

수 학습과 기억

- L3. Learning[1] -Key Questions-
- L4. Learning[2]
- L5. Learning[3]
- L6. Learning[4]
- L7. Learning Examples
- L8. Learning -Neurological Basis[1]-
- L9. Learning -Neurological Basis[2]-
- L10. Memory[1]
- L11. Memory[2]

▼ L3. Learning[1] -Key Questions-

History of Learning & Memory Theories

- Aristotle
- · Aristotle's theory on memory "associationism"
 - Memory는 event, sensation, idea 사이의 linkage(=association)의 형태에 의 존
 - hot cold, table chair, needle thread
 - o association의 3가지 fundamental principles
 - contiguity 접촉, 인접 (nearness in time or space)
 - frequency
 - similarity
 - o empiricism (↔ nativism): 경험주의 (↔ 선천설)

Learning & Memory

 Learning: world와 interacting하는 experience의 결과로 behavior이 변화하는 process

• memory: learning을 통해 acquired(획득한) past experience의 internal record

Linking ideas in the mind

- Ivan Pavlov and conditioning studies
 - o animal learning을 연구하는 방법 개발
 - classic conditioning = Pavlovian conditioning
 - bell과 food라는 2개의 concept가 mind에서 linked 되어 있음
 - certain stimulus(sensory event)는 2번째 event의 occurrence를 예측한 다
 - learning curve
 - training trial이 accumulate(누적)될수록, 동물 응답 강해짐
 - independent variable = the factor being manipulated 종소리
 - dependent variable = the factor under observation 개의 반응
 - o extinction (소멸)
 - stimulus와 reward를 결합하여 stimulus에 대한 learned experience를 줄이는 과정
 - bell에 대한 개의 응답은 벨을 음식의 부재와 결합해서 약화시킬수 있다.
 - generalization
 - past learning을 novel(similar) 사건 및 문제로 transfer
 - 분당 90박자의 메트로놈에 반응하는 법을 배운 개는 비슷한 소리에도 반응 했다.
- Edword Thorndike and the law of effect
 - desirable(바람직한) outcome으로 이어지는 behavioral response는 learned
 될 가능성이 더욱 높을 수 있다
 - operant conditioning (instrumental conditioning)

Formal models and universial laws

- Hermann Ebbinghaus and human memory experiments
 - o memory에 대한 first rigorous(엄격한) human experiments

- o forgetting: 시간 경과에 따른 memory loss 또는 deterioration(저하)
- o retention curve(유지 곡선): initial learning 이후 forgetting as a function of thime

experimental designs

- hypothesis(가설): limited evidence에 근거한 supposition(가정) → further investigation(추가 조사)를 위한 출발점
- subject bias(피험자 편향): subject의 prior knowledge나 expectation이 실험 결과에 미치는 영향
- experimental bias: experimenter의 prior knowledge나
 expectation(consciously) or unconsciously)가 실험 결과에 미치는 영향
- blind design: participant는 hypothesis를 모르고 experimental treatment를 받고 있는지, placebo를 받고 있는지 알지 못함
- double-blind design: experimenter도 subject도 group assignment를 알지 못함 (즉, experimental treatment? placebo?)
- placebo: active substance(experimental drug)의 효과를 비교하기 위해 한 그룹의 참가자에게 투여되는 inactive substance(설탕 알약 등)

▼ L4. Learning[2]

From this case...

- Habituation: repeated experience에 대한 responding loss
 - o learning 중에서 the most widespread forms
 - 지금까지 테스트된 all organisms는 (뇌가 없는 유기체 포함) 모두 habituation을 나타냄
- Sensitization: repetition을 통해 event에 대한 attention 증가
- Perceptual learning: repeated exposure은 둘 혹은 그 이상의 confusable stimuli
 를 discriminate(구별)하는 능력을 향상

Habituation

 definition: behavior를 일으키는 자극에 반복적으로 노출된 후 행동의 strength, occurrence가 감소하는 것

- ex) first sight of snow; moving to a new place
- process

- evidence from experiments
 - o rat의 acoustic startle reflex (음향 놀람 반사)
 - loud, unexpected noise에 대한 defensive(방어적인) response
 - loud noise가 rat을 jump하게 만든다
 - → 자극이 반복되면 startle responce 감소
 - o orienting response in humans (인간 유아의 지향 반응)
 - novel stimulus나 important event에 head or eyes를 향하게 돌려서 반응
 - [방법] 영아에게 바둑판 무늬(unfamiliar visual stimulus) 제시 → shifting gase elsewhere(시선을 다른 곳으로 옮기기 전에) 몇 초간(=고정시간 fixation time) 바라본다
- Stimulus specificity & generalization
 - stimulus specificity
 - one event에 대한 habituation은 same sensory modality(동일 감각 양식)에서 다른 모든 자극에 대한 습관화를 유발하지 않음
 - ex) image에 대한 baby의 fixation time

- stimulus generalization
 - habituated 습관화된 similar stimulus에 대한 response 감소
 - ex) new image를 보여줄 때 baby의 fixation time은 그 이미지가 repeatedly experienced한 image와 얼마나 유사한지에 달려있음

Sensitization

- definition: salient stimulus (두드러진 자극, ex. 전기 충격)이 temporarily하게 other stimuli에 대한 strength of responses를 증가시키는 현상
- ex) 일부 celebrity는 paparazzi와 직면했을 때 aggressive 해짐
- process

- 。 single intense(강렬한) stimulus 또는 repeated salient(현저한) stimuli
 - → habituated stimuli에 대한 heightened response (고조된 반응)

o not stimulus-specific (특정 자극이 아님) = transfers to other stimul

▼ L5. Learning[3]

Clinical perspectives (임상적 관점)

- habituation in stroke rehabilitation 뇌졸중 재활의 습관화
 - habituation = loss of responding to repeated experiences
 - 。 습관화 = 반복된 경험에 대한 반응 상실
- sensitization to stress found in anxiety and depressive
 - 。 불안과 우울에서 발견되는 스트레스에 대한 민감성
- perceptual learning when using sensory prothesis
 - 。 감각 보철물 사용 시 지각 학습

Classical conditioning (pavlovian conditioning) - basic concepts

- dog는 see or smells food 하면 자연스럽게 salivate (침을 흘린다)
 - unconditioned stimuli (무조건 자극) & unconditioned response (무조건 반응)
 - stimuli는 conditioning 없이 어떤 반응을 evoke 일으킨다.
- pairing the bell with food (conditioning)
 - conditioned stimuli & conditioned response

basic concepts

- unconditioned stimuli (US): prior training이 없을 경우, 자연스럽게 response를 evoke하는 단서
- unconditioned response: unconditional stimulus에 대해 자연적으로 발생하는 반응
- conditioned stimulus: unconditioned stimulus와 쌍을 이루어 conditioned response를 이끌어내는 것

conditioned response: ???!!! The trained response to a conditioned stimulus
 (CS) in anticipation of the unconditioned stimulus (US) that it predicts (예측하는 무조건 자극을 예상하여 조건 자극에 대한 훈련된 반응)

Pavlov's experiment

- 훈련 전: bell —(time)—> dog
- 훈련 동안: bell 조건 자극 —(time)—> food 무조건 자극 —(time)—> 침 흘리는 개 무조건 반응
- 훈련 후: bell 조건 자극 —(time)—> 침 흘리는 개 조건 반응

Appetitive vs. Aversive conditioning

- · Appetitive conditioning
 - unconditioned stimulus가 긍정적인 사건
 - 。 욕망이나 식용을 만족시키는 것을 예측하는 법 배우기
- Aversive conditioning
 - unconditioned stimulus가 부정적인 사건
 - 。 ex) 전기 충격
- 참고 이미지

Odor conditioning in flies

• widely used classic conditioning procedures

Appetitive conditioning						
	Unconditioned stimulus, US	Unconditioned response, UR	Conditioned stimulus, CS	Conditioned response, CR		
Pavlov's dog	Food	Salivation	Bell	Salivation		
Quail sex	Sexually available female	Approach, mount- ing, and copulation	Light	Approach		
Aversive conditioning						
Fly shock	Shock	Attempt to escape	Odor	Attempt to escape		
Conditioned emotional response	Shock	Freezing	Tone	Freezing		
Eyeblink conditioning	Airpuff	Blink	Tone	Blink		

• eye blink conditioning

Extinguishing an old association

 extinction: reward or punishment와 pair된 stimulus를 ceasing 줄여 나가서 stimulus에 대한 learned response를 감소시키는 과정

▼ L6. Learning[4]

Operant conditioning

- definition: organisms가 특정 결과를 make, refrain (얻거나 피하기) 위해 특정 반응을 obtain, avoid (하거나 삼가는) 것을 배우는 과정
- operant: organism은 outcom을 발생하는 방식으로 환경에서 operate함
 - = instrumental conditioning
- organism의 행동은 outcome을 산출하는데 instrumental 도구적이다
- ex) 가축, 유아의 배변 훈련
- 고양이가 puzzle box에서 escape 하는 것을 배운 방법에 대한 연구
 - 동물이 레버를 누르고 밧줄 당기고 페달 밟는 순서를 올바르게 수행하면 내부에서 열수 있는 문
- law of effect: 동물 반응에 satisfying outcome이 뒤따랐을 때 (탈출, 음식 얻기 등), 그 반응이 future에 다시 일어날 확률 높아짐

Law of effect

- particular stimulus(SD)가 있는 경우, 특정 반응이 특정 결과로 이어질 수 있음
 - discriminative stimulus = organism이 R이 O로 이어지는 조건을 discriminate (식별)하는데 도움이 되는 차별적 자극
 - outcome이 desirable 바람직하거나 pleasant하면, R 빈도가 증가하는 경향이 있음 (SD-R association 강화)
 - reinforcement = 행동의 가능성을 증가시키는 행동에 대한 결과를 제공하는 과정
 - o punishment = 행동의 가능성을 감소시키는 행동에 대한 결과를 제공하는 과정

Classical vs. Operant conditioning

- 차이점
 - classical은 유기체가 conditioned responce 수행 여부에 관계없이 결과 unconditioned stimulus를 경험 / operant는 outcom이 response를 하냐 마느 냐에 따라 다름
 - 。 예를 들어

Outcomes

	Response increases (reinforcement)	Response decreases (punishment)
Outcome is added (positive)	Positive reinforcement Example: Clean room → get weekly allowance	Positive punishment Example: Tease little sister → receive parental scolding
Outcome is removed (negative)	Negative reinforcement (escape/avoidance training) Example: Take aspirin → headache goes away	Negative punishment (omission training) Example: Fight with other children → time-out from play

additional concepts

- negative contrast: 원하는 게 예상됐는데 안주면 반응이 약화됨
- differential reinforcement of althernative behaviors DRA 대체 행동 차등 강화
- shaping: An operant conditioning technique in which successive approximations to a desired response are reinforced
- chaining: An operant conditioning technique in which organisms are gradually trained to execute complicated sequences of discrete responses

Reinforcement/punishment schedules

- Continuous reinforcement schedule: 모든 responce가 consequence 따름
- Partial (Intermittent) reinforcement schedule: 몇몇 response만 강화됨

- fixed-ratio FR 스케줄: 정해진 반응 횟수를 성공적으로 수행하면 강화 받음
- fixed interval FI 스케줄: 정해진 시간 간격으로 강화 받음
- variable ratio VR 스케줄: 무작위로 정해진 반응횟수 수행 시 강화
- variable ratio VI 스케줄: 무작위 시간 간격으로 강화 받음

▼ L7. Learning Examples

▼ L8. Learning -Neurological Basis[1]-

Synapse

- neuron과 또 다른 neuron의 사이에 있는 space
 - ∘ nerve impulse는 neurotransmitter에 의해 이웃 세포로 전달됨
 - Glutamate, GABA, acetylcholine, norepinephrine, epinephrine, serotonin
 - ∘ receptor은 특정 종류의 neurotransmitter에 결합
- presynaptic/postsynaptic neurons
- synaptic transmission

Manipulating nervous system activity 신경계 활동 조작

- neural connection의 변화 유발: synaptic pasticity 시냅스 가소성
 - Hebbian learning
 - learning에는 coactive neuron의 연결 강화가 포함됨;
 - Neurons that fire together, wire together
 - 。 과정
 - stimulus input이 neuron의 subset을 activate
 - coactive neuron 간의 connection이 강력해진다

- An incomplete version of a familiar stimulus may activate some of the neurons in the subset that represents the stimulus.
- Long-term potentiation (LTP)
 - recent activity의 결과로 synaptic transmission이 더욱 효과적으로 전달
- Long-term depression (LTP)
 - recent activity의 결과로 synaptic transmission의 효과가 떨어짐
- LTP & LTD는 learning의 neural mechanism이 될 수 있는 synaptic plasticity의 형태를 나타낸다

▼ L9. Learning -Neurological Basis[2]-

Habituation in Sea Hares

- habituation의 neural mechanisms
 - initial response
 - sensory neuron S → glutamate 분비 → motor neuron M 활성화 → withdrawal response (위축반응)
 - repeated stimulations
 - sensory neuron S가 less glutamate 분비 (=synaptic depression, synaptic transmission의 감소) → long-term depression
 - ∘ habitation은 homosynaptic이다
 - nearby synapse가 아니라 한 그룹의 synapse에 발생
 - 한마디로 근처의 sensory neuron은 반응 안하고, motor neuron만 영향을 받는다
 - tail, mantle을 가볍게 터치하면 gill-withdrawal reflex 유발 (아직 습관화되지 않은 상태)
 - long term habituation
 - sensory neuron과 motor neuron 간의 실제 시냅스 연결 수가 감소

Sensitization in Sea Hares

sensitization의 neural mechanism

- light touch 대신 unpleasant stimuli (tail shock) → large & sustained (지속
 적인) 반응
 - sensory neuron T → motor neuron M + interneurons (In) 활성화 → withdrawal response
- interneuron
 - 두 뉴런 사이에 message를 전달하는 modulatory 조절 neuron
 - transmitted 전달되는 message의 강도를 변경
 - 예를 들어 In은 T를 S와 U 뉴런에 모두 연결해서 neuromodulator인 serotonin을 방출 → 사용 가능한 glutamate vesicle 수 증가 → 뉴런 S가 자극되어, response의 amplitude 커짐
 - motor 또는 sensory output을 직접 생성하지 마라

Perceptual learning 지각 학습

- · receptive field
 - o particular cortical neurons 그룹을 발화시키는 자극의 범위
 - o ex) sound frequency의 특정 range에 맞춰진 auditory cortex
 - ex) somatosentory cortex to an area among body parts
- perceptual learning의 neural mechanism
 - 더 많은 뉴런이 특정 type, source, 자극의 강도에 맞춰질수록 (tuned)
 organism은 이러한 stimuli와 관련된 fine(미세한) distinction을 더 잘할 수 있게 됨
 - cortical plasticity
 - cortical receptive field와 special map(topographic maps)의 capacity는
 경험의 결과에 따라 변한다
 - 예를 들어, 하루도 지나지 않아 성인 인간의 cortical reorganization은 바뀔 수 있다
 - pin으로 fingertip을 반복해서 터치 → pin의 위치에 따른 subtle differences를 구별하는 능력 향상 + stimulation에 의해 더 큰 뇌 영역이 활성화됨

▼ L10. Memory[1]

Amnesia 기억 상실

- definition: partial/complete loss of memory, temporary/permanent
- causes
 - o organic amnesia: injury, disease 같은 physiological 요인
 - o drug-induced amnesia: substance use
 - 。 dissociative amnesia: 트라우마 경험 등 psychological 요인
- type
 - o anterograde amnesia: 새로운 정보를 학습할 수 없음
 - ∘ retrograde amnesia: 이전에 학습한 정보, 사건을 회상할 수 없음

Types of memory

- long vs short term memory
 - duration: temporal decay in short term memory
 - 。 capacity: 단기 기억이 제한됨
 - o ex) 7자리 숫자 이상은...

Working memory

- cognitive task에 대한 short term memory
- 단기 기억에 정보 저장하고 조작하는 subcomponent
- 단기 기억을 관리하기 위해 attention 사용

Declarative vs. Non-declarative memory

- declarative: verbalized 혹은 explicity하게 전달할 수 있는 기억
- explicit: 그 사람이 알고 있는 기억(정보를 알고 있음을 알고 있음)
- non-declarative: episodic, sementic하지 않는 기억
- implict: person's awareness 없이 발생하는 기억

Episodic vs. Semantic memory

- episode: autobiographical 사건에 대한 기억; event가 발생한 공간 및 시간 context에 대한 정보 포함
- semantic: general personal information을 포함한 세상에 대한 사실 또는 일반적 인 지식에 대한 기억

Episodic memory event-related: "I remember"	Semantic memory factual: "I know"	Same (✓) or Different (✗)
Can be communicated flexibly—in a format other than that in which it was acquired	Can be communicated flexibly—in a format other than that in which it was acquired	✓
Consciously accessible (you know that you know)	Consciously accessible (you know that you know)	✓
Tagged with spatial and temporal context	Not necessarily tagged with spatial or temporal context	×
You must have experienced the event personally	Can be personal or general information	×
Learned in a single exposure ; can be weakened by exposure to similar events	Can be learned in a single exposure, but can also be strengthened by repetition	X

Encoding new memories

- memory에 더 많이 exposure한다고 기억이 보장되는 것은 아님
 - ex) coin face의 상세한 얼굴 인식해보기

- memory는 prior knowledge와 관련된 정보에 더 유익
- 예를 들어
 - 。 실험자는 참가자에게 단락을 큰 소리로 읽습니다
 - o paragraph만 들은 사람(no topic), 주제를 알고 들은 사람(제일 나음), 듣고 주 제를 알게된 사람은 no topic보다 낫지 않았음
- encoding 시 deeper processing으로 recognition 향상 (levels of processing effect)
 - deeper processing, 그러니까 단어의 의미론적 의미에 대해 생각하는 것 같은
 더 깊은 처리는 얕은 처리(철자, 발음)보다 정보를 더 잘 기억하게 함
 - 예를 들어, 참가자에게 단어 보여주고 생물/무생물, 알파벳/비알파벳 결정하라고 하자 역시 animate 승

Retrieving existing memories 기존 메모리 검색

- study와 test 조건이 일치할 때 memory retrieval 더 잘됨
 - memory retrieval은 test에서 사용 가능한 단서가 encoding에서 사용한 단서
 와 유사할 때 가장 좋다
- more cues는 recall에 더욱 좋다(즉 free recall이 더 어렵다)
 - free recall: 단순히 memory에서 요청된 정보 생성
 - o cued recall: recall을 돕기 위해 prompt, cue 제공
- struggling, failing은 기억력 향상 가능
 - o attention, active participation, desirable difficulties 등은 도움이 됨
 - 。 ex) 수업 중 짧은 퀴즈와 설문

▼ L11. Memory[2]

Simple forgetting

- squire의 실험
 - 설정: 사람들에게 1년~15년 전 텔레비전 쇼에 대해 질문 (sementic memory)

- 결과: 대부분의 사람은 1년 전 TV 쇼는 정확하지만 이전 연도로 갈수록 더 적어 지는 인식 수
- passive(simple) forgetting
- 10년 이내에 망각이 발생했고, 10년 전이나 15년 전이나
- anderson의 실험
 - 사람들은 tried to remember, training 이후로 본적 없는 단어보다 tried to forget한 단어를 더 잘 잊었다
 - directed forgetting (사람들이 의도적으로 기억을 억누름)
 - o ex) 개인은 매우 traumatic하고 unpleasant한 사건은 잊음

Interference 간섭

- proactive interference
 - 기존에 저장된 정보에 의해 new learning이 방해 받음
 - 。 ex) 컴퓨터 암호 변경했을 때 변경 전 암호 입력하기
- · retroactive interference
 - o new learning에 의해 오래된 정보 파괴
 - o ex) 새로운 암호에 익숙해지면 오래 전 암호 까먹음

Source monitoring errors

- 정보는 기억하는데 그 기억의 source가 되는 특정 episode를 착각함
- DRM Deese-Roedinger-McDermott
 - each list에서 word는 모두 particular implicit theme을 공유함
 - 참가자에게 후속 목록이 제공되면, 기존에 없는 주제어를 인식하는 경우가 많음
 - o ex) candy, sugar, honey, taste → implicit theme: sweet → sweet 기억하기

Memory consolidation 메모리 통합

consolidation period

- o new episodic and semantic memory가 vulnerable, easily lost, altered 되는 기간으로 memory가 recall될 때마다 다시 reconsolidate 될 때까지 다시 취약 해질 수 있음
- o carl duncan의 실험
 - electroconvulsive shock 후, conditioned stimuli에 대해 최근에 확립된
 쥐의 기억이 severely disrupted
- electroconvulsive therapy for humans ECT
 - 환자가 anesthesia 마취 상태에서 뇌에 짧은 전기 자극; 전신 발작
 - 다른 치료가 통하지 않는 severe major depression, bipolar disorder에게 사용하는 치료 방법
- 。 ect를 받은 환자에 대한 squire의 실험
 - ect 세션 전에 환자들은 2-3년 전 최근 쇼 잘 기억하고 그 이전 쇼를 덜 잘 기억함 → 건강한 사람과 유사
 - ect 일주일 후, 환자들은 2-3년 이내의 기억을 특히 잃어버림

Memory reconsolidation 메모리 재통합

- old memory가 recall, reactivate될 때마다 수정에 취약해질 수 있는
 - 。 ect 직전에 오래된 메모리를 부르면 오래 전에 통합되었어도 중단 가능
 - memory는 static이 아닌 dynamic
 - 오래된 기억을 불러올 때마다 새로운 정보로 수정
 - 새로운 경험을 바탕으로 update, refine, elaborate
 - 거짓 기억 생성의 핵심 메커니즘
 - o kroes의 실험
 - 환자는 A, B 스토리를 듣고 일주일 후 검사
 - the control group은 스토리 b short pre-test, story a는 점검 받지 않음
 - 스토리 b에서 더 좋은 점수 획득 (reconsolidation)
 - ect 그룹도 스토리 b에 대한 짧은 사전 테스트 받았지만, 스토리 a는 거치지
 않음
 - b 기억력이 나빠짐 (회상에 취약, ect에 의해 중단)

Metamemory

- 자신의 own memory(episodic, sementic)에 대해 생각하는 knowledge, belief, ability; 아는 느낌, 학습 포함
- ex) tip of the tongue phenomenon
- 당장은 답을 찾을 수 없지만, 답을 알고 있다고 확신; 답을 들으면 답 인식 가능
- ex) 질문을 받고 답을 모른다는 것을 아는 것
- Feeling of knowing FOK
 - 。 요청 시 특정 정보 검색 가능한지 여부 예측
 - ∘ 항상 정확하지는 않다 / errors reflect overconfidence
 - o contributing factors: 단어에 대한 친숙함, 답을 알아야 한다는 느낌
- Judgment of learning (JOL)
 - 。 정보 획득 성공 여부를 학습 중 판단
 - 。 일반적으로 과신의 방향으로 부정확할 수도
 - 。 jol 오류에 기여하는 요인
 - 사람들은 새로운 정보를 배우는 가장 효과적인 방법을 잘 모름
 - 예) 학생들이 코스 자료에 대한 친숙함 과신