A számításelmélet alapjai I.

1. gyakorlat

Boda Bálint 2023. tavaszi félév

Definíció (ábécé). Szimbólumok egy véges nemüres halmaza. Például. $V = \{a, b\}$.

Definíció (szimbólum). Egy tetszőleges V ábécé elemeit szimbólumoknak vagy betűknek nevezzük.

Definíció (szó). Egy $u \in V^*$ (V ábécé elemiből álló véges) sorozatot V feletti szónak (vagy sztringnek) nevezünk.

1. Szavak

1.1. Alapfogalmak

Definíció. Legyen $u \in V^*$ egy szó, ekkor a benne lévő betűk számát u hosszának nevezzük és l(u)-val vagy |u|-el jelöljük.

Jelölés. Egy $\delta \in V$ betű az $u \in V^*$ szóban lévő előfordulásinak számát $l(u)_{\delta}$ -val vagy $|u|_{\delta}$ -val jelöljük.

Definíció (üres szó). Legyen V egy ábécé, ekkor üres szónak nevezzük azt az ε szót melyre $|\varepsilon|=0$.

Megjegyzés. Világos, hogy $\varepsilon \in V^*$ bármely V abécé esetén.

Definíció (V^+) . Tetszőleges V ábécé esetén V^+ jelöli az V feletti nemüres szavak halmazát, azaz a $V^+ = V^* \setminus \{\varepsilon\}$ halmazt.

1.2. Műveletek

1.2.1. Konkatenáció

Definíció. Legyen V egy ábécé és legyenek $u=s_1\dots s_n$ és $v=t_1\dots t_k$ V feletti szavak. Ekkor az $uv:=s_1\dots s_n t_1\dots t_k$ szót u és v konkatenáltjának nevezzük.

Tulajdonságok

- 1. |uv| = |u| + |v|
- 2. általában nem kommutatív (kivétel egyetlen betűből álló ábécék)
- 3. asszociatív: $u, v, w \in V^* \implies u(vw) = (uv)w$
- 4. $\forall u, v \in V^* : uv \in V^* \ (V^* \text{ a konkatenáció műveletére zárt})$
- 5. létezik egységelem: $\forall u \in V^* : u\varepsilon = u$

Így V^* félcsoport.

1.2.2. Hatványozás

Definíció. Legyen $i \in \mathbb{N}^+$ és $u \in V^*$. Ekkor u i-edik hatványának nevezzük az u szó i darab példányának konkatenáltját.

$$u^0 = \varepsilon, \ u^i = uu^{i-1} \ (i \in \mathbb{N}^+)$$

Megjegyzés. Nyilván $\varepsilon^0 = \varepsilon$.

Tulajdonságok

- 1. $u^{n+k} = u^n u^k \ (k, n \in \mathbb{N})$
- $2. (ab)^n \neq a^n b^n$

1.2.3. Tükörkép

Definíció. Legyen $u = a_1 \dots a_n$, ekkor a szó tükörképének (megfordítottjának) nevezzük a

$$u^{R} = a_{n} \dots a_{1} \ (1 \le i \le n : u_{i} = u_{n+1-i}^{R})$$

szót. Alternatív jelölés: u^{-1} , rev(u).

 $\mathbf{Megjegyz\acute{e}s}$. Ha $u=u^R$ a szót palindrómának (vagy palindrom tulajdonságúnak) nevezzük.

Tulajdonságok

1.
$$\varepsilon^R = \varepsilon$$

$$3. (uv)^R = v^R u^R$$

$$2. \ \left(u^R\right)^R = u$$

4.
$$(u^i)^R = (u^R)^i \ (i \in \mathbb{N})$$

1.3. Résszavak

1.4. Résszó

Legyen V egy ábécé és legyenek u és v szavak V felett.

Definíció (résszó). Az u szó résszava a v szónak, ha $\exists x,y \in V^*: v = xuy$.

Definíció (valódi résszó). Az u szó valód résszava a v szónak, ha résszó és $u \neq v$ és $u \neq \varepsilon$.

Definíció (prefixum). Ha, v = xuy, úgy hogy $x = \varepsilon$, akkor u-t v prefixumának nevezzük.

Definíció (szuffixum). Ha, v = xuy, úgy hogy $y = \varepsilon$, akkor u-t v szuffixumának nevezzük.

Az u szót v valódi prefixumainak/szuffixumainak nevezzük, ha $u \neq \varepsilon \land u \neq v$.

2. Nyelv

Definíció (nyelv). Legyen V egy ábécé, ekkor nyelvnek nevezzük az $L \subseteq V^*$ halmazt. Ekkor L-t V **Jelölés.** \emptyset -el jelöljük az üres nyelvet. $\emptyset \neq \{\varepsilon\}$

2.1. Műveletek

Mivel a nyelvek halmazok értelmezzük az unió, metszet, különbség és komplementer műveleteket.

2

2.1.1. Konkatenáció

Definíció. Legyen V^* egy ábécé és $L_1, L_2 \subseteq V^*$, ekkor L_1 és L_2 konkatenációjának nevezzük az

$$L_1L_2 = \{u_1, u_2 | u_1 \in L_1, u_2 \in L_2\}$$

a nyelvet.

Példa.

$${a,b}{ab,b} = {aab,ab,bab,bb}$$

Tulajdonságok

- 1. Minden Lnyelv esetén: $\left\{ \varepsilon\right\} L=L\left\{ \varepsilon\right\}$
- 2. Asszociatív
- 3. Egységelem: $\{\varepsilon\}$.

2.1.2. Hatványozás

Definíció. Legyen V^* egy ábécé és $L \subseteq V^*$, ekkor L *i*-edik hatványának nevezzük a

$$L^0 = \{\varepsilon\}, \qquad L^i = LL^{i-1} \quad (i \ge 1)$$

a nyelvet.

Megjegyzés. $\emptyset^0 = \{\varepsilon\}.$

2.1.3. Iteratív lezárt

Definíció. Egy L nyelv iteratív lezártjának nevezzük az

$$L^* = \bigcup_{i \ge 0} L^i = L^0 \cup L^1 \cup \dots$$

nyelvet.

2.1.4. Pozitív lezárt

Definíció. Egy L nyelv pozitív lezártjának nevezzük az

$$L^+ = \bigcup_{i \ge 1} L^i = L^0 \cup L^1 \cup \dots = L^* \setminus \{\varepsilon\}$$

nyelvet.

2.2. Feladatok

2.2.1.

Legyenek

$$L_{1} = \{a, bb, aba\}$$

$$L_{2} = \{ab^{n} \mid n \geq 0\} = \{a, ab, abb, \dots\}$$

$$L_{3} = \{u \in \{a, b\}^{*} \mid l_{a}(u) = l_{b}(u)\} = \{\varepsilon, ab, ba, \dots\}$$

$$L_{4} = \{u \in \{a, b\}^{*} \mid l_{b}(u) \mod 2 = 0\} = \{\varepsilon, a, bb, abb, aabb, \dots\}$$

$$L_{5} = \{\varepsilon, ba\}$$

nyelvek. Határozzuk meg:

$$L_{1} \cap L_{2} = \{a\}$$

$$L_{1} \cap L_{3} = \emptyset$$

$$L_{1} \cap L_{4} = \{a, bb\}$$

$$L_{2} \setminus L_{1} = \{ab^{n} \mid n \ge 1\}$$

$$L_{1}L_{5} = \{a, aba, bb, bbba, ababa\}$$

$$L_{1}^{2} = \{aa, abb, aaba, bba, bbbb, bbaba, abaa, ababb, abaaba\}$$

2.2.2.

Legyenek

$$L_1 = \{a^n b^m \mid m \ge n \land n \ge 0\} = \{\varepsilon, b, ab, abb, \dots\}$$

$$L_2 = \{ab\}^* = \{\varepsilon, ab, abab, \dots\}$$

nyelvek. Határozzuk meg:

$$L_{1} \cap L_{2} = \{\varepsilon, ab\}$$

$$L_{1} \setminus L_{2}^{*} = \{a^{n}b^{m} \mid m \geq n \geq 2\} \cup \{b\}^{+} \cup \{ab^{n} \mid n \geq 1\}$$

$$L_{1}^{*} = \{\varepsilon, b, ab, abb, bb, bab, abab, \dots\}$$

$$L_{2} L_{1}^{*} = \emptyset \qquad (ab \in L_{1}^{*} \text{ miatt})$$

$$L_{2}^{*} = L_{2}$$