

Recommendation system: Connecting business users with innovative solutions

Candidate: Ivana Nastasic

Master Course: Data Science

Thesis Advisor: Prof. Pierpaolo Brutti

External Advisor: Marco Piersanti

Sapienza università di Roma - Facoltà di ingegneria dell'informazione informatica e statistica

Datasets

Row data export from The Open Innovability Portal, ~3800 Project Descriptions in several languages.

Project Proposals dataset example

SOL-27358 There is a plugin Office called "Dictate" . It can be downloaded from this Microsoft website (dictate.ms) . Using this plugin Office programs (Outlook,Word,Powerpoint...) can write automatically or translate. in another Language. The benefit is that for an Enel employee, is easier and faster, to think a document and to speak to this "digital secretary", then to type on the desk. To be more clearer, please look at this 2 youtube walk-through videos: https://www.youtube.com/watch?v=auF9bvAectU https://www.youtube.com/watch?v=k9gCfEJGj38

Processed dataset based on self presentation of employees on internal e-profile portal, ~ 35000 employees, 18 skill types and 298 skill subtypes. Skills are entered in free text format.

Employee's skills dataset example

Employee ID:196 Skill ID: 1131248816-2 Skill type: energy related skills Skill subtype: power plants

Skill description: power generation

management

Exploratory Data Analysis Findings

- O1 Text descriptions of employee's skills are very short.
- Vocabularies differ significantly in size and content.
- There is a huge difference in text length between projects and employees descriptions.

Evaluation

01

User-centric Perceived Recommended Accuracy: % of project proposals with at least 1 relevant suggestion.

Project Proposals

5 Suggested Employees

Perceived Relevance

Open Innovation Team

3 Model setups

LDA topic modeling and significant words matching

Text embeddings for similarity calculation

Text embeddings for similarity calculation

Papers: 1*. Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances, 2015

Text embeddings for similarity calculation

Papers: 1*. Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances, 2015

2*. Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence embeddings, 2017

Papers: Hongyu Gong, Tarek Sakakini, Suma Bhat, and Jinjun Xiong. Document similarity for texts of varying lengths via hidden topics, 2019

Paper: Hongyu Gong, Tarek Sakakini, Suma Bhat, and Jinjun Xiong. Document similarity for texts of varying lengths via hidden topics, 2019

Results

0.5

Model I LDA topic modeling and significant words matching with number of topics K=90. Model II

SIF with self trained word embeddings using fastText model, vector dimension d=300.

Model III

Hidden topics with pretrained word embeddings trained with fastText model on Common Crawl dataset*, vector dim d=300 and K=5.

*https://fasttext.cc/docs/en/english-vectors.html

Conclusions

Text embeddings performed poorly due to the big difference in text lengths.

Hidden topics approach needs tuning of number of topics K.

- The best scored method is: LDA topic modeling and significant words matching. Further development:
 - Full submitted project documentation
 - Standardized employee's skills (ESCO, O*NET)

Thank you!

LDA topic modeling and significant words matching

LDA topic modeling and significant words matching

Solution Workflow

Solution Workflow

Solution Workflow

CV Coherence score for varying number of topics K.

LDA topic modeling and significant words matching

02

Topics visualisation for K=90.

Distribution of number of common employees for K = [5,8,12,18].

Distribution of number of common employees for K = [5,8,12,18].

K= 12 & K=18

K= 5 & K=18

LDA

M denotes the number of documents

N is number of words in a given document (document i has N_i words) α is the parameter of the Dirichlet prior on the per-document topic distributions β is the parameter of the Dirichlet prior on the per-topic word distribution θ_i is the topic distribution for document i φ_k is the word distribution for topic k z_{ij} is the topic for the j-th word in document i w_{ij} is the specific word.

- 3. For each of the word positions i,j, where $i\in\{1,\ldots,M\}$, and $j\in\{1,\ldots,N_i\}$
- 1. Cho (a) Choose a topic $z_{i,j} \sim \operatorname{Multinomial}(\theta_i)$.
- 2. Cho (b) Choose a word $w_{i,j} \sim \operatorname{Multinomial}(\varphi_{z_{i,j}})$.
- 3. For each of the word positions i,j, where $i\in\{1,\ldots,M\}$, and $j\in\{1,\ldots,N_i\}$
 - (a) Choose a topic $z_{i,j} \sim \text{Multinomial}(\theta_i)$.
 - (b) Choose a word $w_{i,j} \sim \operatorname{Multinomial}(\varphi_{z_{i,j}}).$

Word2Vec

CBOW model Skip-Gram model

WMD

$$\mathbf{d} = [d_1, d_2, ..., d_n]^T, where$$

$$d_i = \frac{c_i}{\sum_{j=0}^{n} c_j},$$

$$c_i = \{word \ i \ appears \ c_i \ times \ in \ a \ given \ document\}$$

$$c(i, j) = ||\mathbf{x}_i - \mathbf{x}_j||_2$$

$$\sum_{j} T_{ij} = d_i$$

$$\sum_{i} T_{ij} = d'_j$$

$$distance = \min_{\mathbf{T} \geqslant 0} \sum_{i,j=1}^{n} T_{i,j}c(i,j)$$

$$\min_{\mathbf{H}} \quad \|\mathbf{W} - \mathbf{H}\mathbf{H}^T \mathbf{W}\|_2^2$$
s.t.
$$\mathbf{H}^T \mathbf{H} = \mathbf{I},$$

$$\mathbf{H}^* = [\mathbf{h}_1^*, \dots, \mathbf{h}_K^*]$$

$$E_k = \|\mathbf{W} - \mathbf{h}_k^* \mathbf{h}_k^{*T} \mathbf{W}\|_2^2$$

$$i_k = \|\mathbf{h}_k^{*T} \mathbf{W}\|_2^2$$

$$\bar{i}_k = i_k / (\sum_{j=1}^K i_j)$$

$$r(\mathbf{h}_k^*, \mathbf{s}_j) = \mathbf{s}_j^T \tilde{s}_j^k / (\|\mathbf{s}_j\|_2 \cdot \|\tilde{\mathbf{s}}_j^k\|_2)$$

$$r(\mathbf{h}_k^*, \mathbf{S}) = \frac{1}{m} \sum_{j=1}^m r(\mathbf{h}_k^*, \mathbf{s}_j)$$

$$r(\mathbf{W}, \mathbf{S}) = \sum_{k=1}^{K} \overline{i}_k \cdot r(\mathbf{h}_k^*, \mathbf{S})$$

Exploratory Data Analysis Findings

01

The best grouping of Employee's Skills dataset is on employee level.

