exercices

1.
$$S_{zx}(v) = TF[Y_{zx}(H)] = TF[x(H)*z(-H)]$$
 $TF[x(-H)] = \int x(-H) e^{-2i\pi v H} dH$

on effective le changement de variable

 $F' = -F$
 $TF[x(-H)] = \int x(H) e^{-2i\pi v H} dH$
 $TF[x($

ercercice2

1. April est causal doncyth x(t) = x(t) est causal.

en encere

3 Si txo, $y(t) = \int_{-\infty}^{t} x(t) x(t-t) dt$ et $y(t) = \int_{0}^{t} x(t) x(t-t) dt$ pour tzo

donc $y(t) = \int_{0}^{t} dt x(t) x(t-t) dt$ Ou en core. $y(t) = \int_{-\infty}^{t} x(t) x(t-t) dt = \int_{0}^{t} x(t) x(t-t) dt$ Car x(t) = 0 pour $t \ge 0$.

$$y(t) = \int_0^t \chi(z) \chi(t-z) dz \quad (ar \chi(t-z) = 0 \text{ si } z > t$$
Si $t < 0$, $y(t) = 0$.

2.
$$y(r) = \int_{0}^{+} e^{-\alpha z} e^{-\alpha (r-z)} dz = e^{-\alpha r} \int_{0}^{+} dz$$

 $y(r) = r - \alpha r$

exercice 3

1.
$$f_{\chi\chi}(-H) = \int_{-\infty}^{+\infty} \tau(z) \, \chi(z - (-H)) \, dz$$

changement de variable

 $z' = z + t$, $z = z' - t$
 $f_{\chi\chi}(-H) = \int_{-\infty}^{+\infty} \chi(z' - H) \, \chi(z') \, dz'$
 $f_{\chi\chi}(-H) = f_{\chi\chi}(H)$

2. Soit the form
$$f(z) = \int_{\pi x}^{+\infty} (x) = \int_{-\infty}^{+\infty} \tau(z) = \int_{\pi}^{+\infty} \tau(z) = \int_$$

3. Pour tre,
$$\frac{1}{2\pi}(H) = \int_{t}^{+\infty} e^{-at} e^{-\alpha(z-t)} dz$$

$$\frac{1}{2\pi}(H) = e^{at} \int_{t}^{+\infty} e^{-2az} dz = e^{at} \left[-\frac{1}{2\pi} e^{-42z} \right]_{t}^{+\infty}$$

$$\varphi_{xx}(r) = e^{xr} \left(\frac{1}{2x}e^{-2xr} - c\right)$$

$$\varphi_{xx}(r) = e^{xr} \left(\frac{1}{2x}e^{-2xr} - c\right)$$

$$\varphi_{xx}(r) = 1e^{-xr} = 1e^{-xr} - x|r|$$

$$\varphi_{xx}(r) = 1e^{-xr} = 1e^{-xr} = 1e^{-xr}$$

$$\varphi_{xx}(r) = 1e^{-xr} = 1e^{-xr}$$

$$\varphi_{xx}(r) = 1e^{-xr} = 1e^{-xr}$$

$$\varphi_{xx}(r) = 1e^{-xr}$$

exercice 4

1.
$$F_{\pi} = \int |x(t)|^2 dt = \int_{c}^{t} e^{-2\alpha t} dt$$
 $E_{\pi} = \int |x(t)|^2 dt = \int_{c}^{t} e^{-2\alpha t} dt$
 $E_{\pi} = \left[-\frac{1}{2\alpha} e^{-2\alpha t} \right]_{0}^{t} = \frac{1}{2\alpha}$

2. $\int_{\pi\pi}^{0} (c) = \int_{\pi\pi}^{t} |x(\tau)|^2 d\tau = E_{\pi}$
 $\int_{-\infty}^{\infty} |x(\tau)|^2 d\tau = E_{\pi}$

1.
$$\chi(x) = \int_{-\infty}^{+\infty} e^{-xt} \eta_{R_{x}}(t) e^{-2i\pi t} dt$$

 $\chi(x) = \int_{-\infty}^{+\infty} e^{-xt} \eta_{R_{x}}(t) e^{-2i\pi t} dt$
 $\chi(x) = \int_{-\infty}^{+\infty} e^{-xt} \eta_{R_{x}}(t) e^{-2i\pi t} dt$
2. $TF \left[\frac{9}{2x}(t) \right] = \frac{1}{(x+2i\pi t)}$
 $\chi(x) = \int_{-\infty}^{+\infty} |\chi(x)|^{2} dt$
 $\chi(x) = \int_{-\infty}^{+\infty} |\chi(x)|^{2} dt$

3. Pour
$$\chi=2\pi$$
,
 $\chi(y) = \frac{1}{2\pi + 2i\pi y} = \frac{1}{2\pi} \left(\frac{i}{1+iy}\right)$

$$\left|\chi(y)\right|^{2} = \frac{1}{4\pi^{2}(1+y^{2})}$$

$$\int_{2x}^{2x} (c) = \frac{1}{2(2\pi)} = \frac{1}{4\pi}$$

$$\int_{-\infty}^{+\infty} \frac{dv}{1+v^{2}} = \frac{1}{4\pi^{2}} \int_{-\infty}^{+\infty} \frac{dv}{4\pi^{2}(1+v^{2})} = \frac{1}{4\pi^{2}} \int_{-\infty}^{+\infty} \frac{1}{4\pi^{2}} \left[x(v) \right]^{2} dv$$

$$= 4\pi^{2} \times 9_{\pi\pi}(c) = 4\pi^{2} \times 1 = \pi$$

exercice 6

$$\begin{aligned}
&\text{Te}^{-\alpha t} \eta_{R_{t}}(t) = y(t) \\
&\text{Te}^{-\alpha t} \eta_{R_{t}}(t) = \text{Te}^{-\alpha t} \eta_{R_{t}}(t) = \text{Te}^{-\alpha t} \eta_{R_{t}}(t) = \text{Te}^{-\alpha t} \eta_{R_{t}}(t) = \left(\frac{1}{\alpha' + 2i\pi i}\right)^{2}
\end{aligned}$$