Outline

- Amnesia (anterograde and retrograde)
- Medial Temporal Lobe and Episodic Memory
 - MTL Anatomy and Connectivity
 - Relational Memory Theory
- Consolidation

Definition of Amnesia

Anterograde Amnesia – the inability to remember new events

Retrograde Amnesia – the inability to recollect memories acquired before the brain injury

Alan Alda, in Scientific American Frontiers — Don't Forget (2004)

Patient EP (extensive MTL damage)

Impairments following MTL Damage

 Impaired ability to remember new events (episodic memories)

GLOBAL Memory Impairment in Medial Temporal Lobe Amnesia

Assessment Test	Materials and Events	Modalities
Free recall	Words, digits, paragraphs	Vision
Cued recall	Nonsense syllables	Audition
Yes/no recognition	Faces, shapes	Somesthesis
Multiple choice Recognition	Clicks, tones, sounds	Olfaction Gustation
	Mazes	
Learning to criterion	Public events, Personal events	

Outline

- Amnesia (anterograde and retrograde)
- Medial Temporal Lobe and Episodic Memory
 - MTL Anatomy and Connectivity
 - Relational Memory Theory
- Consolidation

Human Hippocampus

Medial Temporal Lobe

Medial Temporal Lobe

Coronal slice

Medial temporal lobe

Association Areas

Primary Sensory Areas

MTL Structures and Episodic Memory

H.M. & E.P. had an almost complete bilateral MTL damage

 Do you have to have this much damage to have amnesia?

MTL Structures and Episodic Memory

Patient R.B. had damage to only one region (CA1) of the hippocampus

• damage limited to the hippocampus can cause amnesia (Zola-Morgan et al., 1986).

As extent of MTL damage increases, the amnesic syndrome becomes more severe

Outline

- Amnesia (anterograde and retrograde)
- Medial Temporal Lobe and Episodic Memory
 - MTL Anatomy and Connectivity
 - Relational Memory Theory
- Consolidation

RELATIONAL MEMORY THEORY

The MTL, in interaction with neocortical storage sites, supports conjunctive memory binding & activation

...representing the relations among perceptually distinct items of scenes or events, and mediating their retrieval

RELATIONAL MEMORY THEORY

- 1. Hippocampus, in interaction with MTL cortex, supports declarative memory → memory for facts & events
- 2. Declarative memory is a fundamentally *relational* system
- 3. Hippocampus contributes the critical processes of conjunctive memory binding & reactivation of conjunctions
- 4. It represents & retrieves *all manner of relations* among the elements of experiences, events, or scenes
- 5. It rapidly acquires (1-trial learning) these representations
- 6. Representations are *flexibly addressable*
- 7. MTL cortex contributes to memory for *individual* items / features

Functional Distinctions within the MTL

Functional Distinctions within the MTL: MTL Cortex Represents Specific Types of Event Content

Functional Distinctions within the MTL: Encoding Item-Context Conjunctions vs. Item Recognition

STUDY:

WORD1 - Context 1 (visual imagery task) WORD2 - Context 2 (phonological task)

Functional Distinctions within the MTL: Encoding Item-Context Conjunctions vs. Item Recognition

MTL and Retrograde Amnesia

MTL damage impairs not only new learning, but also disrupts memories acquired before the injury (Retrograde Amnesia)

Typical Amnesic Pattern

E.P.'s Temporally-Graded Retrograde Amnesia

E.P.'s Temporally-Graded Retrograde Amnesia

Retrograde Amnesia – Consolidation

Temporally-graded loss of pre-morbid memories

Ribot's law (1881)

"This law, which I shall designate as the *law of regression or reversion* seems to me to be a natural conclusion from the observed facts... This loss of memory is, as the mathematicians say, inversely as the time that has elapsed between any given incident and the fall [injury]...the new perishes before the old, the complex before the simple."

- Consolidation: process that transforms a memory trace into a durable representation that is independent of the MTL
- The cortex learns more slowly than the hippocampus, but it is also capable of storing conjunctive/associative memories
 - Repeatedly remembering your high school graduation will reactivate cortical areas relating to what you saw, heard, etc that day
 - Repeated co-activation of cortical areas that represent individual event features allows cortex to gradually bind features together into a conjunctive memory
- Temporally-graded retrograde amnesia occurs because more recently acquired memories have not yet been consolidated

Hippocampus rapidly encodes a conjunctive representation

that act as a pointer to neocortical neurons representing the attended information.

that act as a pointer to

neocortical neurons

attended information.

representing the

representation

HIPP "pointer" and neocortical feature traces constitute the memory

A B C A B C

Replaying feature information to neocortex allows it to gradually bind information together

Hippocampus rapidly encodes a conjunctive representation

Encode in a distributed ensemble of hippocampal neurons that act as a pointer to neocortical neurons representing the attended information.

h1

HIPP "pointer" and neocortical feature traces constitute the memory

Feature information in neocortex is bound together

Hippocampus rapidly encodes a conjunctive representation

h1

Encode in a distributed ensemble of hippocampal neurons that act as a pointer to neocortical neurons representing the attended information.

The neocortex is eventually capable of representing the memory without the aid of HIPP (consolidated memory)

Hippocampus & Memory Consolidation: Transferring Memories to Neocortex

Hippocampus & Memory Consolidation: Transferring Memories to Neocortex

Hippocampus & Memory Consolidation: Transferring Memories to Neocortex

Temporal Gradient of Retrograde Amnesia

MTL damage impairs recent memories still undergoing consolidation, but memories that are already fully consolidated (in the cortex) remain intact

Participation Prompt #2

- Try to remember some experience from this past weekend, bringing as many details to mind
- Do you think what you've remembered contains all of the event information that you had encoded into episodic memory during the experience?
- Do you think what you've remembered is a highly accurate memory of the event, with no distortions or errors?
- If the answer to either of the above is 'no', what are the implications for how the event memory is being consolidated in cortex?