Claims

What is claimed is:

1	1.	An apparatus for projecting fringes onto a surface of an object, said apparatus comprising:
2		a) two sources of radiation having a spectral distribution;
3		b) a collimator in optical communication with said two sources, said collimator
4		generating two substantially collimated beams of broadband radiation;
5		c) a diffractive grating in optical communication with said collimator; and
6		d) a lens in optical communication with said diffractive grating, wherein said lens
7		generates two images of radiation having a spatial distribution of spectral regions.
1	2.	The apparatus of claim 1 wherein each of said spectral regions of one of said sources is
2		separated from a respective spectral region of the other of said sources by a distance
3		proportional to the respective wavelength of said spectral regions.
1	3.	The apparatus of claim 2 wherein said distance is linearly proportional to said wavelength
2		of said spectral regions.
1	4.	The apparatus of claim 2 wherein said distance comprises a midpoint equidistant from each
2		of two respective spectral regions and wherein said midpoint is fixed.
1	5.	The apparatus of claim 1 wherein said two sources of radiation are coherent with respect to
2		one another.
1	6.	The apparatus of claim 1 wherein said two sources of radiation have a spectral distribution
2		that is narrowband.
1	7.	The apparatus of claim 1 further comprising a detector for determining three-dimensional
2		position information of a point on said surface of said object.
1	8.	The apparatus of claim 1 wherein the two sources of radiation are generated from a single
2		source of radiation.

- 1 9. The apparatus of claim 1 further comprising a translator coupled to said diffractive grating,
- 2 said translator shifting the relative phase of one of said spectral regions with respect to the
- 3 other of said spectral regions.
- 1 10. A method for mitigating the effects of speckle on a measurement of a point on a surface of
- 2 an object, said method comprising the steps of:
- a) generating a coherent fringe pattern;
- b) projecting the coherent fringe pattern along an optical path onto the surface of the object such that the fringe pattern substantially grazes the surface of the object;
- 6 and
- 7 c) detecting the fringe pattern and the speckle in an image of the surface of the 8 object, wherein a normal to the surface of the object is substantially orthogonal to
- 9 said optical path.
- 1 11. The method of claim 10 wherein the coherent fringe pattern substantially grazes the surface
- of the object at an angle between 0 and 45 degrees with respect to the surface of the object.
- 1 12. The method of claim 10 further comprising the step of providing two sources of radiation.
- 1 13. The method of claim 12 wherein the two sources are positioned above the surface of the
- 2 object.
- 1 14. The method of claim 12 wherein the two sources are substantially vertically aligned along
- 2 the normal to the surface of the object.
- 1 15. The method of claim 10 wherein the fringe pattern is generated by two sources.
- 1 16. The method of claim 15 wherein the two sources are coherent with respect to one another.
- 1 17. The method of claim 15 wherein the two sources are laser sources.
- 1 18. The method of claim 15 wherein the two sources are generated by splitting a single source.
- 1 19. A method for projecting fringes onto a surface of an object, said method comprising the
- 2 steps of:

- a) providing two sources of radiation separated by a distance, each of said sources having a spectral distribution and being coherent with respect to the other of said sources;
- b) illuminating said point on said surface of said object with said radiation from each of
 said sources;
- 7 c) moving one of said sources relative to the other of said sources; and
- 8 d) detecting radiation scattered by said point on said surface of said object.
- The method of claim 19 further comprising the step of changing the phase of a spectral component in said spectral distribution from one of said sources relative to the phase of a respective spectral component in said spectral distribution from the other of said sources as measured at said point on said surface of said object.