Отчет о выполнении лабораторной работы Определение вязкости воздуха по скорости течения через тонкие трубки

Лепарский Роман

3 мая 2021 г.

1 Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

2 Теоретические сведения

В данной работе нам предлагается исследовать течение газа через тонкие трубки. Характер этого течения определяется числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta} \tag{1}$$

Экспериментально установлено, что в рамках данного опыта критическое число Рейнольдса $Re_{\rm kp}$ ниже которого поток можно считать ламинарным равно 10^3

Найдем характерные для этого течения величины.

Для стационарного течения справедливо:

$$F_{1x} = -dP \cdot \pi r^2$$

$$F_{2x} = -\tau \cdot 2\pi r dx$$

$$\tau = -\eta \frac{du}{dr}$$

Из этих уравнений:

$$\frac{dp}{dx} = -\eta \frac{2}{r} \frac{du}{dr} \tag{2}$$

Левая часть уравнения является градиентом давления, а правая не зависит от x. Поэтому справедливы следующие утверждения:

$$P(x) = P_0 - \frac{\Delta P}{l}x\tag{3}$$

$$u(r) = u_{max} - \frac{\Delta P}{4l}r^2 \tag{4}$$

Если принять, что скорость газа вблизи стенок равна нулю, получим:

$$u(r) = \frac{\Delta P}{4I} (R^2 - r^2)$$

Теперь можно получить формулу объемного расхода:

$$Q = \int_{0}^{R} u(r) \cdot 2\pi r dr = \frac{\pi R^4 \Delta P}{8\eta l}$$
 (5)

Формула Пуазейля (5) позволяет найти вязкость газа по зависимости расхода от перепада давления в трубе и используется в качестве основной расчётной формулы в данной работе.

Параболический профиль течения устанавливается не сразу, а только на некотором расстоянии $l_{\text{vcr}} \approx 0.2R \cdot Re$

Экспериментально длину установления можно определить, измеряя распределение давления вдоль трубки P(x). На неустановившемся участке будет наблюдаться отклонение от линейного закона.

Коэффициент вязкости идеального газа можно описать следующей формулой:

$$\eta \sim \frac{1}{3}\rho\bar{v}\lambda\tag{6}$$

Для турбулентного течения в рамках некоторой теоретической модели можно получить соотношение ____

$$Q = \pi R^2 \bar{u} \sim R^{5/2} \sqrt{\frac{\Delta P}{\rho l}} \tag{7}$$

3 Экспериментальная установка

Рис. 1: Схема установки

Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

4 Приборы и материалы

В работе используются:

- Система подачи воздуха;
- Газовый счетчик барабанного типа;
- Спиртовой микроманометр с регулируемым наклоном;
- Набор трубок различного диаметра с выходами для подсоединения микроманометра;
- Секундомер.

5 Обработка результатов

В данной работе нам предлагается исследовать течение воздуха через трубки разных диаметров. Измерим зависимость Расхода от давления. Примем $\sigma_{\Delta P}=0.9~\Pi a,~\sigma_Q=1.3\cdot 10^{-4}~\pi/c.$

d = 4 mm, l = 50 cm		d=3 mm, l=20 cm		d = 5 mm, l = 90 cm	
ΔP , Pa	Q, l/s	ΔP , Pa	Q, l/s	ΔP , Pa	Q, l/s
19,6	0,0119	19,6	0,0209	19,6	0,0150
39,2	0,0246	39,2	0,0403	39,2	0,0377
58,8	0,0384	58,8	0,0556	58,8	0,0556
78,4	0,0512	78,4	0,0675	78,4	0,0752
98,0	0,0625	98,0	0,0781	98,0	0,0967
117,6	0,0757	117,6	0,0886	117,6	0,1091
137,2	0,0877	137,2	0,0972	137,2	0,1154
156,8	0,0925	196,0	0,1167	196,0	0,1428
196,0	0,0996	235,2	0,1269	235,2	0,1581
235,2	0,1063	274,4	0,1363	274,4	0,1638
274,4	0,1129	313,6	0,1454		
313,6	0,1201	352,8	0,1556		
352,8	0,1246	392,0	0,1627		
392,0	0,1333	431,2	0,1682		
431,2	0,1404				

Построим графики и найдем коэффициент наклона в ламинарной области.

Рис. 2: $k = (649 \pm 6) \cdot 10^{-6} \text{ л/с·Па}$

Из формулы (5) найдем вязкость $\eta=(1.81\pm0.05)*10^{-5}$ кг·м/с. А по формуле $Re=\frac{QR\rho}{S\eta}$ Найдем $Re_{kr}=964\pm9$

Проделаем то же самое для других диаметров. d = 3 мм:

Рис. 3: $k = (67 \pm 3) \cdot 10^{-5} \text{ л/с} \cdot \Pi \text{a}$

$$\eta = (1.4 \pm 0.2) * 10^{-5} \ \mathrm{kg\cdot m/c}, \ Re_{kr} = 1010 \pm 12$$

Для d = 5 мм:

Рис. 4:
$$k = (97 \pm 2) \cdot 10^{-5} \text{ л/с·Па}$$

$$\eta = (1.75 \pm 0.17) * 10^{-5} \text{ kg·m/c}, Re_{kr} = 1108 \pm 19$$

Теперь попробуем определить длину установления.

Рис. 5: d = 4 мм

Рис. 6: d = 3 мм

Рис. 7: d = 3 мм

Из этих графиков не получается найти длину установления.

6 Вывод

Нам удалось исследовать течение газа через тонкие трубки. Мы выявили границы применимости закона Пуазейля. С помощью этого закона мы нашли вязкость воздуха $\eta=1,65\pm0.11$ кг·м/с и критическое число Рейнольдса $Re_{kr}=1027\pm30$. Полученные результаты схожи с табличными: $\eta=1,78$ кг·м/с, $Re_{kr}=1000$. К сожалению, не удалось найти длину установления. Причиной этого может быть положение крайнего вентиля.