TP 5: ARP, DB, DC, Spanning-Tree

Ejercicio 1: ARP

- 1.- Requerimiento: estar conectado a una red local.
- 2.- Iniciar el wireshark.
- 3.- Aplicar un filtro para ver solamente mensajes del protocolo ARP.
- 4.- Explicar los paquetes que aparecen con detalle:
- ¿Qué es lo que se ve en cada capa?
- ¿Qué se puede decir con respecto a la frecuencia con la que aparecen los mensajes?
- ¿Cuales son las entradas en la tabla ARP del host?
- ¿Es posible ver la tabla ARP del router? ¿Cómo se ve dicha tabla?

Ejercicio 2: ARP

Inicialmente las tablas ARP, incluida la del router, están vacías.

PC0 desea hacer un ping a PC1: ping 192.168.1.20

Explique lo que sucede cronológicamente y complete la tabla siguiente:

Protocolo	MAC origen en trama	MAC destino en trama	IP origen en datagrama	IP destino en datagrama	Contenido

Ejercicio 3: ARP

Inicialmente las tablas ARP, incluida la del router, están vacías.

a) El host X desea hacer un ping al host 10.0.3.10 (que no existe). Complete la tabla siguiendo el orden cronológico. *Observe que la dirección 10.0.3.10 no existe.*

Protocolo	MAC origen en trama	MAC destino en trama	IP origen en datagrama	IP destino en datagrama	Contenido
					_

b) El host X desea hacer un ping al host 10.0.3.5. Se pide lo mismo que en el punto anterior.

Considere que se mantienen en las tablas ARP las direcciones cargadas en el punto anterior.

Protocolo	MAC origen en trama	MAC destino en trama	IP origen en datagrama	IP destino en datagrama	Contenido

Ejercicio 4: Spanning-Tree-Protocol

Implementar la siguiente topología:

Configurar el STP y contestar las siguientes preguntas:

- 1. Identificar el Bridge ID de todos los elementos en la red.
- 2. ¿Cual es el Root Bridge de la misma?¿Por qué? ¿Es posible tener dos Root Bridges en la red?
- 3. Mencione los estados que atraviesa un puerto.
- 4. ¿Qué es un puerto designado?
- 5. ¿Qué es un puerto root?
- 6. ¿Qué es un puerto bloqueado?

Ejercicio 5: Dominio de colisión vs dominio de broadcast

- 1. Si tuviera que usar diagramas de Venn para explicar la diferencia entre un dominio de colisión (DC) y un dominio de broadcast (DB), ¿cómo sería tal explicación?
- 2. Diagrame una red de 8 PCs de tal forma que:
 - a. 2 PCs en un DC1;
 - b. 2 PCs en un DB1;
 - c. 2 PCs en un DC2;
 - d. 2 PCs en un DB2;