

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN ANAK USIA DINI, PENDIDIKAN DASAR DAN PENDIDIKAN MENENGAH DIREKTORAT SEKOLAH MENENGAH ATAS 2020

Modul Pembelajaran SMA

UNSUR-UNSUR PERIODE 3 DAN TRANSISI PERIODE 4 KIMIA XII

PENYUSUN Wiwik Indah Kusumaningrum, S.Pd., M.Pd. SMA Negeri 9 Semarang

DAFTAR ISI

PENYUSUN	2
DAFTAR ISI	3
GLOSARIUM	4
PETA KONSEP	5
PENDAHULUAN	6
A. Identitas Modul	6
B. Kompetensi Dasar	6
C. Deskripsi Singkat Materi	6
D. Petunjuk Penggunaan Modul	6
E. Materi Pembelajaran	6
KEGIATAN PEMBELAJARAN 1	7
UNSUR – UNSUR PERIODE 3	7
A. Tujuan Pembelajaran	7
B. Uraian Materi	7
C. Rangkuman	13
D. Penugasan Mandiri	14
E. Latihan Soal	15
F. Penilaian Diri	18
KEGIATAN PEMBELAJARAN 2	19
UNSUR – UNSUR TRANSISI PERIODE 4	19
A. Tujuan Pembelajaran	19
B. Uraian Materi	19
C. Rangkuman	28
D. Penugasan Mandiri	29
E. Latihan Soal	30
F. Penilaian Diri	34
EVALUASI	35
DAFTAR PIISTAKA	40

GLOSARIUM

Diamagnetik : Suatu keadaan di mana atom, molekul, atau ion dapat

ditolak oleh medan magnet karena seluruh elektron pada

orbital d-nya berpasangan.

Energi ionisasi : Energi yang diperlukan untuk melepaskan elektron

terluar suatu atom.

Flotasi : pemekatan bijih dengan cara pengapungan

Ion kompleks : yaitu suatu struktur dimana kation logam dikelilingi oleh

dua atau lebih anion atau molekul netral yang disebut

ligan.

Jari-jari atom : Jarak dari inti atom sampai kulit terluar.

Kalkopirit : Senyawa CuFeS₂ yang merupakan bijih besi tetapi secara

ekonomis tidak layak untuk diambil besinya.

Keelektronegatifan : kemampuan atau kecenderungan suatu atom untuk

menangkap atau menarik elektron dari atom lain.

Kuarsa : Dikenal juga sebagai pasir kuarsa, mempunyai rumus

kimia SiO₂.

Mineral : Bahan-bahan alam yang mengandung unsur atau senyawa

tertentu.

Paramagnetik : Sifat suatu unsur atau senyawanya yang tertarik oleh

medan magnet umumnya unsur tersebut mempunyai

elektron yang belum berpasangan.

Silikat : Merupakan polimer dari senyawa silikon yang sangat

kompleks, dikenal dalam berbagai senyawa, misalnya asbes, mika, dan tanah liat. Banyak dimanfaatkan untuk

membuat kaca, semen, dan keramik.

Tanur : Bilik untuk sistem pembakaran tempat berlangsungnya

pengeringan, pemijaran, atau pembakaran.

Unsur Transisi : Unsur yang terdapat pada blok d sistem periodik unsur-

unsur. Sekelompok unsur yang mempunyai sekurangkurangnya sebuah ion dengan subkulit d belum penuh.

PETA KONSEP

PENDAHULUAN

A. Identitas Modul

Mata Pelajaran : Kimia Kelas : XII

Alokasi Waktu : 2 x Pertemuan (4 Jam Pelajaran)

Judul Modul : Unsur – Unsur Periode 3 dan Transisi Periode 4

B. Kompetensi Dasar

- 3.8. Menganalisis kelimpahan, kecenderungan sifat fisika dan kimia, manfaat, dan proses pembuatan unsur-unsur periode 3 dan golongan transisi (periode 4)
- 4.8. Menyajikan data hasil penelusuran informasi sifat dan pembuatan unsur-unsur Periode 3 dan unsur golongan transisi (periode 4).

C. Deskripsi Singkat Materi

Pada kehidupan sehari-hari tentunya kalian sering menjumpai unsur-unsur kimia khususnya yang termasuk dalam unsur periode 3 atau unsur – unsur transisi periode 4. Misalnya unsur silikon dan belerang (periode 3) atau tembaga dan besi (unsur transisi periode 4). Tentu kalian ingin mengetahui lebih lanjut informasi tentang unsur-unsur periode 3 dan golongan transisi (periode 4) tersebut kan?. Pada Modul yang berjudul Unsur – Unsur Periode 3 dan Transisi Periode 4 ini meliputi kelimpahan, sifat fisika dan kimia, proses pembuatan, manfaat (kegunaan) unsur-unsur periode 3 dan Unsur – Unsur transisi periode 4 dalam kehidupan sehari – hari.

D. Petunjuk Penggunaan Modul

Agar proses belajar kalian lebih efektif dan bisa mendapatkan hasil belajar yang maksimal maka berikut diberikan petunjuk penggunaan modul.

Hal yang perlu kalian lakukan adalah:

- 1. Untuk mempelajari materi tentang Unsur Unsur Periode 3 dan Transisi Periode 4, kalian harus menguasai terlebih dahulu konsep sifat periodic unsur yang sudah pernah kalian pelajari di kelas X
- 2. Pelajari peta konsep untuk melihat lingkup bahasan materi dan keterkaitannya.
- 3. Pelajari kegiatan belajar sesuai urutan dalam modul, dengan mengembangkan rasa ingin tahu, berpikir kritis dan kreatif.
- 4. Akhiri kegiatan dengan mengisi penilaian diri dengan jujur dan ulangi lagi pada bagian yang masih belum sepenuhnya di mengerti
- 5. Ulangi Langkah 2 s.d 4 untuk kegiatan pembelajaran 2
- 6. Kerjakan soal evaluasi di akhir materi.

E. Materi Pembelajaran

Modul ini terbagi menjadi **2** kegiatan pembelajaran dan di dalamnya terdapat uraian materi, contoh soal, soal latihan dan soal evaluasi.

Pertama: Unsur – Unsur Periode 3

Kedua : Unsur - Unsur Transisi Periode 4

KEGIATAN PEMBELAJARAN 1 UNSUR – UNSUR PERIODE 3

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 1 ini diharapkan kalian mampu menjelaskan kelimpahan, sifat – sifat, manfaat dan proses pembuatan unsur – unsur periode 3

B. Uraian Materi

Unsur – unsur kimia di alam jumlahnya sangat banyak dan memiliki sifat yang berbeda – beda antara unsur yang satu dengan unsur yang lain. Untuk mempelajari unsur – unsur kimia yang begitu banyak jumlahnya, maka dibuatlah table pengelompokkan unsur yang dinamakan sistem periodik unsur yang sudah pernah kalian pelajari saat kalian kelas X. Sistem Periodik yang kita gunakan sekarang adalah Sistem Periodik Modern (Bentuk Panjang). Berikut ini adalah gambar Sistem Periodik Modern.

Gambar 1.1 Sistem Periodik Modern

Penyusunan sistem periodik modern didasarkan pada kenaikkan atom serta kemiripan sifatnya. Berdasarkan hal tersebut, dalam sistem periodik modern terdapat 2 buah lajur, yaitu lajur tegak yang disebut golongan dan lajur mendatar yang disebut periode. Periode dibedakan menjadi 2 jenis yaitu, periode panjang (4,5,6, dan 7) serta periode pendek (1,2, dan 3). Unsur – unsur yang terletak pada periode 3 memiliki jumlah kulit elektron yang sama, yaitu tiga kulit. Dari kiri ke kanan unsur periode ketiga berturut – turut adalah Natrium (Na), Magnesium (Mg), Aluminium (Al), Silikon (Si), Phosfor (P), Belerang (S), Klorin (Cl) dan Argon (Ar).

1. Kelimpahan Unsur – Unsur Periode 3 Keberadaan unsur-unsur periode 3 di alam tidak terdapat dalam bentuk unsur tunggalnya tapi dalam bentuk senyawa mineralnya (kecuali S dan Ar). Pada tabel berikut dapat Ananda ketahui informasi tentang % massa unsur periode 3 di kulit bumi serta nama-nama senyawa mineralnya. Kelimpahan atau keberadaan unsur periode 3 di kulit bumi disajikan pada tabel berikut.

Tabel 1.1. Kelimpahan Unsur Periode 3 di Kulit Bumi

Unsur	% Massa	Mineral			
Natrium	2,7	sendawa chili (NaNO3), kriolit (Na3AlF6), bijih			
		silikat (Na ₂ SiO ₃).			
Magnesium	1,9	dolomit (MgCO ₃ .CaCO ₃), magnesit (MgCO ₃),			
		asbestor (CaMg ₃ (SiO ₃) ₄), garam inggris (MgSO ₄ .			
		7H ₂ O)			
Aluminium	7,6	Kryolit (Na ₃ AlF ₆), Bauksit (Al ₂ O ₃ .nH ₂ O),			
		Kaolin/Tanah Liat (Al ₂ O ₃ .6SiO ₂ .2H ₂ O), Tawas			
		$K_2SO_4Al_2(SO_4)_3.24H_2O$			
Silikon	25,8	Silika (pasir, kuarsa), silikat (liat, mika)			
Phosphor	0,1	Fosforit $Ca_3(PO_4)_2$, Apatit $3Ca_3(PO_4)_2$. CaF_2			
Sulfur	< 0,1	FeS ₂ (pirit), ZnS (sfaterit), PbS (galenit), CaSO ₄			
		(gips), BaSO ₄ (barit)			
Klor	0,2	Senyawa halite (NaCl), silvite (KCl), MgCl ₂ dan			
		CaCl ₂			
Argon	< 0,1	Tidak ada			

Dari tabel 1.1 diatas, manakah yang kelimpahan di kulit bumi paling besar?

2. Sifat - Sifat Unsur - Unsur Periode 3

a. Sifat Fisis

Sifat fisis unsur periode ketiga dapat kita pelajari kecendrungannya dengan menggunakan data sifat atomik dan struktur unsurnya. Simaklah tabel berikut ini!

Unsur	Na	Mg	Al	Si	P	S	Cl	Ar
Nomor Atom	11	12	13	14	15	16	17	18
Konfigurasi elektron	2 8 1	2 8 2	2 8 3	2 8 4	2 8 5	2 8 6	2 8 7	2 8 8
Elektron valensi	3s1	3s ²	3s ² 3p ¹	3s ² 3p ²	3s ² 3p ³	3s ² 3p ⁴	3s ² 3p ⁵	3s ² 3p ⁶
Jari-jari atom (pm)	192	160	143	117	115	104	99	190
Titik Leleh (°C)	97,8	649	660	1410	44	113	-101	-184,2
Titik Didih (°C)	883	1090	2467	2680	280	445	-35	-185,7
Kerapatan (kg/m3)	970	1740	2702	2330	1820	2070	3,214	1,78
Jari-jari ionik (pm)	95	72	50	41	167	184	180	
Energi ionisasi (ki/mol)	496	738	578	786	1012	1000	1251	1527
Struktur	Kristal logam	Kristal logam	Kristal logam	Kristal kovalen raksasa	Molekul poliatom	Molekul poliatom	Molekul diatom	Molekul monoatom
Wujud (pada suhu 25 °C)			P	adat				Gas
Tingkat oksidasi tertinggi	+1	+2	+3	+4	+5	+6	+7	-
Afinitas elektron	-53	230	-44	-134	-72	-200	-349	35
Keelektronegatifan	0,9	1,2	1,5	1,8	2,1	2,5	3,0	*

Tabel 1. 2 Sifat Fisis Unsur Unsur Periode 3

Dari table 1.2 diatas, terlihat adanya keteraturan sifat atomik dari Na ke Ar yang secara umum dapat dirumuskan sebagai berikut:

- Nilai jari jari atom berkurang dai Na ke Ar
 Jari jari atom adalah jarak antara kulit inti atom samapai kulit terluar yang ditempati elektron
 - Hal ini dikarenakan unsur unsur dari Na ke Ar memiliki jumlah proton dan elektron pada inti semakin banyak. Hal ini mengakibatkan gaya tarik menarik antara inti atom dengan elektron-elektronnya semakin kuat. Oleh karena itu jarijari atom unsur-unsur perioda ketiga dari kiri ke kanan semakin mengecil.
- Titik Leleh bertambah dari Na ke Si, lalu berkurang dari Si ke Ar.
 Titik leleh adalah : suhu dimana tekanan uap zat padat sama dengan tekanan uap zat cairnya.
 - Kenaikan titik leleh dari Na ke Si dijelaskan dengan kekuatan ikatan logamnya yang meningkat dari Na ke Al, dan kekuatan ikatan kovalen pada Si. Sedangkan kecendrungan penurunan titik leleh dan ΔH fus dari Si ke Ar terkait dengan variasi kekuatan gaya London S > P > Cl > Ar.
- Titik Didih bertambah dari Na ke Si, lalu berkurang dari Si ke Ar.
 Titik didih adalah : suhu dimana tekanan uap zat cair sama dengan tekanan disekitarnya.
 - Kenaikan titik didih dari Na ke Si dijelaskan dengan kekuatan ikatan logamnya yang meningkat dari Na ke Al, dan kekuatan ikatan kovalen pada Si. Sedangkan kecendrungan penurunan titik leleh dan ΔH fus dari Si ke Ar terkait dengan variasi kekuatan gaya London S > P > Cl > Ar.
- Kerapatan bertambah dari Na ke Al, lalu berkurang dari Al ke Ar
 Kerapatan adalah : perbandingan antara massa atom atom dengan suatu unit volum yang ditempatinya.
 - Nilai kerapatan bergantung pada massa atom, jari jari atom. Semakin besar massa atom maka jari jari atom akan semakin kecil, karena kekuatan tarik menarik antara inti atom dengan kulit terluar semakin kuat, sehingga menyebabkan kerapatan dari Na ke Al semakin besar (ikatan logam). Nilai kerapatan semi logam Si tinggi terkait dengan kekeuatan ikatan kovalennya dalam struktur kovalen raksasa. Selanjutnya variasi nilai kerapan non logam P sampai Ar terkait dengan kekuatan gaya London S > P > Cl > Ar.
- Nilai energi ionisasi bertambah dari Na ke Ar, penyimpangan terjadi pada Mg ke Al dan dari P ke S.
 - Energi Ionisasi adalah : energi yang dibutuhkan untuk melepaskan satu elektron pada kulit terluar yang terikat lemah ke inti dalam fasa gas.
 - Peningkatan energi ionisasi ini berkaitan dengan bertambahnya muatan inti, sehingga daya tarik inti terhadap elektron terluar makin kuat, sehingga energi yang dibutuhkan untuk melepaskan elektron pada kulit terluar semakin besar. Data dari gambar juga menunjukkan adanya penyimpangan, yaitu energi ionisasi Mg lebih besar dari energi ionisasi Al, dan energi ionisasi P lebih besar dari S. Penyimpangan ini terkait dengan kestabilan konfigurasi elektron, yaitu unsur golongan IIA (Mg) dan golongan VA (P) mempunyai konfigurasi elektron yang relatif stabil, yaitu konfigurasi penuh dan setengah penuh sehingga membutuhkan energi yang lebih besar untuk melepaskan elektronnya. Sedangkan Al dan S mempunyai satu elektron yang terikat agak lemah sehingga lebih mudah dilepaskan.
- Nilai afinitas Elektron dari Na ke Cl, dengan penyimpangan nilai untuk Al dan P. (abaikan tanda negative pada nilai afinitas elektron, yang berarti energi dilepaskan).
 - Afinitas elektron adalah : energi yang terlibat pelepasan energi (-) / penyerapan energi (+) jika suatu atom / ion dalam fasa gas menerima satu elekron

membentuk ion negatif. Peningkatan afinitas elektron ini berkaitan dengan muatan inti yang semakin positif dan jari – jari atom semakin kecil. Keadaan ini menyebabkan gaya tarik menarik antara inti dengan elektron yang ditambahkan semakin kuat sehingga afinitas elektronnya bertambah.

• Nilai keelektronegatifan bertambah dari Na ke Cl.

Keelektronegatifan adalah : suatu ukuran kemampuan suatu atom untuk menarik elektron dalam suatu ikatan kimia.

Dari kiri ke kanan (Na ke Cl) keelektronegatifan unsur - unsur semakin besar, karena muatan inti bertamabah positif dan jari – jari atom berkurang, keadaan ini ini menyebabkan gaya tarik menarik inti terhadap elektron semakin kuat, akibatnya kemampuan atom untuk menarik elektron semakin besar. Hal ini juga memperlihatkan semakin kekanan unsur periode ketiga semakin mudah menarik elektron. Unsur-unsur dengan keelektronegatifan kecil cenderung bersifat logam (elektropositif). Sehingga sifat logam dari Na ke Ar semakin berkurang karena nilai keelektronegatifannya semakin besar

b. Sifat Kimia

Sifat kimia berhubungan dengan reaki kimia, sifat kimia unsur – unsur periode 3 dapat kalian loihat pada table dibawah ini.

Sifat	₁₁ Na	₁₂ Mg	13Al	14Si	15P	16 ^S	17Cl
Konfigurasi elektron	[Ne] 3s ¹	[Ne] 3s ²	[Ne] 3s ² , 3p ¹	[Ne] 3s ²	[Ne] 3s ² , 3p ³	[Ne] 3s ² , 3p ⁴	[Ne] 3s ² , 3s ⁵
Jari-jari atom	makir	besar ses	→ suai arah p	anah			
Keelektronegatifan	-			mal	cin besar	sesuai arah	panah
Kelogaman	Logam Semi- logam Bukan logar				ım		
Oksidator/reduktor	Reduktor -		makin l	besar sesu	ai arah panah		Oksidator
Konduktor/isolator	Konduktor			Isolator			
Oksidasi utama	Na ₂ O MgO		Al ₂ O ₃	SiO ₂	P ₂ O ₅	SO ₃	Cl ₂ O ₇
Ikatan		Ion		Kovalen			
Sifat oksida	Ва	asa	Amfoter	Asam			
Hidroksida	NaOH	Mg(OH) ₂	Al(OH) ₃	H ₂ SiO ₃	H ₃ PO ₄	H ₂ SO ₄	HClO ₄
Kekuatan basa/asam	Basa kuat	Basa lemah	Basa lemah	Asam lemah	Asam lemah	Asam kuat	Asam kuat
Klorida	NaC1	MgCl ₂	AlCl ₃	SiCl ₄	PCl ₅	SCl ₂	Cl ₂
Ikatan	Ion			Kovalen			
Senyawa dengan hidrogen	NaH	MgH ₂	A1H ₂	SiH ₄	PH ₃	H ₂ S	HCl
Ikatan	Ion	Ion Kovalen					
Reaksi dengan air	Wenginasiikan dan dan gas				Asam lemah	Asam kuat	

Tabel 1.2 Sifat - sifat Unsur Periode 3

Dari table diatas dapat dilihat, bahwa natrium merupakan reduktor terkuat, sedangkan klorin merupakan oksidator terkuat. Meskipun natrium, magnesium, dan aluminium merupakan reduktor kuat, tetapi kereaktifannya berkurang dari Na ke Al. Sedangkan silikon merupakan reduktor yang sangat lemah, jadi hanya dapat bereaksi dengan oksidator-oksidator kuat, misalnya klorin dan oksigen. Di lain pihak selain sebagai reduktor, fosfor juga merupakan oksidator lemah yang dapat mengoksidasi reduktor kuat, seperti logam aktif. Sedangkan belerang yang mempunyai daya reduksi lebih lemah daripada fosfor ternyata mempunyai daya

pengoksidasi lebih kuat daripada fosfor. Sementara klorin dapat mengoksidasi hampir semua logam dan nonlogam karena klorin adalah oksidator kuat.

Dari table diatas, kalian dapat dilihat juga hidroksida unsur-unsur periode ketiga, yaitu NaOH, Mg(OH)₂ , Al(OH)₃ , H₂SiO₃ , H₃PO₄ , H₂SO₄ , dan HClO₄ . Sifat hidroksida unsur-unsur periode ketiga tergantung pada energi ionisasinya. Hal ini dapat dilihat dari jenis ikatannya. Jika ikatan M - OH bersifat ionik dan hidroksidanya bersifat basa karena akan melepas ion OH- dalam air, maka energi ionisasinya rendah. Tetapi jika ikatan M - OH bersifat kovalen dan tidak lagi dapat melepas ion OH-, maka energi ionisasinya besar. Selain itu NaOH tergolong basa kuat dan mudah larut dalam air, Mg(OH)₂ lebih lemah daripada NaOH tetapi masih termasuk basa kuat. Namun Al(OH)₃ bersifat amfoter, artinya dapat bersifat asam sekaligus basa. Hal ini berarti bila Al(OH)3 berada pada lingkungan basa kuat, maka akan bersifat sebagai asam, sebaliknya jika berada pada lingkungan asam kuat, maka akan bersifat sebagai basa. Sedangkan H₂SiO₃ atau Si(OH)₄, merupakan asam lemah dan tidak stabil, mudah terurai menjadi SiO2 dan H₂O. Begitu pula dengan H₃PO₄ atau P(OH)₅ yang juga merupakan asam lemah. Sementara H₂SO₄ atau S(OH)₆ merupakan asam kuat, begitu juga HClO₄ atau Cl(OH)₇ yang merupakan asam sangat kuat (Sumber: www.chem-is-try.org).

3. Proses Pembuatan Unsur - Unsur Periode 3

a. Natrium

Perlu kalian ketahui bahwa Natrium merupakan unsur alkali dengan daya reduksi paling rendah, dengan sumber utamanya adalah halit (umumnya dalam bentuk NaCl). Pembuatan natrium dapat dilakukan dengan proses Downs, yaitu elektrolisis lelehan NaCl. Air asin yang mengandung NaCl diuapkan sampai kering kemudian padatan yang terbentuk dihancurkan untuk kemudian dilelehkan. Sedangkan untuk mengurangi biaya pemanasan, NaCl (titik lebur 801 °C) dicampur dengan 1½ bagian CaCl2 untuk menurunkan suhu lebur hingga 580 °C (Martin S. Silberberg, 2000: 971).

b. Magnesium

Magnesium dapat diperoleh melalui proses Downs:

- Magnesium diendapkan sebagai magnesium hidroksida dengan menambahkan Ca(OH)₂ ke dalam air laut.
- Tambahkan asam klorida untuk mendapatkan kloridanya, yang kemudian diperoleh kristal magnesium klorida (MgCl.6H₂O).
- Elektrolisis leburan kristal magnesium dengan terlebih dahulu menambahkan magnesium klorida yang mengalami hidrolisis sebagian ke campuran leburan natrium dan kalsium klorida. Hal ini dilakukan untuk menghindari terbentuknya MgO saat kristal MgCl.6H₂O dipanaskan.
- Magnesium akan terbentuk pada katode.

Reaksi:

```
Mg^{2+} + Ca(OH)_2 (s) \rightarrow Mg(OH)_2 (s) + Ca^{2+}

Mg(OH)_2 (s) + 2 H^+ + Cl^- \rightarrow MgCl.6H_2O

Katode: Mg^{2+} + 2e^- \rightarrow Mg

Anode: 2 Cl^- \rightarrow Cl_2 (g) + 2e^-

(Sri Lestari, 2004: 30).
```

c. Aluminium

Aluminium diperoleh dari elektrolisis bauksit yang dilarutkan dalam kriolit cair. Proses ini dikenal dengan proses Hall Heroult. Pada proses ini bauksit ditempatkan dalam tangki baja yang dilapisi karbon dan berfungsi sebagai katode. Adapun anode berupa batang-batang karbon yang dicelupkan dalam campuran.

d. Silikon

Silikon dapat dibuat dari reduksi SiO₂ murni dengan serbuk aluminium pada suhu tinggi, dengan reaksi seperti berikut.

$$4Al(s) + 3SiO_2(s) \rightarrow 2Al_2O_3(l) + 3Si(s)$$

e. Phosphor

Phosphor dibuat dalam tanur listrik dengan memanaskan fosforit, pasir, dan kokas dengan reaksi seperti berikut.

$$Ca_3(PO_4)_2(l) + 3SiO_2(s) \rightarrow 3CaSiO_3(l) + P_2O_5(s)$$

$$2 P_2 O_5(s) + 10C(s) \rightarrow P_4(s) + 10CO(g)$$

Dalam proses ini dihasilkan phosphor kuning. Adapun phosphor merah dihasilkan dengan jalan memanaskan phosphor kuning pada suhu 250 °C tanpa udara.

f. Sulfur (Belerang)

Pembuatan belerang pertama kali dikembangkan pada tahun 1904 oleh Frasch yang mengembangkan cara untuk mengekstrak belerang yang dikenal dengan cara Frasch. Pada Gambar 4.8 Pompa Frasch Sumber: Kamus Kimia Bergambar Unsur-Unsur Utama 85 proses ini pipa logam berdiameter 15 cm yang memiliki dua pipa konsentrik yang lebih kecil ditanam sampai menyentuh lapisan belerang. Uap air yang sangat panas dipompa dan dimasukkan melalui pipa luar, sehingga belerang meleleh, selanjutnya dimasukkan udara bertekanan tinggi melalui pipa terkecil, sehingga terbentuk busa belerang yang keluar mencapai 99,5%.

g. Klorin

Klorin dapat dibuat menggunakan beberapa cara, yaitu:

• Proses Deacon (oksidasi)

HCl dicampur dengan udara, kemudian dialirkan melalui CuCl₂ yang bertindak sebagai katalis. Reaksi terjadi pada suhu ± 430 °C dan tekanan 20 atm.

- Elektrolisis larutan NaCl menggunakan diafragma.
- Elektrolisis lelehan NaCl

h. Argon

Argon dapat diperoleh dari atmosfer/udara bebas secara destilasi fraksional pada udara cair atau dengan mengemisikan positron / elektron ke atom K. $K + 1e \rightarrow Ar(40)$ isotop Ar dengan proton 40.

4. Manfaat Unsur _ Unsur Periode 3

Setelah kalian mengetahui proses pembuatan unsur-unsrur periode 3, berikut informasi kegunaan atau manfaat unsur-unsur periode 3 atau senyawanya dalam kehidupan sehari-hari.

Tabel 1.3. Kegunaan Unsur Periode 3 dan Senyawanya

Unsur	Kegunaan/ Manfaat			
Natrium	✓ Dipakai dalam pembuatan ester			
	✓ NaCl digunakan oleh hampir semua makhluk			
	Na-benzoat dipakai dalam pengawetan makanan			
	Na-glutamat dipakai untuk penyedap makanan			
	✓ Isi dari lampu kabut dalam kendaraan bermotor			
	✓ NaOH dipakai untuk membuat sabun, deterjen,			
	kertas			
	✓ NaHCO ₃ dipakai sebagai pengembang kue			
	✓ Memurnikan logam K, Rb, Cs			
	✓ NaCO ₃ Pembuatan kaca dan pemurnian air sadah			
Magnesium	Untuk aliase (magnalium), digunakan untuk kerangka			
	pesawat terbang dan lampu kilat dalam fotografi.			

Aluminium	Untuk peralatan rumah tangga misal piring, mangkok, dan sendok; untuk membuat rangka dari mobil dan pesawat terbang; sebagai bahan cat aluminium (serbuk aluminium dengan minyak cat).
Silikon	 ✓ Bahan bakar pada pembuatan jenis-jenis gelas atau kaca. ✓ Bahan-bahan solar sel. ✓ Sebagai semikonduktor ✓ sebagai bahan baku pada kalkulator, transistor, komputer, dan baterai solar. ✓ SiO₂ digunakan untuk menggosok batu kaca, logamlogam untuk pembuatan ampelas dan untuk pembuatan cat tahan udara.
Phosphor	✓ Bahan untuk membuat pupuk superfosfat.✓ Bahan untuk membuat korek api.
Sulfur	 ✓ Sebagai bahan baku pembuatan asam sulfat H₂SO₄ (Proses Kontak dan Proses Kamar Timbal). ✓ Obat pemberantas jamur dan untuk memasak getah karet dan getah perca.
Klor	Sebagai desinfektan (Ca(OCl) ₂), pemutih NaClO digunakan dalam industri kertas dan industri tekstil sebagai pengelantang, sebagai pemusnah kuman, dan untuk pembuatan kapur klor, brom, dan zat warna organik.
Argon	 ✓ Sebagai pengisi bola lampu karena Argon tidak bereaksi dengan kawat lampu ✓ Dipakai dalam industri logam sebagai inert saat pemotongan dan proses lainnya ✓ Untuk membuat lapisan pelindung pada berbagai macam proses ✓ Untuk mendeteksi sumber air tanah ✓ Dipakai dalam roda mobil mewah

C. Rangkuman

- 1. Unsur-unsur periode ketiga dari natrium ke argon, sifat logamnya berkurang atau sifat nonlogamnya bertambah.
- 2. Variasi sifat-sifat unsur dalam satu periode dapat dijelaskan berdasarkan struktur elektron atom dan energi ionisasinya.
- 3. Sifat pengoksidasi unsur-unsur periode ketiga, dari natrium ke argon, makin bertambah. Sebaliknya, sifat pereduksi mereka makin berkurang.
- 4. Sifat asam senyawa hidroksida unsur-unsur periode makin bertambah dari natrium sampai klor atau sebaliknya sifat basanya makin berkurang.
- Perubahan sifat reduktor dan oksidator unsur-unsur periode ketiga sepanjang periode dapat dijelaskan berdasarkan energi ionisasi dan struktur elektronnya.
- 6. Unsur-unsur periode ketiga terdapat di alam dalam keadaan terikat, kecuali belerang dan argon.
- 7. Kerapatan muatan Al³+ berpengaruh terhadap:
 - a. Sifat ikatan ion/kovalen aluminium oksida dan sifat amfoternya.
 - b. Polarisasi anion.
- 8. Aluminium oksida dan aluminium bersifat amfoter.

- 9. Unsur-unsur periode 3 dapat diperoleh melalui proses yang berbeda-beda. Natrium dan Magnesium melalui proses Down, Aluminium melalui proses Hall Heroult, Silikon melalui reduksi SiO2 murni, Phosphor menggunakan tanur listrik, Sulfur melalui proses Frasch dan Klor melalui proses elektrolisis dan proses Deacon.
- 10. Unsur-unsur periode 3 maupun senyawanya banyak digunakan dalam kehidupan sehari-hari

D. Penugasan Mandiri

Berikut adalah grafik kecenderungan Energi Ionisasi unsur – unsur periode 3

Sumber: General Chemistry, Principles and Modern Applications, Petrucci R.H, Harwood W.S, dan Herring G.F

PERTANYAAN

1.	Berdasarkan grafik kecenderungan Energi Ionisasi diatas, bagaimanakah kecendrungan energi ionisasi unsur-unsur periode ketiga dari kiri ke kanan? (bertambah/berkurang) Jawab:
2.	Berdasarkan jawaban soal nomor 1, mengapa energi ionisasi dari kiri ke kanan cenderung bertambah? (hubungkan dengan daya tarik inti terhadap elektron terluar) Jawab:

3.	Berdasarkan Grafik Kecenderungan Energi Ionosasi diatas, mengapa energi
	ionisasi magnesium lebih besar daripada aluminium, dan energi ionisasi fosfor
	lebih besar daripada belerang?(hubungkan dengan konfigurasi elektron)
	Jawab:

E. Latihan Soal

Pilihlah Salah Satu Jawaban yang Tepat!

- 1. Empat unsur periode ketiga, yaitu : P, Mg, Cl, dan Na. Urutan unsur-unsur tersebut dari yang paling kecil sifat pereduksinya sampai yang paling besar adalah...
 - A. Na, Cl, Mg, P
 - B. Cl, P, Mg, Na
 - C. Cl, P, Na, Mg
 - D. P, Cl, Na, Mg
 - E. Na, Mg, P, Cl
- 2. Tiga senyawa hidroksida unsur periode ketiga yang bersifat asam, dari yang paling lemah sampai yang paling kuat adalah...
 - A. $Al(OH)_3$, $Si(OH)_2$, $PO(OH)_3$
 - B. PO(OH)₃, SO₂(OH)₂, ClO₃(OH)
 - C. $ClO_3(OH)$, $SO_2(OH)_2$, $Mg(OH)_2$
 - D. $Si(OH)_2$, $SO_2(OH)_2$, $Mg(OH)_2$
 - E. $ClO_3(OH)$, $PO(OH)_3$, $SO_2(OH)_2$
- 3. Unsur-unsur periode ketiga di alam terdapat dalam bentuk senyawa kecuali unsur belerang yang bebas, karena belerang......
 - A. Memiliki bentuk dua alotrop
 - B. Terletak pada perubahan sifat molekul raksasa menuju molekul sederhana
 - C. Mempunyai sifat afinitas elektron yang besar
 - D. Mempunyai nilai energi ionisasi yang kecil
 - E. Membentuk molekul sangat stabil
- 4. Tiga buah unsur periode ketiga yang semuanya diperoleh melalui elektrolisis adalah...
 - A. Natrium, argon, magnesium
 - B. Magnesium, aluminium, argon
 - C. Natrium, magnesium, aluminium
 - D. Aluminium, silikon, klor
 - E. Aluminium, klor, magnesium
- 5. Perhatikan sifat berikut
 - Bereaksi dengan oksigenn membentuk lapisan tipis oksida yang melindungi dari oksida lebih lanjut
 - Bereaksi dengan asam membebaskan gas hidrogen
 - Apabila dipanaskan kuata diudara akan terbakar membentuk oksida dan sedikit nitride
 - Dari pernyataan diatas termasuk ciri-ciri sifat unsur
 - A. Natrium
 - B. Magnesium
 - C. Aluminium
 - D. Silikon
 - E. Fosfor

6. Tabel keteraturan sifat unsur dari kiri ke kanan dalam satu periode adalah sebagai berikut:

No	Sifat Fisis	Sifat Kimia
1	Energi ionisasi bertambah	Sifat basa berkurang
2	Afinitas elektron berkurang	Sifat oksidator bertambah
3	Jari-jari atom berkurang	Sifat logam bertambah
4	Keelekronegatifan bertambah	Sifat reduktor bertambah
5	Mssa atom bertambah	Sifat asam berkurang

Sifat yang tepat untuk unsur-unsur periode ketiga adalah

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5
- 7. Alumunium tergolong logam tahan korosi. Sifat inilah yang menyebabkan alumunium dipakai dalam industri kecil...
 - A. Untuk membuat logam campur
 - B. Untuk membuat reaksi termit
 - C. Sebagai pereduksi berbagai macam oksida
 - D. Untuk membuat berbagai peralata dapur
 - E. Untuk membuat roda pesawat terbang
- 8. Pengolahan aluminium secara industri dilakukan dengan cara elektrolisis lelehan Al_2O_3 dalam kriolit cair dengan menggunakan elektroda grafit (karbon). Kriolit berfungsi menurunkan titik leleh Al_2O_3 dari 2000 OC menjadi 1000°C melalui reaksi berikut:

 $Al_2O_3(1) \rightarrow 2 Al^{3+} + 3 O^{2-}$

Katode : $2 \text{ Al}^{3+} + 6 \text{ e}^{-} \rightarrow 2 \text{ Al}_{(1)}$

Anode: $2 O^{2-} \rightarrow 3/2 O_{2(g)} + 6 e^{-}$

Reaksi sel : $Al_2O_{3(1)} \rightarrow 2 Al_{(1)} + 3/2 O_{2(g)}$

Nama proses pembuatan/pengolahan aluminium tersebut adalah....

- A. kamar timbal
- B. kontak
- C. Haber-Bosch
- D. tanur tinggi
- E. Hall
- 9. Perhatikan unsur-unsur dengan nomor atom berikut:

Jika unsur $_{11}$ X, $_{15}$ Y, $_{17}$ Z adalah unsur-unsur periode ketiga. Pertanyaaan yang benar tentang sifat unsur tersebut adalah

- A. Unsur x bersifat non logam
- B. Kelektronegatifan unsur X>Y>Z
- C. Ketiga unsur tersebut memiliki jumlah elektron valensi yang sama.
- D. Y dan Z dapat membentuk senyawa dengan rumus Y₃Z
- E. Jari-jari atom unsur X>Y>Z

Kunci Jawaban dan Pembahasan

No	Kunci Jawaban	Pembahasan
1	В	Urutan unsur periode ketiga dari kiri ke kanan : Na, Mg, Al, Si, P, S, Cl, Ar. Salah satu perubahan sifat unsur periode ketiga dari kiri ke kanan adalah makin mudah tereduksi, berarti sifat oksidator bertambah. Sebaliknya, sifat reduktor (pereduksi) berkurang. Dengan demikian, untuk sifat pereduksi yang makin besar urutannya adalah : Cl, P, Mg, Na.
2	В	Unsur periode ketiga dari kiri ke kanan, keasaman semakin kuat.
3	Е	Unsur-unsur periode ketiga di alam terdapat dalam bentuk senyawa kecuali belerang sebab belerang membentuk molekul S_8 yang stabil dan banyak terdapat di daerah gunung berani.
4	С	Unsur periode ketiga yang diperloeh dari elektrolisis adalahNatrium, magnesium, aluminium. Logam natrium diekstraksi dengan metode elektrolisis menggunakan Sel Down, Sedangkan logam magnesium diekstraksi dengan metode elektrolisis dengan mereaksikan Mg dalam air laut dengan CaO. Dan logam Al diekstraksi dengan proses Hall-Heroult yaitu ekstraksi Al dari bauksit menggunakan metode elektrolisis.
5	С	Dari ciri-ciri diatas merupakan sifat dari aluminium dimana apabila aluminium bereaki dengan oksigen membentuk lapisan tipis oksida yang melindungi dari oksida lebih lanjut. Bereaksi dengan asam membebaskan gas hidrogen. Apabila dipanaskan kuat diudara akan terbakar membentuk oksida dan sedikit nitrida. Dapat mereduksi Fe2O3.
6	A	Dari kiri kekanan sifat unsur periode ketiga berubah dari logam-metaloid-nonlogam- dan gas mulia Keelektronegatifan dari kiri kekanan bertambah Titik cair dan titik didih dari kiri kekanan meningkat secara bertahap dan mencapai puncaknya pada silikon, kemudian turun secara drastis pada fosfor Energi ionisasi dari kiri kekanan cenderung bertambah Daya peeduksi unsur perioe ketiga dari kiri kekanan berkurang Daya pengoksidasinya bertambah Dari kiri kekanan energi ionisasi bertambah oleh karena itu sifat basa berkurang dan sifat asam bertambah
7	D	Alumunium merupakan logam yang cukup reaktif, sifat reduktornya cukup baik. Tetapi, Al adalah logam yang tahan korosi karena alumunium membentuk lapisan Al2O3 yang akan melindunginya dari korosi.
8	С	Sudah jelas proses pembuatan aluminium dengan menggunakan bahan baku Bauksit dinamakan proses Haber – Bosh
9	Е	Unsur X adalah logam sedangkan Y dan Z nonlogam Makin besar nomer atom keelektronegatifan unsur semakin besar

X mempunyai satu elektron velensi
Y mempunyai lima elektron valensi
Z mempunyai tujuh lektron valensi
Senyawa Y dan Z adalah YZ3 atau YZ5
Dalam satu periode semakin besar nomer atom jar-jari makin
kecil, jumlah proton dalam inti semakin banyak sehingga gaya
tarik inti semakin kuat

F. Penilaian Diri

Setelah mempelajari kegiatan pembelajaran 1 tentang Unsur – Unsur Periode 3, berikut diberikan tabel pertanyaan untuk mengukur keberhasilan kalian terhadap penguasaan materi ini.

Tabel Penilaian Diri

	1 4001 1 0111141411 2111						
No	Pertanyaan	Jawaban					
		Ya	Tidak				
1	Dapatkah kalian menjelaskan kelimpahan Unsur – Unsur Periode 3 ?						
2	Dapatkah kalian membedakan sifat – sifat Unsur – Unsur Periode 3 berdasarkan kenaikan nomor atomnya?						
3	Dapatkah kalian menjelaskan proses pembuatan Unsur – Unsur Periode 3 ?						
4	Dapatkah kalian menjelaskan manfaat Unsur – Unsur Periode 3 dalam kehidupan sehari - hari ?						

KEGIATAN PEMBELAJARAN 2 UNSUR - UNSUR TRANSISI PERIODE 4

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 2 ini diharapkan kalian mampu menjelaskan kelimpahan, sifat – sifat, manfaat dan proses pembuatan unsur – unsur Transisi periode 4

B. Uraian Materi

Unsur Transisi adalah unsur – unsur dan konfigurasi elektronnya berakhir pada subkulit d dan subkulit f. Unsur transisi yang elektron terakhirnya berada pada subkulit d disebut dikelompokkan sebagai unsur transisi luar, Unsur transisi yang elektron terakhirnya berada pada subkulit f disebut dikelompokkan sebagai unsur transisi dalam. Berikut akan diuraikan kelimpahan, sifat – sifat, proses pembuatan dan manfaat/kegunaan unsur – unsur transisi periode 4

1. Kelimpaham Unsur – Unsur Transisi Periode 4 di Alam Unsur logam transisi periode 4 terdapat di alam dalam bentuk mineralnya.

- Skandium (Sc)

Skandium (Sc) terdapat dalam mineral torvetit (Sc₂SiO₇).

- Titanium (Ti)

Unsur ini terdapat dalam mineralrutil (TiO_2) yang terdapat dalam bijih besi sebagai ilmenit (FeTi) $_2O_3$ dan *ferrotitanate* ($FeTiO_3$) juga terdapat dalam karang, silikat, bauksit batubara, dan tanah liat.

- Vanadium (V)

Vanadium terdapat dalam senyawa karnotit (K-uranil-vanadat) $[(K_2(UO_2)_2(VO_4)_2.3H_2)]$, dan vanadinit $(Pb_5(VO_4)_3Cl)$.

- Kromium (Cr)

Bijih utama dari kromium di alam adalah kromit (FeO. Cr_2O_2) dan sejumlah kecil dalam kromoker.

- Mangan (Mn)

Bijih utamanya berupa pirulosit (batu kawi) (MnO₂), dan rodokrosit (MnCO₃) dan diperkirakan cadangan Mn terbesar terdapat di dasar lautan.

- Besi (Fe)

Besi (Fe) adalah unsur yang cukup melimpah di kerak bumi (sekitar 6,2% massa kerak bumi). Besi jarang ditemukan dalam keadaan bebas di alam. Besi umumnya ditemukan dalam bentuk mineral (bijih besi), seperti hematite (Fe₂O₃), siderite (FeCO₃), dan magnetite (Fe₃O₄).

- Kobalt (Co)

Kobalt terdapat di alam sebagai arsenida dari Fe, Co, Ni, dan dikenal sebagai smaltit, kobaltit (CoFeAsS) dan eritrit Co₃(AsO₄)₂.8H₂O.

- Nikel (Ni)

Nikel ditemukan dalam beberapa senyawa berikut ini.

1. Sebagai senyawa sulfida : penladit (FeNiS), milerit (NiS)

2. Sebagai senyawa arsen : smaltit (NiCOFeAs₂)3. Sebagai senyawa silikat : garnierit (Ni.MgSiO₃)

· Tembaga (Cu)

Tembaga umumnya ditemukan dalam bentuk senyawanya, yaitu bijih mineral, seperti Pirit tembaga (kalkopirit) $CuFeS_2$, bornit (Cu_3FeS_3) , kuprit (Cu_2O) , melakonit (CuO), malasit $(CuCO_3.Cu(OH)_2)$.

- Seng (Zn)

Seng (Zn) terdapat di alam sebagai senyawa sulfida seperti seng blende (ZnS), sebagai senyawa karbonat kelamin (ZnCO $_3$), dan senyawa silikat seperti hemimorfit (ZnO.ZnSiO $_3$.H $_2$ O).

Secara mudah kalian dapat melihat nama-nama mineral yang mengandung unsur logam transisi periode 4 pada tabel 3 berikut.

Tabel 2.1. Mineral Logam Transisi Periode 4

No	Logam	Mineral	Komposisi
1	Scandium SC 21 44.956 Scandium	Torvetit	Sc ₂ SiO ₇
2	Titanium	Rutil	TiO ₂ FeTiO ₃
3	Vanadium Vanadium Vanadium	Vanadit	Pb ₃ (VO ₄) ₂
4	Kromium	Kromit	FeCr ₂ O ₄

5	Mangan	Pirolusit	MnO ₂
6	Besi	Hematit Magnetit Pirit Siderit	Fe ₂ O ₃ Fe ₃ O ₄ FeS FeCO ₃
7	Kobalt	Smaltit Kobaltit	CoAs ₂ CoAsS
8	Nikel	Nikelit	NiS
9	Tembaga	Kalkosit Kalkofirit Malasit	Cu ₂ S CuFeS Cu ₂ CO ₃ (OH) ₂

2. Sifat – Sifat Unsur Transisi Periode 4

Tentu kalian sudah mengetahui bahwa unsur logam transisi periode 4 pada Sistem Periodik Unsur (SPU) berada pada blok d, sehingga akan mempunyai elektron valensi yang berada pada sub kulit nd n-1s. Agar Ananda dapat mengingat Kembali, perhatikanlah konfigurasi elektron logam transisi periode 4 pada tabel 2.2 berikut.

Tabel 2.2 Konfigurasi Elektron Logam Transisi Periode 4

	IIIB	IVB	VB	VIB		VI	IIB		IB	IIB
Periode 4	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Konfigurasi elektron	[Ar] 3d ¹ 4s ²	[Ar] 3d ² 45 ²	[Ar] 3d ³ 4s ²	[Ar] 3d ⁵ 4s ¹	[Ar] 3d ⁵ 4s ²	[Ar] 3d ⁶ 4s ²	[Ar] 3d ⁷ 4s ²	[Ar] 3d ⁸ 4s ²	[Ar] 3d¹°4s¹	[Ar] 3d¹°4s²

Konfigurasi elektron dan kedudukan elektron valensi logam transisi periode 4 menentukan kecenderungan sifat fisika dan kimia dari unsur tersebut. Sifat fisika logam transisi periode 4 dapat Ananda lihat pada tabel 2.3 berikut

Tabel 2.3 Sifat Fisika Golongan Transisi Periode 4

Sifat Fisis	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Titik didih (°C)	2.836	3.287	3.407	2.671	2.061	2.861	2.927	2.913	2.562	907
Titik leleh (°C)	1.541	1.668	1.910	1.907	1.246	1.538	1.495	1.455	1.085	420
Energi ionisasi (kJ/mol)	631	658	650	653	717	759	758	737	745	906
Jari-jari ion (Å)	1,61	1,45	1,32	1,25	1,24	1,24	1,25	1,25	1,28	1,33
Konfigurasi elektron	2.8.9.2	2.8.10.2	2.8.11.2	2.8.13.1	2.8.13.2	2.8.14.2	2.8.15.2	2.8.16.2	2.8.18.1	2.8.18.2
Keelektronegatifan	1,3	1,5	1,6	1,6	1,5	1,8	1,8	1,8	1,9	1,6
Kerapatan (g/cm³)	2,99	4,51	6,1	7,27	7,30	7,86	8,9	8,9	8,92	7,1

Dari table diatas, berikut ini penjabaran dari beberapa sifat fisika unsur logam transisi periode 4.

a. Sifat Logam

Kecuali seng logam-logam transisi memiliki elektron-elektron yang berpasangan. Hal ini lebih memungkinkan terjadinya ikatan-ikatan logam dan ikatan kovalen antaratom logam transisi. Ikatan kovalen tersebut dapat terbentuk antara elektron-elektron yang terdapat pada orbital d. Dengan demikian, kisi kristal logam-logam transisi lebih sukar dirusak dibanding kisi kristal logam golongan utama. Itulah sebabnya logam-logam transisi memiliki sifat keras, kerapatan tinggi, dan daya hantar listrik yang lebih baik dibanding logam golongan utama.

b. TItik Leleh dan Titik Didih

Unsur-unsur transisi umumnya memiliki titik leleh dan titik didih yang tinggi karena ikatan antaratom logam pada unsur transisi lebih kuat. Titik leleh dan titik didih seng jauh lebih rendah dibanding unsur transisi periode keempat lainnya karena pada seng orbital d-nya telah terisi penuh sehingga antaratom seng tidak dapat membentuk ikatan kovalen.

c. Sifat Magnetik

Jenis sifat magnetik ada 3:

 paramagnetik, di mana atom, molekul, atau ion sedikit dapat ditarik oleh medan magnet karena ada elektron yang tidak berpasangan pada orbital d-nya.

 diamagnetik, di mana atom, molekul, atau ion dapat ditolak oleh medan magnet karena seluruh elektron pada orbital d-nya berpasangan.

• *feromagnetik*, yaitu kondisi yang sama dengan *paramagnetik* hanya saja dalam keadaan padat.

Logam Sc, Ti, V, Cr, dan Mn bersifat *paramagnetik*, sedangkan Cu dan Zn bersifat *diamagnetik*. Untuk Fe, Co, dan Ni bersifat *feromagnetik*. (Brady, 1990: 698).

d. Jari-Jari Atom

Tidak seperti periode ketiga, jari-jari atom unsur-unsur transisi periode keempat tidak teratur dari kiri ke kanan. Hal ini dipengaruhi oleh banyaknya elektron-elektron 3d yang saling tolak-menolak yang dapat memperkecil gaya tarik inti atom terhadap elektron-elektron. Akibatnya elektron-elektron akan lebih menjauhi inti atom, sehingga jari-jari atomnya lebih besar.

e. Ion Berwarna

Tingkat energi elektron pada unsur-unsur transisi yang hampir sama menyebabkan timbulnya warna pada ion-ion logam transisi. Hal ini terjadi karena elektron dapat bergerak ke tingkat yang lebih tinggi dengan mengabsorpsi sinar tampak. Pada golongan transisi, subkulit 3d yang belum terisi penuh menyebabkan elektron pada subkulit itu menyerap energi cahaya, sehingga elektronnya tereksitasi dan memancarkan energi cahaya dengan warna yang sesuai dengan warna cahaya yang dapat dipantulkan pada saat kembali ke keadaan dasar. Misalnya Ti²+ berwarna ungu, Ti⁴+ tidak berwarna, Co²+ berwarna merah muda, Co³+ berwarna biru, dan lain sebagainya.

Sedangkan sifat kimia golongan transisi periode 4 dapat kalian lihat dari penjabaran berikut.

a. Kereaktifan

Dari data potensial elektroda, unsur-unsur transisi periode keempat memiliki harga potensial elektroda negatif kecuali Cu (E° = + 0,34 volt). Ini menunjukkan logam-logam tersebut dapat larut dalam asam kecuali tembaga. Kebanyakan logam transisi dapat bereaksi dengan unsur-unsur nonlogam, misalnya oksigen, dan halogen.

$$2Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$

Skandium dapat bereaksi dengan air menghasilkan gas hidrogen.

$$2Se(s) + 6H_2O(l) \rightarrow 3H_2(g) + 2Sc(OH)_3(aq)$$

b. Pembentukan Ion Kompleks

Semua unsur transisi dapat membentuk ion kompleks, yaitu suatu struktur dimana kation logam dikelilingi oleh dua atau lebih anion atau molekul netral yang disebut ligan. Antara ion pusat dengan ligan terjadi ikatan kovalen

koordinasi, dimana ligan berfungsi sebagai basa Lewis (penyedia pasangan elektron).

Contoh: $[Cu(H_2O)_4]^{2+}$; $[Fe(CN)_6]^{4-}$; $[Cr(NH_3)_4Cl_2]^{+}$

Senyawa unsur transisi umumnya berwarna. Hal ini disebabkan perpindahan elektron yang terjadi pada pengisian subkulit d dengan pengabsorbsi sinar tampak. Senyawa Sc dan Zn tidak berwarna.

3. Proses Pembuatan Unsur – Unsur Transisi Periode 4

Proses pembuatan masing-masing logam transisi periode 4 dapat Ananda baca pada paparan berikut.

• Skandium (Sc)

Dibuat dengan elektrolisis cairan ScCl₃ yang dicampurkan dengan klorida-klorida lain.

• Titanium (Ti)

Salah satu metode yang digunakan dalam proses pembuatantitanium adalah Metode Kroll yang banyak menggunakan klor dan karbon. Hasil reaksinya adalah titanium tetraklorida yang kemudian dipisahkan dengan besi triklorida dengan menggunakan proses distilasi. Senyawa titanium tetraklorida, kemudian direduksi oleh magnesium menjadi logam murni. Udara dikeluarkan agar logam yang dihasilkan tidak dikotori oleh unsur oksigen dan nitrogen. Sisa reaksi adalah antara magnesium dan magnesium diklorida yang kemudian dikeluarkan dari hasil reaksi menggunakan air dan asam klorida sehingga meninggalkan spons titanium. Spon ini akan mencair di bawah tekanan helium atau argon yang pada akhirnya membeku dan membentuk batangan titanium murni.

Vanadium (V)

Frevonadium (logam campuran dengan besi) dihasilkan dari reduksi V_2O_5 dengan campuran silikon (Si) dan besi (Fe), reaksinya:

$$2V_2O_5(s) + 5Si(s) + Fe(s) \rightarrow 4V(s) + Fe(s) + 5SiO_2(s)$$

Senyawa SiO₂ ditambah dengan CaO menghasilkan suatu terak yaitu bahan yang dihasilkan selama pemurnian logam.

Krom (Cr)

Logam krom dibuat menurut proses goldschmidt dengan jalan mereduksi Cr_2O_3 dengan logam aluminium. Reaksinya:

$$Cr_2O_3(s) + 2Al(s) \rightarrow Al_2O_3(s) + 2Cr(s)$$

• Mangan (Mn)

Pembuatan feromangan dilakukan dengan mereduksi MnO₂ dengan campuran besi oksida dan karbon. Reaksinya:

$$MnO_2 + Fe_2O_3 + 5C \rightarrow Mn + 2Fe + 5CO$$

• Besi (Fe)

Besi diperoleh dari bijih besi dengan cara mereduksi bijih dalam tanur (tungku). Bahan-bahan yang diperlukan meliputi:

- a. bijih besi (hematit) Fe₂O₃ sebagai bahan baku,
- b. batu kapur CaCO₃ untuk mengikat zat pengotor,
- c. kokas (C) sebagai reduktor,
- d. udara untuk mengoksidasi C menjadi CO.

Gambar 2. 1 Tungku Pengolahan Besi

Proses yang terjadi pada pembuatan besi:

- a. Bahan-bahan (biji besi, batu kapur, dan kokas) dimasukkan ke dalam tungku dari puncak tanur.
- b. Udara panas dialirkan melalui dasar tanur sehingga mengoksidasi karbon menjadi gas CO_2 .

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -394 \text{ kJ}$

c. Kemudian gas CO₂ bergerak naik dan bereaksi lagi dengan kokas manjadi CO.

$$CO_2(g) + C(s) \rightarrow 2CO(g)$$
 $\Delta H = +173 \text{ kJ}$

d. Gas CO yang terjadi mereduksi bijih besi secara bertahap menjadi besi.

$$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$$
 (pada suhu 500 °C)
 $Fe_3O_4 + CO \rightarrow 3FeO + CO_2$ (pada suhu 850 °C)
 $FeO + CO \rightarrow Fe + CO_2$ (pada suhu 1000 °C)

Kobalt (Co)

Unsur Kobalt diproduksi Ketika hidroksida hujan, akan timbul (NaOCl). Berikut reaksinya:

 $2\text{Co}^{2+}(\text{aq}) + \text{NaOCl}(\text{aq}) + 4\text{OH}\cdot(\text{aq}) + \text{H}_2\text{O} \rightarrow 2\text{Co}(\text{OH})_3(\text{aq}) + \text{NaCl}(\text{aq})$ Co(OH)₃ yang dihasilkan kemudian dipanaskan untuk membentuk oksida dan kemudian ditambah dengan karbon sehingga terbentuklah unsur kobalt metal.

Nikel (Ni)

Proses pembuatan nikel adalah melalui proses berikut:

- ✓ Pengeringan di tanur pengering
- ✓ Kalsinasi dan reduksi di tanur
- ✓ Peleburan di tanur listrik
- ✓ Pengkayaan di tanur pemurni
- ✓ Granulasi dan pengemasan

Tembaga (Cu)

Tembaga diperoleh dari bijih kalkopirit CuFeS₂ melalui beberapa tahap, yaitu:

- a) Pengapungan (flotasi)
- b) Pemanggangan

c) Reduksi

d) Elektrolisis

Bagan pengolahan tembaga seperti berikut.

• Seng (Zn)

Pembuatan logam seng dilakukan dengan pemanggangan seng sulfida (ZnS) kemudian oksida seng direduksi dengan karbon pijar.

4. Manfaat/Kegunaan Unsur - Unsur Transisi Periode 4

Kegunaan atau manfaat unsur transisi periode 4 dalam kehidupan sehari-hari diberikan pada tabel 2.4.

Tabel 2.4. Kegunaan Unsur Transisi Periode 4 dan Senyawanya

Unsur	Manfaat/ Kegunaan
Skandium (Sc)	Penggunaan utamanya dari segi isi padu adalah aloi aluminium-skandium untuk industri aeroangkasa dan juga untuk peralatan sukan (basikal, bet besbol, senjata api, dan
	sebagainya) yang memerlukan bahan berprestasi tinggi. Apabila dicampur dengan aluminium.
Titanium (Ti)	Titanium digunakan sebagai badan pesawat terbang dan pesawat supersonik, karena pada temperatur tinggi tidak mengalami perubahan kekuatan (strenght).
Vanadium (V)	Vanadium untuk membuat peralatan yang membutuhkan kekuatan dan kelenturan yang tinggi seperti per mobil dan alat mesin berkecepatan tinggi, Umumnya digunakan untuk paduan dengan logam lain seperti baja tahan karat dan baja untuk peralatan
Krom (Cr)	Khromium digunakan untuk mengeraskan baja, pembuatan baja tahan karat dan membentuk banyak alloy (logam campuran) yang berguna. Digunakan untuk katalis dan untuk pewarna gelas. Suatu senyawa kromium yang indah

Mangan (Mn)	sekali adalah jamrud (emerald). Batu permata ini terbentuk jika sebagian ion aluminium dalam mineral beril, Be ₃ Al ₂ (Si ₆ O ₁₈) diganti oleh ion kromium (III). Krom juga digunakan untuk membuat aliase,misalnya nikrom (15% Cr, 60% Ni, dan 25% Fe). Aliase ini digunakan untuk tahanan kawat pada alat-alat pemanas, stainless steel (72% Fe, 19%Cr, 9% Ni). Pada produksi baja, Mn berpartisipasi pada pemurnian besi melalui reaksi dengan belerang dan oksigen dengan memindahkannya melalui pembentukan terak. Fungsi yang lain adalah untuk meningkatkan kekerasan baja. Baja yang mengandung Mn dengan proporsi besar bersifat sangat keras dan tahan lama. Oleh karena itu digunakan dalam kereta api dan mesin-mesin buldoser.
Besi (Fe)	Sebagai bahan utama pembuatan baja. Misalnya baja stainless steel (campuran 72% Fe, 19% Cr, dan 9% Ni). Adapun manfaat baja adalah Fe(OH) ₃ digunakan untuk bahan cat seperti cat minyak, cat air, atau cat tembok. Fe ₂ O ₃ sebagai bahan cat dikenal nama meni besi, digunakan juga untuk mengkilapkan kaca. FeSO ₄ digunakan sebagai bahan tinta.
Kobalt (Co)	Kobalt yang dicampur dengan besi, nikel, dan logam lainnya untuk membuat alnico, alloy dengan kekuatan magnet luar biasa untuk berbagai keperluan. Alloy stellit, mengandung kobalt, khromium, dan wolfram, yang bermanfaat untuk peralatan berat, peralatan yang digunakan pada suhu tinggi, maupun peralatan yang digunakan pada kecepatan yang tinggi.
Nikel (Ni)	Digunakan sebagai komponen pemanas listrik (nikrom) yang merupakan campuran dari Ni, Fe, dan Cr. Perunggunikel digunakan untuk uang logam. Perak jerman (paduan Cu, Ni, Zn) digunakan untuk barang perhiasan. Pembuatan aloi, <i>battery electrode</i> , dan keramik,dll Nikel digunakan untuk aliase, misalnya baja stainless, monel (65% Ni dan 35% Cu), alnico, dan nikrom.
Tembaga (Cu)	Banyak digunakan sebagai kabel jaringan listrik karena sifatnya yang menghantarkan listrik. Tembaga juga digunakan untuk membuat pipa ledeng. Alloy tembaga dan emas digunakan untuk membuat perhiasan
Seng (Zn)	Digunakan untuk melapisi besi dan baja untuk mencegah karat. Zink juga digunakan dalam alloy misalnya brazo (tembaga dan zink).

C. Rangkuman

- 1. Unsur-unsur transisi periode keempat mempunyai sifat-sifat yang khas. Sifat-sifat khas unsur transisi periode keempat antara lain:
 - a. Bersifat logam, maka sering disebut logam transisi.
 - b. Bersifat logam, maka mempunyai bilangan oksidasi positif dan pada umumnya lebih dari satu.

- c. Banyak di antaranya dapat membentuk senyawa kompleks.
- d. Pada umumnya senyawanya berwarna.
- e. Beberapa di antaranya dapat digunakan sebagai katalisator
- Pada sistem periodik unsur, yang termasuk dalam golongan transisi adalah unsurunsur golongan B, dimulai dari IB – VIIB dan VIII. Sesuai dengan pengisian elektron pada subkulitnya, unsur ini termasuk unsur blok d, yaitu unsur-unsur dengan elektron valensi yang terletak pada subkulit d dalam konfigurasi elektronnya.
- 3. Beberapa kegunaan unsur-unsur transisi, antara lain:
 - a. Skandium, digunakan pada lampu intensitas tinggi.
 - b. Titanium, digunakan pada industri pesawat terbang dan industri kimia (pemutih kertas, kaca, keramik, dan kosmetik).
 - c. Vanadium, digunakan sebagai katalis pada pembuatan asam sulfat.
 - d. Kromium, digunakan sebagai plating logam-logam lainnya.
 - e. Mangan, digunakan pada produksi baja dan umumnya alloy mangan-besi.
 - f. Kobalt, digunakan untuk membuat aliansi logam.
 - g. Nikel, digunakan untuk melapisi logam supaya tahan karat, membuat monel.
 - h. Tembaga, digunakan pada alat-alat elektronik dan perhiasan.

D. Penugasan Mandiri

Berikut adalah table sifat - sifat unsur - unsur transisi periode 4

Sifat	Se	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
Nomor Atom	21	22	23	24	25	26	27	28	29	30
Kerapatan (g/cm²)	2,99	4,51	6,1	7,27	7,30	7,86	8,9	8,9	8,92	7,1
Jari-jari atom (Å)	1,61	1,45	1,32	1,25	1,24	1,24	1,25	1,25	1,28	1,33
Titik Leleh (°C)	1.541	1.668	1.910	1.907	1.246	1.538	1.495	1.455	1.085	420
Titik Didih (°C)	2.836	3.3287	3.407	2.671	2.061	2.861	2.927	2.913	2.562	907
Potensial Reduksi	-2,08	-1,63	-1,18	-0,91	-1,19	-0,44	-0,28	-0,23	+0,34	-0,763
(volt)										
Energi Ionisasi	631	658	650	653	717	759	758	737	745	906
(kJ mol')										
Elegtronegativitas	1,3	1,5	1,6	1,6	1,5	1,8	1,8	1,8	1,9	1,6
Bilangan	3	2,3,4	2,3,4,5	2,3,6	2,3,4,7	2,3	2,3	2	1,2	2
Oksidasi										
Sifat kemagnetan		Pa	aramagnet	ik		Feromagnetik			Diamagnetik	

1.	Berdasarkan tabel diatas, bagaimanakah sifat logam unsur – unsur transisi periode 4? Jawab
2.	Pada unsur – unsur transisi tersebut, terdapat perbedaan sifat kemagnetannya. Apakah yang menyebabkan perbedaan sifat dari sifat kemagnetan unsur – unsur transisi tersebut ? Jawab

E. Latihan Soal

Pilihlah Salah Satu Jawaban yang Tepat!

- 1. Unsur transisi yang paling banyak terdapat didalam kulit bumi adalah ...
 - A. Krom
 - B. Mangan
 - C. Besi
 - D. Nikel
 - E. Tembaga
- 2. Pada umunya unsur transisi bersifat paramagnetik. Hal ini disebabkan oleh ...
 - A. Elektron terluarnya berada pada subkulit d
 - B. Adanya elektron-elektron tidak berpasangan pada subkulit d
 - C. Orbital-orbital pada subkulit d terisi penuh elektron
 - D. Semua unsur transisi bersifat logam
 - E. Adanya perpindahan elektron pada subkulit d yang tidak penuh
- 3. Pernyataan berikut yang bukan merupakan sifat unsur transisi adalah ...
 - A. Bersifat nonlogam
 - B. Mempunyai beberapa bilangan oksidasi
 - C. Bersifat paramagnetik
 - D. Dapat membentuk senyawa kompleks
 - E. Senyawanya berwarna
- 4. Berikut ini yang bukan merupakan mineral yang mengandung bijih besi adalah....
 - A. Hematit
 - B. Magnetit
 - C. Siderit
 - D. Rutil
 - E. Pirit
- 5. Senyawa unsur-unsur transisi periode keempat pada umumnya berwarna. Hal ini disebabkan karena....
 - A. Orbital d-nya terisi penuh
 - B. Orbital d-nya tidak terisi
 - C. Pengisisan terakhir pada orbital d
 - D. Bersifat paramagnetic
 - E. Elektron dalam keadaan berpasangan
- 6. Nama mineral yang mengandung mangan adalah....
 - A. Bauksit
 - B. Kobaltit
 - C. Pirolusit
 - D. Kriolit
 - E. Pirit

- 7. Beberapa reaksi kimia berikut:
 - (1) Fe_2O_3 (s) + 3 CO (g) \rightarrow 2 Fe (l) + 3 CO₂ (g)
 - (2) $3 \operatorname{Fe_2O_3}(s) + \operatorname{CO}(g) \rightarrow 2 \operatorname{Fe_3O_4}(s) + \operatorname{CO_2}(g)$
 - (3) $Fe_3O_4(s) + CO(g) \rightarrow 3 FeO(s) + CO_2(g)$
 - (4) FeO (s) + CO_2 (g) \rightarrow FeCO₃ (s)
 - (5) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

Reaksi yang terjadi pada peleburan besi pada tanur tinggi adalah....

- A. 1,2 & 3
- B. 1, 2, & 4
- C. 2.3 & 4
- D. 2,3 & 5
- E. 2,4 & 5
- 8. Kuningan Merupakan salah satu jenis aliasi logam....
 - A. Sn dengan Cu
 - B. Zn dengan Cu
 - C. Ag dengan Cu
 - D. Zn dengan Ni
 - E. Ni dengan Cr
- 9. Nama senyawa kompleks [Ag(CN)2]- ...
 - A. Ion sianoargentat (I)
 - B. Ion disianoargentat (I)
 - C. Ion disianida argentat
 - D. Ion Trisianoargentat
 - E. Ion disianidaargentum (I)
- 10. Cat tembok sering digunakan dalam kehidupan sehari-hari yang mana mengandung senyawa kimia, salah satu diantaranya cat berwarna putih. Senyawa kimia yang terkandung dalam cat putih tersebut adalah....
 - A. V_2O_5
 - B. Cr
 - C. TiCl₃
 - D. Fe
 - E. TiO₂

Kunci Jawaban dan Pembahasan

No	Kunci Jawaban	Pembahasan
1	C	Besi (Fe) adalah unsur yang cukup melimpah di kerak bumi (sekitar 6,2% massa kerak bumi). Besi jarang ditemukan dalam keadaan bebas di alam. Besi umumnya ditemukan dalam bentuk mineral (bijih besi), seperti hematite (Fe2O3), siderite (FeCO3), dan magnetite (Fe3O4).
2	В	Setiap atom dan molekul mempunyai sifat magnetik, yaitu paramagnetik, di mana atom, molekul, atau ion sedikit dapat ditarik oleh medan magnet karena ada elektron yang tidak berpasangan pada orbitalnya dan diamagnetik, di mana atom, molekul, atau ion dapat ditolak oleh medan magnet karena seluruh elektron pada orbitnya berpasangan. Sedangkan pada umumnya unsur-unsur transisi bersifat paramagnetik karena mempunyai elektron yang tidak berpasangan pada orbital-orbital d-nya. Sifat paramagnetik ini akan semakin kuat jika jumlah elektron yang tidak berpasangan pada orbitalnya semakin banyak. Logam Sc, Ti, V, Cr, dan Mn bersifat paramagnetik, sedangkan Cu dan Zn bersifat diamagnetik. Untuk Fe, Co, dan Ni bersifat feromagnetik, yaitu kondisi yang sama dengan paramagnetik hanya saja dalam keadaan padat.
3	A	Unsur transisi mempunyai siat-sifat khas yang membedakan dari unsur golongan utama, antara lain: Sifat logam, semua unsure transisi tergolong logam dengan titk cair dan titik didih yang relatif tinggi. Bersifat paramegnetik (sedikit tertarik ke dalam medan magnet). Membentuk senyawa-senyawa yang berwarna. Mempunyai beberapa tingkat oksidasi. Membentuk berbagai macam ion kompleks. Berdaya katalitik, banyak unsur transisi atau senyawanya yang berfungsi sebagai katalis, baik dalam proses industri maupun dalam metabolisme
4	D	Hematit: Fe203 Siderit: FeC03 Rutil: Ti02 Magnetit: Fe304 Pirit: FeS2 Dari rumus kimia mineral di atas dapat diketahui bahwa mineral yang tidak menganding bijih besi adalah pirit, karena pirit merupakan mineral yang mengandung titanium
5	С	Hal yang mempengaruhi warna ion transisi dalam senyawa adalah subkulit d. Subkulit d memiliki 5 orbital yang masingmasing memiliki tingkat energi yang sama. Apabila ion-ion unsur transisi berikatan dengan unsur ion lain maka muatan listrik anion tersebut akan mempengaruhi 5 orbital d, sehingga terjadi perbedaan tingkat energi antara orbital-orbital d. Elektron-elektron pada orbital d dapat mengalami perpindahan

		ke tingkat energi yang lebih tinggi, dengan cara menyerap energi tampak. Besarnya energi yang diserab tergantung jenis atom pusat dan anionnya. Apabila semua energi cahaya tampak diserap maka senyawa tersebut tidak berwarna. Karena orbital d terisi penuh electron atau kosong, maka senyawanya atau ionnya tidak berwarna. Apabila suatu zat menyerap energi cahaya tampak dengan panjang gelombang tertentu, zat tersebut akan meneruskan cahaya tampak yang tidak diserap mata, sehingga zat akan tampak berwarna sesuai dengan warna cahaya yang tidak diserap.
6	С	Bijih mangan yang utama adalah pirolusit (MnO2) . Jika pirit adalah mineral yang mengandung besi (FeS2), kobalt di alam diperoleh sebagai bijih smaltit (CoAs2) dan kobaltit (CoAsS)
7	A	Pengolahan bijih besi dilakukan di dalam tanur tinggi yang dikenal dengan namablast furnance. Proses pengolahan bjih adalah sebagai berikut. Bijih besi, kokas dan kapur dimasukkan dari puncak tanur lalu udara panas diembuskan dari bawah. Reaksi yang terjadi pada tanur tinggi adalah sebagai berikut. "Udara panas yang diembuskan kedalam tanur akan mengalir ke atas dan mengoksidasi kokas dengan reaksi eksoterm menghasilkan gas CO2. Kerika bergerak naik, gas CO2 yang baru terbentuk itu bereaksi lagi dengan kokas yang bergerak turun membentuk CO. Reaksi eksoterm menyebabkan temperature pembakaran di dalam tanur tetap tinggi. Gas CO yang dihasilkan akan mereduksi bijih besi secara bertahap.
8	D	Seng juga digunakan sebagai logam paduan, misalnya kuningan yang berasal dari campuran Zn dan Cu yang digunakan untuk membuat alat-alat music dan hiasan.
9	В	Nama ion kompleks [Ag(CN)2] – adalah ion diasianoargentat (I) Pemberian nama ion kompleks yang bermuatan negatif dimulai dengan nama ligannyakemudian di ikuti oleh nama atom pusat yang di tambah dengan akhiran at dan hanya satu kata. Bilangan oksidasi dari atom pusat di tulis dengan bilangan romawi dalam tanda kurung.
10	Е	${ m TiO_2}$ (titanium dioksida) adalah pigmen putih, selain itu dapat memberikan sifat cemerlang pada warna lain. Senyawa ini dapat digunakan untuk cat tembok. ${ m V_2O_5}$ sebagai katalisator menggunakan proses Kontak, Cr untuk bahan pelapis besi atau alloy dalam baja. Fe untuk bahan bangunan, bahan pembuatan mesin. Dan ${ m TiCl_3}$ sebagai katalisator untuk polimerisasi etena menjadi polietena.

F. Penilaian Diri

Setelah mempelajari kegiatan pembelajaran 2 tentang Unsur – Unsur Transisi Periode 4, berikut diberikan tabel pertanyaan untuk mengukur keberhasilan kalian terhadap penguasaan materi ini.

Tabel Penilaian Diri

No	Pertanyaan	Jawal	oan
	,	Ya	Tidak
1	Dapatkah kalian menjelaskan kelimpahan Unsur – Unsur Transisi Periode 4 ?		
2	Dapatkah kalian membedakan sifat – sifat Unsur – Unsur Transisi Periode 4 berdasarkan kenaikan nomor atomnya?		
3	Dapatkah kalian menjelaskan proses pembuatan Unsur – Unsur Transisi Periode 4?		
4	Dapatkah kalian menjelaskan manfaat Unsur – Unsur Transisi Periode 4 dalam kehidupan sehari - hari ?		

EVALUASI

Pilihlah jawaban yang paling tepat!

- 1. Sifat-sifat unsur periode ketiga dari Na sampai Cl berikut adalah yang benar kecuali...
 - A. Sifat basa makin berkurang
 - B. Sifat asam makin bertambah
 - C. Afinitas elektron cenderung berkurang
 - D. Energi ionisasi cenderung bertambah
 - E. Keelektronegatifan unsur bertambah
- 2. Jika tingkat keasaman dan kebasaan senyawa hidroksida unsur-unsur periode ketiga dibandingkan, maka...
 - **A.** Cl(OH)₇ bersifat asam yang lebih kuat dari S(OH)₆
 - B. Si(OH)₄ bersifat asam yang lebih lemah dari Al(OH)₃
 - C. P(OH)₅ bersifat asam yang lebih kuat dari S(OH)₆
 - D. Si(OH)₄ bersifat basa yang lebih kuat dari Al(OH)₃
 - E. Mg(OH)₂ bersifat basa yang lebih lemah dari Al(OH)₃
- 3. Senyawa hidroksida unsur periode ketiga yang terionisasi menurut tipe : $MOH \rightarrow M^+ + OH^-$ adalah...
 - A. Si(OH)₄
 - B. P(OH)₅
 - C. $Mg(OH)_2$
 - D. Cl(OH)₇
 - E. $S(OH)_6$
- 4. Urutan unsur-unsur periode ketiga, dimana sifat pereduksinya makin besar adalah...
 - A. Na, Al, Si, S
 - B. S, Si, Al, Na
 - C. Al, Na, S, Si
 - D. Si, Na, S, Al
 - E. Na, S, Si, Al
- 5. Jika dibandingkan sifat antara unsur-unsur natrium dengan magnesium maka natrium
 - A. lebih bersifat basa
 - B. lebih bersifat asam
 - C. energi ionisasinya lebih tinggi
 - D. jari-jari atomnya lebih kecil
 - E. keelektronegatifannya lebih tinggi

6. Perhatikan unsur-unsur dengan nomor atom berikut:

11X 15Y 17Z

Jika unsur X,Y,Z adalah unsur-unsur periode ketiga. Pertanyaaan yang benar tentang sifat unsur tersebut adalah

- A. Unsur x bersifat non logam
- B. Kelektronegatifan unsur X>Y>Z
- C. Ketiga unsur tersebut memiliki jumlah elektron valensi yang sama.
- D. Y dan Z dapat membentuk senyawa dengan rumus Y₃Z
- E. Jari-jari atom unsur X>Y>Z
- 7. Perhatikan sifat berikut
 - Bereaksi dengan oksigenn membentuk lapisan tipis oksida yang melindungi dari oksida lebih lanjut
 - Bereaksi dengan asam membebaskan gas hidrogen
 - Apabila dipanaskan kuata diudara akan terbakar membentuk oksida dan sedikit nitrida

Dari pernyataan diatas termasuk ciri-ciri sifat unsur

- A. Natrium
- B. Magnesium
- C. Aluminium
- D. Silikon
- E. Fosfor
- 8. Unsur periode ketiga yang dibuat dengan cara elektrolisis adalah ...
 - A. Na, Cl, Al, Mg
 - B. Si, Na, Al, P
 - C. Al, Si, P, S
 - D. P, S, Cl, Ar
 - E. Mg,Al,Si,P
- 9. Bahan baku utama dalam pembuatan almunium adalah
 - A. Dolomit
 - B. Magnesit
 - C. Pirit
 - D. Bauksit
 - E. Kalkopirit
- 10. Alumunium tergolong logam tahan korosi. Sifat inilah yang menyebabkan alumunium dipakai dalam industri kecil
 - A. Untuk membuat logam campur
 - B. Untuk membuat reaksi termit
 - C. Sebagai pereduksi berbagai macam oksida
 - D. Untuk membuat berbagai peralatan dapur
 - E. Untuk membuat roda pesawat terbang

- 11. Beberapa sifat unsur sebagai berikut:
 - 1) Titik didih tinggi
 - 2) Titik lebur rendah
 - 3) Dapat membentuk senyawa kompleks
 - 4) Diamagnetik
 - 5) Paramagnetik

Sifat unsur transisi periode 4 ditunjukkan oleh

- A. 1, 2, 3
- B. 1, 3, 5
- C. 2, 3, 4
- D. 2, 3, 5
- E. 3, 4, 5
- 12. Logam golongan transisi terbagi menjadi beberapa sifat magnetik sesuai dengan jumlah elektron tidak berpasangan di orbital d yang dimilikinya. Pernyataan yang benar mengenai sifat tersebut adalah
 - A. Logam transisi yang semua elektronnya berpasangan bersifat *paramagnetik*
 - B. Logam transisi bersifat *diamagnetik* karena mempunyai elektron tidak berpasangan
 - C. Sifat *diamagnetik* unsur logam transisi semakin besar seiring jumlah elektron tidak berpasangan
 - D. Semakin banyak elektron tidak berpasangan, sifat kemagnetan unsur logam transisi semakin meningkat
 - E. Logam-logam unsur transisi bersifat *feromagnetik* akibat tidak mempunyai elektron tidak berpasangan
- 13. Beberapa mineral berikut ini terdapat di alam.
 - 1) Vanadit
- 4) Kalkoporit
- 2) Hematit
- 5) Limonit
- 3) Siderit
- 6) Kalkosit

Di antara mineral-mineral di atas yang mengandung besi adalah ...

- A. Vanadit, hematit, dan kalkoporit
- B. Hematit, kalkosit, dan kalkoporit
- C. Hematit, siderit, dan timonit
- D. Vanadit, siderit, dan kalkosit
- E. Siderit, limonit, dan kalkosit
- 14. Tabel berikut berisi data nama unsur serta proses pembuatannya.

No	Unsur	Nama Proses
1	Titanium	Kontak
2	Kromium	Goldschmidt
3	Besi	Tanur tiup
4	Tembaga	Hall-heroult

Pasangan data yang keduanya berhubungan dengan tepat ditunjukkan oleh nomor

- A. 1 dan 2
- B. 1 dan 3
- C. 2 dan 3

- D. 2 dan 4
- E. 3 dan 4
- 15. Berikut ini tabel tentang nama bijih mineral dan unsur yang terkandung dalam bijih tersebut:

No	Nama Bijih	Kandungan Unsur
1	Bauksit	Titanium
2	Kalkopirit	Tembaga
3	Hematit	Besi
4	Pyrit	Nikel
5	Pirolusit	Mangan

Hubungan yuang sesuai antyara bijih dan unsur yang dikandungnya adalah nomor ...

- A. 1 dan 5
- B. 2 dan 3
- C. 2 dan 4
- D. 2 dan 5
- E. 3 dan 5

Kunci Jawaban Evaluasi

No	Kunci
1	С
2	A
3	С
4	В
5	D
6	Е
7	С
8	A
9	D
10	D
11	В
12	D
13	С
14	C C
15	Е

DAFTAR PUSTAKA

- Brady, James E. 1990. *General Chemistry (Principle and Structures)*. New York: John Wiley and Sons.
- Harnanto, Ari dan Ruminten. 2009. *KIMIA 3 Untuk SMA/MA Kelas XII.* Jakarta : Pusat Perbukuan Departemen Pendidikan Nasional.
- Utami, Budi, dkk. 2009. *KIMIA Untuk SMA/MA Kelas XII Program Ilmu Alam*. Jakarta : Pusat Perbukuan Departemen Pendidikan Nasional.
- https://id.scribd.com/doc/246730709/Cara-Pembuatan-Logam-Transisi-Periode-4 diunduh pada 15 Agustus 2020
- https://kimiarini.wordpress.com/2014/12/14/unsur-unsur-periode-ketiga/ diunduh pada 16 Agustus 2020
- https://soalkimia.com/soal-dan-pembahasan-kimia-unsur-periode-ketiga/ diunduh pada 14 Agustus 2020
- https://vdokumen.com/kimia-unsur-periode-3.html diunduh pada 14 Agustus 2020
- https://www.academia.edu/10184302/Kimia unsur transisi periode 4 diunduh pada 15 Agustus 2020
- https://www.slideshare.net/nufsey/unsur-transisi-periode-keempat diunduh pada 16 Agustus 2020
- Pangajuanto, Teguh dan Tri Rahmidi. 2009. *KIMIA 3 Untuk SMA/MA Kelas XII.* Jakarta : Pusat Perbukuan Departemen Pendidikan Nasional.
- www.chem-is-try.org diunduh pada 14 Agustus 2020