

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

Ecuaciones Diferenciales		
NOMBRE DE LA ASIGNATURA		

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercer Semestre	035035	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer los conceptos fundamentales de las ecuaciones diferenciales para comprender problemas físicos y geométricos en el diseño de productos.

TEMAS Y SUBTEMAS

1. Ecuaciones diferenciales de primer orden

- 1.1. Introducción a las ecuaciones diferenciales
 - 1.1.1. Definiciones y terminología
 - 1.1.2. Problemas con valores iniciales
 - 1.1.3. Ecuaciones diferenciales como modelos matemáticos
 - 1.2. Ecuaciones separables
 - 1.3. Ecuaciones lineales
 - 1.4. Ecuaciones exactas
 - 1.5. Métodos de sustitución: Homogéneas y Bernoulli.

2. Modelado de ecuaciones diferenciales de primer orden

- 2.1. Modelos lineales
- 2.2. Modelos no lineales

3. Ecuaciones diferenciales ordinaria s de orden superior

- 3.1. Teoría preliminar: Ecuaciones lineales
 - 3.1.1. Problemas con valores iniciales y valores de frontera
 - 3.1.2. Ecuaciones homogéneas y ecuaciones no homogéneas
- 3.2. Reducción de orden
- 3.3. Ecuaciones lineales homogéneas con coeficientes constantes
- 3.4. Coeficientes indeterminados
 - 3.4.1. Método de superposición
 - 3.4.2. Método del anulador
- 3.5. Variación de parámetros
- 3.6. Ecuación de Cauchy-Euler: Homogéneas y no homogéneas

4. Modelado de ecuaciones diferenciales de orden superior.

- 4.1. Modelos lineales
 - 4.1.1. Sistemas masa/resorte: Movimiento libre no amortiguado
 - 4.1.2. Sistemas masa/resorte: Movimiento libre amortiguado
 - 4.1.3. Sistemas masa resorte: Movimiento forzado
- 4.2 Problemas con valores de frontera

ACTIVIDADES DE APRENDIZAJE

Las sesiones se desarrollarán con exposición y debates orales utilizando medios de apoyo didáctico como: pizarrón, proyector y vídeos, así como actividades en torno a la experimentación ludida y la escritura de ensayos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación, que deberá comprender, evaluaciones parciales que tendrán una equivalencia del 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%

Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución de problemas sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso.

El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

1.Zill, Ecuaciones diferenciales con aplicaciones de modelado, 9 edición, Cengage Learning Editores, 2009

2.C.- H. Edwards, Ecuaciones diferenciales. Person Prentice Hall, 1992

3.M. Braum, Ecuaciones diferenciales y sus aplicaciones, Editorial Iberoamericana, 1990

De Consulta

- 1. J. V. Becerrill, *Ecuaciones diferenciales técnicas de solución y aplicaciones*, Universidad Autónoma Metropolitana Azcapotzalco, 2004.
- 2. B. DiPrima, Ecuaciones diferenciales, 5ta. Edición, Limusa, 201º.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Maestría en Matemáticas o en Matemáticas Aplicadas.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico