

NSAIDs, DMARDs, Drugs applied in gout, Drugs applied in Alzheimer's disease,

László Drimba M.D.

University of Debrecen

Department of Pharmacology and Pharmacotherapy

- endogenous/exogenous antigen/stimuli induced complex response reaction of the vascularized connective tissue!!!
 - □ protective effect
 - □ elimination of necrotic tissue
 - □ but! ,,autoimmune"
 - □ 3 main types
 - acute
 - subacute
 - chronic

Therapeutic strategies

- Autoimmune disease
 - □ RA, spondyloarthritis, Bechterew's disease,
 - □ Sjögren syndrome, SLE, PM/DM

NSAIDs

- □ symptomatic relief for pain and inflammation
- □ "long time" treatment periods
- □ no influence on disease progression
- □ rapid effect

- □ "slow acting" drugs
- □ modify the disease
- □ block disease progression
- COX-1- gastric mucosa, thrombocytes, endothel, kidney
- COX-2 induced by immune response

LTB₄: phagocyte attraction, act.

LTC₄: bronchoconstr., ↑secr.

LTD₄: chemotaxis, vasodilation

PGI₂: vasodilation, inhib. of thromb.aggr.

PGE₂: fever, inflammation, pain

 $PGF_{2\alpha}$: uterus contraction

TXA₂: vasoconstriction, facil. of thromb. aggr.

LTR antagonists

Classification

- according to selectivity
 - selective COX-1 inhibitors
 - aspirin, tolmetin
 - □ COX-1 inhibitors (low selectivity)
 - ibuprofen, indometacin, piroxicam
 - □ COX-1, COX-2 inhibitors
 - diclofenac
 - □ selective COX-2 inhibitors
 - meloxicam, celecoxib, etodolac, rofecoxib
- according to mechanism of action
 - □ irreversible
 - aspirin
 - reversible
 - indometacin, ibuprofen

DHORE OF THE PARTY OF THE PARTY

- Pharmacokinetic features
 - □ weak organic acids \rightarrow pKa \approx 3.0 \rightarrow rapid absorption
 - □ metabolized in the liver (CYP3A, CYP2C)
 - □ high cc. in synovial fluid (repeated exposure)
 - □ highly protein bound (\approx 98%)
 - □ renal excretion
- Pharmacodynamic features/effects
 - □ inhibition of immune response (antiinflammatory-antiflogistic effect)
 - inhib. of chemotaxis
 - ↓sensitivity of vessels to histamine
 - down regulation of IL-1 production
 - decreased production of free radicals and superoxide
 - □ antipyretic effect
 - cAMP↓ in hypothalamic thermoregulation centr.
 - □ analgesia
 - peripherial inhib. of nociception (PGs facilitate effects of bradykinine)
 - □ antithrombotic effect
 - $TXA_2 \downarrow$, platelet aggregation \downarrow

м

NSAIDs

- adverse effect profile
 - □ CNS:
 - headache, tinnitus, dizziness
 - □ Cardiovascular:
 - fluid retention, hypertension, edema
 - ☐ GIT (inhib. of PG synthesis protective factor)
 - ulcers, bleeding, nausea, vomiting, pancreatitis
 - ☐ Hematologic (bone marrow suppr.)
 - thrombocytopenia, neutropenia, aplastic anaemia
 - ☐ Hepatic (metamizol, aspirin)
 - Hepatitis, (Reye's syndrome)
 - □ Pulmonary (LT↑)
 - Aspirin asthma!!!
 - □ Renal
 - RBF(autoregulation)↓, renal insufficiency, renal failure, hyperkalaemia

- acetyl-salicylic acid, ASA (Aspirin®)
 - □ irreversible inhibitor of COX-1
 - □ isolated from willow (bark)
 - rapid absorpion of stomach and small intestine
 - □ antipyretic, analgesic, antiflogistic effect
 - □ antithrombotic effect (platelet aggregation↓)
 - □ clinical use:
 - TIA, AMI 300mg reduce platelet aggregation -secundary prevention of AMI, stroke
 - 0,5-2,5g/day antipyretic, analgesic effect
 - 2,5-4g/day antiflogistic
 - 5g/day uricosuric effect
 - □ pills (intestinosolvent)
 - □ aspirin intoxication! (metabolic acidosis)
 - □ a.e.:
 - gastric ulcer, gastric intolerance
 - aspirin-asthma
 - hepatotoxicity
 - CI:haemophilia

- phenylacetic acid derivative
- inhibition of COX-1, COX-2
- potent analgesic effect
- selectiv. for muscle-joint inflammation
- ulceration of GIT
 - □ coappl.! omeprazole or famotidine or misoprostole
- 150 mg/day
- adm. form.
 - □ topical gel. 1-3%
 - □ i.m. injection
 - □ ophtalmic preparation prevention of p.o. ophthalmic inflamm.

ibuprofen

- phenylpropionic acid derivative
- analgesic effect
- antiinflammatoric effect (>2400mg) = 4000mg ASA
- closure of ductus arteriosus (preterm infants)
- adm. routes
 - □ i.m.
 - p.o.
 - topical cream
- effective in headache, dental pain, premenstrual pain
- combined with spasmolytics

□ indometacin

- one of the first explored NSAIDs (1963)
- indol derivative
- effects:
 - □ non-selective COX inhibition
 - □ inhibition of phospholipase A and C
 - □ \neutrophil migration
 - □ ↓T-,B-cell proliferation
- closure of ductus arteriosus
- broad a.e. profile
 - ☐ GIT effects+pancreatitis!
 - □ dizziness, confusion, hallucinations
 - □ thrombocytopenia, aplastic anaemia
 - renal papillary necrosis

ketoprofen

- propionic acid derivative
- inhibit. of COX and LPO
- 100-300 mg/day

ketorolac

- analgesic, no anti-inflammatory effect
- i.v. /i.m. administration
- coapplication with morphine → postoperative analgesia

naproxen

- naphtylpropionic acid derivative
- rheumatologic indications
- slow-release formulation

- phenylbutazon
 - analgetic, antipyretic, antiflogistic
 - obsolete
 - inhibits uric acid reabsorption (applied in gout)
 - a.e.:
 - □ ulcerative!!!
 - □ aplastic anaemia!!
 - □ oedema fluid retention
 - clinical use:
 - □ gout
 - \square RA
 - coapplication: prednisolon
- □ phenazon, noraminophenazon
 - antipyretic effect
 - potent analgetic effect
 - a.e.:
 - □ agranulocytosis
 - □ pro-convulsive effect

w

NSAIDs

selective COX-2 inhibitors

- \square COX-1 vs. COX-2
- □ no antithrombotic effect
- □ reduced side effect profile
- □ prevention of Alzheimer's disease
 - reducing neural immune response
- □ prevention of colorectal cc.
 - elevated level and act. of COX-2 in neoplas. tissue
 - PGE₂↑, proliferation↑, immune response↓
 - th. use: HNPCC, FAP
- □ COX-2 mediated PG synthesis in vascular endothel!
 - ↑incidence of thrombotic attacks
 - RR↑
 - withdrawal of the market! (rofecoxib-Vioxx celecoxib Celcox)
- □ celecoxib, meloxicam
- □ clinical use: rheumatic indications!

- paracetamol (acetaminophen)
 - □ analgesic, antipyretic effect
 - □ no anti-inflammation
 - □ "aspirin alternative"!
 - aspirin asthma, haemophilia, gastric ulcer
 - □ clinical use:
 - hyperpyrexia children
 - headache, myalgia, postpartum pain
 - $\square > 4g/day hepatotoxicity$
 - n-acetyl-benzokinone toxic metabolite!
 - A.D.! SH donor N-acetyl-Cys

- Azathioprine (AZT)
 - □ metabolite: 6-TG (purine-analoge)
 - suppresses inosinic acid synthesis (purine synthesis)
 - ↓T-cell, B-cell function
 - ↓IG production
 - ↓IL-2 secretion
 - □ clinical use
 - 2mg/kg/day
 - RA
 - (cancer chemotherapy)
 - □ a.e.:
 - bone marrow supression
 - GIT disturbances
 - infection!

- chloroquine, hydroxichloroquine
 - □ antimalaric agents
 - □ effect:
 - suppression of T-lympocytes
 - decreased leukocyte chemotaxis
 - inhibition of DNA and RNA synthesis
 - trapping free radicals
 - □ tissue selectivity melanin containing tissues
 - □ clinical use
 - SLE, Sjögren syndrome
 - chloroquin: 200 mg/day
 - \square a.e:
 - ocular toxicity

methotrexate

- □ effects:
 - inhibition of dihydrofolate reductase (AICAR transformylase) $\rightarrow \downarrow$ FH4 \rightarrow TS $\downarrow \rightarrow \downarrow$ DNA synthesis (dUMP \rightarrow dTMP)
- □ clinical use
 - RA (first choice!)
 - cancer chemotherapy (AML)
- □ a.e.:
 - mucosal ulcers
 - hepatotoxicity
 - bone marrow suppression
 - A.D.: leucovorin!

- active-metabolite: phosphoramide mustard
- cross linked DNA!
 - ↓ T-and B-cell function
- active metabolites
 - akrolein: cystitis (heamorrhagic)
 - aldophosphamide: (b.m. supp.)
- □ clinical use:
 - 2 mg/kg p.o.
 - RA, SLE
 - lymphoma, leukaemia

cyclosporine

- □ regulation of gene transcription
 - ↓ IL-1, IL-2 R production
 - ↓ T-cell, macrophage responsiveness
- clinical use
 - 3-5 mg/kg/day
- neprotoxicity!!!

м

- mycophenolate mofetil
 - □ active metabolite: mycophenolic acid
 - □ effects:
 - inhibits CMP dehydrogenase
 - □ ↓ T-cell proliferation
 - □ clinical use
 - 2g/day
 - SLE, vasculitis, Wegener granulomatosis
- rituximab
 - □ monoclonal antibody (targeting CD20+ B-lympocytes)
 - B-lymphocyte depletion
 - □ clinical use:
 - alternative route!
 - iv. infusion 1000mg

- sulfasalazine
 - □ sulfapyridine + 5-ASA (intestinal bacteria)
 - ↓ T-cell function
 - ↓ release inflammatory citokines (IL-1, IL-6, IL-12)
 - □ clinical use
 - 2-3g/day
 - RA
 - 5-ASA IBD!

\blacksquare TNF-α blocking agents

- □ adalimumab
 - IGG like anti-TNF monoclonal antibody
 - binding soluble TNF-α
 - ↓ T-cell, macrophag function
 - clinical use
 - □ sc.
 - □ RA, Crohn's disease
 - **a.e.**:
 - □ infection (upper respiratory tract)
- □ infliximab
 - IGG like monoclonal antibody
 - binding soluble and membrane bound TNF-α
 - inhibition of macrophage and T-cell function
 - clinical use
 - □ RA, psoriasis, Wgener granulomatosis,
 - \square 3-5mg/kg, i.v.
 - □ coapplication: methotrexate
 - **a.e.**:
 - □ infection (upper respiratory tract)
- etanercept
 - soluble TNF-α receptor

- Gout as disease
 - □ metabolic disease (,,disease of the kings")
 - □ "Metabolic syndrome"
 - □ hyperuricaemia uric acid↑ (serum level)
 - increased production (tumors, diet, haemolysis)
 - decreased excretion (90%) (CRF, drugs- low dose aspirin)
 - □ deposition of monosodium urate (MNU) (joints, cartilage)
 - recurrent acute arthritis (toe)
 - interstitial nephritis (tophus), nephrolith.
- pathogenesis
 - monosodium urate phagocytosed by synoviocytes
 - □ release of chemotactic factors (PGs, ILs)
 - □ chemotaxis inflammation destruction
- therapeutical strategies:
 - relieve acute gouty attacks
 - □ prevent gouty episodes

Drugs used in gout

NSAIDs

- □ therapy
 - inhibits chemotaxis, urate crystal phagocytosis
 - pain relieving effect in acute episode
- \square aspirin is not used (<2,6g/d uric acid retention) (>5g/d uricosuric-adv.eff.!)
- □ indomethacin replacement of aspirin

colchicine

- primary treatment
- alkaloid (Colchicinum autumnale)
- inhibits leukocyte migration and phagocytosis
 - binds to ic. tubulin \rightarrow prevents mictotubule polymerization (cytoskeloton destr.)
- □ inhibits the LTB4 secretion
- \square used for attack and for prevention(3 x 0,6mg-1,2mg p.o.)
- □ a.e.:
 - diarrhea
 - low TI
 - nausea, vomitus
 - bone marrow suppression
 - shock, haematemesis, heamaturia (iv. adm.)

Drugs used in gout

- probenicid, sulfinpyrazone (uricosuric agents)
 - □ acting on proximal tubules
 - □ inhibit uric acid reabsorption (↓)
 - □ interference with other drugs secreted in the prox.tub. (penicillin, furosemide)
 - □ a.e.:
 - urolithiasis (renal stones)—hyperhidration, alkalic pH
 - GIT irritation
 - aplastic anaemia
- allopurinol
 - "urate lowering drug"
 - □ metabolized by xanthin oxidase→alloxanthine
 - □ inhibits xanthin oxidase
 - decreases urate pool
 - □ treatment in the intercritical periods
 - □ antiprotozoal indications
 - □ increase the effect of AZT, cyclophosphamide
 - □ th.dose: 300mg/day

M

Pharmacotherapy of Alzheimer's disease

- progressive impairment of memory and cognitive functions
- elderly(>85ys≈20%)
- inherited and environmental factors
- \blacksquare deposits of amiloid β in cerebral cortex
 - □ loss of cholinergic neurons
 - cerebral atrophia
- molecular processes (pharmacologic targets)
 - □ mitochondrial dysfunction
 - synthesis and aggregation of tau protein
 - \square synthesis and aggregation of amiloid β
 - □ impaired glucose utilization
 - □ accumulation of abnormal proteins

	TAS DEB	RECEN
	S. S.	THE STATE OF THE S
SED S	7 1	
ES SEA	195	
No.	ARUM MEDIC	ORUM ET

- Cholinesterase inhibitors
 - □ galantamine, tacrine, rivastigmine
 - □ rapid penetration to CNS
 - □ cholinomimetic adverse effects
 - oral application
- NMDA antagonists
 - memantine
 - □ competitive blockade
- MAO-B inhibitors
 - □ selegiline
 - beneficial effects
- Modifiers of glucose utilization
 - □ rosiglitazone
 - □ PPARγR agonism
- Antilipid drugs
 - □ statins
- Anti amyloid antibodies
 - bapineuzumab
- Antioxydants
 - □ tocoferol, ascorbinic acid