## VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belagavi-590018, Karnataka



A Mini Project Report on

#### "ATOM SIMULATION"

Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Engineering

In

Computer Science and Engineering Submitted by

**IMPANA A (4NN20CS023)** 

**KUSUM SHARMA (4NN20CS025)** 

Under the Guidance of

Ms. SHEEBAN E TAMANNA

Assistant Professor Dept. of CSE



ESTD-2008

Department of Computer Science and Engineering NIE Institute of Technology

Mysuru -570018

# DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING NIE Institute of Technology, Mysuru



### **CERTIFICATE**

This is to certify that the mini project work entitled "ATOM SIMULATION" is carried out by IMPANA A bearing 4NN20CS023 and KUSUM SHARMA bearing 4NN20CS025 in the partial fulfillment for the sixth semester of Bachelor of Engineering degree in Computer Science and Engineering of the Visvesvaraya Technological University, Belagavi during the academic year 2022-23. The project report has been approved as it satisfies the academic requirements with respect to project work prescribed for the Bachelor of Engineering.

| Signature of the guide | Signature of the HOD<br>Dr. Usha M.S |  |
|------------------------|--------------------------------------|--|
| Ms. Sheeban E Tamanna  |                                      |  |
| Asst. Professor        | Associate Professor and Head         |  |
| Dept of CSE            | Dept of CSE                          |  |
| NIEIT, Mysuru          | NIEIT, Mysuru                        |  |

#### **External Viva**

Signature with Date

| Traine of the examiners | Signature with Date |
|-------------------------|---------------------|
| 1                       | 1                   |
| 2                       | 2                   |

Name of the evaminers

#### **ACKNOWLEDGEMENT**

We sincerely owe our gratitude to all people who helped and guided us in completing this project work.

We are thankful to **Dr. Rohini Nagapadma**, Principal, NIEIT, Mysuru, for having supported us in our academic endeavors.

We are thankful to **Dr. Usha M S**, Associate Professor and Head, Department of Computer Science and Engineering, NIEIT for providing us timely suggestion, encouragement and support to complete this mini-project.

We would like to sincerely thank our project guide, **Ms. Sheeban E Tamanna**, Asst. Professor in Dept. of Computer Science and Engineering for providing relevant information, valuable guidance and encouragement to complete this mini-project.

We would also like to thank all our teaching and non-teaching staff members of the Department. We are grateful to the college for keeping labs open whenever required and providing us Systems and Required software.

We are always thankful to our Parents for their valuable support and guidance in every step. Also thank all our friends for their support and guidance throughout the project.

We express our deepest gratitude and indebted thanks to NIEIT which has provided us an opportunity in fulfilling our most cherished desire of reaching our goal.

Yours Sincerely,

Impana A (4NN20CS023)

Kusum Sharma (4NN20CS025)

#### **ABSTRACT**

Everything you see around you is made up of atoms, and all atoms consist of subatomic particles. In the Atom simulation, you will learn the names of the basic subatomic particles and understand.

As a part of the project, you'll see how the electrons are revolving around the nucleus in their respective orbits. One can see and spot the nucleus, atoms and electrons and can understand how an electron revolves around the nucleus. The project has made in such a way that one can easily understand the simulation of atoms

This project has been developed in Windows OS with interfacing keyboard and mouse with menu driven interface. And plans to include lighting, shading and other features in future enhancement

This project is written in C and used OpenGL (Open Graphics Library). Open Graphics Library is a cross-language, cross-platform application programming interface for rendering 2D and 3D vector graphics. The API is typically used to interact with a graphics processing unit, to achieve hardware-accelerated rendering

# **TABLE OF CONTENTS**

| Chapter No | Chapter Name                      | Page No |
|------------|-----------------------------------|---------|
| 1          | Introduction                      | 01      |
| 1.1        | Computer Graphics                 | 01      |
| 1.2        | Applications of Computer graphics | 01      |
| 1.3        | Aim                               | 02      |
| 1.4        | Introduction to open GL           | 02      |
| 1.5        | Project related concepts          | 03      |
| 1.6        | Interface                         | 04      |
| 2          | Requirement Specification         | 05      |
| 2.1        | Software Requirements             | 05      |
| 2.2        | Hardware Requirements             | 05      |
| 3          | Design                            | 06      |
| 3.1        | Window Design                     | 06      |
| 3.2        | Menu Bar                          | 06      |
| 3.3        | Simulation Display                | 07      |
| 4          | Implementation                    | 08      |
| 4.1        | Functions Used                    | 08      |

| 5 | Testing      | 10 |
|---|--------------|----|
| 6 | Snapshots    | 11 |
| 7 | Conclusion   | 18 |
|   | Bibliography | 19 |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |
|   |              |    |

# LIST OF FIGURES

| Figure No   | Figure name                    | Page No |
|-------------|--------------------------------|---------|
| Figure 1.1  | Basic Block Diagram of Open GL | 03      |
| Figure 3.1  | Menu Bar                       | 06      |
| Figure 3.2  | Simulation Display             | 07      |
| Figure 6.1  | Home Screen                    | 11      |
| Figure 6.2  | Starting Screen                | 11      |
| Figure 6.3  | Menu Interface                 | 12      |
| Figure 6.4  | Hydrogen Simulation            | 12      |
| Figure 6.5  | Helium Simulation              | 13      |
| Figure 6.6  | Lithium Simulation             | 13      |
| Figure 6.7  | Beryllium Simulation           | 14      |
| Figure 6.8  | Boron Simulation               | 14      |
| Figure 6.9  | Carbon Simulation              | 15      |
| Figure 6.10 | Nitrogen simulation            | 15      |
| Figure 6.11 | Oxygen Simulation              | 16      |
| Figure 6.12 | Fluorine Simulation            | 16      |
| Figure 6.13 | Neon Simulation                | 17      |

## LIST OF TABLES

| Table No  | Table Name                        | Page No |
|-----------|-----------------------------------|---------|
| Table 5.1 | Test Cases for Mouse Interface    | 10      |
| Table 5.2 | Test cases for Keyboard Interface | 10      |