Random Forest Classifier The data for this analysis is of the Pima Indians and their liklihood of diabetetes. The data can be found here: https://data.world/uci/pima-indians-diabetes This script implements a random forest classifier where the classifier will be evaluated via the out-ofbag (OOB) error estimate, using the above dataset. Each tree in the forest is constructed using a different bootstrap sample from the original data. **ENJOY** In [9]: import csv import numpy as np from datetime import datetime from math import log, floor, ceil In [10]: class Utility(object): Class with the necessary utility functions def entropy(self, class_y): This method compute the entropy for a list of classes Input: : list of class labels (0's and 1's) class y Output: entropy entropy = 0val = np.mean(class_y) **if** val == 0: entropy = entropy elif val == 1: entropy = entropy else: entropy = (-val)*np.log2(val) - (1-val) * np.log2(1-val)return entropy def partition_classes(self, X, y, split_attribute, split_val): 11 11 11 This method partitions the classes. First check if the split attribute is numerical or categorical If the split attribute is numeric, split_val should be a numerical value For example, your split val could be the mean of the values of split attribute If the split attribute is categorical, split_val should be one of the categor: Inputs: X : data containing all attributes : labels split_attribute : column index of the attribute to split on split val : either a numerical or categorical value to divide the spi 11 11 11 X = [] $X_{right} = []$ y left = []y right = []1 = X[:,split_attribute] <= split_val</pre> r = X[:,split_attribute] > split_val $X_{left} = X[1,:]$ $X_{right} = X[r,:]$ $y_left = y[l]$ $y_right = y[r]$ return (X_left, X_right, y_left, y_right) def information gain(self, previous_y, current_y): This metho computes and returns the information gain from partitioning the pre into the current_y labels. previous_y: the distribution of original labels (0's and 1's) current_y: the distribution of labels after splitting based on a particula split attribute and split value 11 11 11 $info_gain = 0$ val = len(current_y[0])/len(previous_y) **if** val == 0: info_gain = info_gain elif val == 1: info_gain = info_gain else: info_gain = Utility.entropy(self,previous_y) - Utility.entropy(self,currer return info_gain def best_split(self, X, y): 11 11 11 For each node find the best split criteria and return the split attribute, spliting value along with X_left, X_right, y_left, y_right (using partition_classes) Inputs: X : Data containing all attributes : labels 11 11 11 split_attribute = 0 split value = 0 X_{left} , X_{right} , y_{left} , $y_{\text{right}} = [], [], []$ baseline = -1for b in range(len(X)): split value = X[b][split attribute] X_left, X_right, y_left, y_right = Utility.partition_classes(self,X,y,spl: info_gain = Utility.information_gain(self,y,[y_left,y_right]) if not np.isnan(info_gain) and info_gain > baseline: baseline = info_gain best_split_value = split_value return best_split_value, baseline def best_feature(self,X,y): Gets best feature for the model. Inputs: : Data containing all attributes : labels 11 11 11 only now = -1for b in range(len(X[0])): only_now_val, info_gain = Utility.best_split(self,X,y) if not np.isnan(info gain) and info gain >only now: only_now = info_gain best_s_feature = b best_s_val = only_now_val return best_s_feature,best_s_val class DecisionTree(object): def __init__(self, max_depth): Initializing the tree as an empty list self.tree = np.empty((0,4), int) #need list of list ie array to match input of self.max depth = max depth self.leaf size = 10def learn(self, X, y, par node = {}, depth=0): This method trains the decision tree (self.tree) using the the sample X and le and the methods from the Utility class if len(y) <= self.leaf size:</pre> self.tree = np.append(self.tree, [["leaf", np.mean(y), np.nan, np.nan]], self.addNext() elif (y == y[0]).all(): self.tree = np.append(self.tree, [["leaf", y[0], np.nan, np.nan]], axis = self.addNext() else: temp = -1for i in range(X.shape[1]): SplitVal = np.median(X[:, i]) X_left, X_right, y_left, y_right = Utility.partition_classes(self,X, y_ IG = Utility.information_gain(self,y, [y_left, y_right]) if not np.isnan(IG) and IG > temp: temp = IGindex = iSplitVal = np.median(X[:, index]) X_left, X_right, y_left, y_right = Utility.partition_classes(self,X, y, ir if len(X left) == 0 or len(X right) == 0: self.tree = np.append(self.tree, [["leaf", np.mean(y), np.nan, np.nan] self.addNext() self.tree = np.append(self.tree, [[index, SplitVal, 1, None]], axis = self.learn(X left, y left) self.learn(X_right, y_right) def addNext(self): Method used to add the next value for the tree conditionally n = self.tree.shape[0] for i in range(n): if self.tree[n-1-i, 3] == None: self.tree[n-1-i, 3] = i + 1break def classify(self, record): Method to classify the record using self.tree and return the predicted label curr = 0while True: if self.tree[curr, 0] == "leaf": #want to keep adding if the leaf is there return int(float(self.tree[curr, 1]) + 0.5) curr += self.tree[curr, 2] if record[self.tree[curr, 0]] <= self.tree</pre> class RandomForest(object): 1. ${\tt X}$ is assumed to be a matrix with n rows and d columns where n is the number of total records and d is the number of features of each record. 2. y is assumed to be a vector of labels of length n. 3. XX is similar to X, except that XX also contains the data label for each record. num trees = 0 decision_trees = [] # the bootstrapping datasets for trees # bootstraps_datasets is a list of lists, where each list in bootstraps_datasets bootstraps datasets = [] # the true class labels, corresponding to records in the bootstrapping datasets # bootstraps labels is a list of lists, where the 'i'th list contains the labels # the 'i'th bootstrapped dataset. bootstraps_labels = [] init (self, num trees): Initialization done here self.num_trees = num_trees self.decision_trees = [DecisionTree(max_depth=10) for i in range(num_trees)] self.bootstraps datasets = [] self.bootstraps labels = [] def _bootstrapping(self, XX, n): This method creates a sample dataset of size n by sampling with replacement from the original dataset XX. # Reference: https://en.wikipedia.org/wiki/Bootstrapping_(statistics) samples = [] # sampled dataset labels = [] # class labels for the sampled records #get XX to array XX = np.array(XX)decision = np.random.randint(0, n, size = n)samples = XX[:,:-1][decision] labels = XX[:,-1] [decision] return (samples, labels) def bootstrapping(self, XX): Initializing the bootstap datasets for each tree for i in range(self.num trees): data_sample, data_label = self._bootstrapping(XX, len(XX)) self.bootstraps_datasets.append(data_sample) self.bootstraps_labels.append(data_label) def fitting(self): This method trains `num_trees` decision trees using the bootstraps datasets and labels by calling the learn function from your DecisionTree class. for b in range(self.num_trees): self.decision_trees[b].learn(self.bootstraps_datasets[b],self.bootstraps_ def voting(self, X): This method votes for the best results via the following logic 1. Find the set of trees that consider the record as an out-of-bag sample. 2. Predict the label using each of the above found trees. 3. Use majority vote to find the final label for this recod. y = [] for record in X: votes = [] for i in range(len(self.bootstraps datasets)): dataset = self.bootstraps_datasets[i] if record not in dataset: OOB_tree = self.decision_trees[i] effective vote = OOB tree.classify(record) votes.append(effective_vote) counts = np.bincount(votes) if len(counts) == 0: # Handle the case where the record is not an out-of-bag sample # for any of the trees. y = np.append(y, self.decision_trees[0].classify(record)) y = np.append(y, np.argmax(counts)) return y # Initialize according to my implementation # Ensure Minimum forest_size should be 10 forest size = 10 Initialize the training: get timing and results to run In [15]: # start time start = datetime.now() X = list()y = list()XX = list() # Contains data features and data labels numerical_cols = set([i for i in range(0, 9)]) # indices of numeric attributes (colu # Loading data set print("Reading the data") with open("../data/pima-indians-diabetes.csv") as f: next(f, None) for line in csv.reader(f, delimiter=","): xline = []for i in range(len(line)): if i in numerical cols: xline.append(ast.literal eval(line[i])) else: xline.append(line[i]) X.append(xline[:-1]) y.append(xline[-1]) XX.append(xline[:]) # Initializing a random forest. randomForest = RandomForest(forest_size) # Creating the bootstrapping datasets print("Creating the bootstrap datasets") randomForest.bootstrapping(XX) # Building trees in the forest print("Fitting the forest") randomForest.fitting() # Calculating an unbiased error estimation of the random forest # based on out-of-bag (OOB) error estimate. y_predicted = randomForest.voting(X) # Comparing predicted and true labels results = [prediction == truth for prediction, truth in zip(y_predicted, y)] # Accuracy accuracy = float(results.count(True)) / float(len(results)) print("Accuracy: %.4f" % accuracy) print("OOB estimate: %.4f" % (1 - accuracy)) # end time print("Execution time: " + str(datetime.now() - start)) Reading the data Creating the bootstrap datasets Fitting the forest Accuracy: 0.7604 OOB estimate: 0.2396 Execution time: 0:00:00.627372