GNN Optimization

Yi Deng, Muhao Guo, Qian Wang Advisor: Mohammad Saeed

Contents

- Introduction
 - GNN application
 - Tasks
- GNN in homogeneous graph
 - Dataset (citation full)
 - Model (GCN)
 - Performance
- GNN in Heterogeneous graph
 - Dataset (netflix dataset)
 - Model (pinsage)
 - Performance
- Conclusion
 - Pros and cons
 - Expect to do

ntroduction | GNN application

Source from: CS224W Introduction; Structure of Graphs

Introduction | Tasks

- Homogeneous graph
 - Data: citation full dataset
 - Model: GCN
- Heterogeneous graph
 - Data: Movielen Dataset, Netflix dataset
 - Model: PinSage

GNN in homogeneous graph | Citation full dataset

dataset	#edges	#nodes	size of node features	#num_classes
cora	126842	19793	8710	70
cora_ml	16316	2995	2879	7
citeseer	10674	4230	602	6
dblp	105734	17716	1639	4
pubmed	88648	19717	500	3

GNN in homogeneous graph | Model

GNN in homogeneous graph | Performance

dataset	cora	cora_ml	citeseer	dblp	pubmed
accuracy	0.8480	0.9790	0.9960	0.9434	0.9428

GNN in heterogeneous graph | movie recommendation

Pinsage

For

movie recommendation

GNN in heterogeneous graph | Model

GNN in heterogeneous graph | random walk

GNN in heterogeneous graph | movielens

#ratings:1,000,209,# movies:4000, #users: 6,040

Movie data example:

- O 1::Toy Story (1995)::Animation|Children's|Comedy
- O 2::Jumanji (1995)::Adventure|Children's|Fantasy
- O 3::Grumpier Old Men (1995)::Comedy|Romance

Users data example:

- O 1::F::1::10::48067
- O 2::M::56::16::70072
- O 3::M::25::15::55117

Rating data example:

- O 1::1193::5::978300760
- O 1::661::3::978302109
- 0 1::914::3::978301968

#ratings: 100 million, # movies:17770, #users: 6,040

Movie data example:

- O 1, 2003, Dinosaur Planet
- 2, 2004, Isle of Man TT 2004 Review
- 3, 1997, Character
- O 4, 1994, Paula Abdul's Get Up & Dance
- O 5, 2004, The Rise and Fall of ECW

• Rating data example:

- O 10662, 2400203, 5, 2005-07-11
- O 11312, 1711268, 2, 2002-03-13
- 12132, 1657481, 3, 2004-04-07
- O 11307, 1844276, 4, 2004-08-13
- O 11309, 1734805, 1, 2001-01-30

GNN in heterogeneous graph | pipeline

GNN in heterogeneous graph | Metric

Ground truth movie id:1, 3

movie_candidates	user_id	Cosine similarity	rank	Reciprocal rank
1	1	0.3	3	1/3
2	1	0.6	2	1/2
3	1	0.7	1	1
4	1	0.1	4	1/4

GNN in heterogeneous graph | Performance on MovieLens

#Negtive sampling

#embedding_size(h_hidden)

n_nbrs

n_layer

Conclusion | Expect to do

- Train the model on the entire Netflix dataset
- Make a prediction on how the users rate the movies

Thank you!