

A brief history of data and databases

Technological School Instituto Técnico Centrals ETITC - 2024 - 2

Record Keeping - How long?

Xerxes I inscription at Van

Al-Hasakah, 3300-3100 BC, Uruk culture

The Kish tablet, 3500 BC, Kish period

Jemdet Nasr period, c. 3100–2900 BC

Sumerian, 3300 B.C.

+Why?

We use records to never forget.

• We use records to measure "stuff".

And most of these records are not digital.

Jacquard Loom (1804)

+ Jacquard Loom

The ten commandments

Marriage book, Rochester, NY, chronological filing of marriage licenses.

1790 US census

No.	When Married	Name and Surmane.	Age.	Condition.
355	April - 25-40 -	Robert Flenning Many Lamb	33	Sachelor Spiriter

Distof Paupers not at the Poor House	e firmi,
Adorde Patty 150 to 900	me
Can Mary 150 00 Parken Huster	200
Lary thos 100 D 600 + Parham Hissan	som \$150
- Cash mary 1500 gos + Parham Susan	Dr 10 150
- Finel anna + 150 10 goo Puryer Likal	Lord 150
+ Jerrell Jane Col 100/ 9 - + Place Billy F;	100 1+150
+ Gregor Charity Ce 200 \$ 12 - + Pape Clara	. +150
- Gresham Piggy * 150 pg ou + Pollard Une	un 150
Grisham Clind + 150 1 9 00 + Primore age	
Strond Bets,	100

Other non-electronic records

- SS cards 35 million hand typed between 1937-1938
- Motor vehicle licenses and registrations
- Financial records for companies
- School records

+ Card Catalogs – An ingeneous indexing system

- •It didn't indicate whether the book was available, just where it should be found.(example cards)
- •Creating the cards required the expertise of librarians.

+ Problem - The 1890 census

■ Enter Herman Hollerith.

+ Hollerith's device

Integrating machine

pantograph

Hollerith card

CRAIG	BALL	3251	LAURE	L STR	EET NEI	ORLEANS	LOUISIANA 0 00 0	100000	JSA I	
12345	6 7 8 9 101	1 12 13 14 15 1	6 17 18 19 20 2	22 23 24 25 26	27 28 29 30 31 32 3	3 34 35 36 37 38 39 40 41	42 43 44 45 46 47 48 49 50 51	52 53 54 55 56 57 50 5	9 60 61 62 63 64 65 66 67 68 61	000000000000
22222	2 2 2 2 2	2 2 2 2 2	22222	22 22	222222	2222222	22222 2222	2222222	22222222	222222222
3333	333 0	3333	3 3 3 3 3	3333	33 333	333 3333	3 3 3 3 3 3 3 3 3	3333333	3333333333	3333333333
44444	44444	4444	444 4	44444	444444	4444444	444 44444	444444	444444444	444444444
55555	555555	555 5	55555	55555	M55 M	5555 5 5 5 5 5	555555555	55555 55	5555555555	555555555
66666	666666	66666	666666	66666	666666	6 6 6 6 6 6	66 666666	6666666	6666666666	666666666
7777	77777	7777	77777	77777	777777	77777777	777777777	7 777777	7777777777	777777777
88888	888888	88888	88888	88888	888888	88888888	8888888888	8888888	88888888888	888888888
9 9 9 9	999999	9 9 9 9 9	9 9 9 9 9 9	9999	9999999	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9999 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	99999999999

First computers

The program, the data, the JCL – all done with punchcards

+ First computers

1964 IBM 029 Keypunch Card Punching Demonstration

Electronic files – Early computing 1950s

<u>Universal Automatic Computer</u> (<u>UNIVAC</u>) 1951

von Neumann, precursor innegable de la físicamoderna, y la EDVAC (Electronic Discrete Variable Automatic Computer) (1952-1957)

Electronic files – Early computing 1950s

The IBM 650 (1954)

COBOL (Common Business Oriented Language) (1959) CODASYL

The IBM 700 Series (1953)

Enter the database – Early 1960s

- Objects in a database can be related to one another.
- Hierarchical One record leads to the related record. (Like a tree)
- Network Allowed for multiple relationships (like a network)
- The databases used pointers to relate one record to another.

Electronic files – Early computing 1960s

ASCII (American Standard Code for Information Interchange) (1963)

B: 055						000	0	0	0 ,	10	10	١,	١. ١	
B . **	5_					0	١	' 0	' -	0	-	' 0	' 1	
Bits	b₄	b₃ →	b⁰→	→	Column	0	-	2	3	4	5	6	7	
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	`	Р	
	0	0	0	1	1	SOH	DCI	!	- 1	Α	Q	а	q	
	0	0	_	0	2	STX	DC2	"	2	В	R	b	r	
	0	0	-	1	3	ETX	DC3	#	3	С	S	С	s	
	0	-	0	0	4	EOT	DC4	\$	4	D	Т	d	t	
	0	_	0	_	5	ENQ	NAK	%	5	Ε	U	е	u	
	0	_	_	0	6	ACK	SYN	8.	6	F	٧	f	v	
	0	_	_	-	7	BEL	ETB	,	7	G	W	g	w	
	1	0	0	0	8	BS	CAN	(8	н	×	h	x	
	١	0	0	1	9	HT	EM)	9	I	Y	i	У	
	1	0	1	0	10	LF	SUB	*	:	J	Z	j	z	
	T	0	1	1	11	VT	ESC	+	;	K	[k	{	
	Π	1	0	0	12	FF	FS	,	<	L	١	ı		
	T	1	0	1	13	CR	GS	_	=	М]	m	}	
	Ī	_	_	0	14	so	RS		>	N	^	n	~	
	1	1	-	1	15	SI	US	/	?	0	_	0	DEL	

+ Electronic files – Early computing 1960s, Charles Bachman

Integrated data store (IDS) – Dow Chemical CASE products (Computer Aided Engineering)

+ Electronic files – Early computing

1960s

Information Management System (IMS) Hierarchical data model. Hard drives

"My professor brought in a 10MB hard disk from the 1960's" xD

Some Issues

- While an improvement over file-based systems, these systems required knowledge of the structures to use them. No built-in search mechanism.
- Very few users understood the structures, access limited to an elite few.
- Queries were complex. Took time to get new information and expensive programmer time to produce.

Enter the relational DBMS 1970, Edgar Codd

Relational DBMS

- Mathematician at IBM
- Based on Relational Calculus and set theory

U of Michigam

MicroDBMS

ASTEMSYSTOLSYSTEMSOL AND ASTEMSOL AND ASTEMS

IBM

- System R (1975)
- First implementation of SQL

Led to

- Oracle
- IBM DB2
- INGRES
- Informix
- Sybase
- MS SQL Server (based on Sybase)

*Sperry Univac computer system (1978)

DBMS Timeline

https://15721.courses.cs.cmu.edu/spring2020/slide s/01-history.pdf Pag. 42-59

^{*} Relational Ideas

- Data is represented as a series of tables.
- The tables are Related to one another through a series of keys and foreign keys.
- A standard language is used to define the database (DDL) and to query the database (DML).
- Tables within the database contain the data about the database (meta data).

* Why Relational?

- It is easy for most people to "see" and "get it".
- Makes the data accessible for a wider number of users through user friendly query tools.
- Through good database design, space usage is efficient (although this has become less of an issue of late).

In a nutshell

Electronic files – Early computing 1950s – 1970s

Database Paradigms

+ Databases today

The Future?

- Object Oriented Databases
 - Combine data and operations on those data
 - Allows for inheritance
 - Oracle (Object-Relational Database)
 - Postgre(open source object-relational DBMS)
 - http://www.postgresql.org/about/
- XML and XML DBMS
 - XML designed to transport and store data initially envisioned as moving data across the web (w3schools.com)
 - XML Database Management System manages that data

Thanks!

Sebastián Aguilera Novoa saguileran@itc.edu.co

