Chapter ML:II

II. Machine Learning Basics

- □ On Data
- □ Regression
- Concept Learning: Search in Hypothesis Space
- Concept Learning: Search in Version Space
- Measuring Performance

ML:II-1 Basics ©STEIN 2005-2013

- □ An object o ∈ O is described by a set of attributes.
 An object is also known as record, point, case, sample, entity, or instance.
- An attribute A is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

ML:II-2 Basics ©STEIN 2005-2013

- □ An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- An attribute A is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

ML:II-3 Basics ©STEIN 2005-2013

- □ An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- An attribute A is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

ML:II-4 Basics ©STEIN 2005-2013

- Attribute values may vary from one object to another or one time to another.
- The same attribute can be mapped to different attribute values.

Example: height can be measured in feet or meters.

Different attributes can be mapped to the same set of values.

Example: attribute values for person ID and age are integers.

The way an attribute is measured may not match the attribute's properties:

ML:II-5 Basics ©STEIN 2005-2013

Types of Attributes

Туре		Comparison	Statistics	Examples	
categorical (qualitative)	nominal	values are names, only information to distinguish objects	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}	
		= ≠			

ML:II-6 Basics ©STEIN 2005-2013

Types of Attributes

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
		$=$ \neq		
	ordinal	enough information to order objects	median, percentiles, rank correlation,	hardness of minerals, grades, street
		< > \leq \geq \geq	run tests, sign tests	numbers, quality: {good, better, best}

ML:II-7 Basics ©STEIN 2005-2013

Types of Attributes

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
	ordinal	enough information to order objects < > \leq \geq \geq	median, percentiles, rank correlation, run tests, sign tests	hardness of minerals, grades, street numbers, quality: {good, better, best}
numeric (quantitative)	interval	differences are meaningful, a unit of measurement exists + –	mean, standard deviation, Pearson's correlation, t -test, F -test	calendar dates, temperature in Celsius, temperature in Fahrenheit

ML:II-8 Basics ©STEIN 2005-2013

Types of Attributes

Туре		Comparison	Statistics	Examples	
categorical (qualitative)	nominal	values are names, only information to distinguish objects	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}	
		$=$ \neq			
	ordinal	enough information to order objects	median, percentiles, rank correlation,	hardness of minerals, grades, street	
		< > < ≥	run tests, sign tests	numbers, quality: {good, better, best}	
numeric (quantitative)		differences are meaningful, a unit of measurement exists + -	mean, standard deviation, Pearson's correlation, t -test, F -test	calendar dates, temperature in Celsius, temperature in Fahrenheit	
	ratio	differences and ratios are meaningful * /	geometric mean, harmonic mean, percent variation	temperature in Kelvin, monetary quantities, counts, age, length, electrical current	

ML:II-9 Basics ©STEIN 2005-2013

Types of Attributes

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.

ML:II-10 Basics ©STEIN 2005-2013

Types of Attributes

Туре		Permissible transformation	Comment
categorical nominal (qualitative)		any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \to f(x)$, where f is a monotonic	An attribute encompassing the notion of $\{good, better, best\}$ can be represented equally well by the values $\{1, 2, 3\}$.

ML:II-11 Basics ©STEIN 2005-2013

Types of Attributes

Туре		Permissible transformation	Comment	
categorical nominal (qualitative)		any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.	
	ordinal	any order-preserving change of values: $x \to f(x)$, where f is a monotonic	An attribute encompassing the notion of $\{good, better, best\}$ can be represented equally well by the values $\{1, 2, 3\}$.	
numeric (quantitative)	interval	$x \rightarrow a \cdot x + b$, where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).	

ML:II-12 Basics ©STEIN 2005-2013

Types of Attributes

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \to f(x)$, where f is a monotonic	An attribute encompassing the notion of $\{good, better, best\}$ can be represented equally well by the values $\{1, 2, 3\}$.
numeric (quantitative)		$x \rightarrow a \cdot x + b$, where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
	ratio	$x \to a \cdot x$, where a is a constant	Length can be measured in meters or feet.

ML:II-13 Basics ©STEIN 2005-2013

Remarks:

Identifying, considering, and measuring an attribute A of an object O is the heart of model formation and always goes along with a sort of abstraction. Formally, this abstraction is operationalized by a model formation function $\alpha:O\to X$. [ML Introduction]
The terms "attribute" and "feature" can be used synonymously. However, a slight distinction is the following: attributes are often associated with objects, \mathcal{O} , while features usually designate the dimensions of the feature space, X .
The type of an attribute is also referred to as the type of a <i>measurement scale</i> or <i>level of measurement</i> .
We call a transformation of an attribute <i>permissible</i> if its meaning is unchanged after the transformation.
Distinguish between <i>discrete</i> attributes and <i>continuous</i> attributes. The former can only take a finite or countably infinite set of values, the latter can be measured in infinitely small units. Be careful when deriving from this distinction an attribute's type.
We will encode attributes of interval type or ratio type by real numbers. Note that attributes of nominal type and ordinal type can also be encoded by real numbers.

ML:II-14 Basics ©STEIN 2005-2013

Particular learning methods require particular attribute types.

Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with differently intricate characteristics:

- 1. Inhomogeneity of attributes:
- 2. Inhomogeneity of objects:
- 3. Inhomogeneity of distributions:
- 4. Curse of dimensionality:
- 5. Resolution:

Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with differently intricate characteristics:

1. Inhomogeneity of attributes:

Consider the combination of different attribute types within a single object.

2. Inhomogeneity of objects:

Consider the combination of different objects in a single data set.

3. Inhomogeneity of distributions:

The correlation between attributes varies in the sample space.

4. Curse of dimensionality:

Attribute number and object density stand in exponential relation.

5. Resolution:

The number of objects or attributes may be given at different resolutions.

ML:II-16 Basics ©STEIN 2005-2013

Types of Data Sets: Record Data

Collection of records, each of which consists of a fixed set of attributes:

ID	Check	Status	Income	Risk
1	+	single	125 000	No
2	-	married	100 000	No
3	-	single	70 000	No
4	+	married	120 000	No
5	-	divorced	95 000	Yes
6	-	married	60 000	No
7	+	divorced	220 000	No
8	-	single	85 000	Yes
9	-	married	75 000	No
10	-	single	90 000	Yes

- If all elements in a data set have the same fixed set of numeric attributes, they can be thought of as points in a multi-dimensional space.
- Such data can be represented by a matrix, where each row stores an object and each column stores an attribute.

Example: term-document matrices in information retrieval.

ML:II-17 Basics ©STEIN 2005-2013

Types of Data Sets: Graph Data

Graph of the Linked Open Data cloud [richard.cyganiak.de]:

ML:II-18 Basics ©STEIN 2005-2013

Types of Data Sets: Ordered Data

Average monthly temperature of land and ocean (= spatio-temporal data):

ML:II-19 Basics ©STEIN 2005-2013

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

ML:II-20 Basics ©STEIN 2005-2013

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)

Given a set of repeated measurements of the same quantity. Then, the closeness of the measurements to one another is called *precision*, a possible systematic variation is called *bias*, and the closeness to the true value is called *accuracy*.

ML:II-21 Basics ©STEIN 2005-2013

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)

Given a set of repeated measurements of the same quantity. Then, the closeness of the measurements to one another is called *precision*, a possible systematic variation is called *bias*, and the closeness to the true value is called *accuracy*.

Examples for data quality problems:

- □ noise, artifacts, outliers
- missing values
- duplicate data

ML:II-22 Basics ©STEIN 2005-2013

Data Quality: Noise

Noise refers to random modifications of attributes that often have a spatial or temporal characteristics:

Noise represents the intrinsic variability of data. [Bishop 2006, p.47]

Artifacts refer to more deterministic distortions of a measurement process.

ML:II-23 Basics ©STEIN 2005-2013

Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably different than most of the other elements:

ML:II-24 Basics ©STEIN 2005-2013

Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably different than most of the other elements:

ML:II-25 Basics ©STEIN 2005-2013

Data Quality: Missing Values

Main reasons for missing values:

1. Information is not collected.

Example: people decline to give their age or weight.

2. Attributes may not be applicable to all elements in O.

Example: annual income is not applicable to children.

Information is not trustworthy.

Example: profile data on Facebook is intentionally misleading.

Strategies for handling missing values:

- eliminate members of the data
- estimate missing values
- ignore the missing value during analysis
- replace with all possible values weighted by their probabilities

ML:II-26 Basics © STEIN 2005-2013

Data Preprocessing

- sampling of object set O
- \Box modeling of objects, $\alpha: O \to X$
- $lue{}$ sampling of feature space X [ML Introduction]
- selection of attributes (features) [attributes versus features]
- transformation of attributes (features)
- discretization and binarization of attributes (features)
- \Box dimensionality reduction of feature space X

ML:II-27 Basics ©STEIN 2005-2013