Постановка задачі математичного програмування

Означення 1. Точка $x^* \in R$ називаеться точкою глобального мінімуму функції $\varphi(x)$ на множині R, якщо

$$\varphi\left(x^{*}\right) \leq \varphi\left(x\right) \ \forall \ x \in R.$$

Множину точок глобального мінімуму функції позначимо через X_*

Означення 2. Точка $x^* \in R$ називається точкою локального мінімуму функції $\varphi(x)$ на множині R, якщо знайдеться константа $\varepsilon > 0$ така, що

$$\varphi\left(x^{*}\right) \leq \varphi\left(x\right) \ \forall \ x \in R, \ що задовольняють умові $\|x-x^{*}\| \leq \varepsilon.$$$

Означення 3. Точка $x^* \in R$ називається точкою строгого мінімуму (в локальному чи глобальному сенсі), якщо відповідні нерівності в наведених означеннях виконуються як строгі (при $x \neq x^*$)

Аналогічно вводяться означення точок локального і глобального максимуму.

Умовне позначення $\varphi(x) \to extr, x \in R$ застосовується при розгляданні задачі пошуку екстремуму функції $\varphi(x)$) на множині R. Запис

$$\varphi\left(x\right) \rightarrow min$$
 або $\varphi\left(x\right) \rightarrow max$

означає, що досліджується тільки задача мінімізації або максимізації функції $\varphi(x)$.

Так як довільна задача максимізації функції $\varphi(x)$ може бути записана у вигляді задачі мінімізації функції $-\varphi(x)$, то всі теоретичні міркування можна проводити тільки для задачі на мінімум.

Приклад. Розглянемо функцію

$$\varphi(x) = \begin{cases} x^2 + 3, & x \in [-2; 1], \\ 4, & x \ge 1 \end{cases}$$

Ця функція на $[-2; +\infty)$ має одну точку строгого глобального мінімуму $x^* = 0$, $\min_{x \in R} \varphi(x) = \varphi(0) = 3$. Точка $x^* = -2$ є точкою строгого локального максимуму, $\varphi(x^*) = \varphi(-2) = 7$. Промінь $[1; +\infty)$ - є множина нестрогого максимуму, $\max \varphi(1) = 4$.

Приклад. Функція $\varphi(x)=e^{-x},\ R=\{x\in E^1|x\geq 0\}$ має одну точку строгого глобального максимуму $x^*=1$ і не має точок мінімуму.

Приклад. Функція $\varphi\left(x\right)=x$ не досягає екстремуму ні в одній точці множини $R=\{x\in E^{1}|2< x<3\}$

Узагальненням поняття найменшого значення функції є визначення нижньої межі.

Означення 4. Нехай функція $\varphi(x)$ обмежена знизу на множині R. Число φ_* називається нижньою межею (інфімумом) $\varphi(x)$, якщо воно є найбільшим з нижніх меж функції $\varphi(x)$ на R, тобто

1)
$$\varphi_* \le \varphi(x) \ \forall \ x \in R,$$

2)
$$\forall \varepsilon > 0 \; \exists \; x_{\varepsilon} \in R : \varphi(x_{\varepsilon}) < \varphi_* + \varepsilon.$$

Якщо функція $\varphi(x)$ обмежена знизу на R, то існує єдина скінчена нижня межа цієї функції на множині R. Приймаючи у якості інфімуму необмеженої знизу на R функції $\varphi_* = -\infty$, можна вважати, що нижня межа (на відміну від мінімуму) існує завжди.

Аналогічно вводиться поняття верхньої межі (супремуму), як найменшої верхнбої межі функції $\varphi(x)$ на R.

Збіжність в екстремальних задачах. Існування екстремумів

Розглянуті приклади показують, що не завжди існує точка, в якій досягається нижня межа цільової функції. Тому краще розглянути узагальнену задачу оптимізації - побудову мінімізуючої послідовності.

Означення 5. Послідовність точок $\{x^k\}$ з припустимої множини R називається мінімізуючою для функції $\varphi(x)$, якщо

$$\lim_{k \to \infty} \varphi\left(x^{k}\right) = \inf_{x \in R} \varphi\left(x\right) = \varphi_{*}$$

Побудова мінімізуючих послідовностей є метою розв'язування задачі мінімізації не тільки в тому випадку, коли точна нижня межа функції не досягається. Більшість методів оптимізації генерують послідовність точок, яка є мінімізуючою.

Розглянемо достатню умову досягнення верхньої і нижньої меж.

Теорема 1 (Вейєрштрасса). Нехай R - обмежена і замкнута множина, функція $\varphi(x)$ - неперервна на R. Тоді $f_* = \inf_{x \in R} \varphi(x) > -\infty$, множина точок глобального мінімуму непуста, обмежена і замкнута, а довільна мінімізуюча послідовність збігається до X_* .

Наслідок 1. Нехай R - непуста замкнута підмножина E^n , функція $\varphi(x)$ неперервна на R і для деякої фіксованої точки x^0 множина Лебега

$$L\left(x^{0}\right) = \left\{x \in R \mid \varphi\left(x\right) \le \varphi\left(x^{0}\right)\right\}$$

обмежена. Тоді виконуються всі твердження теореми Вейєрштрасса при умові, що елементи мінімізуючої послідовності $x^k \in L(x^0)$.

Наслідок 2. Нехай R - непуста замкнута підмножина E^n , функція $\varphi(x)$ неперервна на R і для довільної послідовності $\left\{x^k\right\}$ точок з R, що задовільняють умові $\lim_{k\to\infty} \left\|x^k\right\| = +\infty$, виконується співвідношення $\lim_{k\to\infty} \varphi\left(x^k\right) = +\infty$. Тоді виконуються всі твердження теореми Вейерштрасса.

Аналогічно формулюється теорема для задачі максимізації.

Мінімізація функцій без обмежень

Розглянемо задачу

$$\varphi(x) \to extr, \ x \in E^n$$
 (1)

Класичний підхід до пошуку безумовного екстремуму грунтується на таких твердженнях.

Теорема 2 (необхідна умова екстремуму першого порядку). Hexaŭ фикція $\varphi(x)$ диференційована в точці $x^* \in E^n$. Тоді якщо x^* - локальний розв'язок задачі (??), то

 $\frac{\partial \varphi\left(x^*\right)}{\partial x} = 0\tag{2}$

Означення 6. Розв'язки системи рівнянь (??) називаються стаціонарними або критичними точками.

Теорема 3 (необхідна умова екстремуму другого порядку). Hexaŭ фикція $\varphi(x)$ двічі диференційована в точці $x^* \in E^n$.

1) Якщо x^* - точка локального мінімуму в задачі $(\ref{eq:condition})$, то матриця $\frac{\partial^2 \varphi(x^*)}{\partial x^2}$ невід'ємно визначена, тобто

$$\left(\frac{\partial^2\varphi}{\partial x^2}x,x\right)\geq 0\ \forall\ x\in E^n.$$

2) Якщо x^* - точка локального максимуму, то матриця $\frac{\partial^2 \varphi(x^*)}{\partial x^2}$ не-додатньо визначена, тобто

$$\left(\frac{\partial^2 \varphi}{\partial x^2} x, x\right) \le 0 \ \forall \ x \in E^n.$$

Теорема 4 (достатня умова екстремуму). $Hexaŭ \ \phi y$ нкція $\varphi(x) \ \partial si$ чі $\partial u \phi e pe нційована в точці <math>x^* \in E^n \ i \ \frac{\partial \varphi(x^*)}{\partial x} = 0.$

- 1) Якщо матриця $\frac{\partial^2 \varphi(x^*)}{\partial x^2}$ додатньо визначена, то x^* точка строгого локального мінімуму функції $\varphi(x)$ на E^n .
- 2) Якщо матриця $\frac{\partial^2 \varphi(x^*)}{\partial x^2}$ від'ємно визначена, то x^* точка строгого локального максимуму функції $\varphi(x)$ на E^n .