

PS Lineare Algebra, Lösungshinweise zu Aufgabenblatt 3

Aufgabe 9

Sei $f: M \to N$ eine Abbildung. Zeigen Sie:

(i) Für $T \subseteq M$ und $S \subseteq N$ gilt

$$T \subseteq f^{-1}(f(T))$$
 und $f(f^{-1}(S)) \subseteq S$.

- (ii) Für $S_1, S_2 \subseteq N$ gilt $f^{-1}(S_1 \cup S_2) = f^{-1}(S_1) \cup f^{-1}(S_2)$.
- (iii) Für $T_1, T_2 \subseteq M$ zeigen oder widerlegen Sie die Aussagen

$$f(T_1 \cup T_2) = f(T_1) \cup f(T_2)$$
 und $f(T_1 \cap T_2) = f(T_1) \cap f(T_2)$.

Lösung. (i) Die Inklusion einer Menge in einer anderen können wir beweisen, indem wir zeigen, dass jedes beliebige Element aus der ersten Menge auch Element der zweiten ist.

Sei $x \in T$. Wir zeigen, dass $x \in f^{-1}(f(T))$, woraus dann folgt (da x ein beliebiges Element aus T ist), dass $T \subseteq f^{-1}(f(T))$ gilt. Wir haben also $f(x) \in f(T)$ und daher (laut der Definition von f^{-1}) auch $f^{-1}(f(x)) \subseteq f^{-1}(f(T))$. Aber $x \in f^{-1}(f(x))$, also ist $x \in f^{-1}(f(T))$.

Für die zweite Inklusion haben wir

$$f(f^{-1}(S)) = f(\{x \mid x \in M \text{ und } f(x) \in S\}) = \{f(x) \mid x \in M \text{ und } f(x) \in S\} \subseteq S.$$

Hier haben wir einfach die Definitionen von f(A) (wo A eine Teilmenge des Definitionsbereichs von f ist) und von $f^{-1}(S)$ verwendet.

- (ii) Um die Gleichheit dieser beiden Mengen zu beweisen, zeigen wir, dass jede der beiden in der anderen eingeschlossen ist.
- " \subseteq ". Sei $x \in f^{-1}(S_1 \cup S_2) = \{x \in M \mid f(x) \in S_1 \cup S_2\}$. Es gilt $f(x) \in S_1 \cup S_2$, woraus wir schlussfolgern, dass $f(x) \in S_1$ oder $f(x) \in S_2$ gilt, also $x \in f^{-1}(S_1)$ oder $x \in f^{-1}(S_2)$ und damit x der Vereinigung der letzten beiden Mengen angehört. Da $x \in f^{-1}(S_1 \cup S_2)$ beliebig gewählt war, folgt $f^{-1}(S_1 \cup S_2) \subseteq f^{-1}(S_1) \cup f^{-1}(S_2)$.
- "\(\to\$". Offensichtlich gilt f\(\text{iir}\) i = 1, 2: $f^{-1}(S_i) = \{x \in M \mid f(x) \in S_i\} \subseteq \{x \in M \mid f(x) \in S_1 \cup S_2\} = f^{-1}(S_1 \cup S_2)$, also ist auch die Vereinigung der beiden Mengen $f^{-1}(S_i)$ in $f^{-1}(S_1 \cup S_2)$ eingeschlossen.
- (iii) Sei $y \in f(T_1 \cup T_2)$ und $x \in T_1 \cup T_2$ so, dass f(x) = y gilt. Dann ist $x \in T_1$ oder $x \in T_2$. Im ersten Fall ist $y = f(x) \in f(T_1)$, im zweiten $y \in f(T_2)$, also in beiden Fällen $y \in f(T_1) \cup f(T_2)$ und es folgt $f(T_1 \cup T_2) \subseteq f(T_1) \cup f(T_2)$. Umgekehrt sieht man wie bei (ii) leicht, dass $f(T_1)$ und $f(T_2)$ Teilmengen von $f(T_1 \cup T_2)$ sind, dies also auch auf deren Vereinigung zutrifft.

Um zu zeigen, dass $f(T_1 \cap T_2) = f(T_1) \cap f(T_2)$ nicht für jede Funktion f gilt, reicht jede nicht-injektive Funktion. Z.B. $f: \{1,2\} \to \{1,2\}$ mit f(x) = 1, für x = 1, 2, und $T_1 = \{1\}$, $T_2 = \{2\}$. Dann ist $f(T_1) = \{1\} = f(T_2)$, aber $f(T_1 \cap T_2) = f(\emptyset) = \emptyset$.

1

Aufgabe 11

Seien $f: M \to N, g: N \to O, h: O \to P$ Abbildungen. Zeigen Sie:

- (i) Es gilt $h \circ (g \circ f) = (h \circ g) \circ f$.
- (ii) Sind f und g injektiv, so auch $g \circ f$.
- (iii) Sind f und g surjektiv, so auch $g \circ f$.
- (iv) Sind f und g bijektiv, so auch $g \circ f$ und es gilt

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Lösung. (i) Sei $x \in M$. Laut der Definition von \circ gilt

$$(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))) = (h \circ g)(f(x)) = ((h \circ g) \circ f)(x).$$

Also stimmen die Werte von $h \circ (g \circ f)$ und $(h \circ g) \circ f$ für jedes beliebige $x \in M$ überein, wodurch bewiesen ist, dass es sich um dieselbe Funktion handelt.

- (ii) Es seien $x_1, x_2 \in M$, $x_1 \neq x_2$. Da f injektiv ist, folgt $f(x_1) \neq f(x_2)$ (siehe Aufgabe 5). Da g injektiv ist, folgt $g(f(x_1)) \neq g(f(x_2))$. Somit ist $(g \circ f)(x_1) \neq (g \circ f)(x_2)$, also ist $g \circ f$ injektiv.
- (iii) Sei $z \in O$. Da g surjektiv ist, gibt es mindestens ein $y \in N$, so dass g(y) = z gilt. Da f surjektiv ist, gibt es mindestens ein $x \in M$, so dass f(x) = y gilt. Also gibt es mindestens ein $x \in M$, so dass $(g \circ f)(x) = z$ gilt. Da $z \in O$ beliebig war, folgt, dass $g \circ f$ surjektiv ist.
 - (iv) Dass $g \circ f$ bijektiv ist, folgt aus (ii) und (iii).

Sei nun z ein beliebiges Element aus O. Da $g \circ f$ bijektiv ist, gibt es genau ein $x \in M$ mit der Eigenschaft $(g \circ f)(x) = z$. Sei y = f(x). Dann ist $g(y) = g(f(x)) = (g \circ f)(x) = z$. Da g bijektiv ist, gilt $g^{-1}(z) = y$. Da f bijektiv ist, gilt $f^{-1}(y) = x$. Wir erhalten $(f^{-1} \circ g^{-1})(z) = f^{-1}(g^{-1}(z)) = f^{-1}(y) = x$. Also ordnet die Funktion $f^{-1} \circ g^{-1}$ jedem $z \in O$ genau das Element $x \in M$ zu, für das $(g \circ f)(x) = z$ gilt. Also ist $f^{-1} \circ g^{-1}$ genau $(g \circ f)^{-1}$.