相似

Didnelpsun

目录

1	特征值与迹	1
2	相似对角化	1
3	判断相们对角化	1

特征值往往与前面的内容进行混合考察。

1 特征值与迹

例题: 已知 A 是 3 阶方阵,特征值为 1, 2, 3, 求 |A| 的元素 a_{11}, a_{22}, a_{33} 的代数余子式 A_{11}, A_{22}, A_{33} 的和 $\sum_{i=1}^{3} A_{ii}$ 。

解:首先代数余子式的和 A_{11} , A_{22} , A_{33} 一般在行列式展开定理中使用,但是这里给出的不是一行或一列的代数余子式,而是主对角线上的代数余子式,这就无法使用代数余子式来表达行列式的值了。

而另一个提到代数余子式的地方就是伴随矩阵 A^* ,所求的正好是伴随矩阵的迹 $tr(A^*) = A_{11} + A_{22} + A_{33}$ 。

又根据特征值性质,特征值的和为矩阵的迹,特征值的积为矩阵行列式的值,所以 $tr(A^*) = A_{11} + A_{22} + A_{33} = \lambda_1^* + \lambda_2^* + \lambda_3^*$ $= \sum_{i=1}^3 \frac{|A|}{\lambda_i} = \sum_{i=1}^3 \frac{\lambda_1 \lambda_2 \lambda_3}{\lambda_i} = \lambda_2 \lambda_3 + \lambda_1 \lambda_3 + \lambda_1 \lambda_2 = 2 + 3 + 6 = 11.$

2 相似对角化

3 判断相似对角化

可以使用相似对角化的四个条件,但是最基本的使用还是 A 有 n 个无关的特征向量 ξ 。