Отчет

по построению модели

по классификации отзывов, с разработкой веб-сервиса на Django .

Исходные данные: открытый набор данных, который содержит в себе отзывы о фильмах, а также соответствующие им оценки рейтинга. Рейтинг может служить ориентиром для построения модели классификации отзывов. https://ai.stanford.edu/~amaas/data/sentiment. Более подробное описание структуры файлов данных, а также сами данные можно найти по ссылке: https://ai.stanford.edu/~amaas/data/sentiment/aclImdb v1.tar.gz

Задача:

- 1. Обучить модель на языке Python для классификации отзывов.
- 2. Разработать веб-сервис на базе фреймворка Django для ввода отзыва о фильме с автоматическим присвоением рейтинга (от 1 до 10) и статуса комментария (положительный или отрицательный).

В рамках данного задания были проведены следующие этапы:

- 1. Загрузка и изучение данных
- 2. Обработка текста
- 3. Предсказание тональности отзывов (positive / negative)
- 4. Предсказание рейтинга
- 5. Разработка веб-сервиса на Django
- 1. Загрузка и изучение данных
- 1.1. Данные были загружены в Google Colaboratory. Обучающая и тестовая выборки содержат данные по 25 тыс. записей с отзывами о фильмах, оценками (1-4 и 7-10) и статусами позитивный и негативный.

- 1.2. Отзывы с нейтральным рейтингом 5-6 не включены в обучающий и тестовый наборы данных.
- 1.3. Пропусков в данных не обнаружено.
- 1.4. Классы статуса находятся в равновесии 1:1 в обеих выборках (по 12,5 тыс.).
- 1.5. Классы оценок в обучающей и тестовой выборках имеют похожее распределение: самые популярные оценки 1 и 10 (по ~5 тыс.); остальные оценки встречаются реже, но распределены по классам достаточно равномерно (от ~2 до 3 тыс.).

Распределение классов в обучающем наборе данных:

Распределение классов в тестовом наборе данных:

2. Обработка текста

- 2.1. Для обучения моделей были очищены от лишних символов, спецсимволов и стоп-слов, проведена лемматизация с помощью WordNetLemmatizer().
- 2.2. Приведены облака слов для негативных и позитивных отзывов: наиболее популярные слова во многом совпадают (film, movie, one, see, make, like и др.), но при этом есть и заметные отличия: например, в негативных отзывах намного чаще встречается слово bad, а в позитивных слово love.

Most frequently used words in Positive reviews

3. Предсказание тональности отзывов (positive / negative)

Выбор лучшей модели и подбор параметров будем проводить на кроссвалидации с помощью RandomizedSearchCV.

Перед подачей текста в модель будем проводить его векторизацию с помощью TfidfVectorizer.

Так как классы целевого признака сбалансированы, то качество модели можно оценивать метрикой ассигасу (доля верно угаданных ответов).

Результаты лучших-моделей на кросс-валидации:

```
cv_results = cv_results.sort_values(by='accuracy', ascending=False).reset_index(drop=True)
cv_results.round(3)
                model accuracy roc_auc recall precision
                                                                                                           params
0
         SGDClassifier
                            0.887
                                       0.887
                                                0.902
                                                             0.876
                                                                        {'sgdclassifier__loss': 'hinge', 'sgdclassifie...
1 LogisticRegression
                            0.886
                                       0.886
                                                0.897
                                                             0.879
                                                                        {"logisticregression solver": 'saga', 'logist...
2
       LGBMClassifier
                                                                    {'lgbmclassifier__n_estimators': 300, 'lgbmcla...
                            0.870
                                       0.870
                                                0.878
                                                             0.864
3
      DummyClassifier
                            0.500
                                       0.500
                                                0.000
                                                             0.000
                                                                      {'dummyclassifier__strategy': 'most_frequent'}
[ ] # параметры лучшей модели
   rs_model_sgd.best_params_
    {'sgdclassifier_loss': 'hinge', 'sgdclassifier_alpha': 0.0001}
Лучшие результаты на кросс-валидации (accuracy 89,1%) показала модель SGDClassifier с параметрами ('sgdclassifier_loss': 'hinge',
'sgdclassifier_alpha': 0.0001}
```

Результаты лучшей модели на тестовых данных:

```
best_model_status = SGDClassifier(loss='hinge', alpha=0.0001, random_state=RANDOM_STATE)
best_model_status.fit(tf_idf_train, target_train)
predicted_test = best_model_status.predict(tf_idf_test)

print(classification_report(target_test, predicted_test))
```

	precision	recall	f1-score	support
ø	0.88	0.87	0.88	12500
1	0.87	0.88	0.88	12500
accuracy			0.88	25000
macro avg	0.88	0.88	0.88	25000
weighted avg	0.88	0.88	0.88	25000

На тестовой выборке **accuracy** = **88%**, что является неплохим результатом.

3.2. Нейросеть

Построим простую нейросеть для бинарной классификации:

```
def build_neural_network():
    model = tf.keras.Sequential([
        layers.Dense(64, input_shape=(10000, )),
        layers.Dropout(0.5),
        layers.Dense(10, activation='relu'),
        layers.Dropout(0.5),
        layers.Dense(1, activation='sigmoid')

])
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_accuracy'])
    return model
```

Результаты обучения:

Построил графики изменения точности и потерь в зависимости от количества эпох.

Видно, что на валидации потери после 2 эпох начинают возрастать, а точность начинает падать. Это говорит о переобучении модели после 2 эпох

Переобучил нейросеть на 2 эпохах:

На валидации accuracy = 89,1%. Это результат сопоставимый с выбранной лучшей ML-моделью SGDClassifier.

Результаты нейросети на тестовых данных:

```
predictions = model_nn.predict(tf_idf_test_slct.toarray())
782/782 [============== ] - 3s 4ms/step
print(classification_report(target_test, predicted_test))
            precision recall f1-score support
                0.88 0.87
0.87 0.88
                                  0.88
                                          12500
                                  0.88
                                          12500
   accuracy
                                  0.88
                                         25000
               0.88 0.88
                                  0.88
                                          25000
  macro avg
weighted avg
                0.88
                         0.88
                                  0.88
                                          25000
```

Видим, что результат даже немного хуже, чем у SGDClassifier, и предсказание классов менее равномерное:

Вывод: для предсказания тональности отзывов остановим свой выбор на более простой модели SGDClassifier, которая дает достаточно хорошие результаты (ассигасу = 88%) с равномерным попаданием в классы.

4. Предсказание рейтинга

- Перед подачей текста в модель буду проводить его TF-IDF преобразование с помощью TfidfVectorizer().
- Так как классы целевого признака несбалансированны, то качество модели можно оценивать средневзвешенным по классам ассигасу.

LGBMClassifier – результаты на валидации:

```
model = LGBMClassifier(n_estimators = 300, random_state=RANDOM_STATE, class_weight='balanced')
model.fit(tf_idf_train, target_train_rat)
predicted_valid = model.predict(tf_idf_valid)
print(classification_report(target_valid_rat, predicted_valid))
             precision recall f1-score support
                 0.58
                         0.68
                                   0.62
                                             1020
                          0.14
          2
                 0.17
                                    0.16
                                              457
                                   0.19
                          0.16
          3
                 0.22
                                              484
                                   0.29
                 0.29
                         0.29
                                              539
                                   0.29
0.23
                         0.28
0.23
                 0.29
                                               499
                0.24
                                              602
                         0.15
                                   0.17
                 0.19
                                              453
          9
         10
                 0.49
                          0.58
                                    0.53
                                               946
                                             5000
   accuracy
                                    0.38
                0.31
                         0.31
                                    0.31
                                              5000
```

5000

SGDClassifier – результаты на валидации:

0.38

0.35

macro avg weighted avg

```
model = SGDClassifier(random_state=RANDOM_STATE, class_weight='balanced')
model.fit(tf_idf_train, target_train_rat)
predicted_valid = model.predict(tf_idf_valid)

print(classification_report(target_valid_rat, predicted_valid))
```

0.36

precision	recall	t1-score	support
0.58	0.76	0.66	1020
0.20	0.13	0.16	457
0.22	0.15	0.18	484
0.30	0.32	0.31	539
0.30	0.32	0.31	499
0.31	0.22	0.25	602
0.17	0.13	0.15	453
0.51	0.62	0.56	946
		0.40	5000
0.32	0.33	0.32	5000
0.37	0.40	0.38	5000
	0.58 0.20 0.22 0.30 0.30 0.31 0.17 0.51	0.58	0.58

LogisticRegression – результаты на валидации:

```
model = LogisticRegression(random_state=RANDOM_STATE, class_weight='balanced', max_iter=300)
model.fit(tf_idf_train, target_train_rat)
predicted_valid = model.predict(tf_idf_valid)

print(classification_report(target_valid_rat, predicted_valid))
```

	precision	recall	f1-score	support
1	0.65	0.62	0.63	1020
2	0.25	0.26	0.25	457
3	0.24	0.22	0.23	484
4	0.31	0.32	0.32	539
7	0.31	0.37	0.34	499
8	0.29	0.26	0.28	602
9	0.20	0.21	0.20	453
10	0.55	0.54	0.55	946
accuracy			0.40	5000
macro avg	0.35	0.35	0.35	5000
weighted avg	0.40	0.40	0.40	5000

Лучшие результаты на валидации показала LogisticRegression с параметрами {class_weight: 'balanced', max_iter: 300} Результаты лучшей модели на тестовых данных:

```
best_model_rating = LogisticRegression(random_state=RANDOM_STATE, class_weight='balanced', max_iter=300)
best_model_rating.fit(tf_idf_train_, train_data['rating'])
predicted_test = best_model_rating.predict(tf_idf_test_)

print(classification_report(test_data['rating'], predicted_test))
```

	precision	recall	f1-score	support
1	0.63	0.60	0.62	5022
2	0.21	0.21	0.21	2302
3	0.23	0.22	0.23	2541
4	0.29	0.33	0.31	2635
7	0.27	0.30	0.28	23 07
8	0.25	0.22	0.23	2850
9	0.21	0.22	0.21	2344
10	0.56	0.54	0.55	4999
accuracy			0.38	25000
macro avg	0.33	0.33	0.33	25000
weighted avg	0.38	0.38	0.38	25000

Результаты именно точных ответов не очень высокие (accuracy = 38%), что объясняется сложностью точного предсказания мультиклассов по сравнению с бинарной классификацией.

4.2. Нейросеть

Построил простую нейросеть для множественной классификации:

```
def build_neural_network_rat():
   model = tf.keras.Sequential([
      layers.Dense(128, input_shape=(10000, )),
       layers.Dropout(0.5),
       layers.Dense(32, activation='relu'),
       layers.Dropout(0.5),
       layers.Dense(11, activation='softmax')
   model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model_nn_rat = build_neural_network_rat()
history = model_nn_rat.fit(tf_idf_train_slct.toarray(),target_train_rat,
                        epochs=4,
                        batch size=100,
                        validation_data=(tf_idf_valid_slct.toarray(), target_valid_rat))
Enoch 1/4
200/200 [=======] - 9s 43ms/step - loss: 2.0615 - sparse_categorical_accuracy: 0.2632 - val_loss: 1.6419 - val_sparse_categorical_accuracy: 0.3830
Enoch 2/4
200/200 [=======] - 7s 37ms/step - loss: 1.5733 - sparse_categorical_accuracy: 0.3997 - val_loss: 1.4604 - val_sparse_categorical_accuracy: 0.4260
Epoch 3/4
200/200 [=======] - 7s 37ms/step - loss: 1.3968 - sparse categorical_accuracy: 0.4629 - val_loss: 1.4337 - val_sparse_categorical_accuracy: 0.4282
Epoch 4/4
200/200 [========] - 8s 42ms/step - loss: 1.2790 - sparse_categorical_accuracy: 0.5041 - val_loss: 1.4511 - val_sparse_categorical_accuracy: 0.4266
```

Результаты обучения:

```
predictions = model_nn_rat.predict(tf_idf_valid_slct.toarray())
for i in predictions:
   pred.append(np.argmax(i))
print(classification report(target_valid_rat, pred))
157/157 [============= ] - 1s 9ms/step
           precision recall f1-score support
               0.53 0.81 0.64
                                        1020
         1
                                       457
               0.12
                              0.00
         2
                      0.00
         3
               0.28
                      0.18
                              0.22
                                        484
              0.32
         4
                      0.36
                              0.34
                                        539
         7
              0.33
                      0.31
                              0.32
                                        499
              0.29 0.29
0.28 0.04
0.49 0.72
         8
                              0.29
                                        602
                              0.07
         9
                                        453
                              0.58
                                         946
        10
                                        5000
                                0.43
   accuracy
macro avg 0.33 0.34 0.31
weighted avg 0.37 0.43 0.37
                                        5000
                                        5000
```

Вывод: Не смотря на то, что на валидации общая метрика ассuracy = 43% у нейросети получилась больше, чем у LogisticRegression, классы 2 и 9 вообще имеют почти нулевое f1-score. Вероятно, что более высокую точность можно достичь с помощью усложнения модели, например эмбиддингов на предобученной модели BERT, но в условиях ограниченности ресурсов остановим свой выбор на простой модели LogisticRegression.

5. Разработка веб-сервиса на Django

Проект расположен в репозитории по ссылке:

https://github.com/Dimonius-73/Grinatom/tree/main

Для запуска приложения на Windows локально скачайте репозиторий и в папке выполните команды:

- 1. pip install Django
- 2. pythpn manage.py runserver

```
July 11, 2023 - 16:20:14
Django version 4.2.3, using settings 'rating_add.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CTRL-BREAK.

[11/Jul/2023 16:20:25] "GET /postuser/ HTTP/1.1" 200 1093
[11/Jul/2023 16:20:26] "GET /static/css/normalize.css HTTP/1.1" 200 6138
[11/Jul/2023 16:20:26] "GET /static/css/styles.css HTTP/1.1" 200 2010
[11/Jul/2023 16:20:26] "GET /static/fonts/Roboto-Regular.woff2 HTTP/1.1" 200 12264
[11/Jul/2023 16:20:26] "GET /static/fonts/Roboto-Regular.woff2 HTTP/1.1" 200 12228

Not Found: /favicon.ico
[11/Jul/2023 16:20:29] "GET / HTTP/1.1" 200 1117
[11/Jul/2023 16:22:29] "GET / HTTP/1.1" 200 1117
[11/Jul/2023 16:22:29] "GET / HTTP/1.1" 200 1107
[11/Jul/2023 16:34:12] "POST /postuser/ HTTP/1.1" 200 1087
[11/Jul/2023 16:34:12] "FOST /postuser/ HTTP/1.1" 200 1087
[11/Jul/2023 16:35:40] "GET / HTTP/1.1" 200 1117
[11/Jul/2023 16:35:40] "POST /postuser/ HTTP/1.1" 200 1771
[11/Jul/2023 16:57:17] "FOST /postuser/ HTTP/1.1" 200 1771
[11/Jul/2023 16:55:77] "GET / HTTP/1.1" 200 1117
[11/Jul/2023 16:55:77] "GET / HTTP/1.1" 200 1117
[11/Jul/2023 16:57:10] "POST /postuser/ HTTP/1.1" 200 1771
[11/Jul/2023 16:57:11] "POST /postuser/ HTTP/1.1" 200 1771
[11/Jul/2023 16:57:27] "GET / HTTP/1.1" 200 1117
[11/Jul/2023 16:57:32] "POST /postuser/ HTTP/1.1" 200 1771
```

Проект будет доступен локально http://127.0.0.1:8000/

Тестирование сервиса

Возьмем реальные отзывы с сайта IMDb на фильм

Определение вероятного рейтинга по рецензии

Как видим сервис работает. Задача решена

Контактная информация:

Автор: Назарьянц Дмитрий Александрович Город Москва.

Специализации:

- ВІ-аналитик, аналитик данных
- Финансовый аналитик, инвестиционный аналитик
- Финансовый менеджер
- Бизнес-аналитик
- Дата-сайентист

Обо мне

Опыт работы в производственных компаниях на руководящих позициях в финансовой сфере более 10 лет. Высшее экономическое образование. Значительный опыт участия в проектах по инвестиционному и финансовому моделированию.

Глубокое знание принципов и методов экономического, финансового и инвестиционного анализа деятельности предприятия. Уверенное понимание методологии и взаимосвязей системы бюджетов предприятия.

Экспертное владение инструментарием: MS Excel, PowerBI, Google Формы, Google таблицы, Data Studio и другие, а также все офисные программы. Осуществляю анализ данных в Python и SQL.

Интересны сложные, нестандартные задачи в области аналитики данных, финансовой и инвестиционной аналитики, машинного обучения и внедрение процессов, имеющих стратегическое значения для компании.

2 +7(926) 422-63-98

- da.naz @mail.ru
- https://t.me/Dimonius73