

Universidad Nacional Autónoma de México Facultad de Ciencias Redes Neuronales

Ejercicio 05 - Entrenamiento y Capas Carlos Emilio Castañon Maldonado

1 Indique si los elementos siguientes son matrices o vectores (matriz columna o matriz renglón) cuando se trabaja con un solo ejemplar.

	Vector	Matriz
X	*	
$W^{(l)}$		*
$A^{(l)}$	*	
$\nabla_{W^{(l)}} J$		*
$\Delta^{(l)}$	*	
$B^{(l)}$	*	
$\nabla_{B^{(l)}}J$	*	
∇J	*	

- 2 Indique todos los elementos siguientes donde una de las dimensiones es el número de ejemplares a evaluar. Selecciona una o mas con ★
 - a) X *
 - b) *A*^(l) ★
 - c) $\Delta^{(l)}$
 - d) $W^{(l)}$
 - e) $\nabla_{W^{(l)}} J$
 - f) J (Valor final de la funcion de error o pérdida)
 - g) $B^{(l)}$
 - h) $\nabla_{B^{(l)}} J$
- 3 Para cada uno de los problemas siguientes durante el entrenamiento, indica que estrategia conviene intentar primero para arreglarlo:

(a) La gráfica del error indica que la red esta aprendien-	R(a): Incrementar la taza de aprendizaje
do, pero va muy lento	
(b) Al entrenar, la gráfica del error indica que este in-	R(b): Reducir la taza de aprendizaje
crementa en lugar de reducirse	
(c) La red es profunda, las gráficas de pesos muestran	R(c): Usar normalización por lotes o un algoritmo de
patrones en las capas finales, pero siguen siendo aleato-	aprendizaje que adapte α
rias en las primeras capas	
(d) Por mas que se entrena la red, con diferentes tazas	R(d): Incrementar el numero de neuronas o reducir la
de aprendizaje, el error no baja lo suficiente.	regularización.
(e) La red funciona perfectamente con el conjunto de	R(e): Reducir el numero de neuronas o usar una regu-
entrenamiento, pero su error no baja en el conjunto de	larización mas agresiva
validación.	