# Elementos de Lógica: Notas de Aula

Profa. Christina Fraga Esteves Maciel Waga

Depto II.IME.UERJ junho 2022

# Sumário

| In       | trod | ução    |                                                             | 1  |
|----------|------|---------|-------------------------------------------------------------|----|
| 1        | Lóg  | ica Pr  | oposicional                                                 | 2  |
|          | 1.1  | Lingua  | agem                                                        | 2  |
|          |      | 1.1.1   | Sintaxe: forma                                              | 2  |
|          |      | 1.1.2   | Semântica: significado                                      | :  |
|          | 1.2  | Cálcul  | lo Proposicional                                            | 5  |
|          |      | 1.2.1   | Implicações e equivalências lógicas                         | Ę. |
|          |      | 1.2.2   | Simplificando uma wff                                       | 8  |
|          |      | 1.2.3   | Relacionando wff's                                          | 8  |
|          |      | 1.2.4   | Formas Normais                                              | 10 |
|          |      | 1.2.5   | Demonstrações: Direta e Indireta                            | 13 |
|          | 1.3  | Soluçâ  | ão de alguns exercícios                                     | 16 |
| <b>2</b> | Teo  | ria de  | Conjuntos                                                   | 17 |
|          | 2.1  | Conce   | eitos Básicos                                               | 17 |
|          | 2.2  | Opera   | ıções                                                       | 19 |
|          | 2.3  | Propri  | iedades                                                     | 21 |
| 3        | Um   | a Intro | odução à Interpretação de Fórmulas da Lógica de $1^a$ Ordem | 26 |
|          | 3.1  | Lingua  | agem                                                        | 26 |
|          |      | 3.1.1   | Sintaxe                                                     | 26 |
|          |      | 3.1.2   | Semântica                                                   | 28 |
|          | 3.2  | Solucê  | ão de alguns exercícios                                     | 31 |

| 4 | Álg | ebra de Boole                                                                 | 33 |
|---|-----|-------------------------------------------------------------------------------|----|
|   | 4.1 | A estrutura                                                                   | 33 |
|   | 4.2 | Propriedades                                                                  | 34 |
|   | 4.3 | Expressões, Formas e Funções                                                  | 36 |
|   | 4.4 | Circuitos Lógicos                                                             | 38 |
|   | 4.5 | Minimização                                                                   | 40 |
|   |     | 4.5.1 Adjacência no mapa e sobreposição entre dois (sub)mapas com 5 variáveis | 43 |
|   | 4.6 | Reticulados                                                                   | 44 |
|   | 4.7 | Álgebra de Boole e reticulados                                                | 46 |
|   | 4.8 | Solução de alguns exercícios                                                  | 46 |

# Introdução

Este é um curso introdutório de Lógica Matemática. Os seguintes tópicos serão abordados:

- Cálculo Proposicional: conectivos lógicos, tabelas verdade, tautologias, regras de inferência, formas normais e argumentos: demonstração direta e indireta,
- Álgebra de Conjuntos,
- Lógica de primeira ordem: aspectos básicos,
- Álgebra de Boole: reticulados, circuitos e mapas de Karnaugh.

Referências bibliográficas importantes:

- 1. Alencar Filho, E., *Iniciação à Lógica Matemática*, Nobel (2002).
- 2. Gersting, J.L., Fundamentos Matemáticos para a Ciência da Computação, LTC (1995).

# Capítulo 1

# Lógica Proposicional

Lógica Proposicional é um formalismo composto por uma linguagem formal e métodos de inferência. É um sistema bivalorado com valores lógicos **Verdadeiro** ou **Falso**.

## 1.1 Linguagem

## 1.1.1 Sintaxe: forma

#### Alfabeto

- Símbolos Proposicionais: p,q,r,... ou p<sub>1</sub>,p<sub>2</sub>,p<sub>3</sub>,....
   Uma proposição simples é qualquer declaração significativa à qual se pode atribuir os valores lógicos Verdadeiro (V) ou Falso (F).
- Símbolos Conectivos:
  - Unário:

- Binários:

| Conjunção     | ٨                 | е               |
|---------------|-------------------|-----------------|
| Disjunção     | V                 | ou              |
| Condicional   | $\rightarrow$     | seentão         |
| Bicondicional | $\leftrightarrow$ | se e somente se |

• Símbolos de parênteses: ()

## Gramática

Definição de fórmulas bem escritas ou bem formadas (wff - well-formed formula):

G1 Todo símbolo proposicional é uma wff.

**G2** Se  $\alpha$  e  $\beta$  são wff's então  $(\neg \alpha)$ ,  $(\alpha \land \beta)$ ,  $(\alpha \lor \beta)$ ,  $(\alpha \to \beta)$  e  $(\alpha \leftrightarrow \beta)$  também são wff's.

## Observação 1.1.1 Alfabeto Grego

| $\alpha$   |          | alfa    | $\eta$    |           | eta    | ν        |        | nü      | $\tau$   |        | tau            |
|------------|----------|---------|-----------|-----------|--------|----------|--------|---------|----------|--------|----------------|
| β          |          | beta    | $\theta$  | Θ         | teta   | ξ        |        | csi     | v        | Υ      | úpsilon        |
| $\gamma$   | Γ        | gama    | $\iota$   |           | iota   | 0        |        | omícron | $\phi$   | $\Phi$ | fi             |
| $\delta$   | $\Delta$ | delta   | $\kappa$  |           | capa   | $\pi$    | Π      | pi      | $\chi$   |        | qui            |
| $\epsilon$ |          | epsílon | $\lambda$ | $\Lambda$ | lambda | $\rho$   |        | rô      | $\psi$   | $\Psi$ | psi            |
| ζ          |          | zeta    | $\mu$     |           | mü     | $\sigma$ | $\sum$ | sigma   | $\omega$ | Ω      | $\hat{o}$ mega |

## 1.1.2 Semântica: significado

Cada símbolo proposicional pode assumir dois valores lógicos ou valores de verdade, Verdadeiro (V) ou Falso (F). Assim, dados n símbolos proposicionais teremos  $2^n$  casos a serem considerados, isto é,  $2^n$  linhas de uma tabela verdade.

Os valores lógicos para as wff's obtidas a partir dos conectivos estão determinados nas tabelas verdade a seguir.

|              |               | $\alpha$ | $\beta$      | $(\alpha \wedge \beta)$ | $(\alpha \vee \beta)$ | $(\alpha \to \beta)$ | $(\alpha \leftrightarrow \beta)$ |
|--------------|---------------|----------|--------------|-------------------------|-----------------------|----------------------|----------------------------------|
| $\alpha$     | $\neg \alpha$ | V        | V            | V                       | V                     | V                    | V                                |
| V            | F             | V        | $\mathbf{F}$ | F                       | V                     | F                    | $\mathbf{F}$                     |
| $\mathbf{F}$ | V             | F        | V            | F                       | V                     | V                    | F                                |
|              | I             | F        | F            | F                       | F                     | V                    | V                                |

Em uma wff condicional  $(\alpha \to \beta)$ , a wff  $\alpha$  é denominada **antecedente**, **primeira componente** ou **condição suficiente** e a wff  $\beta$  é o **consequente**, **segunda componente** ou

condição necessária. Em uma wff bicondicional ( $\alpha \leftrightarrow \beta$ ),  $\alpha$  condição necessária e suficiente para  $\beta$  e vice-versa.

Além dos conectivos apresentados podemos incluir o símbolo  $\underline{\vee}$  (**ou exclusivo**) com a tabela verdade abaixo.

$$\begin{array}{c|c|c|c} \alpha & \beta & (\alpha \underline{\vee} \beta) \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & F \\ \hline \end{array}$$

## Observação 1.1.2 Redução de parênteses

| wff original                                     | wff reduzida                               |
|--------------------------------------------------|--------------------------------------------|
| $(\neg \alpha)$                                  | $\neg \alpha$                              |
| $(\alpha \wedge \beta)$                          | $\alpha \wedge \beta$                      |
| $((\neg \alpha) \land \beta)$                    | $\neg \alpha \wedge \beta$                 |
| $(\neg(\alpha \land \beta))$                     | $\neg(\alpha \land \beta)$                 |
| $((\alpha \vee (\neg \beta)) \to (\neg \alpha))$ | $(\alpha \vee \neg \beta) \to \neg \alpha$ |
| $(\alpha \to (\beta \to \gamma))$                | $\alpha \to (\beta \to \gamma)$            |
| $((\alpha \to \beta) \to \gamma)$                | $(\alpha \to \beta) \to \gamma$            |

Exercício 1.1.3 Faça tabela verdade para cada uma das wff's.

- 1.  $p \vee \neg p$
- 2.  $p \land \neg p$
- 3.  $\neg(p \lor q)$
- 4.  $(\neg p) \land (\neg q)$
- 5.  $(\neg p) \rightarrow q$
- 6.  $(p \to q) \land (q \to p)$
- 7.  $(p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r))$
- 8.  $(p \rightarrow (q \rightarrow r)) \leftrightarrow ((p \land q) \rightarrow r)$
- 9.  $(p \lor (q \rightarrow r)) \rightarrow ((p \rightarrow q) \lor r)$
- 10.  $((p \leftrightarrow q) \leftrightarrow r) \leftrightarrow (p \leftrightarrow (q \leftrightarrow r))$
- 11.  $(\alpha \land \beta) \rightarrow \alpha$
- 12.  $\alpha \rightarrow (\alpha \vee \beta)$

13. 
$$((\alpha \rightarrow \beta) \land \alpha) \rightarrow \beta$$

14. 
$$((\alpha \rightarrow \beta) \land \neg \beta) \rightarrow \neg \alpha$$

15. 
$$((\alpha \lor \beta) \land \neg \alpha) \to \beta$$

16. 
$$((\alpha \to \beta) \land (\beta \to \gamma)) \to (\alpha \to \gamma)$$

17. 
$$(((\alpha \to \beta) \land (\gamma \to \delta)) \land (\alpha \lor \gamma)) \to (\beta \lor \delta)$$

18. 
$$((\alpha \to \beta) \land ((\gamma \to \delta) \land (\neg \beta \lor \neg \delta))) \to (\neg \alpha \lor \neg \gamma)$$

## 1.2 Cálculo Proposicional

## 1.2.1 Implicações e equivalências lógicas

Uma wff que é sempre verdadeira, isto é, todas as linhas de sua tabela verdade têm o valor lógico V, é denominada uma **tautologia**. Uma **contradição** é uma wff sempre falsa. Já uma fórmula que assume tanto valores verdade quanto valores falso é uma **contingência**.

Considere V uma tautologia, F uma contradição e  $\alpha, \beta, \gamma, \delta$  wff's quaisquer.

Existem duas maneiras de se relacionar fórmulas proposicionais. Uma wff  $\alpha$  implica logicamente a wff  $\beta$ ,  $\alpha \Rightarrow \beta$  ou  $\alpha \models \beta$ , se sempre que a wff  $\alpha$  é verdadeira, a wff  $\beta$  também é, ou equivalentemente, a fórmula condicional  $(\alpha \rightarrow \beta)$  é uma tautologia.

Implicações Lógicas ou Regras de Inferência

|                      | 0                                                                                                                           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                      | $\mathbf{F} \Rightarrow \alpha$                                                                                             |
|                      | $\alpha \Rightarrow \mathbf{V}$                                                                                             |
| Simplificação        | $\alpha \wedge \beta \Rightarrow \alpha$                                                                                    |
| Adição               | $\alpha \Rightarrow \alpha \lor \beta$                                                                                      |
| Conjunção            | $\alpha, \beta \Rightarrow \alpha \land \beta$                                                                              |
| Modus Ponens         | $(\alpha \to \beta) \land \alpha \Rightarrow \beta$                                                                         |
| Modus Tollens        | $(\alpha \to \beta) \land \neg \beta \Rightarrow \neg \alpha$                                                               |
| Silogismo Disjuntivo | $(\alpha \vee \beta) \wedge \neg \alpha \Rightarrow \beta$                                                                  |
| Silogismo Hipotético | $(\alpha \to \beta) \land (\beta \to \gamma) \Rightarrow \alpha \to \gamma$                                                 |
| Dilema Construtivo   | $(\alpha \to \beta) \land (\gamma \to \delta) \land (\alpha \lor \gamma) \Rightarrow \beta \lor \delta$                     |
| Dilema Destrutivo    | $(\alpha \to \beta) \land (\gamma \to \delta) \land (\neg \beta \lor \neg \delta) \Rightarrow \neg \alpha \lor \neg \gamma$ |
|                      |                                                                                                                             |

Por exemplo, para verificarmos a regra de **Modus Ponens**, fazemos a tabela verdade de ambas as wff's e comparamos ou podemos fazer a tabela de  $((\alpha \to \beta) \land \alpha) \to \beta$  para verificarmos se é uma tautologia.

| $\alpha$     | $\beta$      | $((\alpha \rightarrow \beta))$ | $\wedge$     | $\alpha$ )   | $\beta$                 |    | $\alpha$     | $\beta$      | $((\alpha \rightarrow \beta))$ | $\wedge$     | $\alpha)$    | $\rightarrow$ | $\beta$ |
|--------------|--------------|--------------------------------|--------------|--------------|-------------------------|----|--------------|--------------|--------------------------------|--------------|--------------|---------------|---------|
| V            | V            | V                              | V            | V            | V                       |    | V            | V            | V                              | V            | V            | V             | V       |
| V            | $\mathbf{F}$ | F                              | F            | V            | $\overline{\mathbf{F}}$ | ou | V            | $\mathbf{F}$ | F                              | $\mathbf{F}$ | V            | V             | F       |
| $\mathbf{F}$ | V            | V                              | $\mathbf{F}$ | $\mathbf{F}$ | V                       |    | $\mathbf{F}$ | V            | V                              | $\mathbf{F}$ | $\mathbf{F}$ | V             | V       |
| F            | F            | V                              | F            | $\mathbf{F}$ | $\mathbf{F}$            |    | $\mathbf{F}$ | F            | V                              | F            | F            | V             | F       |

Observe que,  $\alpha \vee \beta \not\Rightarrow \alpha$ , vide tabelas a seguir.

| $\alpha$ | $\beta$ | $\alpha \vee \beta$ | $\alpha$     |    | $\alpha$     | $\beta$ | $(\alpha \vee \beta)$ | $\rightarrow$ | $\alpha$ |
|----------|---------|---------------------|--------------|----|--------------|---------|-----------------------|---------------|----------|
| V        | V       | V                   | V            |    | V            | V       | V                     | V             | V        |
| V        | F       | V                   | V            | ou | V            | F       | V                     | V             | V        |
| F        | V       | V                   | F            |    | $\mathbf{F}$ | V       | V                     | F             | F        |
| F        | F       | F                   | $\mathbf{F}$ |    | F            | F       | F                     | V             | F        |

A wff  $\alpha$  é **logicamente equivalente** a wff  $\beta$ ,  $\alpha \Leftrightarrow \beta$  ou  $\alpha \bowtie \beta$ , se a wff  $\alpha$  é verdadeira, a wff  $\beta$  também é e vice-versa, isto é,  $\alpha \Rightarrow \beta$  e  $\beta \Rightarrow \alpha$ , ou seja, a fórmula bicondicional ( $\alpha \leftrightarrow \beta$ ) é uma tautologia.

## Equivalências Lógicas

| Idempotência                                  | $\alpha \wedge \alpha \Leftrightarrow \alpha$                                                                                 | $\alpha \vee \alpha \Leftrightarrow \alpha$                                                                                       |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Comutativa                                    | $\alpha \wedge \beta \Leftrightarrow \beta \wedge \alpha$                                                                     | $\alpha \vee \beta \Leftrightarrow \beta \vee \alpha$                                                                             |
|                                               | $\alpha \leftrightarrow \beta \Leftrightarrow \beta \leftrightarrow \alpha$                                                   | $\alpha \underline{\vee} \beta \Leftrightarrow \beta \underline{\vee} \alpha$                                                     |
| Associativa                                   | $(\alpha \land \beta) \land \gamma \Leftrightarrow \alpha \land (\beta \land \gamma)$                                         | $(\alpha \vee \beta) \vee \gamma \Leftrightarrow \alpha \vee (\beta \vee \gamma)$                                                 |
|                                               | $(\alpha \leftrightarrow \beta) \leftrightarrow \gamma \Leftrightarrow \alpha \leftrightarrow (\beta \leftrightarrow \gamma)$ | $(\alpha \underline{\vee} \beta) \underline{\vee} \gamma \Leftrightarrow \alpha \underline{\vee} (\beta \underline{\vee} \gamma)$ |
| Elemento Neutro                               | $\alpha \wedge \mathbf{V} \Leftrightarrow \alpha$                                                                             | $\alpha \vee \mathbf{F} \Leftrightarrow \alpha$                                                                                   |
| Elemento Zero                                 | $\alpha \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$                                                                         | $\alpha \lor \mathbf{V} \Leftrightarrow \mathbf{V}$                                                                               |
| Princípio da Não Contradição                  | $\alpha \land \neg \alpha \Leftrightarrow \mathbf{F}$                                                                         |                                                                                                                                   |
| Princípio do Terceiro Excluído                |                                                                                                                               | $\alpha \vee \neg \alpha \Leftrightarrow \mathbf{V}$                                                                              |
| Dupla Negação                                 | $\neg \neg \alpha \Leftrightarrow \alpha$                                                                                     |                                                                                                                                   |
| Distributiva                                  | $(\alpha \land \beta) \lor \gamma \Leftrightarrow (\alpha \lor \gamma) \land (\beta \lor \gamma)$                             | $(\alpha \vee \beta) \wedge \gamma \Leftrightarrow (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$                             |
| Absorção                                      | $(\alpha \land \beta) \lor \alpha \Leftrightarrow \alpha$                                                                     | $(\alpha \vee \beta) \wedge \alpha \Leftrightarrow \alpha$                                                                        |
|                                               | $\alpha \to (\alpha \land \beta) \Leftrightarrow \alpha \to \beta$                                                            |                                                                                                                                   |
| Semiabsorção                                  | $(\neg \alpha \land \beta) \lor \alpha \Leftrightarrow \alpha \lor \beta$                                                     | $(\neg \alpha \lor \beta) \land \alpha \Leftrightarrow \alpha \land \beta$                                                        |
| De Morgan                                     | $\neg(\alpha \land \beta) \Leftrightarrow (\neg \alpha) \lor (\neg \beta)$                                                    | $\neg(\alpha \lor \beta) \Leftrightarrow (\neg\alpha) \land (\neg\beta)$                                                          |
| Forma Disjuntiva do Condicional (Lei de Filo) | $\alpha \to \beta \Leftrightarrow \neg \alpha \lor \beta$                                                                     |                                                                                                                                   |
| Regra de Clavius                              | $\neg \alpha \rightarrow \alpha \Leftrightarrow \alpha$                                                                       |                                                                                                                                   |
| Forma Conjuntiva do Bicondicional             | $\alpha \leftrightarrow \beta \Leftrightarrow (\alpha \to \beta) \land (\beta \to \alpha)$                                    |                                                                                                                                   |
| Forma Conjuntiva do Ou Exclusivo              | $\alpha \underline{\vee} \beta \Leftrightarrow (\alpha \vee \beta) \wedge \neg (\alpha \wedge \beta)$                         |                                                                                                                                   |
| Fortalecimento da Hipótese                    | $\alpha \to (\beta \to \gamma) \Leftrightarrow (\alpha \land \beta) \to \gamma$                                               |                                                                                                                                   |
| Redução ao Absurdo                            | $\alpha \to \beta \Leftrightarrow (\alpha \land \neg \beta) \to \mathbf{F}$                                                   |                                                                                                                                   |

Dada uma wff condicional  $(\alpha \to \beta)$ , diz-se que a wff  $(\beta \to \alpha)$  é sua **recíproca**, a wff  $(\neg \beta \to \neg \alpha)$  é a **contrapositiva** e  $(\neg \alpha \to \neg \beta)$  é a sua **contrária**. E se relacionam da seguinte forma:

| Contrapositiva | $(\alpha \to \beta) \Leftrightarrow (\neg \beta \to \neg \alpha)$ |
|----------------|-------------------------------------------------------------------|
|                | $(\beta \to \alpha) \Leftrightarrow (\neg \alpha \to \neg \beta)$ |

Verificando a equivalência Forma Disjuntiva do Condicional usando tabela verdade:

| $\alpha$ | $\beta$ | $\alpha \to \beta$ | $\neg \alpha \lor \beta$ |    | $\alpha$     | $\beta$      | $(\alpha \to \beta)$ | $\leftrightarrow$ | $(\neg \alpha \lor \beta)$ |
|----------|---------|--------------------|--------------------------|----|--------------|--------------|----------------------|-------------------|----------------------------|
| V        | V       | V                  | V                        |    | V            | V            | V                    | V                 | V                          |
| V        | F       | F                  | F                        | ou | V            | $\mathbf{F}$ | F                    | V                 | F                          |
| F        | V       | V                  | V                        |    | $\mathbf{F}$ | V            | V                    | V                 | V                          |
| F        | F       | V                  | V                        |    | $\mathbf{F}$ | F            | V                    | V                 | V                          |

A lista (incompleta) de implicações e equivalências lógicas nos fornece um elenco de regras de reescrita, denominadas **regras de dedução**, que preservam o valor verdade das wff.

Assim, para decidirmos se uma wff implica logicamente outra wff  $\beta$  podemos usar duas abordagens, por Tabela Verdade ou por equivalências e/ou implicações lógicas. Por exemplo, vamos mostrar que a regra de Modus Ponens é válida.

• Usando somente equivalências, mostrar que  $((\alpha \to \beta) \land \alpha) \to \beta$  é uma tautologia.

| wff                                                 |                   | justificativa        |
|-----------------------------------------------------|-------------------|----------------------|
| $((\alpha \to \beta) \land \alpha) \to \beta$       | $\Leftrightarrow$ | fdc                  |
| $\neg((\neg\alpha\vee\beta)\wedge\alpha))\vee\beta$ | $\Leftrightarrow$ | semiabs              |
| $\neg(\beta \land \alpha) \lor \beta$               | $\Leftrightarrow$ | DM                   |
| $(\neg \beta \lor \neg \alpha) \lor \beta$          | $\Leftrightarrow$ | assoc e comut $\lor$ |
| $\neg \beta \lor \beta \lor \neg \alpha$            | $\Leftrightarrow$ | pte                  |
| $\mathbf{V} \lor \neg \alpha$                       | $\Leftrightarrow$ | elem. zero ∨         |
| V                                                   |                   | •                    |

• Usando equivalências e implicações

wff justificativa
$$(\alpha \to \beta) \land \alpha \Leftrightarrow \text{fdc}$$

$$(\neg \alpha \lor \beta) \land \alpha \Leftrightarrow \text{semiabs}$$

$$\beta \land \alpha \Rightarrow \text{simpl}$$

$$\beta$$

Analogamente, para decidirmos se uma wff  $\alpha$  é logicamente equivalente uma wff  $\beta$  podemos usar tabela verdade ou equivalências lógicas. Por exemplo, vamos mostrar a Forma Disjuntiva do Condicional.

• Usando equivalências, mostrar que  $(\alpha \to \beta) \leftrightarrow (\neg \alpha \lor \beta)$  é uma tautologia.

$$(\alpha \to \beta) \leftrightarrow (\neg \alpha \lor \beta) \underset{fcb}{\Leftrightarrow} ((\alpha \to \beta) \to (\neg \alpha \lor \beta)) \land ((\neg \alpha \lor \beta) \to (\alpha \to \beta)) \underset{fdc}{\Leftrightarrow} (\neg (\neg \alpha \lor \beta) \lor (\neg \alpha \lor \beta)) \land (\neg (\neg \alpha \lor \beta) \lor (\neg \alpha \lor \beta)) \underset{idemp}{\Leftrightarrow} (\neg (\neg \alpha \lor \beta) \lor (\neg \alpha \lor \beta)) \underset{PTE}{\Leftrightarrow} \mathbf{V}$$

## 1.2.2 Simplificando uma wff

Simplificar uma wff  $\alpha$  é obter uma wff logicamente equivalente  $\beta$  mais simples, usualmente, com respeito ao tamanho (número total de símbolos que a compõem).

wff justificativa
$$(\neg \alpha \lor \neg \beta) \to \neg(\neg \beta \land \gamma) \Leftrightarrow \text{fdc}$$

$$\neg(\neg \alpha \lor \neg \beta) \lor \neg(\neg \beta \land \gamma) \Leftrightarrow \text{DM}$$

$$(\neg \neg \alpha \land \neg \neg \beta) \lor (\neg \neg \beta \lor \neg \gamma) \Leftrightarrow \text{dupla neg e assoc}$$

$$(\alpha \land \beta) \lor \beta \lor \neg \gamma \Leftrightarrow \text{abs}$$

$$\beta \lor \neg \gamma \Leftrightarrow \text{comut e fdc}$$

$$\gamma \to \beta$$

Assim, 
$$(\neg \alpha \lor \neg \beta) \to \neg (\neg \beta \land \gamma) \Leftrightarrow \gamma \to \beta$$
.

## 1.2.3 Relacionando wff's

Dadas duas wff's  $\alpha$  e  $\beta$ , é possível relacioná-las por implicação lógica das seguintes formas:

$$\alpha \Rightarrow \Leftarrow \beta$$

Por exemplo, para relacionarmos  $((\alpha \vee \beta) \rightarrow (\alpha \rightarrow \neg \gamma))$  e  $(\alpha \wedge \beta)$ , devemos inicialmente simplificar a maior wff:

$$(\alpha \vee \beta) \to (\alpha \to \neg \gamma) \underset{fdc}{\Leftrightarrow} \neg(\alpha \vee \beta) \vee (\neg \alpha \vee \neg \gamma) \underset{fdoe+assoc}{\Leftrightarrow} \neg((\alpha \vee \beta) \wedge \neg(\alpha \wedge \beta)) \vee \neg \alpha \vee \neg \gamma \underset{DM}{\Leftrightarrow} \neg(\alpha \vee \beta) \vee \neg \neg(\alpha \wedge \beta)) \vee \neg \alpha \vee \neg \gamma \underset{comut}{\Leftrightarrow} \neg(\alpha \vee \beta) \vee \neg \alpha \vee \neg \gamma \underset{comut}{\Leftrightarrow} \neg \alpha \vee (\alpha \wedge \beta) \vee \neg \gamma \underset{semiabs}{\Leftrightarrow} \neg \alpha \vee \beta \vee \neg \gamma$$

Assim, 
$$((\alpha \underline{\vee} \beta) \rightarrow (\alpha \rightarrow \neg \gamma)) \Leftrightarrow \neg \alpha \vee \beta \vee \neg \gamma.$$

Como,  $\neg \alpha \lor \beta \lor \neg \gamma \Rightarrow \alpha \land \beta$  (apresente os detalhes).

E,  $\alpha \wedge \beta \Rightarrow \neg \alpha \vee \beta \vee \neg \gamma$  (apresente os detalhes).

Temos que, 
$$((\alpha \lor \beta) \to (\alpha \to \neg \gamma)) \not\Rightarrow \Leftarrow (\alpha \land \beta)$$
.

#### Exercícios 1.2.1

 Faça tabela verdade para cada uma das wff's bicondicionais associadas às equivalências lógicas.

- 2. Verifique, usando tabela verdade e as regras, se:
  - (a)  $\alpha \Rightarrow \beta \rightarrow \alpha$
  - (b)  $\alpha \to \beta \Rightarrow \beta \to \alpha$
  - (c)  $\alpha \Rightarrow \neg \alpha \to \beta$
  - (d)  $\alpha \land \beta \Rightarrow \alpha \lor \beta$
  - (e)  $\alpha \wedge \beta \Rightarrow \alpha \leftrightarrow \beta$
  - (f)  $\alpha \leftrightarrow \beta \Rightarrow \alpha \rightarrow \beta$
  - (g)  $\alpha \leftrightarrow \beta \Rightarrow \beta \rightarrow \alpha$
  - (h)  $\alpha \to \beta \Rightarrow (\alpha \land \gamma) \to \beta$
  - (i)  $\alpha \to \beta \Leftrightarrow (\alpha \lor \beta) \to \beta$
  - (j)  $(\alpha \to \beta) \land (\alpha \to \neg \beta) \Leftrightarrow \neg \alpha$
  - (k)  $(\alpha \to \beta) \land (\gamma \to \beta) \Leftrightarrow (\alpha \lor \gamma) \to \beta$
  - (1)  $(\alpha \to \beta) \lor (\alpha \to \gamma) \Leftrightarrow \alpha \to (\beta \lor \gamma)$
  - (m)  $(\alpha \to \beta) \lor (\gamma \to \delta) \Leftrightarrow (\alpha \land \gamma) \to (\beta \lor \delta)$
- 3. Responda, usando as regras.
  - (a)  $\alpha \land \neg \alpha \Rightarrow \beta$
  - (b)  $(\alpha \vee \beta) \Rightarrow \neg \alpha$
  - (c)  $\alpha \land \beta \Rightarrow \alpha \lor \beta$
  - (d)  $\neg \alpha \rightarrow \alpha \Leftrightarrow \alpha$
  - (e)  $\alpha \rightarrow (\alpha \land \beta) \Leftrightarrow \alpha \rightarrow \beta$
  - (f)  $(\alpha \rightarrow \beta) \rightarrow \beta \Leftrightarrow \alpha \lor \beta$
  - (g)  $(\alpha \to \gamma) \lor (\beta \to \gamma) \Leftrightarrow (\alpha \land \beta) \to \gamma$
  - (h)  $(\alpha \to \beta) \land (\alpha \to \gamma) \Leftrightarrow \alpha \to (\beta \land \gamma)$
- 4. Simplifique as fórmulas.
  - (a)  $\neg(\neg\alpha \rightarrow \neg\beta)$
  - (b)  $\neg(\alpha \lor \neg\beta)$
  - (c)  $\neg(\neg\alpha \land \beta)$
  - (d)  $\neg(\neg\alpha\vee\neg\beta)$
  - (e)  $(\alpha \vee \beta) \wedge \neg \alpha$ )
  - (f)  $(\alpha \to \beta) \land (\neg \alpha \to \beta)$
  - (g)  $\neg(\alpha \lor \beta) \lor (\neg\alpha \land \beta)$
  - (h)  $(\alpha \land (\alpha \lor \beta)) \leftrightarrow \alpha$
  - (i)  $\alpha \wedge ((\alpha \vee \beta) \leftrightarrow \alpha)$
  - (j)  $(\alpha \lor (\alpha \land \beta)) \leftrightarrow \alpha$

(k) 
$$\alpha \vee ((\alpha \wedge \beta) \leftrightarrow \alpha)$$

(1) 
$$\alpha \wedge (\alpha \rightarrow \beta) \wedge (\alpha \rightarrow \neg \beta)$$

5. Relacione as fórmulas  $\tau$  e  $\psi$  indicando  $(\Leftrightarrow)$ ,  $(\Rightarrow, \Leftarrow)$ ,  $(\Rightarrow, \Leftarrow)$  ou  $(\Rightarrow, \Leftarrow)$ , usando manipulação.

$$\begin{array}{c|c}
\tau & \psi \\
(\alpha \wedge \neg \alpha) \to \beta & V \\
(\alpha & \vee \beta) & \alpha \\
(\neg \alpha \wedge \neg \beta) \leftrightarrow (\neg \alpha \vee \gamma) & \neg \beta \wedge \neg \gamma \\
\neg ((\alpha \vee \gamma) \leftrightarrow (\beta & \vee \gamma)) & \neg \alpha \wedge \beta \\
(\alpha \to \beta) & \vee (\neg \alpha \to \gamma) & \neg \beta \vee \neg \gamma \\
((\alpha & \vee \gamma) \to \neg (\beta \wedge \gamma)) \to (\alpha \leftrightarrow \beta) & \beta \vee \gamma \\
(\alpha & \to (\alpha \wedge \beta)) \vee \gamma & \neg \alpha \vee \beta \vee \gamma \\
(\alpha \to \beta) \to \beta & \alpha \\
(\alpha \leftrightarrow (\beta \leftrightarrow \gamma)) \to (\phi \leftrightarrow \varphi) & (\alpha \leftrightarrow \beta) \to \phi \\
(\neg (\neg \alpha \vee \neg \beta)) \wedge ((\gamma \wedge \phi \wedge \beta) \to \theta) \wedge (\neg (\alpha \vee \theta) \vee (\gamma \wedge \phi)) & \theta
\end{array}$$

## 1.2.4 Formas Normais

Dentre os conectivos lógicos  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\underline{\vee}$  e  $\leftrightarrow$ , três exprimem-se em termos de apenas dois,  $\{\neg, \wedge\}$ ,  $\{\neg, \vee\}$  e  $\{\neg, \rightarrow\}$ , denominados **conjuntos completos de conectivos**.

Considere o conjunto  $\{\neg, \land\}$ , temos:

$$\alpha \vee \beta \iff \neg(\neg \alpha \wedge \neg \beta) \tag{1.1}$$

$$\alpha \to \beta \iff \neg(\alpha \land \neg \beta) \tag{1.2}$$

$$\alpha \leftrightarrow \beta \iff \neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha) \tag{1.3}$$

$$\alpha \vee \beta \iff \neg(\neg \alpha \wedge \neg \beta) \wedge \neg(\alpha \wedge \beta) \tag{1.4}$$

Para o conjunto  $\{\neg, \lor\}$ , temos:

$$\alpha \wedge \beta \iff \neg(\neg \alpha \vee \neg \beta) \tag{1.5}$$

$$\alpha \to \beta \iff \neg \alpha \lor \beta$$
 (1.6)

$$\alpha \leftrightarrow \beta \iff \neg(\neg(\neg\alpha \lor \beta) \lor \neg(\neg\beta \lor \alpha)) \tag{1.7}$$

$$\alpha \vee \beta \iff \neg(\neg(\alpha \vee \beta) \vee \neg(\neg\alpha \vee \neg\beta)) \tag{1.8}$$

E, para  $\{\neg, \rightarrow\}$ , temos:

$$\alpha \wedge \beta \iff \neg(\alpha \to \neg\beta) \tag{1.9}$$

$$\alpha \vee \beta \iff \neg \alpha \to \beta \tag{1.10}$$

$$\alpha \leftrightarrow \beta \iff \neg((\alpha \to \beta) \to \neg(\beta \to \alpha))$$
 (1.11)

$$\alpha \lor \beta \iff (\alpha \to \beta) \to \neg(\beta \to \alpha)$$
 (1.12)

Diz-se que uma wff está na **forma normal** (FN) quando contem somente os conectivos  $\neg$ ,  $\land$  e  $\lor$ . Toda wff é logicamente equivalente a um wff na forma normal.

**Exemplo 1.2.2** A wff  $\neg((\alpha \to \beta) \to \neg(\beta \to \alpha))$  não está na forma normal. Observe que, é possível obter pelo menos três formas normais equivalentes à wff dada.

$$\begin{array}{ccc} & & \text{justificativa} \\ \hline \text{wff:} & \neg((\alpha \to \beta) \to \neg(\beta \to \alpha)) \Leftrightarrow & \text{fdc} \\ \hline \text{FN:} & \neg(\neg(\neg\alpha \lor \beta) \lor \neg(\neg\beta \lor \alpha)) \Leftrightarrow & \text{DM} \\ \hline \text{FN:} & \neg\neg(\neg\alpha \lor \beta) \land \neg\neg(\neg\beta \lor \alpha) \Leftrightarrow & \text{dupla neg} \\ \hline \text{FN:} & (\neg\alpha \lor \beta) \land (\neg\beta \lor \alpha) \end{array}$$

## Forma Normal Conjuntiva (FNC)

Uma wff está na FNC quando:

- 1. Está na forma normal.
- Não existem dupla negações.
   Uma negação não tem alcance sobre uma conjunção nem sobre uma disjunção.
- 3. Uma disjunção não tem alcance sobre uma conjunção.

Dada uma wfff qualquer é sempre possível obter uma wff logicamente equivalente na FNC, bastando seguir os seguintes passos.

- **Fnc1.** Eliminar os conectivos  $\rightarrow$ ,  $\underline{\vee}$  e  $\leftrightarrow$  usando as regras de equivalência Forma Disjuntiva do Condicional e Forma Conjuntiva do Bicondicional.
- Fnc2. Aplicar as regras de Dupla Negação e de De Morgan.
- **Fnc3.** Usar a regra Distributiva  $(\alpha \land \beta) \lor \gamma \Leftrightarrow (\alpha \lor \gamma) \land (\beta \lor \gamma)$ .

#### Forma Normal Disjuntiva (FND)

Analogamente, uma wff está na FND quando: Uma wff está na FNC quando:

- 1. Está na forma normal.
- Não existem dupla negações.
   Uma negação não tem alcance sobre uma conjunção nem sobre uma disjunção.
- 3. Uma conjunção não tem alcance sobre uma disjunção.

#### Obtendo a FND:

- **Fnd1.** Eliminar os conectivos  $\rightarrow$ ,  $\underline{\vee}$  e  $\leftrightarrow$  usando as regras de equivalência Forma Disjuntiva do Condicional e Forma Conjuntiva do Bicondicional.
- Fnd2. Aplicar as regras de Dupla Negação e de De Morgan.
- **Fnd3.** Usar a regra Distributiva  $(\alpha \lor \beta) \land \gamma \Leftrightarrow (\alpha \land \gamma) \lor (\beta \land \gamma)$ .

## Exercícios 1.2.3

- 1. Reescreva as fórmulas do item 4 do Exercício 1.2.1 usando:
  - (a)  $\{\neg, \land\}$
  - (b)  $\{\neg, \lor\}$
  - (c)  $\{\neg, \rightarrow\}$
- 2. Determine a Forma Normal Conjuntiva das fórmulas.
  - (a)  $\alpha \wedge \beta \wedge \gamma$
  - (b)  $\alpha \vee \beta \vee \gamma$
  - (c)  $\alpha \to (\beta \to \gamma)$
  - (d)  $\neg(\neg\alpha \rightarrow \neg\beta)$
  - (e)  $\neg(\alpha \lor \neg\beta)$
  - (f)  $\neg(\neg\alpha \land \beta)$
  - (g)  $\neg(\neg\alpha\vee\neg\beta)$
  - (h)  $(\alpha \vee \beta) \wedge \neg \alpha$ )
  - (i)  $(\alpha \rightarrow \beta) \land (\neg \alpha \rightarrow \beta)$
  - (j)  $\neg(\alpha \lor \beta) \lor (\neg\alpha \land \beta)$
  - (k)  $\alpha \wedge (\alpha \vee \beta) \leftrightarrow \alpha$
  - (1)  $\alpha \vee (\alpha \wedge \beta) \leftrightarrow \alpha$
  - (m)  $\alpha \wedge (\alpha \rightarrow \beta) \wedge (\alpha \rightarrow \neg \beta)$
  - (n)  $\alpha \vee \beta$
  - (o)  $\alpha \rightarrow \beta$
  - (p)  $\alpha \leftrightarrow \beta$
  - (q)  $(\alpha \vee \beta) \leftrightarrow \alpha$
  - (r)  $(\neg \alpha \land \beta) \lor \beta$
  - (s)  $\neg(\neg\alpha\vee\neg\beta)$
  - (t)  $(\alpha \rightarrow \beta) \land \neg \alpha$
  - (u)  $(\alpha \rightarrow \beta) \lor \neg \alpha$
  - (v)  $\alpha \vee (\beta \vee \gamma)$

- (w)  $\alpha \leftrightarrow \neg \alpha$
- (x)  $(\alpha \rightarrow \beta) \rightarrow \beta \rightarrow (\alpha \lor \beta)$
- (y)  $(\alpha \to \gamma) \land (\beta \lor \gamma) \land \alpha \land \beta \land \gamma$
- (z)  $(\neg(\neg\alpha\rightarrow\neg\gamma))\vee(\beta\rightarrow\neg\gamma)$
- 3. Determine a Forma Normal Disjuntiva para as fórmulas do item anterior.

## 1.2.5 Demonstrações: Direta e Indireta

Agora, estamos interessados em como obter conclusões a partir de um conjunto de wff dadas. Considere um conjunto de wff  $\Gamma = \{\gamma_1, \dots, \gamma_n\}, n \ge 1$ , e uma wff  $\beta$ . Denomina-se **argumento** toda afirmação de que o conjunto  $\Gamma$  tem como consequência ou acarreta a wff  $\beta$ , denotamos por  $\Gamma \vdash \beta$ . Diz-se também que  $\beta$  se deduz, se infere ou decorre de  $\Gamma$ . Assim,  $\Gamma$  é denominado **conjunto de hipóteses** ou **premissas** do argumento e a wff  $\beta$  é denominada **tese** ou **conclusão** do argumento. Um **argumento**  $\Gamma \vdash \beta$  é **válido** quando  $(\gamma_1 \land \dots \land \gamma_n) \Rightarrow \beta$ , isto é, quando a wff  $(\gamma_1 \land \dots \land \gamma_n) \rightarrow \beta$  é uma tautologia. Um argumento não válido é um **sofisma** ou **falácia**.

Assim, a validade de um argumento pode ser feita mediante o uso de tabelas verdade, como foi visto anteriormente. Uma abordagem mais eficiente para verificar a validade de um argumento consiste em deduzir ou demonstrar a conclusão a partir do conjunto de premissas. Uma **dedução** ou **demonstração direta** da wff  $\beta$  a partir do conjunto de wff  $\Gamma$  é uma sequência finita de wff  $(\alpha_1, \ldots, \alpha_m)$  tal que:

- 1. Para todo  $i = 1, \ldots, m$ ,
  - (a)  $\alpha_i \in \Gamma$  ou
  - (b)  $\alpha_i$  foi obtida por aplicação de alguma das regras de inferência ou equivalência em certas fórmulas  $\alpha_j$ ,  $1 \le j < i$ , anteriores.
- 2.  $\alpha_m = \beta$ .

**Exemplo 1.2.4** Uma demonstração do argumento  $\{\alpha \to \neg \beta, \beta\} \vdash \neg \alpha$  é:

$$\begin{array}{ccc}
\alpha_1 & \alpha \rightarrow \neg \beta \\
\alpha_2 & \beta & & \\
\hline
\alpha_3 & \neg \neg \beta \rightarrow \neg \alpha & \text{cp 1} \\
\alpha_4 & \beta \rightarrow \neg \alpha & \text{dupla neg 3} \\
\alpha_5 & \neg \alpha & & \text{MP 2,4}
\end{array}$$

**Demostrações indiretas** usam algumas equivalências lógicas para modificação do enunciado para que seja feita então uma demostração direta.

## • demonstração condicional

Outro método para demonstrar a validade de argumentos do tipo  $\Gamma \vdash \beta \rightarrow \gamma$  é a **demonstração condicional**, onde o enunciado é modificado. Observe que,  $\Gamma \vdash \beta \rightarrow \gamma$  só é válido quando  $\Gamma \rightarrow (\beta \rightarrow \gamma) \Leftrightarrow \mathbf{V}$ , que, pela regra do Fortalecimento da Hipótese, é equivalente a  $(\Gamma \land \beta) \rightarrow \gamma \Leftrightarrow \mathbf{V}$ . Assim, o argumento dado  $\Gamma \vdash \beta \rightarrow \gamma$  é válido quando  $\Gamma \cup \{\beta\} \vdash \gamma$  é válido.

**Exemplo 1.2.5** Considere o argumento  $\{\alpha \lor (\beta \to \gamma), \neg \gamma\} \vdash \beta \to \alpha$ . Usando demonstração condicional, rescrevemos o enunciado para  $\{\alpha \lor (\beta \to \gamma), \neg \gamma, \beta\} \vdash \alpha$  e apresentamos a demonstração direta para o enunciado fortalecido.

$$\begin{array}{cccc}
\alpha_{1} & \alpha \vee (\beta \rightarrow \gamma) \\
\alpha_{2} & \neg \gamma \\
\alpha_{3} & \beta \\
\hline
\alpha_{4} & \alpha \vee (\neg \beta \vee \gamma) & \text{fdc 1} \\
\alpha_{5} & (\alpha \vee \neg \beta) \vee \gamma & \text{assoc 4} \\
\alpha_{6} & \alpha \vee \neg \beta & & \text{SD 2,5} \\
\alpha_{7} & \neg \neg \beta & & \text{dupla neg 3} \\
\alpha_{8} & \alpha & & \text{SD 6,7}
\end{array}$$

## • demonstração por redução ao absurdo ou por contradição

Temos o método da **demostração por redução ao absurdo** ou **por contradição**, que também faz uma modificação no enunciado dado antes de apresentar uma demonstração direta. O argumento  $\Gamma \vdash \beta$  só é válido quando  $\Gamma \to \beta \Leftrightarrow \mathbf{V}$ , que, pela regra da Redução ao Absurdo, é equivalente a  $(\Gamma \land \neg \beta) \to \mathbf{F} \Leftrightarrow \mathbf{V}$ . Desta forma, o argumento dado  $\Gamma \vdash \beta$  é válido quando  $\Gamma \cup \{\neg \beta\} \vdash \mathbf{F}$  é válido.

**Exemplo 1.2.6** Considere o argumento  $\{\alpha \to \neg \beta, \gamma \to \beta\} \vdash \neg(\alpha \land \gamma)$ . Usando demonstração por redução ao absurdo, rescrevemos o enunciado para  $\{\alpha \to \neg \beta, \gamma \to \beta, \neg \neg(\alpha \land \gamma)\} \vdash \mathbf{F}$  e apresentamos a demonstração para o enunciado modificado.

$$\begin{array}{cccc}
\alpha_1 & \alpha \to \neg \beta \\
\alpha_2 & \gamma \to \beta \\
\alpha_3 & \neg \neg (\alpha \land \gamma)
\end{array}$$

$$\begin{array}{cccc}
\alpha_4 & \alpha \land \gamma & \text{dupla neg 3} \\
\alpha_5 & \alpha & \text{simpl 4} \\
\alpha_6 & \neg \beta & \text{MP 1,5} \\
\alpha_7 & \gamma & \text{simpl 4} \\
\alpha_8 & \beta & \text{MP 2,7} \\
\alpha_9 & \neg \beta \land \beta & \text{conj 6,8} \\
\alpha_{10} & \mathbf{F} & \text{pnc 9}
\end{array}$$

#### Exercícios 1.2.7

1. Verifique a validade dos argumentos apresentando demonstrações.

(a) 
$$\{\gamma \to (\alpha \lor \beta), \ \gamma, \ \neg \alpha\} \vdash \beta$$

(b) 
$$\{\alpha \to \neg \beta, \neg \neg \beta, \neg \alpha \to \gamma\} \vdash \gamma$$

(c) 
$$\{\alpha \land \beta, \alpha \rightarrow \gamma, \beta \rightarrow \delta\} \vdash \gamma \land \delta$$

(d) 
$$\{\alpha \to \beta, \beta \to \neg \gamma, \alpha\} \vdash \neg \gamma$$

(e) 
$$\{\alpha \to \beta, \neg \beta, \neg \alpha \to \gamma\} \vdash \gamma$$

(f) 
$$\{\alpha \to \beta, \alpha \to \gamma, \alpha\} \vdash \beta \land \gamma$$

(g) 
$$\{\alpha \to \beta, \neg \beta, \alpha \lor \gamma\} \vdash \gamma$$

(h) 
$$\{\alpha \vee \neg \beta, \ \gamma \rightarrow \neg \alpha, \ \gamma\} \vdash \neg \beta$$

(i) 
$$\{\neg \alpha \lor \neg \beta, \neg \neg \beta, \gamma \to \alpha\} \vdash \neg \gamma$$

(j) 
$$\{\alpha \to \beta, \ \alpha \land \gamma\} \vdash \beta$$

(k) 
$$\{\alpha \land \beta, (\alpha \lor \gamma) \rightarrow \delta\} \vdash \alpha \land \delta$$

(1) 
$$\{\alpha \to (\beta \to \gamma), \alpha \to \beta, \alpha\} \vdash \gamma$$

(m) 
$$\{\alpha \to \beta, (\alpha \land \beta) \to \gamma, \neg(\alpha \land \gamma)\} \vdash \neg\alpha$$

(n) 
$$\{(\alpha \lor \beta) \to \gamma, (\gamma \lor \beta) \to (\alpha \to (\delta \leftrightarrow \varphi)), \alpha \land \delta\} \vdash \delta \leftrightarrow \varphi$$

(o) 
$$\{\alpha \to \neg \beta, \neg \alpha \to (\gamma \to \neg \beta), (\neg \delta \vee \neg \gamma) \to \neg \neg \beta, \neg \delta\} \vdash \neg \gamma$$

(p) 
$$\{(\alpha \land \beta) \rightarrow \gamma, \ \gamma \rightarrow \delta, \ \varphi \rightarrow \neg \psi, \ \varphi, \ \neg \delta \lor \psi\} \vdash \neg(\alpha \land \beta)$$

(q) 
$$\{\alpha \to \beta, \beta \to \gamma, \delta \to \varphi, \alpha \lor \delta\} \vdash \gamma \lor \varphi$$

(r) 
$$\{\alpha \to \beta, \neg \gamma \to (\delta \to \varphi), \gamma \lor (\alpha \lor \delta), \neg \gamma\} \vdash \beta \lor \varphi$$

(s) 
$$\{\alpha \to \beta, (\alpha \to \gamma) \to (\delta \lor \beta), (\alpha \land \beta) \to \gamma, \neg \delta\} \vdash \beta$$

(t) 
$$\{\alpha \to \beta, \ \alpha \lor (\neg \neg \gamma \land \neg \neg \beta), \ \delta \to \neg \gamma, \ \neg(\alpha \land \beta)\} \vdash \neg \delta \lor \neg \beta$$

(u) 
$$\{\alpha \to \gamma, \beta \to \delta, \neg \gamma, (\alpha \lor \beta) \land (\gamma \lor \delta)\} \vdash \delta$$

(v) 
$$\{\alpha \to \beta, \beta \to \gamma, \gamma \to \delta, \neg \delta, \alpha \lor \varphi\} \vdash \varphi$$

(w) 
$$\{(\alpha \to \beta) \land (\gamma \to \delta), \varphi \to \psi, \psi \to \sigma, \neg \beta \lor \neg \sigma\} \vdash \neg \alpha \lor \neg \varphi$$

(x) 
$$\{\alpha \to \beta, \beta \to \gamma, \delta \to \neg \gamma, \alpha\} \vdash \neg \delta$$

(y) 
$$\{\alpha \to \beta, \beta \to \gamma, \alpha \lor \delta, \delta \to \varphi, \neg \varphi\} \vdash \gamma$$

(z) 
$$\{\alpha \to \beta, \neg \alpha \to \gamma, \neg \gamma \lor \delta, \varphi \land \neg \beta\} \vdash \delta$$

2. Use demonstração condicional para demonstrar a validade dos argumentos.

(a) 
$$\{\alpha \to (\beta \lor \gamma), \neg \gamma\} \vdash \alpha \to \beta$$

(b) 
$$\{(\neg \alpha) \lor \beta, \neg \beta, (\neg \delta) \to \varphi, (\neg \alpha) \to (\varphi \to (\neg \gamma))\} \vdash \gamma \to \delta$$

(c) 
$$\{\alpha \to (\neg \beta), \gamma \to \beta\} \vdash \neg(\alpha \land \gamma)$$

3. Use redução ao absurdo para demonstrar a validade dos argumentos.

(a) 
$$\{\alpha \to (\neg \beta), \gamma \to \beta\} \vdash \neg(\alpha \land \gamma)$$

(b) 
$$\{(\neg \alpha) \rightarrow \beta, (\neg \beta) \lor \gamma, \neg \gamma\} \vdash \alpha \lor \delta$$

(c) 
$$\{\alpha \to (\beta \lor \gamma), \neg \gamma\} \vdash \alpha \to \beta$$

(d) 
$$\{(\neg \alpha) \lor \beta, \neg \beta, (\neg \delta) \to \varphi, (\neg \alpha) \to (\varphi \to (\neg \gamma)), \gamma\} \vdash \delta$$

(e) 
$$\{(\neg \alpha) \rightarrow \beta, (\neg \beta) \lor \gamma, \neg \gamma\} \vdash \alpha \lor \delta$$

## 1.3 Solução de alguns exercícios

$$\begin{array}{cccc} \alpha_{1} & \alpha \rightarrow \beta \\ \alpha_{2} & (\alpha \wedge \beta) \rightarrow \gamma \\ \alpha_{3} & \neg(\alpha \wedge \gamma) \\ \hline \alpha_{4} & \neg \alpha \vee \beta & \text{fdc 1} \\ \alpha_{5} & \neg \alpha \vee (\alpha \wedge \beta) & \text{semiabs 4} \\ (\text{m}) & \alpha_{6} & \alpha \rightarrow (\alpha \wedge \beta) & \text{fdc 5} \\ \alpha_{7} & \alpha \rightarrow \gamma & \text{SH 2,6} \\ \alpha_{8} & \neg \alpha \vee \gamma & \text{fdc 7} \\ \alpha_{9} & \neg \alpha \vee (\alpha \wedge \gamma) & \text{semiabs 8} \\ \alpha_{10} & \alpha \rightarrow (\alpha \wedge \gamma) & \text{fdc 9} \\ \alpha_{11} & \neg \alpha & \text{MT 3,10} \\ \end{array}$$

(s) 
$$\begin{array}{cccc}
\alpha_{1} & \alpha \rightarrow \beta \\
\alpha_{2} & (\alpha \rightarrow \gamma) \rightarrow (\delta \vee \beta) \\
\alpha_{3} & (\alpha \wedge \beta) \rightarrow \gamma \\
\alpha_{4} & \neg \delta
\end{array}$$
(s) 
$$\begin{array}{ccccc}
\alpha_{5} & \neg \alpha \vee \beta & \text{fdc 1} \\
\alpha_{6} & \neg \alpha \vee (\alpha \wedge \beta) & \text{semiabs 5} \\
\alpha_{7} & \alpha \rightarrow (\alpha \wedge \beta) & \text{fdc 6} \\
\alpha_{8} & \alpha \rightarrow \gamma & \text{SH 3,7} \\
\alpha_{9} & \delta \vee \beta & \text{MP 2,8} \\
\alpha_{10} & \beta & \text{SD 4,9}
\end{array}$$

$$\begin{array}{cccc} & \alpha_{1} & \alpha \rightarrow \gamma \\ & \alpha_{2} & \beta \rightarrow \delta \\ & \alpha_{3} & \neg \gamma \\ (u) & \alpha_{4} & (\alpha \vee \beta) \wedge (\gamma \vee \delta) \\ \hline & \alpha_{5} & \alpha \vee \beta & \text{simp 4} \\ & \alpha_{6} & \gamma \vee \delta & \text{DC 1, 2 e 5} \\ & \alpha_{7} & \delta & \text{SD 3,6} \end{array}$$

$$\begin{array}{cccc} \alpha_{1} & \alpha \rightarrow \beta \\ \alpha_{2} & \beta \rightarrow \gamma \\ \alpha_{3} & \delta \rightarrow \neg \gamma \\ \end{array}$$

$$(x) \begin{array}{cccc} \alpha_{4} & \alpha \\ \hline \alpha_{5} & \beta & \text{MP 1,4} \\ \alpha_{6} & \gamma & \text{MP 2,5} \\ \alpha_{7} & \neg \delta & \text{MT 3,6} \\ \end{array}$$

# Capítulo 2

## Teoria de Conjuntos

## 2.1 Conceitos Básicos

**Conjuntos** podem ser entendidos como coleções de objetos distintos não importando a ordem em que aparecem. Estes objetos são denominados **elementos** do conjunto. Usa-se para os nomes de conjuntos  $A, B, C, \ldots$  e para os elementos  $x, y, z, \ldots$ 

Se o objeto a é um elemento do conjunto A, diz-se que a **pertence ao conjunto** A,  $a \in A$ . O símbolo  $\in$  denota a relação (binária) existente entre elemento e conjunto, indicando a pertinência do primeiro em relação ao segundo e pode ser lida como o elemento a pertence ao conjunto A ou o elemento a está no conjunto A. Se um elemento b não pertence a um conjunto A, usa-se  $a \notin A$ .

Um conjunto especial é o **conjunto vazio**, denotado por  $\emptyset$  ou  $\{\}$ , e é caracterizado pelo fato de não possuir elementos.

Existem dois princípios importantes. O **Princípio da Extensionalidade** trata da igualdade de conjuntos. Um conjunto A é igual a um conjunto B quando todo elemento do conjunto A é um elemento do conjunto B e todo elemento do conjunto B é elemento do conjunto A. A notação é A = B e a relação de igualdade possui as seguintes propriedades:

**Reflexiva:** A = A, para todo conjunto A.

Simétrica: se A = B então B = A, para quaisquer conjuntos A e B.

**Transitiva:** se A = B e B = C então A = C, para quaisquer conjuntos A, B e C.

O Princípio da Especificação diz respeito à especificação de novos conjuntos a partir de outros. Dados um conjunto A e uma propriedade P sobre os elementos de A, fica determinado o conjunto B dos elementos de A que possuem a propriedade P. Assim,  $B = \{x \in A; P(x)\}$ .

2.1 Conceitos Básicos

**Exemplo 2.1.1** Considere o conjunto  $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ . E as propriedades:

1.  $P: x \in \text{par.}$  O conjunto obtido a partir do conjunto A e da propriedade P  $\in$ :

$$B = \{x \in A; P(x)\} = \{x \in A; x \in par\} = \{2, 4, 6, 8\}$$

- 2.  $Q: x \text{ \'e primo. Assim, } C = \{2, 3, 5, 7\}.$
- 3.  $R: x \in \text{múltiplo de 11. Então } D = \emptyset.$

Uma relação (binária) entre conjuntos é a de **subconjunto**. Um conjunto A é um subconjunto de um conjunto B ou A está contido em B ou B contém A, se todo elemento do conjunto A é também um elemento do conjunto B. A notação é  $A \subseteq B$  e a relação de subconjunto é:

**Reflexiva:**  $A \subseteq A$ , para todo conjunto A.

**Antissimétrica:** se se  $A \subseteq B$  e  $B \subseteq A$  então A = B, para quaisquer conjuntos A e B.

**Transitiva:** se  $A \subseteq B$  e  $B \subseteq C$  então  $A \subseteq C$ , para quaisquer conjuntos A, B e C.

Outra relação existente entre conjuntos é a de **subconjunto próprio**. Um conjunto A é um subconjunto próprio de um conjunto B ou A está propriamente contido em B quando existe pelo menos um elemento no conjunto B que não pertence ao conjunto A. A notação é  $A \subset B$  e a relação de subconjunto próprio é:

**Antissimétrica:** se se  $A \subset B$  e  $B \subset A$  então A = B, para quaisquer conjuntos  $A \in B$ .

**Transitiva:** se  $A \subseteq B$  e  $B \subseteq C$  então  $A \subseteq C$ , para quaisquer conjuntos A, B e C.

Observação 2.1.2 Podemos rever as definições da seguinte forma.

- $A \subseteq B$  quando para todo elemento x, se  $x \in A$  então  $x \in B$ .
- A = B quando  $A \subseteq B$  e  $B \subseteq A$ .
- $A \subseteq B$  quando  $A \subseteq B$  e  $A \ne B$  ou

 $A \subseteq B$  e existe  $x \in B$  tal que  $x \notin A$ .

O conjunto das partes ou conjunto potência de um conjunto A é o conjunto formado por todos os subconjuntos de A. Este conjunto é denotado por  $2^A$  ou P(A). Assim,  $X \in 2^A$  se, e somente se,  $X \subseteq A$ . Quando os elementos de um conjunto A são eles mesmos conjuntos, A é denominado uma família ou uma classe. Um conjunto pode ser classificado como finito quando possui um número finito de elementos, caso contrário é denominado infinito. A cardinalidade de um conjunto finito A indica o número de seus elementos, denota-se por #A, |A| ou card(A). Um conjunto A com um único elemento, isto é, |A| = 1, é denominado conjunto unitário. Um conjunto é denominado contável ou enumerável se for finito ou se existir uma correspondência um a um entre seus elementos e os números naturais.

2.1 Conceitos Básicos

## Exemplos 2.1.3

1. Sendo  $A = \{0, 1, 2\}$ , temos que  $2^A = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$ . Observe que, |A| = 3 e  $|2^A| = 8$ .

2. Os conjuntos numéricos são conjuntos infinitos.

|               | Números     |
|---------------|-------------|
| $\mathbb{N}$  | naturais    |
| $\mathbb{Z}$  | inteiros    |
| $\mathbb{Q}$  | racionais   |
| ${\mathbb I}$ | irracionais |
| $\mathbb{R}$  | reais       |
| $\mathbb{C}$  | complexos   |

3. O conjunto  $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$  é finito enumerável e  $\mathbb{N}$ ,  $\mathbb{Z}$  e  $\mathbb{Q}$  são infinitos enumeráveis, já os conjuntos  $\mathbb{I}$ ,  $\mathbb{R}$  e  $\mathbb{C}$  são infinitos não enumeráveis.

## 2.2 Operações

As operações (binárias) clássicas em conjuntos são união, interseção, diferença, complemento e produto cartesiano.

A união de dois conjuntos A e B é o conjunto  $A \cup B$  que contém todos os elementos do conjunto A e todos os elementos do conjunto B. Assim,  $x \in A \cup B$  quando  $x \in A$  ou  $x \in B$ .

A interseção de dois conjuntos A e B é o conjunto  $A \cap B$  que contém todos os elementos comuns aos conjuntos A e B, isto é,  $x \in A \cap B$  quando  $x \in A$  e  $x \in B$ . Dois conjuntos A e B são denominados disjuntos quando sua interseção é o conjunto vazio, ou seja,  $A \cap B = \emptyset$ .

A diferença entre dois conjuntos A e B é o conjunto A – B que contém os elementos que pertencem exclusivamente ao conjunto A. Desta forma,  $x \in A$  – B quando  $x \in A$  e  $x \notin B$ .

Sejam conjuntos A e B tais que  $A \subseteq B$ , o **complemento** do conjunto A em relação ao conjunto B é o conjunto  $C_BA$  dos elementos que pertencem ao conjunto B mas não pertencem ao conjunto A, i.e,  $x \in C_BA$  se  $x \notin A$  e  $x \in B$ .

Todos os conjuntos podem ser considerados como subconjuntos de um certo conjunto prefixado denominado **conjunto universo** e denotado por U. Assim, o **complemento** de um conjunto  $A \subseteq U$  é o conjunto  $\bar{A} = U - A$ . Então,  $x \in \bar{A}$  se e somente se  $x \notin A$ .

O **produto cartesiano** de dois conjuntos A e B é o conjunto  $A \times B$  cujos elementos são todos os pares ordenados tais que a primeira ordenada é um elemento do conjunto A e a segunda um elemento do conjunto B. Assim,  $(x,y) \in A \times B$  quando  $x \in A$  e  $y \in B$ .

Devemos lembrar que dois pares ordenados são iguais quando as primeiras ordenadas são iguais e as segundas também. Quando temos um produto cartesiano  $A \times \cdots \times A$  com n fatores usamos a notação  $A^n$ .

2.2 Operações

**Exemplo 2.2.1** Sejam os conjuntos  $A = \{a, b\}, B = \{b, c, d, e\}, C = \{a, b, c, d, e, f, g\}$  e  $U = \{a, \dots, z\}.$ 

- 1.  $A \cup B = \{a, b, c, d, e\}$
- 2.  $A \cap B = \{b\}$
- 3.  $A B = \{a\} \in B A = \{c, d, e\}$
- 4.  $B C = \emptyset \in C B = \{a, f, g\}$
- 5.  $C_C A = \{c, d, e, f, g\}$
- 6.  $\bar{A} = \{c, \dots, z\}$

Os conceitos apresentados podem ser visualizados utilizando-se **Diagramas de Venn** apresentados a seguir.



2.2 Operações

Observação 2.2.2 Podemos rever os conceitos da seguinte forma:

- $x \in A \cup B$  se, e somente se,  $x \in A$  ou  $x \in B$ .
- $x \in A \cap B$  se, e somente se,  $x \in A$  e  $x \in B$ .
- $x \in A B$  se, e somente se,  $x \in A$  e  $x \notin B$ .
- $A \subseteq B$ ,  $x \in C_B A$  se, e somente se,  $x \in B A$ se, e somente se,  $x \in B$  e  $x \notin A$ .
- $x \in \overline{A}$  se, e somente se,  $x \notin A$ .
- $(x,y) \in A \times B$  se, e somente se,  $x \in A$  e  $y \in B$ .
- (x,y) = (z,t) se, e somente se, x = z e y = t.

## 2.3 Propriedades

**Teorema 2.3.1**  $\varnothing \subseteq A$ , para todo conjunto A.

**Prova:** Para todo elemento  $x, x \notin \emptyset$ . A wff  $(x \in \emptyset)$  é falsa e a wff  $(x \in \emptyset) \rightarrow (x \in A)$  é verdadeira. Logo,  $\emptyset \subseteq A$ .

Teorema 2.3.2 O conjunto vazio é único.

**Prova:** (RAA) Vamos supor que existem dois conjuntos vazios  $\emptyset \neq \emptyset'$ . Pelo teorema anterior,  $\emptyset \subseteq \emptyset'$  e  $\emptyset' \subseteq \emptyset$ . Então,  $\emptyset = \emptyset'$ . Contradição. Logo, o conjunto vazio é único.

**Teorema 2.3.3** Seja A um conjunto finito com |A| = n, então  $|2^A| = 2^n = \sum_{i=0}^n {n \choose i}$ .

**Teorema 2.3.4** Sejam A e B conjuntos finitos. Então  $|A \cup B| = |A| + |B| - |A \cap B|$ .

**Teorema 2.3.5** Sejam |A| = n e |B| = m. Então  $|A \times B| = nm$ .

**Teorema 2.3.6** As operação de união e de interseção possuem as propriedades:

1. Associativa: para quaisquer conjuntos A, B e C

$$(A \cup B) \cup C = A \cup (B \cup C) \ e \ (A \cap B) \cap C = A \cap (B \cap C)$$

2. Comutativa: para quaisquer conjuntos A e B

$$A \cup B = B \cup A \ e \ A \cap B = B \cap A$$

3. Elemento Neutro: para todo conjunto A

$$A \cup \emptyset = \emptyset \cup A = A \ e \ A \cap U = U \cap A = A$$

4. Elemento Zero: para todo conjunto A

$$A \cup U = U \cup A = U \ e \ A \cap \emptyset = \emptyset \cap A = \emptyset$$

5. Distributivas: para quaisquer conjuntos A, B e C

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \ e \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C) \ e \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

6. Idempotência: para todo conjunto A

$$A \cup A = A \ e \ A \cap A = A$$

7. Absorção: para quaisquer conjuntos A e B

$$(A \cup B) \cap A = A \ e \ (A \cap B) \cup A = A$$

8. Complementaridade: para todo conjunto A

$$A \cup \bar{A} = U \ e \ A \cap \bar{A} = \emptyset$$

9. Involução: para todo conjunto A

$$\bar{\bar{A}} = A$$

10. De Morgan: para quaisquer conjuntos A e B

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \ e \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

#### Prova:

- 1.  $x \in (A \cup B) \cup C \therefore x \in (A \cup B) \lor x \in C \therefore (x \in A \lor x \in B) \lor x \in C \therefore x \in A \lor (x \in B \lor x \in C) \therefore x \in A \cup (B \cup C)$ .
  - $x \in (A \cap B) \cap C \therefore x \in (A \cap B) \land x \in C \therefore (x \in A \land x \in B) \land x \in C \therefore x \in A \land (x \in B \land x \in C) \therefore$  $x \in A \cap (B \cap C).$
- 2.  $x \in A \cup B : x \in A \lor x \in B : x \in B \lor x \in A : x \in B \cup A$ .  $x \in A \cap B : x \in A \land x \in B : x \in B \land x \in A : x \in B \cap A$ .

| Leis d | a Lógica | e da ' | Teoria | de | Conjuntos |
|--------|----------|--------|--------|----|-----------|
|--------|----------|--------|--------|----|-----------|

| Dupla Negação                  | $\neg \neg \alpha \Leftrightarrow \alpha$                                                             | $\bar{A} = A$                                          |
|--------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Idempotência                   | $\alpha \vee \alpha \Leftrightarrow \alpha \wedge \alpha \Leftrightarrow \alpha$                      | $A \cup A = A \cap A = A$                              |
| Comutativa                     | $\alpha \vee \beta \Leftrightarrow \beta \vee \alpha$                                                 | $A \cup B = B \cup A$                                  |
|                                | $\alpha \land \beta \Leftrightarrow \beta \land \alpha$                                               | $A \cap B = B \cap A$                                  |
| Associativa                    | $(\alpha \vee \beta) \vee \gamma \Leftrightarrow \alpha \vee (\beta \vee \gamma)$                     | $(A \cup B) \cup C = A \cup (B \cup C)$                |
|                                | $(\alpha \land \beta) \land \gamma \Leftrightarrow \alpha \land (\beta \land \gamma)$                 | $(A \cap B) \cap C = A \cap (B \cap C)$                |
| Elemento Neutro                | $\alpha \vee \mathbf{F} \Leftrightarrow \alpha \wedge \mathbf{V} \Leftrightarrow \alpha$              | $A \cup \varnothing = A \cap U = A$                    |
| Elemento Zero                  | $\alpha \vee \mathbf{V} \Leftrightarrow \mathbf{V}$                                                   | $A \cup U = U$                                         |
|                                | $\alpha \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$                                                 | $A \cap \varnothing = \varnothing$                     |
| Princípio do Terceiro Excluído | $\alpha \vee \neg \alpha \Leftrightarrow \mathbf{V}$                                                  | $A \cup \overline{A} = U$                              |
| Princípio da Não Contradição   | $\alpha \land \neg \alpha \Leftrightarrow \mathbf{F}$                                                 | $A \cap \overline{A} = \emptyset$                      |
| Distributiva                   | $(\alpha \vee \beta) \wedge \gamma \Leftrightarrow (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$ | $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$       |
|                                | $(\alpha \land \beta) \lor \gamma \Leftrightarrow (\alpha \lor \gamma) \land (\beta \lor \gamma)$     | $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$       |
| Absorção                       | $(\alpha \land \beta) \lor \alpha \Leftrightarrow \alpha$                                             | $(A \cap B) \cup A = A$                                |
|                                | $(\alpha \vee \beta) \wedge \alpha \Leftrightarrow \alpha$                                            | $(A \cup B) \cap A = A$                                |
| Semiabsorção                   | $(\neg \alpha \land \beta) \lor \alpha \Leftrightarrow \alpha \lor \beta$                             | $(\bar{A} \cap B) \cup A = A \cup B$                   |
|                                | $(\neg \alpha \lor \beta) \land \alpha \Leftrightarrow \alpha \land \beta$                            | $(\bar{A} \cup B) \cap A = A \cap B$                   |
| De Morgan                      | $\neg(\alpha \land \beta) \Leftrightarrow (\neg\alpha) \lor (\neg\beta)$                              | $\overline{A \cap B} = \overline{A} \cup \overline{B}$ |
|                                | $\neg(\alpha \lor \beta) \Leftrightarrow (\neg\alpha) \land (\neg\beta)$                              | $\overline{A \cup B} = \bar{A} \cap \bar{B}$           |

## Exercícios 2.3.7

- 1. Apresente demonstrações para os teoremas.
- 2. Indique Verdadeiro ou Falso.

(a) 
$$A=\{a,b\}$$
.  
 ( ) $\{b\}\in A$  ( ) $\{a\}\subseteq A$  ( ) $\varnothing\in A$  ( ) $a\subset A$ 

(b) 
$$A = \{a, b, c\}, B = \{a, b\}, C = \{b, c, d\}, D = \{b\} \in E = \{c, d\}.$$
  
( ) $B \subseteq A$  ( ) $D \neq C$  ( ) $E \in D$  são disjuntos ( ) $A = B$  ( ) $B \cap C = D$ 

- 3. Considere  $A = \{1, 2, 3, 4, 5, 6\}, B = \{4, 5, 6, 7, 8, 9\}, C = \{2, 4, 6, 8\}, D = \{4, 5\}, E = \{5, 6\}$  e  $F = \{4, 6\}$ . Um conjunto G tal que  $G \subseteq A$ ,  $G \subseteq B$  e  $G \subseteq C$  é algum dos conjuntos dados?
- 4. Indique os conjuntos vazios.

(a) 
$$A = \{x \in \mathbb{Z}; x \text{ \'e impar e } x^2 = 4\}$$

(b) 
$$B = \{x \in \mathbb{Z}; x + 9 = 9\}$$

(c) 
$$C = \{x \in \mathbb{Z}; x \ge 0 \text{ e } x^2 < 1\}$$

(d) 
$$D = \{x \in \mathbb{Z}; x^2 < 1\}$$

- 5. Indique o conjunto potência de  $A = \{1, 2, 3, 4\}$ .
- 6. Dê exemplos de famílias.
- 7. Dê exemplo de um conjunto infinito tal que exista função injetora entre este conjunto e um de seus subconjuntos próprios.
- 8. Apresente conjuntos enumeráveis infinitos distintos dos apresentados no texto.
- 9. Seja  $A = \{x \in \mathbb{Z}; x \ge 0 \text{ e } x \text{ é múltiplo de 2}\}$  e  $B = \{x \in \mathbb{Z}; x \ge 0 \text{ e } x \text{ é múltiplo de 3}\}$ . Indique os conjuntos  $A \cup B$ ,  $A \cap B$  e A B.
- 10. Responda, justificando.
  - (a) Todo subconjunto de um conjunto enumerável é finito ou enumerável?
  - (b) A união de conjuntos enumeráveis é enumerável?
  - (c) E o produto cartesiano?
- 11. Considere |A| = n e |B| = m. Para cada um dos itens, apresente condições para que seja possível estabelecer uma expressão matemática.
  - (a)  $|A \cap B|$
  - (b) |A B|
  - (c)  $|C_B A|$
  - (d)  $|\bar{A}|$
- 12. Faça diagramas de Venn para os eguintes casos.
  - (a)  $A \notin \overline{B}$
  - (b)  $A \neq B$
  - (c)  $\overline{A \cup B}$
  - (d)  $\overline{A} \cap \overline{B}$
  - (e)  $\overline{A} \cup B$
  - (f)  $A \cup B = A \cup C$ , mas  $B \neq C$
  - (g)  $A \cup B \subset A \cup C$ , mas  $B \not\subseteq C$
  - (h)  $A \cap B \subset A \cap C$ , mas  $B \not\subseteq C$
  - (i)  $A \cap B = A \cap C$ , mas  $B \neq C$
- 13. Demonstre:
  - (a)  $(A \cup B) \cap \bar{A} = B \cap \bar{A}$
  - (b)  $A \cup (\bar{A} \cap B) = A \cup B$
  - (c) A B = A se, e somente se,  $A \cap B = \emptyset$
  - (d)  $A \cap B = A (A B)$
  - (e)  $A (B \cap C) = (A B) \cup (A C)$

- (f)  $(A \times B) \times C = A \times (B \times C)$
- (g)  $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- (h)  $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$

# Capítulo 3

# Uma Introdução à Interpretação de Fórmulas da Lógica de $1^a$ Ordem

## 3.1 Linguagem

## 3.1.1 Sintaxe

- Alfabeto
  - Símbolos de Parênteses: ( e )
  - Símbolos Conectivos:  $\neg$ ,  $\land$ ,  $\lor$ ,  $\rightarrow$  e  $\leftrightarrow$
  - Símbolo de Igualdade: =
  - Símbolos de Variáveis:  $x, y, z, \dots$
  - Símbolos de Constantes:  $a, b, c, \dots$
  - Símbolos de Predicados: Para cada inteiro positivo n, um conjunto de símbolos denominados símbolos de predicado n-ário,  $P, Q, R, \ldots$
  - Símbolos de Funções: Para cada inteiro positivo n, um conjunto de símbolos denominados símbolos de função n-ário,  $f, g, h, \ldots$
  - Símbolos Quantificadores: universal  $\forall$  e existencial  $\exists$ .

## Exemplos 3.1.1

- 1. Linguagem de predicados símbolos de constantes: a,b,c símbolos de predicados: unário P e binário Q
- Linguagem de teoria de conjuntos símbolo de constante: Ø símbolo de predicado binário: ∈

3. Linguagem de teoria elementar de números

símbolo de constante: 0

símbolo de predicado binário: <

símbolos de funções: unária suc e binárias + e  $\cdot$ 

#### • Gramática

Uma expressão é qualquer sequência finita de símbolos. Expressões lógicas são os termos e as fórmulas (wff).

Os termos são os nomes da linguagem, são as expressões que podem ser interpretadas como nomeando um objeto. Assim, podemos definir os **termos** da seguinte forma:

- T1 Todo símbolo de variável é um termo.
- T2 Todo símbolo de constante é um termo.
- **T3** Sejam f um símbolo de função n-ário e  $t_1, \ldots, t_n$  termos então  $f(t_1, \ldots, t_n)$  também é um termo.

Os fórmulas podem ser entendidas como declarações sobre os objetos. Uma **fórmula** atômica é uma expressão definida por:

**Fa1** Sejam  $t_1$  e  $t_2$  termos então  $t_1$  =  $t_2$  é uma fórmula atômica.

**Fa2** Se P é um símbolo de predicado n-ário e  $t_1, \ldots, t_n$  são termos então  $P(t_1, \ldots, t_n)$  é também uma fórmula atômica.

Fórmulas bem formadas, fórmulas ou wffs são as seguintes expressões:

Wff1 Toda fórmula atômica é uma wff.

**Wff2** Se  $\alpha$  e  $\beta$  são wffs e x é um símbolo de variável então  $(\neg \alpha)$ ,  $(\alpha \land \beta)$ ,  $(\alpha \lor \beta)$ ,  $(\alpha \lor \beta)$ ,  $(\alpha \leftrightarrow \beta)$ ,  $\forall x \alpha$  e  $\exists x \alpha$  também são wffs.

## Exemplos 3.1.2 Considere as linguagens dos Exemplos 3.1.1.

1.  $a, b \in c$  são termos,

$$P(a)$$
 e  $Q(a,c)$  são fórmulas atômicas e  $(\neg P(b)), (P(a) \rightarrow Q(b,c))$  e  $\exists x Q(x,a)$  são wffs.

2. Ø é um termo,

$$x = \emptyset$$
 e  $x \in y$  são fórmulas atômicas e  $\forall x \forall y \exists z \forall t (t \in z \leftrightarrow (t = x \lor t = y))$  é wff.

3. 0, suc(0), suc(suc(0)), suc(0) + x e  $suc(suc(0)) \cdot suc(0)$  são termos, x = 0 e x < suc(x) são fórmulas atômicas e  $\forall x(x \neq 0 \rightarrow (\exists y \ x = suc(y))$  é wff.

## 3.1.2 Semântica

Vamos definir quando uma variável x ocorre livre em (OLE) uma wff  $\gamma$ :

- 1. Se  $\gamma$  é uma fórmula atômica, x OLE  $\gamma$  quando x é um símbolo de  $\gamma$ .
- 2. Se  $\gamma$  é  $(\neg \alpha)$  então x OLE  $\gamma$  quando x OLE  $\alpha$ .
- 3. Se  $\gamma$  é  $(\alpha \land \beta)$ ,  $(\alpha \lor \beta)$ ,  $(\alpha \to \beta)$  ou  $(\alpha \leftrightarrow \beta)$  então x OLE  $\gamma$  quando x OLE  $\alpha$  ou x OLE  $\beta$ .
- 4. Se  $\gamma$  é  $\forall y\alpha$  ou  $\exists y\alpha$  então x OLE  $\gamma$  quando x OLE  $\alpha$  e  $x \neq y$ .

Se um símbolo de variável não ocorre livre na wff  $\gamma$ , diz-se que a **variável está ligada** ou **amarrada**. Quando uma wff não tem símbolos de variável livres, a wff  $\gamma$  é denominada uma **sentença**. Devemos observar que os quantificadores têm a propriedade de *ligar* as variáveis e deve-se ressaltar a importância da parentetização neste caso, pois eles definem o **escopo** do quantificador.

**Exemplo 3.1.3** Considere uma linguagem com dois símbolos de predicados unários  $P \in Q$ .

As wffs 
$$\forall x (P(x) \to Q(x))$$
 e  $(\forall x P(x)) \to (\forall y Q(y))$  são sentenças.

A variável x OLE  $(\forall x P(x)) \rightarrow Q(x)$ .

Uma estrutura ou interpretação  $\mathfrak A$  para uma dada linguagem de  $1^a$  ordem é uma função que atribui:

- 1. Aos símbolos quantificadores um conjunto não vazio A denominado o universo de A.
- 2. A cada símbolo de constante c um elemento  $c^{\mathfrak{A}}$  do conjunto A.
- 3. A cada símbolo de predicado n-ário P uma relação n-ária  $P^{\mathfrak{A}} \subseteq A^n$ .
- 4. A cada símbolo de função n-ária f uma função n-ária  $f^{\mathfrak{A}}: A^n \to A$ .

Assim, a estrutura  $\mathfrak A$  atribui significado aos símbolos da linguagem. Podemos agora estabelecer quando uma wff  $\gamma$  é verdadeira na estrutura  $\mathfrak A$ .

Considere V o conjunto de variáveis e a função  $s:V\to A$  que atribui a cada variável (livre) um elemento do conjunto A. Esta função s pode ser estendida ao conjunto de termos T da linguagem. Assim, função  $\bar{s}:T\to A$  é tal que:

- 1. Para cada símbolo x de variável,  $\bar{s}(x) = s(x)$ .
- 2. Para cada símbolo c de constante,  $\bar{s}(c) = c^{\mathfrak{A}}$ .
- 3. Se f é um símbolo de função n-ária e  $t_1, \ldots, t_n$  são termos então  $\bar{s}(f(t_1, \ldots, t_n)) = f^{\mathfrak{A}}(\bar{s}(t_1), \ldots, \bar{s}(t_n))$ .

A estrutura  $\mathfrak{A}$  satisfaz a wff  $\gamma$  com s,  $\models_{\mathfrak{A}} \gamma[s]$ , quando a tradução de  $\gamma$  determinada por  $\mathfrak{A}$  e por s é verdade, de forma mais precisa, temos que:

- 1.  $\models_{\mathfrak{A}} t_1 = t_2[s]$  quando  $\bar{s}(t_1) = \bar{s}(t_2)$ .
- 2.  $\models_{\mathfrak{A}} P(t_1,\ldots,t_n)[s]$  quando  $(\bar{s}(t_1),\ldots,\bar{s}(t_n)) \in P^{\mathfrak{A}}$ .
- 3.  $\models_{\mathfrak{A}} \neg \alpha[s]$  quando  $\not\models_{\mathfrak{A}} \alpha[s]$ .
- 4.  $\models_{\mathfrak{A}} \alpha \wedge \beta[s]$  quando  $\models_{\mathfrak{A}} \alpha[s]$  e  $\models_{\mathfrak{A}} \beta[s]$ .
- 5.  $\models_{\mathfrak{A}} \alpha \vee \beta[s]$  quando  $\models_{\mathfrak{A}} \alpha[s]$  ou  $\models_{\mathfrak{A}} \beta[s]$ .
- 6.  $\models_{\mathfrak{A}} \alpha \to \beta[s]$  quando  $\not\models_{\mathfrak{A}} \alpha[s]$  ou  $\models_{\mathfrak{A}} \beta[s]$ .
- 7.  $\models_{\mathfrak{A}} \alpha \leftrightarrow \beta[s]$  quando  $\models_{\mathfrak{A}} \alpha[s]$  se e somente se  $\models_{\mathfrak{A}} \beta[s]$ .
- 8.  $\models_{\mathfrak{A}} \forall x \ \alpha[s]$  quando para todo  $d \in A$ ,  $\models_{\mathfrak{A}} \alpha[s(x|d)]$ , sendo que s(x|d) é exatamente a função s exceto que a variável x assume o valor d, isto é,

$$s(x|d)(y) = \begin{cases} s(y) & \text{se } y \neq x \\ d & \text{se } y = x \end{cases}$$

9.  $\models_{\mathfrak{A}} \exists x \ \alpha[s]$  quando existe  $d \in A$ ,  $\models_{\mathfrak{A}} \alpha[s(x|d)]$ .

Uma wff é  $\gamma$  é **válida** quando é verdadeira para todas as estruturas. Um conjunto de wffs  $\Gamma$  **implica logicamente** uma wff  $\alpha$ ,  $\Gamma \vDash \alpha$ , quando para toda estrutura  $\mathfrak A$  para a linguagem e para toda função  $s: V \to A$ , se  $\mathfrak A$  satisfaz cada elemento de  $\Gamma$  com s então  $\mathfrak A$  também satisfaz  $\alpha$  com s.

#### Exemplo 3.1.4

1. Wffs válidas:

$$P(x) \to (Q(x) \to P(x))$$

$$\forall x P(x) \to P(c)$$

$$\forall x (P(x) \land Q(x)) \leftrightarrow (\forall x P(x) \land \forall x Q(x))$$

2. Relacionando wffs:

$$\forall x P(x) \vDash P(x)$$

$$\forall x P(x) \vDash \exists x P(x)$$

$$\neg \forall x P(x) \vDash \exists x \neg P(x)$$

$$\neg \exists x P(x) \vDash \exists \forall x \neg P(x)$$

$$\forall x (P(x) \land Q(x)) \vDash \exists (\forall x P(x) \land \forall x Q(x))$$

#### Exercícios 3.1.5

- 1. Para cada uma das especificações, escolha uma linguagem e apresente wffs.
  - (a) O conjunto é unitário.
  - (b) Um conjunto em que todos os elementos se relacionam entre si.
  - (c) Um conjunto no qual nenhum elemento se relaciona.
  - (d) Um conjunto em que todos os elementos se relacionam com alguém.
  - (e) Um conjunto com uma relação de equivalência.
  - (f) Um conjunto com uma relação de ordem.
  - (g) Um conjunto com uma relação que descreve uma função.
  - (h) Um conjunto com uma função unária injetiva.
  - (i) Um conjunto com uma função unária sobrejetiva.
  - (j) Um conjunto com uma função unária constante.
- 2. Considere uma linguagem com os seguintes símbolos: variáveis  $v_1, \ldots, v_n$ , uma constante c, uma função unária f e um predicado binário P, e a estrutura  $\mathfrak A$  tal que  $A = \mathbb N$ ,  $c^{\mathfrak A} = 0$ ,  $f^{\mathfrak A}(x) = x + 1$ ,  $P^{\mathfrak A} : \leq e \ s : V \to \mathbb N$  é tal que  $s(v_i) = i 1$ . Interprete:
  - (a)  $f(f(v_3))$
  - (b) f(f(c))
  - (c)  $P(c, f(v_1))$
  - (d)  $\forall v_1 P(c, v_1)$
  - (e)  $\forall v_1 P(v_2, v_1)$
- 3. Para cada uma das wffs encontre uma estrutura em que ela é verdadeira e outra em que é falsa.
  - (a)  $\forall x ((P(x) \lor Q(x)) \land \neg (P(x) \land Q(x)))$
  - (b)  $\forall x \forall y (P(x,y) \rightarrow P(y,x))$
  - (c)  $\forall x (P(x) \rightarrow \exists y Q(x,y))$
  - (d)  $\exists x (P(x) \land \forall y Q(x,y))$
  - (e)  $(\forall x P(x) \rightarrow \forall x Q(x)) \rightarrow \forall x (P(x) \rightarrow Q(x))$
- 4. Indique condições para que as fórmulas sejam satisfeitas.
  - (a)  $\forall x P(x), \ \forall x \neg P(x) \ e \ \neg \forall x P(x)$
  - (b)  $\forall x (P(x) \land Q(x)), \forall x (\neg P(x) \land Q(x)), \neg \forall x (P(x) \land Q(x)) \in \forall x \neg (P(x) \land Q(x))$
  - (c)  $\forall x (P(x) \lor Q(x)), \forall x (\neg P(x) \lor Q(x)), \neg \forall x (P(x) \lor Q(x)) \in \forall x \neg (P(x) \lor Q(x))$
  - (d)  $\forall x (P(x) \lor Q(x)), \forall x (\neg P(x) \lor Q(x)), \neg \forall x (P(x) \lor Q(x)) \in \forall x \neg (P(x) \lor Q(x))$
  - (e)  $\forall x(P(x) \rightarrow Q(x)), \ \forall x(\neg P(x) \rightarrow Q(x)), \ \forall x(P(x) \rightarrow \neg Q(x)), \ \neg \forall x(P(x) \rightarrow Q(x)) \ e \ \forall x \neg (P(x) \rightarrow Q(x))$

- (f)  $\forall x (P(x) \leftrightarrow Q(x)), \neg \forall x (P(x) \leftrightarrow Q(x)) \in \forall x \neg (P(x) \leftrightarrow Q(x))$
- (g)  $\exists x P(x), \exists x \neg P(x) \in \neg \exists x P(x)$
- (h)  $\exists x (P(x) \land Q(x)), \ \exists x (\neg P(x) \land Q(x)), \ \neg \exists x (P(x) \land Q(x)) \ e \ \exists x \neg (P(x) \land Q(x))$
- (i)  $\exists x (P(x) \lor Q(x)), \exists x (\neg P(x) \lor Q(x)), \neg \exists x (P(x) \lor Q(x)) \in \exists x \neg (P(x) \lor Q(x))$
- (j)  $\exists x (P(x) \lor Q(x)), \exists x (\neg P(x) \lor Q(x)), \neg \exists x (P(x) \lor Q(x)) \in \exists x \neg (P(x) \lor Q(x))$
- (k)  $\exists x (P(x) \to Q(x)), \exists x (\neg P(x) \to Q(x)), \exists x (P(x) \to \neg Q(x)), \neg \exists x (P(x) \to Q(x)) \in \exists x \neg (P(x) \to Q(x))$
- (1)  $\exists x (P(x) \leftrightarrow Q(x)), \neg \exists x (P(x) \leftrightarrow Q(x)) \in \exists x \neg (P(x) \leftrightarrow Q(x))$
- 5. Compare as wffs usando  $\models \exists, \not\models \exists, \models \not\equiv \emptyset$  ou  $\not\models \not\equiv \emptyset$ .
  - (a)  $\forall x P(x)$   $\exists x P(x)$
  - (b)  $\forall x (P(x) \land Q(x))$   $(\forall x P(x)) \land (\forall x Q(x))$
  - (c)  $\exists x (P(x) \lor Q(x))$   $(\exists x P(x)) \lor (\exists x Q(x))$
  - (d)  $\forall x (P(x) \rightarrow Q(x))$   $(\forall x P(x)) \rightarrow (\forall x Q(x))$
  - (e)  $\exists x (P(x) \lor Q(x))$   $(\exists x P(x)) \lor (\exists x Q(x))$
  - (f)  $\forall x (P(x) \leftrightarrow Q(x)) \quad (\forall x P(x)) \leftrightarrow (\forall x Q(x))$
- 6. Indique condições para que as fórmulas sejam satisfeitas.
  - (a)  $\forall x P(x,x), \forall x \neg P(x,x), \neg \forall x P(x,x)$
  - (b)  $\exists x P(x,x), \exists x \neg P(x,x) \in \neg \exists x P(x,x)$
  - (c)  $\forall x \forall y P(x,y), \forall x \exists y P(x,y), \exists x \forall y P(x,y), \exists x \exists y P(x,y)$
  - (d)  $\forall x \forall y (P(x,y) \rightarrow P(y,x))$
  - (e)  $\forall x \forall y ((P(x, y) \land P(y, x)) \rightarrow x = y)$
  - (f)  $\forall x \forall y \forall z ((P(x,y) \land P(y,z)) \rightarrow P(x,z))$

## 3.2 Solução de alguns exercícios

1. (a) O conjunto é unitário.

$$L = \{c\} \in \forall x \ x = c$$

(e) Um conjunto com uma relação de equivalência.

$$L = \{P_2\} \quad \forall x P(x, x)$$

$$\forall x \forall y (P(x, y) \rightarrow P(y, x))$$

$$\forall x \forall y \forall z ((P(x, y) \land P(y, z))) \rightarrow P(x, z))$$

(i) Um conjunto com uma função unária sobrejetiva.

$$L = \{f_1\} \in \forall y \exists x f(x) = y$$

2. (a) 
$$f(f(v_3))$$
  
 $\bar{s}(f(f(v_3))) = f^{\mathfrak{A}}(f^{\mathfrak{A}}(\bar{s}(v_3))) = f^{\mathfrak{A}}(f^{\mathfrak{A}}(s(v_3))) = f^{\mathfrak{A}}(f^{\mathfrak{A}}(2)) = f^{\mathfrak{A}}(2+1) = 4$ 

(e) 
$$\forall v_1 P(v_2, v_1)$$

$$\models_{\mathfrak{A}} \forall v_1 P(v_2, v_1) [s] \quad \text{quando para todo } d \in \mathbb{N}, \models_{\mathfrak{A}} P(v_2, v_1) [s(v_1|d)]$$

$$\text{quando para todo } d \in \mathbb{N}, (\bar{s}(v_1|d)(v_2), \bar{s}(v_1|d)(v_1)) \in P^{\mathfrak{A}}$$

$$\text{quando para todo } d \in \mathbb{N}, (s(v_1|d)(v_2), s(v_1|d)(v_1)) \in P^{\mathfrak{A}}$$

$$\text{quando para todo } d \in \mathbb{N}, (1, d) \in P^{\mathfrak{A}}$$

$$\text{quando para todo } d \in \mathbb{N}, 1 \leq d$$

3. (a) 
$$\forall x ((P(x) \lor Q(x)) \land \neg (P(x) \land Q(x))) \models \exists \forall x (P(x) \lor Q(x))$$

Assim, a fórmula é satisfeita quando  $P^{\mathfrak{A}} \cup Q^{\mathfrak{A}} = A$  e  $P^{\mathfrak{A}} \cap Q^{\mathfrak{A}} = \emptyset$ . Por exemplo,  $A = \{2, 3, 4, 8, 9\}$  com  $P^{\mathfrak{A}}$ : múltiplo de 2 e  $Q^{\mathfrak{A}}$ : múltiplo de 3.

Já para  $A = \mathbb{N}$  com  $P^{\mathfrak{A}}$ : múltiplo de 2 e  $Q^{\mathfrak{A}}$ : múltiplo de 3, a wff não é satisfeita.

(e) 
$$(\forall x P(x) \to \forall x Q(x)) \to \forall x (P(x) \to Q(x)) \models \exists \neg (\forall x P(x) \to \forall x Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists \neg (\neg \forall x P(x) \lor \forall x Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\neg \neg \forall x P(x) \land \neg \forall x Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \neg \forall x Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land \exists x \neg Q(x)) \lor \forall x (P(x) \to Q(x)) \models \exists (\forall x P(x) \land Q(x)) \lor \exists x P(x) \land Q(x) \lor Q(x)) \models \exists (\forall x P(x) \land Q(x)) \lor Q(x)) \models \exists (\forall x P(x) \land Q(x)) \lor Q(x)) \models \exists (\forall x P(x) \land Q(x)) \lor Q(x)) \models \exists (\forall x P(x) \land Q(x)) \lor Q(x)) \models \exists (\forall x P(x) \land Q(x)) \lor Q(x)) \models \exists (\forall x P(x) \land Q(x)) \lor Q(x)) \vdash Q(x) \lor Q(x)) \vdash Q(x) \lor Q(x)$$

Essa wff é satisfeita quando:

$$(P^{\mathfrak{A}} = A \ e \ Q^{\mathfrak{A}} \neq A)$$
 ou  $P^{\mathfrak{A}} \subseteq Q^{\mathfrak{A}}$ 

E não é satisfeita quando, por exemplo,  $Q^{\mathfrak{A}} \subset P^{\mathfrak{A}} \subset A$ .

4. (a) 
$$\forall x P(x)$$
:  $P^{\mathfrak{A}} = A$ 

$$\forall x \neg P(x) \colon P^{\mathfrak{A}} = \emptyset$$

$$\neg \forall x P(x) \models \exists \exists x \neg P(x) \colon \bar{P}^{\mathfrak{A}} \neq \emptyset$$

(f) 
$$\forall x (P(x) \leftrightarrow Q(x))$$
:  $P^{\mathfrak{A}} = Q^{\mathfrak{A}}$   
 $\neg \forall x (P(x) \leftrightarrow Q(x))$ :  $P^{\mathfrak{A}} \neq Q^{\mathfrak{A}}$   
 $\forall x \neg (P(x) \leftrightarrow Q(x)) \models \exists \forall x (P(x) \lor Q(x))$ :  $P^{\mathfrak{A}} \cup Q^{\mathfrak{A}} = A \in P^{\mathfrak{A}} \cap Q^{\mathfrak{A}} = \emptyset$ 

(1) 
$$\exists x (P(x) \leftrightarrow Q(x)) \colon P^{\mathfrak{A}} \cap Q^{\mathfrak{A}} \neq \emptyset$$
 ou  $\overline{P^{\mathfrak{A}} \cup Q^{\mathfrak{A}}} \neq \emptyset$   
 $\neg \exists x (P(x) \leftrightarrow Q(x)) \vDash \exists \forall x \neg (P(x) \leftrightarrow Q(x)) \vDash \exists \forall x (P(x) \lor Q(x)) \colon$   
 $P^{\mathfrak{A}} \cup Q^{\mathfrak{A}} = A \in P^{\mathfrak{A}} \cap Q^{\mathfrak{A}} = \emptyset$   
 $\exists x \neg (P(x) \leftrightarrow Q(x)) \vDash \exists \neg \forall x (P(x) \leftrightarrow Q(x)) \colon P^{\mathfrak{A}} \neq Q^{\mathfrak{A}}$ 

5. (a) 
$$\forall x P(x) \models \exists x P(x)$$
  
 $P^{\mathfrak{A}} = A$   $P^{\mathfrak{A}} \neq \emptyset$ 

# Capítulo 4

# Álgebra de Boole

## 4.1 A estrutura

Uma álgebra de Boole (George Boole 1815-1864) é a estrutura  $[B,+,\cdot,']$  sendo

- B é um conjunto com dois elementos distintos 0 e 1,
- ullet + e · são operações binárias em B e
- ' é uma operação unária em B.

com as seguintes propriedades das operações, para quaisquer,  $x,y,z\in B,$ 

| B1 | Associativa:     | (x+y)+z=x+(y+z)                           | $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ |
|----|------------------|-------------------------------------------|---------------------------------------------|
| B2 | Comutativa:      | x + y = y + x                             | $x \cdot y = y \cdot x$                     |
| B3 | Elemento Neutro: | x + 0 = x                                 | $x \cdot 1 = x$                             |
| B4 | Complemento:     | x + x' = 1                                | $x \cdot x' = 0$                            |
| B5 | Distributiva:    | $x + (y \cdot z) = (x + y) \cdot (x + z)$ | $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ |

## Exemplos 4.1.1 Álgebras de Boole:

1.  $[\{0,1\},+,\cdot,']$  sendo que:

2.  $\left[2^A,\cup,\cap,\bar{}\right]$  com A =  $\{a,b\},\;0$  = Ø, 1 =  $\{a,b\}$  e as operações:

| U         | Ø         | $\{a\}$   | $\{b\}$   | $\{a,b\}$ |   | $\cap$    | Ø | $\{a\}$ | $\{b\}$ | $\{a,b\}$ |
|-----------|-----------|-----------|-----------|-----------|---|-----------|---|---------|---------|-----------|
| Ø         | Ø         | $\{a\}$   | $\{b\}$   | $\{a,b\}$ | _ | Ø         | Ø | Ø       | Ø       | Ø         |
| $\{a\}$   | $\{a\}$   | $\{a\}$   | $\{a,b\}$ | $\{a,b\}$ |   | $\{a\}$   | Ø | $\{a\}$ | Ø       | $\{a\}$   |
| $\{b\}$   | $\{b\}$   | $\{a,b\}$ | $\{b\}$   | $\{a,b\}$ |   | $\{b\}$   | Ø | Ø       | $\{b\}$ | $\{b\}$   |
| $\{a,b\}$ | $\{a,b\}$ | $\{a,b\}$ | $\{a,b\}$ | $\{a,b\}$ |   | $\{a,b\}$ | Ø | $\{a\}$ | $\{b\}$ | $\{a,b\}$ |

4.1 A estrutura

$$\begin{array}{c|c}
x & x' \\
\emptyset & \{a,b\} \\
\{a\} & \{b\} \\
\{b\} & \{a\} \\
\{a,b\} & \emptyset
\end{array}$$

3.  $\{\{1, 2, 3, 5, 6, 10, 15, 30\}, mmc, mdc,'\}$  tal que:

| mmc | 1  | 2  | 3  | 5  | 6  | 10 | 15 | 30 | mdc | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |   | $\boldsymbol{x}$ | x' |
|-----|----|----|----|----|----|----|----|----|-----|---|---|---|---|---|----|----|----|---|------------------|----|
| 1   | 1  | 2  | 3  | 5  | 6  | 10 | 15 | 30 | 1   | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | _ | 1                | 30 |
| 2   | 2  | 2  | 6  | 10 | 6  | 10 | 30 | 30 | 2   | 1 | 2 | 1 | 1 | 2 | 2  | 1  | 2  |   | 2                | 15 |
| 3   | 3  | 6  | 3  | 15 | 6  | 30 | 15 | 30 | 3   | 1 | 1 | 3 | 1 | 3 | 1  | 3  | 3  |   | 3                | 10 |
| 5   | 5  | 10 | 15 | 5  | 30 | 10 | 15 | 30 | 5   | 1 | 1 | 1 | 5 | 1 | 5  | 5  | 5  |   | 5                | 6  |
| 6   | 6  | 6  | 6  | 30 | 6  | 30 | 30 | 30 | 6   | 1 | 2 | 3 | 1 | 6 | 2  | 3  | 6  |   | 6                | 5  |
| 10  | 10 | 10 | 30 | 10 | 30 | 10 | 30 | 30 | 10  | 1 | 2 | 1 | 5 | 2 | 10 | 1  | 10 |   | 10               | 3  |
| 15  | 15 | 30 | 15 | 15 | 30 | 30 | 15 | 30 | 15  | 1 | 1 | 3 | 5 | 1 | 5  | 15 | 15 |   | 15               | 2  |
| 30  | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30  | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |   | 30               | 1  |

## 4.2 Propriedades

A partir dos axiomas da álgebra de Boole é possível demonstrar que:

1. Idempotência: x + x = x

$$x + x = (x + x) \cdot 1 = (x + x) \cdot (x + x') = x + (x \cdot x') = x + 0 = x$$

$$= x + x = (x + x) \cdot 1 = (x + x) \cdot (x + x') = x + (x \cdot x') = x + 0 = x$$

$$= x + x = (x + x) \cdot 1 = (x + x) \cdot (x + x') = x + (x \cdot x') = x + 0 = x$$

2. Elemento Zero ou Absorvente x + 1 = 1

$$x+1 = x + (x+x') = (x+x) + x' = x + x' = 1$$

$$\underbrace{B4}_{B4}$$

$$\underbrace{B4}_{B4}$$

3. Unicidade do complemento.

(RAA) Supor que x + y = 1 e  $x \cdot y = 0$  com  $y \neq x'$ .

$$y = 1 \cdot y = (x+x') \cdot y = (x \cdot y) + (x' \cdot y) = 0 + (x' \cdot y) = (x' \cdot x) + (x' \cdot y) = x' \cdot (x+y) = x' \cdot 1 = x'$$

$$B_3 = 1 \cdot y = (x+x') \cdot y = (x \cdot y) + (x' \cdot y) = 0 + (x' \cdot y) = (x' \cdot x) + (x' \cdot y) = x' \cdot 1 = x'$$

$$B_3 = 1 \cdot y = (x+x') \cdot y = (x \cdot y) + (x' \cdot y) = 0 + (x' \cdot y) = (x' \cdot x) + (x' \cdot y) = x' \cdot 1 = x'$$

Contradição. Logo, o complemento é único.

4. Semiabsorção:  $x + (x' \cdot y) = x + y$ 

$$x + (x' \cdot y) = (x + x') \cdot (x + y) = 1 \cdot (x + y) = x + y$$

5. 
$$x \cdot (y + (x \cdot z)) = (x \cdot y) + (x \cdot z)$$

$$x \cdot (y + (x \cdot z)) \underbrace{=}_{B5} (x \cdot y) + (x \cdot (x \cdot z)) \underbrace{=}_{B1} (x \cdot y) + (x \cdot x \cdot z) \underbrace{=}_{Idemp.} (x \cdot y) + (x \cdot z)$$

4.2 Propriedades

## Leis da Lógica e da Álgebra de Boole

| Dupla Negação                  | $\neg \neg \alpha \Leftrightarrow \alpha$                                                             | (x')' = x                                   |
|--------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Idempotência                   | $\alpha \vee \alpha \Leftrightarrow \alpha \wedge \alpha \Leftrightarrow \alpha$                      | $x + x = x \cdot x = x$                     |
| Comutativa                     | $\alpha \vee \beta \Leftrightarrow \beta \vee \alpha$                                                 | x + y = y + x                               |
|                                | $\alpha \land \beta \Leftrightarrow \beta \land \alpha$                                               | $x \cdot y = y \cdot x$                     |
| Associativa                    | $(\alpha \vee \beta) \vee \gamma \Leftrightarrow \alpha \vee (\beta \vee \gamma)$                     | (x+y) + z = x + (y+z)                       |
|                                | $(\alpha \land \beta) \land \gamma \Leftrightarrow \alpha \land (\beta \land \gamma)$                 | $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ |
| Elemento Neutro                | $\alpha \vee \mathbf{F} \Leftrightarrow \alpha \wedge \mathbf{V} \Leftrightarrow \alpha$              | $x + 0 = x \cdot 1 = x$                     |
| Elemento Zero                  | $\alpha \lor \mathbf{V} \Leftrightarrow \mathbf{V}$                                                   | x + 1 = 1                                   |
|                                | $\alpha \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$                                                 | $x \cdot 0 = 0$                             |
| Princípio do Terceiro Excluído | $\alpha \vee \neg \alpha \Leftrightarrow \mathbf{V}$                                                  | x + x' = 1                                  |
| Princípio da Não Contradição   | $\alpha \land \neg \alpha \Leftrightarrow \mathbf{F}$                                                 | $x \cdot x' = 0$                            |
| Distributiva                   | $(\alpha \vee \beta) \wedge \gamma \Leftrightarrow (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$ | $(x+y)\cdot z = (x\cdot z) + (y\cdot z)$    |
|                                | $(\alpha \land \beta) \lor \gamma \Leftrightarrow (\alpha \lor \gamma) \land (\beta \lor \gamma)$     | $(x \cdot y) + z = (x+z) \cdot (y+z)$       |
| Absorção                       | $(\alpha \land \beta) \lor \alpha \Leftrightarrow \alpha$                                             | $(x \cdot y) + x = x$                       |
|                                | $(\alpha \vee \beta) \wedge \alpha \Leftrightarrow \alpha$                                            | $(x+y)\cdot x = x$                          |
| Semiabsorção                   | $(\neg \alpha \land \beta) \lor \alpha \Leftrightarrow \alpha \lor \beta$                             | $(x' \cdot y) + x = x + y$                  |
|                                | $(\neg \alpha \lor \beta) \land \alpha \Leftrightarrow \alpha \land \beta$                            | $(x'+y)\cdot x = x\cdot y$                  |
| De Morgan                      | $\neg(\alpha \land \beta) \Leftrightarrow (\neg\alpha) \lor (\neg\beta)$                              | $(x+y)' = x' \cdot y'$                      |
|                                | $\neg(\alpha \lor \beta) \Leftrightarrow (\neg\alpha) \land (\neg\beta)$                              | $(x \cdot y)' = x' + y'$                    |

### **Exercício 4.2.1** Mostre que, para quaisquer $x, y, z \in B$ :

1.  $x \cdot x = x$ 

2.  $x \cdot 0 = 0$ 

3. Involução: (x')' = x

4. De Morgan:  $(x + y)' = x' \cdot y'$  e  $(x \cdot y)' = x' + y'$ 

5. Absorção:  $x + (x \cdot y) = x e x \cdot (x + y) = x$ 

6.  $x \cdot (x' + y) = x \cdot y$ 

7.  $x + (y \cdot (x+z)) = (x+y) \cdot (x+z)$ 

8.  $(x+y) \cdot (x'+y) = y e(x \cdot y) + (x' \cdot y) = y$ 

9.  $(x + (y \cdot z))' = (x' \cdot y') + (x' \cdot z') e(x \cdot (y + z))' = (x' + y') \cdot (x' + z')$ 

10.  $(x+y)\cdot(x+1) = x + (x\cdot y) + y \in (x\cdot y) + (x\cdot 0) = x\cdot(x+y)\cdot y$ 

11.  $(x + y) + (y \cdot x') = x + y \in (x \cdot y) \cdot (y + x') = x \cdot y$ 

12.  $x + ((x' \cdot y) + (x \cdot y))' = x + y'$ 

13.  $((x \cdot y) \cdot z) + (y \cdot z) = y \cdot z$ 

4.2 Propriedades

14. 
$$(y' \cdot x) + x + ((y + x) \cdot y') = x$$

15. 
$$((x'+z')\cdot(y+z'))'=(x+y')\cdot z$$

16. 
$$(x \cdot y) + (x' \cdot z) + (x' \cdot y \cdot z') = y + (x' \cdot z)$$

17. 
$$(x \cdot y') + (y \cdot z') + (x' \cdot z) = (x' \cdot y) + (y' \cdot z) + (x \cdot z')$$

- 18.  $x \cdot y' = 0$  se, e somente se,  $x \cdot y = x$ .
- 19.  $(x \cdot y') + (x' \cdot y) = y$  se, e somente se, x = 0.
- 20. x + y = 0 se, e somente se, x = 0 e y = 0.
- 21. x = y se, e somente se,  $(x \cdot y') + (y \cdot x') = 0$ .

## 4.3 Expressões, Formas e Funções

Uma expressão booleana é:

- **b1.** Qualquer símbolo de variável, 0 ou 1.
- **b2.** Se  $\alpha$  e  $\beta$  são expressões boolenas então  $\alpha + \beta$ ,  $\alpha \cdot \beta$  e  $\alpha'$  também são.

Um literal é uma expressão do tipo variável ou variável complementada. Um **produto** fundamental é ou um literal ou um produto de literais em que não apareça um símbolo de variável repetido. Uma expressão booleana é uma expressão em **soma de produtos** ou está na forma normal (disjuntiva )quando é um produto fundamental ou a soma de produtos fundamentais.

**Exemplo 4.3.1** Seja  $[B, +, \cdot, ']$  uma álgebra de Boole.

|                | expressão     | literal      | produto fundamental | FN |
|----------------|---------------|--------------|---------------------|----|
| $\overline{x}$ | $\checkmark$  |              |                     |    |
| x'             |               | $\checkmark$ | $\checkmark$        |    |
| xy'z           | $\overline{}$ |              | $\checkmark$        |    |
| xy'z + x'yz'   | $\sqrt{}$     |              |                     |    |
| (x+y)'z        | $\overline{}$ |              |                     |    |
| xyx'           | $\sqrt{}$     |              |                     |    |

Uma função booleana é uma função  $f: \{0,1\}^n \to \{0,1\}$  para algum  $n \ge 1$ .

As possíveis representações de uma função booleana são por uma tabela ou por um **Mapa de Karnaugh** (Maurice Karnaugh 1924-). O mapa de Karnaugh é uma representação matricial que armazena somente os valores 1 da função de modo que o produto de variáveis de entrada que diferem apenas por um fator sejam adjacentes.





### Exemplos 4.3.2 Considere as funções.

1.  $f: \{0,1\}^2 \to \{0,1\}$  tal que f(1,1) = 0, f(1,0) = 1, f(0,1) = 1 e f(0,0) = 0.

| $x_1$ | $x_2$ | $f(x_1, x_2)$ |        |       |        |
|-------|-------|---------------|--------|-------|--------|
| 1     | 1     | 0             |        | $x_1$ | $x_1'$ |
| 1     | 0     | 1             | $x_2$  | 0     | 1      |
| 0     | 1     | 1             | $x_2'$ | 1     | 0      |
| 0     | 0     | 0             | _ ,    |       |        |

2. Seja a função  $f: \{0,1\}^3 \to \{0,1\}$  tal que f(1,1,1) = f(1,1,0) = f(0,1,1) = f(0,0,1) = 1 e f(1,0,1) = f(1,0,0) = f(0,1,0) = f(0,0,0) = 0.

| $x_1$ | $x_2$ | $x_3$ | $f(x_1, x_2, x_3)$ |        |          |           |            |           |
|-------|-------|-------|--------------------|--------|----------|-----------|------------|-----------|
| 1     | 1     | 1     | 1                  |        |          |           |            |           |
| 1     | 1     | 0     | 1                  |        |          |           |            |           |
| 1     | 0     | 1     | 0                  |        | $x_1x_2$ | $x_1x_2'$ | $x_1'x_2'$ | $x_1'x_2$ |
| 1     | 0     | 0     | 0                  | $x_3$  | 1        |           | 1          | 1         |
| 0     | 1     | 1     | 1                  | $x_3'$ | 1        |           |            |           |
| 0     | 1     | 0     | 0                  |        |          |           |            |           |
| 0     | 0     | 1     | 1                  |        |          |           |            |           |
| 0     | 0     | 0     | 0                  |        |          |           |            |           |

Podemos associar a cada função booleana uma expressão. No exemplo anterior item 1, às linhas 2 e 3 ficam associados os produtos fundamentais  $x_1x_2'$  e  $x_1'x_2$ , respectivamente. Assim, a função fica associada à expressão booleana na forma normal

$$f(x_1, x_2) = x_1 x_2' + x_1' x_2.$$

No item 2, às linhas 1, 2, 5 e 7 ficam associados os produtos fundamentais  $x_1x_2x_3$ ,  $x_1x_2x_3'$ ,  $x_1'x_2x_3$  e  $x_1'x_2'x_3$ , respectivamente. Então, a função fica associada à expressão booleana na forma normal

$$f(x_1, x_2, x_3) = x_1 x_2 x_3 + x_1 x_2 x_3' + x_1' x_2 x_3 + x_1' x_2' x_3.$$

Para funções com um número maior de variáveis, o mapa é a representação mais sintética. Considere o mapa a seguir.

|            | $x_1x_2$ | $x_1x_2'$ | $x_1'x_2'$ | $x_1'x_2$ |
|------------|----------|-----------|------------|-----------|
| $x_3x_4$   |          | 1         |            |           |
| $x_3x_4'$  |          |           |            |           |
| $x_3'x_4'$ | 1        |           |            | 1         |
| $x_3'x_4$  |          | 1         |            |           |

A função associada é:

$$f(x_1, x_2, x_3, x_4) = x_1 x_2' x_3 x_4 + x_1 x_2 x_3' x_4' + x_1' x_2 x_3' x_4' + x_1 x_2' x_3' x_4.$$

# 4.4 Circuitos Lógicos

Características gerais:

- Descargas elétricas alta e baixa, 1 e 0, respectivamente.
- Flutuações de voltagem são ignoradas.
- O sinal 1 faz com que o interruptores feche e o 0 abra.



 $\bullet$  Combinação de interruptores x e y em paralelo.



Esta combinação pode ser associada à operação boolena x+y e à porta lógica OU.

4.4 Circuitos Lógicos

| $x_1$ | $x_2$ | $x_1 + x_2$ |
|-------|-------|-------------|
| 1     | 1     | 1           |
| 1     | 0     | 1           |
| 0     | 1     | 1           |
| 0     | 0     | 0           |



 $\bullet$  Combinação de interruptores x e y em série.



Esta combinação pode ser associada à operação boolena  $x \cdot y$  e à porta lógica E.

| $x_1$ | $x_2$ | $x_1 \cdot x_2$ |
|-------|-------|-----------------|
| 1     | 1     | 1               |
| 1     | 0     | 0               |
| 0     | 1     | 0               |
| 0     | 0     | 0               |



• Um inversor (negação) corresponde à operação unária booleana '.

Observe que, circuitos podem ser associados a funções booleanas, isto é, a expressões booleanas.

4.4 Circuitos Lógicos

| $x_1$ | $x'_1$ |
|-------|--------|
| 1     | 0      |
| 0     | 1      |



### Exemplo 4.4.1 Ao circuito



fica associada a expressão booleana

$$x_1x_2'x_3x_4 + x_1x_2x_3'x_4' + x_1'x_2x_3'x_4' + x_1x_2'x_3'x_4.$$

## 4.5 Minimização

Considere a expressão do Exemplo 4.4.1

$$x_1x_2'x_3x_4 + x_1x_2x_3'x_4' + x_1'x_2x_3'x_4' + x_1x_2'x_3'x_4$$

e a manipulação algébrica:

$$\begin{array}{lll} \alpha_1 & x_1x_2'x_3x_4 + x_1x_2x_3'x_4' + x_1'x_2x_3'x_4' + x_1x_2'x_3'x_4 = & B2 \\ \alpha_2 & x_1x_2'x_3x_4 + x_1x_2'x_3'x_4 + x_1x_2x_3'x_4' + x_1'x_2x_3'x_4' = & B5 \\ \alpha_3 & x_1x_2'x_4(x_3 + x_3') + (x_1 + x_1')x_2x_3'x_4' = & B4 \\ \alpha_4 & x_1x_2'x_4 + 1x_2x_3'x_4' = & B3 \\ \alpha_5 & x_1x_2'x_4 + x_2x_3'x_4' \end{array}$$

Cada uma das linhas desta manipulação é uma expressão booleana associada à mesma função booleana. Tanto  $\alpha_1$  quanto  $\alpha_5$  estão na forma normal, e  $\alpha_5$  é a forma **simplificada** ou **mínima** de  $\alpha_1$ .

Vamos tratar agora de minimização de circuitos através do mapa de Karnaugh. Devemos

agrupar todas as ocorrências adjacentes contendo *uns* de forma a obter a maior combinação possível. Assim reduziremos o número de parcelas na expressão.

|            | $x_1x_2$ | $x_1x_2'$ | $x_1'x_2'$ | $x_1'x_2$ |
|------------|----------|-----------|------------|-----------|
| $x_3x_4$   |          | 1         |            |           |
| $x_3x_4'$  |          |           |            |           |
| $x_3'x_4'$ | 1        |           |            | 1         |
| $x_3'x_4$  |          | 1         |            |           |

Observe que, tomar céluas adjacentes corresponde à simplicação algébrica com o uso dos axiomas da distributividade, complementaridade e elemento neutro.

Finalmente, o circuito de Exemplo 4.4.1 é equivalente a um circuito menor.



Exemplo 4.5.1 Considere o mapa de Karnaugh com oito produtos fundamentais.

|            | $x_1x_2$ | $x_1x_2'$ | $x_1'x_2'$ | $x_1'x_2$ |
|------------|----------|-----------|------------|-----------|
| $x_3x_4$   |          | 1         | 1          |           |
| $x_3x_4'$  |          |           | 1          | 1         |
| $x_3'x_4'$ |          | 1         | 1          |           |
| $x_3'x_4$  |          |           | 1          | 1         |

Dois possíveis agrupamentos de uns.

|            | $x_1x_2$ | $x_1x_2'$ | $x_1'x_2'$ | $x_1'x_2$ |
|------------|----------|-----------|------------|-----------|
| $x_3x_4$   |          | 1         | 1          |           |
| $x_3x_4'$  |          |           | 1          | 1         |
| $x_3'x_4'$ |          | 1         | 1          |           |
| $x_3'x_4$  |          |           | 1          | 1         |

|            | $x_1x_2$ | $x_1x_2'$ | $x_1'x_2'$ | $x_1'x_2$ |
|------------|----------|-----------|------------|-----------|
| $x_3x_4$   |          | 1         | 1          |           |
| $x_3x_4'$  |          |           | 1          | 1         |
| $x_3'x_4'$ |          | 1         | 1          |           |
| $x_3'x_4$  |          |           | 1          | 1         |

Com cinco e quatro produtos, respectivamente.

$$x_1'x_2' + x_1x_2'x_3x_4 + x_1'x_2x_3x_4' + x_1x_2'x_3'x_4' + x_1'x_2x_3'x_4$$
e
$$x_2'x_3x_4 + x_1'x_3x_4' + x_2'x_3'x_4' + x_1'x_3'x_4.$$

Passos para minimização através de Mapas de Karnaugh.

- 1. Forma a parcela correspondente as células isoladas contendo 1.
- 2. Combine as células adjacentes que só podem ser agrupadas de um único modo formando blocos de tamanho 2, se possível.
- 3. Combine as células adjacentes que só podem ser agrupadas de um único modo formando blocos de tamanho 4, se possível.
- 4. Combine as células adjacentes que só podem ser agrupadas de um único modo formando blocos de tamanho 8, se possível.
- 5. Combine as células adjacentes restantes contendo 1 em blocos de maneira mais eficiente possível.

Exercício 4.5.2 Indique a expressão boolena mínima para cada uma das funções indicadas nos mapas de Karnaugh.

| 1 1 1 1                                                         | 1 1 1<br>1 1                                                    | 1 1<br>1 1                                                                                                                                         | 1     1       1     1                                                     |
|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1 1 1                                                           | 1         1           1         1                               | 1 1                                                                                                                                                | 1         1         1         1           1         1         1         1 |
| 1     1       1     1       1     1       1     1       1     1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                              | 1 1 1<br>1 1<br>1 1                                                       |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                           | 1     1       1     1       1     1       1     1       1     1 | $\begin{array}{c ccccc} 1 & 1 & 1 & 1 \\ \hline 1 & 1 & & 1 \\ \hline & 1 & 1 & 1 \\ \hline & & 1 & 1 \\ \hline & & & 1 & 1 \\ \hline \end{array}$ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                     |
| 1 1 1<br>1 1 1<br>1 1 1                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                           | 1     1       1     1       1     1       1     1       1     1                                                                                    | 1     1       1     1       1     1       1     1       1     1           |

# 4.5.1 Adjacência no mapa e sobreposição entre dois (sub)mapas com 5 variáveis





|                |             |                                               |                                   | $x_1$                                         | $\begin{bmatrix} x'_1 \end{bmatrix}$ |                                 |                                        |                                       |
|----------------|-------------|-----------------------------------------------|-----------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------|----------------------------------------|---------------------------------------|
|                | $x_1x_2x_3$ | $\overline{x_1}\overline{x_2}\overline{x_3'}$ | $\bar{x}_1 \bar{x}_2' \bar{x}_3'$ | $\overline{x_1}\overline{x_2'}\overline{x_3}$ | $\bar{x}_1'\bar{x}_2\bar{x}_3$       | $\bar{x}_1'\bar{x}_2\bar{x}_3'$ | $\bar{x}_{1}'\bar{x}_{2}'\bar{x}_{3}'$ | $\bar{x}_{1}'\bar{x}_{2}'\bar{x}_{3}$ |
| $x_{4}x_{5}$   | 1           |                                               | 1                                 | 1                                             |                                      |                                 |                                        |                                       |
| $x_4x_5'$      |             | 1                                             | 1                                 | 1                                             | 1                                    |                                 |                                        |                                       |
| $x'_{4}x'_{5}$ |             | 1                                             | 1                                 | 1                                             | 1                                    |                                 | 1                                      | 1                                     |
| $x_4'x_5$      |             |                                               | 1                                 | 1                                             |                                      |                                 | 1                                      | 1                                     |

## Exemplo 4.5.3 Blocagem

|            | $x_1x_2x_3$ | $x_1x_2x_3'$ | $x_1x_2'x_3'$ | $x_1x_2'x_3$ | $x_1'x_2x_3$ | $x_1'x_2x_3'$ | $x_1'x_2'x_3'$ | $x_1'x_2'x_3$ |
|------------|-------------|--------------|---------------|--------------|--------------|---------------|----------------|---------------|
| $x_4x_5$   | 1           |              | 1             | 1            |              |               |                |               |
| $x_4x_5'$  |             | 1            | 1             | 1            | 1            |               |                |               |
| $x_4'x_5'$ |             | 1            | 1             | 1            | 1            |               | 1              | 1             |
| $x_4'x_5$  |             |              | 1             | 1            |              |               | 1              | 1             |

|            | $x_1 x_2 x_3$ | $x_1x_2x_3$ | $x_1 x_2 x_3$ | $x_1x_2x_3$ | $x_1x_2x_3$ | $x_{1}x_{2}x_{3}$ | $x_1 x_2 x_3$ | $x_{1}^{2}x_{2}^{2}x_{3}$ |
|------------|---------------|-------------|---------------|-------------|-------------|-------------------|---------------|---------------------------|
| $x_4x_5$   | 1             |             | 1             | 1           |             |                   |               |                           |
| $x_4x_5'$  |               | 1           | 1             | 1           | 1           |                   |               |                           |
| $x_4'x_5'$ |               | 1           | 1             | 1           | 1           |                   | 1             | 1                         |
| $x_4'x_5$  |               |             | 1             | 1           |             |                   | 1             | 1                         |

|            | $x_1x_2x_3$ | $x_1x_2x_3'$ | $x_1x_2'x_3'$ | $x_1x_2'x_3$ | $x_1'x_2x_3$ | $x_1'x_2x_3'$ | $x_1'x_2'x_3'$ | $x_1'x_2'x_3$ |
|------------|-------------|--------------|---------------|--------------|--------------|---------------|----------------|---------------|
| $x_4x_5$   | 1           |              | 1             | 1            |              |               |                |               |
| $x_4x_5'$  |             | 1            | 1             | 1            | 1            |               |                |               |
| $x_4'x_5'$ |             | 1            | 1             | 1            | 1            |               | 1              | 1             |
| $x_4'x_5$  |             |              | 1             | 1            |              |               | 1              | 1             |

$$f(x_1, x_2, x_3, x_4, x_5) = x_1 x_2' + x_1' x_2 x_3 x_5' + x_1 x_3 x_4 x_5 + x_1 x_3' x_5' + x_2' x_4'$$

Exercício 4.5.4 Apresente expressões simplificadas para as funções apresentadas nos mapas.

| 1 |   |   | 1   | 1 |   |   | 1 | 1 | 1 | 1 | 1 |   |   |   | 1 |
|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|
|   | 1 | 1 |     |   | 1 | 1 |   | 1 |   |   |   |   |   |   | 1 |
|   | 1 | 1 |     |   | 1 | 1 |   | 1 |   |   |   |   |   |   | 1 |
| 1 |   |   | 1   | 1 |   |   | 1 | 1 |   |   |   | 1 | 1 | 1 | 1 |
|   |   |   |     |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |     |   |   |   |   |   |   |   |   |   |   |   |   |
| 1 | 1 | 1 |     |   |   |   |   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1   |   |   |   |   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 |   | 1 1 | 1 |   |   |   | 1 | 1 |   |   |   | 1 | 1 | 1 |

## 4.6 Reticulados

Um conjunto parcialmente ordenado (poset)  $[A, \leq]$  é composto por um conjunto não vazio A e uma relação binária  $\leq$  em A reflexiva, antissimétrica e transitiva, isto é, para quaisquer  $x, y, z \in A$ ,

- Reflexiva:  $x \le x$ .
- Antissimétrica: Se  $x \le y$  e  $y \le x$  então x = y.
- Transitiva: Se  $x \le y$  e  $y \le z$  então  $x \le z$ .

Um conjunto A está totalmente ordenado (toset) quando para quaisquer  $x, y \in A$ ,  $x \le y$  ou  $y \le x$  ou x = y.

Considere o poset  $[A, \leq]$  e  $A' \subseteq A$  não vazio.

- $L \in A$  é um **limite superior** de A' se para todo  $x \in A'$ ,  $x \le L$ .
- $M \in A'$  é um **máximo** ou **maior elemento** de A' se para todo  $x \in A'$ ,  $x \le M$ .
- $s \in A$  é um **supremo** de A' se s for o mínimo (caso exista) do conjunto de limites superiores de A'.

4.6 Reticulados

- $P \in A'$  é um **elemento maximal** de A' se não existir  $x \in A'$ ,  $x \ne P$  tal que  $P \le x$ .
- $\ell \in A$  é um **limite inferior** de A' se para todo  $x \in A'$ ,  $\ell \leq x$ .
- $m \in A'$  é um **mínimo** ou **menor elemento** de A' se para todo  $x \in A'$ ,  $m \le x$ .
- $i \in A$  é um **ínfimo** de A' se i for o máximo (caso exista) do conjunto de limites inferiores de A'.
- $p \in A'$  é um **elemento minimal** de A' se não existir  $x \in A'$ ,  $x \neq p$  tal que  $x \leq p$ .

**Proposição 4.6.1** Sejam  $[A, \leq]$  um poset e  $A' \subseteq A$  não vazio. Se existe um máximo (mínimo) de A' então ele é único.

**Prova:** (RAA) Sejam  $M \neq M'$  máximos de A'.

 $M' \in A' :: M' \leq M$ .

 $M \in A' :: M \leq M'$ .

M = M', pela anti-simetria. (Contradição)

Logo, o máximo é único. ■

O supremo e o ínfimo podem ser definidos para dois elementos.

Seja  $[A, \leq]$  e  $x, y \in A$ . O **supremo** de x e y é o elemento  $s \in A$  tal que

**S1.**  $x \le s \in y \le s$ .

**S2.** se existir algum  $z \in A$  com  $x \le z$  e  $y \le z$  então  $s \le z$ .

O **ínfimo** de x e y é o elemento  $i \in A$  tal que

- **i1.**  $i \le x \in i \le y$ .
- **i2.** se existir algum  $z \in A$  com  $z \le x$  e  $z \le y$  então  $z \le i$ .

Notação: 
$$s = x \lor y = x + y$$
  
 $i = x \land y = x \cdot y$ 

Um **reticulado** é um conjunto parcialmente ordenado no qual existe supremo e ínfimo para quaisquer dois elementos.

Assim, supremo e ínfimo podem ser entendidos como operações binárias em A. Denota-se um reticulado por  $[A, \leq, +, \cdot]$ . Um **reticulado** é **complementado** quando

**RC1.** Existe um menor elemento 0, isto é, para todo  $x \in A$ ,  $0 \le x$ .

4.6 Reticulados

**RC2.** Existe um maior elemento 1, ou seja, para todo  $x \in A$ ,  $x \le 1$ .

**RC3.** Para todo elemento  $x \in A$  existe  $x' \in A$  tal que x + x' = 1 e  $x \cdot x' = 0$ .

Um **reticulado** é **distributivo** quando para quaisquer  $x, y, z \in A$ ,

**RD.** 
$$x + (y \cdot z) = (x + y) \cdot (x + z) e x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$
.

# 4.7 Álgebra de Boole e reticulados

Um reticulado complementado e distributivo é uma álgebra de Boole.

Exercício 4.7.1 Indique os diagramas de Hasse que representam álgebras de Boole, justificando.



# 4.8 Solução de alguns exercícios

### Álgebra de Boole

Itens:

1. 
$$x \cdot x = xx + 0 = xx + xx' = x(x + x') = x1 = x$$

5. 
$$x + (x \cdot y) = x1 + xy = x(1 + y) = x1 = x$$

9. 
$$(x + (y \cdot z))' = x'(yz)' = x'(y' + z') = (x' \cdot y') + (x' \cdot z')$$

13. 
$$((x \cdot y) \cdot z) + (y \cdot z) = (x(yz)) + (yz) = y \cdot z$$

21. se 
$$x = y \cdot (x \cdot y') + (y \cdot x') = (xx') + (xx') = 0 + 0 = 0$$
  
se  $(x \cdot y') + (y \cdot x') = 0 \cdot xy' = 0$  e  $yx' = 0 \cdot xy = x$  e  $yx = y \cdot x = y$ 

#### Minimização

| 1 1 1 1                                           | $x_3$                                            |
|---------------------------------------------------|--------------------------------------------------|
| 1 1 1                                             | $x_1 x_2 x_3 + x_1' x_2' + x_2' x_3'$            |
| 1     1       1     1       1     1       1     1 | $x_2x_3x_4 + x_2'x_4' + x_2x_3'x_4$ ou           |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1             | $x_1'x_2x_3 + x_2'x_3x_4' + x_1x_2'x_4'$ ou      |
| 1 1 1<br>1 1 1<br>1 1 1                           | $x_1x_2' + x_2'x_4' + x_1'x_3x_4' + x_1x_3'x_4'$ |

### Reticulados



Todos os diagramas representam posets. O quinto diagrama não é um reticulado. O quarto, sétimo e oitavo não são complementados. O terceiro não é distributivo. Assim, o primeiro, segundo e o sexto são álgebras de Boole.