「ちるのい!」のシミュレーション

1 アウトライン

シミュレーション技術は物理だけではなく、このようなゲームの最適戦略を考察することにも用いることができます。「ちるのい!」というゲームは手札を順番に出していき、その札に書かれた「数」を足していき、足していった「数」が 99 を超えてしまったらその人の負けというゲームなのであり、今回はおそらく最も重要な戦略上のウエイトを占める「数を 99 にする」カードをいつ使うのが最適かをスーパーコンピュータを用いてシミュレーションしました。

添付されたファイルの使用は各人の責任のもとお願いします。

2 シミュレーション結果

AI は以下の 3 通りを試しています。・無条件で 99 にするカードを使う・ 99 にするカード以外に「数」が 99 の時に出せるカード (詳細はリンク参照)があるときに使う・「数」が 30 より小さいときに使う乱数の種 (後述)という懸案事項があるので、2 回ずつやってあるものもあります。実験試合回数は各 960 回です。

╸.	1 - 221 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2					
	プレイ人数	無条件敗北率	ディフェンシブ敗北率	危険度敗北率		
	9人	32.7 %	33.2 %	34.1 %		
	9人	32.4 %	33.9 %	33.6 %		
	3人	34.7 %	31.2 %	34.1 %		
	3人	35.0 %	30.6 %	34.4 %		

無条件、またはディフェンシブが強いようなので、さらに人数別にシ ミュレーションした結果が以下のとおりです。

総人数	プレイヤー構成	無条件被弾率	ディフェンシブ被弾率
6	ディフェンシブ 3、無条件 3	52 %	48 %
8	ディフェンシブ 4、無条件 4	48 %	52 %
8	ディフェンシブ 3、無条件 3、危険度 2	39.5 %	35.6 %

これらから、約9人前後を境にディフェンシブな戦略から無条件が最適 戦略に転移すると予測することができます。

3 スーパーコンピュータを使うにあたっての注意点

スーパーコンピュータを早くなる。よってシミュレーション能率が上がる。と単純に考えてしまうのはいささか甘いです。ここからはスーパーコンピュータを使うにあたっての注意点を少し紹介しましょう。

3.1 スーパーコンピュータの能率上昇率

スーパーコンピュータはいくつもの計算用のコンピュータを持つコン ピュータですが、各コンピュータの連携は手動で行わなければならず、う まく連携をとることができなければ、計算能率を上昇させることはできま せん。

逐次実行時間を K、並列化できる割合を α 、頭脳の数を P とすると計算能率上昇率は

 $S = K/(K\alpha/P + K(1-\alpha))$ (アムダールの法則)

この式から無限の頭脳を駆使 $(P \to \infty)$ としても $\frac{1}{1-\alpha}$ が効率上昇の限界となります。

ゲームのシミュレーションはひたすらにゲームを繰り返すだけなので、並列化できる割合が極めて高く、計算効率を上昇させるのに適しているといえます。

4 乱数に関して

スーパーコンピュータでのシミュレーションは須らく計算回数が多くなるので、コンピュータが生成する乱数に足しても気を使わなければなりません。C++標準搭載の乱数などは使い物にならないことに注意してください。今回のシミュレーションではメルセンヌツイスターを用いています。

5 参考ページ

http://www.geocities.jp/hinafuda/cirnoneu/card.html(ちるのいのルール詳細)

http://www.cc.u-tokyo.ac.jp/index.html (情報基盤センタースーパーコンピューティング部門)