POLITECHNIKA WROCŁAWSKA WYDZIAŁ INFORMATYKI I TELEKO<u>MUNIKACJI</u>

METODY ANALIZY I EKSPLORACJI DANYCH

Wykład 1 - Wprowadzenie

DR INŻ. AGATA MIGALSKA

O MNIE

- Doktorat w dziedzinie informatyki obroniłam w 2018 na PWr
- Pracuję jako Senior
 Machine Learning
 Researcher
 w Alphamoon
- oraz na PWr jako adiunkt.
- Prywatnie uwielbiam góry i wspinaczkę.

KONSULTACJE

C-16 P1.2 Dzień/godzina do ustalenia

AGATA.MIGALSKA @PWR.EDU.PL

https://bit.ly/3SHH1JC

PYTANIA DO PUBLICZNOŚCI

- Jak się nazywasz?
- Czego oczekujesz od tego kursu? Czego chcesz się nauczyć na tym kursie?
- Czy pracujesz, jeśli tak to gdzie i w jakim charakterze?
- Czy interesuje Cię praca związana z tematyką tego kursu?

ORGANIZACJA KURSU

THE PROPERTY OF THE PROPERTY O

AND THE TOP OF THE AND THE AND

A7 E8 4 & F C 1 2

ZAWARTOŚĆ TEMATYCZNA KURSU

Wizualizacja danych

Statystyki opisowe w analizie danych

Analiza jakości _____ danych

Redukcja wymiaru

Klasteryzacja danych

Granulacja danych

Predykcja

ZAWARTOŚĆ TEMATYCZNA KURSU C.D.

Dane tekstowe Kompresja Zaliczenie kursu

WARUNKI ZALICZENIA

- Kolokwium zaliczeniowe
- Zaliczony projekt
- Ocena końcowa = 0.5 * Ocena z projektu + 0.5 * Ocena z kolokwium

LITERATURA

LITERATURA PODSTAWOWA:

- 1. T. Morzy, Eksploracja danych. Metody i algorytmy, Wydawnictwo Naukowe PWN 2022
- 2. P. Cichosz, Systemy uczące się, WNT, 2000
- 3. Hand David, Mannila Heikki, Smyth Padhraic, Eksploracja danych, WNT, Warszawa 2005
- 4. D. T. Larose, Metody i modele eksploracji danych, Wyd. Nauk. PWN, Warszawa 2008

LITERATURA UZUPEŁNIAJĄCA:

- M. J. Zaki, M. Wagner Jr.. Data mining and analysis. Fundamental Concepts and Algorithms. Cambridge University Press 2014. https://www.webpages.uidaho.edu/~stevel/517/Data%20Mining%20and%20Analysis%20by%20Zaki.pdf
- 2. T. Hastie, R. Tibshirani, J. Friedman. Elements of Statistical Learning. Springer Verlang 2009. https://hastie.su.domains/ElemStatLearn/
- 3. G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer 2021. https://www.statlearning.com

METODY ANALIZY I EKSPLORACJI DANYCH

Wprowadzenie

DANE

STRUKTURA PROJEKTU ANALITYCZNEGO

ANALIZA DANYCH

EKSPLORACJA DANYCH

DANE

ROCZNA WIELKOŚĆ GLOBALNEJ DATASFERY

Oszacowanie z roku 2017 wg IDC

 $(1ZB = 10^2 B)$

160
140
120
80
60
40
20
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Source: IDC's Data Age 2025 study, sponsored by Seagate, April 2017

44ZB

Ilość danych, które miały powstać w 2020 wg szacunków z 2017 r. **64ZB**

Ilość danych, które powstały w 2020 wg szacunków z 2021 r. **163ZB**

Ilość danych, które powstaną w 2025 wg szacunków z 2017 r.

ŹRÓDŁA DANYCH

PRODUKCYJNE	Pliki, metadane, logi pochodzące z komputerów osobistych, serwerów, telefonów, tabletów.
OSADZONE (EMBEDDED)	Dane stworzone przez urządzenia osadzone (embedded) i IoT np. automatyka budynkowa, urządzenia do noszenia, implanty medyczne, itd.
ROZRYWKA	Obrazy i video stworzone z myślą o celach rozrywkowych
OBRAZY / VIDEO NIE DLA CELÓW ROZRYWKOWYCH	Obrazy i video stworzone z myślą o celach innych niż rozrywkowe, np. kamery ochrony, reklamy

TWORZENIE DANYCH WG ŹRÓDŁA

Źródło: Badanie "Data Age 2025" przeprowadzone przez IDC, sponsorowane przez Seagate. Kwiecień 2017.

TYPY DANYCH

USTRUKTURYZOWANE NIEUSTRUKT

NIEUSTRUKTURYZOWANE

DANE USTRUKTURYZOWANE

- dane uporządkowane w sposób umożliwiający niezawodną identyfikację poszczególnych stwierdzeń faktów oraz ich wszystkich składników
- można je przedstawić w formie tabelarycznej, w której mogą być przechowywane w relacyjnej bazie danych
- liczby, daty i tekst
- wg Gartner stanowią ok 20% danych w przedsiębiorstwach
- wymagają niewiele przestrzeni dyskowej
- istnieją ustandaryzowane sposoby zarządzania i zabezpieczania takich danych

DANE NIEUSTRUKTURYZOWANE

- nie mają wstępnie zdefiniowanego modelu danych lub nie są zorganizowane we wstępnie zdefiniowany sposób
- nie da się w łatwy (nieprzetworzony) sposób przedstawić ich w formie tabelarycznej
- obrazy, audio, video, emaile, sformatowane pliki tekstowe, arkusze kalkulacyjne
- wg Gartner stanowią aż 80% danych w przedsiębiorstwach

PRZYKŁADY

		DANE USTRUKTURYZOWANE	DANE NIEUSTRUKTURYZOWANE
	ECOMMERCE	katalog produktówcenydane klienta	 zachowanie klienta i wzorce wydawania pieniędzy zadowolenie klienta z usługi
A COM	SŁUŻBA ZDROWIA	formularze dla pacjentówdane o ubezpieczeniudane do płatności	 zdjęcia RTG i tomografia komputerowa notatki z wizyt zalecenia lekarskie
	BANKOWOŚĆ	operacje finansowedane klienta	 logi z rozmów telefonicznych nagrania audio i video z komunikacji pomiędzy klientami a bankiem

PO CO TO WSZYSTKO?

CZERPANIE WIEDZY Z DANYCH NIEUSTRUKTURYZOWANYCH

15%

danych będzie otagowanych do końca 2025 20%

spośród otagowanych danych zostanie przeanalizowanych

PRZYSZŁE TRENDY

Zwiększenie automatyzacji w eksploracji danych

Eksploracja danych bezpośrednio na urządzeniach mobilnych

Wzrost eksploracji danych przestrzennych i geograficznych

Konsolidacja dostawców narzędzi eksploracji danych Wszechobecna eksploracja danych

> Wzrost eksploracji multimediów

Dominacja analizy danych w opiece zdrowotnej i farmaceutyce

ANALITYKA DANYCH (DATA ANALYTICS)

Analityka danych to proces sprawdzania, czyszczenia, przekształcania i modelowania danych w celu odkrycia przydatnych informacji, sformułowania wniosków i wsparcia procesu decyzyjnego

RODZAJE ANALITYKI

Dojrzałość analityczna przedsiębiorstwa

ANALITYKA PRESKRYPTYWNA

Co należy zrobić?

ANALITYKA PREDYKCYJNA

Co się stanie?

ANALITYKA DIAGNOSTYCZNA

Dlaczego to się stało?

ANALITYKA OPISOWA

Co się stało?

Złożoność

ETAPY PROJEKTU ANALITYCZNEGO

ANALIZA DANYCH (DATA ANALYSIS)

ANALIZA DANYCH

WSTĘPNA ANALIZA DANYCH

- Wstępna analiza danych to proces etapów kontroli danych, które należy przeprowadzić po zakończeniu planu badawczego i zebraniu danych, ale przed formalnymi analizami statystycznymi.
- Celem jest zminimalizowanie ryzyka błędnych lub mylących wyników.
- Główne kroki:
 - Zidentyfikowanie brakujących lub błędnych danych
 - Ocena, czy pomimo błędów, źródło danych jest wystarczająco dobre, żeby je wykorzystać do przeprowadzenia badania

EKSPLORACYJNA ANALIZA DANYCH

- Eksploracyjna analiza danych (ang. Exploratory Data Analysis, EDA) to termin ukuty przez Johna Tukeya (1977).
- Podejście polegające na graficznej i ilościowej analizie zbiorów danych w celu podsumowania ich głównych cech, często przy użyciu wykresów i innych metod wizualizacji danych.
- Głównym celem EDA jest:
 - o sprawdzenie, co dane mogą nam powiedzieć,
 - sformułować hipotezy do przetestowania.

POTWIERDZAJĄCA ANALIZA DANYCH

 Przeprowadzenie testów statystycznych w celu zweryfikowania postawionych hipotez badawczych

EKSPLORACJA DANYCH (DATA MINING)

ANALIZA SKUPIEŃ

Zastosowania:

- Klastrowanie genów do rodzin,
- Systematyka roślin i zwierząt
- W tomografii komputerowej służy do rozróżniania typów tkanek
- Segmentacja konsumentów
- Analiza sieci społecznych
- o Grupowanie wyników z<u>apytania</u>
- Segmentacja obrazów
- 0 ..

KLASYFIKACJA

- Obszary zastosowań:
 - Klasyfikacja biologiczna
 - Identyfikacja biometryczna
 - Wizja komputerowa
 - Analiza obrazu medycznego i obrazowanie medyczne
 - Rozpoznawanie pisma odręcznego
 - Klasyfikacja dokumentów
 - Rozpoznawanie wzorców
 - Rozpoznawanie mowy
 - 0 ..

REGRESJA

- Obszary zastosowań:
 - Prognoza popytu
 - Szacowanie kwoty roszczeń z tyt. ubezpieczenia
 - o Prognoza rynku i cen
 - Analiza relacji między
 zmiennymi np. wpływ leków na
 ciśnienie pacjenta
 - Analiza danych z ankiet
 - Przewidywanie zachowania konsumentów (np. wydana kwota)

WYKRYWANIE ANOMALII

Zastosowania:

- Wykrywanie włamań w cyberbezpieczeństwie
- Wykrywanie oszustw
- Wykrywanie usterek
- Wykrywanie zdarzeń w sieciach czujników
- Wykrywanie defektów w obrazach za pomocą wizji maszynowej
- Diagnostyka medyczna
- Egzekwowanie prawa

EKSPLORACJA WZORCÓW SEKWENCYJNYCH

Zastosowania:

- Sekwencje zakupowe klientów
- Leczenie medyczne
- Katastrofy naturalne (np. trzęsienia ziemi)
- Procesy naukowe i inżynieryjne
- Ceny akcji / surowców
- Sekwencja kliknięć na stronie
- Sekwencje operacji wykonywanych w programie komputerowym
- Sekwencje biologiczne np. DNA

SID	Sequence
1	$\langle \{a,b\}, \{c\}, \{f,g\}, \{g\}, \{e\} \rangle$
2	$\langle \{a,d\},\{c\},\{b\},\{a,b,e,f\} \rangle$
3	$\{a\}, \{b\}, \{f, g\}, \{e\}$
4	$\langle \{b\}, \{f,g\} \rangle$

NAUKA REGUŁ ASOCJACYJNYCH

- Zastosowania:
 - Analiza koszyka rynkowego np. {ziemniaki, cebula} -> {burger}
 - Eksploracja wykorzystywania sieci Web
 - Bioinformatyka
- W przeciwieństwie do eksploracji wzorców sekwencyjnych, nie uwzględnia kolejności elementów ani w ramach transakcji, ani między transakcjami.

CZY PRZEŻYŁ(A)BYŚ KATASTROFĘ TITANICA?

DZIĘKUJĘ ZA UWAGĘ

