Arquitetura de Computadores

TABELA VERDADE

Professora: Debora Canne

Interruptores

Definição: Um interruptor é um dispositivo ligado a um circuito elétrico que pode assumir dois estados: aberto ou fechado. Quando aberto não permite a passagem de corrente elétrica, enquanto fechado a corrente passa livremente pelo ponto.

Aberto = 0

Fechado = 1

Dois interruptores a e b podem estar conectados através de dois tipos de ligações: paralela ou serial.

Denotaremos a ligação de dois interruptores **a** e **b** em paralelo por a + b. Já a ligação em serial será denotada por a • b.

Exemplos:

1. Determinar a expressão algébríca correspondente aos circuitos desenhados:

EXERCÍCIOS

Dar as expressões algébricas dos circuitos desenhados:

a	Ь	С	
d	<u>e</u>	f	
р	q	r	
S	t	<u> </u>	
h	i	j	
k	1	m	

Proposições

Definição: Uma <u>proposição</u> é uma sentença declarativa, afirmativa que exprime um pensamento de sentido completo. Toda proposição pode ser escrita na forma simbólica ou na linguagem usual.

- 1) O Brasil fica na América do Sul.
- 2) 2 + 3 = 5.
- 3) 5 < 2.
- 4) A Alemanha fica na Ásia.

Valor lógico de uma proposição

Dizemos que o valor lógico de uma proposição é a <u>verdade</u> (1) se a proposição for verdadeira e é a <u>falsidade</u> (0) se a proposição for falsa.

Ainda utilizando os exemplos acima, temos que o valor lógico das proposições 1) e 2) é a verdade (1), pois ambas as proposições são verdadeiras. Já o valor lógico das proposições 3) e 4) é a falsidade (0), uma vez que tais proposições são falsas.

Definição: Uma proposição é dita <u>simples</u> quando não contém nenhuma outra proposição como parte integrante de si mesma. Representaremos estas proposições pelas letras minúsculas do nosso alfabeto (p, q, r, s etc).

Exemplos:

- p: Carlos é paulista.
- q: Está chovendo.
- r: Hoje é domingo.

Exemplos:

- Hoje é domingo e está chovendo.
- Carlos é paulista ou João é carioca.
- 4) Se Carlos é paulista então Maria é gaúcha.

Tabela-verdade

Utilizaremos a tabela-verdade para determinar o valor lógico das proposições compostas, lembrando sempre que toda proposição pode assumir <u>somente um dos dois</u> valores lógicos possíveis (verdadeiro, falso), não existindo nenhuma outra possibilidade.

O número de linha da tabela-verdade é determinado pela fórmula: **2**ⁿ, onde n é o número de proposições.

 $2^1 = 2 linhas$

	р		0
1.	Q	, n	Q
2.	1.	Δ	1
			*

2) Duas proposições p e q:

 $2^2 = 4 linhas$

	IIIIIIas	[
	р	q	
1.	Ω	Ω	
2.	Q	1	
3.	1.	Ω	
4.	1.	1	

3) Três proposições p, q e r:

 $\frac{1}{4}$ 2³ = 8 linhas

$2^{3} = 8$	linhas			
	p	q	r	
1	Q	Q	Ω	
2	Q	Q	1.	
3.	Q	1	Q	
4.	Q	1.	1.	
5.	1.	Q	Q	
6.	1.	Ω	1.	
Z	1.	1	Ω	
8.	1.	1	1.	

Operações Lógicas sobre Proposições

Negação () = "não"

Exemplos:

p: Está chovendo.

p': Não está chovendo.

2) q: Hoje é domingo.

q': Hoje não é domingo.

Quando uma proposição p é acrescida do operador lógico da negação - (') = "não" - a proposição resultante, ou seja, p', será verdadeira se p for falsa; será falsa se p for verdadeira.

р	p'
Q	1
1.	Q

Também pode ser "and", "^", "&&"

Exemplo:

p: Maria é estudante.

q: João é mecânico

p • q: Maria é estudante <u>e</u> João é mecânico.

Quando duas proposições p e q são relacionadas pelo operador lógico da conjunção - (•) = "e" - a proposição resultante, ou seja, p • q, será verdadeira somente se ambas as proposições forem verdadeiras. Será falsa nos demais casos.

р	q	p • q
Ω	Q	Q
Q	1	Ω
1.	Ω	Q
1.	1.	1.

Disjunção (_+) = "ou"

Também pode ser "OR", "v", " | |"

p: Daniela é carioca.

q: Mário é paulista.

p + q: Daniela é carioca <u>ou</u> Mário é paulista.

р	q	p + q
Ω	Q	Ω
Ω	1	1
1.	Q	1
1.	1	1

Condicional (→) = "se...então"

Exemplo:

p: Paulo é marceneiro.

q: Danilo é estudante.

p → q: <u>Se</u> Paulo é marceneiro <u>então</u> Danilo é estudante.

р	q	p → q
Q	Ω	1.
Q	1	1
1	Ω	Ω
1	1	1.

Bicondicional (↔) = "se e somente se"

Exemplo:

p: Renato mora em São Paulo.

q: Mariana mora em Campinas.

 $p\leftrightarrow q$: Renato mora em São Paulo <u>se e somente se</u> Mariana mora em Campinas.

Quando duas proposições p e q são relacionadas pelo operador lógico do **bicondicional** - (\leftrightarrow) = "se e somente se" - a proposição resultante, ou seja, p \leftrightarrow q, será verdadeira somente se o valor lógico de ambas as proposições forem iguais. Será falsa nos demais casos.

р	q	p ↔ q
Ω	Q	1.
Ω	1	Ω
1	Q	Ω
1.	1	1.

- 1) Negação (')
- Conjunção () e disjunção (+)
- Condicional (→)
- 4) Bicondicional (↔)

Exemplo:

Sabendo que V(p) = 0 e V(q) = 1, determine o valor lógico de cada uma das proposições abaixo:

$$p' + q =$$

$$(p + q)' =$$

Vamos treinar!

