1/409

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-101842

(P2000-101842A)

(43) 公開日 平成12年4月7日(2000, 4, 7)

(51) Int. C1. 7

H04N

識別記号

FΙ

テーマコート* (参考)

H 0 4 N 1/40

101D

審査請求 未請求 請求項の数8 FD(全27頁)

(21) 出願番号

特願平10-283263

(22) 出願日

平成10年9月18日(1998.9.18)

(71)出願人 000207551

大日本スクリーン製造株式会社

京都府京都市上京区堀川通寺之内上る4丁

目天神北町1番地の1

(72)発明者 疋田 雄一郎

京都市上京区堀川通寺之内上る4丁目天神

北町1番地の1 大日本スクリーン製造株式

会社内

(74)代理人 100097146

弁理士 下出 隆史

(54) 【発明の名称】 モアレ除去方法

(57)【要約】

【課題】 原画像のエッジをあまり劣化させることな く、モアレを除去できる技術を提供する。

1 6 35 7 4

【解決手段】 原画像に含まれる複数の画素のそれぞれ を順次注目画素としながら、注目画素の画素値と、注目 画素の所定の近傍領域内の複数の近傍画素の各画素値 と、の差分が大きいほど、注目画素に対応するフィルタ 要素が複数の近傍画素に対応するフィルタ要素に対して 相対的に大きくなる画像フィルタを生成する。注目画素 毎に生成された画像フィルタの各フィルタ要素と、注目 画素の所定の近傍領域内の複数の近傍画素の各画素値 と、を積和演算することにより、注目画素について処理 済みの画素値を求める。注目画素毎に生成される処理済 みの画素から、エッジがあまり劣化されずにモアレが除 去された処理済み画像を得る。

2

【特許請求の範囲】

【請求項1】 原画像に含まれる複数の画素のそれぞれ を順次注目画素として、画像フィルタを用いてフィルタ 処理することにより前記原画像に含まれるモアレを除去 する方法であって、

前記注目画素の画素値と、前記注目画素の所定の近傍領 域内の複数の近傍画素の各画素値と、の差分が大きいほ ど、前記注目画素に対応するフィルタ要素が前記複数の 近傍画素に対応するフィルタ要素に対して相対的に大き くなる前記画像フィルタを生成する工程と、

前記画像フィルタの各フィルタ要素と、前記注目画素お よび前記複数の近傍画素の各画素値と、を積和演算する ことにより、前記注目画素について処理済みの画素値を 求める工程と、を備えることを特徴とするモアレ除去方 法。

請求項1記載のモアレ除去方法であっ 【請求項2】 医结节 计正线管理

前記画像フィルタを生成する工程は、(a)前記差分に 広じた値で各係数が決定された差分係数マトリクスを生 成する工程と、(b)所定のエッジ検出フィルタを用い て前記原画像の前記注目画素についてのエッジの強度を 求め、前記差分係数マトリクスの前記注目画素に対応す る係数を、前記エッジの強度に応じて調整することによ り前記画像フィルタを生成する工程と、を備える、モア レ除去方法。

【請求項3】 請求項2記載のモアレ除去方法であっ

前記工程(a)は、さらに、

前記差分係数マトリクスの各係数に、前記注目画素に対 広する係数が最も大きく周辺にいくほど小さくなる所定 の平滑化係数マトリクスの対応する係数を、それぞれ乗 じることによって修正された差分係数マトリクスを生成 する工程を含み、

前記工程 (b) では、前記修正された差分係数マトリク スを用いて前記画像フィルタが生成される、モアレ除去 方法。

請求項2または3記載のモアレ除去方法 【請求項4】 であって、

前記工程(b)は、前記エッジの強度を定数倍した値 を、前記差分係数マトリクスの前記注目画素に対応する 係数に加算する工程を含む、モアレ除去方法。

請求項2ないし4のいずれかに記載のモ 【請求項5】 アレ除去方法であって、

前記差分係数マトリクスの各係数は、前記差分の増加と ともに直線的に減少する値である、モアレ除去方法。

【請求項6】 請求項1記載のモアレ除去方法であっ て、

前記画像フィルタの各フィルタ要素は、前記差分の増加 とともに非直線的に急激に減少する値である、モアレ除 去方法。

請求項6記載のモアレ除去方法であっ 【請求項7】

前記画像フィルタを生成する工程は、

前記画像フィルタの各フィルタ要素に、前記注目画素に 対応する係数が最も大きく周辺にいくほど小さくなる所 定の平滑化係数マトリクスの対応する係数を、それぞれ 乗じることによって修正された画像フィルタを生成する 工程を含む、モアレ除去方法。

請求項6または7記載のモアレ除去方法 【請求項8】 *10* であって、

前記画像フィルタは、前記差分に応じた値を格納したテ ーブルを用いて生成される、モアレ除去方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、画像に含まれる モアレを除去するための技術に関する。

[0002]

【従来の技術】印刷物等によって作成された網点画像は スキャナで読み込まれ、デジタルデータとして保存され 20 ることがある。しかし、網点画像をスキャナで読み込む 場合には、網点のサイズとスキャナの読み取り画素のサ イズ(解像度)との違いに起因して、デジタルデータに モアレが生じることがある。

【0003】このようなモアレを除去する従来技術とし ては、例えば、特開昭62-185466号公報に記載 されたものがある。図28は、モアレ除去を実現する従 来の画像処理装置の概略を示す説明図である。この装置 は、スムージング回路910と、ハイパスフィルタ回路 920と、エッジ識別回路930と、混合回路940と 30 を備えている。

【0004】モアレを含むデジタルデータ(原画像デー タ)は、スムージング回路910と、ハイパスフィルタ 回路920と、エッジ識別回路930とにそれぞれ入力 される。スムージング回路910は、入力された原画像 データを平滑化した画像データを出力する機能を有して いる。バイパスフィルタ回路920は、入力された原画 像データのエッジを強調した画像データを出力する機能 を有している。エッジ識別回路930は、入力された原 画像データに含まれるエッジを識別して、エッジの強さ 40 を示すエッジ強度αを混合回路940に与える。混合回 路940は、入力されたエッジ強度αに応じて、スムー ジング回路910とハイパスフィルタ回路920とから 出力された2つの画像データを混合し、処理済み画像デ 一夕として出力する。

【0005】このとき、原画像データのエッジ強度なが 小さい場合には、スムージング回路910から出力され る画像データの割合(混合比)が大きい処理済み画像デ ータとなる。一方、原画像データのエッジ強度αが大き い場合には、ハイパスフィルタ回路920から出力され

50 る画像データの割合が大きい処理済み画像データとな

る。

[0006]

【発明が解決しようとする課題】図29は、従来技術による処理済み画像データを模式的に示す説明図である。図29(A)は、図28の装置に入力される原画像データを示している。図29(B)は、図28の装置から出力される処理済み画像データを示している。なお、図29では、便宜上、原画像データは1次元の画像データとしている。

【0007】図29(A),(B)に示すように、原画像データに含まれるモアレ部分の画素データは、処理済み画像データにおいてほぼ均一な値となっており、原画像データのモアレはうまく除去されている。しかし、処理済み画像データに含まれるエッジ(画素番号#4,#5)の周辺部分(画素番号#2,#3,#6,#7)の画素データは、対応する原画像データの画素データと異なっている。すなわち、処理済み画像データの一方のエッジの周辺部分(画素番号#2,#3)は、対応する原画像データの画素データより大きくなっており、他方のエッジの周辺部分(画素番号#6,#7)は、対応する原画像データの画素データより小さくなっている。この処理済み画像データのエッジの周辺部分は、エッジの

「にじみ」として認識される。このように、従来の技術においては、原画像に含まれるモアレは除去することができるが、エッジのにじみが生じてしまうという問題があった。

【0.008】この発明は、従来技術における上述の課題を解決するためになされたものであり、原画像のエッジをあまり劣化させることなく、モアレを除去できる技術を提供することを目的とする。

Commence of the second

[0009]

【課題を解決するための手段およびその作用・効果】上述の課題の少なくとも一部を解決するため、本発明の方法は、原画像に含まれる複数の画素のそれぞれを順次注目画素として、画像フィルタを用いてフィルタ処理することにより前記原画像に含まれるモアレを除去する方法であって、前記注目画素の画素値と、前記注目画素の所定の近傍領域内の複数の近傍画素の各画素値と、の差分が大きいほど、前記注目画素に対応するフィルタ要素が前記複数の近傍画素に対応するフィルタ要素が前記複数の近傍画素に対応するフィルタ要素に対して相対的に大きくなる前記画像フィルタを生成する工程と、前記画像フィルタの各フィルタ要素と、前記注目画素および前記複数の近傍画素の各画素値と、を積和演算することにより、前記注目画素について処理済みの画素値を求める工程と、を備えることを特徴とする。

【0010】画像のエッジ部分では、注目画素と近傍画素の画素値の差分が大きくなり、エッジ以外の部分では、注目画素と近傍画素の画素値の差分が小さくなる傾向にある。したがって、上記のような画像フィルタを用いれば、エッジ部分では注目画素の重みが大きくなるの

で、原画像のエッジをあまり劣化させることがない。また、エッジ以外の部分では、近傍画素の重みが大きくなるので、注目画素の画素値が近傍画素の画素値で補正され、この結果、モアレを除去することが可能となる。

【0011】上記のモアレ除去方法において、前記画像フィルタを生成する工程は、(a)前記差分に応じた値で各係数が決定された差分係数マトリクスを生成する工程と、(b)所定のエッジ検出フィルタを用いて前記原画像の前記注目画素についてのエッジの強度を求め、前記差分係数マトリクスの前記注目画素に対応する係数を、前記エッジの強度に応じて調整することにより前記画像フィルタを生成する工程と、を備えることが好ましい。

【0012】このようにすれば、注目画素と近傍画素との画素値の差分に応じた画像フィルタをうまく生成することができる。

【0013】上記の方法において、前記工程(a)は、さらに、前記差分係数マトリクスの各係数に、前記注目画素に対応する係数が最も大きく周辺にいくほど小さくなる所定の平滑化係数マトリクスの対応する係数を、それぞれ乗じることによって修正された差分係数マトリクスを生成する工程を含み、前記工程(b)では、前記修正された差分係数マトリクスを用いて前記画像フィルタが生成されることが好ましい。

【0014】このような平滑化係数マトリクスを用いれば、注目画素に対応するフィルタ要素に近いほど重み付けられた画像フィルタを生成することができる。これにより、注目画素についての処理済みの画素値は、注目画素により近い画素の影響を大きく受けた値となる。

30 【0015】前記工程(b)は、前記エッジの強度を定数倍した値を、前記差分係数マトリクスの前記注目画素に対応する係数に加算する工程を含むことが好ましい。

【0016】このように、注目画素についてのエッジの 強度に応じた値を、差分係数マトリクスの注目画素に対 応する係数に加算して画像フィルタを生成すれば、原画 像に含まれるエッジをうまく強調することができるとと もに、エッジの周辺部分が劣化することを防ぐことがで きる。

【0017】上記の方法において、前記差分係数マトリ 40 クスの各係数は、前記差分の増加とともに直線的に減少 する値であるようにしてもよい。

【0018】このようにして、差分係数マトリクスの各係数を決定すれば、注目画素と近傍画素との画素値の差分が大きいほど、注目画素に対応するフィルタ要素が近傍画素に対応するフィルタ要素に対して相対的に大きくなる画像フィルタをうまく生成することができる。

【0019】また、上記のモアレ除去方法において、前 記画像フィルタの各フィルタ要素は、前記差分の増加と ともに非直線的に急激に減少する値であることが好まし

50 Vi.

【0020】このようにして、画像フィルタの各フィルタ要素を決定すれば、注目画素と近傍画素との画素値の差分が大きいほど、注目画素に対応するフィルタ要素が近傍画素に対応するフィルタ要素に対して相対的に大きくなる画像フィルタをうまく生成することができる。

【0021】上記の方法において、前記画像フィルタを 生成する工程は、前記画像フィルタの各フィルタ要素 に、前記注目画素に対応する係数が最も大きく周辺にい くほど小さくなる所定の平滑化係数マトリクスの対応す る係数を、それぞれ乗じることによって修正された画像 フィルタを生成する工程を含むことが好ましい。

【0022】このような平滑化係数マトリクスを用いれば、注目画素に対応するフィルタ要素に近いほど重み付けられた画像フィルタを生成することができる。これにより、注目画素についての処理済みの画素値は、注目画素により近い画素の影響を大きく受けた値となる。

【0023】上記の方法において、前記画像フィルタは、前記差分に応じた値を格納したテーブルを用いて生成されるようにしてもよい。

【0024】このようなテーブルを用いれば、画像フィルタの各フィルタ要素を迅速に決定することができる。 【0025】

【発明の他の態様】この発明は、以下のような態様も含んでいる。第1の態様は、原画像に含まれる複数の画素のそれぞれを順次注目画素として、画像フィルタを用いてフィルタ処理することにより前記原画像に含まれるモアレを除去するモアレ除去装置であって、前記注目画素の画素値と、前記注目画素の所定の近傍領域内の複数の近傍画素の各画素値と、の差分が大きいほど、前記注目画素に対応するフィルタ要素が前記複数の近傍画素に対応するフィルタ要素に対して相対的に大きくなる前記画像フィルタを生成する画像フィルタ生成部と、前記連目画素および前記をフィルタの各フィルタ要素と、前記注目画素および前記を関数の近傍画素の各画素値と、を積和演算することにより、前記注目画素について処理済みの画素値を求めるフィルタ処理部と、を備えることを特徴とする。

【0026】第2の態様は、コンピュータに上記の発明の各工程または各部の機能を実行させるコンピュータプログラムを記録した記録媒体である。記録媒体としては、フレキシブルディスクやCD-ROMなどのコンピュータが読取り可能な携帯型の記憶媒体や、コンピュータシステムの内部記憶装置(RAMやROMなどのメモリ)および外部記憶装置、あるいは、これ以外のコンピュータプログラムが記録された媒体であってコンピュータシステムが読取り可能な種々の媒体を利用できる。

【0027】第3の態様は、コンピュータに上記の発明の各工程または各部の機能を実行させるコンピュータプログラムを通信経路を介して供給するプログラム供給装置である。

[0028]

[発明の実施の形態] A. 第1実施例:次に、本発明の実施の形態を実施例に基づき説明する。図1は、本発明の第1実施例としてのモアレ除去方法を実現する画像処理装置を示すブロック図である。この装置は、CPU100と、バスライン102には、キーボード110と、マウス112と、カラーCRT114と、磁気ディスク116と、フルカラープリンタ118と、スキャナ120と、ROM140とが接続されている。また、バスライン102には、処理前の画像データを記憶する原画像データメモリ130と、処理済みの画像データを記憶する処理済み画像データメモリ132とが接続されている。さらに、バスライン102には、画像フィルタ生成部152と、フィルタ処理部154とを含むRAM150が接続されている。

6

【0029】なお、上記の画像フィルタ生成部152とフィルタ処理部154との機能を実現するコンピュータプログラムは、フレキシブルディスクやCD-ROM等の、コンピュータ読み取り可能な記録媒体に記録された形態で提供される。コンピュータは、その記録媒体からコンピュータプログラムを読み取って内部記憶装置または外部記憶装置に転送する。あるいは、通信経路を介してコンピュータにコンピュータプログラムを供給するようにしてもよい。コンピュータプログラムの機能を実現するときには、内部記憶装置に格納されたコンピュータプログラムがコンピュータのマイクロプロセッサによって実行される。また、記録媒体に記録されたコンピュータプログラムをコンピュータが読み取って直接実行する。ようにしてもよい。

なお、この画像処理装置は、伝送路に接続して一般的な

ネットワークシステムを構成するようにしてもよい。

【0030】この明細書において、コンピュータとは、ハードウェア装置とオペレーションジステムとを含む概念であり、オペレーションシステムの制御の下で動作するハードウェア装置を意味している。また、オペレーションシステムが不要でアプリケーションプログラム単独でハードウェア装置を動作させるような場合には、そのハードウェア装置自体がコンピュータに相当する。ハードウェア装置は、CPU等のマイクロプロセッサと、記録媒体に記録されたコンピュータプログラムを読み取るための手段とを少なくとも備えている。コンピュータプログラムは、このようなコンピュータに、上述の各部の機能を実現させるプログラムコードを含んでいる。なお、上述の機能の一部は、アプリケーションプログラムでなく、オペレーションシステムによって実現されていても良い。

【0031】なお、この発明における「記録媒体」としては、フレキシブルディスクやCD-ROM、光磁気ディスク、ICカード、ROMカートリッジ、パンチカード、バーコードなどの符号が印刷された印刷物、コンピ

50 ュータの内部記憶装置(RAMやROMなどのメモリ)

および外部記憶装置等の、コンピュータが読取り可能な種々の媒体を利用できる。

【0032】図2は、図1の画像フィルタ生成部152 およびフィルタ処理部154の処理を模式的に示す説明図である。画像フィルタ生成部152は、エッジ強度検出部200と、エッジ強度増大部202と、差分係数マトリクス生成部210と、平滑化係数マトリクス部212と、乗算部214と、加算部216との機能を備えている。

【0033】図2の左方からは原画像データのうち、注目画素を含む近傍領域の画像データ(以下、「部分画像データ」と呼ぶ)IPが順次入力される。画像フィルタ生成部152は、入力された部分画像データIPに基づいて、画像フィルタFAを生成する。フィルタ処理部154は、画像フィルタ生成部152において部分画像データIPとを用いて所定の演算を行うことにより、注目画素の画素データに対応する処理済みの画素データのA、、を出力する。このような各注目画素に対応する処理済み画素データによって処理済み画像データが構成される。なお、画像フィルタ生成部152およびフィルタ処理部154の機能については、さらに後述する。

【0034】本実施例においては、処理対象となる原画像としては、カラー画像を想定しているので、図2の処理は高実際には、R, G, Bの各色毎に行われる。

【0.035】図3は、原画像データの一例を示す説明図である。なお、図3に示す原画像データは、原画像を構成するR,G,Bの画像データのうちの1つである。本実施例においては、各色の画像データはそれぞれ8ビットで表されているので、各画素についての画素データ(画素値)は0~255の値を取り得る。

【0036】なお、図3に示すように、本実施例においては、原画像データにおける各画素の位置は、原画像データの左上の画素の位置を(1,1)としたときの横方向の位置xと、縦方向の位置yによって決定される。したがって、図3の原画像データの右下の画素の位置は、(25,25)で表される。

【0037】図4は、図3の原画像データの各画素における画素値の大きさを示す説明図である。図4に示すように、この原画像データは、x方向に沿って画素値がステップ状に変化するデータであり、中央付近のエッジ部分から離れた比較的平坦な2つの部分には、画素値がほぼ周期的に変動するモアレを含んでいる。

【0038】図5は、図2の左方から入力される部分画像データIPの抽出処理を示す説明図である。図5に示すように、部分画像データIPは、原画像データORGの左上から右下に向かって順次抽出される。すなわち、原画像データORGにおいて、注目画素PXを順次走査しながら、注目画素PXから一定の近傍領域内((2m+1)×(2n+1)画素の領域)に存在する画素が部

分画像データIPとして抽出される。本実施例においては、部分画像データIPは、そのサイズが(9×9)画素、すなわち、m=n=4の領域で抽出される。なお、この抽出処理は、部分画像データIPの各画素に対応する原画像データメモリ130のアドレスを順次指定することによって行われる。

8

【0039】図3には、上記のように抽出される部分画像データが例示されている。第1の部分画像データは、PX1((x,y)=(13,18))を注目画素とし10た場合の部分画像データIP1である。第2の部分画像データは、PX2((x,y)=(14,18))を注目画素とした場合の部分画像データIP2である。同様に、第3および第4の部分画像データは、それぞれ画素PX3((x,y)=(12,17))、PX4((x,y)=(8,11))を注目画素とした場合の部分画像データIP3、IP4である。

【0040】なお、画素PX1、PX2は、図4のエッジ部分の画素であり、画素PX1は画素値が大きい方のエッジ部分の画素であり、画素PX2は画素値が小さい方のエッジ部分の画素である。画素PX3は、エッジからわずかに離れた周辺部分の画素である。画素PX4は、図4の比較的平坦な部分に含まれる画素であり、その近傍領域にはエッジは存在しない。

【0041】ところで、部分画像データIPに含まれる各画素の画素値は、本実施例においては次のように表す。図6は、図5の部分画像データIPに含まれる各画素の画素値を示す説明図である。図中、中央の画素は注目画素PXであり、この画素の画素値は、符号「IP」を用いてIP:,,と表される。例えば、図3の注目画素のPX1の画素値は、IP:,, (=230)と表される。

【0043】なお、このようなi方向およびj方向を用いた表現は、後述するマトリクスの各係数およびフィルタの各要素を示す場合においても同様である。

【0044】図5の抽出された部分画像データIPは、それぞれ、図2に示す画像フィルタ生成部152において処理され、画像フィルタFAが生成される。

50 【0045】図7は、図2の処理に従って第1の部分画

G,

像データIP1についての画像フィルタFA1が生成される様子を示す説明図である。図7(A)は、画像フィルタ生成部152(図2)に入力される第1の部分画像データIP1(図3)を示している。

【0046】部分画像データIP1が画像フィルタ生成部152に入力されると、差分係数マトリクス生成部210は、部分画像データIP1を元に差分係数マトリクスD1を生成する。図7(B)には、差分係数マトリクスD1が示されている。

【0047】図7(B)に示すような差分係数マトリクスDの各係数Di,jは、数式1に従って求められる。

[0048]

【数1】

$$D_{i,j} = V \max - \left| IP_{x,y} - IP_{x+i,y+j} \right|$$

【0049】ここで、IP...、は注目画素の画素値を示しており、IP...、は近傍画素の画素値を示している。また、Vmax は、画素値が取り得る最大値を示しており、本実施例においては画素値は8ビットで表現されているので、Vmax は「255」である。

【0050】このように求められた差分係数マトリクス Dの各係数D., は、数式1から分かるように、注目画 素の画素値IP., と近傍画素の画素値IP., と の差分(|IP., と丁子IP., 、 |) の増加とともに 直線的に減少する値である。図7(B)に示すように、 注目画素に対応する位置(中心)の係数は常にVmax (=255)に等しくなり、近傍画素に対応する係数に 比べて大きくなる。また、近傍画素と注目画素との画素 値の差分が大きい程、近傍画素に対応する係数は小さく なる。

【0051】差分係数マトリクスD1が求められると、 乗算部214(図2)は平滑化係数マトリクス部212 に予め格納されている平滑化係数マトリクスGを用いて 差分平滑化係数マトリクスM1を生成する。

【0052】平滑化係数マトリクスGとしては、注目画素に対応する位置(中心)の係数が最も大きく、周辺にいくほど小さくなるものが好ましい。本実施例においては、平滑化係数マトリクスGとして、注目画素に対応する位置を中心とした略ガウス分布を有するマトリクス、すなわち、マトリクスの各係数がその位置に応じたガウス分布にほぼ比例した値となるマトリクス(以下、「ガウス型係数マトリクス」と呼ぶ)が用いられている。

【0053】図8は、ガウス型係数マトリクスを示す説明図である。このガウス型係数マトリクスは、マトリクスの中心の係数が「1」となるように設定されている。この場合の位置(i, j)の係数G...」は数式2によって決定される。

[0054]

【数2】

$$G_{i,j} = \exp\left(-\frac{i^2 + j^2}{2 \cdot a^2}\right)$$

【0055】ここで、aは、有効半径と呼ばれる値を示しており、マトリクスの中心からaだけ離れた位置の係数は、ほぼexp(-1/2)となる。なお、ガウス型係数マトリクスは、有効半径aとマトリクスのサイズ(図8では、(9×9) 画素)とを規定することによって一義的に決定される。

10 【0056】図7 (C) には、平滑化係数マトリクスG として、図8のガウス型係数マトリクスを用いた場合の 差分平滑化係数マトリクスM1が示されている。図7

(C) に示すような差分平滑化係数マトリクスMの各係数M.」は、数式3に従って求められる。

[0057]

【数3】

$$M_{i,j} = D_{i,j} \cdot G_{i,j}$$

【0058】ここで、G... は、平滑化係数マトリクス Gの各係数を示している。

20 【0059】図7 (B), (C) を比較すれば分かるように、差分平滑化係数マトリクスM1は、差分係数マトリクスD1の係数に、周辺部にいくほど小さくなる重みを乗じたものである。

【0060】上記のように部分画像データIPを元に差分平滑化係数マトリクスMが生成されると同時に、エッジ強度検出部200(図2)においては、部分画像データIPの注目画素PXにおけるエッジ強度Wが検出される。エッジ強度Wの検出は、エッジ検出フィルタを用いて行われる。すなわち、エッジ検出フィルタを用いて、

30 図5に示すように、原画像データの各画素を注目画素P Xとして順次フィルタ処理して、エッジ強度Wを求め る。本実施例においては、エッジ強度Wは数式4によっ て決定される。

[0061]

【数4】

$$W = \left| \sum_{i=a}^{a} \sum_{j=b}^{b} L_{i,j} \cdot IP_{x+i,j+j} \right|$$

【0062】ここで、L...、はエッジ検出フィルタの各 40 フィルタ要素を示している。a、bは、エッジ検出フィ ルタのサイズに関する値であり、フィルタサイズは、

((2a+1)×(2b+1)) 画素である。

【0063】なお、エッジ検出フィルタLのサイズは、差分係数マトリクスDのサイズ以下であればよいが、空間的な周波数の高いエッジを検出できるように小さいものが好ましい。したがって、エッジ検出フィルタLのサイズは、前述の差分係数マトリクスDよりも小さくなるように、a<m,b<nの関係を満たすことが好ましい。

【0064】図9は、本実施例においてエッジ検出フィ

12

"ルタLとして用いられるラプラシアンフィルタを示す説明図である。図9に示すラプラシアンフィルタは、a=b=1であり、フィルタサイズは(3×3)画素である。このラプラシアンフィルタを用いて求められるエッジ強度Wは、数式4から分かるように、注目画素とその近傍の8方向の画素(8近傍画素)との画素値の差を合計した値の絶対値によって決定される。

【0065】なお、エッジ検出フィルタLとしては、図9に示すような8近傍画素を利用するフィルタに限られず、4近傍画素を利用するようなフィルタを用いてもよい。また、1次微分フィルタを用いることもできる。

【0066】図10は、図3の原画像データに対して、図9のエッジ検出フィルタを用いて求められたエッジ強度Wを示す説明図である。図3の画素PX1を注目画素としたときに求められたエッジ強度W1は「812」である。同様に画素PX2~PX4を注目画素としたときに求められたエッジ強度W2~W4は、それぞれ「660」、「71」、「19」である。

【0067】図11は、図10に示す各画素におけるエッジ強度を示す説明図である。図11に示すように、図4のエッジ部分の上段部の画素(画素値が大きな画素)と下段部の画素(画素値が小さな画素)については、いずれもエッジ強度が大きくなっており、一方、図4の比較的平坦な部分に相当する画素については、エッジ強度が小さくなっている。このように、エッジ検出フィルタしを用いることによって、エッジ部分をうまく抽出することができる。

【0068】原画像データの各画素を注目画素PXとしてエッジ強度Wが求まると、図2のエッジ強度増大部202は、エッジ強度Wを定数倍(k倍)して、重み付け係数k・Wを求める。本実施例では、エッジ強度Wを10倍した値が重み付け係数k・Wとして用いられている。なお、本実施例における定数kとしては、3~10程度の値が好ましい。

【0069】重み付け係数 k・Wが求まると、加算部216(図2)は、乗算部214において求められた差分平滑化係数マトリクスMの注目画素の係数だけに重み付け係数 k・Wを加えて画像フィルタFAを生成する。画像フィルタFAの各フィルタ要素FAL」は、数式5によって表される。

【0070】 【数5】

$$FA_{i,j} = \begin{cases} M_{i,j} & (i,j) \neq (0,0) \\ M_{0,0} + k \cdot W & (i,j) = (0,0) \end{cases}$$

【0071】重み付け係数 k・Wは、差分平滑化係数マトリクスMの中心の係数M。。 にのみ加算されるので、画像フィルタ F A の注目画素に対応する中心のフィルタ要素 F A。。 は、エッジ強度Wに応じてさらに大きな重みが付けられる。

【0072】図7 (D) には、画像フィルタ生成部15 2において生成された画像フィルタFA1が示されている。図示するように、画像フィルタFA1は、図7

(C) の差分平滑化係数マトリクスM1の中心の係数「255」に、重み付け係数k・W1 (= 8120) が加算されたものである。

【0073】上記のように、図7(A)~(D)の順序で、図3の注目画素PX1に対する画像フィルタFA1が生成される。他の注目画素についても、同様にして画 00像フィルタが生成される。

【0074】図12、図13、図14は、それぞれ図3 の第2~第4の部分画像データIP2, IP3, IP4 についての画像フィルタFA2, FA3, FA4が生成 される様子を示す説明図である。第2の部分画像データ IP2に含まれる画素PX2はエッジ部分に相当するの で、第1の部分画像データ IP1 に含まれる画素 PX1 と同様にエッジ強度Wが大きくなる。したがって、図1 2に示すように、画像フィルタFA2の注目画素に対応 する中心のフィルタ要素には、重み付け係数k・W2と 20 して「6600」という大きな値が加算されている。第 3および第4の部分画像データIP3. IP4に含まれ る画素PX3、PX4は、この順序でエッジから離れて いくので、エッジ強度はW3、W4の順に小さくなる。 このため、図13, 図14に示すように、画像フィルタ FA3、FA4の注目画素に対応する中心のフィルタ要 素には、重み付け係数として、それぞれ「710」、 「1.90」という比較的小さな値が加算されている。こ のように生成された画像フィルタFAは、注目画素と近

のように生成された画像フィルタFAは、注目画素と近 傍画素との画素値の差分が大きいほど、注目画素に対応 30 する位置のフィルタ要素が近傍画素に対応する位置のフィルタ要素に対して相対的に大きくなっている。

【0075】上記のように画像フィルタFAが求まると、図2のフィルタ処理部154は、部分画像データIPに対してフィルタ処理を実行して、部分画像データIPの注目画素PXに対応する処理済みの画素データOA、、は、数式6に示す積和演算に従って求められる。

[007.6]

【数6】

 $OA_{x,y} = \frac{\sum\limits_{i=-m}^{m}\sum\limits_{j=-m}^{n}FA_{i,j}\cdot IP_{x+i,j+j}}{\sum\limits_{i=-m}^{m}\sum\limits_{j=-m}^{n}FA_{i,j}}$

【0077】なお、数式6の分母は、画像フィルタFAの各フィルタ要素の総和で積和結果を規格化するためのものである。これにより、処理済み画素データOA、、が、例えば、8ビットの場合に「255」を超える値となることを防ぐことができる。

50 【0078】このようにして、原画像データに含まれる

各画素を注目画素PXとすることによって処理済み画像 データが求められる。なお、処理済み画像データは処理 済み画像データメモリ132(図1)に記憶される。

【0079】図15は、図3の原画像データに対する第1実施例による処理済み画像データを示す説明図である。図15には、図3の4つの注目画素PX1~PX4についてそれぞれ生成された処理済みの画素PX1~PX4が示されている。図16は、図15の処理済み画像データの各画素における画素値の大きさを示す説明図である。図16に示すように、本実施例の処理済み画像データでは、図4に示す原画像データのエッジ部分があまり劣化することなく、比較的平坦な部分に存在したモアレがうまく除去されている。

【0080】なお、第1実施例においては、差分係数マトリクスDに平滑化係数マトリクスGを乗じることによって、差分平滑化マトリクスMを生成し、さらに、差分平滑化マトリクスMの中心の係数を重み付け係数k・Wによって調整することによって画像フィルタFAを生成しているが、平滑化係数マトリクスGを乗じる工程は省略してもよい。この場合には、図2の平滑化係数マトリクス部212と乗算部214とを省略でき、差分係数マトリクスDの中心の係数を重み付け係数k・Wによって調整して画像フィルタを生成すればよい。この説明から分かるように、本実施例の差分平滑化マトリクスMが本発明における「修正された差分係数マトリクス」に相当する。

【0081】B. 第2実施例:図17は、本発明の第2 実施例としてのモアレ除去方法を実現する画像処理装置を示すプロック図である。この装置は、図1の装置とほぼ同じ構成であるが、ROMT40内に参照テーブル142を備えている点が異なっている。また、RAM150内に含まれる画像フィルタ生成部156の機能が、図1の画像フィルタ生成部152の機能と異なっている。 【0082】図18は、図17の画像フィルタ生成部1

【0082】図18は、図17の画像フィルタ生成部156およびフィルタ処理部154の処理を模式的に示す説明図である。本実施例における画像フィルタ生成部156は、差分重み付け係数マトリクス生成部230と、平滑化係数マトリクス部212と、乗算部234との機能を備えている。

【0083】本実施例の画像フィルタ生成部156は、部分画像データIPおよび参照テーブル142に基づいて画像フィルタFBを生成する。また、フィルタ処理部154は、画像フィルタ生成部156において部分画像データ毎に生成された画像フィルタFBと、部分画像データIPとを用いて所定の演算を行うことにより、注目画素の画素データに対応する処理済みの画素データOB、、を出力する。このような処理済み画素データによって処理済み画像データが構成される。

【0084】図19は、図18の処理に従って第1の部 分画像データIP1についての画像フィルタFB1が生 成される様子を示す説明図である。図19(A)は、画像フィルタ生成部156(図18)に入力される第1の部分画像データIP1(図3)を示しており、図7(A)と同じものである。

14

【0085】部分画像データIP1(図19(A))が 画像フィルタ生成部156に入力されると、差分重み付 け係数マトリクス生成部230は、まず、差分係数マト リクスD1を生成する。この差分係数マトリクスD1の 各係数D1.,は、第1実施例で説明したように数式1 に従って求められる。なお、本実施例においても、Vm xの値として「255」を用いている。図19(B)に は、差分係数マトリクスD1が示されており、これは図 7(B)と同じものである。

【0086】差分係数マトリクスD1が求まると、差分 重み付け係数マトリクス生成部230は、参照テーブル 142を参照して差分重み付け係数マトリクスR1を生 成する。図19(C)には、差分重み付け係数マトリク ス生成部230によって生成された差分重み付け係数マトリク トリクスR1が示されている。

20 【0087】図20は、参照テーブルを示す説明図である。図20に示すように、参照テーブルには、値dに対応する参照値で (d) が準備されている。差分重み付け係数マトリクス生成部230は、差分係数マトリクスD1の各係数D1,,の値dに対する参照値で (d)を、順次、参照テーブル142を参照して決定する。例えば、図19 (B)の差分係数マトリクスD1の中心の係数「255」に対応する参照値は「1、25×10³6」であるので、図19 (C)に示す差分重み付け係数マトリクスR1の中心の係数は「1、25×10³6」であるので、図19 (C)に示す差分重み付け係数マトリクスR1の中心の係数は「1、25×10³6」となっている。このようにして、差分係数マトリクスD1の各係数D1,」に応じて差分重み付け係数マトリクスR1の各係数R1,」が決定される。

【0088】なお、図20に示す参照テーブルの参照値r(d)は、数式7の関係によって決定される値である。

[0089]

 $r(d)=d^{-n}$

【0090】ここで、nは定数である。図20の参照テ 40 ープルは、n=15としたときの値である。なお、定数 nの値としては、5~20程度の値が好ましい。

【0091】参照テーブルとしては、差分係数マトリクスDの各係数D、、の値dと参照値r(d)とが数式7の関係を有するものに限られず、他の関係を有するものを用いてもよい。例えば、参照値r(d)が値dの階乗となるような関係を有する参照テーブルを用いてもよい。

【0092】数式7の関係に従う場合には、差分重み付け係数マトリクスRの各係数R..」の値は、差分係数マカリクスDの各係数D.. の値を用いて数式8で表すこ

15

とができる。 【0093】 【数8】

 $R_{i,j} = \left(V \max - \left| IP_{x,y} - IP_{x+i,y+j} \right| \right)^{s}$

【0094】数式8から分かるように、差分重み付け係数マトリクスRの各係数R.,,の値は、注目画素の画素値IP.,,と近傍画素の画素値IP.,,との差分fd(= | IP.,,-IP.,,,, |)の増加とともに非直線的に急激に減少する値である。

【0095】図21は、注目画素と近傍画素との画素値の差分と、参照値との好ましい関係を示す説明図である。図21(A)は、画素値の差分fdの増加とともに参照値rが略連続的に、かつ非直線的に急激に減少する関係を示しており、数式8の関係に相当する。図21

(B) は、画素値の差分fdの増加とともに参照値rがステップ状に、かつ非直線的に急激に減少する関係を示している。参照テーブルの各参照値rは、このように注目画素と近傍画素との画素値の差分fdの増加とともに非直線的に急激に減少する値であればよい。

【0096】画素値の差分fdと参照値rとが上記のよ うな関係にある場合には、各係数R 1... が注目画素の 画素値と近傍画素の画素値とに応じて重み付けられた差 分重み付け係数マトリクスR1(図19(C))が生成 される。図1.9 (B) に示されているように、差分係数 マトリクスD1では、注目画素の値が常に「255」で あり、近傍画素は「255」以下なので、差分重み付け 係数マトリクスR 1も注目画素における値が最も大き い。部分画像データIP1において、近傍画素の画素値 が注目画素の画素値とほぼ同じ値である場合には、近傍 画素に対応する位置の係数R1... は、注目画素に対応 する中心の係数R 1。。とほぼ同じ値となる。一方、近 傍画素の画素値が注目画素の画素値と大きく異なる値で ある場合には、近傍画素に対応する位置の係数R1... は、注目画素に対応する中心の係数R1。。 に対してか なり小さな値となる。

【0097】なお、本実施例においては、差分重み付け係数マトリクスRの各係数R,」の値を迅速に求めるために参照テーブル、(図20)を用いているが、参照テーブルの代わりに数式8を用いて、各係数R,」を算出してもよい。

【0098】上記のように差分重み付け係数マトリクスR1が求められると、乗算部234(図18)は平滑化係数マトリクス部212において予め準備されている平滑化係数マトリクスGを用いて画像フィルタFB1を生成する。

【0099】画像フィルタFB1は、差分重み付け係数マトリクスR1の各係数R1、」に、平滑化係数マトリクスGの各係数G、」をそれぞれ乗じることによって生成される。すなわち、画像フィルタFBの各係数FB

16

... は、次の数式9に従って求められる。 【0100】 【数9】

 $FB_{i,j} = R_{i,j} \cdot G_{i,j}$

【0101】図19 (D) には、画像フィルタFB1が示されている。なお、本実施例においては、平滑化係数マトリクスGとして、図8に示すガウス型係数マトリクスが用いられている。

10 【0102】上記のように、図19 (A) ~ (D) の順序で、図3の注目画素PX1に対する画像フィルタFB 1が生成される。他の注目画素についても、同様にして画像フィルタが生成される。

【0103】図22、図23、図24は、それぞれ図3 の第2~第4の部分画像データIP2、IP3、IP4 についての画像フィルタFB2, FB3, FB4が生成 される様子を示す説明図である。第2~第4の部分画像 データ I P 2, I P 3, I P 4 についても、前述のよう に、各係数Riiiが注目画素の画素値と近傍画素の画素 20 値とに応じて重み付けられた差分重み付け係数マトリク スRが生成されている。図2.4に示す第4の部分画像デ ータ I P 4 では、近傍領域内の画素値がほぼ同じ値であ るため、差分重み付け係数マトリクスR4の各係数R4 1.1.はほぼ同じ値となっている。このように生成された 画像フィルタFBは、注目画素と近傍画素との画素値の 差分が大きいほど、注目画素に対応する位置のフィルタ 要素が近傍画素に対応する位置のフィルタ要素に対して 相対的に大きくなっている。 1. 🔻

【0104】上記のようにして画像フィルタFBが求まると、図18のフィルタ処理部154は、部分画像データIPに対してフィルタ処理を実行して、部分画像データIPの注目画素PXに対応する処理済みの画素データOB...、を求める。処理済み画素データOB...、は、数式6と同様の数式10に示す積和演算に従って求められる。

【0105】 【数10】

 $OB_{x,y} = \frac{\sum_{i=-m}^{n} \sum_{j=-n}^{n} FB_{i,j} \cdot IP_{x,si,y+j}}{\sum_{i=-m}^{n} \sum_{j=-n}^{n} FB_{i,j}}$

【0106】上記のように、原画像データに含まれる各画素を注目画素PXとすることによって処理済み画像データが求められる。

【0107】図25は、図3の原画像データに対する第2実施例による処理済み画像データを示す説明図である。図25には、図3の4つの注目画素PX1~PX4についてそれぞれ生成された処理済みの画素PX1"~50 PX4"が示されている。図26は、図25の処理済み

画像データの各画素における画素値の大きさを示す説明 図である。図26に示すように、本実施例おいても、処 理済み画像データは、図4に示す原画像データのエッジ 部分があまり劣化することなく、比較的平坦な部分に存 在したモアレがうまく除去されている。

【0108】なお、第2実施例においては、差分重み付け係数マトリクスRに平滑化係数マトリクスGを乗じることによって、画像フィルタFBを生成しているが、平滑化係数マトリクスGを乗じる工程は省略してもよい。この場合には、図18の平滑化係数マトリクス部212と乗算部234とを省略でき、差分重み付け係数マトリクスRがそのまま画像フィルタとして用いられる。この説明から分かるように、本実施例の差分重み付け係数マトリクスRが本発明における「画像フィルタ」に相当し、本実施例の画像フィルタFBが本発明における「修正された画像フィルタ」に相当する。

【0109】図27は、本発明を適用した場合の処理済み画像データを模式的に示す説明図である。図27

- (A) は、1次元の原画像データを示しており、図29
 - (A) と同じである。図27 (B) は、従来技術を適用 した場合の処理済み画像データを示しており、図29
- (B) と同じである。図27 (C) は、本発明を適用した場合の処理済み画像データを示している。図27
- (B), (C)から分かるように、本発明を適用した場合の処理済み画像データでは、従来技術を適用した場合の処理済み画像データに比べ、エッジの周辺部分(画素番号#2,#3,#6,#7)の「にじみ」が軽減されている。すなわち、図27(C)の本発明を用いた処理済み画像データでは、エッジがあまり劣化することなく、モアレが除去されている。

【0110】以上、説明したように、上記の第1および第2実施例の画像フィルタ生成部152,156(図2,図18)は、注目画素と近傍画素との画素値の差分が大きいほど、注目画素に対応する位置のフィルタ要素が近傍画素に対応する位置のフィルタ要素に対して相対的に大きくなるように画像フィルタFA、FBを生成する。このような画像フィルタを用いれば、原画像に含まれるエッジをあまり劣化させることなく、うまくモアレを除去することが可能となる。

【0111】なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば以下のような変形も可能である。

【0112】(1)上記第1および第2実施例では、平滑化係数マトリクスGとしてガウス型係数マトリクスが用いられているが、他のマトリクスを用いてもよい。平滑化係数マトリクスGとしては、前述のようにマトリクスの中心の係数が一番大きな値となるものであればよい。したがって、マトリクスの各係数かすべて同じ値となる平滑化係数マトリクスGを用いてもよい。なお、平

滑化係数マトリクスの各係数がすべて「1」である場合には、前述の平滑化係数マトリクスGを乗じる工程を省略する場合と同じ画像フィルタが生成される。

【0113】(2)上記実施例では、各マトリクスおよび各フィルタについて縦方向と横方向のサイズが同じものを用いているが、縦方向と横方向のサイズが異なるマトリクスおよびフィルタを用いてもよい。ただし、上述の説明から分かるように、各マトリクスと画像フィルタとは、同じサイズにすることが望ましい。

10 【図面の簡単な説明】

【図1】本発明の第1実施例としてのモアレ除去方法を 実現する画像処理装置を示すプロック図。

【図2】図1の画像フィルタ生成部およびフィルタ処理 部の処理を模式的に示す説明図。

【図3】原画像データの一例を示す説明図。

【図4】図3の原画像データの各画素における画素値の大きさを示す説明図。

【図5】図2の左方から入力される部分画像データIPの抽出処理を示す説明図。

20 【図6】図5の部分画像データIPに含まれる各画素の 画素値を示す説明図。

【図7】図2の処理に従って第1の部分画像データIP 1についての画像フィルタFA1が生成される様子を示 す説明図。

【図8】ガウス型係数マトリクスを示す説明図。

【図9】本実施例においてエッジ検出フィルタレとして 用いられるラプラシアンフィルタを示す説明図。

【図10】図3の原画像データに対して、図9のエッジ 検出フィルタを用いて求められたエッジ強度Wを示す説 30 明図。

【図11】図10に示す各画素におけるエッジ強度を示す説明図

【図12】図3の第2の部分画像データIP2についての画像フィルタFA2が生成される様子を示す説明図。

【図13】図3の第3の部分画像データIP3についての画像フィルタFA3が生成される様子を示す説明図。

【図14】図3の第4の部分画像データIP4についての画像フィルタFA4が生成される様子を示す説明図。

【図15】図3の原画像データに対する第1実施例によ 40 る処理済み画像データを示す説明図。

【図16】図15の処理済み画像データの各画素における画素値の大きさを示す説明図。

【図17】本発明の第2実施例としてのモアレ除去方法 を実現する画像処理装置を示すプロック図。

【図18】図17の画像フィルタ生成部およびフィルタ 処理部の処理を模式的に示す説明図。

【図19】図18の処理に従って第1の部分画像データ IP1についての画像フィルタFB1が生成される様子 を示す説明図。

50 【図20】参照テーブルを示す説明図。

"【図21"】注目画素と近傍画素との画素値の差分と、参 照値との好ましい関係を示す説明図。

【図22】図3の第2の部分画像データIP2についての画像フィルタFB2が生成される様子を示す説明図。

【図23】図3の第3の部分画像データIP3について

の画像フィルタFB3が生成される様子を示す説明図。

【図24】図3の第4の部分画像データIP4についての画像フィルタFB4が生成される様子を示す説明図。

【図25】図3の原画像データに対する第2実施例による処理済み画像データを示す説明図。

【図26】図25の処理済み画像データの各画素における画素値の大きさを示す説明図。

【図27】本発明を適用した場合の処理済み画像データを模式的に示す説明図。

【図28】モアレ除去を実現する従来の画像処理装置の 概略を示す説明図。

【図29】従来技術による処理済み画像データを模式的 に示す説明図。

【符号の説明】

100 ··· CPU

102…バスライン

110…キーボード

112…マウス

[図1]

114 ··· カラーCRT

116…磁気ディスク

118…フルカラープリンタ

120…スキャナ

130…原画像データメモリー

132…処理済み画像データメモリ

140 ··· ROM

142…参照テーブル

150 ··· RAM

10 152, 156…画像フィルタ生成部

154…フィルタ処理部

200…エッジ強度検出部

202…エッジ強度増大部

210…差分係数マトリクス生成部

212…平滑化係数マトリクス部

214…乗算部

216…加算部

230…差分重み付け係数マトリクス生成部

234…乗算部

20 910…スムージング回路

920…ハイパスフィルタ回路

930…エッジ識別回路

9 4 0 …混合回路

【図4】

【図8】

	0.076							
0.078	D.180	0.201	0.356	0.395	0.358	0.281	0.168	0.076
0.127	0.261							
0.173	0.388	0.697	0.813	0.002	0.013	0.597	0.358	0.173
0.191	0.315					0.662		
0.173	0.358	0.597	0.813	0.902	0.013	0.597	0.356	0.173
0.127	0.261	0.438	0.597	0.682	0.597	0.438	0.261	0.127
	0.156							
0.037	0.076	0.127	0.173	0,181	0.173	0.127	0.076	0.037

【図2】

[図6]

[図20]

【図9】

[図11]

【図3】

	22	₹	-	6	유	14	2	6	=	=	٣	=	2	=	12	•	Ξ	18	2	9	24	12	23	33	8	=		
		r.	6	7	18	10	2	~	8	2	4	2	14	7	2	6	=	24	₽	Ξ	54	2	8	98	-	5		
		5	0	11	22	6	7	2	9	=	22	53	22	19	72	2	=	8	21	14	12	48	12	18	19	=		
		ន	13	. 7	1	27	=	=	÷	<u>∞</u>	12	6	23	14	2	₹	6	2	13	14	23	36	1,	16	23	20		
		18	12	17	8	14	13	7	8	2	6	6	45	18	34	0	=	12	9	52	22	17	23	15	13	2		
		12	10	25	10	15	Ξ	4	11	,	13	1	14	16	8	13	20	22	12	15	18	23	29	52	14	-6		•
		13	36	28	52	18	38	17	31	14	9	7	14	13	9	١	27	11	10	6	14	52	23	15	15	90		
		15	30	24	11	43	30	13	91	81	30	34	13	27	20	10	31	32	,	32	53	26	17	11	29	14		
		117	98	75	10	9	13	91	31	54	12	17	15	15	11	29	ш	18	9	58	10	25	24	18	10)	 1 1 1 1	
		53	7.5	89	97	14	8	8	1	8	8	7	10	16	21	28	4	6	11	23	14	12	20	9	16	14		
		66 1	1 69	50 1	168	148	138	140	112	114	. 06	37	19	29	10	16	8	5	17	21	8	27	35	22	35	23		
	7	172 1	1 23	1 9/1	177 1	183	1 0/1	191	194	219 1		202	191	121		140	124	85	91.5	8	9	12		15	21	26	İ	
	2	15	1 18	1	182 1	16	1 16	1 98	1 08	_	178 2	191	167	180	180	1 981	161			10	155	ध	\perp	30	23	23	PX2	
	12	1	83	16	196	92 16	92 16	182 18	ļ	11 671	182 17							o zc	54 7230	12 21	175			135		70		조
	=	83 18	_			1	_		0 18	_		_	171		1 173	173	1 163	5 1 30	₩		_	191	3 190		111		—X	
		٥	3 184	3 193	1 205		2 195	1 192	6 200	4 197		4 201	3 186	184	181		9 201	6 195	8 173	5 182	8 174	164	183	182	0 176	163		
		199	203	203		503	202	1 201	206	194		3 204	203	204	205	193	209	196	188		168	156	155	174	180	194		
		194	198	200		194	202	194	193	189	193		189	138	204	196	198	192	188	5	172	- 60		N 57	166	183	—	Ξ
PX4	∞`	188	186	203		198	202	208	203	198	į	1.194	197	198	195	199	204	202	206	203	189	176	•	159	160	184	–ಜ	_
_		197	193	205		202	192	206	208	197	202		198		197	206	211	196	197	195	188	189		179	163	175	_	
		203	204	198	199	207	204	204	206	197		202	202		210	206	206	200	199	197	_	2	186	195	173	1,1		
×		203	205	208	207	213	217	213	206			202	216	216	214	207	208	202	205	202	202	208	199	202	188	181		
Λ		200	213	208	212	211	205	211	205		202		208	206	205	208	A 210	202	203	204	204	188	197	196	185	190	-2	
	1	198	211	212	206	206	205	202	206	206		204	206	206	206	210	220	210	202	201	202	197	205	199	197	189		
	~	211	220	217	210	218	214	218	216	214	214	207	209	210	217	216	221	213	211	206	208	802	210	509	207	194		
	-	203	208	213	212	214	212	208	212	212	217	208	210	212	213	204	208	214	216	210	211	210	205	207	201	192		
•		_	~									=						-	20							_ S2		

.

[図7]

【図28】

(Z	() IP	1							
ſ	204	205	181	173	180	113	10	21	17
Γ	196	193	184	173	186	140	16	28	_29
Ī	198	209	201	163	191	124	8	4	11
Ī	192	196	195	180	204	B5	5	9	16
ſ	188	188	173	154	230	15	17	11	6
Ī	181	175	182	172	210	8	21	23	29
ı	172	166	174	175	155	- 6	8	14	10
			_						

	192	196	195	180	204	B5	5	9	18
	188	188	173	154	230	15	17	11	6
	181	175	182	172	210	8	21	23	29
	172	166	174	175	155	6	8	14	10
	160	156	164	191	134	12	27	12	25
	150	155	183	190	85	7	35	20	24
7	B) L	1							

3) D	1							
229	230	206	198	205	138	35	46	42
221	21B	209	198	211	165	41	53	54
223	234	226	188	216	149	33	29	35
217	221	220	205	229	110	30	34	41
213	213	198	179	∜ ∮255	40	42	36	31
206	200	207	197	235	33	46	48	54
197	191	199	200	180	31	33	39	35
185	181	189	216	159	37	52	37	50
175	180	208	215	110	32	60	45	49

8.4	17.4	26.1	34.2	39.3	23.8	4.4	3.5	1.5
16.7	34.0	54.6	70.5	83.3	58.7	10.7	8.3	4.1
28.2	61.1	98.9	112.2	142.9	88.9	14.4	7.6	4.0
37.5	78.7	131.2	166.7	206.5	89.5	17.9	12.1	7.1
40.8	84.1	131.0	161.4	255.0	36.1	27.8	14.2	5.9
35.6	71.2	123.5	160.2	211.9	26.8	27.4.	17.1	9.3
25.0	49.9	87.1	119.3	119.1	18.5	14.4	10.2	4.4
14.0	28.2	49.3	76.9	62.7	13.2	13.6	5.8	3.8
6.4	13.6	25.3	37.1	21.1	6.6	7.6	3.4	1,8

. 8.4	17.4	25.1	34.2	39.3	23.8	4.4	3.5	1.5
16.7	34.0	54.6	70.5	83.3	58.7	10.7	8.3	4.1
28.2	61.1	98.9	112.2	142.9	88.9	14.4	7.6	4.6
37.5	78.7	131.2	166.7	206.5	89.5	17.9	12.1	7.1
40.8	84.1	131.0	161.4	8375.0	36.1	27.8	14.2	5.9
35.6	71.2	123.5	160.2	211.9	26.8	27.4	17.1	9.3
25.0	49.9	87.1	119.3	119.1	18.5	14.4	10.2	4.4
14.0	28.2	49.3	76.9	62.7	13.2	13.5	5.8	3.8
6.4	13.6	26.3	37.1	21.1	5.5	7.6	3.4	1.8

【図10】

25	6	°	٥	٥	0	0	°	٥	°	9	9	ľ	٩	٩	0	°	•	٥	٥	٥	0	°	6	٥	°		
	┍	-	29	22	37	g	57	12	62	8	₹	2	8	2	4	8	E,	용	2	\$	≘	ន	123	33	٥		
	0	_	15	흔	48	62	-	4	4	62	108	Ŧ	22	8	8	2	64	55	Q	8	212	3	-	6	٥		
	0	7	54	12	112	88	R	3	£	37	6	6	8	8	107	72	52	9	6	≘	96	54	11	55	٥		
	0	24	34	89	9	S	33	50	Ξ	ន	2	8	2	179	98	4	18	\$	12	2	53	9	유	38	٥		
	┍	79	54	70	17	8	=	38	52	35	61	=	24	53	26	\$	- 26	18	٥	9	2	99	53	30	0		
	0	131	53	28	39	149	82	137	27	8	75	=	14	99	7.9	۶	73	63	68	69	12	13	43	37	٥		
	0	154	100	141	193	72	26	11	42	LL	158	8	103	36	89	105	137	92	166	.23	41	29	61	114	0		
	9	69	-	358	178	98	0	105	301	æ	7	6	18	30	06 -	1	11	114	16	113	48	29	7	32	0		
	0	326	454	37	476	417	417	425	364	275	152	32	8	В	108	8	9	38	68	43	67	1	129	13	0	·	٠.
	0	9	93	231	229	244	294	11	72	82	438	466	569	404	320	347	233	41	99	. 59	102	159	22	138	0		
7	0	22	35	35	99	8	217	221	493	421	611	607	79	42	292	157	14	099	889	527	381	304	138	53	٥		
=======================================	0	9	1	39	45	41	7	81	3	8	185	47	147	177	231	273	690	812) S94	332	251	z	347	247	0	=2	!
21	6	12	69	56	15	8	19	57	75	. 24	46	63	9	61	75	210	14	114	וננ	18	268	416	100	86	0		≨
	-	69	28	96	9	3	23	68	40	74	93	31	28	45	. 26	115	96	. 58/	: 79	- 11	78	117	152	199	0		:
	0	70	38	9	24	36	24	88	20	19	23	65	85	86	34	117	. 24	. 22	: 24	38	78	8	\$	45	0		
	-	0	1	11	61	14	65	47	64	17	23	77	6	46	8	1	55	33	38	90	. 51	104	55	£	0	٠.	
	0	96	25	80	25	50	64	33	1	10	19	9	2	36	19	32	₹	94	8	89	2	11	53	98	0	-	
**	٥	40	42	18	-	95	12	47	32	32	22	23	6	47	2	69	25	8	2	S	18	5	46	95	٥		
	6	20	49	60	10	22	20	11	51	22	14	10	32	23	Ξ	12	2	35	23	S	37	6	87	5	٥		,
×	٦	3	18	0	42	68	46	-	25	9	3	73	23	43	- 11	.23	-1	. 28	8	2	70	- 12	6	Ξ	٥		
Λ	0	59	10	25	17	41	26	18	3	24	37	3	8	æ	18	13	\$	-	2	G)	38	8	4	. 62	٩	, .	
门`	_	6	1	44	31	44	38	30	23	18	25	4	19	8	. 23	70	5	충	8	15	- 58	52	14	. 1	0		
2	C	87	44	16	49	32		51	· 20	35	12	6	٦	59	∴ 29	73	2	-	¥	_	53	8	₹	. 88	٥		
-	0	0	0	0	0	0	0	٥	٥	٥	٥	0	٥	Ö	٥	٥	0	•	٥	0	0~	٥	٥	0	٥		
	-	7									=						12	2							25		

•

【図12】

(A) IP2

205	181	173	180	113	10	21	17	20
193	184	173	186	140	16	28	29	10
209	201	163	191	124	8	4	11	31
196	195	180	204	85	5	9	18	32
188	173	154	230	15	17	11	6	7
175	182	172	210	8	21	23	29	35
166	174	175	155	6	8	14	10	29
156	164	191	134	12	27	12	25	26
155	183	190	85	7	35	20	24	17

(B) D2

89	97	8	157	250	249	253	250
86	97	84	130	254	242	241	250
69	107	79	146	248	`244	251	239
75	90	66	185	245	249	254	238
97	116	40	:: 255	253	251	246	247
88	98	60	248	249	247	241	235
		115	246	· 248	254	250	241
		136	252	243	252	245	244
		185	247	235	250	246	253
	86 69 75	86 97 89 107 75 90 97 116 88 98 96 95 106 79	86 97 84 69 107 79 75 90 66 97 116 40 88 98 60 96 95 115 106 79 136	86 97 84 130 69 107 79 146 75 90 66 185 97 116 40 40 25 88 98 60 248 96 95 115 246 106 79 136 252	86 97 84 130 254 69 107 79 146 248 75 90 66 185 246 97 116 40 50 255 253 88 98 60 248 249 96 95 115 246 248 106 79 136 252 243	86 97 84 130 254 242 69 107 79 146 248 244 75 90 66 185 246 249 97 116 40 253 253 253 253 88 98 60 248 249 247 96 95 115 246 248 254 106 79 136 252 243 252	86 97 84 130 254 242 241 69 107 79 146 248 244 251 75 90 66 185 246 249 254 97 116 40 255 253 251 246 88 98 60 248 249 247 241 96 95 115 246 248 254 250 106 79 136 252 243 252 245

(C) M2

2.4	6.7	12.3	15.5	30.1	43.2	31.5	19.1	9.2
5.8	13.4	25.3	29.9	51.3	90.4	63.2	37.5	18.9
7.7	18.0	46.8	· 47.1	96.6	148.0	106.8	65.5	30.3
12.8	26.7	53.7	53.7	166.8	199.3	148.6	90.4	41.1
15.7	38.3	76.7	36.1	255,0	228.2	186.0	97.1	47.3
	31.3	58.5	48.8	223.7	202.5	147.4	85.8	40.6
	25.1	41.6	68.6	162.7	148.0	111.2	65.3	30.5
		20.6	48.4	99.5	86.5	65.8	38.2	18.4
		_	31.9	47.3	40.6	31,7	18.6	9.3
	5.8 7.7	5.8 13.4 7.7 18.0 12.8 26.7 15.7 38.3 16.4 31.3 13.2 25.1 8.6 16.5	5.8 13.4 25.3 7.7 18.0 46.8 12.8 26.7 53.7 15.7 38.3 76.7 16.4 31.3 58.5 13.2 25.1 41.6 8.6 16.5 20.6	5.6 13.4 25.3 29.9 7.7 18.0 46.8 47.1 12.6 26.7 53.7 53.7 15.7 36.3 76.7 36.1 16.4 31.3 58.5 48.8 13.2 25.1 41.6 68.6 8.6 16.5 20.6 48.4	5.6 13.4 25.3 29.9 51.3 7.7 18.0 46.8 47.1 96.6 12.6 26.7 53.7 53.7 166.8 15.7 38.3 76.7 36.1 255.0 16.4 31.3 58.5 48.8 223.7 13.2 25.1 41.6 08.6 162.7 8.6 16.5 20.6 48.4 99.5	5.8 13.4 25.3 29.9 51.3 90.4 7.7 18.0 46.8 47.1 96.6 148.0 12.6 26.7 53.7 53.7 166.8 199.3 15.7 38.3 76.7 36.1 255.0 228.2 16.4 31.3 58.5 48.8 223.7 202.5 13.2 25.1 41.6 88.6 162.7 148.0 8.6 16.5 20.8 48.4 99.5 86.5	5.6 13.4 25.3 29.9 51.3 90.4 63.2 7.7 18.0 46.8 47.1 96.6 148.0 106.8 12.6 26.7 53.7 56.7 166.8 199.3 148.6 15.7 38.3 76.7 36.1 255.0 228.2 149.4 16.4 31.3 56.5 48.8 223.7 202.5 147.4 13.2 25.1 41.6 66.6 162.7 148.0 111.2 8.6 16.5 20.6 48.4 99.5 86.5 65.8	5.6 13.4 25.3 29.9 51.3 99.4 63.2 37.5 7.7 18.0 46.8 47.1 96.6 148.0 106.8 65.5 12.6 26.7 53.7 53.2 166.8 199.3 148.6 90.4 15.7 38.3 76.7 36.1 2550.2 228.2 186.0 97.1 16.4 31.3 58.5 48.8 223.7 202.5 141.4 85.8 13.2 25.1 41.6 68.6 162.7 148.0 111.2 65.3 8.6 16.5 20.6 48.4 99.5 86.5 65.8 38.2

2.4	6.7	12.3	15.5	30.1	43.2	31.5	19.1	9.2
5.8	13.4	25.3	29.9	51.3	90.4	63.2	37.5	18.9
7.7	18.0	46.8	47.1	96.6	148.0	106.8	65.5	30.3
12.8	26.7	53.7	53.7	166.8	199.3	148.6	, 90.4	41.1
15.7	38.3	76.7	36.1	6855.0	228.2	166.0	97.1	47.3
16.4	31.3	58.5	48.8	223.7	202.5	147.4	85.8	40.6
13,2	25.1	41.6	68.6	162.7	148.0	111.2	65.3	30.5
8.6	16.5	20.6	48.4	99.5	86.5	65.B	₹ 38.2	18.4
4.2	6.6	10.1	31.9	47.3	40.6	31.7	18.6	9.3

【図13】

(A) IP3

196	198	204	184	. 177	180	121	29	16
195	204	205	181	173	180	- 113	10	21
199	196	193	184	173	186	140	16	28
204	198	209		163		124	8	4
202	192	196	195	180	204	85	, 5	9
206	188	188	173	154	230	15	17	11
203	181	175	182	172	210	8	21	23
189	172	166	174	· 175	155	- 6	8	14
176	160	156	164	191	134	12	27	12

(B) D3

239	237	231	251	252	255	198	104	91
240	231	230	254	248	. 255	188	85	98
236	239	242	251	248	. 249	. 215	91	. 103
231	237	226	234	238	244	199	83	79
233	243	239	240	. 255	231	160	80	. 84
229	247	247	248	. 229	. 205	90	. 92	86
232	254	250	253	247	. F 225	83	96	98
246	247	241	249	250	230	81	83	89
251	235	231	239	. 244	- 209	87	102	87

(C) M3

8.8	17.9	29.3	43.3	. 48.3	44.0	24.8	7.9	3.3
18.1	36.0	60.0	90.4	97.9	, 90.8	49.1	13.2	7.3
29.9	62.4	105.9	149.7	164.1	148.6	94.1	23.8	13.0
39.9	84.4	134.8	190.3	214.6	198.5	118.7	29.5	13.6
44.6	95.9	158.1	216.4	255.0	208.3	105.8	31.6	16.1
39.5	87.9	147.4	201.7	206.5	166.7	53.7	32.7	14.9
29.4	66.3	109.4	150.9	163.4	134.2	36.3	. 25.1	12.4
18.6	38.5	62.9	88.6	98.7	81.9	21.1	12.9	6.7
9.2	17.8	29.3	41.3	. 46.7	36.1	11.0	7.7	3.2

2.4	6.7	12.3	15.5	30.1	43.2	31.5	19.1	9.2
5.8	13.4	25.3	29.9	£ 51.3	90.4	63.2	37.5	18.9
7.7	18.0	46.8	47.1	98.6	148.0	106.8	65.5	. 30.3
12.8	26.7	53.7	53.7	166.8	199.3	148.6	90.4	41,1
15.7	38.3	76.7	36.1	965.0	228.2	166.0	97.1	47.3
16.4	31.3	58.5	48.8	223.7	202.5	147.4	. 85.8	40.6
13.2	25.1	41.6	68.6	182.7	148.0	1112	65.3	30.5
8.6	16.5	20.6	48.4	. 99.5	86.5	. 65.8	38.2	. 18.4
4.2	6.6	10.1	31.9	. 47.3	- 40.6	31.7	18.6	9.3

[図14]

(A) IP4

211	213	204	206	208	194	201	192	182
205	206	206	208	203	193	206	200	181
205	206	197	197	196	189	194	197	179
202	203	199	202	197	193	194	200	182
202	205	202	202	194	193	204	201	175
208	216	205	198	197	189	203	186	171
205	216	211	200	196	198	204	184	177
205	214	210	197	195	204	205	181	173
208	207	206	206	199	196	193	184	173

(B) D4

238	236	245	243	241	255	248	253	243
244	243	243	241	246	254	243	249	242
244	243	252	252	253	250	255	252	240
247	246	250	247	252	254	255	249	243
247	244	247	247	± 255	254	245	- 248	235
241	233	244	251	252	250	246	247	232
243	233	238	249	253	251	245	245	238
244	235	239	252	254	245	244	242	234
241	242	243	243	250	253	254	245	.234

(C) M4

8.7	17.8	31.0	42.0	46.2	44.0	31.4	19.1	1 8.9
18.4	37.8	63.4	85.8	. 97.1	90.4	63.4	38.8	18.3
30,9	63.4	110.3	150.3	167.4	149.1	111.6	65.8	30.4
42.7	87.6	149.1	200.9	227.3	205.6	. 152.1	88.6	42.0
47.3	96.3	163.4	222.8	255.0	229.1	162.1	97.9	45.2
41.6	82.9	145.6	204.1	227.3	203.3	146.8	87.9	40.1
30.8	60.8	104.1	148.6	.167.4	149.7	107.2	64.0	30.1
18.4	36.6	62.4	89.7	100.2	87.2	63.7	37.7	17.7
8.8	18.3	30.B	42.0	47.9	43.7	. 32.2	18.5	8.6

					-, -				
8.7	17.8	31.0	42.0	46.2	· 44.0	. 31.4	19.1	8.9	1
18.4	37.8	63.4	85.8	97.1	90.4	63.4	38.8	18.3	í
30.9	63.4	110.3	150.3	167.4	149.1	111.6	65.8	5 30.4	ľ
42.7	87.6	149.1	200.9	227.3	206.6	152.1	∵ 88.6	42.0	ľ
47.3	96.3	163.4	222.8	445,0	229.1	162.1	:.97.9	_45.2	ľ
41.6	82.9	145.6	204.1	227.3	203.3	146.B	87.9	40.1	ı
30.8	60.8	104.1	148.6	167.4	149.7	107.2	. 64.0	30.1	ı
18.4	36.6	62.4	89.7	100.2	₹87.2	63.7,	37.7	17.7	ı
8.8	18.3	30.8	42.0	47.9	43.7	32.2	18.5	8.6	J

【図15】

																					_	_				_	
	52	유	=	2	~	2	司	=	=	=	12	13	13	13	13	13	2	14	15	=	=	=	2	21	ន	ຂ	
		Ξ	12	Ξ	2	2	티	2	Ξ	Ξ	Ξ	ᄗ	14	13	14	13	7	9	9	9	2	쁵	ន	24	ន	19	
		12	5	5	=	2	=	Ξ	2	12	14	9	15	15	16	15	14	14	16	=	ន	8	ន	2	ន	2	
		14	=	=	=	=	2	13	72	13	14	15	15	15	14	13	14	15	16	-	=	2	ន	20	ຂ	=	
		17	16	9	15	5	Ξ	13	2	14	14	14	54	16	19	15	15	15	16	8	13	2	ន	2	₽	孠	
		22	20	21	18	8	9	14	12	1	15	4	16	16	12	15	16	16	18	2	2	2	ន	20	=	≖	
		30	33	59	92	23	52	19	12	41.	16	12	16	16	15	15	11	15	18	17	18	-	e e	19	e	=	
		44	41	37	53	37	. 29	.25	.23	22	23	24	19	20	18	17	20	20	16	21	19	6	₽	18	8	티	
		96	82	. 72	32	32	36	32	34	43	26	23	52	24	23	24	20	20	17	12	=	ຂ	ន	18	18	e	
		131	152	147	98	37	32	58	22	. 28	59	30	32	34	33	32	24	26	24	22	23	22	23	19	12	2	
		152	150	145	152	139	131	130	139	107	16	51	37	46	g	34	.27	27	35	33	23	32	33	29	31	82	
	7	167	166	166	165	167	160	171	171	193	179	185	172	119	=	127	113	87	63] _V .26	22	31	28	35	38	88	(3, p.x2'
	2	176	177	178	178	179	178	176	175	174	170	162	161	164	噩	166	169	182	508	\189\	139	120	87	48	44	\$	X
	12	薆	<u>25</u>	187	187	187	197	185	184	182	181	-177	174	174	172	171	166	是	851	161	155	165	165	126	111	83	PX3'
		<u>8</u>	82	191	193	193	192	192	192	8	180	189	185	184	<u>2</u>	183	186		175	173	166	159	162	160	158	145	E
		193	195	196	196	196	197	198	196	194	193	133	193	183	5	191	193	88	18	178	172	166	162	163	163	162	
		193	197	198	138	198	199	188	197	195	195	38	9	8	196	196	195	192	183	184	179	173	167	167	167	169	
<u>.</u>	50	197	196	200	200	200	201	102	82	198	198	138	- 38	8	8	199	198	198	195	181	185	180	176	173	171	174	
Ä		198	8	82	82	202	201	202	202	8	200	502	ğ	ន្ត	ē	202	202	198	8	193	<u>8</u>	186	182	8	175	177	,
		202	ğ	g	203	20	204	204	203	202	202	202	203	204	204	Š	203	22	2	197	195	192	188	187	181	181	
×		204	204	502	506	802	202	98	502	204	204	204	208	200	902	82	502	ă	202	501	199	197	193	182	188	186	
, M		208	202	202	8	8	202	Ś	82	288	508	92	ģ	Ş	202	202	202	g	ই	8	ž	139	197	윤	191	190	ļ
们	1	207	82	208	508	503	508	208	208	202	202	207	208	g	288	209	82	207	506	204	203	201	8	198	196	194	j
	. 2	208	Ξ	202	210	210	210	210	503	82	S ₂	82	209	505	210	210	ī	ã	802	506	205	204	202	ž	2	196	
	-	8	210	202	210	210	210	210	2	82	82	82	503	g	210	210	20	508	802	207	506	202	8	82	200	198	
•		_	•	,						_		Ξ	=					11	=	?						25	- }

.

【図16】

【図17】

【図18】

【図19】

(A) IP1

17	21	10	113	180	173	181	205	204
29	28	16	140	186	173	184	193	196
11	4	8	124	191	163	201	209	198
16	9	5	B5	204	180	195	196	192
	11	17	₹ 15	230	154	173	188	188
29	23	21	. 8	210	172	182	175	181
10	14	8	6	155	175	174	166	172
25	12	27	12	134	191	164	156	160
24	20	35	7	. 85	190	183	155	150

(B) D1

229	230	206	198	205	138	. 35	46	42
221	218	209	198	211	165	41	53	54
223	234	228	188	218	149	33	29	36
217	221	220	· 205	229	110	30	34	41
213	213	198	179	255	40	42	36	31
. 206	200	207	197	235	33	46	48	54
197	191	199	200	180	31	33	39	35
185	181	189	216	159	37	52	37	50
175	180	208	215	110	32	60	45	49

(C) R1

2.50E+35	2.67E+35	5.11E+34	2.82E+34	4.75E+34	1.25E+32	1.45E+23	8.74E+24	2.23E+24
1.47E+35	1.19E+35	6.34E+34	2.82E+34	7.32E+34	1.83E+33	1.56E+24	7.31E+25	9.68E+25
1.68E+35	3.45E+35	2.05E+35	1.30E+34	1.04E+35	3.96E+32	5.99E+22	8.63E+21	2.21E+23
1.11E+35	1.47E+35	1.37E+35	4.75E+34	2.50E+35	4.18E+30	1.43E+22	9.38E+22	1.56E+24
8.43E+34	8.43E+34	2.82E+34	6,21E+33	1.25E+36	1.07E+24	2.23E+24	2.21E+23	2.35E+22
5.11E+34	3.28E+34	5.49E+34	2.61E+34	3.68E+35	5.99E+22	8.74E+24	1.65E+25	9.68E+25
2.61E+34	1.64E+34	3.04E+34	3.28E+34	6.75E+33	2.35E+22	5.99E+22	7.34E+23	1.45E+23
1.02E+34	7.33E+33	1.40E+34	1.04E+35	1.05E+33	3.33E+23	5.50E+25	3.33E+23	3.05E+25
4.42E+33	6.75E+33	5.90E+34	9.70E+34	4.18E+30	3.78E+22	4.70E+26	6.28E+24	2.25E+25

9.16E+33	2.02E+34	6.47E+33	4.87E+33	9.09E+33	2.17E+31	1.84E+22	6.60E+23	8.19E+22
1.11E+34	1.86E+34	1.66E+34	1.00E+34	2.89E+34	6.51E+32	4.06E+23	1.14E+25	7.32E+24
2.12E+34	9.02E+34	8.97E+34	7.73E+33	6.88E+34	2.36E+32	2.62E+22	2.25E+21	2.80E+22
								2.69E+23
1.61E+34	3.33E+34	1.86E+34	5.60E+33	1.25E+36	9.68E+23	1.48E+24	8.72E+22	4.49E+21
8.82E+33	1.17E+34	3.28E+34	2.12E+34	3.32E+35	4.88E+22	5.21E+24	5.89E+24	1.67E+26
3.31E+33	4.29E+33	1.33E+34	1.95E+34	4.46E+33	1.40E+22	2.62E+22	1.92E+23	1.84E+22
7.69E+32	1.14E+33	3.66E+33	3.70E+34	4.14E+32	1.19E+23	1.43E+25	5.19 E+ 22	2.31E+24
1.62E+32	5.10E+32	7.48E+33	1.67E+34	B.00E+29	6.52E+21	5.96E+25	4.75E+23	8.27E+23

【図21】

[図26]

[図27]

্র ভারত ৫]

[図22]

(A) IP2

5	181	173	180	113	10	21	17	20
3	184	173	186	140	16	28	29	10
9	201	163	191	124	В	4	11	31
В	195	180	204	85	. 5	. 9	. 16	32
3	173	154	230	12:45:15	17	11	6	. 7
5	182	172	210	8	21	23	29	35
6	174	175	155	6	8	14	10	29
5	164	191	134	12	27	12	25	26
5	183	190	85	7	35	20	24	17

(B) D2

65	89	97	90	157	250	249	253	250
77	86	97	84	130	254	242	241	250
61	69	107	79	. 146	248	244	251	239
74	75	90	66	. 1B5	245	249	254	238
B2	97	116	40	255	253	. 251	246	247
95	88	98	60	248	249	. 247	241	235
104	96	95	115	246	24B	254	250	241
114	106	79	136	252	243	252	245	244
115	87	80	185	247	235	250	246	253

(C) R2

1.56E+27	1.74E+29	6.33E+29	2.06E+29	8.68E+32	9.31E+35	8.77E+35	1.11E+35	9.31E+35
1.98E+28	1.04E+29	6.33E+29	7.31E+28	5.12E+31	1.18E+36	5.72E+35	5.37E+35	9.31E+35
6.02E+26	3.83E+27	2.76E+30	2.91E+2B	2.92E+32	8.26E+35	6.47E+35	9.89E+35	4.74E+35
1.09E+28	1.34E+28	2.06E+29	1.96E+27	1.02E+34	6.88E+35	8.77E+35	1.18E+36	4.45E+35
5.10E+28	6.33E+29	9.27E+30	1.07E+24	1:25E+36	1.11E+38	9.B9E+35	7.31E+35	7.77E+35
4.63E+29	1.47E+29	7.39E+29	4.70E+26	8.26E+35	8.77E+35	7.77E+35	5.37E+35	3.68E+35
1.80E+30	5.42E+29	4.63E+29	8.14E+30	7.31E+35	8.26E+35	1.18E+36	9.31E+35	5.37E+35
7.14E+30	2.40E+30	2.91E+28	1.01E+32	1.05E+36	6.08E+35	1.05E+36	6.88E+35	6.47E+35
8.14E+30	1.24E+29	3.52E+28	1.02E+34	7.77E+36	3.68E+35	9.31E+35	7.31E+35	1.11E+36

5.73E+25	1.32E+28	8.02E+28	3.56E+28	1.66E+32	1.61E+35	1.11E+35	8.42E+34	3.42E+34
1.50E+27	1.62E+28	1.65E+29	2.60E+28	2.02E+31	4.21E+35	1.49E+35	8.37E+34	7.04E+34
7.63E+25	9.99E+26	1.21E+30	1.74E+28	1.93E+32	4.93E+35	2.83E+35	2.58E+35	6.01E+34
1.B9E+27	4.76E+27	1.23E+29	1.60E+27	9.1BE+33	5.59E+35	5.23E+35	4.21E+35	7.69E+34
9.76E+27	2.50E+29	6.13E+30	9.68E+23	1.25E+36	1.00E+36	6.54E+35	2.89E+35	1:49E+35
8.00E+28	5.23E+28	4.41E+29	3.82E+26	7.45E+35	7.13E+35	4.54E+35	1.91E+35	6.36E+34
2.28E+29	1.42E+29	2.03E+29	4.85E+30	4.84E+35	4.93E+35	5.17E+35	2.43E+35	6.81E+34
5.39E+29	3.73E+29	.7.61E+27	3.58E+31	4.14E+35	2.16E+35	2.74E+35	1.07E+35	4.89E+34
2 98F+29	9.36E+27	4.46E+27	1.76E+33	1.49E+35	6.36E+34	1.18E+35	5.53E+34	4.08E+34

[図23]

(A) IP3

196	198	204	184	177	180	121	29	16
195	204	205	181	173	180	113	10	21
199	196	193	184	173	186	140	16	28
204	198	209	201	163	191	124	8	4
202	192	198	195	3332180	204	85	5	9
206	188	188	173	154	230	15	17	- 11
203	181	175	182	172	210	8	21	23
189	172	166	174	175	155	6	8	14
176	160	156	184	191	134	12	27	12

(B) D3

237	231	251	252 .	255	196	104	91
231	230	254	248	255	188	85	96
239	242	251	248	249 :	215	91	103
237	226	234	238	244	199	83	. 79
	239	240	255	231	160	. 80 ·	84
	247	248	229 ·	205	90	- 92	86
	250	253	247	225	83	96	98
	241	249	250	230	81	83	. 89
	231	239	. 244	209	87	102	87
	231	231 230 239 242 237 226 243 239 247 247 254 250 247 241	231 230 254 239 242 251 237 226 234 243 239 240 247 247 248 254 250 253 247 241 249	231 230 254 248 239 242 251 248 237 226 234 238 243 239 240 255 247 247 248 229 254 254 250 253 247 247 241 249 250	231 230 254 248 255 239 242 251 248 249 2 237 226 234 238 244 2 243 239 240 255 255 231 248 229 235 247 247 248 229 205 253 247 225 247 241 249 250 230	231 230 254 248 255 188 239 242 251 248 249 215 237 226 234 238 244 199 243 239 240 5-255 231 160 247 247 248 229 205 90 254 250 253 247 225 83 247 241 249 250 230 81	231 230 254 248 255 188 85 239 242 251 248 249 215 91 237 226 234 238 244 199 83 243 239 240 255 231 160 80 247 247 248 229 205 90 92 254 250 253 247 225 83 86 247 241 249 250 230 81 83

(C) R3

4.74E+35 4.1	8E+35	2.85E+35	9.89E+35	1.05E+36	1.25E+36	2.42E+34	1.80E+30	2.43E+29
5.05E+35 2.6	35E+35	2.67E+35	1.18E+36	8.26E+35	1.25E+36	1.30E+34	8.74E+28	5.42E+29
3.92E+35 4.7	/4E+35	5.72E+35	9.89E+35	8.26E+35	8.77E+35	9.70E+34	2.43E+29	1.56E+30
2 955425 4	RE+35	2.05F+35	345F+35	4.45E+35	5.47E+35	3.04E+34	6.11E+28	2.91E+28
3 24F+35 6 C)8E+35	4.74E+35	5.05E+35	1,25E+36	2.85E+35	,1.15E+33	3.52E+28	7.31E+28
2.50E+35 7.	77E+35	7.77E+35	8.25E+35	2:50E+35	4.75E+34	2.06E+29	2.86E+29	1.04E+29
3.04E+35 1.	18E+36	9.31E+35	1.11E+36	7.77E+35	1.92E+35	6.11E+28	5.42E+29	7.39E+29
7.31E+35 7.	77F+35	5.37E+35	8.77E+35	9.31E+35	2.67E+35	4.24E+28	6.11E+28	1.74E+29
9.89E+35 3.	58E+35	2.85E+35	4.74E+35	6.47E+35	6.34E+34	1.24E+29	1.35E+30	1.24E+29

1.74E+34 3	.16E+34	3.60E+34	1.71E+35	2.01E+35	2.16E+35	3.07E+33	1.36E+29	8.91E+27
2 82E+34 A	43F+34	6.96E+34	421E+35	3.26E+35	4.46E+35	3.38E+33	1.36E+28	4.10E+28
4 97F+34 1	.24E+35	2.50E+35	5.90E+35	5.46E+35	5.23E+35	4.24E+34	6.34E+28	.1.97E+29
4 01E+34 1	49F+35	1 22F+35	2.81E+35	4.02E+35	5.26E+35	.1.81E+34	2.18E+28	5.03E+27
E 205+34 2	40E+35	3 14F+35	4.55E+35	1.25E+36	2.57E+35	7.83E+32	1.39E+28	1.40E+28
4 21 E+24 2	77F+35	4 64F+35	6.71E+35	2.25E+35	3.86E+34	.1.23E+29	1.02E+29	1.80E+28
3 95E+34 3	09F+35	4.08E+35	6.64E+35	5.14E+35	1.14E+35	2.67E+28	1.42E+29	9.36E+28
5.53E+34 1	21F+35	1 40E+35	3.12E+35	3.68E+35	9.49E+34	1.11E+2B	9.52E+27	1.32E+28
3 63E+34	78E+34	3 50E+34	8.19E+34	1,24E+35	1.10E+34	1.57E+28	1.02E+29	4.54E+27

[図24]

(A)	IP.	4

211	213	204	206	208	194	201	. 192	182
205	206	208	208	203	• 193	206	200	181
205	206	197	197	196	189	194	; 197	179
202	203	199	202	197	193	194	200	182
202	205	202	202	194	193	204	201	175
208	216	205	198	197	189	203	186	· · 171
206	216	211	200	196	198	204	184	177
205	214	210	197	195	204	205	181	173
208	207	208	206	199	196	193	184	173

(B) D4

23B	236	245	243	241	255	248	253	243
244	243	243	241	246	254	243	249	242
244	243	252	252	253	250	255	252	: 240
247	246	250	247	, 252	254	255	249	243
247	244	247	247	255	. 254	245	; 248	236
241	233	244	251	, 252	250	246	247	232
243	233	238	249	253	251	245	245	238
244	235	239	252	254	: 245	244	242	. 234
241	242	243	243	250	253	: 254	: 245	. 234

(C) R4

							<u>· / </u>	
4.45E+35	3.92E+35	6.88E+35	6.08E+35	5.37E+35	1.25E+36	8.26E+35	1.11E+36	6.08E+35
6.47E+35	6.08E+35	6.08€+35	5.37E+35	7.31E+35	1.18E+36	6.08E+35	8.77E+35	5.72E+35
6.47E+35	6.08E+35	1.05E+36	1.05E+38	1.11E+36	9.31E+35	1.25E+36	1.05E+38	5.05E+35
7.77E+35	7.31E+35	9.31E+35	7.77E+35	1.05E+36	1.18E+36	1.25E+36	8:77E+35	6.08E+35
7.77E+35	6.47E+35	7.77 E+ 35	7.77E+35	1.25E+36	1.18E+36	6.8BE+35	8.26E+35	3.92E+35
5.37 E+ 35	3.24E+35	5.47E+35	9.89E+35	1.05E+36	9.31E+35	7.31E+35	7.77E+35	3.04E+35
6.08E+35	3.24E+35	4.45E+35	B.77E+35	1.11E+36	9.89E+35	6.88E+35	6.88E+35	4.45E+35
6.47E+35	3.68E+35	4.74E+35	1.05E+36	1.18E+36	6.88E+35	6.47E+35	5.72E+35	3.45E+35
5.37E+36	5.72E+35	6.08E+35	6.08E+35	9.31E+35	1.11E+36	1.18E+36	6.88E+35	3.45E+35

1.63E+34	2.97E+34	8,71E+34	1.05E+35	1.03E+35	2.16E+35	1:05E+35	8.42E+34	2.23E+34
4.89E+34	9.47E+34	1.59E+35	1.91E+35	2.89E+35	4.21E+35	1.59E+35	1:37E+35	4.32E+34
8.19E+34	1.59E+35	4.59E+35	6.26E+35	7.37E+35	5.56E+35	5.49E+35	2.74E+35	6.40E+34
1.34E+35	2.60E+35	5.56E+35	6.32E+35	9.47E+35	9.61E+35	7.48E+35	3.12E+35	1.05E+35
1.49E+35	2.65E+35	6.14E+35	7.01E+35	1.25E+36	1.07E+36	4.55E+35	3.26E+35	7.51E+34
9.28E+34	1.15E+35	3.86E+35	8.04E+35	9.47E+35	7.57E+35	4.36E+35	2.77E+35	5.24E+34
7.71E+34	8.45E+34	1.95E+35	5.23E+35	7.37E+35	5.90E+35	3.01E+35	1.80E+35	5.64E+34
4.89E+34	5.73E+34	1.24E+35	3.74E+35	4.66E+35	2.45E+35	1.69E+35	8.91E+34	2.61E+34
1.97E+34	4.32E+34	7.71E+34	1.05E+35	1.78E+35	1.92E+35	1.50E+35	5.20E+34	1.27E+34

【図25】

																									_	_			
	22	8	~	의	2	=	°	^	=	2	의	2	12	2	2	=	12	=	=	=	=	=	ន	8	<u></u>	=			
		6	흐	흔	드	티	6	6	의	可	의	짇	2	. 12	2	12	2	٣	2	12	ଷ	9	2	22	릐	=			
		12	=	티	=	=	5	=	팔	티	=	티	9	5	=	12	Ξ	위	=	9	ន	2	=	2	2	=			
		₹	ᆵ	=	=	9	=	2	=	티	≅	=	9	=	=	12	2	=	5	=	৪	ន	=	=	2	8			
		4	2	2	2	=	ᄗ	티	Ξ	헏	2	2	ន	15	ຊ	13	15	7	7	2	2	쁴	ន	=	Ξ	<u></u>			
		14	7	흔	끄	딸	=	티	=	=	드	2	7	15	13	14	16	-	Ξ	9	=	ន	2	2	=	=			
		15	24	2	5	9	조	2	ន	Ξ	12	12	14	14	12	12	19	13	Ξ	14	Ξ	2	ន	Ξ	=	≂			
		9	ន	ន	4	12	2	5	딸	삘	2	12	7	19	16	13	20	12	므	8	≅	≅	覃	9	칟	<u>=</u>			
		<u>=</u>	84	11	7	드	=	13	22	8	므	15	15	15	18	2	13	15	12	12	4	ຂ	ន	=	프	22			
		噩	172	169	97	7	2	=	12	2	12	13	7	16	17	ន	12	12	13	- 18	15	12	18	2	-	=			
		89	991	160	172	157	146	146	115	9	92	54	11	21	14	15	12	1	12	17	5	20	23	ଛ	24	8			
	14	174	175	177	5	183	178	189	190	2	194	196	187	125	120	146	129	84	110	112	12	15	14	Ξ	2	2	Ę	ų	
	=======================================	178	181	183	<u>8</u>	189	189	188	185	189	183	175	176	189	181	184	187	195	yaz.	/16H	162	145	82	23	21	ฆ		3 - 77.	_
	. 21	28	2	182	83	191	192	188	187	185	186	182	179	181	179	178	174) ee	174	175	182	181	145	117	64			2
		88	88	183	197	_	194		196	194	195	195	188	-187	55	Ľ	195	1	178/	181	175	168	177	177	174	167	\ .	₹.	:
		8	Ŀ	8	86	661	861	_	198	194	194	_		197	86	7	. `		88	<u>. </u>	171	164	163	173	176	181		. '	:
		138	161	8		Ĺ	200	197	961	195	195	<u>_</u>		76		I	197	L		_	176	167	162	164	169	178			
<u>.</u>	~	95	86	2	1			202		198	1	197			198	199	90 200	8			188	178	Ξ	166	167	179			
PX4		8	66	⊨	ğ	-	200	_	=	8		ΙQ	Ļ		1_	1_	-	_	88	* -	6	88	22	180	5	176			
		202	203	_	ـــ	L.	204	L.		201		202	_	12	٠.	1 -	L.		1	٠	3.4	16	88	191	-	176			
		_	202		_	<u> </u>	88	L.	Ц.	58	1	204	<u> </u>		1 -								-		189	184		٠.	
×	•	202	_	1	200		202		L.	8	1	SS	1			207			1	1		280	_			19		•	
4	\	205	1_	1			802		1	_	L	902	┺	_		_	1.	1	_	1	٠.	-	٠.		197	192			
	2	1602	L	╄	┺		210		2		L.		┺	_	1_	.1.	1		<u></u>		SS	Ę	200	g	S	96	1		
	_	802	1	1	_	Ł	211	<u> </u>	<u>∟</u>	1_	<u>L</u> .	<u> </u>	1_	Т.	Ь.	١٤			L	1 1 2	S	506	8	ğ	8	8	1		
1		<u> </u>	1	_	1.	<u></u>	1.,	Ľ	1			<u> </u>		Ľ	1	1.	1	1	: =	_	1	L_		<u> </u>	_	7.	7		
							_	_	_																				

52

フロントページの続き

(51) Int. Cl. ⁷

識別記号

51

FΙ

テーマコート*(参考

This Page Blank (uspto)