

Implementación de Robótica Inteligente TE3002B.101

Profesor: Alfredo García Suárez

Examen Localización de un robot diferencial

Alumno: Paola Rojas Domínguez A01737136

1. Un robot diferencial se encuentra en la posición inicial (-1, -5, 0°), posteriormente genera el siguiente historial de pasos:

Paso	v(m/s)	ω (rad/s)	Δt (s)	Pose
1	1.0	0.0	1.0	(0, -5, 0°)
2	0.0	π/3	1.0	(0, -5, 60°)
3	1.0	0.0	1.0	(0.5, -4.134, 60°)
4	0.0	π/3	1.0	(0.5, -4.134, 120°)
5	1.0	0.0	1.0	(0, -3.268, 120°)
6	0.0	π/3	1.0	(0, -3.268, 180°)
7	1.0	0.0	1.0	(-1, -3.268, 180°)
8	0.0	π/3	1.0	(-1, -3.268, 240°)
9	1.0	0.0	1.0	(-1.5, -4.134, 240°)
10	0.0	π/3	1.0	(-1.5, -4.134, 300°)
11	1.0	0.0	1.0	(-1, -5, 300°)
12	0.0	π/3	1.0	(-1, -5, 360°)

- a) Obtén la pose del robot en cada paso, integrando numéricamente siguiendo la suposición de Markov. Muestra tus resultados en una tabla.
- b) Calcula la pose final (x, y, θ) del robot tras completar los 12 pasos.

Pose final del robot: (-1, -5, 360°)

2. Un robot diferencial con los siguientes parámetros:

Radio de las ruedas: 0.1m.

Distancia entre ruedas (eje): L= 0.4mPose inicial (x0, y0, θ 0) = (0, 0, 0°)

Recibe las siguientes señales de entrada

t (s)	v (m/s)	ω (rad/s)	ω_R (rad/s)	ω_L (rad/s)	x (m)	y (m)	θ (grados)
0	0.314	0.720	4.582	1.701	0	0	0
1	0.356	0.605	4.773	2.353	0.236	0.207	41.267
2	0.448	0.404	5.291	3.676	0.323	0.553	75.931
3	0.541	0.276	5.960	4.856	0.252	0.996	99.064

Implementación de Robótica Inteligente TE3002B.101

Profesor: Alfredo García Suárez

4	0.605	0.218	6.490	5.618	0.025	1.486	114.878
5	0.628	-3.726	-1.168	13.735	-0.343	1.967	127.369
6	0.605	-3.709	-1.364	13.472	-0.3	1.340	-86.101
7	0.541	0.276	5.960	4.856	-0.010	1.872	-298.611
8	0.448	0.404	5.291	3.676	0.110	2.399	-282.798
9	0.356	0.605	4.773	2.353	0.029	2.840	-259.664
10	0.314	0.720	4.582	1.701	-0.223	3.092	-225.001
11	0.356	0.605	4.773	2.353	-0.536	3.113	-183.733
12	0.448	0.404	5.291	3.676	-0.842	2.930	-149.069
13	0.541	0.276	5.960	4.856	-1.105	2.567	-125.936
14	0.605	0.218	6.490	5.618	-1.291	2.059	-110.122
15	0.628	0.201	6.686	5.881	-1.372	1.459	-97.632
16	0.605	0.218	6.490	5.618	-1.329	0.832	-86.101
17	0.541	0.276	5.960	4.856	-1.158	0.251	-73.611
18	0.448	0.404	5.291	3.676	-0.870	-0.207	-57.797
19	0.356	0.605	4.773	2.353	-0.501	-0.462	-34.664
20	0.314	0.720	4.582	1.701	-0.145	-0.462	-0.00

Completa la tabla y genera la simulación de la trayectoria del robot en Matlab

3. Considerando los parámetros del robot descrito en el reactivo 2. Obtén la tabla de las señales de entrada ω_R (rad/s) y ω_L (rad/s) requeridas en cada instante de muestreo si se desea obtener una trayectoria circular con un radio de 20m, cuyo centro sea el origen (0, 0). Genera la simulación en Matlab.

En este caso, al ser un círculo uniforme, las velocidades de las ruedas se quedan constantes

t (s)	ω_R (rad/s)	ω_L (rad/s)
0.01	202	198
0.02	202	198
0.03	202	198
0.04	202	198
0.05	202	198
0.06	202	198
0.07	202	198
0.08	202	198

Implementación de Robótica Inteligente TE3002B.101 Profesor: Alfredo García Suárez

0.09	202	198
0.10	202	198
• • •		• • •
6.39	202	198