Оглавление

1	Кол	њца и поля	2
	1.1	Факторкольцо	2
	1.2	Гомоморфизм колец	3
	1.3	Классификация простых полей	1

Глава 1

Кольца и поля

1.1. Факторкольцо

Напоминание. A – кольцо, A_{I} – множество классов вычетов

Продолжаем доказательство:

Доказательство. $\frac{A}{I}$ – абелева группа (по т. о факторгруппе)

Нужно доказать, что $(\overline{x} + \overline{y})\overline{z} = \overline{xz} + \overline{yz}$

Выберем $x \in \overline{x}, y \in \overline{y}, z \in \overline{z}$

$$(\overline{x} + \overline{y})\overline{z} = \overline{x}\overline{z} + \overline{y}\overline{z} \iff \overline{(x+y)z} = \overline{xz+yz}$$

Остальное – аналогично

Если A – кольцо с единицей, то $\overline{1}$ – единица в $^{A}\!\!/_{I}$

Теорема 1 (факторкольцо по простому идеалу). A – коммутативное ассоциативное кольцо, I – идеал. Следующие условия равносильны:

- I − простой
- 2. $\frac{A}{I}$ область целостности

Доказательство. Пусть $X \in {}^{A}\!\!/_{I}, \quad x \in X$ Тогда $X = 0 \iff \overline{x} = \overline{0} \iff x \equiv 0 \iff x - 0 \in I \iff x \in I$

 \bullet (1) \Longrightarrow (2)

Пусть $X, Y \in A_{I}$, $XY = \overline{0}$

Пусть $x \in X$, $y \in Y \implies \overline{xy} = \overline{0} \implies xy \in I \xrightarrow[I \text{ простой}]{} x \in I \implies X = \overline{0}$

 \bullet (2) \Longrightarrow (1)

Пусть $xy \in I \implies \overline{xy} = \overline{0} \implies \overline{x} \cdot \overline{y} = \overline{0} \xrightarrow[\text{обл. цел.}]{} \overline{x} = 0 \implies x \in I$

Теорема 2 (факторкольцо по максимальному идеалу). A – коммутативное ассоциативное кольцо с единицей, І – идеал. Следующие условия равносильны:

- 1. I максимальный
- 2. A_{I} поле

Доказательство.

 \bullet (1) \Longrightarrow (2)

 $^{A}\!\!/_{I}$ – коммутативное ассоциативное кольцо с единицей

Осталось доказать, что
$$\forall X \in A_I$$
, $X \neq \overline{0} \quad \exists X^{-1}$

$$\overline{0} = I \implies X \neq I$$

Пусть $x \in X \implies x \in I$

Пусть $J\coloneqq\langle x,I\rangle$ (он существует, это обсуждалось в прошлый раз)

$$J \supset I, \ J \neq I \xrightarrow[I - \text{make}]{} J = A \implies A \in J$$

$$1 \in \langle I,x \rangle \implies 1 = \underbrace{a_1s_1 + \ldots + a_ks_k}_{\in I} + bx$$
 для некоторых $s_i \in I, \quad a_i,b \in A$

$$\implies 1 \equiv bx \pmod{I} \implies \overline{1} = \overline{b} \cdot \overline{x} = \overline{b}X \implies \overline{b} = X^{-1}$$

 \bullet (2) \Longrightarrow (1)

Пусть J – идеал, $I \subset J$, $I \neq J$

Докажем, что J = A:

Пусть $x \in J \setminus I$

$$\overline{x} \in A_I, \quad \overline{x} \neq \overline{0} \implies \exists Y : \overline{x}Y = \overline{1}$$

Пусть $\overline{y} \in Y \implies \overline{x} \cdot \overline{y} = \overline{1} \implies xy - 1 \in I$

$$\begin{cases} x \in J \\ xy - 1 \in I \end{cases} \implies 1 = \underbrace{xy}_{\in J} - \underbrace{(xy - 1)}_{\in I} \in J \implies J = A$$

Замечание. Поле является областью целостности \implies в кольце с единицей максимальный идеал является простым

Теорема 3 (факторкольцо кольца многочленов). K – поле, $A = K[x], P(x) \in A, I = \langle P(x) \rangle$ (это не условие, а обозначение – известно, что все идеалы такие), $B = \frac{A}{I}$ Тогда равносильны условия:

1. P неприводим $\iff A_{I}$ – поле

Доказательство. Правая часть равносильна тому, что I максимальный

ullet \Longrightarrow Пусть $I\in J,\quad Q(x)$ – такой, что $J=\langle Q(x)
angle$

$$\langle P(x) \rangle \subset \langle Q(x) \rangle \implies P(x) \vdots Q(x) \xrightarrow[P \text{ неприводимый}]{}$$

$$\implies \left[\begin{array}{ll} Q(x) = cP(x), & c \in K, & c \neq 0 \implies J = I \\ Q(x) = c, & c \in K, & c \neq 0 \implies J = A \end{array} \right. \implies I \max$$

• =

Пусть P приводим

$$\implies \exists \, Q(x): \quad P(x) \vdots Q(x), \qquad Q(x) \neq c P(x), \quad Q(x) \neq c$$

$$\implies \langle P(x) \rangle \subsetneq \langle Q(x) \rangle \subsetneq A \implies I \text{ He max}$$

1.2. Гомоморфизм колец

Определение 1. $(A, +_A, \cdot_A), (B, +_B, \cdot_B)$ – кольца

Отображение $f:A\to B$ называется гомоморфизмом, если

$$f(x +_A y) = f(x) +_B f(y)$$

$$f(x \cdot_A y) = f(a) \cdot_B f(y)$$

Определение 2. Отображение $f:A \to B$ называется изоморфизмом, если f – гомоморфизм и биекция

Определение 3. Если существует изоморфизм из A в B, то A и B называются изоморфными

Обозначение. $A \simeq B$

Все тривиальные свойства верны: про обратный, про композицию, про отношение "эквивалентности" (настоящей эквивалентности здесь нет – нет множества всех колец)

Определение 4. $A,\,B$ – цольцо, $f:A\to B$ – гомоморфизм

Ядро: $\{ x \in A \mid f(x) = 0 \}$

 $\mathsf{O}\mathsf{б}\mathsf{o}\mathsf{3}\mathsf{h}\mathsf{a}\mathsf{ч}\mathsf{e}\mathsf{h}\mathsf{u}\mathsf{e}.\ \ker f$

Образ: $\{ f(x) \mid x \in A \}$

Обозначение. $\operatorname{Im} A$

Свойства. A, B – коммутативные, $f : A \to B$ - гомоморфизм

Доказательство. Следует из аналогичного свойства для гомоморфизма групп

Замечание. Коммутативность здесь не нужна

Замечание. Для единицы не верно

 $2. \ker f$ – идеал

Доказательство. $\ker f \neq 0$, т. к. $0_A \in \ker f$

- $x, y \in \ker f \implies f(x+y) = \underbrace{f(x)}_{0} + \underbrace{f(y)}_{0} = 0 + 0 = 0$
- $\underbrace{f(0)}_{0} = f(x + (-x)) = \underbrace{f(x)}_{0} + f(x) \implies f(-x) = 0$
- $\bullet \ a \in A \qquad f(ax) = f(a)f(x) = f(a) \cdot 0 = 0$

3. $\operatorname{Im} f$ – подкольцо B

Доказательство. Im $f \subset B$

Нужно преверить, что ${\rm Im}\, f$ замкнут относительно операции

Для сложения – можно сослаться на группы

Для умножения:

$$x, y \in \operatorname{Im} f \implies a, b \in A: \quad f(a) = x, \quad f(b) = y$$

$$\implies xy = f(a)f(b) = f(ab) \in \operatorname{Im} f$$

Теорема 4 (о гомомрфизме колец). A, B – коммутативные ассоциативные кольца f:A o B — гомоморфизм Тогда $A_{\ker f}\simeq\operatorname{Im} f$

Доказательство. Определим $\varphi: {}^{A}/_{\ker f} \to \operatorname{Im} f$

Пусть $X \in {}^{A}/_{\ker f}$, $x \in X$

Положим $\varphi(X) := f(x)$

$$x \in X \implies X = \overline{x} \implies \varphi(\overline{x}) = f(x)$$

• Корректность:

Пусть $x, x' \in X$

Проверим, что f(x') = f(x)

$$\overline{x} = \overline{x'} \implies x \underset{\ker f}{\equiv} x' \implies x - x' \in \ker f \implies f(x) = f(x' + (x - x')) = f(x') + \underbrace{f(x - x')}_{0 \text{ } (x - x' \in \ker f)}$$

• Гомоморфизм:

$$X,Y \in A_{\ker f}, \qquad x \in, \quad y \in Y$$

$$X = \overline{x}, \quad Y = \overline{y}, \qquad X + Y = \overline{x+y}, \quad XY = \overline{xy}$$

$$\varphi(X+Y) = \varphi(\overline{x+y}) = f(x+y) \xrightarrow{\text{f romompd.}} f(x) + f(y) = \varphi(\overline{x}) + \varphi(\overline{y}) = \varphi(\overline{x} + \overline{y})$$

Для умножения – то же самое

• Сюръективность: Пусть $b \in \operatorname{Im} f$

$$\implies \exists x \in A: \quad f(x) = b \implies \varphi(\overline{x}) = b$$

• Инъективность:

Пусть $\varphi(X) = \varphi(Y), \quad x \in X, \ y \in Y$

$$\implies f(x) = f(y) \implies f(x-y) = 0 \implies x-y \in \ker f \implies \overline{x} \underset{\ker f}{\equiv} y \implies \overline{x} = \overline{y} \implies X = Y$$

1.3. Классификация простых полей

Определение 5. A – кольцо

Характеристикой A называется называется наименьшее $n \in \mathbb{N}$ такое, что

$$\underbrace{a+a+\ldots+a}_{n} = 0 \quad \forall a \in A$$

Если такого n не существует, то характеристика равна нулю

Определение 6. $\operatorname{char} A$

Примеры. $\mathbb{R}, \mathbb{Z}, \mathbb{Q} - \mathrm{char} = 0$ $\mathrm{char}(\mathbb{Z}_2) = 2$

Свойство. Если A кольцо с единицей, то char A – ниаменьшее $n \in \mathbb{N}$ такое, что

$$\underbrace{1+1+\ldots+1}_{n}=0$$

Доказательство. Нужно доказать, что

$$\underbrace{a+a+\ldots+a}_n=0 \quad \forall a\in A \qquad \iff \qquad \underbrace{1+1+\ldots+1}_n=0$$

 $\bullet \implies$

Подставим a=1

• \Leftarrow $a+a+...+a=a(1+...+1)=a\cdot 0=0$

Свойство. A – поле

Тогда $\operatorname{char} A=0$ или $\operatorname{char} A\in\mathbb{P}$

Доказательство. Пусть **это не так** и $\operatorname{char} A - \operatorname{cocтaвноe}$

$$\operatorname{char} A = n = mk, \qquad 1 < m, \quad k < n$$

$$0 = \underbrace{1 + \dots + 1}_{n} = \underbrace{(1 + \dots + 1)}_{m} \underbrace{(1 + \dots + 1)}_{k} \implies \begin{bmatrix} \underbrace{1 + \dots + 1}_{m} = 0 \\ \underbrace{1 + \dots + 1}_{k} = 0 \end{bmatrix}$$

Получили противоречие с минимальностью n

Примечание. Достаточно области целостности с единицей

Определение 7. L – поле, $K \subset L$, K является полем с теми же операциями Тогда K называется подполем L L называется расширением K

Примеры.

- 1. \mathbb{R} подполе \mathbb{C}
- 2. $\mathbb{R}(x)$ расширение \mathbb{R}

Определение 8. Поле K называется простым, если оно не содержит подполей, отличных от K (считаем, что поле не может состоять из одного элемента, т. е. $0 \neq 1$)