CVPR 2018

Relation Networks for Object Detection

Han Hu1* Jiayuan Gu2*† Zheng Zhang1* Jifeng Dai1 Yichen Wei1

1 Microsoft Research Asia

2 Department of Machine Intelligence, School of EECS, Peking University https://github.com/msracver/Relation-Networks-for-Object-Detection

主讲人:贾馥溪

2018.7.8

1. Itroduction

Figure 1. Current state-of-the-art object detectors are based on a four-step pipeline. Our object relation module (illustrated as red dashed boxes) can be conveniently adopted to improve both instance recognition and duplicate removal steps, *resulting in an end-to-end object detector*

2. Object Relation Module

An object relation module aggregates in total N_r relation features and augments the input object's appearance feature via addition,

$$\mathbf{f}_A^n = \mathbf{f}_A^n + \text{Concat}[\mathbf{f}_R^1(n), ..., \mathbf{f}_R^{N_r}(n)], \text{ for all } n.$$
 (6)

fA: appearance feature

—— is up to the task

fG : *geometric feature*

—— a 4-dimensional object bounding box

Given input set of N objects $\{(\mathbf{f}_A^n, \mathbf{f}_G^n)\}_{n=1}^N$, the relation feature $\mathbf{f}_R(n)$ of the whole object set with respect to the n^{th} object, is computed as

$$\mathbf{f}_R(n) = \sum_m \omega^{mn} \cdot (W_V \cdot \mathbf{f}_A^m). \tag{2}$$

Figure 2. **Left**: object relation module as Eq. (6); **Right**: relation feature computation as Eq. (2).

这里是通过另一篇论文 (Attention Is All You Need) 中提到的方法将低维数据映射到了高维,映射后的维数为dg。

3. Relation for Instance Recognition

Given the RoI pooled features for n^{th} proposal, two fc layers with dimension 1024 are applied. The instance classification and bounding box regression are then performed via linear layers. This process is summarized as

$$RoI_Feat_n \xrightarrow{FC} 1024$$

$$\xrightarrow{FC} 1024$$

$$\xrightarrow{LINEAR} (score_n, bbox_n)$$

$$(9)$$

Such enhanced 2fc+RM (RM for relation module) head is illustrated in Figure 3 (a) and summarized as

$$\{RoI_Feat_n\}_{n=1}^{N} \xrightarrow{FC} 1024 \cdot N \xrightarrow{\{RM\}^{r_1}} 1024 \cdot N$$

$$\xrightarrow{FC} 1024 \cdot N \xrightarrow{\{RM\}^{r_2}} 1024 \cdot N$$

$$\xrightarrow{LINEAR} \{(score_n, bbox_n)\}_{n=1}^{N}$$
(10)

In Eq. (10), r_1 and r_2 indicate how many times a relation module is repeated. Note that a relation module also

(a) enhanced 2fc head

4. Relation for Duplicate Removal

作者把duplicate removal当成一个二分类问题:

对于每个ground truth, 只有一个detected object被归为correct类, 而其余的都是duplicate。

模块的输入是instance recognition模块的output,也就是一系列的 detected objects,它们每个都有1024-d的特征,分类分数s0还有bbox。 **模块的输出**则是s0*s1得到的最终分类分数。

如何判断哪个detected object是correct,而哪些是duplicate?

predefined threshold η for the IoU between detection box and ground truth box, all detection boxes with IoU $\geq \eta$ are firstly matched to the same ground truth. The detection box with highest score is *correct* and others are *duplicate*

与NMS相比的优势:

NMS需要一个预设置的参数;而duplicate removal模块是自适应学习参数的。

作者发现阈值的设置和最后的指标有某种联系。例如mAP0.5在η 为 0.5时的效果最好,mAP0.75在η 为0.75时的效果最好

(b) duplicate removal network

5. Experiments

作者主要使用了ResNet 50和101,用两个fc层作为baseline进行了很多对比实验。

效果的提升是来自参数和层数的增加吗? 表2对比了不同深度, 宽度的网络结构。

head	mAP	mAP_{50}	$\mathrm{mAP_{75}}$	# params	# FLOPS
(a) 2fc (1024)	29.6	50.9	30.1	38.0M	80.2B
(b) 2fc (1432)	29.7	50.3	30.2	44.1M	82.0B
(c) 3fc (1024)	29.0	49.4	29.6	39.0M	80.5B
(d) 2fc+res $\{r_1, r_2\} = \{1, 1\}$	29.9	50.6	30.5	44.0M	82.1B
(e) 2fc (1024) + global	29.6	50.3	30.8	38.2M	82.2B
(f) 2fc+RM $\{r_1, r_2\}$ = $\{1, 1\}$	31.9	53.7	33.1	44.0M	82.6B
(g) 2fc+res $\{r_1, r_2\} = \{2, 2\}$	29.8	50.5	30.5	50.0M	84.0B
(h) 2fc+RM $\{r_1, r_2\}=\{2, 2\}$	32.5	54.0	33.8	50.0M	84.9B

Table 2. Comparison of various heads with similar complexity.

5. Experiments

本文提出的检测框去重复算法的优势体现在哪些方面?表4对比了本文方法与NMS和softNMS[4]的性能。

method	parameters	mAP	mAP_{50}	mAP_{75}
NMS	$N_t = 0.3$	29.0	51.4	29.4
NMS	$N_t = 0.4$	29.4	52.1	29.5
NMS	$N_t = 0.5$	29.6	51.9	29.7
NMS	$N_t = 0.6$	29.6	50.9	30.1
NMS	$N_t = 0.7$	28.4	46.6	30.7
SoftNMS	$\sigma = 0.2$	30.0	52.3	30.5
SoftNMS	$\sigma = 0.4$	30.2	51.7	31.3
SoftNMS	$\sigma = 0.6$	30.2	50.9	31.6
SoftNMS	$\sigma = 0.8$	29.9	49.9	31.6
SoftNMS	$\sigma = 1.0$	29.7	49.7	31.6
ours	$\eta = 0.5$	30.3	51.9	31.5
ours	$\eta = 0.75$	30.1	49.0	32.7
ours	$\eta \in [0.5, 0.9]$	30.5	50.2	32.4
ours (e2e)	$\eta \in [0.5, 0.9]$	31.0	51.4	32.8

Table 4. Comparison of NMS methods and our approach (Section 4.3). Last row uses end-to-end training (Section 4.4).

5. Experiments

端到端的目标识别

作者使用不同的检测框架,进行对比。

backbone	test set	mAP	mAP_{50}	mAP_{75}	#. params	FLOPS
faster RCNN [38] re	minival	$32.2 \rightarrow 34.7 \rightarrow 35.2$	52.9→55.3→ 55.8	$34.2 \rightarrow 37.2 \rightarrow 38.2$	58.3M→64.3M→64.6M 12	$122.2B \rightarrow 124.6B \rightarrow 124.9B$
	test-dev	$32.7 \rightarrow 35.2 \rightarrow 35.4$	53.6→ 56.2 →56.1	$34.7 \rightarrow 37.8 \rightarrow 38.5$		
FPN [32]	minival	$36.8 \rightarrow 38.1 \rightarrow 38.8$ $37.2 \rightarrow 38.3 \rightarrow 38.9$	$57.8 \rightarrow 59.5 \rightarrow 60.3$	$40.7{\rightarrow}41.8{\rightarrow}\textbf{42.9}$	56 4M→62 4M→62 8M	M 145.8B→157.8B→158.2B
t	test-dev	$37.2 \rightarrow 38.3 \rightarrow 38.9$	$58.2 \rightarrow 59.9 \rightarrow 60.5$	$41.4{\rightarrow}42.3{\rightarrow}\textbf{43.3}$	30.4W1 702.4W1 702.6W1	
DCN [10]	minival	$37.5 \rightarrow 38.1 \rightarrow 38.5$	57.3→57.8→ 57.8	$41.0{\rightarrow}41.3{\rightarrow}\textbf{42.0}$	60 5M→66 5M→66 8M	$125.0B \rightarrow 127.4B \rightarrow 127.7B$
	test-dev	$38.1 \rightarrow 38.8 \rightarrow 39.0$	$58.1 \rightarrow 58.7 \rightarrow 58.6$	$41.6{\rightarrow}42.4{\rightarrow}\textbf{42.9}$	00.51 v1 700.51 v1 700.61 v1	123.0 b /127.7 b /127.7 b

Table 5. Improvement (2fc head+SoftNMS [4], 2fc+RM head+SoftNMS and 2fc+RM head+e2e from left to right connected by \rightarrow) in state-of-the-art systems on COCO *minival* and *test-dev*. Online hard example mining (OHEM) [40] is adopted. Also note that the strong SoftNMS method ($\sigma = 0.6$) is used for duplicate removal in non-e2e approaches.

6. Summary

Relation module究竟学习到了什么?

作者提出的Relation module是一个很好的研究点,遗憾的是文中没有很好的解释Relation module学到了什么,作者说这个不在文章的讨论范围。为了对文章所提出的模型给出一个直观的解释,作者分析了Relation module中最后一个fc之后的RM中的关系权重,如下图所示,蓝色代表检测到的物体,橙色框和数值代表对该次检测有帮助的关联信息。

Figure 4. Representative examples with high relation weights in Eq. (3). The reference object n is blue. The other objects contributing a high weight (shown on the top-left) are yellow.