Diagrammes potentiel-pH

Niveau: CPGE

Prérequis : réactions acides-bases, titrage, thermodynamique de l'oxydoréduction, construction de

diagrammes E-pH

Introduction

On va faire une manipulation introductive (la dismutation du diiode). On introduit de la soude dans une solution de diiode. On observe une décoloration qui correspond à la disparition du diiode quand le pH diminue. On pourrait penser qu'une réaction acido-basique a lieu mais le diiode n'appartient à aucun couple acido-basique. C'est en fait une réaction d'oxydoréduction. Nous avons vu au préalable la construction des diagrammes potentiel-pH , nous allons maintenant voir comment les utiliser et notamment pour expliquer ce que nous venons de voir.

I Exploitation des diagrammes

1) Rappels

Frontière verticale : $IO_{3(aq)} + H^{+}_{(aq)} \rightleftharpoons HIO_{3(aq)}$

Frontière horizontale : $I_{2(aq)} + 2e^{-} = 2I_{(aq)}^{-}$

Frontière oblique : $2IO_3^-(aq) + 12H^+(aq) + 10e^- = I_{2(aq)} + 6H_2O_{(I)}$

2) Dismutation et médiamutation

On va revenir sur l'expérience introductive en s'appuyant sur le diagramme potentiel-pH de l'iode. On a donc rendu basique une solution de diiode et observé une décoloration due à sa disparition lorsqu'on se place à des valeurs de pH où il n'a pas de domaine de prédominance. On observe une dismutation.

<u>Dismutation</u>: réaction d'oxydoréduction dans laquelle une espèce réagit avec elle-même

Ici, on a :
$$3I_{2(aq)} + 6HO_{(aq)} \rightleftharpoons IO_{3(aq)} + 5I_{(aq)} + 3H_2O_{(l)}$$

On part maintenant d'une solution d'iodure de potassium et d'iodate de potassium que l'on va acidifier. On observe une coloration de la solution due à l'apparition du diiode puisque l'on est désormais à des valeurs de pH où le diiode a un domaine de prédominance (diagramme potentiel-pH de l'iode). On observe une médiamutation.

Médiamutation: réaction d'oxydoréduction dans laquelle une seul espèce est formée

Ici, on a :
$$6H^{+}_{(aq)} + IO_{3(aq)} + 5I_{(aq)} \rightleftharpoons 3I_{2(aq)} + 3H_{2}O_{(l)}$$

Remarque : la médiamutation est la réaction inverse de la dismutation, la réaction se fait si IO₃⁻ et l⁻ ont des domaines disjoints

3) Superposition de diagrammes E-pH

On considère deux couples rédox tels que $Ox_1 + n_1e^- = Red_1$ et $Ox_2 + n_2e^- = Red_2$, et $E(Ox_1/Red_1) = E_1 > E_2 = E(Ox_2/Red_2)$.

Si on suppose que la réaction a lieu entre deux espèces ayant des domaines disjoints alors on aurait :

$$Ox_1 + Red_2 \rightleftharpoons Ox_2 + Red_1$$

Ainsi, $\Delta_r G = RT \ln\left(\frac{Q}{K^\circ}\right) = -nF(E_1 - E_2) < 0$, n est le nombre d'électrons échangés (plus petit multiple commun entre n_1 et n_2).

Si on met en présence un oxydant et un réducteur ayant des domaines disjoints alors ils vont réagir. C'est équivalent à la règle selon laquelle le meilleur oxydant réagit avec le meilleur réducteur.

Remarque : On peut interpréter le diagramme potentiel-pH comme la succession d'une infinité d'échelles de potentiel à pH fixé.

On a vu théoriquement comment on utilisait les diagrammes potentiel-pH pour étudier des réactions. On va maintenant essayer d'appliquer tout cela à un exemple un peu plus complexe.

Il Application : méthode de Winkler

Nous allons doser le dioxygène dissous dans l'eau du robinet afin d'évaluer sa qualité. Pour cela, nous utiliserons la méthode de Winkler.

1ère étape :

- On remplit un erlenmeyer de 250mL d'eau du robinet à ras bord et on le place dans un cristallisoir.
- On ajoute 700mg de soude et 2g de chlorure de manganèse.
- On bouche rapidement l'erlenmeyer en veillant à ne pas emprisonner d'air.

- On agite pendant 30min.
- Un solide brun apparaît.

Figure: Diagramme E-pH (Mn et H_2O); $C_{travail}(Mn) = 10^{-2} mol. L^{-1}$

	$4Mn(OH)_2(s) + O_2(aq) + 2H_2O(l) \rightleftharpoons 4Mn(OH)_3$					
t = 0	$n_{Mn(II)_1}$	n_{O_2}	excès	0		
$t=t_f$	$n_{Mn(II)_1} - 4n_{O_2}$	0	excès	$n_{Mn(III)} = 4n_{O_2}$		

On a donc $n_{O_2} = \frac{n_{Mn(III)}}{4}$

2ème étape :

 On ouvre rapidement et on ajoute de l'acide sulfurique afin de stopper la réaction entre le manganèse et le dioxygène.

Figure: Diagramme E-pH (Mn et $\mathit{H}_2\mathit{O}$) ; $\mathit{C}_{\mathit{travail}}(\mathit{Mn}) = 10^{-2} \mathit{mol.L}^{-1}$

3ème étape :

- On ajoute 3g d'iodure de potassium.
- Le solide disparaît.

Figure: Diagramme E-pH (Mn et I_2) ; $C_{travail}(Mn)=10^{-2}mol.L^{-1}$ et $C_{travail}(I)=10^{-1}mol.L^{-1}$

	$4Mn^{3+}(aq) + 4I^{-}(aq) \rightleftharpoons 4Mn^{2+}(aq) + 2I_2(aq)$				
t = 0	$n_{Mn(III)}$	excès	$n_{Mn(II)_2}$	0	
$t = t_f$	0	excès	$n_{Mn(II)_2} - n_{MN(III)}$	$n_{I_2} = \frac{n_{Mn(III)}}{2}$	

On a donc $n_{Mn(III)} = 2n_{I_2} \Rightarrow n_{O_2} = \frac{n_{I_2}}{2}$

4ème étape :

- On prélève V₀ = 50mL de solution que l'on dose par une solution de thiosulfate de sodium de concentration c_{thio} = 0.01mol.L⁻¹ (dosage par iodomètrie).
- Pour mieux repérer l'équivalence, on ajoute du thiodène proche de cette dernière.

La réaction du dosage est : $I_{2(aq)} + 2S_2O_3^{2-}(aq) \rightarrow 2I_{(aq)}^- + S_4O_6^{2-}(aq)$

À l'équivalence,
$$n_{I_2}=\frac{n_{S_2O_3^{2-}}}{2}\Rightarrow n_{I_2}=\frac{V_{eq}c_{thio}}{2}\Rightarrow n_{O_2}=\frac{V_{eq}c_{thio}}{4}\Rightarrow c_{O_2}=\frac{V_{eq}c_{thio}}{4V_0}$$

$$\Delta V_{eq} = \sqrt{(\underbrace{0.03}_{\substack{\text{burette} \\ \text{gradu\'e}}})^2 + 2 \times (\underbrace{\frac{0.05}{2}}_{\substack{\text{demie} \\ \text{graduation}}})^2 + (\underbrace{0.05}_{\substack{\text{volume} \\ 1 \text{ goutte}}})^2} \approx 0.06 mL$$

$$\Delta \textit{V}_0 = \sqrt{(\underbrace{0.2}_{\substack{\text{pipette} \\ \text{gradu\'ee}}})^2 + (\underbrace{\frac{0.2}{2}}_{\substack{\text{demie} \\ \text{graduation}}})^2} \approx 0.2 \textit{mL}$$

$$\Delta c_{thio} = \underbrace{\frac{0.005}{\sqrt{3}}}_{ ext{demi dernier chiffre significatif}}$$

$$\Delta c_{0_2} = c_{0_2} \sqrt{\left(\frac{\Delta c_{thio}}{c_{thio}}\right)^2 + \left(\frac{\Delta V_{eq}}{V_{eq}}\right)^2 + \left(\frac{\Delta V_0}{V_0}\right)^2}$$

$$\Delta[O_2] = \Delta c_{0_2} \times M$$

	Eau	Eau	Eau	Eau
	d'excellente	potable	industrielle	médiocre
	qualité			
Usages	Tous usages	Eau potable,	Irrigation	Naviguation,
		industrie		refroidissement
		alimentaire,		
		abreuvage,		
		des animaux,		
		baignade,		
		pisciculture		
O ₂	> 7	5 à 7	3 à 5	< 3
dissous				
mg.L ^{−1}				

Conclusion

L'utilisation des diagrammes potentiel-pH nous permet d'expliquer de nombreuses réactions d'oxydoréduction de façon thermodynamique mais ne nous dit rien de leur cinétique. Pour cela, il faudra utiliser des diagrammes intensité-potentiel. L'utilisation de ces deux types de diagrammes nous permettra par exemple d'expliquer la corrosion.

Bibliographie

- -H-Prépa Chimie: 2e année PSI/PSI*, Hachette 2005 (p155)
- -La chimie expérimentale I : Chimie générale, Le Maréchal (Winkler)
- -L'oxydoréduction, concepts et expériences, Ellipses (p128)

Questions

- Comment trouver l'équation de droite pour une frontière oblique ?
- → On écrit la demi-équation en milieu acide (car potentiel standard défini à pH = 0) et on utilise la relation de Nernst en utilisant les conventions de tracé.
- Comment justifie-t-on le placement vertical des espèces dans le diagramme potentiel-pH?
- → Elles sont placées par ordre de nombre d'oxydation croissant pour E croissant.
- Quelle différence de vocabulaire pour les domaines entre espèces solide et liquide ?
- → Pour liquide, domaine de prédominance et pour solide domaine d'existence.
- Que se passe-t-il quand on augmente le pH à partir du domaine de l₂ ?
- → On a médiamutation peu importe d'où on part dans le domaine de I₂ et on forme autant de IO₃⁻ que de I⁻.