MTH3121 Algebra Problem Sheet 2: Saral 30618428

Question 3 a

Lets call the group represented by R⁺ under multiplication,

M and the group represented by R⁺ under the operation $x * y = \frac{1}{3}xy$,

O. So for M and O to be isomorphic there must be a bijection such that :

 $f : M \rightarrow 0$ such that :

$$f(a*b) = f(a) * f(b)$$
, for all a, b $\in M$

From looking at the $\frac{1}{3}$ it seems like a bijection could be f (x) = 3 x. Lets see if this is it.

f(a * b) = f(ab) (Just applying the multiplication binary operation)

$$f(ab) = 3ab (Applying f(x) = 3x)$$

$$3 a b = \frac{1}{3} (3 a) (3 b)$$
 (Separating out some terms)

$$\frac{1}{3}$$
 (3 a) (3 b) = $\frac{1}{3}$ f (a) f (b) (Applying f (x) = 3 x)

$$\frac{1}{3}$$
 f (a) f (b) = f (a) * f (b) (Applying the binary operation x * y = $\frac{1}{3}$ xy)

Thus we have shown that f(a * b) = f(a) * f(b)

But wait is the supposed bijection, f(x) = 3x, even a bijection?

First we have to show that it is injective (one - to - one) :

For any $a, b \in R$

$$f(a) = 3a$$

$$f(b) = 3b$$

iff (a) =
$$f(b)$$
 then $3a = 3b$

$$3a = 3b \implies a = b$$

Therefore f (x) is injective

Now is it surjective?

For this to be the case we would need that for anthing $y \in (some \ codomain)$ there exists an $x \in (some \ domain)$ such that :

$$f(x) = y$$

This would imply that:

$$y = 3x$$

and thus $x = \frac{y}{3}$, we have found an x for every y in the codomain.

This means that f(x) is surjective.

Since it is both injective and surjective, f(x) = 3x, is a bijection.

Question 4

- a) Max order of an element of S_6 is 6, whereas for D_{720} it is 720. Therefore S_6 and D_{720} are not isomorphic.
- b) Max order of an element of D_{18} is 18, where as for Z_{36} it is 36. Therefore D_{18} and Z_{36} are not isomorphic.
- c) Max order of an element of D_{60} is 60, whereas for S_5 it is 6. Therefore D_{60} and S_5 are not isomorphic.
- d) The only element of finite order in R under addition is 0. This has order 1. For R* under multiplication - 1 has order 2 and 1 has order 1.

Thus R⁺ and R^{*} have different numbers of elements of finite order and therefore they are not isomorphic.

Question 5

$$g = (1387)(24)(59)$$

$$gf = (28976354)$$

$$f^{-1} = (167)(25893)$$

$$f^2 = (167)(29538)$$

$$f^3 = (176)(23985)$$

 f^{2121} = (1 7 6) (2 3 9 8 5), 2121 is divisible by 3 so applying f to itself 2121 times gives the same result as applying f to itself 3 times.

b) First we will look at f. The two cycles in f are:

$$1 \rightarrow 7 \rightarrow 6 \rightarrow 1 \dots$$
 (Cycle 1)

$$2 \rightarrow 3 \rightarrow 9 \rightarrow 8 \rightarrow 5 \rightarrow 2 \dots$$
 (Cycle 2)

For any number in cycle 1 to come back to itself we need m iterations where m is divisible by 3.

For any number in cycle 2 to come back to itself we need m iterations where m is divisible by 5.

Therefore m is divisible by both 3 and 5 and lcm(3,5) = 15

Thus the order of f is 15.

For g using the same arguments, its order would be divisible by both 4 and 2. lcm(4,2) = 8Therefore the order of g is 8.

c)
$$p = (167)(28359)$$

Question 10 a

For GL_2 (R) to be a group under matrix multiplication we need an identity, an inverse and for the matrix multiplication to be associative.

Lets first find the identity, lets call the identity I where:

$$I = \begin{bmatrix} m & n \\ o & p \end{bmatrix}$$
 where m, n, o, $p \in R$ such that $mp - on \neq 0$

For an identity and for some matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2$

(R) we would need the following operations to hold:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \times \left[\begin{array}{cc} m & n \\ o & p \end{array} \right] \ = \ \left[\begin{array}{cc} am + bo & an + bp \\ am + do & cn + dp \end{array} \right] \ = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \qquad \left(\text{Operation 1} \right)$$

$$\begin{bmatrix} m & n \\ o & p \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} am + nc & mb + nd \\ oa + pc & ob + pd \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 (Operation 2)

From Operation 1 and 2 we can derive the following equations:

Now after doing a bunch of arithmetic I got absoluetly no where and I had even more equations than the ones I listed.

BUT then I looked at Equation 1 VERY closely.

n and o are entries in I, our identity matrix and Equation 1 is saying in english terms:

"No matter what b and c you give me for any
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 \in $GL_2(R)$, bo = nc"

How can this even be possible? n and o are constant in our identity matrix, they dont change their values but b and c can change and yet bo = nc.

The only way this is possible is if n = 0 = 0.

Therefore we know our I looks something like:

$$\begin{bmatrix} m & 0 \\ 0 & p \end{bmatrix}$$

Now what are m and p. We can find what m is using Equation 1 and substituting n = 0 into it giving:

Thus m = 1

To find p we can use Equation 3 and substitute o = 0 into it to give:

Thus p = 1

At this point I also know that a = p = 0 are also solutions to Equation 4 and 5 but we are only looking at the entries relevant to our Identity matrix.

Thus the identity is:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Now do we have an inverse?

For an inverse we need for any $\left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in GL_2$ (R) there is another $\left[\begin{array}{cc} W & X \\ y & z \end{array} \right] \in GL_2$ (R) such that :

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{bmatrix} = I$$
 (Equation 6)

$$\begin{bmatrix} w & x \\ y & z \end{bmatrix} * \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} aw + xc & wb + xd \\ ya + zc & by + dz \end{bmatrix} = I$$
 (Equation 7)

I won't show all the arithmetic here but after doing it I found that:

$$\left[\begin{array}{cc} w & x \\ y & z \end{array} \right] \ = \ \left[\begin{array}{cc} d \left(\frac{y-x}{b-c} \right) & \frac{by}{c} \\ \frac{xc}{b} & a \left(\frac{y-x}{b-c} \right) \end{array} \right]$$

Thus we have an inverse.

Now is matrix multiplication associative for GL_2 (R)?

For matrix multiplication to be associative for any $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\begin{bmatrix} e & f \\ g & h \end{bmatrix}$, $\begin{bmatrix} \mathbf{i} & \mathbf{j} \\ k & 1 \end{bmatrix} \in \mathsf{GL}_2$ (R) :

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * \begin{pmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} * \begin{bmatrix} i & j \\ k & 1 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} * \begin{bmatrix} e & f \\ g & h \end{bmatrix} \end{pmatrix} * \begin{bmatrix} i & j \\ k & 1 \end{bmatrix}$$
 (Equation 8)

Lets see if Equation 8 holds:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * \begin{bmatrix} ei + fk & ej + fl \\ gi + hk & gj + hl \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix} * \begin{bmatrix} i & j \\ k & l \end{bmatrix}$$

$$\left[\begin{array}{ll} \left(\mathsf{aei} + \mathsf{afk} + \mathsf{bgi} + \mathsf{bhk} \right) & \left(\mathsf{aej} + \mathsf{afl} + \mathsf{bgj} + \mathsf{bhl} \right) \\ \left(\mathsf{cei} + \mathsf{cfk} + \mathsf{dgi} + \mathsf{dhk} \right) & \left(\mathsf{cej} + \mathsf{cfl} + \mathsf{dgj} + \mathsf{dhl} \right) \end{array} \right] = \left[\\ \left(\mathsf{aei} + \mathsf{bgi} + \mathsf{afk} + \mathsf{bhk} \right) & \left(\mathsf{aej} + \mathsf{bgj} + \mathsf{afl} + \mathsf{bhl} \right) \\ \left(\mathsf{cei} + \mathsf{dgi} + \mathsf{cfk} + \mathsf{dhk} \right) & \left(\mathsf{cej} + \mathsf{dgj} + \mathsf{cfl} + \mathsf{dhl} \right) \end{array} \right]$$

(Expanding the brackets in each entry)

Looking closely we see that LHS =

RHS which shows that matrix multiplication is also associative in GL_2 (R).

Thus GL₂ (R) is a group under matrix multiplcation.

Question 10 b

Question 11 b

Lets deal with the first part of this statement. Lets take the group G to be abelian.

If G is abelian we know that from some elements a and b of G:

$$a*b = b*a$$

Therefore:

$$f(a*b) = f(b*a)$$

$$f(b*a) = (b*a)^{-1} (from applying f(g) = g^{-1})$$

$$(b * a)^{-1} = a^{-1} * b^{-1}$$
 (Since a and b are elements of a group)

$$a^{-1} \star b^{-1} = f(a) \star f(b)$$
 (from applying $f(g) = g^{-1}$)

Thus f(a*b) = f(a)*f(b), so this part of the function $f(g) = g^{-1}$ holds.

But is fabijection? For some elements a, $b \in G$:

If,
$$f(a) = f(b) \implies a^{-1} = b^{-1} \implies a = b$$

Thus f is injective.

For f to be surjective we need that for all $b \in G$, there exists an $a \in G$ such that :

$$f(a) = b$$

Thus:

$$a^{-1} = b$$

 $a^{-1} * a = b * a$ (Performing a binary operation with a on both sides)

$$e = b * a$$
 (Since $a^{-1} * a = e$)

Thus $a = b^{-1}$, so for every b there does exist an a such that f(a) = b.

This shows that; if G is abelian then f is an isomorphism

Now to go the other way if f is an isomorphism then we know that for some a, $b \in G$:

$$f(a*b) = f(a) * f(b)$$

We also know that:

$$f(a*b) = (a*b)^{-1} (Applying f(g) = g^{-1})$$

Equating these two equations gives us:

$$f(a) * f(b) = (a*b)^{-1}$$

$$a^{-1} * b^{-1} = (a * b)^{-1}$$
 (Applying f (g) = g^{-1})

$$a^{-1} * b^{-1} = b^{-1} * a^{-1} \qquad \qquad \text{(Since a and b are elements of a group)}$$

$$a^{-1} * b^{-1} * a = b^{-1} * a^{-1} * a \qquad \qquad \text{(Applying binary operation with a on both sides)}$$

$$a^{-1} * b^{-1} * a = b^{-1} * e \qquad \qquad \text{(Using associativity and that } a^{-1} * a = e)$$

$$a^{-1} * b^{-1} * a = b^{-1} \qquad \qquad \text{(Since } b^{-1} * e = b^{-1})$$

$$a^{-1} * b^{-1} * a * b = b^{-1} * b \qquad \qquad \text{(Applying binary operation with b on both sides)}$$

$$a^{-1} * b^{-1} * a * b = e \qquad \qquad \text{(Since } b^{-1} * b = e)$$

$$a * a^{-1} * b^{-1} * a * b = a * e \qquad \qquad \text{(Applying binary operation with a on both sides)}$$

$$e * b^{-1} * a * b = a \qquad \qquad \text{(Using associativity and that } e * b^{-1} = e)$$

$$b * b^{-1} * a * b = b * a \qquad \qquad \text{(Since } b * b^{-1} = e)$$

$$a * b = b * a \qquad \qquad \text{(Using associativity and that } e * a = a)$$

$$\text{(Using associativity and that } e * a = a)$$

$$\text{(Using associativity and that } e * a = a)$$

Thus if f is an isomorphism then G is abelian.

Since we have shown both sides of the statement we can conclude that:

If G is a group and considering the function $f: G \rightarrow G$ defined by f(g) = Gg-1. The group G is abelian if and only if f is an isomorphism.