Surface Area

The area of the surface with equation z = f(x, y), $(x, y) \in D$, where f_x and f_y are continuous, is

$$A(S) = \iint_{D} \sqrt{[f_{x}(x, y)]^{2} + [f_{y}(x, y)]^{2} + 1} dA$$

EXAMPLE 1 Find the surface area of the part of the surface $z = x^2 + 2y$ that lies above the triangular region T in the xy-plane with vertices (0, 0), (1, 0), and (1, 1).

 $\frac{1}{12}(27-5\sqrt{5})$

FIGURE 3

FIGURE 4

EXAMPLE 2 Find the area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9.

$$\frac{\pi}{6} \left(37\sqrt{37} - 1 \right)$$

FIGURE 5

Triple Integrals

Let's first deal with the simplest case where f is defined on a rectangular box:

$$B = \{(x, y, z) \mid a \le x \le b, c \le y \le d, r \le z \le s\}$$

The first step is to divide B into sub-boxes. We do this by dividing the interval [a, b] into I subintervals $[x_{i-1}, x_i]$ of equal width Δx , dividing [c, d] into m subintervals of width Δy , and dividing [r, s] into n subintervals of width Δz . The planes through the endpoints of these subintervals parallel to the coordinate planes divide the box B into Imn sub-boxes

$$B_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k]$$

which are shown in Figure 1. Each sub-box has volume $\Delta V = \Delta x \Delta y \Delta z$.

Then we form the triple Riemann sum

$$\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(X_{ijk}^{*}, Y_{ijk}^{*}, Z_{ijk}^{*}) \Delta V$$

where the sample point $(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*)$ is in B_{ijk} . By analogy with the definition of a double integral (15.1.5), we define the triple integral as the limit of the triple Riemann sums in 2.

3 Definition The **triple integral** of f over the box B is

$$\iiint\limits_{R} f(x, y, z) \ dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \ \Delta V$$

if this limit exists.

$$\iiint_{B} f(x, y, z) \ dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{i}, y_{j}, z_{k}) \ \Delta V$$

Fubini's Theorem for Triple Integrals If f is continuous on the rectangular box $B = [a, b] \times [c, d] \times [r, s]$, then

$$\iiint\limits_R f(x, y, z) \ dV = \int_r^s \int_c^d \int_a^b f(x, y, z) \ dx \ dy \ dz$$

Triple Integration over general bounded region

Type 1 region

FIGURE 2
A type 1 solid region

A solid region E is said to be of type 1 if it lies between the graphs of two continuous functions of X and Y, that is,

5
$$E = \{(x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$$

where D is the projection of E onto the xy-plane as shown in Figure 2. Notice that the upper boundary of the solid E is the surface with equation $z = u_2(x, y)$, while the lower boundary is the surface $z = u_1(x, y)$.

By the same sort of argument that led to (15.3.3), it can be shown that if E is a type 1 region given by Equation 5, then

$$\iiint\limits_E f(x, y, z) \ dV = \iint\limits_D \left[\int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \ dz \right] dA$$

4 November, 2019

Type 1 region (cont.)

FIGURE 3

A type 1 solid region where the projection D is a type I plane region

In particular, if the projection D of E onto the xy-plane is a type I plane region (as in Figure 3), then

$$E = \{(x, y, z) \mid a \le x \le b, \ g_1(x) \le y \le g_2(x), \ u_1(x, y) \le z \le u_2(x, y)\}$$

and Equation 6 becomes

$$\iiint_E f(x, y, z) \ dV = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \ dz \ dy \ dx$$

Type 1 region (cont.)

FIGURE 4
A type 1 solid region with a type II projection

If, on the other hand, D is a type II plane region (as in Figure 4), then

$$E = \{(x, y, z) \mid c \le y \le d, \ h_1(y) \le x \le h_2(y), \ u_1(x, y) \le z \le u_2(x, y)\}$$

and Equation 6 becomes

$$\iiint\limits_{E} f(x, y, z) \ dV = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) \ dz \ dx \ dy$$

Type 2 region

FIGURE 7 A type 2 region

A solid region E is of type 2 if it is of the form

$$E = \{(x, y, z) \mid (y, z) \in D, \ u_1(y, z) \le x \le u_2(y, z)\}$$

where, this time, D is the projection of E onto the yz-plane (see Figure 7). The back surface is $x = u_1(y, z)$, the front surface is $x = u_2(y, z)$, and we have

$$\iiint\limits_E f(x, y, z) \ dV = \iint\limits_D \left[\int_{u_1(y, z)}^{u_2(y, z)} f(x, y, z) \ dX \right] dA$$

Type 3 region

FIGURE 8 A type 3 region

Finally, a type 3 region is of the form

$$E = \{(x, y, z) \mid (x, z) \in D, \ u_1(x, z) \le y \le u_2(x, z)\}$$

where D is the projection of E onto the xz-plane, $y = u_1(x, z)$ is the left surface, and $y = u_2(x, z)$ is the right surface (see Figure 8). For this type of region we have

$$\iiint\limits_E f(x, y, z) \ dV = \iint\limits_D \left[\int_{u_1(x, z)}^{u_2(x, z)} f(x, y, z) \ dy \right] dA$$

FIGURE 9 Region of integration

FIGURE 10
Projection onto xy-plane

FIGURE 11
Projection onto xz-plane
4 November, 2019

EXAMPLE 4 Express the iterated integral $\int_0^1 \int_0^{x^2} \int_0^y f(x, y, z) dz dy dx$ as a triple integral and then rewrite it as an iterated integral in a different order, integrating first with respect to x, then z, and then y.

 $z = y \qquad 0$ x = 1 $y = x^{2}$

FIGURE 13 The solid E

FIGURE 12 Projections of E

Triple integrals in Cylindrical Coordinates

FIGURE 4 r = c, a cylinder

FIGURE 2
The cylindrical coordinates of a point

FIGURE 7
Volume element in cylindrical coordinates: $dV = r dz dr d\theta$

$$E = \{(x, y, z) \mid (x, y) \in D, \ u_1(x, y) \le z \le u_2(x, y)\}$$

where D is given in polar coordinates by

$$D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, \ h_1(\theta) \leq r \leq h_2(\theta)\}$$

$$\iiint_E f(x, y, z) \ dV = \iint_D \left[\int_{a_1(x, y)}^{a_2(x, y)} f(x, y, z) \ dz \right] dA$$

$$\iiint_E f(x, y, z) \ dV = \iint_D \left[\int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \ dz \right] dA$$

$$\iiint_E f(x, y) \ dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r \cos \theta, r \sin \theta) \ r \ dr \ d\theta$$

But we also know how to evaluate double integrals in polar coordinates. In fact, combining Equation 3 with Equation 15.4.3, we obtain

$$\iiint\limits_E f(x, y, z) \ dV = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta, r\sin\theta)}^{u_2(r\cos\theta, r\sin\theta)} f(r\cos\theta, r\sin\theta, z) \ r \ dz \ dr \ d\theta$$

Example

FIGURE 8

EXAMPLE 3 A solid E lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4, and above the paraboloid $z = 1 - x^2 - y^2$. (See Figure 8.) The density at any point is proportional to its distance from the axis of the cylinder. Find the mass of E.

$$\frac{12\pi K}{5}$$

Example

EXAMPLE 4 Evaluate
$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2 + y^2) dz dy dx$$
.

FIGURE 9