos reais:

a) Intervalo aberto nas duas extremidades: $\{x \in R/a < x < b\}$,]a,b[

c) Intervalo fechado em a e aberto em b: $\{x \in R/a \le x < b\}$, [a,b[

d) Intervalo aberto em a e fechado em b: $\{x \in R/a < x \le b\}$, [a,b]

e) Intervalo aberto em a: $\{x \in R/x \ge a\}$ [a, $+\infty$ [

f) Intervalo fechado em b: $\{x \in R/x \le b\}$, $]-\infty$, b]

g) Intervalo aberto em b: $x \in R/x < b$, $]-\infty$, b[

Obs.: quando temos um intervalo aberto, ele é representado por um círculo vazio, o que significa que

engloba todos os elementos daquele intervalo, mas não engloba o elemento da letra. Por exemplo, no item a) Engloba todos os elementos entre e a b, mas não engloba a nem b. Já quando temos um intervalo fechado, ele é representado por um círculo cheio, o que significa que engloba todos os elementos daquele intervalo, inclusive o elemento da letra. Por exemplo: no item b) Engloba todos os elementos entre a e b, inclusive a e b.

Operações com conjuntos

União (\cup): Dados dois conjuntos, A e B, definimos a união de A e B como conjunto formado pelos elementos pertencentes a A ou B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Por exemplo: A={-10,-5,0,5,10} e B={-3,-1,0,1,3}

$$A \cup B = \{-10, -5, -3, -1, 0, 1, 3, 5, 10\}$$

Interseção (∩): Dados dois conjuntos, A e B, definimos a união de A e B como conjunto formado pelos elementos pertencentes a A e B. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}$$

Por exemplo: A={-10,-5,0,5,10} e B={-3,-1,0,1,3}

$$A \cap B = \{0\}$$

Diferença (-): Dados dois conjuntos, A e B, define-se a diferença entre A e B como conjunto formado pelos elementos de A não pertencentes a B. Assim,

$$A-B = \{x \mid x \in A \text{ ou } x \notin B\}$$

Por exemplo: A={-10,-5,-1,0,1,5,10} e B={-3,-1,0,1,3}

$$A-B = \{-10, -5, 5, 10\}$$

Complementar(^c**):** Dado um conjuntos A, define-se o complementar de A o conjunto Universo (U) menos os valores do conjunto A. Assim,

$$A^c = U - A = \{x \mid x \in U \ e \ x \notin A\}$$

Por exemplo: $A=\{0,1,2,3\}$ e U = N

$$A^c = \{4,5,6,7,\dots\}$$

Álgebra dos conjuntos – Diagrama de Venn

Podemos representar os conjuntos pelo Diagrama de Venn, no qual se apresenta o conjunto Universo (U) por um retângulo dentro desse retângulo. Representaremos os conjuntos com outra forma geométrica, geralmente o círculo, e assim poderemos demonstrar as relações entre conjuntos diferentes, mas que têm alguma coisa em comum. Por exemplo, os conjuntos A={-3,-1,0, 4, 5} e B={ 0, 1, 3, 5, 6} podem

ser demonstrados por meio do Diagrama de Venn, conforme a Figura 6.

Figura 6: Diagrama de Venn. Fonte: Elaboração Própria.

Conforme demonstrado na Figura 6, podemos observar facilmente a intersecção, a união e a diferença dos conjuntos A e B, em que:

$$A \cup B = \{0,5\}$$

$$A \cap B = \{-3, -1, 1, 3, 4, 6\}$$

$$A-B = \{-3, 4, -1\}$$

Usa-se também o Diagrama de Venn para demonstrar um subconjunto de um conjunto. Observe o exemplo:

o conjunto A={a, e, i, o ,u} é subconjunto do conjunto B={alfabeto} (Figura 7).

Figura 7: Diagrama de Venn. Fonte: Elaboração Própria.

Agora, resolveremos um problema aplicado utilizando o Diagrama de Venn. Por exemplo, para uma comemoração que ocorreria em uma faculdade, foi criada uma enquete em que se perguntava sobre os gostos musicais dos alunos. Após a tabulação dos dados coletados, chegaram às seguintes respostas:

- 323 alunos gostam de Rock.
- 214 alunos gostam de Pop.
- 181 alunos gostam de Sertanejo.
- 82 alunos gostam de Rock e Pop.
- 47 alunos gostam de Pop e Sertanejo.
- Nenhum entrevistado gosta de Rock e Sertanejo.
- Nenhum dos entrevistados gosta dos três gêneros musicais.

Pergunta: Quantos alunos foram entrevistados? Quantos alunos gostam apenas de Rock? Quantos alunos gostam apenas de Sertanejo?

Figura 8: Diagrama de Venn representando o problema. **Fonte:** Elaboração Própria.

Por meio do Diagrama de Venn, podemos responder às perguntas:

Quantos alunos foram entrevistados? A resposta para essa pergunta é a soma de todos os valores, que se encontram na Figura 8, ou seja, 241+82+85+47+134=589 alunos.

Quantos alunos gostam apenas de Rock? Para responder, precisamos observar os alunos que estão apenas na circunferência do Rock, sem nenhuma intersecção, ou seja, 241 alunos.

Quantos alunos gostam apenas de Sertanejo? Para responder, precisamos observar os alunos que estão

apenas na circunferência do Sertanejo, sem nenhuma intersecção, ou seja, 134 alunos.

Podcast 1

Propriedades das operações com conjuntos

Comutativa:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Associativa

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributiva

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$$

• Idempotência

$$A \cup A = A$$

$$A \cap A = A$$

Leis de Morgan

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

SEQUÊNCIA E SOMATÓRIO

Sequência é uma ordenação de dados ou elementos com uma determinada correspondência. É bastante utilizada para representar soluções de problemas de contagem e, na computação, utiliza-se a sequência como estrutura de dados. Somatório, por sua vez, é uma notação, ou representação, de uma contagem de forma ordenada de vários termos. Vamos abordar essas noções mais detalhadamente.

Sequência

Pode-se definir sequência como uma listagem ordenada, com características comuns a todos os termos. Para uma boa ordenação, faz-se necessário saber a diferença entre sequência finita e sequência infinita.

A sequência finita é um conjunto limitado, ou seja, seu domínio é um intervalo inteiro, com início e fim bem definidos. Por exemplo: {1, 2, 3, 4}, {-2, 0, 2, 4, 6}.

A sequência infinita é um conjunto ilimitado, ou seja, o domínio é um conjunto de inteiros limitados inferiormente, $\{n \in \frac{\mathbb{Z}}{n} \geq r\}$, seu início é bem definido, mas seu final tende ao infinito. Por exemplo: $\{1, 2, 3, 4, 5, 6, \ldots\}$, $\{-10, -5, 0, 5, 10, 15, \ldots\}$

Para representar cada termo da sequência, utiliza--se a_n , em que cada termo será chamado pela sua posição. Por exemplo, o primeiro termo será a_1 ; o segundo, a_2 e assim por diante. Consideremos a sequência $a_n = \frac{1}{n}$.

Portanto, $a_1 = 1$; $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, ... Ou seja, a sequência será: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$,

As características da sequência podem seguir um formato passível de ser definido como uma progressão aritmética ou uma progressão geométrica.

Uma progressão aritmética (P.A) é uma sequência na forma:

a, a+d, a+2d, a+3d, ..., a+nd, em que o termo inicial a e a razão d são números reais. Observe a seguinte sequência: 3, 5, 7, 9, 11, 13,

Resolução: Inicialmente, vamos observar o que acontece com cada termos dessa P.A. O termo a_1 =3; o termo, a_2 = 5 e assim por diante. Vamos listar os termos abaixo.

$$a_1 = 3$$
 $a_2 = 5 = a_1 + 2$
 $a_3 = 7 = a_2 + 2$
 $a_4 = 9 = a_3 + 2$

Através dos quatro primeiros termos, conseguimos observar a característica da P.A, com isso, podemos definir que a P.A tem razão 2, ou seja, d=2. Cada termo da P.A, recebe a soma do termo anterior mais a razão 2.

Uma progressão geométrica (P.G) é uma sequência na forma:

 $a, ar, ar^2, ar^3, ..., ar^n$, em que o termo inicial a e a razão r são números reais.

Observe a seguinte sequência: 1, 3, 9, 27, 81, 243, ...

Resolução: Inicialmente, vamos observar o que acontece com cada termos dessa P.G. O termo a_1 =1; o termo, $a_2=3$ e assim por diante. Vamos listar os termos abaixo.

$$a_1 = 1$$
 $a_2 = 3 = a_1 * 3$
 $a_3 = 9 = a_2 * 3$
 $a_4 = 27 = a_3 * 3$

Através dos quatro primeiros termos, conseguimos observar a característica da P.G, com isso, podemos definir que a P.G tem razão 3, ou seja, r=3. Cada termo da P.G, recebe o termo anterior mais a razão 3.

FIQUE ATENTO

As progressões aritméticas (P.A) podem ser definidas como:

Crescente: o próximo termo da P.A sempre será maior que o anterior, ou seja, d<0.

Por exemplo: (-2,0,2,4,6,8,10,....), d=2.

Decrescente: o próximo termo da P.A sempre será menor que o anterior, ou seja, d<0.

Por exemplo: (10,8,6,4,2,0,-2,-4,....), d=-2.

Constante: todos os termos da P.A são iguais, ou seja, d =0.

Por exemplo: (2,2,2,2,2,2,....).

Sequência de números especiais

Em algumas situações, precisamos encontrar a formulação, isto é, a regra geral de uma sequência. Dependendo da sequência, não temos todos os termos definidos tampouco podemos generalizar ao pensar que os primeiros termos definirão a sequência. Há várias sequências que podem ser iguais no início, mas manter uma continuação de forma diferente.

Por meio dos primeiros termos, podemos começar a entender qual é o funcionamento daquela sequência e montar sua estrutura. Buscaremos, assim, o padrão de acordo com os termos, pois o ideal é pensarmos nas seguintes questões:

- Há alguma constante que está aparecendo em todos os termos?
- Há termos obtidos da soma dos anteriores ou uma constante?
- Há multiplicação dos anteriores ou por uma constante?

 Há temos resultantes de combinação dos termos anteriores?

Por exemplo, encontrar a fórmula da sequência cujos primeiros termos são dados por: 1, 3, 9, 27, 81, 243

Resolução: Podemos observar que todos os termos são múltiplos de 3. Sendo assim, podemos pensar que, a cada termo, estamos multiplicando o anterior por 3:

$$1 \times 3 = 3$$

$$3 \times 3 = 9$$

$$9 \times 3 = 27$$

...

Logo, podemos observar que o termo posterior sempre será seu termo antecessor multiplicado por 3. Com isso, chegamos à regra geral dessa sequência:

$$a_n = 3^n$$

Ou ainda, podemos falar que é uma Progressão Geométrica com razão 3.

Por exemplo, encontrar o termo geral da sequência dada por: 1, -1, 1, -1, 1.

Resolução: Essa é uma sequência clássica, quando o número é mantido e altera-se apenas a sua simetria.

Os termos estão se alternando entre 1 e -1, assim, podemos pensar que temos uma multiplicação por -1,

ou seja, temos uma Progressão Geométrica de razão -1. Logo, podemos definir o termo geral como sendo:

$$a_n = (-1)^{n+1}$$

String

String é um vetor de bytes em que o byte nulo 00000000 é interpretado como uma sentinela que marca o fim da parte relevante do vetor. Por exemplo:

Nesse exemplo, apenas os 4 primeiros bytes constituem a string. Seu comprimento é seu número de bytes, sem contar o byte nulo final. Assim, a string do exemplo citado tem comprimento 3.

O número π também é uma sequência especial que não tem uma sequência lógica, mas uma sequência irracional e infinita de dígitos cujo valor é 3,14159265358979323846.....

FIQUE ATENTO

O Python tem dois tipos de sequências especiais, sendo manipuladas como objetos:

Sequência de Texto possui métodos para criar e manipular strings.

Sequência Binária possui métodos para manipular tipos bytes e bytearray.

Somatório

Utiliza-se a somatória em vários momentos matemáticos, ela pode ser definida como a quantidade de algumas variáveis que serão somadas. Por exemplo, o conjunto (1,2,3,4,5) que, ao ser somado, será o valor 1+2+3+4+5 e resultará no valor de 15. Caso se queira somar os primeiros termos dessa somatória, pode-se representar por uma somatória, ou seja,

$$\sum_{k=0}^{9} 1 + k = [(1+0) + (1+1) + (1+2) + (1+3) + (1+4) + (1+5) + (1+6) + (1+7) + (1+8) + (1+9)]$$

$$= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$$

O símbolo de somatória pode ser definido da seguinte forma: $\sum_{x=k}^n f(x)$, em que x é uma variável arbitrária, f(x) é uma fórmula qualquer na qual o termo dependente é x e k e n são valores inteiros que não têm dependência a x. Por exemplo, a função $f(x) = 3^x$, em que devemos fazer a somatória da função no intervalo $0 \le x \le 4$.

Resolução: Vamos aplicar a função e o intervalo na fórmula de somatória.

$$\sum_{x=0}^{4} 3^x = 3^0 + 3^1 + 3^2 + 3^3 + 3^4 = 121$$

Algumas somatórias, as mais usuais, têm sua fórmula de recorrência conhecida, conforme podemos observar:

$$\sum_{x=1}^{n} 1 = n$$

$$\sum_{n=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{r=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{x=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{x=1}^{n-1} k^x = 2^x - 1$$

Observe que as letras x, k e n podem ser usadas com qualquer outra letra do alfabeto, desde que a mudança seja feita para todos os termos. Por exemplo, se trocarmos o x por i, fica:

$$\sum_{i=1}^{n-1} k^i = 2^i - 1$$

Podcast 2

Propriedades do somatório

Distributiva: Para qualquer número *c*, podemos mover esse *c*, que é uma constante tanto para dentro quanto para fora da somatória, uma vez que esse valor *c* não depende do índice da somatória.

$$\sum cf(k) = c \sum f(k)$$

Por exemplo, encontre a soma $\sum_{i=1}^{3} 2i^2$

Resolução: Podemos resolver esse problema de duas maneiras: com a constante dentro da somatória ou isolando a constante conforme a propriedade:

$$\sum_{i=1}^{3} 2i^{2} = 2 \sum_{i=1}^{3} i^{2}$$

$$= 2(1^{2} + 2^{2} + 3^{2})$$

$$= 2(1 + 4 + 9)$$

$$= 2 * (14)$$

$$= 28$$

Associativa: Permite fazer a somatória das somas ou a soma das somatórias.

$$\sum (f(k) + g(k)) = \sum f(k) + \sum g(k)$$

Por exemplo, encontre a soma $\sum_{i=1}^4 (i^2 + i)$

Resolução: Podemos resolver esse problema de duas maneiras: utilizando a fórmula que segue no problema ou separando cada uma das somatórias:

$$\sum_{i=1}^{4} (i^2 + i) = \sum_{i=1}^{4} i^2 + \sum_{i=1}^{4} i$$
$$= (1^2 + 2^2 + 3^2 + 4^2) + (1 + 2 + 3 + 4)$$
$$= 30 + 10 = 40$$

Comutativa: Seja P uma permutação qualquer, essa propriedade nos permite trocar o domínio da função, ou seja, podemos colocá-la em qualquer ordem.

$$\sum f(k) = \sum f(P(k))$$

Por exemplo, encontre a soma $\sum_{i=1}^6 i^2$, na qual a variação de i esteja definida entre $0 \le i \le 5$.

Resolução: Podemos observar que essa somatória está definida entre [1,6], mas o exercício pede a somatória de [0,5], ou seja, precisa ser feita uma mudança de domínio. Inicialmente, precisa-se observar se a função tem domínio definido para o novo domínio estipulado. Nesse caso, não temos nenhum problema com relação ao domínio e podemos fazer a mudança de variável. Agora precisamos definir a função que se alinha com essas mudanças.

 i^2 será para o domínio [1,6]

Para mudarmos a variável, definiremos que a mudança será feira para j=i-1, ou seja, estamos reduzindo em um termo, pois de 1 passaremos para 0.

Sendo assim, j = i-1 resultará em i = j + 1. Portanto:

$$\sum_{i=1}^{6} i^2 = \sum_{j=0}^{5} (j+1)^2 =$$

$$= [(0+1)^2 + (1+1)^2 + (2+1)^2 + (3+1)^2 + (4+1)^2 + (5+1)^2]$$
$$= 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 91$$

Somas duplas

As somas duplas são muito recorrentes para programação, como em um *looping*, ou laço de um programa. As somas duplas são representadas pelo símbolo de duas somatórias em sequência:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} ij$$

Como podemos observar no exemplo, a função é colocada logo após as duas somatórias, porém cada uma delas tem sua definição de início e fim. Logo, cada uma das funções deve seguir sua lei. Por exemplo, calcular a somatória $\sum_{i=1}^3 \sum_j^4 i^2 j$

Resolução: Nesse problema, temos duas somatórias, porém precisamos pensar nelas como cada uma assumindo sua identidade, dada pela função e pelo domínio determinados pela somatória e, a partir desses dados, fazer a somatória. Depois, multiplicam-se os dois dados:

$$\sum_{i=1}^{3} \sum_{j=1}^{4} i^{2}j$$

$$= (1^{2} + 2^{2} + 3^{2}) \cdot (1 + 2 + 3 + 4)$$

$$= 14.10$$

$$= 140$$

CONSIDERAÇÕES FINAIS

Neste capítulo, apresentamos os conjuntos e suas operações, sequências e somatórias, de forma teórica e aplicada, a fim de fixar o conteúdo abordado. Destacamos também a importância de sequências e somatória para a programação, sendo um tópico muito importante para a área de computação, devido aos seus métodos e resolução de problemas.

SÍNTESE

FUNDAMENTOS MATEMÁTICOS DA COMPUTAÇÃO

Neste módulo, abordamos os conjuntos, suas operações e propriedades, bem como o Diagrama de Venn. Também abordamos sequências e somatória, tópico fundamental para entendimento de programação, uma vez que matemática tem um melhor entendimento quando sua base é bem estruturada.

Teoria dos Conjuntos
Conjuntos
Conjuntos Numéricos
Intervalos Reais
Operações com Conjuntos
Diagrama de Venn
Propriedades
Sequência
Sequência de Números Especiais
Somatório
Propriedades do Somatório
Somas Duplas

Referências Bibliográficas <u>& Consultadas</u>

DAGHLIAN, J. **Lógica e álgebra de boole**. 4. ed. São Paulo: Atlas, 2011 [Minha Biblioteca].

GERSTING, J. Fundamentos matemáticos para a ciência da computação: um tratamento moderno de matemática discreta. 7. ed. Rio de Janeiro: LTC, 2004 [Minha Biblioteca].

PAIL, D. B.; TRAMUNT, A. I. **Fundamentos Linguísticos e Computação**. Porto Alegre. EdiPUCRS, 2015 [Biblioteca Virtual].

PANONCELI, D. M. **Análise Matemática.** São Paulo. Editora InterSaberes, 2017 [Biblioteca Virtual].

ROSEN, K. H. **Matemática discreta e suas aplica**ções. 6. ed. Porto Alegre: AMGH, 2010.

SIMÕES-PEREIRA, J.M.S. **Grafos e redes: teoria e algoritmos básicos**. Rio de Janeiro. Editora Rio de Janeiro, 2013 [Biblioteca Virtual].

STEIN, C.; DRYSDALE, R. L.; BOGART, K. Matemática Discreta para ciência da computação. São Paulo: Pearson Education do Brasil, 2013 [Biblioteca Virtual].

TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. **Sistemas digitais: princípios e aplicações**. 11. ed. São Paulo: Pearson Prentice Hall, 2011 [Biblioteca Virtual].

WEBER, R. F. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012 [Minha Biblioteca].

