

WOMEN IN DATA SCIENCE

¿Cómo organizar tus experimentos de ML? MLFlow, tu mejor amiga.

Melina Solovey

Data Scientist, Pi Data Strategy & Consulting

Colonia Caroya

¿Cómo organizar tus experimentos de ML? MLFlow, tu mejor amiga.

Objetivo

Conocer una herramienta que nos facilita el trabajo de administrar el ciclo de vida de ML, incluyendo la experimentación, reproducibilidad y deploy de modelos, además de brindar la posibilidad de comparar la performance de los modelos obtenidos a lo largo del proyecto.

Contenidos

- Recordando el método científico
- Escenario Tecnológico
- MLFlow:
 - Introducción de la herramienta
 - Proceso
 - Notebook con ejemplo

Método Científico

Planteamiento del Problema

Experimentación

Conclusión

Observación

Hipótesis

Análisis de Resultados

Método Científico

Distancia

Método Científico costo_supermercado

Problema: ¿A qué super me conviene ir hacer las compras?
Nombre del experimento:

costo_supermercado

Método Científico Costo_supermercado

Método Científico

costo_supermercado

05/08/2019

			Co					
1	Α	100	220	90	90	110	50	0
2	В	110	180	100	90	150	45	50
3	C	90	170	90	100	90	40	100

Método Científico Costo_supermercado

05/08/2019

			C						
1	А	100	220	90	90	110	50	0 (660
2	В	110	180	100	90	150	45	50	725
3	C	90	170	90	100	90	40	100	680

Método Científico costo_supermercado

Método Científico

costo_supermercado

05/08/19

Método Científico y Data Science

Experimento = costo_supermercado

modelo = Tienda parámetro = distancia

			Co Co	Ī				-		Features
1	Α	100	220	90	90	110	50	0	660	Runs o
2	В	110	180	100	90	150	45	50	725	
3	C	90	170	90	100	90	40	100	680	ejecuciones
4	A	110	242	99	99	121	55	0	726	
5	В	121	198	110	99	165	49,5	50	793	
6	C	99	187	90	110	90	44	100	720	J
									A	

Métrica

Escenario Tecnológico

- El ciclo de vida del desarrollo del ML es muy complejo.
- Surgen muchos problemas que no existen en el ciclo de vida normal del desarrollo de software.
- Hay muchos parámetros de ajuste que cambiar y explorar para obtener un buen modelo.

Escenario Tecnológico

		iaii	O I		9100
			PARAMETRO	os	
3	DIM (n)	ncons	TOL	EVAL. FUNC.	TIEMPO
43FLOUDAS	3	3	1,00E-03	10000*(n+ncons)	MENOS DE 1 MINUTO
			1,00E-04		MENOS DE 1 MINUTO
			1,00E-05		CASI DOS HORAS
67FLOUDAS	3	1	1,00E-03	10000*(n+ncons)	MENOS DE 1 MINUTO
			1,00E-04	10000*(n+ncons)	MENOS DE 1 MINUTO
			1,00E-05	10000*(n+ncons)	10 MINUTOS
77FLOUDAS	4	2	1,00E-03	10000*(n+ncons)	MENOS DE 10 MINUTOS
			1,00E-04	10000*(n+ncons)	10 MINUTOS
			1,00E-05	10000*(n+ncons)	2 HORAS Y MEDIA
84FLOUDAS	2	1	1,00E-03	10000*(n+ncons)	MENOS DE 1 MINUTO
			1,00E-04		MENOS DE 1 MINUTO
			1,00E-05		MENOS DE 1 MINUTO
94FLOUDAS	2	2	1,00E-03	10000*(n+ncons)	MENOS DE 1 MINUTO
			1,00E-04		MENOS DE 1 MINUTO
			1,00E-05		1 HORA
G8	2	2	1,00E-03	10000*(n+ncons)	MENOS DE 1 MINUTO
			1,00E-04		MENOS DE 1 MINUTO
			1,00E-05		10 MINUTOS
33FLOUDAS	6	6	1,00E-03	10000*(n+ncons)	2 días!

Escenario Tecnológico

Los gigantes de la Web han creado plataformas de ciencia de datos.

Ejemplos:

- FBLearner Flow de Facebook.
- TFX de Google.
- Michelangelo de Uber.

Desventajas:

- Se limitan a pocos algoritmos o frameworks.
- Se limitan a funcionar en la infraestructura de la compañía, que limita la capacidad de compartir código.

"platform for the machine learning lifecycle"

Presentada por los creadores de Databricks el 5 de junio de 2018.

- Funciona con la mayoría de librería y lenguajes de ML.
- Se ejecuta de la misma manera en cualquier lugar.
- Diseñado para ser útil en organizaciones de 1 o 1000 personas.
- Simple y fácil de usar.

Filosofía de diseño de MLflow

Organización del Proyecto

Proceso: Experimento

- El experimento es la unidad principal de organización y de control de acceso para las ejecuciones de MLflow.
- Todas las ejecuciones "runs" de MLflow pertenecen a un experimento.
- Cada experimento le permite visualizar, buscar y comparar ejecuciones, así como descargar artefactos o metadatos para su análisis en otras herramientas.

Proceso: Experimento

¿Cómo crear un experimento?

```
mlflow.create_experiment(name='nombre_del_experimento',
artifact_location='La/ubicación/para/almacenar/artefactos/de/ejecución')
```

Si artifact_location es None el servidor elige un valor predeterminado apropiado.

¿Cómo activar el experimento que se quiere usar?

```
mlflow.set_experiment(experiment_name='nombre_del_experimento')
```

En caso de que el experimento no exista se crea uno automáticamente.

Proceso: Run/Ejecución

- El run se corresponde con la ejecución del código que hemos considerado como parte del experimento.
- Si se inicia un run sin crear un experimento, mlflow lo crea automáticamente.
- Se puede iniciar y terminar el run de diferentes maneras

```
Manualmente

mlflow.start_run()

. Código del
entrenamiento
del modelo

Usando context manager

with mlflow.start_run():
. del modelo
```


Proceso: Log

Mlflow durante cada ejecución puede registrar la siguiente información:

- Parámetros: parámetros del modelo, dataset u otros.
- <u>Métricas</u>: métricas de evaluación de modelo. El valor es numérico.
 Cada métrica puede actualizarse durante el transcurso de la ejecución y MLflow registra y permite visualizar el historial de la métrica.
- Artefactos: archivos de salida en cualquier formato. Por ejemplo, puede grabar imágenes, modelos y archivos de datos.
- Origen, Versión, Hora de inicio & fin, Etiquetas.

Proceso: Log

Para guardar los parámetros usados:

```
mlflow.log_param(key='nombre_del_parametro', value='valor del parametro')
```

Para guardar las métricas obtenidas:

```
mlflow.log_metric(key='nombre_de_la_metrica', value='valor_de_la_metrica')
```

Para guardar los artifact (imágenes, modelos, etc.):

Proceso: Log Model

Mlflow también tiene una parte dedicada al registro de modelos que se pueden guardar entrenados y después accederá ellos directamente para predecir. Tiene funciones dedicadas a librerías más usadas.

- √ H2O (h2o)
- ✓ Keras (keras)
- ✓ MLeap (mleap)
- ✓ PyTorch (pytorch)
- ✓ Scikit-learn (sklearn)
- ✓ Spark MLlib (spark)

- ✓ TensorFlow (tensorflow)
- ✓ ONNX (onnx)
- ✓ MXNet Gluon (gluon)
- ✓ XGBoost (xgboost)
- ✓ LightGBM (lightgbm)
- ✓ R Function(crate)

Proceso: Log Model

Por default guarda tres archivos:

- python_model.pkl
- conda.yaml
- MLmodel

Dirección donde se va a guardar(por default el origen es el directorio del artifact)

mlflow.libreria_que_se_uso.log_model(modelo, artifact_path, conda_env=None)

Librería usada (sklearn, spark, etc)

Modelo ya entrenado que se desea guardar

Puede ser una representación de diccionario de un entorno Conda o la ruta a un archivo yaml del entorno Conda(Si no hay ninguno, el entorno predeterminado get_default_conda_env() se agrega al modelo)

Proceso: Ejemplo

Creación del del bloque para comenzar el run

Guardado del parámetro n con el nombre de vecinos

Guardado del modelo knn en el directorio knn

```
mlflow.set experiment('iris')
with mlflow.start_run():
    from sklearn import datasets
   iris X, iris y = datasets.load iris(return X y=True)
   np.unique(iris y)
   np.random.seed(0)
   indices = np.random.permutation(len(iris X))
   iris X train = iris X[indices[:-10]]
   iris y train = iris y[indices[:-10]]
   iris X test = iris X[indices[-10:]]
   iris y test = iris y[indices[-10:]]
   # Create and fit a nearest-neighbor classifier
   from sklearn.neighbors import KNeighborsClassifier
   n = 10
   mlflow.log param('vecinos', n)
    knn = KNeighborsClassifier(n_neighbors = n)
    knn.fit(iris X train, iris y train)
    knn.predict(iris X test)
    score = knn.score(iris X test, iris y test)
    mlflow.log metric('score iris', score)
   mlflow.sklearn.log model(knn, 'knn')
```

Creación del experimento de nombre iris

Guardado de la métrica score con el nombre de score_iris

Proceso: Ver Resultados

Podemos acceder a toda la información que hemos logeado durante una ejecución con <u>search runs():</u>

mlflow.search_runs()

run_id experimen	t_id	status	artifact_uri	start_time	end_time	metrics.bic	metrics.dickey- fuller-test	metrics.aic	met ob
0 1fc4c13276114437ba6e2b76f048733a	1 F	INISHED	file:///user-home/1027/DSX_Projects/Analisis%2	2020-01-20 14:52:30.058000+00:00	2020-01-20 14:52:30.637000+00:00	104.994338	1.180787e-10	103.783998	

Podemos obtener la dirección donde se guardan los artifact de cada experimento de la siguiente manera:

```
mlflow.search runs().artifact uri[0]
```

^{&#}x27;file:///user-home/1027/DSX_Projects/Analisis%20-%20Descriptivo/jupyter/mlruns/1/e4d98a63c5844f6f922128bb9271a23f/artifacts'

Proceso: Cargar el modelo

Obtener ruta del modelo de un determinado run:

Cargar el modelo con la función *load model*:

```
model = mlflow.sklearn.load_model(model_uri+'/knn')
type(model)
```

sklearn.neighbors._classification.KNeighborsClassifier - Notar que el modelo es de sklearn

Proceso: Pyfunc

¿Cómo guardamos un modelo que no pertenezcan a alguna de las librerías anteriores en python?

La respuesta es **pyfunc**

Proceso: Pyfunc

- Define un formato de sistema de archivos genérico para los modelos Python.
- Proporciona utilidades para guardar y cargar modelos desde y hacia este formato.
- Es autónomo en el sentido de que incluye toda la información necesaria para cargar y usar un modelo.
- Las dependencias se almacenan directamente con el modelo o se hace referencia a través del entorno Conda.

Proceso: Pyfunc

¿Cómo se guarda un modelo utilizando pyfunc? Necesitamos definir una clase

```
class SARIMA(mlflow.pyfunc.PythonModel):
                                              Función __init__ necesaria para
   def init (self, model):
                                              la creación de la clase
      self.model = model
      super(SARIMA, self). init ()
                                              Dependencias del modelo usado
   def load context(self, context): 
      import statsmodels.api as sm
      return
                                              Método necesario para que, una
   def predict(self, context, model input):
                                              vez guardado, el modelo se
      future = self.model.get forecast(model input)
      future = future.predicted mean
                                              pueda usar para predecir
      return future
```


Manos a la Obra

Conclusión

create_experiment()
set_experiment()

Setear

experimento

Comenzar un run

start_run() end_run() log_param()
log_metric()
log_artifact()

list_experiments()
search_runs()
library.load_model()

Registrar información relevante

Registrar modelo

Cargar modelo

library.log_model()

Ahora sabes porque MLFlow puede ser TU mejor amiga!!!

Repo:

https://github.com/PiConsulting

En redes búscame como Melina Solovey

¡Muchas Gracias!

