10. Applying random forest on field data - gene

Fay

2022-11-04

Aim:

- Applying the models established in the script: 9
- How are hybrid mice different to the parental species?

Load necessary libraries:

```
#install.packages("optima", version = "2021-10.12") # this package is required for
#the parasite load package to work
library(tidyverse)
library(tidyr)
library(dplyr)
library(cowplot)
library(randomForest)
library(ggplot2)
library(VIM) # visualizing missing data
library(mice) # imputing missing data without predictors
library(ggpubr)
library(optimx)
library(rfUtilities) # Implements a permutation test cross-validation for
# Random Forests models
library(mice) #imputations
library(fitdistrplus) #testing distributions
library(logspline)
library(caret)
```

Field data

Import field data

```
hm <- read.csv("output_data/2.imputed_MICE_data_set.csv")</pre>
```

Clean data

```
Field <- hm %>%
  filter(origin == "Field") %>%
   drop_na(HI)
```

We have 1921 mice in total.

Prepare vectors for selecting

Actual Cleaning

```
#select the imputed gene columns
gene <- Field %>%
  dplyr::select(c(Mouse_ID, "IFNy", "CXCR3", "IL.6", "IL.13", "IL.10",
                   "IL1RN", "CASP1", "CXCL9", "ID01", "IRGM1",
                  "MUC2", "MUC5AC", "MYD88", "NCR1", "PRF1", "RETNLB", "SOCS1",
                   "TICAM1", "TNF"))
genes <- gene %>%
  dplyr::select(-Mouse_ID)
#remove rows with only nas
genes <- genes[,colSums(is.na(genes))<nrow(genes)]</pre>
#remove colums with only nas
genes <- genes[rowSums(is.na(genes)) != ncol(genes), ]</pre>
# select the same rows from the gene data
gene <- gene[row.names(genes),]</pre>
# select the same rows from the field data
Field <- Field[row.names(genes),]</pre>
```

Predicting weight loss in our imputed field data

Start by making the predictions for the field data.

```
# load predicting weight loss model
weight_loss_predict <- readRDS("r_scripts/models/predict_WL.rds")
set.seed(540)

#The predict() function in R is used to predict the values based on the input data.
predictions_field <- predict(weight_loss_predict, genes)

#make the vector positive so that the distributions further down work
predictions_field <- predictions_field * (-1)

# assign test.data to a new object, so that we can make changes
result_field <- genes</pre>
```

```
#add the new variable of predictions to the result object
result_field <- cbind(result_field, predictions_field)

# add it to the field data
Field <- cbind(Field, predictions_field)</pre>
```

It is time to apply the package of Alice Balard et al. on our predictions!

Let's see if we indeed have differences across the hybrid index with our predicted weight loss.

Install the package

```
##
## * checking for file '/tmp/Rtmp7QcQEB/remotes3cf301188cf1a5/alicebalard-parasiteLoad-1b43216/DESCRIPT
## * preparing 'parasiteLoad':
## * checking DESCRIPTION meta-information ... OK
## * checking for LF line-endings in source and make files and shell scripts
## * checking for empty or unneeded directories
## * building 'parasiteLoad_0.1.0.tar.gz'
```

Data diagnostics

Visualizations

```
Field %>% ggplot(aes(x = predictions_field)) +
  geom_histogram(binwidth = 1.5)
```


What is the distribution of the predicted weight loss?

Rough graph of our predictions against the hybrid index and against the

```
Field %>%
   ggplot(aes(x = HI , y = predictions_field , color = Sex)) +
   geom_smooth() +
   geom_point()
```

body length

```
## geom_smooth() using method = 'loess' and formula = 'y ~ x'
```



```
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
```

^{##} Warning: Removed 1 rows containing non-finite values (`stat_smooth()`).

^{##} Warning: Removed 1 rows containing missing values (`geom_point()`).

Fitting distributions??

Ratios / Percentages are not normally distributed. Weibull is a good distributions.

Alice used weibull for the qpcr data. (paper)

```
Field <- Field %>%
dplyr::mutate(WL = predictions_field)

x <- Field$WL

descdist(data = x, discrete = FALSE)</pre>
```

Cullen and Frey graph

Cullen and Frey graph


```
## summary statistics
## -----
## min: 3.959833 max: 20.1775
## median: 10.09201
## mean: 10.3217
## estimated sd: 2.516379
## estimated skewness: 0.4392375
## estimated kurtosis: 3.497443
```

Test for binomial distribution

```
set.seed(10)
n = 25
size = 27
prob = .4
data = rbinom(x, size = size, prob = prob)
fit = fitdist(data = data, dist="binom",
                     fix.arg=list(size = size),
                     start=list(prob = 0.1))
summary(fit)
\mbox{\tt \#\#} Fitting of the distribution \mbox{\tt '} binom \mbox{\tt '} by maximum likelihood
## Parameters :
        estimate Std. Error
## prob 0.399558 0.005150141
## Fixed parameters:
##
        value
```

```
## size 27
## Loglikelihood: -779.317 AIC: 1560.634 BIC: 1564.448
plot(fit)
```



```
normal_ <- fitdist(x, "norm")</pre>
weibull_ <- fitdist(x, "weibull")</pre>
gamma_ <- fitdist(x, "gamma")</pre>
# Define function to be used to test, get the log lik and aic
tryDistrib <- function(x, distrib){</pre>
  # deals with fitdistr error:
  fit <- tryCatch(MASS::fitdistr(x, distrib), error=function(err) "fit failed")</pre>
  return(list(fit = fit,
               loglik = tryCatch(fit$loglik, error=function(err) "no loglik computed"),
               AIC = tryCatch(fit$aic, error=function(err) "no aic computed")))
}
findGoodDist <- function(x, distribs, distribs2){</pre>
  1 =lapply(distribs, function(i) tryDistrib(x, i))
  names(1) <- distribs</pre>
  print(1)
  listDistr <- lapply(distribs2, function(i){</pre>
    if (i %in% "t"){
```

```
fitdistrplus::fitdist(x, i, start = list(df =2))
    } else {
      fitdistrplus::fitdist(x,i)
    }}
  )
  par(mfrow=c(2,2))
  denscomp(listDistr, legendtext=distribs2)
  cdfcomp(listDistr, legendtext=distribs2)
  qqcomp(listDistr, legendtext=distribs2)
  ppcomp(listDistr, legendtext=distribs2)
  par(mfrow=c(1,1))
}
tryDistrib(x, "normal")
Functions for testing distributions
## $fit
##
         mean
                        sd
##
     10.32170304
                    2.51261999
   (0.13727909) (0.09707098)
##
## $loglik
## [1] -783.9886
## $AIC
## NULL
tryDistrib(x, "binomial")
## $fit
## [1] "fit failed"
## $loglik
## [1] "no loglik computed"
##
## $AIC
## [1] "no aic computed"
tryDistrib(x, "student")
## $fit
## [1] "fit failed"
## $loglik
## [1] "no loglik computed"
## $AIC
## [1] "no aic computed"
tryDistrib(x, "weibull")
## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced
## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced
```

```
## $fit
##
                 scale
       shape
##
   4.3023202 11.3019120
## ( 0.1703402) ( 0.1519404)
##
## $loglik
## [1] -792.4037
##
## $AIC
## NULL
tryDistrib(x, "weibullshifted")
## $fit
## [1] "fit failed"
##
## $loglik
## [1] "no loglik computed"
## $AIC
## [1] "no aic computed"
findGoodDist(x, "normal", "weibull")
## $normal
## $normal$fit
##
        mean
                       sd
## 10.32170304 2.51261999
## ( 0.13727909) ( 0.09707098)
##
## $normal$loglik
## [1] -783.9886
## $normal$AIC
## NULL
```



```
summary(normal_)
## Fitting of the distribution ' norm ' by maximum likelihood
## Parameters :
         estimate Std. Error
##
## mean 10.32170 0.13727909
           2.51262 0.09707091
## Loglikelihood: -783.9886
                                      AIC: 1571.977
                                                           BIC: 1579.606
## Correlation matrix:
         mean sd
##
             1 0
## mean
## sd
             0
                1
plot(gamma_)
                  Empirical and theoretical dens.
                                                                                    Q-Q plot
                                                            20
   0.15
                                                         Empirical quantiles
                                                            15
   0.10
Density
                                                            10
   0.05
   0.00
                        10
                                    15
                                              20
                                                                                10
                                                                                               15
                                                                                                             20
                                                                                 Theoretical quantiles
                            Data
                                                                                    P-P plot
                  Empirical and theoretical CDFs
   1.0
   0.8
                                                            0.8
                                                         Empirical probabilities
   9.0
                                                            9.0
CDF
   0.4
                                                            0.4
   0.2
                                                            0.2
                        10
                                    15
                                              20
                                                                0.0
                                                                        0.2
                                                                                 0.4
                                                                                          0.6
                                                                                                   0.8
                                                                                                            1.0
                            Data
                                                                                Theoretical probabilities
summary(gamma_)
## Fitting of the distribution ' gamma ' by maximum likelihood
## Parameters :
##
            estimate Std. Error
## shape 16.679232 1.2760602
           1.615965 0.1255067
## rate
## Loglikelihood: -779.1252
                                      AIC: 1562.25
                                                          BIC: 1569.879
## Correlation matrix:
                shape
                             rate
## shape 1.0000000 0.9850536
## rate 0.9850536 1.0000000
```

plot(weibull_) Empirical and theoretical dens. Q-Q plot 0.15 20 0.10 Empirical quantiles 15 Density 10 0.05 0.00 10 15 20 15 Data Theoretical quantiles **Empirical and theoretical CDFs** P-P plot 1.0 1.0 0.8 0.8 **Empirical probabilities** 9.0 9.0 0.4 0.4 0.2 0.2 0.0 0.0 5 10 15 20 0.2 0.6 1.0 Data Theoretical probabilities summary(weibull_) ## Fitting of the distribution 'weibull 'by maximum likelihood ## Parameters : ## estimate Std. Error ## shape 4.302738 0.1703492 ## scale 11.301733 0.1519233 ## Loglikelihood: -792.4038 1588.808 1596.436 AIC: BIC: ## Correlation matrix: shape ## scale ## shape 1.0000000 0.3283846 ## scale 0.3283846 1.0000000 Is alpha significant for each hypothesis? Field\$Sex <- as.factor(Field\$Sex)</pre> parasiteLoad::getParamBounds("normal", data = Field, response = "WL")

L2start

mysdStart

L2UB

mysdUB

L2LB

mysdLB

3.959832716 20.177504703

L1UB

 $0.000000000 -5.000000000 \quad 5.000000000 \quad 1.000000000 \quad 0.000000001 \quad 10.000000000$

alphaUB

3.959832716 20.177504703 10.321703036

L1LB

alphaLB

##

##

##

L1start

10.321703036

alphaStart

```
speparam \leftarrow c(L1start = 10,
                     L1LB = 1e-9,
                     L1UB = 20,
                     L2start = 10.
                     L2LB = 1e-9,
                     L2UB = 20,
                     alphaStart = 0, alphaLB = -5, alphaUB = 5,
                     myshapeStart = 1, myshapeLB = 1e-9, myshapeUB = 5)
##A11
fitWL_Sex <- parasiteLoad::analyse(data = Field,</pre>
                        response = "WL",
                        model = "normal",
                        group = "Sex")
## [1] "Analysing data for response: WL"
## [1] "Fit for the response: WL"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
      dLL dDF
                  pvalue
## 1 2.63
            1 0.02185549
## [1] "Testing H1 no alpha vs alpha"
##
      dLL dDF
                  pvalue
## 1 2.01
            1 0.04514727
## [1] "Testing H2 groupA no alpha vs alpha"
      dLL dDF
##
                 pvalue
## 1 0.99
            1 0.1592538
## [1] "Testing H2 groupB no alpha vs alpha"
```

```
##
      dLL dDF
                  pvalue
            1 0.05725558
## 1 1.81
## [1] "Testing H3 groupA no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 1.26
            1 0.1130798
## [1] "Testing H3 groupB no alpha vs alpha"
      dLL dDF
                  pvalue
## 1 1.82
            1 0.05636448
## [1] "Testing H1 vs H0"
      dLL dDF
                 pvalue
## 1 0.92
            1 0.1756223
## [1] "Testing H2 vs H0"
     dLL dDF
                 pvalue
## 1 2.09
            3 0.2417575
## [1] "Testing H3 vs H1"
##
      dLL dDF
                  pvalue
## 1 5.75
            4 0.02147942
## [1] "Testing H3 vs H2"
      dLL dDF
                  pvalue
## 1 4.57
            2 0.01032858
parasiteLoad::analyse(data = Field,
                        response = "WL",
                        model = "normal",
                        group = "Sex")
## [1] "Analysing data for response: WL"
## [1] "Fit for the response: WL"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
```

```
## [1] "Testing HO no alpha vs alpha"
                  pvalue
##
      dLL dDF
            1 0.02185549
## 1 2.63
## [1] "Testing H1 no alpha vs alpha"
      dLL dDF
                  pvalue
## 1 2.01
            1 0.04514727
## [1] "Testing H2 groupA no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.99
            1 0.1592538
## [1] "Testing H2 groupB no alpha vs alpha"
      dLL dDF
                  pvalue
## 1 1.81
            1 0.05725558
## [1] "Testing H3 groupA no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 1.26
            1 0.1130798
## [1] "Testing H3 groupB no alpha vs alpha"
      dLL dDF
                  pvalue
## 1 1.82
            1 0.05636448
## [1] "Testing H1 vs H0"
      dLL dDF
                 pvalue
## 1 0.92
            1 0.1756223
## [1] "Testing H2 vs H0"
##
      dLL dDF
                 pvalue
## 1 2.09
            3 0.2417575
## [1] "Testing H3 vs H1"
      dLL dDF
                  pvalue
## 1 5.75
            4 0.02147942
## [1] "Testing H3 vs H2"
     dLL dDF
                  pvalue
            2 0.01032858
## 1 4.57
## $HO
##
## bbmle::mle2(minuslog1 = response ~ dnorm(mean = MeanLoad(L1,
       L1, alpha, HI), sd = mysd), start = start, method = config$method,
       optimizer = config$optimizer, data = data, lower = c(L1 = paramBounds[["L1LB"]],
##
##
           mysd = paramBounds[["mysdLB"]], alpha = paramBounds[["alphaLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], mysd = paramBounds[["mysdUB"]],
##
           alpha = paramBounds[["alphaUB"]]), control = config$control)
##
##
## Coefficients:
##
                    mysd
                              alpha
##
   9.7996797 2.4929816 -0.2305268
##
## Log-likelihood: -781.36
## Best method: bobyqa
##
## $H1
##
## bbmle::mle2(minuslog1 = response ~ dnorm(mean = MeanLoad(L1,
##
       L2, alpha, HI), sd = mysd), start = start, method = config$method,
       optimizer = config$optimizer, data = data, lower = c(L1 = paramBounds[["L1LB"]],
##
```

```
mysd = paramBounds[["mysdLB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           mysd = paramBounds[["mysdUB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]]), control = config$control)
##
##
  Coefficients:
##
          T.1
                    L2
                           alpha
                                       mysd
   9.564795 10.071590 -0.204059 2.486166
##
##
## Log-likelihood: -780.44
## Best method: bobyqa
## $H2
## $H2$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dnorm(mean = MeanLoad(L1,
##
       L1, alpha, HI), sd = mysd), start = start, method = config$method,
##
       optimizer = config$optimizer, data = data, lower = c(L1 = paramBounds[["L1LB"]],
           mysd = paramBounds[["mysdLB"]], alpha = paramBounds[["alphaLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], mysd = paramBounds[["mysdUB"]],
           alpha = paramBounds[["alphaUB"]]), control = config$control)
##
##
## Coefficients:
##
           T.1
                    mysd
                              alpha
## 10.0350054 2.6318415 -0.1997412
## Log-likelihood: -398.57
## Best method: bobyqa
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dnorm(mean = MeanLoad(L1,
##
       L1, alpha, HI), sd = mysd), start = start, method = config$method,
##
       optimizer = config$optimizer, data = data, lower = c(L1 = paramBounds[["L1LB"]],
##
           mysd = paramBounds[["mysdLB"]], alpha = paramBounds[["alphaLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], mysd = paramBounds[["mysdUB"]],
##
           alpha = paramBounds[["alphaUB"]]), control = config$control)
##
  Coefficients:
##
           T.1
                    mysd
                              alpha
   9.5523403 2.3329417 -0.2688342
##
##
## Log-likelihood: -380.7
## Best method: bobyqa
##
##
## $H3
## $H3$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dnorm(mean = MeanLoad(L1,
       L2, alpha, HI), sd = mysd), start = start, method = config$method,
```

```
optimizer = config$optimizer, data = data, lower = c(L1 = paramBounds[["L1LB"]],
##
##
           mysd = paramBounds[["mysdLB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           mysd = paramBounds[["mysdUB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]]), control = config$control)
##
## Coefficients:
##
           T.1
                      L2
                              alpha
## 10.1934433 9.7543876 -0.2423411 2.6273997
##
## Log-likelihood: -398.28
## Best method: bobyqa
## $H3$groupB
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dnorm(mean = MeanLoad(L1,
       L2, alpha, HI), sd = mysd), start = start, method = config$method,
##
       optimizer = config$optimizer, data = data, lower = c(L1 = paramBounds[["L1LB"]],
##
           mysd = paramBounds[["mysdLB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           mysd = paramBounds[["mysdUB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]]), control = config$control)
##
##
## Coefficients:
##
                      1.2
                              alpha
##
   8.7485937 10.1460223 -0.2653402 2.2741121
## Log-likelihood: -376.41
## Best method: bobyqa
plot_WL_Sex<- bananaPlot(mod = fitWL_Sex$H3,</pre>
             data = Field,
             response = "WL",
             group = "Sex") +
    scale_fill_manual(values = c("blueviolet", "limegreen")) +
  scale_color_manual(values = c("blueviolet", "limegreen")) +
  theme_bw()
## Scale for fill is already present.
## Adding another scale for fill, which will replace the existing scale.
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
# Create HI bar
HIgradientBar <- ggplot(data.frame(hi = seq(0,1,0.0001)),</pre>
                        aes(x=hi, y=1, fill = hi)) +
  geom_tile() +
  theme void() +
  scale fill gradient(low = "blue", high = "red") +
  scale_x_continuous(expand=c(.01,0)) +
  scale_y_continuous(expand=c(0,0)) +
  theme(legend.position = 'none')
plot_grid(plot_WL_Sex,
```

```
HIgradientBar,
nrow = 2,
align = "v",
axis = "tlr",
rel_heights = c(13, 1))
```


plot_WL_Sex

H0: the expected load for the subspecies and between 2 groups is the same

 $\mathrm{H}1:$ the mean load across 2 groups is the same, but can differ across subspecies

H2: the mean load across subspecies is the same, but can differ between the 2 groups

H3: the mean load can differ both across subspecies and between 2 groups

```
ggplot(data = Field, aes(x = delta_ct_cewe_MminusE, y = WL)) +
geom_point() +
stat_smooth(method= "lm")
```

```
## `geom_smooth()` using formula = 'y ~ x'
```

Warning: Removed 150 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 150 rows containing missing values (`geom_point()`).


```
Field2 <- Field %>%
  drop_na(delta_ct_cewe_MminusE)

cor(Field2$WL, Field2$delta_ct_cewe_MminusE)

## [1] 0.1576532
```

```
tolerance <- lm(WL ~ delta_ct_cewe_MminusE, data = Field)
summary(tolerance)</pre>
```

```
##
## Call:
## lm(formula = WL ~ delta_ct_cewe_MminusE, data = Field)
##
## Residuals:
##
               1Q Median
                               ЗQ
                                      Max
## -5.2762 -1.8206 -0.3349 1.6904 8.7213
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        10.91325
                                    0.45066
                                              24.22
                                                      <2e-16 ***
## delta_ct_cewe_MminusE 0.11288
                                    0.05227
                                               2.16
                                                      0.0321 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.341 on 183 degrees of freedom
```

```
(150 observations deleted due to missingness)
## Multiple R-squared: 0.02485, Adjusted R-squared: 0.01953
## F-statistic: 4.664 on 1 and 183 DF, p-value: 0.0321
confint(tolerance)
##
                              2.5 %
                                      97.5 %
                       10.024092567 11.802405
## (Intercept)
ggplot(data = Field, aes(x = OPG, y = WL)) +
 geom_point() +
 stat_smooth(method= "lm") +
 scale_x_log10()
## Warning: Transformation introduced infinite values in continuous x-axis
## Transformation introduced infinite values in continuous x-axis
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 280 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 157 rows containing missing values (`geom_point()`).
              1e+04
                                          OPG
Field2 <- Field %>%
 drop_na(OPG)
cor(Field2$WL, Field2$OPG)
```

[1] 0.08025742

```
tolerance <- lm(WL ~ OPG, data = Field)</pre>
summary(tolerance)
##
## Call:
## lm(formula = WL ~ OPG, data = Field)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -6.5452 -1.9797 -0.0749 1.7505 9.6588
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.051e+01 2.012e-01 52.225
                                             <2e-16 ***
## OPG
              3.732e-08 3.493e-08
                                    1.068
                                              0.287
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.65 on 176 degrees of freedom
     (157 observations deleted due to missingness)
## Multiple R-squared: 0.006441, Adjusted R-squared: 0.000796
## F-statistic: 1.141 on 1 and 176 DF, p-value: 0.2869
confint(tolerance)
##
                       2.5 %
## (Intercept) 1.010806e+01 1.090201e+01
              -3.162786e-08 1.062601e-07
tolerance <- lm(WL ~ OPG * delta_ct_cewe_MminusE, data = Field)</pre>
summary(tolerance)
##
## lm(formula = WL ~ OPG * delta_ct_cewe_MminusE, data = Field)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -4.6452 -1.9629 -0.4451 1.4172 8.6849
##
## Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                              1.146e+01 9.024e-01 12.699
                                                           <2e-16 ***
## OPG
                             -1.183e-05 2.335e-05 -0.506
                                                             0.615
## delta_ct_cewe_MminusE
                             1.787e-01 1.181e-01
                                                   1.512
                                                              0.137
## OPG:delta_ct_cewe_MminusE 5.325e-06 6.842e-06
                                                    0.778
                                                              0.440
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.571 on 45 degrees of freedom
## (286 observations deleted due to missingness)
```

```
## Multiple R-squared: 0.07703,
                                    Adjusted R-squared: 0.0155
## F-statistic: 1.252 on 3 and 45 DF, p-value: 0.3023
confint(tolerance)
                                      2.5 %
##
                                                  97.5 %
## (Intercept)
                              9.641497e+00 1.327639e+01
                             -5.885891e-05 3.520486e-05
## OPG
## delta_ct_cewe_MminusE
                             -5.927564e-02 4.166351e-01
## OPG:delta_ct_cewe_MminusE -8.455062e-06 1.910478e-05
Field <- Field %>%
  dplyr::mutate(BMI = Body_Weight / Body_Length)
ggplot(data = Field, aes(x = BMI, y = WL)) +
  geom_point() +
  stat_smooth(method= "lm")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 1 rows containing missing values (`geom_point()`).
 20 -
¥
         0.10
                                                           0.25
bmi <- lm(WL ~ BMI, data = Field)</pre>
cor(Field$BMI, Field$WL, use = "complete.obs")
```

[1] -0.1138541

```
summary(bmi)
##
## Call:
## lm(formula = WL ~ BMI, data = Field)
## Residuals:
##
      Min
               1Q Median
                              ЗQ
## -5.8747 -1.8728 -0.0796 1.7947 10.0742
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.6905
                       0.6707 17.431
                                           <2e-16 ***
              -7.3938
                         3.5409 -2.088 0.0376 *
## BMI
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\#\# Residual standard error: 2.507 on 332 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01296, Adjusted R-squared: 0.00999
## F-statistic: 4.36 on 1 and 332 DF, p-value: 0.03755
confint(bmi)
                  2.5 %
                           97.5 %
## (Intercept) 10.37122 13.0098096
```

BMI

-14.35928 -0.4283224