Lecture 5: Population genetics I

The Hardy-Weinberg Principle & Selective forces

HS 2017, **701-0245-00L**

Dr. Sébastien Wielgoss

What is Population Genetics?

Integrates:

- Darwin's Theory of Evolution by Natural Selection
- Mendelian laws of inheritance (ie, genetics)

Seeks to document and explain changes in:

- allele frequencies;
- genotype frequencies;
- phenotype frequencies.

Offers quantifiable definition of evolution:

→ Evolution happens by allele frequency changes in the population

Types of characters

Discontinuous, discrete

Count

Flower coloration

Types of characters

Continuous, quantitative

Yield

Heritability

Heritability = Variance (Genotype) / Variance (Phenotype) h^2

Influence of Environment $\rightarrow 0$

Influence of Environment \rightarrow 1

Remember from Class 2: Parent-offspring regression

How else to determine Heritability (*H*)? **Selection experiments**

The concept of the gene pool

The metazoan sexual diploid life-cycle

haploid diploid

The forces causing evolution in real populations

The idealized population does not evolve

The concept of the ideal (Hardy-Weinberg) population

- 1. Infinite population size
- 2. Random mating among individuals in the population
- 3. No evolution:
 - 1. There is no selection
 - 2. There is no mutation
 - 3. There is no migration
 - 4. There is no chance evolution (genetic drift)

The Hardy-Weinberg Principle (HWP)

Does our population evolve?

If not: the population is in Hardy Weinberg Equilibrium

The HWP is a null model against which we test if a population is evolving or not.

Calculating Genotype & Allele Frequencies

Genotypes:

Homzygous for A: Heterozygous: Homozygous for a:

AA Aa aa

36 48 16

N=100

N_allele=200

What are the genotype frequencies of AA, Aa and aa?

What are the allele frequencies of A and a?

 $AA+AA+Aa/N_allele = (36+36+48)/200$ $Aa + aa + aa/N_allele = (48+16+16)/200$

The Hardy Weinberg Equilibrium

$$p^2 + 2pq + q^2 = 1$$

Hardy (1908) and Weinberg (1908) demonstrated that in the absence of evolution any allele frequencies (summing up to 1.0) can be in equilibrium.

The Hardy-Weinberg Equlibrium (HWE)

O Simplest general case for illustration in a diploid organism:

one gene (A) - two alleles (A_1,A_2) - three genotypes (A_1A_1,A_1A_2,A_2A_2)

Homozygote	Heterozygote	Heterozygote	Homozygote
$f(A_1A_1) +$	$f(A_1A_2) +$	$f(A_2A_1)$ +	$f(A_2A_2) = 1$
p • p +	p • q +	q • p +	$q \bullet q = 1$
p ² +	2pq	+	$q^2 = 1$

Binomial equation: $(p+q)^2 = 1$

More general: $(SUM(p_n))^2 = 1$ (with n = any number)

The baseline hypothesis:

the ideal Hardy-Weinberg population

The Hardy-Weinberg Principle

- O Does our population evolve?
 - O If not: the population is in Hardy Weinberg Equilibrium
 - O Populations follow the laws of Mendelian genetics
 - Allele frequencies do not change
 - Allele frequencies should be in an equilibrium after the first round of mating
 - Allele frequencies can be stable at any value between 0 and 1

- O If yes:
 - o there is no Hardy-Weinberg Equilibrium (HWE)...

Take-home messages (Part 1)

1. Population genetics integrate Darwin's theory of evolution by natural selection with Mendelian genetics and seeks to quantify evolutionary change over time.

2. An ideal (Hardy-Weinberg) population is not limited in terms of population size and not impacted by evolution.

3. The Hardy-Weinberg Equilibrium postulates: $p^2 + 2pq + q^2 = 1$

Violations of the HWE

Allele frequencies change over time

$$f(A_1) = p / \Psi$$
$$f(A_2) = q / \Psi$$

$$f(A_2) = q / \Psi$$

Genotype frequencies do not meet expected values 2)

$$f(A_1A_1) \neq p^2$$

$$f(A_1A_2) \neq 2pq$$
$$f(A_2A_2) \neq q^2$$

$$f(A_2A_2) \neq q^2$$

Testing if population is in Hardy-Weinberg-Equilibrium

Suppose we knew a sample of a population that is unaffected by a disease, while many others died, and that they have the following genotype frequencies:

AA	Aa	aa	allele frequencies:
			f(A) = 31/60 = p
4	23	3	f(a) = 29/60 = q
Т	2.3	J	use HWE equation to find 2pq
			genotype frequencies:
			g(AA)=4/34
			g(Aa)=23/34
1.	Calculate the observed allele frequencies		g(aa)=3/34
			compare values from HWE with g(x)

- 2. Calculate the **expected number** of each genotype under HWE
 - in this example: population not in HWE
- 3. Compare expected and observed numbers, are they
 - identical (HWE),
 - or not identical (no HWE)?
- 4. Optional (more exact): use a statistical chi-square test to test for significance

Lecture 5: Population genetics I

Selective forces

Figure 23.13

(a) Directional selection

© 2011 Pearson Education, Inc

(b) Disruptive selection

© 2011 Pearson Education, Inc.

26

- (d) Frequency-Dependent Selection
- In **frequency-dependent selection**, the fitness of a phenotype depends on its frequency in the population:
 - opositive FDS: phenotype increases if it becomes most common in the population
 - negative FDS: phenotype declines if it becomes most common in the population

Negative Frequency-Dependent Selection

...when fitness depends on allele frequency.

Elderflower orchids cheat on bumblebees.

Color promises a nectar reward but none is given.

Why do both yellow and purple flowers exist?

Again, the question- What maintains diversity?

Negative Frequency-Dependent Selection

Different modes of selection

- O Directional selection favors individuals at one end of the phenotypic range
- O Disruptive selection favors individuals at both extremes of the phenotypic range
- Stabilizing selection favors intermediate variants and acts against extreme phenotypes
- Frequency-dependent selection: a) negative FDS, favors the rarest variant and acts against the more common ones; b) positive FDS, the most common variant is favored over the rare ones

Selection coefficient (s)

Fitness (w) [relative reproduction success] is inversely correlated to the selection coefficient (s)

$$w = 1 - s$$

Fitness $(B_1B_1) = 100\% => s_{B1B1} = 0\%$

Fitness $(B_1B_2) = 75\% => s_{B1B2} = 25\%$

Fitness $(B_2B_2) = 50\% => s_{B2B2} = 50\%$

The effect of the selection coefficient

The larger the selection coefficient (s \rightarrow 1):

the faster allele frequencies change

Calculating changes in i) genotype and ii) allele frequencies due to selection

frequency of first allele:
$$p = f(A) = 0.5$$

frequency of second allele: $q = f(a) = 0.5$

selection coefficient for a genotype: s

"Genotype fitness": w = 1 - s

$$w(AA) = 1.0$$

$$w(Aa) = 0.7$$

$$w(aa) = 0.6$$

1. Calculcate average fitness (w) for the whole population before selection:

$$w = p^2 \bullet w(AA) + 2pq \bullet w(Aa) + q^2 \bullet w(AA)$$

2. Calculate **genotype** frequencies **after** selection:

$$f'(AA) = p^{2} \cdot w(AA)/w$$

$$f'(Aa) = 2pq \cdot w(Aa)/w$$

$$f'(aa) = q^{2} \cdot w(aa)/w$$

2. Calculate <u>allele</u> frequencies among gametes <u>after</u> selection and random mating (p', q'):

$$f'(A) = p' = f'(AA) + \frac{1}{2} \cdot f'(Aa)$$

$$f'(a) = q' = f'(aa) + \frac{1}{2} \cdot f'(Aa)$$

$$\Delta p = p' - p$$

$$\Delta q = q' - q$$

Take-home messages (Part 2)

1. You can test if a population is in Hardy-Weinberg-Equilibrium

2. You can calculate the impact of selection on both genotype and allele frequencies

3. You understand the evolutionary trajectories that differential selection has on the various genotypes

Thanks for your attention!

... and don't forget about next lecture:

Date: Wednesday, 25 Oct 2016

Location: HG F 3

Time: 8:00 - 10:00