2-Bit Counter

```
//Verilog code for 2-Bit Counter
module counter_2bit (clk, reset, count);
input wire clk;
input wire reset;
output reg [1:0] count;
wire d0, d1;

assign d0 = ~count[0];
assign d1 = count[1] ^ count[0];

always @(posedge clk) begin
if (reset)
    count <= 2'b00;
else
    count <= {d1, d0};
end</pre>
```


endmodule

Waveform:

Synthesis analysis schematic:

Figure 1: Synthesis analysis schematic

RTL analysis schematic:

Figure 2: RTL analysis schematic

Look Up Tables:

Cell Properties			
count[0]_i_1			
l1	10	O=!I0 & !I1	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Table 1: LUT2

Cell Properties				
count[1]_i_1				
12	11	10	O=I0 & !I1 & !I2 + !I0 & I1 & !I2	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	

Table 2: LUT3