STA 702: Linear Mixed Effects Models

Merlise Clyde

Nov 22, 2022

$$egin{aligned} y_{ij} &= eta^T x_{ij} + \gamma^T z_{ij} + \epsilon_{ij}, \qquad \epsilon_{ij} \overset{iid}{\sim} N(0, \sigma^2) \ \gamma_j \overset{iid}{\sim} N_p(0, \Sigma) \end{aligned}$$

$$egin{aligned} y_{ij} &= eta^T x_{ij} + \gamma^T z_{ij} + \epsilon_{ij}, \qquad \epsilon_{ij} \overset{iid}{\sim} N(0, \sigma^2) \ \gamma_j \overset{iid}{\sim} N_p(0, \Sigma) \end{aligned}$$

■ Fixed effects contribution $\beta^T x_{ij}$, x_{ij} is a $d \times 1$ vector with β is constant across groups j, j = 1, ..., J

$$egin{aligned} y_{ij} &= eta^T x_{ij} + \gamma^T z_{ij} + \epsilon_{ij}, \qquad \epsilon_{ij} \overset{iid}{\sim} N(0, \sigma^2) \ \gamma_j \overset{iid}{\sim} N_p(0, \Sigma) \end{aligned}$$

- Fixed effects contribution $\beta^T x_{ij}$, x_{ij} is a $d \times 1$ vector with β is constant across groups j, j = 1, ..., J
- Random effects $\gamma_j^T z_{ij}$, z_{ij} is a $p \times 1$ vector with $\gamma_j \stackrel{iid}{\sim} N_p(0, \Sigma)$ for groups $j = 1, \dots, J$

$$egin{aligned} y_{ij} &= eta^T x_{ij} + \gamma^T z_{ij} + \epsilon_{ij}, \qquad \epsilon_{ij} \overset{iid}{\sim} N(0, \sigma^2) \ \gamma_j \overset{iid}{\sim} N_p(0, \Sigma) \end{aligned}$$

- Fixed effects contribution $\beta^T x_{ij}$, x_{ij} is a $d \times 1$ vector with β is constant across groups j, j = 1, ..., J
- Random effects $\gamma_j^T z_{ij}$, z_{ij} is a $p \times 1$ vector with $\gamma_j \stackrel{iid}{\sim} N_p(0, \Sigma)$ for groups $j = 1, \dots, J$
- Designed to accomodate correlated data due to nested/hierarchical structure/repeated measurements

$$egin{aligned} y_{ij} &= eta^T x_{ij} + \gamma^T z_{ij} + \epsilon_{ij}, \qquad \epsilon_{ij} \overset{iid}{\sim} N(0, \sigma^2) \ \gamma_j \overset{iid}{\sim} N_p(0, \Sigma) \end{aligned}$$

- Fixed effects contribution $\beta^T x_{ij}$, x_{ij} is a $d \times 1$ vector with β is constant across groups j, j = 1, ..., J
- Random effects $\gamma_j^T z_{ij}$, z_{ij} is a $p \times 1$ vector with $\gamma_j \stackrel{iid}{\sim} N_p(0, \Sigma)$ for groups $j = 1, \dots, J$
- Designed to accomodate correlated data due to nested/hierarchical structure/repeated measurements
- students w/in schools; patients w/in hospitals; additional covariates

$$egin{aligned} y_{ij} &= eta^T x_{ij} + \gamma^T z_{ij} + \epsilon_{ij}, \qquad \epsilon_{ij} \overset{iid}{\sim} N(0, \sigma^2) \ \gamma_j \overset{iid}{\sim} N_p(0, \Sigma) \end{aligned}$$

- Fixed effects contribution $\beta^T x_{ij}$, x_{ij} is a $d \times 1$ vector with β is constant across groups j, j = 1, ..., J
- Random effects $\gamma_j^T z_{ij}$, z_{ij} is a $p \times 1$ vector with $\gamma_j \stackrel{iid}{\sim} N_p(0, \Sigma)$ for groups $j = 1, \dots, J$
- Designed to accomodate correlated data due to nested/hierarchical structure/repeated measurements
- students w/in schools; patients w/in hospitals; additional covariates
- As before not inherently Bayesian! It's just a model/likelihood specification! Population parameters, $\theta = (\beta, \Sigma, \sigma^2)$

■ Complete Data Likelihood $(\{\gamma_i\}, \theta)$

$$L(\{eta_i\}, heta)) \propto \prod_j N(\gamma_j;0,\Sigma) \prod_i N(y_{ij};eta^T x_{ij} + \gamma_j^T z_{ij},\sigma^2)$$

• Complete Data Likelihood $(\{\gamma_i\}, \theta)$

$$L(\{eta_i\}, heta)) \propto \prod_j N(\gamma_j;0,\Sigma) \prod_i N(y_{ij};eta^T x_{ij} + \gamma_j^T z_{ij},\sigma^2)$$

■ Marginal likelihood based on just observed data $(\{y_{ij}\}, \{x_{ij}\}, \{z_{ij}\})$

• Complete Data Likelihood $(\{\gamma_i\}, \theta)$

$$L(\{eta_i\}, heta)) \propto \prod_j N(\gamma_j;0,\Sigma) \prod_i N(y_{ij};eta^T x_{ij} + \gamma_j^T z_{ij},\sigma^2)$$

■ Marginal likelihood based on just observed data $(\{y_{ij}\}, \{x_{ij}\}, \{z_{ij}\})$

$$L(\{eta_i\}, heta)) \propto \prod_j \int N(\gamma_j;0,\Sigma) \prod_i N(y_{ij};eta^T x_{ij} + \gamma_j^T z_{ij},\sigma^2) \, d\gamma_j$$

• Complete Data Likelihood $(\{\gamma_i\}, \theta)$

$$L(\{eta_i\}, heta)) \propto \prod_j N(\gamma_j;0,\Sigma) \prod_i N(y_{ij};eta^T x_{ij} + \gamma_j^T z_{ij},\sigma^2)$$

■ Marginal likelihood based on just observed data $(\{y_{ij}\}, \{x_{ij}\}, \{z_{ij}\})$

$$L(\{eta_i\}, heta)) \propto \prod_j \int N(\gamma_j;0,\Sigma) \prod_i N(y_{ij};eta^T x_{ij} + \gamma_j^T z_{ij},\sigma^2) \, d\gamma_j$$

Option A: we can calculate this integral by brute force algebraically

• Complete Data Likelihood $(\{\gamma_i\}, \theta)$

$$L(\{eta_i\}, heta)) \propto \prod_j N(\gamma_j; 0, \Sigma) \prod_i N(y_{ij}; eta^T x_{ij} + \gamma_j^T z_{ij}, \sigma^2)$$

■ Marginal likelihood based on just observed data $(\{y_{ij}\}, \{x_{ij}\}, \{z_{ij}\})$

$$L(\{eta_i\}, heta)) \propto \prod_j \int N(\gamma_j;0,\Sigma) \prod_i N(y_{ij};eta^T x_{ij} + \gamma_j^T z_{ij},\sigma^2) \, d\gamma_j$$

- Option A: we can calculate this integral by brute force algebraically
- Option B: (lazy option) We can calculate marginal exploiting properties of Gaussians as sums will be normal - just read off the first two moments!

■ Express observed data as vectors for each group j: (Y_j, X_j, Z_j) where Y_j is $n_j \times 1$, X_j is $n_j \times d$ and Z_j is $n_j \times p$;

- Express observed data as vectors for each group j: (Y_j, X_j, Z_j) where Y_j is $n_j \times 1$, X_j is $n_j \times d$ and Z_j is $n_j \times p$;
- Group Specific Model (1):

$$egin{aligned} Y_j &= X_j eta + Z_j \gamma + \epsilon_j, \qquad \epsilon_j \sim N(0, \sigma^2 I_{n_j}) \ \gamma_j \stackrel{iid}{\sim} N(0, \Sigma) \end{aligned}$$

- Express observed data as vectors for each group j: (Y_j, X_j, Z_j) where Y_j is $n_j \times 1$, X_j is $n_j \times d$ and Z_j is $n_j \times p$;
- Group Specific Model (1):

$$egin{aligned} Y_j &= X_j eta + Z_j \gamma + \epsilon_j, \qquad \epsilon_j \sim N(0, \sigma^2 I_{n_j}) \ \gamma_j \stackrel{iid}{\sim} N(0, \Sigma) \end{aligned}$$

■ Population Mean $E[Y_j] = E[X_j\beta + Z_j\gamma_j + \epsilon_j] = X_j\beta$

- Express observed data as vectors for each group j: (Y_j, X_j, Z_j) where Y_j is $n_j \times 1$, X_j is $n_j \times d$ and Z_j is $n_j \times p$;
- Group Specific Model (1):

$$egin{aligned} Y_j &= X_j eta + Z_j \gamma + \epsilon_j, \qquad \epsilon_j \sim N(0, \sigma^2 I_{n_j}) \ \gamma_j \stackrel{iid}{\sim} N(0, \Sigma) \end{aligned}$$

- Population Mean $E[Y_j] = E[X_j\beta + Z_j\gamma_j + \epsilon_j] = X_j\beta$
- Covariance $V[Y_j] = V[X_j\beta + Z_j\gamma_j + \epsilon_j] = Z_j\Sigma Z_j^T + \sigma^2 I_{n_j}$

- Express observed data as vectors for each group j: (Y_j, X_j, Z_j) where Y_j is $n_j \times 1$, X_j is $n_j \times d$ and Z_j is $n_j \times p$;
- Group Specific Model (1):

$$egin{aligned} Y_j &= X_j eta + Z_j \gamma + \epsilon_j, \qquad \epsilon_j \sim N(0, \sigma^2 I_{n_j}) \ \gamma_j \stackrel{iid}{\sim} N(0, \Sigma) \end{aligned}$$

- Population Mean $E[Y_j] = E[X_j\beta + Z_j\gamma_j + \epsilon_j] = X_j\beta$
- Covariance $V[Y_j] = V[X_j\beta + Z_j\gamma_j + \epsilon_j] = Z_j\Sigma Z_j^T + \sigma^2 I_{n_j}$
- Group Specific Model (2)

$$Y_j \mid eta, \Sigma, \sigma^2 \stackrel{ind}{\sim} N(X_jeta, Z_j\Sigma Z_j^T + \sigma^2 I_{n_j})$$

Priors

■ Model (1) leads to a simple Gibbs sampler if we use conditional (semi-) conjugate priors on $\theta = (\beta, \Sigma, \phi = 1/\sigma^2)$

$$eta \sim N(\mu_0, \Psi_0^{-1}) \ \phi \sim \mathsf{Gamma}(v_0/2, v_o \sigma_0^2/2) \ \Sigma \sim \mathrm{IW}_p(\eta_0, oldsymbol{S}_0^{-1})$$

Conditional posterior for **D**

$$egin{aligned} Y_j \mid eta, \gamma_j, \sigma^2 & \stackrel{ind}{\sim} N(X_jeta + Z_j\gamma_j, \sigma^2I_{n_j}) \ \gamma_j \mid \Sigma \stackrel{iid}{\sim} N(0, \Sigma) \ \Sigma & \sim \mathrm{IW}_p(\eta_0, oldsymbol{S}_0^{-1}) \ eta & \sim N(\mu_0, \Psi_0^{-1}) \ \phi & \sim \mathsf{Gamma}(v_0/2, v_o\sigma_0^2/2) \end{aligned}$$

■ The conditional posterior (full conditional) $\Sigma \mid \gamma, Y$, is then

$$\pi(\Sigma \mid oldsymbol{\gamma}, oldsymbol{Y}) \propto \pi(\Sigma) \cdot \pi(oldsymbol{\gamma} \mid \Sigma) \ \propto |\Sigma|^{rac{-(\eta_0 + p + 1)}{2}} \exp\left\{-rac{1}{2} \mathrm{tr}(oldsymbol{S}_0 \Sigma^{-1})
ight\} \cdot \prod_{j=1}^{J} |\Sigma|^{-rac{1}{2}} \exp\left\{-rac{1}{2} \left[oldsymbol{\gamma}_j^T \Sigma^{-1} \gamma_j
ight]
ight\} \ \pi(oldsymbol{\gamma})$$

Conditional posterior for **D**

$$egin{aligned} Y_j \mid eta, \gamma_j, \sigma^2 & \stackrel{ind}{\sim} N(X_jeta + Z_j\gamma_j, \sigma^2I_{n_j}) \ \gamma_j \mid \Sigma \stackrel{iid}{\sim} N(0, \Sigma) \ \Sigma & \sim \mathrm{IW}_p(\eta_0, oldsymbol{S}_0^{-1}) \ eta & \sim N(\mu_0, \Psi_0^{-1}) \ \phi & \sim \mathsf{Gamma}(v_0/2, v_o\sigma_0^2/2) \end{aligned}$$

■ The conditional posterior (full conditional) $\Sigma \mid \gamma, Y$, is then

$$\pi(\Sigma \mid oldsymbol{\gamma}, oldsymbol{Y}) \propto \pi(\Sigma) \cdot \pi(oldsymbol{\gamma} \mid \Sigma) \ \propto |\Sigma|^{rac{-(\eta_0 + p + 1)}{2}} \exp\left\{-rac{1}{2} \mathrm{tr}(oldsymbol{S}_0 \Sigma^{-1})
ight\} \cdot \underbrace{\prod_{j=1}^{J} |\Sigma|^{-rac{1}{2}} \exp\left\{-rac{1}{2} \left[oldsymbol{\gamma}_j^T \Sigma^{-1} \gamma_j
ight]
ight\}}_{\pi(oldsymbol{\gamma})}$$

$$lacksquare \Sigma \mid \{\gamma_j\}, oldsymbol{Y} \sim \mathrm{IW}_p\left(\eta_0 + J, (oldsymbol{S}_0 + \sum_{j=1}^J \gamma_j \gamma_j^T)^{-1}
ight)$$

Posterior Continued

$$egin{aligned} \pi(\Sigma \mid oldsymbol{\gamma}, oldsymbol{Y}) & \propto |\Sigma|^{rac{-(\eta_0+p+1)}{2}} \exp\left\{-rac{1}{2} \mathrm{tr}(oldsymbol{S}_0 \Sigma^{-1})
ight\} \cdot \prod_{j=1}^J |\Sigma|^{-rac{1}{2}} \exp\left\{-rac{1}{2} \left[oldsymbol{\gamma}_j^T \Sigma^{-1} \gamma_j
ight]
ight\} \ & \propto |\Sigma|^{rac{-(\eta_0+p+J+1)}{2}} \exp\left\{-rac{1}{2} \left[\mathrm{tr}\left[oldsymbol{S}_0 \Sigma^{-1}
ight] + \sum_{j=1}^J \gamma_j^T \Sigma^{-1} \gamma_j
ight]
ight\}, \ & \propto |\Sigma|^{rac{-(\eta_0+p+J+1)}{2}} \exp\left\{-rac{1}{2} \left[\mathrm{tr}\left[oldsymbol{S}_0 \Sigma^{-1}
ight] + \sum_{j=1}^J \mathrm{tr}\left[\gamma_j \gamma_j^T \Sigma^{-1}
ight]
ight]
ight\}, \ & \propto |\Sigma|^{rac{-(\eta_0+p+J+1)}{2}} \exp\left\{-rac{1}{2} \mathrm{tr}\left[oldsymbol{S}_0 \Sigma^{-1} + \sum_{j=1}^J \gamma_j \gamma_j^T \Sigma^{-1}
ight]
ight\}, \ & \propto |\Sigma|^{rac{-(\eta_0+p+J+1)}{2}} \exp\left\{-rac{1}{2} \mathrm{tr}\left[oldsymbol{S}_0 + \sum_{j=1}^J \gamma_j \gamma_j^T
ight) \Sigma^{-1}
ight]
ight\}, \end{aligned}$$

■ Model (1) leads to a simple Gibbs sampler if we use conditional (semi-) conjugate priors on $\theta = (\beta, \Sigma, \phi = 1/\sigma^2)$

- Model (1) leads to a simple Gibbs sampler if we use conditional (semi-) conjugate priors on $\theta = (\beta, \Sigma, \phi = 1/\sigma^2)$
- Model (2) can be challenging to update the variance components! no conjugacy and need to ensure that MH updates maintain the positive-definiteness of Σ (can reparameterize)

- Model (1) leads to a simple Gibbs sampler if we use conditional (semi-) conjugate priors on $\theta = (\beta, \Sigma, \phi = 1/\sigma^2)$
- Model (2) can be challenging to update the variance components! no conjugacy and need to ensure that MH updates maintain the positive-definiteness of Σ (can reparameterize)
- Is Gibbs always more efficient?

- Model (1) leads to a simple Gibbs sampler if we use conditional (semi-) conjugate priors on $\theta = (\beta, \Sigma, \phi = 1/\sigma^2)$
- Model (2) can be challenging to update the variance components! no conjugacy and need to ensure that MH updates maintain the positive-definiteness of Σ (can reparameterize)
- Is Gibbs always more efficient?
- No because the Gibbs sampler can have high autocorrelation in updating the $\{\gamma_j\}$ from their full conditional and then updating θ from their full full conditionals given the $\{\gamma_j\}$

- Model (1) leads to a simple Gibbs sampler if we use conditional (semi-) conjugate priors on $\theta = (\beta, \Sigma, \phi = 1/\sigma^2)$
- Model (2) can be challenging to update the variance components! no conjugacy and need to ensure that MH updates maintain the positive-definiteness of Σ (can reparameterize)
- Is Gibbs always more efficient?
- No because the Gibbs sampler can have high autocorrelation in updating the $\{\gamma_j\}$ from their full conditional and then updating θ from their full full conditionals given the $\{\gamma_j\}$
- slow mixing

- Model (1) leads to a simple Gibbs sampler if we use conditional (semi-) conjugate priors on $\theta = (\beta, \Sigma, \phi = 1/\sigma^2)$
- Model (2) can be challenging to update the variance components! no conjugacy and need to ensure that MH updates maintain the positive-definiteness of ∑ (can reparameterize)
- Is Gibbs always more efficient?
- No because the Gibbs sampler can have high autocorrelation in updating the $\{\gamma_j\}$ from their full conditional and then updating θ from their full full conditionals given the $\{\gamma_j\}$
- slow mixing
- update β using (2) instead of (1) (marginalization so is independent of γ_j 's

Marginal update for β

$$egin{aligned} Y_j \mid eta, \Sigma, \sigma^2 \overset{ind}{\sim} N(X_jeta, Z_j\Sigma Z_j^T + \sigma^2 I_{n_j}) \ eta \sim N(\mu_0, \Psi_0^{-1}) \end{aligned}$$

Marginal update for β

$$egin{aligned} Y_j \mid eta, \Sigma, \sigma^2 \overset{ind}{\sim} N(X_jeta, Z_j\Sigma Z_j^T + \sigma^2 I_{n_j}) \ eta \sim N(\mu_0, \Psi_0^{-1}) \end{aligned}$$

• Let $\Phi_j = (Z_j \Sigma Z_j^T + \sigma^2 I_{n_j})^{-1}$ (precision in model 2)

Marginal update for β

$$egin{aligned} Y_j \mid eta, \Sigma, \sigma^2 \stackrel{ind}{\sim} N(X_jeta, Z_j\Sigma Z_j^T + \sigma^2 I_{n_j}) \ eta \sim N(\mu_0, \Psi_0^{-1}) \end{aligned}$$

• Let $\Phi_j = (Z_j \Sigma Z_j^T + \sigma^2 I_{n_j})^{-1}$ (precision in model 2)

$$\pi(eta \mid \Sigma, \sigma^2, \mathbf{Y}) \propto |\Psi_0|^{1/2} \exp\left\{-\frac{1}{2}(eta - \mu_0)^T \Psi_0(eta - \mu_0)\right\} \cdot \prod_{j=1}^J |\Phi_j|^{1/2} \exp\left\{-\frac{1}{2}(Y_j - X_j eta)^T \Phi_j(Y_j - X_j eta)\right\}$$

$$\propto \exp \left\{ -rac{1}{2} \Bigg((eta - \mu_0)^T \Psi_0 (eta - \mu_0) + \sum_j (Y_j - X_j eta)^T \Phi_j (Y_j - X_j eta) \Bigg\}
ight.$$

Marginal Posterior for β

$$\pi(\beta \mid \Sigma, \sigma^2, \boldsymbol{Y})$$

$$\propto \exp\left\{-\frac{1}{2}\left((\beta - \mu_0)^T \Psi_0(\beta - \mu_0) + \sum_j (Y_j - X_j\beta)^T \Phi_j(Y_j - X_j\beta)\right)\right\}$$

Marginal Posterior for β

$$\pi(\beta \mid \Sigma, \sigma^2, \boldsymbol{Y})$$

$$\propto \exp\left\{-\frac{1}{2}\left((\beta - \mu_0)^T \Psi_0(\beta - \mu_0) + \sum_j (Y_j - X_j\beta)^T \Phi_j(Y_j - X_j\beta)\right)\right\}$$

precision

$$\Psi_n = \Psi_0 + \sum_{j=1}^J X_j^T \Phi_j X_j$$

mean

$$\mu_n = \left(\Psi_0 + \sum_{j=1}^J X_j^T \Phi_j X_j
ight)^{-1} \left(\Psi_0 \mu_0 + \sum_{j=1}^J X_j^T \Phi_j X_j \hat{eta}_j
ight)$$

where $\hat{\beta}_j = (X_j^T \Phi X_j)^{-1} X_j^T \Phi_j Y_j$ is the generalized least squares estimate of β for group j

Full conditional for σ^2 or ϕ

$$egin{aligned} Y_j \mid eta, \gamma_j, \sigma^2 & \stackrel{ind}{\sim} N(X_jeta + Z_j\gamma_j, \sigma^2I_{n_j}) \ \gamma_j \mid \Sigma \stackrel{iid}{\sim} N(0, \Sigma) \ \Sigma & \sim \mathrm{IW}_p(\eta_0, oldsymbol{S}_0^{-1}) \ eta & \sim N(\mu_0, \Psi_0^{-1}) \ \phi & \sim \mathsf{Gamma}(v_0/2, v_o\sigma_0^2/2) \end{aligned}$$

$$\pi(\phi \mid eta, \{\gamma_j\}\{Y_j\}) \propto \mathsf{Gamma}(\phi; v_0/2, v_o\sigma_0^2/2) \prod_j N(Y_j; X_jeta + Z_j\gamma_j, \phi^{-1}I_{n_j}))$$

$$\phi \mid \{Y_j\}, eta, \{\gamma_j\} \sim \mathsf{Gamma}\left(rac{v_0 + \sum_j n_j}{2}, rac{v_o \sigma_0^2 + \sum_j \|Y_j - X_j eta - Z_j \gamma_j\|^2}{2}
ight)$$

Full conditional for $\{\gamma_i\}$

$$egin{aligned} Y_j \mid eta, \gamma_j, \sigma^2 \stackrel{ind}{\sim} N(X_jeta + Z_j\gamma_j, \sigma^2I_{n_j}) \ \gamma_j \mid \Sigma \stackrel{iid}{\sim} N(0, \Sigma) \ \Sigma \sim \mathrm{IW}_p(\eta_0, oldsymbol{S}_0^{-1}) \ eta \sim N(\mu_0, \Psi_0^{-1}) \ \phi \sim \mathsf{Gamma}(v_0/2, v_o\sigma_0^2/2) \end{aligned}$$

Full conditional for $\{\gamma_i\}$

$$egin{aligned} Y_j \mid eta, \gamma_j, \sigma^2 \stackrel{ind}{\sim} N(X_jeta + Z_j\gamma_j, \sigma^2I_{n_j}) \ \gamma_j \mid \Sigma \stackrel{iid}{\sim} N(0, \Sigma) \ \Sigma \sim \mathrm{IW}_p(\eta_0, oldsymbol{S}_0^{-1}) \ eta \sim N(\mu_0, \Psi_0^{-1}) \ \phi \sim \mathsf{Gamma}(v_0/2, v_o\sigma_0^2/2) \end{aligned}$$

work out as HW

■ Draw $\beta, \gamma_1, \dots \gamma_J$ as a block given ϕ , Σ by

- Draw $\beta, \gamma_1, \dots \gamma_J$ as a block given ϕ , Σ by
 - Draw $\beta \mid \phi, \Sigma, Y$ then
 - lacksquare Draw $\gamma_j \mid eta, \phi, \Sigma, Y ext{ for } j=1, \dots J$

- Draw $\beta, \gamma_1, \dots \gamma_J$ as a block given ϕ , Σ by
 - Draw $\beta \mid \phi, \Sigma, Y$ then
 - Draw $\gamma_j \mid \beta, \phi, \Sigma, Y \text{ for } j = 1, \dots J$
- Draw $\Sigma \mid \gamma_1, \dots \gamma_J, \beta, \phi, Y$

- Draw $\beta, \gamma_1, \dots \gamma_J$ as a block given ϕ , Σ by
 - Draw $\beta \mid \phi, \Sigma, Y$ then
 - Draw $\gamma_j \mid \beta, \phi, \Sigma, Y \text{ for } j = 1, \dots J$
- Draw $\Sigma \mid \gamma_1, \dots \gamma_J, \beta, \phi, Y$
- Draw $\phi \mid \beta, \gamma_1, \dots \gamma_J, \Sigma, Y$

- Draw $\beta, \gamma_1, \dots \gamma_J$ as a block given ϕ , Σ by
 - Draw $\beta \mid \phi, \Sigma, Y$ then
 - Draw $\gamma_j \mid \beta, \phi, \Sigma, Y \text{ for } j = 1, \dots J$
- Draw $\Sigma \mid \gamma_1, \dots \gamma_J, \beta, \phi, Y$
- Draw $\phi \mid \beta, \gamma_1, \dots \gamma_J, \Sigma, Y$
- Compare to previous Gibbs samplers

- Draw $\beta, \gamma_1, \dots \gamma_J$ as a block given ϕ , Σ by
 - Draw $\beta \mid \phi, \Sigma, Y$ then
 - Draw $\gamma_j \mid \beta, \phi, \Sigma, Y \text{ for } j = 1, \dots J$
- Draw $\Sigma \mid \gamma_1, \dots \gamma_J, \beta, \phi, Y$
- Draw $\phi \mid \beta, \gamma_1, \dots \gamma_J, \Sigma, Y$
- Compare to previous Gibbs samplers
- How would you implement MH?

