

Machine Learning and Material Science

Steffen Brinckmann, Claas Hüter IEK-2, Forschungszentrum Jülich GmbH

Why do we need Machine Learning?

Data-rich world and computers/machines help us

Applications in day-to-day life:

- Virtual personal assistants: e.g. Siri, Alexa and Google
- Search engine results (What do you really mean / click on?)
- Social media: e.g. people you may know, face recognition
- Product recommendations ("People who bought ... also bought ...")
- Online fraud detection, e.g. banks, "A person has accessed your account")

Machine Learning: complicated/contradictory terms

Different names: "Machine Learning" – "Artificial Intelligence"

Statistics Deep Learning **Mathematics Data Mining** Machine Learning Computer Science Natural Language Processing Domain Knowledge **Artificial Intelligence Data Science**

Different jobs:

- Data analyst
- Data scientist
- Specialist for Machine Learning

As always: "Learning by doing" => projects are important

Deep Learning: e.g. image processing

Data Mining: get lots of data from "sources"

Domain knowledge: have specific knowledge and learn further

What is Machine Learning?

'Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.'
--- Arthur Samuel, 1959 @ IBM

'A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.'

--- Tom Mitchell, 1998

What is Machine Learning?

'A computer program is said to learn from **experience E** with respect to some **task T** and some **performance** measure **P**, if its performance on **T**, as measured by **P**, improves with experience **E**.'

--- Tom Mitchell, 1998

Task T: predict long-term creep (creep tests run month/years)

Experience E: previous creep behavior

Performance P: measure how well model predicts current creep behavior

Model is successfully trained to predict creep behavior (task),

if it gets better (improves) performance

by using past information (experience)

Traditional programming v.s. Machine learning

Machine Learning workflow

Supervised Learning

Unsupervised Learning

Training Data

Input X

&

Output y

Training Data

Input X

Learning algorithms to find function / model f(X)

Learning algorithms

- identify patterns
- relationships
 depend on input

Input $X \rightarrow f(X) \rightarrow$ Estimated output

Supervised Learning

Regression: predict continuous target variable

Example: algorithm

- trained with force and creep length
- learns how to predict the creep length

Classification: group observations in set of finite labels

Example: algorithm

- train with labeled speed signs
- learns to identify speed signs from images

Unsupervised Learning

Cluster analysis: group / cluster data based on similarities

Example: build groups of similarity (same chemical component)

Dimensionality reduction: reduce number of variables to find principal variables

Example:

- feature selection
- extraction minimal set of variables that describe the result

Machine Learning algorithms

Supervised Learning

- Linear Regression
- Artificial Neural Network
- Convolutional Neural Networks
- Support Vector Machines
- Decision Trees

• ...

Unsupervised Learning

- Combinatorial (or k-means) methods
- Hierarchical Cluster Analysis
- Principal Component Analysis
- •

Machine Learning algorithms

Supervised Learning

- 1. Linear regression (-> video incl. exercise)
- 2. Artificial Neural Network (-> video incl. exercise)
- 3. Convolutional Neural Networks
- 4. Support Vector Machine (-> video incl. exercise)
- 5. Decision Trees
- 6. ...

Machine Learning Software for Python

classification, regression and clustering algorithms including support vector machines, ...

Library for dataflow programming

It is a symbolic math library, and is also used for machine learning applications such as **neural network**.

Machine learning library alternative to Tensorflow In past had many advantages over tensorflow