

A Single Photon Detector Design based on a First Order Dissipative Phase Transition

Saumya Biswas, Steven J van Enk.

University of Oregon, Oregon Center for Optical, Molecular, and Quantum Science

Model

A driven dissipative first order phase transition: Nonlinear $\hat{H} = -\Delta \hat{a}^{\dagger} \hat{a} + \frac{U}{2} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} + F(\hat{a}^{\dagger} + \hat{a})$

1. Single-site critical phenomena: dynamical optical hysteresis in the Kerr model.

Storme, F. (2017). Dissipative phase transitions in open quantum lattice systems (Doctoral dissertation, Université Paris Diderot (Paris 7), Sorbonne Paris Cité).

2. A superconducting, ladder-type artificial atom, a transmon, strongly coupled to a waveguide

Gasparinetti et al.(2019). Two-Photon Resonance Fluorescence of a Ladder-Type Atomic System. arXiv preprint arXiv:1901.00414.

$$\partial_t \hat{\rho} = -\mathrm{i}[\hat{H}, \hat{\rho}] + \frac{\gamma}{2} \left(2\hat{a}\hat{\rho}\hat{a}^\dagger - \hat{a}^\dagger \hat{a}\hat{\rho} - \hat{\rho}\hat{a}^\dagger \hat{a} \right)$$

$$H = -\Delta b^\dagger b + rac{U}{2} b^\dagger b^\dagger b b + \hat{F}(b^\dagger + b) + H_{ph-F}$$

$$H_{ph-F} = \sqrt{\kappa}\phi(t)|F_1\rangle\langle F_0| + H.C.$$

$$\hat{F} = F_0|F_0\rangle\langle F_0| + F_1|F_1\rangle\langle F_1| + F_2|F_2\rangle\langle F_2|.$$

$$\dot{\rho} = -\frac{i}{\hbar}[H, \rho] + \mathcal{L}_A + \mathcal{L}_B + \mathcal{L}_C + \mathcal{L}_D + \mathcal{L}_E$$

$$\mathcal{L}_X = X\rho X^{\dagger} - \frac{1}{2}X^{\dagger}X\rho - \frac{1}{2}\rho X^{\dagger}X$$

$$A = \sqrt{\gamma b}, B = \sqrt{\kappa p_{1,0}} |F_0\rangle \langle F_1|, C = \sqrt{\kappa (1 - p_{1,0})} |F_1\rangle \langle F_0|,$$

$$D = \sqrt{\lambda p_{1,2}} |F_1\rangle \langle F_2|, E = \sqrt{\lambda (1 - p_{1,2})} |F_2\rangle \langle F_1|$$

Effect of Photon Wave-function width on the average dynamics

Comparison of probability distribution of excitation numbers in the steady state for different widths of the photon wave-function

Effect of the values of F2

Comparison of probability distribution of excitation numbers in the steady state for different values of F2

Calculation of the modulus squared Photon Wave function The expectation value of F 20 . The expectation value of excitations $|\phi(t)|^2$

The wigner function develops a bimodality close to the onset of the steady state in the average dynamics

Time(t)

Effects of thermal fluctuations

The calculated photon wave-function reveals the nature of the final equilibrium.

Properties of the steady state of the average dynamics

t = 5.2s

