Grundbegriffe der Informatik Aufgabenblatt 9

Matr.nr.:	
Nachname:	
Vorname:	
Tutorium:	Nr. Name des Tutors:
Ausgabe:	16. Dezember 2009
Abgabe:	8. Januar 2010, 13:00 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34
rechtzeitin Ihrer emit diese	eigenen Handschrift, er Seite als Deckblatt und eren linken Ecke zusammengeheftet
Vom Tutor au	szufüllen:
erreichte Pur	nkte
Blatt 9:	/ 20
Blätter 1 – 9:	/ 173

Aufgabe 9.1 (2+2+2 Punkte)

- a) Für welche Konstanten c_a gilt $n^3 \cdot 2^n \in O(c_a^{n \log n})$?
- b) Sei $B = \sqrt[3]{2}$. Geben Sie eine möglichst kleine Konstante c_b an, so dass $n^3 \cdot 2^n \in O(c_b^{n + \log_B n})$ gilt.

Zeigen Sie durch Rechnung, dass für Ihr c_b $n^3 \cdot 2^n \in O(c_b^{n+\log_B n})$ gilt.

c) Welche der folgenden Aussagen sind korrekt:

$$4^{\sqrt{n}} \in O(2^n), 4^{\sqrt{n}} \in \Omega(2^n), 4^{\sqrt{n}} \in \Theta(2^n)$$
?

Beweisen Sie alle korrekten Behauptungen durch Rechnung.

Aufgabe 9.2 (2+1+1 Punkte)

Gegeben sei folgendes Programm:

$$\begin{array}{c} r \leftarrow 0 \\ \textbf{for} \ i \leftarrow 0 \ \textbf{to} \ n/2 \ \textbf{do} \\ s \leftarrow 0 \\ \textbf{for} \ j \leftarrow i \ \textbf{to} \ n-i \ \textbf{do} \\ s \leftarrow s+j \\ \textbf{od} \\ s \leftarrow s+n \cdot i \\ r \leftarrow r+s \\ \textbf{od} \end{array}$$

Gehen Sie für Ihre Rechnungen davon aus, dass n gerade ist.

- a) Welchen Wert besitzt die Variable r nach Ablauf des Programmes in Abhängigkeit von n?
- b) Schätzen Sie den Wert von r nach Ablauf des Programmes möglichst präzise im O-Kalkül ab.
- c) Schätzen Sie die Anzahl der Durchläufe des innersten Schleifenrumpfes möglichst präzise im O-Kalkül ab.

Aufgabe 9.3 (2+2 Punkte)

Gegeben sei folgender Mealy-Automat:

a) Geben Sie die Wörter $g^{**}(100010), g^{**}(0111100)$ und $g^{**}(10101010)$ an.

b) Geben Sie eine Codierung $c:\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}^* \to \{0,1\}^*$ an, so dass für alle $w\in\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}^*$ gilt: $g^{**}(c(w))=w.$

Aufgabe 9.4 (2+2+2 Punkte)

Der Moore-Automat M sei gegeben durch Eingabealphabet $X=\{0,1\}$, Ausgabealphabet Y=X, Zustandsmenge $Z=X^3$, Anfangszustand 000 und

$$\forall w \in X^2 \forall x, y \in X : f(xw, y) = wy$$
$$\forall w \in X^2 \forall x \in X : g(xw) = x$$

- a) Geben Sie eine graphische Darstellung von M an.
- b) Welche Ausgaben erhält man bei Eingabe der Wörter $w \in \{0001, 1100, 1010\}$?
- c) Welches Wort w' erhält man bei Eingabe eines beliebigen Wortes w?