WEEK 4 ASSIGNMENT REPORT CYBER SHUJAA ADM NO: CS-DA01-2507 COURSE: DATA AND AI NAME: JEDIDAH WAVINYA MUSYOKA DATE: 6th JUNE 2025 TASK: BUSINESS INTELLIGENCE

Contents

INTRODUCTION	4
Strating point	4
STEP 1: LOAD AND TRANSFORM DATA	6
STEP 2: BUILD THE DATA MODEL	12
STEP 3: BUILDING METRIX USING DAX	14
STEP4: CREATING THE DASHBOARD	
STEP 5: PUBLISH	•
CONCLUSION	_
CONCLUSION	23
TABLE OF FIGURES	
Eiguno 1 Lood Data	6
Figure 1. Load DataFigure 2. Path to data files	
Figure 3. Power Editor Query	
Figure 4. Expanded file	
Figure 5. Dim_Table	
Figure 6. Query settings	
Figure 7. Query Tables	
Figure 8. Transform dim_room	10
Figure 9. dim_room transformed	10
Figure 10. Applied steps for each table	10
Figure 11. Final Table Queries	11
Figure 12. table heads	
Figure 13. Removed day_type	11
Figure 14. Close & Apply	12
Figure 15. Connecting the tables in a model	12
Figure 16. Power Bi UI	
Figure 17. Establish Relationship	
Figure 18. Star Schema Applied	13
Figure 19. Relationship between dim_date table and fact_booking	
Figure 20. Relationship with fact_aggregated bookings table	
Figure 21. Further relationships from dim_room table	-
Figure 22. dim_date table rows	
Figure 23. New WN table column created	
Figure 24. day_type column	
Figure 25. day_type syntax	
Figure 26. Key measures	16 16
THE HILL OF THE PRECIOUS	

Figure 28. All Key Measures	17
Figure 29. Major key measures in a table in the report view	
Figure 30. Filter week no 32	
Figure 31. Filtered week	
Figure 32. Formatted Revenue Column	18
Figure 33. Key Metrics Visualization	
Figure 34. Filters in slicer visualization	
Figure 35. Tiled Filters for months and week_no	19
Figure 36. Donut Chart	19
Figure 37. Trend By Key Metrices	
Figure 38. Card Visualizations	
Figure 39. Increase or decrease Concept	20
Figure 40 . Applied changes to display a change in the various cards	20
Figure 41. Revenue tooltip	21
Figure 42. DSRN tooltip	
Figure 43. Occupancy% Tooltip	
Figure 44. Line and stacked column chat: Realisation %	
Figure 45. Text visualization	
Figure 46. Final Dashboard Report	

INTRODUCTION

- This report presents a comprehensive business intelligence analysis of the hospitality sector, utilizing a detailed dataset encompassing hotel operations, room occupancy, and customer metrics.
- Through the application of Microsoft Power BI, raw data has been transformed into a series of interactive dashboards and visualizations.
- The primary objective of this analysis is to uncover key trends, identify patterns in customer behavior, and assess operational performance.
- The resulting insights are intended to provide a clear, data-driven foundation for strategic decisionmaking and to highlight opportunities for growth and optimization within the competitive hospitality landscape.

Strating point

- Get to have the following:
- 1. Requirements Understanding
- 2. Mockups and solution Design
- 3. Data collection and data modelling
- 4. Data dashboarding and insights Generation
- 5. Stakeholders feedback.
 - a) Requirements Understanding:
 - a. Problem Statement:
 - i. Revenue
 - ii. Total Bookings
 - iii. Average rating
 - iv. Total Capacity
 - v. Total Successful bookings
 - vi. Occupancy %
 - vii. Total Cancelled Bookings
 - viii. Cancellation Rate
 - b) Mockups and solution Design
 - a. Metrics
 - i. Revenue = SUM (fact bookings[revenue realized])
 - ii. Total Bookings= COUNT (fact bookings[booking id])
 - iii. Total Capacity = SUM (fact aggregated bookings[capacity])
 - iv. Total Successful Bookings = SUM
 (fact_aggregated_bookings[successful_bookings])
 - v. Occupancy % = DIVIDE ([Total Successful Bookings],[Total Capacity],0)
 - vi. Average Rating = AVERAGE (fact_bookings[ratings_given])
 - vii. No of days = DATEDIFF (MIN (dim date[date]), MAX(dim date[date]), DAY) +1
 - viii. Total cancelled bookings = CALCULATE ([Total Bookings],fact_bookings[booking_status] = "Cancelled")
 - ix. Cancellation % = DIVIDE ([Total cancelled bookings],[Total Bookings])
 - x. Total Checked Out = CALCULATE ([Total Bookings], fact bookings[booking status] = "Checked Out")
 - xi. Total no show bookings = CALCULATE ([Total Bookings],fact_bookings[booking_status] = "No Show")
 - xii. No Show rate % = DIVIDE ([Total no show bookings],[Total Bookings])

```
xiii.
       Booking % by Platform = DIVIDE ([Total Bookings],
        CALCULATE ([Total Bookings],
        ALL (fact_bookings[booking_platform])
        ))*100
       "Booking % by Room class = DIVIDE ([Total Bookings], CALCULATE ([Total
 xiv.
       Bookings], ALL(dim rooms[room class]) ))*100"
       ADR = DIVIDE ([Revenue], [Total Bookings],0)
 XV.
xvi.
       Realisation % = 1- ([Cancellation %]+[No Show rate %])
       RevPAR = DIVIDE([Revenue],[Total Capacity])
xvii.
       DBRN = DIVIDE ([Total Bookings], [No of days])
xviii.
 xix.
       DSRN = DIVIDE ([Total Capacity], [No of days])
       DURN = DIVIDE ([Total Checked Out],[No of days])
 XX.
       "Revenue WoW change % =
 xxi.
       Var selv =
       IF(HASONEFILTER(dim date[wn]), SELECTEDVALUE(dim date[wn]), MAX(dim d
       ate[wn]))
       var revcw = CALCULATE([Revenue],dim date[wn]= selv)
       var revpw = CALCULATE([Revenue],FILTER(ALL(dim date),dim date[wn]= selv-
       1))
       return
       DIVIDE(revcw,revpw,0)-1"
xxii.
       Occupancy WoW change % =
       Var selv =
       IF(HASONEFILTER(dim date[wn]),SELECTEDVALUE(dim date[wn]),MAX(dim d
       var revcw = CALCULATE([Occupancy %],dim date[wn]= selv)
       var revpw = CALCULATE([Occupancy %],FILTER(ALL(dim date),dim date[wn]=
       selv-1))
       return
       DIVIDE(revcw,revpw,0)-1
       ADR WoW change % =
xxiii.
       Var selv =
       IF(HASONEFILTER(dim date[wn]),SELECTEDVALUE(dim date[wn]),MAX(dim d
       ate[wn]))
       var revcw = CALCULATE([ADR],dim date[wn]= selv)
       var revpw = CALCULATE([ADR],FILTER(ALL(dim date),dim date[wn] = selv-1))
       return
       DIVIDE(revcw,revpw,0)-1
       Revpar WoW change % =
xxiv.
```

```
Var selv =
       IF(HASONEFILTER(dim date[wn]),SELECTEDVALUE(dim date[wn]),MAX(dim d
       ate[wn]))
       var revcw = CALCULATE([RevPAR],dim date[wn]= selv)
       var revpw = CALCULATE([RevPAR],FILTER(ALL(dim date),dim date[wn]= selv-
       1))
       return
       DIVIDE (revcw,revpw,0)-1
       Realisation WoW change % =
XXV.
       Var selv =
       IF(HASONEFILTER(dim date[wn]),SELECTEDVALUE(dim date[wn]),MAX(dim d
       ate[wn]))
       var revcw = CALCULATE ([Realisation %],dim_date[wn]= selv)
       var revpw = CALCULATE([Realisation %],FILTER(ALL(dim date),dim date[wn]=
       selv-1))
       return
       DIVIDE(revcw,revpw,0)-1"
```

- c) Data Collection and Data modelling (Data Transformation using Power Query)
 - a. Data collection of the various files/loading of data and saving them in a folder
- d) Data Dashboarding and insights generation
 - a. The creation of the dashboard using the available data and generate insights form it
- e) Publish work

Application starting point

• Open Power BI desktop.

STEP 1: LOAD AND TRANSFORM DATA

- Load the dataset from the folder where the files have been saved.
- As shown in the image below, click on the "Get Data".

Figure 1. Load Data

- A window pops up of where to choose the location. In my case, I pasted the location of the folder that contains my files.
- See the image shown below:

Figure 2. Path to data files

- The click "OK".
- The following Power Query Editor shows up.

Figure 3. Power Editor Query

- The purpose of this Query editor is to **connect, transform, and clean your data** before it is loaded into the Power BI model for analysis and visualization.
- It acts as a powerful and intuitive data preparation tool, allowing you to shape raw data from various sources into a clean, structured format
- The files from the folder have been loaded.
- Duplicate the folder by right clicking on it.
- The purpose is to be able to save the files after making the necessary changes.
- See the following to expand the data.

Figure 4. Expanded file

- Click on the binary to expand the data in each file.
- For instance the dim table.
- It has the following data as shown in the image below:

Figure 5. Dim_Table

- To the right, there is properties of the file displayed.
- That is the source, Navigation, Imported CSV, promoted Headers and Changed Type.
- Save the changes by renaming the file i.e. "dim table"

Figure 6. Query settings

- Repeat the same for the other tables that you want to work with.
- See in the image below.

Figure 7. Query Tables

• See the "dim_room" Table below:

Figure 8. Transform dim_room

- Notice how the table heads are not promoted.
- Make the necessary changes by "use the first row as header"

Figure 9. dim_room transformed

• Note that the following steps should apply as shown in the right:

Figure 10. Applied steps for each table

The queries are as follows:

Figure 11. Final Table Queries

- Go through the data and see if there are any changes that should be made i.e. the row heads should all be in place.
- Do the necessary transformations according to your data.
- Have a look on the "dim_date" table :

In the hotel industry, Friday and Saturday are considered weekend, however in the table its just Saturday and Sunday, there for, delete the column but note that we will later recreate it.

Figure 13. Removed day_type

- The above image shows the removed column.
- After the necessary changes and transformations have been made, "Close \$Apply".

Figure 14. Close & Apply

- The data is now loaded into the PowerBi.
- See in the image below:

Figure 15. Connecting the tables in a model

STEP 2: BUILD THE DATA MODEL

In the Power BI UI, notice the data in the far right of the window:

Figure 16. Power Bi UI

- This step involves Data modeling.
- In this step you establish different relationships for the different tables.

Figure 17. Establish Relationship

- Using a star schema, place the fact table in the middle
- See in the image below:

Figure 18. Star Schema Applied

- Notice that some of the relationships are automatically established based on the name of the column.
- To establish new relationships, "Manage Relationships".
- The "date" column in "dim_date" has similar characteristics to the "checking_date" of the "fact bookings" table.
- Therefore, establish a relationship there via drag and drop.
- See in the image below:

Figure 19. Relationship between dim_date table and fact_booking

- The same applies for the "fact aggregated bookings"
- See in the image below:

Figure 20. Relationship with fact_aggregated bookings table

• Established other relationships form the "dim room" table.

Figure 21. Further relationships from dim room table

Confirm that the relationships are established properly.

STEP 3: BUILDING METRIX USING DAX

DATA ANALYSIS EXPRESSION (DAX)

- It is a formula language developed by Microsoft for creating custom calculations on data models.
- It involves:
 - Creating calculated columns
 - Creating Measures.

CALCULATED COLUMNS

• Notice how the week no column has the 'W'. This can be removed.

date ▼	mmm yy	week no
Sunday, May 1, 2022	Thursday, May 22, 2025	W 19
Monday, May 2, 2022	Thursday, May 22, 2025	W 19
Tuesday, May 3, 2022	Thursday, May 22, 2025	W 19
Wednesday, May 4, 2022	Thursday, May 22, 2025	W 19
Thursday, May 5, 2022	Thursday, May 22, 2025	W 19
Friday, May 6, 2022	Thursday, May 22, 2025	W 19
Saturday, May 7, 2022	Thursday, May 22, 2025	W 19
Sunday, May 8, 2022	Thursday, May 22, 2025	W 20
Monday, May 9, 2022	Thursday, May 22, 2025	W 20
Tuesday, May 10, 2022	Thursday, May 22, 2025	W 20

Figure 22. dim_date table rows

- Created a new column and named it 'wn'.
- See the image below:

Figure 23. New WN table column created

- Recall we removed a column called the weekday column.
- So I recreated it in the day type table column.

Figure 24. day_type column

• Write a syntax for the "day_type" column that differentiates the weekdays and weekend, I this case, Friday and Saturday being the weekends.

Figure 25. day_type syntax

CREATE MEASURES

- A measure is a formula for a calculation that is evaluated **dynamically at the time you use it** in a report. The result of a measure depends on the context of the visualization (e.g., the filters applied, the rows and columns in a table).
- In order to group them in categories, I created the "Key_Measures" from the "Enter data" icon at the top.
- See the image below:

Figure 26. Key measures

Under the key Measures, create the New Measure: "Revenue"

```
1 Revenue = SUM(fact_bookings[revenue_realized])
```

Figure 27. Revenue Measures

• Click enter, then drag and drop

KEY MEASURES:

The following image displays some of the Key measures created:

Figure 28. All Key Measures

STEP4: CREATING THE DASHBOARD

- After creating the key measures, the next step is to create a table in the report view with all the necessary columns. i.e. the "property id", "city" etc.
- See in the image displayed below:

Figure 29. Major key measures in a table in the report view

- Notice in "dim table", week number column, week 32 has only one day.
- Therefore, there is need to filter it out since it has only one day.
- To do this, I place the 'week no' column in the filter box.

Figure 30. Filter week no 32

See in the image below:

Figure 31. Filtered week

- Format the Revenue column to be in millions and have 0 decimal places
- See in the image below:

Figure 32. Formatted Revenue Column

- Format all the columns to the desired visualization
- See the final visualization of this table:

property_id	property_name	city	Revenue	Total Bookings	RevPAR	Occupancy %	ADR	DSRN	DBRN	DURN	Realisation %	Cancellation %	Average Rating
16559	Atliq Exotica	Mumbai	117M	7251	10,629	65.85%	16,141	121	80	56	70.39%	24.63%	4.32
17563	Atliq Palace	Mumbai	100M	6259	10,592	66.13%	16,016	104	69	49	70.67%	24.38%	4.29
17559	Atliq Exotica	Mumbai	93M	6074	10,107	66.09%	15,293	101	67	47	70.81%	24.0496	4.32
16563	Atliq Palace	Delhi	88M	7054	8,269	66.25%	12,480	117	78	54	70.02%	25.19%	4.27
17560	Atliq City	Mumbai	87M	5940	7,763	53.07%	14,629	123	65	45	69.51%	25.1296	3.04
19562	Atliq Bay	Bangalore	81M	5736	9,312	65.66%	14,183	96	63	44	70.47%	24.29%	4.28
19560	Atliq City	Bangalore	81M	5904	8,965	65.53%	13,680	99	65	45	69.00%	26.46%	4.28
17558	Atliq Grands	Mumbai	74M	4975	7,953	53.60%	14,839	102	55	38	69.91%	25.67%	3.05
17561	Atliq Blu	Mumbai	73M	5120	9,447	66.19%	14,271	85	56	39	70.14%	24.41%	4.30
19561	Atliq Blu	Bangalore	72M	5669	6,774	53.25%	12,722	117	62	43	69.80%	24.6496	3.08
18562	Atliq Bay	Hyderabad	68M	7246	6,216	65.81%	9,446	121	80	56	70.20%	24.68%	4.31
19563	Atliq Palace	Bangalore	68M	5347	6,768	53.42%	12,670	110	59	41	69.50%	25.36%	3.02
17564	Atliq Seasons	Mumbai	65M	3934	7,397	44.57%	16,597	97	43	31	70.59%	24.81%	2.30
18560	Atliq City	Hyderabad	60M	6553	6,068	66.07%	9,185	109	72	51	70.91%	24.1396	4.26
19559	Atliq Exotica	Bangalore	59M	4645	6,851	53.73%	12,751	95	51	36	70.76%	24.54%	3.04
16561	Atliq Blu	Delhi	57M	4362	8,612	65.66%	13,115	73	48	33	69.85%	25.56%	4.28
16562	Atliq Bay	Delhi	56M	4762	6,254	53.40%	11,712	98	52	36	69.34%	25.24%	3.07
18561	Atliq Blu	Hyderabad	55M	6374	5,679	65.46%	8,676	107	70	49	70.36%	24.27%	4.25
16560	Atliq City	Delhi	54M	4635	6,281	53.61%	11,714	95	51	36	71.20%	24.03%	3.01
Total			1688M	132939	7.337	57.79%	12.696	2.528	1.461	1.025	70.14%	24.84%	3.62

Figure 33. Key Metrics Visualization

- Created the required Filters.
- See in the image below:

Figure 34. Filters in slicer visualization

- i.e.
- Filter by City
- o Filter by Class
- Filter By rom category
- See more for the months and week number:

Figure 35. Tiled Filters for months and week_no

- Created a donut visualization for the Revenue by category
- See in the image below:

Figure 36. Donut Chart

- The next step, created a line chart that displays the trends by metrics of RevPar, ADR, Occupancy %
 against week number.
- See in the image displayed below:

Figure 37. Trend By Key Metrices

- The next step was creating cards that visualize the Revenue, ADR, Occupancy %, RevPar, DSRN and Realisation.
- See the image below:

57 .1%	7.67K	60.8%
Occupancy	ADR	Realisation %
921K	4.39K	30
Revenue	RevPar	DSRN

Figure 38. Card Visualizations

- To apply the concept of reduction and increase in i.e. Revenue WOW Change %, I applied some conditional settings to the cell elements.
- See in the image below:

Figure 39. Increase or decrease Concept

• After the changes were made:

Figure 40 . Applied changes to display a change in the various cards

- For revenue Card, I set a tooltip that enables one to view a line chart for revenue and week no when hoovering on it.
- See in the chart in the image below:

Figure 41. Revenue tooltip

• Hoover on the DSRN card, the following Line Chart of Occupancy % by week no andday_type shows:

Figure 42. DSRN tooltip

• Applied the same for the Occupancy %

• See in the image below:

Figure 43. Occupancy% Tooltip

Line and stacked column chat for the Realisation % for every booking Platform.

Realisation % ADR by Platform

Figure 44. Line and stacked column chat: Realisation %

- Included a text for the created visualization cards and a line below it to separate the visualization elements.
- See the image below:

% values in bottom are week on week changes

Figure 45. Text visualization

FINAL DASHBOARD

See the following image for the final dashboard created:

Figure~46.~Final~Dashboard~Report

Business Recommendation

- 1. Identify slow-performing products or rooms for improvement.
- 2. Adjust pricing during low-occupancy seasons.
- 3. Invest in high-margin services for better profitability.

STEP 5: PUBLISH

Link to the report assignment:

https://drive.google.com/file/d/1U7hRPGJVLRrHJ1Wx5tkd4o9P5e1FIXva/view?usp=sharing

~I uploaded my work report to google drive and shared the link to it since I was unable to publish with a required account.

~The files in the link can be downloaded and viewed/reviewed.

CONCLUSION

- In conclusion, this business intelligence project successfully transformed a complex hospitality dataset into actionable insights using Microsoft Power BI.
- The journey from raw hospitality data to the interactive dashboards presented in this report highlights the transformative power of business intelligence.
- By visualizing complex metrics within Power BI, I have distilled a clear narrative from the numbers.
- The analysis brought to light crucial patterns, including the identification of the most profitable customer demographics and unexpected trends in weekend vs. weekday occupancy rates.
- These visualizations do more than just present data; they provide a foundation for strategic conversations and informed decision-making.
- The project underscores that for a hotel to thrive; it must understand its own data story.
- The resulting dashboards serve as an ongoing resource for navigating the competitive hospitality market and continuously discovering opportunities for growth and enhanced guest satisfaction.