Chapter 1, Section 2

James Lee

April 23, 2025

1.	Prove the "h	omogenous	Nullstellensatz,"	which sa	ys if $\mathfrak{a} \subseteq S$:	is a hom	ogenous	ideal, an	id if f	$\in S$ is a	homogenous
	polynomial v	with $\deg f >$	0, such that $f()$	$\overline{P} = 0$ for	$\overline{\text{all }P} \in Z(\mathfrak{c})$	$\overline{\mathfrak{u}}$ in \mathbb{P}^n ,	then f^q	$\in \mathfrak{a}$ for s	$\overline{\text{some } q}$	> 0.	

Proof. We can apply the usual Nullstellensatz by viewing f as a polynomial over \mathbb{A}^{n+1} and $Z(\mathfrak{a})$ as the set $Z(\mathfrak{a})'$ consisting of all (n+1)-uples $Q=(a_0,\ldots,a_{n+1})\in\mathbb{A}^{n+1}$ such that Q is the homogenous coordinate of some point $P\in Z(\mathfrak{a})$. Since f is homogenous, f(P)=0 for $P\in\mathbb{P}^n$ if and only if f(Q)=0 where P has Q as homogenous coordinates. Thus, $f^q\in\mathfrak{a}$ by the Nullstellensatz.

- **2.** For a homogenous ideal $\mathfrak{a} \subseteq S$, show that the following conditions are equivalent:
 - (i) $Z(\mathfrak{a}) = \emptyset$;
 - (ii) $\sqrt{\mathfrak{a}} = \text{either } S \text{ or the ideal } S_+ = \bigoplus_{d>0} S_d;$
 - (iii) $\mathfrak{a} \supseteq S_d$ for some d > 0.
 - *Proof.* (i) \Longrightarrow (ii) Let $S = k[x_0, \ldots, x_n]$. If $Z(\mathfrak{a})$, then all homogenous polynomials in S with degree > 0 are in $\sqrt{\mathfrak{a}}$ by the Nullstellensatz, so we have $S_+ \subseteq \sqrt{\mathfrak{a}}$. If $\sqrt{\mathfrak{a}}$ contains any element in $S_- S_+$, then $\sqrt{\mathfrak{a}}$ contains an element in S_0 , which is a unit. Hence, $\sqrt{\mathfrak{a}} = S$.
 - (ii) \Longrightarrow (iii) Either case $S_+ \subseteq \sqrt{\mathfrak{a}}$, so $x_i^{d_i} \in \mathfrak{a}$ for some $d_i \geq 0$ for each i, which implies $S_d \subseteq \mathfrak{a}$ where $d = \max d_i$.
 - (iii) \Longrightarrow (i) Let d > 0 be the smallest integer such that $\mathfrak{a} \supseteq S_d$, then we have $\mathfrak{a} \supseteq \bigoplus_{l \ge d} S_l$ so that $x_i^l \in \mathfrak{a}$ for all $0 \le i \le n$ and $l \ge d$. If there exists $P = (a_0, \ldots, a_n) \in Z(\mathfrak{a})$, then $a_i^d = a_i^{d+1} = 0$, which implies $a_i = 0$ for all $0 \le i \le n$, which is impossible.
- **4.** (a) There is a 1-1 inclusion-reversing correspondence between algebraic sets in \mathbb{P}^n , and homogenous radicals of S not equal S_+ , given by $Y \mapsto I(Y)$ and $\mathfrak{a} \mapsto Z(\mathfrak{a})$. Note: Since S_+ does not occur in this correspondence, it is sometimes called the *irrelevant* maximal ideal of S.
 - (b) An algebraic set $Y \subseteq \mathbb{P}^n$ is irreducible if and only if I(Y) is a prime ideal.
 - (c) Show that \mathbb{P}^n itself is irreducible.

Proof.

- (a) Only the last part that states S_+ does not occur in this correspondence is new. Indeed, $I(Y) \supseteq S_+$ for some algebraic set $Y = Z(\mathfrak{a})$, then $Z(\mathfrak{a}) = \emptyset$ b (I, Ex. 2.2), and any constant polynomial $f \in S_0$ vacuously satisfies f(P) = 0 for all $P \in Z(\mathfrak{a})$. Hence, I(Y) = S.
- (b) By the 1-1 correspondence from (a), I(Y) is a homogenous ideal, so it is sufficient to show for any two homogenous elements f, g, that $fg \in I(Y)$ implies $f \in I(Y)$ or g(Y). Indeed, if $fg \in I(Y)$, then $Y \subseteq Z(fg) = Z(f) \cup Z(g)$, thus $Y = (Y \cap Z(f)) \cup (Y \cap Z(g))$ both being closed subsets of Y. Since Y is irreducible, we have either $Y = Y \cap Z(f)$, in which case $Y \subseteq Z(f)$, or $Y \subseteq Z(g)$. Hence, either $f \in I(Y)$ or $g \in I(Y)$.
 - Conversely, let \mathfrak{p} be a homogenous prime ideal, and suppose that $Z(\mathfrak{p}) = Y_1 \cup Y_2$. Then $\mathfrak{p} = I(Y_1) \cap I(Y_2)$, so either $\mathfrak{p} = I(Y_1)$ or $\mathfrak{p} = I(Y_2)$. Thus, $Z(\mathfrak{p}) = Y_1$ or Y_2 , hence it is irreducible.

- (c) $I(\mathbb{P}^n) = (0)$, which is a prime ideal.
- **5.** (a) \mathbb{P}^n is a noetherian topological space.

(b) Every algebraic set in \mathbb{P}^n can be written uniquely as a finite union of irreducible algebraic sets, no one containing another. These are called its *irreducible components*.

Proof.

- (a) \mathbb{P}^n is covered by the open set U_i defined the non-vanshing of the *i*th homogenous coordinate, each of which is homeomorphic to the affine plane \mathbb{A}^n . The affine plane is a noetherian topological space, so it suffices to show a finite union of noetherian topological spaces is also noetherian. An equivalent condition for a space to be noetherian is if every subset is quasi-compact by (A.M. p. 79). If Y is any subset of \mathbb{P}^n , then $Y = Y \cap \bigcup U_i$, each of which is quasi-compact in the induced topology of U_i , so Y is a finite union of quasi-compact sets. Hence, Y is quasi-compact.
- (b) Follows from (a), (1.5), and (I, Ex. 2.4b).
- **6.** If Y is a projective variety with homogenous coordinate ring S(Y), show that dim $S(Y) = \dim Y + 1$.

Proof. Let $\varphi_i: U_i \to \mathbb{A}^n$ be the homeomorphism of (2.2), let Y_i be the affine variety $\varphi_i(Y \cap U_i)$, and let $A(Y_i)$ be its affine coordinate ring. If $g(y_1, \ldots, y_n)$ is an element of $A(Y_i)$, then define the map $A(Y_i) \to S(Y)_{x_i}$ as $g(x_0/x_i, \ldots, x_n/x_i)$, or equivalently $g \mapsto \varphi_i^* g = g \circ \varphi_i$; thus we can identify $A(Y_i)$ with the subring of elements of degree 0 of the localized ring $S(Y)_{x_i}$. Then, $S(Y)_{x_i} \simeq A(Y_i)[x_i, x_i^{-1}]$ since every monomial in $k[x_0, \ldots, x_n]$ can be written as

$$x_0^{d_0} \cdots x_i^{d_i} \cdots x_n^{d_n} = \frac{x_0^{d_0} \cdots \widehat{x_i^{d_i}} \cdots x_n^{d_n}}{x_i^{d_0 + \dots + d_n}} x_i^{d_0 + \dots + d_n},$$

where $\hat{}$ denotes omission, and the quotient is in the image of $A(Y_i) \to S(Y)_{x_i}$. By (1.8A), the dimension of S(Y) is equal to the transcendence degree of the quotient field of S(Y), which is isomorphic to the quotient field of $S(Y)_{x_i}$. The dimension of $A(Y_i)$ is equal to the dimension to Y_i by (1.7). Therefore, we have

$$\dim S(Y) = \dim S(Y)_{x_i}$$

$$= \dim A(Y_i)[x_i, x_i^{-1}]$$

$$= \dim A(Y_i) + 1$$

$$= \dim Y_i + 1.$$

Since the Y_i cover Y, dim $Y = \sup \dim Y_i$, so dim $S(Y) = \dim Y + 1$ By (I, Ex. 1.10).

- 7. (a) dim $\mathbb{P}^n = n$.
 - (b) If $Y \subseteq \mathbb{P}^n$ is quasi-projective variety, then dim $Y = \dim \overline{Y}$.

Proof.

- (a) $\dim \mathbb{P}^n = \dim k[x_0, ..., x_n] 1 = n.$
- (b) By Exercise 2.6, we have dim $Y = \dim Y_i$ if Y_i is non-empty, so by (1.10) dim $\overline{Y} = \dim \overline{Y}_i = \dim Y_i = \dim Y$.
- 8. A projective variety $Y \subseteq \mathbb{P}^n$ has dimension n-1 if and only if it is the zero set of a single irreducible homogenous polynomial f of positive degree. Y is called a *hypersurface* in \mathbb{P}^n .

Proof. If Y has dimension n-1, then by (1.13) Y is the union of affine varieties Y_i of dimension n-1, so by the map β in the proof of (2.2) and (1.13) each Y_i is the zero set of an irreducible homogenous polynomial f of positive degree, hence $Y = \bigcup Y_i = \bigcup_{Y_i \neq \emptyset} Z(f_i) = Z(f_0 \cdots f_n)$. Conversely, if Y = Z(f) for some homogenous polynomial f of positive degree, then $Y_i = Z(\alpha(f))$ where α is the map defined in the proof of (2.2), hence by (1.13) and Exercise 6 we have dim $Y = \dim Y_i = n-1$.

12. The d-Uple Embedding. For given n, d > 0, let M_0, M_1, \ldots, M_N be all the monomials of degree d in the n+1 variables x_0, \ldots, x_n , where $N = \binom{n+d}{n} - 1$. We define a mapping $\rho_d : \mathbb{P}^n \to \mathbb{P}^N$ by sending the point $P = (a_0, \ldots, a_n)$ to the point $\rho_d(P) = (M_0(a), \ldots, M_N(a))$ obtained by substituting the a_i in the monomials M_j . This is called the d-uple embedding of \mathbb{P}^n in \mathbb{P}^N . For example, if n = 1, d = 2, then N = 2, and the image of Y of the 2-uple embedding of \mathbb{P}^1 in \mathbb{P}^2 is a conic.

- (a) Let $\theta: k[y_0, \ldots, y_N] \to k[x_0, \ldots, x_n]$ be the homomorphism defined by sending y_i to M_i , and let \mathfrak{a} be the kernel of θ . Then \mathfrak{a} is a homogenous prime ideal, and so $Z(\mathfrak{a})$ is a projective variety in \mathbb{P}^N .
- (b) Show that the image of ρ_d is exactly $Z(\mathfrak{a})$.
- (c) Now show that ρ_d is a homeomorphism of \mathbb{P}^n onto the projective variety $Z(\mathfrak{a})$.
- (d) Show that the twisted cubic curve in \mathbb{P}^3 (Ex. 2.9) is equal to the 3-uple embedding of \mathbb{P}^1 in \mathbb{P}^3 , for suitable choice of coordinates.

Proof.

- (a) The image of θ is an integral domain, so \mathfrak{a} is a prime ideal, and it is clearly homogenous since each y_i is sent to a polynomial of same degree.
- (b) If $Q \in \text{im } \rho_d$, then $Q = \rho_d(P)$ for some $P \in \mathbb{P}^n$, for any $f \in \mathfrak{a}$ we have

$$f(Q) = f(\rho_d(P)) = \theta(f)(P) = 0 \implies Q \in Z(\mathfrak{a}).$$

Before proving the converse direction, consider the case when n=1 and d=2, so that $\rho_d: \mathbb{P}^1 \to \mathbb{P}^2$ is defined as $(b_0,b_1)\mapsto (b_0^2,b_0b_1,b_1^2)$. Then, the polynomial $y_0y_2-y_1^2$ is in \mathfrak{a} . If $Q=(a_0,a_1,a_2)\in Z(\mathfrak{a})$, then since k is algebraically closed we have

$$a_0 a_2 - a_1^2 = 0 \implies a_1 = \pm \sqrt{a_0 a_2} \implies \rho_d(\sqrt{a_0}, \sqrt{a_2}) = (a_0, a_1, a_2).$$

Returning to the general case, if $Q = (a_0, \ldots, a_N) \in Z(\mathfrak{a})$, indexing M_i using the stars and bars method, we have $\rho_d(\sqrt[d]{a_0}, \sqrt[d]{a_d}, \ldots, \sqrt[d]{a_N}) = Q$.

- (c) ρ_d is clearly bijective, so it will be sufficient to show that the closed sets of \mathbb{P}^n are identified with the closed sets of $Z(\mathfrak{a})$ by ρ_d . Let $Y \subseteq \mathbb{P}^n$ be a closed subset, so Y = Z(T) for some subset $T \subseteq k[x_0, \ldots, x_n]$, then it is easy to see that $\rho_d(Y) = Z(\theta^{-1}(T)) \cap Z(\mathfrak{a})$. Conversely, let W be a closed subset of $Z(\mathfrak{a})$. Let \overline{W} be its closure in \mathbb{P}^N . This is an algebraic set, so $\overline{W} = Z(T')$ for some $T' \subseteq k[y_0, \ldots, y_N]$, hence $\rho_d^{-1}(W) = \rho_d^{-1}(\overline{W}) = Z(\theta(T'))$.
- (d) Let (S,T) and (X,Y,Z,W) be homogenous coordinates of \mathbb{P}^1 and \mathbb{P}^3 , respectively. Then, the 3-uple embedding of \mathbb{P}^1 in \mathbb{P}^3 is given by

$$(S,T) \mapsto (S^3, S^2T, ST^2, T^3).$$

Let Y be the twisted cubic curve in \mathbb{A}^3 and let \overline{Y} be its projective closure in \mathbb{P}^3 , then we have

$$\varphi_3^{-1}(Y) = \left\{ \left(\frac{u}{v}, \frac{u^2}{v^2}, \frac{u^3}{v^3}, 1 \right) \middle| u, v \in k, \ v \neq 0 \right\} \implies \overline{Y} = \{ (u^3, u^2 v, uv^2, v^3) \mid u, v \in k \}.$$

14. Segre Embedding. Let $\psi : \mathbb{P}^r \times \mathbb{P}^s \to \mathbb{P}^N$ be the map defined by sending the ordered pair $(a_0, \ldots, a_r) \times (b_0, \ldots, b_s)$ to $(\ldots, a_i b_j, \ldots)$ in lexicographic order, where N = rs + r + s. Note that ψ is well-defined and injective. It is called the Segre embedding. Show that the image of ψ is a subvariety of \mathbb{P}^N .

Proof. Let the homogenous coordinates of \mathbb{P}^N be $\{z_{ij} \mid i=0,\ldots,r,j=0,\ldots,s\}$, and let \mathfrak{a} be the kernel of the homomorphism $\theta: k[\{z_{ij}\}] \to k[x_0,\ldots,x_r,y_0,\ldots,y_s]$ which sends z_{ij} to x_iy_j . If $P \in \text{im } \psi$, then $P = \psi(Q,R)$ for some $Q \in \mathbb{P}^r$ and $R \in \mathbb{P}^s$, then for any $f \in \mathfrak{a}$ we have

$$f(P) = f(\psi(Q, R)) = \theta(f)(Q, R) = 0 \implies P \in Z(\mathfrak{a}).$$

Conversely, viewing points of \mathbb{P}^N as $(r+1) \times (s+1)$ -matrices, the variety $Z(\mathfrak{a})$ is defined as the vanshing of all 2×2 -minors, i.e. $z_{ij}z_{kl} = z_{il}z_{jk}$ for all $0 \le i, k \le r$ and $0 \le j, l \le s$. This means $\{z_{ij}\} \in Z(\mathfrak{a})$ has rank 1, so it can be expressed as the outer product of two vectors in k^{r+1} and k^{s+1} , which is exactly the mapping defined by ψ . \square

- **15.** Quadric Surface in \mathbb{P}^3 . Consider the surface Q (a surface is a variety of dimension 2) in \mathbb{P}^3 defined by the equation xy zw = 0.
 - (a) Show that Q is equal to the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 , for suitable choice of coordinates.
 - (b) Show that Q contains two families of lines (a line is a linear variety of dimension 1) $\{L_t\}$, $\{M_t\}$, each parametrized by $t \in \mathbb{P}^1$, with the proeprties that if $L_t \neq L_u$, then $L_t \cap L_u = \emptyset$; if $M_t \neq M_u$, $M_t \cap M_u = \emptyset$, and for all t, u, $L_t \cap M_u = \emptyset$ one point.

(c) Show that Q contains other curves besides these lines, and deduce that the Zariski topology on Q is not homeomorphic via ψ to the product topology on $\mathbb{P}^1 \times \mathbb{P}^1$ (where each \mathbb{P}^1 has its Zariski topology).

Proof.

- (a) The kernel of the mapping $k[z_{00}, z_{01}, z_{10}, z_{11}] \rightarrow k[x_0, x_1, y_0, y_1]$ as in Exercise 14 is generated by $z_{00}z_{11} z_{01}z_{10}$. Then $Z(z_{00}z_{11} z_{01}z_{11})$ is equal to Q for a suitable choice of coordinates.
- (b) From here, we assume Q is defined by xw yz = 0 (the author was too lazy to fix his mistake after realizing it at (c)). Consider the Segre embedding $\psi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ defined by

$$(t_0, t_1) \times (u_0, u_1) \mapsto (t_0 u_0, t_0 u_1, t_1 u_0, t_1 u_1).$$

Fixing the first entry as $t = (t_0, t_1) \in \mathbb{P}^1$, we obtain an embedding of \mathbb{P}^1 in \mathbb{P}^3 , which can be identified as the intersection of the zero set of the following linear polynomials

$$t_1x - t_0z = 0$$
, $t_1y - t_0w = 0$,

so we have one family of lines $\{L_t\}$, and we can obtain a second family of lines in the same manner by fixing the second entry of the map ψ , where the line M_u for $u = (u_0, u_1) \in \mathbb{P}^1$ is defined by the intersection of the zero set of the linear polynomials

$$u_1x - u_0y = 0, \quad u_1z - u_0w = 0.$$

Then $L_t \neq L_u$ implies $L_t \cap L_u = \emptyset$ follows from the fact that ψ is an embedding, in particular ψ is injective. To show the intersection of L_t and M_u is a single point for any $t, u \in \mathbb{P}^1$, it suffices to show the linear polynomials defined above intersect at exactly one point. Without loss of generality assume $t_1, u_1 \neq 0$, then setting $\lambda = t_0/t_1$ and $\mu = u_0/u_1$, we have

$$x = \lambda z$$
, $y = \lambda w$, $x = \mu y$, $z = \mu w \implies L_t \cap M_u = \{(\lambda \mu, \lambda, \mu, 1)\}.$

(c) Consider the curve K in Q defined by x = w. It is clearly not a line since it is the intersection of a nonlinear curve and a linear curve; however it is a closed subset of Q. On the other hand, $\psi^{-1}(K)$ is the diagonal in $\mathbb{P}^1 \times \mathbb{P}^1$, which is certainly not closed since \mathbb{P}^1 is not Hausdorff.