HNCO

Visualization of Walsh transforms of various functions defined on bit vectors

August 15, 2021

Abstract

This document proposes a visualization of Walsh (or Fourier) transforms of various functions defined on bit vectors (hypercube) of size n=10. For each function, two graphics are displayed. In the first one, coefficients of the Walsh transform are sorted in decreasing order of amplitude and normalized relatively to the largest amplitude. The second graphics displays the energy (sum of squares of coefficients) as a function of the feature Hamming weight. This can be thought of as a power spectrum. The coefficient of the feature zero has been filtered out. Coefficients c such that $0 < |c/c_{\rm max}| < 10^{-10}$ have also been filtered out as they mostly result from accumulated errors in floating point arithmetic.

Contents

1	All functions	2
2	one-max	3
3	lin	4
4	leading-ones	5
5	\mathbf{ridge}	6
6	m jmp-2	7
7	m jmp-4	8
8	${ m djmp-2}$	9
9	$\operatorname{djmp-4}$	10
10	fp-2	11
11	fp-4	12
12	nk	13
13	max-sat	14
14	labs	15
15	ep	16
16	cancel	17
17	trap	18
18	hiff	19
19	plateau	20
20	needle	21
21	long-path	22

22 walsh2	23

A Plan		23

B Default parameters 25

1 All functions

2 one-max

4 leading-ones

5 ridge

7 jmp-4

8 djmp-2

9 djmp-4

11 fp-4

12 nk

13 max-sat

14 labs

16 cancel

17 trap

18 hiff

19 plateau

20 needle

21 long-path

22 walsh2

A Plan

```
{
    "exec": "hnco",
    "opt": "--fn-walsh-transform -b 0 -s 10",
    "parallel": true,
    "results": "results",
"graphics": "graphics",
    "report": "report",
    "functions": [
         {
              "id": "one-max",
              "opt": "-F 0"
         },
              "id": "lin",
              "opt": "-F 1 -p instances/lin.10"
         },
              "id": "leading-ones",
              "opt": "-F 10"
         },
              "id": "ridge",
"opt": "-F 11"
         },
         {
```

```
"id": "jmp-2",
    "opt": "-F 30 -t 2"
},
{
    "id": "jmp-4",
    "opt": "-F 30 -t 4"
},
    "id": "djmp-2",
    "opt": "-F 31 -t 2"
},
    "id": "djmp-4",
    "opt": "-F 31 -t 4"
},
{
    "id": "fp-2",
    "opt": "-F 40 -t 2"
},
    "id": "fp-4",
    "opt": "-F 40 -t 4"
},
{
    "id": "nk",
    "opt": "-F 60 -p instances/nk.10.2"
},
    "id": "max-sat",
    "opt": "-F 70 -p instances/ms.10.3.10"
},
{
    "id": "labs",
    "opt": "-F 80"
},
    "id": "ep",
    "opt": "-F 90 -p instances/ep.10"
},
{
    "id": "cancel",
    "opt": "-F 100 -s 9"
},
    "id": "trap",
    "opt": "-F 110 --fn-num-traps 2"
},
{
    "id": "hiff",
    "opt": "-F 120 -s 8"
},
    "id": "plateau",
    "opt": "-F 130"
},
    "id": "needle",
    "opt": "-F 20"
},
    "id": "long-path",
    "opt": "-F 140"
},
```

```
{
    "id": "walsh2",
    "opt": "-F 162 -p instances/walsh2.10"
}
]
```

B Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
\# bv_size = 100
# description_path = description.txt
\# ea_lambda = 100
\# ea_mu = 10
# expression = x
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# fp_expression = (1-x)^2+100*(y-x^2)^2
# fp_lower_bound = -2
# fp_num_bits = 8
# fp_upper_bound = 2
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_bit_herding = 0
# hea_num_seq_updates = 100
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_weight = 1
# learning_rate = 0.001
# map = 0
# map_input_size = 100
# map_path = map.txt
# map_ts_length = 10
# map_ts_sampling_mode = 0
# mutation_rate = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = function.txt
# pn_mutation_rate = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# results_path = results.json
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
```

```
# seed = 0
# selection_size = 1
# solution_path = solution.txt
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
# version = 0.15
# Generated from hnco.json
```