Wireless Keyboard

Page	Index
• • • •	• • • • • • • • • • • • • • • • • • • •
1	Cover Page
2	Block Level Architecture
3	USB C
4	Power Path Management
5	LDO Regulator
6	MicroController Unit
7	Keyboard Matrix
8	
9	
10	

About Keyboard

Keyboard Layout :-We have designed the above layout which is also know as Tenkeyless Kevboard

Keys and Switches:-There are 87 keys in the keyboard and mx switches are being used

Mode:-Works as wired and wireless(bluetooth) keyboard

TOP VIEW

BACK VIEW

Block Level Architecture

File: level_1.kicad_sch

TEAM:

- 1) AKASH SRIDHAR
 2) UTKARSH JAIN
 3) SHASHWAT SABARWAL

Block Level Architecture

M2 Screw Holes

USB C 2.0

https://www.mouser.in/ProductDetail/GCT/USB4215-03-A?qs=IKkN%2F947nfBipec8wvDabA%3D%3D

Power Path Management

LDO Regulator

Microcontroller Unit

Keyboard Matrix

Choice for diode is 1N4148, its is cheap and widely available

Connecting each key to a separate GPIO pin is impractical for large keyboards, as it quickly exceeds available pins and complicates design. A keyboard matrix arranges keys in a grid of rows and columns. Each key connects a row to a column, allowing the microcontroller to scan keys using far fewer GPIOs—typically R + C instead of one per key.