

Цель работы:

Изучение операционных усилителей и схем на их основе.

В работе используются:

Операционный усилитель, резисторы, генератор напряжения, осциллограф.

1 Ход работы

1.1 Измерение коэффициента усиления ОУ

1. Соберем схему изображенную на рис.1. Возьмем резисторы сопротивлением $R_1=R_2=R_3=100$ кОм и $R_4=1$ кОм.

Рис. 1: Схема измерения коэффициента усиления

2. Подадим на вход колебание с амплитудой U=2 В и частотой f=10 Гц. Измерим величину напряжений U_a и U_{out} :

$$U_{out} = 1,4 \, B$$

$$U_a = 2 \,\mathrm{MB}$$

3. Рассчитаем коэффициент усиления операционного усилителя по формуле:

$$A_0 = (1 + \frac{R_3}{R_4}) \cdot \frac{U_{out}}{U_a} \simeq 7 \cdot 10^4$$

1.2 Амплитудно-частотная характеристика ОУ

1. Для схемы на рис. 1 снимем зависимость коэффициента усиления от частоты:

	A	24000	12200	6300	2550	1265	636	257	129	65	27
f,	кΓц	0,05	0,1	0,2	0,5	1	2	5	10	20	50

2. Построим снятую зависимость в двойном логарифмическом масштабе, откладывая частоту в герцах а коэффициент усиления в децибелах $(A_{\rm дB}=20 lgA)$.

Рис. 2: АЧХ операционного усилителя

3. Экстраполировав график до пересечения с A_0 и 1 определим граничную частоту:

$$f = 0 \Rightarrow A_0 = 93,48$$

$$A=1\Rightarrow f_r=162530$$
 Гц

Из этого получаем, что $f_{p0}=25,5$ Γ ц

1.3 Неинвертирующий усилитель

1. Соберем схему неинвертирущего усилителя (рис. 3). $R_1=1~{\rm кOm},~R_2=100~{\rm кOm}.$

Рис. 3: Схема неинвертирующего усилителя

2. Измерим постоянное напряжение на выходе U_{out} :

$$U_{out} = 1,26 \, B$$

3. Снимем зависимость коэффициента усиления от частоты K(f).

K(f)	84	87	86	86	86	86	85	80	67	45	21
f, Гц	10	50	100	200	500	1000	2000	5000	10000	20000	50000

По полученным данным построим график:

Линейной приближения дало зависимость - K=90, 16-0, 0022f.

- 4. Определим граничную частоту F_p по уровню 0,7 K=60,2. Получается, что $F_p=13,6$ к Γ ц.
- 5. Определим максимальную амплитуду неискаженного выходного напряжения на низкой частоте ($f=1\ \mathrm{k}\Gamma\mathrm{u}$):

$$U_{max-l} = 6,4 \, B$$

6. Включим ОУ по схеме повторителя. Коэффициент передачи и усиления равен единице. Определим максимульную амплитуду неискаженного сигнала на частоте f=1 МГц:

$$U_{max} = 0.6 \, \text{B}$$

Рис. 4: Зависимость K(f) у неинвертирующего усилителя

1.4 Инвертирующий усилитель

1. Соберем схему инвертирующего усилителя используя те же резисторы, что в разделе 3, определим коэффициент усиления K_0 и граничную частоту F_p .

Рис. 5: Схема инвертирующего усилителя

2. Убедимся, что коэффициент усиления $K_0 = -R_2/R_1 \Rightarrow K_0 =$ -90. Найдем частоту F_p по уровню 0,7:

$$F_p=13,6$$
 к Γ ц,

она имеет то же значение, что и для неинвертирующего усилителя.

1.5 Разностный усилитель

1. Соберем схему, выбрав $R_3=R_1=1$ кОм, $R_4=R_2=10$ кОм.

Рис. 6: Схема разностного усилителя

2. Измерим коэффициент усиления сначала по входу 1, а затем по входу 2. При втором измерении вход U_{in1} соединим с землей.

$$U_{in1} = 29, 2 \text{ MB},$$

$$U_{in2} = 46,64 \text{ MB},$$

- 3. Объединим входы U_{in1} и U_{in2} , убедимся, что коэффициент усиления синфазного сигнала близок к нулю.
- 4. Продемонстрируем, что для идеального ОУ выходное напряжение

$$U_{out} = (U_{in2} - U_{in1}) * (R_2/R_1) = 174,4 \text{ MB}.$$

При этом экспериментальное значение

$$U_{outexp} = 167,9 \text{ MB},$$

что почти совпадает с вычисленным по формуле.