COMP4141 Tutorial 8

Ron van der Meyden meyden@cse.unsw.edu.au

Exercise 1 Let # be a symbol in an alphabet Σ^* . A #-chain in a language L from $\alpha \in \Sigma^*$ to $\beta \in \Sigma^*$ is a sequence of words

$$\gamma_0 \# \gamma_1, \\
\gamma_1 \# \gamma_2, \\
\vdots \\
\gamma_{n-1} \# \gamma_n$$

such that $\alpha = \gamma_0$ and $\beta \in \gamma_n$, and for all $i = 0 \dots n-1$ we have $\gamma_i \# \gamma_{i+1} \in L$ and $|\gamma_i| = |\gamma_{i+1}|$. Show that the following problem is in **PSPACE**: Given a context-free grammar G and words α, β , does there exist a #-chain (of any length) in L(G) from α to β ?

Exercise 2 Show that the problem of the previous question is PSPACE-hard (and hence PSPACE-complete, by the previous exercise.)

Exercise 3 Show that the balanced-parenthesis language over $\Sigma = \{(,)\}$ defined by the context free grammar

$$S := \epsilon \mid (S) \mid SS$$

is in \mathbf{L} .

Exercise 4 (Sipser 8.29) Show that the language

$$A_{NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts word } w\}$$

is NL-complete. You may use the fact that PATH is NL-complete.