Name: Jannatul Feredous Nishi. Id: 19-40374-1 Sec: 0

1.

Griven, 36%. (W/W) H₂504, Specific greavity 1.84

Mol. Wt of H₂504=98, gream-equiv-Wt = 49

1. 1 ml cone. H₂504, contains = 0.96 × 1.84 gm

of H₂504,

100 ml cone. H₂504, contain 5 = 0.96 × 01.84 × 1000

= 1766.49 m of

H₂504

1766.49 m of

H₂504

1766.49 m H₂504 in 1000 ml = (1×1766.49 m)/49 gm

= 36.05 N H₂504

Mg(0H)₂ ↔ Mg⁺² + 20H⁻

wiwb × × 2×

Mg(OH)₂ \leftrightarrow Mg⁺² + 20H⁻ equilib X X 2X conc. NaoH \leftrightarrow Na+ + OH⁻ 0.1 0.1 0.1 M

Complete ionization of the Salt in aqueous
Solution is assumed.

Therefore, Total Concentration of OH- in the
Solution is assumed.

Therefore. Solution =

0.1 M (From NaoH) + 2× M (From Mg (OH) 2)

As Mg(OH)₂ is sparingly solution soluble, X is negligibly small.

i. $IOH-I = (0.1 + 2X)M \cong 0.1M$ i. $IOH-I = (0.1 + 2X)M \cong 0.1M$ ii. $IOH-I = (0.1 + 2X)M \cong 0.1M$ on, $1.8 \times 10^{-11} = (X)(0.1)2M$ on, $X = 1.8 \times 10^{-9}M$ i. The solubility of Mg(OH)₂ in 0.1 M

NaOH solution is $1.8 \times 10^{-9}M$. (Ans).

3.

equilib. 1M 2M 1M 2M 1M $(2H_3O+)$

Completely, [H30+] will be 2M.

Therefore in a 0.02 M H2504 Solution.

$$[H_{30}^{\dagger}] = 2 \times 0.02 = 0.04 \text{ M}$$

$$: [OH-] = K_W / [H_{30}^{\dagger}] = (1 \times 10^{-14}) / 0.04$$

$$= 2.5 \times 10^{-13} \text{ M}$$

$$: P^{\dagger} = -109 [H_{30}^{\dagger}] = -109 (0.04) = 1.40$$

4.

Cuciz is a sparringly soluble solt

Let X is the solubility of cuelz in mole liter-I

The following equilibrium exits in its saturated solution:

Cuciz \iff cuet + 201
X X 2X

Equlibrium concentration,

Therefore, so unbility product, $KSP = [CuZt][CU]^2$ $OR, 3.2 \times 10^{-7} = [X][2X]^2$ $OR, 4X3 = 3.2 \times 10^{-7}$ $X = 4.3 \times 10^{-3}$ Mole Liter 1

(Ams)

5.

Applying the Kohlattawsek's law, $\lambda_{\alpha}(NHyOH) = \lambda_{\alpha}(NHyOH) + \lambda_{\alpha}(OH^{-}) - \lambda_{\alpha}(OH^{-}) - \lambda_{\alpha}(OH^{-}) - \lambda_{\alpha}(OH^{-})$ = 130 + 174 - 66 = 238(Ans)

Conductometric Titration

(1) titnation of a string acid against a strong base.

Figure 8 Conductometic Fitnation Curve Fore Hel and Nach

(11) Titration of a weak acid agaist

Figure: Conductometrice titration curive forc CH3COOH and NaOH. (III) Titation of a strong acid against a weak base.

Figure: Conductometric titration Curve forc Her and NH40H

(IV) Titration of a weak acid againt a weak base.

Figure: Condactometric titration Curve for CH3 and NH30H.