| Interview Problems                                                                                        |
|-----------------------------------------------------------------------------------------------------------|
|                                                                                                           |
| content                                                                                                   |
| Analysing Constraints                                                                                     |
| —— Problems                                                                                               |
|                                                                                                           |
|                                                                                                           |
| Avg. psp of the botch                                                                                     |
| - wednesday Friday Saturday. Monday $69.5 \longrightarrow 69.1 \longrightarrow 66.1 \longrightarrow 707.$ |
| $69.5 \longrightarrow 69.1 \longrightarrow 66.1 \longrightarrow 707.$                                     |
|                                                                                                           |
| Personal Goal -> as done to 100%                                                                          |
|                                                                                                           |
|                                                                                                           |
| If you are stuck at a problem { max time 25 mins }.                                                       |
| Hint 1 - Hint 2 - Video solution                                                                          |
| TA & rideo call Help Request                                                                              |
|                                                                                                           |
| Post in WA group                                                                                          |
| Reach out to me.                                                                                          |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |

Analysing Constraints

| . <i>J</i> |                    |                            |        |
|------------|--------------------|----------------------------|--------|
| 1 sec      | $\longrightarrow$  | $\approx 10^8$ iterations. |        |
| И          | TC                 | # iteration                | Result |
| IO2        | O(N <sup>2</sup> ) | 1010                       | TLE    |
| 103        | OCN <sup>2</sup> ) | 106                        | Pan    |
| 20         | O(2N)              | 220                        | Pass   |
| 106        | O(N)               | 10 e                       | pan.   |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |
|            |                    |                            |        |

Q> Given a binary away of 0's & 1's. Find the max # of convecutive 1's that can be obtained by updating atmost one 0 to 1 length A > 0  $A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix} \quad \text{and} = 5$  $A = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \quad anu = 6$  $A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \quad aM = 5$ Eage case: all ones.  $^{\perp}$  count of one == length of A  $A = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$  ay = S



## Pseudocode

// handle the edge case [1] [1]

totalOne = 0

for 
$$i \longrightarrow 0$$
 to N-1  $d$ 

if  $(ATi] == 1) d$ 

| totalOne ++
| 3

if  $(totalOne == N) d$ 

| return totalOne

```
any = 0
                                Tc: 0(N)
for i --- 0 to N-1 f
                             SC: O(1)
    if (A[i] = = 0) {
          count = 1 // count of ones.
          1/ #ones on left
          for j \longrightarrow i-1 to 0 of
              if (AIJ) = = 1) count ++
             elle break
          // #oney on right
          for j -> i+1 to N-1 f
           if (A[j] = = 1) count ++
             elle break
          ary = max (ary, count)
return any
```

$$count = 3$$

$$any = 46$$





```
Q> Given an integer away, find the majority element.
   Majority element \longrightarrow freq > N/2
Note: If no majority element u present \longrightarrow -1
                      N = 3 N/_2 = 1
              4
  freq 1 1
             1
        False False False
        3 4 3 2 4 4 4
  A =
        2 5 2 1 5 7 7 5
  frequ
        2 / 4 5 / 4
                      aM = 4
                                 ant = -1
  A =
                        2 4
         3 3 4
               2 4 4
         2 2 4 2 4 4 2
                   45678
                 3
                                  9 10
                      3
                         2 5
                                     3
              3
                 6 1
 A =
          Y
              6 1 1 6
                         1 1
                                     6
                                6 6
       6 > 5
              5 3 4
                       5 6
 f)
                             Ч
        Ч
                                4 4
   =
           6
        5 2
              2 1 5
                          2
                       2
       5 > 5
              am = -1
```

```
How many majority element can be there?
Assume there are two majority elements
           b
      freq. (a) \rightarrow \frac{N}{2} freq. (b) \rightarrow \frac{N}{2}
       freq(a) + freq(b) > N
Proof by contradiction. There 4 only one majority ele.
       1 1 1 2 2 2 2
      Q = 1 b = 2
      freq(1) + freq(2) = N
Lets assume m is majority element
\longrightarrow frequ (m) \rightarrow N
         freq (m) + freq (1 m) = N
            > N/_2 < N/_2
There is always only one majority element.
                                         TC:O(N2)
Bruteforce —
                                     SC: 0(1)
    For each element u
        Find its feeg if freq > N/2 return u
  return -1
```



major = -XX3freq =  $\emptyset X\emptyset I$  3 now to verify? Find the freq of 3 in A and check if freq > Neye Ч major = -10freq = XXXXXX1 freq (4) = 4 > 7/2 = an = 4 major = xy freq = QXXXXXXXXX am = -1

```
major = -1 freq = 0
for i \longrightarrow 0 to N-1 of
                                  TC: OCN)
     X = A[i]
     if (freq ==0) f
       major = X
         freq_1 = 1
     elle of
          if (major == x)
             feeq --
 count =0
for i \longrightarrow 0 to N-1 1
   if (major == A(i)) { count++3
 if (count > N/2) networn major
 return -1
```



| Idea 2                                                  |   |        |         |      |     |
|---------------------------------------------------------|---|--------|---------|------|-----|
| int int int X X O X  Sint Sint Fint O  Sint Zint O Yint |   |        |         |      |     |
| Sint Sint Fint O                                        |   |        |         |      |     |
| Sint Zint O Wint                                        |   |        |         |      |     |
| Whenever you find a 0 make                              | m | entire | HOW     | and  | col |
| = inf only if val !=0                                   |   |        | , , ,   |      |     |
| change all inf -> 0                                     |   |        |         |      |     |
|                                                         |   | inf    | = INT   | r_ M | AX  |
| $\int \Omega \Omega \Omega \Omega $                     |   |        |         |      |     |
|                                                         |   |        |         |      |     |
|                                                         |   |        |         |      |     |
|                                                         |   |        |         |      |     |
|                                                         |   |        |         |      |     |
| why update to inf and not                               | 0 |        |         |      |     |
|                                                         |   |        |         |      |     |
|                                                         | 0 | O      |         |      |     |
|                                                         | - | 0      |         |      |     |
|                                                         |   |        |         |      |     |
|                                                         |   |        |         |      |     |
|                                                         |   |        |         |      |     |
|                                                         |   |        |         |      |     |
|                                                         |   |        |         |      |     |
| Expected TC: O(N*M)                                     |   | sc (   | N*M     | )    |     |
| 7                                                       |   | sc c   | + N ) ( | M)   |     |
| HW-                                                     |   | SCC    | (1)     |      |     |

| Poubt | seujon |
|-------|--------|
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |