Computational Analysis of Sound and Music

Deep Learning - Fundamentals

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Outline

- Audio Data Representations
- Data Normalization
- Data Augmentation
- Deep Learning
- Multi-Layer Perceptron

Audio Data Representation

One-Dimensional Representations

Audio samples frames ("end-to-end learning")

- Hopsize *H*_f
- Blocksize *W*_f

• Number of frames
$$N_{\rm f} = \left[\frac{N - W_{\rm f}}{H_{\rm f}}\right] + 1$$

■ Tensor $\mathcal{X} \in \mathbb{R}^{N_{\mathrm{f}} \times W_{\mathrm{f}}}$

Audio Data Representation

One-Dimensional Representations

Feature vectors from audio sample frames

- Example: MFCC features ($N_{\text{feat}} = 13$)
- Tensor $\mathcal{X} \in \mathbb{R}^{N_{\mathrm{f}} \times N_{\mathrm{feat}}}$

Audio Data Representation

Two-Dimensional Representations

- 2D representation
 - Spectrogram patches
 - "Image-like" input
 - Commonly for convolutional layers
 - Number of frequency bins F
 - Patch hopsize H_p
 - Window length $W_{
 m p}$
- Number of patches $N_{\rm p} = \left[\frac{N_{\rm f} W_{\rm p}}{H_{\rm p}}\right] + 1$
 - Tensor $\mathcal{X} \in \mathbb{R}^{N_{\mathrm{p}} \times F \times W_{\mathrm{p}}}$

Outline

- Audio Data Representations
- Data Normalization
- Data Augmentation
- Deep Learning
- Multi-Layer Perceptron

Why?

- Consistent scale of input data
 - Stabilizes learning
 - Equalizes feature contribution to learning algorithm (gradient descent)
 - Accelerates convergence
 - Prevents numerical instability
 - Reducing risk of exploding/vanishing gradients

How?

- Statistics can be computed per
 - Patch / Batch (later ...) / Frequency bin / Dataset
- Min-Max Normalization
 - Rescales input data to [0, 1]
 - Distribution outliers can cause skewed data distributions

$$x_i \leftarrow \frac{x_i - \min x}{\max x - \min x}$$

Scikit-learn: sklearn.preprocessing.MinMaxScaler

How?

- Standardization (z-score normalization)
 - Modify data distribution to zero-mean and unit-variance
 - Distribution outliers can cause skewed data distributions

$$x_i \leftarrow \frac{x_i - \bar{x}}{\delta + \varepsilon}$$

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

Scikit-learn: sklearn.preprocessing.StandardScaler

How?

Example

Outline

- Audio Data Representations
- Data Normalization
- Data Augmentation
- Deep Learning
- Multi-Layer Perceptron

Why?

- Reduces data scarcity (limited amount of training data)
- Diversified training data
 - Enhanced generalization towards new, unseen data
 - Improved robustness towards changes in the input data

How?

- Audio Signal Processing
 - Time-Shift
 - Pitch-Shift
 - Noise
- Make sure not to alter semantic annotation

Audiomentations

How?

- Computer Vision Techniques
 - Sometimes effective (but lack intuition in audio domain)

Fig-D2-1

Albumentations

How?

Example

Outline

- Audio Data Representations
- Data Normalization
- Data Augmentation
- Deep Learning
- Multi-Layer Perceptron

Deep Learning

Introduction

- Artificial neural networks → mimic brain processing
 - Connected neurons
 - Weighted input summation
 - Non-linear processing
- Shallow networks → deep networks

dendrites

nucleus

axon

out

axon

terminals

cell

Deep Learning

Hierarchical Feature Learning

Example: Face recognition

Fig-D2-4

Edges, curves

Shapes, object parts

Objects (faces)

First layers

Final layers

Outline

- Audio Data Representations
- Data Normalization
- Data Augmentation
- Deep Learning
- Multi-Layer Perceptron

Components

- Dense/Fully-connected neural network
- Trainable parameters
 - Weights W
 - Biases b
- Hyperparameters
 - Number of layers (depth)
 - Layer width

tensorflow.keras.layers.Dense

Operations

- Operations in layer l
 - Weighted input summation

$$z^{(l)} = W^{(l)}a^{(l-1)} + b^{(l)}$$

Non-linear activation function

$$a^{(l)} = f^{(l)}(z^{(l)})$$

tensorflow.keras.layers.Dense

Activation Functions

- Non-linear operations allow DNNs (of limited depth) to model complex IO mappings
- Two examples
 - Rectified Linear Activation Function (ReLU)

$$f(z) = \max(0, z)$$

Scaled Exponential Linear Units (SELU)

$$f(z) = \begin{cases} \lambda z, & \text{if } z > 0 \\ \lambda \alpha (e^z - 1), & \text{otherwise} \end{cases}$$

tensorflow.keras.layers.Activation

Activation Functions (Output Layer)

- Depends on modeling task
 - Regression → Linear AF

$$f(z) = z$$

■ Multilabel classification \rightarrow Sigmoid AF (independent probability values for C classes: f(z): $\mathbb{R}^C \rightarrow (0,1)^C$)

$$f(z)_c = \frac{1}{1 + e^{-z_c}}$$

■ Multiclass classification \rightarrow Softmax AF (Probability distribution over C classes: f(z): $\mathbb{R}^C \rightarrow (0,1)^C$, $\sum_{c=1}^C f(z)_c = 1$

$$f(z)_c = \frac{e^{z_c}}{\sum_{j=1}^{C} e^{-z_j}}$$

Model Training

Training → Optimization problem

$$\hat{\theta} = \arg\min_{\theta} L(\theta)$$

- $\theta \rightarrow$ Model parameters
- $L \rightarrow \text{Loss function}$
- Gradient-based optimization

$$\theta \coloneqq \theta - \epsilon \nabla_{\theta} L(\theta)$$

- $\epsilon \rightarrow$ Learning rate
- ∇_{θ} \rightarrow Gradient of model parameters w.r.t. loss function
- Loss contours typically non-convex
 - Local minima and saddle points must be avoided

Model Training

- Backpropagation algorithm
 - Compute gradients of network weights w.r.t. loss function from last to first layer using the chain rule of derivatives
- Epoch
- During one training epochs, the entire training set has been processed as mini-batches
- Loss functions
 - Regression → Mean squared error (MSE)
 - Multilabel classification → Binary Crossentropy
 - Multiclass classification → Categorical Crossentropy

Model Training

- Bias → Proportional to model error on training data
- Variance → Difference between training and test error
 - Measures how well model generalizes to new data

Programming session

Fig-A2-13

References

Images

Fig-D2-1: Grollmisch S, Cano E. Improving Semi-Supervised Learning for Audio Classification with FixMatch. Electronics. 2021; 10(15):1807. https://doi.org/10.3390/electronics10151807, Fig. 2

Fig-D2-2: https://miro.medium.com/max/915/1*SJPacPhP4KDEB1AdhOFy Q.png

Fig-D2-3: https://www.skampakis.com/wp-content/uploads/2018/03/simple_neural_network_vs_deep_learning.jpg

Fig-D2-4: https://pic4.zhimg.com/80/v2-057b248288a8af2f01272a956f862873_1440w.png

